Biomaterials Synthesis and Characterization

Original Research

Electrospun fibre diameter and its effects on vascular smooth muscle cells

James Alexander Reid1 · Alison McDonald1 · Anthony Callanan1

Received: 17 June 2020 / Accepted: 10 September 2021 / Published online: 9 October 2021
© The Author(s) 2021

Abstract

Bypass grafting is a technique used in the treatment of vascular disease, which is currently the leading cause of mortality worldwide. While technology has moved forward over the years, synthetic grafts still show significantly lower rates of patency in small diameter bypass operations compared to the gold standard (autologous vessel grafts). Scaffold morphology plays an important role in vascular smooth muscle cell (VSMC) performance, with studies showing how fibre alignment and surface roughness can modulate phenotypic and genotypic changes. Herein, this study has looked at how the fibre diameter of electrospun polymer scaffolds can affect the performance of seeded VSMCs. Four different scaffolds were electrospun with increasing fibre sizes ranging from 0.75 to 6 µm. Culturing VSMCs on the smallest fibre diameter (0.75 µm) lead to a significant increase in cell viability after 12 days of culture. Furthermore, interesting trends were noted in the expression of two key phenotypic genes associated with mature smooth muscle cell contractility (myocardin and smooth muscle alpha-actin 1), whereby reducing the fibre diameter lead to relative upregulations compared to the larger fibre diameters. These results showed that the smallest (0.75 µm) fibre diameter may be best suited for the culture of VSMCs with the aim of increasing cell proliferation and aiding cell maturity.

Graphical Abstract

1 Introduction

Cardiovascular disease is the leading cause of mortality worldwide, accounting for upwards of 23% of all deaths [1].

To treat this, techniques such as bypass grafting have been implemented to divert blood flow around an arterial blockage [2]. The current gold standard is to use one of the patient's own vessels, such as the saphenous vein, however, in many instances this is not possible, therefore synthetic alternatives are required [2]. Unfortunately, synthetic grafts are associated with much lower rates of patency (degree of openness) compared to autologous vessel grafts in small diameter bypasses such as the coronary artery [2]. Therefore, there is a requirement to develop novel solutions in an attempt to bridge the gap between the use of synthetic grafts and autologous grafts.

Current scaffold based strategies used in vascular tissue engineering include the use of mechanical cues (topography)...
and biochemical cues (extracellular matrices and proteins) [3–9]. These cues can be incorporated into the scaffold to improve their performance as substrates for cell adhesion and proliferation. Specifically, electrospinning is an exciting avenue that allows for a wide range of scaffolds morphologies to be created [10–13]. This method has been used in many aspects of tissue engineering to mimic the structure of the native ECM, providing the cells with the correct mechanical cues [14]. Furthermore, work focussing on creating optimal environments for vascular smooth muscle cells (VSMCs) has shown that both scaffold morphology and pore size can have a drastic effect on the performance of VSMCs [11, 15–18]. In addition, a study by Noriega et al. using chondrocytes found that altering fibre diameter had the effect of increasing the expression of certain phenotypic genes [19]. These studies suggest that there is merit to studying the effect of electrospun fibre diameter on VSMC performance, with the aim of bridging the gap in material performance between synthetic grafts and autologous vessel grafts.

Herein, this study has looked at how the fibre diameter of electrospun polymer scaffolds can affect the performance of seeded VSMCs. We believe that altering scaffold fibre diameter will lead to different levels of cellular infiltration and should lead to phenotypic and genotypic alterations in the seeded VSMCs. It is our aim that this study will add to the understanding of what scaffold morphology is best suited to VSMCs.

2 Methods and materials

2.1 Electrospinning

Polycaprolactone (PCL) was either dissolved into Hexafluoropropane (HFIP); a 5:1 mixture of Chloroform: Methanol (C:M); or a 10:1 mixture of C:M at varying concentrations to achieve four different solutions (Table 1). Briefly, the electrospun fibres were spun as one continuous fibre onto an aluminium foil covered 8 cm diameter rotating mandrel in an environment that consisted of 18–24 °C and 40/60% relative humidity. A rotating collector was used to give a more even distribution of the fibres with better control over thickness. Note that there was no tubularity in the scaffolds from the rotating collector after being punched. The electrospinning parameters used to spin each set of fibres can be seen in Table 1.

2.2 Scanning electron microscopy

Scaffolds were imaged using a Hitachi TM4000 tabletop Scanning electron microscope (SEM). No sputter coating was required.
2.3 Fibre and pore measurements

SEM images were imported directly into ImageJ and analysed. Images were thresholded and then analysed using the DiameterJ plugin [20].

2.4 Mechanical characterisation

Tensile scaffold properties were measured using an Instron 3367 testing rig. Briefly, scaffolds were cut into 40 × 5 mm strips for analysis with measurements performed on a starting gauge length of 20 mm. Scaffolds were stretched until failure at 10 mm/min. Incremental Young’s Moduli were then calculated using a previously described method [21].

