Enhanced antimicrobial peptide-induced activity in the mollusc Toll-2 family through evolution via tandem Toll/interleukin-1 receptor

Jun Cao2,†, Yihong Chen4,†, Min Jin3 and Qian Ren1

1Jiangsu Key Laboratory for Biodiversity and Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing 210046, People's Republic of China
2Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
3State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, SOA, Xiamen 361005, People's Republic of China
4MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China

Toll receptors play an important role in the innate immunity of invertebrates. All reported Tolls have only one Toll/interleukin-1 receptor (TIR) domain at the C-terminal. In this study, numerous Tolls with tandem TIRs at the C-terminal were found in molluscs. Such Tolls presented an extra TIR (TIR-1) compared with Toll-I. Thus, Toll-I might be the ancestor of tandem TIRs containing Toll. To test this hypothesis, 83 Toll-I and Toll-2 (most have two TIRs, but others seem to be the evolutionary intermediates) genes from 29 shellfish species were identified. These Tolls were divided into nine groups based on phylogenetic analyses. A strong correlation between phylogeny and motif composition was found. All Toll proteins contained the TIR-2 domain, whereas the TIR-1 domain only existed in some Toll-2 protein, suggesting that TIR-1 domain insertion may play an important role in Toll protein evolution. Further analyses of functional divergence and adaptive evolution showed that some of the critical sites responsible for functional divergence may have been under positive selection. An additional intragenic recombination played an important role in the evolution of the Toll-I and Toll-2 genes. To investigate the functional difference of Toll-I and Toll-2 proteins,
Toll-2, over expression of Hcu_Toll-1 or Hcu_Toll-2-2 in Drosophila S2 cells was performed. Results showed that Hcu_Toll-2-2 had stronger antimicrobial peptide (AMP) activity than Hcu_Toll-1. Therefore, enhanced AMP-induced activity resulted from tandem TIRs in Toll-2s of molluscs during evolution history.

1. Introduction

Invertebrate species account for 95% of the total number of animals in the world [1]. Similar to vertebrates, they suffer from pathogens, such as microbes and viruses. For survival, invertebrates have developed the ability to resist pathogens during evolution. Invertebrates may lack an adaptive immunity system as that in vertebrates, but they possess a powerful and high-performance innate immunity system [2].

Among the signalling pathways of the invertebrate immune system, the Toll signalling pathway is the best characterized one. The Toll gene was originally identified with function for specifying dorsal–ventral polarity of the Drosophila embryo [3]. Tolls are ubiquitous in embryos, but they are only activated by spatially restricted cleavage by Spätzle (Spz) [4]. A previous study reported that the Drosophila Toll pathway shows remarkable similarity to the mammalian interleukin-1 pathway, which activates NF-κB, a protein responsible for inflammatory and immune responses [5]. Toll-9 has been proven to play a role in fungal and Gram-positive bacterial defence of Drosophila, independent of its morphogenetic functions [4,6]. The discovery of immune function for Toll in flies has led to the identification of vertebrate Toll-like receptors (TLRs) [7]. TLRs have been identified in animals ranging from cnidarians to mammals.

Pathogen-associated molecular patterns (PAMPs) are small molecular motifs conserved within groups of pathogens. Upon pathogen invasion, they are recognized by TLRs and other pattern recognition receptors (PRRs) and initiate innate immune response. In Drosophila, a cascade reaction system is triggered once PRRs recognize PAMPs. This system contains Spz, myeloid differentiation factor 88 (MyD88), tube, pelle, dorsal, inhibitor of NF-κB kinases (IKKs) and cactus. This cascade activates NF-κB, which enhances the expression of immune factor genes, such as AMPs, lysozyme and anti-lipopolysaccharides (ALFs) for resistance to infection. The Drosophila genome encodes nine Toll proteins, but only Toll-9 has a role in immunity. Some vertebrate species have more than one TLR involved in immune responses; for example, Homo sapiens TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7 and TLR9 are all engaged in the recognition of different PAMPs and activate distinct immune responses.

To date, TLRs play a role in infection prevention and other immune-related processes. A previous study found that dual antigen-specific B cell receptor (BCR) and TLR engagement can fine-tune functional B cell responses, directly linking cell-intrinsic innate and adaptive immune programmes [8]. TLR activation upregulates pro-tumourigenic pathways, including the induction of inducible nitric oxide synthase (iNOS2) and cyclooxygenase (COX) 2, to promote a feed-forward loop leading to tumour progression and the development of more aggressive tumour phenotypes [9]. Furthermore, TLR4 is expressed in intestinal stem cells and regulates their proliferation and apoptosis via the p53 upregulated modulator of apoptosis [10]. Notably, an increasing number of studies have indicated that TLRs are engaged in autoimmunization; for example, TLR4 in T cells promotes autoimmune inflammation; TLR7, TLR8 and TLR9 play a key role in promoting the production of autoantibodies reactive with DNA- or RNA-associated autoantigens [11,12]. Functions of TLRs in invertebrates other than Drosophila have also been investigated in recent years, but most of these studies focused on their roles in anti-pathogens [13,14].

