The interpretation of anaphors depends on their antecedents as the semantic value that an anaphor eventually conveys is co-specified by the value of its antecedent. Interestingly, when occurring in a given syntactic position, different anaphors may have different sets of admissible antecedents. Such differences are the basis for the categorization of anaphoric expressions according to their anaphoric capacity, being important to determine what are the sets of admissible antecedents and how to represent and process this anaphoric capacity for each type of anaphor.

From an empirical perspective, these constraints stem from what appears as quite cogent generalisations and exhibit a universal character, given their cross linguistic validity. From a conceptual point of view, in turn, the relations among binding constraints involve non-trivial cross symmetry, which lends them a modular nature and provides further strength to the plausibility of their universal character. This kind of anaphoric binding constraints appears thus as a most significant subset of natural language knowledge, usually referred to as binding theory.

This paper provides an integrated overview of these constraints holding on the pairing of nominal anaphors with their admissible antecedents that are based on grammatical relations and structure. Along with the increasing interest on neuro-symbolic approaches to natural language, this paper seeks to contribute to revive the interest on this most intriguing research topic.

1 Introduction

It is an inherent feature of natural languages that their expressions have the potential to convey a range of semantic values which their usage in context will constrain in such a way that some value is eventually circumscribed and expressed. This is exemplified in the minimal contrast below, where out of its possible semantic values, the expression flying planes express one of such values in each context.

(1)

a. Flying planes are complex machines.

b. Flying planes is a difficult task.

Like other natural language expressions, anaphors are also semantically polyvalent. They form however a class of expressions whose context sensitiveness is rather peculiar in as much as for them to eventually express a semantic value, more than being circumscribed from an intrinsic repertoire of potential values, that value is co-specified by the semantic value of other expressions, which are for this reason termed as their antecedents. This is exemplified in the contrasts below with the anaphor it, that could be continued at will. This anaphor inherently contributes the information that its denotation is singular and non human. Yet in each different context, it eventually conveys a different semantic value as a result of that value being co-specified by the semantic value of a different antecedent (in italics),

(2)

a. John pulled off the wheel. It was heavy.

b. Paul bought a computer. It has a touch screen.

c. Peter got a ticket that Paul wanted to buy. It is for Saturday night.

d. ...

Adding to this semantic peculiarity, the dependency of anaphors with respect to their antecedents may exhibit the syntactic peculiarity of being a long-distance relation. This is illustrated with the set of contrasts below, that could be continued at will, where the anaphor her and its antecedent anaphor Mary can be separated by a string of words of arbitrary length.
Anaphoric Binding: an integrated overview

(3) a. Mary thinks that Peter saw her.
 b. Mary thinks that John knows that Peter saw her.
 c. Mary thinks that Paul believes that John thinks that Peter saw her.
 d. ...

In large enough contexts, an anaphoric expression may have more admissible antecedents than the antecedent that happen to eventually co-specify its interpretation. This receives a minimal example in the sentence below, where the anaphor *herself* has two admissible antecedents, out of which one will eventually end up being the selected antecedent given the respective utterance context (not represented below).

(4) Claire described Joan to herself.

Interestingly, when occurring in a given syntactic position, different anaphoric expressions may have different sets of admissible antecedents. This is illustrated in the emblematic examples below, with two anaphoric expressions from English — *herself* and *her* — occurring in the same position, each with different sets of admissible antecedents.

(5) Mary’s friend knows that Paula’s sister described Joan to herself / her.

For the expression *herself*, either Joan or Paula’s sister is an admissible antecedent. For *her*, its set of admissible antecedents includes instead Paula, Mary’s friend and Mary. Further examples with two anaphoric expressions occurring in the same position and each with different sets of admissible antecedents are the following:

(6) Mary’s friend knows that Paula’s sister saw her / the little girl.

For the expression *the little girl*, either Paula or Mary is an admissible antecedent. For *her*, its set of admissible antecedents includes additionally Mary’s friend.

Such differences in terms of sets of admissible antecedents are the basis for the partition of nominal anaphoric expressions into different groups according to their anaphoric capacity. It has been an important topic of research to determine how many such groups or types of anaphoric expressions there are, what are the sets of admissible antecedents for each
type, what expressions belong to which type in each language, and how to represent and process this anaphoric capacity.

The regularities emerging with this inquiry have been condensed in a handful of anaphoric binding constraints, or principles, which seek to capture the relative positioning of anaphors and their admissible antecedents in grammatical representations. From an empirical perspective, these constraints stem from what appears as quite cogent generalisations and exhibit a universal character, given their cross-linguistic validity. From a conceptual point of view, in turn, the relations among binding constraints involve non-trivial cross-symmetry, which lends them a modular nature and provides further strength to the plausibility of their universal character. Accordingly, anaphoric binding principles appear as one of the most significant subsets of grammatical knowledge, usually termed as Binding Theory.

This paper provides a condensed yet systematic and integrated overview of these grammatical constraints on anaphoric binding, that is of the grammatical constraints holding on the pairing of nominal anaphors with their admissible antecedents. The integration of these anaphoric binding constraints in a formally sound and computationally tractable way, as well as of the appropriate semantic representation of anaphors are also covered in the present summary. On the basis of such overview, the ultimate goal of this paper is to provide an outlook into promising avenues for future research on anaphoric binding and its modelling — both from symbolic and neural perspectives.

In the next section, Section 2, the empirical generalisations captured in the binding constraints are introduced, together with the relevant auxiliary notions and parameterisation options.

The key ingredients for the integration of binding constraints into grammar are discussed in Section 3, and a detailed account of this integration is provided in the following Section 4 — which is further illustrated with the support of the working example in the Appendix.

1 Branco 2000c, i.a.
2 Branco 2005a.
3 To support this presentation, the frameworks adopted are Head-Driven Phrase Structure Grammar (Pollard & Sag 1994), for syntax, and Minimal Recursion Semantics (Copestake et al. 2005) and Underspecified Discourse Representation Theory (Frank & Reyle 1995), for semantics. The adoption of or transposition to other sufficiently expressive and well defined frameworks will be quite straightforward.
Section 5 is devoted to discuss how the account of anaphoric binding presented in the previous sections ensures a neat interface of grammar with reference processing systems, and thus supports a seamlessly articulation of binding constraints with anaphora resolution.

In the penultimate section, Section 6, additional binding constraints are introduced, that hold from the perspective of the antecedents, rather from the perspective of the anaphors, together with the respective supporting empirical evidence.

The final Section 7 is devoted to provide an outlook into promising avenues for future research that may further enhance our understanding of and our coping with anaphoric binding and its modelling — both symbolic and neural.

2 Empirical generalisations

Since the so called integrative approach to anaphora resolution was set up, it is common wisdom that factors determining the antecedents of anaphors divide into filters, or hard constraints, and preferences, or soft constraints. The former exclude impossible antecedents and help to circumscribe the set of admissible antecedents; the latter interact to converge on the eventual antecedent among the admissible antecedents.

So-called binding principles are a notorious subset of hard constraints on anaphora resolution: they capture generalisations concerning the constraints on the relative positioning of anaphors with respect to their admissible antecedents in the grammatical geometry of sentences.

We present below the definition of binding constraints, which resorts to a few auxiliary notions — locality, o-command, o-binding —, whose definition, in turn, are presented right afterwards.

There are four such constraints on the anaphoric capacity of nominals, named Principle A, Z, B and C. They induce a partition of the set of anaphors into four classes. According to this partition, every nominal...
anaphor is of one of the following anaphoric types: short-distance reflexive, long-distance reflexive, pronoun, or non-pronoun.

The definition of each binding principle in (7)-(10) is paired with an illustrative example with key grammatical contrasts empirically supporting the respective generalisation. In particular, Principle A in (7) is paired with an example with the short-distance reflexive *himself*, Principle Z in (8) is paired with the Portuguese long-distance reflexive *ele próprio*, Principle B in (9) with the pronoun *him*, and Principle C in (10) with the non pronoun *the boy*. These examples will be discussed below right after the definitions of the auxiliary notions have been presented.

(7) **Principle A:** A locally o-commanded short-distance reflexive must be locally o-bound.

...$X_x...[Lee_i’s$’ friend]$_j$ thinks $[[Max_k’s$’ brother]l likes *himself*$_{x/i/j/k/l}$].

(8) **Principle Z:** An o-commanded long-distance reflexive must be o-bound.

...$X_x...[O$ amigo do Lee$_i$]j acha $[que$ o irmão do Lee$]$ thinks $[the$ brother of the Max$_k$]l gosta dele *propriostier$*_{x/i/j/k/l}$]. (Portuguese) Max likes of him self

’...$X_x...[Lee_i’s$’ friend]j thinks $[[Max_k’s$’ brother]l likes him$_{x/i/j/k/l}$ / *himself*$_j$].’

(9) **Principle B:** A pronoun must be locally o-free.

...$X_x...[Lee_i’s$’ friend]j thinks $[[Max_k’s$’ brother]l likes *him*$_{x/i/j/k/l}$].

(10) **Principle C:** A non-pronoun must be o-free.

...$X_x...[Lee_i’s$’ friend]j thinks $[[Max_k’s$’ brother]l likes *the boy*$_{x/i/j/k/l}$].

2.1 Binding, coindexation, locality, command and crosslinguistic variation

The empirical generalisations presented above result from linguistic analysis supported by empirical evidence of which the respective examples above are just a few key illustrative cases. These examples will be discussed in detail
Anaphoric Binding: an integrated overview

in the next subsection, thus illustrating the analysis underlying the binding principles above.

The above definition of binding principles is rendered with the help of a few auxiliary notions. For many of these auxiliary notions, their final value or definition is amenable to be set according to a range of options: as briefly exemplified below, this parameterisation may be driven by the particular language at stake, by the relevant predicator selecting the anaphor, by the specific anaphoric form, etc.

These are the definitions of those auxiliary notions:

Binding O-binding is such that “x o-binds y iff x o-commands y and y are coindexed” (o-freeness is non o-binding)\(^6\)

Coindexation Coindexation is meant to represent an anaphoric link between the expressions with the same index. A starred index, in turn, indicates that the anaphoric link represented is not acceptable, as in the following examples:

(11) a. John\(_i\) said that Peter\(_j\) shaved himself\(_{i/j}\).
 b. John\(_i\) said that Peter\(_j\) shaved him\(_{i/+j}\).

Turning to example (9), for instance, him\(_k\) and Max\(_k\) are coindexed with \(k\), thus indicating their anaphoric binding and representing that Max is the antecedent of him. The starred index \(*l\), in turn, indicates that the coindexation between Max’s brother\(_l\) and him\(_{*l}\) is not felicitous, and thus that Max’s brother is not an admissible antecedent of him in (9).

In the examples above, ‘...X\(x\)...’ represents a generic, extra-sentential antecedent, available from the context.

Plural anaphors with so-called split antecedents, that has concomitantly more than one antecedent, are represented with a sum of indexes as a subscript, as exemplified below by them being interpreted as referring to John and Mary\(^7\)

(12) John\(_i\) told Mary\(_j\) that Kim talked about them\(_{i+j}\).

\(^6\) (Pollard & Sag 1994: p.279).

\(^7\) When at least one of the antecedents in a split antecedent relation does not comply with the relevant binding principle (and there is at least one that complies with it), the acceptability of that anaphoric link degrades. Apparently, the larger the number of antecedents that violate the binding constraint the less acceptable is the anaphoric link: while both examples below are not fully acceptable, two coindexations out of three, via \(j\) and \(k\), in violation of the Principle B render example b. less acceptable than example a., which has one coindexation only, via \(k\), in violation of that binding constraint (Seeley 1993: 313):
Locality The *local domain* of an anaphor results from the partition of sentences and associated grammatical geometry into two zones of greater or less proximity with respect to the anaphor.

Typically, the local domain coincides with the immediate selectional domain of the predicator directly selecting the anaphor. In the following example, the local domain of *him* is explicitly marked within square brackets:

(13) John knows that [Peter described him].

In the example in (7), for instance, *Max’s brother* is immediately selected by *likes*, the predicator that immediately selects *himself*, while *Lee’s friend* is not. Hence, the first is in the local domain of *himself*, while the latter is not.

In some cases, there may be additional requirements that the local domain is circumscribed by the first selecting predicator that happens to be finite, bears tense or indicative features, etc. One such example can be the following:

(14) a. Jón segir að [Maria elska sig_]. (Icelandic)
 Jón says-IND that Maria loves-IND himself
 'Jón says that [Maria loves himself_].'

b. [Jón segir að Maria elski sig_].
 Jón says-IND that Maria loves-SUBJ himself
 '[Jón says that Maria loves himself_].'

In the first sentence above, the verb in the embedded clause is Indicative and the local domain of its Direct Object is circumscribed to this clause as the reflexive cannot have the Subject of the upwards clause as its antecedent. The second sentence is identical to the first one except that the mood of the embedded verb is now Subjunctive. This leads to a change in the local domain of the reflexive: it can now have also the upwards Subject as its antecedent.

As for plural reflexives, which in turn comply with Principle A, they accept split antecedents only in exempt positions — on the notion of exemption, see Section 2.3.

8 Vd. (Manzini & Wexler 1987; Koster & Reuland 1991; Dalrymple 1993) for further details.

9 (Manzini & Wexler 1987 p.47).
Anaphoric Binding: an integrated overview

antecedent, thus revealing that its local domain is determined by the first selecting verb in the Indicative, which happens now to be the verb of the upwards clause.

In some other languages, there are anaphors whose local domain is the immediate selectional domain not of the directly selecting predicator but of the immediately upwards predicator, irrespective of the inflectional features of the directly or indirectly selecting predicators. This seems to be the case of the Greek *ο idhios*.10

(15) Ο Yannis, ipe stin Maria [oti o Costas, pistevi [oti o the Yannis told the Maria that the Costas believes that the Vasilis,k aghapa ton idhio,??i/j/*k]]. (Greek)
Vasilis loves the same.

'Yannis told Maria that [Costas believes that [Vasilis loves him??i/j/*k]].’

Languages shows diversity concerning which of these options are materialized and which grammatical and lexical means are brought to bear.11 Additionally, not all languages have anaphors of every one of the anaphoric types: For instance, English is not known to have long-distance reflexives.

