UFCG: database of universal fungal core genes and pipeline for genome-wide phylogenetic analysis of fungi

Dongwook Kim¹, Cameron L.M. Gilchrist ², Jongsik Chun¹,²,³,*, and Martin Steinegger¹,²,³,⁴,*

¹Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Republic of Korea, ²School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea, ³Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea, ⁴Artificial Intelligence Institute, Seoul National University, Seoul 08826, Republic of Korea

*To whom correspondence should be addressed. Email: jchun@snu.ac.kr, martin.steinegger@snu.ac.kr; Present address: Jongsik Chun, CJ Bioscience, Seoul 04257, Republic of Korea

© The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
SUPPLEMENTARY MATERIALS

Tables
- Supplementary Table 1. Statistics of AUGUSTUS gene prediction of species models from 5 fungal phyla.
- Supplementary Table 2. Estimated running time of UFCG profile and tree modules.
- Supplementary Table 3. Commands and parameters for UFCG pipeline to generate the UFCG trees.
- Supplementary Table 4. Description of 34 sequences originated from 3 species under the order Eurotiales.
- Supplementary Table 5. Detailed information of 61 UFCG marker genes.
- Supplementary Table 6. List of 20 canonical marker genes.

Figures
- Supplementary Figure 1. Existence coverage of 21 candidate core marker genes below 95% single copy proportion.
- Supplementary Figure 2. Topology of the maximum likelihood tree of 1,587 genome assemblies representing fungal species.
- Supplementary Figure 3. Tanglegram comparing the topologies of two kingdom-wide tree of fungal species.
- Supplementary Figure 4. Congruence of UFCG trees with BUSCO trees.
Supplementary Table 1. Statistics of AUGUSTUS gene prediction count from 1,587 species-representative genome assemblies, using pre-trained species models from 5 fungal phyla.

Species	Phylum	Average prediction count (±SE)
Encephalitozoon cuniculi	Rozellomycota	4128.53 (±76.2312)
Conidiobolus coronatus	Entomophthoromycota	1478.4 (±194.335)
Rhizopus oryzae	Mucoromycota	13550.8 (±215.982)
Saccharomyces cerevisiae	Ascomycota	7625.03 (±99.7421)
Cryptococcus neoformans	Basidiomycota	9009.65 (±123.441)

Supplementary Table 2. Expected running time of UFCG profile and tree modules. Benchmark was performed with Intel® Xeon® Platinum 8358 processor. Statistics of the time elapsed to run the modules are presented with benchmark details including CPU threads, number of genomes, number of replicates, and command line arguments for the pipeline.

Module	Threads	Genomes	Replicates	Command line arguments	Time elapsed (sec; ±SE)
profile	8	1	30	profile -i FASTA -o OUT -t 8	137.2 (±4.285)
profile	32	1	30	profile -i FASTA -o OUT -t 32	54.83 (±1.120)
profile	64	1	30	profile -i FASTA -o OUT -t 64	53.13 (±1.250)
tree (IQ-TREE)	8	30	10	tree -i IN -l uid -o OUT -p iqtree -t 8	692.3 (±15.52)
tree (IQ-TREE)	32	30	10	tree -i IN -l uid -o OUT -p iqtree -t 32	413.2 (±7.286)
tree (IQ-TREE)	64	30	10	tree -i IN -l uid -o OUT -p iqtree -t 64	445.1 (±6.978)
tree (FastTree)	8	30	10	tree -i IN -l uid -o OUT -p fasttree -t 8	196.3 (±2.394)
tree (FastTree)	32	30	10	tree -i IN -l uid -o OUT -p fasttree -t 32	148.9 (±3.533)
tree (FastTree)	64	30	10	tree -i IN -l uid -o OUT -p fasttree -t 64	146.6 (±3.434)

Note: Benchmarks of the train module is omitted since the module is a combination of profile module (for extraction) and tree module (for alignment).

