Therapeutic effect of ursolic acid in experimental visceral leishmaniasis

Jéssica A. Jesus a, b, Thais N. Fragoso a, Eduardo S. Yamamoto a, Márcia D. Laurenti a, Marcelo S. Silva c, d, Aurea F. Ferreira a, João Henrique G. Lago b, Gabriela S. Gomes d, Luiz Felipe D. Passero e, f

a Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School of São Paulo University, Av. Dr. Arnaldo, 455. Cerqueira César, São Paulo, 01246-903, SP, Brazil
b Center of Natural Sciences and Humanities, Federal University of ABC, Santo André, São Paulo, 09210-180, Brazil
c Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
d Departamento de Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Rua General Gustavo Cordeiro de Farias, 384, 59012-570 Natal, Brazil
e São Paulo State University (Unesp), Institute of Biosciences, São Vicente, Praça Infante Dom Henrique, s/n, 11330-900 São Vicente, SP, Brazil

A R T I C L E I N F O

Article history:
Received 1 September 2016
Accepted 1 December 2016
Available online 8 December 2016

Keywords:
Ursolic acid
Leishmania (Leishmania) infantum
Therapeutic potential
Toxicity

A B S T R A C T

Leishmaniasis is an important neglected tropical disease, affecting more than 12 million people worldwide. The available treatments are not well tolerated and present diverse side effects in patients, justifying the search for new therapeutic compounds. In the present study, the therapeutic potential and toxicity of ursolic acid (UA), isolated from the leaves of Baccharis uncinella C. DC. (Asteraceae), were evaluated in experimental visceral leishmaniasis. To evaluate the therapeutic potential of UA, hamsters infected with L. (L.) infantum were treated during 15 days with 1.0 or 2.0 mg UA/kg body weight, or with 5.0 mg amphotericin B/kg body weight by intraperitoneal route. Fifteen days after the last dose, the parasitism of the spleen and liver was estimated and the main histopathological alterations were recorded. The proliferation of splenic mononuclear cells was evaluated and IFN-γ, IL-4, and IL-10 gene expressions were analyzed in spleen fragments. The toxicity of UA and amphotericin B were evaluated in healthy golden hamsters by histological analysis and biochemical parameters. Animals treated with UA had less parasites in the spleen and liver when compared with the infected control group, and they also showed preservation of white and red pulps, which correlate with a high rate of proliferation of splenic mononuclear cells, IFN-γ mRNA and iNOS production. Moreover, animals treated with UA did not present alterations in the levels of AST, ALT, creatinine and urea. Taken together, these findings indicate that UA is an interesting natural compound that should be considered for the development of prototype drugs against visceral leishmaniasis.

© 2016 Published by Elsevier Ltd on behalf of Australian Society for Parasitology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Leishmaniases are infectious parasitic diseases caused by protozoans belonging to the Trypanosomatidae family, Kinetoplastida order, Leishmania genus. These diseases affect humans, several wild and domestic mammal species, as well as invertebrates belonging to the Diptera order, Psychodidae family, Lutzomyia genus in the New World, as well as Phlebotomus genus in the Old World (WHO, 2010).

Leishmaniases consist of a complex of diseases with important clinical spectrum and epidemiological diversity. Depending on the infecting species and the intrinsic characteristics of the host (Lana et al., 2015), cutaneous leishmaniasis or visceral leishmaniasis (VL) can be clinically characterized. So far, VL has been recognized as the most serious clinical form of this group of diseases (Monge-Maillo and López-Vélez, 2013).

In the New World, the only species causing VL is L. (Leishmania) infantum (syn. L. (L) chagasi) (Silveira and Corbett, 2010), with an incidence of 1.9 cases per 100,000 inhabitants and a 90% mortality.
rate if not treated properly (Gomes et al., 2016). VL is considered a
generalized chronic disease, the first symptom of visceralization being
a frequent and relapsing low fever with two or three daily
peaks. Fever is the most notable symptom due to its irregular or
remitting feature (Van Griensven and Diro, 2012). Splenomegaly
and hepatomegaly are also important clinical signs that persist
during the course of the disease. The chronicity of VL is marked by
progressive weight loss and general weakening, hence increasing
the risk of acquiring secondary infections. It might progress quickly,
though, leading the patient to cachexia or death within a few weeks
or months (Van Griensven and Diro, 2012).

Although different groups have made efforts to characterize
affordable and safe vaccines for human VL, they are currently still
under characterization (Passero et al., 2012; Douthie et al., 2016).
Thus, chemotherapy remains the only possible method that can be
used to eliminate parasites from tissues. Antimonial and amphi-
terin B are the standard drugs used in human therapy (Rath et al.,
2003). Pentavalent antimony has been used for more than seven
decades, and nowadays it is still used as the first choice of treat-
ment for all clinical forms of leishmaniasis (Tempone et al., 2011).
While effective, patients treated with this drug present local and
systemic side effects, such as nausea, vomiting, weakness, myalgia,
abdominal pain, skin rash, liver and heart toxicities (McGwire and
Satokar, 2011). In more detail, resistance development seems to
be related with a replacement of ergosterol, the main target for this
plant
Baccharis uncinella

In view of the serious side effects of drugs commonly used
in leishmaniasis chemotherapy and the emergence of drug-resistant
parasites, it is urgent to search for new compounds that require
few cycles of administration and that are more effective and less
toxic to patients or animals. An interesting alternative for the dis-
covery of new therapeutic agents for the treatment of leishmaniasis
is prospecting natural products from different sources, such as
plants, which possess a wide range of secondary metabolites,
including triterpenes (Passero et al., 2014; Duarte et al., 2016).

Triterpenoids are the most representative group of phyto-
chemicals, comprising more than 20,000 known compounds that
can be classified into groups based on their structural skeletons,
such as cycloartanes, dammaranes, euphanes, friedelanes, lano-
stanes, lupanes, oleananes, tirucallanes, and ursanes, among others
(Hill and Connolly, 2012). The diversity of triterpenes is highly
associated with their broad range of pharmacological effects, and
different studies have already shown that these compounds pre-
sent multispecies action against Leishmania sp. (Gnaotto et
al., 2008; Bero et al., 2011; Begum et al., 2014). Recently, it was
demonstrated that skin rash, liver and heart toxicities (McGwire and
Satokar, 2011). Moreover, some reports suggest that in the New
World L. (Viannia) braziliensis, L. (V.) guyanensis and L. (L.) infantum
have acquired increased resistance against antimonial drugs
(Tessarollo et al., 2015; de Moura et al., 2016; Moreira et al., 2015;
Monte-Neto et al., 2015).

