Micromammals from the late early Miocene of Çapak (western Anatolia) herald a time of change

Melike Bilgin,1 Peter Joniak,1 Serdar Mayda,3 Fikret Göktas,4 Pablo Peláez-Campomanes,5 and Lars W. van den Hoek Ostende2

1Comenius University, Department of Geology and Palaeontology, SK-84215, Bratislava, Slovakia <bilgin1@uniba.sk>, <peter.joniak@uniba.sk>
2Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands <lars.vandenhoekostende@naturalis.nl>
3Ege University, Faculty of Science, Biology Department, Bornova, Izmir, Turkey <serdar.mayda@ege.edu.tr>
4MTA Geology Department, Ankara, Turkey <fikretgoktas50@gmail.com>
5Museo Nacional de Ciencias Naturales, MNCN-CSIC, C/ José Gutiérrez Abascal, 2, 28006, Madrid, Spain <pablopelaez@mncn.csic.es>

Abstract.—The new fossil micromammal assemblage of Çapak represents a mixture of both Anatolian and European faunal elements. The locality is very important for understanding faunal evolution in the less well-known time interval at the end of the early Miocene of western Anatolia. In Çapak, nine species of rodents and one species of ochotonid were encountered: the hamsters Democricetodon gracilis, Megacricetodon primitivus, Eumyarion aff. E. montanus, Cricetodon cf. C. aliveriensis, Cricetodon sp., and Karydomys cf. K. strati, the mole-rat Debruijnina sp., the squirrel Aliveria flutyini, the dormouse Myomimus tanjawi n. sp., and the pika Albertona balkanica. The assemblage is referable to Anatolian local zone E or MN unit 4. The relative abundance of the genera varies markedly different from that of the older early Miocene assemblages, suggesting that the environment in Anatolia became drier and had a more open landscape.

Introduction

The late early Miocene was a period of major changes in the eastern Mediterranean. The collision of the African plate with Eurasia altered both the topography of the region and its climates, offering new migration routes (Rögl, 1999). Anatolia lies right at the center of these events that strongly influenced the distribution of mammals both within the region as well as in other parts of western Eurasia.

The early Miocene of Anatolia shows a high degree of endemicity in taxa of the rodent assemblages between local zones B to D (correlated with MN1-3). While European assemblages are dominated by Eomyidae and Gliridae, Anatolian assemblages are dominated by Muridae. At the beginning of MN4, there was a conspicuous faunal turnover in Europe. After a prolonged absence, known as the cricetid vacuum (Daams and Freudenthal, 1981), muroid rodents entered and immediately took the dominant position they still hold today (De Bruijn et al., 1992). This entrance of the hamsters traditionally marks the transition between the mammal units MN3 and MN4. Notably, earlier research showed that the hamster genera entering Europe at the end of the early Miocene were already present throughout that period in Anatolia (e.g., De Bruijn and Saraç, 1991; Theocharopoulos, 2000; De Bruijn et al., 2006; Wessels, 2009). However, while there are well-studied faunas from the region between zones B–D (correlated with MN1–3), such as Kargi, Kılıçak, Harami, Gökler, Gordes, Sabuncubeli, Keseköy (e.g., Van den Hoek Ostende, 1992, 1995, 1997, 2001; Ünay, 1994; Joniak et al., 2017, 2019; Peláez-Campomanes et al., 2019), the younger assemblages are little known, published only as faunal lists or abstracts, such as in the localities of Söke, Dededağ, Belenyenice, Kaplangı, and Horlak (e.g., Sümeneng et al., 1990; Ünay and Göktas 1999; Kaya et al., 2007). As a result, it is not known how the faunas of Anatolia developed at the time major changes took place in the European faunas.

Here, we present the micromammal fauna from the new Anatolian locality of Çapak, which shows a significantly different composition from other early Miocene faunas. The locality was discovered within the framework of the National Geographic Expedition “Palaeogeography of Mammals Following the Collision of the African and Eurasian Plates” in 2015. The locality is situated near the village of Çapak in the northern part of the Torbalı district in the Province of Izmir (Figure 1). Because the rich assemblage of the new site represents a less-known time interval, it provides important information about the evolutionary lineages and migration paths of the Anatolian micromammals in that period. In addition, the presence of some species otherwise known from Europe makes it an important comparison point for interregional correlations. The assemblage shows the first evidence of open woodlands of Anatolia in the early to middle Miocene transition. In this paper, we describe the rodents and the lagomorph from the locality; the small insectivore assemblage will be published elsewhere.

Geological setting

The Neogene Kocaçay Basin (Sözbilir et al., 2011) is one of the NE-SW trending Miocene basins of western Anatolia.
Figure 1. (1) Regional geological location of the Kocaçay Neogene basin. (2) Simplified geological map of the Kocaçay Neogene basin. (3) Early-middle Miocene sequence that crops out around Çapak village: (1) pre-Neogene basement, (2) fan-delta deposits, (3) lacustrine paper-shale deposits, (4) lacustrine limestone, (5) fluvial deposits, (6) Holocene alluvium (modified from Göktas, 2012). (4) Outcrop view of Çapak. (5) The fossiliferous layer of Çapak.

(Figure 1). Early middle Miocene basin-filling starts with fan delta sediments, continues with lacustrine sediments and ends with fluvial sediments. The late Miocene sequence, which overlies this sequence with an angular unconformity, consists of alluvial fan deposits (Figure 1.3). The lacustrine sequence consists of laminated shales and ends with limestone that includes mudstone, rhyolitic tuff, sandstone and marshy sediments. The Çapak small-mammal fauna was found in the coaly marsh deposits in the lacustrine section that crops out north of the village of Çapak (Figure 1.3)

Materials and methods

Collection.—Approximately 2500 kg of sediment were collected during two fieldwork campaigns (2015 and 2018) and screen-washed with a mesh of 0.5 mm following the method of Daams and Freudenthal (1988b). All concentrate was sorted under the microscope.

Measurements.—Upper cheek teeth are indicated by uppercase and lower cheek teeth by lowercase. Where distinction between first and second molars is questionable, these are indicated as m1/2 or M1/2, respectively. Tooth measurements (maximum length and width) are given in mm and were taken using a Leica MZ16A stereomicroscope and associated software. Terminology used for dental morphology follows Daams and Freudenthal (1988a) and Oliver and Peláez-Campomanes (2013) for Cricetidae, García-Paredes et al. (2010) for Gliridae, Cuenca Bescós (1988) for Sciuridae, Sarıca and Sen (2003) for Spalacidae and López Martínez (1986) for Ochotonidae. SEM photographs were taken at the Slovak Academy of Science in Bratislava. All dental elements have been figured as being left. The letters of inverted photographs have been underlined on the figures.

Repository and institutional abbreviation.—The specimens examined in this study are deposited in the following institution: Ege University Natural History Application and Research Centre (EUNHM), Izmir, Turkey.

Systematic paleontology

Class Mammalia Linnaeus, 1758
Order Rodentia Bowdich, 1821
Family Gliridae Muirhead, 1819
Genus Myomimus Ognev, 1924

Type species.—Myomimus personatus Ognev, 1924.

Myomimus tanjuae new species

Figure 2

Holotype.—Right M1; PV13097 (length 0.93, width 1.07), Figure 2.2.

Diagnosis.—Small-sized Myomimus with an anterior extra ridge in M1 and M2. The ridge pattern in the central valley of the upper molars can be slightly complex. Lower molars are simple, only showing a posterior extra ridge. The m1 and m2 have two roots, while the m3 has three roots.
Differential diagnosis.—Because the genus Peridyromys is sometimes considered a subjective junior synonym of Myomimus (see remarks), we include a comparison with the species of Peridyromys. Myomimus tanjuae n. sp. is smaller than M. roachi (Bate, 1937), M. qafzensis Haas, 1973, M. maritensis De Bruijn, Dawson, and Mein, 1970; M. multicristatus (De Bruijn, 1966), Peridyromys lavocati Peláez-Campomanes and Daams, 2002, P. braillonii (Thaler, 1966), P. prosper (Thaler, 1966), P. sondaari Daams, 1999, P. darocensis Daams, 1999, P. jaegeri Aguilar, 1974, and P. rex García-Moreno in Álvarez-Sierra and García-Moreno, 1986.

