Abstract

This review aims to gather information on chemical compounds, biological activities and patents concerning parts of *Ficus* species, in order to contribute to the design of future studies. Systematic research was carried out on databases over the last five years. A total of 103 papers and 11 patents were found. Several species were investigated considering their chemical composition and biological properties. Organic acids, phenolic compounds, flavonoids, and terpenes were identified. *Ficus carica* was the most investigated species of the genus. Antioxidant, antimicrobial, anti-hyperglycemic, antidiabetes, anticancer and cytotoxic were the main reported activities, revealing their natural supplementary potential in contemporary diseases. Some of their chemical constituents presented pharmacological properties. These results suggest the potential of extracts and essential oil of *Ficus* genus in pharmacological industry. More studies still need to identify the compounds related to each property. Patents concerning parts of *Ficus* spp. involve different application areas, mainly cosmetics, food and pharmacology. This review may inspire investigations considering the development of new drugs, as well as new scientific and technological research using different parts of the *Ficus* genus.

Keywords: *Ficus carica*; Antioxidant; Chemical composition; Phenolic compounds; Patents.

Ficus spp.: Phytochemical composition and medicinal potential

Ficus spp.: Composição fitoquímica e potencial medicinal

Ficus spp.: Composición fitoquímica y potencial medicinal

Received: 08/15/2022 | Reviewed: 08/27/2022 | Accept: 09/06/2022 | Published: 09/13/2022

Josias Martins dos Anjos Cruz
ORCID: https://orcid.org/0000-0002-1293-7234
Instituto Federal de Educação, Ciência e Tecnologia do Amazonas, Central Analítica, Brasil
E-mail: josiasmartinsanjos@gmail.com

Renilto Frolta Corrêa
ORCID: https://orcid.org/0000-0001-6236-2283
Universidade do Estado do Amazonas, Brasil
E-mail: reniltofc@yahoo.com.br

Carlos Victor Lamarão
ORCID: https://orcid.org/0000-0002-6592-3389
Universidade Federal do Amazonas, Brasil
E-mail: victorlamarao@yahoo.com.br

Edgar Aparecido Sanches
ORCID: https://orcid.org/0000-0002-1446-723X
Universidade Federal do Amazonas, Brasil
E-mail: sanchesufam@ufam.edu.br

Pedro Henrique Campelo
ORCID: https://orcid.org/0000-0002-5137-0162
Universidade Federal de Viçosa, Brasil
E-mail: pedrocampelo@ufv.br

Jaqueline de Araújo Bezerra
ORCID: https://orcid.org/0000-0002-9168-9864
Instituto Federal de Educação, Ciência e Tecnologia do Amazonas, Brasil
E-mail: jaqueline.araujo@ifam.edu.br
investigações considerando o desenvolvimento de novos fármacos, bem como novas pesquisas científicas e tecnológicas utilizando diferentes partes do gênero *Ficus*.

Palavras-chave: *Ficus carica*; Antioxidante; Composição química; Compuestos fenólicos; Patentes.

Resumen
Esta revisión tiene como objetivo recopilar información sobre compuestos químicos, actividades biológicas y patentes referentes a partes de especies de *Ficus*, con el objetivo de contribuir al diseño de futuros estudios. Se llevó a cabo una investigación sistemática en bases de datos durante los últimos cinco años. Se encontraron un total de 103 artículos y 11 patentes. Se investigaron varias especies considerando su composición química y propiedades biológicas. Se identificaronácidos orgánicos, compuestos fenólicos, flavonoides y terpenos. *Ficus carica* fue la especie más investigada del género. Las principales actividades reportadas fueron antioxidantes, antimicrobianas, antihiper glucemiantes, antidiabéticas, anticancerígenas y citotóxicas, lo que revela su potencial suplementario natural en las enfermedades contemporáneas. Algunos de sus constituyentes químicos presentaron propiedades farmacológicas. Estos resultados sugieren el potencial de los extractos y aceites esenciales del género *Ficus* en la industria farmacológica. Todavía se necesitan más estudios para identificar los compuestos relacionados con cada propiedad. Patentes relativas a partes de *Ficus* spp. implican diferentes áreas de aplicación, principalmente cosmética, alimentaria y farmacológica. Esta revisión puede inspirar investigaciones que consideren el desarrollo de nuevos medicamentos, así como nuevas investigaciones científicas y tecnológicas que utilicen diferentes partes del género *Ficus*.

Palabras clave: *Ficus carica*; Antioxidante; Composición química; Compuestos fenólicos; Patentes.

1. **Introduction**

The Moraceae family is constituted of more than 60 genera and approximately 1,500 species among trees, shrubs, and vines. The genus *Ficus* comprises more than 1,000 species distributed in several continents with tropical and subtropical climates. Figure 1 presents a geographic distribution of the *Ficus* genus. Interest in this genus has increased due to its beneficial properties to human health as a result of several researches, which identified different classes of compounds such as alkaloids, flavonoids, glycosides, saponins, steroids, tanins and terpenes (Akomolafe et al., 2016; El-Beltagi et al., 2019; Shaheen & Ahmad, 2021).

Figure 1. Geographic distribution of the *Ficus* genus at the Global Biodiversity Information Center.

Source: https://www.gbif.org/
The scientific evidences described in this review confirmed chemical, biological and pharmacological activities, such as antioxidant, antimicrobial, anti-inflammatory, healing, anticancer, anti-hyperglycemic, and diabetes and antiobesity (Chen et al., 2017; Sadasivan Nair et al., 2020; Tian et al., 2020). Health-related properties are generally attributed to the high content of bioactive phenolic compounds such as flavonoids (Ghazi et al., 2012). Most activities were tested in vitro and some in vivo using rats or mice (Manjuprasanna et al., 2020; Sadasivan Nair et al., 2020; Tian et al., 2020).

We previously reviewed the chemical composition, properties and products of Ficus spp (Cruz et al., 2022). In the present review we aim at the scientific contribution on the other plant parts of Ficus spp. to facilitate the understanding of the importance of the genus, direct future studies from its chemical constituents and biological activities, as well as enhance the development of new products from the macro view the use of its patented products.

2. Search Methodology

This review was searched in Scopus, ScienceDirect, Capes Periodicals and Google Scholar databases. Search was performed using term “Ficus” together with “biological activity”, “properties”, “biological potential”, “medicinal”, “phytochemical”, “chemical compounds” and “composition”, considering published papers from 2016 to 2021. The review in patent databases such as INPI, SPACENET, USTPO, PATENTSCOPE also pointed, considering the last five years, to species of the Ficus genus, as well as the use of their specific Boolean. The method addressed the use of chemical compounds and proven properties in different areas of application using plant parts of Ficus species.

3. Chemistry of the Ficus genus

3.1 Phytochemical content

Different classes of compounds were identified in bark, roots and aerial parts of the species from the Ficus genus, predominantly alkaloids, flavonoids, glycosides, saponins, steroids, tanins and terpenes. The variety of phytochemicals is essential for the development of new products, so it is described in Table 1.

3.2 Phenolic compounds

Phenolic compounds were identified in all parts of Ficus, as shown in Table 2. The ellagic acid was found in the leaves of F. capensis, F. palmata and F. sycomorus (Akomolafe et al., 2016; El-Beltagi et al., 2019; Shaheen & Ahmad, 2021). Phenolic acids were also identified, especially in aqueous, hydroalcoholic or alcoholic extract of Ficus leaves, as chlorogenic, gallic, vanillic, caffeic, p-coumaric and ferulic acids (Abraham et al., 2018; Akomolafe et al., 2016; Alcántara et al., 2020; El-Beltagi et al., 2019; El-hawary et al., 2019; Petruccelli et al., 2018; Rjeibi et al., 2017; Shaheen & Ahmad, 2021; Suliman et al., 2021; Sumi et al., 2016; Taviano et al., 2018).

The caffeic acid was also reported in roots of F. microcarpa, F. dubia, F. beecheyana (Rjeibi et al., 2017; Suttisansanee et al., 2021; Yen et al., 2018), and in latex of F. carica, F. dubia and F. sycomorus (Abdel-Aty et al., 2019; Suttisansanee et al., 2021). The p-hydroxybenzoic acid was identified in roots of F. hirta and F. beecheyana (Cheng, Yi, Chen, et al., 2017; Yen et al., 2018), in stem bark of F. glumosa (G. V. Awolola et al., 2019) and in F. sycomorus latex (Abdel-Aty et al., 2019).
Table 1. Phytochemical content of *Ficus* spp.

Specie	Part	Extract	Al	AA	An	At	Ca	Cu	Fl	Gl	PC	Qu	Sa	St	Su	Ta	Te	Reference
F. asperifolia	Leaf	EtOH	+		+	+	+	+	+	+	+	+	+	+	+	+	(Pwaniyibo et al., 2020)	
F. auriculata	Leaf	EtOH:H₂O	+		+			+	+								(El-hawary et al., 2019)	
F. beecheyana	Root	H₂O, EtOH	+														(Yen et al., 2018)	
F. benghalensis	Bark	EtOH		+	+	+	+	+	+	+							(Khanal & Patil, 2020)	
F. bengalensis	Bark	EtOH															(Moe et al., 2018)	
F. benghalensis	Stem bark	MeOH	–		+	+	+	+	–	+	+	+					(Raheel et al., 2017)	
F. benjamina	Leaf	EtOH		+														(A. Ashraf et al., 2020)
F. carica	Fruit latex	MeOH, fractions (Hex, Hex-AcOEt, MeOH)	+														(Paşayeva et al., 2020)	
F. carica	Leaf	EtOH	–		+	–	+	+	+	+							(Desta et al., 2020)	
F. carica	Leaf, stem bark	AcOEt, EtOH, H₂O	+		+												(Mopuri et al., 2018)	
F. carica	Leaf	Acetone	+														(Mustafa et al., 2021)	
F. carica	Latex	EtOH:H₂O															(Shahinuzaman et al., 2020)	
F. carica	Leaf	AcOEt of MeOH	+		+	+	+	+	+	+							(Dureshahwar et al., 2019)	
F. carica	Leaf	MeOH	+		+	+	+	+									(Purnamasari et al., 2019)	
F. carica	Leaf	MeOH:H₂O																(Petruccelli et al., 2020)
Species	Part	Solvent(s)	Al	AA	An	At	Ca	Cu	Fl	Gl	PC	Qu	Sa	St	Su	Ta	Te	Source
------------------	-----------------	-----------------------------	-----	-----	------	------	------	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----------------------------	
F. deltoidea	Leaf	Crude	+	+													et al., 2018	
F. deltoidea	Leaf	AcOEt, MeOH, Hex, H₂O	+	+													Abolmaesoomi et al., 2019	
F. exasperata	Leaf	MeOH	–	–	+	+	+	+	+	+	+						(Mikail et al., 2019)	
F. mucoso	Root bark	MeOH, fractions (CH₂Cl₂, AcOEt, MeOH)	+		+	+	+										(Oyebode et al., 2019)	
F. mysorensis	Leaf	EtOH:H₂O	+	+													(El-hawary et al., 2019)	
F. pyriformis	Leaf	EtOH:H₂O	+	+														(Bagyalakshmi et al., 2019)
F. racemosa	Leaf	EtOH, AcOEt, Toluene	+	+	+	–	–	–	+	+								(Singh et al., 2020)
F. religiosa	Aerial parts	EtOH:H₂O	+	+	+	+	–	+	+	+								(Saloufou et al., 2018)
F. spragueana	Leaf	EtOH:H₂O	+	+														(El-hawary et al., 2019)
F. sur	Bark, Leaf and Root	EtOH	+	+	+	–	+	+										(El-hawary et al., 2019)
F. trigonata	Leaf	EtOH:H₂O	+	+														(El-hawary et al., 2019)

(+ presence of compound class; (-) absence of compound class. Al = alkaloids; AA = amino acids; An = anthocyanins; At = Anthraquinones; Ca = Carotenoids; Cu = cumarin; Fl = flavonoids; Gl = glycosides; PC = Phenolic Compounds; Qu = quinones; Sa = saponins; St = steroids; Su = sugars; Ta = tanins; Te = terpenes. Source: Authors.)
Table 2. Main phenolics compounds of different parts of Ficus spp.

Compound	Specie	Part	Sample	Analytical method	Reference
Phenol, R, R₁ = H	*F. carica*	Leaf	H₂O, MeOH	GC-MS	(Ergül et al., 2019)
Phenol, 2,4-bis(1,1-dimethylethyl)-, R, R₁ = 1,1-dimethylethyl	*F. palmata*	Leaf	H₂O:EtOH	HPLC and GC–MS	(Shaheen & Ahmad, 2021)
Catechol, R, R₁ = H	*F. carica*	Leaf	MeOH	GC-MS	(Ergül et al., 2019)
3-methoxycatechol, R = OCH₃, R₁ = H	*F. sycomorus*	Leaf	EtOH	GC-MS, HPLC	(El-Beltagi et al., 2019)
4-methoxycatechol, R, R₁ = OCH₃	*F. bizanae*	Stem bark	Hex, CH₂Cl₂	CC, IR, MS, ¹H and ¹³C NMR	(G. V. Awolola et al., 2018)
Pyrogallol, R = OH, R₁ = H	*F. sycomorus*	Leaf	EtOH	GC-MS, HPLC	(El-Beltagi et al., 2019)
Resorcinol	*F. palmata*	Leaf	H₂O:EtOH	HPLC and GC–MS	(Shaheen & Ahmad, 2021)
1,5-naphthalenediol	*F. sycomorus*	Leaf	EtOH	GC-MS, HPLC	(El-Beltagi et al., 2019)
Arbutin, R = H, R₁ = Glu	*F. racemosa*	Leaf	MeOH	HPLC	(Sumi et al., 2016)
Markhamioside F, R = OCH₃, R₁ = Glu-Apifuranosyl	*F. hirta*	Roots	EtOH	HPLC, UV, IR, HRESIMS, ¹H and ¹³C NMR	(Ye et al., 2020)
Compound Description	Plant Species	Sample Part	Solvent	Detection Method	References
---	--------------	-------------	---------	---------------------------	-----------------------------
Benzoic acid, 2-hydroxy-, methyl ester, R = OH, R₁ = H	*F. carica*	Latex	MeOH	GC-MS	(Abdel-Aty et al., 2019)
Benzoic acid, 3-hydroxy-, methyl ester, R = H, R₁ = OH	*F. carica*	Leaf	H₂O	GC-MS	(Ergül et al., 2019)
Ficusidal	*F. hirta*	Roots	EtOH	CC, OBS, MPLC, HPLC, IR,	HR-ESI-MS, ¹H and ¹³C NMR
4-(2-hydroxypropoxy)-3, 5-dimethyl-phenol	*F. glomerata*	Leaves	CHCl₃	LC-MS	(Shaikh et al., 2020)
4-(3′-hydroxypropyl)-2,6-dimethoxyphnol-3′-O-β-D-glcoside	*F. hirta*	Roots	EtOH	HPLC, UV, IR, HRESIMS, ¹H	and ¹³C NMR
4-allyl-2,6-dimethoxyphenol	*F. sycomorus*	Leaf	EtOH	GC-MS, HPLC	(El-Beltagi et al., 2019)
Compound	Plant Part	Solvent	Analytical Methods	Reference	
--	------------	---------	-------------------------------------	---	
3'-hydroxy-4'-metoxy-trans- cinnamaldehyde	*F. hirta*	Roots	EtOH, HPLC, 1H and 13C NMR	(Cheng, Yi, Wang, et al., 2017)	
4-hydroxy-3-methoxbenzoic acid, methyl ester, R = CH$_3$, R$_1$ = OCH$_3$, R$_2$ = OH	*F. carica*	Latex	MeOH, GC-MS	(Abdel-Aty et al., 2019)	
4-hydroxybenzoic acid 4-O-glucoside, R = H, R$_1$ = H, R$_2$ = OGlu	*F. carica*	Leaf	H$_2$O, TOF-LC-MS-MS	(Alcántara et al., 2020)	
5-O-caffeoylquinic acid	*F. exasperata*	Leaf and Stem bark	H$_2$O lyophilized, HPLC–DAD–ESI/MS, UPLC–ESI–QTOF–MS, HPLC–UV	(Mouho et al., 2018)	
4-O-caffeoylquinic acid	*F. exasperata*	Leaf and Stem bark	H$_2$O lyophilized, HPLC–DAD–ESI/MS, UPLC–ESI–QTOF–MS, HPLC–UV	(Mouho et al., 2018)	
Apigenin, R, R₂ = H, R₁ = OH

