Oxidative and Non-Oxidative Antimicrobial Activities of the Granzymes

Marilyne Lavergne1, Maria Andrea Hernández-Castañeda2, Pierre-Yves Mantel1, Denis Martinvalet3,4 and Michael Walch1*

1 Department of Oncology, Microbiology and Immunology, Anatomy Unit, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland, 2 Division Infectious Disease and International Medicine, Department of Medicine, Center for Immunology, Minneapolis, MN, United States, 3 Department of Biomedical Sciences, Venetian Institute of Molecular Medicine, Padova, Italy, 4 Department of Biomedical Sciences, University of Padua, Padova, Italy

Cell-mediated cytotoxicity is an essential immune defense mechanism to fight against viral, bacterial or parasitic infections. Upon recognition of an infected target cell, killer lymphocytes form an immunological synapse to release the content of their cytotoxic granules. Cytotoxic granules of humans contain two membrane-disrupting proteins, perforin and granulysin, as well as a homologous family of five death-inducing serine proteases, the granzymes. The granzymes, after delivery into infected host cells by the membrane disrupting proteins, may contribute to the clearance of microbial pathogens through different mechanisms. The granzymes can induce host cell apoptosis, which deprives intracellular pathogens of their protective niche, therefore limiting their replication. However, many obligate intracellular pathogens have evolved mechanisms to inhibit programmed cells death. To overcome these limitations, the granzymes can exert non-cytolytic antimicrobial activities by directly degrading microbial substrates or hijacked host proteins crucial for the replication or survival of the pathogens. The granzymes may also attack factors that mediate microbial virulence, therefore directly affecting their pathogenicity. Many mechanisms applied by the granzymes to eliminate infected cells and microbial pathogens rely on the induction of reactive oxygen species. These reactive oxygen species may be directly cytotoxic or enhance death programs triggered by the granzymes. Here, in the light of the latest advances, we review the antimicrobial activities of the granzymes in regards to their cytolytic and non-cytolytic activities to inhibit pathogen replication and invasion. We also discuss how reactive oxygen species contribute to the various antimicrobial mechanisms exerted by the granzymes.

Keywords: granzymes, ROS - reactive oxygen species, caspases, antimicrobial defense, apoptosis, mitochondria

INTRODUCTION

A key mechanism against intracellular pathogens, such as viruses, bacteria and parasites, is cell-mediated cytotoxicity exerted by killer lymphocytes of the innate and adaptive immune systems (1, 2). When these cytotoxic immune cells recognize cells infected with intracellular pathogens, they release their cytotoxic granule contents to eliminate the target cells and the intracellular pathogen.
Cytotoxicity is mediated by a group of highly homologous serine proteases, the granzymes (Gzms), that are localized in specialized lysosomes of the killer cells (3). The best-established biological role of the Gzms is the induction of programmed cell death when these cytotoxic proteases are delivered into the target cells by perforin (PFN) (4–6). PFN is a pore-forming protein (7) that facilitates the uptake of other cytolytic granule components by enhancing endocytic uptake (8–10) and promoting endosomalysis to allow cytosolic release (11) (Figure 1). Lymphocytic cytotoxic granules of humans and some other mammals, but not rodents, contain another membrane-disrupting protein, granulysin (GNLY) (14). GNLY belongs to the saposin-like protein family (SAPLIP) that is characterized by a particular polypeptide motif and its affinity to a variety of lipids (15). GNLY was found to disrupt prokaryotic (but not eukaryotic (16, 17)) membranes and to kill bacteria, parasites and fungi in vitro (18).

While the Gzms-mediated induction of host cell apoptosis is well established, the mechanisms of intracellular pathogen elimination is far less clear constituting an emerging field in recent years. The most obvious mechanism is that host cell death deprives intracellular pathogens of their protective niche. Host cell death plays a major role in the elimination of many viruses (19) and obligate intracellular bacteria, such as Chlamydia spp (20, 21). These kind of pathogens counteract the host cell death machinery with a variety of inhibitory mechanisms, such as prevention of cytochrome C release (22) or the upregulation and/or mimicry of host anti-apoptotic proteins (23–25).

In addition to the induction of cell death, a direct mechanism of antimicrobial activities by the Gzms was discovered in numerous studies, which is mediated by the proteolytic degradation of microbial proteins to activate microbial death pathways, hence, limiting their growth inside a host, independently of host cell death. In this review, we aim to dissect these mechanisms with a particular focus on oxidative versus non-oxidative killing pathways.

THE GRANZYMES

The Gzms are a family of serine proteases firstly described by the team of Jürg Tschopp in 1986, who identified “granular enzymes” in the secretory granules of cytolytic lymphocytes (26). There are 5 human Gzms (A, B, H, K and M) and 10 mouse orthologues (A, B, C, D, E, F, G, K, M and N). The human Gzms are encoded from three different chromosomal loci: the chymase locus on chromosome 14 encodes for GzmB and GzmH, the met-ase locus on chromosome 19 for GzmM, and the trypase locus on chromosome 5 harbors GzmA and GzmK (27). Although the human Gzms are highly homologous and share the catalytic triad (His57, Asp102 and Ser195), there are remarkable differences in their primary substrate specificities (28). The trypases GzmA and GzmK cleave substrates after Arg or Lys (29, 30), GzmB cleaves after Asp (31), GzmH cleaves after Tyr or Phe (32), and GzmM cleaves after Leu or Met (33).

