Replacement Paths via Row Minima of Concise Matrices

Cheng-Wei Lee†
Hsueh-I Lu‡

October 31, 2013

Abstract

Matrix M is k-concise if the finite entries of each column of M consist of k or less intervals of identical numbers. We give an $O(n + m)$-time algorithm to compute the row minima of any $O(1)$-concise $n \times m$ matrix. Our algorithm yields the first $O(n + m)$-time reductions from the replacement-paths problem on an n-node m-edge undirected graph (respectively, directed acyclic graph) to the single-source shortest-paths problem on an $O(n)$-node $O(m)$-edge undirected graph (respectively, directed acyclic graph). That is, we prove that the replacement-paths problem is no harder than the single-source shortest-paths problem on undirected graphs and directed acyclic graphs. Moreover, our linear-time reductions lead to the first $O(n + m)$-time algorithms for the replacement-paths problem on the following classes of n-node m-edge graphs (1) undirected graphs in the word-RAM model of computation, (2) undirected planar graphs, (3) undirected minor-closed graphs, and (4) directed acyclic graphs.

1 Introduction

Computing a shortest path between two nodes in a graph is one of the most fundamental algorithmic problems in computer science. The variant of the shortest-path problem which asks for a shortest path between two nodes that avoids a failed node or edge has also been extensively studied in the last few decades. Let G be a graph. For any node v of G, let $G - v$ denote the graph obtained from G by deleting v and its incident edges. For any edge e of G, let $G - e$ denote the graph obtained from G by deleting e. For any subgraph G' of G, let $w(G')$ be the sum of edge weights of G'. An rs-path is a path from node r to node s. The distance $d_G(r, s)$ from r to s in G is the minimum of $w(P)$ over all rs-paths P of G. A shortest rs-path P of G satisfies $w(P) = d_G(r, s)$.

We study the following two versions of the replacement-paths problem on G with respect to a given shortest rs-path P of G:

- The edge-avoiding version computes $d_{G-e}(r, s)$ for all edges e of P.

*Accepted to SIAM Journal on Discrete Mathematics.
†Email: r9992035@ntu.edu.tw. Department of Computer Science and Information Engineering, National Taiwan University.
‡Email: Corresponding author. hil@csie.ntu.edu.tw. Web: www.csie.ntu.edu.tw/~hil. Department of Computer Science and Information Engineering, National Taiwan University. This author also holds joint appointments in the Graduate Institute of Networking and Multimedia and the Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University. Address: 1 Roosevelt Road, Section 4, Taipei 106, Taiwan, ROC. Research supported in part by NSC grant 101-2221-E-002-062-MY3.
The node-avoiding version computes $d_{G-v}(r, s)$ for all nodes v of P other than r and s.

The edge-avoiding version can be reduced in linear time to the node-avoiding version: Let G' be the graph obtained from G by subdividing each edge xy of P into two edges xv and vy with $w(xv) = w(vy) = w(xy)/2$. We have $d_{G-xy}(r, s) = d_{G'-v}(r, s)$. No linear-time reduction for the other direction is known. See, e.g., [21, 9, 31] for applications of the problem. Extensive surveys for the long history of algorithms and applications of this problem can be found in [14, 35]. We show that the replacement-paths problem on an n-node m-edge undirected graph can be reduced in $O(n+m)$ time to the single-source shortest-paths problem on an $O(n)$-node $O(m)$-edge undirected graph.

Theorem 1.1. Let G be an n-node m-edge undirected graph. Let P be a given shortest rs-path of G, where r and s are two distinct nodes of G. Given distances $d_G(r, v)$ and $d_G(v, s)$ for all nodes v of G, we have the following statements.

1. It takes $O(n + m)$ time to solve the edge-avoiding replacement-paths problem on G with respect to P.
2. The node-avoiding replacement-paths problem on G with respect to P can be reduced in $O(n + m)$ time to the problem of computing distances $d_{G_0}(r_0, v)$ for some node r_0 and all nodes v of an $O(n)$-node $O(m)$-edge undirected graph G_0.

Combining with Dijkstra’s single-source shortest-paths algorithm (see, e.g., [12]), Theorem 1.1 solves the replacement-paths problem in $O(m + n \log n)$ time, matching the best known result for the edge-avoiding version of Malik, Mittal, and Gupta [26] and that for the node-avoiding version of Nardelli, Proietti, and Widmayer [30]. Combining with the algorithm of Henzinger, Klein, Rao, and Subramanian [19], Theorem 1.1 yields an $O(n + m)$-time algorithm for both versions of the problem on planar graphs, while $O(n+m)$-time algorithms on planar graphs were only known for the edge-avoiding version (see Bhosle [2]). Combining with the algorithm of Tazari and Müller-Hannemann [36], Theorem 1.1 leads to the first $O(n + m)$-time algorithm on minor-closed graphs. Combining with the algorithms of Thorup [38, 37], Theorem 1.1 solves both versions of the problem in $O(n+m)$ time in the word-RAM model of computation, improving upon the $O(m \cdot \alpha(m, n))$-time transmuter-based algorithm of Nardelli, Proietti, and Widmayer [29], which works only for the edge-avoiding version. See [32] for more results of the single-source shortest-paths problem that can be combined with our reductions to yield efficient algorithms for the replacement-paths problem.

Table 1: Previous work and our results on the replacement-paths problem.

Graph Type	Edge-Avoiding Version	Node-Avoiding Version	Ours
Directed graph	$O(mn + n^2 \log \log n)$ [17]	$O(mn + n^2 \log n)$ [12]	$O(m + n)$
Directed acyclic graph	$O(m + n \cdot \alpha(m, n))$ [14]	$O(m + n \cdot \alpha(m, n))$ [2]	$O(m + n)$
Directed acyclic graph (RAM)	$O(m + n \cdot \alpha(2n, n))$ [2]	$O(m + n \cdot \alpha(2n, n))$ [2]	$O(m + n)$
Undirected graph	$O(m + n \log n)$ [26]	$O(m + n \log n)$ [30]	$O(m + n \log n)$
Undirected graph (RAM)	$O(m \cdot \alpha(m, n))$ [29]	$O(m \cdot \alpha(m, n))$ [29]	$O(m + n)$
Undirected planar graph	$O(n)$ [7]	$O(n)$ [7]	$O(n)$
Undirected minor-closed graph	$O(n)$	$O(n)$	$O(n)$

Our proof of Theorem 1.1 also holds for directed acyclic graphs. Since the single-source shortest-paths problem can be solved in linear time on directed acyclic graphs (see, e.g., [12]), we solve both versions of the replacement-paths problem on any \(n \)-node \(m \)-edge directed acyclic graph in \(O(n + m) \) time, improving upon the algorithm of Bhosle [7] for the edge-avoiding version, which runs in \(O(m + n \cdot \alpha(2n, n)) \) time in the word-RAM model of computation and runs in \(O(m \cdot \alpha(m, n)) \) time in general.

Theorem 1.2. For any two nodes \(r \) and \(s \) of an \(n \)-node \(m \)-edge directed acyclic graph \(G \), it takes \(O(n + m) \) time to solve the replacement-paths problem on \(G \) with respect to any given shortest \(rs \)-path of \(G \).

Table 1 compares our results with previous work.

1.1 Technical overview

A matrix \(M \) is \(k \)-concise if the finite entries of each column of \(M \) consist of \(k \) or less intervals of identical numbers. A 1-concise matrix is concise. Figure 1(a) shows a concise matrix. Figure 1(b) shows a 2-concise matrix. A \(k \)-concise matrix may not be sparse, but each column of a \(k \)-concise matrix can be concisely represented by \(O(k) \) numbers, i.e., three numbers for each of the \(k \) or less intervals of identical finite numbers: (a) the starting row index, (b) the ending row index, and (c) the identical number of the interval. For instance, the columns with indices \(v_6v_5, v_7v_4, \) and \(v_9v_5 \) of the 2-concise matrix in Figure 1(b) can be represented by \(\langle 1, 1; 13; 2, 4, 12 \rangle, \langle 2, 2; 20; 3, 3, 16 \rangle, \) and \(\langle 3, 3; 19; 4, 4, 9 \rangle \), respectively. Throughout the paper, all matrices are in this concise representation. The row-minima problem on a matrix \(M \) is to compute the minimum of each row of \(M \). We show that the replacement-paths problem on an \(n \)-node \(m \)-edge undirected (respectively, directed acyclic) graph can be reduced in \(O(n + m) \) time to the row-minima problem on a 2-concise \(n \times m \) matrix obtainable from the solution to the single-source shortest-paths problem on an \(O(n) \)-node \(O(m) \)-edge undirected (respectively, directed acyclic) graph (see Lemma 2.1 in §2.1 for the edge-avoiding version and Lemma 2.2 in §2.2 for the node-avoiding version). Our reductions exploit the structure properties of replacement paths studied by, e.g., Malik et al. [26], Nardelli et al. [30, 29], and Bhosle [7]. To show that the replacement-paths problem is no harder than the single-source shortest-paths problem, we give the first \(O(n + m) \)-time algorithm for the row-minima problem on any \(O(1) \)-concise \(n \times m \) matrix (see Lemma 3.1 in §3). As illustrated by Figure 2, for any \(k \)-concise \(n \times m \) matrix \(N \) with \(k = O(1) \), it takes \(O(m) \) time to derive concise \(n \times m \) matrices \(N_1, N_2, \ldots, N_k \) whose entry-wise minimum is \(N \). Thus, the main technical challenge lies in computing the row minima of an \(n \times m \) concise matrix \(M \) in \(O(n + m) \) time. The rest of the overview elaborates on
Our $O(n + m)$-time algorithm for the row-minima problem on any concisely represented $n \times m$ concise matrix M.

