The planetary nebulae population in the central regions of M32: the SAURON view

Marc Sarzi,¹* Gary A. Mamon,² Michele Cappellari,³ Eric Emsellem,⁴,⁵ Roland Bacon,⁵ Roger L. Davies and P. Tim de Zeeuw⁴,⁶

¹Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield, Herts, AL10 9AB
²Institut d’Astrophysique de Paris (UMR 7095: CNRS & UPMC), 98 bis Bd. Arago, 75014 Paris, France
³Sub-Dept of Astrophysics, Dept of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH
⁴European Southern Observatory, Karl-Schwarzschild-Str 2, 85748 Garching, Germany
⁵Centre de Recherche Astronomique de Lyon, 9 Avenue Charles André, 69230 Saint Genis Laval, France
⁶Sterrewacht Leiden, Universiteit Leiden, Postbus 9513, 2300 RA Leiden, the Netherlands

Accepted 2011 April 11. Received 2011 April 11; in original form 2010 November 19

ABSTRACT
Extragalactic planetary nebulae (PNe) are not only useful as distance signposts or as tracers of the dark matter content of their host galaxies, but constitute also good indicators of the main properties of their parent stellar populations. Yet, so far, the properties of PNe in the optical regions of galaxies where stellar population gradients can be more extreme have remained largely unexplored, mainly because the detection of PNe with narrow-band imaging or slitless spectroscopy is considerably hampered by the presence of a strong stellar background. Integral field spectroscopy (IFS) can overcome this limitation, and here we present a study of the PN population in the nearby compact elliptical M32. Using SAURON data taken with just two 10-min-long pointings we have doubled the number of known PNe within the effective radius of M32, detecting PNe five times fainter than previously found in narrow-band images that collected nearly the same number of photons. We have carefully assessed the incompleteness limit of our survey, and accounting for it across the entire range of luminosity values spanned by our detected PNe, we could conclude despite having at our disposal only 15 sources that the central PNe population of M32 is consistent with the generally adopted shape for the PNe Luminosity Function and its typical normalization observed in early-type galaxies. Furthermore, owing to the proximity of M32 and to ultraviolet images taken with the Hubble Space Telescope, we could identify the most likely candidates for the central star of a subset of our detected PNe and conclude that these stars are affected by substantial amounts of circumstellar dust extinction, a finding that could reconcile the intriguing discrepancy previously reported in M32 between the model predictions and the observations for the later stages of stellar evolution. Considering the modest time investment on a 4-m-class telescope that delivered these results, this study illustrates the potential of future IFS investigations for the central PNe population of early-type galaxies, either with existing SAURON data for many more, albeit more distant, objects, or from campaigns that will use the future generations of integral field spectrographs that will be mounted on 8-m-class telescopes, such as MUSE on the Very Large Telescope.

Key words: stars: AGB and post-AGB – ISM: planetary nebulae: general – galaxies: elliptical and lenticular, cD – galaxies: individual: M32 – galaxies: stellar content.

1 INTRODUCTION
In the field of extragalactic astronomy, planetary nebulae (PNe) are perhaps regarded mostly either as useful indicators for the distance of their galactic hosts (Ciardullo et al. 1989; Jacoby, Ciardullo & Ford 1990; Jacoby et al. 1992), thanks to the almost universal – though not fully understood – shape of their luminosity function (PNLF, generally in the [O III]λ5007 emission), or as tracers of the gravitational potential in the outskirts of galaxies (Romanowsky et al. 2003; Douglas et al. 2007; Coccato et al. 2009). Yet, as summarized in the review of Ciardullo (2006), PNe can also be

*E-mail: m.sarzi@herts.ac.uk
used as probes of their parent stellar population. For the closest or brightest PNe, the detection of critical but weak diagnostic emission lines such as [O \text{II}]\lambda4363 allows to directly measure the temperature of the ionized-gas and thus the metallcity of PNe, which in turn makes it possible to constrain the chemical enrichment history of their host galaxy (e.g. Dopita et al. 1997; Jacoby & Ciardullo 1999; Richer, Stasińska & McCall 1999). In more distant galaxies, it is still possible to place useful constraints on the Oxygen abundance of PNe by using brighter lines such as [O \text{II}]\lambda5007, H\beta, [N \text{II}]\lambda6548, 6584, H\alpha \text{ or } [S \text{II}]\lambda\lambda6713, 6731, or to investigate the star formation history of a galaxy by studying the shape and normalization of the PNLF (e.g. Marigo et al. 2004; Schönborner et al. 2007; Méndez et al. 2008). In fact, understanding the origin of the PNLF is a puzzle that, once solved, promises to reveal new clues on the late stages of stellar evolution and on the formation of PNe themselves (e.g. Ciardullo et al. 2005; Buzzoni, Arnaboldi & Corradi 2006).

In this context it is important to note that most known extragalactic PNe have been found in the outskirts of their hosts, whereas the PNe population of the optical regions of galaxies remains largely unexplored. Most PNe studies have indeed been carried out through narrow-band imaging (e.g. Ciardullo et al. 1989) or slitless spectroscopy (e.g. Douglas et al. 2007), where the detection of PNe is considerably hampered by the presence of a stellar background. Yet, it is in central regions of galaxies where stellar population gradients can be more extreme and where the stellar ages, metallicities and element abundances can be the most diverse between different galaxies. Integral field spectroscopy (IFS) can overcome the previous instrumental limitations since it allows for the careful modelling of a galaxy’s integrated stellar spectrum, and this paper aims to demonstrate the potential of IFS for studying the properties on PNe in the optical regions of galaxies using SAURON observations for the compact elliptical M32 (NGC221), our closest early-type galaxy.

This work is organized as follows. In Section 2, we briefly review the acquisition and reduction of the SAURON data for M32. In Section 3 we detail how we optimized the extraction of the nebular emission in the SAURON data and how we proceeded to identify and measure the [O \text{II}]\lambda5007 flux of the PNe in M32. In Section 4 we present our main results, assessing in particular whether our data are consistent with the generally adopted shape for PNLF and the value for its normalization that is most commonly observed in early-type galaxies. In Section 5 we discuss these findings by linking them to the known properties of the stellar population of M32, and in particular to the apparent dearth of post-asymptotic giant branch stars that was reported by Brown et al. (2000). Finally, in Section 6 we draw our conclusions and consider some future prospects for more IFS studies of the PNe populations in the central regions of galaxies.

