Static Deflection Compensation of Multi-Link Flexible Manipulators Under Gravity

DIPENDRA SUBEDI, TEODOR NILSEN AUNE, ILYA TYAPIN, AND GEIR HOVLAND
Department of Engineering Sciences, University of Agder, 4879 Grimstad, Norway
Corresponding author: Dipendra Subedi (e-mail: dipendra.subedi@uia.no).
The work was funded by SFI Offshore Mechatronics, project number 237896.

ABSTRACT The static deflection compensation method of a planar multi-link flexible manipulator is proposed using the feedback from inertial sensors mounted at the tip of each link. The proposed compensation technique is validated experimentally using a high-precision laser tracker. The proposed strategy is experimentally verified using a three-link flexible manipulator. A strategy to compensate for the centripetal and tangential acceleration induced on the accelerometer mounted on the rotating link is proposed for correct inclination estimation. The improvement in the inclination estimation using the proposed compensation technique is verified both in simulation and experimental studies.

INDEX TERMS Flexible arm, elasticity, oscillations, deflection compensation, 3DoF manipulator.

I. INTRODUCTION
The interest in using long-reach manipulators for different applications has increased significantly in recent years [1]. Because of the use of elastic material and slender design of the arm, link flexibility is introduced in the manipulator system. This causes static (due to gravity) and dynamic (oscillations) deflections of the end-effector.

The end-effector control of the flexible link manipulator (FLM) is more difficult than the rigid link manipulator because of the presence of unwanted deflections and vibrations in the FLM. The rigid body kinematics and joint position feedback are not enough for the precise position and orientation control of the FLMs. Additional sensors (e.g. inertial sensors and vision sensors) are therefore required to be integrated into the FLM control architecture to sense deflections and oscillations. For correct end-effector positioning in the FLM, the deflection should be estimated by using a suitable sensor system and should be compensated using a feedback control strategy of adjusting joint variables.

There are many methods to estimate flexible deformation, including strain gauges, inertial measurement units (IMUs), optical/vision systems, position sensitive devices, piezoelectric materials, ultrasonic sensors, and range sensors [2]. Each of these sensor systems has associated merits and limitations. A vision system that can capture the deformed shape of the flexible link may take a long processing time which makes it unsuitable for real-time applications [3]. Additionally, the optical sensor systems are obstructed when an object comes in between the camera and the FLM [4]. The strain gauges are versatile and accurate but are difficult to install properly as they must be perfectly bonded to the material across the entire face to strain with the link. Moreover, the electronics necessary to amplify the signal and acquire the data are costly. Strain gauges are susceptible to temperature drift and have a drawback of excess wiring when many of them are used. The IMU (accelerometer and gyroscope) allows the system to know the true course of motion and can be used to obtain the position, velocity, and acceleration estimations (considering the joint encoder readings are available).

The static deformation-compensation method based on inclination-sensor feedback is presented in [5]. The accelerometers are used for the estimation of flexural states of a macro-micro manipulator in [3]. Although the inertial sensors, placed typically at the tip of the flexible link, are used for measuring oscillations; they have not been used for measuring static deflections [4]. Several optical sensing systems have been used for measuring the link deflections [6]–[10]. The strain gauges that are strategically placed along a link are the sensor systems used to estimate the deflections indirectly [4], [11], [12].

The use of an IMU mounted at the tip of each flexible link is highlighted in this paper for measuring the deflection of the flexible link. The static deflection compensation using the tip-mounted inertial sensor is validated using a high-precision
laser tracker. The proposed strategy is experimentally verified in a planar three-link flexible manipulator.

Inclination estimation using an accelerometer uses the gravity vector and its projection on the axes of the accelerometer to determine the tilt angle [13]. Rotating an accelerometer through gravity changes the projection of gravity on the axes of interest due to centripetal acceleration induced on the accelerometer. This results in the incorrect calculation of the inclination. A strategy is proposed in this paper to compensate for the centripetal and tangential acceleration induced on the accelerometer mounted on the rotating link for correct inclination estimation. Furthermore, the improvement in the inclination estimation using the proposed compensation technique is verified both in simulation and experimental studies.

The paper is organized into five sections as follows. The kinematic model of the three-link flexible manipulator is described in section II. The independent joint control of FLM with static deflection compensation using link-mounted IMU is elaborated in section III. The results obtained from the simulation and experimental studies are presented in section IV. Conclusions and discussions follow in section V.

