Receptor-stimulated Phospholipase A$_2$ Activation Is Coupled to Influx of External Calcium and Not to Mobilization of Intracellular Calcium in C62B Glioma Cells*

(Received for publication, July 25, 1989)

Robert C. Brooks‡, Ken D. McCarthy‡, Eduardo G. Lapetina§, and Pierre Morell†**

From the ‡Department of Biochemistry and Nutrition, the §Department of Pharmacology, and the ¶Biological Science Research Center, University of North Carolina, Chapel Hill, North Carolina 27599-7250 and ¶Burroughs Wellcome Company, Division of Cell Biology, Research Triangle Park, North Carolina 27709

C62B rat glioma cells respond to muscarinic cholinergic stimulation with transient inositol phosphate formation and phospholipase A$_2$-dependent arachidonic acid liberation. Since phospholipase A$_2$ is a Ca$^{2+}$-sensitive enzyme, we have examined the role of the agonist-stimulated Ca$^{2+}$ response in production of the arachidonate signal. The fluorescent indicator fura-2 was used to monitor changes in cytoplasmic Ca$^{2+}$ levels ([Ca$^{2+}$]) of total cells following acetylcholine treatment. In the presence of extracellular Ca$^{2+}$, acetylcholine induces a biphasic [Ca$^{2+}$] response consisting of an initial transient peak that precedes arachidonate liberation and a sustained elevation that outlasts the phospholipase A$_2$ response. The initial [Ca$^{2+}$]$_i$ peak is not altered by the absence of external Ca$^{2+}$ and therefore reflects intracellular Ca$^{2+}$ mobilization. The sustained elevation phase is dependent on the influx of external Ca$^{2+}$; it is lost in Ca$^{2+}$-free medium and restored on the addition of Ca$^{2+}$. Pretreatment of cells with phorbol dibutyrate substantially inhibits acetylcholine-stimulated inositol phosphate formation and the peak [Ca$^{2+}$] response without affecting the sustained elevation in [Ca$^{2+}$]. This suggests that the release of internal Ca$^{2+}$ stores by inositol 1,4,5-trisphosphate can be blocked without interfering with Ca$^{2+}$ influx. Pretreatment with phorbol also fails to affect acetylcholine-stimulated arachidonate liberation, demonstrating that phospholipase A$_2$ activation does not require normal intracellular Ca$^{2+}$ release. Stimulated arachidonate accumulation is totally inhibited in Ca$^{2+}$-free medium and restored by the subsequent addition of Ca$^{2+}$. Pretreatment with verapamil, a voltage-dependent Ca$^{2+}$ channel inhibitor, also blocks both the sustained [Ca$^{2+}$]$_i$ elevation and arachidonate liberation without altering peak intracellular Ca$^{2+}$ release. We conclude that the influx of extracellular Ca$^{2+}$ is tightly coupled to phospholipase A$_2$ activation, whereas large changes in [Ca$^{2+}$], due to mobilization of internal Ca$^{2+}$ stores are neither sufficient nor necessary for acetylcholine-stimulated phospholipase A$_2$ activation.

A wide variety of tissues respond to hormone and neuro-

* This work was supported by United States Health Service Grants NS11615, HD03110, and NS20212. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

** To whom correspondence and reprint requests should be addressed: 321 Biological Sciences Research Center, CB 7230, University of North Carolina, Chapel Hill, NC 27599-7250.

1 The abbreviations used are: PIP$_2$, phosphatidylinositol 4,5-bisphosphate; BME, basal medium Eagle's; [Ca$^{2+}$], cytoplasmic free calcium concentration; EGTA, (ethylenebis(oxyethylenenitrilo)tetraacetic acid; G protein, guanine nucleotide-binding protein; HBSS, Hanks' balanced salt solution; HEPES, N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid; HPLC, high performance liquid chromatography; 1,4,5-IP$_3$, inositol 1,4,5-trisphosphate; PDBu, phorbol 12,13-dibutyrate.
this system, arachidonate liberation occurs preferentially via phospholipase A2 degradation of phosphatidylinositol (31). The present study was conducted to determine the relative roles of intracellular Ca2+ mobilization and extracellular Ca2+ influx in cholinergically stimulated phospholipase A2 activation in these cells.

EXPERIMENTAL PROCEDURES

Materials

Basal medium Eagle’s (BME) was purchased from Gibco. Fetal calf serum was from Flow Laboratories (McLean, VA). Fura-2/AM and its amphotericin were obtained from Calbiochem-Behring. [1-42C]Triiodothyronine (T3) was obtained from Amersham Corp. Acetylicholine, phospholipase A2, 12,13-Dibutyrate (PDBu), and verapamil were from Sigma. The Partral 10 SAAX anion exchange high performance liquid chromatography (HPLC) column (4.5 × 25 cm) and silica gel (LKB 60 thin layer chromatography (TLC) plates were purchased from Whatman (Maidstone, United Kingdom). All other materials were reagent grade.

