Lattices of double-quanta vortices and chirality inversion in $p_x + ip_y$ superconductors

Julien Garaud,¹,∗ Egor Babaev,¹ Troels Arnfred Bojesen,² and Asle Sudbø³

¹Department of Theoretical Physics and Center for Quantum Materials, KTH-Royal Institute of Technology, Stockholm, SE-10691 Sweden
²RIKEN Center for Emergent Matter Science, Wako, Saitama, 351-0198, Japan
³Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway

(Dated: September 15, 2016)

We investigate the magnetization processes of a standard Ginzburg-Landau model for chiral p-wave superconducting states in an applied magnetic field. We find that the phase diagram is dominated by triangular lattices of doubly quantized vortices. Only in close vicinity to the upper critical field, the lattice starts to dissociate into a structure of single-quantum vortices. The degeneracy between states with opposite chirality is broken in a nonzero field. If the magnetization starts with an energetically unfavorable chirality, the process of chirality-inversion induced by the external magnetic field results in the formation of a sequence of metastable states with characteristic magnetic signatures that can be probed by standard experimental techniques.

PACS numbers: 74.25.Ha, 74.20.Rp, 74.25.Dw

INTRODUCTION

The complex structure of the order parameter for chiral p-wave superfluid and superconducting states has long attracted interest in their physical properties. Chiral p-wave pairing is realized in the A-phase of superfluid 3He, where the complex structure of the order parameter yields a rich variety of topological defects [1–6]. In the context of superconductivity this interest is related to the discovery of Sr$_2$RuO$_4$ [7, 8], which is argued to have p-wave pairing [9–11], with Cooper pairs having an effective internal orbital momentum [8, 12].

Evidence supporting the existence of a chiral p-wave superconducting state in Sr$_2$RuO$_4$ has surfaced through a variety of measurements. For instance, the superconducting critical temperature (T_c) is completely suppressed by adding non-magnetic impurities [7, 8]. Moreover, NMR Knight shift measurements show no change in the spin susceptibility with temperature in the superconducting phase [13, 14]. Muon spin measurements (μSR) [15] and polar Kerr effect [16] suggest that the superconducting state breaks time-reversal symmetry. Also, phase-sensitive Josephson spectroscopy experiments have shown some evidence of a dynamical domain structure consisting with a chiral spin-triplet state [12, 17]. Experiments on toroidal mesoscopic samples reporting magnetization with half-height steps suggest half-quantum vorticity [18], while no half-quantum vortices were reported in a singly-connected geometry.

Nevertheless, the nature of the superconducting state of Sr$_2$RuO$_4$ remains elusive, since a number of properties predicted for chiral p-wave states have so far not been observed. Spontaneous breaking of time-reversal symmetry for chiral p-wave state, implies the existence of domain-walls (DW) that separate two different time-reversal symmetry broken (TRSB) ground states, i.e. different chiral states. As a consequence of broken spatial symmetry, these domain walls support spontaneous supercurrents that generate magnetic fields [19–23]. Edge currents are also expected to flow at the boundaries of samples, quite similarly to the currents at domain walls between domains of opposite chirality [21–24], and these currents will have a magnetic field associated with them. However, in Sr$_2$RuO$_4$ no indication of such a field has so far been found in magnetic imaging microscopy experiments [10, 25–28]. Thus, the issue of identifying a possible model of the superconducting state in this compound is currently a matter of intense debate [24, 29–35].

Vortex matter in Sr$_2$RuO$_4$ also shows rich physics that can give insight into the nature of superconducting state in this material. The formation of chains of vortices has been reported for magnetic fields with an ab-plane component [36], consistent with the mechanism of vortex chain formation in layered systems. Small-angle neutron scattering [37], and muon-spin rotation measurements [38, 39], have revealed vortex lattices with square symmetry at high fields. A transition to triangular a vortex lattice at lower fields has been reported in [39, 40]. Such transitions of the vortex lattice structure have been regarded as being consistent with predictions based on lowest-Landau-level calculations for chiral p-wave superconductivity in Sr$_2$RuO$_4$ [41–43]. However, they are inconsistent with numerical studies of the energy of isolated topological defects [44] that have predicted the formation of double-quantum vortices in the Ginzburg-Landau model for a chiral p-wave superconductor. Early experiments also demonstrated “zero creep” that is not accompanied by a dramatic rise in critical current [45]. This indicates that vortices form relatively mobile clusters. The initial interpretation [45] of this experiment was taken as evidence for a chiral p-wave state that allows the formation of groups of type-2 vortices trapped by a closed chiral domain wall. Within this scenario the domain wall would prevent vortex creep outside the sample. At the
same time, in contrast to the vortex pinning scenario, these groups of vortices could be moved by an external current. This would explain the absence of a dramatic rise in the critical current. However, such a configuration would have characteristic magnetic signatures (see Refs. [44, 46] and discussion below). These signatures have not been seen so far in scanning surface probes. Instead, experiments using magnetic surface probes have reported observations of clusters of integer-flux vortices [25, 27, 47]. Evidence of vortex clustering has also been found in bulk measurements in field-cooled muon-spin rotation experiments [39]. The key observation there was that vortex clusters contract as temperature is lowered well below T_c, which is inconsistent with vortex pinning. Ref. [39] has attributed vortex coalescence to the competition between multiple coherence lengths that may originate from multi-band effects or other multicomponent order parameters of various origins (such a “type-1.5” scenario was hypothesized in an earlier paper [27] in analogy with [48]).

In zero field, both chiral (ground) states are degenerate in energy, while this degeneracy is lifted by a magnetic field. For a given orientation of the magnetic field, only one of the chiral states is stable while the time-reversed chiral state is energetically penalized. Hence, the dominant component can form a vortex. Since the dominant component is suppressed in the vicinity of the vortex core, the time-reversed (subdominant) chiral component may be induced in the vortex core [43, 49]. The winding of the induced component is not independent of that of the dominant component. It has a 4π winding of the relative phases that follows from the Cooper pairs having nonzero internal orbital momentum [50]. Since the magnetic field lifts the degeneracy between chiralities, vortices with opposite phase winding have different physical properties [44, 49, 51].

Apart from single-quantum vortices, there also exist stable vortices carrying multiple quanta of magnetic flux. These are essentially different from single-quantum vortices, because as they are coreless they carry an additional topological charge, and they are sometimes called skyrmions. As discussed in more detail below, the component induced by a doubly quantized vortex in the dominant component has zero winding [49, 51]. The possible existence of lattices of double-quantum vortices has been proposed earlier in the context of the heavy fermion compound UPt$_3$ [52, 53], which is believed to be described by a similar type of model [54, 55]. Based on self consistent calculations using Eilenberger theory for the chiral p-wave state, it was recently argued that while lattices of single-quantum vortices form for fields close to H_{c1}, lattices of double-quantum vortices are favored in higher fields [56]. On the other hand, within the Ginzburg-Landau theory for chiral p-wave superconductors, double-quantum (coreless) vortices have been shown to be energetically favored as compared to two (isolated) single-quantum vortices [44] and they were also found to appear in a mesoscopic sample [57]. The energetic preference for double-quantum vortices does not exclude the formation of lattices of single-quantum vortices, or more complicated structures in a magnetization process. Interactions can favor different vortex lattices, or different Bean-Livingston barriers may result in the formation of metastable lattices for vortices that are not the most energetically favorable. This raises the question of the nature of magnetization processes and what kind of lattices form when an external magnetic field is applied.

