Genetic Resources Communication

Clearing confusion in *Stylosanthes* taxonomy:
1. *S. seabrana* B.L. Maass & 't Mannetje

Aclarando confusiones en la taxonomía de Stylosanthes:
1. *S. seabrana* B.L. Maass & 't Mannetje

BRUCE G. COOK¹ AND RAINER SCHULTZE-KRAFT²

¹Formerly Queensland Department of Agriculture and Fisheries, Brisbane, QLD, Australia. daf.qld.gov.au
²The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia. ciat.cgiar.org

Abstract

Stylosanthes seabrana was first formally described as a new species in 2002 following extensive morphological and agronomic characterization, accompanied by genetic and molecular studies. Since then it has been proposed as a synonym of *Stylosanthes scabra* Vogel. This paper refutes this synonymization and indicates the indisputable evidence that *S. seabrana*, a diploid, is a likely putative progenitor of the allotetraploid *S. scabra*.

Keywords: Agronomy, cytology, morphology, phylogeny, rhizobiology, *Stylosanthes scabra*.

Resumen

Stylosanthes seabrana fue formalmente descrita como una especie nueva en 2002, como resultado de extensivas caracterizaciones morfológicas y agronómicas, junto con estudios genéticos y moleculares. En 2011 se propuso que se trata de un sinónimo de *Stylosanthes scabra* Vogel. En este trabajo se refuta esta sinonimización y se muestra que existen múltiples estudios para indicar que *S. seabrana*, una especie diploide, es probablemente un progenitor putativo de *S. scabra*, una especie allotetraploide.

Palabras clave: Agronomía, citología, filogenética, morfología, rizobiología, *Stylosanthes scabra*.

Introduction

Since recognition in Australia of the forage value of the adventive species, *Stylosanthes humilis* Kunth, in the early 20th century, there has been continuing focus on the genus, *Stylosanthes*, to determine the commercial pasture potential of other species within the genus. Of the 40 species of *Stylosanthes* currently accepted by the US National Plant Germplasm System (GRIN), 7 have been demonstrated to have commercial agricultural merit. Large collections of a number of species were assembled by CIAT in Colombia and CSIRO in Australia, including shrubby stylo (*Stylosanthes scabra*) that was found to have potential in the acid, infertile soils of subhumid and semi-arid northern Australia. The most recent addition to the list of commercial species in the genus, *S. seabrana* B.L. Maass & 't Mannetje, has proven well-adapted to the slightly acid to alkaline, more fertile clay and clay-loam soils in the same region, but extending into the subtropics.

Taxonomy of *Stylosanthes seabrana*

While characterizing the *S. scabra* collection held by CIAT in Colombia, Maass (1989) identified a group of plants from Bahia state in Brazil that shared a number of morphological characteristics with *S. scabra* but were morphologically and agronomically different from *S. scabra* and other known species of *Stylosanthes*. Following the provisional name given to this form by plant collectors, she referred to the group in her classification as “cf. *scabra*-Type”. This
Many collections and studies of *Stylosanthes scabra* have been conducted since Vogel (1838) described the specimen from Serra da Moeda, Minas Gerais, Brazil and Mohlenbrock (1957) reviewed the genus, *Stylosanthes*. On this basis, it can be presumed that the Edye and Topark-Ngarm (1992) description based on research experience and the description of Costa and Ferreira (1984) might be more comprehensive than earlier keys. Vanni and Fernandez (2011) provide what they call a “standard description” of *S. scabra*, which differs from those of Vogel (1838), Mohlenbrock (1957) and Costa and Ferreira (1984)/Edye and Topark-Ngarm (1992), all varying somewhat in their choice of descriptors. However, some characteristics provided in the various keys help to further distinguish *S. seabrana* from *S. scabra* morphologically. A characteristic not used in the Maass and Mannetje (2002) key is the length of the axis rudiment, 7–8 mm in their description of *S. seabrana* and 4–5 mm in *S. scabra* (Mohlenbrock 1957; Edye and Topark-Ngarm 1992).

