ABSTRACT

Indian plants have been the predominant source of medicines throughout the vast majority of human history. For centuries, indigenous Indian cultures have used herbal medicine traditionally to treat a myriad of maladies. One of the most versatile and infrequent concerning its phytochemistry and pharmacology is *Morinda pubescens* (*M. pubescens*) plant discovered by J. E. Smith. Interest in this plant has been renewed in recent years, first from its identification as a chemopreventive agent for wound healing cancers and subsequently from reports that it has phyto-compounds contributing to antimicrobial, antioxidant, hepatoprotective and plant growth stimulatory effects. Although skepticism concerning its standardization, a growing body of *in vivo* evidence indicates that *M. pubescens* plant has protective effects in rodent models of stress and disease. In this comprehensive review, the ethnomedicinal reports on the *M. pubescens* plant demystified with both *in vitro* and *in vivo* shreds of evidence which would be further tempting to reveal the book buried facts of this traditional medicine through modern scientific approach. In the knowledge of our literature survey, this is the first review to be done on the *M. pubescens* plant from overall Tamil Nadu.

Keywords: *Morinda pubescens*, Traditional use, Phytochemistry, Therapeutic values, Ethnomedicinal plant

© 2018 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

DOI: http://dx.doi.org/10.22159/jcr.2018v5i5.28010

INTRODUCTION

Morinda pubescens (*M. pubescens*) plant discovered by J. E. Smith is a Rubiaceae species, with extensive distribution in Southern Asia: it displays a full reapportionment in westwards to eastern slopes of Ghats and predominates the arid regions of Southern Deccan and Southern Travancore. According to the plantlist.org, *Morinda pubescens* is the unresolved name to refer to this plant which later accepted as a synonym of *Morinda coriacea* Buch Ham. The other scientific names such as *Morinda tinctoria* (Roxb), *Morinda tomentosa* (Roxb) relegated to synonymy [1]. Commonly, the plant is described under many different names including the Morinda tree, Brime stone tree or wild ach root [2-4].

Traditionally, all parts of the plant especially the leaves and root, are widely used by indigenous people for medicating a full spectrum of ailments and diseases ranging from the topical application to heal wounds, inflammation, gout and stomach pains to oral administration for diabetes, malaria, fever, rheumatism and infectious diseases. Several *in vitro* and *in vivo* studies provided diverse evidence supporting most of the traditional therapeutic claims of *M. pubescens*. Bioassay-guided phytochemical screening of *M. pubescens* extracts led to the identification of affluence of bioactive principles such as flavonoids, alkaloids, phenolic acids with noteworthy therapeutic implications. However, besides extensive use in folk medicine, there are numerous other possible applications of *M. pubescens*, the most investigated being as green manure and green dye adsorbent. With the upward popularity of *M. pubescens*, there are significant concerns about its efficacy, toxicity, and allergenicity. Therefore, a comprehensive review of the current understanding of this plant is needed to provide a source of information for anyone potentially interested in, but also to pinpoint research gaps for future investigation. To this end, we systematically retrieved and critically summarized the extant literature on the pharmacology of *M. pubescens* and its relationship with local/traditional use and phytochemistry. The botanical characterization of *M. pubescens* performed as well.

Morphological features

M. pubescens can be gaudily depicted as a flowering shrub-like species, growing up to over 6-10 cm high. The flowers are white, and several together united at the base into a small head. The head (capitulum) is 3.5 cm long and appearing leaf-opposed or subtended by reduced leaf. The capitulum bears white corolla (15 mm), short-limbed calyx, oblong lobes and anthers (6-8 mm and 5 mm), and stigma two-lobed with styles (18 mm). Flowering occurred in March, and each mature stem can bear several flowers. *M. pubescens* leaves (6-20 cm) can be described as elliptic to linear-lanceolate or obovate, petiolate (2.5 cm) and alternately to oppositely arranged. The plant has branchlets often with a characteristic thin pallid to fleshy head possessing oblong seeds, stony pyrenes, and oblong seeds. Young fruits occur in April with green color and mature in June with black [5-8].

Ecogeographical features

Geographically the *M. pubescens* distribution extends from Southern Deccan and Carnatic to Southern Travancore in dry forests whereas wet wards to eastern slopes of Ghats at low levels [5]. Reportedly, the plant is native to Southern Asia and then spread to other parts of Asia such as Sri Lanka, the Malay Archipelago, and the drought-prone area of Osmanabad, Andaman, and the Nicobar Islands. As well as in Bandar ban, Chittagong and Dinajpur in Bangladesh [6, 9]. In the mainland of India, where it grows wild as a weed in road sides, wastelands, crop fields, and homesteads along the coastal areas of Jhauka, Kerala, Karnataka, Pune, Maharashtra, and Tamil Nadu. Indeed it has also found to be cultivated in Boda hills, Eastern Ghats of Kolli hills for the medicinal purpose [8, 10].

