Predictors of intra-hospital mortality in patients with diabetic foot ulcers in Nigeria: data from the MEDFUN Study.

CURRENT STATUS: UNDER REVISION

BMC Endocrine Disorders BMC Series

OLUFUNMILAYO OLUBUSOLA ADELEYE
LAGOS STATE UNIVERSITY TEACHING HOSPITAL

funmiadeleye2004@yahoo.comCorresponding Author
ORCiD: https://orcid.org/0000-0003-2363-0657

Ejiofor T Ugwu
Enugu State University of Science and Technology College of Medicine

Ibrahim D Gezawa
Bayero University College of Health Sciences

Innocent Okpe
Ahmadu Bello University Teaching Hospital

Ignatius Ezeani
Federal Medical Center Umuahia

Marcelina Enamino
Federal Medical Center, Keffi

DOI: 10.21203/rs.2.16549/v1

SUBJECT AREAS
Endocrinology & Metabolism

KEYWORDS
Diabetic foot ulcers, Predictors, intrahospital mortality, Wagner grading, sepsis, renal impairment
Abstract
Background/Objective: Diabetic foot ulcers (DFU) are associated with high morbidity and mortality globally. Mortality in patients hospitalized for DFU in Nigeria is unacceptably high. We sought to document contributory factors which predict mortality in patients hospitalized for DFU.

Methods: Multi-centre Evaluation of Diabetic Foot Ulcer in Nigeria (MEDFUN), one-year observational study conducted in six tertiary healthcare institutions across the 6 geopolitical zones of Nigeria.

Consecutive type 1 or 2 diabetic patients hospitalized for DFU who consented. Co-morbid complications were documented.

Results: Mean age 55.9 ± 12.5 years. 96.1% had type 2 diabetes (DM), mean duration of DM was 8.5 ± 5.7 years. Duration of ulcer was 39 days with a range of 28 to 54 days. 79.2% presented with at least grade 3 DFU. About one-fifth of the patients died (20.5%). Highest mortality among subjects with Wagner grade 5. Middle-aged subjects (45-64 years) had significantly higher mortality- odds ratio (OR) 5.107, Confidence interval (CI) of 1.429-18.252, and P-value 0.022. Variables significantly associated with mortality with the respective p-values are DM duration more than 120 months (0.008), ulcer duration > one month (0.013), ulcer severity of Wagner grade 3 and above (0.001), peripheral arterial disease (0.002), foot gangrene (<0.001). Laboratory variables associated with mortality; proteinuria (<0.001), positive blood cultures (<0.001), severe vascular stenosis (0.001), moderate vascular stenosis(<0.001), Low HDL (<0.001). Co-morbid complications significantly associated with mortality; shock at presentation (<0.001), anemia (0.034), cardiac failure (0.020), renal impairment (<0.001). Sepsis was the strongest predictor of mortality (adjusted OR 5.128; 95% CI 2.614 – 10.060) followed by renal impairment (adjusted OR 2.831; 95% C.I. for OR 1.346 – 5.953).

Conclusions: Mortality among Nigerian diabetic patients admitted for DFU is high, univariate predictors of mortality: older age, higher Wagner grade (≥3) ulcer, longer duration of DM, longer duration of ulcer, peripheral arterial disease, foot gangrene, renal impairment, low HDL-cholesterol, anemia, shock, and cardiac failure. Renal impairment and positive blood culture were independent determinants of mortality.
Background
Diabetic foot ulcer (DFU) is one of the most debilitating chronic complications of diabetes mellitus (DM) and its prevalence is increasing exponentially across the globe. The number of people with diabetes worldwide is currently estimated to be 425 million with this number projected to increase to 629 million by year 2045.\(^1\) The implication of this increase is a corresponding rise in micro and macrovascular complications of the disease. Every thirty seconds, a lower limb or part of it is lost to amputation as a consequence of diabetes globally.\(^2\) Diabetic foot ulcer is characterized by poor short and long term survival especially when associated with other microangiopathic comorbidities.\(^2-6\)

Mortality in the hospitalized diabetic patient with DFU is quite considerable compared to those without. One of the commonest causes of death among hospitalized diabetic patients is DFU. Mortality due to DFU was reported to be 14% in Africa and 40.5% in a cohort of Nigerians.\(^7-9\) Although there is paucity of data regarding the factors associated with intra-hospital mortality in Nigerian patients with DFU, reports from other parts of the world indicate that lower extremity amputation (LEA) conferred a higher risk of mortality.\(^6\) Malnutrition, confirmed using a geriatric nutritional assessment risk index was found to be associated with a higher mortality among patients admitted for DFU in concert with older age and reduced glomerular filtration rate.\(^10,11\) Site of osteomyelitis (hind versus mid/forefoot) was a determinant of higher mortality in a cohort of DFU patients in Arezzo, Italy.\(^12\) Other factors that promote higher risk of mortality in patients hospitalized for DFU are a raised white cell and neutrophil count, ulcer severity at presentation and anemia.\(^7,13,14\) Given the currently unacceptably high mortality in patients admitted for DFU in Nigeria,\(^7\) it is important to identify contributory factors which will predict outcome in this group of patients. Identification of these factors will enable optimized management strategy and stem this tide of high DFU related mortality. Prognostic predictors will identify patients in need of more intensive monitoring and treatment. We, therefore, sought to document those factors associated with mortality in patients admitted for DFU in Nigeria.