Agronomy

There are clear agronomic differences between *S. seabrana* and *S. scabra*. Early research in the 1960s and 1970s to identify other *Stylosanthes* species to extend the range of *S. humilis* identified the potential of *S. scabra* and the tetraploid form of *S. hamata (= *S. hemihamata* nom. nud.), resulting in the release of cultivars of each. However, while these were very effective in the light, acid infertile soils of northern Australia, they were not adapted to the heavier, more fertile clay soils in the region. Attention was then turned to the group of *Stylosanthes* sp. aff. *S. scabra* that were collected on broadly similar soils in Brazil (Edye and Maass 1997). These proved well-adapted to heavy- and medium-textured alkaline soils in Australia, and unlike *S. scabra*, were also adapted to the more frost-prone environment of southern Queensland (Edye and Hall 1993; Jansen and Edye 1996). CSIRO applied for Plant Breeders Rights for the 2 most promising lines in 1996 (granted in 1997) as “Caatinga Stylo (*Stylosanthes* sp. nov. aff. *S. scabra*) cvv. Primar and Unica” to provide a legume base for forage systems on neutral to alkaline soils of central and southern Queensland.

Early evaluation highlighted another important difference between the 2 species. While *S. scabra* is promiscuous in its root nodule bacterial requirements, nodulating effectively on native strains of *Bradyrhizobium* in Australia or the broad spectrum CB 756 commercial strain (Date 1997), this was not the case for Caatinga stylo. During field evaluation at a range of sites in Queensland in
the 1990s, Caatinga stylo accessions nodulated poorly and ineffectively and frequently failed to nodulate at all (Edye 1994; Edye et al. 1998). Most accessions grew well for 1 or 2 years, before beginning to show classical signs of nitrogen deficiency. Success of the new cultivars was contingent on discovery of an effective and persistent strain of inoculum. Accordingly, nodules were collected during germplasm collections in Brazil, and strains of Bradyrhizobium were isolated, tested and released prior to release of cvv. Primar and Unica (Date 2010; 2016).

Ploidy

A major part of the argument advanced by Vanni and Fernandez (2011) revolves around their finding both diploid and tetraploid specimens in the roots of seedlings grown from a sample of commercial seed of S. seabrana cv. Unica from Australia. In their Introduction, they make the following confusing statement: “In addition, they (referring to Maass and Mammetje 2002) reported different levels of ploidy in S. scabra, 2n = 40 chromosomes and S. seabrana, 2n = 20 chromosomes.” The ploidy cited for the 2 species is correct; however it in no way supports their contention of dual ploidy in S. scabra. Rather, Vanni and Fernandez (2011) use this confusing statement to support their claim that: “ploidy levels are not valid criteria for species distinction in the genus Stylosanthes, as S. scabra has been reported to be one of the few species with diploid (2n = 20) and tetraploid (2n = 40) genotypes (Cameron 1967).” This is not the case. In fact, Cameron (1967) determined the chromosome number for a single accession of S. tuberculata (presumably Stylosanthes tuberculata S.F. Blake syn. S. scabra Vogel), which he found to be tetraploid (2n = 40) only. Since then a number of workers (Battistin and Martins 1987; Liu et al. 1999; Lira 2015) have reported tetraploidy in S. scabra. No report of diploidy in the species exists in the published literature.

‘Unica’ was derived from CPI 110361, which has been shown to be diploid (Liu and Musial 1997), so the question arises: how could there have been the 2 ploidy levels in the sample tested by Vanni and Fernandez (2011)? The answer lies in the fact that the seed lot on which Vanni and Fernandez (2011) based their taxonomic revision was a commercial sample. Since seed crops of both S. scabra and S. seabrana are grown in the same general area in north Queensland, it is probable that a commercial sample of seed may contain both species, either from contamination in the crop (S. scabra is now naturalized in the region), in the harvester from a previously harvested crop of S. scabra or during post-harvest handling. There is no seed certification scheme for this cultivar in Australia and post-harvest cleaning procedures for harvesting machinery are not as stringent for standard commercial crops as for certified crops.

