Obesity and Air Pollution: Global Risk Factors for Pediatric Non-alcoholic Fatty Liver Disease

Roya Kelishadi 1,2, Parinaz Poursafa 3,4 *

1 Pediatrics Department, Child Health Promotion Research Center, Isfahan University of Medical Sciences, Isfahan, IR Iran
2 Pediatrics Department, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, IR Iran
3 Department of Environment and Energy Science and Research Branch, Islamic Azad University, Tehran, IR Iran
4 Environment Research Center, Isfahan University of Medical Sciences, Isfahan, IR Iran

* Corresponding author: Parinaz Poursafa, Department of Environment and Energy Science and Research Branch, Islamic Azad University, Tehran, IR Iran. Tel: +98-2144865100 Fax: +98-2144865154, E-mail: parinaz.poursafa@gmail.com

Non-alcoholic fatty liver disease (NAFLD) is becoming as an important health problem in the pediatric age group. In addition to the well-documented role of obesity on the fatty changes in liver, there is a growing body of evidence about the role of environmental factors, such as smoking and air pollution, in NAFLD. Given that excess body fat and exposure to air pollutants is accompanied by systemic low-grade inflammation, oxidative stress, as well as alterations in insulin/insulin-like growth factor and insulin resistance, all of which are etiological factors related to NAFLD, an escalating trend in the incidence of pediatric NAFLD can be expected in the near future. This review focuses on the current knowledge regarding the epidemiology, diagnosis and pathogenesis of pediatric NAFLD. The review also highlights the importance of studying the underlying mechanisms of pediatric NAFLD and the need for broadening efforts in prevention and control of the main risk factors. The two main universal risk factors for NAFLD, obesity and air pollution, have broad adverse health effects, and reducing their prevalence will help abate the serious health problems associated with pediatric NAFLD.

1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is considered the most common liver disease in various age groups. Its development is strongly linked to obesity (1), as well as to the relative changes in body mass index in each individual, which may be related to the onset of fatty liver (2). Even though liver steatosis has various causes in the pediatric age group, such as inherited metabolic disorders, malnutrition, infections, and drug toxicity, fatty liver disease is often seen in children in the absence of an apparent inherited metabolic defect or a specific cause. The vast majority of children with fatty liver disease are found to be obese and insulin resistant (1, 2). Low- and middle-income countries face the double burden of nutritional disorders, with an increasing prevalence of childhood obesity (3), and therefore, an increasing number of reports of NAFLD in the pediatric age group (4-7). An increasing number of studies have proposed an association between environmental factors, namely air pollution, and fatty changes in the liver. This review will focus on the current knowledge regarding the epidemiology,
diagnosis, and pathogenesis of pediatric NAFLD, as well as the possible associations with obesity and air pollution, which are the adverse effects of urbanization and globalization of lifestyle.

2. Global Trends in Childhood Obesity

The World Health Organization states “An escalating global epidemic of overweight and obesity—“globesity”—is taking over many parts of the world” (8). Of special concern in the context of this epidemic is the escalating trend in the prevalence of childhood overweight and obesity on a global scale. There are several reports on the increasing prevalence of childhood obesity in industrialized countries (9-14); however, this is an emerging health problem in low- and middle-income countries as well (15-18). An analysis of 450 nationally representative cross-sectional surveys of preschool-aged children from 144 countries indicated that in 2010, 43 million children, 35 million of them in developing countries, were estimated to be overweight and obese, and 92 million were at risk of becoming overweight. The global prevalence of childhood overweight and obesity increased from 4.2% (95% CI: 3.2%, 5.2%) in 1990 to 6.7% (95% CI: 5.6%, 7.7%) in 2010. This trend is expected to reach 9.1% (95% CI: 7.3%, 10.9%), or ~60 million, in 2020 (19). It is noteworthy that in many cases, the excess weight of children in developing countries is because of their stunting (15, 20, 21). These findings highlight the need for determining the barriers to healthy lifestyle (22) and promoting healthy living in their current obesogenic environments to reverse the anticipated health and social consequences of childhood overweight, namely NAFLD.

