Targeted Loss of GHR Signaling in Mouse Skeletal Muscle Protects Against High-Fat Diet–Induced Metabolic Deterioration

Archana Vijayakumar,1 YingJie Wu,1 Hui Sun,1 Xiaosong Li,2 Zuha Jedy,1 Chengyu Liu,3 Gary J. Schwartz,2 Shoshana Yakar,1 and Derek LeRoith1

Growth hormone (GH) exerts diverse tissue-specific metabolic effects that are not revealed by global alteration of GH action. To study the direct metabolic effects of GH in the muscle, we specifically inactivated the growth hormone receptor (ghr) gene in postnatal mouse skeletal muscle using the Cre/loxP system (mGHRKO model). The metabolic state of the mGHRKO mice was characterized under lean and obese states. High-fat diet feeding in the mGHRKO mice was associated with reduced adiposity, improved insulin sensitivity, lower systemic inflammation, decreased muscle and hepatic triglyceride content, and greater energy expenditure compared with control mice. The obese mGHRKO mice also had an increased respiratory exchange ratio, suggesting increased carbohydrate utilization. GH-regulated suppressor of cytokine signaling-2 (socs2) expression was decreased in obese mGHRKO mice. Interestingly, muscles of both lean and obese mGHRKO mice demonstrated a higher interleukin-15 and lower myostatin expression relative to controls, indicating a possible mechanism whereby GHR signaling in muscle could affect liver and adipose tissue function. Thus, our study implicates skeletal muscle GHR signaling in mediating insulin resistance in obesity and, more importantly, reveals a novel role of muscle GHR signaling in facilitating cross-talk between muscle and other metabolic tissues. Diabetes 61:94–103, 2012

The metabolic actions of growth hormone (GH) are largely attributed to the stimulation of lipolysis, and the subsequent rise in free fatty acid (FFA) flux from the adipose tissue resulting in increased FFA uptake and use in the skeletal muscle and liver (reviewed in 1,2). However, an inherent limitation to studies using global alteration of GH action is the accompanying change in body composition as well as changes in insulin-like growth factor (IGF)-1 and insulin action, complicating our ability to dissect the tissue-specific metabolic effects of GH.

An important aspect of the metabolic effects of GH is its ability to antagonize insulin action in the muscle, likely via the direct stimulation of negative regulators of insulin signaling such as suppressor of cytokine signaling (SOCS) proteins and p85α regulatory subunit of phosphatidylinositol-3-kinase (PI3K). SOCS proteins facilitate insulin resistance by several mechanisms including mediation of the proteasomal degradation of insulin receptor substrate (IRS) proteins that are involved in insulin/IGF-1 signal transduction (3). Excess GH levels have been associated with increased skeletal muscle muscle expression of p85α, which can downregulate insulin signaling by preventing the activation of the p110 catalytic subunit of PI3K (4–6). On the other hand, GH-mediated increase in FFA flux into the muscle and its subsequent reesterification to triglycerides (TG) yield intermediates such as diacylglycerols and ceramides that can attenuate insulin signaling by activation of protein kinase C (PKC) isoforms (7).

To address the muscle-specific effects of the growth hormone receptor (GHR) on substrate metabolism and insulin action, we generated the mGHRKO mouse model with inactivation of ghr specifically in postnatal skeletal muscle using the Cre/loxP system. Our study implicates skeletal muscle GHR signaling in influencing substrate preference and maintenance of whole-body energy homeostasis, particularly in the obese state.

RESEARCH DESIGN AND METHODS

The generation of the GHRfl/fl mice has been described elsewhere (8). The GHRfl/fl mice were crossed with muscle creatine kinase kinase (MCK-Cre) mice [cat. no. 006475 B6.FVB (129S4)-Tg(Ckmm-Cre)5Khn/J; The Jackson Laboratory, Bar Harbor, ME] to derive the mGHRKO mice (9). The mice were housed in the pathogen-free Association for the Assessment and Accreditation of Laboratory Animal Care International–accredited animal facilities of The Mount Sinai School of Medicine and were kept on a 12-h light/dark cycle. All experimental procedures were in accordance with the Institutional Animal Care and Use Committee of the Mount Sinai School of Medicine. Male mice on the C57BL/6 background were used for all experiments. The mice had ad libitum access to water and either a standard laboratory diet (LabDiet, Brentwood, MO) or a high-fat (60% fat) diet (HFD) (BioServ, New Brunswick, NJ). In all experiments, the mGHRKO (GHRfl/fl; cre) mice were compared with control mice (GHR+/+/c).

Semiquantitative PCR. Genomic DNA from various tissues of 7- to 8-week-old mice was extracted using the conventional phenol-chloroform method. DNA concentrations were determined using NanoDrop ND-1000 Spectrophotometer (Thermo Scientific, Wilmington, DE), and 500 ng DNA was subjected to semiquantitative PCR using the primer set 5′-CATTCTTTTCTGGGATGCTAT-3′ and 5′-CGGACATTGATCTGTTGATT-3′, which detects the floxed, wild-type, and null (recombined) forms of the GHR.

