Ti interstitial flows giving rutile TiO$_2$ reoxidization process enhanced in (001) surface

Tom Ichibha
School of Information Science, JAIST, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan

Anouar Benali
Computational Science Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, Illinois 60439, USA

Kenta Hongo
Research Center for Advanced Computing Infrastructure, JAIST, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
Center for Materials Research by Information Integration, Research and Services Division of Materials Data and Integrated System, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047, Japan
PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi-shi, Saitama 322-0012, Japan and Computational Engineering Applications Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

Ryo Maezono
School of Information Science, JAIST, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan and Computational Engineering Applications Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
(Dated: February 9, 2022)

We revisited ab initio evaluations of the energy barriers along the possible diffusion paths of the defects in rutile TiO$_2$. By using a method carefully considering the cancellation of the self-interaction, Ti interstitials hopping along c-axis are identified as the major diffusion directing to [001] surface. The conclusion is contradicting to any of previous theoretical works, and the discrepancy is explained by the overestimation of the radius of defects due to the poor cancellations in the previous works. The updated prediction here can explain the superior photocatalysis activity in [001] surface to [110].

TiO$_2$ is a representative transition metal oxide with various applications such as white paints, photovoltaic cells, and rechargeable batteries. Its photo-catalysis ability is especially useful for water splitting and anti-pollution/rechargeable batteries. Its photo-catalysis ability is essential for such applications in space as a coating over the solar panels of spaceships keeping its performance of photo reactions. The reoxidization in a vacuum is explained to be caused by the possible ionic flows of Ti interstitials (Ti$_i$) and/or Oxygen vacancies (V$_O$) from within the bulk toward the surface compensating the stoichiometry kept unchanged. However, a consensus on the diffusion process of point defects has yet to be established and controversy remains even for within a simple bulk structure.

One of the most useful properties is the reoxidization of rutile surface state even in a vacuum keeping its stoichiometry. The property is promising for such applications in space as a coating over the solar panels of spaceships keeping its performance of photo reactions. The reoxidization in a vacuum is explained to be caused by the possible ionic flows of Ti interstitials (Ti$_i$) and/or Oxygen vacancies (V$_O$) from within the bulk toward the surface compensating the stoichiometry kept unchanged. However, a consensus on the diffusion process of point defects has yet to be established and controversy remains even for within a simple bulk structure.

Surveying over the controversy, the points to be clarified here would be summarized into two simple questions: (a) which defect (Ti$_i$ or V$_O$) is the dominant, and (b) which diffusion path is dominating. An experiment of the reoxidization of the sputtered rutile TiO$_2$ (110) surface annealed in ultrahigh vacuum reports a conclusion that Ti$_i$ plays a major role in the process. This is also supported from ab initio studies using density functional theory (DFT), predicting lower energy barriers for Ti$_i$ than V$_O$ diffused in any directions. Taking Ti$_i$ being superior to V$_O$, the controversy exists on which path gives faster diffusion, parallel ($c_{\|}$) or perpendicular (c_{\perp}) to the c-direction [parallel to the Ti-chain in the crystal]. While two old experiments report contradicting conclusions to each other, both of the previous DFT works support c_{\perp} as the major diffusion process.

One of the major origin of the energy barrier required for a defect to move beyond is the interaction between the surrounding atoms. It is therefore sensitive to how the electronic distribution of a defect spreads to contact with the neighboring atoms. Here we remind that such a spreading is poorly estimated by the conventional type of DFT using LDA or GGA type exchange-correlation (XC) functionals. In these XC's, the cancellation of the self-interaction is incomplete, leading to a spurious delocalization of the charge distribution. This incompleteness can be corrected by using ’DFT+U’ scheme for the self-interaction. The method mainly enhances the exchange part of the conventional XC. Yet, the balance between the exchange and the correlation in XC is delicate and should be preserved to get more reliable predictions. Diffusion Monte Carlo (DMC) method is the most reliable method in the sense that such a delicate balance is automatically fulfilled in a numerical implementation of the variational principle. The method was successfully applied to the present TiO$_2$ system in previous works.

In this work, we hence revisit the evaluation of the energy barriers for Ti$_i$ than V$_O$ diffused in any directions. Taking Ti$_i$ being superior to V$_O$, the controversy exists on which path gives faster diffusion, parallel ($c_{\|}$) or perpendicular (c_{\perp}) to the c-direction [parallel to the Ti-chain in the crystal]. While two old experiments report contradicting conclusions to each other, both of the previous DFT works support c_{\perp} as the major diffusion process.
barrier for defects applying DMC. We confirmed that Ti is the dominant defect to diffuse, contributing to the reoxidation process with an energy barrier lower than that for V\text{O}, being consistent with previous DFT works. A striking finding we made is that the previous DFT prediction supporting \(c_\perp \) is reverted into \(c_\parallel \) when the cancellation of the self-interaction is considered by using ‘\(+U\)’ or DMC. The results support a better reoxidation activity on (001) surface, consistent with experiments reporting that the said surface has almost the highest photo-activity.

