Estimation of geometrical shapes of mass-formed nuclei (A=102-178) from the calculation of deformation parameters for two elements (Sn & Yb)

Sameera A. Ebrahiem¹, Haider A. Zghaier²

¹Department of Physics Collage of Education Ibn Al-Haithem University of Baghdad
²Council of Ministers Iraqi Radioactive Sources Regulatory Authority

Abstract. The present research focused on the studying of even-even nuclei forms for elements with mass numbers greater than 100 (A > 100) for (¹⁰²⁻¹³⁴Sn &¹⁵²⁻¹⁷⁸Yb) isotopes. Which included the study of deformation parameters (β²) derived from the Reduced Electric Transition Probability B(E2)↑ based on the energy of the first Excited State (2⁺), and distortion parameter (δ) from Intrinsic Electric Quadrupole Moments (Q₀). Roots Mean Square Radii <r²>↑/2 were also calculated and compared with theoretical values. The diversity of nuclei forms for selected isotopes and their differences was observed by plotting three-dimensional shapes (axially symmetric) in addition to drawing two-dimensional shapes of single element isotopes to distinguish between them by using semi-major (a) and semi-minor (b) axes.

1. Introduction

The atomic nucleus mirrors condition is the protons and neutrons shell structure which are the formation of it with regard that the shells are totally filled, it has been discussed a "magic" ball-shaped nucleus. Most nucleuses may have an orientation for being deformed on the grounds that their shells are partially filled off. The most commonly experienced shapes are elongated (prolate) or prostrated (oblate) as shown in figure (1-1); shapes can change from nucleus to another respectively by aggregation or dislocating a proton or neutron. It is appropriate in some cases to rearrange protons or neutrons at the same nucleus so that the shape can be changed. Thus, nucleus selfsame can suppose several shapes alike different energy states. When the states approach in energy (one thousand of the nucleus's obligated energy), due to quantum mechanics laws, these various shapes can be mixed and nucleus may get along with different shapes.
2. Theoretical

2.1. Nuclear Shape
The nuclear shape is generally spherical when nuclei are stable. This attempt is to lower the surface energy. However, small parts from spheres are observed, such as, in the area $150 < A < 190$. These deformations can only be quantified by using the ratio [1]:

$$\delta = \frac{\Delta R}{R}$$

Where:
R = The nuclear radius average
ΔR = The difference between semi-minor and semi-major axes.

$$\Delta R = (b - a)$$ (2)

For a sphere $\Delta R = 0$.

2.2. Nuclear Surface Deformations:
The collective motion can be explained as nuclear surface vibrations and rotations in the geometrical collective model that was firstly suggested by Bohr and Mottelson [2], where a nucleus modeled like a charged liquid drop and the moving nuclear surface may be expressed quite generally by an extension in spherical consistent with time-dependent shape parameters that are considered as coefficients [3,4]:

$$R(\theta, \phi, t) = R_{av} [1 + \sum_{\lambda=0}^{\infty} \sum_{\mu=-\lambda}^{\lambda} \alpha_{\lambda\mu}(t)Y(\theta, \phi)]$$ (3)

Where:
$R(\theta, \phi, t)$: Indicates the nuclear radius in the direction (θ, ϕ) at time t as shown in figure (1.2),
R_{av}: The average nucleus radius.
$\alpha_{\lambda\mu}$: Are the deformation variables.
λ: determines the multipole or mode of nuclear motion.
μ: is the projection of λ on the z-axis.
$Y(\theta, \phi)$: is the spherical harmonic.

Figure (1.1). A diagrammatic representation of three of a nuclear shapes (a) Spherical, (b) Oblate, (c) Prolate. The x-axis donates to the symmetry axis of the oblate and prolate shapes.
Figure (1.2). A vibrating nucleus with a spherical equilibrium shape. The time-dependent coordinate $R(t)$ locates a point on the surface in the direction (θ, ϕ)[4].

