A Unified Framework Design for Finite-Time Bipartite Consensus of Multi-Agent Systems

JIAJU YU, JIASHANG YU, PENGFEI ZHANG, TINGTING YANG, AND XIURONG CHEN

School of Science and Information, Qingdao Agricultural University, Qingdao 266109, China
School of Mathematics and Statistics, Heze University, Heze 274700, China
School of Engineering, Huzhou University, Huzhou 313000, China

Corresponding author: Tingting Yang (993913986@qq.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 41674037, Grant 61374126, and Grant 11701310.

ABSTRACT In this paper, the finite-time bipartite consensus (FTBC) problem is investigated for the multi-agent system (MAS) with detail balanced structure. To realize FTBC of MAS, a unified protocol framework is developed. Some criteria are established for realizing FTBC. It is worth noticing that estimations of settling time can be given in form of mathematical expression. The unified framework can bring in various protocols by choosing different parameters, which extends previous results. Finally, two numerical examples are provided to illustrate the effectiveness and superiority of corresponding theoretical results.

INDEX TERMS Finite-time bipartite consensus, Filippov solutions, detail balance digraph, structurally balanced signed graph, weighted signed average consensus, settling time.

I. INTRODUCTION

Coordination control of MAS has been a focus in many disciplines in past decades. The reason is that MAS has been applied into many practical applications. For example, the consensus of MAS has been applied in sensor networks [1]–[4], robot teams [5]–[8], distributed computation [9], [10], and so on. For coordination control of MAS, consensus problem is one of the most important topics. It aims to guarantee agent states converge to the same ideal values by some suitable protocols. Most existing works [1]–[4], [11], [12] on consensus of MAS are based on the fundamental assumption that the interactions among the agents are cooperative. However, there are cooperatives and antagonism simultaneously in practical applications, such as two-party political systems, trust networks, and so on. To deal with this kind of network consensus problems, lots of works [13]–[28] focused on consensus problem of MAS including antagonistic interactions, which are said to be bipartite consensus. Generally, such phenomena can be characterized by a signed graph whose edge weights can be both positive and negative, which denotes that cooperative and antagonism, respectively. Bipartite consensus (BC) implies that the final states are the same in modulus but not sign (direction).

Since the concept of BC of MAS was firstly proposed in [13], asymptotic BC of MAS under undirected and digraph has been studied extensively in the existing literature.

However, asymptotic consensus protocol can’t guarantee consensus is achieved in a finite time, which sometimes becomes a deficiency for practical systems, the reason is that sometimes consensus needs to be achieved in a finite time for some practical applications. To overcome the drawback, the finite-time bipartite consensus was proposed, and this kind of consensus has been a focus in control discipline recently. The reason is that FTBC owns many ideal performances such as higher convergence speed, better robustness, and disturbance rejection. Lots of results on FTBC have been reported in [29]–[35] and references therein. For example, [29] and [30] investigated FTBC problem of MAS under undirected topology. [31] investigated FTBC problem of MAS under directed topology structure. In virtue of homogeneity, [34] investigated FTBC problem of MAS with detail balanced structure. As a special finite-time bipartite consensus, fixed-time BC of MAS was discussed in [36]–[38]. Deng et al. proposed a continuous fixed-time bipartite consensus (FDTBC) protocol in [37]. An FDTBC protocol framework was proposed in [38] for undirected topology structure. Under this framework, both discontinuous FTBC protocols and discontinuous FDTBC protocol can be constructed by choosing suitable parameters. Moreover, settling
time estimations are presented in form of a mathematical expression. Similarly, synchronization of discontinuous complex networks was also discussed in [39] under a unified protocol framework.

Motivated by the above observations, a natural question will be asked. Under detail balanced structure, can discontinuous FTBC protocols and continuous FTBC protocols be constructed under a unified protocol framework? Besides, can corresponding settling time estimation be given in form of mathematical expression as well? This is an interesting and open problem, at present. To solve this problem, a unified FTBC protocol framework is designed for MAS with detail balanced structure in this article. The contributions of this article can be summed up as follows. Firstly, a unified framework is developed to construct FTBC protocol. Noticing that both continuous protocols and discontinuous protocols can be obtained under this framework. Secondly, by finite-time stability theorem, Lyapunov function, Filippov solution, and graph theory, a rigorous proof is carried out to obtain an estimation of settling time in form of mathematical expression. Similarly, synchronization of discontinuous communication can be guaranteed for (1). When it is discontinuous but locally measurable, the solution of (1) is understood in sense of Filippov in this article.

Definition 1: [42] A vector function $x(t)$ defined on the interval $[0, T^*)$ is called Filippov solution of system (1) if it is absolutely continuous on any compact subinterval of $[0, T^*)$ $(T^* > 0)$, and it satisfies the differential inclusion $\dot{x}(t) \in K[h(x(t))]$ for almost all $t \in [0, t^*)$, the set-valued map $K[h] : R^n \rightarrow R^n$ is defined as follows

$$K[h](x(t)) = \bigcap_{\delta > 0} \bigcup_{\mu(S)=0} \overline{c}(h(B(x, \delta))) \setminus S,$$

where $\overline{c}(\cdot)$ is convex closure, μ stands for Lebesgue measure, $B(x, \delta)$ denotes the open ball centered at x with radius $\delta > 0$.

In order to deal with the finite-time stability smoothly, here one assumes that the Filippov solutions of system (1) exist on interval $[0, \infty)$ and $h(0) = 0$.

Definition 2: [43]-[49] Assume $V : R^n \rightarrow R$ is a local Lipschitz function. The Clarke upper generalized derivative of V at x in the direction of $v \in R^n$ is defined by

$$V^0(x, v) = \lim_{y \to x, t \to 0^+} \frac{V(y + tv) - V(x)}{t},$$

where ∂V denotes generalized gradient of V, which is defined as follows.

$$\partial V(x) = \overline{c}(\lim_{t \to +\infty} \nabla V(x) : x_j \rightarrow x, x_j \notin S \cup \Omega_V).$$

where $\overline{c}(\cdot)$ denotes convex hull, Ω_V denotes points set where V is not differentiable, $S \subset R^n$ denotes any set of measure zero.

