Boxicity and Cubicity of Asteroidal Triple free graphs

Diptendu Bhowmick *, L. Sunil Chandran **

Abstract. An axis parallel d-dimensional box is the Cartesian product $R_1 \times R_2 \times \cdots \times R_d$ where each R_i is a closed interval on the real line. The boxicity of a graph G, denoted as box(G), is the minimum integer d such that G can be represented as the intersection graph of a collection of d-dimensional boxes. An axis parallel unit cube in d-dimensional space or a d-cube is defined as the Cartesian product $R_1 \times R_2 \times \cdots \times R_d$ where each R_i is a closed interval on the real line of the form $[a_i, a_i + 1]$. The cubicity of G, denoted as cub(G), is the minimum integer d such that G can be represented as the intersection graph of a collection of d-cubes.

An independent set of three vertices is called an asteroidal triple if between each pair in the triple there exists a path which avoids the neighbourhood of the third. A graph is said to be Asteroidal Triple free (AT-free for short) if it does not contain an asteroidal triple. The class of AT-free graphs is a reasonably large one, which properly contains the class of interval graphs, trapezoid graphs, permutation graphs, cocomparability graphs etc. Let $S(m)$ denote a star graph on $m + 1$ nodes. We define claw number of a graph G as the largest positive integer k such that $S(k)$ is an induced subgraph of G and denote it as $\psi(G)$.

Let G be an AT-free graph with chromatic number $\chi(G)$ and claw number $\psi(G)$. In this paper we will show that $\text{box}(G) \leq \chi(G)$ and this bound is tight. We also show that $\text{cub}(G) \leq \text{box}(G)(\lceil \log_2 \psi(G) \rceil + 2) \leq \chi(G)(\lceil \log_2 \psi(G) \rceil + 2)$. If G is an AT-free graph having girth at least 5 then $\text{box}(G) \leq 2$ and therefore $\text{cub}(G) \leq 2 \lceil \log_2 \psi(G) \rceil + 4$.

Key words: Boxicity, Cubicity, Chordal Dimension, Asteroidal Triple free Graph, Chromatic Number, Claw Number.

1 Introduction

Let \mathcal{F} be a family of non-empty sets. An undirected graph G is the intersection graph of \mathcal{F} if there exists a one-one correspondence between the vertices of G and the sets in \mathcal{F} such that two vertices in G are adjacent if and only if the corresponding sets have non-empty intersection. If \mathcal{F} is a family of intervals on the real line, then G is called an interval graph. An interval graph G is said to be a unit interval graph if and only if there is some interval representation of G in which all the intervals are of the same length.

Notations: Let $G(V, E)$ be a simple, finite, undirected graph on n vertices. The vertex set of G is denoted as $V(G)$ and the edge set of G is denoted as $E(G)$. For any vertex

* Computer Science and Automation Department, Indian Institute of Science, Bangalore- 560012 Email: diptendubhowmick@gmail.com

** Computer Science and Automation Department, Indian Institute of Science, Bangalore- 560012 Email: sunil@csa.iisc.ernet.in
\(v \in V(G) \) let \(N_G(v) = \{ w \in V(G) \mid (v, w) \in E(G) \} \) be the set of neighbors of \(v \). For each \(S \subseteq V(G) \) let \(G[S] \) denote the subgraph of \(G \) induced by the vertices in \(S \). In this paper we shall use the notation \(G \setminus S \) to denote \(G[V \setminus S] \). The \textit{girth} of a graph is the length of a shortest cycle in the graph.

Let \(G' \) be a graph such that \(V(G') = V(G) \). Then \(G' \) is a \textit{super graph} of \(G \) if \(E(G) \subseteq E(G') \). We define the \textit{intersection} of two graphs as follows: if \(G_1 \) and \(G_2 \) are two graphs such that \(V(G_1) = V(G_2) \), then the intersection of \(G_1 \) and \(G_2 \) denoted as \(G = G_1 \cap G_2 \) is a graph with \(V(G) = V(G_1) = V(G_2) \) and \(E(G) = E(G_1) \cap E(G_2) \).

1.1 Boxicity and Cubicity

A \(d \)-dimensional box is a Cartesian product \(R_1 \times R_2 \times \cdots \times R_d \) where each \(R_i \) is a closed interval of the form \([a_i, b_i]\) on the real line. A \(k \)-box representation of a graph \(G \) is a mapping of the vertices of \(G \) to \(k \)-boxes such that two vertices in \(G \) are adjacent if and only if their corresponding \(k \)-boxes have a non-empty intersection. The \textit{boxicity} of a graph \(G \), denoted as box\((G)\), is the minimum integer \(k \) such that \(G \) can be represented as the intersection graph of \(k \)-dimensional boxes. Clearly, graphs with boxicity 1 are precisely the \textit{interval graphs}.

A \(d \)-dimensional cube is a Cartesian product \(R_1 \times R_2 \times \cdots \times R_d \) where each \(R_i \) is a closed interval of the form \([a_i, a_i + 1]\) on the real line. A \(k \)-cube representation of a graph \(G \) is a mapping of the vertices of \(G \) to \(k \)-cubes such that two vertices in \(G \) are adjacent if and only if their corresponding \(k \)-cubes have a non-empty intersection. The \textit{cubicity} of \(G \) is the minimum integer \(k \) such that \(G \) has a \(k \)-cube representation. Clearly, graphs with cubicity 1 are precisely the \textit{unit interval graphs}.

Let \(G \) be a graph. Let \(I_1, I_2, \ldots, I_k \) be \(k \) interval (unit interval) graphs such that \(G = I_1 \cap I_2 \cap \cdots \cap I_k \). Then \(I_1, I_2, \ldots, I_k \) is called an \textit{interval graph representation} (\textit{unit interval graph representation}) of \(G \). The following equivalence is well known.

\textbf{Lemma 1.} (Roberts\cite{25}) The minimum \(k \) such that there exists an interval graph representation (unit interval graph representation) of \(G \) using \(k \) interval graphs (unit interval graphs) \(I_1, I_2, \ldots, I_k \) is the same as box\((G)\) (cub\((G)\)).

\textbf{Fact 1.} (Roberts\cite{25}) If \(G = G_1 \cap G_2 \cap \cdots \cap G_r \) then cub\((G)\) \(\leq \sum_{i=1}^{r} \) cub\((G_i)\).

