MORPHOMETRIC ASSESSMENT OF FEMORAL CONDYLAR PARAMETERS IN GUJARAT REGION AND ITS CLINICAL RELEVANCE: AN OSTEOLOGICAL STUDY

Abhinav Kumar Mishra¹, Achaleshwar Gandotra², Gyan Prakash Mishra³, Navneet Kumar⁴ and Pawan Kumar Dubey⁵

1. PhD Scholar, Department of Anatomy, SBKSMIRC, Sumandeep Vidyapeeth Deemed to be University.
2. Professor & HOD, Department of Anatomy, SBKSMIRC, Sumandeep Vidyapeeth Deemed to be University.
3. Professor & HOD, Department of Anatomy, MVASMC, Basti.
4. Principal, MVASM C, Basti.
5. Statistician cum Tutor, Department of Community Medicine, MVASMC, Basti.

Manuscript Info

Abstract

The Femur is the longest and strongest bone of the lower limb in which there is a groove present on anterior side and a notch present on posterior side. The anterior groove is called as patella-femoral groove and posterior notch is called Intercondylar (IC) Notch. There are two most important ligaments are connected with notch called Anterior Cruciate Ligament (ACL) and Posterior Cruciate Ligament (PCL), associated by embryological and cognitive to the notch. The aim of this study is to find out the condylar parameters of femur. We obtained 50 completely ossified dry femur of both sides from Department of Anatomy, SBKSMIRC, Sumandeep Vidyapeeth. The Mean ± SD of femoral parameters were measured and correlation were also calculated between various parameters which is found to be positively correlated. It guides to the anatomists as well as Orthopaedicians and forensic practices also.

Introduction:-

Femur is the strongest bone of the lower limb which has two condyles in its lower end. There is a groove present anteriorly and a notch present posteriorly. The anterior groove is called as patella-femoral groove and posterior notch is referred as Intercondylar (IC) Notch within it the most important ligaments are adhered, called Anterior Cruciate Ligament (ACL) and Posterior Cruciate Ligament (PCL) which are associated by embryological and cognitive to the notch.

The study of the notch is clinically important because there is a risk of ligament tearing by the narrowing of this notch. It was observed that the width of IC notch found to be tapered in women while another findings concluded to its adverse. The ratio of the width of IC notch and the width of the distal femur is called as Notch Width Index (NWI) which was recorded that smaller the NWI can lead to the higher incidence of injury of ACL. According to some authorities, there is no findings of sexual dimorphism found in its NWI.

Copy Right, IJAR, 2021. All rights reserved.
Material And Methods:-
The study was carried out on 50 completely ossified dry human femora obtained from Department of Anatomy, SBKSMIRC, Sumandeep Vidyapeeth Deemed to be University, Vadodara, Gujarat. The sampling technique used for collection of data was simple random sampling and performed the observational type of study design. Partially or Un-ossified and damaged femora were excluded from the study. The parameters were observed twice in this study. The measurements of IC distance were taken from the maximum point of the condyles and the IC notch distance from inner maximum distance. All the measurements were taken by Digital caliper and measuring tape.

![Fig 1: Measurements of Intercondylar Distance Notch Distance.](image1)

Observations And Result:-
Table 1:- Descriptive statistics of Femoral Parameters.

Parameters	Sides	Mean ± SD
Length of Femur	Rt (cm)	38.50 ± 2.10
	Lt (cm)	38.59 ± 2.10
IC Distance	Rt (mm)	68.74 ± 7.30
	Lt (mm)	68.78 ± 4.59
IC Notch Distance	Rt (mm)	17.44 ± 3.30
	Lt (mm)	17.92 ± 1.93

In Table 1. showing the Mean ± SD of both right and left side of Length of the femur found to be 38.50 ± 2.10 and 38.59 ± 2.10 respectively. The Mean ± SD of IC distance and IC Notch distance of right side were calculated as 68.74 ± 7.30 and 17.44 ± 3.30 while its left side was measured as 68.78 ± 4.59 and 17.92 ± 1.93 respectively.

Table 2:- Parameters of Notch Width Index.

Sides of Femur	Mean ± SD
Right	0.255 ± 0.04
Left	0.283 ± 0.04

In Table 2. showing the Mean ± SD of NWI measured in right femora was 0.255 ± 0.04 while in left femora it was calculated as 0.283 ± 0.04.
Table 3: Correlation between Femoral Parameters.

Correlation	Correlation Coefficient	Significant Value	N
Length of Right Femur Vs. IC Distance of Right Femur	0.278	0.05	50
Length of Left Femur Vs. IC Distance of Left Femur	0.499	0.00	50
IC Distance of Right Femur Vs. IC Notch Distance of Right Femur	0.455	0.00	50
IC Distance of Left Femur Vs. IC Notch Distance of Left Femur	0.368	0.00	50

All the femoral parameters showing positive correlation and are coming out to be significant as shown in the Table 3.

