Numerical simulation and experimental study on non-axisymmetric spinning with a groove at the middle of the tube

Zhen Jia1,2 · Xuan Wang2,3 · Yongping Shen1,2 · Yilian Xie2,3 · Xue Gong1,2 · Baoming Liu2

Received: 20 December 2021 / Accepted: 7 July 2022 / Published online: 21 July 2022
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022

Abstract
Spinning is widely used in aerospace and automobile industries, and non-axisymmetric spinning is developing with the increasing demand of irregular shape forming. Based on this, an avoidance groove at the middle of the tube (AGMT) which has a potential application value in aircraft structure weight reduction is proposed and formed by using non-axisymmetric die-less spinning. The roller path is analyzed. The relationship between radial displacement of roller and the rotation time of the tube is deduced. Based on the roller path, 3D finite element model is established. Then, the AGMT spinning experiment is carried out to verify the simulation results. The maximum deviation between the simulation and experimental results is less than 15%. It is indicated that the 3D finite element model established in this study is reliable and the method for the AGMT forming is feasible. The wall thickness and strain–stress distributions are analyzed. The severe wall thickening and thinning occur in the transition zones; more attention should be paid to these positions. The depth of the groove has great impact on the forming quality. Deeper groove results in distortion and larger wall thickness difference. The research lays a foundation for the further development and optimization of the AGMT spinning.

Keywords
Non-axisymmetric spinning · Middle of the tube · Die-less spinning · Avoidance groove · Roller path

1 Introduction
As one of the advanced manufacturing technologies, spinning has characteristics of high flexibility, material and energy saving, and the advantages in short preparation cycle and small batch are self-evident for controlling the carbon emissions. Therefore, spinning is widely used in aerospace, military and automobile industries such as engine nozzle, aircraft auxiliary fuel tank, rocket booster and so on [1].

Inevitably, the metal spinning process has become more flexible, and spinning products also have become diverse [2, 3]. For increasing the forming quality, Russo et al. [4] summed up seven principles of toolpath. Therefore, the prospect of the spinning process is bright. According to the blank shape, sheet spinning (which includes conventional spinning and shear spinning) and tube spinning are classified. The tube spinning is used to form cylindrical tubular components with various busbars and can be divided into spinning at the end (SET) and the middle of the tube (SMT) due to the forming position.

For the SET, Takahashi et al. [5] performed the neck-in spinning at the end of the tube by double rollers, and the effects of neck length on the occurrence of cracking were investigated. It is demonstrated that the damage value increases with the neck length. Runwal et al. [6] developed a method to perform the gas spring tubes on the automobile, which was a spinning process for sealing the end of the tube. A kind of necking-in tube which is used as high-pressure gas vessel was spun by Huang et al. [7] at high temperature, which shows a better forming result than that at the room temperature, and the forming parameters were also investigated. In addition, the end flaring process of the tube can
also be realized by spinning. Zhao et al. [8] combined the tube spinning and flaring process to form curved generatrix workpiece. The wall thickness and mechanical properties in various working conditions were exhibited after spinning. The merits of such process are obvious.

The above investigations focus on the axisymmetric shape. However, the non-axisymmetric spinning can also be applied to form the tube. The non-axisymmetric tube at the end was spun by Xia et al. [9–12], and the tube with this shape can be used as the automobile exhaust pipe with the offset or oblique end. At the same time, the HGPX-WSM CNC spinning machine was developed by Xia et al. [13] for manufacturing this product. Wilson et al. [14] proposed a method to produce the offset tube at low cost by using a conventional lathe and a simple roller in his work. Although the deviation between the desired and actual geometry existed, it confirmed the possibility of producing the offset tube without any special equipment. An oblique/curved tube spinning process was proposed by Aria and Gondo [15]. Aria et al. produced the noncircular cross-section tube based on the 3D-CAD model [16]. In his work, it contained some non-axisymmetric shapes. The main idea of this method was transferring the 3D model into point cloud and then getting the point of the roller path. However, there are no successive expressions as roller paths. They accurately formed the curved shape at the end of the tube. All the spinning processes in above investigations are tube-end-closing ones.

