Occurrence of *Babesia* spp., *Rickettsia* spp. and *Bartonella* spp. in *Ixodes ricinus* in Bavarian public parks, Germany

Sabine Schorn¹*, Kurt Pfister¹, Holger Reulen², Monia Mahling² and Cornelia Silaghi¹

Abstract

Background: Only limited information is available about the occurrence of ticks and tick-borne pathogens in public parks, which are areas strongly influenced by human beings. For this reason, *Ixodes ricinus* were collected in public parks of different Bavarian cities in a 2-year survey (2009 and 2010) and screened for DNA of *Babesia* spp., *Rickettsia* spp. and *Bartonella* spp. by PCR. Species identification was performed by sequence analysis and alignment with existing sequences in GenBank. Additionally, coinfections with *Anaplasma phagocytophilum* were investigated.

Results: The following prevalences were detected: *Babesia* spp.: 0.4% (n = 17, including one pool of two larvae) in 2009 and 0.5 to 0.7% (n = 11, including one pool of five larvae) in 2010; *Rickettsia* spp.: 6.4 to 7.7% (n = 285, including 16 pools of 76 larvae) in 2009. DNA of *Bartonella* spp. in *I. ricinus* in Bavarian public parks could not be identified. Sequence analysis revealed the following species: *Babesia* sp. EU1 (n = 25), *B. divergens* (n = 1), *B. divergens/capreoli* (n = 1), *B. gibsoni*-like (n = 1), *R. helvetica* (n = 272), *R. monacensis IrR/Munich* (n = 12) and unspecified *R. monacensis* (n = 1). The majority of coinfections were *R. helvetica* with *A. phagocytophilum* (n = 27), but coinfections between *Babesia* spp. and *A. phagocytophilum*, or *Babesia* spp. and *R. helvetica* were also detected.

Conclusions: *I. ricinus* ticks in urban areas of Germany harbor several tick-borne pathogens and coinfections were also observed. Public parks are of particularly great interest regarding the epidemiology of tick-borne pathogens, because of differences in both the prevalence of pathogens in ticks as well as a varying species arrangement when compared to woodland areas. The record of DNA of a *Babesia gibsoni*-like pathogen detected in *I. ricinus* suggests that *I. ricinus* may harbor and transmit more *Babesia* spp. than previously known. Because of their high recreational value for human beings, urban green areas are likely to remain in the research focus on public health issues.
microti seem less acute than with B. divergens and infections with Babesia sp. EU1 are generally milder [5,10]. In previous investigations of I. ricinus in several European countries the species B. divergens, B. microti and Babesia sp. EU1 have been detected [11-18]. Prevalences in ticks range from 0.6 to 51.04% [19,20].

Pathogens of the class α-Proteobacteria, like A. phagocytophilum and certain SFG Rickettsiae, represent a potential risk for human health. A. phagocytophilum is the etiological agent of human granulocytic anaplasmosis (HGA), a febrile illness with malaise, myalgia and headache [21]. In the USA, HGA has an increasing incidence since the first documented clinical case in 1994, with about 1,000 cases reported to the CDC in 2008 http://www.cdc.gov/anaplasmosis[22]. In comparison, about 70 clinical cases have been documented in Europe until now [23]. A. phagocytophilum prevalences of 0.25 to 24.4% are found in I. ricinus in various European countries [24,25]. Furthermore, nine different Rickettsia (R.) spp., belonging to the SFG and able to cause rickettsiosis in humans, are detectable in Europe [26]. Of these, three pathogens (R. helvetica, R. monacensis and R. massiliae) have been detected in I. ricinus with prevalences from 1.7 to 31.3% [27-32]. Symptoms of SFG rickettsiosis generally include fever, headache, muscle pain, rash, local lymphadenopathy and inoculation eschar [33]. In addition, R. helvetica has been detected in two patients with chronic perimyocarditis in sudden cardiac death as well as attributed to one case of meningitis and eight cases with mild symptoms (fever, headache and myalgia) [34-37].

The transmission of Bartonella spp. by ticks, including Bartonella henselae as the etiological agent of cat scratch diseases, is discussed, but has so far not been fully proven [38-40]. DNA of Bartonella henselae, Bartonella schoenbuchensis-like, Bartonella capreoli and unspecified Bartonella spp. has been detected in I. ricinus. Prevalences varied in a wide range from 0.2 to 60% in ticks, collected from humans, dogs, deer and directly from vegetation. However, reports in Europe are very rare and data from Germany are missing to date [16,41-47].

Urban areas, especially public parks, seem to be different from woodland areas regarding the occurrence of tick-borne pathogens [48,49]. However, in European urban areas epidemiological studies on simultaneous detection of various tick-borne pathogens are rare [16,50,51]. Therefore, the aim of the study was to investigate I. ricinus for the occurrence of Babesia spp., Rickettsia spp. and Bartonella spp., and coinfections with A. phagocytophilum, with a special focus on urban sites. Selected Bavarian public parks, highly frequented by daily visitors and used for recreational activities, were investigated in this 2-year survey as a contribution to the current state of knowledge on the epidemiology of tick-borne pathogens in Germany.

Methods
Sampling sites and tick collection
In 2009, nine different public parks in five Bavarian cities (Munich, Regensburg, Ingolstadt, Augsburg and Berg at the Lake Starnberg) were investigated (Figure 1). Additionally five selected sites were investigated for a second year in 2010. Seven sampling sites (M2, M3, R1, R2, I1, I2 and A) were intra-urban city parks and two sites (M1 and B) were heavily frequented suburban recreational areas in the respective cities. The vegetation of all sampling sites consists predominantly of deciduous trees, bushes and groomed lawns (with the exception of sampling area B). By comparison, two sampling sites (M3 and B) were left in a more natural state with a higher density of trees and thick and leafy undergrowth. Questing ticks were collected monthly from the vegetation (April to September 2009 and May to September 2010) by flagging and stored in 70% ethanol.

