Abstract

Networking in Wireless Sensor networks is a challenging task due to the lack of resources in the network as well as the frequent changes in network topology. Although lots of research has been done on supporting QoS in the Internet and other networks, but they are not suitable for wireless sensor networks and still QoS support for such networks remains an open problem. In this paper, a new scheme has been proposed for achieving QoS in terms of packet delivery, multiple connections, better power management and stable routes in case of failure. It offers quick adaptation to distributed processing, dynamic linking, low processing overhead and loop freedom at all times. The proposed scheme has been incorporated using QDPRA protocol and by extensive simulation the performance has been studied, and it is clearly shown that the proposed scheme performs very well for different network scenarios.

Reference
Stable Routing for achieving Quality of Service in wireless Sensor Networks

- National Science foundation, Research priorities in Wireless and mobile networking, www.cise.nsf.gov .
- E. Crawley, R. Nair, B. Rajagopalan, and H. Sandick, A framework for QoS based routing in the internet RFC 2386, Aug. 2008.
- M. Ettus. System Capacity, Latency, and Power Consumption in Multihop-routed SS-CDM Wireless Networks, In Radio and Wireless Conference (RAWCON ’98), pages 55–58, Aug. 2008.
- X. Lin and I. Stojmenovic. Power-Aware Routing in Ad Hoc Wireless Networks. In SITE, University of Ottawa, TR-98-11, Dec. 2008.
- A. Chockalingam and M. Zorzi, Energy Consumption Performance of a Class of Access Protocols for Mobile Data Networks, Proc. IEEE VTC, May 2009, pp. 820–24.
- A. Michail and A. Ephremides, Energy Efficient Routing for Connection Oriented Traffic in Ad-hoc Wireless Networks, Proc. IEEE PIMRC, Sept. 2009, pp. 762–66.
- G. Zussman and A. Segall. Energy efficient routing in ad hoc disaster recovery networks. Proceedings of IEEE INFOCOM, April, 2006, pp 112-124.
- C. Schurgers and M. B. Srivastava. Energy efficient routing in wireless sensor networks. Proceedings of IEEE MILCOM, October 2008, pp 28–31.
- C. K. Toh, Maximum battery life routing to support ubiquitous mobile computing in wireless ad hoc Networks, IEEE Comm. Mag., June 2009, pp. 138-147.
- S. Singh, M. Woo and C. S. Raghavendra, Power aware routing in mobile ad hoc networks, IEEE/ACM MobiCom, Oct. 2007, pp. 181-190.
- D. B. Johnson and D. A. Maltz, Dynamic source routing in ad hoc wireless networks, Mobile Computing, Kluwer, 2006, pp. 153-181.
- D. Virmani and S. Jain, Quality of service on-demand power aware routing protocol for wireless sensor networks, LNCS Chapter 46 CCIS 2010, DOI 10.1007/978-3-642-12214-9_46, pp. 272-283.
- V. Rishiwal, A. Kush and S. Verma. Backbone Nodes Based Stable Routing for Mobile Ad Hoc Networks UBICC Journal, Vol. 2, No 3, 2007, pp 34 – 39.
- A. Kush and R. Kumar. Power aware scheme in Ad Hoc Networks, INCOM 2008, pp 51 – 56.

Index Terms

Computer Science Wireless Networks

Key words

Wireless Sensor Networks

Virtual Nodes

Self Stabilization
Power aware