Mapping Second Chromosome Mutations to Defined Genomic Regions in Drosophila melanogaster

Lily Kahsai and Kevin R. Cook
Bloomington Drosophila Stock Center, Department of Biology, Indiana University, Bloomington, Indiana 47405
ORCID IDs: 0000-0003-3429-445X (L.K.); 0000-0001-9260-364X (K.R.C.)

ABSTRACT Hundreds of Drosophila melanogaster stocks are currently maintained at the Bloomington Drosophila Stock Center with mutations that have not been associated with sequence-defined genes. They have been preserved because they have interesting loss-of-function phenotypes. The experimental value of these mutations would be increased by tying them to specific genomic intervals so that geneticists can more easily associate them with annotated genes. Here, we report the mapping of 85 second chromosome complementation groups in the Bloomington collection to specific, small clusters of contiguous genes or individual genes in the sequenced genome. This information should prove valuable to Drosophila geneticists interested in processes associated with particular phenotypes and those searching for mutations affecting specific sequence-defined genes.

The phenotypes associated with mutations often provide insights into the functions of genes. Indeed, much of genetics research involves explaining how mutations give rise to phenotypes. Newer methods for inducing mutations such as transposon excision, homologous recombination, and CRISPR-based disruption are particularly good for deleting coding sequences. Such knock-out mutations are undeniably important in understanding the cellular roles of genes, but other kinds of mutations—such as those that reduce gene expression or protein activity or affect only certain protein isoforms or domains—can be informative in ways that knockout mutations are not (Venken and Bellen 2014). While point mutations can now be engineered, they can reveal novel protein structure-function relations and elicit unexpected phenotypes.

Knowing the importance of mutations, the Bloomington Drosophila Stock Center devotes considerable effort to maintaining stocks carrying mutations. Many of these mutations have been characterized phenotypically, but they have not yet been associated with sequence-defined genes. These stocks are potentially valuable, but they are requested infrequently. Geneticists interested in particular processes might be more likely to study mutations with relevant phenotypes if they knew they would be relatively easy to associate with sequence-defined genes. The usefulness and popularity of these stocks would be improved tremendously by anchoring these mutations to the genome sequence map so that their relationships to annotated genes could be recognized more readily.

Our ability to map mutations to specific genomic intervals in Drosophila improved enormously when simple techniques became available for generating chromosomal deletions with breakpoints known at single-nucleotide resolution. Three large-scale projects, including one conducted at the Bloomington Drosophila Stock Center, generated deletions with molecularly defined breakpoints (Parks et al. 2004; Ryder et al. 2007; Cook et al. 2012). Altogether, these deletions provide >98% genomic coverage and subdivide the genome into intervals of a median of nine genes (Cook et al. 2012). Using these deletions, mutations can now be mapped to very small chromosomal regions, or even single genes, with simple complementation tests. Mutations can often be mapped even more closely with follow-up complementation tests involving chromosomal duplications (Cook et al. 2010; Venken et al. 2010), or mutations affecting single genes.
Table 1 Mapping complementation groups to specific genomic intervals

Complementation group	Genomic interval from deletion mapping	Complementing mutations	Noncomplementing mutations	Candidate genes	Comments
Abb	2R:23666959;23713811	GsT¹, Sam-S^T	db^{Eps}, l(2)g^H		
Bhe					
C					
Cass					
Dv-24E					
Eay	2R:18173570;18230554				
Fiz	2R:8976399;9031045	Np^{M10240}, Np^{M10279}		CG8213^{M10468}	
Frd	2R:23001651;23068684				
Fs(2)Abc	2R:15375176;15386324				
Fs(2)ito3	2L:19464056;19517610				
Fs(2)itoQe45	2L:3656901;3713827				
Fs(2)itoRM7	2R:23385467;23395914				
Hum	2R:7395885;7447410				
l(2)21Ba	2L:67365;159063	Sam-S^{R23}, Sam-S^T, GsT¹			
l(2)23Ab	2L:2677694;2753125				
l(2)24Dc	2L:4162968;4197800				
l(2)24Dd	2L:4031318;4162968	ed¹			
l(2)24De	2L:4162968;4197800				

