Predicting climate change impacts on maritime Antarctic soils: a space-for-time substitution study

C.A. Horrocksa, K.K. Newshama,*, F. Coxb, c, M.H. Garnett d, C.H. Robinson e, J.A.J. Dungait a, 1

a Sustainable Agriculture Sciences, Rothamsted Research, North Wyke, Okehampton, Devon, EX20 2SB, UK
b British Antarctic Survey, Natural Environment Research Council, Cambridge, CB3 0ET, UK
c Department of Earth and Environmental Sciences, The University of Manchester, Manchester, M13 9PL, UK
d NERC Radiocarbon Facility, Scottish Enterprise Technology Park, Rankine Avenue, East Kilbride, Glasgow, G75 0QF, UK

A R T I C L E I N F O

Keywords:
Biomarkers
\(^{13}\)C
\(^{14}\)C
Climate change
Sub- and maritime Antarctica

A B S T R A C T

We report a space-for-time substitution study predicting the impacts of climate change on vegetated maritime Antarctic soils. Analyses of soils from under Deschampsia antarctica sampled from three islands along a 2200 km climatic gradient indicated that those from sub-Antarctica had higher moisture, organic matter and carbon (C) concentrations, more depleted \(^{13}\)C values, lower concentrations of the fungal biomarker ergosterol and higher concentrations of bacterial PLFA biomarkers and plant wax n-alkane biomarkers than those from maritime Antarctica. Shallow soils (2 cm depth) were wetter, and had higher concentrations of organic matter, ergosterol and bacterial PLFAs, than deeper soils (4 cm and 8 cm depths). Correlative analyses indicated that factors associated with climate change (increased soil moisture, C and organic matter concentrations, and depleted \(^{13}\)C contents) are likely to give rise to increases in Gram negative bacteria, and decreases in Gram positive bacteria and fungi, in maritime Antarctic soils. Bomb-\(^{14}\)C analyses indicated that sub-Antarctic soils at all depths contained significant amounts of modern \(^{14}\)C (fixed from the atmosphere post c. 1955), whereas modern \(^{14}\)C was restricted to depths of 2 cm and 4 cm in maritime Antarctica. The oldest C (c. 1745 years BP) was present in the southernmost soil. The higher nitrogen (N) concentrations and \(^{15}\)N values recorded in the southernmost soil were attributed to N inputs from bird guano. Based on these analyses, we conclude that 5–8°C rises in air temperature, together with associated increases in precipitation, are likely to have substantial impacts on maritime Antarctic soils, but that, at the rates of climate warming predicted under moderate greenhouse gas emission scenarios, these impacts are likely to take at least a century to manifest themselves.

1. Introduction

Until the late 1990s, the maritime Antarctic was the most rapidly warming region in the Southern Hemisphere, with rises in near surface air temperatures of 0.2–0.4°C per decade having been recorded since the 1950s (Adams et al., 2009). A recent analysis of temperature records found the warming trend in the region to have slowed at around the turn of the millennium (Turner et al., 2016), consistent with a hiatus in surface warming at the global scale (Trenberth, 2015). However, climate models forced with only moderate greenhouse gas emission scenarios predict further warming in the maritime Antarctic in the latter decades of the 21st Century, with 2–4°C rises in near surface air temperatures being forecast by 2100 (Bracegirdle et al., 2008; Bracegirdle and Stephenson, 2012). Rising air temperatures are likely to lead to increased precipitation across the region as air masses that deliver snow and occasional rain to maritime Antarctica warm and increase their capacity to retain moisture (Bromwich et al., 2014; Marshall et al., 2017).

Rising surface air temperatures are likely to have widespread effects in the maritime Antarctic, including the further recession of glaciers (Cook et al., 2005), the disintegration of ice shelves (Vaughan et al., 2003) and the expansion of vascular plant and bryophyte populations (Fowbert and Smith, 1994; Royles et al., 2012, 2013; Amesbury et al., 2017; Charmian et al., 2018). However, the impacts of warming on the active layer soils overlying the 20–180 m deep permafrost that currently exists throughout ice-free areas of the maritime Antarctic (Bockheim, 1995) are more difficult to predict. This is because soil formation and

* Corresponding author.
E-mail address: kke@bas.ac.uk (K.K. Newsham).

Current address: Geography, CLES, Arnoy Building, University of Exeter, Rennes Drive, Exeter, EX4 4RJ UK.

https://doi.org/10.1016/j.soilbio.2019.107682
Received 28 May 2019; Received in revised form 15 November 2019; Accepted 19 November 2019
Available online 20 November 2019
0038-0717/© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
associated processes such as plant litter decomposition are severely restricted by low temperatures and aridity in maritime Antarctica, hampering attempts to measure differences between treatments in comparative experiments. For example, in studies at Signy Island in the South Orkney Islands, weight losses of decomposing moss tissues are just 1–2% yr

1
, with litter decomposition being too slow to detect differences in decay rates between different moss species or years (Baker, 1972; Davis, 1986). Field experiments in maritime Antarctica using open top chambers (OTCs) have similarly shown that decomposition is too slow to detect any effects of warming on the mass loss of plant litter over 1–2 years (Bokhorst et al., 2007a). OTC experiments also indicate no effects of 1–2 C increases in mean annual temperatures on soil bacterial community composition in the region after four years of treatment (Newsham et al., 2019), corroborating research in Icelandic geothermal habitats showing that temperature changes of c. 7–19 C are necessary to force detectable changes to soil bacterial community composition (Raduljovic et al., 2018).

Determining the influence of climate change on maritime Antarctic soils, which is central to predicting how the region’s terrestrial ecosystems will alter in the future (Wall et al., 2010), is hence challenging. A solution to this problem is to employ space-for-time substitutions, which were originally used to infer temporal trends by studying sites of different ages (Pickett, 1989), but which have been increasingly used to project climate-driven changes to maritime Antarctic ecosystems (e.g. Newsham et al., 2016; Dennis et al., 2019). Here, we use a 2200 km climatic gradient as a proxy to predict how vegetated maritime Antarctic soils might alter as they transition towards those of the sub-Antarctic in a warmer climate. In addition to measuring soil proximate chemistry and bulk 13C, 14C and 15N values, we also determined the concentrations of fungal, bacterial and plant biomarkers in soil (ergosterol, phospholipid fatty acids and n-alkanes, respectively). The influence on each of these parameters of soil depth, which is known to affect 13C enrichment, pools of C and N and the composition of microbial communities in Antarctic soils (Royles et al., 2013; Amesbury et al., 2017; Cox et al., 2019), was also determined. In addition, because C and N inputs to soil from vegetation have a strong influence on decomposition and other soil processes (Swift et al., 1979; Lynch et al., 2018), we measured the concentrations of the two elements, C:N ratio and 13C and 15N values in aboveground plant biomass across the climatic gradient.

