Review

Novel mechanistic insights and potential therapeutic impact of TRPC6 in neurovascular coupling and ischemic stroke

Shashank Shekhar,1,*,† Yedan Liu,2 Shaoxun Wang,2 Huawei Zhang,2 Xing Fang,2 Jin Zhang,3 Letao Fan,2 Baoying Zheng,2 Richard J. Roman,2 Zhen Wang,4 Fan Fan,2 and George W. Booz,2,†

1 Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, USA
2 Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
3 School of Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, 119048, Russia
4 Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA

* Correspondence: sshekhar@umc.edu; Tel.: +1-601-984-5503
† Co-senior authors

Abstract: Ischemic stroke is one of the most disabling diseases and a leading cause of death globally. Despite advances in medical care, the global burden of stroke continues to grow, as no effective treatments to limit or reverse ischemic injury to the brain are available. However, recent preclinical findings have revealed the potential role of transient receptor potential cation 6 (TRPC6) channels as endogenous protectors of neuronal tissue. Activating TRPC6 in various cerebral ischemia models has been found to prevent neuronal death, whereas blocking TRPC6 enhances sensitivity to ischemia. Evidence has shown that Ca2+ influx through TRPC6 activates cAMP response element-binding protein (CREB), an important transcription factor linked to neuronal survival. Additionally, TRPC6 activation may counter excitotoxic damage resulting from glutamate release by attenuating the activity of NMDA receptors of neurons by posttranslational means. Unresolved though, are the roles of TRPC6 channels in non-neuronal cells such as astrocytes and endothelial cells. Moreover, TRPC6 channels may have detrimental effects on the blood-brain barrier, although their exact role in neurovascular coupling requires further investigation. This review discusses evidence-based cell-specific aspects of TRPC6 in the brain to assess the potential targets for ischemic stroke management.

Keywords: Blood-brain barrier; transient receptor potential cation channels; ischemic stroke; neuroprotection; calcium signaling; cAMP response element-binding protein

1. Introduction

In the USA, someone experiences a stroke every 40 seconds (https://www.cdc.gov/stroke/facts.htm; accessed January 2, 2021) or dies of a stroke every 4 minutes [1]. More than 795,000 people have a stroke every year, with 77% of these being first-time strokes [1]. In 2018, 1 of 6 deaths in America from cardiovascular disease resulted from a stroke, making it the fifth leading cause of death in the USA. Some 87% of all strokes are ischemic strokes, in which blood flow to the brain is blocked, with the remainder classified as hemorrhagic due to rupture of a weakened blood vessel [1]. Moreover, stroke-related costs involving medicines, health care, and lost employment are staggering, totaling almost $50 billion between 2014 and 2015 [1].

Stroke is a leading cause of severe long-term disability, reducing mobility in more than half of the survivors 65 years old and over. Stroke is also the second leading cause of death globally [2]. Although the risk of stroke increases with age, it can occur at any age
and in 2009, 34% of those hospitalized for stroke were less than age 65 [3]. Despite advances in medical care, the global burden of stroke continues to grow [4]. Current thrombolytic therapy works for treating ischemic stroke, but only in a limited timeframe. No drugs are approved that enhance recovery, and thus there is a great need to identify viable pharmacological targets. Furthermore, the current Covid-19 pandemic is directly increasing the incidence of ischemic injury and is worsening the incidence and prevalence of stroke in high-risk populations, as a result in part of an increase in sedentary lifestyle associated with social distancing [5, 6].

Stroke has two major types: hemorrhagic and ischemic, with the latter caused by cerebral embolism or thrombosis [7, 8]. Despite varied etiologies for ischemia and hemorrhagic stroke, oxygen deprivation to neuronal tissue is a common mechanism; with hemorrhagic stroke, which is generally more severe [9], additional damage results from irritation and swelling from pressure build-up in surrounding tissues due to bleeding and blood breakdown products. In ischemic stroke, there is sudden occlusion of cerebral blood vessels, which leads to the interruption or reduction of the blood supply to brain tissue, resulting in an extensive neuronal death [10]. This process involves a complex cascade of events at both the macro- and microscopic levels, involving impaired vascular autoregulation, disruption of the blood-brain barrier (BBB), calcium overload-associated apoptosis, and neuronal death [11-13]. A key step is energy depletion from reduced blood flow, leading to Na+/K+ ATPase (sodium pump) failure, which causes cell membrane depolarization and glutamate release. Na+/K+ ATPase failure results in activation of proteases, kinases, and lipases, which contribute to tissue damage and necrosis. There is also a surge in phospholipase A2 activity that results in arachidonic acid (AA) release and enhanced free radical formation and lipid peroxidation [14, 15]. Combined with non-neuronal (i.e., glial) cell activation, the neurovascular unit, consisting of astrocytes, endothelial cells and their BBB forming tight junctions, and pericytes, is impaired [16]. BBB disruption is further enhanced by neuronal glutamine release that activates endothelial N-methyl-D-aspartate (NMDA) receptor-mediated intracellular Ca²⁺ influx [17, 18]. Glutamine is also major contributor to Ca²⁺ influx in neurons after ischemic stroke and thus the associated neurotoxicity.

Ischemic events may additionally activate Ca²⁺ influx via a non-glutamate pathway, including via transient receptor potential cation/canonical (TRPC) channels [19, 20]. Increased cytosolic Ca²⁺ with ischemia can induce apoptosis and neuronal death by several means, including activation of calpains [11, 19]. TRPC channels have been linked to vasospasms in hemorrhagic stroke [21]. Paradoxically one family member, TRPC6, has been linked to neuroprotection with ischemic stroke. It is reported that activating TRPC6 in a rat model of cerebral ischemia was shown to prevent neuronal death, whereas blocking TRPC6 enhanced sensitivity to ischemia [22]. One mechanism is that in patients treated for acute ischemic stroke, elevated expression levels in the peripheral blood of miR-488 and miR-135b, which were shown to target the TRPC6 gene, were identified as risk factors or associated with disease severity [23, 24]. Here we assess the evidence for and against the beneficial consequence of TRPC6 activation in ischemic stroke, its cell-specific roles in the brain, what is known about the involvement of TRPC6 in neurovascular coupling, and the potential therapeutic options for targeting TRPC6.

2. TRPC6

TRPC is a subfamily of TRP channels that are expressed in many cell types, including neurons [25, 26]. These nonselective, cell membrane cation channels consist of seven members, TRPC 1-7, which depolarize cells via Na⁺ influx and also allow an influx of extracellular Ca²⁺, so as to regulate downstream cellular responses, including metabolism, membrane depolarization, gene expression, cell proliferation, and apoptosis [27]. Although all members are expressed in the brain and can promote nonselective Ca²⁺ entry, the spatial and temporal expression patterns of each are unclear. Based on struc-
ture-function relationships, the TRPC family is grouped into four subsets: TRPC1, TRPC2, TRPC3/6/7 and TRPC4/5. Besides functioning as homotetramers, combinations of different TRPC subunits can form heterotetrameric complexes, which may regulate responses to neuropeptides and neurotransmitters with different properties than homotetrameric TRPC channels [28]. For instance, TRPC6 has high sequence homology with TRPC3 and TRPC7 subunits, and may form a heterotetramer with TRPC3 [29].