DNA extraction
In the laboratory, ticks were identified to species level [52], after they were washed twice with distilled water and dried on a bleached pulp. Adult ticks and nymphs were handled individually and larvae in pools of up to five specimens. After the ticks were homogenized in 80 μl PBS-buffer with a 5-mm steel bead in the TissueLyser (Qiagen Hilden, Germany), DNA was extracted according to the manufacturer’s tissue protocol (QIAamp DNA Mini Kit, Qiagen) in two elution steps of 100 μl PBS-buffer with a 5-mm steel bead in the TissueLyser (PeqLab Erlangen, Germany). DNA was quantified spectrophotometrically with the NanoDrop® ND-1000 system (PeqLab Erlangen, Germany).

![Figure 1 Sampling sites](http://www.parasitesandvectors.com/content/4/1/135)

Figure 1 Sampling sites. Sites marked with * were only investigated 2009.
Molecular detection of the pathogens

In 2009, ticks from all nine sampling sites were screened for DNA of Babesia spp., Rickettsia spp., A. phagocytophilum and Bartonella spp., whereas samples from the five sites in 2010 were screened for DNA of Babesia spp. and A. phagocytophilum. Conventional PCRs with previously published primers were used for the detection of DNA of Babesia spp., Rickettsia spp. and Bartonella spp. (Table 1), followed by gel electrophoresis (2% Agarosegel, dyed with GelRed™ (Biotium)) [12,53-55]. The HotStar-TaqPlus DNA Polymerase Kit (Qiagen, Germany) was used for molecular detection of Babesia spp. and Bartonella spp. as well as the Expand High Fidelity plus PCR System (Roche, Germany) for Rickettsia spp., each according to the manufacturer’s protocol with a reaction volume of 50 μl, including 5.0 μl template DNA. PCRs were performed in the Thermocycler Mastercycler® gradient (Eppendorf, Germany) and in every run a positive control [DNA of (i) B. divergens (cattle) and B. microti (BALB/c mice); (ii) R. helvetica (ticks); (iii) Bartonella henselae (fleas)] and PCR-clean water as a negative control were included. Detection of DNA of A. phagocytophilum was performed with a SYBR®-Green real-time PCR with primers published by Courtney et al. [56]. Detailed description of the method will be published in a separate manuscript [Schorn et al. unpublished]. For A. phagocytophilum, larvae were not included in the study.

Positive PCR products were purified using the QIAquick PCR Purification Kit (Qiagen) according to the manufacturer’s protocol and sent for sequencing to Eurofins MWG Operon (Ebersberg, Germany). Sequencing was performed with one primer for Rickettsia spp. and Bartonella spp. and with both primers for Babesia spp. Results were analysed by ChromasLite® and for Babesia spp. alignment was performed with ClustalW2 http://www.ebi.ac.uk/Tools/msa/clustalw2/. Database searches and sequence comparisons were performed with BLAST tool provided by the National Center for Biotechnology http://blast.ncbi.nlm.nih.gov/Blast.cgi.

Samples regarded as R. monacensis and unspecified Rickettsia spp. in the investigated part of the gltA-gene were further analysed with a PCR, targeting the ompB-gene for more detailed specification (Table 1).

Statistical analysis

Logistic regression was used for statistical analysis to estimate the effect of site, month, development stage and year on the probability of infection. Logistic regression was performed accepting the minimum prevalence (in a positive pool of larvae, one specimen is assumed as positive). The variables ‘April’, ‘September’ and sampling site ‘A’ were removed for the statistical analysis of Babesia spp., because no infections of ticks were seen in these months or this sampling site and therefore the estimation of the parameters was not possible. Differences between gender, month and site were computed with a simultaneous test for general linear hypotheses based on multiple comparison of means with Tukey Contrasts [57]. p < 0.05 was regarded as significant. Statistical analysis was performed with R version 2.12.1 (R Development Core Team, 2010).

Results

Collection of ticks

A total of 9,107 and 4,296 I. ricinus were collected in 2009 and 2010, respectively.

Molecular detection of Babesia spp

A total of 6,593 (2009: n = 4,459 and 2010: n = 2,134) ticks were screened for the presence of DNA of Babesia spp. The overall prevalences were 0.4% (n = 17, including 1 pool of 2 larvae) for 2009 and 0.5 to 0.7% (n = 11, including 1 pool of 5 larvae) for 2010 (Table 2). With regard to differences in infection there was no statistical significance of developmental stages, investigated months or sampling sites.

GenBank analysis of the Babesia spp. positive samples (n = 28) revealed 25 samples with a 447 bp sized

Table 1 PCR conditions and primers used for the detection of Babesia spp., Rickettsia spp. and Bartonella spp.

pathogen	primer	gene (bp)	ref.	final primer conc.	Ds	As	Es	cycles
Babesia spp.	BJ1 5’-GTCTTGTAATTGGAATGATGGA-3’, BN2 5’-TAGTTTATGTTAGGACTACG-3’	18S rRNA (411-452)	[12]	1 μM	94°C 30 s 55°C 30 s 72°C 40 s	40		
Rickettsia spp.	RpsCS.877p 5’-GCGGCGCCTGCTACGCCGGG-3’, RpsCS.1289n 5’-ATTGCCAAAAGTAACGTGAAC-3’	gltA (380)	[54]	0.5 μM	95°C 20 s 48°C 30 s 60°C 2 min	35		
Bartonella spp.	BA325s 5’-CTTCAGATGTATCCCAACCCTGCTGCGG-3’, BA1100as 5’-GAACCGACGACCCCCCTTGCTGCAAGCA-3’	16S-23S rRNA (ITS) (420-780)	[53]	1 μM	94°C 30 s 66°C 30 s 72°C 50 s	40		

