Directed Evolution of *Methanomethylophilus alvus* Pyrrolysyl-tRNA Synthetase Generates a Hyperactive and Highly Selective Variant

Jonathan T. Fischer¹*, Dieter Söll¹,² and Jeffery M. Tharp¹

¹Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States, ²Department of Chemistry, Yale University, New Haven, CT, United States

Pyrrolysyl-tRNA synthetase (PylRS) is frequently used for site-specific incorporation of noncanonical amino acids (ncAAs) into proteins. Recently, the active site of *Methanomethylophilus alvus* PylRS (MaPylRS) has been rationally engineered to expand its substrate compatibility, enabling the incorporation of difficult ncAAs. However, mutations beyond the active site that enhance the enzymatic properties of MaPylRS have not been reported. We utilized phage-assisted non-continuous evolution (PANCE) to evolve MaPylRS to efficiently incorporate *N*-Boc-L-lysine (BocK). Directed evolution yielded several mutations outside of the active site that greatly improve the activity of the enzyme. We combined the most effective mutations to generate a new PylRS variant (PylRSopt) that is highly active and selective towards several lysine and phenylalanine derivatives. The mutations in PylRSopt can be used to enhance previously engineered PylRS constructs such as MaPylRSN166S, and PylRSopt is compatible in applications requiring dual ncAA incorporation and substantially improves the yield of these target proteins.

Keywords: directed evolution, PANCE, PylRS, noncanonical amino acid, tRNA, orthogonal, synthetic biology, pyrrolysyl-tRNA synthetase

INTRODUCTION

The genetic code consists of 61 triplet codons that code for 20 canonical amino acids, as well as three stop codons that function as termination signals to end translation and release the protein from the ribosome. However, exceptions to this rule are apparent, and the plasticity of translation is well-founded. A naturally occurring example is found in several methanogenic species of archaea and bacteria. In these organisms, pyrrolysine (Pyl) is encoded in the active site of methylamine methyltransferase by the amber stop codon UAG (Hao et al., 2002; Srinivasan et al., 2002; Polycarpo et al., 2004). This is accomplished via pyrrolysyl-tRNA synthetase (PylRS), a class II aminoacyl-tRNA synthetase that aminoacylates its cognate tRNA, tRNA₉₉ (Srinivasan et al., 2002; Polycarpo et al., 2004). This unique tRNA features a CUA anticodon, which enables Pyl-tRNA₉₉ to suppress UAG and insert Pyl into the elongating polypeptide through the same translational machinery as canonical tRNAs (Théobald-Dietrich et al., 2004; Zhang et al., 2005; Longstaff et al., 2007).
The PyrRS/tRNAPyl system has been utilized in numerous studies to genetically encode ncAAs at a stop codon (most frequently UAG), altering the target protein’s structure and/or function (Budisa, 2005; Wan et al., 2014; Crnković et al., 2016; Tharp et al., 2018). To that end, PyrRS has been developed and implemented to incorporate a wide variety of ncAAs, including $N^ε$-substituted lysine (Polycarpo et al., 2006; Neumann et al., 2008; Hancock et al., 2010; Umehara et al., 2012) and, to a lesser extent, ortho- and meta-substituted phenylalanine (Wang et al., 2011; Ko et al., 2013; Tharp et al., 2021). One of the critical characteristics of the PyrRS/tRNAPyl system is its orthogonality with both bacterial and mammalian host translation machinery (Wan et al., 2014). PyrRS/tRNAPyl can also be used in tandem with mutually orthogonal genetic code expansion tools to incorporate multiple ncAAs into a single protein, such as the M. jannaschii TyrRS/tRNATyr system. These genetic code expansion tools have been used together to site-specifically incorporate two ncAAs into a single protein in response to two stop codons, most frequently UAG and UAA (Wan et al., 2010; Chatterjee et al., 2013).

Methanomethylophilus albus PyrRS (MaPyrRS) is a highly active PyrRS homolog. Like its previously characterized counterparts, the ncAA specificity of MaPyrRS has been modified through active site engineering (Meineke et al., 2018; Willis and Chin, 2018; Beránek et al., 2019; Seki et al., 2020; Tharp et al., 2021). MaPyrRS belongs to the class of PyrRS proteins that lacks the poorly soluble N-terminal domain. This confers an advantage to MaPyrRS, as MaPyrRS is far more soluble than full-length PyrRS homologs such as M. mazei PyrRS (Yanagisawa et al., 2008; Seki et al., 2020). The high activity, solubility, and tunable specificity of MaPyrRS position it as a powerful genetic code expansion tool.

Improving the activity or altering the substrate specificity of aminoacyl-tRNA synthetases such as PyrRS can be approached in two ways: rational engineering or randomized selection (Vargas-Rodriguez et al., 2018; Krahn et al., 2020). Rational engineering typically relies on structural information to guide the process of mutating key residues in the amino acid binding pocket (Wang et al., 2012; Seki et al., 2020). This approach has been used successfully and is straightforward to execute; however, there are likely many targets for mutation that can have a dramatic impact on activity but are easily overlooked during the rational design process. Conversely, randomized selection through library screening or directed evolution is unbiased and can result in powerful mutations that would likely never have been considered for rational engineering (Bryson et al., 2017; Vargas-Rodriguez et al., 2018; Baumann et al., 2019). One such method of randomized selection is phage-assisted non-continuous evolution (PANCE) (Evvelt et al., 2011; Suzuki et al., 2017; Miller et al., 2020). Unlike library-based evolution methods, PANCE does not require structural information to guide selection. PANCE is also simple to implement, as no specialized equipment is necessary. The technique offers tunable stringency and has been shown to generate highly active mutant variants of enzymes such as PyrRS. Indeed, PANCE and its continuous evolution counterpart PACE have been successfully used to evolve highly active variants of chPyrRS, an enzyme derived from a fusion construct of *M. mazei* and *M. barkeri* PyrRS (Bryson et al., 2017; Suzuki et al., 2017).