Methods

**Cell Culture—C62B2 cells were cultured in BME supplemented with 5% fetal calf serum, 1 mM l-glutamine, 50 units/ml penicillin, and 50 μg/ml streptomycin in a humidified environment of 5% CO2 at 37 °C. The cultures were grown on poly-D-lysine coated plates in a 75-cm² Corning culture flasks and harvested by trypsinization as described previously (29); the only modification was the use of a calcium-free medium (11 mM glucose, 20 mM HEPES, 10.2 mM trisodium citrate, 4 mM potassium chloride, 110 mM sodium chloride, pH 7.2) for harvesting.

**Cytoplasmic Ca2+ Measurement—Aliquots of harvested cells were allowed to settle onto sterile glass coverslips in 100-mm Corning tissue culture dishes, and the cells were grown to confluence over 2–10 days in supplemented BME as described above. Coverslips were mounted into a chamber and washed three times with unspplemented BME, and the attached cells were incubated with 5 μM fura-2/AM in BME for 17 min at 37 °C. The cells were washed three times with Hanks’ balanced salt solution (HBSS, containing 173 mM sodium chloride, 5.4 mM potassium chloride, 0.8 mM magnesium sulfate, 0.4 mM sodium phosphate dibasic, 0.4 mM potassium phosphate monobasic, 5.6 mM glucose, 1.3 mM calcium chloride, pH 7.2) prior to measurement of fura-2 fluorescence. Fura-2 loading under these conditions produced a diffuse fluorescence with no visible intracellular localization of the dye.

Epifluorescent microscopy (32) was used to monitor changes in the fura-2 fluorescence of the C62B cell monolayer. The chamber was mounted on a Nikon Diaphot-TMD microscope, and a Fluor 40 × objective was used to examine 12–25 cells at a given time. Fura-2 fluorescence was recorded at 1-s intervals using a dual excitation wavelength spectrofluorometer (Spxex Instruments, Edison, NJ) with excitation at 340 and 380 nm and emission at 500 nm. All experiments were performed in either the Ca2+/Mg2+-containing HBSS described above or in HBSS without added Ca2+ or Mg2+ and with 0.5 mM EGTA. Experiments were conducted at room temperature since the Ca2+ response was found to be identical at room temperature and 37 °C, but the higher temperature greatly accelerated dye leakage. Cells were treated with acetylcholine (2.75 mM) or drugs by the addition of 4–10 × concentrations to obtain the desired final concentration. PDBu and verapamil were added as ethanolic solutions of HBSS 20–30 min prior to acetylcholine stimulation; solvent concentrations, which never exceeded 0.5%, had no effect on the fura-2-monitored Ca2+ response. After stimulation, the cells were rinsed free of agonist by 10–12 media changes and were given 20 min to recover prior to restimulation. Media changes and additions of agonist or drugs were made without an interruption in recording. In some experiments, the initial acetylcholine-stimulated Ca2+ response varied slightly from all subsequent control responses, perhaps due to incomplete dye hydrolisis or a transient buffering effect (32, 33); in such cases, the initial response was discarded.

The free intracellular Ca2+ concentration ([Ca2+]i) was calculated from the ratio of the fluorescence intensities at the two excitation wavelengths as described by Grynkiewicz et al. (34) using a Kd of 224 nM for the fura-2/AM complex. The fluorescence and maxima of the response were determined for the cells at the end of each experiment using 19 μM ionomycin; Rmax was obtained by equilibration with 2.5 mM EGTA in a depolarizing medium (130 mM potassium chloride, 20 mM sodium chloride, 10 mM HEPES, 1 mM magnesium chloride, pH 7.2), and Rmax was then found by the readication of Ca2+ in the same medium until the fura-2 signal reached saturation. The excitation spectrum of the cellular fura-2 under these conditions was similar to that of free fura-2 in the same solutions. Background autofluorescence, determined by the subsequent addition of 1 mM manganese, of the permeabilized cells, was subtracted from the 340 and 380 nm traces prior to calculating [Ca2+]i.

**Labeling Cells with [3H]Arachidonic Acid and [3H]Insolito—Sterile glass scintillation vials were exposed to 1.5 mL of poly-b-lyse (16 mg/mL) for 20 min and allowed to air dry. C62B2 cells were added to the vials as described previously (29). The cultures were then incubated for 18–24 h, the medium was removed by aspiration, and cells were labeled by incubation for 24 h in 0.75 mL of fresh medium containing 0.3 μCi of [1-14C]arachidonic acid. In some cases, 25 μCi of 4-10-2-[3H]Insolito was also included (31).

