Consensus

Brazilian Protocol for Sexually Transmitted Infections 2020: human T-cell lymphotropic virus (HTLV) infection

Carolina Rosadas[1], Carlos Brites[2], Denise Arakaki-Sanchez[3], Jorge Casseb[4] and Ricardo Ishak[5]

[1]. Imperial College London, Department of Infectious Disease, London, United Kingdom.
[2]. Universidade Federal da Bahia, Faculdade de Medicina, Salvador, BA, Brasil.
[3]. Ministério da Saúde, Secretaria de Vigilância em Saúde, Brasília, DF, Brasil.
[4]. Universidade de São Paulo, Faculdade de Medicina, São Paulo, SP, Brasil.
[5]. Universidade Federal do Pará, Instituto de Ciências Biológicas, Belém, PA, Brasil.

Abstract
This article addresses the Human T-lymphotropic virus (HTLV). This subject comprises the Clinical Protocol and Therapeutic Guidelines for Comprehensive Care for People with Sexually Transmitted Infections, published by the Brazilian Ministry of Health. HTLV-1/2 infection is a public health problem globally, and Brazil has the largest number of individuals living with the virus. HTLV-1 causes several clinical manifestations of neoplasm (adult T-cell leukemia/lymphoma) and inflammatory nature, such as HTLV-1-associated myelopathy and other manifestations such as uveitis, arthritis, and infective dermatitis. These pathologies have high morbidity and mortality and negatively impact the quality of life of infected individuals. This review includes relevant information for health authorities professionals regarding viral transmission, diagnosis, treatment, and monitoring of individuals living with HTLV-1 and 2 in Brazil.

Keywords: Human T-Cell lymphotropic virus 1. Sexually transmitted diseases. Diagnosis. Signs and symptoms. Disease prevention.

Highlight excerpt: HTLV-1/2 transmission can occur through blood transfusion and derivatives, injectable drug use, organ transplantation, unprotected sexual intercourse, and vertical transmission.

FOREWORD
This article addresses Human T-lymphotropic virus (HTLV) infection. This subject comprises the Clinical Protocol and Therapeutic Guidelines (PCDT) for Comprehensive Care for People with Sexually Transmitted Infections (STI), published by the Health Surveillance Department of the Brazilian Ministry of Health. To elaborate the PCDT, selection and analysis of the evidence available in the literature were performed, and a panel of specialists discussed it. The document was approved by the National Committee for the Incorporation of Technologies in the Brazilian National Health System (Conitec) and updated by the team of specialists in STI in 2020.

Epidemiological Aspects
HTLV-1 was described in patients with adult T-cell leukemia/lymphoma and, like HTLV-2, classified in the Retroviridae family, genus Deltaretrovirus. There are six molecular subtypes (a, b, c, d, e, f) of HTLV-1 and four (a, b, c, d) of HTLV-2; and two other types, HTLV-3 and HTLV-4, which have been described in isolated areas of forests in Cameroon, a country in the western region of Central Africa, and not yet associated with clinical manifestations.

HTLV-1/2 infection results from the transmission of infected lymphocytes, present in body fluids (blood, semen, vaginal secretion, and mother’s milk), by transfusion of blood and derivatives, intravenous drug use, organ transplantation, unprotected sexual intercourse, and vertical transmission. Vertical transmission can occur by the placental route, during birth, and mainly by breastfeeding. HTLV-1 proviral load and exposure time are related to the increased risk of transmission, especially during sexual intercourse or breastfeeding. The risk associated with the transfusion of blood and its derivatives was significantly reduced, with the introduction of systematic screening of blood and organs and blood components' leukoreduction.
Sexual contact is an important route of HTLV-1 and HTLV-2 dissemination in urban, rural, and indigenous areas. In urban areas, infection is most common among women. However, among indigenous communities, the transmission effectiveness shows no difference between the sexes. Sexual transmission is associated with unprotected sex practices, sexual partnership with intravenous drug users, and the presence of other STIs.

HTLV-1 and HTLV-2 are distributed worldwide. Brazil has variable frequencies, ranging from 0.01 to 1.35% in the general population, according to the geographical area and behavioral risk factors. Groups with higher vulnerability to infection by both viruses include (i) intravenous drug users, (ii) sex workers, (iii) men who have sex with men, (iv) individuals submitted to blood transfusion before 1993, and (v) sexual partners of individuals with known HTLV infection. The decrease in HTLV-1 prevalence among blood donors throughout the years is a privileged situation in Brazil, promoted since 1993 with the mandatory screening regulation of blood and its products.

The seroepidemiological studies for HTLV-1/2 are based on the detection of specific antibodies. It is important to emphasize that few population studies were conducted adequately. Therefore, a significant part of the epidemiological information about HTLV-1/2 derived from old studies, which often do not sufficiently define incidence and prevalence rates, shows conflicting results and does not allow the definition of precise prevention and control measures.

HTLV-2, considered an ancestral infection, is apparently well adapted to humans, with rare clinical manifestations. HTLV-2 is usually used as a marker of human migrations after the departure from the African continent.

CLINICAL ASPECTS

Retroviruses integrate with the nucleic acid in the infected cell and establish a viral persistence, leading to the virus maintenance and the different outcomes of the infection. HTLV-1 is associated with an aggressive malignant disease, adult T-cell leukemia/lymphoma (ATL), and the neurodegenerative disease HTLV-1 associated myelopathy (HAM).

HTLV-1 infection shows a great variety of interactions with the human host and important clinical manifestations have been recognized in the eye, skin, lung, joints, thyroid, heart, intestines, and bladder, among others. The broad spectrum of diseases reveals the infection's clinical complexity, which requires multidisciplinary attention for the infected patients' care. Although the clinical outcome of the HTLV-1 infections is considered low (5%), the number of clinical cases associated with HTLV-1 infection can reach a higher level and still needs to be better defined. Intermediate clinical manifestations can be frequent before HAM occurs. The proviral load in HTLV-1 infection is important in disease progression, and is usually lower in asymptomatic individuals compared with those who present HTLV-1 associated diseases.

HAM OCCURS IN ABOUT 4% OF HTLV CARRIERS

In addition to the clinical manifestations classically associated with HTLV-1 in the skin, such as infective dermatitis and the
Poor status performance
Increased lactate dehydrogenase
Presence of 4 or more skin lesions
Hypercalcemia
Age over 40 years
Thrombocytopenia
Eosinophilia
Bone marrow involvement
Interleukin 5 serum level increase
C-C chemokine receptor type 4 (CCR4) expression
Lung resistance-related protein gene expression
Protein 53 (p53) mutation
Protein 16 (p16) deletion
Soluble interleukin-2 receptor dosage, especially after allogeneic hematopoietic progenitor cell transplantation

The presence of positive T-CD30+ lymphocyte (cluster designation) expression in tumour cells (with polylobed characteristics and chromosomal aberrations), considered a tumorigenic marker of the disease

Source: adapted from Iwanaga et al. 2010.

FIGURE 2: Adult T-cell leukemia/lymphoma worst prognosis predictors.
cutaneous manifestations of ATL, other dermatological affections attributed to the infection have been described as serious forms of scabies (especially in HIV-1 coinfected individuals)102, ichthyoses, seborrheic dermatitis, and dermatophytoses103.

