Impact of immunogenicity on clinical efficacy and toxicity profile of biologic agents used for treatment of inflammatory arthritis in children compared to adults

Chinar R Parikh¹,²#, Jaya K Ponnampalam¹,²#, George Seligmann¹,²#, Leda Coelewij³, Ines Pineda-Torra⁴, Elizabeth C Jury³, Coziana Ciurtin¹,⁵*

¹Centre for Adolescent Rheumatology Versus Arthritis, Department of Medicine, University College London, Rayne Building, London W1CE 6JF, U.K.
²Medical School, University College London, London, U.K.
³Centre for Rheumatology Research, Department of Medicine, University College London, Rayne Building, London W1CE 6JF, U.K.
⁴Centre for Cardiometabolic & Vascular Science, Department of Medicine, University College London, Rayne Building, London W1CE 6JF, U.K.
⁵Department of Rheumatology, University College London Hospital, London NW1 2PG, UK

authors contributed equally

* Corresponding Author:
Dr Coziana Ciurtin, PhD, FRCP, Department of Rheumatology, University College London, 3rd Floor Central, 250 Euston Road, London, NW1 2PG, email: c.ciurtin@ucl.ac.uk; phone: 04402034479035.

Abstract:

The treatment of inflammatory arthritis has been revolutionised by the introduction of biologic treatments. Many biologic agents are currently licensed for use in both paediatric and adult patients with inflammatory arthritis and contribute to improved disease outcomes compared to the pre-biologic era. However, immunogenicity to biologic agents, characterised by an immune reaction leading to the production of anti-drug antibodies (ADA), can negatively impact the therapeutic efficacy of biologic drugs and induce side-effects to treatment. This review explores for the first time the impact of immunogenicity against all licensed biologic treatments.
currently used in inflammatory arthritis across age, and will examine any significant
differences between ADA prevalence, titres and timing of development, as well as ADA impact
on therapeutic drug levels, clinical efficacy and side-effects between paediatric and adult
patients. In addition, this paper will investigate factors associated with differences in
immunogenicity across biologic agents used in inflammatory arthritis, and their potential
therapeutic implications.

Introduction

The discovery and clinical use of biologic treatments in the management of inflammatory
arthritis in children and adults has been associated with significant clinical benefits as well as
advances in understanding the pathogenesis of different types of inflammatory arthritis.
Immunogenicity to biologic treatments is an unwanted immune reaction against a therapeutic
antigen. This immune reaction generates anti-drug-antibodies (ADA), which could counteract
the therapeutic effects of the biologic treatment and, in rare cases, induce adverse reactions (1, 2).

It has become increasingly recognised that biologic treatment duration, mode, rate and route of
administration, and more specifically the type of biologic therapeutic (e.g. monoclonal
antibodies - mAbs versus recombinant fusion proteins) are all factors that influence the risk of
immunogenicity (3). In addition, individual patient factors, such as genetic background (4),
disease type (5), and concomitant use of disease modifying anti-rheumatic drugs (DMARDs)
(6), all contribute differentially to the formation of ADA. Recent research has been focused on
highlighting the genetic risk for developing ADA: e.g. HLA-DRB1*15 was associated with
increased the risk for developing high ADA levels to interferon (IFN)β-1a treatment in multiple
sclerosis, while HLA-DQA1*05 decreased this risk (7), and HLA-DQA1*05 was associated
with increased ADA prevalence across various biologics and autoimmune diseases (8). Other
factors such as smoking and infections are also associated with increased risk (8, 9), whereas
concomitant use of antibiotics and immunosuppressant medication are associated with
decreased immunogenicity risk (8). In addition, the manufacturing process of various biologic
agents, in particular their contamination with low-level host proteins, is a major contributor to
immunogenicity (10).

Therapeutic drug monitoring and immunogenicity testing comprise measurement of trough
drug levels and ADA. The most widely used ADA detection methods are bridging ELISA
(which use labelled therapeutic mAbs) and radioimmunoassay (RIA), while other new methods such as competitive displacement and tandem mass spectrometry have also been proposed (11). Currently, most mAbs on the market are humanised or fully human; however, they still carry immunogenic risk. This could be attributed to anti-idiotype reactivity, which is a common reaction of the immune system to the appearance of any novel antibody (12).

The molecular mechanisms leading to generation of ADA are not completely elucidated and a detailed discussion of immune mechanisms is beyond the scope of this review (for a recent review see (13)). One basis for ADA generation involves the capacity of the human immune system to recognise “non-self”. Since the first therapeutic mAbs of murine origin were developed, further efforts have now been made to improve their performance and decrease their immunogenicity. The continuous advancement in recombinant DNA technologies has led to the development of chimeric (fused human-murine mAbs) and humanised mAbs. Chimeric antibodies were developed by replacing the constant region of murine mAbs with human components and the humanised mAbs are constituted entirely of human sequences, with the exception of the complementarity determining regions (CDRs) of the variable (V) regions which are of mouse-sequence origin. Subsequently, the advanced antibody engineering achieved the production of fully human antibodies where antigen specificity has been selected either in vivo in genetically modified mice or by antibody engineering processes combined with screening (14). Many factors contribute to differences in immunogenicity, from biopharmaceutical properties related to downstream processing and drug formulation (15) to patient individual characteristics, including the antigen burden which correlates with their disease activity (16).

Both ELISAs and RIAs detect only free circulating ADAs; therefore, they can be associated with false negative results in the context of presence of ADA-immune complexes which are detectable only if they exceed in concentration the circulating drug levels (17, 18). In one study, ELISA was more sensitive in detecting ADA when present in high titres than RIA, while in patients with ADA detected by RIA but not by ELISA only the drug levels were significantly associated with treatment response to adalimumab (19). Interestingly, measuring drug levels and drug clearance alone has also been shown to be a reliable predictor for ADA in RA and juvenile idiopathic arthritis (JIA) patients (20)(21). Several studies concluded that although ADA were not independently associated with treatment response, they may be helpful in determining the cause of low drug levels and guide therapeutic decisions (22, 23).
The presence of ADAs may be associated with reduced clinical efficacy through two main mechanisms. ADA that compete with the cytokine binding site (the Fab fragment of the therapeutic agent) have neutralising properties as they block the pharmacological function of the drug. ADA directed against the Fc fragment (more frequently targeting the junction between Fc and Fab) lead to formation of immune complexes associated with enhanced drug clearance may also influence the clinical response to biologic treatment through leading to sub-optimal (sub-therapeutic) drug levels (24). Therefore, based on their specificity ADA can be grouped as neutralising (when they target the antigen binding sites of the therapeutic drug) or non-neutralising (when they recognize epitopes away from the drug binding site, therefore not directly impairing the efficacy of the drug)(3).

Here we review the evidence of impact of ADA against various biologic therapeutics used for treatment of inflammatory arthritis in adults and children as there are no previous reports investigating immunogenicity across age. This review focuses on depicting differences between ADA prevalence, titres and timing of development, as well as impact on therapeutic drug levels, clinical efficacy and side-effects in children compared to adults with inflammatory arthritis. Where data is available, we will also investigate the clinical predictors for ADA development, as well as the influence of additional DMARD therapy on ADA development and biologic drug retention.

Neutralising ADA against mAbs targeting TNF-α were more prevalent than ADA against fusion proteins (etanercept and biosimilars) while the kinetic of ADA generation varied across anti TNF-α agents in adult and paediatric inflammatory arthritis studies

Many studies have reported the presence of ADA against anti-TNF-α inhibitors used to treat different types of inflammatory arthritis including etanercept (fusion protein of the extracellular ligand-binding portion of the human 75KD p75 TNF receptor (TNFR) linked to the Fc portion of human IgG1), adalimumab (fully human mAb), certolizumab (humanised antibody Fab’ fragment), golimumab (human IgG1κ monoclonal antibody) or infliximab (a chimeric mAb) (Table 1). The general observation is that ADA against etanercept have a lower prevalence compared to ADA against adalimumab or infliximab (25). Furthermore, comparative studies show that ADA to human/humanised (adalimumab, certolizumab,
golimumab) and chimeric (infliximab) anti-TNF-α therapeutic mAbs are largely neutralising (26), while the ADA against etanercept are predominantly non-neutralising (27).

In adults, the rates of ADA formation against infliximab range from 8-62% in rheumatoid arthritis (RA), 15-33% for psoriatic arthritis (PsA) and 6.1-69% for ankylosing spondylitis (AS) (28) (Table 1). ADA against infliximab have also been shown to be associated with lower serum biologic drug concentrations in adult inflammatory arthritis patients (27-35). There is a paucity of studies investigating the timing of development of ADA against various anti-TNF-α agents: evidence suggests that longer exposure to infliximab increases immunogenicity; e.g. ADA against infliximab in adults with RA occurred after the first 10 infusions (23.4 ± 2.4 weeks), while ADA were detected in 25% of JIA patients after 52 weeks and in 37% at 204 weeks (36-38). The dose of biologic agent as well as patients’ age could influence immunogenicity: a higher incidence of ADAs was observed in patients treated with infliximab 3mg/kg (38%), compared to 6 mg/kg (12%) (37), while a significantly higher prevalence of ADA was found in younger children (ADA positive mean age 7.01 years vs. ADA negative 9.88 years, p = 0.003) (39).

The prevalence of ADA against adalimumab has high variability across different types of autoimmune diseases in adults (25, 28, 29, 40-42) and children with JIA (36) (Table 1). The timing of adalimumab ADA development is controversial: in some adult studies ADA prevalence did not increase with treatment duration (43, 44), while in other studies there was a significant increase, with ADA developing between 4.5 months and 12 months of treatment (9, 30, 40, 42, 45, 46). Similarly, studies in JIA showed both trends: a significant increase of ADA with time (36) or no correlation with treatment duration (47), suggesting that ongoing monitoring to establish their clinical relevance and impact on management is required.

Etanercept treatment was associated with a lower ADA rate than infliximab and adalimumab (25) (Table 1), with the vast majority of adult studies reporting no detectable ADA (25, 27-29, 31, 40, 42, 46). This pinpoints that the chemical structure of the anti-TNF-α therapeutic agent (fusion protein versus mAb) is likely to be a key factor in inducing drug immunogenicity. When detected, ADA against etanercept were found to be non-neutralising in both adults and paediatric studies (28, 36). ADA prevalence increased with treatment duration with a corresponding decrease in etanercept drug levels over time in JIA (48, 49).
A highly sensitive ELISA test detected ADA against golimumab in 31.7% of patients with RA, PsA and AS in comparison with standard ELISA which detected ADA only in 4.1% (50), while their prevalence varied across adult studies (Table 1). The impact of ADA on serum golimumab concentrations was consistent in JIA and RA studies, whereby higher ADA titers were associated with lower drug concentrations (28, 51-53). This was generally shown at ADA titres >1:1000 in JIA (51), and in adults, median peak titres ≥100 were associated with undetectable or very low drug levels (59). Interestingly, in another study in PsA, which used a standard assay, the golimumab dose (50mg vs. 100mg) did not appear to affect the ADA rates, which remained low for the whole duration of the study through to week 52 (4.9%) (54).

There are fewer studies investigating the presence of ADA against certolizumab (55, 56), although in both studies, ADA were associated with lower drug levels (Table 2). A more recent study, however, reported that there was no significant correlation between ADA and certolizumab drug levels (r =-0.471, p=0.122). There is evidence that ADA were still detected at higher certolizumab concentrations of >10mg/l (57). The majority of patients with ADA had detectable titres from week 16 onwards and 65% remained ADA positive after one year of follow up (57). There are no studies in paediatric populations.

When anti TNF-α agents have been studied comparatively in adults, there was evidence of increased prevalence of ADA against infliximab compared to adalimumab (25.3% vs 14.1% respectively), as well as between adalimumab and golimumab (14.1% vs 3.8%) (25). Similar trend was found in a meta-analysis of biologic agents in JIA, where the pooled prevalence of ADA against infliximab was 36.6% compared to 21.8% for ADA against adalimumab (36). As mentioned above, the prevalence of ADA against golimumab seems to be higher in children (46.8%) but based on limited evidence (51).