TRPC6 possesses three conserved domains, namely, a pore-loop motif, four NH2 terminal ankyrin repeat domains (ARD), and a COOH-terminal TRP box motif (Figure 1) [30]. The ARD domains are thought to participate in channel heterodimerization and trafficking, whereas the TRP domain may be important for regulating binding with the cytoskeleton and translocation to the cell surface [30]. The pore-loop region is associated with an extracellular selectivity filter and an intracellular gate. Different TRPCs exhibit different Ca$^{2+}$ and Na$^{+}$ permeability (P) ratios. The P_{Ca}/P_{Na} ratio of TRPC6 is 5 compared to 1.6 for TRPC3 [31, 32].

TRPC6 activation mediates changes in cytosolic Ca$^{2+}$, which govern diverse critical cellular functions (Figure 1), such as contraction, apoptosis, neuroprotection, angiogenesis, and cytokine production. TRPC6 and other TRPCs can be activated by phospholipase C (PLC) by numerous stimulations, like inflammation and ischemia-reperfusion (IR) injury [33]. Through activation of G-protein coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs), PLC can modulate TRPC channel activity by hydrolysis of phosphatidylinositol bisphosphate (PIP$_2$) to diacylglycerol (DAG) and inositol trisphosphate (IP$_3$) [34]. DAG activates TRPC3/6/7. IP$_3$ causes Ca$^{2+}$ release from internal stores, a process that triggers store-operated channel activation and may involve TRPC channels, although exactly how TRPC and store-operated channels interact is unsettled [35, 36]. Acting in a negative feedback manner, Ca$^{2+}$ may reduce TRPC channel activity in synergy with protein kinase C (PKC), or via activation of calmodulin [37, 38]. TRPC3 and TRPC6 may be activated as well in a β-arrestin-1-dependent manner. These features make TRPC channels potential cellular sensors to respond to environmental changes by regulating intracellular Ca$^{2+}$.

Studies on mouse embryonic fibroblasts and ventricular myocytes have suggested that TRPC6 may mediate the influx of Ca$^{2+}$ in response to mechanical stress on the cell membrane [39, 40]; however, another study suggested that TRPC6, expressed by various mammalian cell lines or in lipid bilayers, does not function as a mechanoreceptor [41]. Structurally, TRPC6 is tethered directly to the cytoskeleton or extracellular matrix [42]. Although TRPC6 may not be activated directly by mechanical stretch, it may have evolved to discriminate different mechanical stimuli based on its interactions with these components. Therefore, TRPC6 may act as a secondary mechanoreceptor that contributes to the regulation of intracellular Ca$^{2+}$ or depolarization of the membrane potential through inward Na$^{+}$ and/or Ca$^{2+}$ currents.
Figure 1. Functional aspects of TRPC6 involved in Ca\(^{2+}\) cellular influx. (A) Structural features of the TRPC6 channel. TRPC6 possesses 6 membrane-spanning domains and 3 conserved domains, namely, a pore-loop motif, four NH2 terminal ankyrin repeat domains (ARD), and a COOH-terminal TRP box motif. The ARD domains participate in channel heterodimerization and trafficking, whereas the TRP domain regulates binding with the cytoskeleton and translocation to the cell surface. The pore-loop region (between the S5 and S6) is associated with an extracellular selectivity filter and an intracellular gate and allows for the passage of cations. ARD: ankyrin repeat domain; S1–S6 are the first to sixth transmembrane domains; TRP, transient receptor potential. (B) Regulators of TRPC6 channel activity. Receptor tyrosine kinases (RTKs) or G protein-coupled receptors (shown) increase TRPC6 activity by stimulating PLC to generate DAG. Several key experimental activators and inhibitors of TRPC6 are listed. DAG, diacylglycerol; PLC, phospholipase C.

3. Cell-specific roles of TRPC6

TRPC6 channels are expressed in neurons and other cells of the neurovascular unit (Figure 2). Their cell-specific role and importance to neurovascular coupling, however, requires further investigation.

3.1. Astrocytes

TRPC6 is expressed by cultured astrocytes of rats [43, 44]. Expression in primary cultures is regulated by glutamate. Activation of NR2B-containing NMDA receptors increased TRPC6 degradation, whereas activating NR2A-containing receptors increased expression [44]. TRPC6 is also expressed in mouse astrocytes, and the expression increased by treatment with IL-1β [45]. Additionally, it was established that TRPC6 is expressed in mouse neural stem cells. These undifferentiated precursor cells can differentiate into astrocytes, neurons, oligodendrocytes, and constitutionally express blue/red light-sensitive photoreceptors [46]. This study reported increased proliferation and astrocyte differentiation for mouse neural stem cells, under low power blue light, with TRPC6 being activated by Gq-coupled melanopsin (Opn4). Also, TRPC6 expression was detected in astrocytes of the optic nerve head in C57BL/6 mice [47].

Sphingosine-1-phosphate (S1P) plays a vital role in cell growth, survival, and migration [43, 48]. Hisashi et al. demonstrated that S1P increases intracellular Ca\(^{2+}\) concentration in astrocytes via activation of mitogen-activated protein kinase (MAPK) and TRPC6 resulting in the increased expression and release of chemokine CXCL1 [43]. Olga et al. demonstrated that TRPC6 is involved in IL-1β-induced Ca\(^{2+}\) signaling in mouse astrocytes. In this study, the expression of TRPC6 was increased in cortical astrocytes of mice treated with IL-1β, while receptor-operated Ca\(^{2+}\) entry was reduced with the knockout (KO) of the Trpc6 gene [45]. The authors suggested that disruption of Ca\(^{2+}\)...
homeostasis in astrocytes by chronic IL-1β treatment, due to increased TRPC6 activity, might ultimately lead to neurodegenerative diseases.

Figure 2. TRPC6 and the neurovascular unit regulating homeostatic cerebral blood flow. Depicted are the cellular constituents at the capillary and precapillary levels. The cell-specific roles of TRPC6 in the context of ischemic stroke, both established and conceptualized, are provided.

3.2. Neurons

TRPC6 is expressed in many different brain regions, such as the cortex, hippocampus, cerebellum, basal ganglia, thalamus, hypothalamus, and dorsal root ganglia [49]. Numerous studies have documented the expression of TRPC6 in primary cultured neurons or neuronal cell lines that is protective under various stress conditions [44, 50-54].

Ca^{2+} is a ubiquitous second messenger affecting neuron proliferation and survival in brain development. Ca^{2+} signals also influence differentiation, dendrite morphology, and axon guidance through actions on cytoskeletal dynamics and cell adhesion [55]. Each neuron expresses a unique set of Ca^{2+}-permeable channels, which allow for the generation of intracellular Ca^{2+} signals of a particular time course, amplitude, and location [56]. TRPC-mediated Ca^{2+} influx is involved in nerve-growth-cone guidance, synapse formation, synaptic transmission, neuronal survival, and sensory transduction, downstream of receptor tyrosine kinases (RTKs) or G protein-coupled receptors (GPCRs) that are expressed by the neuron [57]. Brain-derived neurotrophic factor (BDNF) is a pro-survival neuronal peptide important during brain development. BDNF binds the receptor, tropomyosin receptor kinase B (TrkB), to activate the AKT and cAMP response element-binding protein (CREB) pathways to promote survival [58]. Downregulation of TRPC6 prevents the protective effect of BDNF on granule cells, leading to apoptosis [59]. Ca^{2+} influx through TRPC6 activates Ca^{2+}/calmodulin-dependent protein kinase (CaMK) and MAPK to phosphorylate CREB, an important transcription factor, leading to neuronal survival [55].

