Electrolyte gate-controlled Kondo effect in SrTiO$_3$

Menyoung Lee,1 J. R. Williams,1 Sipei Zhang,2 C. Daniel Frisbie,2 and D. Goldhaber-Gordon1,*

1Department of Physics, Stanford University, Stanford, California 94305, USA
2Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA

(Dated: July 30, 2011)

We report low-temperature, high-field magnetotransport measurements of SrTiO$_3$ gated by an ionic gel electrolyte. A saturating resistance upturn and negative magnetoresistance that signal the emergence of the Kondo effect appear for higher applied gate voltages. This observation, enabled by the wide tunability of the ionic gel-applied electric field, promotes the interpretation of the electric field-effect induced 2D electron system in SrTiO$_3$ as an admixture of magnetic Ti$^{3+}$ ions, i.e. localized and unpaired electrons, and delocalized electrons that partially fill the Ti 3d conduction band.

The Coulomb interaction amongst electrons and ions in a solid can spontaneously generate internal magnetic fields and effective magnetic interactions. Unexpected magnetic phenomena may emerge whenever we consider a new system where interactions are important. In recent years, predictions for and observations of magnetism originating in the two-dimensional (2D) system of electrons at the interface between SrTiO$_3$ (STO) and LaAlO$_3$ (LAO) have attracted much attention [1–6], particularly the prediction of charge disproportionation and the emergence of +3-valent Ti sites with unpaired spin [1] and direct measurements of in-plane magnetization [6]. The conducting electrons at the LAO/STO interface are believed to be induced by polar LAO’s strong internal electric fields, and to reside on the Ti sites on the STO side of the interface, partially filling the lowest-lying Ti 3d bands [7–9]. Questions remain, however, over the role of the growth process, in particular whether oxygen vacancy formation or cation intermixing are in fact responsible for the observed n-type conduction [10–13].

Other than growing a polar overlayer, a 2D system of electrons in STO can be made by chemical doping with Nb, La, or oxygen vacancies [14–17], or purely electrostatic charging in an electric double layer transistor (EDLT) [18, 19]. If electronic reconstruction in response to overlayer polarity is an accurate description for LAO/STO, then that system can be closely modeled by field effect-induced electrons in undoped STO, where confounding questions over growth conditions do not arise, and the applied electric field can be widely tuned.

In this Letter, we expand on the body of evidence for Ti$^{3+}$ magnetism in STO that conducts in two dimensions. We demonstrate a gate-controlled Kondo effect in the 2D electron system in undoped STO formed beneath the bare surface by the electric field from an ionic gel electrolyte, and interpret this system as an admixture of magnetic Ti$^{3+}$ ions (unpaired and localized electrons) and delocalized electrons partially filling the Ti 3d conduction band, as predicted theoretically [2, 20]. The Kondo effect is an archetype for the emergent magnetic interactions amongst localized and delocalized electrons in conducting alloys [21, 22], and the ability to produce and tune the effect by purely electrostatic means in any conducting system is of interest in its own right [23, 24]. The observed appearance of the Kondo effect in STO as a function of applied electric field points to the emergence of magnetic interactions between electrons in STO due to electron-electron correlations rather than the presence of dopants.

We report measurements from two STO Hall bar devices (A and B), gated using an ionic gel electrolyte in an EDLT configuration. Behaviors similar to those we show have been observed in 6 devices. A schematic showing the operation of the devices is shown in Fig. 1(a), and a photograph of a device identical to those we measured but without the electrolyte is shown in

