Review

Virulence Potential and Treatment Options of Multidrug-Resistant (MDR) Acinetobacter baumannii

Sunil Kumar 1, Razique Anwer 2 and Arezki Azzi 3, *

1 Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133207, India; sunilpgi85@gmail.com
2 Department of Pathology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317-4233, Saudi Arabia; razainuddin@imamu.edu.sa
3 Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317-4233, Saudi Arabia
* Correspondence: raazzi@imamu.edu.sa

Abstract: Acinetobacter baumannii is an opportunistic pathogen which is undoubtedly known for a high rate of morbidity and mortality in hospital-acquired infections. A. baumannii causes life-threatening infections, including; ventilator-associated pneumonia (VAP), meningitis, bacteremia, and wound and urinary tract infections (UTI). In 2017, the World Health Organization listed A. baumannii as a priority-1 pathogen. The prevalence of A. baumannii infections and outbreaks emphasizes the direct need for the use of effective therapeutic agents for treating such infections. Available antimicrobials, such as; carbapenems, tigecycline, and colistins have insufficient effectiveness due to the appearance of multidrug-resistant strains, accentuating the need for alternative and novel therapeutic remedies. To understand and overcome this menace, the knowledge of recent discoveries on the virulence factors of A. baumannii is needed. Herein, we summarized the role of various virulence factors, including; outer membrane proteins, efflux pumps, biofilm, penicillin-binding proteins, and siderophores/iron acquisition systems. We reviewed the recent scientific literature on different A. baumannii virulence factors and the effective antimicrobial agents for the treatment and management of bacterial infections.

Keywords: Acinetobacter baumannii; virulence factors; antibiotic therapy; mechanism of action; animal models; Gram-negative bacteria; multidrug resistance

1. Introduction

Acinetobacter baumannii are non-motile, aerobic Gram-negative, glucose non-fermentative, catalase-positive, non-fastidious, oxidative-negative coccobacilli [1]. The phylogenetic classification and interpretation of the taxonomy of the genus Acinetobacter has established over 60 known species within the genus (Figure 1) [2]. Amongst all other species, A. baumannii is particularly associated with hospital-acquired infections (HAI) world wide [3]. Hospital-acquired pneumonia, meningitis, and skin and soft tissue infections are amongst the diverse infections caused by A. baumannii [4]. A. baumannii has also been known as “Iraqibacter” due to the infections among soldiers admitted to the US military hospitals during the Iraq and Afghanistan conflicts [5]. A. baumannii virulence factors have posed multiple challenges and outbreaks in treatment, particularly in critical patients admitted to the intensive care units (ICUs) of healthcare units [3].
Infections due to *A. baumannii* are recently emerging particularly in the hospital setting and constitute a challenge for clinicians to tackle their spread and treatment, especially in the ICUs [6]. Furthermore, multidrug resistance has significantly increased in the past two decades, including; resistance to last-resort antibiotics, such as colistin [7,8]. *A. baumannii* infections are usually very difficult to treat; however, the organism has depicted a relatively low virulence potential in immunocompetent hosts [9]. However, recently, animal infection models have reported *A. baumannii* strains with increased pathogenicity [10,11]. This might be due to phenotypic and genetic adaptations that could increase the resistance and virulence potential of *A. baumannii* [12,13].

Physico-chemical functions, including; cell communication, secretion of macromolecules, and surface-regulated attachments, are key factors for bacterial biofilm formation [14]. Several virulence genes enable *A. baumannii* to be a potent bacterial pathogen in animals and humans [15,16]. K1 surface antigen protein 1, acinetobactin transporters, capsular polysaccharides, outer membrane porins, and iron acquisition systems are some of the factors which, along with acquired antibiotics resistance, have promoted *A. baumannii* as a significant nosocomial pathogen [17,18]. *A. baumannii* has been reported to have a range of virulence genes that code for biofilmformation and its adherence on biotic and abiotic surfaces [19]. These virulence genes also facilitate *A. baumannii* in the viable state under different adverse environmental conditions and protect against antimicrobial agents [20–22]. Due to the fast development of severe infections and rising antimicrobial resistance of *A. baumannii*, inappropriate empirical therapy is given to the patient, most often with negative consequences [23]. Several studies have examined the effect of antibiotic exposures on the modulation of the virulence properties of resistant pathogens [24–27]. Augmentation of virulence in *A. baumannii* has been seen by converting a normally low-virulence organism into a highly virulent one in response to variable antibiotic concentrations [28,29]. Several novel treatment options have recently been approved for treating this deadly bug [30,31]. Herein, we review the virulence factors of *A. baumannii* to assess the relationships between antimicrobial resistance, virulence, and the therapeutic options.

2. Multidrug Resistance Mechanisms

A. baumannii is capable of harboring acquired resistance to a variety of antibiotics used in therapy. Several antimicrobial agents, such as penicillins, cephalosporins, tetracyclines, aminoglycosides, and quinolones have been tested as ineffective against *A. baumannii* treatment due to the augmentation of resistance determinants. The mechanism behind this might be the genetic alteration causing modification of the membrane fusion proteins.
Microorganisms 2021, 9, 2104

(OMPs); overexpression of antimicrobial modifying enzymes; overexpression of efflux transporters; modification of target sites; and the insertion of new resistance determinants. Consequently, carbapenems are the only choice of treatment alternatives due to their enhanced activity and reduced toxicity for A. baumannii infections [32]. In the past few decades, A. baumannii caused an array of nosocomial infections, which were successfully treated with gentamicin, minocycline, nalidixic acid, ampicillin, or carbenicillin, either as monotherapy or in combinations, but global surveys have shown an increased resistance in the hospital isolates [33–35]. Several mechanisms of resistance have been implicated in the augmentation of resistance in A. baumannii:

1. Enzymatic mechanisms including; deferent β-lactamases.
2. Non-enzymatic mechanisms involving efflux pumps and membrane permeability.
3. Change in the sequence of penicillin-binding proteins (PBPs).

Among these, the first two are very crucial in imparting resistance to clinical isolates of A. baumannii [36]. The action of bacterial β-lactamase resulted in the rise of antibiotic resistance to the penicillins, cephalosporins, and carbapenems [37,38]. A. baumannii gives rise to β-lactamases, which are coded by various chromosomal genes or plasmids genes.

2.1. Enzymatic Mechanisms (Beta-Lactamases)

Different classes of β-lactam antibiotics become hydrolyzed by the enzymes produced by bacterial cells, such as cephalosporins, carbapenems, penicillins, and monobactam, which are neutralized by β-lactamases. Beta-lactamases are classified into four major classes (A, B, C, and D) as per their gene sequence homology. On the basis of the inclusion of divalent cations in enzyme activation, these enzymes are classified into metallo-β-lactamases (class-B) and non-metallo-β-lactamases (classes A, C, and D) [39]. Overproduction of beta-lactamases has been associated with the escalated resistance to carbapenems in A. baumannii in many investigations. AmpC beta-lactamases come under the Ambler classification of preferred ESBL (extended-spectrum beta-lactamases) [40]. As per recent information on A. baumannii, the most significant mechanism is the carbapenemase behind carbapenem resistance, which is the most powerful class of β-lactamases. Divalent cations (zinc) are utilized by metallo-enzymes in addition to water molecules in order to cleave the β-lactam ring. Carbapenem-hydrolyzing class-D beta-lactamases (CHDL) are considered as another promising cause of carbapenem resistance in A. baumannii. These enzymes are also known as oxacillinases (OXAs) because of their capacity to hydrolyze isoxazolyl-penicillin-oxacillin quicker than benzylpenicillin [41,42]. To date, many types of OXAs have been discovered in the A. baumannii, such as OXA-23, OXA-51, OXA-40/24, OXA-48, OXA-58, and OXA-143 [32,43].

Class-A (GES and KPC) and class-B carbapenemases (NDM, IMP, SIM, and VIM) have also been screened in A. baumannii. Many class-A carbapenemases are crystallized (e.g., SME-1, KPC-2, and NmcA). Most of the class-C β-lactamases show weaker activity in the hydrolysis of carbapenems. OXA-23 is the most prominently found CHDL beta-lactamase, primarily found on a plasmid of the A. baumannii strain in Scotland and represented as the first oxacillinase harboring carbapenemase activity [44]. Later on, the blaOXA-23 gene was identified both on plasmids and on chromosomes all over the globe. It is exclusively found in the genus Acinetobacter with the exception of a Proteus mirabilis isolate from France [45]. OXA-24/40, initially isolated from Spain, were predicted the first time as separate enzymes but re-sequencing confirmed them as identical later on [46].

OXA-58 has also been identified in A. baumannii, which shares a 59% protein sequence similarity with OXA-51/69 [47]. OXA-58 is particularly coded by a plasmid gene, which has been circulated extensively all over the world. Initially, OXA-58 was more prevalent in Greece and Italy [48–52] because of frequent outbreaks in intensive care units and pediatric wards [53–55]. Nowadays, OXA-58 is found in A. baumannii in every corner of the world [56]. OXA-143 is the more recently identified group of CHDLs, which were formerly traced in the clinical isolate of A. baumannii in Brazil [57]. CHDLs hydrolyze the carbapenems typically very effectively; therefore, as a substrate, imipenem is given
preference over meropenem and hence raises a debate on the contributing role of CHDLs in carbapenem resistance [58,59]. Some of the studies have tried to prove this by implementing either knock-out mutants or by using transformation experiments to see the changes in susceptibility to carbapenems.

2.2. Non-Enzymatic Mechanisms (Efflux Pumps)

Efflux pumps are the components of the bacterial cell membrane which excrete toxic substances, metabolic end-products, and even antimicrobials [60]. Overexpression of chromosomally encoded efflux pumps is one of the several mechanisms responsible for multidrug resistance in *A. baumannii* [61]. Efflux pumps have been presented as the first step in the augmentation of an MDR phenotype [62]. Most of the efflux pumps are prevalently described in the Gram-negative bacteria, which are comprised of three protein components [63]. The resistance-nodulation-division (RND) efflux family, which most commonly fetches antimicrobial resistance in *A. baumannii*, is composed of a periplasmic MFP (membrane fusion protein) interacting with an inner cytoplasmic membrane transporter protein at one end and an OMP (outer membrane protein) on other end to facilitate the extrusion of antimicrobials [64,65]. Such efflux systems are the MexAB-OprM system (previously studied as MexAB-OprK) of *P. aeruginosa* [66] and the AcrAB system in *E. coli*. In the *Burkholderia cepacia* complex, RND efflux pumps have also been explored for the association of antimicrobial drug resistance to different antimicrobials [67]. Apart from the MexAB-OprM system, three more RND efflux systems have been characterized: MexEF-OprN, MexXY-OprM, and MexCD-OprJ [60,68]. To date, many RND efflux pump systems have been described in *A. baumannii*, including; AdeABC, AdeFGH, and AdeIJK [36,69–71]. Each of these efflux pumps is regulated by a two-component regulatory system, e.g., AdeRS regulates the AdeABC in *A. baumannii* [72]; AdeL (LysR-type transcriptional regulator) regulates the AdeFGH [70]; and AdeN regulates the AdeIJK for TetR transcriptional regulation [73]. Overexpression of the efflux pumps by up-regulation has led to increased antimicrobial resistance in *A. baumannii* [36,74]. The MF (Major Facilitator) and MATE (Multidrug And Toxic compound Extrusion) super family efflux pumps have also been observed contributing to antimicrobial resistance in *A. baumannii* [69,72,75].