In this study, we utilized PANCE to evolve MaPyrRS with the goal of developing a hyperactive PyrRS variant that recognizes a broad spectrum of ncAAs while still discriminating against the canonical amino acids. Sequencing of evolved PyrRS variants revealed a polymorphic population of mutations, almost all of which were located outside of the active site. We screened the activity of the mutants towards a variety of Lys- and Phe-ncAAs using in vivo fluorescence and chloramphenicol acetyltransferase assays, and we combined the most active mutations to create a new PyrRS variant, PyrRSopt. Our data indicate that PyrRSopt excludes canonical amino acids and recognizes a diverse pool of ncAAs, incorporating them with vastly improved activity compared to wild-type MaPyrRS. In combination with the M. jannaschii TyrRS, the high activity and selectivity of PyrRSopt enables robust incorporation of multiple ncAAs into a single protein, which has applications including bioorthogonal click chemistry (Wan et al., 2010; Meineke et al., 2020), peptide cyclization (Neumann et al., 2018; Hayes et al., 2021), and FRET (Wu et al., 2012).

MATERIALS AND METHODS

PANCE

MaPyrRS was cloned into M13 phage, replacing gene III. Phages were initially propagated without selection using the permissive host *E. coli* S1059. Cultures were grown in 2xYT media supplemented with the appropriate antibiotics at 37°C until reaching an OD$_{600}$ of 0.4–0.6. Cells were then infected with a viral load of phage ranging from 10^4–10^6 pfu/ml, and the culture was grown overnight at 37°C. The following day, a 1 ml aliquot of the overnight culture was centrifuged at 14,000 × g for 1 min, and the phage-containing supernatant was decanted and stored at 4°C. Three independent phage lineages were maintained throughout the PANCE process.

Positive selection was performed using *E. coli* S1030 cells transformed with the accessory plasmid pJT017 (gIII$_{xTAG}$ MatRNA$_{Pyl}$), as well as mutagenesis plasmid MP4 during rounds of mutagenesis. 30 ml cultures were grown in 2xYT media supplemented with 20 mM glucose and the appropriate antibiotics to an OD$_{600}$ of 0.4–0.6. BocK (5 mM) was then added where indicated, and during rounds of mutagenesis, 5 mM arabinose was also added. Cultures were then infected with 10^5–10^6 pfu/ml M13AgII-MaPyrRS. The infected culture grew overnight at 37°C, and phages were harvested the next morning. In later rounds of higher stringency positive selection, plasmids pJT018 (gIII$_{xTAG}$ MatRNA$_{Pyl}$) and pJT019 (gIII$_{xTAG}$ MatRNA$_{Pyl}$) were used in place of pJT017.

Negative selection was carried out using the negative selection plasmids pJF011 (T7RNAP$_{2xTAG}$ MatRNA$_{Pyl}$) and pDB016 (carrying gIII under a T7 promoter). 30 ml cultures were grown in 2xYT media, and at an OD$_{600}$ of 0.4–0.6, the cells were infected with 10^5–10^6 pfu/ml of phage. The culture grew overnight at 37°C, and phages were harvested the following morning.
Phage titers were performed at the conclusion of every generation as a checkpoint to ensure that phage propagation remained robust and selective for BocK. Collected phage samples were serially diluted and plated on LB-top agar plates containing *E. coli* S1059 cells. 5 µL of each serial dilution were spotted on the plates, and the pfu/mL for each phage lineage +/- BocK was calculated.

In vivo Fluorescence Assays

Electrocompetent *E. coli* DH10B cells were transformed with a plasmid encoding the PylRS variant, and a pBAD plasmid encoding sfGFP 2TAG and *MatrRNA*

Variations of the two plasmids were cloned and used where indicated. Colonies of freshly transformed DH10B cells harboring the indicated plasmids were picked and grown at 37°C overnight in 5 ml of LB media supplemented with appropriate antibiotics. 2 µL of the overnight cultures were diluted into 150 µL LB supplemented with 500 µM IPTG, 0.2% arabinose, appropriate antibiotics, and 1 mM of the indicated ncAA. Inoculated cultures were grown shaking at 37°C overnight. Fluorescence/OD 600 measurements and OD 600 were measured every 15 min, and fluorescence/OD 600 was calculated using the 12-h time point. Fluorescence/OD 600 measurements and standard deviations were calculated based on data collected from three biological and two technical replicates.

For the dual ncAA incorporation assay, a three-plasmid system was used: 1) pMW AzFRS2, t1, 2) pULTRA encoding the PylRS variant and the ochre-suppressing mutant tRNA *MatrRNA*

and pMW *Ma*.

Ten micro scans were employed, and the RF lens was set to 60%. 15 V of insource CID was applied. Thermo BioPharma Finder 4.1 was used for intact mass deconvolution and peak identification.