Supplementary Table 3. Commands and parameters for UFCG pipeline to generate the UFCG trees from 34 Eurotiales species and 1,587 fungal assemblies

Task	Command
Marker gene extraction from genomes	java -jar UFCG.jar profile -i FASTA -o OUT --info METADATA
Marker gene extraction from transcriptomes	java -jar UFCG.jar profile-rna -p 1 -i FASTQ -o OUT --info METADATA
Marker gene extraction from proteomes	java -jar UFCG.jar profile-pro -i FASTA -o OUT --info METADATA
IQ-TREE generation (Eurotiales)	java -jar UFCG.jar tree -i IN -l label -o OUT -a protein -p iqtree
FastTree generation (Kingdom-wide, lower-level)	java -jar UFCG.jar tree -i IN -l label -o OUT -a protein -p fasttree
Supplementary Table 4. Description of 34 genomic, transcriptomic, and proteomic sequences retrieved from NCBI, originated from 3 species under the order Eurotiales: Talaromyces marneffei, Aspergillus nidulans, and Aspergillus niger.

Species	Sequence type	Label	NCBI accession			
Talaromyces marneffei	Genome	Talaromyces marneffei ATCC 18224 G1	GCA_000001985.1			
Talaromyces marneffei	Genome	Talaromyces marneffei PM1 G2	GCA_000750115.1			
Talaromyces marneffei	Genome	Talaromyces marneffei 11CN-20-091 G3	GCA_009556855.1			
Talaromyces marneffei	Genome	Talaromyces marneffei 11CN-03-130 G4	GCA_009650675.1			
Talaromyces marneffei	Proteome	Talaromyces marneffei ATCC 18224 G5	GCF_000001985.1			
Talaromyces marneffei	Proteome	Talaromyces marneffei ATCC 18224 P1	GCA_000001985.1			
Talaromyces marneffei	Proteome	Talaromyces marneffei PM1 P2	GCA_000750115.1			
Talaromyces marneffei	Proteome	Talaromyces marneffei 11CN-20-091 P3	GCA_009556855.1			
Talaromyces marneffei	Proteome	Talaromyces marneffei 11CN-03-130 P4	GCA_009650675.1			
Talaromyces marneffei	Proteome	Talaromyces marneffei ATCC 18224 P5	GCF_000001985.1			
Talaromyces marneffei	Transcriptome	Talaromyces marneffei SRR5028789	SRR5028789			
Talaromyces marneffei	Transcriptome	Talaromyces marneffei SRR6516846	SRR6516846			
Talaromyces marneffei	Transcriptome	Talaromyces marneffei SRR941611	SRR941611			
Aspergillus nidulans	Genome	Aspergillus nidulans FGSC A4 G1	GCA_000011425.1			
Aspergillus nidulans	Genome	Aspergillus nidulans FGSC A4 G2	GCA_0000149205.2			
Aspergillus nidulans	Genome	Aspergillus nidulans FGSC A4 G5	GCF_0000149205.2			
Aspergillus nidulans	Proteome	Aspergillus nidulans FGSC A4 P1	GCA_000011425.1			
Aspergillus nidulans	Proteome	Aspergillus nidulans FGSC A4 P2	GCA_0000149205.2			
Aspergillus nidulans	Proteome	Aspergillus nidulans FGSC A4 P5	GCF_0000149205.2			
Aspergillus nidulans	Transcriptome	Aspergillus nidulans SRR13772456	SRR13772456			
Aspergillus nidulans	Transcriptome	Aspergillus nidulans SRR14529862	SRR14529862			
Aspergillus niger	Genome	Aspergillus niger ATCC 1015 G1	GCA_000011425.1			
Aspergillus niger	Genome	Aspergillus niger An76 G2	GCA_0001515345.1			
Aspergillus niger	Genome	Aspergillus niger ATCC 1015 G4	GCA_0000149205.2			
Aspergillus niger	Genome	Aspergillus niger CBS 10183 G5	GCF_0000149205.2			
Aspergillus niger	Proteome	Aspergillus niger ATCC 1015 P1	GCA_000011425.1			
Aspergillus niger	Proteome	Aspergillus niger An76 P2	GCA_0001515345.1			
Aspergillus niger	Proteome	Aspergillus niger FDAARGOS_311 P3	GCA_002211485.2			
Aspergillus niger	Proteome	Aspergillus niger CBS 10183 P4	GCF_0000149205.2			
Aspergillus niger	Proteome	Aspergillus niger CBS 10183 P5	GCF_0000149205.2			
Aspergillus niger	Transcriptome	Aspergillus niger SRR10749130	SRR10749130			
Aspergillus niger	Transcriptome	Aspergillus niger SRR13221962	SRR13221962			
Aspergillus niger	Transcriptome	Aspergillus niger SRR16352502	SRR16352502			
Gene	Type	SGD ID	UniProt ID	CDD ID	COG*	Function
------	------	--------	------------	--------	------	----------
