Gorenstein injective envelopes and covers over two sided noetherian rings

Alina Iacob
Department of Mathematical Sciences, Georgia Southern University, Statesboro, Georgia, USA

ABSTRACT
We prove that the class of Gorenstein injective modules is both enveloping and covering over a two sided noetherian ring such that the character modules of Gorenstein injective modules are Gorenstein flat. In the second part of the paper we consider the connection between the Gorenstein injective modules and the strongly cotorsion modules. We prove that when the ring R is commutative noetherian of finite Krull dimension, the class of Gorenstein injective modules coincides with that of strongly cotorsion modules if and only if the ring R is in fact Gorenstein.

ARTICLE HISTORY
Received 26 February 2015
Revised 10 May 2016
Communicated by E. Kirkman

KEYWORDS
Gorenstein injective cover; Gorenstein injective envelope; Gorenstein injective module; strongly cotorsion module

2010 MATHEMATICS SUBJECT CLASSIFICATION
18G10; 18G25; 18G35

1. Introduction
The class of Gorenstein injective modules was introduced by Enochs and Jenda in 1995 [7]. Together with the Gorenstein projective and with the Gorenstein flat modules, they are the key elements of Gorenstein homological algebra. So it is natural to consider the question of the existence of the Gorenstein injective envelopes and covers. Their existence is known over Gorenstein rings [8]. It is also known [6] that when R is a commutative noetherian ring such that the character modules of Gorenstein injective modules are Gorenstein flat, then the class of Gorenstein injective modules is both enveloping and covering. We extend these results to two sided noetherian rings (not necessarily commutative). More precisely, we show that when R is a two sided noetherian ring and the character module of any Gorenstein injective left R-module is Gorenstein flat, the class of Gorenstein injective left R-modules is both enveloping and covering.

Then we consider the relation between the Gorenstein injective modules and the strongly cotorsion modules. It is known that over a commutative noetherian ring R of finite Krull dimension, any Gorenstein injective module is strongly cotorsion [17]. We prove that over such a ring the class of Gorenstein injective modules coincides with that of strongly cotorsion modules if and only if the ring R is in fact Gorenstein. We show in fact (Theorem 10) that a noncommutative version of this result holds.

2. Preliminaries
Throughout this section R denotes an associative ring with unity. By R-module we mean a left R-module.

Definition 1 ([8], Definition 10.1.1). A module G is Gorenstein injective if there is an exact complex $\cdots \rightarrow E_1 \rightarrow E_0 \rightarrow E_{-1} \rightarrow \cdots$ of injective modules which remains exact under application of the functors $\text{Hom}(\text{Inj}, -)$, where Inj stands for all injective modules, and such that $G = \text{Ker}(E_0 \rightarrow E_{-1})$.
We will use the notation \mathcal{GI} for the class of Gorenstein injective modules. A stronger notion is that of strongly Gorenstein injective modules.

Definition 2 ([1], Definition 2.1). An R-module M is strongly Gorenstein injective if there exists an exact and $\text{Hom}(\text{Inj}, -)$ exact sequence

$$\cdots \to E \xrightarrow{f} E \xrightarrow{f} E \to \cdots$$

with E injective and with $M = \text{Ker}(f)$.

It is known ([1], Theorem on page 3) that a module is Gorenstein injective if and only if it is a direct summand of a strongly Gorenstein injective one.

The Gorenstein flat modules are defined in terms of the tensor product.

Definition 3 ([8], Definition 10.3.1). An R-module G is Gorenstein flat if there exists an exact and $\text{Inj} \otimes -$ exact sequence of flat modules

$$\cdots \to F_1 \to F_0 \to F_{-1} \to \cdots$$

such that $G = \text{Ker}(F_0 \to F_{-1})$.

We will use the notation \mathcal{GF} for the class of Gorenstein flat modules.

We recall that the character module of a left R-module M is the right R-module $M^+ = \text{Hom}_Z(M, Q/Z)$. It is known ([13], Theorem 3.6) that if the ring R is right coherent then a left R-module G is Gorenstein flat if and only if its character module G^+ is a Gorenstein injective right R-module.