It is noteworthy that the Gzms, in particular GzmB, are not only expressed and secreted by killer lymphocytes. They were also detected in various non-cytotoxic immune cells (34), non-immune cells (35) and cancer cells (36–38). Interestingly, the non-cytolytic activities of granzyme B also modulate the differentiation of lymphoid cells via the interference with NOTCH1 signaling (39) or with production of IL-17 (40). As PFN is exclusively expressed in activated killer lymphocytes (41), the Gzms released from the above listed cells will exhibit predominantly extracellular effects. Potential activities include remodeling of extracellular matrix (42), modulating inflammation (43–45), detachment-mediated cell death, anoikis (46), and – as reviewed below – exerting antimicrobial activity against invading pathogens in synergy with antimicrobial peptides (AMPs) or by targeting secreted microbial proteins.

THE GRANZYMES IN CELL DEATH

Due to this diversity in the cleavage site specificity, all Gzms have their unique degradomes (47), resulting in the activation of widely differing death pathways in target cells after cytosolic delivery by PFN. The best characterized death pathways are those of GzmA (48) and GzmB (49). GzmB executes death in a caspase-dependent manner (50) (Figure 1). Once released into the cytosol of a target cell, GzmB can directly cleave several caspasas (51, 52), including caspase 3 (53). This executioner caspase trigger the release of an active DNase (CAD), responsible for DNA fragmentation upon various apoptotic stimuli (54). Human GzmB also efficiently cleaves the pro-apoptotic protein Bid (55). Truncated Bid induces Bad/Bax-dependent mitochondrial outer membrane permeabilization, the release of cytochrome C, SMAC/DIABLO, and other proteins, such as Htra2/omi, ultimately leading to apoptosome formation and activation of caspase 9 (56–61).

GzmA induces a cell death harboring morphological features similar to apoptosis: chromatin condensation, nuclear fragmentation, membrane blebbing, mitochondrial swelling and loss of cristae. However, GzmA does not activate executioner caspases to kill the cell. Cytosolic delivery of GzmA triggers a complex cascade of events that includes the translocation of a protein complex known as SET from the ER to the nucleus, ultimately leading to the nuclear transfer of two nucleases (NM23-H1 and Trex1) and lethal DNA damage (62–64). These pro-apoptotic features and mechanisms of GzmA were essentially established in the laboratory of Judy Lieberman (65).

An important common death mechanism of GzmA and GzmB is nuclear uptake to attack several nuclear proteins, involved in structural integrity, DNA repair and RNA splicing (66–72).

For the residual, “orphan” Gzms, caspase-dependency to induce death or even if the induction of apoptosis is their major function is still not clear and needs further study (73, 74). However, there are multiple lines of evidence suggesting that GzmM, GzmH and GzmK, as well as the non-orphan GzmA,
have well defined proinflammatory and antimicrobial roles as further discussed below (75–78).

OXIDATIVE CELL DEATH PATHWAYS DRIVEN BY THE GRANZYMES

A critical common feature of GzmA and GzmB death pathways is the mitochondrial uptake of these enzymes (Figure 1). Once in the mitochondria, the Gzms cleave four subunits of the respiratory chain complex I (NDUFS3, NDUFV1, NDUFS1 and NDUFS2). The disruption of the electron transport chain dramatically increases premature electron leakage, leading to the formation of reactive oxygen species (ROS), a decrease in mitochondrial respiration and the loss of cristae (79–81). Strikingly, caspase 3 also degrades a complex 1 subunit (NDUF1) to induce ROS-dependent cell death (82–84). In challenge of the orthodox mitochondrial import biology, GzmA and GzmB (and potentially caspase 3), without containing a canonical mitochondrial import sequence, cross the outer mitochondrial membrane through SAM50 channels and the inner membrane through TIM22 in a mtHSP70-dependent manner (85). The resulting increased ROS generation facilitates the release of apoptogenic factors through Bax/Bak pores and drives the nuclear translocation of the SET complex to enhance GzmB and GzmA death pathways, respectively. At least one study suggests that there might be additional, extra-mitochondrial sources of ROS induced by GzmB, in particular via the activation of NADPH-oxidase (86).

CYTOLYTIC ANTIMICROBIAL FUNCTIONS OF THE GRANZYMES

The induction of host cell death via the granule exocytosis pathway is an obvious effector mechanism used by killer lymphocytes to eliminate the host cells and obligate intracellular pathogens, such as viruses (87) and certain unicellular parasites (88) or bacteria (89). Suicidal death is an approved defense mechanism of cells infected with pathogens independently of a lymphocyte attack (90–92). Programed host cell death deprives the pathogens of their protective niche, minimizes the risk of dissemination as membrane integrity is initially preserved, and recruits and activates phagocytes to digest the remains (93). Therefore, it is not surprising that obligate

FIGURE 1 | Granzyme A and Granzyme B induce apoptosis of infected cells. The killer lymphocyte releases the content of its granules in the immunological synapse, i.e. the immune effectors granzyme A (GzmA), granzyme B (GzmB), perforin (PFN) and granulysin (GLY). The endocytosis of GzmA, GzmB, PFN and GLY in the infected cell is mediated by a PFN-dependent calcium (Ca²⁺) influx and relies on clathrin and dynamin. Once in the cytosol, GzmA and GzmB cleave various substrates. GzmB triggers the formation of Bax/Bak pores in the outer mitochondrial membrane by cleaving Bid (in truncated-Bid, t-Bid), Mcl-1 (which releases Bim) (12) and p53 (which inhibits Bcl2) (13). GzmB also directly cleaves and matures pro-caspase 3 (Pro-Casp3) into active caspase 3 (Casp3). GzmB and caspase 3 target similar substrates that induce apoptosis of the infected cell. GzmA and GzmB enter the mitochondria – via Sam50 and Tim22 – where they target subunits of the electron transport chain (ETC) complex I, leading to the production of reactive oxygen species (ROS). The ROS favor the release of apoptogenic factors through the Bax/Bak pores, such as cytochrome c (Cyt c), Smac, Htr2A and endonuclease G (Endo G) in the cytosol. Cyt c binds Apaf1 to form the apoptosome, which matures the pro-caspase 9 (pro-Casp9) into active caspase 9 (Casp9). It is noteworthy that caspase 3, either activated by GzmB or caspase 9, also reaches the mitochondria – via Sam50 – where it cleaves a subunit of ETC complex I, leading to the production of ROS. Following these events, ROS concentration increases in the cytosol of the infected cell. The cytosolic ROS are involved in the translocation of the SET complex from the endoplasmic reticulum (ER) to the nucleus, where it is cleaved by GzmA and turns into a DNA degrading complex. GzmA and GzmB also reach the nucleus where they cleave nuclear substrates, such as lamin B, histones and PARP-1.
intracellular pathogens evolved multiple mechanisms to counteract the death machinery, as already documented in a vast body of comprehensive reviewing literature (87, 94–97). More interesting in this particular context, the Gzms are capable to digest vital microbial substrates independently of host cell death that can directly affect pathogen survival as discussed below in the main focus of this reviewing article.

