STRONGLY QUASICONVEX SUBGROUPS IN GRAPHS OF GROUPS

HOANG THANH NGUYEN AND HUNG CONG TRAN

Abstract. Given a graph of groups \(G = (\Gamma, \{G_v\}, \{G_e\}) \) with certain conditions on vertex groups and \(G \) acts acylindrically on its Bass-Serre tree \(T \). Let \(H \) be a finitely generated subgroup of \(G \). We prove the following statements equivalence.
(1) \(H \) has finite height
(2) \((G, T, H)\) is an \(A/QI \)–triple
(3) \(H \) is strongly quasiconvex and virtually free in \(G \).

We also give a condition to determine whether strong quasiconvexity in a group is preserved under amalgams.

1. Introduction

The height of a finitely generated subgroup \(H \) in a finitely generated group \(G \) is the minimal \(n \in \mathbb{N} \geq 0 \) such that for any distinct cosets \(g_0H, \ldots, g_nH \in G/H \), the intersection \(g_0Hg_0^{-1} \cap \cdots \cap g_nHg_n^{-1} \) is finite (the height is infinite if no such \(n \) exists). The subgroup \(H \) is called strongly quasi-convex in \(G \) if for any \(L \geq 1, C \geq 0 \) there exists \(R = R(L, C) \) such that every \((L, C)\)–quasi-geodesic in \(G \) with endpoints in \(H \) is contained in the \(R \)–neighborhood of \(H \) (see [Tra19] or [Gen19]). We note that strong quasiconvexity does not depend on the choice of a finite generating set of the ambient group and it agrees with quasiconvexity when the ambient group is hyperbolic.

Introduced recently by Abbott-Manning [AM21], an \(A/QI \)–triple \((G, X, H)\) consists of a Gromov hyperbolic space \(X \) and an action \(G \acts X \) which is acylindrical along the finitely generated infinite subgroup \(H \), and so that \(h \to hx \) (for some \(x \in X \)) gives a quasi-isometric embedding of \(H \) into \(X \).

In [GMRS98], the authors prove that strongly quasi-convex subgroups in hyperbolic groups have finite height. It is a long-standing question asked by Swarup that whether or not the converse is true (see Question 1.8 in [Bes]). If the converse is true, then we could characterize strongly quasi-convex subgroup of a finitely generated group purely in terms of group theoretic notions. Tran in [Tra19] generalizes the result of [GMRS98] by showing that strongly quasi-convex subgroups in any finitely generated group have finite height. Abbott-Manning in [AM21] show that if \((G, X, H)\) is an \(A/QI \)–triple then \(H \) has finite height in \(G \). It is natural and reasonable to extend the Swarup’s question to strongly quasiconvex subgroups of finitely generated groups where
groups to ask whether or not the converse is true, i.e. finite height implies strong quasiconvexity, A/QI–triple.

A counter example to the above question has been addressed in [NTY21] where the authors show that the fundamental group of a torus bundle M over circle with Anosov monodromy contains finite height subgroups that are not strongly quasiconvex. We note that the action of fundamental group $\pi_1(M)$ on the tree T is not acylindrical. In the setting of 3-dimensional graph manifold, a positive answer to the mentioned above question is also given in [NTY21], and the first result of this paper generalizes the above result in the setting of 3-dimensional graph manifold to a more general setting with a completely different proof. We emphasize here that the strategy in [NTY21] does not work here.

Theorem 1.1. Let $G = (\Gamma, \{G_v\}, \{G_e\})$ be a graph of groups. Suppose that each edge group is infinite, and each finite height subgroup of vertex group is either finite or has finite index. Let T be the Bass–Serre tree associated to the decomposition. Suppose that G acts acylindrically hyperbolic on T. Then the following are equivalent.

1. H has finite height in G.
2. (G, T, H) is a A/QI–triple.
3. H is strongly quasiconvex and virtually free in G.

Remark 1.2. As mentioned early about the example of torus bundle over circle, the condition that G acts acylindrically on the Bass-Serre tree in Theorem 1.1 is necessary to achieve the above equivalence statements.

Theorem 1.1 could be applied to several classes of graphs of groups, for instance, fundamental groups of 3-dimensional graph manifolds, high dimensional graph manifolds [PLS15] (note that 3–dimensional graph manifolds are not high dimensional graph manifolds as in the sense of [PLS15]), and admissible groups [CK02]. We refer the reader to Section 3.1 for further discussion.

In general, a strongly quasiconvex subgroup P of a finitely generated group G_1 is not necessary to be strongly quasiconvex in HNN extension $G = G_1 *_{H_1=H_2} G_2$ and amalgamation $G = G_1 *_{H_1=H_2} G_2$ since G_1 could be badly distorted in G. It is a natural question to ask in which conditions of H_1 and H_2, the subgroup P is still strongly quasiconvex in G.

Given a finite collection of subgroups H_1, H_2, \ldots, H_n in a finitely generated group G, we say a finitely generated subgroup P of G has *bounded penetration* with respect to the collection B of left cosets of subgroups H_i’s in G if there exists a function $f : [0, \infty) \to [0, \infty)$ such that $\text{diam}(N_r(P) \cap B) \leq f(r)$ for each $B \in B$.

Theorem 1.3. Let G be either a HNN extension $G_1 *_{H_1=H_2} G_2$ of a finitely generated group G_1 where the stable letter t conjugates the subgroup H_1 to the subgroup H_2 or G is an amalgamation $G = G_1 *_{H_1=H_2} G_2$ such that H_i is undistorted in G. Let B be the collection of all left cosets of H_1 and H_2.
in G_1 in case G is the HNN extension, and let \mathcal{B} be the collection of all left cosets of H_1 in G_1 in case G is the amalgamation.

Assume that $P \leq G_1$ has bounded penetration with respect to the collection \mathcal{B}. Then P is a strongly quasiconvex subgroup in G_1 if and only if P is also a strongly quasiconvex subgroup of G.

Acknowledgments. We would like to thank Wenyuan Yang for helpful conversations. The first author is supported by Project ICRTM04_2021.07 of the International Centre for Research and Postgraduate Training in Mathematics, VietNam. The second author was supported by an AMS-Simons Travel Grant.

2. Preliminary

Definition 2.1. A subset A of a geodesic space X is called *Morse* if for any $L \geq 1$, $C \geq 0$ there exists $R = R(L, C)$ such that every (L, C)–quasi-geodesic in X with endpoints in A is contained in the R–neighborhood of A.

Let G be a finitely generated group and H a subgroup of G. We say H is *strongly quasiconvex* in G if H is a Morse subset in the Cayley graph $\Gamma(G, S)$ for some (any) finite generating set S.

