Ostracode Biostratigraphy of Shiranish, Hartha and Mushorah Formations from Selected Boreholes Northwest and Central Iraq

Ibrahim Y. Al-Shareefi
Department of Geology
College of Science
University of Mosul

Saleh K. Khalaf
Department of Geology
College of Science
University of Mosul

Marwan A. Al-Eisa
Department of Geology
North Oil Company
Kirkuk

(Received 9/12/2012, Accepted 6/5/2013)

ABSTRACT

Ostracode biostratigraphy were investigated in detail from three formations (Shiranish, Hartha and Mushorah) in subsurface sections of four boreholes Northwest and centre of Iraq.

On the basis of the ostracode species distribution, the studied formations were divided into four ostracode biozones as follows:

Biozone 1: Cytherella IRC 22 Interval zone. (Early Campanian).
Biozone 2: Occultocythereis elongata Interval zone. (Late Campanian).
Biozone 3: Krithe sp. M 1113 Interval zone. (Early Maastrichtian).
Biozone 4: Holcopocythere bassiporosa Interval zone. (Late Maastrichtian).

Depending on the above biozones correlated with other previous works from Iraq and the Middle East regions the following ages were proposed for the studied formations:

Shiranish Formation: Late Campanian - Maastrichtian.
Hartha Formation: Late Campanian - Early Maastrichtian.
Mushorah Formation: Early Campanian.

Keywords: Ostracode, Biostratigraphy, Shiranish, Hartha, Mushorah.

الطباقيات الحياتية للاوستراكود للتكوينات شرانش، الحارثة و المشورة من مقاطع تحت سطحية مختارة شمال غرب العراق و وسطه
INTRODUCTION

A total of 300 core and cutting samples were obtained from the Upper Cretaceous successions of four boreholes (A, B, C and D) located at the West of Tigris river in the Northwest and central Iraq (Fig. 1). These sections comprised three formations which are from younger towards the older: Shiranish, Hartha and Mushorah Formations. In this respect (Figs. 2, 3, 4 and 5) show the stratigraphical sections of the above formations in the studied boreholes. Geographically the studied area is located Northwest and central Iraq approximately between latitude 34° 20´ - 35° 50´ N and longitude 42° 50´ - 43° 40´ E. Geologically, the investigated area belongs to the unstable shelf of Iraq and situated within Hamrin-Makhul subzone and Tigris subzone (Buday and Jassim, 1987). Regionally it is situated between two main Phanerozoic units of the Middle East (the Arabian part of African platform on the west and the Asian branch of the Alpine geosyncline on the east) (Buday, 1980; Buday and Jassim, 1984).

AIM OF STUDY

The main aim of the present study is to identify the ostracode biozones of Shiranish, Hartha and Mushorah Formations and their ages in the studied area.
Ostracode Biostratigraphy of Shiranish, Hartha and Mushorah

Fig. 1: Location Map

Fig. 2: Stratigraphic Section of Studied Formations in Borehole A.
Fig. 3: Stratigraphic Section of Studied Formations in Borehole B.

Fig. 4: Stratigraphic Section of the Studied Formations in Borehole C
In Iraq, the biozonations by ostracode have received little attention from micropalaeontologists, due to the fact that most of the works have been done on the foraminifera by the oil companies. Therefore there is a shortage of literature dealing with the ostracode biozones in the stratigraphy of Iraq. However this research represent an attempt to use the ostracode species in the definition of biozones on the studied formations. The stratigraphic range of ostracode species in the studied formations from four oil boreholes are illustrated in (Figs. 6, 7, 8 and 9).

BIOSTRATIGRAPHY

Fig. 5: Stratigraphic Section of the Studied Formations in Borehole D
Fig. 6: Range Chart of Ostracode Species in the Studied Formations in Borehole A
##Fig. 7 : Range Chart of Ostracode Species in the Studied Formations in Borehole B

Campanian	Maa.	
Lower	Upper	
Mushorah	Hartha	Sh.
1	2	3

Stage	Formation	Biozones	Depth (m.)

