BOUNDS ON MULTIGRADED REGULARITY

JULIETTE BRUCE, LAUREN CRANTON HELLER, AND MAHRUD SAYRAFI

Abstract. We explore the asymptotic behavior of the multigraded Castelnuovo–Mumford regularity of powers of ideals. Specifically, if I is an ideal in the total coordinate ring S of a smooth projective toric variety X, we bound the region $\text{reg}(I^n) \subseteq \text{Pic}(X)$ by proving that it contains a translate of $\text{reg}(S)$ and is contained in a translate of $\text{Nef}(X)$. Each bound translates by a fixed vector as n increases. Along the way we prove that the multigraded regularity of a finitely generated torsion-free module is contained in a translate of $\text{Nef}(X)$ determined by the degrees of the generators of M, and thus contains only finitely many minimal elements.

1. Introduction

Building on the work of Swanson in [Swa97], Cutkosky–Herzog–Trung in [CHT99] and Kodiyalam in [Kod00] described the surprisingly predictable asymptotic behavior of Castelnuovo–Mumford regularity for powers of ideals on a projective space \mathbb{P}^r: given an ideal $I \subset \mathbb{K}[x_0, \ldots, x_r]$, there exist $d, e \in \mathbb{Z}$ such that for $n \gg 0$ the regularity of I^n satisfies

$$\text{reg}(I^n) = dn + e.$$

Due to the importance of regularity as a measure of complexity for syzygies and its geometric interpretation in terms of the cohomology of coherent sheaves [BEL91, CEL01], this phenomenon has received substantial attention [GGP95, Cha97, SS97, Röm01, TW05, BCH13], focused mostly on projective spaces. See [Cha13] for a survey.

Motivated by toric geometry, we turn our focus toward ideals in the multigraded total coordinate ring S of a smooth projective toric variety X, for which a generalized notion of regularity was introduced by Maclagan and Smith [MS04]. In this setting the regularity of a $\text{Pic}(X)$-graded module is a subset of $\text{Pic}(X)$ that is closed under the addition of nef divisors. A natural question is thus whether there is an analogous description for the asymptotic shape of $\text{reg}(I^n) \subseteq \text{Pic}(X)$.

In Theorem 4.1 we bound multigraded regularity by establishing regions “inside” and “outside” of $\text{reg}(I^n)$ which translate linearly by a fixed vector as n increases (see the figure in Example 4.2). The inner bound depends on the Betti numbers of the Rees ring $S[It]$, while the outer bound depends only on the degrees of the generators of I.

Theorem 4.1. There exists a degree $a \in \text{Pic}(X)$, depending only on I, such that for each integer $n > 0$ and each pair of degrees $\mathbf{q}_1, \mathbf{q}_2 \in \text{Pic}(X)$ satisfying $\mathbf{q}_1 \geq \deg f_i \geq \mathbf{q}_2$ for all generators f_i of I, we have

$$n\mathbf{q}_1 + a + \text{reg}(S) \subseteq \text{reg}(I^n) \subseteq n\mathbf{q}_2 + \text{Nef}(X).$$

It is worth emphasizing that our result holds over smooth projective toric varieties with arbitrary Picard rank. Indeed, toric varieties of higher Picard rank introduce a wrinkle that is not present in existing asymptotic results on Castelnuovo–Mumford regularity: in general there are infinitely many possible regularity regions compatible with two given bounds. (In contrast, when $\text{Pic}(X) = \mathbb{Z}$, inner and outer bounds correspond to upper and lower bounds, respectively, with only finitely many integers between each pair.) Nevertheless, since multigraded regularity

2020 Mathematics Subject Classification. 13D02, 14M25.
is invariant under positive translation by $\text{Nef} \, X$, an outer bound in the shape of the nef cone cannot contain an infinite expanding chain of regularity regions.

Surprisingly, we will see in Example 3.2 that even on a Hirzebruch surface X the regularity of a finitely generated module may not be contained in the union of finitely many translates of $\text{Nef} \, X$. In the case of powers of ideals, however, the absence of torsion over S implies that the regularity has finitely many minimal elements. More generally, in Theorem 3.11 we construct a nef-shaped outer bound determined by the degrees of generators of a torsion-free module (see the figure in Example 3.13). We use the idea that if the truncation $M_{\geq d}$ is not generated in a single degree d then M is not d-regular (see Theorem 3.3 for a simpler case).

Theorem 3.11. Let M be a finitely generated graded torsion-free S-module with $\tilde{M} \neq 0$. Then $\text{reg} \, M$ is contained in a translate of $\text{Nef} \, X$. In particular, $\text{reg} \, M$ has finitely many minimal elements.

It remains an interesting problem to characterize modules with torsion whose regularity is contained in a translate of $\text{Nef} \, X$. Note that the regularity of a finitely generated module is always contained in a translate of $\text{Eff} \, X$ (see Proposition 3.7). In fact, the existence of a module whose regularity contains infinitely many minimal elements is a consequence of the difference between the effective and nef cones of X. This possibility highlights a theme from [BCHS21, BKLY22] that algebraic properties which coincide over projective spaces can diverge in higher Picard rank.

