Scalar dark matter, Type II Seesaw and the DAMPE cosmic ray $e^+ + e^-$ excess

Tong Li,1,2 Nobuchika Okada,3 and Qaisar Shafi4
1School of Physics, Nankai University, Tianjin 300071, China
2ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics and Astronomy, Monash University, Melbourne, Victoria 3800, Australia
3Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487, USA
4Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA

The DArk Matter Particle Explorer (DAMPE) has reported a measurement of the flux of high energy cosmic ray electrons plus positrons (CREs) in the energy range between 25 GeV and 4.6 TeV [11]. This experiment has an excellent performance for the CREs energy resolution at the TeV scale and a high power of the hadron rejection. The DAMPE data display not only a spectral break around 0.9 TeV, which was indicated by the H.E.S.S. experiments [2], but also display an intriguing excess at an energy of around 1.4 TeV.

The DAMPE excess in the CREs spectrum has already stimulated a number of proposals for particle physics interpretations through pair annihilations of dark matter (DM) particles [3–4]. Since the excess is localized around 1.4 TeV, we may consider a pair of DM particles is mostly annihilating into leptons, namely, "leptophilic dark matter." In Ref. [5] (see also Ref. [6]), the authors have performed a model-independent analysis to fit the DAMPE excess with a variety of leptonic channels ($\ell^+\ell^-$ and 4ℓ), where $\ell = e, \mu, \tau$ from DM annihilations or late-time DM decays, along with the constraints from the Fermi-LAT observations of dwarf spheroidal galaxies [7–8] and the Planck observations of Cosmic Microwave Background anisotropies [9]. It has been shown [5] that the Fermi-LAT observations disfavor the τ channels for the DM annihilation and the entire region for late-time DM decays. In addition, the interpretation with DM annihilations invokes a ‘boost’ factor which could either have an astrophysical origin (large inhomogeneities in the dark matter distribution), or have some particle physics origin.

In this letter, we revisit a very simple extension of the SM in which two major missing pieces in the SM, namely, a dark matter candidate and the neutrino mass matrix, are incorporated. The model was proposed some years ago [10] to interpret an excess of cosmic ray positions reported by the PAMELA experiment [11]. More detailed analysis for the cosmic ray fluxes was performed in Ref. [12]. The DM particle in our scheme is a SM singlet scalar D [13], and its state

\[
\begin{array}{ccc}
\ell_L & 2 & -1/2 \\
H & 2 & +1/2 \\
\Delta & 3 & +1 \\
D & 1 & 0
\end{array}
\]

$SU(2)_L \times U(1)_Y$	Z_2		
ℓ_L	2	-1/2	+
H	2	+1/2	+
Δ	3	+1	+
D	1	0	-

TABLE I. Particle content relevant for our discussion in this letter. In addition to the SM lepton doublets ℓ_L ($i = 1, 2, 3$ being the generation index) and the Higgs doublet H, a complex scalar Δ and a real scalar D are introduced. The SM $SU(2)_L$, triplet scalar Δ plays the key role in the type II seesaw mechanism, while D is the DM candidate.

bility is ensured by an unbroken Z_2 symmetry under which it carries negative parity. The leptophilic nature of this DM particle arises from its interactions with the SM SU(2) triplet field (Δ) which is introduced to accommodate the observed neutrino oscillations [14] via the type II seesaw mechanism [16].

The particle content relevant for our discussion in this letter is summarized in Table I. An odd Z_2 parity is assigned to the SM singlet scalar (D), which makes it stable and a suitable DM candidate. It is often useful to explicitly express the triplet scalar by three complex scalars (electric charge neutral (Δ^0), singly charged (Δ^+) and doubly charged (Δ^{++}) scalars):

\[
\Delta = \sqrt{2}\sigma^i \Delta^i = \begin{pmatrix} \Delta^+ /\sqrt{2} & \Delta^{++} \\ \Delta^0 & -\Delta^+ /\sqrt{2} \end{pmatrix},
\]

where σ^i's are Pauli matrices.

