Increasing service systems in network distribution

Nurhayati Sembiring, Tuti Sarma Sinaga and Jean Ayuningthias
Faculty of Engineering, University of Sumatera Utara, Indonesia
E-mail: nurhayatipandia68@usu.ac.id

Abstract. A company that engaged in the chemical industry and produces urea and ammonia, needs an arrangement on the distribution chain to suppress the possibility of stock out. An inventory on Disaster Centre is arranged in order to meet the demand of retailers. The determination of distribution routes that can reduce waste in terms of the use of transportation facilities as to minimize the time, and distance is analyzed by Distribution requirement planning method. Using the selected forecasting function based on the time series method, the total demand for the next 12 months is obtained, by calculating by applying the distribution requirement planning method, an total request cannot be fulfilled decrease by 67.38% from 417 orders to 136 orders.

1. Introduction
Logistics is the art and science of regulating and controlling the flow of goods, energy, information, and other resources, such as products, services, and humans from production sources to markets with the aim of optimizing the use of capital [1]. One of the activities in logistics is distribution. Distribution is the process of distributing product from producers to those in need. Distribution is an important factor for companies to be able to deliver products precisely to consumers [2-4]. The accuracy of product delivery must have the basis of scheduling and determining the right route, thus speeding up product delivery times and saving product shipping costs. There are so many routes that companies can choose in distributing their products, and require different costs, due to that we need a method that can analyze product distribution in order to minimize the time, distance and cost.

The company that research was conducted engaged in the chemical industry, especially producing urea and ammonia fertilizer.

The problem faced by the company is the size of the retailer's ordering lot to Distributon Center and from the Distribution Center to the Distribution Warehouse in the North Sumatra region due to the higher number of retailer orders compared to inventory in Distribution Centre resulting in stock out. From the total demand that must be fulfilled by Distribution Centre Sumatra, information is obtained that around 10% of total requests cannot be fulfilled because shipping from the Distribution Warehouse to Sumatra Distribution Center is only done every 2 times a week as much as 3000 tons / shipment.

Table 1. Some Display of Product Delivery to Retailers in January, North Sumatra Region.

Retailer	Num. of Request (ton)	Num. Of Shipment (ton)
Based on the above problems, it requires an inventory arrangement in the distribution chain to suppress the possibility of stock out, and regulate inventory in disaster centre so that it can meet retailers' demands. In addition, the determination of fertilizer distribution routes can reduce waste in terms of the use of transportation facilities so that it can minimize time, distance and energy more efficiently.

To determine the amount of inventory in the distribution chain may use methods of Distribution requirement planning. Distribution requirement planning method is a distribution planning method to calculate product requirements at each distribution. This method has been widely used in research.

2. Research Methods
The type of research used is descriptive research in which this study aims to systematically describe the facts and characteristics of an object or a particular population. This descriptive study was conducted by measuring lot orders from retailers to Distribution Centers and from Distribution Centers to Distribution Warehouses and product distribution routes from distribution centers (disaster centre) and retailers in North Sumatra.

Center distance data to the retailer. The dependent variable in this study is the distribution schedule. The Framework of Thinking in this research can be shown in Figure.1.

```
| Day   | PS Line III | KJ Line III | SK Line III | AS Line III | BG Line III | RP Line III | SP Line III | GS Line III |
|-------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| 1     | 71          | 71          |             |             |             |             |             |             |
| 4     | 61          | 61          | 40          | 21          | 33          | 33          |             |             |
| 5     |             |             |             |             | 38          | 8           | 95          | 95          |

Figure 1. Research Thinking Framework.
```
3. **Result and Discussion**

3.1. **Retailer Demand Forecasting Results**

Based on the data request 12 months is carried out forecasting on the respective retailer for the next 12 months. The methods used in forecasting demand for this regression is a method which is one of the methods of the times series. The selection of trend forecasting that is used is selected based on the value of the smallest of the two SEE an alternative trend used in forecasting calculations based on scatter diagram.

