On the completeness of solutions of Bethe’s equations

Wenrui Hao1, Rafael I. Nepomechie2 and Andrew J. Sommese3

\textbf{Abstract}

We consider the Bethe equations for the isotropic spin-1/2 Heisenberg quantum spin chain with periodic boundary conditions. We formulate a conjecture for the number of solutions with pairwise distinct roots of these equations, in terms of numbers of so-called singular (or exceptional) solutions. Using homotopy continuation methods, we find all such solutions of the Bethe equations for chains of length up to 14. The numbers of these solutions are in perfect agreement with the conjecture. We also discuss an indirect method of finding solutions of the Bethe equations by solving the Baxter T-Q equation. We briefly comment on implications for thermodynamical computations based on the string hypothesis.

1 Mathematical Biosciences Institute, The Ohio State University, 1735 Neil Avenue, Columbus, OH 43210 USA, hao.50@osu.edu
2Physics Department, P.O. Box 248046, University of Miami, Coral Gables, FL 33124 USA, nepomechie@physics.miami.edu
3 Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, 163 Hurley Hall, IN 46556 USA, sommese@nd.edu
1 Introduction

The Heisenberg quantum spin chain is a one-dimensional array of N quantum spin-1/2 spins with nearest-neighbor isotropic interactions and periodic boundary conditions. The Hamiltonian is given by

$$H = \frac{1}{4} \sum_{n=1}^{N} (\vec{\sigma}_n \cdot \vec{\sigma}_{n+1} - 1), \quad \vec{\sigma}_{N+1} \equiv \vec{\sigma}_1,$$

(1.1)

where $\vec{\sigma} = (\sigma^x, \sigma^y, \sigma^z)$ are the usual 2 \times 2 Pauli spin matrices, and $\vec{\sigma}_n$ denotes the spin operators at site n. The vector space describing this system has dimension 2^N, so the Hamiltonian is a $2^N \times 2^N$ matrix. The basic problem is to determine the eigenvectors and eigenvalues of this matrix, which grows in size exponentially with N.

The Heisenberg spin chain is of fundamental importance in theoretical physics. It is a model of (anti)ferromagnetism, which is realized experimentally (e.g., KCuF$_3$ and Sr$_2$CuO$_3$) [1]. It has many other applications and connections, including conformal field theory [2, 3], $\mathcal{N} = 4$ supersymmetric Yang-Mills theory and string theory [4]. Moreover, it is the prototype of so-called quantum integrable models: one-dimensional many-body quantum systems that have many conserved quantities, and that therefore admit exact solutions [5, 6, 7, 8].

An exact solution of the Heisenberg model was discovered in 1931 by Hans Bethe [9]. In particular, the eigenvalues of the Hamiltonian (1.1) are given by

$$E = -\frac{1}{2} \sum_{k=1}^{M} \frac{1}{\lambda_k^2 + \frac{1}{4}},$$

(1.2)

where $\{\lambda_1, \ldots, \lambda_M\}$ satisfy Bethe’s celebrated equations

$$\left(\lambda_k + \frac{i}{2} \right)^N \prod_{j \neq k}^{M} (\lambda_k - \lambda_j - i) = \left(\lambda_k - \frac{i}{2} \right)^N \prod_{j \neq k}^{M} (\lambda_k - \lambda_j + i),$$

$$k = 1, 2, \ldots, M, \quad M = 0, 1, \ldots, \frac{N}{2}. \quad (1.3)$$

It is therefore customary to refer to the λ_k’s as “Bethe roots”. The solutions of other quantum integrable models entail generalizations of these equations.

For given values of N and M, the Bethe equations have various sets of solutions. Roughly speaking, for each such solution $\{\lambda_1, \ldots, \lambda_M\}$, there is a corresponding energy level (1.2) and eigenvector (the construction of which will be sketched in Section 2) of the Hamiltonian. However, ever since the time of Bethe’s remarkable discovery, the nagging question of “completeness” has persisted: namely, whether the Bethe equations have too many, too few, or just the right number of solutions to account for all 2^N eigenstates of the Hamiltonian.1

1Various completeness proofs have been proposed for the case $N \to \infty$ [7, 9, 10, 11]. However, these proofs rely on the so-called string hypothesis, which itself has not been proved. See also e.g. [12, 13, 14, 15, 16].
The existence of so-called singular (or exceptional) solutions of the Bethe equations makes the completeness problem particularly confusing. A related question is whether the set of Bethe roots characterizing any given state must be pairwise distinct, i.e., obey the “Pauli principle”. Although it is generally believed that the answer to this question is ‘yes’, there is no proof (to our knowledge) of this assertion.

We formulate here a precise conjecture for the number of solutions with pairwise distinct roots of the Bethe equations, in terms of numbers of singular solutions. (See Eq. (2.12) below.) Its meaning is that the Bethe equations generally have “too many” solutions with pairwise distinct roots; but after appropriate culling, there remain exactly the right number of solutions to account for all 2^N eigenstates of the Hamiltonian.

In order to check this conjecture, it is necessary to find all solutions with pairwise distinct roots of the Bethe equations. For certain energy levels, in particular for the ground state which has $N/2$ real Bethe roots, it is straightforward to compute numerically the Bethe roots for large values of N ($\sim 10^3$) (see e.g. [2]), and to compute analytically the energy in the $N \to \infty$ limit [7]. However, finding all solutions of the Bethe equations is unfortunately a difficult problem even for modest values of N (~ 10) – certainly much more difficult than directly diagonalizing the Hamiltonian. For example, on a desktop computer, the direct solution of (1.3) is not feasible for $N = 8$ beyond $M = 3$.

We discuss two approaches for tackling this problem. Using homotopy continuation methods, which heretofore had not been applied to the Bethe equations, we find all solutions with pairwise distinct roots up to $N = 14, M = 7$. We also discuss an indirect method of finding solutions of the Bethe equations by solving the Baxter T-Q equation.

Our results, summarized in Table 2, are in precise agreement with the conjecture. These results also suggest that the naive prediction (2.8) for the number of solutions of the Bethe equations is incorrect not only for small values of N, but also for $N \to \infty$, in contradiction with several computations based on the string hypothesis.

The conjecture may also be of interest to mathematicians. Indeed, the Bethe equations are evidently a system of polynomial equations, and therefore belong to the realm of algebraic geometry. These equations have a finite number of solutions; i.e., the algebraic variety of the solutions has dimension 0. Nevertheless, the number of such solutions should be calculable a priori. (See also [12, 16, 26] and references therein.)