- Cytherella sp.1 Babinot
- Brachycythere IRC 28
- Cytherella cf. OUM 1110
- Bairdia IRC 19
- Bythocypris gohrobdonti
- Cytherella IRC 22
- Bythocypris windhami
- Paracypris sp.A
- Argilloecia taylorensis
- Abyssocypris adunca
- Cytherella meijeri
- Cytherella (C.) sylvesterbradleyi
- Paracypris jonesi
- Occultocythereis elongata
- Pontocyprilla recurva
- Propontocypris sylvesterbradleyi
- Krithe sp.M1113
- Acanthocythereis (C.) bolispinosa

Scale

	0	10	20	30

Fig. 8: Range Chart of Ostracode Species in the Studied Formations in Borehole C
Campanian	Maastrichtian		
Lower	Upper	Lower	Upper
Mushorah	Hartha	Shiranish	
2135	1963	1790	1690
1000	1000	1000	1000

Stage

Formation

Biozones

Depth (m.)

Species

- Cytherella sp.1 Colin
- Brachycythere IRC 28
- Cytherella cf. OUM 1110
- Planileberis IRC 23
- Cytherella IRC 22
- Bythocypris windhami
- Paracypris sp.A
- Argilloecia taylorensis
- Abyssocypris adunca
- Bairdia IRC 19
- Paracypris jonesi
- Paracypris sp.B
- Pontocyprella recurva
- Propontocypris sylvesterbradleyei
- Krithe sp. M1113
- Bairdia septentrionalis
- Bythocypris sp.1
- Pontocyprella rara
- Krithe fortidimorphica
- Occultocythereis namrudia
- Occultocythereis elongata
- Acanthocythereis (C.) bolispinsa
- Hornibrookella cycliiformis
- Abyssocypris tipaca
- Isohabrocythere teiskotensis
- Holcocyclythere baskiporosa
- Xestoleberis tunisiensis

Fig. 9: Range Chart of Ostracode Species in the Studied Formations in Borehole D

Figure (10) shows the comparison scheme between the ostracode biozones of the present study with foraminifera biozones and other previously recorded ostracode biozones from Iraq, Arabian Gulf and Levant which is very important as a zoogeographical subtraction area (Martens, 2002).
BIOZONES

Biozone 1: Cytherella IRC 22 Interval zone.

Definition: Interval zone represents the restricted range between the first appearance of *Cytherella IRC22* (Grosdidier, 1973) and the first appearance of *Occultocythereis elongata* (Al-Sheikhly, 1982).

Age: Early Campanian

Boundaries: The base of this zone is defined by the first appearance of *Cytherella IRC22* (Grosdidier, 1973) whilst the top of this zone is marked by the first appearance of *Occultocythereis elongata* (Al-Sheikhly, 1982) coeval with disappearance of the following species: *Cytherella sp.1* Babinoti et al., (1988),
Cytherella sp.1 Colin *et al.*, (1982), **Brachycythere IRC28** Grosdidier (1973). **Associated species:** The following species make their first appearance in this zone and extended into the overlying zones: *Bythocypris gohrbdonti* Esker (1968), *Bythocypris windhami* Butler and Jones (1957), *Paracypris sp.A* Esker (1968), *Argilloecia taylorensis* Alexander (1935) and *Abyssocypris adunca* Esker (1968).

Other species which occur in this zone and make their last appearance within it but were also recorded from the lower zones are: **Cytherella sp.1** Babinoti *et. al.*, (1988). **Cytherella sp.1** Colin *et al.*, (1982) and **Brachycythere IRC28** Grosdidier, (1973).

Only one species **Cytherella cf. OUM 1110** Grekoff (1969), was recorded from this zone although it also occur in the overlying and underlying zones. **Other faunas:** Planktonic foraminifera (*Globotruncana elevata*), Benthonic foraminifera (*Sulcoperculina deckersoni*), *Hartella inflatotriangularis, Hartella triangularis*.

Distribution and thickness: This zone is recorded in all the studied boreholes and as follows:

Borehole	Thickness (m)	Extending of the zone
B	42	Mushorah Formation
C	183	Mushorah Formation
D	172	Mushorah Formation

Correlation: This biozone is equivalent to the biozone 1and 2 of Al-Ubide,(1989) from NE Iraq. Regionally, This zone is equivalent to the *Leguminocythere dorsocostatus* biozone and *Brachycythere beershivadensis* biozone of Honigstein *et al.*, (1985) from Palestine.

In comparison with foraminifera, This zone is equivalent to *Globotruncana fornicata, Globotruncana elevata* and *Globotruncana stuartiformis* biozone of Al-Jassim *et al.*, (1989) from North Iraq. It also equivalent to *Globotruncana elevata* biozone or *Globotruncana stuartiformis* of Hammoudi, (1995) from Central and South of Iraq.