Chloramphenicol Acetyltransferase Assay

Electrocompetent DH10B cells were transformed with a pMW plasmid encoding the PylRS variant, and a pCAM plasmid encoding chloramphenicol acetyltransferase 112TAG and *MatrRNA*

Colonies of freshly transformed DH10B cells harboring the indicated plasmids were picked and grown at 37°C overnight in 5 ml of LB media supplemented with appropriate antibiotics. The overnight cultures were serially diluted, and 2 µL of each dilution were spotted onto LB-agar plates supplemented with the appropriate antibiotics for plasmid maintenance, 100 µM IPTG, 1 mM of the ncAA where indicated, and either 100 (PrK plates) or 200 (BocK and ALocK) µg/mL chloramphenicol. The spotted plates were grown at 37°C overnight. Images were taken after 16 h of incubation.

RESULTS

Developing a PANCE Protocol to Evolve *MaPylRS*

To evolve a hyperactive variant of *MaPylRS* that also discriminates against canonical amino acids, we adapted a variation of the previously described PANCE system (Figure 1A) (Suzuki et al., 2017). For each generation of phage evolution, we performed a three-step selection process: positive selection with mutagenesis, followed by negative selection, and finally positive selection without mutagenesis. In the first step, *E. coli* S1030 cells are grown to mid-log phase, (6) in our approach, we utilized *Ma*.

The AP encodes the PylRS variant and the ochre-suppressing mutant tRNA *MatrRNA*

tRNAPyl. Colonies of freshly transformed DH10B cells were transformed with a *pJT017* mutagenesis plasmid and an accessory plasmid (AP), pJT017, and either 100 (PrK plates) or 200 (BocK and ALocK) µg/mL chloramphenicol. The spotted plates were grown at 37°C overnight. Images were taken after 16 h of incubation.

Protein Expression and Purification

Electrocompetent DH10B cells were co-transformed with pBAD sfGFP 2TAG *MatrRNA*

and pMW *MaPylRS* or PylRSopt. Fresh colonies were used to inoculate 20 ml LB media supplemented with 0.2% arabinose, 500 µM IPTG, 1 mM BocK, 25 µg/ml spectinomycin, and 100 µg/ml ampicillin. Cultures were grown shaking at 37°C overnight. The following morning, the cultures were centrifuged at 4,000 x g for 10 min, and the pellets were resuspended in 1X BugBuster protein extraction reagent (Millipore-Sigma). The lysate was clarified by centrifugation (15,000 x g for 20 min) and the cleared lysate was incubated with nickel-NTA agarose beads for 20 min. The beads were washed five times with wash buffer (50 mM Tris pH 8.0, 50 mM NaCl, 10 mM imidazole), and eluted with elution buffer (50 mM Tris pH 8.0, 50 mM NaCl, 250 mM imidazole). The purified proteins were concentrated and buffer-exchanged into 25 mM Tris pH 8.0, 25 mM NaCl using an Amicon Ultra Centrifugal Filters (10 kDa MWCO).

Mass Spectroscopy

Mass spectroscopy was performed by Bioinformatics Solutions Inc. in Waterloo, ON, Canada. LC-MS analysis of DTT reduced samples was performed on a Thermo Scientific Orbitrap Exemplar 240 mass spectrometer, equipped with a heated electrospray ionization source (H-ESI) in positive ion mode with a Thermo Fisher Ultimate 3000 RSLCnano HPLC system. Mass spectroscopy was performed by Bioinformatics Solutions Inc. in Waterloo, ON, Canada. LC-MS analysis of DTT reduced samples was performed on a Thermo Scientific Orbitrap Exemplar 240 mass spectrometer, equipped with a heated electrospray ionization source (H-ESI) in positive ion mode. The API was set to 60%. 15 V of insource CID was applied. Thermo BioPharma Finder 4.1 was used for intact mass deconvolution and peak identification.

Chloramphenicol Acetyltransferase Assay

Electrocompetent DH10B cells were transformed with a pMW plasmid encoding the PylRS variant, and a pCAM plasmid encoding chloramphenicol acetyltransferase 112TAG and *MatrRNA*

Colonies of freshly transformed DH10B cells harboring the indicated plasmids were picked and grown at 37°C overnight in 5 ml of LB media supplemented with appropriate antibiotics. The overnight cultures were serially diluted, and 2 µL of each dilution were spotted onto LB-agar plates supplemented with the appropriate antibiotics for plasmid maintenance, 100 µM IPTG, 1 mM of the ncAA where indicated, and either 100 (PrK plates) or 200 (BocK and ALocK) µg/mL chloramphenicol. The spotted plates were grown at 37°C overnight. Images were taken after 16 h of incubation.

RESULTS

Developing a PANCE Protocol to Evolve *MaPylRS*

To evolve a hyperactive variant of *MaPylRS* that also discriminates against canonical amino acids, we adapted a variation of the previously described PANCE system (Figure 1A) (Suzuki et al., 2017). For each generation of phage evolution, we performed a three-step selection process: positive selection with mutagenesis, followed by negative selection, and finally positive selection without mutagenesis. In the first step, *E. coli* S1030 cells are grown to mid-log phase, (6) in our approach, we utilized *Ma*.

The AP encodes the PylRS variant and the ochre-suppressing mutant tRNA *MatrRNA*

tRNAPyl. Colonies of freshly transformed DH10B cells were transformed with a *pJT017* mutagenesis plasmid and an accessory plasmid (AP), pJT017, and either 100 (PrK plates) or 200 (BocK and ALocK) µg/mL chloramphenicol. The spotted plates were grown at 37°C overnight. Images were taken after 16 h of incubation.