Besides the SET, the SMT has also been investigated widely. Wu et al. [17] adopted the finite element simulation to forecast the forming accuracy of the tube spinning with a groove in the middle. Three spinning methods were contrasted in their study to control thickness distribution and suppress the wrinkling defect. Kwiatkowski and Melsheimer [18] compared different roller trajectories for spinning necking tube without any mandrel and concluded that the value of inclined area and the elongation of the part highly depend on the roller path. The researches of Wu hao and Kwiatkowski are typical necking spinning processes at the middle of the tube. In order to reduce the production cycle, Zhan et al. [19] proposed a mandrel-less neck-in spinning to form the aluminum corrugated tube without any welding seam.

The above studies about the SET include axisymmetric and non-axisymmetric spinning. However, only axisymmetric one was carried out on the SMT. The middle non-axisymmetric tube spinning may be a very interesting topic for the tubular structure with asymmetric features in the middle. For example, when two pipelines cross and meet, if an arc-shaped avoidance groove is produced on one of them (or the both), the pipeline layout space can be greatly saved. This will be of great significance to the structural weight reduction for aircraft. Figure 1 shows the pipelines which are commonly used on the aircraft, and the avoidance groove will be suitable for cable wrapping tubes. In resent researches, the tube avoidance groove using rubber forming was implemented by Yan [20]. However, a corresponding mold is needed in Yan’s work, which inevitably increases the production cost and preparation cycle. The non-axisymmetric tube at the end can be spun—how about at the middle of the tube?

![Fig. 1 Pipelines on the aircraft](image1)

![Fig. 2 a Characteristic of AGMT and b idea of AGMT spinning](image2)
In this study, a non-axisymmetric die-less spinning method is developed for producing an avoidance groove at the middle of the tube (AGMT). Successive expressions of the roller path are deduced. Finite element simulation and spinning experiment are adopted to investigate the deforming characteristics and forming quality.

2 Methodology

2.1 Scheme of AGMT spinning

The characteristic of AGMT is shown in Fig. 2a. Only one “saddle” shape presents on the tube due to its asymmetry and non-axisymmetric geometric feature. Therefore, traditional spinning method will be not suitable for the AGMT. Figure 2b shows the design idea for the unconventional process: the tube blank rotates at a constant speed, and the roller with the corresponding radius (to the saddle arc) extrudes and returns back on the radial direction periodically. However, no axial movement occurs on the roller in the forming process. Finally, the avoidance groove is formed at the middle of the tube. Figure 3 shows the relationship between the radial displacement of the roller and the rotation time of the tube blank in every pass. The spindle rotates and drives the tube blank at a constant speed (10 rpm). When the blank rotates an angle, the roller stays at the corresponding position. The time-position relationship between the roller and the spindle rotation is controlled by the numerical control system of the spinning machine.

2.2 Roller path deduction

In order to form the “saddle” shape with target depth and radius at the middle of the tube, appropriate roller path is necessary. The forming principle is that the roller reciprocates on the radial direction cooperating with the rotation of tube blank. Hence, the roller path deduction is explained as follow.

Figure 4 shows the cross section of the tube and the position of the roller path with the rotation angle \(\theta_i \) under the \(i \)-th pass. The radius of roller path under the current pass is \(R_i \); \(O \) is the center of the roller path; \(t_i \) is the time of spinning in \(i \)-th pass. When \(t_i \) is 0, the first deformation point of workpiece is \(B_{i0} \), and the center of the roller is \(A_{i0} \). At time \(t_i \), the center of roller is \(A_{it} \); \(S_t \) represents the distance between \(C \) and \(A_{i0} \); \(L \) represents the distance between \(O \) and \(C \) which is set as 20 mm; \(r \) is the radius of the roller; \(a \) is the radius of the tube blank; \(\Phi_{i0} \) is \(\angle B_{i0} OC \) also \(\angle A_{i0} OC \). According to the cosine theorem, the \(\cos \Phi_{i0} \) can be expressed by Eqs. (1) and (2).