![Figure 1: (a) Schematic diagram of the EDLT operation. PR = photoresist. (b) Optical micrograph of a device identical to those measured. The photoresist (dark regions) is partially transparent, and contact leads can be seen through it. The “thin” region of photoresist has thickness of 1 μm, while the “thick” region has 2 μm. (c) Hall resistance of device A at $T = 5$ K, to measure the accumulated electron density on the STO surface channel. $V_g =$ 4.35 V for the highest density, and subsequent lower densities were set by allowing the electrolyte to partially lose polarization at $T \approx 200$ K.](image-url)
Fig. 1(b). Undoped STO (100) crystals (MTI Corp.) were treated with buffered hydrofluoric acid to obtain a TiO₂-terminated surface [25], and the crystal for device B was then annealed at 1000 °C in a tube furnace with 50 sccm of flowing oxygen gas. The Hall bar geometry, 30 μm wide and 100 μm long between the voltage leads, was defined via a window through a 1 μm-thick film of hard-baked photoresist that exposes the channel and the gate to the electrolyte while keeping the rest of the STO separated from the ions and hence still insulating. Prior to the lithographic definition of the Hall bar, contacts were created by Ar⁺ ion milling to a dose of 2 C/cm² with 300 V acceleration [26] then depositing Al/Ti/Au electrodes with thickness of 40/5/100 nm. The ionic gel electrolyte was formed by gelation of a triblock copolymer poly(styrene-block-methylmethacrylate-block-styrene) (PS-PMMMA-PS) in an ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide (EMI-TFSA, formerly referred to as EMI-TFSI) [27, 28]. A drop of gel was formed on another substrate, then manually pasted over the device, covering both the STO channel and the 200 μm × 400 μm coplanar metal gate.

Magnetotransport characteristics of device A were measured in a Physical Property Measurement System (Quantum Design) at temperatures down to \(T = 4.5 \) K and magnetic fields up to \(H = 14 \) T. The sample was insulating at the start and the end of the experiment, indicating that the conduction was not due to doping by electrochemical reactions. At room temperature, the gate voltage was ramped up to \(V_g = +3.5 \) V, which polarized the electrolyte, pushing cations toward the channel. The electric field of the ions cause the accumulation of electrons that form our 2D system in STO. Then the sample was cooled to \(T = 5 \) \(\) K, during which the leakage current through the gate dropped below the measurement limit of 100 pA for \(T < 200 \) K, signaling the freezing of EMI-TFSA. Once at \(T = 5 \) \(\) K, \(V_g \) was nullled and magnetotransport measurements were taken. To apply a weaker electric field and set the electron density lower, the device was warmed to \(T \approx 200 \) \(\) K, and the electrolyte was allowed to partially lose its polarization, decreasing the accumulated cation concentration at the channel and correspondingly the electron density in the STO.

We measured the longitudinal resistance \(R \) of the device as a function of temperature and applied magnetic field, using standard lock-in techniques at quasi-DC frequencies < 100 Hz with a current bias < 5 nA and no additional source-drain bias. Figure 1(c) shows Hall resistance measurements at \(T = 5 \) K that show that the electron density inferred from Hall effect decreases for each successive cooldown, from \(n_{\text{Hall}} = 1.13 \times 10^{14} \) cm⁻² in the first cooldown, to \(n_{\text{Hall}} = 4.85 \times 10^{13} \) cm⁻² for the last. We have measured densities as high as \(7 \times 10^{14} \) cm⁻² in some other samples, but the devices described here with \(n_{\text{Hall}} \sim 10^{13} \) to \(10^{14} \) cm⁻² showed lower disorder and have the observed density and other transport features most similar to other high-mobility 2D systems in STO.

The 2D nature of our samples is evident from three magnetoresistance features which have not been reported in previous EDLT studies of STO: the dependence of the Hall resistance as a function of \(H_{\perp} = H \cos \theta \), weak anti-localization, and Shubnikov-de Haas oscillations (See Supplementary Information). Weak anti-localization with similarly strong spin-orbit coupling strengths has been reported in the LAO/STO interface and attributed to the Rashba-type coupling due to inversion asymmetry of the interface [29]. Shubnikov-de Haas oscillations were seen in device B at \(V_g = +2.8 \) V, which gave \(n_{\text{Hall}} = 2.6 \times 10^{13} \) cm⁻². The electron density inferred from the oscillation period was much lower at \(3 \times 10^{12} \) cm⁻² if only a twofold spin degeneracy is assumed (See Supplementary Information). Reported quantum oscillations of the magnetoresistance in LAO/STO and \(\delta \)-doped STO have yielded similarly low values of the inferred electron density [14, 16, 30, 31].

