Update on adjuvant treatment in resectable NSCLC and potential biomarkers predicting postoperative relapse

Running head: Adjuvant treatment in NSCLC

Jeong Uk Lim

1Division of Pulmonary, Critical Care and Allergy, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea

Correspondence to: Jeong Uk Lim, MD, PhD

Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary’s Hospital, School of Medicine, The Catholic University of Korea, #62 Yeouido-dong, Yeongdeungpo-gu, Seoul, 150-713, Republic of Korea. Email: eracovian@catholic.ac.kr
Abstract

Significant proportion of patients with non-small cell lung cancer (NSCLC) are diagnosed in early and resectable stage. Despite use of platinum-based adjuvant chemotherapy, there was only marginal increase in overall survival, and 15% decrease in relapse. With the advents of immunotherapy and epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), landscape of adjuvant treatment in completely resectable NSCLC is changing. Postoperative radiotherapy can be beneficial to patients who underwent surgical resection in certain clinical settings. In addition, new biomarkers that predict efficacy of EGFR TKI and immunotherapy as adjuvant treatment are also necessary. In this review, recent updates in adjuvant treatment in resectable NSCLC were briefly explained.
Backgrounds

Significant proportion of patients with non-small cell lung cancer (NSCLC) are diagnosed in early and resectable stage. About 20% of patients are diagnosed with stages I-II, and 30% with stage III in NSCLC. In stage I-IIIA, treatment of choice is complete resection, if resectable. However, 5-year recurrence rate is as high as 45% in stage 1b, 62% in stage II, and 76% in stage III. LACE meta-analysis showed that cisplatin-based adjuvant chemotherapy results in 5.4% increase in 5-year overall survival (OS) in resectable NSCLC patients. About 48 to 57% of patients with resectable NSCLC with stages IB to IIIA undergo adjuvant chemotherapy, while higher proportions of patients with stage II to IIIA disease receive the treatment when compared to stage IB. There are many risk factors which are associated with increased postoperative recurrence in patients who underwent complete resections: high carcinoembryonic antigen (CEA), lymphatic invasion, pleural invasion, poor histological differentiation, vessel invasion, nodal involvement, and large tumor size. Recently, high programmed death-ligand 1 (PD-L1) expression was shown to have association with increased postoperative recurrence.

Despite use of platinum-based adjuvant chemotherapy, there was only marginal benefit in OS, and 15% decrease in relapse. With the advents of immunotherapy and epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), landscape of adjuvant treatment in completely resectable NSCLC is changing. With the favorable outcomes using EGFR TKI and immunotherapy in advanced NSCLC, attempts to incorporate these relatively new treatment modalities in adjuvant setting is undergoing.

In this narrative review, recent updates in adjuvant treatment in resectable NSCLC were briefly explained.

EGFR TKI and anaplastic lymphoma kinase (ALK) inhibitor as adjuvant therapy

Attempts to utilize EGFR TKI in adjuvant treatments had been made since early 2010s. Goss et al. conducted a phase 3 double-blind-placebo randomized controlled study, comparing efficacy of gefitinib and placebo in resectable IB-IIIA NSCLC. No significant difference in disease free survival (DFS)
and OS between the two arms was present. However, there was only 15 patients with EGFR mutation among 503 study patients. In phase 3 randomized RADIANT study, efficacy of erlotinib as adjuvant treatment was evaluated in stage IB-IIIA NSCLC. DFS of the erlotinib arm was tended to superior than the placebo group, but no statistically significant difference was present. It should be noted that there were 161 patients with positive EGFR mutation among 973 study patients, and EGFR positivity was defined by IHC and/or FISH.

SELECT study, open-label phase 2 single-arm study showed possibility of erlotinib as an adjuvant treatment. In all patients with sensitizing EGFR mutation, 2-year DFS was 88% which was better than the historical genotype-matched control.

In the context of previous results, CTONG trial has shown that use of gefitinib as adjuvant treatment was associated with significantly superior DFS when compared with placebo in the resectable NSCLC. In an open label phase 3 study, efficacy of gefitinib versus vinorelbine plus cisplatin as adjuvant treatment was compared in completely resected stage II-IIIA patients with exon 19 deletion or exon 21 Leu858Arg mutation. Gefitinib showed significantly better DFS when compared with the vinorelbine + cisplatin arm (HR 0.60 (95% CI 0.42-0.87), P=0.0054) in the intention-to-treat population (ITT). The superiority in DFS was repeatedly shown in modified ITT population (HR 0.70 (95% CI 0.49-0.99), P=0.044). However, better DFS did not translate to evident benefits in OS, and recurrence in the central nervous system (CNS) was not uncommon in the gefitinib arm. The results of CTONG study did not change the clinical practice.