In vivo stimulation. Mice were acutely stimulated with recombinant human growth hormone (rhGH) (Genentech, San Francisco, CA), insulin (Humulin R; Eli Lilly, Indianapolis, IN), IGF-1 (Genetech, San Francisco, CA), or 1× PBS, anesthetized with 2.5% Avertin (2,2,2-tribromoethanol dissolved in tert-amyl alcohol; Sigma). The tissues were extracted, snap-frozen in liquid nitrogen, and subjected to Western blot analysis.

From the 1Division of Endocrinology, Diabetes, and Bone Diseases, the Department of Medicine, Mount Sinai School of Medicine, New York, New York; the 2Departments of Medicine and Neuroscience, Albert Einstein College of Medicine, Bronx, New York; and the 3Transgenic Core Facility, University College of Dentistry, New York, New York; the 4Departments of Medicine and Neuroscience, Albert Einstein College of Medicine, New York, New York; and the 5Transgenic Core Facility, Bar Harbor, ME to derive the mGHRKO mice (9). The mice were housed in the pathogen-free Association for the Assessment and Accreditation of Laboratory Animal Care International–accredited animal facilities of The Mount Sinai School of Medicine and were kept on a 12-h light/dark cycle. All experimental procedures were in accordance with the Institutional Animal Care and Use Committee of the Mount Sinai School of Medicine. Male mice on the C57BL/6 background were used for all experiments. The mice had ad libitum access to water and either a standard laboratory diet (LabDiet, Brentwood, MO) or a high-fat (60% fat) diet (HFD) (BioServ, New Brunswick, NJ). In all experiments, the mGHRKO (GHRfl/fl; cre) mice were compared with control mice (GHR+/+/c).
Growth parameters and circulating factors. Body composition analysis was performed using the EchoMRI 3-in-1 NMR system (Echo Medical Systems, Houston, TX). Body length was measured as nose-to-anus length at the time of sacrifice. Blood glucose level was measured from the tail using an automated glucometer (Elite; Bayer, Mishawaka, IN). Serum or plasma collected from the tail vein or retro-orbital sinus was used for measurement of circulating insulin (Linco, St. Charles, MO), IGF-1 (Alpco, Salem, NH), GH (Millipore, Billerica, MA), FFA (Roche Applied Science, Indianapolis, IN), TG (Pointe Scientific, Canton, MI), interleukin (IL)-6, and adiponectin (R&D Systems, Minneapolis, MN) per the manufacturers’ instructions.

Food intake, glucose and insulin tolerance tests, and hyperinsulinemic-euglycemic clamp. Food intake was measured weekly as previously published (10). Glucose and insulin tolerance tests were performed in unrestrained mice as previously described (10). Hyperinsulinemic-euglycemic clamp tests were performed in unrestrained mice fed HFD for 14–20 weeks as previously described (11).

Histology and immunofluorescence. Liver and epididymal fat pad were fixed in 10% PBS-buffered formalin; paraffin sections were processed and subjected to either hematoxylin–eosin (H&E) staining or immunofluorescence as previously described (12). For the immunofluorescence, D4/80 primary antibody (Abcam, Cambridge, MA) with Alexa Fluor goat anti-rat secondary antibody (Molecular Probes, Eugene, OR) was used. Pictures were obtained using the Olympus AX70 camera (Olympus, Center Valley, PA) at 10× objective magnification. ImageJ software (NIH, Bethesda, MD) was used to quantify the cross-sectional area of >150–250 adipocytes and fraction of the D4/80–positive area.

Western blot. Protein extraction from the liver, quadriceps, and epidydimal fat pad and Western blot analyses were performed as previously described (10). The primary antibodies used were phosphorylated signal transducer and activator of transcription (Stat) Tyr705, phosphorylated IGF-1 receptor β Tyr1135/1136/1140, insulin receptor β (Ser1156/1157), phosphorylated Akt Ser473. Akt, phosphorylated p42/44 MAP kinase (Thr202/Tyr204), and phosphorylated extracellular signal-regulated kinase (Erk) were detected. Phosphorylated AMP-activated protein kinase (AMPKα Thr172, and AMPKβ from Cell Signaling Technology (Danvers, MA); STAT5, IR, IGF-Ir, CD63, 65a, and β-tubulin from Santa Cruz Biotechnology (Santa Cruz, CA); and lipoprotein lipase (LPL) and SOCS-3 from Abcam (Cambridge, MA). An anti-rabbit secondary antibody from Li-cor Biosciences (Lincoln, NE) was used. The blots were quantified using the Odyssey Infrared Imaging System Application software (version 3.0, Li-cor Biosciences).

Gene expression analyses. Total RNA from quadriceps was extracted using TRIzol reagent and reverse transcribed according to the manufacturer’s instructions (Invitrogen, Carlsbad, CA). Real-time-PCR was performed using the Quantitect SYBR green PCR kit (QIAGEN, Valencia, CA) in ABI PRISM 7900HT sequence detection systems (Applied Biosystems, Foster City, CA). The primers are listed in Supplementary Table 1; for each gene, a single sample was assayed three times and gene expression was normalized to gapdh. Tissue TG and indirect calorimetry. Total TG was extracted from the liver and gastrocnemius using the chloroform-methanol method (13). TG content was quantified using TG reagent (Pointe Scientific, Canton, MI). Metabolic cage studies were performed in unrestrained mice fed an HFD for 12–14 weeks as previously described (11).