Outline. The organization of the paper is as follows: Section 2 introduces background results and our notation. Section 3 shows that the multigraded regularity of S lies inside $\text{Nef} \, X$, in Theorem 3.3, and that the multigraded regularity of a finitely generated torsion-free S-module is contained in an appropriate translate of $\text{Nef} \, X$, in Theorem 3.11. Section 4 gives explicit inner and outer bounds for the multigraded regularity of powers of an ideal, in Theorem 4.1.

Acknowledgments. We thank Christine Berkesch and David Eisenbud for their helpful conversations and comments, and Daniel Erman for suggesting this problem and discussing it with us. We also thank Dave Jensen, Tyler Kelly, and Hunter Spink for conversations which indirectly contributed to this project. The computer algebra system Macaulay2 [M2], in particular the package NormalToricVarieties by Gregory G. Smith et al., was indispensable in computing examples.

The first author is grateful for the support of the Mathematical Sciences Research Institute in Berkeley, California, where she was in residence for the 2020–2021 academic year. The first author was partially supported by the National Science Foundation under Award Nos. DMS-1440140, NSF FRG DMS-2053221, and NSF MSPRF DMS-2002239. The third author was partially supported by the NSF grant DMS-2001101.

2. Notation and Definitions

Throughout we work over a base field \mathbb{K} and denote by \mathbb{N} the set of non-negative integers. Let X be a smooth projective toric variety determined by a fan. The total coordinate ring of X is a $\text{Pic}(X)$-graded polynomial ring S over \mathbb{K} with an irrelevant ideal $B \subset S$. Write $\text{Eff} \, X$ for the monoid in $\text{Pic} \, X$ generated by the degrees of the variables in S.

Fix minimal generators $C = (c_1, \ldots, c_r)$ for the monoid $\text{Nef} \, X$ of classes in $\text{Pic} \, X$ represented by numerically effective divisors. For $\lambda \in \mathbb{Z}^r$, write $\lambda \cdot C$ to represent the linear combination $\lambda_1 c_1 + \cdots + \lambda_r c_r \in \text{Pic} \, X$, and similarly for other tuples in $\text{Pic} \, X$. Write $|\lambda|$ for the sum $\lambda_1 + \cdots + \lambda_r$.

We use a partial order on $\text{Pic} \, X$ induced by $\text{Nef} \, X$: given $a, b \in \text{Pic} \, X$, we write $a \leq b$ when $b - a \in \text{Nef} \, X$.

Example 2.1. The Hirzebruch surface $\mathcal{H}_t = \mathbb{P}(O_{\mathbb{P}^1} \oplus O_{\mathbb{P}^1}(t))$ is a smooth projective toric variety whose associated fan, shown left in Figure 1, has rays $(1, 0), (0, 1), (-1, t)$, and $(0, -1)$. For each ray there is a corresponding prime torus-invariant divisor. In particular, the total coordinate ring
of \(\mathcal{H}_t \) is the polynomial ring \(S = \mathbb{K}[x_0, x_1, x_2, x_3] \) and its irrelevant ideal is \(B = \langle x_0, x_2 \rangle \cap \langle x_1, x_3 \rangle \).

![Diagram showing fans and cones]

Figure 1. Left: fan of \(\mathcal{H}_2 \). Right: the cones Nef \(\mathcal{H}_2 \) (dark blue) and Eff \(\mathcal{H}_2 \) (blue).

Choosing a basis for \(\text{Pic} \mathcal{H}_t \cong \mathbb{Z}^2 \), the grading on \(S \) can be given as \(\deg x_0 = \deg x_2 = (1,0) \), \(\deg x_1 = (-1,1) \), and \(\deg x_3 = (0,1) \). The effective and nef cones are illustrated on the right.

For a Pic\((X)\)-graded \(S \)-module \(M \) and \(d \in \text{Pic} X \), denote by \(M \geq d \) the submodule of \(M \) generated by all elements of degrees \(d' \) satisfying \(d' \geq d \) (c.f. [MS04, Def. 5.1]). Denote by \(M \) the quasi-coherent sheaf on \(X \) associated to \(M \), as in [Cox95, §3].

We now recall the notion of multigraded Castelnuovo–Mumford regularity introduced by Maclagan and Smith.

Definition 2.2 (c.f. [MS04, Def. 1.1]). Let \(M \) be a graded \(S \)-module. For \(d \in \text{Pic} X \), we say \(M \) is \(d \)-regular if the following hold:

1. \(H^i_B(M)_b = 0 \) for all \(i > 0 \) and all \(b \in \bigcup_{|\lambda|=i-1} (d - \lambda \cdot C + \text{Nef} \ X) \) where \(\lambda \in \mathbb{N}^r \).
2. \(H^i_B(M)_b = 0 \) for all \(b \in \bigcup_j (d + c_j + \text{Nef} \ X) \).

We write \(\text{reg} M \) for the set of \(d \) such that \(M \) is \(d \)-regular.

3. Finite Generation of Multigraded Regularity

We begin by constructing an outer bound for the regularity of \(I^n \)—a subset of Pic \(X \) that contains \(\text{reg} (I^n) \). In [Kod00], Kodiyalam constructs this from a bound on the degrees of the generators of \(I^n \). However, more nuanced behavior can occur in the multigraded setting. The following example shows that the degree of a minimal generator of an ideal does not bound its regularity on an arbitrary toric variety.

