Camellia osmantha is a new species discovered in Nanning, Guangxi, China, in 2012. It can be used as an excellent woody oil crop. There is little related research on this species in China and abroad, and its genome information is still lacking. In this study, the complete chloroplast genome sequence of C. osmantha was first reported (GenBank number: MZ128138). The whole chloroplast genome is 156,981 bp in length with a GC content of 37.28%, and it is composed of a large single copy (LSC) region of 86,647 bp, a small single copy (SSC) region of 18,284 bp, and a pair of inverted repeat (IR) regions of 26,025 bp each. The genome contains a total of 135 functional genes, including 37 transfer RNA genes, 90 protein-coding genes, and 8 ribosomal RNA genes. The maximum likelihood analysis based on 21 chloroplast genomes showed that C. osmantha and C. oleifera (MF541730.2) were the most closely related.

Camellia osmantha is a new species discovered in Nanning, Guangxi, China, in 2012. It can be used as an excellent woody oil crop. There is little related research on this species in China and abroad, and its genome information is still lacking. In this study, the complete chloroplast genome sequence of C. osmantha was first reported (GenBank number: MZ128138). The whole chloroplast genome is 156,981 bp in length with a GC content of 37.28%, and it is composed of a large single copy (LSC) region of 86,647 bp, a small single copy (SSC) region of 18,284 bp, and a pair of inverted repeat (IR) regions of 26,025 bp each. The genome contains a total of 135 functional genes, including 37 transfer RNA genes, 90 protein-coding genes, and 8 ribosomal RNA genes. The maximum likelihood analysis based on 21 chloroplast genomes showed that C. osmantha and C. oleifera (MF541730.2) were the most closely related.

The complete chloroplast genome of Camellia osmantha, an edible oil Camellia

Yanju Liu, Yufen Xu and Xiaocheng Jia

Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China

ABSTRACT
Camellia osmantha is a new species of the Camellia genus discovered in Nanning, Guangxi, China, in 2012. It can be used as an excellent woody oil crop. There is little related research on this species in China and abroad, and its genome information is still lacking. In this study, the complete chloroplast genome sequence of C. osmantha was first reported (GenBank number: MZ128138). The whole chloroplast genome is 156,981 bp in length with a GC content of 37.28%, and it is composed of a large single copy (LSC) region of 86,647 bp, a small single copy (SSC) region of 18,284 bp, and a pair of inverted repeat (IR) regions of 26,025 bp each. The genome contains a total of 135 functional genes, including 37 transfer RNA genes, 90 protein-coding genes, and 8 ribosomal RNA genes. The maximum likelihood analysis based on 21 chloroplast genomes showed that C. osmantha and C. oleifera (MF541730.2) were the most closely related.

CONTACT Xiaocheng Jia xcjia1@163.com Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China

ARTICLE HISTORY
Received 24 June 2021
Accepted 26 September 2021

KEYWORDS
Camellia osmantha; chloroplast genome; phylogenetic analysis

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
C. osmantha and C. oleifera (MF541730.2) was found to be the closest.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This study was supported by Central Finance Forestry Science and Technology Popularization & Demonstration Project [QIONG [2020] TG06], Hainan Provincial Natural Science Foundation of China [319MS081] and National Key R&D Program of China [2019YFD1001602].

Data availability statement

The genome sequence data that support the findings of this study are openly available in GenBank of NCBI at (https://www.ncbi.nlm.nih.gov/) under the accession No. MZ128138. The associated BioProject, Bio-Sample, and SRA numbers are PRJNA725044, SAMN18928057, and SRR14469701 respectively.

References

Jiang ZP, Wang DX, Hao BQ, Ye H. 2016. Screening of excellent rootstock line Camellia osmantha. J Anhui Agri Sci. 44(29):161–163.

Jin JJ, Yu WB, Yang JB, Song Y, DePamphilis CW, Yi TS, Li DZ. 2020. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 21(1):241.

Liu C, Shi L, Zhu Y, Chen H, Zhang J, Lin X, Guan X. 2012. CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences. BMC Genomics. 13:715 doi: 10.1186/1471-2164-13-715. PMC: 23256920

Ma JL, Ye H, Ye CX. 2012. A new species of Camellia sect. Paracamellia. Guihaia. 32 (6):753–755.

Ouyang XL, Yang L, Huang L, Pan YM. 2020. Antitumor activity on human bladder cancer T-24 cells and composition analysis of the core of Camellia osmantha fruit. Nat Prod Res. 34(18):2689–2693.

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 30(9):1312–1313.

Tillich M, Lehwrak P, Pellizzer T, Ulbricht-Jones ES, Fischer A, Bock R, Greiner S. 2017. GeSeq - versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 45(W1):W6–W11. doi:10.1093/nat/gkox391. 28486365

Xia EH, Jiang JJ, Huang H, Zhang LP, Zhang HB, Gao LZ. 2014. Transcriptome analysis of the oil-rich tea plant, Camellia oleifera, reveals candidate genes related to lipid metabolism. PLoS One. 9(8):e104150.