Our complementation tests with deletions (Table S4 in File S1) and these mutations indicate bhe^T is a multigene, terminal deletion (Df(2L)bhe) with a breakpoint between db^e and Sam-S. Polytene analysis showed a breakpoint at 21AS-B1. This is consistent with J. Kennison’s observation of at least one bhe allele failing to complement l(2)gl (cited in Lindsley and Zimm 1992). The mutant embryonic phenotype likely results from the disruption of several genes.

Our data are consistent with unpublished identifications of c as S_m-Mick by Rodriguez (2004) and E. Spana and E. Green (personal communication).

These results show cass is the same gene as Aac11.

Our identification of fl^T as CG8213 is consistent with the independent, unpublished results of Anne Uv (cited in Geberemedhin 2011).

Our mapping is based on the recessive lethality of Frd^T. Frd^T mutants carry an intragenic deletion in PPO3 (Sugumaran and Chase 2004).

Heitzler et al. (1993) mapped hum left of so, reducing candidates to nine.

Caggese et al. (1988) showed l(2)21Ba is not the same gene as GsT. Larson et al. (1996) mapped l(2)21Ba right of Sam-S and left of Gs1, reducing candidates to five.

Littleton and Bellen (1994) mapped l(2)23Ab left of Pgtk, reducing candidates to seven.

Szidonya and Reuter (1988) showed l(2)24Dc is not the same gene as ed.

(continued)
(continued)
Table 1, continued

Complementation group	Genomic interval from deletion mapping	Complementing mutations	Noncomplementing mutations	Candidate genes	Comments
\(\ell 243Ef \)	2R:7665795;7708707	tor\(^1\), U2A\(^1\)			Heitzler et al. (1993) showed \(\ell 243Ef \) is not the same gene as U2A or tor and maps right of U2A. Nagengast and Salz (2001) showed a U2A transgene did not rescue \(\ell 2 \) 43Ef mutations. This reduces candidates to four.
\(\ell 243Eg \)	2R:7665795;7708707	U2A\(^1\)			Heitzler et al. (1993) showed \(\ell 243Eg \) maps right of U2A and is not the same gene as tor, reducing candidates to four.
\(\ell 246Ca \)	2R:9875312;9922003..9927457	tea\(^{1755}\)	Etf-QO\(^{056-40}\)		These results show \(\ell 2 \) 46Ca is the same gene as Etf-QO.
\(\ell 246Cb \)	2R:9875312;9922003..9927457		Etf-QO\(^{056-40}\), tea\(^{1755}\)		O’Brien et al. (1994) showed \(\ell 246Cb \) is not the same gene as FMRFa, reducing candidates to seven.
\(\ell 246Cd \)	2R:9958120;10025288	eve\(^1\), eve\(^5\), Pal1\(^{10-1}\), elf3\(^{13906}\)			These results show \(\ell 2 \) 46Db is the same gene as TER94, even though \(\ell 2 \) 46Db\(^{26}\) shows a complex complementation pattern with other TER94 alleles.
\(\ell 246De \)	2R:9959818;10025288	eve\(^1\), eve\(^5\), Pal1\(^{10-1}\), elf3\(^{13906}\)	TER94\(^{03775}, \, \text{TER94}^{26-8}, \, \text{TER94}^{22-30}\)		
\(\ell 246Dc \)	2R:10025288;10030539				
\(\ell 246Dd \)	2R:10030539;10078293				
\(\ell 246Ds \)	2R:10058120;10025288				
\(\ell 246Df \)	2R:10030539;10078293				
\(\ell 249Fa \)	2R:12894105..12941-055	eve\(^5\), elf3\(^{13906}\)			
\(\ell 249Fb \)	2R:13197974..131984-92;13219347..13219-349				
\(\ell 251Ea \)	2R:15218008;15262942		scb\(^2\)		Lasko and Pardue (1988) showed \(\ell 2 \) 49Fa is not the same gene as Orc3, reducing candidates to nine.
\(\ell 257Ba \)	2R:21000163;2105679				
\(\ell 257Bd \)	2R:21056798;21088247				
\(\ell 257Cb \)	2R:21056798;21088247				
\(\ell 257Cc \)	2R:21143577;21177310				
\(\ell 257Cd \)	2R:21143577;21177310				
\(\ell 257Ce \)	2R:21180990;21215223				
\(\ell 257Db \)	2R:21301798;21341647				