The rutile structure of TiO\(_2\) is shown in Fig. 1. It consists of Ti chains along the c-axis. Ti positions along the axis are shifted by 1/2 period between the neighboring chains. Ti\(_i\) is formed in the middle of Ti chains as shown in Fig. 1 for which two possible diffusion paths (\(c_\parallel \) and \(c_\perp \)) are of interest. The hopping along \(c_\perp \) is described as the ‘kick-out mechanism’. For V\text{O}, three paths, I-III in Fig. 1 are considered. We evaluated barrier energies along these five paths for positively charged defects (Ti\(_i^{+\pi+\pi+}\), V\text{O}\(_{\perp\perp}\)), as summarized in Table I. Previous theoretical works [24] predict only the possibility of getting Ti\(_i^{+\pi+\pi+}\), depending on the Fermi level. Experimentally, the charged defects are confirmed to be realized in surface, and hence we took Ti\(_i^{+\pi+\pi+}\) and V\text{O}\(_{\perp\perp}\) as the defects to be investigated. The results by the neutral defect, Ti\(_i^{\pi+\pi+}\), are also shown in Table I which are referred only when we make further discussions. The descriptions henceforth are therefore about the Ti\(_i^{+\pi+\pi+}\) and V\text{O}\(_{\perp\perp}\) unless noted otherwise.

![Diagram of possible diffusion paths](image)

FIG. 1. [fig_ti_di ff] Five possible paths for defect diffusions of Ti\(_i\) (blue and red arrows) and V\text{O} (white arrows) in bulk rutile TiO\(_2\). The large blue balls are Ti ions and the red small balls are oxygen ions. Ti atoms are located along the c-axis ([001]-direction). In \(c_\parallel \) diffusion (blue arrow), a Ti\(_i\) kicks a Ti on the axis out to make another Ti\(_i\) in opposite side (kick-out diffusion), directing along [100] or [010] axis. The diffusion along the path \(c_\perp \) (red arrow) directs toward [001] surface as shown by a hatched square.

We made a simulation cell by putting a point defect into a 2\times2\times3 supercell of the ideal rutile TiO\(_2\) unit cell. We optimized the crystal structures at the edge and the saddle points of the states along the diffusion paths using the PAW-DFT method implemented on VASP.

The optimizations are made to relax internal atomic positions within a cell under the fixed lattice constants at experimental values. The energy cutoff is 700 eV and the spacing of the k-mesh sampling is denser than 0.50 Å\(^{-1}\). Atomic positions are relaxed until the forces on any ions are suppressed less than 0.01 eV/Å. The structures at the saddle states are determined by the climbing nudged elastic band (c-NEB) method. A diffusion path is expressed with 5 or 15 intermediate states between the edge states. Since one of the states must be converged to be the saddle state in c-NEB, the number of states does not affect the barrier energy prediction but affect the convergence of the relaxation.

We applied DMC to evaluate the energies at the edge and saddle structures using QMCPACK. We used Slater-Jastrow type wave functions. The orbitals used in the Slater determinant are generated by LDA+U method implemented in Quantum Espresso. We used a Hubbard correction value of \(U=4.86 \) eV from a previous work, giving the best accessible nodal surface within this formalism, guaranteeing the lowest energy for TiO\(_2\) from the variational principle. Core electrons in both Ti and O atoms were described by the use of a hard norm-conserving pseudopotentials developed to reproduce accurately all electrons results with the context of many-body theory and as described in previous works.

The orbitals are generated with a 300 Ry energy cutoff and the thermodynamic limit is reached with a 2\times2\times2 k-mesh size. The Jastrow factor consists of one, two, and three body terms amounting to 144 variational parameters in total, which are optimized by variational Monte Carlo calculations. The parameters are optimized by the scheme to minimize a hybridization of energy and variance in 7:3. Twist averaging over the boundary conditions are taken into account with 2\times2\times2 grid. We estimated a time-step bias by a linear extrapolation of the energies obtained at two time steps, \(dt = 0.020 \) and 0.005 a.u.\(^{-1}\). It is confirmed that the time-step bias is proportional to \(dt \) in a range of \(dt < 0.020 \) a.u.\(^{-1}\). We set a target population of walkers to be 4,000. Practically this size of target population is large enough to suppress a population control error.