2.5 Contact angle measurement

Contact angle was measured on each scaffold using a DMK 41AU02 monochrome camera at a frequency of 5 Hz. Briefly, a 5 µl droplet of water was placed on the scaffold whilst images were being taken. Analysis was performed on ImageJ using the LBADSA plugin [22].

2.6 Scaffold porosity

Scaffold porosity (%) was calculated using the density of PCL, the weight of the scaffold and volume of the scaffold. The thickness of the scaffold was measured in order to calculate the volume of the scaffold. This was done using a DMK 41AU02 monochrome camera. All scaffolds were punched out using a 10 mm diameter punch.

2.7 Cell culture and scaffold seeding

Human umbilical vein smooth muscle cells (HUVSMCs) were expanded to passage 4 in a 5% CO2/37 °C atmosphere. HUVSMCs were expanded using smooth muscle cell growth medium (Sigma-Aldrich) and then cultured in these experiments using DMEM supplemented with 10% v/v FBS; 1% v/v penicillin/streptomycin; and 1% v/v non-essential amino acids. HUVSMCs were lifted for scaffold seeding at 80% confluence. Briefly, 10 mm diameter scaffolds were punched out and sterilized in 70% ethanol before being soaked in basal medium overnight (non-supplemented DMEM). Scaffolds were then seeded in a 48-well plate. 25,500 cells/cm² were drip seeded in 20 µl of culture medium (supplemented DMEM) onto the middle of the scaffold. After 30 min a further 30 µl of medium was added to stop the cells from drying out. After a further 30 min, medium in each well was topped up to 500 µl. Medium was subsequently replaced every 48 h.

2.8 Cell viability

Cell viability was measured using the CellTiter-Blue® cell viability assay at 1, 6 and 12 days as per manufacturer’s instructions (Promega). Briefly, cell seeded scaffolds were removed and placed in new wells. Each well was topped up with a 4:1 ratio of media and CellTiter-Blue assay. The plate was lightly shaken for 1 min and then wrapped in aluminium foil and incubated for 3.5 h. After incubation, 100 µL samples (x3) of the media/assay were taken from each scaffold/well and pipetted into a black well plate. The plate was measured in a Modulus™ II microplate reader at excitation: 525 nm and emission: 580–640 nm.

2.9 Cell staining

Scaffolds used for cell staining were washed thrice in phosphate buffer saline (PBS) and fixed in 10% v/v formalin solution in PBS overnight. Cells were permeabilized in 0.2% v/v TritonX-100 solution then stained in 0.1% v/v 1000X Phalloidin-iFluor® 514 conjugate (F-actin) and in DAPI (cell nuclei). Fluorescent images were taken using a bespoke coherent anti-stokes Raman (CARS) system. Z-stack images were taken after 12 days of culture to assess the amount of cell infiltration on each scaffold.

2.10 Cell infiltration measurements

Cellular infiltration was measured using the DAPI and phalloidin stained Z-stack images on ImageJ (NIH) whereby the depth of cell intravasation was measured.

2.11 Reverse transcription quantitative polymerase chain reaction (RT-qPCR)

RNA was extracted from the cell seeded scaffolds using a Tri-Reagent method and purified using Qiagen’s RNeasy spin column system. Real-time polymerase chain reaction was performed using a LightCycler® 480 Instrument II and Sensifast™ SYBR® High-ROX system. Forward and reverse sequences were either designed or used from literature and are displayed in Table 2. Relative quantification of RT-PCR results was carried out using the 2^−ΔΔt method [23]. Gene expression levels were expressed relative to GAPDH (housekeeping gene) and normalised to 70% confluent HUVSMCs on tissue culture plastic.

2.12 Statistical analysis

Data was expressed as mean ±1 standard deviation. Statistical analysis was performed using one-way ANOVA with post-hoc Tukey test.
3 Results

3.1 Scaffold properties

Four different fibre morphologies were achieved by altering the electrospinning parameters. Firstly, increasing fibre diameters of 0.77 ± 0.14, 2.06 ± 0.26, 3.91 ± 0.40 and 5.91 ± 0.56 µm were noted for the four scaffolds (p < 0.001 between each group), as seen in Fig. 1. In addition, the fibre alignment of each scaffold appears fairly random and displays no alignment in a particular direction. This can be seen in the SEM images. For simplicity, these four scaffolds will be referred to as 0.75, 2, 4 and 6 µm for the rest of this manuscript.

![Fig. 1 A SEM images of the four electrospun scaffolds with increasing fibre diameters. B Normalized frequency of fibre diameters found in each scaffold](image-url)
Furthermore, a very strong correlation between fibre diameter and pore width was noted for all four scaffold morphologies, with an R^2 value of 0.9918. Pore widths ranged from $4.37 \pm 1.29 \mu m$ for the smallest (0.75 µm) fibre diameter up to $33.41 \pm 13.37 \mu m$ for the largest (6 µm) fibre diameter. These correlations can be seen in Fig. 2.