Apigenin 6-C-glucoside (isorvitexin), R = Glu, R₂ = H, R₁ = OH

F. carica Leaf Acetone HPLC (Mustafa et al., 2021)

F. microcarpa Leaf MeOH HPLC-DAD and FT-IR (Rjeibi et al., 2017)

F. sycomorus Latex MeOH HPLC (Abdel-Aty et al., 2019)

Apigenin 6-C-glucoside 8-C-arabinoside, R = Glu, R₁ = OH, R₂ = Arab

F. deltoidea Leaf H₂O UHPLC, UV-Vis (Abrahim et al., 2018)

F. vasta Leaf MeOH HPLC-PDA/ESI-MS (Taviano et al., 2018)

F. exasperata Leaf, Stem bark H₂O lyophilized HPLC–DAD–ESI/MS, UP–LC–ESI–QTOF–MS, HPLC–UV (Mouho et al., 2018)

Apigenin-8-C-glucoside (vitrex), R = H, R₁ = OH, R₂ = Glu

Apigenin-6-C-hexoside-8-C-pentoside, R = Hex, R₁ = OH, R₂ = Pent

F. deltoidea Leaf H₂O TOF-LC-MS-MS (Alcántara et al., 2020)

F. vasta Leaf MeOH HPLC-PDA/ESI-MS (Taviano et al., 2018)

F. exasperata Leaf, Stem bark H₂O lyophilized HPLC–DAD–ESI/MS, UP–LC–ESI–QTOF–MS, HPLC–UV (Mouho et al., 2018)

Apigenin-6-C-pentoside-8-C-hexoside, R = Pent, R₁ = OH, R₂ = Hex

F. deltoidea Leaf H₂O TOF-LC-MS-MS (Alcántara et al., 2020)

F. vasta Leaf MeOH HPLC-PDA/ESI-MS (Taviano et al., 2018)

F. exasperata Leaf, Stem bark H₂O lyophilized HPLC–DAD–ESI/MS, UP–LC–ESI–QTOF–MS, HPLC–UV (Mouho et al., 2018)

Apigenin-6-C-arabinoside, R = Arab

F. deltoidea Leaf H₂O TOF-LC-MS-MS (Alcántara et al., 2020)

F. vasta Leaf MeOH HPLC-PDA/ESI-MS (Taviano et al., 2018)

F. exasperata Leaf, Stem bark H₂O lyophilized HPLC–DAD–ESI/MS, UP–LC–ESI–QTOF–MS, HPLC–UV (Mouho et al., 2018)

Apigenin-8-C-arabinoside, R = Rham, R₁ = OH

Apigenin-7-O-ketorhamnoside-8-C-hexoside, R = H, R₁ = OH, R₂ = Glu

F. benghalensis Leaf MeOH HPLC-PDA/ESI-MS (Hassan et al., 2020)

F. carica Leaf H₂O TOF-LC-MS-MS (Alcántara et al., 2020)

Apigenin 7-O-neohesperidoside (Rhoifolin), R = H, R₁ = neohesp, R₂ = H

F. benghalensis Leaf MeOH LC-HR–ESI-MS (Hassan et al., 2020)

F. carica Leaf H₂O TOF-LC-MS-MS (Alcántara et al., 2020)

8-C-(2′′-O-β-D-apiofuransosyl)-β-D-glucopyranosyl apigenin (Ficuflavoside), R = H, R₁ = OH, R₂ = Apiofur-Glu

F. benghalensis Leaf MeOH LC-HR–ESI-MS (Hassan et al., 2020)

F. carica Leaf H₂O TOF-LC-MS-MS (Alcántara et al., 2020)
(1→2)-β-D-galactopyranoside, \(R = \text{OH}, R_1 = \text{Rham-Gal} \), \(R_2 = \text{H} \)

Compound	Plant	Part	Solvent	Technique	Reference
Schaftoside, \(R = \text{Glu}, R_1 = \text{Arab} \)	*F. carica*	Leaf	\(\text{H}_2\text{O}:\text{MeOH} \)	HPLC-DAD-TOF-MS	(Petruchelli et al., 2018)
Isoschaftoside, \(R = \text{Arab}, R_1 = \text{Glu} \)	*F. carica*	Leaf	\(\text{H}_2\text{O}:\text{MeOH} \)	HPLC-DAD-TOF-MS	(Petruchelli et al., 2018)
Luteolin, \(R, R_1 = \text{H} \)	*F. carica*	Leaf	Acetone	HPLC	(Mustafa et al., 2021)
	F. microcarpa	Root	MeOH	HPLC-DAD and FT-IR	(Rjeibi et al., 2017)
	F. vasta	Leaf	MeOH	HPLC-PDA/ESI-MS	(Taviano et al., 2018)
Luteolin-6,8-di-C-hexoside, \(R, R_1 = \text{hex} \)	*F. exasperata*	Leaf	H$_2$O lyophilized	HPLC–DAD–ESI/MS, UPLC–ESI–QTOF–MS, HPLC–UV	(Mouho et al., 2018)
Luteolin-8-C-(3/4-ketorhamnoside)hexoside, \(R = \text{H}, R_1 = \text{kotorham-hex} \)	*F. sur*	Leaf	MeOH solution from EtOH	HPLC-ESI’-QTOF-HRMS	(Saloufou et al., 2018)

5,7,3’6’-tetrahydroxy-6,8,2’-trimethoxyflavone
Plant Species	Part	Solvent	Method	Reference
F. capensis	Leaf	H₂O	HPLC–DAD	(Akomolafe et al., 2016)
F. carica	Leaf	Acetone	HPLC	(Mustafa et al., 2021)
F. microcarpa	Leaf	MeOH	HPLC-DAD and FT-IR	(Rjeibi et al., 2017)
F. microcarpa	Root	MeOH	HPLC-DAD and FT-IR	(Rjeibi et al., 2017)
F. vasta	Leaf	MeOH	HPLC-PDA/ESI-MS	(Taviano et al., 2018)
F. exasperata	Leaf and Stem bark	H₂O lyophilized	HPLC–DAD–ESI/MS, UPLC–ESI–QTOF–MS, HPLC–UV	(Mouho et al., 2018)
F. bizanæ	Leaf	Hex, CH₂Cl₂	CC, IR, MS, ¹H and ¹³C NMR	(G. V. Awolola et al., 2018)
F. glumosa	Leaf	MeOH	GC-MS, CC, VCC, TLC, FT-IR, ¹H and ¹³C NMR	(G. V. Awolola et al., 2019)
F. carica	Leaf	H₂O:MeOH	HPLC-DAD-TOF-MS	(Petrucelli et al., 2018)
F. vasta	Leaf	MeOH	HPLC–PDA/ESI-MS	(Taviano et al., 2018)
F. capensis	Leaf	H₂O	HPLC–DAD	(Akomolafe et al., 2016)
F. glumosa	Leaf	MeOH	GC-MS, CC, VCC, TLC, FT-IR, ¹H and ¹³C NMR	(G. V. Awolola et al., 2019)
F. vasta	Leaf	MeOH	HPLC–PDA/ESI-MS	(Taviano et al., 2018)
F. auriculata	Leaf	H₂O:EtOH	HPLC	(El-hawary et al., 2019)
F. beecheyana	Roots	EtOH	HPLC	(Yen et al., 2018)
F. capensis	Leaf	H₂O	HPLC–DAD	(Akomolafe et al., 2016)
F. carica	Latex	MeOH	HPLC	(Abdel-Aty et al., 2019)
Species	Part	Solvent	Method	Ref.
------------------	------------	--------------	-----------------------	---------------------------
F. carica	Leaf	Acetone	HPLC	(Mustafa et al., 2021)
F. carica	Leaf	H₂O:MeOH	HPLC-DAD-TOF-MS	(Petruccelli et al., 2018)
F. microcarpa	Root	MeOH	HPLC-DAD and FT-IR	(Rjeibi et al., 2017)
F. myrsinensis	Leaf	H₂O:EtOH	HPLC	(El-hawary et al., 2019)
F. pyrifórmis	Leaf	H₂O:EtOH	HPLC	(El-hawary et al., 2019)
F. spragueana	Leaf	H₂O:EtOH	HPLC	(El-hawary et al., 2019)
F. sycomorus	Leaf	EtOH	GC-MS, HPLC	(El-Beltagi et al., 2019)
F. trigonata	Leaf	H₂O:EtOH	HPLC	(El-hawary et al., 2019)
F. vasta	Leaf	MeOH	HPLC-PDA/ESI-MS	(Taviano et al., 2018)
F. carica	Leaf	H₂O	TOF-LC-MS-MS	(Alcántara et al., 2020)
F. capensis	Leaf	H₂O	HPLC–DAD	(Akomolafe et al., 2016)
F. microcarpa	Root	MeOH	HPLC-DAD and FT-IR	(Rjeibi et al., 2017)
F. sycomorus	Leaf	EtOH	GC-MS, HPLC	(El-Beltagi et al., 2019)
F. exasperata	Leaf	H₂O lyophilized	HPLC–DAD–ESI/MS, UPLC–ESI–QTOF–MS, HPLC–UV	(Mouho et al., 2018)
F. capensis	Leaf	H₂O	HPLC–DAD	(Akomolafe et al., 2016)
F. microcarpa	Root	MeOH	HPLC-DAD and FT-IR	(Rjeibi et al., 2017)
F. sycomorus	Leaf	EtOH	GC-MS, HPLC	(El-Beltagi et al., 2019)
F. exasperata	Leaf	H₂O lyophilized	HPLC–DAD–ESI/MS, UPLC–ESI–QTOF–MS, HPLC–UV	(Mouho et al., 2018)

Quercetin 3-O-glucosyl-rhamnosyl-glucoside,
R = Glu-Rham-Glu, R₁, R₂, R₃ = H

Quercetin 3-O-malonyl-glucoside, R = Mal-Glu, R₁, R₂, R₃ = H

Quercetin 7,3’,4’-trimethoxy, R = H, R₁, R₂, R₃ = CH₃

Quercetin-3-(6-rhamnoside)glucoside, R = Rham-Glu, R₁, R₂, R₃ = H

Quercetin-3,7-di-hexoside, R₁ = hex, R₂, R₃ = H

Quercetin-3-hexoside-7-ketorhamnoside, R = hex, R₁ = ketorham, R₂, R₃ = H

Kaempferol, R = H

Kaempferol 3-O-glucoside, R = Glu

Kaempferol 3-O-rhamnoside, R = Rham

Kaempferol 3-O-rutinoside, R = Rut

Kaempferol 3-O-xyllosyl-glucoside, R = Xyl-Glu

Kaempferol 3-O-xyllosyl-rutinoside, R = Xyl-Rut

Kaempferol-3-(2-rhamnoside)hexoside, R = Rham-Hex
Myricetin

4',5,7-trihydroxyflavan-3-ol

Catechin

(+)-catechin hydrate, xH₂O

Catechin or epicatechin

epicatechin

F. sycomorus Leaf EtOH UPLC–ESI–QTOF–MS, HPLC–UV (El-Beltagi et al., 2019)

F. sur Bark MeOH solution from EtOH HPLC-ESI’-QTOF-HRMS (Saloufou et al., 2018)

F. sur Leaf MeOH solution from EtOH HPLC-ESI’-QTOF-HRMS (Saloufou et al., 2018)

F. capensis Leaf H₂O HPLC– DAD (Akomolafe et al., 2016)

F. carica Latex MeOH HPLC (Abdel-Aty et al., 2019)

F. deltoidea Leaf H₂O UHPLC, UV-Vis (Abraham et al., 2018)

F. microcarpa Leaf MeOH HPLC-DAD and FT-IR (Rjeibi et al., 2017)

F. microcarpa Root MeOH HPLC-DAD and FT-IR (Rjeibi et al., 2017)

F. sycomorus Stem bark CH₂Cl₂:EtOH LC/MS (Suliman et al., 2021)

F. vasta Leaf MeOH HPLC-PDA/ESI-MS (Taviano et al., 2018)

F. virens – H₂O HPLC-DAD-ESI-MS/MS, MALDI-TOF MS (Chen et al., 2017)

F. vogeliana Bark H₂O LC-MS/MS (Misso et al., 2020)

F. racemosa Leaf MeOH HPLC (Sumi et al., 2016)

F. sur Bark and Leaf MeOH solution from EtOH HPLC-ESI’-QTOF-HRMS (Saloufou et al., 2018)

F. beecheyana Roots EtOH HPLC (Yen et al., 2018)

F. capensis Leaf H₂O HPLC– DAD (Akomolafe et al., 2016)
Plant	Tissue	solvent	Methodology	Reference
F. microcarpa	Leaf	MeOH	HPLC-DAD and FT-IR	(Rjeibi et al., 2017)
	Root			
F. racemosa	Leaf	MeOH	HPLC	(Sumi et al., 2016)
F. sycomorus	Stem bark	CH2Cl2:EtOH	LC/MS	(Suliman et al., 2021)
F. virens	–	H2O	HPLC-DAD-ESI-MS/MS, MALDI-TOF MS	(Chen et al., 2017)
F. vogeliana	Bark	H2O	LC-MS/MS	(Misso et al., 2020)
F. virens	–	H2O	HPLC-DAD-ESI-MS/MS, MALDI-TOF MS	(Chen et al., 2017)

Epiafzelechin, R = H, R1 = H, R2 = H, R3 = H, R4 = H
epiafzelechin adducts,
R = H, R1 = H, R2 = 4→8, R3 = 6→4, R4 = 8→4
epicatechin adducts,
R = OH, R1 = H, R2 = 4→8, R3 = 6→4, R4 = 8→4
epigallocatechin adducts,
R = OH, R1 = OH, R2 = 4→8, R3 = 6→4, R4 = 8→4

Cyanidin, R = H
Cyanidin 3-O-(6-succinyl-glucoside), R = 6-Suc-Glu

F. dubia Latex H2O HPLC (Suttisansanee et al., 2021)
F. carica Leaf H2O TOF-LC-MS-MS (Alcántara et al., 2020)
5-pyranopelargonidin-3-O-glucoside