Ethnopharmacological relevance

For centuries, indigenous Indian cultures have used herbal medicine traditionally to treat a myriad of maladies. One of the most vital and infrequent ancient book buried ethnomedicinal plant is *M. pubescens* [11, 12]. Ayurveda, Siddha, Unani, Tibbi, and Amchi are natural systems of medicine which have writings on the use of Morinda plant [13, 14]. Perhaps, there are reports that South Indian ancestors perceived the therapeutic values of *M. pubescens* and used in Siddha and Ayurveda medicinal systems [15]. Besides, as early as 1605, in Kerala, it has been long recognized as traditional medicine named, “Paphanok.” Moreover, complex traditional formulations,
"Phapahandi tailam" and "Phapahandi ghrtam" prepared from the plant used in the treatment of different ailments [5, 16]. It was traditionally used as folk medicine by tribes as astringent and for curing rheumatism, cholera, hypertension, diabetes, blood cleansing and treatment of renal toxicity symptoms [17-19]. Furthermore, the bark used in the treatment of eczema, fever, ulcers, and ascites whereas leaves serve as the excellent fomentation for haemorrhoidal pains and piles [5, 21]. Indeed, reports also have shown the extract of its leaves, stems, and fruits used in the treatment of gastrointestinal, gastralgia, stomach ulcer, wounds, gout, inflammation, hernia, sarcocele, and fever [22-24]. Stem bark decoction has been used orally by rural people of Kurnool District as well as Seshachalam hills located at Andra Pradesh, locally named, Mulugu chattu and Togaru chattu to cure rheumatic diseases and jaundice [25, 26]. Leaf paste has been used by local people of Maharashtra and tribal people of Tirunelveli hills in southern India for healing wound among various medicinal plants [27, 28]. Besides, Siddha healers of Katpadi taluk in the Vellore district of Tamil Nadu prescribe leaf preparations such as Nuna tailam and Nuna kadugu for leucoderma [29]. Moreover, the leaf boiled in water and the decoction is administered to children for two days to cure dysentery by villagers around Gin gee hills of Villupuram District [30]. The traditional uses of M. pubescens have been summarized in table 1 as follows:

M. pubescens plant part	Mode of preparation	Therapeutic effect	References
Leaves	Infusion, Poultice, Decoction, paste	Children's digestive disorder, haemorrhoidal pains, and piles, wound healing, dysentery, leucoderma	[20, 5, 27-30, 77]
Bark	NS	Eczema, fever, ulcers	[5, 21]
Root	Infusion	Anti-inflammatory, visceral obstructions, renal dropy, and ascites	[22-24]
Leaves stem and fruits	NS	Gastropathy, dyspepsia, diarrhea, stomach ulcer, wounds, gout, inflammation, hernia, sarcocele and fever	[25, 26]
Stem bark	Decoction	Rheumatic diseases and jaundice	

NS: not specified

Phytochemistry of M. pubescens

Chemical studies of M. pubescens leaves in different solvents have identified major active compounds, para-hydroxy quinine [31], octyl glycosyranone, phytol, hexonyl glucopyranone, phytolacetate, arlenol, linoleic acid, caproic acid, caprylic acid [32]. Along with stercomasteroid, ergosteroid, E-phytol, campesta-5-22-trien-3-ol, stigmasta-4-en-3-one, linoleic acid, caproic acid, caprylic acid [32]. Several phytochemical studies on M. pubescens seed oil are palmitic acid, caproic acid, caprylic acid, myristic acid, oleic acid, linoleic acid [43]. Several phytochemical studies on M. pubescens fruits, leaves and stem extracts in different solvents have conducted. The secondary metabolites identified were alkaloids, flavonoids, steroids, terpenoids, anthraquinones, cardiac glycosides [44, 45]. In addition to them, coumarin, phenols, saponins, tannins, catechin, leucanthocyanins, lignin and emodin [46, 9, 14, 47]. Furthermore screening led to the identification of bioactive compounds such as 2,6,6,9,2,6,6,9-octamethyl-3-tricyclo(5.4.0.0.2,9) undecyl: 1,2-benzenedicarboxyalic acid butyl-2-ethylhexyl ester: prosta-5,13-diene-i-oic acid, 9,11,15-tris-(8,8) tricycle (5.4.0.0.)2,9) undecyl: 1,2-benzenedicarboxyalic acid butyl-2-ethylhexyl ester: prosta-5,13-diene-i-oic acid, 9,11,15-tris-(8,8) tricycle (5.4.0.0.)2,9) undecyl: 1,2-benzenedicarboxyalic acid butyl-2-ethylhexyl ester. The antidiabetic, antioxidant, anticancer, antimalarial and wound healing effects do stand out, but there is also a stunning array of other relevant biological effects. Below are critically summarized the main findings of the pharmacological activities of M. pubescens retrieved from the literature.

Antimicrobial activity

Microbial diseases continued to be significant threats to the world regardless of efforts and progress in developing modern medicine [49, 50]. Currently, the ever-increasing threat from drug-resistant microbes's calls for a global effort to search on novel solutions [51] which can also base on natural products from plants that are selected by documented ethnomedical use [53]. In this regard, recently many studies have been carried out with the aim of highlighting the capacity of many extracts of M. pubescens to prevent the growth of microbial strains due to the presence of active antimicrobial agents such as phenols, triterpenoids, and tannins.

