A GENERALIZATION OF HALL’S THEOREM FOR
k-UNIFORM k-PARTITE HYPERGRAPHS

REZA JAFARPOUR-GOLZARI

ABSTRACT. In this paper we prove a generalized version of Hall’s
theorem for hypergraphs. More precisely, let \mathcal{H} be a k-uniform
k-partite hypergraph with some ordering on parts as V_1, V_2, \ldots, V_k.
such that the subhypergraph generated on $\bigcup_{i=1}^{k-1} V_i$ has a unique
perfect matching. In this case, we give a necessary and sufficient
condition for having a matching of size $t = |V_1|$ in \mathcal{H}. Some relevant
results and counterexamples are given as well.

1. Introduction

We refer to [7] and [6] for elementary backgrounds in graph and hypergraph
theory respectively.

Let G be a simple finite graph with vertex set $V(G)$ and edge set $E(G)$. A matching in G, is a set M of pairwise disjoint edges of G. A
matching M is said to be a perfect matching, if every $x \in V(G)$ lies in
one of elements of M. A matching M in G, is maximum whenever for
every matching M', $|M'| \leq |M|$.

For every set of vertices A, $N(A)$ which is called the neighborhood of
A is the set of vertices which are adjacent with at least one element of A.
The following theorem is known as Hall’s theorem in bipartite graphs.

Theorem 1.1. ([7] Theorem 5.2) Let G be a bipartite graph with bipar-
tition (X,Y). Then G contains a matching that saturates every vertex
in X, if and only if

$$|N(S)| \geq |S| \quad \text{for all } S \subseteq X.$$
A vertex cover in G, is a subset C of $V(G)$ such that for every edge e of G, e intersects C. A vertex cover C is called a minimum vertex cover, if for every vertex cover C', $|C| \leq |C'|$. The following theorem is known as König’s theorem in graph theory.

Theorem 1.2. ([7] Theorem 5.3) In a bipartite graph, the number of edges in a maximum matching is equal to the number of vertices in a minimum vertex cover.

Let V be a finite nonempty set. A hypergraph H on V is a collection of nonempty subsets of V such that $\bigcup_{e \in H} e = V$. Each subset is said to be a hyperedge and each element of V is called a vertex. We denote the set of vertices and hyperedges of H by $V(H)$ and $E(H)$, respectively. Two vertices x, y of a hypergraph are said to be adjacent whenever they lie in a hyperedge.

A matching in the hypergraph H is a set M of pairwise disjoint hyperedges of H. A perfect matching is a matching such that every $x \in V(H)$ lies in one of its elements. A matching M in H is called a maximum matching whenever for every matching M', $|M'| \leq |M|$.

In a hypergraph H, a subset C of $V(H)$ is called a vertex cover if every hyperedge of H intersects C. A vertex cover C is said to be minimum if for every vertex cover C', $|C| \leq |C'|$. We denote the number of hyperedges in a maximum matching of the hypergraph H by $\alpha'(H)$ and the number of vertices in a minimum vertex cover of H by $\beta(H)$.

A hypergraph H is said to be simple or a clutter if non of its two distinct hyperedges contains another. A hypergraph is called t-uniform (or t-graph), if all its hyperedges have the same size t. A hypergraph H is said to be r-partite ($r \geq 2$), whenever $V(H)$ can be partitioned to r subsets such that for every two vertices x, y in one part, x and y are not adjacent. If $r = 2, 3$, the hypergraph is said to be bipartite and tripartite respectively.

Several researches have been done about matching and existence of perfect matching in hypergraphs (see for instance [1], [9], [12]). Also some attempts have been produced in generalization of Hall’s theorem and König’s theorem to hypergraphs (see [2], [3], [4], [5], [10], [11]).