Phylogeny

Until relatively recently, morphological characters were the only means of describing species, but they have not always provided the level of resolution required to categorically define interspecific and intraspecific differences. Vanni and Fernandez (2011) consider that the form of leaflets, the absence or presence of bristles and hairs on stipules and leaflets and their venation are not sufficient to separate species. Whether or not this is valid is debatable. However, the evidence provided from genetic and molecular studies is indisputable. As discriminatory methodologies improved with the development of molecular technologies, so did the evidence to more clearly define relationships within and between taxonomic groups.

It has been shown that S. scabra is an allotetraploid with S. viscosa Sw. as one of the putative diploid progenitors (Stace and Cameron 1984; Vander Stappen et al. 2002). The identity of the other diploid progenitor is not so cut-and-dry. Stace and Cameron (1984) postulated that, since S. scabra bears an axis rudiment on the loment, a characteristic governed by a dominant gene, and S. viscosa lacks an axis rudiment (section Stylosanthes), the other parent must bear an axis rudiment (section Styposanthes). Working with chloroplast DNA, Gillies and Abbott (1996) proposed S. hamata sensu stricto as the section Styposanthes progenitor, while Liu and Musial (1997) provided evidence that the other putative progenitor was Stylosanthes sp. aff. S. scabra (= S. seabrana). These 2 species fall into the same basal genome group A, determined by restriction fragment length polymorphisms (RFLP) and sequence-tagged-sites (STS) analyses by Liu et al. (1999). In the same study, S. viscosa fell into basal genome group B and S. scabra into group AB. More recent work (Tewari and Chandra 2008; Chandra and Kaushal 2009; Marques et al. 2018) confirms the proposition of allotetraploid origins of S. scabra with S. hamata or S. seabrana as the maternal donor and S. viscosa as the paternal donor. However, Marques et al. (2018) point out the difficulty in precise identification of the maternal donor since both the diploid and the polyploid species have diverged since the allopolyploid event some 0.63 to 0.52 million years ago.

Conclusion

Stylosanthes seabrana is clearly morphologically, agronomically, rhizobially, cytologically and phylogenetically different from S. scabra (Appendix I), and
taxonomic logic dictates that it must be treated as a separate species. It is no more conspecific with S. scabra than is its other putative progenitor, S. viscossa. Similar confusion is faced by practitioners in relation to 2 other Stylosanthes diploid-allotetraploid derivative pairs, S. hamata - S. hemihamata nom. nud. and S. macrocephala - S. capitata, that will be dealt with in subsequent papers in this series.

Taxonomists at the US Germplasm Resources Information Network (GRIN; https://npgsweb.ars-grin.gov/gringlobal/taxon/abouttaxonomy.aspx) have reviewed their earlier decision to accept the Vanni and Fernandez (2011) thesis of synonymy between S. seabrana and S. scabra and have now listed S. seabrana as a valid species. A list of all S. seabrana germplasm accessions registered in the major Stylosanthes genebanks is presented as Appendix II. All accessions with known origin have been collected in Bahia State, except for ser. nos. 15 and 16 which are from Minas Gerais, Brazil.

Acknowledgment

For Appendix II, Dr José Francisco Montenegro Valls and Mr Glocimar P. Silva (Embrapa Cenargen, Brasília, Brazil) provided valuable information on accession origin and identification in Embrapa’s new Alelo database.

References

(Note of the editors: All hyperlinks were verified 17 January 2020.)

Battistin A; Martins PS. 1987. Chromosome number of seven species and three varieties of the genus Stylosanthes Sw. (Leguminosae - Papilionoideae). Revista Brasileira de Genetica 10:599–602.

Belbin L. 1995. PATN, Pattern Analysis Package, Technical Reference, Users Guide. CSIRO Division of Wildlife and Ecology; CSIRO Division of Wildlife and Rangelands Research, Canberra, Australia.

