IEEE POWER ELECTRONICS REGULAR PAPER

A Power Flow Tracing Method Based on Power Electronic Signaling for P2P Electricity Trading in DC Microgrids

Ruoqi Zhang, Student Member, IEEE, Yue Hui, Student Member, IEEE, Jiande Wu, Member, IEEE, Ruichi Wang, Member, IEEE, Zhengyu Lin, Senior Member, IEEE, and Xiangning He, Fellow, IEEE

Abstract—This paper proposes a novel power flow tracing method based on power electronic signaling (PES) for peer-to-peer (P2P) electricity trading in DC microgrids. It employs a superimposed low-frequency sinusoidal carrier to trace DC power flows according to the bus port impedance characteristics of power converters. In order to support fair and accurate P2P trading, source-to-load power signaling (S2LPS) and source-to-source power verification (S2SPV) methods are presented. Through S2LPS, the P2P DC power flow from a specific distributed source (DS) to a power load (PL) is determined by detecting the carrier’s active power at the PL’s bus port. The same carrier is used to check the actual output power of the DS by S2SPV. By implementing S2LPS and S2SPV, the power flows of the system are traced, recorded, and verified by each DS and PL. Accurate power flow tracing is achieved on the physical layer, providing reliable data for P2P electricity trading. The principles of the proposed method are deduced in detail. Furthermore, the modifications to the control loops of DSs and PLs are depicted for implementations in DC microgrids. Finally, a 2.5kW experimental platform is built to validate the correctness and feasibility of the proposed method.

Index Terms—power electronic signaling, power flow tracing, DC microgrids, superimposed carrier, P2P trading.

I. INTRODUCTION

The increased penetration of renewable energy sources (RESs) and energy storage sources (ESSs) poses significant challenges in system reliability and power management efficiency to traditional AC grid, and the DC microgrid could be a possible solution due to its improved efficiency, reduced complexity, and greater flexibility [1]-[3]. In DC microgrids, there are numerous prosumers that can both produce and consume power depending on different conditions and operation modes. Consequently, peer-to-peer (P2P) trading is a promising technique for DC microgrids as a next generation energy management method [4]-[10]. Through decentralized P2P structure, Prosumers can actively participate in the electricity market by acting as either sellers selling excess energy, or buyers purchasing electricity from other sellers. The AC grid can also reap significant benefits from the P2P structure, such as lower peak demand, lower investment costs, and reduced reserve requirements [4].

The P2P trading structure can be divided into two layers [5]: virtual layer and physical layer, as shown in Fig. 1. In the virtual layer, pricing mechanisms [6]-[7] and information systems [7]-[8] are implemented for financial and electricity transaction settlements. In the physical layer, traditional electrical networks are employed, and extra metering infrastructures are installed at bus ports of prosumers for input/output power measurements. Once the transaction between two prosumers is settled, the electrical network in the physical layer transfers power from the seller to the buyer in accordance with the virtual layer’s instructions.

In P2P trading, most studies concentrate on the trading schemes [6]-[8] in the virtual layer, while physical layer only acts as a passive actuator [9]-[10]. However, in practice, due to the absence of third-party arbitrators in the P2P scheme, disputes between seller and buyer regarding the actual transmitted power may arise [5]. Furthermore, due to varying electricity storage statuses and power qualities of the sellers, and various demands of the buyers, distinguished electricity prices between each seller and each buyer are preferred in P2P trading scheme [11]-[13]. In this case, determining real-time P2P power flows contributes to a fair and reasonable pricing mechanism, and it could also facilitate the energy scheduling optimization in the virtual layer [14]-[15]. Therefore, to ensure accurate and fair P2P transactions, it is necessary to trace the real-time P2P power flows from each seller to each buyer in the physical layer.

Fig. 1. Structure of P2P trading.
In the physical layer of DC microgrids, all prosumers are connected to a common DC bus via power electronics interface converters (PEICs), and the PEICs can be categorized into distributed sources (DSs) and power loads (PLs) according to the prosumer’s character in P2P trading. The DC transferred power between DS and PL is mixed up in the bus, making it difficult for the PL (i.e., buyer) to distinguish the DS (i.e., seller) and the corresponding amount of received power. In this case, stamping power flows is a potential solution, and power electronic signaling (PES) is the most widely used power stamping method [16] in DC microgrids.

In the PES methods, PEICs are deployed to generate and control discernible signals for multiple information-oriented tasks [16]-[35]. PES methods can be further classified into three types: disturbance-based signaling, DC-bus signaling and PES digital communication method.

In the disturbance-based signaling method [17]-[24], small sinusoidal or impulse signals are superimposed by PEICs for monitoring, coordinating, and other purposes. In [17], in order to establish a logic channel among DSs in DC microgrids, sinusoidal signals of specific frequency are superimposed into the common bus by DSs. In [18], an adaptive droop controller based on a superimposed frequency is proposed, and the load sharing accuracy is improved without the use of an additional communication system. Similarly, the same superimposed frequency is used to achieve autonomous power management in [19]. In [20]-[21], positive feedback islanding detection methods with fast detection speed and high robustness are proposed and analyzed based on a power or current disturbance injection in the DS’s control loop. In [22]-[24], the disturbance-based signaling method is employed for line impedance identification by injecting single impulse [22]-[23] or sinusoidal signals with multiple frequencies [24] into the power electronics systems.

In the DC-bus signaling method [25]-[27], the DC bus voltage level is employed as an information carrier to set up communication links between difference source/storage PEICs. Each converter determines its operation mode according to the voltage level, realizing better power management and system coordination.

PES digital communication method is a special kind of power line communication (PLC) technique [29]-[35]. Distinguished from the previous two types of methods, digital messages can be transmitted with the method. The digital data is modulated into the control loop [29]-[31] or switching process [32]-[35] of the PEIC transceiver, which causes voltage ripples on the DC bus. The PEIC receiver samples DC bus voltage ripples and decodes the data. Since no extra communication components are needed, the system structure can be simplified and the manufacturing cost can be reduced.

In conclusion, the traditional PES methods use power electronics circuits to generate recognizable signals, and the converter’s operating messages are embedded in the power flows, resulting in benefits including simple implementation, high reliability, and low cost due to the absence of digital communication networks. However, these methods had no relevance to or application to P2P electricity trading. They are developed for system control purposes and the superimposed signals are only used to indicate system states. Furthermore, it is hard to build mathematical relationship between analogue/digital messages and power flows, making the messages incapable of representing quantitative power flow information. Thus, current PES methods cannot be directly used in power flow tracing.

This paper proposes a novel PES method for P2P power flow tracing in residential DC microgrids to support fair and accurate P2P electricity trading. Inspired by current disturbance-based signaling methods, it employs superimposed low-frequency carriers to stamp DC power flows for physical layer tracing from the DS (i.e., seller) to the PL (i.e., buyer). In contrast to traditional PES methods, the bus port impedances of power converters are controlled in the proposed method. Therefore, mathematical relationship between power flow and the carrier can be established, allowing the carrier to represent power flow information.

