A simple frequency approximation formula for a class of nonlinear oscillators

K. Rapedius,
Karlsruhe Institute of Technology (KIT),
Adenauerring 2, D-76131 Karlsruhe, Germany
e-mail: kevin.rapedius@kit.edu

February 5, 2015

Abstract
An astonishingly simple analytical frequency approximation formula for a class of nonlinear oscillators with large amplitudes is derived and applied to various example systems yielding useful quick first estimates.

1 Introduction by example

In addition to established methods like Harmonic Balance, Krylov Bogoliubov or Lindsted Poincare [13] many new approaches for approximating the limit cycle frequencies of strongly nonlinear oscillators have been introduced in recent years, e.g. the Energy Balance method [8], the Hamiltonian Approach [12], the Variational Iteration method [11], the Amplitude frequency formulation [10] or the Newton Harmonic Balance Method [20] and other methods [18, 10]. These new methods have been successfully applied to various systems (see e.g. [2, 5, 3, 6, 17, 7]). Here, we present an extremely simple straightforwardly applicable method for a class of strongly nonlinear oscillators which can be expressed in terms of a simple analytical formula and yields satisfactory results for a variety of systems and parameter ranges with a minimum of effort.

As a first example, let us consider the Duffing oscillator

\[\ddot{x} + \alpha x + \epsilon x^3 = 0 \] (1)

with the initial conditions \(x(t = 0) = A, \dot{x}(t = 0) = 0 \). The ansatz

\[x(t) = A \cos(\omega t) \] (2)

satisfies the initial conditions and becomes an exact solution in the linear case \(\epsilon = 0 \) if \(\omega^2 = \alpha \). Inserting our ansatz [2] into the differential equation [1] we obtain

\[-\omega^2 A \cos(\omega t) + \alpha A \cos(\omega t) + \epsilon A^3 \cos^3(\omega t) = 0 \] (3)
where the cubic cosine function can alternatively be written as \(\cos^3(\omega t) = \frac{1}{4}(3 \cos(\omega t) + \cos(3\omega t)) \) \[1\]. Due to the term proportional to \(\cos(3\omega t) \) our ansatz \(x = A \cos(\omega t) \) cannot be an exact solution of equation (1). We seek an approximate solution for the frequency \(\omega \) by means of a colocation method, i.e. by evaluating equation (3) at some time \(t \in [0,T/4] \) where \(T = 2\pi/\omega \), similar to the procedure used in [8] in the context of the Energy Balance method. In [9] He used an analogous approach in combination with a Galerkin method rather than colocation.

We want to choose our colocation time \(t \) such that the influence of the \(\cos(3\omega t) \)-term is small. We therefore evaluate the differential equation where \(\cos(3\omega t) = 0 \) for the first time which leads to the condition \(3\omega t = \pi/2 \) or \(\omega t = \pi/6 \). (4)
The colocation point \(\omega t = \pi/6 \) was also successfully used, on a purely phenomenological basis, in the context of He’s Amplitude Frequency formulation [17]. Inserting condition (4) into equation (3) we obtain

\[\omega = \sqrt{\alpha + \epsilon A^2 \cos^2\left(\frac{\pi}{6}\right)} = \sqrt{\alpha + \frac{3}{4} \epsilon A^2} \] (5)

with \(\cos(\pi/6) = \sqrt{3}/4 \). This approximate result coincides with other approaches like first order Harmonic Balance [13], first orders of He’s Energy Balance method [8] and his Hamiltonian approach [12] as well as other methods [13, 10, 20, 18]. In [8] it was shown that for \(\alpha = 1 \) the relative error of \(\omega \) is always less than 7.6% even in the extreme large amplitude limit \(\epsilon A^2 \to \infty \).