2 OBSERVATIONS AND DATA REDUCTIONS

M32 (NGC221) was one of the special objects that were observed over the course of the SAURON representative survey (de Zeeuw et al. 2002), and more specifically during the last run of that observing campaign at the 4-m William Herschel Telescope and following the installation of a new volume phase-holographic grating (Emselfem et al. 2004). The central regions of M32 were observed with two offset pointings during 60 s for each exposure, while using the low-resolution mode of SAURON that gives a field of view of 33.0 \times 44.0 \text{arcsec}^2 fully sampled by 0.94 \times 0.94-arcsec^2 square lenses (for more details on the instrument see Bacon et al. 2001). The data from each pointing were reduced similarly to the data obtained for the objects of the main SAURON sample (see Emsellem et al. 2004; Falcón-Barroso et al. 2006), and the resulting datacubes were merged and resampled in 0.8 \times 0.8 \text{arcsec}^2 spatial elements each corresponding to spectra with a final spectral resolution of 4.2 \text{Å} (FWHM).

The present SAURON data for M32 were already used to extract the stellar kinematics that was modelled by Cappellari et al. (2006) and the only difference with the data used in that work and other papers of the SAURON project is that here we did not perform any Voronoi spatial binning (Cappellari & Copin 2003). This was done to avoid swamping the signal of the weaker PNe against an increased stellar background, and to allow for a more consistent analysis of the flux distribution from each of the unresolved PN that we may detect.

3 DATA ANALYSIS

3.1 Emission-line measurements

In order to identify PNe in M32 and measure their flux in the [O \text{II}]\lambda5007 line we first need to separate as accurately as possible the stellar and nebular contribution to each of the SAURON spectra that sample the central regions of this galaxy. For this purpose we used the method of Sarzi et al. (2006, hereafter Paper V following the notation of the SAURON project) whereby a set of stellar templates and Gaussian emission lines are fitted simultaneously to the spectra,\(^1\) while following also the approach of Sarzi et al. (2010) to further improve the match to the stellar continuum and ensure that the ionized-gas emission is extracted from the subtraction of a physically motivated stellar model. This is achieved by using, instead of standard template libraries based on stellar spectra or single-age stellar population models, a more appropriate set of empirical templates that are constructed while matching a number of high-quality SAURON spectra extracted from regions in the target galaxy where no ionized-gas emission is found.

Fig. 1 shows how we identified such emission-line free regions in M32 using an [O \text{II}] narrow-band image made from the SAURON data themselves (see the caption of Fig. 1 for details). Each of the spectra extracted from the circular apertures shown in Fig. 1 was fitted with the pixel-fitting code of Cappellari & Emselfem (2004), over the full wavelength range of the SAURON data and using the entire MILES template library of Sánchez-Blázquez et al. (2006). Both the quality of such aperture spectra and of our fit to them is very high, with values for the ratio between the median level of the spectra (S) and the average level of the fit residuals (residual noise, rN) ranging from 100 to over 400, with S/rN \sim 300 on average. The weights assigned to the MILES stellar templates during each of these fits were then used to combine the MILES spectra into optimal templates that, owing to the excellent quality of our fit, can be in practice regarded as M32 spectra deconvolved from the line-of-sight kinematical broadening. Fig. 1 also illustrates how our emission-free apertures are evenly spread over the SAURON field of view, which ensures that their corresponding optimal templates can account for the presence of stellar population gradients (Rose et al. 2005) when they are used to match each of the single spectra sampling the central regions of M32.

\(^1\) In practice this is achieved by using the IDL code GANDALF (available at http://star-www.herts.ac.uk/~sarzi) and the stellar kinematics extracted with the pixel-fitting IDL code pxvr (Cappellari & Emselfem 2004, http://www-astro.ox.ac.uk/~mxc/idl).
3.2 PNe detection and flux measurements

To measure the flux of any known or possible PNe in the SAURON field of view, and at the same time establish whether a weak patch of [O II] emission is indeed consistent with the shape of the PSF of our observations, the full-width at half maximum (FWHM) of each PSF was measured using the most cleanly detected of our sources, corresponding to sources with a detection of [O II] emission. The full-width at half maximum, by properly aligning the Gaussian function, was then used to fit the [O II] emission. A detection limit of [O II] emission was established from the SAURON field of view.

In order to detect the [O II] emission, a detection limit of 3σ was established. The [O II] emission was then measured using the mean spectral energy density across the entire spectrum times the full-width at half maximum of the Gaussian function. The fluxes were then corrected for the contribution of the stellar continuum.

The [O II] emission in early-type galaxies

A detection limit of 3σ was established for the [O II] emission in early-type galaxies. The [O II] emission was then measured using the mean spectral energy density across the entire spectrum times the full-width at half maximum of the Gaussian function. The fluxes were then corrected for the contribution of the stellar continuum.
As expected, for the doubtful sources the detection limits are 3. In fact, the case of the questionable sources with dotted lines. The fit to the [OIII] flux of each PN and to the stellar continuum observed along the line of sight towards them. We note that the A/rN values for the [OIII] emission measured in these spectra always indicate a detection, even within a 3σPSF aperture that is 6.5 times wider than the FWHM region where we decided to assess the detection of PNe and within which we might have expected the emission from the weakest of our PNe to be lost against a larger stellar background. That this is never the case, however, suggests that the two questionable sources might as well be regarded as marginal detections, which is why we will keep considering them in the remainder of the paper.

To conclude this section in Table 1 we list, for both firmly and barely detected PNe in M32, the position relative to the centre of the galaxy, the total F$_{5007}$ flux of the [OIII] emission with its corresponding detection limit, the velocity of each source, and, when the Hβ line was also detected, the average value of the [OIII]/Hβ ratio. The latter two measurements are based on fits to spectra similar to those presented in Fig. 5, but now extracted within a FWHM-wide aperture (rather than within a radius $r = 3\sigma_{PSF}$) in order to maximize the emission-line signal and better isolate the kinematics of PNe that are close to each other in projection.

4 RESULTS

The analysis described in the previous section has delivered the solid detection of 13 PNe within the optical regions of M32, with an additional 2 sources where the observed [OIII] flux distribution is only marginally consistent with the emission from an unresolved PN. Given the systemic velocity $V_{sys} = -197\, \text{km}\, \text{s}^{-1}$ of M32 and its average stellar velocity dispersion within one effective radius $\sigma_v = 60\, \text{km}\, \text{s}^{-1}$ (Cappellari et al. 2006), the velocities listed in Table 1 show that the observed PNe very likely belong to M32, rather than to the disc or halo of M31 where PNe move on average at a speed of $-400\, \text{km}\, \text{s}^{-1}$ (Merrett et al. 2006). In fact, the case for membership in M32 holds even at a local level, when the PNe velocity V_{PN} is compared with the mean stellar velocity V, and velocity dispersion σ_v measured along the line of sight towards their...
location. Using FWHM-wide aperture spectra to better separate the velocity V_{PN} of blended or close PNe and larger 3 σ_{PSF}-wide apertures to extract robust V_{α} and σ_{α} measurements also in the outskirts of M32, we found that only in three cases $|V_{\text{PN}} - V_{\alpha}| > \sigma_{\alpha}$ even less often than what is normally expected for 15 sources.