(continued)
Complementation group	Genomic interval from deletion mapping	Comments
[(2)2]57Eb	2R:21497209;21607081	J. O'Donnell et al. (1989), Price et al. (1989), and Schejter and Shilo (1989) showed [(2)2]57Eb is not the same gene as Egr. Lane and Kalderon (1993) showed [(2)2]57Eb to be another candidate to 15. The results showed that [(2)2]Egfr was not the same gene as Egr, reducing candidates to 15. Our data place mat[(2)2]Egfr in the same general region as Clegg et al. (1993), but they placed it right of da and right of RpS27A.
[(2)2]57Ec	2L:9272496;9368459	J. O'Donnell et al. (1989), Price et al. (1989), and Schejter and Shilo (1989) showed [(2)2]57Ec is not the same gene as Egr, reducing candidates to 15. The results showed that [(2)2]Egfr was not the same gene as Egr, reducing candidates to 15. Our data place mat[(2)2]Egfr in the same general region as Clegg et al. (1993), but they placed it right of da and right of RpS27A.
DA2	2L:9522946;9560489	Lane and Kalderon (1993) showed DA2 is not the same gene as Cks30A, reducing candidates to 20. Lane and Kalderon (1993) showed DA2 to be another candidate to 19. The results showed that DA2 is not the same gene as Cks30A, reducing candidates to 19.
DB2	2L:9897536;9908459	Lane and Kalderon (1993) showed DB2 is not the same gene as Cks30A, reducing candidates to 20. Lane and Kalderon (1993) showed DB2 to be another candidate to 19. The results showed that DB2 is not the same gene as Cks30A, reducing candidates to 19.
DB4	2L:9205076;9388129	Lane and Kalderon (1993) showed DB4 is not the same gene as Cks30A, reducing candidates to 20. Lane and Kalderon (1993) showed DB4 to be another candidate to 19. The results showed that DB4 is not the same gene as Cks30A, reducing candidates to 19.
FE3	hoipk07104	These results show FE3 is the same gene as hoip. It was mapped with cytologically defined deletions (Table S4 in File S1), but not molecularly defined deletions, so no genomic interval is given.
N7-6	2L:9205076;9388129	Lane and Kalderon (1993) showed N7-6 is not the same gene as Cks30A, reducing candidates to 19. Lane and Kalderon (1993) showed N7-6 to be another candidate to 19. The results showed that N7-6 is not the same gene as Cks30A, reducing candidates to 19.
PC4-A	2R:18051197;18118348	Mohr and Gelbart (2002) mapped [PC4-D, to Ubc10, CG5033 or Dhit, reducing candidates to two.
PC4-D	2R:18051197;18118348	Mohr and Gelbart (2002) mapped [PC4-D, to Ubc10, CG5033 or Dhit, reducing candidates to two.
PC4-M	2R:18051197;18118348	Mohr and Gelbart (2002) mapped [PC4-D, to Ubc10, CG5033 or Dhit, reducing candidates to two.
PC4-P	2R:18051197;18118348	Mohr and Gelbart (2002) mapped [PC4-D, to Ubc10, CG5033 or Dhit, reducing candidates to two.
PC4-Q	2R:18051197;18118348	Mohr and Gelbart (2002) mapped [PC4-D, to Ubc10, CG5033 or Dhit, reducing candidates to two.
syn-E	2L:10349604;10381214	Our data place mat[(2)2]Egfr in the same general region as Clegg et al. (1993), but they placed it right of da and right of RpS27A.
moa	2R:2272936;22764935	Littleton and Bellen (1994) mapped moa right of Drp1, reducing candidates to five. Our results are compatible with moa being associated with a small deletion as proposed by Littleton and Bellen. These results show sat is the same gene as Orc1.
ms	2L:9205076;9388129	Mohr and Gelbart (2002) mapped [PC4-D, to Ubc10, CG5033 or Dhit, reducing candidates to two.
mrd	2L:9205076;9388129	Mohr and Gelbart (2002) mapped [PC4-D, to Ubc10, CG5033 or Dhit, reducing candidates to two.
p{f+1}30B	2L:9205076;9388129	These crosses show a lethal mutation (hereafter p{f+1}30Ba1) is caused by the p{f+1}30B insertion or is closely linked to it.
pd	2R:2381400;2384351	These results show sat is the same gene as Orc1.
gui	2R:2381400;2384351	These results show sat is the same gene as Orc1.
fht	2R:2381400;2384351	These results show sat is the same gene as Orc1.
Orc1	2R:2381400;2384351	These results show sat is the same gene as Orc1.
Orc1	2R:2381400;2384351	These results show sat is the same gene as Orc1.
Orc1	2R:2381400;2384351	These results show sat is the same gene as Orc1.