2. Materials and methods

2.1. Sampling

Soil and plant samples were collected in October and November 2011 from north-west Leonie Island (67.5984 S, 68.3561 W) in the southern maritime Antarctic, Polynesia Point on Signy Island (60.7107 S, 45.5849 W) in the northern maritime Antarctic and the Wanderer Meadows on Bird Island (54.0089 S, 38.0662 W), adjacent to South Georgia, in the sub-Antarctic (Fig. 1a). The sampling locations were chosen to reflect the substantial changes to mean air temperature (MAT) and mean annual precipitation (MAP) that occur across the sub- and maritime Antarctic, and because of their proximities (0.8–9.8 km) to British Antarctic Survey research stations. Meteorological records indicate rises in MAT of c. 8 C between Leonie Island and Bird Island, and of c. 5 C between Signy Island and Bird Island (Fig. 1a). Precipitation is difficult to measure in Antarctica (Turner et al., 1995), but data from several sources indicate that there is an increase in MAP of > 1000 mm

Fig. 1. (a) Map showing the locations of the sampling sites in the maritime and sub-Antarctic and images of soils sampled from under Deschampsia antarctica at (b) Bird Island, (c) Signy Island and (d) Leonie Island. Mean annual temperature (MAT) data are from British Antarctic Survey meteorological records (https://www.bas.ac.uk/project/meteorology-and-ozone-monitoring/) and the Regional Atmospheric Climate Model of Van Lipzig et al. (1999), as reported by Newsham et al. (2016). Mean annual precipitation (MAP) data are from Smith and Walton (1975), Smith (1984) and Turner et al. (2002).
between Leonie Island and Bird Island (Fig. 1a). The vast majority of the precipitation at Leonie Island falls in the form of snow, with that at Signy Island and Bird Island falling either as snow or, particularly at Bird Island, as rain (Collins et al., 1975; Smith and Walton, 1975).

At each island, three pits were dug and active layer soils overlying permafrost (present at c. 10 cm depth in some pits at all islands) were collected by inserting sterile 50 ml capacity tubes into the sides of each pit at depths of 2 cm, 4 cm and 8 cm. The pits at each island were separated by mean and maximum distances of 311 m and 1 km, respectively. In order to achieve consistency between the sampling sites, all active layer soils were collected from beneath swards of Deschampsia antarctica (Dew.,) the dominant plant species at all of the sites sampled (Fig. 1, b–d). Also present were the higher plant species Colobanthus quitensis, and a range of bryophytes, including Cephalozia varians, Cladonia gloeocarpa, Lophozia exigua, Brachythecium austrolebrosa, Bryum pseudotriquetrum, Polytrichastrum alpinum and Sanio nia uncinata. Samples of aboveground plant parts of D. antarctica were also gathered from above each pit and air-dried. The soils were frozen at 20°C within 5 h of collection and were transported to the UK at the same temperature. After six months, approximating to the duration for which maritime Antarctic soils are frozen at depths of 2–8 cm during late autumn, winter and early spring (Chambers, 1966), the soils for the analyses described in section 2.2 were defrosted to room temperature, whilst those for the analyses in sections 2.3–2.5 were freeze dried (Modulyod, Thermo Fisher Scientific, Waltham, MA, USA) and ground.

2.2. Soil pH, organic matter and moisture concentrations

Soil pH was measured by adding approximately the same volume of deionised water to c. 4 g (fw) soil from each sample to generate slurries and recording pH after 10 min Using a glass electrode (pH 21, Hanna Instruments, Leighton Buzzard, UK). Soil moisture was measured by heating c. 1 g of fresh soil to constant weight at 105°C for 17 h, prior to weighing. Organic matter concentrations were measured by heating the dried soil to 550°C for 4 h, also prior to weighing.

2.3. Soil C and N concentrations and 13C and 15N contents

Soil and plant material (c. 2.5 mg) was weighed into foil capsules and analysed for total C, total N, δ13C and δ15N using a Carlo Erba NA1500 elemental analyser (CE Instruments, Wigan, UK) and a 20-20 isotope ratio mass spectrometer (SerCon, Crewe, UK).

2.4. Soil 14C content

Soils were combusted to CO2 either in a high-pressure combustion bomb or elemental analyser (Costech ECS4010, Italy), and were cryo-genically purified and split into aliquots. One aliquot was analysed for δ13C using isotope ratio mass spectrometry (IRMS; Thermo-Fisher Delta V), with results expressed relative to the Vienna PDB reference standard. A second aliquot was converted to graphite via Fe–Zn reduction and analysed for 14C content by accelerator mass spectrometry. Background (14C-dead) and known 14C age international standards (Table S1) were processed alongside the samples in accordance with the laboratory procedures and used to verify the reliability of 14C and δ13C analyses. Following convention (Stuiver and Polach, 1977), 14C results were normalised to a δ13C of 25% (to account for mass-dependent fractionation) and expressed as %modern (years BP 8033 In [% Modern/100]; Stuiver and Polach, 1977) and conventional radiocarbon ages (years BP, in which 0 BP AD 1950).

Soil C mean residence times (MRTs) were calculated using a C turnover model (the Meathop Model; Harkness et al., 1986), which calculates the transient 14C concentration of a C pool resulting from the incorporation of bomb-14C using:

\[A_t = A_{0,1} \cdot (1-\alpha) A_{0,1} \cdot \lambda \]

Where A is the 14C activity (content) of the soil C pool at time t, and for the preceding year (t-1), and A1 is the 14C content of the input C (i.e. atmospheric CO2). The model assumes steady-state, with the fraction of C exchanged annually represented as (1-α), and the 14C decay constant (1/mean life of 14C) represented as λ. Once the MRT curves for a range of turnover times had been generated (Fig. S1), the sample MRT was determined from the curve that most closely matched the measured soil 14C content during the year of sampling. The Southern Hemisphere Zone 1–2 atmospheric 14C record of Hua et al. (2013) was used for the input function (A).

2.5. Extraction and analyses of biomarkers

2.5.1. Ergosterol

Ergosterol was extracted according to Rousk and Bååth (2007). In brief, soil was saponified and the organic phase isolated in cyclohexane. The filtered extract was re-dissolved in methanol and passed through a PTFE syringe filter (0.45 μm, Thomas Restek, Saunderton, Buckinghamshire, UK). Ergosterol was quantified using high performance liquid chromatography (HPLC; Spectra-Physics, Freemont, CA) by measuring UV absorption at 282 nm and comparing with a standard curve produced from an authentic ergosterol standard (Supelco, Bellfonte, PA, USA). A Zorbax Rs-C18 column (300 μm, 3.5 μm particle size; Crawford Scientific, Strathaven, Lanarkshire, UK), was used with a mobile phase composed of 98:2 methanol:water at a flow rate of 1 ml min⁻¹ and a run time of 20 min.