Methods
The Multi-centre Evaluation of Diabetic Foot Ulcer in Nigeria (MEDFUN) was a one-year observational
study conducted in six tertiary healthcare institutions across Nigeria, from March 2016 to April 2017. The centres included Lagos State University Teaching Hospital (Southwest Nigeria), Enugu State University Teaching Hospital (Southeast Nigeria), Aminu Kano Teaching Hospital (Northwest Nigeria), Ahmadu Bello University Teaching Hospital Zaria (Northwest Nigeria), Federal Medical Centre Keffi (North Central Nigeria) and Federal Medical Centre Umuahia (Southeast Nigeria). Consecutive type 1 or type 2 diabetic patients hospitalized for DFU who gave verbal consent were recruited during the study period. Approval of the study protocol was obtained from the local Research and Ethics committee of each of the hospitals.

Detailed study protocol of the MEDFUN has been published elsewhere.15 Patients’ demographics were collected from admission records obtained on the first day of admission. Other clinical information sought from participants were, duration and type of DM, if ever received foot care education since DM diagnosis, if ever received diabetes care at study centers prior to current admission, past history of DFU, duration of ulcer prior to current admission and history of cigarette smoking.

We sought and documented the presence of co-morbid complications including; shock, hypoglycemia, and anemia. Clinical evidence of wound infection was determined according to the International Working Group on Diabetic Foot (IWGDF) guideline by the presence of purulent exudates or any two or more of the following: peri-wound edema, peri-wound redness, local warmth, foul smell, pain or tenderness on palpation and fever.16 Foot ulceration severity was classified according to Wagner grading of foot ulcers.17 Peripheral neuropathy was diagnosed by loss of pressure perception to Semmes-Weinstein 10g monofilament test or diminished vibration sense using the 128Hz tuning fork. Peripheral artery disease (PAD) was diagnosed based on impalpable dorsalis pedis and/or posterior tibial artery pulsations on manual palpation or significant arterial narrowing (>50%) on Doppler ultrasonography of the lower limbs.

Other comorbidities sought and documented included evidence of hyperglycaemic emergency, stroke, hypertension, cardiac failure, and renal impairment which was deemed to be present if serum creatinine was above 1.5 mg/dl or 132 micromole/liter.
Laboratory investigations assessed in the participants include glycated haemoglobin (HbA1c), urine protein, serum creatinine, complete blood count, blood culture, ulcer specimen culture, plain radiograph of the foot, lipid parameters which included; total cholesterol (TC), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C) and triglycerides. All study subjects were managed based on multidisciplinary care available in all participating centers, and they were followed up for three months after discharge or death while on admission. We here present the results of the sub-analysis on intrahospital mortality of the MEDFUN study.

Statistical Analysis

Data were analyzed with the Statistical Package for Social Sciences (IBM version 23.0; SPSS Inc., Chicago, IL, USA). Numbers and percentages or means and standard deviations were computed for categorical and continuous variables respectively. Univariate logistic regression was performed for each variable of interest to identify predictors of mortality by calculating their unadjusted odds ratios (ORs) and 95% confidence intervals (CI). All the variables that significantly predicted mortality at this univariate level of analysis were then simultaneously subjected to a stepwise backward multivariate regression, relying on the Hosmer-Lemeshow goodness of fit test for model reliability. Statistical significance was assumed at P <0.05.

Results

Demographic and clinical characteristics

The mean age of the study subjects was 55.9±12.5 years. The majority (96.1%) had type 2 DM, mean duration of DM was 8.5 ± 5.7 years, 5.1% were current smokers of cigarettes, mean duration of ulcer prior to admission was 39 days with a range of 28 to 54 days. 79.2% presented with at least grade 3 DFU.

The socio-demographic and clinical characteristics of the subjects are summarized in Table 1.

Prognostic outcome

The outcome of 10.4% of the subjects could not be ascertained as they discharged against medical advice (DAMA) for various reasons, topmost of which was for financial constraints. About one-fifth of those who were hospitalized (and did not discharge against medical advice) died (20.5%).
Figure 1 presents a graphical representation of the outcome of the study subjects.

Mortality rate and Ulcer grade

The highest mortality rate was recorded among subjects who presented with Wagner grade 5 DFU.