3. Virulence Factors

Multiple virulence factors facilitate *A. baumannii* in passing on a disease to the host efficiently (Figure 2) [15]. Only a meager understanding is available about the *A. baumannii* virulence potential and the host responses to infection caused by this bacterium [76,77]. Virulence factor identification and the underlying mechanisms of pathogenesis can help in the synthesis of new treatment substitutes to control the disease by this bug [24].

![Figure 2. Potential virulence factors of *A. baumannii*.](image-url)
3.1. Outer Membrane Proteins (OMPs) and Outer Membrane Vesicles (OMVs)

Outer membrane proteins of Gram-negative bacteria are investigated for their association with antimicrobial resistance, pathogenesis, and variation in the adherence of the host cell [78]. *A. baumannii* isolates have shown a few OMPs, which are symbolized as the most prevalent ones among other species as well [79]. *A. baumannii* OmpA (AbOmpA) is reported as an impending virulence factor bringing numerous significant properties to signal processing and pathogenesis [80]. AbOmpA of *A. baumannii* is a major surface-bound protein, which facilitates the attachment process and host cell invasion and helps in the commencement of apoptosis at the onset of infection. OmpA adds to the initiation of cell apoptosis, the invasion of epithelial cells, and serum resistance [81,82]. Gram-negative bacteria generally produce outer membrane vesicles (OMVs) that assist in confronting virulence factors by host cells [83]. Lipo-polysaccharides (LPS), lipids, proteins, and DNA or RNA are the main constituents of OMVs, which have a diameter range of approximately 20–200 nm [84,85]. OMVs deliver the virulence factor to host cells and transfer resistance genes from one bacteria to another [86].

3.2. Biofilm

Biofilm is a complex structure of diversified bacterial cells usually found adhered to the biotic or abiotic surfaces, embedded in an extracellular matrix of polymers (involving nucleic acids, carbohydrates, proteins, and other constituents) and representing a shielding mechanism to thrive in unfavorable environmental conditions and at the time of host infection [87,88]. One of the essential virulence factors required for adherence to biotic and abiotic surfaces and biofilm formation is 38 kDa (OmpA) outer membrane protein A [80,89]. Initial attachment to the abiotic surface is mediated by pili production controlled by the usher-chaperone assembly structure (CsuA/BABCDE) and regulated by BfmS/BfmR (a 2-component system) [90]. Formation and regulation of biofilms depend upon several host factors, such as growth condition, cell density, quorum sensing, light, and free iron [91,92]. A significant component of exopolysaccharide is PNAG (Poly-β-1,6-N-acetyl-glucosamine), which constitutes biofilms [93]. The effortless adherence to epithelial cells, diverse medical devices, and equipment is crucial for *A. baumannii* invasion in the susceptible hosts and persistence in hospitals [94]. Such bacteria show a higher resistance against variable antibiotics, stressors, or disinfectants than the motile ones and hence the capacity to produce biofilms symbolizes a critical factor of virulence. Biofilm formation can be manipulated by general features, such as bacterial appendages, bacterial surface constituents, availability of nutrition medium, macromolecular secretions, and quorum sensing systems [91]. The capability of clinical strains of *A. baumannii* to synthesize biofilm is attributed to a resistance phenotype, particularly on abiotic surfaces, catheter-associated infections, sepsis or urinary tract catheters and even in the patients with shunt-related meningitis [95–97].

3.3. Penicillin-Binding Proteins (PBPs)

PBPs are enzymes usually found as membrane-bound in the cytoplasm of bacteria and share a familiar evolutionary origin [98]. These enzymes are essential for synthesizing peptidoglycan, the bacterial cell wall’s principal constituent, and coupled with cell division and morphogenesis [99]. Disorientation in the cell wall is caused by the inhibition of PBPs, which further inhibit growth or cell lysis. PBPs have been categorized into low and highmolecular weight PBPs. Low molecular weight PBPs help cell segregation and the remodeling of peptidoglycan, whereas highmolecular weight PBPs are responsible for cell wall and peptidoglycan synthesis [100]. Using rat soft-tissue infection models, Russo et al. also showed that a mutant derivative of the wild *A. baumannii* (PBP-7/8 deficient) is added to the *A. baumannii* pathogenesis and is involved in its survival and growth in the ascites of humans [101]. A few studies also portrayed the role of penicillin-binding proteins in pathogenesis due to *A. baumannii* [102].
3.4. Siderophores/Iron

Pathogenic bacteria face one major challenge in their hosts, which is the shortage of freely accessible iron. Iron is almost unavailable in mammals for invading bacteria and is mostly integrated into storage proteins and iron transport. The ability of the host to withhold iron significantly diminishes the accessibility of iron to infecting bacteria and is accounted for as an essential module of innate immunity [17]. Siderophores are secreted and bind to ferric ions and enable \textit{A. baumannii} to capture iron under an iron-shortage condition [103]. Bacterial cells acquire siderophores loaded with Fe3+ and heme through specific protein receptors. These receptors are usually present on the outer membrane of Gram-negative bacteria where siderophore-Fe2+ complexes are internalized, coupled with the indulgence of the proton gradient on the bacterial inner membrane [104]. TonB protein complex mediates the energy transduction in the periplasmic space from the inner to the outer membrane [105]. Recently, a novel siderophore, cefiderocol (siderophore-cephalosporin conjugate), investigated in a subject suffering from kidney impairment, was found to be well tolerated as a treatment for multidrug-resistant strains [106]. Synthesis of fimsbactin A and B has also been studied recently, based on the synthesis routes as stereoisomeric analogues [107]. A gamma-lactam antimicrobial has been effectively tested upon MDR \textit{A. baumannii} in the USA recently [108]. Some studies also explained the roles of phospholipase D and capsular polysaccharide as virulence factors which add to the pathogenicity of \textit{A. baumannii} [109,110].

4. Antimicrobial Therapy

4.1. Monotherapy

\textit{A. baumannii} infections are commonly severe and complicated to cure because of escalating multidrug resistance, specifically among clinical isolates [111,112]. Consecutive surveys have revealed the mounting resistance in clinical isolates. The majority of \textit{A. baumannii} strains have become resistant against clinically attainable doses of nearly all prevalent utilized antimicrobials, such as ureidopenicillins, aminoglycosides, aminopenicillins, fluoroquinolones, chloramphenicol, and cephalosporins [113,114]. The rate of resistance of sulbactam is also rising periodically despite being bactericidal to many other species of the genus Acinetobacter [115]. Carbapenems, in particular meropenem and imipenem, were previously very successful in in vitro treatment. Carbapenems are considered as the last resort of the treatment for managing infections caused by MDR \textit{A. baumannii}. Still, the rate of resistance against carbapenems has increased in clinical strains of \textit{A. baumannii}, particularly in Europe, Latin America, Asia, and Australia (Figure 3) [56,116–118]. Such carbapenem-resistant \textit{A. baumannii} (CRAB) isolates are generally resistant to other conservatively used common antibiotics [56,113,119]. Imipenem has a higher affinity for certain oxacillinase enzymes than meropenem. The susceptibility to tigecycline or polymyxins at present remains satisfactory [120,121]. A global surveillance from 2007–2011 suggested the escalating susceptibility of minocycline ranging from 72.5% to 91.7% [122,123]. In a study from Italy, an increase in resistance to the latest generation of antimicrobials has been observed in sepsis cases [124]. Most of the \textit{A. baumannii} isolates have been reported resistant to most of the antibiotics (95–99%) in another investigation [125]. Minocycline showed bactericidal effects against \textit{A. baumannii} isolates as well as synergistic effects with other antimicrobials.
Figure 3. Therapeutic treatment options for nosocomial infections of *A. baumannii*.

4.2. Synergy and Combination Therapy

Although the microbiological clearance rates in the *A. baumannii* severe infections are considerably higher with the use of combined therapy, recent analysis stated that there is an inadequacy of clinical effectiveness (mortality or cure rate) using combination therapy comparative to monotherapy. Absence of regulated clinical trials renders it complicated to judge the effect of combination therapy or synergy for treating MDR *A. baumannii* infections [126]. Combined therapy is recommended when all conventional drugs become ineffective against the *A. baumannii* [127]. Synergy and combinations of drugs through in vitro and in vivo experiments have shown extremely bactericidal activity against the hospital strains of MDR *A. baumannii* [128,129]. Two or three classes of the following antibiotics are included in such synergic combinations: rifampin, polymixins, sulbactam, tigecycline, aminoglycosides, or β-lactams, such as broad-spectrum cephalosporins or carbapenems [130–132]. However, all antibiotics should be tested individually against each strain and combined with suitable in vitro methods as multiple diverse resistance mechanisms are prevalent in the clinical isolates.

Conflicting results have been found in a few studies when different investigators used the same antimicrobial combinations. Montero et al., performed a study on a murine pneumonia host model of MDR *A. baumannii*. They concluded that rifampin combined therapy with tobramycin, imipenem, or colistin were the most efficient treatment options [133]. However, a follow-up clinical study suggested not using a combination of rifampin and imipenem for CRAB treatment because of a high failure rate. It acknowledged the increased resistance to rifampin in 70% of treated patients with this regimen [134]. To treat the imipenem-resistant pneumonia using a guinea pig model, amikacin and imipenem combined therapy gave a worse outcome than imipenem alone; however, the in vitro results represented the synergism among the antimicrobials [135]. The in vitro synergy benefits are still not clear. A broad category of additional antimicrobials usage put a limit on the capability to describe the overall outcome of combined therapy. In contrast to colistin parenteral monotherapy, most combination therapy outcomes were equivalent with respect to cure rates. Additional clinical studies with controlled parameters are required to conclude whether any suitable combination of antimicrobials could be translated to useful therapeutic strategies.

