Cancer cachexia

Citation for published version (APA):

Simons, J. P. (1997). Cancer cachexia. [Doctoral Thesis, Maastricht University]. Simons. https://doi.org/10.26481/dis.19971212js

Document status and date:
Published: 01/01/1997

DOI:
10.26481/dis.19971212js

Document Version:
Publisher's PDF, also known as Version of record

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:
repository@maastrichtuniversity.nl
providing details and we will investigate your claim.
Summary and general discussion
(Chapter 1) Involuntary weight loss, eventually leading to cachexia, is a clinically highly relevant complication of cancer (1) that negatively influences quality of life, survival (2-5), and treatment response (6,7). Although it might occur in any type of cancer, its incidence is particularly high in malignancies of the lung, pancreas and gastrointestinal tract (2,8).

The pathophysiology of this weight loss is complex and only partly understood. Predominantly based on studies in experimental models, several mechanisms are thought to play a major role: an increased systemic inflammatory state (9), the circulation of tumor-derived (non-cytokine) lipolytic and proteolytic factors (10,11), increased Cori cycle activity (12), and a decreased food intake (8).

Despite the fact that in the past decade many agents have been tested for their ability to reverse cancer-related weight loss, the number of therapies presently recommendable for use in daily clinical practice is still disappointingly limited.

(Chapter 2) As nearly all tissues that are vital for a normal functioning of the body are part of the body-cell-mass (BCM) (13), it is evident that particularly wasting of this body compartment can be expected to be responsible for the negative effects of weight loss on performance status and survival. If so, BCM-wasting should become a specific target for therapeutical intervention. However, to develop such specific treatment strategies it is mandatory to have a minimum of insight in its underlying pathophysiology.

Particularly studies in experimental models revealed that the development of cancer cachexia is for an important part related to a chronic, low-grade, tumor-induced activation of the host immune system (9). Until the start of our studies, however, confirmatory data were scarce in human cancer (14,15), and particularly the specific pathophysiology of cancer-related BCM-wasting had not been investigated.

To explore these issues, we investigated in 20 male lung cancer patients the relationship between both weight loss and BCM-wasting, and the putative presence of systemic inflammation (sTNF-R55, sTNF-R75, IL-6), increased acute-phase response (LBP, albumin), anorexia, hypermetabolism and changes in circulating levels of catabolic (cortisol) and anabolic (testosterone, IGF-I) hormones. In addition, to obtain more insight in the specific clinical relevance of cancer-related BCM-wasting, the relationship between height-adjusted BCM (BCM-ix) and Karnofsky performance status was assessed.

Karnofsky performance score was shown to be explicitly correlated with BCM-ix. Severe weight loss was significantly correlated with high sTNF-R55 levels, low levels of the "negative" acute-phase protein albumin, and low IGF-I. In addition, BCM-wasting was specifically correlated with high circulating levels of sTNF-R55 and sTNF-R75, high
plasma levels of LBP, low serum albumin and high BCM-adjusted resting energy expenditure (REE/BCM). Furthermore, a trend towards a (positive) correlation between BCM-ix and IGF-I was observed. sTNF-R55 levels correlated negatively with albumin and positively with REE/BCM, and there were trends towards a positive correlation with LBP and a negative correlation with appetite.

Based on these results, we concluded that human lung cancer-related weight loss and BCM-wasting are associated with systemic inflammation, increased hepatic acute-phase protein production and, in case of BCM-wasting, hypermetabolism. In addition, we were able to show that, although not evidently related to systemic inflammation, also decreased IGF-I levels might be involved.

(Chapter 3) Leptin, the product of the adipocyte ob gene, is a recently identified hormone that is thought to represent the afferent signal in a feedback mechanism regulating fat mass (16). After release by the adipocyte, leptin is assumed to bind to a specific receptor in the hypothalamus (17-19), the brain nucleus that plays a central role in the regulation of feeding behaviour and energy balance (20,21). In animal models, the result of this interaction is a decrease in food intake and an increase in energy expenditure (18,19,22,23). In view of the fact that anorexia and hypermetabolism frequently play a role in the development of cancer cachexia, underlying abnormalities in the leptin feedback mechanism might, in hypothesis, be present. In particular, elevated levels of circulating leptin or, on the contrary, a hypothalamic insensitivity to a fall in leptin levels might be involved. As there is evidence from studies in in vitro and in vivo experimental models that ob gene expression may be up-regulated by substances like cortisol and pro-inflammatory cytokines such as TNF and IL-1 (24-27), substances that also seem to be involved in the pathophysiology of cancer cachexia (15,28), particularly the possibility of high leptin levels playing a role in infection- and malignancy-related cachexia has been suggested in literature (26,27).