2.5.2. Phospholipid fatty acids

Phospholipid fatty acid (PLFA) extraction was carried out on c. 1 g of freeze-dried soil using a modified Bligh Dyer method (Andresen et al., 2014). In brief, total lipids were extracted using excess Bligh Dyer solvent under ultrasonification. The organic phase was isolated in chloroform, and subsequently fractionated using silica gel flash column chromatography. The phospholipid fraction was obtained using a solvent series consisting of chloroform (neutral lipids), acetone (glycolipids) and methanol (phospholipids). Nonadecane in hexane was added to the phospholipid fraction as the internal standard. Fatty acids were separated from the phosphate moiety using saponification followed by acidification and converted to fatty acid methyl esters (FAMES) using dry acid methylation. The FAMES were quantified using an Agilent 6890N gas chromatograph interfaced to an Agilent 5973 Network mass spectrometer (Agilent Technologies UK Ltd., Wokingham, UK) fitted with a J&W DB225 column (30 mm 0.25 mm i.d. 0.25 mm; Agilent Technologies UK Ltd.) with helium as the carrier gas. The temperature programme consisted of 1 min isothermal at 80°C, followed by a ramp to 180°C at 15°C min⁻¹, and then to 215°C at 3°C min⁻¹, followed by 3 min isothermal at 215°C. Peaks were integrated using ChemStation D.01.02.16 software (Agilent Technologies UK Ltd.). FAMES were identified from the mass spectra and quantified (as μg g⁻¹ dry soil) against the peak area internal standard. The abundances of Gram positive bacteria and Gram negative bacteria were calculated by summing the concentrations of i14:0, i15:0, a15:0, i16:0, a17:0, i18:0, 10Me18:0 and 10Me17:0 (Gram positive bacteria) and 16:1ω7c, 16:1ω9c, cy17:0, 18:1ω9t, 18:1ω7t, 18:1ω11t and cy19:0 (Gram negative bacteria). The concentrations of all 15 PLFAs were summed to calculate the abundances of total bacteria (Zelles, 1997).

2.5.3. n-alkanes

Lipid extraction for n-alkane analysis was carried out according to Norris et al. (2013). In brief, total lipids were extracted from 0.25 g of freeze-dried soil with 9:1 dichloromethane: methanol (v/v) under reflux for 16 h using a Soxhlet apparatus. Tetratriacontane in hexane was added as the internal standard to the solvent vessel prior to extraction. The solvent was evaporated and the total lipid extract was re-dissolved in hexane then fractionated using silica gel flash chromatography to yield the aliphatic hydrocarbons. The solvent was evaporated and the
sample re-dissolved in 100 μl hexane prior to analysis by gas chromatograph fitted with flame ionisation detection (Agilent 7890A GC; Agilent, Stockport, UK) and an HP-5 column (30 m, 0.25 μm film; Agilent, UK). The temperature programme consisted of 1 min isothermal at 40 °C, followed by a ramp to 130 °C at 20 °C min⁻¹, then to 300 °C at 4 °C min⁻¹, and then 10 min isothermal at 300 °C. The plant wax n-alkanes C₂₁–C₃₉ were identified using retention times and quantified against the internal standard.

2.6. Data analyses

Two way ANOVA was used to determine the main and interactive effects of island and depth on the measured parameters. One way ANOVA with Tukey’s multiple range test was used to identify significant differences between means. Associations between soil physicochemical parameters likely to be associated with climate change (moisture, C and organic matter concentrations, δ¹³C content and ¹⁴C enrichment) and ergosterol concentrations, the abundances of total, Gram negative and Gram positive bacteria, and the ratio of Gram positive to Gram negative bacteria, were tested with Pearson’s correlations. All analyses were carried out using MINITAB 17 software.

3. Results

3.1. Aboveground plant C and N concentrations, C:N ratio and δ¹³C and δ¹⁵N values

Analyses of the aboveground plant parts of Deschampsia antarctica indicated no significant effects of island on the concentrations of tissue C or N, or on C:N ratio (all Fₓ,ₓ > 3.73, P > 0.089). These analyses showed that aboveground D. antarctica tissues sampled from Bird Island were more depleted in δ¹³C that those from Leonie Island (means SEM of 28.94 0.19%o and 28.06 0.22%o, respectively; Fₓ,ₓ 6.68, P 0.030, data not shown), with the δ¹³C values of tissues from Signy Island (28.15 0.15%o) not differing from those at the other two islands. Conversely, aboveground D. antarctica tissues from Leonie Island were more enriched in δ¹⁵N than those from Bird Island or Signy Island (means SEM of 16.68 1.9%o, 12.66 0.63%o and 10.82 0.60%o, respectively; Fₓ,ₓ 6.14, P 0.035, data not shown).

3.2. Soil pH values, moisture and organic matter concentrations

Mean (SEM) pH values of 4.76 (0.07), 4.29 (0.20) and 4.53 (0.19) were recorded in the soils sampled from Bird Island, Signy Island and Leonie Island, respectively. Soil pH value did not differ between islands or different depths, and was unaffected by the island depth interaction (Table 1). In contrast, there were significant (P < 0.05) main effects of island and depth on the concentrations of moisture and organic matter in soil (Table 1), with both variables being higher in soils from sub-Antarctic Bird Island than in those from the two maritime Antarctic islands, and declining at increasing depth (Fig. 2a and b). There was also a significant (P 0.027) interactive effect of island and depth on moisture concentration (Table 1), with more pronounced declines in moisture at greater depths on Leonie Island than at the other two islands (Fig. 2a).

3.3. Soil C and N concentrations, C:N ratio and δ¹³C and δ¹⁵N values

Two way ANOVA indicated a significant (P 0.005) main effect of island on total soil C concentration (Table 1), with soils from sub-Antarctic Bird Island having higher C concentrations than those from Signy Island or Leonie Island (Fig. 2c). Depth, and the interaction between island and depth, did not influence soil C concentrations (Table 1). Two way ANOVA also showed a significant (P 0.013) effect of island on total soil N concentration (Table 1), with soils from Leonie Island having higher N concentrations than those from Bird or Signy islands (Fig. 2d). Depth and the island depth interaction had no effect on this parameter (Table 1). Soil C:N ratio also differed significantly (P < 0.001) between islands, with lower ratios at Leonie Island and Signy Island than at Bird Island (means SEM of 9.22 0.22, 10.82 0.85 and 15.72, 0.85, respectively; data not shown), but with no effects of depth or the interaction between island and depth on this parameter (Table 1). The same analyses similarly showed there to be a highly significant (P < 0.001) main effect of island on soil δ¹³C content (Table 1), with soils from Bird Island being 13C-depleted by 2.6‰, compared with the soils from the other two islands (Fig. 2e). There was also a slight (P 0.063) effect of depth on ¹³C content (Table 1), with less depleted δ¹³C values further down the soil profile, particularly at Signy Island, where soil from 8 cm depth was 13C-enriched by 2.5‰ compared with soil from 2 cm depth (Fig. 2f). Analyses of soil δ¹⁵N content also indicated highly significant (P < 0.001) differences between islands (Table 1), with soils from Leonie Island being 15N-enriched by 5.9–6.6‰ compared with those from Bird and Signy islands (Fig. 2f). There were no effects of depth or island depth on soil ¹⁵N values (Table 1).

