Vanishing theorems for abelian varieties over finite fields

(Rainer Weissauer)

Abstract

Let κ be a field, finitely generated over its prime field, and let k denote an algebraically closed field containing κ. For a perverse \mathbb{Q}_ℓ-adic sheaf K_0 on an abelian variety X_0 over κ, let K and X denote the base field extensions of K_0 and X_0 to k. Then, the aim of this note is to show that the Euler-Poincare characteristic of the perverse sheaf K on X is a non-negative integer, i.e.

$$\chi(X, K) = \sum_{\nu} (-1)^\nu \dim_{\mathbb{Q}_\ell}(H^\nu(X, K)) \geq 0.$$

This generalizes an analogous result of Franecki and Kapranov [FK] over fields of characteristic zero.

The proof of [FK] for the above estimate for the Euler-Poincare characteristic of perverse sheaves on abelian varieties over fields of characteristic zero relies on methods from the theory of D-modules via the Dubson-Riemann-Roch formula for characteristic cycles. In fact, one should expect that there exists a similar Riemann-Roch theorem also over fields of positive characteristic, extending the results of [AS] and generalizing the Grothendieck-Ogg-Shafarevich formula for the Euler-Poincare characteristic of sheaves on curves. However, in the absence of such deep results on wild ramification we will follow a different approach using methods of Gabber and Loeser [GL], based on Ekedahl’s adic formalism.

Let k denote the algebraic closure of a finite field κ of characteristic p. For an abelian variety X_0 over κ, let X be the base extension of X_0 from κ to k for a fixed embedding $\kappa \subset k$. Let Λ denote \mathbb{Q}_ℓ for some prime $\ell \neq p$. We fix a suspended subcategory $D = D(X)$ of the derived category $D^b_c(X, \Lambda)$ of Λ-adic sheaves with bounded constructible cohomology sheaves. We assume that D satisfies the properties formulated in [KrW,§5]. An example is the category D of all K in $D^b_c(X, \Lambda)$ obtained by base extension from some objects K_0 in $D^b_c(X_0, \Lambda)$ with the property that K decomposes into a direct sum of complex shifts of irreducible perverse sheaves on X. Let $P = P(X)$ denote the full subcategory of objects in D that are perverse sheaves. The convolution product \ast on D, induced by the group law on X, makes (D, \ast) into a rigid Λ-linear monoidal symmetric category. But in general, the convolution product does not preserve the subcategory P.

1
By definition, a character $\chi : \pi_1(X) \to \Lambda^*$ of the etale fundamental group $\pi_1(X)$ of X is a continuous homomorphism with values in the group of units σ_Λ of the ring of integers σ_Λ of a finite extension field $E_\Lambda \subset \Lambda$ of \mathbb{Q}_ℓ. Associated to a character χ, there is a smooth Λ-adic sheaf L_χ on X. For $K \in D$ resp. $K \in P$, the twist $K_\chi := K \otimes_\Lambda L_\chi$ is in D resp. in P. Let $\pi_1(X)_\ell$ denote the maximal pro-ℓ quotient of $\pi_1(X)$. Any character χ of $\pi_1(X)$ is the product of a character χ_f of finite order prime to ℓ, and a character that factorizes over the pro-ℓ quotient $\pi_1(X)_\ell$ of $\pi_1(X)$.

As in [GL, p. 509] consider the ring $\Omega_X := \sigma_\Lambda[[\pi_1(X)_\ell]]$, a complete noetherian local ring of Krull dimension $1 + 2 \dim(X)$. For generators γ of $\pi_1(X)_\ell \cong (\mathbb{Z}_\ell)^{2 \dim(X)}$, this ring is isomorphic to the formal power series ring $\sigma_\Lambda[[t_1, \ldots, t_n]]$ in the variables $t_i = \gamma - 1$ for $n = 2 \dim(X)$. For $C(X)_\ell = Spec(\Lambda \otimes_{\sigma_\Lambda} \sigma_\Lambda[[\pi_1(X)_\ell]])$ as in [GL, 3.2], define the scheme $C(X)$ as the disjoint union $\bigcup_{\chi} \{\chi\} \times C(X)_\ell$, for χ running over the characters χ of $\pi_1(X)$ of finite order prime to ℓ. By [GL,A.2.2.3] the closed points of $C(X)_\ell$ are the Λ-valued points of $C(X)_\ell$. The Λ-valued points of the scheme $C(X)$ can be identified with the ‘continuous’ characters $\chi : \pi_1(X) \to \Lambda^*$.