Statistical analysis. All results are expressed as means ± SEM. One-way (for comparison of two groups) or two-way ANOVA (for comparison of three or more groups) with Holm Sidak post hoc test was performed using SigmaStat for Windows (version 3.5, Systat Software, Inc., Chicago, IL).

RESULTS

mGHRKO mice harbor skeletal muscle–specific ghr gene inactivation. Skeletal muscle–specific ghr gene recombination in the mGHRKO mice was validated at the level of genomic DNA and mRNA expression (Fig. 1A and B). Acute rhGH (125 μg/kg i.p. for 15 min) stimulation elicited robust STAT5 phosphorylation in the muscle of control mice but not mGHRKO mice, while the livers of both control and mGHRKO mice displayed a similar response (Fig. 1C). Interestingly, loss of ghr in postnatal skeletal muscle did not affect muscle igf-1 expression in the mGHRKO mice, and mice did not respond differently to an acute IGF-1 stimulation (1 mg/kg i.p. for 5 min) (Fig. 1D and Supplementary Fig. 1E). Moreover, circulating IGF-1 and GH levels and body length were similar between control and mGHRKO mice at 16 weeks of age (Table 1).

mGHRKO mice are protected against HFD-induced insulin resistance. The lean mGHRKO mice displayed reduced body weight in adulthood, starting at 7 weeks of age (Supplementary Fig. 1A). HFD feeding starting at 5–7 weeks of age increased body weights of both the control and mGHRKO mice, and recombination of ghr was assessed by semiquantitative PCR. The recombinant null ghr was expressed only in the various muscle groups and heart of the mGHRKO mice. n = 3–4/group. (Representative images are shown.) Quad, quadriceps; EDL, extensor digitorum longus; Sm. Intes, small intestine. B: Real-time PCR analysis of ghr and igf-1 expression in quadriceps of 16-week-old control and mGHRKO mice. Gene expression was normalized to gapdh (n = 3–4/group). C: Acute GH stimulation (125 μg/kg i.p. for 15 min) of 7- to 8-week-old mice and probing for STAT5 phosphorylation in the liver and quadriceps by immunoblot analysis. Phosphorylated levels of STAT5 (pSTAT5) were normalized to total STAT5 levels (n = 3–4/group). *P ≤ 0.05, one-way ANOVA.

FIG. 1. mGHRKO mice have skeletal muscle–specific ablation of the ghr gene. A: Genomic DNA was isolated from the indicated tissues of 7- to 8-week-old control and mGHRKO mice, and recombination of ghr was assessed by semiquantitative PCR. The recombinant null ghr is expressed only in the various muscle groups and heart of the mGHRKO mice. n = 3–4/group. (Representative images are shown.) Quad, quadriceps; EDL, extensor digitorum longus; Sm. Intes, small intestine. B: Real-time PCR analysis of ghr and igf-1 expression in quadriceps of 16-week-old control and mGHRKO mice. Gene expression was normalized to gapdh (n = 3–4/group). C: Acute GH stimulation (125 μg/kg i.p. for 15 min) of 7- to 8-week-old mice and probing for STAT5 phosphorylation in the liver and quadriceps by immunoblot analysis. Phosphorylated levels of STAT5 (pSTAT5) were normalized to total STAT5 levels (n = 3–4/group). *P ≤ 0.05, one-way ANOVA.

mGHRKO mice are protected against HFD-induced insulin resistance. The lean mGHRKO mice displayed reduced body weight in adulthood, starting at 7 weeks of age (Supplementary Fig. 1A). HFD feeding starting at 5–7 weeks of age increased body weights of both the control and mGHRKO mice relative to the lean mice; however, the obese mGHRKO mice were significantly lighter than the obese control mice (Fig. 2A). Absolute lean mass was significantly decreased in both lean and obese mGHRKO mice compared with the control mice (Fig. 2B). However, while the lean mGHRKO mice had lower absolute fat mass than the lean control mice (Supplementary Fig. 1B), relative body adiposity was significantly reduced only in the obese mGHRKO mice compared with the obese control mice (Fig. 2C). The lower body weight and fat mass in the obese mGHRKO mice could not be explained by lower food intake, which was similar in both groups (Supplementary Fig. 2A). Moreover, wet tissue weights of the gonadal and subcutaneous fat pads were also significantly decreased in the lean and obese mGHRKO mice compared with their respective controls (Table 1). The obese mGHRKO mice demonstrated lower circulating
TG levels compared with the obese controls, and while the lean mGHRKO mice had reduced circulating FFA levels compared with controls, no difference was observed in the obese mice (Table 1). Like the lean mice, the obese control, but not obese mGHRKO, mice displayed robust muscle STAT5 phosphorylation in response to acute rhGH stimulation (125 μg/kg i.v. for 10 min), while the hepatic response was similar between the two groups (Supplementary Fig. 2B).

We next sought to determine whether the reduced body weight and fat mass in the lean and obese mGHRKO mice translated into better metabolic outcomes. Despite significantly lower fed-state blood glucose levels (Table 1), the lean mGHRKO mice did differ from the lean controls in their serum insulin levels or response to a glucose tolerance test, an insulin tolerance test, or acute insulin stimulation (1 unit/kg i.p. for 5 min), while the hepatic response was similar between the two groups (Supplementary Fig. 2B).