Myomimus dehmi (De Bruijn, 1966) has a similar size to Myomimus tanjuae n. sp., but differs by having simpler dental pattern in the upper molars and having three roots in m1–m2.

Peridyromys aquatilis (De Bruijn and Moltzer, 1974) and P. obtusangulus (von Meyer, 1859) have a similar size to Myomimus tanjuae n. sp., but differ by the anterior extra ridge on the lower molars.

Myomimus sumbalenwalicus Munthe, 1980 has a similar size to Myomimus tanjuae n. sp., but differs by having three roots in m1–m2 and an absence of connection between posterior centroloph and metacone of M1–M2.

Peridyromys murinus (Pomel, 1853) is slightly smaller than Myomimus tanjuae n. sp. and differs from it by having no extra ridge on the upper molars.

Peridyromys turbatus Álvarez Sierra et al., 1991 is slightly larger than Myomimus tanjuae n. sp. and differs from it by having more complicated lower and upper molar dental patterns.

Occurrence.—Çapak, İzmir, Turkey, late early Miocene, local zone E (MN4).

Description.—

D4.—The outline of the molar is triangular and concave from the labial side (Fig. 2.1). Four main ridges are present (anteroloph, protoloph, metaloph, and posteroloph). The posteroloph is higher than the other lophs. The anterior and posterior centrolophs are isolated. The posterior centroloph is longer than the anterior centroloph.

P4.—The protoloph and the metaloph are present, but the molar is broken from the lingual side, which prevents seeing the connections. The specimen is too worn to show any additional features.

M1/2.—The occlusal surfaces of the molars are concave. Four main ridges are present. The protocone is situated on the posterolinguinal corner, forming a V-shaped trigone. The metaloph and protoloph are connected. The anteroloph is isolated lingually. Both the anterior and posterior centrolophs are present. The central valley ridges have complex patterns in five specimens (Figure 2.3). The anterior centroloph is always longer than the posterior one. The anterior and posterior centrolophs are connected to the paracone and the metacone. There are no extra ridges in two of 12 specimens, while the other 10 specimens have a short anterior extra ridge. The molar has three roots.

M3.—The occlusal surface of the molar is concave. The dental pattern consists of four main ridges accompanied by the anterior and posterior centrolophs. The posterior centroloph is longer than the anterior centroloph. The posterior extra ridge is present in one specimen. The molar has three roots.

p4.—The premolar has a simple pattern and is slightly concave lingually. The posterior part is wider than the anterior part. The anteroloph and the metaloph are not connected to the mesolophid. The posteroloph and mesolophid are connected at the lingual side and end very close to each other at the labial side. The premolar has one root.

m1 and m2.—The m1 and m2 only differ in the outline of the molars. The occlusal surface is slightly concave. The dental pattern consists of four main ridges (anterolophid, metapolophid, mesolophid, posterolophid) and centrolophid. The vestigial extra ridge is present in two of 14 specimens. The anterolophid and the metalophid are connected labially in seven of 14 specimens. The lingual connection of the metalophid is variable. It ends free in eight molars and connects to the metaconid in six molars, but it is always directed anteriorly. The posterior extra ridge is present in all specimens; it is connected to the entoconid in three specimens. The molar has two roots.

m3.—The occlusal surface is slightly concave. The anterior part of the molar is wider than the posterior part. The dental pattern consists of four main ridges and centrolophid. The posterior extra ridge is present in all specimens. The molar has three roots.

Etymology.—The species is named in honor of Prof. Dr. Tanju Kaya, in recognition of her work on the fossil mammals of Turkey and her continuous support of micromammal research in the region.

Material.—2 D4 (PV13090, 13091), 1 P4 (PV13112), 13 M1/2 (PV13092–13104), 3 M3 (PV13105, 13106, 13141), 3 p4 (PV13110, 13111, 13134), 8 m1 (PV13118–13120, 13123, 13124, 13132, 13133, 13140), 6 m2 (PV13114–13117, 13121, 13122), 7 m3 (PV13125–13131).

Measurements.—Measurements of isolated cheek teeth are in Table 1.

Remarks.—The genus Myomimus is known from several Anatolian localities. The locality Keseköy yielded Myomimus sp. (Ünay, 1994), Çandır provided Myomimus n. sp. (De Bruijn et al., 2003), the Tuğlu and Sinap localities recorded M. dehmi (Sen, 1990; Joniak and De Bruijn, 2015; The NOW Community, 2020), and the locality of Hayranlı yielded M. maritensis (Kaya and Kaymakçı, 2013). The genus Peridyromys is only recorded from three Anatolia localities. The localities of Hancılı 2 and Soğça yielded Peridyromys indet. (The NOW Community, 2020) and the locality of Paşalar provided P. lavocati Peláez-Campomanes and Daams, 2002.

Table 1. Measurements of Myomimus tanjuae n. sp. from Çapak.

	Length	Width					
	min	mean	max		min	mean	max
D4	0.77	0.78	0.79	2/2	0.84	0.85	0.86
M1/2	0.89	0.93	0.97	11/12	0.99	1.07	1.14
M3	0.78	0.80	0.81	3/3	0.93	0.97	1.00
p4	0.58	0.63	0.67	3/3	0.64	0.68	0.72
m1/2	0.82	0.98	1.05	14/14	0.75	0.93	1.04
m3	0.85	0.93	1.01	7/7	0.85	0.88	0.92
The relationship between the genera *Peridyromys* and *Myomimus* has been cause of debate. De Bruijn et al. (1970) synonymized these two genera because of the similarity of the dental patterns. According to them, the only difference is the size of lower p4, which is relatively large in *Peridyromys* and small in *Myomimus*. By contrast, Daams (1981) preferred to keep both genera, based on the different number of the roots. Species of *Myomimus* have three roots while *Peridyromys* has two roots for lower m1, m2 and m3, with some exceptions (Daams, 1981). In addition, a major argument was the time gap between their respective stratigraphic ranges—*Peridyromys* being recorded up to MN4 and *Myomimus* appearing in Europe from MN9 onwards. Therefore, there was no *Peridyromys/Myomimus* record from MN4 to MN9. This situation changed when De Bruijn et al. (2003) published a new species of *Myomimus* from the middle Miocene hominoid site of Çandır in Turkey. They considered this species unique because of the number of roots (the m1 and m2 have two roots, the m3 has three roots). Because the age of the locality is considered MN5/6, this would close the gap in the record of *Myomimus/Peridyromys*. A full revision of the two genera is needed to clarify the proposed synonymy, which is outside the scope of the current paper. We do note that, as yet, there do not seem to be clear differences between *Myomimus* and *Peridyromys*.

Myomimus from Çapak falls metrically in the lower range of *Myomimus* n. sp. from Çandır (Figure 3) and is very similar morphologically. Moreover, both *Myomimus tanjuae* n. sp. and the Çandır *Myomimus* are characterized by having two roots in m1–m2 and three roots in m3. However, we have not studied the *Myomimus* material from Çandır, therefore we do not deem it opportune to change its current classification.

Family Muridae Illiger, 1811

Genus Democricetodon Fahlbusch, 1964

Type species.—*Democricetodon crassus* Freudenthal in Freudenthal and Fahlbusch, 1969 (=*Cricetodon minor* Lartet, 1851 sensu Fahlbusch 1964).

Democricetodon gracilis Fahlbusch, 1964
Holotype.—Right M1 (BSPG 1959 II 247), Sandelzhausen, Germany. The specimen is stored in Bayerische Staatssammlung für Paläontologie und Geologie, Munich.