3.4. Soil ¹⁴C content

Radiocarbon analyses indicated that the bulk soils from Bird Island at 2 cm, 4 cm and 8 cm depths all contained bomb-¹⁴C (Table 2). Modelling of bomb-¹⁴C turnover indicated more rapid C cycling at Bird Island than at the other two islands, with estimated mean C residence times in soil ranging from 6 to 30 years across all three depths at the northermmost island (Table 2). At Signy Island, clear evidence of bomb-¹⁴C was restricted to soils at 2 cm and 4 cm depths, while the ¹⁴C content of the soil at 8 cm depth (98.80 0.45 %modern), the estimated age of which was 97 ± 37 years BP, was suggestive of a predominantly pre-bomb source. The soils from Leonie Island showed the greatest spans in ages. Post-bomb-¹⁴C at this island was only present at 2 cm depth, with soils from 4 cm to 8 cm depths being too ¹⁴C-depleted to be investigated using the bomb-¹⁴C model (Table 2). The oldest soil at Leonie Island, with a conventional radiocarbon age of c. 1745 ± 35 years BP, was recorded at 4 cm depth, with soil at 8 cm depth having an estimated radiocarbon age of 681 ± 37 years BP (Table 2).

3.5. Ergosterol and PLFA biomarkers

Concentrations of the fungal biomarker ergosterol differed between islands, with two way ANOVA indicating a highly significant (P < 0.001) reduction in its concentration in soils from Bird Island compared with those from the other two islands (Table 3; Fig. 3a). Ergosterol concentration also differed significantly (P 0.012) between depths (Table 3), with higher concentrations at depths of 2 cm compared with 4 cm and 8 cm depths in the maritime Antarctic, and particularly at Leonie Island (Fig. 3a). Two way ANOVA also showed there to be a highly significant

Table 1

Response	Island depth	Depth				
	P : 2.15	P : 2.15	P : 2.15			
pH value	2.01	0.163	0.79	0.471	0.65	0.634
Moisture concentration	105.04	< 0.001	5.32	0.015	3.52	0.027
Organic matter concentration	12.54	< 0.001	3.66	0.046	0.64	0.641
C concentration	7.27	0.005	1.46	0.259	0.64	0.640
N concentration	5.56	0.013	0.38	0.692	0.06	0.992
C:N ratio	32.66	< 0.001	0.21	0.740	0.44	0.776
δ¹³C content	18.88	< 0.001	2.24	0.063	0.97	0.446
δ¹⁵N content	57.34	< 0.001	1.54	0.241	0.04	0.996

* Analyses were based on nine values per island, derived from depths of 2 cm, 4 cm and 8 cm in each of three independent replicate pits dug at the island.
Fig. 2. Mean (a) moisture concentration, (b) organic matter concentration, (c) C concentration, (d) N concentration, (e) δ^{13}C value and (f) δ^{15}N value of soils sampled from depths of 2 cm, 4 cm and 8 cm at Bird Island, Signy Island and Léonie Island. Each value is a mean of three independent replicates and bars represent SEM. Mean values across all depths at each island are also shown, with superscripted unitalised letters indicating significant ($P < 0.05$) differences in means between islands. Values that differ between distinct depths at Signy Island in (e) are denoted by different italicised letters.
Table 2
δ13C content, 14C enrichment (%Modern), conventional radiocarbon age and modelled mean residence time of C in bulk soil sampled from 2, 4 and 8 cm depths from three Antarctic islands.

Island	Depth (cm)	δ13C of Corg	14C enrichment (% Modern)	Conventional Radiocarbon Age (years BP)	Mean Residence Time (years)
Bird	2	28.3	0.47	107.14	6 [110]
	4	27.0	0.48	109.67	10 [75]
	8	27.1	0.53	115.35	30
Signy	2	27.1	0.48	109.98	10 [70]
	4	27.2	0.55	119.36	30
	8	24.4	0.80	98.80	97 [37]
Leonie	2	25.8	0.48	109.47	9 [75]
	4	25.0	0.35	80.47	1745 [35]
	8	25.0	0.42	91.88	681 [37]

*Note that, despite separate δ13C measurements being reported (Fig. 2e), these data are also shown as they were used to normalise the 14C values.

* In some cases, two MRT values are possible, reflecting the rising and falling parts of the bomb 14C curve (the MRT considered least likely is given in square brackets, based on the assumption that turnover time will increase with depth). MRTs are not calculated for samples with <97% Modern because these samples show no evidence of bomb 14C incorporation, and therefore the conventional radiocarbon age provides an estimate of the MRT (Bol et al., 1999). Abbreviation: n/a, not applicable.

Table 3
Main and interactive effects of island and depth on the concentrations of biomarkers in soils, determined by two-way ANOVAa.

Response	Island	Depth	Island	Depth
Ergosterol concentration	F2,18	P	F3,18	P
Total bacterial PLFA concentration	15.41	< 0.001	5.67	0.012
Gram negative bacteria PLFA concentration	38.35	< 0.001	7.06	0.006
Gram positive bacteria PLFA concentration	4.17	0.033	11.17	0.001
Gram positive: Gram negative ratio	16.57	< 0.001	1.55	0.239
Total n-alkanes concentration	13.25	< 0.001	3.26	0.062

* Details of analyses as in Table 1.

(P < 0.001) effect of island on the concentrations of total bacterial PLFA biomarkers (Table 3), with concentrations of total bacterial PLFAs being higher in soils from Bird Island than in those from the two maritime Antarctic islands, and concentrations of these biomarkers in soil at Signy Island being higher than in soil at Leonie Island (Fig. 3b). There was also a significant effect (P = 0.006) of depth on total bacterial PLFAs (Table 3), with reductions in the concentrations of these biomarkers in deeper soils (Fig. 3b). An interactive effect of island and depth was not recorded on the concentrations of total bacterial PLFAs (Table 3). The concentrations of PLFA biomarkers for Gram negative bacteria and Gram positive bacteria also altered significantly between the three islands: there was a highly significant (P < 0.001) effect of island on those for Gram negative bacteria (Table 3), with higher concentrations of the biomarkers for these taxa in soil from Bird Island than those from the other two islands (Fig. 3c). There was also a significant (P = 0.001) effect of depth on the concentrations of Gram negative bacteria biomarkers (Table 3), with declining concentrations of PLFAs for these taxa at increasing depths (Fig. 3c). The concentrations of Gram positive bacterial biomarkers also differed between islands (Table 3), with higher concentrations in soils from Bird and Signy islands than in those from Leonie island (data not shown). A highly significant (P < 0.001) effect of island on the ratio of Gram positive bacteria to Gram negative bacteria biomarkers was also recorded (Table 3), with two way ANOVA indicating that this ratio was lower at Bird Island than at the two maritime Antarctic islands (Fig. 3d). There was also a slight (P = 0.062) effect of depth on the ratio of Gram positive bacteria to Gram negative bacteria biomarkers (Table 3), with a tendency towards higher ratios at greater depths in the soil profile, particularly at Signy Island (Fig. 3d).