Ds: denaturation step; As: annealing step; Es: elongation step.
sequence, 100% homologous to sequences of *Babesia* sp. EU1 from *I. ricinus*, roe deer and human patients from several European countries [GenBank: GQ856650, GU647159, FJ215873, EF185818 and AY046575]. One more positive sample showed 100% identity to a sequence of *B. capreoli* from roe deer in France [GenBank: FJ944828] and also to a sequence of *B. divergens* from reindeer in the UK [GenBank: AY098643]. The sequence was not discriminating enough to allow a clear species identification. One sequence was 100% homologous to several sequences of *B. divergens* in cattle, human patient and *I. ricinus* [GenBank: FJ944826, FJ944823, AY789076, AY648876, AY648871]. However, only 303 bp of this sequence could be evaluated. The last sequence (445 bp) was 100% identical to *B. gibsoni* isolates from Asia and the USA [GenBank: AF271082, AF271081] as well as from a dog in Spain [GenBank: AY278443]. Sequences from *Babesia* sp. EU1, *B. divergens* and *B. gibsoni*-like were deposited in GenBank with the following accession nos.: *Babesia* sp. EU1: [GenBank: JN036420-JN036426], *B. divergens*: [GenBank: JN036427], *B. gibsoni*-like: [GenBank: JN036428].

Molecular detection of *Rickettsia* spp

4,459 ticks, collected in 2009, were screened for the occurrence of rickettsial DNA. An overall prevalence of 6.4 to 7.7% (n = 285, including 16 pools of 76 larvae) was observed. Adult ticks were infected with 7.5%,
nymphs with 6.8% and larvae in a range of 2.1 to 9.8% (Table 2). The differences between the developmental stages were not significant. The minimum prevalences in April (4.0%, p < 0.05) and September (3.5-6.6%, p < 0.05) were significantly lower in comparison to the prevalences observed in June (7.7 to 8.6%) and July (8.7 to 10.2%). One sampling site (M1) showed a significantly higher minimum prevalence than sampling site R2 (p < 0.01) as well as sampling sites M2, R1 and II (p < 0.05). However, the effects for these sampling sites are expected to disappear, if more than one larva per positive pool was assumed to be infected.

285 samples yielded bands of the appropriate size in the PCR, targeting the gta gene of Rickettsia spp.. Sequence analysis showed in 268 samples 100% homology to sequences of R. helvetica [GenBank: HM371185, EU359287- EU359297, EU596563, EF392725, DQ821857, AM418450, DQ910785]. All 268 samples were 100% identical to each other. The remaining 17 samples, identified as R. monacensis and unspecified Rickettsia spp., were further analysed with a PCR, targeting the ompB gene. 12 samples were then specified as R. monacensis strain IrR/Munich, 4 additional samples as R. helvetica (100% homolog to [GenBank: HQ232251, GU324465, AF123725]) and 1 sample yielded no band in the ompB-PCR. It was 100% homologous to sequences of unspecified R. monacensis in gltA-gene sequence analysis [GenBank: EU853831, FJ009429]. The R. monacensis strain IrR/Munich sequences were 99-100% identical to each other, with a difference in one nucleotide position (100% homolog to [GenBank: EU330639] and [GenBank: EU330640], respectively).

Exemplary sequences of R. helvetica were chosen for the 268 sequences of 100% identity with the following accession numbers: gltA-gene: [GenBank: JN036402-JN036410]; ompB-gene: [GenBank: JN036411-JN036412]; Sequences of R. monacensis strain IrR/Munich were deposited in GenBank [GenBank: JN036413-JN036417 and GenBank: JN036418-JN036419].

Molecular detection of Bartonella spp
4,459 ticks from 2009 were screened for the occurrence of DNA of Bartonella spp.. Five samples (0.1%) showed an appropriate band. However, sequence analysis of the PCR product revealed only 85 to 100% similarity to various sequences of uncultivated Bartonella spp. Further investigations to amplify a sequence of the 16S rRNA-, gltA- and 16S-23S-gene of Bartonella spp. and consequently species identification failed (data not shown).

Coinfections
4,459 samples (3,685 for A. phagocytophilum) were screened for coinfections of Babesia spp., Rickettsia spp., A. phagocytophilum and Bartonella spp. in 2009 and 1,884 samples for Babesia spp. and A. phagocytophilum in 2010. The detailed results for A. phagocytophilum will be reported elsewhere [Schorn et al. unpublished]. In 2009, 0.7% of the samples (n = 27) were positive for R. helvetica and A. phagocytophilum, 0.1% (n = 4, including 3 × Babesia sp. EU1 and 1 × B. gibsonii-like) for Babesia spp. and A. phagocytophilum and 0.04% (n = 2, including Babesia sp. EU1 and B. divergens) for Babesia spp. and R. helvetica. No triple or quadruple infections of ticks were detected in 2009. In 2010, no coinfections between Babesia spp. and A. phagocytophilum were observed.

Discussion
The results of this study show that tick-borne pathogens can occur not only in natural woodlands, but also in recreational urban areas. This demonstrates the importance of systematic investigations of different habitat types to broaden the understanding and knowledge about these pathogens and their tick vector.

