Insertion of a Contra-Continuous Function between two Comparable Contra-Precontinuous (Contra-Semi–Continuous) Functions

MAJID MIRMIRAN*

Department of Mathematics, University of Isfahan, Iran.

*Corresponding Author: MAJID MIRMIRAN, Department of Mathematics, University of Isfahan, Iran.

Abstract: A necessary and sufficient condition in terms of lower cut sets are given for the insertion of a contra-continuous function between two comparable real-valued functions on such topological spaces that kernel of sets are open.

Keywords: Insertion, Strong binary relation, Semi-open set, Preopen set, Contracontinuous function, Lower cut set.

1. INTRODUCTION

The concept of a preopen set in a topological space was introduced by H.H. Corson and E. Michael in 1964 [4]. A subset A of a topological space (X,τ) is called preopen or locally dense or nearly open if $A \subseteq \text{Int} (\text{Cl}(A))$. A set A is called preclosed if its complement is preopen or equivalently if $\text{Cl} (\text{Int}(A)) \subseteq A$. The term preopen, was used for the first time by A.S. Mashhour, M.E. Abd El Monsef and S.N. El-Deeb [20], while the concept of a , locally dense, set was introduced by H.H. Corson and E. Michael [4].

The concept of a semi-open set in a topological space was introduced by N. Levine in 1963 [17]. A subset A of a topological space (X,τ) is called semiopen [10] if $A \subseteq \text{Cl} (\text{Int}(A))$. A set A is called semi-closed if its complement is semi-open or equivalently if $\text{Int}(\text{Cl}(A)) \subseteq A$.

A generalized class of closed sets was considered by Maki in [19]. He investigated the sets that can be represented as union of closed sets and called them V−sets. Complements of V−sets, i.e., sets that are intersection of open sets are called A−sets [19].

Recall that a real-valued function f defined on a topological space X is called A−continuous [24] if the preimage of every open subset of R belongs to A, where A is a collection of subsets of X. Most of the definitions of function used throughout this paper are consequences of the definition of A−continuity. However, for unknown concepts the reader may refer to [5, 11]. In the recent literature many topologists had focused their research in the direction of investigating different types of generalized continuity.

J. Dontchev in [6] introduced a new class of mappings called contracontinuity. A good number of researchers have also initiated different types of contra-continuous like mappings in the papers [1, 3, 8, 9, 10, 12, 13, 23]. Hence, a real-valued function f defined on a topological space X is called contra-continuous (resp. contra-semi–continuous , contra-precontinuous) if the preimage of every open subset of R is closed (resp. semi–closed , preclosed) in X[6].

Results of Kat’etov [14, 15] concerning binary relations and the concept of an indefinite lower cut set for a real-valued function, which is due to Brooks [2], are used in order to give a necessary and sufficient conditions for the insertion of a contra-continuous function between two comparable realvalued functions on such topological spaces that A−sets or kernel of sets are open [19].

If g and f are real-valued functions defined on a space X, we write $g \leq f$ (resp. $g < f$) in case $g(x) \leq f(x)$ (resp. $g(x) < f(x)$) for all x in X.

The following definitions are modifications of conditions considered in [16].

A property P defined relative to a real-valued function on a topological space is a \textit{cc–property} provided that any constant function has property P and provided that the sum of a function with property P and any contracontinuous function also has property P. If P_1 and P_2 are cc–properties, the following terminology is used:(i) A space X has the weak cc–insertion property for (P_1,P_2) if and only if for any functions g and f on X such that $g \leq f$,g has property P_1 and f has property P_2, then there exists a contra-continuous function h such that $g \leq h \leq f$.(ii) A space X has the cc–insertion property for (P_1,P_2) if and only if for any functions g and f on X such that $g < f$,g has property P_1 and f has property P_2, then there exists a contra-continuous function h such that $g < h < f$.(iii) A space X has the weakly cc–insertion property for (P_1,P_2) if and only if for any functions g and f on X such that $g < f$,g has property P_1 and f has property P_2, then there exists a contra-continuous function h such that $g < h < f$.