![Fig. 3 Relationship between rotation time of tube blank and displacement of the roller](image_url)

![Fig. 4 Cross section of tube and roller](image_url)
Φᵢ is the supplementary of ∠Aᵢ₀CO. \(\cos \Phi_i \) can also be represented based on the cosine theorem. Taking the tube blank as the reference object, \(\theta_i \) is the relative angle of roller during \(t_i \) under current pass, and it is expressed as Eq. (3).

\[
\theta_i = \phi_i - \omega t_i
\]

At time \(t_i \), \(B_{it} \) is a contact point between the roller and tube blank. \(S_{il} \) represents the distance between \(B_{it} \) and C; \(\cos \theta_i \) is

\[
\cos \theta_i = \frac{S_{il}^2 + L_i^2 - R_i^2}{2S_{il}L_i}
\]

\[\cos \phi_i = \frac{L_i^2 + (R_i + r)^2 - S_i^2}{2LR_i} \quad (1)
\]

\[\cos \phi_i = \frac{L_i^2 + R_i^2 - a^2}{2LR_i} \quad (2)
\]

\(\Phi_i \) is the supplementary of \(\angle A_{i0}CO \). \(\cos \Phi_i \) can also be represented based on the cosine theorem. Taking the tube blank as the reference object, \(\theta_i \) is the relative angle of roller during \(t_i \) under current pass, and it is expressed as Eq. (3).

\[
\theta_i = \phi_i - \omega t_i
\]

At time \(t_i \), \(B_{it} \) is a contact point between the roller and tube blank. \(S_{il} \) represents the distance between \(B_{it} \) and C; \(\cos \theta_i \) is

\[
\cos \theta_i = \frac{S_{il}^2 + L_i^2 - R_i^2}{2S_{il}L_i}
\]

\(\Delta_i \) is the depth of roller feeding on per pass. \(\Delta_i = a - S_{ii} \)

where \(S_{ii} \) can be obtained from Eq. (5). In order to express the roller feeding better, take the opposite number of \(\Delta_i \) which is exhibited as \(f(t_i) \). The radial position of roller at any time \(f(t_i) \) is calculated from Eqs. (1), (2), (3), (4) and (5), which is exhibited as Eq. (6).

\[
f(t_i) = \sqrt{\frac{2L \cos \left[\omega t_i - \arccos \left(\frac{S_{il}^2 + L_i^2 - (R_i + r)^2}{2S_{il}L_i} \right) \right]}{2}} \quad (5)
\]

\[
f(t_i) = \sqrt{\frac{2L \cos \left[\omega t_i - \arccos \left(\frac{S_{il}^2 + L_i^2 - (R_i + r)^2}{2S_{il}L_i} \right) \right]}{2}} - a
\]

(6)

In Fig. 4, \(\Delta_i \) is the depth of roller feeding on per pass, \(\Delta_i = a - S_{ii} \)

where \(S_{ii} \) can be obtained from Eq. (5). In order to express the roller feeding better, take the opposite number of \(\Delta_i \) which is exhibited as \(f(t_i) \). The radial position of roller at any time \(f(t_i) \) is calculated from Eqs. (1), (2), (3), (4) and (5), which is exhibited as Eq. (6).

\[
f(t_i) = \sqrt{\frac{2L \cos \left[\omega t_i - \arccos \left(\frac{S_{il}^2 + L_i^2 - (R_i + r)^2}{2S_{il}L_i} \right) \right]}{2}} \quad (5)
\]

\[
f(t_i) = \sqrt{\frac{2L \cos \left[\omega t_i - \arccos \left(\frac{S_{il}^2 + L_i^2 - (R_i + r)^2}{2S_{il}L_i} \right) \right]}{2}} - a
\]

(6)