3. Histological Appearance of Pediatric NAFLD

The spectrum of NAFLD ranges from pure fatty infiltration (steatosis) to inflammation non-alcoholic steatohepatitis (NASH), fibrosis, and cirrhosis (23). It accounts for up to 20% of abnormal liver function test results in most developed countries (24). The histological appearance of NAFLD differs significantly in children and adults; it might represent a physiological response to environmental factors in children and a long-standing adaptation in adults. The histological criteria for distinguishing between adult (type 1) and pediatric (type 2) NASH have been proposed. Prominently, the histological features of liver injury seem to be associated with gender- and age-specific prevalence, i.e., type 2 NASH is more prevalent in younger children, and significantly more boys are affected by type 2 NASH than girls (25). Among obese children, the severity of steatosis is found to be associated with increased visceral fat mass, insulin resistance, lower adiponectin levels, and higher blood pressure (26).

4. Diagnosis of Pediatric NAFLD

4.1. Biochemical Tests

Liver biopsy is the gold standard for diagnosis, but given that it is not feasible in large epidemiological studies, surrogate markers such as serum alanine/aspartate aminotransferases (ALT/AST) or ultrasonography are usually used to detect NAFLD (27). The normal range of ALT/AST levels varies widely, and biopsy-proven NAFLD has been found in children with normal aminotransferase levels (25, 28, 29). Aminotransferases, including aspartate AST and ALT, are commonly used in evaluating liver pathologies such as NAFLD and hepatitis. Given that AST is produced in different tissues such as the liver, heart, muscle, kidney, and brain, ALT has been generally accepted as a better predictor of liver injury. Usually in a clinical setting, an ALT level of 40 IU/L is considered the upper limit of the normal range (30). However, some studies suggested lower cutoff values in children than in adults (31, 32). Moreover, some researchers have proposed gender differences for these levels, i.e., 19 IU/L and 30 IU/L for girls and boys, respectively (33, 34).

4.2. Radiologic Diagnosis

The image-based diagnosis of NAFLD is usually straightforward, but fat accumulation may be manifested with unusual structural patterns that simulate other conditions. Fat deposition in the liver may be identified non-invasively with ultrasonography, computerized tomography, or magnetic resonance imaging (35, 36). In ultrasonography, the echogenicity of the normal liver nearly equals or slightly exceeds that of the renal cortex or spleen. Intrahepatic vessels are tightly defined, and the posterior parts of the liver are well-illustrated. Fatty liver may be identified if liver echogenicity exceeds that of the renal cortex and spleen, with attenuation of the ultrasound wave, loss of delineation of the diaphragm, and poor demarcation of the intrahepatic architecture (37, 38).

5. Prevalence of Pediatric NAFLD

Determination of the prevalence of NAFLD accurately in children is difficult. Because of the aforementioned limitations and controversies in the diagnosis of NAFLD in children and adolescents, data based on surrogate markers might underestimate or overestimate the current burden of pediatric NAFLD. One of the strongest population-based studies, using the histologic definition for NAFLD, was conducted as a retrospective review of autopsies, performed from 1993 to 2003 on 742 children aged 2 to 19 years. The prevalence of NAFLD was estimated as 9.6%, ranging from 0.7% in children aged 2–4 years, to 17.3% in those aged 15–19 years, with the highest documented rate, as high as 38%, in obese children. It is of note that this study revealed differences in terms of race and ethnicity in the prevalence of pediatric NAFLD, with a prevalence of 11.8% in Hispanics, 10.2% in Asians, 8.6% in Whites, and 1.5% in Blacks (39). Results from the US National Health and Nutrition Examination Survey (NHANES 1999–2004) reported a prevalence of 8% for NAFLD in adolescents, based on elevated serum ALT (40). This prevalence is reported to be much higher among...
Table. Summary of Studies on the Prevalence of Pediatric Non-alcoholic Fatty Liver Disease