Correlative analyses between the concentrations of ergosterol and soil physicochemical parameters likely to be associated with climate change indicated a negative association with soil moisture concentration, and a positive association with soil δ13C content (Table 4). They also indicated consistent positive associations between the abundances of total bacteria and Gram negative bacteria in soil and the concentrations of soil moisture, organic matter and C (Table 4). The concentrations of PLFA biomarkers for total bacteria and Gram negative bacteria were also both negatively associated with soil δ13C content (Table 4). In contrast to the responses for total and Gram negative bacteria, there were relatively few associations between the abundances of Gram positive bacteria in soil and the soil physicochemical parameters, with a negative association for the abundances of these bacteria and soil δ13C content (Table 4). The Gram positive: Gram negative bacteria ratio was negatively associated with concentrations of soil moisture, organic matter and C, with a positive association between the ratio and soil δ13C content (Table 4). Along with the concentrations of ergosterol and bacterial PLFA biomarkers, this ratio was not associated with soil 14C enrichment (Table 4).

3.6. n-alkane biomarkers

There was a highly significant effect of island on the concentration of total n-alkanes in soils (Table 3), with higher concentrations of these biomarkers in soils from Bird Island than in those from Signy and Leonie islands (means SEM of 389.1 ± 59.0, 110.7 ± 44.4 and 87.90 ± 12.6, respectively; F2,18 = 13.25, P < 0.001; data not shown). The same pattern was recorded for the n-alkanes C22, C23, C24, C25, C27, C29, C31 and C33, with higher concentrations of these individual n-alkanes in soils sampled from Bird Island relative to those from the two maritime Antarctic islands (F2,18 = 4.56–17.17, all P < 0.05; Fig. 4a–f, h–i). The exception to this pattern was the n-alkane C30, which was lower in concentration in soils sampled from Signy Island than in those from the other two islands (F2,18 = 6.53, F = 0.007; Fig. 4g). There were no effects of island on the concentrations of the n-alkanes C21, C26, C28 and C32 (all F2,18 < 3.35, P > 0.05; data not shown), Depth, or the island depth interaction, did not affect the concentrations of total n-alkanes (Table 3) or of any individual n-alkane (all F2,18 < 1.09, F > 0.35 and F4,18 < 0.96, P > 0.45, respectively). The most abundant n-alkane recorded in soil was C31 (mean 50.7 µg g⁻¹ soil), followed by C25, C29, C33, C23 and C27 (means across all islands of 27.2, 20.8, 19.2, 17.8 and 17.2 µg g⁻¹ soil, respectively; Fig. 4). Other n-alkanes were present at mean...
concentrations of <8.4 μg g⁻¹ soil.

4. Discussion

The analyses reported here indicate substantial changes to soils sampled from across a climatic gradient through the sub- and maritime Antarctic, with those from Bird Island in sub-Antarctica having different concentrations of moisture, organic matter, total C, δ¹³C and fungal, bacterial and plant biomarkers, compared with soils from Signy Island and Leonie Island in the maritime Antarctic. The concentrations of C and N, or the C:N ratio, in aboveground plant biomass – which are key determinants of plant litter decomposition and soil development (Swift et al., 1979) – did not alter across the gradient, indicating that it is the 5–8°C higher annual air temperature at Bird Island, combined with the island’s higher precipitation, that exert substantial long-term impacts on its soils. These findings corroborate previous studies that have recorded impacts of climate on soil formation and the decomposition of plant litter, with water availability and temperature being the main factors influencing these processes at continental and regional scales (Swift et al., 1979; Meentemeyer and Berg, 1986; Berg et al., 1993).
The 14C analyses here identified long-term effects of the warmer and wetter environment at Bird Island on the turnover of soil C. The soils sampled from this island at 2 cm, 4 cm and 8 cm depths all contained bomb-14C, unambiguously indicating that all, or a substantial component, of the C in these soils was fixed from the atmosphere after the mid 1950s. In contrast, and in agreement with previous studies showing that the estimated age of C in maritime Antarctic moss banks increases with depth (Royles et al., 2013; Amesbury et al., 2017), modern 14C was restricted to depths of 2 cm and 4 cm at the two maritime Antarctic islands, with C at 8 cm in these soils all originating from before c. 1955. 14C modelling also indicated slower C turnover at Signy Island compared with Bird Island, particularly for the deepest soils. The oldest C, aged to c. 1745 years BP, was present in the soil sampled from Leonie Island, corroborating previous studies showing the presence of millennium-age C in maritime Antarctic and sub-or High Arctic soils (Björck et al., 1991; Royles et al., 2012; Hartley et al., 2012; Charman et al., 2018; Vaughn and Torn, 2019), and the recent finding that a saprotrophic fungus present in maritime Antarctic soil respires C to the atmosphere that is up to c. 1200 years BP in age (Newsham et al., 2018). However, the soil containing this millennium-aged C was sampled from a depth of 4 cm,
and not 8 cm, suggesting a disturbance event at Leonie Island, possibly associated with the thawing of permafrost or cryoturbation (Ernakovich et al., 2015).

In contrast to the frequent differences between islands in the majority of the parameters measured here, depth in the soil profile had relatively few effects on the soils studied, with, as recorded in Antarctic, Arctic and temperate soils, moisture, organic matter and microbial biomarker concentrations being higher in shallower soils (Schmidt and Bolter, 2002; Elberling et al., 2006; Baldrian et al., 2012). However, in agreement with the more depleted δ13C contents of aboveground biomass and soils recorded at Bird Island than at the maritime Antarctic islands, reflecting the higher water availability and more favourable conditions for photosynthesis in sub-Antarctica (Farquhar et al., 1989), there was also a slight (P = 0.063) effect of depth on 13C, with more enriched 13C contents in deeper soils. While we cannot rule out the influence of other factors in explaining this trend, such as the isotopic fractionation of 13C during decomposition (Schweizer et al., 1999), it is probable that changes to the δ13C signature of the atmosphere since the 1850s are responsible for the more depleted δ13C signatures of shallower soils. As coal and oil are of organic origin and are thus depleted in 13C, since the Industrial Revolution, the δ13C signature of atmospheric CO2 has declined by 1.5–1.7% (Francey et al., 1999; McCarthy and Loader, 2004). This has led to a corresponding decline in the δ13C contents of plant tissues (Leavitt and Lara, 1994), including those of maritime Antarctic mosses, the cellulose of which has shown a decline in δ13C from 24.4% to 26.5% over the previous 150 years (Rydes et al., 2013). In the soils from Signy Island at a depth of 2 cm, which 13C analyses indicated were formed from plant material originating since the mid 1950s, C was 13C-depleted by 2.5% relative to the soil C sampled from 8 cm depth, which was aged to 97 37 years, suggesting that this lower δ13C signal arises from changes to the 13C content of atmospheric CO2. We also cannot discount the possibility that the more depleted 13C contents of soils from Bird Island, which were all formed post-1955, may have been in part owing to the declining δ13C signature of atmospheric CO2 during the previous century. At present, however, it is unclear why the δ13C contents of soils from distinct depths at Leonie Island did not differ, but, as discussed above for the 14C sigmatures, it is possible that these soils may have become mixed as a result of physical disturbance.