The magnetoresistance of the sample, \(R(H) - R(H = 0) \), measured at the highest electron density, is plotted in Fig. 2(a) for various directions of \(\vec{H} \). When \(\vec{H} \) is normal to the sample plane (\(\theta = 0 \)), the magnetoresistance is positive, and as the \(\vec{H} \) direction is tilted away from normal and into the sample plane, the magnetoresistance crosses over from positive to negative at \(\theta \approx 75^\circ \). A similar crossover from positive out-of-plane magnetoresistance to negative in-plane magnetoresistance has been reported in LAO/STO [32].

We pay particular attention to the sample’s zero-field...
resistance as a function of temperature, \(R(T) \). Fig. 2(b) shows the resistance relative to its value at \(T = 5 \text{ K} \), \(R(T) - R(T = 5 \text{ K}) \), at each measured electron density. At the highest density, a minimum is seen at \(T = 14 \text{ K} \) and the resistance turns upward, and this upturn is substantially weakened as the density is lowered. The appearance of a resistance minimum and low-temperature upturn, unexpected for a metallic system, at higher electron density suggests that the electric field-induced electrons, not added impurities, are themselves responsible for the scattering, and electron-electron correlations strongly influence the transport properties. A disorder-induced metal-insulator transition, by contrast, ought to show a stronger upturn at lower density, not the opposite trend seen here. The precise threshold density for the emergence of an \(R(T) \) minimum differs amongst samples, but the overall trend is the same. Reducing the induced 2D electron density reduces the low-temperature upturn in resistance.

To further investigate these anomalies we measured device B at lower temperatures down to 1.4 K and higher magnetic fields up to 31 T. We set \(V_g = +3.5 \text{ V} \) for the first cooldown and measured \(n_{\text{Hall}} = 5.3 \times 10^{13} \text{ cm}^{-2} \) at \(T = 1.4 \text{ K} \). To set lower densities for subsequent cooldowns, we set lower \(V_g = +3.2, 2.8, \) and 2.2 V at \(T \approx 200 \text{ K} \) then waited for ~15 minutes for the electrolyte to equilibrate, rather than nulling \(V_g \) and quickly obtaining a partial loss of polarization as described above for device A.

Figure 3 shows the device B zero-field \(R(T) \) at \(V_g = +3.5 \text{ V} \), corresponding to the highest electron density measured in this sample. A minimum of \(R(T) \) is seen at \(T = 14.5 \text{ K} \), and then the upturn saturates at the lowest temperatures, such that \(\frac{d^2 R}{dT^2} < 0 \) for \(T < 7 \text{ K} \). This saturating resistance upturn is suppressed in subsequent cooldowns at lower gate voltages, and thus the same overall trend in the behavior of \(R(T) \) with respect to electron density is observed in both devices. Finally in the last cooldown and lowest density, a non-saturating upturn and localization-like behavior is observed (See Supplementary Information).

The appearance of a saturating resistance upturn at low temperature is characteristic of the Kondo effect, where the temperature dependence of the contribution from magnetic impurities to the electrical resistivity of a metal is a universal function in units of a single temperature scale, the Kondo temperature \(T_K \). This universal function \(R_K(T/T_K) \) behaves logarithmically at high temperature \(T \gg T_K \), and saturates at low temperature, so that \(R_K(T/T_K) \approx R_K(0 \text{ K}) \left(1 - \frac{1}{6.088 (T/T_K)^{2}}\right) \) for \(T \ll T_K \) if we define \(T_K \) as the temperature at which the Kondo resistivity is half relative to its zero-temperature value [21, 33]. Across the whole measured temperature range from 1.4 K to 30 K which includes temperatures above and below the observed \(R(T) \) minimum, the resistance can be described well by a simple Kondo model

\[
R^{\text{fit}}(T) = R_0 + qT^2 + pT^5 + R_K(T/T_K) \tag{1}
\]