Command *O-command* is a partial order defined on the basis of the obliqueness hierarchies of grammatical functions, possibly embedded in each other along the relation of subcategorisation: “Y o-commands Z just in case either Y is less oblique than Z; or Y o-commands some X that subcategorises for Z; or Y o-commands some X that is a projection of Z.”12

The grammatical function Subject is less oblique than the Direct Object, the Direct Object is less oblique than the Indirect Object, etc., thus establishing a so-called obliqueness hierarchy. The obliqueness hierarchy of grammatical functions is represented in the value of ARG-ST feature in as much as the arguments are ordered from those whose grammatical function is less oblique to those whose function is more oblique. As discussed in detail in Section 4 and in connection with the working example in the Appendix, ARG-ST feature value plays a crucial role in the formalization and explicit integration of binding principles into grammar.13

Accordingly, the Subject o-commands the Direct Object, the Direct Object o-commands the Indirect Object, etc.; and in a multi-clausal sentence,

10 Alexis Dimitriadis p.c. See also Iatridou 1986 Varlokosta & Hornstein 1993.
11 Dimitriadis et al. 2005.
12 (Pollard & Sag 1994 p.279).
13 For further discussion of the notion of obliqueness of grammatical functions as well as further references on this topic, see Pollard & Sag 1987 Sec.5.2).
the arguments in the upwards clauses o-command the arguments in the successively embedded clauses.

(16) [[John’s friend] said that [[Peter’s brother] presented [Martin’s cousin] to him]].

In the example above, John’s friend o-commands Peter’s brother, Peter, Martin’s cousin, Martin and him. Peter’s brother locally o-commands Martin’s cousin and him, and (non-locally) o-commands Martin. Neither John, Peter, Martin nor him is o-commanding any nominal in this example.

In the example of (8), for instance, the Portuguese long-distance reflexive ele próprio, which is the Object of the embedded clause, is o-commanded by o irmão do Max (Max’s brother), the Subject of that clause, and by o amigo do Lee (Lee’s friend), the Subject of the upwards clause. Lee and Max, in turn, do not o-command this reflexive in this example.

2.2 Binding principles

With the definition of the auxiliary notions above in place, the definition of binding principles in (7)-(10) is now complete and it is possible to appreciate how the respective examples instantiate them.

Principle A The example in (7) shows that the anaphoric capacity of himself complies with the anaphoric discipline captured by Principle A: if it is locally o-commanded, it has to be locally o-bound, i.e. only locally o-commanders can be its admissible antecedents if it happens to be locally o-commanded.

Max’s brother is in the local domain of himself because it is immediately selected by the predicator likes which also immediately selects himself. Moreover, Max’s brother, in a Subject position, o-commands himself, in an Object position. Max’s brother is thus a local o-commander of himself, and hence it is an admissible antecedent of himself.

The other nominals in this example are not local o-commanders of himself: both Lee and Lee’s friend are selected by the main clause predicator thinks, not by the predicator likes which is immediately selecting himself and are thus not in its local domain; Max in turn, given it is embedded inside the local Subject, it is not immediately selected by the predicator likes that is immediately selecting himself. Hence, none of the nominals in the sentence other than Max’s brother happen to be local o-commanders of himself and thus are not one of its admissible antecedents.
Also any other antecedent candidate eventually available in the extrapositional context is not a local o-commander of *himself* and thus it is not one of its admissible antecedents.

Given the anaphoric capacity of *himself* complies with the anaphoric discipline captured by Principle A, it belongs to the class of short-distance reflexives.

In connection with Principle A, it is also worth signalling that it is not the case that only Subjects can be local o-commanders of short-distance reflexives, as illustrated below.

(17)

\[\begin{align*}
\text{a. Peter}_i & \text{ didn’t talk to John}_j \text{ about himself}_{i/j}. \\
\text{b. About himself}_{i/j}, \text{ Peter}_i & \text{ didn’t talk to John}_j.
\end{align*} \]

In the examples in (17), *John* and *himself* are in the same local domain. Moreover, *John*, in the Object position, is less oblique than *himself*, in the Indirect Object position. Hence, *John* is a local o-commander of the reflexive and qualifies as one of its admissible antecedents, together with *Peter*, in the Subject position.

The absence of contrast between (17a) and (17b) is a central piece of evidence that the command relation for anaphoric binding is based on the obliqueness hierarchy of grammatical functions (o-command) rather than on a configurational hierarchy based on surface syntactic structure (c-command).

Principle Z The example in (8) shows that the anaphoric capacity of the Portuguese nominal *ele próprio* complies with the anaphoric discipline captured by Principle Z: if it is o-commanded, it has to be o-bound, i.e. only o-commanders can be its admissible antecedents if it happens to be o-commanded.

ele próprio is (locally) o-commanded by *o irmão do Max* because both are selected by the predicator *gosta* and *o irmão do Max* is less oblique than

14 Binding principles based on o-command, rather than on c-command as proposed in (Chomsky 1980) and (Chomsky 1986), is a hallmark of the analysis in (Pollard & Sag 1992).

The analysis based on c-command incorrectly predicts that anaphoric links like those in (17b) would not be acceptable, because the admissible antecedents of *himself* do not c-command it (it is *himself* that c-commands them instead).

The analysis based on c-command also incorrectly predicts that the anaphoric link between *himself* and *John* in (17a) would not be acceptable, because *John* does not c-command *himself*.

For a detailed discussion, see (Pollard & Sag 1994: Chap.6).
ele próprio. ele próprio is also o-commanded by o amigo do Lee because o amigo do Lee is selected by the predicator of the upwards clause acha, which selects the embedded clause whose predicator selects ele próprio, and o amigo do Lee is thus less oblique than ele próprio in the composite obliqueness hierarchy.

The other nominals in this example are not o-commanders of ele próprio: both Lee and Max are embedded inside arguments of the relevant predicators acha and gosta but are not arguments of them. Hence, none of the nominals in the sentence other than o amigo do Lee and o irmão do Max happen to be o-commanders of ele próprio and thus are not one of its admissible antecedents.

Also any other antecedent candidate eventually available in the extrasentential context is not an o-commander of ele próprio and thus it is not one of its admissible antecedents.

Given the anaphoric capacity of ele próprio complies with the anaphoric discipline captured by Principle Z, it belongs to the class of long-distance reflexives.

Principle B The example in (9) shows that the anaphoric capacity of him complies with the anaphoric discipline captured by Principle B: it has to be locally o-free, i.e. its local o-commanders cannot be its admissible antecedents.

In that example, Max’s brother is the only local o-commander of him because Max’s brother is the only argument of the predicator likes other than him, and is less oblique than him.

The other nominals in this example are not local o-commanders of him: neither Lee’s friend, Lee or Max are immediately selected by likes.

Also any other antecedent candidate eventually available in the extrasentential context is not a local o-commander of him.

Hence, in this example all antecedent candidates, sentential and non sentential, are admissible antecedents of him except Max’s brother.

Given the anaphoric capacity of him complies with the anaphoric discipline captured by Principle B, it belongs to the class of pronouns.

Principle C The example in (10) shows that the anaphoric capacity of the boy complies with the anaphoric discipline captured by Principle C: it has to be o-free, i.e. its o-commanders are not admissible antecedents.

In that example, Lee’s friend and Max’s brother are the only o-commanders of the boy. Lee’s friend is selected by the predicator of the upwards clause likes, which selects the embedded clause whose predicator selects the boy.
Max’s brother, in turn, is the only argument immediately selected by the predicator likes other than the boy; and both Lee’s friend and Max’s brother are less oblique than the boy.

The other nominals in this example are not o-commanders of the boy: neither Lee or Max are immediately selected by thinks or likes.

Also any other antecedent candidate eventually available in the extra-sentential context is not an o-commander of the boy.

Hence, in this example all antecedent candidates, sentential and non-sentential, are admissible antecedents of the boy except Lee’s friend and Max’s brother.

Given the anaphoric capacity of the boy complies with the anaphoric discipline captured by Principle C, it belongs to the class of non pronouns.

2.3 O-bottom positions: reshuffling and exemption

For the interpretation of an anaphor to be accomplished, an antecedent has to be found for it. Such an antecedent is to be picked from the set of its o-commanders, if the anaphor is a long-distance reflexive, or from the set of its local o-commanders, if it is a short-distance reflexive.

This requirement may not be satisfied in some specific cases, namely when the reflexive occurs in a syntactic position such that it is the least element of its o-command order, in an o-bottom position for short. In such circumstances, it has no o-commander (other than itself, if the o-command relation is formally defined as a reflexive relation) to qualify as its antecedent.

That is the motivation for the conditional formulation of Principles A and Z, in (7) and (8) respectively: a (short/) long-distance reflexive has to be (locally/) o-bound if it is (locally/) o-commanded. In case it is not (locally/) o-commanded, there is no imposition concerning their admissible antecedents following from Principles A and Z.

Reshuffling As a consequence, in some cases, the binding domain for the reflexive which happens to be the least element of its local obliqueness order may be reshuffled, being reset as containing the o-commanders of the reflexive in the domain circumscribed by the immediately upwards predicator. One such case for a nominal domain can be found in the following example:

15 [Branco 2005b].
16 Tibor Kiss p.c., which is a development with regards to his data in (Kiss 2001).
António Branco

(18) a. Gernot\textsubscript{i} dachte, dass Hans\textsubscript{j} dem Ulrich\textsubscript{k} [Maria\textsubscript{l} Bild von Gernot thought that Hans the Ulrich Maria’s picture of sich\textsubscript{*i/*j/*k/l} überreichte. (German)

self gave

‘Gernot\textsubscript{i} thought that Hans\textsubscript{j} gave Ulrich\textsubscript{k} [Maria’s picture of himself\textsubscript{*i/*j/*k/l}].’

b. Gernot\textsubscript{i} dachte, dass [Hans\textsubscript{j} dem Ulrich\textsubscript{k} ein Bild von Gernot thought that Hans the Ulrich a picture of sich\textsubscript{*i/*j/*k} überreichte].

self gave

‘Gernot\textsubscript{i} thought that [Hans\textsubscript{j} gave Ulrich\textsubscript{k} [a picture of himself\textsubscript{*i/*j/*k}]].’

In the first sentence above, the short-distance reflexive is locally o-commanded by Maria and only this nominal can be its antecedent. In the second sentence, the reflexive is the first element in its local obliqueness hierarchy and its admissible antecedents, which form now its local domain, are the nominals in the obliqueness hierarchy of the immediately upwards predicator.

The null subject in languages like Portuguese is another example of a short-distance reflexive that is in an o-bottom position and whose local domain is reshuffled:17

(19) O médico\textsubscript{i} disse-me que [o director do Pedro\textsubscript{j} k ainda não the doctor told-me that the director of the Pedro yet not reparou [que ∅ \textsubscript{*i/*j/*k} cometeu um erro]]. (Portuguese)

noticed that made a mistake.

‘The doctor\textsubscript{i} told me [that Pedro’s director\textsubscript{k} didn’t notice yet [that he\textsubscript{*i/*j/*k} made a mistake]].’

In the example above, as the null reflexive is in an o-bottom position, its local domain gets reshuffled to include the immediately upwards o-commander Pedro’s director. Once it is thus o-commanded, in accordance do Principle A, the null reflexive cannot take other nominal in the sentence, viz. the doctor or Pedro, as its admissible antecedent given none of these o-commands it.

Exemption In some other cases, this resetting of the binding domain is not available. In such cases, the reflexive is in the bottom of its local

17[Branco 2007].
obliqueness order and is observed to be exempt of its typical binding regime: the reflexive may take antecedents that are not its o-commanders or that are outside of its local or immediately upward domains as illustrated in the following example:

(20) Mary\textsubscript{i} thought the artist had done a bad job, and was sorry that her parents came all the way to Columbus just to see the portrait of herself\textsubscript{i}.

In an exempt position, a reflexive can even have so-called split antecedents, as illustrated in the following example with a short-distance reflexive:

(21) Mary\textsubscript{i} eventually convinced her sister Susan\textsubscript{j} that John had better pay visits to everybody except themselves\textsubscript{i+j}.

That is an option not available for reflexives in non exempt positions:

(22) Mary\textsubscript{i} described\textsubscript{j} John to themselves\textsubscript{*}(i+j).

Some long-distance reflexives may also be exempt from their binding constraint if they occur in the bottom of their o-command relation. In such cases, they can have an antecedent in the previous discourse sentences or in the context, or a deictic use, as illustrated in the following example:

(23) [O Pedro e o Nuno]\textsubscript{i} também conheceram ontem a Ana. Eles próprios\textsubscript{i} ficaram logo a gostar muito dela. (Portuguese)

'[Pedro and Nuno]\textsubscript{i} also met Ana yesterday. They\textsubscript{i} liked her very much right away.'

Such options are not available in non exempt positions:

18 [Pollard & Sag 1994: p.263].
19 [Golde 1999: p.73].
20 [Zribi-Hertz 1989: p.42].
21 For further details, vd. [Branco & Marrafa 1999].
Admittedly, an overarching interpretability condition is in force in natural languages requiring the “meaningful” anchoring of anaphors to antecedents. Besides this general requirement, anaphors are concomitantly ruled by specific constraints concerning their particular anaphoric capacity, including the sentence-level constraints in (7)-(10), i.e. the binding principles.

When reflexives are in o-bottom positions, an o-commander (other than the reflexive itself) may not be available to function as antecedent and anchor their interpretation. Hence, such specific binding constraints, viz. Principle A and Z, cannot be satisfied in a “meaningful” way and the general interpretability requirement may supervene them. As a consequence, in cases displaying so-called exemption from binding constraints, o-bottom reflexives appear to escape their specific binding regime to comply with such general requirement and its interpretability be rescued.

The anaphoric links of exempt reflexives have been observed to be governed by a range of non sentential factors (from discourse, dialogue, non linguistic context, etc.), not being determined by the sentence-level binding principles in (7)-(10).\(^{22}\)

2.4 O-command: alternations and subject-orientedness

Alternations In languages like English, the o-command order can be established over the obliqueness hierarchies of active and passive sentences alike:\(^{23}\)

\[(25) \begin{align*}
 \text{(a)} & \quad \text{John} \text{"shaved himself"} \\
 \text{(b)} & \quad \text{John} \text{"was shaved by himself"}
\end{align*}\]
Anaphoric Binding: an integrated overview

The obliqueness hierarchy of grammatical functions is represented in ARG-ST and in both ARG-ST values of (25a) and of (25b), John appears as the Subject and qualifies as a local o-commander of himself, and thus as an admissible antecedent of this reflexive.