The main environmental variables that will alter as the climate of maritime Antarctica changes are surface air temperature and water availability, with increases in the latter being associated with more frequent snowmelt and rainfall events (Bromwich et al., 2014; Marshall et al., 2017). In the soils of the region, these changes are likely to lead to deeper active layers, with associated positive effects on soil and plant community development (Guglielmin et al., 2008; Biskaborn et al., 2019), soil moisture concentrations (Fisher et al., 2016) and pools of C and organic matter as aboveground plant productivity increases (Fowbert and Smith, 1994; Rydes et al., 2012, 2013; Amesbury et al., 2017; Charman et al., 2018). The correlative analyses here indicate that substantial increases in soil moisture, with associated depletioon of soil 13C contents, will lead to declines in fungal biomass, as the habitat for the fungi that inhabit these usually arid soils, such as Pseudogymnosascus, the most frequent fungal taxon in maritime Antarctic soils (Newsham et al., 2016), becomes less favourable. These analyses also suggest that the relative abundances of Gram positive bacteria, such as members of the Actinobacteria, which have thick cell walls composed of peptidoglycan, enabling their survival in arid soils at low temperatures (Schimel et al., 2007), will most likely increase in maritime Antarctic soils containing more organic matter. This observation is in accordance with a previous study showing reductions in the ratio of Gram positive to Gram negative bacteria in soils from Signy Island (60 S) compared with those from south-eastern Alexander Island (72 S) in the more arid southern maritime Antarctic (Dennis et al., 2013). In contrast, the analyses here suggest that Gram negative bacteria are likely to become more abundant in maritime Antarctic soils as they transition towards those of sub-Antarctica. Notably, members of the Betaproteobacteria and Bacteroidetes, such as the Comamonadaceae and Chitinophagaceae, which are more frequent in warmer maritime Antarctic habitats (Dennis et al., 2019) and in nutrient-amended Arctic soils (Koyama et al., 2014), are likely to become more abundant in maritime Antarctic soils, enhancing decomposition rates and C efflux (Fierer et al., 2007).

Analyses of n-alkanes, lipids which are derived from plant epicuticular waxes that are resistant to degradation, enable changes to plant community composition to be determined as ecosystems develop (Norris et al., 2013). The predominant pattern recorded here for these biomarkers was of higher concentrations in soils from Bird Island compared with those from the two maritime Antarctic Islands, reflecting the more productive plant community at the sub-Antarctic island, and, as found elsewhere (Eglington and Hamilton, 1967), a predominance of odd number-chained n-alkanes in soils. As anticipated for soils dominated by Deschampsia antarctica, we also found an abundance of the n-alkanes C21 and C25, which are biomarkers for monocotyledonous plant species (Mafiei, 1996). The shorter-chain alkane C22, which is typically found in bryophyte phytodes (Baas et al., 2000), was also found to be more abundant in soil at Bird Island, possibly reflecting an increased biomass of lower plants at this location. However, despite these changes to the concentrations of n-alkane biomarkers in soils from along the climatic transect, our analyses showed that their concentrations did not alter with depth through the soil profile. This observation suggests that, despite rising surface air temperatures in the maritime and sub-Antarctic between the 1950s and late 1990s (Adams et al., 2009; Turner et al., 2016), plant community composition in the region has not altered appreciably. It contrasts with observations from the Arctic, in which shrubs have become more frequent in warmer habitats over the last half century (Myers-Smith et al., 2011) – possibly associated with the capacity of this plant form to retain new C inputs belowground (Lynch et al., 2018) – and with those from Eastern Antarctica, where moss community composition has changed rapidly since the turn of the millennium owing to increased aridity (Robinson et al., 2018).

Although the analyses here indicated consistent differences in C pools and the majority of biomarkers between the soils at sub-Antarctic Bird Island and the two maritime Antarctic Islands, soils at Leonie Island had the lowest C:N ratios, and also had 0.7–1.2% higher N concentrations than those sampled from Bird Island and Signy Island. These differences most probably arose from higher N inputs from guano at Leonie Island. In a previous study, Bokhorst et al. (2007b) reported that N inputs to soil at Anchorage Island (a member of the Leonie Islands group) are an order of magnitude higher than at Signy Island, with the majority of the N arising from guano of south polar skuas (Catharacta maccormicki), a bird species that is also frequent at the sites on Leonie Island studied here. Soils and plant material in the Leonie Islands group are also highly 15N-enriched, with mean soil and bryophyte 15N values of 14.0% and 8.5–15.8%, respectively (Bokhorst et al., 2007b), compared with the 15N values of 17.9% and 16.7% recorded here for soil and aboveground D. antarctica tissues, respectively. The highly 15N-enriched soil and plant material at these islands can be ascribed to higher inputs of guano from C. maccormicki, emphasising the importance of marine vertebrates in transferring N from the sea to the land in the maritime Antarctic (Bokhorst et al., 2019).