Following the notations of Ref. [15], the scalar potential
relevant for type II seesaw is given by
\[V(H, \Delta) = -m_Y^2 (H^\dagger H) + \lambda \left(H^\dagger H \right)^2 \]
\[+ M_\Delta^2 \text{tr} [\Delta^\dagger \Delta] + \lambda_1 \left(\text{tr}[\Delta^\dagger \Delta] \right)^2 \]
\[+ \lambda_2 \left((\text{tr}[\Delta^\dagger \Delta])^2 - \text{tr}[\Delta^\dagger \Delta \Delta^\dagger \Delta] \right) \]
\[+ \lambda_3 H^\dagger H \text{tr} [\Delta^\dagger H + \lambda_3 H^\dagger [\Delta, H] + \lambda_3 H^\dagger H + H.c.] , \]
(2)
where the coupling constants \(\lambda_i \) are taken to be real without loss of generality. The triplet scalar \(\Delta \) has a Yukawa coupling with the lepton doublets given by
\[\mathcal{L}_\Delta = - \frac{1}{\sqrt{2}} (Y_\Delta)_{ij} \ell^T_L C \sigma_2 \Delta L^c_i + H.c. \]
\[= - \frac{1}{\sqrt{2}} (Y_\Delta)_{ij} \nu^T_L C \Delta^0 \nu^c_L \]
\[+ \frac{1}{2} (Y_\Delta)_{ij} \nu^T_L C \Delta^+ e^c_L \]
\[+ \frac{1}{\sqrt{2}} (Y_\Delta)_{ij} e^T_L C \Delta^{++} e^c_L + H.c. , \]
(3)
where \(C \) is the charge conjugate matrix, and \((Y_\Delta)_{ij} \) denotes the elements of the Yukawa matrix.

A non-zero vacuum expectation value (VEV) of the Higgs doublet generates a tadpole term for \(\Delta \) through the last term in Eq. (2). A non-zero VEV of the triplet Higgs is generated, \(\langle \Delta^0 \rangle = v_\Delta/\sqrt{2} \approx \lambda_6 v^2 / M_\Delta \), from minimizing the scalar potential. As a result, lepton number is spontaneously broken by \(\Delta \). From Eq. (3), this leads to the neutrino mass matrix:
\[m_\nu = v_\Delta (Y_\Delta)_{ij} \cdot \]
(4)
where \(v \) is the SM Higgs doublet VEV with \(v^2 + v_\Delta^2 = (246 \text{ GeV})^2 \).

Note that the triplet Higgs VEV contributes to the weak boson masses and alters the \(\rho \)-parameter from the SM prediction, \(\rho = 1 \), at tree level. The current precision measurement\(^{[14]}\) constrains this deviation to be within the range, \(\Delta \rho = \rho - 1 \approx v_\Delta/v \lesssim 0.01 \), so that we obtain \(\lambda_6 \lesssim 0.01 M_\Delta/v \).

We can fix the structure of \((Y_\Delta)_{ij} \) by using the neutrino oscillation data:
\[Y_\Delta = \frac{1}{v_\Delta} U_{\text{MNS}}^\dagger D_\nu U_{\text{MNS}}^\dagger , \]
(5)
where \(U_{\text{MNS}} \) is the neutrino mixing matrix in the standard form\(^{[14]}\), and \(D_\nu = \text{diag}(m_1, m_2, m_3) \) is the neutrino mass eigenvalue matrix. We employ the neutrino oscillation data: sin\(^2 2\theta_{13} = 0.092\)\(^{[17]}\) along with sin\(^2 2\theta_{12} = 0.87\), sin\(^2 2\theta_{23} = 1.0\), \(\Delta m^2_{21} = 7.6 \times 10^{-5} \text{ eV}^2 \), and \(\Delta m^2_{32} = 2.4 \times 10^{-3} \text{ eV}^2 \)\(^{[14]}\). Motivated by the recent measurement of the Dirac CP-phase (\(\delta_{CP} \)), we set \(\delta_{CP} = 3\pi/2 \)\(^{[13]}\). For simplicity, we choose the lightest neutrino mass to be zero. With \(Y_\Delta \gtrsim v_\Delta / M_\Delta \), the triplet scalar \(\Delta \) dominantly decays to a pair of leptons, such as \(\nu^c_2 e^c_1 \), \(e^c_1 e^c_2 \) \(\text{and} \) \(e^c_1 e^c_3 \). With the oscillation data inputs, we calculate the ratio for the charged lepton flavors produced by the \(\Delta \) decay (\(\Delta \rightarrow \nu^c_1 e^c_1 \), \(e^c_1 e^c_2 \), \(e^c_1 e^c_3 \)) to be
\[e : \mu : \tau \approx 0.1 : 1 : 1 \ \text{(Normal Hierarchy)}, \]
\[e : \mu : \tau \approx 2 : 1 : 1 \ \text{(Inverted Hierarchy)}, \]
(6)
(7)
for the neutrino mass patterns of normal hierarchy and inverted hierarchy, respectively. We find that these ratios are independent of the Majorana phases in \(U_{\text{MNS}} \).

