Assessment of some haemostatic parameters at different stages of pregnancy

Abstract

This study evaluated the effect of pregnancy on some haemostatic parameters. Blood samples were collected from sixty eight (68) pregnant women; comprising of 26, 21 and 21 subjects at 1st, 2nd and 3rd trimesters of pregnancy respectively within the age of 18–45 years. Another 40 age–matched non–pregnant adult females served as controls. Standard methods were adopted for the analysis of prothrombin time (PT), activated partial thromboplastin time (APTT) and platelets counts (PLT). Overall results showed that PT, APTT and PLT counts were 11.50 seconds, 30.16 seconds and 190.26 x 10^9/L, respectively for the test groups, and 12.99 seconds, 33.68 seconds and 256.73 x 10^9/L, respectively for the control groups. There was significant (P<0.005) decline in the test group for each of the haemostatic parameters under study. The results also showed a decline in the haemostatic parameters at increased pregnancy duration. Although decline occurs among the various stage of pregnancy but it’s not enough to cause hypercoagulability with regard to PT and APTT, and thrombocytopenia or thrombocytosis based on the platelets count results.

Keywords: activated partial thromboplastin time, Platelets, Pregnancy, prothrombin time

Introduction

In women within the reproductive age, several hormones such as estradiol, progesterone, luteinizing and follicle–stimulating hormone play essential role. At different phase (viz: ovulation, pregnancy, breast feeding etc), different hormones are at work. Specifically, during pregnancy a woman’s body goes through several physiological changes.

Anaemia has been recognized as one of the adverse health conditions during pregnancy. According to American Pregnancy Association, anaemia is a health situation that results from insufficient healthy red blood cells that could transport oxygen to body tissues and system. Authors have indicated that anaemia during pregnancy is a contributing factor to low birth weight, maternal mortality and premature birth. Anaemia symptom at pregnancy are mainly fatigue, low concentration, breath shortness, irregular heartbeat, chest pain, dizziness, pale skin, lips, and nails, cold hands and feet, weakness, tiredness, anorexia, swollen legs, trembling and palpitation.

Secondly, micro tears occur at the endothelium lining which could lead to blood vessel enlargement particularly at the uterus during pregnancy. Hence, pregnancy leads to adjustment in life pattern. Papadopol et al. opined that pre–pregnancy diet of the woman; fetal size and lifestyle are the main determinant factors of variation in physiological characteristics of the woman.

During pregnancy the changes in the body leads to adaptation in the metabolic processes. Furthermore, pregnancy could alter some blood parameters such as haemoglobin level. Several other blood parameters are altered during pregnancy. Papadopol et al. reported that decline in blood parameters during pregnancy is associated to hemodilution.

Typically, blood plays a vital function in humans. Blood provides a pathological retractor for certain conditions. Blood characteristics are influenced by health status/physiological condition, gender, age, etc. Numerous haematological indices/parameters are used to evaluate the health condition of a patient. Blood is used in assessing several parameters that provide useful information about the health condition of an individual. Some of this parameters include liver function indices/parameters (viz: alkaline phosphatase, total protein, conjugated bilirubin, alanine transaminase, albumin, aspartate transaminase, total bilirubin), triglyceride, creatinine, cholesterol, chloride, sodium, potassium, calcium, bicarbonate, phosphate, blood sugar, red blood cells, mean corpuscular volume, haemoglobin, haematocrit, mean corpuscular haemoglobin concentration, mean corpuscular haemoglobin, white blood cells, erythrocyte sedimentation rate, platelets, blood differentials (neutrophil, lymphocyte, monocyte, eosinophil, basophil counts), retroviral screening, activated partial thromboplastin time and prothrombin time, among others.

Blood platelets are crucial in preventing excess bleeding and red blood cell leakage. Prothrombin time and activated partial thromboplastin time help to determine the integrity of the coagulation system. These parameters are therefore essential to the body. Hence, this study aimed at assessing the effects of various stages of pregnancy on some haemostatic parameters.