In some other languages, only the obliqueness hierarchy of a given syntactic alternation is available to support the o-command order relevant for binding constraints in both alternations.

This is the case, for example, of the alternation active/objective voice in Toba Batak. In this language, a reflexive in Object position of an active voice sentence can have the Subject as its antecedent, but not vice-versa.

(26) a. mang-ida diri-na\textsubscript{i} si John\textsubscript{i}. (Toba Batak)
[ACTIVE-saw himself\textsubscript{OBJECT}]\textsubscript{VP} PM John\textsubscript{SUBJECT}
'John\textsubscript{i} saw himself\textsubscript{i}.'

b. mang-ida si John\textsubscript{i} diri-na\textsubscript{+i}.
[ACTIVE-saw PM John\textsubscript{OBJECT}]\textsubscript{VP} himself\textsubscript{SUBJECT}

Taking the objective voice paraphrase corresponding to the active sentence above, the binding pattern is inverted: a reflexive in Subject position can have the Object as its antecedent, but not vice-versa, thus revealing that the obliqueness hierarchy relevant for the verification of its binding constraint remains the hierarchy of the corresponding active voice sentence above:

(27) a. di-ida diri-na\textsubscript{+i} si John\textsubscript{i}.
[OBJECTIVE-saw himself\textsubscript{OBJECT}]\textsubscript{VP} PM John\textsubscript{SUBJECT}

b. di-ida si John\textsubscript{i} diri-na\textsubscript{i}.
[OBJECTIVE-saw PM John\textsubscript{OBJECT}]\textsubscript{VP} himself\textsubscript{SUBJECT}

'John\textsubscript{i} saw himself\textsubscript{i}.'

Subject-orientedness O-command may take the shape of a linear or non linear order depending on the specific obliqueness hierarchy upon which it is realised.

In a language like English, the arguments in the subcategorisation frame of a predicator are typically arranged in a linear obliqueness hierarchy.

In some other languages, the obliqueness hierarchy upon which the o-command order is based may happen to be non linear: in the subcategorisation frame of a predicator, the Subject is less oblique than any

24 (Manning & Sag 1999 p.72).
other argument while the remaining arguments are not comparable to each other under the obliqueness relation. As a consequence, in a clause, a short-distance reflexive with an Indirect Object grammatical function, for instance, may only have the Subject as its antecedent, its only local o-commander. This Subject-orientedness effect induced on the anaphoric capacity of reflexives by the non linearity of the o-command relation can be observed in contrasts like the following:

(28) a. Lars\textsubscript{i} fortalte Jon\textsubscript{j} om seg selv\textsubscript{i/j}. (Norwegian)
 Lars told Jon about self selv
 ’Lars\textsubscript{i} told Jon\textsubscript{j} about himself\textsubscript{i/j}.’

b. Lars\textsubscript{i} fortalte Jon\textsubscript{j} om ham selv\textsubscript{si/j}.
 Lars told Jon about him selv
 ’Lars\textsubscript{i} told Jon\textsubscript{j} about him\textsubscript{si/j}.’

In the first sentence above, the reflexive cannot have the Direct Object as its antecedent given that the Subject is its only local o-commander in the non linear obliqueness hierarchy. In the second sentence, under the same circumstances, a pronoun presents the symmetric pattern: it can have any co-argument as its antecedent except the Subject, its sole local o-commander.

3 Binding Constraints at the Syntax-Semantics Interface

Like other sorts of constraints on semantic composition, binding constraints impose grammatical conditions on the interpretation of certain expressions — anaphors, in the present case — based on syntactic geometry. This should

25 For a thorough argument and further evidence motivated independently of binding facts see (Branco 1996, Branco & Marrafa 1997, Branco 2000c). In some languages, there can be an additional requirement that the Subject be animate to qualify as a commander to certain anaphors. On this, see (Huang & Tang 1991, Xue et al. 1994) about Chinese ziji, among others.

26 Lars Hellan p.c. See also (Hellan 1988) p.67.

27 For an analysis of the Subject-orientedness of French se resorting to a notion of s-command, see (Abeillé, Godard, Miller, et al. 1998, Abeillé, Godard & Sag 1998).

28 For a discussion of proposals in the literature that have tried to root binding principles on non-grammatical, cognitive search optimisation mechanisms, and their pitfalls, see (Branco 2004, 2003, 2000a).
not be seen, however, as implying that they express grammaticality requirements. By replacing, for instance, a pronoun by a reflexive in a sentence, we are not turning a grammatical construction into an ungrammatical one, even if we assign to the reflexive the antecedent adequately selected for the pronoun. In that case, we are just asking the hearer to try to assign to that sentence a meaning that it cannot express, in the same way as what would happen if we asked someone whether he could interpret *The red book is on the white table* as describing a situation where a white book is on a red table.

In this example, given how they happen to be syntactically related, the semantic values of *red* and *table* cannot be composed in a way that this sentence could be used to describe a situation concerning a red table, rather than a white table.

Likewise, if we take the sentence *John thinks Peter shaved him*, given how they happen to be syntactically related, the semantic values of *Peter* and *him* cannot be composed in a way that this sentence could be used to describe a situation where John thinks that Peter shaved himself, i.e. Peter, rather than a situation where John thinks that Peter shaved other people, e.g. Paul, Bill, etc., or even John himself.

The basic difference between these two cases is that, while in the first the composition of the semantic contributions of *white* and *table* (for the interpretation of their NP *white table*) is constrained by local syntactic geometry, in the latter the composition of the semantic contributions of *John* and *him* (for the interpretation of the NP *him*) is constrained by non-local syntactic geometry.

These grammatical constraints on anaphoric binding should thus be taken as conditions on semantic interpretation given that they delimit (non-local) aspects of meaning composition, rather than aspects of syntactic wellformedness.

These considerations leads one to acknowledge that, semantically, an anaphor should be specified in the lexicon as a function whose argument is a suitable representation of the context — providing a semantic representation of the NPs available in the discourse vicinity —, and delivers both an update of its anaphoric potential — which is instantiated as the set of its

29 This approach is in line with (Gawron & Peters 1990), and departs from other approaches where binding constraints have been viewed as wellformedness conditions, thus belonging to the realm of Syntax: “[they] capture the distribution of pronouns and reflexives” (Reinhart & Reuland 1993 p.657).
grammatically admissible antecedents — and an update of the context, against which other NPs are interpreted. Naturally, all in all, there will be four of such functions available to be lexically associated to anaphors, each corresponding to one of the different four classes of anaphors, in accordance with the four binding constraints A, Z, B or C.

3.1 Semantic patterns

For an anaphoric nominal \(w \), the relevant input context may be represented in the form of a set of three lists of reference markers, \(A, Z \) and \(U \). List \(A \) contains the reference markers of the local o-command order where \(w \) is included, ordered according to their relative grammatical obliqueness; \(Z \) contains the markers of the (local and non local) o-command order where \(w \) is included, i.e. reference markers organised in a possibly multi-clausal o-command relation, based upon successively embedded clausal obliqueness hierarchies; and \(U \) is the list of all reference markers in the discourse context, possibly including those not linguistically introduced.

The updating of the context by an anaphoric nominal \(w \) may be seen as consisting simply in the incrementing of the representation of the context, with a copy of the reference marker of \(w \) being added to the three lists above.

The updating of the anaphoric potential of \(w \), in turn, delivers a representation of the contextualised anaphoric potential of \(w \) in the form of the list of reference markers of its admissible antecedents. This list results from the binding constraint associated to \(w \) being applied to the relevant representation of the context of \(w \).

Given this setup, the algorithmic verification of binding constraints consists of a few simple operations, and their grammatical specification will consist thus in stating each such sequence of operations in terms of the grammar description formalism.

If the nominal \(w \) is a short-distance reflexive, its semantic representation is updated with \(A' \), where \(A' \) contains the reference markers of the o-commanders of \(w \) in \(A \).

30 (Branco 1998b; 2000b; 2002a).
31 This is in line with (Johnson & Klein 1990) concerning the processing of the semantics of nominals, and also the spirit (but by no means the letter) of the dynamic semantics framework — vd. (Chierchia 1995) and (Stalnaker 1998) i.a.
32 See (Karttunen 1976; Kamp 1981; Heim 1982; Seuren 1985; Kamp & Reyle 1993) for the notion of reference marker.
Anaphoric Binding: an integrated overview

If \(w \) is a long-distance reflexive, its semantic representation includes \(Z' \), such that \(Z' \) contains the o-commanders of \(w \) in \(Z \).

If \(w \) is a pronoun, its semantics should include the list of its non-local o-commanders, that is the list \(B = U - (A' \cup [r\text{-mark}_w]) \) is encoded into its semantic representation, where \(r\text{-mark}_w \) is the reference marker of \(w \).

Finally if \(w \) is a non-pronoun, its updated semantics keeps a copy of list \(C = U - (Z' \cup [r\text{-mark}_w]) \), which contains the non-o-commanders of \(w \).

3.2 Binding principles and other constraints for anaphora resolution

These lists \(A', Z', B \) and \(C \) collect the reference markers that are antecedent candidates at the light only of the relevant binding constraints, which are relative positioning filters in the process of anaphora resolution.\(^3^3\) The elements in these list have to be submitted to the other constraints and preferences of this process so that one of them ends up being chosen as the antecedent.

In particular, some of these markers may eventually turn up not being admissible antecedent candidates due to the violation of some other constraints — e.g. those requiring similarity of morphological features or of semantic type — that on a par with binding constraints have to be complied with. For example, in this example \(\text{John described Mary to himself,} \) by the sole constraining effect of Principle A, \([r\text{-mark}_\text{John}, r\text{-mark}_\text{Mary}]\) is the list of antecedent candidates of \(\text{himself} \), which will be narrowed down to \([r\text{-mark}_\text{John}]\) when all the other filters for anaphora resolution have been taken into account, including the one concerning similarity of morphological features, as \(\text{Mary} \) and \(\text{him} \) do not have the same gender feature value.

In this particular case, separating these two type of filters — similarity of morphological features and binding constraints — seems to be the correct option, required by plural anaphors with so called split antecedents. In an example of this type, such as \(\text{John} \text{told Mary they would eventually get married,} \) where \(\text{they} \) is resolved against \(\text{John} \) and \(\text{Mary} \), the morphological features of the anaphor are not identical to the morphological features of each of its antecedents, though the relevant binding constraint applies to each of them.\(^3^4\)

\(^3^3\) See Branco (1999: Chap.2) for an overview of filters and preferences for anaphora resolution proposed in the literature.

\(^3^4\) This was noted by (Higginbotham 1983). In this respect, this approach improves on the proposal in (Pollard & Sag 1994), where the token-identity of indices — internally
When a plural anaphor takes more than one antecedent, as in the example above, its (plural) reference marker will end up being semantically related with a plural reference marker resulting from some semantic combination of the markers of its antecedents. Separating binding constraints from other constraints on the relation between anaphors and their antecedents are thus compatible with and justified by proposals for plural anaphora resolution that take into account split anaphora.

3.3 Computational tractability

It is also worth noting that the computational tractability of the grammatical compliance with binding principles is ensured given the polynomial complexity of the underlying operations described above.

Let n be the number of words in an input sentence to be parsed, which for the sake of the simplicity of the argument, and of the worst case scenario, it is assumed to be made only of nominal anaphors, that is every word in that sentence is a nominal anaphor. Assume also that the sets A, Z and U, thus of length n at worst, are available at each node of the parsed tree via copying or via list appending (more details about these two operations in the next sections), which is a process of constant time complexity.

At worst, the operations involved at each one of the n leaf nodes of the tree to obtain one of the sets A', Z', B or C are: list copying and list appending operations, performed in constant time; extraction of the predecessors of an element in a list, which is of linear complexity; or at most one list complementation, which can be done in time proportional to $n \log(n)$. The procedure of verifying binding constraints in a sentence of structured in terms of Person, Number and Gender features — is meant to be forced upon the anaphor and its antecedent in tandem with the relevant binding constraint.

For further reasons why token-identity between the reference markers of the anaphor and the corresponding antecedent is not a suitable option for every anaphoric dependency, see the discussion below in Section 5 on the semantic representation of different modes of anaphora.

35 That is the case e.g. of (Eschenbach et al. 1989). According to this approach, the set of antecedent candidates of a plural anaphor which result from the verification of binding constraints has to receive some expansion before subsequent filters and preferences apply in the anaphora resolution process. The reference markers in that set, either singular or plural, will be previously combined into other plural reference markers: it is thus from this set, closed under the semantic operation of pluralisation (e.g. i-sum a la (Link 1983)), that the final antecedent will be chosen by the anaphor resolver.
length n is thus of tractable complexity, namely $O(n^2 \log n)$ in the worst case.\footnote{For a thorough discussion of alternative procedures for the compliance with binding principles and their drawbacks, see (Branco 2000d), very briefly summarised here:}

4 Binding Constraints in the Grammar

In this section, the binding constraints receive a principled integration into formal grammar. For the sake of brevity, we focus on the English language. Given the discussion in the previous sections, the parameterisation for other languages will follow from this example by means of seamless adaptation.

We show how the module of Binding Theory is specified with the description language of HPSG, as an extension of the grammar fragment in the Annex of the foundational HPSG book\footnote{(Pollard & Sag 1994)}, following the feature geometry in Ivan Sag’s proposed extension of this fragment to relative clauses\footnote{(Sag 1997)} and adopting a semantic component for HPSG based on Underspecified Discourse Representation Theory (UDRT)\footnote{(Frank & Reyle 1995)}.

As exemplified in (29), this semantic component is encoded as the value of the feature \textsc{cont(ent)}. This value, of sort \textsc{udrs}, has a structure permitting that the mapping into underspecified discourse representations be straightforward\footnote{(Reyle 1993)}.

The value of subfeature \textsc{CONDS} is a set of labeled semantic conditions. The hierarchical structure of these conditions is expressed by means of a subordination relation of the labels identifying each condition, a relation that is encoded as the value of \textsc{subord}. The attribute \textsc{ls} defines the distinguished labels, which indicate the upper (\textsc{l-max}) and lower (\textsc{l-min})
bounds for a semantic condition within the overall semantic representation to be constructed.

anaph(ora) subfeature of cont(ent) The integration of Binding Theory into formal grammar consists of a simple extension of this semantic component for the *udrs* of nominals, enhancing it with the subfeature ANAPH(ORA). This new feature keeps information about the anaphoric potential of the corresponding anaphor w.

