A directed tabu search method for solving controlled Volterra integral equations

Asyieh Ebrahimzadeh1 · Raheleh Khanduzi2

Received: 5 April 2016 / Accepted: 21 June 2016 / Published online: 5 July 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract This paper proposes a pseudo-spectral scheme for obtaining approximate optimal control and state. This computational scheme represents the solution of the optimal control problem (OCP) by an mth degree Lagrange interpolating polynomial, using Legendre nodes. Then, OCP of non-linear Volterra integral equation is transformed into an optimization problem. Directed tabu search (DTS) method is utilized to derive the solutions of the optimal control and state as well as the optimal value of the objective function. In the DTS method, two neighborhood-local search strategies based on Nelder–Mead method and adaptive pattern search are applied. In addition, a tabu list with anti-cycling rules, the so-called tabu regions and semi-tabu regions are used. In addition, diversification and intensification search schemes are employed. DTS is able to converge to the global optimum solutions of a set of numerical examples. Therefore, some good balance between the diversification and intensification ensures a faster and efficient convergence to get quality solutions. Numerical examples are provided which confirm the reliability and efficiency of the proposed method. Moreover, a comparison is made with optimal solutions obtained by the other numerical methods in the literature.

Keywords Directed tabu search method · Optimal control · Lagrange interpolating polynomial · Non-linear Volterra integral equation · Pseudo-spectral method

Introduction

The controlled Volterra integral equations (VIE) are very momentous, because these equations arise in modelling many classes of phenomena. Many problems in economics, biology, epidemiology, and memory effects can be modeled as Volterra control problems [34]. Since the analytical methods based on the necessary conditions obtained using the Pontryagin’s maximum principle and dynamic programming have less implementation ability, different numerical approaches have been devised to overcome the problems arising from the application of analytical methods [8–12, 34, 35, 40, 46].

In this paper, we have introduced a spectral approach based on collocation method to obtain optimal control of systems governed by VIE. Spectral techniques have been demonstrated to provide effective and flexible methods to solve diverse problems numerically [5–7, 44, 46, 47]. The presented method consists of reducing the OCP to a non-linear programming (NLP) by first expanding the state and control functions in terms of Lagrange interpolating polynomial with unknown coefficients. These polynomials together with numerical integration and collocation approach are utilized to convert OCP to finite-dimensional programming problem. Since the resulted finite-dimensional programming problem is large scale, there are various optimization methods which can be implemented to solve it. It is tried that to find a method which is usuable and effective on solving these problems in large-scale setting. Metaheuristic methods are becoming one of the
important tools for producing robust and efficient methods that compute approximate solutions of problems with high quality in reasonable computation time. Therefore, metaheuristic methods are applied for solving real-world optimization problems [18, 19, 24, 30, 33, 42, 43]. Among those metaheuristic algorithms, tabu search (TS) [18] is one of the most efficient memory-based methods. However, the original TS cannot completely exert the optimization problems. The modified versions of the TS have been presented to ameliorate its performance, for example, One of the enhanced versions of the TS is referred to as directed tabu search (DTS) [26]. DTS has shown a notable performance when used to solve non-linear continuous optimization problems. Due to its neighborhood mechanisms, DTS had quick convergence, since it detected promising search directions in the neighborhood of a global minimum. Indeed, the slow convergence of TS was overcome by incorporating local search strategies, such as the Nelder–Mead (NM) method [39] and the adaptive pattern search (APS) [25], into the main algorithm. On the other hand, the DTS has been successfully applied to various real-world optimization problems [26, 28, 29, 31, 38, 41]. Therefore, we survey application of DTS to solve OCP and use the values of the parameters that are required in the implementation of the DTS method of Hedar and Fukushima [26].

This paper is arranged as follows: OCP is defined in Sect. 2. In Sect. 3, we illustrate how the pseudo-spectral method using Lagrange interpolation polynomials converts the continuous OCP to a finite-dimensional optimization problem. Directed tabu search algorithm is exerted to solve this non-linear optimization problem which has global convergence. In Sect. 4, basic convergence results are given. Section 5 contains numerical examples that demonstrate the efficiency and accuracy of the proposed framework. Section 6 ends this paper with a brief conclusion.