3.2 Scaffold mechanical properties

Firstly, it was noted that the 2 µm scaffold morphology had the highest ultimate tensile strength (UTS), highest failure strain and the highest stiffness at all 5 strain bands measured (Table 3). The UTS for these scaffolds dropped either side of the 2 µm fibre diameter with the 2 µm fibre diameter showing a significantly higher UTS ($p < 0.012$ for all 3 comparisons). While the failure strain was higher in the 2 µm fibre diameter compared to the three other morphologies, it was only significantly higher than the 0.75 µm fibre diameter ($p = 0.000$ for the 0.75 µm scaffold, $p = 0.164$ and 0.168 for the 4 µm scaffold and 6 µm scaffold, respectively). Furthermore, the 0.75 µm not only had a significantly lower failure strain than the 2 µm fibre diameter, as previously mentioned, it also had significantly lower failure strains than the 4 and 6 µm fibre diameters ($p = 0.011$ for both). There was no notable or significant difference in contact angle across all the scaffolds groups, with a variation between 125.6 to 138.1°. These values can all be seen in Table 3.

Likewise, the stiffness of each scaffold at the five different strain bands followed a similar pattern. The 2 µm fibre diameter scaffold showed a higher stiffness at all five strain bands (see Table 3) compared to the three other fibre diameters, and the 6 µm fibre diameter showed a lower stiffness at all five strain bands. Significance was noted at all 5 strain bands between the 2 µm fibre diameter and the 4 and 6 µm fibre diameters ($p < 0.05$ in all cases) and in some cases significance between the

![Fig. 2 Correlation between fibre diameter and pore width](image)

Table 3 Physical and mechanical properties of all four scaffolds

Scaffold Name	Fibre diameter (µm)	Pore diameter (µm)	Ultimate tensile strength (MPa)	Failure strain (%)	Contact angle at 0.2 s (°)	Stiffness (MPa) at given strain bands
0.75 µm	0.77 ± 0.14	4.3 ± 1.3	1.41 ± 0.09	4.3 ± 1.3	1.98 ± 0.31	2.06 ± 0.26
2 µm	2.06 ± 0.26	10.1 ± 3.2	1.98 ± 0.31	10.1 ± 3.2	8.19 ± 1.77	8.19 ± 1.77
4 µm	3.91 ± 0.40	19.8 ± 7.4	1.45 ± 0.21	14.5 ± 0.21	5.91 ± 0.56	5.91 ± 0.56
6 µm	5.91 ± 0.56	33.4 ± 13.4	1.23 ± 0.07	12.3 ± 0.07	3.14 ± 0.29	3.14 ± 0.29
2 µm fibre and small 0.75 µm fibre diameters ($p = 0.053$ for the 0–1% strain band; $p = 0.042$ for the 1–2% strain band).

3.3 Cell imaging

2D confocal fluorescence imaging (Fig. 3) showed that a layer of SMCs were formed on the 0.75 µm fibre scaffold after 12 days of culture showing the phenotypic characteristics of healthy SMCs. Furthermore, while no clear monolayer could be noted on the three other morphologies, they were all able to maintain the elongated phenotypic characteristics of SMCs like the small fibre diameter scaffold.

Z-stacks of Actin stained SMCs showed how increasing fibre diameter had the effect of increasing cell infiltration into the scaffold. Cell infiltrations of ~40, 42, 61 and 82 µm were noted for the four scaffolds, as seen in Fig. 4.

3.4 Cell viability

Cell viability was measured using a CellTiter-Blue® Cell Viability Assay and showed some interesting results, as seen in Fig. 5. First, cell viability in the 0.75 µm fibre diameter scaffold after 12 days of culture was significantly higher than in the three other morphologies, suggesting that a smaller fibre morphology may be more suited for the growth of SMCs. On the contrary, the 2 µm fibre diameter and 6 µm fibre diameter both had reductions in cell viability, whereas the 4 µm fibre diameter showed no real change in cell viability over the 12 days of culture.
3.5 RT-qPCR

RT-qPCR results showed some interesting trends in VSMC gene expression between the four scaffold morphologies over the 12 days of culture, as seen in Fig. 6. Myocardin is a key phenotypic gene in smooth muscle cells and is heavily involved in their contractile functionality, with upregulations being associated with cell maturity [24–27]. In this study, the 0.75 µm fibre diameter led to an upregulation in myocardin between 6 and 12 days of culture, whereas in the three larger fibre diameters, a downregulation was noted between the same two timepoints. Likewise, smooth muscle alpha-actin 1 is associated with maturing smooth muscle cells and their contractile functionality [28]. This study found an upregulation of smooth muscle alpha-actin 1 on the 0.75 µm fibre between 24 h and 12 days of culture. On the contrary, all three other scaffolds showed a downregulation. The only significance noted was in the alpha-actin 1 results, whereby significant downregulations were noted in the 4 and 6 µm fibre diameters between 24 h and 12 days of culture.