4.3. Dose and Drug of Choice

The dosage and drug of choice relied upon in vitro susceptibility surveys but not on rigorous clinical trials. The persistence and spread of specific epidemic lineages of *A. baumannii* in the different geographical locations indicate that information on the prevail-
ing local susceptibility pattern is critical for treating Acinetobacter infection. *A. baumannii* susceptible isolates could be quickly treated with conservative antimicrobial agents, spanning over the third and fourth generations of cephalosporin, fluoroquinolones, or carbapenems [136]. Aminoglycosides in combination with other antibiotics are usually prescribed for treating meningitis or bacteremia and have shown promising activity against *A. baumannii* in vivo and in vitro studies [119,137]. Tetracycline is also preferred to treat *A. baumannii* infections in several experimental and clinical studies [138].

It is essential to understand the fact that *A. baumannii* clinical isolates are increasingly reported as multidrug resistant and a few of them are resistant to almost all the routinely used antibiotics [139]. Therefore, it is necessary to have complete antimicrobial susceptibility testing [140]. Carbapenems have been the drug of choice for the last 20 years for treating *A. baumannii* infections when susceptibility data were generally not available [141]. However, the outbreak of epidemic clonal lineages worldwide with increased resistance to carbapenems has been documented during the last decade [56,142,143]. Before the availability of antimicrobial susceptibility tests, a combination of carbapenem with other antibiotics (sulbactam, tigecycline, or polymyxins) is perhaps an accepted choice for empirical therapy to treat *A. baumannii* infections [126]. The following antibiotics, either as monotherapy or in combined therapy, have been utilized for treating MDR isolates of *A. baumannii* with a lower success rate.

4.4. Polymyxins

While inadequate therapeutic options are in hand, clinicians have revisited the use of polymyxin E (colistin) or polymyxin B for MDR Acinetobacter infections [144]. The mode of action of colistin is the disrupting of the cell membrane by interacting with the lipopolysaccharide, increasing the membrane permeability, and resulting in bacterial cell fatality [145]. Colistin acts as a bactericidal drug and its effect is dependent upon the concentration utilized against *A. baumannii* [146]. There are two routes of colistin medication where colistin sulphate is given through an oral route and for topical use, and colistin sulphomethate sodium is administered intravenously [147]. Polymyxins, either in mono- or combined therapy, have proved effective intravenously in the clinical outcomes of patients suffering with meningitis or pneumonia (VAP) [148,149]. Toxicity rates, predominantly nephrotoxicity due to colistin, are usually lower than those reported earlier, but some investigators have shown the rates of AKI (Acute Kidney Injury) reaching up to 50% [150]. Lack of alternate antibiotics, failure to examine the renal functions, and various factors for renal injury make it difficult to access the outcomes of such studies. Polymyxins share similar PK-PD (pharmacokinetics/pharmacodynamics) with aminoglycosides; a trim level prospective study demonstrated the safety and efficiency of an elevated dose of colistin in critical patients [151]. Polymyxins in conjugation with other antimicrobial agents in aerosol form can also be given intravenously, which showed effectiveness in patients with *A. baumannii* nosocomial pneumonia [152]. When the intravenous colistin, or other antimicrobials, combined with aerosolized colistin, the outcome was improved in the subjective reports [153]. However, the combination of intravenous colistin had no discriminating benefit in a randomized study [152]. However, in critical patients, the extensive use of polymyxins for treating *A. baumannii* infections may lead to an escalating and increasing resistance [154]. Hetero-resistance to colistin has also been reported in *A. baumannii* isolates [155]. Consequently, combination therapy has been recommended with polymyxins and other antimicrobials [144].

4.5. Sulbactam/β-Lactamase Inhibitors

Sulbactam, which is a predominant β-lactamase inhibitor, has an inherent mechanism against *A. baumannii* isolates [30]. In vivo and in vitro assays of sulbactam have shown promising results against *A. baumannii* infections [129]. Ampicillin, a β-lactam agent, combined with the beta-lactamase inhibitor, did not materialize to enhance the synergy or activity [156]. Use of sulbactam alone is not recommended for severe Acinetobacter
Microorganisms 2021, 9, 2104

infections. However, Qin et al. reported extensive sulbactam use in the treatment of 114 patients with MDR Acinetobacter pulmonary infections, resulting in similar clinical outcomes among patients treated with sulbactam and cefoperazone alone [157]. Recently, sulbactam combined with meropenem therapy resulted in decreased biomass and mean thickness, raised the roughness of the Acinetobacter biofilm, and showed synergism against biofilm-embedded CRAB [158]. In another investigation, antimicrobial susceptibility results of MIC tests (broth microdilution method) in 176 isolates of A. baumannii of β-lactam/β-lactamase combinations showed a 99.4% susceptibility, which suggested future prophylactic and therapeutic options [159].

According to the particular geographical area, the in vitro susceptibility of A. baumannii differs extensively for sulbactam [160]. No substantial randomized clinical trial has been available with sulbactam. Studies have shown that compared to other successful antibiotics for treating resistant A. baumannii, sulbactam, either in combination or alone, has shown similar efficacy [161]. A higher sulbactam dose of >6 g/day is recommended in serious patients, and a regimen of 9 g/day of sulbactam has been used effectively, exclusive of significant side effects [162]. However, due to rampant clinical use, the antimicrobial efficacy of sulbactam has declined extensively against A. baumannii isolates and resistance to sulbactam is frequently increasing in certain geographical regions [163].

4.6. Tigecycline

Tigecycline is a relatively new glycyclycline agent, a synthetic derivative of minocycline, and possesses a specific mechanism of action. Tigecycline has been found to have bacteriostatic activity against CRAB isolates [164]. Some MDR Acinetobacter isolates have reported increased resistance to tigecycline by rapidly evading tigecycline by up-regulating efflux pumps encoded by chromosomal genes [165,166]. Clinical reports described the combination regimens of tigecycline to treat A. baumannii infections, such as bacteremia, VAP, soft tissue, and skin infections [126,167]. A poor correlation has been reported through studies between microbiological and clinical outcomes, mainly among patients under treatment for respiratory tract infections [120,168,169]. A low rate (48%) of microbiological eradication with tigecycline treatment has been noticed in A. baumannii hospital-acquired pneumonia (HAP) in some patients, probably due to the lack of adequate tigecycline concentration [170]. Another study recommended the high dose of tigecycline over a smalldose by PK-PD interpretation and partial clinical investigations sustain its safety and efficiency [171,172]. In a study of UTI (urinary tract infections) from Italy, 85% of uro-pathogens were Gram-negative bacteria [173]. For treating UTI, tigecycline is not recommended as the right choice drug as it is not excreted via urine [174]. The development of tigecycline resistance in P. aeruginosa, A. baumannii, and K. pneumoniae infections was also reported during therapy [119]. Therefore, it is crucial to avoid tigecycline use as a monotherapy for A. baumannii infection treatment. After discussing these findings, tigecycline is considered a good option for salvage therapy of infectious diseases [167,175].

4.7. Aminoglycosides

Tobramycin and amikacin are aminoglycoside agents utilized as therapeutic options for infections with MDR A. baumannii that keep hold of their susceptibility [176,177]. Such agents are frequently utilized in combination with a different potent antibiotic [178]. Numerous MDR Acinetobacter isolates maintain intermediate susceptibility to tobramycin or amikacin and increasing resistance to these agents is coupled with efflux pump mechanisms of aminoglycoside modifying enzymes [179]. Recently, the role of the outermembrane protein ‘A’ has been associated with increased resistance to gentamicin [180]. However, in vitro studies have reported a rise in resistance to aminoglycosides [181].

4.8. Tetracyclines

In a recent study from North India, a combination therapy of tetracycline with nalidixic acid showed a synergistic effect on MDR isolates of A. baumannii [182]. Minocycline
has shown considerable results through an in vitro pharmacodynamics model against carbapenem-resistant and susceptible isolates of A. baumannii in monotherapy and combination with other antimicrobials [123]. Data from a few investigations have shown that more than 90% of isolates of A. baumannii were susceptible to minocycline [183]. Subjective data has recommended minocycline in combinations with other antibiotics through intravenous route in critically ill patients with MDR Acinetobacter infections after the noticeable in vitro activity and constructive pharmacodynamics profiles [184]. However, large scale relative studies with an adequate number of patients are essential to validate the minocycline efficacy. A study of over 2000 samples was recently conducted with a novel derivative of tetracycline (omadacycline) where 90% of the A. baumannii isolates were inhibited with a concentration of ≤4 µg/mL [185]. However, resistance to tetracycline has been reported in a number of investigations due to the overexpression of tet efflux pumps [186].

5. Prevention and Control

Due to the high level of antimicrobial resistance, it is very difficult to control the A. baumannii infections. It is really difficult to get A. baumannii eliminated from a healthcare unit once it gets endemic. However, when a stubborn approach is implemented to infection prevention and control (IPC), it is not impossible to eliminate this organism from a unit. WHO guidelines were enforced in 2017 and should be strictly followed to effectively manage A. baumannii infections [187]. Although regular surveillance programs to control the infection are deficient in controlling the transmission of resistant Acinetobacter infections, inclusion of a variety of improvised action plans covering the assurance of all sorts of frontline hospital staff have revealed an indication of improvement (Figure 3) [188]. Detection of the source of transmission, cleaning of the environment, judicious feedback of information and medical equipment disinfection, strengthening of standard precautions, and hand hygiene are all necessary steps to prevent the hospital outbreaks [189]. The patients should be kept in isolated sites; for patients receiving mechanical ventilation, a closed tracheal suction system should be used to prevent contamination [190]. However, there are many other examples where it has been compulsory to put into practice a closure of wards for a period of up to one month, so that outbreaks of A. baumannii could be controlled [191] At genome level, further investigations are required to screen novel genomic islands responsible for a high virulence potential [192].

6. Study of Virulence Using Animal Models

To study A. baumannii pathogenesis and virulence, model systems have now been established, including; in vitro and in vivo systems in invertebrates and mammals [193–195]. C. elegans has been used as a host model to detect the variations in virulence factors amongst a variety of A. baumannii isolates with already identified virulence factors and resistance mechanisms [28]. Several studies have investigated high levels of antibiotic resistance over the last two decades [145]. To a large extent, the in vivo work in association with the quick adjustment of A. baumannii in the presence of antibiotics has been conducted by defining its genetic architecture spanning hospital settings [195,196]. Several other investigations have also underlined the significance of supplementary virulence factors [197,198]. The knowledge of the association of the fitness cost and the virulence factors with the resistance mechanisms of A. baumannii stillis lacking; however, both the virulence and fitness costs are thought to be connected with antimicrobial resistance [196,199]. A. baumannii virulence factors and pathogenetic potential allow it to grow and survive in the various habitats and environmental conditions where several other bacteria could not continue to exist [200,201]. Multiple investigations have used mammalian infection models for inventing fitness and virulence assays of A. baumannii and other related bacterial pathogens, especially in the rodent models [202]. Vertebrate host models require multifarious infrastructure, amenities and trained manpower to handle, maintain and monitor large number of animals.
Therefore, the invertebrate host models have become popular nowadays as alternative host models with less expenditure, a short life span, and low cost maintenance [203,204].

