When Sparsity Meets Dynamic Convolution

Shuai He 1, Yuhang Li 2, Chenbo Jiang 3, Shi Gu 1,
1University of Electronic Science and Technology of China
2Yale University
3Nanjing University of Science and Technology Zijin College
heshuaiheshuai3@gmail.com, yuhang.li@yale.edu,
cbjiang@foxmail.com, gus@uestc.edu.cn

Abstract

Dynamic convolution achieves a substantial performance boost for efficient CNNs at a cost of increased convolutional weights. Contrastively, mask-based unstructured pruning obtains a lightweight network by removing redundancy in the heavy network at risk of performance drop. In this paper, we propose a new framework to coherently integrate these two paths so that they can complement each other compensate for the disadvantages. We first design a binary mask derived from a learnable threshold to prune static kernels, significantly reducing the parameters and computational cost but achieving higher performance in Imagenet-1K (0.6% increase in top-1 accuracy with 0.67G fewer FLOPs). Based on this learnable mask, we further propose a novel dynamic sparse network incorporating the dynamic routine mechanism, which exerts much higher accuracy than baselines (2.63% increase in top-1 accuracy for MobileNetV1 with 90% sparsity). As a result, our method demonstrates a more efficient dynamic convolution with sparsity.

1. Introduction

There have been rich discussions on the expression power of deep neural networks in two opposite directions [31,38]. From the perspective of increasing the model capacity, more layers and channels with specialized infrastructure can achieve higher performance with less overfit [1,36]. In the view of compressing the model, sparsification and quantization of complex networks can induce smaller models with a moderate deficit in accuracy [12,14]. Regarding the asymmetry between cost and gain in these two opposite approaches, what will happen when we combine them for infrastructure optimization? Especially, can we apply dynamic convolution with sparsity simultaneously towards of better tradeoff between model complexity and performance?

Dynamic convolution [7] achieves significant performance gains over the static convolution with negligible computational cost but relatively high memory cost. It utilizes an input-based attention mechanism to generate dynamic attention weights to combine multiple static parallel kernels, boosting the overall performance at the cost of increased convolutional parameters in the dynamical attention. However, during inference, this parameter increase does not match the model performance improvement completely. For example, DY-ResNet18 [7] is 2.3% higher than ResNet-18 and 4% lower than ResNet-50 in Top-1 accuracy on Imagenet-1K [8], while its parameter amount is about four times of ResNet-18 and twice of ResNet-50. This phenomenon raises the problem of when we can design the dynamic convolution more efficiently.

A possible routine to improve the memory efficiency in dynamic convolution is to optimize its forms of combining kernels. For example, Li et al. [27] proposes Dynamic Convolution via Matrix Decomposition (DCD) to reformulate the linear combination of kernels into a summation of static kernel and sparse dynamic residual. Another scheme is to increase the sparsity to build compact parameter-efficient networks. One can prune task-unrelated neurons that usually have small absolute values [13,17,44] or contribute little to the decrease of loss function [25,26,37]. In recent studies, some sparse networks not only decrease storage and computational requirements but also achieve higher inference scores than dense networks [10], suggesting the potential utility of sparse structure in decreasing the overfit. In terms of the expression power of subnetworks, the Lottery Ticket Hypothesis [13] says if we can find the binary mask for the efficient subnetwork in the training process, we can train the network from scratch to the same level of accuracy. This finding inspires us to integrate the sparse approaches with dynamic convolution to achieve a compact and efficient network infrastructure.

In this work, we propose to integrate the dynamic co-
volution with sparsity in two folds, the sparse dynamic convolution and the dynamic sparse networks. The sparse dynamic convolution provides local optimization of convolution structure and the dynamic sparse network enriches the expression power of sparse networks with low cost.

First, we present a new algorithm that trains the dynamic convolution modes via iterative pruning that increases the sparse ratio of binary masks step by step. To dynamically adjust the sparsity of masks, we set a learnable threshold for each convolutional layer and prune the neurons whose magnitude is below the lay-wise threshold. We also propose a penalty term to explicitly regulate the L_0-norm of binary masks to guarantee the total parameters under an overall budget without additional hyperparameters. Our binary mask induces sparsity via learning the per-layer pruning thresholds like STR [23] and is easier to train given a sparsity budget. Considering that the computational kernel is a linear combination of static kernels, the masked kernels can then be integrated into a sparsely computing kernel with reduced FLOPs.