Table 1 also lists, when we could measure it, large values for the $[\text{O} \text{II}]/\text{H} \beta$ ratio, thus showing that these are indeed high-ionization sources most likely consistent with PN spectra. Finally, we note that for the PNe that were also detected by Ciardullo et al. (1989) our flux values agree fairly well, within a few percent, with the values reported in that work. For instance, for the brightest PN in sources most likely consistent with PN spectra. Finally, we note that for the PNe that were also detected by Ciardullo et al. (1989) our flux values agree fairly well, within a few percent, with the values reported in that work. For instance, for the brightest PN in our sample (source 5) we measure a F_{5007} flux that is only 8 percent fainter than what was found by Ciardullo et al. (1989, source 27 in their table 7).

Fig. 6 presents the luminosity function of the PNe found in the optical regions of M32 by our SAURON observations, which essentially map this galaxy within its effective radius $R_{e} = 30$ arcsec. To construct such a PNLF we followed the definition of Ciardullo et al. (1989) to compute the apparent V-band magnitude $m_{5007} = -2.5 \log F_{5007} - 13.74$ of our sources, and derived the values for the absolute magnitude M_{5007} that are shown in Fig. 6 by adopting a distance modulus of 24.49 mag. This corresponds to a distance of 791 kpc, and it is the same value based on the surface-brightness fluctuation measurements of Tonry et al. (2001) that was used by Cappellari et al. (2006).

Fig. 6 also shows with a red line the expected form for the PNLF introduced by Ciardullo et al., who combined the simple Henize & Westerlund (1963) model for a population of slowly fading and expanding PN envelopes with a sharp exponential cut-off at the high-mass end. The shape of our observed PNLF is inconsistent with such a theoretical curve, but this is hardly surprising considering that at the faint end our PN number counts are affected by incompleteness. To a first approximation the onset of this bias can be appreciated by noticing in Fig. 6 how the values for the absolute magnitude corresponding to the detection limits of each of our sources (shown with open diamonds) pile up from a $M_{5007} < -1.5$ and brighter, corresponding to an apparent magnitude limit of $m_{5007} < 23$. In general, while looking at bigger galaxies than M32 with a correspondingly larger number of PNe or at very close objects such as the Large and Small Magellanic Clouds, other studies use the PNe that are found within the completeness limit in order to determine both the best normalization for the theoretical PNLF and to test whether this could in fact be considered the parent distribution for the data. In the case of M32, however, there are simply not be enough PNe within the completeness limit (say for $M_{5007} < -2$, taking a conservative guess from Fig. 6) to confidently carry out such a measurement and test. We therefore decided to first understand how our observational biases would affect the theoretical form of Ciardullo et al. for the PNLF, to then test whether all our data, over the entire M_{5007} range, could have been drawn from the
and, using the values of \(m_{\text{III}} \) obtained from our spectral fits across the entire field of view, it becomes more and more difficult to detect PNe near the central region of the galaxy, with the area of non-detectability (shown with grey bins) quickly expanding outward for PNe fainter than \(M_{5007} \sim -2.5 \) (\(m_{5007} \sim 22 \)) as measured in spectra extracted within the area over which PNe can be detected. As Fig. 7 illustrates, starting from an absolute magnitude of \(M_{5007} \sim -2.5 \) (\(m_{5007} \sim 22 \)) it becomes more and more difficult to detect PNe near the central region of the galaxy, with the area of non-detectability (shown with grey bins) quickly expanding outward for PNe fainter than \(M_{5007} \sim -2.5 \) (\(m_{5007} \sim 22 \)). More specifically, we are 100 per cent complete down to \(M_{5007} \sim -2.5 \) (\(m_{5007} \sim 22 \)), whereas we lose about 5 per cent of PNe with an absolute magnitude of \(M_{5007} \sim -2.5 \) and nearly 26 per cent of those with \(M_{5007} \sim -1.0 \). Fig. 7 shows simulations for just eight \(M_{5007} \) values and while placing the Gaussian PN models at the centre of

![Figure 5. SAURON aperture spectra for the PNe sources shown in Fig. 3 along with our best fit for the PNe emission and the background stellar continuum. Such spectra were extracted within a radius \(r = 3 \sigma_{\text{PSF}} \) from the centre of the best-fitting Gaussian models plotted in Fig. 4, and correspond to the sum of all the SAURON spectra observed in the bins shown in each of the panels of that figure. In each of the panels shown here the red line shows the sum of the stellar and nebular model (green and blue lines), with flux densities in \(10^{-16} \text{erg s}^{-1} \text{cm}^{-2} \) \(\text{arcsec}^{-2} \) \(\text{Å}^{-1} \), whereas the small points show the fit residuals around a zero level that has been rescaled for clarity. The values of the \(A/rN \) ratio for the \([\text{O} \text{ III}]\lambda 5007\) line is printed at the bottom of each panel, and show that the \([\text{O} \text{ III}]\) emission is detected in each spectrum, including those extracted around the doubtful PN sources 14 and 15.](https://academic.oup.com/mnras/article-abstract/415/3/2832/1053041)

Table 1. Basic Properties of the PNe in the Optical Regions of M32.

ID	x-off	y-off	\(F_{5007} \)	\(F_{5007, \text{lim}} \)	\(V_{\text{PN}} \)	\[\text{O} \text{ III}]\text{H} \beta \)
1	10.0	10.0	10.0	10.0	10.0	10.0
2	20.0	20.0	20.0	20.0	20.0	20.0
3	30.0	30.0	30.0	30.0	30.0	30.0
4	40.0	40.0	40.0	40.0	40.0	40.0
5	50.0	50.0	50.0	50.0	50.0	50.0
6	60.0	60.0	60.0	60.0	60.0	60.0
7	70.0	70.0	70.0	70.0	70.0	70.0
8	80.0	80.0	80.0	80.0	80.0	80.0
9	90.0	90.0	90.0	90.0	90.0	90.0
10	100.0	100.0	100.0	100.0	100.0	100.0
11	110.0	110.0	110.0	110.0	110.0	110.0
12	120.0	120.0	120.0	120.0	120.0	120.0
13	130.0	130.0	130.0	130.0	130.0	130.0
14	140.0	140.0	140.0	140.0	140.0	140.0
15	150.0	150.0	150.0	150.0	150.0	150.0

Note. (1) PN ID. (2)–(3) RA and Dec. offset position, in arcseconds, from the centre of M32. (4)–(5) Total \([\text{O} \text{ III}]\lambda 5007\) flux and detection limit, in \(10^{-16} \text{erg s}^{-1} \text{cm}^{-2} \). (6) Velocity in km s\(^{-1}\), as measured in spectra extracted within a FWHM wide aperture around the centre of the best-fitting Gaussian models shown in Fig. 3. (7) \([\text{O} \text{ III}]\text{H} \beta \) in the same spectra, when \text{H} \beta is detected. As shown in Fig. 1 our sources 1–7 were already detected by Ciardullo et al. (1989) who, in the order, labelled them with the ID of 21, 26, 24, 20, 27, 23 and 25.

