Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Association Between the Lockdown for SARS-CoV-2 (COVID-19) and Reduced Surgical Site Infections after Vascular Exposure in the Groin at Two Italian Academic Hospitals

Mario D’Oria,1 Gian Franco Veraldi,2 Davide Mastrorilli,2 Luca Mezzetto,2 Cristiano Calvagna,1 Jacopo Tagliavara,1 Silvia Bassini,1 Filippo Griselli,1 Lorenzo Grosso,2 Andrea Carere,2 Alessia D’Andrea,1 and Sandro Lepidi,1 Trieste, Italy

Background: The aim of this study was to evaluate whether the scrupulous hygiene rules and the restriction of contacts during the lockdown owing to the COVID-19 pandemic affected the rate and severity of surgical site infections (SSI) after vascular exposure in the groin at two Italian University Hospitals.

Methods: Starting from March 2020, strict hygiene measures for protection of health care workers (HCW) and patients from COVID-19 infection were implemented, and partly lifted in July 2020. The main exposure for analysis purposes was the period in which patients were operated. Accordingly, study subjects were divided into two groups for subsequent comparisons (preCOVID-19 era: March-June 2018–2019 versus COVID-19 era: March-June 2020). The primary endpoint was the occurrence of superficial and/or deep SSI within 30 days after surgery. The Centers for Disease Control and Prevention definitions were used to classify superficial and deep SSI.

Results: A total of 194 consecutive patients who underwent vascular exposure in the groin were retrospectively analyzed. Of those, 60 underwent surgery from April 1, 2018 to June 30 of the same year; 83 from April 1, 2019 to June 30 of the same year; and 51 from April 1, 2020 to June 30 of the same year. The mean age of the study cohort was 75 years and 140 (72%) were males. Patients who were operated in the COVID-19 era were less likely to develop SSI (10% vs. 28%; \(P = 0.008 \)), including both deep SSI (4% vs. 13%; \(P = 0.04 \)) and superficial SSI (6% vs. 15%; \(P = 0.05 \)). After multivariate adjustments, being operated in the COVID-19 era was found to be a negative predictor for development of an SSI (odds ratio [OR] = 0.31; 95% confidence interval [CI] = 0.09–0.76; \(P < 0.001 \)) or deep SSI (OR = 0.21; 95% CI = 0.03–0.98; \(P < 0.001 \)). Operative time was also found as independent predictor for the development of deep SSI (OR = 1.21; 95%CI = 1.21–1.52; \(P = 0.02 \)). Using binary logistic regression, there were no independent predictors of superficial SSI that could be identified.
Conclusions: Vascular exposure in the groin carries a non-negligible risk of SSI. In this study, we provided important insights that are simple and easily viable precautions (such as the universal use of surgical masks both for patients and health care professionals during wound care, the widespread diffusion of hand sanitizers, and the reduction of the number of visitors in the surgical wards) could be promising and safe tools for SSI risk reduction.

INTRODUCTION

Surgical site infections (SSI) are the most commonly in-hospital acquired infections, and SSI after vascular exposure in the groin are still commonplace following arterial interventions. Deep SSI in particular may account for a significant proportion of these infections, carrying a risk of reintervention, prolonged hospitalization, increased costs, major lower limb amputation, or even death. As such, recent guidelines on the management of vascular graft infections highlight the importance of identifying and understanding risk factors in relation to SSI.

There are many ways to reduce the rate of SSIs, and optimization of potentially modifiable patient-level (e.g., smoking cessation, optimal glycemic control, and screening for multidrug resistant bacteria) and procedure-level (e.g. skin disinfection, antibiotic prophylaxis, and careful surgical wound dressing) risk factors is the first step to pursue in the prevention of SSI. Indeed, the World Health Organization (WHO) has introduced the “global guidelines for the prevention of SSI”, where preoperative and intraoperative measures are highlighted that may reduce the incidence and severity of SSI.

Concerning the postoperative prevention of SSI, it is necessary to use a bundle of strategies, with meticulous hand hygiene and asepsis during wound care being the cornerstone of care.