Assays for Arachidonic Acid Liberation and Insolito Phosphate Formation—These assays were conducted following protocols described previously (29, 31). Briefly, the labeling medium was removed, the cultures were rinsed, fresh medium was added, and the cells were placed in a 37 °C water bath. BME containing 30 mM HEPES, pH 7.2, was used for arachidonate experiments, whereas double-label experiments were performed using Ca2+/Mg2+-containing HBSS (15 mM HEPES, pH 7.2) with 25 mM lithium chloride. Drugs were added in 50-μl aliquots to give the desired final concentrations in a total volume of 0.75 mL. PDBu and verapamil were made up in the appropriate medium and added as described above; solvent concentrations used had no effect on stimulated arachidonate liberation or insolito phosphate formation. Incubations were carried out in the 37 °C water bath for the times indicated and were terminated by the addition of 2.8 mL of chloroform/methanol/hydrochloric acid (v/v/v, 100:200:2) followed by agitation in a sonicating water bath. Cells extracts were transferred to centrifuge tubes; 0.9 mL of water and 0.9 mL of chloroform were added, and the tubes were agitated on a vortex shaker. The tubes were kept overnight at 0 °C, and the phases were separated by centrifugation.

Separation of lipids was performed by evaporating the organic phase under a layer of nitrogen, redissolving the residues in 50 μl of chloroform, and applying 20-μl portions to LKB6 TLC plates. Arachidonic acid was separated from esterified lipids using a solvent system consisting of the upper phase of a mixture of ethyl acetate/isooctane/acetate acid/water (v/v/v, 30:420:20:100) as reported previously (29). Radiolabeled species were visualized by autoradiography using Kodak XAR film and quantitated by scraping portions of the silica gel into scintillation vials followed by liquid scintillation spectrometry.

Insolito phosphates were separated in [3H]Insolito-labeling experiments by anion exchange chromatography using HPLC or Dowex chromatography (36). PDBu was evaporated to 1 ml under a stream of nitrogen, diluted to 4 ml with water, and applied to a Partisol 10 SAX analytical HPLC column. The column was washed with 20 ml of water to remove free insolito, and insolito phosphates were eluted using a 70-min linear gradient of 0-1.5 mM ammonium formate, pH 3.7, with a flow rate of 1 ml/min and 1-ml fractions collected. Relative radioactivity present in the eluent was quantitated by liquid scintillation spectrometry. Peaks of radioactivity were identified by coelution with radiolabeled standards. Dowex chromatography (56) was carried out using an ammonium formate step gradient as described previously (57). Statistical Analysis—Means and standard errors are presented as the mean ± S.E. of the indicated number of experiments. Statistical differences between control and treated values were analyzed using a t test for Ca2+ experiments and a one-way ANOVA with Tukey’s Studentized range test for arachidonate studies.

RESULTS

Acetylcholine Stimulation Produces a Biphasic Response in Cytoplasmic Calcium Levels—Previous work in this laboratory has demonstrated that acetylcholine stimulation of muscarinic receptors produces phospholipase C activation and 1,4,5-IP3 formation in C62B cells (31). The fluorescent Ca2+ dye fura-2 (34) was used to characterize associated changes in [Ca2+], (Fig. 1). Acetylcholine produces a biphasic [Ca2+]i response in the presence of external Ca2+. Basal [Ca2+]i, 26 ± 4 nM, increases to a peak value of 420 ± 54 nM (n = 19).
within 10 s of agonist addition, consistent with the previously
determined time course of 1,4,5-IP3 formation (31). A rapid
drop in [Ca2+], which lasts about 1 min, is followed by a more
gradual decline to a sustained plateau of approximately 100
nM, which can last at least 20 min in the continued presence
of agonist (not shown). Addition of the muscarinic receptor
antagonist atropine at any time rapidly returns [Ca2+], to
basal levels (Fig. 1). Acetylcholine was used at a saturating
concentration of 2.75 mM to facilitate comparison of results
with previous biochemical studies (29, 31, 37, 38). The
identical dose-response curves for phospholipase C and phospho-
lipase A2 activation rule out the use of agonist concentration
for separating the two responses (29).

Removing Extracellular Ca2+ Blocks the Second Phase of the
[Ca2+] Response without Affecting the Initial Peak—Acetyl-
choline-stimulated changes in [Ca2+], were examined in Ca2+-
free medium to dissect the contributions of intracellular and
extracellular Ca2+ pools. Ca2+-containing medium was aspiri-
ated away from fura-2-loaded C62B cells and replaced with
Ca2+-free medium with 0.5 mM EGTA; agonist was then added
within 30 s (Fig. 2). This produced a slight lowering of basal
[Ca2+], but failed to affect the initial peak [Ca2+] response.
Stimulated [Ca2+], levels returned to basal values within 2

min of acetylcholine addition. Replacing the Ca2+-free medium
with the original medium containing 1.3 mM Ca2+ re-
stored the sustained [Ca2+] plateau (Fig. 2; 3 min after readdi-
tion [Ca2+], = 220 ± 32 nM, n = 5). These results suggest
that mobilization of intracellular Ca2+ stores accounts for the
initial peak [Ca2+] response, whereas the sustained elevation
in [Ca2+], is dependent on extracellular Ca2+ influx. The
two events appear to overlap to some extent; stimulated [Ca2+],
levels at 1 min in Ca2+-free medium are significantly elevated
over basal values and significantly lower than in the presence
of external Ca2+ (p < .05).