In this paper, for a topological space whose Λ–sets or kernel of sets are open, is given a sufficient condition for the weak cc–insertion property. Also for a space with the weak cc–insertion property, we give a necessary and sufficient condition for the space to have the cc–insertion property. Several insertion theorems are obtained as corollaries of these results.

2. THE MAIN RESULT

Before giving a sufficient condition for insertability of a contra-continuous function, the necessary definitions and terminology are stated. \textbf{Definition 2.1.} Let A be a subset of a topological space (X,τ). We define the subsets A^A and A^V as follows:

\[A^A = \cap \{O: O \supseteq A, O \in (X,\tau)\} \text{ and } A^V = \cup \{F: F \subseteq A, F^c \in (X,\tau)\}. \]

In [7, 18, 22], A^A is called the kernel of A.

The family of all preopen, preclosed, \textit{semi}–open and \textit{semi}–closed will be denoted by $pO(X,\tau)$, $pC(X,\tau)$, $sO(X,\tau)$, and $sC(X,\tau)$, respectively.

We define the subsets $p(A^A), p(A^V), s(A^A)$ and $s(A^V)$ as follows: $p(A^A) = \cap \{O: O \supseteq A, O \in pO(X,\tau)\}$, $p(A^V) = \cup \{F: F \subseteq A, F^c \in pC(X,\tau)\}$, $s(A^A) = \cap \{O: O \supseteq A, O \in sO(X,\tau)\}$ and $s(A^V) = \cup \{F: F \subseteq A, F^c \in sC(X,\tau)\}$. $p(A^A)$ (resp. $s(A^A)$) is called the prekernel (resp. \textit{semi} – kernel) of A.

The following first two definitions are modifications of conditions considered in [14, 15].

\textbf{Definition 2.2.} If ρ is a binary relation in a set S then ρ^- is defined as follows: $x \rho^- y$ if and only if $y \rho v$ implies $x \rho v$ and $u \rho x$ implies $u \rho y$ for any u and v in S.

\textbf{Definition 2.3.} A binary relation ρ in the power set $P(X)$ of a topological space X is called a \textit{strong binary relation} in $P(X)$ in case ρ satisfies each of the following conditions:

- If $A, \rho B$, for any $i \in \{1,\ldots,m\}$ and any $j \in \{1,\ldots,n\}$, then there exists a set C in $P(X)$ such that $A, \rho C$ and $C, \rho B$ for any $i \in \{1,\ldots,m\}$ and any $j \in \{1,\ldots,n\}$.

- If $A \subseteq B$, then $A \rho^- B$.

- If $A, \rho B$, then $A^A \subseteq B$ and $A \subseteq B^V$.

The concept of a lower indefinite cut set for a real-valued function was defined by Brooks [2] as follows:

\textbf{Definition 2.4.} If f is a real-valued function defined on a space X and if $\{x \in X : f(x) < v\} \subseteq A(f,^-) \subseteq \{x \in X : f(x) \leq v\}$ for a real number v, then $A(f,^-)$ is called a \textit{lower indefinite cut set} in the domain of f at the level.

We now give the following main result:

\textbf{Theorem 2.1.} Let g and f be real-valued functions on the topological space X, in which kernel sets are open, with $g \leq f$. If there exists a strong binary relation ρ on the power set of X and if there exist lower indefinite cut sets $A(f,t)$ and $A(g,t)$ in the domain of f and g at the level t for each rational number t such that if $t_1 < t_2$ then $A(f,t_1) \rho A(g,t_2)$, then there exists a contra-continuous function h defined on X such that $g \leq h \leq f$.
Proof. Let \(g \) and \(f \) be real-valued functions defined on the \(X \) such that \(g \leq f \). By hypothesis there exists a strong binary relation \(\rho \) on the power set of \(X \) and there exist lower indefinite cut sets \(A(f,t) \) and \(A(g,t) \) in the domain of \(f \) and \(g \) at the level \(t \) for each rational number \(t \) such that if \(t_1 < t_2 \) then \(A(f,t_1) \rho A(g,t_2) \).

