The molecular basis of the frontotemporal lobar degeneration–amyotrophic lateral sclerosis spectrum

Tim Van Langenhove¹,², Julie van der Zee¹,² & Christine Van Broeckhoven¹,²

¹Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIB; Antwerpen, Belgium, and ²Institute Born-Bunge, University of Antwerp, Antwerpen, Belgium

There is increasing evidence that frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) represent a continuum of neurodegenerative diseases. FTLD is complicated by ALS in a significant proportion of patients, and neuropsychological studies have demonstrated frontotemporal dysfunction in up to 50% of ALS patients. More recently, advances in neuropathology and molecular genetics have started to disclose the biological basis for the observed clinical concurrence. TDP-43 and FUS have been discovered as key pathological proteins in both FTLD and ALS. The most recent discovery of a pathological hexanucleotide repeat expansion in the gene C9orf72 as a frequent cause of both FTLD and ALS has eventually confirmed the association of these two at first sight distinct neurodegenerative diseases. Mutations in the TARDBP, FUS, and VCP genes had previously been associated with different phenotypes of the FTLD-ALS spectrum, although in these cases one end of the spectrum predominates. Whilst on the one hand providing evidence for overlap, these discoveries have also highlighted that FTLD and ALS are etiologically diverse. In this review, we review the recent advances that support the existence of an FTLD-ALS spectrum, with particular emphasis on the molecular genetic aspect.

Key words: Amyotrophic lateral sclerosis, C9orf72, frontotemporal lobar degeneration, genotype–phenotype correlations, molecular genetics, pathology

Introduction

Frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) are two related and devastating neurodegenerative diseases. FTLD is a form of dementia clinically characterized by progressive changes in behavior, personality, and/or language. ALS is a neurodegenerative disorder in which loss of motor neurons leads to progressive weakness of the voluntary muscles. While traditionally they were considered as two separate identities, it is now thought that FTLD and ALS form one clinical continuum, in which pure forms are linked by overlap syndromes. Neuropsychological testing shows normal cognition in the majority of ALS patients. However, in up to 50% of ALS patients some degree of cognitive or behavioral impairment can be documented, which is in 15%–18% sufficient to meet the criteria of FTLD (1,2). Recent advances in neuropathology and molecular genetics have started to disclose the biological basis for this clinical overlap. Neuronal aggregations of dysfunctional proteins are a key neuropathological feature in many forms of neurodegenerative diseases. In both FTLD and ALS the proteins TDP-43 and FUS have been identified as the main components of these inclusions, thereby providing a strong molecular link between the two disorders. Insights into the underlying biological mechanisms have been provided by the identification and functional characterization of mutations in a small fraction of patients with autosomal dominant FTLD and/or ALS. While some genetic causes are specific for either FTLD or ALS, others were found to contribute to both ends of the disease continuum. In this review, we summarize the evidence for the overlap between FTLD and ALS at the different levels, with particular emphasis on the molecular genetic aspect.

Key messages

• FTLD and ALS are considered as two extremes of a clinical continuum.
• TDP-43 and FUS are key pathological proteins in both FTLD and ALS.
• Common genetic factors underlie FTLD and ALS, most notably the gene C9orf72.

Frontotemporal lobar degeneration

FTLD is defined by the focal neurodegeneration in the frontal and anterior temporal lobes of the brain. It is, after Alzheimer’s disease (AD), one of the leading causes of dementia, particularly in patients with a disease onset before 65 years (3). FTLD occurs with an estimated prevalence of 10–20 per 100,000 and incidence of 3.5–4.1 per 100,000/y in the 45–64 year age-group (4–7). It can manifest as three clinically recognized subtypes, depending on the early and dominating symptoms: a behavioral variant FTLD...
Amyotrophic lateral sclerosis

ALS is a progressive neurodegenerative condition affecting the motor neurons of the cerebral cortex (the upper motor neurons (UMN)), brain-stem, and the anterior horn of the spinal cord (the lower motor neurons (LMN)). ALS has, similar to FTLD, a peak incidence around the age of 60 years. The incidence of ALS is reported to be 1.5–2.7 per 100,000/y in Western countries (21). The prevalence ranges from 2.7 to 7.4 per 100,000 (21). The clinical picture of ALS consists of a characteristic combination of signs of UMN degeneration, which include muscular spasticity and hyperreflexia, together with signs of LMN degeneration, which comprise muscular atrophy and fasciculations. In about two-thirds of ALS patients the disease starts in the muscles of the arms or legs and in one-third of patients in those required for swallowing or speech production (bulbar onset) (22). A respiratory onset ALS is considered rare (23). The motor symptoms progressively spread to include other anatomical regions; a diagnosis of ‘clinical definite ALS’ according to the revised El Escorial criteria requires the presence of UMN and LMN signs in three of four anatomical regions (24). Electromyographic studies in patients suspected for ALS allow documentation of the LMN degeneration and exclusion of other disease processes that may result in muscular weakness. Clinical variants of ALS include progressive muscular atrophy (pure LMN disorder) (25) and primary lateral sclerosis (pure UMN disorder) (26). The majority of ALS patients die within a few years after onset of first symptoms, mostly due to aspiration pneumonia (27). The drug riluzole has been shown to slow down the progression of the disease by a few months (28).

Clinical continuum between FTLD and ALS

Reports of dementia or psychiatric disturbances in association with clinical features of ALS date back to the late nineteenth century (29,30). However, it was only together with the increased recognition of FTLD as a separate form of dementia in the early 1990s that the cognitive and behavioral abnormalities that occur in ALS started to gain more detailed attention. Currently it is estimated that approximately 15% of FTLD patients have motor dysfunction meeting the criteria of ALS (31,32). Similarly, in two large ALS patient series, the prevalence of FTLD was 15% and 18% (1,2). The pattern of cognitive changes in patients with both FTLD and ALS (FTLD-ALS) usually closely resembles that of bvFTD, and the motor neuron disease is similar to that of classic ALS (33,34). FTLD-ALS patients sometimes develop delusions or hallucinations, features that are relatively uncommon in pure FTLD (34–36). A few reports describing a PNFA or SD phenotype in association with ALS have also been published (37–39). The first symptoms in FTLD-ALS patients occur on average in the late 50s, and progress is rapid with death occurring within 2–3 years (18,40). In most of cases, the FTLD symptoms precede those of ALS (41).

