Lessons on technopreneurship in Kaliningrad region: regional hubs in global networks

R K Polyakov
Department of Agriculture and Fisheries Economics, Kaliningrad State Technical University, Kaliningrad, Russia
E-mail: polyakov_rk@mail.ru

Abstract. Over the past quarter of a century, the concepts of cluster development and entrepreneurial ecosystems have become very popular, which caused a heated debate about their relevance and conceptual rigor. In addition, the existing literature on clusters underestimates the role of entrepreneurs in enhancing the agglomeration effect that ties together organizations, labor, markets, and supporting ecosystems. This paper aims to study the main lessons of the development of technopreneurship in a specific region, namely in Kaliningrad region, and to show the path for creation of regional growth hubs and their embedment in global networks. The best practices are analyzed to highlight the priority areas of industrial development in the region. A conceptual model of its growth driver is proposed. Thus, the paper contributes to the existing debate about the directions of technopreneurship development and shows a specific growth point in global networks for the studied region.

1. Introduction

Today, a new paradigm of technopreneurship suggests various types of collaborations, within which businesses, authorities, citizens and technology companies initiate and develop actively bold projects and generate creative ideas to help innovation creativity and improve tools to support high-tech industries.

However, for development of this environment, a regional economy requires basic foundation that contributes to its effective development and prosperity. Therefore, it is important to reveal how internal interaction is formed in all the variety of layers, and for the first thing, it is critical to understand the essence of the definition of ecosystem.

This term was coined and introduced into circulation by the British ecologist A. Tensley in 1935 [1] to designate a system that consists of a group of living creatures and the environment in which they live, and interaction established between them. Later in 1993, this definition was used by the American scientist D. Moore [2] to designate a system of participants with their cooperative ties, which he referred to as entrepreneurial ecosystem. D. Moore understood it as geographically close business clusters that accumulate talents and knowledge.

Ecosystems were studied through the prism of various theories, such as institutional theory [3] or the theory of resource dependence [4], and analyzed at three different levels: the industrial or network level [5, 6], the company level [7] and the individual level [8]. Moreover, scientists linked the concept of ecosystems with open innovation [9] or dynamic potential [6], and with a complex evolutionary system based on mechanism of self-organization [10].

D. Eisenberg [11] formulated the characteristic features of the entrepreneurial ecosystem, which is currently recognized by experts of the International Economic Forum [12]. In his opinion, the
The entrepreneurial ecosystem should include the following components: politics; finance and investment; culture; developed infrastructure; human capital and available markets. The quintessence of all these components is the key to success [13], and that is why the expected results were not achieved in countries where one or two ecosystem components were employed [11].

The paper analyzes the best practices, highlights the priority areas of the industrial development in Kaliningrad region, and proposes a conceptual model of its growth driver. The region is taken to study the main directions of the development of technopreneurship and to show the main lessons for creating a regional growth hub capable of integrating into global economic networks.

2. Methods
Over the past quarter of a century, the concept of an entrepreneurial ecosystem has been the focus of entrepreneurship education [14,15], economic geography [16] and urban economics [17], and gained significant popularity among policy makers [18–20]. Scientists appreciated the importance of interaction between entrepreneurial system components and emphasized that entrepreneurial activity should be studied at the regional level in close interaction with the regional innovation system, learning network and business interaction [21–23].

A review of contemporary literature on entrepreneurship showed that the emphasis was mainly on the behavior of individuals or companies [24]. However, recent studies show that entrepreneurship should be studied in a broader context, including regional, temporal and political aspects [25]. The most remarkable studies in this area include those by M. Fujita, P. Krugman, and A. Venables The spatial economy: Cities, regions, and international trade [26], M.E. Porter Location, competition, and economic development: Local clusters in a global economy [27], P. Almeida and B. Kogut Localization of knowledge and the mobility of engineers in regional networks [28] and R. Martin and P. Sunley Deconstructing clusters: Chaotic concept or policy panacea? [29], and many others.

At present, innovation ecosystems emerge primarily in countries and regions where synergy and diversity of layers [30,31] are closely intertwined to form an effective scientific and innovation-oriented basis that consists of the following components:

- knowledge base: including educational institutions and R&D;
- industrial structure: affects the progress and initial development of a smart city;
- quality of life and urban amenities: provides with everything necessary for a smart city, which in turn affects the migration of workers who form the city’s knowledge base;
- urban diversity and cultural mix: a tool to encourage creativity;
- accessibility: encourages and facilitates knowledge transfer and movement;
- social equity and inclusion: minimizes social inequality and negative tensions;
- city scale: large smart cities can offer a wider scope of knowledge, more diversity, and a choice between knowledge and business.