NON-CYTOLYTIC ANTIMICROBIAL FUNCTIONS OF THE GRANZYMES

Non-cytolytic, direct antimicrobial activities by the Gzms were primarily demonstrated in virus-infected cells (2). When the Gzms enter a virus-infected cell in a PFN-dependent manner, they will induce apoptosis to deprive the virus of its protective niche as described above. The induction of programmed cell death is often inefficient as many viruses evolved multiple pathways to inhibit the death machinery by means of caspase or Gzms inhibition, as well as by mimicking anti-apoptotic proteins, such as Bcl-2 (98–101). Nevertheless, the Gzms can effectively overcome this inhibition by targeting viral proteins or host proteins hijacked by the virus involved in viral replication. The laboratory of Markus Simon previously demonstrated that mouse GzmA cleaved and therefore inactivated the enzymatic activity of reverse transcriptase from Moloney murine leukemia virus. As reverse transcriptase activity is critical for the retroviral life cycle, GzmA might potentially interfere with retroviral replication (102).

In a report concerning adenovirus, GzmH was shown to proteolytically degrade adenovirus DNA-binding protein (DBP), a crucial viral component DNA replication (103). Interestingly, GzmH additionally directly inactivated L4-100K assembly protein crucial for viral assembly and also a potent inhibitor of GzmB (104), suggesting complex interaction of these serine proteases in virus-infected cells.

Also for the family of Herpesviridae, such as human cytomegalovirus (HCMV) or herpes simplex virus-1 (HSV-1), multiple viral substrates were identified that are targeted by the Gzms. GzmM interferes with HCMV replication independently of cell death by the proteolytic degradation of phosphoprotein 71, a HCMV protein critical for immediate-early protein expression (105). In more recent works, the same laboratory demonstrated that virus-specific T cells control HCMV replication in a non-cytolytic manner by the Gzms-mediated degradation of the HCMV immediate early proteins IE1 and IE2 (106), as well as of host cell hnRNP K, essential for HCMV replication (107).

GzmA deficiency in mice was associated with impaired control of HSV-1 in infected neurons (108). In addition, human GzmB cleaves the HSV-1 immediate-early protein ICP4, therefore potentially contributing to the non-cytolytic inhibition of viral reactivation in latently infected ganglion cells, mediated by HSV-1 specific T cells (109). In a more recent study, several novel HSV-1 GzmB substrates were identified, suggesting an even broader non-cytolytic role of GzmB in the control of Herpesviridae (110).

In conclusion, non-cytolytic, direct antimicrobial activities of the Gzms against viruses are well established. Viral substrates or, for viral replication, essential host factors that are targeted by the Gzms were identified for many additional viruses, such as vaccinia (111), hepatitis C (112) and hepatitis B (113), as well as influenza A virus (114).

Less is known for other intracellular pathogens, such as bacteria or parasites. In earlier work, we found that activating human naïve T cells with bacterial antigens not only triggered the expression of known antibacterial effectors, such as GNLY, interferon-γ or tumor necrosis factor-α, but also of the Gzms in remarkable high levels, in particular GzmB (115). These findings corroborated a previous study indicating elevated plasma levels of Gzma and GzmB in patients with bacterial infections or after endotoxin administration (116). By following up these works, we realized through functional antibacterial assays that Gzma, GzmB and GzmM (the other human Gzms were not tested) are potent antibacterial effectors when these enzymes are delivered into bacteria by GNLY (117, 118) (Figure 2). Building on these findings, a recent study demonstrated that the high levels of secreted GzmB and GNLY by activated mucosa-associated invariant T cells (MAIT) not only directly damage bacteria but also increase the susceptibility to carbapenems in multidrug resistant E. coli (119, 120). In addition, it was revealed that the three major effector molecules of cytotoxic lymphocytes (Gzms, GNLY and PFN) collaborate in a highly coordinated manner to kill intracellular bacteria, such as Listeria monocytogenes (121). The proteolytic activity of the Gzms is necessary to achieve this function, as mutations of their catalytic site impaired the killing of intracellular pathogens. These mutations were introduced by using a mammalian expression system, allowing the generation of comparable purifications of catalytically active and non-active Gzms (122). An unbiased proteomics search for GzmB substrates in several bacterial strains revealed a well-defined list of bacterial proteins, involved in multiple critical metabolic pathways, including protein synthesis and virulence (123). Indeed, extracellular Gzms degraded secreted bacterial virulence factors in absence of GNLY, overall decreasing virulence of the affected bacteria, therefore enabling bystander immune and non-immune cells to more efficiently eliminate the invading pathogens (124).