Variable impact of ADA directed against anti TNF-α treatments on clinical efficacy: loss of efficacy to adalimumab and infliximab was consistently found in children and adults who developed ADA

Various studies in RA, PsA, AS provided evidence for an association between the presence of ADA against adalimumab and loss of clinical efficacy or diminished clinical response (23, 28, 29, 40), while other studies found no association (43, 44) (Table 1). The impact of ADA on the
trend of inflammatory markers is not clear; some studies found higher ESR and CRP in patients
who had detectable ADA (27, 29), whereas other studies found no such association (43). In
addition, the presence of both ADA and low adalimumab concentration at 3 months were
together significant predictors of poor response at 12 months (40, 42). However, the risk of
flares following various adalimumab tapering strategies in RA did not seem to be influenced
by the adalimumab serum levels or ADA prevalence (58).

A higher proportion of ADA positive JIA patients treated with adalimumab experienced loss
of response and more clinical relapses than those without ADA (28, 47). In JIA, it was noted
that transient ADA (defined as measurable ADA on up to two consecutive time points which
disappeared on subsequent measurements without having any impact on treatment efficacy of
toxicity) were not associated with diminished response to medication, whereas permanent
ADA did lower treatment response (45).

Most adult rheumatology studies found no detectable ADA against etanercept (27, 30). It has
been suggested that neither etanercept concentrations nor ADA positivity correlated with JIA
activity or remission states (48).

A meta-analysis of 9 studies of infliximab in adult autoimmune diseases found that the presence
of ADA decreased the odds of response by 58% (25). After 52 weeks of treatment with
infliximab, non-responder RA patients were significantly more likely to be ADA positive (34).

Adult RA studies found that ADA against golimumab were associated with a poorer clinical
response (28, 52). ADA positive RA patients (15.2% at 24 weeks) had a worse EULAR
response and higher DAS-28 compared to ADA negative patients (52). However, one study
which utilised a more sensitive method of ADA detection (drug-tolerant enzyme immunoassay,
DT-EIA) in adults, reported no effects of ADA to golimumab on clinical responses at 24 and
52 weeks, across RA, PsA and AS (50). This highlights the importance in sensitivities of assays
used. Studies in children with JIA found that ADA to golimumab did not appear to have impact
on clinical responses (59) (51). Brunner et al., reported that none of the 8 JIA patients found
with high ADA titres >1:1000, experienced flares (51).

ADA against certolizumab appeared to have an impact on RA clinical response at 3 months,
where the majority of ADA positive patients were non-responders (56), but there was no
independent correlation with the 12 month EULAR response (55), suggesting that there was a
time-dependent relationship. There are no paediatric studies.

A meta-analysis performed on 12 observational prospective cohort studies in adults evaluated
that the development of ADA reduced the anti-TNF response rate (RR) by 68% (RR = 0.32,
95% CI 0.22, 0.48)(60), while in children with JIA, a qualitative analysis found that antibodies
to infliximab and adalimumab were associated with treatment failure (36).

**Additional methotrexate treatment decreased the rate of ADA formation against anti
TNF-α treatments**

Generally, for both adults and children, concomitant DMARD therapy was beneficial and
resulted in a decrease in ADA positivity, but the impact of DMARDs on ADA formation was
not always analysed to enable reliable conclusions (9, 47) (Table 1). Most studies looked at
concomitant methotrexate (MTX) therapy but azathioprine, leflunomide and mycophenolate
have also been shown to be associated with lower ADA prevalence, suggesting that all
DMARDs may be associated with benefits against drug-induced immunogenicity (23, 28, 42)
(31). Unfortunately, none of the studies evaluated comparatively the impact of individual
DMARDs on immunogenicity in inflammatory arthritis because of small numbers of patients
on DMARDs other than MTX, and because some patients were treated with more than one
conventional DMARD. Concomitant use of MTX was associated with lower rates of ADA
against infliximab in RA (28, 31, 32, 40, 61). Moreover, RA patients treated with infliximab
were less likely to develop ADA if they received high biologic doses/induction therapy, or if
they received continuous versus intermittent therapy (28, 30, 32, 61, 62). A RCT of infliximab
plus MTX for the treatment of JIA, found that more patients achieved clinical response in the
ADA negative group (79% vs. 67%) (37).

Similar evidence has been found in children, with studies suggesting a protective effect with
the addition of MTX (36, 45, 59). Interestingly, DMARD use in children was found to be
significantly lower in those who developed permanent ADA to adalimumab (45). It has also
been suggested that MTX reduces immunogenicity against adalimumab in a dose dependent
manner (30, 40), as patients who did not develop ADA were on a higher MTX dose (46).
However, a paediatric study found that there was no difference in ADA rates in JIA patients
with longer exposure to MTX (47).
In adults, concomitant use of MTX was associated with lower incidence of ADA to golimumab (28, 50, 63). A study found that the mean trough golimumab level at 24 weeks was comparable in ADA positive vs. negative patients, with or without concomitant MTX (63).

ADA against infliximab and adalimumab have been associated with side-effects to therapy

In both adults and children, there was no clear consensus on whether ADA have an impact on safety (Table 1). As expected, most reports included a small number of cases experiencing side-effects. Adverse events more frequently mentioned included injection site or infusion reactions, serum sickness and thromboembolic events. Some studies suggested that adverse events occurred more frequently in patients with ADA to adalimumab (28, 29, 62) with others showing no significant differences (27, 44). In paediatric studies, despite limited information available, no association between the presence of ADA and adverse events was reported (36). There was a suggestion of a possible increase in minor upper respiratory tract infections in children with detectable ADA, however, this conclusion was limited by the small sample size (45).

ADA against infliximab have been reported to confer a higher likelihood of adverse drug reactions (25, 28, 30, 32, 35, 40, 62). In a RA study (35), ADA positive patients had an increased risk of adverse drug reactions compared with ADA negative patients over 52 weeks [21 (18%) vs. 7 (7%), P < 0.018] (40). Similarly, JIA infusion reactions to infliximab were more commonly seen in ADA positive patients (58% vs 19%) (37). A retrospective chart review of children with JIA and paediatric inflammatory ocular diseases found that patients with ADA had a 15-fold increased risk of infusion reactions to infliximab compared to patients without ADA (39). This study also found that ADA positive children were significantly younger (mean age 7.01 vs. 9.88 years, p = 0.003).

Limited data were available regarding the impact of immunogenicity against etanercept on safety. Studies across age did not report an association between ADA positivity and adverse events (36, 59). In JIA studies, the proportion of patients with ADA did not differ between responders and non-responders to etanercept (48).
Studies in both paediatric and adult populations did not report an association between ADA and adverse effects to golimumab (51, 52, 59). Similarly, multiple adult studies reported no association between the presence of ADA against certolizumab and adverse effects (55-57); in addition, RA patients who experienced adverse effects did not have ADA (55, 56).

Immunogenicity to anti TNF-α biosimilars is similar to or lower than that of their originators

Biosimilars are new biological products which are highly similar to their biological reference drug and have comparable clinical efficacy. At present, the use of biosimilars in JIA is limited, thus the majority of evidence related to their immunogenicity is available from adult studies. Multiple studies have shown similar clinical efficacy and immunogenicity profiles when comparing biosimilars with their reference products (28, 64-72). For example, ADA positive CT-P13 (an infliximab biosimilar) patients showed less clinical improvement (28). ADA against infliximab and adalimumab biosimilars were associated with lower drug concentrations (69)(75). The PLANETRA study found that peak serum CT-P13 concentrations were reduced in the ADA positive group ($C_{\text{max}} = 85.1 \mu g/ml$) compared to the ADA negative subset ($C_{\text{max}} = 96.7 \mu g/ml$) (69). One meta-analysis reported on the pooled response rates (RR) of ADA against anti TNF-α biosimilars compared to their reference product (66). There were no significant differences in ADA formation rates between the infliximab and adalimumab biosimilars and their reference drugs at 24-30 weeks. The etanercept biosimilars showed significantly lower rates of ADA formation compared to the reference product, with a pooled RR = 0.05 at 24-30 weeks (66). A study of etanercept biosimilar GP2015 did not detect any neutralising ADA, and all ADA responses were transient (absent by week 24) (72).

Clinical relevance of ADA against other biologic agents in adult and paediatric inflammatory arthritis studies

ADA against abatacept are mainly non-neutralising and do not have significant impact on clinical efficacy unless treatment is temporarily discontinued.
The prevalence of ADA to fusion proteins, such as abatacept (which comprises a Fc region of IgG1 fused to the extracellular domain of CTLA-4) is generally acknowledged to be lower than to therapeutic mAbs. The prevalence of ADA to abatacept ranged from 1-20% in adult studies (28, 30, 41, 73), and from 8.7-23.3% in paediatric studies (36) (Table 2). Younger children with JIA (2-5 years) had a higher prevalence of ADA than older children (6-17 years) (74). One JIA study compared the prevalence of abatacept specific ADA with anti- CTLA-4 specific antibodies and found the latter to be much higher (1.2% vs. 20.7%) (75). In terms of timing of the development of ADA in children, one study found that ADA concentration increased with a longer time of exposure to abatacept (76), whereas another found no increase with continued exposure (77).

Similar to etanercept, abatacept generated ADA which bind to the Fc fragment (hinge region) and have no neutralising activity (28). Non-neutralising ADA decreased the circulating levels of abatacept by enhancing drug clearance in adults (30, 41). In children, ADA were also found to be non-neutralising but were not found to be associated with low abatacept concentrations (75, 76).

No loss of efficacy due to ADA against abatacept was found in JIA studies (36, 75-77), while in contrast, in adults with RA, intermittent treatment discontinuation led to higher incidence of immunogenicity and loss of clinical response (73). It was observed that adult patients who discontinued the treatment temporarily had a higher ADA rates than those on continuous treatment (7.4% vs 2.6% respectively) (30). Similarly, ADA were more frequent in children with JIA who interrupted treatment and had abatacept concentration below therapeutic levels, suggesting that higher treatment doses may be beneficial against immunogenicity (75).

Some adult studies suggested that intravenous therapy was associated with less immunogenicity than subcutaneous administration (28),(78), while other studies found no difference (30). In JIA, no difference was found between the two routes of administration (36).

In RA, concomitant MTX therapy did not significantly affect immunogenicity (73). In paediatric studies the impact of MTX has not been studied (36). Reassuringly, ADA against abatacept were not associated with increased risk for injection site reactions, hypersensitivity or any other safety concerns (36, 73, 75, 76), even when patients have been followed up to 7 years (77).
ADA against B cell targeted therapies are dose-dependent and have impact on clinical
efficacy and risk of adverse reactions

Rituximab is a chimeric mAb against CD20. There have been no paediatric studies
investigating the relevance of ADA against rituximab. However, ADA against rituximab have
been reported in 0-21% of adult RA patients (28). Additionally, ADA have been found to be
associated with a reduced treatment response and higher rates of treatment serious adverse
events (28, 79). Lower serum rituximab concentrations have been reported in ADA positive
patients compared to ADA negative patients in RA (80). Moreover, the use of higher rituximab
doses and induction therapy have been associated with a decreased incidence of ADAs in RA
(28).

A meta-analysis reported that the pooled RR of ADA formation for rituximab biosimilars was
0.86 at week 24-28 (67). Of note, the pooled RR of neutralising ADA formation at the same
time point was 1.16. Neutralising ADA were also of a very low incidence at week 72 in the
rituximab biosimilar CT-P10 (68). Multiple studies have demonstrated a similar side effect
profile for biosimilars, as higher rates of infusion-related reactions were present in ADA-
positive patients compared to ADA-negative patients (28, 64, 65, 70, 71) (Table 2).

Neutralising ADA against tocilizumab have no clear impact on clinical efficacy and
potential on side-effects in adults, while there is a trend for clinical impact in children

Tocilizumab is a humanized mAb against the interleukin-6 receptor (IL-6R). Several studies
have reported low ADA rates in RA patients (28) (81, 82). ADA positivity has been recorded
in 1.5% and 1.2% of RA patients receiving intravenous and subcutaneous tocilizumab
respectively, with a high proportion of these being neutralising ADA (83) (Table 2). The rate
of ADA formation has not been seen to significantly differ in tocilizumab monotherapy versus
combination therapy with conventional synthetic DMARDs (83). No correlation has been
found between ADA rates and adverse events or a reduced treatment efficacy in adults (41,
83). Similarly, low levels of ADA to tocilizumab have been reported in JIA patients, with a
pooled prevalence of 2.3% across four studies (36). However, neutralising antibodies against
tocilizumab in JIA have indeed been shown to correlate with treatment failure, as well as with
infusion and hypersensitivity reactions (36, 84). Yokota et al. (84) found that out of five JIA
patients treated with tocilizumab who developed ADA, four (80%) withdrew from the study due to infusion reactions.

