Fast-timing measurements in 95,96Mo

S Kisyov1, S Lalkovski1, N Mărginean2, D Bucurescu2, L Atanasova3, D Balabanski3, Gh Căta-Danil2, I Căta-Danil2, D Deleanu2, P Detistov3, D Filipescu2, D Ghiță2, T Glodariu2, R Mărginean2, C Mihai2, A Negret2, S Pascu2, T Sava2, L Stroe2, G Suliman2, N V Zamfir2 and M Zhekova1

1Faculty of Physics, University of Sofia "St. Kliment Ohridski", Sofia, Bulgaria
2National Institute for Physics and Nuclear Engineering "Horia Hulubei", Magurele, Romania
3Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Science, Sofia, Bulgaria

E-mail: stimir.kisyov@phys.uni-sofia.bg

Abstract. Half-lives of the $19/2^+_1$ and $21/2^+_1$ states in 95Mo and of the 8^+_1 and 10^+_1 states in 96Mo were measured. Matrix elements for yrast transitions in 95Mo and 96Mo are discussed.

1. Introduction
There are twenty six molybdenum isotopes on the Segré chart, studied by means of γ ray spectroscopy [1]. They span a wide region, where a variety of shapes are observed, from the spherical 90Mo to one of the most deformed nuclei in the $A \approx 110$ mass region. Of particular interest are the 95,96Mo nuclei, which are placed in a region where an offset of the quadrupole deformation takes place [2]. Also, the two nuclei are placed in the third oscillator shell in protons and at the beginning of the fourth oscillator shell in neutrons, where high-j and low-j single-particle orbits with $\Delta j = 3$ enhance the effects of octupole collectivity [3]. Being on the edge between the single-particle and collective modes, the two nuclei represent an excellent laboratory, where different approaches can be tested. In this respect, of particular interest are the nuclear lifetimes of excited states which are directly related to transition matrix elements and hence are sensitive to the underlying structure.

2. Experimental Set Up and Data Analysis
Fast-timing measurements were performed in 95,96Mo. The nuclei were produced in fusion-evaporation reactions, performed at the NIPNE tandem accelerator. A beam of 18O was accelerated up to 62 MeV and focused on 82Se target with a thickness of 5 mg/cm2 on 2 mg/cm2 thick Au backing. The cross section for the 82Se(18O, $5n\gamma$)95Mo channel was estimated at 400 mb, while that for the 82Se(18O, $4n\gamma$)96Mo channel at about 100 mb. The beam intensity was of the order of 20 pnA.

The gamma ray detector system consisted of eight LaBr$_3$:Ce detectors and eight HPGe detectors, working in coincidence [4, 5]. The LaBr$_3$:Ce detectors issue positive dynode and negative anode signals. The dynode signals were used for energy measurements, while the anode signals were used for timing. The time signals were shaped by Constant Fraction Discriminators.
Figure 1. 95Mo energy spectra. HPGe total projection (a), LaBr$_3$:Ce total projection (b), LaBr$_3$:Ce energy spectrum gated on 692-keV transition with HPGe detectors (c).

Figure 2. Partial level scheme of 95Mo.

(CFDs) and sent to Time-to-Amplitude-Converters (TACs), operating in a common STOP mode. The energy and time signals were digitized and the data were stored in event files, collected for approximately two hours each. The system was triggered by coincidences between two LaBr$_3$:Ce and one HPGe detector. The data were analyzed with GASPware [6] and RadWare [7] packages.

Three dimensional matrices were sorted with LaBr$_3$:Ce energy on two of the axes and a relative time, defined as $T_{1,2} = t \pm (t_1 - t_2)$, on the third axis. Here, t_1 is the moment of interaction of the preceding in the time γ ray and t_2 is the moment at which the delayed γ ray was detected, while t is an arbitrary offset. If the two γ rays feed and de-excite a particular nuclear level, and $E_{\gamma 1}$ denotes the energy of the feeding transition, while $E_{\gamma 2}$ is the energy of the delayed transition, then for each event two matrix elements ($E_{\gamma 1}$, $E_{\gamma 2}$, $T_{1,2}$) were incremented. Then, from the time projected ($E_{\gamma 1}$, $E_{\gamma 2}$) two-dimensional gates, two time spectra, symmetric with respect to the arbitrary offset t, were obtained. If the lifetime of the level of interest is of the order of the detectors time resolution, the centroids $C_D = \left\langle t \right\rangle = \int tD(t)dt/\int D(t)dt$ of the time distributions will be displaced by 2τ one from the other, where τ is the lifetime of the level. This procedure is known as the centroid shift method [8,9]. It should be noted that the two centroids will overlap in the cases where $E_{\gamma 1}$ and $E_{\gamma 2}$ feed and de-excite nuclear level with a lifetime shorter than the binning of the converter, which was of 6 ps/channel. For lifetimes longer than the detector time resolution, the slope method was used to determine level lifetimes. To reduce the background in the LaBr$_3$:Ce spectra, the ($E_{\gamma 1}$, $E_{\gamma 2}$, T) matrices were incremented after an ($E_{\gamma 1}$, T) gate was implied on any of the HPGe detectors.