To clarify this issue, we investigated the relationship between total plasma leptin, weight loss, body composition, appetite and REE in lung cancer.

Twenty-one male patients were studied. These subjects were on average characterized by a weight loss of approximately 10% and a body weight of 94% of ideal. In only 6 of these patients plasma leptin was detectable, with levels within the normal range. These subjects were characterized by less weight loss, by less underweight, and by a higher fat mass than the patients with non-detectable leptin levels, and significant between-group differences in appetite and REE were lacking.

Based on these results, we concluded that in cancer patients, in analogy to normal
and obese individuals (29,30), leptin levels are directly related to the amount of body fat, being compatible with a normal function of the afferent loop of the leptin feedback mechanism. We were therefore not able to confirm the hypothesis (26,27) that elevated leptin levels may be involved in the pathophysiology of cancer cachexia. As low total leptin levels were not reflected in decreased energy expenditure and increased appetite, it was hypothesized that in cancer cachexia the leptin feedback mechanism dysfunctions at the hypothalamic level. Whether tumor- or host-derived cytokines or other tumor- or host-derived substances are responsible for this overruling of normal weight homeostasis still has to be further clarified.

(Chapter 4) As wasting of fat-free mass (FFM) and BCM may have substantively more impact on performance status, quality of life and prognosis of cancer patients than wasting of fat, a far more differentiated diagnosis of cancer cachexia can be made when not only the amount of weight loss and the degree of underweight are taken into account, but also body composition. Furthermore, body composition data can be used in the decision to start a specifically tailored therapeutical intervention, and to evaluate its results. Also in clinical trials, body composition analysis is indispensable for a reliable interpretation of the efficacy of anti-cachectic interventions.

Apart from skinfold anthropometry with its known limitations, bioelectrical impedance analysis (BIA) is probably the only body composition analysis technique that is inexpensive, can be performed without specific operator skills, and forms no burden on the measured subject. This makes BIA potentially suitable for body composition analysis in "daily" clinical practice, as well as in large-scale clinical trials, including multicenter studies.

Whereas the reliability of BIA (in particular the parameter ht^2/R) to predict total body water (TBW) and its derivative FFM has been proven in many studies in healthy individuals (31-35), few studies investigated the applicability of BIA to assess TBW and FFM in non-healthy individuals, especially those with cachexia.

To clarify this issue, the applicability of single-frequency 50-kHz BIA to predict deuterium dilution-derived TBW was assessed in 16 underweight and 25 normal-weight cancer patients.

Although ht^2/R proved to be a strong single predictor of TBW in both groups, it was shown that TBW would be significantly over-estimated in the underweight group when the prediction formula developed in the normal-weight group was used (bias 1.67 L [5%]). A systematic over-estimation of TBW in the underweight patients was also found when TBW was predicted by several previously published BIA formulas developed in normal-
weight individuals. In addition, also some other drawbacks to the use of BIA were documented. First of all, it was illustrated that the outcome of the prediction of TBW by BIA largely depends on which prediction formula is chosen from the long list of "validated" equations published to date. In our group of normal-weight patients, for example, the average predicted TBW varied, depending on the formula used, from 31.6 L to 39.6 L. Secondly, the SEE of the TBW-prediction was large (≈ 2.2 L, equivalent to 3 kg FFM), hampering the use of BIA in individual cases.

(Chapter 5) Although already widely used in prospective clinical studies (36-40), the applicability of BIA to measure changes in TBW and FFM is far from clear. Predominantly in obese individuals on a weight loss program, several investigators observed that its reliability was straight out disappointing (41-45).

To expand our knowledge on this issue, we measured changes in BIA-derived R in the patients participating in the longitudinal study described in chapter 7. In this study, TBW was assessed by deuterium dilution, which was thus used as a reference method for the validation of BIA.

