The use of dietary chromium associated with vitamins and minerals (synthetic and natural source) to improve some quality aspects of broiler thigh meat reared under heat stress condition

Arabela Elena Untea, Iulia Varzaru, Raluca Paula Turcu, Tatiana Dumitra Panaite and Mihaela Saracila

Chemistry and Nutrition Physiology Department, National Research and Development Institute for Biology and Animal Nutrition, Balotesti, Romania

ABSTRACT

The effect of chromium associated with vitamins and minerals (synthetic or natural ingredients) on broiler meat nutritional quality, subjected to heat stress conditions were evaluated. The 6-week feeding trial was conducted on 120 unsexed 1-day-old Cobb 500 broilers, assigned to 4 treatments and housed in digestibility cages at 32°C constant temperature. Compared to the control diet (C), the experimental diets were supplemented with 200 μg/kg diet chromium picolinate (Cr), as follows: Cr-AA has 0.25 g ascorbic acid/kg diet; Cr-Zn has 0.025 g zinc/kg diet; Cr-WS has 10 g creeping wood sorrel/kg diet. The results of the study showed that essential amino acids concentrations determined in the thigh meat samples tend to increase in groups supplemented with chromium and ascorbic acid and chromium and zinc, especially sulphur containing amino acids (methionine and cystine) which increased for experimental groups (methionine: 1.25% (C) vs. 1.77% (Cr-AA); 1.58% (Cr-Zn); 1.64% (Cr-WS) and cystine: 0.46% (C) vs. 0.52% (Cr-AA); 0.54% (Cr-WS)). Among the compounds with biological value, vitamin E and lutein & zeaxanthin concentration registered the highest increase for chromium and zinc supplemented group (vitamin E: 35.49 mg/kg (C) vs. 59.05 mg/kg (Cr-Zn) and lutein & zeaxanthin: 0.66 mg/kg (C) vs. 1.36 mg/kg (Cr-Zn)). The peroxidation process was delayed under nutritional supplements influence, the primary oxidation parameters (peroxide value) from the Cr-WS group being significantly lower compared to the control group. The same trend was maintained for the secondary oxidation parameters, the Cr-WS group highlighting reduced values for p-anisidine and TBARS concentration compared to the C group (p-anisidine: 17.22 (C) vs. 9.29 (Cr-WS) and TBARS: 0.15 mg/kg (C) vs. 0.11 mg/kg (Cr-WS)).

In conclusion, sulphur-containing amino acids (methionine and cysteine) concentrations increased for experimental groups, in the thigh meat samples, the liposoluble compounds (vitamin E, lutein & zeaxanthin) concentration registered the highest increase for chromium and zinc supplemented group and the peroxidation process was more pronounced delayed under chromium and wooden sorrel combination.

ARTICLE HISTORY

Received 21 April 2021
Revised 12 August 2021
Accepted 2 September 2021

KEYWORDS

Chromium: antioxidants: broiler: heat stress

Introduction

The effects of heat stress on poultry are related to decreased productivity in terms of depression of feed intake which affects the growth rate. Also, the high temperature has an influence on thyroid activity, reduced values of plasma protein or parameters of antioxidant defense system (vitamins and minerals) in serum (Sahin et al. 2002) or quality of products (Sahin et al. 2017). There are a number of strategies used by broiler breeders to attenuate the negative effects of heat stress. Among the strategies related to the microclimate conditions in the breeding halls, there are also the strategies regarding the broiler diets, namely supplementing them with vitamins and minerals (Dalólio et al. 2018). Dietary manipulation has been considered a method for alleviating the high-temperature effect on animals productivity. Under heat stress conditions, the vitamins and minerals are mobilised from tissues in order to meet requirements and as consequence, their excretion is increased (Ghazi et al. 2012).

Chromium is an essential element, with an important contribution in the metabolism of carbohydrates,
proteins and lipids and also the preferred mineral for temperature stress conditions (Sahin et al. 2017). It potentiates insulin activity with strong implications in carbohydrate and protein metabolism and has a positive effect on lipid peroxidation (Untea et al. 2019). Chromium supplements were used to alleviate cold or heat stress effects in several studies on poultry. The influence of chromium supplements followed some directions: the productivity parameters; serum thyroid hormones, insulin and corticosterone (Sahin et al. 2002); cell preservation, antioxidant activity and immune response. All these physiological functions have particular importance under heat stress conditions for animal homeostasis and their thermoregulatory capacity (Dalólio et al. 2018).

In addition to chromium, there are bioactive compounds such as ascorbic acid that combat the effects of heat stress. Unlike humans, birds are able to synthesise vitamin C but environmental stressors can alter its utilisation (Karami et al. 2018). Vitamin C supplementation of animal diets helps the system immunity, regulates body temperature, minimises stress hormones, improves production performance through feed efficiency. Combined with other compounds with antioxidant activity, ascorbic acid behaves as a co-antioxidant with synergistic effects. Its presence in diets potentiates the absorption of chromium and correlates very well against symptoms caused by heat-stressed broilers (Shakeri et al. 2020). It was observed that dietary zinc used in poultry diets improved growth rate and feed efficiency under heat stress conditions (Kucuk 2008). Zinc participates in the antioxidant defence system by potentiating the synthesis of metallothionein, which is recognised as a free radical scavenger (Sahin et al. 2009). Studies on zinc association with chromium revealed positive effects on performance, immune responses and meat quality of quails under heat stress conditions (Rouhalamini et al. 2014). The interaction effects of chromium, zinc and ascorbic acid on antioxidant enzyme activity were observed in poultry reared under heat stress conditions (Karami et al. 2018).