To date, three main types of economic ecosystems are widely discussed in the research literature. In the first group, the authors explore ecosystems: business, services, or industry. These papers focus on significance of economic performance and business relationships between participants. The second group of studies discusses innovation (eco) systems and regional clusters. This group of authors extensively covers issues addressing mechanisms and policies to facilitate creation of innovation startups around the so-called regional centers or clusters. The third group is concerned with issues of the knowledge ecosystem and the results of new knowledge creation based on collaboration and joint research, and open networks of cooperation and development of a common knowledge base [32].

2.1. Characteristics of ecosystem types
Today, a cluster-network-synergetic approach can be used to implement new more stable network interaction schemes in spatially localized economic systems to extend their impact, including that on global networks, where the internal scheme of the scientific and innovation-oriented environment allows the development of a self-organizing environment of the cluster itself. This scheme enables...
ultrafast processes in a mode with exacerbated reactions of all agents in the cluster, which significantly increases the efficiency and competitiveness of this cluster (hub) in the entire projected system [33].

The proposed network model based on the synergistic approach can imply a self-organized network, where the growth driver is the scientific and innovation-oriented environment that promotes positive (+) relationships between cluster members or clusters, including those from other economic sectors. The effects of contacts with the external environment and its direct impact on a spatially localized economic system can be both positive and negative (−). Ultrafast processes occurring in this hub affect additional reactions of all cluster agents, which have a positive effect on the ecosystem in terms of its internal competition, and the synergistic mechanism of this system significantly increases the stability and efficiency of the entire economic system.

Currently, there are three main types of economic ecosystems: business ecosystems, innovation ecosystems, and knowledge ecosystems. Table 1 presents typical differences in ecosystem types.

As can be seen from the table, business ecosystems are mainly focused on creation of current value for customers, and large companies are typical key players. Knowledge ecosystems are mainly involved in generation of new ideas and knowledge accumulation. The main players are most often research institutions and innovators. Technology entrepreneurs typically play a central role in these ecosystems. Innovation ecosystems emerge as a mechanism of integration of new knowledge exploration and knowledge application to co-create value in business ecosystems. Thus, innovation policy makers, local intermediaries, innovation brokers, and funding agencies (venture capitalists or government funding agencies) are important actors in innovation ecosystems.

Each ecosystem includes a standard set of subsectors–sub-ecosystems that can be developed to a different extent in each of the previously identified ecosystems. However, these are drivers for successful business development: competition and cooperation; highly effective business policy and legal environment; distinct social or technological changes; research support and stable changes in consumer demand.

Ecosystem initial level Relationship and connection	Business ecosystems	Knowledge ecosystems	Innovation ecosystems
Relationship and connection	Customer-focused use of resources	Knowledge exploration	Co-creation of innovations
Global business competitive and collaborative relationships	Decentralized and disrupted knowledge hubs, synergy through knowledge sharing	Geographically grouped participants, different levels of collaboration and transparency	
Actors and roles	Suppliers, customers and key companies as a core, other participants are more actively involved	Research institutions, innovators and technology entrepreneurs are knowledge hubs	Innovation policy makers, local intermediaries, innovation brokers and funders
Action logic	The main entity that acts as a platform shares resources, assets and benefits, or brings other actors together in networked business operations.	A large number of participants involved in knowledge exchange or grouped around central non-proprietary resource for the benefit of all participants	Geographically related entities that interact around hubs, assisted by intermediaries

Source: Business, Innovation, and Knowledge Ecosystems: How They Differ and How to Survive and Thrive within Them [32]

The newest technologies will be the growth driver for all changes (bio- and nanotechnology, genetic engineering, membrane and quantum technologies, photonics, micromechanics, thermonuclear energy), and technologies in 19th century became of a global scale. Therefore the author advocates the view that development of regional hubs in global networks can be considered as one of the trends of real economic growth in modern countries [34].
3. Result and discussion

An explosive nature of modern innovations and their ubiquitous penetration into all spheres of human activity pose a big challenge to the economies of all countries and particularly to such territories as Kaliningrad region.