As in loc. cit. there exists a continuous character $can_X : \pi_1(X) \to \Omega_X$ and an associated local system L_X on X, which is locally free of rank 1 over Ω_X. For $K \in D^{b}_X(X, \sigma_\Lambda)$ we consider $K \otimes_{\sigma_\Lambda} L_X$ as an object in $D^{b}_X(X, \Omega_X)$. For the structure morphism $f : X \to Spec(k)$, following [GL, p.512 and A.1] we define the Fourier transform $\mathcal{F} : D^{b}_X(X, \sigma_\Lambda) \to D^{b}_{coh}(\Omega_X)$ by $\mathcal{F}(K) = Rf_{\ast}(K \otimes_{\sigma_\Lambda} \Omega_X)$ (analogous to the Mellin transform in loc. cit). By proposition A.1 of loc. cit. the functor defined by extension of scalars $- \otimes^{L}_{\Omega_X} \Omega_X$ commutes with direct images for arbitrary morphisms $f : X \to Y$ between varieties X, Y over k. By inverting ℓ and passing to the direct limit over all $\sigma_\Lambda \subset \Lambda$, we easily see that \mathcal{F} induces a functor from D to the derived category $D^{b}_{coh}(C(X)_\ell)$ of $C(C(X)_\ell)$-module sheaf complexes with bounded coherent sheaf cohomology (see loc.cit. p. 521). The functor thus obtained

$$\mathcal{F} : (D, *) \to (D^{b}_{coh}(C(X)_\ell), \otimes^{L}_{\Omega_X})$$

is a tensor functor, since \mathcal{F} commutes with the convolution product; this follows from the arguments on p. 518 of [GL]. Similarly $\mathcal{F} : (D, *) \to (D^{b}_{coh}(C(X)), \otimes^{L}_{\Omega_X})$ can be defined as in loc. cit. Furthermore as in [GL, cor. 3.3.2], the specialization $Li^{\ast}_X : D^{b}_{coh}(C(X)_\ell) \to D^{b}_{coh}(\Lambda)$, defined by the inclusion $i_X : \{\chi\} \hookrightarrow C(X)$ of the closed point that corresponds to the character $\chi \in C(X)$, has the property

$$Li^{\ast}_X(\mathcal{F}(K)) = R\Gamma(X, K_\chi).$$

For a complex M of R-modules and a prime ideal p of R the small support $supp_R(M) = \{p|k(p) \otimes_{R} M \neq 0\}$ is contained in the support $Supp_R(M) = \{p|M_p \neq 0\}$.

2
The latter is Zariski closed in $\text{Spec}(R)$. For a noetherian ring R and a complex M of R-modules with bounded and coherent cohomology $H^\bullet(M)$ both supports coincide: $\text{supp}_R(M) = \text{Supp}_R(M)$. For the regular noetherian ring $R = \Lambda \otimes_{\Lambda} [\pi_1(X)_{\ell}]$ furthermore any object M in $D^b_{\text{coh}}(R) \cong D^b_{\text{coh}}(\mathcal{C}(X)_{\ell})$ is represented by a perfect complex, i.e. a complex of finitely generated projective R-modules of finite length. Notice that $L^\chi_f(\mathcal{F}(K)) = k(p) \otimes_R^L \mathcal{F}(K)$ holds for the maximal ideal p of R with residue field $k(p) = R/p$, defined by χ.