The SARS-CoV-2 pandemic has led to adding other recommendations to those guidelines. In particular, the WHO recommended increased precautions be taken by health care workers (HCW) to protect themselves and patients from virus infections. These measures include the constant use of a face mask (e.g., surgical masks, FFP-2, FFP-3, and KN95), mandatory use of gloves, frequent hand-rubbing with alcoholic solution, and limited movement of staff and patients including restricted access for relatives or caregivers.

The aim of this study was to evaluate whether the scrupulous hygiene rules and the restriction of contacts during the lockdown owing to the COVID-19 pandemic affected the rate and severity of SSI after vascular exposure in the groin at two Italian University Hospitals.

METHODS

Study Design

Starting from March 2020, strict hygiene measures for protection of HCW and patients from COVID-19 infection were implemented, and partly lifted in July 2020. The main exposure for analysis purposes was the period in which patients were operated. Accordingly, study subjects were divided into two groups for subsequent comparisons (preCOVID-19 era: March-June 2018–2019 versus COVID-19 era: March-June 2020). All patients were routinely followed-up in the outpatient clinic for 30 days after surgery. Eligible patients included those of 18 years and older undergoing elective or emergency surgical procedures that required vascular exposure in the groin including Fogarty embolectomy, femoral end-artectomy, and femoropopliteal bypass. Local departmental structures approved the study which did not alter routine standards of care delivered to patients. Retrospectively collected data included baseline demographics, cardiovascular risk factors and medical comorbidities, chronic medications, and operative details. Surgical risk was defined according to the Society for Vascular Surgery and American Society of Anesthesiology risk scores.

Surgical Practice

All patients were admitted to the surgical ward only if they had a negative COVID-19 swab in the last 48 h. Most patients received antibiotic prophylaxis with Cefazoline 2g according to the surgical departments’ guidelines. The antibiotic was redosed if the operation lasted longer than 4 h. Prolonged antibiotic therapy lasting more than 24 h after the surgical operation was prescribed on a case-by-case basis as clinically needed. The surgical site was prepared with a careful skin disinfection using iodine povidone or, alternatively, chlorhexidine alcohol if allergies were present. All groin incisions were done in a longitudinal fashion, as this represents the routine approach to vascular exposure in the groin at the study centers.

Statistical Analysis

The primary endpoint was the occurrence of superficial and/or deep SSI within 30 days after surgery.
The Centers for Disease Control and Prevention definitions were used to classify superficial and deep SSI. Secondary endpoints included mortality and major lower limb amputation within 30 days from index operation. All data were evaluated for normality with quantile-quantile plots. Continuous variables are expressed with either mean or median values, with corresponding standard deviation (SD) or interquartile range (IQR). Categorical variables are presented as a percentage. Univariable analyses were carried out with either Student’s t-test for continuous variables, and chi-squared test or Fisher’s exact test for categorical variables. Binary logistic regression was used for the multivariate analysis to calculate odds ratios (OR) with 95% confidence intervals (CIs). Covariates for these models were selected based on univariate screen of all available potential confounders and stepwise backward regression to fit the model. Data were analyzed using IBM SPSS Statistics 24 (IBM, Armonk, NY). A P < 0.05 was considered statistically significant.

RESULTS

Baseline Characteristics

A total of 194 consecutive patients who underwent vascular exposure in the groin were retrospectively analyzed. Of those, 60 underwent surgery from April 1, 2018 to June 30 of the same year; 83 from April 1, 2019 to June 30 of the same year; and 51 from April 1, 2020 to June 30 of the same year. The mean age of the study cohort was 75 years and 140 (72%) were males (Table I). At baseline, patients operated in the COVID-19 era had lower hemoglobin values (P = 0.04) and were more likely to be anemic before the operation (P = 0.04). Also, they were less likely to undergo urgent operations (P = 0.02) but underwent more complex procedures that required more often the association of distal endovascular interventions (P = 0.004) and had longer operative times (P < 0.001). When comparing patients who were operated in the 2 years that comprised the preCOVID-19-era, no significant differences were found in terms of baseline demographics, risk factors, or procedural details.