Location	Population Studied	Aims	Findings	
Widhalm et al. (2010) (63)	Review	Review article	To provide a detailed review for diagnosis and management of NAFLD and NASH	The prevalence ranges from at least 3% in children overall to about 50% in obese children
Liu et al. (2010) (53)	China	23 obese children and 24 non-obese children as controls	To compare biochemical indicators and carotid intima-media thickness (IMT)	The NAFLD group had greater carotid IMT, hyperlipidemia and hypertension than other groups. IMT correlated with BMI, NAFLD and ALT
Lin et al. (2010) (52)	Taiwan	69 obese children aged 6-17 y	To identify biomarkers for liver steatosis in obese children	Thirty-eight (55.1%) subjects had liver steatosis, with elevated ALT in 27 (71.1%) of them
Caserta et al. (2010) (47)	Italy	642 adolescents aged 11-13 y	To determine the prevalence of NAFLD	NAFLD was found in 12.5% of participants, increasing to 23.0% in overweight ones. Increased IMT was associated with NAFLD
Nobili et al. (2010) (54)	Italy	118 children with biopsy-proven NAFLD	To assess the association of severity of liver injury and lipid profile	The NAFLD activity and fibrosis scores had positive correlation with triglyceride/HDL, total cholesterol/HDL, and LD/L/HDL ratios
Patton et al. (2010) (56)	USA	254 children aged 6-17 y	To determine the association of metabolic syndrome with NAFLD	65 (26%) had metabolic syndrome with greatest risk among those with severe steatosis; hepatocellular ballooning was associated with metabolic syndrome
Shi et al. (2009) (60)	China	308 obese children aged 9 to 14 y	To determine the prevalence of NAFLD and metabolic syndrome	Among all the obese children, the prevalence of NAFLD, NASH and metabolic syndrome was 65.9%, 20.5% and 24.7% respectively
Koebnick et al. (2009) (51)	USA	Hospitalized with NAFLD or obesity in 6-25 y	To investigate trends of NAFLD and obesity among hospitalized patients	Between 1986 to 1988 and 2004 to 2006, hospitalization increased from 0.9 to 4.3/100,000 for NAFLD, and from 35.5 to 114.7/100,000 for obesity
Reinehr et al. (2009) (57)	Germany	Obese children followed for 1 y	To determine the course of obesity associated NAFLD	20.6% of obese children had hypertension, 22.3% had dyslipidemia, 4.9% had impaired fasting glucose, and 29.3% had NAFLD
Denzer et al. (2009) (26)	Germany	532 obese subjects aged 8-19 y	To examine the prevalence and markers associated with NAFLD	Hepatic steatosis was higher in boys (41.1%) than in girls (17.2%) and was highest in postpubertal boys (51.2%) and lowest in postpubertal girls (12.2%)
Sharp et al. (2009) (59)	U.S.-Mexico border	31 patients aged 8-18 y	To describe the physical and metabolic characteristics of children diagnosed with NAFLD	The majority of cases were adolescents (12-17 y) and Mexican American. All subjects were overweight
Fu et al. (2009) (48)	Taiwan	220 students (97 normal, 48 overweight, 75 obese)	To investigate the risk factors for NAFLD among adolescents	NAFLD was detected in 39.8% in total, 16.0% in normal, 50.5% in overweight, and 63.3% among obese adolescents
Rocha et al. (2009) (58)	Brazil	1801 children aged 11 to 18 y	To evaluate the prevalence and clinical characteristics of NAFLD	The prevalence of NAFLD was 2.3%, most of whom were male and white. Insulin resistance (IR) was observed in 22.5% of them
obese children and adolescents, ranging from 10% to 25% based on elevated ALT, compared with 42% to 77% based on ultrasonography (41-44). Table provides a summary of prevalence studies on pediatric NAFLD (25, 26, 39, 40, 45-63).

6. NAFLD or MAFLD?

Because of the well-documented interrelationships between the risk factors, metabolic alterations, and liver histology of NAFLD and metabolic syndrome, a recent review suggested the term MAFLD (metabolic syndrome-associated fatty liver disease), which might describe both groups of patients with common pathophysiological features more accurately (64). A growing body of evidence proposes that NAFLD and metabolic syndrome are interrelated even from childhood. Many studies revealed that the components of the metabolic syndrome are strong predictors of increased ALT activity in NAFLD among children and adolescents (42, 65-71). It is also documented that the higher levels of components of metabolic syndrome increase the risk of elevated ALT in children and adolescents (50).

7. Pediatric NAFLD and Early Atherosclerosis

NAFLD shares the same causal factors with metabolic syndrome, which are also major cardiovascular risk factors. While there are conflicting results about the association of NAFLD with atherosclerotic cardiovascular diseases (72), a review of some studies confirmed the proatherogenic role of NAFLD, and suggested that among adult populations it can be an independent risk factor for atherosclerotic cardiovascular diseases (73). How-