The thickness θ of M is the length of a longest interval of identical finite entries over all columns of M. For instance, the thickness of the matrix in Figure 1(a) (respectively, Figures 2(a) and 2(b)) is 4 (respectively, 2 and 3). The broadness β of M is the minimum of (i) the number of distinct starting row indices for the intervals of finite entries over all columns of M, and (ii) the number of distinct ending row indices for the intervals of finite entries over all columns of M. For instance, the broadness of the matrix in Figure 1(a) (respectively, Figures 2(a) and 2(b)) is 4 (respectively, 3 and 2). The row minima of M can be computed in $O(n + m + \theta \cdot \beta)$ time by Lemma 3.4 in §3.1. The thickness and broadness of M can both be as large as n, so applying Lemma 3.4 on M may require $\Omega(n^2)$ time. Our $O(n + m)$-time algorithm is based upon the technique of deriving matrices with smaller thickness or broadness whose row minima yield the row minima of M. (Details are in the proofs of Lemma 3.1 in §3.3 and Lemma 3.5 in §3.1.) Specifically, we derive four n-row matrices M_0, M_1, M_2, M_3 from M according to some positive integral brush factor h such that the row minima of M is the entry-wise minima of the row minima of the four matrices. A column of M is h-brushed if it contains at least one finite entry in rows $h, 2h, \ldots, \left\lfloor \frac{n}{h} \right\rfloor \cdot h$. For instance, all columns of the matrix in Figure 3(a) are 3-brushed. Matrix M_0 is the submatrix of M induced by the non-h-brushed columns. See Figure 4(a) for a matrix M_0 that has no 3-brushed columns. Matrices $M_1, M_2, \text{ and } M_3$ represent the h-brushed columns of M: Matrix M_1 takes over the first h or less finite entries of each h-brushed column of M up to the first row with a finite entry whose index is an integral multiple of h; matrix M_2 takes over the last $h - 1$ or less finite entries of each h-brushed column of M starting from the row with a finite entry that immediately succeeds the last row whose index is an integral multiple of h; and matrix M_2 takes over the finite entries of each h-brushed column in between. The entry-wise minimum of matrices $M_1, M_2, \text{ and } M_3$ is the submatrix of M induced by the h-brushed columns. See Figures 3(b)–3(d) for the $M_1, M_2, \text{ and } M_3$ obtained from the M in Figure 3(a) with brush factor $h = 3$. Matrices M_1 and M_3 have thickness $O(h)$ and broadness $O(\frac{n}{h})$, so the row minima of M_1 and M_3 can be computed in $O(n + m)$ time by Lemma 3.4 for any choice of h. In order to compute the row minima of M_2 in $O(n + m)$ time, we let $h = \Theta(\log \log n)$ and resort to two intermediate algorithms for the row-minima problem. As to be explained in the next two paragraphs, we (1) apply the first intermediate algorithm on an $O(\frac{n}{h})$-row $O(m)$-column matrix obtained from M_2 by condensing its identical rows and (2) apply the second intermediate algorithm on $O(h)$-row matrices derived from M_0 whose overall number of rows (respectively, columns) is $O(n)$ (respectively, $O(m)$).

The broadness of the matrix M_2 obtained in the previous paragraph is $O(\frac{n}{h})$. Although the

N_1	v_1v_2	v_0v_3	v_2v_4	v_2v_5
1	15	19	13	
2	15		20	
3				19
4				

N_2	v_1v_2	v_0v_3	v_2v_4	v_2v_5
1				
2				12
3				12
4				9

Figure 2: Two concise 4×5 matrices N_1 and N_2 whose entry-wise minimum is the 2-concise 4×5 matrix N of Figure 1(b). The ∞-entries of N_1 and N_2 are left out.
time. Taking entry-wise minima on the row minima of row matrices is $O(M)$ of Lemma 3.4. The row minima of an intermediate algorithm (see Lemma 3.2 in Figure 4 for an illustration. (Details are in the proof of Lemma 3.1 in Figure 3: Each column of matrix and broadness with h as in the proof of Lemma 3.5 in time intermediate algorithm, which is based upon the above technique of reducing thickness and broadness in a more complicated manner. We first partition M into submatrices M_1, M_2, \ldots, M_ℓ with $\ell = O(\log \log n)$ in $O(m + n \log \log n)$ time. Specifically, let h_0, h_1, \ldots, h_ℓ be a decreasing sequence of positive integers such that $h_0 \geq n$, $h_1 < n$, $h_\ell = 1$, and $h_{k-1} = \Theta(h_k^2)$ holds for each $k = 2, 3, \ldots, \ell$. Let M_k be the submatrix of M induced by the h_k-brushed columns that are not h_{k-1}-brushed, implying that M_k has thickness $O(h_{k-1}) = O(h_k^2)$. For each $n \times m_k$ matrix $N = M_k$ with $1 \leq k \leq \ell$, we derive three $n \times m_k$ matrices N_1, N_2, and N_3 with brush factor $h = h_k$ (again, as in the proof of Lemma 3.5 in [3.1] and as illustrated by Figure 3). Both N_1 and N_3 have thickness $O(h_k)$ and broadness $O(n_{hl_k})$. Since every h_k consecutive rows of N_2 are identical and N_2 are not h_{k-1}-brushed, we condense N_2 into an $O(n_{hl_k})$-row m_k-column matrix N^* with thickness $O(h_k)$ and broadness $O(n_{hl_k})$. The row minima of N_1, N^*, and N_3 can be computed in $O(n + m_k)$ time by Lemma 3.4. The row minima of $M_k = N$ can be obtained from those of N_1, N^*, and N_3 in $O(n)$ time. Taking entry-wise minima on the row minima of M_1, M_2, \ldots, M_ℓ, we have the row minima of M in time $\sum_{1 \leq k \leq \ell} O(m_k + n) = O(m + n \log \log n)$.

The thickness of a matrix M_0 obtained in the paragraph preceding the previous paragraph is $O(h)$. Since M_0 has no h-brushed columns, one can partition the finite entries of M_0 into $O(h)$-row matrices M_1, M_2, \ldots, M_ℓ with $\ell = O(n_{hl_k})$ whose overall number of columns is $O(m)$. See Figure 4 for an illustration. (Details are in the proof of Lemma 3.1 in [3.3]. Recursively applying the procedure described in the previous two paragraphs on M_1, \ldots, M_ℓ would only lead to an $O(m + n \log^* n)$-time algorithm. Instead, by $h = \Theta(\log \log n)$, the row minima of each $O(h)$-row
Figure 4: M_0 has no 3-brushed columns. The row minima of M_0 can be obtained from combining the row minima of $M_1, M_2, M_3, \text{ and } M_4$. The ∞-entries in the matrices are left out.

m_k-column matrix M_k can be computed in $O(m_k + \log \log n)$ time by our second intermediate algorithm (i.e., Algorithm 1 in the proof of Lemma 3.6 in [3.2]). Putting together the row minima of M_1, M_2, \ldots, M_ℓ, we solve the row-minima problem on M_0 in time $\sum_{1 \leq k \leq \ell} O(m_k + \log \log n) = O(m + n)$. This $O(m + \log \log n)$-time intermediate algorithm for the row-minima problem on any $O(\log \log n)$-row m_k-column matrix M_k proceeds iteratively with the help of two data structures. For each $j = 1, 2, \ldots, m_k$, at the end of the j-th iteration, the first data structure keeps the minimum of the first j columns of each row in a concise manner such that the minima of consecutive rows can be efficiently updated. Specifically, let $\mu(i)$ be the minimum of the first j entries of row i. An array q and a binary string z satisfying $q(\text{pred}(z, i)) = \mu(i)$ for all row indices i are used to represent array μ, where $\text{pred}(z, i)$ denotes the largest index i_1 with $i_1 \leq i$ and $z(i_1) = 1$. The value of $\mu(i)$ can be obtained from $q(\text{pred}(z, i))$. Updating $\mu(i)$ for all indices i with $\text{pred}(z, i) = i_1$ to a smaller value can be done by decreasing $q(i_1)$. See Figure 3(a) for an example of $\mu, q,$ and z with $j = 5$. If the index $\text{pred}(z, i)$ for each i were $O(1)$-time computable and the value of $z(i)$ for each i were $O(1)$-time updatable, then our Algorithm 1 in [3.2] would have been an $O(n + m)$-time algorithm for the row-minima problem on any $n \times m$ matrix. However, it is impossible in general to come up with a polynomial-sized dynamic data structure for binary string z that supports both $O(1)$-time update on $z(i)$ and $O(1)$-time query $\text{pred}(z, i)$ [4]. Fortunately, the binary string z needed to represent the minima array μ of the $O(h)$-row matrix M_k has only $O(h) = O(\log \log n)$ bits. Thus, one can pre-compute all possible updates and queries on z in $o(n)$ time and organize all the pre-computed information in an $o(n)$-space table capable of supporting each query and update on z in $O(1)$ time. With the help of this second data structure, our second intermediate algorithm computes the row minima of each M_k with $1 \leq k \leq \ell$ in $O(m_k + \log \log n)$ time.

1.2 Related work

On directed graphs with nonnegative weights, Gotthilf and Lewenstein [17] gave the best known algorithm, running in $O(mn + n^2 \log \log n)$ time, for the edge-avoiding version of the replacement-paths problem. The $O(mn + n^2 \log n)$-time algorithm of running Dijkstra’s $O(m + n \log n)$-time algorithm for $O(n)$ times remains the best known algorithm for the node-avoiding version. Bern-
钢板[5] gave an algorithm to output \((1+\epsilon)\)-approximate solutions for both versions of the problem for any positive parameter \(\epsilon\). Hersberger, Suri, and Bhosle[22] showed a lower bound \(\Omega(m\sqrt{n})\) on the time complexity of the problem in the path-comparison model of Karger, Koller, and Phillips[24]. The randomized algorithm of Roditty and Zwick[35] on unweighted directed graphs runs in \(\tilde{O}(m\sqrt{n})\) time. On directed graphs with integral weights in \([-W,\ldots,W]\), Weimann and Yuster[41][42] gave an \(\tilde{O}(Wn^\omega + W^{2/3}n^{1+2\omega/3})\)-time randomized algorithm for both versions of the problem, where \(\omega\) is the infimum of all numbers such that multiplying two \(n \times n\) matrices takes \(\tilde{O}(n^{\omega})\) time. The running time was improved to \(\tilde{O}(Wn^\omega)\) by Vassilevska Williams[39], who recently reduced the long-standing upper bound on \(\omega\) of Coppersmith and Winograd[11] from \(\omega < 2.376\) to \(\omega < 2.3727\). Recently, Grandoni and Vassilevska Williams[18] addressed the single-source version of the problem. On directed planar graphs with nonnegative weights, the algorithm of Wulff-Nilsen[43] runs in \(O(n\log n)\) time, improving on the \(O(n\log^3 n)\)-time algorithm of Emek, Peleg, and Roditty[14] and the \(O(n\log^2 n)\)-time algorithm of Klein, Mozes, and Weimann[25]. Erickson and Nayyeri[16] extended Wulff-Nilsen’s result on bounded-genus graphs.