Kaliningrad region is an exclave territory of the Russian Federation. The geopolitical position of Kaliningrad region and the lack of land communication with the main territory of the Russian Federation, on the one hand, imposed restrictions, and on the other hand, created certain potential for its economic, scientific, technical and technological development.

Since the mid-1990s, the Government of the Russian Federation and the Government of the Kaliningrad Region have developed and implemented institutional tools to stimulate investment attractiveness and economic development of the region.

Introduction of the Special Economic Zone regime in Kaliningrad region paved the way to about 10 thousand enterprises were opened in the region by 2000, including assembly and trading companies in the automotive industry, electronics industry and other industries, which ensured transit of consumer goods through the region to the Russian Federation.

![Figure 1. Year-end number of companies and organizations in Kaliningrad region.](source)

Further economic development of the region was associated with consolidation of a small import-substituting business and formation of stable companies producing products and goods for the needs of the domestic market. During this period, new segments of the regional economy were actually formed – production of food, electronics and furniture.

Since 2006, changes in the special economic zone regime has provided the impetus for development to regional companies, such as Avtotor Group of Companies, Sodrugestvo Group of Companies, Miratorg, Viciunai Rus, GS Group, Foods Kombinat and others. A powerful production base ensured their supplies not only to the domestic market, but also formed an export flow of food and electronics.
In general, the economic (sectoral) specialization of Kaliningrad region is currently quite chaotic. It includes both a number of industries formed in Soviet times in a planned manner ‘from above’ (production of ships, transportation, fishing, production of building materials), and those emerged ‘from below’ due to the institutional conditions formed (agro-industrial complex, mechanical engineering, electronics, furniture production).

In recent years, these industries have not shown significant development dynamics. The development potential of a number of enterprises and even industries has been exhausted due to market stagnation, reduced opportunities for attracting government support and (or) insufficient technological effectiveness of these enterprises (Figure 3).

However, a number of industries show positive dynamics and contribute to the structure of the gross regional product (Figure 4.).
In 2018, the main types of economic activities in the gross regional product structure were: manufacturing (22.8%); wholesale and retail trade; repair of motor vehicles and motorcycles (12.4%); real estate transactions (10.8%); transportation and storage (9.2%); construction (7.0%).

The volume of investments in fixed assets comprises own funds (49.1%) and borrowed funds (50.9%).

Since 2018, the investment threshold has been lowered for obtaining the status of a resident of a special economic zone together with a simultaneous decrease in the aggregate rate of insurance premiums to further stimulate economic activity in Kaliningrad region [35]. SEZ residents in Kaliningrad region have income and property tax benefits of 0% during the first 6 years of the project implementation, and 10% income tax and 1.1% property tax after 7 to 12 years. In this case, the moment the first profit from the project is received will indicate the start of the first six-year period of income tax deduction. In case the project does not ensure a profit in the first three tax periods, the period of tax deduction will start on the 4th year (Tax Code of the Russian Federation, art. 288.1) [36].

Organizations that received the status of a SEZ resident in Kaliningrad region in the period from January 1, 2018 to December 31, 2022 will be eligible for reduced insurance premium rates for 7 years, provided they create new jobs. The total premium rate for such jobs will be 7.6%. The deadline for the application of reduced rates is December 31, 2025 (Tax Code of the Russian Federation, art. 427, para 11) [36].

To enhance the economic and innovation-oriented activity of the region, the SEZ law lowered the investment threshold for companies and startups in the IT industry. Companies striving to become a SEZ resident need to invest more than 1 mln rubles within three years. In return, they receive profit, land and property tax exemption and can import high-tech equipment without duties, and insurance premiums of the Labor Fund for newly created jobs are reduced to 7.6%.

A total of 252 active investment projects that involved 38 692 participants were registered in the unified register of residents of the Special Economic Zone in Kaliningrad Region and amounted to 129.3 bln rubles as of September 15, 2020.

Figure 4. Sectoral structure of gross value added, %.

Source: compiled by the authors according to Rosstat data (Regions of Russia. Socio-economic indicators, 2019)
The most promising industries in Kaliningrad region include automotive and mechanical engineering; agriculture and food; tourism industry; IT industry; R&D; medicine and pharmaceuticals; engineering; shipbuilding and ship repair; fishing and fish processing; amber jewelry production. Clusters and industrial parks have already been created in a number of industries.