Given a class of R-modules \mathcal{F}, we will denote as usual by \mathcal{F}^\perp the class of all R-modules M such that $\text{Ext}^1(F, M) = 0$ for every $F \in \mathcal{F}$.

The left orthogonal class of \mathcal{F}, denoted $\perp \mathcal{F}$, is the class of all R-modules such that $\text{Ext}^1(N, F) = 0$ for every $F \in \mathcal{F}$.

We recall that a pair $(\mathcal{L}, \mathcal{C})$ is a cotorsion pair if $\mathcal{L} \perp = \mathcal{C}$ and $\perp \mathcal{C} = \mathcal{L}$.

A cotorsion pair $(\mathcal{L}, \mathcal{C})$ is complete if for every R-module M there exist exact sequences $0 \to C \to L \to M \to 0$ and $0 \to M \to C' \to L' \to 0$ with C, C' in \mathcal{C} and L, L' in \mathcal{L}.

Definition 4 ([11], Definition 1.2.10). A cotorsion pair $(\mathcal{L}, \mathcal{C})$ is called hereditary if one of the following equivalent statements holds:

1. \mathcal{L} is resolving, that is, \mathcal{L} is closed under taking kernels of epimorphisms.
2. \mathcal{C} is coresolving, that is, \mathcal{C} is closed under taking cokernels of monomorphisms.
3. $\text{Ext}^i(F, C) = 0$ for any $F \in \mathcal{F}$ and $C \in \mathcal{C}$ and $i \geq 1$.

Our main results in Section 3 are about the existence of covers and envelopes with respect to the class of Gorenstein injective modules. We recall the following definitions:

Definition 5 ([11], Definition 1.2.3). Let \mathcal{C} be a class of left R-modules. A homomorphism $\phi : M \to C$ is a \mathcal{C}-preenvelope of M if $C \in \mathcal{C}$ and if for any homomorphism $\phi' : M \to C'$ with $C' \in \mathcal{C}$, there exists $u \in \text{Hom}_R(C, C')$ such that $\phi' = u\phi$.

A \mathcal{C}-preenvelope $\phi : M \to C$ is a \mathcal{C}-envelope if any endomorphism $u \in \text{Hom}_R(C, C)$ such that $\phi = u\phi$ is an automorphism of C.

(Pre)covers and covers are defined dually.

In the case when \mathcal{C} is the class of Gorenstein injective modules, a \mathcal{C}-(pre)cover (preenvelope respectively) is called a Gorenstein injective (pre)cover (preenvelope respectively).
Duality pairs were introduced by Holm and Jørgensen in [14]. We recall their definition (the opposite ring is denoted R^{op}):

Definition 6 ([14], Definition 2.1). A duality pair over a ring R is a pair (M, C) where M is a class of R-modules and C is a class of R^{op}-modules, subject to the following conditions:

1. For an R-module M, one has $M \in M$ if and only if $M^+ \in C$.
2. C is closed under direct summands and finite direct sums.

A duality pair (M, C) is called (co)product closed if the class M is closed under (co)products in the category of all R-modules.

A duality pair (M, C) is called perfect if it is coproduct-closed, if M is closed under extensions, and if R belongs to M.

We also recall that a cotorsion pair (L, C) is perfect if C is an enveloping class and L is a covering class.

The following result is [14], Theorem 3.1:

Theorem. Let (M, C) be a duality pair. Then M is closed under pure submodules, pure quotients, and pure extensions. Furthermore, the following hold:

- (a) If (M, C) is product-closed then M is preenveloping.
- (b) If (M, C) is coproduct-closed then M is covering.
- (c) If (M, C) is perfect then (M, M^\perp) is a perfect cotorsion pair.

3. Gorenstein injective envelopes and covers

We recall the following results from [6]:

Lemma 1 ([6], Corollary 1). If R is left noetherian then $(\perp GI, GI)$ is a complete hereditary cotorsion pair.

Theorem 1 ([6], Proposition 2). Let R be a left noetherian ring. The class of Gorenstein injective left R-modules is enveloping if and only if the class $\perp GI$ is covering.