The evidence of Babesia sp. EU1 in I. ricinus collected in Bavarian public parks adds a new species to the current knowledge on tick-borne Babesia spp. in Germany. Previous studies demonstrated the occurrence of B. microti and B. divergens in ticks with a predominance of B. divergens in Southern Germany and almost equal distribution of B. divergens and B. microti in Central Germany [13,58,59]. On the contrary, in this study Babesia sp. EU1 was the dominating Babesia species. However, not only the distribution of Babesia species differs geographically; the infection rates of ticks in Southern Germany are also lower (about 1%) than in Central Germany (up to 10.7%) [13,58-60]. The overall prevalence of 0.4 to 0.5% for Babesia spp. detected in this study was comparable to these results. A similar variability of both the Babesia spp. prevalences and the arrangement of species within a country could also be recognized in Austria (local variations: 0 to 100%) [19], in Switzerland (0.7 to 4%) [12,61] and in Poland (0.6 to 16.3%) [17,20,62-64]. Such a local clustering of Babesia spp. may be associated with the tick density in the investigated habitat. The maintenance of the protozoan life cycle by transovarial transmission, which has been demonstrated for B. divergens and Babesia sp. EU1, is more efficient in areas with a high tick density [19,61,65,66]. Moreover, most of the Babesia spp. positive ticks were found on sampling sites M3 and B in this study. This is an interesting fact, because both areas are known to harbor a permanent population of large mammals like roe- and red deer in contrast to the other sites where those animals are missing or only transiently present. Beside I. ricinus, cervids, like roe deer, are discussed as potential reservoir for B. divergens and Babesia sp. EU1 [67-69].
It is noteworthy that no *B. microti* were detected in these public parks. Microtine rodents and shrews are suggested to be reservoir hosts for *B. microti* [70,71]. Our findings are supported by the fact that another study from Southern Germany showed that rodents of the family Muridae were not infected with *B. microti*, whereas rodents of the family Arviculidae were infected at a rate of 1.6% [72]. Therefore a possible explanation for the lack of *B. microti* in *I. ricinus* in public parks may be the occurrence and arrangement of rodent and insectivore species, which can be dissimilar to woodland areas [73].

A very interesting result is the finding of a 445 bp sized 18S rRNA gene sequence, 100% homologous to existing sequences of *B. gibsoni* in GenBank. Although this is not evidence for the occurrence of *B. gibsoni* in *I. ricinus*, it is a hint that *I. ricinus* could potentially harbor *Babesia* of the gibsoni-complex. *B. gibsoni*, a small Babesia and one of the agents causing canine babesiosis, is distributed all over the world, but only sporadically found in Europe. Recently, Zahler et al. [74] postulated that *B. gibsoni* has to be divided in two different lineages with isolates from Asia belonging to the *Babesia* spp. senso stricto clade and isolates from the USA being more related to *Theileria* spp. So far, the classification of the European isolates of *B. gibsoni* has not been fully determined [75]. The sequence obtained in this study was in the amplified part 100% homologous to sequences of both lineages, thus no specification was possible. Further studies will help to clarify if *I. ricinus* could potentially serve as competent vector for additional *Babesia* spp. than assumed so far [62]. This would bring a new aspect into the epidemiology of canine babesiosis in Central Europe and offer a possible explanation for two clinical cases of canine babesiosis in Southern Germany assumedly leaded back to *B. gibsoni*. These two dogs with no history of travelling, blood transfusion or dogfights showed *Babesia*-like parasites in blood smear examination and 100% identity to *B. gibsoni* (Asian genotype) in sequencing of the 18S rRNA gene [76].

The overall prevalence of *Rickettsia* spp. detected in Bavarian public parks in this study, which is 6.4 to 7.7%, was comparable to results of previous studies in Germany. In Southern Germany prevalences of 5.3 to 12% were previously detected, whereas prevalences up to 14.7% were recorded in eastern federal states of Germany [13,58,77-81]. The occurrence and arrangement of *Rickettsia* species (95% *R. helvetica* and 5% *R. monacensis*) were also similar to previous results from Germany [77,79,82]. The distribution of *R. monacensis* in *I. ricinus* seems to show geographical distinctions between Northern and Southern Europe. In Southern and Eastern European countries *I. ricinus* was much more infected with *R. monacensis* than with other spotted fever group *Rickettsiae* [83,84], in Central Europe *R. monacensis* was only sporadically found beside the main agent *R. helvetica* [16,79] and in Northern Europe *R. helvetica* exclusively was found in *I. ricinus* [85,86].

Rickettsial prevalences vary geographically in European countries from 1.5 to > 40.6% [32,86]. Besides this, local, seasonal and annual prevalence variations of *Rickettsia* spp. were seen as well as differences between habitat-types [32,87,88]. In this study local prevalence differences (between 3.6 and 12.2% depending on sampling site) as well as seasonal variations (highest prevalences in June and July) were also demonstrated. To date, the reasons for these variations are not well understood, but a correlation between tick density and the occurrence for *Rickettsia* spp. is suggested, because of the reservoir role of the ticks in the maintenance of rickettsial life cycle [87].

In this study the occurrence of *Bartonella* spp. in *I. ricinus* could not be definitively demonstrated, because sequence similarity of > 85% is not sufficient for specification. Three potential reasons could be the decisive factor for this result: (i) The sensitivity of the method used with ticks as template tissue; the amount of detectable *Bartonella* DNA may have been too low in the individually investigated ticks. (ii) Urban areas were exclusively investigated in this study and may not serve as suitable habitat for the maintenance of the life cycle of *Bartonella* spp. in ticks, because of a lack of competent reservoir host. (iii) The tick *I. ricinus* may not play an important role in the transmission of *Bartonella* spp. [39,89].

