Structures of steel-reinforced concrete beams of bench manufacture for bridge spans

Valery Eremeev 1[0000-0002-2506-9642], Gennady Shmelev 2[0000-0001-6472-9413], Pavel Eremeev 2[0000-0002-8202-5733] and Danil Eremeev 2[0000-0002-7883-1264]

1JSC Spetsremproekt, Kazan, 420043, Russia
2Kazan State University of Architecture and Engineering, Kazan, 420043, Russia
E-mail: pavil-66@inbox.ru

Abstract. The issue of optimizing the span structure of road bridges is considered. The proposed method is excluding reinforced concrete from stretched zones and replacing it with steel. The combined work of reinforced concrete in a compressed zone and steel in a stretched zone makes it possible to achieve the most rational solution in terms of material consumption, but leads to additional costs. The article describes the history and experience of using steel-reinforced concrete beams with the span length varying from 12 to 33 m. The advantages of the proposed structure over the typical design of non-diaphragm beam spans are confirmed. Comparison of typical and proposed cross sections of span structures is given. Advanced design of steel-reinforced concrete beams was developed, excluding monolithic beam on concrete slab, which simplifies installation and reduces the complexity of spans. Design solutions are verified by patents of the Russian Federation. Photos of steel-reinforced concrete beams and bridge structures are provided – both built and under construction.

Keywords: steel-reinforced concrete structures, span structure, bridges, patents, building, construction.

1 Introduction

In the construction of road bridge spans with a full length of up to 33.0 m, prefabricated reinforced concrete beams with both conventional [1, 2] and pre-stressed working reinforcement [3,4] are widely used. During their maintenance, obvious disadvantages are revealed [5-7], the main factors are insufficient durability [8-10], high maintenance costs and high cost of reconstruction and reinforcement.

To a large extent these disadvantages are due to the low strength of concrete in relation to tensile stresses [11, 12]. One of the ways to overcome these disadvantages is to replace the stretched part of the main beam’s stiffener with a shape corresponding to the plot of the main tensile stresses (Figure 17.52), [13].

2 Methods

The technology of manufacturing the structure is simplified - a constant height of the steel beam is accepted. In 1995, a project (by "LIRM" company) was developed for steel-reinforced concrete beams to widen and strengthen beam spans of length differing from existing standard projects. Spans can usually be of the following sizes: less than 12 m in length; from 12 to 15 m; from 15 to 18 m; from 18 to 24 m and from 24 to 33 m. T-section beams in a cross section consist of a steel stiffener-I-beam and a reinforced concrete slab combined with it. For spans up to 18 m long, rolled I-beams are often used. For spans over 18 m – welded I-beams [14], but the main criterion is the cost of metal structures. Welded beams, in general, prove to be more efficient.

The reinforcement of roadway slab is close to its analogues – both standard projects of non-diaphragm reinforced concrete beams with reinforcement at a span length of 18 m and pre-stressed non-diaphragm reinforced concrete beams at a span length of more than 18 m, taking into account the requirements.
The lateral rigidity of the span structure is provided by combining the beams with each other by lattice diaphragms. The placement of the diaphragms along the length of the span is performed with a step determined by the calculation. The process of joining beams for their combined work in the span structure is carried out by monolithic longitudinal seams on a reinforced concrete slab (see Figure 1).

Figure 1. Cross section of a steel-reinforced concrete beam.

The reinforced concrete slab of the roadway is combined on the stand with a metal I-beam during production by means of special stops. The lifting during construction can be arranged by pre-bending a steel beam on a rigid stand using hydraulic jacks. During the construction process, two joints of a steel beam are usually created.

The main advantages of steel-reinforced concrete beams over standard reinforced concrete ones are [15]:
- Lower mounting weight [16-19];
- Possibility of reducing the number of beams in the span structure [20-23];
- Possibility of manufacturing beams of any span length with minimal changes to the production drawings;
- The usage of the strength advantages of materials, since compressive stresses are perceived by a reinforced concrete slab, and tensile stresses are perceived by a steel beam [24-27];
- The possibility of manufacturing metal beams in small sections, transportation by low-tonnage transport to the place for final assembly on the stand, concreting the roadway slab on the construction site;
- Heavy crane equipment is necessary only at the final stage - during the installation of beams on the bridge supports.

In 1996, the first experimental beam with a length of 15 m was manufactured at the reinforced concrete factory in Kama (Naberezhnye Chelny). Complex tests were then performed.