Next, we put forward a dynamic method to promote the performance of sparse networks. Generally, the convolutional kernel is denser than each of the static kernels in sparse dynamic convolution. However, if we control the sparsity of static kernels and select only one kernel towards an input, we can directly restrict the sparse ratio of the network during the inference time. Inspired by Bengio et al. [3] and Bulat et al. [5], we take the static kernels as the candidates for the convolutional kernel and dynamically select only one per layer for a single input sample following a very lightweight gating function. Learning to select a single and turn to the input data, the gating function is a key property of our sparse model which renders it suitable for the case of broader latent space. Given that the computational cost of the gating function is negligible, our models perform well on the trade-off between the inference time and accuracy.

To validate the efficiency of sparse dynamic convolution and dynamic sparse networks, we execute our methods on Imagenet-1K [8] and demonstrate the mutual promotion between dynamism and sparsity: sparsity reduce the redundancy of dynamic convolution and promote its inference performance; dynamic mechanism improves the represent the power of sparse networks with negligible extra computational cost. Our main contributions are as followed:

- We propose the sparse dynamic convolution to solve the parameter-inefficiency and large storage of dynamic convolution, which maintains the advantage of dynamic mechanism with light-weights.
- We adopt the dynamic mechanism to sparsity methods, significantly boosting the representation power of sparse networks.
- Our experiments on ImageNet have shown the effectiveness of the combination of sparsity and attention. Sparsity reduces the parameters and FLOPs of dynamic networks while dynamism provides sparse networks with the explicit improvement of performance.

2. Related Work

Both dynamic networks and sparsity are often considered separately to optimize neural networks. Our work delves into the combination of the two. We can thus relate our work to two lines of papers: dynamic networks and sparsity.

2.1. Dynamic Network

Dynamic networks adapt input-based parameters or activation functions to boost representation power. HyperNets [16] use a secondary network to generate parameters for the main network. SE-net [20] apply channel-wise attention mechanism to channel. DRConv [6] transfers the increasing channel-wise filters to spatial dimension with a learnable instructor. CondConv [41] and Dynamic Convolution [7] have proposed a new convolution operator to increase the representation capability with negligible extra FLOPs. Instead of using a single static convolution kernel per layer, they use the dynamic combination of a set of parallel static kernels W_k, b_k as convolution kernels. The linear scale is aggregated dynamically via a function of individual inputs. Dynamic convolution [7] propose a attention function to formulate the linear score:

$$W(x) = \sum_{i=1}^{k} \pi_i(x)W_i, \quad \pi_i(x) \leq 0, \quad \sum_{i=1}^{k} \pi_i(x) = 1,$$ \hspace{1cm} (1)

where π_k is the attention score of the k-th kernel. Dynamic convolution only introduces two additional computations: (a) computing the attention weights π_k and (b) aggregating parameters based upon attention $\sum_{i=1}^{k} \pi_i(x)W_i$. Because these kernels are aggregated in a non-linear way via attention, the dynamic convolution has more representation power. However, DCD [27] has proposed two limitations of dynamic convolution: (a) lack of compactness, due to the use of k kernels, and (b) a challenging joint optimization of attention scores π_k and static kernels W_k. To expose the two limitations, DCD [27] split the linear combination of W_k into the static kernel and residual kernel, which can be decomposed by SVD [21]. DCD significantly reduces the dimensionality of the latent space and results in a more compact model that is easier to learn with often improved accuracy.

2.2. Sparsity

Sparsity has been widely studied to compress and accelerate deep neural networks in resource-constrained environments. It can be generally categorized into two groups:
structured sparsity and unstructured sparsity. Structured sparsity prunes blocks of sub-networks of a neural network, while unstructured fine-grained sparsity prunes multiple individual weights distributed across the neural network. Between the two sparsity types, unstructured sparsity can achieve significantly higher compression ratios while maintaining relatively better performance [15,17]. Unstructured sparsity usually uses a threshold to prune unimportant neurons. Many different criteria are proposed to evaluate the importance of neurons, including magnitude-based pruning [13,17,44], Hessian-based heuristics [25,26], pruning with connection sensitivity [24,32]. In recent works, training with differential thresholds has been explored by several works. Kusupati et al. [23] and Manessi et al. [34] learn per-layer thresholds automatically using a soft thresholding operator or a close variant of it. Besides, sparsity learned during training with L_0 norm regulation has been used in several works [2,30]. To solve the undifferentiable problem of L_0-norm, Louizos et al. [30] set a collection of non-negative stochastic gates and optimize the probability distribution of the gates, while Azarian et al. [30] propose an approximate form of L_0 norm to estimate the gradient.