ADAURA trial has shown a potential for possible major breakthrough in management of early NSCLC. ADAURA study is a phase 3 randomized double-blind placebo study, including 682 EGFR mutant patients with NSCLC. In comparison to placebo group, osimertinib showed 80% reduction in the risk of disease recurrence in patients who underwent complete resection. In stage II-IIIA disease of 470 patients, the osimertinib group showed significantly better DFS than the placebo group (HR=0.17, CI 0.11-0.26, P=0.001). In stage IB to IIIA NSCLC, the superiority in DFS for osimertinib was maintained
Furthermore, osimertinib showed significantly better DFS regardless of prior adjuvant platinum-based chemotherapy, type of EGFR mutation (Ex19del or L858R), or stages. With the evident advantage of DFS in resectable NSCLC with sensitizing EGFR mutations, US FDA approved osimertinib as the first adjuvant treatment for patients with NSCLC with Ex19del or L858R.

It is undeniable that ADAURA study results would change the landscape of adjuvant treatment after complete resection of NSCLC. Nevertheless, some questions need to be answered. First, whether the clinical benefit of postoperative osimertinib be maintained after discontinuation of medication. ADAURA study suggests 3 years of use. Second, despite the low incidence of grade III-IV AEs, use of osimertinib for long duration would entail AEs for patients who would not have experienced if osimertinib was not used. Lastly, in many countries including Korea, use of osimertinib as an adjuvant treatment is not reimbursed by the national health insurance, and the patients will experience heavy financial burden.

Attempts to utilize ALK inhibitor as an adjuvant treatment is ongoing as well. ALINA study (NCT03456076) is a phase III study on efficacy and safety of alectinib as adjuvant therapy in patients with stage IB–IIIA ALK positive NSCLC. The randomized control trial is to compare alectinib and platinum-based regimen. Participants in the experimental are given alectinib at 600 mg orally twice daily for 24 months. This trial will show if ALK inhibitor can be another option in adjuvant settings.

Immunotherapy as adjuvant therapy

Immune checkpoint inhibitors changed the landscape of metastatic NSCLC treatment. As a single agent and in combination with platinum regimen, immunotherapy was associated with improved OS and PFS in locally advanced and metastatic NSCLC. Based on the clinical benefits in advanced NSCLC, attempts to incorporate immunotherapy in adjuvant setting is ongoing.

Among recent relevant studies, Impower010 is the most notable one. Impower010 is a randomized,
multicentre, open-label, phase 3 study, and included patients with completely resected stage 1B (tumors \(\geq 4 \text{cm} \)) to IIIA NSCLC according to AJCC 7th edition. In the ITT population, 1005 patients were randomly assigned (507 assigned to atezolizumab group and 498 assigned to best supportive care group). Analysis of the data were done in hierarchical statistical manner. In patients with PD-L1 TC\(\geq 1\% \) (SP263) stage II-IIIA, atezolizumab showed significantly better DFS than in best supportive care (HR=0.66 (CI 0.50-0.88)), \(P = 0.004 \). In patients with stage II-IIIA and stage IB-IIIA NSCLC, atezolizumab showed significantly better DFS when compared to the best supportive care group as well. In comparison to the best supportive care group, the atezolizumab group showed higher proportion of any grade and grade 3-4 adverse events.

ASCO recently published a rapid recommendation update for adjuvant systemic therapy in stage I-IIIA completely resected NSCLC. Adjuvant atezolizumab is recommended for all patients with PD-L1 \(\geq 1\% \) and without sensitizing EGFR mutations after cisplatin-based chemotherapy\(^\text{16}\). In addition, FDA approved atezolizumab as adjuvant treatment for NSCLC.