Thirty-three patients were analyzed after an average follow-up of 11 weeks. Changes in TBWdeu occurred in both directions (mean +0.2 ± 1.6 L, range -3.3 to +3.1 L). BIA-derived Δ-R proved to be a significant predictor of Δ-TBWdeu (r² 0.48, P<0.0001, SEE 1.17 L). There were in this regard no significant differences between the patients with and without underweight.

We concluded therefore that in underweight and normal-weight cancer patients, BIA-derived Δ-R can be used to predict changes in TBW.

Nevertheless, there are also some pitfalls in the use of BIA to measure changes in body composition that need to be further discussed. First of all, on an individual level the reliability is poor in view of the relatively high SEE in relation to the TBW-changes observed. Secondly, based on literature data presently available, it seems likely that BIA is substantially less suitable to measure changes in body composition in situations where weight changes coincide with substantial fluid shifts. Thirdly, it is important to realize that the use of different prediction equations to calculate TBW from R not only leads to different absolute values of TBW, but also to different values of TBW-change. The larger the relative importance of R (or ht²/R) in the formula, the larger the assessed Δ-TBW for a given Δ-R will be. This inherent problem of quantification can only be circumvented by exclusively analyzing and reporting within- and between-group changes in R. When quantification is nevertheless desired, which probably often will be the case, we suggest to report in addition to (the analysis of) "crude" R values, the exact formula by which
TBW or FFM is calculated. Unfortunately, however, this is not at all common practice in prospective clinical studies to date.

(Chapter 6) In view of the negative effects of weight loss on quality of life, survival and treatment response, several agents have been tested for their ability to reverse the process of cancer cachexia. While agents like corticosteroids, cyproheptadine and hydrazine sulfate failed to influence weight loss in controlled human studies, synthetic progestagens -MA and MPA- were shown to improve appetite and weight, independent of tumor response, when used in the treatment of disseminated breast cancer (46,47). Subsequently, also several double-blind, placebo-controlled trials in non-hormone-sensitive cancer observed a favorable effect of MA on appetite (48-52). Some of these studies, though not all, also found a significant beneficial effect on weight (48,49,51). This weight effect was however only seen in a subgroup of patients, while a significant beneficial influence on average weight was not demonstrated. In addition, the effects of MA on quality of life were hardly investigated, at least not with the use of standard, well-validated quality of life instruments.

To generate further evidence regarding the usefulness of synthetic progestagens in the treatment of cancer cachexia, we conducted a multicenter, double-blind, placebo-controlled study in 206 patients suffering from advanced-stage, incurable, non-hormone-sensitive cancer. In this study, we investigated the effects of MPA (1000 mg/day) on appetite, weight and quality of life.

A beneficial effect of MPA on appetite was observed after both 6 weeks and 12 weeks of treatment. After 12 weeks, a mean weight gain of 0.6 kg was seen in the MPA group, versus an ongoing, mean weight loss of 1.4 kg in the placebo group. This difference was statistically significant. The results of a subgroup analysis suggested that patients who are weight losing but not yet cachectic may benefit most from MPA treatment. During the study, several areas of quality of life deteriorated in the total group of patients. With the exception of an improvement of appetite and possibly also a reduction in nausea and vomiting, no measurable beneficial effects of MPA on quality of life could however be demonstrated. The side effects profile of MPA was favorable: only a trend toward an increase in (usually mild) peripheral edema was observed. Survival analysis, based on the subset of patients that fully completed the 12 week study, indicated a median survival advantage of 3.4 months for patients who were treated with MPA. However, this finding did not reach statistical significance in the relatively small group of patients investigated.

Based on these results, we concluded that in advanced-stage, non-hormone-sensitive
cancer MPA exhibits a mild side effects profile, has a beneficial effect on appetite, and prevents further weight loss. General quality of life was however not clearly influenced. Several explanations for this negative finding might nevertheless be given. First, the magnitude of weight changes might have been too small to influence general quality of life, especially when the major part was fat (see chapter 7). Second, in many cancer patients overall quality of life might be affected more by factors related to tumor extension and progression per se, than by anorexia and weight loss. Third, the daily dose of 1000 mg MPA might have been too low to have an effect on mood. In a recent study by Beller et al., MA in a daily dose of 480 mg significantly improved mood and "overall quality of life" independent of weight change, while this (glucocorticoid-like?) effect was not observed when a daily dose of 160 mg (equivalent to MPA 1000 mg) was used (52).