The formulation of optimal control problem

In the present work, we focus on a numerical approach to solve the following OCP of non-linear VIE:

**Problem A**: Specify the real-valued continuous optimal control $u^*(t)$ and the corresponding optimal state $x^*(t)$, $t \in [0, 1]$, that maximize (or minimize) the functional

$$J(x, u) = \int_0^1 \mathcal{F}(t, x(t), u(t))dt,$$

subject to state dynamics

$$x(t) = y(t) + \int_0^t \mathcal{K}(s, t, x(s), u(s))ds.$$

It is assumed that $\mathcal{F}$, $\mathcal{K}$ and $y$ are real valued and continuously differentiable with respect to their arguments, and both $x$ and $u$ belong to Sobolev space $W^{1,\infty}$. The interval $[0, 1]$ can be transformed to an arbitrary interval $[a, b]$ via a proper change of variable. It is also supposed that the optimal control of this problem is unique. Analytical discussions about the existence and uniqueness for optimal control of systems governed by non-linear VIE 2 can be found in [1, 27] and references there in.

The method of discretization

Pseudo-spectral approaches are powerful tools that are frequently employed in various fields of numerical analysis. These methods have a higher order of accuracy in the case of smooth solution of any considered problem. In this section, implementation of the pseudo-spectral method on problem $\mathcal{A}$ is given. At first, the control and state functions are approximated in terms of $M$th degree Lagrange interpolating polynomials of the form

$$x(t) \approx X^M(t) = \sum_{k=0}^{M-1} x_k \psi_k(t),$$

$$u(t) \approx U^M(t) = \sum_{k=0}^{M-1} u_k \psi_k(t),$$

where $\psi_k(t)$ for $k = 0, \ldots, M - 1$ are the Lagrange interpolating polynomials defined by

$$\psi_k(t) = \prod_{i=0, i \neq k}^{M-1} \left( \frac{t - \tau_i}{\tau_k - \tau_i} \right),$$

in which $\tau_i$, $i = 0, 1, \ldots, M - 1$ can be Gauss–Legendre (GL) or Gauss–Chebyshev (GC) nodes. GC nodes are the roots of Chebyshev polynomial of the first kind in $[-1, 1]$ [36]. These nodes in the interval $[0, 1]$ are defined by

$$\tau_i = \frac{1}{2} + \frac{1}{2} \cos \left( \frac{2i + 1}{2M} \pi \right), \quad i = 0, 1, \ldots, M - 1.$$

GL nodes are the zeros of Legendre polynomial. Explicit formulas for GL nodes are not known. However, they can be computed numerically using existing subroutines [14]. The best choice of interpolation points to ensure uniform convergence is GC nodes (see Section 2.2 [36]). It can be verified that

$$\psi_k(\tau_i) = \delta_{ki} = \begin{cases} 
1 & i = k, \\
0 & i \neq k.
\end{cases}$$

The approximation process of problem $\mathcal{A}$ includes the discretization of both the cost function and the controlled integral equation constraint.
Controlled integral equation discretization

We discretize Eq. 2 using shifted GC nodes, \( t_p \), \( p = 0, 1, \ldots, M - 1 \), as follows:

\[
    x(t_p) = y(t_p) + \int_{0}^{t_p} K(s, t_p, x(s), u(s)) \, ds. 
\]  

(7)

We should notice that GC nodes should be transformed into the interval [0, 1]. By substituting 3 in 7, we obtain

\[
    x^M(t_p) \approx y(t_p) + \int_{0}^{t_p} K(s, t_p, x^M(s), u^M(s)) \, ds. 
\]  

(8)

The GL quadrature formula is utilized to approximate the integral term in Eq. 8. For this purpose, this change of variable must be made with the following form:

\[
    b_p(\tau) = \frac{t_p}{2} (\tau + 1). 
\]  

(9)

Then, by applying GL quadrature for approximating the integral, we derive

\[
    x^M(t_p) \approx y(t_p) + \int_{0}^{t_p} K(s, t_p, x^M(s), u^M(s)) \, ds. 
\]  