where \(R_0 \) is the residual resistance due to sample disorder, and the \(T^2 \) and \(T^5 \) terms represent the functional temperature dependences of the electron-electron and the electron-phonon interactions, respectively. For the numerical fitting of this model to the data, we used an empirical form for the universal resistivity function,

\[
R_K(T/T_K) = R_K(0 \text{ K}) \left(\frac{T_K^2}{T^2 + T_K^2}\right)^s \tag{2}
\]

where \(T_K' = T_K/(2^{1/s} - 1)^{1/2} \), and we fixed \(s = 0.225 \) to closely match the theoretical result obtained by the numerical renormalization group [33, 34]. A numerical fit using Eqns. 1 and 2 to the measured \(R(T) \) curve yielded \(R_0 = 607 \text{ Ω}, q = 0.437 \text{ Ω/K}^2, p = 1.2 \times 10^{-8} \text{ Ω/K}^5, R_K(0 \text{ K}) = 819 \text{ Ω}, \) and \(T_K = 51.8 \text{ K} \).

Device B, with \(\vec{H} \) applied parallel to sample plane and \(\vec{H} \perp \vec{j} \), also exhibited a strong negative magnetoresistance, up to \(\approx -20\% \) at \(H_{\parallel} = 31 \text{ T} \), and its \(R(H_{\parallel}) \) is plotted in Fig. 4. The temperature-dependent magnetoresistance at \(V_g = +3.5 \text{ V} \), plotted in Fig. 4(a), shows that raising the sample temperature suppresses the negative in-plane magnetoresistance such that the effect disappears between 30 and 40 K. In the highest fields \(H_{\parallel} > 25 \text{ T} \), the Kondo resistance upturn is sufficiently suppressed that resistance depends monotonically.
Figure 4: (a) Device B in-plane magnetoresistance ($\vec{H} \perp \vec{j}$) at $V_g = +3.5$ V and various temperatures. The negative magnetoresistance is gradually suppressed as the temperature is raised, and the resistance increases with temperature in the highest $H_{||}$. (b) The same at all four applied gate voltages at $T = 1.4$ K. Solid curves: $R_{\text{model}} (H_{||})$ according to Eqn. 3 where we chose $R_0 = 607 \, \Omega$, and $H_1 = 20, \, 16$, and $8 \, \text{T}$ for $V_g = +3.5, \, 3.2, \text{ and } 2.8 \, \text{V}$, respectively.

on temperature. Such a temperature dependence of the magnetoresistance is expected from the splitting of the Kondo Peak in the spectral function by an applied magnetic field, which leads to negative magnetoresistance by suppressing the Kondo effect on resistance [35, 36].

Measurements of $R (H_{||})$ were done at each gate voltage at the lowest temperature $T = 1.4$ K, and the results are plotted in Fig. 4(b) along with their comparison to a simple Kondo model

$$R_{\text{model}} (H_{||}) = R_0 + R_K (H_{||}/H_1)$$

where now $R_K (H_{||}/H_1)$ is the universal function for zero-temperature magnetoresistivity of a Kondo impurity, related to its magnetization which may be calculated using Bethe-Ansatz techniques, and H_1 is a magnetic scale, related to the Kondo temperature and the g-factor of the impurity spin [37]. To compare the data and model we numerically evaluated the exact form of $R_K (H_{||}/H_1)$ (See Supplementary Information and [37]) and chose $H_1 = 20, \, 16, \text{ and } 8 \, \text{T}$ to compare with the data obtained at $V_g = +3.5, \, 3.2, \text{ and } 2.8 \, \text{V}$. The comparison is not exact and fails for low fields, where weak anti-localization and other effects may be relevant, but the overall dependence and shape are broadly consistent, particularly for the lower density at $V_g = +2.8 \, \text{V}$.

The negative in-plane magnetoresistance is suppressed as the electron density is lowered, once again implying that the observed Kondo effect originates from the electrons accumulated at the surface due to the applied electric field of the electrolyte gate. As the Kondo effect arises due to the interaction between localized and delocalized electrons, we can interpret our observations by viewing the 2D electron system as an admixture composed of localized and unpaired electrons—perhaps polaronic in nature [2]—that act as the Kondo scattering centers and a metal of delocalized electrons that partially fill the Ti $3d$ conduction band.