At first, infective dermatitis was described in Jamaican children infected by HTLV-1104, mainly when vertical transmission occurs, although the disease can also affect adolescents and adults105. Infective dermatitis is characterized by erythematous-desquamative lesions, which generally involve the scalp, retro auricular regions, neck, face, armpits, and inguinal region. Typically, it is associated with infection by Gram-positive bacteria such as *Streptococcus beta-hemoliticus* and *Staphylococcus aureus*. According to a case series study, almost half of the individuals who had long-term follow-up were also diagnosed with HAM106. The differential diagnosis includes other causes of chronic eczemas, such as atopic dermatitis and seborrheic dermatitis106. Presence of the characteristic lesions, chronic rhinorrhea, recurrent chronic dermatitis, and positive serology for HTLV are the main criteria for diagnosing infective dermatitis, whose treatment consists of administering antibiotics with topical use of corticosteroids, combined or not with antifungals.

Dermatological alterations in ATL vary in presentation (erythoderma, papules, nodules, infiltrating lesions, or erythematous plaques) and depend on the disease stage; nodulations are more frequent in severe forms, especially in the acute, lymphomatous, or cutaneous primary tumoral form107. The lesions may evolve indolently and modify with the use of corticosteroids. Histopathological evaluation is essential for specific diagnosis.

UVEITIS IN INDIVIDUALS WITH HTLV-1

In Japan, uveitis was first reported in 1989108. Most common in people in age up to 50 years and a little more frequent in women, its exact incidence among HTLV-1 carriers remains uncertain. The disease is manifested by visual disorders, including ‘floaters’ and blurred or hazy vision, and it is bilateral in almost half of the affected people109. Eye signs include iritis, vitreous opacities, retinal vasculitis, and retinal hemorrhages and exudates. There is a good patient response to topical or systemic corticosteroids, although recurrence is common with therapy discontinuation.

COINFECTIONS IN INDIVIDUALS WITH HTLV

HTLV-infected individuals may present some coinfections, more frequently than the general population, either by sharing infection routes or as a consequence of the immunological alterations induced by the infection itself. Moreover, HTLV can alter the natural course of some coinfections.

In HIV coinfection, for example, the evidence suggests a neutral or even protective role for those coinfected by HTLV-2110. However, if the coinfection is HIV-1-HTLV-1, the existing data show a higher risk of death, both in adults and in children111. The reasons for these findings are not very clear. A hypothesis for the lack of clinical benefit is the delay in introducing the antiretroviral therapy due to the increase in the T-CD4+ cells count caused by HTLV-1. Coinfected individuals treated with antiretroviral therapy and with HIV-1 viral suppression present similar survival time to those monoinfected under the same conditions; however, in those with a detectable viral load, the survival of coinfected individuals is significantly lower112.

Regarding coinfection with hepatitis C virus (HCV), existing data are conflicting: while some studies show an increase in HCV viremia and a lower probability of spontaneous clearance of the infection113, others suggest a higher chance of elimination of this virus in HIV-1 and HTLV-coinfected individuals, probably due to the immunomodulation caused by HTLV in this group of individuals, resulting from the high production of proinflammatory cytokines114. Moreover, studies are suggesting less hepatic damage in triple infected individuals - with HIV, HTLV, and HCV - and a greater chance of spontaneous clearance of HCV115,116.

Individuals with HTLV-1 and *Strongyloides stercoralis* coinfection suffer a negative impact in the course of both infections, becoming more susceptible to more severe forms of strongyloidiasis, therapeutic resistance, in addition to presenting a higher HTLV-1 proviral load and a higher risk of HTLV-1 vertical transmission117-126.

Individuals with HTLV-1 present a higher risk of infection by *Mycobacterium tuberculosis*127-132, but the clinical impact is not clear.

DIAGNOSIS

In Brazil, routine testing for HTLV-1/2 in blood and organ donors has been performed since 1993 and 2009, respectively124,133. In both cases, the infection is a criterion for donor exclusion. Although there is no national policy for HTLV-1/2 antenatal screening in Brazil, the test is done as a routine in some states. The MS/SCTIE Portaria no. 23, of May 31, 2016, included the Western blot (Wb) test and the polymerase chain reaction (PCR) to confirm HTLV-1 infection among patients suspected of ATL assisted by the Brazilian National Health System (SUS)134. Figure 3 shows the indications for HTLV-1/2 testing. Laboratory diagnosis must be performed using screening tests, followed by confirmatory tests in a different blood sample when screening test results are positive135-137 (Figure 4).

The screening tests are used for detecting antibodies against HTLV-1/2 in plasma or serum. The laboratory techniques for performing these tests include (i) immunoenzymatic reaction, (ii) chemiluminescence, and (iii) particle agglutination116. The screening tests present high sensitivity. The negative result excludes infection - unless there is evidence of recent exposure to the virus when it is recommended to repeat the test after 90 days24,25. The specificity of screening tests in Brazil varies from 92 to 99.5%. It is highly recommended to perform confirmatory tests to exclude false-positive results in the screening tests136-138.

The confirmatory tests identify antibodies against different HTLV-1 and HTLV-2 antigens or amplify and identify proviral genetic material, usually in peripheral blood lymphocytes. Confirmatory and viral typing tests are (i) Wb, (ii) line immunoassay (LIA), and (iii) PCR136.

Usually, Wb and LIA are sufficient for diagnosis; however, in some cases, undetermined or undefined results may occur regarding
Individuals with clinical manifestations compatible with HTLV-1/2 associated diseases

Blood, organ, or tissue donors

Organ or tissue recipients

Family members and sexual partners of HTLV-1/2 carriers

Individuals with suspicion or with sexually transmitted infections

Individuals with bloodborne infections

Pregnant women

Intravenous drug users

Cases of occupational exposure to blood or biological material, such as an accident with sharp material

Individuals infected with *Strongyloides stercoralis*

Individuals infected with *Mycobacterium tuberculosis*

Individuals with leukemia or lymphoma

FIGURE 3: Indications for laboratory testing for the human T-cell lymphotropic virus (HTLV-1/2).

Serological screening test	(ELISA*, CMIA*, PA*)
Positive	
Negative	
Not infected	

Confirmatory serological test	(WB*, LIA*)
Infected	Positive
Undetermined	Negative
Not infected	

Confirmatory molecular test	(PCR*)
Infected	Positive
Not infected or proviral DNA not detectable	

Notes: a) ELISA: immunoenzymatic assay; b) CMIA: chemiluminescence; c) PA: particle agglutination; d) WB: Western blot; e) LIA: line immunoassay; f) PCR: polymerase chain reaction.

FIGURE 4: Recommendations for human T-cell lymphotropic virus (HTLV-1/2) infection laboratory diagnosis.
the type of HTLV139-149, more frequently in individuals infected by HTLV-2 or HIV-1 or both141,150. LIA presents greater accuracy in confirming HTLV-1 and HTLV-2 infection when compared to Wb151,152. Indeterminate or untyped results by Wb or LIA must be submitted to qualitative or quantitative PCR: nested PCR (nPCR) and real-time PCR (RT-PCR) are used. RT-PCR enables not only the quantification of the HTLV-1/2 proviral load but also the stratification of the risk of developing HTLV-1 associated diseases26,93,94,142,153-155. The detection of viral RNA is not used in the clinical routine, since viremia is low or absent, even in individuals with HAM156,157.