Corresponding completeness-corrected model PNLF, while also determining the best normalization for it.

Fig. 7 presents simulations designed to show how we derive the completeness function of our observations, that is, the probability as a function of absolute magnitude \(M_{5007} \) that a PN of that brightness could be detected across the entire field of view of the SAURON observations for M32. Since at any given luminosity the number of expected PNe scales with the total number of stars, such a probability is just the fraction of the total stellar flux encompassed by our field of view that is observed within the area over which PNe of a given absolute magnitude \(M_{5007} \) could be detected. To then decide whether a PN of given \(M_{5007} \) could be detected at any given position, we generated a Gaussian PN model of total flux corresponding to the apparent magnitude \(m_{5007} \) and, using the values of \(rN \) obtained from our spectral fits across the entire field of view, simply checked whether \(A/rN > 3 \) within a FWHM of the Gaussian model. As Fig. 7 illustrates, starting from an absolute magnitude of \(M_{5007} \sim -2.5 \) (\(m_{5007} \sim 22 \)) it becomes more and more difficult to detect PNe near the central region of the galaxy, with the area of non-detectability (shown with grey bins) quickly expanding outward for PNe fainter than \(M_{5007} \sim -1.0 \) (\(m_{5007} \sim 23.5 \)). More specifically, we are 100 per cent complete down to \(M_{5007} \sim -3 \), whereas we lose about 5 per cent of PNe with an absolute magnitude of \(M_{5007} \sim -2.5 \) and nearly 26 per cent of those with \(M_{5007} \sim -1.0 \). Fig. 7 shows simulations for just eight \(M_{5007} \) values and while placing the Gaussian PN models at the centre of
each SAURON 0.8×0.8 arcsec2 bin, but to derive the completeness function and the uncertainties associated with it we adopted a more refined grid of M_{5007} values and accounted for the impact of randomly placing the Gaussian models within the SAURON bins.

When the theoretical PNLF of Ciardullo et al. is multiplied by the completeness function that we have just derived, we finally obtain the completeness-corrected prediction for the expected number of PNe in M32 that is shown by the red dashed curve in Fig. 6, with the dotted red lines tracing the scatter in this correction due to the exact PNe position in the SAURON bins. A Kolgomorov–Smirnov test reveals that this corrected PNLF can be regarded as the parent distribution for our data, since there is a 82 per cent probability that all of our 15 PNe could have been drawn from it, and a 52 per cent probability when considering only the 13 secure PNe. By integrating the completeness-corrected luminosity function we obtain the total number of PNe that we would expect to detect, and by matching this value with the actual number of observed PNe, 15 including marginal detections, we obtain our best estimate for the normalization of the PNe luminosity function of M32 within the region mapped by our SAURON observations. Such a normalization is generally expressed in terms of the luminosity-specific number density of PNe, through the ratio $\alpha = N_{\text{PN}}/L_{\text{bol}}$ between the total expected number of PNe N_{PN} in a stellar population and the total bolometric luminosity L_{bol} of the latter. Typically, the total number of PNe is estimated by integrating the normalized PNLF of Ciardullo et al. from the brightest observed absolute magnitude $M_{5007} = -4.47$ to 8 mag fainter, which is the limit where Henize & Westerlund (1963) locate the faintest PNe. Yet, since the faint end of the PNLF has not been well constrained by observations, in some instances α is provided only within the completeness limit and such an extrapolation is avoided. Most often in the literature this limit lies within 2.5 mag of M_{5007} and the luminosity-specific number density parameter is therefore indicated as $\alpha_{2.5}$. Adopting our normalization there should be 76 PNe in total within the central region of M32 mapped by SAURON and between 7 and 8 PNe (7.6) with $M_{5007} = M_{5007} - 2.5$. Given that our observations cover M32 within essentially its effective radius R_e from I-band images, we are here encompassing nearly half of the total I-band luminosity, i.e. $L_I = 2.3 \times 10^6 L_{\odot}$ (see Cappellari et al. 2006, for R_e and total luminosity I-band measurements). Adopting the reddening corrected $B - V = 0.88$ colour of Buzzoni et al. (2006) for M32, and using Bruzual & Charlot (2003) models for a Salpeter IMF and Solar metallicity, we then obtain a $B - I = 2.01$ and thus a B-band luminosity of $L_B = 1.3 \times 10^6 L_{\odot}$. Finally, following Buzzoni et al. (2006) also for the bolometric correction to the B-band luminosity we arrive at a bolometric luminosity $L_{\text{bol}} = 3.4 \times 10^6 L_{\odot}$, which means that for the optical regions of M32, within R_e, the luminosity-specific PN number density is $\alpha = 2.2 \times 10^{-3} L_{\odot}^{-1}$ and a factor ten less for $\alpha_{2.5}$. Considering a 33 per cent statistical error associated with our normalization based on 15 points (for an intrinsic number of 25 PNe within our detection magnitude range), these values are remarkably consistent with the findings of both Buzzoni et al. (2006) and Ciardullo et al. (1989) who give $\alpha = 1.70 \times 10^{-3} L_{\odot}^{-1}$ and $\alpha_{2.5} = 2.23 \times 10^{-4} L_{\odot}^{-1}$, respectively.

To conclude, we have detected 15 PNe in the optical regions of M32 that were mapped by our SAURON observations, and thanks to the integral field nature of our data and by carefully accounting for the incompleteness of our observation we have been able not only to confirm kinematically that these sources belong to M32 but also that their observed luminosity function and their total number are consistent with the generally adopted shape of the PNLF (that of Ciardullo et al. 1989) and the typical values for the PNe number density α in early-type galaxies (a few 10^{-7} per L_{\odot}, Buzzoni et al. 2006). Considering that our 600-s-long SAURON observations at the 4-m William Herschel Telescope collected nearly as many photons as the 3600 and 1800-s-long narrow-band observations of Ciardullo et al. (1989) at the 0.9 and 2.1-m Kitt Peak Telescopes, respectively, the fact that we more than doubled the number of known PNe in the central regions of M32 while reaching five times fainter [O iii] PNe fluxes (see Table 1) illustrates well the power of IFS to study PNe in the optical regions of galaxies.

5 DISCUSSION
It is interesting to comment on our PN results in light of what is known about the central stellar population of M32 and the...
PNe in the central regions of M32

Figure 7. Reconstructed optical images of M32, in logarithmic flux scale, showing with grey bins the regions where, from left to right, PNe of increasing absolute magnitude M_{5007} and decreasing brightness would not be detected. To check whether in a given bin of the SAURON field a PN of absolute magnitude M_{5007} would be detected, we generated at that position a Gaussian model for the [O III] flux of a PN of that brightness in M32, deriving also the corresponding spectral density values for the amplitude of the [O III] line. Using the values for the level of the noise rN in the residuals of our spectral fits we then computed the values of the A/rN ratio around the PN position and, using the criterion introduced in Section 3.2, simply checked whether $A/rN > 3$ within a FWHM from the centre of the Gaussian model, which in these particular simulations correspond to the centre of the SAURON bins.

current explanations for both the shape and normalization of the PNLF.