In cases of unsuccessful treatment with antimonial or disease
relapse, amphotericin B is chosen as the second-line drug, being
effective against amastigote forms. It has, however, a number of
side effects, including nephrotoxicity and cardiotoxicity, which
limit its use. Besides resistance against amphotericin B have been
suggested for some Leishmania species (Chattopadhyay and
Jafurulla, 2011). In more detail, resistance development seems to
be related with a replacement of ergosterol, the main target for this
drug, by cholesta-5,7,24-trien-3-ol in the parasite membrane, an
increase in the levels of MDR1 protein, and an upregulation in the
cascade of the tryptapoxin pathway, among other functional
changes, which all together make the parasite more resistant to
amphotericin B (Purkait et al., 2012).

2. Material and methods

2.1. General experimental procedures

The 1H and 13C NMR spectra were recorded at 300 MHz and
75 MHz, respectively, in a Bruker Advance III spectrometer using
DMSO-d6 (Sigma-Aldrich Co., St. Louis, MO, USA) as solvent and
internal standard. Silica gel (230–400 mesh; Merck & Co., Kenil-
worth, NJ, USA) and Sephadex LH-20 (Sigma-Aldrich Co.) were used
for column chromatographic separation, while silica gel 60 PF254
(Merck & Co.) was used for analytical TLC (0.25 mm). High-
performance liquid chromatography (HPLC) purification was per-
fomed in a Dionex Ultimate 3000 chromatograph, using a Luna
Phenomenex RP-18 column (3 μm; 150 × 5 mm) and an ultraviolet
(UV)-diode array detector (DAD). All chemicals employed were of
analytical reagent grade. Amphotericin B was purchased from
Cristalia (Brazil) and solubilized in sodium chloride 0.9% (w/v).

2.2. Plant material

The leaves of B. uncinella were collected in Campos do Jordão,
Sao Paulo, Brazil, in June 2005. The plant was authenticated by Dr.
Oriana A. Fávero and the voucher specimen was deposited at the
Herbarium of the Prefeitura Municipal de Sao Paulo with the
reference number PMSP9893.

2.3. Extraction and isolation of UA

Dried and powdered leaves of B. uncinella (207 g) were
extractively extracted using ETOH 95% at room temperature for
7 days. The crude extract (9.8 g), obtained after evaporation of sol-
vent under reduced pressure, was dissolved in MeOH:H2O 7:3 (v/v)
and partitioned using CH2Cl2. The obtained CH2Cl2 phase (5.3 g)
was subjected to column chromatography over silica gel and eluted
with different mixtures of n-hexane:EtOAc to afford 91 mg of a white
compound. The isolated compound was identi
fied as UA

13C NMR (75 MHz,n DMSO-d6) δ1 (1H, s, H-1), 8.49 (1H, s, H-2), 4.06 (br s, H-3), 1.87 (d, J = 3.4 Hz, H-8), 1.68 (s, H-23), 1.61 (s, H-27), 1.52 (s,
H-25), 1.31 (s, H-26), 0.80 (br s, H-30), 0.63 (br s, H-29), 0.58 (s, H-
24). 13C NMR (75 MHz,n DMSO-d6) δC: 178.7 (C-1), 173.0 (C-11), 218 nm) to afford 91 mg of a white
compound. The isolated compound was identified as UA

2.4. Parasites and antigen production

L. infantum (syn. *L. chagasi*) parasite (MHOM/BR/72/46) was kindly provided by Prof. Dr. Fernando T. Silveira from the cryobank of the “Leishmaniasis Laboratory Prof. Dr. Ralph Laison”, Department of Parasitology, Evandro Chagas Institute, Ministry of Health, Belém, Pará State, Brazil. Species confirmation was accomplished using monoclonal antibodies and isoenzyme electrophoretic profiles at the Leishmaniasis Laboratory of the Evandro Chagas Institute. *L. infantum* was grown in M199 medium (Sigma-Aldrich Co.) supplemented with 10% fetal calf serum (FCS), 50,000 IU/mL penicillin, 50 μg/mL streptomycin, and 2% human urine at 25 °C. Stationary phase promastigotes were used throughout the entire study. To produce total antigen, *L. infantum* promastigotes were recovered by centrifugation at 1200 g for 10 min at 4 °C, washed three times with phosphate buffered saline (PBS), before resuspension in PBS with 1% protease inhibitors (Sigma-Aldrich Co.). Parasites were then lysed by successive freeze-thaw cycles.

2.5. Animals and ethical considerations

Golden hamsters (*Mesocricetus auratus*), 8 weeks old, were obtained from the Medical School of the University of São Paulo, Brazil. This study was carried out in strict accordance with the recommendations detailed in the Guide for the Care and Use of Laboratory Animals of the Brazilian National Council of Animal Experimentation (http://www.cobea.org.br). The protocol was approved by the Ethics Committee of Animal Experiments of the Medical School of São Paulo University (CEP 259/13), and also by the Federal University of São Paulo (955422). For all experimental procedures, the animals were anaesthetized with tiopental (1 mg/200 g) for anaesthesia. Twenty female golden hamsters were intraperitoneally infected with 2 × 10⁷ promastigote forms of *L. infantum*, and 5 gold hamsters received only phosphate buffered saline (PBS) plus 1% DMSO under the same route (PBS group). Sixty days after infection, *L. infantum*-infected hamsters were divided into four groups: group 1 was injected with 1.0 mg of UA per kg of body weight (mg/kg); group 2 was injected with 2.0 mg/kg of UA; group 3 was injected with 5.0 mg/kg of amphotericin B (Corral et al., 2014), group 4 was injected with PBS plus 1% DMSO solution (infected control group). Group 5 was constituted by non-infected animals that received only the vehicle solution (PBS control); UA, amphotericin B, and the vehicle solution were injected intraperitoneally daily, once a day, over the course of 15 consecutive days. Fifteen days after the last injection, the animals were sacrificed in a CO₂ chamber; their blood, spleen, kidney, lungs, heart, and liver were collected to analyze different parameters. Sera were collected and immediately stored at –80 °C and used for the evaluation of biochemical parameters. Before treatment, a few hamsters were euthanized in order to verify the presence of parasites in spleen and liver. Animals showed high parasitism and the organs presented macro- and microscopic alterations, as previously reported by our group (Duarte et al., 1988; Laurenti et al., 1990, 1996; Corbett et al., 1992; Corbett and Laurenti, 1998). UA was solubilized in DMSO and further PBS (never exceeding 1% DMSO); and amphotericin B was solubilized in sterile water for injection plus 1% DMSO.

