Pliocene deglacial event timelines and the biogeochemical response offshore Wilkes Subglacial Basin, East Antarctica

Rachel A. Bertram a, b, *, David J. Wilson a, Tina van de Flierdt a, Robert M. McKay c, Molly O. Patterson d, Francisco J. Jimenez-Espejo e, Carlota Escutia f, Grace C. Duke g, Briar I. Taylor-Silva g, Christina R. Riesselman g, h

a Dept. Earth Science and Engineering, Imperial College London, UK
b Grantham Institute – Climate Change and the Environment, Imperial College London, UK
c Antarctic Research Centre, Victoria University of Wellington, Wellington, New Zealand
d Binghamton University, New York, USA
e Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Japan
f Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, Spain
g Dept. of Geology, University of Otago, Dunedin, New Zealand
h Dept. of Marine Science, University of Otago, Dunedin, New Zealand

A R T I C L E I N F O

Article history:
Received 14 February 2018
Received in revised form 25 April 2018
Accepted 27 April 2018
Available online 17 May 2018
Editor: D. Vance

Keywords:
East Antarctic Ice Sheet
Wilkes Subglacial Basin
provenance
radiogenic isotopes
Pliocene
deglacial timescales

A B S T R A C T

Significantly reduced ice coverage in Greenland and West Antarctica during the warmer-than-present Pliocene could account for ~10 m of global mean sea level rise. Any sea level increase beyond this would require contributions from the East Antarctic Ice Sheet (EAIS). Previous studies have presented low-resolution geochemical evidence from the geological record, suggesting repeated ice advance and retreat in low-lying areas of the EAIS such as the Wilkes Subglacial Basin. However, the rates and mechanisms of retreat events are less well constrained. Here we present orbitally-resolved marine detrital sediment provenance data, paired with ice-rafted debris and productivity proxies, during three time intervals from the middle to late Pliocene at IODP Site U1361A, offshore of the Wilkes Subglacial Basin. Our new data reveal that Pliocene shifts in sediment provenance were paralleled by increases in marine productivity, while the onset of such changes was marked by peaks in ice-rafted debris mass accumulation rates. The coincidence of sediment provenance and marine productivity change argues against a switch in sediment delivery between ice streams, and instead suggests that deglacial warming triggered increased rates of iceberg calving, followed by inland retreat of the ice margin. Timescales from the onset of deglaciation to an inland retreated ice margin within the Wilkes Subglacial Basin are on the order of several thousand years. This geological evidence corroborates retreat rates determined from ice sheet modeling, and a contribution of ~3 to 4 m of equivalent sea level rise from one of the most vulnerable areas of the East Antarctic Ice Sheet during interglacial intervals throughout the middle to late Pliocene.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Ice grounded below sea level in the East Antarctic Ice Sheet (EAIS) has a potential sea level equivalent of ~19 m (Fretwell et al., 2013). Such ice is predominantly contained within the Aurora Subglacial Basin, the Recovery Basin, and the Wilkes Subglacial Basin (Fig. 1a). Modern observations in the vicinity of the Aurora Subglacial Basin document significant glacier retreat (Miles et al., 2016) and basal melting driven by ocean warming (Rintoul et al., 2016), while recent modeling work suggests that the Recovery Basin may be particularly vulnerable to melting under future environmental conditions (Golledge et al., 2017a). Furthermore, increased mass discharge by glaciers around the coastline of the Wilkes Subglacial Basin in recent years has been inferred from high-resolution ice velocity maps (Shen et al., 2018). The Wilkes Subglacial Basin is the largest of the three basins, containing a potential sea level contribution of ~3 to 4 m (Pollard et al., 2015). Collapse of marine-based ice in this basin may have important implications for Southern Ocean stratification and temperature, with the potential to amplify melting in other vulnerable regions of the EAIS (Phipps et al., 2016). It is therefore critical to constrain the sensitivity of the Wilkes Subglacial Basin to future, warmer environmental conditions.

* Corresponding author.
E-mail address: sbertram1@imperial.ac.uk (R.A. Bertram).

https://doi.org/10.1016/j.epsl.2018.04.054
0012-821X/© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Previous studies within the vicinity of the Wilkes Subglacial Basin have utilized detrital sediment provenance, grain size, ice-rafted debris accumulation, grounding line advances and retreats, and sea ice and temperature reconstructions to reveal a dynamic picture of the early to middle Pliocene and middle Miocene ice margin, with substantial ice retreat into the basin during warmer times, and ice advance onto the outer shelf at colder times (Armbrecht et al., 2018; Cook et al., 2013, 2017; Orejola et al., 2014; Patterson et al., 2014; Pierie et al., 2017; Reinardy et al., 2015; Sangiori et al., 2018). Substantial ice retreat into the Wilkes Subglacial Basin during the Pliocene and Miocene is also indicated by models that incorporate complex flow regimes of ice streams, capture marine ice sheet instability, and include parameterizations for cliff failure and hydrofracturing of buttressing ice shelves (de Boer et al., 2015; Pollard et al., 2015; Gasson et al., 2016). However, such models require ground-truthing from the geological record.