Adding further to the evidence of a clinical overlap is the observation in ALS patients without dementia of specific difficulties in performing cognitive tasks sensitive to frontal lobe dysfunction, suggesting a continuum of involvement (Table I, Figure 1). Neuropsychological studies in series of ALS patients have most frequently documented abnormalities in the executive functions, which are higher-order mental processes implicated in planning, problem-solving, shifting of attention, and inhibiting behavior and thought to be located in the frontal lobes. Rates of executive function deficits in ALS patients without dementia have ranged from 22% to 36% (1,42). Impaired verbal fluency, related to executive dysfunction, has been a frequent finding in cognitively impaired ALS and has in consequence been proposed as a relatively sensitive screening method (43). The performance on these tests may, however, be confounded by the reduced motor abilities in ALS, and adaptations have been developed to eliminate this effect, for example, through performing a written instead of an oral fluency task in ALS patients with impairment of bulbar musculature (44). Language abnormalities in non-demented ALS also occur but less frequently. Difficulties have been described on naming and comprehension tests, and several reports have been published of ALS patients with spelling and writing errors (45–48). The spectrum of frontotemporal syndromes in ALS further includes mild neurobehavioral impairment, which may occur independent of the cognitive dysfunction (49). Patients with ALS have been reported with increased frequency of a mild to moderate degree of apathy that was mood-independent, with disinhibition, lack of emotional concern or stereotypic behavior (50,51). Imaging studies in

Main clinical characteristics
FTLD bvFTD Disinhibition, apathy, lack of emotional concern, hyperorality, stereotypic behavior and executive dysfunction
PNFA Laborved speech, agmatism with relatively spared comprehension
SD Comprehension deficits, naming errors with fluent speech
FTLD-MND-like FTLD with minor motor system dysfunction
FTLD-ALS Meeting the diagnostic criteria of both FTLD and ALS
ALS with minor cognitive impairment
ALS with minor behavioral impairment
ALS Muscle weakness, hyperreflexia, spasticity, atrophy and fasciculations

ALSbi = ALS with a mild behavioral impairment; ALSci = ALS with a mild cognitive impairment; bvFTD = behavioral variant FTLD; LMN = lower motor neuron; PNFA = progressive non-fluent aphasia; SD = semantic dementia; UMN = upper motor neuron; MND = motor neuron disease.
Molecular pathology of FTLD and ALS

The histopathological characteristics of FTLD and ALS include, as for most neurodegenerative diseases, abnormal accumulation of protein aggregations in the affected parts of the nervous system. In contrast to the near-uniform nature of the aggregates in case of, for example, AD (amyloid-β plaques and intracellular tau neurofibrillary tangles), the molecular pathology of FTLD and ALS is notably heterogeneous (Figure 1). Nevertheless, similar molecular inclusions are being observed in FTLD and ALS, which suggests that they share common pathogenic mechanisms leading to neurodegeneration and aggregation of the specific inclusion proteins.

Approximately 35% of the FTLD patients who come to autopsy show intraneuronal and glial aggregations of the microtubule-associated protein tau (indicated as FTLD-tau) (57,58). The prototype of FTLD-tau is Pick’s disease, where round inclusions of tau filaments are observed in ballooned neurons, which can be visualized by silver staining (Pick bodies). In most FTLD brains, however, tau deposits cannot be detected. In the majority of these cases, neuronal intracytoplasmatic and intranuclear inclusions are present that are immunoreactive to ubiquitin (FTLD-U) (59). Similar ubiquitin-positive inclusions were also observed in the degenerating motor neurons of ALS patients (60). Moreover, further research demonstrated that a significant fraction of ALS patients, including those without overt cognitive changes, also have extra motor neuron ubiquitin pathology, which is mostly located in the limbic and frontotemporal brain regions reminiscent of FTLD (61). In 2006, the protein TDP-43 was identified as the main component of the ubiquitinated inclusions in both FTLD-U (Figure 2) (renamed FTLD-TDP) and in the majority (> 90%) of ALS (ALS-TDP) (62,63). Following this discovery, it was proposed that FTLD and ALS form a clinico-pathological spectrum of TDP-43 proteinopathies (64).

In 2009, aggregations of the FUS protein were demonstrated in rare ALS patients with a mutation in the FUS gene (ALS-FUS) (65,66). These FUS inclusions were negative for TDP-43, which implies the involvement of mutually distinct pathways that lead to neurodegeneration. For FTLD, a small number of FTLD-U cases remained (10%–20%) that could not be explained by TDP-43 (67,68). When analyzed, almost all these atypical FTLD-U (aFTLD-U) brains appeared to harbor FUS inclusions (69–72). In addition, abundant FUS pathology has been demonstrated in two related rare neurodegenerative disorders: basophilic inclusion body disease (BIBD) (73) and neuronal inclusion filament disease (NIFID) (74). Current pathological nomenclature considers aFTLD-U, NIFID, and BIBD as the three distinct forms of FTLD-FUS (75). Together, ALS-FUS and FTLD-FUS form a new class of FUS proteinopathies (64).

In rare FTLD patients that have been linked to the CHMP2B gene, cellular inclusions are present that are ubiquitin-positive but TDP-43- and FUS-negative (FTLD-UPS) (71). Likewise, in ALS, a third molecular class exists without clear TDP-43 or FUS pathology, ALS-SOD, which is observed in ALS patients with a SOD1 mutation (76).

Notably, TDP-43 and FUS are not specific to FTLD and ALS. Concomitant TDP-43 pathology is also found in several other forms of neurodegenerative diseases, such as AD (20%–26% of patients) (77,78), dementia with Lewy bodies (DLB) (18%–45% of patients) (79,80), or corticobasal degeneration (CBD) (15% of patients) (78) (for review see (81)). The relevance of this phenomenon of concomitant TDP-43 pathology remains unclear, and attempts to correlate the concurrent TDP-43 pathology with the clinical phenotype has given mixed results (78,82). In neurologically healthy elderly, a limited number of studies indicated that...
TDP-43 pathology is rare in normal aging (3% or less) (83). As in the case of TDP-43, concomitant FUS inclusions have been described in several other diseases, including disorders with expanded polyglutamine stretches such as Huntington’s disease (84) and several forms of spinocerebellar ataxia (85).

FTLD-ALS mutation spectrum

FTLD is known to be a principally familial disorder, with the incidence of FTLD-ALS spectrum disorders in a patient’s relative being 38%–47% (86–88). Similarly, a positive familial history has been found in 36%–59% of patients with FTLD-ALS (86–88). In ALS, however, most patients are isolated cases, but 5%–10% have a familial history of the disease (89). The notion of a shared genetic susceptibility between FTLD and ALS is also supported by findings of epidemiological studies. First-degree and second-degree relatives of ALS patients have a 2-fold increased risk for dementia (90,91).

Major progress has been made in the last 20 years in unraveling the genetic basis of FTLD and/or ALS. Together, FTLD-ALS disorders have been linked to at least 14 different genes. While some genetic causes are largely specific for either FTLD or ALS, others contribute to different phenotypes of the FTLD-ALS disease spectrum (Figure 1, Table II).

Autosomal dominant mutations in two genes, MAPT and GRN, account for about 10%–20% of all FTLD patients (87, 92–94). ALS has only very rarely been part of the clinical spectrum within MAPT or GRN segregating FTLD families (95–99). Other rare genetic causes of FTLD include mutations in the CHMP2B gene, in which pathogenic nonsense mutations have so far been identified in one large Danish FTLD pedigree (100) and one Belgian FTLD patient (101). A small number of CHMP2B missense mutations have also been described in FTLD and ALS patients; however, the pathogenicity of this type of CHMP2B mutations still remains uncertain (101–104). Mutations affecting the gene VCP were previously known to cause a rare multi-system disorder that includes FTLD (105). Recently, the phenotypic spectrum associated with VCP has been extended also to include ALS.