Description.—

M1.—The anterocone is simple. The lingual anteroloph is comma-shaped and connected to the base of the protocone. The labial anteroloph is connected to the base of the paracone. It is transverse in seven and curved in three molars. The anterolophule is strong and connected to the protocone. The labial spur of the anterolophule is weak and only present in three out of 10 specimens. The protolophule is double in four and only the posterior one is present in the remaining five molars (one of the 10 M1 specimens is missing the posterior part). The posterior paracone spur is absent. The mesoloph is of medium length in eight and short in one specimen. The metalophule is directed posteriorly; it is connected to the posteroloph in seven and fused to the posteroloph in two molars. A weak mesostyle

Figure 4. Democricetodon gracilis Fahlbusch, 1964. (1) M1 sin (PV13001), (2) M1 dex (PV13008), (3) M2 dex (PV13015), (4) M2 sin (PV13011), (5) M3 sin (PV13026), (6) M3 dex (PV13028), (7) m1 sin (PV13037), (8) m1 dex (PV13032), (9) m1 dex (PV13030), (10) m2 dex (PV13045), (11) m2 sin (PV13048), (12) m3 sin (PV13054), (13) m3 sin (PV13057).
is present in two specimens. The lingual mescingulum is, at most, weakly developed. The sinus is transverse. The molar has three roots.

M2.—The lingual anteroloph is short and connected to the base of the protocone. The labial anteroloph is long and connected to the base of the paracone. The protolophule is double in 12 (only the anterior protolophule is present in one specimen), it is not visible in three specimens due to wear. The posterior paracone spur is absent. The metalophule is transverse in four specimens and directed anteriorly in 11 specimens. The mesolophid is connected to the base of the metaconid. The metaloph is transverse in four specimens. The mesolophid is longer than the lingual anterolophid. The labial anterolophid is of medium length in two, long and reaching to the lingual side of the molar in four, and reaching to the metaconid in three specimens. The posterolophid is long, connected to the base of the entoconid. A weak posterior sulcus is present. The sinus is very shallow and narrow. The molar has three roots.

M3.—The lingual anteroloph is connected to the base of the paracone in two, absent in two molars. The labial anteroloph is connected to the paracone. The metacone is developed only in one specimen. The metacone and the hypocone are connected by the posteroloph and the metalophule. The ridge between the paracone and metalophule is incomplete. The mesoloph is present in one specimen. The sinus is very shallow and narrow. The molar has three roots.

m1.—The anteroconid is elliptical. The labial anterolophid is longer than the lingual anterolophid. The labial anterolophid is connected to the base of the protoconid; the lingual anterolophid is connected to the base of the metaconid. The metalophulid is anterior in 12, weak and short in four specimens, absent in one specimen. The hypolophulid is anterior in all specimens. The posterolophid is strong and long, connected to the base of the entoconid. A weak labial posterolophid is present in two molars. A posterior sulcus is present in five m1. The mesolophid is short in two, of medium length in four, long and connected to the lingual border in four m1. The ectostyloid is present in two and the mesostylid is present in one specimen. The lingual mescingulum is weak or absent. The sinus is wide and directed anteriorly. The molar has two roots.

m2.—The lingual anterolophid is weakly present in four molars. The labial anterolophid is connected to the base of the protoconid. It is short in five, long in four specimens. The metalophid is present in four, fused to the lingual anterolophid in five m2. The hypolophulid is always directed anteriorly. The mesolophid is of medium length in two, long and reaching to the lingual side of the molar in four, and reaching to the metaconid in three specimens. The posterolophid is long, connected to the base of the entoconid. A weak posterior sulcus is present. The ectostyloid is present in one molar. The labial mescingulum is present. The sinus is transverse. The molar has two roots.

m3.—The lingual anterolophid is very short. The labial anterolophid is connected to the base of the protoconid. It is strong in five and weak in four specimens. The metalophulid is present in five, absent in one, and fused to the lingual anterolophid in three m3. The mesolophid is connected to the labial ridge. The posterior arm of the protoconid is long. The posterolophid is long and connected to the reduced entoconid. The sinusid is transverse. The molar has two roots.

Material.—10 M1 (PV-13000–13009), 15 M2 (PV-13010–13024), 4 M3 (PV-13025–13028), 15 m1 (PV-13030–13044), 9 m2 (PV-13045–13053), 9 m3 (PV-13054–13062).

Table 2. Measurements of Democricetodon gracilis from Çapak.

	Length	Width					
	min	mean	max	N	min	mean	max
M1	1.41	1.50	1.63	8/9	0.95	1.02	1.10
M2	0.95	1.12	1.27	14/14	0.90	1.01	1.15
M3	0.69	0.78	0.85	4/4	0.67	0.78	0.86
m1	1.26	1.32	1.41	10/10	0.87	0.93	0.98
m2	1.12	1.17	1.23	8/8	0.81	0.92	0.97
m3	0.86	0.99	1.05	9/9	0.72	0.80	0.86

Measurements.—Measurements of cheek teeth are given in Table 2.

Remarks.—Democricetodon first appeared in Anatolia in the early part of the early Miocene, in the Kilçak section (local zone B), much earlier than its first occurrence in Europe (Theocharopoulos, 2000). Democricetodon is known from the eastern Mediterranean localities of Aliveri (Theocharopoulos, 2000), the first occurrence in Europe at the beginning of MN4 (e.g., Fahlbusch, 1964; Aguilar, 1982; Klein Hofmeijer and De Brujin, 1988).

In the early Miocene of Anatolia, the genus Democricetodon is represented by various species: Democricetodon anatolicus Theocharopoulos, 2000 from Harami 3, D. halk mari Theocharopoulos, 2000 from Gökkler and D. doukasi Joniak et al., 2017 from Keseköy (Theocharopoulos, 2000; Joniak et al., 2017). The specimens from Çapak are bigger than those of D. halk mari and D. anatolicus, and fall in the same size range as D. doukasi (Figure 5). However, Democricetodon from Çapak differs from D. doukasi in having higher crowned molars, a posteriorly directed metalophule in the M1 and the absence of a posterior paracone spur in M1–M2.

During the middle Miocene of Anatolia, Democricetodon is represented by European forms only. Democricetodon aff. D. gaillardi (Schaub, 1925) is known from the locality of Çandır (De Brujin et al., 2003) and Democricetodon brevis (Schaub, 1925) is known from the locality of Pașalar (Peláez-Campomanes and Daams, 2002). Both species are larger than the Democricetodon from Çapak.

Democricetodon gracilis is a very common species in the MN4 to MN6 assemblages from central Europe (e.g., Fahlbusch, 1964; Daxner-Höck, 1998; Wessels and Reumer, 2009). It rarely occurs in the Iberian Peninsula but is known in late MN4/early MN5 sites in the Ebro Basin (Suárez Hernando, 2017) and the Vallès-Penedès Basin (Agustí, 1981; Jovells-Vaqué and Casanovas-Vilar, 2018) as well. It is also known from the eastern Mediterranean localities of Aliveri (MN4), Karydia (MN4) and Thymiana A (MN5) (Theocharopoulos, 2000). The Çapak specimens fall metricaly and morphologically within the variation of the type material of D. gracilis from Sandelzhausen (MN4) (Wessels and Reumer, 2009) (Figure 5). However, the bottom of the sinuses is situated higher above the enamel-dentine junction in the Sandelzhausen specimens. In this respect, the molars from Çapak are more similar to those of D. gracilis from Forsthart (MN4) (Ziegler and Fahlbusch, 1986) in having a lower crown. As yet, it is unclear
Figure 5. Scatter diagram of the upper and lower first molars of small sized *Democricetodon* from Anatolia and adjacent area (data are after Klein Hofmeijer and De Brujin, 1988; Theocharopoulos, 2000; Wessels and Reumer, 2009).

Figure 6. *Megacricetodon primitivus* (Freudenthal, 1963). (1) M1 sin (PV13237), (2) M1 dex (PV13238), (3) M1 dex (PV13239), (4) M2 sin (PV13264), (5) M2 sin (PV13266), (6) M2 sin (PV13269), (7) M3 sin (PV13281), (8) M3 sin (PV13282), (9) m1 sin (PV13301), (10) m1 dex (PV13312), (11) m2 sin (PV13324), (12) m2 dex (PV13335), (13) m2 dex (PV13333), (14) m3 sin (PV13341), (15) m3 sin (PV13339).
whether this is part of an overall trend within the species or if it is a feature that is an ecophenotypical variation.