Example 3.1. Let \(I = \langle x_0 x_3, x_0 x_2, x_1 x_2 \rangle \) be an ideal in the total coordinate ring of the Hirzebruch surface \(\mathcal{H}_t \), with notation as in Example 2.1. A local cohomology computation verifies that \(I \) is \((1,1)\)-regular. However \(x_0 x_2 \) is a minimal generator with \(\deg(x_0 x_2) = (2,0) \not\leq (1,1) \).

The existence of a similar example with \(H^i_B(M) \neq 0 \) was noted by Maclagan and Smith, who asked whether \(B \)-torsion was necessary in [MS04, §5]. Example 3.1 shows that it is not.

Perhaps more unexpectedly, it is also possible for the regularity of a finitely generated module to have infinitely many minimal elements with respect to \(\text{Nef} \ X \), as is the case in the following simple example pointed out by Daniel Erman.

Example 3.2. Let \(M = S/\langle x_2, x_3 \rangle \) be the coordinate ring of a single point on \(\mathcal{H}_t \) (see Example 2.1). Since \(\langle x_2, x_3 \rangle \) is saturated we have \(H^0_B(M) = 0 \). Furthermore, since the support of \(\widetilde{M} \) has dimension 0 we must have \(H^i_B(M) = 0 \) for \(i \geq 2 \). Thus \(\text{reg} M \) is determined entirely by \(H^1_B(M) \), which vanishes exactly where the Hilbert function of \(M \) agrees with its Hilbert polynomial.
The Hilbert function of \(M \) is equal to 1 inside \(\text{Eff} \mathcal{H}_t \) and 0 outside of it. Hence \(\text{reg} M = \text{Eff} \mathcal{H}_t \). When \(t > 0 \) this cone does not contain finitely many minimal elements with respect to \(\text{Nef} X \), as illustrated in Figure 2.

Figure 2. The multigraded regularity of \(M \) (green) is an infinite staircase contained in a translate of the effective cone of \(\mathcal{H}_2 \) (blue).

The regularity of the module in Example 3.2 is contained in a translate of \(\text{Eff} X \), which does give an outer bound. We will see in Proposition 3.7 that this is true for all \(M \). At the same time many modules, for instance \(S/\langle x_0, x_1 \rangle \), do have regularity regions contained in translates of \(\text{Nef} X \). Thus an outer bound in the shape of \(\text{Eff} X \) would not be tight in general. In particular, we will see in Corollary 3.12 that an outer bound in the shape of \(\text{Nef} X \) exists for an ideal \(I \subseteq S \) and thus \(\text{reg} I \) has finitely many minimal elements. We begin with the case \(I = S \).

3.1. Regularity of the Coordinate Ring

In this section we show that the pathology seen in Example 3.2—a regularity region contained in no translate of \(\text{Nef} X \)—does not occur for the total coordinate ring of a smooth projective toric variety. In particular we show that \(\text{reg} S \subseteq \text{Nef} X \).

In [MS04, Prob. 6.12], Maclagan and Smith asked for a combinatorial characterization of toric varieties \(X \) such that \(\text{Nef} X \subseteq \text{reg} S \). Theorem 3.3 below shows that when \(X \) is smooth and projective, \(\text{Nef} X \subseteq \text{reg} S \) is in fact equivalent to the a priori stronger condition that \(\text{reg} S = \text{Nef} X \). It still remains an interesting question to characterize such toric varieties. For instance, the only Hirzebruch surface with this property is \(\mathcal{H}_1 \).

Theorem 3.3. Using the notation from Section 2, we have \(\text{reg} S \subseteq \text{Nef} X \). In particular, \(\text{reg} S \) contains finitely many minimal elements.

Proof. Take \(d \in \text{reg} S \). By [MS04, Thm. 5.4] the truncation \(S_{\geq d} \) is generated by the monomials of \(S_d \), so there is a surjection \(S_d \otimes \mathbb{K} S \to S_{\geq d}(d) \) which sheafifies to a surjection \(S_d \otimes \mathcal{O} \to \mathcal{O}(d) \). Hence \(\mathcal{O}(d) \) is generated by global sections, so by [CLS11, Thm. 6.3.11] \(d \) is nef.

An application of Dickson’s lemma (e.g. [CLO15, §2.4 Thm. 5]), suggested by Will Sawin [Saw], shows that \(\text{reg} S \) has finitely many minimal elements, finishing the proof.

Lemma 3.4. A subset \(V \subseteq \text{Nef} X \) contains finitely many minimal elements with respect to \(\leq \) on \(\text{Pic} X \).

Elements of \(V \) can be written as linear combinations \(\lambda \cdot C \) of the monoid generators of \(\text{Nef} X \). The minimal elements of \(V \) must have coefficients \(\lambda \in \mathbb{N}^r \) that are minimal in the component-wise partial order on \(\mathbb{N}^r \). By Dickson’s lemma only finitely many possible coefficients exist. \(\square \)

Example 3.5. The multigraded regularity of the coordinate ring of the Hirzebruch surface \(\mathcal{H}_2 \) is contained in the nef cone of \(\mathcal{H}_2 \), as illustrated in Figure 3.