(10)

where \( b_p^j = b_p(\tau_j) \), and \( \tau_j \)'s are the GL nodes, in the interval \([-1, 1]\), and \( w_j \)'s are the corresponding weights. The quadrature weight, \( w_j \), can be obtained from the following relation:

\[
    w_j = \frac{2}{(1 - \tau_j^2) [L^M_M(\tau_j)]^2}, \quad j = 0, \ldots, M - 1. 
\]  

(11)

In Eq. 11, \( L^M_M \) is Legendre polynomial of degree \( M \). For more details about these polynomials, see Tohidi and Samadi [48]. Finally, the controlled Volterra integral Eq. 2 is reduced to \( M \) non-linear algebraic equations given in Eq. 10.

Cost functional discretization

For approximating the cost functional stated in Eq. 1, we utilize the GL quadrature after the proper interval transformation

\[
    \int_{0}^{1} F(t, x(t), u(t)) \, dt \approx \frac{1}{2} \int_{-1}^{1} F\left(\frac{\tau + 1}{2}, x^M\left(\frac{\tau + 1}{2}\right), u^M\left(\frac{\tau + 1}{2}\right)\right) \, d\tau 
\]

\[
    \approx \sum_{j=0}^{M-1} w_j F(\tau_j^*, x^M(\tau_j^*), u^M(\tau_j^*)), 
\]  

(12)

where \( w_j^* = \frac{1}{2} w_j \) and \( \tau_j^* = \frac{j + 1}{2} \), and \( \tau_j \) and \( w_j \) are GL nodes and weights stated in Eq. 11.

The discretized optimization problem

Finally, problem \( A \) is approximated by the following NLP:

\[
    \min J^M(X, U) \tag{13}
\]

subject to

\[
    K_p(X, U) = -y(t_p), \quad p = 0, 1, \ldots, M - 1, 
\]  

(14)

where \( X = (x_0, x_1, \ldots, x_{M-1}) \) and \( U = (u_0^M, u_1^M, \ldots, u_{M-1}^M) \) are the unknown parameters of our discrete problem, and

\[
    J^M(X, U) := \sum_{j=0}^{M-1} w_j^* F(\tau_j^*, x^M(\tau_j^*), u^M(\tau_j^*)), 
\]

and

\[
    K_p(X, U) := \frac{1}{2} \sum_{j=0}^{M-1} w_j K(b_p^j, t_p, x^M(b_p^j), u^M(b_p^j)) - x^M(t_p), 
\]  

(15)

\( p = 0, 1, \ldots, M - 1. \)

As shown above, the resulted discrete problem can be reformulated as the following non-linear programming problem:

Problem \( A^M \): Find \( (X, U) \) that minimize

\[
    J^M(X, U) = \sum_{j=0}^{M-1} F(\tau_j^*, x^M(\tau_j^*), u^M(\tau_j^*))w_j^*, 
\]

subject to

\[
    K_p(X, U) + y(t_p) = 0, \quad p = 0, 1, \ldots, M - 1. 
\]  

(17)

When the continuous problem \( A \) is discretized, the infinite-dimensional problem \( A \) is reduced to the finite-dimensional non-linear optimization problem \( A^M \). Many well-developed NLP techniques can be used to solve this problem [32]. The method has been used to solve the non-linear constrained optimization problem which is based on DTS method.

Directed tabu search

DTS is one of the recent development metaheuristics proposed for combinatorial optimization problems. In the DTS method, three search procedures were used: Exploration, Diversification, and Intensification. In the Exploration Search, a local search procedure is applied to produce trial moves, based on the Nelder–Mead method (NM) and the
adaptive pattern search method (APS). Besides, memory elements called Tabu Region (TR), Semi-TR, and a multi-ranked Tabu List (TL) were presented to obtain anti-cycling rules. Visited Regions List (VRL) was also presented for the Diversification Search to diversify the search to unvisited areas of the solution region. At last, supposing that one of the best points generated by the Exploration and Diversification Searches was close to a global solution, the Intensification Search was utilized again as the final step to rectify the best solutions visited so far. Indeed, the Exploration and Diversification search processes were congregated to prepare the DTS main loop and were repeated until the termination conditions were satisfied. Therewith, the Exploration Search process was comprised as an inner loop within the diversification loop [26].

