Epitaxial growth of γ-InSe and α, β, and γ-In$_2$Se$_3$ on ε-GaSe

Nilanthy Balakrishnan, Elisabeth D Steer, Emily F Smith, Zakhar R Kudrynskyy, Zakhar D Kovalyuk, Laurence Eaves, Amalia Patané and Peter H Beton

1 School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
2 Nanoscale and Microscale Research Centre, The University of Nottingham, Nottingham NG7 2RD, United Kingdom
3 Institute for Problems of Materials Science, The National Academy of Sciences of Ukraine, Chernivtsi Branch, Chernivtsi 58001, Ukraine

E-mail: nilanthy.balakrishnan@nottingham.ac.uk, amalia.patan@nottingham.ac.uk and peter.beton@nottingham.ac.uk

Supplementary material for this article is available online

Abstract

We demonstrate that γ-InSe and the α, β and γ phases of In$_2$Se$_3$ can be grown epitaxially on ε-GaSe substrates using a physical vapour transport method. By exploiting the temperature gradient within the tube furnace, we can grow selectively different phases of In$_x$Se$_y$, depending on the position of the substrate within the furnace. The uniform cleaved surface of ε-GaSe enables the epitaxial growth of the In$_x$Se$_y$ layers, which are aligned over large areas. The In$_x$Se$_y$ epilayers are characterised using Raman, photoluminescence, x-ray photoelectron and electron dispersive x-ray spectroscopies. Each In$_x$Se$_y$ phase and stoichiometry exhibits distinct optical and vibrational properties, providing a tuneable photoluminescence emission range from 1.3 eV to ~2 eV suitable for exploitation in electronics and optoelectronics.

Introduction

Multi-layer van der Waals (vdW) heterostructures have the potential to extend the range of functionalities of optoelectronic devices [1]. These artificial structures, which are prepared by mechanical exfoliation and stacking of the component crystalline layers, have physical properties of fundamental and technological interest [2]. However, this method is not easily scalable for large-area device fabrication. This drawback can be overcome by the direct growth of 2D layers using vdW epitaxy [3]. Since vdW crystals have no dangling bonds and weak inter-layer forces, they can be grown on a vdW crystal or other substrates (SiO$_2$, mica, quartz, etc) with low levels of in-plane strain and form clean, sharp interfaces even in highly lattice-mismatched heterostructures [4–6].

To date, epitaxial growth by chemical vapour deposition (CVD), physical vapour transport (PVT) or molecular beam epitaxy (MBE) has been used for the synthesis of hexagonal boron nitride (hBN) [7–10], graphene [11–13], metal dichalcogenides [14–21] and metal chalcogenides [22–29]. Within this large family of vdW crystals, the epitaxial growth of metal chalcogenides containing In and Se, e.g. In$_x$Se$_y$, is now attracting increasing interest. These crystals can exist in different polytype phases, e.g. α, β, γ and/or stoichiometries, i.e. different In/Se atomic ratio [30], each with a band structure that is strongly dependent on the number of atomic layers when the layer thickness is reduce below ~20 nm [31, 32]. Studies of exfoliated γ-InSe flakes have revealed properties that are distinct from those of other vdW crystals [33–35]. They are optically active with a band gap that increases markedly with decreasing layer thickness down to a single layer [33, 35]. In addition, the hybridization of the In and Se atomic orbitals leads to electron effective masses in the layer plane that are relatively small [34], giving rise to a high electron mobility at room temperature (>0.1 m2 V$^{-1}$ s$^{-1}$) and at liquid-helium temperature (>1 m2 V$^{-1}$ s$^{-1}$) [35], considerably higher than for the transition metal dichalcogenides [36].

Although advances have been achieved using mechanically exfoliated films of two-dimensional (2D) In$_x$Se$_y$ with different polytypes and stoichiometries, the scalable synthesis of layers and heterostructures is still in its infancy. Growth by CVD and PVT has been explored only recently, with some success in producing specific polytypes of In$_x$Se$_y$ [22–24, 26, 27]. Different phases of InSe have also been produced by various techniques, such as pulsed laser deposition [37], atomic layer deposition (ALD) [38] and
Although these results are encouraging, the stoichiometry and polytype phase grown on specific substrates are generally difficult to predict and control; furthermore, different polytypes can coexist within the same structure. Addressing these challenges represents an important step towards the scalable production of high-quality materials and functional devices, thus overcoming the reliance on exfoliated crystals.