Discussion:
Morphometric study of Intercondylar Distance and Intercondylar Notch distance along with Notch Width Index is the most important anatomical tool which is used as recognition of the availability for ACL attachment space. There is well-built interrelation between the stenosis of IC notch and high incidence ACL damage in osteoarthritic knee.

Table 4: Comparison of NWI with previous studies.

Authors	Notch Width Index (NWI)	Mean ± SD
Souryal & Freeman (1993)	0.231 ± 0.04	
Ravichandran and Melani (2010)	0.252 ± 0.04	
Ameet K.J. & Murlimanju B.V. (2014)	0.250 ± 0.04	
Present study (2021)	0.255 ± 0.04	

The present study provides valuable data pertaining to the femoral parameters. In this study effort has been made to find the correlation and clinical findings about the condyles and its notch.

Our study is showing some similarities from the study done by Ravichandran et al. same study has been conducted by Ameet K.J. and Murlimanju B.V. and found the similar mean values whereas a study done by Souryal and Freeman which is less frequent than the present study.

Conclusion:
The present study is useful tool as guide to the Orthopaedicians which helps in predicting the ACL injury in stenotic notch. This study shown that there is significant relationship between all the parameters were taken in this study and also helps in sex determination.

References:
1. Williams, P.L., Bannister, L.H., Berry, M.M.. Femur. In: Gray’s Anatomy. 38th Ed. Edinburgh and London: ELBS with Churchill Livingstone.1995: 680.
2. Skaf AY, Hernandez Filho G, Dirim B et al. Pericruciate fat pad of the knee: Anatomy and pericruciate fat pad inflammation- cadaveric and clinical study emphasizing MR imaging. Skeletal Radiol. 2012 ; 41 : 1591-1596.
3. Miller RH. Knee Injuries. In: Campbell's Operative Orthopaedics. 11th ed. 2008 ; 3 : 2496–2450.
4. Palmer, I. On the injuries to the ligaments of the knee joint: a clinical study. Clin Orthop Relat Res. 1938 ; 454: 17-22.
5. Souryal, T.O., Moore, H.A., Evans, J.P.. Bilaterality in anterior cruciate ligament injuries: associated intercondylar notch stenosis. Am J Sports Med 1988 ; 16(5): 449-54.
6. Davis TJ, Shelbourne KD, Klootwyk TE. Correlation of the Intercondylar notch width of the femur to the width of the anterior andposterior cruciate ligaments. Knee Surg Sports Traumatol Arthrosc.1999;7:209-214.
7. Shelbourne KD, Kerr B. The relationship of femoral intercondylar notch width to height, weight, and sex in patients with intact anterior cruciate ligaments. Am J Knee Surg. 2001;14:92-96.
8. Staebuli HU, Adam O, Becker W, Burgkart R. Anterior cruciate ligament and intercondylar notch in the coronal oblique plane: anatomy complemented by magnetic resonance imaging in cruciate ligament–intact knees. Arthroscopy. 1999;15:349-359.
9. Ireland ML, Ballantyne BT, Little K, McClay IS. A radiographic analysis of the relationship between the size and shape of the intercondylar notch and anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc. 2001;9:200-205.
10. LaPrade RF, Burnett QM II. Femoral intercondylar notch stenosis and correlation to anterior cruciate ligament injuries: a prospective study. Am J Sports Med. 1994;22:198-202, 203.
11. Agrendt E, Dick R: Knee injury patterns among men and women in collegiate basketball and soccer, NCCA data and a review of literature. AM J Sports Med. 1995 ; 23 : 694-701.
12. Anderson AF, Dome DC, Gautam S, Awh MH, Rennirt GW. Correlation of anthropometric measurements, strength, anterior cruciate ligament size, and intercondylar notch characteristics to sex differences in anterior cruciate ligament tear rates. Am J Sports Med. 2001;29:58-66.
13. Tillman MD, Smith KR, Bauer JA, Cauraugh JH, Falsetti AB, Pattishall JL. Differences in three intercondylar notch geometry indices between males and females: a cadaver study. Knee. 2002;9:41-46.
14. Wada M, Tatsuo H, Baba H, Asamotol K, Nojyo Y. Femoral intercondylar notch measurements in osteoarthritic knees. Rheumatology (oxford) 1999 ; 38 : 554-558.
15. Souryal TO, Freeman TR. Intercondylar notch size and anterior cruciate ligament injuries in athletes: a prospective study. Am J Sports Med. 1993; 21: 535-539.
16. Ravichandran, D., Melani, R. 2010. Morphology of the intercondylar notch and its clinical significance. International Journal of Anatomical Sciences 1: 26-30.
17. K.J. Ameet and B.V. Murlimanju. A morphometric analysis of intercondylar notch of femur with emphasis on its clinical implications. Med & Health. 2014 ; 9(2) : 103-108.