From the results, there is a difference between the forecasting the demand for the company’s past with the forecasting of future demand. By using the selected forecasting function then retrieved the total demand for the next 12 months can be seen in table 2.

City	Actual Past Demand	Demand Forecast with Cyclical Method	Percentage Request Difference	Percentage of Request Difference
PS	9.845	9.849	0.041%	0.041%
KJ	10.219	10.225	0.059%	0.059%
SK	10.159	10.166	0.069%	0.069%
AS	9.861	9.866	0.051%	0.051%
BG	9.924	9.930	0.060%	0.060%
RP	9.684	9.690	0.062%	0.062%
SP	9.948	9.954	0.060%	0.060%
GS	9.106	9.111	0.055%	0.055%

From table 2 it can be seen that the results of demand forecasting for the next year have approached the actual demand data, which can be seen from the minimum demand gap.

3.2. **Order Quantity Calculation**

The method used in calculating order quantity for each retailer is economic order quantity.[11-12] Order Quantity calculations are performed using different economic order quantity methods with Quantity Order calculations on companies that use trial methods and errors where each shipment does not send the same amount, but on request. EOQ calculation is done using the following formula:

\[
EOQ = \sqrt{\frac{2 \times D \times k}{h}}
\]

(1)

Description:
- D = Number of goods needs during one period (weeks)
- k = Ordering cost per message
- h = Holding cost for one period (weeks)

Calculation of EOQ values for line III PS

D = 220
K_PS = 2,940,000
h = 10% of units sold = 10% * 90,000 = 9,000

\[
EOQ = \sqrt{\frac{2 \times D \times k}{h}} = \sqrt{\frac{2 \times 220 \times 2,940,000}{9,000}} = 352
\]
The following is the EOQ calculation for each retailer:

Table 3. Recapitulation of Order Quantity Calculations in Weekly.

Retailer	Economic Order Quantity (Ton)
Line III PS	352
Line III KJ	379
Line III SK	352
Line III AS	532
Line III BG	530
Line III RP	531

Table 4. Recapitulation of Order Quantity Calculations in Weekly.

Retailer	Economic Order Quantity (Ton)
Line III SP	542
Line III GS	555

From the table above, it can be seen that by sending based on calculations using the EOQ method, the optimum number of deliveries that can meet consumer demand is obtained, whereas compared to actual shipments that are based on the request of each retailer that disaster centre cannot meet due to out of stock. So that by implementing shipments based on EOQ calculations, it is expected that there will be no out of stock conditions due to the uncertain number of shipments and can improve the service system.

3.3. Frequency Ordering and Safety Stock Calculation

The amount of ordering frequency from retailers is one of the important factors affecting the cost of distributing products from the factory to retailers, where the high frequency of product delivery means reducing the cost of storage, and vice versa, if the low frequency of delivery raises the risk of high storage costs. In Table 5, You can see the comparison of the order frequency 12 months ago with the order frequency plan for the next 12 months.

Table 5. Comparison of Order Frequency (Times).

No	Retailer	Actual Order Frequency for Last 12 Months (Without Distribution requirement planning)	Planned Frequency of 12 Months Ordering (With Distribution requirement planning)	Percentage of Order Frequency Difference
1	Line III PS	50	25	50,000 %
2	Line III KJ	52	26	50,000 %
3	Line III SK	57	31	54,386 %
4	Line III AS	50	38	76,000 %
5	Line III BG	50	38	76,000 %
6	Line III RP	55	43	78,182 %
Table 5. Comparison of Order Frequency (Times) (continue).

No	Retailer	Actual Order Frequency for Last 12 Months (Without Distribution requirement planning)	Planned Frequency of 12 Months Ordering (With Distribution requirement planning)	Percentage of Order Frequency Difference
7	Line III SP	53	41	77,358%
8	Line III GS	50	39	78,000%
	Total	417	136	-

By using the Distribution requirement planning method, the frequency of the number of orders is obtained from 417 orders to 136 orders with a percentage decrease of 67.38%.