Definition 2.2. Suppose (X, d) is a Gromov hyperbolic geodesic metric space, and $Y \subset X$. An isometric action $G \bowtie X$ is *acylindrical along* Y if for every $\epsilon \geq 0$, there are constants $R = R(\epsilon, Y) > 0$ and $M = M(\epsilon, Y) > 0$ so that, whenever $x, y \in Y$ satisfy $d(x, y) \geq R$,

$$\#\{g \in G : d(gx, x) \leq \epsilon \text{ and } d(gy, y) \leq \epsilon\} \leq M$$

The following notion is recently introduced by Abbott-Manning [AM21].

Definition 2.3. An A/QI–triple (G, X, H) consists of a Gromov hyperbolic space X and an isometric action $G \bowtie X$ which is acylindrical along the finitely generated infinite subgroup H (i.e, it is acylindrical along along the subspace Hx for some $x \in X$), and so that the orbital map $h \mapsto hx$ gives a quasi-isometric embedding of H into X.

3. Proof of Theorem 1.1 and its application to certain graph of groups

In this section, we are going to prove Theorem 1.1. Let $\mathcal{G} = (\Gamma, \{G_v\}, \{G_e\})$ be a graph of groups. We consider a *quasi-isometric model* X of G as the following. Choose a maximal tree Λ in Γ. Choose a generating set for G consisting of a finite generating set for each vertex group G_v together with a generator t_e for each edge e of Γ not contained in the maximal tree S. For edges e in the maximal tree, set $t_e = 1$. Then for any edge e and $h \in G_e$, let h_0, h_1 be the images of h in the initial and terminal vertex groups of e respectively, then $h_0 t_e = t_e h_1$.
Consider the Bass-Serre tree T whose vertices correspond to cosets of the vertex groups. For each vertex v in the Bass-Serre tree, take a copy X_v of the Cayley graph of the corresponding vertex group, but with vertices labelled by elements of the coset. For an edge labelled e in the Bass-Serre tree connecting v to w, attach edges between vertices of the form $gh_0 \in X_v$ and $gh_0 \in X_w$ for each $h \in G_e$. This defines the graph X. There is a natural map $\varphi: G \to X$ which is an (L, L)–quasi-isometric embedding which comes from Normal Form Theorem.

Proof of Theorem 1.1. By Proposition 4.7 and Theorem 1.5 in [AM21], if (G, T, H) is A/QI–triple then H has finite height, and H is stable in G, thus the implications $(2) \Rightarrow (1)$ and $(3) \Rightarrow (1)$ hold. If H is stable in G then H has finite height in G by [Tra19], thus the implication $(1) \Rightarrow (3)$ holds.

For the rest of the proof, we will prove the implication $(1) \Rightarrow (2)$. Since G acts acylindrically on the Bass-Serre tree T, it follows that $G \searrow T$ is acylindrical along H. Hence, to see (G, T, H) is a A/QI–triple, we only need to show that the orbital map $\tau: H \to T$ is a quasi-isometric embedding. We will assume that H has infinite index in G, otherwise it is obvious that that the implication $(1) \Rightarrow (2)$ holds.

First at all, we observe that the intersection of H with any conjugate of a vertex group must be finite. Indeed, by way of contradiction, we assume that $H \cap yG_vy^{-1}$ is infinite for some vertex group G_v and for some $y \in G$. Since H has finite height in G, it follows that $H \cap yG_vy^{-1}$ has finite height in yG_vy^{-1}. Combining with the fact that $H \cap yG_vy^{-1}$ is infinite, it implies that $H \cap yG_vy^{-1}$ has finite index in yG_vy^{-1} by our assumption. For any $x \in G$, we choose a finite sequence of conjugates of vertex groups $A_0 = yG_vy^{-1}, A_1, \ldots, A_m = xA_0x^{-1}$ with $A_i \cap A_{i+1}$ is infinite with $i \in \{0, 1, \ldots, n - 1\}$. Since $H \cap yG_vy^{-1}$ is a finite index subgroup of yG_vy^{-1} and $yG_vy^{-1} \cap A_1$ is infinite, it follows that $H \cap A_1$ is infinite. Repeating the argument above consecutively for A_1, A_2, \ldots, A_m (by replacing A_0 by A_1), we have that $H \cap A_1$ is a finite index subgroup of A_1, $H \cap A_2$ is a finite index subgroup of A_2, ..., $H \cap A_m = H \cap x(yG_vy^{-1})x^{-1}$ is a finite index subgroup of $(yG_vy^{-1})x^{-1}$. Let s be the height of H in G. We choose $s + 1$ distinct left cosets g_0H, \ldots, g_sH such that the intersection $g_0Hg_0^{-1} \cap \cdots \cap g_sHg_s^{-1}$ is finite. For each $i \in \{1, 2, \ldots, s\}$, choose $x_i := g_i^{-1}$. Since $H \cap x_i(yG_vy^{-1})x_i^{-1}$ is a finite index subgroup of $x_i(yG_vy^{-1})x_i^{-1}$. It follows that $g_iHg_i^{-1} \cap yG_vy^{-1}$ is a finite index subgroup of yG_vy^{-1}. We thus have $\cap_{i=0}^s g_iHg_i^{-1} \cap yG_vy^{-1}$ is a finite index subgroup of yG_vy^{-1}. This is impossible since the intersection $g_0Hg_0^{-1} \cap \cdots \cap g_sHg_s^{-1}$ is finite and yG_vy^{-1} is infinite.

Let \mathcal{B} be the collection of left cosets of vertex groups $G_{e_1}, G_{e_2}, \ldots, G_{e_r}$ in G. We define a function $f: [0, \infty) \to [0, \infty)$ as follows. For any $r \geq 0$, we define $f(r)$ to be

$$f(r) := \max \{\text{diam}(N_r(H) \cap B) : B \in \mathcal{B} \text{ and } B \cap B(S(e, r) \neq \emptyset)\}$$
Note that f is well-defined. Indeed, if B is an element in the collection \mathcal{B} then B is a left coset gG_v for some vertex group G_v and for some group element g in G. By Proposition 9.4 in [Hrn10] there exists a constant $r' = r'(r, H, gG_v)$ such that $N_r(H) \cap N_r(gG_v) \subset N_{r'}(H \cap gG_v, g^{-1})$. According to the previous paragraph, the intersection $H \cap gG_v, g^{-1}$ is finite, and thus $N_r(H \cap gG_v, g^{-1})$ is finite. As $N_r(H) \cap B$ is a subset of $N_r(H) \cap N_r(gG_v)$, it follows that $\text{diam}(N_r(H) \cap B)$ is finite. Since there are only finitely many left cosets xA that has nonempty intersection with the closed ball $B_S(c, r)$, it follows that $f(r)$ is a constant in $[0, \infty)$.

