The Major Source of Antioxidants Intake From Typical Diet Among Rural Farmers in North-eastern Japan in the 1990s

Megumi Tsubota-Utsugi¹, Jun Watanabe², Jun Takebayashi³, Tomoyuki Oki⁴, Yoshitaka Tsubono⁵, and Takayoshi Ohkubo⁶

INTRODUCTION

There is increasing awareness regarding the health risks of reactive oxygen species in the body; however, the ability of the antioxidant capacity (AOC) to prevent or ameliorate various chronic diseases remains controversial.¹⁻⁷ There are several possible explanations for these discrepancies. First, high AOC intake from a certain food does not necessarily translate to a large contribution of the food to the overall diet. It is important to consider not only the AOC levels per gram of specific foods but also their total contribution to AOC of the typical diet. Second, even though previous studies reported that AOC data was collected using the “oxygen radical absorbance capacity (ORAC) method,” which is one of the most widely used methods to evaluate AOC,⁸ there was large variation in the methods employed in the measurement process. Furthermore, the AOC values derived from hydrophilic ORAC (H-ORAC) and lipophilic ORAC (L-ORAC) in previous epidemiological studies were often used interchangeably.¹⁻¹⁵ Generally, water-soluble antioxidants suppress cytoplasmic substrate and plasma oxidation, whereas lipid-soluble antioxidants prevent lipid peroxidation in the cell membranes.¹⁶ Considering that AOC for scavenging reactive oxidants does not always correlate linearly with the capacity to inhibit oxidation of biological molecules¹⁷ and AOC in food changes during uptake and metabolism,¹⁸ the efficacy of antioxidants may depend on concentrations, localizations, physiological mobilities, and interactions of oxidants and/or antioxidants. In fact, lipophilic components have been confirmed to have different functions and/or metabolic pathways in the body due to differences in the physicochemical property of hydrophilic components.¹⁹ In addition, the plasma concentrations of H-ORAC and L-ORAC after meals varied due to differences in distribution,
Japanese Diet and Antioxidant Intake

metabolism, and clearance. These differences may have caused the prevention of cognitive impairment only when using a lipophilic antioxidant supplement based on a previous study. In terms of disease prevention, the effects of peroxyl radial-scavenging activities of water-soluble and lipid-soluble antioxidants in foods may differ because of different pharmacokinetics.

Moreover, it is known that geographic location and growing conditions can affect the AOC of foods; despite this, previous Japanese studies referenced AOC values from Western countries, so the AOC values of foods with high intake in the Japanese population, such as rice and seafood, which were previously thought to exist at very low levels or not at all, or foods not regularly consumed in Western countries, were not adequately measured. It is considered that foods with a high antioxidant contribution in Japanese diet are more likely to be contained in foods that have not been previously measured foods in other countries. Using an appropriate AOC database that reflects the overall Japanese diet and identifying the effects of Japanese diet with health conditions will help to elucidate the relationships between the AOC intake and health outcomes in epidemiological studies. We, therefore, aimed to construct a hydrophilic and lipophilic AOC database of foods representative of the Japanese diet employing dietary records (DRs) and a validated H- and L-ORAC method, and to identify the high contributors to AOC from the overall Japanese diet. This part of the project elucidates the relationship between antioxidant intake from a habitual diet and disease outcomes in the general population; the present report provides basic data about the amount of antioxidant intake in the Japanese diet that can be used in future prospective studies.

MATERIALS AND METHODS

Figure 1 presents a flowchart of the present study. To construct an AOC database representative of the Japanese diet, we generated food intake rankings of food groups with the highest consumption by Japanese and those most commonly marketed in Japan using multiple-day DRs in a Japanese population. A total of 59 men and 60 women were selected on a voluntary basis in Miyagi Prefecture in the northern part of Japan. In this study, we adhered to the code of ethics at the time of the survey in 1995. This noninvasive observational study complies with the Declaration of Helsinki, and written informed consent was obtained from all of the participants before the investigation. The data we used was already anonymized at the institution, and personal information cannot be identified.

Multiple-day DRs

DRs were collected using the 3-day DR as a reference method during each of the four seasons over a period of 1 year: in the month of November (autumn) of 1996 and in February (winter), May (spring), and August (summer) of 1997. The participants were instructed to record all food items and beverages consumed in a standardized booklet. They were asked to provide a detailed description of each food item (open ended), including the weight of food prepared and the proportion consumed. Research dietitians assessed the records in a standardized manner after completion by the participants and calculated intake of all food items and beverages using the Japanese Standard Food Composition Table 2010. If codes were not available for certain local foods, the dietitian substituted the food considered to be most similar by asking subjects for details about the food. Next, we generated a list ranked according to amounts of individual food items in each food group.