The set-value Lie derivative of V with respect to $f(\cdot)$ at z is denoted as

$$L_f V(z) = \{a \in R | \exists v \in F(f)(z) \text{ with } v^T \xi = a, \forall \xi \in \partial V(y) \},$$

moreover,

$$V'(x, v) = \lim_{t \to 0^+} \frac{V(y + tv) - V(y)}{t}$$

exists and $V'(x, v) = V^0(x, v)$.

Definition 3: [49] Suppose that regular function $V : R^n \rightarrow R_+$ satisfies local Lipschitz condition, and function $x(t) : [0, +\infty) \rightarrow R^n$ is absolutely continuous on any compact set of interval $[0, +\infty)$, then $x(t)$ and $V(x(t))$ are differentiable in almost everywhere in the interval $[0, +\infty)$, and one has

$$\frac{dV(x(t))}{dt} = (\xi, \dot{x}(t)), \forall \xi \in \partial V(x(t)).$$

Definition 4: [50] The origin of system (1) is said to be globally finite-time stable if the following statements hold for any solution $x(t, x_0)$ of equation (1):

(a) Lyapunov stability: For any $\varepsilon > 0$, there is a $\delta(\varepsilon) > 0$ such that $||x(t, x_0)|| < \varepsilon$ for any $||x_0|| < \delta$ and $t \geq 0$.

(b) Finite-time convergence: There exists a function $T : R \rightarrow (0, +\infty)$, called settling time function, such that

$$\lim_{t \to T(x_0)} x(t, x_0) = 0, \quad x(0, x_0) = x_0, \text{ for } t \geq T(x_0).$$
Lemma 1: [49] For real numbers $y_j \geq 0$, $i \in \Pi_N$, $0 < \theta < 1$, one has the following inequality

$$\sum_{i=1}^{N} \gamma_i^\theta \geq \left(\sum_{i=1}^{N} y_i \right)^\theta.$$

Proof: Applying the fundamental inequality $\gamma_i^\theta \geq y$ for any $y \in (0, 1]$ and $\theta \in (0, 1]$, one has

$$\sum_{i=1}^{N} \xi_i^\theta \leq \sum_{i=1}^{N} \left(\frac{\xi_i}{\sum_{i=1}^{N} \xi_i} \right)^\theta \geq \sum_{i=1}^{N} \frac{\xi_i}{\sum_{i=1}^{N} \xi_i} = 1,$$

which means that the conclusion in Lemma 2.5 holds. This is complete proof.

Lemma 2: [50] If function $U(t) : [0, +\infty) \to [0, +\infty)$ is differential in interval $[0, +\infty)$, and it satisfies inequality:

$$\frac{dU(t)}{dt} \leq K(U(t))^\beta,$$

where parameters $K > 0$, $1 > \beta > 0$, then $U(t)$ converges to zero in a finite time $T > 0$ and $U(t) = 0$, for $t \geq T$ and associated settling time T satisfies

$$T \leq \frac{(U(0))^{1-\beta}}{K(1-\beta)}.$$

Lemma 3: [40, 41, 49, 50] Assume function $x(t) : [0, +\infty) \to R^n$ is absolutely continuous on any compact subset of interval $[0, +\infty)$, and function $U(t) : [0, +\infty) \to [0, +\infty)$ is C-regular. If there exist a function $\gamma(t) : [0, +\infty) \to [0, +\infty)$ with $\gamma(t) > 0$ for $\forall t \geq 0$ such that $U(t) < -\gamma(U(t))$ and $\tau^* = \int_0^{U(0)} \frac{dt}{\gamma(t)} < +\infty$. Then one has $U(t) = 0$ for any $t \geq \tau^*$.

Remark 1: Lemma 2 is usually said to be the well-known finite-time Lyapunov stability theorem, where the Lyapunov function has to be differentiable. While the Lyapunov function U in Lemma 3 just satisfies C-regular conditions, which is weaker than the differentiability. And it is to be applied to deal with the finite-time stability problem of discontinuous system in this article.

B. SIGNED GRAPHS

A directed signed graph consists of vertex set $V = \{v_1, v_2, \ldots, v_N\}$, edge set $E = \{e_{ij} = (v_i, v_j)\} \subseteq V \times V$ and adjacency matrix A, and it is denoted by $G(A)$. Here matrix $A = [a_{ij}] \in R^{N \times N}$ is defined as $a_{ij} \neq 0$ if and only if $(v_j, v_i) \in E$, where $(v_j, v_i) \in E$ implies that there is an edge between agent v_j and agent v_i, and agent v_j transmits information to agent v_i, $a_{ij} = 0$, otherwise. Here we assume graph doesn’t contain self-loop, i.e., $a_{ii} \equiv 0$, and graph $G(A)$ is digon symmetric, i.e., $a_{ij}a_{ji} \geq 0$ for $\forall i \neq j, i, j \in \Pi_N$. The Laplacian matrix of graph $G(A)$ is defined as $L(A) = D-A$, where D is a diagonal matrix, which is defined as $d_{ii} = \sum_{j=1}^{N} |a_{ij}|, d_{ij} = 0$ for $i \neq j$. A path $(v_{i_1}, v_{i_2}, \ldots, v_{i_k})$ is a sequence of distinct vertices in E, and these edges satisfy $(v_{i_k}, v_{i_{k+1}}) \in E$, for $k \in \Pi_{m-1}$, where $v_i, k \in \Pi_m$, are distinctive vertices. If there is a path between any pair vertices, graph $G(A)$ is said to be strongly connected. $G(A)$ contains a spanning tree if there is a vertex (called root vertex) that can reach all the other vertices by some directed path.