In the proposed method, a carrier with controlled active power is injected into the DC bus by each DS in rotation. Each PL measures the received active power at bus port to determine the source and corresponding amount of received DC power, which is termed as source-to-load power signaling (S2LPS) method in this paper. In order to ensure the S2LPS data authenticity, the voltage amplitude of the carrier is used by other prosumers to check the actual DC output power of the DS, which is named as source-to-source power verification (S2SPV) method in this paper. S2LPS measures the power flow between each DS and each PL, providing reliable physical layer data for P2P trading. The S2LPS and S2SPV data can be cross-checked, resolving trust issues between DSs and PLs.

This paper is organized as follows. The origin of the proposed method is illustrated in Section II, and the principles of the proposed method, including S2LPS and S2SPV, are depicted in Section III. In Section IV, the implementations of the proposed method are provided. In Section V, a prototype platform is built to verify the feasibility of the proposed method. Finally, conclusions and prospects are given in Section VI.

The main contributions of this paper are as follows:

1) For the first time, the P2P power flow tracing method based on a superimposed low-frequency carrier is proposed. The method successfully traces and monitors the power path from each seller to each buyer. The tracing results can be used to optimize the financial and energy scheduling model in the virtual layer.
2) A secondary verification mechanism is designed based on the superimposed carrier. The proposed mechanism allows the distributed ledger of P2P trading to be checked, which enhances system security.
3) The implementations of the proposed method are presented. The experimental results on a 2.5kW experimental platform validate the correctness and feasibility of the proposed method.

II. ORIGIN OF THE PROPOSED METHOD

In a DC microgrid with a single DS and multiple PLs, the power sourcing from the DS to the PLs can be traced by measuring the DC current in each PL. However, when multiple DSs supply power concurrently, the power flows between DSs and PLs are mixed up in the DC bus and cannot be distinguished. In this case, in order to trace the power flows from a DS to PLs, it makes sense to stamp the power flow by...
superimposing a carrier with frequency f_c on DC voltage or current. Furthermore, according to circuitry basis, a DS’s power distribution among PLs is determined by the DC bus port impedances of the PLs. If the PL’s DC impedance is proportional to the impedance at carrier frequency f_c, then the DC power distribution can be derived based on the measured AC impedances.

Before proceeding, it is necessary to review the input impedance of a constant power load (CPL). As shown in Fig. 2(a), a CPL can be divided into two parts: input capacitor C_{bus} and the DC-DC converter paralleling with C_{bus}. The input power of the CPL is

$$V_{in,CPL}I_{in,R} = P_{dc,in,CPL},$$ \hspace{1cm} (1)

where $V_{in,CPL}$ and $I_{in,R}$ are the converter’s DC input voltage and current respectively. Since $P_{dc,in,CPL}$ is constant, it is deduced that

$$(V_{in,CPL} + \hat{V}_{in,CPL})(I_{in,R} + \hat{I}_{in,R}) = P_{dc,in,CPL},$$ \hspace{1cm} (2)

where $\hat{V}_{in,CPL}$ and $\hat{I}_{in,R}$ are the converter’s input voltage and current disturbances at f_c respectively. Derived from (1)-(2), it should be

$$\hat{V}_{in,CPL}I_{in,R} + V_{in,CPL}\hat{I}_{in,R} = 0,$$ \hspace{1cm} (3)

Therefore, the converter’s input impedance at f_c is

$$\frac{\hat{V}_{in,CPL}}{\hat{I}_{in,R}} = -\frac{V_{in,CPL}}{I_{in,R}} = -R_L,$$ \hspace{1cm} (4)

where $-R_L$ is the DC closed-loop input impedance of the CPL.

Equation (4) indicates that the input impedances of the DC-DC converter are the same at f_c and DC. Thus, CPL can be simplified as an input capacitor C_{bus} paralleling with a negative resistor $-R_L$ at f_c as shown in Fig. 2(b). The resistor $-R_L$ consumes active power, while C_{bus} absorbs reactive power. Due to this feature, the superimposed carrier can provide information about the impedance of CPLs. By analyzing the active power component of the superimposed carrier at bus port of each CPL, the P2P power flow can be determined.

III. PRINCIPLES OF THE PROPOSED METHOD

A. System Overview

The structure of the DC microgrid employing the proposed method is illustrated in Fig. 3. In the system, all sources and loads are connected to the DC bus via dedicated designed PEICs, which are bidirectional DC-DC converters in this paper. When a prosumer acts as a DS (e.g., DS #1), it supplies power for other prosumers. When a prosumer acts as a PL (e.g., PL #1), it consumes power from DC bus.

It should be noted that the system is equipped with a conventional communication network, which enables the system to perform refined energy scheduling and P2P electricity trading in the virtual layer. By adapting the proposed method in the physical layer, the process of P2P trading can be verified. In order to provide a complete description of the method, the power flows of the system should be modeled.

Assume that the DC microgrid is in island mode, and the power flow between any two DS and PL remains constant throughout the power tracing period T_p, implying that each PL operates as a CPL. In the model, the prosumers are divided into N DSs and M CPLs. The DSs are labeled as DS i ($i=1, 2, ..., N$), and the CPLs are labeled as CPL j ($j=1, 2, ..., M$) in turn. Thus, the system’s power flows during T_p can be abstracted and written as

$$P_{sys} = \begin{bmatrix} P_{11} & \cdots & P_{1M} \\ \vdots & \ddots & \vdots \\ P_{N1} & \cdots & P_{NM} \end{bmatrix},$$ \hspace{1cm} (5)

where P_{ij} denotes the DC transferred power from DS i to CPL j. By implementing S2LPS and S2SPV method, P_{sys} is calculated and verified within T_p. The construction process of P_{sys} is depicted as follows.

As shown in Fig. 4, according to the number of DSs (N), T_p is divided into $3N$ slots, which are denoted as $T_{1a}, T_{1b}, T_{1c}, T_{2a}, T_{2b}, T_{2c}, ..., T_{M2a}, T_{M2b}, T_{M2c}$ in order.

$T_{1a} = 1, 2, ..., N$ is the S2LPS slot for DS i. In this period, a low-frequency sinusoidal carrier with specified active power is superimposed by DS i. Based on the carrier, P_{ij} ($j=1, 2, ..., M$) is measured by CPL j. The measured data are filled into P_{sys} and compared with the transaction agreements settled in the virtual layer. Meanwhile, the data is broadcast to the rest prosumers via the conventional communication network.