Tyagi et al., (2015) showed the significant antibacterial effect of ethanol and chloroform extracts of M. pubescens bark against the selected microbial strains such as S. aureus, B. cereus, E. coli, P. aeruginosa. Indeed aqueous extract was ineffective against all tested microbes compared to the effect of reference standard ofloxacin [9]. Besides, the wood extract of M. pubescens used as a dye in fabric at pH 8, potentially inhibited S. aureus and C. albicans comparably no zone formation noticed in the cotton fabric without stain [53]. Moreover, acetone extract of M. pubescens fruit inhibited most of the salivary microflora samples with a maximum zone of inhibition when compared with definite standard chlorhexidine. The authors suggested the extract as a therapeutic remedy for the hard tissue diseases of the oral cavity in children [54]. On the contrary, other authors reported little or no inhibitory effect on micro foulers such as Klebsiella sp., Aeromonas sp, Pseudomonas sp, Bacillus sp, by ethanol extract of M. pubescens leaves [55]. Furthermore, studies on M. pubescens leaves, and stem showed the highest antimicrobial activity in solvents such as ethanol against S. aureus and E. coli [56]. Besides petroleum ether, chloroform, methanol, water against S. aureus, B. s ubtilis, P. aeruginosa, K. pneumoniae, and S. typhi among which acetone exhibited maximum inhibition against P. aeruginosa comparable with antibiotics tetracycline and chloramphenicol [45, 46]. Indeed, a recent study has shown that silver nanoparticles synthesized by M. pubescens roots were found to be highly toxic against bacterial strains such as S. aureus and E. coli at an increasing dose of concentration. The authors concluded that the antibacterial activity resides on the large surface area of nanoparticles for interaction with microbes [57].

Pharmacological evidence

Studies conducted on cell lines, microorganisms, and model animals of human diseases showed a broad spectrum of bioactivities for different parts and varying extracts of M. pubescens. The antidiabetic, antifungal, anti-inflammatory, and anti-cancer activities of M. pubescens have been reported to have potential therapeutic applications. Moreover, the traditional uses of M. pubescens have been summarized in table 1 as follows:

Mode of preparation	Therapeutic effect	References
Infusion, Poultice, Decoction, paste	Children's digestive disorder, haemorrhoidal pains, and piles, wound healing, dysentery, leucoderma	[20, 5, 27-30, 77]
Eczema, fever, ulcers	[5, 21]	
Anti-inflammatory, visceral obstructions, renal dropy, and ascites	[22-24]	
Gastropathy, dyspepsia, diarrhea, stomach ulcer, wounds, gout, inflammation, hernia, sarcocele and fever	[25, 26]	
Rheumatic diseases and jaundice		
The chloroform extract of M. pubescens fruit when tested on the strains B. oxyzae, F. udum, C. lunata, P. infestans, R. solani, and M. phaseolina, induced 100% inhibition in R. solani and B. oxyzae through the reduction of new and dry weights of mycelial growth. Besides, extract had significant Minimum Inhibitory Concentration (MIC) in the range of as well as reduced fungal respiration rate as compared with control [12]. Whereas, the maximum zone of inhibition observed after the treatment of C. albicans and A. niger with ethanol and chloroform extracts from M. pubescens bark compared to the effect of the reference standard [9]. Moreover, the chloroform extract of stem and leaf displayed significant antifungal activity against a wide range of fungal strains with the maximum zone of inhibition in R. oxyzae [45].

Antimalarial activity
Malaria is one of the most significant human parasitic diseases in the world and has claimed more children life worldwide than any other conditions. Since there are no adequate vaccines and plant drugs, have been employed for centuries. The need for the assessment of traditional anti-malarials is urgent, particularly in the light of widespread resistance of malarial strains to the operationally useful present day antimalarials. In this regard, the filter-sterilized ethanol extracts of M. pubescens leaf and bark investigated for antimalarial activity [59]. Against P. falciparum displayed significant activity [58]. On the contrary, the methanol extract of M. pubescens leaves was found to be ineffective for the larvicidal activity of C. Quinquefasciatus [59].

Radical scavenging activity
Nowadays there is frequent and increase in search for new compounds from medicinal herbs with antioxidant potential which inhibit free radicals responsible for oxidative damage to biomolecules such as lipids, proteins, and nucleic acids, which eventually causes diabetes, aging, injury of kidney, liver, and cancer in humans. Besides the antioxidant vitamins as vitamin E and C, there are other compounds as phytol, octonyl glucopyranose, hexonyl glucopyranose, phytol, octonyl glucopyranose, hexonyl glucopyranose, artemol, linoelec acid, capric acid, caprylic acid, 3-sistosterol, campesta-5-22-trien-3-ol, hyoscyamine. Besides stigmasteroid, ergosteroid, E-phytol, stigmasta-4-en-3-one, stigamasta-22-dien-3-one obtained from 5-22-trien-3-ol, hyoscyamine. Besides stigmasteroid, ergosteroid, E-phytol, glucopyranose, hexonyl glucopyranose, phytol, octonyl glucopyranose, hexonyl glucopyranose, hyoscyamine have demonstrated highest antioxidant activity which has established against 1-Ascorbic acid using DPPH discoloration method. Phytol, octonyl glucopyranose, hexonyl glucopyranose, hyoscyamine have demonstrated highest antioxidant activity with significant IC 50 values [32, 33]. Also, the silver nanoparticles of M. pubescens leaves exhibited iron chelating and scavenging activities against free hydroxyl radicals (HO-), superoxide anion radicals (O2-), 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals, phosphomolybdenum, FTC and TBA inhibitory activity [60]. The alcoholic extracts of M. pubescens rhamnus fruits showed superior display potent antioxidant activity through reducing the lipid peroxides, GST, GSH, SOD, CAT using TBA and FTC, DPPH, FRAP, Metal chelating and NOX assays [12, 61, 62]. Moreover, the leaves of M. pubescens obtained from the cement industry, mine waste, Dalmia magnesite of Salem found to have antioxidant activity in NOX, metal chelating. And also in reducing power, phosphomolybdenum assays [63-67].