Claim 1:

$$\text{diam}(N_r(H) \cap gG_v) \leq f(r)$$

for any left coset of a vertex group G_v in G.

Indeed, if $d_S(H, B) > r$, then $N_r(H) \cap B$ is empty and then its diameter is zero and less than or equal to $f(r)$. We now assume that $d_S(H, B) \leq r$. Then there are $h \in H$, $g \in G$, and $A \in \mathcal{A}$ such that $B = h(gA)$ and $|g|_S \leq r$. By the choice of $f(r)$ the diameter of the set $N_r(H) \cap gA$ is at most $f(r)$. Also $N_r(H) \cap B = h(N_r(H) \cap gA)$. Therefore, $\text{diam}(N_r(H) \cap B) \leq f(r)$. The claim is proved.

Since H has finite height in G, it follows from the previous paragraphs that the intersection of H with any conjugate of a vertex group G_v is finite. Since $H \cap gG_v, g^{-1}$ is finite, it follows that H acts properly on the Bass-Serre tree T and the stabilizer in H of each vertex in T is finite. Hence, it follows from Theorem 7.51 in [DK18] that there exists a finite index subgroup K of H such that K is a free group.

Let X be a quasi-geodesic model space of the graph of groups described in the first paragraph of this section. Let $\varphi: G \to X$ be the given (L, L)–quasi-isometric embedding. Let $\{\gamma_1, \gamma_2, \cdots, \gamma_\ell\}$ be a finite generating set of K. We note that γ_i is not conjugate to any vertex group of G. Fix a vertex $v_0 \in T$ such that the identity $1 \in X_{v_0}$. For each $i \in \{1, 2, \cdots, s\}$, let $\gamma_{s+i} = \gamma_i^{-1}$. Let ℓ_i be a geodesic in X connecting $1 = \varphi(1)$ to $\varphi(\gamma_i)$, and let $\ell_{s+i} := \ell_i$. We define

$$\tilde{H} := \bigcup_{i=1}^{2s} \{g\ell_i \mid g \in K\}$$

Then \tilde{H} is a connected subspace of X and $\varphi(H) \subset \tilde{H}$.

Claim 2: There exists a constant $\delta > 0$ such that $\text{diam}(\tilde{H} \cap X_v) \leq \delta$ for each vertex $v \in T$. Indeed, let λ be the maximal length of γ_i where i varies from 1 to $2s$. Let $\delta := 2\lambda + L + Lf(L\lambda + L)$. Let x and y be two distinct elements in $\tilde{H} \cap X_v$. There are elements g' and g'' in K, and $i, j \in \{1, 2, \cdots, 2s\}$ such that $x \in g'\ell_i$ and $y \in g''\ell_j$. We thus have $d(x, \varphi(g'\gamma_i)) \leq \lambda$ and $d(y, \varphi(g''\gamma_j)) \leq \lambda$. Hence $\varphi(g'\gamma_i) \in N_\lambda(X_{v_0}) = N_\lambda(\varphi(gG_v))$. Since $\varphi: G \to X$ is an (L, L)–quasi-isometric, it follows that $g'\gamma_i$ is in $N_{L\lambda+L}(gG_v)$. Thus $g'\gamma_i$ belongs to the intersection $N_{L\lambda+L}(gG_v) \cap K$. Similarly, we have that the element $g''\gamma_j$ belongs to the intersection $N_{L\lambda+L}(gG_v) \cap K$.

By Claim 1, we have \(\text{diam}(\mathcal{N}_{L\lambda+L}(K) \cap \mathcal{N}_{L\lambda+L}(gG_v)) \leq f(L\lambda + L) \). Thus,
\[d_G(g'\gamma_i, g''\gamma_j) \leq f(L\lambda + L). \]
It follows that
\[
\begin{align*}
d(x, y) &\leq 2\lambda + d(\varphi(g'\gamma_i), \varphi(g''\gamma_j)) \\
&\leq 2\lambda + Ld_G(g'\gamma_i, g''\gamma_j) + l \\
&\leq 2\lambda + L + L f(L\lambda + L) = \delta
\end{align*}
\]
Therefore, \(\text{diam}(\tilde{H} \cap X_v) \leq \delta \), Claim 2 is confirmed.

Let \(e_1 \cdot e_2 \cdots e_s \) be the geodesic edge path in the Bass-Serre tree \(T \) connecting \(v_0 \) to \(h(v_0) \). Let \(v_i \) be the endpoint of \(e_i \). Let \(\beta \) be a path in \(\tilde{H} \) connecting \(\varphi(1) = 1 \) to \(\varphi(h) \). We note that the path \(\beta \) must pass through vertex and edge spaces \(X_{v_1}, X_{e_1}, X_{v_2}, \ldots, X_{v_s} \). Let \(x_0 \in \beta \cap X_{v_0} \cap X_{e_1} \) be the last point of \(\beta \) which entering \(X_{e_1} \). Note that there is an edge in \(X_{e_1} \) connecting \(x_0 \) to a point in \(X_{v_1} \), we denote this point by \(y_0 \) (so \(d(x_0, y_0) = 1 \)). Similarly, we define points \(x_1, y_1, \ldots, x_{s-1}, y_{s-1} \) in a similar manner. We let \(x_s := \varphi(h) \). By Claim 2 we have \(d(1, x_0) \leq \delta, d(y_i, x_{i+1}) \leq \delta \) for each \(0 \leq i \leq s - 1 \). We also have \(d(x_i, y_i) = 1 \) for \(0 \leq i \leq s - 1 \).

Let \(\Lambda > 0 \) be a constant such that \(\tilde{H} \subset \mathcal{N}_\Lambda(\varphi(K)) \). It follows that for each \(0 \leq i \leq s \), there exists \(h_i \in H \) such that \(d(x_i, \varphi(h_i)) \) is bounded above by \(\Lambda \) (when \(i = s \), we choose \(h_s = h \)). Let \(\bar{\varepsilon} := \max\{|h|_H : h \in B_G(1, L + L(1 + \delta + 2\Lambda))\} \).