Mutations in the SOD1 gene are being found in about 20% of familial and 3% of sporadic ALS patients (106,107). There are very few reports of dementia in association with SOD1 mutations (108). Further, neuropsychological assessment in series of SOD1 mutation carriers failed to detect significant cognitive impairment (109). Mutations have been detected in the genes that encode the key pathological proteins of the FTLD-ALS spectrum, FUS and TDP-43 (65,66,110,111). Unexpectedly, however, mutations in the respective genes, FUS and TARDBP, appear to occur mostly at the ALS end of the disease spectrum. Occasionally, mutations in these genes have also been reported in FTLD-ALS or FTLD patients. While expansions of a polyglutamine tract in ATXN2 have been associated with ALS (112), screening of this gene in FTLD and FTLD-ALS cohorts has so far been negative (113,114). Lastly, rare genetic causes of ALS include mutations in the ANG, OPTN, UBQLN2, and VAPB genes (Table II) (115–118). In UBQLN2 families, the phenotype was mostly ALS, with a few patients reported as FTLD-ALS (118). The ANG gene has also been associated to FTLD-ALS, but this was based on the observation of a mutation in a single FTLD-ALS pedigree (119).

The strongest evidence for a shared genetic etiology between FTLD and ALS came from multiple linkage and genome-wide association (GWA) studies that established a shared disease locus on chromosome 9p (120–131). Most recently, three research groups have independently identified pathological expansions of a hexanucleotide repeat (GGGGCC) in the gene C9orf72 as the underlying genetic cause of chromosome 9p-linked FTLD and ALS (132–134).

A pathological repeat expansion in C9orf72 results in both FTLD and ALS

Since 2006, several large families in which FTLD and ALS co-segregated were reported with linkage to a region on chromosome 9p (120–127). The shared chromosomal region between
The molecular FTLD-ALS spectrum

The linked families was 3.6 Mb in size and was located at 9p21.2-p21.1. The same chromosome 9p region was independently identified in several large population-based GWA studies in cohorts of unrelated ALS patients and control individuals. A trend for association with the same region was also observed in a FTLD GWA study, in a cohort of patients enriched for TDP-43 neuropathology (128–131). Fine mapping in the GWA studies delineated the association signal to a 106.5 Kb sized region at 9p21.2. In spite of extensive genetic analyses of all known and predicted coding translation initiation codon; PDB = Paget’s disease of the bone; SCA2 = spinocerebellar ataxia type 2; SMA = spinal muscular atrophy.

The neuropathology of the chromosome 9p-linked FTLD-ALS patients was, in case of FTLD, characterized by TDP-43 inclusions, showing a specific pattern of abundant neuronal cytoplasmatic inclusions with few neurites and intranuclear inclusions (a subtype of FTLD with TDP-43 pathology denoted as FTLD-TDP type B) (135). This FTLD-TDP subtype is typical for FTLD-ALS and has also been observed in familial FTLD-ALS patients not linked to chromosome 9p and in sporadic FTLD-ALS patients (136–138). The FTLD pathology has been described as classical ALS-TDP. Often, chromosome 9p-linked patients with exclusively clinical FTLD or ALS showed a combined pathology at autopsy.

Most recently, others and we independently demonstrated that a pathological expansion of a GGGGCC hexanucleotide repeat within the promoter region of C9orf72 is at the basis of chromosome 9p-linked FTLD-ALS patients' phenotype (139). This C9orf72 expansion is reported to be present in 1% of FTLD and 1% of ALS patients. In combination with TDP-43, the molecular FTLD-ALS spectrum shows a combined pathology at autopsy.

Sub-classification of FTLD-TDP is according to (135).

Mutation frequency

Gene	Locus	Inheritance	Mutation type	FTLD	ALS	Molecular pathology	Comment
MAPT (94)	17q21	AD	Missense, splice site, deletion	5%–10%	–	Tau	FTLD-TDP type A
PGRN (92,93)	17q21	AD	Nonsense, splice site, frameshift, deletion, met1, missense	5%–10%	–	TDP-43	
VCP (105)	9p13	AD	Missense	<1%	<1%	TDP-43	In combination with IBM and PDB; FTLD-TDP type D
CHMP2B (100)	3p11	AD	Nonsense	<1%	–	UPS	
TMEM106B (131)	7q21	Risk factor	GGGGCC expansion	5%–10%?	5%–10%?	UPS	
C9orf72 (132–134)	9p21	AD	Missense, frameshift nonsense	–	–	TDP-43, UPS	
SOD1 (106)	21q22	AD and AR	Missense, frameshift nonsense	–	–	SOD1	
TARDBP (110,111)	1p36	AD	Missense, nonsense	<1%	–	TDP-43	
FUS (65,66)	16q12	AD and AR	Missense, nonsense, splice site, frameshift	<1%	–	TDP-43	
ATXN2 (112)	12q24	AD and risk factor	GAG expansion	–	–	TDP-43	
ANG (115)	14q11	AD and risk factor	Missense	–	<1%	TDP-43	
OPTN (117)	10p13	AD and AR	Missense, exon-deletion nonsense	–	<1%	TDP-43	
VAPB (116)	20q13	AD	Missense	–	<1%	TDP-43	
UBQLN2 (118)	Xp11	AD	Missense	<1%	<1%	TDP-43	

Mutation frequency

Gene	Locus	Inheritance	Mutation type	FTLD	ALS	Molecular pathology	Comment
MAPT (94)	17q21	AD	Missense, splice site, deletion	5%–10%	–	Tau	FTLD-TDP type A
PGRN (92,93)	17q21	AD	Nonsense, splice site, frameshift, deletion, met1, missense	5%–10%	–	TDP-43	
VCP (105)	9p13	AD	Missense	<1%	<1%	TDP-43	In combination with IBM and PDB; FTLD-TDP type D
CHMP2B (100)	3p11	AD	Nonsense	<1%	–	UPS	
TMEM106B (131)	7q21	Risk factor	GGGGCC expansion	5%–10%?	5%–10%?	UPS	
C9orf72 (132–134)	9p21	AD	Missense, frameshift nonsense	–	–	TDP-43, UPS	
SOD1 (106)	21q22	AD and AR	Missense, frameshift nonsense	–	–	SOD1	
TARDBP (110,111)	1p36	AD	Missense, nonsense	<1%	–	TDP-43	
FUS (65,66)	16q12	AD and AR	Missense, nonsense, splice site, frameshift	<1%	–	TDP-43	
ATXN2 (112)	12q24	AD and risk factor	GAG expansion	–	–	TDP-43	
ANG (115)	14q11	AD and risk factor	Missense	–	<1%	TDP-43	
OPTN (117)	10p13	AD and AR	Missense, exon-deletion nonsense	–	<1%	TDP-43	
VAPB (116)	20q13	AD	Missense	–	<1%	TDP-43	
UBQLN2 (118)	Xp11	AD	Missense	<1%	<1%	TDP-43	
as a major cause of both FTLD and ALS provided the ultimate evidence that these two diseases are indeed biologically related.