$T_{lb} = i=1, 2, ..., N$ is configured as S2SPV slot for DS i. During T_{lb}, S2SPV method is employed, and the carrier with controlled active power is continually superimposed by DS i. The voltage amplitude of the carrier is used by other DSs to estimate the output power of DS i (P_{dc,o,DS_i}). Meanwhile,
the actual DC output power of DS #i \((P_{dc_{o_DS}})\) is broadcast by DS #i to other DSs via the communication network. In every other DS, \(P_{dc_{o_DS}}\) is compared with \(P_{dc_{o_DS}es}\) to ensure its authenticity.

\(T_{id}\) \((i=1, 2, \ldots, N)\) is the idle slot arranged for the power transition process between \(T_{fa}\) and \(T_{id}\). During this period, the superimposed carrier is halted.

At the end of \(T_{fa}\), Every \(P_{sys} \) in \(P_{sys}\) is filled. Furthermore, \(P_{sys}\) can be verified vertically by

\[
P_{dc_{o_DS}es} = \sum_{k=1}^{M} P_{ak}
\]

In order to enhance the data reliability, the input power of CPL #i in \(T_{fa}\) can be used to cross-check with data measured by S2LPS method, which is

\[
P_{dc_{in_{CPL}}} = \sum_{j=1}^{N} P_{kj}
\]

With (7), \(P_{sys}\) can be checked horizontally. After the aforementioned process, \(P_{sys}\) is constructed and verified in each prosumer by S2LPS and S2SPV.

Fig. 5 depicts an example of a DC microgrid with two DSs and two CPLs applying the proposed method. It can be observed that the power flows between any two prosumers are monitored. The measured results \(P_{sys}\) capture the real-time electricity transaction situation in the physical layer, which can be utilized to validate the distributed ledger in the virtual layer, ensuring the ledger’s security and authenticity.

It should be noted that the frequency of the superimposed carrier, \(f_c\), must be chosen carefully to ensure the feasibility of the proposed method. In order to achieve high-precision control while minimizing hardware modification, \(f_c\) should be set lower than the control loop's cut-off frequency. Since \(f_c\) is much lower than the switching frequency \(f_s\), the impact of the switching ripple on the proposed method can be eliminated by signal filters, and it is ignored in this paper.

B. Principle of S2LPS

Measuring the P2P power flow from a DS to a CPL is the foundation for constructing \(P_{sys}\). This is accomplished through S2LPS method, which is based on a superimposed carrier with controlled active power. For instance, the DC transferred power from DS #1 to CPL #1, \(P_{11}\), is measured by S2LPS as follows.

In residential DC microgrids, the line impedance is negligible compared with the load impedance, so the DC equivalent circuit of the DC microgrid is shown in Fig. 6, where \(N\) DSs and \(M\) CPLs are all connected to the point of common coupling (PCC). CPL \(j\) can be simplified as a negative resistor \(-R_{jk}\), which is the DC closed-loop input impedance of CPL \(j\).

As depicted in Fig. 7(a), during \(T_{1a}\), a sinusoidal current \(I_{1a_DS1}\) is superimposed by DS #1 into the DC bus, where superscript "1a" denotes the time slot \(T_{1a}\), and subscript "DS1" denotes the converter. Suppose the angular frequency of \(I_{1a_DS1}\) is

\[
\omega_c = 2\pi f_c
\]

In order to build a relationship between DC power and AC active power at carrier’s frequency, a linear correlation

\[
P_{ac_{o_DS1}} = -K_v P_{dc_{o_DS1}}
\]

is adopted in the S2LPS method, where \(P_{ac_{o_DS1}}\) and \(P_{dc_{o_DS1}}\) denotes DS #1’s AC active power at \(f_c\) and DC output power in \(T_{1a}\), respectively, and \(K_v\) is the predefined S2LPS gain. Equation (9) is the key to S2LPS method.

At \(f_c\), the output active power of DS #1 is

\[
P_{ac_{o_DS1}} = |V_{a_{DS1}}| |I_{a_{DS1}}| \cos \theta_{DS1}
\]

Thus, the amplitude of \(V_{a_{DS1}}\) should be controlled by DS #1 as

\[
|V_{a_{DS1}}| = \frac{-K_v P_{dc_{o_DS1}}}{|I_{a_{DS1}}| \cos \theta_{DS1}}
\]

where \(V_{a_{DS1}}\) is the output voltage of DS #1 at \(f_c\), and \(\theta_{DS1}\) is the angle formed by \(V_{a_{DS1}}\) and \(I_{a_{DS1}}\).

Since the line impedance is ignored, it can be found that

\[
\begin{align*}
V_{a_{DSI}} &= V_{a_{PCC,ij}}, i = 1, 2, 3, \ldots, N, \\
V_{a_{CPL,j}} &= V_{a_{CPL,j}}, j = 1, 2, 3, \ldots, M,
\end{align*}
\]

where \(V_{a_{DSI}}\) and \(V_{a_{CPL,j}}\) are DS #i’s output voltage and CPL \(j\)’s input voltage at \(f_c\) in \(T_{1a}\) respectively. Thus, at \(f_c\), the output active power of DS #1 and input active power of CPL \(j\) are
dimension as well, and it can be accomplished by S2SPV method in this paper.

With S2SPV method, a DS’s actual output power is checked by other DSs using the superimposed carrier. For example, the verification process of DS #1’s actual output power P_{dc,o_DS1}, which is carried out in T_{1a} and T_{1b}, is depicted as follows.

As shown in Fig. 9, suppose the droop characteristic of DS #1 in T_{1a} is

$$V_{a,o_DS1}^{1a} = V_o - r_d t_{1a}^{1a},$$

where V_o is the reference output voltage at zero load, r_d is DS #1’s droop coefficient in T_{1a}. V_{a,o_DS1} and I_{a,o_DS1} are DS #1’s DC output voltage and current in steady state of T_{1a} respectively.

At the end of T_{1a}, the droop coefficient of DS #1 is changed to a new value $r_{d,v}$, while the droop coefficients of DS #i ($i=2,3,...,N$) remain the same. In DS #i ($i=1,2,3,...,N$), the DC output power variation $\Delta P_{dc,o_DS_i}$ caused by the change of droop coefficient is

$$\Delta P_{dc,o_DS_i} = P_{dc,o_DS_i}^{1b} - P_{dc,o_DS_i}^{1a},$$

$\Delta P_{dc,o_DS_i}$ is broadcast to the rest prosumers via conventional communication networks. Since the total consumed power of CPLs is constant, the actual power variation of DS #1 can be calculated by every other DS #i ($i=2,3,...,N$) as

$$\Delta P_{dc,o_DS_i} = - \sum_{i=2}^{N} \Delta P_{dc,o_DS_i},$$

Thus, it can be written as

$$P_{dc,o_DS_i}^{1b} = 1 - \sum_{i=2}^{N} \Delta P_{dc,o_DS_i},$$

During T_{1b}, the superimposed carrier is still generated and controlled by DS #1 in the same way as in T_{1a}, which is

$$I_{a,o_DS1}^{1b} = -K \frac{P_{dc,o_DS1}^{1b}}{V_{a,o_DS1}^{1b} \cos \theta_{DS1}}.$$