The concept of boxicity and cubicity was introduced by F. S. Roberts\cite{25} in 1969. Boxicity finds applications in fields such as ecology and operations research: It is used as a measure of the complexity of ecological \cite{26} and social \cite{20} networks and has applications in fleet maintenance \cite{23}. Boxicity and cubicity has been investigated for various classes of graphs \cite{14,27,28,28} and has been related with other parameters such as treewidth \cite{9} and vertex cover \cite{4}. Computing the boxicity of a graph was shown to be NP-hard by Cozzens\cite{14}. This was later strengthened by Yannakakis\cite{30}, and finally by Kratochvil
who showed that deciding whether boxicity of a graph is at most 2 itself is NP-complete. Boxicity has been generalized in several ways like rectangle number \[11\], poset boxicity \[29\], grid dimension \[3\], circular dimension \[16\], boxicity of digraphs \[10\] etc. Recently Chandran et al. \[7\] showed that for any graph \(G\), \(\text{box}(G) \leq 2\chi(G^2)\) where \(G^2\) is the square of graph \(G\) and \(\chi(G)\) is the chromatic number of the graph. From this they inferred that \(\text{box}(G) \leq 2\Delta^2\), where \(\Delta\) is the maximum degree of \(G\). Very recently this result was improved by Esperet \[15\], who showed that \(\text{box}(G) \leq \Delta^2 + 2\).

Let \(n\) be the number of vertices in \(G\). In \[5\] Chandran et al. have shown that for any graph \(G\), \(\text{cub}(G) \leq \lceil(\Delta + 2)\log_2 n\rceil\). In \[6\] they have shown that for any graph \(G\), \(\text{cub}(G) \leq \lceil4(\Delta + 1)\log_2 n\rceil\).

1.2 Chordal Graph and Chordal Dimension

An undirected graph is said to be chordal if every cycle of length four or more contains a chord i.e. an edge joining two nonconsecutive vertices in the cycle. The chordal dimension of a graph \(G\) denoted as chord(\(G\)), is the minimum integer \(k\) such that \(G\) can be represented as the intersection graph of \(k\) chordal graphs. Scheinerman and Mckee \[21\] have shown that for any graph \(G\), \(\text{chord}(G) \leq \chi(G)\) and also \(\text{chord}(G) \leq \text{treewidth}(G)\) where \(\chi(G)\) is the chromatic number of \(G\). Since any interval graph is a chordal graph we have the following observation:

Observation 1. For any graph \(G\), \(\text{chord}(G) \leq \text{box}(G) \leq \text{cub}(G)\).

1.3 Claw Number

Let \(S(k)\) denote a star graph on \(k + 1\) vertices. (Note that \(S(k)\) is the complete bipartite graph \(K_{1,k}\)). The center of a star is that vertex which is connected to all other vertices in the star. An induced \(S(3)\) in a graph is usually known as a claw.

Definition 1. The claw number of a graph \(G\) is the largest positive integer \(k\) such that \(S(k)\) is an induced subgraph of \(G\) and is denoted as \(\psi(G)\).

Recently Adiga et al. \[1\] have given an almost tight bound for the cubicity of interval graphs in terms of its claw number.

Theorem 1. (Adiga et al. \[1\]) If \(G\) is an interval graph with claw number \(\psi(G)\) then \(\lceil\log_2 \psi(G)\rceil \leq \text{cub}(G) \leq \lceil\log_2 \psi(G)\rceil + 2\).

1.4 AT-free graphs

An independent set of three vertices is called an asteroidal triple if between every pair of vertices there is a path which avoids the neighbourhood of the third. A graph is called asteroidal triple free (AT-free for short) if it does not contain an asteroidal triple.
They form a large class of graphs since they contain interval, permutation, trapezoid, cocomparability and many other graph classes. Corneil, Olariu and Stewart have studied many structural and algorithmic properties of AT-free graphs in [12,13].

A graph is called claw-free AT-free graph if it is AT-free and does not contain $K_{1,3}$ (i.e. $S(3)$, the claw) as an induced subgraph. Kloks et al. [18] have given a characterization of claw-free AT-free graphs.

1.5 Our Results

In this paper we will show that

1. If G is an AT-free graph with chromatic number $\chi(G)$ then $\text{box}(G) \leq \chi(G)$ and this bound is tight.
2. If G is a claw-free AT-free graph with chromatic number $\chi(G)$ then $\text{box}(G) = \text{cub}(G) \leq \chi(G)$ and this bound is tight.
3. If G is an AT-free graph having girth at least 5 then $\text{box}(G) \leq 2$ and this bound is tight. We also show that $\text{cub}(G) \leq 2 \left\lceil \log_2 \psi(G) \right\rceil + 4$.
4. If G is an AT-free graph with chromatic number $\chi(G)$ and claw number $\psi(G)$ then $\text{cub}(G) \leq \text{box}(G)\left(\left\lceil \log_2 \psi(G) \right\rceil + 2\right) \leq \chi(G)\left(\left\lceil \log_2 \psi(G) \right\rceil + 2\right)$.

Remark on previous approach to boxicity and cubicity of AT-free graphs:

In [9] it has been shown that for any graph G, $\text{box}(G) \leq \text{treewidth}(G) + 2$. It has also been shown that if G is an AT-free graph then $\text{treewidth}(G) \leq 3\Delta - 2$, hence $\text{box}(G) \leq 3\Delta$ where Δ is the maximum degree of G. But the result shown in this paper is much stronger. (Recall that $\chi(G) \leq \Delta + 1$ for any graph, but in general $\chi(G)$ can be much smaller.)

In [6] Chandran et al. have studied the relationship between cubicity and bandwidth of a graph. As a corollary they have also shown that if G is an AT-free graph then $\text{cub}(G) \leq 3\Delta - 1$ since for AT-free graphs bandwidth is at most $3\Delta - 2$. Using the technique of [6], this upper bound cannot be improved much since $\left\lceil \frac{\Delta}{2} \right\rceil$ is a lower bound for bandwidth of any graph. In this paper we show that for any AT-free graph G, $\text{cub}(G) \leq \text{box}(G)\left(\left\lceil \log_2 \psi(G) \right\rceil + 2\right) \leq \chi(G)\left(\left\lceil \log_2 \psi(G) \right\rceil + 2\right)$. Clearly this result can be much stronger than that of [6] in some cases.

2 Upper bound on boxicity of AT-free graphs and cubicity of claw-free AT-free graphs

In this section we will show an upper bound on boxicity of AT-free graphs and cubicity of claw-free AT-free graphs. A triangulation of a graph G is a chordal graph H on the same vertex set that contains G as a subgraph i.e. $V(G) = V(H)$ and $E(G) \subseteq E(H)$. H is said to be a minimal triangulation of G if there exists no other chordal graph H'.

on the same vertex set as G and H such that $E(G) \subseteq E(H') \subset E(H)$. Möhring studied minimal triangulation of AT-free graphs in [22]. Parra and Scheffler have shown relations between minimal separators of a graph and its minimal triangulations in [24].