Interestingly, Gzms-mediated killing mechanisms after delivery by PFN and GNLY were also found against certain unicellular parasites, such as Plasmodium falciparum (125, 126). For the Plasmodium parasite, we found that the mechanism of Gzms delivery changed upon maturation of the intracelular pathogen in red blood cells (RBCs). While early stage infected RBCs (rings and trophozoites) are susceptible to PFN and resistant to GNLY, late stages (schizonts) display the opposite behavior due to membrane cholesterol depletion and increased phosphatidylserine exposure upon parasite maturation (Figure 3) (127). Also for Toxoplasma gondii and Trypanosoma cruzi, a PFN- and GNLY-dependent delivery mechanism of the Gzms was revealed that induced a death pathway in the parasites,
FIGURE 2 | Granzyme-mediated death pathways in bacteria. To fight intracellular bacteria, Gzms and GNLY are delivered into infected cells in a PFN dependent manner. GNLY then forms pores in bacterial membranes, allowing the entry of the Gzms into the bacterial cytosol. GzmB cleaves the catalytic subunits of electron transport chain (ETC) complex I, as well as bacterial proteins involved in antioxidant defense, generating ROS that induce membrane lipid oxidation, DNA damage and protein oxidation. GzmB also targets various bacterial proteins involved in protein synthesis, folding and degradation. Independently of GNLY, extracellular GzmB directly targets external bacterial components, such as secretion systems, membrane proteins and secreted virulence factors to attenuate virulence and, consequently, to facilitate bacterial elimination in bystander cells.

FIGURE 3 | Granzyme B released by γδ T cells contributes to anti-malaria defense. The particular killer lymphocyte subset bearing the γδ T receptor forms an immunological synapse with Plasmodium falciparum-infected red blood cells (iRBC). In early stage iRBC, the plasma membrane contains cholesterol-enriched lipid rafts and the negatively charged phosphatidylserine (PS) is predominantly present in the inner leaflet. At that early stage, PFN can form membrane pores allowing the entry of Gzms, while being resistant to GNLY lysis. For late stage iRBC, cholesterol depletion allows the GNLY to disrupt the membrane while the surface exposure of PS inhibits the formation of PFN pores. Once in the iRBC, GzmB induces dramatic morphological alterations of late stage parasites (schizonts), notably the detachment of the parasitophorous vacuole (PV). Moreover, GzmB inhibits ATP production and decreases the mitochondrial membrane potential of the parasite. At the end of the parasite growth cycle, the rupture of iRBC plasma membrane leads to merozoites egress. GNLY also disrupts the membrane of the merozoite, allowing the entry of GzmB in the parasite.
displaying morphological features highly similar to mammalian apoptosis (Figure 4) (128).

OXIDATIVE ANTIMICROBIAL FUNCTIONS OF THE GRANZYMES

As for the cytolytic activities of the Gzms, the induction of ROS seems to be a critical merging point in the antimicrobial mechanisms against various pathogens. In *E. coli*, the Gzms attacked homologous subunits of the respiratory chain complex-1, as in mammalian mitochondria, suggesting an evolutionary well-conserved killing mechanism. The premature electron leakage from the disrupted respiratory machinery in combination with the GzmB proteolysis of important antioxidant defense enzymes, such as superoxide dismutase and catalase, triggered lethal ROS levels in the affected bacteria (118). GzmB also extensively targeted the ROS defense machinery in the proteome of *Mycobacteria tuberculosis, Listeria monocytogenes*, as well as *Salmonella typhimurium*, suggesting that oxidative mechanisms also play a central role in the GzmB-mediated death pathways in these bacterial pathogens (123, 124). Major antioxidant enzymes were also degraded by GzmB in the unicellular parasites, *Plasmodium falciparum, Toxoplasma gondii* and *Trypanosoma cruzi* (125, 128). For the latter parasites, a dominant role of ROS in the killing mechanism was indicated by several lines of evidence: 1. ROS were produced in response to GzmB after delivery with pore forming proteins, 2. ROS scavengers efficiently inhibited the killing, and 3. GzmB uncleavable point mutations in major antioxidant defense enzymes slowed down the death pathway (128). GzmB delivery into unicellular parasites also clearly affect the mitochondria as indicated in morphological alterations, loss of mitochondrial membrane potential and decreased ATP production (125, 128).

CONCLUSIONS

Though this particular field of research is only developing and further study is necessary, we think it is fair to state that the Gzms exert potent antimicrobial activities by direct proteolysis of vital microbial substrates that are crucial for their replication. Best studied so far in virus-infected cells; however, numerous studies indicate that the Gzms can also lethally affect intracellular bacteria and unicellular parasites by means that are independent of host cell cytolysis. Mitochondria and increased ROS generation seem to be on center stage in GzmB-mediated death pathways in mammalian cells and unicellular parasites. As mitochondria originated from endosymbiotic alpha-proteobacteria, it was not surprising to find respiratory chain disruption by the Gzms in modern living bacteria. To what exact extent these ROS contribute to the killing pathways of the different microbes and mammalian cells is still a matter of debate and needs further study. Nonetheless, there is little doubt that ROS pathways seem to be a highly conserved target in GzmB-mediated death pathways in various species that are evolutionarily far apart.

AUTHOR CONTRIBUTIONS

MW conceived the concept. ML, MH-C, P-YM, DM and MW researched the literature, wrote, edited and revised the
manuscript. ML designed and illustrated the figures. All authors contributed to the article and approved the submitted version.

FUNDING

This work was supported by the Swiss National Science Foundation (SNSF grant # 310030_169928), the Novartis Foundation for Medical-Biological Research (Novartis grant # 20B136), and the Vontobel-Foundation (all to MW).

