A PCBA Query

We downloaded additional high-throughput screening datasets from the PubChem BioAssay database\(^1\) using the following query: TotalSidCount from 10000, ActiveSidCount from 30, Chemi-
cal, Confirmatory, Dose-Response, Target: Single, NCGC. These correspond to the search query: (10000[TotalSidCount] : 1000000000[TotalSidCount]) AND (30[ActiveSidCount] : 1000000000[ActiveSidCount]) AND “small molecule”[filt] AND “doseeresponse”[filt] AND 1[TargetCount] AND “NCGC”[SourceName]. This follows the query from Ramsundar et al.²

B Data Preprocessing

B.1 Complex Matrix Composition

Each target dataset consists of compounds as rows. For each compound, it provides the biochemical features such as the fingerprint, SMILES string, interaction score, and activity label (binary or continuous). The first step was to extract the SMILES and activity label for each target and construct the data matrix for training. We used RDKit³ for navigating and extracting information from these datasets and for generating the fingerprints.

The second step was to merge the target matrices together into one consolidated matrix. We used an outer-join operation with the SMILES as the key. Given two matrices A and B with two columns, SMILES and target-activity, an outer-join operation will merge rows of A and B that have the same SMILES value into a new matrix M. If there is a row in A with SMILES value s and no corresponding row in B with SMILES value s, then the merge would yield a row in M with an empty target-activity for B. In the resulting matrix, each row is a compound and the columns are: SMILES, 1024-bit Morgan fingerprints, and a column for the activity outcome of each target (5 columns for PriA-SSB AS, PriA-SSB FP, and RMI-FANCM FP and the associated % inhibition values and 128 columns for PCBA). As a result, we have two data matrices: PriA-SSB AS, PriA-SSB FP, and RMI-FANCM FP plus PCBA, on which we can train either single-task or multi-task learning methods. Merging all the targets introduces many empty cells for the activity outcome columns. For the distribution of active, inactive, and missing values for each target, refer to Appendix C. We observed severe data imbalance; the ratio of positive to negative labels is very small. Inconclusive PCBA labels were
treated as missing. During model evaluation, we considered each task (column) separately and dropped the missing values.

B.2 Fold Splitting

The whole data set was split into 5 fixed folds for cross-validation. Label imbalance and the limited number of known active compounds is one of biggest challenges in virtual screening and must be accounted for during modeling. Stratified splitting is a way to divide data into folds while keeping the same active-to-inactive ratio for each label.

For a single-target task, stratified splits can be implemented by combining folds after sampling each class of labels. But this procedure becomes more complicated in the multi-task setting. With a total of 131 binary tasks, each task has a set of molecules with activity outcomes that may or may not overlap across targets. After merging all molecules into one matrix, each row represents one molecule and each column represents one target. For each column (target), molecules can have missing, inactive, or active labels. Similarly, for each row (molecule), the molecule must have an active or inactive label for at least one of the 131 targets but can be missing for some of other targets. We construct this combined matrix of 131 targets using Algorithm 1 described below. We divide this matrix into 5 folds, while keeping the same data distribution.

B.3 Label Imbalance

PriA-SSB AS, PriA-SSB FP, and **RMI-FANCM FP** have only 79, 24, and 230 actives, respectively. To alleviate this class imbalance, one solution is to use a weighted schema. For single-task neural network models, we apply Equation (1).

\[
\text{weight}_{\text{negative}} = 1, \quad \text{weight}_{\text{positive}} = \frac{n}{p}
\]

(1)

where \(\text{weight}_{\text{positive}} \) and \(\text{weight}_{\text{negative}} \) are weight scalars for positive (active) and negative (inactive)
Algorithm 1: Multi-task Data Splitting

Input: Initial pre-split molecule-target matrix M, number of desired folds k
Output: k folds $F[1], F[2], ..., F[k]$ containing stratified splits of M

1. shuffle rows of M randomly
2. create k folds $F[1], F[2], ..., F[k]$ that contain the row indexes only
3. indexList ← argsort columns of M from smallest active counts to largest
4. for i in indexList do
5. currColumn ← $M[:,i]$
6. split active indexes of currColumn into the k folds
7. split inactive indexes of currColumn into the k folds
8. split missing indexes of currColumn into the k folds
9. take the unique compounds in each fold to remove duplicate row indexes
10. greedily remove overlapping indexes from each fold (fold-by-fold manner)
11. take the unique compounds in each fold to remove duplicate row indexes
12. return $F[1], F[2], ..., F[k]$

compounds, respectively, and p and n represent the number of positive and negative samples on this target.

Similarly, we apply the weighted schema to multi-task models, defined as Equation (2).

$$weight_{(negative, i)} = t_i, \quad weight_{(positive, i)} = t_i \cdot \frac{n_i}{p_i}$$

(2)

where $weight_{(positive, i)}$ and $weight_{(negative, i)}$ are weight scalars for positive and negative labels for the i^{th} target, and p_i and n_i represent the number of positive and negative samples for the i^{th} target. t_i is defined as Equation (3)

$$t_i = \begin{cases} \sum_{i} p_i, & \text{i^{th} target is in PCBA} \\ \alpha \cdot \sum_{i} p_i, & \text{i^{th} target is in PriA-SSB AS, PriA-SSB FP, and RMI-FANCM FP} \end{cases}$$

(3)

In the multi-task setting, we give different weights to each target, focusing more on the PriA-SSB AS, PriA-SSB FP, and RMI-FANCM FP targets and the PCBA targets that have fewer positive
samples. We emphasize PriA-SSB AS, PriA-SSB FP, and RMI-FANCM FP by setting $\alpha = 100$, and alleviate the data skewness among targets by the term $\sum_i \frac{p_i}{p_i}$.

B.4 Missing Label Imputation

1. For single-task machine learning models – random forest, single-task neural networks, and IRV – training is done on molecules without missing labels (missing molecules are removed from the training set).

2. In the case of multi-task neural networks, missing molecules were imputed as inactive. This was mainly due to Keras (at the time) not supporting sample-weighting for the multi-task case.
Data Distribution

Table S1: Data distribution of positive, negative, and missing molecules for each task.

Task name	Positive molecules	Negative molecules	Missing molecules	ratio = pos number / neg number
pcba-aid1030	15932	145369	335063	10.96 %
pcba-aid1379	561	196368	314806	0.29 %
pcba-aid1452	178	149367	362573	0.12 %
pcba-aid1454	513	115335	395935	0.44 %
pcba-aid1457	720	202110	308746	0.36 %
pcba-aid1458	5778	188852	311888	0.30 %
pcba-aid1460	5650	217010	283986	2.60 %
pcba-aid1461	2305	206016	301670	1.12 %
pcba-aid1468	1038	251148	259072	0.41 %
pcba-aid1469	170	272533	239423	0.06 %
pcba-aid1471	293	218258	293452	0.13 %
pcba-aid1479	793	269530	241180	0.29 %
pcba-aid1631	892	259030	251482	0.34 %
pcba-aid1634	154	261988	250000	0.06 %
pcba-aid1688	2375	201910	305636	1.18 %
pcba-aid1721	1087	289651	220471	0.38 %
pcba-aid2190	1157	291855	218127	0.40 %
pcba-aid2101	288	309907	201813	0.09 %
pcba-aid2147	3473	188764	316586	1.84 %
pcba-aid2242	715	183374	327492	0.39 %
pcba-aid2326	1065	259688	250478	0.41 %
pcba-aid2451	2005	271718	236568	0.74 %
pcba-aid2517	1138	332123	177897	0.34 %
pcba-aid2528	652	340938	170054	0.19 %
pcba-aid2546	10556	267886	223298	3.94 %
pcba-aid2549	1211	230450	279424	0.53 %
pcba-aid2551	16671	253653	225301	6.57 %
pcba-aid2662	110	285240	226836	0.04 %
pcba-aid2675	99	248789	263309	0.04 %
pcba-aid2676	1081	357341	152793	0.30 %
pcba-aid411	1565	69057	440113	2.26 %
pcba-aid463254	41	329171	183043	0.01 %
pcba-aid485281	253	314347	197443	0.08 %
pcba-aid485290	938	335859	174561	0.28 %
Table S1: Data distribution of positive, negative, and missing molecules for each task.

Task name	Positive molecules	Negative molecules	Missing molecules	ratio = pos number / neg number
pcba-aid485294	148	309649	202351	0.05 %
pcba-aid485297	9128	301294	192746	3.03 %
pcba-aid485313	7569	304194	192964	2.49 %
pcba-aid485314	4493	312590	190720	1.44 %
pcba-aid485341	1729	325703	183135	0.53 %
pcba-aid485349	618	319466	191594	0.19 %
pcba-aid485353	603	322454	188636	0.19 %
pcba-aid485360	1485	216997	292329	0.68 %
pcba-aid485364	10698	331470	159430	3.23 %
pcba-aid485367	557	325598	185584	0.17 %
pcba-aid492947	80	329301	182835	0.02 %
pcba-aid493208	342	41294	470318	0.83 %
pcba-aid504327	766	370995	139769	0.21 %
pcba-aid504332	30264	263754	188014	11.47 %
pcba-aid504333	15673	310114	170836	5.05 %
pcba-aid504339	16859	338757	139821	4.98 %
pcba-aid504444	7388	282993	214527	2.61 %
pcba-aid504466	4169	306751	197207	1.36 %
pcba-aid504467	7648	235607	261393	3.25 %
pcba-aid504706	201	302548	209346	0.07 %
pcba-aid504842	101	324570	187524	0.03 %
pcba-aid504845	100	372270	139826	0.03 %
pcba-aid504847	3509	376531	128747	0.93 %
pcba-aid504891	34	361224	151004	0.01 %
pcba-aid540276	4393	192748	310762	2.28 %
pcba-aid540317	2129	367917	140121	0.58 %
pcba-aid588342	25036	301746	160478	8.30 %
pcba-aid588453	3904	365862	138626	1.07 %
pcba-aid588456	51	384356	127838	0.01 %
pcba-aid588579	1980	384213	124123	0.52 %
pcba-aid588590	3931	352947	151487	1.11 %
pcba-aid588591	4700	367981	134915	1.28 %
pcba-aid588795	1307	376247	133435	0.35 %
pcba-aid588855	4897	347556	154946	1.41 %
pcba-aid602179	364	384856	126712	0.09 %
pcba-aid602233	165	379055	132911	0.04 %
pcba-aid602310	310	393819	117857	0.08 %
pcba-aid602313	762	372273	138499	0.20 %
Table S1: Data distribution of positive, negative, and missing molecules for each task.

Task name	Positive molecules	Negative molecules	Missing molecules	ratio
pcba-aid620332	69	408322	103836	0.02%
pcba-aid624170	838	397756	112864	0.21%
pcba-aid624171	1239	394674	115144	0.31%
pcba-aid624173	487	399643	111679	0.12%
pcba-aid624202	3968	362543	141817	1.09%
pcba-aid624246	101	364511	147583	0.03%
pcba-aid624287	423	302226	209224	0.14%
pcba-aid624288	1356	323051	186533	0.42%
pcba-aid624291	222	331803	180049	0.07%
pcba-aid624296	9840	282428	210188	3.48%
pcba-aid624297	6213	301951	197919	2.06%
pcba-aid624417	6389	319289	180229	2.00%
pcba-aid651635	3784	343160	161568	1.10%
pcba-aid651644	748	353982	156818	0.21%
pcba-aid651768	1677	355992	152950	0.47%
pcba-aid651965	6346	318038	181566	2.00%
pcba-aid652025	238	364167	147653	0.07%
pcba-aid652104	7126	368557	129487	1.93%
pcba-aid652105	4072	318365	185787	1.28%
pcba-aid652106	497	362334	148968	0.14%
pcba-aid686970	5948	331060	169340	1.80%
pcba-aid686978	62375	236628	150918	26.36%
pcba-aid686979	48532	257279	157953	18.86%
pcba-aid720504	10170	340357	151599	2.99%
pcba-aid720532	976	11815	498529	8.26%
pcba-aid720542	733	356204	154626	0.21%
pcba-aid720551	1265	341660	168106	0.37%
pcba-aid720553	3259	336029	169749	0.97%
pcba-aid720579	1908	280991	227489	0.68%
pcba-aid720580	1508	304454	204826	0.50%
pcba-aid720707	268	363257	148503	0.07%
pcba-aid720708	661	356743	154231	0.19%
pcba-aid720709	516	352850	158414	0.15%
pcba-aid720711	290	363245	148471	0.08%
pcba-aid743255	901	366915	143579	0.25%
pcba-aid743266	306	398728	112956	0.08%
pcba-aid875	34	73821	438407	0.05%
pcba-aid881	590	103808	407308	0.57%
Table S1: Data distribution of positive, negative, and missing molecules for each task.

Task name	Positive molecules	Negative molecules	Missing molecules	ratio = \(\frac{\text{pos number}}{\text{neg number}}\) %
pcba-aid883	1217	6647	503215	18.31 %
pcba-aid884	3396	6983	498521	48.63 %
pcba-aid885	160	12683	499293	1.26 %
pcba-aid887	1017	68423	441839	1.49 %
pcba-aid891	1564	6012	503156	26.01 %
pcba-aid899	1773	6141	502609	28.87 %
pcba-aid902	1865	117072	391494	1.59 %
pcba-aid903	338	52451	459169	0.64 %
pcba-aid904	528	50430	460810	1.05 %
pcba-aid912	453	56178	455212	0.81 %
pcba-aid914	221	7524	504330	2.94 %
pcba-aid915	421	7524	503930	5.60 %
pcba-aid924	1144	118813	391195	0.96 %
pcba-aid925	39	64140	448078	0.06 %
pcba-aid926	345	56230	455376	0.61 %
pcba-aid927	60	58565	453611	0.10 %
pcba-aid938	1781	60720	448014	2.93 %
pcba-aid995	699	65056	445842	1.07 %
PriA-SSB AS	79	72344	439794	0.11 %
PriA-SSB FP	24	72399	439849	0.03 %
RMI-FANCM FP	230	49566	462270	0.46 %
D Hyperparameter Grid Search

Table S2: Hyperparameter sweeping for classification neural networks (STNN-C and MTNN-C).

Hyperparameters	Candidate values
hidden layer sizes	[2000, 2000]
learning rate	0.000003, 0.0001, 0.003
optimizer	Adam
weighted schema	no_weight, weighted_sample
epoch patience	[epoch_size: 200, patience: 50], [epoch_size: 1000, patience: 200]
activations	[ReLU, Sigmoid, Sigmoid], [ReLU, ReLU, Sigmoid]
dropout	0.25

Table S3: Hyperparameter sweeping for regression neural networks (STNN-R).

Hyperparameters	Candidate values
hidden layer sizes	[2000, 2000]
learning rate	0.000003, 0.0001, 0.003
optimizer	Adam
weighted schema	no_weight
epoch	200, 1000
activations	[Sigmoid, Sigmoid, Linear], [ReLU, Sigmoid, Sigmoid]
dropout	0.25

Table S4: Hyperparameter sweeping for LSTM neural networks.

Hyperparameters	Candidate values
hidden layer sizes	[50], [100], [100, 10], [100, 50], [50, 10]
embedding layer size	30, 50, 100
learning rate	0.000003, 0.0001, 0.003
optimizer	Adam
epoch patience	[epoch_size: 200, patience: 50]
dropout	0.2, 0.5

Table S5: Hyperparameters for IRV.

Hyperparameters	Candidate values
number of neighbors	5, 10, 20, 40, 80
epoch patience	[epoch_size: 1000, patience: 20]
batch size	8192
learning rate	0.01
penalty	0.05
Table S6: Hyperparameter sweeping for RF.

Hyperparameters	Candidate values
n_estimators	4000, 8000, 16000
max_features	None, sqrt, log2
min_samples_leaf	1, 10, 100, 1000
class_weight	None, balanced_subsample, balanced

During the hyperparameter sweeping stage, we trained models with all combinations of the hyperparameters in the tables above. For the neural networks, 80% of the 4 folds were used for training and 20% for validation to select the best 2 models for each type of neural network (STNN-C, MTNN-C, STNN-R, and LSTM). For random forest, the first 3 folds were used for training and the fourth fold for validation to prune 108 models down to 8 models. In both cases, the goal was to prune the model search space before the cross-validation stage. IRV has one primary hyperparameter, the number of neighbors, so we did not need to prune the model search space before the cross-validation stage.