From the definition of chordal dimension and boxicity we know that for any graph G, $\text{chord}(G) \leq \text{box}(G)$. Now we will show that when G is an AT-free graph, $\text{box}(G) \leq \text{chord}(G)$. For this we need the following theorem:

Theorem 2. (Möhring [22]) If G is an AT-free graph then every minimal triangulation of G is an interval graph.

Let $\text{chord}(G) = k$ and $G = \bigcap_{i=1}^{k} G_i$ where G_i is a chordal graph for $1 \leq i \leq k$. It is easy to see that if we replace each G_i by another chordal graph G'_i such that $V(G_i) = V(G'_i)$ and $E(G) \subseteq E(G'_i) \subseteq E(G_i)$, we still will have $G = \bigcap_{i=1}^{k} G'_i$. It follows that there exists G'_1, G'_2, \ldots, G'_k such that $G = \bigcap_{i=1}^{k} G'_i$ where each G'_i is a minimal triangulation of G. By Theorem 2, G'_i for $1 \leq i \leq k$ is an interval graph. It follows that $\text{box}(G) \leq k = \text{chord}(G)$. Thus we have the following Observation:

Observation 2. If G is an AT-free graph then $\text{chord}(G) = \text{box}(G)$.

Scheinerman and Mckee have shown the following upper bound on chordal dimension of a graph G in terms of its chromatic number $\chi(G)$.

Theorem 3. (Scheinerman and Mckee [21]) For any graph G with chromatic number $\chi(G)$, $\text{chord}(G) \leq \chi(G)$.

Combining Observation 2 and Theorem 3 we get the following upper bound on boxicity of AT-free graphs:

Theorem 4. If G is an AT-free graph with chromatic number $\chi(G)$ then $\text{box}(G) \leq \chi(G)$.

In general $\chi(G) \leq d + 1$, where d is the degeneracy of the graph. It follows that $\text{box}(G) \leq d + 1$. Though it is known [24] that $\text{box}(G) \leq 2\chi(G^2)$ for any graph G, $\text{box}(G)$ need not always be less than equal to $\chi(G)$: For example it is shown in [4] that there exists bipartite graphs with boxicity $\frac{n}{2}$. It is also shown in [2] that almost all balanced bipartite graphs (with respect to a suitable probability distribution) have boxicity $\Omega(\frac{n}{\log n})$.

Theorem 5. (Parra and Scheffler [24]) A graph G is claw-free AT-free if and only if every minimal triangulation of G is a unit interval graph.

By a similar argument given for Observation 2 we get the following:

Observation 3. If G is a claw-free AT-free graph then $\text{chord}(G) = \text{cub}(G)$.
Thus if G is a claw-free AT-free graph we have $\text{chord}(G) = \text{box}(G) = \text{cub}(G)$. Combining Theorem 3 and Observation 3 we get the following upper bound on cubicity of claw-free AT-free graphs:

Theorem 6. If G is a claw-free AT-free graph with chromatic number $\chi(G)$ then $\text{cub}(G) \leq \chi(G)$.

2.1 Tightness of Theorem 4 and Theorem 6

Let G be a complete k-partite graph on n vertices (We will assume that n is multiple of k and $n > k$). It is easy to see that this is an AT-free graph. Since the chromatic number of this graph is k, we have $\text{box}(G) \leq k$ by Theorem 4. But it was shown by Roberts [25] that $\text{box}(G) = k$. So the upper bound for boxicity given in Theorem 4 is tight for complete k-partite graphs.

Let $G = \overline{(\frac{n}{2})K_2}$, the complement of the perfect matching on n vertices (We will assume that n is even and $n > 3$). It is easy to see that this is a claw-free AT-free graph. Since the chromatic number of this graph is $\frac{n}{2}$, we have $\text{cub}(G) \leq \frac{n}{2}$ by Theorem 6. But it was shown by Roberts [25] that $\text{cub}(G) = \frac{n}{2}$. So the upper bound for cubicity given in Theorem 6 is tight for $(\frac{n}{2})K_2$.

3 Upper bound on boxicity of AT-free graphs having girth at least 5

In this section we will show an upper bound on boxicity of AT-free graphs having girth at least 5. Let G be an AT-free graph having girth at least 5. Since an induced cycle of length at least 6 contains an AT, G is either acyclic or all induced cycles of G are of length exactly 5. Recall that diameter of a graph is the maximum of distance(u,v) over all pairs of vertices $u, v \in V(G)$. A set of vertices S of a graph G is said to be dominating if every vertex in $V(G) \setminus S$ is adjacent to some vertex in S. A path joining vertices x and y is said to be a x-y path. A pair of vertices x, y is said to be a dominating pair if all x-y paths in G are dominating sets. Corneil, Olariu and Stewart have shown the following fundamental property of AT-free graphs:

Theorem 7. (Corneil et al. [12]) Every connected AT-free graph contains a dominating pair.

They have also proved the following theorem which we shall use to show the upper bound on boxicity:

Theorem 8. (Corneil et al. [12]) In every connected AT-free graph there exists dominating pair x, y such that $\text{distance}(x, y) = \text{diameter}(G)$.

Let \(x, y \) be a dominating pair in \(G \) and let \(P \) be a shortest \(x-y \) path of length equal to the diameter of \(G \). Let \(d \) be the diameter of \(G \) and \(V(P) = \{u_1, u_2, \cdots, u_d\} \) where \(x = u_1 \) and \(y = u_d \). Let \(V(P) = V(G) \setminus V(P) \).

Lemma 2. For each vertex \(v \in V(P) \), \(|N_G(v) \cap V(P)| = 1 \).

Proof. Since \(x, y \) is a dominating pair and \(P \) is a \(x-y \) path, \(V(P) \) is a dominating set. Hence for every vertex \(v \in V(P) \) we have \(|N_G(v) \cap V(P)| \geq 1 \). We will show that for each vertex \(v \in V(P) \), \(|N_G(v) \cap V(P)| \leq 1 \). If possible let \(w \in V(P) \) such that \(|N_G(w) \cap V(P)| \geq 2 \). Let \(u_i, u_j \in N_G(w) \cap V(P) \) be such that \(1 \leq i < j \leq d \) and for all \(k, i < k < j, u_k \notin N_G(w) \). We consider the following cases

Case 1: When \(j \leq i + 2 \). If \(j = i + 1 \) then \(u_i-w-u_{j-1}u_i \) forms an induced cycle of length 3 in \(G \), a contradiction. Similarly if \(j = i + 2 \) then \(u_i-w-u_{j-1}u_i \) forms an induced cycle of length 4 in \(G \), a contradiction.