Oxalis corniculata, commonly called creeping wood sorrel, is an herbaceous plant from *Oxalidaceae* family, used in traditional medicine. The creeping wood sorrel is a good source of vitamin C, carotene and essential fatty acids, but has also phenolic compounds, flavonoids, tannins, phytosterols, amino acids and volatile oils. According to Muhammad et al. (2012), the plant leaves have a high mineral content such as sodium, potassium, calcium, nitrogen and magnesium. Due to its chemical composition, this plant has important properties such as antioxidants, anti-inflammatory, antimicrobial, anti-diarrheal and others related to them (Sarkar et al. 2020), which could alleviate broiler heat stress. Although it is a promising plant material for animal feed, studies on its use being very limited. Subhani et al. (2018) indicated a decrease in production performances of Hubbard broilers fed with creeping wood sorrel during Afatoxicosis depending on the rate of inclusion in diets (250 mg to 500 mg/kg). In another study (Gupta et al. 2012) it was shown a moderation of the anxiety parameters in mice, due to the presence of flavonoids and tannins from the plant (Table 1).

As a nutritional strategy for alleviating the heat stress effects on the meat quality of broilers, other two nutritional compounds are known as powerful antioxidants (ascorbic acid and zinc) were added to the diets in order to potentiate the chromium effect. The purpose of this study was to evaluate the impact of proposed nutritional solutions on growth performance and some broiler thigh meat nutritional aspects such as quality of protein and antioxidant status.

Table 1. Ingredients and chemical composition of diets.

Diet composition, % (fed basis)	Starter (0 to 14 days)	Grower (14 to 28 days)	Finisher (28 to 42 days)
Total	100	100	100
Metabolizable energy, kcal/kg	3039.00	3128.00	3217.00
Crude protein	23.00	21.50	20.00
Crude fat	5.48	6.01	6.49
Crude fibre	3.77	3.57	3.36
Calcium	0.96	0.87	0.81
Phosphorus	0.77	0.70	0.65
Available phosphorus	0.48	0.43	0.41
Lysine	1.44	1.29	0.16
Methionine	0.69	0.61	0.32
Tryptophan	0.25	0.22	1.19

*Premix C: 1 kg contains: 1,100,000 IU/kg vit. A; 200,000 IU/kg vit. D3; 2700 IU/kg vit. E; 300 mg/kg vit. K; 200 mg/kg vit. B1; 400 mg/kg vit. B2; 1485 mg/kg pantothenic acid; 2700 mg/kg nicotinic acid; 300 mg/kg vit. B6; 4 mg/kg Vit. B7; 100 mg/kg vit. B9; 1.8 mg/kg vit. B12; 2000 mg/kg vit. C; 8000 mg/kg manganese; 8000 mg/kg iron; 500 mg/kg copper; 600 mg/kg zinc; 37 mg/kg cobalt; 152 mg/kg iodine; 18 mg/kg selenium.

*Premix Cr-AA contains premix C structure + 20 mg Cr/kg premix and 25 g ascorbic acid/kg premix;**

Premix Cr-Zn contains premix C structure + 20 mg Cr/kg premix and 25 g Zn/kg premix;*

***Premix Cr-WS contains premix C structure + 20 mg Cr/kg premix (~1% creeping wood sorrel replaced 1% corn).
Material and methods

The experimental procedures were approved by the Ethical Committee of the National Research Development Institute for Biology and Animal Nutrition, in accordance with the Romanian legislation (Law 206/2004, ordinance 28/31.08.2011, law 43/11.04.2014, Directive 2010/63/EU).

Experimental design

A total of 120 unsexed 1-day-old Cobb 500 broilers, obtained from a commercial hatchery were subjected to a heat stress in a completely randomised trial. All broilers (initial body weight of 46.36 g ± 0.35 g) were randomly allocated to 4 dietary treatments (C; Cr-AA; Cr-Zn and Cr-WS), with 6 replicate pens/treatment and 5 chicks/pen. The broilers were housed under controlled environmental conditions in digestibility cages. The feeding trial (0–42 d) was conducted in heat stress conditions (32 ± 0.47°C) maintained during all experimental periods, 24 h/day. Three-tiered Zucammi cages (dimensions 65 cm x 75 cm x 45 cm, one cage per replicate) were used for birds housing and a ViperTouch computer was used for monitoring environmental parameters. The temperature and lighting programs were consistent with the recommendations of broiler commercial management guide, as follows: average temperature 32°C; humidity 62.97 ± 5.09%; ventilation/broiler 0.64 ± 0.18%; CO₂ level 888.48 ± 101.31 ppm; 23-h light/1-h darkness.

Throughout the experimental period, the following parameters were monitored: body weight (BW, g), average daily feed intake (ADFI, g feed/broiler/day), average daily weight gain (ADWG, g/broiler/day) and feed conversion ratio (FCR, g feed/g gain). Individual measurements on body weight were performed weekly in order to calculate ADWG (as the ratio between total weight and number of experimental days) and ADFI was calculated by the difference between daily basis and leftovers. FCR represents the ratio between total feed consumed and total live weight. No mortality was recorded during the overall trial period.

