Supporting information

Heterogeneous Fenton-like activity of novel metallosalophen magnetic nanocomposites: Significant anchoring group effect

Narges Keikha, Abdolreza Rezaeifard and Maasoumeh Jafarpour

Experimental Remarks

All chemicals were analytical grade reagents and used without further purification. FT-IR spectra were recorded on a Nicolet-Impact 400D spectrometer in the range of 400-4000 cm\(^{-1}\). Thermogravimetric analysis (TGA) of powders carried out on Shimadzu 50 under the air flow at a uniform heating rate of 10 °C min\(^{-1}\) in the range of 30-800 °C. Transmission electron microscopy (TEM) measurements were obtained by a 906 E instrument (Zeiss, Jena, Germany). The Fe and Mn content of the catalyst was measured by an inductively coupled plasma optical emission spectrometry (ICP-OES), using a VISTA-PRO ICP analyzer. UV-Vis spectra were recorded on a V670 JASCO spectrophotometer. Magnetic properties measurements were performed using vibrating sample magnetometer (VSM, Lake Shore Cryotronics 7407). Powder X-ray diffraction (XRD) was performed on a Bruker D8-advance X-ray diffractometer with Cu Ka (\(\lambda = 1.5406 \text{ Å}\)) radiation. EDX elemental analysis performed by Scanning Electron Microscope TESCAN Vega Model with EDX detector. GC-MS analysis was performed by Agilent 5975c.

The Preparation of \(\gamma\)-Fe\(_2\)O\(_3\) (MNP)

\(\gamma\)-Fe\(_2\)O\(_3\) MNPs were synthesized by a chemical co-precipitation technique reported previously.\(^1,2\) FeCl\(_2\), 4H\(_2\)O (1.99 g) and FeCl\(_3\),6 H\(_2\)O (3.25 g) were dissolved in deionized water (30 mL) under Ar atmosphere at room temperature. An NH\(_4\)OH solution (0.6 M, 200 mL) was then added dropwise (drop rate = 1 mL min\(^{-1}\)) to the stirring mixture at room temperature to reach the reaction pH to 11. The resulting black dispersion was continuously stirred for 1 h at room temperature and then heated to reflux for 1 h to yield a brown dispersion. The magnetic nanoparticles were then
separated by an external magnet and washed with deionized water until it was neutralized. The as-
synthesized sample was heated at 2 °C min$^{-1}$ up to 250 °C and then kept in the furnace for 3 h to
give a reddish-brown powder.

Synthesis of silica-coated maghemite nanoparticles (SMNP)

The silica-coated maghemite nanoparticles were synthesized with minor modifications of
literature.3 1.7 g of synthesized Fe$_2$O$_3$, suspended in 80 mL methanol and 20 mL deionized water
and sonicated for 1 h at 40 °C. Then aqueous ammonia (25%, 1.8 mL) was added slowly over 10
min and the mixture was heated at 40 °C for 30 min under mechanical stirrer. Then 1 mL of
tetraethylorthosilicate (TEOS) was added slowly to the mixture and then stirred mechanically for
24 h at room temperature. The iron oxide nanoparticles with a thin layer of silica (Fe$_2$O$_3$@SiO$_2$)
were separated by an external magnet and washed two times with ethanol and diethyl ether and
dried under vacuum.

Preparation of Fe(III)SalophenCl complex

Fe(III)SalophenCl was prepared as previously described.4 In brief, Salophen ligand was
synthesized by dropwise adding of two equivalents of 2-hydroxybenzaldehyde (20 mmol) in 25
mL ethanol to one equivalent of 1,2-phenylendiamine (10 mmol) in 25 mL ethanol and refluxing
for 1 h that resulted in the yellow precipitate of Salophen. The precipitate cooled down to room
temperature and filtered and washed with cold methanol and water. The FeCl$_3$.6H$_2$O (0.3 mmol)
was mixed with the equivalent amount of Salophen in 10 mL ethanol and heated to 70 °C for 1 h
under argon atmosphere. This resulted solution was cooled down to room temperature and filtrated
off and washed with cool ethanol and dried under vacuum with P$_2$O$_5$.