Case 2: When \(j \geq i + 3 \). Let \(P_1 \) denote the path \(u_1-u_2-\cdots-u_i \) and \(P_2 \) denote the path \(u_j-u_{j+1}-\cdots-u_d \). Clearly \(P_1wP_2 \) forms a \(x-y \) path say \(P' \) in \(G \). Now \(|V(P')| = i+1+(d-j+1) \). If \(j \geq i + 3 \) then \(|V(P')| \leq d - 1 \). Recall that \(P \) is a shortest \(x-y \) path. But \(P' \) is a shorter \(x-y \) path than \(P \), a contradiction.

Therefore for each vertex \(v \in V(P) \), \(|N_G(v) \cap V(P)| = 1 \). \(\square \)

Let \(S_i = \{v \mid v \in V(P) \text{ and } u_i \in N_G(v)\} \) for \(1 \leq i \leq d \). From Lemma 2 it follows that \(S_1, S_2, \cdots, S_d \) is a partition of the vertex set \(V(P) \). In other words,

Observation 4. Let \(u \in V(P) \) and \(v \in V(P) \). Suppose \(u = u_i \) and \(v \in S_k \) where \(1 \leq i, k \leq d \). Then \((u, v) \notin E(G) \) if and only if \(i \neq k \).

Lemma 3. Let \(v \in S_i \).

1. \(|N_G(v) \cap S_i| = 0 \) where \(1 \leq i \leq d \).
2. \(|N_G(v) \cap S_{i+1}| = 0 \) where \(1 \leq i \leq d - 1 \).
3. \(|N_G(v) \cap S_{i+2}| \leq 1 \) where \(1 \leq i \leq d - 2 \).
4. \(|N_G(v) \cap S_j| = 0 \) where \(i + 3 \leq j \leq d \) and \(i \geq 1 \).

Proof(1): If possible let \(w \in S_i \) such that \((v, w) \in E(G) \). Now \(v-u_i-w-v \) forms an induced cycle of length 3 in \(G \), a contradiction.

Proof(2): If possible let \(w \in S_{i+1} \) such that \((v, w) \in E(G) \). Then \(u_i-v-w-u_{i+1}-u_i \) forms a cycle of length 4 in \(G \), a contradiction.

7
Proof(3): If possible let \(u, w \in S_{i+2} \) such that \((v, u) \in E(G) \) and \((v, w) \in E(G) \). Then \(v-w-u_{i+2}-u-v \) forms a cycle of length 4 in \(G \), a contradiction.

Proof(4): If possible let \(w \in S_j \) such that \((v, w) \in E(G) \). Since \((v, u_i) \in E(G) \) according to Lemma 2 we have \((v, u_k) \notin E(G) \) for all \(k \neq i \). Similarly since \((w, u_j) \in E(G) \) we have \((w, u_k) \notin E(G) \) for all \(k \neq j \). Since \(j \geq i + 3 \), \(u_i-v-w-u_j-u_{j-1}-u_{j-2}-\cdots-u_i \) forms an induced cycle of length at least 6 in \(G \). But \(G \) is an AT-free graph, a contradiction.

From Lemma 2 we have the following observation:

Observation 5. If \(u, v \in V(P) \), \(u \in S_i \), \(v \in S_j \) and \((u, v) \in E(G) \) then \(|j - i| = 2| \).

Lemma 4. Let \(u \in S_i \) and \(v \in S_{i+2} \) where \(1 \leq i \leq d - 2 \). If \((u, v) \in E(G) \) then for any \(p \in S_i \setminus \{u\}, q \in S_{i+2} \setminus \{v\} \) we have \((p, q) \notin E(G) \).

Proof. Suppose not. Let \(p \in S_i \setminus \{u\} \) and \(q \in S_{i+2} \setminus \{v\} \) such that \((p, q) \in E(G) \). Since \(u, p \in S_i \), according to Lemma 3 part (1), \((u, p) \notin E(G) \). Similarly \((v, q) \notin E(G) \). According to Lemma 2 \((u, u_{i+2}) \notin E(G) \), \((p, u_{i+2}) \notin E(G) \), \((q, u_i) \notin E(G) \) and \((v, u_i) \notin E(G) \). Also we have \((u, q) \notin E(G) \) and \((v, p) \notin E(G) \) by Lemma 3 part (3). Moreover \((u_i, u_{i+2}) \notin E(G) \) since \(P \) is a shortest \(x-y \) path. Therefore \(u-u_{i}+2-p-q-u_{i+2}-v-u \) forms an induced cycle of length 6 in \(G \) and hence \(\{u, p, u_{i+2}\} \) forms an AT in \(G \), a contradiction. \(\square \)

A vertex \(v \in V(P) \) is said to be non-pendant if \(N_G(v) \cap V(P) \neq \emptyset \). Note that if \(N_G(v) \cap V(P) = \emptyset \) then \(v \) has to be a pendant vertex by Lemma 2.

Lemma 5. \(S_i \) can contain at most 2 non-pendant vertices for \(1 \leq i \leq d \).

Proof. If \(v \in S_i \) is non-pendant then according to Observation 3, either \(N_G(v) \cap S_{i-2} \neq \emptyset \) or \(N_G(v) \cap S_{i+2} \neq \emptyset \). By Lemma 3 part (3) and Lemma 4 at most one vertex in \(S_i \) can be connected to some vertex in \(S_{i-2} \). Similarly at most one vertex in \(S_i \) can be connected to some vertex in \(S_{i+2} \). Therefore \(S_i \) can contain at most 2 non-pendant vertices. \(\square \)

Observation 6. If \(S_i \) contains two non-pendant vertices say \(u, v \) then one of the following statements is true (by Lemma 3 part (3) and Lemma 4)

1. \(N_G(u) \cap S_{i-2} = \emptyset \) and \(N_G(v) \cap S_{i+2} = \emptyset \).
2. \(N_G(u) \cap S_{i+2} = \emptyset \) and \(N_G(v) \cap S_{i-2} = \emptyset \).