Temperature humidity index (THI) is a measurement tool for heat stress and the THI formulae (Kang et al. 2020) used dry-bulb temperature (Tdb) as ambient air temperature and wet-bulb temperature (Twb) estimated using the method suggested by Stull (2011). Based on data recorded during the experimental period, the THI value was 29.72 indicating severe heat stress for non-sweating animals like broilers (Lallo et al. 2018).

Diet formulation

The four dietary treatments were based on corn and soybean meal, according to nutritional requirements of the Cobb 500 management guide. Compared to the control diet (C), the other three diets were supplemented with 200 μg/kg diet chromium picolinate associated with vitamins or minerals (synthetic or natural sources), as follows: first experimental group (Cr-AA) was supplemented with 0.25 g ascorbic acid/kg diet; the second experimental group (Cr-Zn) was supplemented with 0.025 g zinc/kg diet; the third experimental group (Cr-WS) was supplemented with 10 g creeping wood sorrel/kg diet. The broilers had free access to the feed and water.

All chemical additives were included in the premix, by replacing the corresponding amount of support. The creeping wood sorrel was included directly into the feed mill replacing the corresponding amount of corn.

Tissue sampling

At the end of the feeding trial (42 d), according to the experimental procedures, 6 broilers from each treatment (1 per each replicate) were randomly selected and slaughtered and muscle tissue samples (thigh meat) were collected for further analysis. Each sample was divided into several parts and stored in plastic bags, labelled according to each origin group (C; Cr-AA; Cr-Zn and Cr-WS) in order to determine the amino acid profile; the concentrations of compounds with biological value and antioxidant potential (vitamin E, lutein and zeaxanthin, iron (Fe), zinc (Zn), polyphenols, antioxidant capacity) and the oxidative stability products. The samples were stored in the freezer at −80°C until the assessment time.

Chemical analysis

The Oxalis corniculata (creeping wood sorrel) included in the experimental diet (Cr-WS) was harvested in the late vegetative stage (44.62°N, 26.12°E). For maximum retention of bioactive compounds, this raw material was dried at ambient temperature for 3 weeks and then grounded in order to be included in the broiler diet (Saracila et al. 2020).

The estimations of total phenolic (TP) content (Folin Ciocalteu method) and total antioxidant capacity (phosphomolybdenum method) were performed according to the methods described by Untea et al. (2020).
The amino acids profile of thigh meat samples was performed using a reversed-phase high-performance liquid chromatography (RP-HPLC) method on HyperSil BDS C18 column, with silica gel, dimensions 250 × 4.6 mm, particle size 5 μm (Thermo-Electron Corporation, Waltham, MA), according to the method described by Varzaru et al. (2013).

Trace mineral concentrations were determined by flame atomic absorption spectrometry (FAAS) as described by Untea et al. (2012) after microwave digestion.

The oxidative stability products evaluated at slaughter time were determined following three parameters of the primary lipid degradation products: the peroxide value (PV) and the values of conjugated dienes and trienes (CD and CT), and two indices of the secondary peroxidation products: the TBARS value and the p-anisidine value (p anis). The lipid oxidation products were spectrophotometrically determined by using a V-530 Jasco (Japan Servo Co. Ltd., Japan) spectrophotometer, according to the methods described by Untea et al. (2020).

Data analysis

XLStat (Addinsoft, New York, USA) was used for performing statistical analysis. The significant difference between groups for various variables was tested by one-way ANOVA, followed by Tuckey post-hoc test. A probability level below 5% was considered a significant and statistical trend for 5–10%. For productive performance, the experimental unit was considered the pen. For meat quality evaluation, each slaughtered animal was considered an experimental unit.

In order to determine the relationships between bioactive compounds which determine the meat quality and lipid degradation products, a principal component analysis (PCA) was performed using XLStat (Addinsoft, New York, USA). Meat quality parameters were introduced as active variables and for increasing the quality of interpretation, the degradation parameters were introduced as supplementary variables. Based on data used as variables, principal components were generated and the first three of them were considered to represent 76.5% of the total variability (eigenvalues) and by using three factors we obtained a good quality projection of the initial multi-dimensional table.

Results

Data from Table 2 present the concentrations of compounds with biological value and antioxidant potential from broilers diets.

Compared to the control group, the final weight of broilers, weight gain, consumption and conversion rate were not statistically different. Regarding muscle and organ yields, no significant differences were noticed, except heart, where the experimental groups registered decreased values (Table 3).

Amino acids profile determination in thigh meat samples revealed a tendency of increasing essential amino acids in groups supplemented with chromium and ascorbic acid (Cr-AA) and chromium and zinc (Table 3).

Table 2. Bioactive compounds with antioxidant activity of experimental diets.

Specification	C	Cr-AA	Cr-Zn	Cr-WS
Vit E, mg/kg	40.13	39.81	39.36	45.17
Lut&zeax, mg/kg	8.97	9.15	9.46	10.15
TP, mg/g GAE	1.71	1.81	1.83	2.51
TAC, mM AAE	42.83	43.91	44.52	45.30

Abbreviations: Vit E: Vitamin E; lut&zeax: lutein & zeaxanthin; TP: total polyphenols; TAC: total antioxidant capacity.
Cr-AA (20 mg Cr/kg premix and 25 g ascorbic acid/kg premix); Cr-Zn (20 mg Cr/kg premix and 2.5 g Zn/kg premix); Cr-WS (20 mg Cr/kg premix and 1% creeping wood sorrel).

Table 3. Growth performance and carcass traits of broiler chickens fed chromium associated with vitamins and minerals (synthetic and natural source).