Selection of food items for inclusion in the AOC database

Based on the ranking in the list, we measured food items for inclusion in the AOC database using the following standards: (1) selecting high-intake food from each food group; (2) all food items were commercially purchased in local grocery stores in Japan; (3) two or more items, with some exceptions, for each food item that were independently obtained in different regions and harvest seasons; and (4) using the same analytical method to reliably measure the H/L-ORAC in multiple laboratories. AOC data on plant-derived foods were described separately, and the remainder, including animal-derived foods, was newly measured. eTable 1 shows details of the referenced AOC values of food items in the present study.

H- and L-ORAC measurement

The ORAC assays were based on the standardized methods described previously. The ORAC assay enables measurement of radical-scavenging capacity against peroxyl radicals generated by the thermo-degradation of 2,2′-azobis(2-aminopropane) dihydrochloride. The H- and L-ORAC values were measured separately. The H-ORAC assay was performed by evaluating the antioxidant capacities of acidified aqueous methanol (methanol:water:acetic acid = 90:9.5:0.5, MWA) extracts, and the L-ORAC assay was performed on n-hexane/dichloromethane (1:1) extracts. These methods were subjected to inter-laboratory tests and had been validated. An MWA solution of ferulic acid (1 mg/mL) was used as a quality control, and the confirmed H-ORAC value of the solution was 17,552 ± 1,864 µmol TE/L (mean ± 2SD [reproducibility standard deviation]) in the multi-laboratory validation study. A dimethyl sulfoxide (DMSO) solution of Trolox (800 mg/L) was used as a positive control for L-ORAC measurements, and DMSO without an antioxidant was utilized as a negative control to ensure the reliability of each measurement. All data were expressed as micromoles of Trolox equivalents per gram (µmol-TE/g edible portion). The H-ORAC and L-ORAC measurements of the selected food items were performed in three laboratories. All laboratories participated in the interlaboratory tests for the validation of H-ORAC and L-ORAC measurements. The reproducibility relative standard deviations of the H-ORAC and L-ORAC measurements ranged from 4.4% to 13.8% and from 14.8% to 19.4%, respectively.

Statistical analysis

First, the sum of AOC intake for total and individual food groups was computed to estimate the contributions of H/L-ORAC values. The proportion of AOC-containing foods, relative to total food consumption, was calculated as follows: weight (g/day) of each food group with measured AOC consumed × 100/weight (g/day) of each food group consumed. To assess AOC intake in the overall diet, the characteristics of daily food intake (g/day) as well as the amounts of H- and L-ORAC intake in the 12 days of DRs were estimated.

Next, to examine the distribution of dietary characteristics across quartiles of each total-ORAC, H-ORAC, and L-ORAC, we generated a general linear model of each food group. The correlation between H-ORAC and L-ORAC was measured using
Pearson’s Correlation Coefficient. Then, we calculated the ratios of within-person and between-person variance.31

All analyses were performed using SAS software (ver. 9.4; SAS Institute Inc., Cary, NC, USA).

RESULTS

In this study, 113 participants (55 men and 58 women) who completed all 12 days of dietary records were used in the analysis. The age range was 45–77 (mean, 62) years, and the majority of participants were farmers, self-employed, or housewives.

Table 1 presents the number of food items and measured antioxidant capacity in the present study. The number of food items consumed by the participants totaled 989. Of these, 189 food items were subjected to determination of ORAC values.

Table 2 displays the total food intake (g/day) and AOC (µmol TE/day) in the typical diet. The proportion of AOC-containing foods in the AOC measurement, which is relative to the total food consumption, was 78.8%, and those for seasonings and spices as well as eggs were 48.1% and 98.8%, respectively. The estimated total ORAC intake was 14,600 µmol TE/day, with 13,300 µmol TE/day according to H-ORAC and 1,360 µmol TE/day according to L-ORAC. The major contributors to AOC intake according to food group were beverages (46.2%), followed by vegetables (21.6%), beans (14.7%), grains (8.9%), and fats (8.8%) for H-ORAC; and fish and shellfish (27.2%), followed by beverages (21.6%), beans (13.6%), and eggs (11.6%) for L-ORAC. The majority of H-ORAC intake was of plant origin, whereas about 60% of L-ORAC intake was plant derived.