Study	Country	Sample	Objective	Findings
Graham et al. (2009) (49)	USA	Sample of 12-19 y from the NHANES1999 to 2002	To determine the association of metabolic syndrome and NAFLD	The metabolic syndrome was associated with ALT > 40 U/L (OR = 16.7, CI 6.2-45.1)
Carter-Kent et al. (2009) (46)	USA	130 children with biopsy-proven NAFLD	To assess clinical and laboratory predictors of NAFLD severity	Fibrosis was present in 87% of patients; of these, stage 3 (bridging fibrosis) was present in 20%
Alavian et al. (2009) (45)	Iran	966 children aged 7-18 y	To investigate the prevalence of NAFLD	Fatty liver was diagnosed by ultrasound in 7.1% of children. The prevalence of elevated ALT was 1.8%
Kelishadi et al. (2009) (50)	Iran	1107 children aged 6-18 y	To compare the prevalence of NAFLD in different BMI categories	Elevated ALT was documented in respectively 4.1% of normal weight, 9.5% in overweight and 16.9% in obese group, respectively
Fraser et al. (2007) (40)	USA	NHANES participants, aged 12-19 y (1999–2004)	To determine the prevalence of NAFLD	a prevalence of NAFLD of 8% based on elevated ALT
Schwimmer et al. (2006) (39)	USA	742 children aged 2-19 y with autopsy	To determine the prevalence of biopsy-proven NAFLD	Fatty liver was present in 11% of subjects, ranging from 0.7% for ages 2 to 4 up to 17.3% for ages 15 to 19 y
Schwimmer et al. (2005) (25)	USA	127 obese 12th-grade students	To determine the prevalence of NAFLD	Unexplained ALT elevation was present in 23% of participants, in boys (44%) and in girls (7%)
Park et al. (2005) (55)	Korea	1594 children aged 10-19 y	To investigate the relation of NAFLD and the metabolic syndrome	The prevalence of elevated ALT (> 40 U/L) was 3.6% in boys and 2.8% in girls. The prevalence of metabolic syndrome was 3.3% in both boys and girls
Strauss et al. (2000) (61)	USA	2450 children aged 12-18 y	To determine the prevalence of NAFLD in different BMI categories	6% of overweight adolescents had elevated ALT levels; about 1% of obese adolescents had ALT levels over twice normal
Tominaga et al. (1995) (62)	Japan	810 students, ages 4-12 y	To determine the prevalence of NAFLD	The overall prevalence of NAFLD was 2.6%, boys (3.4%) and girls (1.8%), (P = 0.15)
Sharp et al. (2009) (56)	USA-Mexico	31 patients aged 8-18 y	To describe the characteristics of children diagnosed with NAFLD	The majority of children were aged 12-17 y and Mexican American. All subjects were overweight

Abbreviations: ALT, alanine aminotransferase; NAFLD; non-alcoholic fatty liver disease; NASH, nonalcoholic steatohepatitis
8. Dietary and Physical Activity Habits Related to Pediatric NAFLD

There is a growing body of evidence about the significance of environmental background in the establishment and development of NAFLD from the early years of life. Unhealthy dietary habits, such as disproportionately high consumption of saturated fats and refined sugars, may harm adipose tissue architecture and homeostasis. They may also alter the peripheral and hepatic resistance to insulin-stimulated glucose uptake, thus favoring chronic low-grade inflammation. Excess nutrients that cannot be stored in adipose tissue would overflow to muscle tissue and the liver. Fat deposition in both sites increases insulin resistance and promotes further fat deposition (78, 79). Lifestyle, notably dietary habits, is associated with the development of NAFLD (80). The diet most recommended for prevention and control of NAFLD is a low-carbohydrate diet, with a very limited amount of refined carbohydrates (81, 82). In our study of adolescents aged 12-18 years we found significant associations between insulin resistance and NAFLD, and similar risk factors and protective factors for these 2 interrelated disorders. Waist circumference and the ratio of apolipoprotein B to apolipoprotein A-I (ApoB/ApoA-I ratio) had the highest odds ratio (OR) in increasing the risk of insulin resistance and NAFLD, whereas cardiorespiratory fitness, followed by healthy eating index, decreased this risk significantly (50).

9. Environmental Factors Related to NAFLD

9.1. Smoking and NAFLD

A growing body of evidence supports the potential effects of exposure to some environmental factors on liver diseases. Environmental exposure related to toxic waste sites was associated with an increased prevalence of autoimmune liver disease (83, 84). Therefore, increasing attention is being given to the effects of environmental factors on liver diseases, including NAFLD. Many recent studies have also documented the association of smoking with the incidence of and acceleration of disease progression in NAFLD, as well as with advanced fibrosis in this process (85-89).