Here, we demonstrate the epitaxial growth by PVT on ε-GaSe substrates of large-area (>10^3 µm^2) In_xSe_y layers with a stoichiometry and phase that can be controlled by the temperature within the PVT furnace, see figure 1. The cleaved surface of ε-GaSe with its low density of dangling bonds enables the growth of large-area crystals of γ-InSe, and α, β and γ phases of In_xSe_y, despite the large lattice mismatch (between 6% and 47%) with the ε-GaSe-substrate (in-plane lattice constant 3.755 Å). We show that high-quality epilayers with well-defined vibrational and optical properties can also be grown on thin exfoliated flakes of ε-GaSe transferred onto a supporting SiO_2/Si-substrate. In particular, the different polytypes which we have grown exhibit bright photoluminescence (PL) emissions at room temperature covering a wide range from 1.3 eV for γ-InSe to 2 eV for γ-In_xSe_y. The wide choice of potential energy band alignments between the In_xSe_y layers and also with respect to ε-GaSe substrate are well suited to exploitation in electronics and optoelectronics.

Results and discussion

The indium selenide layers reported here were grown on the cleaved surface of ε-GaSe crystals by PVT. Details of the growth procedure are provided in the methods section. The as-grown layers (figures 2(a) and 3) have very different morphologies compared to those grown on SiO_2/Si (figure 2(b)) [26] and have coverage over larger areas (>10^3 µm^2). The thinnest films that form on ε-GaSe have a measured thickness, t ≈ 4 nm. Their regular triangular shape is strikingly distinct from our previous PVT-grown layers on SiO_2/Si substrates which were near-circular, slightly facetted films (figure 2(b)) with lateral size of up to ~15 × 15 µm^2 and layer thickness down to 2.8 nm [26]. The AFM images in figures 2 and 3 suggest a common orientation and preferential alignment relative to the in-plane lattice vectors of the ε-GaSe hexagonal lattice. This is confirmed in the large area optical micrograph in figure 3(a) where the common alignment of triangular islands is clearly seen over a length scale ~100 µm; this implies that the lattice vectors of the grown layer and the substrate are either aligned, or misaligned by 30°; other misalignment angles would lead to multiple island orientations.

The chemical composition of the In_xSe_y layers grown on ε-GaSe was assessed by electron dispersive x-ray (EDX) and x-ray photoelectron spectroscopy (XPS). Analysis of the EDX (figure 3(d) and supporting information S1 (stacks.iop.org/TDM/5/035026/mmedia))
and XPS spectra (supporting information S2) reveal a stoichiometric composition [In]:[Se] = 2:3, consistent with the formation of In$_2$Se$_3$. Identifying the specific crystalline phase of the In$_2$Se$_3$ layers is generally difficult: different phases (α, β, γ, δ, and κ) may co-exist and some may share similar properties [30].
In particular, whereas the crystal structures of γ- and δ-In$_2$Se$_3$ are hexagonal and trigonal respectively, the rhombohedral crystal structures of α- and β-In$_2$Se$_3$ phases are very similar to each other [41].

In general, Raman spectroscopy can help identify the crystalline phase of In$_2$Se$_3$ due to the presence of distinct vibrational modes for the different phases [41, 42]. However, in our case, due to the high background optical signal from the bulk ε-GaSe substrate (thickness ~1 mm), we were unable to detect distinct Raman modes from the thin In$_2$Se$_3$ layers. In order to identify different crystalline phases, we have adopted a different approach to growth and have investigated the growth on thin ε-GaSe exfoliated flakes (thickness ranging from 10 nm to 200 nm) on a SiO$_2$/Si substrate. The Raman background signal from these substrates is sufficiently weak (see below) to identify the phases of the grown In$_x$Sey materials.