In 2018, Federal Law No. 291-FZ *On special administrative regions in Kaliningrad region and the Primorsky Territory* [37] was approved. According to the law, an offshore zone created in the city of Kaliningrad, Oktyabrsky Island, allows international companies registered on the Oktyabrsky Island to use preferential taxation in relation to income from participation in capital funds (dividends, income from the sale of a share in capital, profits of affiliated companies). At the time of this writing, 32 participants were registered in the special administrative region in the territory of the Oktyabrsky Island (Kaliningrad region).

This has created conditions for formation of necessary free investment resources in the region to be allocated for new projects and companies, including science-intensive, high-tech and creative ones.

At the same time, the dynamics of business activity in Kaliningrad region observed within the period from the last aforementioned transformations to the present indicates that attraction of dynamically developing, high-tech companies and companies with significant growth potential, including that through creation of a special purpose hub for self-development of the region, is of high relevance.

3.1. Natural advantages of the region
The exclaves nature of Kaliningrad region and a relatively low density of population cause restrictions and provide natural economic and geographical opportunities such as:

1. Logistic network with the European territory expands possibilities for development of scientific and industrial cooperation with European partners, as well as for export of products (goods, services).
2. A mild climate attractive for life and work, high-quality regional transport infrastructure, developed resort and recreational infrastructure, including unique natural areas and historical heritage.
3. A small population size and a developed infrastructure of the region, which create opportunities for controlled testing of products (services) of science-intensive and high-tech companies with subsequent standardization of new technological solutions. The model of a ‘living laboratory’ allows tech companies that function in the region to create stable starting market segments on a regional scale. In case of successful testing and standardization of new solutions, market segments can be created in Russia with subsequent export of products (works, services) to European markets.
4. Stable cooperation with a number of Russian and foreign scientific centers.

3.2. Organizational and infrastructural advantages of the region
Organizational and infrastructural advantages of Kaliningrad region, in particular, for technological development, which are critical for inviting scientists, engineers, technological entrepreneurs on a temporary and (or) permanent basis, and for implementation of scientific, engineering and innovation-oriented projects, are as follows:

- Eligibility of I. Kant Baltic Federal University (IKBFU) and Kaliningrad State Technical University (KSTU) to develop and implement the standards for training specialists in new industries, which is a necessary condition for transfer of technologies (export of high-tech products) created (produced) in the region;
- developed air traffic with Russian and European cities;
- logistic and transport accessibility of the centers of scientific, creative and entrepreneurial activity of the European Union;
- a functioning center for collective use for research and development – Science and Technology Park Fabrika, IKBFU;
- well-developed infrastructure and programs for training gifted children – the State Budgetary Institution of Education, NOO Center for Development of Gifted Children, including project schools and educational programs, the Quantorium technopark for children;
consistent policy of supporting research, development and high-tech and creative regional economic sectors, including those at local and federal levels;
stimulation of migration of gifted people and highly qualified personnel to the region;
large business interested in technological renewal and (or) changing the range of products (goods, services), mainly in the agricultural sector, as well as individual companies in the electronics industry, transport engineering, electric power and construction materials;
small and medium-sized business interested in the region due to comfortable institutional conditions and (or) living conditions created for employees.

3.3. Development of a regional innovation scientific and technological centre and its integration into global networks

With regard to the current economic situation and natural geographic, climatic and other advantages of Kaliningrad region, it is necessary to create a regional hub to concentrate high-tech, progressive companies, intellectual resources, as well as investments in the production of science-intensive and innovative goods characterized by high value added and low logistics costs.

Among the available mechanisms of state stimulation of socio-economic development, the creation of an innovation scientific and technological center is most appropriate for Kaliningrad region. The basic document governing the creation and functioning of innovation scientific and technological centers (STCs) in Russia is Federal Law No. 216-FZ of July 29, 2017 On innovation scientific and technological centers and on amendments to certain legislative acts of the Russian Federation [38].

An innovation scientific and technological center is a set of organizations aimed at implementation of scientific and technological activities.

In accordance with the law No. 216-FZ On innovation scientific and technological centers, creation of two innovation scientific and technological centers in 2019 was supported by the Ministry of Economic Development of Russia:

- ISTC Sirius (Sochi, Krasnodar Territory);
- ISTC MSU Vorobyovy Gory (Moscow).