ACT1	Canonical	YFL039C	P60010	KOG0676	Zγ	Actin
ATP6	Canonical	Q0085	P00854	KOG4665	C	F1,F2 ATP synthase subunit 6
BMS1	Core	YPR127C	Q08065	KOG1951	J	Ribosome biogenesis protein
BRR2	Core	YLR015W	P43132	KOG2626	O/B/K	COMPASS component
CCT8	Canonical	YLJ086C	P47079	KOG3062	O	Chaperon-containing T-complex subunit θ
CMD1	Canonical	YBR109C	P60787	KOG0027	T	Calmodulin
COB	Canonical	Q0105	P00163	KOG4663	C	Cytochrome b
COX1	Canonical	Q0045	P00402	KOG4769	C	Cytochrome c oxidase subunit 1
COX2	Canonical	Q0250	P00410	KOG4767	C	Cytochrome c oxidase subunit 2
COX3	Canonical	Q0275	P00420	KOG4664	C	Cytochrome c oxidase subunit 3
DIP2	Core	YLR129W	Q12220	KOG0306	A	U3 small nuclear RNA-associated protein 12
DPH5	Core	YLR172C	Q32469	KOG3123	J	Diphthine methyl ester synthase
DYS1	Canonical	YDR086W	Q00854	KOG4663	C	Deoxyhypusine synthase
ELP3	Core	YPL086C	Q02908	KOG2535	B/K	Elongator complex protein 3
ESF1	Core	YDR365C	Q06344	KOG2318	S	Pre-rRNA-processing protein
FAP7	Core	YLR047W	P23247	KOG2827	C	Histidine biosynthesis trifunctional protein
HIS7	Core	YLR047W	P00927	KOG1250	E	Threonine dehydratase
HEM12	Core	YLR047W	P32074	KOG2872	H	Uroporphyrinogen decarboxylase
KRE33	Core	YNL132W	P35014	KOG2036	R	RNA cytidine acetyltransferase
ILV1	Core	YER086W	P38787	KOG2924	O	Deoxyhypusine synthase
MET6	Core	YNL132W	P35014	KOG2036	R	RNA cytidine acetyltransferase
MCM7	Core	YBR202W	Q38132	KOG0482	L	Mini-chromosome maintenance complex subunit
MET6	Core	YER091C	P05694	KOG2263	E	5-methyltetrahydropteroyltriglutamate–homocysteine methyltransferase
MIP1	Core	YOR330C	P15801	KOG3123	J	DNA polymerase γ
MRPL9	Canonical	YNL185C	P53875	KOG3237	J	54S ribosomal protein L19
NAD1	Canonical	YLR047W	P00854	KOG4663	C	Deoxyhypusine synthase
NAD2	Canonical	YOR330C	P15801	KOG3123	J	DNA polymerase γ
NOP14	Core	YDL148C	Q99207	KOG2147	J	Nucleolar GTP-binding protein 1
OHL1	Canonical	YOR330C	P15801	KOG3123	J	DNA polymerase γ
PAH1	Canonical	YLR047W	P00854	KOG4663	C	Deoxyhypusine synthase
POL2	Core	YNL262W	P49151	KOG1798	L	DNA polymerase epsilon catalytic subunit A
PRT1	Core	YOR361C	P60103	KOG2314	J	Eukaryotic translation initiation factor 3 subunit B
RAD2	Core	YGR258C	P05387	KOG2520	L	DNA repair protein
RLI1	Core	YDR091C	Q03195	KOG0063	A	Translation initiation factor
RPB2	Canonical	YOR151C	P08518	KOG2014	K	DNA-directed RNA polymerase II core subunit
RPB2	Core	YKR081C	P36103	KOG2014	K	DNA-directed RNA polymerase II core subunit
RPN1	Core	YHR027C	P38764	KOG2005	O	26S proteasome regulatory subunit
RPO21	Canonical	YDL132C	Q03195	KOG2014	K	DNA-directed RNA polymerase II core subunit
SDA1	Canonical	YGR245C	Q05313	KOG2229	D/Z	Severe depolymerization of actin protein 1
SEC21	Core	YNL287W	P23247	KOG2318	J	Nucleolar GTP-binding protein 1
SEC26	Core	YDR238C	Q03195	KOG2014	K	DNA-directed RNA polymerase II core subunit
SPB1	Core	YCR012W	P05560	KOG1367	G	Phosphoglycerate kinase
TUB1	Canonical	YNL262W	P49151	KOG1798	L	DNA polymerase epsilon catalytic subunit A
TUB2	Core	YCL054W	P25582	KOG1098	A/R	27S pre-rRNA (guanosine2922'-2'-O-methyltransferase
TEF1	Canonical	YPR041W	P38431	KOG2767	J	Eukaryotic translation initiation factor 5
TIM44	Core	YIL022W	P10852	KOG2580	U	Mitochondrial import inner membrane translocase subunit
TOP1	Canonical	YOL049C	P00854	KOG0027	T	DNA topoisomerase 1
TRP3	Canonical	YLR047W	P00854	KOG4663	C	Deoxyhypusine synthase
TSR1	Canonical	YDL060W	Q07381	KOG1980	S	Ribosome maturation factor
TUB1	Canonical	YOL049C	P00854	KOG0027	T	DNA topoisomerase 1
TUB2	Core	YCL054W	P25582	KOG1098	A/R	27S pre-rRNA (guanosine2922'-2'-O-methyltransferase
UMP1	Canonical	YLR047W	P00854	KOG4663	C	Deoxyhypusine synthase
VMA1	Canonical	YLR185W	P17255	KOG1540	H	V-type proton ATPase catalytic subunit A
ZPR1	Core	YGR211W	P35014	KOG2036	R	RNA cytidine acetyltransferase