II. KINEMATIC MODELING

Fig. 1 shows a planar three-link flexible manipulator with coordinate frames assigned as in [14] and Fig. 2 shows its rigid body schematic with Denavit-Hartenberg (DH) parameters given in Table 1. The kinematic model of the planar multi-link flexible manipulator is presented in [14].

![Figure 1. Planar three-link flexible manipulator.](image1)

TABLE 1. DH PARAMETERS.

Axis	TranZ	RotZ	TranX	RotX
1	0.0	q₁	e₁	0.0
2	0.0	q₂	e₂	0.0
3	0.0	q₃	e₃	0.0

The rigid motion of link \(i\) is represented by the joint \(q_i\) and the deflection at any point \(x_i\) along the link \(i\) is described by \(w_i(x_i)\), where \(0 \leq x_i \leq L_i\) and \(L_i\) is the length of the link \(i\). The slope of the deflection curve at any point \(x_i\) along the link \(i\) and at its endpoint is given by (1) and (2) respectively. The angular deflection estimated (by an inertial sensor) at the tip of link \(i\) corresponds to \(arctan(w_i'(x_i) \approx w_i'(L_i)\) considering small link deflection. Moreover, when \(\ell_i\) is not large and deformation is small then \(w_i'(L_i) \approx \Delta q_i\), where \(\Delta q_i\) is the static compensation angle [5].

\[
w_i' = \frac{\partial w_i(x_i)}{\partial x_i} \quad (1)
\]

\[
w_i'(L_i) = \frac{\partial w_i(x_i)}{\partial x_i} \bigg|_{x_i=L_i} \quad (2)
\]

From Fig. 1, it is visible that there is some error introduced when using \(w_i' \approx \Delta q_i\) for static deflection compensation, as \(w_i' > \Delta q_i\) in reality. It results in the overcompensation of the static deflection. However, this method is a good trade-off between accuracy and cost. Moreover, it is a good compromise between the complexity (and cost) of determining accurate deflection and the simplicity of neglecting the static deflection.

III. CONTROL

A. TRAJECTORY GENERATION

Apart from knowing the initial and final joint configuration of the robot, it is desirable for the motion of each joint to be smooth from the initial to the final configuration. Jerky and rough motions cause unwanted vibrations and may excite resonances in the manipulator. There are many methods of generating smooth joint trajectories as discussed in [15]. One of the methods is by defining the function that is continuous and has continuous first and higher-order derivatives. In this paper, a quintic polynomial \(q_{i0}(t)\) is used to generate the desired trajectory of joint \(i\) from the initial joint position \(q_{i0}\) to final joint position \(q_{i_f}\) as given in (3). Here, \(\dot{q}_{i0}, \ddot{q}_{i0}, \dot{q}_{i_f}, \dddot{q}_{i_f}\), and \(\dddot{q}_{i_f}\) are the initial \((t = t_0 = 0)\) and final \((t = t_f)\) joint velocities and accelerations. For generating a trajectory for rest to rest motion, zero velocity and acceleration boundary conditions are used, i.e., \(\dot{q}_{i0} = \ddot{q}_{i0} = \dot{q}_{i_f} = \dddot{q}_{i_f} = 0\).

\[
q_{i0}(t) = a_0 + a_1t + a_2t^2 + a_3t^3 + a_4t^4 + a_5t^5, \quad (3)
\]
The incline angle $\theta_{ia} = arctan2(a_{iy}, a_{iz})$ estimated using the accelerometer in the range $(-\pi, \pi]$ is given by (5), where a_{iy} and a_{iz} represent accelerations measured by the accelerometer on link i along its Y-axis and Z-axis respectively. Here, the gravity vector (g) and its projection on the axes of the accelerometer are used to determine the inclination angle (see Fig. 4). The accelerometers suffer from external accelerations (joint motion) that add to gravity and make the inclination estimation inaccurate. The data from the accelerometer is in general noisy and susceptible to external acceleration interference but is stable and without drift in the long term.

Another method to estimate the inclination angle is to integrate the output of a gyroscope. Although the gyroscope data is not susceptible to external acceleration interference like accelerometer, it drifts because of the angular velocity data bias accumulation over time. This causes an apparent rotation even when the device is stationary as the integration period is increased. So, to use the advantages of both accelerometer and gyroscope, IMU data fusion is essential for reliable and real-time inclination sensing.