Table 3 presents the top 30 food items that contributed to high AOC intake in the study participants. The most commonly consumed types of food were green tea (32.1%), rice (7.0%), coffee with milk (5.8%), natto (5.4%), and miso (4.4%) for H-ORAC; and miso (19.4%), skipjack tuna (5.5%), and deep-fried tofu (5.5%).
J Epidemiol 2021;31(2):101-108

Table 2. Total food intake (g/day) and antioxidant capacity (µmol TE/day) in the study participants

Food groups	Food intake (g/day)	Weight contribution to AOC intake (%)	H-ORAC Intake (µmol TE/day)	AOC-containing foods/total food consumption (%)	L-ORAC Intake (µmol TE/day)	AOC-containing foods/total food consumption (%)
Rice, bread, and noodles	533.7	93.1	1,184.6	8.9	38.4	2.8
Potatoes	55.1	86.3	202.5	1.5	26.1	1.9
Sugars	9.8	97.8	3.2	0.0	0.1	0.0
Beans	87.3	90.3	1,156.6	8.7	198.8	14.7
Nuts and seeds	2.8	96.5	72.0	0.5	18.6	1.4
Vegetables	266.5	64.1	1,411.8	10.7	156.8	11.6
Fruits	133.5	76.7	895.4	6.8	31.2	2.3
Mushrooms	11.5	80.6	32.9	0.2	15.3	1.1
Algae	13.5	87.0	132.8	1.0	33.1	2.4
Fish and shellfish	126.8	55.2	395.3	3.0	369.7	27.2
Meats	44.4	67.9	82.8	0.6	42.6	3.1
Eggs	44.9	98.8	344.9	2.6	78.2	5.8
Dairy products	158.8	95.2	236.2	1.8	4.3	0.3
Fat and oil	9.2	91.8	4.4	0.0	NQ	NQ
Confectioneries	32.4	78.9	143.1	1.1	43.5	3.2
Beverages	700.8	91.8	6,119.0	46.2	ND	ND
Seasonings and spices	67.0	48.1	806.7	6.1	292.7	21.6
Prepared foods	5.7	95.7	28.7	0.2	7.5	0.5
Total	2,304.0	78.8	13,252.9	100.0	1,357.0	100.0

AOC, antioxidant capacity; H-ORAC, hydrophilic oxygen radical absorbance capacity; L-ORAC, lipophilic ORAC; ND, not determined; NQ, not quantitated.

discussion

To the best of our knowledge, this is the first study to elucidate AOC intake of the most commonly consumed and marketed foods in Japan, including rice and seafood, using multiple-day DRs in a Japanese population. The present study revealed that tea, rice, seafood, and soybean products, which are characteristic of the Japanese diet, showed the highest contributions to AOC.

Our study has several strengths. The sampling protocol attempted to take into account the potential variation that might exist in the Japanese market as well as reflect the Japanese diet of the consumer. Moreover, we employed a validated ORAC method, thereby confirming the method and allowing comparisons with values from other researchers. We thus expect generalizability of our developed AOC database to other Japanese studies.

In the present study, we measured the AOC values of 189/998 food items, which represented 78.8% of the total food intake. More than 60% of total AOC intake was represented by tea, soybean products, coffee, and rice according to H-ORAC, and soybean product, fish and shellfish, and vegetables according to L-ORAC. In contrast, previous study in Western countries using the FFQ revealed that more than 50% of AOC intake was derived from vegetables and fruits, followed by grains, tea, chocolate, and beverages.32 The present study also reported the contribution of vegetables and fruits to H-ORAC; however, tea, rice, soybean products, and fish, which are characteristic of the Japanese diet, were large contributors to AOC intake among Japanese. The present study seems to support our hypothesis that foods with a high antioxidant contribution in Japanese diet are more likely to be consumed in foods that have not been measured foods in other countries until now. Our results, which revealed the high contribution of tea and beans, are in partial agreement with previous Japanese studies.9–15 However, these previous Japanese studies relied on AOC values from reports from Western countries and used not only analysis data but also substitution.
Table 3. The top 30 food items that contributed to high antioxidant capacity intake in the study participants