Cameron DF. 1967. Chromosome number and morphology of some introduced Stylosanthes species. Australian Journal of Agricultural Research 18:375–379. doi: 10.1071/AR9670375

Chandra A; Kaushal P. 2009. Identification of diploid Stylosanthes seabrana accessions from existing germplasm of S. scabra utilizing genome-specific STS markers and flow cytometry, and their molecular characterization. Molecular Biotechnology 42:282–291. doi: 10.1007/s12033-009-9154-z

Costa NMS; Ferreira MB. 1984. Some Brazilian species of Stylosanthes. In: Stace HM; Edey LA, eds. The biology and agronomy of Stylosanthes. Academic Press Australia, North Ryde, NSW, Australia. p. 23–48. doi: 10.1016/B978-0-12-661680-4.50007-X

Date RA. 1997. The contribution of R & D on root-nodule bacteria to future cultivars of tropical forage legumes. Tropical Grasslands 31:350–354. bit.ly/2nf5RqW

Date RA. 2010. Bradyrhizobium effectiveness responses in Stylosanthes hamata and S. seabrana. Tropical Grasslands 44:141–157. goo.gl/5rETIX

Date RA. 2016. Selection of effective strains of Bradyrhizobium for Caatinga stylo (Stylosanthes seabrana), Tropical Grasslands-Forrajes Tropicales 4:54–70. doi: 10.17138/tgtf(4)54-70

Daye LA; Jansen PJ; Messer B; Eagles DA. 2010. Morphological variation and classification of field-grown Stylosanthes seabrana and S. scabra. Tropical Grasslands 44:165–173. goo.gl/BcTvju

Edye LA. 1994. The development of Stylosanthes hamata and S. scabra cultivars for subtropical environments in south east Queensland. Final Report, MRC Project CS079. CSIRO and QDPI, St Lucia, QLD, Australia.

Edye LA; Topark-Ngarm A. 1992. Stylosanthes scabra Vogel. In: Mannetje L’t; Jones RM, eds. Plant Resources of South-East Asia No. 4. Forages. Pudoc Scientific Publishers, Wageningen, The Netherlands, p. 219–221.

Edye LA; Hall TJ. 1993. Development of new Stylosanthes cultivars for Australia from naturally occurring genotypes. Proceedings of the XVII International Grassland Congress, Palmerston North, New Zealand, 8–21 February 1993. p. 2159–2161.

Edye LA; Maass BL. 1997. Recent advances in studies of anthracnose of Stylosanthes. I. The biogeography of Stylosanthes hamata, S. scabra and “Stylosanthes seabrana”. Tropical Grasslands 31:417–423. bit.ly/2mqiT4n

Edye LA; Hall TJ; Clem RL; Graham TWG; Messer WB; Rebgetz RH. 1998. Sward evaluation of eleven “Stylosanthes seabrana” accessions and S. scabra cv. Seca at five subtropical sites. Tropical Grasslands 32:243–251. goo.gl/eDAA7A

Gillies ACM; Abbott RJ. 1996. Phylogenetic relationships in the genus Stylosanthes (Leguminosae) based upon chloroplast DNA variation. Plant Systematics and Evolution 200:193–211. doi: 10.1007/BF00984935

Jansen PJ; Edye LA. 1996. Variation within Stylosanthes sp. aff. scabra and comparison with its closest allies, S. scabra and S. hamata. Australian Journal of Agricultural Research 47:985–996. doi: 10.1017/S0004912900013579

Lira ICSA. 2015. Caracterização citogenética e morfoagronômica de acessos de Stylosanthes spp. (Fabaceae - Papilionoideae) coletados no nordeste brasileiro. M.Sc. Thesis (in Portuguese). Universidade Estadual de Feira de Santana, Bahia, Brazil. tede2.ufes.br:8080/handle/tede/152

Liu CJ; Musial JM. 1997. Stylosanthes sp. aff. S. scabra: A putative diploid progenitor of Stylosanthes scabra (Fabaceae). Plant Systematics and Evolution 208:99–105. doi: 10.1007/BF00986084

Liu CJ; Musial JM; Thomas BD. 1999. Genetic relationships among Stylosanthes species revealed by RFLP and STS analyses. Theoretical and Applied Genetics 99:1179–1186. doi: 10.1007/s001220051322
Maass BL. 1989. Die tropische Weideleguminose *Stylosanthes scabra* Vog. - Variabilität, Leistungsstand und Möglichkeiten züchterischer Verbesserung. Ph.D. Thesis (in German). Landbauforschung Völkenrode, Sonderheft 97. Bundesforschungsanstalt für Landwirtschaft, Braunschweig, Germany.