Sample energy spectra, obtained with HPGe and LaBr$_3$:Ce detectors, are presented in figure 1. Figure 1(a) shows a total energy projection for all HPGe detectors. Peaks corresponding to transitions in 95Mo are denoted with the transition energies. Figure 1(b) presents the total energy projection obtained with all LaBr$_3$:Ce detectors. A LaBr$_3$:Ce spectrum, gated on the 692-keV transition from 95Mo in the HPGe detectors, is shown in figure 1(c).
Table 1. Energy levels and transitions in 95Mo.

J^π	E_{level} [keV]	E_{γ} [keV]	I_γ	λM	$T_{1/2}$
$5/2^+$	0.0	stable			
$7/2^+$	766.6(7)	766.3	0.80(16)	M1+E2	4.4(7) ps†
$9/2^+$	948.4(7)	948.7	2.4(5)	E2(+M3)	2.58(11) ps†
$11/2^+$	1542.2(10)	593.6	1	M1+E2	≤30 ps
$11/2^+$	1542.2(10)	775.7	1.09(22)	E2	≤30 ps
(13/2$^+$)	2060.2(17)	1112.0		(E2)	
(15/2$^+$)	2234.2(15)	173.8	0.086(10)	(M1+E2)	≤30 ps
(15/2$^+$)	2234.2(15)	692.0	1.39(25)	E2	≤30 ps
(17/2$^+$)	2582.4(16)	348.1	1.23(11)	M1(+E2)	d
(17/2$^+$)	2582.4(16)	522.1	0.062(12)	[E2]c	d
(19/2$^+$)	2620.5(16)	38.1†	0.056	[M1+E2]c	3.4(4) ns
(19/2$^+$)	2620.5(16)	386.4	0.23(2)	E2	3.4(4) ns
(21/2$^+$)	2772.4(17)	152.3	1.1(5)	M1	138(18) ps
(25/2$^+$)	3675.8(20)	903.4	1.3(3)	E2	d
(29/2$^+$)	4143.5(23)	467.7	0.37(5)	E2	d

† from NNDC [10], unless otherwise noted; a from a least-squares fit to E_γ; b uncertainty of 1.0 keV; c from the J^π difference; d no enough statistics in the present experiment.

The partial level scheme of 95Mo, presented in figure 2, is based on the coincidence measurements performed in the present study and is consistent with the level scheme presented in Ref. [11]. Nuclear level spins and parities J^π, level energies E_{level}, γ-ray energies E_{γ}, intensities I_γ and multipoles λM along with the half-lives $T_{1/2}$ of the respective levels in 95Mo are listed in Table 1. Gamma-ray intensities for the strongest yrast transitions were deduced from a spectrum gated on the 949-keV transition and normalized to the 594-keV transition. In the cases where a particular level decays by more than one transition, spectra gated on the feeding transition were used to normalize the intensity of the weaker de-exciting transition to the intensity of the strongest one. Energy and intensity balance was performed.

The lowest lying levels in 95Mo (figure 2) have half-lives shorter than the electronics time binning of 6 ps/channel. The centroids of the symmetric time distributions constructed for the $9/2^+$ state (figure 3a) overlap within the time binning, which is consistent with the half-life of 2.58(11) ps quoted in NNDC [10].

Figure 3(b) shows the time distributions sorted for the $19/2^+$ state in 95Mo. The time spectrum is obtained by gating on the 152-keV and 386-keV transitions with the LaBr$_3$:Ce detectors. In addition, to reduce the background, gates on the 949-keV, 594-keV, 692-keV or 766-keV transitions were applied with the HPGe detectors. A half-life of 3.4(4) ns was obtained from the slope of the time distribution. According to NNDC, the $19/2^+$ state decays via two branches with energies of 38 keV and 386 keV. The 38-keV transition is highly converted, and its energy is outside of the detectors range of sensitivity. Hence, the transition was not observed experimentally in the present experiment. Therefore, the intensity of the 38-keV transition was estimated from the intensity balance performed for the 2582-keV level and after evaluation of the levels side feeding. Using the branching ratios obtained from the present data, $B(E2) = 0.12(9)$ W.u. was obtained.

Figure 3(c) shows symmetric time spectra for the $21/2^+$ state in 95Mo. The spectra are gated on the 903-keV and 152-keV transitions in the LaBr$_3$:Ce detectors. To reduce the background, the same HPGe gates as for the $19/2^+$ state were imposed. A half-life of 138(18) ps was obtained.
Figure 3. Time spectra for the 9/2+ state (a), for the 19/2+ state (b), and for the 21/2+ state (c) in 95Mo.

Figure 4. Time spectra for the 8+1 state (a), and for the 10+1 state in 96Mo.

Figure 5. Partial level scheme of 96Mo [12].

Figure 6. Matrix elements calculated for the $E2$ transitions de-exciting the first five yrast states in 95Mo and 96Mo and compared to the matrix elements, calculated for the harmonic vibrator and normalized with respect to the first phonon in 96Mo.

from the centroid shift method.