The quadrupole deformation parameter β_2, is related to the spheroid axes [5]:

$$\beta_2 = \frac{4}{3} \sqrt{\frac{\pi}{5}} \frac{\Delta R}{R_{av}} = 1.06 \frac{\Delta R}{R_{av}}$$

Where:
The average radius $R_{av} = R_0 A^{1/3}$.
ΔR: The difference between both of the semi-major and minor axes. As long as the value of β_2 is larger, the nucleus becomes more disfigured.

2.3. The Root Mean Square Charge Radius (Isotopes Shift)
The root mean square (rms) nuclear charge radius $R = \langle r^2 \rangle^{1/2}$, with one another nuclear ground-state properties, is considered the key nuclear materials information which refer to stated nuclear structure effectiveness, for instance: shell closures and a deformation starting. [6].

The root mean square (rms) radius, $\langle r^2 \rangle^{1/2}$, is deduced directly from the distribution of scattered electrons; for a uniformly charged sphere, the squared charge distribution radius $\langle r^2 \rangle$ [8,4]:

$$\langle r^2 \rangle = \frac{3}{5} R^2 = \frac{3}{5} R_0^2 A^{2/3} > 100$$

Where:
A: Mass number
R: is the radius of the sphere
A: Mass number
$R = R_0 A^{1/3}$.

2.4. Electric Quadrupole Moment
The charge allocation in a nucleus can be described in terms of electric multipole moments and pursued from the classical electrostatics thoughts [9]. Several nuclei have constant quadrupole
moments which may experimentally be measured. These nuclei are expected to have oval shape with a symmetrical axis. This proposition, has classically led to define the intrinsic quadrupole moment as the following equation [10]:

\[Q_0 = \int d^3 \rho(r) (3z^2 - r^2) \]

(6)

Where
\(\rho(r) \) : Radial charge density of the proton.
\(r \): Charge radius.

If \(Q_0 \) is consider to be calculated for a homogeneously charged ellipsoid with charge Ze and semi-axes (a) and (b). With (b) pointing along the z axis, \(Q_0 \) will be[11]:

\[Q_0 = \frac{2}{5} Z (a^2 - b^2) \]

(7)

If the deviation from sphericity is not very large, the average radius: \(R = 1/2 (a + b) \) and \(\Delta R = (b - a) \) from equation (2) can be presented and with \(\delta = \Delta R/R \), from equation (1), the quadrupole moment is[11]:

\[Q_0 = \frac{4}{5} Z R^2 \delta \]

(8)

The nucleus quadrupole distortion parameter values \(\delta \) calculated from the equation[12]:

\[\delta = 0.75 Q_0 / (Z(r^2)) \]

(9)

The semi-axes (a) and (b) are gained from the two following equations [13].

\[a = \sqrt{\langle r^2 \rangle (1.66 - \frac{2\delta}{0.9})} \]

(10)

\[b = \sqrt{5 \langle r^2 \rangle - 2a^2} \]

(11)

2.5. Quadrupole Deformations

In general, nuclei with Z or N far from a magic number are deformed. The so-called quadrupole is the most ordinary deformations where the nucleus may have a prolate (rugby ball) or oblate (cushion) shape, as shown in ‘figure 1’. A quadrupole deformation holds one symmetry axis (z axis) [14].

It is notorious that the axially symmetric deformed nucleus shape is explained by the deformation parameter \(\beta_2 \) which is connected to the quadrupole moment \((Q_0) \) and represents the homogeneous charge distribution [15,16]:

\[\beta_2 = \frac{\sqrt{5\pi} Q_0}{3ZR_0^2} \]

(12)

Where
\(Z \): The atomic number.
\(R_0 = 1.2 \times A^{1/3} \) fm.
\((\beta_2) \): The deformation parameter and \((\beta_2 < 1) \).
2.6. The reduced electric quadrupole transition probability ($E2$)↑
Radioactive electromagnetic transformations between nuclear states are a perfect path to achieve nuclear structure and to experiment nuclear structure models [17]. $B(E2)$ Transmission play a definitive role to determine the lifetimes of nuclear states average, the nuclear deformation parameter β, the volume of essential electric quadrupole moments and the energy of low-lying nuclei levels. Great quadrupole moments and transmissions forces refer to the collective effects in which many nucleons can participate[18]. From here the reduced electric quadrupole transition likelihood, $B(E2)↑$, from the spin 0^+ ground state to the first excited spin 2^+ state is specified by[19]:

$$B(E2 : 0^+ \rightarrow 2^+) = \frac{5}{16\pi} e^2 Q_0^2$$ \hspace{1cm} (13)

Where $B(E2)↑$: reduced electric quadrupole transition probability in the unit of $(e^2 b^2)$. Q_0: is intrinsic quadrupole moment in unit of barn (b).