The Kalman filter and the complementary filter are the most widely used IMU data fusion techniques and the latter is used in this paper. The complementary filter can be represented diagrammatically by Fig. 5 and mathematically by (6), where θ_i is the inclination angle, α_i is the filter coefficient in the range $[0, 1]$, ω_{iy} is the angular velocity obtained from the gyroscope, T_s is the sample period, and θ_{ia} is the inclination angle obtained from the accelerometer data [18]. Here, $\alpha = \tau/(\tau + T_s)$ can be calculated using the desired time constant τ and sample period.

$$
\theta_i = \alpha_i (\theta_i + \omega_{iy} T_s) + (1 - \alpha_i) \theta_{ia}
$$

(6)

B. INDEPENDENT JOINT CONTROL

An independent joint control strategy based on a cascaded architecture is presented in [16] for rigid link manipulators and in [17] for flexible link manipulators. However, the joint position feedback used in the current paper is augmented by compensating for the slow varying static deflection caused by gravity as shown in Fig. 3. The innermost loop is a proportional-integral (PI) current controller. The next cascade level is a PI velocity control loop and the outermost cascade level is a proportional (P) position controller. The static deflection compensation action enters into the position cascade level.

The design guidelines for selecting suitable gains for the cascaded joint control topology are described in [16] and [17] for the rigid link and flexible link manipulators respectively using root locus analysis. Although the design requirements imposing large values of feedback gains may not be verified in practice because of the links’ flexibilities, the smaller gain in the position feedback loop will be enough for compensating for the slow varying static deflection.

C. DEFLECTION COMPENSATION

The deflection angle must be estimated first for compensating it. The IMU mounted at the tip of each link is used for sensing the deflection.

Considering θ_i as the inclination angle estimated using IMU i, then the angular deflection $w'_{ic} \approx \Delta q_i$ of link i at the tip (or at the place where IMU is mounted on the link) is given by (4).

$$
\Delta q_i = \theta_i - (q_i + \theta_{i-1}), \quad \theta_0 = 0
$$

(4)

The deflection angle must be estimated first for compensating it. The IMU mounted at the tip of each link is used for sensing the deflection. The deflection must be estimated for compensating it. The IMU mounted at the tip of each link is used for sensing the deflection.
Centripetal and Tangential Acceleration

The inclination estimation from accelerometer data can be improved by removing the external acceleration (other than gravity acceleration) measured by the accelerometer. The external acceleration induced in the accelerometer mounted on the link is mainly due to the rotational joint motion. Considering the planar motion of the arm, there are two main components of the externally induced linear acceleration measured by the accelerometer mounted on the link, namely tangential acceleration (directed perpendicular to the length of the link) and centripetal acceleration (directed parallel to the length of the link).

With reference to the generic link \(i \), shown in Fig. 6, \(z_{i-1} \) represents the unit vector along the axis of joint \(i \), \(r_{i-1,i} = O_{i} - O_{i-1} \), \(r_{i,ia} = O_{ia} - O_{i} \), where \(O_{i} \) and \(O_{ia} \) are respectively the origin of the \(i \)-th reference frame, and reference frame of the accelerometer mounted on link \(i \). Considering \(i^{-1} R_i \) be the rotation of frame \(i \) (represented by subscript) with respect to frame \(i - 1 \) (represented by superscript), the forward recursions on the angular velocity \(\dot{\omega}_i \), angular acceleration \(\ddot{\omega}_i \), and linear acceleration \(\dot{a}_i \) of the frame origin of each link \(i \) are given by (7)–(11) respectively [19]. Note that the superscript represents the reference frame with respect to which the quantities (vectors and rotations) are expressed. The linear acceleration of the frame origin of the accelerometer reference frame expressed with respect to \(i \)-th reference frame and accelerometer reference frame of link \(i \) are given by (10) and (11) respectively.