4 Discussion

In this study, PCL was used as the polymer for electrospinning. PCL is a widely used polymer in tissue engineering applications due to its versatility and its FDA approval for clinical use [29, 30]. It has been extensively used to manufacture different types of scaffolds, especially electrospun fibrous scaffolds which require a polymer that can be easily used with different solvents [31–34]. Electrospinning is a flexible scaffold manufacturing technique that allows for a range of different morphologies to be created [10]. This study manufactured four different scaffolds with increasing fibre diameters ranging from 0.77 ± 0.14 µm to 5.91 ± 0.56 µm with relatively equal increments between each scaffold (Fig. 1). Interestingly, a very strong correlation was noted between the fibre diameter and the average pore width found on all four scaffolds ($R^2 = 0.9918$) (Fig. 2). This allowed for the study of fibre diameter/pore width and cellular infiltration and their effects on seeded SMCs.

While the approaches used in this study were optimised to create certain fibre sizes and morphology, it is poignant to mention the effect of some of the variable parameters in the fibre mat formation. We have used different solvents combinations, voltages, polymer concentrations, needle bore size and distance to modify the specific sizes of the fibres. These parameter changes in particular solvent differences have been linked to modifications in crystallinity, melting temperature and surface roughness [35]. In addition, it has been reported that the mechanical properties of electrospun fibres are influenced by crystallinity and molecular orientation, and their crystal structure is controlled by the processing parameters, which can include the electrical and rheological properties [36, 37]. While we did not look at
crystallinity effects, based on our SEM analysis we can confirm no adverse effects on fibre roughness. Interestingly, this approach of varying multiple parameters to achieve a range of fibre sizes has been commonly done in the literature [11, 38, 39]. One notable study showed that the best results were achieved using a multi-parameter approach to achieve a range of fibre sizes [38].

As expected, increasing fibre diameter and pore width led to an increase in cell infiltration depth. Depths of 40, 42, 61 and 82 µm were noted for the 0.75, 2, 4 and 6 µm scaffolds, respectively (Fig. 4). This phenomenon is expected and has been seen in previous studies where increasing the pore size of a scaffold has led to increased cellular infiltration [40, 41]. Phipps et al. noted a six to sevenfold increase in mean cellular infiltration of Mesenchymal Stem cells when average pore area was increased from ~400 µm² to 1800 µm² [41]. Likewise, Whited et al. found that increasing pore diameter from less than 10 to 89 µm lead to significant increases in osteoblasts infiltrating to depths greater than 600 µm after 6 days of culture [40]. While these cell types are different to the ones used in this study, the same principle applies whereby a larger pore size offers more space for cell infiltration.

Fluorescence images of DAPI and phalloidin stained cells showed a monolayer of SMCs on the 0.75 and 4 µm fibre diameter scaffolds (Figs. 3, 4). In contrast, the 6 µm scaffold appears to show cells infiltrating into pores and growing into the scaffold. While the 2 µm fibre diameter scaffold may not have a full monolayer of cells growing, it does show cells growing along a singular plane in the scaffold, which suggests that no infiltration is occurring. In vivo, VSMCs adopt an elongated morphology and are found interwoven around the ECM in thick layers of 40–60 cells [42]. This would suggest that the 6 µm scaffold would be optimal for the growth of VSMCs. However, the results presented in this study suggest that the 0.75 µm fibre scaffold led to increased cell performance. VSMCs tend to grow in very compact formations in vivo and therefore the 6 µm fibre scaffold may not have allowed for adequate cell-cell interactions due to the increase in space on offer for cell growth. This in turn may have decreased the amount of paracrine communication between the cells, reducing their proliferative performance. Studies have shown that decreased cell-cell communication in seeded scaffolds can lead to reduced cell growth and altered phenotypic gene expression in various cell types [43, 44].

The 0.75 µm fibre scaffold led to the formation of VSMC bundles, whereby the cells realigned themselves and adopted a compact morphology commonly seen in vitro 2D cultures [45, 46]. Furthermore, the 0.75 µm scaffold also showed significantly higher cell viability (Fig. 5) after 12 days of culture compared to the three other morphologies. While this shows that the 0.75 µm scaffold is well suited for VSMCs culture in vitro and leads to increased cell proliferation, it does not necessarily mean that this scaffold is optimal for the long-term 3D culture of VSMCs. Work by Bono et al. found that culturing human umbilical artery SMCs in a 3D micro-environment (collagen hydrogel) led to increased cell alignment compared to 2D culture on tissue culture plastic [47]. Interestingly, they noted short term (5 days) reduction in the expression of calponin (a phenotypic gene associated with contractility) in the 3D culture compared to the 2D culture. They ascribed this reduction to the cells adapting to the 3D micro-environment causing temporal variation in cell-matrix interaction [48]. Similarly, Lin et al. found that human induced pluripotent stem cell differentiated VSMCs downregulated alpha smooth muscle actin and calponin when cultured in a 3D micro-environment compared to conventional 2D culture [49]. These results are similar to those found in the present study, whereby two phenotypic genes (alpha smooth muscle actin and myocardin) were downregulated in the 6 µm scaffold, possibly due to the same phenomena where increased infiltration means an increased amount of cell adaptation to the 3D micro-environment.