Define functions \(f \) and \(G \) mapping the rational numbers \(Q \) into the power set of \(X \) by \(F(t) = A(f,t) \) and \(G(t) = A(g,t) \). If \(t_1 \) and \(t_2 \) are any elements of \(Q \) with \(t_1 < t_2 \), then \(F(t_1) \rho F(t_2), G(t_1) \rho G(t_2), \) and \(F(t_1) \rho G(t_2) \). By Lemmas 1 and 2 of [15] it follows that there exists a function \(H \) mapping \(Q \) into the power set of \(X \) such that if \(t_1 \) and \(t_2 \) are any rational numbers with \(t_1 < t_2 \), then \(F(t_1) \rho G(t_2), H(t_1) \rho H(t_2) \) and \(H(t_1) \rho G(t_2) \). For any \(x \) in \(X \), let \(h(x) = \inf\{ t \in \mathbb{Q} : x \in H(t) \} \).

We first verify that \(g \leq h \leq f \). If \(x \) is in \(H(t) \) then \(x \) is in \(G(t^0) \) for any \(t^0 > t \); since \(x \) is in \(G(t^0) = A(g,t^0) \) implies \(g(x) \leq t^0 \), it follows that \(g(x) \leq t \). Hence \(g \leq h \). If \(x \) is not in \(H(t) \), then \(x \) is not in \(F(t^0) \) for any \(t^0 < t \); since \(x \) is not in \(F(t^0) = A(f,t^0) \) implies \(f(x) > t^0 \), it follows that \(f(x) \geq t \). Hence \(h \leq f \).

Also, for any rational numbers \(t_1 \) and \(t_2 \) with \(t_1 < t_2 \), we have \(h^{-1}(t_1,t_2) = H(t_2) \setminus H(t_1) \). Hence \(h^{-1}(t_1,t_2) \) is closed in \(X \), i.e., \(h \) is a contra-continuous function on \(X \).

The above proof used the technique of theorem 1 in [14].

Theorem 2.2. Let \(P_1 \) and \(P_2 \) be \(cc \)–property and \(X \) be a space that satisfies the weak \(cc \)–insertion property for \((P_1,P_2)\). Also assume that \(g \) and \(f \) are functions on \(X \) such that \(g \leq f \). If \(g \) has \(P_1 \) and \(f \) has \(P_2 \), the space \(X \) has the \(cc \)–insertion property for \((P_1,P_2)\) and only if there exist lower cut sets \(A(f - g,3^{−\alpha}) \) and there exists a decreasing sequence \(\{D_n\} \) of subsets of \(X \) with empty intersection and such that for each \(n \), \(X \setminus D_n \) and \(A(f - g,3^{−\alpha}) \) are completely separated by contra-continuous functions.

Proof. Theorem 2.1 of [21].

3. APPLICATIONS

The abbreviations \(cpc \) and \(csc \) are used for contra-precontinuous and contrasemi–continuous, respectively.

Before stating the consequences of theorems 2.1, 2.2, we suppose that \(X \) is a topological space whose kernel sets are open.

Corollary 3.1. If for each pair of disjoint preopen (resp. semi–open) sets \(G_1,G_2 \) of \(X \), there exist closed sets \(F_1 \) and \(F_2 \) of \(X \) such that \(G_1 \subseteq F_1 \), \(G_2 \subseteq F_2 \) and \(F_1 \cap F_2 = \emptyset \) then \(X \) has the weak \(cc \)–insertion property for \((cpc,cpc)\) (resp. \((csc,csc)\)).