Maass BL; Mannefte L’t. 2002. *Stylosanthes seabrana* (Leguminosae: Papilionoideae), a new species from Bahia, Brazil. Novon 12:497–500. doi: [10.2307/3393129](https://doi.org/10.2307/3393129)

Marques A; Moraes L; Santos MA dos; Costa I; Costa L; Nunes T; Melo N; Simon MF; Leitch AR; Almeida C; Souza G. 2018. Origin and parental genome characterization of the allotetraploid *Stylosanthes scabra* Vogel (Papilionoideae, Leguminosae), an important legume pasture crop. Annals of Botany 122:1143–1159. doi: [10.1093/aob/mcy113](https://doi.org/10.1093/aob/mcy113)

Mohlenbrock RH. 1957. A revision of the genus *Stylosanthes*. Annals of the Missouri Botanical Garden 44:299–351. doi: [10.2307/2394648](https://doi.org/10.2307/2394648)

Stace HM; Cameron DF. 1984. Cytogenetics and the evolution of *Stylosanthes*. In: Stace HM; Edye LA, eds. The biology and agronomy of *Stylosanthes*. Academic Press Australia, North Ryde, NSW, Australia. p. 49–72. doi: [10.1016/B978-0-12-661680-4.50008-1](https://doi.org/10.1016/B978-0-12-661680-4.50008-1)

Tewari S; Chandra A. 2008. Genetical assessment of diploid progenitors of *S. scabra* by isozyme, RAPD and STS markers: A possible strategy for improvement of drought tolerant allo-tetraploid *S. scabra* species. Euphytica 162:39–50. doi: [10.1007/s10681-007-9542-z](https://doi.org/10.1007/s10681-007-9542-z)

Vander Stappen J; De Laet J; Gama-López S; Van Campenhout S; Volckaert G. 2002. Phylogenetic analysis of *Stylosanthes* (Fabaceae) based on the internal transcribed spacer region (ITS) of nuclear ribosomal DNA. Plant Systematics and Evolution 234:27–51. doi: [10.1007/s00606-002-0193-1](https://doi.org/10.1007/s00606-002-0193-1)

Vanni RO; Fernandez A. 2011. The true identity of *Stylosanthes seabrana* B.L. Maass & L. ’t Mannefte (Leguminosae Papilionoideae). Caryologia 64:247–250. doi: [10.1080/00087114.2011.10589789](https://doi.org/10.1080/00087114.2011.10589789)

Vogel JRT. 1838. De Hedysareis Brasiliae. Linnaea 12:51–70. biodiversitylibrary.org/page/35385336
Appendix I. Differences in brief between *Stylosanthes seabrana* and *S. scabra*.

Characteristic/trait	*S. seabrana*	*S. scabra*
Leaflet shape	Narrowly elliptical	Elliptical to obovate
Leaflet indumentum	Glabrous except for long bristles on the margins and midrib	Pubescent with bristles at least underneath or on the margins
Leaflet venation	Prominently raised veins on the lower surface	Without prominently raised veins on the lower surface
Length of axis rudiment	7–8 mm	4–5 mm
Ploidy	Diploid (2n = 20)	Tetraploid (2n = 40)
Genome	A	AB
Soil pH	Neutral to alkaline	Acid
Soil texture	Medium-heavy	Light
Soil fertility	Moderate to high	Low
Rhizobial specificity	Very specific	Promiscuous

Appendix II: *Stylosanthes seabrana* germplasm accessions registered in the major tropical forages genebanks (January 2020).