A relative upregulation of myocardin was noted in the 0.75 µm fibre diameter scaffold compared to the three larger fibre diameter scaffolds between 6 and 12 days of culture. Myocardin is a major phenotypic gene present in SMCs and is responsible for their contractile functionality [24–27]. As SMCs proliferate and mature, an upregulation of myocardin would be expected. A study by Raphael et al. showed that myocardin overexpression in vitro through the use of adenoviruses led to human embryonic stem cell differentiation into functional phenotypic mature smooth muscle cells [50]. Furthermore, smooth muscle alpha-actin 1 is associated with maturing smooth muscle cells and their contractile functionality [28]. Work by Sandbo et al. found that a downregulation of smooth muscle alpha-actin 1 led to a decrease in SMC migration [51]. This study found that the 0.75 µm fibre diameter increased the expression of this gene over a 12 day culture period, whereas the three other scaffolds lead to decreases in the expression of this gene over 12 days. These results would suggest that the 0.75 µm fibre diameter scaffold helped facilitate SMC maturation and improved their phenotypic functionality compared to the three larger fibre diameters. However, as previously mentioned, this downregulation may be due to the short-term cell adaptation to the 3D microenvironment found in the larger fibre diameters [48, 49].

There has been a plethora of work looking at how fibre alignment and other morphological aspects such as surface roughness affect SMCs. For example, work by Bashur et al. found that culturing rat aortic SMCs on aligned fibres led to increased cell alignment and promoted a synthetic phenotype when compared to culturing on randomly orientated
fibres [52]. Likewise, Nivison-Smith et al. showed that increasing fibre alignment lead to a significant increase in the alignment of seeded primary human coronary artery SMCs after 24 h, 72 h and 120 h [53]. These results show that the effect of fibre alignment spans into long term culture, whereby even after the cells have started to proliferate, they are still evidently sensing the alignment of the scaffold. Similarly, work by Ng et al. showed that culturing human aorta SMCs on aligned PCL fibres increased cell proliferation and significantly increased the expression of alpha-smooth muscle actin and smooth muscle myosin heavy chain; two phenotypic genes that are associated with SMC contractility [54]. Furthermore, Zhou et al. showed that human umbilical artery SMCs are not only affected by fibre alignment, but also by the surface roughness of the fibre [55]. Increasing surface roughness had the effect of increasing both cell adhesion and cell proliferation, as well as increasing nuclei elongation. These results combined with the results presented in this present study demonstrate how SMCs are affected by their substrate’s morphology in several different ways.

5 Conclusions

In conclusion, four different electrospun scaffolds with increasing fibre diameters ranging from 0.75 to 6 µm were electrospun. The largest (6 µm) fibre diameter led to increased cell infiltration compared to the three other morphologies. However, the smallest (0.75 µm) diameter fibre led to a monolayer of HUVSMCs growing, showing significantly higher cell viability after 12 days of culture compared to the three other morphologies. Furthermore, altering the fibre diameter had the effect of changing the levels of gene expression from the HUVSMCs. Most notably, the cells seeded onto the 0.75 µm fibre had elevated expressions of myocardin and smooth muscle actin-α 1 (two genes associated with mature SMCs) compared to the three other morphologies. These results show how altering the fibre diameter of the scaffold has clear effects on the seeded HUVSMCs. Our findings suggest that the 0.75 µm fibre diameter is most suitable for the seeding of SMCs with the aim of aiding cell maturity.

Data availability

Data available on request from the authors.

Acknowledgements We would like to thank Prof. Alistair Ellick for access to his laboratory equipment.

Author contributions JAR and AC conceived and designed the study. AM conducted fluorescence microscopy of DAPI and phalloidin stained cells. JAR conducted all other lab work. JAR analysed all data and wrote the manuscript. JAR, AM and AC approved the final version of the manuscript.

Funding This work was funded by an Engineering & Physical Sciences Research Council (ESPRC) doctoral training partnership studentship EP/N509644/1 and a UK Regenerative Medicine Platform II grant MR/L022974/1.

Compliance with ethical standards

Conflict of interest The authors declare no competing interests.