2.7. Determination of parasite load

The parasite load was estimated using the quantitative limiting-dilution assay, as described by Campos et al. (2015), with minor modifications. Briefly, fragments of spleen and liver from the different groups were aseptically excised, weighted, and homogenized in M199 medium (Sigma-Aldrich Co.). The suspensions of organs were subjected to 12 serial dilutions with four replicate wells. The number of viable parasites was determined based on the highest dilution rate where promastigote forms could be observed after 15 days of cultivation at 25 °C.

In addition to the limiting-dilution assay, parasitism in the spleen and liver was evaluated by immunohistochemistry according to Laurenti and collaborators (Laurenti et al., 2014). Briefly, slides with histological sections were deparaffinized and hydrated. Antigenic recovery was developed in citric acid solution (10 mM, pH 6.0) for 3 min in a pressure cooker. Next, the slides were washed six times with 3% hydrogen peroxide (H₂O₂) to block endogenous peroxidase and to avoid nonspecific binding; the sections were also incubated in a solution of powdered skim milk (10%), diluted in PBS, pH 7.4, at room temperature for 30 min. The immunolabeling reaction was performed with polyclonal mouse anti-*Leishmania* antibody at 1:1000 (produced in the Laboratory of Pathology of Infectious Diseases), diluted in PBS and 1% bovine serum albumin (BSA). This polyclonal antibody was raised against *Leishmania infantum* crude antigen in BALB/c mice and was standardized to be used in immunohistochemistry. In order to detect the enzyme nitric oxide synthase 2 the polyclonal antibody anti-NOS2 (Santa Cruz, USA) was used at 1:200 in PBS plus 1% Bovine serum albumin, and add in histological section of spleen and liver for 60 min, 37 °C. To develop the reaction, the LSAB kit (Dako Denmark A/S, Glostrup, Denmark) and diaminobenzidine (Sigma-Aldrich Co.) in PBS containing 3% hydrogen peroxide were used. Histological sections were counterstained in Harris’s hematoxylin, dehydrated and mounted in resin with cover slides.

The main histopathological changes in the red and white pulps of the spleen, as well as in the portal regions and parenchyma of the liver were visualized in histological sections stained with hematoxylin and eosin (HE).

2.8. Analysis of cell proliferation

Spleens were individually homogenized in Roswell Park Memorial Institute (RPMI) 1640 medium and erythrocytes were lysed using lysis buffer (150 mM NaCl, 7 mM K₂HCO₃ and 0.01 mM EDTA). Cells were adjusted to 5 × 10⁵ cells/well and cultured in sterile 96-well plates under specific stimulation with the total...
antigen (T-AG) of *L. infantum* promastigotes (10 µg/well) or under unspecific stimulation with concanavalin A (1 µg/well) as a positive control of proliferation. In addition, cells from all groups were cultured only with RPMI 1640 medium as negative controls. Plates were cultured in a humidified incubator at 37 °C under 5% CO₂. Following 48 h of incubation, the plates were washed with PBS three times at 1000 rpm for 10 min, at 4 °C. Then, PrestoBlue reagent (Life Technologies, Carlsbad, CA, USA) was added to measure cellular proliferation (Sá-Nunes et al., 2009; Hamalainen-Laanaya and Orloff, 2012). After 2 h, fluorescence was read with the excitation and emission wavelengths at 570 nm and 620 nm, respectively. The fluorescent levels of negative controls were subtracted from all samples. The PBS control group (uninfected, untreated) did not proliferate under stimulation with the T-Ag of *L. (L.) infantum*.

2.9. Cytokine determination by real-time polymerase chain reaction (qPCR)

RNA from spleen fragments (~10 mg) was extracted using the commercial RNaseasy Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer’s protocol. cDNA was synthesized with the SuperScript™ VILE™ cDNA Synthesis Kit (Life Technologies). Amplification conditions consisted of an initial denaturation phase at 95 °C for 10 min, followed by 40 amplification cycles consisting of 95 °C for 15 s, 61 °C for 90 s, and 72 °C for 30 s, using a thermocycler (Eppendorf, Hamburg, Germany). Prior to quantification, the efficiency of each reaction was verified using cDNA from spleens of healthy animal; it was always above 95%. Expression levels of genes of interest were normalized to β-actin (endogenous control). qPCR reaction was carried out using the GoTaq™ qPCR Master Mix kit (Promega Corporation, Madison, WI, USA) and 25 nM of specific primers. The primer sequences were as follows (5’ to 3’): IFN-γ forward: GACACACGCGCATTCC and reverse: CAAAACACCCGACTC; IL-10 forward: TGGACAACATCCTACTCTG and reverse: GATGTCAAATTCATTCATGGC; IL-4 forward: CCACGGAAGAACCTCATCTG and reverse: GGGTCACCTCATGTTGGAAATAA; IL-10 forward: TGGACAACATCCTACTCTG and reverse: GATGTCAAATTCATTCATGGC; IL-4 forward: CCACGGAAGAACCTCATCTG and reverse: GGGTCACCTCATGTTGGAAATAA; IFN-γ forward: TCCTGTGGCATCCACGAAACTACA and reverse: TCCTGTGGCATCCACGAAACTACA; β-actin forward: ACAGCAGCCTCTG and reverse: GGTGTCACCTCATTGAAATAA; β-actin forward: TCCTGTGGCATCCACGAAACTACA and reverse: ACAGCAGCCTCTG and reverse: GGTGTCACCTCATTGAAATAA. Quantification results are expressed in fold changes of 2^ΔCt over the infected control group.

Prior to performing the qPCR, standard PCR reactions were performed to assess the specificity of the primers; one single amplification product of predicted size, according to Lafuse et al. (2013), was always obtained for such reactions.

2.10. Evaluation of the toxicity of UA

Healthy golden hamsters were divided into 4 groups containing 5 animals/group. Group 1 was treated intraperitoneally with 1.0 mg/kg of UA; group 2 was treated with 2.0 mg/kg of UA; group 3 was treated with 5.0 mg/kg of amphotericin B; and group 4 was injected with the vehicle solution (PBS). Animals were subjected to the same treatment described in 2.6. Five days after the last injection, animals were anaesthetized with thiopental and sacrificed by cardiac puncture. Sera were collected and immediately stored at –80 °C. Fragments of spleen, liver, kidney, lung, and heart were collected, processed histologically, and stained with HE. The biochemical parameters associated with hepatic and renal functions were evaluated through the quantification of seric alanine transaminase (ALT), aspartate aminotransferase (AST), urea (Sigma-Aldrich Co.) and creatinine (Labtest, Brazil).