Further studies are needed to investigate whether progestagens may prevent further weight loss and improve quality of life when the treatment is initiated earlier (i.e., from the moment a patient experiences involuntary weight loss), and continued longer. This design would also be appropriate to further clarify the effects of MPA on survival.

(Chapter 7) To investigate whether an MPA-induced improvement of appetite also results in an increase in food intake and whether the observed weight gain represents tissue mass and not just fluid retention, which is a reported side effect of synthetic progestagens (48,51,53), we conducted an additional study in 54 patients to investigate the effects of MPA on food intake and body composition. In addition, also the effects of MPA on REE were assessed.

In contrast with placebo treatment, 12 weeks of MPA led to an increase in energy intake that was significantly associated with an increase in fat mass. The increase in energy intake was the result of a significantly improved intake of both protein, fat and carbohydrates. FFM was not significantly influenced. In addition, MPA-treatment was associated with an increase in REE.

Based on these results, we concluded that MPA is able to significantly increase food intake and to concomitantly reverse fat loss in weight-losing patients with non-hormone-sensitive cancer. However, we were not able to show a beneficial effect on FFM.

Epilogue

When we overlook the whole spectrum of treatment modalities that have been investigated in cancer cachexia to date, we have to conclude that the synthetic progestagens are the only agents that have been shown to improve appetite and weight in double-blind,
placebo-controlled clinical trials (chapter 6). A disadvantage, however, remains the fact that these agents probably only affect fat mass (chapter 7), while particularly wasting of BCM is associated with a deterioration of performance status (chapter 2) and survival (54). There are, however, several promising agents that in future might prove to be able to specifically attenuate BCM-wasting, as their aim is to interfere directly with the underlying pathophysiology (chapter 2). Examples of such challenging compounds, all having specific anti-inflammatory-, anti-proteolytic- or protein-synthetic effects, are the n-3 fatty acids (55,56), non-steroidal anti-inflammatory drugs (NSAID's, [57,58]), insulin-like growth factor I (59), branched-chain amino acids (60-62), β2-adrenergic agonists (63,64) and melatonin (65). It might be hypothesized that a combination of one or more of these agents with synthetic progestagens and nutrition might not only be distinctly rational, but also highly effective.

REFERENCES

1. Theologides, A. Cancer cachexia. Cancer, 43: 2004-2012, 1979 (suppl).
2. DeWys, W.D., Begg, C., Lavin, P.T., Band, P.R., Bennett, J.M., Bertino, J.R., Cohen, M.H., Douglass, H.O., Engstrom, P.F., Edzlinti, E.Z., Horton, J., Johnson, G.J., Moertel, C.G., Oken, M.M., Perlat, C., Rosenbaum, C., Silverstein, M.N., Skeel, R.T., Sponzo, R.W., Tormey, D.C. Prognostic effect of weight loss prior to chemotherapy in cancer patients. Am. J. Med., 69: 491-497, 1980.
3. Warren, S. The immediate causes of death in cancer. Am. J. Med. Sci., 184: 610-615, 1932.
4. Inagaki, J., Rodriguez, V., Bodey, G.P. Causes of death in cancer patients. Cancer, 33: 568-573, 1974.
5. Costa, G., Bewley, P., Aragon, M., Siebold, J. Anorexia and weight loss in cancer patients. Cancer Treat. Rep., 65: 3-7, 1981 (suppl 5).
6. DeWys, W.D., Begg, C., Band, P., Tormey, D. The impact of malnutrition on treatment results in breast cancer. Cancer Treat. Rep., 65: 87-91, 1981 (suppl 5).
7. Meguid, M.M., Debons, D., Meguid, V., Hill, L.R., Terz, J.J. Complications of abdominal operations for malignant disease. Am. J. Surg., 156: 341-345, 1988.
8. Staal-van den Brekel, A.J., Schols, A.M., ten Velde, G.P., Buurman, W.A., Wouters, E.F. Analysis of the energy balance in lung cancer patients. Cancer Res., 54: 6430-6433, 1994.
9. Kern, K.A., Norton, J.A. Cancer cachexia. JPEN, 12: 286-298, 1988.
10. Beck, S.A., Groundwater, P., Barton, C., Tisdale, M.J. Alterations in serum lipolytic activity of cancer patients with response to therapy. Br. J. Cancer, 62: 822-825, 1990.
Onvrijwillig gewichtsverlies is een veel voorkomende complicatie van kanker. Wanneer dit gewichtsverlies ernstige vormen aannenmt, wordt gesproken van cachexie. Aangezien het optreden van cachexie een negatieve invloed heeft op kwaliteit van leven, overlevingsduur en succeskans van behandeling, is deze complicatie van evident klinisch belang. De frequentie van voorkomen van cachexie is niet voor alle tumorvormen hetzelfde. Tumoren waarbij ernstig gewichtsverlies met name wordt gezien zijn longtumoren en tumoren van alvleesklier, maag en darmen.