Besides, the system equivalent circuit at f_c in T_{1b} is the same as that in T_{1a}. Thus, it can be derived that

$$\begin{align*}
\left| Z_{load} \right| &= \left| Z_{load} \right| \\
&= \frac{1}{-\sum_{j=1}^{M} \left(1/R_j \right) + j(N+M-1)C_{bus}},
\end{align*}$$

where Z_{load} is the load impedance of DS #1. By substituting (22) into (11), it can be derived as
As mentioned in Section III. B, \(I_{a_DS1}^{1a} \) contains the output power information of DS #1. To precisely generate \(I_{a_DS1}^{1a} \) as (11), an active power generation (APG) loop is added to the control scheme, as shown in Fig. 10. At \(f_c \), DS #1’s output current and voltage can be expressed as

\[
\begin{align*}
 i_{DS1}^{1a} & = i_{DS1}^{1a} \cos(2\pi f_c t), \\
 v_{DS1}^{1a} & = v_{DS1}^{1a} \cos(2\pi f_c t + \theta_{DS1}).
\end{align*}
\]

respectively. Thus, \(P_1 \) can be derived as

\[
P_1 = \frac{1}{2} |V_{DS1}^{1a}| |I_{DS1}^{1a}| \cos(\theta_{DS1} + 4\pi f_c t + \theta_{DS1}).
\]

To extract the DC component, \(P_1 \) is passed through a notch filter

\[
G_{nf1}(s) = \frac{(s/\omega_{c1, nf})^2 + 2\epsilon_{1, nf} \cdot s/\omega_{c1, nf} + 1}{(s/\omega_{c1, nf})^2 + 2\epsilon_{2, nf} \cdot s/\omega_{c1, nf} + 1},
\]

where \(\omega_{c1, nf} = 2\omega_c \) is the frequency of the notch, and \(\epsilon_{1, nf} \) and \(\epsilon_{2, nf} \) are two coefficients related to the notch depth and the bandwidth. The gain-frequency diagram of \(G_{nf1}(s) \) is illustrated in Fig. 11. So \(P_2 \) can be expressed as

\[
P_2 = \frac{1}{2} |V_{DS1}^{1a}| |I_{DS1}^{1a}| \cos(\theta_{DS1} + 4\pi f_c t + \theta_{DS1}).
\]

\(P_2 \) is the active power reference, which is

\[
P_2 = -\frac{1}{2} K, \quad \text{for} \quad |V_{DC_{o,DS1}}^{1a}|.
\]

To obtain the amplitude reference \(I_{AP,ref} \), the deviation between \(P_2 \) and \(P_{ref} \) is compensated by a PI controller \(G_{ap}(s) \) with low bandwidth. With \(I_{AP,ref} \), the output of APG loop

\[
i_{AP,ref}(t) = I_{AP,ref} \cos(\omega_c t)
\]

is superimposed into the inductor current loop.

In steady state, \(i_{AP,ref} \) is a sinusoidal signal, so a proportional-integral-resonant type controller

\[
G_{mi1}(s) = K_{p,mi1} + \frac{K_{mi1}}{s} + \frac{2K_{mi1} \omega_{c,mi1} s}{s^2 + 2\omega_{c,mi1} s + \omega_c^2},
\]

is adopted in the inductor current loop to achieve errorless control, where \(K_{p,mi1}, K_{mi1} \) and \(K_{mi1} \) are the proportional, integral, and resonant coefficients of \(G_{mi1}(s) \) respectively, and \(\omega_{c,mi1} \) determines the bandwidth of \(G_{mi1}(s) \).

The APG loop introduces components of \(f_c \) into DS #1’s output voltage and current. To keep the DC droop characteristic unaffected, a notch filter

\[
G_{nf2}(s) = \frac{(s/\omega_{c2, nf})^2 + 2\epsilon_{1, nf} \cdot s/\omega_{c2, nf} + 1}{(s/\omega_{c2, nf})^2 + 2\epsilon_{2, nf} \cdot s/\omega_{c2, nf} + 1},
\]

is applied in the voltage compensation loop, where \(\omega_{c2, nf} = \omega_c \) is the center frequency, and \(\epsilon_{c1, nf} \) and \(\epsilon_{c2, nf} \) are two coefficients. The gain-frequency diagram of \(G_{nf2}(s) \) is shown in Fig. 11.
in steady state respectively, where I_{DLi}^{a} and V_{OLi}^{a} are the DC inductor current and output voltage of DS $#i$, respectively, and ϕ_{DSi} denotes the angle formed by I_{DLi}^{a} and V_{OLi}^{a} in T_ia. The power loss on DS $#i$ is insignificant compared with the output power, so DS $#i'$s output and input active power are equal, which is

$$\begin{align*}
V_{OLi}^{a}(t)I_{DLi}^{a}(t)\cos \phi_{DSi} &= V_{in_{DSi}}^{a}(t)I_{DLi}^{a}(t), \\
\frac{I_{DLi}^{a}(t)}{V_{OLi}^{a}(t)} &= \frac{I_{DLi}^{a}(t)}{V_{in_{DSi}}^{a}(t)},
\end{align*}
$$

(35)

where $V_{in_{DSi}}^{a}(t)$ is the DS $#i'$s input voltage in T_ia.

When DS $#1$ is sending I_{DLi}^{a}, the active power generated by every other DS $#i$ should be zero, implying that $I_{DLi}^{a}(t)\cos \phi_{DSi}$ should be constant. Since $V_{in_{DSi}}^{a}(t)$ is constant, it should be satisfied that

$$\begin{align*}
\frac{I_{DLi}^{a}}{V_{OLi}^{a}} &= \frac{|I_{DLi}^{a}|}{|V_{OLi}^{a}|}, \\
\phi_{DSi} &= \phi_{DS1}.
\end{align*}
$$

(38)

According to (38), an active power elimination (APE) loop is added parallelly with the original output voltage loop, as illustrated in Fig. 12. A resonator

$$G_{mi}(s) = \frac{\lambda_1 s / \omega_{cm1}}{s^2 + \lambda_1 s / \omega_{cm1} + 1}$$

(39)

is employed to precisely control I_{DLi}^{a}, where $\omega_{cm1} = \omega_c$ is the center frequency, and λ_1 and λ_2 are two coefficients that satisfy

$$\begin{align*}
G_{mi}(\omega_c) &= \frac{\lambda_1}{\lambda_2} = \frac{I_{DLi}^{a}}{|V_{OLi}^{a}|}, \\
&= \frac{V_{OLi}^{a}}{|V_{OLi}^{a}|}. \\
\end{align*}
$$

(40)

Besides, the phase delay of $G_{mi}(s)$ at f_c is zero, as illustrated in Fig. 11. Thus, (38) can be satisfied with the introduced $G_{mi}(s)$.