3. Methodology

3.1. Sparse Dynamic Convolution

In conventional dynamic convolution, each convolutional layer replicates k kernels, leading to large model size and potential parameter-redundancy. For example, the model size of Dynamic ResNet-50 is over 360M (with 4 kernels). In this section, we propose sparse dynamic convolution, which integrates dynamic convolution with learnable binary masks.

Generally, binary mask is a 0/1 matrix, as a index to find which neuron or weight is pruned. In order to make binary masks trainable, we define a score variable S, and a threshold τ. The mask is then rounded to 1 if the score is greater than threshold, and vice versa, given by

$$M_i = \begin{cases} 1, & \text{if } S_i > = \tau, \\ 0, & \text{otherwise} \end{cases},$$

where τ is the threshold. The major challenge for training binary masks is that Eq. (2) is non-differentiable, preventing the gradient calculation and the update. To solve this problem, Piggyback [33] utilizes the Straight-Through Estimator (STE) [4] (where the gradient is directly passed to its input $\frac{\partial M}{\partial S} = 1$) to enable gradient estimation so that the gradient descent can update parameters. According to Zhou et al. [43], the range of S is not restricted in $(0,1)$, which may cause unstable training process and accuracy drop. Inspired by Yang et al. [42], we adopt the softmax function to squeeze S into $(0,1)$ for better gradient calculation:

$$\pi_1 = \sigma(K(S - \tau)),$$

$$\tilde{M} = \frac{\exp(\log(\pi_1)/T)}{\exp(\log(\pi_1)/T) + \exp(\log(\pi_0)/T)}.$$

where $\sigma(\cdot)$ is the sigmoid function and τ denotes the threshold. $\pi_0 = 1 - \pi_1$ is the complement of π_1. \tilde{M} is the generated mask. K, T are some temperature hyperparameters, controlling the sharpness of the function. For example, $T = 0.01$ encourages the output to be either 0 or 1. Then we transform \tilde{M} into binary values use STE to generate and update the binary masks:

$$\hat{M} = \text{round} (\tilde{M}), \nabla \hat{M} = \nabla \tilde{M}.$$
sparsity of all layers. However, many experiments have indicated that layer-wise non-uniform sparsity performs better. Some existing methods are dependent on hyperparameters and require iterative trials. To address this problem, we propose a learning-based method to obtain layer-wise thresholds, which not only constrains the global sparsity but also contributes to the performance. We first transform τ into learnable parameters and utilize it to generate differential masks:

$$\frac{\partial M}{\partial \tau} = \frac{\partial \hat{M}}{\partial \hat{M}} \frac{\partial \hat{M}}{\partial \pi_1} \frac{\partial \pi_1}{\partial \tau}.$$ \hspace{1cm} (6)

L_0-norm regularization has been widely researched in model sparsity [2,30], for it directly regulates the overall parameter budget. Therefore, we resort to L_0-norm penalty $L_s(\tau, S)$ to distribute the layer-wise non-uniform sparsity. To make the parameters under the overall budget, we restrict the network parameters to have a global non-sparse rate s, given by:

$$L_s(\tau, S) = \text{ReLU}(\sum_i ||\hat{M}^{(i)}||_0 - N \ast s),$$ \hspace{1cm} (7)

where L_s is the regulation loss which controls the global sparsity, N is the number of parameters of the network, $||\hat{M}^{(i)}||_0$ is the L_0 norm of the mask in the l-th layer. This loss term only works when the model is denser than expected. Note that we use the ReLU function to restrict the global sparsity under the setting value. Formally, we define our loss function \mathcal{L} as follows:

$$\mathcal{L} = L_c(y, f(x, w, \tau, S)) + \lambda_s L_s(\tau, S) + \lambda_r ||w||_2,$$ \hspace{1cm} (8)

where we represent our networks as a function f. L_c is the classification loss. $||w||_2$ is the L_2 weight regularization loss and λ_r is the weight decay rate. λ_s is the hyperparameter that determines the pruning strength.

By utilizing binary mask to k kernels, we transform the dynamic convolution layer into sparse convolution layer. In this layer, we set a threshold to generate k binary masks, which determines the elements to be pruned. To generate dynamic kernels, we first create the sparse static convolution kernel \hat{W} and then combine them dynamically, given by

$$\hat{W}_i = M_i \odot W_i, \hat{W} = \sum_i \pi_i \hat{W}_i.$$ \hspace{1cm} (9)

Here, \hat{W} is the sparse dynamic weight. Our sparse dynamic convolution reduces the parameters in dynamic network. However, the combined kernel \hat{W} does not have a high sparsity ratio, this is because our experts have different masks, which, requires all of them to have 0 in same position. As a result, our sparse dynamic convolution cannot accelerate the inference much. In this next section, we introduce another method to reduce both parameters and the computation cost.