3. Statistical analysis

The experiments were repeated four times and all parameters were assayed in triplicate; each experiment contained 25 golden hamsters. Experiments pertaining to toxicity contained 20 golden hamsters. The results were expressed by the arithmetic mean ± standard deviation. Statistical analyses were performed using GraphPad Prism 5.0, and the nonparametric Mann–Whitney U test was used to evaluate the differences between treated and infected control groups. Differences were considered statistically significant at a 5% significance level (*P* < 0.05).

4. Results

4.1. Determination of spleenic and liver parasitism

The parasite load in the spleen of infected hamsters treated with 1.0 or 2.0 mg/kg of UA, isolated from *B. uncinella*, was established at 2.3 × 10^8 (reduction of 92.7%) and 2.1 × 10^8 (reduction of 93.3%) parasite/g of spleen, respectively, when compared to the infected control group (31.5 × 10^8 parasite/g of spleen); as detailed in Fig. 2A (*P* < 0.05). In addition, amastigote reduction during UA treatment was evidenced by immunohistochemistry (Fig. 2D and E). Animals treated with 5.0 mg/kg of amphotericin B also showed reduction in spleenic parasitism (8.5 × 10^7 parasite/g of spleen; reduction of 73%) when compared to the infected control group (*P* < 0.05) (Fig. 2A–B). Similarly, a significant reduction in parasitism was verified in the liver of animals treated with 1.0 mg/kg (2.2 × 10^8 parasite/g of liver; reduction of 96.9%) or 2.0 mg/kg (2.4 × 10^8 parasite/g of liver; reduction of 96.7%) of UA (*P* < 0.05) when compared with the infected control group, which presented liver parasitism of 72.9 × 10^8 parasite/g of liver (Fig. 2B, H and I). Animals treated with 5.0 mg/kg of amphotericin B presented a decrease in liver parasitism (2.5 × 10^8 parasite/g of liver; reduction of 96.5%) as well. Fig. 2 shows an immunolabeled histological section of liver from amphotericin B–treated animals to evidence amastigote forms.

4.2. Histopathological changes

In the spleen of hamsters from the infected control group, a replacement of lymphoid follicles by infected macrophages was observed, suggesting immunosuppression caused by *L. (L.) infantum* (Fig. 3A). Furthermore, in the red pulp, proliferation of often-parasitized macrophages was observed and the presence of infected giant cells was also noted (Fig. 3F), indicating high disease severity evidenced by the histological sections stained by immunohistochemistry (Fig. 3C). Infected animals treated with 1.0 mg/kg and 2.0 mg/kg of UA showed preservation of the white pulp, suggesting a less severe condition and a better immune response (Fig. 3B–C). For these groups, nodules of macrophages were also detected in the red pulp, but they were fewer and exhibited less parasitism when compared to the infected control group (Fig. 3G–H). Animals treated with amphotericin B showed preservation of the white and red pulps (Fig. 3D) with few infected macrophages in the red pulp (Fig. 3I). Spleens from healthy animals exhibited white and red pulps with normal characteristics as shown in Fig. 3E–J.

In the liver of all animal groups that were infected with *L. (L.) infantum*, independently of treatment, parasites were detected in portal areas that presented inflammatory foci characterized by the occurrence of lymphocytes and macrophages (white arrow in Fig. 3K–N). In addition, macrophage granulomas were also visualized in the liver parenchyma (white arrow in Fig. 3P–S). Treatment with UA and amphotericin B resulted, however, in lesser parasitism and fewer areas of portal inflammation.

4.3. Proliferation of splenic cells, expression of cytokines and nitric oxide synthase 2 (NOS2) immunostaining

Splenic cells stimulated with T-Ag from animals treated with
1.0 mg/kg or 2.0 mg/kg of UA proliferated significantly more in comparison with the cells from the infected controls ($P < 0.05$). Cells from animals treated with 5.0 mg/kg of amphotericin B and stimulated with T-Ag did not proliferate (Fig. 4).

The spleen of infected golden hamsters treated with 1.0 mg/kg or 2.0 mg/kg of UA expressed higher levels of IFN-γ mRNA when compared to the infected control group ($P < 0.05$) (Fig. 5A). Infected animals treated with either concentration of UA or amphotericin B expressed significantly less IL-4 mRNA in the spleen than the infected control group ($P < 0.05$), as illustrated in Fig. 5B. Conversely, IL-10 gene expression was shown to be elevated in the spleens of animals treated with either of UA or amphotericin B (Fig. 5C).

Infected hamsters treated with 1.0 mg/kg or 2.0 mg/kg of UA presented NOS2 positive areas diffusely detected throughout spleen histological sections, as illustrated in Fig. 6B–C. In addition, NOS2 positive areas could also be detected in the animals treated with amphotericin B, however it was in less amount and focally (Fig. 6D) when compared to histological section of animals treated with UA. The infected control group presented only basal positivity for NOS2 while the non-infected PBS control did not present positive areas for NOS2 enzyme (Fig. 6A–E, respectively).

In the infected control group, few positive NOS2 cells were detected in inflammatory foci of periportal areas from the liver (Fig. 6F), while in infected animals treated with 1.0 and 2.0 mg/kg of UA NOS2 positive cells were detected in high number in the inflammatory areas of liver parenchyma (Fig. 6G–H, respectively). Infected animals treated with amphotericin B (Fig. 6I) presented few NOS2 positive cells, and the non-infected PBS control group did not show NOS2 positive cells (Fig. 6J).

4.4. Toxicity evaluation

Healthy hamsters treated with 1.0 mg/kg and 2.0 mg/kg of UA or 5.0 mg/kg of amphotericin B did not show significant changes in the spleen, liver, lung, or heart (data not shown). Although UA did not alter the histology of the kidney, treatment with amphotericin B changes kidney medullary region. In this case, it was observed that...
the cuboidal epithelium of the distal tubule was necrotic (Fig. 7K). Histological changes were not detected in the cortical region of kidney of all animals analyzed (Fig. 7E and H).