Here, the DTS method applies pattern search to get better performance. The main operators used in the DTS are:

**Memory elements** Memory elements are used to provide anti-cycling rules and to diversify the search to unvisited areas of the solution space.

- **TL** Due to the recency and objective function values, solutions are ranked and saved in the TL.
- **VRL** The centers of the visited regions and the frequency of them are saved in the VRL for generating new diverse solutions.
- **TR and Semi-TR** No new trial solution is allowed to be generated in a TR. A Semi-TR is a neighbor region around TR. New trial solutions are generated in a Semi-TRs, so that returning back to a visited TR is avoided.

**APS** In the APS method, the approximate descent direction method is used to find promising directions.

**Exploration search** In exploration search process, trial solutions are generated based on neighborhood region structures and the APS procedure.

**Diversification search** While the exploration search is taking a long time to improve the current solution, then the VRL is called to generate new diverse solutions.

**Intensification search** In this phase, NM method IS applied starting from some of the best solution found till now.

In the DTS method, the exploration, diversification, and intensification search procedures are applied to develop the search process on a global strategy. Indeed, these search procedures are used to get a vast exploration and an extensive diversification. The DTS has been used in this work is stated in Algorithm 1.

---

**Algorithm 1. Directed Tabu Search**

1. **Initialization.** Select an initial solution, and set the TL and the VRL to be empty.

---

2. **Exploration-Diversification Search** (Main Loop). Repeat this main loop steps until a predefined number of consecutive main iterations fail to obtain improvement or the main loop iteration counter exceeds a predefined maximum number.

   1. **Exploration Search** (Inner Loop). Repeat this inner loop steps until a predefined number of consecutive inner iterations fail to obtain improvement or the inner loop iteration counter exceeds a predefined maximum number.

      a. **Search Directions.** Generate search directions based on the APS strategy. If the current solution lies in a Semi-TR, then generate search directions to point outside the TR.

      b. **Neighborhood Search.** Generate neighborhood trial moves based on tabu restriction and aspiration criterion. While a better movement is found during this process, stop generating points and go to Step 2.1.4.

      c. **Local Search.** Apply a predefined number of iterations of the NM method starting from the current solution.

      d. **Parameter Update.** Replace the element with the smallest membership value in TL with the current solution and re-rank the TL elements, and update the VRL.

   2. **Diversification Search.** Generate a diverse solution, and update the TL and VRL.

   3. **Intensification Search.** Apply a complete NM method starting from some elite solutions in the TL.

---

**Theoretical consideration**

In numerical schemes, discussion on convergence of an proposed algorithm is essential. The convergence of discretization methods for OCP is a topic of active research [4, 13, 16, 17, 20–22]. In this section, we investigate the following questions:

1. Does the discretized problem \( A^M \) admit a feasible solution?

2. Does a sequence of discretized optimal solutions of problems \( A^M \) converge to the optimal solution of problem \( A \)?

In Theorem 1, it has been proven that the feasibility of discretized problems \( A^M \) is guaranteed if a solution to the continuous-time problem \( A \) exists? It should be noted that the convergence analysis of the proposed scheme can be done using similar idea provided in [48]. First, we need the following lemma and definition.
Definition 1 [21] A function $Q : [0,1] \rightarrow \mathbb{R}$ belongs to Sobolev space, $W^{l,p}$, if its $l$th weak derivative, $Q^{(l)}$, lies in $L^p[0,1]$ for all $0 \leq l \leq l$.

Lemma 1 [20] Given any function $Q(t) \in W^{l,\infty}, t \in [0,1]$, there is a polynomial $P^M(t)$ of degree $M$ or less, such that

$$|Q(t) - P^M(t)| \leq CC_0M^{-l}, \quad \forall t \in [0,1],$$

(18)

where $C$ is a constant independent of $M$ and $C_0 = \|Q\|_{W^{l,\infty}}$.