2 Simple frequency approximation formula

Now we consider a more general nonlinear oscillator of the type

\[\ddot{x} + f(x) = 0 \] (6)

with the initial conditions \(x(t = 0) = A, \dot{x}(t = 0) = 0 \) and where \(f(x) \) is antisymmetric in \(x \), i.e. \(f(-x) = -f(x) \). Then the Fourier expansion \(x(t) = \sum_{k=1}^{\infty} a_{2k-1} \cos((2k-1)\omega t) \) contains only odd multiples of \(\omega t \) [13] (see also the discussion in [20] where the same class of systems is considered). Thus the leading and next to leading order terms are \(\cos(\omega t) \) and \(\cos(3\omega t) \) respectively. As in the introductory example we insert the ansatz \(x(t) = A \cos(\omega t) \) into our differential equation (6) arriving at

\[-\omega^2 A \cos(\omega t) + f(A \cos(\omega t)) = 0. \] (7)

In analogy to the introductory example we colocate at \(\omega t = \pi/6 \), where the \(\cos(3\omega t) \)-terms are zero, which leads to the simple approximation formula

\[\omega = \frac{\sqrt{f\left(\frac{A}{\sqrt{\frac{3}{4}}}\right)}}{A \sqrt{\frac{3}{4}}}. \] (8)
Table 1: The approximate frequency ω_{approx} from (10) for the cubic-quintic oscillator is compared with frequencies ω_{RK} from numerically exact Runge Kutta calculations [5] for different values of λ and $\alpha = 1$, $\epsilon = 5$, $A = 1$.

λ	ω_{RK} [5]	ω_{approx}	Error (%)
1	2.2798	2.3049	1.1010
5	2.7318	2.7500	0.6662
10	3.2057	3.2210	0.4773
100	7.7762	7.8102	0.4372
1000	23.7999	23.8170	0.0718

3 Example applications

3.1 Example 1

The cubic quintic oscillator with the force function

$$f(x) = \alpha x + \epsilon x^3 + \lambda x^5$$

reduces to the Duffing Oscillator (1) in the limit case $\lambda = 0$. The simple approximation formula (8) yields the frequency

$$\omega = \sqrt{\alpha + \frac{3}{4} A^2 + \lambda \frac{9}{16} A^4}.$$ (10)

A comparison with numerically exact frequencies for different values of λ (table 3.1) reveals a good agreement.

3.2 Example 2

The fractional strongly nonlinear oscillator described by

$$f(x) = x^{1/3},$$

(11)

has been considered in several articles [2, 4, 14, 15]. From equation (8) we obtain the approximate frequency

$$\omega = \left(\frac{4}{3} \right)^{1/6} A^{-1/3} \approx 1.0491 A^{-1/3}.$$ (12)

which coincides with the first order Harmonic Balance result [14]. A comparison with the exact frequency $\omega_{\text{ex}} = 1.070451 A^{-1/3}$ [4] reveals an error of approximately 2%.

3.3 Example 3

Next we consider the strongly nonlinear oscillator with

$$f(x) = x^{-1}$$

(13)
\lambda = 0.5:

A	ω_{ex} [21, 19]	ω_{approx} Error (%)
0.1	0.70842	0.70842 0.00014
1	0.78617	0.78869 0.32068
10	0.96810	0.97090 0.28895
100	0.99681	0.99711 0.02982

$\lambda = 0.9:

A	ω_{ex} [21, 19]	ω_{approx} Error (%)
0.1	0.32148	0.32149 0.00318
1	0.55668	0.56539 1.5641
10	0.94169	0.94698 0.56085
100	0.99425	0.99479 0.05406

Table 2: The approximate frequency ω_{approx} from (16) for Example 4 is compared with the corresponding exact frequencies ω_{ex} [21, 19] for different values of A for $\lambda = 0.5$ and $\lambda = 0.9$.

Analyzed in [2, 16, 10]. Formula (8) yields the approximation

$$\omega = \frac{2}{\sqrt{3}} A^{-1} \approx 1.1547 A^{-1}$$

(14)

coinciding again with the first order Harmonic Balance result [16] and results from He’s homotopy perturbation method [10]. The exact frequency reads $\omega_{ex} = \sqrt{2A} A^{-1} \approx 1.2533141 A^{-1}$ [16]. The resulting error of 7.9% is acceptable considering the simplicity of our approach.

3.4 Example 4

An oscillator with the force function

$$f(x) = x - \lambda \frac{x}{\sqrt{1 + x^2}}$$

(15)

was used in [21, 19] to model the dynamics of a mass attached to a stretched wire. Using formula (8) we obtain the approximate frequency

$$\omega = \sqrt{1 - \frac{\lambda}{\sqrt{1 + (3/4)A^2}}}$$

(16)

which is in good agreement with the exact frequencies (see table 3.4).

