ON A CRITERION FOR CATALAN’S CONJECTURE

JAN-CHRISTOPH SCHLAGE-PUCHTA

Abstract. We give a new proof of a theorem of P. Mihăilescu which states that the equation \(x^p - y^q = 1 \) is unsolvable with \(x, y \) integral and \(p, q \) odd primes, unless the congruences \(p^q \equiv p \pmod{q^2} \) and \(q^p \equiv q \pmod{p^2} \) hold.

MSC-index: 11D61, 11R18

Keywords: Catalan’s conjecture, cyclotomic fields, class group

Improving criterions for Catalan’s equation by Inkeri, Mignotte, Schwarz and Steiner, Mihailescu proved the following theorem.

Theorem 1. Let \(p, q \) be odd prime numbers. Assume that \(p^q \not\equiv p \pmod{q^2} \) or \(q^p \not\equiv q \pmod{p^2} \). Then the equation \(x^p - y^q = 1 \) has no nontrivial integer solutions.

Here we will give a different proof of this theorem. More precisely, we will show the following statement.

Theorem 2. Let \(p, q \) be odd prime numbers, and assume that the equation \(x^p - y^q = 1 \) has some nontrivial solution. Then we have either \(q^2 | p^q - p \) or the \(q \)-rank of the relative class group of the \(p \)-th cyclotomic field is at least \((p - 5)/2 \).

Note that different from Mihailescu’s proof of Theorem 1, we have to make use of estimates for the relative size of \(p \) and \(q \) obtained using bounds for linear forms in logarithms, thus the passage from Theorem 2 to Theorem 1 is by no means elementary. However, the proof of Theorem 2 makes much less use of special properties of cyclotomic fields than Mihailescu’s proof of Theorem 1, thus it might be easier to adapt to different situations.

To deduce Theorem 1 from Theorem 3, it suffices to show that the second alternative is impossible. Assume that \(x^p - y^q = 1 \), and that the \(q \)-rank of the relative class group of the \(p \)-th cyclotomic field is at least \((p - 5)/2 \). This implies \(q^{(p-5)/2} \leq h^{-}(p) \). The class number \(h^{-}(p) \) was estimated by Masley and Montgomery, they showed that for \(p > 200 \)
we have \(h^{-}(p) < (2\pi)^{-p/2}p^{(p+31)/4} \). Thus we get \(q < \sqrt{p} \). On the other hand, Mignotte and Roy\cite{6} proved, that for \(q \geq 3000 \) we have \(p \leq 2.77q \log q (\log p - \log \log q + 2.33)^2 \), combining these inequalities and observing that Mignotte and Roy\cite{7} have shown that \(q > 10^5 \), thus \(\log \log q > 2.33 \), we get \(p \leq 1.92 \log^6 p \), which implies \(p < 6.6 \cdot 10^7 \), thus \(q < \sqrt{p} < 8200 \) contradicting the lower bound \(q > 10^5 \) mentioned above.

To prove theorem 3, we follow the lines of \cite{9}, incorporating an idea of Eichler\cite{2}. \(K \) be the \(p \)-th cyclotomic field, \(\zeta \) a \(p \)-th root of unity, \(I_K \) the group of fractional ideals in \(K \), \(i : K^* \to I_K \) the canonical map \(x \mapsto (x) \), \(K^+ = \mathbb{Q}(\zeta + \zeta^{-1}) \) be the maximal real subfield of \(K \), \(\mathcal{O}_K \) be the ring of integers of \(K \). Denote with \(r \) the \(q \)-rank of the relative class group of \(K \). We begin with a Lemma. \(\mathbb{Q} \) be the set of prime ideals dividing \(q \) in \(K \). Choose a primitive root \(g \) of \(p \) and define \(\sigma \in \text{Gal}(K|\mathbb{Q}) \) by the relation \(\zeta_{\sigma} = \zeta g \).

Lemma 3. There is a subgroup \(I_0 \) of \(I_K \) with the following properties:

1. The prime ideals in \(\mathbb{Q} \) do not appear in the factorization of any ideal in \(I_0 \)
2. \(I_K/(i(K^*)I_0) \) has \(q \)-rank \(r \)
3. If \(\epsilon \in K^* \) with \((\epsilon) \in I_0 \), then \(\epsilon/\overline{\epsilon} \) is a root of unity.

Proof: This is Lemma 1 in \cite{9}.

Now assume that \(x \) and \(y \) are nonzero integers with \(x^p - y^q = 1 \). We have \cite{8}

\[
\left(\frac{x - \zeta}{1 - \zeta} \right) = j^q
\]

for some integral ideal \(j \). The ideal classes with \(j^q = (1) \) generate an \(r \)-dimensional vector space over \(\mathbb{F}_q \) in \(I_K/(i(K^*)I_0) \), hence there are integers \(a_0, \ldots, a_r \), not all divisible by \(q \), such that \(j^{a_0+a_1\sigma+\ldots+a_r\sigma^r} \) lies in \(i(K^*)I_0 \). Thus we get

\[
\left(\frac{x - x_{-1}(1 - \zeta)}{1 - \zeta} \right)^{a_0+a_1\sigma+\ldots+a_r\sigma^r} = \epsilon\alpha^q
\]