Clinical trials including other immune checkpoint inhibitors such as pembrolizumab or nivolumab are also in progress. PEARLS study assesses effectiveness of pembrolizumab as adjuvant treatment in participants with stage IB/II-IIIA who have undergone complete resection, regardless of adjuvant chemotherapy\(^\text{17}\). DFS was significantly improved in the pembrolizumab arm when compared to the placebo group (in the all-comers population) (median 53.6 vs 42.0 months; HR 0.76; 95\% CI 0.63-0.91; \(P = 0.0014 \))\(^\text{18}\). MK-3475-671/KEYNOTE-671 is a phase III, randomized trial evaluating efficacy of pembrolizumab in combination with platinum doublet neoadjuvant chemotherapy before surgery, and also in adjuvant phase in patients with resectable T3-4N2 NSCLC\(^\text{19}\). Adjuvant Nivolumab in Resected Lung Cancers (ANVIL) study evaluates potential efficacy of nivolumab in improving OS and DFS in patients with stage IB-IIIA NSCLC\(^\text{20}\). If other immune checkpoint inhibitors show improved primary outcomes in resectable NSCLC, more clinical options can be provided to the patients with resectable NSCLC.
Postoperative radiotherapy

Several studies on efficacy of postoperative radiotherapy had been performed. According to current standards, radiotherapy techniques decades ago had been underdeveloped, and collateral damage to normal lung tissues had been fatal. SEER study, a retrospective analysis of 7465 patients showed that PORT was associated with improved survival in patients with N2 disease, however no clinical benefit was shown in patients with N0-1. A retrospective study by Wang et al., including 221 patients with pIII-A-N2, showed that PORT had clinical benefits in significantly improving OS and DFS. In addition, locoregional recurrence-free survival (LRFS) and distant metastasis-free survival were prolonged. NCDB study also retrospectively analyzed 4483 pN2 patients, and showed association between PORT and improved 5-year OS. Another retrospective study enrolling 1401 pIIIA-N2 patients showed that PORT significantly reduced the risk of locoregional relapse risk, and in some patients with risk factors such as heavy smoking history and high number of positive lymph nodes, showed improvement in OS. Based on results of series of studies, two notable randomized controlled trials were performed.

LUNG-ART trial is an open-label, randomized phase 3 trial that enrolled 501 pN2 NSCLC patients who underwent complete resection. The study patients were randomized to either PORT arm (n=252) or no-PORT arm (n=249). The PORT group tended to show superior DFS than the no-port group, but no statistical significance was present (P=0.18). In terms of safety profiles, the PORT group showed higher prevalence of deaths when compared with the control group (15% vs 5%). In the PORT group, 11 patients died due to cardiopulmonary causes, while none did in the control group. Adverse events of grade 3 or 4 occurred in 24% of the PORT group and 15% of the control group. Despite a significant reduction in mediastinal relapse in the PORT group, no significant differences between the two groups in DFS and OS were present. Furthermore, significant risk in the safety issue deterred PORT being a routine postoperative process in pN2 NSCLC.

Another randomized clinical trial, PORT-C is a single center trial, but it should be taken into account that majority of the patients had undergone intensity-modulated radiation therapy (IMRT), which is an advanced radiotherapy technique minimizing collateral damage to normal tissue adjacent to tumors.
Total of 394 patients were randomized to either observation arm or PORT arm. No significant difference in DFS or OS was observed in mITT analysis, but statistically significant difference in DFS was observed in both per-protocol and as treatment analyses (P=0.05 and P=0.02, respectively). In all types of analyses, PORT arm showed better LRFS.

PORT may not be a routine practice in patients with completely resected stage III-N2, as not enough evidence supporting improvement in OS and DFS were shown. However, in certain clinical settings such as persistent N2 disease after chemotherapy or extensive mediastinal involvement, PORT can be considered to reduce the risk of postoperative relapse. Moreover, upon request of thoracic surgeons who performed complete resection, PORT can also be performed to reduce locoregional relapse risk. Most importantly, decision to perform PORT should be preceded by careful discussions among multidisciplinary team in order to avoid unnecessary treatment-related toxicity and maximize clinical benefits.

Safety Issues

Despite potential benefits of the new treatment modalities in adjuvant settings, predicting possible treatment-related adverse events should come beforehand. Considering that adjuvant treatment is performed to decrease the risk of postoperative relapse, avoiding unnecessary hazards to patients should be the priority. The ADAURA study has shown that osimertinib after complete resection is relatively safe. Among 337 patients who underwent osimertinib treatment, adverse events of grade 3 or higher were reported in 20% of the osimertinib group in comparison to 13% in the placebo group, and no fatal adverse events were reported in the osimertinib group. Frequently reported adverse events included diarrhea, paronychia, dry skin, pruritus, and cough. Interstitial lung disease was reported in 3% of the osimertinib group.