By definition, for $K \in \mathcal{P}$ the spectrum $\mathcal{I}(K) \subseteq \mathcal{C}(X)(\Lambda)$ is the set of characters χ such that $H^\bullet(X, K_\chi) \neq H^0(X, K_\chi)$. Since $\chi(X, K_\chi) = \chi(X, K)$, under the assumption $\chi(X, K) = 0$ the condition $\chi \in \mathcal{I}(K)$ is equivalent to $H^\bullet(X, K_\chi) \neq 0$, and hence equivalent to $\mathcal{R}(X, K_\chi) \neq 0$. Hence for $\chi(X, K) = 0$, $\chi \in \mathcal{C}(X)_{\ell}(\Lambda)$ is in $\mathcal{I}(K)$ if and only if $\mathcal{R}(X, K_\chi) \neq 0$, or equivalently $\chi \in \text{Supp}_R(\mathcal{F}(K))$ holds. This implies

Lemma 1. For $K \in \mathcal{P}$ with $\chi(X, K) = 0$, the set of characters $\mathcal{I}(K) \cap \mathcal{C}(X)_{\ell}(\Lambda)$ is the set of closed points of a Zariski closed subset of $\mathcal{C}(X)_{\ell}$.

For simple objects K in \mathcal{P} we defined in [W] an integer in $[0, \dim(X)]$, the degree v_K of K, and an irreducible monoidal perverse sheaf \mathcal{P}_K in \mathcal{P}. By [W, Lemma 1.4] the Euler-Poincare characteristic $\chi(X, K)$ of K on X is zero if and only if $v_K > 0$; furthermore $\mathcal{P}_K \cong 1$ (unit object) holds if and only if $v_K = 0$. \mathcal{P}_K is called a *monoid* in case $v_K > 0$. If $\chi(X, K) = 0$, the condition $\chi \in \mathcal{I}(K)$ is equivalent to $\mathcal{R}(X, K_\chi) = 0$ and the characters in $\mathcal{I}(K)$ are the closed points of the support of the Fourier transform $\mathcal{F}(K) \in D^b_{\text{coh}}(\mathcal{C}(X))$, a Zariski closed subset of $\mathcal{C}(X)$, from $(A \ast B)_\chi \cong A_\chi \ast B_\chi$ and the split monomorphisms $K[\pm v_K] \hookrightarrow \mathcal{P}_K \ast K$ and $\mathcal{P}_K[\pm v_K] \hookrightarrow K \ast K^\vee$ defined in [W], we see that the assertions $H^\bullet(X, K_\chi) = 0$ and $H^\bullet(X, (\mathcal{P}_K)_\chi) = 0$ are equivalent. Hence

Lemma 2. If $v_K > 0$ holds for a simple object $K \in \mathcal{P}$, then $\mathcal{I}(K) = \mathcal{I}(\mathcal{P}_K)$.

If $v_K > 0$ for either $i = 1$ or $i = 2$, by [KrW] all simple constituents $K[n]$ of $K_1 \ast K_2 \cong \bigoplus K[n]$ satisfy $v_K > 0$. In general, the semisimple complexes with simple constituents of vanishing Euler-Poincare characteristic define a tensor ideal $\mathcal{N}_{\text{Euler}}$ in \mathcal{D}. All monoids are in this tensor ideal $\mathcal{N}_{\text{Euler}}$. For any semisimple complex K in $\mathcal{N}_{\text{Euler}}$, let $\mathcal{I}(K)$ denote the set of $\chi \in \mathcal{C}(X)(\Lambda)$ for which $H^\bullet(X, K_\chi) \neq 0$. Then $\mathcal{I}(K \oplus K') = \mathcal{I}(K) \cup \mathcal{I}(K')$, and by the Künneth formula

$$\mathcal{I}(K \ast K') = \mathcal{I}(K) \cap \mathcal{I}(K')$$

holds for all semisimple complexes K, K' in $\mathcal{N}_{\text{Euler}}$.

3
Lemma 3. If for a simple perverse sheaf K in $\mathcal{N}_{\text{Euler}} \subset \mathcal{D}$ and a character χ_f of order prime to ℓ the Krull dimension of $\{\chi_f\} \times \mathcal{C}(K)$ is zero, then K is a character twist of the perverse sheaf $\delta_X := \Lambda_X[\dim(X)].$

Proof. We assume $\chi_f = 1$ by twisting K. $\mathcal{F}(K)$ is represented by a perfect complex P in $D^b_c(R)$. By assumption the Krull dimension of the support Y of $\mathcal{F}(K)$ in $\mathcal{C}(K)_\ell$ is zero, hence Y is a finite union of closed points. For χ corresponding to a closed point $y \in Y$, let m_y be the associated maximal ideal of R with residue field Λ_y. Then $\mathcal{R}^\dagger(X, K_{\chi}) \cong \delta_X^* (\mathcal{F}(K)) \cong P \otimes^L_{\Lambda_y} \Lambda_y$. We claim: $H^i(X, K_{\chi}) \neq 0$ holds for some i with $|i| \geq \dim(X)$; hence $K_{\chi} \cong \delta_X$ and so the lemma follows.

