Extremely large matter radii in $^{49-51}$Ca isotopes and the 0^+ breathing mode states of 48Ca

Syed Afsar Abbas
Centre for Theoretical Physics, Jamia Millia Islamia University, New Delhi-110025, India
(email: drafsarabbas@gmail.com)

Anisul Ain Usmani, Usuf Rahaman
Department of Physics, Aligarh Muslim University, Aligarh-202002, India

Abstract

Through inelastic scattering cross section measurements for $^{42-51}$Ca on a carbon target at 280 MeV/nucleon recently, Tanaka et al. [arXiv:1911.05262 [nucl-ex]], in a very significant experiment, have demonstrated large swelling of doubly magic 48Ca core in calcium isotopes beyond N=28. The matter radii observed in these experiments, are surprisingly much larger than the corresponding, already amazingly large charge radii of the same calcium isotopes, by Garcia et al. [Nat. Phys. 12 (2016) 594]. Here we propose a novel solution, wherein the breathing mode states 0^+ of 48Ca, provide a global and consistent solution of this matter radii conundrum.

PACS: 21.60.-n, 21.10-k, 21.90.+f

Keywords: Charge radius, matter radius, calcium isotopes, inelastic scattering cross section, breathing mode, magicity, E2 effective charge.
Recently, Tanaka et al. [1] have performed measurements of interaction
cross section, σ_I for $^{42-51}$Ca, on a neutral carbon target at 280 MeV/nucleon,
in a groundbreaking first time experiment. Interaction cross section provides
informations regarding RMS radius of nucleon density distributions $< r_m^2 >^\frac{1}{2}$,
which is referred to as the “matter radius” here. This experiment comple-
ments the recent determination of charge radii of the same calcium isotopes
(plus 52Ca also), recently done by Garcia et al. [2]. Surprisingly large charge
radii were observed in calcium isotopes 49Ca to 52Ca by Garcia et al. [2].
That has presented a great challenge to theoretical physics. Already a co-
mundrum as it was, in addition, Tanaka et al. [1] have found that the matter
radii of the corresponding isotopes 49Ca to 51Ca, are amazingly, even much
larger than the corresponding charge radii. This presents a most challenging
problem to nuclear structure physics.

Through meticulous calculations, Tanaka et al. [1] have demonstrated
that these very large matter radii, cannot be taken as being due to one-,
two- and three-neutron haloes. They have also shown that this cannot be
considered as a deformation effect on these nuclei. What they have convinc-
ingly demonstrated however is, that this is due to substantial swelling of the
bare 48Ca core in these calcium isotopes.

So what can be the cause of this swelling of 48Ca core in these isotopes?
Getting motivation from the concept of E2 effective charge in nuclei, here
we propose a model wherein the breathing mode states 0^+ provide a con-
sistent understanding of this puzzling situation made explicit by Tanaka et al.
[1]. One may ask, will this large enhancement in matter radii continue
unabated as we add more and more neutrons to 48Ca core? And whether
this will present us with a new calcium-radii-catastrophe? Our model makes
prediction that experimentalists shall find continuous large swelling of radii
in 52Ca, 53Ca and 54Ca nuclei. After which there shall be no swelling. Hence,
we shall show that our model is not only able to provide a microscopic un-
derstanding of what has already been demonstrated by Tanaka et al., but
provide new challenges for experimentalists to confirm in the future.

The idea of effective charge stems from a desire to explain electromag-
netic transitions and moments totally within the framework of the shell
model. For example, we renormalize the quadrupole operator $\sum_p r^2 Y_{2,0}$ to
$(1 + e_p) \sum_p r^2 Y_{2,0} + e_n \sum_n r^2 Y_{2,0}$ where the effective charge correction for
proton and neutron are e_p and e_n respectively. Note that the total effec-
tive charge of proton is $(1 + e_p)$. It has been emperically determined that
$e_n \approx +\frac{1}{2}$ and $e_p \approx +\frac{1}{2}$ [3, 5]. One has to visualize, for example, that in 17O, the 9th valence neutron polarizes the 16O core so strongly, that it gets highly deformed. Then we transfer this large deformation, phenomenologically by treating the uncharged valence neutron to become a highly charged entity of magnitude $+\frac{1}{2}$, while still treating the core 16O as being a ground state spherical nucleus [3, 5].

In a similar manner, we treat here the 29th valence neutron in 49Ca, to sit outside the magical core nucleus 48Ca and have an analogous strong deforming effect on it. This "deforming" effect, as ascertained by Tanaka et al. [1], is not like that of 16O in the case of effective charge of 17O, but to “polarize” it so that the core nucleus 48Ca "breathes" out from the ground state 0^+, to the first excited 0^+_1 collective state of 48Ca. As a consequence we treat the 29th valence neutron to just sit smugly on the surface, while the core has expanded out substantially to mock up the 0^+_1 collective state. This is its ground state now. Thus this is the source of large matter radius as observed by Tanaka et al. in 49Ca.

Next, in 50Ca, now two neutrons sit smugly on the surface of the core 48Ca nucleus, which then gets even more strongly "polarized" by these (two neutrons), which then breathes out to the next 0^+_2 collective state in 48Ca, thereby providing a much larger matter radius. Similarly in 51Ca, the valence neutrons sitting smugly on the surface of 48Ca would have induced still larger polarization of the core, to breath out to the next collective 0^+_3 state of 48Ca.