Mass Spectroscopy

Mass spectroscopy was performed by Bioinformatics Solutions Inc. in Waterloo, ON, Canada. LC-MS analysis of DTT reduced samples was performed on a Thermo Scientific Orbitrap Exemplar 240 mass spectrometer, equipped with a heated electrospray ionization source (H-ESI) in positive ion mode with a Thermo Fisher Ultimate 3000 RSLCnano HPLC System. Mass spectroscopy was performed by Bioinformatics Solutions Inc. in Waterloo, ON, Canada. LC-MS analysis of DTT reduced samples was performed on a Thermo Scientific Orbitrap Exemplar 240 mass spectrometer, equipped with a heated electrospray ionization source (H-ESI) in positive ion mode. The API was set to 60%. 15 V of insource CID was applied. Thermo BioPharma Finder 4.1 was used for intact mass deconvolution and peak identification.
infected by the phage M13 ΔgIII::MaPylRS. Phage propagation is dependent on successful aminoacylation of tRNAPyl by MaPylRS and subsequent suppression of the TAG codon(s) in gIII (the gene encoding pIII), thus enabling selection for phages carrying the most active PyrRS variants.

To avoid the unwanted evolution of a promiscuous synthetase that is active towards canonical amino acids, after each round of positive selection with mutagenesis, we performed negative selection in the absence of BocK. Originally developed as an additional selection mechanism in the continuous directed evolution technique PACE, negative selection is highly effective in maintaining the amino acid selectivity of evolving aminoacyl-tRNA synthetases (Carlson et al., 2014; Bryson et al., 2017). The negative selection system relies on the production of pIII-neg, a dominant-negative version of pIII. Production of pIII-neg inhibits phage propagation, thus depleting the population of phages carrying PyrRS mutants that are active towards canonical amino acids and can produce pIII-neg in the absence of BocK. In our pilot experiments to optimize the PANCE system for evolving MaPylRS, we found that without negative selection, significant phage propagation occurs in the absence of BocK after consecutive generations of positive selection with mutagenesis (Supplementary Figure S2). This indicates that MaPylRS is sensitive to mutations that enable activity towards a canonical amino acid, most likely Phe. This is predictable, as M. mazei PylRS has been shown to readily incorporate Phe when the critical active site residues N346 (N166 in M. alvus) and C348 (V168) are mutated (Wang et al., 2011). We therefore adopted the negative selection step to maintain the selectivity of evolving MaPylRS variants.

As a final selection step, the surviving phage population isolated from the prior negative selection was passed through a round of positive selection without mutagenesis. This final step amplifies phages that survived negative selection and are still active towards BocK without the added stringency of mutagenesis. We performed this selection in both the presence and absence of BocK, and used the phages isolated from these two conditions as a checkpoint to verify that evolution was proceeding successfully. We measured the phage titers of both conditions to ensure that phage propagation remained robust in the presence of BocK, and low when BocK was not added to the media (Figure 2A). The significant difference between the phage titers indicates that promiscuous variants are not persisting through the negative selection step, and variants that are active towards BocK are indeed being selected. The phage population recovered from this final round of positive selection in the presence of BocK was carried over to the next generation of selection, and the three-step cycle was repeated.

Directed Evolution of MaPylRS

We performed a total of 20 generations of directed evolution and maintained three independent lineages of evolved phages. The stringency of selection was increased as evolution proceeded. Initially, gIII carried a single in-frame TAG codon to be suppressed by MaPylRS/tRNAPyl. After 7 generations of selection, we increased the stringency to two TAG codons in
The evolved phage population efficiently propagated in this higher stringency selection when cultures were supplemented with BocK, while maintaining low levels of propagation in the absence of BocK. After 6 rounds of selection with two TAG codons, we again increased the stringency to three TAG codons. Even at this highest level of stringency, phage propagation remained robust and highly selective for BocK. At this stage, we compared the propagation of our evolved phage lineages to that of the ancestral variant (generation zero) that encodes wild-type MaPylRS. We measured propagation under the high-stringency three TAG codon system in the absence of mutagenesis. The phage titer indicated that the evolved phage lineages propagated far more efficiently than generation zero in the presence of BocK, suggesting that more active variants of PylRS had emerged (Figure 2B).

Throughout the course of the directed evolution process, phage titers at the end of each generation consistently showed greater phage propagation when BocK was present in the media (Figure 2C). After the 20th round of evolution, several plaques from each evolved lineage were sequenced to determine the identity of PylRS mutations. Five mutations were identified, with very little crossover between each of the three independent lineages (Figure 2D). The most frequently occurring mutations that arose from our system were V42I, V75I, V168A, K181E, and A190V. V42I and K181E were found as concomitant mutations, while the rest of the variants were point mutations. V168A is the only active site mutation that was observed. This mutation has been identified previously and exploited for its role in substrate specificity (Wang et al., 2011; Wang et al., 2012; Wan et al., 2014; Seki et al., 2020). As such, we hypothesized that this mutation to the smaller alanine residue may confer altered substrate specificity favoring larger ncAAs such as BocK. V75I, K181E, and A190V are located in the catalytic domain just outside of the active site, while V42I is found in the tRNA binding domain (Figure 2E). Interestingly, multiple sequence alignment shows that the K181E mutation matches the sequence of several PylRS homologs that also encode Glu at this position (E360 in M. mazei PylRS) (Supplementary Figure S3) (Yanagisawa et al., 2008). To the best of our knowledge, aside from V168, none of these residues have previously been identified or targeted for engineering in MaPylRS or any other PylRS homologs.