Its subfeature ANTECEDENTS) keeps record of how this potential is realised when the anaphor enters a grammatical construction: its value is the list with the antecedent candidates of w which comply with the relevant binding constraint for w.

And its subfeature REFERENCE-MARKER indicates the reference marker of w, which is contributed by its referential force to the updating of the context.

bind(ing) subfeature of loc(al) On a par with this extension of the LOC value, also the NONLOC value is extended with a new feature, BIND(ING), with subfeatures LIST-A, LIST-Z, and LIST-U. These lists provide a specification of the relevant context and correspond to the lists A, Z and U in the sections above. Subfeature LIST-LU is a fourth, auxiliary list encoding the contribution of the local context to the global, non local context, as explained in the next sections.

41 For the sake of readability, the working example in (29) displays only the more relevant features for the point at stake. The NONLOC value has this detailed definition in Pollard & Sag 1994:

$$\text{nonloc} = \begin{bmatrix} \text{TO-BIND} & \text{nonloc1} \\ \text{INHERITED} & \text{nonloc1} \end{bmatrix}$$

And these are the details of the extension we are using, where the information above is coded now as a *udc* object, which keeps record of the relevant non local information for accounting to *unbounded* *d(ependency) c(onstructions)*:

$$\text{nonloc} = \begin{bmatrix} \text{TO-BIND} & \text{nonloc1} \\ \text{INHERITED} & \text{nonloc1} \\ \text{LIST-A} & \text{list(refm)} \\ \text{LIST-Z} & \text{list(refm)} \\ \text{LIST-U} & \text{list(refm)} \\ \text{LIST-LU} & \text{list(refm)} \end{bmatrix}$$
4.1 Handling the anaphoric potential

Pronouns: lexical entry Given this adjustment to the grammatical geometry, the lexical definition of a pronoun, for instance, will include the following SYNSEM value:

\[
\begin{array}{c}
\text{LOC} \mid \text{CONT} \\
\text{SUBORD} \{ \} \\
\text{CONDS} \left\{ \begin{array}{c}
\text{LABEL} \ 1 \\
\text{DREF} \ 2
\end{array} \right\} \\
\text{ANAPH} \left[\begin{array}{c}
\text{R-MARK} \ 2 \\
\text{ANTEC} \ 5 \ \text{principleB} \left(1, 2, 3 \right) \\
\end{array} \right]
\end{array}
\]

In this feature structure, the semantic condition in CONDS associated to the pronoun corresponds simply to the introduction of the discourse referent \(\Box \) as the value of DREF.

This semantic representation is expected to be further specified as the lexical entry of the pronoun gets into the larger representation of the relevant utterance. In particular, the CONDS value of the sentence will be enhanced with a condition specifying the relevant semantic relation between this reference marker \(\Box \) and one of the reference markers in the value \(\Box \) of ANTEC. The latter will be the antecedent against which the pronoun will happen to be resolved, and the condition where the two markers will be related represents the relevant type of anaphora assigned to the anaphoric relation between the anaphor and its antecedent\(^{12}\).

\[\text{Given this extension, HPSG principles constraining NONLOC feature structure, or part of it, should be fine-tuned with adjusted feature paths in order to correctly target the intended (sub)feature structures.}\]

\[\text{More details on the interface with anaphora resolvers and on the semantic types of anaphora in Section } \Box \]

25
The anaphoric binding constraint associated to pronouns, in turn, is specified as the relational constraint \(\text{principleB}/3 \) in the value of \textsc{antec}. This is responsible for the realisation of the anaphoric potential of the pronoun as it enters a grammatical construction. When the arguments of this relational constraint are instantiated, it returns list \(\text{B} \) as the value of \textsc{antec}.

As discussed in Section 3.1, this relational constraint \(\text{principleB}/3 \) is defined to take all markers in the discourse context (in the first argument and given by the \textsc{list-u} value), and remove from them both the local o-commanders of the pronoun (included in the second argument and made available by the \textsc{list-a} value) and the marker corresponding to the pronoun (in the third argument and given by the \textsc{dref} value).

Finally, the contribution of the reference marker of the pronoun to the context is ensured via token-identity between \textsc{r-mark} and a \textsc{list-lu} value.

The piling up of this reference marker in the global \textsc{list-u} value is determined by a new HPSG principle specific to Binding Theory, to be detailed in the next Section 4.2.

Non pronouns and reflexives: lexical entries The \textsc{synsem} of other anaphors — ruled by principles A, C or Z — are similar to the \textsc{synsem} of pronouns above. The basic difference lies in the relational constraints to be stated in the \textsc{antec} value.

Such constraints — \(\text{principleA}/2 \), \(\text{principleC}/3 \) and \(\text{principleZ}/2 \) — encode the corresponding binding principles and return the realised anaphoric potential of anaphors according to the surrounding context, coded in their semantic representation under the form of a list in the \textsc{antec} value. Such lists — \(\text{A}' \), \(\text{C} \) or \(\text{Z}' \), respectively — are obtained by these relational constraints along the lines discussed in Section 3.1.

Non lexical anaphoric expressions Note that, for non-lexical anaphoric nominals in English, namely those ruled by Principle C, the binding constraint is stated in the lexical representation of the determiners contributing to the anaphoric capacity of such NPs. Also the reference marker corresponding to an NP of this kind is brought into its semantic representation from the \textsc{r-mark} value specified in the lexical entry of its determiner.

Accordingly, for the values of \textsc{anaph} to be visible in the signs of non-lexical anaphors, Clause I of the Semantics Principle in UDRT\[^{43}\] is extended with the requirement that the \textsc{anaph} value is token-identical, respectively, with the \textsc{anaph} value of the specifier daughter, in an NP, and with the

\[^{43}\text{(Frank & Reyle 1995 p.12).}\]
Anaphoric Binding: an integrated overview

ANAPH value of the nominal complement daughter, in a subcategorised PP. **Exemption** Note also that for short-distance reflexives, exemption from the effect of the corresponding Principle A occurs when $\text{principleA}(3,2)$ returns the empty list as the value of feature ANTEC.

(30) $\begin{bmatrix}
\text{LOC} | \text{CONT} \\
\text{SUBORD} \{\} \\
\text{CONDS} \{ \begin{bmatrix} \text{LABEL} \ 3 \\ \text{DREF} \ 2 \end{bmatrix} \} \\
\text{ANAPH} \begin{bmatrix} \text{L-MAX} \ 1 \\ \text{L-MIN} \ 1 \\ \text{R-MARK} \ 2 \\ \text{ANTEC} \ 4 \text{principleA} \ (3,2) \end{bmatrix} \\
\text{NONLOC} | \text{BIND} \\
\text{LIST-A} \ 3 \\
\text{LIST-Z} \ list(refm) \\
\text{LIST-U} \ list(refm) \\
\text{LIST-LU} \ (2) \end{bmatrix}$

This happens if the reference marker of the reflexive 2 is the first element in the relevant obliqueness hierarchy, i.e. it is the first element in the LIST-A value in 3, thus o-commanding the other possible elements of this list and not being o-commanded by any of them.

As discussed in Section 2.3, given its essential anaphoricity, a reflexive has nevertheless to be interpreted against some antecedent. As in the exempt occurrences no antecedent candidate is identified by virtue of Principle A activation, the anaphora resolver — which will operate then on the empty ANTEC list — has thus to resort to antecedent candidates outside the local domain of the reflexive: this implies that it has to find antecedent candidates for the reflexive which actually escape the constraining effect of Principle A. The anaphora resolver will then be responsible for modelling the behaviour of reflexives in such exempt occurrences, in which case the anaphoric capacity of these anaphors appears as being exceptionally ruled by discourse-based factors.

44 This account applies also to exempt occurrences of long-distance reflexives.
45 More details of the interface between grammar and reference processing systems in Section 5
4.2 Handling the context representation

Turning now to the representation of the context, this consists in the specification of the constraints on the values of the attributes LIST-A, LIST-Z, LIST-U and LIST-LU. This is handled by adding an HPSG principle to the grammar, termed the Binding Domains Principle (BDP). This principle has three clauses constraining signs with respect to these four lists of reference markers. A full understanding of their details, presented below, will be facilitated with the working example discussed in detail in the Appendix.

Binding Domains Principle, Clause I Clause I of BDP is responsible for ensuring that the values of LIST-U and LIST-LU are appropriately setup at the different places in a grammatical representation:

(31) **Binding Domains Principle, Clause I**

 i. The LIST-LU value is identical to the concatenation of the LIST-LU values of its daughters in every sign;

 ii. the LIST-LU and LIST-U values are token-identical in a sign of sort *discourse*;

 iii. i. the LIST-U value is token-identical to each LIST-U value of its daughters in a non-NP sign;

 ii. in an NP sign k:

 • in Spec-daughter, the LIST-U value is the result of removing the elements of the LIST-A value of Head-daughter from the LIST-U value of k;

 • in Head-daughter, the LIST-U value is the result of removing the value of R-MARK of Spec-daughter from the LIST-U value of k.

By virtue of (i.), LIST-LU collects up to the outmost sign in a grammatical representation — which is of sort *discourse* — the markers contributed to the context by each NP. Given (ii.), this list with all the markers is passed to the LIST-U value at this outmost sign. And (iii.) ensures that this list with the reference markers in the context is propagated to every NP.

Subclause (iii.ii) prevents self-reference loops due to anaphoric interpretation, avoiding what is known in the literature as the i-within-i effect — recall that the R-MARK value of non lexical NPs is contributed by the lexical representation of their determiners, in Spec-daughter position, as noted above.
The HPSG top ontology is thus extended with the new subsort \textit{discourse} for signs: \textit{sign} $\equiv \text{word} \lor \text{phrase} \lor \text{discourse}$. This new type of linguistic object corresponds to sequences of sentential signs. A new Schema 0 is also added to the Immediate Dominance Principle, where the Head daughter is a phonologically null object of sort \textit{context}(\textit{ctx}), and the Text daughter is a list of phrases.

As the issue of discourse structure is out of the scope of this paper, we adopted a very simple approach to the structure of discourses which suffices for the present account of Binding Theory. As discussed in the next Section \ref{sec:anaphoric-binding-theory}, this object of sort \textit{ctx} helps representing the contribution of the non-linguistic context to the interpretation of anaphors.

Binding Domains Principle, Clause II As to the other two Clauses of the Binding Domains Principle, Clause II and Clause III, they constrain the lists LIST-A and LIST-Z, respectively, whose values keep a record of o-command relations.

BDP-Clause II is responsible for constraining LIST-A:

\begin{enumerate}
\item[(32)] \textbf{Binding Domains Principle, Clause II}
\item[i.] Head/Arguments: in a phrase, the LIST-A value of its head, and of its nominal (or nominal preceded by preposition) or trace Subject or Complement daughters are token-identical;
\item[ii.] Head/Phrase:
\begin{enumerate}
\item in a non-nominal and non-prepositional sign, the LIST-A values of a sign and its head are token-identical;
\item in a prepositional phrase,
\begin{enumerate}
\item if it is a complement daughter, the LIST-A values of the phrase and of its nominal complement daughter are token-identical;
\item otherwise, the LIST-A values of the phrase and its head are token-identical;
\end{enumerate}
\item in a nominal phrase,
\begin{enumerate}
\item in a maximal projection, the LIST-A value of the phrase and its Specifier daughter are token-identical;
\item in other projections, the LIST-A values of the phrase and its head are token-identical.
\end{enumerate}
\end{enumerate}
\end{enumerate}

This clause ensures that the LIST-A value is shared between a head-daughter and its arguments, given (i.), and also between the lexical heads
and their successive projections, by virtue of (ii.).

O-command On a par with this Clause II, it is important to make sure that at the lexical entry of any predicator \(p \), \textsc{list-a} includes the \textsc{r-mark} values of the subcategorised arguments of \(p \) specified in its \textsc{arg-st} value. Moreover, the reference markers appear in the \textsc{list-a} value under the same partial order as the order of the corresponding \textit{synsem} in \textsc{arg-st}. This is ensured by the following constraints on the lexical entries of predicators:

\begin{equation}
\text{synsem}
\begin{array}{l}
\text{LOC} \mid \text{CONT} \mid \text{ARG-ST} \langle \cdots, \text{LOC} \mid \text{CONT} \mid \text{ANAPH} \mid \text{R-MARK} [1], \cdots \rangle \\
\text{synsem} \quad \rightarrow \\
\text{NONLOC} \mid \text{BIND} \mid \text{LIST-A} \langle \cdots, 1, \cdots \rangle \\
\text{synsem}
\end{array}
\end{equation}

\begin{equation}
\text{synsem}
\begin{array}{l}
\text{LOC} \mid \text{CONT} \mid \text{ARG-ST} \langle \cdots, \text{LOC} \mid \text{CONT} \mid \text{ANAPH} \mid \text{R-MARK} [2], \cdots \rangle \\
\text{synsem} \quad \rightarrow \\
\text{NONLOC} \mid \text{BIND} \mid \text{LIST-A} \langle \cdots, 2, \cdots \rangle \\
\text{synsem}
\end{array}
\end{equation}

In case a subcategorised argument is quantificational, it contributes also with its \textsc{var} value to the make up of \textsc{list-a}:

\begin{equation}
\text{synsem}
\begin{array}{l}
\text{LOC} \mid \text{CONT} \mid \text{ARG-ST} \langle \cdots, \text{LOC} \mid \text{CONT} \mid \text{ANAPH} \begin{bmatrix} \text{R-MARK} [2] \end{bmatrix}, \cdots \rangle \\
\text{synsem} \quad \rightarrow \\
\text{NONLOC} \mid \text{BIND} \mid \text{LIST-A} \langle \cdots, 2, 3, \cdots \rangle \\
\text{synsem}
\end{array}
\end{equation}

\footnote{More details on this and on the \textit{e-type} anaphora vs. bound-variable anaphora distinction are discussed in the next sections.}
Binding Domains Principle, Clause III Finally, BDP-Clause III ensures that LIST-Z is properly constrained:

(35) **Binding Domains Principle**, Clause III
For a sign F:
 i. in a Text daughter, the LIST-Z and LIST-A values are token-identical;
 ii. in a non-Text daughter,
 i. in a sentential daughter, the LIST-Z value is the concatenation of the LIST-Z value of F with the LIST-A value;
 ii. in a Head daughter of a non-lexical nominal, the LIST-Z value is the concatenation of L with the LIST-A value, where L is the list which results from taking the list of o-commanders of the R-MARK value, or instead of VAR value when this exists, of its Specifier sister from the LIST-Z value of F;
 iii. in other, non-filler, daughters of F, the LIST-Z value is token-identical to the LIST-Z value of F.