By triangle inequality, we have \(d(\varphi(1), \varphi(h_0)) \leq d(\varphi(1), x_0) + d(x_0, \varphi(h_0)) \leq \delta + \Lambda \). Since the map \(\varphi \) is a \((L, L)\)-quasi-isometric embedding map, we have that
\[d_G(1, h_0) \leq Ld(\varphi(1), \varphi(h_0)) + L \leq L(\delta + \Lambda) + L. \]
It follows that \(d_H(1, h_0) \) is bounded above by \(\bar{\varepsilon} \). For each \(0 \leq i \leq s \), we have \(d(\varphi(h_i), \varphi(h_{i+1})) \leq d(\varphi(h_i), x_i) + d(x_i, y_i) + d(y_i, x_{i+1}) + d(x_{i+1}, \varphi(h_{i+1})) \leq 2\Lambda + \delta + 1 \). Hence \(d_G(h_i, h_{i+1}) \leq L(2\Lambda + \delta + 1) + L. \)
It follows that, \(d_H(h_i, h_{i+1}) \leq \bar{\varepsilon}. \) As a consequence, \(d_H(1, h) \leq d_H(1, h_0) + \sum_{i=0}^{s-1} d_H(h_i, h_{i+1}) \leq (s + 1)\bar{\varepsilon} \leq \bar{\varepsilon} + \varepsilon d_T(v_0, h(v_0)). \)

On the other hand, the orbital map of any isometric action is Lipschitz (see Lemma I.8.18 in [BH99]), and thus the orbital map \(\tau : H \to T \) is a Lipschitz map.

Therefore, we can conclude that the orbital map \(\tau \) is a quasi-isometric embedding. The implication \((1) \Rightarrow (2)\) is verified.

\[\square \]

3.1. Application of Theorem 1.1 to certain graph of groups. In this section, we are going give some examples of graph of groups which satisfy hypotheses of Theorem 1.1. Therefore, the conclusion of Theorem 1.1 holds for these classes of graph of groups.

Lemma 3.1. Let \(G \) be a group such that the centralizer \(Z(G) \) of \(G \) is infinite. Let \(H \) be a finite height infinite subgroup of \(G \). Then \(H \) must have finite index in \(G \).

Proof. We first assume that \(Z(G) \cap H \) has infinite index in \(Z(G) \). Then there is an infinite sequence \((t_n)\) of elements in \(Z(G) \) such that \(t_i(Z(G) \cap H) \neq \)
t_j(Z(G) \cap H) for i \neq j. Therefore, it is straightforward that t_i H \neq t_j H for
i \neq j. Also, \bigcap t_n H^{-1} = H is infinite. This contradicts to the fact that H has finite height. Therefore, Z(G) \cap H has finite index in Z(G). In particular, Z(G) \cap H is infinite. Assume that H has infinite index in G. Then there is an infinite sequence \{g_n H\} of distinct left cosets of H. However, \bigcap g_n H g^{-1}_n is infinite since it contains the infinite subgroup Z(G) \cap H. This contradicts to the fact that H has finite height. Therefore, H must have finite index in G. □

3-dimensional graph manifolds. We revisit a result of [NTY21] in the setting of 3-dimensional graph manifold. Let M be a compact, connected, orientable, irreducible 3-manifold with empty or toroidal boundary. M is called geometric if its interior admits a geometric structure in the sense of Thurston. Such structures are S^3, E^3, H^3, S^2 \times \mathbb{R}, H^2 \times \mathbb{R}, SL(2, \mathbb{R}), Nil, and Sol. If M is not geometric, then M is called a nongeometric 3–manifold.

By geometric decomposition of 3–manifolds, there is a nonempty minimal union \mathcal{T} \subset M of disjoint essential tori and Klein bottles, unique up to isotopy, such that each component of M \setminus \mathcal{T} is either a Seifert fibered piece or a hyperbolic piece. The manifold M is called a graph manifold if all the pieces M_1, M_2, \ldots, M_k of M \setminus \mathcal{T} are Seifert manifolds. Passing to a finite cover, we can assume that the base orbifold of each M_i is orientable and hyperbolic. The fundamental group \pi_1 (M) has the graph of groups structure where it has one vertex labelled with \pi_1 (M_i) for each i, and each edge labelled by \mathbb{Z}^2 for each JSJ torus. Let T be the Bass-Serre tree associated to the graph of groups structure of \pi_1 (M). Then the action of \pi_1 (M) on T is acylindrical (see Theorem 7.27 in [ABO19]). Each vertex group \pi_1 (M_i) of \pi_1 (M) has centralizer \mathbb{Z} which is infinite, and thus by Lemma 3.1, each finite height subgroup in each vertex group of \pi_1 (M) is either finite or has finite index in \pi_1 (M_i). As a consequence, Theorem 1.1 can be applied into graph 3-manifolds.

High dimensional graph manifolds. In [FLS15], Frigerio-Lafont-Sisto study a particular class of graph of groups which they called high dimensional graph manifold which are obtained by gluing together pieces of the form \mathcal{T}_k^k \times N_i where \mathcal{T}_k^k is a k–dimensional torus, and N_i is the manifold compactification of a complete, finite volume hyperbolic manifold N_i of dimension \geq 3. Such manifolds are called irreducible if the fibrations on adjacent pieces are “transverse”. We refer the reader to [FLS15] for precise definitions. We emphasize here that 3–dimensional graph manifolds are not high dimensional graph manifolds as in the sense of [FLS15].

When M is an irreducible high dimensional graph manifold then \pi_1 (M) is a graph of groups where each vertex groups, edge groups are undistorted in \pi_1 (M) (see Corollary 7.13 in [FLS15]). Also \pi_1 (M) acts acylindrically on its Bass-Serre tree T (see Proposition 6.4 in [FLS15]). The fundamental group of each piece M_i of a high dimensional graph manifold is the product of
π₁(ℳᵢ) with ℤᵏ. Hence the centralizer Z(π₁(ℳᵢ)) is infinite. It follows from Lemma 3.1 that each finite height subgroup in each vertex group of π₁(ℳ) is either finite or has finite index in π₁(ℳᵢ). Therefore the fundamental groups of high dimensional graph manifolds satisfy the hypotheses of Theorem 1.1. As a result, finite height, stability and A/QI–triple of subgroups in high dimensional graph manifolds are equivalent.

Admissible groups. This class of groups firstly introduced by Croke-Kleiner in [CK02]. This is a particular class of graph of groups that includes fundamental groups of 3–dimensional graph manifolds and torus complexes. The admissible group is modeling on the JSJ structure of graph manifolds where the Seifert fibration is replaced by the following central extension of a general hyperbolic group:

(1) \[1 \to Z(G_v) = Z \to G_v \to H_v \to 1 \]

Precisely, a graph of groups G is admissible if G is a finite graph with at least one edge, each vertex group Gᵥ has center Z(Gᵥ) = Z, Hᵥ := Gᵥ/Z(Gᵥ) is a non-elementary hyperbolic group, and every edge subgroup Gₑ is isomorphic to ℤ². Moreover,

(1) Let e₁ and e₂ be distinct directed edges entering a vertex v, and for i = 1, 2, let Kᵢ ⊂ Gᵥ be the image of the edge homomorphism Gₑᵢ → Gᵥ. Then for every g ∈ Gᵥ, gK₁g⁻¹ is not commensurable with K₂, and for every g ∈ Gᵥ − Kᵢ, gKᵢg⁻¹ is not commensurable with Kᵢ.