The scalar potential relevant for DM physics is given by
\[V(H, \Delta, D) \]
\[= \frac{1}{2} m_D^2 D^2 + \lambda_D D^4 + \lambda_H D^2 (H^\dagger H) + \lambda_\Delta D^2 \text{tr} [\Delta^\dagger \Delta] \]
\[= \frac{1}{2} m_D^2 D^2 + \lambda_D D^4 + \lambda_H v D^2 h + \frac{\lambda_\Delta}{2} D^2 h^2 \]
\[+ \lambda_\Delta D^2 \left(\sqrt{2} v_\Delta \text{Re}[\Delta^0] + |\Delta^0|^2 + |\Delta^+|^2 + |\Delta^{++}|^2 \right) \]
(8)
where \(m_D^2 = m_\nu^2 + \lambda_H v^2 + \lambda_\Delta v_\Delta^2 \) is the DM mass, and \(h \) is the physical Higgs boson. Through the couplings \(\lambda_H \) and \(\lambda_\Delta \) in this scalar potential, a pair of DM particles annihilates into pairs of the Higgs doublet and the triplet, \(DD \rightarrow H^\dagger H + \Delta^\dagger \Delta \)\(^{[14]}\). In order to evaluate the thermal DM relic abundance, we first calculate the thermally averaged cross section times relative velocity for the process in the non-relativistic limit, which is given by
\[\langle \sigma v_{\text{rel}} \rangle = \frac{1}{16\pi m_D^2} \frac{\lambda_H^2}{v_\Delta^2} \left(1 - \frac{m_H^2}{m_D^2} \right) \]
\[\approx \frac{1}{16\pi m_D^2} \left(\lambda_H^2 + 0.27 \lambda_\Delta^2 \right) , \]
(9)
where we have chosen \(m_h = 125 \text{ GeV} \) for the Higgs boson mass, \(m_D - M_\Delta = 3 \text{ GeV} \) with \(m_D = 3 \text{ TeV} \). In particular, the cross section of \(DD \) annihilation into doubly and singly charged Higgs is
\[\langle \sigma v_{\text{rel}} \rangle (DD \rightarrow \Delta^{++} \Delta^{--}, \Delta^+ \Delta^-) = \frac{1}{8\pi m_D^2} \lambda_\Delta^2 \sqrt{1 - \frac{M_\Delta^2}{m_D^2}} , \]
(10)
The present DM relic density is determined by solving the Boltzmann equation with the thermally averaged cross section in Eq. (9). We employ an approximation formula given by
\[\Omega h^2 = \frac{1.07 \times 10^9 x_f GeV^{-1}}{\sqrt{g_* M_{Pl} \langle \sigma v_{\text{rel}} \rangle}} , \]
(11)
where \(M_{Pl} = 1.22 \times 10^{19} \text{ GeV} \) is the Planck mass, the freeze-out temperature \(x_f = m_D/T_f \) is given by \(x_f = \ln |X| - \]

1. Although there are other DM annihilation processes such as \(DD \rightarrow h \rightarrow W^+ W^- \), they are subdominant, since we choose \(M_\Delta \approx v \) in the following.
0.5 \ln[\ln[X]] \text{ with } X = 0.038(1/g_s^{1/2})M_Dm_D\langle\sigma v_{\text{rel}}\rangle, \text{ and we take } g_s = 100 \text{ for the total degrees of freedom of the thermal plasma. We numerically find the solution,}

\lambda_H^2 + 0.27\lambda_D^2 \simeq 0.82, \tag{12}

to reproduce the observed DM relic density \cite{9} \Omega_{\text{DM}} h^2 \simeq 0.12. \tag{13}

The couplings in perturbative regime can satisfy Eq. (12).