Coinfections with different pathogens were recognized in 34 ticks (0.9%) in 2009. Most of them (*n = 27*) were infections with *R. helvetica* and *A. phagocytophilum*, i.e. 0.7% of all investigated ticks. This is comparable with previous studies; 0.5 to 1% of ticks were infected with *Rickettsia* spp. and *A. phagocytophilum* in different European countries [77,84,86,90]. On the contrary, lower loads of double infections were also observed in other studies with 0.1% in Luxembourg and with 0.2% in Germany [16,58]. However, this can be traced back to the fact that *A. phagocytophilum* was only detected with low prevalences (1.9% and 1% accordingly), whereas in the ticks investigated in this study *A. phagocytophilum* was detected with an average prevalence of 9.5% in 2009 and 6.6% in 2010 [Schorn et al. unpublished data]. Furthermore, coinfections with the other pathogens were sporadically found in this study (0.04 to 0.1%). Double infections with *Babesia* spp. and *A. phagocytophilum* were previously found in 0.3% of ticks in Germany and 0.7 to 2% in Poland [13,50,91]. Coinfections between *Babesia* spp. and *Rickettsia* spp. were previously detected in Italy, Luxembourg and Germany with 0.1 to
0.6% [13,16,92]. Additional data about the occurrence of *Borrelia burgdorferi* sensu lato in public parks would enrich the current knowledge on the dynamics of coinfections in *I. ricinus* in urban areas. Previous epidemiological studies from Germany on *Borrelia burgdorferi* sensu lato show that 1.0% of all investigated ticks in the ‘English Garden’ in Munich (sampling site M2 in this study) were coinfected with *A. phagocytophilum* as well as 0.2% with *Babesia* spp., whereas the most prevalent coinfection in woodland areas was with *Babesia* spp. (2.6%) and none was detected with *A. phagocytophilum* [13,60].

Conclusions

This study shows that several pathogens including *Babesia* spp., *Rickettsia* spp. and *A. phagocytophilum* are present in ticks in public parks in Germany and coinfections of these agents comparable to other habitats and other European countries were demonstrated. Even though the level of pathogenicity of these detected pathogens is not yet fully known, it can be assumed that people visiting public parks and their companion animals may be at risk when coming into contact with these agents. Therefore, visitors to urban public parks, public health officials and physicians should be made aware of the potential risk of tick bites and the possible medical consequences on the urban population.

Acknowledgements

The authors express their gratitude to Claudia Thiel and Tim Tiedemann for technical assistance and Prof. Dr. Edward Sinski (Department of Parasitology, Faculty of Biology, Warsaw, Poland) for providing the positive control of *Babesia microti* from BALB/c mice (King’s college strain from S. Randolph). This study is part of the research project VICCI (Vector-borne Infectious Diseases in Climate Change Investigation) and was co-funded by the Bavarian State Ministry of the Environment and Public Health (Grant-No. K1 08 - 18 module 4).

Author details

1. Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-University, Munich, Germany.
2. Statistical Consulting Unit, Department of Statistics, Ludwig-Maximilians-University, Munich, Germany.

Authors’ contributions

SS performed the experiments, analyzed the data and drafted the manuscript. CS conceived and designed the experiments and gave critical proposals in every step of development. HP and MM performed the statistical analysis. KP conceived the idea of the study. CS and KP critically reviewed the manuscript. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

References

1. Stanek G: Büchse der Pandora: Krankheitserreger in *Ixodes ricinus*-Zecken in Mitteleuropa. Wien Klin Wochenschr 2009, 121:673-683.
2. Ullenberg G: *Babesia*-a historical overview. Vet Parasitol 2006, 138:3-10.
3. Gray J, Zintl A, Hildebrandt A, Hunfeld KP, Weiss L: Zoonotic babesiosis: Overview of the disease and novel aspects of pathogen identity. Tick Ticks-borne Dis 2010, 1:3-10.
4. Homer MI, Aguilar-Delfin I, Telford SR, Krause PJ, Persing DH: Babesiosis. Clin Microbiol Rev 2000, 13:451-469.
5. Kjemtrup AM, Conrad PA: Human babesiosis: an emerging tick-borne disease. Int J Parasitol 2000, 30:1323-1337.
6. Kjemtrup PA, Kjemtrup AM, Carreno RA, Thomford J, Wainwright K, Eberhard M, Quick R, Telford SR, Hervaldt B: Description of *Babesia duncanii* n.sp. (Apicomplexa: Babesieidae) from humans and its differentiation from other piroplasms. Int J Parasitol 2008, 38:779-789.
7. Hervaldt B, Persing DH, Precigout EA, Goff WL, Mathiesen DA, Taylor PW, Eberhard ML, Gorenflo AF: A fatal case of babesiosis in Missouri: identification of another piroplasm that infects humans. Ann Intern Med 1996, 124:643-650.
8. Hervaldt BL, Caccio S, Ghelfinlini F, Aspöck H, Sipelania SB, Piccaluga P, Martorell G, Edelhofer R, Hollenstein U, Poletti G, et al: Molecular characterization of a non-Babesia divergens organism causing zoonotic babesiosis in Europe. Emerg Infect Dis 2003, 9:942-948.
9. Hildebrandt A, Tenter AM, Straube E, Hunfeld KP: Human babesiosis in Germany: Just overlooked or truly new? Int J Med Microbiol 2008, 298:336-346.
10. Hunfeld KP, Hildebrandt A, Gray JS: Babesiosis: recent insights into an ancient disease. Int J Parasitol 2008, 38:1219-1237.
11. Cassini R, Bonomi C, Montani F, Tesserin C, Marcir F, Galuppi R: Detection of *Babesia eu* in *Ixodes ricinus* ticks in northern Italy. Vet Parasitol 2010, 171:151-154.
12. Cassi S, Sager H, Gern L, Piffaretti JC: Presence of potentially pathogenic *Babesia* sp for human in *Ixodes ricinus* in Switzerland. Ann Agric Environ Med 2006, 13:65-70.
13. Franke J, Fritch J, Tomasro H, Straube E, Dorn W, Hildebrandt A: Co-existence of pathogens in host-seeking and feeding ticks within a single natural habitat of Central Germany. Appl Environ Microbiol 2010, 76:6829-6836.
14. Katargina O, Geller J, Vasiilienko V, Kuznetsova T, Järvekülg L, Vene S, Lundkvist A, Golovlova I: Detection and Characterization of *Babesia* Species in *Ixodes* Ticks in Estonia. Vector Borne Zoonotic Dis 2011.
15. Radajevskaja J, Pauliuakus A, Rofe O: Prevalence of *Anaplasma phagocytophilum* and *Babesia* divergens in *Ixodes* ricinus ticks from Lithuania and Norway. Int J Med Microbiol 2008, 298:218-221.
16. Reye AL, Hubschen JM, Sauys A, Muller CP: Prevalence and seasonality of tick-borne pathogens in questing *Ixodes ricinus* ticks from Luxembourg. Appl Environ Microbiol 2010, 76:2923-2931.
17. Skotarczak B, Cichocka A: Isolation and amplification by polymerase chain reaction DNA of *Babesia microti* and *Babesia divergens* in ticks from Poland. Int J Med Microbiol 2001, 288:589-154.
18. Wiênk LA, Forville M, Sprong H, Muyzenberg P, Gassenbeek C, Bergstrasse F, Gassen JW: Persistent Detection of *Babesia EU* and *Babesia microti* in *Ixodes ricinus* Ticks in The Netherlands During a 5-Year Surveillance: 2003-2007. Vector Borne Zoonotic Dis 2008, 8:119-122.
19. Blaschitz M, Narodasldvski-Gföller M, Kanzler M, Stanek G, Walochink J: *Babesia* species occurring in Austrian *Ixodes ricinus* ticks. Appl Environ Microbiol 2008, 74:4841-4846.
20. Tabbaki E, Bajer A, Wielc P, Paweleczik A, Ogryzewalska M, Behnke JM: *Babesia microti*: prevalence in wild rodents and *Ixodes ricinus* ticks from the Mazury Lakes District of North-Eastern Poland. Int J Med Microbiol 2006, 296(Suppl 40):137-143.
21. Dumeril JS, Chui K, Garcia-Garcia JC, Barat NS, Scorpio DG, Guary JW, Grab DJ, Babken JS: Human granulocytic anaplasmosis and *Anaplasma phagocytophilum*. Emerging Infect Dis 2005, 11:1826-1834.
22. Chen SM, Dumeril JS, Babken JS, Walker D: Identification of a granulocytotropic *Ehrlichia* species as the etiologic agent of human disease. J Clin Microbiol 1994, 32:589-595.
Borrelia burgdorferi sensu lato in *Ixodes ricinus* ticks from Italy as determined by 16S rRNA gene sequencing. *J Clin Microbiol* 1997, 35:3365-3366.