To prove our claim, we replace R by its localization at m_y, a regular local ring of dimension $d = 2\dim(X)$. We may assume $P = (0 \to P_2 \to \cdots \to P_b \to 0)$ is minimal, so all P_i are finite free R-modules and $d_i \otimes_R \Lambda_y = 0$ holds for the differentials d_i. Since Λ_y is the only simple module of the local ring R, $H^i(P \otimes^L_{\Lambda_y} \Lambda_y) \in D^b_c(|a - 2\dim(X)|, \Lambda_y)$ holds for $P \in D^b_c(|a|, R)$ (use Koszul complexes). Now assume $P_a \neq 0$. Then $H^a(P) \neq 0$ by minimality, and the cone C of $H^a(P) \to P$ has zero cohomology in degrees $\leq a$. Thus $H^i(C \otimes^L_{\Lambda_y} \Lambda_y) = 0$ holds for $i \leq a - 2\dim(R)$ and $H^{a - 2\dim(X)}(P \otimes^L_{\Lambda_y} \Lambda_y) \cong H^{a - 2\dim(X)}(H^a(P) \otimes^L_{\Lambda_y} \Lambda_y)$. By the left exactness of $\text{Tor}_2^{\mathcal{D}}(\mathcal{A}, \Lambda_y)$ then $H^{a - 2\dim(X)}(H^a(P) \otimes^L_{\Lambda_y} \Lambda_y)$ contains $H^{a - 2\dim(X)}(U \otimes^L_{\Lambda_y} \Lambda_y)$, for the socle U of the R-module $H^a(P)$. Notice U is nontrivial and a direct sum of simple modules Λ_y by our assumptions. Since $\text{Tor}_2^{\mathcal{D}}(\mathcal{A}, \Lambda_y) \cong \Lambda_y$, hence $H^{a - 2\dim(X)}(U \otimes^L_{\Lambda_y} \Lambda_y) \neq 0$. This proves $H^{a - 2\dim(X)}(X, K_{\chi}) \neq 0$. Then similarly $H^b(X, K_{\chi}) \neq 0$ if $P_b \neq 0$. So, our claim follows from $b - (a - 2\dim(X)) \geq 2\dim(X)$.

Lemma 4. For an irreducible perverse sheaf K on X, the group $\Delta_K = \{\chi \mid K \cong K_{\chi}\}$ is a subgroup of the group $\mathcal{C}(X) \langle \Lambda \rangle$ of all characters χ of $\pi_1(X)$. It is a proper subgroup unless K is a skyscraper sheaf. More precisely, let A be the abelian subvariety generated by the support of the perverse sheaf K on X and let $K(A)$ denote the subgroup of characters in $\mathcal{C}(X) \langle \Lambda \rangle$ whose restriction to A becomes trivial. Then $K(A)$ is a subgroup of Δ_K and the quotient $\Delta_K/K(A)$ is a finite group.

Proof. Suppose K is not a skyscraper sheaf. Then the support Y of K generates an abelian subvariety $A \neq 0$ of X. We may replace X by this subvariety A. Then the natural morphism $H^1(X, A) \to H^1(Y, A)$ is injective, and hence $\pi_1(Y, y_0) \to \pi_1(X, y_0)$ has finite cokernel [S, lemma VI.13.3, prop. VI.17.14], say of index C. There exists a Zariski open dense subset U of Y and a smooth Λ-adic sheaf E on U, defining a Λ-adic representation ρ, such that $K|_U \cong E[\dim(Y)]$. Since $\rho \otimes \chi \cong \rho$
for all $\chi \in \Delta_K$, viewed as characters χ of $\pi_1(Y, y_0)$, we obtain the following bound
\[\# \Delta_K \leq C \cdot \dim_{\Lambda}(\rho) \]
from the next lemma.

