An Interpolation Problem for Functions with Values in a Commutative Ring

Daniel Alpay and Haim Attia

Abstract. It was recently shown that the theory of linear stochastic systems can be viewed as a particular case of the theory of linear systems on a certain commutative ring of power series in a countable number of variables. In the present work we study an interpolation problem in this setting. A key tool is the principle of permanence of algebraic identities.

Mathematics Subject Classification (2000). 60H40, 93C05.

Keywords. White noise space, stochastic distributions, linear systems on rings.

1. Introduction

There are numerous connections between classical interpolation problems and optimal control and the theory of linear systems; see for instance [10, 1]. In these settings, the coefficient space is the complex field \mathbb{C}, or in the case of real systems, the real numbers \mathbb{R}. Furthermore, already from its inception, linear system theory was considered when the coefficient space is a general (commutative) field, or more generally a commutative ring; see [22, 25]. In [8, 6] a new approach to the theory of linear stochastic systems was developed, in which the coefficient space is now a certain commutative ring \mathfrak{A} (see Section 3 below). The results from [22, 25] do not seem to be directly applicable to this theory, and the specific properties of \mathfrak{A} played a key role in the arguments in [8, 6]. We set

$$\mathbb{N}_0 = \{0, 1, 2, 3, \ldots\}.$$

The purpose of this work is to discuss the counterparts of classical interpolation problems in this new setting. To set the problems into perspective, we begin this
introduction with a short discussion of the deterministic case. In the classical theory of linear systems, input-output relations of the form

$$y_n = \sum_{k=0}^{n} h_{n-k} u_k, \quad n = 0, 1, \ldots,$$

(1.1)

where \((u_n)_{n \in \mathbb{N}_0}\) is called the input sequence, \((y_n)_{n \in \mathbb{N}_0}\) is the output sequence, and \((h_n)_{n \in \mathbb{N}_0}\) is the impulse response, play an important role. The sequence \((h_n)_{n \in \mathbb{N}_0}\) may consist of matrices (of common dimensions), and then the input and output sequences consist of vectors of appropriate dimensions. Similarly state space equations

$$x_{n+1} = Ax_n + Bu_n,$$

$$y_n = Cx_n + Du_n, \quad n = 0, 1, \ldots$$

play an important role. Here \(x_n\) denotes the state at time \(n\), and \(A, B, C\) and \(D\) are matrices with complex entries. The transfer function of the system is

$$h(\lambda) = \sum_{n=0}^{\infty} h_n \lambda^n,$$

in the case (1.1), and

$$h(\lambda) = D + \lambda C(I - \lambda A)^{-1}B$$

in the case of state space equations, when assuming the state at \(n = 0\) to be equal to 0. Classical interpolation problems bear various applications to the corresponding linear systems. See for instance [10, Part VI], [21]. To fix ideas, we consider the case of bitangential interpolation problem for matrix-valued functions analytic and contractive in the open unit disk (Schur functions), and will even consider only the Nevanlinna-Pick interpolation problem in the sequel to keep notation simple, but it will be clear that the discussion extends to more general cases. Recall (see [10, §18.5 p. 409]) that the bitangential interpolation problem may be defined in terms of a septuple of matrices \(\omega = (C_+, C_-, A_\pi, A_\zeta, B_+, B_-, \Gamma)\) by the conditions

$$\sum_{\lambda_0 \in \mathbb{D}} \text{Res}_{\lambda = \lambda_0} (\lambda I - A_\zeta)^{-1}B_+ S(\lambda) = -B_-,$$

$$\sum_{\lambda_0 \in \mathbb{D}} \text{Res}_{\lambda = \lambda_0} S(\lambda)C_- (\lambda I - A_\pi)^{-1} = C_+,$$

$$\sum_{\lambda_0 \in \mathbb{D}} \text{Res}_{\lambda = \lambda_0} (\lambda I - A_\zeta)^{-1}B_+ S(\lambda)C_- (\lambda I - A_\pi)^{-1} = \Gamma,$$

where \(A_\zeta\) and \(A_\pi\) have their spectra in the open unit disk, where \((A_\zeta, B_+)\) is a full range pair (that is, controllable) and where \((C_-, A_\pi)\) is a null kernel pair (that is, observable). We send the reader to [10] for the definitions. Moreover, \(\Gamma\) satisfies the compatibility condition

$$\Gamma A_\pi - A_\zeta \Gamma = B_+ C_+ + B_- C_-.$$