*COG, clusters of orthologous group: A, RNA processing and modification; B, Chromatin Structure and dynamics; C, Energy production and conversion; D, Cell cycle control and mitosis; E, Amino Acid metabolism and transport; F, Nucleotide metabolism and transport; G, Carbohydrate metabolism and transport; H, Coenzyme metabolism; I, Lipid metabolism; J, Translational; K, Transcription; L, Replication and repair; M, Cell motility; O, Post-translational modification, protein turnover, chaperone functions; U, Signal Transduction; U, Intracellular trafficking and secretion; Z, Cytoskeleton; R, General Functional Prediction only; S, Function Unknown.
Supplementary Table 6. List of 20 canonical marker genes with example fungal taxa with phylogenetic analysis using the markers (see also 1, 2).

Gene	Aliases	Example taxa	References
ACT1	ACT	Cryptococcus, Glomeromycota	3, 4
ATP6	-	Boteales, Agaricus	5, 6
CCT8	TCP10	Aspergillus, Saccharomycetes	7, 8
CMD1	CAL, CaM	Eurotales, Penicillium	9, 10
COB	-	Aspergillus, Glomeromycota	11, 12
COX1	-	Pezizomycotina, Glomeromycota	12, 13
COX2	-	Peronosporomycetes	14
COX3	-	Boteales	5
MCM7	CDC47	Ascomycota, Kickxellomycotina	15, 16
ND1	NAD1-6	Beauveria, Glomeromycota	12, 17
OLI1	mtATP9	Beauveria, Glomeromycota	12, 17
PAH1	LXS2	Pucciniomycotina	1
PGK1	PGK	Fusarium, Penicillium	1, 18
RPB2	-	Ascomycota, Basidiomycota	19, 20
RPO21	RPB1	Inocybe, Zygomycota	21, 22
TEF1	TEF1α	Basidiomycota, Zygomycota	19, 22
TOP1	-	Fusarium, Penicillium	1, 23
TSR1	-	Kickxellomycotina	15
TUB1	-	Microsporidia	24
TUB2	BenA	Basidiomycota, Microsporidia	24, 25