Finally, we comment on the implications of the results described herein for the ongoing efforts to conclusively understand the LAO/STO interface, where an $R(T)$ minimum and negative magnetoresistance have already been reported [3]. By electrostatically inducing 2D electrons in STO, we have modeled the essential physics of the polar catastrophe, and the demonstration of a gate-controlled Kondo effect in undoped STO shows that the observations of electronic conduction and magnetism in LAO/STO are plausibly due to electronic reconstruction and are not necessarily a result of unintended doping during LAO growth [5, 9]. The magnetic interactions found in STO, added to its other attractive features including tunability of the ground state by applied electric fields and superconductivity, show STO-based interfaces and heterostructures to be a promising playground in which to look for and study emergent electronic phenomena and novel device applications [38, 39].

We thank J. Jaroszynski, S. Stemmer, B. Jalan, I. R. Fisher, J. G. Analytis, M. Chalfin, E. Eason, Y. Cui, J. J. Cha, Y. Lee, and T. A. Costi. The development of ionic gating technique was supported as part of the Center on Nanostructuring for Efficient Energy Conversion, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number de-sc0001060. The measurement and study of STO were supported by the MURI program of the Army Research Office Grant No. W911NF-09-1-0398. The Minnesota contribution was supported by the National Science Foundation through the MRSEC program at the University of Minnesota, Award DMR-0819885. ML is partially supported by Samsung Scholarship and the Stanford Graduate Fellowship. A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by National Science Foundation Cooperative Agreement No. DMR-0654118, the State of Florida, and the U.S. Department of Energy.

* Electronic address: goldhaber-gordon@stanford.edu

[1] R. Pentcheva and W. Pickett, Phys. Rev. B 74 035112 (2006).
[2] B. Nanda and S. Satpathy, Phys. Rev B 83, 195114 (2011).
[3] A. Brinkman et al., Nat. Mater. 6, 493 (2007).
[4] D. A. Dikin et al., Phy. Rev. Lett. 107, 056802 (2011).
[5] M. Huijben et al., Adv. Mater. 21, 1665 (2009).
[6] L. Li et al., arXiv:1105.0235.
[7] N. Nakagawa, H. Y. Hwang, and D. A. Muller, Nat. Mater. 5, 204 (2006).
[8] M. Salluzzo et al., Phys. Rev Lett. 102, 166804 (2009).
[9] D. G. Schlom and J. Mannhart, Nat. Mater. 10, 168 (2011).
[10] W. Siemons et al., Phys. Rev Lett. 98, 196802 (2007).
[11] G. Herranz et al., Phys. Rev. Lett. 98, 216803 (2007).
[12] P. Willmott et al., Phys. Rev. Lett. 99, 155502 (2007).
[13] A. Kalabukhov et al., Europhys. Lett. 93, 37001 (2011).
[14] Y. Kozuka et al., Nature 462, 487 (2009).
[15] J. Son et al., Nat. Mater. 9, 482 (2010).
[16] B. Jalan et al., Phys. Rev. B 82, 081103 (2010).
[17] A. F. Santander-Syro et al., Nature 469, 189 (2011).
[18] K. Ueno et al., Nat. Mater. 7, 855 (2008).
[19] Y. Lee et al., Phys. Rev. Lett. 106, 136809 (2011).
[20] Z. Popovic, S. Satpathy, and R. Martin, Phys. Rev. Lett. 101, 256801 (2008).
[21] T. Costi., Phys. Rev. Lett. 85, 1504 (2000).
[22] G. Gruner and A. Zawadowski, Reports on Prog. in Physics 37, 1497 (1974).
[23] D. Goldhaber-Gordon et al., Nature 391, 156 (1998).
[24] J.-H. Chen et al., Nat. Phys. 7, 535 (2011).
[25] M. Kawasaki et al., Science 266, 1540 (1994).
[26] D. W. Reagor and V. Y. Butko, Nat. Mater. 4, 593 (2005).
[27] J. H. Cho et al., Nat. Mater. 7, 900 (2008).
[28] J. Lee et al., J. Phys. Chem. C 113, 8972 (2009).
[29] A. D. Caviglia et al., Phys. Rev. Lett. 104, 126803 (2010).
[30] A. D. Caviglia et al., Phys. Rev. Lett. 105, 236802 (2010).
[31] M. Ben Shalom et al., Phys. Rev. Lett. 105, 206401 (2010).
[32] M. Ben Shalom et al., Phys. Rev. B 80, 140403 (2009).
[33] T. A. Costi, A. C. Hewson, and V. Zlatic, J. of Phys.: Condens. Matter 6, 2519 (1994).
[34] D. Goldhaber-Gordon et al., Phys. Rev. Lett. 81, 5225 (1998).
[35] W. Felsch and K. Winzer, Solid State Commun. 13, 569 (1973).
[36] T. Costi., Phys. Rev. Lett. 85, 1504 (2000).
[37] N. Andrei, K. Furuya, and J. Lowenstein, Rev. Mod. Phys. 55, 331 (1983).
[38] H. Takagi and H. Y. Hwang, Science 327, 1601 (2010).
[39] J. Mannhart and D. G. Schlom, Science 327, 1607 (2010).
Supplementary Information for “Electrolyte gate-controlled Kondo effect in SrTiO$_3$”