The variables I_{DLi}^{a}, V_{OLi}^{a} and $|V_{OLi}^{a}|$ can be sampled by the DS $#i'$s microcontroller. Based on (40), λ_1/λ_2 can be on-line calculated and regulated by the microcontroller. $G_{mi}(s)$ eliminates the DC component of $V_{OLi}^{a}(t)$ and amplifies the component at f_c, with a gain of λ_1/λ_2. APE_{ref} and $I_{DLi}^{a}_{ref}$ are added together to form the reference of I_{DLi} as shown in Fig. 11.

12. To achieve error-free tracking of the reference, the current loop controller is modified to $G_{mi}(s)$ with a resonant link, and $G_{at}(s)$ is used to maintain the DC control characteristic.

C. Modification for CPLs

Conventionally, the control scheme of a bidirectional PL in DC microgrids consists of two loops: the output voltage loop and the inductor current loop, as depicted in Fig. 13.

At f_c, the PL should function as a CPL, which means the closed control loop gain should be sufficient. Thus, the inductor current compensator is modified to

$$G_{mi}(s) = K_{r_mi2} + K_{c_mi2} \frac{2K_{r_mi2}K_{c_mi2} s}{s^2 + 2\omega_{cm2}s + \omega_c^2},$$

(41)

where K_{r_mi2}, K_{c_mi2} are the proportional, integral, and resonant coefficients of $G_{mi}(s)$ respectively, and ω_{cm2} determines the bandwidth of G_{mi}. $G_{mi}(s)$ is also used in the voltage compensation loop to maintain the droop characteristic.

By implementing the CPL modification scheme, Fig. 14 shows the bode diagram of a CPL’s input impedances with different K_{r_mi2}. In Fig. 14, Z_{e_CPL} is the open-loop input impedance and Z_{e_CPL} is the closed-loop input impedances with different K_{r_mi2}. It can be observed that with a sufficient K_{r_mi2}, the input impedance appears to be a negative resistor at 25Hz, and the magnitude gain at 25Hz is 38.1dB (80Ω), which is the same as the DC input impedance. Therefore, the correctness of the CPL modification scheme is proved.
V. EXPERIMENTAL RESULTS

The correctness of the proposed power tracing method has been experimentally validated on a 2.5kW DC microgrid platform. The structure and photo of the platform are shown in Fig. 15 and Fig. 16 respectively, and the platform parameters are provided in Table I. In the experimental system, prosumers #1 and #2 act as DSs, while prosumers #3 and #4 act as CPLs. TMS320F28377 from Texas Instruments is used in each converter to implement the proposed method, and MOSFET C3M0065090D from Cree is selected as the switches for bidirectional converters. The experimental control parameters are listed in Table II.

Based on the platform, two experiments are carried out. In Experiment I, the fundamentals of S2LPS are checked, while in Experiment II, an application example is provided, in which S2LPS and S2SPV are both applied.

A. Experiment I: S2LPS Test

This experiment aims to check the correctness of S2LPS principle. In this test, in order to determine the actual P_1 and P_{12}, DS #2 is disconnected from the DC bus, and DS #1 supplies power for both CPLs. When DS #1 is sending out $I_{o,DS1}$, the operational waveforms of DS #1, CPL #1 and CPL #2 are demonstrated in Fig. 17 (a)-(c), respectively.

In Fig. 17(a), $V_{o,DS1}$ and $I_{o,DS1}$ are the AC components of $v_{o,DS1}$ and $i_{o,DS1}$, respectively. In order to offer a more explicit view, they are passed through band pass filters (BPFs) with a center frequency of 25Hz to obtain $v_{o,DS1 _fil}$ and $i_{o,DS1 _fil}$, respectively. The DC output voltage $V_{o,DS1}$ is 373.1V and the DC output current $I_{o,DS1}$ is 4.16A. Thus, the actual DC output power $P_{dc,o,DS1}$ is 1552W, and the theoretical active power at 25Hz should be $-0.3104W$ based on (9). Calculated by $v_{o,DS1 _fil}$ and $i_{o,DS1 _fil}$, the output active power of DS #1 at 25Hz is $-0.3088W$. The error between theoretical and
experimental results is less than 1%, which verifies the effectiveness of the APG loop.

In Fig. 17(b), \(\tilde{v}_{\text{in,CPL1}} \) and \(\tilde{i}_{\text{in,CPL1}} \) are the AC components of \(v_{\text{in,CPL1}} \) and \(i_{\text{in,CPL1}} \), respectively. They are passed through the same BPFs to obtain \(\tilde{v}_{\text{in,CPL1,fil}} \) and \(\tilde{i}_{\text{in,CPL1,fil}} \), respectively. Due to the control loop modifications for CPL, no component of 25Hz exists in \(v_{\text{in,CPL1}} \) and \(i_{\text{in,CPL1}} \).

For CPL #1, the actual DC input power \(P_{\text{dc,in,CPL1}} \) is calculated as 1026W. Calculated by \(\tilde{v}_{\text{in,CPL1,fil}} \) and \(\tilde{i}_{\text{in,CPL1,fil}} \), the input active power \(P_{\text{dc,in,CPL1}}^{\text{a}} \) is \(-0.2028\) W at 25Hz. According to (16), \(P_{11} \), which is the P2P transferred power from DS #1 to CPL #1, is estimated as 1014W by S2LPS. The error between estimated and actual results is 1.2%.

For CPL #2, similarly, the actual DC input power \(P_{\text{dc,in,CPL2}} \) is calculated as 522.8W, while the estimated \(P_{12} \) is 515.0W according to a measured active power \(P_{\text{dc,in,CPL2}}^{\text{a}} \) of \(-0.1030\) W. The estimated error is 1.5%, which verifies the correctness of S2LPS.

The calculation results of Experiment I is summarized in Table III. The estimated errors come from several factors. First, parasitic parameters are not considered in the derivation of S2LPS method. Second, the non-infinite control loop gain parasitic parameters are not considered in the derivation of S2LPS method. Third, the rounding and quantization errors in the computation process reduce the accuracy of the experimental results.

B. Experiment II: System Test

In this experiment, the system employing the proposed power flow tracing method is tested, and the correctness of S2SPV is checked. Based on S2LPS and S2SPV, the power flow matrix \(X_{\text{sys}} \) is established.

In this test, DS #1 and DS #2 supply power for the DC bus. CPL #1 and CPL #2 consume around 1kW and 1.5kW of constant power respectively. The power flow tracing and verification processes for DS #1 are illustrated as follows.