Anticancer activity
Cancer is a significant prevalence of health concern and treatment poses a problem and is frequently unproductive. As such, continuous efforts in the search for novel agents and therapies to perk up survival are obligatory. A substantial number of plant extracts and isolated compounds possess significant anti-proliferative or pro-apoptotic effects [68]. By supporting the arowal, extracts of M. pubescens of Rubiaceae family has been shown to sensitize liver and lung tumor cell lines, but not Vero human fibroblasts.

The critical mechanism by which M. pubescens could combat tumor formation is the induction of cell cycle arrest and apoptosis. Apoptosis is a highly complicated and elaborate mode of cell death that requires precise regulation of different intracellular signaling pathways to ensure the continuation of the transmission of the death signal [69]. The characteristic executioners of apoptosis are intracellular cysteine proteases called caspases, stored in most cells as zymogens or procaspases [70]. These caspases are activated by intrinsic and extrinsic pathways which later mediate cleavage of proteins which are essential for cell viability that result in morphological hallmarks of apoptosis [71]. On this subject, a recent study has shown chloroform extract of M. pubescens leaves, and its isolated compound octanol glucopyranose monomethyl ether and caspase-9 protein levels to 1.3 folds than the healthy cells and augmented p53 expression in human hepatoma HepG2 cells [32]. Furthermore, hexane extract of M. pubescens leaves, and the isolated compound hyoscyamine dose-dependently decreased the cell viability in HepG2 cells. Besides, hyoscyamine induced caspase-3 mediated apoptosis. Up-regulation of p53 gene expression provided the cue for apoptotic activity of hyoscyamine [33]. Moreover, the antiproliferative and pro-apoptotic effects of an ultra-protein extract of M. pubescens leaves in A549 lung tumor cell line extensively documented in vitro. And that supported by the increase in apoptosis resulting in the cytoplasms and chromatin condensation, nuclear breakdown, and shrinkage of the cell. Followed by fragmentation into membrane-bound apoptotic bodies, eventually subjected to rapid phagocytosis by surrounding cells, whereas similarly treated standard Vero cell line had shown 98% cell viability with no apoptosis induction [72]. The anti-proliferation activity again proved with another study as M. pubescens kauren synthesized nanoparticles decreased the cell viability of Human Epithelium cells of liver cancer in MTT assay [60].

Hypoglycemic activity
Plants, herbs and their derivatives owing to their broad spectrum of active principles signifying numerous chemical compounds hold promising potentials for their reliable usages in the treatment of diabetes. M. pubescens is one such candidate who has listed as traditional Indian herbal anti-diabetics [85]. In this regard, scientific studies prove the anti-diabetic effect of M. pubescens.

M. pubescens fruit extract administered orally to alloxan induced diabetic female rats significantly reduced the blood glucose levels compared to control non-diabetic rats by alloxan. Besides, there was a significant reduction of biomarkers such as reduced GSH, GST, SOD, CAT in the liver and kidney of diabetic rats as compared with non-diabetic control rats. The authors also observed weight loss in diabetic rats as compared to non-diabetic control animals, whereas treatment with M. pubescens alcoholic extracts improved the animal weight as compared to diabetic animals [12]. M. pubescens is showing promising in vivo results as a natural anti-diabetic agent, the however safe range of doses and proven efficacy studies needed for further preclinical studies.

Prophylactic activity
Nowadays, studies have raised the possibility that M. pubescens might be useful in protecting against liver and kidney damage. Rats given the oral administration of M. pubescens fruit extract for 21 d followed by intraperitoneal injection of D-GaIN to induce liver damage prevented the increase of LPO and alteration in iron content in experimental animals. Besides, considerably increased the levels of GSH and vitamin E when compared to D-GaIN intoxicated animals. Pre-treatment with fruit extract to rats reduced the elevated levels of serum marker enzymes and activities again proved with another study as similarly treated standard Vero cell line had shown 98% cell viability and caspase-9 protein levels to 1.3 folds than the healthy cells and augmented p53 expression in human hepatoma HepG2 cells [32].

Wound rejuvenating activity
Traditional plants are fertile ground for materials used in wound healing and antiocoagulation. Myths in India use a large number of plants for treatment of cuts, wounds, ulcers, inflammation, and
burns. Plant extracts became popularized because of the lack of unnecessary side effects and effectiveness as crude preparations [75, 76]. Perhaps, reports are supporting that the topical application of leaf paste of *M. pubescens* has potential wound healing activity among various medicinal plants [77]. In this outlook, a study on chloroform extract of *M. pubescens* fruit investigated for its wound healing potential in male Albino rats. The extract showed a wound healing activity at a concentration-dependent manner through significantly increasing wound diminution and fresh hair growth in the entire wound area within 15 d in animals treated with the compared with only 60% contraction without hair growth in olive oil-treated control rats. The results suggested that mechanisms underlying this effect were fibroplasia, collagen synthesis, and wound contraction [78]. Furthermore, study with ointment prepared from *M. pubescens* roots extract in ethanol has been evaluated in Swiss albino mice using the wound excision model. The extracts exhibited faster-wound healing activity with increasing concentrations when compared to standard Povidone-iodine. The authors concluded that the wound healing property of *M. pubescens* might be due to its enhancing epithelization and collagen deposition mechanisms [79].