Several experiments are underway to directly detect the DM particles through elastic scattering off nuclei. The most stringent limit on the spin-independent elastic scattering cross section has been obtained by the recent PandaX-II \cite{20} experiment: \sigma_{\text{SI}} \leq 3 \times 10^{-9} \text{ pb for a DM mass of } m_D = 3 \text{ TeV. This result leads to an upper bound on } \lambda_H, \text{ since the scalar DM particle can scatter off a nucleon through processes mediated by the SM Higgs boson in the } t\text{-channel. The spin-independent elastic scattering cross section is given by}

\sigma_{\text{SI}} = \frac{\lambda_H^2}{\pi m_h^2} \frac{m_N^2}{(m_N + m_D)^2} f_N^2, \tag{14}

where \(m_N = 0.939 \text{ GeV} \) is the nucleon mass, and

\[f_N = \left(\sum_{q=u,d,s} f_{Tq} + \frac{2}{9} f_{TG} \right) m_N, \tag{15}\]
is the nuclear matrix element accounting for the quark and gluon contents of the nucleon. In evaluating \(f_{Tq} \), we employ the results from the lattice QCD simulation \cite{21}: \(f_{Tq} + f_{TG} \simeq 0.056 \) and \(|f_{Tq}| \leq 0.08 \). To make our analysis conservative, we set \(f_{TG} = 0 \). Using the trace anomaly formula, \(\sum_{q=u,d,s} f_{Tq} + f_{TG} = 1 \) \cite{22}, we obtain \(f_N^2 = 0.0706 m_N^2 \), and hence the spin-independent elastic scattering cross section is approximately given by

\[\sigma_{\text{SI}} = 3.2 \times 10^{-9} \text{ pb} \times \lambda_H^2, \tag{16}\]

for \(m_h = 125 \text{ GeV} \) and \(m_D = 3 \text{ TeV} \). Hence, we find \(\lambda_H^2 \lesssim 0.95 \), which is not a strong constraint. In Fig. 1 we show the allowed region of \(\lambda_H \) and \(\lambda_D \) by Planck and PandaX for \(m_D = 3 \text{ TeV} \) and \(m_D - M_\Delta = 3 \text{ GeV} \).

The dark matter in the halo of our galaxy can annihilate into the Higgs doublet and triplet. We choose \(\lambda_H \ll \lambda_D \), so that a pair of DM particles mainly annihilates into a pair of \(\Delta \), followed by the decay \(\Delta \rightarrow \ell^+\ell^- \). In this way, the DM pair annihilations can produce 2 or 4 charged leptons. We recall here that due to the constraints from the Fermi-LAT observations, the \(\tau \) channel is disfavored as a dominant final state. Therefore, the neutrino mass spectrum must exhibit inverted hierarchy from Eqs. (6) and (7). This is one of the main conclusions of this letter. To explain the DAMPE excess, we expect \(m_D \simeq M_\Delta, \) so that each final state lepton has almost a line spectrum. According to the fit results along with the Fermi-LAT constraints in Ref. [5], we set \(m_D \simeq 3 \text{ TeV} \) and a small mass differences between \(D \) and \(\Delta \), as we have chosen in Eq. (9), to yield the energy of each lepton to be \(E_\ell \simeq 1.5 \text{ TeV}. \)
where \(\rho(\vec{x})\) is the DM spatial distribution, \(\langle \sigma v_{\text{rel}} \rangle\) is the total velocity averaged dark matter annihilation cross section, and \(dN/dE\) is the energy spectrum of cosmic ray particle produced in the annihilation. For the DM spatial distribution, we assume a generalized Navarro-Frenk-White (NFW) profile [27] to describe a DM subhalo with \(d_s = 0.3\) kpc distance away from us

\[
\rho(r) = \rho_s \frac{(r/r_s)^{-\gamma}}{(1 + r/r_s)^{3-\gamma}},
\]

with \(\gamma = 0.5\) and \(r_s = 0.1\) kpc.