F. carica Fruit latex MeOH LC–MS/MS (Paşayeva et al., 2020)

F. vogeliana Bark H$_2$O LC–MS/MS (Misso et al., 2020)

F. sycomorus Stem bark CH$_2$Cl$_2$:EtOH LC/MS (Suliman et al., 2021)

Procyanidin trimer, R = cyanidin unit

F. sycomorus Stem bark CH$_2$Cl$_2$:EtOH LC/MS (Suliman et al., 2021)

Procyanidin B, R = H

F. vasta Leaf MeOH HPLC-PDA/ESI-MS (Taviano et al., 2018)

F. sycomorus Leaf EtOH GC-MS, HPLC (El-Beltagi et al., 2019)

Naringenin, R = H

Naringin, R = Rham-Glu

F. vasta Leaf MeOH HPLC-PDA/ESI-MS (Taviano et al., 2018)

F. carica Leaf H$_2$O TOF-LC-MS-MS (Alcántara et al., 2020)
Compound	Source	Extraction Method	Identification Method	Authors	
Didymin, R = Rutinoside	*F. benghalensis* Leaf	MeOH	LC-HR-ESI-MS	Hassan et al., 2020	
Steppogenin					
F. carica	Leaf	H~2~O	TOF-LC-MS-MS	Alcántara et al., 2020	
F. benghalensis	Leaf	MeOH	VLC, MS, ¹H and ¹³C NMR	Hassan et al., 2020	
Chrysoeriol					
Carpachromene	*F. benghalensis* Leaf	MeOH		Hassan et al., 2020	
Gallic acid	*F. beecheyana* Roots	EtOH, H~2~O	HPLC	Yen et al., 2018	
F. capensis	Leaf	H~2~O	HPLC–DAD	Akomolafe et al., 2016	
F. carica	Leaf	Acetone	HPLC	Mustafa et al., 2021	
F. deltoidea	Leaf	H~2~O	UHPLC, UV-Vis	Abraham et al., 2018	
F. microcarpa	Root	MeOH	HPLC-DAD and FT-IR	Rjeibi et al., 2017	
F. palmata	Leaf	H~2~O:EtOH	HPLC and GC–MS	Shaheen & Ahmad, 2021	
F. racemosa	Leaf	MeOH	HPLC	Sumi et al., 2016	
F. spragueana	Leaf	H~2~O:EtOH	HPLC	El-hawary et al., 2019	
F. sycomorus	Leaf	EtOH	GC-MS, HPLC	El-Beltagi et al., 2019	
F. trigonata	Leaf	H~2~O:EtOH	HPLC	El-hawary et al., 2019	
F. vasta	Leaf	MeOH	HPLC-PDA/ESI-MS	Taviano et al., 2018	
Gentisic acid, $R = H$	$F. vogueiana$	Bark	H$_2$O	LC-MS/MS	(Misso et al., 2020)
-----------------------	------------------	------	--------	----------	---------------------
Gentisic acid 5-O-β-D-xyloside, $R = Xyl$	$F. hirta$	Roots	EtOH	HPLC, UV, IR, HRESIMS, 1H and 13C NMR	(Ye et al., 2020)
Caffeic acid, $R, R_1 = OH, R_2 = H$	$F. beecheiana$	Roots	EtOH	HPLC	(Yen et al., 2018)
$F. capensis$	Leaf	H$_2$O	HPLC-DAD	(Akomolafe et al., 2016)	
$F. carica$	Leaf	MeOH	HPLC	(Sumi et al., 2016)	
$F. dubia$	Latex	H$_2$O	HPLC	(Suttisananee et al., 2021)	
$F. microcarpa$	Root	EtOH	HPLC-DAD and FT-IR	(Rjeibi et al., 2017)	
$F. racemosa$	Leaf	MeOH	HPLC	(El-hawary et al., 2019)	
$F. spragueana$	Leaf	H$_2$O:EtOH	HPLC	(Abdel-Aty et al., 2019)	
$F. sycomorus$	Leaf	EtOH	GC-MS, HPLC	(El-Beltagi et al., 2019)	
Caffeoylmalic acid, $R, R_1 = OH, R_2 = $ malic acid	$F. carica$	Leaf	H$_2$O:MeOH	HPLC-DAD-TOF-MS	(Petrucelli et al., 2018)
Caffeoyl malic acid dimer, $R, R_1 = OH, R_2 = $ malic acid	$F. exasperata$	Leaf	H$_2$O lyophilized	HPLC-DAD-ESI/MS, UPLC-ESI–QTOF–MS, HPLC–UV	(Mouho et al., 2018)
Cinnamic acid, $R, R_1 = H, R_2 = H$	$F. microcarpa$	Leaf, Root	MeOH	HPLC-DAD and FT-IR	(Rjeibi et al., 2017)
$F. sycomorus$	Leaf	MeOH	HPLC	(Abdel-Aty et al., 2019)	
$F. sycomorus$	Leaf	EtOH	GC-MS, HPLC	(El-Beltagi et al., 2019)	
$F. carica$	Leaf	H$_2$O	TOF-LC-MS-MS	(Alcántara et al., 2020)	
$F. racemosa$	Leaf	MeOH	HPLC	(Sumi et al., 2016)	
$F. sycomorus$	Leaf	EtOH	GC-MS, HPLC	(El-Beltagi et al., 2019)	
$F. exasperata$	Leaf	H$_2$O lyophilized	HPLC–DAD–ESI/MS, UPLC–ESI–QTOF–MS, HPLC–UV	(Mouho et al., 2018)	
Ferulic acid, $R – OCH_3, R_1 = OH, R_2 = H$	$F. microcarpa$	Leaf, Root	MeOH	HPLC-DAD and FT-IR	(Rjeibi et al., 2017)
$F. sycomorus$	Leaf	MeOH	HPLC	(Abdel-Aty et al., 2019)	
$F. sycomorus$	Leaf	EtOH	GC-MS, HPLC	(El-Beltagi et al., 2019)	
$F. carica$	Leaf	H$_2$O	TOF-LC-MS-MS	(Alcántara et al., 2020)	
Feruloyl malic acid dimer, $R = OH, R_1 = OCH_3, R_2 = $ malic acid	$F. exasperata$	Leaf	H$_2$O lyophilized	HPLC–DAD–ESI/MS, UPLC–ESI–QTOF–MS, HPLC–UV	(Mouho et al., 2018)
Feruloyl sinapic acid, $R = OH, R_1 = OCH_3, R_2 = $ sinapic acid	$F. carica$	Leaf	H$_2$O	TOF-LC-MS-MS	(Alcántara et al., 2020)
Plant	Part	Method	Detection	References	
-------	------	--------	-----------	------------	
p-coumaric acid, \(R = OH, R_1 = H, R_2 = H \)	*F. microcarpa*	Leaf, Root	MeOH	HPLC-DAD and FT-IR	(Rjeibi et al., 2017)
	F. beecheyana	Roots	EtOH, H₂O	HPLC	(Yen et al., 2018)
	F. deltoidea	Leaf	H₂O	UHPLC, UV-Vis	(Abraham et al., 2018)
	F. sycomorus	Latex	MeOH	HPLC	(Abdel-Aty et al., 2019)
	F. sycomorus	Leaf	EtOH	HPLC	(El-Beltagi et al., 2019)
	F. hirta	Roots	EtOH	CC, OBS, MPLC, HPLC, IR, HR-ESI-MS, \(^1\)H and \(^{13}\)C NMR	(Cheng, Yi, Chen, et al., 2017)
p-coumaroyl malic acid, \(R = OH, R_1 = H, R_2 = \text{malic acid} \)	*F. carica*	Leaf	H₂O	TOF-LC-MS-MS	(Alcántara et al., 2020)
	F. carica	Leaf	H₂O:MeOH	HPLC-DAD-TOF-MS	(Petruccelli et al., 2018)
p-coumaroylquinic acid, \(R = OH, R_1 = H, R_2 = \text{quinic acid} \)	*F. carica*	Leaf	H₂O:MeOH	HPLC-DAD-TOF-MS	(Petruccelli et al., 2018)
	F. carica	Leaf	H₂O	TOF-LC-MS-MS	(Alcántara et al., 2020)
Dihydrocaffeic acid, \(R = OH \)	*F. bizanae*	Stem bark	Hex, CH₂Cl₂	CC, IR, MS, \(^1\)H and \(^{13}\)C NMR	(G. V. Awolola et al., 2018)
Dihydroferulic acid, \(R = \text{OCH}_3 \)	*F. auriculata*	Leaf	H₂O:EtOH	HPLC	(El-hawary et al., 2019)
	F. beecheeyana	Roots	EtOH	HPLC	(Yen et al., 2018)
	F. carica	Leaf	H₂O	HPLC- DAD	(Akomolafe et al., 2016)
	F. carica	Latex	MeOH	HPLC	(Abdel-Aty et al., 2019)
	F. exasperata	Leaf	H₂O:MeOH	HPLC-DAD-TOF-MS	(Petruccelli et al., 2018)
	F. exasperata	Leaf	H₂O lyophilized	HPLC-DAD-ESI/MS, UPLC-ESI-QTOF-MS, HPLC-UV	(Mouho et al., 2018)
Chlorogenic acid	*F. mysorensis*	Leaf	H₂O:EtOH	HPLC	(El-hawary et al., 2019)
	F. palmata	Leaf	H₂O:EtOH	HPLC and GC–MS	(Shaheen & Ahmad, 2021)
	F. pyriformis	Leaf	H₂O:EtOH	HPLC	(El-hawary et al., 2019)
	F. spragueana	Leaf	H₂O:EtOH	HPLC	(El-hawary et al., 2019)
	F. sycomorus	Latex	MeOH	HPLC	(Abdel-Aty et al., 2019)
	F. sycomorus	Leaf	EtOH	GC-MS, HPLC	(El-Beltagi et al., 2019)
	F. sycomorus	Leaf	CH₂Cl₂:EtOH	LC/MS	(Suliman et al., 2021)
Plant	Part	Solvent	Method	Reference	
--------------	---------------	---------------	-----------------------	----------------------------------	
F. trigonata	Leaf	H₂O:EtOH	HPLC	(El-hawary et al., 2019)	
F. vasta	Leaf	MeOH	HPLC-PDA/ESI-MS	(Taviano et al., 2018)	
F. capensis	Leaf	H₂O	HPLC–DAD	(Akomolafe et al., 2016)	
F. palmata	Leaf	H₂O:EtOH	HPLC and GC–MS	(Shaheen & Ahmad, 2021)	
F. sycomorus	Leaf	EtOH	GC-MS, HPLC	(El-Beltagi et al., 2019)	

Ellagic acid

Armillarisin A or isomer

Emodin, R = H

Emodin-6-O-β-D-glucopyranoside, R = Glu

Evofolin-B

El-Hawary et al., 2019

Taviano et al., 2018

Akomolafe et al., 2016

Shaheen & Ahmad, 2021

El-Beltagi et al., 2019

Saloufou et al., 2018

Mbougnia et al., 2021

Cheng, Yi, Wang, et al., 2017
Plant	Part	Solvent	Extraction Method	Reference	
F. carica	Leaf	MeOH	GC-MS	(Ergül et al., 2019)	
F. carica	Fruit latex	Hex:AcOEt fraction	LC-MS/MS	(Paşayeva et al., 2020)	
F. sycomorus	Leaf	CH₂Cl₂:EtOH	LC/MS	(Suliman et al., 2021)	
F. beecheyana	Roots	EtOH, H₂O	HPLC	(Yen et al., 2018)	
F. glumosa	Leaf	MeOH	GC-MS, CC, VCC, TLC, FT-IR, \(^1\)H and \(^13\)C NMR	(G. V. Awolola et al., 2019)	
F. glumosa	Stem bark	AcOEt fraction	GC-MS, CC, VCC, TLC, FT-IR, \(^1\)H and \(^13\)C NMR	(G. V. Awolola et al., 2019)	
F. hirta	Roots	EtOH	CC, OBS, MPLC, HPLC, IR, HR-ESI-MS, \(^1\)H and \(^13\)C NMR	(Cheng, Yi, Chen, et al., 2017)	
F. sycomorus	Latex	MeOH	HPLC	(Abdel-Aty et al., 2019)	
F. sycomorus	Leaf	EtOH	GC-MS, HPLC	(El-Beltagi et al., 2019)	
F. beecheyana	Roots	H₂O	HPLC	(Yen et al., 2018)	
F. carica	Latex	MeOH	HPLC	(Abdel-Aty et al., 2019)	
F. glumosa	Stem bark	AcOEt fraction, MeOH	GC-MS, CC, VCC, TLC, FT-IR, \(^1\)H and \(^13\)C NMR	(G. V. Awolola et al., 2019)	
F. vogeliana	Bark	H₂O	LC-MS/MS	(Misso et al., 2020)	
Compound	Species	Part	Solvent	Instrument	Reference
----------------------------------	-----------------	-----------------------	---------	-----------------------------	----------------------------------
Protocatechuic acid 4-O-glucoside, R = Glu	*F. carica*	Leaf	H$_2$O	TOF-LC-MS-MS	(Alcántara et al., 2020)
Resveratrol	*F. carica*	Leaf	H$_2$O	TOF-LC-MS-MS	(Alcántara et al., 2020)
Rosmarinic acid	*F. carica*	Fruit latex	MeOH	LC-MS/MS	(Paşayeva et al., 2020)
	F. sycomorus	Leaf	EtOH	GC-MS, HPLC	(El-Beltagi et al., 2019)
Rosmadial	*F. carica*	Leaf	H$_2$O	TOF-LC-MS-MS	(Alcántara et al., 2020)
Salicylic acid	*F. microcarpa*	Leaf, Root	MeOH	HPLC-DAD and FT-IR	(Rjeibi et al., 2017)
	F. sycomorus	Leaf	EtOH	GC-MS, HPLC	(El-Beltagi et al., 2019)
	F. carica	Latex	MeOH	HPLC	(Abdel-Aty et al., 2019)
Sinapic acid, R = H
Sinapoyl glucose, R = Glu
3-sinapoylquinic acid, R = quinic acid

F. sycomorus Latex MeOH HPLC (Abdel-Aty et al., 2019)
F. carica Leaf H₂O TOF-LC-MS-MS (Alcántara et al., 2020)
F. carica Leaf H₂O TOF-LC-MS-MS (Alcántara et al., 2020)

Syringaresinol, R, R₁ = OCH₃
(-)-pinoresinol, R, R₁ = H

F. hirta Roots EtOH CC, OBS, MPLC, HPLC, IR, HR-ESI-MS, ¹H and ¹³C NMR (Cheng, Yi, Chen, et al., 2017)
F. hirta Roots EtOH HPLC, ¹H and ¹³C NMR (Cheng, Yi, Wang, et al., 2017)
F. sycomorus Leaf EtOH GC-MS, HPLC (El-Beltagi et al., 2019)

Syringic acid

F. palmata Leaf H₂O:EtOH HPLC and GC–MS (Shaheen & Ahmad, 2021)

Tannic acid

F. carica Fruit latex MeOH LC–MS/MS (Paşayeva et al., 2020)
Source	**Vanillyl acid, R = OH**	**Vanillin, R = H**	**β-hydroxypropiovanillole, R = CH2CH2OH**																														
	F. hirta Roots	**F. carica** Latex	**F. hirta** Roots	**F. microcarpa** Leaf	**F. microcarpa** Root	**F. palmata** Leaf	**F. racemosa** Leaf	**F. sycomorus** Leaf	**F. palmata** Leaf	**F. racemosa** Leaf	**F. sycomorus** Leaf	**F. palmata** Leaf	**F. racemosa** Leaf	**F. sycomorus** Leaf	**F. palmata** Leaf	**F. racemosa** Leaf	**F. sycomorus** Leaf	**F. palmata** Leaf	**F. racemosa** Leaf	**F. sycomorus** Leaf	**F. palmata** Leaf	**F. racemosa** Leaf	**F. sycomorus** Leaf	**F. palmata** Leaf	**F. racemosa** Leaf	**F. sycomorus** Leaf	**F. palmata** Leaf	**F. racemosa** Leaf	**F. sycomorus** Leaf	**F. palmata** Leaf	**F. racemosa** Leaf	**F. sycomorus** Leaf	
	EtOH	MeOH	MeOH	MeOH	MeOH	H2O:EtOH	MeOH	EtOH																									
	HPLC, \(^1^H\text{and}\(^{13}\text{C NMR})					HPLC and GC–MS																											
	(Cheng, Yi, Wang, et al., 2017)					(Shaheen & Ahmad, 2021)																											

Source: Authors.
Flavonoids such as rutin, quercetin, catechin and epicatechin extracted by water and alcohol from *F. auriculata*, *F. capensis*, *F. carica*, *F. deltoidea*, *F. microcarpa*, *F. mysorensis*, *F. racemosa*, *F. spragueana*, *F. sycomorus*, *F. trigonata* and *F. vasta* were found mainly in leaves (Abraham et al., 2018; Akomolafe et al., 2016; El-Beltagi et al., 2019; El-hawary et al., 2019; Mustafa et al., 2021; Rjeibi et al., 2017; Sumi et al., 2016; Taviano et al., 2018). The catechin and epicatechin were also identified in roots (Rjeibi et al., 2017; Yen et al., 2018), and bark (Misso et al., 2020; Suliman et al., 2021). Vitexin (Abraham et al., 2018; Taviano et al., 2018), apigenin (Abdel-Aty et al., 2019; Mustafa et al., 2021; Rjeibi et al., 2017), luteolin (Mustafa et al., 2021; Rjeibi et al., 2017; Taviano et al., 2018), kaempferol and derivatives (Akomolafe et al., 2016; El-Beltagi et al., 2019; Petruccelli et al., 2018; Rjeibi et al., 2017) were also identified.