Remark 1 The computational interval can be transformed from $[0,1]$ to $[a,b]$ via an affine transformation.

Theorem 1 (Existence) [48] Let $(x(t), u(t))$ be a feasible solution for problem $A$ and $x(t)$ and $u(t)$ belong to $W^{l,\infty}$ with $l \geq 2$. Then, there exists a positive integer $M_1$, such that, for any $M > M_1$, problem $A^M$ has a feasible solution, $(X^M(tp), U^M(tp))$ and this feasible solution also satisfies in the following inequalities:

$$\|x(tp) - X^M(tp)\|_\infty \leq L_1(M - 1)^{1-l} \quad p = 0, 1, \ldots, M - 1$$

(19)

$$\|u(tp) - U^M(tp)\|_\infty \leq L_2(M - 1)^{1-l} \quad p = 0, 1, \ldots, M - 1$$

(20)

in which $tp$ is Gauss–Legendre node or Gauss–Chebyshev node, and $L_1$ and $L_2$ are positive constant independent of $M$.

We establish in Theorem 1 the existence of feasible solutions for discretized problem $A^M$. The next theorem demonstrates that there exists a sequence of optimal solutions of problems $A^M$ converging to an optimal solution of problem $A$. Let $X^* = [x^*_{M_0}, x^*_{M_1}, \ldots, x^*_{M_{M-1}}]^T$ and $U^* = [u^*_{M_0}, u^*_{M_1}, \ldots, u^*_{M_{M-1}}]^T$ be the optimal solutions of the problem $A^M$. The approximate optimal control and state are

$$X^M(t) = \sum_{i=0}^{M-1} X^*_i \psi_i(t), \quad U^M(t) = \sum_{i=0}^{M-1} U^*_i \psi_i(t).$$

(21)

The next theorem will be demonstrated the convergence of the sequence $\{(X^M(tp), U^M(tp))\}_{M=M_0}^\infty$.

Theorem 2 (Convergence of optimal solutions) [48] Let $\{(X^M(tp), U^M(tp)), 0 \leq M - 1\}_{M=M_0}^\infty$, be a sequence of optimal solutions to problem $A$. If

$$\lim_{M \to \infty} X^M(t_0) = \tilde{x}_0, \quad \lim_{M \to \infty} U^M(t_0) = \tilde{u}_0$$

and the function sequence $\{(X^M(t), U^M(t)), t = 0, 1, 2, \ldots, M - 1\}_{M=M_0}^\infty$ has a subsequence that uniformly converges to the continuous functions $\{p(t), q(t)\}$ on $[0,1]$, then $\tilde{x}(t) = \int_0^t p(\tau) d\tau + \tilde{x}_0$ and $\tilde{u}(t) = \int_0^t q(\tau) d\tau + \tilde{u}_0$ are the optimal solution of problem $A$.

Illustrative examples

In this section, two numerical examples are considered to illustrate the effectiveness of the pseudo-spectral method along with DTS scheme. The numerical results obtained from our propounded method is also compared with the results in other works in [35, 48]. The following numerical implementation is performed using Mathematica.

Example 1 Consider the minimization of functional

$$J = \int_0^1 (x(t) - \sin(t))^2 + (u(t) - t)^2 dt,$$

subject to Borzabadi et al. [13]

$$x(t) = y(t) + \int_0^t u(s)(x(s) + t) ds,$$

(23)

where $y(t) = t \cos(t) - \frac{1}{2} t^2$.

The optimal value of cost function is $J^* = 0$. The optimal control $u^*(t)$ and corresponding optimal state $x^*(t)$ are as follows:

$$\begin{cases}
    x^*(t) = \sin(t), \\
u^*(t) = t.
\end{cases}$$

The approximate solutions for both state and control functions together with the exact solutions are depicted in Figs. 1 and 2. The blue lines in the figures indicate the exact optimal solutions and the red lines are the approximate solutions. The absolute errors of cost functional value, $E_J$, for example 1, are compared with those obtained from the methods Maleknejad and Almasieh [35] and Tohidi and Samadi [48] in Table 1.