Table 1

Characterization of lean and obese control and mGHRKO mice

	Lean	mGHRKO	Obese	mGHRKO
Body length, n = 4–10 (cm)	9.91 ± 0.04	10.08 ± 0.08	10.25 ± 0.16	10.02 ± 0.16
GH, n = 6–7 (ng/mL)	11.84 ± 8.38	9.24 ± 5.11	n.d.	n.d.
IGF-1, n = 7–10 (ng/mL)	316.29 ± 6.27	390.50 ± 8.90	n.d.	n.d.
Fed state blood glucose, n = 18–33 (mg/dL)	150.04 ± 4.50	129.73 ± 3.36*	163.05 ± 6.22	158.78 ± 5.76
Fed state FFA, n = 9–15 (nmol/μL)	0.40 ± 0.03	0.30 ± 0.08*	0.32 ± 0.02	0.39 ± 0.04
Gonadal fat pad weight, n = 14–27 (g)	0.596 ± 0.04	0.446 ± 0.03*	2.93 ± 0.14	2.34 ± 0.08*
Subcutaneous fat pad weight, n = 7–27 (g)	0.319 ± 0.02	0.229 ± 0.02*	1.95 ± 0.22	1.21 ± 0.07*
IL-6, n = 4–29 (pg/mL)	6.25 ± 2.33	13.57 ± 4.07	19.80 ± 4.13	9.91 ± 1.56*
Adiponectin, n = 4–41 (ng/mL)	2.87 ± 0.32	3.83 ± 0.08*	4.59 ± 0.21	4.73 ± 0.17

Data are means ± SEM. n.d., not determined. *P ≤ 0.05 control vs. mGHRKO, one-way ANOVA.

mGHRKO mice displayed significantly higher serum adiponectin levels compared with the lean control mice; however, there was no difference in adiponectin levels in the obese mice (Table 1). Lean mGHRKO mice had similar liver and muscle TG content compared to lean controls. However, while HFD feeding increased tissue TG content in both groups, the obese mGHRKO mice had significantly less liver and muscle TG content than did the obese controls (Fig. 4C and E). In concordance with this, the obese control but not obese mGHRKO mice developed marked hepatic steatosis (Fig. 4D).

Obese mGHRKO mice demonstrate improved metabolic efficiency. The reduced body adiposity in the obese mGHRKO mice was associated with improved insulin sensitivity, which may result from increased metabolic efficiency (analyzed by indirect calorimetry). As hypothesized, the obese mGHRKO mice showed increased light- and dark-phase oxygen consumption (VO₂) (Fig. 5A) and CO₂ production (VCO₂) (Fig. 5B), resulting in a higher respiratory exchange ratio (Fig. 5C) suggestive of greater carbohydrate utilization. The obese mGHRKO mice also demonstrated greater energy expenditure in both the light and the dark phases (Fig. 5D). The mGHRKO mice had increased locomotor activity, which may have further contributed to their increased energy expenditure (data not shown).

Skeletal muscle lipid metabolism is improved in obese mGHRKO mice relative to obese controls. GH has known roles in lipid uptake and metabolism, and the obese mGHRKO mice also displayed lower muscle TG content. We subsequently found a reduction in the expression of genes involved in de novo lipogenesis and TG reesterification such as fatty acid synthase (fasn), sterol regulatory binding protein-1 (srebp-1), and diglyceride acyltransferase-1 (dgat1) in the obese mGHRKO muscles relative to controls (Fig. 6A). There was no difference in the expression of β-oxidation markers such as carnitine palmitoyltransferase-1α (cpt1α) and peroxisome proliferator–activated receptor γ coactivator-1-α (pgc1α) (Fig. 6A). Additionally, protein content of LPL and the fatty acid transporter CD36, which are involved in fatty acid uptake, did not differ between the obese control and mGHRKO mice (Supplementary Fig. 2C).