Genus *Megacricetodon* Fahlbusch, 1964

Type species.—*Cricetodon gregarius* Schaub, 1925.

Megacricetodon primitivus (Freudenthal, 1963)

Figure 6

Holotype.—Ramus with m1–m3 56-142, Valtorres, Calatayud-Montalbán Basin, Spain. The specimen is stored in Institut Català de Paleontologia Miquel Crusafont, Barcelona.

Description.

M1.—The anterocone is slightly divided in three and deeply split in 19 specimens. There is a cingulum in front of the anterior furrow of the anterocone in all of the specimens. The labial cusp of the anterocone is larger than the lingual cusp. The anterolophule is connected to the lingual anterocone in 12 specimens, it is connected between the two cones in two, in which it is divaricated into two lophules, and it is connected to the labial and the lingual anterocone in two M1. The labial spur of the anterolophule is present in three specimens. The protolophule is directed posteriorly in all specimens. The protolophule is directed posteriorly in all specimens. An indistinct posterior paracone spur is present in three specimens. The lingual mesoscingulum is generally strong and it is barely visible or absent in worn specimens. The mesoloph is long (it is connected to the labial edge) in 19 and of medium length in three specimens. The metalophule is transverse in four and directed posteriorly in 17 molars. The sinus is transverse. The molar has three roots.

M2.—The labial anteroloph is longer than the lingual anteroloph. The labial anteroloph is connected to the paracone and the lingual anteroloph continues to the cingulum; it is not connected to the protocone. The lingual mesoscingulum is present in all specimens except for one molar. The protolophule is directed anteriorly in 17, transverse in seven, double in four, and directed posteriorly in one specimen. The protolophule II is incomplete in two out of four specimens. The entoloph is directed posteriorly. The posterior arm of the protocone is longer than the anterior arm of the hypocone in a high proportion of the M2. The ectoloph is present in 11 M2. The development of the mesoloph is variable—it is short in one, of middle length in 10, long in nine and long and connected with the labial border in eight specimens. The cingulum is connected with the mesoloph in seven of the M2. The metalophule is directed anteriorly in 15, transverse in 11, and directed posteriorly in one specimen. The molar has three roots.

M3.—The labial anteroloph is connected to the paracone. The lingual anteroloph is present in four molars; it is connected to the base of the protocone in two specimens. The protolophule is transverse. The metalophule is connected to the anterior arm of the reduced hypocone. The neo-entoloph is present only in one specimen. The hypocone is present in three specimens. The molar has three roots.

m1.—The anteroconid is rounded. The anterolophule is long. The metalophule is always single, short and directed anteriorly. The mesolophid is absent in seven specimens, of medium length in 24 specimens. The ectomesolophid is only present in one specimen. The hypolophid is directed anteriorly. The sinusid is directed slightly anteriorly. The lingual and labial mesoscingulid are present. The cusps are slender. The molar has two roots.

m2.—The labial anterolophid is longer than the lingual anterolophid and is connected to the protoconid. The labial anterolophid continues to the mesoscingulid and is not connected to the protoconid in one specimen. The lingual mesoscingulid is connected with the entoconid in 11, free in five and absent in five molars. The labial mesoscingulid is always connected to the hypoconid; it is well developed in five specimens. The mesolophid is generally short, but long in one and absent in one molar. The hypolophid is directed anteriorly. The cusps are slender. The molar has two roots.

m3.—The lingual anterolophid is short, and the labial anterolophid is long and connected with the protoconid in ten specimens. The labial mesoscingulid is well developed in five and weak in nine molars. The mesolophid is of medium length and present only in one m3. The cusps are slender. The molar has two roots.

Material.—22 M1 (PV13230–13250, 13318), 30 M2 (PV13252–13280, 13319), 10 M3 (PV13281–13289, 13084), 31 m1 (PV13290–13317, 13080, 13081, 13083), 19 m2 (PV13320–13337, 13082), 14 m3 (PV13338–133449, 13086, 13087).

Measurements.—Measurements of cheek teeth are given in Table 3.

Remarks.—The story of *Megacricetodon* is not as well known as that of the other hamsters in the early Miocene of Anatolia. The earliest records are from the local zone D localities of Keseköy and Kink 1 and are assigned to *Megacricetodon* sp. and *M. primitivus*, respectively (Ünay and Göktaş, 2000; Wessels et al., 2001). The records from Söke and Dededağ (local zone E) are assigned to *Megacricetodon* and *M. primitivus* (Ünay and Göktaş, 1999), but as a preliminary list with a short description only. Kaya et al. (2007) also indicated several *Megacricetodon* from early Miocene assemblages, but only in faunal lists.

Megacricetodon first appears in Europe in MN4, with occurrences such as *M. helenicus* Oliver and Peláez-Campomanes, 2016 from Aliveri (Greece), *M. aff. M. collongensis* (Mein, 1958) from Langenau I (Germany), *M. primitivus* from Artesilla (Spain) and *M. bezianensis* Bulot, 1980 from Bézian (France) (Bulot, 1980; Sach and Heizmann, 2001; Oliver

Table 3. Measurements of Megacricetodon primitivus from Çapak.

Length	Width						
min	mean	max	N	min	mean	max	
M1	1.30	1.36	1.56	22/21	0.80	0.90	1.00
M2	0.92	0.98	1.16	29/29	0.76	0.83	0.95
M3	0.64	0.72	0.79	10/10	0.63	0.71	0.85
m1	1.15	1.26	1.34	22/23	0.70	0.81	0.87
m2	0.88	1.05	1.15	17/17	0.76	0.85	0.91
m3	0.77	0.85	0.90	14/16	0.66	0.71	0.76
and Peláez-Campomanes, 2014, 2016). It then continues as a very common element in the European faunas with an array of different species until MN10.

Somewhat surprisingly, *Megacricetodon primitivus* is known from southwestern and southeastern Europe, but was never encountered in central Europe. The *Megacricetodon* assemblage from the Greek locality Antonios (MN5) was assigned to *M. primitivus* by Vasileiadou and Koufos (2005). However, Oliver and Peláez-Campomanes (2014) argued against this designation, based on the stronger cingulum in front of the anterocone and the presence of an ectoloph in M1 and short or absent mesolophid in m1. Notably, all these character states seem to apply to the Çapak material as well. Nevertheless, all the individual characters fall within the variation of *M. primitivus* from Spain (Oliver, 2015). The mean value of *M. primitivus* from Çapak is among the lower values of *M. primitivus* from Artesilla and Valtorres (Figure 7).

A comprehensive study of all early Miocene *Megacricetodon* material from Asia minor and southeastern Europe is needed to clarify the relation with the assemblages from the Spanish localities. Until that time, the Çapak material is best assigned to *M. primitivus*.

Genus Eumyarion Thaler, 1966

Type species.—Cricetodon medius Lartet, 1851 (=Cricetodon helveticus Schaub, 1925).

Eumyarion aff. E. montanus De Bruijn and Saraç, 1991

Description.—

M2.—The labial anteroloph is well developed. The lingual anteroloph is vestigial. The protolophule is slightly directed anteriorly and connected to the posterior arm of the protocone. The posterior paracone spur is well developed and connects to the long mesoloph. The metalophule is parallel with the protolophule and connected to the entoloph just in front of the hypocone. The sinus is narrow and directed anteriorly. The roots are not preserved.

M3.—The labial anteroloph is connected to the base of the paracone. The lingual anteroloph is very weak. The paracone spur is absent. The protolophule is very short. A short mesoloph starts at the middle of the longitudinal crest connecting the protolophule and metalophule. The posterior part of the molar is broken. The roots are not preserved.

m1.—The outline of the molar is very narrow. The cusps are slender. The labial and lingual anterolophids are comma-shaped and connected to the base of the protoconid and to the metaconid, respectively. The labial anterolophid is longer than the lingual anterolophid. The anterolophulid is low and relatively short. The metalophid is connected to the anterior arm of the protoconid. The postero-lingual crest is very distinctive and connects to the base of the entoconid. The mesolophid is of medium length and directed posteriorly. The ectomesolophid is absent. The posterior arm of the hypoconid is strong and is not connected to the posterolophid. The sinusid is wide. The roots are not preserved.

m3.—The lingual anterolophid is connected to the base of the metaconid. The labial anterolophid is short and descends to the base of protoconid. A narrow protosinus is present. The metalophid is short and connects to the anterior arm of the protoconid. The mesolophid is of medium length and directed posteriorly. The hypolophid is connected to the entolophid, just in front of the hypoconid. The roots are not preserved.