Among the identified coumarins, psoralen was found in *F. bizanae*, *F. carica*, *F. hirta* and *F. sycomorus* (Abdel-Aty et al., 2019; G. V. Awolola et al., 2018; Cheng, Yi, Wang, et al., 2017; El-Beltagi et al., 2019; Petruccelli et al., 2018), bergapten in leaves of *F. carica* (Ergül et al., 2019; Petruccelli et al., 2018), and in stem bark of *F. exasperate* (Mouho et al., 2018), 7-methoxy coumarin in stem bark of *F. bizanae* (G. V. Awolola et al., 2018), and 4-hydroxycoumarin in leaves of *F. carica* (Alcántara et al., 2020).

3.3 Terpenes, steroids and fatty acids

A mixture of linear aliphatic alkanes (the steroids β-sitosterol and sitosteryl 3-O-β-D-glucopyranoside and other constituents) was identified in the raw chloroformic/ethanolic extract of the wood from aerial roots of *F. elastica* (J. M. E. Teinkela, Noundou, et al., 2016). In the essential oils of the leaves of *F. capensis* were identified mainly fatty acids and alkanes (Lawal et al., 2016). In the latex of *F. carica* a mixture of saturated and unsaturated fatty acids was reported (Ghanbari et al., 2019).

The steroid β-sitosterol was identified in different parts of *F. carica*, *F. crocata*, *F. elastica*, *F. natalensis*, *F. racemosa* and *F. sycomorus* (Bopage et al., 2018; Cruz-Concepción et al., 2021; El-Beltagi et al., 2019; Mbougnia et al., 2021; Mustafa et al., 2021; Sánchez-Valdeolivar et al., 2020; J. M. E. Teinkela, Noundou, et al., 2016). The stigmasterol and campesterol phytosterols were identified in the leaves of *F. crocata* (Sánchez-Valdeolivar et al., 2020), and *F. sycomorus* (El-Beltagi et al., 2019).

The presence of terpenes was also identified, among them the lupeol triterpenes (Cruz-Concepción et al., 2021; El-Beltagi et al., 2019; Knothe et al., 2019; Mbougnia et al., 2021; Sánchez-Valdeolivar et al., 2020), squalene (Cruz-Concepción et al., 2021; Knothe et al., 2019; Sánchez-Valdeolivar et al., 2020; Tian et al., 2020), lanosterol (El-Beltagi et al., 2019), diterpene phytol (Cruz-Concepción et al., 2021; El-Beltagi et al., 2019; Lawal et al., 2016), monoterpene linalool, and the sesquiterpene β-caryophyllene (Lawal et al., 2016; Soltana et al., 2017; Tian et al., 2020), mainly identified in leaves (*F. asperifolia*, *F. carica*, *F. crocata*, *F. sycomorus*) and seeds (*F. nota*, *F. septica*, *F. ulmifolia*).

3.4 Other compounds

The hydromethanolic extract of the *F. carica* bark stem contains, in large quantities, α-D-glucopyranose, an oligomer isolated from the oligosaccharide rich fraction (Raafat & Wurglics, 2019). Organic acids such as oxalic, aconitic, citric, tartaric, malic, quinic and fumaric acids were identified in the aqueous extracts of *F. exasperata* leaves and bark (Mouho et al., 2018). Vitamin E was identified in the acetone extracts of the *F. crocata* leaves (α-tocopherol) (Cruz-Concepción et al., 2021; Sánchez-Valdeolivar et al., 2020).
4. Chemical, Biological and Pharmacological Properties of *Ficus*

4.1 Antioxidant activity

Among the species from the *Ficus* genus, antioxidant activity was reported by alcoholic, aqueous, hydroalcoholic, hexane and chloroform, ethyl acetate, dichloromethane and petroleum ether extracts from different parts, such as leaves, bark, branches, stem and roots, mainly by *in vitro* assays, as presented in Table 3. In general, polar extracts (such as alcoholic and hydroalcoholic) revealed compounds responsible for antioxidant activity. Hot water is a good solvent strategy, as it has improved the extraction of antioxidant compounds in roots from *F. dubia* (Suttisansane et al., 2021).

Table 3. In vitro antioxidant activity of extracts from the *Ficus* genus.

Specie	Part	Extraction solvent	Assay	Reference
F. auriculata	Leaf	EtOH	IC₅₀, DPPH⁻ (5.06 ± 0.35 μg/mL), NO⁻ (169.65 ± 1.53 μg/mL).	(Wong et al., 2020)
F. beecheyana	Roots	EtOH and H₂O	ORAC (45.0 ± 2.0 and 33.3 ± 1.4 Trolox µmole/g), TEAC (38.9 ± 1.9 and 17.3 ± 1.8 Trolox µmole/g).	(Yen et al., 2018)
F. benghalensis	Bark	EtOH	DPPH⁻ (48.85 ± 1.27%), NO⁻ (76.05 ± 4.42%), O₂⁻ (79.08 ± 4.62%).	(Moe et al., 2018)
	Bark	H₂O:EtOH	IC₅₀, ABTS⁺⁺⁺ (45.73 ± 1.17 µg/mL), DPPH⁻ (73.99 ± 2.22 µg/mL), TAC (51.45 ± 1.23 µg/mL), NO⁻ (69.02 ± 2.57 µg/mL), H₂O₂ (50.67 ± 1.77 µg/mL), CUPRAC (55.51 ± 0.54 µg/mL), metal chelating (55.95 ± 0.92 µg/mL).	(Khanal & Patil, 2020)
F. auriculata	Stem	MeOH and AcOEt fraction	H₂O₂ (IC₅₀ 178.2 ± 1.750 and 603.1 ± 6.573 µg/mL).	(Hasan et al., 2020)
	Leaf	AcOEt fraction from MeOH	DPPH⁻ (71.77 ± 0.514 to 82.6 ± 2.395% at 0.125 and 4 mg/mL).	(Raheel et al., 2017)
F. benjamina	Leaf	EtOH	DPPH⁻ (68.27 ± 1.08 µg/mL).	(A. Ashraf et al., 2020)
F. capensis	Leaf	H₂O	IC₅₀, NO⁻ (0.12 ± 0.01 mg/mL), OH⁻ (0.53 ± 0.00 mg/mL), Fe²⁺ chelation (0.16 ± 0.00 mg/mL).	(Akomolafe et al., 2016)
F. carica	Fruit	MeOH and fractions (Hex, Hex-AcOEt and MeOH).	ABTS⁺⁺⁺ (0.105 ± 0.007, 0.074 ± 0.011, 0.086 ± 0.005 and 0.180 ± 0.058 µM Trolox/g extract).	(Paşayeva et al., 2020)
	Latex	MeOH	DPPH⁻ (13.60 ± 1.20 µg GAE/mL) and ABTS⁺⁺⁺ (4.50 ± 0.72 µg GAE/mL).	(Abdel-Aty et al., 2019)
	Latex	MeOH, EtOH (100%, 75%), AcOEt and Hex	DPPH⁻ (66.67 ± 1.30, 52.72 ± 0.96, 63.76 ± 1.48, 22.52 ± 0.35 and 11.90 ± 0.20%).	(Shahinuzzaman et al., 2020)
F. auriculata	Leaf	AcOEt fraction from MeOH	DPPH⁻ (IC₅₀, 5.508 µM).	(Dureshahwar et al., 2019)
F. auriculata	Leaf	EtOH and MeOH	IC₅₀, DPPH⁻ (101.76 ± 1.15 and 93.12 ± 1.17 and μg/mL).	(Javaid et al., 2021)
F. auriculata	Leaf	H₂O and H₂O:EtOH	TEAC (= 1.75 and 0.5 mmol Trolox/g).	(Alcántara et al., 2020)
	Leaf	H₂O and MeOH (1000 µg/mL)	DPPH⁻ (≈ 30 and 25%), ABTS⁺⁺⁺ (≈ 50 and 50%), FRAP (≈ 0.4 and 0.6 mM FeSO₄ equivalent), iron chelating (≈ 70 and 40).	(Ergül et al., 2019)
F. auriculata	Leaf	H₂O:MeOH	DPPH⁻ (EC₅₀, 0.48 ± 0.07 to 6.68 ± 0.06 mg DW/mL)	(Petruccelli et al., 2021)
Plant Species	Leaf	Methods	Results	
---------------	------	---------	---------	
F. dubia	Hex, AcOEt, EtOH and H₂O	IC₅₀, DPPH⁻ (1233 ± 40.76, 899.55 ± 109.737, 175.857 ± 8.932 and 322.110 ± 12.970 µg/mL).	(Mopuri et al., 2018)	
	MeOH (1000 µg/mL)	DPPH⁻ (80%).	(Purnamasari et al., 2019)	
F. deltoidea	Stem Hex, AcOEt, bark EtOH and H₂O	IC₅₀, DPPH⁻ (736.395 ± 37.441, 507.584 ± 55.794, 171.479 ± 19.354 and 376.055 ± 33.931 µg/mL).	(Mopuri et al., 2018)	
	Leaf Acetone	IC₅₀, DPPH⁻ (107.05 ± 2.61 µg/mL), ABTS⁺⁻ (1.47 ± 1.21 µg/mL).	(Cruz-Concepción et al., 2021)	
	Leaf Crude extract	DPPH⁻ (15 to 50%, 0.4 mg/mL), TBARS (15 to 50%, 2 mg/mL), CUPRAC (0.3 to 1 Abs 450nm, 1 mg/mL), FIC (60 to 75%, 0.4 mg/mL) and ferricyanide (0.3 to 0.5 Abs 700 nm, 1 mg/mL).	(Abraham et al., 2018)	
F. deltoidea	Leaf H₂O	FIC (EC₅₀, 1289.00 ± 22.63 to 1572.83 ± 234.71 µg/mL).	(Abolmaesoomi et al., 2019)	
	Leaf Hex, AcOEt, MeOH and H₂O	EC₅₀, DPPH⁻ (978.40 ± 6.87, 337.83 ± 8.20 to 1882.34 ± 13.02, 213.33 ± 2.88 to 409.42 ± 13.97 and 229.43 ± 2.05 to 1161.38 ± 15.52 µg/mL).	(Abolmaesoomi et al., 2019)	
	Leaf Hex, AcOEt, MeOH and H₂O	ABTS⁺⁻ (0.52 ± 0.03 to 0.96 ± 0.05, 1.04 ± 0.09 to 2.17 ± 0.05, 2.05 ± 0.05 to 2.51 ± 0.01 and 2.10 ± 0.10 to 2.56 ± 0.02 mmol TE/g).	(Abolmaesoomi et al., 2019)	
	Leaf Hex, AcOEt, MeOH and H₂O	FRAP (1.86 ± 0.03 to 4.02 ± 0.03, 1.02 ± 0.15 to 3.92 ± 0.04, 4.71 ± 0.14 to 6.54 ± 0.38 and 1.90 ± 0.13 to 4.46 ± 0.01 mmol Fe²⁺/g).	(Abolmaesoomi et al., 2019)	
	Leaf Hex, AcOEt, MeOH and H₂O	Cellular Antioxidant Assay (CAA, EC₅₀, 23.17 ± 0.79 to 1343.84 ± 148.88, 9.49 ± 0.16 to 289.27 ± 9.74, 146.90 ± 11.88 to 868.24 ± 8.80 and 323.61 ± 39.10 µg/mL).	(Abolmaesoomi et al., 2019)	
F. dubia	Leaf MeOH	DPPH⁻ (IC₅₀, 66.81 ± 4.32 to 288.04 ± 11.43 µg/mL), Reducing Power (0.04 ± 0.00 to 0.24 ± 0.24 mg AAE/g).	(Dom et al., 2020)	
	Leaf MeOH and H₂O	EC₅₀, O₂⁻ (592.27 ± 57.72 and 204.53 ± 39.23 to 1001.43 ± 99.90 µg/mL).	(Abolmaesoomi et al., 2019)	
	Leaf MeOH, CHCl₃, AcOEt and BuOH	DPPH⁻ (80, 60, 70 and 40%, 200 µg/mL).	(K. Ashraf et al., 2020)	
F. exasperata	Leaf MeOH, CHCl₃, AcOEt, BuOH	Ferric Reducing (0.75, 0.45, 0.5 and 0.45 Abs 700 nm, 1000 µg/mL).	(K. Ashraf et al., 2020)	
F. dubia	Latex –	DPPH⁻ (SC₅₀, 579.67 ± 15.03 µg/mL), ABTS⁺⁻ (SC₅₀, 87.09 ± 0.89 µg/mL), FRAP (461 ± 34.67 µmol TE/g extract) and ORAC (7.976 ± 70 µmol TE/g extract).	(Sutittsananee et al., 2021)	
F. exasperata	Roots EtOH, H₂O and H₂O hot	SC₅₀, DPPH⁻ (250.31 ± 102.66, 611.30 ± 36.92 and 460.55 ± 18.08 µg/mL).	(Sutittsananee et al., 2021)	
	Roots EtOH, H₂O and H₂O hot	SC₅₀, ABTS⁺⁻ (43.39 ± 0.38, 56.51 ± 2.24 and 38.76 ± 3.26 µg/mL).	(Sutittsananee et al., 2021)	
	Roots EtOH, H₂O and H₂O hot	FRAP (830 ± 22.75, 515 ± 37.90 and 601 ± 21.10 µmol TE/g extract).	(Sutittsananee et al., 2021)	
	Roots EtOH, H₂O and H₂O hot	ORAC (2.671 ± 85, 1.678 ± 94 and 2.059 ± 170 µmol TE/g extract).	(Sutittsananee et al., 2021)	
F. exasperata	Leaf H₂O	IC₅₀, DPPH⁻ (222.50 ± 8.00 and 621.10 ± 38.98 µg/mL), NO⁻ (510.00 ± 77.47 and 866.00 ± 32.36 µmol TE/g extract).	(Mouho et al., 2018)	
stem bark μg/mL and O₂⁻ (50.00 ± 3.00 and 561.00 ± 51.78 μg/mL).