Altered expression of muscle markers in mGHRKO mice that could contribute to their insulin sensitivity. SOCS proteins are negative regulators of insulin signaling, and we found a reduction in the mRNA expression of socs2 but not socs1 in the obese mGHRKO mice (Fig. 6B). There
Obese mGHRKO mice have reduced adiposity and improved insulin sensitivity. Control and mGHRKO mice were placed on an HFD (60% of calories from fat) starting at 5–7 weeks of age and were compared with littermates fed a standard laboratory diet. A: Body weight. B: Lean body mass. C: Relative body adiposity. D: Circulating insulin levels of lean and obese control and mGHRKO mice were measured at indicated times (n = 9–18/group). Glucose tolerance (1 g/kg) (E) and insulin tolerance (0.5 units/kg) (F) tests in mice fed an HFD for 22 weeks (n = 10/group). All values are represented as means ± SEM. *P ≤ 0.05 for obese control vs. obese mGHRKO, †P ≤ 0.05 for lean control vs. lean mGHRKO, ‡P ≤ 0.05 for lean control vs. obese control, §P ≤ 0.05 for lean mGHRKO vs. obese mGHRKO; one- and two-way ANOVA.
FIG. 3. Improved insulin sensitivity in obese mGHRKO mice as assessed by hyperinsulinemic-euglycemic clamps. Mice were placed on an HFD (60% of calories from fat) starting at 5–7 weeks of age and were subjected to hyperinsulinemic-euglycemic clamps after 12–14 weeks of HFD feeding. A: GIR. B: HGP at basal and insulin-stimulated states (left panel) and extent of insulin-mediated suppression of HGP (right panel). C: Whole-body Rd. D: Skeletal muscle Rd. E: Adipose tissue Rd (fat Rd) at the end of the clamp period was measured (n = 5/group for all clamp studies). F and G: Immunoblot analysis of white adipose tissue (F) and skeletal muscle (G) response to an acute insulin (1 unit/kg i.p. for 5 min) stimulation of mice fed an HFD as evaluated by phosphorylation of insulin receptor (pIR), Akt (pAkt), and Erk (pErk), which are normalized to total protein levels (n = 3–4 /group). The blots were quantified and represented as the extent of stimulation with respect to PBS-treated levels for each group. All values are represented as means ± SEM. *P ≤ 0.05, one-way ANOVA.
FIG. 4. mGHRKO mice are protected from complications of HFD-induced insulin resistance and obesity. Mice were placed on an HFD (60% of calories from fat) starting at 5–7 weeks of age for a period of 14 weeks and, where indicated, were compared with lean mice.

A: Adipocyte area as evaluated by H-E staining (right panel) and the area of 150–200 adipocytes were quantified using the NIH ImageJ software (left panel) (n = 7/group). (Representative images are shown.)

B: Immunofluorescent staining for F4/80+ adipocytes in epidydimal adipose tissue; the fraction of F4/80+ area was quantified using the NIH ImageJ software (n = 7/group). (Representative images are shown.)

C: Liver TG content (n = 6–11/group).

D: Hepatic steatosis as evaluated by H-E staining (n = 6–11/group). (Representative images are shown.)

E: Muscle TG content determined in the gastrocnemius (n = 6–11/group). In all of the images, the scale bar represents 200 μm. All values are represented as means ± SEM. *P ≤ 0.05 for obese control vs. obese mGHRKO, †P ≤ 0.05 for lean control vs. lean mGHRKO, ‡P ≤ 0.05 for lean control vs. obese control, §P ≤ 0.05 for lean mGHRKO vs. obese mGHRKO; one- and two-way ANOVA. (A high-quality color representation of this figure is available in the online issue.)
was also no difference in protein content of SOCS3 in the obese control and mGHRKO mice (Supplementary Fig. 2C).

Additionally, the expression of myostatin (mstn) and il-15 was reduced and increased, respectively, in the skeletal muscles of the mGHRKO mice (Fig. 6B). There was no difference in AMPK phosphorylation between the lean and obese mice of both groups (data not shown).

DISCUSSION

Herein, we report that loss of skeletal muscle GHR signaling improves insulin sensitivity in the context of diet-induced obesity. While HFD feeding worsened the metabolic state of both control and mGHRKO mice compared with their lean counterparts, the obese mGHRKO mice demonstrated significantly lower body weight, body adiposity, and insulin resistance relative to the obese controls. Hyperinsulinemic-euglycemic clamp studies indicated increased GIR and muscle and adipose tissue \(R_d \) in obese mGHRKO mice compared with obese controls. These data were substantiated with greater insulin-stimulated Akt phosphorylation in the white adipose tissue and muscle of the obese mGHRKO mice. Further, indirect calorimetry studies revealed greater energy expenditure, which was associated with greater carbohydrate utilization in the obese mGHRKO mice.

The improved insulin sensitivity of the obese mGHRKO mice could have arisen as a consequence of direct GH...
action in the skeletal muscle or indirectly as a result of improvements in other tissues such as the liver and adipose tissue. As we discuss below, our data with the mGHRKO mice provide a rationale for both possibilities.

The obese mGHRKO mice demonstrate increased insulin-stimulated skeletal muscle glucose uptake and a shift in substrate utilization toward increased carbohydrate metabolism. Moreover, the obese mGHRKO mice had lower muscle TG content, which could reflect either reduced lipid uptake into the skeletal muscle or increased lipid oxidation. GH has been shown to reduce LPL activity in the adipose tissue and, thus, suppress adipose tissue lipid uptake, but its effect on muscle LPL activity is not well characterized (14–17). Accordingly, we did not find a difference in LPL protein content in the obese mGHRKO mice compared with the obese controls. The protein content of the fatty acid transporter CD36, which is also regulated by subcellular localization (18,19), was also not different between the obese control and mGHRKO mice. Furthermore, we found reduced expression of genes involved in de novo lipogenesis and TG reesterification in the obese mGHRKO muscles, while expression of genes involved in β-oxidation was not different. Nevertheless, protein content or mRNA expression does not reflect substrate flux, which could be different between the obese mGHRKO and control muscles. Muscle TG content is inversely correlated with insulin sensitivity because of accumulation of intermediates such as diacylglycerols and ceramides that can inhibit insulin signaling by activation of PKC isoforms (7). Thus, lower muscle TG content in the obese mGHRKO mice could potentially account for enhanced muscle insulin sensitivity in the face of HFD feeding.