Though we do not directly use Theorem 3.3 in the next section, we do rely on the idea of the proof. For an arbitrary module \(M \), if \(d \in \text{reg} M \) then the truncation \(M_{\geq d} \) is generated in a single degree \(d \), meaning that \(\tilde{M}(d) \) is globally generated. This no longer immediately implies that \(d \)
is nef, but Lemma 3.6 below connects the difference between d and the degrees of the generators of M to monomials in truncations of S itself.

We also use the chamber complex of the rays of Eff X, which is described in [MS04, §2]. By definition, this chamber complex is the coarsest fan with support Eff X which refines all triangulations of the degrees of the variables of S. It partitions Eff X into cones that govern many geometric properties of Spec S, including its GIT quotients, birational geometry, and Hilbert polynomials (c.f. [CLS11, Ch. 14-15], [HKP06, §5]).

For our purposes we need only the existence of a strongly convex rational polyhedral fan that covers Eff X and contains Nef X as a cone. We will refer to the maximal cones as chambers and the codimension one cones as walls. In particular, Nef X is a chamber.

Lemma 3.6. Let Γ be a chamber of Eff X other than Nef X, and let $a_1, \ldots, a_n \in \text{Pic } X$. If $a_i \in \Gamma \setminus \text{Nef } X$ for all i, then there exist monomials $m_i \in S_{\geq a_i}$ such that $\prod_i m_i$ is not generated by the monomials of $S_{\sum a_i}$.

Proof. Since Γ and Nef X intersect at most in a wall of Γ and no a_i lies in $\Gamma \cap \text{Nef } X$, their sum $b = \sum a_i$ must also be in $\Gamma \setminus \text{Nef } X$. Consider the multiplication maps

$$S_b \otimes \mathbb{R} S \xrightarrow{\varphi} S(b) \quad \text{and} \quad \bigotimes \mathbb{R} S_{\geq a_i}(a_i).$$

Suppose the proposition is false. Then the image of ψ must be contained in the image of φ, else we could choose $(m_i) \in \bigotimes \mathbb{R} S_{\geq a_i}(a_i)$ with image not generated by the monomials of S_b. Note that each $S_{\geq a_i}(a_i)$ sheafifies to $\mathcal{O}(a_i)$, so sheafifying the entire diagram gives

$$S_b \otimes \mathcal{O} \xrightarrow{\varphi} \mathcal{O}(b) \quad \text{and} \quad \mathcal{O}(b).$$

In particular, the image of ψ is still contained in the image of φ. Since ψ sheafifies to an isomorphism, φ sheafifies to a surjection. This implies $b \in \text{Nef } X$, which is a contradiction. \square

3.2. Regularity of Torsion-Free Modules

The goal of this section is to prove that the multi-graded regularity of an ideal $I \subseteq S$ has only finitely many minimal elements. We will prove this more generally for finitely generated torsion-free S-modules.

Proposition 3.7 shows that the regularity of an arbitrary finitely generated module is contained in some translate of Eff X. Under the stronger assumption that M is torsion-free, Proposition 3.8 shows that we can also eliminate degrees that are in a translate of Eff X but not Nef X.

Proposition 3.7. Let M be a finitely generated graded S-module with $\tilde{M} \neq 0$. Suppose the degrees of all minimal generators of M are contained in Eff X. Then $\text{reg } M \subseteq \text{Eff } X$.

Figure 3. The regularity of S (dark green) is contained in Nef \mathcal{H}_2 (dark blue).
Let $\mathbf{d} \in \text{reg } M$ and suppose for contradiction that $\mathbf{d} \not\in \text{Eff } X$. The degree \mathbf{d} part $M_\mathbf{d}$ generates $M_{\geq \mathbf{d}}$ by [MS04, Thm. 5.4]. By hypothesis all elements of M have degrees inside $\text{Eff } X$, so $M_\mathbf{d} = 0$ and thus $M_{\geq \mathbf{d}} = 0$. The modules M and $M_{\geq \mathbf{d}}$ define the same sheaf by [MS04, Lem. 6.8], so $M_{\geq \mathbf{d}} = 0$ contradicts $\widetilde{M} \neq 0$. \hfill \square

Proposition 3.8. Let M be a finitely generated graded torsion-free S-module with $\widetilde{M} \neq 0$. Suppose Γ is a chamber of $\text{Eff } X \setminus \text{Nef } X$. If $\mathbf{d} = \deg f_i \in \Gamma \setminus \text{Nef } X$ for all generators f_i of M, then M is not \mathbf{d}-regular.

Proof. Assume on the contrary that M is \mathbf{d}-regular. Let $a_i = \mathbf{d} - \deg f_i$ for each i. By choice of \mathbf{d} we have $a_i \in \Gamma \setminus \text{Nef } X$. Hence by Lemma 3.6 there exist monomials $m_i \in S_{\geq a_i}$ such that $\prod_i m_i$ is not generated by the monomials of $S_{\sum a_i}$. Consider the elements $m_i f_i \in \widetilde{M}_\mathbf{d}$.