Excludes genes with complementing mutations from the set of contiguous genes defined by deletion breakpoints (Table S3 in File S1). Ranges reflect deletion breakpoint uncertainty. Candidate genes are listed in Table S4 in File S1.
Table 2 Complementation groups mapped to single genes

Complementation group	Summary
cassowary (cass)	cass mutations were isolated as recessive lethal mutations that result in lack of adhesion between wing surfaces in homozygous mitotic clones (Prout et al. 1997). cass is allelic to Aac11, which encodes an inhibitor of apoptosis homologous to human Apoptosis Inhibitor 5 (API5) (Morris et al. 2006).
filzig (fö)	fö mutations were isolated as recessive lethal mutations affecting the patterning of the embryonic cuticle (Nüsslein-Volhard et al. 1984). We found fö to be allelic to CG8213, which encodes a serine protease (Ross et al. 2003). Subsequently, we learned fÖ was also identified as CG8213 by Anne Uv (unpublished results cited in GebereMedhin 2011).
fs(2)abc	fs(2)abc (abnormal chromatin) mutations were isolated as recessive paternal-effect lethals causing abnormal embryonic nuclear divisions and defective chorions (Schüpbach and Wieschaus 1989; Vessey et al. 1991). fs(2)abc is allelic to SRPK, which encodes a Serine–Arginine Protein Kinase necessary for dorsoventral egg patterning, karyosome formation, and meiotic divisions (Barbosa et al. 2007; Loh et al. 2012).
l(2)46Ca	The recessive lethal l(2)46Ca is allelic to Electron transfer flavoprotein-ubiquinone oxidoreductase (Etf-QO), which encodes a component of the electron-transport chain that generates ATP from the breakdown of fatty acids (Wathamough and Fierman 2010).
l(2)46Db	The recessive lethal l(2)46Db is allelic to TER94, which encodes a chaperone that targets ubiquitin-tagged proteins to the proteasome (Meyer et al. 2012).
l(2)FE3	The recessive lethal l(2)FE3 is allelic to hoi-polloi (hoip), which encodes a small nuclear ribonucleoprotein component of spliceosomes (Mount and Salz 2000).
satin (sat)	Schüpbach and Wieschaus (1991) showed homozygous sat£c£a females lay eggs with thin eggshells. sat is allelic to Origin recognition complex 1 (Orc1), which is needed for chion gene amplification (Park and Asano 2008).
l(2)51Ea	The recessive lethal l(2)51Ea is allelic to scab (scb), which encodes an α integrin involved in cell adhesion (Stark et al. 1997).