In this paper, we investigate magnetization processes, using numerical simulations of the minimal Ginzburg-Landau theory describing the chiral p-wave state in an external field directed along the c axis. In Section I, we introduce the Ginzburg-Landau theory used to describe the chiral p-wave state in an external field, and we discuss various basic properties, such as ground states and edge currents. Next, Sec. II is devoted to the magnetization process that has minimal energy, i.e. when the external field produces topological excitations with lowest energy. In that case, we find that lattices of double-quantum vortices are generically produced. Finally, Sec. III investigates the magnetization processes with reversed magnetic field. These states have higher energies and eventually lead to chirality inversion via a subtle interplay between vortices and domain walls.

I. GINZBURG-LANDAU MODEL

In the coordinate system in which the crystal anisotropy axis is $\mathbf{c} \parallel \mathbf{z}$, the $p_x + i p_y$ state corresponds to the two-dimensional representation Γ^c_- = (k_x, k_y, k_z) and the order parameter is described by a two-dimensional complex vector $\eta = (\eta_x, \eta_y)/\sqrt{2}$ [8, 55, 58]. Introducing the chiral order parameter basis $\eta_{k} = \eta_x \pm i \eta_y$, the dimensionless Ginzburg-Landau free energy reads as (see e.g. [41–43]):

$$F = |\nabla \times A|^2 + |D\eta_+|^2 + |D\eta_-|^2$$
(1a)

$$+ (\nu + 1)\text{Re}[(D_x\eta_+)^* D_x\eta_- - (D_y\eta_+)^* D_y\eta_-]$$
(1b)

$$+ (\nu - 1)\text{Im}[(D_x\eta_+)^* D_y\eta_- + (D_y\eta_+)^* D_x\eta_-]$$
(1c)

$$+ 2|\eta_+\eta_-|^2 + \nu \text{Re}(\eta_x^2\eta_y^2) + \sum_{a=\pm} -|\eta_a|^2 + \frac{1}{2}|\eta_4|^4. \quad (1d)$$

Here $\eta_4 = |\eta_4| e^{\pi z\pm}$ and we have used dimensionless units where the free energy is normalized to the condensation energy, and the lengths are given in units of $\xi = (\alpha_0(T - T_c))^{-1/2}$. The magnetic field $\mathbf{B} = \nabla \times \mathbf{A}$ is given in units of $\sqrt{2} B_c = \Phi_0/(2\pi \lambda c)$. The dimensionless gauge coupling g that appears in the covariant derivative $\nabla = \nabla + ig A$ is used to parametrize the ratio of two length scales in this Ginzburg-Landau model, $g^{-1} := \kappa = \lambda/\xi$. The anisotropy parameter ν, which satisfies $|\nu| < 1$, determines the anisotropy in the xy-plane. It measures the tetragonal distortions of the Fermi surface, which has cylindrical geometry for $\nu = 0$, and it is defined as $\nu = (\langle v_{x}^2 \rangle - 3(\langle v_{x}^2 \rangle)^2)/(\langle v_{x}^2 \rangle + \langle v_{y}^2 \rangle)$.
In the model defined by Eq. (1), the dependence on the third coordinate is not considered (i.e. assuming a two-
dimensional system or translational invariance along the
z-axis). Varying Eq. (1) with respect to η_\pm yields the
Ginzburg-Landau equations given by
\[\Pi_{x^2+y^2}^\pm \eta_\pm + \left(\frac{\nu + 1}{2} \Pi_{y^2-x^2}^\pm \pm \frac{\nu - 1}{2} \Pi_{xy} \right) \eta_\pm = \partial F_{\eta_\pm} \frac{\partial}{\partial \eta_\pm} \]
with $\Pi_{x^2+y^2}^\pm = D_x D_x \pm D_y D_y$, $\Pi_{xy} = \{D_x, D_y\}$.

We therefore do not specifically focus on the question
of which vortex lattice is a ground state in a given field
in the thermodynamic limit. Precise answers to mini-
mal energy structure in a thermodynamic limit would
require a different approach. There are intrinsic limita-
tions to characterize a lattice structure, when working
on finite domains. First of all, realizing perfectly ordered
lattices typically requires a certain number of vortices
given a certain area. Unfortunately, during magnetiza-
tion processes, the number of vortices varies, and hence
the appropriate number of vortices may not be realized.
Moreover, unlike in periodic domains, the overall lattice
structure is determined by more than just intervortex
forces. The existence of Meissner currents flowing along
boundaries can also alter the lattice structure. Although
such effects should tend to be less important in very large
domains, this explains why, in rather high fields the struc-
ture we find can be distorted or less ordered.

B. Ground-state

The ground-state that minimizes the potential energy,
F_{η_+}, is degenerate and the solutions are $(\eta_+, \eta_-) =
(1, 0)$ and $(0, 1)$. Symmetrywise it spontaneously breaks
the $U(1) \times Z_2$ symmetry, where Z_2 refers to time-reversal
operations. The spontaneous breakdown of the discrete
Z_2 symmetry dictates that the theory allows domain wall
solutions that interpolate between regions in different
ground states. Such domain walls carry a magnetic field
perpendicular to the xy-plane [21, 22]. Aspects of the

\[J^\pm_x = \frac{g}{2\mu_0} \left(\eta^+_x D_x \eta_\pm \right) \]
\[J^\pm_y = \frac{g}{2\mu_0} \left(\eta^+_y D_y \eta_\pm \right) \]

where $D_\pm = D_x \pm iD_y$.

The theory described by Eq. (1) has several symme-
tries. Firstly, Eq. (1) exhibits the usual $U(1)$ gauge
invariance under the transformation $\eta \to e^{i\phi} \eta$ and
$A \to A - \nabla \phi(x)/\theta$. The problem is also invariant under
a discrete (Z_2) operation T, which is referred to as time-
reversal symmetry, $\{\eta_\pm, B\} \to \{-\eta_\pm, B\}$. As discussed
below, the chiral ground state spontaneously breaks this
symmetry.

The nontrivial behavior of the superconducting degrees
of freedom at the boundary of a sample is responsible for
the spatial domain is subdivided into as set of
triangles (polynomials of
coefficients for a second-order interpolation polynomials (there are six independent co-
efficients for a second-order polynomial in two dimen-
sions). The second order Lagrange interpolation defines
the six coefficients at vertices and mid-edges, for a total
of $6 \times 6 = 36$ numerical degrees of freedom per triangle.

Now, within this finite element framework, we use a
nonlinear conjugate-gradient algorithm (see, e.g., Ref. 62),
which is iterated until relative variations of the
norm of the linearized gradient with respect to all de-
grees of freedom is less than 10^{-8}.

In this work we investigate magnetization processes
and vortex structure formation due to an applied mag-
netic field on domains of finite size. We focus on char-
acteristic states that appear during magnetization pro-
cesses, and which should be experimentally observable.
We therefore do not specifically focus on the question
of which vortex lattice is a ground state in a given field
in the thermodynamic limit. Precise answers to mini-
mal energy structure in a thermodynamic limit would
require a different approach. There are intrinsic limita-
tions to characterize a lattice structure, when working
on finite domains. First of all, realizing perfectly ordered
lattices typically requires a certain number of vortices
given a certain area. Unfortunately, during magnetiza-
tion processes, the number of vortices varies, and hence
the appropriate number of vortices may not be realized.
Moreover, unlike in periodic domains, the overall lattice
structure is determined by more than just intervortex
forces. The existence of Meissner currents flowing along
boundaries can also alter the lattice structure. Although
such effects should tend to be less important in very large
domains, this explains why, in rather high fields the struc-
ture we find can be distorted or less ordered.