In the present study the occurrence of *Hartella inflatotriangularis* and *Hartella triangularis* in this zone makes it is equivalent to the *Problematicum Ms1* biozone of Falhe *et al.*, (1987) from North Iraq. *Problematicum Ms1* Hart is synonymous with *Hartella inflatotriangularis*, therefore this zone is also equivalent to *Hartella inflatotriangularis* zone of Al-Eisa and Al-Fassola, (2011) from NW Iraq.

Biozone 2: Occultocythereis elongata Interval zone

Definition: Interval zone represents the restricted range between the first appearance of *Occultocythereis elongata* Al- Sheikhly, (1982) and the first appearance of *Krithe sp. M1113* Donze, (1973).

Age: Late Campanian
Boundaries: The base of this zone is characterized by the first appearance of *Occultocythereis elongata* Al- Sheikhly, (1982) whilst the top is marked by the first appearance of *Krithe sp. M1113* Donze, (1973).

Associated species: Ostracode species *Cytherella sp.2* Colin et al., (1982) and *Bairdia IRC19* Grosdidier, (1973) makes their first appearance in this zone and they are restricted to it.

The following species make their first appearance in this zone and extend their ranges into the overlying zones: *Cytherella (C.) sylvesterbradleyi* Reyment, (1963), *Cytherella meijer* Esker, (1968). *Paracypris jonesi* Bonnema, (1940), *Paracypris sp. B* Esker, (1968). *Occultocythereis namrudia* Al- Sheikhly, (1982), *Pontocyprilla recurva* Esker, (1968). *Pontocypris sylvesterbradleyi* Jain, (1975). Other species recorded from this zone also occur in the overlying and underlying zones: *Bythocypris gohrbdonti* Esker, (1968). *Bythocypris windhami* Butler and Jones, (1957). *Paracypris sp. A* Esker, (1968). *Argilloecia taylorensis* Alexander (1935), *Abyssocypris adunca* Esker, (1968) and *Xestoleberis sp.* Said (1978).

Other faunas: Planktonic foraminifera (*Globotruncana calcarata*, *Globotruncana havanensis*), Benthonic foraminifera (*Orbitoides tissoti*, *Orbitoides medius*, *Rotalia skourensis* and *Rotalia reicheli*).

Distribution and thickness: This zone has been recorded in all the studied boreholes and as follows:

Borehole	Thickness (m)	Extending of the zone
A	125	Hartha Formation
B	23	Hartha Formation
C	459	Hartha Formation and lowermost of Shiranish Formation
D	454	Hartha Formation

Discussion: The restricted occurrence of *Globotruncanina calcarata* in the middle and lowermost of the upper part of this biozon in the Borehole C solely and within the facies of the lower parts of Shiranish Formation indicates a Late Campanian age (Robasynski et al., 2000). In addition, the occurrence of *Globotruncanina havanensis* above the assemblages of *Globotruncanina calcarata* indicates a Late Campanian age according to Gradstein et al., (2004).

Correlation: This zone is equivalent to biozone 3 of Al-Ubide, (1989) from NE Iraq which comprises about 43 species such as *Cytherella (C.) sylvesterbradleyi* Reyment, (1963). *Cytherella sp.2* Colin et al., (1982). *Pontocyprilla recurva* Esker, (1968). *Paracypris jonesi* Bonnema, (1940) and *Bythocypris windhami* Butler and Jones, (1957). All the foregoing species are recorded in the present study.

In comparison with foraminifera, this zone is equivalent to *Orbitoides tissoti* - *Orbitoides medius* biozon of Al- Mutwali, (1992).

Biozone 3: *Krithe* sp. M 1113 Interval zone
Definition: Interval zone represents the restricted range between the first appearance of *Krith sp. M 1113* Donze, (1973) and the first appearance of *Holcopocythere bassiporosa* Al- Furaih, (1980).

Age: Early Maastrichtian

Boundaries: The base of this zone is recognized by the first appearance up hole of *Krith sp. M 1113* Donze, (1973), with the top defined by the first appearance up hole of *Holcopocythere bassiporosa* Al- Furaih, (1980).

Associated species: Only one species *Abyssocypris tipaca* Van der Bold(1974) makes its first appearance within this zone and is restricted to it.