Since M is \mathbf{d}-regular, the degree \mathbf{d} part $M_\mathbf{d}$ generates $M_{\geq \mathbf{d}}$ by [MS04, Thm. 5.4]. Let g_1, \ldots, g_s with $\deg g_j = \mathbf{d}$ be generators for $M_{\geq \mathbf{d}}$. Thus we must have relations

$$m_i f_i = \sum_j b_{i,j} g_j = \sum_j b_{i,j} \left(\sum_k a_{j,k} f_k \right) = \sum_k c_{i,k} f_k$$

for some $b_{i,j}, a_{j,k}, c_{i,k} \in S$ with $\deg b_{i,j} = \deg m_i - a_i$ and $\deg a_{j,k} = a_k$. These relations form a partial presentation matrix

$$A = \begin{bmatrix} m_1 & 0 & \cdots & 0 \\ 0 & m_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & m_n \end{bmatrix} - \begin{bmatrix} c_{1,1} & c_{2,1} & \cdots & c_{n,1} \\ c_{1,2} & c_{2,2} & \cdots & c_{n,2} \\ \vdots & \vdots & \ddots & \vdots \\ c_{1,n} & c_{2,n} & \cdots & c_{n,n} \end{bmatrix}$$

for M. In particular, $\det(A) \in \text{Fitt}_0 M \subseteq \text{ann } M$ by [Eis95, Prop. 20.7], so $\det(A) M = 0$.

Since there are no zerodivisors on a torsion-free S-module, we must have $\det(A) = 0$, but this is impossible: note that $\det(A)$ contains the monomial $m = \prod_i m_i$ and that $\det(A) \in \mathbf{d} + I$ for $I = \prod_k (c_{1,k}, c_{2,k}, \ldots, c_{n,k})$, then observe that $I \subseteq \prod_k (a_{1,k}, a_{2,k}, \ldots, a_{n,k}) \subseteq S \otimes_S S_{\sum a_k}$ since $\deg a_{j,k} = a_k$. Hence $\det(A) = 0$ implies $m \in I \subseteq S \otimes_S S_{\sum a_k}$ and contradicts our choice of m_i. \hfill \square

Remark 3.9. Example 3.2 shows that Theorem 3.11 is not true without the torsion-free hypothesis. In practice, however, we only need that the element $\det A$ from (1) is a nonzerodivisor on M for some choice of m_i as in Lemma 3.6. Given a specific toric variety, this may be possible to verify directly in some cases where M is not torsion-free.

We will use the following technical lemma about the walls of $\text{Nef } X$ to find a vector satisfying the hypotheses of Proposition 3.8.

Lemma 3.10. Given $a_1, \ldots, a_n \in \text{Nef } X$ and $\mathbf{d} \in \text{Eff } X \setminus \text{Nef } X$, there exists a chamber Γ sharing a wall W with $\text{Nef } X$ and \mathbf{w} in the relative interior of W such that $\mathbf{d} + \mathbf{w} \in \Gamma$ and $\mathbf{d} + \mathbf{w} \in a_i + \Gamma$ for all i.

Proof. Consider the cone P defined by all rays of $\text{Nef } X$ in addition to a primitive element along \mathbf{d}. Since $\text{Nef } X \subseteq P$, at least one wall W of $\text{Nef } X$ must be in the interior of $P \subseteq \text{Eff } X$. Let Γ be the chamber across W from $\text{Nef } X$. Since $\mathbf{d} \not\in \text{Nef } X$, for each $\mathbf{w} \in W$ we have $\mathbf{d} + \mathbf{w} \not\in \text{Nef } X$.

Now consider the cone Q defined by all supporting hyperplanes of $\text{Nef } X$ and Γ except the hyperplane containing W. Since W is in the intersection of the open half-spaces defining Q, it lies in the interior of Q. Therefore we can find \mathbf{w} in the relative interior of $W \subset Q$ so that $\mathbf{d} + \mathbf{w} \in a_i + Q \subseteq a_i + (\Gamma \cup \text{Nef } X)$ for all i. By hypothesis $a_i + \text{Nef } X \subseteq \text{Nef } X$ so $\mathbf{d} + \mathbf{w} \not\in a_i + \text{Nef } X$. Hence $\mathbf{d} + \mathbf{w} \in a_i + \Gamma$ for all i. \hfill \square

Theorem 3.11. Let M be a finitely generated graded torsion-free S-module with $\widetilde{M} \neq 0$. Suppose the degrees of all minimal generators of M are contained in $\text{Nef } X$. Then $\text{reg } M \subseteq \text{Nef } X$. In particular, $\text{reg } M$ has finitely many minimal elements.
Proof. Suppose there exists $d \in \text{reg} M \setminus \text{Nef} X$. Since M satisfies the hypothesis of Proposition 3.7, we can assume that $d \in \text{Eff} X$. Using Lemma 3.10, we can find w in the relative interior of a wall separating $\text{Nef} X$ and an adjacent chamber Γ such that $d + w \in \Gamma$ and $d + w \notin \text{deg} f_i + \Gamma$ for all i. It follows from Proposition 3.8 that $d + w \notin \text{reg} M$, which is a contradiction because $w \in \text{Nef} X$ and $\text{reg} M$ is invariant under positive translation by $\text{Nef} X$.

The conclusion that $\text{reg} M$ has finitely many minimal elements follows from Lemma 3.4. □

Corollary 3.12. Let M be a finitely-generated torsion-free S-module. If $\text{deg} f_i \in b + \text{Nef} X$ for all generators f_i of M then $\text{reg} M \subseteq b + \text{Nef} X$.