Mortality and ulcer grading at presentation is illustrated in figure 2.

Association between clinical variables and mortality

Compared to younger patients below 45 years, middle-aged subjects (age range 45–64 years) had significantly higher mortality with OR 5.107, Confidence interval of 1.429–18.252, and P-value 0.022. Similarly, elderly patients of 65 years and above suffered more mortality in comparison to their younger age counterparts $p = 0.012$.

Other variables significantly associated with mortality with the respective p- values are DM duration more than 120 months (0.008), ulcer duration above one month (0.013), ulcer severity of Wagner grade 3 and above (0.001), peripheral arterial disease (0.002), and foot gangrene (< 0.001).

Laboratory variables that were significantly associated with mortality and their respective p- values

As shown in table 3 laboratory variables significantly associated with mortality include proteinuria (<0.001), positive blood cultures(<0.001), severe vascular stenosis (0.001), moderate vascular stenosis(< 0.001), and Low HDL (< 0.001).

The co-morbid complications that were significantly associated with mortality (Table 4) include; shock at presentation(<0.001), anaemia (0.034), cardiac failure(0.020), and renal impairment(<0.001).

Discussion

Diabetic foot ulcers are responsible for considerable morbidity and mortality of diabetic patients. Both hospitalized and patients attending ambulatory care settings who have DFUs are shown in worldwide studies to have higher mortality rates than patients without. Identification of factors that contribute to or are directly responsible for this high mortality may go a long way in improving survival in patients with DFU.

The intra-hospital mortality rate of 20.5% was recorded in this observational study. This finding is much higher than what was reported previously, both within and outside Nigeria. For instance, Edo al reported a mortality rate of 14 percent in Benin(Southern Nigeria Teaching Hospital). Similarly,
Rigato et al in a meta-analysis of studies conducted in many parts of Africa reported a mortality rate of 14%, an Indonesian study observed mortality rate of 10.7%, while much lower mortality of 4% was reported in Manchester, England and 2% in the United States. This observation suggests that DFU-related mortality is not only worryingly higher in Nigeria than most parts of the world, but that it is also on the increase in Nigeria. Several reasons may account for this observation. First, majority of the patients (72%) enrolled in this study did not access routine diabetes care at the study centers but were referred from primary and secondary health facilities lacking in requisite expertise and facilities. Delay in hospital presentation is another plausible explanation for this observed mortality. For instance, we observed that subjects with ulcer duration longer than one month had more than twice the odds of dying than those with a shorter duration of ulcer. It is an established fact that the longer an ulcer lasts, the higher the likelihood of wound infection that may progress to sepsis. This notion is supported by the fact that sepsis, as evidenced by positive blood culture, remained as an independent predictor of mortality after adjusting for other confounding variables.

The much lower mortality in the mentioned studies from Manchester and the US may reflect the impact of an advanced healthcare system available in these countries on disease outcomes. In this study, we found that age was significantly associated with mortality, with the highest mortality recorded among individuals 65 years and above, followed by those in the age range 45 to 64 years. For young et al from Cameroon, Boyco et al from the US, Katze from Israel and Lynar from Australia reported similar findings. This finding may be explained by the fact that the prevalence of medical comorbidities that may lead to organ dysfunctions and death tend to increase with advancing age. Furthermore, micro and macrovascular diabetes complications are usually more life-threatening when they present in older than younger persons. It has been previously observed that diabetes in older adults is linked to higher mortality, reduced functional status, and increased risk of institutionalization. On the contrary, in the mentioned Manchester study, age did not have any effect on mortality. The observed relationship between age and mortality however disappeared on multivariate analysis, suggesting that the effect of advancing age on DFU-related mortality is indirect,
probably through other diabetes complications. This notion is supported by the fact that the presence of some co-morbid complications such as shock, anemia, cardiac failure, and renal impairment were significantly associated with increased mortality in our study.

We observed a proportional increase in mortality with increasing ulcer grade in this study. For instance, subjects with advanced Wagner grade ulcer (≥ grade 3) were almost eight times more likely to die compared to those with lower grade ulcers. This is not surprising since higher Wagner foot ulcer grade indicates more advanced disease and increased probability of sepsis which could predispose the patient to multiorgan dysfunction. Moreover, most DFUs are caused by peripheral neuropathy, and individuals with large fiber neuropathy also have evidence of autonomic neuropathy, which is linked with higher mortality from cardiovascular disease particularly sudden cardiac death. An earlier Nigerian study also observed increased mortality in patients who presented with Wagner grade 4 and 5 ulcers. In contrast, Jeraman et al did not find an association between Wagner grade and mortality probably because of a higher percentage of the study subjects presented with Wagner grade 1 and 2 ulcers. It is also noteworthy that the observed association between Wagner grade and mortality in our study was not independent of other variables as ulcer grade failed to emerge as a significant predictor of mortality when controlled for other potential predictors in multivariate analysis.