De ontstaanswijze van kanker-gerelateerd gewichtsverlies is slechts ten dele opgehelderd. Voornamelijk vastgesteld in dierproeven lijkt een complex van factoren een rol te spelen. Tot deze factoren behoren een algemene toename van ontsstekingsactiviteit in het lichaam, het door de tumor in omloop brengen van stoffen die leiden tot vet- en eiwitafbraak, een toegenomen produktie van glucose uit lactaat door de lever (een zeer energie-inefficiënt proces), en een verminderde voedsel-inname.

Bij kanker cachexie is niet alleen de mate van gewichtsverlies van belang, maar ook de samenstelling hiervan. Volgens een zogenaamd "4-compartimenten model" bestaat het (mannelijk) lichaam bij benadering uit 20% vet, 45% celmassa, 30% extracellulair water en 5% extracellulaire solide componenten (voornamelijk botmineraal). Waar gewichtsverlies als gevolg van hongeren voor het overgrote deel bestaat uit vet, bestaat kanker-gerelateerd gewichtsverlies voor de helft uit vet en voor de helft uit lichaams-celmassa. Aangezien nagenoeg alle weefsels die onmisbaar zijn voor een normaal functioneren van het lichaam onderdeel uitmaken van die lichaams-celmassa (spieren, organen), mag worden aangenomen dat met name het celmassa-verlies bij kanker in belangrijke mate verantwoordelijk is voor de negatieve effecten van gewichtsverlies op kwaliteit van leven en overleving.

Ondanks het feit dat het afgelopen decennium veel onderzoek is gedaan naar geneesmiddelen die het optredende gewichtsverlies bij kanker kunnen stoppen of voorkomen, zijn er voor de klinische praktijk nog weinig bruikbare middelen beschikbaar.

Dit proefschrift is gebaseerd op zes studies op het gebied van kanker cachexie: twee studies onderzochten vraagstellingen op het gebied van de ontstaanswijze van kanker cachexie (hoofdstuk 2 en 3), twee studies bestudeerden de betrouwbaarheid van een bepaalde meetmethode om bij cachectische kanker-patiënten de lichaamssamenstelling te
meten (hoofdstuk 4 en 5), en twee studies onderzochten het mogelijke therapeutische effect van het geneesmiddel medroxyprogesteron acetaat (hoofdstuk 6 en 7).

In Hoofdstuk 2 wordt het onderzoek beschreven naar factoren die mogelijk specifiek geassocieerd zouden kunnen zijn met het optreden van lichaams-celmassa-verlies bij kanker. Het belang van dit onderzoek was enerzijds het feit dat vergelijkbare studies tot op dat moment wel in dierproeven, maar nog niet bij de mens waren uitgevoerd, en anderzijds dat het verder ophelderen van de ontstaanswijze van kanker-gerelateerd celmassa-verlies het zoeken naar meer specifieke therapeutische interventies belangrijk zou kunnen stimuleren. In een groep van 20 mannelijke longkanker patiënten werd aangetoond dat verlies van lichaams-celmassa samenhangt met het bestaan van een toegenomen algemene ontstekingsactiviteit in het lichaam (gemeten via de bloedconcentratie van receptoren voor het cytokine "tumor-necrosis-factor"), een toegenomen produktie van acute-fase eiwitten door de lever (gemeten via de bloed-concentratie van het acute-fase eiwit "LPS-binding protein"), het bestaan van een verhoogde ruststofwisseling, en verlaagde bloed-spiegels van het spier-opbouwende hormoon "insulin-like growth factor 1". Tevens waren er aanwijzingen dat de toegenomen produktie van acute-fase eiwitten (waarvoor als grondstof spier-eiwitten worden gebruikt) en de verhoogde ruststofwisseling op hun beurt samenhangen met de toegenomen gegeeneraliseerde ontstekingsactiviteit.