TOP	Food item number*	Food and description	Intake (µmol TE/day)	TOP	Food item number*	Food and description	Intake (µmol TE/day)
1	16,037	Green tea, sencha, infusion	4,255.6	17,046	Rice-koji miso, red type (miso)	262.9	
2	1,088	Cooked paddy rice, well-milled rice (rice)	932.7	10,087	Skipjack, caught in autumn, raw	75.0	
3	16,047	Coffee drink containing milk	772.3	4,040	Soybean, abura-age (deep-fried tofu)	74.7	
4	4,046	Soybean, itohiki-natto (natto)	713.7	12,004	Hen’s egg, whole, raw	72.3	
5	17,046	Rice-koji miso, red type (miso)	585.8	4,046	Soybean, itohiki-natto (natto)	71.3	
6	16,006	Beer, pale	485.9	10,345	Japanese common squid (surumeika), raw	67.7	
7	7,148	Apple, raw	438.5	10,173	Pacific saury, raw	42.1	
8	16,045	Coffee, infusion	327.5	10,202	Walleye pollack, roe (torako), raw	29.6	
9	12,004	Hen’s egg, whole, raw	326.2	10,045	Japanese anchovy, niboshi (niboshi)	28.7	
10	6,191	Eggplant, fruit, raw	323.8	1,015	Wheat, soft flour, first grade	27.6	
11	6,084	Edible burdock, root, raw	270.9	10,253	Bluefin tuna, Lean meat, raw	26.6	
12	4,032	Soybean, momen-tofu (tofu)	166.1	4,033	Soybean, kinugoshi-tofu (tofu)	25.6	
13	4,033	Soybean, kinugoshi-tofu (tofu)	160.7	4,032	Soybean, momen-tofu (tofu)	21.6	
14	16,042	Oolong tea, infusion	150.5	10,205	Pacific cod, raw	21.0	
15	2,017	Potato, tuber, raw	142.5	10,100	Brown sole, raw	20.7	
16	6,153	Onion, bulb, raw	139.6	6,139	Japanese radish (daikon), takuan-zuke	18.9	
17	6,134	Japanese radish (daikon), root without skin,	129.3	2,017	Potato, tuber, raw	18.5	
18	7,012	Strawberry, raw	109.5	6,061	Cabbage, head, raw	17.1	
19	6,182	Tomato, fruit, raw	93.0	6,201	Turnip rape, flower buds and stems, raw	16.1	
20	6,201	Turnip rape, flower buds and stems, raw	91.7	10,134	Salmon, chum salmon, raw	15.6	
21	13,003	Ordinary liquid milk	91.5	17,045	Rice-koji miso, light yellow type (miso)	15.6	
22	10,087	Skipjack, caught in autumn, raw	88.6	9,045	Wakame, blanched and salted, desalted	14.9	
23	6,061	Cabbage, head, raw	82.7	11,186	Pork, Vienna sausage	14.8	
24	4,040	Soybean, abura-age (deep-fried tofu)	82.5	6,207	Chinese chive, leaves, raw	14.6	
25	9,004	Purple laver, toasted	78.4	6,065	Cucumber, fruit, raw	14.3	
26	7,062	Grapefruit, juice sac, raw	77.6	15,116	Milk chocolate	14.1	
27	13,005	Milk containing recombined milk, low fat	76.0	6,086	Komatsuna, leaves, raw	12.8	
28	17,045	Rice-koji miso, light yellow type (miso)	74.2	6,182	Tomato, fruit, raw	11.5	
29	16,039	Ban-cha, infusion	68.5	5,018	Sesame seed, roasted	10.7	
30	7,136	Peach, raw	67.3	15,009	Kasutera	10.6	

AOC, antioxidant capacity; H-ORAC, hydrophilic oxygen radical absorbance capacity; L-ORAC, lipophilic ORAC.

*Item numbers were addressed under the food composition table 2010.
We found seasonal differences in the AOC values of food groups. Japan has four distinct seasons, and the Japanese tend to prefer seasonal foods, such as salmon, young sardines, and wild vegetables like matsutake mushroom and bamboo shoots. Moreover, various cooking methods, like deep-frying (tempura), are applied to enjoy the texture of such seasonal foods. Seasonal differences in AOC values were observed in foods typically denoted as seasonal products, suggesting that foods exhibiting high AOC were partially influenced by the harvest season as well as the method of preparation popular in a given season.