Specification	C	Cr-AA	Cr-Zn	Cr-WS	SEM	p-value
Growth parameters						
BW, g (42 d)	1987.9700	2014.1300*	1935.4300	2015.4700**	30.5890	.7660
ADWG, g/broiler/day	46.2300	46.8500*	44.9800	46.8800**	0.7280	.7660
ADFI, g/broiler/day	71.4200	71.1500*	70.8300	72.0700**	0.7280	.7660
FCR, g feed / g gain	1.5400	1.5200*	1.5700	1.5400**	0.0100	.7039
Muscle yields						
Breast yield, %	20.8200	23.0400	21.9700	21.4400	0.3340	.1052
Thigh yield, %	18.7700	19.1700	19.3400	19.5200	0.2770	.8238
Organ yields						
Gizzard, %	1.2500	1.3600	1.3700	1.4100	0.0310	.2966
Liver, %	1.4300	1.4800	1.4400	1.4100	0.0240	.8196
Heart, %	0.4500*	0.3700*	0.3700*	0.3700*	0.0130	0.0459
Spleen, %	0.0700	0.0600	0.0700	0.0800	0.0040	.3383
Bile, %	0.0900	0.0800	0.0900	0.1000	0.0070	.9451

Means within a row with no common superscript differ (p < .05). Abbreviations: BW: body weight; ADWG: average daily weight gain; ADFI: average daily feed intake; FCR: feed conversion ratio.
Cr-AA (20 mg Cr/kg premix and 25 g ascorbic acid/kg premix); Cr-Zn (20 mg Cr/kg premix and 2.5 g Zn/kg premix); Cr-WS (20 mg Cr/kg premix and 1% creeping wood sorrel).
*Data reported previously by Saracila, Panait, Tabuc, Soica, Untea, Varzaru, et al. (2020); **Data reported previously by Saracila, Panait, Tabuc, Soica, Untea, Ayasan, et al. (2020).
(Cr-Zn). Methionine concentrations were increased (p < .0001) in all experimental groups compared to the C group, and the highest value was registered for the Cr-AA group, with 41.8% more than the C group value. The second sulphur-containing amino acid, cysteine, was positively influenced (p < .05) for Cr-AA and Cr-WS groups. No significant differences were noticed for lysine, but threonine concentrations were increased (p = .0071) for all experimental groups (Table 4).

Among the compounds with biological value and antioxidant potential determined in the thigh meat samples (Table 5), the highest increase (p < .05) of vitamin E, lutein and zeaxanthin concentration was in the group that included chromium and zinc (Cr-Zn). A significant increase (p = .0004) was obtained for iron content in a group with chromium and creeping wood sorrel (Cr-WS), followed by the Cr-AA group, compared to the C group. At the same time, the Cr-WS group revealed a rich concentration (p = .0080) of polyphenols and higher antioxidant capacity, even if the latter was not statistically assured (p > .05), compared to the C group.

The results obtained for the oxidative stability products of thigh meat samples are presented in Table 6. As can be seen, although there was an improvement in all primary oxidation parameters, the peroxide value from the Cr-WS group was significantly lower (p < .05) compared to the control group. The same trend was maintained for the secondary oxidation parameters, the Cr-WS group highlighting this time also significantly reduced values for p-anisidine (p < .05) and TBARS concentration (p < .05) compared to the C group.

Principal component analysis (PCA) was conducted in order to explore the relationship between bioactive nutrients and lipid peroxidation parameters from meat. In Table 7 are presented the results of eigenvalues. The correlation between the original set of data and each of the eight principal components.

Table 4. Amino acids profile in thigh meat samples, %.

Specification	C	Cr-AA	Cr-Zn	Cr-WS	SEM	p-value
Aspartic acid	4.6440	4.6350	4.7040	4.5540	0.1240	.8618
Glutamic acid	12.6540	12.9040	12.9940	12.7270	0.3152	.8625
Serine	4.0640	4.2570	3.7960	4.0530	0.1151	.0918
Glycine	3.4290	3.0410	2.9260	2.6340	.0134	.0096
Threonine	3.1210	3.7680	3.8090	3.6200	.1234	.0071
Arginine	5.7150	5.8970	5.9020	5.8330	0.1290	.5971
Alanine	4.1700	4.4300	4.3950	4.0740	0.1004	.0508
Tyrosine	1.9320	2.1320	2.3200	1.8600	0.0816	.0072
Valine	1.8010	1.8760	1.7830	1.7630	0.1314	.9965
Phenyalanine	2.1870	2.4730	2.6040	2.3660	0.1138	.3851
Isoleucine	3.2360	3.5000	3.5680	3.3520	0.1419	.3851
Leucine	5.0490	5.0640	5.0540	5.0220	0.0508	.9965
Phenylalanine	6.7350	6.4070	6.4590	6.5140	0.1098	.2157
Lysine	0.4630	0.5230	0.4780	0.5390	0.0110	.0387
Methionine	1.2490	1.7710	1.5790	1.6380	0.0510	<.0001
E aa	31.4880	33.4720	33.5380	32.5080	0.2720	.0888
NE aa	28.8980	29.2670	28.8140	28.0420	0.3160	.4351
Total aa	60.3870	62.7930	62.3730	60.5500	0.2050	.0060

*Means within a row with no common superscript differ (p < .05).

Table 5. Concentrations of compounds with biological value and antioxidant potential, determined in thigh meat samples.