In Hoofdstuk 3 wordt de studie beschreven die onderzocht of stoornissen in het "leptin-feedback-mechanisme" een rol zouden kunnen spelen bij het ontstaan van kanker cachexie. Leptin is een hormoon dat geproduceerd wordt door vetcellen. Een toename van vetweefsel leidt tot een toename van leptin produktie, hetgeen via beïnvloeding van het eetcentrum in de hersenen, gelegen in de hypothalamus, leidt (in diermodellen) tot een verminderde eetlust/voedsel-inname en een toegenomen ruststofwisseling. Doordat dit feedback mechanisme zal vervolgens de vetmassa weer afnemen. Aangezien de produktie van leptin gestimuleerd kan worden door verschillende ontstekingsmediatoren zoals deze ook bij kanker cachexie een rol lijken te spelen, werd in de literatuur de hypothese naar voren gebracht dat relatief verhoogde leptin-spiegels (leidend tot eetlust-gebrek en hypermetabolisme) mogelijk een rol zouden kunnen spelen in het ontstaan van kanker cachexie. Wij onderzochten deze hypothese in 21 mannelijke longkanker patiënten. De hypothese werd echter niet bevestigd: de patiënten met veel gewichtsverlies en een lage vetmassa bleken onmeetbaar lage leptin spiegels te hebben, hetgeen aangeeft dat het afferente deel van het feedback mechanisme normaal functioneerde. Het feit dat onmeetbare leptin spiegels niet gepaard gingen met een toename van eetlust en een daling van het rustmetabolisme deed veleer vermoeiden dat het leptin feedback-mechanisme
gestoord was op hypothalamus-niveau.

In Hoofdstuk 4 en 5 worden de onderzoeken beschreven die de betrouwbaarheid onderzochten van bioelektrische impedantie analyse (BIA) voor het meten van (veranderingen in-) de lichaamssamenstelling bij kanker. BIA is in principe één van de weinige meettechnieken die aantrekkelijk zijn voor gebruik in de "dagelijkse praktijk" aangezien zij goedkoop is, zonder veel specifieke expertise kan worden uitgevoerd, en nauwelijks een belasting vormt voor de patiënt. Het principe van BIA komt erop neer dat wanneer een zwakke stroom door het lichaam loopt, deze geheel door het lichaamsweefsel wordt voortgedreven, en dat de gemeten weerstand gerelateerd is aan de omvang van het totale lichaamswater (TBW). Wanneer wordt aangenomen dat TBW een vast percentage (73%) vormt van de vet-vrije massa, kan via het meten van de weerstand niet alleen TBW (via een regressie-vergelijking met hierin de weerstand als voorspellende variabele), maar ook de vet-vrije massa en (uitgaande van een 2-compartimenten model) de vetmassa (gewicht minus vet-vrije massa) worden bepaald. Dat deze redenering klopt werd voor gezonde vrijwilligers in een groot aantal studies aangetoond. Er was tot voor kort echter nauwelijks iets bekend of een en ander ook zou gelden voor individuen met ondergewicht. Hiernaast werd door verschillende onderzoekers openlijk betwijfelijk, grotendeels op basis van teleurstellende resultaten van studies in dieet-houdende patiënten met overgewicht, of BIA in staat is om veranderingen in de grootte van de verschillende lichaams-compartmenten te meten. Ondanks dit laatste wordt BIA momenteel op grote schaal toegepast in klinische studies waarin veranderingen in de lichaamssamenstelling centraal staan. De conclusie van onze onderzoeken was dat de gemeten weerstand, en veranderingen hierin, op groepsniveau op betrouwbare wijze (veranderingen in-) TBW voorspellen. Er werden echter ook een aantal nadelen van de techniek geconstateerd. Op de eerste plaats bleek dat wanneer in patiënten met ondergewicht voorspellingsvergelijkingen gebruikt worden die ontwikkeld zijn bij individuen met een normaal gewicht, TBW systematisch wordt overschat. Op de tweede plaats werd vastgesteld dat wanneer een bepaalde (verandering in-) weerstand wordt gemeten, de berekende (verandering in-) TBW of vet-vrije massa sterk variëert afhankelijk van de gekozen voorspellingsformule, waarvan er inmiddels vele in de literatuur zijn gepubliceerd. Op de derde plaats bleek BIA onbetrouwbaar voor het meten van (veranderingen in-) TBW op individueel niveau.