REFERENCES

1. Barry M, Bleackley RC. Cytotoxic T Lymphocytes: All Roads Lead to Death. Nat Rev Immunol (2002) 2(6):401–9. doi: 10.1038/nri819
2. Russell JH, Ley TJ. Lymphocyte-Mediated Cytotoxicity. Annu Rev Immunol (2002) 20:323–70. doi: 10.1146/annurev.immunol.20.100201.131730
3. Trapani JA. Granzymes: A Family of Lymphocyte Granule Serine Proteases. Genome Biol (2001) 2(12):REVIEW3014. doi: 10.1186/gb-2001-2-12-reviews3014
4. Lowin B, Peitsch MC, Tschopp J. Perforin and Granzymes: Crucial Effector Molecules in Cytolytic T Lymphocyte and Natural Killer Cell-Mediated Cytotoxicity. Curr Top Microbiol Immunol (1995) 198:1–24. doi: 10.1007/978-3-642-79414-8_1
5. Froelich CJ, Dictz VM, Yang X. Lymphocyte Granule-Mediated Apoptosis: Matters of Viral Mimicry and Deadly Reactions. Immunol Today (1998) 19(1):30–6. doi: 10.1016/S0167-5699(97)01184-5
6. Podack ER, Lowrey DM, Lichtenheld M, Hameed A, Hengartner H, et al. Structure and Function of Human Perforin. Nature (1988) 335(6189):448–51. doi: 10.1038/335448a0
7. Lichtenheld MG, Olsen KJ, Lu P, Lowrey DM, Hameed A, Hengartner H, et al. Analysis, interpretation of data, the writing of this article or the decision to submit it for publication.

The funders were not involved in the study design, collection, analysis, interpretation of data, the writing of this article or the decision to submit it for publication.

ACKNOWLEDGMENTS

Figures were illustrated using SMART (Servier Medical Art), licensed under a Creative Common Attribution 3.0 Generic License. http://smart.servier.com/.
Lavergne et al. Antimicrobial Activities of the Granzymes

32. Wang L, Zhang K, Wu L, Liu S, Zhang H, Zhou Q, et al. Structural Insights Into the Substrate Specificity of Human Granzyme H: The Functional Roles of a Novel RKR Motif. J Immunol (2012) 188(2):765–73. doi: 10.4049/jimmunol.1101381

33. de Poot SA, Westgeest M, Hostetter DR, Van Damme P, Plasman K, Demeuer K, et al. Human and Mouse Granzyme M Display Divergent and Species-Specific Substrate Specificities. Biochem J (2011) 437(3):431–42. doi: 10.1042/BJ20110210

34. Elavazhagan S, Fatechand K, Santhaman V, Fang H, Ren L, Gautam S, et al. Granzyme B Expression Is Enhanced in Human Monocytes by TLR8 Agonists and Contributes to Antibody-Dependent Cellular Cytotoxicity. J Immunol (2015) 194(6):2786–95. doi: 10.4049/jimmunol.1402316

35. Boivin WA, Cooper DM, Hiebert PR, Granville DJ. Intracellular Versus Extracellular Granzyme B in Immunity and Disease: Challenging the Dogma. Lab Invest (2009) 89(11):1195–220. doi: 10.1038/lab.2009.91

36. D’Eliseo D, Pisu P, Romano C, Tubaro A, De Nunzio C, Morrone S, et al. Granzyme B Is Expressed in Urothelial Carcinoma and Promotes Cancer Cell Invasion. Int J Cancer (2010) 127(6):1283–94. doi: 10.1002/ijc.25135

37. Pearson JD, Zhang J, Wu Z, Sun Q, Wu Y, Wang L, Zhou C, Ma W, et al. Granzyme M Is Expressed by Tumor Cells Promotes Chemoresistance and EMT In Vitro and Metastasis In Vivo Associated with Stat3 Activation. Oncotarget (2015) 6(8):5818–31. doi: 10.18632/oncottonarget.3461

38. Ettersperger J, Montcuquet N, Malamut G, Guegan N, Lopez-Lastra S, Gayraud S, et al. Interleukin-15-Dependent T-Cell-Like Innate Lymphocytes Promote Chemotherapy Resistance in Solid Tumors through a Myeloid-Derived Inducer of Immune Tolerance. J Immunol (2016) 197(2):681–91. doi: 10.4049/jimmunol.1502441

39. Moon H, Sun C, Cho D, Jeong H, Kim J, Kim JS, et al. Human and Mouse Granzyme B Have Distinct Tetrapeptide Specificities and Abilities to Recruit the Bid Pathway. J Biol Chem (2005) 280(25):23549–56. doi: 10.1074/jbc.M503212200

40. Fan Z, Beresford PJ, Oh DY, Zhang D, Lieberman J. Tumor Suppressor Nm23-H1 Is a Granzyme A-Activated Dnase During CTL-Mediated Apoptosis. J Biol Chem (2005) 280(6):5476–82. doi: 10.1074/jbc.M410985200

41. Goping IS, Barry M, Liston P, Sawchuk T, Constantinescu G, Michalak KM, et al. Granzyme B-Induced Apoptosis Requires Both Direct Cleavage of Bid, But Not Direct Granzyme B-Mediated Caspase Activation. J Exp Med (2002) 196(10):1403–14. doi: 10.1084/jem.192.10.1403

42. Castiglione-Calvo M, Bull HG, Becker JW, Hines T, Thornberry NA, et al. Mouse and Human Granzyme B Have Distinct Tetrapeptide Specificities and Abilities to Recruit the Bid Pathway. J Biol Chem (2007) 282(7):4545–52. doi: 10.1074/jbc.M606564200

43. Waterhouse NJ, Sedelies KA, Brown SA, Wowk ME, Newbold A, Sutton VR, et al. A Central Role for Bid in Granzyme B-Induced Apoptosis. J Biol Chem (2005) 280(6):4476–82. doi: 10.1074/jbc.M410985200