In the present study, L-ORAC values were generally low, approximately 1/10 that of H-ORAC. In general, the more energy you consume, the more foods and nutrients you consume. This was also confirmed for the ORAC intake presented in Table 4. Even though H-ORAC typically closely reflects the content of total ORAC, this is not true for human plasma determinations. Since the food groups that contribute to H-ORAC and L-ORAC, and the behavior of plasma ORAC levels differed greatly, it is possible that there are differences in the absorption and metabolism of compounds measured by H- and L-ORAC in the human body. It is also important to consider differences in plant- and animal-derived AOC. Although L-ORAC was relatively low, approximately 1/10 that of H-ORAC, the dietary characteristics of high L-ORAC more appropriately reflected the Japanese-style diet. Lipophilic components might have different functions and/ or metabolic pathways in the body because of differences in the physicochemical properties of hydrophilic components, as well as fat- and water-soluble vitamins and minerals. It is thought that excess intake of water-soluble vitamins is excreted rapidly in the urine, whereas fat-soluble vitamins are stored in the body and used for metabolizing over long periods. A similar phenomenon had also been observed in both plasma H- and L-ORAC concentration after the meal. These differences may have resulted in the outcome of disease prevention only by the use of the lipophilic antioxidant supplement in the previous study. Further studies to generate additional data regarding in vivo mechanisms are needed to clarify these points.

Table 4. The distribution of dietary characteristics across quartiles for AOC in the study participants

AOC, antioxidant capacity; H-ORAC, hydrophilic oxygen radical absorbance capacity; L-ORAC, lipophilic ORAC.	Quartile of total ORAC	Quartile of H-ORAC	Quartile of L-ORAC						
1 (lowest)	4 (highest)	P-value	1 (lowest)	4 (highest)	P-value	1 (lowest)	4 (highest)	P-value	
ORAC intake, range, pmol TE/day									
7,182.5 (1,998.5)	16,311.7 (7,086.6)	6,199.8 (10,533.2)	15,135.2 (25,504.9)	627.4 (1,098.2)	1,560.7 (9,712.1)				
Rice, bread, and noodles, g	478.4 (143.3)	568.6 (202.9)	0.242	467.8 (135.4)	563.3 (199.7)	0.144	471.8 (152.4)	615.5 (225.4)	0.014
Potatoes, g	54.3 (36.1)	57.8 (21.8)	0.842	55.1 (25.7)	57.7 (22.0)	0.876	51.9 (23.8)	63.1 (19.4)	0.098
Sugars, g	9.2 (4.6)	10.3 (6.7)	0.311	8.8 (4.4)	10.4 (6.6)	0.529	10.2 (5.2)	11.3 (6.1)	0.17
Beans, g	84.7 (29.8)	90.8 (38.1)	0.911	85.5 (31.2)	92.0 (36.7)	0.819	73.8 (30.1)	99.1 (30.7)	0.024
Nuts and seeds, g	1.7 (2.0)	3.7 (1.1)	0.017	1.7 (2.0)	3.6 (3.1)	0.032	2.1 (2.9)	3.7 (2.9)	0.105
Vegetables, g	225.2 (61.2)	291.3 (73.3)	0.001	226.4 (63.4)	290.0 (75.1)	0.001	222.8 (90.3)	304.1 (73.5)	0.003
Fruits, g	106.6 (59.2)	165.9 (75.0)	0.007	104.1 (59.7)	164.9 (75.5)	0.004	120.6 (46.8)	132.2 (71.3)	0.552
Mushrooms, g	9.0 (6.1)	12.4 (8.2)	0.088	8.7 (5.2)	12.2 (8.2)	0.034	10.3 (7.4)	12.5 (6.9)	0.673
Algae, g	125.7 (4.4)	137.7 (9.5)	0.09	124.7 (9.4)	140.0 (9.4)	0.821	103.3 (8.2)	146.4 (9.5)	0.136
Fish and shellfish, g	113.3 (139)	136.8 (39.9)	0.001	112.2 (31.6)	135.8 (39.2)	0.067	105.6 (31.5)	159.5 (44.2)	<0.001
Meats, g	38.2 (20.1)	52.3 (19.7)	0.007	37.8 (20.0)	52.2 (19.7)	0.009	38.2 (19.4)	49.0 (21.5)	0.314
Eggs, g	42.2 (22.7)	48.3 (17.3)	0.224	43.0 (22.8)	48.8 (17.9)	0.467	40.8 (15.7)	52.6 (20.4)	0.1
Dairy products, g	164.1 (86.2)	155.9 (119.3)	0.684	169.0 (82.6)	162.0 (116.4)	0.728	127.6 (99.8)	141.0 (111.9)	0.423
Fat and oil, g	8.8 (3.3)	10.6 (4.2)	0.07	8.7 (3.1)	10.7 (4.3)	0.07	8.2 (3.5)	10.0 (3.4)	0.223
Confectioneries, g	29.4 (27.2)	32.5 (27.3)	0.89	28.9 (27.2)	32.4 (27.3)	0.817	33.8 (26.7)	39.0 (25.2)	0.288
Beverages, g	346.8 (157.6)	1,074.0 (435.3)	<0.001	373.3 (165.5)	1,064.7 (431.0)	<0.001	626.0 (303.2)	756.0 (315.4)	0.542
Seasonings and spices, g	58.8 (15.5)	76.3 (20.1)	<0.001	58.1 (15.4)	76.2 (20.2)	<0.001	56.5 (13.8)	77.7 (16.2)	<0.001
Prepared foods, g	6.3 (8.6)	7.5 (14.1)	0.472	6.0 (8.7)	6.1 (12.2)	0.628	5.9 (3.9)	5.0 (8.7)	0.842