So having explained very large matter radii of 49Ca, 50Ca, 51Ca, we ask as to how long would this large expansion continue? That is, will this expansion continue in uncontrolled manner in 52Ca, 53Ca, 54Ca, ..., 59Ca, 60Ca? If so, we would have at hand, a genuine calcium-radii-catastrophe! One may be reminded of, the end 19th century Ultraviolet Catastrophe of the black-body radiation.

As per the phenomenological model proposed here, the valence neutrons on top of N=28 in 48Ca would continue to polarize this core strongly, so as to go to higher and higher breathing mode states of 48Ca, as long as these states are available. As per data displayed below in Table 1, we give the 0^+_n excited breathing mode states of 48Ca, which have been determined experimentally [6, 8].

The breathing mode states 0^+_n of 48Ca have been taken from Ref. [6, 7]. Note the 0^+_3 and $0^+_3'$ at 11.945 MeV and 11.967 MeV respectively, appear as almost being degenerate. The role of these two as being one, is made
Table 1: Experimental breathing mode states 0^+ of 48Ca

State	Energy (MeV)
0_1^+	4.284
0_2^+	5.461
0_3^+	11.945
$0_3^{+'}$	11.967
$0_4^{+'}$	12.318
$0_5^{+'}$	12.565
$0_6^{+'}$	12.869

sharper by the fact that in Burrows [8], $\sigma(\theta)$ in (p, p'), (α, α') show oscillatory pattern and are well fitted by DWBA by assuming and using $0_3^{+'}$, $0_4^{+'}$, $0_5^{+'}$, $0_6^{+'}$ states (while 0_3^+ is not used). Note that it is possible that Giant Quadrupole Resonance states and Giant Monopole Resonance states (breathing mode states) may mingle with each other in a wide range of excitation energy in 48Ca [6]. Thus if 0_3^+ and $0_3^{+'}$ states are treated as one, the total number of breathing mode states in 48Ca are six.

Thus the three observed large matter radii as obtained by Tanaka et al. [1] in 49Ca, 50Ca, 51Ca, would be explained by the three breathing mode states in 48Ca at $0_1^+ = 4.284$ MeV, $0_2^+ = 5.461$ MeV, $0_3^+ = 11.945/11.967$ MeV. Given the fact that we have three more states $0_4^+ = 12.318$ MeV, $0_5^+ = 12.565$ MeV, $0_6^+ = 12.869$ MeV, our model here predicts that one would observe still larger matter radii in 52Ca, 53Ca, 54Ca. Thus this expansion will stop at N=34, and after that there shall be no further swelling, as per our phenomenological model prediction here.
References

[1] M. Tanaka, M. Takechi, A. Homma, M. Fukuda, D. Nishimura, T. Suzuki, Y. Tanaka, T. Moriguchi, D.S. Ahn, A. Aimaganbetov, M. Amano, H. Arakawa, S. Bagchi, K.-H. Behr, N. Burtebayev, K. Chikaato, H. Du, S. Ebata, T. Fujii, N. Fukuda, H. Geissel, T. Hori, W. Horiuchi, S. Hoshino, R. Igosawa, A. Ikeda, N. Inabe, K. Inomata, K. Itahashi, T. Izumikawa, D. Kamioka, N. Kanda, I. Kato, I. Kenzhina, Z. Korkulu, Y. Kuk, K. Kusaka, K. Matsuta, M. Mihara, E. Miyata, D. Nagae, S. Nakamura, M. Nassurilla, K. Nishimuro, K. Nishizuka, K. Ohnishi, M. Ohtake, T. Ohtsubo, S. Omika, H.J. Ong, A. Ozawa, A. Prochazka, H. Sakurai, C. Scheidenberger, Y. Shimizu, T. Sugihara, T. Sumikama, H. Suzuki, S. Suzuki, H. Takeda, Y.K. Tanaka, I. Tanihata, T. Wada, K. Wakayama, S. Yagi, T. Yamaguchi, R. Yanagihara, Y. Yanagisawa, K. Yoshida, and T.K. Zholdybayev, arXiv:1911.05262 [nucl-ex]. (to be published in Phys. Rev. Lett.)

[2] R. F. Garcia Ruiz, M. L. Bissell, K. Blaum, A. Ekstroem, N. Froemmgcn, G. Hagen, M. Hammen, K. Hebeler, J. D. Holt, G. R. Jansen, M. Kowalska, K. Kreim, W. Nazarewicz, R. Neugart, G. Neyens, W. Nrtershuser, T. Papenbrock, J. Papuga, A. Schwenk, J. Simonis, K. A. Wendt and D. T. Yordanov, Nat. Phys. 12 (2016) 594.

[3] A. de-Shalit, Phys. Rev. 113 (1959) 547.

[4] A. Abbas and L. Zamick, Phys. Rev. C 21 (1980) 731.

[5] L. Zamick, M. Golin and S. Moszkowski, Phys. Lett., B 66 (1977) 116.

[6] Y. Fujita, M. Fujiwara, S. Morinobu, T. Yamazaki, T. Itahashi, and H. Ikegami and S. I Hayakawa, Phys. Rev. C 37 (1988) 45.

[7] www.nndc.bnl.gov/nudat2/

[8] W. Burrows, Nucl. Data Sheets 68 (1993) 1.