3.2. Dynamic Sparsity Convolution

The sparse method always encounters performance drop along with a high sparse ratio. Dynamism improves the model representation by sacrificing negligible FLOPs. Therefore, we adopt the dynamic mechanism to sparse networks. In sparse dynamic convolution, the computational kernels are denser than each static kernel because of the linear combination operation, so it is hard to prune the dynamic convolution into high sparsity. However, we can dynamically select one of the k static kernels based on the input so that our networks can maintain high sparsity during inference. This is an exceptional situation of sparse dynamic convolution that the largest attention weight π_i is equal to one and the rest is zero. Therefore, we round the attention weight π_i by setting the largest attention weight to 1 and the rest to 0. We formulate the dynamic sparse convolution as following equation:

$$\hat{\pi}_i = \begin{cases} 1, & \text{if } i = \text{argmax}(\pi) \\ 0, & \text{otherwise} \end{cases}$$ \hspace{1cm} (10)

$$\hat{W} = \sum_i \hat{\pi}_i M_i W_i$$ \hspace{1cm} (11)

Compared to static sparse networks, our method only adds extra computational cost and parameters in the attention layer. However, the attention layer contains two fully-connect layers. Dynamic convolution adopts the attention layer in each convolution layer except the first one. The widely used attention layer account for nearly 5 percent of a static model with the reduced ratio r of the attention layer being 16 in the DY-ResNet-50 [7]. In the dynamic sparse convolution, the values of π only play a role in selecting the maximal one but not the linear weighting of \hat{W}. Therefore, we condense the attention layer into one layer gating.
function, which is shown in Figure 3.

Note that the gating function is non-differentiable because of the operation. Therefore, during backpropagation, we utilize STE [4] to approximate the gradient. The gating function selects only one expert for each layer during the forward propagation, which risks an extreme situation of backpropagation that the gating function chooses the same kernel no matter how the input values vary. In this situation, the gate corresponding to the rest kernels has no chance to be optimized and the dynamic network fall into a static pattern. We observed that the unstable values of π lead to this situation in the training process. Note that the gating function is non-differentiable because of the operation. Therefore, during backpropagation, which risks an extreme situation of backpropagation that the gating function chooses the same kernel no matter how the input values vary. In this situation, the gate corresponding to the rest kernels has no chance to be optimized and the dynamic network fall into a static pattern. We observed that the unstable values of π lead to this situation in the training process.

The summation of π is fixed to one, we only add a penalty term to restrict the extra-large values:

$$\nabla \pi = \nabla \hat{\pi} + \lambda_\pi |\pi|,$$ \hspace{1cm} (12)

where λ_π is the constant to constrain the penalty term towards the maximal value of π. By adopting this penalty term, we restrain the increase of values of the selected gate and promote the chance of small-valued kernels to be selected in the following steps.

3.3. Optimization Policy

We train the sparse dynamic convolution following the temperature decay of softmax in the first 10 epoch to avoid the softmax output near one-hot, which avoids only a part of kernels can be trained. Evcı et al. [11] prune the network step by step rather than one stage to achieve sparser networks and higher representation power. By trial and error, in our experiment, we increase the sparsity by iteration rather than fix it. Our training policy of sparse dynamic convolution as follow:

The training of dynamic sparse convolution risks updating a single static kernel only, due to the discrete decision-making process. To furthermore reduce the risk, we resorted to the optimization policy of high capacity experts network [5]—Training our model based on a pre-trained static model. Instead of training a model with a single kernel, we train our model with the dense model provided by STR [23]. At the beginning of the training process, we initialize our k kernels with the pre-trained single kernel parameters, ensuring that early on in the process any decision made by the gating function is a good decision. We fix the temperature of softmax as 1 and set the hyperparameter sparse ratio equal to the overall budget at first. Overall, our optimization policy of dynamic sparse convolution can be summarized in Algorithm 2.

4. Experiment: ImageNet Classification

In this section, we present experimental results of sparse dynamic convolution and dynamic sparse networks along with comprehensive ablations on ImageNet [8] classification. ImageNet has 1000 classes, including 1,281,167 images for training and 50,000 images for validation.