Proof. Let \(g \) and \(f \) be real-valued functions defined on \(X \), such that \(f \) and \(g \) are \(cpc \) (resp. \(csc \)), and \(g \leq f \). If a binary relation \(\rho \) is defined by \(A \rho B \) in case \(p(A^\lambda) \subseteq p(B^\lambda) \) (resp. \(s(A^\lambda) \subseteq s(B^\lambda) \)), then by hypothesis \(\rho \) is a strong binary relation in the power set of \(X \). If \(t_1 \) and \(t_2 \) are any elements of \(Q \) with \(t_1 < t_2 \), then \(A(f,t_1) \subseteq \{ x \in X : f(x) \leq t_1 \} \) and \(A(g,t_2) \subseteq \{ x \in X : g(x) < t_2 \} \) are preopen (resp. semi–open) set and since \(\{ x \in X : g(x) < t_2 \} \) is a preclosed (resp. semi–closed) set, it follows that \(p(A(f,t_1)^\lambda) \subseteq p(A(g,t_2)^\lambda) \) (resp. \(s(A(f,t_1)^\lambda) \subseteq s(A(g,t_2)^\lambda) \)). Hence \(t_1 < t_2 \) implies that \(A(f,t_1) \rho A(g,t_2) \). The proof follows from Theorem 2.1.

Corollary 3.2. If for each pair of disjoint preopen (resp. semi–open) sets \(G_1,G_2 \) of \(X \), there exist closed sets \(F_1 \) and \(F_2 \) such that \(G_1 \subseteq F_1 \), \(G_2 \subseteq F_2 \) and \(F_1 \cap F_2 = \emptyset \) then every contra-precontinuous (resp. contra-semi–continuous) function is contra-continuous.

Proof. Let \(f \) be a real-valued contra-precontinuous (resp. contra-semi–continuous) function defined on \(X \). Set \(g = f \), then by Corollary 3.1, there exists a contracontinuous function \(h \) such that \(g = h = f \).

Corollary 3.3. If for each pair of disjoint preopen (resp. semi–open) sets \(G_1,G_2 \) of \(X \), there exist closed sets \(F_1 \) and \(F_2 \) of \(X \) such that \(G_1 \subseteq F_1 \), \(G_2 \subseteq F_2 \) and \(F_1 \cap F_2 = \emptyset \) then \(X \) has the \(cc \)–insertion property for \((cpc,cpc)\).
Lemma 3.1. The following conditions on the space X are equivalent:

- For each pair of disjoint subsets G_1,G_2 of X, such that G_1 is preopen and G_2 is $semi$–open, there exist closed subsets F_1,F_2 of X such that $G_1 \subseteq F_1, G_2 \subseteq F_2$ and $F_1 \cap F_2 = \emptyset$.
- If G is a $semi$–open (resp. preopen) subset of X which is contained in a preclosed (resp. $semi$–closed) subset F of X, then there exists a closed subset H of X such that $G \subseteq H \subseteq F^\Lambda \subseteq F$.

Proof. (i) \Rightarrow (ii) Suppose that $G \subseteq F$, where G and F are $semi$–open (resp. preopen) and preclosed (resp. $semi$–closed) subsets of X, respectively. Hence, F is a preopen (resp. $semi$–open) and $G \cap F = \emptyset$.

By (i) there exists two disjoint closed subsets F_1,F_2 such that $G \subseteq F_1$ and $F \subseteq F_2$. But $F^c \subseteq F_2 \Rightarrow F_2^c \subseteq F$, and

$$F_1 \cap F_2 = \emptyset \Rightarrow F_1 \subseteq F_2^c$$

hence

$$G \subseteq F_1 \subseteq F_2^c \subseteq F$$

and since F_2^c is an open subset containing F_1, we conclude that

$$F_1^\Lambda \subseteq F_2^c \text{ i.e., } G \subseteq F_1 \subseteq F_1^\Lambda \subseteq F.$$

By setting $H = F_1$, condition (ii) holds.