Safety stock in this system is a reference for reorder to fulfill forecasting results. Calculation of safety stock can be calculated using the formula:

\[
\text{Safety Stock} = s \times Z
\]

(2)

The following is the calculation of the safety stock for each retailer:

Table 6. Retailer Safety Stock (Ton).

Retailer	Safety Stock
PS	39
KJ	41
SK	37
AS	33
BG	35
RP	33
SP	43
GS	32

Table 7. Safety Stock of Retailers of Every Months (Ton).

Period	Week	Line III							
		PS	KJ	SK	AS	BG	RP	SP	GS
Jan	4	210	221	216	202	198	205	217	194
Feb	4	218	214	211	206	197	207	227	192
Mar	5	171	165	166	159	166	186	152	
Apr	4	207	200	205	212	202	206	230	187
May	5	160	158	164	171	166	163	178	148
Jun	4	194	200	206	212	212	201	211	185
Jul	4	191	205	209	209	216	199	199	186
Aug	5	154	171	170	165	174	158	151	151
Sep	4	197	221	217	202	216	198	184	191
Oct	4	204	227	219	200	212	199	185	193
Nov	5	169	183	176	159	166	161	154	156
Dec	4	217	227	219	200	203	204	204	195
Total	52	2302	2392	2378	2306	2320	2266	2326	2130
3.4. Distribution requirement planning and Pegging Information

Distribution requirement planning can be arranged for each retailer on a weekly time bucket, because the lead time of each reviewer does not exceed 1 month or only weekly. Distribution requirement planning sheet is obtained after going through several stages, namely: [13-15]

1. Gross Requirement (GR): the number of requests to be distributed obtained from the results of forecasting
2. Schedule receipt (SR): the number of receipts that have been scheduled from the previous PORel results
3. Project on Hand (PoH): projection of the amount of inventory that still exists at a certain time phased.
4. Plan Order Receipt (PORec): the number of orders scheduled for the period needed
5. Plan Order Release (PORel): order plan after the lead time information is taken into account. Lead time is the grace period between ordering and receiving orders.

Stock On Hand = 59 Safety stock = 41
Order Quantity = 379 Lead Time = 1 Week
PoH periode 1 = SRi+ POh(i-1)-Gri............(3)
PoH periode 2 = POh(i-1) + PoReci– Gri...(4)

Table 8. Distribution requirement planning Sheet Line III KJ.

Post Due	1	2	3	4	5	6	7	8	9	10	11	12	13	14
GR	221	221	221	214	214	214	165	165	165	165	165	200		
SR	379													
PoH	59	217	375	154	312	98	263	49	214	49	263	98	312	147
PoRec	379	0	379	379	0	379	0	379	0	379	0	379	0	379
PoRel	379	0	379	0	379	0	379	0	379	0	379	0	379	0
Post Due	15	16	17	18	19	20	21	22	23	24	25	26	27	28
GR	200	200	200	158	158	158	158	200	200	200	200	205	205	205
SR														
PoH	326	126	305	105	326	168	389	231	73	252	52	231	410	205
PoRec	0	379	0	379	0	379	0	379	0	379	0	379	0	379
PoRel	379	0	379	0	379	0	379	0	379	0	379	0	379	0

4. Conclusion

The conclusions that can be concluded in the final assignment research are as follows.