3.1 Interval Graph Construction

We shall construct two interval graphs \(I_1 \) and \(I_2 \) such that \(G = I_1 \cap I_2 \). In the interval graph \(I_j \) where \(j = 1, 2 \), let \(l_j(u) \) and \(r_j(u) \) denote the left and right endpoint of the interval corresponding to vertex \(u \in V(G) \) respectively. Let \(S \) be the set of non-pendant
vertices in $V(\overline{P})$. To construct I_1 we map each vertex $v \in V(G)$ to an interval on the real line by the mapping:

$$g_1(v) = [i, i + 1] \quad \text{if } v \in V(P) \text{ and } v = u_i \text{ for } 1 \leq i \leq d$$

$$= [i + \frac{2j - 1}{2n}, i + \frac{2j}{2n}] \quad \text{if } v \in S_i \setminus S, \ 1 \leq i \leq d \text{ and } 1 \leq j \leq |S_i|$$

$$= [i, \frac{1}{2}, i + \frac{3}{2}] \quad \text{if } v \in S_i \cap S, \ N_G(v) \cap S_{i-2} \neq \emptyset \text{ and } N_G(v) \cap S_{i+2} \neq \emptyset$$

$$= [i + 1, i + \frac{3}{2}] \quad \text{if } v \in S_i \cap S, \ N_G(v) \cap S_{i-2} = \emptyset \text{ and } N_G(v) \cap S_{i+2} \neq \emptyset$$

$$= [i - \frac{1}{2}, i] \quad \text{if } v \in S_i \cap S, \ N_G(v) \cap S_{i-2} \neq \emptyset \text{ and } N_G(v) \cap S_{i+2} = \emptyset$$

Lemma 6. I_1 is a supergraph of G.

Proof. Let $(u, v) \in E(G)$. We shall show that $g_1(u) \cap g_1(v) \neq \emptyset$. We consider the following cases:

Case 1: When either $u \in V(P)$ or $v \in V(P)$. Without loss of generality we can assume that $u \in V(P)$. Let $u = u_i$ where $1 \leq i \leq d$. If $v \in V(P)$ then either $v = u_{i-1}$ or $v = u_{i+1}$. Now if $v = u_{i-1}$ then $i \in g_1(u) \cap g_1(v)$. On the other hand if $v = u_{i+1}$ then $i + 1 \in g_1(u) \cap g_1(v)$. If $v \in \overline{P}$ then according to Observation 4, $v \in S_i$. Now if $v \in S_i \setminus S$ then $i = l_1(u) < l_1(v) < r_1(u) = i + 1$ and hence $g_1(u) \cap g_1(v) \neq \emptyset$. If $v \in S_i \cap S$ then we consider the following cases: If $N_G(v) \cap S_{i-2} \neq \emptyset$ then $i \in g_1(u) \cap g_1(v)$. Otherwise if $N_G(v) \cap S_{i+2} \neq \emptyset$ then $i + 1 \in g_1(u) \cap g_1(v)$. \hfill \Box

Case 2: When $u, v \in V(\overline{P})$. By definition of non-pendant vertices $u, v \in S$. Let $u \in S_i$. According to Observation 5, either $v \in S_{i-2}$ or $v \in S_{i+2}$. If $v \in S_{i-2}$ then $l_1(u) = r_1(u) = i - \frac{1}{2}$. Otherwise if $v \in S_{i+2}$ then $r_1(u) = l_1(v) = i + \frac{3}{2}$. In both cases we have $g_1(u) \cap g_1(v) \neq \emptyset$.

To construct I_2 we map each vertex $v \in V(G)$ to an interval on the real line by the mapping:

$$g_2(v) = [1, 2] \quad \text{if } v \in V(P) \text{, } v = u_i \text{ and } i \mod 2 = 1$$

$$= [2, 3] \quad \text{if } v \in V(P) \text{, } v = u_i \text{ and } i \mod 2 = 0$$

$$= [\frac{5}{4}, \frac{7}{4}] \quad \text{if } v \in S_i \setminus S \text{ and } i \mod 2 = 1$$

$$= [\frac{9}{4}, \frac{11}{4}] \quad \text{if } v \in S_i \setminus S \text{ and } i \mod 2 = 0$$

$$= [0, 1] \quad \text{if } v \in S_i \cap S \text{ and } i \mod 2 = 1$$

$$= [3, 4] \quad \text{if } v \in S_i \cap S \text{ and } i \mod 2 = 0$$
Lemma 7. \(I_2\) is a supergraph of \(G\).

Proof. Let \((u, v) \in E(G)\). We shall show that \(g_2(u) \cap g_2(v) \neq \emptyset\). We consider the following cases:

Case 1: When either \(u \in V(P)\) or \(v \in V(P)\). Without loss of generality we can assume that \(u \in V(P)\). Let \(u = u_i\) where \(1 \leq i \leq d\). If \(v \in V(P)\) then \(2 \notin g_2(u) \cap g_2(v)\). If \(v \in V(P)\) then according to Observation 5 \(v \in S_i\). Now if \(v \in S_i \setminus S_{i-2}\) then \(l_2(u) < l_2(v) < r_2(v) < r_2(u)\) and hence \(g_2(u) \cap g_2(v) \neq \emptyset\). If \(v \in S_i \cap S_{i-2}\) we consider the following cases: If \(i \mod 2 = 1\) then \(l_2(u) = r_2(v) = 1\). On the other hand if \(i \mod 2 = 0\) then \(r_2(u) = l_2(v) = 3\). In both cases we have \(g_2(u) \cap g_2(v) \neq \emptyset\).

Case 2: When \(u, v \in V(P)\). By definition of non-pendant vertices \(u, v \in S\). Let \(u \in S_i\) and \(v \in S_j\) where \(1 \leq i, j \leq d\). According to Observation 5 \(|i - j| = 2\) which implies that \(i = j \mod 2\). Hence \(g_2(u) = g_2(v)\) and thus \(g_2(u) \cap g_2(v) \neq \emptyset\). \(\square\)

Lemma 8. For any \((u, v) \notin E(G)\) either \((u, v) \notin E(I_1)\) or \((u, v) \notin E(I_2)\).

Proof. Let \((u, v) \notin E(G)\). We consider the following cases:

Case 1: When \(u, v \in V(P)\). Let \(u = u_i\) and \(v = u_j\) where \(1 \leq i, j \leq d\). Since \((u, v) \notin E(G)\) we have \(|j - i| \geq 2\). Therefore \(|l_1(u) - l_1(v)| \geq 2\). Since in \(I_1\), the intervals corresponding to vertices in \(V(P)\) are of length 1 we have \(g_1(u) \cap g_1(v) = \emptyset\) and hence \((u, v) \notin E(I_1)\).

When \(v \in S_k \cap S\) we consider the following cases:

Subcase 2.1: When \(|k - i| \geq 2\). Now \(g_1(u) = [i, i + 1]\) and \(k - \frac{1}{2} \leq l_1(v) < r_1(v) \leq k + \frac{3}{2}\). If \(i \leq k - 2\) then \(r_1(u) \leq k - 1 < k - \frac{1}{2} \leq l_1(v)\) and hence \(g_1(u) \cap g_1(v) = \emptyset\). If \(i \geq k + 2\) then \(l_1(u) \geq k + 2 > k + \frac{3}{2} \geq r_1(v)\) and hence \(g_1(u) \cap g_1(v) = \emptyset\). Therefore \((u, v) \notin E(I_1)\).