Materials and methods

Study area

Yenagoa metropolis is within Yenagoa local government area of Bayelsa State. Yenagoa metropolis is also the capital of Bayelsa state. The state surrounded with Rivers, Delta states and Atlantic Ocean. The region is a sedimentary basin and fishing is one of the main occupations of natives of the area. However, due to industrialization, urbanization and developmental projects the area is characterized...
by few businesses and civil service jobs. The climatic condition of the area is peculiar to other Niger Delta regions that have been widely reported in literatures$^{15-28}$ with regard to relative humidity and atmospheric temperature.$^{29-33}$

Selection criteria for participants

Inclusion criteria: The participants of this study were individuals attending antenatal clinic at the Federal Medical Centre Yenagoa; a tertiary health institution. A total of sixty eight (68) pregnant women with age range of 18–45 years were recruited in this study. Control group was also established using non–pregnant women within the age of 18–45 years. Pregnancy test was done using Kit supplied by Citus Diagnostics Inc. Canada; Lot number:HCG17090031.

Exclusion criteria: Pregnant women with hepatitis, tuberculosis, diabetes, vascular diseases incidence were exempted for the study. Also, those who declined consent were exempted.

Blood collection

The blood samples were collected using standard venipuncture technique previously described by Eledo et al.9,13 Approximately 5mls of blood was collected from each subject; some portion of the blood was dispensed into dipotassium EDTA bottles containing 1.5mg/ml of blood of the anhydrous salt for platelets count determination, while, samples meant for prothrombin and activated partial thromboplastin time analysis were dispensed into a plastic tube containing 0.25ml of trisodium citrate.

Laboratory assessment

Prothrombin time and activated partial thromboplastin time analysis were carried out following the methods previously described by Eledo et al.9,13 Kits supplied by Agappe Diagnostics Switzerland with Lot number: 52601003 were used for prothrombin time and Lot number: 52602001 for activated partial thromboplastin time. The platelets counts were analysed using Cronkit’s ammonium oxalate method.

Statistical analysis

Statistical analysis was carried out using SPSS software. Descriptive statistics mean ± standard error. Student “t” test was used to test for significance variation at $P=0.05$.

Results and discussion

The effects of 1st, 2nd, 3rd trimesters of pregnancy on haemostatic parameters among pregnant women attending the antenatal clinic of the Federal Medical Centre, Yenagoa, Bayelsa state, Nigeria is presented in Table 1–3. While the overall effects of pregnancy on haemostatic parameters is presented in Table 4. In the 1st, 2nd, 3rd trimesters and overall effect of pregnancy, prothrombin time was 12.14seconds, 11.37seconds, 10.84seconds and 11.50seconds, respectively. These values were significantly ($P<0.001$) lower than the control value of 12.99seconds. Apart from 3rd trimester value that was slightly below 11second, the prothrombin time is within normal range. These suggest no risk of hypercoagulability tendency that could result from alteration of thrombo–haemorrhagic stability in support of thrombosis.

Table 1 Effects of pregnancy on some haemostatic parameters during the 1st trimester

Parameters	Mean± standard error	t-value	P-value
Subjects (n=26)	Control (n=40)		
Prothrombin time (PT), secs	12.14±0.12	-5.644	0
Activated partial thromboplastin time (APTT), secs	31.92±0.41	-2.971	0.004
Platelets counts (PLT)(x109/L)	205.85±2.62	-20.246	0

Table 2 Effect of pregnancy on some haemostatic parameters during the 2nd trimester

Parameters	Mean± standard error	t-value	P-value
Subjects (n=21)	Control (n=40)		
Prothrombin time (PT), secs	11.37±0.14	-10.002	0
Activated partial thromboplastin time (APTT), secs	30.14±0.45	5.514	0
Platelets counts (PLT)(x109/L)	186.86±9.97	38.695	0

Table 3 Effect of pregnancy on some haemostatic parameters during the 3rd trimester