44. Goping IS, Sawchuk T, Constantinescu G, Michalak KM, et al. Granzyme B-Induced Apoptosis Requires Both Direct Caspase Activation and Relief of Caspase Inhibition. J Immunol (2003) 183(5):355–65. doi: 10.4049/jimmunol.173.10.3555

45. Sutton VR, Wowk ME, Cancilla M, Trapani JA. Caspase Activation by Granzyme B Is Indirect, and Caspase Autoprocessing Requires the Release of Proapoptotic Mitochondrial Factors. J Immunol (2003) 173(3):219–29. doi: 10.4049/jimmunol.173.3.219

46. Waterhouse NJ, Sedelies KA, Sutton VR, Pinkoski MJ, Thia KY, Johnstone R, et al. Functional Dissociation of Deltapsin and Cytochrome C Release Defines the Contribution of Mitochondria Upstream of Caspase Activation During Granzyme B-Induced Apoptosis. Cell Death Differ (2006) 13(4):607–18. doi: 10.1038/sj.cdd.4401772

47. Ekert PG, Silke J, Hawkins CJ, Verhagen AM, Vaux DL. Granzyme B-Mediated Apoptosis Requires Removal of MIHA/XIAP From Processed Caspase 9. J Biol Chem (2001) 276(3):483–90. doi: 10.1074/jbc.192.10.1403

48. Chen H, Beresford PJ, Zhu P, Zhang D, Lieberman J. Death by a Thousand Cuts: Granzyme B Promotes Apoptosis by Directly Cleave Lamins and Disrupt the Nuclear Lamina During Granule-Dependent Apoptosis. J Biol Chem (2005) 280(25):23549–56. doi: 10.1074/jbc.M503212200

49. van Domselaar R, de Poot SA, Bovenschen N. Proteomic Profiling of Proteases: Tools for Granzyme Degradomics. Expert Rev Proteomics (2010) 7(3):347–59. doi: 10.1586/expr.10.24

50. Martinvalet D, Thiery J, Chowdhury D. Granzymes and Cell Death. Methods Enzymol (2008) 442:213–30. doi: 10.1016/S0076-6879(08)01411-0

51. Shresta S, Heusel JW, Macivor DM, Wesselschmidt RL, Russell JH, Ley TJ. Granzyme B Plays a Critical Role in Cytotoxic Lymphocyte-Induced Apoptosis. Immunol Rev (1995) 146:211–21. doi: 10.1002/8756.1995.06069x

52. Greenberg AH. Activation of Apoptosis Pathways by Granzyme B. Cell Death Differ (1996) 3(3):269–74.
Lavergne et al. Antimicrobial Activities of the Granzymes

Lavergne et al. Antimicrobial Activities of the Granzymes

69. Thomas MP, Whangbo J, McCrossan G, Deutsch AJ, Martinod K, Walsh M, et al. Leukocyte Protease Binding to Nucleic Acids Promotes Nuclear Localization and Cleavage of Nucleic Acid Binding Proteins. J Immunol (2014) 192(11):5390–7. doi: 10.4049/jimmunol.1303296

70. Frodluch CJ, Hanna WL, Poirier GG, Duriez PJ, D’Amours D, Salvesen GS, et al. Granzyme B/perforin-Mediated Apoptosis of Jurkat Cells Results in Cleavage of Poly(ADP-Ribose) Polymerase to the 89-kDa Apoptotic Fragment and Less Abundant 64-kDa Fragment. Biochem Biophys Res Commun (1996) 227(3):658–65. doi: 10.1006/bbrc.1996.1565

71. Ians DA, Ians P, Briggs LJ, Sutton V, Trapani JA. Nuclear Transport of Granzyme B (Fragmentin-2). Dependence of Perforin In Vivo and Cytoytic Factors In Vitro. J Biol Chem (1996) 271(48):30781–9. doi: 10.1074/jbc.271.48.30781

72. Zhang B, Pasternack MS, Beresford PJ, Wagner L, Greenberg AH, et al. Mouse Granzyme K Has Pro-Inflammatory Potential. J Immunol (2011) 187(7):1112–9. doi: 10.1162/jci2011.5

73. Spencer CT, Abate G, Sakala IG, Xia M, Truscott SM, Eickhoff CS, et al. Caspase-Mediated Loss of Mitochondrial Electron Transport Chain. Is Mediated by Caspase Cleavage of the P75 Subunit of Complex I of the Mitochondria: The Case of Cytotoxic Proteases. Cell Death Differ (2003) 10:488–92. doi: 10.1038/sj.cdd.4401225

74. Bouwman AC, van Daalen KR, Crnko S, ten Broeke T, Bovenschen N. Granzyme B Enters the Mitochondria in a Sam50-, Tim22- and Mthsp70-Dependent Manner to Induce Apoptosis. Cell Death Differ (2015) 22(5):862–74. doi: 10.1038/cdd.2014.180

75. Labbe K, Saleh M. Cell Death in the Host Response to Infection. Cell Death Differ (2008) 15(9):1339–49. doi: 10.1038/cdd.2008.91

76. Ricci JE, Gottlieb RA, Green DR. Adenovirus L4-100K Assembly Protein Is a Granzyme B Substrate and Unlike CrmA Cannot Block Apoptosis in Cowpox Virus-Infected Cells. J Virol (1999) 73(8):6394–404.1999

77. Skaltskaya A, Bartle LM, Chittenden T, McCormick AL, Mocarski ES, et al. Disruption of Mitochondrial Function During Apoptosis Is Mediated by Caspase Cleavage of the P75 Subunit of Complex I of the Electron Transport Chain. Cell (2004) 117(6):773–86. doi: 10.1016/j.cell.2004.05.008