4.1. Implementation Details

We validate our methods on three architectures (ResNet [18], MobileNetV1 [19], and MobileNetV2 [39]), by replacing dynamic convolution for all convolution layers except the first layer. Each layer has $k = 4$ experts. In this experiment, we use an SGD optimizer with 0.9 momentum, following cosine learning rate scheduling and warmup strategy, which rises to the max learning rate linearly in the first 10 epochs and is scheduled to arrive at zero within a sin-
ingle cosine cycle. When generating binary masks, we set constant that $\hat{K} = 10$ and $T = 50$ to transform the values into approximately zero-one distribution. The scale factor λ_s of sparse penalty $L_s(\tau, S)$ is fixed as 0.01. For our two methods, We use different training setups for as follows:

Sparse Dynamic Convolution. We follow the Zhou et al. [7]’ s temperature annealing strategy to avoid the unstable output values of the softmax function in the first epochs. We train the ResNet for 100 epochs, and the max learning rate is 0.005. For the MobilenetV2 models, we train them for 300 epochs, and the max learning rate is 0.05. The weight decay is 4e-5 for all models. The non-sparsity ratio s follows an exponential decrease by iteration.

Dynamic Sparse Convolution. We fine-tune the ResNet50 and MobilenetV1 provided by STR [23]. We first initialize all the kernels with the trained kernel and then train all the models for 50 epochs. We set the max learning rate 0.005 and 0.05 for the ResNet and the MobilenetV1 separately. During the fine-tuning, we utilize our L_0-norm techniques to prune the neurons in all convolutional layers, including the first and the last layer. λ_{π} is set as 0.002 to guarantee all kernels to be trained.

4.2. Main Results

Sparse Dynamic Convolution. Table 1 and 2 shows the comparison between sparse dynamic convolution and dynamic networks in two CNN architectures (ResNet and MobilenetV2). $k = 4$ kernels and reduce ratio $r = 16$ are used in each convolutional layer except the first one. Our baselines includes the static convolution, Condconv [41], vanilla dynamic convolution [7], DCD [27]. We control the sparsity to make the models’ size close to DCD’s, by setting 50% for MobileNetV2, 70% for ResNet. Sparse dynamic convolution maintains the high performance of dynamic architectures while keeping an equally small model size as DCD. For ResNet-18, sparse dynamic convolution has only 33% of the parameters of dynamic convolution. For MobilenetV2-1.0, achieving the same level of accuracy, our method only requires 48% of the parameters of dynamic convolution. The most prominent advantage of sparse dynamic convolution is the computational cost. Because of the sparse computational kernel \hat{W}, our method requires much lower FLOPs than baselines including the static convolution, while all the dynamic networks adopt extra computational cost. Sparse dynamic convolution only has 64.1% FLOPs of DCD in ResNet-50 and 94% of FLOPs of static convolution in MobilenetV2-1.0.

Dynamic Sparse Networks. Table 2 and 3 shows the comparison between dynamic sparse convolution and strong state-of-the-art baselines. We follow the baselines in STR [23] in various sparsity regimes including: GMP [14], DSR [35], DNW [40], SNFS [9], RigL [11], DPF [29], STR [23]. GMP and DNW always use a uniform sparsity budget. RigL, SNFS, DSR, and DPF perform better when using ERK budget [11] than the original form. So we add them with the “+ ERK” suffix in Table 2 to imply the usage of ERK budge. Like STR, dynamic sparse networks learn the layer-wise thresholds to generate the sparsity distribution by training. Dynamic sparse networks beat all the baselines in the accuracy performance under the same overall budget: about 0.5% higher in ResNet-50 and at least 1.68% in MobileNetV1. To verify this promotion comes from the dynamism, we did an ablation study toward atten-

Network	Method	Param	FLOPs	Top-1 Acc(%)
MobilenetV2-1.0	Static	3.5M	300.0M	72.0
	Condconv	27.5M	329.0M	74.6
	Dynamic	11.1M	312.9M	75.2
	DCD	5.5M	326.0M	75.2
	Ours	*5.3M	*281.9M	*75.3
MobilenetV2-0.5	Static	2.0M	97.0M	65.4
	Condconv	15.5M	113.0M	68.4
	Dynamic	4.0M	101.4M	69.9
	DCD	3.1M	104.8M	70.2
	Ours	*2.8M	*89.5M	*70.3
MobilenetV2-0.35	Static	1.7M	59.2M	60.3
	Dynamic	2.8M	62.0M	65.9
	DCD	2.3M	63.1M	66.6
	Ours	*2.1M	*52.5M	*67.1

Network	Method	Param	FLOPs	Top-1 Acc(%)
ResNet-18	Static	11.1M	1.81G	70.4
	Dynamic	42.7M	1.85G	72.7
	DCD	14.0M	1.83G	73.1
	Ours	*13.9M	*1.17G	*73.3
ResNet-50	Static	23.5M	3.8G	76.2
	DCD	30.7M	3.9G	77.9
	Ours	*30.3M	*2.5G	*78.0
Table 3. The comparison between dynamic sparse networks and sparsity baselines. Baseline numbers reported from their respective papers/open-source implementations and models. FLOPs do not include batch-norm.