In Hoofdstuk 6 en 7 worden de onderzoeken beschreven die de effecten van het synthetische progestageen medroxyprogesteron acetaat (MPA) onderzochten op de eetlust, de voedsel-inname, het gewicht, de lichaamssamenstelling, het rustmetabolisme en de kwaliteit van leven bij patiënten met een vergevorderd stadium van een niet-hormoon-
gevoelige vorm van kanker. Beide onderzoeken hadden een gerandomiseerd, dubbel-blind, placebo-gecontroleerd karakter. De effecten van MPA (2 dd 500 mg) op eetlust, gewicht en kwaliteit van leven (EORTC-QLQ-C30: gevalideerde kanker-specifieke vragenlijst) werden gemeten in 206 patiënten in multicenter verband; de effecten van MPA op voedsel-inname (dieet-analyse via "diet-history methode"), lichaamssamenstelling (vetmassa en vet-vrije massa via "deuterium-dilutie") en ruststofwisseling werden onderzocht in een subgroep van 54 patiënten. De totale studieduur bedroeg 12 weken. De studies werden verricht omdat uit eerdere onderzoeken gebleken was dat synthetische progestagenen bij de behandeling van gemetastaseerde borstkanker, onafhankelijk van het anti-tumor effect, een toename van de eetlust en het gewicht bleken te veroorzaken. In vergelijking met placebo bleek MPA een significant gunstig effect te hebben op de eetlust, de voedsel-inname en het gewicht. Het onderzoek van de lichaamssamenstelling leverde op dat de gewichtstoename nagenoeg geheel was toe te schrijven aan een toename van de vetmassa. De vet-vrije massa verbeterde niet. Het rustmetabolisme vertoonde een stijging onder MPA. Het bijwerkingen-profiel van MPA was gunstig: er was alleen een trend tot het ontwikkelen van (merendeels mild) oedeem. Er werd, met uitzondering van een verbeterde eetlust en een trend tot minder misselijkheid en braken, geen duidelijk effect van MPA waargenomen op de algemene kwaliteit van leven gemeten met de EORTC-vragenlijst.

Epiloog

Wanneer het hele spectrum van behandelingsmogelijkheden voor het kanker-cachexie-syndroom wordt overzien, dan moet worden geconcludeerd dat synthetische progestagenen tot op heden de enige middelen zijn waarvan in dubbel-blind, placebo-gecontroleerd onderzoek is aangetoond dat ze de eetlust en het gewicht in gunstige zin beïnvloeden. Een nadeel blijft vooral het feit dat ze alleen de vetmassa lijken te verbeteren, terwijl juist het verlies van lichaams-celmassa geassocieerd is met een achteruitgang van het fysieke functioneren en de overleving. Er zijn echter verschillende veelbelovende stoffen waarvan in de toekomst wellicht kan worden aangetoond dat ze het lichaams-celmassa-verlies kunnen remmen, aangezien ze direct aangrijpen op pathofysiologische mechanismen die aan dit celmassa-verlies ten grondslag liggen. Voorbeelden van dergelijke middelen, alle met een specifieke ontstekingsremmende-, eiwit-afbraak-remmende- of eiwit-opbouwende werking, zijn n-3 vetzuren, NSAID's, insulin-like growth factor I, vertakte-keten aminozuren, β3-adrenerge agonisten en melatonine. Een combinatie van een of meer van deze middelen met synthetische progestagenen en voeding zou in de toekomst wel eens
Nederlandstalige samenvatting

niet alleen een zeer rationele behandeling kunnen blijken, maar ook een bijzonder effectieve.