PDBu Pretreatment Inhibits Acetylcholine-stimulated Ino-
sitol Phosphate Formation and Intracellular Ca2+ Release with-
out Blocking Ca2+ Influx or Arachidonate Liberation—We have
demonstrated previously that PDBu pretreatment effectively
inhibits acetylcholine-stimulated inositol phosphate formation
in C62B cells (37). We therefore tested the effects of PDBu on
the stimulated [Ca2+], response in cells loaded with
fura-2. Pretreatment with 200 nM PDBu for 20 min inhibited
the initial peak increase in [Ca2+] (p < .02) without sub-
stantially affecting the sustained plateau levels (Fig. 3). Peak
increases in [Ca2+], were inhibited by 83 ± 4% (n = 5) in
Ca2+-free medium and 67 ± 11% (n = 6) in 1.3 mM external
Ca2+. The time to peak response was also delayed by PDBu
pretreatment (Fig. 3), going from 6 ± 1 to 19 ± 3 s in Ca2+-
free medium (n = 5) and from 10 ± 1 to 18 ± 5 s in the
presence of external Ca2+ (n = 6). Identical PDBu pretreat-
ments on [14C]arachidonate-labeled cells had no effect on

Fig. 1. Acetylcholine-stimulated changes in fura-2 fluores-
cence and [Ca2+], in the presence of 1.3 mM extracellular
Ca2+. C62B cells loaded with fura-2 were stimulated with 2.75 mM acetyl-
choline (ACh), and the changes in fluorescence were recorded using
a dual excitation wavelength spectrofluorometer with excitation at
340 and 380 nm, as described under "Methods." Panel A shows the
ratio of the fluorescence intensities at these two wavelengths in a
typical experiment after the addition of agonist and 10 μM atropine
at the times indicated. In panel B, calculated [Ca2+], values from
multiple experiments are shown at various points in the stimulated
response, either prior to acetylcholine addition (pre), at the peak
ratio intensity (peak), or at 1, 2, 3, 4, or 5 min after acetylcholine
addition. Data shown are the average ± S.E. of mean control re-
sponses in 17–19 separate experiments.

Fig. 2. Effects of removing external Ca2+ on the acetylchlo-
line-stimulated [Ca2+] response. Fura-2-loaded C62B cells were
stimulated with acetylcholine (ACh) in the presence of 1.3 mM
external Ca2+ (panel A), rinsed, and allowed to recover for 20 min.
The same cells were then switched to Ca2+-free medium with 0.5 mM
EGTA, restimulated with acetylcholine, finally switched back to
medium with 1.3 mM Ca2+ and acetylcholine at the times indicated
(panel B). [Ca2+] values calculated from multiple experiments
are shown in panel C for various times in the stimulated response
as described in Fig. 1; the response in Ca2+-free medium (hatched bars)
is contrasted with previous data from Fig. 1 on the response in 1.3
mM external Ca2+ (blank bars). Data in Ca2+-free media are averages
± S.E. of mean responses in five separate experiments.
basal or acetylcholine-stimulated arachidonate liberation (Fig. 4, p > 0.5). As a control, C62B cells were double labeled with [3H]inositol to allow assessment of inositol phosphate formation and arachidonate liberation in the same samples. PDBu pretreatment was found to inhibit agonist-stimulated inositol phosphate formation without altering arachidonate liberation (Fig. 5). Total inositol phosphate formation was inhibited by 81 ± 3% (n = 5) under these conditions.

Ca2+ Influx Is Tightly Coupled to Acetylcholine-stimulated Arachidonate Liberation—[14C]Arachidonate labeling was used with the Ca**2+**-free medium protocol described above to examine the role of extracellular Ca**2+** in phospholipase A2 activation. In the presence of external Ca**2+**, arachidonate accumulation peaks 60–90 s after acetylcholine addition and returns to basal values by 3 min (29). Switching C62B cells to Ca**2+**-free medium with 0.5 mM EGTA 30 s prior to agonist addition completely blocks stimulated arachidonate accumulation (Fig. 6, p < 0.001, n = 7 experiments performed in triplicate). If the inhibited cells are then switched back to medium containing 1.3 mM Ca**2+** to restore Ca**2+** influx (Fig. 2), cholinergic arachidonate liberation is also recovered (Fig. 6). Arachidonate accumulation at 3 min under these conditions was not significantly different from control 90-s stimulated levels (p > 0.5, n = 4 experiments performed in triplicate). Media switches alone had no effect on basal arachidonate levels.