To confirm renal alterations induced by amphotericin B in golden hamsters, biochemical evaluations were carried out. In this regard, it was verified that animals treated with 1.0 mg/kg or 2.0 mg/kg of UA did not present seric alterations in creatinine or urea (Fig. 7A and B, respectively). In contrast, animals treated with 5.0 mg/kg of amphotericin B presented high levels of seric creatinine ($P < 0.05$) in comparison to the untreated control group (Fig. 7A). The levels of seric urea in all treated animals were similar to that of the control (Fig. 7B). Changes in the levels of either AST or ALT were not verified between treated and control animals (Fig. 7C and D, respectively).

5. Discussion

Currently, the main therapeutic arsenal available for treating leishmaniasis has been considered outdated. Moreover, patients face diverse side effects, and the drugs employed in present therapy can lead to the emergence of drug-resistant parasites. Therefore, it is urgent to characterize the leishmanicidal action of new compounds in vivo to increase the collection of effective prototype drugs. In this regard, UA seems to be an interesting target to develop new formulations to be used in human health, because different reports demonstrated its multivalent activities against pathological conditions. UA was demonstrated to be active against different tumor cell lines (Chuang et al., 2016; Aguiriano-Moser et al., 2015; Kim and Moon, 2015), its anti-tumoral effect being associated to apoptosis induction by intrinsic and extrinsic pathways of death (Li et al., 2014; Meng et al., 2015; Zhang et al., 2016; Villar et al., 2016).

In addition, in vivo experiments demonstrated the efficacy of UA, alone or in association with standard drugs, in colorectal and pancreatic tumors therapy (Shan et al., 2016; Prasad et al., 2016). Other studies also demonstrated the protective potential of UA in models of liver and endothelial cells injuries (Li et al., 2016), suggesting that the administration of high doses of UA trigger some antioxidant effects in experimental animals. Furthermore, UA was confirmed to possess antiprotozoal activities. Similarly to its effect on tumor cells, this triterpene induced programmed cell death in $L. (L.)$ amazonensis, and presented therapeutic efficacy in the model of American Tegumentar Leishmaniasis (Yamamoto et al., 2015).

Despite the collection of related evidences, studies dealing with the antileishmanial effect of UA on experimental visceral leishmaniasis are rare. Thus, the present work aimed to characterize the therapeutic action of UA isolated from $B. uncinella$ in experimental VL. In this regard, a reduction in splenic and liver parasitism was observed following treatment with UA, suggesting that the course of infection in treated animals was controlled when compared to the infected control group. Moreover, in spleen, UA showed to be more effective than amphoterin B; in contrast, livers of animals
treated with UA or amphotericin B showed similar parasitism, which was in both cases significantly less in comparison with the infected control group. Of note, in this study, amphotericin B did not totally cure infected hamster, possibly by the low number of injections, since it was not possible to continue the experimental treatment, because the infected control group was suffering from chronic and systemic infection that precluded the end of the experiment. Moreover, the therapeutic effect of UA impacted the histological architecture of the spleen and liver in treated animals. While the infected control group showed macrophagic invasion and disruption of the white and red pulps, suggesting immune suppression (Kaye et al., 2004; Rodrigues et al., 2016), animals treated with UA or amphotericin B demonstrated that the areas of lymphoid follicles, as well as the T-cell zones, remained intact, suggesting a better immune response pattern as confirmed by the reduction of viable parasites and by the decrease of parasitized areas.

The liver has been considered an acute site of infection by viscerotropic species of *Leishmania*, as it features less damage than the spleen (Stanley and Engwerda, 2007). Still, the infected control group presented chronicification of the inflammatory process in the portal regions, as well as granulomas in the liver parenchyma, while hamsters in the UA- and amphotericin B-treated groups exhibited a decrease in the inflammatory process with the presence of well-organized granulomas. According to several studies, the resolution of acute infection is associated with the development of inflammatory granulomas around Kupffer cells, although at the same time, the presence of granulomas can be considered a marker for parasite persistence (Engwerda et al., 2004; Stanley and Engwerda, 2007; Rodrigues et al., 2016). Giunchetti et al. (2008) showed that the liver of symptomatic dogs infected with *L. infantum* displayed portal inflammation and intralobular granulomas, among other histological changes, suggesting that these features could be associated with disease progression. Considering these findings, the UA triterpene showed a therapeutic effect on the liver of golden hamsters infected with *L. infantum*. Even though the increase in UA concentration did not improve its efficacy in the experimental model of visceral leishmaniasis, a fact that may have a direct association with UA bioavailability. Liao et al. (2005) as well as Chen et al. (2011) showed that after administration in animals UA could be rapidly detected in high levels in plasma, spleen and liver — the main organs affected by *L. infantum*. However, it was quickly excreted, impacting the distribution or accumulation of this triterpene in the animal body; and causing a constant availability of UA independently of the administered dose. Therefore, similar number of parasites detected in the treatment with 1.0 or 2.0 mg/kg of UA may be related with the bioavailability of this compound.

Although the leishmanicidal action of UA (*in vitro*) was already evaluated (Passero et al., 2011; Yamamoto et al., 2015), its action in experimental models of leishmaniasis was poorly demonstrated until now. In this regard, Yamamoto and collaborators (Yamamoto et al., 2014) showed that UA treatment of *L. (L.) amazonensis*-infected BALB/c mice decreased skin parasitism, which was associated with the preservation of the epidermis and dermis as a possible consequence of IFN-γ production. Other studies showed that the astrakurkurone triterpene from the mushroom *Astraeus hygrometricus* was able to restrain parasitism in a murine model of VL, and this therapeutic action was associated with upregulation of IFN-γ and IL-17 cytokines (Chen et al., 2011). Other terpenes were also shown to be active in VL, such as the clerodane diterpene 16α-hidroxiclerodra clerodane-3,13Z-dien-15,16-olide from the leaves of *Polyalthia longifolia*, since hamsters treated with the diterpene exhibited splenic, liver, and bone marrow parasitism that

Fig. 4. Proliferation of mononuclear cells in the spleen stimulated with 10 μg of total parasite antigen during 48 h *P* < 0.05 indicates statistical significance when comparing the infected control group versus the treated groups.
was similar to that of animals treated with miltefosine (Misra et al., 2010). Additionally, an oleanane triterpenoid derivative (maesa-balide III) isolated from Maesa balansae showed in vivo activity against L. donovani following administration of a single subcutaneous dose on either day 1 (prophylactic treatment) or day 28 (curative treatment) after infection (Maes et al., 2004). These data suggest that in addition to their therapeutic effects, some terpenes can also exert modulatory immune effects on animals (Yamamoto et al., 2014; Mallick et al., 2016).