Example 2 Consider the minimization of the cost functional

$$J = \int_0^1 (x(t) - e^{-r^2})^2 + (u(t) - t)^2 dt,$$

Fig. 1 Exact and approximate optimal control.
subject to the controlled Volterra integral

\[ x(t) = y(t) - \int_0^t u(s)tx(s)ds \]

where \( y(t) = e^{-t^2} + \frac{t(1-e^{-t^2})}{2} \). This problem has the optimal solutions \( u^*(t) = t \) and \( x^*(t) = e^{-t^2} \). Figures 3 and 4 show the exact and approximate optimal control and state. Table 2 gives the results obtained from our proposed scheme and the methods in Maleknejad and Almasieh [35] and Tohidi and Samadi [48].

At the end, we answer a natural question: are there advantages of the proposed pseudo-spectral method along with DTS method compared with the existing ones? To answer this, we summarize what we have observed from numerical experiments and theoretical results as follows:

- As seen in Examples 1 and 2, the proposed method with a few collocation points has satisfactory results with respect to other methods.
- The proposed orthogonal collocation method leads to rapid convergence, as the number of collocation points increases. The main reason for this fast convergence is that the DTS explore the global search space using local information about promising search direction.

### Table 1 Numerical results of Example 1

| \( M \) | \( E^J \) (DTS) | \( E^J \) [35] | \( E^J \) [48] |
|---|---|---|---|
| 2 | 3.1760E−15 | 2.3296E−07 | 5.9668E−06 |
| 3 | 5.8431E−17 | 5.6973E−09 | 4.9400E−08 |
| 4 | 8.7651E−20 | 3.3217E−12 | 4.2260E−11 |
| 5 | 1.4916E−21 | 6.8699E−15 | 1.9397E−13 |
| 6 | 1.5157E−23 | 1.2832E−17 | 8.2905E−17 |

### Table 2 Numerical results of Example 2

| \( M \) | \( E^J \) (DTS) | \( E^J \) [35] | \( E^J \) [48] |
|---|---|---|---|
| 2 | 4.7431E−18 | 9.6934E−07 | 5.8680E−06 |
| 3 | 4.8690E−21 | 6.4649E−08 | 5.2080E−07 |
| 4 | 1.1847E−23 | 2.0778E−10 | 1.1391E−09 |
| 5 | 9.1304E−26 | 8.5037E−12 | 1.1597E−10 |
| 6 | 7.4725E−30 | 3.4206E−14 | 2.0071E−13 |

### Conclusion

In this study, an advanced numerical PS method has been proposed for solving optimal control of Volterra integral equation by means of Lagrange polynomials via collocation method. The problem has been reduced to a finite-dimensional parametric optimization, and there exist many effective algorithms which can be applied to solve the NLP. To solve this problem, directed tabu search (DTS) method is applied. This algorithm comes from the incorporation of a modified Tabu Search (TS) with two local optimizer methods. The local optimizers are direct search
methods, which aim to find a better solution neighbor to the present best solution by conducting the intensification and diversification along the move direction of the best solution in the area. The results indicate that using DTS could help to get better solutions of problems than available approximate methods. Illustrative examples have shown the validity, applicability, and efficiency of the proposed method. The method is in the case of optimal control of systems governed by VIE which is applicable in the field of practical science and engineering [34].