The IMpower010 study showed that treatment-related adverse events occurred in 335 (68%) among the 495 patients of the atezolizumab group, while grade 3 or 4 severity adverse events occurred in 53 (11%) patients in the same group. The most common adverse events related to atezolizumab were hypothyroidism, pruritus and rash. Treatment-related adverse events of serious degree occurred in 7%
of the atezolizumab group. 15 Immunotherapy-related adverse events can affect various organs including lung, skin, endocrine organs, gastrointestinal tract, kidney and others.29-31 Evaluation of risk factors associated with immunotherapy-related adverse events, such as autoimmune diseases, or pre-existing interstitial lung disease is important 32,33 and checking patients’ general conditions before the initiation of the immunotherapy-combined adjuvant treatment is necessary to reduce the possibility of immunotherapy-related adverse events.

Since, PORT did not show a definite clinical benefit in the majority of patients who underwent complete resection, radiotherapy-induced toxicity should be an important concern. In the LUNG-ART trial, cardiopulmonary associated deaths occurred in the PORT arm 26. In an analysis of the SEER database, PORT was associated with a significant increase in heart disease-related deaths in the 1980s 34. However, the technical improvements in radiotherapy has led to benefits in reducing toxicity. Moreover, if patients are to undergo an additional adjuvant treatment, the risk for radiotherapy-related pneumonitis can increase. More recent radiotherapy techniques such as, 3D conformal radiation therapy (3D-CRT), IMRT or volumetric modulated arc therapy (VMAT) showed potential benefits while reducing the risks of radiotherapy-related toxicities 35-38.

In order to minimize possible PORT-related toxicity, it is recommended that a multidisciplinary tumor board including thoracic surgeons, radiation-oncologists and pulmonologists discuss the possible risks and benefits of PORT before treatment is started.

Potential biomarkers predicting postoperative outcome

Relapse after complete resection is usually assessed radiologically using CT or other modalities. However, it is difficult to distinguish postoperative change of normal lung tissue from local recurrence, and it is not easy to detect minimal residual disease (MRD) which could not be seen radiologically, possibly delaying the chance of early treatment. Furthermore, with the advents of new adjuvant treatment modalities such as immune checkpoint inhibitor and EGFR TKI, it is necessary to find new biomarkers that account genetic and molecular backgrounds.
Among various studied biomarkers detecting postoperative relapse, series of studies on circulating tumor DNA (ctDNA) had been published recently. CtDNA is short sequenced DNA fragment shed by tumor cells, and can be distinguished by detecting novel mutations which were not found from normal tissues. The mutations include EGFR, KRAS, BRAF, TP53, ERBB2 and many other tumor drivers. Multiple platforms such as CAPP Seq, Signatera, and whole exome sequencing (WES) were studied for detection of MRD after complete resection of tumors. Allele frequency is important as it is suggested as potential cutoff for detecting ctDNA. Allele frequency as high as 0.2% is widely used cutoff in relevant studies. Detection of CtDNA was associated with development of early-stage lung cancer or postoperative relapse of lung cancer after complete resection. CtDNA has strengths in that it is non-invasive, can be measured serially, can detect disease relapse ahead of radiologic diagnosis and can simultaneously detect concurrent types of mutation. On the other hand, ctDNA is expensive and allele frequency which has a role of cutoff dividing positive versus negative is not standardized yet. Moreover, false positives can also happen. Some cancer-related mutations can also be detected in benign conditions. In addition, the value of ctDNA as a biomarker may be low and detection can be difficult in the operable stage, because the tumor burden is relatively small when compared to more advanced cancer.

Studies on detecting MRD using CtDNA in NSCLC patients suggested a possibility to utilize ctDNA positivity as an indication for adjuvant treatment. In a study which enrolled 100 patients who underwent complete resection, 13 out of 14 patients who showed ctDNA positivity after surgery showed recurrence, while only 1 of 10 patients who were ctDNA negative showed recurrence during observation time. In one study, using targeted next-generation sequencing, ctDNA was assessed for predicting dynamic recurrence risk and clinical benefit of adjuvant chemotherapy. Positive ctDNA detected after both surgical resection and adjuvant chemotherapy were significantly associated with increased risk of recurrence. Patients with the postsurgical ctDNA positivity benefited from adjuvant chemotherapy. On the other hand, ctDNA negative patients showed a low risk of postsurgical relapse regardless of adjuvant chemotherapy.