The $B(E2)↑$ values are requisite experiential quantities that have no dependence on nuclear models. A quantity in which the model is thought to be depended on, is perfectly useful as it is the deformation parameter (β_2). Presuming a uniform charge distribution out to the distance $R(\theta, \phi)$ and zero charge beyond, (β_2). is associated to $B(E2)↑$ by the formulation [20]

$$\beta_2 = \left(\frac{4\pi}{3Z R_0^2}\right)\left[B(E2)↑/e^2\right]^{\frac{1}{2}}$$ \hspace{1cm} (14)

$$R_0^2 = \left(1.2 \times A^{\frac{1}{3}} fm\right)^2 = 0.0144 A^{2/3} b$$ \hspace{1cm} (15)

In accordance with the global systematic, the energy acknowledgement E (KeV) of the 2^+ state is whole that is required of creating a prediction for the corresponding $B(E2)↑(e^2 b^2)$ value [18]:

$$B(E2)↑ = 2.6 \times E^{-1} Z^2 A^{-\frac{2}{3}}$$ \hspace{1cm} (16)

3. Calculation and Results

3.1. Deformation Parameters (β_2)
Deformation Parameters(β_2) derived from Reduced Electric Transition Probability $B(E2)↑$ of even-even nucleus for the (Sn & Yb) isotopes were counted using the equation (14). this equation contains many Parameters must be obtained:

3.1.1. Reduced Electric Transition Probability $B(E2)↑: 0^+ \rightarrow 2^+$ from the ground 0^+ to the first excited 2^+ states calculated by using equation (16). The energy $E(KeV)$ of the first excited state 2^+ was obtained from the reference (18).

3.1.2. Average Nuclear Radius R_0^2 calculated using equation(15).

3.2. The Deformation Parameters (δ)
The other method for calculation of distortion parameter (δ) is by using the intrinsic quadrupole moments (Q_0) Equation (9). To evaluate this, the following variables must be available:
3.2.1. The Mean Square Charge Radius(r^2) which is obtained from equation (5) for $A > 100$.

3.2.2. Intrinsic Quadrupole Moments (Q_0) of nuclei were calculated from the equation (13). These values were compared with the Predicted values of Q_0 for SSANM form reference[18]. All these values were tabulated in tables (1), and (2).

3.3. The major axis (a) and minor axis (b) were counted by using Eq. (10) and (11) respectively. The difference ΔR between (a) and (b) were counted also by using Eq. (1), (2), and (4) respectively. All these values are tabulated in the (3) and (4) tables.

Table 1. Isotopes Mass Number (A), Neutron Number (N), Gamma Energy of the First Excited State $2^+(E\gamma)$, Nuclear Average Radius (R^2_0), Reduced Electric Transition Probability ($B(E2)$ \uparrow in unit