At the time of this publication, a molecular test for HTLV-1/2 is not commercially available. The tests used are in-house, requiring prior validation155,158-161. The absence of commercial tests and standardization of national protocols makes the implementation of molecular testing in the routine and the comparison of results obtained in different laboratories difficult162,163. Some individuals infected by HTLV-1/2 may present undetectable proviral load164-166. In these cases, it is possible to perform nPCR of higher sensitivity than RT-PCR. Another alternative is to perform a confirmatory serological test (if not yet performed) or to request consecutive samples for follow-up168.

There is evidence that the duration of the immunological window period in HTLV-1/2 infection for antibody detection varies from 16 to 39 days after organ transplantation, and for the proviral genetic material, from 16 to 23 days after infection167. A study conducted with individuals infected by blood transfusion showed a median seroconversion of 51 days (36 to 72 days)168. It is important to emphasize that the methodologies available when this study was developed did not have the same sensitivity as the current diagnostic methods168.

TREATMENT

The therapy for HTLV-1 infection consists of interventions directed to the complications resulting from the disease169,170. In 2016, Conitec171, and in 2019-2020, the International Retrovirology Association published recommendations for ATL and HAM treatment171,172. The use of zidovudine associated with interferon-alpha was authorized for the treatment of ATL by the publication of MS/SVS Portaria no. 54 on Jul 18, 2016172. The therapeutic regimens vary according to clinical presentation, progression of symptoms, and local availability of medications.

Infected people must be accompanied in the specialized service to receive psychological support, with particular attention to the early diagnosis of clinical manifestations associated with the infection.

SURVEILLANCE, PREVENTION, AND CONTROL

Despite being described some decades ago, HTLV infection remains relatively unknown to the general population and health professionals. In the services that assist the infected individuals, the approach should focus not only on the aspects of the risk of becoming sick173 but also on preventing the transmission of infection.

After a positive diagnosis for HTLV-1/2 infection, the sexual partners should be invited to undergo serological screening, and those with positive tests must be referred for counseling and appropriate follow-up. Such counseling should include information about the chronicity of the infection and the relevance of long-term clinical follow-up169,174. It is important to clarify the initial clinical manifestations and their progression, the transmission mechanisms, and their prevention. The donation of blood, semen, solid organs or tissues and breastfeeding are strongly discouraged.

In HIV and other STI specialized clinical centres, it is important to include HTLV screening in the routine of care. HTLV-infected individual must be oriented about the risk of sexual transmission, serodiscordant sexual partners, and condom use - which may be interrupted during the fertile period when there is a firm decision to become pregnant and following medical counselling and recommendation174.

In Brazil, given the scarcity of material available for health professionals and the general population, several initiatives have been developed by academic groups and non-governmental organizations to disseminate information about HTLV-1/2. Among the organizations and initiatives with this purpose, the following should be highlighted: the Research Support Center on Retroviruses (NAP-Retroviruses) of the University of São Paulo; the Hemominas Foundation Journals on HTLV infection; the HTLVida Association; and the Vitamôre Group - Association of HTLV Carriers.

The lack of a national register system impairs the identification of the actual scenario of the infection in the country and, therefore, the implementation of specific public health policies. It is essential to highlight that case notification is one of the pillars of confrontation and research about HTLV-1 in countries like Japan, England, Spain, and Martinique island175-178.

SPECIAL POPULATIONS

Pregnant women

In Brazil, HTLV-1/2 prevalence in pregnant women can reach 1% in certain regions of the country (Table 1)159,179-196. Despite reports about the development of HTLV-associated diseases in pregnancy (HAM, ATL), there is no consistent evidence about the impact on the pregnancy-puerperium cycle23. However, childhood infection is associated with an increased risk of developing diseases associated with HTLV-1, especially ATL that has a high lethality23,197,198. Therefore, prevention of mother to child transmission is essential to reduce the incidence of diseases associated with the virus23,96,137.

Since breastfeeding is the main mother to child transmission route of HTLV-1/2133,199-204 and there is no vaccine against the infection or even any curative treatment, breastfeeding is contraindicated in mothers infected by the virus. For these women, the use of lactation inhibitors is recommended and the provision of infants with milk formula substitutes2. Universal antenatal HTLV-1/2 infection screening is not provided by the SUS, but it is recommended to test all pregnant women, followed by counselling for those infected and their relatives, allowing the effective implementation of prevention strategies.
TABLE 1: Prevalence of HTLV-1/2 infection in pregnant women in different Brazilian states.

Region/State	Prevalence (%)	n	References
North			
Pará	0.6	324	Guerra et al. 2018
	0.3	13,382	Sequeira et al. 2012
Amazonas	0	674	Machado Filho et al. 2010
Northeast			
Alagoas	0.2	54,813	Moura et al. 2015
	0.14	692	Boa-Sorte et al. 2014
	1.05	2,766	Mello et al. 2014
Bahia	0.98	408	Magalhães et al. 2008
	0.84	6,754	Bittencourt et al. 2001
	0.88	1,024	Santos et al. 1995
Maranhão	0.7	713	Mendes et al. 2020
Ceará	0.12	814	Broutet et al. 1996
Midwest			
Mato Grosso do Sul	0.13	116,689	Dal Fabbro et al. 2008
Goiás	0.1	32,512	Figueiró Filho et al. 2007
Southeast			
Rio de Janeiro	0.74	1,628	Barmpas et al. 2019
São Paulo	0.66	1,204	Monteiro et al. 2014
South			
Paraná	0.31	643	Medeiros et al. 2018

a) Only studies with confirmatory tests for HTLV-1/2 infection were included; b) Adolescent pregnant women; c) Study with blood samples on filter paper; d) High-risk pregnant women.

Indigenous peoples

The vertical and sexual transmission routes are essential for HTLV maintenance in epidemiologically closed or semi-closed communities, as it occurs with HTLV-2c, which is prevalent among indigenous people residing in the Brazilian Amazon and urban areas. It is worth remembering that intrafamiliar infection in the Kayapó communities is important and it is observed the transmission of the virus between two or three generations and in more than 20% of infected children under nine years old. Vertical transmission maintains the virus in high endemicity since the usual nonbreastfeeding procedures by infected mothers are not followed regularly. The increasing number of reports associating diseases with HTLV-2 infections requires special attention to the indigenous communities located in areas of high virus endemicity in the Brazilian Amazon.

CONCLUSIONS

Although HTLV infection is neglected, Brazil has produced several initiatives directed towards the prevention of HTLV-1 infection and disease. The complications with relevant clinical consequences, such as HTLV-1 associated myelopathy and T-cell leukemia/lymphoma, can be minimized with access to services offered by the SUS. The low complexity cases can be assisted at the health centers and, when necessary, forwarded to the specialized centers for treatment, rehabilitation, and social support. Despite the severe consequences that the infection can have on people's lives, its control still represents a public health challenge. National epidemiological studies, development and validation of diagnostic tests, and elaboration of clinical protocols with new therapeutic options can define public policies and specific actions towards the approach, prevention, control, and adequate treatment of HTLV-1/2 infection in Brazil.

ACKNOWLEDGMENTS

The authors are grateful to the technical panel of specialists responsible for elaborating the 2020 PCDT for Comprehensive Care for People with Sexually Transmitted Infections.