To state our main results, some definitions and lemmas, which are necessary and helpful to derivation of our main results, are listed as follows.

Definition 5: [34] Directed graph $G(A)$ is said to be detail balanced if there is a positive vector $\xi = [\xi_1, \ldots, \xi_N]^T \in R^N$, where $\xi_i > 0$, such that $\xi_i a_{ij} = \xi_j a_{ji}$ for any $i, j \in \Pi_N$.

Definition 6: [39] Directed signed graph $G(A)$ is called structurally balanced if there are two vertex sets V_1 and V_2 satisfying $V_1 \cup V_2 = V$, and $V_1 \cap V_2 = \emptyset$; Besides, one has $a_{ji} \geq 0$ if $i, j \in V_r, r \in \Pi_2$ and $a_{ji} \leq 0$, when index $i \in V_r, j \in V_{3-r}, r \in \Pi_2$.

Lemma 4: [39]: Directed signed graph $G(A)$ is structurally balanced if and only if there exists a diagonal matrix $S = diag (\sigma_1, \ldots, \sigma_N)$, where $\sigma_i \in \{-1, 1\}, i \in \Pi_N$, such that $SAS \geq 0$.

III. MAIN RESULTS

In this section, FTBC problem of MAS under detail balanced structure is to be discussed.

Consider the MAS consists of N agents, and the dynamics of i-th agent is described as follows.

$$\dot{x}_i(t) = u_i(t), \quad x_i(0) = x_0, \quad i \in \Pi_N,$$

where $x_i(t) \in R$ stands for state of agent i, and $u_i(t) \in R^n$ stands for input, which is said to be protocol to be designed. To simplify expression, denote $x(t) = [x_1(t), \ldots, x_N(t)]^T$.

Definition 7: [39] MAS (2) achieves FTBC if there is a settling time $T(x_0)$ such that

$$\lim_{t \to T(x_0)} |x_i(t)| = c, \quad i \in \Pi_N,$$

where c is a constant.

To solve FTBC problem of system (2), a unified FTBC protocol framework is designed as follows:

$$u_i = \sum_{k=1}^{N} a_{ik} (\tau_{ik}, [p], \quad i \in \Pi_N,$$

where $\tau_{ik} = x_k - sign(a_{ik})x_i, 0 \leq p < 1$.

Remark 2: When power parameter $0 < p < 1$, protocol (3) degenerates into the one in [28], and which solved signed average consensus problem. Therefore, the protocol in [28] can be regarded as a special case of protocol (3), which solved FTBC problem of MAS under undirected and connected signed graph. In [32], protocol (3) with $p > 0$ was applied to solve FTBC problem of MAS (2) via homogeneity. However, the deficiency of [32] is that settling time cannot be estimated by mathematical expression. Besides, (3) is discontinuous protocol when $p = 0$, this case was not investigated in [32]. In addition, [39] only solved finite-time SAC problem of MAS (2) via a discontinuous protocol.

Remark 3: When power parameter $p = 0$ protocol (3) is discontinuous. When $0 < p < 1$ protocol (3) is continuous. Therefore, the two cases need to be discussed, respectively.
Based on above analysis, it can be seen that (3) is an unified framework, which unifies continuous and discontinuous protocols into a unified framework. In addition, we will prove that corresponding settling times can be estimated through mathematical expression in this article.

Remark 4: To improve the convergence rate, gain coefficient $\zeta > 0$ can be introduced into (3), then (3) can be rewritten as

$$u_i = \zeta \sum_{k=1}^{N} a_{ik} (r_{ik})^p.$$ \hfill (4)

To simplify expression, here we choose $\zeta = 1$.

Before moving on, a necessary lemma is introduced as follows.

Lemma 5: Assume that the signed graph $G(A)$ is detail-balanced with positive vector $\xi = [\xi_1, \ldots, \xi_N]^T$ and structurally balanced. Then, under protocol (3), the weighted signed-average $\phi^s(t)$ satisfies

$$\phi^s(t) = \omega \sum_{i=1}^{N} \xi_i \sigma_i x_i(t) = \phi^s(0),$$

where $\omega = \sum_{i=1}^{N} \xi_i$, and $\sigma_i, i \in \Pi_N$ are defined in Lemma 2.11.

Proof: Due to $G(A)$ is structurally balanced, according to Lemma 4, one can find a matrix S such that $SAS \geq 0$ and $\sigma_i \sigma_j = \text{sign}(a_{ij})$, where $\sigma_i \in \{-1, 1\}$. Therefore, one can obtain $\sigma_i = \text{sign}(\sigma_i)$, and the derivative of $\phi^s(t)$ can be calculated as follows:

$$\dot{\phi}^s(t) = \omega \sum_{i=1}^{N} \xi_i \sigma_i \dot{x}_i(t)$$

$$= \omega \sum_{i=1}^{N} \sum_{k=1}^{N} \xi_i |a_{ik}| \left(\sigma_k x_k - \sigma_i x_i\right)^p$$

$$= \frac{\omega}{2} \sum_{i=1}^{N} \sum_{k=1}^{N} \xi_i |a_{ik}| \left(\sigma_k x_k - \sigma_i x_i\right)^p$$

$$+ \frac{\omega}{2} \sum_{i=1}^{N} \sum_{k=1}^{N} \xi_i |a_{ik}| \left(\sigma_k x_k - \sigma_i x_i\right)^p$$

$$= \frac{\omega}{2} \sum_{i=1}^{N} \sum_{k=1}^{N} \xi_i |a_{ik}| \left(\sigma_k x_k - \sigma_i x_i\right)^p$$

$$+ \frac{\omega}{2} \sum_{i=1}^{N} \sum_{k=1}^{N} \xi_i |a_{ik}| \left(\sigma_k x_k - \sigma_i x_i\right)^p$$

$$= \frac{\omega}{2} \sum_{i=1}^{N} \sum_{k=1}^{N} \xi_i |a_{ik}| \left(\sigma_k x_k - \sigma_i x_i\right)^p$$

$$- \frac{\omega}{2} \sum_{i=1}^{N} \sum_{k=1}^{N} \xi_i |a_{ik}| \left(\sigma_k x_k - \sigma_i x_i\right)^p = 0.$$

Thus $\phi^s(t) = \phi^s(0)$, for all $t \geq 0$. This is complete proof.