The reason for the functional diversity in TLRs is implied in their structures. Toll receptors are transmembrane proteins with extracellular leucine-rich repeat (LRR) motifs and the Toll/interleukin-1 receptor (TIR) domain [15]. The ectodomain of TLRs contains LRR motifs, which are defined by a consensus sequence of 24–29 amino acids in length, and the number of LRRs in different TLRs varies from 19 to 26 [16]. Such tandem arrays of LRRs have been found in proteins involved in ribosome and DNA binding, signal transduction, enzyme inhibition and cell adhesion [17]. The sequences of the TLR intracellular domain have similarities to the mammalian interleukin-1 receptors, called the TIR domain. This domain is composed of about 150 amino acid residues. Recognition of PAMPs and cytokines by TLRs leads to the stabilization of a dimeric form of the receptor through TIR domains, as well as providing a scaffold or recruitment of cytosolic adaptor proteins [18]. To date, most TLRs that have been investigated only contain one TIR domain.
In our previous study, a Toll receptor (Hcu_Toll-2-1) with tandem TIR domains at the C-terminal was found and studied in *Hyriopsis cumingii* [19]. A single TIR-containing Toll (Hcu_Toll-I) sharing similarities to Toll-I from *Mytilus galloprovincialis* (AFU48617.1) was also identified from *H. cumingii*. Hcu_Toll-2-1 and Hcu_Toll-I have similar domain structures but an extra TIR (TIR-1) is found in Hcu_Toll-2-1. Thus, Hcu_Toll-I may be the ancestor gene of Hcu_Toll-2-1. To test this hypothesis, transcriptome sequencing was performed in 29 mollusc species to obtain more sequences similar to the Toll-I or Hcu_Toll-2-1 genes.

A total of 83 Toll-I and Toll-2 genes from 29 aquatic molluscs were identified. Phylogenetic analyses revealed that these Tolls could be divided into the Toll-I and Toll-2 families. Most members of Group VII in the Toll-2 family contained two TIR domains. Functional divergence analyses also indicated that the Toll genes diverged functionally from each other, causing different evolutionary rates. Over expression of Hcu_Toll-2-2 or Hcu_Toll-I in *Drosophila* S2 cells showed that tandem TIR-containing Toll (Hcu_Toll-2-2) had stronger antimicrobial peptide (AMP)-induced activity than single TIR Toll (Hcu_Toll-I). Therefore, tandem TIR Toll genes have been preserved in mollusc species during evolution, which possibly resulted from its enhanced function.

2. Material and methods

2.1. Animals

In this study, 29 mollusc species (species tree is shown in the electronic supplementary material, S1) were selected to investigate the evolution of mollusc Toll receptors. Three freshwater mussels, namely, *H. cumingii*, *Sinanodonta woodiana* and *Cristaria plicata*, were purchased from Wuhu City, Anhui Province, China. Another 26 seawater mollusc species were purchased from Nanjing and Hangzhou aquatic markets. Among these 26 species, *Peronidia zyonoensis*, *Qicaibei*, *Wenbei* and *Hongbei* were purchased from Hangzhou City, Zhejiang Province, China. In addition to these four species, the remaining species were purchased from Nanjing, Jiangsu Province, China. Among these 29 species, only six species (i.e. *Haliotis rubra*, *Neptunea cumingi*, *Cymbium melo*, *Babylonia areolata*, *Rapana bezona* and *Turritella terebra*) belong to Gastropoda. Other species belong to Bivalvia. Detailed information of species in this study can be found in the electronic supplementary material, S2. Given that no Latin name could be obtained, the Chinese Pinyin of *Qicaibei*, *Wenbei*, *Hongbei* and *Jinqianbei* were used in this study.

2.2. Transcriptome sequencing of mollusc species and cDNA cloning

The transcriptomes of mollusc species were sequenced using Illumina HiSeq™ 2000. The raw reads were de novo assembled using Trinity program. The transcriptome assemblies were searched for sequences similar to Toll-I or Hcu_Toll-2-1 using the tBLASTn algorithm. BLAST results showed that 83 Toll-I and Toll-2 genes were found. Some of them possessed complete coding regions. However, some of them had no complete coding region and only had 3’ or 5’-ends. To obtain the coding region of these sequences, 3’ or 5’ RACE methods were employed using the SMARTer RACE 5’/3’ Kit (Clontech), following the manufacturer’s manual. Detailed methods can be found in our previously published paper [19]. The primers used for RACE are shown in the electronic supplementary material, S3.

2.3. Phylogenetic analyses of the Toll-I and Toll-2 protein families

Multiple sequence alignments of the TIR-2 domain sequences were performed using MUSCLE 3.52, followed by manual comparisons and refinement [20]. Phylogenetic analyses of the Toll protein family, based on TIR-2 domain sequences, were performed with the neighbour-joining (NJ) method using MEGA 6 [21]. We also used TLR1 protein from *Mus musculus* as an outgroup. Bootstrap support values were estimated using 1000 pseudo-replicates.