with \((\epsilon) \in I_0 \) and \(\alpha \) is \(q \)-integral for all prime ideals \(q \) dividing \(q \), since the left hand side is \(q \)-integral, and \((\epsilon) \) is not divisible by \(q \) by condition 1 of Lemma 4. We multiply this equation with \((\zeta^{-1}(1 - \zeta))^{a_0+a_1\sigma+\ldots+a_r\sigma^r} \) to get

\[
(1 - x_{-1})^{a_0+a_1\sigma+\ldots+a_r\sigma^r} = \epsilon'\lambda\alpha^q
\]

where \(\lambda \) divides some power of \(p \), and \(\epsilon' \) differs from \(\epsilon \) by some power of \(\zeta \), especially \((\epsilon) = (\epsilon') \).
By [1], we have $q | x$, thus the left hand side of (1) can be simplified $\pmod{q^2}$. We get

$$1 - x \left(a_0 \zeta^{-1} + a_1 \zeta^{-\sigma} + \ldots + a_r \zeta^{-\sigma^r} \right) \equiv \epsilon' \lambda \alpha^q \pmod{q^2} \quad (2)$$

The complex conjugate of the right hand side can be written as $\zeta^k \epsilon' \lambda \alpha^q$, since every p-th root of unity is the q-th power of some root of unity, this equals $\epsilon' \lambda \beta^q$ for some $\beta \in K^*$. Thus if we subtract the complex conjugate of (2), we get

$$x \left(a_0 \zeta^{-1} + \ldots + a_r \zeta^{-\sigma^r} - a_0 \zeta^{-\sigma} - \ldots - a_r \zeta^{\sigma^r} \right) \equiv \epsilon' \lambda (\alpha^q - \beta^q) \pmod{q^2} \quad (3)$$

The left hand side of (3) is divisible by q, since x is divisible by q, and the bracket is integral. However, $(\epsilon') \in I_0$, and by construction we have $(\epsilon', q) = (1)$, and λ divides some power of p, thus we have $(\lambda, q) = (1)$, too. Hence $q | \alpha^q - \beta^q$, and since q is unramified, this implies $q^2 | \alpha^q - \beta^q$. Hence q^2 divides the left hand side of (3). But x is rational, thus either $q^2 | x$, or q divides the bracket. By [1], we have $x \equiv -(p^q - 1) \pmod{q^2}$, hence the first possibility implies $q^2 | p^q - p$. Thus to prove our theorem, it suffices to show that the second choice is impossible.

Assume that

$$a_0 \zeta^{-1} + a_1 \zeta^{-\sigma} + \ldots + a_r \zeta^{-\sigma^r} - a_0 \zeta^{-\sigma} - \ldots - a_r \zeta^{\sigma^r} = q \alpha$$

This can be written as

$$a_0 X^{-1} + a_1 X^{-\sigma} + \ldots + a_r X^{-\sigma^r} - a_0 X^{-\sigma} - \ldots - a_r X^{\sigma^r} = q F(X) + G(X) \Phi(x)$$

where F and G are polynomials with rational integer coefficients, Φ is the p-th cyclotomic polynomial, and π denotes the least nonnegative residue \pmod{p} of a. The left hand side is of degree $\leq p - 1$, and since we may assume that the leading coefficient of G is prime to q, this implies that G is constant. Further on the left hand side there are at most $2r + 2 \leq p - 3$ nonvanishing coefficients, thus $G = 0$. This implies that all coefficients on the left hand side vanish \pmod{q}. But all the monomials on the left hand side have different exponents, since otherwise we would have $g^{s_1} \equiv \pm g^{s_2} \pmod{p}$, which would imply that the order of g is $\leq 2r \leq p - 5$, but g was chosen to be primitive. Hence all a_i vanish \pmod{q}, but this contradicts the choice of the a_i at the very beginning.

References

[1] J. W. S. Cassels, *On the equation $a^x - b^y = 1$* Proc. Camb. Philos. Soc. 56, 97-103 (1960)

[2] M. Eichler, *Eine Bemerkung zur Fermatschen Vermutung*, Acta Arith. 11, 129-131 (1965)
[3] K. Inkeri, *On Catalan’s Conjecture*, J. Number Theory 34, 142-152 (1990)
[4] J. Masley, H. L. Montgomery, *Cyclotomic fields with unique factorization* J. reine angew. Math. 286/287, 248-256 (1976)
[5] M. Mignotte, *A criterion on Catalan’s equation* J. Number Theory 52, 280-283 (1995)
[6] M. Mignotte, Y. Roy *Catalan’s equation has no new solution with either exponent less than 10651* Exp. Math. 4, 259-268 (1995)
[7] M. Mignotte, Y. Roy, *Minorations pour l’équation de Catalan* C. R. Acad. Sci., Paris, Ser. I 324, 377-380 (1997)
[8] P. Mihăilescu, *A class number free criterion for Catalan’s conjecture*, manuscript, Zürich (1999)
[9] W. Schwarz, *A note on Catalan’s equation* Acta Arith. 72, 277-279 (1995).
[10] R. Steiner, *Class number bounds and Catalan’s equation* Math. Comput. 67, 1317-1322 (1998).

Jan-Christoph Puchta
Mathematisches Institut
Eckerstraße 1
79104 Freiburg
Germany
jcp@arcade.mathematik.uni-freiburg.de