For the 4-body spectrum of \(e^+ + e^-\) we consider, one has

\[
d\frac{dN}{dE} \approx \frac{\langle \sigma v_{\text{rel}} \rangle \Delta^{\pm\pm}}{\langle \sigma v_{\text{rel}} \rangle} \frac{4}{3} \times \text{BR}(\Delta^{\pm\pm} \rightarrow e^+e^+) \frac{d\bar{N}}{dE},
\]

where \(\Delta^{\pm\pm}/\langle \sigma v_{\text{rel}} \rangle = \langle \sigma v_{\text{rel}} \rangle(DD \rightarrow \Delta^{\pm\pm} \rightarrow e^+e^+) \approx 1/3\) if \(\lambda_H \ll \lambda_\Delta\) in our model and \(\text{BR}(\Delta^{\pm\pm} \rightarrow e^+e^+) = 50\%(1\%)\) is the branching ratio of doubly charged triplet Higgs decay to same sign electrons/positrons in the case of inverted hierarchy (normal hierarchy). Note that in Eq. (23) we ignore the decays with \(\mu^+\) and \(\tau^+\) in final states which give soft secondary electrons/positrons and are thus disfavored by DAMPE data [5].

The cosmic ray spectrum \(d\bar{N}/dE\) in the lab frame is given by the spectrum from the triplet Higgs decay in its rest frame, denoted by \(dN/dE_0\), after a Lorentz boost [28, 29]. Namely,

\[
d\frac{\bar{N}}{dE} = \int_{t_{1,\text{min}}}^{t_{1,\text{max}}} \frac{dx_0}{x_0} \frac{d\bar{N}}{dE_0},
\]

where

\[
t_{1,\text{max}} = \min \left[1, \frac{2x}{c^2} \left(1 + \sqrt{1 - \epsilon^2} \right) \right],
\]

\[
t_{1,\text{min}} = \frac{2x}{c^2} \left(1 - \sqrt{1 - \epsilon^2} \right)
\]

with \(\epsilon = M_\Delta/m_D\) and \(x = E/m_D \leq 0.5\). We use PPC4DMID [30] to generate the above energy spectrum of \(e^+ + e^-\).

For the cosmic ray background not from DM contribution, we adopt a power law parameterization with two breaks,

\[
\Phi(BKG) = \Phi_0 E^{-\Delta_1} \left[1 + \left(\frac{E_{\text{br},1}}{E} \right)^{\delta_0} \right]^{\Delta_1/\delta_0} \left[1 + \left(\frac{E}{E_{\text{br},2}} \right)^{\delta_1} \right]^{\Delta_2/\delta_0}. \tag{27}
\]

Given the fit to the DAMPE data without the excess point and two fixed parameters, i.e. \(E_{\text{br},1} = 50\) GeV and \(\delta_1 = 10\), one can obtain the other parameters as \(\Phi_0 = 247.2\) GeV\(^{-1}\) m\(^{-2}\) s\(^{-1}\) sr\(^{-1}\), \(\Delta_1 = 3.092\), \(\Delta_2 = 0.096\), \(\gamma_1 = -0.968\), and \(E_{\text{br},2} = 885.4\) GeV [3].

Taking \(\sigma v_{\text{rel}} = 3 \times 10^{-26}\) cm\(^3\)/s, \(m_D = 3\) TeV and the local density of \(\rho_s = 175\) GeV/cm\(^3\), in Fig. 2 we show the DAMPE data and the DM contributions to the \(e^+ + e^-\) flux for the inverted hierarchy of neutrino mass pattern. The mass difference \(m_D - M_\Delta\) is respectively assumed to be 3 GeV and 10 GeV. As expected, a smaller mass difference leads to a sharper energy spectrum and is more likely to explain the DAMPE excess. In the case of normal hierarchy, one needs an enhancement factor of about 0.5/0.01 = 50 to fit the DAMPE data. This indicates that the inverted hierarchy spectrum is more preferred by the DAMPE excess.