2.4. Functional divergence analyses

Some residues are highly conserved and others are highly variable in evolution. We used DIVERGE (v. 2.0) [22,23] to analyse the type I functional divergence between different groups of Toll receptor proteins. The functional divergence between two groups was measured as the coefficient of functional divergence (θ). A coefficient equal to 0 indicates that the evolutionary rate of the duplicate genes at each site is
2.5. Site-specific selection assessment and testing

We used the Selecton Server (http://selecton.tau.ac.il/) [24] to calculate site-specific purifying and positive selection. In this study, K_a/K_s values were used to estimate two types of substitution events by calculating the synonymous rate (K_s) and the non-synonymous rate (K_a) at each codon. Three evolutionary models (M8 ($\omega \geq 1$), M7 (beta) and M5 (gamma)) were used to describe, in probabilistic terms, how the characters evolve. Each of the models used different biological assumptions and the model that best fit the data was selected. These models all assumed a statistical distribution to account for heterogeneous K_s/K_a values among sites. The distributions were approximated using eight discrete categories and the K_a/K_s values were computed by calculating the expectation of a posterior distribution [24].

2.6. Detection of recombination events

Coding sequence (CDS) in different Toll groups was first aligned. The recombination detection program RDP v. 3.44 [25] was used to explore potential recombination events between divergent nucleotide sequences. This software embeds different methods for detecting recombination signals. In this study, three methods (RDP [26], Geneconv [27] and MaxChi [28]) were used to detect signals. The highest acceptable P cut-off value was set to 0.05. Significance was evaluated with 100 permutation tests.

2.7. Construction of recombinant plasmid

The nucleotide sequences corresponding to the amino acid sequences of $\text{LRR}^+\text{TM}^+\text{TIR}$ of $\text{Hcu}_\text{Toll-2}$ were amplified using the primers in the electronic supplementary material, S3 (Pac- $\text{Hcu}_\text{Toll}-2\text{F}$, Pac-$\text{Hcu}_\text{Toll}-2\text{R1}$, Pac-$\text{Hcu}_\text{Toll}-2\text{R2}$; Pac-$\text{Hcu}_\text{Toll-1}\text{F}$, Pac-$\text{Hcu}_\text{Toll-1}\text{R}$). The amplified fragments were digested with Kpn I and Apa I and then ligated into pAc5.1/V5–His B vector (Invitrogen, USA). The recombinant plasmids were sequenced to ensure correct insertion. To construct the recombinant plasmid of $\text{LRR}^+\text{TM}^+\text{TIR}$, in-fusion technology was used. In detail, two pairs of primers (Hcu_Toll-2-LRR-R: 5′-CCCGGATCGGGGTACCGATGATAAGCGGACTGCAGCATTTAG-3′, Hcu_Toll-2-LRR-F: 5′-CTCTGTGATCTCTATCGCAA GCCCTTTCGTTTC-3′; Hcu_Toll-2-TIR-F: 5′-GCCAATAAAGACGAGAGGATCC ACGCTTTCGTTTC-3′, Hcu_Toll-2-TIR-R: 5′-TTCGAACCGGGGCCCCTCTGTGATCCTATCGGAA CATC-3′) were used to amplify the LRR + TM and TIR-2 cDNA sequences, respectively. The 16 bp vector-specific sequences added on the 5′-ends of Hcu_Toll-2-LRR-F and Hcu_Toll-2-TIR-2-R were underlined. Moreover, a 15 bp sequence of Hcu_Toll-2-TIR-2-F reverse complementary to the first 15 bp of Hcu_Toll-2-LRR-R is underlined with dots. The two purified fragments were then ligated into the linearized pAc5.1/V5–His B vector (double digestion with Kpn I and Apa I). About 1 µl of linearized pAc5.1/V5–His B vector, 3 µl of fragment 1, 3 µl of fragment 2 and 2 µl of In-Fusion HD Master Mix were combined and incubated for 15 min at 50°C. The recombinant plasmid was finally transformed into Trans1-T1 chemically competent cells. The recombinant plasmid was also sequenced to ensure correct insertion.

2.8. Dual-luciferase activity assay in S2 cells

Dual-luciferase activity assay in S2 cells was conducted according to the protocol of a previously published paper. In brief, the abovementioned recombinant plasmid or empty pAc5.1/V5–His B plasmid (0.3 µg) along with pGL-Pen4 or empty pGL3-Basic plasmid (0.2 µg) and 0.02 µg of pRL-TK plasmid (wild-type Renilla luciferase control reporter vector; Promega, USA) were co-transfected into Drosophila S2 cells. The reporter gene plasmid (pGL-Pen4) was constructed using the promoter sequence of shrimp Penaeidin-4 (PEN4). S2 cells were cultured in standard Drosophila medium (serum-free; Invitrogen, USA) containing 10% fetal bovine serum (Invitrogen) at 27°C. Cellfectin II reagent (Invitrogen) was used for DNA transfection into S2 cells. The firefly and Renilla luciferase activities were measured after 48 h of transfection with the Dual-Luciferase Reporter Assay System (Promega), according to the manufacturer’s instructions. All these assays were performed from three independent transfections.
3. Results and discussion