26. Soccolovitch C, Medrannikov O, Raoult D, Parola P. Update on tick-borne bacterial diseases in Europe. *Parasite* 2009, 16:259-273.

27. Beati L, Péter O. Burgdorfer W, Aeschlimann A, Raoult D: Confirmation that *Rickettsia helvetica* sp. nov. is a distinct species of the spotted fever group of *rickettsiae*. *Int J Syst Bacteriol* 1993, 43:521-526.

28. Fernández-Soto P, Pérez-Sánchez R, López V, Zayas S, Velo E, Schols L: Identification of *Borrelia burgdorferi* sensu lato, *Anaplasma* and *Ehrlichia* species, and spotted fever group *rickettsiae* in ticks from Southern Europe. *Eur J Clin Microbiol Infect Dis* 2003, 22:533-542.

29. Parola P, Davoust B, Raoult D: Tick- and flea-borne rickettsial emerging zoozones. *Vet Res* 2005, 36:469-492.

30. Ciceroni L, Pinto A, Ciervi A, Ciervo A: Pernicioso, L. Travaglia M, Strocchi L: Tick-borne pathogens collected from domestic animals in the Netherlands. *Vector Borne Zoonotic Dis* 2007, 7:585-595.

31. Agnelakis E, Billett SA, Breitschwerdt EB, Chomel BB, Raoult D: Potential for tick-borne bartonelloses. *Emerg Infect Dis* 2010, 16:585-391.

32. Telford SR, Wormser GP. *Bartonella* spp. transmission by ticks not established. *Emerg Infect Dis* 2010, 16:379-384.

33. Anderson BE, Neuman MA. *Bartonella* spp. as emerging human pathogens. *Clin Microbiol Rev* 1997, 10:203-219.

34. Helbig V, Thompson SD, Benyliini C, Cervu H, Vayssier-Taussat M: The identification of *Rickettsia helvetica* in *Ixodes ricinus* ticks in Castilla y Leon, Spain. *Eur J Clin Microbiol Infect Dis* 2006, 25:811-813.

35. Simser J, Palmer AT, Fongerle V, Wiliske B, Krunji TD, Munderloh UG: *Rickettsia monacensis* sp. nov., a spotted fever group *rickettsia* from ticks (*Ixodes ricinus*) collected in a European city park. *Appl Environ Microbiol* 2002, 68:4559-4566.

36. Nilsson K, Elfving K, Påhlson C: genotypic identification of *Rickettsia helvetica* and *Rickettsia monacensis* using the gene encoding the outer-membrane protein rOmp8 (omp8). *Int J Syst Evol Microbiol* 2000, 50:1449-1455.

37. Cotté V, Bonnet S, Cote M, Vayssier-Taussat M: Phylogenetic analysis of members of the genus *Rickettsia* using the gene encoding the outer membrane protein rOmp8. *Int J Syst Evol Microbiol* 2006, 56:346-363.

38. Hartelt K, Oehme R, Frank H, Brockmann SO, Hassler D, Kimmig P: Evidence of *Anaplasma phagocytophilum* and *Babesia microti* infections of *Ixodes ricinus* ticks from France and co-infection with *Borrelia burgdorferi*. *J Clin Microbiol* 2004, 42:3164-3168.