The outline of this paper is as follows. In Section 2 we formulate our conjecture for the number of solutions with pairwise distinct roots of the Bethe equations, in terms of numbers of singular solutions. In Section 3 we briefly describe the homotopy continuation method with references to some surveys on the method, and how we use it to solve the Bethe equations. In Section 4 we discuss an indirect way of finding the Bethe roots by solving instead the T-Q
2 The completeness/Pauli-principle conjecture

For given values of \(N \) and \(M \), let us denote by \(\mathcal{N}(N,M) \) the number of solutions of the Bethe equations (1.3) with pairwise distinct Bethe roots (i.e., \(\lambda_j \neq \lambda_k \) for \(j \neq k \)). We always count solutions up to permutations of the Bethe roots: if \{\(\lambda_1, \ldots, \lambda_M \)\} is a solution, then any permutation of these \(\lambda_k \)'s is not counted as a separate solution.

We would like to formulate a conjecture for \(\mathcal{N}(N,M) \). To this end, it is necessary to review in a little more detail the solution of the model. Instead of following Bethe’s original approach (which is now referred to as the coordinate Bethe ansatz), we find it easier to use the algebraic Bethe ansatz approach \[6, 7, 8\]. The main point is that the state with all spins up, which is called the “reference” state and which we denote by \(|0\rangle \), is an eigenstate of the Hamiltonian (with eigenvalue 0); and additional eigenstates, called “Bethe states”, can be constructed by acting with certain creation operators \(B(\lambda) \) on the reference state:

\[
|\lambda_1, \ldots, \lambda_M\rangle = B(\lambda_1) \cdots B(\lambda_M)|0\rangle,
\]

where \(\{\lambda_1, \ldots, \lambda_M\} \) are (by assumption) pairwise distinct, and are solutions of the Bethe equations. Since the creation operators commute \([B(\lambda), B(\lambda')] = 0\), any permutation of the Bethe roots \(\{\lambda_1, \ldots, \lambda_M\} \) evidently does not affect the state (2.1). The corresponding energy eigenvalue is given by (1.2).

The Hamiltonian (1.1) commutes with the total spin \(\vec{S} \),

\[
\left[H, \vec{S} \right] = 0, \quad \vec{S} = \frac{1}{2} \sum_{n=1}^{N} \vec{\sigma}_n.
\]

Hence, \(H, \vec{S}^2 \) and \(S^z \) can all be simultaneously diagonalized,

\[
H|E, s, m\rangle = E|E, s, m\rangle, \\
\vec{S}^2|E, s, m\rangle = s(s + 1)|E, s, m\rangle, \\
S^z|E, s, m\rangle = m|E, s, m\rangle.
\]

It can be further shown that the Bethe states (2.1) are highest-weight states,

\[
S^+|\lambda_1, \ldots, \lambda_M\rangle = 0, \quad S^\pm = S^x \pm iS^y,
\]

so the spin quantum numbers are given by

\[
s = m = \frac{N}{2} - M.
\]

Although the Bethe ansatz can give only highest-weight \((m = s)\) eigenstates of the Hamiltonian, the eigenstates with \(m < s \) can easily be obtained by repeatedly acting with the spin-lowering operator \(S^- \) on the Bethe states.
It is now not difficult to determine, for a given value of \(N \), the possible values of spin \(s \) (and hence the possible values of \(M \)), and their degeneracies (which naively should be the number of solutions of the Bethe equations with \(M \) Bethe roots). Indeed, the Clebsch-Gordan theorem implies that the \(N \)-fold tensor product of spin-1/2 representations decomposes into a direct sum of (irreducible) spin-\(s \) representations,

\[
\frac{1}{2} \otimes \cdots \otimes \frac{1}{2} = \bigoplus_{s=0}^{\frac{N}{2}} n_s s,
\]

where \(n_s \), the number of representations with spin-\(s \), is given by

\[
n_s = \left(\frac{N}{\frac{N}{2} - s} \right) - \left(\frac{N}{\frac{N}{2} - s - 1} \right).
\]

Note from (2.6) that the values of \(s \) range from 0 to \(\frac{N}{2} \); hence, according to (2.5), the values of \(M \) also range from 0 to \(\frac{N}{2} \), as already anticipated in (1.3).

It follows from (2.5) and (2.7) that \(\mathcal{N}(N, M) \), the number of solutions of the Bethe equations with \(M \) pairwise distinct roots, should naively be given by

\[
\mathcal{N}(N, M) \equiv \left(\begin{array}{c} N \\ M \end{array} \right) - \left(\begin{array}{c} N \\ M - 1 \end{array} \right).
\]

However, this is not correct. The flaw in the argument can be traced back to the incorrect assumption that every solution of the Bethe equations with pairwise distinct roots produces, via (2.11), an eigenstate of the Hamiltonian. Indeed, the Bethe equations admit so-called singular (or exceptional) solutions, one of whose roots is \(i/2 \) and another of which is \(-i/2 \); and only a subset of those solutions produces eigenstates of the Hamiltonian. Those singular solutions that produce eigenstates of the Hamiltonian we call “physical”, and those singular solutions that do not produce eigenstates of the Hamiltonian we call “unphysical”.

Fortunately, there exists a simple criterion for determining whether a given singular solution is physical or unphysical. Consider a general singular solution of the Bethe equations

\[
\left\{ \frac{i}{2}, -\frac{i}{2}, \lambda_3, \ldots, \lambda_M \right\},
\]

where \(\lambda_3, \ldots, \lambda_M \) are pairwise distinct and are not equal to \(\pm i/2 \). The Bethe equations (1.3) imply that the last \(M - 2 \) roots \(\{\lambda_3, \ldots, \lambda_M\} \) obey

\[
\left(\frac{\lambda_k + \frac{i}{2}}{\lambda_k - \frac{i}{2}} \right)^{N-1} \left(\frac{\lambda_k - \frac{3i}{2}}{\lambda_k + \frac{3i}{2}} \right) = \prod_{j \neq k}^{M} \frac{\lambda_k - \lambda_j + i}{\lambda_k - \lambda_j - i}, \quad k = 3, \ldots, M.
\]