The following species make their first appearance in this zone although they have also been found in the overlying zones: *Bairdia septentrionalis* Bonnema, (1941). *Bythocypris sp.1* Foster et al., (1983). *Pontocyrella rara* El- waer, (1992). *Paracyprideis IRC20* Grosdidier(1973). *Schizocythere salahii* El-waer, (1992). *Krithe fortidimorphica* El-waer, (1992). *Acanthocythereis* (Canthylocythereis) *bolispinosa* Al-Sheikhly, (1980). *Hornibrookella cyclifossata* Al- Furaih, (1977), and *Xestoleberis sp.* Said, (1978).

Other species were found in this zone and make their last appearance within it although they also occur in the underlying zones: *Cytherella meijeri* Esker, (1968). *Bythocypris windhami* Butler and Jones, (1957). *Paracypris sp. B* Esker, (1968). *Abyssocypris adunca* Esker, (1968). *Occultocythereis namrudia* Al-Sheikhly, (1982) and *Occultocythereis elongata* Al- Sheikhly, (1982).

The following species occur in this zone but also recorded from the higher and lower zones: *Cytherella cf. OUM1110* Grekoff (1969). *Cytherella (C.) sylvesterbradleyi* Reyment, (1963). *Paracypris jonesi* Bonnema, (1940). *Bythocypris gohrbdonti* Esker, (1968). *Paracypris sp.A* Esker, (1968). *Pontocyrella recurva* Esker, (1968) and *Argilloecia taylorensis* Alexander, (1935).

Distribution and thickness: This zone has been recorded from all the studied boreholes and as follows:

Borehole	Thickness(m)	Extending of the zone
A	152	Uppermost of Hartha Formation, lower and middle parts of Shiranish Formation
B	8	Shiranish Formation
C	115	Lower parts of Shiranish Formation
D	260	Uppermost of Hartha Formation and lower parts of Shiranish Formation

Correlation: This zone is equivalent to the biozone 4 and most of biozone 5 of Al-Ubide, (1989), from NE Iraq. These biozones comprise many ostracode species which recorded in the present study such as: *Argilloecia taylorensis* Alexander (1935), *Bythocypris gohrbdonti* Esker, (1968). *Bythocypris sp.1* Foster et al.,
(1983), Paracypris sp. A Esker, (1968). Paracypris sp. B Esker, (1968). Cytherella (C.) sylvesterbradleyi Reyment, (1963). Krithe sp. M113 Donze, (1973) and Pontocyrellura recurva Esker, (1968).

Regionally, this zone is correlated to the Peleriops phumatoides biozone of Athersuch, (1994) from Arabian Gulf.

Biozone 4: Holcopocythere bassiporosa Interval zone

Definition: Interval zone represents the restricted range between the first appearance of Holcopocythere bassiporosa Al- Furaih, (1980) and the last occurrence of Paracypris jonesi Bonnema, (1940).

Age: Late Maastrichtian.

Boundaries: The base of this zone is defined by the first appearance of Holcopocythere bassiporosa Al- Furaih, (1980), while the top is determined by the last occurrence of Paracypris jonesi Bonnema, (1940).

Associated species: Two species appear first within this zone and were restricted to it. These are: Isohabrocythere teiskotensis and Xestoleberis sp.

The following species have been found in this zone and also occur in the underlying zones: Cytherella cf. OUM 1110 Grekoff, (1969). Cytherella (C.) sylvesterbradleyi Reyment, (1963). Bythocypris gohrbdonti Esker, (1968). Bythocypris septentrionalis Bonnema, (1941). Bythocypris sp.1 Foster et al., (1983). Paracypris jonesi Bonnema, (1940). Paracypris sp. A Esker, (1968). Pontocyrellura rare El- waer, (1992). Pontocyrellura recurva Esker, (1968). Propontocypris Sylvesterbradleyi Jain, (1975). Argilloecia taylorensis Alexander,(1935). Paracyprideis IRC 20 Grosdidier, (1973). Schizocythere Salahii El- waer, (1992). Krithe sp. M113 Donze, (1973). Krithe fortidmophica El-waer, (1992). Acanthocythereis (Canthylocythereis) bolispinosa Al-Sheikhly, (1980). Hornibrookella cyclifossata Al- Furaih, (1977) and Xestoleberis sp. Said, (1978).

Distribution and thickness: This zone is recorded from the studied boreholes except borehole B. It is confined to the upper parts of Shiranish formation where the thickness reaches to: 109 m, 119 m, 207m in A, C and D boreholes respectively.