(ii) \Rightarrow (i) Suppose that G_1,G_2 are two disjoint subsets of X, such that G_1 is preopen and G_2 is $semi$–open. This implies that $G_2^c \subseteq G_1^c$ and G_1^c is a preclosed subset of X. Hence by (ii) there exists a closed set H such that

$$G_2 \subseteq H \subseteq F^\Lambda \subseteq G_1^c.$$

But $H \subseteq F^\Lambda \Rightarrow H \cap (H^\Lambda)^c = \emptyset$

and

$$H^\Lambda \subseteq G_1^c \Rightarrow G_1 \subseteq (H^\Lambda)^c.$$

Furthermore, $(H^\Lambda)^c$ is a closed subset of X. Hence $G_2 \subseteq H,G_1 \subseteq (H^\Lambda)^c$ and $H \cap (H^\Lambda)^c = \emptyset$. This means that condition (i) holds.
Lemma 3.2. Suppose that X is a topological space. If each pair of disjoint subsets G_1, G_2 of X, where G_1 is preopen and G_2 is semi–open, can be separated by closed subsets of X then there exists a contra-continuous function $h : X \rightarrow [0,1]$ such that $h(G_2) = \{0\}$ and $h(G_1) = \{1\}$.

Proof. Suppose G_1 and G_2 are two disjoint subsets of X, where G_1 is preopen and G_2 is semi–open. Since $G_1 \cap G_2 = \emptyset$, hence $G_2 \subseteq G'^{c}_1$. In particular, since G'^{c}_1 is a preclosed subset of X containing the semi–open subset G_2 of X, by Lemma 3.1, there exists a closed subset $H_{1/2}$ such that $G_2 \subseteq H_{1/2} \subseteq H^{\Lambda}_{1/2} \subseteq G'^{c}_1$.

Note that $H_{1/2}$ is also a preclosed subset of X and contains G_2, all G'^{c}_1 is a preclosed subset of X and contains the semi–open subset $H_{1/2}^{\Lambda}$ of X. Hence, by Lemma 3.1, there exists closed subsets $H_{3/4}$ and $H_{3/4}$ such that

$$G_2 \subseteq H_{3/4} \subseteq H^{\Lambda}_{3/4} \subseteq H_{3/4}^{\Lambda} \subseteq G'^{c}_1$$

By continuing this method for every $t \in D$, where $D \subseteq [0,1]$ is the set of rational numbers that their denominators are exponents of 2, we obtain closed subsets H_t with the property that if $t_1, t_2 \in D$ and $t_1 < t_2$, then $H_{t_1} \subseteq H_{t_2}$. We define the function h on X by $h(x) = \inf \{t : x \in H_t\}$ for $x \in G_1$ and $h(x) = 1$ for $x \in G_1$.

Note that for every $x \in X, 0 \leq h(x) \leq 1$, i.e., h maps X into $[0,1]$. Also, we note that for any $t \in D, G_2 \subseteq H^t$; hence $h(G_2) = \{0\}$. Furthermore, by definition, $h(G_1) = \{1\}$. It remains only to prove that h is a contra-continuous function on X. For every $a \in R$, we have if $\alpha \leq 0$ then $\{x \in X : h(x) < \alpha\} = \emptyset$ and if $0 < \alpha$ then $\{x \in X : h(x) < \alpha\} = \bigcup \{H_t : t < \alpha\}$, hence, they are closed subsets of X. Similarly, if $\alpha < 0$ then $\{x \in X : h(x) > \alpha\} = X$ and if $0 \leq \alpha$ then $\{x \in X : h(x) > \alpha\} = \bigcup \{(H^t)^c : t \geq \alpha\}$, hence, every of them is a closed subset. Consequently h is a contra-continuous function.