This singular solution is physical if \(\{\lambda_3, \ldots, \lambda_M\} \) also obey

\[
\left[-\prod_{k=3}^{M} \left(\frac{\lambda_k + \frac{i}{2}}{\lambda_k - \frac{i}{2}} \right) \right]^N = 1.
\]
We are finally ready to formulate a precise conjecture for \(N(N, M) \) in terms of numbers of singular solutions. Let \(N_s(N, M) \) denote the number of solutions of the Bethe equations (1.3) that are singular (i.e., that have the form (2.9)); and let \(N_{sp}(N, M) \) denote the number of such singular solutions that satisfy (2.11) and hence are physical. We conjecture that

\[
N(N, M) - N_s(N, M) + N_{sp}(N, M) = \binom{N}{M} - \binom{N}{M-1}.
\]

(2.12)

The physical meaning of this conjecture is that the Bethe equations generally have “too many” solutions with pairwise distinct roots; but after discarding the singular solutions that do not satisfy (2.11), there remain exactly the right number of solutions to account for all \(\binom{N}{M} - \binom{N}{M-1} \) highest-weight eigenstates (and therefore all \(2^N \) eigenstates) of the Hamiltonian. Hence, (2.12) expresses the completeness – after appropriate culling – of the solutions of the Bethe equations with pairwise distinct roots. It is therefore natural to call it the “completeness/Pauli-principle conjecture” \footnote{We could generalize (2.12) to allow for violations of the Pauli principle by adding an extra term:}.

Unfortunately, we do not have conjectures for \(N, N_s, N_{sp} \) separately for general values of \(N \) and \(M \), but only for the combination \(N - N_s + N_{sp} \).

We emphasize the two-way nature of this conjecture:

(i) for every highest-weight eigenstate of the Hamiltonian, there is a solution of the Bethe equations with pairwise distinct roots; and

(ii) for every solution of the Bethe equations with pairwise distinct roots that (if it is singular) also satisfies (2.11), there is a highest-weight eigenstate of the Hamiltonian.

To our knowledge, previous studies of completeness have focused only on point (i), and therefore have not addressed the many unphysical singular solutions of the Bethe equations. A case in point is [23], which reports solutions of the Bethe equations for \(N = 8 \) and \(N = 10 \), but the only singular solutions that are included are the physical ones.

In order to check the conjecture, it is necessary to find all the solutions with pairwise distinct roots of the Bethe equations. It is to this task that we now turn.

3 Homotopy continuation

Homotopy continuation (often called continuation) is the main numerical approach to find isolated roots of polynomial systems without regard to the dimension of the ambient space, restrictions on the systems, or the bounds on the size of the domain in Euclidean space where

\[
N(N, M) - N_s(N, M) + N_{sp}(N, M) + N_{\text{strange}}(N, M) = \binom{N}{M} - \binom{N}{M-1} + N_{\text{strange}}(N, M),
\]
the solutions are sought. In this section we outline the method and its main features, and mention the main software packages.

Some surveys of this material are [27, 28, 29, 30]. The classic [31] is a good reference for many software implementation details. The methods apply more generally than systems of polynomials, but without many of the features we need, e.g., guarantees for finding solutions and accurate computation of singular solutions. The classic reference for continuation methods in this general situation (putting the case of polynomial systems in context) is [32].

Polynomial system solving has a long history of applications to widely diverse areas, e.g., kinematics, chemical reaction systems, game theory, mathematical biology, systems of nonlinear differential equations, and physics. Applications to theoretical kinematics go back to the 19th century. It is fair to say that the main application areas presented in [31, 28] lie in kinematics and robotics; for more details, see the references in those books and the survey article [30]. Chemical reactions systems are treated in [31]; for more details, see the references there and in the articles [33, 34, 28, 35]. Game theory applications and some references may be found in [28]. Polynomial systems arise naturally in the discretization of systems of nonlinear differential equations; for more details see the early articles [36, 37], some more recent articles, [38, 39], and the references contain in them. For applications to a variety of models from from mathematical biology, see [40, 41, 42]. For recent applications to physics, see e.g. [43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53] and the references contained in these articles.

The continuation method to find the solutions of a polynomial system f starts with a polynomial system g (called the start system) and a set S_g of nonsingular solutions of g, which are called start points. The method proceeds to deform the system g and S_g to the system f and a set of solutions S_f of f. We make this precise below. The references listed above detail many different possible choices of g for which homotopy continuation is guaranteed to find a set of solutions of f, which contain all isolated solutions of f. We use the total degree homotopy (explained below), which is the first homotopy that was shown to find all solutions of a polynomial system.

For Bethe’s equations (1.3), we begin by introducing the polynomials f_k in the variables $\lambda_1, \ldots, \lambda_M$, which we regard as specifying a variable point in \mathbb{C}^M.

\[f_k(\vec{\lambda}) = \left(\lambda_k + \frac{i}{2}\right)^N \prod_{j \neq k}^{M} (\lambda_k - \lambda_j - i) - \left(\lambda_k - \frac{i}{2}\right)^N \prod_{j \neq k}^{M} (\lambda_k - \lambda_j + i), \quad (3.1) \]

where $\vec{\lambda} = (\lambda_1, \lambda_2, \ldots, \lambda_M)^T$. Notice that the degrees the polynomials f_k are $N + M - 2$ after simplifying (since the top degree terms of the LHS and the RHS of Eq. (1.3) are equal).

We then define the following homotopy function

\[\vec{H}(\vec{\lambda}, t) = (1 - t)\vec{f}(\vec{\lambda}) + \gamma t \vec{g}(\vec{\lambda}), \quad (3.2) \]

where $\vec{f} = (f_1, \ldots, f_M)^T$, $\vec{g} = (g_1, \ldots, g_M)^T$, $g_k = \lambda_k^{N+M-2} - 1$. Moreover, $t \in [0, 1]$ is a homotopy parameter, and γ is a random complex number. When $t = 1$, we have known
solutions to $\vec{g}(\vec{\lambda}) = 0$, or equivalently, $\vec{H}(\vec{\lambda}, 1) = 0$. Specifically, the solutions of $g_k = 0$ are

$$\lambda_k = \omega j_k, \quad \omega = e^{2\pi i/(N+M-2)}, \quad j_k = 0, 1, \ldots, N + M - 3. \quad (3.3)$$

The solutions of $\vec{g}(\vec{\lambda}) = 0$ therefore yield values for each λ_k. The known solutions are called start points, and the system $\vec{H}(\vec{\lambda}, 1) = 0$ is called the start system. Such a start system with the degree d_k of g_k equal to the degree of f_k for all k and with the number of solutions of $\vec{H}(\vec{\lambda}, 1) = 0$ equal to $\prod_{k=1}^{n} d_k$ is called a total degree start system. (The number of isolated solution of a system of n polynomial equations f_k in n variables is always less than or equal to $\prod_{i=k}^{n} \deg f_k$.) Choosing a total degree start system and a random complex number γ, which is called the γ-trick, was introduced in [54]. A good discussion of a more general version of this trick is given in [28, Lemma 7.1.3].