Genotype–phenotype correlations in other FTLD-ALS spectrum genes

TARDBP

Sequencing of the TARDBP gene in FTLD and ALS patients was motivated by the discovery of underlying TDP-43 pathology. By early 2008, the first mutations in TARDBP were reported in ALS, providing conclusive evidence that TDP-43 itself can trigger TDP-43-associated neurodegeneration (110, 111). To date, over 40 mutations have been identified in TARDBP, of which were found in FTLD or FTLD-ALS patients (http://www.molgen.vib-ua.be/FTDMutations). The majority of the mutations are missense and are located in exon 6 of the gene, encoding the C-terminal glycine-rich domain, which is thought to be important for protein–protein interactions.

Mutations in TARDBP are usually associated with classic adult onset ALS. They account for 3%–4% of familial and around 1% of sporadic ALS. The site of onset varies, and some patients presented with a predominantly lower motor neuron disorder. In 74 index patients carrying 31 different TARDBP mutations, the disease age of onset varied from 30 to 74 years, with an average of 55 years (ALSOD database, http://alsod.iop.kcl.ac.uk/). Several TARDBP families showed evidence for incomplete penetrance. For example, in an Italian founder family segregating the p.A382T mutation, the penetrance was estimated at 60% by the age of 70 years (140).

TARDBP mutations may also be a rare but notable cause of FTLD-ALS and FTLD. Evidence is relatively strong in the case of sporadic ALS. The site of onset varies, and some patients presented with a predominantly lower motor neuron disorder. In 74 index patients carrying 31 different TARDBP mutations, the disease age of onset varied from 30 to 74 years, with an average of 55 years (ALSOD database, http://alsod.iop.kcl.ac.uk/). Several TARDBP families showed evidence for incomplete penetrance. For example, in an Italian founder family segregating the p.A382T mutation, the penetrance was estimated at 60% by the age of 70 years (140).

TARDBP mutations may also be a rare but notable cause of FTLD-ALS and FTLD. Evidence is relatively strong in the case of sporadic ALS. Several reports have been published of TARDBP mutations in FTLD-ALS patients (141–144). For example, one study that included a large number (n = 149) of FTLD-ALS patients found that two (1%) of those patients carried a TARDBP mutation (144). TARDBP missense mutations have to date been described in two pure FTLD patients with sporadic onset (145,146). One of these mutations has also been found in one ALS patient, adding evidence for its pathogenic character. Further, one TARDBP mutation has been described in a FTLD patient with additional features of supranuclear palsy and chorea, who showed TDP-43 pathology at autopsy (147). On the other hand, negative findings from other large cohorts of FTLD patients (together, n = 674) indicated that TARDBP mutations in pure FTLD are very rare (148–151).

ALS patients with a TARDBP mutation that come to autopsy show ALS-TDP pathology that is indistinguishable from the TDP-43 pathology observed in sporadic ALS (152–156). Although reports are limited, TDP-43 inclusions are found more widespread than the actual motor neuron degeneration (152,153).

FUS

Shortly following the identification of mutations in TARDBP in ALS patients, pathogenic mutations in FUS were detected in autosomal dominant ALS families linked to chromosome 16 (65,66). Over 40 FUS mutations have now been reported in ALS and 3 mutations in FTLD-ALS or FTLD (http://www.molgen.vib-ua.be/FTDMutations). Most were found in the C-terminal end of FUS encoded by exons 14 and 15. These may be missense or nonsense mutations, splice site or frameshift mutations that result in the production of a C-terminal truncated protein. Interestingly, the C-terminal part of the FUS protein holds a nuclear localization signal (NLS), a sequence necessary for transport of the protein into the nucleus of the cell (157–159). A second cluster of mutations is observed in the Gly-rich region of FUS, encoded by exons 4 to 6, which are mostly found in sporadic patients.

Mutations in FUS are also mostly associated with a classic ALS phenotype. In several FUS mutation carriers, the signs of the disease were restricted to LMN damage, with little or no evidence for UMN disease (160–162). An unusual presentation affecting predominantly the axial musculature has been described in a number of ALS patients with the p.R521C mutation (163–165).

The frequency of FUS mutations is estimated at 4% in familial ALS and 1% in sporadic ALS.

FUS mutation carriers have been reported with a disease onset for ALS from as early as 13 years old to over 70 years of age. A correlation was observed between onset age and the degree in which the mutation affects the NLS of FUS. Truncating mutations, which completely remove the NLS or missense mutations strongly affecting the NLS, such as the p.R521C mutation, occur in patients with earlier disease onset (before the age of 30 years) and more rapid decline (158,166–168). However, even within families segregating the same FUS mutation a broad spread in onset age has been observed, indicating that other genetic and/or environmental factors also influence the disease manifestation (160,169).

Few FUS mutations have been identified in patients with an FTLD or FTLD-ALS phenotype. We have described a missense mutation in a bvFTD patient without signs of motor neuron dysfunction (170). The mutation affects a highly conserved amino-acid residue and was absent in a large group of control individuals, suggesting a pathogenic role. However, family history was negative for FTLD or ALS, and there was no autopsy available to investigate the associated brain pathology. Other investigators have described FUS mutations in FTLD-ALS patients (143,165,171). Some reports also mentioned the presence of FTLD or dementia in relatives of FUS mutation carries

Table III. Characteristics of chromosome 9p-linked FTLD-ALS families.

Reference	No. families (n patients)	FTLD or dementia	FTLD-ALS	ALS	Mean AAO (range)	Mean DD (range)	Molecular pathology
Morita et al. 2006	1 (14)	9 (64%)	0 (0%)	5 (36%)	55.3 (45–64)	4.3 (1–9)	NK (2)
Vance et al. 2006	1 (12)	2 (17%)	3 (25%)	7 (58%)	60.3 (39–72)	3.0 (1–8)	Ub + (5)
Valdmanis et al. 2007	2 (16)	3 (19%)	3 (19%)	10 (63%)	55.1 (45–63)	3.6 (1–9)	0
Luty et al. 2008	1 (11)	7 (64%)	2 (18%)	2 (18%)	52.9 (43–68)	8.6 (1–18)	Ub
Le Ber et al. 2009	6 (31)	10 (32%)	12 (39%)	9 (29%)	57.9 (41–64)	3.6 (1–9)	Ub +, TDP-43 +, FUS + (3)
Gjiselenck et al. 2010	1 (9)	8 (89%)	0 (0%)	1 (11%)	58.1 (51–65)	6.4 (1–17)	Ub +, TDP-43 + (1)
Boxer et al. 2010	1 (10)	5 (50%)	3 (30%)	2 (20%)	45.7 (35–57)	5.8 (3–10)	Ub +, TDP-43 +, FUS- (3)
Pearson et al. 2010	1 (9)	0 (0%)	6 (67%)	3 (33%)	42.2 (31–52)	3.6 (1–13)	Ub +, TDP-43 + (3)
All families	12 (112)	35 (31%)	38 (34%)	39 (35%)	53.4 (31–84)	4.9 (1–18)	

No. = number; AAO = age at onset; DD = disease duration; NK = not known.
(160,168). However, two further studies of \textit{FUS} in large FTLD cohorts (together, \(n = 465\)) observed no mutations (72,171), suggesting that \textit{FUS} has only a limited role in the genetic etiology of FTLD.