AUTHORS' CONTRIBUTIONS

Rosadas C, Brites C, Añanaki-Sanchez D, Casseb J, and Ishak R contributed with the concept, design, drafting, and critical reviewing of the manuscript. All authors approved the final version, and they are responsible for all aspects of the work, including the assurance of its accuracy, precision, and integrity.
REFERENCES

1. Ministério da Saúde (BR). Portaria MS/SCTIE no 42, de 5 de outubro de 2018. Torna pública a decisão de aprovar o Protocolo Clínico e Diretrizes Terapêuticas para Atenção Integral às Pessoas com Infecções Sexuamente Transmissíveis (IST), no âmbito do Sistema Único de Saúde - SUS [Internet]. Diário Oficial da União, Brasília (DF), 2018 out 8 [cited 2020 oct 15];Seção I:88. Available from: https://www.in.gov.br/materia/-asset_publisher/Kujrva/01ZC2Mb/content/id/44303574/doi-2018-10-08-portaria-n.42-de-5-de-outubro-de-2018-4430348

2. Ministério da Saúde (BR). Protocolo clínico e diretrizes terapêuticas para atenção integral às pessoas com infecções sexuamente transmissíveis (IST) [Internet]. Brasília: Ministério da Saúde; 2020 [cited 2020 jun 14]. Available from: http://www.aids.gov.br/pt-br/pub/2015(protocolo-clinico-e-diretrizes-terapeuticas-para-atencao-integral-pessoas-com-infeccoes

3. Poiesz BJ, Russetti FW, Gazdar AF, Bunn PA, Minna JD, Gallo RC. Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci U S A [Internet]. 1980 Dec [cited 2020 Oct 15];77(12):7415-9. Available from: https://doi.org/10.1073/pnas.77.12.7415

4. Poiesz BJ, Russetti FW, Reitz MS, Kalyanaraman VS, Gallo RC. Isolation of a new type C retrovirus (HTLV) in primary uncultured cells of a patient with Sézary T-cell leukemia. Nature [Internet]. 1981 Nov [cited 2020 Oct 15];294(5828):268-71. Available from: https://doi.org/10.1038/294268a0

5. Kalyanaraman VS, Sarngadharan MG, Robert-Gurroff M, Miyoshi I, Golde D, Gallo RC. A new subtype of human T-cell leukemia virus (HTLV-II) associated with a T-cell variant of hairy cell leukemia. Science [Internet]. 1982 Nov [cited 2020 Oct 15];218(4572):571-3. Available from: https://doi.org/10.1126/science.6981847

6. Gallo RC. History of the discoveries of the first human retroviruses: HTLV-1 and HTLV-2. Oncogene [Internet]. 2005 Sep [cited 2020 Oct 15];24(39):5926-30. Available from: https://doi.org/10.1038/sj.onc.1208980

7. International Committee on Taxonomy of Viruses - ICTV. Taxonomy history: primate T-lymphotropic virus I [Internet]. [S.l.]: ICTV; 2017 [cited 2020 Oct 15]. Available from: https://talk.ictvonline.org/taxonomy/p-taxonomy-history?taxnode_id=19911343&.ncbi&ictv_id=19911343

8. Miura T, Fukunaga T, Igashira Y, Yamashita M, Ido E, Funahashi S, et al. Phylogenetic subtypes of human T-lymphotropic virus type I and their relations to the anthropological background. Proc Natl Acad Sci U S A [Internet]. 1994 Feb [cited 2020 Oct 15];91(3):1124-7. Available from: https://doi.org/10.1073/pnas.91.3.1124

9. Vidal AL, Gessain A, Yoshida M, Mahieux R, Nishioka K, Tekaia F, et al. Molecular epidemiology of HTLV type I in Japan: evidence for two distinct ancestral lineages with a particular geographical distribution. AIDS Res Hum Retroviruses [Internet]. 1994 Nov [cited 2020 Oct 15];10(11):1557-66. Available from: https://doi.org/10.1089/aid.1994.10.1557

10. Van Dooren S, Salemi M, Vandamme AM. Dating the origin of the African human T-cell lymphotropic virus type-i (HTLV-I) subtypes. Mol Biol Evol [Internet]. 2001 Apr [cited 2020 Oct 15];18(4):661-71. Available from: https://doi.org/10.1093/oxfordjournals.molbev.a003846

11. Hall WW, Takahashi H, Liu C, Kaplan MH, Ijichi S, Nagashima K, et al. Multiple isolates and characteristics of human T-cell leukemia virus type II J Virol [Internet]. 1992 Apr [cited 2020 Oct 15];66(4):2456-63. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC289041

12. Ishak R, Harrington WJ, Azevedo VN, Eiraku N, Ishak MO, Guerreiro JF, et al. Identification of human T cell lymphotropic virus type IIa infection in the Kayapo, an indigenous population of Brazil. AIDS Res Hum Retroviruses [Internet]. 1995 Jul [cited 2020 Oct 15];11(7):813-21. Available from: https://doi.org/10.1089/aid.1995.11.813

13. Eiraku N, Novoa P, Costa Ferreira M, Monken C, Ishak R, Costa Ferreira O, et al. Identification and characterization of a new and distinct molecular subtype of human T-cell lymphotropic virus type 2. J Virol [Internet]. 1996 Mar [cited 2020 Oct 15];70(3):1481-92. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC189669

14. Vandamme AM, Salemi M, Van Brussel M, Liu HF, van Laethem K, van Ranst M, et al. African origin of human T-lymphotropic virus type 2 (HTLV-2) supported by a potential new HTLV-2d subtype in Congolese Bambuti Efe Pygmies. J Virol [Internet]. 1998 May [cited 2020 Oct 15];72(5):4327-40. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC109663

15. Wolfe ND, Heneine W, Carr JK, Garcia AD, Shannugam V, Tamoufe U, et al. Emergence of unique primate T-lymphotropic viruses among central African bushmeat hunters. Proc Natl Acad Sci U S A [Internet]. 2005 May [cited 2020 Oct 15];102(22):7994-9. Available from: https://doi.org/10.1073/pnas.0501734102

16. Perzova R, Benz P, Abbott L, Welch C, Thomas A, Ghoul RW, et al. Short communication: no evidence of HTLV-3 and HTLV-4 infection in New York State subjects at risk for retroviral infection. AIDS Res Hum Retroviruses [Internet]. 2010 Nov [cited 2020 Oct 15];26(11):1229-31. Available from: https://doi.org/10.1089/aid.2010.0079

17. Duong YT, Jia H, Lust JA, Garcia AD, Tiffany AJ, Heneine W, et al. Short communication: Absence of evidence of HTLV-3 and HTLV-4 in patients with large granulocyte leukocyte (LGL) leukemia. AIDS Res Hum Retroviruses [Internet]. 2008 Dec [cited 2020 Oct 15];24(12):1503-5. Available from: https://doi.org/10.1089/aid.2008.0128

18. Gessain A, Cassar O. Epidemiological aspects and world distribution of HTLV-1 infection. Front Microbiol [Internet]. 2012 Nov [cited 2020 Oct 15];3:388. Available from: https://doi.org/10.3389%2Ffmicb.2012.00388