Obviously, Lemma 5 means that $\phi^s(t)$ is weighted signed average of initial states. Thus, when final consensus state is $\phi^s(0)$, the corresponding consensus can be called weighted signed average consensus (WSAC), which can be regarded as the extension of signed average consensus in [30], [36], [37], [39]. The reason is that when $\xi_i \equiv 1, i \in \Pi_N$, WSAC (2) can achieve FTBC and associated settling time is estimated by

$$T(z_0) \leq T_1 = \frac{V^{1-a}(0)}{k_0(1 - \alpha)},$$

where parameter $\alpha = \frac{1+p}{2} \in \left(\frac{1}{2}, 1\right)$, and parameter

$$k_0 = \frac{1}{2} \left(2\lambda_2 (L(B))^{\alpha} \left(\frac{2}{\xi_{\max}}\right)^{\alpha}\right)$$

is to be determined later.

Proof: From Lemma 4, there is a matrix S such that $SAS \geq 0$ since graph $G(A)$ is structurally balanced. Let $z_i(t) = \sigma_i x_i(t)$. Thus one has $z(t) = [z_1(t), \ldots, z_N(t)]^T = Sx(t)$, $z(0) = Sx(0)$. Moreover, one has

$$\dot{z}_i(t) = \sigma_i \dot{x}_i(t) = \sigma_i u_i(t), i \in \Pi_N.$$

Substituting protocol (3) into above equation yields

$$\dot{z}_i(t) = \sum_{k=1}^{N} |a_{ik}| (z_k - z_i)^p.$$

Let $e_i(t) = z_i(t) - \phi^s(0)$, then one has

$$\dot{e}_i(t) = \dot{z}_i(t)$$

$$\sum_{k=1}^{N} |a_{ik}| |\text{sign}(z_k - z_i)| |z_k - z_i|^p$$

$$\sum_{k=1}^{N} |a_{ik}| |\text{sign}(e_k - e_i)| |e_k - e_i|^p.$$ \hfill (5)

Set $e(t) = [e_1(t), \ldots, e_N(t)]^T$. Through simple mathematical operation, one can obtain $\xi^T e(t) = 0$.

Consider the following candidate Lyapunov function:

$$V = \frac{1}{2} \sum_{k=1}^{N} \xi_k^2(t).$$

It is easy to verify that V is a continuous, differential, positive definite, and radically unbounded function. In addition, it satisfies inequalities:

$$\frac{1}{2} \xi_{\min} \sum_{k=1}^{N} e_k^2(t) \leq V \leq \frac{1}{2} \xi_{\max} \sum_{k=1}^{N} e_k^2(t).$$

Furthermore, the following inequalities can be obtained:

$$\frac{2V}{\xi_{\max}} \leq \sum_{k=1}^{N} e_k^2(t) \leq 2V.$$
The derivative of V along (5) can be calculated as follows:

\[
\dot{V} = \sum_{i=1}^{N} \xi_i e_i(t) \dot{e}_i(t) \\
= \sum_{i=1}^{N} \sum_{k=1}^{N} |\xi_{ik}| (e_k - e_i)^p \\
= \frac{1}{2} \sum_{i=1}^{N} \sum_{k=1}^{N} |\xi_{ik}| (e_k - e_i)^p \\
+ \frac{1}{2} \sum_{k=1}^{N} \sum_{i=1}^{N} |\xi_{ik}| (e_k - e_i)^p \\
= \frac{1}{2} \sum_{i=1}^{N} \sum_{k=1}^{N} |\xi_{ik}| (e_k - e_i)^p \\
- \frac{1}{2} \sum_{i=1}^{N} \sum_{k=1}^{N} |\xi_{ik}| (e_k - e_i)^p \\
= -\frac{1}{2} \sum_{i=1}^{N} \sum_{k=1}^{N} |\xi_{ik}| |e_k - e_i|^{1+p} \\
\leq -\frac{1}{2} \left(\sum_{i=1}^{N} \sum_{k=1}^{N} |\xi_{ik}| |e_k - e_i|^{2+p} \right)^{\frac{1}{2+p}}, \tag{6}
\]

where Lemma 1 is inserted to prove above inequality due to $0 < p < 1$. According to detail balanced conditions, one has $|\xi_{ik}|^{\frac{2}{2+p}} = |\xi_{ki}|^{\frac{2}{2+p}}$, for all $i, k \in \Pi_N$. Set matrix $B = [b_{ik}] \in \mathbb{R}^{N \times N}$, which is defined by $b_{ik} = |\xi_{ik}|^{\frac{2}{2+p}}$, if $i \neq k$, and $b_{ik} = 0$, for $i = k$. Since $A = A^T$ the graph $\mathcal{G}(B) = \mathcal{G}(V, E, B)$ is an undirected and connected. According to matrix $B^T = B$, one has the following inequality:

\[
\frac{N}{2} \sum_{i=1}^{N} \sum_{k=1}^{N} |\xi_{ik}| |e_k - e_i|^2 \geq 2\lambda_2(L(B)) e^T e, \tag{7}
\]

where $L(B)$ denotes Laplacian matrix of the graph $\mathcal{G}(B)$.