Rose et al. (2005) have shown that the luminosity-weighted mean stellar population of M32 at $1R_e$ is older by ~ 3 Gyr and more metal-poor by about -0.25 dex in [Fe/H] than the central value of ~ 4 Gyr and [Fe/H]~ 0.0, which are trends that conspire to produce the flat colour profiles previously reported in this object (Peletier 1993; Lauer et al. 1998). Episodes of star formation may enhance for a relative short period of time the bright-end of the PNe luminosity function of a galaxy, since massive main-sequence stars tend to produce also massive and bright central PNe stars (see e.g. the case of M33 in Ciardullo et al. 2004). For instance, Marigo et al. (2004) shows that stars with initial mass between 2.5 and 3.5 M_\odot evolve to central PN stars of about 0.70–0.75 M_\odot that can power nebular fluxes corresponding to the typical PNLF cut-off magnitude M_{5007} of ~ -4.47. Since massive stars are short-lived, however, such a PNLF enhancement would be pretty weak already 3 Gyr after star formation ceased, and it would no longer apply to the brightest PNe but to objects with $M_{5007} \sim -2.5$ (Marigo et al. 2004). It is thus not surprising, in particular given the small number of PNe at our disposal, that we do not see such a signature in our observed PNLF. If anything, there seems to be a lack of PNe around that intermediate M_{5007} value.

On the other hand, and like in other early-type galaxies with no evidence of recent (less than 1-Gyr old) star formation, the presence in M32 of bright PNe at a time when the progeny of massive stars have long disappeared is a puzzle that has not yet been fully solved. In fact, the need for a massive central star in the brightest PNe, with mass above $\sim 0.70 M_\odot$, is a result that still holds in the studies of Schönberner et al. (2007) and Méndez et al. (2008) that supersede the initial investigation of Marigo et al. (2004). One possible way to form the required high-mass PN cores, suggested by Ciardullo et al. (2005), involves the binary coalescence during their hydrogen burning phase of $\sim 1 M_\odot$ stars, a process that has been associated with the formation of blue-stragglers and which could be facilitated in early-type galaxies by the abundance of $\sim 1 M_\odot$ stars in old stellar systems. If such a second path to the formation of PNe exists, then we may also expect to find a PNLF characterized by a peak at high M_{5007} above an otherwise monotonically increasing PNLF, corresponding to a standard Henize & Westerlund population of PNe powered by only old central PN stars of relatively low mass. In light of this scenario, it would be tempting to see a bimodality in our observed PNLF (Fig. 6), which happens to show two peaks around M_{5007} ~ -3.5 and ~ 1 that correspond to parent stellar masses near 2 and 1 M_\odot, respectively. However, due to small number statistics we cannot read too much in the observed shape of the M32 PNLF, as it is instructive to see through simple simulations such as those presented in Fig. 8, which confirm the formal consistency indicated by a simple KS-test between our data and the completeness-corrected Ciardullo et al. form of the PNLF. Similarly, it would be difficult with our sample size to claim a significant difference in the kinematic behaviour of bright and faint PNe (as in NGC 4697, Sambhus, Gerhard & Mendez 2006), which could occur for instance if the coalesced central stars of the PNe can form in globular clusters, as could be the case for X-ray binaries (Sarazin, Irwin & Bregman 2000; White, Sarazin & Kulkarni 2002).
Figure 8. Comparison between the spatial distribution and the luminosity function of the PNe detected in the central region of M32 (top and lower left panels, respectively) and three particular synthetic realizations of the same quantities (central and right-hand panels). More specifically, the top panels show only the spatial distribution of PNe that were or would be detected in the optical regions of M32 by displaying values for the A/rN ratio above the $A/rN > 3$ detection threshold, and which correspond (adopting the observed values of the residual-noise level rN) to the flux distribution of either our best-fitting Gaussian models to the PNe of M32 (Section 3.2) or to similar Gaussian flux profiles for randomly generated PNe. Starting from an intrinsic Ciardullo et al. shape of the PNLF (red curves in lower panels) and adopting a normalization leading to match the number of observed PNe once the PNLF is corrected for incompleteness (red dashed lines, see Section 4), the synthetic PN fields were generated by considering at any particular position in SAURON field of view the probability of having a PN of a given luminosity. Such a probability function simply corresponds to the total intrinsic PNLF rescaled by the fraction of stellar light that is observed in the SAURON spatial bin that is being considered. The $[\text{O \textsc{iii}}]$ flux of the simulated PNe was then ‘observed’ by obtaining maps for the A/rN ratio and by applying the same detection criteria described in Section 3.2. These simulations illustrate that, given the low number of PNe expected in M32, not much can be read in the apparent bimodality of the PNLF that we observe nor in the fact that the PNe of M32 seem to all be on the same side of the galaxy. In fact, these three particular simulations yielded the same total number of detected PNe than we observe (15), but generally this is not the case and the PNLF of such synthetic fields appear to differ even more from the observed PNLF than shown by the chosen examples.

and where indeed blue-stragglers are often found. Alternatively, and consistent with the hypothesis of Marigo et al. (2004), a different kinematics for the brightest PNe may be a sign of recent accretion of a younger and smaller galaxy (Mamon, Dekel & Stoehr 2005). Yet, integral field data allow for a direct comparison with the stellar kinematics as a function of M_{5007}, such as shown for M32 in Fig. 9, that would be interesting to apply to more massive systems hosting a larger number of PNe.

From a theoretical perspective, our best normalization of the PNLF in the optical regions of M32, with a value for the specific PN number density α in line with that of other early-type galaxies, also poses a problem. Indeed, as long as the time-scale for PN visibility depends mostly on the lifetime of their post-AGB cores (pAGB), then since cores of lower mass spend more time in their high-temperature regime α should increase with the stellar population age, whereas in fact quite the opposite is observed (see Buzzoni et al. 2006, for a comprehensive review of this discrepancy). A possible solution to this puzzle is to assume that a considerable fraction of the stellar population of early-type galaxies ends up in the extreme hot end of the helium-burning horizontal-branch (HB), and that when such stars of very small hydrogen-envelope mass subsequently leave the HB they not only skip entirely their AGB phase (thus the name of AGB-manqué) but they also fail to produce a PN. As the AGB-manqué evolution can effectively transfer some fraction of the pAGB energy budget to the integrated ultraviolet (UV) flux of the galaxy, this scenario could also explain the anticorrelation between the strength of the UV-upturn (as defined by Burnstein et al. 1988) and the luminosity-specific PN number density of early-type galaxies, which respectively increase and decrease with both galaxy mass and metallicity (see, e.g. Coccato et al. 2009). The findings of Brown et al. (2000, 2008) not only contrast again with the notion that only hot and less massive HB stars should now form in the old stellar population of M32 (unless one considers binary coalescence), but also add an additional problem for the current models of the late evolution of stars.