MaPylRS Variants Are Highly Active and Selective for ncAAs *in vivo*

To test the activity of our evolved MaPylRS mutants, we cloned the mutant genes into a pMW expression vector and co-transformed them along with a pBAD reporter plasmid carrying sfGFP (2TAG) and tRNA^{Pyl} into *E. coli* DH10B. Read-through of the TAG codon at position 2 is dependent on PylRS aminoacylating its cognate tRNA^{Pyl} with a ncAA.
Aminoacyl-tRNA_{Pyl} is then utilized in translation to suppress TAG and incorporate the ncAA into the protein (Figure 3A). Thus, fluorescence from sfGFP production can be used to measure the activity of PyrRS. We measured the fluorescence/OD₆₀₀ of cells expressing our PyrRS variants and compared this to those expressing wild-type <i>Ma</i>PylRS, both in the presence and absence of BocK (Figure 3B). The results show that each of the four mutant constructs as well as wild-type <i>Ma</i>PylRS are highly active and selective for BocK. The lack of background activity in the absence of a ncAA for all four mutants substantiates the importance of the negative selection step in our PANCE system.

We tested the activity of the variants using both wild-type <i>Mat</i>RNA_{Pyl} and <i>Mat</i>RNA_{Pyl₆}. The data indicate that both <i>Mat</i>RNA_{Pyl} and <i>Mat</i>RNA_{Pyl₆} are efficiently charged with BocK by all four mutant variants and wild-type <i>Ma</i>PylRS. The activity of the evolved variants towards <i>Mat</i>RNA_{Pyl₆} is consistent with that of wild-type <i>Ma</i>PylRS, suggesting that the variants did not evolve enhanced recognition of <i>Mat</i>RNA_{Pyl₆}. However, compared to wild-type <i>Ma</i>PylRS, the activity towards BocK is improved for three of the four mutants, with the exception being V75I which is approximately equal to wild-type.

We hypothesized that in addition to having robust activity towards the directed evolution substrate BocK, our mutants may also have improved activity towards other Lys- and Phe-ncAAs. We screened four additional ncAAs: N^ε-propargyloxycarbonyl-L-lysine (PrK), N^ε-allyloxycarbonyl-L-lysine (ALocK), 4-azido-L-phenylalanine (pAzF), and 3-iodo-L-phenylalanine (mIF) (Figure 3C). The most active variants, V42I/K181E and A190V, have dramatically improved activity towards PrK, ALocK, and mIF. Interestingly, the activity of the active-site mutant V168A is significantly decreased to all the ncAAs we tested except BocK, highlighting the previously established role of this mutation in governing the size and selectivity of the PyrRS active site (Wang et al., 2011; Wang et al., 2012; Wan et al., 2014; Seki et al., 2020). The activity of V75I is moderately higher towards PrK compared to the most active variants, and we omitted V75I from further screening. None of the mutants have significant activity towards the <i>para</i>-substituted phenylalanine derivative pAzF. As such, we hypothesized that like <i>Ma</i>PylRS, the evolved PyrRS variants should also be orthogonal to the <i>M. jannaschii</i>-derived AzFRS_{2.1}, enabling them to be used jointly to incorporate multiple, distinct ncAAs into a single protein (Amiram et al., 2015; Tharp et al., 2021).

Combining the Most Active PANCE Mutations to Create PyrRS_{opt}

We suspected that combining the mutations that conferred the greatest increases in activity may result in an additive effect, yielding a hyperactive, ncAA-specific PyrRS variant. Based on our results from the initial fluorescence experiments, we cloned a <i>Ma</i>PylRS variant containing the mutations V42I, K181E, and A190V, and named the construct PyrRS_{opt}. We tested the activity of <i>Ma</i>PylRS, PyrRS_{V42I/K181E}, and PyrRS_{opt} towards several ncAAs, and found that the activity of PyrRS_{opt} was higher than both wild-type and the individual mutants for every ncAA we tested (Figure 4A). Notably, background fluorescence in the absence of ncAA remains close to basal levels for PyrRS_{opt}. Like <i>Ma</i>PylRS, PyrRS_{opt} is highly selective for ncAAs over canonical amino acids. To support this, we co-transformed DH10B cells with sfGFP 2TAG and either <i>Ma</i>PylRS or PyrRS_{opt}. The cells were supplemented with 1 mM BocK, and sfGFP was purified. The
yield of sfGFP was robust at approximately 20 mg/L in cells expressing either MaPylRS or PylRS opt (Figure 4B). We analyzed these samples by intact mass spectroscopy, which confirmed that BocK is solely present at position 2 of the protein (Figure 4C).

To gain further insight into the robustness of the activity of PylRS opt, we titrated BocK, ALocK, and PrK and measured the fluorescence in cells expressing either MaPylRS or PylRS opt (Supplementary Figure S4). We tested concentrations as low as 62.5 µM, which is slightly above the K_m that was reported for M. mazei PylRS and its natural substrate, pyrrolysine (Guo et al., 2014). We found that the activity of PylRS opt is significantly greater than MaPylRS at all ncAA concentrations tested.