In this study, gender was not observed to significantly influence mortality, neither did cigarette smoking status. However, a longer duration of DM was a significant predictor of mortality. A similar finding was also reported by Martins Mendez et al. Long duration of DM is associated with the development of micro and macrovascular complications and death.

We observed that the presence of peripheral arterial disease, as well as foot gangrene, were significant predictors of death. We observed that subjects with PAD had eight times higher probability of death than those without PAD. There was also a significant association between the severity of PAD as detected on vascular imaging and mortality such that subjects with moderate or severe stenosis had significantly higher odds of death compared to those with mild or no stenosis. Peripheral arterial disease in DFUs has been reported to be associated with severe adverse outcomes, which include the
lower probability of healing, prolonged healing times, increased incidence of ulcer recurrence, amputations, and higher mortality.29, 30 Presence of PAD may also be a pointer to atherosclerosis in other vessels including coronary vessels, which place such patients at higher risk of myocardial infarction and sudden cardiac deaths. Laboratory indices that were predictive of mortality in the cohort of patients in this study include proteinuria, positive blood cultures, and low HDL cholesterol. In an analysis of randomized clinical trials of type 2 DM, selection for renal disease which was defined by either decline in renal function or presence of proteinuria signal important mortality risk.31 Furthermore, Aragon-Sanchez et al reported albuminuria, anemia, and leukocytosis as predictors of in-hospital mortality in patients admitted for DFU.32 Positive blood culture is indicative of sepsis and the attendant systemic inflammatory response which carries a high risk of thromboses and organ dysfunction which have been associated with higher mortality in sufferers both generally and specifically in those with DFUs.33, 34 Although diabetic patients with DFU have been observed to have a higher prevalence of cardiovascular risk factors such as hypercholesterolemia, hypertriglyceridemia, hyperuricemia and proteinuria,35 our observation in this study of an association between mortality in hospitalized patients with DFU and low HDL cholesterol appears to be novel. Diabetes mellitus is a cause of low HDL and low HDL has been shown to be a risk factor for cardiovascular disease in the diabetic patient.36 Furthermore, cardiovascular disease is reported to be the most prevalent cause of death in diabetic patients.37, 38 Co-morbid conditions that predicted mortality in this study were anemia, hypotension, cardiac failure, and renal impairment. Although we did not elucidate the exact underlying cause for anemia in the study subjects, the possibility of anemia secondary to underlying undetected chronic kidney disease consequent upon diabetic nephropathy could be entertained. Anemia due to nutritional deficiencies could also be a factor. Anemia has been reported to be associated with increased risk for
hospitalization and all-cause mortality. The impact of hypotension on mortality is well documented; hypotension promotes inadequate perfusion of vital organs. Sang Wook Yi in a Korean study reported the association between low systolic blood pressure and vascular mortality. Similarly, Tringali described an association between reduction in diastolic blood pressure below 70 millimeters of mercury and all-cause mortality. We observed that multivariate predictors of mortality were sepsis and renal impairment. The association between mortality and renal impairment may be multifactorial, namely worsening nephrotoxicity from anti biotherapy as well as the underlying cause which in the setting of hospitalization for DFU is sepsis. A recent study from Saudi Arabia reported similar findings of nephropathy being an independent risk factor for all-cause mortality among patients with diabetic foot complications.

Given the high mortality of hospitalized DFU patients in our setting, identification of the above-stated prognosticators should prompt more intensive management of such DFU patients.

Conclusion
Mortality among Nigerian diabetic patients admitted for DFU is high, univariate predictors of mortality were older age, higher Wagner grade (≥ 3) ulcer, longer duration of DM, longer duration of ulcer before presentation to the hospital, peripheral arterial disease, foot gangrene, renal impairment, low HDL-cholesterol, anemia, shock, and cardiac failure. Renal impairment and positive blood culture were independent determinants of mortality.

Limitations of this study:
The percentage mortality observed in this study may be lower or higher than the actual figures since the outcome in about ten percent (10%) who discharged against medical advice cannot be ascertained. We also did not have uniformity of laboratory test procedures done in the centers, which may affect generalisation of the results.

Abbreviations
DFU: Diabetic foot Ulcers
LEA: Lower extremity amputation
IWDGF: International Working Group on Diabetic Foot
PAD: Peripheral Artery Disease
DM: Diabetes Mellitus
HDL: High density lipoprotein cholesterol
LDL: Low density lipoprotein cholesterol
TG: triglycerides

Declarations

Ethics Approval and Consent to participate

The main approval of the study protocol was obtained from the Ethics committee of the ESUT Teaching Hospital and further approved by the research and ethics committee of each of the participating hospitals/study centers.