Over the last decade, developed invertebrate models decreased the cost and complications of mammalian model experiments and the need for animal care [205]. Moreover, no ethical issues are involved with the use of invertebrate models [206]. Such merits enable the large-scale infection model trials, which are predominantly utilized for high throughput selection of mutated bacterial strains [207]. Established invertebrate models to study the virulence include Drosophila melanogaster [208], C. elegans [196], Galleria mellonella [203], Bombyx mori [209], and Dictyostelium discoideum [210].

G. mellonella and C. elegans have been demonstrated as the leading significant and standard host models in the laboratories to study bacterial virulence and pathogenic islands [211]. As a host model of A. baumannii, C. elegans possesses numerous merits over G. mellonella in targeting the host-bacterial relations, such as a small size; a petite generation time; a transparent body; a short genome; a simple lifecycle; ease of maintenance; no requirement for external suppliers; accessibility of a plentiful choice of genetically modified mutants; the full knowledge of its lineage; and the simplicity of the animal [212,213].

7. Conclusions

A. baumannii is a notorious, nosocomial pathogen responsible for hospital-acquired infections. It has an ability to survive in a variety of hospital environments and to accumulate antimicrobial resistance. Multidrug resistance is the most troublesome feature of A. baumannii, due to which new treatment agents are ineffective against it. Antibiotic resistance mechanisms of A. baumannii include β-lactamases; modification of aminoglycosides; overexpression of multidrug efflux pumps; under-expression of outer membrane porins; and modifications of target sites. As per recent studies, polymyxin B, another polymyxin antibiotic, has been proposed as a prospective therapeutic option to colistin. Various animal models are crucial to investigating the pathogenicity and virulence associated with A. baumannii. G. mellonella larvae have identified hundreds of genes necessary for in vivo A. baumannii survival. Additionally, other model animals using transposon screening will underscore the probability of a novel insight into the pathogenesis of A. baumannii. However, the pathogenicity and toxicity of A. baumannii still remain unclear despite recent advancements. Patients with severe infections should be included as hotspots from areas with high resistance rates for targeting future treatment options and trials. Rapid detection and implementation of thorough infection control measures, development of novel antibiotics and maintenance of effectiveness of already available antibiotics are the key factors for controlling the A. baumannii infections successfully.

Author Contributions: Conceptualization, A.A., R.A. and S.K.; supervision, A.A.; writing—review and editing, A.A., S.K. and R.A. All authors approved the final manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number 1089.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number 1089.

Conflicts of Interest: The authors declare no conflict of interest.
27. Kumar, S.; Chaudhary, M.; Yadav, M.; Kumar, V. Global Surveillance Programs on Antimicrobial Resistance. *Sustain. Agric. Rev.* 2020, 46, 33–58. [CrossRef]

28. Espinal, P.; Pantel, A.; Rolo, D.; Marti, S.; Lopez-Rojas, R.; Smani, Y.; Pachon, J.; Vila, J.; Lavigne, J.P. Relationship Between Different Resistance Mechanisms and Virulence in *Acinetobacter baumannii*. *Microb. Drug Resist.* 2019, 25, 752–760. [CrossRef]

29. Saranathan, R.; Pagal, S.; Sawant, A.R.; Tomar, A.; Madhangi, M.; Sah, S.; Satti, A.; Arunkumar, K.P.; Prashanth, K. Disruption of tetR type regulator adeN by mobile genetic element confers elevated virulence in *Acinetobacter baumannii*. *Virulence* 2017, 8, 1316–1334. [CrossRef]

30. Bassetti, M.; Labate, L.; Russo, C.; Vena, A.; Giacobbe, D.R. Therapeutic options for difficult-to-treat *Acinetobacter baumannii* infections: A 2020 perspective. *Expert Opin. Pharmacother.* 2020, 22, 167–177. [CrossRef]

31. Hassan, A.; Ikram, A.; Raza, A.; Saeed, S.; Zafar Paracha, R.; Younas, Z.; Khadim, M.T. Therapeutic Potential of Novel Mastoparan-Chitosan Nanoconstructs Against Clinical MDR *Acinetobacter baumannii*: In silico, and in vivo Studies. *Int. J. Nanomed.* 2021, 16, 3755–3773. [CrossRef]

32. Evans, B.A.; Hamouda, A.; Amyes, S.G. The Rise of Carbapenem-Resistant *Acinetobacter baumannii*. *Curr. Pharm. Des.* 2013, 19, 223–238. [CrossRef] [PubMed]

33. Garcia, I.; Fainstein, V.; LeBlanc, B.; Bodey, G.P. In vitro activities of new beta-lactam antibiotics against *Acinetobacter* spp. *Antimicrob. Agents Chemother.* 1993, 24, 297–299. [CrossRef] [PubMed]

34. Joly-Guillou, M.L.; Bergogne-Berezin, E. Evolution of *Acinetobacter* calcoaceticus in the hospital milieu, from 1971 to 1984. *Presse Med.* 1985, 14, 2331–2335. [PubMed]

35. Obana, Y.; Nishino, T.; Tanino, T. In-vitro and in-vivo activities of antimicrobial agents against *Acinetobacter calcoaceticus*. *J. Antimicrob. Chemother.* 1985, 15, 441–448. [CrossRef] [PubMed]

36. Kumar, S.; Singhal, L.; Ray, P.; Gautam, V. Over-expression of RND and MATE efflux pumps contribute to decreased susceptibility in clinical isolates of carbapenem resistant *Acinetobacter baumannii*. *Int. J. Pharm. Res.* 2020, 12, 342–349. [CrossRef]

37. Bonomo, R.A.; Szabo, D. Mechanisms of multidrug resistance in *Acinetobacter* species and *Pseudomonas aeruginosa*. *Clin. Infect. Dis.* 2006, 43 (Suppl. S2), S49–S56. [CrossRef]

38. Naas, T.; Bogaerts, P.; Baurain, C.; Degheltre, Y.; Glupczynski, Y.; Nordmann, P. Emergence of PER and VEB extended-spectrum beta-lactamases in *Acinetobacter baumannii* in Belgium. *J. Antimicrob. Chemother.* 2006, 58, 178–182. [CrossRef] [PubMed]

39. Leon, J.H.; Lee, J.H.; Lee, J.J.; Park, K.S.; Jang, Y.; Hur, C.; Jeong, B.C.; Lee, S.H. Structural basis for carbapenem-hydrolyzing mechanisms of carbapenemases conferring antibiotic resistance. *J. Mol. Biol.* 2015, 16, 9654–9692. [CrossRef]

40. Patel, G.; Bonomo, R.A. “Stormy waters ahead”: Global emergence of carbapenemases. *Front. Microbiol.* 2013, 4, 48. [CrossRef]

41. Poirel, L.; Naas, T.; Nordmann, P. Diversity, epidemiology, and genetics of class D beta-lactamases. *Antimicrob. Agents Chemother.* 2010, 54, 24–38. [CrossRef]

42. Diene, S.M.; Rolain, J.M. Carbapenemases and genetic platforms in Gram-negative bacilli: Enterobacteriaceae, *Pseudomonas* and *Acinetobacter* species. *Clin. Microbiol. Infect.* 2014, 20, 831–838. [CrossRef]

43. Evans, B.A.; Amyes, S.G. OXA beta-lactamases. *Clin. Microbiol. Rev.* 2014, 27, 241–263. [CrossRef] [PubMed]

44. Paton, R.; Miles, R.S.; Hood, J.; Amyes, S.G.; Miles, R.S.; Amyes, S.G. ARI 1: Beta-lactamase-mediated imipenem resistance in *Acinetobacter baumannii*. *J. Antimicrob. Chemother.* 1993, 2, 81–87. [CrossRef]

45. Bonnet, R.; Marchandin, H.; Chanal, C.; Sirot, D.; Labia, R.; De Champs, C.; Jumas-Bilak, E.; Sirot, J. Chromosome-encoded class D beta-lactamase OXA-23 in Proteus mirabilis. *Antimicrob. Agents Chemother.* 2002, 46, 2004–2006. [PubMed]

46. Bou, G.; Cervero, G.; Dominguez, M.A.; Quereda, C.; Martinez-Beltran, J. Characterization of a nosocomial outbreak caused by a multidrug-resistant *Acinetobacter baumannii* strain with a carbapenem-hydrolyzing enzyme: High-level carbapenem resistance in A. baumannii is not due solely to the presence of beta-lactamases. *J. Clin. Microbiol.* 2000, 38, 3299–3305. [CrossRef]

47. Poirel, L.; Cabanne, L.; Vahaboglu, H.; Nordmann, P. Genetic environment and expression of the extended-spectrum beta-lactamase blaPER-1 gene in gram-negative bacteria. *Antimicrob. Agents Chemother.* 2005, 49, 1708–1713. [CrossRef]

48. D'Arezzo, S.; Capone, A.; Petroisil, N.; Visca, P.; Ballardini, M.; Bartolini, S.; Bordi, E.; Di Stefano, A.; Galie, M.; Minniti, R.; et al. Epidemic multidrug-resistant *Acinetobacter baumannii* related to European clonal types I and II in Rome (Italy). *Clin. Microbiol. Infect.* 2009, 15, 347–357. [CrossRef]

49. Papa, A.; Koulourida, V.; Souliou, E. Molecular epidemiology of carbapenem-resistant *Acinetobacter baumannii* in a newly established Greek hospital. *Microb. Drug Resist.* 2009, 15, 257–260. [CrossRef]

50. Donnaruamma, F.; Sergi, S.; Indorato, C.; Mastromeri, G.; Monnanni, R.; Nicoletti, P.; Pecile, P.; Cecconi, D.; Mannino, R.; Bencini, S.; et al. Molecular characterization of acinetobacter isolates collected in intensive care units of six hospitals in Florence, Italy, during a 3-year surveillance program: A population structure analysis. *J. Clin. Microbiol.* 2010, 48, 1297–1304. [CrossRef]

51. Di Popolo, A.; Giannouli, M.; Triassi, M.; Brisse, S.; Zarrilli, R. Molecular epidemiological investigation of multidrug-resistant *Acinetobacter baumannii* strains in four Mediterranean countries with a multicentric sequence typing scheme. *Clin. Microbiol. Infect.* 2011, 17, 197–201. [CrossRef]