By means of (i.), this Clause III ensures that, at the top node of a grammatical representation, LIST-Z is set up as the LIST-A value of that sign.
Moreover, given (ii.), it is ensured that LIST-Z is successively incremented at suitable downstairs nodes — those defining successive locality domains for binding, as stated in (ii.i) and (ii.ii) — by appending, in each of these nodes, the LIST-A value to the LIST-Z value of the upstairs node.
Locality From this description of the Binding Domains Principle, it follows that the locus in grammar for the parameterisation of what counts as a local domain for a particular language is the specification of BDP–Clauses II and III for that language.

5 Interface with Reference Processing Systems

The appropriateness of the grammatical constraints on anaphoric binding presented above extends to its suitable accounting of the division of labor between grammars and reference processing systems, and of the suitable interfacing between them.
5.1 Anaphora Resolution

While the grammatical anaphoric binding constraints are specified and verified as part of the global set of grammatical constraints, they provide also for a suitable hooking up of the grammar with modules for anaphora resolution.

Feature ANTEC is the neat interface point between them: its value with a list of antecedent candidates that comply with Binding Theory requirements is easily made accessible to anaphor resolvers. This list will be then handled by a resolver where further non grammatical soft and hard constraints on anaphora resolution will apply and will filter down that list until the most likely candidate will be determined as the antecedent.

5.2 Reference Processing

The anaphoric binding constraints also provide a convenient interface for anaphoric links of different semantic types — exemplified below — to be handled and specified by reference processing systems:

(36) a. John\textsubscript{i} said that he\textsubscript{i} would leave soon. (coreference)
 b. Kim\textsubscript{i} was introduced to Lee\textsubscript{j} and a few minutes later they\textsubscript{i+j} went off for dinner. (split anaphora)
 c. Mary could not take [her car]\textsubscript{i} because [the tyre]\textsubscript{i} was flat. (bridging anaphora)
 d. [Fewer than twenty Parliament Members]\textsubscript{i} voted against the proposal because they\textsubscript{i} were afraid of riots in the streets. (e-type anaphora)
 e. [Every sailor in the Bounty]\textsubscript{i} had a tattoo with [his mother’s]\textsubscript{i} name on the left shoulder. (bound anaphora)

Example (36a) displays a coreference relation, where he has the same semantic value as its antecedent John.

A case of split antecedent can be found in (36b) as they has two syntactic antecedents and it refers to an entity comprising the two referents of the antecedents.

The referent of the tyre is part of the referent of its antecedent his car in (36c), thus illustrating a case of so called bridging anaphora (also know as indirect or associative anaphora), where an anaphor may refer to an entity
that is e.g. an element or part of the denotation of the antecedent, or an entity that includes the denotation of the antecedent, etc.\footnote{See \cite{PoesioVieira1998} for an overview.}

In (36d) they has a so-called non-referential antecedent, fewer than twenty Parliament Members, from which a reference marker is inferred to serve as the semantic value of the plural pronoun: they refer to those Parliament Members, who are fewer than twenty in number, and who voted against the proposal. Example (36d) illustrates a case of e-type anaphora\footnote{\cite{Evans1980}.} and this inference mechanism to obtain an antecedent marker from a non-referencing nominal is described in Section\footnote{\cite{Reinhart1983}.} 7.2.

Finally in (36e), though one also finds a quantificational antecedent for the anaphoric expression, the relation of semantic dependency differs to the one in the previous example. The anaphoric expression his mother does not refer to the mother of the sailors of the Bounty. It acts rather in the way of a bound variable of logical languages — for each sailor s, his mother refers to the mother of s — thus exemplifying a case of so-called bound anaphora\footnote{\cite{Reinhart1983}.}

Given that the semantic relation between antecedent marker and anaphor marker can be specified simply as another semantic condition added to the CONDS value, a DRT/HPSG representation for the resolved anaphoric link under the relevant semantic type of anaphora is straightforward and the integration of the reference processing outcome into grammatical representation is seamlessly ensured.

For the sake of the illustration of this point, assume that a given reference marker x turns out to be identified as the antecedent for the anaphoric nominal Y, out of the set of antecedent candidates for Y in its ANTEC value. This antecedent x can be related to the reference marker y of anaphor Y by means of an appropriate semantic condition in its CONDS value. Such a condition will be responsible for modelling the specific mode of anaphora at stake.

For instance, coreference will require the expected condition $y = \text{coref}_x$, as exemplified below with the CONT value of the pronoun in (29) extended with a solution contributed by an anaphor resolver, where \Box would be the marker picked up as the plausible antecedent.
An instance of bridging anaphora, in turn, may be modelled by \(bridg(x, y) \), where \(bridg \) stands for the relevant bridging function between \(y \) and \(x \), and similarly for the other semantic anaphora types.

5.3 Coreference Transitivity

It is also noteworthy that the interfacing of grammar with reference processing systems ensured by anaphoric binding constraints provides a neat accommodation of coreference transitivity.

If as a result of the process of anaphora resolution, a given anaphor \(N \) and another anaphor \(B \) end up being both coreferent with a given antecedent \(A \), then they end up being coreferent with each other. That is, in addition to having marker \(r_a \) as an admissible antecedent in its set of candidate antecedents, that anaphor \(N \) has also to eventually have marker \(r_b \) included in that set.

This is ensured by including, in the \(\text{CONDS} \) value in (29), semantic conditions that follow as logical consequences from this overall coreference transitivity requirement that is operative at the level of the reference processing system with which grammar is interfaced: \(\forall r_a, r_b((\exists r_a = \text{coref} r_b \land r_a = \text{coref} r_b) \Rightarrow ((r_a) \cup \exists = \exists)) \).

An important side effect of this overall constraint is that “accidental” violations of Principle B are prevented, as illustrated with the help of the following example.

(38) *The captain_{i/j} thinks he_{i} loves him_{j}.
Given that the Subject of the main clause, *the captain*, does not locally o-command any one of them, either the pronoun *he* or the pronoun *him* can have the nominal phrase *the captain* as antecedent, in compliance with Principle B. By transitivity of anaphoric coreference though, the reference marker of *he* is made to belong to the admissible set of antecedents of *him*, which violates Principle B. Hence, by the conjoined effect of coreference transitivity and of Principle B, that “accidental” violation of Principle B that would make *he* an (o-commanding) antecedent of *him* in this example is (correctly) blocked.

By the same token, “accidental” violations of Principle C with an analogous pattern as above, but for non pronouns, are prevented:

\[(39)*\] When John\(^{i,j}\) will conclude his therapy, [the boy\(^i\) will stop believing [that the patient\(^j\) is a Martian]].

Separately, *the boy* and the *the patient* can have *John* as antecedent, in accordance to Principle C. But *the patient* — because is o-commanded by *the boy* — cannot have *the boy* as antecedent, which, also here, is (correctly) ensured by a conjoined effect of the coreference transitivity requirement and the relevant Principle C.

Accordingly, when the semantic type of anaphora is not one of coreference, no coreference transitivity holds, and there happens no “accidental” violation of Principle C. This is illustrated in the following example with bridging anaphora instead, where two non pronouns, though occurring in the same clause, like in \[(39)\] , can be (correctly) resolved against the same antecedent — in contrast with that example \[(39)\] above, where such possibility is blocked.

\[(40)\] Quando [o robot\(^i\)] concluiu a tarefa, o operador viu que [a roda\(^i\)] estava a esmagar [o cabo de alimentação\(^i\)].

‘When [the robot\(^i\)] concluded the task, the operator saw that [his wheel] was crushing [his power cord].’

Another range of examples where the semantic type of anaphora is not one of coreference — also with no coreference transitivity holding — and thus also where (correctly) there happens no “accidental” violation of the
respective binding principle can be found for reflexives, as illustrated in the following example.

(41) The captain\textsubscript{i} thinks he\textsubscript{i/j} loves himself\textsubscript{*i/j}.

The reflexive himself can have he as antecedent, because the later locally o-commands it, but cannot have the captain as antecedent because the later does not locally o-command it. But while the semantic anaphoric relation between the captain and he is one of coreference, the semantic anaphoric relation between he and himself is not, being rather one of bound anaphora.\footnote{Confluent evidence that reflexives entertain a bound anaphora relation with their antecedents was also observed when their inability to enter split anaphora relations in non exempt positions was noted in Section \ref{sec:split_anaphora}.} Hence, the coreference transitivity requirement does not apply and the referent of the captain does not land into the set of possible antecedents of the reflexive, thus not inducing an “accidental” violation of Principle A. Example (41) can thus felicitously be interpreted as the captain thinking that the agent of loving him is himself, resulting from himself having him as antecedent and him having the captain as antecedent.

6 Binding Constraints for Antecedents

The Binding Theory presented in this paper is also serendipitous in terms of improving the accuracy of empirical predictions offered by a formal grammar with respect to anaphoric binding restrictions that are outside the realm of the binding principles in \ref{principles}--\ref{principles}.

Note first that a reference marker introduced by a non quantificational NP can be the antecedent either of an anaphor that it o-commands, as in (42a), or of an anaphor that it does not o-command, as in (42b):

(42) a. [The captain who knows this sailor]\textsubscript{i} thinks Mary loves him\textsubscript{i}.
b. [The captain who knows [this sailor]\textsubscript{i}] thinks Mary loves him\textsubscript{i}.

Differently from a non quantificational NP, which contributes one reference marker to the representation of the context, a quantificational NP contributes two markers that exhibit symmetric features with respect to each other in several respects. The fact that one of them can serve as an antecedent in e-type anaphora, while the other can serve as an antecedent in bound-variable anaphora is certainly one of such symmetries.\footnote{Extensive discussion of this difference is presented in the Appendix.} But there are more.
Anaphoric Binding: an integrated overview

Let us take a quantificational NP, introduced for instance by the quantifier *every*, acting as an antecedent. This imposes different Number requirements on its anaphors depending on the type of anaphora relation at stake — e-type or bound-variable anaphora — so that the underlying occurrence of each one of the corresponding two markers can be tracked down.

For ease of reference, let us term the marker ensuring e-type anaphora as the e-marker, and the marker ensuring bound anaphora as the v-marker.\(^{52}\)

The contrast below illustrates that, in an e-type anaphoric link, the e-marker stands for a plurality:

\[
(43) \quad \text{Every sailor}_i \text{ has many girlfriends. They}_i/\text{He}^{*}_i \text{ travel(s) a lot.}
\]

And the next contrast illustrates that, in a bound-variable anaphoric link, the v-marker is singular:

\[
(44) \quad \text{Every sailor}_i \text{ shaves themselves}_i/\text{himself}_i.
\]

The following contrasts can now be considered. An e-marker can be the antecedent of anaphors that it does not o-command, in (45b), but cannot be the antecedent of anaphors that it o-commands, in (45a):

\[
(45) \quad \begin{align*}
\text{a. } & \quad * \text{[Every captain who knows this sailor]}_i \text{ thinks Mary loves them}_i. \\
\text{b. } & \quad [\text{The captain who knows [every sailor]}_i] \text{ thinks Mary loves them}_i.
\end{align*}
\]

This contrast is symmetric to the contrast for the other reference marker: a v-marker can be the antecedent of anaphors that it o-commands, in (46a), but cannot be the antecedent of anaphors that it does not o-command, in (46b):

\[
(46) \quad \begin{align*}
\text{a. } & \quad [\text{Every captain who knows this sailor]}_i \text{ thinks Mary loves him}_i. \\
\text{b. } & \quad * [\text{The captain who knows [every sailor]}_i] \text{ thinks Mary loves him}_i.
\end{align*}
\]

As these contrasts are empirically observed as patterns holding for quantificational NPs in general (not only for those introduced by *every*), constraints

\(^{52}\) In the formalisation presented in the Appendix, an e-marker is the marker in the r-mark value, introduced by Σ-abstraction, and a v-marker is the marker in the the var value, introduced by the restrictor argument of the determiner.
António Branco

emerge on which anaphors different markers can be the antecedents of, in case such markers are contributed by quantificational NPs.

E-markers and v-markers of a given quantificational NP induce a partition of the space of their possible anaphors when that NP is acting as an antecedent: a v-marker is an antecedent for anaphors in the set of its o-commanded anaphors, while an e-marker is an antecedent for anaphors in the complement of such set, i.e. in the set of its non o-commanded anaphors.

This implies that on a par with the grammatical constraints on the relative positioning of antecedents with respect to anaphors in (7)-(10), there are also grammatical constraints on the relative positioning of anaphors with respect to their antecedents when the corresponding markers are introduced by quantificational NPs. Building on the same auxiliary notions, these “reverse” binding constraints receive the following definition as R-Principles E and V:

(47) **R-Principle E:** An antecedent cannot o-bind its anaphor (in e-type anaphora).

[Every captain who knows [every sailor]_{i,j} thinks Mary loves them_{i/*j}.]

R-Principle V: An antecedent must o-bind its anaphor (in bound-anaphora).

[Every captain who knows [every sailor]_{i,j} thinks Mary loves him_{*i/j}.]

It is worth noting that these principles account also for what has been observed in the literature as the weak crossover effect.\(^{53}\) In the example below, displaying a case of weak crossover, the anaphoric link is ruled out by R-Principle V since the quantificational NP *every sailor* does not o-command the pronoun *him*, which is singular and could thus enter only into a bound-anaphora relation.

(48) * [The captain who knows him_{i}] thinks Mary loves every sailor_{i}.

Weak crossover constructions appear thus as a sub-case of the class of constructions ruled out by the binding constraints for antecedents.\(^{54}\)

\(^{53}\) See (Jacobson 2000: Sec.2.1) for an extensive overview of accounts of weak crossover. For an account of strong crossover in HPSG see (Pollard & Sag 1994: p.279).

\(^{54}\) To the best of our knowledge, the integration of the reverse anaphoric constraints E and V in (47) into HPSG — like what is obtained in Section 4 above for Principles A-Z in (7)-(10) — was not worked out yet in the literature.
7 Outlook

With the material presented in the sections above, it emerges that the grammar of anaphoric binding constraints builds on the following key ingredients:

- Interpretation: binding constraints are grammatical constraints on interpretation contributing to the contextually determined semantic value of anaphors — rather than syntactic wellformedness constraints.