A. Details of the numerics

To numerically minimize Eq. (5), the physical degrees of
freedom η_\pm and A are discretized using a finite-
element framework [59-61]. First we construct a mesh
being a regular partition of the spatial domain using a
Deleauay-Voronoï triangulation algorithm. In other
words, the spatial domain is subdivided into as set of
triangles (having similar area). Then, η_\pm and A are
expressed in terms of second order Lagrange polynomials
(polyomials of x,y up to second order) on each triangle.

This means that on a given triangle, each of the six physi-
cal degrees of freedom of the problem (η_\pm, η_\pm^2, and A) is
parametrized by the six coefficients of the second-order
polynomials (there are six independent co-
efficients for a second-order polynomial in two dimen-
sions). The second order Lagrange interpolation defines
the six coefficients at vertices and mid-edges, for a total
of $6 \times 6 = 36$ numerical degrees of freedom per triangle.
The overall accuracy of the construction is determined
by the number of triangles that constitute the mesh, as
well as the order of the interpolation method.

In the model defined by Eq. (1), the dependence on the
third coordinate is not considered (i.e. assuming a two-
dimensional system or translational invariance along the
z-axis). Varying Eq. (1) with respect to η_\pm yields the
Ginzburg-Landau equations given by
\[\Pi_{x^2+y^2}^\pm \eta_\pm + \left(\frac{\nu + 1}{2} \Pi_{y^2-x^2}^\pm \pm \frac{\nu - 1}{2} \Pi_{xy} \right) \eta_\pm = \partial F_{\eta_\pm} \frac{\partial}{\partial \eta_\pm} \]
with $\Pi_{x^2+y^2}^\pm = D_x D_x \pm D_y D_y$, $\Pi_{xy} = \{D_x, D_y\}$.

We therefore do not specifically focus on the question
of which vortex lattice is a ground state in a given field
in the thermodynamic limit. Precise answers to mini-
mal energy structure in a thermodynamic limit would
require a different approach. There are intrinsic limita-
tions to characterize a lattice structure, when working
on finite domains. First of all, realizing perfectly ordered
lattices typically requires a certain number of vortices
given a certain area. Unfortunately, during magnetiza-
tion processes, the number of vortices varies, and hence
the appropriate number of vortices may not be realized.
Moreover, unlike in periodic domains, the overall lattice
structure is determined by more than just intervortex
forces. The existence of Meissner currents flowing along
boundaries can also alter the lattice structure. Although
such effects should tend to be less important in very large
domains, this explains why, in rather high fields the struc-
ture we find can be distorted or less ordered.

A. Details of the numerics

To numerically minimize Eq. (5), the physical degrees of
freedom η_\pm and A are discretized using a finite-
element framework [59-61]. First we construct a mesh
being a regular partition of the spatial domain using a
Deleauay-Voronoï triangulation algorithm. In other
words, the spatial domain is subdivided into as set of
triangles (having similar area). Then, η_\pm and A are
expressed in terms of second order Lagrange polynomials
(polyomials of x,y up to second order) on each triangle.

This means that on a given triangle, each of the six physi-
cal degrees of freedom of the problem (η_\pm, η_\pm^2, and A) is
parametrized by the six coefficients of the second-order
polynomials (there are six independent co-
efficients for a second-order polynomial in two dimen-
sions). The second order Lagrange interpolation defines
the six coefficients at vertices and mid-edges, for a total
of $6 \times 6 = 36$ numerical degrees of freedom per triangle.
The overall accuracy of the construction is determined
by the number of triangles that constitute the mesh, as
well as the order of the interpolation method.

Now, within this finite element framework, we use a
nonlinear conjugate-gradient algorithm (see, e.g., Ref. 62),
which is iterated until relative variations of the
norm of the functional gradient with respect to all de-
grees of freedom is less than 10^{-8}.

In this work we investigate magnetization processes
and vortex structure formation due to an applied mag-
netic field on domains of finite size. We focus on char-
acteristic states that appear during magnetization pro-
cesses, and which should be experimentally observable.
We therefore do not specifically focus on the question
of which vortex lattice is a ground state in a given field
in the thermodynamic limit. Precise answers to mini-
mal energy structure in a thermodynamic limit would
require a different approach. There are intrinsic limita-
tions to characterize a lattice structure, when working
on finite domains. First of all, realizing perfectly ordered
lattices typically requires a certain number of vortices
given a certain area. Unfortunately, during magnetiza-
tion processes, the number of vortices varies, and hence
the appropriate number of vortices may not be realized.
Moreover, unlike in periodic domains, the overall lattice
structure is determined by more than just intervortex
forces. The existence of Meissner currents flowing along
boundaries can also alter the lattice structure. Although
such effects should tend to be less important in very large
domains, this explains why, in rather high fields the struc-
ture we find can be distorted or less ordered.
domain wall physics and their role in chirality switching are discussed later, in Sec. III.

The discrete (\mathbb{Z}_2) degeneracy of the ground state is lifted for a nonzero applied field $H \hat{z}$. Consider for example a constant magnetic field induced by the external field $B = B_\parallel \hat{z} = H \hat{z}$, if $B_\parallel > 0$ the ground state is $(\eta_+, \eta_-) = (1, 0)$, while when $B_\parallel < 0$ the lowest energy state is $(\eta_+, \eta_-) = (0, 1)$. As the η_+ and η_- components behave differently in external field, a complete study for a given ground-state necessitates considering both situations $B_\parallel > 0$ and $B_\parallel < 0$. Note that due to the time-reversal symmetry of the theory \(\{ \eta_k, B \} \rightarrow \{ \eta^*_{-k}, -B \} \), this is equivalent to investigating only a fixed direction of the magnetic field (say $B_\parallel > 0$), however including both chiral states. In the following, we choose to fix the dominant component of the order parameter to be η_- (i.e. the ground state is $(\eta_+, \eta_-) = (0, 1)$) and thus investigate both positive and negative applied magnetic field.

C. Edge currents

Spontaneous currents are expected to appear at the boundaries of chiral p-wave superconducting samples. However, scanning Hall [25] and scanning SQUID microscopy [26, 27] experiments in Sr$_2$RuO$_4$ have not detected such predicted edge currents, which in general should affect magnetization processes of chiral p-wave superconductors. If such edge currents are strong enough, the physics of vortex entry into the system can be substantially modified compared to that in ordinary superconductors. Indeed, as discussed in detail below, the edge current can affect the Bean-Livingston barrier and hence, the processes of vortex entry. For example it can either facilitate or suppress vortex entry near H_{c2}, a fact which will affect the chirality inversion process.

The spontaneous magnetic field due to edge currents is found by minimizing Eq. (5) in zero external field ($H = 0$). Figure 1 shows that the spontaneous currents at the edges (here circulating counter-clockwise) induce a magnetic field that is screened in the bulk by superconducting currents (here circulating clockwise). The calculation clearly shows that the magnetic field in the corner is enhanced as compared to a straight edge.

Note that the orientation of the edge currents is specified by the chirality of the superconducting state. For example, in Fig. 1 the dominant component is η_- and the currents circulate counter-clockwise. In the case in which the dominant component is η_+, the currents circulate clockwise. In principle, the surface term, Eq. (4), responsible for the edge currents, should not affect the bulk properties, such as, for example, vortex lattices. However, as discussed below, since the surface term modifies the boundary behavior, it can strongly influence vortex entry during a magnetization process and thus lead to qualitatively new features. In general, the boundary terms are important at low fields and have less influence at high fields.