Material and measurements.—1 M2 (PV13210, 1.47 x 1.38), 1 M3 (PV13211, 1.47 x 1.38), 1 m1 (PV13212, 1.94 x 1.04), 2 m3 (PV13214, 1.29 x 0.91; PV13215, 1.31 x 1.06).

Remarks.—The genus *Eumyarion* is dominant in the early Miocene of Anatolia with a large number of species.
(E. intercentralis De Bruijn and Saraç, 1991, E. microps De Bruijn and Saraç, 1991, E. carbonicus De Bruijn and Saraç, 1991, E. montanus, E. orhani De Bruijn et al., 2006, E. gordesensis Peláez-Campomanes et al., 2019 and E. lukasi Peláez-Campomanes et al., 2017) and up to three species may occur together in a single assemblage (De Bruijn and Saraç,
1991; De Bruijn et al., 2006; Joniak et al., 2017; Peláez-Campomanes et al., 2019). By contrast, the *Eumyarion* from Çapak is one of the least common taxa in the fauna.

The M1 from Çapak is metrically almost in the same range, but narrower than *Eumyarion aff. E. carbonicus* from Harami 3 and *E. montanus* from its type locality Keseköy and from Sabuncubeli (De Bruijn and Sarac, 1991; De Bruijn et al., 2006). In morphology, Çapak specimens are closest to *E. montanus*, but there are some notable differences. The lingual anteroloph is present in the M3 from Çapak, but it never occurs in *E. montanus*. The metalophulid is single and the ectomesolophid is absent in the m1 from Çapak, but the metalophulid is double and ectomesolophid is present in *E. montanus*. We classify the Çapak material therefore as *E. aff. E. montanus*, indicating that the scarcity of the material does not allow a formal species definition, even though it is clearly different than any *Eumyarion* known so far.

Genus Cricetodon Lartet, 1851

Type species.—*Cricetodon sansaniensis* Lartet, 1851.

Cricetodon sp.

Figure 8.5–8.6

Description.—

M1.—The labial outline of the molar is sinuous. The cusps are robust and the enamel is thick. The molar is worn. The anterocone is slightly divided. The labial cusp of the anterocone is partly damaged. The lingual anteroloph is connected to the protocone. The posterior ectoloph is slender and reaches the paracone. The posterior ectoloph is well developed and complete, connected to the metacone. The protolophule is short and directed posteriorly. The metalophule is fused to the posteroloph. The mesoloph is short and directed posteriorly. The sinus is narrow and transverse. The roots are not preserved.

M3.—The outline of the molar is rounded. The lingual anteroloph is short, connected to the protocone, enclosing a narrow protosinus. The labial anteroloph is long and strong and does not reach the paracone. The anterolophule is well developed and there is a small lingual spur. The posterior ectoloph is complete and connected to the metacone. The mesoloph is absent. The neo-entoloph is absent. The metacone is fused with the posteroloph. The metalophule is absent. The sinus is deep, narrow, and directed posteriorly. The roots are not preserved.

Material and measurements.—1 M1 (PV13203, 2.93 x 2.00), 1 M3 (PV13204, 1.70 x 1.56).

Remarks.—The genus *Cricetodon* is represented in Anatolia by several species during the early and middle Miocene (Tobien, 1978; Sen and Umay, 1979; Umay, 1990; De Bruijn et al., 1993; Çınar Durgut and Umay, 2016; Joniak et al., 2019). The Çapak assemblage comprises two different species of *Cricetodon*; the larger *Cricetodon sp.* and the smaller *Cricetodon cf. C. aliveriensis*.

The M1 of *Cricetodon sp.* from Çapak is morphologically very similar to the M1 of *Cricetodon candirensis* from its type locality Çandır described by Tobien (1978). The size also is among the upper range of *C. candirensis* (Figure 9). However, M3 from Çapak is morphologically more similar to *C. pasalarensis* (Tobien, 1978) because of the incomplete anterior ectoloph, complete posterior ectoloph and single protolophule. *Cricetodon candirensis* typically has an elongated M3, whereas *C. pasalarensis* and the *Cricetodon* from Çapak have rounded M3. However, there are also some other differences: the M3 of *C. pasalarensis* has a mesoloph in 86% of the specimens, but the M3 from Çapak has no mesoloph. While the sinus is directed posteriorly in Çapak specimen, it is directed forward in *C. pasalarensis*. In that respect, and because of the limited material, we prefer to leave the large Çapak *Cricetodon* in open nomenclature.

Cricetodon cf. C. aliveriensis Klein Hofmeijer and De Bruijn, 1988

Figure 8.7, 8.8

Holotype.—M1 sin, no. 542, Aliveri, Greece. The specimen is stored at Utrecht University, Department of Earth Sciences, Utrecht, The Netherlands.

Description.—

M1.—The anterocone is slightly divided into two equal cusps. The lingual spur of the anterolophule joins to the base of the protocone. The labial anteroloph connects to the base of the paracone. The anterolophule is connected to the lingual cusp of the anterocone. The protolophule is very short and directed posteriorly. The mesoloph is short and directed posteriorly. The metacone is fused to the posteroloph. The metalophule is strong, posteriorly oriented and connects to the weak posteroloph. The molar has no ectolophs. The sinus is narrow and directed anteriorly. The molar has four roots.

m2.—The labial anterolophid is strong and connects to the base of the protoconid. The lingual anterolophid is almost

Figure 9. Scatter diagram of the upper first molar of medium and large sized *Cricetodon* from Anatolia and adjacent area (data after Klein Hofmeijer and De Bruijn, 1988; Umay, 1990; De Bruijn et al., 1993, 2003; Vasilieiadou and Koufos, 2005; Çınar Durgut and Umay, 2016; Skandalos, 2017).

https://doi.org/10.1017/jpa.2021.27 Published online by Cambridge University Press
absent. The metalophulid is short and connected to the anterolophule. The mesolophid is short and directed anteriorly. The hypolophulid is short, directed anteriorly and connects to the ectolophid. The posterolophid is strong and joins to the base of the entoconid. The sinus is directed slightly anteriorly. The posterolingual part is absent. The metalophules are double. Protolophules, a long mesoloph, and in the connections with the posterior paracone spur. It also falls within the size range of the Chios species. However, our specimen is partly broken and does not preserve the lingual anteroloph. In that respect, we prefer to classify it as *Karydomys cf. K. strati*.

Type species.—*Debruijnia arpati* Ünay, 1996.

Description.—

M3.—The outline of the M3 is semicircular. The occlusal pattern consists of five lophs. The labial anteroloph is connected to the paracone. The lingual anteroloph is absent. The protolophule reaches the paracone area, but a true paracone is not defined. The mesoloph is strong and isolated by two valleys on the labial side; it does not reach the endoloph. The posterolophule is enclosed by the posteroloph and the metalophule. The sinus is deep and very narrow.

Material and measurements.—1 M3 (PV13220, 2.25 x 2.35).

Remarks.—The Çapak specimen metrically only fits with *Debruijnia kostakii* De Bruijn, 2017 from Karydia 2. A morphological comparison with this and other species, however, is hampered by the ontogenetic stage of our specimen. It represents a very young individual with only a little wear on the anterior part of the tooth. This makes it difficult to compare with other specimens because they generally represent more advanced stages of wear. Therefore, we prefer to leave its classification in open nomenclature.

Family Spalacidae Gray, 1821

Genus Debruijnia Ünay, 1996.

Debruijnia sp.

Figure 8.10

Material and measurements.—1 M3 (PV13220, 2.25 x 2.35).

Type species.—*Debruijnia arpati* Ünay, 1996.