We prove that if the ring R is two sided noetherian and has the property that the character modules of Gorenstein injective left R-modules are Gorenstein flat right R-modules, then the class of Gorenstein injective left R-modules is enveloping. Since the class $\perp GI$ is closed under arbitrary direct sums, it suffices to prove that $\perp GI$ is the left half of a duality pair. Then by [14], Theorem 3.1 (b), the class $\perp GI$ is covering. By Theorem 1, GI is enveloping in this case.

We start with the following:

Lemma 2. Let R be a two sided noetherian ring such that for any (left) Gorenstein injective module M, its character module, M^+ is a (right) Gorenstein flat module. Then a left R-module K is in the class $\perp GI$ if and only if its character module K^+ is in GF^\perp.

Proof.

\Rightarrow Let $K \in \perp GI$. For any Gorenstein flat right R-module B we have $B^+ \in GI$ ([13], Theorem 3.6). It follows that $\text{Ext}^1(B, K^+) = 0$. Then $\text{Ext}^1(B, K^+) \cong \text{Ext}^1(K, B^+) = 0$. So $K^+ \in GF^\perp$.

\Leftarrow Assume that K is a left R-module such that $K^+ \in GF^\perp$. Since R is noetherian there exists an exact sequence $0 \to K \to G \to V \to 0$ with G Gorenstein injective and with $V \in \perp GI$ (by Lemma 1). This gives an exact sequence $0 \to V^+ \to G^+ \to K^+ \to 0$ with G^+ Gorenstein flat. Since $V \in \perp GI$ we have that $V^+ \in GF^\perp$. Since K^+ is also in GF^\perp it follows that $G^+ \in GF \cap GF^\perp$. Thus G^+ is flat and
therefore G is injective (by [8], Theorem 3.2.16). So we have an exact sequence $0 \to K \to G \to V \to 0$ with $G \in \text{Inf} \subseteq \perp GI$ and with $V \in \perp GI$. Since $(-GI, GI)$ is a hereditary cotorsion pair, it follows that $K \in \perp GI$.

Now we can prove:

Theorem 2. Let R be a two sided noetherian ring such that the character modules of Gorenstein injective left R-modules are Gorenstein flat right R-modules. Then $(-GI, GF\perp)$ is a duality pair. In particular the class $\perp GI$ is covering.

Proof. By Lemma 2 we have that $K \in \perp GI$ if and only if $K^+ \in GF\perp$.

Any right orthogonal class (in particular $GF\perp$) is closed under direct products, and so it is closed under finite direct sums. Also, any right orthogonal class (so $GF\perp$ in particular) is closed under direct summands. Thus $(-GI, GF\perp)$ is a duality pair. Since the class $\perp GI$ is closed under direct sums, it follows (by [14], Theorem 3.1) that $\perp GI$ is covering.

Theorem 3. Let R be a two sided noetherian ring such that the character modules of Gorenstein injective left R-modules are Gorenstein flat right R-modules. Then the class of Gorenstein injective modules is enveloping.

Proof. This follows from Theorem 1 and Theorem 2.

We prove that over the same kind of rings the class of Gorenstein injective modules is also covering.

Theorem 4. Let R be a two sided noetherian ring such that the character modules of Gorenstein injective modules are Gorenstein flat. Then (GI, GF) is a duality pair.

Proof. We prove first that $K \in GI$ if and only if $K^+ \in GF$. One implication is a hypothesis we made on the ring. Assume that $K^+ \in GF$. Since the ring R is left noetherian there exists an exact sequence $0 \to K \to G \to L \to 0$ with G Gorenstein injective and $L \in \perp GI$. Therefore we have an exact sequence $0 \to L^+ \to G^+ \to K^+ \to 0$ with G^+ Gorenstein flat, and $L^+ \in GF\perp$ (by Lemma 2). Then $\text{Ext}^1(K^+, L^+) = 0$, so $G^+ \simeq L^+ \oplus K^+$, and therefore L^+ is a Gorenstein flat right R-module. It follows that $L^+ \in GF \cap GF\perp$, so L^+ is a flat right R-module, and therefore L is injective (by [8], Theorem 3.2.16). The exact sequence $0 \to K \to G \to L \to 0$ with G Gorenstein injective and with L injective, gives that K has finite Gorenstein injective dimension. By [3] Lemma 2.18, there exists an exact sequence $0 \to B \to H \to K \to 0$ with B Gorenstein injective and with $id_RH = \text{Gid}_RK < \infty$. This gives an exact sequence $0 \to K^+ \to H^+ \to B^+ \to 0$. Both B^+ and K^+ are Gorenstein flat modules, so H^+ is also Gorenstein flat. Since id_RH is finite it follows that H^+ has finite flat dimension ([8], Theorem 3.2.19). But a Gorenstein flat module of finite flat dimension is flat ([8], Corollary 10.3.4). So H^+ is flat and therefore H is injective. Thus $\text{Gid}_RK = 0$.