Based on related work\(^2\) and our preliminary testing with the PCBA tasks, we did not consider neural networks with more than two hidden layers. Our cross-validation results confirmed that two hidden layer networks did not underfit the training data. Because random forests are resistant against overfitting as the number of trees grows,\(^4\) we set the RF n_estimators hyperparameter to be as large as possible while still training reasonably quickly.
E Model Name to Hyperparameter Mappings

We used alphabetic suffixes such as ",_a" and "_b" to distinguish multiple versions of a model that use different hyperparameters. Only the best hyperparameter combinations from the hyperparameter sweeping stage were labeled with these suffixes. Hyperparameters that did not vary can be found in Appendix D.

Table S7: Single-task neural network classification model name to hyperparameter mapping.

Model	weighted schema	optimizer	learning rate	early stopping	epoch patience	activations
STNN-C_a	no_weight	Adam	0.003	PR	patience: 200, epoch_size: 1000	[ReLU, ReLU, Sigmoid]
STNN-C_b	no_weight	Adam	3e-05	PR	patience: 200, epoch_size: 1000	[ReLU, ReLU, Sigmoid]

Table S8: Single-task neural network regression model name to hyperparameter mapping.

Model	activations	epoch size	weighted schema	optimizer	learning rate
STNN-R_a	[Sigmoid, Sigmoid, Linear]	200	no_weight	Adam	0.003
STNN-R_b	[Sigmoid, Sigmoid, Linear]	1000	no_weight	Adam	0.003

Table S9: Multi-task neural network classification model name to hyperparameter mapping.

Model	weighted schema	optimizer	learning rate	early stopping	epoch patience	activations
MTNN-C_a	weighted_sample	Adam	0.0001	PR	patience: 50, epoch_size: 200	[ReLU, ReLU, Sigmoid]
MTNN-C_b	no_weight	Adam	3e-05	PR	patience: 200, epoch_size: 1000	[ReLU, ReLU, Sigmoid]

Table S10: LSTM model name to hyperparameter mapping.

Model	embedding size	optimizer	dropout	early stopping	epoch patience	hidden size
LSTM_a	50	RMSprop	0.2	ROC	patience: 50, epoch_size: 200	[100, 50]
LSTM_b	30	RMSprop	0.5	ROC	patience: 50, epoch_size: 200	[50, 10]

Table S11: IRV model name to hyperparameter mapping.

Model	n_neighbors	epochs	patience	batch_size	learning_rate	penalty
IRV_a	5	1000	20	8192	0.01	0.05
IRV_b	10	1000	20	8192	0.01	0.05
IRV_c	20	1000	20	8192	0.01	0.05
IRV_d	40	1000	20	8192	0.01	0.05
IRV_e	80	1000	20	8192	0.01	0.05
Table S12: Random Forest model name to hyperparameter mapping.

Model	n_estimators	max_features	min_samples_leaf	class_weight
RF_a	4000	sqrt	1	None
RF_b	8000	sqrt	1	None
RF_c	16000	sqrt	1	None
RF_d	4000	log2	1	None
RF_e	8000	log2	1	None
RF_f	4000	None	1	balanced
RF_g	4000	log2	1	balanced
RF_h	8000	log2	1	balanced
F Cross-Validation: Results on PriA-SSB FP and RMI-FANCM FP

F.1 Cross-Validation Performance on PriA-SSB FP

Figure S1: Cross-validation performance with AUC[ROC]
Figure S2: Cross-validation performance with AUC[PR]

Figure S3: Cross-validation performance with AUC[BEDROC]
Figure S4: Cross-validation performance with NEF\textsubscript{1\%}.
F.2 Cross-Validation Performance on RMI-FANCM FP

Figure S5: Cross-validation performance with AUC[ROC]
Figure S6: Cross-validation performance with AUC[PR]

Figure S7: Cross-validation performance with AUC[BEDROC]
Figure S8: Cross-validation performance with NEF$_{1\%}$
G Cross-Validation: Model Comparison Results

Model rankings based on DTK only, which may contain ties. Each cell represents (model, rank).

Table S13: PriA-SSB AS DTK rankings

ROC AUC PriA-SSB AS	BEDROC AUC PriA-SSB AS	PR auc.integral PriA-SSB AS
0 RandomForest_d, 1	SingleRegression_b, 1	SingleClassification_b, 1
1 RandomForest_h, 2	RandomForest_c, 1	SingleClassification_a, 1
2 RandomForest_e, 2	IRV_b, 1	MultiClassification_a, 1
3 SingleRegression_b, 4	SingleRegression_a, 1	SingleRegression_b, 4
4 RandomForest_g, 4	IRV_e, 1	IRV_e, 4
5 RandomForest_c, 4	MultiClassification_a, 1	MultiClassification_b, 4
6 RandomForest_b, 4	MultiClassification_b, 1	Docking_hybrid, 7
7 RandomForest_a, 4	RandomForest_a, 1	Docking_smina, 7
8 MultiClassification_b, 4	RandomForest_b, 1	Docking_rdocktot, 7
9 MultiClassification_a, 10	IRV_d, 1	Docking_rdockint, 7
10 SingleRegression_a, 10	RandomForest_d, 1	Docking_plants, 7
11 SingleClassification_b, 12	SingleClassification_b, 1	Docking_fred, 7
12 IRV_e, 13	RandomForest_f, 1	IRV_a, 7
13 IRV_d, 13	RandomForest_g, 1	Docking_dock6, 7
14 RandomForest_f, 13	RandomForest_e, 1	Docking_Ad4, 7
15 SingleClassification_a, 16	RandomForest_b, 1	ConsensusDocking_rocauc_opt, 7
16 IRV_c, 17	SingleClassification_a, 1	ConsensusDocking_median, 7
17 IRV_b, 17	IRV_a, 18	ConsensusDocking_median, 7
18 IRV_a, 19	IRV_c, 18	ConsensusDocking_median, 7
19 LSTM_b, 20	LSTM_b, 20	Docking_smina, 7
20 Docking_fred, 21	Docking_fred, 21	Docking_dock6, 21
21 ConsensusDocking_max, 21	ConsensusDocking_max, 21	IRV_b, 7
22 ConsensusDocking_mean, 21	ConsensusDocking_mean, 21	IRV_c, 7
23 ConsensusDocking_median, 21	ConsensusDocking_median, 21	SingleRegression_a, 7
24 ConsensusDocking_rocauc_opt, 21	ConsensusDocking_rocauc_opt, 21	LSTM_a, 7
25 Docking_Ad4, 21	Docking_Ad4, 21	Docking_smina, 7
26 Docking_dock6, 21	Docking_dock6, 21	Docking_dockint, 21
27 Docking_rdockint, 21	Docking_smina, 21	Docking_docktot, 21
28 Docking_hybrid, 21	Docking_hybrid, 21	Docking_smina, 21
29 Docking_plants, 21	Docking_plants, 21	Docking_plants, 21
30 LSTM_a, 21	Docking_docktot, 21	Docking_docktot, 21
31 Docking_docktot, 21	Docking_docktot, 21	Docking_docktot, 21
32 Docking_smina, 21	Docking_smina, 21	Docking_smina, 21
33 Docking_smina, 21	Docking_smina, 21	Docking_smina, 21
34 ConsensusDocking_efr1_opt, 21	ConsensusDocking_efr1_opt, 21	ConsensusDocking_efr1_opt, 7
NEF_0.1 % PriA-SSB AS	NEF_0.15 % PriA-SSB AS	NEF_0.5 % PriA-SSB AS
------------------------	------------------------	------------------------
IRV_e, 1	IRV_e, 1	SingleClassification_a, 1
SingleClassification_b, 1	SingleClassification_b, 1	RandomForest_h, 2
SingleClassification_a, 1	SingleClassification_a, 1	SingleRegression_b, 3
MultiClassification_b, 3	SingleClassification_a, 1	RandomForest_a, 3
IRV_h, 1	IRV_h, 1	IRV_a, 3
MultiClassification_a, 3	IRV_h, 1	IRV_a, 3
MultiClassification_a, 3	IRV_h, 1	IRV_a, 3
MultiClassification_a, 3	IRV_h, 1	IRV_a, 3
IRV_c, 5	IRV_c, 6	IRV_c, 3
RandomClassification_b, 7	MultiClassification_a, 6	IRV_c, 3
MultiClassification_b, 7	MultiClassification_b, 6	SingleClassification_a, 3
IRV_d, 1	IRV_d, 1	IRV_c, 3
IRV_g, 7	RandomForest_b, 11	RandomForest_b, 3
RandomForest_b, 7	RandomForest_c, 11	RandomForest_b, 3
RandomForest_a, 7	RandomForest_b, 11	RandomForest_b, 3
RandomForest_h, 7	RandomForest_a, 11	RandomForest_b, 3
IRV_e, 11	RandomForest_e, 11	RandomForest_b, 3
Docking_fred, 16	IRV_a, 11	RandomForest_g, 3
Docking_dock6, 16	RandomForest_d, 11	SingleClassification_b, 3
ConsensusDocking_rocauc_opt, 16	SingleRegression_b, 18	RandomForest_f, 19
SingleRegression_b, 16	Docking_fred, 20	Docking_fred, 20
ConsensusDocking_max, 20	ConsensusDocking_max, 20	ConsensusDocking_max, 20
ConsensusDocking_median, 20	ConsensusDocking_median, 20	ConsensusDocking_median, 20
Docking_plants, 16	ConsensusDocking_rocauc_opt, 20	ConsensusDocking_rocauc_opt, 20
Docking_hybrid, 16	Docking_ad4, 20	Docking_ad4, 20
Docking_dock6, 20	Docking_dock6, 20	Docking_dock6, 20
Docking_dockint, 16	Docking_hybrid, 20	Docking_dockint, 20
Docking_plants, 20	Docking_plants, 20	Docking_plants, 20
Docking_plants, 20	Docking_plants, 20	Docking_plants, 20
Docking_hybrid, 20	Docking_hybrid, 20	Docking_hybrid, 20
Docking_dockint, 20	Docking_dockint, 20	Docking_dockint, 20
Docking_smina, 20	Docking_smina, 20	Docking_smina, 20
Docking_smina, 20	Docking_smina, 20	Docking_smina, 20
Docking_hybrid, 20	Docking_smina, 20	Docking_smina, 20
Docking_hybrid, 20	Docking_smina, 20	Docking_smina, 20
Docking_smina, 20	Docking_smina, 20	Docking_smina, 20
Docking_hybrid, 20	Docking_smina, 20	Docking_smina, 20
Docking_hybrid, 20	Docking_smina, 20	Docking_smina, 20
Docking_smina, 20	Docking_smina, 20	Docking_smina, 20
Docking_hybrid, 20	Docking_smina, 20	Docking_smina, 20
Docking_hybrid, 20	Docking_smina, 20	Docking_smina, 20
Docking_smina, 20	Docking_smina, 20	Docking_smina, 20
Docking_hybrid, 20	Docking_smina, 20	Docking_smina, 20
Docking_hybrid, 20	Docking_smina, 20	Docking_smina, 20
Docking_hybrid, 20	Docking_smina, 20	Docking_smina, 20
Docking_hybrid, 20	Docking_smina, 20	Docking_smina, 20
Docking_hybrid, 20	Docking_smina, 20	Docking_smina, 20
Docking_hybrid, 20	Docking_smina, 20	Docking_smina, 20
Docking_hybrid, 20	Docking_smina, 20	Docking_smina, 20
Docking_hybrid, 20	Docking_smina, 20	Docking_smina, 20
Docking_hybrid, 20	Docking_smina, 20	Docking_smina, 20
Docking_hybrid, 20	Docking_smina, 20	Docking_smina, 20
Docking_hybrid, 20	Docking_smina, 20	Docking_smina, 20
Table S13: PriA-SSB AS DTK rankings (continued)

NEF_1 % PriA-SSB AS	NEF_2 % PriA-SSB AS	NEF_5 % PriA-SSB AS
0 RandomForest_h, 1	RandomForest_h, 1	SingleRegression_b, 1
1 SingleClassification_a, 2	SingleClassification_a, 2	RandomForest_b, 1
2 SingleRegression_b, 3	SingleRegression_b, 3	IRV_b, 1
3 RandomForest_a, 3	RandomForest_a, 3	IRV_c, 1
4 IRV_a, 3	IRV_b, 3	SingleRegression_a, 1
5 IRV_b, 3	IRV_c, 3	IRV_e, 1
6 IRV_c, 3	SingleRegression_a, 3	MultiClassification_a, 1
7 SingleRegression_a, 3	IRV_e, 3	MultiClassification_b, 1
8 IRV_e, 3	MultiClassification_a, 3	RandomForest_a, 1
9 MultiClassification_a, 3	MultiClassification_b, 3	IRV_d, 1
10 MultiClassification_b, 3	IRV_d, 3	RandomForest_c, 1
11 IRV_d, 3	RandomForest_b, 3	RandomForest_e, 1
12 RandomForest_b, 3	RandomForest_b, 3	RandomForest_f, 1
13 RandomForest_d, 3	RandomForest_e, 3	RandomForest_g, 1
14 RandomForest_e, 3	RandomForest_e, 3	RandomForest_h, 1
15 RandomForest_f, 3	RandomForest_f, 3	SingleClassification_a, 1
16 RandomForest_g, 3	SingleClassification_a, 3	SingleClassification_b, 1
17 SingleClassification_b, 3	RandomForest_c, 3	RandomForest_d, 1
18 RandomForest_c, 3	IRV_a, 19	IRV_a, 19
19 Docking_fred, 20	Docking_fred, 20	Docking_fred, 20
20 ConsensusDocking_max, 20	ConsensusDocking_max, 20	ConsensusDocking_max, 20
21 ConsensusDocking_mean, 20	ConsensusDocking_mean, 20	ConsensusDocking_mean, 20
22 ConsensusDocking_median, 20	ConsensusDocking_median, 20	ConsensusDocking_median, 20
23 ConsensusDocking_rocauc_opt, 20	ConsensusDocking_rocauc_opt, 20	ConsensusDocking_rocauc_opt, 20
24 Docking_ad4, 20	Docking_ad4, 20	Docking_ad4, 20
25 Docking_dock6, 20	Docking_dock6, 20	Docking_dock6, 20
26 Docking_rdocktot, 20	Docking_rdocktot, 20	Docking_dmina, 20
27 Docking_hybrid, 20	Docking_hybrid, 20	Docking_hybrid, 20
28 Docking_plants, 20	Docking_plants, 20	Docking_plants, 20
29 Docking_rdockint, 20	Docking_rdockint, 20	Docking_rdockint, 20
30 Docking_dmina, 20	Docking_dmina, 20	Docking_rdocktot, 20
31 Docking_surflex, 20	Docking_surflex, 20	Docking_surflex, 20
32 LSTM_a, 20	LSTM_a, 20	LSTM_a, 20
33 LSTM_b, 20	LSTM_b, 20	LSTM_b, 20
34 ConsensusDocking_efr1_opt, 20	ConsensusDocking_efr1_opt, 20	ConsensusDocking_efr1_opt, 20
Table S13: PriA-SSB AS DTK rankings (continued)