Method	Top-1 Acc(%)	Param	Sparsity	FLOPs
ResNet-50	77.01	25.6M	0.0	4.09G
GMP	73.60	5.12M	80.00	818M
SNFS + ERK	75.20	5.12M	80.00	1.68G
RigL + ERK	75.10	5.12M	80.00	1.68G
DPF	75.13	5.12M	80.00	818M
STR	76.19	5.22M	79.55	766M
Ours	**76.68**	18.96M	**80.38**	1.31G

Method	Top-1 Acc(%)	Param	Sparsity	FLOPs
GMP	73.91	2.56M	90.00	409M
SNFS + ERK	72.90	2.56M	90.00	960M
RigL + ERK	73.00	2.56M	90.00	960M
DPF	74.55	2.56M	90.00	411M
STR	74.31	2.49M	90.23	**343M**
Ours	**74.86**	9.43M	**90.11**	768M

Method	Top-1 Acc(%)	Param	Sparsity	FLOPs
GMP	70.59	1.28M	95.00	204M
RigL + ERK	70.00	1.28M	95.00	600M
STR	70.40	1.27M	95.03	**159M**
Ours	**70.98**	4.27M	**95.07**	506M

(a) ResNet-50.

Method	Top-1 Acc(%)	Param	Sparsity	FLOPs
MobileNetV1	71.95	4.21M	0.00	569M
GMP	67.70	1.09M	74.11	163M
Ours	**69.77**	3.34M	75.12	**153M**
STR	68.35	1.04M	75.28	101M
STR	66.52	0.88M	79.07	81M
Ours	**68.20**	2.79M	80.20	137M
STR	64.83	0.60M	85.80	55M
Ours	**67.43**	2.16M	84.72	103M
GMP	61.80	0.46M	89.03	82M
STR	62.10	0.46M	89.62	42M
Ours	**64.73**	1.49M	89.96	78M

(b) MobileNetV1.

Figure 4. The scaled variance of the layer-wise computational kernel weights of ResNet-50. The variance keep nearly consistent after pruning 50% parameters per layer.

Figure 5. The sparse ratio of the computational kernel weights \hat{W} and the layer kernel weights W_k in ResNet 18 and MobileNetV2 1.0. We setting the global sparsity 70% and 50% for ResNet18 and MobileNetV2 1.0, separately.

4.3. Discussion of Dynamic Property

The dynamic property of dynamic convolution lies in the various computational kernel weights towards different inputs, which is reflected as the layer-wise variance. To research the dynamic property of the neurons after pruning, we do an extensive experiment on Cifar [22] by directly pruning the 50% parameter of trained networks per layer by magnitude. By iterating over the entire dataset, we compute the layer-wise variance computational kernel, which is shown in Figure 4. The pruned networks still maintain nearly the same variance of the layer-wise computational kernel and the pruning operation does not cause a large performance drop, which widely exists in static networks pruned before re-training. The pruned DY-ResNet-50 and DY-ResNet-34 achieved 74.32% and 72.46% in classification accuracy, compared to 75.19% and 73.82% before pruning. The performance of the two pruned networks is still more than 2 percentage better than static networks(70.32% and 72.12%) in accuracy.
4.4. Analysis of the Reduced FLOPs

According to Table 1, the FLOPs of sparse dynamic convolution is lower than static convolution. The reduced FLOPs comes from pruned elements in computational kernels. Only when all static kernels have zero-element in the same position can computational kernels have pruned neurons. We visualize the pruned ratio of k kernels W_k and computational kernels \hat{W} in Figure 5. We observed that the computational kernel maintains a relatively smaller pruned ratio. Each layer has a different degree of sparsity and the layer-wise sparse neurons contribute to the reduced FLOPs. The kernel sparsity is learned by training and is not dependent on the kernel sparse ratio completely.