3.1. Transcriptome sequencing and identification of Toll-2 and Toll-I

A total of 83 Toll-I and Toll-2 (most have two TIRs) genes from 29 mollusc species were identified using high-throughput sequencing and RACE technology (electronic supplementary material, SI). Based on their living environment, these mollusc species could be divided into freshwater and seawater species. Among these species, only H. cumingii, S. woodiana and C. plicata are freshwater mussels. According to the classification of species, these species could be divided into Gastropoda and Bivalvia. Among these species, H. rubra, N. cumingii, C. melo, B. areolata, R. bezona and T. terebra belong to Gastropoda. In some species, only Toll-I could be found and no Toll-2 could be identified. One Toll-I in Pinna radiis, C. melo, Crassostrea gigas, Hongbei and Scapharca subcrenata, two Toll-I in Tegilarcha granosa and three Toll-I in Moerella iridescens, Mytilus edulis and Mactra veneriformis were identified. In N. cumingii, only one Toll-2 was found and no Toll-I could be identified. In other species, both Toll-I and Toll-2 could be found. Based on their isoform number, they could be divided into nine different situations. (i) Only one Toll-I and one Toll-2 were identified in H. rubra, R. bezona, Ruditapes philippinarum, B. areolata, T. terebra, Saxidomus purpuratus, Sinonovacula constricta, Qicaibei and Cyclina sinensis. (ii) In H. cumingii, one Toll-I and two Toll-2 were found. (iii) In Meretrix meretrix, only one Toll-I but as many as six Toll-2 were identified. (iv) In Solen strictus and P. zygoenosisis, two Toll-I and one Toll-2 were identified. (v) Two Toll-I and two Toll-2 were identified from Panopea abrupta and Chlamys farreri, respectively. (vi) In Wenbei, two Toll-I and three Toll-2 were identified. (vii) In C. plicata, two Toll-I and five Toll-2 were found. (viii) In Jinqianbei, three Toll-I and three Toll-2 were identified. (ix) Four Toll-I and two Toll-2 were identified from S. woodiana.

3.2. Phylogenetic and structural analyses of the Toll-I and Toll-2 proteins

To predict the evolutionary relationships of the Toll-I and Toll-2 families, we constructed a NJ tree based on alignment of the TIR-2 sequences of the Toll-I and Toll-2 proteins. The majority of the phylogenetic clades had well-supported bootstrap values. These genes were categorized into nine major groups, named Groups I to IX. Groups I, II, III, IV, V and VI belong to the Toll-I gene family, whereas Groups VII, VIII and IX belong to the Toll-2 gene family. The largest group was VII, which contained 24 members. Group VI contained only four genes.

To further confirm the phylogenetic relationships and to examine the diversity of Toll proteins, we further searched for conserved motifs in Toll proteins using the MEME web server (http://meme.sdsc.edu) [29]. As shown in figure 1, five conserved motifs (motifs 1–5) were identified in these Toll proteins. All the predicted Tolls had conserved motifs 2 and 3, and the genes in the same group had similar conserved motifs, but some divergence was observed between groups. These results suggested that the Toll genes in the same group may have similar functions and some specific motif architectures may have important effects on group-specific functions. We also noticed that most proteins in Group VII contained motif 4, which did not exist in other groups, except one member (Mme_Toll-2-6) in Group IX, implying that this motif may be related to the specific functions of these proteins. Therefore, motif compositions of the Toll proteins in each group may provide additional support for phylogenetic analyses. We also used Pfam [30] to identify major domains of the Toll protein family. Interestingly, we also found that most members of Group VII possessed two TIR domains (one was TIR-1 (motif 4) and the other was TIR-2 (motif 3)), whereas other Tolls only contained the TIR-2 domain. Among these Toll-2 members, 14 Toll-2s were the evolutionary intermediates between single TIR Tolls and tandem TIR Tolls. Among these 14 Tolls, five Tolls were from Gastropoda. In Gastropoda, no complete tandem TIR Tolls could be found. BLASTP results showed that these 14 Tolls had similarities to Hcu_Toll-2-1, which contained two TIRs. However, SMART analysis showed that these 14 Tolls contained incomplete tandem TTRs. Thus, these 14 Tolls may be evolutionary intermediates.

Domain insertion is usually thought to evolve through recombination events and intragenic duplication [31]. The creation of new multi-domain architectures is an important mechanism that provides opportunities for the organism to expand its repertoire of cellular functions, such as transcriptional regulation, protein transport and assembly [32–34]. Furthermore, protein domain insertion may constitute a source of variability. In the human genome, duplications are more common in genes containing repeated domains than in non-repeated ones [35]. Domain insertion is quite important in evolution, as it provides a path where proteins can evolve by removing or adding functionally similar or distinct blocks [35]. In the current study, we identified some multi-TIR domains in Tolls. The presence
of two TIR domains contributed to the complexity of this gene family. Its influence on the function of Toll proteins remains to be examined. However, our findings suggested that TIR-1 domain insertion in most members of Group VII may play an important role in Toll protein evolution.