To validate our in vivo fluorescence data, we implemented a chloramphenicol acetyltransferase assay as a second reporter system. DH10B cells expressing either MaPylRS or PylRS opt, Ma tRNAPyl, and the chloramphenicol acetyltransferase gene with a single in-frame TAG codon were challenged to grow on plates containing bacteriostatic levels of chloramphenicol in the presence and absence of BocK, PrK, and ALocK (Figure 4D). The results corroborated our observations from the fluorescence data. Upon diluting saturated overnight cultures 1/100, cells expressing MaPylRS are unable to grow on chloramphenicol plates regardless of the presence or absence of a ncAA. However, under these same conditions, PylRS opt supports strong colony growth in the presence of BocK, PrK, or ALocK. Neither enzyme supports growth on 200 µg/ml chloramphenicol plates in the absence of a ncAA. We note, however, that on the less stringent 100 µg/ml chloramphenicol plates, spotting undiluted cells expressing PylRS opt enables slow growth in the absence of a ncAA, whereas the same cells expressing MaPylRS cells are unable to grow under these conditions. This phenomenon is not observed at 200 µg/ml chloramphenicol, where growth is only apparent for PylRS opt in the presence of 1 mM BocK or ALocK. These results confirm the previous observation that PylRS opt is more active than MaPylRS towards BocK, ALocK, and PrK, with the caveat that under low stringency conditions, PylRS opt can apparently incorporate a canonical amino acid in the absence of a ncAA and facilitate modest colony growth.

Inserting PylRS opt Mutations Into MaPylRS N166S

Next, we sought to determine whether the mutations found in PylRS opt can improve the activity of a previously engineered variant of MaPylRS that readily incorporates meta- and ortho-substituted Phe (Tharp et al., 2021). The highly conserved active
site residue N166 (N346 in *M. mazei* PylRS) plays a critical role as the “gatekeeper residue” of the PylRS active site, as the amide nitrogen is involved in the recognition of pyrrolysine and its analogs (Yanagisawa et al., 2008; Wang et al., 2011; Wang et al., 2012). Mutating N166 alters the substrate specificity of *Ma*PylRS, effectively eliminating recognition of lysine-derived ncAAs while greatly increasing its activity towards several phenylalanine derivatives. *Ma*PylRS_{N166S} was recently shown to aminoacylate a variety of meta- and ortho-substituted phenylalanine derivatives (Tharp et al., 2021). Thus, we created *Ma*PylRS_{N166S/opt} and compared its activity to *Ma*PylRS_{N166S} to assess whether combining the PylRS_{opt} mutations with N166S can enhance its activity towards Phe derivatives without compromising its substrate selectivity (Figure 5A). The results show that PylRS_{N166S/opt} has increased activity towards mCNF and oIF, which are both difficult substrates for *Ma*PylRS_{N166S}. However, the PylRS_{opt} mutations do not improve activity towards the well-recognized substrate mIF. As *Ma*PylRS_{N166S} is already highly active towards mIF, the lack of improvement in activity towards this substrate is predictable. It should be noted that the background activity of PylRS_{N166S/opt} is also elevated in the absence of a ncAA. It is plausible that the canonical amino acid may be sufficiently outcompeted when a recognized ncAA is present, as is the case with PylRS_{opt} in the presence of BocK. Overall, the data indicate that the mutations in PylRS_{opt} improve the activity of *Ma*PylRS_{N166S} towards difficult Phe-ncAAs. However, elevated background activity is also apparent for this PylRS variant and may be a drawback for applications that require a homogeneous protein sample. Lower background levels may be attainable when combining the PylRS_{opt} mutations with other active site mutants variants, such as those reported previously for incorporating bulky Lys-ncAAs (Seki et al., 2020).

PylRS_{opt} Mutations Improve the Efficiency of Dual ncAA Incorporation

As a final assessment of the usefulness of PylRS_{opt} we tested whether the enhanced activity and substrate specificity of PylRS_{opt} could be used to improve the incorporation of two distinct ncAAs into a single protein. Translation efficiency drops dramatically when two or more distinct ncAAs are to be inserted into a protein, a problem that is exacerbated when aminoacylation of either of the ncAAs is particularly challenging (Hoesl and Budisa, 2011). Thus, improved activity is crucial to attaining substantial yields of proteins containing multiple ncAAs. To investigate the applicability of PylRS_{opt} for improving dual incorporation of difficult ncAAs, we cloned a system to measure the production of sfGFP featuring two in-frame stop codons: 2TAG and 149TAA. We utilized the *M. jannaschii* TyrRS variant AzFRS.2.t1 and its cognate MjtRNATyr_{CUA} to incorporate pAzF, and either *Ma*PylRS or PylRS_{opt} along with MjtRNATyr_{6UUA} to incorporate PrK. Importantly, PylRS does not discriminate against the anticodon of tRNA^{PyL} (Ambrogelly et al., 2007), and tRNA^{PyL} does not suppress UAG codons (Odoi et al., 2013), thus enabling PylRS/tRNA^{PyL} to function as an orthogonal pair with the MjtTyrRS/tRNA^{Tyr}_Mj system (Wan et al., 2010; Chatterjee et al., 2013). As has been suggested previously, this artifact is likely due to low-level recognition of canonical amino acids by AzFRS.2.t1 in the absence of pAzF. Ultimately, utilizing PylRS_{opt} to incorporate a second ncAA into a protein leads to over a two-fold improvement in the apparent protein yield compared to wild-type *Ma*PylRS. PylRS_{opt} should therefore be quite useful in applications requiring site-specific incorporation of multiple reactive moieties in a single protein, such as bioorthogonal click chemistry (Neumann et al., 2010; Wan et al., 2010).