Example 3.13. Consider the Hirzebruch surface \mathcal{H}_2, with notation from Example 2.1, and let M be the torsion-free module with presentation

$$S(3,-3) \oplus S(2,-2) \oplus S(1,-2) \left\langle \begin{array}{ccc}
 x_0^2 x_1 & x_1^2 x_2 & x_2^2 x_3
\end{array} \right\rangle S(0,-4).$$

Since the degrees of the generators are contained in $(-3,2) + \text{Nef} \mathcal{H}_2$, by Corollary 3.12 the multigraded regularity of M is contained in a translate of the nef cone, illustrated in Figure 5.

![Figure 5](image.png)

Figure 5. The multigraded regularity (dark green) of the module M is contained in a translate $(-3,2) + \text{Nef} \mathcal{H}_2$ (light green) of the nef cone of \mathcal{H}_2 (dark blue).

4. Powers of Ideals and Multigraded Regularity

Throughout this section let $I = \langle f_1, \ldots, f_s \rangle \subseteq S$ be an ideal and let P be the vector with coordinates $p_i = \text{deg} f_i \in \text{Pic} X$. We are interested in the asymptotic behavior of the multigraded regularity of I^n as n increases. In particular, we prove the following theorem:

Theorem 4.1. There exists a degree $a \in \text{Pic} X$, depending only on I, such that for each integer $n > 0$ and each pair of degrees $q_1, q_2 \in \text{Pic} X$ satisfying $q_1 \geq p_i \geq q_2$ for all i, we have

$$nq_1 + a + \text{reg} S \subseteq \text{reg}(I^n) \subseteq nq_2 + \text{Nef} X.$$
Proof. The inner bound will follow from Proposition 4.8. The outer bound follows from Corollary 3.12 by noting that \(\deg \prod_{j=1}^{n} f_{ij} = \sum_{j=1}^{n} p_{ij} \in nq_2 + \text{Nef} X \) for all products of \(n \) choices of generators of \(I \), and such products generate \(I^n \). \(\square \)

Example 4.2. Let \(I = \langle x_0 x_3, x_1^3 x_4 \rangle \) and \(J = \langle x_3, x_0^3 x_1 \rangle \) be two ideals in the total coordinate ring of the Hirzebruch surface \(H_2 \), with notation as in Example 2.1. Figure 6 shows the multigraded regularity of powers of \(I \) and \(J \) along with the bounds from Theorem 4.1.

![Figure 6](image)

Figure 6. The inner (dark green) and outer (light green) bounds for powers of \(I \) and \(J \). The circles correspond to the degrees of the generators of each power.

Remark 4.3. If \(q_2 \) is not nef, then the bounds in Theorem 4.1 will not increase with \(n \) in the partial order on \(\text{Pic} X \). We can see that this behavior is necessary by taking \(I \) to be a principal ideal generated outside of \(\text{Nef} X \).

4.1. The Rees Ring

One way to find a subset of the regularity of a module is by using its multigraded Betti numbers. In order to describe \(\text{reg}(I^n) \), we would thus like a uniform description of the Betti numbers of \(I^n \) for all \(n \). For this purpose, consider the multigraded Rees ring of \(I \):

\[
S[I t] := \bigoplus_{n \geq 0} I^n t^n \subseteq S[t],
\]

which is a \(\text{Pic}(X) \times \mathbb{Z} \)-graded noetherian ring with \(\deg ft^k = (\deg f, k) \) for \(f \in S \). Let \(R = S[T_1, \ldots, T_s] \) be the \(\text{Pic}(X) \times \mathbb{Z} \)-graded ring with \(\deg(T_i) = (\deg f_i, 1) = (p_i, 1) \). Notice that there is a surjective map of graded \(S \)-algebras:

\[
\begin{align*}
R & \longrightarrow S[I t] \\
T_i & \longrightarrow f_i t
\end{align*}
\]

Since \(R \) is a finitely generated standard graded algebra over \(S \), taking a single degree of a finitely generated \(R \)-module in the auxiliary \(\mathbb{Z} \) grading yields a finitely generated \(S \)-module.

Definition 4.4. For a \(\text{Pic}(X) \times \mathbb{Z} \)-graded \(R \)-module \(M \), define \(M^{(n)} \) to be the \(\text{Pic}(X) \)-graded \(S \)-module

\[
M^{(n)} := \bigoplus_{a \in \text{Pic} X} M_{(a,n)}.
\]
Following [Kod00], we record three important properties of this operation.

Lemma 4.5. Consider the functor $-^{(n)} : M \mapsto M^{(n)}$ from the category of Pic(X) × \mathbb{Z}-graded R-modules to the category of Pic(X)-graded S-modules.

(i) $-^{(n)}$ is an exact functor.

(ii) $S[I]\{t\}^{(n)} \cong I^n$.

(iii) $R(-a, -b)^{(n)} \cong R^{(n-b)}(-a) \cong \bigoplus_{|\nu|=n-b} S(-\nu \cdot P - a)$ where $\nu \in \mathbb{N}^n$.

Since $S[I]$ is a finitely generated module over the polynomial ring R, it has a finite free resolution. Applying $-^{(n)}$ gives a resolution by (i), which has cokernel I^n by (ii) and whose terms are finitely generated free S-modules by (iii). Thus we can constrain the Betti numbers of I^n in terms of those of $S[I]$.