Ser. no.	BRA1	CIAT2	ILRI3	APG4	Comments, additional information, collector numbers
1	12014			APG 58185*	CSIRO collection, April 1971; RLB B69
		CPI 55802			
2	12015			APG 58187*	CSIRO collection, April 1971; RLB B77
		CPI 55804			
3	12019			APG 58190*	CSIRO collection, April 1971; RLB B97
		CPI 55809			
4	12016			APG 58191*	CSIRO collection, April 1971; RLB C23
		CPI 55810			
5	12020			APG 57821*	CSIRO collection, April 1971; RLB C25
		CPI 55811A			CPI 55811 = *S. scabra*
6	12021			APG 58194*	CSIRO collection, April 1971; RLB C27
		CPI 55813			
7	57822				CSIRO collection, April 1971; RLB C29
		CPI 55871			
8	58197*				CSIRO collection, April 1971; RLB C42
9	00145661-5*	007951		APG 57483*	CSIRO collection, April 1971; RLB B69
		CPI 55816A			
10	00219732-5*	007901	15767	APG 57482*	CSIRO collection, April 1971; RLB B77
		CPI 110340			
11	00219733-3*	008095	15768	APG 56718*	CSIRO collection, April 1971; RLB B97
		CPI 92454			
		APG 57484*			
12	00219734-1*	008206	15769	APG 56723*	CSIRO collection, April 1971; RLB C23
		CPI 110342			
13	00219724-2*	008915	2107*	APG 56729*	CSIRO collection, April 1971; RLB C25
		CPI 92463			
14	00219725-9*	009318	10517	15795	Cenargen collection, April 1979; LC 1417
		CPI 110372			
Ser. no.	BRA¹	CIAT²	ILRI³	APG⁴	Comments, additional information, collector numbers
----------	------	-------	-------	------	--
15	00145502-1	APG 57165	CPI 105729	IPF 1038* (NSC 933a); an EPAMIG (Empresa de Pesquisa Agropecuária de Minas Gerais, Brazil) collection (“S. scabra”) from Itamarandiba, Minas Gerais (June 1979)	
16	APG 56854*	CPI 93099	CSIRO collection, May 1981; DFC 562; accession collected at Mato Verde, Minas Gerais (May 1981)		
17	00219726-7*	10026*	APG 56942	CPI 104710	Joint collection Cenargen-CIAT, August 1981; LC 4335
18	00219727-5*	10113*	APG 56921	Joint collection Cenargen-CIAT, August 1981; LC 4351	
19	00219728-3*	10030*	APG 57502	Joint collection Cenargen-CIAT, August 1981; LC 4402 cv. Unica	
20	00219729-1*	10033*	APG 58153	Joint collection Cenargen-CIAT, August 1981; LC 4447	
21	00219730-9*	10119*	15793	CPI 110370	Joint collection Cenargen-CIAT, August 1981; LC 4447
22	00219735-8*	10537	022811	022977	Joint collection Cenargen-RBG Kew, June 1983; LC 5782a
23	00219738-2*	MSB 48767 from the RBG Kew Millenium Seed Bank Project; joint collection Cenargen-RBG Kew, June 1983; LC 6171a; LC 6171 (= BRA 00145997-3, former BRA 029335) is S. macrocephala			
24	00219736-6*	10547	15796	APG 57514	Joint collection Cenargen-RBG Kew, June 1983; LC 6257
25	00219737-4*	10471	APG 58015	Joint collection Cenargen-RBG Kew, June 1983; LC 6261; species holotype at herbarium CEN	
26	00145640-9*	11578	APG 57579	Cenargen collection, June 1987; LC 7653	
27	00146011-2*	11583	APG 57580	Cenargen collection, June 1987; LC 7661	
28	00145653-2*	11585	036625	036625	Cenargen collection, June 1987; LC 7666
29	00219739-0*	104238	APG 58052*	Joint collection Cenargen-CSIRO collection, May/June 1996; LAE 746	
30	00145697-9*	104246	APG 58069*	Joint collection Cenargen-CSIRO collection, May/June 1996; LAE 748	
31	00145698-7*	104254	APG 58068*	Joint collection Cenargen-CSIRO collection, May/June 1996; LAE 749	
32	00145699-5*	104262	APG 58067*	Joint collection Cenargen-CSIRO collection, May/June 1996; LAE 750	
33	00145700-1*	104271	APG 58066*	Joint collection Cenargen-CSIRO collection, May/June 1996; LAE 751	
34	00145725-8*	104289	APG 58065*	Joint collection Cenargen-CSIRO collection, May/June 1996; LAE 752	
35	00145722-5*	104297	APG 58064*	Joint collection Cenargen-CSIRO collection, May/June 1996; LAE 753	
36	00145702-7*	104301	APG 58063*	Joint collection Cenargen-CSIRO collection, May/June 1996; LAE 754	
37	00145703-5*	104319	APG 58062*	Joint collection Cenargen-CSIRO collection, May/June 1996; LAE 755	
38	00145706-8*	104327	APG 58061*	Joint collection Cenargen-CSIRO collection, May/June 1996; LAE 756	
39	00145705-0*	104335	APG 58060*	Joint collection Cenargen-CSIRO collection, May/June 1996; LAE 757	
40	00145704-3*	104343	APG 58059*	Joint collection Cenargen-CSIRO collection, May/June 1996; LAE 758	