DISCUSSION

We have shown that the PANCE system can be adjusted to mitigate the emergence of promiscuous PylRS variants by integrating a negative selection step into the procedure. Alternating positive and negative selection while gradually increasing the stringency of positive selection enables the
emergence of highly selective, hyperactive variants of MaPyIRS. Screening the activity of MaPyIRS mutants that arose from PANCE led us to the identification of PylRS_{opt}, a novel PylRS construct. Despite having no modifications to its active site, PylRS_{opt} profiles as a valuable genetic code expansion tool that is highly active towards several Lys- and Phe-ncAAs while maintaining excellent selectivity in discriminating against canonical amino acids. All but one of the mutations that arose from our directed evolution process were previously unidentified, and the mechanism by which these mutations enhance PylRS activity is unclear. Nevertheless, the identification of several residues outside of the active site underscores the power of impartial mutagenesis and selection, as it is unlikely that these residues would have otherwise been targeted for engineering.

Our findings of impactful mutations outside of the active site are consistent with previously reported directed evolution experiments on chPylRS (Bryson et al., 2017; Suzuki et al., 2017). In these studies, increased PylRS activity is proposed to stem from improved binding to the cognate tRNA. In MaPyIRS, K181 and A190 are located on an α-helix just outside of the active site (Seki et al., 2020). It is plausible that the mutations we observed may create conformational changes that alter the size, shape, or flexibility of the catalytic core. Conversely, V42 is located in the tRNA binding domain. This mutation is unlikely to impact ncAA binding but may instead facilitate a change in tRNA interaction. In the D. hafniense PylRS/tRNA_{P pyl} complex, the corresponding aligned residue Q52 is located in the α-helix of tRNA binding domain 1 that serves as a binding surface for the core of tRNA_{P pyl} (Nozawa et al., 2009). Thus, it is possible that mutation of V42 may alter the binding of MaPyIRS to tRNA_{P pyl}, although it is unclear how the conserved V42I mutation may impact the overall structure of the domain. It is also possible that V42I is an innocuous mutation and K181E is instead the sole driving force behind the activity of this PylRS variant, as we did not test the activity of each of the two mutants independently. Accordingly, the opposite may hold true as well.

Our directed evolution system led to the emergence of several PylRS variants that are active towards a variety of ncAAs. The lone exception to this observation is the active site mutant V168A, which is capable of efficiently incorporating BocK but discriminates against all other Lys- and Phe-derivatives we tested. V168 (C348 in the M. mazei sequence) is associated with the size of the active site binding pocket and is positioned near the N°-substituent of pyrrolysine and its analogs (Kavran et al., 2007; Seki et al., 2020). Thus, it stands to reason that substituting the smaller alanine at this position enlarges the binding pocket. This may then allow the bulky BocK to maintain contacts with the active site while simultaneously hindering the recognition of smaller canonical and noncanonical amino acids. Conversely, mutating V168 to a larger residue may improve the recognition of smaller ncAAs as well as canonical phenylalanine, as this was observed in a mutational analysis of M. mazei PylRS (Wang et al., 2011).

Combining the most active PANCE mutations to generate PylRS_{opt} resulted in an additive effect: the activity of the combined mutant is demonstrably higher than its predecessors. The enhanced activity of PylRS_{opt} is particularly notable for ncAAs that MaPyIRS is relatively weakly active towards, such as PrK. While the greatest activity increases are observed when using weaker substrates, PylRS_{opt} is also more active towards well-recognized ncAAs such as BocK and ALocK. Further, background activity in the absence of a ncAA is not significantly altered by the mutations in PylRS_{opt}. We suspect that the activity increase seen in PylRS_{opt} is generalizable and not substrate-specific, as we observed enhanced activity for PylRS_{opt} towards nearly every substrate that the wild-type enzyme is also active towards. Utilizing PylRS_{opt} in future studies to incorporate additional ncAAs should validate this hypothesis. Because the PylRS_{opt} mutations are located outside of the active site, these mutations should theoretically be generalizable like those found in the evolved chPylRS variant (Bryson et al., 2017). Although the results with MaPyIRS_{N166S,opt} were somewhat mixed, future studies may reveal other engineered PylRS variants that are improved by the PylRS_{opt} mutations. Finally, we have shown that PylRS_{opt} is orthogonal with the MjTyrRS/tRNA_{Tyr} system and enables a sharp increase in the production of a reporter protein with two distinct ncAAs. It is likely that when used with tRNA_{P pyl}^{(6)}, PylRS_{opt} is orthogonal with the M. mazei PylRS/tRNA_{P pyl} system, as is the case with MaPyIRS/tRNA_{P pyl}^{(6)} (Willis and Chin, 2018). Thus, incorporation of three distinct ncAAs should also be improved by PylRS_{opt} when used in combination with the other two orthogonal systems as previously described (Tharp et al., 2021).

In summary, directed evolution facilitated the development of a hyperactive and highly selective genetic code expansion tool PylRS_{opt} which should be useful for a wide variety of applications moving forward.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusion of this article will be made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

JF designed the study, performed the experiments, and drafted the manuscript. DS and JT provided feedback and intellectual support throughout the study and edited the manuscript.