3.3. Endothelial cells

TRPC6 is differentially expressed in endothelial cells from different vascular beds and participates in a diverse range of endothelium-related functions, such as control of vascular tone, regulation of vascular permeability, angiogenesis and remodeling, and apoptosis. In the brain vasculature, TRPC6 is found in mouse microvascular endothelial cells and human cerebral artery endothelial cells [60-62].
One of the most crucial functions of the endothelium is maintaining BBB integrity. Several studies have implicated TRPC6 as essential in the regulation of endothelial permeability. Singh et al. reported that Gαq activation of TRPC6 induced Ca2+ entry and activation of RhoA, which resulted in myosin light chain-dependent endothelial cell shape-changes and increased gap formation between endothelial cells [63]. The net effect was the increased permeability of endothelial monolayers. Samapati et al. demonstrated that recruitment of TRPC6 to caveolae of endothelial cells in rats and mice permitted Ca2+ influx and subsequent increases in endothelial permeability [64]. Cheng et al. reported that heteromeric TRPC6 is involved in vascular endothelial growth factor (VEGF)-induced Ca2+ influx in human microvascular endothelial cells [65]. This group subsequently demonstrated that VEGF-induced extracellular Ca2+ entry, proliferation, and tube formation are attenuated in human microvascular endothelial cells that overexpress a dominant-negative TRPC6 mutant [66]. Further research is needed to establish what role, if any, TRPC6 plays in endothelial function and BBB integrity in ischemic stroke. Conceivably, activation of TRPC6 in endothelial cells could lead to vasodilation by various means, including the stimulation of nitric oxide synthase 3 (NOS3) [36], but whether this occurs in the cerebral vasculature is not reported. Excessive cytosolic Ca2+ increases would lead to endothelial cell injury or cell death leading to loss of the gap junctions and increased permeability, thus contributing to cerebral edema and swelling of the brain in ischemic stroke. The increase in cerebrospinal fluid pressure would further restrict blood flow to the penumbra, expanding the infarct in the area at risk.

3.4. Vascular smooth muscle cells (VSMCs)

Activation of TRPC6 in VSMCs of the cerebral vasculature might contribute to the no-reflow phenomena and attenuation of metabolic vasodilation in ischemia. Two recent studies document that TRPC6 in VSMCs contributes to pressure-induced constriction of cerebral arteries [67, 68]. This is an intrinsic characteristic of small arteries and arterioles to constrict in response to increases in intraluminal pressure. Details on exactly how TRPC6 in VSMCs couples to constriction by increasing intracellular Ca2+ are unclear, with some suggestion that it may function not in the plasma membrane but rather as a “downstream signal amplifier” [67].

4. Neurovascular coupling in ischemic stroke

In ischemic stroke, the dysfunction of the cells in the neurovascular unit and the communication between them characterizes the impaired neurovascular coupling [69, 70], which normally would act to compensate for the tissue hypoxia and release of metabolic vasodilators [71, 72]. Astrocytes and propagation of hyperpolarization via endothelial cells are a major component of neurovascular coupling, and astrogliosis or reactive astrogliosis is found around cerebral vessels following ischemic stroke [73]. Whether this affects the function of astrocytes to modulate cerebral blood flow via neurovascular coupling is unclear. Ischemic stroke induces Cortical Spreading Depressions (CSDs), which are slowly propagating waves of sustained depolarization of neurons and glial cells. CSDs characterized by injured astrocytes can lead to impaired neurovascular coupling in ischemic stroke [74]. Additionally, in ischemic stroke, astrocytes release 20-HETE to induce vasoconstriction, limiting cerebral blood flow and contributing to the no-reflow phenomena [74, 75].

Notably, the vascular response to direct smooth muscle vasodilators is unaffected by ischemic stroke, suggesting that dysfunction in other cell types in cerebral vessels account for the impaired neurovascular coupling [76]. However, TRPC6 has been implicated in VSMC phenotype switching under ischemic conditions [77, 78]. Pericytes regulate capillary diameter to control cerebral blood flow, constrict in response to
hypoxia in ischemic stroke and die in rigor. This results in a long-lasting increase in capillary resistance that worsens cerebral ischemic injury after stroke [79]. Loss of pericytes may also exert adverse effects on neurotropic-dependent neuronal survival [74], which could contribute to neurovascular coupling dysfunction. Conversely, cerebral ischemia can induce metalloproteinase-9 (MMP-9) activation and release in pericytes, which promotes long-term capillary damage and tight-junction breakdown [80]. Taken together, preventing pericyte dysfunction may be a promising therapeutic target for the treatment of ischemic stroke.

Caveolae-mediated transcytosis in endothelial cells, which is suppressed under normal conditions to maintain BBB integrity [81], is activated following ischemic stroke and may contribute to neuroinflammation [74]. On the other hand, caveolae of arteriolar endothelial cells (aECs) may play an active role in neurovascular coupling and vasodilation by relaying signals from neurons to cerebral smooth muscle cells [82]. Thus, misdirected trafficking of caveolae-dependent endothelial cell communication may underlie the pathology of ischemic stroke. Notably, an intact capillary–arteriole continuum via endothelial cell junctions is a necessary feature of the process whereby capillary endothelial cells sense increased extracellular K+ from neuronal cell release (due to hypoxia/ischemia) and initiate retrograde hyperpolarization to increase local cerebral blood flow [83]. This process might be impaired by increased Ca2+ entry into endothelial cells via TRPC6 activation.

5. Role of neuronal TRPC 6 in ischemic stroke

TRPC6 is highly expressed in the central nervous system and is important in neuronal development and survival [84]. With an ischemic stroke, the overactivation of NMDA receptors due to excessive glutamate release stimulates calpain, which promotes proteolysis of TRPC6 [85]. Degradation of TRPC6 contributes to neuronal death due to downregulation of the transcription factor CREB, leading to neuron apoptosis [22, 86]. Inhibition of TRPC6 degradation promotes neuron survival, reduces infarct size, and improves behavioral performance [22]. Moreover, a TRPC6 activator was found to ameliorate neuronal death in ischemic stroke and this was associated with improved phosphorylated CREB (p-CREB) activity [85]. Similarly, the combination treatment of oxiracetam and bone marrow stromal cells increases TRPC6 and p-CREB levels and protects from neuronal death in ischemic stroke [87].

Increased degradation of TRPC6 after ischemic stroke may result in neuronal damage. In an ischemic rat model, activating TRPC6 blocked neuronal death, while inhibiting TRPC6 degradation with a fusion peptide based on the calpain cleavage site (TAT-C6 peptide) reduced infarct size and improved behavioral performance through the CREB signaling pathway [22]. TRPC6 expression was shown to suppress NMDA receptor-mediated Ca2+ neurotoxicity, and several molecular probes modulated brain function and promoted neuroprotection and recovery in ischemic stroke by enhancing TRPC6 channel function [20]. Notably, infarct volume in TRPC6 transgenic mice was less than in their wild type littermates, with the transgenic mice exhibiting better behavior performance and lower mortality [20]. It was proposed that TRPC6 might regulate the phosphorylation of NMDA receptors, thereby attenuating their activity.