Figure 4(a) shows images of the growth of In$_x$Sey on an ε-GaSe flake. Interestingly, we find that growth occurs exclusively on the ε-GaSe flakes with no deposition on the surrounding exposed SiO$_2$/Si substrate (figure 4(a)). Figure 4(b) shows EDX elemental maps of indium selenide layers grown on an exfoliated ε-GaSe flake at a substrate temperature, $T_s = 560 \ ^\circ$C \pm 10 $^\circ$C. The EDX analysis for this flake confirmed that the stoichiometric composition of the grown layers is In$_3$Se$_5$ (see supporting information S3). A typical room temperature ($T = 300$ K) micro-Raman spectrum of the In$_x$Se$_y$ layers is shown in figure 4(c). The Raman modes are centred at ~105, 159, 182, 187 and 203 cm$^{-1}$ corresponding to the A_1-modes (105, 159, 182 and 203 cm$^{-1}$) and E_g-mode (187 cm$^{-1}$) of α-In$_2$Se$_3$ [43]. A colour plot of the intensity of the Raman peaks observed in this α-In$_2$Se$_3$ layer (inset of figure 4(c)) indicates that the α-phase does not coexist with other crystalline phases of In$_x$Sey. In contrast, for the case of In$_2$Se$_3$ layers grown on a SiO$_2$/Si substrate at a similar substrate position and temperature in the furnace during previous growth runs [26], we find that the Raman peaks are centred at ~110, 175, and 205 cm$^{-1}$, corresponding to the intralayer vibrational A_1-modes (110 and 205 cm$^{-1}$) and the E_g-mode (175 cm$^{-1}$) of β-In$_2$Se$_3$ [26, 27].

Due to the temperature gradient within the tube furnace, we can grow different phases and stoichiometries of indium selenide during a single growth run depending on the position of each substrate within the quartz tube (figure 1). We have grown four different types of indium selenide in this way including the layered phases γ-InSe, α-In$_2$Se$_3$, β-In$_2$Se$_3$, and also γ-In$_2$Se$_3$ which has a 3D crystal structure (see figure 1(c)). In common with figure 4, for all of these phases we observe that growth occurs exclusively on the ε-GaSe flakes and no material is deposited on the exposed SiO$_2$ surface. The four different indium
Selenide phases were grown on exfoliated flakes of ε-GaSe at different substrate temperatures, T_s, ranging between 500 °C and 580 °C (corresponding to 15 cm to 4 cm from the source material in our PVT furnace). The appearance of these phases in the observed sequence of decreasing temperatures is well matched with the temperature range over which they have been predicted to be stable in the phase diagram for the growth of In$_x$Sey reported in [30].

Our as-grown In$_x$Sey layers are chemically stable and optically active in air at room temperature over periods of several months. Distinct Raman modes are identified for the different phases of In$_x$Sey (figure 5(a)). The Raman maps in figure 5(b) confirm that each crystalline phase is pure, with no mixing of phases. For γ-InSe, the Raman peaks are centred at ~117, 179, and 228 cm$^{-1}$, corresponding to the intra-layer vibrational A$_1$-modes (117 and 228 cm$^{-1}$) and the E$_g$-mode (179 cm$^{-1}$), previously identified in [33]. The Raman modes of α-In$_2$Se$_3$ and β-In$_2$Se$_3$ phases are described earlier in this section. For γ-In$_2$Se$_3$ layers, the Raman peaks are centred at 152, 205, 221 and 230 cm$^{-1}$ and agree well with previously reported values for bulk γ-In$_2$Se$_3$ [42, 44]. The full width at half maximum (FWHM) of the main Raman mode in γ-InSe (FWHM \approx 3 cm$^{-1}$), α-In$_2$Se$_3$ (FWHM \approx 4 cm$^{-1}$) and γ-In$_2$Se$_3$ (FWHM \approx 9 cm$^{-1}$) are significantly narrower than for β-In$_2$Se$_3$ (FWHM \approx 16 cm$^{-1}$), see figure 5(a).

Whereas the growth by PVT of 2D indium selenide layers has been demonstrated only recently for α-In$_2$Se$_3$ [22, 24] and β-In$_2$Se$_3$ [26, 27], the epitaxial growth of γ-InSe and γ-In$_2$Se$_3$ has proven more difficult to achieve. There have been recent reports of the growth of γ-InSe, a material of particular interest due to its attractive optical and electrical properties, using pulsed layer deposition (PLD) and ALD. A comparison of our results shows similar Raman peak positions and widths for material grown by PLD [37] and the results shown here; however, the Raman peaks for the material grown by ALD [38] are much broader and their position is closer to that expected for β-In$_2$Se$_3$ [27].