Bernstein and Karger[6] addressed the all-pairs replacement-paths problem by giving an \(\tilde{O}(n^2)\)-space \(\tilde{O}(mn)\)-time data structure capable of answering \(d_{G-v}(r,s)\) for any nodes \(r, s, v\) of directed graph \(G\) in \(O(1)\) time. Baswana, Lath, and Mehta[3] studied the single-source and all-pairs replacement-paths problems on directed planar graphs. Malik et al.[26] studied replacement paths that avoid multiple failed edges. Duan and Pettie[13] studied replacement paths that avoid two failed nodes or edges. Weimann et al.[42] studied replacement paths that avoid multiple failed nodes and edges. Chechik, Langberg, Peleg, and Roditty[10] studied near optimal replacement paths that avoid multiple failed edges.

For the closely related problem of finding \(k\) shortest \(rs\)-paths for any given nodes \(r\) and \(s\) of directed graph \(G\) with nonnegative edge weights, Eppstein[15] gave an \(O(m + n \log n + k)\)-time algorithm, which may output non-simple paths. If the output paths are required to be simple, the best currently known algorithm, also due to Gotthilf et al.[17], uses replacement paths. Specifically, Roditty and Zwick[35] showed that the problem can be reduced to \(O(k)\) computations of the second shortest simple \(rs\)-path. Therefore, the replacement-paths algorithm of Gotthilf et al. yields an \(O(kmn + kn^2 \log \log n)\)-time algorithm for the problem of finding \(k\) shortest simple paths. See[34][5][20] for more results on this related problem. See[25][2][1][28][27][8][33][23] for results involving the row-minima problem on matrices with special structures.

1.3 Road map

The rest of the paper is organized as follows. Section[2] gives the preliminaries, including our \(O(n+m)\)-time reductions for both versions of the replacement-paths problem on an \(n\)-node \(m\)-edge undirected graph to (1) the row-minima problem on \(O(1)\)-concise \(n \times m\) matrices and (2) the single-source shortest-paths problem on \(O(n)\)-node \(O(m)\)-edge undirected graphs. Both reductions also work for directed acyclic graphs. Section[3] gives our \(O(n+m)\)-time algorithm for the row-minima problem on any \(O(1)\)-concise \(n \times m\) matrix and proves Theorems[1.1] and[1.2]. Section[4] concludes the paper.
Figure 5: (a) Graph G in which (v_0, v_1, \ldots, v_5) is a shortest rs-path P. (b) A shortest-paths tree T of G rooted at r, in which P consists of edges e_1, e_2, \ldots, e_5. The number in each node is its distance from r in G. (c) A shortest-paths tree T' of G rooted at s. The number in each node is its distance to s in G.

2 Preliminaries

Let $|S|$ denote the cardinality of set S. A row (respectively, column) of a matrix is dummy if all of its entries are ∞. Given distances $d_G(r, v)$ for all nodes v of an n-node m-edge graph G, a shortest-paths tree T in G rooted at r that contains the given shortest rs-path P can be obtained in $O(m + n)$ time. Let p be the number of edges in P. Let v_0, v_1, \ldots, v_p be the nodes of P from $r = v_0$ to $s = v_p$. For each $i = 1, 2, \ldots, p$,

- let R_i consist of the nodes x with $\lambda(x) \leq i - 1$ and
- let \bar{R}_i consist of the nodes y with $\lambda(y) \geq i$.

That is, R_i (respectively, \bar{R}_i) consists of the nodes v that are reachable (respectively, unreachable) from r in $T - e_i$. See Figure 5(b) for an illustration of R_i and \bar{R}_i. For any edge xy of G with $\lambda(x) < \lambda(y)$, define

$$replacement-cost_1(x, y) = d_G(r, x) + w(xy) + d_G(y, s).$$

2.1 A reduction for the edge-avoiding version

For each node v of G, let level $\lambda(v)$ of v in T be the largest index i such that v_i is on the path of T from r to v. Levels $\lambda(v)$ for all nodes v of G can be computed from T in $O(n)$ time. For each $i = 1, 2, \ldots, p$,

- let R_i consist of the nodes x with $\lambda(x) \leq i - 1$ and
- let \bar{R}_i consist of the nodes y with $\lambda(y) \geq i$.

Subsection 2.1 gives our reduction for the edge-avoiding version. Subsection 2.2 gives our reduction for the node-avoiding version. Our reductions are presented in a way that also works for directed acyclic graphs. The reductions for directed acyclic graphs hold even with the existence of negative-weighted edges, while the reductions for undirected graphs assume nonnegative edge weights. We comment on handling negative weights for undirected graphs in §4.
Since R_i and \bar{R}_i define a cut between nodes r and s, any rs-path of G contains some edge xy with $x \in R_i$ and $y \in \bar{R}_i$. We have

$$d_{G-e_i}(r, s) = \min \{\text{replacement-cost}_1(x, y) \mid x \in R_i, y \in \bar{R}_i, \text{and } xy \in G - e_i\}$$

(1)

for each $i = 1, 2, \ldots, p$ (see also, e.g., [29, 26]). The edge-replacement matrix of G with respect to T and P is the $p \times m$ matrix M defined by

$$M(i, xy) = \begin{cases} \text{replacement-cost}_1(x, y) & \text{if } \lambda(x) < i \leq \lambda(y) \text{ and } e_i \neq xy \\ \infty & \text{otherwise} \end{cases}$$

for each $i = 1, 2, \ldots, p$ and each edge xy of G with $\lambda(x) < \lambda(y)$. For instance, the matrix in Figure 1(a) is the edge-replacement matrix of the graph G in Figure 5(a) with respect to the tree T and path P in Figure 5(b), where the dummy columns are omitted. Let G' be the graph obtained from G by reversing the direction of each edge of G. (This statement handles the case that G is a directed acyclic graph. For the undirected case, we simply have $G = G'$.) The distances $d_G(v, s)$ for all nodes v of G and a shortest-paths tree T' in G' rooted at s can be obtained from each other in $O(m + n)$ time. See Figure 3(c) for an example of T'.

Lemma 2.1. The edge-replacement matrix M of G with respect to T and P is a concise matrix whose concise representation can be obtained from G, P, T, and T' in $O(n + m)$ time. Moreover, for each $i = 1, 2, \ldots, p$, the minimum of the i-th row of M equals $d_{G-e_i}(r, s)$.

Proof. By definition of M, if the xy-th column of M is not dummy, then $\lambda(x) \neq \lambda(y)$. Let x and y be the endpoints of such an edge with $\lambda(x) < \lambda(y)$. The entries of the xy-th column in rows $\lambda(x) + 1, \lambda(x) + 2, \ldots, \lambda(y)$ are all replacement-cost$_1(x, y)$. The other entries are all ∞. Since each column of M consists of at most one interval of identical finite numbers, M is concise. Given G, P, T, and T', values replacement-cost$_1(x, y)$ for all edges xy of G with $\lambda(x) < \lambda(y)$ can be obtained in overall $O(n + m)$ time. Matrix M can be obtained from G, P, T, and T' in $O(n + m)$ time. The minimum of the i-th row is the minimum of replacement-cost$_1(x, y)$ over all edges xy of G with $\lambda(x) < i \leq \lambda(y)$ and $e_i \neq xy$. By definition of R_i and \bar{R}_i, edge xy satisfies $\lambda(x) < i \leq \lambda(y)$ if and only if $x \in R_i$ and $y \in \bar{R}_i$. By Equation (1), the minimum of the i-th row of M is indeed $d_{G-e_i}(r, s)$. The lemma is proved. \qed

2.2 A reduction for the node-avoiding version

Observe that the level $\lambda(v)$ of node v in T is also the smallest index i such that v is reachable from r in $T - v_{i+1}$. For each $i = 1, \ldots, p - 1$, let the nodes of $G - v_i$ be partitioned into R_i, V_i, and S_i, where

- R_i, as defined in 2.1, consists of the nodes x with $\lambda(x) \leq i - 1$,
- V_i consists of the nodes $x \neq v_i$ with $\lambda(x) = i$, and
- S_i consists of the nodes y with $\lambda(y) > i$.

See Figure 5(b) for an illustration of R_i, V_i, and S_i, where V_i and S_i are depicted by lighter shaded regions. Since $R_i \cup V_i$ and S_i define a cut for nodes r and s in $G - v_i$, each rs-path of $G - v_i$ contains
Although G has to be planar. Let T be a directed acyclic graph. We now define a graph G_0 and specify a node r_0 of G_0 such that $d_{G_{\{r_i\cup V_i\}}}(r, x) = d_{G_0}(r_0, x)$ holds for each node $x \in R_i$.

For the case that G is planar, the disjoint union of the induced subgraphs of G plus a tree with internal nodes $r_0, r_1, \ldots, r_{p-1}$. For the case that G is planar, the disjoint union of the induced subgraphs of G is acyclic. G_0 has to be a directed acyclic graph. For the case that G is planar, the disjoint union of the $p - 1$ induced subgraphs of G is planar. If edge $r_i x$ for some node $x \in V_i$ has finite edge weight, x has at least one neighbor of G in R_i. Although G_0 may not be planar, the subgraph of G_0 induced by the edges with finite edge weights has to be planar. Let T_0 be a shortest-paths tree of G_0 rooted at r_0. See Figure 4 for an example. Observe that G_0 is an $O(n)$-node $O(m)$-edge graph, obtainable in $O(n + m)$ time from G and T, such that Equation 3 holds for each $i = 1, 2, \ldots, p - 1$. For any edge xy of G with $\lambda(x) < \lambda(y)$, define

$$\text{replacement-cost}_2(x, y) = d_{G_0}(r, x) + w(xy) + d_G(y, s).$$

The node-replacement matrix of G with respect to T and P is the $(p - 1) \times m$ matrix N defined by

$$N(i, xy) = \begin{cases} \text{replacement-cost}_2(x, y) & \text{if } \lambda(x) = i < \lambda(y) \text{ and } x \neq v_i \\ \text{replacement-cost}_1(x, y) & \text{if } \lambda(x) < i < \lambda(y) \text{ and } x \neq v_i \\ \infty & \text{otherwise} \end{cases}$$

Figure 6: The graph G_0 obtained from the graph G in Figure 5(a) and the tree T and path P in Figure 5(b). The edges in thick lines form a shortest-paths tree T_0 of G_0 rooted at r_0.

some edge xy with $x \in R_i \cup V_i$ and $y \in S_i$. For any node subset U of G, let $G[U]$ denote the subgraph of G induced by U. We have

$$d_{G_{\{r_i\cup V_i\}}}(r, s) = \min\{d_{G[R_{i\cup V_i}]}(r, x) + w(xy) + d_G(y, s) \mid x \in R_i \cup V_i, y \in S_i, xy \in G\}$$

$$= \min\{d_G(r, x) + w(xy) + d_G(y, s) \mid x \in R_i, y \in S_i, xy \in G\},$$

(2)

where the first equality is proved by Nardelli et al. [30, Lemma 3] and the second equality follows from the observation that $d_G[r_{i\cup V_i}](r, x) = d_G(r, x)$ holds for each node $x \in R_i$.