NEF_10 % PriA-SSB AS	NEF_20 % PriA-SSB AS	NEF AUC PriA-SSB AS				
SingleRegression_b, 1	SingleRegression_b, 1	SingleRegression_b, 1				
RandomForest_c, 1	MultiClassification_b, 1	RandomForest_b, 1				
SingleRegression_a, 1	SingleRegression_a, 3	IRV_b, 1				
IRV_e, 1	SingleClassification_a, 4	SingleRegression_a, 1				
MultiClassification_a, 1	RandomForest_h, 4	IRV_e, 1				
MultiClassification_a, 1	RandomForest_c, 4	MultiClassification_a, 1				
RandomForest_a, 1	RandomForest_b, 4	MultiClassification_a, 1				
RandomForest_b, 1	RandomForest_a, 4	RandomForest_a, 1				
IRV_d, 1	MultiClassification_a, 4	RandomForest_b, 1				
RandomForest_d, 1	SingleClassification_b, 10	IRV_d, 1				
SingleClassification_b, 1	RandomForest_g, 10	RandomForest_d, 1				
RandomForest_f, 1	RandomForest_e, 10	SingleClassification_b, 1				
RandomForest_g, 1	RandomForest_d, 14	RandomForest_f, 1				
RandomForest_h, 1	IRV_e, 15	RandomForest_e, 1				
RandomForest_e, 1	IRV_d, 15	RandomForest_h, 1				
IRV_b, 17	IRV_b, 17	SingleClassification_a, 1				
IRV_c, 17	IRV_c, 18	IRV_a, 18				
IRV_a, 19	IRV_a, 19	IRV_c, 18				
LSTM_b, 20	LSTM_b, 19	LSTM_b, 20				
Docking_fred, 21	LSTM_a, 21	Docking_fred, 21				
ConsensusDocking_max, 21	Docking_dock6, 21	ConsensusDocking_max, 21				
ConsensusDocking_mean, 21	ConsensusDocking_max, 21	ConsensusDocking_mean, 21				
ConsensusDocking_median, 21	ConsensusDocking_max, 21	ConsensusDocking_median, 21				
ConsensusDocking_rocauc_opt, 21	ConsensusDocking_max, 21	ConsensusDocking_rocauc_opt, 21				
Docking_ad4, 21	ConsensusDocking_rocauc_opt, 21	Docking_ad4, 21				
Docking_dock6, 21	Docking_ad4, 21	Docking_dock6, 21				
Docking_smrna, 21	Docking_plants, 21	Docking_smrna, 21				
Docking_plants, 21	Docking_fred, 21	Docking_plants, 21				
Docking_hybrid, 21	Docking_fred, 21	Docking_hybrid, 21				
Docking_plants, 21	Docking_hybrid, 21	Docking_plants, 21				
Docking_rdockint, 21	Docking_rdockint, 21	Docking_rdockint, 21				
Docking_rdocktot, 21	Docking_rdocktot, 21	Docking_rdocktot, 21				
Docking_surflex, 21	Docking_surflex, 21	Docking_surflex, 21				
LSTM_a, 21	Docking_surflex, 21	LSTM_a, 21				
ConsensusDocking_efr1_opt, 21	ConsensusDocking_efr1_opt, 21	ConsensusDocking_efr1_opt, 21				
n_hits_100	PriA-SSB AS	n_hits_250	PriA-SSB AS	n_hits_500	PriA-SSB AS	
------------	-------------	------------	-------------	------------	-------------	
0	SingleClassification_a	1	RandomForest_h	1	RandomForest_h	1
1	RandomForest_h	1	SingleClassification_a	2	SingleRegression_b	2
2	SingleRegression_b	3	SingleRegression_b	3	RandomForest_b	2
3	RandomForest_a	3	RandomForest_a	3	IRV_a	3
4	IRV_a	3	IRV_a	3	SingleRegression_a	2
5	IRV_b	3	IRV_b	3	IRV_e	2
6	IRV_e	3	IRV_c	3	MultiClassification_a	2
7	SingleRegression_a	3	SingleRegression_a	3	MultiClassification_b	2
8	IRV_e	3	IRV_e	3	RandomForest_a	2
9	MultiClassification_a	3	MultiClassification_a	3	RandomForest_e	3
10	MultiClassification_b	3	MultiClassification_b	3	RandomForest_e	3
11	IRV_d	3	IRV_d	3	RandomForest_e	3
12	RandomForest_b	3	RandomForest_b	3	RandomForest_g	2
13	RandomForest_d	3	RandomForest_d	3	SingleClassification_a	2
14	RandomForest_e	3	RandomForest_e	3	SingleClassification_b	2
15	RandomForest_f	3	RandomForest_f	3	RandomForest_d	2
16	SingleClassification_b	3	RandomForest_g	3	IRV_c	17
17	SingleClassification_b	3	RandomForest_c	3	IRV_a	17
18	RandomForest_c	3	SingleClassification_b	3	RandomForest_f	19
19	Docking_fred	20	Docking_fred	20	Docking_fred	20
20	ConsensusDocking_max	20	ConsensusDocking_max	20	ConsensusDocking_max	20
21	ConsensusDocking_mean	20	ConsensusDocking_mean	20	ConsensusDocking_mean	20
22	ConsensusDocking_median	20	ConsensusDocking_median	20	ConsensusDocking_median	20
23	ConsensusDocking_rocauc_opt	20	ConsensusDocking_rocauc_opt	20	ConsensusDocking_rocauc_opt	20
24	Docking_ad4	20	Docking_ad4	20	Docking_ad4	20
25	Docking_dock6	20	Docking_dock6	20	Docking_dock6	20
26	Docking_docktot	20	Docking_docktot	20	Docking_smina	20
27	Docking_hybrid	20	Docking_hybrid	20	Docking_hybrid	20
28	Docking_plants	20	Docking_plants	20	Docking_plants	20
29	Docking_dockint	20	Docking_dockint	20	Docking_dockint	20
30	Docking_smina	20	Docking_smina	20	Docking_docktot	20
31	Docking_surflex	20	Docking_surflex	20	Docking_surflex	20
32	LSTM_a	20	LSTM_a	20	LSTM_a	20
33	LSTM_b	20	LSTM_b	20	LSTM_b	20
34	ConsensusDocking_efr1_opt	20	ConsensusDocking_efr1_opt	20	ConsensusDocking_efr1_opt	20
Table S13: PriA-SSB AS DTK rankings (continued)

n_hits_1000 PriA-SSB AS	n_hits_2500 PriA-SSB AS	n_hits_5000 PriA-SSB AS
0 SingleRegression_b, 1	SingleRegression_b, 1	SingleRegression_b, 1
1 RandomForest_b, 1	MultiClassification_b, 1	MultiClassification_b, 1
2 IRV_b, 1	RandomForest_f, 3	SingleRegression_a, 1
3 IRV_c, 1	RandomForest_c, 3	RandomForest_d, 4
4 SingleRegression_a, 1	RandomForest_b, 3	RandomForest_c, 4
5 IRV_e, 1	RandomForest_a, 3	RandomForest_h, 6
6 MultiClassification_a, 1	SingleRegression_a, 3	RandomForest_g, 6
7 MultiClassification_b, 1	SingleClassification_b, 8	RandomForest_e, 6
8 RandomForest_a, 1	SingleClassification_a, 8	MultiClassification_a, 6
9 IRV_d, 1	RandomForest_h, 8	SingleClassification_b, 10
10 RandomForest_c, 1	RandomForest_g, 8	RandomForest_b, 10
11 RandomForest_e, 1	RandomForest_e, 8	RandomForest_a, 12
12 RandomForest_f, 1	RandomForest_d, 8	SingleClassification_a, 13
13 RandomForest_g, 1	MultiClassification_a, 8	RandomForest_f, 13
14 RandomForest_h, 1	IRV_e, 15	IRV_e, 15
15 SingleClassification_a, 1	IRV_d, 16	LSTM_a, 17
16 SingleClassification_b, 1	IRV_b, 17	ConsensusDocking_max, 17
17 RandomForest_d, 1	IRV_c, 18	Docking_hybrid, 17
18 IRV_a, 19	IRV_a, 19	ConsensusDocking_max, 17
19 Docking_fred, 20	LSTM_b, 20	ConsensusDocking_mean, 17
20 ConsensusDocking_max, 20	LSTM_a, 21	ConsensusDocking_median, 17
21 ConsensusDocking_mean, 20	Docking_dock6, 21	Docking_rocauc_opt, 17
22 ConsensusDocking_median, 20	ConsensusDocking_max, 21	Docking_ad4, 17
23 ConsensusDocking_rocauc_opt, 20	ConsensusDocking_mean, 21	Docking_dock6, 17
24 Docking_ad4, 20	ConsensusDocking_median, 21	Docking_fred, 17
25 Docking_dock6, 20	ConsensusDocking_rocauc_opt, 21	Docking_plants, 17
26 Docking_smina, 20	Docking_ad4, 21	LSTM_b, 17
27 Docking_hybrid, 20	Docking_plants, 21	Docking_rodockint, 17
28 Docking_plants, 20	Docking_fred, 21	Docking_rdocktot, 17
29 Docking_rodockint, 20	Docking_hybrid, 21	Docking_smima, 17
30 Docking_rdocktot, 20	Docking_rodockint, 21	Docking_surflex, 17
31 Docking_surflex, 20	Docking_rodocktot, 21	IRV_a, 17
32 LSTM_a, 20	Docking_smina, 21	IRV_b, 17
33 LSTM_b, 20	Docking_surflex, 21	IRV_c, 17
34 ConsensusDocking_efr1_opt, 20	ConsensusDocking_efr1_opt, 21	ConsensusDocking_efr1_opt, 17
Table S13: **PriA-SSB AS DTK rankings (continued)**

n_hits_10000 PriA-SSB AS
0 IRV_e, 1
1 IRV_d, 2
2 IRV_a, 2
3 IRV_b, 2
4 IRV_c, 2
5 RandomForest_g, 2
6 RandomForest_e, 2
7 RandomForest_d, 2
8 MultiClassification_b, 9
9 MultiClassification_a, 9
10 RandomForest_c, 9
11 RandomForest_b, 9
12 SingleRegression_a, 14
13 SingleRegression_b, 14
14 RandomForest_h, 14
15 SingleClassification_b, 16
16 RandomForest_a, 17
17 LSTM_b, 17
18 SingleClassification_a, 17
19 Docking_fred, 20
20 ConsensusDocking_max, 20
21 ConsensusDocking_mean, 20
22 ConsensusDocking_median, 20
23 ConsensusDocking_rocauc_opt, 20
24 Docking_ad4, 20
25 Docking_dock6, 20
26 Docking_rdocktot, 20
27 Docking_hybrid, 20
28 Docking_plants, 20
29 Docking_rdockint, 20
30 Docking_smina, 20
31 Docking_surflex, 20
32 RandomForest_f, 20
33 LSTM_a, 20
34 ConsensusDocking_efr1_opt, 20
Table S14: PriA-SSB FP DTK rankings

ROC AUC PriA-SSB FP	BEDROC AUC PriA-SSB FP	PR auc.integral PriA-SSB FP
0	SingleRegression_a, 1	SingleRegression_b, 1
1	SingleRegression_b, 1	SingleRegression_a, 2
2	IRV_e, 3	IRV_e, 3
3	RandomForest_b, 3	RandomForest_max, 4
4	Docking_hybrid, 5	Docking_surflex, 2
5	Docking_smina, 5	Docking_rocauc_opt, 4
6	Docking_rdocktot, 5	Docking_fred, 4
7	Docking_plants, 5	Docking_plants, 4
8	Docking_fred, 5	Docking_fred, 4
9	DOCKing_plants, 5	DOCKing_plants, 4
10	IRV_b, 4	DOCKing_plants, 4
11	DOCKing_dock6, 5	DOCKing_dock6, 4
12	Docking_rdockint, 5	DOCKing_dockint, 4
13	DOCKing_rdocktot, 5	DOCKing_docktot, 2
14	ConsensusDocking_rocauc_opt, 5	DOCKing_dock6, 4
15	DOCKing_median, 5	DOCKing_median, 4
16	DOCKing_max, 5	DOCKing_max, 4
17	DOCKing_max, 5	DOCKing_max, 4
18	IRV_d, 4	SingleRegression_a, 2
19	IRV_c, 5	SingleRegression_a, 4
20	LSTM_a, 5	SingleClassification_b, 2
21	LSTM_b, 5	SingleClassification_a, 2
22	MultiClassification_a, 5	MultiClassification_b, 4
23	MultiClassification_b, 5	MultiClassification_b, 4
24	RandomForest_a, 5	RandomForest_b, 4
25	RandomForest_b, 5	RandomForest_c, 4
26	RandomForest_c, 5	RandomForest_d, 4
27	RandomForest_d, 5	RandomForest_e, 4
28	RandomForest_e, 5	RandomForest_f, 4
29	RandomForest_f, 5	RandomForest_g, 4
30	RandomForest_g, 5	MultiClassification_b, 2
31	MultiClassification_a, 5	MultiClassification_a, 2
32	SingleClassification_a, 4	SingleClassification_a, 4
33	SingleClassification_b, 5	SingleClassification_b, 4
34	ConsensusDocking_efr1_opt, 5	ConsensusDocking_efr1_opt, 4
Table S14: PriA-SSB FP DTK rankings (continued)

NEF_0.1 % PriA-SSB FP	NEF_0.15 % PriA-SSB FP	NEF_0.5 % PriA-SSB FP
0 SingleRegression_b, 1	SingleRegression_b, 1	SingleRegression_b, 1
1 Docking_hybrid, 1	Docking_hybrid, 1	Docking_hybrid, 2
2 IRV_a, 1	IRV_a, 1	IRV_a, 2
3 Docking_surflex, 1	Docking_surflex, 1	Docking_surflex, 2
4 Docking_smina, 1	Docking_smina, 1	Docking_smina, 2
5 Docking_rdocktot, 1	Docking_rdocktot, 1	Docking_rdocktot, 2
6 Docking_rdockint, 1	Docking_rdockint, 1	Docking_rdockint, 2
7 Docking_plants, 1	Docking_plants, 1	Docking_plants, 2
8 Docking_fred, 1	Docking_fred, 1	Docking_fred, 2
9 IRV_c, 1	IRV_c, 1	IRV_c, 2
10 Docking_dock6, 1	Docking_dock6, 1	Docking_dock6, 2
11 Docking_ad4, 1	Docking_ad4, 1	Docking_ad4, 2
12 ConsensusDocking_rocauc_opt, 1	ConsensusDocking_rocauc_opt, 1	ConsensusDocking_rocauc_opt, 2
13 ConsensusDocking_median, 1	ConsensusDocking_median, 1	ConsensusDocking_median, 2
14 ConsensusDocking_mean, 1	ConsensusDocking_mean, 1	ConsensusDocking_mean, 2
15 ConsensusDocking_max, 1	ConsensusDocking_max, 1	ConsensusDocking_max, 2
16 IRV_b, 1	IRV_b, 1	IRV_b, 2
17 IRV_d, 1	IRV_d, 1	IRV_d, 2
18 SingleRegression_a, 1	SingleRegression_a, 1	SingleRegression_a, 2
19 RandomForest_d, 1	RandomForest_d, 1	RandomForest_d, 2
20 SingleClassification_b, 1	SingleClassification_b, 1	SingleClassification_b, 2
21 SingleClassification_a, 1	SingleClassification_a, 1	SingleClassification_a, 2
22 RandomForest_h, 1	RandomForest_h, 1	RandomForest_h, 2
23 RandomForest_g, 1	RandomForest_g, 1	RandomForest_g, 2
24 RandomForest_f, 1	RandomForest_f, 1	RandomForest_f, 2
25 RandomForest_e, 1	RandomForest_e, 1	RandomForest_e, 2
26 RandomForest_c, 1	RandomForest_c, 1	RandomForest_c, 2
27 IRV_e, 1	IRV_e, 1	IRV_e, 2
28 RandomForest_b, 1	RandomForest_b, 1	RandomForest_b, 2
29 RandomForest_a, 1	RandomForest_a, 1	RandomForest_a, 2
30 MultiClassification_b, 1	MultiClassification_b, 1	MultiClassification_b, 2
31 MultiClassification_a, 1	MultiClassification_a, 1	MultiClassification_a, 2
32 LSTM_b, 1	LSTM_b, 1	LSTM_b, 2
33 LSTM_a, 1	LSTM_a, 1	LSTM_a, 2
34 ConsensusDocking_efr1_opt, 1	ConsensusDocking_efr1_opt, 1	ConsensusDocking_efr1_opt, 2
Table S14: PriA-SSB FP DTK rankings (continued)