We report here the localization of 77 complementation groups in the Bloomington Drosophila Stock Center collection to defined genomic intervals and the mapping of eight complementation groups to individual genes. This work ties these mutations to single genes or small groups of closely linked genes, and increases the value of an underutilized set of stocks.

MATERIALS AND METHODS

The data in this report came from fly crosses made on standard medium, reared under routine conditions, and evaluated by customary standards (details provided upon request). Genomic coordinates are given in terms of the Release 6 assembly, and gene annotations are those shown in the June 20, 2017 FlyBase release (FB2017_3). Supplemental Material, Table S1 in File S1 provides a list of stocks used and our sources.

Data availability

The accompanying tables contain complete mapping data. Stocks may be obtained from the Bloomington Drosophila Stock Center or Drosophila Genomics and Genetics Resources at the Kyoto Institute of Technology as indicated in Table S1 in File S1.

RESULTS AND DISCUSSION

We identified a large set of second chromosome mutations in the Bloomington Drosophila Stock Center collection that had not been associated with annotated genes and using mapping information archived in FlyBase (http://flybase.org/), or recorded in publications to estimate the chromosomal positions of the mutations (Table S2 in File S1). We then made complementation crosses between stocks carrying the mutations and molecularly defined chromosomal deletions to place the mutations in defined genomic intervals that refine previous mapping (Table S3 in File S1). Subsequent crosses tested the mutations for allelism with mutations in sequence-defined genes. Table 1 summarizes our results. The number of candidate genes in each interval was initially determined by the overlap of deletions with transcribed gene regions. (We recognize this criterion is potentially misleading as it is possible for a deletion to remove gene regulatory regions and disrupt gene function even if transcribed gene regions are not deleted. Nevertheless, it is a reasonable and commonly employed practice for deletion studies.) From this total, we subtracted the number of genes with complementing mutations. (This criterion could also be misleading, because partial loss-of-function alleles can show intragenic complementation. Nevertheless, it is also a reasonable simplification for a preliminary mapping study.) We have provided a list of candidate sequence-defined genes for each complementation group in Table S4 in File S1. Table S5 in File S1 provides a full list of the informative mapping crosses. In every cross, we had experimental evidence indicating that both stocks were valid as follows. Every mutation being mapped failed to complement at least one deletion. Most stocks used to map the mutations were validated with independent control crosses to stocks carrying relevant, previously characterized, loss-of-function mutations or chromosomal deletions (Table S6 in File S1). For a dozen deletion stocks, noncomplementation of the deletion with one of the mutations we were mapping was taken as evidence the stock was intact, and no independent control cross was undertaken.

We were able to map 77 complementation groups to the smallest chromosomal intervals possible using existing molecularly defined deletions (Table S3 in File S1). With follow-up complementation tests using existing point mutations and transposon insertions in annotated genes, we were able to map eight complementation groups to single annotated genes, but we did not exhaust all possible tests of this sort. In the final tally, we were able to map 84 of the 85 complementation groups to 26 genes or fewer. (We found the remaining complementation group, blle, to be a multigene deletion.)
Table 2 summarizes information on the mutations mapped to single annotated genes, and shows the diversity of interesting genes affected. This work has identified the first nontransposon alleles of two genes (Aac11 and CG8213), and has added potentially important EMS- or irradiation-induced alleles to the other genes. While we have not attempted to assess the allelic strength of most of the mutations, we know the female-sterile mutation sat[SC46] mapped to Orc1 must be a partial loss-of-function allele because knockout alleles are recessive lethal (Park and Asano 2008). Mutations affecting a particular motif in the Orc1 protein have been shown to cause the same defective eggshell phenotypes as sat[SC46] (Park and Asano 2012), which suggests it too is domain specific. This result illustrates the importance of point mutations maintained in stock for their loss-of-function phenotypes: they can reveal aspects of gene function that would not be apparent from the phenotypes of gene knockouts.