Parameters	Mean± standard error	t-value	P-value
Subjects (n=21)	Control (n=40)		
Prothrombin time (PT), secs	10.84±0.18	11.968	0
Activated partial thromboplastin time (APTT), secs	28.00±0.50	8.712	0
Platelets counts (PLT)(x109/L)	174.38±2.2	37.441	0

Citation: Eledo BO, Izah SC, Okamgba OC, et al. Assessment of some haemostatic parameters at different stages of pregnancy. *Hematol Transfus Int J.* 2018;6(3):98–101. DOI: 10.15406/hstij.2018.06.00161
Activated partial thromboplastin time of 1st, 2nd, and 3rd trimesters and overall effect of pregnancy was 31.92 seconds, 30.14 seconds, 28.00 seconds and 30.16 seconds, respectively, showing significant variation (P<0.005) between test and control groups. Low activated partial thromboplastin time is a measure of hyper‒coagulable conditions that could predispose patients to thrombotic events.9,34,35 Despite the decline in the test group, the values are not low to cause major cardiovascular and thrombotic events among the various stages of pregnancy. According to Elhassade & Balha,39 Eledo et al.,4 activated partial thromboplastin time is one of the major coagulant indices used to determine aberrations in the integrity of the coagulation system.

The platelets counts of 1st, 2nd, and 3rd trimesters and overall effect of pregnancy was 205.85 x109/L, 186.86 x109/L, 174.38 x109/L and 190.26 x109/L, respectively. Basically, significant variation (P<0.001) exists between test and control groups. There was a decline in platelets counts, but the values are within normal reference range. This suggests no alteration in metabolic body chemistry due to platelets counts.

Furthermore, the values of activated partial thromboplastin time, platelets counts and prothrombin time decreased with increased pregnancy duration. Usually, prothrombin time, activated partial thromboplastin time is among the main coagulation indices.9,36 While platelets is essential in the initiation and propagation of thrombosis.9

Conclusion

Prothrombin time and activated partial thromboplastin time provide useful information about the integrity of the intrinsic and extrinsic coagulation system, while blood platelet count is essential parameter used in assessing function which may predispose one to conditions that could predispose patients to thrombotic events. Prothrombin time and activated partial thromboplastin time due to physiological changes associated with pregnancy. Also the study showed that as pregnancy duration increased the platelets counts, prothrombin time and activated partial thromboplastin time declined. However the overall values of the haemostatic indices assessed in this study revealed no major change that could predispose the women to vascular complications.

Acknowledgement

None.

Authors contribution

Author BOE conceived the idea, involved in sample collection and laboratory analysis. Author SCI managed literature search, carried out the statistical analysis and wrote the initial draft. Authors OOC and ECO proof read the manuscript. All authors approved the manuscript.

Ethical consideration

Permission was obtained from the ethics committees of the Medical Laboratory Science Department of Madonna University, Elele, Nigeria and Federal Medical Centre Yenagoa, Nigeria. Informed consent was obtained from the patients prior to sample collections.

Conflict of interest

The authors declare that there is no conflict of interest.