Other immune and various protein signatures from tumor tissues were shown to have association with
predictive value in NSCLC. PD-L1 expression is traditionally known for being predictive of immunotherapy response, and it was shown in Impower010, atezolizumab adjuvant treatment showed more evident treatment response in patients with PD-L1 expression TC $\geq 50\%$ 15. AXL overexpression of the tissue along with circulating tumor cells has shown association with OS in resectable adenocarcinoma 43. One retrospective cohort study including 725 patients with surgically removed NSCLC showed c-MET overexpression was a positive factor associated with OS, and further suggested that it could also be a possible biomarker for predicting platinum-based adjuvant chemotherapy response 44. Immunohistochemical assays of CD47 and CD68 from resected tumor tissues also predicted outcomes of patients with NSCLC 45. An analytical study of 292 patients with early-stage cancer suggested that increased proportion of non-Treg CD4$^+$ T cells and plasma cells were correlated with decreased chance of recurrence. The study also suggested that stratification based on levels of four immune cell types helped identify patients who are higher risk of recurrence after surgery 46. As such intratumoral immune cell composition is becoming more important due to incorporation of immunotherapy as a new adjuvant treatment modality.

\textbf{Conclusion}

Due to unmet needs in adjuvant treatment in resectable NSCLC, several treatment modalities such as EGFR TKI and immunotherapy were utilized to improve recurrence free survival. With evident success in showing superior PFS by osimertinib and immunotherapy in resectable NSCLC, prognosis of patients with resectable PFS is expected to improve in near future. Furthermore, it is necessary to find new biomarkers with genetic and immunologic backgrounds that are predictive of clinical outcomes of resectable NSCLC.

\textbf{Conflicts of Interest}

No potential conflict of interest relevant to this article was reported.

\textbf{Funding}
No funding to declare.