As shown in Fig. 18, at the beginning of \(T_{1a} \), S2LPS method is applied and the APG loop in DS #1 is activated to generate \(i_{\text{DS1}} \). To eliminate DS #2’s influence to the S2LPS process, the APE loop in DS #2 begins to operate. It can be observed from Fig. 19 that \(\tilde{v}_{\text{in,DS2}} \) lags \(\tilde{i}_{\text{in,DS2}} \) about \(\pi/2 \), confirming the correctness of the modification method in Section IV. B. Therefore, in the equivalent circuit at 25Hz, DS #2 can be simplified as \(C_{\text{bus}} \).

In steady state of \(T_{1a} \), the CPLs determine the transferred power from DS #1 by calculating the input active power at 25Hz. As shown in Fig. 20(a)-(b), the input active power of CPL #1 and #2 are measured as \(-0.0976\) W and \(-0.1445\) W respectively. According to (16), \(P_{11} \) and \(P_{12} \) can be calculated by S2LPS as 488.2W and 722.3W respectively.

At the beginning of \(T_{1a} \), DS #1 changes its droop coefficient from \(r_d=1\) V/A to \(r_d=0.95\) V/A. Thus, DS #1’s output current gradually increases and DS #2’s output current gradually decreases, as illustrated in Fig. 18. The length of the transition process is \(T_{1a}=4.1\) s. According to the measured \(V_{\text{PCC}} \), \(i_{\text{DS1}} \) and \(i_{\text{DS2}} \), the DC output power variation \(\Delta P_{\text{dc,o,DS2}} \) is \(-227.8\) W.
At the end of T_{lb}, DS #1 changes its droop coefficient to original value r_b, and the APG and APE loops are deactivated. The length of T_{lb} is set to 8s to guarantee the completion of power transition process caused by droop coefficient variation.

Zoom in on v_{PCC}, it can be measured that $|V_{PCC}^a|=3.61V$, and $|V_{PCC}^b|=3.94V$. According to (26), it can be estimated that $P_{dc_o_DS1_{es}}=1192W$, while the actual output power of DS #1 in T_{lb} is $P_{dc_o_DS1}=1210W$. The estimated error is 1.5%, which verifies the correctness of S2SPV principle.

So far, P_{1a} and P_{1b} have been measured and filled into P_{sys}. Similarly, P_{2a} and P_{2b} are measured in T_{2b}, and the power flow matrix P_{sys} is filled in as

$$P_{sys} = \begin{bmatrix} 488.2 & 722.3 \\ 532.5 & 783.9 \end{bmatrix}. $$

In T_{2b}, the correctness of $P_{dc_o DS2}$ can be checked by S2SPV. Besides, P_{sys} can be double-checked according to (6) and (7). The verification results of Experiment II are summarized in Table IV. The estimated errors are all less than 2.5%.

In this experiment, the construction of P_{sys} takes 40s, which is because T_{a}, T_{b}, and T_{a} are designed long enough to ensure the stabilization of the control loop outputs. It should be noted that T_{a}, T_{b}, and T_{c} can be significantly reduced through dedicated control parameter designs.

C. Power Loss Analysis

The proposed method introduces low-frequency voltage and current disturbances to the system, resulting in additional power losses. Take DS #1 as an example, the additional power losses ΔP_{add_DS1} are analyzed as follows.

Suppose the output voltage v_{o_DS1} and inductor current i_{L1} of DS1 are

$$\begin{aligned}
 v_{o_DS1} &= V_{o_DS1} + A \cos(\omega t) \\
i_{L1} &= I_{L1} + B \cos(\omega t + \phi) \label{42},
\end{aligned}$$

where A and B are the peak value of v_{o_DS1} and i_{L1} at ωt, respectively. In general, the converter’s total power losses P_{loss} are

$$P_{loss} = P_{MOS} + P_L + P_C \label{43},$$

where P_{MOS}, P_L and P_C denote for the power loss on the switches, inductors, and output capacitors, respectively.

P_{MOS} consists of conduction loss P_{cond} and switching loss P_{sw} \cite{36}. The conduction loss P_{cond} is calculated by

$$P_{cond} = I_{rms}^2 R_{loss} \label{44},$$

where I_{L1}, I_{rms}, and I_{ripple} represent the i_{L1}’s DC value, i_{L1}’s RMS value at ωt, and i_{L1}’s peak-to-peak value of the switching ripple, respectively. R_{loss} is the conduction resistance of the MOSFET, and D is the duty cycle of S_1. Since S_2 is soft-switching, the switching loss P_{sw} is

$$P_{sw} = P_{vi} + P_{dead-time} + P_n + P_{Cap}, \label{45}$$

where P_{vi} denotes the power loss on S_1 caused by the overlap of voltage and current, $P_{dead-time}$ is the anti-parallelled diode conduction loss of S_2 during dead time, P_n is the diode reverse recovery loss, and P_{Cap} is the output capacitor loss of S_1 and S_2.

Each of them can be further calculated by

$$\begin{aligned}
P_{vi} &= \frac{1}{2} \int_{0}^{T_i} v_{o_DS1}(t) i_{L1}(t) dt \\
P_{dead-time} &= 2V_i f_s i_{dead-time} \int_{0}^{T_i} i_{L1}(t) dt \\
P_{n} &= V_i Q_{re} f_s \\
P_{Cap} &= C_{loss} f_s \int_{0}^{T_i} v_{o_DS1}^2(t) dt
\end{aligned} \label{46},$$

where T_i and T_f are the rise and fall time of the MOSFET, respectively, V_i is the forward conduction voltage drop of the diode, $i_{dead-time}$ is the duration of dead time, Q_{re} is the diode reverse recovery charge, and C_{loss} is the MOSFET’s output capacitance.

The inductor loss P_L consists of the core loss and the conduction loss. Since L_1 works in continuous-current mode, the core loss is ignored. So, the inductor loss is calculated as

$$P_L = I_{L1}^2 R_{esr_L} \label{47},$$

where R_{esr_L} is the parasitic resistance of L_1, and I_{L1} is the RMS current on the inductor.

The capacitor loss P_C is

$$P_C = I_{L1}^2 R_{esr_C} \label{48},$$

where I_{L1} is the RMS current on C_{bus}, and R_{esr_C} is the parasitic resistance of C_{bus}.

The additional power losses ΔP_{add_DS1} are

$$\Delta P_{add_DS1} = \Delta P_{cond} + \Delta P_{vi} + \Delta P_{n} + \Delta P_{Cap} + \Delta P_L + \Delta P_C \label{49}. $$

For DS #1, it is calculated that $P_{sw}=9.42W$, $P_{MOS}=12.11W$, $P_L=4.32W$, and $P_C=0.02W$, according to (42)-(48). Thus, the total power losses P_{loss_DS1} are 16.46W, while ΔP_{add_DS1} is calculated as 11.1mW, which is 0.07% of P_{loss_DS1}. Therefore, the additional power losses introduced by the proposed method can be ignored.