\textit{FUS} mutation carriers typically show inclusions of \textit{FUS} but not of TDP-43 in affected motor neurons (66,160,163,172). Some reports indicate that the degeneration can be limited to the LMN, with minimal damage of the UMN (163,173). \textit{FUS} staining is, however, more widespread and shows pathological inclusions in glial cells and neurons outside the motor system, including the striatum, basal ganglia, and frontal and temporal cortex. Some researchers also noticed basophilic inclusions in the degenerating motor neurons (160,163).

\textit{FUS} has also been established as a major inclusion protein in three rare pathological phenotypes related to FTLD, being BIBD, NIFID, and aFTLD-U (75). BIBD can present clinically as ALS, FTLD-ALS, or FTLD (73). In patients with BIBD pathology and juvenile onset ALS, \textit{FUS} mutations have been identified (166,167). The \textit{FUS} mutations in these patients result in a strong disruption of the NLS of \textit{FUS}, which reflects the early onset age of the disease. Intriguingly, not all patients with juvenile or adult onset ALS and \textit{FUS}-positive BIBD can be explained by a \textit{FUS} mutation (167). Further, no reports exist to date of \textit{FUS} mutation carriers with BIBD and an FTLD-ALS or FTLD phenotype. \textit{FUS} pathology was also demonstrated in NIFID (74). NIFID is a rare disorder and is seen in patients with bvFTD with or without ALS. Mutation screening of \textit{FUS} in a small number of NIFID patients was negative. Finally, \textit{FUS} pathology also characterizes the rare FTLD pathology subtype aFTLD-U, in which the ubiquitinated inclusions are \textit{FUS}-positive but TDP-43-negative (69–72). Patients with aFTLD-U have typical clinical characteristics in common such as early disease onset (around 40 years), negative family history, bvFTD, little motor dysfunction, and pronounced atrophy of the caudate nucleus of the brain (67,68). Atrophy of the caudate nucleus on MRI has been proposed as a useful marker to predict aFTLD-U pathology (70,174). Also, in this subgroup with \textit{FUS} pathology no mutations were found in the \textit{FUS} gene (69,71,72).

\textbf{VCP}

The gene \textit{VCP} has also been linked to different phenotypes of the FTLD-ALS disease spectrum. To date, about 20 different \textit{VCP} mutations have been identified in 50 unrelated families (http://www.molgen.vib-ua.be/FTDMutations). All are missense mutations, and in about 75\% of \textit{VCP}-linked families the mutation is located in exon 5 of the gene.

\textit{VCP} mutations were known to cause a rare autosomal dominant disorder with inclusion body myopathy (IBM) associated with Paget’s disease of the bone (PDB) and FTLD, denoted as IBMPFD (105). The clinical presentation of IBMPFD is markedly variable. In a review of 20 IBMPFD families, approximately 90\% of affected persons had IBM, 45\% had PDB, and FTLD was seen in 38\% of patients (175). We have described two unrelated families segregating the same p.R159H mutation in which pure FTLD was the most frequent clinical manifestation (176). Onset age of FTLD in these two families was on average 55 years (range 44–63 years) (176).

The clinical spectrum associated with \textit{VCP} mutations has recently been extended to include also ALS (177). Through a whole-exome sequencing approach a p.R191Q mutation in \textit{VCP} was identified in a family with autosomal dominant ALS (177). Screening of additional 210 familial and 78 autopsy-confirmed ALS patients revealed 4 more \textit{VCP} missense mutation carriers (1\%–2\% of familial ALS). The identified \textit{VCP} mutation carriers had been diagnosed with clinical definite ALS (mean age at onset of 49 years, range 37–53 years), supported by the typical findings of ALS on EMG testing, and one \textit{VCP} mutation carrier had a pathologically confirmed diagnosis of ALS-TDP. Of note, four patients of the described \textit{VCP} families had been diagnosed with FTLD-ALS. The autopsy-confirmed ALS patient was part of a family with documented IBMPFD, but otherwise signs of PDB or IBM were mild or absent in the majority of these \textit{VCP} families. In FTLD, \textit{VCP} mutations lead to a signature TDP-43 pathology with numerous intranuclear inclusions, referred to as FTLD-TDP type D (Figure 2) (135,178). Since then, other studies have confirmed a contribution of \textit{VCP} to the etiology of ALS (179,180).

\textbf{Risk factors for TDP-43 proteinopathy}

The inherent molecular heterogeneity of FTLD and the relative infrequency of the disease initially hampered the set-up of a successful GWA study on FTLD. With the recognition of TDP-43 pathology in FTLD an international GWA study was undertaken which focused on a homogeneous population of autopsy-confirmed FTLD-TDP patients. Significant association was identified with DNA variants located within the \textit{TMEM106B} gene on chromosome 7p21 (131). Results of a number of follow-up studies seem to indicate that \textit{TMEM106B} is a true risk factor for FTLD (181–184), but further confirmation is needed (185).

Because of the similar TDP-43 pathology, the disease-modifying effect of \textit{TMEM106B} was evaluated in a cohort of ALS patients (186). No association between \textit{TMEM106B} and ALS was observed, which was in line with results from previous ALS GWA studies that did not detect an association with the \textit{TMEM106B} locus (128,130). However, the \textit{TMEM106B} risk allele did appear to be associated with cognitive dysfunction in the ALS patients. Correlation with cognitive performance was strong as measured by the phonemic verbal fluency test but could not be confirmed by other cognitive tests. These findings are interesting but need to be replicated in other and larger ALS cohorts with more thorough neuropsychological evaluation. If confirmed, this would indicate that genetic risk factors for FTLD act as modifiers of the clinical presentation in ALS and underlie the risk for associated cognitive impairment.

\textbf{Conclusions}

Substantial overlap exists between FTLD and ALS at the clinical level. In a small group of patients, the concurrence of both disorders is obvious. However, there also exists a large group of patients in which signs of co-morbidity are more subtle, e.g. the ALS patients with mild cognitive impairment or behavior changes. Recent advances in the pathology and genetics of FTLD and ALS have demonstrated that these disorders are also tightly connected at the molecular level. Whilst on the one hand providing evidence for overlap, these discoveries have also highlighted that FTLD and ALS are etiologically diverse. TDP-43 and \textit{FUS} pathology seems to be largely mutually exclusive, which suggests the involvement of different pathways that lead to neurodegeneration. The relevance of this heterogeneity is supported by the strong genetic–pathological correlations and, to a lesser degree, also by correlations with clinical sub-phenotypes. While some of the identified genes contribute to only one extreme of the clinical continuum, others have been implicated in different phenotypes of the FTLD-ALS spectrum. The exciting recent identification of pathological repeat expansions in \textit{C9orf72} in FTLD-ALS spectrum diseases, in particular, provided firm evidence for a biological link between these diseases. Future studies might provide insights into why some carriers have FTLD whereas others develop ALS and
what the biological mechanisms could be by which the expanded repeat in C9orf72 contributes to neurodegeneration. TARDDBP and FUS mutations have most often been associated with a classical ALS phenotype. Recent findings have suggested that these genes also have a limited role in FTLD pathogenesis. VCP mutations occur in the setting of a rare and heterogeneous multi-systemic syndrome that includes both FTLD and ALS as well as a bone (PDB) and a peripheral muscle disease (IBM). Genetic variants at the TMEM106B gene have been associated with increased risk for the more common sporadic forms of FTLD. An interesting hypothesis is that the susceptibility genes for FTLD-TDP, e.g. TMEM106B, could act as modifiers of cognitive performance in ALS. Finding relationships at the molecular level between two seemingly separate disorders has not been unique to FTLD and ALS. In fact, modern high-throughput genomic and proteomic analyses have discovered links between many diseases, which has culminated in the concept of a human diseaseome that maps relationships between diseases and genes associated with them (187). The recognition that FTLD and ALS are closely related could have important implications not only for research but also for the management of FTLD-ALS patients. With the identification of new genes within the spectrum, screening of all FTLD-ALS phenotypes associated with TDP-43 or FUS aggregations should be investigated in the different phenotypes is justified. And in the event of emerging therapeutic options for new genes within the spectrum, screening of all FTLD-ALS patients will likely benefit patients on both ends of the FTLD-ALS phenotypes associated with TDP-43 or FUS proteinopathy, as they will likely benefit patients on both ends of the FTLD-ALS spectrum.