Toxicology

Sprague-Dawley rats fed with "Nuna Kadugu," a Siddha medicine prepared from leaves and fruits of the *M. pubescens* plant for 14 d acute oral toxicity test revealed that LD50 value of NK is more significant than in fasted female rats. Besides, in 28 d repeated dose toxicity study with NK administration had no significant difference in mortality, body weight changes, feed, and water intake, hematology, clinical biochemistry, electrolytes content and histopathological examination [80].

Other reports on *M. pubescens*

Besides the reports on the bioactivity of *M. pubescens*, the number of different activity as seed stimulant, green dye adsorbent, and pollution indicator reported.

Seed stimulant

Aqueous extracts of *M. pubescens* leaves displayed significant stimulatory effect on wheat followed by fenugreek plant with increased enhancement in root and shoot length, vigor index and mobilization efficiency as compared to control. In spite of these effects, the extracts at higher concentrations exhibited an increased enhancement in root and shoot length, vigor index and stimulatory effect on wheat followed by fenugreek plant with increased enhancement in root and shoot length, vigor index and mobilization efficiency as compared to control [81].

Green dye adsorbent

The activated carbon of *M. pubescens* leaves (MAC) reported as an excellent adsorbent material for the removal of malachite green (MG), crystal violet (CV) and Congo red (CR) dyes from aqueous solution. Hence commercially it can be suggested as a low-cost green dye adsorbent [82]. In another study, the *M. pubescens* plant in hot water extract subjected to its dying ability and colorfastness in cotton fabric at different pH where the color changes absorbed from yellowish to deep reddish color. The authors suggest the plant as a green dye [53].

Pollution indicator

Aqueous extract of *M. pubescens* leaves from the experimental site near Cement industry located in Salem showed high Air pollution tolerance index (APTI) at pH 7, along with low ascorbic acid and chlorophyll [83]. On the contrary, a similar study done with leaves obtained near Dalma magnesite located at Salem had moderate APTI with low ascorbic acid and chlorophyll contents [84].

CONCLUSION

In this comprehensive review, we reported the results of scientific works carried out on *M. pubescens*, which endow with practical support for further research. Pharmacological studies listed in the document show almost all ethnomedicinal uses of this plant, including antancer, antimicrobial, antifungal, wound healing and other applications. Moreover, the bioactive potential of this herb justified by concerning the variable phytochemical profile which has included in the review. Furthermore, it would be tempting to explore the path to isolate and purify the chemical compounds that may be biologically active. Indeed, the mechanism of action, bioavailability, and pharmacokinetics of isolated pure compounds will have the most significant interest in the valuation of the obtained pharmacological effect. Besides, there is the surge in clinical studies which contribute to the development of this herb in relevance with its traditional use.

ABBREVIATION

APTI, Air pollution tolerance index; *A. niger*, Aspergillus niger; *B. cereus*, Bacillus cereus; *B. oryzae*, Bipolaris oryzae; *B. subtilis*, Bacillus subtilis; *BUN*, Blood Urea Nitrogen; *C. albicans*, Candida albicans; *C. falciparum*, Plasmodium falciparum; *CV*, Crystal Violet; *D-GaIn*, D-galactosamine; *DDPH*, 1,1-diphenyl2-picrylhydrazyl assay; *E. coli*, Escherichia coli; *FRAP*, Ferric reducing antioxidant power assay; *F. udum*, Fusanum udum; *FTC*, Ferric thiocyanate method; GSH, glutathione; *GST*, Glutathione-S-transferase; *Hept62*, Human epithelium cells of liver cancer; HO-, Free hydroxyl radicals; HPTLC, High-performance thin-layer chromatography; *K. pneumoniae*, Klebsiella pneumoniae; *LPO*, lipid peroxidation; *M. pubescens*, Morinda pubescens; MAC, *M. pubescens* leaves; *MAF*, Macrophoma phaseolina; *MG*, Malachite green; MIC, Minimum Inhibitory Concentration; *MTT*, 3-(4,5-dimethyl-2-tiol-2H)-2,5-diphenyltetrazolium bromide; *NK*, Nuna Kadugu; NOX, Nitric oxide assay; *O2-*, Superoxide anion radical; P AO, Plasmodium falciparum; *P. aeruginosa*, Pseudomonas aeruginosa; *P. infestans*, Phytophthora infestans; *R. solani*, Rhizoctonia solani; *S. aureus*, Staphylococcus aureus; *S. typhi*, Salmonella typhi; *SOD*, Superoxide dismutase; *TBA*, Thiobarbituric acid method.