Specification	C	Cr-AA	Cr-Zn	Cr-WS	SEM	p-value
Vitamin E, mg/kg	35.4920	48.5210	39.0490	44.7400	6.1200	.0221
Lutein & Zeaxanthin, mg/kg	0.6604	0.5969	1.3647	0.8792	0.0065	<.0001
Fe, mg/kg	31920	30.4830	28.8230	31.7660	0.4921	.0004
Zn, mg/kg	62.7310	61.9060	62.2630	63.7080	0.5095	.1219
TP, mg/g GAE	0.8430	0.7879	0.7992	0.8785	0.0165	.0800
TAC, mm AAE	15.9730	16.3690	16.0450	17.3590	0.5041	.1055
*Means within a row with no common superscript differ (p < .05).						

Table 6. Oxidative stability products evaluated at slaughter time.

Products	C	Cr-AA	Cr-Zn	Cr-WS	SEM	p-value
PV, mg/kg	0.2770	0.2436	0.2391	0.1839	0.0170	.163
CD, µmol/g	7.3281	6.3134	6.0040	6.1848	1.0857	.8142
CT, µmol/g	2.8385	2.3274	2.2733	2.1096	0.4841	.6993
Secondary oxidation products	17.2200	12.5870	13.6470	13.7200	1.1144	.0069
TARS, mg/kg	0.1460	0.1129	0.1193	0.1103	0.0080	.183
*Means within a row with no common superscript differ (p < .05).						

Table 7. Results from Principal component analysis (PCA) for the eight principal components.

Eigen value	Variability, %	Cumulative, %	
F1	2.8775	35.9685	35.9685
F2	1.7728	21.5347	57.5032
F3	1.5209	21.5347	35.9685
F4	0.5661	7.0578	83.5907
F5	0.5345	6.9310	90.5217
F6	0.4335	5.4186	95.9404
F7	0.1931	2.4136	98.3540
F8	0.1317	1.6460	100.0000

*Principal component analysis (PCA) was conducted in order to explore the relationship between bioactive nutrients and lipid peroxidation parameters from meat. In Table 7 are presented the results of eigenvalues. The correlation between the original set of data and each of the eight principal components. The correlation circle (Figure 1) shows a projection of the considered variables in the factors space. The factors are situated far from the centre so the results obtained can be interpreted and they are dispersed in all four quadrants.
Table 8. Correlations between variables and factors.

	F1	F2	F3
Ea a	0.7417	0.4536	0.2236
NE aa	0.4108	-0.0082	0.7903
vit E	0.8169	-0.0294	-0.4062
Lut&zeax	0.7008	-0.1570	-0.5594
TP	-0.6647	-0.0204	-0.4872
TAC	0.4173	0.7489	-0.1329
Fe	-0.2732	0.7871	-0.2731
Zn	-0.5563	0.5574	0.1972
PV	-0.0517	-0.6994	0.2132
CD	-0.5562	-0.3803	0.1788
CT	-0.4589	-0.4745	0.2626
p anis	0.0237	-0.7270	0.4868
TBARS	-0.1546	-0.7553	0.2677

E a a: Essential amino acids; NE a a: Non-essential amino acids; Vit E: Vitamin E; Lut&zeax: Lutein & zeaxanthin; TP: total polyphenols; TAC: total antioxidant capacity; PV: Peroxide Value; CD: Conjugated Dienes; CT: Conjugated Trienes; p anis: P-anisidine Value.

Figure 1. Correlation circle from principal component analysis.

Discussion

Data from the Table 2 shows increased concentrations of bioactive compounds with antioxidant potential in the Cr-WS diet. The results can be considered in the expected range, taking into account the valuable chemical composition of creeping wood sorrel (Saracila et al. 2020).

Chromium is a trace element involved in carbohydrates, lipids, protein and nucleic acid metabolism and its growth-promoting effect was reported previously (Ali et al. 2018). Improved productive parameters in stress conditions under chromium or combinations of chromium with other antioxidants were published in terms of weight gain or feed efficiency (Perai et al. 2014; Ali et al. 2018). In a study on broilers reared in normal environmental conditions, Subhani et al. (2018) published feed consumption values significantly lower than broilers fed with a conventional diet. Unlike the results reported, no significant differences were noticed between productive parameters, in the present study. The different effects recorded in our study can be attributed to the chromium source, level of supplements inclusion in the diets or reared conditions.