II. LATITUDES OF DOUBLE-QUANTA VORTICES

As stated above, the discrete degeneracy of the chiral ground state is lifted by an external field. This implies that given a ground state (which we take to be $(\eta_+, \eta_-) = (0, 1)$), the magnetization processes will be different whether the applied field is parallel or anti-parallel to the c-axis. Similarly, vortices with counterclockwise winding have different energy than vortices with clockwise winding. After briefly reviewing the elementary properties of vortex matter in the theory of a chiral p-wave superconducting state, Eq. (1), we investigate the magnetization processes when $H < 0$, i.e. the case when an applied field excites vortices which have least energy. This magnetization process is that of least energy, and it exhibits the formation of a triangular lattice of double-quant vortex states, which dissociates into a lattice of single-quant vortices in the vicinity of the upper critical field H_{c2}.

A. Isolated vortices and skyrmions

The asymptotic vorticity of the dominant component η_- determines the sign of B_\parallel, as well as the vorticity of the subdominant component η_+ [43], according to:

\[\eta_- \propto e^{i n_- \theta}, \quad \eta_+ \propto e^{i n_+ \theta} \quad \text{and} \quad n_+ = n_- + 2 \in \mathbb{Z}. \tag{6} \]

The relative phase $\phi_- - \phi_+$ between the components η_+ and η_-, that corresponds to a difference $\Delta l = 2$ of the order parameters' angular momentum, originates with the structure of mixed gradients, Eqs. (1b) and (1c). Note that since the subdominant component, η_+, vanishes asymptotically (i.e., it recovers its ground state value $\eta_+ = 0$ in the bulk phase), the winding n_+ can

Figure 1. (Color online) – Properties of the edge currents due to the surface term Eq. (4) for $\chi_1 = \chi_2 = \chi_3 = 1$. Left panel shows the behavior of the components $|\eta_\parallel|$ and the magnetic field as a function of the distance from a straight edge boundary along the η-axis. The right panel shows the circulating edge current and the induced magnetic field near a corner.
be located only in the close vicinity of a vortex core. Hence, the number of flux quanta is determined only by the winding number n_- of the dominant component. Eq. (6) implies that the two possible single-quanta vortices are $(n_-,n_+) = (-1, +1)$ and $(n_-,n_+) = (-1, +1)$. Having different winding numbers of the subdominant component, these will have different core structures and it is thus natural to expect that they will have different energies as well.

In agreement with the naive expectation, since it has a simpler core structure, the $(n_-,n_+) = (-1, +1)$ vortex can have a lower energy than the $(n_-,n_+) = (+1, +3)$ vortex [44, 51]. As a result, the vortex with the lowest energy carries magnetic field anti-parallel to the c-axis (for the case where the dominant component is η_+, the lowest energy vortex carries a magnetic field parallel to the c-axis). The preference for the $(n_-,n_+) = (-1, +1)$ vortex, featuring the simpler core structure, occurs in the whole (ν, g) parameter space (at least within the Ginzburg-Landau model, Eq. (1)) [44]. It also follows that $(n_-,n_+) = (-1, +1)$ and $(n_-,n_+) = (+1, +3)$ have different lower critical fields, $H_{c1}^{(-1)} < H_{c1}^{(+3)}$. In other words, giving a dominant component in the ground state, the first vortex entry occurs at different values of the applied field, according to if it is parallel or anti-parallel to the c-axis [63, 64].

Fig. 2 illustrates the richness of the core structure of vortices. It is evident that vortices with opposite winding of the dominant component $n_- = \pm 1$ have different structures. In particular, the position and number of cores of the different components can be extracted from the last row, which shows the relative phase $\varphi_- - \varphi_+$.

Far away from the cores, the components reach their asymptotic values $\varphi_{\pm} = \eta_{\pm}0$ given by Eq. (6). Thus, the relative phase $\varphi_- - \varphi_+$ shows the expected 4π winding at large distances. Fig. 2 also displays the two possible configurations carrying two flux quanta. Clearly, these also have different core structures. The $(n_-,n_+) = (-2, 0)$ vortices are always less energetic than two isolated single-quanta vortices with $(n_-,n_+) = (-1, +1)$ (see Ref. [44] for a detailed analysis). Note that there also exist $(n_-,n_+) = (+2, +4)$ vortices. Their energy, compared to that of isolated $(n_-,n_+) = (+1, +3)$ vortices, can either be larger or smaller depending on the parameters (ν, g). In the regimes investigated here, the double-quanta $(n_-,n_+) = (+2, +4)$ vortices have higher energy than isolated ones. Thus, they are only metastable. Alternatively, the vortices discussed above can be understood as bound states of half-quantum vortices in term of the components (η_{\pm}, η_0) of the order parameter (see the corresponding discussion in Appendix A). These (coreless) vortices carrying multiple flux-quanta can be characterized by additional topological invariants, motivating the alternate terminology of skyrmions [44].

Figure 2. (Color online) – Vortex states for the model defined in Eq. (1) and Eq. (4) with parameters $z = 0.3$ and $\nu = 0.2$. The first line shows the magnetic field B, while the second and third lines display η_- and η_1, respectively. The fourth line shows the relative phase $\varphi_- - \varphi_+$ between η_+ and η_-. Winding the relative phase indicates the position of the cores of η_+ and η_-. The first two columns show respectively single and double-quanta vortices with $B_z > 0$, while the third and fourth columns display single and double-quanta vortices with $B_z < 0$.

The winding number n_- of the dominant component η_- specifies the topological sector. In infinite domains, different topological sectors are separated by an infinite energy barrier, which becomes finite (but still very high) in finite spatial domains. This implies a ‘topological protection’ because no continuous finite-energy transformation can change the topological sector. As a result, a minimization algorithm that continuously deforms the field configurations to reduce the energy cannot change the number of flux quanta [65]. More precisely, starting with a configuration having a given winding n_-, the specifics of the minimization algorithm can affect core structures, but the asymptotic behavior of the vortices after convergence of the algorithm, will, regardless of the algorithmic details, naturally behave as expected from Eq. (6). The heuristic argument of the simplicity of the core structure of the vortices also implies the rather unusual situation that double-quanta vortices could be favored compared to two isolated single-quanta vortices [44, 49, 51, 56, 57]. Indeed, the double-quanta $(n_-,n_+) = (-2, 0)$ vortex, as it has a simple core structure, is always energetically favored compared to two isolated single-quanta $(n_-,n_+) = (-1, +1)$ vortices [44]. Thus, one may expect the double-quanta vortices to form in an external field, at least close to H_{c1}. However, as they carry more flux, their entry through the boundary could be unlikely because they experience a different Bean-Livingston barrier.
Figure 3. (Color online) – Simulation in an external field $H < 0$ for the parameters $g = 0.3$ and $\nu = 0.3$ and $\chi = 0.1$. The different lines display B_z, $|\eta_-|$, and $|\eta_+|$, respectively. Here, the orientation of the external field is such that it will produce less energetic topological defects (skyrmions). The panel corresponding to the lower field show half-quanta vortices stabilized near boundary. Increasing the field past H_{c_1} produces entry of double-quanta vortices that arrange themselves into a hexagonal lattice. Note that in higher fields, both single- and double-quanta vortices enter the system. The single-quanta vortices will eventually merge into double-quanta skyrmions.