Acknowledgments

No acknowledgments to mention

References

1. Goldstraw P, Chansky K, Crowley J, Rami-Porta R, Asamura H, Eberhardt WE, et al. The IASLC Lung Cancer Staging Project: Proposals for Revision of the TNM Stage Groupings in the Forthcoming (Eighth) Edition of the TNM Classification for Lung Cancer. J Thorac Oncol. 2016;11(1):39-51.
2. Pignon J-P, Tribodet H, Scagliotti GV, Douillard J-Y, Shepherd FA, Stephens RJ, et al. Lung Adjuvant Cisplatin Evaluation: A Pooled Analysis by the LACE Collaborative Group. Journal of Clinical Oncology. 2008;26(21):3552-9.
3. Uramoto H, Tanaka F. Recurrence after surgery in patients with NSCLC. Transl Lung Cancer Res. 2014;3(4):242-9.
4. Kojima K, Sakamoto T, Kasai T, Kagawa T, Yoon H, Atagi S. PD-L1 expression as a predictor of postoperative recurrence and the association between the PD-L1 expression and EGFR mutations in NSCLC. Sci Rep. 2021;11(1):17522.
5. Pisters KM, Le Chevalier T. Adjuvant chemotherapy in completely resected non-small-cell lung cancer. J Clin Oncol. 2005;23(14):3270-8.
6. Goss GD, O’Callaghan C, Lorimer I, Tsao MS, Masters GA, Jett J, et al. Gefitinib versus placebo in completely resected non-small-cell lung cancer: results of the NCIC CTG BR19 study. J Clin Oncol. 2013;31(27):3320-6.
7. Kelly K, Altorki NK, Eberhardt WE, O’Brien ME, Spigel DR, Crino L, et al. Adjuvant Erlotinib Versus Placebo in Patients With Stage IB-III A Non-Small-Cell Lung Cancer (RADIANT): A Randomized, Double-Blind, Phase III Trial. J Clin Oncol. 2015;33(34):4007-14.
8. Pennell NA, Neal JW, Chaft JE, Azzoli CG, Janne PA, Govindan R, et al. SELECT: A Phase II Trial of Adjuvant Erlotinib in Patients With Resected Epidermal Growth Factor Receptor-Mutant Non-Small-Cell Lung Cancer. J Clin Oncol. 2019;37(2):97-104.
9. Wu Y-L, Zhong W, Wang Q, Mao W, Xu S-T, Wu L, et al. CTONG1104: Adjuvant gefitinib versus chemotherapy for resected N1-N2 NSCLC with EGFR mutation—Final overall survival analysis of the randomized phase III trial 1 analysis of the randomized phase III trial. Journal of Clinical Oncology. 2020;38(15_suppl):9005-.
10. Zhong WZ, Wang Q, Mao WM, Xu ST, Wu L, Shen Y, et al. Gefitinib versus vinorelbine plus cisplatin as adjuvant treatment for stage II-III A (N1-N2) EGFR-mutant NSCLC (ADJUVANT/CTONG1104): a randomised, open-label, phase 3 study. Lancet Oncol. 2018;19(1):139-
11. Wu YL, Tsuboi M, He J, John T, Grohe C, Majem M, et al. Osimertinib in Resected EGFR-Mutated Non-Small-Cell Lung Cancer. N Engl J Med. 2020;383(18):1711-23.
12. Remon J, Hendriks LEL. Osimertinib Should be the Standard of Care for the Adjuvant Therapy of Stage IB to IIIA EGFR-Mutant NSCLC. J Thorac Oncol. 2021;16(3):368-70.
13. Uprety D. Osimertinib Should Not Yet Be Considered the Standard of Care for EGFR-Mutant NSCLC in the Adjuvant Setting. J Thorac Oncol. 2021;16(3):371-4.
14. Solomon BJ, Ahn JS, Barlesi F, Dzidziozu R, Nishio M, Shaw AT, et al. ALINA: A phase III study of alecinitin versus chemotherapy as adjuvant therapy in patients with stage IB–IIIA anaplastic lymphoma kinase-positive (ALK+) non-small cell lung cancer (NSCLC). Journal of Clinical Oncology. 2019;37(15_suppl):TPS8569-TPS.
15. Felip E, Altorki N, Zhou C, Csoszi T, Vynnychenko I, Goloborodko O, et al. Adjuvant atezolizumab after adjuvant chemotherapy in resected stage IB-IIIA non-small-cell lung cancer (IMpower010): a randomised, multicentre, open-label, phase 3 trial. Lancet. 2021;398(10308):1344-57.
16. Pisters K, Kris MG, Gaspar LE, Ismaila N, Adjuvant Systemic Therapy, Adjuvant Radiation Therapy for Stage I-IIIA Completely Resected Non-Small-Cell Lung Cancer: ASCO Guideline Rapid Recommendation Update. J Clin Oncol. 2022;JCO2200051.
17. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT02504372; 2022, Accesses May 16, 2022.
18. Paz-Ares L, O'Brien MER, Mauer M, Dafni U, Oselin K, Havel L, et al. VP3-2022: Pembrolizumab (pembro) versus placebo for early-stage non-small cell lung cancer (NSCLC) following complete resection and adjuvant chemotherapy (chemo) when indicated: Randomized, triple-blind, phase III EORTC-1416-LCG/ETOP 8-15 – PEARLS/KEYNOTE-091 study. Annals of Oncology. 2022;33(4):451-3.
19. ClinicalTrials.gov, https://ClinicalTrials.gov/show/NCT03425643. 2022. Accessed May 7, 2022.
20. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT02595944. 2022, Accessed May 13, 2022.
21. Lally BE, Geiger AM, Urbanic JJ, Butler JM, Wentworth S, Perry MC, et al. Trends in the outcomes for patients with limited stage small cell lung cancer: An analysis of the Surveillance, Epidemiology, and End Results database. Lung Cancer. 2009;64(2):226-31.
22. Lally BE, Zelterman D, Colasanto JM, Haffty BG, Detterbeck FC, Wilson LD. Postoperative radiotherapy for stage II or III non-small-cell lung cancer using the surveillance, epidemiology, and end results database. J Clin Oncol. 2006;24(19):2998-3006.
23. Dai H, Hui Z, Ji W, Liang J, Lu J, Ou G, et al. Postoperative radiotherapy for resected pathological stage IIIA-N2 non-small cell lung cancer: a retrospective study of 221 cases from a single institution. Oncologist. 2011;16(5):641-50.
24. Robinson CG, Patel AP, Bradley JD, DeWees T, Waqar SN, Morgensztern D, et al.
Postoperative radiotherapy for pathologic N2 non-small-cell lung cancer treated with adjuvant chemotherapy: a review of the National Cancer Data Base. J Clin Oncol. 2015;33(8):870-6.

25. Zhang CC, Hou RP, Xia WY, Zeng WQ, Liu J, Wang JM, et al. Prognostic index for estimating the survival benefit of postoperative radiotherapy in pathologic N2 non-small cell lung cancer: A real-world validation study. Lung Cancer. 2021;156:100-8.

26. Le Pechoux C, Pourol N, Barlesi F, Lerouge D, Antoni D, Lamezec B, et al. Postoperative radiotherapy versus no postoperative radiotherapy in patients with completely resected non-small-cell lung cancer and proven mediastinal N2 involvement (Lung ART): an open-label, randomised, phase 3 trial. Lancet Oncol. 2022;23(1):104-14.

27. Hui Z, Men Y, Hu C, Kang J, Sun X, Bi N, et al. Effect of Postoperative Radiotherapy for Patients With pIIIA-N2 Non-Small Cell Lung Cancer After Complete Resection and Adjuvant Chemotherapy: The Phase 3 PORT-C Randomized Clinical Trial. JAMA Oncol. 2021;7(8):1178-85.