Another reaction channel leads to the even-even 96Mo nucleus. An analysis similar to the one performed for 95Mo was carried out. An analysis similar to the one performed for 95Mo was carried out. Two levels with picosecond half-lives were observed. Figure 4(a) shows the time distributions obtained for the 8+1 state in 96Mo. The time spectrum is gated on the 809-keV and 538-keV transitions with LaBr3:Ce detectors and on the 812-keV transition with HPGe detectors (figure 5). A half-life of 0.19(4) ns was obtained with the centroid shift method. Hence, the $B(E2; 8_{1}^{+} \rightarrow 6_{1}^{+})$ is 2.3(5) W.u.

Time spectra for the 10+ state in 96Mo are presented in figure 4(b). The same gate as in
the case of the 8^+_1 state was set on the HPGe detectors. Gates on the 1346-keV and 809-keV transitions imposed on LaBr$_3$-Ce detectors were used to increment the symmetric time spectra. A half-life of 0.11(5) ns was obtained using the centroid shift method. The transition strength for the 809-keV transition results as $B(E2;10^+_1 \to 8^+_1)=0.6(3)$ W.u.

3. Discussion
The ground state of 95Mo is a $J^\pi = 5/2^+$ state, which is consistent with the ordering of the neutron single-particle levels in the $A \approx 100$ mass region [13] where $\nu d_{5/2}$ single-particle orbit appears at the beginning of the fourth oscillator shell. Next to the $\nu d_{5/2}$ single-particle orbit is $\nu g_{7/2}$. Indeed, the first $J^\pi = 7/2^+$ level, placed at 767 keV in 95Mo, decays via a $M1 + E2$ transition to the ground state with $B(E2; 7/2^+ \to 5/2^+) = 0.96$ W.u [10]. The next yrast $J^\pi = 9/2^+$ level in 95Mo has an energy of 948 keV, which is close to the 2_1^+ level energy of the neighboring even-even nuclei. Also, the $9/2^+$ state decays via a strong $E2$ transition with $B(E2) = 11.3(6)$ W.u [10]. Such a state can be interpreted as a $\nu d_{5/2}$ single-particle state fully aligned with the first 2_1^+ phonon of an even-even core [14]. In this respect, it is interesting to compare the matrix elements obtained for the $E2$ transitions in the even-even 96Mo with the $E2$ matrix elements obtained from the yrast transitions in the even-odd 95Mo nucleus. The matrix elements, calculated from $|\langle \psi_f || E2 || \psi_i > | = \sqrt{(2J_i + 1) \times B(E2; J_i \to J_f)}$ for the yrast transitions in 95,96Mo, are shown in figure 6. The experimental matrix elements are also compared to the harmonic vibrator matrix elements, which were parametrized from the first excited state in 96Mo. The $<2^+||E2||4^+>$ matrix element, calculated for 96Mo [15], remarkably coincides with the harmonic vibrator $<2^+||E2||4^+>$ matrix element. Also, the $<5/2^+||E2||9/2^+>$ matrix element, calculated from the 95Mo data, is consistent with its interpretation as a fully aligned particle-core coupled state. Further, with the increase of the angular momentum the experimental matrix elements deviate from the harmonic vibrator description. In fact, the experimental matrix elements are even smaller than the $<0^+_1||E2||2^+_1>$ matrix element. In this spin range the odd- and even-mass molybdenum matrix elements are again in the same range. Considering the above and the high-J values, these excited states more probably involve considerable contribution from high-j single-particle excitations.

4. Acknowledgments
This work is supported by the Bulgarian Science Fund - contracts DMU02/1, DRNF02/5, DID-02/16, Romanian UEFISCDI - contract IDEI 115/2011 and by a Bulgarian-Romanian partnership contract, numbers DNTS-02/21 and 460/PNII Module III.

References
[1] NNDC data base (www.nndc.bnl.gov)
[2] Casten RF, 2000, Nuclear Structure from a Simple Perspective Oxford University Press
[3] Lalkovski S et al. 2007 Phys. Rev. C 75 014314
[4] Marginean N et al. 2010 Eur. Phys. J. A 46 329336
[5] Kisyov S, et al. 2011 Phys. Rev. C 84 014324
[6] Marginean N 2009 Private Communication
[7] RadWare package (http://radware.phy.ornl.gov/)
[8] Andrejtscheff W et al. 1982 NIM 204 123-128
[9] Regis J-M et al. 2010 NIM A 622 83-92
[10] Basu S K et al. 2010 Nuclear Data Sheets 111 2555
[11] Zang Y H et al. 2009 Phys. Rev. C 79 044316
[12] Chatterjee J M et al. 2000 Nucl. Phys. A 678 367-381
[13] Heyde KLG 1994 The Nuclear Shell Model, Springer-Verlag
[14] de-Shalit A Phys. Rev. 122 1530
[15] Abriola D et al. 2008 Nuclear Data Sheets 109 2501