In 1997, steel-reinforced concrete beams with lengths of 11.36 m were used in the reconstruction of the road bridge on the M7 Volga motorway in the Republic of Tatarstan with the extension of the span structures by additional beams.

During the 20-year operation period of the reconstructed structure, steel-reinforced concrete beams proved to have many advantages, and their technical condition was significantly better than the condition of reinforced concrete beams.

An obvious advantage of steel-reinforced concrete beams of bench manufacture over conventional ones is the work under load in one stage [28, 29], which reduces their material consumption to 8-10 % [30].

In 2000, a bridge with steel-reinforced concrete beams was built in the Republic of Tatarstan according to the “3 x 15.0 m” scheme.

The use of steel-reinforced concrete beams was restrained by the excess of the manufacture cost of steel-reinforced concrete beams relative to conventional reinforced concrete beams.

Enterprises engaged in the manufacture of metal structures are equipped with modern welding equipment. Because of that, it is now possible to manufacture metal beams in many regions of the
Russian Federation. There is also a network of modern reinforced concrete plants that produce concrete of classes B30 - B40 with stable characteristics that meet the requirements of “GOST” regulatory document.

An important factor to take into consideration is the increase in both the railway fares and the cost of road freight transport. This fact not only leveled, but in some cases made it preferable to use steel-reinforced concrete structures.

Figure 2 shows the layout of spans in cross section using steel-reinforced concrete and conventional pre-stressed reinforced concrete beams.

Figure 3 shows the construction of steel-reinforced concrete beams ready for installation. The manufacturer of this construction is "Mostotrest" company.

Figure 4 shows commissioned bridge over the Yaran river with steel-reinforced concrete beams. Wide-flange I-beams are used as metal beams.

Figure 5 shows steel-reinforced concrete beams manufactured at the construction site during the reconstruction of the bridge over the Sheshma river.

Figure 6 shows the span of the same bridge during the process of installation (2018).

Further improvement of the structures of steel-reinforced concrete beams of bench production is implemented in the Russian patent under application no. 2019117132. Longitudinal seams between beams are excluded. During the installation of beams with reinforcement outlets, the upper row of reinforcement outlets must be temporarily bent up. It is not possible to install two identical beams with equally spaced reinforcement outlets without sliding in the longitudinal direction. Double bending of reinforcement outlets is not only a labor-intensive operation, but also requires compliance with “GOST” regulatory document for the minimally allowable bending radius.

Figure 2. Layout of steel-reinforced concrete (a) and prestressed (b) reinforced concrete beams as parts of the span structure.
Figure 3. Steel-reinforced concrete beams on the construction site.

Figure 4. Bridge over the Yaran river on the Vyatka highway.
Figure 5. Steel-reinforced concrete beams at the construction site of the major reconstruction of the bridge over the Sheshma river.

Figure 6. Installation of span structures of the bridge over the Sheshma river.

3 Results and discussion
Span structures with a full length of beams from 8 to 21 m have been successfully constructed. Bridge overpass with 33 m beams is currently under construction. All design solutions have passed state expertise, and work is continuing to improve the design and technology of spans.

4 Conclusions
Steel-reinforced concrete beams for road bridges spans are competitively relative to the standard counterparts and have their own range of conditions for rational use.

The ongoing improvement of structures and construction technology is far from completion. The improvement process will continue as we gain experience in design, construction, and conduct the necessary research on the effectiveness of steel-reinforced concrete beams.
References

[1] Dolce M and Villatico C 1985 Construction of Continuous-Span Prestressed Concrete Railroad Bridges Ingegneria Ferroviaria 40(3) pp 75-82

[2] Streletskii N N 1981 Steel-reinforced concrete bridge structures (Moscow; Transport)

[3] Bogdanov G I and Smirnov V N 2005 Reinforced concrete bridges. Developing options. Emperor Alexander I (Saint Petersburg: St. Petersburg State Transport University)

[4] Ivanov G P 2015 Design and calculation of the span beam of a reinforced concrete bridge with restressed reinforcement IN SITU 4 pp 38-41

[5] Enright M P and Frangopol D M 1998 Probabilistic analysis of resistance degradation of reinforced concrete bridge beams under corrosion Engineering Structures 11(20) pp 960-971 DOI: 10.1016/S0141-0296(97)00190-9

[6] Cramer S D, Covino B S, Bullard S J, Holcomb G R, Russell J H, Nelson F J, Laylor H M and Soltesz S M 2002 Corrosion prevention and remediation strategies for reinforced concrete coastal bridges Cement and Concrete Composites 1(24) pp 101-117 DOI: 10.1016/S0958-9465(01)00031-2