52. Gogou, V.; Pournaras, S.; Giannouli, M.; Voulgari, E.; Piperaki, E.T.; Zarrilli, R.; Tsakris, A. Evolution of multidrug-resistant *Acinetobacter baumannii* clonal lineages: A 10 year study in Greece (2000–2009). *J. Antimicrob. Chemother.* 2011, 66, 2767–2772. [CrossRef] [PubMed]

53. Poirel, L.; Nordmann, P. Genetic structures at the origin of acquisition and expression of the carbapenem-hydrolyzing oxacillinase gene blaOXA-58 in *Acinetobacter baumannii*. *Antimicrob. Agents Chemother.* 2006, 50, 1442–1448. [CrossRef]
54. Pourmaras, S.; Markogiannakis, A.; Ikonomidis, A.; Kondyli, L.; Bethimouti, K.; Maniatis, A.N.; Legakis, N.J.; Tsakris, A. Outbreak of multiple clones of imipenem-resistant *Acinetobacter baumannii* isolates expressing OXA-58 carbapenemase in an intensive care unit. *J. Antimicrob. Chemother.* 2006, 57, 557–561. [CrossRef] [PubMed]

55. Tsakris, A.; Ikonomidis, A.; Poulou, A.; Spanakis, N.; Vriza, D.; Diomidis, M.; Pourmaras, S.; Markou, F. Clusters of imipenem-resistant *Acinetobacter baumannii* clones producing different carbapenemases in an intensive care unit. *Clin. Microbiol. Infect.* 2008, 14, 588–594. [CrossRef] [PubMed]

56. Kumar, S.; Patil, P.P.; Singhal, L.; Ray, P.; Patil, P.B.; Gautam, V. Molecular epidemiology of carbapenem-resistant *Acinetobacter baumannii* isolates reveals the emergence of blaOXA-23 and blaNDM-1 encoding international clones in India. *Infect. Genet. Evol.* 2019, 75, 103986. [CrossRef]

57. Higgins, P.G.; Poirel, L.; Lehmann, M.; Nordmann, P.; Seifert, H. OXA-143, a novel carbapenem-hydrolyzing class D beta-lactamase in *Acinetobacter baumannii*. *Antimicrob. Agents Chemother.* 2009, 53, 5035–5038. [CrossRef]

58. Queenan, A.M.; Bush, K. Carbapenemases: The versatile beta-lactamases. *Clin. Microbiol. Rev.* 2007, 20, 440–458, table of contents. [CrossRef]

59. Heritier, C.; Poirel, L.; Lambert, T.; Nordmann, P. Contribution of acquired carbapenem-hydrolyzing oxacillines to carbapenem resistance in *Acinetobacter baumannii*. *Antimicrob. Agents Chemother.* 2005, 49, 3198–3202. [CrossRef]

60. Piddock, L.J. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. *Clin. Microbiol. Rev.* 2006, 19, 382–402. [CrossRef]

61. Abdi, S.N.; Ghotaslou, R.; Ganbarov, K.; Mobed, A.; Tanomand, A.; Yousefi, M.; Asgharzadeh, M.; Kafil, H.S. *Acinetobacter baumannii* Efflux Pumps and Antibiotic Resistance. *Infect. Drug Resist.* 2020, 13, 423–434. [CrossRef]

62. Andermahr, J.; Greb, A.; Hensler, T.; Helling, H.J.; Bouillon, B.; Sauerland, S.; Rehm, K.E.; Neugebauer, E. Pneumonia in multiple injured patients: A prospective controlled trial on early prediction using clinical and immunological parameters. *Inflamm. Res.* 2002, 51, 265–272. [CrossRef] [PubMed]

63. Nikaido, H. Multidrug efflux pumps of gram-negative bacteria. *J. Bacteriol.* 1996, 178, 5853–5859. [CrossRef] [PubMed]

64. Tseng, T.T.; Gratwick, K.S.; Kollman, J.; Park, D.; Nies, D.H.; Goffeau, A.; Saier, M.H., Jr. The RND permease superfamily: An ancient, ubiquitous and development proteins. *J. Mol. Microbiol. Biotechnol.* 1999, 1, 107–125.

65. Zgurskaya, H.I.; Nikaido, H. Multidrug resistance mechanisms: Drug efflux across two membranes. *Mol. Microbiol.* 2000, 37, 219–225. [CrossRef] [PubMed]

66. Srikrumar, R.; Kon, T.; Gotoh, N.; Poole, K. Expression of Pseudomonas aeruginosa multidrug efflux pumps MexA-MexB-OprM and MexC-MexD-OprJ in a multidrug-sensitive *Escherichia coli* strain. *Antimicrob. Agents Chemother.* 1998, 42, 65–71. [CrossRef]

67. Gautam, V.; Kumar, S.; Patil, P.P.; Meletiadis, J.; Patil, P.B.; Mouton, J.W.; Sharma, M.; Daswal, A.; Singhal, L.; Ray, P.; et al. Exploring the Interplay of Resistance Nodulation Division Efflux Pumps, AmpC and OprD in Antimicrobial Resistance of Burkholderia cepacia Complex in Clinical Isolates. *Microb. Drug Resist.* 2020, 26, 1144–1152. [CrossRef]

68. Kohler, T.; Michea-Hamzehpour, M.; Henze, U.; Gotoh, N.; Curty, L.K.; Pechere, J.C. Characterization of MexE-MexF-OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa. *Mol. Microbiol.* 1997, 23, 345–354. [CrossRef]

69. Magnet, S.; Courvalin, P.; Lambert, T. Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance in *Acinetobacter baumannii* strain BM4454. *Antimicrob. Agents Chemother.* 2001, 45, 3375–3380. [CrossRef]

70. Coyne, S.; Rosenfeld, N.; Lambert, T.; Courvalin, P.; Perichon, B. Overexpression of resistance-nodulation-cell division pump AdeFGH confers multidrug resistance in *Acinetobacter baumannii*. *Antimicrob. Agents Chemother.* 2010, 54, 4389–4393. [CrossRef]

71. Damier-Piolle, L.; Magnet, S.; Bremont, S.; Lambert, T.; Courvalin, P. AdeJJK, a resistance-nodulation-cell division pump effluxing multiple antibiotics in *Acinetobacter baumannii*. *Antimicrob. Agents Chemother.* 2008, 52, 557–562. [CrossRef]

72. Marchand, I.; Damier-Piolle, L.; Courvalin, P.; Lambert, T. Expression of the RND-type efflux pump AdeABC in *Acinetobacter baumannii* is regulated by the AdeRS two-component system. *Antimicrob. Agents Chemother.* 2004, 48, 3298–3304. [CrossRef]

73. Rosenfeld, N.; Bouchier, C.; Courvalin, P.; Perichon, B. Expression of the resistance-nodulation-cell division pump AdeJJK in *Acinetobacter baumannii* is regulated by AdeR, a TetR-type regulator. *Antimicrob. Agents Chemother.* 2012, 56, 2504–2510. [CrossRef] [PubMed]

74. Richet, H.; Fournier, P.E. Nosocomial infections caused by *Acinetobacter baumannii*: A major threat worldwide. * Infect. Control. Hosp. Epidemiol.* 2006, 27, 645–646. [CrossRef]

75. Su, X.Z.; Chen, J.; Mizushima, T.; Kuroda, T.; Tsuchiya, T. AbeM, an H+coupled *Acinetobacter baumannii* multidrug efflux pump belonging to the MATE family of transporters. *Antimicrob. Agents Chemother.* 2005, 49, 4362–4364. [CrossRef]

76. Cerqueira, G.M.; Peleg, A.Y. Insights into *Acinetobacter baumannii* pathogenicity. *IUBMB Life* 2011, 63, 1055–1060. [CrossRef] [PubMed]

77. Bamunuarachchi, N.I.; Khan, F.; Kim, Y.M. Inhibition of Virulence Factors and Biofilm Formation of *Acinetobacter baumannii* by Naturally-derived and Synthetic Drugs. *Curr. Drug Targets* 2021, 22, 734–759. [CrossRef]

78. Uppalapati, S.R.; Sett, A.; Pathania, R. The Outer Membrane Proteins OmpA, CarO, and OprD of *Acinetobacter baumannii* Confer a Two-Pronged Defense in Facilitating Its Success as a Potent Human Pathogen. *Front. Microbiol.* 2020, 11, 589234. [CrossRef] [PubMed]