References

1. Eledo BO, Igwe MU, Izhah SC. Evaluation of Total white blood cells and Cluster of Differentiation 4 cells among Post‒Menopausal Women in Elele, Nigeria. Modern Research in Inflammation. 2018;7(2):21‒29.
2. Eledo BO, Okamgba O, Allagoa DO, et al. Iron status audit among women of reproductive age attending a tertiary hospital in South‒ East region of Nigeria: A frontier for achieving millennium development goals. International Journal of Healthcare and Medical Sciences. 2017;3(10):70‒75.
3. Chowdhury S, Rahman M, Moniruddin ABM. Anaemia in pregnancy. Medicine Today. 2014;26(01):49‒52.
4. Sharma JB, Shankar M. Anaemia in Pregnancy. JIMSA. 2010;23(4):253‒260.
5. American Pregnancy Association. Anaemia during pregnancy. USA; 2016.
6. Eledo BO, Allagoa DO, Ihedioha AU, et al. Evaluation of Some Haematological Parameters Among Post-menopausal Women in Bayelsa state, Nigeria: A case Study of Patients Attending Federal Medical Centre, Yenagoa. American Journal of Laboratory Medicine. 2017;2(6):132‒136.
7. Eledo BO, Buseri FI, Akhogba AO. Evaluation of Some Haematological Parameters Among Pregnant Ijaw Women: An Indigenous West African Tribe. Journal of Health, Medicine and Nursing. 2015;13:10‒17.
8. Papadopol V, Damian O, Palamaru I, et al. Maternal haematological and biochemical parameters and pregnancy outcome. The journal of preventive medicine. 2001;9(3):27‒33.
9. Eledo BO, Nwoga MI, Okamgba OC, et al. Assessment of Some Haemostatic Parameters Among Diabetes Mellitus Patients in Bayelsa State: A Case Study at the Federal Medical Centre, Yenagoa. European Journal of Clinical and Biomedical Sciences. 2017;3(5):91‒96.
10. Etim NN, Williams ME, Akpabio U, et al. Haematological Parameters and Factors Affecting Their Values. Agricultural Science. 2014; 2(1):37‒47.
Assessment of some haemostatic parameters at different stages of pregnancy from River Nun, Amassoma Axises, Nigeria.

Effect of Exercise on Some

Reference data of clinical chemistry,

Journal of

2018;6(3):98

Citation:

Assessment of some haemostatic parameters at different stages of pregnancy

24.

23.

21.

20.

19.

18.

16.

15.

14.

12.

11.

10.

9.

8.

7.

6.

5.

4.

3.

2.

1.

Ndiok EO, Ohimain EI, Izah SC. Incidence of Malaria in Type 2 Diabetic patients and the effect on the liver: a case study of Bayelsa state. Journal of Mosquito Research. 2016;6(15):1–8.

Moore S. Exercise & Low Platelet Count. USA; 2017.

Eledo BO, Igwe R, Okamgba OC, et al. Effect of Exercise on Some Haemostatic Parameters Among Students in a Tertiary Educational Institution in Nigeria. American Journal of Health Research. 2017;5(5):145–148.

Khalid A, Zafar L. Effect of Haemodialysis on Mean Prothrombin Time and Activated Partial Thromboplastin Time in Patients of End Stage Renal Disease. Journal of Rawalpindi Medical College. 2015;19(3):247–249.

Ben–Eledo VN, Kidigha LT, Izah SC, et al. Water quality assessment of Epie creek in Yenagoa metropolis, Bayelsa state, Nigeria. Archives of Current Research International. 2017;8(2):1–24.

Ben–Eledo VN, Kidigha LT, Izah SC, et al. Bacteriological Quality Assessment of Epie Creek, Niger Delta Region of Nigeria. International Journal of Ecotoxicology and Ecobiology. 2017;(3):102–108.

Seiyaboh EI, Izah SC, Oweibi S. Physico–chemical Characteristics of Sediment from Sagbama Creek, Nigeria. Biotechnological Research. 2017;3(1):25–28.

Seiyaboh EI, Izah SC, Bokolo JE. Bacteriological quality of water from river nun at Amassoma Axises, Niger Delta, Nigeria. ASIO Journal of Microbiology, Food Science & Biotechnological Innovations. 2017;3(1):22–26.

Seiyaboh EI, Izah SC, Oweibi S. Assessment of Water quality from Sagbama Creek, Niger Delta, Nigeria. Biotechnological Research. 2017;3(1):20–24.

Seiyaboh EI, Inyang IR, Izah SC, et al. Seasonal Variation of Physico–Chemical Quality of Sediment from Ikoli Creek, Niger Delta. Int. J. Innovative Environ Studies Res. 2016;4(4):29–34.

Seiyaboh EI, Inyang IR, Izah SC. Spatial Variation in Physico–chemical Characteristics of Sediment from Epie Creek, Bayelsa State, Nigeria. Greener J. Environ. Manage. Public Safety. 2016;5(5):100–105.