When in addition including the DM annihilation into singly charged Higgs pairs with two electron/positron in final states, as \(\sigma v_{\text{rel}}(DD \rightarrow \Delta^{\pm} \rightarrow e^+e^-) = \sigma v_{\text{rel}}(DD \rightarrow \Delta^{++} \rightarrow e^+e^+e^-)\) if triplet Higgses being degenerate and \(\text{BR}(\Delta^{\pm} \rightarrow e^+e^\pm\nu) = \text{BR}(\Delta^{++} \rightarrow e^+e^++\nu)\) in both normal hierarchy and inverted hierarchy, we find the local density of \(\rho_s \approx 140\) GeV/cm\(^3\) is needed to get agreement with the DAMPE data.

In the above analysis, we assume the triplet Higgses are degenerate with the mass being \(M_\Delta\). Actually, if the coupling \(\lambda_5\) is sizable enough, the mass differences between triplet Higgs are likely to be larger than the sub-GeV mass splitting \(m_D - M_\Delta\) required by DAMPE excess. Thus, the doubly charged Higgs can serve as the lightest triplet scalar with sub-GeV smaller mass than the DM, while the singly and neutral triplet Higgses are all heavier than DM. The DM particles subsequently annihilate into doubly charged Higgs pairs only, i.e. \(\langle \sigma v_{\text{rel}} \rangle \Delta^{\pm\pm}/\langle \sigma v_{\text{rel}} \rangle = 1\) in Eq. (23). In this case the local density is required to be \(\rho_s \approx 100\) GeV/cm\(^3\) to fit the DAMPE excess for \(m_D - M_\Delta = 3\) GeV.
where we have parametrized the triple scalar couplings by the scalar mass M_S. For simplicity, we assume that other couplings involving S are negligibly small. In the zero-velocity limit, the annihilation cross section of a process mediated by the singlet, $DD \rightarrow S \rightarrow \Delta^\dagger \Delta$, is calculated to be

$$\sigma_{\text{rel}}|_{\text{rel}=0} \propto \frac{8\lambda_1^2 M_S^2}{\langle 4m_D^2 - M_S^2 \rangle^2 + M_S^2 \Gamma_S^2/2m_D}.$$

(29)

where the total decay width of the S boson is given by $\Gamma_S = (3\lambda_2^2/16\pi)M_S$, and $\Gamma_S = \Gamma_S(M_S \rightarrow 2m_D)$. According to Ref. [31], we introduce two small parameters ($0 < \delta < 1$ and $\gamma < 1$) defined with

$$M_S^2 = 4m_D^2(1 - \delta), \quad \frac{\Gamma_S}{M_S} = \frac{3\lambda_2^2}{16\pi}.$$

(30)

The cross section is then rewritten as

$$\sigma_{\text{rel}}|_{\text{rel}=0} \propto \frac{2\lambda_1^2}{m_D^2} \frac{\gamma}{\delta^2 + \gamma^2}.$$

(31)

For $\delta, \gamma \ll 1$, we have an enhancement of the annihilation cross section at the present universe [31]. Although the same process is also relevant for DM annihilation in the early universe, a relative velocity $v_{\text{rel}} = O(0.1)$ is not negligible, and the total energy of annihilating DM particles is away from the resonance pole. As a result, the annihilation cross section at the freeze-out time is suppressed, compared to the one at present.

In this mechanism, the DM pair annihilation process in the present universe is enhanced through the s-channel resonance with an intermediate state. Although the same process is also relevant for DM annihilation in the early universe, a relative velocity between annihilating DM particles at the freeze-out time is not negligible, and the total energy of annihilating DM particles is away from the s-channel resonance pole. As a result, the annihilation cross section at the freeze-out time is suppressed, compared to the one at present.

As is well-known, the SM Higgs potential becomes unstable at high energies, since the running SM Higgs quartic coupling (λ in Eq. (2)) turns negative at the renormalization scale of $\mu = O(10^{16})$ GeV [32]. However, it has been shown in Ref. [33] (before the Higgs boson discovery) that this electroweak vacuum instability can be solved in the presence of type II seesaw. See Ref. [34] for follow-up analysis after the Higgs boson discovery at the Large Hadron Collider.