- Using the forecasting function selected based on the times series method, the total demand for the next 12 month, namely 9.849 tons at PS line, 10.225 tons at KJ line, 10.166 tons at SK line, 9.866 tons at AS line, 9.930 ton at BG line, 9.690 ton at RP line, 9.954 ton at PS line, and 9.111 ton at GS line
- The optimum amount obtained based on the EOQ method for each retailer is 352 tons on the PS line, 379 tons on the KJ line, 352 tons on the SK line, 532 tons on the AS line, 530 tons on the BG line, 531 tons on the line RP, 542 tons on the PS line and 555 tons on the GS line.
- The calculation of order frequency for each retailer is 25 times on the PS line, 26 times on the KJ line, 31 times on the SK line, 38 on the AS line, 38 on the BG line, 43 on the RP, 41 times on the PS line and 39 times on the GS line.
- Safety stock calculation results for each calculation of safety stock for each retailer is 39 tons on the PS line, 41 tons on the KJ line, 37 on the SK line, 33 tons on the AS line, 35 tons on the BG line, 33 tons on line RP, 43 tons on line PS and 32 tons on line GS.
By applying the distribution requirement planning method, the distribution schedule planning becomes an order. Product distribution carried out by the company throughout was 417 orders. When applying the distribution requirement planning distribution method only 136 orders were made, with a percentage decrease of 67.38%.

Application of the distribution requirement planning method with the Q model inventory system, yields lot order size of 352 tons on the PS line, 379 tons on the KB line, 352 tons on the SK line, 532 tons on the AS line, 530 tons on the Balige line, 531 tons on line RP, 542 tons on the PS line and 555 tons on the GS line with recapitulation of orders totaling 135 times.

By applying the distribution requirement planning method, there was a decrease in the number of orders by 67.38% from 417 orders to 136 orders.

References
[1] Maurice M. O. 2017. Impacts of Information and Communication Technology (ICT) in Logistic Management in Unilever Kenya Limited. Rongo University.
[2] Mohammad Ali, Mostafa Kafaei, Morteza Kafaei. 2016. An Optimized Mathematical Model for Items Supplies Planning of a Logistic System. Malek Ashtar University of Technology, Tehran, Iran.
[3] Y. Roopavathi, Ch. Ramesh. 2017. Planning of Water Distribution Network to Desapratrunipalem (55th ward, Visakhapatnam) by using EPANET & GIS. Gayatri Vidya Parishad College of Engineering.
[4] B. E. Okafor and I. Nnanna. 2018. Optimization of Distribution Network of Nigerian Bottling Company PLC Using LINGO. University Of Technology Owerri, Imo State.
[5] Winangsari P, Cut N, Nidaul H, Nunung N, Syarif H. Demand Forecasting For Sales Order And Distribution Requirements Planning System (Case Study : ikm xyz). Universitas Al Azhar Indonesia.
[6] Nassibeh J, Mostafa Z, Akbar A. T, Masood R. 2018. Designing Sustainable Distribution Network in Pharmaceutical Supply Chain: A Case Study. Shahid Beheshti University.
[7] Ali G, Fatemeh S, Ahmad M. 2018. An integrated model for designing a distribution network of products under facility and transportation link disruptions. University of Tehran.
[8] Robert M, Drago S, Edgar S. 2018. An approach to the location of a warehouse distribution centre in the international environment: a Slovenian perspective. University of Ljubljana.
[9] Ferdoush S, Md. Mamun H, Bishwajit Bank P, Zurina Binti H. 2014. Demand and Supply Planning in Retail Operations. Universiti Utara Malaysia (UUM).
[10] Chandra Sekhar J V D, Balasubramanian V. 2012. DRP: A Novel Approach for Requirement Planning in Supply Chain Management. School of Computing Science and Engineering VIT University.
[11] Kumar, Rakesh. 2016. Economic Order Quantity (EOQ) Model. College University of Delhi.
[12] Tajik, Reza. 2018. Planning of Distribution System with High Penetration Level for Distributed Generation in Smart Grid. Bandar-e-Abbas University of Applied Science and Technology.
[13] Vizinger, T, Zerovnik, J. 2018. Coordination of a Retail Supply Chain Distribution Flow. University of Maribor.
[14] Shahzad N, Syed Muhammad M, Faraz A, Moin A. K. 2016. Inventory Management through Lean Logistics and Warehousing Techniques. Hamdard University.
[15] Timothy J, Eddy T, David W. 2018. Saving Matrix Method for Efficient Distribution Route Based on Google Maps API. Institut Informatika Indonesia.