Clinical Outcomes

Patients who were operated in the COVID-19 era were less likely to develop SSI (10% vs. 28%; P = 0.008), including both deep SSI (4% vs. 13%; P = 0.04) and superficial SSI (6% vs. 15%; P = 0.05) (Fig. 2). No significant differences were found in the rate of SSI in the years 2018 vs. 2019 (preCOVID-19 era). Also, no significant differences were found in the rates of lower limb amputation or early mortality when comparing the preCOVID-19 era (years 2018–2019) versus the COVID-19 era (year 2020).
Table I. Baseline characteristics of the study cohort

Variable	Overall cohort $n = 194$	PreSARS-CoV2 era (2018–2019) $n = 143$	SARS-CoV2 era (2020) $n = 51$	P value	PreSARS-CoV2 era (2018) $n = 60$	Pre SARS-CoV2 era (2019) $n = 83$	P value
Demographics & risk factors							
Age (years)	75.3 ± 9.2	75.5 ± 9.3	74.7 ± 8.9	0.57	74.52 ± 10.4	76.19 ± 8.4	0.29
Age > 80 y	$72 (37.1)$	$53 (37.1)$	$19 (37.3)$	0.98	$20 (33.3)$	$33 (39.8)$	0.43
Males	$140 (72.2)$	$101 (70.6)$	$39 (76.5)$	0.42	$38 (63.3)$	$63 (75.9)$	0.10
Smoking	$125 (66.1)$	$94 (67.1)$	$31 (63.3)$	0.62	$38 (65.5)$	$56 (68.3)$	0.73
Body mass index	25.4 ± 3.6	25.3 ± 3.9	25.3 ± 2.6	0.96	24.8 ± 3.8	25.7 ± 3.8	0.23
Obesity	$17 (10.4)$	$15 (11.7)$	$2 (5.7)$	0.30	$6 (10.9)$	$9 (12.3)$	0.81
Dyslipidemia	$100 (51.5)$	$75 (52.4)$	$25 (49)$	0.67	$27 (45)$	$48 (57.8)$	0.13
Diabetes	$75 (38.7)$	$54 (37.8)$	$21 (41.2)$	0.67	$17 (28.3)$	$37 (44.6)$	0.06
Society for Vascular Surgery score	3.3 ± 2.4	3.31 ± 2.2	3.31 ± 2.7	0.99	2.88 ± 2.2	3.63 ± 2.2	0.06
Anemia	$107 (55.2)$	$73 (51.3)$	$34 (66.7)$	0.31	$11 (18.3)$	$16 (19.2)$	0.85
Procedural details							
Rutherford category 5–6	$57 (29.5)$	$38 (26.8)$	$19 (37.3)$	0.15	$18 (30.5)$	$20 (24.1)$	0.39
Urgent operation	$166 (86)$	$127 (89.4)$	$39 (76.5)$	0.02	$55 (91.2)$	$72 (86.7)$	0.12
Graft needed	$158 (81.9)$	$117 (82.4)$	$41 (80.4)$	0.75	$46 (78.0)$	$71 (60.7)$	0.24
Patch	$75 (47.5)$	$60 (51.3)$	$15 (36.6)$	0.11	$23 (50.0)$	$37 (52.1)$	0.82
Bypass	$83 (52.5)$	$57 (48.7)$	$26 (63.4)$	0.11	$23 (50.0)$	$34 (47.9)$	0.27
Patch/Graft	$114 (69.1)$	$79 (55.6)$	$35 (68.6)$	0.11	$36 (61.0)$	$43 (51.8)$	0.35
Prosthetic	$56 (49.1)$	$44 (55.7)$	$12 (34.3)$	0.03	$18 (50.0)$	$17 (39.5)$	0.86
Autologous	$58 (50.9)$	$35 (44.3)$	$23 (65.7)$	0.004	$18 (50.0)$	$26 (60.5)$	0.93
Proximal endovascular associated	$85 (43.8)$	$64 (44.8)$	$21 (41.2)$	0.66	$26 (43.3)$	$38 (45.8)$	0.95
Distal endovascular associated	$38 (19.6)$	$21 (14.7)$	$17 (33.3)$	0.004	$9 (15)$	$12 (14.5)$	0.95
Operative time (min)	175 ± 98	160 ± 76	218 ± 135	< 0.001	160 ± 77	160 ± 75	0.95
Clip skin closure	$76 (39.2)$	$52 (36.4)$	$24 (47.1)$	0.18	$24 (40)$	$28 (33.7)$	0.44
Postop antibiotic > 24 h	$61 (31.4)$	$44 (30.8)$	$17 (33.3)$	0.73	$19 (31.6)$	$25 (30.1)$	0.84
Length of stay in hospital (days)	9 ± 9	9 ± 9	7 ± 7	0.15	9 ± 8	7 ± 7	0.21
Home discharge	$69 (35.6)$	$47 (32.9)$	$22 (43.1)$	0.18	$21 (35)$	$26 (31.3)$	0.64
Postoperative transfusions	$33 (17)$	$25 (17.5)$	$8 (15.7)$	0.77	$12 (20)$	$13 (15.7)$	0.53
Hospitalization in intensive care	$44 (22.7)$	$28 (19.6)$	$16 (31.4)$	0.08	$9 (15)$	$19 (22.9)$	0.24