NEF_1 % PriA-SSB FP	NEF_2 % PriA-SSB FP	NEF_5 % PriA-SSB FP
SingleRegression_b, 1	SingleRegression_a, 1	SingleRegression_a, 1
SingleRegression_a, 1	IRV_e, 2	SingleRegression_b, 2
ConsensusDocking_max, 3	SingleRegression_b, 3	ConsensusDocking_max, 3
ConsensusDocking_mean, 3	ConsensusDocking_mean, 4	ConsensusDocking_mean, 3
ConsensusDocking_median, 3	ConsensusDocking_median, 4	ConsensusDocking_median, 3
ConsensusDocking_rocauc_opt, 3	ConsensusDocking_rocauc_opt, 4	ConsensusDocking_rocauc_opt, 3
Docking_ad4, 3	Docking_ad4, 4	Docking_ad4, 4
Docking_dock6, 3	Docking_dock6, 4	Docking_dock6, 3
Docking_fred, 3	Docking_fred, 4	Docking_fred, 3
IRV_c, 3	IRV_b, 4	IRV_a, 3
Docking_plants, 3	Docking_plants, 4	Docking_plants, 3
Docking_rdockint, 3	Docking_rdockint, 4	Docking_rdockint, 3
Docking_rdocktot, 3	Docking_rdocktot, 4	Docking_rdocktot, 3
Docking_smina, 3	Docking_smina, 4	Docking_smina, 3
Docking_surflex, 3	Docking_surflex, 4	Docking_surflex, 3
IRV_a, 3	IRV_a, 4	IRV_a, 3
ConsensusDocking_max, 4	Docking_hybrid, 4	Docking_hybrid, 4
IRV_d, 3	IRV_d, 4	IRV_d, 3
IRV_e, 3	IRV_e, 4	IRV_e, 3
LSTM_a, 3	LSTM_a, 4	LSTM_a, 3
LSTM_b, 3	LSTM_b, 4	LSTM_b, 3
MultiClassification_a, 3	MultiClassification_a, 4	MultiClassification_a, 3
MultiClassification_a, 4	MultiClassification_a, 5	MultiClassification_a, 3
RandomForest_a, 3	RandomForest_a, 4	RandomForest_a, 3
RandomForest_b, 3	RandomForest_b, 4	RandomForest_b, 3
RandomForest_c, 3	RandomForest_c, 4	RandomForest_c, 3
RandomForest_d, 3	RandomForest_d, 4	RandomForest_d, 3
RandomForest_e, 3	RandomForest_e, 4	RandomForest_e, 3
RandomForest_f, 3	RandomForest_f, 4	RandomForest_f, 3
RandomForest_g, 3	RandomForest_g, 4	RandomForest_g, 3
RandomForest_h, 3	RandomForest_h, 4	RandomForest_h, 3
SingleClassification_a, 3	SingleClassification_a, 4	SingleClassification_a, 3
SingleClassification_b, 3	SingleClassification_b, 4	SingleClassification_b, 3
SingleClassification_c, 3	SingleClassification_c, 4	SingleClassification_c, 3
SingleClassification_d, 3	SingleClassification_d, 4	SingleClassification_d, 3
SingleClassification_e, 3	SingleClassification_e, 4	SingleClassification_e, 3
SingleClassification_f, 3	SingleClassification_f, 4	SingleClassification_f, 3
SingleClassification_g, 3	SingleClassification_g, 4	SingleClassification_g, 3
SingleClassification_h, 3	SingleClassification_h, 4	SingleClassification_h, 3
ConsensusDocking_efr1_opt, 3	ConsensusDocking_efr1_opt, 4	ConsensusDocking_efr1_opt, 3
NEF_10% PriA-SSB FP	NEF_20% PriA-SSB FP	NEF AUC PriA-SSB FP
----------------------	----------------------	----------------------
SingleRegression_b, 1	SingleRegression_b, 1	SingleRegression_b, 1
SingleRegression_a, 2	SingleRegression_a, 1	SingleRegression_a, 1
ConsensusDocking_max, 3	RandomForest_e, 3	ConsensusDocking_max, 3
ConsensusDocking_mean, 3	ConsensusDocking_max, 4	ConsensusDocking_mean, 3
ConsensusDocking_median, 3	ConsensusDocking_mean, 4	ConsensusDocking_median, 3
ConsensusDocking_rocauc_opt, 3	ConsensusDocking_rocauc_opt, 4	ConsensusDocking_rocauc_opt, 3
Docking_ad, 3	Docking_ad, 4	Docking_ad, 3
Docking_dock6, 3	Docking_dock6, 4	Docking_dock6, 3
Docking_fred, 3	Docking_fred, 4	Docking_fred, 3
IRV_c, 3	IRV_b, 4	IRV_c, 3
Docking_plants, 3	Docking_plants, 4	Docking_plants, 3
Docking_rdockint, 3	Docking_rdockint, 4	Docking_rdockint, 3
Docking_rdocktot, 3	Docking_rdocktot, 4	Docking_rdocktot, 3
Docking_smina, 3	Docking_smina, 4	Docking_smina, 3
Docking_surflex, 3	Docking_surflex, 4	Docking_surflex, 3
IRV_a, 3	Docking_fred, 4	Docking_fred, 3
IRV_d, 3	IRV_d, 4	IRV_d, 3
IRV_e, 3	IRV_e, 4	IRV_e, 3
LSTM_a, 3	LSTM_a, 4	LSTM_a, 3
LSTM_b, 3	LSTM_b, 4	LSTM_b, 3
MultiClassification_a, 3	MultiClassification_a, 4	MultiClassification_a, 3
MultiClassification_b, 3	MultiClassification_b, 4	MultiClassification_b, 3
RandomForest_a, 3	RandomForest_a, 4	RandomForest_a, 3
RandomForest_b, 3	RandomForest_b, 4	RandomForest_b, 3
RandomForest_c, 3	RandomForest_c, 4	RandomForest_c, 3
RandomForest_d, 3	RandomForest_d, 4	RandomForest_d, 3
RandomForest_e, 3	RandomForest_e, 4	RandomForest_e, 3
RandomForest_f, 3	RandomForest_f, 4	RandomForest_f, 3
RandomForest_g, 3	RandomForest_g, 4	RandomForest_g, 3
RandomForest_h, 3	RandomForest_h, 4	RandomForest_h, 3
SingleClassification_a, 3	SingleClassification_a, 4	SingleClassification_a, 3
SingleClassification_b, 3	SingleClassification_b, 4	SingleClassification_b, 3
ConsensusDocking_efr1_opt, 3	ConsensusDocking_efr1_opt, 4	ConsensusDocking_efr1_opt, 3
Table S14: PriA-SSB FP DTK rankings (continued)

n_hits_100 PriA-SSB FP	n_hits_250 PriA-SSB FP	n_hits_500 PriA-SSB FP
0 SingleRegression_b, 1	SingleRegression_a, 1	SingleRegression_b, 1
1 Docking_hybrid, 2	IRV_e, 2	SingleRegression_a, 1
2 IRV_a, 2	SingleRegression_b, 2	ConsensusDocking_max, 3
3 Docking_smina, 2	ConsensusDocking_mean, 4	ConsensusDocking_mean, 3
4 Docking_rdocktot, 2	ConsensusDocking_median, 4	ConsensusDocking_median, 3
5 Docking_rdockint, 2	ConsensusDocking_rocauc_opt, 4	ConsensusDocking_rocauc_opt, 3
6 Docking_plants, 2	Docking_ad4, 4	Docking_ad4, 3
7 Docking_fred, 2	Docking_dock6, 4	Docking_dock6, 3
8 Docking_dock6, 2	Docking_fred, 4	Docking_fred, 3
9 IRV_c, 2	IRV_b, 4	IRV_c, 3
10 Docking_dock6, 2	Docking_plants, 4	Docking_plants, 3
11 Docking_ad4, 2	Docking_rdockint, 4	Docking_rdockint, 3
12 ConsensusDocking_rocauc_opt, 2	Docking_rdocktot, 4	Docking_rdocktot, 3
13 ConsensusDocking_median, 2	Docking_smina, 4	Docking_smina, 3
14 ConsensusDocking_median, 2	Docking_smina, 4	Docking_smina, 3
15 ConsensusDocking_max, 2	Docking_smina, 4	Docking_smina, 3
16 IRV_b, 2	ConsensusDocking_max, 4	ConsensusDocking_max, 3
17 IRV_d, 2	Docking_plants, 4	Docking_plants, 3
18 SingleRegression_a, 2	Docking_hybrid, 4	Docking_hybrid, 3
19 RandomForest_d, 2	IRV_c, 4	IRV_c, 3
20 SingleClassification_b, 2	IRV_d, 4	IRV_d, 3
21 SingleClassification_b, 2	LSTM_a, 4	LSTM_a, 3
22 RandomForest_h, 2	LSTM_b, 4	LSTM_b, 3
23 RandomForest_g, 2	MultiClassification_a, 4	MultiClassification_a, 3
24 RandomForest_f, 2	MultiClassification_b, 4	MultiClassification_b, 3
25 RandomForest_e, 2	RandomForest_a, 4	RandomForest_a, 3
26 RandomForest_c, 2	RandomForest_b, 4	RandomForest_b, 3
27 IRV_e, 2	RandomForest_c, 4	RandomForest_c, 3
28 RandomForest_b, 2	RandomForest_d, 4	RandomForest_d, 3
29 RandomForest_a, 2	RandomForest_e, 4	RandomForest_e, 3
30 MultiClassification_b, 2	RandomForest_f, 4	RandomForest_f, 3
31 MultiClassification_a, 2	RandomForest_g, 4	RandomForest_g, 3
32 LSTM_b, 2	RandomForest_h, 4	RandomForest_h, 3
33 LSTM_a, 2	SingleClassification_a, 4	SingleClassification_a, 3
34 ConsensusDocking_efr1_opt, 2	SingleClassification_b, 4	SingleClassification_b, 3
n_hits_1000 PriA-SSB FP	n_hits_2500 PriA-SSB FP	n_hits_5000 PriA-SSB FP
--------------------------	--------------------------	--------------------------
0 SingleRegression_b, 1	SingleRegression_a, 1	SingleRegression_b, 1
1 SingleRegression_a, 2	SingleRegression_b, 2	SingleRegression_a, 2
2 ConsensusDocking_max, 3	ConsensusDocking_max, 3	RandomForest_g, 3
3 ConsensusDocking_mean, 3	ConsensusDocking_mean, 3	MultiClassification_b, 3
4 ConsensusDocking_median, 3	ConsensusDocking_median, 3	Docking_hybrid, 5
5 ConsensusDocking_rocauc_opt, 3	ConsensusDocking_rocauc_opt, 3	Docking_surflex, 5
6 Docking_ad4, 3	Docking_ad4, 3	Docking_smina, 5
7 Docking_dock6, 3	Docking_dock6, 3	Docking_rdocktot, 5
8 Docking_fred, 3	Docking_fred, 3	Docking_rdockint, 5
9 IRV_c, 3	IRV_c, 3	Docking_plants, 5
10 Docking_plants, 3	Docking_plants, 3	Docking_fred, 5
11 Docking_rdockint, 3	Docking_rdockint, 3	IRV_b, 5
12 Docking_rdocktot, 3	Docking_rdocktot, 3	Docking_dock6, 5
13 Docking_smina, 3	Docking_smina, 3	Docking_ad4, 5
14 Docking_surflex, 3	Docking_surflex, 3	ConsensusDocking_rocauc_opt, 5
15 IRV_a, 3	IRV_a, 3	ConsensusDocking_median, 5
16 IRV_b, 3	IRV_b, 3	ConsensusDocking_mean, 5
17 Docking_hybrid, 3	Docking_hybrid, 3	ConsensusDocking_max, 5
18 IRV_d, 3	IRV_d, 3	IRV_a, 5
19 IRV_e, 3	IRV_e, 3	IRV_d, 5
20 LSTM_a, 3	LSTM_a, 3	IRV_c, 5
21 LSTM_b, 3	LSTM_b, 3	LSTM_b, 5
22 MultiClassification_a, 3	MultiClassification_a, 3	LSTM_a, 5
23 MultiClassification_b, 3	MultiClassification_b, 3	LSTM_b, 5
24 RandomForest_a, 3	RandomForest_a, 3	MultiClassification_a, 5
25 RandomForest_b, 3	RandomForest_b, 3	RandomForest_a, 5
26 RandomForest_c, 3	RandomForest_c, 3	RandomForest_b, 5
27 RandomForest_d, 3	RandomForest_d, 3	RandomForest_c, 5
28 RandomForest_e, 3	RandomForest_e, 3	RandomForest_d, 5
29 RandomForest_f, 3	RandomForest_f, 3	RandomForest_e, 5
30 RandomForest_g, 3	RandomForest_g, 3	RandomForest_f, 5
31 RandomForest_h, 3	RandomForest_h, 3	RandomForest_g, 5
32 SingleClassification_a, 3	SingleClassification_a, 3	SingleClassification_a, 5
33 SingleClassification_b, 3	SingleClassification_b, 3	SingleClassification_b, 5
34 ConsensusDocking_efr1_opt, 3	ConsensusDocking_efr1_opt, 3	ConsensusDocking_efr1_opt, 5

32
Table S14: **PriA-SSB FP DTK rankings (continued)**

n_hits_10000 PriA-SSB FP
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
Table S15: RMI-FANCM FP DTK rankings (continued)

NEF_0.1 % RMI-FANCM FP	NEF_0.15 % RMI-FANCM FP	NEF_0.5 % RMI-FANCM FP
SingleRegression_b, 1	IRV_a, 1	SingleClassification_b, 1
IRV_a, 1	SingleRegression_b, 2	SingleClassification_b, 1
SingleClassification_b, 3	SingleClassification_b, 3	RandomForest_f, 1
MultiClassification_b, 4	SingleClassification_b, 3	SingleRegression_b, 4
SingleClassification_b, 4	ConsensusDocking_max, 5	RandomForest_h, 4
RandomForest_f, 4	ConsensusDocking_max, 5	RandomForest_g, 4
Docking_smina, 7	ConsensusDocking_median, 5	IRV_a, 4
Docking_rdocktot, 5	ConsensusDocking_rocauc_opt, 5	IRV_b, 4
Docking_rdockint, 7	Docking_ad4, 5	MultiClassification_b, 9
Docking_plants, 7	IRV_b, 5	
Docking_hybrid, 7	Docking_fred, 5	MultiClassification_a, 11
Docking_ad4, 7	Docking_hybrid, 5	IRV_e, 12
Docking_fred, 7	Docking_plants, 5	IRV_d, 12
Docking_dock6, 7	Docking_rdockint, 5	RandomForest_a, 12
ConsensusDocking_rocauc_opt, 7	Docking_rdocktot, 5	RandomForest_b, 12
ConsensusDocking_median, 7	Docking_smina, 5	RandomForest_d, 12
ConsensusDocking_mean, 7	Docking_surllex, 5	RandomForest_e, 17
ConsensusDocking_max, 7	Docking_dock6, 5	Docking_hybrid, 18
Docking_surllex, 7	IRV_d, 5	ConsensusDocking_max, 18
IRV_d, 7	IRV_c, 5	ConsensusDocking_mean, 18
IRV_b, 7	SingleRegression_a, 5	ConsensusDocking_median, 18
IRV_c, 7	IRV_e, 5	ConsensusDocking_rocauc_opt, 18
SingleRegression_a, 7	LSTM_a, 5	Docking_ad4, 18
LSTM_a, 7	MultiClassification_a, 5	Docking_fred, 18
LSTM_b, 7	MultiClassification_b, 5	Docking_dockint, 18
MultiClassification_a, 7	RandomForest_a, 5	Docking_plants, 18
RandomForest_a, 7	RandomForest_b, 5	LSTM_b, 18
RandomForest_b, 7	RandomForest_c, 5	Docking_rdocktot, 18
RandomForest_c, 7	RandomForest_d, 5	Docking_smina, 18
RandomForest_d, 7	RandomForest_e, 5	Docking_surllex, 18
RandomForest_f, 5	IRV_c, 18	
RandomForest_g, 5	SingleRegression_a, 18	
RandomForest_h, 5	LSTM_a, 18	
ConsensusDocking_efr1_opt, 7	ConsensusDocking_efr1_opt, 5	ConsensusDocking_efr1_opt, 18
NEF_1 % RMI-FANCM FP	NEF_2 % RMI-FANCM FP	NEF_5 % RMI-FANCM FP
----------------------	----------------------	----------------------
0	SingleClassification_b, 1	RandomForest_h, 1
1	SingleClassification_a, 1	RandomForest_h, 1
2	RandomForest_h, 1	RandomForest_g, 1
3	RandomForest_g, 1	RandomForest_e, 3
4	RandomForest_f, 1	IRV_d, 4
5	RandomForest_e, 1	SingleClassification_b, 4
6	RandomForest_d, 1	RandomForest_e, 4
7	IRV_a, 1	RandomForest_d, 4
8	IRV_d, 9	RandomForest_c, 4
9	MultiClassification_b, 10	RandomForest_b, 4
10	SingleRegression_b, 11	RandomForest_a, 4
11	RandomForest_a, 12	RandomForest_e, 12
12	MultiClassification_a, 12	MultiClassification_b, 13
13	RandomForest_c, 12	IRV_a, 14
14	RandomForest_b, 12	SingleRegression_b, 15
15	Docking_plants, 16	MultiClassification_a, 16
16	ConsensusDocking_max, 16	LSTM_a, 17
17	ConsensusDocking_mean, 16	Docking_hybrid, 17
18	ConsensusDocking_median, 16	ConsensusDocking_max, 17
19	ConsensusDocking_rocauc_opt, 16	ConsensusDocking_mean, 17
20	Docking_ad4, 16	ConsensusDocking_median, 17
21	Docking_dock6, 16	ConsensusDocking_rocauc_opt, 17
22	Docking_fred, 16	Docking_ad4, 17
23	Docking_hybrid, 16	Docking_dock6, 17
24	Docking_rodocktot, 16	Docking_fred, 17
25	Docking_rodockint, 16	Docking_plants, 17
26	Docking_smina, 16	LSTM_b, 17
27	Docking_surflex, 16	Docking_rodocktot, 17
28	IRV_b, 16	Docking_rodockint, 17
29	IRV_c, 16	Docking_smina, 17
30	SingleRegression_a, 16	Docking_surflex, 17
31	LSTM_a, 16	IRV_b, 17
32	LSTM_b, 16	Docking_smina, 17
33	ConsensusDocking_efr1_opt, 16	SingleRegression_a, 17
34	ConsensusDocking_efr1_opt, 16	ConsensusDocking_efr1_opt, 17
NEF_10 % RMI-FANCM FP	NEF_20 % RMI-FANCM FP	NEF AUC RMI-FANCM FP
------------------------	------------------------	------------------------
RandomForest_h, 1	RandomForest_h, 1	RandomForest_h, 1
RandomForest_g, 2	RandomForest_g, 2	RandomForest_g, 2
RandomForest_d, 3	RandomForest_e, 3	RandomForest_d, 3
RandomForest_a, 3	RandomForest_b, 3	RandomForest_a, 3
RandomForest_c, 4	RandomForest_c, 5	RandomForest_c, 3
RandomForest_b, 4	RandomForest_f, 5	RandomForest_a, 3
MultiClassification_a, 8	IRV_e, 5	MultiClassification_b, 8
MultiClassification_b, 8	RandomForest_b, 5	RandomFroest_f, 8
IRV_c, 8	MultiClassification_a, 11	IRV_d, 10
SingleClassification_a, 8	SingleClassification_b, 11	SingleClassification_a, 10
SingleClassification_b, 8	SingleClassification_a, 11	SingleClassification_b, 10
IRV_c, 14	IRV_d, 14	IRV_c, 15
IRV_b, 15	ConsensusDocking_max, 15	IRV_c, 15
IRV_e, 16	Docking_rdocktot, 15	IRV_b, 15
Docking_rdocktot, 17	IRV_b, 15	Docking_rdocktot, 17
SingleRegression_b, 17	Docking_smima, 15	SingleRegression_b, 17
IRV_a, 19	SingleRegression_b, 15	IRV_a, 19
Docking_smima, 19	IRV_c, 15	Docking_smima, 19
LSTM_b, 19	LSTM_a, 15	LSTM_b, 19
SingleRegression_a, 22	LSTM_b, 15	LSTM_a, 19
Docking_sock6, 22	IRV_a, 23	SingleRegression_a, 23
ConsensusDocking_max, 22	Docking_surflex, 23	ConsensusDocking_max, 22
ConsensusDocking_median, 22	Docking_surflex, 23	ConsensusDocking_median, 23
ConsensusDocking_rocauc_opt, 22	Docking_plants, 23	ConsensusDocking_median, 23
Docking_ad4, 22	Docking_hybrid, 23	ConsensusDocking_rocauc_opt, 23
Docking_hybrid, 22	Docking_fred, 23	Docking_hybrid, 23
Docking_fred, 22	Docking_sock6, 23	Docking_fred, 23
LSTM_a, 22	Docking_ad4, 23	Docking_fred, 23
Docking_plants, 22	ConsensusDocking_rocauc_opt, 23	Docking_plants, 23
Docking_rdockint, 23	ConsensusDocking_median, 23	Docking_rdockint, 23
Docking_surflex, 23	ConsensusDocking_median, 23	Docking_surflex, 23
ConsensusDocking_efr1_opt, 22	ConsensusDocking_efr1_opt, 23	ConsensusDocking_efr1_opt, 23
Table S15: **RMI-FANCM FP DTK rankings (continued)**