4.5. Ablation Study for Attention

The difference between our method and baselines lies in two perspectives: (1) sparsity methods and (2) dynamic mechanisms. To validate the promotion comes from the efficiency of attention in sparse networks rather than the different sparse method, we did an ablation study between dynamic sparse models and static sparse models, using the unstructured pruning method. We do this experiment with ResNet-50 and MobilenetV1 under 90% overall sparsity. Our static sparse networks have a relatively high performance, 64.73% in MobileNetV1 and 74.48% in ResNet50. Compared to the static sparse networks, dynamic sparse networks improve the classification accuracy by 0.5 percent in ResNet-50 and 1.8 percent in MobileNetV1. Note that dynamic sparse networks only add computational cost in the attention layer. After the compression, the attention layer reduces to $\frac{22+kc}{r}$ of the initial layer in parameters, and the FLOPs of the attention layer decrease from 1.68M to 0.04M in MobileNetV1, which is negligible. The FLOPs gap between static and dynamic networks mainly comes from the different distribution of layers.

Table 4. Abalation Study of attention in sparse networks. Static indicates only apply our L_0-norm sparsification technique to the static networks.

Network	Method	Param	Flops	Sparsity	Top-1 Acc(%)
ResNet-50	Static	2.55M	749M	90.01	73.97
	Dynamic	9.43M	768M	90.11	**74.48**
MobilenetV1	Static	0.44M	74M	90.00	62.94
	Dynamic	1.49M	78M	89.96	**64.73**

4.6. Analysis of Non-Uniform Sparsity

Similar to STR [23], our model maintain the layer-wise sparsity property. We compare our method with baselines in layer-wise distribution, which is shown in Figure 6. Like mainstream magnitude pruning methods [9, 11, 28], our method is vulnerable to the layer-wise width—Layers with more parameters tend to be pruned more proportion of parameters. However, in convolutional operation, the layer-wise FLOPs are not only dependent on the number of parameters but also the feature maps, stride, etc. Our method does not prune as many neurons in layers with fewer parameters as STR, which causes more FLOPS consumed. Therefore, our method achieves a high compression ratio and performance but sacrifice FLOPs.

5. Discussion and Drawbacks

We combine the dynamic mechanism and sparsity to build efficient model architectures, which achieve high performance with light-weight model-size and low FLOPs. Sparsity’s usage for dynamic convolution leads to efficient light-weight dynamic convolution. It is clear from Table 1 that sparse dynamic convolution achieves state-of-the-art accuracy and costs fewer FLOPs than static convolution, while dynamic networks always cause extra FLOPs and parameters. Our sparse dynamic convolution provides a new insight for dynamic networks that adopt a dynamic mechanism to the neurons under the overall budget. Sparse networks always encounter large performance drops in high sparsity, but the dynamic sparse convolution can mitigate this trend. In Table 2 and Table 3, our method beats the strong baselines in performance. As is shown in Table 4, we organize an ablation study to prove the improvement arises from the dynamic mechanism. Both of the two methods are easy to adapt to convolution layers and work fine with no strict hyperparameter setting. However, our drawback lies in the FLOPs, because the magnitude pruning method only constrains the total parameters but lacks an explicit quantization of the FLOPs.

6. Conclusion

This paper integrates the property of dynamic networks and sparse networks. Sparse dynamic networks prune re-
dundant neurons and focus on the parameter efficiency of dynamic convolution, which maintains the performance gains of dynamic networks and significantly reduces the parameters and FLOPs, while dynamic networks always cause more computing and storage resources. Dynamic sparse networks provide traditional sparse networks with a dynamic mechanism so that our method achieves state-of-the-art classification accuracy in Imagenet-1K under the same overall budget. Furthermore, because we do not add more requirements on hyperparameters to restrain the overall sparsity, our methods are easy to adapt.