Centers planned to be created:

- ISTC Composite Valley (Tula region);
- ISTC Mendeleev Valley (Moscow);
- ISTC Michurinskaya Valley (Michurinsk, Tambov region);
- ISTC Russky, FEFU (Vladivostok);
- ISTC Baltic Valley HUMANTECH (Kaliningrad region);
- ISTC as part of NRNU MEPhI (Obninsk, Kaluga region);
- ISTC Tatishchev (Yekaterinburg);
- ISTC Highpark, ITMO (St. Petersburg).

It is also planned to approve the order of the Government of the Russian Federation on the ‘road map’ for the INTC network.

With regard to the features of the geopolitical position of Kaliningrad region, the specific tasks to be solved are as follows:

- improvement of the existing mechanism of self-development of the region (comprises the Special Economic Zone and the Special Administrative Region of the Oktyabrsky Island), giving impetus to its functioning and achieving a synergistic effect from all the three components involved in attracting target tech companies;
- strengthening of the logistics with the main territory of Russia through inclusion of the enterprises of Kaliningrad region in the internal Russian technological chains;
- deepening of the regional industry specialization and increasing the efficiency of the agro-industrial complex, shipbuilding and other priority economic sectors in Kaliningrad region;
entering foreign fast-growing markets and increasing export of high-tech services (in particular, medical tourism);

- increased life expectancy and improved quality of life of the region’s population (competition in terms of its level with neighboring European states), and ensured food, medical and energy security (autonomy) with respect to the growing consumption;

- Development of international scientific and scientific and production cooperation.

Figure 5 shows a conceptual model of the regional growth hub based on the ISTC and its integration into global networks.

![Figure 5. Conceptual model of the regional growth cluster based on the ISTC and its integration into global networks.](image)

For Russia, a developed network of ‘technological valleys’ is an important step towards extensive support of innovation-oriented and technological entrepreneurs, and promising companies and startups. Implementation of this strategy will advance export and transfer of technology due to a wide use of the scientific and educational potential of the leading research universities in conjunction with measures aimed to create world-class Scientific and Educational Centers (SEC) and Competence Centers of the National Technological Initiative (NTI).
4. Conclusion

The experience Kaliningrad region has gained during its current stage of development is the specificity of the entrepreneurial activity due to exceptional geopolitical position and exclave nature of the region. Therefore, the steps to be taken by the regional and federal authorities should comply with the country’s development strategy. Moreover, the existing support tools should be used more rationally to achieve breakthrough results in the near future.

Thus, the coordination of the strategic development, the basic potential of the region, and identification of the most significant, locomotive industries, as well as clusters and growth hubs that have the greatest multiplier effect, can significantly increase the level of socio-economic development of the region and integrate it into global networks.

To date, it is evident that the ISTC Baltic Valley HUMANTECH will be focused on ‘human-centered’ technologies: health protection, biomedicine, food bio- and production technologies, as well as technologies for increasing the structure strength.

The way to promising markets will be paved through formation of a growth hub on a compact site supplied with modern infrastructure, including highly efficient equipment for collective use and favorable legal, organizational and other conditions appropriate for development, testing and pilot industrial development of advanced technologies, materials and products to provide their accelerated and simplified integration into technological processes and production chains of Russian companies.

The proposed hub can be easily integrated into global network markets, it does not duplicate other existing measures of state support for technological development of the Russian real sector of the economy, and it does not contradict them. The hub is focused on the stages of the innovation cycle (adjustment and pilot industrial development) and on technological and product areas, which are almost not covered or insufficiently covered by measures of state support.

The newly created hub can in turn act as a mechanism for accumulation and achievement of the sufficient ‘critical mass’ of human capital and research ideas of Russian scientific laboratories and engineering centers, as well as entrepreneurial activity, systemic formation of conditions for development of high-tech business in market segments with the expected highest growth rates.

Acknowledgements

We express our gratitude to the Goethe German Cultural Center at the German Embassy in Moscow, as well as to the Federal State Budgetary Educational Institution of Higher Education Kaliningrad State Technical University, for financial support of this study within the framework of the project Year of Germany in Russia 2020/2021, grant #5 id/1482 dated 01.09.2020, the International Scientific and Practical Conference Ecosystems without Borders.