We now define a graph G_0 and specify a node r_0 of G_0 such that

$$d_{G_{\{r_i\cup V_i\}}}(r, x) = d_{G_0}(r_0, x)$$

holds for each $i = 1, 2, \ldots, p - 1$ and each node $x \in V_i$. For each $i = 1, 2, \ldots, p - 1$, let G_i be $G[v_i]$ plus one new node r_i and $|V_i|$ new edges, where for each node $x \in V_i$ the x-th new edge is r_ix with weight $w(r_i x) = \min\{d_{G}(r, u) + w(ux) \mid u \in R_i, ux \in G\}$. Let graph G_0 be $G_1 \cup G_2 \cup \cdots \cup G_{p-1}$ plus a new node r_0 and $p - 1$ zero-weighted edges $r_0 r_1, r_0 r_2, \ldots, r_0 r_{p-1}$. G_0 is the disjoint union of $p - 1$ induced subgraphs of G plus a tree with internal nodes $r_0, r_1, \ldots, r_{p-1}$. For the case that G is a directed acyclic graph, all edges of the tree are outgoing toward the disjoint union of the $p - 1$ induced subgraphs of G, which is acyclic. G_0 has to be a directed acyclic graph. For the case that G is planar, the disjoint union of the $p - 1$ induced subgraphs of G is planar. If edge $r_i x$ for some node $x \in V_i$ has finite edge weight, x has at least one neighbor of G in R_i. Although G_0 may not be planar, the subgraph of G_0 induced by the edges with finite edge weights has to be planar. Let T_0 be a shortest-paths tree of G_0 rooted at r_0. See Figure 4 for an example. Observe that G_0 is an $O(n)$-node $O(m)$-edge graph, obtainable in $O(n + m)$ time from G and T, such that Equation 3 holds for each $i = 1, 2, \ldots, p - 1$. For any edge xy of G with $\lambda(x) < \lambda(y)$, define

$$\text{replacement-cost}_2(x, y) = d_{G_0}(r, x) + w(xy) + d_G(y, s).$$

The node-replacement matrix of G with respect to T and P is the $(p - 1) \times m$ matrix N defined by

$$N(i, xy) = \begin{cases} \text{replacement-cost}_2(x, y) & \text{if } \lambda(x) = i < \lambda(y) \text{ and } x \neq v_i \\ \text{replacement-cost}_1(x, y) & \text{if } \lambda(x) < i < \lambda(y) \text{ and } x \neq v_i \\ \infty & \text{otherwise} \end{cases}$$
for each $i = 1, 2, \ldots, p - 1$ and each edge xy of G with $\lambda(x) < \lambda(y)$. For instance, the matrix in Figure 11(b) is the node-replacement matrix of the graph G in Figure 5(a) with respect to the tree T and path P in Figure 5(b), where the dummy columns are omitted.

Lemma 2.2. The node-replacement matrix N of G with respect to T and P is a 2-concise matrix whose concise representation can be obtained from G, P, T, T', and T_0 in $O(n + m)$ time. Moreover, for each $i = 1, 2, \ldots, p - 1$, the minimum of the i-th row of N equals $d_{G-v_i}(r, s)$.

Proof. By definition of N, if the xy-th column of N with $\lambda(x) \leq \lambda(y)$ is not dummy, then $\lambda(x) + 1 \leq \lambda(y)$. The entry of the xy-th column in row $\lambda(x)$ is $\text{replacement-cost}_2(x, y)$. If $\lambda(x) + 2 \leq \lambda(y)$, the entries of the xy-th column in rows $\lambda(x) + 1, \lambda(x) + 2, \ldots, \lambda(y) - 1$ are all $\text{replacement-cost}_1(x, y)$. The other entries of the xy-th column are all ∞. Since the finite entries of each column of N consists of at most two intervals of identical numbers, N is 2-concise. Given G, P, T, T', and T_0, values $\text{replacement-cost}_1(x, y)$ and $\text{replacement-cost}_2(x, y)$ for all edges xy of G with $\lambda(x) < \lambda(y)$ can be obtained in overall $O(n + m)$ time. Matrix N can be obtained from G, P, T, T', and T_0 in $O(n + m)$ time. By Equations (2) and (3), we have

$$d_{G-v_i}(r, s) = \min\{\min\{\text{replacement-cost}_1(x, y) \mid x \in R_i, y \in S_i, xy \in G\}, \min\{\text{replacement-cost}_2(x, y) \mid x \in V_i, y \in S_i, xy \in G\}\}.$$

For each $i = 1, \ldots, p - 1$, the minimum of the i-th row of N is indeed $d_{G-v_i}(r, s)$. The lemma is proved. \hfill \Box

3 The row minima of an $O(1)$-concise matrix in linear time

This section proves Lemma 3.1. Theorem 1.1 follows immediately from Lemmas 2.1, 2.2, and 3.1. Theorem 1.2 follows immediately from Lemma 3.1 and the analogous versions of Lemmas 2.1 and 2.2 for directed acyclic graphs.

Lemma 3.1. It takes $O(n + m)$ time to compute the row minima of a concisely represented $O(1)$-concise $n \times m$ matrix.

As illustrated in Figure 2, a k-concise $n \times m$ matrix M with $k = O(1)$ can be decomposed in $O(m)$ time into k concise $n \times m$ matrices whose entry-wise minimum is M. To prove Lemma 3.1, it suffices to solve the row-minima problem on any $n \times m$ concise matrix in $O(n + m)$ time. For the rest of the section, all matrices are concise. Each matrix M is concisely represented by arrays a_M, b_M, and c_M such that, for each $i = 1, 2, \ldots, n$ and each $j = 1, 2, \ldots, m$, the (i, j)-entry of M can be determined in $O(1)$ time by

$$M(i, j) = \begin{cases} c_M(j) & \text{if } a_M(j) \leq i \leq b_M(j) \\ \infty & \text{otherwise}. \end{cases}$$

For instance, if M is the matrix in Figure 5(a), then $a_M = (1, 2, 3, 5, 7)$, $b_M = (3, 9, 8, 10, 11)$, and $c_M = (9, 7, 5, 6, 8)$. Subscripts M in a_M, b_M, and c_M can be omitted, if matrix M is clear from the context.
Figure 7: A sorted \(n \times m \)-row \(m_i \)-column thickness-\(\theta \) matrix \(M_i \) with \(n = 17 \), \(i = 9 \), \(m_i = 10 \), and \(\theta = 9 \). The dummy rows of \(M_i \) are omitted. The \(\infty \)-entries are left out. The italic entries form the lower-left boundary of the finite entries.

Subsection 3.1 proves Lemma 3.2, which states an \(O(m + n \log \log n) \)-time algorithm for solving the row-minima problem on any \(n \times m \) matrix. Subsection 3.2 proves Lemma 3.6, which states an \(O(m + \log \log n) \)-time algorithm for solving the row-minima problem on any \(\Omega(\log \log n) \times m \) matrix, with the help of an \(O(n) \)-time pre-computable \(O(n) \)-space data structure that supports \(O(1) \)-time queries and updates on any \(O(\log \log n) \)-bit binary string. Subsection 3.3 proves Lemma 3.1 using Lemmas 3.2 and 3.6.

3.1 A near-linear-time intermediate algorithm

Lemma 3.2. It takes \(O(m + n \log \log n) \) time to compute the row minima of an \(n \times m \) matrix.

This subsection proves Lemma 3.2, which requires Lemmas 3.3, 3.4, and 3.5. An \(n \times m \) matrix \(M \) is sorted if the following properties hold, where (a) \(M_i \) is the submatrix of \(M \) induced by the columns whose indices \(j \) satisfy \(a_{M_i}(j) = i \), and (b) \(m_i \) is the number of columns in \(M_i \).

Property S1: \(a_{M_i}(1) \leq a_{M_i}(2) \leq \ldots \leq a_{M_i}(m) \).

Property S2: \(b_{M_i}(1) \leq b_{M_i}(2) \leq \ldots \leq b_{M_i}(m_i) \) holds for each \(i = 1, \ldots, n \).

That is, if \(M \) is sorted, then \((a_{M}(1), b_{M}(1)), (a_{M}(2), b_{M}(2)), \ldots, (a_{M}(m), b_{M}(m)) \) are in lexicographically non-decreasing order. For instance, the matrices \(M \) in Figures 1(a) and 3(a), the matrix \(M_0 \) in Figure 4(a), and the matrix \(M_9 \) in Figure 7 are sorted. The matrix \(N_1 \) in Figure 2 is not sorted, since the column with index \(v_0v_8 \) is not the third column.

Lemma 3.3. It takes \(O(n + m) \) time to reorder the columns of an \(n \times m \) matrix such that the resulting matrix is sorted.

Proof. Since \(a(j) \) and \(b(j) \) for all indices \(j = 1, 2, \ldots, m \) are positive integers in \(\{1, 2, \ldots, n\} \), the lemma is straightforward by counting sort (see, e.g., [12]).

Define

\[
\text{thickness}(M) = \max\{b_{M}(j) - a_{M}(j) + 1 \mid 1 \leq j \leq m\};
\]

\[
\text{broadness}(M) = \min\{|\{a_{M}(1), a_{M}(2), \ldots, a_{M}(m)\}|, |\{b_{M}(1), b_{M}(2), \ldots, b_{M}(m)\}|\}.
\]
For instance, we have \(\text{thickness}(M) = \text{broadness}(M) = 4\) for the matrix \(M\) in Figure 1(a) and \(\text{thickness}(M_0) = 9\) and \(\text{broadness}(M_0) = 1\) for the matrix \(M_0\) in Figure 7.

Lemma 3.4. It takes \(O(n + m + \text{thickness}(M) \cdot \text{broadness}(M))\) time to compute the row minima of an \(n \times m\) matrix \(M\).