A study in mice suggests that the deleterious effects of the pro-inflammatory cytokine interleukin (IL)-17A in cerebral IR injury involve in part the degradation of TRPC6 [88]. IL-17A KO or anti-IL-17A monoclonal antibody attenuated activation of calpain at 3 days after reperfusion, while recombinant IL-17A increased its activation and IR injury. Brain injury and neurological deficits were primarily abolished by genetic KO of IL-17A, an IL-17A antibody, or a calpain inhibitor. Moreover, the calpain-specific inhibitor increased TRPC6 expression.
In contrast to these studies, others report that TRPC6 expression levels may increase following ischemic stroke, leading to Ca\(^{2+}\) overload that contributes to neuronal death [53]. Indeed, TRPC6 elevation was reported to promote Na\(^{+}\) influx, which induces membrane depolarization and activation of NMDA receptors and Ca\(^{2+}\) influx. In this study, deletion of TRPC6 attenuated Ca\(^{2+}\) overload-induced neurotoxicity in ischemic stroke [53]. Another group also reported that loss of TRPC6, together with TRPC3 and TRPC7, is neuroprotective [89]. KO of TRPC3/6/7 in a mouse cerebral IR model had an anti-apoptotic effect on astrocytes, resulting in reduced infarct volume and neurological deficits [90]. The conflicting results of these studies with a neuroprotective role for TRPC6 may be related to the animal model used, duration of a stroke, and confounding contribution of other TRPC isoforms, as well as potentially to the choice of anesthesia [91]. Initially, TRPC6 may increase Ca\(^{2+}\) in endothelial cells and cause NO generation to compensate for the occlusion and reduce the area at risk. With prolonged ischemia, the endothelial cells will die and this compensation would be lost. In neurons, TRPC6 may stimulate protection at first, but the long term may contribute to Ca\(^{2+}\) overload and injury.

Alternatively, an imbalance in TRPC6 expression (too much or too little) may be associated with neuronal death in ischemic stroke. Alterations in TRPC6 activity following ischemic stroke are likely to cause changes in intracellular Ca\(^{2+}\) that modulate NMDA receptor activity or affect the release of vasoactive mediators, such as nitric oxide (NO) and AA derivatives. Unknown yet is whether TRPC6 has a role in abnormalities of neurovascular coupling in ischemic stroke. The activity of neurovascular coupling could be affected under these conditions due to the change of TRPC6 activities. As discussed, activation of TRPC6 in endothelial cells may compromise the integrity of the BBB.

Astrocytes in the ischemic areas are activated after ischemic stroke. These active astrocytes exert both beneficial and harmful effects on neurons in the ischemic area [92]. It is reported that TRPC6 leads to impaired Ca\(^{2+}\) homeostasis and exacerbates mitochondrial dysfunction and endoplasmic reticulum stress so as to promote cellular apoptosis [93], but whether this occurs in activated astrocytes is unclear. There is evidence that astrocytes protect brain tissue after ischemic stroke and reduce the occurrence of disability [22]. They also play an essential role in neural network reconstruction. Studies in mouse models of cerebral ischemia have also shown that astrocytes can transfer into immature neurons after ischemia. Blocking Notch signaling in astrocytes could initiate this process [94]. An earlier study reported that TRPC6 has an essential role in regulating neural stem cell proliferation and differentiation [46]. Unfortunately, whether it is evolved in regulating the transformation of astrocytes into neurons is still unknown.

6. Therapeutic opportunities

A number of compounds either activate or inhibit TRPC6 activity and are used in biomedical research [95]. A few are discussed here (Figure 1). St John's wort contains a component, hyperforin, that activates TRPC6 [96] and attenuates brain damage from transient middle cerebral artery occlusion (MCAO) in rats by inhibiting TRPC6 channel degradation [85]. When applied for 7 days before MCAO onset, the nutritive polyphenol, resveratrol has neuroprotective effects by activating the TRPC6/CREB pathway and decreasing calpain activity [97]. Similarly, neuroprotection in a rat stroke model was seen via TRPC6/CREB using 'Neuroprotectin D1' when applied after reperfusion [98]. The predominant constituent of green tea, (-)-epigallocatechin-3-gallate (EGCG), introduced immediately after ischemia, demonstrates neuroprotection by decreasing calpain activity and activating TRPC6/CREB via mitogen-activated protein kinase (MEK)/extracellular pathway [99]. Furthermore, 'Calycosin,' a major isoflavonoid in Radix Astragali Mongolici, protected against ischemia-induced damage by inhibiting calpain activation and increasing TRPC6 and p-CREB levels [51]. In these studies, the TRPC6-CaMK-CREB pathway is common in mediating the actions of TRPC6 manipulations. Thus,
TRPC6/CREB may be crucial in neuronal survival and a potential novel therapeutic target [100, 101].

Newer research highlights the benefit of stem cells in stroke recovery [102]. The role of TRPC6 in bone marrow stromal cell (BMSC) transplant was investigated. Application of BMSCs overexpressing TRPC6 reduced brain injury in a rat IR model [103]. This was associated with synergistic activation and increased levels of TRPC6 in brain tissue, ostensibly due to enhanced production of BDNF, a well-known protective neurotrophic factor. Evidence indicated that decreased neuronal death was due to the TRPC6/CREB pathway and inhibition of calpain activity. A related study with this model demonstrated that BMSCs activate TRPC6 protective p-CREB signaling and combined therapy with oxiracetam, which inhibited abnormal degradation of TRPC6 by decreasing the activity of calpain, resulted in significantly improved functional restoration and reduced infarct size [87].

The latest research shows potential for new TRPC6 agonists and antagonists in preclinical experiments, specifically related to neuroscience, which may have a useful role in ischemic stroke in the future. Tetrahydrohyperforin (IDN5706), a derivative of hyperforin and TRPC3/6/7 activator, was neuroprotective in a mouse model of Alzheimer’s disease by negating inhibitory effects of Aβ oligomers in hippocampal tissue [104]. Ladecola et al. showed that IDN5706 might have potential in vascular dementia, where targeting Aβ oligomers may delay cognitive impairment [105].

TRPC6-PAM-C20 is a selective TRPC6 modulator. When tested with another TRPC6 activator OAG (1-oleoyl-1-acetyl-sn-glycerol), there was a synergistic, robust increase in Ca2+ in human platelets [106]. Thus, this agent may have the potential to modulate platelet function before or after ischemic stroke. Evidence indicates that TRPC6 plays a critical role in platelet function [107], which could be another target for antithrombotic therapy. Another TRPC6 activator, flufenamic acid modulated GABAa receptors, quashing epileptiform activity in the hippocampus [108]. Other TRPC3/6 activators like GSK1702934A transiently increased perfusion pressure of isolated rat hearts retrogradely perfused via aortic cannulation, an effect blocked by pretreatment with the TRPC3/6 blocker GSK2293017A [109]. OptoBI-1, a derivative of GSK1702934A, is a light-sensitive TRPC3/6/7 agonist that was found to suppress hippocampal action potential firing [110]. Small compound derivatives of piperazine, PPZ1 and PPZ2, are TRPC3/6/7 agonists that can induce BDNF-like neurite growth and neuroprotection in cultured neurons by triggering Ca2+ dependent CREB signaling [111]. Thus, PPZ1 and PPZ2 are potential agents for post-stroke recovery. Inhibitors of TRPC6 like larixyl acetate [112] and GsMTx4 [113] have been shown to have protective actions against traumatic brain injury and myocardial infarction.

