Preliminary study of the missing mass spectra via the $^{12}\text{C}(p,K^0_s)$ and $^{12}\text{C}(p,\Lambda)$ reactions at 10 GeV/c.

P.Zh.Aslayan

Received: date / Accepted: date

Abstract The missing mass spectra for the $^{12}\text{C}(p,K^0_s)$ and $^{12}\text{C}(p,\Lambda)$ reactions have been studied by using of the propane bubble chamber(PBC) data from 700000 stereo photographs or 10^6 inelastic interactions. The momentum spectrum of π^- in range of 100-200 MeV/c have observed the significant enhancement from the $p+C \rightarrow \pi^-AX(p+C \rightarrow \pi^-K^0_sX)$ reaction. The missing mass spectra have been observed signals for the $p(p,\pi^-K^0_sX)$, $^3\text{H}(p,pK^0_s)$, $p(p,\Lambda\pi^-\gamma)$ and $p(p,\pi^-\Lambda)$ reactions. This experimental study will need to continue by a different method of identification for a reaction channels.

Keywords hyperon · hypernucleus · strangeness · 4π geometry

PACS 13.75.-n · 13.75.Ev · 13.75.Jz · 14.20.Jn · 25.80.Nv · 25.80.Pw

1 Introduction

The properties of hypernuclei reflect the nature of the underlying baryon-baryon interactions and, thus, can provide tests of models for the free-space hyperon-nucleon (Y,N) and hyperon-hyperon (Y,Y) interactions[1]. The missing mass(MM) method makes it possible to obtain unique information on the masses and the structure nuclei. The possibility to produce hypernuclei in the (p,K^+) reaction was firstly mentioned by [2]. In fact, the recent studies on the (p,K^+) reaction confirm a quite substantial production of associated Λ-hyperons leading to production cross sections for Λ-hypernuclei in the order of a few 100 μb for $p + \text{Pb}$ at 1.5 - 1.9 GeV[3]. The paper presents the preliminary experimental results from the MM spectra in $p+C$ interactions[4]. This analysis with the MM is the first step to explore hadronic systems with strangeness. The event by event analysis will be the next step.

JINR
Joliot Curie 6, Moscow Region,141980 Dubna, Russia
E-mail: paslanian@jinr.ru
2 Experimental data

The events with V^0 (Λ and K^0_s) were identified by using the criteria\[^5\]. The mass of the identified 9838-events with Λ hyperon and 4964-events with K^0_s mesons is consistent with their PDG values. The FRITIOF model and experimental data comparison shown that there are observed significant enhancement for Λ hyperons production in ranges of the scattering $\theta < 0$ and azimuth $\phi \approx 0$ angles\[^4\] in the spherical system of coordinates. The missing mass error is equal to $\approx 80-100$ MeV/c^2 for the $p(p,K^0_s)$ and $p(p,\Lambda)$ reactions.

3 The missing mass spectra with K^0_s meson

Fig. 1a shows the missing mass(MM) spectrum for 3428 events in the $p(p,K^0_sp\pi^-)$ reaction with a bin size of 34 MeV/c^2. The curve(Fig. 1a) is the sum of the background by the 9 order polynomial and 1 Breit-Wigner function. The peaks in the MM range of 3.35 GeV/c^2 with $\Gamma_{\text{exp}} \approx 90$ MeV/c^2, S.D.(statistical deviation)5.7σ(≈ 90 events in peak) and ≈ 3.00 GeV/c^2 with S.D.= 4.5σ (≈40-50 events in peak.) have been observed.

Fig. 1b shows the MM spectrum for p(p,K^0_sp) reaction (7150 events) with a bin size of 44 MeV/c^2. There are observed signals in the MM range of 1020, 2050 and 2580 MeV/c^2, with S.D.$\approx 4\sigma$\[^4\]. A signal is not observed in the MM spectrum for the p(p,K^0_sp) reaction by FRITIOF model. Fig. 1c shows the MM spectrum for 11118 events in the $^3H(p,K^0_sp)$ reaction with a bin size of 40 MeV/c^2. The curve(Fig. 1c) is the sum of the background by the 9 order polynomial and 1 Breit-Wigner function. There is observed signal in mass range of $^6\text{He}(5.78$ GeV/c^2) with $\Gamma=90$ MeV/c^2, S.D.= 5.7σ(120-150 events in the peak).

4 The missing mass spectra with Λ hyperon

Fig. 2b shows the momentum distribution for π^- with a bin size of 33 MeV/c for $^{12}C(p,\Lambda)$reaction. The fluctuation is observed in the momentum range of 100-200 MeV/c. The 9-order polynomial did not describe the momentum distribution for π^- in Fig. 2b.

Fig. 2c shows the MM spectrum for the p(p,π^-) reaction (for events with Λ) with a bin size of 30 MeV/c^2. The background is the 9-order polynomial function. The peak in the MM range of 4200 MeV/c^2 with S.D.= 3.8σ have been observed. There are observed small signals in the MM ranges of $^4\text{He}(3.8$ GeV/c^2) and $^4\text{He}(3.9$ GeV/c^2)(Fig. 2c).

Fig. 2d shows the MM spectrum for the p(p,Λ) reaction (with π^- andγ events) with a bin size of 41 MeV/c^2. The background is the 9-order polynomial
The missing mass spectrum (MM) of the \((p,K^0\pi^-)\) reaction. a) The MM spectrum for the \(p(p,K^0\pi^-)\) reaction (7150 events). The dashed histogram is simulation by FRITIOF model. b) The MM spectrum for the \(^3\text{H}(p,K^0\pi^-)\) reaction (11118 events).

The peak in MM range of 3200 MeV/c\(^2\) with \(\Gamma_{\text{exp}} \approx 90\) MeV/c\(^2\), S.D. = 6\(\sigma\) have been observed. The same peak is observed from this data in\([5]\) and OBELIX data in\([6]\), what had been interpreted as S=–1 tribaryon states.

5 Conclusion

The signals in the MM spectra have been observed only a few possible channels from these \(^{12}\text{C}(p,K^0)\) and \(^{12}\text{C}(p,\Lambda)\) reactions. These signals for the same reactions have observed with \(\pi^-\) events too. The momentum spectrum of \(\pi^-\) in range of 100-200 MeV/c from the \(p+C\rightarrow \Lambda\pi^- X(p+C\rightarrow \pi^- K^0\pi^- X)\) reactions have observed the significant enhancement(Fig.2b). Then the event-by-event analysis of \(^{12}\text{C}(p,K^0)\) and \(^{12}\text{C}(p,\Lambda)\) collisions will be the next step what allow identify a channel of reactions by kinematic fits for different hypothesis.

References

1. A.Gal[arXiv:1008.3510 [nucl-th]],2010.
2. Hantao Jing, Pengnian Shen, Huanching Chiang, [arXiv:0805.0398 [nucl-th]],2008.
3. Z. Rudy et al., Z. Phys. A354, p. 445, 1996.
4. P.Zh. Aslanyan, proc. PANDA meeting, IHEP Protvino, June 6-10, 2011.
5. P.Zh. Aslanyan, Physics of Particles and Nuclei(Springer), Vol. 40, No. 4, p. 525, 2009.
6. T. Bressani et al., Proc. on International Conference EXA08, Wien, September 15-19, 2008.