However, as previously explained, we are interested in solutions $(\lambda_1, \ldots, \lambda_M)$ up to permuting the coordinates, and with no two λ's equal. Hence, we may restrict j_k in (3.3) to run over all M-tuples of integers

$$0 \leq j_1 < j_2 < j_3 < \cdots < j_M \leq N + M - 3. \quad (3.4)$$

To see this, note that the equations H_1, \ldots, H_M of the homotopy $\vec{H}(\vec{\lambda}, t)$ are permuted by the symmetric group on the variables $\lambda_1, \ldots, \lambda_M$. Indeed under a permutation σ taking λ_j to λ_k, H_j is taken to H_k. This has strong consequences for the homotopy [55]: we explain the consequence we need. The paths in λ, t space over the interval $(0, 1]$, are permuted by the action of the symmetric group. A start point has pairwise disjoint entries if and only if the orbit in the set of start points under the symmetric group consists of exactly $M!$ points. Since there is one path for each of the start points, we see that the number of paths a given path over $(0, 1]$ is taken to under the symmetric group is $M!$ if and only if the start point has pairwise disjoint entries. The orbit of a root of $\vec{H}(\vec{\lambda}, 0) = 0$, which is a limit of a path p, equals the set of limits as $t \to 0$ of the paths in the orbit of the path p under the symmetric group action. From this we see that a root of $\vec{H}(\vec{\lambda}, 0) = 0$ can have pairwise disjoint entries only if it is the limit of some path with a start point having pairwise disjoint entries. Note that this does not preclude a path with start point having pairwise disjoint coordinates ending at a root of $\vec{H}(\vec{\lambda}, 0) = 0$ without pairwise disjoint coordinates. Note also that the number of start points is only $\binom{N+M-2}{M}$ since it equals the number of M-tuples of integers (3.4).

At $t = 0$, we evidently recover the Bethe equations. The problem of finding the solutions of the Bethe equations now reduces to tracking solutions of $\vec{H}(\vec{\lambda}, t) = 0$ from $t = 1$ where we know solutions to $t = 0$. The numerical method used in path tracking from $t = 1$ to $t = 0$ arises from solving the Davidenko differential equation:

$$\frac{d\vec{H}(\vec{\lambda}(t), t)}{dt} = \frac{\partial \vec{H}(\vec{\lambda}(t), t)}{\partial \vec{\lambda}} \frac{d\vec{\lambda}(t)}{dt} + \frac{\partial \vec{H}(\vec{\lambda}(t), t)}{\partial t} = 0. \quad (3.5)$$

In particular, path tracking reduces to solving initial value problems numerically with the start points being the initial conditions. Since we also have an equation which vanishes along
the path, namely $\vec{H}(\vec{\lambda}, t) = 0$, predictor/corrector methods, e.g., rkf45 as a predictor with the Newton-Raphson’s method as a corrector, are used to solve these initial value problems.

Continuation methods parallelize naturally, by sending different paths to different processors to track. Predictor/corrector methods combined with adaptive stepsize and adaptive precision algorithms [56, 57] provide reliability without giving up efficiency. A major concerns for implementing a numerical path-tracking algorithm are to decide the number of digits used to provide reliable computation, which predictor/corrector method to employ and the stepsize Δt. See [57, 28] for more details regarding the construction and implementation of a path tracking algorithm.

We mention that for polynomial systems, there are special path-tracking algorithms [58, 59, 60], often called endgames, to compute singular solutions. When the endpoint of a solution path is singular, there are several approaches that give highly accurate estimates of the endpoint. These methods use the fact that the homotopy continuation path $\vec{\lambda}(t)$ approaching a solution of $\vec{H}(\vec{\lambda}, t) = 0$ as $t \to 0$ lies on an complex analytic curve, which may be locally uniformized near $(\vec{\lambda}, 0)$, by an analytic disk. Many of these endgames are implemented in several sophisticated numerical packages such as Bertini [29], PHCpack [61], and HOMPACK [62]. Their binaries are all available as freeware from their respective research groups. We note also HOM4PS-2.0 [63], the leading homotopy continuation software using polyhedral methods: this software is not useful for us in this article because it does not allow the user to specify a homotopy and a set of start points.

We employed Bertini [29] with adaptive precision tracking [56, 57]: {due to the high degree of Bethe’s equations, a precision of 2000 bits (roughly 600 digits)} is needed to solve the system. We ran Bertini on a 64-bit Linux cluster with 13 dual Xeon 5410 nodes (each with 8 GB RAM and 8 cores) and 9 dual Xeon E5520 nodes (each with 12 GB RAM and 8 cores). One node acted as manager with up to 22 computing nodes giving a total of 176 cores.

The results for $N = 2, \ldots, 12$ are presented in a set of supplemental tables [64], an example of which is Table 1. To give some perspective in computational effort, the case of $(N, M) = (14, 7)$ took 4413.5 seconds of computation while the case of $(N, M) = (12, 6)$ took 168.8 seconds of computation.

4 Solving the T-Q equation

There is also a powerful indirect way of determining the Bethe roots based on the Baxter T-Q equation. By virtue of the model’s integrability, one can construct the so-called transfer matrix $t(\lambda)$, a $2^N \times 2^N$ matrix that is a function of an arbitrary parameter λ, which commutes with itself for different values of this parameter as well as with the Hamiltonian [1, 1, 5, 6, 7, 8]:

$$[t(\lambda), t(\lambda')] = 0, \quad [t(\lambda), H] = 0.$$ \hspace{0.5cm} (4.1)
Table 1: Solutions with distinct roots of the Bethe equations for $N = 8, M = 4$. Singular solutions that are unphysical are labeled by *, and singular solutions that are physical are labeled by **.