AOC, antioxidant capacity; H-ORAC, hydrophilic oxygen radical absorbance capacity; L-ORAC, lipophilic ORAC. Variables are presented as mean (standard deviation). Obtained using generalized linear model.
The results of this study should be interpreted cautiously. First, the processing of foods by cooking and the various pathways of food digestion also affect the nature and molecular structures of the antioxidant compounds. A previous study indicated that foods with active polyphenolic flavonoids are more resistant to degradation than foods with vitamins and related compounds. Several in vitro studies reported that cooked foods showed comparatively higher ORAC values than raw or uncooked foods (eg, red cabbage [H-ORAC], russet potato [H-ORAC], and tomato [H-L-ORAC]), while others showed lower values (eg, carrot [H-L-ORAC], broccoli [L-ORAC], and russet potato [L-ORAC]). The available data on the effects of processing is limited, and additional data will be needed to reveal differences in processed foods. Removal of the peel is a well-known factor that may influence AOC values of produce. Nonetheless, a previous study reported that meals high in AOC tended to maintain high AOC intake. Second, the present study estimated information of a Scheme to Revitalize Agriculture and Fisheries in Disaster Area through Deploying Highly Advanced Technology’ from the Ministry of Agriculture, Forestry and Fisheries of Japan; and JSPS KAKENHI [Grants-in-Aid for Scientific Research; Grant Number JP26282200] from the Ministry of Education, Culture, Sports, Science, and Technology, Japan. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

ACKNOWLEDGEMENTS

This study was supported by a Grant-in-Aid ‘A Scheme to Revitalize Agriculture and Fisheries in Disaster Area through Deploying Highly Advanced Technology’ from the Ministry of Agriculture, Forestry and Fisheries of Japan; and JSPS KAKENHI [Grants-in-Aid for Scientific Research; Grant Number JP26282200] from the Ministry of Education, Culture, Sports, Science, and Technology, Japan. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author contributions: All of the authors have made substantive intellectual contributions to the study. MT-U, JW, JT, and TO developed the study concept; designed the study strategy; directed its implementation, including quality assurance and control; and prepared the manuscript. YT and TO helped supervise the field activities and helped conduct the literature review. All authors contributed to interpreting the data and writing and editing the manuscript.

Conflicts of interest: None declared.

APPENDIX A. SUPPLEMENTARY DATA

Supplementary data related to this article can be found at https://doi.org/10.2188/jea.JE20190237.

