Exploring Nano Biotechnology for detecting specific disease in Medical diagnosis and Therapeutic

M. Thangamani1, S. Kavitha Bharathi2 and N. Suresh Kumar3

1Associate Professor, Information Technology, Kongu Engineering College, Tamilnadu, India
2Associate Professor, Computer Technology, Kongu Engineering College, Tamilnadu
3Assistant Professor (SL.GR), Information Technology, Sri Ramakrishna Engineering College, Tamilnadu

E-mail: manithangamani2@gmail.com

Abstract. Nanobiotechnology connects the scientific openings between chemistry, physics and biology on the nanoscale. These guides to a lot of modern techniques help and create good result in medical-therapeutic appliances. Now a day nanoparticles good aspirants for drug discovery and new therapeutic applications. It consists of the nanotechnology and biotechnology. Nanobiotechnology will help the combination of therapeutics with diagnostics and make easy to improve the specific medicine suitability for an individual and prevent the immune system from side effect drugs delivery. This article explores the nano biotechnology for detecting specific disease in medical field.

Keywords: Nanobiotechnology, Nanomaterial, Nanotechnology, Medical diagnosis and Therapeutic

1. Graphical abstract
Nanobiotechnology mainly contains materials such as nanoparticle, nanoemulsions, nanocomposites and nonostructured materials and products of delivery, formulation and packaging. Nanosensors and nanotracers are used for safety purposed. Manufacturing side after processing the materials and get products from industry. The physical chemistry and surface science are essential for fabrication of structure in carbon, silicon and inorganic materials. Nanobiotechnology combines medical diagnosis and Medical therapeutic to improve the patient health and its shown by Figure 1 and figure 2.
2. Introduction

Nanotechnology is exploitation of substance on atomic, molecular and supramolecular range. It has wide collection of research in medicine and health care and drug delivery, molecular biology, chemical sensing, materials, transportation and clinically significant in surgical instrument, orthopedic surgery and drug therapy. Nanotechnology recovers the patients from diseases and prevent by early diagnosis along with treatment.

Normal polypeptides contain 20 amino acids and four similar nucleotides structures with the nucleic acids. Nanotechnology can divided into interphase, protein-based nanostructures, DNA (deoxyribonucleic acid) -based nanostructure and nanoanalytics. DNA-based nanostructure is main usage of manufacturing and constructing of nano devices and nanostructures. It reduces the requirement of biosensors, probes optical device and biological electronics [1, 2]. The protein-based nanostructures are functional adaptability and price valuable and sustainable production techniques offer powerful incentive for promote the fabrication in this way.

3. Related Works

Due to the increasing expenses of nanocharacterization and nanoprototyping, modeling and simulation is vital role in nanotechnology advancement [3]. Essential photons are biophotonics and neurophotonics in biotechnology, biology, medicine and engineering. For developing new technologies, need transformative engineering with fundamental research and science. The optical waveguides, optoelectronics and lasers fabricate medical therapies and diagnostics. The authors inspects Quantum outcome of microscopic and macroscopic devices [4]. For disease modeling and drug development, focused organ-on-a-chip approach [5]. The authors proposed mathematical technique [6-8] for capturing the dynamical characters of physics relations among biomolecules and nanopore due to electrostatic potential variation, ion screening effects, nanopore membranes surface
variations and creation of DNA fluctuations. The result of nanodevice usages are enormous significant. Various nanotheranostic techniques [9,10] unique characteristics and some intelligences task compare to sensitivity, biocompatibility, biodegradability, solubility in conventional medicines. It reduce the partial physical dimensions and increase the performance of the biological properties and physic-chemical characteristics. Divagar Murugan et. Al [11] investigated fiber-optic absorbance biosensor to confine the spread of the COVID-19 disease at low cost and nanobiotechnologies applied in [12].