Verapamil Pretreatment Inhibits Acetylcholine-stimulated Ca2+** Influx and Arachidonate Liberation without Affecting Intracellular Ca**2+** Release**—Verapamil, a voltage-dependent Ca**2+** channel blocker (39, 40), was used to test further the

FIG. 3. Effects of phorbol dibutyrate pretreatment on the acetylcholine-stimulated [Ca2+**] response.** Panel A, in a typical experiment, C62B cells loaded with fura-2 were stimulated with acetylcholine (ACh), washed, treated with 200 nM PDBu for 20 min, and then restimulated with acetylcholine. The two responses have been superimposed with the same time for agonist addition as indicated. Panel B, calculated [Ca**2+**] values from multiple experiments are shown at the peak of the response in Ca**2+**-free medium (peak) and at 5 min after acetylcholine addition in 1.3 mM external Ca**2+** (plateau), in the presence (solid bars) or absence (blank bars) of PDBu pretreatment. The data are means ± S.E. of control and treated responses from the same cells in five or six separate experiments in each type of medium.

FIG. 4. Effects of phorbol dibutyrate pretreatment on arachidonate acid liberation. C62B cell cultures prelabeled with [14C] arachidonate were incubated for 20 min in the presence or absence of 200 nM PDBu and then treated with acetylcholine (solid bars) or buffer (blank bars) for 90 s. Unesterified [14C]arachidonate acid was assayed by TLC as described under "Methods." Each data value, presented as radioactivity/lane on the TLC plate, is the mean ± S.E. of three experiments performed in duplicate or triplicate.

FIG. 5. Effects of phorbol dibutyrate pretreatment on inositol phosphate formation and arachidonate liberation in double-labeled C62B cells. Cell cultures were prelabeled with [3H] arachidonate and [3H]inositol for 24 h and then treated with either buffer for 90 s (sample A), acetylcholine for 90 s (sample B), or 200 nM phorbol dibutyrate for 20 min followed by acetylcholine for 90 s (sample C). The cells were extracted, inositol phosphates in the aqueous phases were separated by HPLC, and arachidonate acid in the organic phases was separated from other lipids by TLC as described under "Methods." HPLC traces (left) and TLC autoradiographs (right) are shown for each sample. Similar results were obtained with two other sets of samples. GPI, glycerophosphoinositol; IP1, inositol phosphate; IP2, inositol bisphosphate.
relationship between Ca2+ influx and phospholipase A\textsubscript{2} activation. Pretreatment of fura-2-loaded C62B cells with 250 \textmu M verapamil for 20–30 min inhibited the influx-dependent plateau phase of the acetylcholine-stimulated [Ca2+]\textsubscript{i} response (\textit{p} < 0.05) without altering initial peak [Ca2+]\textsubscript{i} levels (Fig. 7). The resulting [Ca2+]\textsubscript{i} response resembles that obtained in the absence of extracellular Ca2+, with a return to basal levels within 2 min of agonist addition (Figs. 7B and 2C). Pretreatment of 3H-arachidonate-labeled cells under similar conditions produced a corresponding inhibition of acetylcholine-stimulated arachidonate liberation (Fig. 8, \textit{p} < 0.001).

DISCUSSION

Acetylcholine Produces a Biphasic [Ca2+]\textsubscript{i} Response—Muscarinic stimulation of C62B rat glioma cells produces a biphasic [Ca2+]\textsubscript{i} response, a rapid peak in [Ca2+]\textsubscript{i}, followed by a sustained elevation, similar to that seen in other systems with receptors coupled to phospholipase C (3, 41). The two phases of the response have been linked to the mobilization of intracellular Ca2+ stores and the opening of plasma membrane Ca2+ channels, respectively (3, 6), and our data support this interpretation. A temporal comparison of acetylcholine-stimulated changes in [Ca2+]\textsubscript{i} and arachidonate accumulation does not support the idea that phospholipase A\textsubscript{2} activity in C62B cells is regulated solely by changes in overall cytoplasmic Ca2+ levels. Although [Ca2+]\textsubscript{i} peaks within 10 s of agonist stimulation and then declines to a sustained plateau level after about 1 min (Fig. 1), arachidonate accumulation has been shown to increase slowly over the first min and peak at 60–90 s (29). Furthermore, [Ca2+]\textsubscript{i} remains elevated in the continued presence of agonist and external Ca2+, whereas phospholipase A\textsubscript{2} activation is a transient event under these conditions with arachidonate levels returning to baseline by 3 min (29).