From the amino acids profile determined, the most important are the essentials, those amino acids which cannot be synthesised in the animal organism and must be supplied by the diets. Quantity and quality of ingested protein are determining factors in achieving the amino acids requirements in humans. Animal origin food is a simple and efficient way to prevent deficiencies in the elderly and children (Dasgupta et al. 2005; Grillenberger et al. 2003). The scientific literature is lack regarding the effect of dietary chromium on the amino acids profile of animal origin products. Chromium picolinate supplements had positive effects on the lipid and protein metabolism of pigs, improving pork quality from amino acids point of view (Untea et al. 2017). Toghyani et al. (2012) studied the effects of organic or inorganic chromium supplements on the meat quality of broilers raised in heat stress conditions. They observed a significant increase in protein concentrations in breast samples. A similar study (Haq et al. 2018) showed that chromium yeast with or without antioxidants association increased the protein content and decreased the fat concentrations. The authors showed that the combined effect of chromium and vitamin C potentiates the protein deposition in broilers’ breasts. The same observation was noticed in the present study regarding the methionine and cysteine concentrations (essential amino acid for animals and humans) which were increased both for experimental groups supplemented with chromium and vitamin C (synthetic source (Cr-AA) or natural complex mixture of bioactive compounds (Cr-WS)). Threonine is the third limiting amino acid in poultry nutrition, after lysine and methionine (Qaisrani et al. 2018). At the same time, threonine is also an essential amino acid for humans, being involved in the physiological process, including absorption and digestion of nutrients or immune function (Lee and Kim 2019). Lien et al. (2001) suggest that Cr supplementation increases the activity of insulin, which stimulates amino acid transport and protein synthesis in muscle cells.
Chromium is known in scientific literature to have great potential in alleviating the heat stress effects on birds (Sahin et al. 2017; Huang et al. 2016; Orhan et al. 2019). Chromium and vitamin C are considered synergistic (Watts 1989) elements with antioxidant potential and their association might have a positive effect on the oxidative status of chicken. In the particular case of thermal stress conditions, chromium and zinc requirements are increased, due to chromium mobilisation from tissues and zinc accumulation in the liver which can lead to a marginal deficiency of chromium and zinc (Onderci et al. 2003). Due to the antioxidant potential of those two metals, the pancreatic tissue is protected against oxidative stress and a proper digestive enzymes secretion can produce a higher nutrient digestibility (Preuss et al. 1997).

To study the effect of supplements on oxidative stability, thigh meat samples were subjected to analytical determinations of lipid degradation products. In the oxidation process of fats, in the incipient phase, the formation of hydroperoxides exceeds their decomposition rate, a process reversed in the following phases of oxidation. Monitoring hydroperoxide concentrations depending on the time can show whether lipid degradation is increasing or not. This information can be used as a criterion for the acceptability of a food product (Shahidi and Zhong 2005). Primary oxidation products values indicate a delayed peroxidation process under nutritional supplements influence. The most pronounced effect on oxidative stability of meat samples was registered by the association of chromium with wooden sorrel. The plants are complex mixtures of bioactive antioxidant compounds and many times, their synergistic activity exceeds the activity of the individual compounds (Vertuani et al. 2004). In the case of secondary products, in the final stage of peroxidation, the values recorded for experimental groups were decreased compared to control, but significant differences were calculated only for groups supplemented with chromium and wooden sorrel. The P-anisidine value indicates the aldehydes formed as secondary products in the lipid peroxidation process (Tompkins and Perkins 1999). Deterioration of animal origin foods is principally caused by oxidising of polyunsaturated fatty acids and forms hydroperoxides, which are odourless and tasteless but in the final stage of peroxidation, hydroperoxides are decomposed in specific off-odour and off-flavour compounds mainly aldehydes (Papastergiadis et al. 2012). TBARS value is the most used indicator of oxidative stress, measuring the concentrations of malondialdehyde (the main biomarker of lipid peroxidation). The spectrophotometric measurement of the pink-coloured reaction product of MDA with 2-thiobarbituric acid (TBA) is the most commonly used method for lipid peroxidation quantification. Nowadays, the lack of specificity of MDA spectrophotometric determination is the subject of debates being accepted that other substances present in food matrices can form a pink colour complex with TBA, the result obtained being overestimated (Rakotondramavo et al. 2019).

PCA is a multivariate data analysis tool frequently used in order to reduce the number of interrelated variables, but keeping most of the variation from the original set of data (Peyvasteh et al. 2020). The results of Table 6 show that 76.5% of the total variation is explained by the first three principal components. First PCA is strongly correlated with three original variables. It increases with essential amino acids, vitamin E and lutein & zeaxanthin. It means that these parameters vary together, if one of them increases, the other ones tend to increase too. The second PCA increases with antioxidant capacity and minerals and the third one are related to non-essential amino acids. According to correlation circle and squared cosines, the horizontal axis is linked with antioxidant capacity, minerals and lipid peroxidation parameters while the vertical axis with essential amino acids, total polyphenols, vitamin E and lutein & zeaxanthin. On the horizontal axis, antioxidant capacity and minerals are negatively correlated with lipid peroxidation parameters (opposite side of the centre), significant negative correlations \(\rho \times 0.05 \) being recorded between antioxidant capacity vs PV, CD, CT, TBARS and Fe vs. PV, p anis, TBARS. Total polyphenols are negatively correlated with lipophilic compounds (vitamin E and lutein & zeaxanthin). Strong correlations \(\rho = 0.7550 \) were noticed between lipophilic antioxidants and also lipid peroxidation parameters were correlated at a significant level \(\rho < .05 \). Based on the overall results, PCA proved to be a useful statistical tool for identifying the most active variables and highlighting the relationships among the studied parameters.

Conclusion

In the present study, no significant differences were noticed between productive parameters. Compared to the control group, sulphur-containing amino acids (methionine and cysteine) concentrations determined in the thigh meat samples increased for experimental groups. Among the compounds with biological value and antioxidant potential, the liposoluble compounds (vitamin E, lutein & zeaxanthin) concentration
registered the highest increase for the chromium and zinc supplemented group. The peroxidation process was delayed under nutritional supplements influence, but chromium and the wooden sorrel combination produced the most pronounced effect.

Disclosure statement
No potential conflict of interest was reported by the author(s).

Funding
This work was supported by Romanian Ministry of Research and Digitalisation through project [PN 19.09.01.02] and Romanian Ministry of Agriculture through project [ADER 9.1.2].