(2) For every edge group Gₑ, if αᵢ: Gₑ → Gᵥᵢ is the edge monomorphism, then the subgroup generated by αᵢ⁻¹(Z(Gᵥᵢ)) and αᵢ⁻¹(Z(Gᵥᵢ)) has finite index in Gₑ.

A group G is admissible if it is the fundamental group of an admissible graph of groups.

Since the centralizer of each vertex group is infinite, it follows from Lemma 3.1 that each finite height subgroup in each vertex group is either finite or has finite index in the vertex group. In addition, G acts acylindrically on its Bass-Serre tree (see part (1) of Lemma 3.4 in [CK02]). Therefore Theorem 1.2 applies to admissible groups. We note that when we restrict admissible groups to be CAT(0), such a result has been addressed in [NY20].

4. Morse subsets in group amalgamations and HNN extensions

In this section, we are going to prove Theorem 1.3.

Definition 4.1. Let X be a geodesic space and let A be a subset of X. Let B be a collection of subspaces of X. Let f: [0, \infty) → [0, \infty) be a function. We say A has f–bounded penetration with respect to B if for each B in B and each positive number r we have diam(Nᵢ(A) ∩ B) ≤ f(r). We say A has bounded penetration with respect to B if A has f–bounded penetration with respect to B for some function f.
Lemma 4.2. Let $\lambda \geq 1$, $\epsilon \geq 0$, and $K > 2$ be constants. There are two numbers $\lambda_1 = \lambda_1(\lambda, \epsilon, K) \geq 1$ and $\epsilon_1 = \epsilon_1(\lambda, \epsilon, K) \geq 0$ such that the following holds. Let X be a geodesic space and let γ be a continuous (λ, ϵ)–quasigeodesic parametrized by arc its length in X. Let x_1 and x_2 be two points in X and let x'_i be a nearest point projection of each x_i onto γ. For each i let α_i be a geodesic in X connecting x_i and x'_i and let γ_i be the subpath of γ connecting x'_i and x''_i. Assume that $d(x'_i, x''_i) \geq K \max\{d(x_1, x'_1), d(x_2, x'_2)\}$. Then the concatenation $\beta = \alpha_1 \gamma_1 \alpha_2$ is a continuous (λ_1, ϵ_1)–quasigeodesic parametrized by its arc length.

Proof. For each two points x and y in β we denote $\ell_{\beta}(x, y)$ be the length of the subpath of β connecting x and y. We will prove that for each two points u and v in β we have $d(u, v) \leq \lambda_1 d(u, v) + \epsilon_1$ where λ_1 and ϵ_1 only depend on λ, ϵ, and K. Since the paths α_1, α_2, and γ are all (λ, ϵ)–quasigeodesic, the inequality is obvious if u and v both lie in one of these paths. Therefore, we can assume that u and v lie in two different paths among α_1, α_2, and γ. Without the loss of generality we can assume only two cases occur:

Case 1: u lies in α_1 and v lies in γ_1. Since x'_1 is a nearest point projection of u of γ, we have $d(u, v) \geq d(u, x'_1) \geq d(x'_1, v) - d(u, v)$. Therefore, $d(u, v) \geq \frac{1}{2} d(x'_1, v) \geq \frac{1}{2} \left(\frac{\ell_{\beta}(x'_1, v)}{\lambda} - \frac{3}{4} \right)$. This implies that $\ell_{\beta}(x'_1, v) \leq 2\lambda d(u, v) + \epsilon$. Also, $\ell_{\beta}(u, x'_1) = d(u, x'_1) \leq d(u, v)$, thus, $\ell_{\beta}(u, v) = \ell_{\beta}(u, x'_1) + \ell_{\beta}(x'_1, v) \leq (2\lambda + 1) d(u, v) + \epsilon$.

Case 2: u lies in α_1 and v lies in α_2. Then

$$d(u, v) \geq d(x'_1, x'_2) - d(x'_1, u) - d(x'_2, v)$$

$$\geq d(x'_1, x'_2) - d(x'_1, x_1) - d(x'_2, x_2)$$

$$\geq d(x'_1, x'_2) - \frac{1}{K} d(x'_1, x'_2) - \frac{1}{K} d(x'_1, x'_2)$$

$$\geq \left(\frac{K-2}{K} \right) d(x'_1, x'_2) \geq \left(\frac{K-2}{K} \right) \left(\frac{\ell_{\beta}(x'_1, x'_2)}{\lambda} - \frac{\epsilon}{\lambda} \right).$$

This implies that $\ell_{\beta}(x'_1, x'_2) \leq \left(\frac{K\lambda}{K-2} \right) d(u, v) + \epsilon$. Also, $\ell_{\beta}(u, x'_1) = d(u, x'_1) \leq d(x_1, x'_1) \leq d(x'_1, x'_2) \leq \ell_{\beta}(x'_1, x'_2)$. Similarly, $\ell_{\beta}(x'_2, v) \leq \ell_{\beta}(x'_1, x'_2)$. Therefore, $\ell_{\beta}(u, v) = \ell_{\beta}(u, x'_1) + \ell_{\beta}(x'_1, x'_2) + \ell_{\beta}(x'_2, v) \leq 3\ell_{\beta}(x'_1, x'_2) \leq \left(\frac{3K\lambda}{K-2} \right) d(u, v) + 3\epsilon$. \hfill \square

Lemma 4.3 (Lemma 3.3 in [Ira19]). For each $C > 1$ and $\rho \in (0, 1]$ there is a constant $L = L(C, \rho) \geq 1$ such that the following holds. Let r be an arbitrary positive number and γ a continuous path with the length less than Cr. Assume the distance between two endpoints x and y is at least r. Then there is an $(L, 0)$–quasi-geodesic α connecting two points x, y such that the image of α lies in the pr–neighborhood of γ and the length of α is less than or equal to the length of γ. \hfill \square
Proposition 4.4. Let $\lambda \geq 1$, $\epsilon \geq 0$, and $\sigma \geq 0$ be constants. Let $M : [1, \infty) \times [0, \infty) \to [0, \infty)$ be a Morse gauge and $f : [0, \infty) \to [0, \infty)$ be a function. Then there is a number $b = b(\lambda, \epsilon, \sigma, M)$ such that the following holds. Let X be a geodesic space and let \mathcal{A} be an M–Morse subset of X. Assume that \mathcal{A} has f–bounded penetration with respect to a collection \mathcal{B} of $(\lambda, \epsilon, \sigma)$–quasiconvex subspaces of X. Then for each B in \mathcal{B} and each positive number r, we have $\operatorname{diam}(\mathcal{N}_r(\mathcal{A}) \cap B) \leq 7r + b$.