In summary, motivated by the DAMPE cosmic ray $e^+ + e^-$ excess, we have revisited a simple extension of the SM to supplement it with neutrino masses via type II seesaw and a stable SM singlet scalar as the DM candidate. With a suitable choice of the couplings among the DM particles, the Higgs doublet and the triplet of type II seesaw, the DM particles in our galactic halo annihilate into a pair of triplet scalars, and their subsequent decays produce high energy CREs. Through the type II seesaw mechanism, the flavor structure of the primary leptons created by the triplet decay has a direct relation with the neutrino oscillation data. We have found that the DM interpretation of the DAMPE excess determines the pattern of neutrino mass spectrum to be the inverted hierarchy type, taking into account the constraints from the Fermi-LAT observations of dwarf spheroidal galaxies.

ACKNOWLEDGMENTS

This work is supported in part by the DOE Grant No. de-sc0013680 (N.O.) and No. de-sc0013880 (Q.S.).

[1] G. Ambrosi et al. [DAMPE Collaboration], “Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons,” doi:10.1038/nature24475 [arXiv:1711.10981] [astro-ph.HE].

[2] F. Aharonian et al. [H.E.S.S. Collaboration], “The energy spectrum of cosmic-ray electrons at TeV energies,” Phys. Rev. Lett. 101, 261104 (2008) [arXiv:0811.3894] [astro-ph]; F. Aharonian et al. [H.E.S.S. Collaboration], “Probing the ATIC peak in the cosmic-ray electron spectrum with H.E.S.S.” Astron. Astrophys. 508, 561 (2009) [arXiv:0905.0105] [astro-ph.HE].

[3] Y. Z. Fan, W. C. Huang, M. Spinrath, Y. L. S. Tsai and Q. Yuan, [arXiv:1711.10995] [hep-ph].

[4] P. H. Gu and X. G. He, “Electrophilic dark matter with dark photon: from DAMPE to direct detection,” [arXiv:1711.11000] [hep-ph]; G. H. Duan, L. Feng, F. Wang, L. Wu, J. M. Yang and R. Zheng, “Simplified TeV leptophilic dark matter in light of DAMPE data,” [arXiv:1711.11012] [hep-ph]; L. Zu, C. Zhang, L. Feng, Q. Yuan and Y. Z. Fan, “Constraints on box-shaped cosmic ray electron feature from dark matter annihilation with the AMS-02 and DAMPE data,” [arXiv:1711.11052] [hep-ph]; Y. L. Tang, L. Wu, M. Zhang and R. Zheng, “Lepton-portal Dark Matter in Hidden Valley model and the DAMPE recent results,” [arXiv:1711.11058] [hep-ph]; W. Chao and Q. Yuan, “The electron-flavored Z’-portal dark matter and the DAMPE cosmic ray excess,” [arXiv:1711.11182] [hep-ph]; P. H. Gu, “Radiative Dirac neutrino mass, DAMPE dark matter and leptonogenesis,” [arXiv:1711.11333] [hep-ph]; J. Cao, L. Feng, X. Guo, L. Shang, F. Wang and P. Wu, “Scalar dark matter interpretation of the DAMPE data with U(1) gauge interactions,” [arXiv:1711.11452] [hep-ph]; X. Liu and Z. Liu, “TeV dark matter and the DAMPE electron excess,” [arXiv:1711.11579] [hep-ph]; G. H. Duan, X. G. He, L. Wu and J. M. Yang, “Leptophilic dark matter in gauged U(1)$_{\text{L}e-L_\mu}$ model in light of DAMPE cosmic ray e$^+$+e$^-$ excess,” [arXiv:1711.11563] [hep-ph]; C. H. Chen, C. W. Chiang and T. Nomura, “Explaining the DAMPE e$^+$e$^-$ excess using the Higgs triplet model with a vector dark matter,” [arXiv:1712.00793] [hep-ph].

[5] Q. Yuan et al., “Interpretations of the DAMPE electron data,” [arXiv:1711.10989] [astro-ph.HE].