78. Thomas MP, Whangbo J, McCrossan G, Deutsch AJ, Martinod K, Walsh M, et al. Leukocyte Protease Binding to Nucleic Acids Promotes Nuclear Localization and Cleavage of Nucleic Acid Binding Proteins. J Immunol (2014) 192(11):5390–7. doi: 10.4049/jimmunol.1303296

79. Yi X, Zhao J, Wang X, Kong Z, Li C, et al. Target Protease With the Cell Death Machinery. J Internal Med (2010) 267(5):473–82. doi: 10.1111/j.1365-2796.2010.02222.x

80. Ivanoff B, Chakrabarti K, Green DR, Mouanda J, Simon MM. A Secretable Serine Protease Destroys Mitochondria: The Case of Cytotoxic Proteases. Cell Death Differ (2015) 22(5):862–74. doi: 10.1038/cdd.2014.180

81. Simon HG, Fruth U, Kramer MD, Simon MM. A Secretable Serine Protease With Highly Restricted Specificity From Cytolytic Lymphocytes-T Inactivates Retrovirus-Associated Reverse-Transcriptase. FEBs Lett (1987) 223(2):352–60. doi: 10.1016/0014-5793(87)80318-6

82. van Damsselaar R, Philipsen LE, Quadril R, Wiertz EJ, Kummer JA, Bovenschen N. Granzyme M Targets Host Cell hnRNP K That Is Essential for Viral DNA Replication and Granzyme B Inhibition. EMBO J (2007) 26(8):2148–57. doi: 10.1038/sj.emboj.7601650

83. van Damsselaar R, de Poot SA, Remmerswaal EB, Lai KW, ten Berge IJ, Bovenschen N. Granzyme M Targets Host Cell hnRNP K That Is Essential for Human Cytomegalovirus Replication. Cell Death Differ (2013) 20(3):419–29. doi: 10.1038/cdd.2012.132

84. Nishikawa Y, Makala L, Otsuka H, Mikami T, Nagasawa H. Mechanisms of Apoptosis in Murine Fibroblasts by Two Intracellular Protozoan Parasites, Toxoplasma Gondii and Neospora Caninum. Parasite Immunol (2002) 24(7):347–54. doi: 10.1046/j.1365-3024.2002.00476.x

85. DeRisi GS, Barcinski MA. Apoptosis and Paraisms: From the Parasite to the Host Immune Response. Adv Parasitol Vol 49 (2001) 49:133–61. doi: 10.1016/S0065-308X(01)49039-7

86. Thomas MP, Whangbo J, McCrossan G, Deutsch AJ, Martinod K, Walsh M, et al. Leukocyte Protease Binding to Nucleic Acids Promotes Nuclear Localization and Cleavage of Nucleic Acid Binding Proteins. J Immunol (2014) 192(11):5390–7. doi: 10.4049/jimmunol.1303296

87. Barber GN. Host Defense, Viruses and Apoptosis. Cell Death Differ (2001) 8(2):113–26. doi: 10.1038/sj.cdd.4400823

88. Thomas MP, Whangbo J, McCrossan G, Deutsch AJ, Martinod K, Walsh M, et al. Leukocyte Protease Binding to Nucleic Acids Promotes Nuclear Localization and Cleavage of Nucleic Acid Binding Proteins. J Immunol (2014) 192(11):5390–7. doi: 10.4049/jimmunol.1303296

89. Tommasino M, Pinto MA, Mocarski ES, et al. Myxoma Virus Serp2 Is a Weak Inhibitor of Granzyme B and Interleukin-1beta-Converting Enzyme In Vitro and Unlike CrmA Cannot Block Apoptosis in Cowpox Virus-Infected Cells. J Virol (1999) 73(8):6394–404.1999

90. van Domselaar R, de Poot SA, Remmerswaal EB, Lai KW, ten Berge IJ, Bovenschen N. Granzyme M Targets Host Cell hnRNP K That Is Essential for Viral DNA Replication and Granzyme B Inhibition. EMBO J (2007) 26(8):2148–57. doi: 10.1038/sj.emboj.7601650

91. Zychlinsky A, Sansonetti P. Apoptosis in Bacterial Pathogenesis. J Clin Invest (1997) 100(12):565–53. doi: 10.1172/JCI19557

92. van Domselaar R, Philippen LE, Quadir R, Wiertz EJ, Kummer JA, Bovenschen N. Granzyme M Targets Host Cell hnRNP K That Is Essential for Viral DNA Replication and Granzyme B Inhibition. EMBO J (2007) 26(8):2148–57. doi: 10.1038/sj.emboj.7601650
108. Pereira RA, Simon MM, Simmons A, Granzyme A, a Noncytolytic Component of CD8(+) Cell Granules, Restricts the Spread of Herpes Simplex Virus in the Peripheral Nervous Systems of Experimentally Infected Mice. *J Viral* (2000) 74(2):1029–32. doi: 10.1128/JVI.74.2.1029-1032.2000

109. Knickelbein JE, Khanna KM, Yee MB, Baty CJ, Kinchington PR, Hendricks RL. Noncytolytic Lytic Granule-Mediated CD8+ T Cell Inhibition of HSV-1 Reactivation From Neuronal Latency. *Science* (2008) 322(5899):268–71. doi: 10.1126/science.1164164

110. Gerada C, Steain M, Campbell TM, McSharry F, Abendroth A. Granzyme B Cleaves Multiple Herpes Simplex Virus 1 and Varicella-Zoster Virus (VZV) Gene Products, and VZV ORF4 Inhibits Natural Killer Cell Cytotoxicity. *J Viral* (2019) 93(2):e01140–19. doi: 10.1128/JVI.01140-19