28. Liu J, Ladbury C, Kim J, Raz D, Erhunmunsee L, West HJ, et al. Postoperative Radiation Therapy Should Be Used for Completely Resected Stage III-N2 NSCLC in Select Patients. J Thorac Oncol. 2022;17(2):194-6.

29. Postow MA, Sidlow R, Hellmann MD. Immune-Related Adverse Events Associated with Immune Checkpoint Blockade. N Engl J Med. 2018;378(2):158-68.

30. Wang PF, Chen Y, Song SY, Wang TJ, Ji WJ, Li SW, et al. Immune-Related Adverse Events Associated with Anti-PD-1/PD-L1 Treatment for Malignancies: A Meta-Analysis. Front Pharmacol. 2017;8:730.

31. Min JW, Lim JU. Immune checkpoint inhibitors in patients with chronic kidney disease: Assessing their ability to cause acute kidney injury and informing their proper use. Semin Oncol. 2022;49(2):141-7.

32. Kim S, Lim JU. Immune checkpoint inhibitor-related interstitial lung disease in patients with advanced non-small cell lung cancer: systematic review of characteristics, incidence, risk factors, and management. J Thorac Dis. 2022;14(5):1684-95.

33. Hoa S, Laaouad L, Roberts J, Ennis D, Ye C, Al Jumaily K, et al. Preexisting autoimmune disease and immune-related adverse events associated with anti-PD-1 cancer immunotherapy: a national case series from the Canadian Research Group of Rheumatology in Immuno-Oncology. Cancer Immunol Immunother. 2021;70(8):2197-207.

34. Lally BE, Detterbeck FC, Geiger AM, Thomas CR, Jr., Machtay M, Miller AA, et al. The risk of death from heart disease in patients with nonsmall cell lung cancer who receive postoperative radiotherapy: analysis of the Surveillance, Epidemiology, and End Results database. Cancer. 2007;110(4):911-7.

35. Zhang H, Zhang DX, Ju T, Zhou J. The effect of postoperative radiotherapy on the survival of patients with resectable stage III-N2 non-small-cell lung cancer: a systematic review and meta-analysis. Neoplasma. 2019;66(5):717-26.

36. Wakelee HA, Stephenson P, Keller SM, Wagner H, Herskovic A, Komaki R, et al. Postoperative radiotherapy (PORT) or chemoradiotherapy (CPORT) following resection of stages II and
IIIA non-small cell lung cancer (NSCLC) does not increase the expected risk of death from intercurrent disease (DID) in Eastern Cooperative Oncology Group (ECOG) trial E3590. Lung Cancer. 2005;48(3):389-97.

37. Chun SG, Hu C, Choy H, Komaki RU, Timmerman RD, Schild SE, et al. Impact of Intensity-Modulated Radiation Therapy Technique for Locally Advanced Non-Small-Cell Lung Cancer: A Secondary Analysis of the NRG Oncology RTOG 0617 Randomized Clinical Trial. J Clin Oncol. 2017;35(1):56-62.

38. Suveg K, Plasswilm L, Iseli T, Leskow P, Fischer GF, Putora PM. Role of Adjuvant Radiotherapy in Non-Small Cell Lung Cancer-A Review. Cancers (Basel). 2022;14(7).

39. Diaz LA, Jr., Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol. 2014;32(6):579-86.

40. Pradhan M, Chocry M, Gibbons DL, Sepesi B, Cascone T. Emerging biomarkers for neoadjuvant immune checkpoint inhibitors in operable non-small cell lung cancer. Transl Lung Cancer Res. 2021;10(1):590-606.

41. Abbosh C, Birkbak NJ, Wilson GA, Jamal-Hanjani M, Constantin T, Salari R, et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature. 2017;545(7655):446-51.

42. Qiu B, Guo W, Zhang F, Lv F, Ji Y, Peng Y, et al. Dynamic recurrence risk and adjuvant chemotherapy benefit prediction by ctDNA in resected NSCLC. Nat Commun. 2021;12(1):6770.

43. de Miguel-Perez D, Bayarri-Lara C, Ortega FG, Russo A, Moyano Rodriguez MJ, Alvarez-Cubero MJ, et al. Post-Surgery Circulating Tumor Cells and AXL Overexpression as New Poor Prognostic Biomarkers in Resected Lung Adenocarcinoma. Cancers (Basel). 2019;11(11).