The room temperature ($T = 300$ K) and low temperature ($T = 10$ K) normalized PL spectra of as-grown γ-InSe, α-In$_2$Se$_3$, β-In$_2$Se$_3$ and γ-In$_2$Se$_3$ layers with thickness $t > 20$ nm are compared in figure 6(a). For γ-InSe, the room temperature PL emission is centred at an energy $E = 1.26$ eV and has a FWHM of ~80 meV, similar to that measured previously for our bulk crystals grown by the Bridgman-method [33, 45]. Similarly, the room temperature PL emission of as-grown α-In$_2$Se$_3$ has a peak at $E = 1.41$ eV, as measured for our bulk Bridgman-grown crystals. The PL emission of α-In$_2$Se$_3$ is narrower (FWHM \approx 140 meV) and peaked at slightly lower energy than for as-grown β-In$_2$Se$_3$ ($E = 1.43$ eV and FWHM \approx 170 meV). The room temperature PL spectrum of γ-In$_2$Se$_3$ is peaked at $E = 1.95$ eV and shows three much weaker bands at lower energies ($E = 1.44$ eV, 1.56 and 1.70 eV). We attribute the presence of these weaker bands to the recombination of carriers at localized states within the bandgap. For all the crystals, the low temperature ($T = 10$ K) PL emission peaks are centred at higher energies compared to those at $T = 300$ K, with the largest thermal shift (~200 meV) observed in γ-In$_2$Se$_3$. The energy shift is accompanied by a monotonic increase of the PL intensity by up to...
a factor 200 when the temperature is decreased from 300 K to 10 K. These PL results confirm that our epitaxially grown layered phases are comparable in quality to bulk crystals grown by the Bridgman-method [33, 45] and material grown by PLD [37] highlighting the promise of this approach to growing metal chalcogenides.

The electronic and vibrational properties of the as-grown In$_x$Se$_y$ layers can be influenced by the presence of crystal defects, such as In- and Se-vacancies.
Vacancies can modify atomic orbitals and band gap energies due to ordering and bond relaxation [46]. These defects can also influence the position and linewidth of the Raman and PL lines due to disorder, lattice distortion and phonon scattering around the defects. As shown in figure 5, the Raman modes for β-In$_2$Se$_3$ and γ-In$_2$Se$_3$ tend to be broader than for α-In$_2$Se$_3$ and γ-InSe, suggesting that the latter phases have better crystalline quality. In particular, the low temperature PL spectra of the β-In$_2$Se$_3$ layers reveal a dominant carrier recombination from defects and/or impurity levels that is weakly dependent on the layer thickness (supplementary information S4). This behaviour contrasts with that of the other phases (γ-InSe, α-In$_2$Se$_3$ and γ-In$_2$Se$_3$) where narrow PL emissions are observed at low temperature due to recombination of excitons and/or carriers localized on shallow impurities (figure 6). In particular, the narrow PL-line in γ-In$_2$Se$_3$ reveals a structured PL spectrum, see figure 7. The apparently ‘anomalous’ and asymmetric line-shape of the PL band can be modelled by fitting it to two ($P = 120 \mu W$) or three ($P = 1 mW$) Gaussian components, as shown in figure 7(a). The high-energy line (X) is attributed to excitonic emission: it persists in the spectrum even at low power densities (figure 7(a)) and at high temperatures (figure 7(b)). The lower-energy tail of the spectrum is significantly reduced with respect to the X-line as the power decreases and/or the temperature increases. This behaviour is consistent with a contribution to the spectrum from charged exciton and/or biexcitons with binding energies larger than 20 meV.