Bold: Statistical significant ($P \text{ value} < 0.05$).
Predictors of SSI

After multivariate adjustments, being operated in the COVID-19 era was found to be a negative predictor for development of an SSI (OR = 0.31; 95% CI = 0.09–0.76; P < 0.001) (Table II) or deep SSI (OR = 0.21; 95% CI = 0.03–0.98; P < 0.001) (Table III). Operative time was also found as an independent predictor for the development of deep SSI (OR = 1.21; 95% CI = 1.21–1.52; P = 0.02). Using binary logistic regression, there were no independent predictors of superficial SSI that could be identified (Table IV).

DISCUSSION

Reducing the occurrence of SSIs is the main focus of numerous quality improvement initiatives as they represent a common and costly cause of potentially preventable patient morbidity.11 In vascular surgery, exposure of the femoral vessels in the groin remains burdened with a non-negligible rate of SSI and continues to attract notable research efforts in the contemporary era.12 Indeed, SSI are associated with an increased risk of postoperative morbidity, prolonged hospitalization, postponement of rehabilitation, increased health care costs, and in some cases possibly poorer long-term outcomes due to a worsening of the overall clinical picture. However, in-depth analyses of this particular issue in vascular surgery patients during the COVID-19 pandemic have not been extensively investigated.13

While some risk factors for SSI may be not modifiable, there exist some modifiable phenomena that could be targeted with focused interventions to reduce the burden of SSI in the groin. The main findings of our study, which analyzed 194 consecutive patients who underwent vascular exposure in the groin, were that those who were operated in the COVID-19 era (when more strict measures for the prevention of infectious disease transmission were taken) were less likely to develop SSI, both deep and superficial. To our knowledge this is one of the largest available case series of vascular surgical patients specifically evaluated for the incidence and severity of SSI during the lockdown for the SARS-CoV-2 pandemic but may serve to identify some important factors that can contribute to improve perioperative care to vascular patients. Although some differences were noted in the technical details of the procedures that were performed during the COVID-19 era (such as the increase in operative time that was likely related to an increase in the complexity of procedures with more frequent
hybrid operations and associated distal endovascular procedures, or the more frequent use of autologous vein-based patch for femoral reconstruction), it is unlikely they might have significantly contributed to the observed reduction in SSI rates.

Recently, the Surgical Care Improvement project was created with the aim to reduce postoperative SSI by focusing on a series of preoperative precautions such as prophylactic antibiotic administration, skin-hair clipping, and normothermia. However, despite evidence supporting the importance of these processes, high compliance is only weakly linked to improved outcomes. Several adjuncts aimed at reducing SSI have been evaluated in vascular groin wounds, including prophylactic closed incision negative pressure wound therapy (ciNPWT), local antibiotics, wound drains, platelet-rich plasma, skin closure methods, fibrin glue, and silver-alginate dressings.14,15 Although the evidence for ciNPWT’s efficacy in reducing SSI in vascular groin wounds is encouraging,14,15 data regarding the cost-effectiveness of their routine use are still lacking. In a recent systematic review on the effectiveness of wound adjuncts for prevention of SSI after vascular exposure in the groin,18 the use of ciNPWT was found to be an effective intervention for preventing both superficial and deep SSI; available evidence suggested that local antibiotics do not reduce overall SSI rates, but may reduce superficial SSIs, and that subcuticular sutures, as opposed to other methods of closure, may also reduce the occurrence of SSI. However, all these interventions might entail significant additional costs, be difficult to implement in a homogeneous and capillary fashion or be possibly linked to harmful side effects for patients.