n_hits_100 RMI-FANCM FP	n_hits_250 RMI-FANCM FP	n_hits_500 RMI-FANCM FP
0 SingleClassification_b, 1	SingleClassification_a, 1	RandomForest_h, 1
1 SingleClassification_a, 1	RandomForest_h, 1	RandomForest_g, 2
2 RandomForest_h, 1	IRV_d, 3	SingleClassification_b, 3
3 RandomForest_g, 1	SingleClassification_b, 3	SingleClassification_a, 3
4 RandomForest_f, 1	RandomForest_g, 3	MultiClassification_b, 3
5 RandomForest_e, 1	RandomForest_f, 3	IRV_d, 6
6 RandomForest_d, 1	RandomForest_e, 7	RandomForest_e, 8
7 IRV_d, 8	MultiClassification_b, 7	RandomForest_e, 8
8 IRV_a, 8	RandomForest_d, 9	RandomForest_d, 8
9 MultiClassification_b, 10	RandomForest_c, 9	RandomForest_a, 8
10 SingleRegression_b, 10	RandomForest_b, 9	MultiClassification_a, 11
11 MultiClassification_a, 12	RandomForest_a, 9	RandomForest_f, 12
12 RandomForest_a, 13	IRV_e, 13	RandomForest_c, 12
13 RandomForest_c, 13	SingleRegression_b, 14	IRV_b, 12
14 RandomForest_b, 13	MultiClassification_a, 15	IRV_e, 15
15 Docking_plants, 16	IRV_b, 15	SingleRegression_b, 16
16 ConsensusDocking_max, 16	IRV_a, 15	IRV_a, 17
17 ConsensusDocking_mean, 16	LSTM_b, 18	LSTM_a, 18
18 ConsensusDocking_median, 16	Docking_hybrid, 18	Docking_hybrid, 18
19 ConsensusDocking_rocauc_opt, 16	ConsensusDocking_max, 18	ConsensusDocking_max, 18
20 Docking_ad4, 16	ConsensusDocking_mean, 18	ConsensusDocking_mean, 18
21 Docking_dock6, 16	ConsensusDocking_median, 18	ConsensusDocking_median, 18
22 Docking_surflex, 16	ConsensusDocking_rocauc_opt, 18	ConsensusDocking_rocauc_opt, 18
23 Docking_hybrid, 16	Docking_ad4, 18	Docking_ad4, 18
24 Docking_rodocktot, 16	Docking_dock6, 18	Docking_dock6, 18
25 Docking_rodockint, 16	Docking_fred, 18	Docking_fred, 18
26 Docking_smina, 16	Docking_rodockint, 18	Docking_plants, 18
27 Docking_surflex, 16	Docking_plants, 18	SingleRegression_a, 18
28 IRV_b, 16	LSTM_a, 18	Docking_rodocktot, 18
29 IRV_c, 16	Docking_rodocktot, 18	Docking_rodocktot, 18
30 SingleRegression_a, 16	Docking_smina, 18	Docking_smina, 18
31 IRV_e, 16	Docking_surflex, 18	Docking_surflex, 18
32 LSTM_a, 16	IRV_c, 18	LSTM_b, 18
33 LSTM_b, 16	SingleRegression_a, 18	IRV_c, 18
34 ConsensusDocking_efr1_opt, 16	ConsensusDocking_efr1_opt, 18	ConsensusDocking_efr1_opt, 18
Table S15: RMI-FANCM FP DTK rankings (continued)

	n_hits_1000	n_hits_2500	n_hits_5000
RandomForest_h, 1	RandomForest_h, 1	RandomForest_h, 1	RandomForest_h, 1
RandomForest_g, 2	RandomForest_g, 2	RandomForest_g, 2	RandomForest_g, 1
RandomForest_d, 3	RandomForest_c, 3	RandomForest_e, 1	
RandomForest_c, 4	RandomForest_d, 4	RandomForest_d, 4	
RandomForest_a, 4	MultiClassification_b, 4	RandomForest_a, 4	
RandomForest_e, 4	RandomForest_a, 4	RandomForest_f, 6	
RandomForest_b, 4	RandomForest_e, 4	RandomForest_c, 6	
MultiClassification_a, 8	RandomForest_b, 4	RandomForest_b, 6	
MultiClassification_b, 8	RandomForest_f, 9	MultiClassification_b, 9	
IRV_d, 8	IRV_e, 10	MultiClassification_a, 10	
RandomForest_f, 8	MultiClassification_a, 11	SingleClassification_b, 11	
SingleClassification_a, 8	SingleClassification_b, 12	SingleClassification_a, 12	
SingleClassification_b, 8	SingleClassification_a, 13	LSTM_a, 12	
IRV_c, 14	IRV_d, 14	LSTM_b, 14	
IRV_e, 15	IRV_c, 15	Docking_hybrid, 14	
IRV_b, 16	ConsensusDocking_max, 15	Docking_plants, 16	
Docking_rdocktot, 17	Docking_rdocktot, 15	ConsensusDocking_max, 16	
SingleRegression_b, 17	SingleRegression_b, 15	ConsensusDocking_mean, 16	
IRV_a, 19	LSTM_b, 15	ConsensusDocking_median, 16	
Docking_smina, 19	LSTM_a, 15	ConsensusDocking_rocauc_opt, 16	
LSTM_b, 19	SingleRegression_a, 21	Docking_ad4, 16	
SingleRegression_a, 22	Docking_fred, 21	Docking_dock6, 16	
Docking_dock6, 22	ConsensusDocking_mean, 21	Docking_fred, 16	
ConsensusDocking_max, 22	ConsensusDocking_median, 21	SingleRegression_b, 16	
ConsensusDocking_mean, 22	ConsensusDocking_rocauc_opt, 21	IRV_d, 16	
ConsensusDocking_median, 22	Docking_ad4, 21	Docking_rdockint, 16	
ConsensusDocking_rocauc_opt, 22	Docking_dock6, 21	Docking_rdocktot, 16	
Docking_ad4, 22	Docking_hybrid, 21	Docking_surflex, 16	
Docking_hybrid, 22	IRV_b, 21	Docking_smina, 16	
Docking_fred, 22	Docking_rdockint, 21	IRV_a, 16	
LSTM_a, 22	Docking_rdockint, 21	IRV_b, 16	
Docking_rdockint, 22	Docking_surflex, 21	IRV_c, 16	
Docking_surflex, 22	IRV_a, 21	SingleRegression_a, 16	
ConsensusDocking_efr1_opt, 22	ConsensusDocking_efr1_opt, 21	ConsensusDocking_efr1_opt, 16	
Table S15: **RMI-FANCM FP DTK rankings (continued)**

n_hits_10000	RMI-FANCM FP
0	SingleRegression_b, 1
1	Docking_hybrid, 1
2	IRV_a, 1
3	Docking_surflex, 1
4	Docking_smina, 1
5	Docking_rdocktot, 1
6	Docking_rdockint, 1
7	Docking_plants, 1
8	Docking_fred, 1
9	IRV_c, 1
10	Docking_dock6, 1
11	Docking_ad4, 1
12	ConsensusDocking_rocauc_opt, 1
13	ConsensusDocking_median, 1
14	ConsensusDocking_mean, 1
15	ConsensusDocking_max, 1
16	IRV_b, 1
17	IRV_d, 1
18	SingleRegression_a, 1
19	RandomForest_d, 1
20	SingleClassification_b, 1
21	SingleClassification_a, 1
22	RandomForest_b, 1
23	RandomForest_g, 1
24	RandomForest_f, 1
25	RandomForest_e, 1
26	RandomForest_c, 1
27	IRV_e, 1
28	RandomForest_b, 1
29	RandomForest_a, 1
30	MultiClassification_b, 1
31	MultiClassification_a, 1
32	LSTM_b, 1
33	LSTM_a, 1
34	ConsensusDocking_efr1_opt, 1
H Cross-Validation: Metric Comparison Results

The tables below show the ranking of evaluation metrics based on their similarity to n_{hits} at different thresholds using Spearman’s rank correlation coefficient.

Table S16: PriA-SSB AS metric comparison showing metrics ranked by their Spearman correlation.

n_hits_100	n_hits_250	n_hits_500	n_hits_1000	n_hits_2500	n_hits_5000	n_hits_10000
NEF_0.5 %	NEF_1 %	NEF_0.5 %	NEF_5 %	NEF_20 %	NEF_20 %	NEF_0.5 %
NEF_1 %	NEF_2 %	NEF_2 %	NEF_10 %	ROC AUC	NEF_5 %	NEF_5 %
NEF_2 %	NEF_0.5 %	NEF AUC	NEF AUC	NEF_10 %	NEF_10 %	NEF AUC
NEF_5 %	NEF_5 %	BEDROC AUC	BEDROC AUC	BEDROC AUC	BEDROC AUC	NEF_0.15 %
NEF_0.15 %	NEF AUC	NEF_5 %	NEF_10 %	ROC AUC	BEDROC AUC	NEF_0.15 %
NEF AUC	NEF_5 %	NEF_1 %	NEF_5 %	NEF_10 %	NEF_5 %	NEF_1 %
NEF_10 %	NEF_10 %	ROC AUC	ROC AUC	NEF_1 %	NEF_1 %	NEF_10 %
NEF_20 %	NEF_20 %	NEF_20 %	NEF_5 %	NEF_0.5 %	NEF_5 %	NEF_0.5 %
ROC AUC	ROC AUC	NEF_0.15 %	NEF_0.15 %	NEF_0.15 %	NEF_0.15 %	NEF_20 %
NEF_0.1 %	NEF_0.1 %	NEF_0.1 %	NEF_0.1 %	NEF_0.1 %	NEF_0.1 %	NEF_0.1 %
PR auc.integral						

Table S17: PriA-SSB FP metric comparison showing metrics ranked by their Spearman correlation.

n_hits_100	n_hits_250	n_hits_500	n_hits_1000	n_hits_2500	n_hits_5000	n_hits_10000
NEF_0.5 %	NEF_2 %	NEF AUC	NEF_10 %	NEF_5 %	NEF_10 %	NEF_5 %
PR auc.integral	BEDROC AUC	BEDROC AUC	BEDROC AUC	BEDROC AUC	BEDROC AUC	NEF_10 %
NEF_10 %	ROC AUC	NEF_1 %	NEF_5 %	NEF_10 %	NEF_5 %	NEF_10 %
NEF AUC	NEF_5 %	NEF_10 %	BEDROC AUC	NEF_20 %	BEDROC AUC	NEF_0.15 %
NEF_1 %	NEF_1 %	NEF_20 %	NEF_20 %	NEF_5 %	NEF_20 %	NEF_0.5 %
BEDROC AUC	ROC AUC	ROC AUC	ROC AUC	ROC AUC	NEF_0.5 %	NEF_0.5 %
NEF_20 %	NEF_20 %	ROC AUC	ROC AUC	ROC AUC	NEF_0.5 %	PR auc.integral
ROC AUC	PR auc.integral	PR auc.integral	PR auc.integral	ROC AUC	PR auc.integral	
NEF_0.1 %	NEF_0.1 %	NEF_0.1 %	NEF_0.1 %	NEF_0.1 %	NEF_0.1 %	NEF_0.1 %
PR auc.integral	NEF_0.1 %	NEF_0.1 %	NEF_0.1 %	NEF_0.1 %	NEF_10 %	NEF_10 %

Table S18: RMI-FANCM FP metric comparison showing metrics ranked by their Spearman correlation.

n_hits_100	n_hits_250	n_hits_500	n_hits_1000	n_hits_2500	n_hits_5000	n_hits_10000
NEF_1 %	NEF_5 %	NEF_5 %	NEF_10 %	NEF_20 %	NEF_20 %	ROC AUC
NEF_2 %	NEF_2 %	NEF_2 %	NEF AUC	NEF AUC	NEF_20 %	BEDROC AUC
NEF_5 %	NEF_5 %	BEDROC AUC	BEDROC AUC	BEDROC AUC	BEDROC AUC	NEF_0.15 %
NEF_0.5 %	NEF_0.5 %	NEF_10 %	NEF_20 %	BEDROC AUC	BEDROC AUC	NEF_0.15 %
BEDROC AUC	BEDROC AUC	BEDROC AUC	BEDROC AUC	BEDROC AUC	BEDROC AUC	NEF_0.15 %
NEF_10 %	NEF_10 %	NEF_0.5 %	ROC AUC	NEF_2 %	NEF_2 %	NEF_0.5 %
NEF_5 %	NEF AUC	NEF_1 %	NEF_2 %	NEF_5 %	NEF_5 %	NEF_5 %
ROC AUC	ROC_20 %	ROC AUC	ROC AUC	ROC AUC	NEF_0.5 %	NEF_0.5 %
ROC AUC	ROC AUC	ROC AUC	ROC AUC	ROC AUC	NEF_0.5 %	PR auc.integral
NEF_0.1 %	NEF_0.1 %	NEF_0.1 %	NEF_0.1 %	NEF_0.1 %	NEF_0.1 %	NEF_0.1 %
PR auc.integral	NEF_0.1 %	NEF_0.1 %	NEF_0.1 %	NEF_0.1 %	NEF_1 %	NEF_1 %
PR auc.integral	NEF_0.1 %	NEF_0.1 %	NEF_0.1 %	NEF_0.1 %	NEF_10 %	NEF_10 %
The tables below show Spearman’s rank correlation coefficient for the different evaluation metrics versus \(n_{\text{hits}}\) at different thresholds. NaN occurs when the metric ranks all the models with the same rank, that is, when the DTK test finds no significance among any of the models.