To explain such a dearth of pAGB stars, among other possibilities Brown et al. (2000) suggested that pAGB could be obscured by circumstellar material, in particular as they cross the UV CMD before reaching the region where they peak in temperature at around 60 000 K. This is an interesting possibility considering that PNe are
themselves affected by dust extinction and given that, assuming a Cardelli, Clayton & Mathis (1989) reddening law and $R_V = 3.1$, the typical extinction of 0.7 mag at 5007 Å for PNe in both star-forming and old galaxies (Herrmann & Ciardullo 2009; Richer et al. 1999; Jacoby & Ciardullo 1999) would translate into considerable reddening values of ~ 1.71 and ~ 1.67 in the Hubble Space Telescope (HST) far- and near-UV passbands (FUV and NUV), respectively. To actually check the impact of reddening in the pAGB population of M32, or at least for the fraction that is presently powering a PN, we looked in the catalogue of Brown et al. (2008, kindly provided by T. Brown) for the best candidate central star for our PNe sources and plotted their position in the UV CMD shown in Fig. 10. The field of view of the Brown et al. HST observations falls entirely within the area covered by our SAURON data, being 24 \times 24 arcsec and only slightly offset from the centre of M32, but unfortunately only eight of our PNe end up within it. As we are looking to assess as conservatively as possible the impact of reddening on pAGB stars, in Fig. 10 we have located not only the closest but also the brightest of the UV stars near the location of our PNe. Except for PN 9, we could always find a pretty unique UV star within a radius of 0.97 arcsec (half a FWHM) with a FUV magnitude that would stick out from the distribution of magnitude values of all stars within 2 arcsec ($3 \sigma_{PSF}$) of our PN by at least three times the scatter in such values. Furthermore, except for PNe 12 and 15, such bright UV stars are always quite close to our PNe, within 0.25 arcsec. For PN 15 the relative large distance of the candidate star (0.63) arcsec is less of a concern, given that admittedly our Gaussian model does not fully reproduce the [O III] flux distribution of this source, but for PN 12 (0.85) arcsec it is possible that the central PN star lies elsewhere near the PN and therefore also in the CMD of Fig. 10. This is also most certainly the case of PN 9, for which the plotted position in Fig. 10 should be considered as upper limit for the FUV brightness of its central star. It is important to note, however, that the central stars of even relatively faint PNe such as PN 9 and 12 should still be intrinsically fairly bright pAGB or early-post AGB stars (epAGB) and, in particular, that our PNe could not be powered by stars that have already reached the white-dwarf (WD) cooling curve. Indeed, the models of Marigo et al. (2004, see their fig. 10) shows that at that stage it is possible to obtain only PNe of $M_{5007} > 0.5$, which are much fainter than the PNe that we can detect in M32. On the other hand, even considering the uncertain position of PN 9 and possibly PN 12 in Fig. 10, we note that accounting for the typical reddening observed in PNe would bring back up and left the position of the central PN candidate stars of our brightest and faintest PNe near to the location in the UV CMD where pAGB and epAGB reach their peak temperature and spend most of their time, for FUV magnitudes around ~ 20 and ~ 22, respectively, and a FUV–NUV colour ~ 1.5. In fact, we note that PNe as bright as our PN 1, 5 and 6, with $M_{5007} < -3.5$, can only be powered by central stars that came from main-sequence stars of masses between 1.6 and 2.5 M_\odot and which would cross the UV CMD of Fig. 10 along the brightest pAGB tracks (again, see Marigo et al. 2004), which implies that these sources actually must be reddened.

Figure 9. Velocity V_{PN} of the PNe in M32 relative to the average stellar velocity V_\star along the line of sight towards the PNe position and normalized by the stellar velocity dispersion σ_\star in the same direction, sorted by their absolute magnitude M_{5007}, PNe sources are labelled and colour-coded as in Fig. 6. The dotted horizontal lines for $|V_{PN} - V_\star|/\sigma_\star = 1$ delineate the region within which there is a 68 per cent probability that a given PN belongs to the stellar population of M32, assuming a Gaussian stellar line-of-sight velocity distribution. The V_{PN} values are plotted against M_{5007} of the PNe to check whether bright and faint PNe, possibly powered by central stars having evolved via distinct binary and single-star channels, have different kinematics. A Spearman rank coefficient of 0.6 suggests a correlation in this figure, although this would not be dramatically significant since there is still a 2 per cent probability that the plotted quantities follow each other monotonically only by mere chance.

Figure 10. UV colour–magnitude diagram (CMD) for the HST data of Brown et al. (2008) with solid lines tracing, from top to bottom, the evolutionary path of pAGB, early-pAGB and AGB-manqué stars starting from the horizontal branch (shown by the grey thick line) and ending in the region occupied by white dwarves. The asymptotic giant branch, from which pAGB and early-pAGB stars cross back the UV CMD is to the left and outside the plotting range. The large circles indicate the location in this CMD of the brightest and closest UV sources to the PNe falling within the field of view of the Brown et al. observations. Such PN central star candidates are colour-coded (from dark blue to white) according to the brightness of the PN they could be powering. Assuming a Cardelli et al. (1989) reddening law, the arrow at the top right of the figure shows the impact of dust reddening in the FUV and NUV HST passbands for an extinction of 0.7 mag at 5007 Å. This reddening value for PNe is typically observed in both star-forming and old galaxies, and would suffice to bring the candidate central stars of the PNe in the optical regions of M32 close to the location where pAGB and early-pAGB stars cross the UV CMD before reaching the WD cooling curve, to the left of the bluer end of the horizontal branch.
We can double-check this result by using our integral field data to estimate the position in the theoretical log T_{eff} − log L Hertzsprung–Russell (HR) diagram of the PNe for which we can also detect the Hβ emission, and then compare their location to the evolutionary tracks of pAGB stars. Through the models of Dopita, Jacoby & Vassiliadis (1992) it is indeed possible to estimate the temperature T_{eff} and luminosity L of the PNe central star using the value for the [O III]/Hβ ratio and the Hβ flux, respectively. These models predict a conversion efficiency ϵ between the bolometric luminosity L of the central star and the Hβ recombination flux from the PN that is rather constant and independent of the gas temperature T_e or metallicity Z_{gas}. On the other hand, since Oxygen is the main coolant of PNe, the [O III] 5007 flux depends easily on T_e and Z_{gas} and some knowledge of these quantities further helps constraining T_{eff} with the [O III]/Hβ ratio. The restricted wavelength range of our SAURON data does not grant us access to the weak [O III] 4363 line that is normally used to measure T_e, but we can use our spectroscopic data to measure the stellar metallicity along the line of sight of our PNe and thus gauge the metallicity of their central star, which in turn relates naturally to Z_{gas}.