Lemma 5. Let ρ be an irreducible representation of a group Γ on a finite-dimensional vectorspace over Λ, and let Δ be a finite group of abelian characters $\chi : \Gamma \to \Lambda^*$, defining a normal subgroup $\Gamma' = \text{Ker}(\Delta)$ such that $\Gamma/\Gamma' \cong \Delta^*$. Then $\rho \otimes \chi \cong \rho$ for all $\chi \in \Delta$ implies $\rho \cong \text{Ind}_{\Gamma'}^{\Gamma}(\rho')$ for some irreducible representation ρ' of Γ'. In particular

\[\# \Delta \leq \# \Delta \cdot \dim_{\Lambda}(\rho') = \dim_{\Lambda}(\rho). \]

Proof. For the convenience of the reader we give the proof. If $\rho \cong \text{Ind}_{\Gamma'}^{\Gamma}(\rho_0)$ for some subgroup $\Gamma' \leq \Gamma_0 \leq \Gamma$, we may replace the pair (Γ, ρ) by (Γ_0, ρ_0). Indeed, $\rho_0 \otimes (\chi|_{\Gamma_0}) \cong \rho_0$ for $\chi \in \Delta$ holds. To show this: ρ_0 is a constituent of $\text{Ind}_{\Gamma_0}^{\Gamma}(\rho_0)|_{\Gamma_0} \cong \rho|_{\Gamma_0}$, and therefore also a constituent of $(\rho \otimes \chi)|_{\Gamma_0}$. Hence $\rho_0 \otimes (\chi|_{\Gamma_0}) \cong \rho_0^0$ by Mackey’s lemma for some $s \in \Gamma$, with s a priori depending on $\chi \in \Delta$. But $s \in \Gamma_0$, since otherwise ρ_0 could be extended to a projective representation of $\langle \Gamma_0, s \rangle \leq \Gamma$, and this is easily seen to contradict the irreducibility of $\rho \cong \text{Ind}_{\Gamma_0}^{\Gamma}(\rho_0)$. Therefore $s \in \Gamma_0$, and this implies our claim: $\rho_0 \otimes (\chi|_{\Gamma_0}) \cong \rho_0$ for all $\chi \in \Delta$.

Using induction in steps, without loss of generality we can therefore assume that $\rho \not\cong \text{Ind}_{\Gamma_0}^{\Gamma}(\rho_0)$ holds for any Γ_0 in Γ such that $\Gamma' \leq \Gamma_0 \neq \Gamma$. We then have to show $\Gamma = \Gamma'$. If $\Gamma' \neq \Gamma$, we may now also replace the group Γ' by some larger group Γ_0 with prime index in Γ. Then there exists a character $\chi \in \Delta$ with kernel Γ_0. By Mackey’s theorem and $\rho \not\cong \text{Ind}_{\Gamma_0}^{\Gamma}(\rho_0)$, the restriction $\rho|_{\Gamma_0}$ is an isotypic multiple $m \cdot \rho_0$ of some irreducible representation ρ_0 of Γ_0. Therefore $(\rho_0)^s \cong \rho_0$ holds for all $s \in \Gamma$. Hence ρ_0 can be extended to a representation of Γ on the representation space of ρ_0 (there is no obstruction for extending the representation since Γ/Γ_0 is a cyclic group). By Frobenius reciprocity, this extension is then isomorphic to ρ; so $m = 1$. In other words, the restriction of ρ to Γ_0 is an irreducible representation of Γ_0, hence equal to ρ_0.

Finally, $\rho \otimes \chi \cong \rho$ implies $\chi \hookrightarrow \rho^\vee \otimes \rho$ (as a one dimensional constituent). Therefore $\bigoplus_{\chi \in \Delta_0} \chi \hookrightarrow \rho^\vee \otimes \rho$, as representations of Γ. Restricted to Γ_0, this implies $\# \Delta_0 \cdot 1 \hookrightarrow \rho_0^\vee \otimes \rho_0$, since $\rho|_{\Gamma_0} \cong \rho_0$. But $\text{Hom}_{\Gamma_0}(1, \rho_0^\vee \otimes \rho_0) \cong \text{Hom}_{\Gamma_0}(\rho_0, \rho_0) \cong \Lambda$ since ρ_0 is irreducible. Hence $\# \Delta_0 = [\Gamma : \Gamma_0] = 1$. This implies $\Gamma = \Gamma_0$, and hence $\Gamma = \Gamma'$. □

Proposition 1. Suppose $\dim(X) > 0$. Then for any finite set $\{P_1, \ldots, P_m\}$ of monoids in P, there exist characters $\chi \in \mathcal{C}(X)$ such that $\chi \not\in \bigcup_{i=1}^{m} \mathcal{I}(P_i)$.