Proof. Let \(\theta = \text{thickness}(M)\) and \(\beta = \text{broadness}(M)\). Subscripts \(M\) of \(a_M\) and \(b_M\) in the proof are omitted. We prove the lemma for the case with \(\beta = |\{a(1), a(2), \ldots, a(m)\}|\). The case with \(\beta = |\{b(1), b(2), \ldots, b(m)\}|\) can be proved by reversing the row order of \(M\). We first apply Lemma 3.3 to have \(M\) sorted in \(O(n + m)\) time. For each \(i = 1, 2, \ldots, n\), let \(M_i\) be the submatrix of \(M\) induced by columns whose indices \(j\) satisfy \(a(j) = i\). Let \(m_i\) be the number of columns in \(M_i\). For each of the \(\beta\) indices \(i\) with \(m_i \geq 1\), the non-dummy rows of submatrix \(M_i\) are all in rows \(i, i+1, \ldots, i+\theta-1\). Since \(a(j) = i\) holds for all column indices \(j\) of \(M_i\), the sequence of minima of rows \(i, i+1, \ldots, i+\theta-1\) of \(M_i\) is non-decreasing. By Property S2 of \(M\), the minima of the \(\theta\) or less non-dummy rows of \(M_i\) can be computed in \(O(m_i + \theta)\) time by a right-to-left and bottom-up traversal of the lower-left boundary of the finite entries. See Figure 7 for an illustration. The row minima of \(M\) can be obtained from the row minima of the non-dummy rows of the \(\beta\) matrices \(M_i\) with \(m_i \geq 1\) in \(O(n + \theta \cdot \beta)\) time. The row-minima problem on \(M\) can thus be solved in \(O(n + m + \theta \cdot \beta)\) time. The lemma is proved.

For any positive integer \(h\), the \(j\)-th column of \(M\) is \(h\)-brushed if interval \([a_M(j), b_M(j)]\) contains at least one integral multiple of \(h\). It takes \(O(1)\) time to determine from \(a_M(j)\) and \(b_M(j)\) whether the \(j\)-th column of \(M\) is \(h\)-brushed or not.

Lemma 3.5. If \(M\) is an \(n \times m\) matrix whose columns are all \(h\)-brushed, then the row-minima problem on \(M\) can be reduced in \(O(n + m)\) time to the row-minima problem on an \(O(n/h) \times m\) matrix \(M^*\) with \(\text{thickness}(M^*) = O(1/h \cdot \text{thickness}(M))\) and \(\text{broadness}(M^*) = O(n/h)\).

Proof. Let \(M_1, M_2,\) and \(M_3\) be the following three \(n \times m\) matrices, obtainable from \(M\) in \(O(m)\) time, whose entry-wise minimum is \(M\). For each \(i = 1, 2, \ldots, n\) and each \(j = 1, 2, \ldots, m\), let

\[
M_1(i, j) = \begin{cases} M(i, j) & \text{if } a_M(j) \leq i \leq h \cdot \left\lfloor \frac{a_M(j)}{h} \right\rfloor \\ \infty & \text{otherwise} \end{cases}
\]

\[
M_2(i, j) = \begin{cases} M(i, j) & \text{if } h \cdot \left\lfloor \frac{a_M(j)}{h} \right\rfloor + 1 \leq i \leq h \cdot \left\lfloor \frac{b_M(j)}{h} \right\rfloor \\ \infty & \text{otherwise} \end{cases}
\]

\[
M_3(i, j) = \begin{cases} M(i, j) & \text{if } h \cdot \left\lfloor \frac{b_M(j)}{h} \right\rfloor + 1 \leq i \leq b_M(j) \\ \infty & \text{otherwise.} \end{cases}
\]

See Figure 3 for an example. Since each \(b_M(j)\) with \(1 \leq j \leq m\) is an integral multiple of \(h\), we have \(\text{broadness}(M_1) = O(1/h)\). Since each \(a_M(j) - 1\) with \(1 \leq j \leq m\) is an integral multiple of \(h\), we have \(\text{broadness}(M_3) = O(1/h)\). By Lemma 3.4 with \(\text{thickness}(M_1) = O(h)\) and \(\text{thickness}(M_3) = O(h)\), the row-minima problems on \(M_1\) and \(M_3\) can be solved in \(O(n + m)\) time. Every \(h\) consecutive rows of \(M_2\) are identical. Specifically, for each positive index \(t\), rows \((t-1) \cdot h + 1, (t-1) \cdot h + 2, \ldots, t \cdot h\) of \(M_2\) are identical. Let \(M_2\) be condensed into an \(O(1/h) \times m\) matrix \(M^*\) by merging every \(h\) consecutive rows of \(M_2\) into a single row. We have \(\text{thickness}(M^*) = O(1/h \cdot \text{thickness}(M))\) and \(\text{broadness}(M^*) = O(1/h)\). The row minima of \(M_2\) can be obtained from those of \(M^*\) in \(O(n)\) time. The lemma is proved.
We are ready to prove Lemma 3.2.

Proof of Lemma 3.2. Let M be the input $n \times m$ matrix. We first apply Lemma 3.3 to have M sorted in $O(n + m)$ time. Let $\ell = 1 + \lceil \log_2 \log_2 n \rceil$. Assume $n \geq 2$ without loss of generality, so $\ell \geq 1$. Define a decreasing sequence h_0, h_1, \ldots, h_ℓ of positive integers as follows.

$$h_k = \begin{cases} 2^{2\ell - k - 1} & \text{if } 0 \leq k \leq \ell - 1 \\ 1 & \text{if } k = \ell. \end{cases}$$

Each h_k is a power of two. One can verify that $h_0 \geq n$, $h_1 < n$, $h_{\ell - 1} = 2$, and $h_{\ell - 1} = h_{\ell}^2$ holds for each $k = 1, 2, \ldots, \ell - 1$. For each $k = 1, 2, \ldots, \ell$, if k is the smallest positive integer such that the j-th column of M is h_k-brushed, then let $j \in J_k$. By $h_\ell = 1$, sets J_1, J_2, \ldots, J_ℓ form a disjoint partition of the indices of the non-dummy columns of M. For the matrix in Figure 7 with $n = 17$, we have $\ell = 4$, $h_0 = 256$, $h_1 = 16$, $h_2 = 4$, $h_3 = 2$, $h_4 = 1$, $J_1 = \{3\}$, $J_2 = \{2, 3\}$, $J_3 = \{4, 5, 6, 7\}$, and $J_4 = \{8, 9, 10\}$. For each $k = 1, 2, \ldots, \ell$, let $j_k = |J_k|$. By $j_1 + j_2 + \cdots + j_\ell = m$, the lemma follows immediately from the following two statements.

Statement 1: Sets J_1, J_2, \ldots, J_ℓ can be obtained from M in $O(m + n \cdot \ell)$ time.

Statement 2: For each $k = 1, 2, \ldots, \ell$, the row-minima problem on the submatrix of M induced by the columns with indices in J_k can be solved in $O(n + j_k)$ time.

Statement 1. For each $i = 1, 2, \ldots, n$, let M_i be the submatrix of M induced by the columns whose indices j satisfy $a_M(j) = i$. Let m_i be the number of columns in M_i. For each $i = 1, 2, \ldots, n$ and each $j = 1, 2, \ldots, m_i$, let $\kappa(i, j)$ be the index k such that J_k contains the index of the column of M that is the j-th column of M_i. Let $\kappa(i, 0) = \ell$. Since h_1, h_2, \ldots, h_ℓ are all integral multiples of h_k for each $k = 1, 2, \ldots, \ell$, Property 4 of M implies $\kappa(i, 0) \geq \kappa(i, 1) \geq \cdots \geq \kappa(i, m_i) \geq 1$. For each $j = 1, 2, \ldots, m_i$, to determine $\kappa(i, j)$, it suffices to look for the first integer k starting from $\kappa(i, j - 1)$ down to 1 such that the j-th column of M_i is h_k-brushed but not h_{k-1}-brushed. Therefore, it takes overall $O(m_i + \ell)$ time to compute indices $\kappa(i, 1), \kappa(i, 2), \ldots, \kappa(i, m_i)$. Sets J_1, J_2, \ldots, J_ℓ can thus be obtained in $O(m + n \cdot \ell)$ time. Statement 1 is proved.

Statement 2. Let M_k be the submatrix of M induced by the columns with indices in J_k. If $j \in J_k$, then the j-th column of M is not h_{k-1}-brushed, implying $\text{thickness}(M_k) < h_{k-1} = O(h_k^2)$. By Lemma 3.5, the row-minima problem on M_k can be reduced in $O(n + j_k)$ time to the row-minima problem on an $O(n + j_k) \times j_k$ matrix $M_k^* = O(\text{thickness}(M_k) \cdot \frac{1}{h_k}) = O(h_k)$ and $\text{broadness}(M_k^*) = O(\frac{n}{h_k})$. By Lemma 3.4, the row minima of M_k^* can be computed in time $O(\frac{n}{h_k} + j_k + h_k \cdot \frac{n}{h_k}) = O(n + j_k)$. Therefore, the row minima of M_k can be computed in $O(n + j_k)$ time. Statement 2 is proved. The lemma is proved.

3.2 A linear-time intermediate algorithm for matrices with very few rows

This subsection proves the following lemma.

Lemma 3.6. Let n be a given positive integer. Let $h = \max(1, \lceil \log_2 \log_2 n \rceil)$. It takes $O(n)$ time to compute an $O(n)$-space data structure, with which the row minima of any $h \times m$ matrix can be computed in $O(h + m)$ time.

14
Algorithm 1 Computing the row minima for an \(h \times m \) sorted concise matrix concisely represented by arrays \(a, b, \) and \(c \).

\[
\begin{array}{ll}
\text{Initialization:} & \text{Let } q(0) = \infty, z(0) = 1, \text{ and } z(1) = z(2) = \cdots = z(h+1) = 0. \\
\text{For-loop:} & \text{For each } j = 1, 2, \ldots , m, \text{ execute the following steps.} \\
\text{Step 1:} & \text{Let } i_0 = a(j), i_2 = b(j) + 1, \text{ and } i_1 = \text{pred}(z, i_2 - 1). \\
\text{Step 2:} & \text{If } c(j) \geq q(i_1), \text{ then proceed to the next iteration of the for-loop.} \\
\text{Step 3:} & \text{If } z(i_2) = 0, \text{ then let } z(i_2) = 1 \text{ and } q(i_2) = q(i_1). \\
\text{Step 4:} & \text{While } i_0 \leq i_1 \text{ and } c(j) < q(i_1), \text{ execute the following substep.} \\
\text{Substep 4a:} & \text{Let } z(i_1) = 0, i_2 = i_1, \text{ and } i_1 = \text{pred}(z, i_2 - 1). \\
\text{Step 5:} & \text{If } c(j) < q(i_1), \text{ then let } z(i_0) = 1 \text{ and } q(i_0) = c(j). \\
\text{Step 6:} & \text{If } c(j) > q(i_1), \text{ then let } z(i_2) = 1 \text{ and } q(i_2) = c(j). \\
\end{array}
\]

Proof. Let \(z \) be a binary string. For each index \(i \geq 1 \), let \(z(i) \) denote the \(i \)-th bit of \(z \). Let \(\text{pred}(z, i_2) \) be the largest index \(i_1 \) with \(i_1 \leq i_2 \) and \(z(i_1) = 1 \). Let \(Z \) consist of all \(h \)-bit binary strings. By \(|Z| = 2^h = O(\log n) \), it takes \(o(n) \) time to construct an \(o(n) \)-space data structure capable of supporting each update to \(z(i) \) and each query \(\text{pred}(z, i) \) in \(O(1) \) time.