In conclusion, we have refined the mapping of a large number of second chromosome mutations that have been preserved at the Bloomington Drosophila Stock Center for their mutant phenotypes. This information will provide Drosophila workers opportunities to make connections between these mutations and genes they might be studying in defined chromosomal regions.

ACKNOWLEDGMENTS
We gratefully acknowledge the support of our colleagues at the Bloomington Drosophila Stock Center (Annette Parks, Kathy Matthews, Sam Zheng, Cale Whitworth, Ellen Popodi, Kim Cook, Thom Kaufman, and the stock-keeping and support staffs), the invaluable work of FlyBase, and the receipt of fly stocks from Drosophila Genomics and Genetic Resources at the Kyoto Institute of Technology and Brian Calvi. L.K. and K.R.C. were supported by National Institutes of Health grant P40 OD018537.

LITERATURE CITED
Ashburner, M., S. Misra, J. Roote, S. E. Lewis, R. Blazej et al., 1999 An exploration of the sequence of a 2.9-Mb region of the genome of Drosophila melanogaster. Genetics 153: 179–219.

Barbosa, V., N. Kimm, and R. Lehmann, 2007 A maternal screen for genes regulating Drosophila oocyte polarity uncovers new steps in meiotic progression. Genetics 176: 1967–1977.

Brittnacher, J. G., and B. Ganetzky, 1983 On the components of segregation distortion in Drosophila melanogaster. II. Deletion mapping and dosage analysis of the SD locus. Genetics 103: 659–673.

Butler, H., S. Levine, X. Wang, S. Bonyadi, G. Fu et al., 2001 Map position and expression of the genes in the 38 region of Drosophila. Genetics 158: 1597–1614.

Caggese, C., R. Caizzi, M. P. Bozzetti, P. Barsanti, and F. Ritossa, 1988 Genetic determinants of glutamine synthetase in Drosophila melanogaster: a gene for glutamine synthetase I resides in the 21B3–6 region. Biochem. Genet. 26: 571–584.

Clegg, N. J., I. P. Whitehead, J. K. Brock, D. A. Sinclair, R. Mottus et al., 1993 A cytogenetic analysis of chromosomal region 31 of Drosophila melanogaster. Genetics 134: 221–230.

Cook, R. K., M. E. Deal, J. A. Deal, D. Garton, C. A. Brown et al., 2010 A new resource for characterizing X-linked genes in Drosophila melanogaster: systematic coverage and subdivision of the X chromosome with nested, Y-linked duplications. Genetics 186: 1095–1109.

Cook, R. K., S. J. Christensen, J. A. Deal, R. A. Coburn, M. E. Deal et al., 2012 The generation of chromosomal deletions to provide extensive coverage and subdivision of the Drosophila melanogaster genome. Genome Biol. 13: R21.

Curry, V. S., 1939 New mutants report. Drosoph. Inf. Serv. 12: 45–47.

Gay, P., and D. Contamine, 1993 Study of the ref(2)P locus of Drosophila melanogaster. II. Genetic studies of the 37DF region. Mol. Gen. Genet. 239: 361–370.

Geberemedhin, M. T., 2011 The Filz protein affects embryonic cuticle and taenidia organization in Drosophila. M.S. Thesis, University of Skövde, Skövde, Sweden.

Heitzler, P., D. Coulson, M. T. Saenz-Robles, M. Ashburner, J. Roote et al., 1993 Genetic and cytogenetic analysis of the 43A-E region containing the segment polarity gene costa and the cellular polarity genes prickle and spiny-legs in Drosophila melanogaster. Genetics 135: 105–115.

Kozlova, T., G. Lam, and C. S. Thummel, 2009 Drosophila DHR38 nuclear receptor is required for adult cuticle integrity at eclosion. Dev. Dyn. 238: 701–707.

Lane, M. E., and D. Kalderon, 1993 Genetic investigation of cAMP-dependent protein kinase function in Drosophila development. Genes Dev. 7: 1229–1243.