We can prove now that (GI, GF) is a duality pair. The first condition from the definition holds by the above. It is known that the class of Gorenstein flat modules is closed under (finite) direct sums, and under direct summands ([4], Theorem 4.14).

In the proof of the result about the existence of the Gorenstein injective covers we will use the following well known result:

Lemma 3 ([10], Example 8.1). A direct sum of modules is a pure submodule of the direct product of the modules.
Theorem 5. Let R be a two sided noetherian ring such that the character modules of Gorenstein injective left R-modules are Gorenstein flat right R-modules. Then the class of Gorenstein injective modules is covering in R − Mod.

Proof. By Theorem 4, $(\mathcal{G}I, \mathcal{G}F)$ is a duality pair. Then by [14] Theorem 3.1, the class of Gorenstein injective modules is closed under pure submodules. Since $\mathcal{G}I$ is closed under direct products and every direct sum is a pure submodule of a direct product (Lemma 3), it follows that $\mathcal{G}I$ is closed under arbitrary direct sums. Another application of [14], Theorem 3.1 gives that $\mathcal{G}I$ is covering.

We note that we have:

Proposition 1. Let R be a two sided noetherian ring. The following are equivalent:
1. $(\mathcal{G}I, \mathcal{G}F)$ is a duality pair;
2. The character module of any Gorenstein injective left R-module is Gorenstein flat.

Proof.
1. \Rightarrow 2. follows from the definition of a duality pair.
2. \Rightarrow 1. follows from Theorem 4.

It is known that the class of two sided noetherian rings such that the character modules of Gorenstein injectives are Gorenstein flat includes the Gorenstein rings [8], as well as the commutative noetherian rings with dualizing complexes [14]. But these are not the only rings with this property. We proved [15] that every two sided noetherian ring R with a dualizing bimodule RV_R and such that R is left n-perfect for some positive integer n has the desired property.

We recall ([12]) that a ring R is said to be left n-perfect if every left R-module of finite flat dimension has projective dimension less than or equal to n. Left perfect rings, commutative noetherian rings of finite Krull dimension, the universal enveloping algebra $U(g)$ of a Lie algebra of dimension n, and n-Gorenstein rings are all examples of left n-perfect rings (by [12]).

Theorem 6 ([15], Theorem 3). Let R be a two sided noetherian ring such that R is left n-perfect for some integer n. Assume also that RV_R is a dualizing module for the pair (R,R). Then the character modules of Gorenstein injective left R-modules are Gorenstein flat right R-modules.

Then by Theorem 3, Theorem 5, and Theorem 6 we obtain:

Theorem 7. Let R be a two sided noetherian ring such that R is left n-perfect for some positive integer n. Assume also that RV_R is a dualizing module for the pair (R,R). Then the class of Gorenstein injective left R-modules is both enveloping and covering in R − Mod.

We also proved ([15]) that every two sided noetherian ring R with $i.d.\, _{R^op}R < \infty$ has the property that the character modules of left Gorenstein injectives are right Gorenstein flat modules.

Theorem 8 ([15], Theorem 2). Let R be a two sided noetherian ring such that $i.d.\, _{R^op}R \leq n$ for some positive integer n. Then the character modules of Gorenstein injective left R-modules are Gorenstein flat right R-modules.