Menyoung Lee,1 J. R. Williams,1 Sipei Zhang,2 C. Daniel Frisbie,2 and D. Goldhaber-Gordon1,*

1Department of Physics, Stanford University, Stanford, California 94305, USA
2Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA

(Dated: August 4, 2011)

TWO-DIMENSIONALITY

Several magnetotransport features of our devices show the two-dimensionality of the STO electron system that is measured. These transport properties that demonstrate two-dimensionality have not been shown in previous reports of electrolyte-gated STO.

Hall resistance non-linearity and multiband transport in 2D

Figure S1 shows the Hall resistance of device A, at the highest density n at $T = 5$ K as a function of the applied magnetic field’s component perpendicular to sample plane, $H_\perp = H \cos \theta$. There is a small nonlinearity and a departure from the linear fit to the low-field trend. This departure occurs at a fixed value of H_\perp, not of H, and the entire nonlinear Hall resistance curve is a function of H_\perp rather than of H. This H_\perp dependence of a weak nonlinearity in the Hall resistance suggests multiband transport in two dimensions.

Figure S2: Device B sheet magnetoconductance at various values of V_g. H is applied normal to sample plane, and $T = 1.4$ K. Solid lines are a fit to the theory in [1] and [2], which assumed that the spin-orbit coupling is isotropic and described by a single spin-orbit field scale H_{so}, and that V_g does not change the electron scattering time τ_e or dephasing time τ_ϕ.

Weak anti-localization

Figure S2 shows device B sheet conductance $\sigma = LW^{-1}R^{-1}$, where L and W are the length (100 μm, the longitudinal distance between the midpoints of voltage-probing contacts), and the width (30 μm) of the Hall bar channel, and R is the longitudinal resistance, for the first three cooldowns with $V_g = +3.5$, +3.2, and +2.8 V, as a function of applied magnetic field perpendicular to the sample plane. The conductance peak at zero field has a magnitude on the order of e^2/h, suggesting weak anti-localization as the mechanism that generates the conductance peak.