Invoking (6) and (7), one can obtain

\[
\dot{V} \leq -\frac{1}{2} \left(2\lambda_2(L(B)) \right)^{\frac{1+p}{2}} (e^T e)^{\frac{1+p}{2}} \\
\leq -\frac{1}{2} \left(2\lambda_2(L(B)) \right)^{\frac{1+p}{2}} \left(\frac{2}{\lambda_{\text{max}}} \right)^{\frac{1+p}{2}} V^{\frac{1+p}{2}} \\
= -k_0 V^{\alpha}, \tag{8}
\]

where $\alpha = \frac{p+1}{2}$. According to Lemma 2 and inequality (8), V converges to zero in a finite time, and associated settling time is estimated by $T(x(0)) \leq T_1$. Thus we have $\lim_{t \to T_1} |\xi(t)| = |\phi^*(0)|$ and $|x(t)| = |\phi^*(0)|$, for $t \geq T_1$. According to Definition 7, FTBC problem of MAS (2) is solved. This is complete proof.

Next, the case that $p = 0$ is to be discussed. Obviously, power parameter $p = 0$ means that (3) is a discontinuous protocol $u_i = \sum_{k=1}^{N} a_{ik} \text{sign}(r_{ki})$ and $\dot{z}_i(t) = \sum_{k=1}^{N} a_{ik} \text{sign}(r_{ki})$ is a discontinuous system. By Filippov solution, one can obtain the following result.

Theorem 2: Suppose graph $\mathcal{G}(A)$ is structurally balanced and detail balanced structure with $\xi = [\xi_1, \ldots, \xi_N]^T$. Then under the protocol (3) with $p = 0$, MAS (2) can achieve FTBC and associated settling time can be estimated by

\[
T(x_0) \leq T_2 = \frac{2V^{\frac{1}{2}}(0)}{(2\lambda_2(L(A_0)))^{\frac{1}{2}} \left(\frac{2}{\lambda_{\text{max}}} \right)^{\frac{1}{2}}},
\]

where parameter $\lambda_2(L(A_0))$ is to be determined later.

Proof: Similar to Theorem 1, one can obtain

\[
\dot{z}_i(t) = \sum_{k=1}^{N} a_{ik} \text{sign}(z_k - z_i), \\
\dot{e}_i(t) = \sum_{k=1}^{N} a_{ik} \text{sign}(e_k - e_i), \tag{9}
\]

which is a obviously discontinuous system. To guarantee the existence of Filippov solution for equation (9), denote the right side of (9) as $f(e)$. By the Filippov regularization, the Filippov solution of equation (9) can be defined as absolutely continuous function, which satisfies differential inclusion:

\[
\dot{e}_i(t) \in K[f(e(t))] = \sum_{k=1}^{N} a_{ik} \text{SIGN}(e_k - e_i), \ i \in \Pi_N.
\]

The set-value function $\text{SIGN}(\cdot)$ satisfying $\text{SIGN}(\mu) = \text{sign}(\mu)$, if $\mu \neq 0$, $\text{SIGN}(\mu) \in [-1, 1]$ if $\mu = 0$. Detailed explanations about existence of Filippov solution of equation (9) can refer to references [51, 52]. Then, the candidate Lyapunov function is still taken as $V = \sum_{i=1}^{N} |\xi|e_i^2(t)$. The set-valued Lie derivative of V can be calculated as following:

\[
\mathcal{L}V = \left[\frac{\partial V}{\partial x} \right]^T K[f(e(t))] \\
= 2 \sum_{i=1}^{N} |\xi_i|e_i \sum_{k=1}^{N} |a_{ik}| \text{SIGN}(e_k - e_i) \\
= -\sum_{i=1}^{N} \sum_{k=1}^{N} |\xi_{ik}| |e_k - e_i|^2 \frac{1}{2} \\
\leq -\left(\sum_{i=1}^{N} \sum_{k=1}^{N} |\xi_{ik}| |e_k - e_i|^2 \right)^{\frac{1}{2}} \\
\leq \left(2\lambda_2(L(A_0)) \right)^{\frac{1}{2}} e^T e \frac{1}{2} \\
= -\left(2\lambda_2(L(A_0)) \right)^{\frac{1}{2}} \left(e^T e \right)^{\frac{1}{2}}. \tag{10}
\]
to \(L(A_0)\) be a semi-positive definite matrix. Furthermore, one can obtain algebra connectivity \(\lambda_2(L(A_0)) > 0\). Moreover, by Theorem 1, one has \(2V(t)/\epsilon_{\text{max}} \leq \sum_{i=1}^{N} e_i^2(t) = e^T e\). Inserting this inequality into inequality (10), one can obtain \(LV \leq -(2\lambda_2(L(A_0)))\frac{1}{2} \left(\frac{2}{\epsilon_{\text{max}}} \right)^2 V(t) \). Invoking comparison principle and Lemma 2, one concludes that \(V\) converges to zero in a finite time, that is to say \(\lim_{t \to T(x_0)} V = 0\) and \(V = 0\) for \(t > T(x_0)\). At the same time, associated settling time \(T(x_0)\) satisfies
\[
T(x_0) = T_2 = \frac{2V(t)}{(2\lambda_2(L(A_0)))\frac{1}{2} \left(\frac{2}{\epsilon_{\text{max}}} \right)^2}.
\]
Noticing that definition of \(V\) and \(e_i = \sigma_i x_i - \phi^*(0)\), one has \(\lim_{t \to T_2} e_i = 0\) and \(e_i = 0\) for \(t > T_2\). Thus we have \(\lim_{t \to T_2} |x_i| = |\phi^*(0)|\) and \(|x_i(t)| = |\phi^*(0)|\), for \(t > T_2\), and any \(i \in \Pi_N\). Therefore the FTBC problem of MAS (2) is solved. This is complete proof.

Subsequently, we consider finite-time stability of MAS (2) under structurally unbalanced signed graph \(G(A)\).

Theorem 3: If the signed graph \(G(A)\) has detail balanced structure, and it is structurally unbalanced, under the protocol (3) with \(0 < p < 1\), MAS (2) can realize finite time stability and associated settling time is estimated by
\[
T(x_0) \leq T_3 = \frac{U^{1-\alpha}(0)}{k_1(1-\alpha)},
\]
where parameters \(\alpha, k_1\) are to be determined later.