Description.—

M3.—The outline of the M3 is semicircular. The occlusal pattern consists of five lophs. The labial anteroloph is connected to the paracone. The lingual anteroloph is absent. The protolophule reaches the paracone area, but a true paracone is not defined. The mesoloph is strong and isolated by two valleys on the labial side; it does not reach the endoloph. The posterolophule is enclosed by the posteroloph and the metalophule. The sinus is deep and very narrow.

Material and measurements.—1 M3 (PV13220, 2.25 x 2.35).

Remarks.—The Çapak specimen metrically only fits with *Debruijnia kostakii* De Bruijn, 2017 from Karydia 2. A morphological comparison with this and other species, however, is hampered by the ontogenetic stage of our specimen. It represents a very young individual with only a little wear on the anterior part of the tooth. This makes it difficult to compare with other specimens because they generally represent more advanced stages of wear. Therefore, we prefer to leave its classification in open nomenclature.

Family Spalacidae Gray, 1821

Genus Debruijnia Ünay, 1996.

Debruijnia sp.

Figure 8.10

Material and measurements.—1 M3 (PV13220, 2.25 x 2.35).

Type species.—*Debruijnia arpati* Ünay, 1996.

Description.—

M3.—The outline of the M3 is semicircular. The occlusal pattern consists of five lophs. The labial anteroloph is connected to the paracone. The lingual anteroloph is absent. The protolophule reaches the paracone area, but a true paracone is not defined. The mesoloph is strong and isolated by two valleys on the labial side; it does not reach the endoloph. The posterolophule is enclosed by the posteroloph and the metalophule. The sinus is deep and very narrow.

Material and measurements.—1 M3 (PV13220, 2.25 x 2.35).

Remarks.—The Çapak specimen metrically only fits with *Debruijnia kostakii* De Bruijn, 2017 from Karydia 2. A morphological comparison with this and other species, however, is hampered by the ontogenetic stage of our specimen. It represents a very young individual with only a little wear on the anterior part of the tooth. This makes it difficult to compare with other specimens because they generally represent more advanced stages of wear. Therefore, we prefer to leave its classification in open nomenclature.

Family Spalacidae Gray, 1821

Genus Debruijnia Ünay, 1996.

Debruijnia sp.

Figure 8.10

Material and measurements.—1 M3 (PV13220, 2.25 x 2.35).

Type species.—*Debruijnia arpati* Ünay, 1996.

Description.—

M3.—The outline of the M3 is semicircular. The occlusal pattern consists of five lophs. The labial anteroloph is connected to the paracone. The lingual anteroloph is absent. The protolophule reaches the paracone area, but a true paracone is not defined. The mesoloph is strong and isolated by two valleys on the labial side; it does not reach the endoloph. The posterolophule is enclosed by the posteroloph and the metalophule. The sinus is deep and very narrow.

Material and measurements.—1 M3 (PV13220, 2.25 x 2.35).

Remarks.—The Çapak specimen metrically only fits with *Debruijnia kostakii* De Bruijn, 2017 from Karydia 2. A morphological comparison with this and other species, however, is hampered by the ontogenetic stage of our specimen. It represents a very young individual with only a little wear on the anterior part of the tooth. This makes it difficult to compare with other specimens because they generally represent more advanced stages of wear. Therefore, we prefer to leave its classification in open nomenclature.

Family Spalacidae Gray, 1821

Genus Debruijnia Ünay, 1996.

Debruijnia sp.

Figure 8.10

Material and measurements.—1 M3 (PV13220, 2.25 x 2.35).

Type species.—*Debruijnia arpati* Ünay, 1996.

Description.—

M3.—The outline of the M3 is semicircular. The occlusal pattern consists of five lophs. The labial anteroloph is connected to the paracone. The lingual anteroloph is absent. The protolophule reaches the paracone area, but a true paracone is not defined. The mesoloph is strong and isolated by two valleys on the labial side; it does not reach the endoloph. The posterolophule is enclosed by the posteroloph and the metalophule. The sinus is deep and very narrow.

Material and measurements.—1 M3 (PV13220, 2.25 x 2.35).

Remarks.—The Çapak specimen metrically only fits with *Debruijnia kostakii* De Bruijn, 2017 from Karydia 2. A morphological comparison with this and other species, however, is hampered by the ontogenetic stage of our specimen. It represents a very young individual with only a little wear on the anterior part of the tooth. This makes it difficult to compare with other specimens because they generally represent more advanced stages of wear. Therefore, we prefer to leave its classification in open nomenclature.

Family Spalacidae Gray, 1821

Genus Debruijnia Ünay, 1996.

Debruijnia sp.

Figure 8.10

Material and measurements.—1 M3 (PV13220, 2.25 x 2.35).

Type species.—*Debruijnia arpati* Ünay, 1996.

Description.—

M3.—The outline of the M3 is semicircular. The occlusal pattern consists of five lophs. The labial anteroloph is connected to the paracone. The lingual anteroloph is absent. The protolophule reaches the paracone area, but a true paracone is not defined. The mesoloph is strong and isolated by two valleys on the labial side; it does not reach the endoloph. The posterolophule is enclosed by the posteroloph and the metalophule. The sinus is deep and very narrow.

Material and measurements.—1 M3 (PV13220, 2.25 x 2.35).

Remarks.—The Çapak specimen metrically only fits with *Debruijnia kostakii* De Bruijn, 2017 from Karydia 2. A morphological comparison with this and other species, however, is hampered by the ontogenetic stage of our specimen. It represents a very young individual with only a little wear on the anterior part of the tooth. This makes it difficult to compare with other specimens because they generally represent more advanced stages of wear. Therefore, we prefer to leave its classification in open nomenclature.
Description.—
M3.—The anterocuneal is weak. The protoloph is transverse with an irregular course and bears a small protoconule. The paracone and protocone are well developed. The remnant of the metaloph is low and incomplete. The metacone is fused with the posteroloph. The hypocone is absent, but there is a small notch. The surface of the posterior valley is slightly crenulated.

Material and measurements.—M3 (PV13217, 2.12 x 2.14).

Remarks.—The flying squirrel, Aliveria luteyni, is known from the Greek localities of Aliveri and Karydia and the Turkish localities of Kaplangı 1 and Kaplangı 2 (de Bruijn et al., 1980; Koufos, 2006; Bosma et al., 2018). The Aliveria specimen from Çapak is morphologically identical to the type material from Aliveri and metrically it is among the upper values of the measurements of the type material.

Order Lagomorpha
Family Ochotonidae
Genus Albertona López Martínez, 1986

Type species.—Albertona balkanica López Martínez, 1986.

Albertona balkanica López Martínez, 1986

Holotype.—Left lower jaw with p3–4 and m2, no. 1. Aliveri, Greece. The specimen is stored at Utrecht University, Department of Earth Sciences, Utrecht, The Netherlands.

Description.—
p3.—The talonid is separated by two flexids: the labial hypoflexid and the lingual metalophid. The metalophid is well developed. The hypoflexid is longer than the metalophid. The anterostylid is well developed and does not connect to the metaconid. The protoconid is triangular in one specimen and rounded in the other. The metaconid is well developed. The anterior part of the centroflexid is directed lingually. The protolophid is present as a shallow sulcus.

Material and measurements.—2 p3 (PV13223, 1.48 x 1.23; PV13224, 1.47 x 1.56).

Remarks.—Albertona comprises only two species: A. balkanica from Aliveri (López Martínez, 1986) and A. aegeensis Ünay and Göktżaş, 1999 from Söke, in addition to Albertona cf. A. aegeensis from Dededağ (Ünay and Göktżaş, 1999). Albertona balkanica is otherwise known from Snegotin (MN4) in Serbia (Marković, 2010). The Çapak specimens are metrically among the upper values of A. balkanica from Aliveri and identical morphologically. Our material is also close metrically and morphologically to A. cf. A. aegeensis from Dededağ as described by Ünay and Göktğaş (1999). Based on the measurements and illustrations in Ünay and Göktğaş (1999), the Dededağ material shows strong similarities with A. balkanica as well.

