Fast Computation of the Arnold Complexity of Length 2^n Binary Words

Yuri V. Merekin

May 2, 2014

Sobolev Institute of Mathematics, SB RAS, Novosibirsk 630090, Russia.
E-mail: merekin@math.nsc.ru

Abstract. For fast computation of the Arnold complexity of length 2^n binary words we obtain an upper bound for the Shannon function $Sh(n)$.

Keywords: binary word; word complexity; Arnold complexity; Shannon function.

1 Introduction

Analyzing word complexity usually involves studying the fragments of a word or the process of its construction (see [2] for instance). Arnold introduced [1] a new concept of complexity of a word. The measure of this complexity is determined by the “stability” of a word under the iterated action of a certain operator.

Consider an arbitrary nonperiodic binary word $w = x_1 x_2 \ldots x_{2^n}$, with $w \neq v^k$ and $k \geq 2$, of length $|w| = 2^n$ for $n \geq 1$. Denote by (w) the infinite periodic word $(w) = w w \ldots$. Henceforth, by a “word (w)” we understand “an infinite periodic word (w)”.

Consider the scheme (word chain)

$$(w) = (w_1), (w_2), \ldots, (w_s) = (v),$$

in which the first word is arbitrary, and every word $(w_i) = y_1 y_2 \ldots$ generates the next word $(w_{i+1}) = z_1 z_2 \ldots$, for $1 \leq i \leq s - 1$, using the operator

$$F(\cdot, h_i) : (w_i) \mapsto (w_{i+1}) : \quad z_j = y_j \oplus y_{j+h_i},$$

where $j \geq 1, 1 \leq h_i = 2^{n_i}, 0 \leq n_i \leq n$, and \oplus stands for modulo 2 addition; thus, $F(w_i, h_i) = (w_{i+1})$. The number h_i is called the rank of the operator in (2), and the number s, the length of the scheme (1).

Denote by $S(w, v, h, s)$ the type of schemes with the first word (w), the last word (v), the maximal rank h of operators involved, and the scheme length s. For every (w)
there exists a minimal s such that all words in the scheme $S(w, 0, 1, s)$ are distinct, and $F(v, 1) = (0)$. A scheme of this type is called a complexity scheme. Every word (w) has a unique complexity scheme. The number $s - 1$ is called the complexity of the binary word (w) and is denoted by $A(w)$. Arnold introduced [1] the concept of complexity of a binary word in a more general form, which coincides with our definition of complexity when the word length equals 2^n. The complexity of a periodic word (w) is equal to the complexity of the finite word w.

In an arbitrary scheme $S(w, v, 1, s)$ select a word chain

$$(w) = (w_1), (w_{1+i_1}), \ldots, (w_{1+i_1+i_2}) = (v),$$

where $i_i \geq 1$ for $1 \leq i \leq t \leq s - 1$. If in (3) each word $(w_{1+i_1+i_2})$ for $1 \leq i \leq s - 1$, coincides with $F(w_{1+i_1+i_2}, t_k)$, then the word chain in (3) is a scheme of type $S(w, v, s, t_k)$ with $s_k = 1 + t$, which is called equivalent to $S(w, v, 1, s)$.

In [3] we proved

Theorem 1.1 Every scheme $S(w, v, 1, 2^n + 1)$ with $n \geq 0$ is equivalent to the elementary scheme $S(w, v, 2^n, 2)$.

In a word $w = x_1x_2\ldots x_{2n}$, $n \geq 1$, select 2^{n-m} positions, with $0 \leq m \leq n - 1$, such that the distances between two neighboring selected positions are the same and equal to 2^m. Using the selected positions, form the word $w = x_1x_{2m}x_{2m+1}\ldots x_{2n}$ of length 2^{n-m}. Denote the infinite word $(w) = wu\ldots$ by $(w)_{2^n-m}$ and call it a thinned-out word. The number 2^{n-m} is called the step of the thinned-out word $(w)_{2^n-m}$. Observe that every thinned-out word is a linearly ordered set of indices of positions of w. The length of the period of $(w)_{2^n-m}$ can be less than 2^{n-m}. For $m = 0$ we have $(w) = (w)_{2^n}^1$.