Informed verbal consent (approved by the ethics committee) was obtained from all study participants.

Confidentiality was ensured at all stages by means of a unique coding system consisting of patients’ initials and assigned numbers.

Consent to publish

All study participants agreed to have their data published.

Availability of Data and Materials

Data from this study can be obtained from the corresponding author.

Competing Interests

We do not have any conflicts of interest regarding this publication

Funding

No funding was obtained for this study for this study. It was entirely funded by the authors.

Author Contributions:

All authors contributed significantly at every stage of this study; OOA developed the manuscript and interpreted the data, ETU conceptualized and designed the study protocol, all authors took part in data collection and analysis; IDG, IO, ME and IE critically reviewed the manuscript for intellectual content; all authors read and approved the final manuscript.

Acknowledgement: Not applicable.
References
1. Federation ID. International Diabetes Atlas. Brussels, Belgium: International Diabetes Federation; 2017. Available from: http://www.diabetesatlas.org.

2. Morbach S, Furchert H, Gröblinghoff U, Hoffmeier H, Kersten K, Klauke G-T, et al. Long-term prognosis of diabetic foot patients and their limbs: amputation and death over the course of a decade. Diabetes care. 2012;35(10):2021–7.

3. Ghanassia E, Villon L, Thuan Dit Dieudonné J-F, Boegner C, Avignon A, Sultan A. Long-term outcome and disability of diabetic patients hospitalized for diabetic foot ulcers: a 6.5-year follow-up study. Diabetes care. 2008;31(7):1288–92.

4. Chammas NK, Hill RLR, Edmonds ME. Increased Mortality in Diabetic Foot Ulcer Patients: The Significance of Ulcer Type. Journal of diabetes research. 2016;2016:2879809-.

5. Boyko EJ, Ahroni JH, Smith DG, Davignon D. Increased mortality associated with diabetic foot ulcer. Diabetic medicine: a journal of the British Diabetic Association. 1996;13(11):967–72.

6. Al-Rubeaan K, Almarshouq MK, Youssef AM, Al-Qumaidi H, Al Derwish M, Ouizi S, et al. All-cause mortality among diabetic foot patients and related risk factors in Saudi Arabia. PLoS One. 2017;12(11):e0188097.

7. Ekpebegeh CO, Iwuala SO, Fasanmade OA, Ogbera AO, Igumbor E, Ohwovoriole AE. Diabetes foot ulceration in a Nigerian hospital: in-hospital mortality in relation to the presenting demographic, clinical and laboratory features. International wound journal. 2009;6(5):381–5.

8. Ogbera AO, Chinenyenye S, Onyekwere A, Fasanmade O. Prognostic indices of diabetes mortality. Ethnicity & disease. 2007;17(4):721–5.

9. Rigato M, Pizzol D, Tiago A, Putoto G, Avogaro A, Fadini GP. Characteristics, prevalence, and outcomes of diabetic foot ulcers in Africa. A systemic review and meta-analysis. Diabetes research and clinical practice. 2018;142:63–73.

10. Xie Y, Zhang H, Ye T, Ge S, Zhuo R, Zhu H. The Geriatric Nutritional Risk Index Independently Predicts Mortality in Diabetic Foot Ulcers Patients Undergoing Amputations. Journal of diabetes research. 2017;2017:5797194-.
11. Katz DE, Friedman ND, Ostrovski E, Ravid D, Amrami N, Avivi D, et al. Diabetic foot infection in hospitalized adults. Journal of infection and chemotherapy: official journal of the Japan Society of Chemotherapy. 2016;22(3):167-73.

12. Ricci L, Scatena A, Tacconi D, Ventoruzzo G, Liistro F, Bolognese L, et al. All-cause and cardiovascular mortality in a consecutive series of patients with diabetic foot osteomyelitis. Diabetes research and clinical practice. 2017;131:12-7.

13. Essackjee Z, Gooday C, Nunney I, Dhatariya K. Indicators of prognosis for admissions from a specialist diabetic foot clinic: a retrospective service improvement exercise. Journal of wound care. 2017;26(1):40-5.

14. Brennan MB, Hess TM, Bartle B, Cooper JM, Kang J, Huang ES, et al. Diabetic foot ulcer severity predicts mortality among veterans with type 2 diabetes. Journal of diabetes and its complications. 2017;31(3):556-61.

15. Ugwu E, Adeleye O, Gezawa I, Okpe I, Enamino M, Ezeani I. Burden of diabetic foot ulcer in Nigeria: Current evidence from the multicenter evaluation of diabetic foot ulcer in Nigeria. World J Diabetes. 2019;10(3):200-11.

16. Lipsky BA, Aragon-Sanchez J, Diggle M, Embil J, Kono S, Lavery L, et al. IWGDF guidance on the diagnosis and management of foot infections in persons with diabetes. Diabetes/metabolism research and reviews. 2016;32 Suppl 1:45-74.