(Z)	(A)	(N)	$E\gamma$(KeV)	$B(E2)$ \uparrow	β_2 for	R^2_0	$B(E2)$ \uparrow	$Q_\gamma(b)$	β_2	δ
				(e^2b^2)	(SSANM) (P.w.)		(e^2b^2)			
102	52	1472.22	0.051	0.0602	0.3144	0.2023	1.4260	0.1199	0.1080	
104	54	1260.13	0.116	0.0896	0.3185	0.2332	1.5313	0.1271	0.1145	
106	56	1207.75	0.195	0.1147	0.3225	0.2403	1.5543	0.1273	0.1147	
108	58	1206.07	0.281	0.1360	0.3266	0.2376	1.5457	0.1251	0.1127	
110	60	1211.89	0.361	0.1523	0.3306	0.2336	1.5325	0.1225	0.1104	
112	62	1256.85	0.407	0.1597	0.3346	0.2226	1.4959	0.1181	0.1064	
114	64	1299.92	0.406	0.1577	0.3386	0.2127	1.4622	0.1141	0.1028	
116	66	1293.56	0.394	0.1535	0.3425	0.2113	1.4573	0.1124	0.1013	
118	68	1229.66	0.379	0.1489	0.3464	0.2197	1.4862	0.1134	0.1021	
120	70	1171.34	0.365	0.1445	0.3503	0.2281	1.5143	0.1142	0.1029	
122	72	1140.53	0.286	0.1265	0.3542	0.2317	1.5261	0.1138	0.1026	
124	74	1131.73	0.190	0.1020	0.3581	0.2310	1.5238	0.1124	0.1013	
126	76	1141.15	0.111	0.0771	0.3619	0.2266	1.5094	0.1102	0.0993	
128	78	1168.83	0.035	0.0527	0.3657	0.2190	1.4856	0.1072	0.0966	
130	80	1221.26	0.037	0.0296	0.3695	0.2074	1.4440	0.1032	0.0930	
132	82	404.11	Sph	------	------	------	------	------	------	------
134	84	752.2	0.060	0.0344	0.3771	0.3424	1.8553	0.1300	0.1171	

Table 2. Isotopes Mass Number (A), Neutron Number (N), Gamma Energy of the First Excited State $2^+(E\gamma)$, Nuclear Average Radius (R^2_0), Reduced Electric Transition Probability ($B(E2)$ \uparrow in unit

(Z)	(A)	(N)	$E\gamma$(KeV)	$B(E2)$ \uparrow	β_2 for	R^2_0	$B(E2)$ \uparrow	$Q_\gamma(b)$	β_2	δ
				(e^2b^2)	(SSANM) (P.w.)		(e^2b^2)			
152	82	1531.45	1.189	0.1591	0.4101	0.2921	1.7136	0.0789	0.0711	
154	84	821.32	1.972	0.2031	0.4137	0.5399	2.3298	0.1063	0.0958	
156	86	536.41	2.566	0.2297	0.4173	0.8196	2.8704	0.1298	0.1170	
158	88	358.21	3.195	0.2542	0.4209	1.2169	3.7977	0.1569	0.1413	
160	90	243.11	3.609	0.2679	0.4244	1.7782	4.2280	0.1880	0.1694	
162	92	166.85	3.982	0.2790	0.4279	2.5694	5.0824	0.2241	0.2020	
of $e^2 b^2$, Quadrupole Moment (Q_o) in unit of barn, and Deformation Parameters (β_2, δ) for ($_{50}$Sn).

Table 3. Mass number (A), Neutron Number (N), Root Mean Square Radii $<r^2>^{1/2}$, Major and minor axes (a,b) and the difference between them (ΔR) by two method for ($_{50}$Sn) Isotopes.

(Z)	(A)	(N)	Theoretical Value	Present Work					
			$(r^2)^{1/2}$ fm	$(r^2)^{1/2}$ fm	a (fm)	b (fm)	ΔR_1	ΔR_2	ΔR_3
102	52		4.4503	2.5197	3.0908	0.5400	0.5711	0.6358	
104	54		4.4792	2.5151	3.1216	0.5761	0.6065	0.6784	
106	56		4.5077	2.5226	3.1323	0.5810	0.6097	0.6842	
108	58		4.5605	2.5345	3.1355	0.5742	0.6010	0.6762	
110	60		4.5785	2.5469	3.1377	0.5659	0.5907	0.6664	
112	62		4.5948	2.5624	3.1343	0.5490	0.5719	0.6465	
114	64		4.6099	2.5772	3.1318	0.5335	0.5546	0.6283	
116	66		4.6250	2.5877	3.1358	0.5287	0.5481	0.6225	
118	68		4.6393	2.5934	3.1476	0.5361	0.5541	0.6313	
120	70		4.6519	2.5991	3.1589	0.5431	0.5598	0.6396	
122	72		4.6634	2.6070	3.1665	0.5444	0.5596	0.6411	
124	74		4.6735	2.6166	3.1709	0.5406	0.5543	0.6366	
126	76		4.6833	2.6277	3.1727	0.5327	0.5450	0.6273	
128	78		4.6921	2.6401	3.1719	0.5208	0.5318	0.6133	
130	80		4.7019	2.6541	3.1681	0.5043	0.5140	0.5938	
132	82		4.7093	2.7459	3.0279	0.2744	0.2820	0.3231	
134	84		4.8740	2.6181	3.2651	0.6414	0.6470	0.7553	