Finally, using the electron affinity for bulk In$_x$Se$_y$ and ε-GaSe [47, 48] and the band gap energies deduced from the measured PL spectra at RT, we plot in figure 6(b) the band alignments for different stoichiometries and phases. It can be seen that hetero-structures based on these materials could offer several potential advantages over to existing semiconductor structures based on these materials could offer several electronic properties for the different stoichiometric phases of indium selenide and demonstrate a wide spectral range of PL from the visible (γ-In$_2$Se$_3$) to the near-infrared (γ-InSe, β-In$_2$Se$_3$ and α-In$_2$Se$_3$). In addition to different combinations of bandgaps and band alignments, the In$_x$Se$_y$ polytypes and ε-GaSe offer additional attractive features, including lightweight and compatibility with different substrates, well suited for a range of novel applications, including ferroelectricity in α-In$_2$Se$_3$ [49] and high-sensitivity broad-band In$_x$Se$_y$/ε-GaSe photodiodes [50].

Methods

Synthesis of In$_x$Se$_y$ layers

For the growth of In$_x$Se$_y$ layers by physical vapour transport, we used Bridgman-grown high-quality γ-polytype InSe crystals grown into powder and placed in a tube furnace. The tube furnace comprised a 45 cm long Carbolite furnace, 1 m long both open ended quartz tube (tube diameter, $d = 3.2$ cm), a rotary pump and an Ar flow controller. The InSe powder was heated from $T = 25 ^\circ$C to 600 °C at a rate of 3 °C min$^{-1}$ and kept at 600 °C for 4 to 9 h. An Ar flow of 150 sccm was used to provide a pressure of 1.6 mbar and to transport the vapour for deposition on a substrate, placed downstream at 4–15 cm away from the source material, which provides a substrate temperature range between $T_s \approx 580 ^\circ$C to 500 °C. The system was then allowed to cool slowly to room temperature over a period of 10 h.

Chemical and topographic characterization

The XPS measurements were performed using a Kratos AXIS ULTRA with a monochromatic Al Kα x-ray source ($h\nu = 1486.6 eV$) operated at 10 mA emission current and 12 kV anode potential ($P = 120 W$), and the data processing was performed using CASAXPS version 2.3.17PR1.1 software with Kratos sensitivity factors (RSFs) to determine atomic % values from the peak areas. The electron collection spot size is $~700 \times 300 \mu m^2$. All XPS binding energies were calibrated with respect to the C 1s peak at a binding energy of 284.8 eV. The scanning electron microscopy (SEM) and energy-dispersive x-ray (EDX) analysis were performed at 20 kV in high vacuum ($~10^{-6}$ mbar) with an FEI Quanta 650 ESEM equipped with an Oxford Instruments X-MaxN 150 EDX detector. The topography images were acquired by an Asylum Research MFP-3D atomic force microscope (AFM) in tapping mode under ambient conditions.
Optical studies
The experimental set-up for μPL and Raman measurements comprised a He–Ne laser (λ = 633 nm) and a frequency-doubled Nd:YVO₄ laser (λ = 532 nm), an XY linear positioning stage or a cold-finger cryostat, an optical confocal microscope system, a spectrometer with 150 and 1200 groves mm⁻¹ gratings, equipped with a charge-coupled device and a liquid-nitrogen cooled (InGa)As array photodetector. For the room temperature studies, the laser beam was focused to a diameter d ≈ 1 μm using a 100× objective and the μPL spectra were measured at low power (P ≈ 0.1 mW) to avoid lattice heating. For the low T studies the laser beam (P up to 12 mW) was focused through the window of an optical cryostat to a diameter d ≈ 3 μm using a 50× objective.

Acknowledgment
This work was supported by the Engineering and Physical Sciences Research Council (grant numbers EP/M012700/1 and EP/K005138/1) (EPSRC); the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement number 696656); The University of Nottingham and the National Academy of Sciences of Ukraine.

Supplementary data
Supporting information available: EDX and XPS spectra of In₂Se₃ films grown on a bulk ε-GaSe substrate; EDX maps and spectrum of In₂Se₃ grown on an exfoliated ε-GaSe flake; and low temperature PL spectra of β-In₂Se₃ layers grown on a SiO₂/Si substrate. The data, including images and spectroscopic measurements, on which this manuscript was based is available as on online resource with digital object identifier https://doi.org/10.17639/nott.355.