Preparation of Mn(III)SalophenCl complex

Mn(III)SalophenCl synthesized according to the method described previously in the literature.5
0.3 mmol of Salophen ligand is in 10 mL hot absolute ethanol. Then Solid Mn(OAc)$_2$.H$_2$O (0.3
mmol) is added in one portion and the solution is refluxed for 1 h. Approximately 1 mmol of solid
LiCl are then added and, the mixture is heated to reflux for an additional 0.5 h. Cooling the mixture
to 0 °C affords the Mn(III) complex as dark brown crystals that are washed thoroughly with cool ethanol and H₂O and dried under vacuum.

Fig. S1. FT-IR spectra of SAPy

Fig. S2. FT-IR spectra of Fe(III)SalophenCl
Fig. S3. FT-IR spectra of (a) SMNP@SAPy/MnSal, (b) Mn(III)(Salophen)Cl.

Fig. S4. EDS Spectrum of the as-prepared (a) SMNP@SAPy/FeSal, (b) SMNP@SAPy/MnSal.
Fig. S5. XRD pattern of (a) SMNP@SAPy, (b) SMNP@SAPy/FeSal and (c) SMNP@SAPy/MnSal.

Fig. S6. TGA thermograms of SMNP@SAPy/MnSal (B) in comparison with SMNP@SAPy (A).
Fig. S7. Hysteresis loops of the as-synthesized (a) bare γ-Fe$_2$O$_3$, (b) SMNP@SAPy, and (c) SMNP@SAPy/MnSal, at 298 K.

Fig. S8. FT-IR spectra of SAET
Fig. S9. FT-IR spectra of MNP (a), SMNP (b), SMNP@SAET (c) and SMNP@SAET/FeSal (d).

Fig. S10. FT-IR spectra of SMNP@SAET/MnSal
Fig. S11. EDS Spectrum of the as-prepared (a) SMNP@SAET/FeSal, (b) SMNP@SAET/MnSal.

Fig. S12. XRD pattern of (a) SMNP@SAET, (b) SMNP@SAET/FeSal, and (c) SMNP@SAET/MnSal.
Fig. S13. TGA thermograms of (a,B) SMNP@SAET/FeSal and (b,B) SMNP@SAET/MnSal in comparison with SMNP@SAET (A in a,b).

Fig. S14. $\ln[\text{RhB}]_0/[\text{RhB}]$ as a function of reaction time for $T = 298, 308, 313, 323$ K.
Fig. S15. $\ln(C_0/C_i)$ as a function of reaction time for RhB, methylene blue (MB), methyl orange (MO) and crystal violet (CV) at $T = 323$ K.
Fig. S16. GC trace and MS spectra of intermediates of RhB degradation in the present system.

Fig. S17. UV-Vis spectral changes of RhB in the present system.

References

1. R. Massart, E. Dubois, V. Cabuil and E. Hasmonay, *J. Magn. Magn. Mater.*, 1995, **149**, 1-5.
2. B. Z. Tang, Y. Geng, J. W. Y. Lam, B. Li, X. Jing, X. Wang, F. Wang, A. B. Pakhomov and X. X. Zhang, *Chem. Mater.*, 1999, **11**, 1581-1589.
3. C. Pacurariu, E. A. Taculescu, R. Ianoș, O. Marinică, C. V. Mihali and V. Socoliuc, *Ceram. Int.*, 2015, **41**, 1079-1085.
4. Y. S. Sharma and P. Mathur, *Transit. Metal Chem.*, 1994, **19**, 311-314.
5. W. Zhang and E. N. Jacobsen, *J. Org. Chem.*, 1991, **56**, 2296-2298.