In Fig. 4, \(\Delta_i \) is the depth of roller feeding on per pass, \(\Delta_i = a - S_{ii} \)

where \(S_{ii} \) can be obtained from Eq. (5). In order to express the roller feeding better, take the opposite number of \(\Delta_i \) which is exhibited as \(f(t_i) \). The radial position of roller at any time \(f(t_i) \) is calculated from Eqs. (1), (2), (3), (4) and (5), which is exhibited as Eq. (6).

\[
f(t_i) = \sqrt{\frac{2L \cos \left[\omega t_i - \arccos \left(\frac{S_{il}^2 + L_i^2 - (R_i + r)^2}{2S_{il}L_i} \right) \right]}{2}} \quad (5)
\]

\[
f(t_i) = \sqrt{\frac{2L \cos \left[\omega t_i - \arccos \left(\frac{S_{il}^2 + L_i^2 - (R_i + r)^2}{2S_{il}L_i} \right) \right]}{2}} - a
\]

(6)
Ri is a constant value related to the pass and the feed rate. \(f(t_i) \) is used as the displacement of the roller related to the time of per pass. Therefore, the displacement of the roller per pass is plotted as the curves in Fig. 5.

The displacement less than zero indicates that the roller and tube blank are in contact. In other words, there is no contact between the roller and tube blank in other period of time. In order to reduce the motion space of the tool, the displacement more than zero can be replaced by zero. After optimizing, the relationship between the radial displacement of roller and the rotation time of the tube blank per pass is shown in Fig. 3.

\[
(t_i) = \sqrt{\frac{400\cos^2 2\arccos \left(\frac{625R_i - 70R_i^2 - R^3 - 12250}{40\sqrt{5125R_i^2 + 70R_i^3 - 12250R_i}} \right)}{\frac{\pi}{3} - \arccos \left(\frac{625R_i - 70R_i^2 - R^3 - 12250}{40\sqrt{5125R_i^2 + 70R_i^3 - 12250R_i}} \right)}} + R_i^2 - 400 - 20\cos \left(\frac{\pi}{3}t_i - \arccos \left(\frac{625R_i - 70R_i^2 - R^3 - 12250}{40\sqrt{5125R_i^2 + 70R_i^3 - 12250R_i}} \right) \right)
\]

\(R_i \) is a constant value related to the pass and the feed rate. \(f(t_i) \) is used as the displacement of the roller related to the time of per pass. Therefore, the displacement of the roller per pass is plotted as the curves in Fig. 5.

The displacement less than zero indicates that the roller and tube blank are in contact. In other words, there is no contact between the roller and tube blank in other period of time. In order to reduce the motion space of the tool, the displacement more than zero can be replaced by zero. After optimizing, the relationship between the radial displacement of roller and the rotation time of the tube blank per pass is shown in Fig. 3.

Table 1

A/Mpa	B/Mpa	\(n \)	Initial temp/K
170	77	0.314	298

Table 2

Properties	Notation	Steel
Elastic modulus	\(E \)	69Gpa
Poisson’s ratio	\(\mu \)	0.33
Yield strength	\(\sigma_s \)	215Mpa
Tensile strength	\(\sigma_b \)	240Mpa

Finite element analysis and discussion

3.1 Establishment of finite element model

3D finite element (FE) simulation is widely used in industry. Shorter developing cycle, fewer material waste and lower cost can be achieved by using a reasonable FE simulation. In this study, the FE model of the AGMT spinning is established, and the simulation result is contrasted with the experimental one.

The ABAQUS/Explicit software is used in this study for the simulation. The 3D geometric model of the roller, spindle, tail cap and tube blank are established. The assembly model of the AGMT spinning is shown in Fig. 6.

The material of the tube blank is 6063-T6 aluminum alloy. According to reference [21], the constitutive relationship of the material is expressed as

\[
\sigma = A + B\epsilon^n
\]

where \(A, B \) and \(n \) are the material parameters respectively. \(\sigma \) and \(\epsilon \) are the true stress and strain. The stress–strain curve is obtained through the uniaxial tensile test on the MTS testing machine [21]. Figure 7 is the schematic illustration of stress–strain curve after fitting; the parameters of curve are listed in the Table 1. The mechanical properties of 6063-T6 aluminum alloy are listed in Table 2.