Table S19: PriA-SSB AS metric comparison Spearman correlation coefficient.

Metric	n_hits_100	n_hits_250	n_hits_500	n_hits_1000	n_hits_2500	n_hits_5000	n_hits_10000
ROC AUC	0.8809	0.8827	0.9340	0.9164	0.9288	0.9150	0.7885
BEDROC AUC	0.9251	0.9395	0.9613	0.9744	0.9414	0.8584	0.8116
PR auc.integral	0.4550	0.4352	0.4440	0.4346	0.4363	0.4570	0.3013
NEF_0.1 %	0.7653	0.7767	0.7446	0.7991	0.6760	0.5676	0.6034
NEF_0.15 %	0.9323	0.9346	0.9058	0.9122	0.7454	0.6441	0.8062
NEF_0.5 %	0.9999	0.9878	0.9667	0.9460	0.8480	0.7720	0.8343
NEF_1 %	0.9881	1.0000	0.9563	0.9590	0.8719	0.7770	0.7954
NEF_2 %	0.9749	0.9882	0.9651	0.9747	0.8868	0.8102	0.7725
NEF_5 %	0.9461	0.9590	0.9549	1.0000	0.9189	0.8305	0.8251
NEF_10 %	0.9160	0.9319	0.9484	0.9648	0.9524	0.8956	0.7852
NEF_20 %	0.8947	0.8954	0.9239	0.9154	0.9763	0.9251	0.7087
NEF AUC	0.9251	0.9395	0.9613	0.9744	0.9414	0.8584	0.8116

Table S20: PriA-SSB FP metric comparison Spearman correlation coefficient.

Metric	n_hits_100	n_hits_250	n_hits_500	n_hits_1000	n_hits_2500	n_hits_5000	n_hits_10000
ROC AUC	0.4918	0.8700	0.7281	0.7271	0.7284	0.4993	0.5226
BEDROC AUC	0.5944	0.9979	0.8282	0.8285	0.8271	0.5862	0.5594
PR auc.integral	1.0000	0.5421	0.6966	0.7174	0.6752	0.5226	-0.0294
NEF_0.1 %	NaN	NaN	NaN	NaN	NaN	NaN	NaN
NEF_0.15 %	NaN	NaN	NaN	NaN	NaN	NaN	NaN
NEF_0.5 %	0.1000	0.5421	0.6966	0.7174	0.6752	0.5226	-0.0294
NEF_1 %	0.6966	0.8159	1.0000	0.9996	0.9996	0.7281	0.6966
NEF_2 %	0.5245	0.9997	0.8031	0.8013	0.8042	0.5654	0.5944
NEF_5 %	0.6752	0.8166	0.9996	0.9983	1.0000	0.7271	0.7174
NEF_10 %	0.7174	0.8144	0.9996	1.0000	0.9983	0.7284	0.6752
NEF_20 %	0.5771	0.6658	0.8284	0.8281	0.8281	0.5859	0.5771
NEF AUC	0.6966	0.8159	1.0000	0.9996	0.9996	0.7281	0.6966

Table S21: RMI-FANCM FP metric comparison Spearman correlation coefficient.

Metric	n_hits_100	n_hits_250	n_hits_500	n_hits_1000	n_hits_2500	n_hits_5000	n_hits_10000
ROC AUC	0.7391	0.8150	0.8313	0.9208	0.8917	0.7973	NaN
BEDROC AUC	0.8275	0.9036	0.9011	0.9672	0.8966	0.7632	NaN
PR auc.integral	0.4326	0.4359	0.4302	0.2172	0.2204	0.1487	NaN
NEF_0.1 %	0.5478	0.4665	0.3854	0.2062	0.1504	0.1130	NaN
NEF_0.15 %	0.4394	0.3307	0.2823	0.1149	0.0003	-0.0401	NaN
NEF_0.5 %	0.8491	0.9108	0.8844	0.7668	0.6479	0.5617	NaN
NEF_1 %	0.9963	0.9115	0.8801	0.8081	0.7264	0.7144	NaN
NEF_2 %	0.9232	0.9653	0.9163	0.8750	0.8417	0.7476	NaN
NEF_5 %	0.8926	0.9660	0.9779	0.9289	0.8412	0.7334	NaN
NEF_10 %	0.8195	0.8776	0.8973	0.9997	0.9003	0.7804	NaN
NEF_20 %	0.7281	0.8342	0.8418	0.9328	0.9622	0.8122	NaN
NEF AUC	0.8058	0.8776	0.8914	0.9868	0.9285	0.8127	NaN

42
I Cross-Validation: Model Selection

For PriA-SSB AS, RandomForest_h, SingleClassification_a, SingleRegression_b, MultiClassification_b, and LSTM_b were the favorites in their class with no ties when using the NEF_{1\%} metric (Table S25). IRV_c and IRV_d tied, and IRV_d was selected at random. Docking_plants, ConsensusDocking_mean, ConsensusDocking_rocauc_opt, ConsensusDocking_efr1_opt, and Docking_surflex also tied. ConsensusDocking_efr1_opt was selected due to it being related to EF, a metric we want to emphasize.

In the tables below, fold mean refers to the mean of the evaluation metric value in the cross-validation folds.
I.1 Fold Mean Selection (model-fold mean pairs)

Table S22: PriA-SSB AS fold mean results

	ROC AUC PriA-SSB AS	BEDROC AUC PriA-SSB AS	PR auc.integral PriA-SSB AS
0	RandomForest_d, 0.9134	RandomForest_b, 0.7572	RandomForest_g, 0.217
1	RandomForest_e, 0.9038	RandomForest_g, 0.7554	RandomForest_h, 0.2147
2	RandomForest_h, 0.9012	RandomForest_d, 0.7453	RandomForest_e, 0.2037
3	RandomForest_g, 0.8962	RandomForest_e, 0.7418	RandomForest_d, 0.2037
4	RandomForest_c, 0.8882	RandomForest_c, 0.7215	RandomForest_b, 0.2008
5	RandomForest_a, 0.886	RandomForest_b, 0.719	RandomForest_c, 0.197
6	RandomForest_b, 0.8848	RandomForest_a, 0.712	RandomForest_a, 0.196
7	SingleRegression_b, 0.8634	IRV_e, 0.6878	IRV_d, 0.1653
8	IRV_e, 0.8489	IRV_d, 0.6352	IRV_b, 0.1636
9	MultiClassification_b, 0.8475	MultiClassification_f, 0.6338	IRV_c, 0.149
10	RandomForest_f, 0.8415	MultiClassification_b, 0.6039	SingleClassification_b, 0.134
11	SingleRegression_a, 0.8226	IRV_c, 0.6034	SingleClassification_a, 0.124
12	MultiClassification_a, 0.82	SingleRegression_a, 0.6004	SingleClassification_a, 0.123
13	IRV_d, 0.8085	SingleRegression_b, 0.5828	MultiClassification_b, 0.1218
14	SingleClassification_b, 0.7908	MultiClassification_a, 0.556	MultiClassification_a, 0.1012
15	IRV_c, 0.7868	IRV_b, 0.5538	RandomForest_f, 0.0987
16	SingleClassification_a, 0.7773	SingleClassification_b, 0.5458	IRV_a, 0.0979
17	IRV_b, 0.7569	SingleRegression_a, 0.5073	SingleRegression_b, 0.0575
18	IRV_a, 0.7072	IRV_a, 0.4661	SingleRegression_b, 0.0338
19	LSTM_b, 0.6243	LSTM_b, 0.2349	LSTM_b, 0.0048
20	LSTM_a, 0.5484	LSTM_a, 0.1399	LSTM_a, 0.0016
21	Docking_fred, 0.4983	Docking_fred, 0.0964	Docking_surflex, 0.0012
22	Docking_hybrid, 0.4635	Docking_surflex, 0.083	Docking_fred, 0.0012
23	Docking_surflex, 0.454	Docking_hybrid, 0.073	Docking_hybrid, 0.001
24	Docking_rsaclint, 0.4404	Docking_rsaclint, 0.0697	ConsensusDocking_rocauc_opt, 0.001
25	Docking_rsaclint, 0.4306	Docking_rsaclint, 0.0684	ConsensusDocking_rocauc_opt, 0.001
26	ConsensusDocking_efr1_opt, 0.4042	ConsensusDocking_median, 0.0572	ConsensusDocking_median, 0.0011
27	Docking_dock6, 0.3991	Docking_smina, 0.0563	ConsensusDocking_median, 0.001
28	ConsensusDocking_median, 0.3946	ConsensusDocking_median, 0.0516	ConsensusDocking_median, 0.0009
29	ConsensusDocking_rocauc_opt, 0.3938	Docking_dock6, 0.0491	ConsensusDocking_rocauc_opt, 0.0009
30	ConsensusDocking_median, 0.3869	Docking_ad4, 0.0438	Docking_dock6, 0.0009
31	ConsensusDocking_max, 0.3803	ConsensusDocking_efr1_opt, 0.0429	Docking_dock6, 0.0009
32	Docking_smina, 0.3718	ConsensusDocking_rocauc_opt, 0.0426	Docking_smina, 0.0009
33	Docking_plants, 0.3678	Docking_plants, 0.0407	ConsensusDocking_max, 0.0009
34	Docking_dock_ad4, 0.3473	ConsensusDocking_max, 0.0393	Docking_ad4, 0.0008
Table S22: PriA-SSB AS fold mean results (continued)

NEF	AUC PriA-SSB AS	NEF_1 % PriA-SSB AS
0	RandomForest_h, 0.772	RandomForest_h, 0.6467
1	RandomForest_g, 0.7642	RandomForest_g, 0.6467
2	RandomForest_d, 0.7578	RandomForest_d, 0.5842
3	RandomForest_e, 0.7529	RandomForest_e, 0.5842
4	RandomForest_b, 0.7428	RandomForest_a, 0.5708
5	RandomForest_c, 0.738	RandomForest_c, 0.5583
6	RandomForest_a, 0.7346	RandomForest_b, 0.5583
7	IRV_e, 0.699	IRV_c, 0.545
8	RandomForest_f, 0.6545	IRV_d, 0.545
9	IRV_d, 0.6275	IRV_b, 0.5317
10	MultiClassification_b, 0.6252	IRV_e, 0.52
11	SingleRegression_b, 0.618	SingleClassification_a, 0.4975
12	SingleClassification_a, 0.612	RandomForest_f, 0.455
13	IRV_c, 0.5828	SingleClassification_b, 0.4344
14	MultiClassification_a, 0.5719	IRV_a, 0.4183
15	SingleClassification_b, 0.5588	MultiClassification_b, 0.414
16	SingleRegression_a, 0.5263	MultiClassification_a, 0.3896
17	IRV_b, 0.5248	SingleRegression_b, 0.3371
18	IRV_a, 0.4216	SingleRegression_a, 0.2904
19	LSTM_b, 0.2476	LSTM_b, 0.0752
20	LSTM_a, 0.1461	Docking_surflex, 0.0125
21	Docking_fred, 0.094	ConsensusDocking_efr1_opt, 0.0125
22	Docking_surflex, 0.0869	ConsensusDocking_rocauc_opt, 0.0125
23	Docking_hybrid, 0.0721	ConsensusDocking_mean, 0.0125
24	Docking_rdockint, 0.0703	Docking_plants, 0.0125
25	Docking_rdocktot, 0.0653	LSTM_a, 0.0096
26	ConsensusDocking_median, 0.0572	Docking_hybrid, 0.0
27	Docking_smina, 0.0561	Docking_rdocktot, 0.0
28	ConsensusDocking_mean, 0.0457	Docking_rdockint, 0.0
29	Docking_ad4, 0.0444	Docking_smina, 0.0
30	Docking_dock6, 0.0434	Docking_fred, 0.0
31	ConsensusDocking_max, 0.039	Docking_dock6, 0.0
32	ConsensusDocking_efr1_opt, 0.0367	Docking_ad4, 0.0
33	ConsensusDocking_rocauc_opt, 0.0367	ConsensusDocking_max, 0.0
34	Docking_plants, 0.0348	ConsensusDocking_median, 0.0
ROC AUC PriA-SSB FP	BEDROC AUC PriA-SSB FP	PR auc.integral PriA-SSB FP
---------------------	------------------------	-----------------------------
0 SingleRegression_a, 0.8166	SingleRegression_b, 0.4735	SingleRegression_a, 0.0114
1 SingleRegression_b, 0.8133	SingleRegression_a, 0.4491	SingleRegression_b, 0.0051
2 RandomForest_h, 0.7435	RandomForest_g, 0.3821	RandomForest_g, 0.0049
3 RandomForest_e, 0.7401	RandomForest_h, 0.3669	RandomForest_h, 0.0048
4 RandomForest_g, 0.7199	RandomForest_e, 0.3636	RandomForest_e, 0.0044
5 RandomForest_f, 0.7081	RandomForest_d, 0.3324	RandomForest_d, 0.0043
6 RandomForest_d, 0.681	IRV_e, 0.3295	MultiClassification_b, 0.0043
7 MultiClassification_b, 0.6692	RandomForest_f, 0.3253	IRV_c, 0.0041
8 RandomForest_c, 0.6575	RandomForest_c, 0.3148	IRV_e, 0.0035
9 RandomForest_b, 0.6444	RandomForest_b, 0.3059	IRV_d, 0.0034
10 RandomForest_a, 0.6372	IRV_d, 0.2918	IRV_b, 0.0031
11 IRV_e, 0.635	RandomForest_a, 0.28	RandomForest_c, 0.0029
12 IRV_d, 0.6127	MultiClassification_b, 0.2719	RandomForest_b, 0.0028
13 ConsensusDocking_median, 0.5886	IRV_c, 0.2737	RandomForest_a, 0.0026
14 ConsensusDocking_mean, 0.5872	SingleClassification_a, 0.1764	SingleClassification_a, 0.0018
15 Docking_fred, 0.585	SingleClassification_b, 0.163	SingleClassification_b, 0.0017
16 LSTM_a, 0.5768	IRV_b, 0.1628	RandomForest_f, 0.0016
17 IRV_c, 0.5703	LSTM_a, 0.143	LSTM_a, 0.0007
18 Docking_rdockint, 0.5648	Docking_surflex, 0.1314	Docking_dock6, 0.0007
19 ConsensusDocking_efr1_opt, 0.5558	LSTM_b, 0.1276	LSTM_b, 0.0006
20 ConsensusDocking_rocauc_opt, 0.554	Docking_dock6, 0.1214	Docking_surflex, 0.0006
21 Docking_plants, 0.5536	MultiClassification_a, 0.1196	MultiClassification_a, 0.0006
22 Docking_ad4, 0.5442	ConsensusDocking_median, 0.1161	ConsensusDocking_median, 0.0005
23 Docking_rdocktot, 0.5399	ConsensusDocking_rocauc_opt, 0.1111	ConsensusDocking_rocauc_opt, 0.0005
24 SingleClassification_b, 0.5388	ConsensusDocking_efr1_opt, 0.1104	ConsensusDocking_rocauc_opt, 0.0005
25 MultiClassification_a, 0.5353	ConsensusDocking_median, 0.1103	ConsensusDocking_median, 0.0005
26 IRV_b, 0.5352	Docking_fred, 0.1068	Docking_rdockint, 0.0005
27 Docking_surflex, 0.5343	IRV_a, 0.0988	ConsensusDocking_efr1_opt, 0.0005
28 Docking_hybrid, 0.5321	Docking_plants, 0.0971	Docking_fred, 0.0004
29 SingleClassification_a, 0.524	Docking_hybrid, 0.0969	Docking_smina, 0.0004
30 ConsensusDocking_max, 0.5235	Docking_rdocktot, 0.0918	Docking_rdocktot, 0.0004
31 LSTM_b, 0.5161	Docking_smina, 0.0912	Docking_hybrid, 0.0004
32 Docking_dock6, 0.5018	Docking_rdockint, 0.0876	ConsensusDocking_max, 0.0004
33 IRV_a, 0.4993	ConsensusDocking_max, 0.078	Docking_ad4, 0.0004
34 Docking_smina, 0.4968	Docking_ad4, 0.0694	IRV_a, 0.0003
Table S23: PriA-SSB FP fold mean results (continued)