Figure 1. Phylogenetic relationships and structure analyses of the Toll-I and Toll-2 protein family. The numbers above branches show bootstrap values from NJ. All motifs were identified by MEME using the complete amino acid sequence of the Toll-I and Toll-2 family. Details of the motifs refer to the electronic supplementary material, S4.
Table 1. Functional divergence estimated between different groups of Toll proteins. Theta, coefficient of functional divergence; s.e., standard error; LRT, likelihood ratio test.

comparison	theta	s.e.	LRT	N(0.5)a	N(0.7)b
I/II	0.563707	0.269664	1.237648	3	0
I/III	−0.29163	0.193027	2.38981	2	0
I/IV	0.188822	0.098201	1.263873	1	0
I/V	0.31064	0.101114	11.73627	15	5
I/VI	−1	−1	−1	0	0
I/VII	0.705547	0.07885	77.0213	88	41
I/VIII	0.625755	0.12558	25.1543	85	23
I/IX	0.651601	0.108299	31.51791	77	28
II/III	0.371238	0.713586	0.277641	0	0
II/IV	0.942475	0.303975	8.657418	100	100
II/V	0.754356	0.395619	2.061301	93	4
II/VI	−1	−1	−1	0	0
II/VII	0.626231	0.18053	10.35031	87	11
II/VIII	0.751889	0.304608	5.724468	99	92
II/IX	0.881859	0.325205	8.031021	100	100
III/IV	−1.0643	−23.7985	−1	2	2
III/V	−0.97564	−21.816	−1	3	3
III/VI	−1	−1	−1	0	0
III/VII	−0.03946	0.137657	23.60464	92	35
III/VIII	0.166247	0.241993	4.964715	87	11
III/IX	1.202301	0.23089	21.81064	100	100
IV/V	0.208136	0.101033	4.173458	5	1
IV/VI	−1	−1	−1	0	0
IV/VII	0.575547	0.097513	47.15257	89	40
IV/VIII	0.52178	0.144871	12.76522	41	11
IV/IX	0.756708	0.133149	29.17587	99	64
V/VI	−1	−1	−1	0	0
V/VII	0.560374	0.094396	57.79011	94	48
V/VIII	0.905158	0.157392	30.30209	100	99
V/IX	0.718287	0.132621	28.4354	96	49
VI/VII	−1	−1	−1	0	0
VI/VIII	−1	−1	−1	0	0
VI/IX	−1	−1	−1	0	0
VII/VIII	0.237911	0.095991	14.1618	16	7
VII/IX	0.591538	0.089531	45.39129	78	26
VIII/IX	−1	−1	−1	0	0

aN(0.5) and N(0.7) means the numbers of divergent residues when the cut-off value is 0.5 and 0.7, respectively.

3.3. Functional divergence analyses of the Toll proteins

To further study whether amino acid substitutions cause adaptive functional diversification, we used the program DIVERGE [22,23] to estimate type-I functional divergence between different Toll groups.
Table 2. Likelihood values and parameter estimates for different groups of the Toll-I and Toll-2 genes.

groups	selection model	K_s/K_a	log-likelihood	number of positive-selection sites
I	M8 ($\omega \geq 1$)	0.2496	-23 771.4	0
	M7 (β)	0.2353	-23 771.3	0
	M5 (γ)	0.2823	-23 800.3	0
II	M8 ($\omega \geq 1$)	0.4715	-5572.62	95
	M7 (β)	0.3714	-5580.1	0
	M5 (γ)	0.4949	-5570.53	92
III	M8 ($\omega \geq 1$)	0.2785	-15 792.5	0
	M7 (β)	0.2668	-15 791.2	0
	M5 (γ)	0.3354	-15 802.1	0
IV	M8 ($\omega \geq 1$)	0.2038	-12 771.1	0
	M7 (β)	0.1947	-12 768.4	0
	M5 (γ)	0.2296	-12 783.1	0
V	M8 ($\omega \geq 1$)	0.3202	-26 211.9	0
	M7 (β)	0.3155	-26 207.7	0
	M5 (γ)	0.3843	-26 258.2	2
VI	M8 ($\omega \geq 1$)	0.3740	-11 774.3	0
	M7 (β)	0.3496	-11 772.3	0
	M5 (γ)	0.4754	-11 804	8
VII	M8 ($\omega \geq 1$)	0.2413	-65 514	0
	M7 (β)	0.2252	-65 511.6	0
	M5 (γ)	0.2638	-65 574.7	0
VIII	M8 ($\omega \geq 1$)	0.2876	-20 307.7	0
	M7 (β)	0.2878	-20 304.4	0
	M5 (γ)	0.3206	-20 320.3	0
IX	M8 ($\omega \geq 1$)	0.3428	-24 351.7	0
	M7 (β)	0.3245	-24 358.4	0
	M5 (γ)	0.4102	-24 358.4	8

We compared 36 pairs of paralogous members and estimated the evolutionary rate of each amino acid site. Our results indicated that the coefficient of functional divergence (θ) values among these pairs was less than 1 (table 1), indicating significant site-specific alteration in selective constraints of most members of the Toll group pairs. We also predicted a few critical residues associated with functional divergence. For example, over 90 critical sites were predicted in the II/VI, II/V, II/VIII, II/IX, III/VII, III/IX, IV/IX, V/VII, V/VIII and V/IX pairs, whereas no site was predicted in the I/VI, II/III, II/VI, III/IV, III/VI, V/VI, VI/VII, VI/VIII, VI/IX and VIII/IX pairs when the cut-off value was 0.5. The highest theta values (θ) were observed in the II/IV, II/IX, III/IX and V/VIII pairs (table 1), suggesting a higher evolutionary rate between them. Thus, given the different evolutionary rates, the Toll genes diverged functionally from each other. The amino acid mutations promoted the functional evolution and divergence of the Toll genes as an adaptation of the species to the changing environment.