The Pliocene (5.3 to 2.6 Ma) is a particularly relevant time period to study in light of future environmental change. Previous studies have suggested substantial changes in the Pliocene cryosphere, with largely ice-free conditions in the Northern Hemisphere (Haywood et al., 2016 and reference therein) and collapse of the West Antarctic Ice Sheet (WAIS) (Naish et al., 2009; Pollard and DeConto, 2009). Estimates of global mean sea level (GMSL) of ~22 ± 10 m higher than present during the warm Pliocene (Miller et al., 2012) may require not only collapse of the vulnerable polar ice in Greenland and West Antarctica, but also significant contributions from East Antarctica (see also Dutton et al., 2015 for discussion).

In the following, we present the first orbitally-resolved sediment provenance records from offshore of the Wilkes Subglacial Basin during the middle and late Pliocene. Our new data yield intriguing insights into the timescales and mechanisms of the equilibrium response of the EAIS to warmer than present environmental conditions in the geological past, and thereby provide important constraints for ice sheet modeling of future ice sheet behavior.

2. Materials and methods

Here we study three distinct periods of past warmth from the middle Pliocene (86.75–89.56 mbsf; ~3.9 Ma), the late Pliocene (64.05–67.87 mbsf; ~3.1 Ma), and the Plio-Pleistocene boundary (47.55–50.35 mbsf; ~2.5 Ma). The material utilized is from IODP Site U1361A (64°24′57″S, 143°53′20″E; 3454 m water depth), which recovered a near-continuous Pliocene record (Escutia et al., 2011), comprised of alternating diatom-poor laminated muds and diatom-rich/bearing silty-mud units (Fig. 2), representing repeated glacial and interglacial cycles. Interglacial periods are associated with peak diatom abundance counts (Armbrecht et al., 2018; Taylor-Silva and Rieselman, 2018) and higher productivity (Patterson et al., 2014).

2.1. Age model at U1361A

Linear interpolation between paleomagnetic tie points is used to date U1361A Pliocene material following Tauxe et al. (2012) and Patterson et al. (2014) (Supplementary Table 1). The section studied is mostly continuous with one core gap between ~3.6 to ~3.33 Ma, which is thought to be related to the “super-glacial” M2 (Tauxe et al., 2012). We sampled for sediment provenance and biogenic silica concentrations (wt% BSi) at sub-orbital resolution (~10 cm sampling corresponding to ~2–4 kyr resolution). Areas of high core disturbance from either drilling or bioturbation were avoided. Two of the high-resolution intervals studied, the Plio-Pleistocene boundary (47.55–50.35 mbsf, ~2.50 Ma), and the
late Pliocene (from 64.05–67.85 mbsf, ~3.08 Ma), are constrained by at least one direct paleomagnetic datum within the depth interval analyzed for provenance, and hence are well constrained in their ages. Age uncertainty increases away from these age tie points due to the assumption of linear sedimentation rates, which does not capture changes over glacial-interglacial transitions. Bio-turbation within the core ranges from millimeters to centimeters (Escutia et al., 2011), which is less than our sampling resolution. Furthermore, all data presented were collected from the same core material, making our interpretations on timing and sequences of deglacial events in the Wilkes Subglacial Basin independent of the age model applied.
2.2. Sample categorization

Samples have been categorized into three groups based on previously published data: warmer conditions (i.e. interglacial intervals), colder conditions (i.e. glacial intervals), and transitional samples. Firstly, lithofacies analysis was used to classify the samples into two groups of diatom-rich/bearer mudstones or massive and laminated mudstones (Patterson, 2014). Samples from anomalous lithologies (e.g., rare sand laminae associated with mass flow deposition) were excluded from this classification. Secondly, average ratios of X-ray fluorescence (XRF) scan records (Ba/Al; Cook et al., 2013; Patterson et al., 2014) and results from shipboard physical property measurements (Gamma Ray Attenuation (GRA) Bulk Density, and Natural Gamma Radiation (NGR); Escutia et al., 2011) were used to define criteria for warmer and colder conditions. Sample categorization was determined based on the average division of these three variables (warmer conditions: Ba/Al > 0.231, GRA Bulk Density < 1.575, NGR < 32.3; colder conditions: Ba/Al < 0.171, GRA Bulk Density > 1.597, NGR > 34.9). Where these conditions were not met, samples were classified as transitional. All chosen values are within the parameters constrained by previous studies at the Wilkes Subglacial Basin margin including high Ba/Al during warmer periods (Cook et al., 2013; Patterson et al., 2014) and higher NGR during colder periods (NGR > ~34; Tauer et al., 2015).