FUNDING

JT was supported by a K99 Pathway to Independence Award from the National Institute of General Medical Sciences (No. K99GM141320). This work was supported by grants from the US
National Institute of General Medical Sciences (No. R35GM122560 to DS), and the US Department of Energy (No. DE-FG02-98ER20311 to DS).

ACKNOWLEDGMENTS

We thank C. Chung, N. Krahn, and O. Vargas-Rodriguez for critical feedback on the project, J. Ho, C. Miller, and E. Chory for insightful conversations, and K. Hoffman for mass spectroscopy data collection and analysis.

REFERENCES

Ambrogelly, A., Gundillapalli, S., Herring, S., Polycarpo, C., Frauer, C., and Söll, D. (2007). Pyrrolysine Is Not Hardwired for Cotranslational Insertion at UAG Codons. Proc. Natl. Acad. Sci. 104, 3141–3146. doi:10.1073/pnas.0611634104

Amiram, M., Haimovich, A. D., Fan, C., Wang, Y.-S., Aerni, H.-R., Ntai, I., et al. (2015). Evolution of Translation Machinery in Recoded Bacteria Enables Multi-Site Incorporation of Nonstandard Amino Acids. Nat. Biotechnol. 33, 1272–1279. doi:10.1038/nbt.3372

Badran, A. H., and Liu, D. R. (2015). Development of Potent In Vivo Mutagenesis Plasmids with Broad Mutational Spectra. Nat. Commun. 6, 8425. doi:10.1038/ncomms9425

Baumann, T., Hauf, M., Richter, F., Albers, S., Möglik, A., Ignatova, Z., et al. (2019). Computational Aminoacyl-tRNA Synthetase Library Design for Photocaged Tyrosine. Int. J. Mol. Sci. 20, 2343. doi:10.3390/ijms20092343

Beranek, V., Willis, J. C. W., and Chin, J. W. (2019). An Evolved Methanomethylophilus Alvus Pyrrolysyl-tRNA Synthetase/ tRNA Pair Is Highly Active and Orthogonal in Mammalian Cells. Biochemistry 58, 387–390. doi:10.1021/acs.biochem.8b00808

Bryson, D. I., Fan, C., Guo, L.-T., Miller, C., Söll, D., and Liu, D. R. (2017). Continuous Directed Evolution of Aminoacyl-tRNA Synthetases. Nat. Chem. Biol. 13, 1253–1260. doi:10.1038/nchembio.2474

Budisa, N. (2005). Engineering the Genetic Code: Expanding the Amino Acid Repertoire for the Design of Novel Proteins. Weinheim: Wiley-VCH Verlag GmbH & Co KGaA. doi:10.1002/3527607188

Carlson, J. C., Badran, A. H., Guggiana-Nilo, D. A., and Liu, D. R. (2014). Negative Selection and Stringency Modulation in Phage-Assisted Continuous Evolution. Nat. Chem. Biol. 10, 216–222. doi:10.1038/nchembio.1453

Chatterjee, A., Sun, S. B., Furman, J. L., Xiao, H., and Schultz, P. G. (2013). A Versatile Platform for Single- and Multiple-Nonnatural Amino Acid Mutagenesis in Escherichia coli. Biochemistry 52, 1828–1837. doi:10.1021/bi4000244

Cmikovic, A., Suzuki, T., Soll, D., and Reynolds, N. M. (2016). Pyrrolysyl-tRNA Synthetase, an Aminoacyl-tRNA Synthetase for Genetic Code Expansion. Croat. Chem. Acta 89, 163–174. doi:10.5362/ccaa2825

Esvelt, K. M., Carlson, J. C., and Liu, D. R. (2011). A System for the Continuous Directed Evolution of Biomolecules. Nature 472, 499–503. doi:10.1038/nature09929

Guo, L.-T., Wang, Y.-S., Nakamura, A., Eiler, D., Kavan, J. M., Wong, M., et al. (2014). Polyspecific Pyrrolysyl-tRNA Synthetases from Directed Evolution. Proc. Natl. Acad. Sci. USA 111, 16724–16729. doi:10.1073/pnas.1419737111

Hancock, S. M., Uprety, R., Deiters, A., and Chin, J. W. (2010). Expanding the Genetic Code of Yeast for Incorporation of Diverse Unnatural Amino Acids via a Pyrrolysyl-tRNA Synthetase/ tRNA Pair. J. Am. Chem. Soc. 132, 14819–14824. doi:10.1021/ja104699m

Hao, B., Gong, W., Ferguson, T. K., James, C. M., Krzycki, J. A., and Chan, M. K. (2002). A New UAG-Encoded Residue in the Structure of a Methanogen Methyltransferase. Science 296, 1462–1466. doi:10.1126/science.1069556

Hayes, H. C., Luk, E. Y. P., and Tsai, Y.-H. (2021). Approaches for Peptide and Protein Cyclisation. Org. Biomol. Chem. 19, 3983–4001. doi:10.1039/d1ob0411e

Hoel, M. G., and Budisa, N. (2011). In Vivo incorporation of Multiple Noncanonical Amino Acids into Proteins. Angew. Chem. Int. Ed. 50, 2896–2902. doi:10.1002/anie.201005680

Supplementary Material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmolb.2022.850613/full#supplementary-material