B. Magnetization process – Lattices of double-quanta vortices

The physics of isolated vortices strongly suggests that double-quanta vortices should form in an external field. Here, we investigate the magnetization processes, starting from the Meissner state and ramping-up the applied field anti-parallel to the c-axis ($H < 0$). The solution in zero field is chosen to be the $(\eta_+, \eta_-) = (0, 1)$ ground state. The external field is then sequentially increased (in steps of 4×10^{-3}), and the energy is minimized at each step. Figure 3 shows the outcome of such a magnetization process. This procedure corresponds to an applied field that, in the sense that it produces the less energetic defects, is optimally directed. As expected from the properties of the isolated vortices, the initial vortex entry comes in the form of double-quanta vortices. In our simulation, Fig. 3, the initial entry occurs at $|H| \simeq 0.46$. As the applied field increases, more double-quanta vortices enter and they arrange themselves in a regular lattice of double-quanta skyrmions. This lattice state is robust and persists for all applied fields. The preference for lattices of double-quanta vortices, in the case of an anti-parallel external field, is a robust feature. We observed this behavior for all the parameters of the model we considered.

Since the strength of the edge currents depends on χ, the Bean-Livingston barrier for vortex entry is affected as well. We find that the entry of skyrmions occurs for a wide range of values of the parameter χ that parametrizes the edge properties. The value of the field for initial entry depends on the interplay with the edge currents. Nonetheless, bulk properties are essentially unaffected such that lattices of double-quanta vortices are always realized.

As stated earlier in more details in Sec. 1A, characterizing the lattice structure, within our framework of working on a finite size domain can be difficult. Due to uncontrollable vortex entry during the magnetization process and the interaction between vortices and Meissner currents flowing along the edge of the domain, perfect lattice structures are in practice never realized. Nonetheless, at least in rather low fields, it is quite clear that hexagonal lattices of two-quanta vortices are realized. In higher fields, the coexistence of a few single-quanta vortices distorts the overall structure, but the tendency to form hexagonal lattice is nevertheless quite robust.

C. Lattice dissociation near H_{c_2}

The results in Fig. 3 show the magnetization process from low to rather high fields, when $H < 0$ is optimally directed. It is important to further understand the behavior in high fields near the second critical field H_{c_2}. From the energetics of isolated vortices and from the magnetization processes, one would conclude that the double-quanta vortices are always favored for the model we consider. This would contradict earlier calculations using lowest Landau-levels-based approach predicting that a square lattice of single-quanta vortices is the solution near H_{c_2} [41, 42].

To investigate the properties near H_{c_2}, we need to slightly modify our parametrization of the theory, formulating it in a manner that is more convenient for numerical purposes [66]. The idea is that instead of approaching the upper critical field by varying H at fixed T in the (H, T)-phase diagram, the physics near H_{c_2} can be found by varying T at fixed H. In mean-field theory, Eq. (1), the temperature dependence is absorbed by setting the scales of the problem (here temperature refers to the temperature parameter of the non-fluctuating mean-field theory). We restore the parametrization of the tempera-
Figure 4. (Color online) – Simulation in an external field $H < 0$ for the parameters $g = 0.3$, $\nu = 0.3$, and $\chi = 0.1$. The different lines display B_z, $|\eta_-|$, and $|\eta_+|$, respectively. Here, the external field is fixed and the prefactor of the quadratic term is varied, while other coefficients are kept fixed. This is equivalent to varying the temperature and getting closer to H_{c2}. The first panel corresponds to the last panel of Fig. 3. Decreasing α/α_0 decreases the total density. Close enough to H_{c2}, the double-quanta vortices start to break apart. Eventually, very close to H_{c2} only single-quanta vortices subsist, and they arrange themselves in a square lattice.

ture dependence by having the prefactor of the quadratic terms in Eq. (1): $\alpha(\tilde{T}) = 1 - \tilde{T}$. Thus $\tilde{T} = 1$ corresponds to the destruction of the superconducting state in zero field. Decreasing the value of the parameter α will thus decrease the superconducting density and push the system toward H_{c2}.

Starting in the Meissner state with $\alpha = 1$, the external field is gradually increased. The resulting magnetization process, similar to that displayed in Fig. 3, produces a lattice of double-quanta vortices. Once the lattice is established, the applied field is fixed and the parameter α is sequentially decreased from 1 to 0 (in steps of 2.5×10^{-2}) and the energy is minimized at each step. Figure 4 shows the evolution of a vortex lattice when decreasing α towards H_{c2}. The system exhibits a lattice of double-quanta vortices for a rather wide range of temperatures. When getting closer to H_{c2}, the lattice starts to deform and the double-quanta vortices split into single-quanta vortices. Eventually, the entire lattice of double-quanta vortices has dissociated into a structure of single-quanta vortices. Because finite-size effects become important together with a longer equilibration time, it becomes very difficult to form a fully ordered state. Thus, it is difficult to rigorously characterize such a lattice structure (see the discussion in Sec. I A). However, we can infer that our results, together with the earlier results based on lowest Landau-levels calculations [41, 42], point towards a transition to a lattice of single-quanta vortices. Structures obtained by lowest Landau-levels calculations near H_{c2} are square lattices of the single-quanta vortices [41, 42].

The difference with the previously discussed scenario, is that our results indicate that square lattices of single-quanta vortices should transform into a hexagonal lattice of double-quanta vortices. The latter is robust and survives to large negative values of $H < 0$. Only in close vicinity to the upper critical field H_{c2} will double-quanta vortices dissociate. Note also that in the crossover region, single- and double-quanta vortices coexist, and there is a tendency to form vortex stripes.

III. CHIRALITY INVERSION AND THE ROLE OF DOMAIN-WALLS

The discrete degeneracy of the chiral ground state is lifted by an external field and thus the magnetization processes should be different from that previously discussed, when the applied field is parallel to the c-axis. Magnetization processes when $H > 0$ implies that the system can be in metastable states which are not energetically optimal. Indeed, the Meissner state with an initial chirality that does not correspond to the optimal direction of the applied field is not the one with the lowest energy. Domain walls are natural topological excitations that interpolate between two ground states. In general, they are expected to form via a Kibble-Zurek-like mechanism [23], but they could also play a role in the magnetization process where the starting state is not the optimal one in an external field. Various aspects of domain-wall properties during magnetization processes have been studied in [63, 64]. After briefly reviewing their elementary properties, we investigate the magnetization processes when $H > 0$. This magnetization process is actually much richer than that taking place when the starting state is an optimal one in a given external field. Indeed, for non-optimal starting states, we will discover that the magnetization process involves chirality inversion processes, the details of which will be sensitive to the parameters of the theory.
A. Domain walls

A domain wall is a field configuration that interpolates, for example, between \((|\eta_+|, |\eta_-|) = (1,0)\) and \((|\eta_+|, |\eta_-|) = (0,1)\). Note that there are two inequivalent ways of having such a configuration, with differing corresponding domain walls. The two inequivalent ways may be illustrated by

\[\text{DW}_I : \quad (-1,0) \leftrightarrow (\eta_+, \eta_-) \rightarrow (0,1) \quad (7a) \]
\[\text{DW}_II : \quad (1,0) \leftrightarrow (\eta_+, \eta_-) \rightarrow (0,1) . \quad (7b) \]

It is easily realized that the two domain wall configurations cannot be transformed into each other by gauge transformations, from which they are physically distinguishable. Note that the energy cost of a domain wall also depends on its relative orientation with respect to the crystal axis. Depending on the orientation of the domain wall, one of the two possible domain walls is favored. This was discussed in detail in Ref. [67].