\[
\begin{align*}
\dot{\omega}_i &= i^{-1} R_i^T (i^{-1} \dot{\omega}_{i-1} + \dot{q}_i z_{i-1}) \\
\ddot{\omega}_i &= i^{-1} R_i^T (i^{-1} \ddot{\omega}_{i-1} + \dot{q}_i z_{i-1} + i^{-1} \dot{\omega}_i \times \dot{q}_i z_{i-1}) \\
\dot{a}_i &= i^{-1} R_i^T \dot{a}_{i-1} + \dot{\omega}_i \times r_{i-1,i} + \ddot{\omega}_i \times (\dot{\omega}_i \times r_{i-1,i}) \\
\ddot{a}_i &= i^{-1} R_i \ddot{a}_{i-1} + \dot{\omega}_i \times r_{i,ia} + \ddot{\omega}_i \times (\dot{\omega}_i \times r_{i,ia})
\end{align*}
\]

where,

\[
\begin{align*}
i &= 1, 2, 3 \\
z_{i-1} &= \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T \\
r_{i-1,i} &= \begin{bmatrix} \ell_i & 0 & 0 \end{bmatrix}^T \\
r_{i,ia} &= \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T \\
0_{i} &= \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T \\
r_{2,2a} &= \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T \\
r_{3,3a} &= \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T \
\end{align*}
\]

Ideally, the accelerometer readings should be equal to \(ai_{ia} \) assuming that the link on which it is mounted is rigid.

To compensate for the centripetal and tangential acceleration induced in the accelerometer due to joint motion, we calculate \(ai_{ia} \) from (7)–(11) assuming zero gravity (i.e., \(ai_{i0} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T \)) and subtract this value from the actual accelerometer readings before using them for computing the inclination. In this way, the inclination estimations from the accelerometer measurement and inclination obtained from the complementary filter after compensating for the joint-induced accelerations are more accurate compared to the estimations done without the compensation.

IV. EXPERIMENTAL SETUP AND RESULTS

The experimental setup used in this study is shown in Fig. 7. It consists of a planar three-link flexible manipulator with three revolute joints. Each link of the flexible arm is made of a hollow aluminium profile of length \(\ell_1 = \ell_2 = \ell_3 = 1.5 \text{ m} \). Each joint consists of a hub, motor, and planetary gearbox. The STIM300 IMU sensor is mounted closer to the tip of each link (\(3 \text{ m} \) so that the Leica AT960 laser tracker can track the precise position of the reflector. The Leica tracker is used for validating the deflection compensation method proposed in this paper. The Leica tracker is calibrated with respect to the inertial frame (\(X_0, Y_0, Z_0 \)) so that the reflector position with respect to the inertial frame could be measured using the tracker.

To validate the inclination estimation using the accelerometer mounted on each link, all three links are considered rigid.
The joint position, velocity, and acceleration trajectories used in the simulation are shown in Figs. 8, 9, 10 respectively. The joint trajectories are obtained using (3), where the joints are moved from rest to rest ($\dot{q}_0 = \dot{q}_f = [0 \ 0 \ 0]^T \text{deg/s}$, $\ddot{q}_0 = \ddot{q}_f = [0 \ 0 \ 0]^T \text{deg/s}^2$) from initial joint positions $q_0 = [90 \ -90 \ -45]^T \text{deg}$ to final joint positions $q_f = [80 \ -45 \ -90]^T \text{deg}$ in $t_f = 5 \text{s}$, as shown in Fig. 20.

The static deflection estimated after joint-induced acceleration compensation is shown in Fig. 21. A first-order low pass filter is used with a cut-off frequency at 0.1Hz in the estimated static deflection to obtain a smooth signal that is then used for compensation. To validate the effect of static deflection compensation, the reflector position is measured using the Leica AT960 laser tracker. The reflec-
FIGURE 9. Joint velocity trajectory used for evaluating the performance of inclination angle estimation with joint-induced acceleration compensation in simulation.

FIGURE 10. Joint acceleration trajectory used for evaluating the performance of inclination angle estimation with joint-induced acceleration compensation in simulation.

FIGURE 11. Link 1 accelerometer readings calculated with gravity in simulation.

FIGURE 12. Link 2 accelerometer readings calculated with gravity in simulation.

FIGURE 13. Link 3 accelerometer readings calculated with gravity in simulation.

FIGURE 14. Link 1 accelerometer readings calculated assuming zero gravity in simulation.
tor positions measured using Leica tracker with respect to the robot reference frame \((\hat{X}_0, \hat{Y}_0)\) with and without static deflection compensation are shown in Figs. 22 and 23. Moreover, the reference reflector position calculated using forward kinematics with reference joint position is also shown to verify the effectiveness of the static compensation. Figs. 24 and 25 show the error in \(x\) and \(y\) position of the reflector with and without static deflection compensation obtained by calculating the difference between the reference position and the actual position of the reflector. The error in Fig. 25 is the result of overcompensation of the static deflection by using \(\Delta \theta_i \approx \Delta q_i\) for static deflection compensation, as \(\Delta \theta_i > \Delta q_i\) in reality (see Fig. 1). Since the error in Fig. 25 is marginal, the proposed method is proved to be a good compromise between the complexity (and cost) of determining accurate deflection and the simplicity of neglecting the static deflection.