Table I summarizes the results of the barrier energies along each path. Looking at the lowest barrier-energies (shown in bold), all methods, consistent with each other, predict Ti\(_i\) as the preferred diffusion carrier. The striking difference is found between our current result and the previous ones regarding Ti\(_i\) preferred diffusion path. Updated predictions by LDA+U and DMC supports \(c_\parallel \) as the dominant flow, directing towards the (001) surface while \(c_\perp \) directing towards the (100) or (010) surface. The prediction here may explain the experimental observation of the photoactivity being enhanced at (001) surface compared to the (110) surface.
the fastest path for oxygen vacancy diffusion (V_O). However, path II alone cannot produce any diffusion flows because sites in this path are disconnected from each other. For V_{O5} to diffuse globally in the bulk a combination of path I/III with path II is needed, otherwise V_{O5}s will be constrained to the isolated sites in path II.

When compared to our DMC results, previous GGA-DFT calculations show a significant underestimation of barrier energies. Even using “the same fixed geometry relaxed with DFT+U” in GGA and DFT+U calculations, the trend of underestimation is confirmed. This can be attributed to that GGA generally underestimates a cohesive energy \([33]\), since a defect is more weakly combined with the surrounding ions than reality, making its hopping easier.

As can be seen in Table I, evaluating the diffusion path of the neutral defect 'DMC (Ti\(_i^\prime\))', the most favorable diffusion path is c_{12}, opposite to what is found for a charged defect. This might be a clue to understanding why the present result is contradicting to the previous DFT works, as well as to understanding the contradiction in the earlier experiments: \([12, 13]\) One of the dominant factor to determine the preferred diffusion path could be the ionic radius of the defects, which is reduced when they are positively charged to reduce accompanying electrons. The sensitive dependence on the choice of XC potentials in Table I, could support this, because the estimation of the radius is known to be sensitive to how the self-interaction is carefully treated. \([15]\) Poor treatments are expected to give a spurious delocalization of distribution leading to a larger radius. \([14]\) The Hubbard '+U' correction is introduced to correct this, and hence corrects the radius smaller. Previous GGAs are therefore suspected to give overestimations of the radius, namely ‘spuriously less positively charged defects’. \([14]\) A Bader analysis using a scheme described in ref \([34]\) actually estimates the volumes of defects as $(\rho, V)\approx(2.206, 6.765)$ for the charged state (+4) while $(\rho, V)\approx(1.773, 7.690)$ for the neutral state, where ρ and V denote the amount of accompanying charge and the volume of a defect (in Å3), respectively.

An earlier experiment \([13]\) supporting c_{12} as the preferred path was actually performed at high temperatures ranging from 1000 to 1500 K. It is shown through simulation \([35]\) that the electronic distribution in the valence region is expanded with high temperatures. The high temperature experiment suggests a less positively charged defect favoring the c_{12} path. This behavior is confirmed by our DMC (Ti\(_i^\prime\)) calculation on a neutral defect (see table II).

In conclusion, we performed ab initio evaluations of the energy barriers for defects of Ti interstitials and Oxygen vacancies using LDA+U and DMC methods. Ti interstitials diffusing along the Ti-chains (c-axis) are predicted to give the lowest energy barrier, being the most likely origin of the atomic flow toward [001] surface supporting the surface reoxidizations. The result is consistent with the photocatalysis activity in [001] surface being superior to [110] as experimentally observed. \([21, 22]\) The prediction is found to be sensitive to how carefully the cancellation of self-interactions is taken into account, not reproduced by the conventional DFT with non-hybrid XC functionals. \([9, 10]\) The cancellation critically changes the radius of the defects interacting surrounding atoms, which was overestimated by the previous DFT works. \([9, 10]\)