VI. CONCLUSIONS & FUTURE WORKS

This paper proposes a power flow tracing control method for fair and accurate P2P trading in DC microgrids. The proposed method, which consists of S2LPS and S2SPV, is established on a superimposed low-frequency carrier. S2LPS measures the power flow between each DS and each CPL, providing reliable physical layer data for P2P trading. S2SPV checks the actual output power of DSs, so the data authenticity from each DS can be guaranteed by other prosumers in the system. The S2LPS and S2SPV data are cross-checked, resolving trust issues between DSs and PLs. The correctness and feasibility of the
proposed method are validated on a 2.5kW DC microgrid platform, and the errors between estimated and actual data are all less than 2.5%.

The proposed method obtains advantages of PES technique, including simple implementation, high reliability, and low cost. With the proposed method, advanced and dedicated transaction mechanisms considering the P2P power transmission status could be implemented in P2P trading scheme, ensuring the fairness and accuracy of P2P trading. The proposed method is also applicable in meshed DC microgrids and may inspire other researches in the area of P2P trading.

However, there are still some considerable issues that merit further research. First, power fluctuations caused by load variations are common in practice. Since the proposed method is established on the premise that each load is viewed as a CPL, the measuring period \(T_p \) should be much shorter than the intervals between two power fluctuation events. Consequently, the bandwidth of the proposed method should be further increased. Second, the impacts of the line impedance are not negligible in large-scale DC microgrids. In this case, traditional line impedance measuring methods \([22]-[24]\) can be employed and the corresponding correction items can be provided to compensate the measuring errors and guarantee the fairness of P2P trading \([37]\). Third, for future commercial products applications, the accuracy of the proposed method should be improved with advanced metering instruments and dedicated control parameter designs.

REFERENCES

[1] T. Dragičević, X. Lu, J. C. Vasquez and J. M. Guerrero, "DC microgrids—Part I: A review of control strategies and stabilization techniques," IEEE Trans. Power Electron., vol. 31, no. 7, pp. 4876-4891, July 2016.

[2] T. Dragičević, X. Lu, J. C. Vasquez and J. M. Guerrero, "DC microgrids—Part II: A review of power architectures, applications, and standardization issues," IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3528-3549, May 2016.

[3] V. Nasirian, S. Moayedi, A. Davoudi and F. L. Lewis, "Distributed cooperative control of DC microgrids," IEEE Trans. Power Electron., vol. 30, no. 4, pp. 2288-2303, April 2015.

[4] S. Cui, Y. Wang and J. Xiao, "Peer-to-peer energy sharing among smart energy buildings by distributed transaction," IEEE Trans. Smart Grid, vol. 10, no. 6, pp. 6491-6501, Nov. 2019.

[5] W. Tushar, T. K. Saha, C. Yuen, D. Smith and H. V. Poor, "Peer-to-peer trading in electricity networks: An overview," IEEE Trans. Smart Grid, vol. 11, no. 4, pp. 3185-3200, July 2020.

[6] T. Mørstyn and M. D. McCulloch, "Multi-class energy management for peer-to-peer energy trading driven by prosumer preferences," IEEE Trans. Power Syst., vol. 34, no. 5, pp. 4005–4014, Sep. 2019.

[7] Z. Li, J. Kang, R. Yu, D. Ye, Q. Deng, and Y. Zhang, "Consortium blockchain for secure energy trading in industrial Internet of Things," IEEE Trans. Ind. Informat., vol. 14, no. 8, pp. 3690–3700, Aug. 2018.

[8] W. Hou, L. Guo, and Z. Ning, "Local electricity storage for blockchain-based energy trading in industrial Internet of Things," IEEE Trans. Ind. Informat., vol. 15, no. 6, pp. 3610–3619, Jun. 2019.

[9] W. Tushar et al., "Transforming energy networks via peer-to-peer energy trading: The potential of game-theoretic approaches," IEEE Signal Process. Mag., vol. 35, no. 4, pp. 90–111, Jul. 2018.

[10] Y. Xu, H. Sun, and W. Gu, "A novel discounted min-consensus algorithm for optimal electrical power trading in grid-connected DC microgrids," IEEE Trans. Ind. Electron., vol. 66, no. 11, pp. 8474–8484, Nov. 2019.

[11] Z. Guo, P. Pinson, S. Chen, Q. Yang and Y. Yang, "Chance-constrained peer-to-peer joint energy and reserve market considering renewable generation uncertainty," IEEE Trans. on Smart Grid, vol. 12, no. 1, pp. 798–809, Jan. 2020.

[12] M. I. Azim, W. Tushar and T. K. Saha, "Coalition graph game-based P2P energy trading with local voltage management," IEEE Trans. on Smart Grid, DOI: 10.1109/TSG.2021.3070160.

[13] J. Kang, R. Yu, X. Huang, S. Maharjan, Y. Zhang and E. Hossain, "Enabling localized peer-to-peer electricity trading among plug-in hybrid electric vehicles using consortium blockchains," IEEE Trans. on Ind. Informat., vol. 13, no. 6, pp. 3154–3164, Dec. 2017.

[14] Z. Wang and R. Paranjape, "Optimal residential demand response for multiple heterogeneous homes with real-time price prediction in a multiagent framework," IEEE Trans. on Smart Grid, vol. 8, no. 3, pp. 1173–1184, May 2017.

[15] W. Wei, J. Wang and L. Wu, "Distribution optimal power flow with real-time price elasticity," IEEE Trans. on Power Syst., vol. 33, no. 1, pp. 1097–1108, Jan. 2018.

[16] W. Xu and W. Wang, "Power electronic signaling technology—A new class of power electronics applications," IEEE Trans. Smart Grid, vol. 1, no. 3, pp. 332–339, Dec. 2010.

[17] T. Dragičević et al., "A distributed control strategy for coordination of an autonomous LVDC microgrid based on power-line signaling," IEEE Trans. Ind. Electron., vol. 61, no. 7, pp. 3313–3326, July 2014.

[18] S. Peyghami et al., "Decentralized load sharing in a low-voltage direct current microgrid with an adaptive droop approach based on a superimposed frequency," IEEE Journal of Emerging and Selected Topics in Power Electron., vol. 5, no. 3, pp. 1205–1215, Sept. 2017.

[19] S. Peyghami, H. Mokhtari, et al., "Autonomous power management in LVDC microgrids based on a superimposed frequency of droop," IEEE Trans. Power Electron., vol. 33, no. 6, pp. 5341–5350, 2018.

[20] G. Seo, et al., "A new DC anti-islanding technique of electrolytic capacitor-less Photovoltaic interface in DC distribution systems," IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1632–1641, April 2013.

[21] A. M. I. Mohamad and Y. A. I. Mohamed, "Assessment and performance comparison of positive feedback islanding detection methods in DC distribution systems," IEEE Trans. Power Electron., vol. 32, no. 8, pp. 6577–6594, Aug. 2017.