19. Ishak R, Vallingto ACR, Azevedo VN, Lewis M, Hall WW, Ishak MOG. Molecular evidence of mother-to-child transmission of HTLV-Ic in the Kararae Village (Kayapo) in the Amazon Region of Brazil. Rev Soc Bras Med Trop [Internet]. 2001 [cited 2020 Oct 15];34(6):519-25. Available from: https://doi.org/10.1590/S0303-86822000000600004

20. Moriuchi M, Moriuchi H. Seminal fluid enhances replication of human T-cell leukemia virus type 1: implications for sexual transmission. J Virol [Internet]. 2004 Nov [cited 2020 Oct 15];78(22):12709-11. Available from: https://doi.org/10.1128%2FJVI.78.22.12709-12711.2004

21. Laimore MD, Anupam R, Bowden N, Haines R, Haynes RAH, Ratner L, et al. Molecular determinants of human T-lymphotropic virus type 1 transmission and spread. Viruses [Internet]. 2011 Jul [cited 2020 Oct 15];3(7):1131-65. Available from: https://dx.doi.org/10.3390%2Fv3071131

22. Mendoza C, Roc L, Benito R, Reina G, Ramos JM, Gómez C, et al. HTLV-1 infection in solid organ transplant donors and recipients in Spain. BMC Infect Dis [Internet]. 2019 Aug [cited 2020 Oct 15];19:706. Available from: https://doi.org/10.1186/s12879-019-4346-z

ORCID
Carolina Rosadas - 0000-0002-3922-5667
Carlos Brites - 0000-0002-4673-6991
Denise Arakaki-Sanchez - 0000-0001-8026-2876
Jorge Casseb - 0000-0002-4553-2559
Ricardo Ishak - 0000-0002-4741-6201
23. Rosadas C, Taylor GP. Mother-child HTLV-1 transmission: unmet research needs. Front Microbiol [Internet]. 2019 May [cited 2020 Oct 15];10:999. Available from: https://doi.org/10.3389/fmicb.2019.00999

24. Cook LBM, Melamed A, Demontis MA, Laydon DJ, Fox JM, Tosswill JHC, et al. Rapid dissemination of human T-lymphotropic virus type 1 during primary infection in transplant recipients. Retrovirology [Internet]. 2016 Jan [cited 2020 Oct 15];13:3. Available from: https://doi.org/10.1186/s12977-015-0236-7

25. Manns A, Wilks RJ, Murphy EL, Haynes G, Barnett M, Hanchard B, et al. A prospective study of transmission by HTLV-1 and risk factors associated with seroconversion. Int J Cancer [Internet]. 1992 Jul [cited 2020 Oct 15];51(6):886-91. Available from: https://doi.org/10.1002/ijc.2910510609

26. Nagai M, Usuku K, Matsumoto W, Kodama D, Takenouchi N, Moritoyo T, Hashiguchi S, et al. Analysis of HTLV-I proviral load in 202 HAM/TSP patients and 243 asymptomatic HTLV-I carriers: high proviral load strongly predisposes to HAM/TSP. J Neurovirol [Internet]. 1997 Dec [cited 2020 Oct 15];4(6):586-93. Available from: https://doi.org/10.3109/13550289809114225

27. Dias-Bastos MR, Oliveira CDL, Carneiro-Proietti ABF. Decline in prevalence and asymmetric distribution of human T cell lymphotropic virus 1 and 2 in blood donors, State of Minas Gerais, Brazil, 1993 to 2007. Rev Soc Bras Med Trop [Internet]. 2010 Nov-Dec [cited 2020 Oct 15];43(6):615-9. Available from: https://dx.doi.org/10.1590/S0037-86822010000600002

28. Carneiro-Proietti ABF, Sabino EC, Leão S, Salles NA, Loureiro P, Sar M, et al. Human T-lymphotropic virus type 1 and type 2 seroprevalence, incidence, and residual transfusion risk among blood donors in Brazil during 2007-2009. AIDS Res Hum Retroviruses [Internet]. 2012 Oct [cited 2020 Oct 15];28(10):1265-72. Available from: https://doi.org/10.1089/aids.2011.0143

29. Lairmore MD, Jacobson S, Gracia F, De BK, Castillo L, Larreategui G, et al. Chronic neurodegenerative disease associated with HTLV-II infection: a clinical, molecular, and phylogenetic characterization. J Clin Virol [Internet]. 1999 Sep [cited 2020 Oct 15];13(6):457-54. Available from: https://pubmed.ncbi.nlm.nih.gov/10520878/

30. Nunes D, Boa-Sorte N, Grassi MFR, Taylor GP, Teixeira MG, Barreto ML, et al. HTLV-1 is predominantly sexually transmitted in Salvador, the city with the highest HTLV-1 prevalence in Brazil. PLoS One [Internet]. 2017 Feb [cited 2020 Oct 15];12:e0171303. Available from: https://doi.org/10.1371/journal.pone.0171303

31. Costa CA, Furtado KCYO, Ferreira LSC, Almeida DS, Linhares AC, Nunes D, Boa-Sorte N, Grassi MFR, Taylor GP, Teixeira MG, Barreto ML, et al. Familial Transmission of Human T-cell Lymphotrophic Virus: Silent Dissemination of an Emerging but Neglected Infection. PLoS Negl Trop Dis [Internet]. 2013 Jun [cited 2020 Oct 15];7:e2277. Available from: https://doi.org/10.1371/journal.pntd.0002277

32. Satake M, Yamaguchi K, Tadokoro K. Current prevalence of HTLV-1 in Japan as determined by screening of blood donors. J Med Virol [Internet]. 2012 Feb [cited 2020 Oct 15];84(2):327-35. Available from: https://doi.org/10.1002/jmv.23181

33. Banjuya HS, Ella EE, Aminu M, Anyanwu NCI. Prevalence of human T-cell lymphotropic virus and the socio-demographic and risk factors associated with the infection among post-natal clinics women in Zaria, Nigeria. J Immunossay Immunochem [Internet]. 2019 [cited 2020 Oct 15];40(5):485-94. Available from: https://doi.org/10.1080/15321819.2019.1636817

34. Braço IJI, Sá KSG, Waqasi M, Queiroz MAF, Silva ANR, Casares-Vallinoto IMV, et al. High prevalence of human T-lymphotropic virus 2 (HTLV-2) infection in villages of the Xikrin tribe (Kayapo), Brazilian Amazon region. BMC Infect Dis [Internet]. 2019 May [cited 2020 Oct 15];19(1):459. Available from: https://doi.org/10.1186/s12879-019-4041-0

35. Murphy EL, Figueuira JP, Gibbs WN, Brathwaite A, Holding-Cobham M, Waters D, et al. Sexual transmission of human T-lymphotropic virus type I (HTLV-I). Ann Intern Med [Internet]. 1989 Oct [cited 2020 Oct 15];111(7):555-60. Available from: https://doi.org/10.7326/0003-4819-111-7-555

36. La Rosa AM, Zunt JR, Peinado J, Lama JR, Ton TGN, Suarez L, et al. Retroviral infection in Peruvian men who have sex with men. Clin Infect Dis [Internet]. 2009 Jul [cited 2020 Oct 15];49(1):112-7. Available from: https://doi.org/10.1086%2F599609