ORCID
Iulia Varzaru http://orcid.org/0000-0002-0647-4464
Raluca Paula Turcu http://orcid.org/0000-0001-6590-0112
Tatiana Dumitra Panaite http://orcid.org/0000-0003-4967-6602
Mihaela Saracila http://orcid.org/0000-0002-3878-8433

Data availability statement
The data that support the findings of this study are openly available in [repository name e.g., “figshare”] at http://doi.org/10.1080/1828051X.2021.1978335.

References
Ali N, Akram M, Fahim A, Singh B, Imran M. 2018. Effect of dietary supplementation of vitamin E, zinc and chromium supplementation on growth performance and hematological characteristics of broiler chickens. Indian J Anim Res. 52(4):574–578.

Dalölo F, Albino LFT, Silva JN, Campos PHRF, Lima HUD, Moreira J, Ribeiro Junior V. 2018. Dietary chromium supplementation for heat-stressed broilers. World’s Poult Sci J. 74(1):101–116.

Dasgupta M, Sharkey JR, Wu G. 2005. Inadequate intakes of indispensable amino acids among homebound older adults. J Nutr Elder. 24(3):85–99.

Ghazi SH, Habibian M, Moenei MM, Abdolmohammadi AR. 2012. Effects of different levels of organic and inorganic chromium on growth performance and immunocompetence of broilers under heat stress. Biol Trace Elem Res. 146(3):309–317.

Grillenberger M, Neuman CG, Murphy SP, Bwibo NO, Van’t Veer P, Hautvast JG, West CE. 2003. Food supplements have a positive impact on weight gain and the addition of animal source foods increases lean body mass of Kenyan schoolchildren. J Nutr. 133(11):39575–3964S.

Gupta G, Kazmi I, Afzal M, Rahman M, Anwar F. 2012. Anxiolytic effect of oxalis corniculata (oxalidaceae) in mice. Asian Pacific J Trop Dis. 2(2):5837–5840.

Haq Z, Jain R, Mahajan A, Ganai IA, Khan N, Mudasar S. 2018. Dietary supplementation of chromium yeast alone and in combination with antioxidants for designing broiler meat. J Entomol Zool Stud. 6(1):766–770.

Huang Y, Yang J, Xiao F, Lloyd K, Lin X. 2016. Effects of supplemental chromium source and concentration on growth performance, carcass traits, and meat quality of broilers under heat stress conditions. Biol Trace Elem Res. 170(1):216–223.

Kang S, Kim D-H, Lee S, Lee T, Lee K-W, Chang H-H, Moon B, Ayasan T, Choi Y-H. 2020. An acute, rather than progressive, increase in temperature-humidity index has severe effects on mortality in laying hens. Front Vet Sci. 7:853.

Karami M, Torki M, Mohammadi H. 2018. Effects of dietary supplemental chromium methionine, zinc oxide, and ascorbic acid on performance, egg quality traits, and blood parameters of laying hens subjected to heat stress. J Appl Anim Res. 46(1):1174–1184.

Kucuk O. 2008. Zinc in a combination with magnesium helps reducing negative effects of heat stress in quails. Biol Trace Elem Res. 123(1–3):144–153.

Lallo CH, Cohen J, Rankine D, Taylor M, Cambell J, Stephenson T. 2018. Characterizing heat stress on live-stock using the temperature humidity index (THI)—prospects for a warmer Caribbean. Reg Environ Change. 18(8):2329–2340.

Lee DY, Kim EH. 2019. Therapeutic effects of amino acids in liver diseases: current studies and future perspectives. J Cancer Prev. 24(2):72–78.

Lien TF, Wu CP, Wang BJ, Shiao MS, Shiao TY, Lin BH, Lu JJ, Hu CY. 2001. Effects of supplemental levels of chromium picolinate on the growth performance, serum traits, carcass characteristics and lipid metabolism of growing-finishing pigs. Anim Sci. 72(2):289–296.

Muhammad RK, Afifa M, Maria S, Naima S, Jasia B. 2012. Antioxidant and hepatic protective effects of oxalis corniculata against carbon tetrachloride (CCl4) induced injuries in rats. African J Pharm Pharmacol. 6(30):2255–2267.

Onderci M, Sahin N, Sahin K, Kilic N. 2003. Antioxidant properties of chromium and zinc. BTER. 92(2):139–149.

Orhan C, Tuzcu M, Deeh PBD, Sahin N, Komorowski JR, Sahin K. 2019. Organic chromium form alleviates the detrimental effects of heat stress on nutrient digestibility and nutrient transporters in laying hens. Biol Trace Elem Res. 189(2):529–537.

Papastergiadis A, Mubiru E, Van Langenhove H, De Meulenaer B. 2012. Malondialdehyde measurement in oxidized foods: evaluation of the spectrophotometric thiorbarbituric acid reactive substances (TBARS) test in various foods. J Agric Food Chem. 60(38):9589–9594.

Perai AH, Kermanshahi H, Nassiri H, Zarban A. 2014. Effects of supplemental vitamin C and chromium status on metabolic and hormonal responses, antioxidant status, and tonic immobility reactions of transported broiler chickens. Biol Trace Elem Res. 157(3):224–233.