Tropical Grasslands-Forrajes Tropicales (ISSN: 2346-3775)
Ser. no.	BRA¹	CIAT²	ILRI³	APG⁴	Comments, additional information, collector numbers
41	00145711-8*	041351		APG 58051*	Joint Cenagen-CSIRO collection, May/June 1996; LAE 759
42	00145726-6*	041360		APG 58050*	Joint Cenagen-CSIRO collection, May/June 1996; LAE 760
43	00219740-8*	041378		APG 58049*	Joint Cenagen-CSIRO collection, May/June 1996; LAE 762
44	00145708-4*	041394		APG 58047*	Joint Cenagen-CSIRO collection, May/June 1996; LAE 764
45	00145707-6*	041408		APG 58046*	Joint Cenagen-CSIRO collection, May/June 1996; LAE 765
46	00145710-0*	041416		APG 58045*	Joint Cenagen-CSIRO collection, May/June 1996; LAE 766
47	00219741-6*	041513		APG 58036*	Joint Cenagen-CSIRO collection, May/June 1996; LAE 776
48	11957	12629		CPI 105546B	IPF xxxx* (accession no. unknown); EPAMIG (Empresa de Pesquisa Agropecuária de Minas Gerais, Brazil) collection
49	11945	12629		CPI 92838	cv. Primar
50	12630	12630		CPI 92838B	
51	00145726-6*	041360		CPI 110370B	Isolated from CIAT 10119
52	12630	12630		CPI 110370C	Isolated from CIAT 10119
53	12630	12630		CPI 110370C	No further accession information available

Notes:

a) Some accessions are still registered under species names other than *S. seabrana*.
b) Accession numbers in **bold** are those to be preferably used.
c) Asterisk (*) indicates the most original accession number, i.e. the one assigned by the institution(s) that conducted the respective original collecting mission. This information is useful for eventual enquiries on passport data information, genetic purity and the like.
d) Sources: Databases of the former CSIRO Australian Tropical Forages Genetic Resources Centre (ATFGRC); Embrapa Recursos Genéticos e Biotecnologia; and CIAT; Maass and Mannetje (2002).

1BRA: Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil (www.embrapa.br/recursos-geneticos-e-biotecnologia); the first BRA number (in bold) corresponds to the new Alelo code; former BRA numbers (second line) are still in use.
2CIAT: International Center for Tropical Agriculture, Cali, Colombia (ciat.cgiar.org).
3ILRI (formerly ILCA): International Livestock Research Institute, Addis Ababa, Ethiopia (www.ilri.org).
4APG: Australian Pastures Genebank, Adelaide, Australia (https://pir.sa.gov.au/research/australian_pastures_genebank); former Australian plant introduction numbers with CPI and ATF prefixes, also TQ, are still in use.

(Received for publication 15 October 2019; accepted 12 January 2020; published 31 January 2020)

© 2020

Tropical Grasslands-Forrajes Tropicales is an open-access journal published by *International Center for Tropical Agriculture (CIAT)*, in association with *Chinese Academy of Tropical Agricultural Sciences (CATAS)*. This work is licensed under the Creative Commons Attribution 4.0 International ([CC BY 4.0](http://creativecommons.org/licenses/by/4.0)) license.

Tropical Grasslands-Forrajes Tropicales (ISSN: 2346-3775)