ORCID iDs
Nilanthy Balakrishnan ı https://orcid.org/0000-0002-7236-5477
Amalia Patanè ı https://orcid.org/0000-0003-3015-9496
Peter H Beton ı https://orcid.org/0000-0002-2120-8033

References
[1] Ferrari A C et al 2013 Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems Nanoscale 7 4598–810
[2] Geim A K and Grigorieva I V 2013 van der Waals heterostructures Nature 499 419–25
[3] Jægermann W, Klein A and Pettenkofer C 2002 Electronic properties of van der Waals-epitaxy films and interfaces: Electron Spectroscopies Applied to Low-Dimensional Materials ed H Hughes and H Starnberg (Dordrecht: Kluwer) pp 317–402
[4] Li M-Y et al 2015 Epitaxial growth of a monolayer WS₂–Mo₅Se₂ lateral p-n junction with an atomically sharp interface Science 349 254–528
[5] Sahoo P K et al 2018 One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy Nature 553 63–7
[6] Li H, Shi Y and Li L J 2018 Synthesis and optoelectronic applications of graphene/transition metal dichalcogenides flat-pack assembly Carbon 127 602–10
[7] Nakhaie S et al 2015 Synthesis of atomically thin hexagonal boron nitride films on nickel foils by molecular beam epitaxy Appl. Phys. Lett. 106 213108
[8] Liu Z et al 2011 Direct growth of graphene/hexagonal boron nitride stacked layers Nano Lett. 11 2032–7
[9] Cho Y-J et al 2016 Hexagonal boron nitride tunnel barriers grown on graphite by high temperature molecular beam epitaxy Sci. Rep. 6 34474
[10] Zuo Z et al 2015 In situ epitaxial growth of graphene/h-BN van der Waals heterostructures by molecular beam epitaxy Sci. Rep. 5 14760
[11] Hwang J et al 2013 van der Waals epitaxial growth of graphene on sapphire by chemical vapor deposition without a metal catalyst ACS Nano 7 385–95
[12] Yang W et al 2013 Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 12 792–7
[13] Sun Z et al 2010 Growth of graphene from solid carbon sources Nature 468 549–52
[14] Shi Y et al 2012 van der Waals epitaxy of MoS₂ layers using graphene as growth templates Nano Lett. 12 2784–91
[15] Shin G W et al 2014 Large-area single-layer MoSe₂ and its van der Waals heterostructures ACS Nano 8 6655–62
[16] Wang S, Wang X and Warner J H 2015 All chemical vapor deposition growth of h-BN–MoSe₂ vertical van der Waals heterostructures ACS Nano 9 5246–54
[17] Okada M et al 2014 Direct chemical vapor deposition growth of WS₂ atomic layers on hexagonal boron nitride ACS Nano 8 8273–7
[18] Choudhary N et al 2016 Centimeter scale patterned growth of vertically stacked few layer only 2D MoSe₂/WSe₂ van der Waals heterostructure Sci. Rep. 6 25456
[19] Gong Y et al 2014 Vertical and in-plane heterostructures from WS₂/MoS₂ monolayers Nat. Mater. 13 1135–42
[20] Zhou X et al 2017 Vertical heterostructures based on SnSe₂/MoS₂ for high performance photodetectors 2D Mater. 4 25048
[21] Liang D, Schmidt J R and Jin S 2014 Vertical heterostructures of layered metal chalcogenides by van der Waals epitaxy Nano Lett. 14 3047–54
[22] Lin M et al 2013 Controlled growth of atomically thin In₂Se₃ flakes by van der Waals epitaxy J. Am. Chem. Soc. 135 13274–7
[23] Zheng W et al 2015 Patterned two-dimensional chalcogenide crystals of Bi₂Se₃, In₂Se₃, and SnSe₂ and efficient photodetectors Nat. Commun. 6 6972
[24] Zhou J et al 2015 Controlled synthesis of high-quality monolayered α-In₂Se₃ via physical vapor deposition Nano Lett. 15 6400–5
[25] Li X et al 2015 van der Waals epitaxial growth of GaSe domains on graphene ACS Nano 9 8078–88
[26] Balakrishnan N et al 2016 Quantum confinement in β-In₂Se₃ layers grown by physical vapour transport for high responsivity photodetectors 2D Mater. 2 25203
[27] Zhou S, Tao X and Gu Y 2016 Thickness–dependent thermal conductivity of suspended two-dimensional single-crystal In₂Se₃ layers grown by chemical vapor deposition J. Phys. Chem. C 120 6753–8
[28] Ben Aziza Z et al 2016 van der Waals epitaxy of GaSe/graphene heterostructure: electronic and interfacial properties ACS Nano 10 9679–86
[29] Chen M-W et al 2018 Large-grain MBE-grown GaSe on GaAs with a Mexican hat-like valence band dispersion npj 2D Mater. Appl. 2 2
Han G, Chen Z G, Drennan J and Zou J 2014 Indium selenides: structural characteristics, synthesis and their thermoelectric performances Small 10 2747–65