37. Zunt JR, La Rosa AM, Peinado J, Lama JR, Suarez L, Pun M, et al. Risk factors for HTLV-II infection in Peruvian men who have sex with men. J Am Trop Med Hyg [Internet]. 2006 May [cited 2020 Oct 15];74(5):922-5. Available from: https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=16687704

38. Galvão-Castro B, Loures L, Rodrigues LG, Saro A, Ferreira Júnior OC, Franco LG, et al. Distribution of human T-lymphotropic virus type I among blood donors: a nationwide Brazilian study. Transfusion [Internet]. 1997 Feb [cited 2020 Oct 15];37(2):242-3. Available from: https://doi.org/10.1111/j.1537-2995.1997.372972003532.x

39. Ishak R, Ishak MOG, Vallinoto ACM. The challenge of describing the epidemiology of HTLV in the Amazon region of Brazil. Retrovirology [Internet]. 2010 Feb [cited 2020 Oct 15];17:4. Available from: https://dx.doi.org/10.1186%2F12977-020-0512-2

40. Einsiedel L, Woodman RJ, Flynn M, Wilson K, Cassar O, Gessain A. Human T-lymphotropic virus type 1 infection in an indigenous Australian population: epidemiological insights from a hospital-based cohort study. BMC Public Health [Internet]. 2016 Aug [cited 2020 Oct 15];16:787. Available from: https://doi.org/10.1186/s12889-016-3366-5

41. Paiva AM, Assone T, Haziot MEJ, Smid J, Fonseca LAM, Luiz OC, et al. Risk factors associated with HTLV-1 vertical transmission in Brazil: longer breastfeeding, higher maternal proviral load and previous HTLV-I-infected offspring. Sci Rep [Internet]. 2018 [cited 2020 Oct 15];8:7742. Available from: https://doi.org/10.1038/s41598-018-25939-y

42. Brasil. Ministério da Saúde. Portaria GM/MS n. 1376, de 19 de novembro de 1993. Aprova alterações na Portaria no 721/93, de 09.08.89, que aprova Normas Técnicas para coleta, processamento e transfusão de sangue, componentes e derivados, e dá outras providências [Internet]. Diário Oficial da União, Brasília (DF), 1993 dez 2 [cited 2020 Oct 15];Seção I:18405.
84. Hayashi D, Kubota R, Takenouchi N, Nakamura T, Umehara F, Arimura K, et al. Accumulation of human T-lymphotropic virus type 1 (HTLV-I)-infected cells in the cerebrospinal fluid during the exacerbation of HTLV-I-associated myelopathy. J Neurovirol [Internet]. 2008 Oct [cited 2020 Oct 15];14(5):459-63. Available from: https://doi.org/10.1080/13550280802178538

85. Lezín A, Olindo S, Oliere S, Varrin-Doyer M, Martin R, Cabre P, et al. Human T lymphotropic virus type I (HTLV-I) proviral load in cerebrospinal fluid: a new criterion for the diagnosis of HTLV-I-associated myelopathy/tropical spastic paraparesis? J Infect Dis [Internet]. 2005 Jun [cited 2020 Oct 15];191(11):1830-4. Available from: https://doi.org/10.1086/429662

86. Starling ALB, Coelho-dos-Reis JGA, Peruphy-Magalhães V, Pascoal-Xavier MA, Gonçalves DU, Béia SR, et al. Immunological signature of the different clinical stages of the HTLV-I infection: establishing serum biomarkers for HTLV-I-associated disease morbidity. Biomarkers [Internet]. 2015 [cited 2020 Oct 15];20(6-7):502-12. Available from: https://doi.org/10.3109/1354750X.2015.1094141
97. van Tienen C, Visser O, Lugtenburg P, Taylor G, Cook L. Overrepresentation of patients from HTLV-1 endemic countries among T cell Non-Hodgkin lymphomas in the Netherlands: an indication of under-diagnosis of Adult T cell leukaemia/lymphoma. Br J Haematol [Internet]. 2018 Feb [cited 2020 Oct 15];184(4):688-9. Available from: https://doi.org/10.1111/bjh.15160

98. Lymphoma Study Group. Major prognostic factors of patients with adult T-cell leukemia-lymphoma: a cooperative study. Leuk Res [Internet]. 1991 [cited 2020 Oct 15];15(2-3):81-90. Available from: https://doi.org/10.1016/0145-2126(91)90087-A

99. Tsukasaki K, Hermine O, Bazarbachi A, Ratner L, Ramos JC, Harrington Jr W, et al. Definition, prognostic factors, treatment, and response criteria of adult T-cell leukemia-lymphoma: a proposal from an international consensus meeting. J Clin Oncol [Internet]. 2009 Jan [cited 2020 Oct 15];27(3):453-9. Available from: https://doi.org/10.1092/jco.2008.18.2428

100. Shimoyma M. Diagnostic criteria and classification of clinical subtypes of adult T-cell leukaemia-lymphoma. A report from the Lymphoma Study Group (1984-87). Br J Haematol [Internet]. 1991 Nov [cited 2020 Oct 15];79(3):428-37. Available from: https://doi.org/10.1111/j.1365-2141.1991.tb00851.x

101. Yadegar JA, Kimball AS. Optimizing management of patients with adult T cell leukaemia-lymphoma. Cancers (Basel) [Internet]. 2015 Dec [cited 2020 Oct 15];7(4):2318-29. Available from: https://dx.doi.org/10.3390%2FCancers7040893

102. Brites C, Weyll M, Pedroso C, Badaró R. Severe and Norwegian scabies are strongly associated with retroviral (HIV-1/HTLV-1) infection in Bahia, Brazil. AIDS [Internet]. 2002 Jun [cited 2020 Oct 15];16(9):1292-3. Available from: https://doi.org/10.1097/00002030-200206140-00015

103. Dantas L, Netto E, Glesby MJ, Carvalho EM, Machado P. Dermatological manifestations of individuals infected with human T cell lymphotropic virus type I (HTLV-I). Int J Dermatol [Internet]. 2014 Sep [cited 2020 Oct 15];53(9):1098-102. Available from: https://doi.org/10.1111/did.12170

104. LaGrenade L, Hanchard B, Fletcher V, Cranston B, Blattner W. Infective dermatitis of Jamaican children: a marker for HTLV-I infection. Lancet (London, England) [Internet]. 1990 Dec [cited 2020 Oct 15];336(8727):1345-7. Available from: https://doi.org/10.1136/bmj.336.8727.1345

105. Bittencourt AL, Primo J, Oliveira MFP. Manifestations of the human T-cell lymphotropic virus type I infection in childhood and adolescence. J Pediatr (Rio J) [Internet]. 2006 [cited 2020 Oct 15];82(6):411-20. Available from: http://dx.doi.org/10.2223/JPED.1573

106. Oliveira MFSF, Fatal PL, Primo JRL, Silva JLS, Batista ES, Ferre L, et al. Infective dermatitis associated with human T-cell lymphotropic virus type 1: evaluation of 42 cases observed in Bahia, Brazil. Clin Infect Dis [Internet]. 2012 Jun [cited 2020 Oct 15];54(12):1714-9. Available from: https://doi.org/10.1136/cid.cis273

107. Bittencourt AL, Oliveira MFP. Cutaneous manifestations associated with HTLV-I infection. Int J Dermatol [Internet]. 2010 Oct [cited 2020 Oct 15];49(10):1099-110. Available from: https://doi.org/10.1111/j.1365-4632.2010.04568.x

108. Obiba N, Matsumoto M, Sameshima M, Kabayama Y, Nakao K, Unoki K, et al. Occular manifestations in patients infected with human T-lymphotropic virus type I. Jpn J Ophthalmol. 1989;33(1):1-12.