Let \(M \) be the input \(h \times m \) matrix. Subscripts \(M \) of \(a_M, b_M, \) and \(c_M \) are omitted in the proof. To avoid boundary conditions, let there be two additional dummy rows \(0 \) and \(h + 1 \) in \(M \). We first apply Lemma [5.3] to have \(M \) sorted in \(O(h + m) \) time. The proof needs only Property S1 of \(M \), though. The algorithm proceeds iteratively, one iteration per column of \(M \), obtaining \(\mu(i) = \min\{M(i, 1), M(i, 2), \ldots , M(i, j)\} \) for all row indices \(i = 1, 2, \ldots , h \) at the end of the \(j \)-th iteration. As a result, at the end of the algorithm, we have the minimum of each row of \(M \) computed in the \textit{minima array} \(\mu \). To support efficient dynamic updates and queries, we cannot afford to explicitly store each element of \(\mu \). Instead, we use an \(h \)-element \textit{query array} \(q \) together with an \textit{auxiliary binary string} \(z \) for \(q \) to represent \(\mu \) such that \(\mu(i) = q(\text{pred}(z, i)) \) holds for each row index \(i = 1, 2, \ldots , h \).

Observe that if \(z(i) = 0 \), then the value of \(q(i) \) does not matter. See Figures [3]a) and [8]a) for examples of \(\mu, q, \) and \(z \). The algorithm is as shown in Algorithm 1. The initial binary string \(z \) has exactly one 1-bit. Each iteration of the for-loop increases the number of 1-bits in \(z \) by at most three via Steps 3, 5, and 6. Each iteration of the while-loop of Step 4 decreases the number of 1-bits in \(z \) by exactly one. Therefore, the overall number of times executing Substep 4a throughout all \(m \) iterations of the for-loop is \(O(m) \). Since the initialization takes \(O(h) \) time, Algorithm 1 runs in \(O(m + h) \) time. The rest of the proof ensures the correctness of Algorithm 1.

For each \(j = 0, 1, \ldots , m \), let \(\mu_j, z_j, \) and \(q_j \) be the \(\mu, z, \) and \(q \) at the end of the \(j \)-th iteration, respectively. See Figure [8]b) for the query array \(q_j \) at the end of the \(j \)-th iteration for each \(j = 0, 1, \ldots , 7 \) on the matrix \(M \) in Figure [8]a). By induction on the column index \(j \), we prove
\[
q_j(\text{pred}(z_j, i)) = \mu_j(i) \text{ for all indices } i \text{ with } 1 \leq i \leq h. \tag{4}
\]

Equation (4) with \(j = 0 \) for all indices \(i \) with \(1 \leq i \leq h \) follows immediately from the initialization of Algorithm 1. Assuming
\[
q_{j-1}(\text{pred}(z_{j-1}, i)) = \mu_{j-1}(i) \text{ for all indices } i \text{ with } 1 \leq i \leq h \tag{5}
\]
holds with \(j \geq 1 \), we show Equation (4) by the following analysis on the \(j \)-th iteration of the
of the for-loop. The entries that do not matter are left out. The shaded cells of the

Figure 8: (a) A sorted 8×7 concise matrix M, the final minima array μ of M, the final query array q of μ, and the final auxiliary binary string z. The ∞-entries of M and the entries of q that do not matter are left out. (b) For each $j = 0, 1, \ldots, 7$, the query array q_j at the end of the j-th iteration of the for-loop. The entries that do not matter are left out. The shaded cells of the j-th column with $1 \leq j \leq 6$ indicate the indices i_1 and i_2 in the j-th iteration. The italic cell of the j-th column indicates the index i^* of the j-th column. For instance, we have $i_1 = 0$, $i^* = 1$, and $i_2 = 2$ in the first iteration and $i_1 = i^* = 2$ and $i_2 = 5$ in the sixth iteration.

for-loop. By Property 4 of M, we have $a(j) \geq \max\{a(1), a(2), \ldots, a(j-1)\}$, implying

$$\mu_{j-1}(a(j)) \leq \mu_{j-1}(a(j) + 1) \leq \mu_{j-1}(a(j) + 2) \leq \cdots \leq \mu_{j-1}(b(j)).$$

We first consider the case with $\mu_{j-1}(b(j)) \leq c(j)$. See iteration 7 of the example in Figure 8 for an instance of this situation. By Equation (6), the j-th column of M does not affect the content of the minima array, i.e., $\mu_j = \mu_{j-1}$. By Equation (5), at the end of Step 1, we have $q(i_1) = q_{j-1}(\text{pred}(z_{j-1}, b(j))) = \mu_{j-1}(b(j)) \leq c(j)$. Therefore, Step 2 proceeds to the next iteration without altering the content of q and z. By $\mu_j = \mu_{j-1}$, $z_j = z_{j-1}$, and $q_j = q_{j-1}$, Equation (4) follows from Equation (5). The rest of the proof assumes $c(j) < \mu_{j-1}(b(j))$, implying that Steps 4, 5, and 6 are executed in the j-th iteration.

To prove Equation (4) for indices i with $b(j) < i \leq h$, we first show that Steps 4, 5, and 6 do not alter the values of $z(i)$ and $q(i)$ for indices i with $b(j) < i \leq h$. At the end of Step 3, condition $c(j) < q(i_1)$ holds. Step 6 sets $z(i_2) = 1$ and $q(i_2) = c(j)$ only if $c(j) > q(i_1)$, implying that Substep 4a executes at least once. We have $i_2 \leq b(j)$ when Step 6 alters the values of $z(i_2)$ and $q(i_2)$. Observe that $\max(i_0, i_1) \leq b(j)$ holds throughout the j-th iteration. Therefore, Steps 4, 5, and 6 do not alter the values of $q(i)$ and $z(i)$ for indices i with $b(j) < i \leq h$. By Equation (5) and Step 3, we have $z_j(b(j) + 1) = 1$ and $q_j(b(j) + 1) = \mu_{j-1}(b(j) + 1) = \mu_j(b(j) + 1)$. Since $\mu_j(i) = \mu_{j-1}(i)$ holds for indices i with $b(j) < i \leq h$, Equation (4) for indices i with $b(j) < i \leq h$ follows from Equation (5) for indices i with $b(j) < i \leq h$. See iterations 1–6 of the example in Figure 8 for instances of this situation: Step 3 alters the content of q and z in iterations 1–3 and 5–6; Step 3 does not alter the content of q and z in iteration 4.

It remains to prove Equation (4) for indices i with $1 \leq i \leq b(j)$. After Step 1, we have $i_0 = a(j)$ for the rest of the j-th iteration. Step 4 sets $z(i) = 0$ for each index i with $i_0 \leq i \leq b(j)$, $z_{j-1}(i) = 1$, and $c(j) < q_{j-1}(i)$. The following equations hold for the fixed values of indices i_1 and i_2 after
Step 4 (i.e., during the execution of Steps 5 and 6):

\[
\begin{align*}
i_0 &> i_1 \quad \text{or} \quad c(j) \geq \mu_{j-1}(i_1) \\
\mu_{j-1}(i) &= q_{j-1}(i_1) \quad \text{for all indices } i \text{ with } i_1 \leq i \leq i_2 - 1.
\end{align*}
\]

Equation (7) is by the fact that the condition of while-loop of Step 4 does not hold. Equation (8) follows from Equation (5) and \(i_1 = \text{pred}(z_{j-1}, i_2 - 1) \), as ensured by Step 1 and Substep 4a. By \(c(j) < \mu_{j-1}(b(j)) \), we have \(\mu_{j}(b(j)) = c(j) \). Moreover, if \(i_2 \leq b(j) \) (i.e., Substep 4a being executed at least once in the \(j \)-th iteration), then Equation (6) implies

\[\mu_j(i) = c(j) \text{ for all indices } i \text{ with } i_2 \leq i \leq b(j).\]

Let \(i^* \) be the smallest index with \(i_1 \leq i^* \) and \(\mu_j(i^*) = \mu_j(i^* + 1) = \cdots = \mu_j(b(j)) = c(j) \). In iterations 1–6 of the example in Figure 8, for each \(j = 1, 2, \ldots, 6 \), the \(i^* \)-th entry of \(q_j \) is italic and the \(i_1 \)-th and \(i_2 \)-th entries of \(q_j \) with \(i_1 < i_2 \) are shaded in Figure 8(b). For instance, we have \((i_1, i_2, i^*) = (0, 2, 1)\) in iteration 1 and \((i_1, i_2, i^*) = (2, 5, 2)\) in iteration 6. One can verify

\[\mu_j(i) = \mu_{j-1}(i) \quad \text{for all indices } i \text{ with } 1 \leq i \leq i^*\]

as follows. For each index \(i \) with \(1 \leq i < i_0 \), we already have \(\mu_j(i) = \mu_{j-1}(i) \), since the \((i, j) \)-entry of \(M \) is \(\infty \). Therefore, it remains to consider the case with \(i_0 \leq i < i^* \) and verify Equation (10) for indices \(i \) with \(i_0 \leq i \leq i^* - 1 \). By Equation (6), it suffices to ensure \(\mu_j(i^* - 1) = \mu_{j-1}(i^* - 1) \).