ACKNOWLEDGMENTS

An award of computer time was provided by the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program. This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract No. DE-AC02-06CH11357, and the Research Center for Advanced Computing Infrastructure (RCACI) at JAIST. T.I. is grateful for financial support from the Grant-in-Aid for Scale-up Research (INCITE) program. This research used resources of the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, as part of the Computational Materials Sciences Program and Center for Predictive Simulation of Functional Materials. K.H. is grateful for financial support from a KAKENHI grant (JP17K17762), a Grant-in-Aid for Scientific Research on Innovative Areas “Mixed Anion” project (JP16H06439) from MEXT, PRESTO (JPMJPR16NA) and the Materials research by Information Integration Initiative (MIFI) project of the Support Program for Starting Up Innovation Hub from Japan Science and Technology Agency (JST). R.M. is grateful for financial supports from MEXT-KAKENHI (19H04692 and 16KK0097), from Toyota Motor Corporation, from I-O DATA Foundation, from the Air Force Office of Scientific Research (AFOSR-AOARD/FA2386-17-1-4049;FA2386-19-1-4015), and from JSPS Bilateral Joint Projects (with India DST). R.M. and K.H. are also grateful to financial supports from MEXT-FLAGSHIP2020 (hp190169 and hp190167).
[1] M. Sajedi Alvar, M. Javadi, Y. Abdi, and E. Arzi, Enhancing the electron lifetime and diffusion coefficient in dye-sensitized solar cells by patterning the layer of TiO2 nanoparticles, Journal of Applied Physics 119, 114302 (2016). https://doi.org/10.1063/1.4943772

[2] G. Longoni, R. L. Pena Cabrera, S. Polizzi, M. D’Arzenio, C. M. Mari, Y. Cui, and R. Ruffo, Shape-controlled TiO2 nanocrystals for Na-ion battery electrodes: The role of different exposed crystal facets on the electrochemical properties, Nano Letters 17, 992 (2017). pMID: 28027440, https://doi.org/10.1021/acs.nanolett.6b04347

[3] M. Abbasnejad, M. R. Mohammadizadeh, and R. Maezono, Structural, electronic, and dynamical properties of pca21-TiO2 by first principles, EPL (Europhysics Letters) 97, 56003 (2012).

[4] M. Abbasnejad, E. Shojaee, M. R. Mohammadizadeh, M. Alaei, and R. Maezono, Quantum Monte Carlo study of high-pressure cubic TiO2, Applied Physics Letters 100, 261902 (2012). https://doi.org/10.1063/1.4730608

[5] S. K. Gharaei, M. Abbasnejad, and R. Maezono, Bandgap reduction of photocatalytic TiO2 nanotube by Cu doping, Scientific Reports 8, 14192 (2018).

[6] T. Verdier, M. Coutand, A. Bertron, and C. Roques, Antibacterial activity of TiO2 photocatalyst alone or in coatings on e. coli: The influence of methodological aspects (2014).

[7] K. T. Park, M. Pan, V. Meunier, and E. W. Plummer, Reoxidation of TiO2(/110) via interstitials and line defects, Phys. Rev. B 75, 245415 (2007).

[8] F. Urayama, M. Furukawa, K. Ozawa, M. Tosa, and H. Kimura, Study on molecular contamination prevention by using photocatalysts under vacuum conditions, Aerospace Technology Japan 6, 81 (2007).

[9] H. Iddir, S. Oğüt, P. Zapol, and N. D. Browning, Diffusion mechanisms of native point defects in rutile TiO2: Ab initio total-energy calculations, Phys. Rev. B 75, 073203 (2007).

[10] A. M. Asaduzzaman and P. Krüger, A first principles study on charge dependent diffusion of point defects in rutile TiO2, The Journal of Physical Chemistry C 114, 19649 (2010). https://doi.org/10.1021/jp107986a

[11] M. A. Henderson, A surface perspective on self-diffusion in rutile TiO2, Surface Science 419, 174 (1999).

[12] H. B. Huntington and G. A. Sullivan, Interstitial L Diffusion M Mech Anism in Rutile, Physical Review Letters 114, 177 (1965).

[13] K. Hoshino, N. Peterson, and C. Wiley, Diffusion and point defects in TiO2-x, Journal of Physics and Chemistry of Solids 46, 1397 (1985).

[14] P. Gori-Giorgi, J. G. Ágyán, and A. Savin, Charge density reconstitution from approximate exchange-correlation holes, Canadian Journal of Chemistry 87, 1444 (2009). https://doi.org/10.1139/V09-104

[15] J. L. Bao, L. Gagliardi, and D. G. Truhlar, Self-interaction error in density functional theory: An appraisal, The Journal of Physical Chemical Letters 9, 2353 (2018). pMID: 29624392, https://doi.org/10.1021/acs.jpclett.8b00242

[16] B. Himmetoglu, A. Floris, S. de Gironcoli, and M. Cococcioni, Hubbard-corrected dft energy functionals: The lda-su description of correlated systems, Int. J. Quant. Chem. 114, 14 (2014).

[17] J. N. Harvey, On the accuracy of density functional theory in transition metal chemistry, Annu. Rep. Prog. Chem., Sect. C: Phys. Chem. 102, 203 (2006).