Subcase 2.2: When \(|k - i| \leq 1\). Since \(k \neq i\) we have \(k \mod 2 \neq i \mod 2\). If \(i \mod 2 = 0\) then \(g_2(u) = [2, 3]\) and \(g_2(v) = [0, 1]\). Hence \(g_2(u) \cap g_2(v) = \emptyset\). If \(i \mod 2 = 1\) then \(g_2(u) = [1, 2]\) and \(g_2(v) = [3, 4]\). Hence \(g_2(u) \cap g_2(v) = \emptyset\). In both cases we have \((u, v) \notin E(I_2)\).

Case 3: When \(u, v \in V(P)\). We consider the following cases:

Subcase 3.1: When \(u, v \in S_i\). Let \(u \in S_i\) and \(v \in S_{i+2}\). If \(i = j\) then according to Observation 6 either \(N_G(u) \cap S_{i-2} = \emptyset\) and \(N_G(v) \cap S_{i+2} = \emptyset\) or \(N_G(u) \cap S_{i+2} = \emptyset\) and \(N_G(v) \cap S_{i-2} = \emptyset\). If \(N_G(u) \cap S_{i-2} = \emptyset\) and \(N_G(v) \cap S_{i+2} = \emptyset\) then \(r_1(v) = i < i + 1 = l_1(u)\). Hence \(g_1(u) \cap g_1(v) = \emptyset\). If \(N_G(v) \cap S_{i-2} = \emptyset\) and \(N_G(u) \cap S_{i+2} = \emptyset\) then \(r_1(u) = i < i + 1 = l_1(v)\). Hence \(g_1(u) \cap g_1(v) = \emptyset\).
If $i \neq j$ then we consider the following cases. Without loss of generality we can assume that $j > i$.

Subcase 3.1.1: When $(j - i) \mod 2 \neq 0$. It is easy to see that $g_2(u) \cap g_2(v) = \emptyset$.

Subcase 3.1.2: When $(j - i) \mod 2 = 0$. We consider the following cases:

Subcase 3.1.2.1: When $j = i + 2$. We will show that either $N_G(u) \cap S_{i+2} = \emptyset$ or $N_G(v) \cap S_i = \emptyset$. If possible let $N_G(u) \cap S_{i+2} \neq \emptyset$ and $N_G(v) \cap S_i \neq \emptyset$. Let $p \in S_i$ and $q \in S_{i+2}$ be such that $(u,q) \in E(G)$ and $(v,p) \in E(G)$. Since $(u,v) \notin E(G)$ we have $u \neq p$ and $v \neq q$. But then we get a contradiction to Lemma 4. Therefore either $N_G(u) \cap S_{i+2} = \emptyset$ or $N_G(v) \cap S_i = \emptyset$. If $N_G(u) \cap S_{i+2} = \emptyset$ then $r_1(u) = i < i + \frac{3}{2} = j - \frac{1}{2} \leq l_1(v)$. Therefore $g_1(u) \cap g_1(v) = \emptyset$. On the other hand if $N_G(v) \cap S_i = \emptyset$ then $r_1(u) \leq i + \frac{3}{2} < j + 1 = l_1(v)$. Therefore $g_1(u) \cap g_1(v) = \emptyset$.

Subcase 3.1.2.2: When $j \geq i + 4$. Then $r_1(u) \leq i + \frac{3}{2} < (i + 4) - \frac{1}{2} \leq j - \frac{1}{2} \leq l_1(v)$. Therefore $g_1(u) \cap g_1(v) = \emptyset$.

Subcase 3.2: When $u \notin S$ and $v \notin S$. According to the construction of I_1, it is easy to see that $\bigcup_{i=1}^d (S_i \setminus S)$ induces an independent set in I_1. Therefore $g_1(u) \cap g_1(v) = \emptyset$.

Subcase 3.3: When $u \notin S$ and $v \in S$. In I_2, $g_2(v)$ is either $[0,1]$ or $[3,4]$ and $g_2(u)$ is either $[\frac{5}{7}, \frac{7}{11}]$ or $[\frac{9}{11}, \frac{11}{14}]$. In all the four possible cases it is easy to see that $g_2(u) \cap g_2(v) = \emptyset$.

Combining Lemma 5 and 8 we have the following Theorem

Theorem 9. If G is an AT-free graph having girth at least 5 then $\text{box}(G) \leq 2$.

3.2 Tightness of Theorem 9

Let G be a cycle of length 5. It is easy to see that G is an AT-free graph having girth at least 5. According to Theorem 9 $\text{box}(G) \leq 2$. But clearly $\text{box}(G) = 2$, since G is not an interval graph. Therefore the upper bound given by Theorem 9 is tight.

4 Upper bound on cubicity of AT-free graphs

In this section we will show an upper bound on cubicity of AT-free graphs in terms of its boxicity and claw number. This in turn will give an upper bound in terms of chromatic number and claw number. Let G be an AT-free graph with chromatic number $\chi(G)$ and claw number $\psi(G)$. We need some results shown by Parra and Scheffler [24].

For any graph $G(V,E)$ and for a given pair of nonadjacent vertices $a,b \in V$, a subset $S \subseteq V \setminus \{a,b\}$ is a a-b vertex separator (a-b separator for short) if when S is removed from G, a and b belong to different connected components of $G \setminus S$. S is said to be a minimal a-b separator if no proper subset of S is an a-b separator. A separator S in G is said to be a minimal separator of G if there exists a pair of vertices $a,b \in V(G)$ such
that S is a minimal a-b separator. It is well-known that a graph is chordal if and only if all its minimal separators induce cliques [17].

Let S and T be two minimal separators of G. S is said to cross T if there are two components C, D of $G \setminus T$ such that S intersects both C and D. Parra and Scheffler [24] have shown that if S crosses T then T crosses S also. S and T are said to be parallel if they do not cross each other. Let S_G denote the set of minimal separators in G. For $T = \{S_1, S_2, \ldots, S_k\} \subseteq S_G$, let G_T denote the graph obtained by making each separator S_i for $1 \leq i \leq k$ a clique. The following Theorem is proved in [24].

Theorem 10. (Parra and Scheffler [24])

1. Let $T = \{S_1, \ldots, S_k\}$ be a maximal set of pairwise parallel minimal separators in G.
 Then $H = G_T$ is a minimal triangulation of G and $S_H = T$.

2. Let H be a minimal triangulation of G. Then S_H is a maximal set of pairwise parallel minimal separators in G and $H = G_{S_H}$.

Let T be a minimal separator of G. A component C of $G \setminus T$ is called a full component if every vertex in T is adjacent to some vertex in C. The following property of minimal separator is shown in [17].