79. Jahangiri, A.; Rasooli, I.; Owlia, P.; Imani Fooladi, A.A.; Salimian, J. Highly conserved exposed immunogenic peptides of Omp34 against *Acinetobacter baumannii*: An innovative approach. *J. Microbiol. Methods* 2018, 144, 79–85. [CrossRef] [PubMed]
80. Nie, D.; Hu, Y.; Chen, Z.; Li, M.; Hou, Z.; Luo, X.; Mao, X.; Xue, X. Outer membrane protein A (OmpA) as a potential therapeutic target for Acinetobacter baumannii infection. J. Biomed. Sci. 2020, 27, 26. [CrossRef] [PubMed]
81. Guo, Y.; Xun, M.; Han, J. A bovine myeloid antimicrobial peptide (BMAP-28) and its analogs kill pan-drug-resistant Acinetobacter baumannii by interacting with outer membrane protein A (OmpA). Medicine 2018, 97, e12832. [CrossRef]
82. Nafar, T.; Bandehpour, M.; Hashemi, A.; Taheri, S.; Yardel, V.; Jamaati, H.; Moosavi, S.M.; Mosaffa, N. Identification of antigens from nosocomial Acinetobacter baumannii clinical isolates in sera from ICU staff and infected patients using the antigenome technique. World J. Microbiol. Biotechnol. 2017, 33, 189. [CrossRef] [PubMed]
83. Roszkowiak, J.; Lijoy, P.; Gula, G.; Gubernator, J.; Zak, A.; Drulis-Kawa, Z.; Augustyniak, D. Interspecies Outer Membrane Vesicles (OMVs) Modulate the Sensitivity of Pathogenic Bacteria and Pathogenic Yeasts to Cationic Peptides and Serum Complement. Int. J. Mol. Sci. 2019, 20, [CrossRef]
84. Habier, J.; May, P.; Heintz-Buschart, A.; Ghosal, A.; Wiedenbek-Baldacchino, A.K.; Nolte-'t Hoen, E.N.M.; Wilmes, P.; Fritz, J.V. Extraction and Analysis of RNA Isolated from Pure Bacteria-Derived Outer Membrane Vesicles. Methods Mol. Biol. 2018, 1737, 213–230. [CrossRef]
85. Jan, A.T. Outer Membrane Vesicles (OMVs) of Gram-negative Bacteria: A Perspective Update. Front. Microbiol. 2017, 8, 1053. [CrossRef]
86. Fulsundar, S.; Domingues, S.; Nielsen, K.M. Vesicle-Mediated Gene Transfer in Acinetobacter baumannii. Methods Mol. Biol. 2019, 1946, 87–94. [CrossRef]
87. Yang, C.H.; Su, P.W.; Moi, S.H.; Chuang, L.Y. Biofilm Formation in Acinetobacter baumannii: Genotype-Phenotype Correlation. Molecules 2019, 24, 1849. [CrossRef] [PubMed]
88. Pakharukova, N.; Tuttitalo, M.; Paavilainen, S.; Malmi, H.; Parila, O.; Teneberg, S.; Knight, S.D.; Zavialov, A.V. Structural basis for Acinetobacter baumannii biofilm formation. Proc. Natl. Acad. Sci. USA 2018, 115, 5558–5563. [CrossRef] [PubMed]
89. Gaddy, J.A.; Tomaras, A.P.; Actis, L.A. The Acinetobacter baumannii 19606 OmpA protein plays a role in biofilm formation on abiotic surfaces and in the interaction of this pathogen with eukaryotic cells. Infect. Immun. 2009, 77, 3150–3160. [CrossRef]
90. Mancilla-Rojano, J.; Castro-James, S.; Ochoa, S.A.; Bobadilla Del Valle, M.; Lara-Pineda, V.M.; Bessa, P.; Laris-Gonzalez, A.; Arellano-Galindo, J.; Parra-Ortega, I.; Hernandez-Castro, R.; et al. Whole-Genome Sequences of Five Acinetobacter baumannii Strains From a Child With Leukemia M2. Front. Microbiol. 2019, 10, 132. [CrossRef]
91. Sai, K.; Swathi, A.; Bobadilla Del Valle, M.; Lan, C.Y.; Lin, M.F. A method to assess influence of different medical tubing on biofilm formation by Acinetobacter baumannii. J. Biomed. Sci. 2019, 26, 276–287. [CrossRef] [PubMed]
92. Alvarez-Fraga, L.; Vazquez-Ucha, J.C.; Martinez-Guitian, M.; Vallejo, J.A.; Bou, G.; Beceiro, A.; Poza, M. Pneumonia infection in mice reveals the involvement of the feoA gene in the pathogenesis of Acinetobacter baumannii. Virulence 2018, 9, 496–509. [CrossRef]
93. Flannery, A.; Le Berre, M.; Pier, G.B.; O’Gara, J.P.; O’Gara, J.P. Glycomics Microarrays Reveal Differential In Situ Presentation of the Biofilm Polysaccharide Poly-N-acetylglucosamine on Acinetobacter baumannii and Staphylococcus aureus Cell Surfaces. Int. J. Mol. Sci. 2020, 21, 2465. [CrossRef]
94. Costa, D.M.; Johani, K.; Melo, D.S.; Lopes, L.K.O.; Lopes, L.K.O.; Tipple, A.F.V.; Hu, H.; Vickery, K. Biofilm contamination in Murine Thigh and Lung Infection Models. Proc. Natl. Acad. Sci. USA 2019, 116, 88–94. [CrossRef] [PubMed]
95. Zeighami, H.; Valadkhani, F.; Shapouri, R.; Samadi, E.; Haghi, F. Virulence characteristics of multidrug resistant biofilm forming Acinetobacter baumannii isolated from intensive care unit patients. BMC Infect. Dis. 2019, 19, 629. [CrossRef]
96. Lin, M.F.; Lin, Y.Y.; Lan, C.Y. A method to assess influence of different medical tubing on biofilm formation by Acinetobacter baumannii. J. Microbiol. Methods. 2019, 160, 80–86. [CrossRef] [PubMed]
97. Yu, K.; Zeng, W.; Xu, Y.; Liao, W.; Xu, W.; Zhou, T.; Cao, J.; Chen, L. Bloodstream infections caused by ST2 Acinetobacter baumannii: Risk factors, antibiotic regimens, and virulence over 6 years period in China. Antimicrob. Resist. Infect. Control. 2021, 10, 16. [CrossRef]
98. Kang, K.N.; Kazi, M.I.; Biboy, J.; Gray, J.; Boverymann, H.; Ausman, J.; Boutte, C.C.; Vollmer, W.; Boll, J.M. Septal Class A Penicillin-Binding Protein Activity and ld-Transpeptidases Mediate Selection of Colistin-Resistant Lipooligosaccharide-Deficient Acinetobacter baumannii. MBio 2021, 12, e02185-20. [CrossRef]
99. Boll, J.M.; Crofts, A.A.; Peters, K.; Cattoir, V.; Vollmer, W.; Davies, B.W.; Trent, M.S. A penicillin-binding protein inhibits selection of colistin-resistant, lipooligosaccharide-deficient Acinetobacter baumannii. Proc. Natl. Acad. Sci. USA 2016, 113, E6228–E6237. [CrossRef]
100. Bhagwat, S.S.; Periasamy, H.; Takalkar, S.S.; Palwe, S.R.; Khande, H.N.; Patel, M.V. The Novel beta-Lactam Enhancer Zidebactam Augments the In Vivo Pharmacodynamic Activity of Ceftazidime in a Neutropenic Mouse Lung Acinetobacter baumannii Infection Model. Antimicrob. Agents Chemother. 2019, 63, e02146-18. [CrossRef]
101. Russo, T.A.; MacDonald, U.; Beanan, J.M.; Olson, R.; MacDonald, I.J.; Sauberan, S.L.; Luke, N.R.; Schultz, L.W.; Umland, T.C. Penicillin-binding protein 7/8 contributes to the survival of Acinetobacter baumannii in vitro and in vivo. J. Infect. Dis. 2009, 199, 513–521. [CrossRef]
102. Monogue, M.L.; Sakoulas, G.; Nizet, V.; Nicolau, D.P. Humanized Exposures of a beta-Lactam-beta-Lactamase Inhibitor, Tazobactam, versus Non-beta-Lactam-beta-Lactamase Inhibitor, Avibactam, with or without Colistin, against Acinetobacter baumannii in Murine Thigh and Lung Infection Models. Pharmacology 2018, 101, 255–261. [CrossRef]
103. Katsube, T.; Echols, R.; Wajima, T. Pharmacokinetic and Pharmacodynamic Profiles of Cefiderocol, a Novel Siderophore Cephalosporin. *Clin. Infect. Dis.* 2019, 69, S552–S558. [CrossRef]

104. Delgado-Valverde, M.; Conejo, M.D.C.; Serrano, L.; Fernandez-Cuenca, F.; Pascual, A. Activity of cefiderocol against high-risk clones of multidrug-resistant Enterobacteriales, *Acinetobacter baumannii*, *Pseudomonas aeruginosa* and *Stenotrophomonas maltophilia*. *J. Antimicrob. Chemother.* 2020, 75, 1840–1849. [CrossRef]

105. Miethke, M.; Marahiel, M.A. Siderophore-based iron acquisition and pathogen control. *Microb. Mol. Biol. Rev.* 2007, 71, 413–451. [CrossRef]

106. Katsube, T.; Echols, R.; Arjona Ferreirra, J.C.; Krenz, H.K.; Berg, J.K.; Galloway, C. Cefiderocol, a Siderophore Cephalosporin for Gram-Negative Bacterial Infections: Pharmacokinetics and Safety in Subjects with Renal Impairment. *J. Clin. Pharmacol.* 2017, 57, 584–591. [CrossRef] [PubMed]

107. Kim, S.; Lee, H.; Song, W.Y.; Kim, H.J. Total Syntheses of Fimbsactin A and B and Their Stereoisomers to Probe the Stereoelectivity of the Fimbsactin Uptake Machinery in *Acinetobacter baumannii*. *Org. Lett.* 2020, 22, 2806–2810. [CrossRef]

108. Goldberg, J.A.; Kumar, V.; Spencer, E.J.; Hoyer, D.; Marshall, S.H.; Hujer, A.M.; Hujer, K.M.; Bethel, C.R.; Papp-Wallace, K.M.; Perez, F.; et al. A gamma-lactam siderophore antibiotic effective against multidrug-resistant *Pseudomonas aeruginosa*, Klebsiella pneumoniae, and *Acinetobacter* spp. *Eur. J. Med. Chem.* 2021, 220, 113436. [CrossRef] [PubMed]

109. Pfefferle, K.; Lopalco, P.; Breisch, J.; Siemund, A.; Corcelli, A.; Averhoff, B. In vivo synthesis of monolysocardiolipin and cardiolipin by *Acinetobacter baumannii* phospholipase D and effect on cationic antimicrobial peptide resistance. *Environ. Microbiol.* 2020, 22, 5300–5308. [CrossRef] [PubMed]

110. Singh, J.K.; Adams, F.G.; Brown, M.H. Diversity and Function of Capsular Polysaccharide in *Acinetobacter baumannii*. *Eur. J. Med. Chem.* 2019, 63, 5011–5020. [CrossRef]

111. Lee, C.R.; Lee, J.H.; Park, M.; Park, K.S.; Bae, I.K.; Kim, Y.B.; Cha, C.J.; Jeong, B.C.; Lee, S.H. Biology of *Acinetobacter baumannii*: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options. *Front. Cell Infect. Microbiol.* 2019, 7, 95. [CrossRef]

112. Isler, B.; Doi, Y.; Bonomo, R.A.; Paterson, D.L. New Treatment Options against Carbapenem-Resistant *Acinetobacter baumannii* Infections. *Antimicrob. Agents Chemother.* 2019, 63, e01110–18. [CrossRef]

113. Ramirez, M.S.; Bonomo, R.A.; Tolmasky, M.E. Carbapenemases: Transforming *Acinetobacter baumannii* into a Yet More Dangerous Menace. *Biomolecules* 2020, 10, 720. [CrossRef] [PubMed]

114. Ciginskiene, A.; Dambrauskiene, A.; Rello, J.; Adukauskiene, D. Ventilator-Associated Pneumonia due to Drug-Resistant *Acinetobacter baumannii* and *Pseudomonas aeruginosa*—A systematic review and meta-analysis. *Environ. Microbiol.* 2020, 55, 49. [CrossRef]

115. Khalili, H.; Shojaei, L.; Mohammadi, M.; Beigmohammadi, M.T.; Abdollahi, A.; Doomanlou, M. Meropenem/colistin versus carbapenem-resistant *Acinetobacter baumannii* strains: A systematic review and meta-analysis. *Environ. Microbiol.* 2020, 69, S552–S558. [CrossRef]

116. Nordmann, P.; Conil, E. Epidemiology and Diagnostics of Carbapenem Resistance in Gram-negative Bacteria. *Clin. Infect. Dis.* 2019, 69, S521–S528. [CrossRef]