The joint-induced acceleration compensation in the link mounted accelerometer readings is verified experimentally...
FIGURE 20. Joint position trajectory used for evaluating the performance of static deflection compensation.

FIGURE 21. Link deflections.

FIGURE 22. Reflector x-position measured using laser tracker with and without static deflection compensation.

FIGURE 23. Reflector y-position measured using laser tracker with and without static deflection compensation.

FIGURE 24. Reflector position error without static deflection compensation.

FIGURE 25. Reflector position error with static deflection compensation.
by moving joints 3 from −90 deg to 0 deg in 2 s and keeping the other two joints stationary as shown in Fig. 26. Fig. 27 shows the linear acceleration measured by the accelerometer mounted on link 3 and the acceleration computed using (7)–(11). The measured and calculated acceleration values at the origin of the accelerometer, shown in Fig. 27, are almost overlapping apart from the error introduced due to the rigid link assumption while calculating the acceleration.

The linear acceleration of the origin of the accelerometer reference frame with respect to the same frame induced due to joint 3 motion only (assuming no gravity acceleration) is shown in Fig. 28. The joint-induced acceleration calculated assuming no gravity is compensated (subtracted) from the IMU readings to estimate the link deflection. Figs. 29 and 30 show the deflection of link 3 calculated without and with joint-induced acceleration compensation. A first-order low pass filter is used with a cut-off frequency at 0.1 Hz in the estimated static deflection to obtain a smooth deflection signal. The negative influence of joint motion in static deflection estimation without the joint-induced acceleration compensation is clearly visible in Fig. 29. The static deflection estimation is improved by compensating for the joint-induced acceleration as shown in Fig. 30.

V. CONCLUSIONS AND DISCUSSIONS
The static deflection compensation technique of planar multi-link flexible manipulators under gravity is proposed and experimentally validated. The performance of the IMU-based deflection estimation is validated using the high-precision laser tracker.

The cut-off frequency of the low pass filter used in smoothing the deflection signal should be smaller than the smallest resonance frequency of the arm while manipulating the maximum payload. This is done to avoid resonance that may occur during the compensation. It should be noted that the resonance frequencies depend on the robot configuration and the payload [14].
In the next step, the work will be extended to the implementation of oscillation damping control using the deflection signal from the IMU mounted on each link of the multi-link manipulator. Moreover, the use of the redundant degree of freedom of the planar three-link flexible arm will be explored for suppressing the elastic vibrations.

REFERENCES

[1] D. Subedi, I. Tyapin, and G. Hovland, “Review on Modeling and Control of Flexible Link Manipulators,” Modeling, Identification and Control, vol. 41, no. 3, pp. 141–163, 2020.

[2] C. T. Kiang, A. Spowage, and C. K. Yoong, “Review of control and sensor system of flexible manipulator,” Journal of Intelligent & Robotic Systems, vol. 77, no. 1, pp. 187–213, 2015.

[3] K. Parsa, J. Angeles, and A. Misra, “Estimation of the flexural states of a macro-micro manipulator using point-acceleration data,” IEEE Transactions on Robotics, vol. 21, no. 4, pp. 565–573, 2005.

[4] I. Payo and V. Feliu, “Strain gauges based sensor system for measuring 3-d deflections of flexible beams,” Sensors and Actuators A: Physical, vol. 217, pp. 81–94, Sep 2014.

[5] J. Qian, Q. Su, F. Zhang, Y. Ma, Z. Fang, and B. Xu, “Static deformation-compensation method based on inclination-sensor feedback for large-scale manipulators with hydraulic actuation,” Processes, vol. 8, no. 1, p. 81, Jan 2020.

[6] K. Obergfell and W. J. Book, “End-point position measurements of long-reach flexible manipulators,” IFAC Proceedings Volumes, vol. 27, no. 14, pp. 669–674, Sep 1994.

[7] W. Xu, S. Tso, and X. Wang, “Sensor-based deflection modeling and compensation control of flexible robotic manipulator,” Mechanism and Machine Theory, vol. 33, no. 7, pp. 909–924, Oct 1998.