GH can interfere with insulin signaling by inducing the expression of SOCS proteins, especially SOCS2 and SOCS3 (3,20,21). Accordingly, muscles of obese mGHRKO mice had decreased socs2 but not socs1 mRNA expression. Thus, lower socs2 expression could, to some degree, explain the increased insulin action in the mGHRKO muscles. The p85α regulatory subunit of PI3K is regulated by GH and is overexpressed in the insulin-resistant muscle, where it is hypothesized to bind to and sequester IRS-1, thereby preventing the activation of the p110 catalytic subunit of PI3K. While total protein content of p85α did not differ between the obese control and mGHRKO mice, we could not determine whether the p85α levels that we detected represent its monomeric or homo/hetero-dimeric forms in the obese control versus mGHRKO muscles. A recent study by Mavalli et al. (22) reported that knockout of the GHR in skeletal muscle using the myocyte-specific enhancer factor 2C promoter resulted in reduced body weight and body adiposity (primarily due to a reduction in lean mass) and worsened glucose tolerance (28). However, similar to the above-mentioned study, these mice were on a mixed genetic background and the Myf5 promoter was also expressed prenatally at 8 days postconception (29). Moreover, while GH is one of the major activators of STAT5, other factors, including insulin, can also induce this transcription factor (30,31); furthermore, GH does not signal exclusively through STAT5 (32).

An interesting point of comparison between our observations and the two aforementioned studies is muscle igf-1 expression in the knockout mice. While we did not observe a difference in igf-1 expression in adult mGHRKO mice, both of the other studies reported a significant reduction in muscle igf-1 expression. Moreover, the muscle-stat5 a/b knockout mice also demonstrated a 15% reduction in circulating IGF-1 levels. This suggests that muscle igf-1 expression is regulated by GH prenatally but not postnatally. Indeed, studies performed in both in vitro and in vivo settings have reported GH-independent changes in expression of the different IGF-1 isoforms under various experimental conditions (33–36).

Another significant difference between the findings of the study by Mavalli et al. and those in the mGHRKO mice is that while the former reported increased body adiposity, we observed the opposite in the mGHRKO mice. Thus, it is very possible that the difference in adiposity may be responsible for the difference in insulin sensitivity between the two models. Moreover, the obese mGHRKO mice also demonstrated increased adipose tissue and hepatic insulin sensitivity in the hyperinsulinemic-euglycemic clamp studies, as well as reduced adipose tissue macrophage infiltration, liver TG content, and circulating TG levels. The obese mGHRKO mice had significant reductions in circulating IL-6 levels, an adipokine associated with obesity-induced systemic inflammation insulin resistance (37). Circulating adiponectin levels, which positively correlate with insulin sensitivity (37) and may influence muscle metabolism by promoting the
secreted myokines that affect adipose tissue and liver metabolism. Indeed, we found a reduction in the expression of mstn in the mGHRKO mice. Whole-body and skeletal muscle–specific myostatin knockout mice demonstrated improved insulin sensitivity and protection from HFD-induced obesity and insulin resistance (39–41). The improved insulin sensitivity in the myostatin knockout mice was attributed to increased AMPK phosphorylation and energy expenditure (40,42). However, while the obese mGHRKO mice displayed increased energy expenditure we could not detect an increase in AMPK phosphorylation in the lean or obese mGHRKO mice. Further, Oldham et al. (43) reported that GH may regulate myostatin mRNA and protein expression via STAT5-dependent and -independent mechanisms. We also observed an increase in IL-15 expression in the lean and obese mGHRKO mice. Unlike myostatin, IL-15 positively affects metabolism by modulating substrate metabolism in the liver, white adipose tissue, and brown adipose tissue (44). While we had technical difficulties in validating our mRNA expression levels at the protein level, these preliminary findings nevertheless provide exciting new areas for future research.

Obesity is often described as a GH-suppressed state. Given this, it is paradoxical that we observed strong metabolic improvements in the obese mGHRKO mice. Mean peak GH levels, GH pulse amplitude, and the rate of GH secretion (but not the frequency of GH pulses) have been shown to be reduced in obese individuals (45,46). Further, obese, insulin-resistant mice are responsive to an acute GH stimulation. Likewise, obese women treated with GH respond in a similar manner to nonobese women in terms of fat loss and the suppression of adipose tissue LPL activity (18). Thus, obesity is associated with reduced but not absent GH secretion, and the metabolic action of GH may still persist in this state.

In conclusion, through use of mGHRKO mice we describe roles for muscle GHR signaling in mediating whole-body insulin resistance in obesity. This may occur via alterations in substrate utilization and energy expenditure. An interesting implication of our study is the effect that loss of GHR signaling in the muscle has on other metabolic tissues, such as the adipose tissue and liver, which bears further investigation.

ACKNOWLEDGMENTS

X.L. and G.J.S. are supported by the NIH DK-20541 grant from the National Institutes of Health.

No potential conflicts of interest relevant to this article were reported.

A.V. designed and performed the experiments and wrote the manuscript. Y.W. designed and performed the experiments and reviewed and edited the manuscript. H.S., X.Z., and C.L. performed the experiments. G.J.S. and S.Y. designed the experiments, reviewed and edited the manuscript, and contributed to discussion. D.L. designed the experiments, reviewed and edited the manuscript, contributed to discussion, and is the guarantor.