4.2. Regularity of Powers of Ideals.

Given a description of the Betti numbers of I^n in terms of n, we obtain an inner bound on $\text{reg}(I^n)$ using the following lemma.

Lemma 4.6. If F_* is a finite free resolution for M with $F_j = \bigoplus_i S(-a_{i,j})$ and $H^0_B(M) = 0$ then

$$\bigcap_i \bigcup_{\lambda = j} (a_{i,j} - \lambda \cdot C + \text{reg} S) \subseteq \text{reg} M$$

(2)

where $C = (c_1, \ldots, c_r)$ is the sequence of nef generators for X and the union is over $\lambda \in \mathbb{N}^r$.

Remark 4.7. This result amounts to switching the union and intersection in the statement of [MS04, Cor. 7.3] for modules with $H^0_B(M) = 0$, which increases the size of the subset by allowing a different choice of λ for each i, j.

Proof. Fix d in the left hand side of (2) and consider the hypercohomology spectral sequence for F_* (see [BCHS21, Thm. 4.14] for a description of this spectral sequence). We must show that M is d-regular, meaning that $H^k_B(M)_d - \mu \cdot C = 0$ for all d and all μ with $|\mu| = k - 1$. Since F_* is a resolution for M, a diagonal of our spectral sequence converges to $H^k_B(M)$. Thus it is sufficient to prove that this entire diagonal vanishes in degree $d - \mu \cdot C$, i.e. that

$$H^k_B(F_j)_d - \mu \cdot C = \bigoplus_i H^k_B(S(-a_{i,j}))_d - \mu \cdot C = 0$$

(3)

for all j. This is satisfied for $k = 0$ by hypothesis. Now fix $k > 0$, μ, j, and i. By choice of d we have $d \in a_{i,j} - \lambda \cdot C + \text{reg} S$ for some λ with $|\lambda| = j$, so that $d - a_{i,j} + \lambda \cdot C \in \text{reg} S$. Call this degree d', and let $d' = (\lambda + \mu) \cdot C$, where $|\lambda + \mu| = k + j - 1$. Then by the definition of the regularity of S we have $H^k_B(S)_d' - c = 0$ where

$$d' - c = d - a_{i,j} + \lambda \cdot C - (\lambda + \mu) \cdot C = d - \mu \cdot C.$$

Hence each summand in (3) is zero for $k > 0$, as desired. \qed

Proposition 4.8. There exists a degree $a \in \text{Pic} X$, depending only on the Rees ring of I, such that for each integer $n > 0$ and degree $q \in \text{Pic} X$ satisfying $q \geq \deg f_i$ for all homogeneous generators f_i of I, we have

$$nq + a + \text{reg} S \subseteq \text{reg}(I^n).$$

Proof. Let F_* be a minimal Pic(X) × \mathbb{Z}-graded free resolution of $S[I]$ as an R-module, and write $F_j = \bigoplus_i R(-a_{i,j} - b_{i,j})$ for $a_{i,j} \in \text{Pic} X$ and $b_{i,j} \in \mathbb{Z}$. By Lemma 4.5, applying the $-^{(n)}$ functor to F_* yields a (potentially non-minimal) resolution of $S[I]^{(n)} \cong I^n$ consisting of free S-modules

$$F_j^{(n)} \cong \bigoplus_i R(-a_{i,j} - b_{i,j})^{(n)} \cong \bigoplus_i \bigoplus_{|\nu|=n-b_{i,j}} S(-\nu \cdot P - a_{i,j})$$

(4)
where \(P = (\deg f_1, \ldots, \deg f_s) \) is the sequence of degrees of the homogeneous generators \(f_i \) of \(I \). From this Lemma 4.6 gives the following bound on the regularity of \(I^n \):
\[
\bigcap_{i,j} \bigcup_{|\lambda|=j} [\nu \cdot P + a_{i,j} - \lambda \cdot C + \reg S] \subseteq \reg(I^n).
\]
(4)

Note that \(b_{0,0} = 0 \), as \(S[I^t] \) is a quotient of \(R \), and thus \(b_{i,j} \geq 0 \) for all \(i, j \), as \(R \) is positively graded in the \(\mathbb{Z} \) coordinate.

Take \(a \in \Pic X \) so that \(a \geq a_{i,j} \) for all \(i, j \). There are only finitely many \(a_{i,j} \) because \(S[I^t] \) is a finitely generated \(R \)-module and \(R \) is noetherian. We may now simplify the left hand side of (4) by noting three things: (i) for all \(|\lambda| = j \) and all \(j \) we have \(\reg S \subseteq -\lambda \cdot C + \reg S \), (ii) if \(|\nu| = n - b_{i,j} \) then \((n - b_{i,j})q \in \nu \cdot P + \reg S \), and (iii) for all \(i \) and all \(j \) we have \(nq + a \in (n - b_{i,j})q + a_{i,j} + \reg S \). Combining these facts gives that
\[
\reg(I^n) \supseteq \bigcap_{i,j} \bigcup_{|\lambda|=j} [\nu \cdot P + a_{i,j} - \lambda \cdot C + \reg S]
\]
\[
\supseteq \bigcap_{i,j} [\nu \cdot P + a_{i,j} + \reg S]
\]
\[
\supseteq \bigcap_{i,j} [(n - b_{i,j})q + a_{i,j} + \reg S]
\]
\[
\supseteq nq + a + \reg S.
\]
\(\square \)

A similar problem is to characterize the asymptotic behavior of regularity for symbolic powers of \(I \). Note that the symbolic Rees ring of \(I \) is not necessarily noetherian (see [GS21], for instance), so our argument for the existence of the degree \(a \) in the proof of Proposition 4.8 does not work in this case. More generally, if \(\mathcal{I} = \{I_n\} \) is a filtration of ideals, then one may ask for sufficient conditions so that \(\reg(I_n) \) is uniformly bounded.