Ethics approval This study abides by all criteria of the UK Human Tissue Act.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Heron M. Deaths: leading causes for 2015. Natl Vital Stat Rep. 2017;66:1–76. https://doi.org/10.1016/S0140-6736(15)00057-4.
2. Pashneh-Taara S, MacNeil S, Claeyssens F. The tissue-engineered vascular graft—past, present, and future. Tissue Eng Part B Rev. 2016;22:68–100. https://doi.org/10.1089/ten.teb.2015.0100.
3. Reid JA, Callanan A. Hybrid cardiovascular sourced extracellular matrix scaffolds as possible platforms for vascular tissue engineering. J Biomed Mater Res Part B - Appl Biomater. 2020;108:910–24.
4. Wang Z, Cui Y, Wang J, Yang X, Wu Y, Wang K, et al. The effect of thick fibres and large pores of electrospun poly(ε-caprolactone) vascular grafts on macrophage polarization and arterial regeneration. Biomaterials. 2014;35:5700–10. https://doi.org/10.1016/j.biomaterials.2014.03.078.
5. Ardila DC, Tamimi E, Doetschman T, Wagner WR, Vande Geest JP. Modulating smooth muscle cell response by the release of TGFβ2 from tubular scaffolds for vascular tissue engineering. J Control Release. 2019;299:44–52. https://doi.org/10.1016/j.jconrel.2019.02.014.
6. Bružauskaite I, Bironaite D, Bugdonas E, Bernotienė E. Scaffolds and cells for tissue regeneration: different scaffold pore sizes—different cell effects. Cyto technology. 2016;68:355–69. https://doi.org/10.1007/s10616-015-9895-4.
7. Detta N, Errico C, Dinucci D, Puppi D, Clarke DA, Reilly GC, et al. Novel electrospun polyurethane/gelatin composite meshes for vascular grafts. J Mater Sci Mater Med. 2010;21:1761–9. https://doi.org/10.1007/s10856-010-4006-8.
8. Yang Y, Yang Q, Zhou F, Zhao Y, Jia X, Yuan X, et al. Electrospun PELCL membranes loaded with QK peptide for
enhancement of vascular endothelial cell growth. J Mater Sci Mater Med. 2016;27:1–10. https://doi.org/10.1007/s10856-016-5705-6.

9. Reid JA, McDonald A, Callanan A. Modulating electrospun polycaprolactone scaffold morphology and composition to alter endothelial cell proliferation and angiogenic gene response. PLoS ONE. 2020;15:e024032. https://doi.org/10.1371/journal.pone.024032.

10. Burton TP, Corcoran A, Callanan A. The effect of electrospun polycaprolactone scaffold morphology on human kidney epithelial cells. Biomed Mater. 2017;13:015006. https://doi.org/10.1088/1748-605X/aa8d8d.

11. Han DG, Ahn CB, Lee JH, Hwang Y, Kim JH, Park KY, et al. 2019. Optimization of electrospun poly(caprolactone) fiber diameter for vascular scaffolds to maximize smooth muscle cell infiltration and phenotype modulation. Polymers. 11: https://doi.org/10.3390/polym11040643.

12. Soundararajan A, Muralidhar RJ, Dhandapani R, Radhakrishnan J, Maniganda A, Kalyanasundaram S, et al. Surface topography of polyactic acid nanofibrous mats: influence on blood compatibility. J Mater Sci Mater Med. 2018;29:1–14. https://doi.org/10.1007/s10856-018-6153-2.

13. Reid JA, Dwyer KD, Schmitt PR, Soepriatna AH, Coulombe KKL, Callanan A. Architectured fibrous scaffolds for engineering anisotropic tissues. Biofabrication. 2021;13:045007. https://doi.org/10.1088/1758-5080/ac0fc9.

14. Sizeland KH, Hofman KA, Hallett IC, Martin DE, Potgieter J, Kirby NM, et al. Nanostructure of electrospun collagen: do electrospun collagen fibers form native structures?. Materials. 2018;3:90–96. https://doi.org/10.1007/jmlta.2018.10.001.

15. Fu W, Liu Z, Feng B, Hu R, He X, Wang H, et al. Electrospun gelatin/PCL and collagen/PCL scaffolds for vascular tissue engineering. Int J Nanomed. 2014;9:2335–44. https://doi.org/10.2147/IJNN.S61375.

16. Bridge JC, Amer M, Morris GE, Martin NRW, Player DJ, Knox AJ, et al. 2018. Electrospun gelatin-based scaffolds as a novel 3D platform to study the function of contractile smooth muscle cells in vitro. Biomed Phys Eng Expr. 2018, 4: https://doi.org/10.1088/2057-1976/aaace8f.

17. McGlohorn JB, Holder WD, Grimes LW, Thomas CB, Burg KJL. Evaluation of smooth muscle cell response using two types of porous polylactide scaffolds with differing pore topography. Tissue Eng. 2004;10:505–14. https://doi.org/10.1089/107632704323061861.

18. Wong CS, Liu X, Xu Z, Xu Z, Lin T, Wang X. Elastin and collagen enhances electrospun aligned polyurethane as scaffolds for vascular graft. J Mater Sci Mater Med. 2013;24:1865–74. https://doi.org/10.1007/s10856-013-0435-9.

19. Noriega SE, Hasanova GI, Schneider MJ, Larsen GB, Subramanian A. Effect of fiber diameter on the spreading, proliferation and differentiation of chondrocytes on electrospun chitosan matrices. Cells Tissues Organs. 2012;195:207–21. https://doi.org/10.1159/000325144.

20. Hotaling NA, Bharti K, Kriel H, Simon CG. Diameter: a validated direct source nanofiber diameter measurement tool. Biomaterials. 2015;61:327–38. https://doi.org/10.1016/j.biomaterials.2015.05.015.