Proof: Consider MAS (2) with protocol (3) under structurally unbalanced signed graph \(G(A)\). Which is described as the following equations:
\[
\dot{x}_i = \sum_{k=1}^{N} a_{ik} \text{sign}(\tau_{ki}) |\tau_{ki}|^p, \quad i \in \Pi_N,
\]
where \(\tau_{ki} = x_k - \text{sign}(a_{ki})x_i\). The candidate Lyapunov function is taken as \(U = \sum_{i=1}^{N} \xi_i x_i^2\). Then the derivative of \(U\) along system (11) can be calculated as follows.
\[
\dot{U} = 2 \sum_{i=1}^{N} \xi_i x_i \dot{x}_i
\]
\[
= 2 \sum_{i=1}^{N} \xi_i x_i \sum_{k=1}^{N} a_{ik} \text{sign}(\tau_{ki}) |\tau_{ki}|^p
\]
\[
= \sum_{i=1}^{N} \xi_i x_i \sum_{k=1}^{N} a_{ik} \text{sign}(\tau_{ki}) |\tau_{ki}|^p
\]
\[
+ \sum_{k=1}^{N} \xi_k x_k \sum_{i=1}^{N} a_{ki} \text{sign}(\tau_{ik}) |\tau_{ik}|^p
\]
\[
= -\sum_{i=1}^{N} \sum_{k=1}^{N} |\xi_k a_{ki}| |x_k - \text{sign}(a_{ki})x_i|^{1+p}
\]
\[
= -\sum_{i=1}^{N} \sum_{k=1}^{N} \left(|\xi_k a_{ki}|^{\frac{2}{1+p}} |x_k - \text{sign}(a_{ki})x_i|^2 \right)^{\frac{p+1}{2}}.
\]

Denote matrix \(B_p = [b_{pki}] \in \mathbb{R}^{N \times N}\), which is defined as \(b_{pki} = \text{sign}(a_{ki}) |\xi_k a_{ki}|^{\frac{2}{1+p}}\), \(L(B_p) = [l_{pki}] \in \mathbb{R}^{N \times N}\) with \(l_{pki} = \sum_{i=1}^{N} |\xi_k a_{ki}|^{\frac{2}{1+p}}\) if \(i = k\) and \(l_{pki} = -b_{pki}\) if \(i \neq k\). Then \(L(B_p)\) is Laplacian of the graph \(G(B_p)\). Due to graph \(G(B_p)\) is detail-balanced and structurally unbalanced, \(L(B_p)\) is a positive definite matrix. Therefore, its eigenvalues can be arranged as \(0 < \lambda_1(B_p) \leq \lambda_2(B_p) \leq \cdots \leq \lambda_N(B_p)\). Which leads to \(\lambda_1(B_p) x^T x \leq x^T L(B_p) x\) for any \(x \in \mathbb{R}^N\). Detailed explanation can refer to reference [13]. Thus, one has
\[
\sum_{k=1}^{N} \sum_{i=1}^{N} b_{ki} (x_k - \text{sign}(a_{ki})x_i)^2 \geq 2\lambda_1(B_p) x^T x.
\]

Based on inequalities (12) and (13), one can obtain the following inequality
\[
\dot{U} \leq -(2\lambda_1(B_p))^{\frac{p+1}{2}} \left(\frac{U}{\xi_{\text{max}}} \right)^{\frac{p+1}{2}} = -k_1 U^\alpha,
\]
where parameters \(\alpha = \frac{p+1}{2}, k_1 = -(2\lambda_1(B_p))^{\alpha} \left(\frac{1}{\xi_{\text{max}}} \right)^\alpha\).

According to Lemma 1 and inequality (15), \(U\) converges to zero in a finite time, and associated settling time can be estimated by \(T_3\). This is complete proof.

Remark 5: From Theorem 3, it can be seen that for the structurally unbalanced signed graphs, the finite time bipartite consensus problem is equal to the finite-time stability problem. That is to say, Theorem 3 solved finite time stability problem of continuous system (11) in virtue of positive definite matrix \(L(B_p)\). If power parameter \(p = 0\), the finite time stability of discontinuous system needs to be analyzed by Filippov solutions and set-valued Lie derivative.

Remark 6: It follows from Theorem 1, Theorem 2 and Theorem 3, the FTBC (or finite time stability) under the structurally balanced (unbalanced) signed graphs can be achieved under the protocol (3) with different power parameters. Specifically, if power parameter \(p = 0\), corresponding finite-time stability has to be analyzed by Filippov solution.

Similar to Theorem 3, another result can be given as follows.

Theorem 4: If the signed graph \(G(A)\) is detail balanced and structurally unbalanced, MAS (2) under protocol (3) with \(p = 0\) can achieve finite-time stability and associated settling
time is estimated by \(T(x_0) \leq T_4 = \frac{2U}{k_3} \), where parameter \(k_3 = (2\lambda_1(B_0))^2 \left(\frac{1}{\xi_{\text{max}}} \right)^{\frac{1}{2}} \), matrix \(B_0 = [b_{kj}] \in \mathbb{R}^N \times N \) with \(b_{kj} = \text{sign}(a_{kj})|\xi_{kj}|^2 \), \(i, j \in \Pi_N \), \(\lambda_1(B_0) \) is the smallest eigenvalue of matrix \(L(B_0) \).

Obviously, matrix \(L(B_0) \) can be regarded as Laplacian matrix of graph \(\mathcal{G}(B_0) \). Due to the proof of Theorem 4 is similar to Theorem 3, to save space, the proof of Theorem 3.11 is omitted here. Interested readers can finish it according to Theorem 3.

In addition, due to undirected and connected signed graph is a special detail balanced signed graph, thus based on Theorem 1, Theorem 2, Theorem 3, and Theorem 4, one has the following corollary.