Proof. By Lemma 1.11 of [BH99] III.H there are λ_0, ϵ_0, and ϵ_0 depending only on λ, ϵ, and ϵ such that any two points of a subset B in \mathcal{B} are joined by a continuous (λ_0, ϵ_0)–quasigeodesic parametrized by its length that lies in the σ_0–neighborhood of B. Let $\lambda_1 = \lambda_1(\lambda_0, \epsilon_0, 3) \geq 1$ and $\epsilon_1 = \epsilon_1(\lambda_0, \epsilon_0, 3) \geq 0$ be constants in Lemma 4.2. Let $C = M(\lambda_1, \epsilon_1) + \sigma_0$ and let $b = f(C) + \sigma_0$.

Let B be a subspace in \mathcal{B} and let r be a positive number. We will prove that $\operatorname{diam}(\mathcal{N}_r(\mathcal{A}) \cap B) \leq 7r + b$. If $r \leq f(C) + \sigma_0$, then $\operatorname{diam}(\mathcal{N}_r(\mathcal{A}) \cap B) \leq b := f(C) + \sigma_0 \leq 7r + b$. We now assume that $r > f(C) + \sigma_0$.

Suppose by way of contradiction that $\operatorname{diam}(\mathcal{N}_r(\mathcal{A}) \cap B) > 7r + b$. Let z_1 and z_2 be two points in $\mathcal{N}_r(\mathcal{A}) \cap B$ such that $d(z_1, z_2) > 7r + b$. For each i, let x_i be a point in \mathcal{A} such that $d(z_i, x_i) < r$. We connect z_1 and z_2 by a continuous (λ_0, ϵ_0)–quasigeodesic γ parametrized by its length that lies in the σ_0–neighborhood of B. For each i let x'_i be a nearest point projection of x_i on γ. Then for each i we have $d(x_i, x'_i) \leq r$ and which implies that $d(z_i, x'_i) \leq 2r$. Therefore,

$$d(x'_1, x'_2) \geq d(z_1, z_2) - d(z_1, x'_1) - d(z_2, x'_2) \geq 7r - 2r - 2r \geq 3r.$$ This implies that $d(x'_1, x'_2) \geq 3 \max\{d(x_1, x'_1), d(x_2, x'_2)\}$.

For each i let α_i be a geodesic connecting x_i and x'_i and let γ_1 be the subpath of γ connecting x'_i and x'_2. Then the concatenation $\beta = \alpha_1 \gamma_1 \alpha_2$ is a (λ_1, ϵ_1)–quasigeodesic by the choice of λ_1 and σ_1. Therefore, β lies in the $M(\lambda_1, \epsilon_1)$–neighborhood of A. In particular, each x'_i lies in the $M(\lambda_1, \epsilon_1)$–neighborhood of A. Since each x'_i also lies in the σ_0–neighborhood of B, we can chose b_i in B such that $d(x'_i, b_i) < \sigma_0$. Therefore, each b_i lies in the the subset $N_C(A) \cap B$ by the choice of C and

$$d(b_1, b_2) \geq d(x'_1, x'_2) - d(x'_1, b_1) - d(x'_2, b_2) \geq 3r - 2\sigma_0 > f(C).$$

This implies that $\operatorname{diam}(\mathcal{N}_r(\mathcal{A}) \cap B) > f(C)$ which is a contradiction. Therefore, the diameter of the subset $\mathcal{N}_r(\mathcal{A}) \cap B$ is at most $7r + b$. \hfill \Box

Lemma 4.5. Let $G_1 \leq G$ be the groups given by Theorem 4.3. Then G_1 is undistorted in G.

Proof. Let S_H be a finite generating set of H. Then $S_K = \{\phi(h)|h \in H\}$ is a finite generating set of K. Let T be a finite generating set of G_1 that contains $S_H \cup S_K$. Then $S = T \cup \{t\}$ be a finite generating set of the HNN extension $G = \langle G_1, t|t^{-1}ht = \phi(h), h \in H \rangle$. With those chosen finite generating sets, we can assume that Cayley graphs $\Gamma_1(H, S_H)$ and $\Gamma(K, S_K)$ are subgraphs of
Cayley graph $\Gamma(G_1, S)$ and Cayley graph $\Gamma(G_2, S)$ is a subgraph of Cayley graph $\Gamma(G, T)$.

Since H and K are undistorted in G, there is a positive integer M such that $|h|_{S_H} \leq M|h|_T$ for each $h \in H$ and $|k|_{S_K} \leq M|k|_T$ for each $k \in K$. We will prove that $|g|_S \leq M|g|_T$ for each $g \in G_1$.

In fact, let α be a geodesic in $\Gamma(G, T)$ connecting the identity e and g. Then α is decomposed as $\alpha_0\alpha_1 \cdots \alpha_n$ such that each subpath α_i lies completely in $\Gamma(G_1, S)$ and each subpath β_i intersects to $\Gamma(G_1, S)$ only at its endpoints x_i and y_i. We observe that each $x_i^{-1}y_i$ is a group element in $H \cup K$. Therefore, we can connect x_i and y_i by a path β'_i in $\Gamma(G_1, S)$ such that $\ell(\beta'_i) \leq M\ell(\beta_i)$. Therefore, the path $\alpha' = \alpha_0\beta'_1 \cdots \beta'_n$ lies completely in $\Gamma(G_1, S)$ and $\ell(\alpha') \leq M\ell(\alpha)$. Therefore, $|g|_S \leq M|g|_T$. This implies that G_1 is also undistorted in G.

We now ready to give the proof of Theorem 1.3.

Proof of Theorem 1.3. Suppose that P is strongly quasiconvex in G. Since $P \leq G_1 \leq G$ and G_1 is undistorted in G by Lemma 4.5, it follows from Proposition 4.10 in Tra19 that P is strongly quasiconvex in G_1.

For the rest of the proof, we are going to verify that P is strongly quasiconvex in G provided P is strongly quasiconvex in G_1. We will give the proof for the case HNN extension. The case of amalgamated free products is proved similarly.