Assume \(\mu_j(i^* - 1) \neq \mu_{j-1}(i^* - 1) \) for a contradiction. We have \(\mu_{j-1}(i^* - 1) > \mu_j(i^* - 1) = c(j) \). By \(\mu_j(i^* - 1) = c(j) \) and the definition of \(i^* \), we have \(i^* = i_1 \), which implies \(i_0 < i_1 \). By \(i_0 < i_1 = i^* \) and Equation (7), we have \(c(j) = \mu_{j-1}(i_1) = \mu_{j-1}(i^* - 1) \), implying \(\mu_{j-1}(i^* - 1) > c(j) \geq \mu_{j-1}(i^*) \). By definition of \(i^* \), we have \(i^* \leq b(j) \). However, \(\mu_{j-1}(i^* - 1) > \mu_{j-1}(i^*) \) and \(i_0 \leq i^* - 1 < b(j) \) contradict with Equation (6).

Assume \(i_2 < i^* \) for a contradiction. By definition of \(i^* \), we have \(i_2 \leq b(j) \), implying that Step 4a is executed at least once. By Equation (7), \(\mu_j(i) = c(j) \) holds for all indices \(i \) with \(i_2 \leq i \leq b(j) \), which contradicts with the definition of \(i^* \). By \(i^* \leq i_2 \), we have \(q(i) = q_{j-1}(i) \) and \(z(i) = z_{j-1}(i) \) for all indices \(i \) with \(1 \leq i < i^* \) at the end of Step 4. By \(i_1 \leq i^* \), we have \(z(i) = 0 \) for all indices \(i \) with \(i^* < i \leq b(j) \) at the end of Step 4. Combining with Equation (10), in order to satisfy Equation (4) for all indices \(i \) with \(1 \leq i \leq b(j) \), it suffices for Steps 5 and 6 to additionally ensure \(z(i^*) = 1 \) and \(q(i^*) = c(j) \). By the following case analysis, ensuring \(z_j(i^*) = 1 \) and \(q_j(i^*) = c(j) \) is exactly what Steps 5 and 6 do.

Case 0: \(c(j) < q_{j-1}(i_1) \). We show \(i^* = i_0 \). By \(c(j) < q_{j-1}(i_1) = \mu_{j-1}(i_1) \) and Equation (7), we have \(i_1 < i_0 \). Before executing Step 4, we have \(i_0 < i_2 \). Each time when Substep 4a is executed or not, we have \(i_0 \leq i_2 \) at the end of Step 4. If \(i_0 < i_2 \), then \(i_1 < i_0 < i_2 \) and Equation (8) imply \(\mu_{j-1}(i_0) = q_{j-1}(i_1) > c(j) \). If \(i_0 = i_2 \), then \(i_0 \) equals the value of \(i_1 \) at the execution of Substep 4a for the last time, when condition \(c(j) < q(i_1) \) of the while-loop must hold. Thus, we have \(\mu_{j-1}(i_0) = q_{j-1}(i_0) > c(j) \). Either way, we have \(\mu_{j-1}(i_0) > c(j) \). By \(\mu_{j-1}(i_0) > c(j) \), and Equation (6), we have \(\mu_j(i) = c(j) \) for all indices \(i \) with \(i_0 \leq i \leq b(j) \). By \(i_1 < i_0 \), we have \(i^* \leq i_0 \). By \(i_1 \leq i_0 - 1 < i_2 \) and Equation (8), we have \(\mu_j(i_0 - 1) = \mu_{j-1}(i_0 - 1) = q_{j-1}(i_1) > c(j) \), implying \(i^* = i_0 \).
Let \(\ell \) be the number of columns in \(M \), and \(\mu_1(i) \) be the smallest row index of \(M \). By Lemma 3.6, the row minima of \(M \) is allowed to have negative entries. On the one hand, our reductions for directed acyclic graphs work even if there are negative-weighted edges. Therefore, we have shown that the replacement-paths problem on directed acyclic graphs with general weights is no harder than the single-source shortest-paths problem on directed acyclic graphs with general weights. On the other hand, our reductions for directed acyclic graphs and undirected graphs, we give linear-time reductions for the replacement-paths problem to the single-source shortest-paths problem. The reductions are based upon our \(O(m) \)-time algorithm for the row-minima problem on an \(O(1) \)-concise \(n \times m \) matrix, which is allowed to have negative entries. On the one hand, our reductions for directed acyclic graphs in \([2.1]\) and \([2.2]\) work even if there are negative-weighted edges. Therefore, we have shown that the replacement-paths problem on directed acyclic graphs with general weights is no harder than the single-source shortest-paths problem on directed acyclic graphs with general weights.

\[\text{Case 1: } c(j) = q_{j-1}(i_1). \text{ We show } i^* = i_1. \] By \(c(j) = q_{j-1}(i_1) \) and the fact that condition \(c(j) < q(i_1) \) holds at the end of Step 3, we know that Step 4a is executed at least once, implying \(i_2 < b(j) \) and Equation (9). By \(c(j) = q_{j-1}(i_1) \) and Equation (8), we have \(\mu_{j-1}(i) = c(j) \) and thus \(\mu_j(i) = c(j) \) for all indices \(i \) with \(i_1 \leq i < i_2 \). Therefore, \(i^* = i_1 \).

\[\text{Case 2: } c(j) > q_{j-1}(i_1). \text{ We show } i^* = i_2. \] By \(c(j) > q_{j-1}(i_1) \) and the fact that condition \(c(j) < q(i_1) \) holds at the end of Step 3, we know that Step 4a is executed at least once. By Equation (9), we have \(i^* \leq i_2 \). By Equation (8) and \(c(j) > q_{j-1}(i_1) \), we have \(c(j) > \mu_{j-1}(i_2 - 1) \), implying \(\mu_j(i_2 - 1) < c(j) \). Therefore, \(i^* = i_2 \).

For Case 0, i.e., \(i^* = i_0 \), as illustrated by iterations 1 and 2 of the example in Figure 8, Step 5 correctly sets \(z_j(i^*) = 1 \) and \(q_j(i^*) = c(j) \). For Case 2, i.e., \(i^* = i_2 \), as illustrated by iterations 3 and 4 of the example in Figure 8, Step 6 correctly sets \(z_j(i^*) = 1 \) and \(q_j(i^*) = c(j) \). For Case 1, we have \(i^* = i_1 \), as illustrated by iterations 5 and 6 of the example in Figure 8. At the end of Step 4, we already have \(z(i^*) = 1 \) and \(q(i^*) = c(j) \). Since Steps 5 and 6 do not alter the content of \(q \) and \(z \), we also have \(z_j(i^*) = 1 \) and \(q_j(i^*) = c(j) \). The lemma is proved.

3.3 Proving Lemma 3.1

We are ready to prove the lemma of the section.

Proof of Lemma 3.1. It suffices to prove the lemma for the case that the input \(n \times m \) matrix is concise. Let \(h = \max(1, \lfloor \log_2 \log_2 n \rfloor) \). Let \(M \) be the submatrix of the input matrix induced by the \(h \)-brushed columns. By Lemma 3.5, the row-minima problem on \(M \) can be reduced in \(O(n + m) \) time to the row-minima problem on an \(O(\frac{n}{h}) \times O(m) \) matrix \(M^* \). By Lemma 3.2, the row minima of \(M^* \) can be computed in time \(O(h \log \log n + m) = O(n + m) \), which yield the row minima of \(M \) in \(O(n + m) \) time.

Let \(M_0 \) be the submatrix of the input matrix induced by the columns that are not \(h \)-brushed. Let \(\ell = \lceil \frac{n}{h} \rceil \). For each \(k = 1, 2, \ldots, \ell \), let \(M_k \) be the submatrix of \(M_0 \) induced by the columns whose indices \(j \) satisfy \((k - 1) \cdot h < a_{M_0}(j) \leq b_{M_0}(j) < k \cdot h \) and the rows with indices \((k - 1) \cdot h + 1, (k - 1) \cdot h + 2, \ldots, k \cdot h - 1 \). See Figure 4 for an illustration. Let \(m_k \) be the number of columns in \(M_k \). By Lemma 3.6, the row minima of \(M_k \) can be computed in \(O(h + m_k) \) time, with the help of an \(O(n) \)-time pre-computable data structure. As a result, the row-minima problems on all matrices \(M_k \) with \(1 \leq k \leq \ell \) can be solved in overall time \(O(n) + \sum_{1 \leq k \leq \ell} O(h + m_k) = O(n + m) \). The row minima of \(M_0 \) can be obtained from combining the row minima of \(M_1, M_2, \ldots, M_\ell \) in \(O(n + m) \) time. The lemma is proved.

4 Concluding remarks

For directed acyclic graphs and undirected graphs, we give linear-time reductions for the replacement-paths problem to the single-source shortest-paths problem. The reductions are based upon our \(O(m) \)-time algorithm for the row-minima problem on an \(O(1) \)-concise \(n \times m \) matrix, which is allowed to have negative entries. On the one hand, our reductions for directed acyclic graphs in \([2.1]\) and \([2.2]\) work even if there are negative-weighted edges. Therefore, we have shown that the replacement-paths problem on directed acyclic graphs with general weights is no harder than the single-source shortest-paths problem on directed acyclic graphs with general weights. On the
other hand, our reductions for undirected graphs in [2,1] and [2,2] do assume nonnegativity of edge weights. However, it is not difficult to accommodate negative-weighted edges in undirected graphs for the replacement-paths problem as to be briefly explained in the next two paragraphs.

Let \(r \) and \(s \) be two nodes of the input connected undirected \(n \)-node \(m \)-edge graph \(G \) with negative-weighted edges. See Figure 9 for examples. We have \(d_G(r, s) = -\infty \). \(G \) has no shortest \(rs \)-path. The input \(rs \)-path \(P \) must pass some negative-weighted edge an infinite number of times. For each edge \(e \in P \), let \(G_e \) denote the connected component of \(G - e \) that contains \(r \). It takes overall \(O(n + m) \) time to classify all edges \(e \) of \(P \) into the following three sets.

- **Set 1**: \(s \notin G_e \). We have \(d_{G-e}(r, s) = \infty \).
- **Set 2**: \(s \in G_e \) and \(G_e \) has negative-weighted edges. We have \(d_{G-e}(r, s) = -\infty \).
- **Set 3**: \(s \in G_e \) and \(G_e \) has no negative-weighted edges. We have \(d_{G-e}(r, s) = d_{G_e}(r, s) \).

It can be verified that if Set 3 is non-empty, then distances \(d_{G_e}(r, s) \) are identical for all edges \(e \) of Set 3. See Figure 9(a) for an example. The edges in Set 3 are \(u_1u_2 \), \(u_4u_5 \), and \(u_5u_6 \). We have \(d_{G-u_1u_2}(r, s) = d_{G-u_4u_5}(r, s) = d_{G-u_5u_6}(r, s) = 8 \). Therefore, the replacement-paths problem on \(G \) with respect to \(P \) can be reduced in \(O(n + m) \) time to the single-source shortest-paths problem on \(G_e \) for an arbitrary edge \(e \) in Set 3. As a result, the edge-avoiding version of the replacement-paths problem on undirected graphs with general weights is no harder than the single-source shortest-paths problem on undirected graphs with nonnegative weights.