Lemma 3.3. Suppose that X is a topological space such that every two disjoint semi–open and preopen subsets of X can be separated by closed subsets of X. The following conditions are equivalent:

- Every countable covering of semi–closed (resp. preclosed) subsets of X has a refinement consisting of preclosed (resp. semi–closed) subsets of X such that for every $x \in X$, there exists a closed subset of X containing x such that it intersects only finitely many members of the refinement.
- Corresponding to every decreasing sequence $\{G_n\}$ of semi–open (resp. preopen) subsets of X with empty intersection there exists a decreasing sequence $\{F_n\}$ of preclosed (resp. semi–closed) subsets of X such that $\bigcap_{n=1}^{\infty} F_n = \emptyset$ and for every $n \in \mathbb{N}, G_n \subseteq F_n$.

Proof. (i) \Rightarrow (ii) Suppose that $\{G_n\}$ is a decreasing sequence of semi–open (resp. preopen) subsets of X with empty intersection. Then $\{G'^{c}_n : n \in \mathbb{N}\}$ is a countable covering of semi–closed (resp. preclosed) subsets of X. By hypothesis (i), we have a countable covering of semi–closed (resp. preclosed) subsets of X. By Lemma 3.1, there exists a refinement $\{V_n : n \in \mathbb{N}\}$ such that every V_n is a closed subset of X and $V^{\Lambda}_n \subseteq G'^{c}_n$. By setting $F_n = (V^{\Lambda}_n)^c$, we obtain a decreasing sequence of closed subsets of X with the required properties.

(ii) \Rightarrow (i) Now if $\{H_n : n \in \mathbb{N}\}$ is a countable covering of semi–closed (resp. preclosed) subsets of X, we set $G_n = (\bigcup_{i=1}^{n} H_i)$ for $n \in \mathbb{N}$. Then $\{G_n\}$ is a decreasing sequence of semi–open (resp. preopen) subsets of X with empty intersection. By (ii) there exists a decreasing sequence $\{F_n\}$ consisting of preclosed (resp. semi–closed) subsets of X such that $\bigcap_{n=1}^{\infty} F_n = \emptyset$ and for every $n \in \mathbb{N}, G_n \subseteq F_n$. Now we define the subsets W_n of X in the following manner:

- W_1 is a closed subset of X such that $F'^{c}_1 \subseteq W_1$ and $W^{\Lambda}_1 \cap G_1 = \emptyset$.
- W_2 is a closed subset of X such that $W^{\Lambda}_1 \cap F'^{c}_2 \subseteq W_2$ and $W^{\Lambda}_2 \cap G_2 = \emptyset$, and so on. (By Lemma 3.1, W_n exists).

Then since $\{F'^{c}_n : n \in \mathbb{N}\}$ is a covering for X, hence $\{W_n : n \in \mathbb{N}\}$ is a covering for X consisting of closed sets. Moreover, we have
Now by Lemma 3.3, there exists a decreasing \((csc,cpc)\) of \(D\) and \(3\), i.e.,
\[
A(3,3-1) = \{x \in X: (f-g)(x) \leq 3-1\}.
\]
Since \(f-g\) is \((csc,cpc)\), hence \(A(f-g,3-1)\) is a \((semi)\)–open (resp. preopen) subset of \(X\). Consequently, \(A(f-g,3-1)\) is a decreasing sequence of \((semi)\)–open (resp. preopen) subsets of \(X\) and furthermore since
\[
0 < f-g, \text{ it follows that } \bigcap_{n=1}^{\infty} A(f-g,3-n-1) = \emptyset.
\]
Now by Lemma 3.3, there exists a decreasing sequence \(\{D_n\}\) of \((semi)\)–open (resp. \(csc,cpc)\) subsets of \(X\) such that \(A(f-g,3-n-1) \subseteq D_n\) and \(\bigcap_{n=1}^{\infty} D_n = \emptyset\). But by Lemma 3.2, the pair \(A(f-g,3-n-1)\) and \(X\backslash D_n\) of \((semi)\)–open (resp. preopen) and preopen (resp. \(csc,cpc)\) subsets of \(X\) can be completely separated by contra-continuous functions. Hence by Theorem 2.2, there exists a contracontinuous function \(h\) defined on \(X\) such that \(0 < h < f\), i.e., \(X\) has the weakly \((csc,cpc)\).