ADA to sarilumab seem to have limited impact on clinical efficacy and no impact on adverse events

Sarilumab is human recombinant mAb that blocks both the soluble and membrane-bound IL-6 receptor, similarly to tocilizumab, but with a higher affinity. Currently there are no studies of immunogenicity in paediatric populations. The presence of ADA did not appear to affect clinical efficacy in various trials (85-87). The MONARCH trial demonstrated that only 2.7% of RA patients had persistent ADA, however, no neutralising ADA were detected (85). It has been suggested that ADA against sarilumab are in majority of cases transient (88). Xu et al. described a trend towards higher apparent linear clearance of sarilumab when ADA were present (89). In addition, patients with persistent ADA had a lower mean drug levels compared to ADA negative patients. At a dose of 150mg, treatment-emergent ADA incidence was 24.6% compared to 18.2% at a higher dose of 200mg. Of those who had persistent ADA, the incidence of neutralising ADA was also higher in the group receiving 150mg sarilumab compared to 200mg (10.8% and 3.0% respectively) (86). Multiple studies have shown that ADA positivity was not associated with a higher incidence of adverse effects (85) (86, 87). Hypersensitivity reactions occurring during treatment were reported in 8.0% of ADA-negative patients and in 3.1% of ADA-positive patients (87).

Neutralising ADA against IL12/23 blockade have low prevalence but possible impact on clinical efficacy in inflammatory arthritis

Ustekinumab is a human immunoglobulin G1κ monoclonal antibody against common sub-unit p40 of IL-12 and IL-23. The prevalence of ADA was 8-11% in psoriatic arthritis adult patients treated with ustekinumab (28). Moreover, a study evaluating the efficacy of subcutaneous ustekinumab in the treatment of RA reported that 7/123 (5.7%) of patients had ADA, while 4/123 (3.3%) had neutralising ADA (90). In this study, serum concentrations of ustekinumab were generally lower in ADA positive patients (90) (Table 2). There is evidence that neutralising ADA against ustekinumab were associated with lower drug levels and loss of clinical efficacy in psoriasis and Crohn’s disease (91, 92), suggesting overall that they may
have similar impact in inflammatory arthritis. The relevance of ustekinumab immunogenicity is yet to be studied in children.

Very low prevalence of ADA against IL-17 blockade has been reported and no impact on side-effects or clinical efficacy

Secukinumab is a mAb targeting IL17A. The treatment is not licensed for children. In a recent systematic review, the prevalence of ADA against secukinumab was 0-1% (28). A study evaluated the prevalence of ADA at 52 weeks in patients with psoriasis, PsA and AS treated with secukinumab and found it to be <1%; ADA were not associated with loss of efficacy, changes in drug levels or adverse events (93).

Ixekizumab is a humanized mAb which targets IL17A used for the treatment of plaque psoriasis, PsA and AS. The prevalence of ADA was 5.3% (94) and 9% (95) in adult patients with psoriasis and PsA, and they occurred within the first 12 weeks of treatment (95). ADA were found to be non-neutralising and did not correlate with the rate of adverse reactions (Table 2). Patients with psoriasis or PsA who developed ADA against ixekizumab had low and constant titres, which did not significantly impact clinical response. No data in children are available.

ADA against IL-1 blockade do not have significant impact on clinical efficacy or side-effects

Anakinra is a recombinant a human IL-1 recombinant receptor antagonist initially trialled in RA, where it has been associated with a prevalence of ADA ranging from 50.1 to 70.9% (96, 97). Similar to other recombinant proteins, only a small proportion of ADA were neutralising (25/1240, 1.9%) (96) (Table 2). Of these 25 RA patients, 13 (52%) reported disease progression; however, no relationships were found between neutralising antibody status and the occurrence of severe allergic reactions, malignancies, opportunistic infections, or serious infections (96). One study assessing the efficacy of anakinra in patients with JIA found that the prevalence of ADA increased from 75% at 12 weeks to 82% at 12 months (98). At 12 weeks, all 4/64 (6%) of patients who had neutralising antibodies to anakinra were non-responders to treatment (98). However, non-neutralising antibodies to anakinra were not
associated with a reduced response to treatment (98). There have been no studies analysing the
association between ADA to anakinra and adverse events in JIA.

Canakinumab is a fully human mAb against anti-IL1-β used in systemic-onset JIA (soJIA).
Studies in children with systemic JIA found a prevalence of ADA against canakinumab of
3.1% (6/196) (99), and 8% (100), and ADA had no neutralising capacity and did not affect the
drug levels or the rate of side-effects.

Rilonacept is a fully human dimeric fusion protein that acts as a soluble decoy receptor which
blocks IL-1β. An RCT in soJIA did not find an association between ADA positivity and clinical
response (101). This trial found that 54.2% (13/24) of patients developed ADA during the 23-
month period of open label treatment (following a 4-week double blind treatment phase). There
was no correlation between ADA positivity and plasma levels of rilonacept (101). Although
the sample size was small, this study noted that the patients who developed ≥3 injection site
reactions were all ADA positive, thus suggesting that there is an association between ADA and
adverse effects.

Conclusion:

Immunogenicity to biologic treatment has been investigated in various types of inflammatory
arthritis in children and adults. The overall impression is that immunogenicity to biologics used
in rheumatology was not particularly confounded by clinical indication or significantly affected
by patients’ age (Table 3). However, a direct comparison between the studies evaluated by this
report is not possible, because of the high study heterogeneity, low number of studies
investigating less commonly used biologic treatments and high variability between the methods
of ADA detection and time-points of ADA measurements, study design and concomitant MTX
therapy.

As there are some differences between the biologic agents approved for use in paediatric versus
adult rheumatic diseases, in some cases there were no data available to enable comparisons
between the two populations (e.g. certolizumab, sarilumab, secukinumab, ustekinumab and
ixekinumab have no studies in children, while rilonacept and canakinumab are not commonly
used in adults). The discrepancy found between the rate of ADA against golimumab is not easy
to interpret, because they have been investigated only in one study in JIA.

This literature review provided evidence for variable prevalence of ADA depending on the
study methodology, sample size, time-points for sample evaluation, concomitant DMARD
therapy as well as laboratory assays used for ADA detection. Overall, the highest ADA
prevalence was found in patients treated with mAbs against TNF-α and recombinant human
IL-1 receptor antagonist (anakinra), although the impact of ADA on clinical efficacy was
clearly influenced by their neutralising properties and impact on drug levels. In contrast to
immunogenicity to IL-1 blockade, which had minimal or no impact on clinical efficacy as the
proportion of neutralising ADA was very low, ADA against adalimumab, infliximab,
certolizumab, and to a certain extent golimumab had a significant impact on clinical efficacy.
As a consequence, the choice of biologic therapeutic agent in a certain patient influences their
immunogenicity monitoring strategy.

All mAbs against TNF-α (and their biosimilars) were associated with higher prevalence of
ADA than etanercept (a fusion protein) and this is probably explained by the structure of the
biologic agent as well as frequency of administration, which in the case of etanercept ensures
a more constant serum drug levels. It is recognized that anti-idiotypic ADA against therapeutic
mAbs usually target the drug binding site as this does not belong to the patient immunoglobulin
repertoire, therefore these ADA have neutralising properties with impact of drug efficacy and
they are clinically relevant (62). The detection of neutralising ADA in certain patients should
be monitored and correlated with clinical response and drug levels to guide further therapeutic
decisions (102). Neutralising ADA have been found in patients treated with adalimumab,
infliximab, certolizumab pegol, and golimumab, as well as tocilizumab, ustekinumab and
secukinumab.

By contrast, in the case of fusion proteins which comprise a naturally occurring receptor fused
with the constant region of human Ig, the immunogenicity process is primarily triggered by the
recognition of the fusion part of the molecule with no direct impact on the drug binding site.
Overall these therapeutic agents were associated with less immunogenicity, although
neutralising ADA against fusion proteins have also been described with both etanercept and
abatacept (103, 104), suggesting that their monitoring could be relevant in selected categories
of patients, especially if the treatment has been discontinued temporarily.
Despite the potential side-effects associated with the presence of ADA overall, irrespective of their neutralising properties, detection of ADA does not preclude loss of clinical response as long as it does not reduce the serum concentration of the biologic agent below the therapeutic threshold (62), therefore monitoring of ADA without drug levels has no clinical relevance.

High ADA concentration correlated with lower drug levels and impact on clinical efficacy when patients of all ages were treated with adalimumab, infliximab, golimumab, certolizumab, rituximab, abatacept, anakinra, canakinumab, and possibly ustekinumab, while the presence of ADA had less impact on clinical efficacy in adult patients treated with IL-6 and IL-17 blockage and children treated with rilonacept (IL-1β decoy receptor). Patients with higher ADA titers and lower or not/detectable drug levels are probably at risk of losing clinical efficacy and need to be monitored more closely.

It is clinically important to take into consideration the fact that not all detectable neutralising ADA had impact on clinical outcomes (e.g. tocilizumab ADA lowered treatment response in children with JIA but less in adults with RA). Neutralising ADA were more commonly found in patients treated with mAbs compared to fusion proteins; however, not all ADA against mAbs had neutralising properties or impact on clinical efficacy (e.g. ADA against ixekizumab were predominantly non-neutralising and did not influence clinical response).

The timing of developing ADA varied according to the type of biologic treatment and patients’ age. Patients developed ADA against adalimumab earlier in their disease course, while ADA in children with JIA treated with abatacept increased with longer time exposure to the drug. Although data from paediatric studies are scarce overall, studies found that younger age in children with JIA was associated with a higher prevalence of ADA as well as side-effects to certain biologics, suggesting that caution in monitoring younger patients is advisable.

There is good evidence that higher doses of rituximab and infliximab, as well as more regular administration (as in the case of etanercept) were associated with lower ADA prevalence, suggesting that medication discontinuation and tapering biologic treatment doses could have impact on clinical efficacy. Monitoring patients’ compliance and taking into consideration their dosing regimen, route and frequency of biologic medication administration are important aspects of immunogenicity risk assessment. Increasing treatment dose as well as switching to
IV formulations can lower the ADA and restore treatment response, therefore these are useful therapeutic strategies to address the clinical impact of drug-induced immunogenicity.

In addition, the large variability of ADA levels against biologic agents detected in various adult and pediatric studies of inflammatory arthritis is very likely influenced by the sensitivity of the assay used, concomitant MTX dose, time point of sample collection, as well as patients’ characteristics (genetic background, smoking, age). The overall impact of ADA on drug efficacy, as well as therapeutic drug monitoring are particularly relevant in guiding future therapeutic strategies of tapering biologic treatments in inflammatory arthritis patients (102, 105), although further research related to their impact on clinical decision making is required (16, 58).

Based on data available in the literature, concomitant treatment with MTX to address the risk of immunogenicity is recommended in patients treated with abatacept, infliximab, golimumab, while in the case of treatment with etanercept, abatacept and tocilizumab the impact of additional MTX is not significant.

We propose a potential strategy for drug immunogenicity monitoring for improved clinical benefit (Figure 1). The main clinical instances when ADA and drug levels should be monitored is loss of clinical efficacy, monotherapy with biologic agents recommended to be prescribed in addition to MTX, clinical reasons for frequent dose intermittent discontinuation, in patients who tapered biologics (especially administered subcutaneously), patients who develop infusion/injection reactions and other side-effects to therapy. Further research especially focused on patient individual risk to develop immunogenicity to biologics is required to enable personalized therapy selection.