44. Tsakonas G, Botling J, Micke P, Rivard C, LaFleur L, Mattsson J, et al. c-MET as a biomarker in patients with surgically resected non-small cell lung cancer. Lung Cancer. 2019;133:69-74.

45. Fu F, Zhang Y, Gao Z, Zhao Y, Wen Z, Han H, et al. Combination of CD47 and CD68 expression predicts survival in eastern-Asian patients with non-small cell lung cancer. J Cancer Res Clin Oncol. 2021;147(3):739-47.

46. Mony JT, Schuchert MJ. Prognostic Implications of Heterogeneity in Intra-tumoral Immune Composition for Recurrence in Early Stage Lung Cancer. Front Immunol. 2018;9:2298.

47. Chaft JE, Dahlberg SE, Khullar OV, Edelman MJ, Simone CB, Heymach J, et al. EA5142 adjuvant nivolumab in resected lung cancers (ANVIL). Journal of Clinical Oncology. 2018;36(15_suppl):TPS8581-TPS.
Table 1. Targeted therapy and immunotherapy as adjuvant treatment in NSCLC patients who underwent complete resection

Study	Description	Outcome	Reference
Targeted therapy as adjuvant treatment			
RADIANT study,	A phase 3 randomized double-blind, placebo-controlled study on efficacy of	DFS of the erlotinib arm was tended to be superior than the placebo arm, but no statistically significant difference was	7
	erlotinib as adjuvant treatment in stage IB-IIIA NSCLC. There were 161	present.	
	patients with EGFR mutation among 973 study patients.		
Goss et al.	A phase 3 randomized double-blind-placebo controlled study, comparing	There was no difference in DFS and OS between the two arms.	6
	efficacy of gefitinib and placebo in resectable IB-IIIA NSCLC.		
SELECT study	Open-label phase 2 single-arm study evaluating efficacy of erlotinib as an	In all patients with EGFR mutation, 2-year DFS was 88% which was better than the historical genotype-matched control	8
	adjuvant treatment.		
CTONG trial	Open label phase 3 study comparing efficacy of gefitinib versus vinorelbine	Gefitinib showed significantly better DFS when compared with the vinorelbine + cisplatin arm (HR 0.60 (95% CI 0.42-0.87), P=0.0054) in the intention-to-treat population. However, better	10
	plus cisplatin in completely resected stage II-IIIA patients with exon 19		
	deletion or exon 21 Leu858Arg mutation		
		DFS did not translate to evident benefits in OS	
ADAURA trial
A phase 3 randomized double-blind placebo study, including 682 EGFR mutant patients with NSCLC. In stage II-III A disease of 470 patients, the osimertinib group showed significantly better DFS than the placebo group (HR=0.17, CI 0.11-0.26, P=0.001). In stage IB to IIIA NSCLC, the superiority in DFS for osimertinib was maintained (HR=0.20, CI=0.14-0.30, P<0.001).

ALINA study (NCT03456076)
A phase III study on efficacy and safety of alectinib as adjuvant therapy in patients with stage IB–IIIA ALK positive NSCLC. Efficacy of alectinib and platinum-based regimen is to be compared. No results reported yet.

Immunotherapy as adjuvant treatment

Study	Description	Results
Impower010	A randomized, multicentre, open-label, phase 3 study including patients with completely resected stage 1B (tumors ≥4cm) to IIIA NSCLC according to AJCC 7th edition	In patients with PD-L1 TC≥1% (SP263) stage II-III A, atezolizumab showed significantly better DFS than in best supportive care (HR=0.66 (CI 0.50-0.88), P = 0.004). In patients with stage II-III A and stage IB-III A NSCLC, atezolizumab showed significantly better DFS when compared to the best supportive care group.
PEARLS study	Assesses effectiveness of pembrolizumab as Adjuvant pembrolizumab showed a statistically significant DFS	

11 14 15 18
adjuvant treatment in participants with stage IB/II-IIIA who have undergone complete resection, regardless of adjuvant chemotherapy

MK-3475-671/KEYNOTE-671 A phase III, randomized trial evaluating efficacy of pembrolizumab in combination with platinum doublet neoadjuvant chemotherapy before surgery, and also in adjuvant phase in patients with resectable T3-4N2 NSCLC

Adjuvant Nivolumab in Resected Lung Cancers (ANVIL) Evaluates potential efficacy of nivolumab in improving OS and DFS in patients with stage IB-IIIA NSCLC

Abbreviations: DFS, disease free survival; OS, overall survival; NSCLC, non-small cell lung cancer; PD-L1, programmed death-ligand 1