Theorem 11. (Golumbic [17]) A separator T in graph G is minimal if and only if there are at least two full components in $G \setminus T$.

Lemma 9. Let X be a minimal separator in a graph G and C, D be two full components in $G \setminus X$. Let $x \in X$, $c \in C$ and $d \in D$. Let Y be another minimal separator of G such that $c \in Y$ and $x, d \notin Y$. If X is parallel to Y then x, d belongs to the same connected component in $G \setminus Y$.

Proof. Suppose x and d lies in different connected components in $G \setminus Y$. Since D is a full component in $G \setminus X$, there exists a x-d path say P in $G[D \cup \{x\}]$. Now according to assumption, x and d lie in different components in $G \setminus Y$. Therefore Y must contain at least one vertex from P. But since $x \notin Y$ and all the vertices in P except x lie in D we have $Y \cap D \neq \emptyset$. Again $c \in Y \cap C$ and therefore $Y \cap C \neq \emptyset$. Hence Y crosses X, a contradiction. \Box

Lemma 10. If G is an AT-free graph and H is a minimal triangulation of G with claw number $\psi(H)$ then $\psi(H) \leq \psi(G)$.

Proof. Suppose $\psi(H) > \psi(G)$ and $\psi(H) = p$. An edge $(u, v) \in E(H)$ is said to be an old edge if $(u, v) \in E(G)$ and is said to be a new edge otherwise. Among all the claws of maximum size in H, let $U = \{s, x_1, x_2, \ldots, x_p\}$ induce the one with maximum number of old edges in it. Let s be the center of the claw. Since $\psi(H) > \psi(G)$ at least one of the edges in U has to be new. Without loss of generality let us assume that (s, x_1) is a
new edge. Let $\mathcal{T} = \{S_1, S_2, \ldots, S_k\}$ be the collection of minimal separators of H. From part (2) of Theorem 10, \mathcal{T} is a maximal set of pairwise parallel minimal separators of G and $H = G_\mathcal{T}$. In other words if $(u, v) \in E(H) \setminus E(G)$ then there exists an $S_j \in \mathcal{T}$ such that both $u, v \in S_j$. Thus the vertices s, x must belong to some minimal separator, say $X \in \mathcal{T}$ of G. Let \mathcal{C} be the set of full components in $G \setminus X$. According to Theorem 11, $|\mathcal{C}| \geq 2$. We consider the following two cases:

Case 1: There exists a full component $C \in \mathcal{C}$ such that $C \cap \{x_2, x_3, \ldots, x_p\} = \emptyset$. Since C is a full component of $G \setminus X$ and $s \in X$ there is at least one vertex in C, say a such that $(s, a) \in E(G)$. Since $E(G) \subseteq E(H)$ we have $(s, a) \in E(H)$. Note that $(a, x_i) \notin E(G)$ for $2 \leq i \leq p$ because $C \cap \{s, x_1, x_2, \ldots, x_p\} = \emptyset$ by assumption and $x_i \notin X$ for $2 \leq i \leq p$ since $x_1 \in X$ and X induces a clique in H. Then it is easy to see that $\{s, a, x_2, \ldots, x_p\}$ forms a claw of size p in H having more old edges than in U since (s, x_1) is a new edge and (s, a) is an old edge. But by assumption U was a maximum sized claw having maximum number of old edges in it, a contradiction.

Case 2: Every full component in \mathcal{C} contains at least one x_i where $2 \leq i \leq p$. According to Theorem 11, $|\mathcal{C}| \geq 2$ and hence there exists two full components $C, D \in \mathcal{C}$. Let $x_i \in C$ and $x_j \in D$ where $2 \leq i < j \leq p$. We will show that the triplet $\{x_1, x_i, x_j\}$ forms an AT in G, leading to a contradiction. Since C is a full component of $G \setminus X$, $x_i \in C$ and $x_1 \in X$ there exists a x_i-x_1 path in $G[C \cup \{x_1\}]$ and this path does not intersect $N_G(x_j)$ since $x_j \in D$. Similarly since D is a full component of $G \setminus X$, $x_j \in D$ and $x_1 \in X$ there exists a x_j-x_1 path in $G[D \cup \{x_1\}]$ which does not intersect $N_G(x_i)$. Now we want to show that there exists a x_i-x_j path in G which does not intersect $N_G(x_1)$. For that we need the following claim:

Claim:

1. There exists a x_i-s path in G that does not intersect $N_G(x_1)$.
2. There exists a x_j-s path in G that does not intersect $N_G(x_1)$.

Proof. We prove only part (1) since the proof of part (2) is similar. Recall that (s, x_1) is a new edge by assumption. Since $\{x_1, x_2, \ldots, x_p\}$ induces an independent set in H and $E(G) \subseteq E(H)$ they induce an independent set in G also. If $(s, x_i) \in E(G)$ we have a x_i-s path in G that does not intersect $N_G(x_1)$ since $(s, x_1) \notin E(G)$ and $(x_1, x_i) \notin E(G)$. Therefore we can assume that $(s, x_i) \notin E(G)$. Since (s, x_i) is a new edge by theorem 11 there should be a minimal separator $Y \in \mathcal{T}$ such that $s, x_i \in Y$. Clearly $X \neq Y$ since $x_i \notin X$. According to Theorem 11, X and Y are parallel and each separator in \mathcal{T} induces a clique in H. Since $(x_i, x_1) \notin E(H)$, $(x_i, x_j) \notin E(H)$ and $x_i \in Y$ we have $x_1 \notin Y$ and $x_j \notin Y$. Therefore according to Lemma 11, x_1 and x_j must belong to the same connected
component say Q of $G \setminus Y$. Let Q' be a full component of $G \setminus Y$ such that $Q' \neq Q$. Note that such a full component exists by Theorem 1. Now s and x_i must be connected in G to at least one vertex in Q' and therefore there is a x_i-s path in $G(Q' \cup \{x_i, s\})$ which does not intersect $N_G(x_i)$.

Since $(s, x_1) \notin E(G)$ from the previous claim it is easy to see that there exists a x_i-x_j path in G which does not intersect $N_G(x_1)$. Therefore $\{x_1, x_i, x_j\}$ forms an asteroidal triple in G, a contradiction.

Theorem 12. If G is an AT-free graph then $\text{cub}(G) \leq \text{box}(G)(\lceil \log_2 \psi(G) \rceil + 2) \leq \chi(G)(\lceil \log_2 \psi(G) \rceil + 2)$.