Acknowledgments The first author would like to appreciate the Young Researchers and Elite Club, Islamic Azad University of Najafabad Branch for supporting this research. The second author would like to thank the research council of Gonbad-e-Kavous University for supporting this research work.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Angell, T.S.: On the optimal control of systems governed by nonlinear Volterra equations. J. Optim. Theory Appl. 19, 29–45 (1976)
2. Belbas, S.A.: A new method for optimal control of Volterra integral equations. Appl. Math. Comput. 189, 1902–1915 (2007)
3. Belbas, S.A.: A reduction method for optimal control of Volterra integral equations. Appl. Math. Comput. 197, 880–890 (2008)
4. Betts, J.T., Biehn, N., Campbell, S.L.: Convergence of nonconvergent IRK discretizations of optimal control problems with state inequality constraints. SIAM J. Sci. Comput. 23, 1981–2007 (2002)
5. Bhrawy, A.H.: A Jacobi spectral collocation method for solving multi-dimensional nonlinear fractional sub-diffusion equations. Numer. Algorithms (2016). doi:10.1007/s11075-015-0087-2
6. Bhrawy, A.H.: An efficient Jacobi pseudospectral approximation for nonlinear complex generalized Zakharov system. Appl. Math. Comput. 247, 30–46 (2014)
7. Bhrawy, A.H., Zaky, M.A.: A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations. J. Comput. Phys. 281, 876–895 (2015)
8. Bhrawy, A.H., Ezz-Eldien, S.S.: A new Legendre operational technique for delay fractional optimal control problems. Calcolo (2016). doi:10.1007/s10092-015-0160-1
9. Bhrawy, A.H., Doha, E.H., Machado, J.A.T., Ezz-Eldien, S.S.: An efficient numerical scheme for solving multi-dimensional fractional optimal control problems with a quadratic performance index. Asian J. Control 17, 2389–2402 (2015)
10. Bhrawy, A.H., Abdelkawy, M.A., Machado, J.T., Amin, A.Z.M.: Legendre–Gauss–Lobatto collocation method for solving multi-dimensional fredholm integral equations. Computers Math. Appl. (2016). doi:10.1016/j.camwa.2016.04.011
11. Bhrawy, A.H., Tohidi, E., Soleymani, F.: A new Bernoulli matrix method for solving high-order linear and nonlinear Fredholm integro-differential equations with piecewise intervals. Appl. Math. Comput. 219, 482–497 (2012)
12. Bhrawy, A.H., Doha, E.H., Baleanu, D., Ezz-Eldien, S.S., Abdelkawy, M.A.: An accurate numerical technique for solving fractional optimal control problems. Proc. Rom. Acad. A 16, 47–54 (2015)
13. Borzabadi, A.H., Abbasi, A., Fard, O.S.: Approximate optimal control for a class of nonlinear Volterra integral equations. J. Am. Sci 6, 1017–1021 (2010)
14. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang Jr., T.A.: Spectral Methods in Fluid Dynamics. Springer, New York (1988)
15. Dontchev, A.L.: Discrete Approximations in Optimal Control. Springer, New York (1996)
16. Dontchev, A.L., Hager, W.W.: The Euler approximation in state constrained optimal control. Math. Comput. 70, 173–203 (2001)
17. Freud, G.: Orthogonal Polynomials. Pergamon Press, Elmsford (1971)
18. Glover, F.: Future paths for integer programming and links to artificial intelligence. Computers Oper. Res. 13(5), 533–549 (1986)
19. Golden, B.L., Wasil, E.A., Kelly, J.P., Chao, I.M.: Fleet management and logistics. The impact of metaheuristics on solving the vehicle routing problem: algorithms, problem sets, and computational results, pp. 33–57. Kluwer Academic Publishers, Boston (1998)
20. Gong, Q., Ross, I.M., Kang, W., Fahroo, F.: On the pseudospectral covector mapping theorem for nonlinear optimal control. In: 45th IEEE Conference on Decision and Control, pp. 2679–2686 (2006)
21. Gong, Q., Ross, I.M., Kang, W., Fahroo, F.: Connections between the covector mapping theorem and convergence of pseudospectral methods for optimal control. Comput. Optim. Appl. 41, 307–335 (2008)
22. Hager, W.W.: Runge–Kutta methods in optimal control and the transformed adjoint system. Numer. Math. 87, 247–282 (2000)