Furthermore, it can be shown that the eigenvalues of the transfer matrix, which we denote here by $T(\lambda)$, are polynomials in λ of degree N,

$$T(\lambda) = \sum_{j=0}^{N} T_j \lambda^j,$$

(4.2)

where the coefficients T_j are independent of λ. Moreover, the transfer matrix eigenvalues satisfy the celebrated T-Q equation [5, 6, 7, 8]

$$T(\lambda) Q(\lambda) = (\lambda + i \frac{n}{2})^N Q(\lambda - i) + (\lambda - i \frac{n}{2})^N Q(\lambda + i),$$

(4.3)

where $Q(\lambda)$ is a polynomial in λ of degree M, whose zeros are the sought-after solutions of the Bethe equations (4.3).

Interestingly, it is possible to solve the T-Q equation (4.3) numerically for both $T(\lambda)$ and $Q(\lambda)$; and then, by finding the zeros of $Q(\lambda)$, determine all the solutions of the Bethe equations. (4.3)
The basic idea is to substitute (4.2) and (4.4) into the T-Q equation (4.3), and then equate coefficients with equal powers of λ. In other words, (4.2) and (4.4) imply that

$$T(\lambda)Q(\lambda) - \left[\left(\lambda + \frac{i}{2} \right)^N Q(\lambda - i) + \left(\lambda - \frac{i}{2} \right)^N Q(\lambda + i) \right] = \sum_{j=0}^{N+M} c_j \lambda^j,$$

where the coefficients c_j are independent of λ; and the T-Q equation implies that $c_j = 0$, $j = 0, 1, \ldots, N + M$.

Note that c_{M+1}, \ldots, c_{M+N} are independent of T_0 and are linear in T_1, \ldots, T_N. Therefore, Eqs. (4.6) with $j = M + 1, \ldots, M + N$ can be solved uniquely for T_1, \ldots, T_N in terms of Q_0, \ldots, Q_{M-1}. Substituting this solution into the remaining coefficients c_0, \ldots, c_M, we arrive at a system of $M + 1$ nonlinear equations

$$c_j = 0, \quad j = 0, 1, \ldots, M$$

for the $M + 1$ unknowns $Q_0, \ldots, Q_{M-1}, T_0$. This system of equations is somewhat simpler than the corresponding M Bethe equations (4.5). Indeed, the above procedure can easily be implemented on a desktop computer, which can perform the case $N = 9$ in a few minutes, but cannot manage higher values of N. The results agree with the corresponding results (up to $N = 9$) obtained in Section 3. We have not attempted to implement this procedure on better hardware.

A variation of the above procedure is to first determine the eigenvalues $T(\lambda)$ by explicitly diagonalizing the transfer matrix $t(\lambda)$ and then solving the T-Q equation (4.3) for $Q(\lambda)$. This approach has the advantage that solving the T-Q equation for only Q is a linear (albeit, overdetermined) problem; however, it has the disadvantage of requiring the diagonalization of a large matrix. This procedure can also be easily implemented on a desktop computer, which can again perform the case $N = 9$ in a few minutes, but cannot manage higher values of N. Unlike the former approach where one solves the T-Q equation for both T and Q, the only singular solutions that this method can generate are the physical ones. Hence, this method can check only point (i) of the two points listed below (2.12).

5 Summary and Discussion

Our results are summarized in Table 2. For each set of values (N, M), we report a set of four integers:

$$(N, N_s, N_sp; N - N_s + N_sp),$$

5This very nice approach does not seem to be widely known. To our knowledge, it was first published by Baxter [15], and it has recently been rediscovered in the context of Richardson-Gaudin models [65, 66].

6Since c_0, \ldots, c_M are linear in T_0, it is also possible to eliminate T_0 in terms of Q_0, \ldots, Q_{M-1}, and thereby arrive at a system of M nonlinear equations for M unknowns.

7In practice, one first computes the eigenvectors of the numerical matrix $t(\lambda_0)$ (where λ_0 is some generic numerical value), and then one acts with $t(\lambda)$ on these eigenvectors to obtain the corresponding eigenvalues $T(\lambda)$ as polynomials in λ.

8This approach for determining Bethe roots has been used many times in the past, e.g. [14] [67] [68].
where \(\mathcal{N} \) is the number of solutions with pairwise distinct roots of the Bethe equations; \(\mathcal{N}_s \) is the number of singular solutions; and \(\mathcal{N}_{sp} \) is the number of singular solutions that are physical. (See Section 2 for further details.) These quantities can easily be read off from Table 1 and the supplemental tables [64] as follows: \(\mathcal{N} \) is the number of solutions listed in a given table; \(\mathcal{N}_s \) is the number of those solutions labeled with either a single * or double ** star; and \(\mathcal{N}_{sp} \) is the number of those solutions labeled with a double star.

Table 2: The values \((\mathcal{N}, \mathcal{N}_s, \mathcal{N}_{sp} ; \mathcal{N} - \mathcal{N}_s + \mathcal{N}_{sp})\) for given values of \(N\) and \(M\), where \(\mathcal{N} \) is the number of solutions with pairwise distinct roots of the Bethe equations; \(\mathcal{N}_s \) is the number of singular solutions; and \(\mathcal{N}_{sp} \) is the number of singular solutions that are physical.

Remarkably, the quantities \(\mathcal{N} - \mathcal{N}_s + \mathcal{N}_{sp} \) in all the entries of Table 2 coincide with \(\binom{N}{M} - \binom{N}{M-1} \), in perfect agreement with the conjecture (2.12). Although this conjecture was motivated from consideration of a physical model (1.1), it can be viewed solely as a statement about the solutions of the polynomial equations (1.3) and (2.11), which begs for a proof.

It is easy to see that the number of solutions for \(M = 1 \) is \(\mathcal{N} = N - 1 \),

\[
\mathcal{N}(N,1) = N - 1 .
\] (5.1)

Moreover, for \(M = 2 \), we observe

\[
\mathcal{N}(N,2) = \frac{1}{2} \left(N^2 + 3N + 1 + (-1)^N\right) .
\] (5.2)

It would be interesting to formulate conjectures (not to mention proofs) for \(\mathcal{N}(N,M) \) for \(M \geq 3 \).