[18] W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal, Quantum Monte Carlo simulations of solids, Rev. Mod. Phys. 73, 33 (2001)

[19] Y. Luo, A. Benali, L. Shulenburger, J. T. Krogel, O. Heinonen, and P. R. C. Kent, Phase stability of Ti 2 polymorphs from diffusion quantum Monte Carlo, New Journal of Physics 18, 113049 (2016).

[20] J. Trail, B. Monserrat, P. López Rios, R. Maezono, and R. J. Needs, Quantum Monte Carlo study of the energetics of the rutile, anatase, brookite, and columbite TiO2 polymorphs, Phys. Rev. B 95, 121108(R) (2017).

[21] J. B. Lowekamp, G. S. Rohrer, P. A. M. Hotsenpiller, J. D. Bolt, and W. E. Farneth, Anisotropic photochemical reactivity of bulk TiO2 crystals, J. Phys. Chem. B 102, 7323 (1998)

[22] P. A. Morris Hotsenpiller, J. D. Bolt, W. E. Farneth, J. B. Lowekamp, and G. S. Rohrer, Orientation dependence of photochemical reactions on TiO2 surfaces, The Journal of Physical Chemistry B 102, 3216 (1998).

[23] J. Sasaki, N. Peterson, and K. Hoshino, Tracer impurity diffusion in single-crystal rutile (TiO2-x), Journal of Physics and Chemistry of Solids 46, 1267 (1985).

[24] H.-Y. Lee, S. J. Clark, and J. Robertson, Calculation of point defects in rutile TiO2 by the screened-exchange hybrid functional, Phys. Rev. B 86, 075209 (2012).

[25] J. Nowotny, M. A. Alim, T. Bak, M. A. Idris, M. Ionescu, K. Prince, M. Z. Sahdan, K. Sopian, M. A. Mat Teridi, and W. Sigmund, Defect chemistry and defect engineering of TiO2-based semiconductors for solar energy conversion, Chem. Soc. Rev. 44, 8424 (2015).

[26] G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54, 11169 (1996).

[27] D. G. Isaak, J. D. Carnes, O. L. Anderson, H. Cynn, and E. Hake, Elasticity of TiO2 rutile to 1800 k, Physics and Chemistry of Minerals 26, 31 (1998).

[28] G. Henkelman and H. Jönsson, Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points, The Journal of Chemical Physics 113, 9978 (2000).

[29] J. Kim, A. D. Baczewski, T. D. Beaudet, A. Benali, M. C. Bennett, A. M. Berrill, N. S. Blunt, E. J. L. Borda, M. Casula, D. M. Ceperley, S. Chiesa, B. K. Clark, R. C. Clay, K. T. Delaney, M. Dwung, K. P. Esler, H. Hao, O. Heinonen, P. R. C. Kent, J. T. Krogel, I. Kyllönpää, Y. W. Li, M. G. Lopez, Y. Luo, F. D. Malone, R. M. Martin, A. Mathiuriya, J. McMiinis, C. A. Melton, L. Mitas, M. A. Morales, E. Neuscamman, W. D. Parker, S. D. P. Flores, N. A. Romero, B. M. Rubenstein, J. A. R. Shea, H. Shin, L. Shulenburger, A. F. Tillack, J. P. Townsend, N. M. Tubman, B. V. D. Goetz, J. E. Vincent, D. C. Yang, Y. Yang, S. Zhang, and L. Zhao, QMCPACK: an open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids, Journal of Physics: Condensed Matter 30, 195901 (2018).

[30] R. Maezono, Optimization of many-body wave function, Journal of Computational and Theoretical Nanoscience 6 (2009).

[31] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umarri, and R. M. Wentzciovich, QUANTUM ESPRESSO: a modular and open-source software project for quantum simu-
lations of materials, Journal of Physics: Condensed Matter 21, 395502 (2009).

[32] C. Lin, F. H. Zong, and D. M. Ceperley, Twist-averaged boundary conditions in continuum quantum monte carlo algorithms, Phys. Rev. E 64, 016702 (2001).

[33] M. Arrigoni and G. K. Madsen, Comparing the performance of lida and gga functionals in predicting the lattice thermal conductivity of iii-v semiconductor materials in the zincblende structure: The cases of alas and bas, Computational Materials Science 156, 354 (2019).

[34] W. Tang, E. Sanville, and G. Henkelman, A grid-based bader analysis algorithm without lattice bias, Journal of Physics: Condensed Matter 21, 084204 (2009).

[35] V. Shah, B. Sanghavi, R. Ramchandani, M. P. Gururajan, and T. R. S. Prasanna, Finite temperature electronic structure of diamond and silicon (2018), arXiv:1802.07179.