Supplementary Figure 1. Existence coverage of 21 candidate core marker genes, which failed to achieve 95% single copy proportion of covered entries among the 1,587 genome assemblies representing fungal species.
Supplementary Figure 2. Topology of the maximum likelihood tree of 1,587 genome assemblies representing fungal species. Tree was generated from the concatenated amino acid sequence alignment of 61 UFCS marker genes, using FastTree v2.1.10. Branches are coloured based on their phylum (refer to the legend).
Supplementary Figure 3. Tanglegram comparing the topologies of two kingdom-wide tree of fungal species: Left, UFCG marker gene concatenation tree; Right, BUSCO concatenation tree presented by Li, et al. (26). Branches of UFCG trees were annotated by their bootstrap support and gene support index (GSI) values. Disparities between the trees were visualised by dotted lines connecting the corresponding clades.
Supplementary Figure 4. Congruence of the concatenation trees using 61 UFCG markers and subset of the markers (20 canonical, 41 core) with 758 BUSCO concatenation tree, based on normalised Robinson-Foulds distance. Percentage of the congruence between tree T_1 and T_2 was defined as $\left(1 - \frac{RF(T_1, T_2)}{n}\right) \times 100\%$, where $RF(T_1, T_2)$ indicates the Robinson-Foulds distance between tree T_1 and T_2, and n is the number of leaf nodes of the tree. Fungal genomes were grouped with their taxonomic name annotations with different ranks, resulted in 8 classes, 14 orders, 9 families, 10 genera, and 12 species. Data points are plotted in dashed lines (Purple dots, 61 UFCG markers; Olive triangle, 20 canonical markers; Cyan inverted triangles, 41 core markers), grouped by their taxonomic rank and sorted by the congruence of UFCG marker trees in descending order. X-axis was labeled with the taxonomic name of each group, marked with the number of genomes included in parentheses.
REFERENCES

1. Stielow, J. B. et al (2015) One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes. Pers.: Mol. Phylogeny Evol. Fungi, 35, 242–263.

2. Lücking, R. et al (2020) Unambiguous identification of fungi: where do we stand and how accurate is fungal DNA barcoding?. J. Mycol. Med., 11, 14.

3. Cox, G., Rude, T., Dykstra, C. and Perfect, J. (1995) The actin gene from Cryptococcus neoformans: structure and phylogenetic analysis. J. Med. Vet. Med., 33, 261–266.

4. Helgason, T., Watson, I. J. and Young, J. P. W. (2003) Phylogeny of the Glomerales and Diversisporales (Fungi: Glomeromycota) from actin and elongation factor 1-alpha sequences. FEMS Microbiol. Lett., 229, 127–132.

5. Kretzer, A. M. and Bruns, T. D. (1999) Use of atp6 in fungal phylogenetics: an example from the Boletales. Mol. Phylogenet. Evol., 13, 483–492.

6. Al-Hatmi, A. M. et al (2016) Evaluation of two novel barcodes for species recognition of opportunistic pathogens in Fusarium. Fungal Genet. Biol., 92, 674–684.

7. Matheny, P. B. et al (2015) Contributions of rpb2 and tef1 to the phylogeny of mushrooms and allies (Basidiomycota, Fungi). Stud. Mycol., 85, 430–451.

8. Matheny, P. B. et al (2007) Contributions of rpb2 and tef1 to the phylogeny of mushrooms and allies (Basidiomycota, Fungi). Mol. Phylogenet. Evol., 43, 430–451.

9. Keeling, P. J. (2003) Congruent evidence from α-tubulin and β-tubulin gene phylogenies for a zygomycete origin of microsporidia. Fungal Genet. Biol., 38, 498–539.

10. Li, Y. et al (2021) A genome-scale phylogeny of the kingdom Fungi. Curr. Biol., 31, 1653–1665.