Indeed, in the present study, it was demonstrated that golden
hamsters infected with *L. infantum* and treated with UA exhibited preservation of important areas of the spleen, and that mononuclear cells stimulated with parasite T-Ag proliferated significantly more in comparison with the mononuclear cells of the infected control group and amphotericin B-treated animals. In VL, it is widely recognized that mononuclear cells have low, or even absent, proliferative potential to parasite antigens, indicating the immunosuppressive status of the cellular immune response (Fazzani et al., 2011). Therefore, the ability of mononuclear cells to proliferate under specific antigens suggests that the animals in the present study developed a beneficial immune response following treatment. Although animals treated with amphotericin B presented low parasitism and preservation of the white and red pulps, the mononuclear cells of these animals did not proliferate under specific antigens, a fact that point out to some specific immune suppression. However, this effect should not be understood as immunosuppression, since mononuclear cells of this group proliferated under stimulation with concanavalin A (data not shown). Previous studies also indicated that spleen cells from golden hamsters treated with free or encapsulated amphotericin B did not proliferate under specific stimuli (Dea-Ayuela et al., 2004, 2007), but such findings should not be considered as immunossuppression, since concanavalin A-stimulated cells proliferated.

The dichotomy of the specific cellular immune response is one of the main factors that determine disease development or control, particularly because IFN-γ is an important marker of resistance (Lykens et al., 2010). On the contrary, IL-4 and IL-10 are recognized markers of susceptibility to infection (Osorio et al., 2014). In the present study, this dichotomy was evaluated by the relative expression levels of IFN-γ, IL-4, and IL-10 genes in the spleen. Infected hamsters treated with UA showed a polarized Th1 immune response that was related to protection (Kim and Soong, 2013). However, the increase in IL-10 expression verified in the UA- and amphotericin B-treated animals may regulate the inflammatory effect of IFN-γ. Studies have shown that although IL-10 may prevent tissue injuries caused by an exacerbated inflammatory response (Banchereau et al., 2012), this cytokine is also responsible for parasite maintenance at the site of infection, especially since IL-10 limits the generation of IFN-γ, as well as the microbicidal activity of macrophages (Belkaid et al., 2001), thus allowing parasites to survive inside host cells. Even in the group treated with amphotericin B, a drug used in leishmaniasis therapeutics, IL-10 exhibited increased gene expression and low amounts of IFN-γ mRNA. Moreover, parasites were visualized in histological sections and in the limiting-dilution assay, suggesting that the presence of IL-10 can be a crucial factor for maintaining tissue parasites, even in conditions that are adverse for them.

On the other hand, all treated groups presented decreased IL-4 expression, and although its role is not entirely clear in leishmaniasis, the IL-4 cytokine may be associated with pathogenic effects in experimental VL, as it was able to activate the STAT-6 transcription factor. This led to a strong expression of the gene encoding for L-arginase, an important enzyme that inhibits NO production (Osorio et al., 2014), which is essential for parasite elimination. Therefore, decreased expression of this cytokine following experimental treatments may be associated with a beneficial response against experimental VL. In fact, the infected control group expressed high amounts of IL-4 gene and produced only marginal levels of NOS2 in spleen or liver suggesting that IL-4 can be a factor associated with the pathogenesis of VL. Yet the spleen of UA-treated animals presented low IL-4 and high IFN-γ expression, inducing the Th1 immune response and macrophage activation by NOS2 mechanism, as verified in the spleen and liver, and culminating with parasite reduction. In histological section of the spleen from animals treated with amphotericine B, NOS2 positive areas were also detected, but the treatment with UA seems to induce a stronger reaction associated with the NOS2, the final enzyme responsible to trigger nitric oxide production. It is still important to note that the majority of
immunological studies were carried out with qPCR because immunological reagents for hamster are rare. Considering the therapeutic effect of UA in experimental VL, toxicity studies in golden hamsters were conducted. Histopathological analysis verified that the treated animals did not develop tissue injuries in the liver, spleen, heart, lung or kidney. Conversely, animals treated with amphotericin B displayed injuries in the medullary area of the kidney. In this case, tubular epithelial cells suffered an extensive process of necrosis. A study conducted by Berdichevski et al. (2006) demonstrated that patients treated with amphotericin B showed nephrotoxicity, which was characterized by a reduced glomerular filtration rate and tubular dysfunction. Furthermore, creatinine levels were higher and acute renal failure occurred in 31% of patients. In our study, the process of tubular necrosis found in animals treated with amphotericin B was associated with increased levels of serum creatinine, as already described by a previous study (Deray, 2002). Taken together, these findings demonstrated that UA is not a toxic drug for golden hamsters, while amphotericin B, although recognized as a leishmanicidal drug, can induce critical injuries. Moreover, a recent study demonstrated that UA had a nephroprotective effect by attenuating renal damage induced by toxic compounds (Pai et al., 2012) suggesting that this natural product has the potential to be considered as a prototype drug. Remarkably, UA triterpene was active in lower doses compared to the standard drug amphotericin B, and considering the molecular mass of both compounds, it is possible to assume that animals were treated with pharmaceutical dosage of UA, allowing its formulation as a medicament.

Different natural products have already been tested in viscerotropic Leishmania species, and the results have demonstrated that in some cases these natural compounds could be classified as promising antileishmanial drugs. Our present work evidenced that UA was an effective drug in the treatment of experimental VL without inducing toxicity; at the same time, it avoided immunosuppression by inducing a Th1 immune response leading to parasite elimination. Taken together, these findings support the conclusion that UA has an important leishmanicidal potential that is comparable to that of the standard drug, amphotericin B. UA can thus be considered an interesting candidate for further testing as a prototype drug for the treatment of VL.

Acknowledgments

The authors would like to thank the São Paulo Research Foundation (FAPESP) for their support [Grants 2013/16297-2, 2013/10133-8, 2015/11936-2 and 2016/00468-0] and HCFCMUP-LIM50. Authors also thank CNPq scientific research award to MDL and JHCL.