In contrast, in our study we were able to identify some preventive measures that, if adopted, could reduce the occurrence of SSI in the groin with an almost nil risk of related adverse events to patients, without involving a dramatic increase in health care costs, and that could be broadly and easily implemented. Notably, as the only salient changes in surgical practice during the COVID-19 era were related

Table II. Multivariate logistic regression for independent predictors of any SSI

Variables	OR	CI 95%	P value
Preoperative anemia	1.40	0.69–2.85	0.34
Distal endovascular associated	0.46	0.15–1.38	0.16
Operative time	1.01	0.99–1.01	0.22
Timing (urgency)	1.41	0.82–2.42	0.24
COVID era	0.31	0.09–0.76	<0.001

Bold: Statistical significant (P value < 0.05).

Table III. Multivariate logistic regression for independent predictors of deep SSI

Variables	OR	CI 95%	P value
Preoperative anemia	1.81	0.67–4.87	0.23
Distal endovascular associated	0.13	0.01–1.14	0.66
Operative time	1.11	1.21–1.52	0.02
Timing (urgency)	1.5	0.79–3.41	0.41
COVID era	0.21	0.03–0.98	<0.001

Bold: Statistical significant (P value < 0.05).

Table IV. Multivariate logistic regression for independent predictors of superficial SSI

Variables	OR	CI 95%	P value
Preoperative anemia	1.14	0.43–2.52	0.91
Distal endovascular associated	1.21	0.33–3.8	0.83
Operative time	0.96	0.99–1.01	0.47
Timing (urgency)	1.54	0.45–2.87	0.48
COVID era	0.49	0.11–1.45	0.16
to more strict hygiene measures (such as the universal use of surgical masks both for patients and health care professionals during wound care, the widespread diffusion of hand sanitizers, and the reduction of the number of visitors in the surgical wards), it would be reasonable to infer that such measures were implicated in the reduction of SSI rate in the groin.19

Therefore, the above-mentioned initiatives can logically represent cost-effective preventive measures that would be worth incorporating into routine clinical practice even outside of the pandemic period. Future studies with larger samples will be needed to confirm these results and further improve the care of surgical wounds. However, owing to the intrinsic safety and reasonable cost-effectiveness of the hygienic measures that were identified in this study as potential factors underlying a significant decrease in SSI rates after vascular exposure in the groin, it would be reasonable to pay them further attention during clinical care in surgical wards. As for other types of vascular infections, the establishment of close multidisciplinary collaboration and definition of clear organizational models for integrated pathways of care might represent the most adequate steps to achieve further reduction in the rate of SSI.20,21

Study Limitations
Findings from this study must be interpreted within the context of its limitations, including the retrospective design and relatively small sample size. However, data capture was highly accurate with missing values below 1% for all variables of interest and complete 30-day clinical assessment for all included patients. We tried to account for known confounders using multivariate adjustments, but the relatively small number of SSI and the short period of observation might underestimate the role of residual unknown confounders. In fact, while there have been a number of subsequent lockdown periods, the protocols during such periods have been less consistent as compared with the first pandemic wave (e.g. limited access to caregivers instead of totally restricted access) and more difficult to track. Although the COVID-lockdown period was characterized by a reduction of outpatient activities, the number of inpatient procedures remained quite stable (especially those for peripheral artery disease).10 Furthermore, the number of trainees as well as nursing-to-patient ratio remained unchanged, further reducing potential confounding. Lastly, the proposed multivariable model does not equal a risk scoring tool and should be validated in future larger studies.

CONCLUSIONS
Vascular exposure in the groin carries a non-negligible risk of SSI. In this study, we provided important insights that simple and easily viable precautions (such as the universal use of surgical masks both for patients and health care professionals during wound care, the widespread diffusion of hand sanitizers, and the reduction of the number of visitors in the surgical wards) could be promising and safe tools for SSI risk reduction.