5. Conclusions

We conclude that further climate warming in maritime Antarctica, with associated increases in snowmelt and precipitation (Adams et al., 2009; Bromwich et al., 2014; Medley and Thomas, 2019), is likely to have a substantial influence on the vegetated soils of the region. Specifically, the analyses here indicate that rising air temperatures and water availability will enhance C and soil organic matter concentrations, deplete soil δ13C contents, accelerate decomposition rates and decrease mean C residence times, increase the abundances of n-alkanes and alter soil microbial communities by favouring Gram negative bacteria over Gram positive bacteria and fungi. However, in accordance with previous
studies, which concluded that substantial warming (4–8 °C) will be required before organic matter decomposition is affected in maritime Antarctic soils (Bokhorst et al., 2007a), the present data show that the majority of the observed effects occur between soils from islands that differ in mean annual air temperatures by 5–8 °C. Although changes to the soils of maritime Antarctica will be accelerated by unrestricted emissions of greenhouse gases to the atmosphere (e.g., representative concentration pathway (RCP) 8.5; IPCC, 2014), at the rates of climate warming predicted to occur under moderate greenhouse gas emission scenarios (0.2–0.4 °C per decade; Bracegirdle et al., 2008; Bracegirdle and Stephenson, 2012), significant alterations to these soils will take at least a century to manifest themselves in the natural environment. Irrespective of the rate at which these changes occur, given the central importance of soil processes and microbial communities to ecosystem development (Wall et al., 2010), they are nevertheless likely to have substantial impacts on maritime Antarctic terrestrial habitats.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research was funded by an Antarctic Funding Initiative grant and associated awards from the UK Natural Environment Research Council (grant numbers NE/H014096/1, NE/H014772/1 and NE/ H014088X/1) and a NERC Radiocarbon Facility NERC010001 allocation (1690.0313). The British Antarctic Survey’s Logistics Group and the officers and ship’s company of the RSS James Clark Ross provided transport to and from sampling sites. Mick Mackey, Andy Wood, Mike Dunn, Ash Cordingly, Ian Rudkin, Ana Bertoldi, Steph Stenna and Stacey Adlard helped to collect samples. Laura Gerrish drew the map shown in Fig. 1. Anonymous reviewers supplied helpful comments. Our much-valued colleague, the late Jiri Vana of Charles University in Prague, helped to identify litterworms. All are gratefully acknowledged.

Appendix A. Supplementary data

Supplementary data can be found online at https://doi.org/10.1016/j.soilbio.2019.107682.

References

Adams, B., Athern, R., Atkinson, A., Barbante, C., Bargagli, R., Bergstrom, D., Bertler, N., Bindschadler, R., Bockheim, J., Boulon, C., Bromwich, D., Chow, S., Comiso, J., Conway, P., Cook, A., di Prisco, G., Fahrbach, E., Fastook, J., Forcado, J., Gill, J., Guglielmin, M., Gutt, J., Hellmer, H., Hennon, F., Heywood, K., Hodgson, D., Holland, D., Hong, S., Huiskes, A., Iida, E., Jacobs, S., Jones, A., Lenton, T., Marshall, G., Mayewski, P., Metzl, N., Monaghan, A., Naveira-Garabato, A., Newsham, K.K., Oraez, C., Peck, L., Portalier, H.-O., Pintoul, S., Robinson, S., Roscoe, H., Ross, S., Scambos, T., Shanklin, J., Smeltacke, V., Speer, K., Stevens, M., Summerhayes, C., Trathan, P., Turner, J., van der Veen, K., Vaughan, D., Verde, C., Webb, D., Wicken, C., Woodworth, P., Worby, T., Worland, R., Yamanoouchi, T., 2004. The instrumental period. In: Turner, J., Bindschadler, R., Conway, P., di Prisco, G., Fahrbach, E., Gill, J., Hodgson, D., Mayewski, P., Summerhayes, C. (Eds.), Antarctic Climate Change and the Environment. Scientific Committee on Antarctic Research, Scott Polar Research Institute, Cambridge, UK, pp. 183–298.

Amensbury, M.J., Roland, T.P., Royles, J., Hodgson, D.A., Conway, P., Griffiths, H., Charman, D.J., 2017. Widespread biological response to rapid warming on the Antarctic Peninsula. Current Biology 27, 1616–1622.

Andreassen, L.C., Duyng, J.A., Bur, S., Solsted, M.B., Ambra, P., Michelsen, A., 2014. Bacteria and fungi respond differently to multifactorial climate change in a temperate heathland, traced with 13C-Glycine and FACE CO2, PLoS One 9, e85700.

Bais, M., Pancost, R., van Geel, B., Damste, J.S.S., 2000. A comparative study of lipids in Selaginella species. Organic Geochemistry 31, 535-541.

Baker, J.H., 1972. The rate of production and decomposition of Chortiodontium aciphyllum (Hook. f et Wils) Broth. British Antarctic Survey Bulletin 27, 123–129.

Baldrich, P., Kolárk, M., Stursova, M., Kopecký, J., Valasková, V., Větrovský, T., Žířickova, I., Snaščí, J., Řídel, J., Vlcek, C., Vorokita, J., 2012. Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. The ISME Journal 6, 248–258.

Berg, B., Berg, M.P., Botton, C., del Prado, A., Guglielmin, M., Gutt, J., Heywood, K., Hodgson, D., Malmer, H., Malmskog, S., McDonald, D., Mericle, C., Porporato, A., Posch, M., Skov, M., Sørensen, N., Shukla, J., Skvarenina, S., Van de Peer, Y., Wiberg, M., 2008. Plant phenology and climate warming in the Antarctic Peninsula: inferences from 14C and 813C records. Biogeosciences 5, 221–231.

Bockheim, J.G., 1999. Permafrost distribution in the Southern Circumpolar Region and its relation to the environment: a review and recommendations for further research. Permafrost and Periglacial Processes 10, 27–45.

Bokhorst, B., Huiskes, A., Conway, P., Aerts, R., 2007a. Climate change effects on organic matter decomposition rates in ecosystems from the maritime Antarctic and Falkland Islands. Global Change Biology 13, 2642–2653.

Bokhorst, S., Huiskes, A., Conway, P., Aerts, R., 2007b. External nutrient inputs into terrestrial ecosystems of the Falkland Islands and the Maritime Antarctic region. Polar Biology 30, 1315–1321.

Bokhorst, S., Conway, P., Aerts, R., 2019. Nitrogen inputs from marine vertebrates drive abundance and richness in Antarctic terrestrial ecosystems. Current Biology 29, 1721–1727.

Bol, R.A., Harkness, D.D., Huang, Y., Howard, D.M., 1999. The influence of soil processes on carbon isotope distribution and turnover in the British uplands. European Journal of Soil Science 50, 41–51.

Bracegirdle, T.J., Connolley, W.M., Turner, J., 2008. Antarctic climate change over the twenty first century. Journal of Geophysical Research 113, D03103.

Bracegirdle, T.J., Stephenson, D.B., 2014. Higher precision estimates of regional polar warming by ensemble regression of climate model predictions. Climate Dynamics 39, 2805–2821.

Bromwich, D.H., Guo, Z., Bai, L., Chen, Q.-S., 2014. Modeled Antarctic precipitation. Part I: spatial and temporal variability. Journal of Climate 27, 427–447.

Chamberlain, P.A., 1966. Identifications of patterned ground at Signy island, South Orkney islands. II: temperature regimes in the active layer. British Antarctic Survey Bulletin 10, 71–83.

Charman, D.J., Amensbury, M.J., Roland, T.P., Royles, J., Hodgson, D.A., Conway, P., Griffiths, H., 2018. Spatially coherent late Holocene Holocene Antarctic Peninsula surface air temperature variability. Geology 46, 1071–1074.

Collins, N.J., Baker, J.H., Tillbrook, P.J., 1975. Signy island, maritime Antarctic. In: Rosswall, T., Heal, O.W. (Eds.), Structure and Function of Tundra Ecosystems, vol. 20. Ecological Bulletins, pp. 345–374.