Acknowledgments: ECJ and CC are supported by NIHR UCLH Biomedical Research Centre grants (BRC772/III/EJ/101350 and BRC525/III/CC/191350). LC is supported by UCL & Birkbeck MRC Doctoral Training Programme. This work was performed within the Centre for Adolescent Rheumatology Versus Arthritis at UCL UCLH and GOSH supported by grants from Versus Arthritis (21593 and 20164), GOSCC, and the NIHR-Biomedical Research Centres at both GOSH and UCLH. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health.
References:

1. De Groot AS, Scott DW. Immunogenicity of protein therapeutics. Trends Immunol. 2007;28(11):482-90.
2. Hansel TT, Kropshofer H, Singer T, Mitchell JA, George AJ. The safety and side effects of monoclonal antibodies. Nat Rev Drug Discov. 2010;9(4):325-38.
3. Boehncke WH, Brembilla NC. Immunogenicity of biologic therapies: causes and consequences. Expert Rev Clin Immunol. 2018;14(6):513-23.
4. Sazonovs A, Kennedy NA, Moutsianas L, Heap GA, Rice DL, Reppell M, et al. HLA-DQA1*05 Carriage Associated With Development of Anti-Drug Antibodies to Infliximab and Adalimumab in Patients With Crohn’s Disease. Gastroenterology. 2020;158(1):189-99.
5. Bloem K, Hernandez-Breijo B, Martinez-Feito A, Rispens T. Immunogenicity of Therapeutic Antibodies: Monitoring Antidrug Antibodies in a Clinical Context. Ther Drug Monit. 2017;39(4):327-32.
6. Jani M, Barton A, Warren RB, Griffiths CE, Chinoy H. The role of DMARDs in reducing the immunogenicity of TNF inhibitors in chronic inflammatory diseases. Rheumatology (Oxford). 2014;53(2):213-22.
7. Link J, Lundkvist Ryner M, Fink K, Hermanrud C, Lima I, Brynedal B, et al. Human leukocyte antigen genes and interferon beta preparations influence risk of developing neutralising anti-drug antibodies in multiple sclerosis. PLoS One. 2014;9(3):e90479.
8. Hassler S, Bachelet D, Duhaize J, Szely N, Gleizes A, Hacein-Bey Abina S, et al. Clinicogenomic factors of biotherapy immunogenicity in autoimmune disease: A prospective multicohort study of the ABIRISK consortium. PLoS Med. 2020;17(10):e1003348.
9. Quistrebert J, Hassler S, Bachelet D, Mbogning C, Musters A, Tak PP, et al. Incidence and risk factors for adalimumab and infliximab anti-drug antibodies in rheumatoid arthritis: A European retrospective multicohort analysis. Semin Arthritis Rheum. 2019;48(6):967-75.
10. Vanderlaan M, Zhu-Shimoni J, Lin S, Gunawan F, Waerner T, Van Cott KE. Experience with host cell protein impurities in biopharmaceuticals. Biotechnol Prog. 2018;34(4):828-37.
11. El Amrani M, Gobel C, Egas AC, Nierkens S, Hack CE, Huitema ADR, et al. Quantification of neutralising anti-drug antibodies and their neutralising capacity using competitive displacement and tandem mass spectrometry: Infliximab as proof of principle. J Transl Autoimmun. 2019;1:100004.
12. van Schouwenburg PA, van de Stadt LA, de Jong RN, van Buren EE, Kruithof S, de Groot E, et al. Adalimumab elicits a restricted anti-idiotypic antibody response in autoimmune patients resulting in functional neutralisation. Ann Rheum Dis. 2013;72(1):104-9.
13. Vaisman-Mentesh A, Gutierrez-Gonzalez M, DeKosky BJ, Wine Y. The Molecular Mechanisms That Underlie the Immune Biology of Anti-drug Antibody Formation Following Treatment With Monoclonal Antibodies. Front Immunol. 2020;11(1951).
14. Nelson AL, Dhimolea E, Reichert JM. Development trends for human monoclonal antibody therapeutics. Nat Rev Drug Discov. 2010;9(10):767-74.
15. Schellekens H. Bioequivalence and the immunogenicity of biopharmaceuticals. Nat Rev Drug Discov. 2002;1(6):457-62.
16. Mulleman D, Balsa A. Adalimumab concentration-based tapering strategy: as good as the recommended dosage. Ann Rheum Dis. 2018;77(4):473-5.
17. Sethu S, Govindappa K, Alhaidari M, Pirmohamed M, Park K, Sathish J. Immunogenicity to biologics: mechanisms, prediction and reduction. Arch Immunol Ther Exp (Warsz). 2012;60(5):331-44.

18. Rup B, Pallardy M, Sikkema D, Albert T, Allez M, Broet P, et al. Standardizing terms, definitions and concepts for describing and interpreting unwanted immunogenicity of biopharmaceuticals: recommendations of the Innovative Medicines Initiative ABIRISK consortium. Clin Exp Immunol. 2015;181(3):385-400.

19. Jani M, Isaacs JD, Morgan AW, Wilson AG, Plant D, Hyrich KL, et al. Detection of anti-drug antibodies using a bridging ELISA compared with radioimmunoassay in adalimumab-treated rheumatoid arthritis patients with random drug levels. Rheumatology (Oxford). 2016;55(11):2050-5.

20. Ternant D, Elhasnaoui J, Szely N, Hacein-Bey S, Gleizes A, Richez C, et al. AB0310 trough concentration and estimated clearance can detect immunogenicity to adalimumab in RA patients: a prospective longitudinal multicentre study. Annals of the Rheumatic Diseases. 2020;79(Suppl 1):1453-4.

21. Martina Finetti, et al. Assessing the Clinical Relevance and Risk Minimization of Antibodies to Biologics in Juvenile Idiopathic Arthritis (JIA) (ABIRISK) - Preliminary Results. Pediatric Rheumatology 2018, 16(Suppl 2):P191

22. Bartelds GM, Krieckaert CL, Nurmohamed MT, van Schouwenburg PA, Lems WF, Twisk JW, et al. Development of antidrug antibodies against adalimumab and association with disease activity and treatment failure during long-term follow-up. JAMA. 2011;305(14):1460-8.

23. Chen DY, Chen YM, Tsai WC, Tseng JC, Chen YH, Hsieh CW, et al. Significant associations of antidrug antibody levels with serum drug trough levels and therapeutic response of adalimumab and etanercept treatment in rheumatoid arthritis. Ann Rheum Dis. 2015;74(3):e16.

24. Gunn GR, 3rd, Sealey DC, Jamal F, Meibohm B, Ghosh S, Shankar G. From the bench to clinical practice: understanding the challenges and uncertainties in immunogenicity testing for biopharmaceuticals. Clin Exp Immunol. 2016;184(2):137-46.

25. Thomas SS, Borazan N, Barroso N, Duan L, Taroumian S, Kretzmann B, et al. Comparative Immunogenicity of TNF Inhibitors: Impact on Clinical Efficacy and Tolerability in the Management of Autoimmune Diseases. A Systematic Review and Meta-Analysis. BioDrugs. 2015;29(4):241-58.

26. van Schie KA, Hart MH, de Groot ER, Kruithof S, Aarden LA, Wolbink GJ, et al. The antibody response against human and chimeric anti-TNF therapeutic antibodies primarily targets the TNF binding region. Ann Rheum Dis. 2015;74(1):311-4.

27. Moots RJ, Xavier RM, Mok CC, Rahman MU, Tsai WC, Al-Maini MH, et al. The impact of anti-drug antibodies on drug concentrations and clinical outcomes in rheumatoid arthritis patients treated with adalimumab, etanercept, or infliximab: Results from a multinational, real-world clinical practice, non-interventional study. PLoS One. 2017;12(4):e0175207.

28. Strand V, Balsa A, Al-Saleh J, Barile-Fabris L, Horiuchi T, Takeuchi T, et al. Immunogenicity of Biologics in Chronic Inflammatory Diseases: A Systematic Review. BioDrugs. 2017;31(4):299-316.

29. Maid PJ, Xavier R, Real RM, Pedersen R, Shen Q, Marshall L, et al. Incidence of Antidrug Antibodies in Rheumatoid Arthritis Patients From Argentina Treated With
Adalimumab, Etanercept, or Infliximab in a Real-World Setting. J Clin Rheumatol. 2018;24(4):177-82.

30. Schaeverbeke T, Truchetet ME, Kostine M, Barnetche T, Bannwarth B, Richez C. Immunogenicity of biologic agents in rheumatoid arthritis patients: lessons for clinical practice. Rheumatology (Oxford). 2016;55(2):210-20.

31. Balsa A, Sanmarti R, Rosas J, Martin V, Cabez A, Gomez S, et al. Drug immunogenicity in patients with inflammatory arthritis and secondary failure to tumour necrosis factor inhibitor therapies: the REASON study. Rheumatology (Oxford). 2018;57(4):688-93.

32. Ducourau E, Mulleman D, Paintaud G, Lin D, Laféron F, Ternant D, et al. Antibodies toward infliximab are associated with low infliximab concentration at treatment initiation and poor infliximab maintenance in rheumatic diseases. Arthritis Research & Therapy. 2011;13(3):R105.

33. Hambardzumyan K, Hermanrud C, Marits P, Vivar N, Ernsetam S, Wallman JK, et al. Association of female sex and positive rheumatoid factor with low serum infliximab and anti-drug antibodies, related to treatment failure in early rheumatoid arthritis: results from the SWEFOT trial population. Scand J Rheumatol. 2019;48(5):362-6.

34. Siljehult F, Arlestig L, Eriksson C, Rantapaa-Dahlqvist S. Concentrations of infliximab and anti-drug antibodies in relation to clinical response in patients with rheumatoid arthritis. Scand J Rheumatol. 2018;47(5):345-50.

35. Krintel SB, Grunert VP, Hetland ML, Johansen JS, Rothfuss M, Palermo G, et al. The frequency of anti-infliximab antibodies in patients with rheumatoid arthritis treated in routine care and the associations with adverse drug reactions and treatment failure. Rheumatology (Oxford). 2013;52(7):1245-53.

36. Doeleman MJH, van Maarseveen EM, Swart JF. Immunogenicity of biologic agents in juvenile idiopathic arthritis: a systematic review and meta-analysis. Rheumatology (Oxford). 2019;58(10):1839-49.

37. Ruperto N, Lovell DJ, Cattica R, Wilkinson N, Woo P, Espada G, et al. A randomized, placebo-controlled trial of infliximab plus methotrexate for the treatment of polyarticular-course juvenile rheumatoid arthritis. Arthritis Rheum. 2007;56(9):3096-106.

38. Ruperto N, Lovell DJ, Cattica R, Woo P, Meiorn S, Wouters C, et al. Long-term efficacy and safety of infliximab plus methotrexate for the treatment of polyarticular-course juvenile rheumatoid arthritis: findings from an open-label treatment extension. Ann Rheum Dis. 2010;69(4):718-22.

39. Aeschlimann FA, Angst F, Hofer KD, Cannizzaro Schneider E, Schroeder-Kohler S, Lauener R, et al. Prevalence of Anti-infliximab Antibodies and Their Associated Co-factors in Children with Refractory Arthritis and/or Uveitis: A Retrospective Longitudinal Cohort Study. J Rheumatol. 2017;44(3):334-41.

40. Murdaca G, Spano F, Contatore M, Guastalla A, Penza E, Magnani O, et al. Immunogenicity of infliximab and adalimumab: what is its role in hypersensitivity and modulation of therapeutic efficacy and safety? Expert Opin Drug Saf. 2016;15(1):43-52.

41. Niccoli L, Nannini C, Blandizzi C, Mantarro S, Mosca M, Di Munno O, et al. Personalization of biologic therapy in patients with rheumatoid arthritis: less frequently accounted choice-driving variables. Ther Clin Risk Manag. 2018;14:2097-111.

42. Jani M, Chinoy H, Warren RB, Griffiths CE, Plant D, Fu B, et al. Clinical utility of random anti-tumor necrosis factor drug-level testing and measurement of antidrug antibodies on the long-term treatment response in rheumatoid arthritis. Arthritis Rheumatol. 2015;67(8):2011-9.
43. Bandres Ciga S, Salvatierra J, Lopez-Sidro M, Garcia-Sanchez A, Duran R, Vives F, et al. An examination of the mechanisms involved in secondary clinical failure to adalimumab or etanercept in inflammatory arthropathies. J Clin Rheumatol. 2015;21(3):115-9.