Rybkovskiy D V, Osadchy A and Obraztsova E D 2014 Transition from parabolic to ring-shaped valence band maximum in few-layer GaS, GaSe, and InSe Phys. Rev. B 90 1–9

Zolyomi V, Drummond N D and Fal’ko V I 2014 Electrons and phonons in single layers of hexagonal indium chalcogenides from ab initio calculations Phys. Rev. B 89 505416

Mudd G W et al 2013 Tuning the bandgap of exfoliated InSe nanosheets by quantum confinement Adv. Mater. 25 5714–8

Mudd G W et al 2016 The direct-to-indirect band gap crossover in two-dimensional van der Waals Indium Selenide crystals Sci. Rep. 6 39619

Bandurin D A et al 2017 High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe Nat. Nanotechnol. 12 223–7

Choi W et al 2017 Recent development of two-dimensional transition metal dichalcogenides and their applications Mater. Today 20 116–30

Yang Z et al 2017 Wafer-scale synthesis of high-quality semiconducting two-dimensional layered InSe with broadband photoresponse ACS Nano 11 4225–36

Browning R, Kuperman N, Moon B and Solanki R 2017 Atomic layer growth of InSe and SnSe2 layered semiconductors and their heterostructure Electronics 6 27

Hayashi T, Ueno K, Saiki K and Koma A 2000 Investigation of the growth mechanism of an InSe epitaxial layer on a MoS2 substrate J. Crystal Growth 219 115–22

Sánchez-Royo J F et al 2001 Optical and photovoltaic properties of indium selenide thin films prepared by van der Waals epitaxy J. Appl. Phys. 90 2818–23

Ke F et al 2014 Interlayer-glide-driven isosymmetric phase transition in compressed In2Se3 Appl. Phys. Lett. 104 1–2

Weszka J et al 2000 Raman scattering in In2Se3 and InSe2 amorphous films J. Non-Cryst. Solids 263 98–104

Lewandowska R, Bacewicz R, Filipowicz J and Paskowicz W 2001 Raman scattering in alpha-In2Se3 crystals Mater. Res. Bull. 36 2577–83

Marsillac S, Comboc-Marie A M, Berndé J C and Conant A 1996 Experimental evidence of the low-temperature formation of γ-In2Se3 thin films obtained by a solid-state reaction Thin Solid Films 288 14–20

Balakrishnan N et al 2017 Engineering p–n junctions and bandgap tuning of InSe nanolayers by controlled oxidation 2D Mater. 4 25043

Nakayama T and Ishikawa M 1997 Bonding and optical anisotropy of vacancy-ordered Ga2Se3 J. Phys. Soc. Japan 66 3887–92

Lang O et al 1999 Thin film growth and band lineup of In2O3 on the layered semiconductor InSe J. Appl. Phys. 86 5687–91

Drapak S I, Kovalyuk Z D, Netyaga V V and Orletski V B 2002 On the mechanisms of current transfer in n-In2Se3–p-GaSe heterostructures Tech. Phys. Lett. 28 707–10

Ding W et al 2017 Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2–VI3 van der Waals materials Nat. Commun. 8 14956

Yan F et al 2017 Fast, multicolor photodetection with graphene-contacted p-GaSe/n-InSe van der Waals heterostructures Nanotechnology 28 27LT01

Pfützner A and Lutz H D 1996 Redetermination of the crystal structure of γ-In2Se3 by twin crystal x-ray method J. Solid State Chem. 124 305–8