117. Hamidian, M.; Nigro, S.J. Emergence, molecular mechanisms and global spread of carbapenem-resistant *Acinetobacter baumannii*. *Microb. Genom.* 2019, 5, e000306. [CrossRef] [PubMed]

118. Levy-Blitchtein, S.; Roca, I.; Plasencia-Rebata, S.; Vicente-Taboada, J.; Munoz, L.; Moreno-Morales, J.; Pons, M.J.; Del Valle-Mendoza, J.; Vila, J. Efficacy of carbapenem-resistant *Acinetobacter baumannii* and *Pseudomonas aeruginosa*isolates from ICU patients in ICU patients in the treatment of carbapenem-resistant pneumonia. *Clin. Infect. Dis.* 2019, 69, 901–911. [CrossRef] [PubMed]

119. Santella, B.; Serrettiello, E.; De Filippis, A.; Veronica, F.; Iervolino, D.; Dell’Annunziata, F.; Manente, R.; Valitutti, S.; Santoro, E.; Pagliano, P.; et al. Lower Respiratory Tract Pathogens and Their Antimicrobial Susceptibility Pattern: A 5-Year Study. *Antibiotics* 2021, 10, 851. [CrossRef] [PubMed]
126. Assimakopoulos, S.F.; Karamouzos, V.; Lefkaditi, A.; Sklavou, C.; KOLONITSIOU, F.; Christofidou, M.; Fligou, F.; GOGOS, C.; MARANGOS, M. Triple combination therapy with high-dose ampicillin/sulbactam, high-dose tigecycline and colistin in the treatment of ventilator-associated pneumonia caused by pan-drug-resistant Acinetobacter baumannii: A case series study. *Infect. Med.* 2019, 27, 11–16. [PubMed]

127. Lenhard, J.R.; Thamlikitkul, V.; Silveira, F.P.; Gazonik, S.M.; Tao, X.; Forrest, A.; Soo Shin, B.; Kaye, K.S.; Bullitta, J.B.; Nation, R.L.; et al. Polymyxin-resistant, carbapenem-resistant Acinetobacter baumannii is eradicated by a triple combination of agents that lack individual activity. *J. Antimicrob. Chemother.* 2017, 72, 1415–1420. [CrossRef]

128. Wang, Y.; Li, H.; Xie, X.; Wu, X.; Li, X.; Zhao, Z.; Luo, S.; Wan, Z.; Liu, J.; Fu, L. In vitro and in vivo assessment of the antibacterial activity of colistin alone and in combination with other antibiotics against Acinetobacter baumannii and Escherichia coli. *J. Glob. Antimicrob. Resist.* 2020, 20, 351–359. [CrossRef]

129. Rodriguez, C.H.; Brune, A.; Nastro, M.; Vay, C.; Famiglietti, A. In vitro synergistic activity of the sulbactam/avibactam combination against extensively drug-resistant Acinetobacter baumannii. *J. Med. Microbiol.* 2020, 69, 928–931. [CrossRef]

130. Chen, J.; Yang, Y.; Xiang, K.; Li, D.; Liu, H. Combined Rifampin and Sulbactam Therapy for Multidrug-Resistant Acinetobacter baumannii Ventilator-Associated Pneumonia in Pediatric Patients. *J. Anesth. Perioper. Med.* 2018, 5, 176–185. [CrossRef]

131. Zusman, O.; Altunin, S.; Koppel, F.; DishonBenattar, Y.; Gedik, H.; Paul, M. Polymyxin monotherapy or in combination against carbapenem-resistant bacteria: Systematic review and meta-analysis. *J. Antimicrob. Chemother.* 2017, 72, 29–39. [CrossRef] [PubMed]

132. Azimi, L.; Tahbaz, S.V.; Alaghehbandan, R.; Alinejad, F.; Lari, A.R. Synergistic Effect of Tazobactam on Amikacin MIC in Acinetobacter baumannii Isolated from Burn Patients in Tehran, Iran. *Curr. Pharm. Biotechnol.* 2020, 21, 997–1004. [CrossRef] [PubMed]

133. Montero, A.; Ariza, J.; Corbella, X.; Domenech, A.; Cabellos, C.; Ayats, J.; Tubau, F.; Borraz, C.; Gudiol, F. Antibiotic combinations for serious infections caused by carbapenem-resistant Acinetobacter baumannii in a mouse pneumonia model. *J. Antimicrob. Chemother.* 2004, 54, 1085–1091. [CrossRef] [PubMed]

134. Hong, D.J.; Kim, J.O.; Lee, H.; Yoon, E.J.; Jeong, S.H.; Yong, D.; Lee, K. In vitro antimicrobial synergy of colistin with rifampicin and carbapenems against colistin-resistant Acinetobacter baumannii clinical isolates. *Diagn. Microbiol. Infect. Dis.* 2016, 86, 184–189. [CrossRef] [PubMed]

135. Gao, L.; Lyu, Y.; Li, Y. Trends in Drug Resistance of Acinetobacter baumannii over a 10-year Period: Nationwide Data from the China Surveillance of Antimicrobial Resistance Program. *Chin. Med. J.* 2017, 130, 659–664. [CrossRef] [PubMed]

136. Garnacho-Montero, J.; Timsit, J.F. Managing Acinetobacter baumannii infections. *Curr.Opin. Infect. Dis.* 2019, 32, 69–76. [CrossRef] [PubMed]

137. El-Sayed Ahmed, M.A.E.; Zhong, L.L.; Shen, C.; Yang, Y.; Doi, Y.; Tian, G.B. Colistin and its role in the Era of antibiotic resistance: An extended review (2000–2019). *Emerg. Microbes Infect.* 2020, 9, 868–885. [CrossRef] [PubMed]

138. Chamoun, S.; Welander, J.; Martis-Thiele, M.M.; Nzouni, M.; Claesson, C.; Vikstrom, E.; Turkina, M.V. Colistin Dependence in Extensively Drug-Resistant Acinetobacter baumannii Strain Is Associated with ISAjo2 and ISAba13 Insertions and Multiple Cellular Responses. *Int. J. Mol. Sci.* 2021, 22, [CrossRef] [PubMed]

139. Chen, J.; Yang, Y.; Xiang, K.; Li, D.; Liu, H. Combined Rifampin and Sulbactam Therapy for Multidrug-Resistant Acinetobacter baumannii Ventilator-Associated Pneumonia in Pediatric Patients. *J. Anesth. Perioper. Med.* 2018, 5, 176–185. [CrossRef]

140. Geisinger, E.; Mortman, N.J.; Dai, Y.; Sfyras, D.; Zakynthinos, E. Colistin versus Colistin Combined with Ampicillin-Sulbactam for Multiresistant Acinetobacter baumannii Ventilator-associated Pneumonia Treatment: An Open-label Prospective Study. *Indian J. Crit. Care Med.* 2018, 22, 67–77. [CrossRef] [PubMed]
159. Boral, B.; Unaldi, O.; Ergin, A.; Durmaz, R.; Eser, O.K. A prospective multicenter study on the evaluation of antimicrobial

160. Xu, N.; Wang, G.; Leng, Y.; Dong, X.; Chen, F.; Xing, Q. Sulbactam enhances the in vitro activity of sitafloxacin against extensively-

161. Yang, Y.; Fu, Y.; Lan, P.; Xu, Q.; Jiang, Y.; Chen, Y.; Ruan, Z.; Ji, S.; Hua, X.; Yu, Y. Molecular Epidemiology and Mechanism

162. Adnan, S.; Paterson, D.L.; Lipman, J.; Roberts, J.A. Ampicillin/sulbactam: Its potential use in treating infections in critically ill

163. Foong, W.E.; Wilhelm, J.; Tam, H.K.; Pos, K.M. Tigecycline efflux in Acinetobacter baumannii is mediated by TetA in synergy with

164. Wang, Y.C.; Kuo, S.C.; Yang, Y.S.; Lee, Y.T.; Chiu, C.H.; Chuang, M.F.; Lin, J.C.; Chang, F.Y.; Chen, T.L. Individual or Combined

165. Hussain, K.; Salat, M.S.; Ambreen, G.; Mughal, A.; Idrees, S.; Sohail, M.; Iqbal, J. Intravenous vs intravenous plus aerosolized
colistin for treatment of ventilator-associated pneumonia—A matched case-control study in neonates. Expert Opin. Drug Saf. 2020, 19, 1641–1649. [CrossRef] [PubMed]

166. Yang, Y.; Fu, Y.; Lan, P.; Xu, Q.; Jiang, Y.; Chen, Y.; Ruan, Z.; Ji, S.; Hua, X.; Yu, Y. Molecular Epidemiology and Mechanism of Sulbactam Resistance in Acinetobacter baumannii Isolates with Diverse Genetic Backgrounds in China. Antimicrob. Agents Chemother. 2018, 62, e01947-17. [CrossRef] [PubMed]

167. Jean, S.S.; Hsieh, T.C.; Hsu, C.W.; Lee, W.S.; Bai, K.J.; Lam, C. Comparison of the clinical efficacy between tigecycline plus extended-infusion imipenem and sulbactam plus imipenem against ventilator-associated pneumonia with pneumonia extensively drug-resistant Acinetobacter baumannii bacteremia, and correlation of clinical efficacy with in vitro synergy tests. J. Microbiol. Immunol. Infect. 2016, 49, 924–933. [CrossRef]

168. Abdallah, M.; Alsaleh, H.; Baradwan, A.; Alfawares, R.; Alobaid, A.; Rasheed, A.; Soliman, I. Intraventricular Tigecycline as a Last Resort Therapy in a Patient with Difficult-to-Treat Healthcare-Associated Acinetobacter baumannii Ventriculitis: A Case Report. SN Compr. Clin. Med. 2020, 1–5. [CrossRef] [PubMed]

