DISTRIBUTIVE QUOTIENTS

P.L. ROBINSON

Abstract. We note that each lattice \(L \) has a unique largest distributive quotient, of which every distributive quotient of \(L \) is itself a quotient.

Let \(L \) be a lattice, with meet and join denoted by \(\land \) and \(\lor \) respectively. A congruence on \(L \) is an equivalence relation \(\theta \) on \(L \) that is compatible with meet and join in the sense

\[
(a_1, a_2) \in \theta \text{ and } (b_1, b_2) \in \theta \Rightarrow (a_1 \land b_1, a_2 \land b_2) \in \theta \text{ and } (a_1 \lor b_1, a_2 \lor b_2) \in \theta
\]

whenever \(a_1, b_1, a_2, b_2 \in L \); the corresponding quotient lattice is the set \(L/\theta \) of blocks (or equivalence classes) with meet and join well-defined by

\[
[a]_\theta \land [b]_\theta = [a \land b]_\theta, \quad [a]_\theta \lor [b]_\theta = [a \lor b]_\theta
\]

whenever \(a, b \in L \). A lattice \(L \) is distributive (notation: \(L \in \mathbb{D} \)) exactly when it satisfies either (hence each) of the equivalent conditions

\[
\forall a, b, c \in L \quad a \land (b \lor c) = (a \land b) \lor (a \land c),
\]

\[
\forall a, b, c \in L \quad a \lor (b \land c) = (a \lor b) \land (a \lor c).
\]

The purpose of this brief note is to record certain elementary facts regarding the distributive quotients of an arbitrary lattice: in particular, the fact that each lattice \(L \) has a unique largest distributive quotient, of which every distributive quotient of \(L \) is itself a quotient.

The congruences on \(L \) themselves constitute a lattice \(\Theta(L) = \text{Con}(L) \) in which meet is intersection and the join of two congruences is the transitive closure of their union. Within \(\Theta(L) \) we single out those congruences of \(L \) relative to which the quotient is distributive:

\[
\Theta_D(L) = \{ \theta \in \Theta(L) : L/\theta \in \mathbb{D} \}.
\]

Note that \(\Theta_D(L) \) is a filter in \(\Theta(L) \): that is, an up-set closed under finite intersections. In fact, more is true.

Theorem 1. \(\Theta_D(L) \subseteq \Theta(L) \) is an up-set that is closed under arbitrary intersections.

Proof. \(\Theta_D(L) \) is an up-set: if \(\Theta_D(L) \ni \theta_0 \subseteq \theta \in \Theta(L) \) then the inclusion \(\theta_0 \subseteq \theta \) induces a surjective homomorphism \(L/\theta_0 \to L/\theta \) realizing \(L/\theta \) as a quotient of the distributive lattice \(L/\theta_0 \); thus \(L/\theta \in \mathbb{D} \) and so \(\theta \in \Theta_D(L) \). \(\Theta_D(L) \) is closed under arbitrary intersections: if \(\theta_\lambda \in \Theta_D(L) \) for each \(\lambda \in \Lambda \) then the canonical map

\[
L \to \prod_\lambda (L/\theta_\lambda) : a \mapsto ([a]_{\theta_\lambda})_\lambda
\]

factors through an injective homomorphism

\[
L/(\cap_\lambda \theta_\lambda) \to \prod_\lambda (L/\theta_\lambda) \in \mathbb{D};
\]

thus \(L/(\cap_\lambda \theta_\lambda) \in \mathbb{D} \) and so \(\cap_\lambda \theta_\lambda \in \Theta_D(L) \). \(\square \)
Thus, \(\Theta_D(L) \) has as least element its infimum
\[
\delta_L = \bigwedge \Theta_D(L) = \bigcap \{ \theta : \theta \in \Theta_D(L) \} \in \Theta_D(L)
\]
and so \(\Theta_D(L) \) is principal with \(\delta_L \) as generator:
\[
\Theta_D(L) = \uparrow \delta_L = \{ \theta \in \Theta(L) : \theta \supseteq \delta_L \}.
\]
Observe that \(L/\delta_L \) is the largest distributive quotient of \(L \): in fact, if \(L/\theta \) is any distributive quotient of \(L \) then \(\theta \in \Theta_D(L) = \uparrow \delta_L \); thus, \(\theta \) contains \(\delta_L \) and so there is a canonical surjective homomorphism \(L/\delta_L \to L/\theta \).

We may identify the generator \(\delta \) for an arbitrary quotient as follows.

Theorem 2. If \(\theta \in \Theta(L) \) then \(\delta(\theta/\theta) = \delta_L \lor \theta/\theta \).

*Proof.** For convenience, write \(\delta = \delta_L \). On the one hand, the isomorphism
\[
(L/\theta)/(\delta \lor \theta/\theta) \equiv L/(\delta \lor \theta) \in \mathbb{D}
\]
places the congruence \(\delta \lor \theta/\theta \) in \(\Theta_D(L/\theta) \). On the other hand, let \(\phi \) be a congruence of \(L \) containing \(\theta \): if \(\phi/\theta \in \Theta_D(L/\theta) \) then the isomorphism
\[
L/\phi \equiv (L/\theta)/(\phi/\theta) \in \mathbb{D}
\]
forces \(\phi \in \Theta_D(L) \) so \(\phi \) also contains \(\delta \) and \(\phi \in \uparrow (\delta \lor \theta) \). Conclusion: \(\Theta_D(L/\theta) = \uparrow (\delta \lor \theta/\theta) \). \(\square \)

We may identify the generator \(\delta \) for a finite product as follows.