44. Paramarta JE BD. Adalimumab serum levels and antidrug antibodies towards adalimumab in peripheral spondyloarthritis: No association with clinical response to treatment or with disease relapse upon treatment discontinuation. Arthritis Res Ther. 2014;16(4):R160.

45. Skrabl-Baumgartner A, Seidel G, Langner-Wegscheider B, Schlagenhauf A, J J. Drug monitoring in long-term treatment with adalimumab for juvenile idiopathic arthritis-associated uveitis. Arch Dis Child. 2019;104(3):246-50.

46. Benucci M, Grossi V, Manfredi M, Damiani A, Infantino M, Moscato P, et al. Laboratory Monitoring of Biological Therapies in Rheumatology: The Role of Immunogenicity. Ann Lab Med. 2020;40(2):101-13.

47. Marino A, Real-Fernandez F, Rovero P, Giani T, Pagnini I, Cimaz R, et al. Anti-adalimumab antibodies in a cohort of patients with juvenile idiopathic arthritis: incidence and clinical correlations. Clin Rheumatol. 2018;37(5):1407-11.

48. Bader-Meunier B, Krzysiek R, Lemelle I, Pajot C, Carbasse A, Poignant S, et al. Etanercept concentration and immunogenicity do not influence the response to Etanercept in patients with juvenile idiopathic arthritis. Semin Arthritis Rheum. 2019;48(6):1014-8.

49. Constantin T, Foeldvari I, Vojinovic J, Horneff G, Burgos-Vargas R, Nikishina I, et al. Two-year Efficacy and Safety of Etanercept in Pediatric Patients with Extended Oligoarthritis, Enthesitis-related Arthritis, or Psoriatic Arthritis. J Rheumatol. 2016;43(4):816-24.

50. Leu JH, Adedokun OJ, Gargano C, Hsia EC, Xu Z, Shankar G. Immunogenicity of golimumab and its clinical relevance in patients with rheumatoid arthritis, psoriatic arthritis and ankylosing spondylitis. Rheumatology (Oxford). 2019;58(3):441-6.

51. Brunner HI, Ruperto N, Tzaribachev N, Horneff G, Chasnyk VG, Panaviene V, et al. Subcutaneous golimumab for children with active polyarticular-course juvenile idiopathic arthritis: results of a multicentre, double-blind, randomised-withdrawal trial. Ann Rheum Dis. 2018;77(1):21-9.

52. Tahir Z, Kavanaugh A. The role of golimumab in inflammatory arthritis. A review of the evidence. Ther Adv Musculoskelet Dis. 2018;10(9):181-94.

53. Kneepkens E, Plasencia C, Kriekaeart C, Pascual-Salcedo D, van der Kleij D, Nurmohamed M, et al. Golimumab trough levels, antidrug antibodies and clinical response in patients with rheumatoid arthritis treated in daily clinical practice. Ann Rheum Dis. 2014;73(12):2217–9.

54. Kavanaugh A, van der Heijde D, McInnes IB, Mease P, Krueger GG, Gladman DD, et al. Golimumab in psoriatic arthritis: one-year clinical efficacy, radiographic, and safety results from a phase III, randomized, placebo-controlled trial. Arthritis Rheum. 2012;64(8):2504-17.

55. Jani M, Isaacs JD, Morgan AW, Wilson AG, Plant D, Hyrich KL, et al. High frequency of antidrug antibodies and association of random drug levels with efficacy in certolizumab pegol-treated patients with rheumatoid arthritis: results from the BRAGGSS cohort. Ann Rheum Dis. 2017;76(1):208-13.

56. Gehin JE, Goll GL, Warren DJ, Syversen SW, Sexton J, Strand EK, et al. Associations between certolizumab pegol serum levels, anti-drug antibodies and treatment response in...
patients with inflammatory joint diseases: data from the NOR-DMARD study. Arthritis Res Ther. 2019;21(1):256.

57. LC B, EH V, MH H, FC L, L D, NI D, et al. The effect of certolizumab drug concentration and anti-drug antibodies on TNF neutralisation. Clinical and Experimental Rheumatology. 2020;38(2):306-13.

58. Emery P, Burmester GR, Naredo E, Sinigaglia L, Lagunes I, Koenigsbauer F, et al. Adalimumab dose tapering in patients with rheumatoid arthritis who are in long-standing clinical remission: results of the phase IV PREDICTRA study. Ann Rheum Dis. 2020;79(8):1023-30.

59. Verstegen RHJ, McMillan R, Feldman BM, Ito S, Laxer RM. Towards therapeutic drug monitoring of TNF inhibitors for children with juvenile idiopathic arthritis: a scoping review. Rheumatology (Oxford). 2020;59(2):386-97.

60. Garces S, Demengeot J, Benito-Garcia E. The immunogenicity of anti-TNF therapy in immune-mediated inflammatory diseases: a systematic review of the literature with a meta-analysis. Ann Rheum Dis. 2013;72(12):1947-55.

61. Nencini F, Vultaggio A, Pratesi S, Cammelli D, Milla M, Fiori G, et al. The Kinetics of Antidrug Antibodies, Drug Levels, and Clinical Outcomes in Infliximab-Exposed Patients with Immune-Mediated Disorders. J Allergy Clin Immunol Pract. 2018;6(6):2065-72 e2.

62. van Schouwenburg PA, Rispen T, Wolbink GJ. Immunogenicity of anti-TNF biologic therapies for rheumatoid arthritis. Nat Rev Rheumatol. 2013;9(3):164-72.

63. Wang W, Leu J, Watson R, Xu Z, Zhou H. Investigation of the Mechanism of Therapeutic Protein-Drug Interaction Between Methotrexate and Golimumab, an Anti-TNFalpha Monoclonal Antibody. AAPS J. 2018;20(3):63.

64. Yoo DH, Hrycaj P, Miranda P, Ramiterre E, Piotrowski M, Shevchuk S, et al. A randomised, double-blind, parallel-group study to demonstrate equivalence in efficacy and safety of CT-P13 compared with innovator infliximab when coadministered with methotrexate in patients with active rheumatoid arthritis: the PLANETRA study. Ann Rheum Dis. 2013;72(10):1613-20.

65. Yoo DH, Prodanovic N, Jaworski J, Miranda P, Ramiterre E, Lanzon A, et al. Efficacy and safety of CT-P13 (biosimilar infliximab) in patients with rheumatoid arthritis: comparison between switching from reference infliximab to CT-P13 and continuing CT-P13 in the PLANETRA extension study. Ann Rheum Dis. 2017;76(2):355-63.

66. Komaki Y, Yamada A, Komaki F, Kudaravalli P, Micic D, Ido A, et al. Efficacy, safety and pharmacokinetics of biosimilars of anti-tumor necrosis factor-alpha agents in rheumatic diseases; A systematic review and meta-analysis. J Autoimmun. 2017;79:4-16.

67. Lee S, Lee H, Kim E. Comparative Efficacy and Safety of Biosimilar Rituximab and Originator Rituximab in Rheumatoid Arthritis and Non-Hodgkin’s Lymphoma: A Systematic Review and Meta-analysis. BioDrugs. 2019;33(5):469-83.

68. Shim SC, Bozic-Majstorovic L, Berrocal Kasay A, El-Khoury EC, Irazoqui-Palazuelos F, Cons Molina FF, et al. Efficacy and safety of switching from rituximab to biosimilar CT-P10 in rheumatoid arthritis: 72-week data from a randomized Phase 3 trial. Rheumatology (Oxford). 2019;58(12):2193-202.

69. Suh CH, Yoo DH, Berrocal Kasay A, Chalouhi El-Khouri E, Cons Molina FF, Shesternya P, et al. Long-Term Efficacy and Safety of Biosimilar CT-P10 Versus Innovator Rituximab in Rheumatoid Arthritis: 48-Week Results from a Randomized Phase III Trial. BioDrugs. 2019;33(1):79-91.
70. Cohen SB, Alonso-Ruiz A, Klimiuk PA, Lee EC, Peter N, Sonderegger I, et al. Similar efficacy, safety and immunogenicity of adalimumab biosimilar BI 695501 and Humira reference product in patients with moderately to severely active rheumatoid arthritis: results from the phase III randomised VOLTAIRE-RA equivalence study. Ann Rheum Dis. 2018;77(6):914-21.

71. Smolen JS, Choe JY, Prodanovic N, Niebrzydowski J, Staykov I, Dokoupilova E, et al. Safety, immunogenicity and efficacy after switching from reference infliximab to biosimilar SB2 compared with continuing reference infliximab and SB2 in patients with rheumatoid arthritis: results of a randomised, double-blind, phase III transition study. Ann Rheum Dis. 2018;77(2):234-40.

72. Matucci-Cerinic M, Allanore Y, Kavanaugh A, Buch MH, Schulze-Koops H, Kucharz EJ, et al. Efficacy, safety and immunogenicity of GP2015, an etanercept biosimilar, compared with the reference etanercept in patients with moderate-to-severe rheumatoid arthritis: 24-week results from the comparative phase III, randomised, double-blind EQUIRA study. RMD Open. 2018;4(2):e000757.

73. Hagerty H, Abbott M, Reilly T, DeVona D, Gleason C, Tay L, et al. Evaluation of immunogenicity of the T cell costimulation modulator abatacept in patients treated for rheumatoid arthritis. The Journal of Rheumatology. 2007;34(12):2365-73.

74. Brunner HI, Tzaribachev N, Vega-Cornejo G, Louw I, Berman A, Calvo Penades I, et al. Subcutaneous Abatacept in Patients With Polyarticular-Course Juvenile Idiopathic Arthritis: Results From a Phase III Open-Label Study. Arthritis Rheumatol. 2018;70(7):1144-54.

75. Kuemmerle-Deschner J, Benseler S. Abatacept in difficult-to-treat juvenile idiopathic arthritis. Biologics: Targets & Therapy. 2008;2(4):865-74.

76. Hara R, Umebayashi H, Takei S, Okamoto N, lwata N, Yamasaki Y, et al. Intravenous abatacept in Japanese patients with polyarticular-course juvenile idiopathic arthritis: results from a phase III open-label study. Pediatr Rheumatol Online J. 2019;17(1):17.

77. Lovell DJ, Ruperto N, Mouy R, Paz E, Rubio-Perez N, Silva CA, et al. Long-term safety, efficacy, and quality of life in patients with juvenile idiopathic arthritis treated with intravenous abatacept for up to seven years. Arthritis Rheumatol. 2015;67(10):2759-70.

78. Amano K, Matsubara T, Tanaka T, Inoue H, Iwahashi M, Kanamono T, et al. Long-term safety and efficacy of treatment with subcutaneous abatacept in Japanese patients with rheumatoid arthritis who are methotrexate inadequate responders. Mod Rheumatol. 2015;25(5):665-71.

79. Combier A, Nocturne G, Henry J, Belkhir R, Pavy S, Le Tiec C, et al. Immunization to rituximab is more frequent in systemic autoimmune diseases than in rheumatoid arthritis: ofatumumab as alternative therapy. Rheumatology (Oxford). 2020;59(6):1347-54.

80. Thurlings RM, Teng O, Vos K, Gerlag DM, Aarden L, Stapel SO, et al. Clinical response, pharmacokinetics, development of human anti-chimaeric antibodies, and synovial tissue response to rituximab treatment in patients with rheumatoid arthritis. Ann Rheum Dis. 2010;69(2):409-12.

81. Benucci M, Meacci F, Grossi V, Infantino M, Manfredi M, Bellio E, et al. Correlations between immunogenicity, drug levels, and disease activity in an Italian cohort of rheumatoid arthritis patients treated with tocilizumab. Biologics. 2016;10:53-8.

82. Sigaux J, Hamze M, Daen C, Morel J, Krzysiek R, Pallardy M, et al. Immunogenicity of tocilizumab in patients with rheumatoid arthritis. Joint Bone Spine. 2017;84(1):39-45.
83. Burmester GR, Choy E, Kivitz A, Ogata A, Bao M, Nomura A, et al. Low immunogenicity of tocilizumab in patients with rheumatoid arthritis. Ann Rheum Dis. 2017;76(6):1078-85.