109. Mochizuki M, Tajima K, Watanabe T, Yamaguchi K. Human T lymphotropic virus type 1 uveitis. Br J Ophthalmol [Internet]. 1994 Feb [cited 2020 Oct 15];78(2):149-54. Available from: https://doi.org/10.1136/bjo.78.2.149

110. Brites C, Sampalo J, Oliveira A. HIV/human T-cell lymphotropic virus coinfection revisited: impact on AIDS progression. AIDS Rev [Internet]. 2009 Jan-Mar [cited 2020 Oct 15];11(1):8-16. Available from: https://pubmed.ncbi.nlm.nih.gov/19290303/
123. Sato Y, Shiroma Y. Concurrent infections with Strongyloides and T-cell leukemia virus and their possible effect on immune responses of host. Clin Immunol Immunopathol [Internet]. 1989 Aug [cited 2020 Oct 15];52(2):214-24. Available from: https://doi.org/10.1016/0098-1223(89)90173-6

124. Salles F, Bacellar A, Amorim M, Orge G, Sundberg M, Lima M, et al. Treatment of strongyloidiasis in HTLV-1 and Strongyloides stercoralis coinfected patients is associated with increased tnfα and decreased soluble IL-2 receptor levels. Trans R Soc Trop Med Hyg [Internet]. 2013 Aug [cited 2020 Oct 15];107(8):526-9. Available from: https://doi.org/10.1093/trstmh/trt052

125. Gabet A-S, Morterreux F, Talarnin A, Plummelle Y, Leclercq I, Leroy A, et al. High circulating proviral load with oligoclonal expansion of HTLV-1 bearing T cells in HTLV-1 carriers with strongyloidiasis. Oncogene [Internet]. 2000 Oct [cited 2020 Oct 15];19(43):4954-60. Available from: https://doi.org/10.1038/sj/onc.1203870

126. Plummelle Y, Gonin C, Edouard A, Bucher BJ, Thomas L, Brebion A, et al. Effect of Strongyloides stercoralis infection and eosinophilia on age at onset and prognosis of adult T-cell leukemia. Am J Clin Pathol [Internet]. 1997 Jan [cited 2020 Oct 15];107(1):81-7. Available from: https://doi.org/10.1093/ajcp/107.1.81

127. Schierhout G, McGregor S, Gessain A, Einsiedel I, Martinello M, Kaldor J. Association between HTLV-1 infection and adverse health outcomes: a systematic review and meta-analysis of epidemiological studies. Lancet Infect Dis [Internet]. 2019 Apr [cited 2020 Oct 15];20(4):407-8. Available from: https://doi.org/10.1016/S1473-3099(19)30133-X

128. Marinaho J, Galvão-Castro B, Rodrigues LC, Barreto ML. Increased risk of tuberculosis with human T-lymphotropic virus-1 infection a case-control study. J Acquir Immune Defic Syndr [Internet]. 2005 [cited 2020 Oct 15];40(5):625-8. Available from: https://www.arca.fiocruz.br/handle/icict/8131

129. Norrgren HR, Bamba S, Larsen O, Silva Z, Aaby P, Koivula T, et al. High circulating proviral load with oligoclonal expansion of HTLV-1 bearing T cells in HTLV-1 carriers with strongyloidiasis. Oncogene [Internet]. 2000 Oct [cited 2020 Oct 15];19(43):4954-60. Available from: https://doi.org/10.1038/sj/onc.1203870

130. Moreira ED, Ribeiro TT, Swanson P, Sampaio Filho C, Melo A, Brites C, et al. Seroepidemiology of human T-cell lymphotropic virus type I/II in northeastern Brazil. J Acquir Immune Defic Syndr. 1993 Aug;6(8):959-63.

131. Hanada S, Uematsu T, Iwahashi M, Nomura K, Utsunomiya A, Kodama K, et al. Proviral features of human T cell leukemia virus type 1 in carriers with indeterminate western blot analysis results. J Clin Microbiol [Internet]. 2019 Sep [cited 2020 Oct 15];57(11):5643-58. Available from: https://doi.org/10.1128/jcm.00961-18

132. Kanepa C, Salido J, Ruggieri M, Fraile S, Pataccini G, Berini C, et al. Low Proviload is associated with indeterminate western blot patterns in human T-cell lymphotropic virus type 1 infected individuals: could punctual mutations be related? Viruses [Internet]. 2015 Nov [cited 2020 Oct 15];7(11):5634-58. Available from: https://doi.org/10.3390/v7112897

133. Tebourski F, Slim A, Elgaied A. The significance of combining World Health Organization and Center for Disease Control criteria to resolve indeterminate human immunodeficiency virus type-1 Western blot results. Diagn Microbiol Infect Dis [Internet]. 2004 Jan [cited 2020 Oct 15];50(1):59-61. Available from: https://doi.org/10.1016/j.diagmicrobio.2003.08.004

134. Ishak R, Vallinoto ACR, Azevedo VN, Vicente ACP, Hall WW, Ishak MOG. Molecular evidence for infection by HTLV-2 among individuals with negative serological screening tests for HTLV antibodies. Epidemiol Infect [Internet]. 2007 May [cited 2020 Oct 15];135(4):604-9. Available from: https://doi.org/10.1017/s0950268806006984

135. Kuramitsu M, Sekizuka T, Yamochi T, Firouzi S, Sato T, Umeki K, et al. High circulating proviral load with oligoclonal expansion of HTLV-1 antibody screening in Japan. Front Microbiol [Internet]. 2020 Jun [cited 2020 Oct 15];11:595. Available from: https://dx.doi.org/10.3389/fmicb.2020.00595

136. Cassar O, Gessain A. Serological and molecular methods to study epidemiological aspects of human T-cell lymphotropic virus type 1 infection. Methods Mol Biol [Internet]. 2017 [cited 2020 Oct 15];1582:23-4. Available from: https://doi.org/10.1007/978-1-4939-6872-5_1

137. Puccioni-Sohler M, Grassi MFR, Galvão-Castro B, Caterino A, Proietti ABFC, Vicente ACP, et al. Increasing awareness of human T-lymphotropic virus type-1 infection: a serious, invisible, and neglected health problem in Brazil. Rev Soc Bras Med Trop [Internet]. 2019 Oct [cited 2020 Oct 15];52:e20190343. Available from: http://dx.doi.org/10.1590/0037-8682-0343-2019

138. Silva Brito V, Santos FLN, Gonçalves NLS, Araújo THA, Nascimento DSV, Pereira FM, et al. Performance of commercially available serological screening tests for human T-cell lymphotropic virus infection in Brazil. J Clin Microbiol [Internet]. 2018 Nov [cited 2020 Oct 15];56(12):e00961. Available from: https://doi.org/10.1128/jcm.00961-18

139. Morra R, Braga L, Franco G, Polani ME, Gomes SL, de Mello LG, et al. Discordance between serology and proviral load in patients infected with human immunodeficiency virus type 1. J Acquir Immune Defic Syndr. 2019 Sep;71(3):307-11. Available from: https://doi.org/10.1177/1081237119848026