AUTHORS CONTRIBUTIONS

All the authors have equally contributed

CONFLICTS OF INTERESTS

All authors have none to declare

REFERENCES

1. The Plant List. org; 2018. Available from: http://www. theplantlist.org/tpl1.1/record/kew-129906. [Last accessed on 20 Apr 2018].
2. Desai Nivas DK, Galkowd. Chemical characterization of enzymatically treated morinda juice. Asian J Biochem 2016;11:14-23.
3. Magadi RG. Botanical and vernacular names of South India plants. 1st ed. Bangalore: Smt BM. Komala for Divya chandra desai. 2016;11:14-23.
4. Ghorband DP, Biradar SD. Folk medicine used by the tribes of Kinwat forest of Nanded district Maharashtra India. Indian J Nat Prod Resour 2012;3:118-8.
5. Svarajan VV, Indira Balachandra. Ayurvedic drugs and their plant sources. Oxford and IBH publishers. New Delhi; Kolkata; 1994.
6. Das Sujit C, Rahman Atiqu M. Taxonomic revision of the genus Morinda L. (Rubiaceae) in Bangladesh. Bangladesh J Bot 2011;40:113-20.
7. Meena KL. Morinda Coreia Buch-Ham. A new record to the flora of Rajasthan Indian J Bot 2010;89:210-2.
8. Anand SP, Deborah S. Enumeration of wild edible fruits from the plant sources. Oxford and IBH publishers. New Delhi; Kolkata; 1994.
9. Tyagi Bharat Kumar, Goyal Rajesh Kumar, Chauhan Pradeep. Morinda pubescens bark extracts shows antimicrobial activity. Int J Pharm Sci Res 2016;7:245-8.
10. Jayapal J, Tangavelou AC, Panneerselvam A. Vascular plant diversity in Neyerli Vadavadi Karuppur Sacred Grove at Thanjavur district, Tamil Nadu. Asian J Plant Sci Res 2013;3:59-13.
11. Smith AC. Morinda pacific tropical botanical garden, hawaii, hawaii’s, Flora Vitiensis Nova; 1980. p. 332-41.
12. Mathivanan, Sureshri G. Chemical and biological properties of Morinda spp. Int J Nonti Res 2007;2:62-74.
13. Burkill IH. A dictionary of the economic products of the Malay peninsula. 2nd Edition. Crown Agents for the colonies Publishers and Distributer, London; 1935.

14. Wangmo Sonam, Malpathak NP, Deokule SS. Phytochemical study of Morinda pubescens J. E. Smith: a medicinal plant. Sherub Doemne, the Academic Journal of Sherubtse College; 2010.

15. Prabhu S, Chandrasekha S, Vijayakumar S. Anti-inflammatory activity of Morinda tinctoria on carrageenan-induced rat paw edema. Int J Med Biosci 2012;1:55-60.

16. Pravin J Joshi, Harisha CR, Bupesh R Patel. Regionally accepted popular sources of Ayurvedic medicinal plants in Southern India. Int J Pharm Sci Life Sci 2011;2:1123-32.

17. Jayaweera DMA. Medicinal plants (indigenous and exotic) used in Ceylon, National Science Council of Sri Lanka, Colombo; 1980. p 1-5.

18. Palanimanickam P, Pandian M, Natharajan S, Pitchairam C. Ethnomedicinal wisdom of Alagar Hills in Eastern Ghats, Tamil Nadu, India. Int J Appl Biosci 2012;6:28-34.

19. Jedege HD, Manjunath KP. Phytochemical evaluation and high-performance thin layer chromatography profiling: Sapidina emarginatus VAHL and Morinda pubescens J. E. SM. barks extracts. Asian J Pharm Clin Res 2016;9:108-10.

20. Annalakshmi G, Manjanath. In: Amruth-the traditional health care bimonthly; 2003;7:9-10.

21. Goun E, Cunningham G, Chu D, Nguyen C, Miles D. Antibacterial and antifungal activity of Indonesian ethnomedicinal plants. Fitoqerapia 2003;76:92-6.

22. Kothari MJ, Moorthy S. Flora of raigad district, Maharashtra State. Botanical Survey of India, Pune; 1993. p 184.

23. Prajapati ND, Purohit SS, Sharma AK, Kumar K. A handbook of medicinal plants: a complete sourcebook. Publisher Agrobios Pratapgarh 2003;56:349.

24. Samudra SM. Ethnomedicinally important plants of family Rubiaceae from Pune District (M. S.). Proceeding of National Conference on Environment and Development, 9th and 10th Sept. 2016. Conference Organised by Dr. B. N. P. Arts, Smt. S. G. G. Com, and Sci. College, Lonavala; 2016.

25. Basha Khaleel S, Parveen Niaz S. Floristic diversity and uses of medicinal plants sold by vendors in Temple towns of Eastern Ghats of Kurnool District, Andhra Pradesh, India. Adv Res J Plant Sci 2014;2:18-22.

26. Sudhakar R, Reddy KN, Murthy EN, Raju VS. Traditional medicinal plants in Seshachalam hills, Andhra Pradesh, India. Adv J Med Plants Res 2009;3:408-12.

27. Patil SB, Naik K N, Kondawar MS, Magdum CS, Awale VB. Isolation and characterization of a para-hydroxy quinone from leaves in human liver cancer cell line. Asian Pac J Trop Med 2012;5:362-6.

28. Viplava Prasad U, Syamasunder B, Anuradha G, Sree Kantu RV. Antioxidant and anticancer studies of the chloroform extract of Morinda pubescens leaf. Int J Phytomed 2013;5:282-7.

29. Jaya Kumar D, Jaya Santhi R. Antibacterial and cytotoxic effects of hexane extract of Morinda pubescens leaves in human liver cancer cell line. Asian Pac J Trop Med 2012;5:362-6.

30. Savithramma N, Linga Rao M, Ankanna S. Preliminary phytochemical analysis of traditionally used medicinal plants. Res J Pharm Biol Chem Sci 2012;3:308-14.

31. Goyal Rajesh Kumar, Garud Akanksha, Garud Navneet. A comparative study of Morinda pubescens J. E. Smith extracts and Chlorhexidine 0.2% against wound healing on carrageenan-induced rat paw. Indian J Chem 2017;1:1-16.