Because the deformation on the roller, the spindle and tailstock can be neglected, they are set as rigid body. According to the production experience, the friction coefficients among the inner surface of tube, spindle and tailstock are set to 0.4 without any lubrication. Therefore, the tube blank can be driven by the spindle at the same rotating velocity. In addition, the friction between the outer surface of tube and...
the roller is blunted by the lubricating oil with the coefficient of 0.1. The roller path is realized by the boundary condition of the ABAQUS/Explicit software during AGMT spinning. The tube blank rotates around the axial direction, and the roller has the corresponding radial feed to the blank rotation; at the same time, the roller can rotate around its own axis. This process is shown in Fig. 8. The roller movement amplitude is established based on $f(t_i)$.

The spindle rotating velocity is 10 rpm, which is $\frac{\pi}{3}$ rad/s. The radial reduction per pass on the tube blank is 2 mm. In the actual spinning working condition, the tube blank is nipped by the spindle and tailstock with a constant force. Therefore, both ends of the tube are applied axial force. The mesh element type of the blank is set as C3D8R (an 8-node linear brick, reduced integration, hourglass control). Theoretically, the more refined and standardized, the more accurate model will be. The dimension of the element mesh along the thickness and the axial directions is 1 mm by considering the calculation time, and there are totally 21,120 elements and 31,944 nodes on the tube.

3.2 Spinning experiment

Figure 9a illustrates the PROSPER XY600-5 numerical control spinning machine, which is used to carry out the spinning experiment. The assembly of the tube blank,
spindle, tailstock and roller in machine is exhibited in Fig. 9b. Figure 9c shows the clamping process. The tube blank is clamped by the spindle and the tailstock, in which the 40-mm length axle sticks into the tube on both sides to guarantee the concentricity of the tube, spindle and the tailstock. Moreover, the preformed position on the tube is kept hollow. The dimensions of the roller, tube blank and other tools are equal to the 3D FE model. The diameter of the roller is 140 mm with a 15-mm arc radius. The blank dimensions (see Fig. 10) are length \(L\), diameter \(D\) and wall thickness \(t_0\) of 120 mm, 30 mm and 2 mm, respectively. The theoretical depth of the AGMT is set as 6 mm. The rotation of the spindle is 10 rpm, which is \(\frac{\pi}{3}\) rad/s. The reduction per pass is 2 mm. The blank material and other working conditions are also the same with the simulation.

3.3 Simulation result and verification

Figure 11 shows the AGMT spinning process; it can be observed that as the roller contacts the tube blank periodically, a local groove with the “saddle” shape is formed at the middle of the tube. Hence, the AGMT spinning can be achieved by using the roller path in the 3D FE model.
Figure 12 shows the experimental result of the AGMT. Obviously, the morphology of the experimental result is in good agreement with the simulated one.

Besides the morphology, other dimension parameters of the AGMT such as the sizes and wall thickness are needed to be inspected and contrasted. The dimensional coordinates are set in the middle section of the tube. The Y–Z plane is...
selected as shown in Fig. 13b; the lowest point of the groove is Q. Point N is on the outer surface of the tube as well as opposite to the Q. The distance between N and Q can be measured directly as e. Therefore, depth of the AGMT h shown in Fig. 13b is expressed by

$$h = D - e$$

By comparing the simulation and experimental results, the h from experiment is 5.88 mm, meanwhile 6.66 mm in the simulation. The depth deviation between them is 13.27%. The width of the groove d (Fig. 14) can be calculated by the arc radius (r') of the roller and the depth of the groove. The relationship among r', h and d is

$$r^2 = \left(\frac{d}{2}\right)^2 + (r - h)^2$$

When the theoretical depth h is 6 mm, the calculated d is 24 mm. However, there is no mandrel at the deforming zone, and more material is brought down by the roller to increase the width of the AGMT. The measured widths of the groove d_0 from experiment and simulation are 29 mm and 26 mm.

