The Impact of Task Underspecification in Evaluating Deep Reinforcement Learning

NeurIPS 2022

Vindula Jayawardana, Catherine Tang, Sirui Li, Dajiang Suo, Cathy Wu
Emerging Case of Task Specific RL

Atari 2600

DM Control Suite

Autonomous Driving

Traffic Signal Control

Robotic Manipulation
Curse of Variety in Task Specific RL

Traffic Signal Control

4 way intersection
H: 1 lane
V: 1 lane
w/o turns

4 way intersection
H: 3 lanes
V: 3 lanes
w/ turns

4 way intersection
H: 1 lane
V: 4 lanes
w/ turns

3 way intersection
H: 1 lane
V: 1 lane
w/ turns
Curse of Variety in Task Specific RL

Traffic Signal Control

Task specific RL needs to perform well on variety of task configurations (a family of MDPs)
Point MDPs for Evaluations in Task Specific RL

Traffic signal control (NeurIPS 2021)
Ault et al., 2021

Chemotherapy designing (Statistics in medicine 2009)
Zhao et al., 2009

Chemical reaction optimization (ACS Central Science 2017)
Zhou et al., 2017

Eco-driving (ECC 2022)
Jayawardana et al., 2022

Bottleneck decongestion (ITSC 2018)
Vinitsky et al., 2018
Point MDPs for Evaluations in Task Specific RL

Traffic signal control
(NeurIPS 2021)

Chemotherapy designing
(Statistics in medicine 2009)

Chemical reaction optimization
(ACS Central Science 2017)

Ault et al., 2021

Zhao et al., 2009

Performance evaluations of task specific RL ignore the family of MDPs and only consider point MDPs

Bottleneck Decongestion
(ITSC 2018)

Jayawardana et al., 2022

Vinitsky et al., 2018
What could go wrong when Point MDPs are used for performance evaluations?
Case Study: Traffic Signal Control

- Evaluate DRL for traffic signal control using RESCO benchmark.
 - Four DRL algorithms: IDQN, IPPO, MPLight, MPLight*
 - Two traditional algorithms: Fine-tuned Fixed Time, Max Pressure

- Performance evaluated based on normalized average delay per vehicle
 - Score normalization based on untuned-fixed time controller

- 345 signalized intersections in Salt Lake City in Utah are binned to 164 unique signalized intersections (164 unique point MDPs)

- 164 performance scores per algorithm

James Ault and Guni Sharon. Reinforcement learning benchmarks for traffic signal control. In Thirty-fifth Conference on Neural Information Processing Systems (NeurIPS) Datasets and Benchmarks Track, 2021.
Case Study: Score Distribution

Reported performances are based on re-evaluations of the methods on Ingolstadt single intersection.

*Reported performances are based on re-evaluations of the methods on Ingolstadt single intersection.
*Reported performances are based on re-evaluations of the methods on Ingolstadt single intersection.
Case Study: Score Distribution

Reported performances are misleading and not reliable for downstream decision making.

*Reported performances are based on re-evaluations of the methods on Ingolstadt single intersection.
How to fix this issue and perform reliable evaluations?
Overall Performance Across an MDP Family

- Overall performance of a method R on task T given a point MDP family set U

$$E_{R}^{T} = \sum_{i=1}^{|U|} s_{R,i} \times p_{T,i}$$

- **Assumption:** Given a task T, $p_{T,i}$ is known.
Case Study: Re-Evaluation

The chart shows the normalized performance scores for different methods, with lower scores indicating better performance. The methods are ranked based on their overall performance, with the top method being the one with the lowest reported score.

Rank	Reported	Overall
1	Max Pressure	Fixed Time
2	IDQN	Max Pressure
3	MpLight	IDQN
4	IPPO	MPLight
5	Fixed Time	MPLight*
6	MPLight*	IPPO

*Reported performances are based on re-evaluations of the methods on Ingolstadt single intersection.

Results reported here should not be illustrated as evidence against using DRL for traffic signal control and should only be used as evidence of shortcomings in point MDP based evaluations. Further studies are encouraged to study the overall benefits of DRL for traffic signal control without the point MDP based assumptions.
Re-Evaluation of Popular Control Tasks

Reported performance of each task is measured by training and evaluating DRL methods on commonly used single point-MDP given in common benchmark suites.

Graphs showing normalized score for different methods and performance.
Challenges in MDP Family-based Evaluations
MDP Families for Benchmarking

- Create benchmark control tasks that depict MDP families.
- Publish datasets of MDP families of control tasks including point-MDP distributions.
- Incentivize publication of such datasets and control task at leading conferences.
Performance Profiles

Performance Profile of Traffic Signal Control

![Graph showing performance profiles of different methods including Point MDP probabilities, Cumulative probabilities, IDQN, MPLight, IPPO, MPLight*, Fixed Time, and Max Pressure.]
Performance Approximations

- Adopt performance approximations using clustering and random sampling under a computational budget.
- Standardize the evaluations by making the selected point MDPs public.

\(\text{M1: random sampling with replacements from the point MDP distribution} \)
\(\text{M2: random sampling without replacements} \)
\(\text{M3: clustering point MDPs using k-means and assigning probability mass of all point MDPs that belong to same cluster to its centroid} \)

M3: only 50% of point-MDPs are needed to predict the overall performance
Takeaways

● Point-MDP based performance evaluations can be misleading

● Use MDP families instead of point-MDP based evaluations

● Use performance profiles for better reporting

● Do performance approximations when the budget is limited

More details: https://vindulamj.github.io/rl-evaluations/