Table 4. The rodent composition of the Çapak assemblage. The entry “0(1)” is used in those instances in which the last molars and, for some taxa, premolars are excluded from the count because these elements are generally small and may have been lost while processing (which would give a bias towards larger species). If a species is only represented by premolars or M3s, it is counted as 1, because otherwise the data would falsely suggest an absence of that species.

Rodent species	Total N	Total %	MNI N	MNI %
Myomimus tanjuae n. sp.	43	17.6	27	14.6
Democricetodon gracilis	62	25.6	49	26.2
Megacricetodon primitivus	127	52.0	103	55.0
Eumyarion aff. E. montanus	5	2.0	2	1.1
Cricetodon cf. C. aliveriensis	2	0.8	2	1.1
Cricetodon sp.	2	0.8	1	0.5
Karydomys cf. K. strati	1	0.4	0(1)	0.5
Debrujina sp.	1	0.4	0(1)	0.5
Aliveria luteyni	1	0.4	1	0.5
Σ	244	100	187	100

Discussion

The composition of the assemblage and paleoenvironmental considerations.—The rodent assemblage of Çapak consists of 244 molars representing nine species belonging to four different families (Table 4). The hamsters are the most dominant group in the assemblage (81.6% of all specimens and 84.4% of M1 + M2 + m1 + m2). They are represented by six species belonging to five genera. The fauna is strongly dominated by Megacricetodon primitivus, which comprises more than half of the assemblage. Democricetodon gracilis is the second most dominant species in the assemblage with ∼25.6%, signifying one of the first occurrences of this well-known species from the early and middle Miocene of Europe. The genus Cricetodon is represented by two species with two molars of each: the small species Cricetodon cf. C. aliveriensis and the larger Cricetodon sp. The presence of two species of Cricetodon in one assemblage is uncommon during the early and middle Miocene in Anatolia, known previously only from the localities of Kınık and Yapıncı (Çınar Durgut and Ünay, 2016). Eumyarion is one of the most common hamsters of the early Miocene in Anatolia. However, Eumyarion aff. E. montanus is represented by just five molars in the Çapak assemblage, which is a~2% of the rodents. The rare genus Karydomys completes the range of hamsters in the assemblage, with Karydomys cf. K. strati being represented by a single molar. Gliridae is the second most dominant family in the assemblage and is represented by a new species Myomimus tanjuae n. sp., comprising 17.6% of all rodent specimens. Representatives of the Spalacidae (Debrujina sp.) and Sciuridae (Aliveria luteyni) are the rarest taxa in the assemblage. They are each represented by just one molar.

The majority of the assemblage consists of only three species (Megacricetodon primitivus, Democricetodon gracilis, and Myomimus tanjuae n. sp.). The general composition of the assemblage is very different from known early and middle Miocene assemblages of Anatolia. Megacricetodon prefers a relatively dry and warm environment, but it can rarely be present in wet conditions (Daams and Freudenthal, 1988a). Its
abundance in the Çapak assemblage, therefore, suggests a change towards a drier environment. *Myomimus tanjuae* n. sp. from Çapak is the third most abundant species and the only glirid in the fauna. Following the morphotype classification of van der Meulen and De Bruijn (1982), *Myomimus* from Çapak is classified as part of the asymmetrical molar group (i.e., ground dwellers that prefer an open country biotope). The flying squirrel *Aliveria* is rare, but surprisingly present in the assemblage and, as an arboreal animal, suggests that part of the environment was woodland. During the early Miocene of Anatolia, *Eumyarion* was one of the most diverse and dominant genera and is considered to have preferred humid conditions, such as those inferred for the localities of Keseköy, Sabuncubeli, Harami, and Gördes (e.g., De Bruijn and Sarac, 1991; De Bruijn et al., 2006; Bilgin et al., 2019; Joniak et al., 2019; Peláez-Campomanes et al., 2019). By contrast, Çapak has a very limited presence of *Eumyarion*, while *Megacricetodon* and *Democricetodon* become the most dominant genera at that time. These changes are clearly seen when comparing faunal compositions and appear to be the result of a transition from a moist and close woodland to a dry and more open environment in the early Miocene to a dry and more open environment in the middle Miocene in Anatolia.

The age of the assemblage.—The Çapak assemblage yielded an interesting mixture of Anatolian and European species that is unlike any other rodent assemblage in Anatolia. Its elements occur between local zone D–G or MN3–MN6 (Figure 10). Unfortunately, some rarer elements could not be identified at the species level, but the overall distribution of fauna provides sufficient clues to the age of the locality.

The most abundant species, *Megacricetodon primitivus*, is very well known and characteristic for MN4–5 of Spain. It is also known from the Greek locality of Antonios (MN5) (Vasiliev and Koufos, 2005) and was listed from several Turkish localities (Sarac, 2003). Surprisingly, *M. primitivus* is not known from central Europe, and therefore seems to have a disjunct distribution. Even though this may cast some doubts on the relationship between Iberian populations and those from the eastern Mediterranean, there are no clear differences between the Spanish and the Çapak material.

Democricetodon gracilis shows similar characters with *D. gracilis* from Forsthart (MN4) and the type locality of Sandelhausen (MN5), being more like the former in having a somewhat lower crown. *Democricetodon gracilis* was mentioned as one of the typical taxa for local zone E by Unay et al. (2003), a zone that the authors correlated to Unit MN4.

Eumyarion is the most abundant genus in Anatolian faunas from the local zones C and D (MN2–MN3) (e.g., De Bruijn et al., 1993; Joniak et al., 2019) *Eumyarion* is only represented in Anatolia by very limited material from local zone E (MN4) (e.g., Unay et al., 2001) and from the local zones E–H, there is no record of *Eumyarion* at all. However, in local zone H (MN7–8), a single specimen was reported from Sarayç (Rummel, 1998). *Eumyarion* from Çapak is represented by just a few elements, and these are clearly different from any other species known so far, being most similar to *E. montanus* from Keseköy (local zone D, MN3), but with more advanced characteristics.

Cricetodon sp. shares several characters with *C. pasalensis* from Paşalar (local zone F/G, MN5/6) and with *C. candirensis* from Çandır (local zone G, MN6), but the limited material does not allow its assignation to either species. The second *Cricetodon* shares similarities with *C. aliveriensis* from Karydia (MN4).

The rare taxon *Karydomys* ranges from MN3 to MN6 (e.g., Mörs and Kalthoff, 2004; Mariet al., 2011). The single specimen from Çapak is metrically and morphologically very close to *K. strati* from the island of Chíos (MN5) (López-Antoñanzas et al., 2018).

The first occurrence of *Debruijnia* is from local zone D (MN3), from the localities of Keseköy and Sabuncubeli, and the genus has its last occurrence in MN4 from the locality of Karydia (De Bruijn, 2017). *Debruijnia* sp. from Çapak is metrically within the range *D. kostakii* from Karydia, but the morphological comparison is hampered by it being unknown.

The flying squirrel, *Aliveria lutenuyi*, is known from the localities of Aliveri and Karydia in Greece and Kaplang 1 and Kaptlang 2 in Turkey. All these localities are correlated to MN4.

The Ochotonidae *Albertona* is very characteristic for the late early Miocene lagomorphs from the eastern Mediterranean and Serbia (López Martínez, 1986; Unay and Göktas, 1999; Marković, 2010). The specimens from Çapak fall metrically and morphologically within the variation of the type material of *Albertona balkanica* from Aliveri.

The Çapak assemblage shares similarities with the locality of Aliveri in many respects. *Cricetodon aliveriensis*, *Democricetodon gracilis*, *Aliveria lutenuyi*, and *Albertona balkanica* are known from both localities, but the stage of evolution of *Cricetodon* cf. *C. aliveriensis* from Çapak seems more advanced than *C. aliveriensis* from Aliveri and closer to the assemblage from Karydia. Even though the localities of Çapak and Aliveri share some species, they clearly represent different environments. Because both faunas were collected from lignitic lacustrine deposits, we assume this represents a different ecosystem in the surrounding landscape. The locality of Aliveri shows a large diversity of rodents and the presence of the eomyids *Pseudotheridomys* and *Ligerimys*, as well as three species of flying squirrel, points to a forested environment. However, the locality of Çapak has less diversity than Aliveri, and the dominance of *Megacricetodon primitivus* (52%) followed by 17.6% for *Myomimus tanjuae* n. sp. indicates a dry and open environment.