The wall thickness distributions of the radial (see Fig. 13b) and longitudinal section (see Fig. 13c) are investigated respectively. Figure 15 shows the wall thickness distributions on the radial section based on the simulation and experiment. It is found that the trend of two curves is identical. The maximum relative error is 14.2%. Along the X direction, the longitudinal section is divided into three parts in Fig. 13c: the cylindrical zone, concave zone and transitional zone. In the longitudinal section, the measuring points and wall thickness values are shown in Fig. 16. A homogeneous wall thickness deviation between the simulation and experiment occurs on the longitudinal section. The maximum error is less than 13%. Therefore, the credibility of the FE model is verified through the morphology and the dimensions of the AGMT.

4 Discussion

4.1 Wall thickness distribution

The non-axisymmetric spinning of the AGMT has uneven wall thickness distributions. The deforming region along the radial and longitudinal sections is shown in Figs. 15 and 16 respectively. It can be found from Fig. 15 that the wall thickness increases on the 0 to 150° area and sharply decreases with the rotation angle from 150 to 180°. And then a stable wall thickness distribution trend appears from 180 to 360°. Because the main deformation occurs at the area with the 0–180° rotation angle, the wall thickness in the deforming zone is obviously bigger than that in the non-deforming zone due to the extrusion and accumulation of the metal. From the 0–150° area, the wall thickness increases, which indicate that the metal piles up gradually in this area. However, the sharp thinning in the 150–180° area shows that the most of stacked metal does not move continuously. The stacked metal is shown as the wrinkle on the groove around the 150° area (see Fig. 17). Because of no deformation, the curve in the 180–360° region approximates a straight line. The wall thickness changes obviously at the 0°-direction and 180°-direction positions. The reason is that they are the junctions of the deforming and non-deformation zones.

Figure 16 shows that there is a uniform deviation between the simulation and experimental wall thickness distribution. The experimental results show that the wall thickness in the axial direction is larger than the original one. The three areas have different wall thickness distribution characteristics. It is demonstrated that the metal flows with the roller pressing. The wall thickness increases from the straight sections on both sides to the bottom of the groove. However, wall thinning occurs on the both transitional zones for whether simulation or experimental result. Therefore, the transitional zone will be focused on due to the thinnest spun wall.
Fig. 18 Equivalent stress in the second pass at a 0 s, b 1.5 s, c 3 s, d 4.5 s, e 6 s
In summary, the wall thickness of the AGMT formed by using non-axisymmetric spinning is not homogeneous. The maximum wall thickening takes place on the “saddle center” of the groove whether on axial or longitude section. And obvious thinning appears in the border between two regions with and without deformation.

4.2 Metal flow field

Figure 18 shows the stress distribution at the spinning time of 0 s, 1.5 s, 3 s, 4.5 s and 6 s in the second pass. The total pressing depth of the spinning pass is 4 mm during 6 s. It can be found that the stress generally symmetrically distributes around the groove along the axial direction. At the beginning of this pass, local stress focuses on the 90° area where is the “saddle center”. The area with high stress expands gradually as the spinning process. The maximum stress emerges at the spinning time of 3 s; meanwhile, the rolling reduction reaches the maximum value. The equivalent stress is gradually stable after the roller leaving from the groove. The maximum stress locates at the 90° position through the whole pass, and the large residual stress is easy to cause spring back, which has influence on the forming accuracy.

Fig. 19 Distribution of strain in the second pass at a 0 s, b 1.5 s, c 3 s, d 4.5 s and e 6 s

Fig. 20 Simulation results with the spinning depth of a 6 mm, b 7 mm, c 8 mm and d 9 mm
1.3 Effects of spinning depth

The spinning depth h not only directly determines the shape dimensions of the groove, but also affects the wall thickness and stress–strain distributions, and then affects the mechanical properties of spun part. Therefore, the working conditions with the h of 6 mm, 7 mm, 8 mm and 9 mm are simulated. Figure 20 shows the simulation results.