F. glomerata Leaf CHCl₃ Reduced oxidative stress in diabetic rats.

F. hirta Roots EtOH and AcOEt fraction IC₅₀, DPPH⁻ (79.91 ± 4.79 and 64.71 ± 0.82 μmol/L), PMS/NADH-NBT (>300 and 281.00 ± 4.63 μmol/L).

F. lyrata Bark gum H₂O (2.5 mg/mL) DPPH⁻ (≈ 70%).

F. maclellandii Branch EtOH IC₅₀, DPPH⁻ (183 ± 4 μg).

F. natalensis Bark PeEt, CHCl₃, MeOH and H₂O. ABTS⁺⁺ (7.183 ± 0.241, 1.583 ± 0.085, 7.436 ± 0.264 and 7.956 ± 0.526 mM TE), Metal Chelating (61.5 ± 0.5, 49.73 ± 0.2867, 30.08 ± 0.102 and 41.01 ± 0.42% bound iron).

F. relicosa Leaf AcOEt DPPH⁻ and ABTS⁺⁺.

F. sur Bark, leaf and roots EtOH DPPH⁻ (≈ 56, 30 and 50 μg QE/mg of dry extract) and FRAP (≈ 104, 52 and 48 μmol FeSO₄ Eq/mg of dry extract).

F. sycomorus Latex MeOH DPPH⁻ (7.00 ± 0.30 μg GAE/mL) and ABTS⁺⁺ (6.40 ± 0.32 μg GAE/mL).

Leaf EtOH, AcOEt DPPH⁻ (IC₅₀, 18.443 and 33.348 μg/mL), reducing power (22.53 ± 0.37 and 16.19 ± 0.18 μg gallic acid /100g DW).

Leaf H₂O, acetone, CHCl₃, EtOH and MeOH DPPH⁻ (1 ± 2.55, 33 ± 3.38, 42 ± 0.13, 18 ± 0.13 and 47 ± 2.17%).

Leaf Hex and CH₂Cl₂:EtOH DPPH⁻ (6.79 ± 0.88 mg TE/g), ABTS⁺⁺ (9.67 ± 1.46 and 27.45 ± 1.38 mg TE/g), Phosphomolybdenum (1.09 ± 0.07 and 2.65 ± 0.10 mmol TE/ g), CUPRAC (55.47 ± 1.04 and 147.97 ± 5.32 mg TE/g), FRAP (23.35 ± 0.88 and 37.46 ± 0.52 mg TE/g), ferrous chelating (27.93 ± 1.04 and 58.27 ± 0.39 mg EDTAE/g).

Stem Hex and bark CH₂Cl₂:EtOH DPPH⁻ (5.43 ± 1.56 and 32.87 ± 0.71 mg TE/g), ABTS⁺⁺ (11.26 ± 1.57 and 40.81 ± 1.15 mg TE/g), Phosphomolybdenum (0.75 ± 0.13 and 2.10 ± 0.04
mmol TE/g), CUPRAC (51.66 ± 1.70 and 128.78 ± 2.50 mg TE/g), FRAP (19.75 ± 0.89 and 56.72 ± 0.41), ferrous chelating (13.72 ± 0.54 and 47.56 ± 3.49 mg EDTAE/g).

Species	Part	Extractant	IC_{50}, DPPH' (µg/mL)	Source
F. variegata	Branch EtOH	IC_{50}, DPPH'	(195 ± 2)	(Raza et al., 2016)
	Leaf EtOH	IC_{50}, DPPH'	(173 ± 2 and 191 ± 3)	
F. vasta	Leaf H$_2$O:MeOH	DPPH'	0.0672 ± 0.0038	(Taviano et al., 2018)
		reducing power	3.65 ± 0.48 ASE/mL	
F. vogeliana	Bark H$_2$O	DPPH'	4.60 ± 0.15 µg/mL	(Misso et al., 2020)
		phosphomolybdenum (VtCE, 87.37 ± 0.60; BHTE, 358.70 ± 2.87; QE, 53.78 ± 0.46 mg/g of dry plant extract)		

Source: Authors.

Some reports compared the extraction of phenolic compounds and antioxidant activity by conventional and ultrasound-assisted methods. The best antioxidant activity was observed in leaf extracts (Alcántara et al., 2020), and látex (Shahinuzzaman et al., 2020) of *F. carica* obtained from conventional method.

The acetone extract from the leaves of *F. crocata* showed antioxidant activity (IC$_{50}$: 107.05 ± 2.61 µg/mL by DPPH’ and 1.47 ± 1.21 µg/mL by ABTS+) higher than ascorbic acid (IC$_{50}$: 118.82 ± 2.48 µg/mL by DPPH’ and 2.22 ± 0.80 µg/mL by ABTS+) (Cruz-Concepción et al., 2021).

The methanol extract of *F. racemosa* leaves showed antioxidant activity through radical scavenging (DPPH’, O$_2^-$ and OH’) and Reducing Power Assay similar to the fruit extract (Sumi et al., 2016). On the other hand, extracts from ethanol, toluene e ethyl acetate of the fruits presented antioxidant activity superior to the leaves. For both parts, the toluene extract showed the best results, with IC$_{50}$ of (0.75 ± 0.01) µg/mL for fruits and (2.35 ± 0.41) µg/mL for leaves (Bagyalakshmi et al., 2019).

Methanol and chloroform extracts from *F. sycomorus* leaves showed statistically similar percentages of inhibition of DPPH’ radicals of 47 ± 2.17 and 42 ± 0.13, respectively. However, the fruit extracts were more active (Ozdenefe et al., 2020). On the other hand, the ethyl acetate extracts from the leaves were slightly higher in antioxidant potential than the fruits (El-Beltagi et al., 2019).

The CH$_2$Cl$_2$:EtOH extract of *F. sycomorus* bark showed better antioxidant activity when compared to the same leaf extract and hexane extracts from leaves and stem bark. In the ABTS and DPPH’ assays, its activity was 40.81 ± 1.15 and 32.87 ± 0.71 mg TE/g, respectively (Suliman et al., 2021). The aqueous extract of *F. vogeliana* bark also showed good antioxidant potential, with IC$_{50}$ of 4.60 ± 0.15 µg/mL and antioxidant activity index (AAI) of 10.88 ± 0.36 in DPPH’ tests, which were statistically similar to vitamin C (Misso et al., 2020).

The antioxidant activity has a great influence on the variety studied. The methanol extract of *F. deltoidea* leaves changed the IC$_{50}$ from 66.81 ± 4.32 to 288.04 ± 11.43 µg/mL in the DPPH’ assay, while for ascorbic acid and quercetin, the IC$_{50}$ was 1.3 ± 0.74 and 4.98 ± 1.58 µg/mL, respectively (Dom et al., 2020). In the aqueous extract of the same species the variation was observed from 229.43 ± 2.05 to 1161.38 ± 15.52 µg/mL (Abolmaesoomi et al., 2019). For the hydromethanolic
extract (80:20, v/v) of *F. carica* leaves, the variation was observed from 0.48 ± 0.07 to 6.68 ± 0.06 mg/mL (Petruccelli et al., 2018).

Antioxidant activity was also observed in proanthocyanidins isolated from the bark and leaves of *F. virensis* through radical scavenging DPPH· e ABTS+· (Chen et al., 2017). The compounds carpachromene, alpha amyrine acetate, mucusoside and 2-O-a-L-rhamnopyranosyl-hexacosanoate-b-D-glucopyranosyl ester isolated of ethyl acetate fraction of methanol extract from *F. benghalensis* leaves showed antioxidant activity inferior to methanolic extract (IC₅₀, 178.2 ± 1.750 µg/mL) and to ascorbic acid (174.8 ± 12.3 µg/mL) (Hassan et al., 2020).

In vitro assays were predominantly used to measure antioxidant potential. The ethanol extract of *F. carica* leaves caused a reduction of malondialdehyde (MDA) in *in vivo* tests, a marker of oxidative stress (Sukowati et al., 2019). Moreover, the hydroethanol extract (70:30, v/v) of aerial parts of *F. religious* showed potential to normalize the levels of antioxidant enzymes (CAT and SOD) (Singh et al., 2020). Chloroform extract of *F. glomerata* leaves reduced the oxidative stress in diabetic rats (Shaikh et al., 2020).

Research suggests that extracts from different parts of *Ficus* spp. exhibit antioxidant activity, both *in vitro* and in animal model. However, it is suggested for the future, *in vivo* tests also using fractions to guide the isolation of compounds with biological interest.

4.2 Antimicrobial activity

The essential oil and extracts from the parts of *Ficus* spp. presented activity against microorganisms, such as *C. albicans*, *B. subtilis*, *S. aureus* and *E. coli* (Table 4) (Lawal et al., 2016; Tian et al., 2020). The essential oil of *F. tikoua* showed good antibacterial activity against gram-positive species, such as *Enterococcus faecalis* (MIC = 3.13 mg/mL, MBC = 3.13 mg/mL), *Staphylococcus aureus* (MIC = 0.20 mg/mL, MBC = 0.20 mg/mL) and *Bacillus subtilis* (MIC = 0.39 mg/mL, MBC = 0.39 mg/mL). The major compound of the essential oil was palmitic acid, which was more active against gram-negative bacteria, such as *Pseudomonas aeruginosa*, *Escherichia coli* and *Proteus vulgaris*, with MIC of 0.63, 0.63 and 1.25 mg/mL, respectively (Tian et al., 2020).

Specie	Part	Extraction solvent	Microorganism	Reference
F. asperifolia	Leaf	Essential oil	IZD (mm), *B. subtilis* (17.3 ± 1.2), *S. aureus* (23.7 ± 1.5), *E. coli* (20.6 ± 1.8), *Klebsiella spp.* (10.7 ± 1.2), *Proteus spp.* (20.0 ± 1.3), *Pseudomonas spp.* (9.3 ± 0.2), *Salmonella spp.* (13.7 ± 0.6), *P. notatum* (21.0 ± 1.0) and *R. stolonifera* (26.3 ± 5.5).	(Lawal et al., 2016)
F. bengalensis	Bark	EtOH	IZD (mm), *S. aureus* (12), *B. cereus* (11), *E. faecalis* (15), *P. aeruginosa* (13) and *C. albicans* (12).	(Moe et al., 2018)
F. benjamina	Leaf	EtOH	In ovo.	(A. Ashraf et al., 2020)
F. bizanae	Leaf	CH₂Cl₂, AcOEt and MeOH	IZD (mm), *E. coli* (10, 8 and 8) and *S. aureus* (8, 10 and 10).	(G. V. Awolola et al., 2018)
	Leaf	Hex	IZD (mm), *E. coli* (8)	(G. V. Awolola et al., 2018)
	Stem	CH₂Cl₂ and Hex	IZD (mm), *E. coli* (8 and 14) and *S. aureus* (11 and 11).	(G. V. Awolola et al., 2018)
Plant	Part	Extraction Solvent	Bioactivity	
--------------	--------------------	--------------------	--	
F. bubu	Leaf, bark	MeOH	MIC (µg/mL), *E. faecalis* (39.1), *S. aureus* (625.0), *	
			K. pneumoniae (156.2) and *S. typhimurium* (625.0).	
F. capensis	Leaf, bark	MeOH	MIC (µg/mL), *E. faecalis* (39.1), *S. aureus* (312.5 µg/mL), *	
			K. pneumoniae (9.8), *E. coli* (39.1) and *S. typhimurium* (625.0).	
F. carica	Leaf, bark	EtOH, CHCl₃, MeOH, H₂O	MIC (µg/mL), *E. coli* (11.87 ± 0.11), *S. flexneri* (11.73 ± 0.11), *	
			R. solanacearum (8.07 ± 0.11), *A. niger* (8.53 ± 0.0, 9.83 ± 0.0, 9.47 ± 0.11), *	
			P. aeruginosa (MIC 37.5% and MBC 50%).	
F. deltoidea	Leaf, bark	CHCl₃, MeOH, H₂O	MIC (mg/mL), *E. coli* (0.625 and 2.5), *S. aureus* (0.156 and 0.625), *	
			C. albicans (2.5 and 2.5). To *P. aeruginosa*, *E. faecalis*, *	
			K. pneumoniae MIC > 2.5 mg/mL.	
F. elastica	Root, wood	MeOH	MIC (µg/mL), *E. coli* (9.1), *P. vulgaris* (39.1), *	
			P. stuartii (1250.0), *P. aeruginosa* (39.1), *S. aureus* (39.1) and *C. albicans* (39.1).	
F. fistulosa	Leaf, fractions	EtOH, fractions (But, CHCl₃)	Hepatitis C Virus.	
F. lyrata	Bark, gum	CHCl₃	IZD, *Bacillus* sp (2, 4 and 5 mm, in 4, 6 and 8 mg/mL).	
F. natalensis	Bark	PeEt, CHCl₃, MeOH, H₂O	IZD (mm), *E. coli* (30 ± 0.57, 27 ± 0.72, 23 ± 1, 26 ± 0.97), *	
			P. aeruginosa (47 ± 0.4, 30.5 ± 1.28, 30.8 ± 0.34, 28 ± 0.76), *	
			S. aureus (55.7 ± 1.15, 50.9 ± 0.9, 25.6 ± 0.63, 23 ± 0.6), *	
			B. subtilis (38 ± 1.52, 29.7 ± 0.3, 20.8 ± 0.72, 26.8 ± 0.4), *	
			A. niger (37 ± 0.57, 25 ± 1.0, 43.7 ± 1.5, 27 ± 1.52) and *A. oryzae* (23.7 ± 0.57, *	
			25.2 ± 0.28, 26.7 ± 1.15, 26.2 ± 0.76).	

(References: (G. V. Awolola et al., 2018), (J. M. E. Teinkela, 2016), (Lawal et al., 2016), (K. Ashraf et al., 2020), (J. E. M. Teinkela et al., 2017), (Hafid et al., 2018), (Ergül et al., 2017), (Ohashi et al., 2018), (Desta et al., 2020), (Hafid et al., 2016), (Ajaib et al., 2016), (Ajaib et al., 2021).)
F. racemosa

Type	Extract	MIC (mg/mL)	Bacteria/fungi
Leaf	EtOH, toluene, AcOEt	E. coli (5.0 ± 0.12, 1.25 ± 0.08, 1.25 ± 0.09), *S. aureus* (2.5 ± 0.09, 0.625 ± 0.02, 5.0 ± 0.11), *Pseudomonas* spp. (5.0 ± 0.12, 1.25 ± 0.11, 2.5 ± 0.14) and *Klebsiella* spp (2.5 ± 0.14, 0.625 ± 0.02, 1.25 ± 0.01).	
Leaf	MeOH	IZD (mm), *E. coli* (9.61), *S. flexneri* (10.08), *S. boydii* (8.45), *S. epidermidis* (4.23).	
Bark	EtOAc, MeOH	DCZ (mm), *B. subtilis* (10.44, 9.63), *S. aureus* (10.50, 9.56), *S. cervisiae* (10.69, 10.38), *Saccharomyces* spp. (9.38, 8.94), *C. albicans* (10.69, 9.94).	

F. religiosa

Type	Extract	Bacteria/fungi
Leaf	AcOEt	*B. subtilis* and *A. fischer*.