9.2. Air Pollution and NAFLD

The harmful effects of air pollutants on atherosclerotic cardiovascular diseases are well-documented (88). These effects might be mediated through oxidative stress and insulin resistance (90), which are also known to have pivotal roles in the pathogenesis of fatty liver (91). Hence, it can be assumed that such environmental factors might also be associated with NAFLD. It is well-documented that diesel exhaust particles (DEP), which are major constituents of atmospheric particulate matters (PM) in urban areas, generate reactive oxygen species (ROS) (92). The ROS are generated via enzymatic reactions catalyzed by cytochrome P-450 (93), or by a non-enzymatic route (94). In 2007, two experimental studies examined the effects of exposure to DEP on fatty liver for the first time. One of these studies revealed that exposure to DEP might increase oxidative stress, with concomitant aggravation of fatty changes in the livers of diabetic obese mice. This exposure increases the AST and ALT levels, liver weight, and the degree of fatty change of the liver, as ascertained histologically. This study suggested that ROS, lipid peroxides, or inflammatory cytokines produced in the lungs might reach the liver, or soluble constituents of PM might get transferred from the lung to the liver through systemic circulation. Given that exposure to these particles may decrease the mitochondrial membrane potential, and may increase ROS, followed by cytochrome-c release and inner mitochondrial membrane damage, this study proposed that mitochondrial damage could have an enhancing effect on NAFLD, especially in augmenting the effects of oxidative stress on the liver (95). The other experimental study assessed the effects of oxidative stress elicited by DEP in the aorta, liver, and lungs of dyslipidemic ApoE(-/-) mice, at the age when visual plaques appeared in the aorta. Vascular effects secondary to pulmonary inflammation were omitted by injecting DEP into the peritoneum. Six hours later, the expression of inducible nitric oxide synthase (iNOS) mRNA increased in the liver. Injection of DEP did not induce inflammation or oxidative damage to DNA in the lungs and aorta. Therefore, the study proposed a direct effect of DEP on inflammation and oxidative damage to DNA in the liver of dyslipidemic mice (96). Another study investigated the effects of a 6-week exposure to filtered air, in comparison with ambient air PM at doses mimicking naturally occurring levels, on diet-induced hepatic steatosis in mice fed high-fat diets. Progression of NAFLD was evaluated by histologi-
The prevalence of childhood obesity and air pollution is dramatically increasing on a global scale. Given that both excess body fat and exposure to air pollutants are accompanied by systemic low-grade inflammation, oxidative stress as well as alterations in insulin/insulin-like growth factor and insulin resistance, which contribute to fatty liver, an escalating trend in the incidence of pediatric NAFLD and its related complications can be expected in the near future. Studying the underlying mechanisms and broadening efforts to prevent and control the 2 main universal risk factors, obesity and air pollution, which have broad adverse health effects, will help abate the serious health problems associated with pediatric NAFLD.

Acknowledgments
None declared.

Financial Disclosure
None declared.

Funding/Support
None declared.

References
1. Moore JB. Non-alcoholic fatty liver disease: the hepatic consequence of obesity and the metabolic syndrome. Proc Nutr Soc. 2010;69(2):218-20.
2. Kojima S, Watanabe N, Numata M, Ogawa T, Matsuzaki S. Increase in the prevalence of fatty liver in Japan over the past 12 years: analysis of clinical background. J Gastroenterol. 2003;38(10):954-64.
3. Motlagh ME, Kelishadi R, Amirkhani MA, Ziaoddini H, Dastghi M, Aminaei T, et al. Double burden of nutritional disorders in young Iranian children: findings of a nationwide screening survey. Public Health Nutr. 2011;14(4):609-10.
4. Chitturi S, Farrell GC, George J. Non-alcoholic steatohepatitis in the Asia-Pacific region: future shock? J Gastroenterol Hepatol. 2004;19(4):368-74.
5. Manton ND, Lipsett J, Moore DJ, Davidson GP, Bourne AJ, Couper RT. Non-alcoholic steatohepatitis in children and adolescents. Med J Aust. 2000;173(8):476-9.
6. Baldrige AD, Perez-Atayde AR, Graeme-Cook F, Higgins L, Lavine JE. Idiopathic steatohepatitis in childhood: a multicenter retrospective study. Pediatr. 1995;127(3):700-4.
7. Kong AP, Chow CC. Medical consequences of childhood obesity: a Hong Kong perspective. Rev Sports Med. 2010;18(1):316-25.
8. World Health Organization. Controlling the global obesity epidemic. Geneva, Switzerland: WHO; 2008 [updated 2011 March]; Available from: http://www.who.int/nutrition/topics/obesity/en/index.html.
9. Jackson-Leach R, Lobstein T. Estimated burden of paediatric obesity and co-morbidities in Europe. Part 1. The increase in the prevalence of child obesity in Europe is itself increasing. Int J Pediatr Obes. 2006;1(1):26-32.
10. Haas GM, Liepold E, Schwandt P. Predicting Cardiovascular Risk...
Factors by different Body Fat Patterns in 1850 German Children: the PEP Family Heart Study. Int J Prev Med. 2012;3(2):35-9.