Acknowledgements

The research in the authors’ group was funded in part by the international consortium of Centers of Excellence in Neurodegenerative Brain Diseases, the Interuniversity Attraction Poles program P6/43 of the Belgian Federal Science Policy Office; the Foundation for Alzheimer Research (SAO/FRMA); the Medical Foundation Queen Elisabeth; the Methusalem excellence program of the Flemish Government; the Research Foundation Flanders (FWO); the Agency for Innovation by Science and Technology (IWT); and the Special Research Fund of the University of Antwerp, Belgium. The IWT provided a PhD fellowship to T.V.L. and the FWO a postdoctoral fellowship to J.v.d.Z.

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

References

1. Ringholz GM, Appel SH, Bradshaw M, Cooke NA, Mosnik DM, Schulz PE. Prevalence and patterns of cognitive impairment in sporadic ALS. Neurology. 2005;65:586–90.
2. Lomen-Hoerth C, Murphy J, Langmore S, Kramer JH, Olney RK, Miller B. Are amyotrophic lateral sclerosis patients cognitively normal? Neurology. 2003;64:1094–7.
3. Harvey RJ, Skelton-Robinson M, Rosser MN. The prevalence and causes of dementia in people under the age of 65 years. J Neurol Neurosurg Psychiatry. 2003;74:1206–9.
4. Knopman DS, Petersen RC, Edland SD, Cha RH, Rocca WA. The incidence of frontotemporal lobar degeneration in Rochester, Minnesota, 1990 through 1994. Neurology. 2004;62:506–8.
5. Mercier L, Hodges JR, Dawson K, Barker RA, Brayne C. Incidence of early-onset dementias in Cambridgeshire, United Kingdom. Neurology. 2008;71:1496–9.
6. Ratnavalli E, Brayne C, Dawson K, Hodges JR. The prevalence of frontotemporal dementia. Neurology. 2002;58:1615–21.
7. Rosso SM, Donker Kaat L, Baks T, Joosse M, de Koning I, Pijnenburg Y, et al. Frontotemporal dementia in The Netherlands: patient characteristics and prevalence estimates from a population-based study. Brain. 2003;126(Pt 9):2016–22.
8. Johnson JK, Diehl J, Mendez MF, Neuhaus J, Shapira JS, Forman M, et al. Frontotemporal lobar degeneration: demographic characteristics of 353 patients. Arch Neurol. 2005;62:925–30.
9. Rosen HJ, Gorno-Tempini ML, Goldman WP, Perry RJ, Schuff N, Weinr M, et al. Patterns of brain atrophy in frontotemporal dementia and semantic dementia. Neurology. 2002;58:198–208.
10. Josephs KA, Duffy JR, Strand EA, Whitwell JL, Layton KE, Parisi JE, et al. Clinicopathological and imaging correlates of progressive aphasia and apraxia of speech. Brain. 2006;129(Pt 6):1385–98.
11. Neary D, Snowden JS, Gustafson L, Passant U, Stuss D, Black S, et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology. 1998;51:1566–54.
12. Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011;134(Pt 9):2456–77.
13. Rascovsky K, Salmon DP, Ho GJ, Galasko D, Peavy GM, Hansen LA, et al. Cognitive profiles differ in autopsy-confirmed frontotemporal dementia and AD. Neurology. 2002;58:1801–8.
14. Rosen HJ, Hartikainen KM, Jagust W, Kramer JH, Reed BR, Cummings JL, et al. Utility of clinical criteria in differentiating frontotemporal lobar degeneration (FTLD) from AD. Neurology. 2002;58:1618–9.
15. Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa SF, et al. Classification of primary progressive aphasia and its variants. Neurology. 2011;76:1066–14.
16. Kertesz A, McMonagle P, Blair M, Davidson W, Munoz DG. The evolution and pathology of frontotemporal dementia. Brain. 2005;128(Pt 9):1996–2005.
17. Kertesz A, Munoz D. Relationship between frontotemporal dementia and corticobasal degeneration/progressive supranuclear palsy. Dement Geriatr Cogn Disord. 2004;17:282–6.
18. Hodges JR, Davies R, Xueerj, Kril J, Halliday G. Survival in frontotemporal dementia. Neurology. 2003;61:349–54.
19. Rascovsky K, Salmon DP, Lipton AM, Leverenz JB, DeCarli C, Jagust WJ, et al. Rate of progression differs in frontotemporal dementia and Alzheimer disease. Neurology. 2005;65:397–403.
20. Vossel KA, Miller BL. New approaches to the treatment of frontotemporal lobar degeneration. Curr Opin Neurol. 2008;21:708–16.
21. Worms PM. The epidemiology of motor neuron diseases: a review of recent studies. J Neurol Sci. 2001;191:3–9.
22. Chio A, Mora G, Calvo A, Mazzini L, Bottaccchi E, Mutani R. Epidemiology of ALS in Italy: a 10-year prospective population-based study. Neurology. 2009;72:725–31.
23. Shoesmith CL, Findlater K, Rowe A, Strong MJ. Prognosis of amyotrophic lateral sclerosis with respiratory onset. J Neurol Neurosurg Psychiatry. 2007;78:629–31.
24. Brooks BR, Miller RG, Swash M, Munsat TL; World Federation of Neurology Research Group on Motor Neuron Diseases. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord. 2000;1:293–9.
25. Ince PG, Evans J, Knopp M, Forster G, Hamdalla HH, Wharton SB, et al. Corticospinal tract degeneration in the progressive muscular atrophy variant of ALS. Neurology. 2003;60:1252–8.
26. Gordon PH, Cheng B, Katz IB, Mints P, Hays AP, Mitsumoto H, et al. The natural history of primary lateral sclerosis. Neurology. 2006;66:647–53.
27. del Aguila MA, Longstreth WT Jr, McGuire V, Koepsell TD, van Belle G. Prognosis in amyotrophic lateral sclerosis: a population-based study. Neurology. 2003;60:812–9.
28. Miller RG, Mitchell JD, Lyon M, Moore DH. Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database Syst Rev. 2007;(1):CD001447.
29. Bak TH, Hodges JR. Motor neuron disease, dementia and aphasia: coincidence, co-occurrence or continuum? J Neurol. 2001;248:260–70.
30. Van Bogaert L. Les troubles mentaux dans la sclérose latérale amyotrope. L’Encephale. 1925;20:27–47.
31. Lomen-Hoerth C, Anderson T, Miller B. The overlap of amyotrophic lateral sclerosis and frontotemporal dementia. Neurology. 2002;59:1077–79.
32. Burrell JR, Kiernan MC, Vucic S, Hodges J. Motor neuron dysfunction in frontotemporal dementia. Brain. 2011;134(Pt 9):2582–94.
33. Neary D, Snowden JS, Mann DM, Northen B, Goulding PJ, Macdemott N. Frontal lobe dementia and motor neuron disease. J Neurol Neurosurg Psychiatry. 1990;53:23–32.
temporal lobar degeneration: consensus of the Consortium for Fronto-prospective study of cognitive impairment in ALS. Neurology. Strong MJ, Grace GM, Orange JB, Leeper HA, Menon RS, Aere C. A 56. positron emission tomography study. Brain. 1993;116(Pt 3):655 – 80.