4 Conclusion

A simple frequency approximation formula for strongly nonlinear oscillators with antisymmetric position-dependent force terms was derived and applied to several example systems. The formula yields decent to good results for various systems with a minimum of effort.

References

[1] M. Abramowitz, I. A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, New York: Dover Publications, 1972
[2] M. Akbarzade and J. Langari, A Study of Nonlinear Oscillators by Energy Balance Method (EBM), Applied Mathematical Sciences 5 (2011) no. 32, 1589 - 1594

[3] M. Akbarzade, Y. Khan, Dynamic model of large amplitude non-linear oscillations arising in the structural engineering: Analytical solutions, Mathematical and Computer Modelling 55 (2012) 480489.

[4] A. Belendez, C. Pascual, S. Gallego, M. Ortuno and C. Neipp, Application of a modified He’s homotopy perturbation method to obtain higher-order approximations of a $x^{1/3}$ force oscillator, Phys. Lett. A 371 (2007) 421-426.

[5] Seher Durmaz and Metin Orhan Kaya, High-Order Energy Balance Method to Nonlinear Oscillators, Journal of Applied Mathematics (2012) 518684.

[6] S. S. Ganji, D. D. Ganji, H. Babazadeh, and S. Karimpour, Variational approach method for nonlinear oscillations of the motion of a rigid rod rocking back and cubic-quintic Duffing oscillators, Progress In Electromagnetics Research M 4 (2008) 2332.

[7] M. Ghadimi and H. D. Kaliji, Application of the Harmonic Balance Method on Nonlinear Equations, World Applied Sciences Journal 22 (4) (2013), 532-537.

[8] Ji-Huan He, Preliminary report on the energy balance for nonlinear oscillations, Mechanics Research Communications 29 (2002) 107111.

[9] Ji-Huan He, Determination of Limit Cycles for Strongly Nonlinear Oscillators, Phys. Rev. Lett. 90 (2003) 174301.

[10] Ji-Huan He, Some asymptotic methods for strongly nonlinear equations, Int. J. Mod. Phys. B 20 (2006) 114199.

[11] Ji-Huan He, Variational iteration method - Some recent results and new interpretations, Journal of Computational and Applied Mathematics 207 (2007) 3 17.

[12] Ji-Huan He, Hamiltonian approach to nonlinear oscillators, Phys. Lett. A 374 (2010) 23122314.

[13] Ronald E. Mickens, An introduction to nonlinear oscillations, Cambridge University Press, 1981.

[14] Ronald E. Mickens, Oscillations in an $x^{2/3}$ potential, J. Sound Vib. (2001) 246 (2) 375-378.

[15] Ronald E. Mickens, Analysis of non-linear oscillators having non-polynomial elastic terms, J. Sound Vib. (2002) 255(4) 789-792.

[16] Ronald E. Mickens, Harmonic balance and iteration calculations of periodic solutions to $\ddot{y} + y^{-1} = 0$, J. Sound Vib. 306 (2007) 968972.
[17] A. M. El-Naggar and G. M. Ismail, Applications of Hes Amplitude-Frequency Formulation to the Free Vibration of Strongly Nonlinear Oscillators, Applied Mathematical Sciences 6 (2012) no. 42, 2071 - 2079.

[18] Zhong-Fu Ren, Ji-Huan He, A simple approach to nonlinear oscillators, Phys. Lett. A 373 (2009) 37493752

[19] Da-Hua Shou, Variational approach to the nonlinear oscillator of a mass attached to a stretched wire, Phys. Scr. 77 (2008) 045006.

[20] B. S. Wu, W. P. Sun and C. W. Lim, An analytical approximate technique for a class of strongly non-linear oscillators, International Journal of Non-Linear Mechanics 41 (2006) 766 - 774.

[21] W. P. Sun, B. S. Wu and C. W. Lim, Approximate analytical solutions for oscillation of a mass attached to a stretched elastic wire, J. Sound Vib. (2007) 300 1042