11. Zepfier E, Himes JH, Story M, Zhou X. Increasing prevalences of overweight and obesity in Northern Plains American Indian children. Arch Pediatr Adolesc Med. 2006;160(4):38-9.

12. Heude B, Lafay I, Borys JM, Thibault N, Lommez A, Romon M, et al. Time trend in height, weight, and obesity prevalence in school children from Northern France, 1992-2000. Diabetes Metab. 2003;29(2):235-40.

13. Sekhon JP, Edmunds LS, Reynolds DK, Dalenius K, Sharma A. Trends in prevalence of obesity and overweight among children enrolled in the New York State WIC program, 2002-2007. Public Health Rep. 2010;125(2):218-24.

14. Tambalis KD, Panagiotakos DB, Psarra G, Sidioussis LS. Inverse but independent trends in obesity and Fats-related levels among Greek children: a time-series analysis from 1997 to 2007. Obes Facts. 2010;4(2):265-74.

15. Kelishadi R. Childhood obesity, overweight, and the metabolic syndrome in developing countries. Epidemiol Rev. 2007;29:62-76.

16. Mardotrel R, Kettel Khan L, Hughes ML, Grummer-Strawn LM. Overweight and obesity in preschool children from developing countries. Int J Obes Relat Metab Disord. 2002;26(8):959-67.

17. Low LC. Childhood obesity in developing countries. World J Pediatr. 2010;6(3):257-63.

18. Gupta DK, Shah P, Misra A, Bhardwaj S, Gulati S, Gupta N, et al. Secular trends in prevalence of overweight and obesity from 2006 to 2009 in urban Asian Indian adolescents aged 14-17 years. PLoS One. 2010;5(2):e7221.

19. de Onis M, Blossner M, Borghi E. Global prevalence and trends in prevalence of obesity and overweight among children from Northern France, 1992-2000. Eur J Clin Nutr. 2001;65(7):835-40.

20. Ussaf AA, Lebenthal E, Borys JM, Thibult N, Lommez A, Romon M, et al. Increasing prevalences with metabolic factors in obese children: sex-related analysis. Metabolism. 2009;58(1):368-72.

21. Heude B, Lafay I, Borys JM, Thibault N, Lommez A, Romon M, et al. Time trend in height, weight, and obesity prevalence in school children from Northern France, 1992-2000. Diabetes Metab. 2003;29(2):235-40.

22. Kelishadi R, Ghatrehsamani S, Hosseini M, Mirmoghtadaee P, Mehdouri M, Zarei A, et al. Cardiovascular risk factors, nonalcoholic fatty liver disease and carotid artery intima-media thickness in an Iranian population. Dig Dis Sci. 1997;42(7):2348-32.

23. Guazzaloni G, Greggi G, Minnici A, Moro D, Morabito F. Liver steatosis in juvenile obesity: correlations with lipid profile, hepatic biochemical parameters and glycemic and insulinemic responses to an oral glucose tolerance test. Int J Obes Relat Metab Disord. 2000;24(6):772-6.

24. Tazawa Y, Nomura H, Nishimori Y, Tatada Y. Global prevalence and trends in obesity and overweight among children. Acta Paediatr. 1997;86(3):238-41.

25. Alavian SM, Mohammad-Alizadeh AH, Esna-Ashari F, Ardalan G, Hajarizadeh B. Non-alcoholic fatty liver disease prevalence among school-aged children and adolescents in Iran and its association with biochemical and anthropometric measures. Liver Int. 2009;29(2):359-63.

26. Carter-Kent C, Verian LM, Brunst EM, Angulo P, Kohli R, Ling SC, et al. Nonalcoholic steatohepatitis in children: a multicenter clinicopathological study. Hepatology. 2009;50(1):313-20.