Diabetes disease [13] primarily grouped into Type 1 and Type 2. Along type 1 and type2, gestational diabetes take place when pregnancy. The protected cells of our body are accountable for harass the foreign particles. Nano biotechnology utilizes the improved surface properties, catalytic, catalytic and nanoparticle to identify monitors and takes care of a disease. The viral anoparticles are treated as bio-nomaterials used in biomedical imaging field [14, 15]. Top down and bottom approach are suggested for nano particle fabrication. Genome sequence [16] improves the area of therapeutics and diagnostics. Nanotechnologies enhance the health care through hearing aids and remote device. Manufacturing the testing kits and Molecularly imprinted polymer technique is presented [17] to identify the taste found in tea. Machine learning algorithm applied [18,19] for predicting drugs and disease. Emily M. Miller et al.[20] nanoparticle-based therapies are used to rectify the ovarian cancer drug resistance for women. Elisabete Fernandes et al. [21] applied magnetic resistance of biosensor for stroke patients and diagnosis, therapeutric , immunization and vaccine production discussed [22]. Hong Wang et al. [23] proposed tumor immunosuppression technique to suppress the tumor development and provide a good nanostand with well-known immunosuppression-relieving ability for helpful cancer therapy. Raquel et al.[24] suggested new vascular system of nanobiotechnological advances for patient safety. The mechanical and biological way tissue engineering problems are solved by [25]. Magnetic nanoparticles [26] are broadly worn for diagnostic, therapeutic and drug delivery. Implantable vascular interface device [27,28] applied for vascular tissues. Iron-based nanozymes [29] are scientific inorganic nanoparticles for virus analysis and cure. Joloudari et al. [30] used nanobiomaterial device to handling coronary diseases.

4. Conclusion
This article exploited the nanobiotechnology usage and enhancement in this area. It illustrated the diagnosis and therapeutic in medical can be attain to greatest with least side effects by ways of the under tissue-specific clinical involvement. The selection of nano size, integration with device and molecules biocompatibility are very challenging one. In future can be need careful clinical traits for successful completion of medical diagnosis.