17. Wagner FW, Jr. The dysvascular foot: a system for diagnosis and treatment. Foot & ankle. 1981;2(2):64-122.

18. Jeyaraman K, Berhane T, Hamilton M, Chandra AP, Falhammar H. Mortality in patients with diabetic foot ulcer: a retrospective study of 513 cases from a single Centre in the Northern Territory of Australia. BMC Endocr Disord. 2019;19(1):1-.

19. Moulik PK, Mtonga R, Gill GV. Amputation and mortality in new-onset diabetic foot ulcers stratified by etiology. Diabetes Care. 2003;26(2):491-4.

20. Edo A, Edo G, Ezeani I. Risk factors, ulcer grade and management outcome of diabetic foot ulcers in a Tropical Tertiary Care Hospital. Nigerian Medical Journal. 2013;54(1):59-63.
21. Pemayun TGD, Naibaho RM. Clinical profile and outcome of diabetic foot ulcer, a view from tertiary care hospital in Semarang, Indonesia. Diabet Foot Ankle. 2017;8(1):1312974–.

22. Oyibo SO, Jude EB, Tarawneh I, Nguyen HC, Armstrong DG, Harkless LB, et al. The effects of ulcer size and site, patient’s age, sex and type and duration of diabetes on the outcome of diabetic foot ulcers. Diabetic medicine: a journal of the British Diabetic Association. 2001;18(2):133–8.

23. Skrepnek GH, Mills JL, Sr., Armstrong DG. A Diabetic Emergency One Million Feet Long: Disparities and Burdens of Illness among Diabetic Foot Ulcer Cases within Emergency Departments in the United States, 2006–2010. PloS one. 2015;10(8):e0134914-e.

24. Foryoung JB, Ditah C, Nde Fon P, Mboue-Djieka Y, Nebongo DN, Mbango ND, et al. Long-term mortality in outpatients with type 2 diabetes in a reference hospital in Cameroon: a retrospective cohort study. BMJ open. 2018;8(2):e019086.

25. Lynar SA, Robinson CH, Boutlis CS, Commons RJ. Risk factors for mortality in patients with diabetic foot infections: a prospective cohort study. Internal medicine journal. 2018.

26. Brown AF, Mangione CM, Saliba D, Sarkisian CA. Guidelines for improving the care of the older person with diabetes mellitus. Journal of the American Geriatrics Society. 2003;51(5 Suppl Guidelines):S265–80.

27. Martins-Mendes D, Monteiro-Soares M, Boyko EJ, Ribeiro M, Barata P, Lima J, et al. The independent contribution of diabetic foot ulcer on lower extremity amputation and mortality risk. J Diabetes Complications. 2014;28(5):632–8.

28. Zoungas S, Woodward M, Li Q, Cooper ME, Hamet P, Harrap S, et al. Impact of age, age at diagnosis and duration of diabetes on the risk of macrovascular and microvascular complications and death in type 2 diabetes. Diabetologia. 2014;57(12):2465–74.

29. Armstrong DG, Cohen K, Courric S, Bharara M, Marston W. Diabetic foot ulcers and vascular insufficiency: our population has changed, but our methods have not. Journal of diabetes science and technology. 2011;5(6):1591–5.

30. Costa RHR, Cardoso NA, Procopio RJ, Navarro TP, Dardik A, de Loiola Cisneros L. Diabetic foot ulcer carries high amputation and mortality rates, particularly in the presence of advanced age, peripheral
artery disease and anemia. Diabetes & metabolic syndrome. 2017;11 Suppl 2:S583-s7.

31.Barkoudah E, Skali H, Uno H, Solomon SD, Pfeffer MA. Mortality rates in trials of subjects with type 2 diabetes. Journal of the American Heart Association. 2012;1(1):8-15.

32. Aragon-Sanchez J, Lazaro-Martinez JL, Garcia-Alvarez Y, Morales EG, Hernandez-Herrero MJ. Albuminuria is a predictive factor of in-hospital mortality in patients with diabetes admitted for foot disease. Diabetes research and clinical practice. 2014;104(1):e23-5.

33. Jacobi J. Pathophysiology of sepsis. American journal of health-system pharmacy: AJHP: official journal of the American Society of Health-System Pharmacists. 2002;59 Suppl 1:S3-8.

34. Harris CM, Abougergi MS, Wright S. Clinical outcomes among morbidly obese patients hospitalized with diabetic foot complications. Clinical obesity. 2019;9(1):e12285.

35. Pinto A, Tuttolomondo A, Di Raimondo D, Fernandez P, La Placa S, Di Gati M, et al. Cardiovascular risk profile and morbidity in subjects affected by type 2 diabetes mellitus with and without diabetic foot. Metabolism: clinical and experimental. 2008;57(5):676-82.