Given a word (w), for a fixed value of m there exist 2^m different thinned-out words

$$(w)_{2^n-m}^1, (w)_{2^n-m}^2, \ldots, (w)_{2^n-m}^{2^m}, n \geq 1, 0 \leq m \leq n - 1.$$ \hspace{1cm} (4)

For instance, for $n = 3$ we have $(w)_{2^n-m}^1 = (x_1x_2x_3x_4x_5x_6x_7x_8), m = 0$;

$(w)_{2^n-m}^2 = (x_1x_2x_3x_4), (w)_{2^n-m}^3 = (x_2x_3x_4x_5), m = 1$;

$(w)_{2^n-m}^4 = (x_1x_2), (w)_{2^n-m}^5 = (x_2x_3), (w)_{2^n-m}^6 = (x_3x_4), (w)_{2^n-m}^7 = (x_4x_5), (w)_{2^n-m}^8 = (x_5x_6), m = 2$.

Define the operation of taking the union of thinned-out words, denoted by the symbol \ast. The definition of a thinned-out word implies that each of the positions $x_1, x_2, \ldots, x_{2^n}$ appears in the thinned-out words (4) exactly once since it is the union of arithmetic progressions with differences equal to powers of 2. Thus, we can express (w) as

$$(w) = (w)_{2^n-m}^1 \ast (w)_{2^n-m}^2 \ast \ldots \ast (w)_{2^n-m}^{2^m}, n \geq 1, 0 \leq m \leq n - 1.$$ \hspace{1cm} (5)

We group the words into two sorts: even words and odd words. The word $(w) = ww\ldots$, where $w = x_1x_2\ldots x_{2^n}$ with $x_1 \in \{0, 1\}$ and $1 \leq i \leq 2^n$ for $n \geq 0$, is called even whenever $x_1 \oplus x_2 \oplus \ldots \oplus x_{2^n} = 0$, and odd whenever $x_1 \oplus x_2 \oplus \ldots \oplus x_{2^n} = 1$. For calculating the parity of the thinned-out words $(w)_{2^n-m}$, where $|w| = 2^n$ with $n \geq 1$
and $0 \leq m \leq n - 1$, of a word $(x_1x_2\ldots x_{2^n})$, we gave a simple algorithm [4], which uses modulo 2 addition $2^n - 1$ times, and proved

Theorem 1.2 For every binary word (w) the length of whose period is equal to 2^n, $n \geq 1$, all thinned-out words $(w)_{m-m}^{\infty}$ for $0 \leq m \leq n - 1$ and $1 \leq i \leq 2^n$ are odd if and only if the complexity of (w) is equal to $A(w) = 2^n - 2^m + 1$.

Express the complexity $A(w)$ of an arbitrary word (w) with $|w| = 2^n$ for $n \geq 1$ as

$$A(w) = a_{n-1}2^{(n-1)} + a_{n-2}2^{(n-1)-1} + \ldots + a_02^{(n-1)-(n-1)},$$

or the binary number $a_{n-1}a_{n-2} \ldots a_0$, where $a_i \in \{0, 1\}$ for $0 \leq i \leq n - 1$.

Express the complexities $A(w)$, which according to Theorem 1.2 we calculate by finding the parities of thinned-out words, as the binary numbers

$$2^n - 2^1 + 1 = a_{n-1}a_{n-2} \ldots a_0 = 11\ldots111,$$

$$2^n - 2^2 + 1 = a_{n-1}a_{n-2} \ldots a_0 = 11\ldots101,$$

$$2^n - 2^{n-1} + 1 = a_{n-1}a_{n-2} \ldots a_0 = 10\ldots001,$$

$$2^n - 2^{n-1} + 0 = a_{n-1}a_{n-2} \ldots a_0 = 10\ldots000, \quad n \geq 1,$$

where all numbers are odd with the exception of $2^n - 2^{n-1}$.

Refer to a word (v) as **final** if $A(v)$ equals one of the values in (6). Every complexity scheme $S(w, 0, 1, s)$ with $s = 2^n$ for $n \geq 1$ contains $n + (n - 1) + \ldots + 1$ final words.

Using $t \geq 1$ operators (2) of ranks h_1, h_2, h_t, transform the complexity scheme $S(w, 0, 1, s)$ into a scheme

$$(w) = (w_1), (w_1+h_1), \ldots, (w_1+h_1+\ldots+h_t) = (v), (w_1+h_1+\ldots+h_{t+1}), \ldots, (0)$$

with the final word (v). Then

$$A(w) = h_1 + h_2 + \ldots + h_t + A(v),$$

where $A(v)$ is one of the numbers (6). It is obvious that in order to transform (w) into (v), every permutation of the ranks h_1, h_2, h_t of the operators $F(\cdot, h_i)$ for $1 \leq i \leq t$ is admissible.