84. Yokota S, Imagawa T, Mori M, Miyamae T, Takei S, Iwata N, et al. Longterm safety and effectiveness of the anti-interleukin 6 receptor monoclonal antibody tocilizumab in patients with systemic juvenile idiopathic arthritis in Japan. J Rheumatol. 2014;41(4):759-67.

85. Burmester GR, Lin Y, Patel R, van Adelsberg J, Mangan EK, Graham NM, et al. Efficacy and safety of sarilumab monotherapy versus adalimumab monotherapy for the treatment of patients with active rheumatoid arthritis (MONARCH): a randomised, double-blind, parallel-group phase III trial. Ann Rheum Dis. 2017;76(5):840-7.

86. Wells AF, Parrino J, Mangan EK, Paccaly A, Lin Y, Xu C, et al. Immunogenicity of Sarilumab Monotherapy in Patients with Rheumatoid Arthritis Who Were Inadequate Responders or Intolerant to Disease-Modifying Antirheumatic Drugs. Rheumatol Ther. 2019;6(3):339-52.

87. Genovese MC, Fleischmann R, Kivitz AJ, Rell-Bakalarska M, Martinova R, Fiore S, et al. Sarilumab Plus Methotrexate in Patients With Active Rheumatoid Arthritis and Inadequate Response to Methotrexate: Results of a Phase III Study. Arthritis Rheumatol. 2015;67(6):1424-37.

88. Lamb YN, Deeks ED. Sarilumab: A Review in Moderate to Severe Rheumatoid Arthritis. Drugs. 2018;78(9):929-40.

89. Xu C, Su Y, Paccaly A, Kanamaluru V. Population Pharmacokinetics of Sarilumab in Patients with Rheumatoid Arthritis. Clin Pharmacokinet. 2019;58(11):1455-67.

90. Smolen JS, Agarwal SK, Ilivanova E, Xu XL, Miao Y, Zhuang Y, et al. A randomised phase II study evaluating the efficacy and safety of subcutaneously administered ustekinumab and guselkumab in patients with active rheumatoid arthritis despite treatment with methotrexate. Ann Rheum Dis. 2017;76(5):831-9.

91. Chiu HY, Chu TW, Cheng YP, Tsai TF. The Association between Clinical Response to Ustekinumab and Immunogenicity to Ustekinumab and Prior Adalimumab. PLoS One. 2015;10(11):e0142930.

92. Travis S. IM-UNITI at Three Years: Stellar Stelara(R) or Stardust? The Efficacy, Safety, and Immunogenicity of Ustekinumab Treatment of Crohn's Disease. J Crohns Colitis. 2020;14(1):1-3.

93. Deodhar A, Mease PJ, McInnes IB, Baraliakos X, Reich K, Blauvelt A, et al. Long-term safety of secukinumab in patients with moderate-to-severe plaque psoriasis, psoriatic arthritis, and ankylosing spondylitis: integrated pooled clinical trial and post-marketing surveillance data. Arthritis Res Ther. 2019;21(1):111.

94. Mease PJ, van der Heijde D, Ritchlin CT, Okada M, Cuchacovich RS, Shuler CL, et al. Ixekizumab, an interleukin-17A specific monoclonal antibody, for the treatment of biologic-naive patients with active psoriatic arthritis: results from the 24-week randomised, double-blind, placebo-controlled and active (adalimumab)-controlled period of the phase III trial SPIRIT-P1. Ann Rheum Dis. 2017;76(1):79-87.

95. Gordon KB, Blauvelt A, Papp KA, Langley RG, Luger T, Ohtsuki M, et al. Phase 3 Trials of Ixekizumab in Moderate-to-Severe Plaque Psoriasis. N Engl J Med. 2016;375(4):345-56.

96. Fleischmann RM, Tesser J, Schiff MH, Schechterman J, Burmester GR, Bennett R, et al. Safety of extended treatment with anakinra in patients with rheumatoid arthritis. Ann Rheum Dis. 2006;65(8):1006-12.
97. Cohen S, Hurd E, Cush J, Schiff M, Weinblatt ME, Moreland LW, et al. Treatment of rheumatoid arthritis with anakinra, a recombinant human interleukin-1 receptor antagonist, in combination with methotrexate: results of a twenty-four-week, multicenter, randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2002;46(3):614-24.

98. Ilowite N, Porras O, Reiff A, Rudge S, Punaro M, Martin A, et al. Anakinra in the treatment of polyarticular-course juvenile rheumatoid arthritis: safety and preliminary efficacy results of a randomized multicenter study. Clin Rheumatol. 2009;28(2):129-37.

99. Sun H, Van LM, Floch D, Jiang X, Klein UR, Abrams K, et al. Pharmacokinetics and Pharmacodynamics of Canakinumab in Patients With Systemic Juvenile Idiopathic Arthritis. J Clin Pharmacol. 2016;56(12):1516-27.

100. Ruperto N, Brunner HI, Quartier P, Constantin T, Wulffraat N, Horneff G, et al. Two randomized trials of canakinumab in systemic juvenile idiopathic arthritis. N Engl J Med. 2012;367(25):2396-406.

101. Lovell DJ, Giannini EH, Reiff AO, Kimura Y, Li S, Hashkes PJ, et al. Long-term safety and efficacy of rilonacept in patients with systemic juvenile idiopathic arthritis. Arthritis Rheum. 2013;65(9):2486-96.

102. Sauna ZE, Richards SM, Maille B, Jury EC, Rosenberg AS. Editorial: Immunogenicity of Proteins Used as Therapeutics. Front Immunol. 2020;11:614856.

103. Christen U, Thuerkauf R, Stevens R, Lesslauer W. Immune response to a recombinant human TNFR55-IgG1 fusion protein: auto-antibodies in rheumatoid arthritis (RA) and multiple sclerosis (MS) patients have neither neutralising nor agonist activities. Hum Immunol. 1999;60(9):774-90.

104. Haggerty HG, Abbott MA, Reilly TP, DeVona DA, Gleason CR, Tay L, et al. Evaluation of immunogenicity of the T cell costimulation modulator abatacept in patients treated for rheumatoid arthritis. J Rheumatol. 2007;34(12):2365-73.

105. Perry M, Abdullah A, Frleta M, MacDonald J, McGucken A. The potential value of blood monitoring of biologic drugs used in the treatment of rheumatoid arthritis. Ther Adv Musculoskelet Dis. 2020;12:1759720X20904850.
| Author et al., year [ref] | Country | Type of study (including meta-analyses) | Number of patients treated with a certain biologic | Type of inflammatory arthritis | Disease duration | Prevalence of ADA | Impact of additional DMARD therapy on ADA prevalence | Impact on clinical efficacy | Impact on side-effects to biologic therapy |
|--------------------------|---------|--|---|-----------------|-----------------|-----------------|---|-----------------------------|---------------------------------|
| Strand et al., 2017 [28] | Systematic review | RA N= 1282 PsA N= 59 JIA N= 23 AS = 204 | RA (35-64) PsA (43-55) JIA (3-14.2) AS (30-48) | RA: 1-34 PsA: 5-21 JIA: 1-5 AS: 4-15 | RA 0-51%; PsA 0-54% JIA 6-33%; AS 8-39% Concomitant use of MTX, AZA, leflunomide or MMF was associated with lower rates of ADA in RA, JIA, AS | ADA was associated with less improvement of disease activity for RA, PsA and AS. A higher proportion of ADA+ve JIA patients experienced loss of response than ADA-ve patients (no P value reported). | Adverse events occurred more frequently in ADA+ve patients compared to ADA-ve (27% vs 15%, no P value reported) |
| Doeleman et al., 2019 [39] | Systematic review and meta-analysis | N= 355 | JIA 10.5 | 3.45 | Pooled prevalence of 21.5% (95% CI = 14.1 – 29.8) Addition of MTX reduced the risk of ADA development by 67% (RR 0.33) | Increased median disease activity score in patients with ADA was found (no P value reported) | No association with adverse events generally was found, but in patients with JIA-associated uveitis, ADA were associated with a significantly higher severity of uveitis (no P value reported). |
| Marino et al., 2018 [47] | Italy Prospective observational study | N=27 | JIA Age at inclusion 9.5±3.32 ADA+ve 11.15 ± 3.11 | 4.79± 3.04 | Overall prevalence 37% 31% vs. 45% in MTX+ve vs. MTX-ve groups. No impact of MTX treatment duration on ADA development was found -22.9 months | ADA+ve patients experienced more relapses, P<0.017. 30% of ADA+ve patients were in clinical remission, | No infusion reactions or side effects were found |
| Study | Location | Study Design | N | RA | SpA | ADA-ve Rate | ADA+ve Rate | ADA-ve vs. ADA+ve | Conclusion |
|-------|----------|--------------|---|----|-----|-------------|-------------|------------------|------------|
| Maid et al., 2018 [29] | Argentina | Cross-sectional study | 52 | 56.5 (13.3) | 36.5% | 36% of MTX+ve patients and 38% of MTX-ve patients tested positive for ADA | ADA-ve patients had a tendency towards better clinical outcomes than those who were ADA+ve – 39.4% of ADA-ve patients achieved an HAQ-DI score <0.5, compared to only 31.6% of ADA+ve patients (comparative statistics were not performed) | Injection site reactions were reported by 6.3% in the ADA-ve group and 4.3% in the ADA+ve group (no p-value reported) (combined data for adalimumab, infliximab and etanercept) |
| Balsa et al., 2018 [31] | Spain | Cross-sectional, observational study | 217 | RA = 56.3 (12.1) | 25.5% | RA: 25.5%; SpA: 32.7% | 82.5% ADA+ve patients had no detectable drug levels in the serum. Only one ADA+ve patient reported drug concentrations within the normal range. No p-value reported. | Data not available |
| Quistrebert et al., 2019 [9] | Europe | European retrospective multi-cohort analysis | 240 | RA = 50.3 | 19.2% | 96.6% of patients were MTX+ve, but study was not powered to analyse the effects | ADA positivity was significantly associated with a lower probability of a good clinical response based on 278 clinical observations from 215 patients (hazard ratio = 0.58, 95% CI 0.39–0.86) | Data not available |
| Verstegen et al., 2020 [62] | Systematic review | JIA | 103 | Data not available | 6.7%-37% | Concomitant treatment with MTX showed a protective effect against ADA development for ADA to adalimumab were associated to impaired clinical outcome (no comparative statistics performed) | Data not available |
| Skrabl-Baumgartner et al., 2019 [45] | Austria Prospective observational study | JIA | JIA data not available | Duration of JIA-associated uveitis 3.5±3.5 | 45% (including permanent and transient ADA) Concomitant use of DMARDs significantly lower in group with permanent ADA+ve (2/7) vs ADA-ve (10/11) – p<0.05 | 7/8 who had a loss of response had permanent ADA. Transient ADA were not associated with a diminished response (no comparative statistics performed) | No severe adverse reactions were found. |
|----------------------------------|--|-----|------------------------|--|---|---|---|
| Moots et al., 2017 [27] | Multinational non-interventional study | RA | Symptom duration 9.3±8.43 | RA 31.2% | Significant differences between patients with and without detectable ADA were observed in ESR (p=0.008) and CRP (p=0.0011). When data for all three TNF inhibitors were pooled, a greater proportion of patients without detectable ADA (226/484; 46.7%) than those with detectable ADA (29/94; 30.9%) were in remission (p=0.0046). | No differences in safety outcomes were reported |