27. Caserta CA, Pendino GM, Amante A, Vocalebre C, Fiorillo MT, Surace P, et al. Cardiovascular risk factors, nonalcoholic fatty liver disease, and carotid artery intima-media thickness in an adolescent population. J Pediatr Gastroenterol Nutr. 2010;50(6):541-9.

28. Denzer C, Thiery D, Muche R, Koenig W, Mayer H, Kratzer W, et al. Gender-specific prevalences of fatty liver in obese children and adolescents: roles of body fat distribution, sex steroids, and insulin resistance. J Clin Endocrinol Metab. 2009;94(10):3872-8.

29. Paree PR, Lavine JE, Schwimmer JB. Diagnosis and treatment of pediatric nonalcoholic steatohepatitis and the implications for bariatric surgery. Semin Pediatr Surg. 2009;18(3):144-51.

30. Rashid M, Roberts EA. Nonalcoholic steatohepatitis in children. J Pediatr Gastroenterol Nutr. 2009;49(3):448-31.

31. Wong VW, Wong GL, Tsang SW, Hui AX, Chan AW, Choi PC, et al. Metabolic and histological features of non-alcoholic fatty liver disease patients with different serum alanine aminotransferase levels. Aliment Pharmacol Ther. 2009;29(4):387-96.

32. Kim HC, Nam CM, Joe SH, Han HH, Oh DK, Sah I. Normal serum aminotransferase concentration and risk of mortality from liver diseases: prospective cohort study. BMJ. 2004;328(7448):983.

33. Jagaric N, Flegar-Mestic Z, Surina B, Vrhovski-Hebrang D, Prezen Kerekovic V. Pediatric reference intervals for 34 biochemical analyses in urban school children and adolescents. Clin Chem Lab Med. 1993;31(6):327-32.

34. Burritt MF, Stockbower JM, Forsman RW, Offord KP, Bergstralh EJ, Smithson WA. Pediatric reference intervals for 19 biologic variables in healthy children. Mayo Clin Proc. 1990;65(3):329-36.

35. Di Bonito P, Sangiuliano E, Di Fraia T, Forzato C, Boccardi G, Saletta F, et al. Association of elevated serum alanine aminotransferase with metabolic factors in obese children: sex-related analysis.
chlorinated biphenyls, lead, and mercury are associated with liver disease in American adults: NHANES 2003-2004. *Environ Health Perspect*. 2010;118(12):1735-42.

101. Kelishadi R, Mirghaffari N, Poursafa P, Gidding SS. Lifestyle and environmental factors associated with inflammation, oxidative stress and insulin resistance in children. *Atherosclerosis*. 2009;203(1):31-9.

102. Brook RD, Jerrett M, Brook JR, Bard RL, Finkelstein MM. The relationship between diabetes mellitus and traffic-related air pollution. *J Occup Environ Med*. 2008;50(1):32-8.

103. Sun Q, Yue P, Deiuliis JA, Lumeng CN, Kampfrath T, Mikolaj MB, et al. Ambient air pollution exaggerates adipose inflammation and insulin resistance in a mouse model of diet-induced obesity. *Circulation*. 2009;119(4):538-46.

104. Chen JC, Schwartz J. Metabolic syndrome and inflammatory responses to long-term particulate air pollutants. *Environ Health Perspect*. 2008;116(5):612-7.

105. O’Neill MS, Vees A, Zanobetti A, Sarnat JA, Gold DR, Economides PA, et al. Diabetes enhances vulnerability to particulate air pollution-associated impairment in vascular reactivity and endothelial function. *Circulation*. 2005;111(22):2913-20.

106. O’Neill MS, Vees A, Sarnat JA, Zanobetti A, Gold DR, Economides PA, et al. Air pollution and inflammation in type 2 diabetes: a mechanism for susceptibility. *Occup Environ Med*. 2007;64(5):373-9.

107. Poursafa P, Kelishadi R, Lahijanzadeh A, Modaresi M, Javanmard SH, Assari R, et al. The relationship of air pollution and surrogate markers of endothelial dysfunction in a population-based sample of children. *BMC Public Health*. 2011;11:15.

108. Poursafa P, Kelishadi R, Moattar F, Rafiee L, Amin MM, Lahijanzadeh A, et al. Genetic variation in the association of air pollutants with a biomarker of vascular injury in children and adolescents in Isfahan, Iran. *J Res Med Sci*. 2011;16(6):6.