References

Aguiarino-Moser, V., Svejda, B., Li, Z.X., Sturm, S., Stuppner, H., Ingolc, E., Höger, H., Siegl, V., Meier-Allard, N., Sadjak, A., Pflegrer, R., 2015. Ursolic acid from Trailiea decandra induces apoptosis in medullary thyroid carcinoma cells. Mol. Med. Rep. 12, 5003–5011.
Banchereau, J., Pascual, V., O’Garra, A., 2012. From IL-2 to IL-37: the expanding spectrum of anti-inflammatory cytokines. Nat. Immunol. 13, 925–931.
Belkaid, Y., Hoffmann, K.F., Mendez, S., Kamhawi, S., Udey, M.C., Wynn, T.A., et al., 2001. The role of interleukin (IL)-10 in the persistence of Leishmania major in the skin after healing and the therapeutic potential of anti-IL-10 receptor antibody for sterile cure. J. Exp. Med. 194, 1497–1506.
Berdichevski, R.H., Luiz, L.B., Cestana, L., Manro, R.C., 2006. Amphotericin B-related nephrotoxicity in low-risk patients. Braz. J. Infect. Dis. 10, 94–99.
Bero, J., Hannarta, V., Chataigné, G., Hérent, M.F., Quinet-Lacercq, J., 2011. In vitro antitypanosomal and antileishmanial activity of plant used in Benin in traditional medicine and bio-guided fractionation of the most active extract. J. Ethnopharmacol. 137, 998–1002.
Campos, B.L., Silva, T.N., Ribeiro, S.P., Carvalho, K.J., Kallás, E.G., Laurenti, M.D., et al., 2017. Analysis of iron superoxide dismutase-encoding DNA vaccine on the evolution of the Leishmania amazonensis experimental infection. Parasite Immunol. 39, 407–416.
Chattopadhyay, A., Jafarulla, M., 2011. A novel mechanism for an old drug: amphotericin B in the treatment of visceral leishmaniasis. Biochem. Biophys. Res. Commun. 416, 7–12.
Chen, Q., Luo, S., Zhang, Y., Chen, Z., 2011. Development of a liquid chromatography–mass spectrometry method for the determination of ursolic acid in rat plasma and tissue: application to the pharmacokinetic and tissue distribution study. Anal. Bioanal. Chem. 399, 2877–2884.
Chuang, W.L., Lin, P.Y., Lin, H.C., Chen, Y.L., 2016. The apoptotic effect of ursolic acid on SK-Hep-1 cells is regulated by the PI3K/akt, p38 and JNK MAPK signaling pathways. Molecules 21, 460.
Corbett, C.E.P., Laurenti, M.D., 1998. Early detection of Leishmania (Leishmania) Chagasi in draining lymph node after subcutaneous inoculation in Hamsters. Parasitol. Int. J. Pathol. 47, 307–310.
Corbett, C.E., Paes, R.A., Laurenti, M.D., Andrade Júnior, H.F., Duarte, M.J., 1992. Histopathology of lymphoid organs in experimental leishmaniasis. Int. J. Exp. Pathol. 73, 417–433.
Corral, M.J., Serrano, D.R., Moreno, I., Torraldo, J.J., Domínguez, M., Alunda, J.M., 2014. Efficacy of low doses of amphotericin B plus allicin against experimental visceral leishmaniasis. J. Antimicrob. Chemother. 69, 3268–3274.
Deray, G., 2002. Amphotericin B nephrotoxicity. J. Antimicrob. Chemother. 1, 37–41.
Duarte, M.C., Tavares, G.S., Valadares, D.G., Lage, D.P., Ribeiro, T.C., Lage, L.M., et al., 2011. Antileishmanial activity and mechanism of action from a purified fraction of Zingeri officinalis Roscoe against Leishmania amazonensis. Exp. Parasitol. 166, 21–28.
Duarte, M.J., Laurenti, M.D., Andrade Júnior, H.F., Corbett, C.E., 1988. Comparative study of the biological behaviour in hamster of two isolates of Leishmania characterized respectively as L. major-like and L. donovani. Rev. Inst. Med. Trop. 30, 21–27.
Duthie, M.S., Favila, M., Hofmeyer, K.A., Tutterrow, Y.L., Reed, S.J., Laurance, J.D., et al., 2016. Strategic evaluation of vaccine candidate antigens for the prevention of Visceral Leishmaniasis. Vaccine 34, 2779–2786.
Engwerda, C.R., Ato, M., Kaye, P.M., 2004. Macrophages, pathology and parasite persistence in experimental visceral leishmaniasis. Trends. Parasitol. 20, 524–530.
Fazzani, C., Guedes, P.A., Sena, A., Souza, E.B., Goto, H., Lindoso, J.A.L., 2011. Dynamics of immunosuppression in hamsters with experimental visceral leishmaniasis. Braz. J. Med. Biol. Res. 44, 666–670.
Gianuchetti, R.C., Mayrink, W., Carneiro, C.M., Corrêa-Oliveira, R., Martins-Filho, O.A., Marques, M.J., et al., 2008. Histopathological and immunohistochemical investigations of the hepatic compartment associated with parasitism and serum biochemical changes in canine visceral leishmaniasis. Res. Vet. Sci. 84, 269–777.
Groothuis, E., Dalla Vecchia, L., Lencina, C., Dassenou-Klimep, A., D. Nascimento, S., Massolay, D., et al., 2008. Synthesis and preliminary evaluation of new ursolic and oleandric acids derivatives as antileishmanial agents. J. Enzyme Inhib. Med. Chem. 23, 604–610.
Gomes, A.P., Miguel, P.S.B., Vitorino, R.R., Correia, M.D.L., Souza, R.D.F., Freitas, R.B., et al., 2016. Visceral Leishmaniasis: a brazilian perspective. J. Trop. Dis. 4, 202. http://dx.doi.org/10.4172/2329-891X.1000202.
Hamalainen-Laanya, H.K., Orlow, M.S., 2012. Analysis of cell viability using time-dependent increase in fluorescence intensity. Anal. Biochem. 429, 32–38.
Hill, R.A., Connolly, J.D., 2012. Triterpenoids, natural product. Reports 29, 780.
Kim, E.S., Moon, A., 2015. Ursolic acid inhibits the invasive phenotype of SNU-484 human gastric cancer cells. Oncol. Lett. 9, 897–902.
Kim, P.E., Seong, L., 2013. Interferon gamma in Leishmaniasis. Front. Immunol. 4, 156.
Lafuse, W.P., Story, R., Mahlyis, J., Gupta, V., Varikuti, S., Steinkamp, H., et al., 2013. Leishmania donovani infection induces anemia in hamsters by differentially altering erythropoiesis in bone marrow and spleen. Clin. Exp. Immunol. 173, 902.
Lana, R.S., Michalsky, E.M., Fortes-Dias, C.L., Franco-Silva, J.C., Lara-Silva, F., de O., Lima, A.C., et al., 2015. Phlebotomine sand fly fauna and leishmaniasis infection in the vicinity of the Serra do Cipo National Park, a natural Brazilian heritage site. BioMed. Res. Int. 385493. http://dx.doi.org/10.1155/2015/385493.
Laurenti, M.D., Corbett, C.E.P., Sotto, M.N., Sininhori, L.L., Goto, H., 1996. The role of complement in the acute inflammatory process in the skin and in the host-parasite interaction in Hamsters inoculated with Leishmania (Leishmania) Chagasi. Int. J. Exp. Pathol. 77, 15–24.
Laurenti, M.D., Passero, L.F., Tomokane, T.Y., Francesqui, F., de, C., Rocha, M.C., Gomes, C.M., et al., 2014. Dynamic of the cellular immune response at the dermal site of Leishmania (L.) amazonensis and Leishmania (V.) braziliensis infection in Saguinus appendiculatus primates. Biomed. Res. Int. http://dx.doi.org/10.1155/2014/134236.