Theorem 3. \(\delta(L_1 \times L_2) = \delta_{L_1} \times \delta_{L_2} \).

*Proof.** For convenience, write \(\delta_1 = \delta_{L_1} \) and \(\delta_2 = \delta_{L_2} \). On the one hand, the isomorphism
\[
(L_1 \times L_2)/(\delta_1 \times \delta_2) \equiv (L_1/\delta_1) \times (L_2/\delta_2) \in \mathbb{D}
\]
places \(\delta_1 \times \delta_2 \) in \(\Theta_D(L_1 \times L_2) \). On the other hand, each \(\theta \in \Theta(L_1 \times L_2) \) has the form \(\theta_1 \times \theta_2 \) for \(\theta_1 \in \Theta(L_1) \) and \(\theta_2 \in \Theta(L_2) \); now, if \(\theta \in \Theta_D(L_1 \times L_2) \) then
\[
(L_1/\theta_1) \times (L_2/\theta_2) \equiv (L_1 \times L_2)/\theta \in \mathbb{D}
\]
forces \((L_1/\theta_1) \in \mathbb{D} \) and \((L_2/\theta_2) \in \mathbb{D} \) so that \(\theta_1 \in \Theta_D(L_1) = \uparrow \delta_1 \) and \(\theta_2 \in \Theta_D(L_2) = \uparrow \delta_2 \) whence \(\theta = \theta_1 \times \theta_2 \in \uparrow (\delta_1 \times \delta_2) \). Conclusion: \(\Theta_D(L_1 \times L_2) = \uparrow (\delta_1 \times \delta_2) \). \(\square \)

Let us identify the generator \(\delta_L \) of \(\Theta_D(L) \) for a lattice \(L \) in some basic examples.

Example 0. If \(L \) is a distributive lattice then, as each quotient of \(L \) is distributive, \(\Theta_D(L) = \Theta(L) \) and \(\delta_L = \theta \) is the equality (or diagonal) relation on \(L \).

Example 1. The non-distributive ‘diamond’ \(M_3 \) is simple; it follows at once that \(\Theta_D(M_3) = \{1\} \), so that \(\delta_{M_3} = \mathbb{1} = M_3 \times M_3 \) is the trivial congruence that fully collapses \(M_3 \).

Example 2. The non-modular ‘pentagon’ \(N_5 = \{0,a,b,c,1\} \) with \(a > b \) yields a distributive quotient as soon as \(a \) and \(b \) are identified. Accordingly, \(\delta_{N_5} \) is the principal congruence \(\theta(a,b) \): that is, the smallest congruence containing the pair \((a,b) \); its only nontrivial block is the doubleton \(\{a,b\} \).

Example 3. The free modular lattice \(F_{\mathbb{M}}(3) \) on three generators \(x,y,z \) admits a unique homomorphism to the free distributive lattice \(F_D(3) \) on \(x,y,z \) respecting the generators; the kernel of this homomorphism is the principal congruence \(\theta(u,v) \) that identifies \(u = (y \lor z) \land (z \lor x) \land (x \lor y) \) and \(v = (y \lor z) \lor (z \lor x) \lor (x \lor y) \). As no smaller congruence can yield a distributive quotient, \(\delta_{F_{\mathbb{M}}(3)} = \theta(u,v) \). The nontrivial blocks of this congruence are six doubletons and the diamond with top \(u \) and bottom \(v \).

Example 4. The case of the free lattice \(F(n) \) on \(n \) generators is similar: \(\delta_{F(n)} \) is the kernel of the unique homomorphism \(F(n) \to F_D(n) \) that respects all \(n \) generators.
Remark 1. We have considered only the class \mathbb{D} of distributive lattices, but entirely similar considerations apply to the class \mathbb{M} of modular lattices. Indeed, they apply to any equational class \mathbb{K} of lattices: as \mathbb{K} is closed under the formation of quotients, products and sublattices, if L is any lattice then the filter
\[
\Theta_{\mathbb{K}}(L) = \{\theta \in \Theta(L) : L/\theta \in \mathbb{K}\}
\]
is principal with generator
\[
\kappa_L = \bigwedge \Theta_{\mathbb{K}}(L) = \bigcap \{\theta : \theta \in \Theta_{\mathbb{K}}(L)\} \in \Theta_{\mathbb{K}}(L).
\]
In particular, L has a largest quotient L/κ_L in any equational class \mathbb{K} and each quotient of L in \mathbb{K} is actually a quotient of L/κ_L.

Remark 2. This offers a perspective on the free lattice $F_{\mathbb{K}}(P)$ over the class \mathbb{K} generated by the poset P as discussed in section 5 of [1]: thus, let $F(P)$ be the free lattice generated by P as in [1] Corollary 5.7; the lattice $F_{\mathbb{K}}(P)$ arises as the quotient of $F(P)$ modulo the congruence $\kappa_{F(P)}$ when the elements of $P \subseteq F(P)$ lie in different blocks of $\kappa_{F(P)}$.

References

[1] G. Grätzer, *Lattice Theory: First Concepts and Distributive Lattices*, W.H. Freeman and Company (1971); Dover Publications (2009).

Department of Mathematics, University of Florida, Gainesville FL 32611 USA

E-mail address: paulr@ufl.edu