169. Gautam, L.; Kaur, R.; Kumar, S.; Bansal, A.; Gautam, V.; Singh, M.; Ray, P. Pseudomonas oleovorans Sepsis in a Child: The First Reported Case in India. Jpn. J. Infect. Dis. 2015, 68, 254–255. [CrossRef] [PubMed]
170. Zhou, Y.; Chen, X.; Xu, P.; Zhu, Y.; Wang, K.; Xiang, D.; Wang, F.; Banh, H.L. Clinical experience with tigecycline in the treatment of hospital-acquired pneumonia caused by multidrug resistant Acinetobacter baumannii. BMC Pharmacol. Toxicol. 2019, 20, 19. [CrossRef] [PubMed]
171. Shankar, C.; Pragasam, A.K.; Veeraraghavan, B.; Amladi, A. Bad bug, no test: Tigecycline susceptibility testing challenges and way forward. Indian J. Med. Microbiol. 2019, 37, 91–94. [CrossRef]
172. Li, M.X.; Li, N.; Zhu, L.Q.; Liu, W. Optimization of tigecycline dosage regimen for different infections in the patients with hepatic or renal impairment. J. Chemother. 2020, 32, 420–428. [CrossRef] [PubMed]
173. Serretiello, E.; Folliero, V.; Santella, B.; Giordano, G.; Santoro, E.; De Caro, F.; Pagliano, P.; Ferro, M.; Aliberti, S.M.; Capunzo, M.; et al. Trend of Bacterial Uropathogens and Their Susceptibility Pattern: Study of Single Academic High-Volume Center in Italy (2015–2019). Int. J. Microbiol. 2021, 2021, 5541706. [CrossRef]
174. Brust, K.; Evans, A.; Plemmmons, R. Tigecycline in treatment of multidrug-resistant Gram-negative bacillus urinary tract infections: A systematic review. J. Antimicrob. Chemother. 2014, 69, 2606–2610. [CrossRef] [PubMed]
175. Polat, M.; Ozkaya-Parlakay, A. Tigecycline salvage therapy for ventriculoperitoneal shunt meningitis due to extensively drug-resistant Acinetobacter baumannii. Eur. J. Pediatr. 2019, 178, 117–118. [CrossRef]
176. Falghoush, A.; Beynal, H.; Call, D.R. Sequential Hypertonic-Hypotonic Treatment Enhances Efficacy of Antibiotic against Acinetobacter baumannii Biofilm Communities. Antibiotics 2020, 9, 832. [CrossRef]
177. Huang, Q.; Zhou, Q.; Ju, T.; Xu, H.; Wang, W. Meropenem and Amikacin for Management of Post-Neurosurgical Infections from Acinetobacter baumannii. Surg Infect. 2019, 20, 292–297. [CrossRef] [PubMed]
178. Chung, E.S.; Ko, K.S. Eradication of persister cells of Acinetobacter baumannii through combination of colistin and amikacin antibiotics. J. Antimicrob. Chemother. 2017, 74, 1277–1283. [CrossRef]
179. Anderson, S.E.; Sherman, E.X.; Weiss, D.S.; Rather, P.N. Aminoglycoside Heteroresistance in Acinetobacter baumannii AB5075. mSphere. 2018, 3, e00271-18. [CrossRef] [PubMed]
180. Kwon, H.I.; Kim, S.; Oh, M.H.; Shin, M.; Lee, J.C. Distinct role of outer membrane protein A in the intrinsic resistance of Acinetobacter baumannii and Acinetobacter nosocomialis. Infect. Genet. Evol. 2019, 67, 33–37. [CrossRef]
181. Juhas, M.; Widlake, E.; Teo, J.; Huseby, D.L.; Tyrrell, J.M.; Polikanov, Y.S.; Ercan, O.; Petersson, A.; Cao, S.; Aboklaish, A.F.; et al. In vitro activity of apramycin against multidrug-, carbapenem- and aminoglycoside-resistant Enterobacteriaceae and Acinetobacter baumannii. J. Antimicrob. Chemother. 2019, 74, 944–952. [CrossRef]
182. Gaurav, A.; Gupta, V.; Shrivastava, S.K.; Pathania, R. Mechanistic insights into synergy between nalidixic acid and tetracycline against clinical isolates of Acinetobacter baumannii and Escherichia coli. Commun. Biol. 2021, 4, 542. [CrossRef]
183. Fragkou, P.C.; Poulakou, G.; Blizou, A.; Blizou, M.; Rapti, V.; Karageorgopoulos, D.E.; Koulenti, D.; Papadopoulos, A.; Matthaiou, D.K.; Tsiodras, S. The Role of Minocycline in the Treatment of Nosocomial Infections Caused by Multidrug, Extensively Drug and Pandrug Resistant Acinetobacter baumannii: A Systematic Review of Clinical Evidence. Microorganisms. 2019, 7, 159. [CrossRef] [PubMed]
184. Tarazi, Z.; Sabet, M.; Dudley, M.N.; Griffith, D.C. Pharmacodynamics of Minocycline against Acinetobacter baumannii in a Rat Pneumonia Model. Antimicrob. Agents Chemother. 2019, 63. [CrossRef] [PubMed]
185. Iregui, A.; Landman, D.; Quale, J. Activity of Omadacycline and Other Tetracyclines Against Contemporary Gram-Negative Pathogens from New York City Hospitals. Microb. Drug Resist. 2021, 27, 190–195. [CrossRef] [PubMed]
186. Beheshhti, M.; Ardebili, A.; Beheshti, F.; Lari, A.R.; Siyadatpanah, A.; Pourmajaf, A.; Gautham, D.; Dolma, K.G.; Nissapatorn, V. Tetracycline resistance mediated by tet efflux pumps in clinical isolates of Acinetobacter baumannii. Res. Inst. Med. Trop. Sao Paulo. 2020, 62, e88. [CrossRef]
187. WHO. Guidelines for the Prevention and Control of Carbapenem-Resistant Enterobacteriaceae, Acinetobacter baumannii and Pseudomonas aeruginosa in Health Care Facilities. In WHO Guidelines Approved by the Guidelines Review Committee; WHO: Geneva, Switzerland, 2017.
188. Teerawattanapong, N.; Kengkla, K.; Diloikthornsakul, P.; Saokaew, S.;Apisarnthanarak, A.; Chaiyakunapruk, N. Prevention and Control of Multidrug-Resistant Gram-Negative Bacteria in Adult Intensive Care Units: A Systematic Review and Network Meta-analysis. Clin. Infect. Dis. 2017, 65, S51–S60. [CrossRef]
189. Warde, E.; Davies, E.; Ward, A. Control of a multidrug-resistant Acinetobacter baumannii outbreak. Br. J. Nurs. 2019, 28, 242–248. [CrossRef]
190. Valencia-Martin, R.; Gonzalez-Galan, V.; Alvarez-Marin, R.; Cazalla-Foncuvea, A.M.; Aldabo, T.; Gil-Navarro, M.V.; Alonso-Araujo, I.; Martin, C.; Gordon, R.; Garcia-Nunez, E.J.; et al. A multimodal intervention program to control a long-term Acinetobacter baumannii endemic in a tertiary care hospital. Antimicrob. Resist. Infect. Control. 2019, 8, 199. [CrossRef]
191. Gramatniece, A.; Silamikelis, I.; Zahare, I.; Urtans, V.; Dimina, E.; Saule, M.; Balode, A.; Radovica-Spalvina, I.; Klovins, J.; Fridmanis, D.; et al. Control of Acinetobacter baumannii outbreak in the neonatal intensive care unit in Latvia: Whole-genome sequencing powered investigation and closure of the ward. Antimicrob. Resist. Infect. Control. 2019, 8, 84. [CrossRef]
192. Patil, P.P.; Mali, S.; Midha, S.; Gautham, V.; Dash, L.; Kumar, S.; Shastri, J.; Singhal, L.; Patil, P.B. Genomics Reveals a Unique Clone of Burkholderia cenocepacia Harboring an Actively Excising Novel Genomic Island. Front. Microbiol. 2017, 8, 590. [CrossRef] [PubMed]
193. Raorane, C.J.; Lee, J.H.; Kim, Y.G.; Rajasekharan, S.K.; Garcia-Contreras, R.; Lee, J. Antibiofilm and Antivirulence Efficacies of Flavonoids and Curcumin Against Acinetobacter baumannii. Front. Microbiol. 2019, 10, 990. [CrossRef]
194. Corral, J.; Perez-Varela, M.; Barbe, J.; Aranda, J. Direct interaction between RecA and a CheW-like protein is required for surface-associated motility, chemotaxis and the full virulence of Acinetobacter baumannii strain ATCC 17978. Virulence 2020, 11, 315–326. [CrossRef] [PubMed]

195. Zhao, J.; Zhu, Y.; Han, J.; Lin, Y.W.; Aichem, M.; Wang, J.; Chen, K.; Velkov, T.; Schreiber, F.; Li, J. Genome-Scale Metabolic Modeling Reveals Metabolic Alterations of Multidrug-Resistant Acinetobacter baumannii in a Murine Bloodstream Infection Model. Microorganisms 2020, 8, 1793. [CrossRef]

196. Kumar, S.; Singhal, L.; Ray, P.; Gautam, V. In vitro and in vivo fitness of clinical isolates of carbapenem-resistant and -susceptible Acinetobacter baumannii. Indian J. Med. Microbiol. 2020, 38, 52–57. [CrossRef] [PubMed]

197. Labrador-Herrera, G.; Perez-Pulido, A.J.; Alvarez-Marín, R.; Casimiro-Soriguer, C.S.; Cebreiro-Cangueiro, T.; Moran-Barrio, J.; Pachon, J.; Viale, A.M.; Pachon-Blanez, M.E. Virulence role of the outer membrane protein CarO in carbapenem-resistant Acinetobacter baumannii. Virulence 2020, 11, 1727–1737. [CrossRef]

198. Qin, Q.M.; Pei, J.; Gomez, G.; Rice-Ficht, A.; Ficht, T.A.; de Figueiredo, P. A Tractable Drosophila Cell System Enables Rapid Identification of Acinetobacter baumannii Host Factors. Front. Cell Infect. Microbiol. 2020, 11, 998. [CrossRef] [PubMed]

199. Martinez-Guitian, M.; Vazquez-Ucha, J.C.; Alvarez-Fraga, L.; Conde-Perez, K.; Vallejo, J.A.; Perina, A.; Bou, G.; Poza, M.; Beceiro, A. Global Transcriptional Analysis During Murine Pneumonia Infection Reveals New Virulence Factors in Acinetobacter baumannii. J. Infect. Dis. 2021, 223, 1356–1366. [CrossRef]

200. Olsowski, M.; Hoffmann, F.; Hain, A.; Kirchhoff, L.; Theegarten, D.; Todt, D.; Steinmann, E.; Buer, J.; Rath, P.M.; Steinmann, J. Exophiala dermatitidis isolates from various sources: Using alternative invertebrate host organisms (Caenorhabditis elegans and Galleria mellonella) to determine virulence. Sci. Rep. 2018, 8, 12747. [CrossRef]

201. Balla, K.M.; Troemel, E.R. Caenorhabditis elegans as a model for intracellular pathogen infection. Cell Microbiol. 2013, 15, 1313–1322. [CrossRef] [PubMed]

202. Zhang, F.; Berg, M.; Dierking, K.; Felix, M.A.; Shapira, M.; Samuel, B.S.; Schulenburg, H. Caenorhabditis elegans as a Model for Microbiome Research. Front. Microbiol. 2017, 8, 485. [CrossRef] [PubMed]