Laurenti, M.D., Sotto, M.N., Corbett, C.E., da Matta, V.L., Duarte, M.L., 1990. Experimental visceral leishmaniasis: sequential events of granuloma formation at subcutaneous inoculation site. Int. J. Exp. Pathol. 71, 791–797.

Li, D., Ren, D., Luo, Y., Yang, X., 2016. Protective effects of ursoic acid against hepatoxicity and endothelial dysfunction in mice with chronic high choline diet consumption. Chem. Biol. Interact. 258, 102–107.

Li, Y., Lu, X., Qi, H., Li, X., Xiao, X., Gao, J., 2014. Ursoic acid induces apoptosis through mitochondrial intrinsic pathway and suppression of ERK1/2 MAPK in Hela cells. J. Pharmacol. Sci. 125, 202–210.

Liao, Q., Yang, W., JIA, Y., Chen, X., Gao, Q., Bi, K., 2005. LC-MS determination and pharmacokinetic studies of ursoic acid in rat plasma after administration of the traditional chinese medicinal preparation Lu-Ying extract. J. Pharm. Soc. Jpn. 125, 509–515.

Lykens, J.E., Terrel, C.E., Zoller, E.E., Divanovic’, S., Trompette, A., Karp, C.L., et al., 2016. Mice with a selective impairment of IFN-gamma signaling in macrophage lineage cells demonstrate the critical role of IFN-gamma-activated macrophages for the control of protozoan parasitic infections in vivo. Immunol. 184, 877–885.

Maes, L., Germonprez, N., Quirijnen, L., Van Puyvelde, L., Cos, P., Vanden Berghe, D., Lykens, J.E., Terrell, C.E., Zoller, E.E., Divanovic’, S., Trompette, A., Karp, C.L., et al., 2016. Mice with a selective impairment of IFN-gamma signaling in macrophage lineage cells demonstrate the critical role of IFN-gamma-activated macrophages for the control of protozoan parasitic infections in vivo. Immunol. 184, 877–885.

Mallick, S., Dutta, A., Chaudhuri, A., Mukherjee, D., Dey, S., Halder, S., et al., 2016. Successful therapy of murine visceral leishmaniasis with astrakurkurone, a triterpene isolated from the mushroom Austraeus hygrometricus, involves the induction of protective cell-mediated immunity and TLR9. Antimicrob. Agents Chemother. 48, 2056–2060.

Moreira, D., de, S., Pescher, P., Laurent, C., Lenormand, P., Spaccapelo, L., 2011. Current Approaches to discover marine antileishmanial natural products. J. Nat. Prod. 74, 1733–1740.

Nunes, A., Bafica, A., Antonelli, L.R., Choi, E.Y., Francischetti, L.M., Andersen, J.F., et al., 2009. The immunomodulatory action of sialostatin L on dendritic cells reveals its potential to interfere with autoimmunity. J. Immunol. 182, 7422–7429.

Pai, P.G., Chamari, S., Kulkarni, A., Habeeba, U., Reddy, C.S., Rath, S., Trivelin, L.A., Imbrunito, T.R., Tomazela, D.M., Jesús, M.N., Marzal, P.C., et al., 2003. Antimonials employed in the treatment of leishmaniasis: the state of the art. Quim. Nova 26, 550–555.

Rath, S., Trivelin, L.A., Imbrunito, T.R., Tomazela, D.M., Jesús, M.N., Marzal, P.C., et al., 2003. Antimonials employed in the treatment of leishmaniasis: the state of the art. Quim. Nova 26, 550–555.

Rodrigues, V., Cordeiro-da-Silva, A., Laforge, M., Silvestre, R., Estaquio, J., 2016. Regulation of immunity during visceral Leishmania infection. Parasit. Vectors 9, 118.

Sá-Nunes, A., Bafica, A., Antonelli, L.R., Choi, E.Y., Francischetti, L.M., Andersen, J.F., et al., 2009. The immunomodulatory action of sialostatin L on dendritic cells reveals its potential to interfere with autoimmunity. J. Immunol. 182, 7422–7429.

Shan, J., Xuan, Y., Zhang, Q., Zhu, C., Liu, Z., Zhang, S., 2016. Ursoic acid synergistically enhances the therapeutic effects of oxaliplatin in colorectal cancer. Protein. Cell. 7, 571–585.

Stanley, A.C., Engwerda, C.R., 2007. Balancing immunity and pathology in visceral leishmaniasis. Immunol. Cell. Biol. 85, 138–147.

Silveira, F.T., Corbett, C.E.P., 2010. Leishmania chagasi Cunha & Chagas, 1937: nativa ou introduzida? Una breve revisão. Ver. Pan-Amaz Saude 1, 143–147.

Tempone, A.G., Oliveira, C.M., Berlinck, R.G.S., 2011. Current Approaches to discover marine antileishmanial natural products. J. Nat. Prod. 74, 1733–1740.

Villar, V.H., Varela, L., Barceló, F., Martín-Broto, J., Martínez-Serra, J., Ruiz-Gutiérrez, V., 2016. Down-regulation of AKT signalling by ursoic acid induces intrinsic apoptosis and sensitization to doxorubicin in soft tissue sarcoma. PLoS One 11, e0155946.

World Health Organization, 2010. Report of a Meeting of the WHO Expert Committee on the Control of Leishmaniasis. WHO, Geneva.

Yamamoto, E.S., Campos, B.L., Laurenti, M.D., Lago, J.H., 2014. Plants used in traditional medicine: extracts and secondary metabolites exhibiting antileishmanial activity. Curr. Clin. Pharmacol. 9, 529–536.