Several remarks about the singular solutions are in order:

(i) Inspection of Table 1 and the supplemental tables [64] shows that many (but not all) of the unphysical singular solutions (i.e., those solutions labeled by a single star *) are not self-conjugate. This does not violate any theorems, since only solutions corresponding to eigenstates of the Hamiltonian are required to be invariant under complex conjugation [69]. Such solutions definitely do not obey the string hypothesis, since string configurations are (by definition) self-conjugate.

(ii) For odd values of \(N \), it appears from Table 2 that most singular solutions are unphysical; i.e., \(\mathcal{N}_{sp}(N,M) = 0 \) for most values of \(M \) if \(N \) is odd. An exception is the case \(N = 9, M = 3 \), for which \(\mathcal{N}_{sp}(9,3) = 2 \); and this repeats with a periodicity of 6: \(\mathcal{N}_{sp}(15,3) = 2 \), etc. We expect that similar exceptions occur for higher values of \(M \).
(iii) It appears from Table 2 that, among the singular solutions, relatively few are physical (i.e., generally $N_s \gg N_{sp}$), with $N_{sp} \sim M$.

(iv) For $M \sim N/2$ and most values of N, it appears from Table 2 that the number of unphysical singular solutions $N_s - N_{sp}$ is comparable to the number of highest-weight states of the Hamiltonian. This suggests that the naive formula (2.8) for the number of solutions of the Bethe equations is incorrect not only for small values of N, but also for $N \to \infty$. This, in turn, suggests that the computations claiming to prove this naive formula for $N \to \infty$ [7, 9, 10, 11] are also incorrect. These computations nevertheless manage to obtain the correct number of highest-weight states, perhaps because the assumption of the string hypothesis (which all of these computations make) effectively projects out sufficiently many of these unphysical singular solutions (many of which, as noted above, do not obey the string hypothesis) in the thermodynamic limit. It would be interesting to understand this point better, given that the criterion for selecting the physical singular solutions is not that they obey the string hypothesis, but instead (2.11).

We have seen that, using appropriate computer resources, numerical homotopy methods are effective for solving the Bethe equations directly. It would be interesting to also implement the indirect approach based on the T-Q equation using similar computer resources, and compare the effectiveness of these approaches.

As noted in the Introduction, the model that we have studied here is the prototype of an entire zoo of quantum integrable models, which have generalizations of the Bethe equations. We expect that the methods used here can also be used to study completeness in some of these other models.

Acknowledgments

We are indebted to Wolfram Decker for his collaboration at an early stage of this project, and for bringing the authors into contact. The work of RN was supported in part by the National Science Foundation under Grants PHY-0854366 and PHY-1212337, and by a Cooper fellowship. WH and AS would like to thank DARPA/AFRL Grant G-2457-2 for supporting their work.

References

[1] H.-J. Mikeska and A. K. Kolezhuk, “One-dimensional magnetism,” in Quantum Magnetism (Lecture Notes in Physics, vol 645), U. Schollwock, J. Richter, D. J. J. Farnell, and R. F. Bishop, eds., pp. 1–83. Springer, 2004.

[2] F. C. Alcaraz, M. N. Barber, and M. T. Batchelor, “Conformal invariance, the XXZ chain and the operator content of two-dimensional critical systems,” *Annals Phys.* **182** (1988) 280.
[3] I. Affleck, “Field theory methods and quantum critical phenomena,” in *Fields, Strings and Critical Phenomena (Les Houches 1988)*, E. Brezin and J. Zinn-Justin, eds., pp. 563–640. North-Holland, 1990.

[4] N. Beisert, C. Ahn, L. F. Alday, Z. Bajnok, J. M. Drummond, *et al.*, “Review of AdS/CFT Integrability: An Overview,” *Lett.Math.Phys.* 99 (2012) 3–32, arXiv:1012.3982 [hep-th].

[5] R. J. Baxter, *Exactly Solved Models in Statistical Mechanics*. Academic Press, 1982.

[6] V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin, *Quantum Inverse Scattering Method and Correlation Functions*. Cambridge University Press, 1993.

[7] L. D. Faddeev, “How algebraic Bethe ansatz works for integrable models,” in *Symétries Quantiques (Les Houches Summer School Proceedings vol 64)*, A. Connes, K. Gawedzki, and J. Zinn-Justin, eds., pp. 149–219. North Holland, 1998. arXiv:hep-th/9605187 [hep-th].

[8] R. I. Nepomechie, “A spin chain primer,” *Int.J.Mod.Phys.* B13 (1999) 2973–2986, arXiv:hep-th/9810032 [hep-th].

[9] H. Bethe, “On the theory of metals. 1. Eigenvalues and eigenfunctions for the linear atomic chain,” *Z.Phys.* 71 (1931) 205–226.

[10] M. Takahashi, “One-dimensional Heisenberg model at finite temperature,” *Prog.Theor.Phys.* 46 (1971) 401–415.

[11] A. N. Kirillov, “Combinatorial identities, and completeness of eigenstates for the Heisenberg magnet,” *J. Sov. Math.* 30 (1985) 2298.

[12] R. P. Langlands and Y. Saint-Aubin, “Algebro-geometric aspects of the Bethe equations,” in *Strings and symmetries (Istanbul, 1994)*, vol. 447 of Lecture Notes in Phys., pp. 40–53. Springer, Berlin, 1995.

[13] R. P. Langlands and Y. Saint-Aubin, “Aspects combinatoires des équations de Bethe,” in *Advances in mathematical sciences: CRM’s 25 years (Montreal, PQ, 1994)*, L. Vinet, ed., vol. 11 of CRM Proc. Lecture Notes, pp. 231–301. Amer. Math. Soc., Providence, RI, 1997.

[14] K. Fabricius and B. M. McCoy, “Bethe’s equation is incomplete for the XXZ model at roots of unity,” *J.Statist.Phys.* 103 (2001) 647–678, arXiv:cond-mat/0009279 [cond-mat.stat-mech].

[15] R. J. Baxter, “Completeness of the Bethe ansatz for the six and eight vertex models,” *J.Statist.Phys.* 108 (2002) 1–48, arXiv:cond-mat/0111188 [cond-mat].

[16] E. Mukhin, V. Tarasov, and A. Varchenko, “Bethe algebra of homogeneous XXX Heisenberg model has simple spectrum,” *Commun. Math. Phys.* 288 (2009) 1–42, arXiv:0706.0688 [math].
[17] L. V. Avdeev and A. A. Vladimirov, “Exceptional solutions of the Bethe ansatz equations,” *Theor. Math. Phys.* **69** (1987) 1071.