psychologic and positron emission tomography study. Acta Neurol Scand. 1992;85:81 – 9.

temporal cognitive and behavioural syndromes in amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2011;12:45 – 51.

Lillo P, Levinger L, MacDonald I, Thiele I, MacKenzie IRA, Neumann M, Authier FJ, et al. Frequency of ubiquitin and FUS-positive, TDP-43-negative filament inclusion disease. Acta Neuropathol. 2009;118(11):2922 – 31.

37. Kwaanseveld TS, Bosco DA, Leclerc AL, Tamrazian E, Vanderburg CR, Russell C, et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science. 2009;323:1205 – 8.

38. Mackenzie IRA, Feldman H. The relationship between extramotor ubiquitin-immunoreactive neuronal inclusions and dementia in motor neuron disease. Acta Neuropathol. 2003;105:98 – 102.

39. Arai T, Hasegawa M, Akiyama H, Ikeda K, Nonaka T, Mori H, et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun. 2006;351:602 – 11.

40. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micaseney MC, Chou TT, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006;314:130 – 3.

41. Hu WT, Seelaar H, Josephs KA, Knopman DS, Boeve BF, Sorenson EJ, et al. Survival profiles of patients with frontotemporal dementia and motor neuron disease. Arch Neurol. 2009;66:1359 – 64.

42. Massman PJ, Sims J, Cooke N, Haverkamp IJ, Appel V, Appel SH. Prevalence and correlates of neuropsychological deficits in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 1996;61:430 – 5.

43. Snow LM, Mirowitz S, Grinberg LM, Freedman M, Lomen-Hoerth C, Woolley S, Goldstein LH, et al. Consensus criteria for the diagnosis of frontotemporal cognitive and behavioural syndromes in amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2009;10:131 – 46.

44. Abrahams S, Leigh PN, Boeve BF, Parisi JE, Petersen RC, et al. Survival in two variants of tau-negative frontotemporal lobar degeneration: FTLD-U vs FTLD-MND. Neurology. 2004;65:645– 49.

45. Hu WT, Seelaar H, Josephs KA, Knopman DS, Boeve BF, Sorenson EJ, et al. Neuropathological background of phenotypical variability in frontotemporal dementia. Acta Neuropathol. 2011;122:137– 33.

46. Mackhan GM, Albert MS, Grossman M, Miller B, Dickson D, Trojanowski JQ, et al. Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick's Disease. Arch Neurol. 2001;58:1803 – 9.

47. Leigh PN, Anderton BH, Dodson A, Gallo JM, Swash M, Power DM. Ubiquitin deposits in anterior horn cells in motor neuron disease. Neurosci Lett. 1988;93:197 – 203.

48. Mackenzie IRA, Feldman H. The relationship between extramotor ubiquitin-immunoreactive neuronal inclusions and dementia in motor neuron disease. Acta Neuropathol. 2003;105:98 – 102.
81. Geser F, Martinez-Meola M, Kwong LK, Lee VM-Y, Trojanowski JQ. Amyotrophic lateral sclerosis, frontotemporal dementia and beyond: the TDP-43 diseases. J Neurol. 2009;256:1203–12.

82. Josephs KA, Wisniewski KL, Knopman DS, Hu WS, Stroh DA, Baker M, et al. Abnormal TDP-43 immunoreactivity in AD modifies clinicopathologic and radiologic phenotype. Neurology. 2008;70(2 Pt):1850–7.

83. Wilson AC, Dugger BN, Dickson DW, Wang D-S. TDP-43 in aging and Alzheimer's disease—a review. Int J Clin Exp Pathol. 2011;4:147–55.

84. Doi H, Okamura K, Bauer PO, Furukawa Y, Shimizu H, Kuroiwa S, et al. RNA-binding protein FUS/TLS is a major nuclear aggregate-interacting protein in huntingtin exon 1 with expanded polyglutamine-expressing cells. J Biol Chem. 2008;283:6489–500.

85. Doi H, Koyano S, Suzuki Y, Nukina N, Kuroiwa Y. The RNA-binding protein FUS/TLS is a common aggregate-interacting protein in polyglutamine diseases. Neurosci Res. 2010;66:131–3.

86. Goldman JS, Farmer JM, Wood EM, Johnson JK, Boxer A, Neuhau J, et al. Comparing of family histories in FTLD subtypes and related tauopathies. Neurology. 2005;65:1817–9.

87. Rohrer JD, Guerrero R, Vandervoort J, Uphill J, Reimann D, Beck J, et al. The heritability and genetics of frontotemporal lobar degeneration. Neurology. 2009;73:1451–6.

88. Seelaar H, Kamphorst W, Rosso SM, Azmai A, Masjdadi R, de Koning L, et al. Distinct genetic forms of frontotemporal dementia. Neurology. 2008;71:1220–6.

89. Dion PA, Daoûd H, Rouleau GA. Genetics of motor neuron disorders: new insights into pathogenic mechanisms. Nat Rev Genet. 2009;10:769–82.

90. Majoûr-Krakauer D, Ottman R, Johnson WG, Rowland LP. Familial aggregation of amyotrophic lateral sclerosis, dementia, and Parkinson's disease: evidence of shared genetic susceptibility. Neurology. 1994;44:1872–7.

91. Fallis BA, Hardiman O. Aggregation of neurodegenerative disease in ALS kindreds. Amyotrophic Lateral Scler. 2009;10:95–9.

92. Cruts M, Gijssenlck I, Van Der Zee J, Engelborghs S, Wils H, Pirici D, et al. Null mutations in prgranulin cause ubiquitin-positive frontotemporal lobar degeneration linked to chromosome 17q21. Nature. 2006;442:916–9.

93. Lindholm C, et al. Mutations in progranulin cause tau-negative frontotemporal lobar degeneration linked to chromosome 17q21. Nature. 2006;442:916–9.