39. Hothorn T, Bretz F, Westfall P: Simultaneous Inference in General Parametric Models. *Biometrics* 2005, 50:346-363.

40. Hothorn T: Unspecific associations. *J Clin Microbiol* 2005, 43:68-72.

41. Hartelt K, Oehme R, Frank H, Brockmann SO, Hassler D, Kimmig P: Pathogens and symbionts in ticks: prevalence of *Anaplasma phagocytophilum* (Ehrlichia sp.), *Borrelia burgdorferi*, and *Babesia microti* in ticks from Southern Germany. *J Med Microbiol* 2004, 53(Suppl 37):86-92.

42. Hildebrandt A, Paulus K, Sacke S, Sauer M: Co-existence of *Borrelia burgdorferi* and *Babesia microti* in *Ixodes ricinus* ticks in Middle Germany. *Vector Borne Zoonotic Dis* 2010, 10:831-837.

43. Hook S: Untersuchungen zur Häufigkeit von *Borrelia burgdorferi* sensu lato, *Anaplasma phagocytophilum* und *Babesia microti* in *Ixodes ricinus* aus Bayern und Baden-Württemberg, doctoral thesis Ludwig-Maximilians-University, 2005.

44. Poppe BM, Krause PJ, Spielman A, Goethert H, Gern L, Brand B, Telford SR: Entomologic and serologic evidence of zoonotic transmission of *Anaplasma microti* and *Babesia microti*, Eastern Switzerland. *Eur J Clin Microbiol Infect Dis* 2006, 25:811-813.

45. Cernyuc J, Statczak J, Ruzycz A: The first detection of *Babesia* EU1 and *Anaplasma canis* canis in *Ixodes ricinus* ticks (Acari, Ixodidae) collected in urban and rural areas in northern Poland. *Pol J Microbiol* 2009, 58:231-236.

46. Bonnet S, Brasseau N, Hermant O, Gern L, Chauvin A: *Babesia* and *Anaplasma* spp. as emerging human pathogens. *Parasitol Res* 2010, 107(Suppl 1):63.

47. Cotté V, Bonnet S, Cote M, Vayssier-Taussat M: The identification of *Rickettsia helvetica* in *Ixodes ricinus* ticks in Castilla y Leon, Spain. *Eur J Clin Microbiol Infect Dis* 2006, 25:811-813.

48. Schorn D: Tick-borne pathogens in domestic animals and ticks. *Ticks in Middle Germany. Vet Res 2005, 36:469-492.

49. Anderson BE, Neuman MA. *Bartonella* spp. as emerging human pathogens. *Clin Microbiol Rev* 1997, 10:203-219.

50. Halos L, Jalma T, Maillard R, Beugnet F, Le Menach A, Boulou HJ, Vaysier-Taussat M: Evidence of *Borrelia boutonii* in questing adult and nymphal *Ixodes ricinus* ticks from France and co-infection with *Borrelia burgdorferi sensu lato* and *Babesia* sp. *Vec Res 2005, 7:367-387.

51. Hercik K, Hálóvá V, Janécek J, Banny P: Molecular evidence of *Bartonella DNA in ioddid ticks in Czechia. Folia Microbiol (Prague) 2007, 52:503-509.

52. Podsiadl E, Chmelíkova T, Schon E, Tylewska-Wierzbanowska A: *Bartonella henseae* in *Ixodes ricinus* ticks removed from dogs. *Vector Borne Zoonotic Dis* 2007, 7:169-192.

53. Sanogo YO, Zebeat Z, Caruso G, Meroza F, Shpynov S, Brouqui P, Raoult D: *Bartonella henseae* in *Ixodes ricinus* ticks (Acari: Ixodida) removed from humans, Belluno province, Italy. *Emerg Infect Dis* 2003, 9:329-332.

54. Schols LM, Van De Pol I, Ripkerma SG, Schot CS: Detection and identification of *Ehrlichia, Borrelia burgdorferi sensu lato, and Bartonella species in Dutch *Ixodes ricinus* ticks. *J Clin Microbiol* 1999, 37:2215-2222.

55. Skotarczak B, Adamiska N, Slaskova J, Zigmanski J, Widozak L, Buckez A, Dukiewicz J: Coinfection of three pathogens (*Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum* and *Babesia microti*) in *Ixodes ricinus* ticks in the Lublin macroregion. *Ann Agric Environ Med* 2009, 16:151-158.

56. Bonnet S, Brasseau N, Hermant O, Gern L, Chauvin A: *Babesia* sp. from domestic and wild ruminants in northern Poland. *Pol J Microbiol* 2009, 58:231-236.

57. Cotté V, Bonnet S, Cote M, Vayssier-Taussat M: Prevalence of five pathogenic agents in questing *Ixodes ricinus* ticks from western France. *Vector Borne Zoonotic Dis* 2010, 10:235-243.

58. Cotté V, Bonnet S, Cote M, Vayssier-Taussat M: Prevalence of five pathogenic agents in questing *Ixodes ricinus* ticks from western France. *Vector Borne Zoonotic Dis* 2010, 10:235-243.

59. Comer JA, Paddock CD, Chiles RB: Urban zoonoses caused by *Bartonella, Coxiella, Ehrlichia, and Rickettsia species. Vector Borne Zoonotic Dis* 2001, 1:91-118.