Then by Theorem 3, Theorem 5 and Theorem 8 we obtain:

Theorem 9. Let R be a two sided noetherian ring such that $i.d.\, _{R^op}R < \infty$. Then the class of left Gorenstein injective R-modules is both enveloping and covering in R − Mod.
4. When is every strongly cotorsion module Gorenstein injective?

We recall first the following:

Definition 7 ([5], Definition 2.6). A module R^iM is called strongly cotorsion if $\text{Ext}^1(F,M) = 0$ for every module F of finite flat dimension.

It is known (see for example [18], Lemma 2.2) that M is a strongly cotorsion module if and only if $\text{Ext}^i(F,M) = 0$ for all $i \geq 1$, for any module F of finite flat dimension.

We will use the notation \mathcal{SC} for the class of strongly cotorsion modules, and \mathcal{F} for the class of modules of finite flat dimension.

Proposition 2. If R is a two sided noetherian and left n-perfect ring then every Gorenstein injective left R-module is strongly cotorsion.

Proof. Let M be a strongly Gorenstein injective left R-module. Then there is an exact sequence $0 \to M \to E \to M \to 0$ with $_RE$ an injective module. It follows that $\text{Ext}^i(\cdot, M) \cong \text{Ext}^1(\cdot, M)$ for all $i \geq 1$.

Let RX be a module of finite flat dimension. Since R is left n-perfect, the projective dimension of X is less than or equal to n. So $\text{Ext}^i(X,M) = 0$ for all $i > n$. Then by the above we have that $\text{Ext}^i(X,M) = 0$ for all $i \geq 1$. Thus $M \in \mathcal{SC}$.

If M' is a Gorenstein injective R-module then there exists a strongly Gorenstein injective module M such that $M \cong M' \oplus M''$ (by [1]). It follows that $\text{Ext}^1(X,M') = 0$ for any $X \in \mathcal{F}$. So M' is strongly cotorsion.

Remark 1. A similar argument shows that if R is two sided noetherian and right n-perfect then every Gorenstein injective right R-module is a strongly cotorsion right R-module.

Proposition 3. Let R be a two sided noetherian ring such that R is left n-perfect. If the class of strongly cotorsion left R-modules coincides with that of Gorenstein injective left R-modules then $\text{id}_{R^{op}}R \leq n$.

Proof. Since R is left noetherian, $(\perp \mathcal{GI}, \mathcal{GI})$ is a complete hereditary cotorsion pair. Since R is left n-perfect, we have that $\mathcal{F} = \{X|f.d.X \leq n\}$. Then \mathcal{F} is closed under direct sums and, by [18], Proposition 2.14, $(\mathcal{F}, \mathcal{SC})$ is also a cotorsion pair.

By our assumption, \mathcal{SC} is the class of Gorenstein injective left R-modules. It follows that $\perp \mathcal{SC} = \perp \mathcal{GI}$, that is, $\mathcal{F} = \perp \mathcal{GI}$. Since $\text{Inj} \subseteq \perp \mathcal{GI}$, it follows that every injective module has flat dimension less than or equal to n.

Since R is right noetherian we have that $\text{id}_{R^{op}}R = \text{sup}\{f.d.I|_RI \in \text{Inj}\}$ (by [16]). It follows that $\text{id}_{R^{op}}R \leq n$.

Remark 2. A similar argument to the one in Proposition 3 shows that if R is a two sided noetherian and right n-perfect ring such that the class of strongly cotorsion right R-modules coincides with that of Gorenstein injective right R-modules, then $\text{id}_{R}R \leq n$.

So we obtain:

Theorem 10. Let R be a two sided noetherian ring that is left and right n-perfect. The following statements are equivalent:

1. The class of strongly cotorsion left (right respectively) R-modules coincides with that of Gorenstein injective left (right respectively) R-modules.
2. R is an Iwanaga-Gorenstein ring.
Proof.
(1) ⇒ (2) By Proposition 3 and by Remark 2 above we have that \(i.d_{\text{Rop}}R \leq n \) and \(i.d.R \leq n \). So \(R \) is an Iwanaga-Gorenstein ring.