Table 4. Mass number (A), Neutron Number (N), Root Mean Square Radii $<r^2>^{1/2}$, Major and minor axes (a,b) and the difference between them (ΔR) by two method for ($_{70}$Yb) Isotopes.

(Z)	(A)	(N)	Theoretical Value	Present Work					
			$(r^2)^{1/2}$ fm	$(r^2)^{1/2}$ fm	a (fm)	b (fm)	ΔR_1	ΔR_2	ΔR_3
152	82		5.0423	5.0831	2.7693	3.1745	0.4058	0.4051	0.4778
154	84		5.0875	5.1053	2.7244	3.2683	0.5493	0.5439	0.6468
156	86		5.1219	5.1274	2.6856	3.3483	0.6738	0.6627	0.7935
158	88		5.1498	5.1492	2.6391	3.4375	0.8176	0.7985	0.8628
160	90		5.1781	5.1708	2.5829	3.5372	0.9842	0.9543	1.1589
162	92		5.2054	5.1923	2.5146	3.6490	1.1782	1.1344	1.3874
Neutron Number (N)	\(\beta_2 \) for \(\frac{50}{70} \)Sn	\(\beta_2 \) for \(\frac{70}{70} \)Yb							
-------------------	------------------	------------------							
164	94	5.2307	5.2135						
166	96	5.2525	5.2346						
168	98	5.2702	5.2556						
170	100	5.2853	5.2764						
172	102	5.2995	5.2970						
174	104	5.3108	5.3174						
176	106	5.3215	5.3377						
178	108	5.3579	2.4177						

Figure 3. Deformation Parameter (\(\beta_2 \)) values as a function of neutron Number (N) for the \(\frac{50}{70} \)Sn and \(\frac{70}{70} \)Yb Isotopes.
Figure 4. Shapes of axially symmetric quadrupole deformation for 50Sn isotope from major (a) and minor (b) axes.

Figure 5. Shapes of axially symmetric quadrupole deformation for 70Dy isotope from major (a) and minor (b) axes.
4. Discussion
From observation the values of the electric quadrupole moments $B(E2)$ of selected elements, tables (1-1) & (1-2), we found that these values vary according to their mass numbers (number of protons and
neutrons), and when we approaching to the magic numbers of protons and/or neutrons, the values of \(B(E2) \uparrow \) become less than those of the other isotopes of the same element, in other words the values of deformation \((\beta_2) \) become as low as possible and, therefore, this isotope with magic numbers is more stable than others.

On the other hand, we also found when the mass numbers are less than 150 (\(A < 150 \)), the values of intrinsic quadrupole moments are seems to be less than those of with mass number between 150 and 180 (\(150 < A < 180 \)), this is belonged to collective behavior (vibrational and rotational) of nucleons.

Also in the even-even nuclei that appear collective behavior. The energy of the first excited state \((2^+) \) appears to be decrease sort of smoothly as a function of \(A \) (except the regions near closed shells).

From observable values of the root mean square charge radii \((r^2)_{1/2}\), table (1.3) to (1.4), we found that these values increased as the mass number \(A \) increasing. For comparison purposes, it was found that the calculated values of \((r^2)_{1/2}\) (P.w.) correspond well to the experimental values of \((r^2)_{1/2}\) from references [].

What has been mentioned above can be explained in detail in the following paragraphs.