Phorbol Dibutyrate Inhibits the Intracellular Ca2+ Response without Blocking Ca2+ Influx or Phospholipase A\textsubscript{2} Activation—Internal Ca2+ release is believed to result from the binding of 1,4,5-IP\textsubscript{3} to specific intracellular receptors (3, 4, 7, 42), and the time course of the intracellular Ca2+ response in C62B
cells (Fig. 2) is consistent with changes in 1,4,5-IP$_3$ levels determined previously (31). PDBu is an effective inhibitor of acetylcholine-stimulated inositol phosphate formation in C62B cells (37), and we therefore used PDBu to test the relationship among inositol phosphate formation, intracellular Ca$^{2+}$ release, and phospholipase A$_2$ activation. As in other systems (e.g. 43, 44), pretreatment with PDBu substantially inhibited the peak stimulated [Ca$^{2+}$], response in C62B cells (Fig. 3). This result is probably a direct result of decreased 1,4,5-IP$_3$ formation since submaximal doses of agonist or 1,4,5-IP$_3$ have been shown to produce corresponding submaximal increases in [Ca$^{2+}$], and only fractional release of accessible internal Ca$^{2+}$ stores (42). It is also possible, however, that the phorbol ester may be affecting Ca$^{2+}$ release at the level of the 1,4,5-IP$_3$-operated channel (45). The second phase of the [Ca$^{2+}$], response was not substantially affected by PDBu, suggesting that Ca$^{2+}$ influx is far less sensitive than intracellular Ca$^{2+}$ release to stimulated changes in inositol phosphate levels. This result may reflect regulation of Ca$^{2+}$ influx by protein kinase C or G proteins (6, 46-48) rather than inositol phosphate metabolites (3, 7). PDBu pretreatment also had no effect on stimulated arachidonate liberation under conditions that depressed inositol phosphate formation and internal Ca$^{2+}$ release (Figs. 4 and 5), demonstrating that normal 1,4,5-IP$_3$ production and [Ca$^{2+}$], increases are not required for phospholipase A$_2$ activation in the presence of normal Ca$^{2+}$ influx. We cannot rule out the possibility, however, that a small amount of intracellular Ca$^{2+}$ release or a sustained elevation in [Ca$^{2+}$], is required for phospholipase A$_2$ activation. Although PDBu has been found to increase basal and stimulated arachidonate liberation in other systems (17, 18), it failed to alter these parameters significantly in C62B cells.

Ca$^{2+}$ Influx Is Tightly Coupled to Phospholipase A$_2$ Activation—Since PDBu did not block external Ca$^{2+}$ influx or arachidonate liberation, it was possible that such influx provided the Ca$^{2+}$ required for phospholipase A$_2$ activation. This hypothesis was tested by assessing stimulated arachidonate liberation using a Ca$^{2+}$-free medium protocol that was shown to inhibit the influx-dependent second phase of the [Ca$^{2+}$], response without altering peak intracellular Ca$^{2+}$ release (Fig. 2). Acetylcholine-stimulated arachidonate accumulation was totally inhibited under such conditions (Fig. 6), demonstrating that Ca$^{2+}$ influx is required for phospholipase A$_2$ activation and, additionally, showing that normal intracellular Ca$^{2+}$ release and the resulting large changes in [Ca$^{2+}$], are not sufficient to support phospholipase A$_2$ activation. Readdition of external Ca$^{2+}$ to the inhibited cells restores not only Ca$^{2+}$ influx and the sustained phase of the [Ca$^{2+}$], response (Fig. 2) but also stimulated arachidonate accumulation (Fig. 6), reinforcing the conclusion that Ca$^{2+}$ influx is a crucial event in phospholipase A$_2$ activation. In addition, this latter experiment suggests that Ca$^{2+}$ influx may be involved in the timing of the transient arachidonate signal; delaying Ca$^{2+}$ influx for 90 s after agonist stimulation results in arachidonate liberation at a time (3 min) when the normal response has ended (29).

Corroborative data on the importance of external Ca$^{2+}$ in phospholipase A$_2$ activation were obtained using verapamil, an inhibitor of voltage-dependent Ca$^{2+}$ channels (39, 40). Verapamil pretreatment produced a stimulated [Ca$^{2+}$], response similar to that obtained with Ca$^{2+}$-free medium; the influx-dependent phase of the response was blocked without affecting the peak intracellular Ca$^{2+}$ release (Fig. 7). Once again, these alterations in the [Ca$^{2+}$], response were associated with essentially quantitative inhibition of acetylcholine-stimulated arachidonate accumulation (Fig. 8). Although verapamil is assumed to be acting directly on the voltage-dependent Ca$^{2+}$ channels in these experiments (39), we cannot rule out the possibility that the dose used affects receptor-operated channels (49) or indirectly affects the voltage-sensitive channels by interfering with Na$^+$ or K$^+$ currents (40).

The present results can be explained by a model for phospholipase A$_2$ regulation in which the enzyme is functionally associated with plasma membrane Ca$^{2+}$ channels. Activation of phospholipase A$_2$ may require Ca$^{2+}$ influx in order to generate very high Ca$^{2+}$ concentrations in the microenvironment of the enzyme, as suggested for regulation of neurotransmitter release (50). Evidence exists for localized membrane-associate increases in [Ca$^{2+}$], following muscarinic stimulation of rat parotid acinar cells (51), and such a hypothesis would explain why many phospholipase A$_2$ enzymes require millimolar Ca$^{2+}$ concentrations for maximal in vitro activation (e.g. 13, 25, 26). Phospholipase A$_2$ may be permanently associated with the membrane near Ca$^{2+}$ channels or may bind to the membrane as a consequence of Ca$^{2+}$ influx during activation (52). The Ca$^{2+}$ released into the cell from sequestered intracellular stores is assumed to be functionally uncoupled from the enzyme by virtue of its location.