5
Proof. Since the spectrum of $R = \Lambda \otimes_{\mathbb{Z}} \mathbb{Q}[[x_1, \ldots, x_n]]$ is not the union of finitely many Zariski closed proper subsets for $n = 2\dim(X) > 0$, it suffices that the spectrum $\mathcal{I}(\mathcal{P}) = \mathcal{I}(\mathcal{P}) \cap \mathcal{C}(X)_{\ell}(\Lambda)$ of each monoid \mathcal{P} is the set of closed points of some proper Zariski closed subset of $\mathcal{C}(X)_{\ell}$. We prove this by descending induction on the degree $\nu_{\mathcal{P}}$. For $\nu_{\mathcal{P}} = \dim(X)$ this is clear, since in this case $\mathcal{I}(\mathcal{P})$ is a single point ([W, lemma 1]). For a given monoid \mathcal{P} and fixed $\nu = \nu_{\mathcal{P}} < \dim(X)$, assume our assertion is true for all monoids \mathcal{P} of degree $\nu_{\mathcal{P}} > \nu$. By lemma 4 there exists a character $\chi \in \mathcal{C}(X)_{\ell}$ such that $\mathcal{P}_\chi \not\in \mathcal{P}$. Since \mathcal{P} and \mathcal{P}_χ have the same degree $\nu = \nu_{\mathcal{P}}$, this implies that all constituents $K[m], K \in \mathcal{P}$ of \mathcal{P}_χ have associated monoids \mathcal{P}_k of degree $> (\nu_{\mathcal{P}} + \nu_{\mathcal{P}_\chi})/2 = \nu$ by [W, cor. 4, lemma 1]. Hence $\mathcal{I}(\mathcal{P} \ast \mathcal{P}_\chi)$ is contained in a proper Zariski closed subset of the spectrum $\mathcal{C}(X)_{\ell}$, by lemma 2 and the induction assumption. Suppose $\mathcal{I}(\mathcal{P})$ were not contained in a proper Zariski closed subset of $\mathcal{C}(X)_{\ell}$. Then $\mathcal{I}(\mathcal{P}) = \mathcal{I}(\mathcal{P}) \cap \mathcal{C}(X)_{\ell}(\Lambda)$, and therefore $\mathcal{I}(\mathcal{P}) = \mathcal{I}(\mathcal{P}) \cap \mathcal{I}(\mathcal{P}_\chi)$. Hence $\mathcal{I}(\mathcal{P}_\chi)$ would be contained in a proper Zariski closed subset of $\mathcal{C}(X)_{\ell}$. Indeed, this would follow from $\mathcal{I}(\mathcal{P}_\chi) = \mathcal{I}(\mathcal{P}) \cap \mathcal{I}(\mathcal{P}_\chi) = \mathcal{I}(\mathcal{P} \ast \mathcal{P}_\chi)$ and the induction assumption. On the other hand, $\mathcal{I}(\mathcal{P}_\chi) = \chi^{-1} \cdot \mathcal{I}(\mathcal{P}) = \mathcal{C}(X)_{\ell}(\Lambda)$. This gives a contradiction, and proves our claim for the fixed degree ν. Now proceed by induction. \qed

For $K \in \mathcal{P}$ the ℓ-spectra $\mathcal{I}(K)_{\ell} := \mathcal{I}(K) \cap \{\chi_f\} \times \mathcal{C}(X)_{\ell}(\Lambda) \subset \mathcal{I}(K)$ at some given point χ_f of $\mathcal{I}(K)$ are the Λ-valued points of a Zariski closed subset of $\{\chi_f\} \times \mathcal{C}(X)_{\ell}$ by lemma 4. Replacing K by K_{χ_f}, we may always assume $\chi_f = 1$.