4-1 Strontium Isotopes \(^{102-134}_{50}\text{Sn} \)

Clearly from table (1 - 1), that the lowest value of the deformation Parameter is for the \((^{132}_{50}\text{Sn}) \) equal to \((\beta_2 = 0.0559) \) and the largest value of deformation parameter is for \((^{134}_{50}\text{Sn}) \) \((\beta_2 = 0.1300) \). The remaining values of \(\beta_2 \) are ranging between these two values. This is due to the fact that the nucleus of the \((^{180}_{50}\text{Sn}) \) is one of the nucleus with double magic numbers \((Z = 50, N = 82)\), and therefore this nucleus is more stable than others. Furthermore, the energy level of the first excited state \(2^+ \) is very high \((E_\gamma = 4041.1 \text{KeV})\), (the gap is large between the ground and the first excited states, thus the hardness of transfer nucleons between these two states), compared with the energy levels of the same states for others. This means that the nucleus of \(^{132}_{50}\text{Sn} \) isotope has closed shell, spherically Symmetric, and be especially stable.

More nucleons are added outside the closed shell in the \(^{134}_{50}\text{Sn} \) isotope and the energy level of the first excited state \(2^+ \) is \((E_\gamma = 725 \text{KeV}) \). All these factors are encouraging the small deformation of this nuclide.

These results are confirmed in Figure (1-3), which shows the relationship between deformation parameters \((\beta_2) \) as a function of neutrons numbers \((N) \). It is clear that the distortion of nuclides decreases as neutron numbers close to the magic number of \((82) \). Then the value of \((\beta_2) \) begins to increase thereafter as the \((N) \) increased, which mean increase of nucleons outside closed shell.

Generally speaking all nuclides of the isotopes of \((^{50}\text{Sn}) \) show a small deviation from the spherical shape, with the exception of the isotope \((^{132}_{50}\text{Sn}) \) as shown in the figure 4’. Also figure 6’ show the 3-D shapes of the smallest and highest values of deformation Parameter of \(^{50}\text{Sn} \) Isotopes

4-2 Ytterbium Isotopes \(^{152-178}_{70}\text{Yb} \)

From observable table 2, we find that it starts with \(^{152}_{70}\text{Yb} \), where the number of neutrons represent a magic number \((N = 82) \) and the number of protons \((Z = 70) \). The energy of the first excited state \(2^+ \) \((E_\gamma = 1531.4 \text{KeV})\) (the gap is large between the ground and the first excited states, thus the hardness of transfer nucleons between these two states), So that the reduced electric transmission probability \(B(E2) \uparrow \) is low and therefore the \(\beta_2 \) will be at its minimum value \((\beta_2 = 0.0789) \), this will lead that the nuclide of this isotope is more stable, almost spherical and the most tightly bound shape.

From same table, values of \((\beta_2) \) will increase with increase \((N) \) until reach to the confined area between \((92 \leq N \leq 108) \), deformation values are approximately equal and ranging from \((\beta_2 = 0.2241) \) with \((E_\gamma = 166.85 \text{KeV}) \) for \(^{162}_{70}\text{Yb} \) to \((\beta_2 = 0.2875) \) with \((E_\gamma = 84 \text{KeV}) \) for \(^{178}_{70}\text{Yb} \).
the maximum value of \(\beta_2 = 0.3083 \) for \(^{162}\text{Yb}\), this is due to the low energy value of the first excited state \((E_x = 76 \text{ KeV}) \) which is in turn leads to maximum value of \(B(E2) \) and then the highest value of deformation. This seems to be clear in the 'figure 3' which shows the relationship between \(\beta_2 \) as a function of the neutrons number \((N)\). As a result, these nuclei will be less stable, non-spherical shape and will be more elongated.

On the other hand from observable table 2 we find the distortion values \((\delta)\) derived from \(Q_0 \), become as low as possible because it started with magic number \((N = 82)\) and the values of the intrinsic electric quadrupole moment become on its minimum value. When add more nucleons in the shell or sub-shell outside close shell this will lead to restrict the vibrations of wholly or partially to one direction (polarization the core), and the nucleus can get a permanent deformation.

'Figure 5' shows the differences between these values of deformation Parameters \((\beta_2)\) based on the values of major and minor axes \((a, b)\) respectively. Also 'figure 7' show the 3-D shapes of the smallest and highest values of deformation Parameter of \(^{70}\text{Yb}\) Isotopes.