So far, preclinical safety tests have not been completed on any of these agents and none has been approved for clinical trials in humans. Thus, their potential clinical efficacy cannot be asserted definitively. However, their potential benefit against damage from cerebral ischemia warrants further investigation.

7. Conclusion and clinical perspectives

Stroke care is limited due to the lack of effective primary or good secondary preventative agents that can control the excitotoxic damage resulting from ischemic infarction. In addition, there is a definite need for medications that can help in stroke recovery. Various pathways discussed in this review that involve TRPC6 can provide neuroprotection and assist post-stroke recovery. Various small molecules targeting TRPC6 have shown potential benefit in animal experiments. Many of these molecules have the potential to be translated into human clinical trials. However, there is further need for studies that could help determine the mechanisms underlying these benefits. Additional knowledge on the cell-specific role of TRPC6 utilizing cell specific KOs of TRPC6 is critically needed, as well as the implications for its involvement in neurovascular coupling. Whether targeting TRPC6 alone or a combination of TRPC receptors will mitigate the
harm of stroke and enhance recovery, only time and science will tell.
Author Contributions: Conceptualization, F.F., S.S.; writing—original draft preparation, S.S., Y.L., S.W., H.Z., X.F., J.Z., Z.W.; writing—review and editing, G.W.B., F.F., R.J.R., and, S.S.; visualization, L.F.; funding acquisition, S.S., F.F., R.J.R., Z.W.

Funding: This study was supported by grants AG050049 (F.F.), AG057842 (F.F.), HL138685 (R.J.R.), DK104184 (R.J.R), P20GM104357 (F.F., Z.W., R.J.R.) P01 HL51971 (Z.W.), R00DK113280 (Z.W), from the National Institutes of Health; 20PRE35210043 (S.W.) from the American Heart Association.

Acknowledgments: We would like to thank Dr. Mary A. Willis and Dr. Parminder Vig for their support and for providing departmental research funds to cover part of the publication fees.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Virani, S. S.; Alonso, A.; Benjamin, E. J.; Bittencourt, M. S.; Callaway, C. W.; Carson, A. P.; Chamberlain, A. M.; Chang, A. R.; Cheng, S.; Delling, F. N.; Djoussé, L.; Elkind, M. S. V.; Ferguson, J. F.; Fornage, M.; Khan, S. S.; Kissela, B. M.; Knutson, K. L.; Kwan, T. W.; Lackland, D. T.; Lewis, T. T.; Lichtman, J. H.; Longenecker, C. T.; Loop, M. S.; Lutsey, P. L.; Martin, S. S.; Matsushita, K.; Moran, A. E.; Mussolino, M. E.; Perak, A. M.; Rosamond, W. D.; Roth, G. A.; Sampson, U. K. A.; Satou, G. M.; Schroeder, E. B.; Shah, S. H.; Shay, C. M.; Spartano, N. L.; Stokes, A.; Tirschwell, D. L.; VanWagner, L. B.; Tsao, C. W.; American Heart Association Council on, E.; Prevention Statistics, C.; Stroke Statistics, S., Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association. Circulation 2020, 141, (9), e139-e596.

2. Lopez, A. D.; Mathers, C. D.; Ezzati, M.; Jamison, D. T.; Murray, C. J., Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet 2006, 367, (9524), 1747-57.

3. Hall, M. J.; Levant, S.; DeFrances, C. J., Hospitalization for stroke in U.S. hospitals, 1989-2009. NCHS Data Brief 2012, (95), 1-8.

4. Gorelick, P. B., The global burden of stroke: persistent and disabling. Lancet Neurol 2019, 18, (5), 417-418.

5. Fifi, J. T.; Mocco, J., COVID-19 related stroke in young individuals. Lancet Neurol 2020, 19, (9), 713-715.

6. Jakobsson, J.; Malm, C.; Furberg, M.; Ekelund, U.; Svensson, M., Physical Activity During the Coronavirus (COVID-19) Pandemic: Prevention of a Decline in Metabolic and Immunological Functions. Frontiers in Sports and Active Living 2020, 2, (57).

7. Grysiwicz, R. A.; Thomas, K.; Pandey, D. K., Epidemiology of ischemic and hemorrhagic stroke: incidence, prevalence, mortality, and risk factors. Neurologic clinics 2008, 26, (4), 871-95, vii.

8. Kim, S. M.; Jung, J. M.; Kim, B. J.; Lee, J. S.; Kwon, S. U., Cilostazol Mono and Combination Treatments in Ischemic Stroke: An Updated Systematic Review and Meta-Analysis. Stroke 2019, 50, (12), 3503-3511.

9. Andersen, K. K.; Olsen, T. S.; Dehler, C.; Kammersgaard, L. P., Hemorrhagic and ischemic strokes compared: stroke severity, mortality, and risk factors. Stroke 2009, 40, (6), 2068-72.

10. Sekerdag, E.; Solaroglu, I.; Gursoy-Ozdemir, Y., Cell Death Mechanisms in Stroke and Novel Molecular and Cellular Treatment Options. Current neuropatharmacology 2018, 16, (9), 1396-1415.

11. Bano, D.; Nicotera, P., Ca2+ signals and neuronal death in brain ischemia. Stroke 2007, 38, (2 Suppl), 674-6.

12. Smith, W. S., Pathophysiology of focal cerebral ischemia: a therapeutic perspective. J Vasc Interv Radiol 2004, 15, (1 Pt 2), S3-12.

13. Shekhar, S.; Liu, R.; Travis, O. K.; Roman, R. J.; Fan, F., Cerebral Autoregulation in Hypertension and Ischemic Stroke: A Mini Review. J Pharm Sci Exp Pharmacol 2017, 2017, (1), 21-27.

14. Durukan, A.; Tatlisumak, T., Acute ischemic stroke: overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacol Biochem Behav 2007, 87, (1), 179-97.
15. Muralikrishna Adibhatla, R.; Hatcher, J. F., Phospholipase A2, reactive oxygen species, and lipid peroxidation in cerebral ischemia. *Free Radic Biol Med* **2006**, *40*, (3), 376-87.

16. Yang, C.; Hawkins, K. E.; Dore, S.; Candelario-Jalil, E., Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke. *Am J Physiol Cell Physiol* **2019**, *316*, (2), C135-C153.

17. Unterberg, A. W.; Stover, J.; Kress, B.; Kiening, K. L., Edema and brain trauma. *Neuroscience* **2004**, *129*, (4), 1021-9.

18. Iadecola, C., Regulation of the cerebral microcirculation during neural activity: is nitric oxide the missing link? *Trends in Neurosciences* **1993**, *16*, (6), 206-214.