- Lexicalisation: binding constraints are properties of anaphors determining how their semantic value can be composed or co-specified, under a non-local syntactic geometry, with the semantic value of other expressions — rather than properties of grammatical representations of sentences as such: accordingly, the proper place of these constraints in grammar is at the lexical description of the relevant anaphoric units (e.g. the English pronoun him, or the Portuguese multiword long distance reflexive ele próprio) or the anaphora inducing items (e.g. the English definite article the that introduces non-pronouns).

- Underspecification: binding constraints delimit how the anaphoric potential of anaphors can be realised when they enter a grammatical construction — rather than determining the eventual antecedent: on the one hand, this realisation of anaphoric potential is not a final solution in terms of circumscribing the elected antecedent, but a space of grammatically admissible solutions; on the other hand, this realisation of anaphoric potential has to be decided, locally, in terms of non-local information: accordingly, an underspecification-based strategy is required to pack ambiguity and non-locality.

- Articulation: binding constraints are grammatical constraints — rather

Besides an explicit formal specification of (47) in terms of HPSG, there are also empirical aspects that ask to be worked out in future work. For weak crossover, for instance, it is interesting to note Jacobson’s remarks: “... it is well known that weak crossover (WCO) is indeed weak, and that the effect can be ameliorated in a variety of configurations. To list a few relevant observations: WCO violations are much milder if the offending pronoun is within a sentence rather than in an NP; the more deeply one embeds the offending pronoun the milder the WCO effect; WCO effects are ameliorated or even absent in generic sentences; they are milder in relative clauses than in questions [...] For example, the possibility of binding in Every man’s, mother loves him, remains to be accounted for.” (Jacobson 2000 p.120).
than anaphora resolvers: accordingly, grammars, where grammatical anaphoric constraints reside, and reference processing systems, where further constraints on the resolution of anaphora reside, are autonomous with respect to each other, and their specific contribution gains from them being interfaced, rather than being mixed up.

Binding principles capture the relative positioning of anaphors and their admissible antecedents in grammatical representations. As noted at the introduction of the present paper, together with their auxiliary notions, they have been considered one of the most outstanding modules of grammatical knowledge.

From an empirical perspective, these constraints stem from quite cogent generalisations and exhibit a universal character, given the hypothesis of their parameterised validity across anaphoric expressions and natural languages.

From a conceptual point of view, in turn, the relations among binding constraints involve non-trivial cross symmetry that lends them a modular nature and provides further strength to the plausibility of their universal character.

To conclude the overview presented in this paper, the remainder two subsections below present intriguing and promising research questions, respectively for symbolic and neural approaches.

7.1 Symbolic

Symmetries The recurrent complementary distribution of the admissible antecedents of a pronoun and of a short-distance reflexive in the same, non exempt syntactic position, in different languages from different language families, has perhaps been the most emblematic symmetry.

For the sake of convenience, the examples in (7)-(10) are copied to (49)-(52) below. The pair (49) vs. (51), with the anaphoric expressions in the same syntactic position of the same syntactic construction, illustrates the symmetry just mentioned, between reflexives and pronouns, suggestively grasped by comparing the starred and non starred indexes.
(49) \[X_x \ldots [\text{Lee}_i \text{’s friend}]_j \text{ thinks } [[\text{Max}_k \text{’s brother}]_l \text{ likes himself}_{*x/*i/*j/*k/*l}].\]

(50) \[X_x \ldots [\text{O amigo do Lee}_i]_j \text{ acha } [\text{que o irmão do the friend of the Lee thinks that the brother of the} \text{Max}_k]_l \text{ gosta dele próprio}_{*x/*i/*j/*k/*l}. \text{(Portuguese)}\]
\[\text{Max likes of him self ‘...X}_x \ldots [\text{Lee}_i \text{’s friend}]_j \text{ thinks } [[\text{Max}_k \text{’s brother}]_l \text{ likes him}_{*x/*i/*j/*k/*l} / \text{himself}]_l].’ \]

(51) \[X_x \ldots [\text{Lee}_i \text{’s friend}]_j \text{ thinks } [[\text{Max}_k \text{’s brother}]_l \text{ likes him}_{*x/*i/*j/*k/*l}].\]

(52) \[X_x \ldots [\text{Lee}_i \text{’s friend}]_j \text{ thinks } [[\text{Max}_k \text{’s brother}]_l \text{ likes the boy}_{x/*i/*j/*k/*l}].\]

But given also the complementary distribution of the admissible antecedents of a long-distance reflexive and of a non pronoun in the same, non exempt syntactic position, a similar symmetry is also found between these two other types of anaphors. This is illustrated by the complementarity of the indexes in (50) vs. (52).

Another double “symmetry” worth noting is the one between short- and long-distance reflexives, on the one hand, and non pronouns and pronouns on the other hand.

Both sorts of reflexives present the same binding regime but over o-command orders whose length is possibly different: the set of admissible antecedents of a short-distance reflexive is a subset of the set of admissible antecedents of a long-distance reflexive in the same, non exempt syntactic position. For a given non-exempt position, the admissible antecedents of a short-distance reflexive are the antecedents that are in the set of admissible antecedents of a long-distance reflexive in that same position and that are local, i.e. are in the local domain. The felicitous (non starred) indexes in (49) are a subset of the felicitous indexes in (50), which illustrates this symmetry.

A “symmetry” similar to this one is displayed by non pronouns and pronouns with respect to a given syntactic position: the set of admissible antecedents of a non pronoun is a subset of the set of admissible antecedents of a pronoun. For a given position, the admissible antecedents of a non pronoun are the antecedents that are in the set of admissible antecedents of a pronoun in that same position and that are not o-commanding the pronoun (or non pronoun). The felicitous (non starred) indexes in (52) are a subset of the felicitous indexes in (51).

Quantificational Strength When these symmetries are further explored, the intriguing observation that emerges with respect to the empirical
generalisations in (7)-(10) is that when stripped away from their procedural phrasing and non-exemption safeguards, they instantiate a square of logical oppositions:

\[(53) \]

Principle A:	Principle C:
\(x \) is locally bound	\(x \) is free

Principle Z:	Principle B:
\(x \) is bound	\(x \) is locally free

Like in the Aristotelian square of opposition, depicted in (54), there are two pairs of contradictory constraints, which are formed by the two diagonals, (Principles A, B) and (C, Z). One pair of contrary constraints (they can be both false but cannot be both true) is given by the upper horizontal edge (A, C). One pair of compatible constraints (they can be both true but cannot be both false) is given by the lower horizontal edge (Z, B). Finally two pairs of subcontrary constraints (the first coordinate implies the second, but not vice-versa) are obtained by the vertical edges, (A, Z) and (C, B).

\[(54) \]

\[\begin{array}{c}
\text{contraries} \\
\text{subalternes}
\end{array} \quad \begin{array}{c}
\text{contrad} \\
\text{compatibles}
\end{array} \quad \begin{array}{c}
\text{subalternes} \\
\text{contraries}
\end{array} \]

The empirical emergence of a square of oppositions for the semantic values of natural language expressions naturally raises the question about the possible existence of an associated square of duality — and importantly, about the quantificational nature of these expressions.

\[(55) \]

\[\begin{array}{c}
\text{inner negation} \\
\text{outer negation}
\end{array} \quad \begin{array}{c}
\text{dual} \\
\text{inner negation}
\end{array} \quad \begin{array}{c}
\text{outer negation} \\
\text{inner negation}
\end{array} \quad \begin{array}{c}
\text{outer negation} \\
\text{inner negation}
\end{array} \]

It is of note that the classical square of oppositions in (54) is different and logically independent from the square of duality in (55) — with the semantic values of the English expressions every \(N \), no \(N \), some \(N \) and not every \(N \),
or their translational equivalents in other natural languages, providing the classical example of an instantiation of the latter:

\[
\begin{array}{c|c|c|c|c}
\text{not_every}'(N') & \text{dual} & \text{no}'(N') \\
\hline
\text{every}'(N') & \text{dual} & \text{some}'(N')
\end{array}
\]

The difference lies in the fact that inner negation, outer negation and duality (concomitant inner and outer negation) are third order concepts, while compatibility, contrariness and implication are second order concepts. As a consequence, it is possible to find instantiations of the square of oppositions without a corresponding square of duality, and vice-versa.\[^{55}\]

Logical duality has been a key issue in the study of natural language and, in particular, in the study of quantification as this happens to be expressed in natural language. It is a pattern noticed in the semantics of many linguistic expressions and phenomena, ranging from the realm of determiners to the realm of temporality and modality, including topics such as the semantics of the adverbials still/already or of the conjunctions because/although, etc.\[^{56}\]

Under this pattern, one recurrently finds groups of syntactically related expressions whose formal semantics can be rendered as one of the operators arranged in a square of duality. Such a square is made of operators that are interdefinable by means of the relations of outer negation, inner negation, or duality. Accordingly, the emergence of a notoriously non trivial square of logical duality between the semantic values of natural language expressions has been taken as a major empirical touchstone to ascertain their quantificational nature.\[^{57}\]

By exploring these hints, and motivated by the intriguing square of opposition in (53), the empirical generalisations captured in the binding principles were shown to be the effect of four quantifiers that instantiate a square of duality like (55).\[^{58}\]

\[^{55}\] Vd. (Löbner 1987) for examples and discussion.

\[^{56}\] (Löbner 1987; 1989; 1999; ter Meulen 1988; Koning 1991; Smessaert 1997).

\[^{57}\] Vd. (Löbner 1987; van Benthem 1991). While noting that the ubiquity of the square of duality may be the sign of a semantic invariant possibly rooted in some cognitive universal, (van Benthem 1991: p.23) underlined its heuristic value for research on quantification inasmuch as “it suggests a systematic point of view from which to search for comparative facts”.

\[^{58}\] (Branco 2006; 2005a; 2001; 1998a).
For instance, Principle A is shown to capture the constraining effects of the existential quantifier that is part of the semantic value of short-distance reflexives. Like the existential quantifier expressed by other expressions, such as the adverbial already, this a phase quantifier. What is specific here is that the quantification is over a partial order of reference markers, the two relevant semi-phases over this order include the local o-commanders and the other reference markers that are not local o-commanders, respectively for the positive and the negative semi-phases, and the so-called parameter point in phase quantification is the reference marker of the eventual antecedent for the anaphoric nominal at stake.

Accordingly, the other three quantifiers — corresponding to the other three binding Principles B, C and Z — are defined by means of this existential one being under external negation (quantifier expressed by pronouns), internal negation (by non pronouns) or both external and internal negation (by long-distance reflexives).

Doubly Dual Nominals While these findings deepen the rooting of binding constraints into the semantics of anaphoric nominals, more importantly, they also point towards promising research directions with the potential to advance our understanding of the grammar of anaphoric binding, in particular, and more widely, to further our insights into the semantics of nominals, in general.

A shared wisdom is that nominals convey either quantificational or referential force.

The findings introduced above imply that nominals with “primary” referential force (e.g. John, the book, he,...) have also a certain “secondary” quantificational force: they express quantificational requirements — over reference markers, i.e. entities that live in linguistic representations —, but do not directly quantify over extra-linguistic entities, like the other “primarily” quantificational nominals (e.g. every man, most students,...) do.

This duality of semantic behaviour, however, turns out not to be that much surprising if one takes into account a symmetric duality with regards to “primarily” quantificational nominals, which is apparent when they are able to act as antecedents in e-type anaphora. Nominals with “primary” quantificational force have also a certain “secondary” referential force: they have enough referential strength to evoke and introduce reference markers in

59 Lübner 1987.
60 Their fully-fledged discussion and justification are outside the scope of the present paper. A thorough presentation can be found in Branco 2005a.
the linguistic representation that can be picked as antecedents by anaphors — and thus support the referential force of the latter —, but they cannot be used to directly refer to extra-linguistic entities, like the other “primarily” referential terms do.

As a result, the duality quantificational vs. referential nominals appears thus as less strict and more articulated than it has been assumed. Possibly taking indefinite descriptions aside, every nominal makes a contribution in both semantic dimensions of quantification and reference but with respect to different universes. Primarily referential nominals have a dual semantic nature — they are primarily referential (to extra-linguistic entities) and secondarily quantificational (over linguistic entities) —, which is symmetric of the dual semantic nature of primarily quantificational ones — these are primarily quantificational (over extra-linguistic entities) and secondarily referential (to linguistic entities).

7.2 Neural

Natural Language Processing Task Some natural language processing tasks, e.g. question answering, appear as end to end procedures serving some useful, self-contained application. Some other tasks, in turn, e.g. part-of-speech tagging, appear more as instrumental procedures to support those downstream, self-contained applications. To help assess research progress in neural natural language processing, sets of processing tasks, of both kinds, have been bundled together, e.g. in the GLUE benchmark.

As one such instrumental natural language processing task, possibly contributing or being embedded into downstream applications, anaphora resolution, including coreference resolution, is a procedure by means of which anaphors are paired with their antecedents. It has been addressed with neural approaches and has been integrated into natural language processing benchmarks.

While related to anaphora resolution, and eventually instrumental to it, determining the set of grammatically admissible antecedents for a given anaphor is a procedure that, as such, has not been addressed yet with neural approaches, to the best of our knowledge. Like many other instrumental tasks, this is a challenge that can contribute to make empirically evident and to appreciate the strength of different neural approaches in handling

61 (Wang et al. 2018).
62 (Lee et al. 2017; Xu & Choi 2020).
natural language processing. Grammatical anaphoric binding is thus an intriguing research question open to be addressed with neural approaches, and also with a good potential to provide a research challenge that may pave the way for neuro-symbolic solutions to emerge.

Probing for Linguistic Plausibility While providing outstanding performance scores in many natural processing tasks, neural models have been challenged, like in other applications areas, due to its opacity and lack of interpretability, specially when compared to symbolic methods.

As a way to respond to this type of challenge, neural models have been submitted to ingenious probing procedures aimed at assessing them with respect to the linguistic knowledge they may eventually have specifically encoded while having been trained for generic or high level natural language processing tasks, like for instance language modelling, machine translation, etc.\(^{63}\)

This endeavour of unveiling the possible linguistic knowledge represented in neural models will certainly benefit from integrating the task of grammatical anaphoric binding in this kind of toolboxes that may be used for linguistic probing and interpretability.