There are seven PNe in the central regions of M32 for which we could measure the [O III]/Hβ ratio (Table 1), with values ranging from to just above 6 to almost 17. The SAURON aperture spectra around these objects (extracted within a radius $r = 3 \sigma_{\text{phot}}$, Fig. 5) indicate values for the Hβ absorption line and the [MgFe50]' index of Kuntschner et al. (2010) between 1.77–1.92 Å and 3.01–3.08 Å, respectively, which in turn yield an estimate for the stellar metallicity $[Z/H]$ between ~0.4 and ~0.33 (see fig. 3 of Kuntschner et al. 2010), depending on whether one adopts the models of Schiavon (2007) or of Thomas, Maraston & Bender (2003). With this gauge for the central stellar metallicity we can infer from Fig. 3 of Dopita et al. a star temperature T_{eff} around ~55 000 K for the PNe with low [O III]/Hβ values ~6 – 8, and above ~85 000 K for the PNe with [O III]/Hβ > 11. From fig. 1 of Dopita et al. this range of temperatures would then correspond to an average conversion efficiency ϵ around 0.7 per cent, which translate our observed Hβ fluxes into central star luminosities in the log (L/L$_{\odot}$) = 3.0–3.2 range. These T_{eff} and L values would place the 7 PNe with [O III]/Hβ measurements from our SAURON observations right below and to the right of the post-AGB evolutionary paths that are normally used in the HR diagram to trace the luminosity evolution of PNe (see, e.g. fig. 1 of Méndez et al. 2008 and fig. 3 of Schönberner et al. 2010), too cold to be on the cooling track of white dwarves (which cannot power PNe) and too faint to be on par with the pAGB stars that normally produce PNe (which range in luminosity between log (L/L$_{\odot}$) = 3.5–4.0). Assuming a Solar or nearly Solar metallicity for the central stellar population of M32, as found by Rose et al. (2005), would lead to an even more stringent result since in this case the central star T_{eff} of the highly excited PNe would be better constrained to lower values by the models of Dopita et al. Thus, also for this second subsample of PNe it would seem necessary to invoke dust reddening in order to reconcile our data with the model expectations, further supporting the possible role of circumstellar dust in producing the apparent dearth of pAGB stars in M32.

6 CONCLUSIONS AND FUTURE PROSPECTS

Using SAURON data for the nearly elliptical M32 we have shown how, by means of a careful subtraction of the stellar background, IFS allows to detect the emission of single planetary nebulae (PNe) in the optical regions of early-type galaxies down to flux levels otherwise hardly accessible to standard narrow-band photometry. In turn, this makes it possible to trace the PNe luminosity function (PNLF) within a wider completeness limit and in galactic regions where stellar populations gradients can be the most extreme, and therefore where studying how the shape and normalization of the PNLF originate from the bulk of a galactic stellar population could be the most instructive. Moreover, we have shown that the incompleteness of a survey for PNe in the optical region of a galaxy can be very well understood when using IFS data, and that the possibility to extract also the stellar kinematics further allows to check the membership of PNe on a local basis, that is, along the line of sight towards a given PN. Such a local comparison between the PNe and stellar kinematics could be useful to identify subpopulations of PNe of different origins. Finally, although with the SAURON data we could only confirm the high-ionization nature of nearly half of our sources, on a longer wavelength range IFS has a great potential to study the nebular spectrum of extragalactic PNe, as already illustrated in the pioneering work of Roth et al. (2004).

In the specific case of M32, with just two 10-min-long SAURON pointings, we have doubled the number of known PNe within the effective radius of this galaxy and detected PNe five times fainter than previously found with narrow-band imaging by Ciardullo et al. (1989), while collecting slightly less the same number of photons. Furthermore, accounting for the incompleteness of our survey across the entire luminosity range spanned by our detected PNe, we have concluded that the central PNe population of M32 is consistent with the generally adopted shape for the PNLF (that of Ciardullo et al.) and its typical normalization observed in early-type galaxies (i.e. with a PNe number density α of a few 10^{-6} per L$_{\odot}$). Finally, thanks to exquisite HST data and to the proximity of M32 we were able to combine our PNe measurements with images for the resolved UV-bright stellar population of M32 and conclude that the PNe central stars may be considerably reddened by dust, a result that we could double-check thanks to the IFS nature of our data by estimating the temperature and luminosity for the central star of the PNe with [O III]/Hβ measurements. This finding would support the suggestion by Brown et al. that circumstellar dust extinction could explain the apparent dearth of pAGB stars in M32, a problem that may also apply to the halo of the Milky Way (Weston, Napierwotzki & Catalán 2010).

Given the intrinsically small number of PNe that is expected in the central regions of such a small galaxy as M32, it is unlikely that with the current instruments (e.g. SAURON or VIMOS) further IFS observations will reveal a sufficiently larger number of objects to add either to what found in this work or to what is already known in the outskirts of M32 from narrow-band imaging or slitless spectroscopy, even though more IFS data could allow for more emission-line diagnostics.

On the other hand, there is a wealth of SAURON data for many more early-type galaxies that was acquired over the course of the SAURON (de Zeeuw et al. 2002) and ATLAS$3D$ (Cappellari et al. 2011) surveys where the presence of PNe have not yet been systematically investigated. In fact, even though a few PNe were detected in Sarzi et al. (2006), many more PNe have certainly been missed because a large fraction of the data were spatially binned in order to extract a reliable stellar kinematics and due to the common presence of diffuse ionized gas. Indeed spatial binning washes out the signal of the weaker PNe against the stellar background, whereas extended nebular emission makes it difficult to detect PNe unless their distinctive spectrum characterized by high-ionization and narrow lines is purposely looked for. Paying attention also to the unresolved nature of the PNe emission and working with unbinned data using an educated guess for the stellar kinematics (for instance based on
relatively simple but functional dynamical models, see Cappellari (2008) it may be possible to tap a significant PNe population in the central regions of nearby early-type galaxies. Indeed, although the SAURON and ATLAS3D Surveys have targeted much more distant objects than M32, the ability to carefully subtract the stellar background will still enable the detection of fainter PNe in the central regions of these galaxies compared to narrow-band or slitless spectroscopic surveys. Furthermore, the relatively large number of objects surveyed by these campaigns (260) will allow to combine the measurements from different galaxies, and for instance to better explore the bright end of the PNLF or variations of its shape and normalization as a function of the stellar age and metallicity that will also be provided by the these SAURON data.