The authors thank Caroline Kornhauser, Yosef Chodakiewitz, Darren Gorman, Joshua Vazhupilly, Dr. Emily Gallagher, and Dr. Rosalyn Ferguson from the Mount Sinai School of Medicine for their assistance with the experiments and review of the manuscript.

Parts of this study were presented in abstract form at the 93rd Annual Meeting of The Endocrine Society, Boston, MA, 4–7 June 2011, and the 5th International Congress of the GRS and IGF Society, New York, NY, 3–7 October 2010.

REFERENCES

1. Møller N, Jørgensen JO. Effects of growth hormone on glucose, lipid, and protein metabolism in human subjects. Endocr Rev 2009;30:152–177
2. Vijayakumar A, Yakar S, LeRoith D. The intricate role of growth hormone in metabolism. Front Endocrin 2011;2:32
3. Howard JK, Flier JS. Attenuation of leptin and insulin signaling by SOCS proteins. Trends Endocrinol Metab 2006;17:365–371
4. Mauvais-Jarvis F, Ueki K, Fruman DA, et al. Reduced expression of the murine pSAlpha subunit of phosphoinositide 3-kinase improves insulin signaling and ameliorates diabetes. J Clin Invest 2002;109:141–149
5. Ueki K, Fruman DA, Brachmann SM, Tseng YH, Cantley LC, Kahn CR. Molecular balance between the regulatory and catalytic subunits of phosphoinositide 3-kinase regulates cell survival and signaling. Mol Cell 2002;22:965–977
6. Barbou LA, Mizunoor Rahman S, Gurevich I, et al. Increased P5Alpha is a potent negative regulator of skeletal muscle insulin signaling and induces in vivo insulin resistance associated with growth hormone excess. J Biol Chem 2005;280:37489–37494
7. Samuel VT, Petersen KF, Shulman GI. Lipid-induced insulin resistance: unravelling the mechanism. Lancet 2010;375:2267–2277
8. Wu Y, Liu C, Sun H, Vijayakumar A, Giglou PR, Qiao B, Oppenheimer J, Yakar S, LeRoith D. Growth hormone receptor regulates β cell hyperplasia and glucose-stimulated insulin secretion in obese mice. J Clin Invest 2011;121:2422–2426
9. Bruning JC, Michael MD, Wimnn JL, et al. A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol Cell 1998;2:559–564
10. Fierz Y, Novosyadlyy R, Vijayakumar A, Yakar S, LeRoith D. Insulin-sensitizing therapy attenuates type 2 diabetes-mediated mammary tumor progression. Diabetes 2010;59:686–693
11. Li X, Wu X, Camacho R, Schwartz GJ, LeRoith D. Intracerebroventricular leptin infusion improves glucose homeostasis in lean type 2 diabetic MKR mice via hepatic vagal and non-vagal mechanisms. PLoS ONE 2011;6:e17058
12. Cannata D, Lann D, Wu Y, et al. Elevated circulating IGF-1 promotes mammary gland development and proliferation. Endocrinology 2010;151:5751–5761
13. Kim H, Pennisi PA, Gavrillova O, et al. Effect of adipocyte beta3-adrenergic receptor activation on the type 2 diabetic MKR mice. Am J Physiol Endocrinol Metab 2006;290:E1227–E1236
14. Khalifah Y, Sassolas G, Borson-Chaot F, Vega N, Vidal H. Expression of insulin target genes in skeletal muscle and adipose tissue in adult patients with growth hormone deficiency: effect of one year recombinant human growth hormone therapy. J Endocrinol 2001;171:285–292
15. Richelsen B. Effect of growth hormone on adipose tissue and skeletal muscle lipoprotein lipase activity in humans. J Endocrinol Invest 1999;22 (Suppl):10–15
16. Johannsen T, Richelsen B, Hansen BS, Din N, Malmoën K. Growth hormone-mediated breakdown of body fat: effects of growth hormone lipases in adipose tissue and skeletal muscle of old rats fed different diets. Horm Metab Res 2003;35:243–250
17. Richelsen B, Pedersen SB, Berglund JM, Møller-Pedersen T, Jørgensen J, Jørgensen JO. Growth hormone treatment of obese women for 5 wk: effect on body composition and adipose tissue LPL activity. Am J Physiol 1994; 266:E211–E216
18. Schenk S, Horowitz JF. Coinmunoprecipitation of FAT/CD36 and CPT I in skeletal muscle increases proportionally with fat oxidation after endurance exercise training. Am J Physiol Endocrinol Metab 2006;291:E254–E260
19. Wang Y, Van Oort MM, Yao M, Van der Horst DJ, Rodenburg KW. Insulin and chromium picolinate induce translocation of CD36 to the plasma membrane through different signaling pathways in 3T3-L1 adipocytes, and with a differential functionality of the CD36. Biol Trace Elem Res 2011;142:735–747
20. Greenhalgh CJ, Rico-Bautista E, Lorentzon M, et al. SOCS2 negatively regulates growth hormone action in vitro and in vivo. J Clin Invest 2005;115:397–406