The node-avoiding version of the replacement-paths problem is slightly more complicated. For each node \(v \in P \) other than \(r \) and \(s \), let \(G_v \) denote the connected component of \(G - v \) that contains \(r \). It takes overall \(O(n + m) \) time to classify all nodes \(v \) of \(P \) other than \(r \) and \(s \) into the following three sets.

- **Set 1’**: \(s \notin G_v \). We have \(d_{G-v}(r, s) = \infty \).
- **Set 2’**: \(s \in G_v \) and \(G_v \) has negative-weighted edges. We have \(d_{G-v}(r, s) = -\infty \).
- **Set 3’**: \(s \in G_v \) and \(G_v \) has no negative-weighted edges. We have \(d_{G-v}(r, s) = d_{G_v}(r, s) \).

If Set 3’ is non-empty, then \(d_{G_v}(r, s) \) are not necessarily identical for all nodes \(v \) of Set 3’. See Figure 9(b) for an example. The nodes in Set 3’ are \(u_1 \) and \(u_2 \). We have \(d_{G-u_1}(r, s) = 9 \) and \(d_{G-u_2}(r, s) = 8 \). However, one can show that there are at most two distinct values of \(d_{G_v}(r, s) \) for all nodes \(v \) of Set 3’. Therefore, the node-avoiding version of the replacement-paths problem...
on undirected graphs with general weights is also no harder than the single-source shortest-paths problem on undirected graphs with nonnegative weights.

Our presentation focuses on computing the edge-avoiding and node-avoiding distances. It is not difficult to additionally report their corresponding edge-avoiding and node-avoiding shortest paths in $O(1)$ time per edge. For instance, given a shortest-paths tree T of G rooted at r and a shortest-paths tree T' of G' rooted at s as defined in §2.1, if the xy-th column of the edge-replacement matrix M contains the minimum of the i-th row, then the union of (a) the rx-path in T, (b) the edge xy, and (c) the ys-path in T' is a shortest rs-path in $G - e_i$. The node-avoiding shortest rs-path can be similarly obtained from T, T', and a shortest-paths tree T_0 of G_0 rooted at r_0 as defined in §2.2.

It would be of interest to see results for the single-source, all-pairs, or near-optimal version of the problem of finding replacement paths in undirected graphs or directed acyclic graphs that avoid multiple failed nodes or edges.

References

[1] A. Aggarwal, M. M. Klawe, S. Moran, P. W. Shor, and R. E. Wilber. Geometric applications of a matrix-searching algorithm. *Algorithmica*, 2(1):195–208, 1987.

[2] M. J. Atallah and S. R. Kosaraju. An efficient parallel algorithm for the row minima of a totally monotone matrix. *Journal of Algorithms*, 13(3):394–413, 1992.

[3] S. Baswana, U. Lath, and A. S. Mehta. Single source distance oracle for planar digraphs avoiding a failed node or link. In *Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms*, pages 223–232, 2012.

[4] P. Beame and F. E. Fich. Optimal bounds for the predecessor problem and related problems. *Journal of Computer and System Sciences*, 65(1):38–72, 2002.

[5] A. Bernstein. A nearly optimal algorithm for approximating replacement paths and k shortest simple paths in general graphs. In *Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms*, pages 742–755, 2010.

[6] A. Bernstein and D. Karger. A nearly optimal oracle for avoiding failed vertices and edges. In *Proceedings of the 41st Annual ACM Symposium on Theory of Computing*, pages 101–110, 2009.

[7] A. M. Bhosle. Improved algorithms for replacement paths problems in restricted graphs. *Operations Research Letters*, 33(5):459–466, 2005.

[8] P. G. Bradford and K. Reinert. Lower bounds for row minima searching. In F. Meyer auf der Heide and B. Monien, editors, *Proceedings of the 23rd International Colloquium on Automata, Languages and Programming*, Lecture Notes in Computer Science 1099, pages 454–465. Springer, 1996.

[9] T. H. Byers and M. S. Waterman. Determining all optimal and near-optimal solutions when solving shortest path problems by dynamic programming. *Operations Research*, 32(6):1381–1384, 1984.
[10] S. Chechik, M. Langberg, D. Peleg, and L. Roditty. f-sensitivity distance oracles and routing schemes. *Algorithmica*, 63:861–882, 2012.

[11] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. *Journal of Symbolic Computation*, 9(3):251–280, 1990.

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. *Introduction to Algorithms*. The MIT Press, 3rd edition, 2009.

[13] R. Duan and S. Pettie. Dual-failure distance and connectivity oracles. In *Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms*, pages 384–391, 2009.

[14] Y. Emek, D. Peleg, and L. Roditty. A near-linear-time algorithm for computing replacement paths in planar directed graphs. *ACM Transactions on Algorithms*, 6(4):64.1–64.13, 2010.

[15] D. Eppstein. Finding the k shortest paths. *SIAM Journal on Computing*, 28(2):652–673, 1998.

[16] J. Erickson and A. Nayyeri. Computing replacement paths in surface embedded graphs. In *Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms*, pages 1347–1354, 2011.

[17] Z. Gotthilf and M. Lewenstein. Improved algorithms for the k simple shortest paths and the replacement paths problems. *Information Processing Letters*, 109(7):352–355, 2009.

[18] F. Grandoni and V. Vassilevska Williams. Improved distance sensitivity oracles via fast single-source replacement paths. In *Proceedings of the 53rd Annual IEEE Symposium on Foundations of Computer Science*, pages 748–757, 2012.

[19] M. R. Henzinger, P. Klein, S. Rao, and S. Subramanian. Faster shortest-path algorithms for planar graphs. *Journal of Computer and System Sciences*, 55(1):3–23, 1997.

[20] J. Hershberger, M. Maxel, and S. Suri. Finding the k shortest simple paths: A new algorithm and its implementation. *ACM Transactions on Algorithms*, 3(4):45.1–45.19, 2007.

[21] J. Hershberger and S. Suri. Vickrey prices and shortest paths: What is an edge worth? In *Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer Science*, pages 252–259, 2001.

[22] J. Hershberger, S. Suri, and A. M. Bhosle. On the difficulty of some shortest path problems. *ACM Transactions on Algorithms*, 3(1):5.1–5.15, 2007.

[23] H. Kaplan, S. Mozes, Y. Nussbaum, and M. Sharir. Submatrix maximum queries in monge matrices and monge partial matrices, and their applications. In *Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms*, pages 338–355, 2012.

[24] D. R. Karger, D. Koller, and S. J. Phillips. Finding the hidden path: Time bounds for all-pairs shortest paths. *SIAM Journal on Computing*, 22(6):1199–1217, 1993.

[25] P. N. Klein, S. Mozes, and O. Weimann. Shortest paths in directed planar graphs with negative lengths: A linear-space $O(n \log^2 n)$-time algorithm. *ACM Transactions on Algorithms*, 6(2):30.1–30.18, 2010.
[26] K. Malik, A. K. Mittal, and S. K. Gupta. The k most vital arcs in the shortest path problem. *Operations Research Letters*, 8(4):223–227, 1989.

[27] S. Mozes and C. Wulff-Nilsen. Shortest paths in planar graphs with real lengths in $O(n \log^2 n / \log \log n)$ time. In M. de Berg and U. Meyer, editors, *Proceedings of the 18th Annual European Symposium on Algorithms*, Lecture Notes in Computer Science 6347, pages 206–217. Springer, 2010.

[28] K. Nakano and S. Olariu. An efficient algorithm for row minima computations on basic reconfigurable meshes. *IEEE Transactions on Parallel and Distributed Systems*, 9(6):561–569, 1998.

[29] E. Nardelli, G. Proietti, and P. Widmayer. A faster computation of the most vital edge of a shortest path. *Information Processing Letters*, 79(2):81–85, 2001.

[30] E. Nardelli, G. Proietti, and P. Widmayer. Finding the most vital node of a shortest path. *Theoretical Computer Science*, 296(1):167–177, 2003.

[31] N. Nisan and A. Ronen. Algorithmic mechanism design. In *Proceedings of the 31st Annual ACM Symposium on Theory of Computing*, pages 129–140, 1999.

[32] S. Pettie. Single-source shortest paths. In M.-Y. Kao, editor, *Encyclopedia of Algorithms*, pages 1–99. Springer, 2008.

[33] R. Raman and U. Vishkin. Optimal randomized parallel algorithms for computing the row maxima of a totally monotone matrix. In *Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms*, pages 613–621, 1994.

[34] L. Roditty. On the k-simple shortest paths problem in weighted directed graphs. In *Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms*, pages 920–928, 2007.

[35] L. Roditty and U. Zwick. Replacement paths and k simple shortest paths in unweighted directed graphs. In L. Caires, G. F. Italiano, L. Monteiro, C. Palamidessi, and M. Yung, editors, *Proceedings of the 32nd International Colloquium on Automata, Languages and Programming*, Lecture Notes in Computer Science 3580, pages 249–260. Springer, 2005.

[36] S. Tazari and M. Müller-Hannemann. Shortest paths in linear time on minor-closed graph classes, with an application to Steiner tree approximation. *Discrete Applied Mathematics*, 157(4):673–684, 2009.

[37] M. Thorup. Undirected single-source shortest paths with positive integer weights in linear time. *Journal of the ACM*, 46(3):362–394, 1999.

[38] M. Thorup. Floats, integers, and single source shortest paths. *Journal of Algorithms*, 35(2):189–201, 2000.

[39] V. Vassilevska Williams. Faster replacement paths. In *Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms*, pages 1337–1346, 2011.

[40] V. Vassilevska Williams. Multiplying matrices faster than Coppersmith-Winograd. In *Proceedings of the 44th Annual ACM Symposium on Theory of Computing*, pages 887–898, 2012.
[41] O. Weimann and R. Yuster. Replacement paths via fast matrix multiplication. In Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science, pages 655–662, 2010.

[42] O. Weimann and R. Yuster. Replacement paths and distance sensitivity oracles via fast matrix multiplication. ACM Transactions on Algorithms, 9(2):14.1–14.13, 2013.

[43] C. Wulff-Nilsen. Solving the replacement paths problem for planar directed graphs in $O(n \log n)$ time. In Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms, pages 756–765, 2010.