21. Reid JA, Callanan A. The influence of aorta extracellular matrix in electrospun polycaprolactone scaffolds. J Appl Polym Sci. 2019;136:48401.

22. Stalder AF, Melchior T, Miller M, Sage D, Blu T, Unser M. Low-bond axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops. Colloids Surf A Physicochem Eng Asp. 2010;364:72–81. https://doi.org/10.1016/j.colsurfa.2010.04.040.

23. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25:402–8. https://doi.org/10.1006/meth.2001.1262.

24. Parmacke MS. Myocardin dominant driver of the smooth muscle cell contractile phenotype. Arter Thromb Vasc Biol. 2008;28:1416–7. https://doi.org/10.1038/jtid.2014.371.

25. Huang J, Cheng L, Li J, Chen M, Zhou D, Lu MM, et al. Myocardin regulates expression of contractile genes in smooth muscle cells and is required for closure of the ductus arteriosus in mice. J Clin Invest. 2008;118:515–25. https://doi.org/10.1038/jcj.2008.04.040.

26. Long X, Bell RD, Gerthoffer WT, Zlokovic BV, Miano JM. Myocardin is sufficient for a smooth muscle-like contractile phenotype. Arter Thromb Vasc Biol. 2008;28:1505–10. https://doi.org/10.1038/jtid.2014.371.

27. Wang Z, Wang DZ, Pipes GCT, Olson EN. Myocardin is a master regulator of smooth muscle gene expression. Proc Natl Acad Sci USA. 2003;100:7129–34. https://doi.org/10.1073/pnas.1232341100.

28. Goldberg MT, Han YP, Yan C, Shaw MC, Garner WL. NF-κ suppresses α-smooth muscle actin expression in human dermal fibroblasts: An implication for abnormal wound healing. J Invest Dermatol. 2007;127:2645–55. https://doi.org/10.1016/j.jid.2010.04.040.

29. Woodruff MA, Hutmaccher DW. The return of a forgotten polymer—Polycaprolactone in the 21st century Maria. Prog Polym Sci. 2010;35:1217–1256.

30. Taskin MB, Xia D, Besenbacher F, Dong M, Chen M. Nanotopography featured polycaprolactone/polyethyleneoxide microfibers modulate endothelial cell response. Nanoscale. 2017;9:9218–29. https://doi.org/10.1039/c7nr04120a.

31. Gao S, Guo W, Chen M, Yuan Z, Wang M, Zhang Y, et al. Fabrication and characterization of electrospun nanofibers composed of decellularized meniscus extracellular matrix and poly(caprolactone for meniscus tissue engineering. J Mater Chem B. 2017;5:2273–85. https://doi.org/10.1039/c7tb00140a.

32. Han J, Wu Q, Xia Y, Wagner MB, Xu C. Cell alignment induced by anisotropic electrospun fibrous scaffolds alone has limited effect on cardiomyocyte maturation. Stem Cell Res. 2016;16:740–50. https://doi.org/10.1016/j.scr.2016.04.014.

33. Kolbuk D, Sajkiewicz P, Multiara-Webber K, Fortunato G. Structure and morphology of electrospun polycaprolactone/gelatine nanofibres. Eur Polym J. 2013;49:2052–61. https://doi.org/10.1016/j.eurpolymj.2013.04.036.

34. Burton TP, Callanan A. A non-woven path: electrospun polylactic acid scaffolds for kidney tissue engineering. J Tissue Eng Regen Med. 2018;12:1513–20. https://doi.org/10.1080/19444819.2017.1383315.

35. Xu Y, Zou L, Lu H, Kang T. Effect of different solvent systems on PHBV/PEO electrospun fibers. RSC Adv. 2017;7:4000–10. https://doi.org/10.1039/c6ra26783a.

36. Kim GH, Yoon H. Effect of an auxiliary electrode on the crystalline morphology of electrospun nanofibers. Appl Phys Lett. 2008;93:023127.

37. Camarena-Maese FJ, Martinez-Hergueta F, Fernandez-Blazquez JP, Kok RW, Reid JA, Callanan A. Multiscale SAXS/WAXD characterisation of the deformation mechanisms of electrospun PCL scaffolds. Polym (Guildf). 2020;203:122775. https://doi.org/10.1016/j.polymerr.2020.122775.

38. Kim HH, Kim MJ, Ryu SJ, Ki CS, Park YH. Effect of fiber diameter on surface morphology, mechanical property, and cell behavior of electrospun poly-(γ-caprolactone) matTitle. Fibers Polym. 2016;17:1033–42.

39. Zavan B, Gardin C, Guarino V, Rocca T, Maya IC, Zanotti F, Ferroni L, et al. Electrospun pcl-based vascular grafts: In vitro tests. Nanomaterials. 2021;11:1–16. https://doi.org/10.3390/na11030751.