This model is consistent with the observed phospholipase A$_2$ requirement for extracellular Ca$^{2+}$ but other systems (e.g. 11, 17, 18). In addition, it may help to explain the discrepancy between [Ca$^{2+}$], changes and phospholipase A$_2$ activation noted with different agonists in platelets (53), and the recent demonstration of temperature-dependent dissociation of bradykinin-stimulated 1,4,5-IP$_3$ and lysophosphatidylinositol formation in endothelial cells (54). Although it does conflict with experiments showing inhibition of arachidonate liberation with 8-(diethylamino)-octyl-3,4,5-trimethoxybenzoic acid (11, 28), an inhibitor of intracellular Ca$^{2+}$ release (55), recent studies have indicated that this compound may block phospholipase A$_2$ in a Ca$^{2+}$-independent manner (19). Work by Balsinde et al. (56) in human neutrophils has suggested that cell compartmentalization may play a role in phospholipase A$_2$ regulation, demonstrating preferential ionophore-induced activation of the enzyme within an undefined intracellular region. Interestingly, this same study found that plasma membrane-associated phospholipase A$_2$ used phosphatidylinositol preferentially as substrate, as does the C62B cell enzyme (31).

We should stress that this model does not preclude a coincident role for G proteins (10-12), protein kinase C (16-19), lipoctins (20, 21), Na$^+$/H$^+$ exchange (22), or other factors in phospholipase A$_2$ regulation. In fact, since Ca$^{2+}$ influx does not desensitize in C62B cells following acetylcholine stimulation and arachidonate liberation does, one or more of these factors may be responsible for terminating the enzyme’s action in this system. Our results strongly suggest, however, that Ca$^{2+}$ influx is required for muscarinic receptor activation of phospholipase A$_2$ in these cells.

Acknowledgments—We would like to thank Dr. Joseph J. DeGeorge for his helpful and stimulating discussions and Maria Mori Brooks for conducting the statistical analysis of the data.

REFERENCES

1. Lapetina, E. G. (1982) Trends Pharmacol. Sci. 3, 115-118
2. Abdel-Latif, A. A. (1986) Pharmacol. Rev. 38, 272-272
3. Berridge, M. J. (1987) Annu. Rev. Biochem. 56, 159-193
4. Berridge, M. J., and Irvine, R. F. (1984) Nature 312, 315-321
5. Nishizuka, Y. (1984) Nature 308, 693-698
6. Exton, J. H. (1988) FASEB J. 2, 2670-2676
7. Putney, J. W., Takemura, H., Hughes, A. R., Horstman, D. A., and Thastrup, O. (1989) FASEB J. 3, 1899-1905
The Role of Calcium in Phospholipase A2 Activation