Let S_H be a finite generating set of H. Then $S_K = \{\phi(h) \mid h \in H\}$ is a finite generating set of K. Let S be a finite generating set of G_1 that contains $S_H \cup S_K$. Then $T = S \cup \{t\}$ is a finite generating set of the HNN extension $G = \langle G_1, t \mid t^{-1}ht = \phi(h), h \in H\rangle$. With those chosen finite generating sets, we can assume that Cayley graphs $\Gamma(H, S_H)$ and $\Gamma(K, S_K)$ are subgraphs of Cayley graph $\Gamma(G_1, S)$ and Cayley graph $\Gamma(G_1, S)$ is a subgraph of Cayley graph $\Gamma(G, T)$.

Let M be a Morse gauge of P in Cayley graph $\Gamma(G_1, S)$. By Lemma 4.5 the subgroup G_1 is undistorted in G. Thus, there are $\lambda_0 \geq 1$ and $\sigma_0 \geq 0$ such that each two points x and y in G_1 we have $d_T(x, y) \leq d_S(x, y) \leq \lambda_0d_T(x, y) + \sigma_0$. Since two subgroups H and K are undistorted in G, they are also undistorted in G_1. By Proposition 4.4 there is a constant b such that for each positive integer r and each left coset B in B the diameter of the intersection between the r–neighborhood of P and B is at most $7r + b$ with respect to the metric d_S.

To see that P is a Morse subset of G, we let $\gamma : [u, v] \to \Gamma(G, T)$ be a (λ, ϵ)–quasigeodesic that connects two points in P. We are going to show that $\gamma \subset N_r(P)$ for some constant r depending only on $\lambda, \lambda_0, \epsilon, \sigma_0, b$ and M.

By Lemma Lemma 1.11 of CS15 III.III we can assume that γ is continuous and parametrized by its arc length. Let $r = \max\{d_T(x, P) \mid x \in \gamma\}$ and let $t_0 \in [u, v]$ such that $d(\gamma(t_0), P) = r$. Let $L = 72\lambda(\epsilon + b + 1)(\lambda_0 + \sigma_0)$. Assume that $r > L$ and we will prove that r is less than some number only depending on $\lambda, \lambda_0, \epsilon, \sigma_0, b$ and M.

Let \([t_1, t_2]\) be a subinterval containing \(t_0\) in \([a, b]\) such that \(d_T(\gamma(t_i), P) = r/L\) for each \(i\) and the image of the path \(\gamma_1 = \gamma|_{[t_1, t_2]}\) lies outside the \(r/L\)-neighborhood of \(P\). We observe that \(|t_1 - t_0| \geq r - r/L \geq r/2\). Therefore, \(|t_2 - t_1| = |t_2 - t_0| + |t_1 - t_0| \geq r\). Let \(K = 6\lambda(\epsilon + b + 9)(\lambda_0 + \epsilon_0)\) We now consider two cases:

Case 1: \(|t_2 - t_1| < Kr\)

For each \(i\) let \(\alpha_i\) be a geodesic in \(\Gamma(G, T)\) with length \(r/L\) connecting \(\gamma(t_i)\) to a point \(x_i\) in \(P\). Let \(\alpha\) be the concatenation \(\alpha_1 \gamma_1 \alpha_2\). We have that
\[
\ell(\alpha) \leq \ell(\alpha_1) + \ell(\gamma_1) + \ell(\alpha_2) \leq (K + 2)r
\]
Moreover,
\[
d_S(x_1, x_2) \geq d_T(x_1, x_2) \geq d_T(\gamma(t_1), \gamma(t_2)) - 2r/L \]
\[
\geq |t_2 - t_1|/\lambda - \epsilon - 2r/L \]
\[
\geq r/\lambda - \epsilon - 2r/L \]
\[
\geq \frac{r}{2\lambda} - \frac{2r}{L} \geq \frac{r}{4\lambda}.
\]

We now construct a continuous path \(\alpha'\) in \(\Gamma(G_1, S)\) connecting two points \(x_1\) and \(x_2\) such that \(\alpha' \cap \gamma_1\) is non-empty and \(\ell(\alpha') \leq (\lambda_0 + \epsilon_0)(K + 2)r\). If \(\alpha\) lies completely inside \(\Gamma(G_1, S)\) then \(\alpha' = \alpha\) is a desired path. We now assume that \(\alpha\) does not lie completely inside \(\Gamma(G_1, S)\). Then \(\alpha\) is decomposed as \(\sigma_0 \eta_1 \sigma_1 \cdots \eta_n \sigma_n\) such that the following holds:

1. Each subpath \(\sigma_i\) lies completely in \(\Gamma(G_1, S)\); and
2. Each subpath \(\eta_i\) is not degenerate and it intersects to \(\Gamma(G_1, S)\) only at its endpoints \(y_i\) and \(z_i\).

We observe that each \(y_i^{-1}z_i\) is a group element in \(H \cup K\). Therefore, we can connect \(y_i\) and \(z_i\) by a continuous \((\lambda_0, \epsilon_0)\) quasigeodesic (parametrized by arc length) \(\eta_i^t\) of \(\Gamma(G, T)\) which lies completely inside \(\Gamma(G_1, S)\). In particular,
\[
\ell(\eta_i^t) \leq (\lambda_0 + \epsilon_0)d_S(y_i, z_i) \leq (\lambda_0 + \epsilon_0)\ell(\eta_i).
\]
Let \(\alpha' = \sigma_0 \eta_1^t \sigma_1 \cdots \eta_n \sigma_n\). Then
\[
\ell(\alpha') \leq (\lambda_0 + \epsilon_0)\ell(\alpha) \leq (\lambda_0 + \epsilon_0)(K + 2)r.
\]

Suppose by way of contradiction that \(\alpha' \cap \gamma_1\) is empty. This means that \(\gamma_1\) is a subpath of some \(\eta_i\) that is replaced by \(\eta_i^t\) in \(\alpha'\). Therefore, there is some \(i\) such that \(y_i\) lies in \(\alpha_0\) and \(z_i\) lies in \(\alpha_1\). This implies that
\[
d_S(y_i, z_i) \geq d_T(y_i, z_i) \geq d_T(\gamma(t_1), \gamma(t_2)) - 2r/L \]
\[
\geq |t_2 - t_1|/\lambda - \epsilon - 2r/L \]
\[
\geq r/\lambda - \epsilon - 2r/L \]
\[
\geq \frac{r}{2\lambda} - \frac{2r}{L} \geq \frac{r}{4\lambda}.
\]

Since \(y_i, z_i \in \Gamma(G_1, S)\) and \(y_i^{-1}z_i \in H \cup K\), it follows that \(y_i\) and \(z_i\) both lies in some left coset \(B\) in \(B\). Therefore, \(y_i\) and \(z_i\) both lies in the intersection \(N_{r/L}(P) \cap B\) where \(N_{r/L}(P)\) is the \((r/L)\)-neighborhood of \(P\) in \(\Gamma(G, T)\). Also the distance between two distinct points in \(G_1\) with respect to the
metric d_S is at most $(\lambda_0 + \epsilon_0)$ times the distance between them with respect to the metric d_T. This implies that y_i and z_i both lie in the intersection $N^S_{r(\lambda_0 + \epsilon_0)/L}(P) \cap B$ where $N^S_{r(\lambda_0 + \epsilon_0)/L}(P)$ is the (r/L)–neighborhood of P in $\Gamma(G_1, S)$. Therefore by Proposition 4.4 we have $d_S(y_i, z_i) \leq 7r(\lambda_0 + \epsilon_0)/L + b$ which is a contradiction. Therefore, $\alpha' \cap \gamma_1$ is non-empty. This implies that α' contains a point outside the (r/L)–neighborhood of P.