The calculation due to Hikami, Larkin, and Nagaoka predicts a weak (anti-)localization contribution to the low-field magnetoconductance given by [1, 2]:

\[
\sigma_H = 4e^2/h \tau_\phi \cos^2(\theta/2) / (1 + (\phi_H / \tau_\phi)^2)
\]
\[\Delta \sigma (H) = \frac{e^2}{\pi \hbar} \left(\psi \left(\frac{1}{2} + \frac{H_1}{H} \right) - \psi \left(\frac{1}{2} + \frac{H_2}{H} \right) + \frac{1}{2} \psi \left(\frac{1}{2} + \frac{H_3}{H} \right) - \frac{1}{2} \psi \left(\frac{1}{2} + \frac{H_4}{H} \right) \right) \]

where \(\psi(x) \) is the digamma function, and the field scale fit parameters can be written in terms of characteristic fields as

\[H_1 = H_\phi + H_{\phi x x}^{\text{so}} + H_{\phi y y}^{\text{so}} + H_{\phi z z}^{\text{so}}, \]

\[H_2 = H_e, \]

\[H_3 = H_\phi + 2H_{\phi x x}^{\text{so}} + 2H_{\phi y y}^{\text{so}}, \]

and \(H_4 = H_\phi \), and these characteristic fields can in turn be written as \(H_e = \frac{h}{8\pi e D\tau_e}, \)

\[H_\phi = \frac{h}{8\pi e D\tau_\phi}, \]

and \(H_{\phi x y z}^{\text{so}} = \frac{h}{8\pi e D\tau_{\phi x y z}} \) in terms of the electron scattering and dephasing times \(\tau_{e,\phi} \) as well as the anisotropic spin-orbit scattering times \(\tau_{\phi x y z}^{\text{so}} \). For the numerical fit we have added the above \(\Delta \sigma \) function to a quadratic background \(-aH^2\), and constrained the parameters by assuming an isotropic spin-orbit coupling so that \(H_{\text{so}} = 3H_{\phi x}^{\text{so}} = 3H_{\phi y}^{\text{so}} = \frac{3}{2}H_{\phi z}^{\text{so}} \) and hence \(H_1 = H_3 = H_{\text{so}} + H_\phi \). Furthermore we surmise that the disorder landscape is not altered greatly in the range of electron densities explored, so that \(\tau_e, \tau_\phi \), and hence \(H_{2,4} \), may be held to be independent of electron density.

The solid lines in Fig. S2 show the resulting numerical fit, with \(H_e = 31 \text{ T}, \)

\(H_\phi = 6 \text{ mT}, \)

and the inferred spin-orbit coupling field strengths of \(H_{\text{so}} = 2.4, 2.2, \) and \(1.9 \text{ T for } V_g = +3.5, +3.2, \) and \(+2.8 \text{ V}, \) respectively.

Weak anti-localization with similarly strong spin-orbit coupling strengths in the few Tesla range has been reported in the LAO/STO interface and attributed to the Rashba-type coupling due to inversion asymmetry of the interface [3]. A value of \(H_e \) in the few tens of Tesla range is consistent with the appearance of Shubnikov-de Haas oscillations at a similar magnitude of applied field, which we discuss next.

Shubnikov-de Haas oscillations

We have observed Shubnikov-de Haas oscillations in device B magnetoresistance, at \(V_g = +2.8 \text{ V}, \) \(T = 1.4 \text{ K}, \)

with the magnetic field applied normal to sample plane. Figure S3 shows the plot of the derivative of the resistance with respect to magnetic field, \(dR/dH \), as a function of the inverse of the strength of applied magnetic field, \(H^{-1} \). Only a few maxima and minima can be resolved, but the features do seem to appear regularly in inverse magnetic field, as expected for Shubnikov-de Haas oscillations. The amplitude of the oscillations, however, appear to be inverted from the expected sign. The oscillations in inverse magnetic field show a period of \(0.016 \text{ T}^{-1} \), which corresponds to an inferred 2D electron density of \(3 \times 10^{12} \text{ cm}^{-2} \) if we account for a spin degeneracy of 2 and no other sources of degeneracy. This value is much lower than the density inferred from the Hall effect, \(n_{\text{Hall}} = 2.6 \times 10^{13} \text{ cm}^{-2} \), as also that observed in other STO systems [4–6].