2 Shannon Function

Refer to the minimal number of operators $F(\cdot, h_i)$ required to transform (w) into one of the final words (v) as the **complexity of transformation** of (w) into (v), and denote it by $A(w, v) = \min A(w)$.

Our goal is to find the Shannon function $\max_{w \to v} A(w)$, which we denote by $Sh(n)$.

Consider an example. Take a complexity scheme $(w_{16}), (w_{15}), \ldots, (w_2), (w_1), (w_0)$. For the words (w) with $|w| = 2^n$ for $0 \leq n \leq 4$ five values of complexity exist, for
which we have expressions as in (7). In each of these cases an operator $F(w_i, 2^j) : (w_i) \mapsto (w_j)$ is used only once. Table 1 presents the results of calculating $A(w)$ for all words w with $|w| = 2^n$ for $1 \leq n \leq 4$.

(w_i)	$A(w_i)$	$F(w_i, 2^j) : (w_i) \mapsto (w_j)$	$A(w_i) = 2^j + A(w_j)$
(w_{16})	$2^4 - 2^3 + 1$		
(w_{15})	$2^4 - 2^3 + 1$		
(w_{14})	$2^4 - 2^3 + 1$	$F(w_{14}, 2^2) : (w_{14}) \mapsto (w_{13})$	$A(w_{14}) = 2^2 + (2^4 - 2^3 + 1)$
(w_{13})	$2^4 - 2^3 + 1$		
(w_{12})	$2^4 - 2^3 + 1$	$F(w_{12}, 2^2) : (w_{12}) \mapsto (w_{11})$	$A(w_{12}) = 2^2 + (2^4 - 2^3 + 1)$
(w_{11})	$2^4 - 2^3 + 1$	$F(w_{11}, 2^2) : (w_{11}) \mapsto (w_{10})$	$A(w_{11}) = 2^2 + (2^4 - 2^3 + 1)$
(w_{10})	$2^4 - 2^3 + 1$	$F(w_{10}, 2^2) : (w_{10}) \mapsto (w_9)$	$A(w_{10}) = 2^3 + (2^4 - 2^3 + 1)$
(w_9)	$2^4 - 2^3 + 1$		
(w_8)	$2^3 - 2^2 + 1$		
(w_7)	$2^3 - 2^2 + 1$		
(w_6)	$2^3 - 2^2 + 1$	$F(w_6, 2^2) : (w_6) \mapsto (w_5)$	$A(w_6) = 2^3 + (2^3 - 2^2 + 1)$
(w_5)	$2^3 - 2^2 + 1$		
(w_4)	$2^3 - 2^2 + 1$		
(w_3)	$2^3 - 2^2 + 1$		
(w_2)	$2^3 - 2^2 + 1$		
(w_1)	2^3		

In the next theorem we consider the general case for $n \geq 5$.

Theorem 2.1 Given a word w with $|w| = 2^n$ for $n \geq 5$, we have

$$Sh(n) \leq \begin{cases}
 n - 2\sqrt{n} + 1 & \text{when the binary number } A(w) \text{ is odd,} \\
 n - 2\sqrt{n} + 2 & \text{otherwise.}
\end{cases}$$

Proof. Case 1. Assume that the value of the complexity $A(w)$ is odd.

Fix $A(w)$ and estimate the minimal number of operators transforming (w) into a final word (v). It is obvious that in this case the ranks of all operators are distinct.

In order to estimate $A(w, v)$, consider the result of the action of the operator of (2) on the coefficients $a_{n-1}, a_{n-2}, \ldots, a_0$ of (5). If

$$F(u_1, h = 2^{(n-1) - i}) = (u_2), \quad 0 \leq i \leq n - 1,$$

then $A(u_1) - A(u_2) = 2^{(n-1) - i}$. Moreover, two variants are possible for changing the values of $a_{n-1}, a_{n-2}, \ldots, a_0$:

$$(a_{(n-1) - i} = 1) \mapsto (a_{(n-1) - i} = 0);$$ (8)

4
\[
\begin{align*}
(a_{n-1} - i + j = 1) & \iff (a_{n-1} - i + j = 0), \\
(a_{n-1} - i + (j-1) = 0) & \iff (a_{n-1} - i + (j-1) = 1), \\
(a_{n-1} - i = 0) & \iff (a_{n-1} - i = 1),
\end{align*}
\] (9)

where \(1 \leq i \leq n-1, 1 \leq j \leq i.\)

In case (8) the rank of \(h = 2^{(n-1)-i}\) coincides with one of the terms in the sum (5). The action of the operator removes the term \(2^{(n-1)-i}\) from (5). For instance, the operator of rank \(h = 2^1\) transforms \(A(w) = 2^4 + 2^3 + 2^1 + 2^0\) into \(2^4 + 2^3 + 2^0.\)