140. Azevedo AC, Casseb JS, Neitzert E, Souza ML, Mammano F, Mistro DSV, Pereira FM, et al. High circulating proviral load with oligoclonal expansion of HTLV-1 antibody screening in Japan. Front Microbiol [Internet]. 2020 Jun [cited 2020 Oct 15];11:595. Available from: https://dx.doi.org/10.3389/fmicb.2020.00595

141. Ishak R, Vallinoto ACR, Azevedo VN, Vicente ACP, Hall WW, Ishak MOG. Molecular evidence for infection by HTLV-2 among individuals with negative serological screening tests for HTLV antibodies. Epidemiol Infect [Internet]. 2007 May [cited 2020 Oct 15];135(4):604-9. Available from: https://doi.org/10.1017/s0950268806006984

142. Kuramitsu M, Sekizuka T, Yamochi T, Firouzi S, Sato T, Umeki K, et al. High circulating proviral load with oligoclonal expansion of HTLV-1 antibody screening in Japan. Front Microbiol [Internet]. 2020 Jun [cited 2020 Oct 15];11:595. Available from: https://dx.doi.org/10.3389/fmicb.2020.00595
195. Magalhães T, Mota-Miranda AC, Alcantara LCJ, Olavarria V, Galvão-Castro B, Rios-Grassi MF. Phylogenetic and molecular analysis of HTLV-1 isolates from a medium sized town in Northern of Brazil: Tracing a common origin of the virus from the most endemic city in the country. J Med Virol [Internet]. 2008 Nov [cited 2020 Oct 15];80(11):2040-5. Available from: https://doi.org/10.1002/jmv.21278

196. Dal Fabbro MMFJ, Cunha RV, Bóia MN, Portela P, Botelho CA, Freitas GMB, et al. Infeção pelo HTLV 1/2: atuação no pré-natal como estratégia de controle da doença no Estado de Mato Grosso do Sul. Rev Soc Bras Med Trop [Internet]. 2008 Mar-Apr [cited 2020 Oct 15];41(2):148-51. Available from: https://doi.org/10.1590/S0037-86822008000200003

197. The T and B-cell malignancy study group. The third nation-wide study on adult T-cell leukemia/lymphoma (ATL) in Japan: characteristic patterns of HLA antigen and HTLV-I infection in ATL patients and their relatives. The T- and B-cell Malignancy Study Group. Int J Cancer [Internet]. 1988 Apr [cited 2020 Oct 15];41(4):505-12. Available from: https://doi.org/10.1002/ijc.2910410406

198. Bartholomew C, Jack N, Edwards J, Charles W, Corbin D, Cleghorn FR, et al. HTLV-I serostatus of mothers of patients with adult T-cell leukemia and HTLV-I associated myelopathy/tropical spastic paraparesis. J Hum Virol. 1998 May-Jun;1(4):302-5.

199. Hino S. Establishment of the milk-borne transmission as a key factor for the peculiar endemicity of human T-lymphotropic virus type 1 (HTLV-I): the ATL Prevention Program Nagasaki. Proc Jpn Acad Ser B Phys Biol Sci [Internet]. 2011 [cited 2020 Oct 15];87(4):152-66. Available from: https://doi.org/10.2183/pjab.87.152

200. Ureta-Vidal A, Angelin-Duclos C, Tortevoye P, Murphy E, Lepere JF, Buigues RP, et al. Mother-to-child transmission of human T-cell-leukemia/lymphoma virus type I: Implication of high antiviral antibody titer and high proviral load in carrier mothers. Int J Cancer [Internet]. 1999 Sep [cited 2020 Oct 15];82(6):832-6. Available from: https://doi.org/10.1002/(sici)1097-0215(19990909)82:6<832::aid-ijc11>3.0.co;2-p

201. Oki T, Yoshinaga M, Otsuka H, Miyata K, Sonoda S, Nagata Y. A sero-epidemiological study on mother-to-child transmission of HTLV-I in southern Kyushu, Japan. Asia-Oceania J Obstet Gynaecol [Internet]. 1992 Dec [cited 2020 Oct 15];18(4):371-7. Available from: https://doi.org/10.1111/j.1447-0756.1992.tb00333.x

202. Takahashi K, Takezaki T, Oki T, Kawakami K, Yashiki S, Fujiyoshi T, et al. Inhibitory effect of maternal antibody on mother-to-child transmission of human T-lymphotropic virus type I. Int J Cancer [Internet]. 1991 Nov [cited 2020 Oct 15];49(5):673-7. Available from: https://doi.org/10.1002/ijc.2910490508

203. Ando Y, Matsumoto Y, Nakano S, Saito K, Kakimoto K, Tanigawa T, et al. Long-term follow-up study of HTLV-I infection in bottle-fed children born to seropositive mothers. J Infect [Internet]. 2003 Jan [cited 2020 Oct 15];46(1):9-11. Available from: https://doi.org/10.1016/S1473-0099(03)00073-7

204. Nishijima T, Shimada S, Noda H, Miyake K. Towards the elimination of HTLV-I infection in Japan. Lancet Infect Dis [Internet]. 2019 Jan [cited 2020 Oct 15];19(1):15-6. Available from: https://doi.org/10.1016/S1473-3099(18)30735-7

205. Ishak R, Vallinoto AC, Azevedo VN, Lewis M, Hall WW, Guimarães Ishak MO. Molecular evidence of mother-to-child transmission of HTLV-Ic in the Kararao Village (Kayapo) in the Amazon region of Brazil. Rev Soc Bras Med Trop [Internet]. 2001 Nov-Dec [cited 2020 Oct 15];34(6):519-25. Available from: http://dx.doi.org/10.1590/S0037-86822001000600004

206. Silva EA, Otsuki K, Leite ACB, Alamy AH, Sa D, Vicente ACP. HTLV-II infection associated with a chronic neurodegenerative disease: clinical and molecular analysis. J Med Virol [Internet]. 2002 Feb [cited 2020 Oct 15];66(2):253-7. Available from: https://doi.org/10.1002/jmv.10465

207. Catalan-Soares B, Barbosa-Stancioli EF, Alcantara LCJ, et al. HTLV-II Horizontal and vertical transmission in a family from a Brazilian urban area: seroepidemiological, clinical and molecular study. AIDS Res Hum Retroviruses [Internet]. 2005 Jun [cited 2020 Oct 15];21(6):521-6. Available from: https://doi.org/10.1089/aid.2005.21.521

208. Renner JDP, Laurino JP, Menna-Barreto M, Schmitt VM. Molecular evidence of HTLV-II subtype B among an urban population living in South Brazil. AIDS Res Hum Retroviruses [Internet]. 2006 Apr [cited 2020 Oct 15];22(4):301-6. Available from: https://doi.org/10.1089/aid.2006.22.301

209. Ishak R, Ishak MO, Azevedo VN, Santos DEM, Vallinoto ACR, Saraiva JCP, et al. Detection of HTLV-IIa blood donors in an urban area of the Amazon Region of Brazil (Belem, PA). Rev Soc Bras Med Trop [Internet]. 1998 Mar-Apr [cited 2020 Oct 15];31(2):193-7. Available from: http://dx.doi.org/10.1590/S0037-86821998000200005