F. sycomorus

Type	Extract	MIC (mg/mL)
Leaf	Acetone and EtOH	IZD (mm), *C. albicans* (10 and 12).
Leaf	Acetone, MeOH and EtOH	IZD (mm), *S. aureus* (11, 10 and 13).
Leaf	EtOH, EtOAc	IZD (mm), *E. coli* (17.82 ± 0.51, 14.09 ± 0.16), *S. typhimureum* (19.31 ± 0.11, 15.21 ± 0.52), *S. aureus* (10.46 ± 0.42, 8.11 ± 0.13), *B. cereus* (12.61±0.29, 10.41±0.15), *C. albicans* (13.21 ± 0.16, 9.34 ± 0.41) and *A. niger* (12.60 ± 0.33, 7.32 ± 0.26).

F. tikoua

| Type | Essential oil | MIC (mg/mL), *E. faecalis* (3.13), *S. aureus* (0.20), *B. subtilis* (0.39), *P. aeruginosa* (6.25), *E. coli* (6.25) and *P. vulgaris* (6.25). |

F. vasta

| Type | Extract | MIC (μg/mL), B. subtilis (>500), L. monocytogenes (125.0), *S. aureus* (62.5), *S. epidermidis* (62.5), *E. coli* (250.0), *P. aeruginosa* (>500), *S. typhimurium* (250.0), *S. enterica* (250.0) and *C. albicans* (>500). |

IZD, Inhibition Zone Diameter. PI, Percentage of Inhibition. DCZ, Diameter of Clear Zone. Source: Authors.

Significant Inhibition Zone Diameter (IZD) against *B. subtilis*, *A. niger*, *E. coli* e *S. aureus* were presented by leaves and bark extracts of *F. natalensis* (Ajaib et al., 2016). The most important Minimum Inhibitory Concentration (MIC) against *E. coli* and *C. albicans* was 39.1 and 9.8 μg/mL, presented by methanol extract of bark of *F. bubu* (J. M. E. Teinkela, Nguedia, et al., 2016).

Acetone and ethanol extracts of *F. sycomorus* leaves showed lower antibacterial activity when compared to tetracycline control, which presented a diameter of the inhibition zone of 23 mm against *S. aureus*. The same extracts showed a diameter of the inhibition zone of 10 and 12 mm, respectively, against *C. albicans*, while the control nystatin presented a diameter of the inhibition zone of 15 mm (Ozdenefe et al., 2020).

The methanol extract of *F. elastica* roots showed lower antimicrobial activity when compared to gentamycin and fluconazole controls (MIC, 25 μg/mL) against fungi and gram-positive and gram-negative bacteria. However, some isolated compounds showed good antimicrobial activity. Ficusoside B presented a MIC of 4.9 μg/mL against *E. coli*, *P. vulgaris*, *S. aureus* and *C. albicans*, and elastiquinone showed better activity against *P. stuartii* and *P. aeruginosa*, with a MIC of 4.9 μg/mL (J. E. M. Teinkela et al., 2017).

Ficusnotanone and diarylbutanoids (Ficusnotins A-F) extracted from the ethanol extract of the leaves of *F. nota*, showed antibacterial activity against *B. subtilis* (Latayada, Uy, Akihara, Ohta, & Ohta, 2017; Latayada, Uy, Akihara, Ohta, Nehira, et al., 2017). We did not identify work in recent years testing antimicrobial activity in vivo. In addition, there are few
reports where purified compounds were tested for this activity, so this should be the focus of some future studies aimed at the discovery and development of new drugs.

4.3 Anti-hyperglycemic, anti-diabetes and anti-obesogenic activities

Table 5 shows the anti-hyperglycemic, anti-diabetes and anti-obesogenic activities of different extract of *Ficus* genus. These activities were also presented by some compounds isolated from species of this genus. Cycloartenol and 24-methylene-cycloartanol triterpenes isolated from the hexane extract of the stem bark of *F. krishnae* showed anti-hyperglycemic activity in rats (Sadasivan Nair et al., 2020), while four flavonoids, similar to kaempherol, quercetin, naringenin and baicalein, which were isolated from the hydromethanol extract of the stem bark of *F. racemosa*, showed antidiabetic and hypolipidemic activity in diabetic rats (Keshari et al., 2016).

Specie	Part	Extraction solvent	Result	Reference
F. asperifolia	Leaf	EtOH	Decrease in blood glucose concentration and improved the derangements caused by streptozotocin in diabetic rats.	(Pwaniyibo et al., 2020)
F. bengalensis	Bark	MeOH	Antiglycation activity *in vitro*	(Moe et al., 2018)
F. carica	Fruit latex	MeOH, fraction: Hex: AcOEt	Inhibitory effect on α-amylase and α-glucosidase *in vitro*.	(Paşayeva et al., 2020)
F. deltoidea	Leaf	MeOH, H$_2$O	Potential to inhibit pancreatic β-cell apoptosis *in vitro* and *in vivo*.	(Zhang et al., 2020)
F. dubia	Roots	EtOH	Higher inhibitory effect against both α-glucosidase and angiotensin-converting enzyme, and low inhibitory activities against acetylcholinesterase.	(Suttisansanee et al., 2021)
F. exasperata	Leaf	H$_2$O	Weak effect on α-amylase inhibition and no effect on α-	(Mouho et al., 2017)

Table 5. Anti-hyperglycemic, anti-diabetes and anti-obesogenic activities of *Ficus* genus.

Ficus racemosa, showed antidiabetic and hypolipidemic activity in diabetic rats (Keshari et al., 2016).
Treatment with chloroform extract from *F. glomerata* leaves (400 mg/kg) reduced blood glucose, plasma urea, uric acid, creatinine, triglycerides and total cholesterol in diabetic rats, presenting results statistically similar to metformin (250 mg/kg) (Shaikh et al., 2020).

F. asperifolia showed antidiabetic effects in rats induced by streptozotocin. The ethanol extract of leaves (400 mg/kg body weight) showed statistically similar effects to metglim (3.38 mg/kg body weight) on lipid profile (total cholesterol, high density lipoprotein, low density lipoprotein and triacylglyceride) and body weight diabetic rats (Pwaniyibo et al., 2020). The aqueous extract, in addition to anti-hyperglycemic potential, showed profertility effect in diabetic male rats (Abu Bakar et al., 2020).

The ethanol extract of *F. deltoidea* leaves contributed to suppression of hypercholesterolemic induced in rats (Chuo et al., 2020). Its methanolic extract reduced glucose levels in diabetic rats and prevented diabetic osteoporosis through inhibition of bone oxidative stress (Samsulrizal et al., 2021).

The n-hexane and n-hexane-ethyl acetate fractions from the methanol extract of *F. carica* fruit latex showed an inhibitory effect on α-glucosidase (IC$_{50}$, 12.333 ± 0.153 and 6.920 ± 0.026 µg/mL) based on *in vitro* tests. Only the n-hexane-ethyl acetate fraction showed an inhibitory effect on α-amylase, with IC$_{50}$ of 195.205 ± 0.015 µg/mL. These results were superior to inhibition of α-glucosidase and α-amylase by acarbose, with IC$_{50}$ of 18.903 ± 0.012 and 117.256 ± 0.015, respectively (Paşayeva et al., 2020).

Enzyme inhibitory activity as α-glucosidase and α-amylase was observed in methanolic (64.93 ± 1.09 and 67.32 ± 2.46%) and aqueous (69.56 ± 0.61 and 69.08 ± 6.05%) extracts of *F. carica* leaves (2 mg/mL). Both extracts presented an inhibitory percentage higher than acarbose (57.56 ± 0.52 and 58.40 ± 0.63%) (Ergül et al., 2019). Inhibition of these enzymes involved in carbohydrate metabolism indicates hyperglycemic, antidiabetic and antiobesogenic potential (Akhtar et al., 2018; Mopuri et al., 2018). The potential to inhibit pancreatic β-cell apoptosis *in vivo* and *in vitro* was shown in *F. carica* leaves (Zhang et al., 2020), and in different varieties of *F. deltoidea* there was a significant decrease in the production of advanced glycation end products (AGEs) (Mohd Dom et al., 2020).

4.4 Anticancer and cytotoxic activities

The anticancer and cytotoxic activities were reported in extracts and essential oil of the *Ficus* genus (Table 6). Isolated compounds of the *Ficus* genus also showed cytotoxic and anticancer activity. Two alkaloids isolated from the ethanol extract of the bark and leaves of *F. fistulosa* (fistulopsine A and B) showed inhibitory activity against breast and colon carcinoma cell lines (Yap et al., 2016). Tengechlorenine, isolated from the ethanol extract of *F. fistulosa* leaves showed
cytotoxic effect against breast cancer cell lines (Al-Khdhairawi et al., 2017). A homogeneous pectic polysaccharide (FP2) isolated from the ethanol extract of the aerial parts of *F. pandurata* showed anticancer potential (Lv et al., 2020). Proanthocyanidins isolated from the bark and leaves of *F. virens* showed cytotoxic activity against breast cancer cells (Chen et al., 2017).

Table 6. Anticancer and cytotoxic activities of *Ficus* genus.

Specie	Part	Extraction solvent	Cell line	Reference
F. beecheyana	Roots	EtOH	Human leukemic cells (HL-60)	(Yen et al., 2018)
F. benghalensis	Barks	H$_2$O:EtOH	Chinese hamster ovary e adenocarcinomic human alveolar basal epithelial (A549).	(Khanal & Patil, 2020)
	Stem bark	MeOH	Yeast cell model.	(Raheel et al., 2017)
F. bubu	Stem bark	MeOH	Glioma (U373), lung (A549) and melanoma (SKMEL-28).	(J. M. E. Teinkela, Nguedia, et al., 2016)
	Leaf Latex	H$_2$O:EtOH	Jurkat (human acute T-cell leukemia cells).	(Ohashi et al., 2018)
F. capensis	Leaf Stem-bark	—	Papiloma vírus humano (HPV).	(Ghanbari et al., 2019)
	Latex	Acetone	HepG2 (human hepatoblastoma cancer).	(Mustafa et al., 2021)
F. carica	Leaf Latex	—	MDA-MB-231.	(AlGhalban et al., 2021)
	Leaf Latex	MeOH	Liver cancer (Huh7it) and cause apoptosis in vitro.	(Purnamasari et al., 2019)
	Leaf Acetone	—	HeLa and SiHa cervical cancer.	(Cruz-Concepción et al., 2021)
	Leaf Acetone,	—	MDA-MB-231 triple-negative breast cancer.	(Sánchez-Valdeolívar et al., 2020)
	CH$_2$Cl$_2$, Hex	—		
F. deltoidea	Leaf AcOEt	—	Breast cancer (MCF-7, MDA-MB 231, HCC1937) e colon cancer (HCT 116).	(Abolmaeoomi et al., 2019)
	Leaf BuOH, CHCl$_3$, AcOEt, MeOH	—	Lung adenocarcinoma (A549), hepatocyte carcinoma (HepG2) and breast adenocarcinoma (MCF7).	(K. Ashraf et al., 2020)
F. dubia	Roots	EtOH	SKOV3 (ovarian) and A549 (lung).	(Suttisansanee et al., 2021)
F. elastica	Aerial root wood	MeOH	Glioma (U373n Hs683), carcinoma (A549 MCF7) and melanoma (SK-MEL28 B16F10).	(J. M. E. Teinkela, Noundou, et al., 2016)
F. salicifolia	Leaf latexit	—	MDA-MB-231.	(AlGhalban et al., 2021)
F. sycomorus	Latex	MeOH	Breast (MCF-7), liver (HepG2), colon (HCT116), lung (A549) and acute myeloid leukemia (HL-60) cancers.	(Abdel-Aty et al., 2019)
	Leaf	EtOH	Liver (HepG2), colorectal adenocarcinoma (Caco-2) and Breast (MCF-7).	(El-Beltagi et al., 2019)
4.5 Anti-inflammatory and healing properties

The aqueous and hydroethanolic extract of *F. carica* leaves showed anti-inflammatory activity *in vitro*, which was investigated using the cell-reporter plasmid pNiPty2-SEAP in HT-29 cells (human colon adenocarcinoma). Prominent results were presented by the hydroethanolic extract (Alcántara et al., 2020).

The ethanol extracts of the bark and roots of *F. hirta* and its fractions (CHCl3, AcOEt, BuOH) showed significant anti-inflammatory activity by inhibiting LPS-induced NO production in murine macrophage RAW264.7 (Cheng, Yi, Chen, et al., 2017; Cheng, Yi, Wang, et al., 2017). Phenolic compounds isolated from the CHCl3 fraction of the roots also showed significant inhibition of NO production, including vanillin, (−)-pinoresinol and 30-hydroxy-40-methoxy-trans-cinnamaldehyde, which revealed their anti-inflammatory potential (Cheng et al., 2017).

The ethanolic extract of the bark of *F. hispida* showed anti-inflammatory activity in rats (Howlader et al., 2017). Ficuhismine B, an alkaloid isolated from the ethanol extract of branches and leaves, showed anti-inflammatory activity *in vitro* through the NF-κB pathway luciferase assay (Jia et al., 2020). The ethanolic and hydroethanolic extracts of the stem bark of *F. palmata* presented anti-inflammatory activity *in vitro*, through the inhibition of pro-inflammatory cytokines and by the negative regulation of pro-inflammatory mediators (Khajuria et al., 2018).

Dichloromethane and hexane extracts from the bark of *F. racemosa* showed healing activity *in vitro*, which was evidenced by increased cell migration, mainly attributed to the isolated compounds, lupeol and β-sitosterol (Bopage et al., 2018). The compound drupin, a cysteine protease isolated from the latex of *F. drupacea*, showed activity by accelerating the healing process in mice (Manjuprasanna et al., 2020).

Phenolic glycosides from ethanolic extract of *F. hirta* roots, such as Ficuside A and methyl 2-hydroxybenzoate-2-O-β-D-apiofuran-syl-(1→2)-O-β-D-glucopyranoside were responsible for antineuroinflammatory activity (Ye et al., 2020).

4.6 Other reported activities

The aqueous extract of *Ficus* spp. presented different activities. The aerial roots of *F. benghalensis* showed improvement in memory, anxiolytic activity, muscle relaxant capacity and delay in the onset of seizures in mice. However, no significant effects on the sleep of the animals tested were identified (Panday & Rauniar, 2016). In *F. carica* leaves, cell cultures showed relief from skin damage caused by psychological stress *in vitro* and *in vivo*, suggesting its potential application in skin care products (Dini et al., 2021), a profertilizing effect was observed through the increase in the number of sperm in male diabetic rats (Abu Bakar et al., 2020). Potential to cure polycystic ovary syndrome in rats were observed in the *F. religious* leaves (Suriyakalaa et al., 2021). Oral supplementation of male mice with leaf extract significantly reduced neuromuscular coordination, exploratory behavior and object recognition ability (Akhtar et al., 2020).

Anticoccidial activity through inhibition against *Eimeria* (E. tenella, E. necatrix, E. mitis) were presented by methanolic and aqueous extracts of *F. racemosa* leaves (Wajiha & Qureshi, 2021). The hydromethanolic extract of the stem bark of *F. sycomorus* showed an antidepressant effect in male rats (Foyet et al., 2017).

The methanolic extract of *F. deltoidea* leaves improved the learning ability in rats through its oral administration, being related to the reduction of oxidative stress and, possibly, the reduction of sugar levels in the brain of the animals tested.
The methanolic extract of *F. platyphylla* stem bark presented analgesic potential and neuroleptic effect in mice (Chindo et al., 2016; Sutter et al., 2019). The methanolic extract of *F. dalhousiae* stem bark was shown to be an antihyperlipidemic agent in hyperlipidemic rats induced a high fat diet (Surya et al., 2017). The methanol extract of *F. elastica* root wood demonstrated antitypanosomal property, antimalarial activity and low in vitro cytotoxicity (J. M. E. Teinkela et al., 2018).