REFERENCES

1. Del Rio D, Agnoli C, Pellegrini N, et al. Total antioxidant capacity of the diet is associated with lower risk of ischemic stroke in a large Italian cohort. *J Nutr*. 2011;141:118–123.
2. Rautiainen S, Larson S, Virtamo J, Wolk A. Total antioxidant capacity of diet and risk of stroke: a population-based prospective cohort of women. *Stroke*. 2012;43:335–340.
3. Rautiainen S, Levitan EB, Mittleman MA, Wolk A. Total antioxidant capacity of diet and risk of heart failure: a population-based prospective cohort of women. *Am J Med*. 2013;126:494–500.
4. Serafini M, Bellocco R, Wolk A,Ekström AM. Total antioxidant potential of fruit and vegetables and risk of gastric cancer. *Gastroenterology*. 2002;123:985–991.
5. Devore EE, Feskenes E, Ikram MA, et al. Total antioxidant capacity of the diet and major neurologic outcomes in older adults. *Neurology*. 2013;80:904–910.
6. Devore EE, Kang HH, Stamper MJ, Grodstein F. Total antioxidant capacity of diet in relation to cognitive function and decline. *Am J Clin Nutr*. 2010;92:1157–1164.
7. Melkary RA, Wu K, Giovannucci E, et al. Total antioxidant capacity intake and colorectal cancer risk in the Health Professionals Follow-Up Study. *Cancer Causes Control.* 2010;21:1315–1321.
8. Prior RL, Wu X, Schaich K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. *J Agric Food Chem.* 2005;53:4290–4302.
9. Kobayashi S, Murakami K, Sasaki S, et al. Dietary total antioxidant capacity from different assays in relation to serum C-reactive protein among young Japanese women. *Nutr. J.* 2012;11:91.
10. Tatsumi Y, Ishihara J, Morimoto A, Ohno Y, Watanabe S; JPHC FFQ Validation Study Group. Seasonal differences in total antioxidant capacity intake from foods consumed by a Japanese population. *Eur J Clin Nutr.* 2014;68:799–803.
11. Kobayashi S, Asakura K, Suga H, Sasaki S; Three-generation Study of Women on Diets and Health Study Groups. Inverse association between dietary habits with high total antioxidant capacity and prevalence of frailty among elderly Japanese women: a multicenter cross-sectional study. *J Nutr Health Aging.* 2014;18:827–839.
12. Kashino I, Serafini M, Kurotani K, et al; Japan Public Health Center-based Prospective Study Group. Relationship between dietary non-enzymatic antioxidant capacity and type 2 diabetes risk in the Japan Public Health Center-based Prospective Study. *Nutrition.* 2019;66:62–69.
13. Kashino I, Serafini M, Ishihara J, et al. The Validity and Reproducibility of Dietary Non-enzymatic Antioxidant Capacity Estimated by Self-administered Food Frequency Questionnaires. *J Epidemiol.* 2018;28:428–436.
14. Kashino I, Mizoue T, Serafini M, et al; Japan Public Health Center-based Prospective Study Group. Higher dietary non-enzymatic antioxidant capacity is associated with decreased risk of all-cause and cardiovascular disease mortality in Japanese adults. *J Nutr.* 2019;149:1967–1976.
15. Kashino I, Li YS, Kawai K, et al. Dietary non-enzymatic antioxidant capacity and DNA damage in a working population. *Nutrition.* 2018;47:63–68.
16. Vertuani S, Angusti A, Manfredini S. The antioxidants and pro-antioxidants network: an overview. *Curr Pharm Des.* 2004;10:1677–1694.
17. Niki E, Omata Y, Fukuhara A, Saito Y, Yoshida Y. Assessment of radical scavenging capacity and lipid peroxidation inhibiting capacity of antioxidant. *J Agric Food Chem.* 2008;56:8255–8260.
18. Sies H. Total antioxidant capacity: appraisal of a concept. *J Nutr.* 2007;137:1493–1495.
19. Prior RL, Gu L, Wu X, et al. Plasma antioxidant capacity changes following a meal as a measure of the ability of a food to alter in vivo antioxidant status. *J Am Coll Nutr.* 2007;26:170–181.
20. Grodstein F, Chen J, Willett WC. High-dose antioxidant supplements and cognitive function in community-dwelling elderly women. *Am J Clin Nutr.* 2003;77:975–984.
21. Takebayashi J, Oki T, Watanabe J, et al. Hydrophilic antioxidant capacities of vegetables and fruits commonly consumed in Japan and estimated average daily intake of hydrophilic antioxidants from these foods. *J Food Compos Anal.* 2013;29:25–31.