Corollary 1: Suppose signed graph \(\mathcal{G}(A) \) is connected. If \(\mathcal{G}(A) \) is structurally balanced, then MAS (2) under the protocol (3) can achieve FTBC; If \(\mathcal{G}(A) \) is structurally unbalanced, then the MAS (2) can achieve finite-time stability under protocol (3).

The proof of Corollary 1 is easy to finish according to proofs of Theorem 1, Theorem 2, Theorem 3, and Theorem 4. To save space, corresponding proof is omitted here as well.

IV. NUMERICAL SIMULATIONS

In this section, two simulation examples are provided to illustrate the effectiveness of theoretical results in Section III. Our objective is to demonstrate the effectiveness of protocol (3) under conditions in Theorem 3.6, Theorem 3.7, Theorem 3.8, and Theorem 3.11, respectively.

Example: Consider a multi-agent systems under \(\mathcal{G}(A_1) \) with \(\xi = [2, 1, 3]^T \), and associated weighted adjacency matrix \(A_1 \) satisfies \(A_1 = \begin{bmatrix} 0 & -2 & 3 \\ -4 & 0 & -3 \\ 2 & -1 & 0 \end{bmatrix} \). Obviously, it is easy to prove that \(\mathcal{G}(A_1) \) satisfies detail-balanced condition. To verify protocol (3) is effective under the conditions in Theorem 3.6, set \(p = \frac{1}{3} \), the initial states of agents are chosen as \(x(0) = [8, 4, -2]^T \). In addition, one can find a matrix \(S = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \), which ensures \(SA_1S \geq 0 \). Then it is easy to get \(\xi_{\text{max}} = 3, \xi_{\text{min}} = 1 \). According to Lemma 3.5, one gets \(\phi^*(x(0)) = 1 \). According to Theorem 3.6, the corresponding theoretical value of settling time satisfies \(T_1 \leq 2.8892s \). The evolutions of individuals’ state \(x_i(t) \) are plotted in Fig.1. One can see that the finite-time consensus is achieved, the final consensus state satisfying \(x_i(t) = \phi^*(x(0)) = 1 \) and the simulations match the theoretical results perfectly. Moreover, to verify the effectiveness of protocol (3) with \(p = 0 \) under the conditions in Theorem 3.7, corresponding evolutions of individuals’ state \(x_i(t) \) are plotted in Fig.2. By Theorem 3.7, associated theoretical value of settling time is \(T_2 = 6.224s \). From Fig.2, one can see that simulation results accord with corresponding theoretical results. To demonstrate protocol (3) with \(p = \frac{1}{3} \) is effective under the conditions in Theorem 3.8, one assumes that corresponding communication topology is \(\mathcal{G}(A_2) \), where \(A_2 = \begin{bmatrix} 0 & 2 & 3 \\ 4 & 0 & -3 \\ 2 & -1 & 0 \end{bmatrix} \) other parame-

![FIGURE 1. State trajectories of MAS (2) under protocol (3) with \(p = \frac{1}{3} \) and topology \(\mathcal{G}(A_1) \).](image1)

![FIGURE 2. State trajectories of MAS (2) under protocol (3) with \(p = 0 \) and topology \(\mathcal{G}(A_1) \).](image2)

![FIGURE 3. State trajectories of MAS (2) under protocol (3) with \(p = \frac{1}{3} \) and topology \(\mathcal{G}(A_2) \).](image3)
By Theorem 3.11, the corresponding theoretical value of
quality of this article.

ments which are helpful to improve the presentation and
reviewers for all their very valuable suggestions and com-

The authors would like to thank the Associate Editor and
communication delay are involved in the dynamics of MAS.

tures did not mention it. However, there are lots of remained
structural balanced structure. For this case, existing litera-
discontinuous protocol is proved to be effective as well under
structurally balanced structure. For this case, existing litera-
where $G(A_2)$).

ters and initial states are invariant. According to Theorem 3.8,
associated estimation of settling time is $T_3 = 6.224s$. The
corresponding simulation results are shown in Fig.3., which
shows that finite-time stability is achieved. Moreover, from
Fig.3., one can find that the real settling time is about 2.2s.
This simulation supports our theoretical analysis. Set protocol
parameter $p = 0$, other parameters are invariant as well.
By Theorem 3.11, the corresponding theoretical value of
estimation of settling time can be obtained $T_4 = 9.3699s$.
Corresponding simulation results are shown in Fig.4., which
accords well with theoretical results in Theorem 3.11.

V. CONCLUSION

In this article, we investigated FTBC problem of MAS under
detail-balanced structure. The novelty of this article can be
summed as follows. (1) Based on finite time stability the-
orem and structurally balanced graph theory, a weighted
signed average consensus protocol framework is proposed to
construct FTBC protocol; (2) Worth noticing that the final
consensus state is weighted signed average of initial states,
and associated settling time is a finite time, which can be
estimated explicitly in form of mathematical expression by
protocol parameters, initial conditions, and communication
topology information; (3) By Filippov solution, a class of
discontinuous protocol is proved to be effective as well under
structurally balanced structure. For this case, existing litera-
tures did not mention it. However, there are lots of remained
works to be done, such as the case that random disturbance,
communication delay are involved in the dynamics of MAS.
These are also our future work.

ACKNOWLEDGMENT

The authors would like to thank the Associate Editor and
reviewers for all their very valuable suggestions and com-
ments which are helpful to improve the presentation and
quality of this article.

REFERENCES

[1] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of
agents with switching topology and time-delays,” IEEE Trans. Autom.
Control, vol. 49, no. 9, pp. 1520–1533, Sep. 2004.

[2] W. Ren and R. W. Beard, “Consensus seeking in multiagent systems
under dynamically changing interaction topologies,” IEEE Trans. Autom.
Control, vol. 50, no. 5, pp. 655–661, May 2005.