Inductive Bias for Natural Language An increasingly important research question in neural natural language processing is to design models that possibly have an appropriate inductive bias such that their internal linguistic representations and capabilities resemble as much as possible the ones of human language learners after being exposed with as little volume of raw training data as the ones humans learners are exposed to.\(^{64}\)

A most outstanding feature of natural language is the possibility of there being so called long distance relations, that is relations between expressions among which a string of other expressions of arbitrary length may intervene. This builds on another feature that has been widely recognized as underlying natural language, namely the hierarchical nature of its complex expressions.\(^{65}\)

As amply documented in the overview above, grammatical anaphoric binding relations, among anaphors and antecedents, are grammar regulated connections that are long distance relations par excellence. Hence, anaphoric binding is essential, and of utmost importance, for the endeavour of designing neural models with appropriate inductive bias for natural language.

\(^{63}\) Conneau et al. 2018; Tenney et al. 2019; Miaschi & Dell’Orletta 2020, i.a.

\(^{64}\) McCoy et al. 2020.

\(^{65}\) Chomsky 1965
Appendix

In order to illustrate the combined effect of the binding constraints specified in Section 4 as well as the outcome obtained from a grammar that integrates Binding Theory, we work through the example below and the corresponding grammatical representation in Figure 1.

(57) Every student said [he likes himself].

This is a multi-clausal sentence with two anaphoric nominals in the embedded clause, a pronoun \(\text{he} \) and a short-distance reflexive \(\text{himself} \), and with a quantificational NP \(\text{every student} \) in the upper clause. In this sentence, the reflexive has the pronoun as the only admissible antecedent, and the pronoun, in turn, can either have the quantificational NP as antecedent or be resolved against an antecedent not introduced in the sentence.

Figure 1 presents an abridged version of the grammatical representation produced by the grammar for a discourse that contains only this sentence. The feature structures below the constituency tree correspond to partial grammatical representations of the leave constituents, while the ones above the tree correspond to partial representations of some of its non terminal nodes.

Circumscribing the Anaphoric Context

Let us start by considering the representation of the context.

Taking the representation of obliqueness hierarchies first, one can check that in the upper nodes of the matrix clause, due to the effect of BDP–Clause III, the \text{LIST-Z} \text{value} is obtained from the value of \text{LIST-A}, with which it is token-identical, thus comprising the list \(\langle 54, 247 \rangle \). In the nodes of the embedded clause, in turn, the \text{LIST-Z} \text{value} is the concatenation of that upper \text{LIST-Z} value and the \text{LIST-A} value in the embedded clause \(\langle 24, 392 \rangle \), from which the list \(\langle 54, 247, 24, 392 \rangle \) is obtained.

In any point of the grammatical representation, the \text{LIST-A} values are obtained from the subcategorisation frames of the local verbal predicators, as constrained by BDP–Clause II and the lexical constraints in (33) and (34). Therefore, \(\langle 24, 392 \rangle \) is the \text{LIST-A} value of \text{likes}, and \(\langle 54, 247 \rangle \) is the \text{LIST-A} value of \text{said}.

Taking into account \text{LIST-LU}, as one ascends in the representation of the syntactic constituency, the list gets longer since, by the effect of BDP–Clause I, the \text{LIST-LU} value at a given node gathers the reference markers of
Figure 1: Partial grammatical representation of *Every student said he likes himself.*
the nodes dominated by it. Consequently, at the discourse top node, LIST-LU ends up as a list including all reference markers: both those introduced in the discourse by the NPs in the example sentence and the one available in the non-linguistic context, from which the list \((115, 54, 247, 24, 392)\) is the result.

Note that in cases where the discourse contains more than one sentence, BDP–ClauseI (i.) ensures that LIST-LU ends up with all reference markers from every sentence of the discourse.

BDP–Clause I also ensures that this list of all reference markers is passed to the LIST-U value of the top node, and that this LIST-U value is then percolated down to all nodes of the grammatical representation, including the nodes of anaphoric nominals.

Circumscribing the Anaphoric Potential

To consider the representation of the NPs, we should take a closer look at the leaf nodes in the constituency tree.

Contribution to the context Let us consider first how the NPs contribute to the representation of the context.

Every phrase contributes to the global anaphoric context by passing the tag of its reference marker into its own LIST-LU.

In the case of a quantificational NP, like *every student*, two tags are passed, corresponding to the VAR value — token-identical with the DREF value of the restrictor and providing for bound-variable anaphora interpretations — and the R-MARK value — providing for e-type anaphora.

While the semantic types of anaphora — including bound-variable and e-type anaphora — are addressed in further detail in Section 5.2, it is of note at this point that a DRT account of e-type anaphora is followed here. Accordingly, a quantificational NP contributes a plural reference marker to the semantic representation of the discourse that may serve as the antecedent in (e-type) anaphoric links. In a sentence like *Every bald man snores*, for instance, the quantificational NP contributes the plural reference marker which stands for the bald men that snore. Such marker is introduced in the discourse representation via the application of the DRT Abstraction operator \(\Sigma\), which takes the restrictor and the nuclear scope of the determiner and introduces the plural marker that satisfies the

66 (Kamp & Reyle 1993: p.311ff).
corresponding semantic conditions.\(^{67}\)

In order to incorporate such an account of e-type anaphora into Under-specified DRT\(^ {68}\) the reference marker standing for the plurality satisfying the semantic condition obtained with \(\Sigma\)-abstraction, in the CONDS value of a determiner, is made token-identical with its R-MARK value. The \textit{synsem} of the lexical entry for \textit{every}, for instance, results thus as follows, where \(\text{e}\) is the marker obtained via \(\Sigma\)-abstraction:

\[
\begin{align*}
\text{LS} & \quad \begin{cases}
\text{L-MAX} & 4 \\
\text{L-MIN} & 5
\end{cases} \\
\text{SUBORD} & \quad \{4 \succ 3, 4 \succ 5, 8 \geq 5\} \\
\text{CONDS} & \quad \begin{cases}
\text{LABEL} & 4 \\
\text{REL} & \text{every} \\
\text{RES} & 3 \\
\text{SCOPE} & 5
\end{cases}, \\
\text{ANAPH} & \quad \begin{cases}
\text{R-MARK} & \text{e} \\
\text{VAR} & 2
\end{cases}, \\
\text{LIST-A} & \quad \text{list(refm)} \\
\text{LIST-Z} & \quad \text{list(refm)} \\
\text{LIST-U} & \quad \text{list(refm)} \\
\text{LIST-LU} & \quad \langle 2, 1 \rangle
\end{align*}
\]

\textbf{Contribution by the context} Let us consider now at how the representation of the context is encoded in each NP.

It should be noted that the suitable values of LIST-A, LIST-Z and LIST-U

\(^{67}\)(Kamp & Reyle 1993: p.310).
\(^{68}\)(Frank & Reyle 1995).
Anaphoric Binding: an integrated overview

at the different NP nodes are enforced by the combined effect of the three Clauses of BDP.

Due to, respectively, BDP–Clause II (iii.) and BDP–Clause I (iii.i.), LIST-

z and LIST-U values result from token-identity, respectively, with LIST-Z and with LIST-U of the immediately dominating node in the constituency tree — that is the case, for instance, with the lists \(\langle 54, 247 \rangle \) and \(\langle 115, 54, 247, 24, 392 \rangle \) in the non-pronoun every student and in the sentential node dominating it.

Due to BDP–Clause II (i.), LIST-A value, in turn, is obtained via token-

identity with LIST-A of the subcategorising predicator — that is the case, for

instance, with the list \(\langle 24, 392 \rangle \) in the reflexive himself and in its predicator likes.

Realisation of anaphoric potential As to the anaphoric nominals, let

us consider how their anaphoric potential is circumscribed in each specific occurrence.

The value of ANTEC is a list that records the grammatically admissible antecedents of the corresponding anaphor at the light of binding constraints.

As the result of the relational constraint principleA/2, the semantic representation of the reflexive himself includes the attribute ANTEC with the singleton list \(\langle 24 \rangle \) as value, indicating that the only antecedent candidate available in this sentence is the pronoun in the embedded clause whose reference marker is identified as \(24 \) in its own semantic representation.

The semantic representation of the pronoun he, in turn, includes the feature ANTEC with a value that is the list of its antecedent candidates, \(\langle 115, 247, 54, 392 \rangle \), thus indicating that, in this sentence, the pronoun can be anaphorically linked to every nominal except itself, in line with the relational constraint principleB/3.

This ANTEC list includes antecedent candidates for the pronoun that will be dropped out by preferences or constraints on anaphoric links other than just the grammatical binding constraint expressed in Principle B. For instance, the plural reference marker \(247 \), which is the R-MARK value of every student, will eventually be excluded by the anaphora resolver given that the singular pronoun he cannot entertain an e-type anaphoric link with a universally quantified NP whose reference marker obtained by \(\Sigma \)-abstraction is a plurality.

Also the marker \(392 \) of the reflexive will be eventually discarded from this ANTEC list as a suitable antecedent by the resolver system since this would lead to an interpretive loop where the pronoun and the reflexive would be the sole antecedents of each other.
Non-linguistic context Finally, in order to illustrate how the non-linguistic context may be represented in the linguistic representation of sentences, in this example, the reference marker \[\text{115}\] was introduced in the semantic representation of the \text{ctx} node.

The CONDS value of this node is meant to capture the possible contribution of the non-linguistic context at stake for the interpretation of the discourse. Like in the lexical entries of nominals, in the feature representation of \text{ctx}, the reference marker \[\text{115}\] is integrated in the LIST-LU value. By the effect of BDP–Clause I, this reference marker ends up added to the list of all reference markers, from both the linguistic discourse and the non-linguistic context, which is the shared value of features LIST-LU and LIST-U at the top node in Figure 1.

Abbreviations

BDP - Binding Domains Principle
DRT - Discourse Representation Theory
HPSG - Head-Driven Phrase Structure Grammar
UDRT - Underspecified Discourse Representation Theory

Acknowledgements

The research reported in this paper was partially supported by the Research Infrastructure for the Science and Technology of Language (PORTULAN CLARIN).

References

Abeillé, Anne, Danièle Godard, Philip Miller & Ivan Sag. 1998. French bounded Dependencies. In Sergio Balari & Luca Dini (eds.), Romance in HPSG, 1–54. Stanford: CSLI Publications.
Abeillé, Anne, Danièle Godard & Ivan Sag. 1998. Two Kinds of Composition in French complex Predicates. In Andreas Kathol, Ehrard Hinrichs & Tsuneko Nakazawa (eds.), Complex Predicates in non transformational Syntax, 1–41. Cambridge MA: Academic Press.
Asher, Nicholas & Hajime Wada. 1989. A Computational Account of Syntactic, Semantic and Discourse Principles for Anaphora Resolution. Journal of Semantics 6. 309–344.
van Benthem, Johan. 1991. Linguistic Universals in Logical Semantics. In Dietmar Zäfferrer (ed.), Semantic Universals and Universal Semantics, 17–36. Dordrecht: Foris.

Branco, António. 1996. Branching Split Obliqueness at the Syntax-Semantics Interface. In Proceedings of the 16th International Conference on Computational Linguistics (COLING’96), 149–156.

Branco, António. 1998a. The Logical Structure of Binding. In Proceedings of the 17th International Conference on Computational Linguistics and 36th Annual Meeting of the Association for Computational Linguistics (COLING-ACL’98), 181–187.

Branco, António. 1998b. Towards a Lean Constraint-based Implementation of Binding Theory. In Simon Botley & Tony McEnery (eds.), New Approaches to Discourse Anaphora: Proceedings of the Second Colloquium on Discourse, Anaphora and Anaphor Resolution, vol. 11, 54–67. Lancaster: Lancaster University.

Branco, António. 1999. Reference Processing and its Universal Constraints. Lisbon: University of Lisbon dissertation.

Branco, António. 2000a. Binding Classes and Search Optimisation in Anaphor Resolution. In Paul Baker, Andrew Hardie, Tony McEnery & Anna Siewierska (eds.), Proceedings of the 3rd Discourse Anaphora and Anaphor Resolution Colloquium (DAARC’2000), 125–132. Lancaster: Lancaster University.

Branco, António. 2000b. Binding Constraints as Instructions of Binding Machines. In Proceedings of the 18th International Conference on Computational Linguistics (COLING’2000), 104–111.

Branco, António. 2000c. Reference Processing and its Universal Constraints. Lisbon: Publicações Colibri.

Branco, António. 2000d. Specification and Verification of Binding Constraints: An Integrated Account. In Detmar Meurers, Shuly Wintner & Erhard Hinrichs (eds.), Proceedings of Workshop on Linguistic Theory and Grammar Implementation, 201–218. Birmingham: 12th European Summer School in Logic, Language & Information (ESSLLI2000).

Branco, António. 2001. Duality and Anaphora. In Robert van Roy & Martin Stokhof (eds.), Proceedings of the 13th Amsterdam Colloquium (AC’2001), 49–54. Amsterdam: ILLC.

Branco, António. 2002a. Binding Machines. Computational Linguistics 28. 1–18.
António Branco

Branco, António. 2002b. Integrating Binding Principles into Formal Grammar Processing: An HPSG Account. In António Branco, Tony McEnery & Ruslan Mitkov (eds.), *Proceedings of the 4th Discourse Anaphora and Anaphor Resolution Colloquium (DAARC’2002)*, 19–24. Lisbon: Edições Colibri.

Branco, António. 2002c. Without an Index: a Lexicalist Account of Binding Theory. In Frank Van Eynde, Lars Hellan & Dorothee Beermann (eds.), *Proceedings of the 8th International on Head-Driven Phrase Structure Grammar Conference (HPSG’2001)*, 71–86. Stanford: CSLI Publications.

Branco, António. 2003. Anaphor Resolution: Is the Search Optimization Flawed? *Psychologica* 32. 77–89.

Branco, António. 2004. Cognitive Anaphor Resolution and the Binding Principles. In Augusto Soares da Silva, Amadeu Torres & Miguel Gonçalves (eds.), *Linguagem, Cultura e Cognição: Estudos de Linguística Cognitiva*, 629–640. Coimbra: Almedina.

Branco, António. 2005a. Anaphoric Constraints and Dualities in the Semantics of Nominals. *Journal of Language Logic and Information* 2. 149–171.

Branco, António. 2005b. Reflexives: Escaping Exemption via Domain Reshuffling. In Stefan Müller (ed.), *Proceedings of the 12th International Conference on Head-Driven Phrase Structure Grammar (HPSG2005)*, 467–481. Stanford: CSLI Publications.