We recall that $\alpha' \subset \Gamma(G_1, S)$ has length less than $(\lambda_0 + \epsilon_0)(K + 2)r$ and connects two points x_1 and x_2 in P with $d_S(x_1, x_2) \geq r/(4\lambda)$. Let $t_1 = r/(4\lambda)$, $C = 4\lambda(\lambda_0 + \epsilon_0)(K + 2) > 1$, $\rho = 2\lambda/L \in (0, 1]$. Then $\rho t_1 = r/(2L)$. Moreover, the length of α' is less than Ct_1 and the distance between the two endpoints x_1 and x_2 of α' is greater than $r/(4\lambda) = t_1$. By Lemma 4.3 there are a number $\lambda_1 = \lambda_1(C, \rho) \geq 1$ and a $(\lambda_1, 0)$–quasigeodesic α'' in $\Gamma(G_1, S)$ connecting two points x_1 and x_2 such that α'' lies in the $(r/(2L))$–neighborhood of α' with respect to the metric d_S. Since the distance between any two points in G_1 with respect to the metric d_S is greater than or equal the the distance between these two points with respect to the metric d_T. Thus, α'' lies in the $(r/(2L))$–neighborhood of α' with respect to the metric d_T. Therefore, α'' contains a point outside the $(r/(2L))$–neighborhood of P with respect to the metric d_T. Also, α'' lies in the $M(\lambda_1, 0)$–neighborhood of P with respect to the metric d_S (therefore also with respect to the metric d_T) since P is an M–Morse subset in $\Gamma(G_1, S)$. Therefore, $r \leq 2LM(\lambda_1, 0)$.

Case 2: $|t_2 - t_1| \geq Kr$.

Let t'_1, t'_2 be subinterval of $[t_1, t_2]$ such that $|t'_2 - t'_1| = Kr$. Then the image of the path $\gamma_2 = \gamma|[t'_1, t'_2]$ lies outside the (r/L)–neighborhood of P. For each i let β_i be a geodesic in $\Gamma(G, T)$ with at most r connecting $\gamma(t'_i)$ to a point x'_i in P. Let β be the concatenation $\beta_1 \gamma_2 \beta_2$. Therefore, the length of β is at most $(K + 2)r$. Moreover,

$$
\begin{align*}
 d_S(x'_1, x'_2) &\geq d_T(x'_1, x'_2) \geq d_T(\gamma(t'_1), \gamma(t'_2)) - 2r \\
 &\geq |t'_2 - t'_1|/\lambda - \epsilon - 2r \\
 &\geq (Kr)/\lambda - \epsilon - 2r \\
 &\geq Kr - 2r \geq r.
\end{align*}
$$

Using an analogous argument as in Case 1, we can construct a continuous path β' in $\Gamma(G_1, S)$ connecting two points x'_1 and x'_2 such that $\beta' \cap \gamma_2$ is non-empty and $\ell(\beta') \leq (\lambda_0 + \epsilon_0)(K + 2)r$. Therefore, β' contains a point outside the (r/L)–neighborhood of P. Using an analogous argument as in Case 1 again, there is a number λ_2 depending only on $\lambda_0, \epsilon_0, K, \lambda$ and L and a $(\lambda_2, 0)$–quasigeodesic β'' in $\Gamma(G_1, S)$ connecting two points x'_1 and x'_2 such that β'' contains a point outside the $(r/(2L))$–neighborhood of P. Therefore, $r \leq 2LM(\lambda_2, 0)$.
References

[ABO19] C. Abbott, S. Balasubramanya, D. Osin, Hyperbolic structures on groups, Algebraic & Geometric Topology, 19(4):1747-1835, 2019.

[AM21] C. Abbott, J. Manning, Acylindrically hyperbolic groups and their quasiconvexly embedded subgroups, https://arxiv.org/abs/2105.02333.

[Bes] M. Bestvina, Questions in geometric group theory, M. Bestvina’s home page, 2004.

[BH99] M. Bridson, A. Haefliger, Metric spaces of non-positive curvature, volume 319 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1999.

[CK02] C. Croke, B. Kleiner, The geodesic flow of a nonpositively curved graph manifold, Geom. Funct. Anal., 12(3):479–545, 2002.

[CS15] R. Charney, H. Sultan, Contracting boundaries of CAT(0) spaces, J. Topol., 8(1):93–117, 2015.

[DK18] C. Drutu, M. Kapovich, Geometric group theory, volume 63 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 2018. With an appendix by Bogdan Nica.

[FLS15] R. Frigerio, J. Lafont, A. Sisto, Rigidity of high dimensional graph manifolds, Astérisque, (372):xxi+177, 2015.

[GMRS98] R. Gitik, M. Mitra, E. Rips, M. Sageev, Widths of subgroups, Trans. Amer. Math. Soc., 350(1):321–329, 1998.

[Hru10] C. Hruska, Relative hyperbolicity and relative quasiconvexity for countable groups, Algebr. Geom. Topol., 10(3):1807–1856, 2010.

[NTY21] H. Nguyen, H. Tran, W. Yang, Quasiconvexity in 3-manifold groups, Math. Ann., 381(1-2):405–437, 2021.

[NY20] H. Nguyen, W. Yang, Croke-Kleiner admissible groups: Property (QT) and quasiconvexity, arXiv:2009.02863.

[Tran19] H. Tran, On strongly quasiconvex subgroups, Geom. Topol., 23(3):1173–1235, 2019.

[Gen19] Anthony Genevois, Hyperbolicities in CAT(0) cube complexes, Enseign. Math., 65(1-2):33–100, 2019

Department of Mathematics, The University of Danang - University of Science and Education, 459 Ton Duc Thang, Da Nang, Vietnam

Email address: nthoang.math@gmail.com

University of Oklahoma, Norman, OK 73019-3103, USA

Email address: Hung.C.Tran-1@ou.edu