Discussion: This zone represents the youngest in the studied sections. The top of this zone is observed by the conspicuous rarity of most ostracode species and by the disappearance of Paracypris jonesi Bonnema, (1940). while the bottom is characterized by the obvious occurrence of the species Gansserina gansseri (planktonic foraminifera) beside some of ostracod species. In addition, the top of this zone is taken as an unconformity which separates Shiranish Formation (Mesozoic) from Aaliji or Jaddala Formations (Cenozoic).

Correlation: This biozone is equivalent to Hornibrookella divergensis biozone of Athersuch, (1994) from Arabian Gulf. According to the same author, the index species Holcopocythere bassiporosa Al- Furaih, (1980). which is recorded in the present study resembles both Holcopocythere bassiporosa Al-Furaih, (1980) and
Holcopocythere falsosulcata Al-Furaih, (1980) from the Late Maastrichtian and Early Paleocene of Saudi Arabia.

ACKNOWLEDGEMENT

The authors would like to acknowledge Mosul University for financial support and providing the research facilities. Also, our thanks are a fended to the presidency of North Oil Company for providing samples and technical facilities.

REFERENCES

Al-Eisa, M. A. and Fassola, N. A., 2011. Biostratigraphy of Upper Cretaceous Reservoir in Butma Field. Jour. Petro. Resea. and Stud., No. 2, pp. 153-172.

Al-Furaih, A. A., 1980. Upper Cretaceous and Lower Tertiary Ostracoda (Superfamily Cytheracea) from Saudi Arabia. Univ. Libraries. Univ. Riyadh. Saudi Arabia, pp. 1 - 211.

Al-Jassim, J. A., Al-Sheikhly, S. S. J and Al-Tememmy, F. M., 1989. Biostratigraphy of the Kometan Formation (Late Turonian - Early Campanian) of Northern Iraq; J. Geol. Soc. Iraq; Vol. 22, No. 1, pp. 53 - 60.

Al-Mutwali, M. M., 1992. Foraminifera, Stratigraphy and Sedimentology of the Upper Cretaceous - Lower Tertiary in Selected boreholes Around Khleisias-Ahan - Ramadi area. Ph.D. Unpub. Thesis, Univ. Mosul, pp. 1 - 286.

Al-Mutwali, M. M., 1996. Planktonic Foraminiferal Biostratigraphy of the Shiranish Formation, Khashab Borehole No.1, Hamrin Area, Northeastern Iraq. Jour. Geol. Sci. Iraq. Vol. 7, No. 1, pp. 129 - 136.

Al-Sheikhly, S. S. J., 1980. Maastrichtian - Upper Eocene Ostracoda of the Subfamily Trachyleberidinae from Iraq, Jordan and Syria. Unpub. Ph.D. Thesis, Glasgow Univ. Scotland, 229 p.

Al-Ubide, W.Y., 1989. Upper Cretaceous Ostracoda from Borehole Khashab No.(1) Hamrin Area NE Iraq. Unpub. M.Sc. Thesis, Mosul Univ., 156 p.

Athersuch, J., 1994. The Biostratigraphic Significance of Cretaceous Ostracods from the Arabian Gulf. In: Micropalaeontology and Hydrocarbon Exploration in the Middle East, pp. 253 - 271.

Buday, T., 1980. Regional Geology of Iraq. Vol. 1(Stratigraphy and Paleogeography). SOM, Baghdad, 445 p.

Buday, T., and Jassim, S. Z., 1984. Tectonic Map of Iraq., 1\1000 000., Geof. Surv. of Iraq. Publication; SOM, Baghdad.

Buday, T. and Jassaim, S. Z., 1987. The Regional Geology of Iraq. Vol. 2 (Tectonism, Magmatism and Metamorphic), Baghdad, 352 p.

Caron, M., 1985. Cretaceous Planktonic Foraminifera, In: Bolli, H. M., J. R. Saunders and K. Perch - Nielsen, (eds) Plankton Stratigraphy, Cambridge Univ. press, pp. 17 - 86, Fig. 37.

Falhe, A. Z., Al-Eisa, M. A., and Hadad, S. N., 1987. Stratigraphical Correlation of Cretaceous Facies in Borehole Khashab No.1 and Injana No. 5 Unpublished Report., Noc Library.
Gradstein, F., Ogg, J., Smith, A., 2004. A geologic Time Scale. Cambridge University Press, 589 p.