[8] S. Tso, T. Yang, W. Xu, and Z. Sun, “Vibration control for a flexible-link robot arm with deflection feedback,” International Journal of Non-Linear Mechanics, vol. 38, no. 1, pp. 51–62, Jan 2003.

[9] Z.-H. Jiang and A. Goto, “Visual sensor based vibration control and end-effector control for flexible robot arms,” in 2005 IEEE International Conference on Industrial Technology, 2005, pp. 383–388.

[10] I. Weerasekera, G. Balyasin, W.-H. Zha, and G. Liu, “Lens-less PSD measurement of flexible link deflection,” Measurement Science and Technology, vol. 30, no. 1, p. 015003, Dec 2018.

[11] C. Mavroidis, P. Rowe, and S. Dubowsky, “Inferred end-point control of long reach manipulators,” in Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots, vol. 2, 1995, pp. 71–76 vol.2.

[12] M. H. Korayem, A. M. Shafei, and F. Absalan, “Estimate a flexible link’s shape by the use of strain gauge sensors,” ISRN Robotics, vol. 2013, pp. 1–9, Oct 2013.

[13] C. J. Fisher, “Using an accelerometer for inclination sensing,” AN-1057, Application note, Analog Devices, pp. 1–8, 2010.

[14] D. Subedi, I. Tyapin, and G. Hovland, “Dynamic modeling of planar multi-link flexible manipulators,” Robotics, vol. 10, no. 2, p. 70, May 2021.

[15] J. J. Craig, Introduction to robotics: mechanics and control, 3/E. Pearson Education India, 2009.

[16] L. Sciavicco and B. Siciliano, Modelling and control of robot manipulators. Springer Science & Business Media, 2001.

[17] J. Malzahn, “Modeling and control of multi-elastic-link robots under gravity; from oscillation damping and position control to physical interaction,” Ph.D. dissertation, TU Dortmund University, 2014. [Online]. Available: http://hdl.handle.net/2003/33694

[18] P. Gui, L. Tang, and S. Mukhopadhyay, “Mems based imu for tilting measurement: Comparison of complementary and kalman filter based data fusion,” in 2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA), 2015, pp. 2004–2009.

[19] A. De Luca and L. Ferragoli, “A modified newton-euler method for dynamic computations in robot fault detection and control,” in 2009 IEEE International Conference on Robotics and Automation, 2009, pp. 3359–3364.

DIPENDRA SUBEDI received his B.E. degree in electrical and electronics engineering from Anna University, Chennai, India, in 2014, and his joint master’s degree in advanced robotics from the University of Genoa, Genoa, Italy and Jaume I University, Castellón de la Plana, Spain in 2017. From 2017 to 2018, he worked as a robotics software engineer with Dorabot Inc., where he was involved in software development for the control of manipulators. Since 2019, he has been a Ph.D. research fellow with the Department of Engineering Sciences, University of Agder, Norway. His research interests include flexible link manipulators, dynamics, sensor fusion, and control.

TEODOR N. AUNE received his B.Sc. degree in Mechatronics at the University of Agder, Grimstad, Norway in 2015 and his M.Sc. degree in Mechatronics at the University of Agder, Grimstad, Norway in 2017. From 2017 to 2021 he worked at Red Rock Marine as a research and development engineer, where he worked with instrumentation and control system design for advanced offshore lifting equipment. In 2021 he started working on his industrial Ph.D. at the Department of Engineering Sciences, University of Agder, Norway in collaboration with Red Rock Marine. His research interests include control system design, robotics, and autonomy.
ILYA TYAPIN received the Ph.D. in Mechatronics and Computer Science from the University of Queensland in 2009. From 2010 to 2011 he was a Postdoc at the Luleå University of Technology and from 2011 to 2014 he was a Postdoc at the University of Agder. Since 2014 he has been an Associate Professor in Mechatronics at the University of Agder, Norway. His research interests include robotics, dynamics, sensor fusion, and motion control.

GEIR HOVLAND received the MSc degree in Engineering Cybernetics from NTNU, Norway in 1993. He received the Ph.D. in Robotics from the Australian National University in 1997. From 1997 to 2003 he was a senior researcher at ABB in Norway, Sweden and Switzerland. From 2004 to 2006 he was a senior lecturer in Mechatronics at the University of Queensland, Australia. Since 2007 he has been a professor in Mechatronics at the University of Agder, Norway and since 2019 the CEO of the robotics company Hokarob AS.