23. Hassan, M.Y., Suharto, M.N., Abdullah, M.P., Majid, M.S., Hussin, F.: Application of particle swarm optimization for solving optimal generation plant location problem. Int. J. Electr. Electr. Syst. Res. 5, 47–56 (2012)
24. Haupt, R.L., Haupt, S.E.: Practical Genetic Algorithms. Wiley, New York (2004)
25. Hedar, A., Fukushima, M.: Heuristic pattern search and its hybridization with simulated annealing for nonlinear global optimization. Optim. Methods Softw. 19, 291–308 (2004)
26. Hedar, A., Fukushima, M.: Tabu search directed by direct search methods for nonlinear global optimization. Eur. J. Oper. Res. 170, 329–349 (2006)
27. Kamien, M.I., Muller, E.: Optimal control with integral state equations. Rev. Econ. Stud. 43, 469–473 (1976)
28. Karim, F., Seddiki, O.: Synthesis of chirped apodized fiber Bragg grating parameters using direct tabu search algorithm: application to the determination of thermo-optic and thermal expansion coefficients. Optics Commun. 283, 2109–2116 (2010a)
29. Karim, F., Seddiki, O.: Direct tabu search algorithm for the fiber Bragg grating distributed strain sensing. J. Optics 12, 095401 (2010b)
30. Khanduzi, R., Peyghami, M.R., Maleki, H.R.: Solving continuous single-objective defensive location problem based on hybrid directed tabu search algorithm. Int. J. Adv. Manuf. Technol. 76, 295–310 (2015)
31. Luenberger, D.G., Ye, Y.: Linear and Nonlinear Programming, 3rd edn. Springer, New York (2008)
33. Mahmoudi, S., Lotfi, S.: Modified cuckoo optimization algorithm (MCOA) to solve graph coloring problem. Appl. Soft Comput. 33, 48–64 (2015)
34. Maleknejad, K., Ebrahimpour, A.: The use of rationalized Haar wavelet collocation method for solving optimal control of Volterra integral equations. J. Vib. Control 21, 1958–1967 (2013)
35. Maleknejad, K., Almasieh, H.: Optimal control of Volterra integral equations via triangular functions. Math. Comput. Model. 53, 1902–1909 (2011)
36. Mason, J.C., Handscomb, D.C.: Chebyshev Polynomials. CRC Press, Boca Raton (2003)
37. Medhin, N.G.: Optimal processes governed by integral equations. J. Math. Anal. Appl. 120, 1–12 (1986)
38. Mimis, A.: A geographical information system approach for evaluating the optimum location of point-like facilities in a hierarchical network. Geo-spatial Inf. Sci. 15(1), 37–42 (2012)
39. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1965)
40. Peyghami, M.R., Hadizadeh, M., Ebrahimpour, A.: Some explicit class of hybrid methods for optimal control of Volterra integral equations. J. Inf. Comput. Sci 7, 253–266 (2012)
41. Ramadas, G.C.V., Fernandes, E.M.G.P.: Self-adaptive combination of global tabu search and local search for nonlinear equations. Int. J. Computer Math. 89(1314), 1847–1864 (2012)
42. Rao, R.V., Savsani, V.J., Vakharia, D.P.: Teaching-learning-based optimization: an optimization method for continuous non-linear large scale problem. Inf. Sci. 183, 1–15 (2012)
43. Ribeiro, C.C., Hansen, P.: Essays and Surveys in Metaheuristics. Kluwer Academic Publishers, Boston (2002)
44. Ross, I.M., Fahroo, F.: Convergence of pseudo-spectral discretizations of optimal control problems. In: Proceedings of 40th IEEE Conference on Decision and Control, vol. 4, pp. 3175–3177 (2001)
45. Schmidt, W.H.: Volterra integral processes with state constraints. SAMS 9, 213–224 (1992)
46. Tohidi, E., Lotfi Noghabi, S.: An efficient Legendre pseudo-spectral method for solving nonlinear quasi bang-bang optimal control problems. J. Appl. Math. Stat. Inf. 8, 73–85 (2012)
47. Tohidi, E., Pasban, A., Kilicman, A., Lotfi Noghabi, S.: An efficient pseudo-spectral method for solving a class of nonlinear optimal control problems. Abstr. Appl. Anal. 7 (2013) (Article ID 357931)
48. Tohidi, E., Samadi, O.R.N.: Optimal control of nonlinear Volterra integral equations via Legendre polynomials. IMA J. Math. Control Inf. 30, 67–83 (2013)