36. Sharif S, van der Graaf Y, Nathoe HM, de Valk HW, Visseren FL, Westerink J. HDL Cholesterol as a Residual Risk Factor for Vascular Events and All-Cause Mortality in Patients With Type 2 Diabetes. Diabetes Care. 2016;39(8):1424-30.

37. Leon BM, Maddox TM. Diabetes and cardiovascular disease: Epidemiology, biological mechanisms, treatment recommendations and future research. World journal of diabetes. 2015;6(13):1246-58.

38. Einarson TR, Acs A, Ludwig C, Panton UH. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007–2017. Cardiovascular Diabetology. 2018;17(1):83.

39. Riva E, Tettamanti M, Mosconi P, Apolone G, Gandini F, Nobili A, et al. Association of mild anemia with hospitalization and mortality in the elderly: the Health and Anemia population-based study. Haematologica. 2009;94(1):22-8.

40. Yi S-W, Hong S, Ohrr H. Low systolic blood pressure and mortality from all-cause and vascular diseases among the rural elderly in Korea; Kangwha cohort study. Medicine (Baltimore). 2015;94(2):e245-e.
41. Tringali S, Oberer CW, Huang J. Low Diastolic Blood Pressure as a Risk for All-Cause Mortality in VA Patients. Int J Hypertens. 2013;2013:178780-.

42. Al-Rubeaan K, Almashouq MK, Youssef AM, Al-Qumaidi H, Al Derwish M, Ouizi S, et al. All-cause mortality among diabetic foot patients and related risk factors in Saudi Arabia. PLoS One. 2017;12(11):e0188097-e.

Tables

Table 1. Socio-demographic and clinical characteristics of the subjects

Variable	Overall
Age (years)	55.9 ± 12.5
Gender (male)	185 (55.1%)
Diabetes type (type 2)	323 (96.1%)
Diabetes duration (years)	8.5 ± 5.7
Glycated hemoglobin (%) (n = 296)	9.6 ± 1.9
Receiving diabetes care at the study centers prior to admission	95 (28.3%)
Ever received foot care education since diagnosis of diabetes	87 (25.9%)
Cigarette smoking (current smokers)	17 (5.1)
Duration of ulcer before admission (days)	39 (28-54)
Previous history of ulcer	96 (28.6%)
Presence of wound infection	258 (76.8%)
Ulcer grade (Wagner)	
Grade 1	13 (3.9%)
Grade 2	57 (17.0%)
Grade 3	88 (26.2%)
Grade 4	124 (36.9%)
Grade 5	54 (16.1%)
Co-morbid complications	
Hypertension	191 (56.8%)
Shock	40 (11.9%)
Anemia	180 (53.6%)
Hyperglycemic emergency	123 (36.6%)
Hypoglycemia	33 (9.8%)
Cardiac failure	23 (6.8%)
Renal impairment	66 (19.6%)
Stroke	32 (9.5%)

Table 2. Relationship between demographic and clinical variables and mortality
Outcome	Died n (%)	Survived n (%)	P-value	OR	95% CI
Age group (years)					
Elderly (≥ 65)	23 (29.5)	55 (70.5)	0.012	5.107	1.4;
Middle-aged (45 – 64)	43 (23.8)	138 (76.2)	0.022	4.175	1.2:
Young (< 45)	3 (7.1)	39 (92.9)			
Gender					
Male	40 (24.1)	126 (75.9)	0.592	1.160	0.6:
Female	29 (21.5)	106 (78.5)			
Cigarette smoking					
Ex	8 (22.2)	28 (77.8)	0.815	0.905	0.3:
Current	1 (6.7)	14 (93.3)	0.155	0.226	0.0:
Never	60 (24.0)	190 (76.0)			
DM duration (months)					
≤120	42 (19.0)	179 (81.0)	0.008	0.461	0.2:
>120	27 (33.8)	53 (66.3)			
Ulcer >1 month					
Yes	56 (27.1)	151 (72.9)	0.013	2.311	1.1:
No	13 (13.8)	81 (86.2)			
Ulcer grade (Wagner)					
≥ grade 3	66 (27.8)	171 (72.2)	0.001	7.848	2.3:
< grade 3	3 (4.7)	61 (95.3)			
Neuropathy					
Yes	52 (22.5)	179 (77.5)	0.757	0.906	0.4:
No	17 (24.3)	53 (75.7)			
Peripheral artery disease					
Yes	46 (30.7)	104 (69.3)	0.002	2.462	1.4:
No	23 (15.2)	128 (84.8)			
Foot Gangrene					
Yes	59 (37.8)	97 (62.2)	< 0.001	8.211	4.0:
No	10 (6.9)	135 (93.1)			
Wound infection					
Yes	58 (25.1)	173 (74.9)	0.105	1.798	0.8:
No	11 (15.7)	59 (84.3)			
Previous foot ulcer					
Yes	23 (25.6)	67 (74.4)	0.478	1.231	0.6:
No	46 (21.8)	165 (78.2)			
Amputation					
Yes	30 (27.5)	79 (72.5)	0.154	1.490	0.8:
No	39 (20.3)	153 (79.7)			