Cook, A.J., Fox, A.J., Vaughan, D.G., Ferrigno, J.G., 2005. Retreating glacier fronts on the Antarctic Peninsula over the past half-century. Science 308, 546–548.

Cox, F., Newsham, K.K., Robinson, C.H., 2019. Endemic and cosmopolitan fungal taxa exhibit differential abundances in total and active communities of Antarctic soils. Environmental Microbiology 21, 1586–1596.

Davis, R.C., 1986. Environmental factors influencing decomposition rates in two Antarctic moss communities. Polar Biology 5, 95–103.

Dennis, P.G., Newsham, K.K., Rusthon, S.P., Ord, V.J., O’Donnell, A.G., Hopkins, D.W., 2013. Warming constrains bacterial community responses to nutrient inputs in a southern, but not northern, maritime Antarctic soil. Soil Biology and Biochemistry 57, 248–255.

Dennis, P.G., Newsham, K.K., Rusthon, S.P., O’Donnell, A.G., Hopkins, D.W., 2019. Soil bacterial diversity is positively associated with air temperature in the maritime Antarctic Scientific Reports 9, 2689.

Eglington, G., Hamilton, R.J., 1967. Leaf epicuticular waxes. Science 156, 1322–1335.

Ellenberg, H., Gwinner, E., Horn, W., Poehr, A., 1992. Ecological Leaf-wax, Biochemistry and Biochemistry 21, 3217–3240.

Fowbert, J.A., Smith, R.L., 1994. Rapid population increases in native vascular plants in the Argentine Islands, Antarctic Peninsula. Arctic and Alpine Research 26, 290–296.

Frankovich, R.J., Allison, C.E., Bever, D.J., Trautwein, C.M., Estiengue, V., Krieger, K., Leuenberger, N., Lengsfelds, R.L., Michel, E., Steele, L.P., 1999. A 1000-year high precision record of δ13C in atmospheric CO2. Tellus 51, 170–193.
Guglielmin, M., Ellis Evans, C.J., Cannone, N., 2008. Active layer thermal regime under different vegetation conditions in permafrost areas. A case study at Signy Island (Maritime Antarctic). Gredenza 144, 73–85.
Harkness, D.D., Harrison, A.F., Bacon, P.J., 1986. The temporal distribution of 'bomb' 14C in a forest soil. Radiocarbon 28, 328–337.
Harley, I.P., Garnett, M.H., Sommerkorn, M., Hopkins, D.W., Fletcher, B.J., Sloan, V.L., Pheonix, G.K., Wookye, P.A., 2012. A potential loss of carbon associated with greater plant growth in the European Arctic. Nature Climate Change 2, 875–879.
Hua, Q., Barbetti, M., Rakowski, A.Z., 2013. Atmospheric radionuclide for the period 1950–2010. Radiocarbon 55, 2059–2072.
IPCC, 2014. Climate change 2014: synthesis report. In: Core Writing Team, Pachauri, R.K., Meyer, L.A. (Eds.), Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland.
Koyama, A., Wallenstein, M.D., Simpson, R.T., Moore, J.C., 2014. Soil bacterial community composition altered by increased nutrient availability in Arctic tundra soils. Frontiers in Microbiology 5, 516.
Leavitt, S.W., Lara, A., 1994. South American tree rings show declining 13C trend. Tellus 46, 152–156.
Lynch, L.M., Machmuller, M.B., Cotrufo, M.F., Paul, E.A., Wallenstein, M.D., 2018. Tracking the fate of fresh carbon in the Arctic tundra: will shrub expansion alter responses of soil organic matter to warming? Soil Biology and Biochemistry 120, 134–144.
Maffei, M., 1996. Chemotaxonomic significance of leaf wax alkanes in the Gramineae. Biochemical Systematics and Ecology 24, 53–64.
Marshall, G.J., Thompson, D.W.J., van den Broeke, M.R., 2017. The signature of Southern Hemisphere atmospheric circulation patterns in Antarctic precipitation. Geophysical Research Letters 44, 11580–11589.
McCarroll, D., Loader, N.J., 2004. Stable isotopes in tree rings. Quaternary Science Reviews 23, 771–801.
Medley, B., Thomas, E.R., 2019. Increased snowfall over the Antarctic Ice Sheet mitigated twentieth-century sea-level rise. Nature Climate Change 9, 34–39.
Meentemeyer, V., Berg, B., 1986. Regional variation in rate of mass loss of Pinus sylvestris needle litter in Swedish pine forests as influenced by climate and litter quality. Scandinavian Journal of Forest Research 1, 167–180.
Myers-Smith, I.H., Forbes, B.C., Wilking, M., Hallinger, M., Lantz, T., Blok, D., Tape, K.D., Macias-Fauria, M., Sættsås, E., Levesque, K., Boudreau, S., Ropars, P., Hermannutz, L., Trant, A., Siegwart Collier, L., Weijers, S., Rozena, J., Rayback, S.A., Schmidt, N.M., Schaepman-Strub, G., Wipf, S., Rixen, C., Menard, C.B., Venn, S., Goetz, S., Andreu-Hayles, L., Elmgren, S., Ravolainen, V., Welker, J., Grogan, P., Epstein, H.E., Hik, D.V., 2011. Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environmental Research Letters 6, 045509.
Newsham, K.K., Hopkins, D.W., Carvalhais, N., Frew, P.T., Rutson, S.P., O’Donnell, A.G., Dennis, P.G., 2016. Relationship between soil fungal diversity and temperature in the maritime Antarctic. Nature Climate Change 6, 182–186.
Newsham, K.K., Garnett, M.H., Robinson, C.H., Cox, F., 2018. Discrete taxa of saprotrophic fungi respond to different ages of carbon from Antarctic soils. Scientific Reports 8, 7866.
Newsham, K.K., Tripathi, B.M., Dong, K., Yamamoto, M., Adams, J.M., Hopkins, D.W., 2019. Nutrient addition but not warming influences bacterial community composition in a southern maritime Antarctic soil. Microbial Ecology 78, 974–984.
Norris, C.E., Dungait, J.A.J., Joynes, A., Quideau, S.A., 2013. Biomarkers of novel ecosystem development in boreal forest soils. Organic Geochemistry 64, 9–18.
Pickett, S.T.A., 1989. Space-for-time substitution as an alternative to long-term studies. In: Likens, G.E. (Ed.), Long-Term Studies in Ecology: Approaches and Alternatives. Springer-Verlag, New York, pp. 110–135.

Radajkovic, D., Verbruggen, E., Sigurdson, B.D., Leblans, N.I.W., Jannsen, I.A., Vicca, S., Weezen, J.T., 2018. Prolonged exposure does not increase soil microbial community compositional response to warming along geothermal gradients. FEMS Microbiology Ecology 94. https://doi.org/10.1093/femsec/fi174.