Larsson, J., J. Zhang, and A. Rasmusson-Lestander, 1996 Mutations in the Drosophila melanogaster gene encoding S-adenosylmethionine synthetase suppress position-effect variegation. Genetics 143: 887–896.

Lasko, P. F., and M. L. Pardue, 1988 Studies of the genetic organization of the vestigial microregion of Drosophila melanogaster. Genetics 120: 495–502.

Lindsley, D. L., and G. G. Zimm, 1992 The Genome of Drosophila melanogaster. Academic Press, San Diego.

Littleton, J. T., and H. J. Bellen, 1994 Genetic and phenotypic analysis of thirteen essential genes in cytological interval 22F1–22B3I–2 reveals novel genes required for neural development in Drosophila. Genetics 138: 111–123.

Loh, B. I., C. F. Cullen, N. Vogt, and H. Ohkura, 2012 The conserved kinase SRPK regulates karyosome formation and spindle microtubule assembly in Drosophila oocytes. J. Cell Sci. 125: 4457–4462.

Maclver, B., A. McCormack, R. Skee, and M. Bownes, 1998 Identification of an essential gene encoding a class-V unconventional myosin in Drosophila melanogaster. Eur. J. Biochem. 257: 529–537.

Meyer, H., M. Bug, and S. Bremer, 2012 Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system. Nat. Cell Biol. 14: 117–123.

Mohr, S. E., and W. M. Gelbart, 2002 Using the P[wHy] hybrid transposable element to disrupt genes in region 54D–55B in Drosophila melanogaster. Genetics 162: 165–176.

Morris, E. I., W. A. Michaud, J. Y. Ji, N. S. Moon, J. W. Rocco et al., 2006 Functional identification of Aip5 as a suppressor of E2F-dependent apoptosis in vivo. PLoS Genet. 2: e147.

Mount, S. M., and H. K. Salz, 2000 Pre-messenger RNA processing factors in the Drosophila genome. J. Cell Biol. 150: F37–F43.

Nagengast, A. A., and H. K. Salz, 2001 The Drosophila U2 snRNP protein U2A’ has an essential function that is SNF/U2B’ independent. Nucleic Acids Res. 29: 3841–3847.

Nüsslein-Volhard, C., E. Wieschaus, and H. Kluding, 1984 Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster. I. Zygotic loci on the second chromosome. Wilhelm Roux Arch. Dev. Biol. 193: 267–282.

O’Brien, M. A., M. S. Roberts, and P. H. Taghert, 1994 A genetic and molecular analysis of the 46C chromosomal region surrounding the FMRFamide neuropeptide gene of Drosophila melanogaster. Genetics 137: 121–137.

O’Donnell, J., R. Boswell, T. Reynolds, and W. Mackay, 1989 A cytogenetic analysis of the Punch–tudor region of chromosome 2R in Drosophila melanogaster. Genetics 121: 273–280.

O’Donnell, J. M., J. R. McLean, and E. R. Reynolds, 1989 Molecular and developmental genetics of the Punch locus, a sterin biosynthesis gene in Drosophila melanogaster. Dev. Genet. 10: 273–286.

Park, S. Y., and M. Asano, 2008 The origin recognition complex is dispensable for endoreplication in Drosophila. Proc. Natl. Acad. Sci. USA 105: 12343–12348.

Park, S. Y., and M. Asano, 2012 An orc1 allele with a mutated APC motif is female sterile with amplification defects. Cell Cycle 11: 2828–2832.

Parks, A. L., K. R. Cook, M. Belvin, N. A. Dompe, R. Fawcett et al., 2004 Systematic generation of high-resolution deletion coverage of the Drosophila melanogaster genome. Nat. Genet. 36: 288–292.
Price, J. V., R. J. Clifford, and T. Schüpbach, 1989 The maternal ventralizing locus

torpedo

is allelic to faint little ball, an embryonic lethal, and encodes

the Drosophila EGF receptor homolog. Cell 56: 1085–1092.