Infliximab and biosimilars

| Strand et al., 2017 [28] | Systematic review | RA (35-64) PsA (43-55) JIA (3-14.2) AS (30-48) | RA: 1-34 PsA: 5-21 JIA: 1-5 AS: 4-15 | RA 8-62%; PsA 15-33%; JIA 26-42%; AS 6.1-6.9%; Concomitant use of MTX, A2A, leflunomide or MMF is associated with lower rates of ADA in RA | ADA+ve patients showed less improvement in disease activity and were less likely to achieve clinical responses (RA, PsA, AS) - (no comparative statistics performed) | Increased risk of treatment discontinuation due to adverse events and higher rates of infusion reactions were reported in ADA+ve patients (no comparative statistics performed) |
Authors, Year	Country/Study Design	RA Study & SpA Study	RA & SpA Data	ADA Data	Clinical Outcomes	Notes	
Maid et al., 2018 [29]	Argentina	Cross-sectional study	N=13	RA 55.5 (10.6)	13.1±8.5	30.8% 22.2% of MTX+ve and 50% of MTX-ve patients had ADA	ADA-ve patients had a tendency towards better clinical outcomes than those who were ADA+ve – no comparative statistics were performed due to low numbers.
Balsa et al., 2018 [31]	Spain	Cross-sectional, observational study	N=188	RA and SpA RA = 56.3 (12.1) SpA = 47.9 (11.5)	RA = 13.9 ± 8.7 SpA = 12.5 ± 10.2	RA: 21.1%; SpA: 31.3% No significant difference between the two patient groups (p=0.114) Concomitant use of DMARDs associated with lower ADA – ADA-ve 29/130 (22.3%) vs 22/58 ADA+ve (37.9%); P = 0.021	78.4% ADA positive patients had no detectable drug in the serum. Only one ADA+ve patient reported drug concentrations within the normal range. No p-value reported.
Quistrebert et al., 2019 [9]	European retrospective multi-cohort analysis	N=126	RA 50.6	2.65	RA 29.4% ADA were detected more frequently in infliximab-treated patients (29.4%) than in adalimumab-treated patients (19.2%).	ADA positivity was significantly associated with a lower probability of a good clinical response based on 149 clinical observations from 125 patients (hazard ratio = 0.61, 95% CI 0.32–0.76)	
Ruperto et al., 2007 [36]	Multicentre RCT	N=122	JIA 11.2	3.9	25.5%	Infusion reactions were observed in 58% of ADA+ve patients compared to 19% of ADA-patients. Serious infusion reactions additionally occurred in 20% of ADA+ve patients,	

Injection site reactions were reported by 6.3% in the ADA-ve and 4.3% in the ADA+ve group (no p-value reported.) (combined data for adalimumab, infliximab and etanercept)
Study	Design	Patient Group	Infusion-Related Reactions	ADA+ve Patients	Comparison
Ruperto et al., 2010 [37]	Multicentre open-label extension study N= 78	JIA	Data not available	37% (+32% inconclusive)	Data not available
					32% patients had ≥1 infusion-related reaction, with a higher occurrence amongst patients who were ADA+ve (15/26 [58%] ADA+ve patients had infusion-related reactions). No comparative statistics performed
Moots et al., 2017 [27]	Multicentre noninterventional study N=196	RA	60.7±13.01	Symptom duration 10.0±10.11	RA 17.4%
					95/184 (51.6%) were in low disease activity, of which 14/32 (43.8%) had detectable ADA and 81/152 (53.3%) had no detectable ADA (P = 0.3387). Significant differences between patients with and without detectable ADA were observed in ESR (p<0.0001) and CRP (p=0.0001). No significant correlation between adverse events and ADA was found.

Etanercept and biosimilars

Study	Design	Patient Group	RA %	PsA %	JIA %	AS %	RA %	PsA %	JIA %	AS %
Strand et al., 2017 [28]	Systematic review RA N=589 PsA, JIA, AS N = not available	RA (35-64) PsA (43-55) JIA (3-14.2) AS (30-48)	RA: 1-34 PsA: 5-21 JIA: 1-5 AS: 4-15	RA 0-13%; PsA 0% JIA 0-6%; AS 0%	Data not available	Data not available				
Balsa et al., 2018 [31] Spain Cross-sectional, observational study N= 165 RA and SpA RA = 56.3 (12.1) SpA = 47.9 (11.5) RA = 13.9 ± 8.7 SpA = 12.5 ± 10.2 RA: 0%; SpA: 0% Data not available Data not available

Doeleman et al., 2019 [39] Systematic review and meta-analysis N= 268 JIA 11.8 4.7 Pooled prevalence 8.5% (95% CI = 0.5 – 23.2) No reported association between treatment failure and the presence of non-neutralizing ADA No association between adverse events and ADA was observed

Maid et al., 2018 [29] Argentina Cross-sectional study N=54 RA 54.5 (13.6) 12.5±10.1 0% Data not available Data not available

Bader-Meunier et al., 2019 [48] France Prospective multi-centre study N=126 JIA 10.5 (2-17) 4.62 (0.16-16.3) 15.7% at baseline 33% after 366 (302-712) days of treatment ADA levels not significantly different between responders and non-responders (7.22±3.60 vs. 6.47±3.98ng/ml), No significant difference with concomitant MTX. p-values < 0.05 were considered significant. No severe adverse events occurred.

Moots et al., 2017 [27] Multicentre non-interventional study N=200 RA 56.5±13.37 Symptom duration 0.8±10.67 0% No patients developed ADA on ETN. Data not available

Constantin et al., 2016 [49] Multicentre prospective open-label study JIA 8.6± 4.6 ERA 14.5± 1.6 JPsA 14.5±2.0 JIA 31.6±31.7 months ERA JIA - 18.3%, ERA- 23.7%, JPsA 20.5%, combined - 20.7% No significant changes in effectiveness in patients who were ADA+ve was found No safety concerns in patients who were ADA+ve were reported
Study	Design	N	Disease Duration	ADA Status	Comments
Strand et al., 2017 [28]	Systematic review	RA N=358 PsA, JIA and AS N = not available	RA (35-64) PsA (43-55) JIA (3-14.2) AS (30-48) RA: 1-34 PsA: 5-21 JIA: 1-5 AS: 4-15	RA: 2.8-37%; PsA: 5-21 JIA: 1-5 AS: 4-15	Concomitant use of MTX, AZA, leflunomide or MMF was associated with lower rates of ADA in RA, PsA and AS
Brunner et al., 2018 [51]	Multicentre withdrawal RCT	JIA	Disease duration not available	ADA: 2.8-37%	ADA+ve RA patients showed less improvement in disease activity and were less likely to achieve clinical responses (no comparative statistics performed)
Leu et al., 2019 [50]	Samples from 3 RCTs	RA PsA AS	Data not available	RA: 24.9% PsA: 39.9% AS: 30.3%	No effect of ADA on clinical response was found
Kneepkens et al., 2014 [53]	The Netherlands Prospective observational cohort study	RA	Data not available	8.1%	3 patients out of 37 (8.1%) were ADA+ve at 52 weeks and all 3 discontinued golimumab prematurely due to inefficacy

Golimumab

- **Strand et al., 2017 [28]**
 - RA N=358 PsA, JIA and AS N = not available
 - RA: 1-34 PsA: 5-21 JIA: 1-5 AS: 4-15
 - ADA: 2.8-37%
 - Concomitant use of MTX, AZA, leflunomide or MMF was associated with lower rates of ADA in RA, PsA and AS

Certolizumab

- **Strand et al., 2017 [28]**
 - RA N=358 PsA, JIA and AS N = not available
 - RA: 1-34 PsA: 5-21 JIA: 1-5 AS: 4-15
 - ADA: 2.8-37%
 - Concomitant use of MTX, AZA, leflunomide or MMF was associated with lower rates of ADA in RA, PsA and AS

Data not available
Study Reference	Study Location	Study Design	Study Population	ADA Prevalence	ADA+ve vs ADA-ve	Correlation	Other Findings
Gehin et al., 2019 [56]	Norway	Longitudinal observational study	RA, AS, PsA and other inflammatory joint disease N=116	Prevalence 6.1% (19/310 patients: 6 AS, 5 RA, 4 PsA and 4 other IJD) Among RA patients, 80% of ADA+ve patients had concomitant synthetic DMARDs (mostly MTX) vs. 73% of ADA- patients. 9% ADA+ve patients were responders at 3 months vs. 55% of ADA- patients No p-value reported	Data not available	8 patients experienced one or more injection-site reactions, all of which were ADA- at 3 months.	
Jani et al., 2017 [55]	The Netherlands	Prospective observation cohort study	RA N=115	No correlation between ADA+ve and EULAR response was found (p = 0.18)	Data not available		

Table 1 - Impact of ADA on disease outcomes in children and adults with inflammatory arthritis treated with anti TNF-α agents.

Legend: ADA- antidrug antibodies; AS – ankylosing spondylitis; AZT – azathioprine; ERA - enthesitis-related arthritis; EULAR- European League Against Rheumatism; JIA- juvenile idiopathic arthritis, JPsA – juvenile psoriatic arthritis; MMF- mycophenolate mofetil; MTX- methotrexate; N – number of patients treated with a certain biologic included in the study/systematic review; RA- rheumatoid arthritis, RCT – randomised control trial; PsA- psoriatic arthritis; +ve – positive; -ve - negative
Author et al., year [ref]	Country	Type of study	Type of inflammatory arthritis N (F:M) Age (mean+/ SD)	Disease duration	Prevalence of ADA Impact of additional DMARD therapy on ADA prevalence	Impact on clinical efficacy	Impact on side-effects
Strand et al., 2017 [28]	Systematic review	RA Patient demographics n/a	Data not available	0-21%	Patients with ADAs vs RTX showed less improvement in disease activity and were less likely to achieve clinical responses in RA patients. No comparative statistics/meta-analysis performed.	Higher rates of Tx emergent adverse events (89% vs 68%) were reported in patients with RA who develop anti-RTX ADAs compared to those who did not	
Thurlings et al., 2010 [80]	The Netherlands Open-label cohort study	RA N=58 (F:M = 44:14)	Data not available	Data not available	Response to treatment and re-treatment measured by decrease in DAS28 and EULAR response was similar in ADA-positive and ADA-negative patients: p=0.87 and p=0.32 for the responses at 24 weeks after courses 1 and 2, respectively	Data not available	
Combier et al., 2020 [79]	France Retrospective cohort study	RA N=124 (F:M=97:27) Age (mean = 62; range 22-89) Other ARDS (including pSS, SLE, myositis) N=75	RA 13 years (1-60) Other ARDS 10 years (1-28)	RA 2.4% Other ARDS 14.7%	No data available on ADA impact on clinical efficacy 14.29% were tested because of loss of efficacy, and 78.6% were tested because of adverse reactions. No comparative statistics performed.	78.57% of ADA+ve patients (48/62 tested) with RA and other ARDs had infusion reactions to second or subsequent RTX cycles	
Study Authors, Date	Study Design	JIA Patients	RA Patients	Other Details			
--------------------	--------------	--------------	-------------	---------------			
Strand et al., 2017 [28]	Systematic review	JIA: 1-5	RA: 1-54	Suggested that IV therapy associated with less immunogenicity than SC			
Doeleman et al., 2019 [39]	Systematic review and meta-analysis	JIA: 1-5	RA: 1-54	Data not available			
Hara et al., 2019 [76]	Japan Open label, multicentre single arm study	JIA: 1-5	RA: 1-54	No association between immunogenicity and loss of efficacy was found			
Brunner et al., 2018 [74]	International open label, multicentre	JIA: 1-5	RA: 1-54	No clinical significance of ADA was found.			
Study/Study Design	Patient Details	Outcomes					
--------------------	-----------------	----------					
Lovell et al., 2015 [77]	Multicentre RCT JIA N=58 (active arm) N= 59 (placebo) Mean age 12.4± 2.9	Whole Abatacept molecule 3.4% (2/58) CTLA-4 region only 5.5% (9/58) (IV only) No loss of efficacy was found in the two patients with anti-abatacept antibodies to the whole molecules. Of the 9 patients with ADA against the CTLA-4 region, 3 discontinued due to lack of efficacy (small sample size, so no comparative statistics performed).					
Haggerty et al., 2007 [73]	Integrated analysis across multiple double blind and open-label studies RA N=2237	RA 2.1% ADA+ve with MTX 2.3% vs ADA+ve without MTX 1.4% - not significant Patients who discontinued had a higher level of ADA compared to those who did not discontinue (7.4% vs 2.6%). No comparative statistics performed					
IL-6 blockade (Tocilizumab/Sarilumab)	Benucci et al., 2016 [81]	Italy Cohort study of Tocilizumab RA N=126 (F:M = 110:16) Mean Age: 59±12 years Range: 26-83 years Mean disease duration: 11±5 years 0.79% (1/126 patients) The occurrence of ADA against Tocilizumab is very rare.					