8. Fain, J. N., Wallace, M. A., and Wojcikiewicz, R. J. H. (1988) FASEB J. 2, 2569–2574
9. Gilman, A. G. (1987) Annu. Rev. Biochem. 56, 615–649
10. Axelrod, J., Burch, R. M., and Jelsema, C. L. (1988) Trends Neurosci. 11, 117–123
11. Burch, R. M., Luini, A., and Axelrod, J. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 7201–7205
12. Jelsema, C. L., and Axelrod, J. (1987) Proc. Natl. Acad. Sci. U. S. A. 84, 3623–3627
13. Billah, M. M., Lapetina, E. G., and Cuatrecasas, P. (1980) J. Biol. Chem. 255, 10227–10231
14. Van den Bosch, H. (1980) Biochim. Biophys. Acta 604, 191–246
15. Burch, R. M. (1988) FEBS Lett. 234, 283–286
16. Parker, J. P., Daniel, L. W., and Waite, M. (1987) J. Biol. Chem. 262, 5385–5393
17. Ho, A. K., and Klein, D. C. (1987) J. Biol. Chem. 262, 11764–11770
18. Slivka, S. R., and Insel, P. A. (1988) J. Biol. Chem. 263, 14640–14647
19. Bonventre, J. V., and Swidler, M. (1988) J. Clin. Invest. 82, 168–176
20. Hirata, F. (1981) J. Biol. Chem. 256, 7730–7733
21. Davidon, F. F., Dennis, E. A., Powell, M., and Glenny, J. R., Jr. (1987) J. Biol. Chem. 262, 1698–1705
22. Sweatt, J. D., Connolly, T. M., Cragoe, E. J., and Limbird, L. E. (1986) J. Biol. Chem. 261, 8667–8673
23. Jesse, R. L., and Franson, R. C. (1979) Biochim. Biophys. Acta 575, 467–470
24. Loeb, L. A., and Gross, R. W. (1986) J. Biol. Chem. 261, 10467–10470
25. Ulevitch, R. J., Watanabe, Y., Sano, M., Lister, M. D., Deems, R. A., and Dennis, E. A. (1988) J. Biol. Chem. 263, 3079–3085
26. Ono, T., Tojo, H., Kuriyama, S., Kagamiyama, H., and Okamoto, M. (1988) J. Biol. Chem. 263, 5732–5738
27. Kolenick, R. N., and Gershengorn, M. C. (1984) J. Biol. Chem. 259, 9514–9519
28. Rittenhouse-Simmons, S., and Deykin, D. (1978) Biochim. Biophys. Acta 543, 409–422
29. DeGeorge, J. J., Morell, P., McCarthy, K. D., and Lapetina, E. G. (1986) J. Biol. Chem. 261, 3428–3433
30. Halenda, S. P., and Rehm, A. G. (1987) Fed. Proc. 46, 398
31. DeGeorge, J. J., Ousley, A. H., McCarthy, K. D., Lapetina, E. G., and Morell, P. (1987) J. Biol. Chem. 262, 8077–8083
32. Cobbold, P. H., and Rink, T. J. (1987) Biochem. J. 248, 313–328
33. Tsien, R. Y., Pozzan, T., and Rink, T. J. (1984) Trends Biochem. Sci. 9, 263–266
34. Grynkiewicz, G., Poenie, M., and Tsien, R. Y. (1985) J. Biol. Chem. 260, 3440–3450
35. Irvine, R. F., Anggaard, E. E., Letcher, A. J., and Downes, C. P. (1985) Biochem. J. 229, 505–511
36. Emilsson, A., and Sundler, R. (1984) J. Biol. Chem. 259, 3111–3116
37. Brooks, R. C., Morell, P., DeGeorge, J. J., McCarthy, K. D., and Lapetina, E. G. (1987) Biochim. Biophys. Res. Commun. 148, 701–708
38. DeGeorge, J. J., Ousley, A. H., McCarthy, K. D., Morell, P., and Lapetina, E. G. (1987) J. Biol. Chem. 262, 9979–9983
39. Lee, K. S., and Tsien, R. W. (1983) Nature 302, 790–794
40. Hillie, B. (1984) Ionic Channels of Excitable Membranes, pp. 83–84, Sinauer Associates, Inc., Sunderland, MA
41. Merritt, J. E., and Rink, T. J. (1987) J. Biol. Chem. 262, 17362–17369
42. Muallem, S., Pandol, S. J., and Beeker, T. G. (1989) J. Biol. Chem. 264, 205–212
43. Brock, T. A., Rittenhouse, S. E., Powers, C. W., Ekstein, L. S., Gimbrone, M. A., Jr., and Alexander, R. W. (1985) J. Biol. Chem. 260, 14158–14162
44. Tyagi, S. R., Tamura, M., Burnham, D. N., and Lambeth, J. D. (1988) J. Biol. Chem. 263, 13191–13198
45. Willems, P. H. G. M., Van Den Broek, B. A. M., Van Os, C. H., and De Pont, J. H. H. M. (1989) J. Biol. Chem. 264, 9762–9767
46. Di Virgilio, F., Pozzan, T., Wollheim, C. B., Vincentini, L. M., and Meldolesi, J. (1986) J. Biol. Chem. 261, 32–35
47. Stojilkovic, S. S., Chang, J. P., Izumi, S., Tasaka, K., and Catt, K. J. (1988) J. Biol. Chem. 263, 17301–17306
48. Rosenthal, W., Hescheler, J., Trautwein, W., and Schultz, G. (1988) FASEB J. 2, 2784–2790
49. Williamson, J. R., and Monck, J. R. (1989) Annu. Rev. Physiol. 51, 107–124
50. Di Virgilio, F., Milani, D., Leon, A., Meldolesi, J., and Pozzan, T. (1987) J. Biol. Chem. 262, 9189–9195
51. Foskett, J. K., Gunter-Smith, P. J., Melvin, J. E., and Turner, R. J. (1989) Proc. Natl. Acad. Sci. U. S. A. 86, 167–171
52. Gronich, J. H., Bonventre, J. V., and Nemenoff, R. A. (1988) J. Biol. Chem. 263, 16645–16651
53. Crouch, M. F., and Lapetina, E. G. (1988) Biochem. Biophys. Res. Commun. 153, 21–26
54. Kaya, H., Patton, G. M., and Hong, S. L. (1989) J. Biol. Chem. 264, 4972–4977
55. Chiu, C. Y., and Malagodi, M. H. (1975) Br. J. Pharmacol. 53, 279–285
56. Balsinde, J., Diez, E., Schuller, A., and Mollinedo, F. (1988) J. Biol. Chem. 263, 1929–1936