(2) ⇒ (1) Since \(R \) is an Iwanaga-Gorenstein ring, the class \(\perp GI \) consists of all modules of finite projective dimension ([9]). By [9] again, this is the class \(F \) of modules of finite flat dimension. Then \(GI = (\perp GI)^\perp = F^\perp = SC \) (both for left and for right Gorenstein injective, respectively strongly cotorsion modules).

In particular, any commutative noetherian ring of Krull dimension \(n < \infty \) is \(n\)-perfect (by [12] Theorem 3.2.6, and [2], Theorem 2.2). So using Theorem 10 we obtain the following result:

Theorem 11. Let \(R \) be a commutative noetherian ring of finite Krull dimension. The following are equivalent:
1) The class of Gorenstein injective modules coincides with that of strongly cotorsion modules.
2) \(R \) is a Gorenstein ring.

Acknowledgement
I thank the referee for her/his useful comments, in particular for pointing out the result in Theorem 10.

References

[1] Bennis, D., Mahdou, N. (2007). Strongly Gorenstein projective, injective, and flat modules. *J. Pure Appl. Algebra* 210:437–445.

[2] Bennis, D., Mahdou, N. (2009). On \(n\)-perfect rings and cotorsion dimension. *J. Algebra Appl.* 8:437–445.

[3] Christensen, L., Frankild, A., Holm, H. (2006). On Gorenstein projective, injective, and flat modules. A functorial description with applications. *J. Algebra* 302(1):231–279.

[4] Christensen, L. W., Foxby, H. B., Holm, H. (2011). Beyond totally reflexive modules and back. A survey on Gorenstein dimensions. In: Marco Fontana, M., Kabbaj, S.-E., Olberding, B., Swanson, I., eds. *Commutative Algebra: Noetherian and Non-Noetherian Perspectives*. New York: Springer-Verlag, pp. 101–143.

[5] Enochs, E. E., Huang, Z. (2012). Injective envelopes and (Gorenstein) flat covers. *Algebr. Represent. Theory* 15:1131–1145.

[6] Enochs, E. E., Iacob, A. (2014). Gorenstein injective covers and envelopes over noetherian rings. *Proc. Am. Math. Soc.* 143(1):5–12.

[7] Enochs, E. E., Jenda, O. M. G. (1995). Gorenstein injective and projective modules. *Math. Z.* (220):611–633.

[8] Enochs, E. E., Jenda, O. M. G. (2000). *Relative Homological Algebra*. De Gruyter Exposition in Mathematics. Berlin, Germany: Walter de Gruyter.

[9] Enochs, E. E., Jenda, O. M. G., López-Ramos, J. A. (2005). Dualizing modules and \(n\)-perfect rings. *Proc. Edinb. Math. Soc.* 48:79–90.

[10] Fuchs, L., Salce, L. (2001). *Modules Over Non-Noetherian Domains*. Mathematical Surveys and Monographs, Vol. 84. Providence, RI, USA: AMS.

[11] García Rozas, J. R. (1999). *Covers and Envelopes in the Category of Complexes of Modules*. Boca Raton, USA: CRC Press LLC.

[12] Gruson, L., Raynaud, M. (1971). Criteres de platitude et de projectivite. Techniques de platification d’un module. *Inv. Math.* 13:1–89.

[13] Holm, H. (2004). Gorenstein homological dimensions. *J. Pure Appl. Algebra* 189:167–193.

[14] Holm, H., Jorgensen, P. (2009). Cotorsion pairs induced by duality pairs. *J. Commut. Algebra* 1(4):621–633.

[15] Iacob, A. (2015). Gorenstein flat preenvelopes. *Osaka J. Math.* 52(4):895–903.

[16] Iwanaga, Y. (1980). On rings with finite self injective dimension II. *Tsukuba J. Math.* 4:107–113.

[17] Khashyarmanesh, K., Salarian, Sh. (2003). On the rings whose injective hulls are flat. *Proc. Am. Math. Soc.* 131(8):2239–2335.

[18] Yan, H. (2010). Strongly cotorsion (torsion-free) modules and cotorsion pairs. *Bull. Korean Math. Soc.* 47(5):1041–1052.