Notes:
- **IL-6 blockade (Tocilizumab/Sarilumab)**: IL-6 blockade refers to the use of Tocilizumab and Sarilumab, which are monoclonal antibodies that block the interleukin-6 (IL-6) receptor and thus inhibit inflammatory signaling. This is a common approach in treating rheumatoid arthritis (RA) and other autoimmune diseases.
- **Study Design:**
 - **Multicentre RCT (Randomized Controlled Trial)**: A study design where participants are randomly assigned to different treatment groups to determine the efficacy and safety of the intervention.
 - **Single arm study:** A study design where participants receive a single intervention or treatment without a control group.
- **Patient Details:**
 - **N=46, median age – 4.0 (3.0-5.0)**: This indicates a study with 46 participants, where the median age is 4.0 years, with values ranging from 3.0 to 5.0 years.
 - **N=173, median age – 13.0 (10.0-15.0)**: This indicates a study with 173 participants, where the median age is 13.0 years, with values ranging from 10.0 to 15.0 years.
- **Outcomes:**
 - **Whole Abatacept molecule 3.4% (2/58)**: This indicates that 3.4% of the participants had an immunogenic response to the whole Abatacept molecule, with 2 out of 58 participants showing this response.
 - **CTLA-4 region only 5.5% (9/58) (IV only)**: This indicates that 5.5% of the participants had an immunogenic response to the CTLA-4 region, with 9 out of 58 participants showing this response, and this response was observed only in the IV (intravenous) administration group.
 - **RA 2.1% ADA+ve with MTX 2.3% vs ADA+ve without MTX 1.4% - not significant**: This indicates that 2.1% of the participants had an ADA (anti-drug antibody) response with MTX (methotrexate), with 2.3% for those with ADA and 1.4% for those without ADA, and the difference was not statistically significant.
 - **Patients who discontinued had a higher level of ADA compared to those who did not discontinue (7.4% vs 2.6%). No comparative statistics performed:** This indicates that patients who discontinued treatment had a higher level of ADA compared to those who did not discontinue, with 7.4% for discontinuers vs 2.6% for continuers, but no comparative statistics were performed.

Additional Information:
- **No infusion reactions were experienced.**
- **No adverse safety outcomes were described.**

Key Points:
- The study design and patient demographics vary significantly, suggesting different stages of disease and treatment approaches.
- Immunogenic responses to the whole molecule and the CTLA-4 region are observed, with varying frequencies and implications.
- The discontinuation of treatment and the impact of ADA on treatment efficacy are critical considerations in these studies.
- No adverse safety outcomes were described, indicating a generally safe profile for these treatments.
| Study [Reference] | Study Design | Country | Disease | N | Gender Ratio | Mean Age | ADA Status | Clinical Efficacy | Safety/Side Effects | | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Sigaux et al., 2017 [82] | Cohort study of Tocilizumab | France | RA | 40 | F:M = 32:8 | 56.5±14 years | 16±11.7 months | 3.2% | No association between ADA status and disease activity was found |
| Burmester et al., 2017 [83] | Meta-analysis of phase III RCTs of Tocilizumab | | RA | TCZ-SC: N=3099 | TCZ-IV: N=5875 | Data not available | TCZ-SC: 1.5% | TCZ-IV: 1.2% | No association with decreased clinical efficacy was found | No clear impact of ADA on safety and side effects was found |
| Yokota et al., 2014 [84] | Phase II-III RCTs of Tocilizumab | Japan | sJIA | N=67 | F:M = 38:29 | 8.3±4.3 years | 4.4±3.5 years | 7.5% | No decrease in clinical effectiveness was reported | 4/5 patients with ADA experienced mild to moderate infusion reactions |
| Burmester et al., 2017 [85] | Multicentre RCT of Sarilumab | | RA | N=184 | F:M = 157:27 | 50.9±12.6 years | 8.1±8.1 years | 7.1% | ADA were not associated with a loss of efficacy | ADA were not associated with hypersensitivity reactions |
| Wells et al., 2019 [86] | Open label study of Sarilumab | USA | RA | N=132 | F:M = 106:26 | 52.4±13.4 years | 10.5±9.0 years | 150mg: 12.3% | 200mg: 6.1% | Persistent ADA were associated with lower sarilumab levels but no correlation with clinical efficacy | There was no evidence that ADA status was linked to adverse effects. No notable differences in hypersensitivity reactions based on ADA status (no comparative statistics performed) |
| Genovese et al., 2015 [87] | Multicentre RCT of Sarilumab | | RA | 150mg: N=400 | 50.1±11.9 years | 150mg: mean 9.5 years (range: 0.3-44.7) | 150mg: 16.7% | 200mg: 13.0% | The presence of ADA was not associated with discontinuations due to lack of efficacy. | The presence of ADA was not associated with hypersensitivity reactions |
| Study (Reference) | Type of Study | Treatment | N | Gender Ratio | Mean Age | ADA | Clinical Efficacy | Immunogenicity | Notes |
|------------------|---------------|-----------|---|--------------|---------|-----|-------------------|---------------|-------|
| Xu et al., 2019 [89] | Worldwide Two-compartment model study of Sarilumab | RA | N=1770 (F:M = 1466:304) | Mean Age: 52±12 years | Data not available | 18% | ADA may be linked to higher drug clearance, but this study did not evaluate the impact on clinical efficacy | Data not available |
| Deodhar et al., 2019 [93] | Pooled clinical trial safety data for Secukinumab | PsA | N=1380 (F:M = 742:638) | Mean Age: 48.8±12.0 years | Data not available | <1% across all studies | No effect of ADA positivity on clinical efficacy was reported | Immunogenicity was not related to adverse effects |
| Mease et al., 2017 [94] | Multicentre phase III RCT of Ixekizumab | PsA | N=417 (F:M = 225:192) | Mean Age: 49.5±11.9 | 6.7±7.2 years | 5.3% | 72.7% (8/11) of ADA-positive patients achieved a clinical response. No comparative statistics performed as very small sample size | Data not available |
| Gordon et al., 2016 [95] | Combined phase III RCTs of Ixekizumab | Plaque psoriasis | N=1150 | Data not available | 9% | 19 patients (1.7%) with high titres of ADAs had a lower clinical response than that of patients with no or low-moderate ADAs (no p-value given). | Data not available |
| Study | Design | Disease | Patients | ADAs | Other Observations |
|-------|--------|---------|----------|------|-------------------|
| **IL-12/23 blockade (Ustekinumab)**
Strand et al., 2017 [28] | Systematic review | PsA | Data not available | 8-11% Concomitant use of MTX, AZA, leflunomide or mycophenolate is associated with lower rates of ADAs against INF in PsA | Data not available |
Smolen et al., 2017 [90] | Multicentre RCT | RA 90mg/8wk N=55 (F:M=46:9) Age 50.8±13.0 | RA 90mg/8wk 5.6 ±5.5 | RA: 5.7% (3.3% neutralising) | Data not available |
| **IL-1 blockade (Anakinra, Canakinumab and Rilonacept)**
Fleischmann et al., 2006 [96] | Multicentre RCT of Anakinra | RA | 10.3 years (range: 0.2-59.5 years) | 50.1% (1.9% neutralising) | No associations between ADA and adverse effects |
| Cohen et al., 2002 [97] | Multicentre RCT of Anakinra | RA Anakinra dose: 0.04mg/kg/day N=63 Mean Age: 52.6 years | 0.04mg/kg/day: 6.3 years Anakinra dose: 0.1mg/kg/day 8.8 years Anakinra dose: 0.4mg/kg/day 7.0 years | 2.7% (8 out of 297 screened for antibodies) | 87.5% of ADA positive patients experienced injection site reactions. No p-value reported |
| Study | Treatment Details | N | Mean Age (years) | No. of Neutralising Antibodies | Clinical Efficacy | Adverse Effects |
|-------------------------------|-------------------|----|------------------|-------------------------------|-------------------|-----------------|
| Ilowite et al., 2009 [98] | 0.1mg/kg/day N=74 | 53.0 | 0.4mg/kg/day N=77 | Mean Age: 53.0 years | 0% | No impact found |
| | 0.4mg/kg/day N=77 | 52.8 | 1.0mg/kg/day N=59 | Mean Age: 52.8 years | 13% | |
| | 1.0mg/kg/day N=59 | 49.0 | 2.0mg/kg/day N=72 | Mean Age: 49.0 years | 72% | |
| | 2.0mg/kg/day N=72 | 54.1 | | | | |
| Sun et al., 2016 [99] | Multicentre RCT of Anakinra JIA N=25 (F:M = 17:8) Mean Age: 10 years (range: 3-17) | 72% (none were neutralising) | No evidence of loss in clinical efficacy was found | No association was demonstrated between ADA and adverse effects |
| Reference | Study Details | JIA Patients | Median Age | ADA Rate (%) | ADA Characteristics | Other Notes |
|-------------------|-----------------------------------|--------------|------------|--------------|---------------------|--|
| Ruperto et al., 2012 [100] | Multicentre RCT of Canakinumab JIA N=50 (F:M=28:22) Median Age: 8.0 years (IQR: 6.0-12.0) | Median: 2.7 years (IQR: 1.3-6.2) | 8% (4/50 patients) None were neutralising. | Data not available | Data not available |
| Lovell et al., 2013 [101] | USA RCT of Rilonacept JIA N=24 (F:M=16:8) Mean Age: 12.6±4.3 years | Median: 3.1 years (mean) | 54.2% (13/24) | No correlation between ADA and clinical responses was found. Statistical testing not performed due to small sample size. | All patients who experienced ≥3 injection-site reactions were ADA-positive |

Table 2 - Impact of ADA on disease outcomes in children and adults with inflammatory arthritis treated with other biologic agents.

Legend: ARDS – autoimmune rheumatic diseases; AS – ankylosing spondylitis; JIA-juvenile idiopathic arthritis; PsA- psoriatic arthritis; pSS – primary Sjögren’s syndrome; RA-rheumatoid arthritis; RCT-randomised control trial; SLE – systemic lupus erythematosus.
Prevalence of ADA	Adults with inflammatory arthritis	Children with juvenile idiopathic arthritis
TNF-α blockers		
Adalimumab and biosimilars	0-67%	6-45%
Infliximab and biosimilars	6.1-62%	26-37%
Etanercept and biosimilars	0-13%	0-33%
Golimumab	2-39.9%	46.8%
Certolizumab	2.8-65%	Data not available
B cell depletion		
Rituximab and biosimilars	0-21%	Data not available
Co-stimulatory blockade		
Abatacept IV	2-20%	2-11%
Abatacept SC	2-20%	2-11%
IL-6 blockade		
Tocilizumab	0-16%	1-8%
Sarilumab	7-24.6%	Data not available
IL-17 blockade		
Sekukinumab	0-1%	Data not available
Ixekizumab	5.3-9%	Data not available
IL-12/23 blockade		
Ustekinumab	5.7-11%	Data not available
IL-1 blockade		
Anakinra	50.1-70.9%	81.8%
Canakinumab	Data not available	3.1-8%
Rinolacept	Data not available	54.2%

Table 3. Comparison between the prevalence ranges for ADA to various biologic agents in adult versus paediatric populations
Clinical decision to start a patient on a certain biologic treatment

Assess

Patient characteristics
Genetic factors if possible smoking, age

Type of biologic agent
mAbs versus fusion proteins

Route and frequency of drug administration
IV vs. subcutaneously

Concomitant DMARD treatment

Evaluate patient’s potential risk of drug immunogenicity to a certain biologic treatment, as well as safety and efficacy once on treatment

Low risk
(e.g. biologic agents associated with low prevalence of neutralising ADA; concomitant DMARDs, IV administration, good clinical response, no side-effects)
Continue treatment for as long as there is clinical response/unlikely that drug levels or ADA assessment improves management

High risk
(e.g. biologic treatments with higher prevalence of neutralising ADA; on biologic monotherapy, patients tapering biologics, poor compliance, loss of clinical response or side-effects)
Monitor drug levels and ADA throughout treatment

Increased ADA and low/undetectable drug levels
- increase dose/frequency of administration of biologic
- add DMARD therapy
- change to IV formulations
- change biologic treatment

Low/undetectable ADA and undetectable drug levels
- assess therapy compliance
- switch to IV formulations to improve compliance
- discuss change in treatment to improve compliance

Figure 1: Potential clinical applications of the assessment of immunogenicity to biologic treatments