Hammoudi, R. A., 1995. Stratigraphy of the Turonian - Early Campanian Depositional Subcycle from Selected Boreholes in Iraq. Unpub. Ph.D Thesis. Mosul Univ., 215 p.

Hammoudi, R. A., 2000. Planktonic Foraminiferal Biostratigraphy of the Shiranish Formation (Upper Cretaceous) in Jambur Borehole No. 13, Northern Iraq. Raf. Jour. Sci., Vol. 11, No. 4, pp. 50 - 58.

Henigstein, A., Raab, M. and Rosenteld, A., 1985. Manual of Cretaceous Ostracodes from Israel. Geol. Surv. Isr. Spec. Publ., Jerusaiem. 5, pp. 1 - 25.

Martens, K., 2002. Redundancy and Ecosystem Stability in the Fluctuating Environments of Long Lived Lakes .In: Odada, E. O. and Olago, D. O (eds.), The East African Great Lakes: Limno. Palaeolimno. Biodiv., pp. 309 - 319.

Robasynski, F., Gonzalez, J. M., Linares, D., Amedro, F. Caron, M., Dupuis, C., Dhondt, A. V. and Gartner, S., 2000. The Upper Cretaceous of the Kalaat Senan Region, Central Tunisia, Intergrated Lithe - Biostratigraphy Based on ammonites, Planktonic Foraminifera and Nannofossils Zones from Upper Turonian to Maastrichtian (In France with English Abstract). Bull, Contres. Rech. Explor - Prod. Elf - Aquitaine, Vol. 22, No. 2, pp. 359 - 490.

EXPLANATION OF PLATE 1

Fig. 1: *Cytherella Sp.* 1 Babinoti et. al., 1988
Carapace [MO.1, UC.1] External left lateral view x 50, Mushorah Fm, B borehole, depth, 891 m.

Fig. 2: *Cytherella cf. OUM 1110* Grekoff, 1969
Carapace [MO.1, UC.3] External left lateral view x 50, Hartha Fm., B borehole, depth, 849 m.

Fig. 3: *Cytherella IRC 22* Grosdidier, 1973
Carapace [MO.1,UC.4] External left lateral view x 50, Mushorah Fm., C borehole, depth, 1766 m.

Fig. 4: *Cytherella (C.) Sylvestebradleyi* Reyment, 1963
Carapace [MO.1, UC.5] External left lateral view x 50, Hartha Fm., A borehole, depth, 752 m.

Fig. 5: *Cytherella mejeri* Esker, 1968
Carapace [MO.1, UC.9] External left lateral view x 50, Hartha Fm., C borehole, depth, 1391 m.

Fig. 6: *Cytherella Sp.1* Colin et. al., 1982
Carapace [MO.1,UC.11] External left lateral view x 50, Mushorah Fm., D borehole, depth, 2017 m.

Fig. 7: *Cytherella Sp.2* Colin et. al., 1982
Carapace [MO.1, UC.12] External left lateral view x 50, Hartha Fm., D borehole, depth, 1612 m.

Fig. 8: *Bairdia IRC19* Grosdidier, 1973
Carapace [MO.1, UC.14] External right lateral view x 40, Hartha Fm., C borehole, depth, 1523 m.

Fig. 9: *Bairdia septentrionalis* Bonnema, 1941
Carapace [MO.1,UC.15] External right lateral view x 40, Hartha Fm., B borehole, depth, 834 m.

Fig. 10: *Bythocypris gohrbdonti* Esker, 1968
Carapace [MO.1,UC.17] External right lateral view x 50, Mushorah Fm., D borehole, depth, 2026 m.

Fig. 11: *Bythocypris windami* Butler and Jones, 1957
Carapace [MO.1,UC.18] External right lateral view x 50, Mushorah Fm., B borehole, depth, 891 m.

Fig. 12: *Bythocypris Sp.1* Foster *et al.*, 1983
Carapace [MO.1,UC.19] External right lateral view x 50, Shiranish Fm., A borehole, depth, 583 m.

Fig. 13: *Paracypris Jonesi* Bonnema, 1940
Carapace [MO.1,UC.20] External right lateral view x 50, Shiranish Fm., D borehole, depth, 1256 m.

Fig. 14: *Paracypris Sp.A* Esker, 1968
Carapace [MO.1, UC.21] External right lateral view x 50, Mushorah Fm., B borehole, depth, 874 m.