3.4. Selective pressure at amino acid sites in the Toll family members

The K_a/K_s ratio measures selection pressure on amino acid substitutions. A K_a/K_s ratio greater than 1 suggests positive selection and a ratio less than 1 suggests purifying selection [36]. Amino acids in a
A significant recombination event occurred between the 5′-ends of Cpl_Toll-2-5, exhibited evidence of intragenic recombination (Cpl_Toll-2-5 presented a recombination event of program RDP v3.44 [25]. All nine groups were found to contain similar mosaic segments, demonstrating that the Toll sequences within each of the groups were under strong purifying selection pressure. Further studies are required to evaluate the influence of recombination on function and investigate the mechanisms underlying Toll recombination.

Recombination plays a key role in the generation of genetic diversity. To determine whether homologous recombination shapes the evolution of the Toll genes, we analysed all Toll CDS segments to test whether some of them underwent an intragenic recombination event. Recombination signals of the Toll genes were investigated with the RDP [26], Geneconv [27] and MaxChi [28] methods embedded in the program RDP v3.44 [25]. All nine groups were found to contain similar mosaic segments, demonstrating that intragenic recombination had occurred. As summarized in table 3, 57 Toll genes in these groups exhibited evidence of intragenic recombination (p < 0.05 based on 100 permutations). As an example, we presented a recombination event of Cpl_Toll-2-5 and Cpl_Toll-2-4 detected by the RDP method (figure 2). A significant recombination event occurred between the 5′-ends of Cpl_Toll-2-5 and Cpl_Toll-2-4. Our results indicated that the Toll genes underwent frequent recombination events. Therefore, intragenic recombination played an important role in the evolution of the Toll genes, similar to other family genes [38,39]. Further studies are required to evaluate the influence of recombination on function and investigate the mechanisms underlying Toll recombination.

Table 3. The predicted recombination events for the Toll-I and Toll-2 genes in shellfish.

groups	GENECONV	MaxChi	genes undergone recombination events
I	2	1	Spu_Toll-1, Mvw_Toll-I-1, Sst_Toll-I-2, Mir_Toll-I-3, Sca_Toll-I, Csi_Toll-I, Qcb_Toll-I, Pab_Toll-I-1
II	4	5	Swo_Toll-I-2, Swo_Toll-I-3, Swo_Toll-I-4, Cpl_Toll-I-1, Hcu_Toll-I
III	3	1	Tgr_Toll-I-1, Mir_Toll-I-1, Swo_Toll-I-1, Cfa_Toll-I-2, Cpl_Toll-I-2
IV	3	2	Pru_Toll-I, Med_Toll-I-1, Cfa_Toll-I-1
V	8	1	Rbe_Toll-I, Hru_Toll-I, Cme_Toll-I, Mve_Toll-I-2, Cme_Toll-I, Mve_Toll-I-3, Med_Toll-I-2, Mir_Toll-I-2, Psy_Toll-I-1
VI	1	5	Tte_Toll-I, Pzy_Toll-I-2, Jaq_Toll-I-2, Bar_Toll-I
VII	15	12	Cfa_Toll-2-1, Hcu_Toll-2-1, Cpl_Toll-2-5, Hcu_Toll-2-2, Csi_Toll-2, Mme_Toll-2-1, Cfa_Toll-2-2, Cpl_Toll-2-1, Cpl_Toll-2-3, Swo_Toll-2-1, Cpl_Toll-2-4, Swo_Toll-2-2, Csi_Toll-2, Sst_Toll-2, Rph_Toll-2
VIII	3	4	Rbe_Toll-2, Ncu_Toll-2, Tte_Toll-2, Hru_Toll-2
IX	2	0	Mme_Toll-2-2, Wb_Toll-2-3, Jaq_Toll-2-3
Figure 2. Identification of recombination events between *Cpl_Toll-2-5* and *Cpl_Toll-2-4* genes. The plot display of recombination events was detected by the RDP method.