Figure 10. The biochronological ranges of the taxa from Çapak assemblage based on the Anatolian local zones and MN units.
Based on our current state of knowledge, the Çapak assemblage seems to be best placed in the uppermost part of zone E, younger than Aliveri and correlated with late MN4.

Biogeographic implications.—Because of the diachronicity of the MN-system (van der Meulen et al., 2011, 2012), the exact temporal relation of Çapak to the central European MN4 localities remains unclear. Generally, this diachronicity implies that localities in the east can be older than those from the same zone in the west. This is clear for the locality of Aliveri, which, as an MN4 locality, contains the eomyid *Pseudootheridomy*, a taxon that is mainly known from MN3 sites in the rest of Europe. Van den Hoek Ostende et al. (2015) followed Koufos (2006) in estimating the age of Aliveri between 18.0 – 17.5 Ma, stressing, however, that this is just an estimate. In the Daroca-Calamocha area in Spain, the lower boundary of MN4 is placed at 17.0 Ma (van der Meulen et al., 2012).

Van den Hoek Ostende et al. (2015) suggested that a drying trend from the east may have been the cause behind the migrations of *Megacricetodon*, *Democricetodon*, and *Eumyarion* from Anatolia to Europe. However, it is unlikely that such a trend affected the migration of *Eumyarion* because this genus favors humid circumstances. Nevertheless, it is clear that the genus must have migrated into Europe before it was extirpated in Anatolia and, as we now know, Çapak represents the last Anatolian occurrence before that extirpation. *Megacricetodon* and *Democricetodon*, on the other hand, seem to have favored the dryer condition at Çapak, and may well have expanded their distribution as drier conditions also developed in Europe. As we noted, the chronology is still unclear and finding a point of comparison for dating the changes heralded by the Çapak fauna remains an important challenge for the future.

Conclusions

Çapak is an exciting location having both European and Anatolian elements in its faunal assemblage. This provides us with a view of the evolution of micromammals from a little-known period in western Anatolia. The assemblage yielded nine rodents and one lagomorph species: *Myomimus tanjuae* n. sp., *Democricetodon gracilis*, *Megacricetodon primitivus*, *Eumyarion aff. E. montanus*, *Cricetodon sp.*, *Cricetodon cf. C. aliverensis*, *Karydomy* cf. *K. strati*, *Debruijnja sp.*, *Aliveria luteyni*, and *Albertaina balkanica*. Judged on the basis of a faunal comparison, the locality of Çapak would seem to be younger than Aliveri and close to that of Çarşıda, best located in the uppermost part of local zone E, which is correlated with MN4. The dominance of *Megacricetodon primitivus* and *Myomimus tanjuae* n. sp. and the presence of a small number of *Aliveria luteyni* and *Eumyarion aff. E. montanus* indicate a transition from a humid and forest environment in the early Miocene to an open and dry environment in the middle Miocene.

Acknowledgments

We are thankful to T. Kaya, who provided us the opportunities of Ege University and who has lent her unwavering support to all our scientific endeavors in Anatolia. The staff of the Natural History Museum of Ege University made us feel at home during our campaigns and we are grateful for all the support of H. Akgün, A. Tekin, Y. Koç, Ö. Binici, and E. Çakr. P. Skandalos and F. Cailleux helped us during the fieldwork campaign and their work and warm companionship are gratefully acknowledged. We are thankful to A. Blair-Gould for her linguistic emendations. The authors also thank the reviewers I. Casanovas-Vilar, Ş. Şen, and an anonymous reviewer.

This work was funded by National Geographic grant “Paleo-geometry of Mammals Following the Collision of the African and Eurasian Plates” (GEFNE 140-15). This study was supported by Ege University (TTM/001/2016) and (TTM/002/2016) to SM and MB. This study was also supported by grants UK/123/2019, UK/145/2020; Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic VEGA 1/0164/19, 1/0533/21, and by the Slovak Research and Development Agency under contract Nos. APVV-15-0575 and APVV-16-0121. This work was partially supported by project PGC2018-094122-B-I00 funded by FEDER/ Ministerio de Ciencia e Innovación-Agencia Estatal de Investigación.

References

Aguilar, J.P., 1974. Les rongeurs du Miocène inférieur en Bas-Languedoc et les corrélati- 18-39.

Aguilar, J.P., 1982. Biozonation du Miocène d’Europe occidentale à l’aide des rongeurs et corrélati- 294, p. 49–54.

Aguist, J., 1981. Roedores Mio-Miocenos del Neogeno de Cataluña [Ph.D. thesis]: Barcelona, Universitat de Barcelona, 288 p.

Akgün, F., Kayseri-Özer, M.S., Tekin, E., Varol, B., Sen, S., Herece, E., Gündoğan, İ., Sözeri, K., and Us, S.M., 2021. Late Eocene to late Miocene palaeoenvironmental and palaeoecological dynamics of the Ereğli-Uluhasha Basin (Southern Central Anatolia): Geological Journal, v. 56, p. 673–703. https://doi.org/10.1012/j.gi.4021.

Álvarez-Sierra, M.A., and García-Moreno, E., 1986. New Gliridae and Criceti- dae from the middle and upper Miocene of the Duero Basin, Spain: Studia Geologica Salmanticensia, v. 22, p. 145–189.

Aguilar, M.A., Daams, R., Lacomba, J.I., López Martinez, N., van der Meu- len, A.J., Sesé C., and De Visser, J., 1991, Paleontologie and biostratigraphy (micromammals) of the continental Oligoene–Miocene deposits of the north- central Ebro Basin (Huesca, Spain): Scripta Geologica, v. 94, p. 1–77.

Bate, D.M.A., 1937, Palaeontology: the fossil fauna of the Wady el Mughara Mount Carmel, part 2: Oxford, Clarendon Press, p. 137–240.

Bi, S., Meng, J., and Wu, W., 2008, A new species of *Megacricetodon* (Cricetidae, Rodentia, Mammalia) from the middle Miocene of northern Junggar Basin, China: American Museum Novitates, n. 3602, p. 1–23.

Bilgin, M., Jonak, P., Mayda, S., Göktaş, F., Kaya, T., Peláez-Campomanes, P., and Van den Hoek Ostende, L., 2019, Sabuncuβeli too, a second micromammal assemblage from the Sabuncubeli section (early Miocene, western Anatolia), in Van den Hoek Ostende, L.W., Mayda, S., and Kaya, T., eds., Taking the Orient Express? The Role of Anatolia in Mediterranean Neogene Palaeo- biogeography: Palaeobiodiversity and Palaeoenvironments, v. 99, p. 655–671.

Bosma A.A., De Bruijn H., and Wessels W., 2018, Early and middle Miocene Sciuridae (Mammalia, Rodentia) from Anatolia, Turkey: Journal of Vertebrate Paleontology, v. 38, no. 6, e1537281. https://doi.org/10.1080/02724664.2018.1537281.

Bowlidge, T.E., 1821, An Analysis of the Natural Classifications of Mammalia for the Use of Students and Travellers, Paris, J. Smith, 115 p.

Brandt, J.F., 1855, Untersuchungen über die cranio-logischen Entwicklungsstu- fen und Classification der Nager der Jetztzeit: Mémoires de l’Académie Impériale des Sciences de St. Pétersbourg, Serie 6, v. 9, p. 1–365.

Bultó, C., 1980, Nouvelle description de deux espèces du genre *Megacricetodon* (Cricetidae, Rodentia) du Miocène de Bezuin (Zone de La Romieu): Bulletin du Muséum National d’Histoire Naturelle Section C Sciences de la Terre Paléontologie Géologie Minéralogie, v. 2, p. 3–16.

Cuenca Bescós, G., 1988, Revisión de los Sciuridae del Aragoniense y del Ramillense en la fosa de Calatayud-Montalbán: Scripta Geologica, v. 87, p. 1–127.