Prout, M., Z. Damania, J. Soong, S. Fristrom, and J. W. Fristrom, 1997 Autosomal

mutations affecting adhesion between wing surfaces in Drosophila melanogaster.

Genetics 146: 275–285.

Reynaud, E., H. Lomeli, M. Vazquez, and M. Zurita, 1999 The Drosophila

melanogaster homologue of the Xeroderma pigmentosum D gene product

is located in euchromatic regions and has a dynamic response to UV light-

induced lesions in polytene chromosomes. Mol. Biol. Cell 10: 1191–1203.

Rodriguez, D. M., 2004 Isolation and characterization of stretchin-myosin light chain kinase mutants in Drosophila melanogaster. Ph.D. Dissertation, Ohio State University, Columbus, Ohio.

Ross, J., H. Jiang, M. R. Kanost, and Y. Wang, 2003 Serine proteases and their homologs in the Drosophila melanogaster genome: an initial analysis of sequence conservation and phylogenetic relationships. Gene 304: 117–131.

Rutledge, B. J., K. Zhang, E. Bier, Y. N. Jan, and N. Perrimon, 1992 The Drosophila spitz gene encodes a putative EGF-like growth factor involved in dorsal-ventral axis formation and neurogenesis. Genes Dev. 6: 1503–1517.

Ryder, E., M. Ashburner, R. Bautista-Llacer, J. Drummond, J. Webster et al., 2007 The DrosDel deletion collection: a Drosophila genomewide chromosomal deficiency resource. Genetics 177: 615–629.

Scheijter, E. D., and B. Z. Shilo, 1989 The Drosophila EGF receptor homolog (DER) gene is allelic to faint little ball, a locus essential for embryonic development. Cell 56: 1093–1104.

Schüpbach, T., and E. Wieschaus, 1989 Female sterile mutations on the second chromosome of Drosophila melanogaster. I. Maternal effect muta-

tions. Genetics 121: 101–117.

Schüpbach, T., and E. Wieschaus, 1991 Female sterile mutations on the second chromosome of Drosophila melanogaster. II. Mutations blocking oogenesis or altering egg morphology. Genetics 129: 1119–1136.

Stark, K. A., G. H. Yee, C. E. Roote, E. L. Williams, S. Zusman et al., 1997 A novel alpha integrin subunit associates with betaPS and functions in tissue morphogenesis and movement during Drosophila development. Development 124: 4583–4594.

Sugumaran, M., and M. Chase, 2004 Bioinformatics studies on molecular defects associated with melanogenic enzymes in Drosophila melanogaster. Pigment Cell Res. 17: 438–439.

Szdonya, J., and G. Reuter, 1988 Cytogenetic analysis of the echinoid (ed),

dumpy (dp) and clot (cl) region in Drosophila melanogaster. Genet. Res. 51: 197–208.

Venken, K. J., and H. J. Bellen, 2014 Chemical mutagens, transposons, and

transgenes to interrogate gene function in Drosophila melanogaster. Methods 68: 15–28.

Venken, K. J., E. Popodi, S. L. Holtzman, K. L. Schulze, S. Park et al., 2010 A molecularly defined duplication set for the X chromosome of Drosophila melanogaster. Genetics 186: 1111–1125.

Vessey, K. B., R. L. Ludwiczak, A. S. Briot, and E. M. Underwood, 1991 abnormal

chromatin (abc), a maternal-effect locus in Drosophila melanogaster. J. Cell Sci. 98: 233–243.

Vatmough, N. J., and F. E. Frerman, 2010 The electron transfer flavoprotein:ubiquinone oxidoreductases. Biochimica et Biophysica Acta-Bioenergetics 1797: 1910–1916.

Zhang, Y., L. Zhang, X. Tang, S. R. Bhardwaj, J. Ji et al., 2016 MTV, an ssDNA protecting complex essential for transposon-based telomere maintenance in Drosophila. PLoS Genet. 12: e1006435.

Communicating editor: A. Bashirullah