ACKNOWLEDGEMENT

This research was partially supported by Centre of Excellence for Mathematics (University of Isfahan).

REFERENCES

[1] A. Al-Omari and M.S. Md Noorani, Some properties of contra-bcontinuous and almost contra-b-continuous functions, European J. Pure. Appl. Math., 2(2)(2009), 213-230.

[2] F. Brooks, Indefinite cut sets for real functions, Amer. Math. Monthly, 78(1971), 1007-1010.
Insertion of a Contra-Continuous Function between two Comparable Contra-Precontinuous (Contra-Semi–Continuous) Functions

[3] M. Caldas and S. Jafari, Some properties of contra-β–continuous functions, Mem. Fac. Sci. Kochi. Univ., 22(2001), 19-28.
[4] H.H. Corson and E. Michael, Metrizability of certain countable unions, Illinois J. Math., 8(1964), 351-360.
[5] J. Dontchev, The characterization of some peculiar topological space via α– and β–sets, Acta Math. Hungar., 69(1-2)(1995), 67-71.
[6] J. Dontchev, Contra-continuous functions and strongly S-closed space, Intrnat. J. Math. Math. Sci., 19(2)(1996), 303-310.
[7] J. Dontchev and H. Maki, On sg-closed sets and semi-λ–closed sets, Questions Answers Gen. Topology, 15(2)(1997), 259-266.
[8] E. Ekici, On contra-continuity, Annales Univ. Sci. Bodapest, 47(2004), 127-137.
[9] E. Ekici, New forms of contra-continuity, Carpathian J. Math., 24(1)(2008), 37-45.
[10] A.I. El-Maghrabi, Some properties of contra-continuous mappings, Int. J. General Topol., 3(1-2)(2010), 55-64.
[11] M. Ganster and I. Reilly, A decomposition of continuity, Acta Math. Hungar., 56(3-4)(1990), 299-301.
[12] M. Mirmiran, Insertion of a function belonging to a certain subclass of R^X, Bull. Iran. Math. Soc., 28(2)(2002), 19-27.
[13] M. Mrsevic, On pairwise R and pairwise R_1 bitopological spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 30(1986), 141-145.
[14] S. N. Maheshwari and R. Prasad, On R_{α}–spaces, Portugal. Math., 34(1975), 213-217.
[15] S. Jafari and T. Noiri, Contra-continuous function between topological spaces, Iranian Int. J. Sci., 2(2001), 153-167.
[16] S. Jafari and T. Noiri, On contra-precontinuous functions, Bull. Malaysian Math. Sc. Soc., 25(2002), 115-128.
[17] M. Kat’etov, On real-valued functions in topological spaces, Fund. Math., 38(1951), 85-91.
[18] N. Levine, Semi-open sets and semi-continuity in topological space, Amer. Math. Monthly, 70(1963), 36-41.
[19] M. Kat’etov, Correction to, ”On real-valued functions in topological spaces”, Fund. Math., 40(1953), 203-205.
[20] M. Ganster and I. Reilly, A decomposition of continuity, Acta Math. Hungar., 56(3-4)(1990), 299-301.
[21] M. Mirmiran, Insertion of a function belonging to a certain subclass of R^X, Bull. Iran. Math. Soc., 28(2)(2002), 19-27.
[22] A.S. Mashhour, M.E. Abd El-Monsef and S.N. El-Deeb, On precontinuous and weak pre-continuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47-53.
[23] M. Przemski, A decomposition of continuity and α–continuity, Acta Math. Hungar., 61(1-2)(1993), 93-98.