60. Silaghi C, Gilles J, Höhle M, Fingerle V, Just FT, Pfister K: *Anaplasma phagocytophilum* infection in *Ixodes ricinus*, Bavaria, Germany. *Emerg Infect Dis* 2008, 14:972-974.
72. Hantelk K, Pluta S, Oehme R, Kimming P. Spread of ticks and tick-borne diseases in Germany due to global warming. Parasitol Res 2008, 103(Suppl 1):S109-116.
73. Dickman CR, Doncaster CP. The Ecology of Small Mammals in Urban Habitats. I. Populations in a Patchy Environment. Journal of Animal Ecology 1987, 56:629-640.
74. Zahler M, Rinder H, Zwygart E, Fukuta T, Vaedt E, Schein E, Gothe R. 'Babesia gibsoni' of dogs from North America and Asia belong to different species. Parasitology 2000, 120(4):355-369.
75. Criado-Fonnello A, González-del-Río MA, Buling-Saraña A, Barba-Carretero JC. Molecular characterization of a Babesia gibsoni isolate from a Spanish dog. Vet Parasitol 2003, 117:123-129.
76. Hantelk K, Reker T, Oehme RM, Brockmann SO, Müller W, Dom N. First evidence of Babesia gibsoni (Asian genotype) in dogs in Western Europe. Vector Borne Zoonotic Dis 2007, 7:163-166.
77. Hildebrandt A, Kramer A, Sachse S, Straube E. Detection of Rickettsia spp. and Anaplasma phagocytophilum in Ixodes ricinus ticks in a region of Middle Germany (Thuringia). Ticks Tick-borne Dis 2010, 1:52-56.
78. Pichon B, Kahl O, Hammer B, Gray JS. Pathogens and host DNA in Ixodes ricinus nymphal ticks from a German forest. Vector Borne Zoonotic Dis 2006, 6:382-387.
79. Silaghi C, Gilles J, Höhle M, Pradel I, Just FT, Fingerle V, Küchenhoff H, Pfister K. Prevalence of spotted fever group rickettsiae in Ixodes ricinus (Acari: Ixodidae) in southern Germany. J Med Entomol 2008, 45:948-955.
80. Wölfel R, Terzioglu R, Kiessling J, Wilhelm S, Essbauer S, Pfeffer M, Dobler G. Rickettsia spp. in Ixodes ricinus ticks in Bavaria. Ann N Y Acad Sci 2006, 1078:509-512.
81. Silaghi C, Hamel D, Thiel C, Pfister K, Pfeffer M. Spotted Fever Group Rickettsiaceae in Ticks, Germany. Emerg Infect Dis 2011, 17:890-892.
82. Dobler G, Essbauer S, Wölfel R. Isolation and preliminary characterisation of Rickettsia monacensis in south-eastern Germany. Clin Microbiol Infect 2009, 15(Suppl 2):263-264.
83. de Carvalho IL, Milhano N, Santos AS, Almeida V, Barros SC, De Sousa R, Núñez MS. Detection of Borrelia lusitaniae, Rickettsia sp. IR53, Rickettsia monacensis, and Anaplasma phagocytophilum in Ixodes ricinus collected in Madeira Island, Portugal. Vector Borne Zoonotic Dis 2008, 8:575-579.
84. Movila A, Rolain JM, Podavalenko A, Todoras I, Tchachenko L, Naglov V, Raoult D. Detection of spotted fever group rickettsiae and family Anaplasmataceae in Ixodes ricinus ticks from Republic of Moldova and Eastern Ukraine. Clin Microbiol Infect 2009, 15(Suppl 2):S2-33.
85. Nilsson K, Lindquist O, Liu AJ, Jaenson TG, Friman G, Påhlson C. Molecular evidence of coinfection of Babesia microti and Anaplasmataceae in Ixodes ricinus ticks in seven study areas in Sweden. J Clin Microbiol 1999, 37:400-403.
86. Severinsson K, Jaenson TG, Pettersson J, Falk K, Nilsson K. Detection and prevalence of Anaplasma phagocytophilum and Rickettsia helvetica in Ixodes ricinus ticks in seven study areas in Sweden. Parasit Vectors 2010, 3:66.
87. Kantsa B, Bo Svendsen C, Moestrup Jensen P, Vennestrom J, Kroghfelt KA. Seasonal and habitat variation in the prevalence of Rickettsia helvetica in Ixodes ricinus ticks from Denmark. Ticks Tick-borne Dis 2010, 1:101-103.
88. Sprong H, Wielinga PR, Forville M, Reuken C, Brandenburg AH, Borgsteede F, Gaassenbeek C, van der Giessen JW. Ixodes ricinus ticks are reservoir hosts for Rickettsia helvetica and potentially carry flea-borne Rickettsia species. Parasit Vectors 2009, 2:41.
89. Tijsse-Klasen E, Fonville M, Gassner F, Nijhof AM, Hovius EK, Jongejan F, Takken W, Reimerink JR, Ongenaauw PA, Sprong H. Absence of zoonotic Bartonella species in questing ticks: First detection of Bartonella clarridgeiae and Rickettsia felis in cat fleas in the Netherlands. Parasit Vectors 2011, 4:61.
90. Hildt I, Bold S, Cotté V, Gasqui P, Abtal D, Barnoun J, Bouloumié H, Vaysset-Tauss M, Vourc'h G. Ecological factors characterizing the prevalence of bacterial tick-borne pathogens in Ixodes ricinus ticks in pastures and woodlands. Appl Environ Microbiol 2010, 76:4413-4420.
91. Skotarczak B, Rymaszewska A, Wodecka B, Sawczuk M. Molecular evidence of coinfection of Borrelia burgdorferi sensu lato, human granulocytic ehrlichiosis agent, and Babesia microti in ticks from northwestern Poland. J Parasitol 2003, 89:194-196.
92. Piccolin G, Benedetti G, Doglioni C, Lorenzato C, Mancuso S, Papa N, Pitton L, Ramon MC, Zasio C, Bertiato G. A study of the presence of B. burgdorferi, Anaplasma (previously Ehrlichia) phagocytophilum, Rickettsia, and Babesia in Ixodes ricinus collected within the territory of Belluno, Italy. Vector Borne Zoonotic Dis 2006, 6:24-31.

Cite this article as: Schorn et al.: Occurrence of Babesia spp., Rickettsia spp. and Bartonella spp. in Ixodes ricinus in Bavarian public parks, Germany. Parasites & Vectors 2011 4:135.