It can be found that, the “slender waist” defect emerges and deteriorates with the spinning depth from 6-mm depth to 9 mm, and the distributing stress on the AGMT increases and expands. The wall thickness distributions of the four working conditions on longitudinal section are shown in Fig. 21. The trends of the curves with the four spinning depths are the same. However, it is obvious that there is larger wall thickness difference in deeper groove. Greater wall thinning occurs in transition zone between the groove and the cylinder with the increase of the spinning depth. In addition, the wall thickening happens at the “saddle center” of the groove; the wall thickness increases with the spinning depth. Figure 22 shows the wall thickness distributions of the four working conditions on the radial section. The maximum wall thickness fluctuation occurs in the region of 0° and 180° for the four working conditions. The wall thickness with a 9-mm spinning depth is obviously bigger than that with the 6-mm one. Therefore, deeper spinning of the AGMT will result in bigger wall thickening and shape distorting, and the parameters optimizing and roller path amending need to be further investigated for it.

5 Conclusions

In this study, the non-axisymmetric spinning of AGMT is proposed. The feasibility of the new method is verified by the 3D finite element modeling and the spinning experiment. Following conclusions are expressed:

1. The roller path is deduced through the theoretical analysis and imported into the finite element model by being used as the boundary condition. The experiment with completely consistent parameters is carried out to verify the simulation result, and the geometric morphology and dimensions of the simulation and experiment results have good agreements.

2. The wall thickness distributions along the radial and axical directions are measured and analyzed. The non-axisymmetric spinning of the AGMT has the inhomogeneous wall thickness distributions due to its “saddle” shape. The maximum stress and strain occur on the “saddle center”. The wrinkling defect is formed by the being crushed metal which is accumulated on the side of the “saddle”.

\[\text{Fig. 21 Wall thickness distribution in longitudinal section} \]

\[\text{Fig. 22 Wall thickness distribution in radial section} \]
The spinning depth on the groove has great influence on the forming quality of AGMT. The wall thickness and shape distortion increase with the spinning depth due to the more metal flow.

6 Prospect

This paper covers the idea about non-axisymmetric spinning with a groove at the middle of the tube and verifies the possibility of such process. However, there are some further explorations about AGMT processing. The wrinkle can be theoretically improved by changing the parameters of process and roller path. The forming mechanism of wrinkle defect needs to be explained. Cross validation will be used to explore the main factor which controls the wrinkle defect. In this study, it can be seen that the wall thickness is not uniform in the AGMT. If the AGMT is applied, the wall thickness distribution will become an important index. So, the factors affecting wall thickness distribution will be studied in the next step. Changing the roller path may be a good idea for improving forming accuracy and avoiding wrinkle defect. Besides, the limit depth of the groove will be further explored. Certainly, different material of tube blank will be applied in the experiments in order to ensure that the experimental results are generally valid.

Author contribution ZJ proposed the method, carried out the experiments and revised the manuscript. XW designed the roller path, established the finite element model and wrote the manuscript. YS and YX improved the finite element model and participated in the tooling design and processing. XG and BL put forward valuable suggestions for the English writing and provided project support. All the authors participated the result discussion of the manuscript.

Funding This work was supported by the Aviation Science Foundation, China (No. 2018Z54028) and the Natural Science Foundation of Liaoning Province, China (No. 2019ZD0240). The authors wish to express their gratitude to the Open Foundation of Key Lab of Fundamental Science for National Defense of Aeronautical Digital Manufacturing Process, China (No. SHSYS202005) and the Liaoning Provincial Department of Education Fund, China (No. JYT2020005).

Availability of data and material Not applicable.

Code availability Not applicable.

Declarations

Ethics approval Not applicable.

Consent to participate The authors declare that they are all co authors of this manuscript.

Consent for publication The authors declare that they all agree to publish this manuscript.