Figure 5 displays the typical domain wall solution in chiral \(p\)-wave superconductors. The magnetic signatures of the two types of domain walls Eq. (7) are different, and they have different energies. Due to partial currents in different chiralities, the domain walls have longitudinal currents associated with them, and hence they carry a magnetic field, as can be seen from Fig. 5. Conversely, since the domain walls support longitudinal currents, an external applied field will produce a Lorentz force that should induce motion of the domain wall. In other words, when the degeneracy between ground states is lifted by an external field, the domain wall should move to increase the region of optimal ground state. Thus, we expect domain walls to be involved in the magnetization processes when the external field is not optimally oriented.

B. Chirality inversion in an external field

Domain walls are the topological excitations that are involved in processes that revert the chirality. For an applied field parallel to the \(c\)-axis \((H > 0)\), the ground state \((\eta_+, \eta_-) = (0,1)\) is not the optimal one. Thus, two isolated single-quanta vortices have lower energy than a double-quantum vortex. That is, \((n_+, n_-) = (+3, +1)\) vortices have a smaller lower critical field than the double-quanta \((n_+, n_-) = (+4, +2)\) vortices, i.e. \(H_{n_+ =+1}^{(n_-=+2)} < H_{n_+ =+2}^{(n_-=+1)}\). The top panel in Fig. 6 illustrates this, and only single-quanta vortices enter and organize as a lattice. Note that the field for the first vortex entry in this case is higher than for anti-parallel field, since the \(H_{c1}^{(n_-=+1)} > H_{c1}^{(n_-=-1)}\). Therefore, single-quanta vortices enter and arrange themselves as a lattice in low field. An interesting process occurs in higher fields. Since the ground state \((\eta_+, \eta_-) = (0,1)\) is not optimal for that direction of the external field, the optimal case would thus actually be to have the opposite chirality. For rather large fields, we see that the systems starts to “reverse” its chirality. By nucleating a domain wall that propagates from the boundaries, the system is able to switch to optimal chirality, given the orientation of the external field. While the domain wall propagates in the bulk, it “absorbs” the single-quanta vortices and “converts” them into double-quanta vortices in the optimal chirality. Eventually, mostly double-quanta skyrmions occupy the domain and should turn into a lattice of skyrmions.

During the process of chirality inversion, various kinds of vortices carrying different numbers of flux quanta can coexist. For instance, there are a few single-quanta vortices that are trapped between double-quanta vortices. They cannot always pair with other single-quanta vortices, as this would imply moving through the background of other double-quanta vortices. Such trajectories can be energetically unfavored. Similarly, skyrmions carrying more than two flux quanta are also formed and persist since these are metastable solutions. They decay into double-quanta vortices can be triggered by the pressure that is exerted by the surrounding double-quanta skyrmions. We find that the skyrmions carrying high magnetic flux are eventually destroyed by an increasing field.

Another possible scenario for the magnetization process with external field parallel to the \(c\)-axis, is displayed in the lower panel of Fig. 6. Typically for small geometries, or for a strong barrier to vortex entries, it may be beneficial to produce a domain wall at field below the lower critical field, and thus switch to the optimal chirality prior to any vortex entry. Besides the domain wall,
the optimal chirality double-quanta skyrmions are the lowest energy excitations. The created domain walls are not the bare domain walls discussed above in Sec. III A, but rather domain walls ‘decorated’ by vortices, such that they carry vorticity. As a result of the vorticity which is trapped on the domain walls, they cannot easily annihilate (with an anti-DW), so they create skyrmions with a large number of flux quanta (see detail of the mechanism of stabilization of domain walls by vortex decoration in [44, 46]). At elevated fields, however, these decorated domain walls eventually decay when the system is compressed enough, leaving a lattice of double-quanta vortices (in addition to a few isolated single quanta); the optimal chirality has been restored. From now on, the behavior of the double-quanta vortex lattice is the same as that discussed in in Sec. II. That is, further increasing the external field will drive the structural transition into a single-quanta square lattice close to H_{c2}, accompanied by a density halving of the lattice.

We have found that a magnetic field anti-aligned with chirality should trigger a chirality inversion process by propagation of domain walls “decorated” with vortices inside the domain. We report two possibilities for such an inversion process, namely that domain wall penetration occurs either before or after penetration of single quanta vortices. Weak edge currents promote early entry of single-quanta vortices prior to the domain wall penetration and chirality inversion process. Strong edge currents, on the other hand, delay entry of single-quanta vortices compared to the domain wall. In that case, the restoration of the optimal chiral state is much faster. Note that which of the two scenarios is realized depends not only on the strength of the edge currents, but also on the size and shape of the domain that is considered.
CONCLUSION

In this paper, we have considered the problem of magnetization of a finite superconducting sample in the framework of a standard Ginzburg-Landau model for chiral p-wave superconductors that is often invoked to describe Sr$_2$RuO$_4$. At magnetic fields close to H_{c2}, there is a tendency towards formation of a square lattice of single-quantum vortices, in agreement with earlier calculations [41, 42] and experimental observations [37–39]. However, we find that, at least at mean-field level in the Ginzburg-Landau model, the square lattice exists only very close to H_{c2} and transforms into a hexagonal lattice of double-quantum vortices slightly below H_{c2}. This double-quantum hexagonal vortex lattice dominates the phase diagram of the model in question. In contrast to the Eilenberger theory-based calculations in Ref. [56], in our calculations the double-quantum vortex lattice persists down to the lowest fields. Double-quantum vortex formation has also been reported in simulations of mesoscopic samples in external fields [57].

Different chiralities are known to have different lower critical fields H_{c1}. For the chirality with larger H_{c1}, we have found metastable hexagonal vortex lattices of single-quantum vortices in low magnetic fields. The metastable single-quantum vortex lattices transform into a stable double-quantum vortex lattice at elevated fields via a set of complicated metastable states that involve the creation and growth of domain walls decorated by vortices. These metastable configurations have characteristic magnetic field signatures that should be detectable by scanning SQUID and Hall probes or decoration.

Although our results are inconsistent with the current experimental data on Sr$_2$RuO$_4$ [25, 27, 39], they do not rule out p-wave superconductivity in this material. Rather, our results present evidence against a class of minimal models. This magnetization picture can be used as a "smoking gun" hallmark of chiral p-wave superconductivity that is searched for in other materials.

ACKNOWLEDGMENTS

We acknowledge fruitful discussions with Mihail Silaev. The work of JG and EB was supported by the Swedish Research Council Grant No. 642-2013-7837 and the Goran Gustafsson Foundation. The work of AS was supported by the Research Council of Norway Grants No. 205591/V20 and No. 216700/F20, as well as European Science Foundation COST Action MP11201. The computations were performed on resources provided by the Swedish National Infrastructure for Computing (SNIC) at the National Supercomputer Center in Linköping, Sweden.

Appendix A: Vortices in terms of η_x, η_y components

It is instructive to consider the configurations displayed in Fig. 2 in the (η_x, η_y) order parameter basis, as is done in Fig. 7. There, the two inequivalent ground states have equal density and are distinguished by the relative phase $\varphi_y - \varphi_x$ (between η_x and η_y) being $\pm \pi/2$. Again it is quite clear that opposite vorticities give different structures of the cores. The parametrization in terms of (η_x, η_y) sheds new light on how to interpret the double-quantum vortices. Since in this parametrization both η_x and η_y have non-zero ground-state density, both components can have non-zero (asymptotic) winding and thus contribute equally to screening of the magnetic field. A vortex within each component can be attributed half of a flux quantum, and a bound state of a half-quantum vortex in each component constitutes a single quantum vortex.