Branco, António. 2006. Binding Symmetries and Nominal Dualities. In Klaus von Heusinger & Ken Turner (eds.), *Where Semantics Meets Pragmatics*, vol. 16 (Current Research in the Semantics/Pragmatics Interface Series), 225–236. Amsterdam: Elsevier.

Branco, António. 2007. Null Subjects are Reflexives, not Pronouns. *Lecture Notes in Artificial Intelligence* 4410. 59–76.

Branco, António & Palmira Marrafa. 1997. Subject-oriented and non Subject-oriented Long-distance Anaphora: an Integrated Approach. In Byung-Soo Park & Jong-Bok Kim (eds.), *Proceedings of the 11th Pacific Asia Conference on Language, Information and Computation (PACLIC1997)*, 21–30. Seoul: Kyung Hee University.

Branco, António & Palmira Marrafa. 1999. Long-distance Reflexives and the Binding Square of Opposition. In Gert Webelhuth, Jean-Pierre Koening & Andreas Kathol (eds.), *Lexical and Constructional Aspects of Linguistics Explanation*, chap. 11, 163–177. Stanford: CSLI Publications.
Carbonell, Jaime & Ralf Brown. 1988. Anaphora Resolution: A Multi-
strategy Approach. In *Proceedings of the 12th International Conference
on Computational Linguistics (COLING’88)*, 96–101.
Chierchia, Gennaro. 1995. *Dynamics of Meaning: Anaphora, Presupposition
and the Theory of Grammar*. Chicago: The University of Chicago Press.
Chomsky, Noam. 1965. *Aspects of the Theory of Syntax*. Cambridge.
Chomsky, Noam. 1980. On Binding. *Linguistic Inquiry* 11. 1–46.
Chomsky, Noam. 1981. *Lectures on Government and Binding*. Dordrecht:
Foris.
Chomsky, Noam. 1986. *Knowledge of Language*. New York: Praeger.
Conneau, Alexis, German Kruszewski, Guillaume Lample, Loïc Barrault &
Marco Baroni. 2018. What you can cram into a single $\&!#* vector:
Probing sentence embeddings for linguistic properties. In *Proceedings
of the 56th Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers)*, 2126–2136. Melbourne, Australia:
Association for Computational Linguistics.
Copestake, Ann, Dan Flickinger, Ivan Sag & Carl Pollard. 2005. Mini-
imal Recursion Semantics. An introduction. *Research on Language and
Computation* 3. 281–332.
Correa, Nelson. 1988. A Binding Rule for Government-binding Parsing. In
*Proceedings of the 12th International Conference on Computational
Linguistics (COLING’88)*, 123–129.
Dalrymple, Mary. 1993. *The Syntax of Anaphoric Binding*. Stanford: CSLI
Publications.
Dimitriadis, Alexis, Martin Everaert, Tanya Reinhart & Eric Reu-
land. 2005. *Anaphora Typology Database*. University of Utrecht:
http://languagelink.let.uu.nl/anatyp/.
Eschenbach, Carole, Christopher Habel, Michael Herweg & Klaus Rehkaem-
per. 1989. Remarks on Plural Anaphora. In *Proceedings of the 27th An-
nual Meeting of the Association for Computational Linguistics (ACL’89)*,
161–167.
Evans, Gareth. 1980. Pronouns. *Linguistic Inquiry* 2. 337–362.
Fong, Sandiway. 1990. Free Indexation: Combinatorial Analysis and a
Compositional Algorithm. In *Proceedings of the 28th Annual Meeting
of the Association for Computational Linguistics (ACL’90)*, 105–110.
Frank, Anette & Uwe Reyle. 1995. Principle Based Semantics for HPSG.
In *Proceedings of the 7th Conference of the European Chapter of the
Association for Computational Linguistics (EACL’95)*, 9–16.
António Branco

Gawron, Jean Mark & Stanley Peters. 1990. *Anaphora and Quantification in Situation Semantics*. Stanford: CSLI Publications.

Golde, Karin. 1999. *Binding Theory and Beyond*. Columbus: Ohio State University dissertation.

Heim, Irene. 1982. *The Semantics of Definite and Indefinite Noun Phrases*. Amherst: University of Massachusetts dissertation.

Hellan, Lars. 1988. *Anaphora in Norwegian and the Theory of Grammar*. Dordrecht: Foris.

Hepple, Mark. 1990. *The Grammar and Processing of Order and Dependency: A Categorial Approach*. Edinburgh: University of Edinburgh dissertation.

Higginbotham, James. 1983. Logical Form, Binding and Nominals. *Linguistic Inquiry* 14. 395–420.

Huang, C.-T. James & C.-C. Jane Tang. 1991. The Local Nature of the Long-distance Reflexive in Chinese. In Jan Koster & Eric Reuland (eds.), *Long-Distance Anaphora*, 263–282. Cambridge: CUP.

Iatridou, Sabine. 1986. An Anaphor not Bound in Its Governing Category. *Linguistic Inquiry* 17. 766–772.

Jackendoff, Ray S. 1972. *Semantic Interpretation in Generative Grammar*. Cambridge: MIT Press.

Jacobson, Pauline. 2000. Paycheck Pronouns, Bach-Peters Sentences and Variable-free Semantics. *Natural Language Semantics* 8. 77–155.

Jäger, Gerhard. 2001. *Anaphora and Ellipsis in Type Logical Grammar*. Course notes. Utrecht. Utrecht Institute of Linguistics-OTS PhD courses.

Johnson, Mark & Ewan Klein. 1990. Discourse, Anaphora and Parsing. In *Proceedings of the 28th Annual Meeting of the Association of Computational Linguistics (ACL’90)*, 197–302.

Kamp, Hans. 1981. A Theory of Truth and Discourse Representation. In Jeroen Groenendijk, Theo Janssen & Martin Stokhof (eds.), *Formal Methods in the Study of Language*, 277–322. Amsterdam: Mathematical Centre.

Kamp, Hans & Uwe Reyle. 1993. *From Discourse to Logic: Introduction to Model-theoretic Semantics of Natural Language, Formal Logic and Discourse Representation Theory*. Dordrecht: Kluwer.

Karttunen, Lauri. 1976. Discourse Referents. In James McCawley (ed.), *Syntax and Semantics 7: Notes from the Linguistic Underground*, 363–385. New York: Academic Press.
Kiss, Tibor. 2001. Anaphora and Exemptness: A Comparative Treatment of Anaphoric Binding in German and English. In Dan Flickinger & Andreas Kathol (eds.), *Proceedings of the 7th International on Head-Driven Phrase Structure Grammar Conference (HPSG’2000)*, 182–197. Stanford: CSLI Publications.

Koenig, Jean-Pierre. 1999. Inside-Out Constraints and Description Languages for HPSG. In Gert Wehelhuth, Jean-Pierre Koening & Andreas Kathol (eds.), *Lexical and Constructional Aspects of Linguistics Explanation*, chap. 17, 265–280. Stanford: CSLI Publications.

König, Ekkehard. 1991. Concessive Relations as the Dual of Causal Relations. In Dietmar Zafferrer (ed.), *Semantic Universals and Universal Semantics*, 190–209. Dordrecht: Foris.

Koster, Jan & Eric Reuland (eds.). 1991. *Long-Distance Anaphora*. CUP: Cambridge.

Kuno, Susumu. 1987. *Functional Syntax*. Chicago: University of Chicago Press.

Lappin, Shalom & Herbert Leass. 1994. An Algorithm for Pronominal Anaphora Resolution. *Computational Linguistics* 20. 535–561.

Lee, Kenton, Luheng He, Mike Lewis & Luke Zettlemoyer. 2017. End-to-end Neural Coreference Resolution. In *Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing*, 188–197. Association for Computational Linguistics.

Link, Godehard. 1983. The Logical Analysis of Plural and Mass Terms: A Lattice-theoretical Approach. In Arnim von Stechow, Christoph Schwarze & Rainer Bäuerle (eds.), *Meaning, Use and Interpretation of Language*, 302–323. Berlin: Walter de Gruyter.

Löbner, Sebastian. 1987. Quantification as a Major Module of Natural Language Semantics. In Jeroen Groenendijk, Dick de Jongh & Martin Stokhof (eds.), *Studies in DRT and the Theory of Generalized Quantifiers*, 53–85. Dordrecht: Foris.

Löbner, Sebastian. 1989. German schon-erst-noch: An Integrated Analysis. *Linguistics and Philosophy* 12. 167–212.

Löbner, Sebastian. 1999. Why German schon and noch are still Duals: a Reply to van der Auwera. *Linguistics and Philosophy* 22. 45–107.

Manning, Chris & Ivan Sag. 1999. Dissociations between Argument Structure and Grammatical Relations. In Gert Wehelhuth, Jean-Pierre Koenig & Andreas Kathol (eds.), *Lexical and Constructional Aspects of Linguistic Explanation*, 63–78. Stanford: CSLI.
Manzini, Rita & Kenneth Wexler. 1987. Parameters, Binding Theory and
Learnability. *Linguistic Inquiry* 18. 413–444.

McCoy, R. Thomas, Robert Frank & Tal Linzen. 2020. Does Syntax Need to
Grow on Trees? Sources of Hierarchical Inductive Bias in Sequence-to-
Sequence Networks. *Transactions of the Association for Computational
Linguistics* 8. 125–140.

Miaschi, Alessio & Felice Dell’Orletta. 2020. Contextual and Non-Contextual
Word Embeddings: an in-depth Linguistic Investigation. In *Proceedings
of the 5th Workshop on Representation Learning for NLP*, 110–119.
Online: Association for Computational Linguistics.

Mitkov, Ruslan. 1997. Factors in Anaphora Resolution: They are not the only
Things that Matter. In *Proceedings of the ACL/EACL’97 Workshop on
Operational Factors in Practical, Robust Anaphora Resolution*, 36–51.

Morril, Glyn. 2000. *Type-Logical Anaphora*. Report de Recerca LSI-00-
77-R. Barcelona. Departament de Llenguatges i Sistemes Informàtics,
Universitat Politècnica de Catalunya.

Poesio, Massimo & Renata Vieira. 1998. A Corpus-based Investigation of
Definite Description Use. *Computational Linguistics* 24. 183–216.

Pollard, Carl & Ivan Sag. 1987. *Information-based Syntax and Semantics.*
Stanford: CSLI Publications.

Pollard, Carl & Ivan Sag. 1992. Anaphors in English and the Scope of
Binding Theory. *Linguistic Inquiry* 23. 261–303.

Pollard, Carl & Ivan Sag. 1994. *Head-Driven Phrase Structure Grammar.*
Chicago: The University of Chicago Press.

Reinhart, Tanya. 1983. Coreference and Bound Anaphora: A Restatement of
the Anaphora Questions. *Linguistics and Philosophy* 6. 47–88.

Reinhart, Tanya & Eric Reuland. 1993. Reflexivity. *Linguistic Inquiry* 24.
657–720.

Reyle, Uwe. 1993. Dealing with Ambiguities by Underspecification: Construc-
tion, Representation and Deduction. *Journal of Semantics* 10. 123–
179.

Rich, Elaine & Susann LuperFoy. 1988. An Architecture for Anaphora
Resolution. In *Proceedings of the 2nd Conference on Applied Natural
Language Processing (ANLP’88)*, 18–24.

Richter, Frank, Manfred Sailer & Gerald Penn. 1999. A Formal Interpre-
tation of Relations and Quantification in HPSG. In Gert-Jan Kruijff
Gosse Bouma Erhard Hinrichs & Richard Oehrle (eds.), *Constraints*
Anaphoric Binding: an integrated overview

and Resources in Natural Language Syntax and Semantics, 281–298. Stanford: CSLI Publications.

Sag, Ivan A. 1997. English Relative Clause Constructions. Journal of Linguistics 33(2). 431–484.

Seeley, Daniel. 1993. Binding Plural Pronominals. In Katherine Beals, Gina Cooke, David Kathman, Sotaro Kita, Karl-Erik McCullough & David Testen (eds.), CLS29: Papers from the 29th Regional Meeting of the Chicago Linguistic Society, vol. 2, 305–317. Chicago: University of Chicago.

Seuren, Peter. 1985. Discourse Semantics. Oxford: Blackwell.

Smessaert, Hans. 1997. Aspectual Duality Regained. In Paul Dekker, Martin Stokhof & Yde Venema (eds.), Proceedings of the 11th Amsterdam Colloquium, 271–276. Amsterdam: ILLC.

Stalnaker, Robert. 1998. On the Representation of Context. Journal of Logic, Language and Information 7. 3–19.

Szabolcsi, Anna. 1989. Bound Variables in Syntax (are there any?) In Renate Bartsch, Johan van Benthem & Peter van Emde Boas (eds.), Semantics and Contextual Expressions, 295–318. Dordrecht: Foris.

Tenney, Ian, Dipanjan Das & Ellie Pavlick. 2019. BERT Rediscovers the Classical NLP Pipeline. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 4593–4601. Florence, Italy: Association for Computational Linguistics.

ter Meulen, Alice. 1988. The Semantic Properties of English Aspectual Verbs. In NELS, vol. 21. Amherst: University of Massachusetts.

Varlokosta, Spyridoula & Norbert Hornstein. 1993. A Bound Pronoun in Modern Greek. Natural Language and Linguistic Theory 11. 175–195.

Wang, Alex, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy & Samuel Bowman. 2018. GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, 353–355. Association for Computational Linguistics.

Wechsler, Stephen. 1999. HPSG, GB, and the Balinese Bind. In Gert Weibelhuth, Jean-Pierre Koenig & Andreas Kathol (eds.), Lexical and Constructional Aspects of Linguistic Explanation, 179–196. Stanford: CSLI.

Xu, Liyan & Jinho D. Choi. 2020. Revealing the Myth of Higher-Order Inference in Coreference Resolution. In Proceedings of the 2020 Confer-
António Branco

ence on Empirical Methods in Natural Language Processing (EMNLP), 8527–8533. Online: Association for Computational Linguistics.
Xue, Ping, Carl Pollard & Ivan Sag. 1994. A New Perspective on Chinese Ziji. In Proceedings of the West Coast Conference on Formal Linguistics (WCCFL’94). Stanford: CSLI Publications.
Zribi-Hertz, Anne. 1989. Anaphor Binding and Narrative Point of View: English Reflexive Pronouns in Sentence and Discourse. Language 65. 695–727.