Seiyaboh EI, Izah SC. Bacteriological assessment of a tidal creek receiving slaughterhouse wastes in Bayelsa state, Nigeria. Journal of Advances in Biology & Biotechnology. 2017;14(1):1–7.

Seiyaboh EI, Izah SC. Review of Impact of Anthropogenic Activities in Surface Water Resources in the Niger Delta region of Nigeria: A case of Bayelsa state. International Journal of Ecotoxicology and Ecobiology. 2017;2(2):61–73.

Ogamba EN, Seiyaboh EI, Izah SC, et al. Water quality, phytochemistry and proximate constituents of Eichhornia crassipes from Kolo creek, Niger Delta, Nigeria. International Journal of Applied Research and Technology. 2015;4(9):77–84.

Ogamba E, Izah S, Oriibu T. Water quality and proximate analysis of Eichhornia crassipes from River Nun, Amassoma Axis, Nigeria. Research Journal of Phytomedicine. 2015;1(1):43–48.

Ogamba EN, Izah SC, Toikunso BP. Water quality and levels of lead and mercury in Eichhornia crassipes from a tidal creek receiving abattoir effluent, in the Niger Delta, Nigeria. Continental Journal of Environmental Science. 2015;9(1):13–25.

Ogamba EN, Ebere N, Izah SC. Heavy Metal Concentration in Water, Sediment and Tissues of Eichhorniacrassipes from Kolo Creek, Niger Delta. Greener J Environ Manage Public Safety. 2017;6(1):1005–1005.

Ogamba EN, Ebere N, Izah SC. Levels of lead and cadmium in the bone and muscle tissues of Oreochromisniloticus and Clarias camerunensis. EC Nutrition. 2017;7(3):117–123.

Izah SC, Bassey SE, Ohimain EI. Ecological risk assessment of heavy metals in cassava mill effluents contaminated soil in a rural community in the Niger Delta Region of Nigeria. Molecular Soil Biology. 2018;9(1):1–11.

Izah SC, Agibueru AO. Assessment of Microbial Quality of Cassava Mill Effluents Contaminated Soil in a Rural Community in the Niger Delta, Nigeria. EC Microbiology. 2017;13(4):132–140.

Izah SC, Bassey SE, Ohimain EI. Geo–accumulation index, enrichment factor and quantification of contamination of heavy metals in soil receiving cassava mill effluents in a rural community in the Niger Delta region of Nigeria. Molecular Soil Biology. 2017;8(2):7–20.

Izah SC, Bassey SE, Ohimain EI. Assessment of heavy metal in cassava mill effluent contaminated soil in a rural community in the Niger Delta region of Nigeria. EC Pharmacology and Toxicology. 2017;4(5):186–201.

Izah SC, Bassey SE, Ohimain EI. Assessment of pollution load indices of heavy metals in cassava mill effluents contaminated soil: a case study of small-scale cassava processing mills in a rural community of the Niger Delta region of Nigeria. Bioscience Methods. 2017;8(1):1–17.

Alao O, Damulak D, Joseph D, et al. Haemostatic Profile of Patients with Type 2 Diabetes Mellitus in Northern Nigeria. The Internet Journal of Endocrinology. 2010;6(1):1–5.

Elhassade AS, Balha OS. Effect of diabetes mellitus type II on activated partial thromboplastin time and prothrombin time. Int J Clin and Biomed Res. 2016;2(3):1–4.

Wang H, Niu YY, Si W, et al. Reference data of clinical chemistry, haematology and blood coagulation parameters in juvenile cynomolgus monkeys (Macaca fascicularis). Veterinarni Medicina. 2012;57(5):233–238.

Citation: Eledo BO, Izah SC, Okamgba OC, et al.Assessment of some haemostatic parameters at different stages of pregnancy. Hematol Transfus Int J. 2018;6(3):98–101. DOI: 10.15406/hetj.2018.06.00161