The ethanol extract of the stem bark of *F. carica* and its fraction rich in oligosaccharides presented neuroactivity and can significantly control the convulsive disorders induced by strychnine in male mice (Raafat & Wurglics, 2019). Antinociceptive and sedative activity in rats were observed in ethanol extract of the bark of *F. hispida* showed (Howlader et al., 2017).

Immunomodulating property *in vitro* were identified in the methanol extract of the stem bark of *F. glomerata*, which was related to the presence of β-sitosterol and tannins identified in the extract (Heroor et al., 2020). Gastroprotective activity by inhibiting ulcers in rats were showed in the methanol extracts of the stem bark and leaves of *F. glumosa*. Furthermore, the leaves extract showed the most relevant results. This activity was related to isoquercitrin, hyperosid and p-hydroxybenzoic acid isolated in the species (G. V. Awolola et al., 2019).

Hepatoprotective effect were showed by methanol extract of *F. carica* leaves (Dureshahwar et al., 2019), and hydroethanolic extract of the leaves of *F. spragueana* in rats (El-hawy et al., 2019). The hydroethanolic extract of the aerial part of *F. religious* and methanol extract of *F. carica* leaves showed nephroprotective activity in diabetic rats (Dureshahwar et al., 2019; Singh et al., 2020).

5. Patents with *Ficus* spp.

The selected patents addressed the use of chemical compounds and properties in different areas of application, using parts of plants of the *Ficus* genus. Among the patents using *Ficus* spp. its use in the preparation of food products is contained, as a meat tenderizer, but in addition to its application for processing, it can also be a source for future patents in the food industry using the potential of bioactive compounds of species of this genus, such as functional teas. Other patents deal with topical and hair care and protection, which points to the potential of this genus in the preparation of cosmetics. Table 7 presents these and other patents using plant parts of the *Ficus* genus.

Table 7. Patents of *Ficus* spp.

Country	Summary	Reference
China	Refers to a sunscreen prepared with rich pectin components in *Ficus pumila* seed extract.	(Aihua, 2017)
United States	Refers to compositions that include combinations of plant extracts (*Ficus tikoua* and others). Used as topical skin compositions, edible compositions, hair care compositions, etc.	(Florence et al., 2017)
China	Provides a method of processing meat dumplings tenderized with ficin extracted of *Ficus* sp. Latex, belongs to the field of meat products processing technology.	(Jiaxu & Changjun, 2017b)
China	Provides a processing method of black bean-flavored dried beef. The ficin used in the tenderization solution is extracted from the latex of the *Ficus* sp. And the immature fruit milk.	(Jiaxu & Changjun, 2017a)
China	Discloses a type of skin care composition of korean ginseng stem cells with extracts from parts of *Ficus pumila* and others.	(Haijia et al., 2018)
Country	Statement	Reference
---------	-----------	-----------
Korea	Refers to a composition to prevent, improve or treat cognitive impairment, contains *Ficus erecta* extract as active ingredient.	(Jeong et al., 2018)
China	Discloses a preparation method and application of a novel isoflavone compound extracted from *Ficus auriculata*. The compound has good effect of inhibiting the proliferation of three tumor cells.	(Changri et al., 2018)
China	Belongs to the technical fields of tea, more particularly to a kind of functional tea with parts of the *Ficus tikouae* leaf for the treatment of enteritis.	(Yuanxing, 2018)
China	Belong to the field of Chinese medicine, discloses a type of instant particles and its method of preparation for the treatment of renal edema with latex pulp, fruits and roots of *Ficus sarmenosa* and *Ficus pumila*.	(Jie et al., 2018)
China	Provides a probiotic and edible medicinal tea drink of traditional Chinese medicine for the prevention of cancer and its method of preparation, the drink comprises parts of *F. carica* and other plants.	(Wei, 2020)
China	It relates to a preparation method of freeze-dried powder of a composition with acne removing effect, with traditional Chinese medicine extract, *Ficus pumila* cryptocephala extract and others plants.	(Renpu, 2020)

Source: Authors.

6. Conclusions and Future Scope

The genus review enabled the macro vision of the state of the art, as well as the use of the *Ficus* genus in different areas such as: cosmetics, sunscreens, food technology, teas, softeners, probiotics, stem cell biotechnology, deficiency pharmacology cognitive impairment, tumor cell growth inhibitors, acne removers and in traditional Chinese medicine. This paper may contribute to the direction of future scientific and technological research using the different parts of the *Ficus* genus.

The results obtained in this review are related to the chemical knowledge of the *Ficus* genus, highlighting phenolic compounds and flavonoids as the main bioactive compounds responsible for most of the activities, such as antioxidants and antimicrobials. The important anticancer, anti-inflammatory and healing properties have been widely described. However, studies are still needed to experimentally relate these reported activities to specific classes of compounds. For this, it is important to fractionate extracts in order to guide the purification and identification of new compounds for the development of new drugs.

Tests were performed mostly *in vitro* and in a smaller number *in vivo* using rats and mice. However, studies in animal models are still quite limited and need to be further explored to enable future clinical trials. It is necessary to understand the mechanisms of action of these natural products for related activities and submit them to toxicity tests in order to obtain information about their possible side effects, generating a more robust report to verify the feasibility of clinical trials.

References

Abdel-Aty, A. M., Hamed, M. B., Salama, W. H., Ali, M. M., Fahmy, A. S., & Mohamed, S. A. (2019). *Ficus carica, Ficus sycomorus* and *Euphorbia tirucalli* latex extracts: Phytochemical screening, antioxidant and cytotoxic properties. *Biocatalysis and Agricultural Biotechnology*, 20(June), 101199. https://doi.org/10.1016/j.bcab.2019.101199

Abolmaesoomi, M., Abdal Aziz, A., Mat Junit, S., & Mohd Ali, J. (2019). *Ficus deltoidea*: Effects of solvent polarity on antioxidant and anti-proliferative activities in breast and colon cancer cells. *European Journal of Integrative Medicine*, 28(May), 57–67. https://doi.org/10.1016/j.eujim.2019.05.002

Abraham, N. N., Abdal-Rahman, P. S., & Aminuddin, N. (2018). The antioxidant activities, cytotoxic properties, and identification of watersoluble compounds of *Ficus deltoidea* leaves. *PeerJ*, 2018(10), 1–20. https://doi.org/10.7717/peerj.5694

Abu Bakar, U., Subramaniam, P., Kamar Bashah, N. A., Kamalrudin, A., Kamaruzzaman, K. A., Jasamai, M., Aizat, W. M., Shahinuzzaman, M., & Mat Noor, M. (2020). Sperm Proteomics Analysis of Diabetic Induced Male Rats as Influenced by *Ficus carica* Leaf Extract. *Processes*, 8(4), 395. https://doi.org/10.3390/pr8040395
Aihua, X. (2017). *Ficus pumila* sunblock (Patent No. CN 106580831A. 2017 April 26.)*

Ajabi, M., Almas, M., Khan, K. M., Perveen, S., & Shah, S. (2016). Phytochemical screening, antimicrobial and antioxidant activities of Ficus natalensis. *Journal of the Chemical Society of Pakistan, 38(2), 345–351.*

Akhatar, N., Iqbal, S., Shahzad, M. F., Latif, M., & Iqbal, F. (2020). Oral supplementation of Ficus religiosa leaf extract adversely affects the selected behavioral aspects of male albino mice. *Biologia, 75(12), 2295–2300. doi:10.2478/s11756-020-00492-0*

Akhatar, N., Jafari, L., Green, B. D., Kalsoon, S., & Mirza, B. (2018). A multi-mode bioactive agent isolated from Ficus microcarpa L. Fill. With therapeutic potential for type 2 diabetes mellitus. *Frontiers in Pharmacology, 9(4NOV), 1–12. doi:10.3389/fphar.2018.01376*

Akomolafe, S. F., Oboh, G., Oyeleye, S. L., & Boligon, A. A. (2016). Aqueous extract of *Ficus capensis* leaves inhibits key enzymes linked to erectile dysfunction and prevent oxidative stress in rats' penile tissue. *NFS Journal, 4, 15–21. doi:10.1016/j.nfs.2016.06.001*

Al-Kh inflairawi, A. A. Q., Krishnan, P., Mai, C. W., Chung, F. F. L., Leong, C. O., Yong, K. T., Chong, K. W., Low, Y. Y., Kam, T. S., & Lim, K. H. (2017). A Bis-benzyopyrroloisoquinoline Alkaloid Incorporating a Cyclobutane Core and a Chlorophenanthroindolizidine Alkaloid with Cytotoxic Activity from *Ficus fistulosa* var. *tengereensiss.* *Journal of Natural Products, 80(10), 2734–2740. doi:10.1021/acs.jnatprod.7b00500*

Alcántara, C., Žugčić, T., Abdelkebir, R., García-Pérez, J. V., Jambrak, A. R., Lorenzo, J. M., Collado, M. C., Granato, D., & Barba, F. J. (2020). Effects of Ultrasound-Assisted Extraction and Solvent on the Phenolic Profile, Bacterial Growth, and Anti-Inflammatory/Antioxidant Activities of Mediterranean Olive and Fig Leaves Extracts. *Molecules, 25(7), 1718. doi:10.3390/molecules25071718*

AlGhalban, F. M., Khan, A. A., & Khatak, M. N. K. (2021). Comparative anticancer activities of *Ficus carica* and *Ficus salicifolia* latex in MDA-MB-231 cells. *Saudi Journal of Biological Sciences, 28(12), 2020120611. doi:10.1016/j.sjbs.2019.11.003*

Ashraf, A., Zafar, S., Ashraf, M. Y., Ijaz, M. U., Muzammal, S., Asad, F., Jabeen, F., & Shahid, M. (2020). Phytochemical composition and potent biological activities of *Ficus benjamina* var. comosa leaves extract. *Pakistan Journal of Botany, 52(2), 531–535. doi:10.30848/PJB2020-2(3)*

Ashraf, K., Halim, H., Lim, S. M., Ramasamy, K., & Sultan, S. (2020). *In vitro* antioxidant, antimicrobial and antiproliferative studies of four different extracts of Orthosiphon stamineus, *Gynura procumbens* and *Ficus deltoidea.* *Saudi Journal of Biological Sciences, 27(1), 417–432. doi:10.1016/j.sjbs.2019.11.003*

Awolola, G. V., Sofidiya, M. O., Bajnath, H., Noren, S. S., & Koorkanally, N. A. (2019). The phytochemistry and gastroprotective activities of the leaves of *Ficus glomosa*. *South African Journal of Botany, 126, 190–195. doi:10.1016/j.sajb.2019.01.015*

Awolola, G. V., Chenia, H. Y., Bajnath, H., & Koorkanally, N. A. (2018). Identification of secondary metabolites and resistance modifying activity of *Ficus b_JOB* leaf, stem bark and fruit extracts. *Acta Poloniae Pharmaceutica - Drug Research, 75(1), 71–81.*

Bagyalakshmi, B., Nivedhitha, P., & Balamurugan, A. (2019). Studies on phytochemical analysis, antioxidant and antibacterial activity of *Ficus racemosa* L. leaf and fruit extracts against wound pathogens. *Veteros, 32(1), 58–63. doi:10.1007/s22535-019-00007-6*

Bopage, N. S., Kamal Bandara Gunahera Balasamy, K., & Sultan, S. (2020). Phytochemical screening, antimicrobial and antioxidant activities of four different extracts of *Orthosiphon stamineus*, *Gynura procumbens* and *Ficus deltoidea*. *Saudi Journal of Biological Sciences, 27(1), 417–432. doi:10.1016/j.sjbs.2019.11.003*

Changri, H., Taiming, S., & Xiaoping, S. (2018). Isoflavone compound in *Ficus auriculata* as well as preparation method and application thereof (Patent No. CN 108358878B. 2018 August 3.).

Chen, X.-X., Lam, K. H., Chen, Q.-X., Leung, G. P.-H., Tang, S. C. W., Sze, C. S.-W., Xiao, J.-B., Feng, F., Wang, Y., Zhang, K. Y.-B., & Zhang, Z.-J. (2017). *Ficus virens* proanthocyanidins induced apoptosis in breast cancer cells concomitantly ameliorated 5-fluorouracil induced intestinal maccosis in rats. *Food and Chemical Toxicology, 110(June), 49–61. doi:10.1016/j.fct.2017.10.017*

Cheng, J., Yi, X., Chen, H., Wang, Y., & He, X. (2017). Anti-inflammatory phenylpropanoids and phenolics from *Ficus hirta* Vahl. *Fitoterapia, 121(June), 229–234. doi:10.1016/j.fitote.2017.07.018*

Cheng, J., Yi, X., Wang, Y., Huang, X., & He, X. (2017). Phenolics from the roots of hairy fig (*Ficus hirta* Vahl.) exert prominent anti-inflammatory activity. *Journal of Functional Foods, 31, 79–88. doi:10.1016/j.jff.2017.01.035*

Chindo, B. A., Schroder, H., Koeberle, A., Werz, O., & Becker, A. (2016). Analgesic potential of standardized methanol stem bark extract of *Ficus platyphyllo* in mice: Mechanisms of action. *Journal of Ethnopharmacology, 184, 101–106. doi:10.1016/j.jep.2016.03.003*

Chua, P. H., Uzar, F., Abdul-Rahman, P. S., Abdullah, N., & Aminudin, N. (2020). Alterations of Cholesterol Lowering-Related Proteins in the Serum of Hypercholesterolemia-Induced Rats Treated with *Ficus deltoidea*. *Sains Malaysiana, 49(5), 1055–1066. doi:10.17576/jsm-2020-4905-10*

Cruz- Concepción, B. D. I., Espinoza- Rojo, M., Álvarez- Fitz, P., Illades- Aquiur, B., Acevedo- Quiroz, M., Zacapala- Gómez, A. E., Navarro-Tito, N., Jiménez-Wences, H., Torres- Rojas, F. I., & Mendoza- Catalán, M. A. (2021). Cytotoxicity of *Ficus Crocata* Extract on Cervical Cancer Cells and Protective Effect against Hydrogen Peroxide-Induced Oxidative Stress in HuCAT Non-Tumor Cells. *Plants, 10(1), 183. doi:10.3390/plants10010183*

Cruz, J. M. dos A., Corrêa, R. F., Lamarão, C. V., Knipp, V. F., Sanches, E. A., Campelo, P. H., & Bezerra, J. de A. (2022). *Ficus* spp. fruits: Bioactive compounds and chemical, biological and pharmacological properties. *Food Research International, 152(December 2021), 110928. doi:10.1016/j.foodres.2021.110928*

Desta, W., Shumbhari, M., & Gebrehiwot, S. (2020). Application of *Ficus carica* L. And Solanum incanum L. Extracts in Coagulation of Milk. *And Case of Traditional Practice in Ab’ala Area, Afar Regional State, Ethiopia. Biochemistry Research International, 2020. doi:10.1155/2020/9874949*
Keshari, A. K., Kumar, G., Kushwaha, P. S., Bhardwaj, M., Kumar, P., Rawat, A., Kumar, D., Prakash, A., Ghosh, B., & Saha, S. (2016). Isolated flavonoids from Ficus racemosa stem bark possess antidiabetic, hypolipidemic and protective effects in albino Wistar rats. *Journal of Ethnopharmacology*, 181, 252–262. https://doi.org/10.1016/j.jep.2016.02.004