19. Huang, Q.; Wang, X.; Lin, X.; Zhang, J.; You, X.; Shao, A., The Role of Transient Receptor Potential Channels in Blood-Brain Barrier Dysfunction after Ischemic Stroke. *Biomed Pharmacother* **2020**, *131*, 110647.

20. Li, H.; Huang, J.; Yao, H.; Zhou, K.; Duan, B.; Wang, Y., TRPC6 inhibited NMDA receptor activities and protected neurons from ischemic excitotoxicity. *J Neurochem* **2012**, *123*, (6), 1010-8.

21. Huang, J., TRPC Channels and Stroke. *Adv Exp Med Biol* **2017**, *976*, 61-71.

22. Du, W.; Huang, J.; Yao, H.; Zhou, K.; Duan, B.; Wang, Y., Inhibition of TRPC6 degradation suppresses ischemic brain damage in rats. *J Clin Invest* **2010**, *120*, (10), 3480-92.

23. Liang, J.; Zhang, Z., Higher Peripheral Blood MiR-488 Level Predicts Poor Prognosis of Acute Ischemic Stroke. *Clin Lab* **2020**, *66*, (7).

24. Yang, S.; Zhan, X.; He, M.; Wang, J.; Qiu, X., miR-135b levels in the peripheral blood serve as a marker associated with acute ischemic stroke. *Exp Ther Med* **2020**, *19*, (6), 3551-3558.

25. Montell, C.; Birnbaumer, L.; Flockerzi, V.; Bindels, R. J.; Bru ford, E. A.; Caterina, M. J.; Clapham, D. E.; Harteneck, C.; Heller, S.; Julius, D.; Kojima, I.; Mor i, Y.; Penner, R.; Prawitt, D.; Scharenberg, A. M.; Schultz, G.; Shimizu, N.; Zhu, M. X., A unified nomenclature for the superfamily of TRP cation channels. *Molecular cell* **2002**, *9*, (2), 229-31.

26. Dietrich, A.; Chubanov, V.; Kalwa, H.; Rost, B. R.; Gudermann, T., Cation channels of the transient receptor potential superfamily: their role in physiological and pathophysiological processes of smooth muscle cells. *Pharmacology & therapeutics* **2006**, *112*, (3), 744-60.

27. Gees, M.; Colsoul, B.; Nilius, B., The role of transient receptor potential cation channels in Ca2+ signaling. *Cold Spring Harbor perspectives in biology* **2010**, *2*, (10), a003962.

28. Gualdani, R.; Gailly, P., How TRPC Channels Modulate Hippocampal Function. *International journal of molecular sciences* **2020**, *21*, (11).

29. Hirschler-Laszkiewicz, I.; Tong, Q.; Conrad, K.; Zhang, W.; Flint, W. W.; Barber, A. J.; Barber, D. L.; Cheung, J. Y.; Miller, B. A., TRPC3 activation by erythropoietin is modulated by TRPC6. *The Journal of biological chemistry* **2009**, *284*, (7), 4567-81.

30. Venkatachalam, K.; Montell, C., TRP channels. *Annual review of biochemistry* **2007**, *76*, 387-417.

31. Zitt, C.; Obukhov, A. G.; Strubing, C.; zobel, A.; Kalkbrenner, F.; Luckhoff, A.; Schultz, G., Expression of TRPC3 in Chinese hamster ovary cells results in calcium-activated cation currents not related to store depletion. *The Journal of cell biology* **1997**, *138*, (6), 1333-41.

32. Hofmann, T.; Obukhov, A. G.; Schaefer, M.; Harteneck, C.; Gudermann, T.; Schultz, G., Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. *Nature* **1999**, *397*, (6716), 259-63.

33. Kelly, M. J.; Qiu, J.; Ronnekleiv, O. K., TRPCing around the hypothalamus. *Frontiers in neuroendocrinology* **2018**, *51*, 116-124.

34. Moran, M. M.; Xu, H.; Clapham, D. E., TRP ion channels in the nervous system. *Current opinion in neurobiology* **2004**, *14*, (3), 362-9.

35. Nilius, B.; Owsianik, G.; Voets, T.; Peters, J. A., Transient receptor potential cation channels in disease. *Physiol Rev* **2007**, *87*, (1), 165-217.

36. Thakore, P.; Earley, S., Transient Receptor Potential Channels and Endothelial Cell Calcium Signaling. *Compr Physiol* **2019**, *9*, (3), 1249-1277.
37. Putney, J. W.; Tomita, T., Phospholipase C signaling and calcium influx. *Advances in biological regulation* 2012, 52, (1), 152-64.

38. Chen, X.; Sooch, G.; Demaree, I. S.; White, F. A.; Obukhov, A. G., Transient Receptor Potential Canonical (TRPC) Channels: Then and Now. *Cells* 2020, 9, (9).

39. Dyachenko, V.; Husse, B.; Rueckschloss, U.; Isenberg, G., Mechanical deformation of ventricular myocytes modulates both TRPC6 and Kir2.3 channels. *Cell calcium* 2009, 45, (1), 38-54.

40. Lei, L.; Lu, S.; Wang, Y.; Kim, T.; Mehta, D.; Wang, Y., The role of mechanical tension on lipid raft dependent PDGF-induced TRPC6 activation. *Biomaterials* 2014, 35, (9), 2868-77.

41. Nikolaev, Y. A.; Cox, C. D.; Ridone, P.; Rohde, P. R.; Cordero-Morales, J. F.; Vasquez, V.; Laver, D. R.; Martinac, B., Mammalian TRP ion channels are insensitive to membrane stretch. *Journal of cell science* 2019, 132, (23).

42. Patel, A.; Sharif-Naeini, R.; Folgering, J. R.; Bichet, D.; Duprat, F.; Honore, E., Canonical TRP channels and mechanotransduction: from physiology to disease states. *Pflugers Archiv : European journal of physiology* 2010, 460, (3), 571-81.

43. Shirakawa, H.; Katsumoto, R.; Iida, S.; Miyake, T.; Higuchi, T.; Nagashima, T.; Nagayasu, K.; Nakagawa, T.; Kaneko, S., Sphingosine-1-phosphate induces Ca(2+) signaling and CXCL1 release via TRPC6 channel in astrocytes. *Glia* 2017, 65, (6), 1005-1016.

44. Qu, Z.; Wang, Y.; Li, X.; Wu, L.; Wang, Y., TRPC6 expression in neurons is differentially regulated by NR2A- and NR2B-containing NMDA receptors. 2017, 143, (3), 282-293.

45. Beskina, O.; Miller, A.; Mazzocco-Spezzia, A.; Pulina, M. V.; Golovina, V. A., Mechanisms of interleukin-1beta-induced Ca2+ signals in mouse cortical astrocytes: roles of store- and receptor-operated Ca2+ entry. *Am J Physiol Cell Physiol* 2007, 293, (3), C1103-11.

46. Wang, M.; Xu, Z.; Liu, Q.; Sun, W.; Jiang, B.; Yang, K.; Li, J.; Gong, Y.; Liu, Q.; Liu, D.; Li, X., Nongenetic optical modulation of neural stem cell proliferation and neuronal/glia
dl differentiation. *Biomaterials* 2019, 225, 119539.