References

[1]. SAMUEL S.M. WONG, "Introductory Nuclear Physics", Second Edition, ©2004 WILEY-VCH VerlagGmbH& Co. KGaA, Weinheim.
[2]. A. Bohr and B. R. Mottelson, "Nuclear structure, Vol.II, Nuclear Deformations", copyright ©1998 by World Scientific Publishing Co. Pte. Ltd.
[3]. A. Al-Sayed and A. Y. Abul-Magd, " Level statistics of deformed even-even nuclei", DOI: 10.1103/PhysRevC.74.037301(2006).
[4]. Kenneth S. Krane, "Introductory Nuclear Physics", copyright © 1988, by Joun Willey &Sons, Inc.
[5]. R.R.Roy and B.P. Nigam, "Nuclear Physics Theory and Experiment", copyright©1967 By John Wiley & Sons, INC
[6]. W. Greiner· J. A. Maruhn,"Nuclear Models" © Springer- Verlag Berlin Heidelberg 1996.
[7]. Neugart R. and Neyens G." Nuclear Moments" Department of Physics, University of Mainz, Germany (2005).
[8]. Boboshin I., Ishkhanov B., Komarov S., Orlin N., and Varlamov V., "Investigation of Quadrupole Deformation of Nucleus and its Surface Dynamic Vibrations" International Conference on Nuclear Data for Science and Technology.DOI: 10.1051/ndata:07103 P.65-68 (2007).
[9]. Gerda Neyens,"Nuclear magnetic and quadrupole moments for nuclear structure research on exotic nuclei" Rep. Prog. Phys. 66 (2003) 633–689 © 2003 IOP Publishing Ltd. Printed in the UK.
[10]. S. Mohammadi,"Quadrupole Moment Calculation of Deformed Nuclei",Journal of Physics: Conference Series 381 (2012) 012129. doi:10.1088/1742-6596/381/1/012129.
[11].Ernest M Henley and Alejandro Garcia, "SUBATOMIC PHYSICS (3rd Edition)", Copyright © 2007 by World Scientific Publishing Co. Pte. Ltd.
[12].I.Boboshin, B. Ishkhanov, and S. Komarov, "Investigation of quadrupole deformation of nucleus and its surface dynamic vibrations", International Conference on Nuclear Data for Science and Technology,©2008 CEA, published by EDP Sciences.
[13]. Ali Abdulwahab Ridha,"Deformation parameters and nuclear radius of Zirconium (Zr) isotopes using the Deformed Shell Model", Wasit Journal for Science & Medicine 2009 2 (1) : (115 - 125).
[14].Jean-Louis Basdevant, James Rich & Michel Spiro, "Fundamentals in Nuclear Physics, from Nuclear Structure to Cosmology", ©2005 Springer Science+Business Media, Inc.
[15]. F. Ertugrala, E. Guliyev, and A.A. Kuleiv, " Quadrupole Moments and Deformation Parameters of the \(^{166-180}\text{Hf}\), \(^{180-186}\text{W}\) and \(^{152-168}\text{Sm}\) Isotopes", DOI: 10.12693/APhysPolA.128.B-254, ACTA PHYSICA POLONICA A, (2015).
[16]. J. Margraf, R. D. Heil, U. Kneissl, and U. Maier, "Deformation dependence of low lying M1 strengths in even isotopes", PHYSICAL REVIEW C VOLUME 47, NUMBER 4 APRIL 1993.

[17] A. Bohr and B. R. Mottelson, "Nuclear Structure, Volume II: Nuclear Deformations", (World Scientific, Singapore, 1998).

[18] S. Raman, C. W. Nestor, and P. Tikkanen, At. Data Nucl. Data Tables 78, 1 (2001).

[19] M. Haberichter, P. H. C. Lau, and N. S. Manton, "Electromagnetic Transition Strengths for Light Nuclei in the Skyrme model", Kent Academic Repository, (2015).

[20] Subramanian Raman, "A Tale of Two Compilations: Quadrupole Deformations and Internal Conversion Coefficients", Journal of Nuclear Science and Technology, 39: sup2, (2002), 450-454, DOI: 10.1080/00223131. 2002.10875137.