94. Fallis BA, Hardiman O. Aggregation of neurodegenerative disease in ALS kindreds. Amyotrophic Lateral Scler. 2009;10:95–9.

95. Boxer AL, Mackenzie IR, Boeve BF, Baker M, Seeley WW, Crook R, et al. TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet. 2008;40:572–4.

96. Elden AC, Kim H-J, Hart MP, Chen-Potkin AS, Johnson BS, Fang X, et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature. 2010;466:1069–75.

97. Nishimura AL, Mitne-Neto M, Silva HCA, Richieri-Costa A, Middleton S, Cascaldo D, et al. A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am J Hum Genet. 2004;75:322–31.

98. Maruyama H, Morino H, Ito H, Izumi Y, Kato H, Watanabe Y, et al. Mutations of optineurin in amyotrophic lateral sclerosis. Nature. 2010;465:223–6.

99. Deng GX, Chen W, Hong ST, Boycott KM, Gorrie GH, Siddique N, et al. Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature. 2011;477:211–5.

100. Beal MF, Anisimova N, Al-Chalabi A, Andersen PM, Al-Chalabi A, Andersen PM. Amyotrophic lateral sclerosis-frontotemporal dementia phenotypes. Arch Neurol. 2004;61:398–406.

101. Schymick JC, Yang Y, Andersen PM, Vonsattel JP, Greenway M, Momenn P, et al. Progranulin mutations and amyotrophic lateral sclerosis or amyotrophic lateral sclerosis-frontotemporal dementia phenotype. J Neurol Neurosurg Psychiatry. 2007;78:754–6.

102. Sleegers K, Brouwers N, Mauw-Stroh S, van Es MA, Van Damme P, van Vught PWJ, et al. Progranulin genetic variability contributes to ALS. Amyotrophic lateral sclerosis. Neurology. 2008;71:253–9.

103. Skibinski G, Parkinson NJ, Brown JM, Chakrabarti L, Lloyd SL, Hummurch H, et al. Mutations in the endosomal ESCRTIII complex subunit CHMP2B in frontotemporal dementia. Nat Genet. 2005;37:806–8.

104. van der Zee J, Urwin H, Engelborghs S, Bryuland M, Vandenbergh E, Dermaut B, et al. CHMP2B C-truncating mutations in frontotemporal lobar degeneration are associated with an aberrant endosomal phenotype in vitro. Hum Mol Genet. 2008;17:313–22.

105. Parkinson N, Ince PG, Smith MO, Highley M, Skibinski G, Andersen PM, et al. ALS mutations with phenotypes in CHMP2B (challenged multivesicular body protein 2B). Neurology. 2006;67:1074–7.

106. Cox LE, Ferraiuolo L, Goodall EE, Hart PH, Higgitt A, et al. Mutations in CHMP2B in lower motor neuron predominant amyotrophic lateral sclerosis (ALS). PLoS One. 2010;5:e9872.

107. Cannon A, Baker M, Boeve B, Josephs K, Knopman D, Petersen R, et al. CHMP2B mutations are not a common cause of frontotemporal lobar degeneration. Neurosci Lett. 2006;398:83–4.
The references are as follows:

172. Suzuki N, Aoki M, Warita H, Kato M, Mizuno H, Shimakura N, et al. FALS with FUS mutation in Japan, with early onset, rapid progress and basophilic inclusion. J Hum Genet. 2010;55:252–4.

173. Hewitt C, Kirby J, Highley JR, Hartley JA, Hibberd R, Hollinger HC, et al. Novel FUS/TLS mutations and pathology in familial and sporadic amyotrophic lateral sclerosis. Arch Neurol. 2010;67:455–61.

174. Josephs KA, Whitwell JL, Parisi JE, Petersen RC, Boeve BF, Jack CR Jr, et al. Caudate atrophy on MRI is a characteristic feature of FTLD-FUS. Eur J Neurol. 2010;17:969–75.

175. Kimonis VE, Fulchiero E, Vesa J, Watts G. VCP disease associated with myopathy, Paget disease of bone and frontotemporal dementia: review of a unique disorder. Biochim Biophys Acta. 2008;1782:744–8.

176. van der Zee J, Pirici D, Van Langenhove T, Engelborghs S, Vandenberghe R, Hoffmann M, et al. Clinical heterogeneity in 3 unrelated families linked to VCP p.Arg159His. Neurology. 2009;73:626–32.

177. Johnson JO, Mandrioli J, Benatar M, Abramzon Y, Van Deerlin VM, Trojanowski JQ, et al. Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron. 2010;68:857–64.

178. Neumann M, Mackenzie IR, Cairns NJ, Boyer PJ, Markesbery WR, Smith CD, et al. TDP-43 in the ubiquitin pathology of frontotemporal dementia with VCP gene mutations. J Neuropathol Exp Neurol. 2007;66:152–7.

179. Koppers M, van Blitterswijk MM, Vlam L, Rowicka PA, van Vught PW, Groen EJ, et al. VCP mutations in familial and sporadic amyotrophic lateral sclerosis. Neurobiol Aging. 2012;33:837.e7–13.

180. DeJesus-Hernandez M, Desaro P, Johnston A, Ross OA, Wszolek ZK, Ertekin-Taner N, et al. Novel p.Ile151Val mutation in VCP in a patient of African American descent with sporadic ALS. Neurology. 2011;77:1102–3.

181. van der Zee J, Van Langenhove T, Kleinberger G, Sleegers K, Engelborghs S, Vandenberghe R, et al. TMEM106B is associated with frontotemporal lobar degeneration in a clinically diagnosed patient cohort. Brain. 2011;134(Pt 3):808–15.

182. Finch N, Carrasquillo MM, Baker M, Rutherford NJ, Coppola G, Dejesus-Hernandez M, et al. TMEM106B regulates progranulin levels and the penetrance of FTLD in GRN mutation carriers. Neurology. 2011;76:467–74.

183. Cruchaga C, Graff C, Chiang HH, Wang J, Hinrichs AL, Spiegel N, et al. Association of TMEM106B gene polymorphism with age at onset in granulin mutation carriers and plasma granulin protein levels. Arch Neurol. 2011;68:381–6.

184. Rollinson S, Mead S, Snowden J, Richardson A, Rohrer J, Halliwell N, et al. Frontotemporal lobar degeneration genome wide association study replication confirms a risk locus shared with amyotrophic lateral sclerosis. Neurobiol Aging. 2011;32:758.e1–7.

185. van der Zee J, Van Broeckhoven C. TMEM106B a novel risk factor for frontotemporal lobar degeneration. J Mol Neurosci. 2011;45:516–21.

186. Vass R, Ashbridge E, Geser F, Hu WT, Grossman M, Clay-Falcone D, et al. Risk genotypes at TMEM106B are associated with cognitive impairment in amyotrophic lateral sclerosis. Acta Neuropathol. 2011;121:373–80.

187. Goh Ki, Cusick ME, Valle D, Childs B, Vidal M, Barabasi AL. The human disease network. Proc Natl Acad Sci USA. 2007;104:8685–90.