To conclude, given the number of findings obtained here with a modest time investment (not even 30 min with overheads) on a 4-m telescope, it is exciting to consider what could be learned on the PNe population in the optical regions of other galaxies, when the next generation of integral field spectrographs will be mounted on 8-m-class telescopes, such as MUSE on VLT (see, e.g. Bacon et al. 2006). For instance, with a longer wavelength range and a larger light bucket, MUSE will not only find many more and fainter PNe, but it will also allow full diagnostic of their nebular spectrum that could lead to a direct measurement of the gas metallicity and to recognize other nebular sources that could pose as a PNe in narrow-band surveys (see, e.g. Frew & Parker 2010). In turn the PNe metallicity could be compared with that of the underlying stellar population, which would also be better constrained thanks to an extended spectral range. Furthermore, the spatial resolution that will be provided to MUSE by the use of adaptive optics will allow further comparisons with HST or other space-based measurements for the resolved stellar population of nearby galaxies, such as those presented here for M32, which are bound to shed more light on the link between PNe and their parent stellar population.

ACKNOWLEDGMENTS

MS is grateful to Thomas Brown, Paola Marigo, Harald Kuntschner, Ralph Napiwotzki and Brent Miszalski for the useful discussions, and to Thomas Brown for also providing the near- and far-UV HST data of M32. We are also indebted to the referee, Robin Ciardullo, for his many suggestions. MS also acknowledges support from his STFC Advanced Fellowship (ST/F009186/1) and the Institut d’Astrophysique de Paris for its hospitality during part of the preparation of this paper, whereas MC acknowledges support from a STFC Advanced Fellowship (PP/D005574/1) and a Royal Society University Research Fellowship.

REFERENCES

Bacon R. et al., 2001, MNRAS, 326, 23

Bacon R. et al., 2006, Messenger, 124, 5

Brown T. M., Bowers C. W., Kimble R. A., Sweigart A. V., Ferguson H. C., 2000, ApJ, 532, 308

Brown T. M., Smith E., Ferguson H. C., Sweigart A. V., Kimble R. A., Bowers C. W., 2008, ApJ, 682, 319

Bruzual G., Charlot S., 2003, MNRAS, 344, 1000

Burstein D., Bertola F., Buson L. M., Faber S. M., Lauer T. R., 1988, ApJ, 328, 440

Buzzoni A., Arnaboldi M., Corradi R. L. M., 2006, MNRAS, 368, 877

Cardelli J. A., Clayton G. C., Mathis J. S., 1989, ApJ, 345, 245

Cappellari M., 2008, MNRAS, 390, 71

Cappellari M., Copin Y., 2003, MNRAS, 342, 345

Cappellari M., Emsellem E., 2004, PASP, 116, 138

Cappellari M. et al., 2006, MNRAS, 366, 1126

Cappellari M. et al., 2011, MNRAS, 413, 813

Ciardullo R., Jacoby G. H., Ford H. C., Neill J. D., 1989, ApJ, 339, 53

Ciardullo R., Durrell P. R., Laychak M. B., Herrmann K. A., Moody K., Jacoby G. H., Feldmeier J. J., 2004, ApJ, 614, 167

Ciardullo R., Sigurdsson S., Feldmeier J. J., Jacoby G. H., 2005, ApJ, 629, 499

Ciardullo R., 2006, in Barlow M. J., Méndez R. H., eds, Proc. IAU Symp. 234, Planetary Nebulae in our Galaxy and Beyond. Cambridge Univ. Press, Cambridge, p. 325

Coccato L. et al., 2009, MNRAS, 394, 1249

de Zeeuw P. T. et al., 2002, MNRAS, 329, 513

Dopita M. A., Jacoby G. H., Vassiliadis E., 1992, ApJ, 389, 27

Dopita M. A. et al., 1997, ApJ, 474, 188

Douglas N. G. et al., 2007, ApJ, 664, 257

Emsellem E. et al., 2004, MNRAS, 352, 721

Falcón-Barroso J. et al., 2006, MNRAS, 369, 529

Frew D. J., Parker Q. A., 2010, PASA, 27, 129

Jacoby G. H., Ciardullo R., Ford H. C., 1990, ApJ, 356, 332

Jacoby G. H. et al., 1992, PASP, 104, 599

Jacoby G. H., Ciardullo R., 1999, ApJ, 515, 169

Henize K. G., Westerlund B. E., 1963, ApJ, 137, 747

Herrmann K. A., Ciardullo R., 2009, ApJ, 703, 894

Kuntschner H. et al., 2010, MNRAS, 408, 97

Lauer T. R., Faber S. M., Ajhar E. A., Grillmair C. J., Scowen P. A., 1998, AJ, 116, 2263

Mamon G. A., Dekel A., Stoehr F., 2005, AIP Conf. Ser. Vol. 804, Planetary Nebulae as Astronomical Tools. Am. Inst. Phys., p. 345

Marigo P., Girardi L., Weiss A., Groenewegen M. A. T., Chiosi C., 2004, A&A, 423, 995

Méndez R. H., Teodorescu A. M., Schönberner D., Jacob R., Steffen M., 2008, ApJ, 681, 325

Merrett R. H. et al., 2006, MNRAS, 369, 120

Peletier R. F., 1993, A&A, 271, 51

Richer M. G., Stasińska G., McClure M. M. L., 1999, A&AS, 135, 205

Romanowsky A. J., Douglas N. G., Arnaboldi M., Kuijken K., Merrifield M. R., Napolitano N. R., Capaccioli M., Freeman K. C., 2003, Sci, 301, 1696

Rose J. A., Arimoto N., Caldwell N., Schiavon R. P., Vazdekis A., Yamada Y., 2005, AJ, 129, 712

Roth M. M., Becker T., Kelz A., Schmoll J., 2004, ApJ, 603, 531

Sambhus N., Gerhard O., Mendez R. H., 2006, AJ, 131, 837

Sánchez-Blázquez P. et al., 2006, MNRAS, 371, 703

Sarazin C. L., Irwin J. A., Bregman J. N., 2000, ApJ, 544, L101

Sarzi M. et al., 2006, MNRAS, 366, 1151 (Paper V)

Sarzi M. et al., 2010, MNRAS, 402, 2187

Schiavon P. et al., 2006, MNRAS, 371, 703

Schiavon R. P., 2007, ApJS, 171, 146

Schönböhm D., Jacob R., Steffen M., Sandin C., 2007, A&A, 473, 467

Schönböhm D., Jacob R., Sandin C., Steffen M., 2010, A&A, 523, A86

Thomas D., Maraston C., Bender R., 2003, MNRAS, 339, 897

Tonry J. L., Dressler A., Blakeslee J. P., Ajhar E. A., Fletcher A. B., Lupino G. A., Metzger M. R., Moore C. B., 2001, ApJ, 546, 681

Weston S., Napiwotzki R., Catalán S., 2010, in AIP Conf. Ser. Vol. 1273, 17th European White Dwarf. Workshop. Am. Inst. Phys., New York, p. 197

White R. E., Sarazin C. L., Kulkarni S. R., 2002, ApJ, 571, L23

This paper has been typeset from a TeX/LaTeX file prepared by the author.