References

[1] Tansley A 1935 *Ecology* **16** 284–307
[2] Moore J F 1993 *Harv. Bus. Rev.* **71** 75–86
[3] DiMaggio P J and Powell W W 1983 *Am. Sociol. Rev.* **48** 147–160
[4] Pfeffer J and Salancik G R 2003 *The external control of organizations: A resource dependence perspective* (Stanford: Stanford University Press)
[5] Nambisan S and Baron R A 2013 *Entrep. Theory Pract.* **37** 1071–1097
[6] Teece D J 2007 Explicating dynamic capabilities: The nature and microfoundations of (sustainable) enterprise performance *Strategic management journal* **28** 1319-1350
[7] Zott C and Amit R 2010 *Long Range Plann.* **43** 216–226
[8] Nambisan S and Sawhney M 2011 *Acad. Manag. Perspect.* **25** 40–57
[9] Chesbrough H W 2003 *MIT Sloan Manag. Rev.* **44** 35–41
[10] Chincarini L and Asherie N 2008 *Reg. Sci. Urban Econ.* **38** 252–270
[11] Isenberg D 2018 *Forbes* (available at:08.10.2020)
[12] Foster, G., Shimizu, C., Ciesinski, S., Davila, A., Hassan, S., Jia, N., & Morris, R. 2013 *In World Economic Forum* **11** 1-36
[13] Yaribeigi E, Hosseini S J, Lashgarara F, Mirdamadi S M и Najafabadi M O 2014 Development of Entrepreneurship Ecosystem 2 2905–2908
[14] Cohen B 2006 Bus. Strateg. Environ. 15 1–14
[15] Isenberg D J 2010 How to start an entrepreneurial revolution Harv. Bus. Rev. 88 40–50
[16] Krugman P 1991 J. Polit. Econ. 99 483–499
[17] Florida R, Mellander C, Stolarick K и Ross A 2012 J. Econ. Geogr. 12 355–377
[18] Spigel B 2020 Entrep. Ecosyst. 105–127
[19] Autio E, Kenney M, Mustar P, Siegel D и Wright M 2014 Res. Policy 43 1097–1108
[20] Cavallo A, Ghezzi A и Balocco R 2018 Int. Entrep. Manag. J.
[21] Cook P 2010 Technol. Anal. Strateg. Manag. 22 831–44
[22] Cooke P 2001 Ind. Corp. Chang. 10 945–974
[23] Audretsch D B и Belitski M 2017 J. Technol. Transf. 42 1030-1051
[24] Shane S и Venkataraman S 2000 Acad. Manag. Rev. 25 217–226
[25] Szerb L A, Acs Z и Autio E 2013 Entrep. Res. J. 3 9–34
[26] Fujita M, Krugman R и Venables A 1999 The spatial economy: Cities, regions, and international trade (London: MIT press)
[27] Porter M E 2000 Econ. Dev. Q. 14 15–34
[28] Almeida P и Kogut B 1999 Manage. Sci. 45 905–917
[29] Martin R и Sunley P 2003 J. Econ. Geogr. 3 5-35
[30] Yigitcanlar T, O’Connor K и Westerman C 2008 Cities 25 63–72
[31] Polyakov R 2019 Advances in Social Science, Education and Humanities Research 240 829-833
[32] Valkokari K 2015 Technol. Innov. Manag. Rev. 5 17–24
[33] Polyakov R, Gegechkori O., Nikitina N 2020 European Proceedings of Social and Behavioural Sciences 64 492–502
[34] Polyakov R K и Gordeeva E A 2019 European Proceedings of Social and Behavioural Sciences 57 373–387
[35] Rossiyskaya Gazeta 2006 Federal law of 10.01.2006 N 16-FZ (ed. of 29.07.2018) "On the Special economic zone in the Kaliningrad region and on amendments to certain legislative acts of the Russian Federation". Rossiyskaya Gazeta, N 8, 19.01.2006 (Moscow)
[36] Rossiyskaya Gazeta 2000 Tax Code of the Russian Federation (part two) of August 05, 2000 N 117-FZ (ed. of July 31, 2020). Rossiyskaya Gazeta, N 153-154, 10.08.2000 (Moscow)
[37] Rossiyskaya Gazeta 2018 Federal law of 03.08.2018 N 291-FZ "On special administrative regions in the territories of the Kaliningrad region and Primorsky Krai". Rossiyskaya Gazeta, N 170, 06.08.2018 (Moscow)
[38] Rossiyskaya Gazeta 2017 Federal law of July 29, 2017 N 216-FZ "on innovative scientific and technological centers and on amendments to certain legislative acts of the Russian Federation". Rossiyskaya Gazeta, N 172, 04.08.2017 (Moscow)