Khauria, V., Gupta, S., Bhagat, A., & Ahmed, Z. (2018). In vitro assessment of cytotoxicity, antioxidant and anti-inflammatory activities of Ficus palmata. *Journal of Herbal Medicine*, 13(December 2017), 71–75. https://doi.org/10.1016/j.thermed.2017.12.001

Khanal, P., & Patil, B. M. (2020). In vitro and in silico anti-oxidant, cytotoxicity and biological activities of Ficus benghalensis and Duranta repens. *Chinese Herbal Medicines*, 12(4), 406–413. https://doi.org/10.1016/j.chmed.2020.02.004

Knothe, G., Razon, L. F., & Castro, M. E. G. de. (2019). Fatty acids, triterpenes and cycloalkanes in Ficus seed oils. *Plant Physiology and Biochemistry*, 135, 127–131. https://doi.org/10.1016/j.plaphy.2018.11.030

Latayada, F. S., Uy, M. M., Akihara, Y., Ohta, E., Nehira, T., Ōmura, H., & Ohta, S. (2017). Ficusnotins A-F: Rare diarylbutanoids from the leaves of Ficus noto. *Phytochemistry*, 145(5), 98–104. https://doi.org/10.1016/j.phytochem.2017.05.016

Lawal, O. A., Adelayo, M. A., Sikuru, A. A., & Ogunwande, I. A. (2016). Chemical Composition and Antimicrobial Activity of Essential Oils of Ficus asperifolia Miq, and Ficus capensis Thumb from Nigeria. *Journal of Essential Oil-Bearing Plants*, 19, 237–240. https://doi.org/10.1016/j.joibp.2017.01.018

Lv, H., Hu, C., Xie, Z., Wang, P., Chen, X., & Wen, C. (2020). Purification, characterization and anti-tumor activity of a pectic-type polysaccharide isolated from Ficus pandurata H. *International Journal of Molecular Macromolecules*, 153, 201–206. https://doi.org/10.1016/j.ijbiomac.2020.02.244

Manjuprasanna, V. N., Rudresha, G. V., Urs, A. P., Milan Gowda, M. D., Rajaiah, R., & Vishwa, S. B. (2020). Drupalin, a cytokine protease from Ficus drupacea latex accelerates excision wound healing in mice. *International Journal of Biological Macromolecules*, 165, 691–700. https://doi.org/10.1016/j.ijbiomac.2020.09.215

Mbougnia, J. F. T., Happi, G. M., Bitchagno, G. T. M., Awouafack, M. D., Lenta, B. N., Kouam, S. F., Tane, P., Sewald, N., & Tzene, M. (2021). Chemical constituents from Ficus natinalis hochst (Moraceae) and their chemophenetic significance. *Biochemical Systematics and Ecology*, 95(1), 104227. https://doi.org/10.1016/j.bsee.2021.104227

Mikail, H. G., Akumka, D. D., Adami, M., & Zafiada, A. U. (2019). Evaluation of phytochemical constituents and sedative-hypnotic activity of the methanol leaf extract of *Ficus aspera* in mice. *Veterinary World*, 12(6), 830–833. https://doi.org/10.14202/vetworld.2019.830-833

Misso, R.-L. N. M., Biteghe, F. A. N., Obiang, C. S., Ondo, J.-P., Gao, N., Cervantes-Cervantes, M., Vignaux, G., Vergeade, A., Engohang-Ndong, J., Mendene, H. E., Mabika, B., Abessolo, F. O., Engonga, L.-C. O., & Ndong, J. D. L. C. (2020). Effect of aqueous extracts of *Ficus vogeliana* Miq and *Tieghemella africana* Pierre in 7,12-Dimethylbenz(a)anthracene-induced skin cancer in rats. *Journal of Ethnopharmacology*, 263(May), 113244. https://doi.org/10.1016/j.jep.2020.113244

Moe, T. S., Win, H. H., Hlaing, T. T., Lwin, W. W., Htet, Z. M., & Mya, K. M. (2018). Evaluation of in vitro antioxidant, antiglycation and antimicrobial potential of indigenous Myanmar medicinal plants. *Journal of Ethnobiology*, 16(5), 358–366. https://doi.org/10.1016/j.jethnobiol.2018.08.001

Mohn, D. N., Yahaya, N., Adam, Z., Nik Mohn, N. M. A., & Hamid, M. (2020). Antiglycation and Antioxidant Properties of *Ficus altissima* Varieties. *Evidence-Based Complementary and Alternative Medicine*, 2020. https://doi.org/10.1155/2020/6374632

Mopuri, R., Ganjayi, M., Meriga, B., Koobanally, N. A., & Islam, M. S. (2018). The effects of *Ficus carica* on the activity of enzymes related to metabolic syndrome. *Journal of Food and Drug Analysis*, 26(1), 201–210. https://doi.org/10.1016/j.jfda.2017.03.001

Mouro, D. G., Oliveira, A. P., Kodjo, C. G., Valentea, P., Gil-Izquierdo, A., Andrade, P. B., Ouattara, Z. A., Bekro, Y. A., & Ferreres, F. (2018). Chemical findings and in vitro biological studies to uphold the use of *Ficus aspera* Vahl leaf and stem bark. *Food and Chemical Toxicology*, 112(December 2017), 134–144. https://doi.org/10.1016/j.fct.2017.12.043

Mustafa, K., Yu, S., Zhang, W., Mohamed, H., Naz, T., Xiao, H., Lin, Y., Nazir, Y., Fazili, A. A., Nosheen, S., Bai, X., & Song, Y. (2011). Screening, characterization, and in vitro-ROS dependent cytotoxic potential of extract from *Ficus carica* against hepatocellular (HepG2) carcinoma cells. *South African Journal of Botany*, 138, 217–226. https://doi.org/10.1016/j.sajb.2020.12.018

Nirwana, L., Rianti, D., Soekartono, R. H., Listyorini, R. D., & Basuki, D. P. (2018). Antibacterial activity of fig leaf (*Ficus carica* Linn.) extract against Enterococcus faecalis and its cytotoxic effects on fibroblast cells. *Veterinary World*, 11(3), 342–347. https://doi.org/10.14202/vetworld.2018.342-347

Nurdiana, S., Goh, Y. M., Hafandi, A., Dom, S. M., Nur Syinaliain, A., Noor Saffianniz, N. M., & Ehrahimi, M. (2018). Improvement of spatial learning and memory, cortical gyriﬁcation patterns and brain oxidative stress markers in diabetic rats treated with *Ficus officinalis* leaf extract and vinexin. *Journal of Traditional and Complementary Medicine*, 8(1), 190–202. https://doi.org/10.1016/j.jtcm.2017.05.006

Ohashi, M., Amoa-Boasompe, M., Kwofie, K. D., Agyapong, J., Adegle, R., Sakiyamah, M. M., Ayettey, F., Owusu, K. B., Tuffour, I., Atchoglo, P., Tung, N. H., Uto, T., Aboagye, F., Appiah, A. A., Appiah-Opoku, R., Nyarko, A. K., Anyan, W. K., Ayi, I., Boakye, D. A., ... Ohta, N. (2018). In vitro antiprotozoan activity and mechanisms of action of selected G hanian medicinal plants against Trypanosoma, Leishmania, and Plasmodium parasites. *Phytotherapy Research*, 32(8), 1617–1630. https://doi.org/10.1002/ptr.6693

Oyebode, O. T., Ogunbiyi, F. O., & Olorunsogo, O. O. (2019). Opening of liver mitochondrial permeability transition pore in streptozotocin-induced diabetic rats and its inhibition by methanol fraction of *Ficus mucosa* (Welw) root bark. *Journal of Integrative Medicine*, 17(6), 446–454.
and antioxidant activities and bioinformatics analysis of leaf and stem bark of Ficus sycomorus L. Process Biochemistry, 101 (November 2020), 169–178. https://doi.org/10.1016/j.procbio.2020.11.011

Sumi, S. A., Siraj, M. A., Hossain, A., Mia, M. S., Afrin, S., & Rahman, M. M. (2016). Investigation of the Key Pharmacological Activities of Ficus racemosa and Analysis of Its Major Bioactive Polyphenols by HPLC-DAD. Evidence-Based Complementary and Alternative Medicine, 2016. https://doi.org/10.1155/2016/3874516

Suryakala, U., Ramachandran, R., Doulathumissa, J. A., Aseervatham, S. B., Sankarganesh, D., Kamalakannan, S., Kadalmal, B., Angayarkanni, J., Akbarsa, M. A., & Achiraman, S. (2021). Upregulation of Cyp19a1 and PPAR-γ in ovarian steroidogenic pathway by Ficus religiosa: A potential cure for polycystic ovary syndrome. Journal of Ethnopharmacology, 267 (November 2020), 113540. https://doi.org/10.1016/j.jep.2020.113540

Surya, S., Anur Kumar, R., Carla, B., & Sunil, C. (2017). Antihyperlipidemic effect of Ficus dalhousiae mg. stem bark on Triton WR-1339 and high fat diet-induced hyperlipidemic rats. Bulletin of Faculty of Pharmacy, Cairo University, 55(1), 73–77. https://doi.org/10.1016/j.bfopc.2016.10.003

Sutter, J., Chindo, B. A., & Becker, A. (2019). Effects of a methanol extract of Ficus platyphylla stem bark on a two-way active avoidance task and on body core temperature. Behavioural Brain Research, 367 (April), 215–220. https://doi.org/10.1016/j.bbr.2019.04.008

Suttisansanee, U., Pitchakarn, P., Ting, P., Inthachai, W., Thiayai, P., Rodthayoy, D., Karinchai, J., Chanatarasuwit, B., Nuchuchua, O., & Temviriyanukul, P. (2021). Health-promoting bioactivity and in vivo genotoxicity evaluation of a hemepiphyte fig, Ficus dibia. Food Science & Nutrition, January, fn3.2205. https://doi.org/10.1002/fsn3.2205

Taviano, M. F., Rashed, K., Filecamo, A., Cacciola, F., Dugo, P., Mondello, L., Bisignano, C., Acquaviva, R., & D’Arrigo, M., & Miceli, N. (2018). Phenolic profile and biological properties of the leaves of Ficus vasa Forssk. (Moraceae) growing in Egypt. BMC Complementary and Alternative Medicine, 18(1), 1–11. https://doi.org/10.1186/s12906-018-2210-0

Teinkela, J. E. M., Noundou, X. S., Fannang, S., Meyer, F., Vardamides, J. C., Mpondo, E. M., Krause, R. W. M., Azebaze, A. G. B., & Ngueida, J. C. A. (2017). In vitro antimicrobial activity of the methanol extract and compounds from the wood of Ficus elastica Roxb. ex Hornem. aerial roots. South African Journal of Botany, 111, 302–306. https://doi.org/10.1016/j.sajb.2017.03.026

Teinkela, J. M. E., Ngueida, J. C. A., Meyer, F., Donfack, E. V., Ndjakou, B. L., Ngouela, S., Tsamo, E., Adiogo, D., Azebaze, A. G. B., & Wintjens, R. (2016). In vitro antimicrobial and anti-proliferative activities of plant extracts from Spathodea campanulata, Ficus babu, and Carica papaya. Pharmaceutical Biology, 54(6), 1086–1095. https://doi.org/10.3109/13880209.2015.1103273

Teinkela, J. M. E., Noundou, X. S., Nguemfo, E. L., Meyer, F., Djoukoue, A., Van Antwerpen, P., Ngouela, S., Tsamo, E., Mpondo, E. A. M., Vardamides, J. C., Azebaze, G. A. B., & Wintjens, R. (2016). Identification of compounds with anti-proliferative activity from the wood of Ficus elastica Roxb. ex Hornem. aerial roots. Fitoterapia, 112, 65–73. https://doi.org/10.1016/j.fitote.2016.05.002

Teinkela, J. M. E., Noundou, X. S., Nguemfo, E. L., Meyer, F., Wintjens, R., Isaacs, M., Mpondo, A. E. M., Hoppe, H. C., Krause, R. W. M., & Azebaze, A. G. B. (2018). Biological activities of plant extracts from Ficus elastica and Selaginella vogelli: An antiinflammatory, antipancreatic and cytotoxicity evaluation. Saudi Journal of Biological Sciences, 25(1), 117–122. https://doi.org/10.1016/j.sjbs.2017.07.002

Tian, M., Zhao, X., Wu, X., Hong, Y., Chen, Q., Liu, X., & Zhou, Y. (2020). Chemical Composition, Antibacterial and Cytotoxic Activities of the Essential Oil from Ficus tikoua Bur. Records of Natural Products, 14(3), 219–224. https://doi.org/10.25135/rnp.161.19.10.1450

Wajib, & Qureshi, N. A. (2021). In vitro Antioxidant, Anticoccidial, Antibacterial Activities and Biochemical Screening of Methanolic and Aqueous Extracts of Selected Plants. Pakistan Veterinary Journal, 41(1), 57–63. https://doi.org/10.9296/pvjetr/2020.071

Wei, L. (2020). Probiotic fermented medicine and food homologous traditional Chinese medicine tea beverage for preventing cancer and preparation method thereof (Patent No. CN 110754553A.2020 July 2.)

Wong, P. Lou, Fauzi, N. A., Mohamed Yunus, S. N., Abd Hamid, N. A., Abd Ghafar, S. Z., Azizan, A., Zolkiflee, N. K. Z., & Abas, F. (2020). Biological Activities of Selected Plants and Detection of Bioactive Compounds from Ardisia elliptica using UHPLC-Q-Exactive Orbitrap Mass Spectrometry. Molecules, 25(13), 3067. https://doi.org/10.3390/molecules25133067

Yap, V. A., Qazzaz, M. E., Raja, V. J., Bradshaw, T. D., Loh, H.-S., Sim, K.-S., Yong, K.-T., Low, Y.-Y., & Lim, K.-H. (2016). Fistulosipines A and B antiproliferative septicine-type alkaloids from Ficus fistulosa. Phytochemistry Letters, 15(March), 136–141. https://doi.org/10.1016/j.phytol.2015.12.007

Ye, X., Tian, W., Wang, G., Zhang, X., Zhou, M., Zeng, D., Liu, X., Yao, X., Zhang, Y., & Chen, H. (2020). Phenolic Glycosides from the Roots of Ficus hirta Vahl. And Their Antinflammatory Activities. Journal of Agricultural and Food Chemistry, 68(14), 4196–4204. https://doi.org/10.1021/acs.jafc.9b07876

Yen, G. C., Chen, C. S., Chang, W. T., Wu, M. F., Cheng, F. T., Shiau, D. K., & Hsu, C. L. (2018). Antioxidant activity and anticancer effect of ethanolic and aqueous extracts of the roots of Ficus beecheyanu and their phenolic components. Journal of Food and Drug Analysis, 26(1), 182–192. https://doi.org/10.1016/j.jfsa.2017.02.002

Yuanxing, Q. (2018). A kind of functional tea for treating enteritis (Patent No. CN 108576325A.2018 September 26.)

Zhang, Y., Li, Y., Ma, P., Chen, J., & Xie, W. (2020). Ficus carica leaves extract inhibited pancreatic β-cell apoptosis by inhibiting AMPK/JNK/caspase-3 signaling pathway and antioxidation. Biomedicine & Pharmacotherapy, 122(November 2019), 109689. https://doi.org/10.1016/j.biopha.2019.109689