[7] Picard A and Massicotte B 1999 Serviceability design of prestressed concrete bridges Journal of Bridge Engineering 4(1) pp 48–54

[8] Cheng J 2013 Serviceability reliability analysis of prestressed concrete bridges. KSCE Journal of Civil Engineering 17(2) pp 415–425 DOI: 10.1007/s12205-013-1374-x

[9] Stewart M G and Rosowsky D V 1998 Structural safety and serviceability of concrete bridges subject to corrosion Journal of Infrastructure Systems 4(4) pp 146-155

[10] Val D V, Stewart M G and Melchers R E 1998 Effect of reinforcement corrosion on reliability of highway bridges Engineering Structures 20(11) pp 1010-19 DOI: 10.1016/S0141-0296(97)00197-1

[11] Raphael J M 1984 Tensile strength of concrete Journal of the American Concrete Institute 2 pp 158-165

[12] Kovler K and Roussel N 2011 Properties of fresh and hardened concrete Cement and Concrete Research 7(41) pp 775-792 DOI: 10.1016/j.cemconres.2011.03.009

[13] Filin A P 1978 Applicative mechanics of a solid deformable body (Moscow: Nauka)

[14] Eremeev V P and Burykin O M 2002 Steel-reinforced concrete beams of span structures of bench production Journal Avtomobilnye dorogi 4 pp 31-35

[15] Eremeev V P, Burykin O M and Matveev I K 2017 New technologies and structures used for major repairs of road bridges in cramped conditions Journal Dorogi Rossi 3(99) pp 96-100

[16] Wu J, Frangopol D M and Soliman M 2015 Simulating the construction process of steel-concrete composite bridges Steel and Composite Structures 18(5) pp 1239–58

[17] Li W, Albrecht P and Saadatmanesh H 1995 Strengthening of composite steel-concrete bridges Journal of Structural Engineering 121(12) pp 1842–49 DOI: 10.1061/(ASCE)0733-9445(1995)121:12(1842)

[18] Nie J, Tao M, Huang Y, Tian S and Chen G 2010 Research advances of steel-concrete composite structural systems Jianzhu Jiegou Xuebao/Journal of Building Structures 31(6) pp 71–80

[19] Chen B, Mu T, Chen Y and Huang J 2013 State-of-the-art of research and engineering application of steel-concrete composite bridges in China Jianzhu Jiegou Xuebao/Journal of Building Structures 34(SUPPL.1) pp 1–10

[20] Romero M L and Espinós A 2019 Advances in Steel-Concrete Composite Structures (ASCCS 2018). Structures 21 p 1

[21] Hasan Q, Badaruzzaman W, Al-Zand A and Mutalib A 2015 The state of the art of steel and steel-composite plate girder bridges. Part I: Straight plate girders Thin-Walled Structures 119 pp 988-1020
[22] Brozzetti J 2000 Design development of steel-concrete composite bridges in France Journal of Constructional Steel Research 55(1–3) pp 229–243 DOI: 10.1016/S0143-974X(99)00087-5

[23] Nakamura S I 2000 New structural forms for steel/concrete composite bridges Structural Engineering International: Journal of the International Association for Bridge and Structural Engineering (IABSE) 10(1) pp 45–50

[24] Nie J, Tao M, Wu L, Nie X, Li F and Lei F 2012 Advances of research on steel-concrete composite bridges Tumu Gongcheng Xuebao/China Civil Engineering Journal 45(6) pp 110–122

[25] Papastergiou D, Lebet J P 2014 Investigation of a new steel-concrete connection for composite bridges Steel and Composite Structures 17(5) pp 573–599

[26] Nakamura S I, Momiyama Y, Hosaka T and Homma K 2002 New technologies of steel/concrete composite bridges Journal of Constructional Steel Research 58(1) pp 99–130 DOI: 10.1016/S0143-974X(01)00030-X

[27] Kibireva U A and Astafeva N S 2018 Application of steel-reinforced concrete structures Journal ekologiya i stroitel'nostvo 2 pp 27-34

[28] Standard RF 35.13330.2011.: Bridges and culverts. Moscow, Mezhregion Rossii. (2010).

[29] Standard RF 159.1325800.2014.: Steel and concrete composite bridge decks on highways. Rules of analysis. Moscow, «Minstroj Rossii FAU «FPS» (2014).

[30] Glazunov U V 2008 Technical and economic research and application of steel-reinforced concrete structures Journal Kommunal'noe hozjaystvo gorodov 80 pp 89-94