Definition 1.3. Let H be a k-uniform hypergraph with $k \geq 2$. A subset $e \subseteq V(H)$ of size $k - 1$ is called a submaximal edge if there is a hyperedge containing e. For a submaximal edge e, define the neighborhood of e as the set $N(e) := \{v \in V(H) | e \cup \{v\} \in E(H)\}$.
For a set \(A \) consisting of submaximal edges of \(\mathcal{H} \), \(\{ v \in V(\mathcal{H}) | \exists e \in A, v \in N(e) \} \) is denoted by \(N(A) \).

Definition 1.4. Let \(\mathcal{H} \) be a hypergraph, and \(\emptyset \neq V' \subseteq V(\mathcal{H}) \). The subhypergraph generated on \(V' \) is
\[
< V' > := \{ e \cap V' | e \in E(\mathcal{H}), e \cap V' \neq \emptyset \}.
\]

If \(\mathcal{H} \) is a \(k \)-uniform \(k \)-partite hypergraph with parts \(V_1, V_2, \ldots, V_k \), it is clear that the subhypergraph generated on the union of every \(k - 1 \) distinct parts is a \((k - 1) \)-uniform \((k - 1) \)-partite hypergraph.

Let \(\mathfrak{A} = (A_1, \ldots, A_n) \) be a family of subsets of a set \(E \). A subset \(\{x_1, \ldots, x_n\} \neq E \) of \(E \) is said to be a transversal (or SDR) for \(\mathfrak{A} \), if for every \(i (1 \leq i \leq n) \), \(x_i \in A_i \). A partial transversal (partial SDR) of length \(l \) \((1 \leq l \leq n - 1) \) for \(\mathfrak{A} \), is a transversal for a subfamily of \(\mathfrak{A} \) with \(l \) sets.[8]

The following theorem is known as Hall’s theorem in combinatorics.

Theorem 1.5. ([8] Theorem 4.1) The family \(\mathfrak{A} = (A_1, \ldots, A_n) \) of subsets of a set \(E \) has a transversal if and only if
\[
| \bigcup_{i \in I'} A_i | \geq |I'|, \quad \forall I' \subseteq \{1, \ldots, n\}.
\]

Corollary 1.6. ([8] Corollary 4.3) The family \(\mathfrak{A} = (A_1, \ldots, A_n) \) of subsets of a set \(E \) has a partial transversal of length \(l(> 0) \) if and only if
\[
| \bigcup_{i \in I'} A_i | \geq |I'| - n + l, \quad \forall I' \subseteq \{1, \ldots, n\}.
\]

2. The main results

Now we are ready to present our first theorem.

Theorem 2.1. Let \(\mathcal{H} \) is a \(k \)-uniform \(k \)-partite hypergraph with some ordering on parts, as \(V_1, V_2, \ldots, V_k \) such that the subhypergraph generated on \(\bigcup_{i=1}^{k-1} V_i \) has a unique perfect matching \(M \). Then \(\mathcal{H} \) has a matching of size \(t = |V_1| \), if and only if for every subset \(A \) of \(M \), \(|N(A)| \geq |A| \).

Proof. Let \(t = |V_1| \) and let the elements of \(M \) are \(e_1, \ldots, e_t \). Let \(\mathcal{H} \) has a matching of size \(t \) with elements \(e_1, \ldots, e_t \). By uniqueness of \(M \), let \(M = \{e_1 - V_k, \ldots, e_t - V_k\} \). Therefore
\[
(N(e_1), \ldots, N(e_t)) = (N(e_1 - V_k), \ldots, N(e_t - V_k)).
\]
Then the family \((N(e_1), \ldots, N(e_t))\) has an SDR. Then by Theorem 1.3
\[
|\bigcup_{i \in I} N(e_i)| \geq |I|, \quad \forall I \subseteq \{1, \ldots, t\}
\]
and therefore for every subset \(A\) of \(M\), \(|N(A)| \geq |A|\).