REFERENCES
1. De Simone B, Sartelli M, Coccolini F, et al. Intraoperative surgical site infection control and prevention: a position paper and future addendum to WSES intra-abdominal infections guidelines. World J Emerg Surg 2020;15:10.
2. Groin wound Infection after Vascular Exposure (GIVE) Study Group. Groin wound infection after vascular exposure (GIVE) multicentre cohort study. Int Wound J 2021;18:164–75.
3. Chakfè N, Diener H, Lejay A, et al. Editor’s choice — European society for vascular surgery (ESVS) 2020 clinical practice guidelines on the management of vascular graft and endograft infections. Eur J Vasc Endovasc Surg 2020;59:339–84.
4. Hedenskierna G, Meyhoff CS, Perchiazzi G, et al. Modification of Cochrane Reviews. Cochrane Database Syst Rev 2018:2:CD012653.
5. Liu Z, Dumville JC, Norman G, et al. Intraoperative interventions for preventing surgical site infection: an overview of Cochrane Reviews. Cochrane Database Syst Rev 2018: 2:CD012653.
6. Sartelli M, Kluger Y, Ansaloni L, et al. Knowledge, awareness, and attitude towards infection prevention and management among surgeons: identifying the surgeon champion. World J Emerg Surg 2018;13:37.
7. Thangaraju P, Venkatesan S. Responding to the global guidelines for the prevention of surgical site infection, 2018: a focus on surgical antibiotic prophylaxis prolongation. J Res Med Sci 2019;24:90.
8. Sartelli M, Pagani L, Iamazzo S, et al. A proposal for a comprehensive approach to infections across the surgical pathway. World J Emerg Surg 2020;15:13.
9. Surbello M, El-Boghdaddy K, Di Giacinto I, et al. The Italian coronavirus disease 2019 outbreak: recommendations from clinical practice. Anaesthesia 2020; 75:724–32.
10. Veraldi GF, Perilli V, Mastrorilli D, et al. Clinical and economic impact of COVID in vascular surgery at a tertiary university ‘Hub’ hospital of Italy. Ann Vasc Surg 2022;83:97–107.
11. Sartelli M, Coccolini F, Coimbra R, et al. It is time to define an organizational model for the prevention and management of infections along the surgical pathway: a worldwide cross-sectional survey. World J Emerg Surg 2022;17:17.
12. Gwilym BL, Ambler GK, Saratzis A, et al. On behalf of the groin wound infection after vascular exposure (GIVE) study...
group. Groin wound infection after vascular exposure (GIVE) risk prediction models: development, internal validation, and comparison with existing risk prediction models identified in a systematic literature review. Eur J Vasc Endovasc Surg 2021;62:258–66.

13. D’Oria M, Mills JL, Cohnert T, et al. On behalf of VASCC. The “vascular surgery COVID-19 collaborative” (VASCC). Eur J Vasc Endovascular Surg 2020;60:489–90.

14. Inui T, Bandyk D. Vascular surgical site infection risk factors and preventive measures. Semin Vasc Surg 2015;28:201–7.

15. Amato B, Compagna R, De Vivo S, et al. Groin surgical site infection in vascular surgery: systemic review on peri-operative antibiotic prophylaxis. Antibiotics 2022;11:134.

16. Lee K, Murphy PB, Ingves MV, et al. Randomized clinical trial of negative pressure wound therapy for high-risk groin wounds in lower extremity revascularization. J Vasc Surg 2017;66:1814–9.

17. Meiler LJ, Beach EC, Chavan B, et al. The benefit of negative pressure dressings in vascular surgery patients with infrainguinal incisions. J Vasc Surg 2021;74:1668–72.

18. Gwilym BL, Dovell G, Dattani N, et al. Editor’s Choice — systematic review and meta-analysis of wound adjuncts for the prevention of groin wound surgical site infection in arterial surgery. Eur J Vasc Endovasc Surg 2021;61:636–46.

19. Losurdo P, Paiano L, Samardzic N, et al. Impact of lockdown for SARS-CoV-2 (COVID-19) on surgical site infection rates: a monocentric observational cohort study. Updates Surg 2020;72:1263–71.

20. Antonello RM, D’Oria M, Cavallaro M, et al. Management of abdominal aortic prosthetic graft and endograft infections. A multidisciplinary update. J Infect Chemother 2019;25:669–80.

21. OTA Lyons, Baguneid M, Barwick TD, et al. Diagnosis of aortic graft infection: a case definition by the management of aortic graft infection collaboration (MAGIC). Eur J Vasc Endovasc Surg 2016;52:758–63.