[6] F. Aharon, C. Balazs, A. Fowlie and Y. Zhang, “Model-independent analysis of the DAMPE excess,” [arXiv:1711.11376] [hep-ph].
[7] M. Ackermann et al. [Fermi-LAT Collaboration], “Constraining Dark Matter Models from a Combined Analysis of Milky Way Satellites with the Fermi Large Area Telescope,” Phys. Rev. Lett. 107, 241302 (2011) [arXiv:1108.3546 [astro-ph.HE]]; M. Ackermann et al. [Fermi-LAT Collaboration], “Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data,” Phys. Rev. Lett. 115, no. 23, 231301 (2015) [arXiv:1503.02641 [astro-ph.HE]]; S. Li et al., “Search for gamma-ray emission from eight dwarf spheroidal galaxy candidates discovered in Year Two of Dark Energy Survey with Fermi-LAT data,” Phys. Rev. D 93, no. 4, 043518 (2016) [arXiv:1511.09252 [astro-ph.HE]].

[8] A. Geringer-Sameth and S. M. Koushiappas, “Exclusion of canonical WIMPs by the joint analysis of Milky Way dwarfs with Fermi,” Phys. Rev. Lett. 107, 241303 (2011) [arXiv:1108.2194 [astro-ph.CO]]; Y. L. S. Tsai, Q. Yuan and X. Huang, “A generic method to constrain the dark matter parameter space from dwarf spheroids,” JCAP 1303, 018 (2013) [arXiv:1212.3990 [astro-ph.HE]].

[9] F. A. R. Ade et al. [Planck Collaboration], Astron. Astrophys. 594, A13 (2016) doi:10.1051/0004-6361/2012152830 [arXiv:1502.01589 [astro-ph.CO]].

[10] I. Gogoladze, N. Okada and Q. Shafi, “Type II Seesaw and the PAMELA/ATIC Signals,” Phys. Lett. B 679, 237 (2009) [arXiv:0904.4320 [hep-ph]].

[11] O. Adriani et al. [PAMELA Collaboration], “An anomalous positron abundance in cosmic rays with energies 1.5-100 GeV,” Nature 458, 607 (2009) [arXiv:0810.4995 [astro-ph]].

[12] P. S. B. Dev, D. K. Ghosh, N. Okada and I. Saha, “Neutrino Mass and Dark Matter in light of recent AMS-02 results,” Phys. Rev. D 89, 095001 (2014) [arXiv:1307.6204 [hep-ph]].

[13] V. Silveira and A. Zee, “Scalar Phantoms,” Phys. Lett. 161B, 136 (1985); J. McDonald, “Gauge singlet scalars as cold dark matter,” Phys. Rev. D 50, 3637 (1994) [hep-ph/9702143 [HEP-PH]]; C. P. Burgess, M. Pospelov and T. ter Veldhuis, “The Minimal model of nonbaryonic dark matter: A Singlet scalar,” Nucl. Phys. B 619, 709 (2001) [hep-ph/0011335].

[14] C. Patrignani et al. [Particle Data Group], “Review of Particle Physics,” Chin. Phys. C 40, no. 10, 100001 (2016).

[15] M. A. Schmidt, “Renormalization group evolution in the type I+ II seesaw model,” Phys. Rev. D 76, 073010 (2007) Erratum: [Phys. Rev. D 85, 099903 (2012)] [arXiv:0705.3841 [hep-ph]].

[16] G. Lazarides, Q. Shafi and C. Wetterich, “Proton Lifetime and Fermion Masses in an SO(10) Model,” Nucl. Phys. B 181, 287 (1981); R. N. Mohapatra and G. Senjanovic, “Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation,” Phys. Rev. D 23, 165 (1981); M. Magg and C. Wetterich, “Neutrino Mass Problem and Gauge Hierarchy,” Phys. Lett. 94B, 61 (1980); J. Schechter and J. W. F. Valle, “Neutrino Masses in SU(2) x U(1) Theories,” Phys. Rev. D 22, 2227 (1980).

[17] F. P. An et al. [Daya Bay Collaboration], “Observation of electron-antineutrino disappearance at Daya Bay,” Phys. Rev. Lett. 108, 171803 (2012) [arXiv:1203.1669 [hep-ex]].

[18] K. Abe et al. [T2K Collaboration], “Measurements of neutrino oscillation in appearance and disappearance channels by the T2K experiment with 6.610^{20} protons on target,” Phys. Rev. D 91, no. 7, 072010 (2015) [arXiv:1502.01550 [hep-ex]].