47. Choi, H. J.; Sun, D.; Jakobs, T. C., Astrocytes in the optic nerve head express putative mechanosensitive channels. *Molecular vision* 2015, 21, 749-66.

48. Belkacemi, T.; Niermann, A.; Hofmann, L.; Wissenbach, U.; Birnbaumer, L.; Leidinger, P.; Backes, C.; Meese, E.; Keller, A.; Bai, X.; Scheller, A.; Kirchhoff, F.; Philipp, S. E.; Weissgerber, P.; Flockerzi, V.; Beck, A., TRPC1- and TRPC3-dependent Ca(2+) signaling in mouse cortical astrocytes affects injury-evoked astrogliosis in vivo. 2017, 65, (9), 1535-1549.

49. Zeng, C.; Tian, F.; Xiao, B., TRPC Channels: Prominent Candidates of Underlying Mechanism in Neuropsychiatric Diseases. *Mol Neurobiol* 2016, 53, (1), 631-647.

50. Zeitler, S.; Schumacher, F.; Monti, J.; Anni, D.; Guhathakurta, D.; Kleuser, B.; Friedland, K.; Fejtova, A.; Kornhuber, J.; Rhein, C., Acid Sphingomyelinase Impacts Canonical Transient Receptor Potential Channels 6 (TRPC6) Activity in Primary Neuronal Systems. *Cells* 2020, 9, (11).

51. Guo, C.; Ma, Y.; Ma, S.; Mu, F.; Deng, J.; Duan, J.; Xiong, L.; Yin, Y.; Wang, Y.; Xi, M.; Wen, A., The Role of TRPC6 in the Neuroprotection of Calycosin Against Cerebral Ischemic Injury. *Sci Rep* 2017, 7, (1), 3039.

52. Shao, Z.; Wang, L.; Liu, S.; Wang, X., Tetramethylpyrazine Protects Neurons from Oxygen-Glucose Deprivation-Induced Death. *Med Sci Monit* 2017, 23, 5277-5282.

53. Chen, J.; Li, Z.; Hatcher, J. T.; Chen, Q. H.; Chen, L.; Wurster, R. D.; Chan, S. L.; Cheng, Z., Deletion of TRPC6 Attenuates NMDA Receptor-Mediated Ca(2+) Entry and Ca(2+)-Induced Neurotoxicity Following Cerebral Ischemia and Oxygen-Glucose Deprivation. *Front Neuosci* 2017, 11, 138.

54. He, C.; Gao, P.; Cui, Y.; Li, Q.; Li, Y.; Lu, Z.; Ma, H.; Zhao, Y.; Li, L.; Sun, F.; Chen, X.; Jia, H.; Liu, D.; Yang, G.; Zheng, H.; Zhu, Z., Low-glucose-sensitive TRPC6 dysfunction drives hypoglycemia-induced cognitive impairment in diabetes. *Clin Transl Med* 2020, 10, (6), e205.
55. Tai, Y.; Feng, S.; Du, W.; Wang, Y., Functional roles of TRPC channels in the developing brain. *Pflugers Archiv : European journal of physiology* 2009, 458, (2), 283-9.

56. Lang, S. B.; Stein, V.; Bonhoeffer, T.; Lohmann, C., Endogenous brain-derived neurotrophic factor triggers fast calcium transients at synapses in developing dendrites. *The Journal of neuroscience : the official journal of the Society for Neuroscience* 2007, 27, (5), 1097-105.

57. Sun, Y.; Sukumaran, P.; Bandyopadhyay, B. C.; Singh, B. B., Physiological Function and Characterization of TRPCs in Neurons. *Cells* 2014, 3, (2), 455-75.

58. Dong, Y.; Pu, K.; Duan, W.; Chen, H.; Chen, L.; Wang, Y., Involvement of Akt/CREB signaling pathways in the protective effect of EPA against interleukin-1beta-induced cytotoxicity and BDNF down-regulation in cultured rat hippocampal neurons. *BMC neuroscience* 2018, 19, (1), 52.

59. Jia, Y.; Zhou, J.; Tai, Y.; Wang, Y., TRPC channels promote cerebellar granule neuron survival. *Nat Neurosci* 2007, 10, (5), 559-67.

60. Brown, R. C.; Wu, L.; Hicks, K.; O'Neil R, G., Regulation of blood-brain barrier permeability by transient receptor potential type C and type v calcium-permeable channels. *Microcirculation* 2008, 15, (4), 359-71.

61. Yip, H.; Chan, W. Y.; Leung, P. C.; Kwan, H. Y.; Liu, C.; Huang, Y.; Michel, V.; Yew, D. T.; Yao, X., Expression of TRPC homologs in endothelial cells and smooth muscle layers of human arteries. *Histochem Cell Biol* 2004, 122, (6), 553-61.

62. Zuccolo, E.; Laforenza, U.; Negri, S.; Botta, L.; Berra-Romani, R.; Faris, P.; Scarpellino, G.; Forcaia, G.; Pellavio, G.; Sancini, G.; Moccia, F., Muscarinic M5 receptors trigger acetylcholine-induced Ca(2+) signals and nitric oxide release in human brain microvascular endothelial cells. *J Cell Physiol* 2019, 234, (4), 4540-4562.

63. Singh, I.; Knezevic, N.; Ahmmed, G. U.; Kini, V.; Malik, A. B.; Mehta, D., Galphaq-TRPC6-mediated Ca2+ entry induces RhoA activation and resultant endothelial cell shape change in response to thrombin. *The Journal of biological chemistry* 2007, 282, (11), 7833-43.

64. Samapati, R.; Yang, Y.; Yin, J.; Stoeger, C.; Arenz, C.; Dietrich, A.; Gudermann, T.; Adam, D.; Wu, S.; Freichel, M.; Flockerzi, V.; Uhlig, S.; Kuebler, W. M., Lung endothelial Ca2+ and permeability response to platelet-activating factor is mediated by acid sphingomyelinase and transient receptor potential classical 6. *Am J Respir Crit Care Med* 2012, 185, (2), 160-70.

65. Cheng, H. W.; James, A. F.; Foster, R. R.; Hancox, J. C.; Bates, D. O., VEGF activates receptor-operated cation channels in human microvascular endothelial cells. *Arterioscler Thromb Vasc Biol* 2006, 26, (8), 1768-76.

66. Hamdollah Zadeh, M. A.; Glass, C. A.; Hancox, J. C.; Bates, D. O., VEGF-mediated elevated intracellular calcium and angiogenesis in human microvascular endothelial cells in vitro are inhibited by dominant negative TRPC6. *Microcirculation* 2008, 15, (7), 605-14.

67. Nemeth, Z.; Hildebrandt, E.; Ryan, M. J.; Granger, J. P.; Drummond, H. A., Pressure-induced constriction of the middle cerebral artery is abolished in TrpC6 knockout mice. *Am J Physiol Heart Circ Physiol* 2020, 319, (1), H42-H50.

68. Wang, Q.; Leo, M. D.; Narayanan, D.; Kuruvilla, K. P.; Jaggar, J. H., Local coupling of TRPC6 to ANO1/TMEM16A channels in smooth muscle cells amplifies vasoconstriction in cerebral arteries. *Am J Physiol Cell Physiol* 2016, 310, (11), C1001-9.