Corollary 1. For any semisimple complex $K \in \mathcal{D}$ contained in N_{Euler}, there exists in $\mathcal{C}(X)_{\ell}(\Lambda)$ a character $\chi \notin \mathcal{I}(K)$.

Proof. Since $\mathcal{I}(K) = \mathcal{I}(\mathcal{P}_K)$ for simple K and $\mathcal{I}(\bigoplus_{i=1}^m K_i) \subseteq \bigcup_{i=1}^m \mathcal{I}(K_i)$, this is an immediate consequence of lemma 2 and proposition 1. \qed

Theorem 1. For arbitrary $K \in \mathcal{P}$, the Euler-Poincaré characteristic $\chi(X, K)$ is non-negative. Hence, in particular, the reductive supergroup $G(K)$ attached to K in [KrW, §7] is a reductive algebraic group over Λ.

Proof. We may assume that K is irreducible. Then, to show $\chi(X, K) \geq 0$, it is enough to show the existence of a character χ such that $H^v(X, K_\chi) = 0$ holds for all $v \neq 0$. Then $\chi(X, K) = \chi(X, K_\chi) = \dim_\Lambda(H^0(X, K_\chi))$, and the claim obviously follows from $\dim_\Lambda(H^0(X, K_\chi)) \geq 0$. So, we have to find a character $\chi \notin \mathcal{I}(K)$. By [KrW, §9], for all irreducible perverse sheaves K there exists a perverse sheaf T in N_{Euler}, depending on K, such that $H^\bullet(X, K_\chi) \neq H^0(X, K_\chi)$ holds if and only if $\chi \notin \mathcal{I}(T)$. Hence, by corollary 1 there exists a character $\chi \notin \mathcal{I}(T) = \mathcal{I}(K)$. \qed
The crucial fact that $\mathcal{S}(K)$ is the spectrum $\mathcal{S}(T)$ for an object T in N_{Euler}, already exploited in the proof of the last theorem, furthermore implies

Theorem 2. For any $K \in P$ on X and any character χ_f of $\pi_1(X)$ of order prime to ℓ, the set of characters $\chi \in \mathcal{C}(X)(\Lambda)$ for which $\chi_f^*\chi$ is in $\mathcal{S}(K)$ is the set of closed points of a proper Zariski closed subset of $\mathcal{C}(X)_\ell$.

For base fields F of characteristic $p > 0$, the following corollary now easily follows from theorem 1 by a specialization argument. For the case of fields F of characteristic zero see [FK]; but our argument could also be extended to the characteristic zero case.

Corollary 2. For \mathcal{K}_ℓ-adic perverse sheaves K_0 on abelian varieties X_0 defined over a field F finitely generated over its prime field, with base extensions K resp. X to an algebraic closure of F, the Euler-Poincare characteristic $\chi(X,K)$ is non-negative.

References.

[AS] Abbes A., Saito T., *Ramification and cleanliness*, Tohoku Mathematical Journal, Centennial Issue, 63 No. 4 (2011), 775-853.

[E] Ekedahl T., *On the adic formalism*, in: *The Grothendieck Festschrift Vol. II*, Progr. Math. 87, Birkhäuser, Boston, (1990), 197 - 218

[FK] Franecki J., Kapranov M., *The Gauss map and a noncompact Riemann-Roch formula for constructible sheaves on semiabelian varieties*, Duke Math. J. 104 no.1 (2000), 171 - 180

[GL] Gabber O., Loeser F., *Faisceaux pervers ℓ-adiques sur un tore*, Duke Math. Journal vol. 83, no. 3 (1996), 501 - 606

[KrW] Krämer T., Weissauer R., *Vanishing Theorems for constructible sheaves on abelian varieties*, arXiv: 1111.6095; to appear in J. Alg. Geom.

[L] Laumon G., *Letter to Gabber and Loeser* (22/12/91)

[S] Serre J.P., *Algebraic groups and class fields*, Springer (1988)

[W] Weissauer R., *On the rigidity of BN-sheaves*, arXiv 1204.1929

[W2] Weissauer R., *Why certain Tannaka groups attached to abelian varieties are almost connected*, arXiv 1207.4039