Conversely let for every subset \(A\) of \(M\), we have \(|N(A)| \geq |A|\). Now \((N(e_1), \ldots, N(e_t))\) is a family such that
\[
|\bigcup_{i \in I} N(e_i)| \geq |I|, \quad \forall I \subseteq \{1, \ldots, t\}.
\]
Therefore by Theorem 1.3, the mentioned family has an SDR. That is, there are distinct elements \(x_1, \ldots, x_t\) of \(V^k\) such that \(x_j \in N(e_j)\). Now for every \(1 \leq j \leq t\), \(e_j \cup \{x_j\}\) is a hyperedge of \(H\) and these hyperedges are pairwise disjoint. Then they form a matching of size \(t\) for \(H\). \(\square\)

Corollary 2.2. Let \(H\) be a \(k\)-uniform \(k\)-partite hypergraph with some ordering on parts as \(V_1, V_2, \ldots, V_k\) where \(|V_1| = |V_2| = \cdots = |V_k|\), such that the subhypergraph generated on \(\bigcup_{i=1}^{k-1} V_i\) has a unique perfect matching \(M\). Then \(H\) has a perfect matching if and only if for every subset \(A\) of \(M\), \(|N(A)| \geq |A|\).

Remark 2.3. Theorem 2.1 implies Theorem 1.1 (Hall’s theorem) in case \(k = 2\).

Remark 2.4. In Theorem 2.1, if the hypothesis of uniqueness of perfect matching of subhypergraph generated on \(\bigcup_{i=1}^{k-1} V_i\) is removed, only one side of theorem will remains correct. That is, from this fact that for every subset \(A\) of \(M\), \(|N(A)| \geq |A|\), we conclude that \(H\) has a matching of size \(t = |V_1|\). The following example shows that the inverse case is not true in general.

Example 2.5. Assume the 3-uniform 3-partite hypergraph \(H\) with the following presentation.
Indeed, $H = \{ \{x_1, y_1, z_1\}, \{x_1, y_2, z_2\}, \{x_2, y_2, z_2\}, \{x_2, y_1, z_2\}\}$ where the parts of H are

$V_1 = \{x_1, x_2\}$, $V_2 = \{y_1, y_2\}$, $V_3 = \{z_1, z_2\}$.

In this case there is a perfect matching $M_1 = \{ \{x_2, y_1\}, \{x_1, y_2\}\}$ for subhypergraph generated on $V_1 \cup V_2$. Although the hypergraph H has a matching $M' = \{ \{x_1, y_1, z_1\}, \{x_2, y_2, z_2\}\}$ of size 2, if $A = M_1$, we have $N(A) = \{z_2\}$. Therefore $|N(A)| \geq |A|$. Note that M_1 is not the unique perfect matching of subhypergraph generated on $V_1 \cup V_2$ because $M_2 = \{ \{x_1, y_1\}, \{x_2, y_2\}\}$ is also yet.

Theorem 2.6. Let H be a k-uniform k-partite hypergraph with some ordering on parts as V_1, V_2, \ldots, V_k such that the subhypergraph generated on $\bigcup_{i=1}^{k-1} V_i$ has a perfect matching M. If for every subset A of M, we have $|N(A)| \geq |A| - p$ where p is a fix integer and $1 \leq p \leq t - 1$, then H has a matching of size $t - p$, where t is the size of V_1.

Proof. Let the elements of M be $\varepsilon_1, \ldots, \varepsilon_t$. $(N(\varepsilon_1), \ldots, N(\varepsilon_t))$ is a family such that the cardinality of the union of each s terms is greater than or equal to $s - t + (t - p)$. Then by Corollary 1.4, the family $(N(\varepsilon_1), \ldots, N(\varepsilon_t))$ has a partial SDR of size $t - p$. That is, there are distinct elements y_1, \ldots, y_{t-p} of V_k such that $y_j \in N(\varepsilon_{i_j})$. Now for every $1 \leq j \leq t - p$, $\varepsilon_{i_j} \cup \{y_j\}$ is a hyperedge of H and these hyperedges are pairwise disjoint. Then they form a matching of size $t - p$ for H. □

Theorem 2.7. Let H be a k-uniform k-partite hypergraph with some ordering on parts as V_1, V_2, \ldots, V_k, and let $t = |V_1|$. Then H has a matching of size t if and only if $\alpha' = \beta = t$.