32. Eswaran V, Narayan V, Neelakantan S, Raman PV. Tinctomorone-a new anthraquinone ester from the heartwood of Morinda tinctoria var. tomentosa. Indian J Chem 1979;17:650-1.

33. Vermes B, Wagner H. Synthesis and structure proof of morindone 6-o-gentiobioside from Morinda tinctoria. Phytochemistry 1980;19:2493-4.

34. Mishra G, Gupta N. Chemical investigation of roots of Morinda tinctoria Roxb. J Inst Chem 1982;54:22.

35. Rao GV, Rao PS. Chemical examination of the leaves, stem bark and root bark of Morinda tinctoria var. tomentosa. J Indian Chem 1983;60:585-6.

36. Guido Rath, Menavanza Ndonzao, Kurt Hostettmann. Antifungal anthraquinones from Morinda lucida. Int J Pharmagoc Res 1995;33:107-14.

37. Janey Mary E, Inbathamizh L. Green synthesis and characterization of nanosilver using leaf extract of Morinda pubescens. Asian J Pharm Clin Res 2012;5:159-62.

38. Sheshkawat MS, Manokari M. Biogenesis of zinc oxide nanoparticles using Morinda pubescens JE Smith extracts and their characterization. Int J Bio Eng Tech 2014:5-1.

39. Desai Nivas M, Gaikwad DK, Chavan PD. Fatty acid profile of seed oil of Morinda species growing in different habitats. J Pharm Res 2011;4:841-2.

40. Anand SP, Deborah S. Preliminary phytochemical screening of wild edible fruits from Boda and Kolli hills. J Med Herb Ethnomedicinal 2017:3-8.

41. Sahoo Kalpana, Nabin K Dhal, Soundarya L Sahoo, Saswati S Sen. Comparative phytochemical and antimicrobial study of Morinda pubescens Sm. and Morinda citrifolia L. Int J Pharm Pharm Sci 2012;4:425-9.

42. Murugan M, Mohan VR, Thamodharan V. Phytochemical screening and antibacterial activity of Gymnema Sylvestre (Retz) R. Br. Ex. schultes and Morinda pubescens J. E. Smith Var. Pubescens J Appl Pharm Sci 2012;2:73-6.

43. Savithramma N, Linga Rao M, Ankanna S. Preliminary phytochemical analysis of traditionally used medicinal plants. Res J Pharm Biol Chem Sci 2012;3:308-14.

44. Swati M Devare, Asha A Kable, Pranav S Chandrachood, Nirmala R Deshpande, Jyoti P Salvekar. Study of elemental analysis of a medicinal plant-Morinda pubescens. Pharma Chem 2011:3:58-62.

45. Lulekal E, Rondevaldova J, Bernaskova E, Cepkova J, Asfaw Z, Vermes B, Wagner H. Synthesis and structure proof of morindone 6-o-gentiobioside from Morinda tinctoria var. tomentosa. Indian J Chem 1979;17:650-1.

46. Thuretzbacher U. Accelerating resistance, inadequate antibacterial drug pipelines, and international responses. Int J Antimicrob Agents 2012;39:295-9.

47. Verpoorte R, Choy HY, Kim HK. Ethnopharmacology and systems biology: a perfect holistic match. J Ethnopharmacol 2005;100:53-6.

48. Karupasamy K, Parveen Nisha A, Anish Sharmila M, Kumuthakalavalli. Eco-friendly medical textile using Morinda pubescens J. E. Smith as a source of natural dye. Int J Appl Res 2016;2:528-31.

49. Deshpande Rahul, Patil Vishwas, Kamath Ananth, Kachare Priyanka, Naik Bhakti, Kumar Manish, et al. A comparative evaluation of antimicrobial activity of Embelia basilal Extracts, Morinda pubescens extracts, Glorhedine 0.2% against salivary microflora of mixed dentition. Res J Pharm Biol Sci 2014:5-1.

50. Pramila R, Vimale T. Antimicofouling activity of some common plants found in Chennai (India). Int J Crit Rev, Vol 5, Issue 5, 1-6.

51. Goyal Rajesh Kumar, Garud Akanksha, Garud Navneet. Antimicrobial activity and phytochemical screening of leaves extract of Morinda pubescens Linn. Plant J Drug Delivery Ther 2013;3:8-14.
57. Kavitha Chandran CI, Indira G. Green synthesis, characterization and antimicrobial activity of Silver Nanoparticles Using *Morinda pubescens* J. E. Smith Root Extract. J Sci Inno Res 2016;5:83-6.

58. Sundaram Ravikumar, Samuel Jacob Inhaneson, Pulavesam Suganthi. *In vitro* antimalarial activity of ethanolic extracts of South Indian medicinal plants against *Plasmodium falciparum*. Asian Pac J Trop Dis 2012;2:180-3.

59. Nazar S, Ravikumar S, Prakash Williams G, Syed Ali M, Suganthi P. Screening of Indian coastal plant extracts for larvicidal activity of *Culex Quinquefasciatus*. Indian J Sci Technol 2009;2:24-7.

60. Inbathamizh L, Melalai Ponnu T, Jancy Mary E. *In vitro* evaluation of antioxidant and anticancer potential of *Morinda pubescens* synthesized silver nanoparticles. J Pharm Res 2013;6:32-8.

61. Desai Nivas M, Gaikwad DK, Chavan PD. Antioxidant potential of *Morinda pubescens* fruits. J Pharm Res 2011;4:829-31.