References

[1] Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparameterized neural networks, going beyond two layers, 2020. 1
[2] Kambiz Azarian, Yash Bhalgat, Jinwon Lee, and Tijmen Blankevoort. Learned threshold pruning, 2021. 3, 4
[3] Emmanuel Bengio, Pierre-Luc Bacon, Joelle Pineau, and Doina Precup. Conditional computation in neural networks for faster models, 2016. 2
[4] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through stochastic neurons for conditional computation, 2013. 3, 5
[5] Adrian Bulat, Brais Martinez, and Georgios Tzimiropoulos. High-capacity expert binary networks, 2021. 2, 5
[6] Jin Chen, Xijun Wang, Zichao Guo, Xiangyu Zhang, and Jian Sun. Dynamic region-aware convolution, 2021. 2
[7] Yinpeng Chen, Xiyang Dai, Mengchen Liu, Dongdong Chen, Lu Yuan, and Zicheng Liu. Dynamic convolution: Attention over convolution kernels, 2020. 1, 2, 4, 6
[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255. Ieee, 2009. 1, 2, 5
[9] Tim Dettmers and Luke Zettlemoyer. Sparse networks from scratch: Faster training without losing performance, 2019. 6, 8
[10] Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery: Making all tickets winners. In International Conference on Machine Learning, pages 2943–2952. PMLR, 2020. 1
[11] Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery: Making all tickets winners, 2021. 5, 6, 8
[12] Angela Fan, Pierre Stock, Benjamin Graham, Edouard Grave, Remi Grisonval, Herve Jegou, and Armand Joulin. Training with quantization noise for extreme model compression, 2021. 1
[13] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural networks, 2019. 1, 3
[14] Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks, 2019. 1, 6
[15] Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery for efficient dnns, 2016. 3
[16] David Ha, Andrew Dai, and Quoc V. Le. Hypernetworks, 2016. 2
[17] Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights and connections for efficient neural networks, 2015. 1, 3
[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition, 2015. 5
[19] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for mobile vision applications, 2017. 5
[20] Jie Hu, Li Shen, Samuel Albanie, Gang Sun, and Enhua Wu. Squeeze-and-excitation networks, 2019. 2
[21] Virginia Klema and Alan Laub. The singular value decomposition: Its computation and some applications. IEEE Transactions on automatic control, 25(2):164–176, 1980. 2
[22] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009. 7
[23] Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek Jain, Sham Kakade, and Ali Farhadi. Soft threshold weight reparameterization for learnable sparsity, 2020. 2, 3, 5, 6, 8
[24] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip H. S. Torr. Snip: Single-shot network pruning based on connection sensitivity, 2019. 3
[25] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for efficient convnets, 2017. 1, 3
[26] Li Li, Zhu Li, Yue Li, Birendra Kathariya, and Shuvra Bhattacharya. Incremental deep neural network pruning based on hessian approximation. In 2019 Data Compression Conference (DCC), pages 590–590. IEEE, 2019. 1, 3
[27] Yunsheng Li, Yinpeng Chen, Xiyang Dai, Mengchen Liu, Dongdong Chen, Ye Yu, Lu Yuan, Zicheng Liu, Mei Chen, and Nuno Vasconcelos. Revisiting dynamic convolution via matrix decomposition, 2021. 1, 2, 6
[28] Yang Li and Shihao Ji. Deep-\(l_0\)-based network sparsification via dependency modeling, 2021. 8
[29] Tao Lin, Sebastian U. Stich, Luis Barba, Danil Dmitriev, and Martin Jaggi. Dynamic model pruning with feedback, 2020. 6
[30] Christos Louizos, Max Welling, and Diederik P. Kingma. Learning sparse neural networks through l0 regularization. 2018. 3, 4
[31] Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang. The expressive power of neural networks: A view from the width. Advances in neural information processing systems, 30, 2017.
[32] Jian-Hao Luo and Jianxin Wu. Learning sparse neural networks through l0 regularization, 2018. 3, 4
[33] Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggyback: Adapting a single network to multiple tasks by learning to mask weights, 2018. 3
[34] Franco Manessi, Alessandro Rozza, Simone Bianco, Paolo Napoletano, and Raimondo Schettini. Automated pruning
for deep neural network compression. In 2018 24th International conference on pattern recognition (ICPR), pages 657–664. IEEE, 2018. 3

[35] Hesham Mostafa and Xin Wang. Parameter efficient training of deep convolutional neural networks by dynamic sparse reparameterization, 2019. 6

[36] Thao Nguyen, Maithra Raghu, and Simon Kornblith. Do wide and deep networks learn the same things? uncovering how neural network representations vary with width and depth. arXiv preprint arXiv:2010.15327, 2020. 1

[37] Hanyu Peng, Jiaxiang Wu, Shifeng Chen, and Junzhou Huang. Collaborative channel pruning for deep networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages 5113–5122. PMLR, 09–15 Jun 2019. 1

[38] Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl-Dickstein. On the expressive power of deep neural networks. In International conference on machine learning, pages 2847–2854. PMLR, 2017. 1

[39] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks, 2019. 5

[40] Mitchell Wortsman, Ali Farhadi, and Mohammad Rastegari. Discovering neural wirings, 2019. 6

[41] Brandon Yang, Gabriel Bender, Quoc V. Le, and Jiquan Ngiam. Condconv: Conditionally parameterized convolutions for efficient inference, 2020. 2, 6

[42] Li Yang, Zhezhi He, Junshan Zhang, and Deliang Fan. Ksm: Fast multiple task adaption via kernel-wise soft mask learning, 2020. 3

[43] Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie Zhang, Kun Yuan, Wenxiu Sun, and Hongsheng Li. Learning n:m fine-grained structured sparse neural networks from scratch, 2021. 3

[44] Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for model compression, 2017. 1, 3