[18] F. H. L. Essler, V. E. Korepin, and K. Schoutens, “Fine structure of the Bethe ansatz for the spin 1/2 Heisenberg XXX model,” *J. Phys.* **A25** (1992) 4115–4126.

[19] R. Siddharthan, “Singularities in the Bethe solution of the XXX and XXZ Heisenberg spin chains,” arXiv:cond-mat/9804210 [cond-mat].

[20] J. D. Noh, D.-S. Lee, and D. Kim, “Origin of the singular Bethe ansatz solutions for the Heisenberg XXZ spin chain,” *Physica A* **287** (2000) 167.

[21] N. Beisert, J. A. Minahan, M. Staudacher, and K. Zarembo, “Stringing spins and spinning strings,” *JHEP* **0309** (2003) 010, arXiv:hep-th/0306139 [hep-th].

[22] N. Beisert, V. Dippel, and M. Staudacher, “A Novel long range spin chain and planar N=4 super Yang-Mills,” *JHEP* **0407** (2004) 075, arXiv:hep-th/0405001 [hep-th].

[23] R. Hagemans and J.-S. Caux, “Deformed strings in the Heisenberg model,” *J. Phys. A* **40** (2007) 14605, arXiv:0707.2803 [cond-mat].

[24] G. Arutyunov, S. Frolov, and A. Sfondrini, “Exceptional Operators in N=4 super Yang-Mills,” *JHEP* **1209** (2012) 006, arXiv:1205.6660 [hep-th].

[25] R. I. Nepomechie and C. Wang, “Algebraic Bethe ansatz for singular solutions,” *J. Phys. A* **46** (2013) 325002, arXiv:1304.7978 [hep-th].

[26] E. Mukhin, “Bethe Ansatz, Fuchsian Equations and Schubert Calculus,” in *Mathematisches Institut Universitat Gottingen Seminars SS 2004*, Y. Tschinkel, ed., pp. 129–134. Goettingen Press, 2004.

[27] T. Y. Li, “Numerical solution of multivariate polynomial systems by homotopy continuation methods,” in *Acta Numerica*, vol. 6, pp. 399–436. Cambridge Univ. Press, Cambridge, 1997.

[28] A. J. Sommese and C. W. Wampler, *The Numerical Solution Of Systems Of Polynomials Arising In Engineering And Science*. World Scientific Publishing Company Incorporated, 2005.

[29] D. J. Bates, J. D. Hauenstein, A. J. Sommese, and C. W. Wampler, *Numerically Solving Polynomial Systems with Bertini*. SIAM, 2013. to appear.

[30] C. W. Wampler and A. J. Sommese, “Numerical algebraic geometry and algebraic kinematics,” *Acta Numerica* **20** (2011) 469–567.

[31] A. P. Morgan, *Solving Polynomial Systems Using Continuation for Engineering and Scientific Problems*. Prentice Hall Inc., Englewood Cliffs, NJ, 1987.
[32] E. L. Allgower and K. Georg, \textit{Introduction to numerical continuation methods}, vol. 45 of \textit{Classics in Applied Mathematics}. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2003. Reprint of the 1990 edition [Springer-Verlag, Berlin; MR1059455 (92a:65165)].

[33] K. Gatermann, \textquotedblleft Counting stable solutions of sparse polynomial systems in chemistry,	extquotedblright in \textit{Symbolic computation: solving equations in algebra, geometry, and engineering} (South Hadley, MA, 2000), vol. 286 of \textit{Contemp. Math.}, pp. 53–69. Amer. Math. Soc., Providence, RI, 2001.

[34] K. Gatermann and B. Huber, \textquotedblleft A family of sparse polynomial systems arising in chemical reaction systems,	extquotedblright \textit{J. Symbolic Comput.} \textbf{33} no. 3, (2002) 275–305.

[35] A. N. Al-Khateeb, J. M. Powers, S. Paolucci, A. J. Sommese, J. A. Diller, J. D. Hauenstein, and J. Mengers, \textquotedblleft One-dimensional slow invariant manifolds for spatially homogenous reactive systems,	extquotedblright \textit{Journal of Chemical Physics} \textbf{131} (2009) . article 024118: 19 pages.

[36] E. L. Allgower, D. J. Bates, A. J. Sommese, and C. W. Wampler, \textquotedblleft Solution of polynomial systems derived from differential equations,	extquotedblright \textit{Computing} \textbf{76} (2010) 1–10.

[37] E. L. Allgower, S. G. Cruceanu, and S. Tavener, \textquotedblleft Application of numerical continuation to compute all solutions of semilinear elliptic equations,	extquotedblright \textit{Adv. Geom.} \textbf{9} no. 3, (2009) 371–400.

[38] W. Hao, J. D. Hauenstein, C.-W. Shu, A. J. Sommese, Z. Xu, and Y.-T. Zhang, \textquotedblleft A homotopy method based on weno schemes for solving steady state problems of hyperbolic conservation laws,	extquotedblright \textit{Journal of Computational Physics} \textbf{250} (2013) 332–346.

[39] W. Hao, B. Hu, and A. J. Sommese, \textquotedblleft Numerical algebraic geometry and differential equations,	extquotedblright to appear in Future Vision and Trends on Shapes, Geometry and Algebra, Springer.

[40] W. Hao, J. D. Hauenstein, B. Hu, Y. Liu, A. J. Sommese, and Y.-T. Zhang, \textquotedblleft Multiple stable steady states of a reaction-diffusion model on zebrafish dorsal-ventral patterning,	extquotedblright \textit{Discrete and Continuous Dynamical Systems - Series S} \textbf{4} (2011) 1413–1428.

[41] W. Hao, B. Hu, and A. J. Sommese, \textquotedblleft Cell cycle control and bifurcation for a free boundary problem modeling tissue growth,	extquotedblright \textit{Journal of Scientific Computing} (2013) . to appear.