References

[BCH13] Amir Bagheri, Marc Chardin, and Huy Tài Hà, The eventual shape of Betti tables of powers of ideals, Math. Res. Lett. 20 (2013), no. 6, 1033–1046. ↑
[BKLY22] Christine Berkesch, Patricia Klein, Michael C. Loper, and Jay Yang, Homological and combinatorial aspects of virtually Cohen-Macaulay sheaves, Trans. London Math. Soc. 9 (2022), no. 1, 413–434. ↑
[BEL91] Aaron Bertram, Lawrence Ein, and Robert Lazarsfeld, Vanishing theorems, a theorem of Severi, and the equations defining projective varieties, J. Amer. Math. Soc. 4 (1991), no. 3, 587–602. ↑
[BCHS21] Juliette Bruce, Lauren Cranton Heller, and Mahrud Sayrafi, Characterizing Multigraded Regularity on Products of Projective Spaces (2021). ArXiv pre-print: https://arxiv.org/abs/2110.10705. ↑2
[Cha97] Karen A. Chandler, Regularity of the powers of an ideal, Comm. Algebra 25 (1997), no. 12, 3773–3776. ↑
[Cha13] Marc Chardin, Powers of ideals: Betti numbers, cohomology and regularity, Commutative algebra, Springer, 2013, pp. 317–333. ↑
[Cox95] David A. Cox, The homogeneous coordinate ring of a toric variety, J. Algebraic Geom. 4 (1995), no. 1, 17–50. ↑
[CLO15] David A. Cox, John B. Little, and Donal O'Shea, Ideals, varieties, and algorithms, 4th ed., Undergraduate Texts in Mathematics, Springer, 2015. ↑
[CLS11] David A. Cox, John B. Little, and Henry K. Schenck, Toric varieties, Graduate Studies in Mathematics, vol. 124, AMS, Providence, RI, 2011, pp. 3–5.
[CEL01] Steven Dale Cutkosky, Lawrence Ein, and Robert Lazarsfeld, Positivity and complexity of ideal sheaves, Math. Ann. 321 (2001), no. 2, 213–234. ↑
[CHT99] S. Dale Cutkosky, Jürgen Herzog, and Ngô Viêt Trung, Asymptotic behaviour of the Castelnuovo-Mumford regularity, Compositio Mathematica 118 (1999), no. 3, 243–261. ↑
[Eis95] David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer, 1995. ↑6
[GGP95] Anthony V. Geramita, Alessandro Gimigliano, and Yves Pitteloud, Graded Betti numbers of some embedded rational n-folds, Math. Ann. 301 (1995), no. 2, 363–380. †1

[M2] Daniel R. Grayson and Michael E. Stillman, Macaulay2, a software system for research in algebraic geometry. Available at https://faculty.math.illinois.edu/Macaulay2/. †2

[GS21] Eloisa Grifo and Alexandra Seceleanu, Symbolic Rees algebras, Commutative algebra, Springer, 2021, pp. 343–371. †10

[HKP06] Milena Hering, Alex Küronya, and Sam Payne, Asymptotic cohomological functions of toric divisors, Adv. Math. 207 (2006), no. 2, 634–645. †5

[Kod00] Vijay Kodiyalam, Asymptotic behaviour of Castelnuovo-Mumford regularity, Proc. Amer. Math. Soc. 128 (2000), no. 2, 407–411. †1, 3, 9

[MS04] Diane Maclagan and Gregory G. Smith, Multigraded Castelnuovo-Mumford regularity, J. Reine Angew. Math. 571 (2004), 179–212. †1, 3, 4, 5, 6, 9

[Röm01] Tim Römer, Homological properties of bigraded algebras, Illinois J. Math. 45 (2001), no. 4, 1361–1376. †1

[Saw] Will Sawin, Generalization of Dickson’s Lemma, MathOverflow. URL: https://mathoverflow.net/q/383015 (version: 2021-02-03). †4

[SS97] Karen E. Smith and Irena Swanson, Linear bounds on growth of associated primes, Comm. Algebra 25 (1997), no. 10, 3071–3079. †1

[Swa97] Irena Swanson, Powers of ideals: primary decompositions, Artin-Rees lemma and regularity, Math. Ann. 307 (1997), no. 2, 299–313. †1

[TW05] Ngô Viêt Trung and Hsin-Ju Wang, On the asymptotic linearity of Castelnuovo-Mumford regularity, J. Pure Appl. Algebra 201 (2005), no. 1-3, 42–48. †1

Department of Mathematics, Brown University, Providence, RI
Email address: juliette_bruce1@brown.edu

Department of Mathematics, University of California, Berkeley, CA
Email address: lch@math.berkeley.edu

School of Mathematics, University of Minnesota, Minneapolis, MN
Email address: mahrud@umn.edu