References
[1] Khalid M. Abu-Salah, Anees A. Ansari, and Salman A. Alrokayn‘ DNA-Based Applications in Nanobiotechnology, Journal of Biomedicine and Biotechnology, 2010, 1-15.
[2] Helena Gradinar & Roman Jeral, Self-assembled bionanostructures: proteins following the lead of DNA nanostructures, No.4, 2014.
[3] Bing Sheu; Xiaoning Jiang, Modeling and Simulation: New Roles in Nanotechnology, IEEE Nanotechnology Magazine, 2020, 2 – 2.
[4] Sergey Edward Lyshevski , ano-, NanoBio- and NanoBioMedical- Technologies: Enabling sensing, communication and processing paradigms, 2012 12th IEEE International Conference on Nanotechnology (IEEE-NANO), IEEE, 2012.
[5] Neda Azizipour, Rahi Avazpour, Derek H. Rosenzweig, Mohamad Sawan, Abdellah Ajji. Evolution of Biochip Technology: A Review from Lab-on-a-Chip to Organ-on-a-Chip. Micromachines 2020, 11 (6),599., IEEE Nanotechnology Magazine, 2020, 42 – 51.
[6] S. K. Tabatabaei et al., “DNA punch cards for storing data on native DNA sequences via enzymatic nicking.” Nat. Commun. vol. 11, 2020.
[7] H. Qiu, A. Sarathy, K. Schulten, and J.-P. Leburton, “Detection and mapping of DNA methylation with 2D material nanopores,” npj 2D Mater. Appl., vol. 1, no. 1, p. 3, 2017.
[8] A. Sarathy, N. B. Athreya, L. R. Varshney, and J.-P. Leburton, “Classification of epigenetic biomarkers with atomically thin nanopores,” J. Phys. Chem. Lett., vol. 9, no. 19, pp. 5718–5725, Oct. 2018.
[9] Peredkov K.Ya, Nanobiotechnology in modern medicine, Medico Research Phronicles, VOL. 5 NO. 6 (2018).
[10] Rieznichenko L.S., Rybachuk A.V., Bilous S. B., nanoparticles: synthesis, effectiveness in the treatment of purulent inflammatory diseases of the maxillofacial area, development of dosage forms, Journal of Chemical and Pharmaceutical Research, 2016. – Vol. 8, No.1, P. 332-338.
[11] Divagar Murugan, Himanshu Bhatia, V. V. R. Sai, Jitendra Satija. P-FAB: A Fiber-Optic Biosensor Device for Rapid Detection of COVID-19. Transactions of the Indian National Academy of Engineering 2020, 5 (2), 211-215.
[12] Amna Batool, Farid Menaa, Barkat Ali Khan and Bushra Uzair, Progress and Prospects in Translating Nanobiotechnology in Medical Theranostics, Vol.15, No.5, 685-707.
[13] Antar Mukhopadhyay and Prosenjit Mondal, Application of Nano-biotechnology for Improvement in Therapeutic Approaches for the Treatment of Diabetes, 2018.
[14] Petrac K (2018) Essential properties of drug targeting delivery systems. Drug Discov Today 10: 1667-1673.
[15] Mariappan N. Recent trends in Nanotechnology applications in surgical specialties and orthopedic surgery. Biomed Pharmacol J 2019;12(3).
[16] James R. Heath, Nanotechnologies for biomedical science and translational medicine, PNAS, 2015 112 (47) 14436-14443 Trisita Nandy Chatterjee, Rajib Bandyopadhyay. A Moleculary Imprinted Polymer-Based Technology for Rapid Testing of COVID-19. Transactions of the Indian National Academy of Engineering 2020, 5 (2), 225-228.
[17] Jafar Ali Ibrahim, Dr. M. Thangamani, Prediction of novel drugs and diseases for hepatocellular carcinoma based on multi-source simulated annealing based random walk, Journal of Medical System, Springer, Vol.42, No.188, August 2018.
[18] S.Jafar Ali Ibrahim, Dr. M. Thangamani, Enhanced singular value decomposition for prediction of drugs and diseases with Hepatocellular carcinoma based on multi-source Bat Algorithm based Random walk, Journal of Measurement, Elsvier, Vol.141, July 2018.
[19] Emily M. Miller, Timothy M. Samec and Angela A. Alexander-Bryant, Nanoparticle delivery systems to combat drug resistance in ovarian cancer, Nanomedicine: Nanotechnology, Vol.31, 2021.
[20] Elisabete Fernandes, Tomás Sobrino, Verónica, Martins, Point-of-care quantification of serum cellular fibronectin levels for stratification of ischemic stroke patients, Nanomedicine: Nanotechnology Vol.30, 2020.
[21] Amr El-Sayed & Mohamed Kamel, Advances in nanomedical applications: diagnostic, therapeutic, immunization, and vaccine production, Environmental Science and Pollution Research, 27, pages19200–19213,(2020).
[22] Hong Wang, Jie Li, Zhiwan Wang, Yuqi Wang and Yaping Li, Tumor-permeated bioinspired theranostic nanovehicle remodels tumor immunosuppression for cancer therapy, Biomaterials, vol.269, 2021.
[23] Raquel C. Gonçalves, Andrea Banfi, Mariana B. Oliveira, João F. Mano, Strategies for re-vascularization and promotion of angiogenesis in trauma and disease, Biomaterials, Vol.269, 2021.
[24] Panel Krishna Mohan Agarwal, Utkarsh Mohan, Shyamal Mandal, Dinesh Bhattachar, Comprehensive study related to advancement in biomaterials for medical applications, Sensors International, Vol. 1, 2020.
[25] Saba Khoshbakht, Faarzad Asghari-Sana, Anahita Fathi-Azarbayjani and Yaeghob Sharifi, Fabrication and characterization of tretinoin-loaded nanofiber for topical skin delivery, Biomaterials Research, Vol. 24, No. 8, 2020.
[26] Rachel Ghasemi Goorbandi, Mohammad Reza Mohammad and Kianoosh Malekzadeh, Synthesizing efficacious genistein in conjugation with superparamagnetic Fe3O4 decorated with bio-compatible carboxymethylated chitosan against acute leukemia lymphoma, Biomaterials, Vol. 24, No. 9, 2020.
[27] Dakota M. Binkley, Kathryn Grandfield. Advances in Multiscale Characterization Techniques of Bone and Biomaterials Interfaces. ACS Biomaterials Science & Engineering 2018, 4 (11), 3678-3690.
[28] Kaitlyn R. Ammann, Maxwell Li, Syedossier, Marvin J. Slepian. The Influence of Polymer Processing Methods on Polymer Film Physical Properties and Vascular Cell Responsiveness. ACS Applied Bio Materials 2019, 2 (8), 3234-3244.
[29] Chu Shi, Dr. Yan Li, Iron-Based Nanozymes in Disease Diagnosis and Treatment, chemBiochem, combining chemistry and biology, 2019.

[30] Joloudari, Saadatfar, GhasemiGol and Razavi, coronary Artery disease diagnosis and ranking the significant features using a random tree model, International journal of environ.res. public health, 731,17, 2020