In case (9), when the rank of \(h = 2^{(n-1)-i}\) is distinct from all terms of (5), we remove the term \(2^{(n-1)-i+j}\) with minimal \(j.\) Simultaneously, we add to (5) the terms

\[
2^{(n-1)-i+(j-1)}, 2^{(n-1)-i+(j-2)}, \ldots, 2^{(n-1)-i},
\]
(10)

For instance, the operator of rank \(h = 2^1\) transforms \(A(w) = 2^4 + 2^2 + 2^0\) into \(2^4 + 2^1 + 2^0.\)

Consider the case when we can apply (9) in order to calculate \(A(w, v)\).

Suppose that (5) includes a run \(a_i = a_{i-1} = \ldots = a_{i-l+1} = 1\) of neighboring unit coefficients of maximal length, where \(i \leq n-1\) and \(i + l - 1 \geq 1,\) which we denote by \(s(i, l).\) Several runs of maximal length may exist; for instance, \(A(w) = 2^5 + 2^4 + 2^2 + 2^1 + 2^0\) includes two such runs: \(s(5, 2)\) and \(s(2, 2).\)

For a fixed value \(A(w)\) of complexity choose a run \(s(i, l)\) arbitrarily. If \(A(w)\) is distinct from (6) then the sum in (5), in addition to the \(l\) terms \(2^i, 2^{i-1}, \ldots, 2^{i-l+1}\) and the term \(2^0,\) also involves \(t\) distinct terms with \(1 \leq t \leq n-l-2.\) Once we remove these \(t\) terms, the remaining sum would coincide with one of the sums in (6).

To remove \(t\) distinct terms from (5) using (8) we need \(t\) operators \(F(i, h_i),\) of distinct ranks \(h_1, h_2, \ldots, h_t.\) For instance, in \(A(w) = 2^5 + 2^4 + 2^2 + 2^1 + 2^0\) choose a run of neighboring unit coefficients of maximal length \(s(5, 2)\) and remove the terms \(2^2\) and \(2^1.\) This yields the sum \(2^5 + 2^3 + 2^0,\) which coincides with one of the sums in (6).

The transformation process \(A(w) \mapsto A(v)\) involves a unique case when the replacement of the variant (8) by the variant (9), in which the number of terms increases, fails to increase the number \(F(w, h_i)\) of operators in the transformation \(A(w) \mapsto A(v).\) Moreover, the form of the final word changes: it additionally includes all terms of (10). This happens when in \(A(w) = 2^i + 2^{i-1} + \ldots + 2^0\) with \(j \geq i+2\) we choose a run \(s(i, l)\) and apply the operator \(F(w, h = 2^{i+1}).\) Then we remove from \(A(w)\) the term \(2^0\) and transform the run \(s(i, l)\) into the run \(s(j-1, l + (j-i-1)).\) For instance, for \(A(w) = 2^5 + 2^3 + 2^2 + 2^0\) choose the run \(s(3, 2).\) Then the operator \(F(w, h = 2^4)\) transforms \(A(w) = 2^5 + 2^3 + 2^2 + 2^0\) into \(2^4 + 2^3 + 2^2 + 2^0,\) while the run \(s(3, 2)\) goes into \(s(4, 3).\)

Consequently, for removing \(t\) distinct terms from (5) the application of (9) is not necessary, and for finding \(A(w, v)\) we may use only the operators resulting in (8).

Remark Every odd binary number \(A(w)\) includes the term \(2^0,\) which we do not remove while constructing \(A(w, v).\) Consequently, the operator of rank \(h = 1\) is not used while obtaining \(A(w, v).\)
Denote by \(\nu(N) \) the number of 1's in the binary expression for a nonnegative integer \(N \). The arguments above imply that

\[
A(w, v) = \min_{w \to v} A(w) = \nu(A(w)) - l - 1,
\]

where \(l \) is the length of the maximal run \(s(i, l) \).

Let us find \(Sh(n) \) for nonfinal words \((w) \) with \(|w| = 2^n \) for \(n \geq 1 \).

Construct a continuous function which, copying the process of removal of the maximal number of 1's from a binary number \(A(w) \), determines an upper bound for \(Sh(n) \).