[42] W. Hao, J. D. Hauenstein, B. Hu, T. McCoy, and A. J. Sommese, \textquotedblleft Computing steady-state solutions for a free boundary problem modeling tumor growth by Stokes equation,	extquotedblright \textit{J. Comput. Appl. Math.} \textbf{237} no. 1, (2013) 326–334.
[43] D. Mehta, “Finding All the Stationary Points of a Potential Energy Landscape via Numerical Polynomial Homotopy Continuation Method,” \textit{Phys.Rev.} \textbf{E84} (2011) 025702, \texttt{arXiv:1104.5497 [cond-mat.stat-mech]}

[44] M. Kastner and D. Mehta, “Phase Transitions Detached from Stationary Points of the Energy Landscape,” \textit{Phys.Rev.Lett.} \textbf{107} (2011) 160602, \texttt{arXiv:1108.2345 [cond-mat.stat-mech]}

[45] D. Mehta, J. D. Hauenstein, and M. Kastner, “Energy landscape analysis of the two-dimensional nearest-neighbor ϕ^4 model,” \textit{Phys.Rev.} \textbf{E85} (2012) 061103, \texttt{arXiv:1202.3320 [cond-mat.stat-mech]}

[46] R. Nerattini, M. Kastner, D. Mehta, and L. Casetti, “Exploring the energy landscape of XY models,” \textit{Phys.Rev.} \textbf{E 87}, 032140 (2013), \texttt{arXiv:1211.4800 [cond-mat.stat-mech]}

[47] D. Mehta, Y.-H. He, and J. D. Hauenstein, “Numerical algebraic geometry: a new perspective on string and gauge theories,” \textit{JHEP} \textbf{07} (2012) 018, \texttt{arXiv:1203.4235 [hep-th]}

[48] M. Maniatis and D. Mehta, “Exact Minimization of Higgs Potentials,” \texttt{arXiv:1307.1703 [hep-ph]}

[49] C. Hughes, D. Mehta, and J.-I. Skullerud, “Enumerating Gribov copies on the lattice,” \textit{Annals Phys.} \textbf{331} (2013) 188–215, \texttt{arXiv:1203.4847 [hep-lat]}

[50] D. Mehta, “Numerical Polynomial Homotopy Continuation Method and String Vacua,” \textit{Adv.High Energy Phys.} \textbf{2011} (2011) 263937, \texttt{arXiv:1108.1201 [hep-th]}

[51] D. Martinez-Pedrera, D. Mehta, M. Rummel, and A. Westphal, “Finding all flux vacua in an explicit example,” \textit{JHEP} \textbf{1306} (2013) 110, \texttt{arXiv:1212.4530 [hep-th]}

[52] Y.-H. He, D. Mehta, M. Niemerg, M. Rummel, and A. Valeanu, “Exploring the Potential Energy Landscape Over a Large Parameter-Space,” \textit{JHEP} \textbf{1307} (2013) 050, \texttt{arXiv:1301.0946 [hep-th]}

[53] B. Greene, D. Kagan, A. Masoumi, D. Mehta, E. J. Weinberg, \textit{et al.}, “Tumbling through a landscape: Evidence of instabilities in high-dimensional moduli spaces,” \textit{Phys.Rev.} \textbf{D88} (2013) 026005, \texttt{arXiv:1303.4428 [hep-th]}

[54] A. P. Morgan and A. J. Sommese, “A homotopy for solving general polynomial systems that respects m-homogeneous structures,” \textit{Appl. Math. Comput.} \textbf{24} (1987) 101–113.

[55] J. Verschelde and R. Cools, “Symmetric homotopy construction,” in \textit{Proceedings of the Fifth International Congress on Computational and Applied Mathematics (Leuven, 1992)}, vol. 50, pp. 575–592. 1994.
[56] D. J. Bates, J. D. Hauenstein, A. J. Sommese, and C. W. Wampler, “Adaptive multiprecision path tracking,” *SIAM Journal on Numerical Analysis* **46** (2008) 722–746.

[57] D. J. Bates, J. D. Hauenstein, A. Sommese, and C. W. Wampler, “Stepsize control for adaptive multiprecision path tracking,” *Contemporary Mathematics* **496** (2009) 21–31.

[58] A. P. Morgan, A. J. Sommese, and C. W. Wampler, “Computing singular solutions to nonlinear analytic systems,” *Numer. Math.* **58** (1991) 669–684.

[59] A. P. Morgan, A. J. Sommese, and C. W. Wampler, “Computing singular solutions to polynomial systems,” *Adv. in Appl. Math.* **13** (1992) 305–327.

[60] A. P. Morgan, A. J. Sommese, and C. W. Wampler, “A power series method for computing singular solutions to nonlinear analytic systems,” *Numer. Math.* **63** (1992) 391–409.

[61] J. Verschelde, “Algorithm 795: Phcpack: A general-purpose solver for polynomial systems by homotopy continuation,” *ACM T. Math. Software* **2** (1999) 251–276.

[62] L. T. Watson, M. Sosonkina, R. C. Melville, A. P. Morgan, and H. F. Walker, “Algorithm 777: Hompack90: A suite of fortran 90 codes for globally convergent homotopy algorithms,” *ACM T. Math. Software* **23** (1997) 514–549.

[63] T.-L. Lee, T. Y. Li, and C. H. Tsai, “HOM4PS-2.0: a software package for solving polynomial systems by the polyhedral homotopy continuation method,” *Computing* **83** (2008) 109–133.

[64] See associated Supplemental Material on the arXiv.

[65] F. Pan, X. Guan, M. Xie, L. Bao, and J. Draayer, “The Heine-Stieltjes correspondence and the polynomial approach to the standard pairing problem,” arXiv:1106.5237 [nucl-th].

[66] I. Marquette and J. Links, “Generalised Heine-Stieltjes and Van Vleck polynomials associated with degenerate, integrable BCS models,” *J.Stat.Mech.* P08019 (2012), arXiv:1206.2988 [nlin.SI].

[67] G. Albertini, S. Dasmahapatra, and B. M. McCoy, “Spectrum and completeness of the integrable three state Potts model: A Finite size study,” *Int.J.Mod.Phys.A* **07** (Suppl. 1A) (1992) 1–53.

[68] R. I. Nepomechie and F. Ravanini, “Completeness of the Bethe ansatz solution of the open XXZ chain with nondiagonal boundary terms,” *J.Phys.* **A36** (2003) 11391, arXiv:hep-th/0307095 [hep-th].

[69] A. A. Vladimirov, “Proof of the invariance of the Bethe-ansatz solutions under complex conjugation,” *Theor. Math. Phys.* **66** (1986) 102.