Figure 7. (Color online) – Vortex states for the parameters $g = 0.3$ and $\nu = 0.2$. The first row shows the magnetic field B_z, while the second and third row display η_y and η_x, respectively. The fourth line shows the relative phase $\varphi_y - \varphi_x$ between η_x and η_y. The first two columns show single- and double-quantum vortices, respectively, with $B_z > 0$, while the third and fourth columns display single- and double-quantum vortices with $B_z < 0$.

[1] N. D. Mermin and Tin-Lun Ho, “Circulation and Angular Momentum in the A Phase of Superfluid Helium-3,” Phys. Rev. Lett. 36, 594–597 (1976).

[2] P. W. Anderson and G. Toulouse, “Phase Slippage without Vortex Cores: Vortex Textures in Superfluid 3He,” Phys. Rev. Lett. 38, 508–511 (1977).
[3] P. M. Walmisley and A. I. Golov, “Chirality of Superfluid 3He–A,” Phys. Rev. Lett. 109, 215301 (2012).

[4] D. Vollhardt and P. Wollf, The Superfluid Phases of Helium 3, Dover Books on Physics (Dover Publications, 2013).

[5] N. D. Mermin, “The topological theory of defects in ordered media.”, Rev. Mod. Phys. 51, 591–648 (1979).

[6] G. E. Volovik, exotic properties of superfluid 3He, Series in modern condensed matter physics (World Scientific, 1992).

[7] Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J. G. Bednorz, and F. Lichtenberg, “Superconductivity in a layered perovskite without copper,” Nature 372, 532–534 (1994).

[8] P. Mackenzie and Y. Maeno, “The superconductivity of Sr2RuO4 and the physics of spin-triplet pairing,” Rev. Mod. Phys. 75, 657–712 (2003).

[9] T. M. Rice and M. Sigrist, “Sr2RuO4: an electronic analogue of 3He-” Journal of Physics: Condensed Matter 7, L643 (1995).

[10] C. Kallin and A. J. Berlinsky, “Is Sr2RuO4 a chiral p-wave superconductor?” Journal of Physics: Condensed Matter 21, 164210 (2009).

[11] C. Kallin, “Chiral p-wave order in Sr2RuO4,” Reports on Progress in Physics 75, 045201 (2012).

[12] K. D. Nelson, Z. Q. Mao, Y. Maeno, and Y. Liu, “Odd-Parity Superconductivity in Sr2RuO4,” Science 306, 1151–1154 (2004).

[13] H. Murakawa, K. Ishida, K. Kitagawa, Z. Q. Mao, and Y. Maeno, “Measurement of the 101Ru-Knight Shift of Superconducting Sr2RuO4 in a Parallel Magnetic Field,” Phys. Rev. Lett. 93, 167004 (2004).

[14] K. Ishida, H. Mukuda, Y. Kitaoka, K. Asayama, Z. Q. Mao, Y. Mori, and Y. Maeno, “Spin-triplet superconductivity in Sr2RuO4 identified by 17O Knight shift,” Nature 396, 658–660 (1998).

[15] G. M. Luke, Y. Fudamoto, K. M. Kojima, M. I. Larkin, J. Merrin, B. Nachumi, Y. J. Uemura, Y. Maeno, Z. Q. Mao, Y. Mori, H. Nakamura, and M. Sigrist, “Time-reversal symmetry-breaking superconductivity in Sr2RuO4,” Nature 394, 558–561 (1998).

[16] H. Xia, Y. Maeno, P. T. Beyersdorf, M. M. Fejer, and A. Kapitulnik, “High Resolution Polar Kerr Effect Measurements of Sr2RuO4: Evidence for Broken Time-Reversal Symmetry in the Superconducting State,” Phys. Rev. Lett. 97, 167002 (2006).

[17] F. Kidwingira, J. D. Strand, D. J. Van Harlingen, and Y. Maeno, “Dynamical Superconducting Order Parameter Domains in Sr2RuO4,” Science 314, 1267–1271 (2006).

[18] J. Jang, D. G. Ferguson, V. Vacaryuk, R. Budakian, S. B. Chung, P. M. Goldbart, and Y. Maeno, “Observation of Half-Height Magnetization Steps in Sr2RuO4,” Science 331, 186–188 (2011).

[19] G. E. Volovik and L. P. Gorkov, “Superconducting classes in systems with heavy fermions,” Journal of Experimental and Theoretical Physics 61, 843 (1985), [Zurnal Eksperimental’noi i Teoreticheskoi Fiziki, 88, 1412-1428 (1985)].

[20] M. Sigrist, T. M. Rice, and K. Ueda, “Low-field magnetic response of complex superconductors,” Phys. Rev. Lett. 63, 1727–1730 (1989).

[21] M. Matsumoto and M. Sigrist, “Quasiparticle States near the Surface and the Domain Wall in a p±±ip±Wave Superconductor,” Journal of the Physical Society of Japan 68, 994–1007 (1999).

[22] M. Matsumoto and M. Sigrist, “Quasiparticle States near the Surface and the Domain Wall in a p±±ip±Wave Superconductor,” Journal of the Physical Society of Japan 68, 3120–3120 (1999).

[23] V. Vadinov and M. Silaev, “Predicted Nucleation of Domain Walls in p±± + ip± Superconductors by a Z2 Symmetry-Breaking Transition in External Magnetic Fields,” Phys. Rev. Lett. 111, 177001 (2013).

[24] A. Bouhon and M. Sigrist, “Current inversion at the edges of a chiral p-wave superconductor,” Phys. Rev. B 90, 220511 (2014).

[25] P. G. Bjørnsson, Y. Maeno, M. E. Huber, and K. A. Moler, “Scanning magnetic imaging of Sr3Ru2O7,” Phys. Rev. B 72, 012504 (2005).

[26] J. R. Kirtley, C. Kallin, C. W. Hicks, E.-A. Kim, Y. Liu, K. A. Moler, Y. Maeno, and K. D. Nelson, “Upper limit on spontaneous supercurrents in Sr2RuO4,” Phys. Rev. B 76, 014526 (2007).

[27] C. W. Hicks, J. R. Kirtley, T. M. Lippman, N. C. Koshnick, M. E. Huber, Y. Maeno, W. M. Yuhasz, M. B. Maple, and K. A. Moler, “Limits on superconductivity-related magnetization in Sr3Ru2O7 and PrOs4Sb12 from scanning SQUID microscopy,” Phys. Rev. B 81, 214501 (2010).

[28] P. J. Curran, S. J. Bending, W. M. Desoky, A. S. Gibbs, S. L. Lee, and A. P. Mackenzie, “Search for spontaneous edge currents and vortex imaging in Sr2RuO4 mesostructures,” Phys. Rev. B 89, 144504 (2014).

[29] S. Raghu, A. Kapitulnik, and S. A. Kivelson, “Hidden Quasi-One-Dimensional Superconductivity in Sr2RuO4,” Phys. Rev. Lett. 105, 136401 (2010).

[30] Y. Imai, K. Wakabayashi, and M. Sigrist, “Properties of edge states in a spin-triplet two-band superconductor,” Phys. Rev. B 85, 174532 (2012).

[31] S. Raghu, S. B. Chung, and S. Lederer, “Theory of ‘hidden’ quasi-1D superconductivity in Sr2RuO4,” Journal of Physics: Conference Series 449, 012031 (2013).

[32] N. A. Logoboy and E. B. Sonin, “Domain walls in a tetragonal chiral p-wave superconductor,” Phys. Rev. B 79, 094511 (2009).