[22] Z. Liu, J. Liu and Z. Liu, "Analysis, design, and implementation of impulse-injection-based online grid impedance identification with grid-tied converters," IEEE Trans. on Power Electron., vol. 35, no. 12, pp. 12959–12976, Dec. 2020.

[23] C. Liu, J. Zhao, S. Wang, W. Lu and K. Qu, "Active identification method for line resistance in DC microgrid based on single pulse injection," IEEE Trans. Power Electron., vol. 33, no. 7, pp. 5561–5564, July 2018.

[24] X. Yue, Z. Fang, F. Wang, Z. Zhang, and H. Shi, "A novel adaptive frequency injection method for power system impedance measurement," IEEE Trans. Power Electron., vol. 29, no. 12, pp. 6700–6711, Dec. 2014.

[25] J. Schonbierschenonbergh, R. Duke and S. D. Round, "DC-bus signaling: A distributed control strategy for a hybrid renewable nanogrid," IEEE Trans. Ind. Electron., vol. 63, no. 5, pp. 3550–3560, Oct. 2016.

[26] K. Sun, L. Zhang, Y. Xing and J. M. Guerrero, "A distributed control strategy based on DC bus signaling for modular Photovoltaic generation systems with battery energy storage," IEEE Trans. Power Electron., vol. 26, no. 10, pp. 3032–3045, Oct. 2011.

[27] D. Qu, et al., "An improved DC-bus signaling control method in a distributed nanogrid interfacing modular converters," in 2015 IEEE 11th International Power Electronics and Motion Control Conference, 2015, pp. 4643–4648.

[28] R. Zhang, Y. Hui, J. Wu, R. Wang, Z. Lin and X. He, "Embedding OFDM-Based carrier communication into power control loop of converter in DC Microgrids," IEEE Trans. on Ind. Electron., DOI: 10.1109/TIE.2021.3095821.

[29] H. Liu et al., "Power Talk: A novel power line communication in DC MicroGrid," in 2016 IEEE 8th International Power Electron. and Motion Control Conf. (IPEMC-ECCE Asia), 2016, pp. 1–6.

[30] M. Angelichinoski et al., "Multimedia communication through power talk in DC MicroGrids," in IEEE Journal on Selected Areas in Communications, vol. 34, no. 7, pp. 1632–1641, Jul. 2016.

[31] R. Zhu et al., "Embedding power line communication in Photovoltaic optimizer by modularizing data in power control loop," IEEE Trans. on Ind. Electron., vol. 66, no. 5, pp. 3948–3958, May 2019.

[32] X. He, R. Wang, J. Wu et al., "Nature of power electronics and integration of power conversion with communication for talkative power", Nat Commun., 2020, 11: 2479.

[33] R. Wang et al., "Direct sequence spread spectrum-based PWM strategy for harmonic reduction and communication," IEEE Trans. Power Electron., vol. 32, no. 6, pp. 4455–4465, June 2017.

[34] H. Choi et al., "Enhanced power line communication strategy for DC microgrids using switching frequency modulation of power converters," IEEE Trans. Power Electron., vol. 32, no. 6, pp. 4140–4144, June 2017.
[35] J. Du et al., "DC power-line communication based on power/signal dual modulation in phase shift full-bridge converters," IEEE Trans. Power Electron., vol. 32, no. 1, pp. 693-702, Jan. 2017.

[36] Y. Li and Y. Han, "A module-integrated distributed battery energy storage and management System," IEEE Trans. Power Electron., vol. 31, no. 12, pp. 8260-8270, Dec. 2016.

[37] J. Yang, A. Paudel and H. B. Gooi, "Compensation for power loss by a proof-of-stake consortium blockchain microgrid," IEEE Trans. on Ind. Informat., vol. 17, no. 5, pp. 3253-3262, May 2021.

Ruqi Zhang (S’18) was born in Fujian, China, in 1994. He received the B.S degree in electrical engineering from Zhejiang University, Hangzhou, China, in 2016. Currently, he is working toward the Ph.D. degree in the College of Electrical Engineering, Zhejiang University, Hangzhou, China. From Sept. 2015 to June 2016, he was an intern at Silan Microelectronics Co. Ltd, Hangzhou, China. His current research interests include communication techniques applied in distributed power electronics system.

Yue Hui (S’21) received the B.S degree in electrical engineering from Zhejiang University, Hangzhou, China, in 2020. Currently, she is working toward the M.S degree in the College of Electrical Engineering, Zhejiang University, Hangzhou, China. Her current research interests include distributed power electronics system.

Jiande Wu (M’11) was born in Zhejiang, China, in 1973. He received the B.Sc., M.Sc and Ph.D. degree from the College of Electrical Engineering, Zhejiang University, Hangzhou, China, in 1994, 1997 and 2012, respectively. Since 1997, he has been a faculty member at Zhejiang University, where he is currently an associate professor. From 2013 to 2014, he was an academic visitor at the University of Strathclyde, Glasgow, U.K. His research interests include power electronics control, distributed power electronics system and fieldbus communication.

Ruichi Wang (S’14–M’19) received the B.Sc. and Ph.D degree in electrical engineering from Zhejiang University, Hangzhou, China, in 2013 and 2019, respectively. Currently, she is working as Marie Sklodowska-Curie Actions – Individual Fellowships (MSCA-IF) in Loughborough University, UK. Her current research interests include information theory and communication technique applied in power electronics.

Zhengyu Lin (S’03-M’05-SM’10) received the B.Sc. and M.Sc. degrees from the College of Electrical Engineering, Zhejiang University, Hangzhou, China, in 1998 and 2001, respectively, and the Ph.D. degree from Heriot-Watt University, Edinburgh, U.K., in 2005. He is currently a Reader in the School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, UK. His research interests include power electronics and its applications in renewable energy, energy storage, motor drives, microgrids, and multi-energy systems. He is currently holding an EPSRC UKRI Innovation Fellowship on DC microgrids.

Xiangning He (M’95–SM’96–F’10) received the B.Sc. and M.Sc. degree from Nanjing University of Aeronautical and Astronautical, Nanjing, China, in 1982 and 1985, respectively, and Ph.D. degree from Zhejiang University, Hangzhou, China, in 1989.

In 1991, he obtained a Fellowship from the Royal Society of U.K., and conducted research in Heriot-Watt University, Edinburgh, U.K., as a Post-Doctoral Research Fellow for two years. In 1994, he joined Zhejiang University as an Associate Professor. Since 1996, he has been a Full Professor in the College of Electrical Engineering, Zhejiang University. His research interests are power electronics and their industrial applications.

Dr. He is a Fellow of The Institute of Electrical and Electronics Engineers (IEEE) and has been appointed as IEEE Distinguished Lecturer by the IEEE Power Electronics Society in 2011. He is also a Fellow of the Institution of Engineering and Technology (formerly IEE), U.K.