Proof. Let $\text{box}(G) = k$ and I_1, I_2, \ldots, I_k be interval graphs such that $G = \bigcap_{j=1}^{k} I_j$. It is easy to see that if we replace each I_j by a chordal graph I'_j such that $V(I_j) = V(I'_j)$ and $E(G) \subseteq E(I'_j) \subseteq E(I_j)$, we will have $G = \bigcap_{j=1}^{k} I'_j$. It follows that there exists chordal graphs I'_1, I'_2, \ldots, I'_k such that $G = \bigcap_{j=1}^{k} I'_j$ where each I'_j is a minimal triangulation of G. But by Theorem 2, any minimal triangulation of an AT-free graph is an interval graph. It follows that I'_1, I'_2, \ldots, I'_k are interval graphs. According to Lemma 3, $\psi(I'_j) \leq \psi(G)$ for $1 \leq j \leq k$. Since $G = \bigcap_{j=1}^{k} I'_j$ we have $\text{cub}(G) \leq \sum_{j=1}^{k} \text{cub}(I'_j)$ according to Fact 1.

By Theorem 4, $\text{cub}(I'_j) \leq \lceil \log_2 \psi(I'_j) \rceil + 2$ and by Lemma 3, $\text{cub}(I'_j) \leq \lceil \log_2 \psi(G) \rceil + 2$ for $1 \leq j \leq k$. It follows that $\text{cub}(G) \leq k(\lceil \log_2 \psi(G) \rceil + 2) = \text{box}(G)(\lceil \log_2 \psi(G) \rceil + 2)$. Therefore $\text{cub}(G) \leq \text{box}(G)((\lceil \log_2 \psi(G) \rceil + 2)$. By Theorem 3 we also have $\text{cub}(G) \leq \chi(G)((\lceil \log_2 \psi(G) \rceil + 2)$.

From Theorem 3 and 12 we get the following:

Corollary 1. If G is an AT-free graph having girth at least 5 then $\text{cub}(G) \leq 2 \lceil \log_2 \psi(G) \rceil + 4$.

References

1. A. Adiga, L. S. Chandran, Cubicity of interval graphs and the claw number, manuscript, http://arxiv.org/abs/0903.1197 an abstract to appear in eurocomb 2009.
2. A. Adiga, L. S. Chandran, N. Sivadasan, Lower bounds for boxicity, manuscript, http://arxiv.org/abs/0806.3175.
3. S. Bellantoni, I. B.-A. Hartman, T. Przytycka, S. Whitesides, Grid intersection graphs and boxicity, Disc. Math. 114 (1-3) (1993) 41–49.
4. L. Chandran, A. Das, C. D. Shah, Cubicity, boxicity and vertex cover., Disc. Math. 309 (8) (2009) 2488–2496.
5. L. Chandran, N. Sivadasan, Geometric representation of graphs in low dimension using axis parallel boxes., Algorithmica DOI 10.1007/s00453-008-9163-5.
6. L. S. Chandran, M. C. Francis, N. Sivadasan, Representing graphs as the intersection of axis-parallel cubes. Accepted in MCDES 2008 (Managing Complexity in Distributed World, Division of Electrical Sciences, IISc- The IISc Centenary Conference.).

14
7. L. S. Chandran, M. C. Francis, N. Sivadasan, Boxicity and maximum degree, J. Combin. Theory Ser. B 98 (2) (2008) 443–445.
8. L. S. Chandran, C. Mannino, G. Oriolo, On the cubicity of certain graphs, Inf. Process. Lett. 94 (3) (2005) 113–118.
9. L. S. Chandran, N. Sivadasan, Boxicity and treewidth, J. Combin. Theory Ser. B 97 (5) (2007) 733–744.
10. Y. W. Chang, D. B. West, Interval number and boxicity of digraphs, in: Proceedings of the 8th International Graph Theory Conf., 1998.
11. Y. W. Chang, D. B. West, Rectangle number for hyper cubes and complete multipartite graphs, in: 29th SE conf. Comb., Graph Th. and Comp., Congr. Numer. 132, 1998.
12. D. G. Corneil, S. Olariu, L. Stewart, Asteroidal triple-free graphs, SIAM J. Discrete Math. 10 (3) (1997) 399–430.
13. D. G. Corneil, S. Olariu, L. Stewart, Linear time algorithms for dominating pairs in asteroidal triple-free graphs, SIAM J. Comput. 28 (4) (1999) 1284–1297.
14. M. B. Cozzens, F. S. Roberts, Computing the boxicity of a graph by covering its complement by cointerval graphs, Disc. Appl. Math. 6 (1983) 217–228.
15. L. Esperet, Boxicity of graphs with bounded degree., European Journal of Combinatorics 30 (5) (2009) 1277–1280.
16. R. B. Feinberg, The circular dimension of a graph, Disc. Math. 25 (1) (1979) 27–31.
17. M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.
18. T. Kloks, D. Kratsch, H. Müller, Approximating the bandwidth for asteroidal triple-free graphs, J. Algorithms 32 (1) (1999) 41–57.
19. J. Kratochvil, A special planar satisfiability problem and a consequence of its NP-completeness, Disc. Appl. Math. 52 (1994) 233–252.
20. L.C. Freeman, Spheres, cubes and boxes: graph dimensionality and network structure., in: Social Networks 5, 1983.
21. T. A. McKee, E. R. Scheinerman, On the chordality of a graph, Journal of graph theory 17 (2) (1993) 221–232.
22. R. H. Möhring, Triangulating graphs without asteroidal triples, Discrete Applied Mathematics 64 (3) (1996) 281–287.
23. R. Opsut, F. Roberts, On the fleet maintainence, mobile radio frequency, task assignment, and traffic phasing problems in g., in: The Theory and Applications of Graphs, Wiley New York, 1981.
24. A. Parra, P. Scheffler, Characterizations and algorithmic applications of chordal graph embeddings, Discrete Applied Mathematics 79 (1-3) (1997) 171–188.
25. F. S. Roberts, Recent Progress in Combinatorics, chap. On the boxicity and Cubicity of a graph, Academic Press, New York, 1969, pp. 301–310.
26. F. S. Roberts, Discrete mathematical models with applications to Social, Biological and Environmental Problems., Prentice-Hall, Englewod Cliffs, New Jersey, 1976.
27. E. R. Scheinerman, Intersection classes and multiple intersection parameters, Ph.D. thesis, Princeton University (1984).
28. C. Thomassen, Interval representations of planar graphs, J. Combin. Theory Ser. B 40 (1986) 9–20.
29. W. T. Trotter, Jr., D. B. West, Poset boxicity of graphs, Disc. Math. 64 (1) (1987) 105–107.
30. M. Yannakakis, The complexity of the partial order dimension problem, SIAM J. Alg. Disc. Math. 3 (3) (1982) 351–358.