Conflict of interest The authors declare no competing interests.

References

1. Long JC, Xia QX, Xiao GF, Cheng XQ (2017) Application status and prospect of spinning technology in national defense industry. Proceedings of the first weapons Engineering Conference 1155–1159 (In Chinese).
2. Music O, Allwood JM, Kawai K (2010) A review of the mechanics of metal spinning. J Mater Process Tech 210(1):3–23
3. Wong CC, Dean TA, Lin J (2003) A review of spinning, shear forming and flow forming processes. Int J Mach Tools Manuf 43(14):1419–1435
4. Russo IM, Cleaver CJ, Allwood JM (2021) Seven principles of toolpath design in conventional metal spinning. J Mater Process Technol 294(4):117–131
5. Takahashi Y, Kihara S, Nagamachi T, Higaki K (2018) Effects of neck length on occurrence of cracking in tube spinning. Procedia Manufacturing 15:1200–1206
6. Runwal N, Kathiresan G, Karthikeyan P, Jeyanthi S, Bade S (2018) Numerical and experimental analysis of spinning process for gas spring tube. Materials Today: Proceedings 5:18176–18186
7. Huang CC, Hung JC, Hung C, Lin CR (2011) Finite element analysis on neck-spinning process of tube at elevated temperature. Int J Adv Manuf Technol 56:1039–1048
8. Zhao XK, Xu WC, Chen Y, Ma H, Shan DB (2017) Fabrication of curved generatrix workpiece of TA15 titanium alloy by variable thickness tube spinning and flaring process. Int J Adv Manuf Technol 88:1983–1992
9. Xia QX, Shang Y, Zhang SB, Ruan F (2008) Numerical simulation and experimental investigation on the multi-pass neck-spinning of non-axisymmetric oblique tube. Chin J Mech Eng 44(8):78–84
10. Xia QX, Cheng XQ, Hu Y, Ruan F (2012) Finite element simulation and experimental investigation on the forming forces of 3D non-axisymmetrical tubes spinning. Int J Mech Sci 48(7):726–735
11. Xia QX, Cheng XQ, Hui L (2012) Finite element analysis and experimental investigation on deformation mechanism of non-axisymmetric tube spinning. Int J Adv Manuf Technol 59(1–4):263–272
12. Xia QX, Liang BX, Zhang SJ, Cheng XQ, Ruan F (2006) Finite element simulation on the spin-forming of the 3D non-axisymmetric thin-walled tubes. J Mater Sci Technol 22(02):261–266
13. Hu X, Xia QX, Cheng XQ (2014) Structural design of HGPX-WSM horizontal type CNC spinning machine with double rollers. Forging & Stamping Technology 39(08):59–64
14. Wilson S, Long H, Garter G (2018) Non-axisymmetric tube spinning by offset rotation. Procedia Manufacturing 15:1247–1254
15. Arai H, Gondo S (2020) Oblique/curved tube necking formed by synchronous multipass spinning. Metals - Open Access Metallurgy Journal 10(6):733
16. Arai H (2019) Noncircular tube spinning based on three-dimensional CAD model. Int J Mach Tools Manuf 144:103426
17. Wu H, Jia Z, Han ZR (2016) Research on finite element simulation of hollow spinning for tubular part with concave arc generatrix. Forming & stamping technology 2:84–90
18. Kwiatkowski L, Melsheimer O (2010) Experimental investigation of tool path strategies for incremental necking-in. Int J Mater Form 3(1 Supplement):967–970
19. Zhan M, Shi F, Deng Q (2014) Forming mechanism and rules of mandrelless neck-spinning on corrugated pipes. J Plast Eng 2:108–115
20. Yan B (2020) Development if finite element modeling module and research on process parameters of rubber forming. ShenYang Aerospace University, Shen Yang China, The Master’s Degree, p 2020
21. Fu AJ (2017) Hyper-plasticity mechanism of electromagnetic expanding forming for aluminum alloy tube. Ningbo University, Ning Bo China, The Master’s Degree

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.