Fig. 15: *Paracypris Sp.B* Esker, 1968
Carapace [MO.1,UC.22] External right lateral view x 50, Shiranish Fm., D borehole, depth, 1316 m.

Fig. 16: *Pontocyrella rare* El- waer, 1992
Carapace [MO.1, UC.23] External right lateral view x 50, Hartha Fm., B borehole, depth, 851 m.

Fig. 17: *Pontocyrella recurva* Esker, 1968
Carapace [MO.1,UC.24] External right lateral view x 50, Shiranish Fm., C borehole, depth, 1167 m.

Fig. 18: *Propontocypris Sylvesterbradleyi* Jain, 1975
Carapace [MO.1, UC.27] External right lateral view x 50, Hartha Fm., D borehole, depth, 1866 m.

EXPLANATION OF PLATE 2

Fig. 1: *Argilloecia taylorensis* Alexande, 1935
Carapace [MO.1, UC.28] External right lateral view x 50, Shiranish Fm., C borehole, depth, 1196 m.

Fig. 2: *Abyssocypris Adunce* Esker, 1968
Carapace [MO.1, UC.29] External right lateral view x 50, Mushorah Fm., D borehole, depth, 2102 m.

Fig. 3: *Abyssocypris Tipaca* Van der Bold, 1974
Carapace [MO.1, UC.30] External left lateral view x 50, Shiranish Fm., A borehole, depth, 619 m.
Fig. 4: *Paracyprideis IRC 20* Grosdidier, 1973
Carapace [MO.1,UC.31] External right lateral view x 50, Shiranish Fm., C borehole, depth, 1217 m.

Fig. 5: *Schizocythere Salahii* El- waer, 1992
[MO.1,UC.32] External right valve lateral view x 50, Shiranish Fm., C borehole, depth, 1156 m.

Fig. 6: *Isohabrocythere teiskotensis* Apostolescu, 1961
Carapace [MO.1,UC.33] External right lateral view x 50, Shiranish Fm., D borehole, depth, 1127m.

Fig. 7: *Brachycythere IRC 28* Grosdidier, 1973
Carapace [MO.1,UC.36] External left lateral view x 50, Mushorah Fm., C borehole, depth, 1752 m.

Fig. 8: *Krithe Sp. M1113* Donze, 1973
Carapace [MO.1, UC.39] External right lateral view x 50, Hartha Fm., B borehole, depth, 852 m.

Fig. 9: *Krithe fortidmophica* El-waer, 1992
Carapace [MO.1,UC.40] External right lateral view x 50, Shiranish Fm., D borehole, depth, 1327m.

Fig. 10: *Occultocythereis namrudia* Al- Sheikhly, 1982
Carapace [MO.1,UC.42] External right lateral view x 50, Shiranish Fm., A borehole, depth, 579 m.

Fig. 11: *Occultocythereis elongata* Al- Sheikhly, 1982
Carapace [MO.1,UC.43] External right lateral view x 50, Shiranish Fm., A borehole, depth,1263m.

Fig. 12: *Acanthocythereis (Canthylocythereis) bolispinosa* Al-Sheikhly(1980)
Carapace [MO.1,UC.47] External left lateral view x 50, Shiranish Fm., A borehole, depth, 613m.

Fig. 13: *Holcopocythere bassiporosa* Al- Furaih, 1980
Carapace [MO.1,UC.45] External left lateral view x 50,Shiranish Fm., C borehole, depth, 1319 m.

Fig. 14: *Hornibrookella cyclifossata* Al- Furaih, 1977
[MO.1, UC.46] External right valve lateral view x 50, Shiranish Fm., A borehole, depth, 622 m.

Fig. 15: *Planileberis IRE 23* Grosdidier, 1973
Carapace [MO.1,UC.48] External right lateral view x 50, Mushorah Fm., C borehole, depth, 1784m.

Fig. 16: *Xestoleberis tunisiensis* Esker, 1968
Carapace [MO.1,UC.50] External right lateral view x 50, Shiranish Fm., D borehole, depth, 1137m.

Fig. 17: *Xestoleberis Sp.* Said, 1978
Carapace [MO.1,UC.51] External left lateral view x 50, Shiranish Fm., C borehole, depth, 1242 m.
PLAET 2

1 2 3 4 5 6
7 8 9 10 11 12
13 14 15 16 17