Table 3. Relationship between laboratory indices and mortality
Outcome	Died n (%)	Survived n (%)	P-value	OR	95% CI
Proteinuria					
Yes	39 (35.8)	70 (64.2)	< 0.001	3.016	1.728 – 5.265
No	29 (15.6)	157 (84.4)			
Glycemic control					
Good	2 (12.5)	14 (87.5)	0.360	2.025	0.4 – 2.9
Poor	57 (22.4)	197 (77.6)			
Blood culture					
Positive	37 (48.1)	40 (51.9)	< 0.001	5.550	2.9 – 9.1
Negative	24 (14.3)	144 (85.7)			
Osteomyelitis					
Yes	20 (24.7)	61 (75.3)	0.417	1.287	0.6 – 2.6
No	41 (20.3)	161 (79.7)			
Vascular Stenosis					
Severe	12 (37.5)	20 (62.5)	0.001	4.414	1.7 – 11.1
Moderate	25 (39.1)	39 (60.9)	< 0.001	4.716	2.2 – 9.9
Mild	15 (20.3)	59 (79.7)	0.123	1.870	0.8 – 4.2
None	14 (12.0)	103 (88.0)			
Total cholesterol					
Elevated	25 (19.5)	103 (80.5)	0.773	0.913	0.4 – 1.9
Normal	25 (21.0)	94 (79.0)			
LDL Cholesterol					
Elevated	29 (21.0)	109 (79.0)	0.734	1.115	0.5 – 2.3
Normal	21 (19.3)	88 (80.7)			
HDL Cholesterol					
Low	54 (33.3)	108 (66.7)	< 0.001	6.714	2.9 – 14.9
Normal	7 (6.9)	94 (93.1)			
Triglycerides					
Elevated	19 (19.6)	78 (80.4)	0.857	0.943	0.4 – 2.1
Normal	31 (20.5)	120 (79.5)			

Table 4. Relationship between co-morbid complications and mortality
Outcome	Died n (%)	Discharged n (%)	P-value	OR	95% CI
Hypertension					
Yes	42 (23.6)	136 (76.4)	0.739	1.098	0.66 - 1.902
No	27 (22.0)	96 (78.0)			
Shock at presentation					
Yes	19 (50.0)	19 (50.0)	< 0.001	4.260	2.16 - 8.635
No	50 (19.0)	213 (81.0)			
Anemia					
Yes	44 (27.8)	114 (72.2)	0.034	1.822	1.02 - 3.171
No	25 (17.5)	118 (82.5)			
Hyperglycemic emergency					
Yes	30 (27.8)	78 (72.2)	0.135	1.519	0.85 - 2.74
No	39 (20.2)	154 (79.8)			
Hypoglycemia					
Yes	12 (31.6)	26 (68.4)	0.178	1.668	0.74 - 3.72
No	57 (21.7)	206 (78.3)			
Stroke					
Yes	9 (31.0)	20 (69.0)	0.278	1.590	0.61 - 4.08
No	60 (22.1)	212 (77.9)			
Cardiac failure					
Yes	9 (45.0)	11 (55.0)	0.020	3.014	1.11 - 8.34
No	60 (21.4)	221 (78.6)			
Renal impairment					
Yes	29 (48.3)	31 (51.7)	< 0.001	4.677	2.54 - 8.60
No	40 (16.7)	200 (83.3)			

Multivariate regression analysis of all variables reveals sepsis evidenced by positive blood cultures as the strongest predictor of mortality (adjusted OR 5.128; 95% CI 2.614 - 10.060) followed by renal impairment (adjusted OR 2.831; 95% C.I. for OR 1.346 - 5.953)

Table 5 Multivariate Predictors of Mortality
Variable	B	P value	OR	95% C.I. for OR
				Lower
Age ≥45	1.220	0.073	3.387	0.890
Ulcer >1 month duration	0.568	0.157	1.765	0.804
Peripheral artery disease	0.335	0.355	1.398	0.688
Positive blood culture	1.635	< 0.001	5.128	2.614
Anemia	0.037	0.916	1.038	0.522
Cardiac failure	0.773	0.203	2.166	0.659
Renal impairment	1.041	0.006	2.831	1.346

Figures

![Pie Chart](image)

Figure 1

Pie Chart depicting Prognostic Outcome DAMA = Discharged against medical advice
Figure 2

Mortality rates versus ulcer grades