40. Whited BM, Whitney JR, Hofmann MC, Xu Y, Rylander MN. Preosteoblast infiltration and differentiation in highly porous apatite-
coated PLLA electrospun scaffolds. Biomaterials. 2011;32:2294–304. https://doi.org/10.1016/j.biomaterials.2010.12.003.

41. Phipps MC, Clem WC, Grunda JM, Clines GA, Bellis SL. Increasing the pore sizes of bone-mimetic electrospun scaffolds comprised of polycaprolactone, collagen I and hydroxyapatite to enhance cell infiltration. Biomaterials. 2012;33:524–34. https://doi.org/10.1016/j.biomaterials.2011.09.080.

42. Bank AJ, Wang H, Holte JE, Mullen K, Shammas R, Kubo SH. Contribution of collagen, elastin, and smooth muscle to in vivo human brachial artery wall stress and elastic modulus. Circulation. 1996;94:3263–70. https://doi.org/10.1161/01.CIR.94.12.3263.

43. Noda S, Kawashima N, Yamamoto M, Hashimoto K, Nara K, Sekiya I, et al. Effect of cell culture density on dental pulp-derived mesenchymal stem cells with reference to osteogenic differentiation. Sci Rep. 2019;9:1–5. https://doi.org/10.1038/s41598-019-41741-w.

44. Sukho P, Kirpensteijn J, Hesselink JW, Van Osch GJVM, Versteijden F, Bastiaansen-Jenniskens YM. Effect of cell seeding density and inflammatory cytokines on adipose tissue-derived stem cells: an in vitro study. Stem Cell Rev. 2017;13:267–77. https://doi.org/10.1007/s12015-017-9719-3.

45. Powell RJ, Cronenwett JL, Fillinger MF, Wagner RJ, Sampson LN. Endothelial cell modulation of smooth muscle cell morphology and organizational growth pattern. Ann Vasc Surg. 1996;10:4–10. https://doi.org/10.1007/BF02002334.

46. Endlich N, Endlich K, Taesch N, Helwig JJ. Culture of vascular smooth muscle cells from small arteries of the rat kidney. Kidney Int. 2000;57:2468–75. https://doi.org/10.1046/j.1872-2923.2000.00079.x.

47. Bono N, Pezzoli D, Levesque L, Loy C, Candiani G, Fiore GB. Unraveling the role of mechanical stimulation on smooth muscle cells: A comparative study between 2D and 3D models. Biotechnol Bioeng. 2016;113:2254–63. https://doi.org/10.1002/bit.25979.

48. Meghezi S, Seifu DG, Bono N, Unsworth L, Mequianint K, Mantovani D. Engineering 3D cellularized collagen gels for vascular tissue regeneration. J Vis Exp. 2015;2015:1–12. https://doi.org/10.3791/52812.

49. Lin H, Qiu X, Du Q, Li Q, Wang O, Akert L, et al. Engineered microenvironment for manufacturing human pluripotent stem cell-derived vascular smooth muscle cells. Stem Cell Rep. 2019;12:84–97. https://doi.org/10.1016/j.stemcr.2018.11.009.

50. Raphel L, Talasila A, Cheung C, Sinha S. Myocardin over-expression is sufficient for promoting the development of a mature smooth muscle cell-like phenotype from human embryonic stem cells. PLoS One. 2012;7:e44052. https://doi.org/10.1371/journal.pone.0044052.

51. Sandbo N, Taurin S, Yau DM, Kregel R, Mitchell R, Dulin NO. Downregulation of smooth muscle α-actin expression by bacterial lipopolysaccharide. Cardiovasc Res. 2007;74:262–9. https://doi.org/10.1016/j.cardiores.2007.01.011.

52. Bashur CA, Ramamurthi A. Aligned electrospun scaffolds and elastogenic factors for vascular cell-mediated elastic matrix assembly. J Tissue Eng Regen Med. 2012;6:673–86. https://doi.org/10.1002/term.470.

53. Nivison-Smith L, Weiss AS. Alignment of human vascular smooth muscle cells on parallel electrospun synthetic elastin fibers. J Biomed Mater Res - Part A. 2012;100 A:155–61. https://doi.org/10.1002/jbm.a.33255.

54. Ng FL, Ong YO, Chen HZ, Tran LQN, Cao Y, Tay BY. A facile method for fabricating a three-dimensional aligned fibrous scaffold for vascular application. RSC Adv. 2019;9:13054–64. https://doi.org/10.1039/c9ra03492b.

55. Zhou Q, Xie J, Bao M, Yuan H, Ye Z, Lou X, et al. Engineering aligned electrospun PLLA microfibers with nano-porous surface nanotopography for modulating the responses of vascular smooth muscle cells. J Mater Chem B. 2015;3:4439–50. https://doi.org/10.1039/c5tb00098a.

56. Callanan A, Davis NF, McGloughlin TM, Walsh MT. Development of a rotational cell-seeding system for tubularized extracellular matrix (ECM) scaffolds in vascular surgery. J Biomed Mater Res - Part B Appl Biomater. 2014;102:781–8. https://doi.org/10.1002/jbmr.33059.