111. Marcet-Palacios M, Duggan BL, Shostak I, Barry M, Geskes T, Wilkins JA, et al. Granzyme B Inhibits Vaccinia Virus Production Through Proteolytic Cleavage of Eukaryotic Initiation Factor 4 Gamma 3. *Plos Pathog* (2011) 7(12):e1002447. doi: 10.1371/journal.ppat.1002447

112. Romero V, Fellows E, Jenne DE, Andrade F. Cleavage of La Protein by Granzyme H Induces Cytoplasmic Translocation and Interferes With La-Mediated HCV-IRES Translational Activity. *Cell Death Differ* (2009) 16(2):340–8. doi: 10.1038/cdd.2008.165

113. Tang H, Li C, Wang L, Zhang H, Fan Z. Granzyme H of Cytotoxic Lymphocytes Is Required for Clearance of the Hepatitis B Virus Through Cleavage of the Hepatitis B Virus X Protein. *J Immunol* (2012) 188(2):824–31. doi: 10.4049/jimmunol.1102205

114. Zhong C, Li C, Wang X, Toyoda T, Gao G, Fan Z. Granzyme K Inhibits Complex Importin Alpha1/Beta Dimer of Infected Host Cells. *Cell Death Differ* (2014) 21(5):892–900. doi: 10.1038/cdd.2013.178

115. Walch M, Rampini SK, Stoeckli I, Latinovic-Golic S, Dumreics C, Sundstrom H, et al. Involvement of CD252 (CD134L) and IL-2 in the Expression of Cytotoxic Proteins in Bacterial- or Viral-Activated Human T Cells. *J Immunol* (2009) 182(12):7569–79. doi: 10.4049/jimmunol.0800296

116. Lauw FN, Simpson AJ, Hack CE, Prins JM, Wolbink AM, van Deventer SJ, et al. Soluble Granzymes Are Released During Human Endotoxemia and in Patients With Severe Infection Due to Gram-Negative Bacteria. *J Infect Dis* (2000) 182(1):206–13. doi: 10.1128/JID.182.1.206-13.2000

117. Leon DL, Fellay I, Mantel PY, Walch M. Killing Bacteria With Cytotoxic Effector Proteins of Human Killer Immune Cells Granzymes, Granulysin, and Perforin. *Methods Mol Biol* (2017) 1535:275–84. doi: 10.1007/978-1-4939-6673-8_18

118. Baltz M, Dotiwala F, Mulik S, Thiery J, Kirchhausen T, Clayberger C, et al. Cytotoxic Cells Kill Intracellular Bacteria Through Granulysin-Mediated Delivery of Granzymes. *Cell* (2014) 157(6):1309–23. doi: 10.1016/j.cell.2014.03.062

119. Boulouis C, Sia WR, Gulam MY, Teo JQM, Png YT, Phan TK, et al. Human MAIT Cell Cytolytic Effector Proteins Synergize to Overcome Carbapenem Resistance in Escherichia Coli. *Plos Biol* (2020) 18(6):e3000644. doi: 10.1371/journal.pbio.3000644

120. Leeansyah E, Boulouis C, Kwa ALH, Sandberg JK. Emerging Role for MAIT Cells in Control of Antimicrobial Resistance. *Trends Microbiol* (2021) 29(6):501–16. doi: 10.1016/j.tim.2021.05.023

121. Narri-Mancinelli E, Vivier E. Delivering Three Punches to Knockout Intracellular Bacteria. *Cell* (2014) 157(6):1251–2. doi: 10.1016/j.cell.2014.05.023

122. Dotiwala F, Fellay I, Filgueira L, Martinvalet D, Lieberman J, Walch M. A High Yield and Cost-Efficient Expression System of Human Granzymes in Mammalian Cells. *JoVE* (2015) 100:e52911. doi: 10.3791/52911

123. Dotiwala F, Sen Santara S, Binkler-Cosen AA, Li B, Chandrasekaran S, Lieberman J. Granzyme B Disrupts Central Metabolism and Protein Synthesis in Bacteria to Promote an Immune Cell Death Program. *Cell* (2017) 171(5):1125–37.e11. doi: 10.1016/j.cell.2017.10.004

124. Leon DL, Matthey P, Fellay I, Blanchard M, Martinvalet D, Mantel PY, et al. Granzyme B Attenuates Bacterial Virulence by Targeting Secreted Factors. *Science* (2020) 23(100932). doi: 10.1126/science.aji0932

125. Hernández-Castañeda MA, Happ K, Cattalani F, Wallimann A, Blanchard M, Fellay I, et al. γδ T Cells Kill Plasmidium Falciparum in a Granzyme- and Granulysin-Dependent Mechanism During the Late Blood Stage. *J Immunol* (2020) 204(7):1798–809. doi: 10.4049/jimmunol.1900725

126. Junqueira C, Poldoro RB, Castro G, Absalon S, Liang ZT, Sen Santara S, et al. Gamma Delta T Cells Suppress Plasmidium Falciparum Blood-Stage Infection by Direct Killing and Phagocytosis. *Nat Immunol* (2021) 22(3):347–57. doi: 10.1038/s41590-021-00847-4

127. Hernandez-Castaneda MA, Laverge M, Casanova P, Nydegger B, Merten C, Subramanian BY, et al. A Profound Membrane Reorganization Defines Susceptibility of Plasmidium Falciparum Infected Red Blood Cells to Lysis by Granulysin and Perforin. *Front Immunol* (2021) 12:643746. doi: 10.3389/ fiimmu.2021.643746

128. Dotiwala F, Mulik S, Poldoro RB, Ansara JA, Burleigh BA, Walch M, et al. Killer Lymphocytes Use Granulysin, Perforin and Granzymes to Kill Intracellular Parasites. *Nat Med* (2016) 22(2):210–6. doi: 10.1038/nmm.4023

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.