[3] L. Wang and F. Xiao, “Finite-time consensus problems for networks of
dynamic agents,” IEEE Trans. Autom. Control, vol. 55, no. 4, pp. 950–955,
Apr. 2010.

[4] S. Yang, J. Cao, and J. Lu, “A new protocol for finite-time consensus
of detail-balanced multi-agent networks,” Chaos, Interdiscipl. J. Nonlinear
Sci., vol. 22, no. 4, 2012, Art. no. 043134.

[5] J. Lu, X. Guo, T. Huang, and Z. Wang, “Consensus of signed networked
multi-agent systems with nonlinear coupling and communication delays,”
Appl. Math. Comput., vol. 350, pp. 153–162, Jun. 2019.

[6] Y. J. Cao, A. S. Fukunaga, and A. B. Kahng, “Cooperative mobile
robotics: Antecedents and directions,” Auton. Robots, vol. 41, no. 1,
pp. 7–27, 1997.

[7] M. Muñecientes and J. Casillas, “Quick design of fuzzy controllers with good
interpretability in mobile robotics,” IEEE Trans. Fuzzy Syst., vol. 15, no. 4,
p. 636–651, Aug. 2007.

[8] M. Al Khawaldah, M. Al-Khedher, I. Al-Adwan, and A. Al Awashdeh,
“An autonomous exploration strategy for cooperative mobile robots,” J.
Softw. Eng. Appl., vol. 7, no. 3, pp. 142–149, 2014.

[9] D. Yan, J. Cheng, Y. Lu, and W. Ng, “Bifocal: A block-centric framework
for distributed computation on real-world graphs,” Proc. VLDB Endow-
ment, vol. 7, no. 14, pp. 1981–1992, Oct. 2014.

[10] U. Bauer, M. Kerber, and J. Reininghaus, “Distributed computation of per-
manent homology,” in Proc. Meeting Algorithm Eng., Exp. 2014, pp. 31–38.

[11] J. Yu, S. Yu, and Y. Yan, “Fixed-time stability of stochastic nonlinear
systems and its application into stochastic multi-agent systems,” IET Control
Theory Appl., vol. 15, no. 1, pp. 126–135, Jan. 2021, doi: 10.1049/ietcth.12040.

[12] X. Chen, J. Li, Z. Wu, and J. Yu, “Finite-time consensus protocol for
stochastic multi-agent systems,” IET Control Theory Appl., vol. 13, no. 6,
p. 755–762, Apr. 2019.

[13] C. Altafini, “Consensus problems on networks with antagonistic interac-
tions,” IEEE Trans. Autom. Control, vol. 58, no. 4, pp. 935–946, Apr. 2013.

[14] H. Zhang and J. Chen, “Bipartite consensus of general linear multi-agent
systems,” in Proc. Amer. Control Conf., Jun. 2014, pp. 808–812.

[15] H. Zhang, “Output feedback bipartite consensus and consensus of linear
multi-agent systems,” in Proc. 54th IEEE Conf. Decis. Control (CDC),
Dec. 2015, pp. 1731–1736.

[16] D. Wang, H. Ma, and D. Liu, “Distributed control algorithm for bipartite
consensus of the nonlinear time-delayed multi-agent systems with neural
networks,” Neurocomputing, vol. 174, pp. 928–936, Jan. 2016.

[17] H. Zhang and J. Chen, “Bipartite consensus of multi-agent systems over
graphs signed states: Feedback and output feedback control approaches,”
Int. J. Robust Nonlinear Control, vol. 27, no. 1, pp. 3–14, Jan. 2017.

[18] X. Guo, J. Lu, A. Alsaedi, and F. E. Alsaadi, “Bipartite consensus for multi-
agent systems with antagonistic interactions and communication delays,”
Phys. A, Stat. Mech. Appl., vol. 495, pp. 488–497, Apr. 2018.

[19] C. Ma, W. Zhao, and Y. Zhao, “Bipartite consensus of discrete-time
double-integrator multi-agent systems with measurement noise,” J. Syst.
Sci. Complex., vol. 31, no. 6, pp. 1525–1540, Dec. 2018.

[20] C. Mu, W. Zhao, and Y.-B. Zhao, “Bipartite linear γ-consensus of
double-integrator multi-agent systems with measurement noise,” Asian J. Control,
vol. 20, no. 1, pp. 577–584, 2018.

[21] H. Liu, M. Xu, Y. Wu, N. Zheng, Y. Chen, and Z. A. Bhiyani, “Resilient
bipartite consensus for multi-agent networks with antagonistic interac-
tions,” in Proc. 17th IEEE Int. Conf. Trust, Secur. Privacy Comput. Com-
mun., Aug. 2018, pp. 1262–1269.

[22] J. Wu, Q. Deng, C.-Y. Chen, and H. Yan, “Bipartite consensus for second
order multi-agent systems with exogenous disturbance via pinning con-
trol,” IEEE Access, vol. 7, pp. 186563–186571, 2019.

[23] Y. Wu, Y. Zhao, and J. Hu, “Bipartite consensus control of high-order
multiagent systems with unknown disturbances,” IEEE Trans. Sys., Man,
Cybern., Syst., vol. 49, no. 10, pp. 2189–2199, Oct. 2019.

[24] S. Blohmick and S. Panja, “Lag-bipartite consensus of linear multiagent
systems under saturating input over signed graph,” IET Control Theory
Appl., vol. 13, no. 3, pp. 434–443, Feb. 2019.

[25] L. Pan, H. Shao, M. Mesbah, Y. Xi, and D. Li, “Bipartite consensus on
matrix-valued weighted networks,” IEEE Trans. Circuits Syst. II, Exp.
Briefs, vol. 66, no. 8, pp. 1441–1445, Aug. 2019.

[26] X. Zhang, K. Liu, and Z. Li, “Bipartite consensus for multi-agent systems
with time-varying delays based on method of delay partitioning,” IEEE
Access, vol. 7, pp. 29285–29294, 2019.