Proof. Let H has a matching of size t. We show that $\alpha' = \beta = t$. Clearly $\beta \geq \alpha'$ because for covering each hyperedge of maximum matching, one
vertex is needed. But since there is a matching of size \(t \), then \(\alpha' \geq t \). Now \(V_1 \) is a minimal vertex cover of \(\mathcal{H} \) because each hyperedge has only one vertex in \(V_1 \) and each vertex of \(V_1 \) lies in a hyperedge. Therefore \(t \geq \beta \) which implies that \(\alpha' \geq \beta \). Then \(\alpha' = \beta \). The matching of size \(t \) is the maximum matching because it covers all vertices of \(V_1 \).

Conversely, if \(\alpha' = \beta = t \), it is clear that \(\mathcal{H} \) has a matching of size \(t \).

The following example shows that removing the condition \(t = |V_1| \) in Theorem 2.7 is not possible even if the subhypergraph generated on union of every \(k - 1 \) parts, has a perfect matching.

Example 2.8. Assume 3-uniform 3-partite hypergraph \(\mathcal{H} \) with the following presentation, where the parts of \(\mathcal{H} \) are

\[
V_1 = \{1, 2\}, \ V_2 = \{3, 4\}, \ V_3 = \{5, 6\}.
\]

Indeed \(\mathcal{H} = \{\{1, 3, 5\}, \{2, 3, 6\}, \{2, 4, 5\}\} \).

In this hypergraph we have the matching \(\{\{1, 3, 5\}\} \) of size 1. But \(\alpha' \neq \beta \) because \(\alpha' = 1 \) and \(\beta = 2 \). Note that each one of subhypergraph generated on \(V_1 \cup V_2 \), \(V_2 \cup V_3 \) and \(V_1 \cup V_3 \) have a perfect matching.

References

[1] R. Aharoni, A. Georgakopoulos, P. Sprüssel, Perfect matching in \(r \)-partite \(r \)-graphs, *European J. Combin.*, **30** (2009), no. 1. 39-42.

[2] R. Aharoni, O. Kessler, On a possible extension of Hall’s theorem to bipartite hypergraphs., *Discrete. Math.*, **84** (1990), 309-313.

[3] R. Aharoni, Matchings in \(n \)-partite \(n \)-graphs, *Graphs and Combinatorics*, **1** (1985), 303-304.

[4] R. Aharoni, On a criterion for matching in hypergraphs, *Graphs and Combinatorics*, **9** (1993), 209-212.
A GENERALIZATION OF HALL’S THEOREM FOR k-UNIFORM k-PARTITE HYPERGRAPHS

[5] R. Aharoni, Ryser’s conjecture for 3-partite 3-graphs, Combinatorica, 21 (2001), 1-4.
[6] C. Berge, Hypergraphs, Elsevier Science Publishers B. V., 1989.
[7] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Macmillan, London, 1976.
[8] V. W. Bryant, H. Perfect, Independence Theory in Combinatorics, Chapman & Hall, London, 1980.
[9] Z. Füredi, Matchings and covers in hypergraphs, Graphs Combin., 4 (1988), 115-206.
[10] P. E. Haxell, A condition for matchability in hypergraphs, Graphs and Combinatorics, 11 (1995), 245-248.
[11] P. E. Haxell and A. D. Scott, On Ryser’s conjecture, The Electronic Journal of Combinatorics, 19 (2012), no. 1, paper 23.
[12] D. Khün and D. Osthus, Matchings in hypergraphs of large minimum degree, J. Graph Theory, 51 (2006), 269-280.

DEPARTMENT OF MATHEMATICS, INSTITUTE FOR ADVANCED STUDIES IN BASIC SCIENCE (IASBS), P.O. Box 45195-1159, ZANJAN, IRAN

E-mail address: r.golzary@iasbs.ac.ir