21. Nielsen C, Gormsen LC, Jessen N, et al. Growth hormone signaling in vivo in human muscle and adipose tissue: impact of insulin, substrate background,
and growth hormone receptor blockade. J Clin Endocrinol Metab 2008; 93:2842–2850
22. Mavalli MD, DiGirolamo DJ, Fan Y, et al. Distinct growth hormone recep-
tor signaling modes regulate skeletal muscle development and insulin
sensitivity in mice. J Clin Invest 2010;120:4007–4020
23. Gual P, Le Marchand-Brustel Y, Tanti JF. Positive and negative regulation of
insulin signaling through IRS-1 phosphorylation. Biochimie 2005;87:90–109
24. Ayala JE, Samuel VT, Morton GJ, et al.; NIH Mouse Metabolic Phenotyping
Center Consortium. Standard operating procedures for describing and
performing metabolic tests of glucose homeostasis in mice. Dis Model
Mech 2010;3:525–534
25. Caplan AI, Fiszman MY, Eppenberger HM. Molecular and cell isoforms
during development. Science 1983;221:921–927
26. Vong LH, Ragusa MJ, Schwarz JJ. Generation of conditional Mef2cloxP/
loxP mice for temporal- and tissue-specific analyses. Genesis 2005;43:43–48
27. Naya FJ, Wu C, Richardson JA, Overbeek P, Olson EN. Transcriptional
activity of MEF2 during mouse embryogenesis monitored with a MEF2-
dependent transgene. Development 1999;126:2045–2052
28. Klover P, Hennighausen L. Postnatal body growth is dependent on the
transcription factors signal transducers and activators of transcription 5a/b
in muscle: a role for autocrine/paracrine insulin-like growth factor I.
Endocrinology 2007;148:1489–1497
29. Ott M3, Bober E, Lyons G, Arnold H, Buckingham M. Early expression of
the myogenic regulatory gene, myf-5, in precursor cells of skeletal muscle
in the mouse embryo. Development 1991;111:1097–1107
30. Ross JA, Cheng H, Nagy ZS, Frost JA, Kirken RA. Protein phosphatase 2A
regulates interleukin-2 receptor complex formation and JAK3/STAT5 ac-
tivation. J Biol Chem 2010;285:3582–3591
31. Sawka-Verhelle D, Tartare-Deckert S, Decaux JF, Girard J, Van Obberghen E.
Insulin resistance through activating the AMP-activated protein kinase
signalling pathway. Diabetologia 2011;54:1491–1501
32. Choi SJ, Yablonka-Reuveni Z, Kaiyala KJ, Ogimoto K, Schwartz MW,
Wisse BE. Increased energy expenditure and leptin sensitivity account
for low fat mass in myostatin deficient mice. Am J Physiol Endocrinol
Metab 2011;300:1031–1037
33. Oldham JM, Osepchook CC, Jeannpont F, et al. The decrease in mature
myostatin protein in male skeletal muscle is developmentally regulated by
growth hormone. J Physiol 2009;587:669–677
34. Chen CN, Khor GT, Chen CH, Huang P. Wallenberg’s syndrome with proximal
cauda equina. Neurologist 2011;17:44–46
35. Gentile MA, Nantermet PV, Vogl RL, et al. Androgen-mediated improve-
ment of body composition and muscle function involves a novel early
transcriptional program including IGF1, mechano growth factor, and in-
duction of beta-catenin. J Mol Endocrinol 2010;44:55–73
36. Ostrovsky O, Eletto D, Makarewich C, Barton ER, Argon Y. Glucose regu-
lated protein 94 is required for muscle differentiation through its control
of the autocrine production of insulin-like growth factors. Biochim Bio-
phys Acta 2010;1803:333–341
37. Gallie S, Oskhild JS, Steinberg GR. Adipose tissue as an endocrine organ.
Mol Cell Endocrinol 2010;316:129–139
38. Iwabu M, Yamauchi T, Okada-Iwabu M, et al. Adiponectin and AdipoR1
regulate PGC-1alpha and mitochondria by Ca(2+) and AMPK/SIRT1. Na-
ture 2010;464:1313–1319
39. Guo T, Jou W, Chanturiya T, Portas J, Gavrilova O, McPherron AC. Myo-
statin inhibition in muscle, but not adipose tissue, decreases fat mass and
improves insulin sensitivity. PLoS ONE 2009;4:e4937
40. Zhang C, McFarlane C, Lokireddy S, Bonala S, Ge X, Masuda S, Gheckman
PD, Sharma M, Kambadur R. Myostatin-deficient mice exhibit reduced
insulin resistance through activating the AMP-activated protein kinase
signal pathway. Discov Today 2009;14:208–213
41. Choi SJ, Yablonka-Reuveni Z, Kaiyala KJ, Ogimoto K, Schwartz MW,
Wisse BE. Increased energy expenditure and leptin sensitivity account
for low fat mass in myostatin deficient mice. Am J Physiol Endocrinol
Metab 2011;300:1031–1037
42. Rasmussen MH, Juul A, Kjems PD, Sharma M, Kambadur R. Myostatin-de-
pendent transgene expression in strength trained men. J Strength Cond Res
2011;25:767–777