Divide a line of integer length \(n \geq 4 \) into \(x \) segments, with \(2 \leq x \leq n/2 \), of the same length \(n/x \). Keeping one of the segments intact, remove the beginning of all other segments to leave only a finite part of unit length. Then the total length of the removed segments is estimated by the convex function

\[
f(x) = (x - 1)(n/x - 1),
\]

which has one extremum. Find the derivative \(f'(x) \) and set it equal to zero:

\[
f'(x) = n/x^2 - 1 = 0.
\]

This yields \(x = \sqrt{n} \) and the maximal value attained by the function \(f(x) \), equal to

\[
f(x = \sqrt{n}) = n - 2\sqrt{n} + 1.
\]

For odd binary numbers \(A(w) \) Theorem is proved.

Case 2. Assume that the value of the complexity \(A(w) \) is even. Estimate the minimal number of operators (2) required for calculating \(A(w, v) \).

Suppose that the length \(n \) binary number \(A(w) \) includes \(\nu(A(w)) \) digits 1, where \(2 \leq \nu(A(w)) \leq n - 1 \), and

\[
a_{(n-1)-j} = 1, \ a_{(n-1)-j-1} = 0, \ldots, a_0 = 0, \ 1 \leq j \leq n - 2. \tag{11}
\]

Two variants for calculating \(A(w, v) \) are possible.

Subcase 2.1. From the binary number \(A(w) = a_{n-1}a_{n-2} \ldots a_0 \), which contains \(\nu(A(w)) \) digits 1, remove \(\nu(A(w)) - 1 \) digits 1 using (8). This yields a binary number \(A(v) \) with a unique digit 1. The number of operators \(A(w) \to A(v) \) equals

\[
\nu(A(w)) - 1. \tag{12}
\]

Subcase 2.2. Apply the operator \(F(w = w_1, h = 1): (w_1) \to (w_2) \) once. As a result, the even number \(A(w_1) \) goes into the odd number \(A(w_2) \), and \(A(w_2) = A(w_1) - 1 \). Carry out further calculations according to the algorithm of case 1, in which by Remark 2.2 the operator (2) of rank 1 is not used.
Upon the application of $F(w = w_1, h = 1)$ to the number $A(w)$ all binary digits in (11) switch their values in accordance with (9). Therefore, the number $A(w_2)$ includes
\[\nu(A(w_2)) = \nu(A(w)) - 1 + j \]
digits 1. Removing from $A(w_2)$ all digits 1 except for l of those in $s(i, l)$ and $a_0 = 1$, we obtain $A(v)$ with $\nu(A(v)) = l + 1$ digits 1. The number of operators transforming $A(w)$ into $A(v)$ equals
\[\nu(A(w_2)) - \nu(A(v)) + 1 = \nu(A(w)) + j - l - 1. \]

(13)

In order to estimate the complexity
\[A(w, v) = \min_{w \rightarrow v} A(w) \]
we choose the variant with the minimal number of operators. A comparison of (12) and (13) shows that this number occurs in subcase 2.1 for $j \geq l$ and in subcase 2.2 for $j \leq l$.

For instance, for $A(w) = 101110100$ we choose subcase 2.2:

\[
\begin{align*}
A(w) &= 101110100, \quad \nu(A(w)) = 5, \quad j = 2; \\
A(w_2) &= 101110011, \quad \nu(A(w)) - 1 + j = 6, \quad l = 3; \\
A(v) &= 001110001, \quad \nu(A(v)) = l + 1 = 4; \\
A(w) \mapsto A(v) &\implies 111, \quad \nu(A(w)) + j - l - 1 = 3.
\end{align*}
\]

Observe that if the operator $F(w = w_1, h = 1) : (w_1) \mapsto (w_2)$ in subcase 2.2 generates an odd word (w_2), for which we have already established the estimate $\lceil n - 2\sqrt{n} + 1 \rceil$, then for even $A(w_1)$ we have the estimate $\lceil n - 2\sqrt{n} + 2 \rceil$ since $A(w_1) = A(w_2) + 1$.

Supported in part by RFBR grant 11-01-00997.

References

[1] V. I. Arnold, Topology and statistics of arithmetic formulae, Usp. Math. Nauk, 58 (4) (2003) 1–26 (in Russian).

[2] Yu. V. Merekin, Some Bounds on the Complexity of Words, Southeast Asian Bull. Math. 30 (6) (2006) 1081–1121.

[3] Yu. V. Merekin, On the Computational Complexity of the Arnold Complexity of Binary Words, Asian-European Journal of Math. 2 (4) (2009) 641–648.

[4] Yu. V. Merekin, On the Computation of Arnold Complexity of Length 2^n Binary Words, Asian-European Journal of Math. 4 (2) (2011) 295–300.