62. Desai Nivas, Gaikwad DK, Chavan PD. Antiradical activity of medicinally important *Morinda pubescens* fruits. Int J Pharma BioSci 2010;1:1-4.

63. Krishnaveni M. Antioxidant activity of selected plants. Int J Pharm Pharm Sci 2014;6:126-8.

64. Krishnaveni M, Eswari V, Silpavathi G, Silambarasan V, Senthil Kumar R, Sabari M. Free radical scavenging activity (*In vitro*) of plants collected near cement industry. Int J Curr Pharm Res Rev 2015;5:134-41.

65. Krishnaveni M, Eswari V, Silpavathi G, Silambarasan V, Senthil Kumar R, Sabari M. Biochemical changes in plants collected near cement industry, its soil analysis. Int J Pharm Sci Res 2015;31:179-82.

66. Krishnaveni M, Sabari M, Eswari V, Silpavathi G, Silambarasan V, Senthil Kumar R. Analysis of free radical scavenging activity of plants located near Magnesite Mines, Salem, Tamil Nadu, India. Int J Curr Pharm Res Rev 2015;6:149-52.

67. Krishnaveni M, Senthil Kumar R, Sabari M, Silambarasan V, Silpavathi G, Eswari V. Assay of secondary metabolites, free radical scavenging capacity of plants collected near Dalmia, Salem, Tamil Nadu, India. Int J Pharm Sci Res 2015;31:200-3.

68. Barnabas Bessem Orang-Ojong, Jose Edward Munyangaju, Ma Shang Wei, Miao Lin, Fan Guan Wei, Charles Foukunang, Yan Zhu. Impact of natural resources and research on cancer treatment and prevention: a perspective from cameroon (Review). Mol Clin Oncol 2013;1:610-20.

69. Wong RSY. Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res 2011;30:87.

70. Earnshaw WC, Martins LM, Kaufmann SH. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 1999;68:383-424.

71. Sarastea A, Pulikki K. Morphologic and biochemical hallmarks of apoptosis. Cardiovasc Res 2000;45:528-37.

72. Thomas Anvy Susan, Saravanakumar Rupachandra, Gupta Pratishka V. Evaluation of cytotoxic activity of protein extracts from the leaves of *Morinda pubescens* on human cancer cell lines. Res Rev Pharmaceu 2015;7:91-104.

73. Surendiran G, Mathivanan N. Hepatoprotective properties of *Morinda pubescens* J. E. Smith (Morinda tinctoria Roxb.) fruit extract. Med Chem Res 2011;20:307–13.

74. Jedage HD, Manjunath K. Phytochemical, pharmacological evaluation of *Morinda pubescens* J. E. Sm. bark extract for nephroprotective activity. Int J Pharm Pharm Sci 2017;9:211-7.

75. Chandra Jagadeep S, Murthy Mahadeva S, Ramesh Ranjana. Evaluation of the wound healing activity of *Caesalpinia bonducuella* and *Cyclea peltata* extracts in experimentally induced diabetic rats. Int J Pharm Pharm Sci 2017;9:211-7.

76. Lucindo J, Quintans-Junior. A systematic review of the wound-healing effects of monoterpens and iridoid derivatives. Molecules 2014;19:846-62.

77. Anvinash Kumar Reddy G, Priyanka B, Sai Saranya CH, Ashok Kumar CK. Wound healing potential of Indian medicinal plants. Int J Pharm Pharm Sci 2012;2:75-87.

78. Narayanasamy Mathivanan, Gangadharan Surendiran, Krishnamurthy Srinivasan, Kannan Malvirizhi. *Morinda pubescens* J. E. Smith (Morinda tinctoria Roxb.) fruit extract accelerates wound healing in rats. J Med Food 2006;9:591–3.

79. Kavitha Chandran CI, Indira G. Wound Healing activity of ethanolic extract of roots of *Morinda pubescens* J. E. Smith. J Pharmacogn Phytochem 2016;5:43-6.

80. Ramaswamy RS, Prathyusha N, Saranya R, Sumathy H, Mohanavalli KT, Priya RJ, et al. Acute toxicity and the 28-Day repeated dose study of a Siddha Medicine Nuna Kadugu in rats. BMC Complementary Altern Med 2012;12:1-13.

81. Desai Nivas, Gaikwad DK. Rapid bioassay for the study of growth promoting the activity of *Morinda pubescens* leaf extract. Asian Pac J Reprod 2013;2:225-8.

82. Mohandass P, Ganesan TK. Removal of dyes using leaves of *Morinda pubescens* as a low cost green adsorbents. Int J Inno Res Sci Eng Tech 2016;5:1:565-71.

83. Krishnaveni M, Eswari V, Silpavathi G, Silambarasan V, Senthil Kumar R, Sabari M. Biochemical changes in plants collected near cement industry, its soil analysis. Int J Pharm Sci Res 2015;31:179-82.

84. Krishnaveni M, Senthil Kumar R, Sabari M, Silambarasan V, Silpavathi G, Eswari V. Tolerance index of plants collected near Dalmia, Salem, and Tamil Nadu, India. Int J Pharm Sci Rev Res 2015;6:5-10.

85. Priyanka, Rita Singh. A systematic review on Indian floral biodiversity as eminent reserves for alternative treatment strategy of diabetes mellitus. Int J Pharm Pharm Sci 2016;8:10-9.