69. Salinet, A. S.; Silva, N. C.; Caldas, J.; de Azevedo, D. S.; de-Lima-Oliveira, M.; Nogueira, R. C.; Conforto, A. B.; Texeira, M. J.; Robinson, T. G.; Panerai, R. B.; Bor-Seng-Shu, E., Impaired cerebral autoregulation and neurovascular coupling in middle cerebral artery stroke: Influence of severity? *J Cereb Blood Flow Metab* 2019, 39, (11), 2277-2285.

70. Lin, W. H.; Hao, Q.; Rosengarten, B.; Leung, W. H.; Wong, K. S., Impaired neurovascular coupling in ischaemic stroke patients with large or small vessel disease. *Eur J Neurol* 2011, 18, (5), 731-6.

71. Girouard, H.; Iadecola, C., Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. *J Appl Physiol (1985)* 2006, 100, (1), 328-35.
72. Bundo, M.; Inao, S.; Nakamura, A.; Kato, T.; Ito, K.; Tadokoro, M.; Kabeya, R.; Sugimoto, T.; Kajita, Y.; Yoshida, J., Changes of Neural Activity Correlate With the Severity of Cortical Ischemia in Patients With Unilateral Major Cerebral Artery Occlusion. *Stroke* 2002, 33, (1), 61-66.

73. McConnell, H. L.; Li, Z.; Wolter, R. L.; Mishra, A., Astrocyte dysfunction and neurovascular impairment in neurological disorders: Correlation or causation? *Neurochem Int* 2019, 128, 70-84.

74. Freitas-Andrade, M.; Raman-Nair, J.; Lacoste, B., Structural and Functional Remodeling of the Brain Vasculature Following Stroke. *Frontiers in Physiology* 2020, 11, (948).

75. Attwell, D.; Buchan, A. M.; Charpak, S.; Lauritzen, M.; Macvicar, B. A.; Newman, E. A., Glial and neuronal control of brain blood flow. *Nature* 2010, 468, (7321), 232-43.

76. Hu, X.; De Silva, T. M.; Chen, J.; Faraci, F. M., Cerebral Vascular Disease and Neurovascular Injury in Ischemic Stroke. *Circ Res* 2017, 120, (3), 449-471.

77. Nishida, M.; Tanaka, T.; Mangmool, S.; Nishiyama, K.; Nishimura, A., Canonical Transient Receptor Potential Channels and Vascular Smooth Muscle Cell Plasticity. *J Lipid Atheroscler* 2020, 9, (1), 124-139.

78. Numaga-Tomita, T.; Shimauchi, T.; Oda, S.; Tanaka, T.; Nishiyama, K.; Nishimura, A.; Birnbaumer, L.; Mori, Y.; Nishida, M., TRPC6 regulates phenotypic switching of vascular smooth muscle cells through plasma membrane potential-dependent coupling with PTEN. *FASEB J* 2019, 33, (9), 9785-9796.

79. Hall, C. N.; Reynell, C.; Gesslein, B.; Hamilton, N. B.; Mishra, A.; Sutherland, B. A.; O’Farrell, F. M.; Buchan, A. M.; Lauritzen, M.; Attwell, D., Capillary pericytes regulate cerebral blood flow in health and disease. *Nature* 2014, 508, (7494), 55-60.

80. Underly, R. G.; Levy, M.; Hartmann, D. A.; Grant, R. I.; Watson, A. N.; Shih, A. Y., Pericytes as Inducers of Rapid, Matrix Metalloproteinase-9-Dependent Capillary Damage during Ischemia. *The Journal of Neuroscience* 2017, 37, (1), 129.

81. Andreone, B. J.; Chow, B. W.; Tata, A.; Lacoste, B.; Ben-Zvi, A.; Bullock, K.; Deik, A. A.; Ginty, D. D.; Clish, C. B.; Gu, C., Blood-Brain Barrier Permeability Is Regulated by Lipid Transport-Dependent Suppression of Caveolae-Mediated Transcytosis. *Neuron* 2017, 94, (3), 581-594.e5.

82. Chow, B. W.; Nuñez, V.; Kaplan, L.; Granger, A. J.; Bistrong, K.; Zucker, H. L.; Kumar, P.; Sabatini, B. L.; Gu, C., Caveolae in CNS arterioles mediate neurovascular coupling. *Nature* 2020, 579, (7797), 106-110.

83. Filosa, J. A., Upstream current for a downstream flow. *Nat Neurosci* 2017, 20, (5), 631-633.

84. Xu, P.; Xu, J.; Li, Z.; Yang, Z., Expression of TRPC6 in renal cortex and hippocampus of mouse during postnatal development. *PLoS One* 2012, 7, (6), e38503.

85. Lin, Y.; Zhang, J. C.; Fu, J.; Chen, F.; Wang, J.; Wu, Z. L.; Yuan, S. Y., Hyperforin attenuates brain damage induced by transient middle cerebral artery occlusion (MCAO) in rats via inhibition of TRPC6 channels degradation. *J Cereb Blood Flow Metab* 2013, 33, (2), 253-62.

86. Shukla, A.; Rosenberg, M. W.; MacPherson, M. B.; Butnor, K. J.; Heintz, N. H.; Pass, H. I.; Carbone, M.; Testa, J. R.; Mossman, B. T., Activated cAMP response element binding protein is overexpressed in human mesotheliomas and inhibits apoptosis. *Am J Pathol* 2009, 175, (5), 2197-2206.

87. Zhang, J.; Mao, X.; Zhou, T.; Cheng, X.; Lin, Y., IL-17A contributes to brain ischemia reperfusion injury through calpain-TRPC6 pathway in mice. *Neuroscience* 2014, 274, 419-28.

88. Zhang, E.; Liao, P., Brain transient receptor potential channels and stroke. *J Neurosci Res* 2015, 93, (8), 1165-83.

89. Chen, X.; Lu, M.; He, X.; Ma, L.; Birnbaumer, L.; Liao, Y., TRPC3/6/7 Knockdown Protects the Brain from Cerebral Ischemia Injury via Astrocyte Apoptosis Inhibition and Effects on NF-κB Translocation. *Mol Neurobiol* 2017, 54, (10), 7555-7566.
111. Sawamura, S.; Hatano, M.; Takada, Y.; Hino, K.; Kawamura, T.; Tanikawa, J.; Nakagawa, H.; Hase, H.; Nakao, A.; Hirano, M.; Rotrattanadumrong, R.; Kiyonaka, S.; Mori, M. X.; Nishida, M.; Hu, Y.; Inoue, R.; Nagata, R.; Mori, Y., Screening of Transient Receptor Potential Canonical Channel Activators Identifies Novel Neurotrophic Piperazine Compounds. *Mol Pharmacol* **2016**, *89*, (3), 348-63.

112. Urban, N.; Wang, L.; Kwiek, S.; Rademann, J.; Kuebler, W. M.; Schaefer, M., Identification and Validation of Larixyl Acetate as a Potent TRPC6 Inhibitor. *Mol Pharmacol* **2016**, *89*, (1), 197-213.

113. Ward, C. W.; Sachs, F.; Bush, E. D.; Suchyna, T. M., GsMTx4-D provides protection to the D2.mdx mouse. *Neuromuscul Disord* **2018**, *28*, (10), 868-877.