NEF AUC PriA-SSB FP	NEF_1 % PriA-SSB FP
0	SingleRegression_b, 0.4941 SingleRegression_b, 0.2475
1	SingleRegression_a, 0.474 IRV_e, 0.2367
2	RandomForest_h, 0.3871 SingleRegression_a, 0.2092
3	RandomForest_g, 0.3774 IRV_d, 0.2033
4	RandomForest_c, 0.3458 RandomForest_d, 0.1867
5	RandomForest_f, 0.3344 RandomForest_e, 0.1867
6	RandomForest_c, 0.3229 RandomForest_g, 0.1867
7	RandomForest_d, 0.3078 RandomForest_h, 0.1867
8	RandomForest_b, 0.3046 RandomForest_b, 0.1467
9	IRV_e, 0.304 RandomForest_c, 0.1467
10	MultiClassification_b, 0.2957 IRV_c, 0.1467
11	RandomForest_a, 0.2769 RandomForest_a, 0.1467
12	IRV_d, 0.2495 IRV_b, 0.1067
13	SingleClassification_a, 0.1852 SingleClassification_a, 0.0833
14	IRV_c, 0.1759 RandomForest_f, 0.0733
15	SingleClassification_b, 0.1653 MultiClassification_b, 0.045
16	LSTM_a, 0.1495 IRV_a, 0.0333
17	Docking_surflex, 0.1467 Docking_dock6, 0.0333
18	ConsensusDocking_median, 0.1383 LSTM_a, 0.0267
19	LSTM_b, 0.1303 SingleClassification_b, 0.0267
20	Docking_dock6, 0.1242 LSTM_b, 0.02
21	ConsensusDocking_mean, 0.1221 MultiClassification_a, 0.0083
22	MultiClassification_a, 0.1201 Docking_rdocktot, 0.0
23	ConsensusDocking_efr1_opt, 0.1129 Docking_rdockint, 0.0
24	IRV_b, 0.1047 Docking_plants, 0.0
25	ConsensusDocking_rocauc_opt, 0.1046 Docking_hybrid, 0.0
26	Docking_hybrid, 0.1017 Docking_hybrid, 0.0
27	Docking_plants, 0.0975 Docking_plants, 0.0
28	Docking_fred, 0.0946 Docking_ad4, 0.0
29	Docking_rdocktot, 0.0912 ConsensusDocking_median, 0.0
30	Docking_smina, 0.0842 ConsensusDocking_efr1_opt, 0.0
31	Docking_rdockint, 0.0796 ConsensusDocking_mean, 0.0
32	ConsensusDocking_max, 0.0767 Docking_smina, 0.0
33	Docking_ad4, 0.0542 ConsensusDocking_max, 0.0
34	IRV_a, 0.0321 Docking_surflex, 0.0

47
ROC AUC RMI-FANCM FP	BEDROC AUC RMI-FANCM FP	PR auc.integral RMI-FANCM FP	
0 0.8346	0.5114	0.1237	
1 0.8306	0.5045	0.1225	
2 0.8256	0.5001	0.1224	
3 0.8225	0.4967	0.1219	
4 0.8207	0.4908	0.1218	
5 0.8161	0.4898	0.1213	
6 0.8159	0.4897	0.1208	
7 0.8157	0.4637	0.0841	
8 0.7532	IRV_e, 0.4356	SingleClassification_b, 0.0824	
9 0.7463	IRV_c, 0.3931	IRV_e, 0.0752	
10 0.7259	IRV_d, 0.3727	IRV_e, 0.0745	
11 0.6854	MultiClassification_b, 0.3582	IRV_d, 0.0724	
12 0.6649	SingleClassification_a, 0.3393	IRV_d, 0.0681	
13 0.6623	SingleClassification_b, 0.3373	IRV_d, 0.0678	
14 0.6366	IRV_a, 0.3288	MultiClassification_a, 0.0442	
15 0.6339	MultiClassification_a, 0.3177	MultiClassification_b, 0.0405	
16 0.5753	Docking_rdocktot, 0.169	Docking_ad4, 0.0117	
17 0.5603	SingleRegression_b, 0.1684	Docking_rdocktot, 0.0114	
18 0.5576	Docking_ad4, 0.1651	Docking_smina, 0.1491	
19 0.5576	Docking_smina, 0.1491	Docking_smina, 0.1491	
20 0.5229	Docking_rdockint, 0.1442	Docking_rdockint, 0.169	
21 0.522	Docking_rdockint, 0.1442	Docking_rdockint, 0.169	
22 0.5197	Docking_smina, 0.1491	Docking_smina, 0.1491	
23 0.5111	ConsensusDocking_max, 0.1254	ConsensusDocking_max, 0.1254	
24 0.4964	ConsensusDocking_median, 0.1216	ConsensusDocking_median, 0.1216	
25 0.4878	ConsensusDocking_mean, 0.1172	ConsensusDocking_mean, 0.1172	
26 0.4821	ConsensusDocking_mean, 0.1032	ConsensusDocking_mean, 0.1032	
27 0.4834	ConsensusDocking_efr1_opt, 0.0934	ConsensusDocking_efr1_opt, 0.0934	
28 0.4788	ConsensusDocking_rocauc_opt, 0.0899	ConsensusDocking_rocauc_opt, 0.0899	
29 0.4756	Docking_plants, 0.0832	Docking_sphinx, 0.0037	
30 0.4634	Docking_dock6, 0.0669	Docking_dock6, 0.0042	
31 0.4516	Docking_fred, 0.0814	Docking_fred, 0.0044	
32 0.4376	Docking_sphinx, 0.063	Docking_sphinx, 0.0039	
33 0.4196	Docking_sphinx, 0.0541	Docking_sphinx, 0.0036	
NEF	AUC	RMI-FANCM FP	NEF_1 % RMI-FANCM FP
-----	--------	--------------	-----------------------
0	0.5439	RandomForest_h	0.2782
1	0.5324	RandomForest_g	0.2738
2	0.527	RandomForest_e	0.2608
3	0.5241	RandomForest_b	0.2563
4	0.5237	RandomForest_d	0.2474
5	0.5234	RandomForest_a	0.2474
6	0.5222	RandomForest_c	0.2474
7	0.4903	RandomForest_f	0.2431
8	0.4554	IRV_e	0.2343
9	0.4459	IRV_d	0.2123
10	0.3784	IRV_c	0.2123
11	0.3768	MultiClassification_b	0.2083
12	0.3565	SingleClassification_a	0.2081
13	0.3513	SingleClassification_b	0.2031
14	0.3429	IRV_b	0.1911
15	0.3337	MultiClassification_a	0.1412
16	0.2821	IRV_a	0.1249
17	0.177	Docking_ad4	0.1249
18	0.1733	Docking_rdocktot	0.0393
19	0.1729	SingleRegression_b	0.0391
20	0.1569	Docking_smina	0.0303
21	0.1492	Docking_rdockint	0.0217
22	0.1376	LSTM_a	0.0217
23	0.1298	ConsensusDocking_max	0.0174
24	0.1231	ConsensusDocking_median	0.017
25	0.1227	ConsensusDocking_median	0.017
26	0.1187	LSTM_b	0.0133
27	0.1013	ConsensusDocking_mean	0.013
28	0.0928	Docking_plants	0.013
29	0.0827	Docking federally	0.019
30	0.078	Docking_fed	0.019
31	0.064	Docking_surflec	0.0088
32	0.0563	Docking_surflec	0.0065
33	0.0523	SingleRegression_a	0.0043
I.2 DTK+Mean Selection (model-rank pairs)

Table S25: PriA-SSB AS DTK+Mean selection rankings

ROC AUC PriA-SSB AS	BEDROC AUC PriA-SSB AS	PR auc.integral PriA-SSB AS
0	RandomForest_d, 1	SingleClassification_b, 1
1	RandomForest_e, 2	SingleClassification_a, 2
2	RandomForest_h, 3	MultiClassification_a, 3
3	RandomForest_g, 4	RandomForest_g, 4
4	RandomForest_c, 5	RandomForest_c, 5
5	RandomForest_a, 6	RandomForest_e, 6
6	RandomForest_b, 7	RandomForest_d, 7
7	SingleRegression_b, 8	RandomForest_b, 8
8	MultiClassification_b, 9	IRV_e, 8
9	IRV_e, 10	RandomForest_f, 10
10	SingleRegression_a, 11	MultiClassification_b, 11
11	MultiClassification_a, 12	IRV_c, 12
12	RandomForest_f, 12	SingleClassification_a, 12
13	IRV_d, 14	SingleRegression_b, 14
14	SingleClassification_b, 14	IRV_b, 16
15	MultiClassification_a, 15	IRV_c, 16
16	IRV_c, 16	SingleClassification_b, 17
17	IRV_b, 18	SingleRegression_a, 18
18	IRV_a, 19	IRV_a, 19
19	LSTM_b, 20	LSTM_b, 20
20	LSTM_a, 21	LSTM_a, 21
21	Docking_fred, 22	Docking_fred, 22
22	Docking_fred, 22	Docking_fred, 22
23	Docking_surflex, 24	Docking_surflex, 23
24	Docking_rdockint, 25	Docking_rdockint, 25
25	Docking_rdockint, 26	Docking_rdockint, 26
26	ConsensusDocking_efr1_opt, 27	ConsensusDocking_rdockint, 27
27	Docking_dock6, 28	Docking_dock6, 28
28	ConsensusDocking_median, 29	ConsensusDocking_dock6, 30
29	ConsensusDocking_rocauc_opt, 30	ConsensusDocking_dock6, 30
30	ConsensusDocking_mean, 31	Docking_ad4, 31
31	ConsensusDocking_max, 32	Docking_ad4, 35
32	Docking_smna, 33	ConsensusDocking_efr1_opt, 32
33	Docking_plants, 34	Docking_plants, 34
34	Docking_ad4, 35	ConsensusDocking_max, 35
NEF AUC PriA-SSB AS	NEF_1 % PriA-SSB AS	
---------------------	---------------------	
0	RandomForest_h, 1	
1	RandomForest_g, 2	
2	RandomForest_d, 3	
3	RandomForest_e, 4	
4	RandomForest_b, 5	
5	RandomForest_c, 6	
6	RandomForest_a, 7	
7	IRV_e, 8	
8	Random Forest_f, 9	
9	IRV_d, 10	
10	MultiClassification_b, 11	
11	SingleClassification_a, 11	
12	SingleRegression_b, 12	
13	IRV_c, 13	
14	MultiClassification_a, 14	
15	SingleClassification_b, 16	
16	SingleRegression_a, 17	
17	IRV_b, 18	
18	IRV_a, 19	
19	LSTM_b, 20	
20	LSTM_a, 21	
21	Docking_fred, 22	
22	Docking_surflex, 23	
23	Docking_hybrid, 24	
24	Docking_rdockint, 25	
25	Docking_rdocktot, 26	
26	ConsensusDocking_median, 27	
27	Docking_smina, 28	
28	ConsensusDocking_mean, 29	
29	Docking_ad4, 30	
30	Docking_dock6, 31	
31	ConsensusDocking_max, 32	
32	ConsensusDocking_rocauc_opt, 33	
33	ConsensusDocking_efr1_opt, 33	
34	Docking_plants, 35	
	Docking_median, 27	
	Docking_max, 27	
	Docking_hybrid, 27	
Table S26: PriA-SSB FP DTK+Mean selection rankings