22. Tsuji I, Nishino Y, Ohkubo T, et al. A prospective cohort study on National Health Insurance beneficiaries in Ohsaki, Miyagi Prefecture, Japan: study design, profiles of the subjects and medical cost during the first year. *J Epidemiol.* 1998;8:258–263.
23. Ogawa K, Tsubono Y, Nishino Y, et al. Validation of a food-frequency questionnaire for cohort studies in rural Japan. *Public Health Nutr.* 2003;6:147–157.
24. Tsubono Y, Ogawa K, Watanabe Y, et al. Food frequency questionnaire and a screening test. *Nutr Cancer.* 2001;39:78–84.
25. Ministry of Education, Culture, Sports, Science and Technology. Standard Tables of Food Composition in Japan 2010. Tokyo. Ministry of Education, Culture, Sports, Science and Technology; 2010.
26. Takebayashi J, Oki T, Chen J, et al. Estimated average daily intake of antioxidants from typical vegetables consumed in Japan: a preliminary study. *Biosci Biotechnol Biochem.* 2010;74:2137–2140.
27. Takebayashi J, Oki T, Tsubota-Utsugi M, Ohkubo T, Watanabe J. Antioxidant capacities of plant-derived foods commonly consumed in Japan. *J Nutr Sci Vitaminol.* 2020;66:68–74.
28. Watanabe J, Oki T, Takebayashi J, et al. Method validation by interlaboratory studies of improved hydrophilic oxygen radical absorbance capacity methods for the determination of antioxidant capacities of antioxidant solutions and food extracts. *Anal Sci.* 2012;28:159–165.
29. Watanabe J, Oki T, Takebayashi J, et al. Improvement and interlaboratory validation of the lipophilic oxygen radical absorbance capacity: determination of antioxidant capacities of lipophilic antioxidant solutions and food extracts. *Anal Sci.* 2016;32:171–175.
30. Watanabe J, Oki T, Takebayashi J, Takano-Ishikawa Y. Extraction efficiency of hydrophilic and lipophilic antioxidants from lyophilized foods using pressurized liquid extraction and manual extraction. *J Food Sci.* 2014;79:C1665–C1671.
31. Beaton GH, Milner J, Corey P, et al. Sources of variance in 24-hour dietary recall data: implications for nutrition study design and interpretation. *Am J Clin Nutr.* 1979;32:2546–2559.
32. Rautiainen S, Serafini M, Morgenstern R, Prior RL, Wolk A. The validity and reproducibility of food-frequency questionnaire-based total antioxidant capacity estimates in Swedish women. *Am J Clin Nutr.* 2008;87:1247–1253.
33. Ogita T, Vallejo Mananos R, Wakagi M, Oki T, Takano Ishikawa Y, Watanabe J. Identification and evaluation of antioxidants in Japanese parsley. *Int J Food Sci Nutr.* 2016;67:431–440.
34. Wakagi M, Watanabe J, Takano-Ishikawa Y. Effects of producing area and heaviest season on antioxidant capacities of spinach, komatsuna, tomato, and cucumber. Report of National Food Research Institute. 2014;78:65–71 (in Japanese).
35. Wu X, Beecher GR, Holden JM, Haytowitz DB, Gebhardt SE, Prior RL. Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. *J Agric Food Chem.* 2004;52:4026–4037.
36. Tsuji S. Japanese cooking: a simple art. USA: Kodansha Internation; 2007.
37. Nishimuro H, Ohnishi H, Sato M, et al. Estimated daily intake and seasonal food sources of quercetin in Japan. *Nutrients.* 2015;7:2345–2358.
38. Tsuji T, Fukushima T, Sasaki S, Shibata K. Twenty-four-hour urinary water-soluble vitamin levels correlate with their intake in free-living Japanese university students. *Eur J Clin Nutr.* 2010;64:800–807.
39. Imai E, Tsuji T, Sano M, Fukushima T, Shibata K. Association between 24 hour urinary alpha-tocopherol catabolite, 2,5,7,8-tetramethyl-2(2-carboxyethyl)-6-hydroxychroman (alpha-CEHC) and alpha-tocopherol intake in intervention and cross-sectional studies. *Asia Pac J Clin Nutr.* 2011;20:507–513.
40. Makris DP, Rossiter JT. Domestic processing of onion bulbs (Allium cepa) and asparagus spears (Asparagus officinalis): effect on flavonol content and antioxidant status. *J Agric Food Chem.* 2001;49:3216–3222.
41. Takeoka GR, Dao L, Flessa S, et al. Processing effects on lycopene content and antioxidant activity of tomatoes. *J Agric Food Chem.* 2004;52:3713–3717.
42. Wolfe K, Wu X, Liu RH. Antioxidant activity of apple peels. *J Agric Food Chem.* 2003;51:609–614.
43. Aruoma OL. Methodological considerations for characterizing potential antioxidant actions of bioactive components in plant foods. *Mutat Res.* 2003;523:524–9–20.