Kondo Effect vs Localization

By changing the gate voltage \(V_g \) of the ionic gel electrolyte gate in device B, we can tune the density of the 2D conducting system in STO, from the highest density cooldown at \(V_g = +3.5 \text{ V} \) where we see the Kondo effect and its saturating resistance upturn clearly to the lowest density cooldown at \(V_g = +2.2 \text{ V} \) where a metal-insulator transition occurs and electrons localize as the temperature is lowered. Plots of \(R(T) \) at the various values of \(V_g \) are shown in Figure S4.

The two distinct mechanisms, Kondo and localization, that give rise to a minimum in \(R(T) \) can be distinguished by the fact that the resistance upturn due to Kondo effect saturates, and \(d^2R/dT^2 < 0 \) at the lowest temperatures (for \(T < 7 \text{ K} \) at \(V_g = +3.5 \text{ V} \) in our device). A localization-induced resistance upturn, in contrast, shows no saturation and \(d^2R/dT^2 > 0 \) for all \(T \). This non-saturation of upturn holds for \(R(T) \) across the whole measured temperature range for the cooldown at \(V_g = +2.2 \text{ V} \).

For the lowest-density cooldown at \(V_g = +2.2 \text{ V} \), we found in addition that varying the gate voltage at low temperatures where the electrolyte is frozen in place had an additional effect on the sample resistance. In this...
case the gate voltage on our coplanar electrode acts as a dielectric gate similar to a back gate at the bottom of the STO substrate. The trend of the gate’s effect at low temperature was conventional, i.e., increasing the low-temperature gate voltage decreased the resistance as well as the temperature at which the localization effect becomes apparent. Increasing \(V_g \) once at low temperature from +2.2 to +3.0 and +5.0 V decreased the low-temperature resistance of the sample, and shifted the minimum of the \(R(T) \) minimum to lower temperature, indicating the approach of a metal-insulator transition from the localized, insulating side.

KONDO MAGNETORESISTANCE

To compare our sample in-plane magnetoresistance with the available theory, we calculated the zero-temperature Kondo magnetoresistance obtained by Bethe-Ansatz methods in [7].

At zero temperature, a Kondo impurity’s magnetization is given by

\[
M \left(\frac{H}{H_1} \right) = \begin{cases}
\frac{1}{\sqrt{2\pi}} \sum_{k=0}^{\infty} \left(-\frac{1}{2} \right)^k \left(k! \right)^{-\frac{1}{2}} e^{-\left(k + \frac{1}{2} \right)^{2k+1}} \\
1 - \pi^{-3/2} \int \frac{dt}{t} \sin (\pi t) e^{-t \ln(t/2e)} \\
\left(\frac{H}{H_1} \right)^{\Gamma \left(t + \frac{1}{2} \right)} , \sqrt{2}H_1 \leq H
\end{cases}
\]

where \(H_1 \) is a magnetic field scale, related to both the Kondo temperature and the g-factor of the impurity spin. Knowing the magnetization of the impurity in turn yields the zero-temperature Kondo magnetoresistance by the relation

\[
R_K \left(\frac{H}{H_1} \right) = R_K \left(H = 0 \right) \cos^2 \left(\frac{\pi}{2} M \left(\frac{H}{H_1} \right) \right).
\]

We plot this standard curve in Figure S5. Figure 4(b) of the main text shows the comparison of measured device B \(R(H_{||}) \) against this standard curve, scaled and offset.

* Electronic address: goldhaber-gordon@stanford.edu

[1] S. Hikami, A. I. Larkin, and Y. Nagaoka, Prog. Theor. Phys. 63, 707 (1980).
[2] J. Hansen, R. Taboryski, and P. Lindelof, Phys. Rev. B 47, 16040 (1993).
[3] A. D. Caviglia et al., Phys. Rev. Lett. 104, 126803 (2010).
[4] B. Jalan et al., Phys. Rev. B 82, 081103 (2010).
[5] A. D. Caviglia et al., Phys. Rev. Lett. 105, 236802 (2010).
[6] M. Ben Shalom et al., Phys. Rev. Lett. 105, 206401 (2010).
[7] N. Andrei, K. Furuya, and J. Lowenstein, Rev. Mod. Phys. 55, 331 (1983).