![Graph](image)

Figure 3. Activation of shrimp *Pen4* antimicrobial peptide gene by over expression of the full length of *Hcu_Toll-1* and *Hcu_Toll-2-2* (a), *Hcu_Toll-2-2-TIR-1*, *Hcu_Toll-2-2-TIR-2* and *Hcu_Toll-2-2-TIR-1 + TIR-2* (b) in S2 cells. The detailed methods could be seen in Material and methods section. All data are representative of three independent experiments. The bars indicate the s.d. of the luciferase activity (*n* = 3).
3.6. Over expression of Hcu_Toll-2-2 and Hcu_Toll-I activates shrimp penaeidin-4

To analyse the functional differences between tandem TIRs (TIR-1 and TIR-2) containing Toll (Hcu_Toll-2-2) and single TIR domain containing Toll (Hcu_Toll-I), over expression of Hcu_Toll-2-2 or Hcu_Toll-I in Drosophila S2 cells was performed. Dual-luciferase reporter assays were performed and both Hcu_Toll-2-2 and Hcu_Toll-I could activate the promoter activity of shrimp penaeidin-4. However, Hcu_Toll-2-2 had stronger AMP-induced activity than Hcu_Toll-I. The difference in AMP-induced activity of TIR-1 and TIR-2 of Hcu_Toll-2-2 was further investigated. As shown in figure 3b, Hcu_Toll-2-2 (containing LRRs + TM + TIR-1 + TIR-2) had stronger AMP-induced activity than Hcu_Toll-2-2-TIR-1 (including LRRs + TM + TIR-1) and Hcu_Toll-2-2-TIR-2 (LRRs + TM + TIR-2). Hcu_Toll-2-2-TIR-2 had stronger AMP-induced activity than Hcu_Toll-2-2-TIR-1 (figure 3).

SMART analysis showed that Hcu_Toll-I had four LRRs, followed by one LRR-CT, two LRRs, one LRR_CT, one TM and one TIR named TIR-2. In terms of Hcu_Toll-2-2, in addition to a TIR (TIR-1), the other was similar to Hcu_Toll-I. Phylogenetic analysis demonstrated that Toll-I was the ancestor of Toll-2. Thus, the enhanced AMP-induced activity of Toll-2 may result from its evolution into tandem TIRs. A previous study confirmed that Toll repeat domains in many plant resistance genes play important roles in plant innate immune systems [40]. Activation of the Toll signalling pathway can induce the interaction of Toll and Myd88 adaptor molecules through its TIR domain. Tandem TIRs of Toll-2 may have more interaction sites and may bind more Myd88 molecules, which induce strong AMP-induced activity. The enhanced AMP-induced activity resulted in tandem TIR-containing Tolls existing in molluscs during evolution.

Authors’ contributions. Q.R. and Y.C. carried out the experiments. Q.R. designed the experiments and J.C. and Q.R. analysed the data. Q.R., J.C. and Y.C. wrote the manuscript. All authors have read and approved the manuscript.

Competing interests. The authors declare no conflict of interest.

Funding. This study was supported by the National Natural Science Foundation of China (Grant Nos. 31572647), the Natural Science Foundation of Jiangsu Province (BK20131401), Natural Science Fund of Colleges and Universities in Jiangsu Province (14KJA240002) and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

References

1. Carbone L. 2014 The IACUC handbook. New York, NY: CRC Press.
2. Maramorosch K. 2012 Invertebrate immunity. New York, NY: Academic Press.
3. Anderson KV, Jürgens G, Nüsslein-Volhard C. 1985 Establishment of dorsal-ventral polarity in the Drosophila embryo: genetic studies on the role of the Toll gene product. Cell 42, 779–789.
4. Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann A. 1996 The dorsal-ventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973–983. (doi:10.1016/S0092-8674(00)80172-5)
5. Weber A, Wassiljewa P, Kracht M. 2010 Interleukin-1 (IL-1) pathway. Sci. Signal. 3, cm1. (doi:10.1126/scisignal.20135cm1)
6. Ouy JY, Yang Y, Xu X, Ito Y. 2002 The Drosophila Toll-9 activates a constitutive antimicrobial defense. EMBO Rep. 3, 82–87. (doi:10.1093/embo-reports/kvf004)
7. Taguchi T, Mitzcham JI, Downer SK, Sims JE, Testa JR. 1996 Chromosomal localization of Tll, a gene encoding a protein related to the Drosophila transmembrane receptor Toll, to human chromosome 4p14. Genomics 32, 486–488. (doi:10.1006/geno.1996.0050)
8. Rawlings DJ, Schwartz MA, Jackson SW, Meyer-Bahlburg A. 2012 Integration of B cell responses through Toll-like receptors and antigen receptors. Nat. Rev. Immunol. 12, 282–294. (doi:10.1038/nri3190)
9. Ridnour LA, Cheng YF, Switzer CH, Heinjecke JL, Ambs S, Glynn S, Young JA, Trinchieri G, Wink DA. 2013 Molecular pathways: Toll-like receptors in the tumor microenvironment—poor prognosis or new therapeutic opportunity. Clin. Cancer Res. 19, 1340–1346. (doi:10.1158/1078-0432.CCR-12-0408)
10. Neul MD et al. 2012 Toll-like receptor 4 is expressed on intestinal stem cells and regulates their proliferation and apoptosis via the p53 up-regulated modulator of apoptosis. J. Biol. Chem. 287, 3216–323. (doi:10.1074/jbc.M112.375881)
11. Green NN, Marshak-Rothstein A. 2011 Toll-like receptor driven B cell activation in the induction of systemic autoimmune. Semin. Immunol. 23, 106–112. (doi:10.1016/j.smim.2011.01.016)
12. Reynolds JM, Martinez-Gi, Chung Y, Dong C. 2012 Toll-like receptor 4 signalling in T cells promotes autoimmune inflammation. Proc. Nat Acad. Sci. USA 109, 13 064–13 069. (doi:10.1073/pnas.1120583109)
13. Satake H, Sekiguchi T. 2012 Toll-like receptors of deuterostome invertebrates. Front. Immunol. 3, 34. (doi:10.3389/fimmu.2012.00034)
14. Wang Z, Chen YH, Dai Y, Tan JM, Huang Y, Lan JF, Ren Q. 2015 A novel vertebrates Toll-like receptor counterpart regulating the anti-microbial peptides expression in the freshwater crayfish, Procambarus clarkii. Fish Shellfish Immunol. 43, 219–229. (doi:10.1016/j.fsi.2014.12.038)
15. Tanimura N, Miyake K. 2015 Glycoscience: biology and medicine. Tokyo, Japan: Springer.
23. Gu X. 2001 Maximum-likelihood approach for gene family evolution under functional divergence. *Mol. Biol. Evol.* 18, 453–464. (doi:10.1093/oxfordjournals.molbev.a003824)