Peyvasteh M, Popov A, Bykov A, Meglinski I. 2020. Meat freshness revealed by visible to near-infrared spectroscopy and principal component analysis. J Phys Commun. 4(9):095011.
Preuss HG, Grojec PL, Lieberman S, Anderson RA. 1997. Effects of different chromium compounds on blood pressure and lipid peroxidation in spontaneously hypertensive rats. Clin Nephrol. 47(5):325–330.

Qaisrani SN, Ahmed I, Azam F, Bibi F, Pasha TN, Azam F. 2018. Threonine in broiler diets: an updated review. Ann Anim Sci. 18(3):659–674.

Rakotondramavo A, Ribourg L, Meynier A, Guyon C, de Lamballerie M, Pottier L. 2019. Monitoring oxidation during the storage of pressure-treated cooked ham and impact on technological attributes. Heliyon. 5(8):e02285.

Rouhalamini SM, Salarmoini M, Asadi-Karam G. 2014. Effect of zinc sulfate and organic chromium supplementation on the performance, meat quality and immune response of Japanese quails under heat stress conditions. Poult Sci. 93(2):165–181.

Sahin N, Hayirli A, Orhan C, Tuzcu M, Akdemir F, Komorowski JR, Sahin K. 2017. Effects of the supplemental chromium form on performance and oxidative stress in broilers exposed to heat stress. Poult Sci. 96(12):4317–4324.

Sahin K, Sahin N, Kucuk O, Hayirli A, Prasad AS. 2009. Role of dietary zinc in heat-stressed poultry: a review. Poult Sci. 88(10):2176–2183.

Sahin K, Sahin N, Onderci M, Gursu F, Cikim G. 2002. Optimal dietary concentration of chromium for alleviating the effect of heat stress on growth, carcass qualities, and some serum metabolites of broiler chickens. BTER. 89(1):53–64.

Saracila M, Panaite TD, Tabuc C, Soica C, Untea A, Ayasan T, Criste RD. 2020. Dietary ascorbic acid and chromium supplementation for broilers reared under thermoneutral conditions vs. high heat stress. Lucrări Științifice-Universitatea de Științe Agricole și Medicină Veterinară, Seria Zootehnie. 73:41–47.

Saracila M, Panaite TD, Tabuc C, Soica C, Untea A, Ayasan T, Criste RD. 2020. Dietary ascorbic acid and chromium supplementation for broilers reared under thermoneutral conditions vs. high heat stress. Lucrări Științifice-Universitatea de Științe Agricole și Medicină Veterinară, Seria Zootehnie. 73:41–47.

Sarkar T, Ghosh P, Poddar S, Choudhury S, Sarkar A, Chatterjee S. 2020. A brief review. J Pharmacogn Phytochem. 9(4):651–655.

Shahidi F, Zhong Y. 2005. Lipid oxidation: measurement methods Bailey’s industrial oil and fat products. In: Shahidi F, editor. Bailey’s industrial oil and fat products. Hoboken, NJ, USA: John Wiley & Sons; p. 357–385.

Shakeri M, Oskoueian E, Le HH, Shakeri M. 2020. Strategies to combat heat stress in broiler chickens: unveiling the roles of selenium, vitamin E and vitamin C. Vet Sci. 7(2):71.

Stull R. 2011. Wet-bulb temperature from relative humidity and air temperature. J Appl Meteor Climatol. 50(11):2267–2269.

Subhani Z, Shahid M, Sarwar MS, Naveed M, Munir H. 2018. Adverse effect of oxalis corniculata on growth performance of broiler chicks during aflatoxicosis. Matrix Science Pharma (MSP). Zibeline Int Publish. 2(1):10–13.

Toghyan M, Toghyan M, Shivazad M, Gheisari A, Bahadoran R. 2012. Chromium supplementation can alleviate the negative effects of heat stress on growth performance, carcass traits, and meat lipid oxidation of broiler chicks without any adverse impacts on blood constituents. Biol Trace Elem Res. 146(2):171–180.

Tompkins C, Perkins EG. 1999. The evaluation of frying oils with the p-anisidine value. J Amer Oil Chem Soc. 76(8):945–947.

Untea AE, Criste RC, Vladescu L. 2012. Development and validation of a microwave digestion–FAAS procedure for Cu, Mn and Zn determination in liver. Rev Chim. 63(4):341–346.

Untea AE, Panaite TD, Dragomir C, Ropota M, Olteanu M, Varzaru I. 2019. Effect of dietary chromium supplementation on meat nutritional quality and antioxidant status from broilers fed with Camelina-meal-supplemented diets. Animal. 13(12):2939–2947.

Untea AE, Varzaru I, Panaite TD, Gavris T, Lupu A, Ropota M. 2020. The effects of dietary inclusion of bilberry and walnut leaves in laying hens’ diets on the antioxidant properties of eggs. Animals. 10(2):191.

Untea AE, Varzaru I, Panaite TD, Habeau M, Ropota M, Olteanu M, Cornescu GM. 2017. Effects of chromium supplementation on growth, nutrient digestibility and meat quality of growing pigs. SA J An Sci. 47(3):332–341.

Varzaru I, Uente AE, Martura T, Olteanu M, Panaite TD, Schitea M, Van I. 2013. Development and validation of an RP-HPLC method for methionine, cystine and lysine separation and determination in corn samples. Rev Chem. 64:673–679.

Vertuani S, Angusti A, Manfredini S. 2004. The antioxidants and pro-antioxidants network: an overview. Curr Pharm Des. 10(14):1677–1694.

Watts DL. 1989. The nutritional relationships of chromium. J Orthomol Med. 4(1):17–23.