	ROC AUC	PriA-SSB FP	BEDROC AUC	PriA-SSB FP	PR auc.integral	PriA-SSB FP
0	SingleRegression_a, 1	SingleRegression_b, 1	SingleRegression_b, 1	SingleRegression_b, 1		
1	SingleRegression_b, 2	SingleRegression_a, 2	SingleRegression_a, 2	SingleRegression_a, 2		
2	RandomForest_h, 3	RandomForest_g, 3	RandomForest_g, 3	RandomForest_g, 3		
3	RandomForest_e, 4	RandomForest_h, 4	RandomForest_h, 4	RandomForest_h, 4		
4	RandomForest_g, 5	RandomForest_e, 5	RandomForest_e, 5	RandomForest_e, 5		
5	RandomForest_f, 6	IRV_e, 6	RandomForest_d, 6	MultiClassification_b, 7		
6	RandomForest_d, 7	RandomForest_d, 6	IRV_e, 9	MultiClassification_b, 7		
7	MultiClassification_b, 8	RandomForest_f, 8	IRV_c, 8	MultiClassification_b, 7		
8	RandomForest_c, 9	RandomForest_f, 8	IRV_c, 8	MultiClassification_b, 7		
9	RandomForest_b, 10	RandomForest_f, 8	IRV_c, 8	MultiClassification_b, 7		
10	IRV_e, 11	IRV_d, 11	IRV_b, 11	MultiClassification_b, 7		
11	RandomForest_a, 11	RandomForest_c, 12	RandomForest_c, 12	MultiClassification_b, 7		
12	IRV_d, 13	MultiClassification_b, 13	RandomForest_b, 13	MultiClassification_b, 7		
13	ConsensusDocking_median, 14	IRV_c, 14	RandomForest_a, 14	MultiClassification_b, 7		
14	ConsensusDocking_mean, 15	SingleClassification_a, 15	SingleClassification_a, 15	MultiClassification_b, 7		
15	Docking_fred, 16	SingleClassification_b, 15	SingleClassification_b, 15	MultiClassification_b, 7		
16	LSTM_a, 17	IRV_b, 17	RandomForest_f, 17	MultiClassification_b, 7		
17	IRV_c, 18	LSTM_a, 18	LSTM_a, 18	MultiClassification_b, 7		
18	Docking_rdocktot, 19	Docking_surflex, 19	Docking_dock6, 19	MultiClassification_b, 7		
19	ConsensusDocking_efr1_opt, 20	LSTM_b, 20	LSTM_b, 20	MultiClassification_b, 7		
20	ConsensusDocking_rocauc_opt, 21	Docking_dock6, 21	Docking_dock6, 21	MultiClassification_b, 7		
21	Docking_plants, 22	MultiClassification_a, 22	MultiClassification_a, 22	MultiClassification_b, 7		
22	Docking_ad4, 23	ConsensusDocking_median, 23	ConsensusDocking_median, 23	MultiClassification_b, 7		
23	Docking_rdocktot, 24	ConsensusDocking_rocauc_opt, 24	ConsensusDocking_rocauc_opt, 24	MultiClassification_b, 7		
24	SingleClassification_b, 25	ConsensusDocking_efr1_opt, 25	ConsensusDocking_efr1_opt, 25	MultiClassification_b, 7		
25	MultiClassification_a, 26	ConsensusDocking_mean, 26	ConsensusDocking_mean, 26	MultiClassification_b, 7		
26	IRV_b, 27	Docking_fred, 27	Docking_fred, 27	MultiClassification_b, 7		
27	Docking_surflex, 28	IRV_a, 28	ConsensusDocking_efr1_opt, 28	MultiClassification_b, 7		
28	Docking_hybrid, 29	Docking_plants, 29	Docking_fred, 29	MultiClassification_b, 7		
29	SingleClassification_a, 30	Docking_hybrid, 30	Docking_smina, 30	MultiClassification_b, 7		
30	ConsensusDocking_max, 31	Docking_rdocktot, 31	Docking_rdocktot, 31	MultiClassification_b, 7		
31	LSTM_b, 32	Docking_smina, 32	Docking_hybrid, 32	MultiClassification_b, 7		
32	Docking_dock6, 33	Docking_rdocktot, 33	ConsensusDocking_max, 33	MultiClassification_b, 7		
33	IRV_a, 34	ConsensusDocking_max, 34	Docking_ad4, 34	MultiClassification_b, 7		
34	Docking_smina, 35	Docking_ad4, 35	IRV_a, 35	MultiClassification_b, 7		
NEF AUC PriA-SSB FP	NEF_1 % PriA-SSB FP					
---------------------	---------------------					
SingleRegression_b, 1	SingleRegression_b, 1					
SingleRegression_a, 2	SingleRegression_a, 2					
RandomForest_h, 3	IRV_e, 3					
RandomForest_g, 4	IRV_d, 4					
RandomForest_e, 5	RandomForest_h, 5					
RandomForest_f, 6	RandomForest_g, 5					
RandomForest_c, 7	RandomForest_e, 5					
RandomForest_d, 8	RandomForest_d, 5					
RandomForest_b, 9	IRV_c, 9					
IRV_e, 10	RandomForest_c, 9					
MultiClassification_b, 11	RandomForest_b, 9					
RandomForest_a, 12	RandomForest_a, 9					
IRV_d, 13	IRV_b, 13					
SingleClassification_a, 14	SingleClassification_a, 14					
IRV_c, 15	RandomForest_f, 15					
SingleClassification_b, 16	MultiClassification_b, 16					
LSTM_a, 17	Docking_dock6, 17					
Docking_surflex, 18	IRV_a, 17					
ConsensusDocking_median, 19	LSTM_a, 19					
LSTM_b, 20	SingleClassification_b, 19					
Docking_dock6, 21	LSTM_b, 21					
ConsensusDocking_mean, 22	MultiClassification_a, 22					
MultiClassification_a, 23	ConsensusDocking_max, 23					
ConsensusDockingEFR1_opt, 24	ConsensusDocking_mean, 23					
IRV_b, 25	ConsensusDocking_median, 23					
ConsensusDocking_rocauc_opt, 26	ConsensusDocking_rocauc_opt, 23					
Docking_hybrid, 27	Docking_ad4, 23					
Docking_plants, 28	Docking_rdocknt, 23					
Docking_fred, 29	Docking_fred, 23					
Docking_rdocktot, 30	Docking_hybrid, 23					
Docking_smina, 31	Docking_plants, 23					
Docking_rdocknt, 32	Docking_rdocktot, 23					
ConsensusDocking_max, 33	Docking_smina, 23					
Docking_ad4, 34	Docking_surflex, 23					
IRV_a, 35	ConsensusDockingEFR1_opt, 23					
ROC AUC RMI-FANCM FP	BEDROC AUC RMI-FANCM FP	PR auc.integral RMI-FANCM FP				
----------------------	--------------------------	-----------------------------				
0	RandomForest_h, 1	SingleClassification_b, 1				
1	RandomForest_g, 2	SingleClassification_a, 2				
2	RandomForest_e, 3	RandomForest_h, 2				
3	RandomForest_d, 4	RandomForest_g, 4				
4	RandomForest_c, 5	RandomForest_e, 5				
5	RandomForest_f, 6	RandomForest_b, 6				
6	RandomForest_b, 7	RandomForest_a, 7				
7	RandomForest_a, 8	RandomForest_d, 8				
8	MultiClassification_b, 9	RandomForest_c, 9				
9	IRV_e, 10	MultiClassification_b, 9				
10	MultiClassification_a, 11	IRV_d, 11				
11	IRV_e, 12	IRV_e, 12				
12	SingleClassification_b, 13	SingleClassification_b, 13				
13	IRV_c, 14	IRV_e, 14				
14	IRV_b, 15	MultiClassification_a, 15				
15	SingleClassification_a, 16	IRV_c, 16				
16	IRV_a, 16	IRV_a, 17				
17	LSTM_a, 18	MultiClassification_a, 17				
18	Docking_ad4, 19	Docking_ad4, 19				
19	Docking_rdocktot, 20	Docking_rdocktot, 20				
20	Docking_smina, 21	Docking_smina, 21				
21	LSTM_a, 22	ConsensusDocking_median, 22				
22	Docking_rdockint, 23	ConsensusDocking_rocauc_opt, 23				
23	LSTM_b, 23	ConsensusDocking_max, 25				
24	ConsensusDocking_median, 25	ConsensusDocking_max, 25				
25	Docking_hybrid, 26	Docking_hybrid, 26				
26	ConsensusDocking_mean, 27	ConsensusDocking_mean, 27				
27	Docking_plants, 28	ConsensusDocking_mean, 28				
28	ConsensusDocking_rocauc_opt, 29	LSTM_a, 28				
29	SingleRegression_b, 30	Docking_hybrid, 30				
30	ConsensusDocking_efr1_opt, 30	Docking_plants, 31				
31	Docking_fred, 32	Docking_fred, 32				
32	Docking_dock6, 33	Docking_dock6, 33				
33	Docking_surflex, 34	Docking_surflex, 34				
34	SingleRegression_a, 35	SingleRegression_a, 35				
NEF	AUC	RMI-FANCM FP	NEF_1 % RMI-FANCM FP			
-----	-------	--------------	-----------------------			
0	RandomForest_h, 1	RandomForest_h, 1				
1	RandomForest_g, 2	RandomForest_g, 2				
2	RandomForest_c, 3	RandomForest_d, 3				
3	RandomForest_b, 4	RandomForest_e, 4				
4	RandomForest_d, 5	RandomForest_f, 5				
5	RandomForest_a, 6	IRV_d, 6				
6	RandomForest_c, 7	IRV_a, 7				
7	RandomForest_f, 8	SingleClassification_b, 8				
8	IRV_d, 9	SingleClassification_a, 9				
9	MultiClassification_b, 10	RandomForest_c, 10				
10	IRV_e, 10	RandomForest_b, 10				
11	SingleClassification_a, 12	RandomForest_a, 10				
12	SingleClassification_b, 13	MultiClassification_b, 13				
13	MultiClassification_a, 14	SingleRegression_b, 14				
14	IRV_c, 15	IRV_c, 15				
15	IRV_b, 16	IRV_b, 15				
16	IRV_a, 17	IRV_e, 17				
17	Docking_rdocktot, 18	MultiClassification_a, 18				
18	Docking_ad4, 19	Docking_rdockint, 19				
19	SingleRegression_b, 19	ConsensusDocking_median, 20				
20	Docking_smina, 21	Docking_rdocktot, 21				
21	LSTM_a, 22	ConsensusDocking_max, 22				
22	Docking_rdockint, 22	Docking_ad4, 23				
23	ConsensusDocking_max, 24	ConsensusDocking_mean, 24				
24	ConsensusDocking_median, 25	ConsensusDocking_rocauc_opt, 25				
25	Docking_hybrid, 26	ConsensusDocking_efr1_opt, 25				
26	LSTM_b, 26	Docking_fred, 27				
27	ConsensusDocking_mean, 28	Docking_dock6, 28				
28	ConsensusDocking_efr1_opt, 29	Docking_smina, 29				
29	ConsensusDocking_rocauc_opt, 30	Docking_plants, 30				
30	Docking_plants, 31	LSTM_b, 31				
31	Docking_fred, 32	LSTM_a, 32				
32	Docking_dock6, 33	Docking_hybrid, 33				
33	Docking_surflex, 34	SingleRegression_a, 34				
34	SingleRegression_a, 35	Docking_surflex, 35				
J Prospective Screening: PriA-SSB prospective Metrics

Table S28: On-target evaluation metrics for all models. Models were trained on PriA-SSB AS and evaluated on PriA-SSB prospective.

model	AUC[ROC]	AUC[BEDROC]	AUC[PR]	NEF₁%
Baseline	0.84937	0.67375	0.16167	0.55556
ConsensusDocking_efr1_opt	0.57953	0.11677	0.00293	0.00000
ConsensusDocking_max	0.57996	0.14810	0.00337	0.03704
ConsensusDocking_mean	0.55288	0.09588	0.00261	0.00000
ConsensusDocking_median	0.53129	0.07482	0.00246	0.00000
ConsensusDocking_rocauc_opt	0.58635	0.11949	0.00298	0.00000
Docking_ad4	0.36292	0.01643	0.00159	0.00000
Docking_dock6	0.55541	0.13279	0.00454	0.01852
Docking_fred	0.51009	0.12103	0.00301	0.03704
Docking_hybrid	0.49760	0.13474	0.00293	0.01852
Docking_plants	0.48162	0.06959	0.00223	0.01852
Docking_rdockint	0.56174	0.12492	0.00324	0.01852
Docking_rdocktot	0.68720	0.21658	0.00470	0.01852
Docking_smina	0.42361	0.03394	0.00188	0.00000
Docking_surflex	0.57940	0.15061	0.00341	0.01852
IRV_a	0.64669	0.35955	0.07617	0.29630
IRV_b	0.71961	0.48510	0.12394	0.44444
IRV_c	0.78292	0.59296	0.18787	0.51852
IRV_d	0.82602	0.65816	0.19050	0.51852
IRV_e	0.86718	0.71450	0.20442	0.53704
LSTM_a	0.58979	0.17634	0.00357	0.01852
LSTM_b	0.61639	0.18218	0.00440	0.01852
MultiClassification_a	0.83244	0.58368	0.18462	0.40741
MultiClassification_b	0.84750	0.61346	0.22199	0.50000
RandomForest_a	0.87578	0.73649	0.28165	0.66667
RandomForest_b	0.87065	0.74287	0.28530	0.66667
RandomForest_c	0.87524	0.74433	0.28648	0.66667
RandomForest_d	0.88677	0.75521	0.28425	0.64815
RandomForest_e	0.89007	0.75693	0.28200	0.66667
RandomForest_f	0.88105	0.68324	0.17308	0.44444
RandomForest_g	0.88903	0.76547	0.36893	0.66667
RandomForest_h	0.89689	0.76886	0.37933	0.66667
SingleClassification_a	0.76435	0.51959	0.11103	0.37037
SingleClassification_b	0.81857	0.61809	0.30469	0.55556
SingleRegression_a	0.92068	0.73424	0.18769	0.53704
SingleRegression_b	0.89712	0.68403	0.18575	0.50000
Table S29: Off-target evaluation metrics for all models. As a control, the models trained on RMI-FANCM FP were evaluated on PriA-SSB prospective.

model	AUC[ROC]	AUC[BEDROC]	AUC[PR]	NEF 1%
ConsensusDocking_efr1_opt	0.39931	0.04559	0.00182	0.00000
ConsensusDocking_max	0.49919	0.07458	0.00227	0.00000
ConsensusDocking_mean	0.48110	0.07205	0.00217	0.00000
ConsensusDocking_median	0.47915	0.06370	0.00214	0.00000
ConsensusDocking_rocauc_opt	0.41457	0.04680	0.00186	0.00000
Docking_ad4	0.37911	0.02775	0.00173	0.00000
Docking_dock6	0.60630	0.12972	0.00318	0.00000
Docking_fred	0.40761	0.06924	0.00218	0.01852
Docking_hybrid	0.43895	0.04436	0.00196	0.00000
Docking_plants	0.45539	0.07053	0.00212	0.01852
Docking_rdockint	0.52785	0.08938	0.00245	0.00000
Docking_rdocktot	0.60125	0.13316	0.00313	0.00000
Docking_smina	0.44368	0.04307	0.00195	0.00000
Docking_surflex	0.56411	0.10643	0.00295	0.01852
IRV_a	0.52240	0.13901	0.00615	0.03704
IRV_b	0.51675	0.13037	0.00701	0.03704
IRV_c	0.53331	0.15181	0.00605	0.03704
IRV_d	0.52513	0.14306	0.00593	0.03704
IRV_e	0.52069	0.14026	0.00608	0.03704
LSTM_a	0.60099	0.15468	0.00341	0.00000
LSTM_b	0.55336	0.18084	0.00351	0.00000
MultiClassification_a	0.64870	0.20565	0.00551	0.03704
MultiClassification_b	0.54647	0.14914	0.00376	0.05556
RandomForest_a	0.50393	0.09951	0.00583	0.03704
RandomForest_b	0.52529	0.09898	0.00634	0.03704
RandomForest_c	0.52841	0.09705	0.00654	0.03704
RandomForest_d	0.49301	0.09502	0.00617	0.03704
RandomForest_e	0.49008	0.09053	0.00609	0.03704
RandomForest_f	0.61363	0.15680	0.01225	0.03704
RandomForest_g	0.51600	0.10026	0.00628	0.03704
RandomForest_h	0.53381	0.10430	0.00637	0.03704
SingleClassification_a	0.51852	0.11102	0.01917	0.03704
SingleClassification_b	0.53075	0.13639	0.01135	0.03704
SingleRegression_a	0.44809	0.07585	0.00224	0.01852
SingleRegression_b	0.44100	0.07796	0.00482	0.03704

57
K Prospective Screening: PriA-SSB prospective Metric Plots

Figure S9: PriA-SSB prospective AUC[ROC]

Figure S10: PriA-SSB prospective AUC[BEDROC]
Figure S11: **PriA-SSB prospective AUC[PR]**

Figure S12: **PriA-SSB prospective NEF_{0.1\%}**
Figure S15: PriA-SSB prospective NEF$_{1\%}$

Figure S16: PriA-SSB prospective NEF$_{2\%}$
Figure S17: PriA-SSB prospective NEF\textsubscript{5\%}

Figure S18: PriA-SSB prospective NEF\textsubscript{10\%}
Figure S19: PriA-SSB prospective NEF$_{20\%}$

Figure S20: PriA-SSB prospective AUC[NEF]
Figure S21: **PriA-SSB prospective** top 100 hits

Figure S22: **PriA-SSB prospective** top 250 hits
Figure S23: **PriA-SSB prospective** top 500 hits

Figure S24: **PriA-SSB prospective** top 1000 hits
Figure S25: **PriA-SSB prospective** top 2500 hits

Figure S26: **PriA-SSB prospective** top 5000 hits
Figure S27: PriA-SSB prospective top 10000 hits
L Prospective Screening: Actives in Top 250 Predictions

Table S30: Number of active compounds and unique clusters in the top 250 predictions compared to the experimental actives.

Model	Actives	Actives not in baseline	SIM clusters	MCS clusters
Experimental	54	–	27	35
Baseline	31	0	14	17
ConsensusDocking_efr1_opt	0	0	0	0
ConsensusDocking_max	2	1	2	2
ConsensusDocking_mean	0	0	0	0
ConsensusDocking_median	0	0	0	0
ConsensusDocking_rocauc_opt	0	0	0	0
Docking_ad4	0	0	0	0
Docking_dock6	1	1	1	1
Docking_fred	2	1	2	2
Docking_hybrid	1	0	1	1
Docking_plants	1	1	1	1
Docking_rdockint	1	0	1	1
Docking_rdocktot	1	0	1	1
Docking_sminia	0	0	0	0
Docking_surflex	1	1	1	1
IRV_a	16	1	9	12
IRV_b	24	3	14	16
IRV_c	28	4	15	18
IRV_d	29	4	15	18
IRV_e	29	4	15	18
LSTM_a	1	0	1	1
LSTM_b	1	1	1	1
MultiClassification_a	22	1	11	13
MultiClassification_b	27	3	13	17
RandomForest_a	36	6	17	20
RandomForest_b	37	7	17	21
RandomForest_c	36	6	17	20
RandomForest_d	36	7	17	21
RandomForest_e	36	7	17	21
RandomForest_f	24	4	12	17
RandomForest_g	37	7	17	22
RandomForest_h	37	7	17	22
SingleClassification_a	21	2	11	13
SingleClassification_b	31	5	16	19
SingleRegression_a	29	5	13	18
SingleRegression_b	28	8	14	18
M Prospective Screening: UpSet Plots for Active Compound Clusters

Figure S28: An UpSet plot showing the overlap in identified MCS clusters between the selected models and the chemical similarity baseline on PriA-SSB prospective.

Figure S29: An UpSet plot showing the overlap in identified SIM clusters between the selected models and the chemical similarity baseline on PriA-SSB prospective.
Prospective Screening: RF_h Y-Scrambled Results

Figure S30: Histogram for 100 Y-Scrambled RF_h runs evaluated on the top 250 predictions for PriA-SSB prospective. 55 out of 100 runs found zero actives. Only a single run found 10 actives, far less than the 37 actives RF_h identified when trained on the real PriA-SSB AS data.

References

(1) Wang, Y.; Bryant, S. H.; Cheng, T.; Wang, J.; Gindulyte, A.; Shoemaker, B. A.; Thiessen, P. A.; He, S.; Zhang, J. PubChem BioAssay: 2017 Update. Nucleic Acids Research 2017, 45, D955–D963.

(2) Ramsundar, B.; Kearnes, S.; Riley, P.; Webster, D.; Konerding, D.; Pande, V. Massively Multitask Networks for Drug Discovery. arXiv preprint arXiv:1502.02072 2015,

(3) RDKit: Open-source Cheminformatics. http://www.rdkit.org Accessed 2016-03-04.

(4) Breiman, L. Random Forests. Machine Learning 2001, 45, 5–32.