24. Stern A, Doron-Faigenboim A, Erez E, Martz E, Bacharach E, Pupko T. 2007 Selecton 2007: advanced models for detecting positive and purifying selection using a Bayesian inference approach. *Nucleic Acids Res.* 35, W506–W511. (doi:10.1093/nar/gkm382)

25. Martin DP, Lemey P, Lott M, Moulton V, Posada D, Lefèuvre P. 2010 RDP3: a flexible and fast computer program for analyzing recombination. *Bioinformatics* 26, 2462–2463. (doi:10.1093/bioinformatics/btq467)

26. Martin D, Rybicki E. 2000 RDP: detection of recombination amongst aligned sequences. *Bioinformatics* 16, 562–563. (doi:10.1093/bioinformatics/16.6.562)

27. Padidam M, Sawyer S, Fauquet CM. 1999 Possible emergence of new geminiviruses by frequent recombination. *Virology* 265, 218–225. (doi:10.1006/viro.1999.0056)

28. Posada D, Crandall KA. 2001 Evaluation of methods for detecting recombination from DNA sequences: computer simulations. *Proc. Natl Acad. Sci. USA* 98, 13 757–13 762. (doi:10.1073/pnas.241370698)

29. Bailey TI, Williams N, Misleih C, Li WW. 2006 MEME: discovering and analyzing DNA and protein sequence motifs. *Nucleic Acids Res.* 34, 369–373. (doi:10.1093/nar/gkl198)

30. Punta M et al. 2012 The Pfam protein families database. *Nucleic Acids Res.* 40, D290–D301. (doi:10.1093/nar/gkr1065)

31. Bjorklund AK, Ekmans D, Elofsson A. 2006 Expansion of protein domain repeats. *PLoS Comput. Biol.* 2, e114. (doi:10.1371/journal.pcbi.0020114)

32. Andrade MA, Perez-Iturbe C, Ponting CP. 2001 Protein repeats: structures, functions, and evolution. *J. Struct. Biol.* 134, 117–131. (doi:10.1006/jsbi.2001.4392)

33. D’Andrea LD, Regan L. 2003 TPR proteins: the versatile helix. *Trends Biochem. Sci.* 28, 655–662. (doi:10.1016/S0968-0004(03)00007)

34. Weiner JS, Beausset F, Bomberg-Bauer E. 2006 Domain deletions and substitutions in the modular protein evolution. *FEBS J.* 273, 2037–2047. (doi:10.1111/j.1742-4658.2006.05220.x)

35. Light S, Sagit R, Ithychanda SS, Qin J, Elofsson A. 2012 The evolution of filamin: a protein domain repeat perspective. *J. Struct. Biol.* 179, 289–298. (doi:10.1016/j.jsb.2012.02.001)

36. Hurst LD. 2002 The Ka/Ks ratio: diagnosing the form of sequence evolution. *Trends Genet.* 18, 486–487. (doi:10.1016/S0168-9525(02)02722-1)

37. Yang Z, Nielsen R, Goldman N, Pedersen AM. 2000 Codon substitution models for heterogeneous selection pressure at amino acid sites. *Genetics* 155, 431–449.

38. Cao J. 2006 Analysis of the prefoldin gene family in 14 plant species. *Front. Plant Sci.* 7, 317.

39. Cao J, Li X. 2015 Identification and phylogenetic analysis of late embryogenesis abundant proteins family in tomato (*Solanum lycopersicum*). *Planta* 241, 757–772. (doi:10.1007/s00425-014-2215-y)

40. Ellis J, Dodds P, Pryor T. 2000 Structure, function and evolution of plant disease resistance genes. *Curr. Opin. Plant Biol.* 3, 278–284. (doi:10.1016/S1369-5266(00)00080-7)