[33] T. Scaffidi and S. H. Simon, “Large Chern Number and Edge Currents in Sr2RuO4,” Phys. Rev. Lett. 115, 087003 (2015).

[34] J. Garaud, D. F. Agterberg, and E. Babaev, “Vortex coalescence and type-1.5 superconductivity in Sr2RuO4,” Phys. Rev. B 86, 060513 (2012).

[35] Wen Huang, Thomas Scaffidi, Manfred Sigrist, and Catherine Kallin, “Leggett modes and multiband superconductivity in Sr2RuO4,” Phys. Rev. B 94, 064508 (2016).

[36] V. O. Dolocan, P. Lejay, D. Mailly, and K. Hasselbach, “Observation of two species of vortices in the anisotropic spin-triplet superconductor Sr3Ru2O7,” Phys. Rev. B 74, 144505 (2006).

[37] T. M. Riseman, P. G. Kealy, E. M. Forgan, A. P. Mackenzie, L. M. Galvin, A. W. Tyler, S. L. Lee, C. Ager, D. McK. Paul, C. M. Aegerter, R. Cubitt, Z. Q. Mao, T. Akima, and Y. Maeno, “Observation of a square flux-line lattice in the unconventional superconductor Sr3Ru2O7,” Nature 396, 242-245 (1998).

[38] C. M. Aegerter, S. H. Lloyd, C. Ager, S. L. Lee, S. Romer, H. Keller, and E. M. Forgan, “Evidence for a square
vortex lattice in Sr$_2$RuO$_4$ from muon-spin-rotation measurements,” *Journal of Physics: Condensed Matter* **10**, 7445 (1998).

[39] S. J. Ray, A. S. Gibbs, S. J. Bending, P. J. Curran, E. Babaev, C. Baines, A. P. Mackenzie, and S. L. Lee, “Muon-rotation measurements of the vortex state in Sr$_2$RuO$_4$: Type-1.5 superconductivity, vortex clustering, and a crossover from a triangular to a square vortex lattice,” *Phys. Rev. B* **89**, 094504 (2014).

[40] P. J. Curran, V. V. Khotkevych, S. J. Bending, A. S. Gibbs, S. L. Lee, and A. P. Mackenzie, “Vortex imaging and vortex lattice transitions in superconducting Sr$_2$RuO$_4$ single crystals,” *Phys. Rev. B* **84**, 104507 (2011).

[41] D. F. Agterberg, “Vortex Lattice Structures of Sr$_2$RuO$_4$,” *Phys. Rev. Lett.* **80**, 5184–5187 (1998).

[42] D. F. Agterberg, “Square vortex lattices for two-component superconducting order parameters,” *Phys. Rev. B* **58**, 14484–14489 (1998).

[43] R. Heeb and D. F. Agterberg, “Ginzburg-Landau theory for a p-wave Sr$_2$RuO$_4$ superconductor: Vortex core structure and extended London theory,” *Phys. Rev. B* **59**, 7067–7082 (1999).

[44] J. Garaud and E. Babaev, “Properties of skyrmions and multi-quanta vortices in chiral p-wave superconductors,” *Scientific Reports* **5**, 17540– (2015).

[45] Elisabeth Dumont and Ana Celia Mota, “Unconventional superconductivity,” *Rev. Mod. Phys.* **89**, 060514 (2012).

[46] V. Fernández Becerra, E. Sardella, F. M. Peeters, and J. Garaud and E. Babaev, “Skyrmionic state and stable multi-quanta vortices in chiral p-wave superconductors,” *Phys. Rev. B* **93**, 014518 (2016).

[47] M. Ichioka, M. Machida, and J. A. Sauls, “Vortex States of Chiral p-wave Superconductors,” *Journal of Physics: Conference Series* **400**, 022031 (2012).

[48] J. A. Sauls and M. Eschrig, “Vortices in chiral, spin-triplet superconductors and superfluids,” *New Journal of Physics* **11**, 075008 (2009).

[49] M. Ichioka and K. Machida, “Type-1.5 Superconductivity, vortex clusterization and extended London theory,” *Phys. Rev. B* **86**, 097004 (2012).

[50] M. Ichioka, Y. Matsunaga, and K. Machida, “Magnetization process in a chiral p-wave superconductor with multi-domains,” *Phys. Rev. B* **81**, 125110 (2005).

[51] J. A. Sauls, “A theory for the superconducting phases of UPt$_3$, “*Journal of Low Temperature Physics* **95**, 153–168 (1994).

[52] Y. S. Barash and A. S. Mel’nikov, “Possible existence of nonsingular-vortex in UPt$_3$,” *JETP Letters* **51**, 577 (1990), [ZhETF Pisma Redaktsiu, 51, 511 (1990)].

[53] A. S. Mel’nikov, “Phase transitions in vortex lattices of hexagonal exotic superconductors,” *Journal of Experimental and Theoretical Physics* **74**, 1059 (1992), [Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, 101, 1978 (1992)].

[54] R. Joynt, “Nature of the Lower Superconducting Transition in UPt$_3$,” *EPL (Europhysics Letters)* **16**, 289 (1991).

[55] R. Joynt and L. Taillere, “The superconducting phases of UPt$_3$,” *Rev. Mod. Phys.* **74**, 235–294 (2002).

[56] M. Ichioka, M. Machida, and J. A. Sauls, “Vortex States of Chiral p-wave Superconductors,” *Journal of Physics: Conference Series* **400**, 022031 (2012).

[57] V. Fernández Becerra, E. Sardella, F. M. Peeters, and J. Garaud and E. Babaev, “Skyrmionic state and stable multi-quanta vortices in chiral p-wave superconductors,” *Phys. Rev. B* **93**, 014518 (2016).

[58] J. Nocedal and S. J. Wright, *Numerical Optimization*, second edition ed., Springer Series in Operations Research (Springer, 1999).

[59] J. A. Sauls and M. Eschrig, “Vortices in chiral, spin-triplet superconductors and superfluids,” *New Journal of Physics* **11**, 075008 (2009).

[60] D. V. Hutton, *Fundamentals of Finite Element Analysis*, Engineering Series (McGraw-Hill, 2003).

[61] J. Reddy, *An Introduction to the Finite Element Method* (McGraw-Hill Education, 2005).

[62] J. Noedel and S. J. Wright, *Numerical Optimization*, second edition ed., Springer Series in Operations Research (Springer, 2015).

[63] M. Ichioka, Y. Matsunaga, and K. Machida, “Vortex State in Double Transition Superconductors,” *Phys. Rev. Lett.* **92**, 157001 (2004).

[64] M. Ichioka, Y. Matsunaga, and K. Machida, “Magnetization process in a chiral p-wave superconductor with multidomains,” *Phys. Rev. B* **71**, 172510 (2005).

[65] Note that this is rigorously true in infinite domains, while in finite domains there is the possibility to change the topological sector by entering/exiting topological defects (vortices) through the boundary of the domain.

[66] Approaching H_{c2} requires large fields, which can make numerical investigations difficult. Indeed, when applying higher fields, the domain is populated by more and more vortices. As a result, the complex fields have larger and larger winding number at the boundary. Thus, in order to preserve a reasonable accuracy (number of boundary points per winding number) one would need to refine the mesh which would result in a dramatic slowdown of the numerics. Instead, horizontal displacement in the (H,T)-phase diagram allows to approach H_{c2} without special need to refine the mesh.

[67] A. Bouhon and M. Sigrist, “Influence of the domain walls on the Josephson effect in Sr$_2$RuO$_4$, “*New Journal of Physics* **12**, 043031 (2010).