2.3. Strontium and neodymium isotope analyses

For high resolution provenance analyses of the detrital fraction, residual sample splits from iceberg rafted debris mass accumulation rates (IBRD MAR) studies (>150 μm; Patterson et al., 2014) were utilized and combined with new samples wet sieved at <63 μm or <150 μm. In total 52 samples were selected for strontium (Sr) isotope analyses and 72 samples for neodymium (Nd) isotope analysis. A representative ~0.5 g of sediment was taken from the homogenized fine-grained material and subjected to a sequential leaching procedure to remove biogenic carbonate using buffered acetic acid (see Biscaye (1965) for more details) and ferromanganese oxides and oxyhydroxides using a reducing solution of 0.02 M hydroxylamine hydrochloride (NH₂OH) (Chester and Hughes, 1967; Cook et al., 2013, 2017). As in previous studies, no removal of biogenic opal was conducted (e.g. Cook et al., 2013). Approximately 50 mg of leached detrital sediment was digested on a hotplate using 2 ml of 27 M HCl, 1 ml of 15 M HNO₃, and 0.8 ml of 20 M HClO₄, followed by a secondary digestion step using 3 ml 15 M HNO₃, before fluorides were removed with 3 ml 6 M HCl.

Ion chromatography was used to extract the target analytes (Sr and Nd) from the sample matrix. Samples were initially processed through a series of columns consisting of Tru-Spec resin (100–120 μm bead size), Ln-spec resin (50–100 μm bead size, 800 μl reservoir size) and Eichrom Sr-Spec resin (100–120 μm bead size). Later processing of samples used Biorad cation exchange resin (200–400 μm mesh), Ln-spec resin (50–100 μm bead size, 500 μl reservoir size) and Eichrom Sr-Spec resin (100–120 μm bead size). The change in procedure for separating REEs from the sample matrix in the first column resulted in improved Nd yields by preventing leakage of organics from Tru-Spec resin, subsequently affecting yields on Ln-Spec columns (see Struve et al., 2017 and Lamber et al., 2016 for details).

Neodymium isotope analyses were performed on a Nu Instruments multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS) in the MAGIC laboratories at Imperial College London. Instrumental mass bias was corrected using the exponential law and a 146Nd/144Nd ratio of 0.7219. A correction for direct 144Sm interference was applied, but all samples were significantly below the threshold determined for accurate correction (<0.1% of the 144Nd signal). All reported sample 143Nd/144Nd ratios are corrected using bracketing standards and normalization to the recommended JNd-1 value of 0.512115 (Tanaka et al., 2000). Measured average JNd-1 values for individual analytical sessions are provided in Supplementary Table 2. Sixteen replicates of standard reference material BCR-2 were processed alongside unknown samples, and yielded an average 143Nd/144Nd ratio of 0.512639 ± 0.000022 (2 S.D., n = 46), identical to the recommended value of 0.512638 ± 0.000015 (2 S.D.; Weis et al., 2006). Procedural blanks were typically less than 85 pg, and always below 215 pg, which is negligible compared to the sample size processed (ranging between ~200 and ~1000 ng). Duplicate sample analysis (i.e., full procedural repeats from digestion through ion exchange chromatography to mass spectrometry) and re-analyzed samples (i.e. the same aliquot from ion exchange chromatography) always yielded results that agreed within error (see Supplementary Table 2).

Strontium isotopes were analyzed on a Thermo Scientific Triton thermal ionization mass spectrometer (TIMS) at the MAGIC laboratories at Imperial College London. Samples were loaded in 1 μl 6 M HCl onto degassed single tungsten filaments, followed by 1 μl of tantalum chloride activator. Instrumental mass bias was corrected using the exponential law and an 87Sr/86Sr ratio of 0.7375, while interferences of 88Sr were corrected using an 87Sr/86Sr ratio of 0.3860. Measurements were made in static mode using amplifier rotation. Repeated analysis of NBS987 standards over the duration of sample analysis yielded an average 87Sr/86Sr value of 0.710265 ± 0.000016 (2σ S.D.; n = 29). All reported 87Sr/86Sr ratios were corrected relative to the published value for NBS987 of 0.710252 ± 0.000013 (Weis et al., 2006) (Supplementary Table 2). Nine separate digests of standard reference material BCR-2 yielded an 87Sr/86Sr ratio of 0.705012 ± 0.000012 (2σ S.D.; n = 16), which is in good agreement with the published value (0.705013 ± 0.000010; Weis et al., 2006). Following replacement of the graphite inserts of all TIMS collector cups in February 2017, new baselines were established and amplifier rotation was no longer used for the measurements. Under these new conditions, NBS987 standards yielded 87Sr/86Sr values of 0.710245 ± 0.000016 (2σ S.D.; n = 66), while eight digests of standard reference material BCR-2 yielded an average 87Sr/86Sr ratio of 0.705012 ± 0.000014 (2σ S.D.; n = 34). Re-analyzed samples always yielded results that agreed within error (see Supplementary Table 2), whereas total procedural duplicates of sediment showed a larger uncertainty (i.e. in the fourth decimal place). This variability is likely due to sample heterogeneity, and is comparable to what has been reported in other studies (Cook et al., 2013; Tütken et al., 2002). Procedural blanks were typically less than 70 pg, representing considerably less than a 0.5% contribution to sample measurements.

In addition, tests were conducted on selected samples to ensure that using two different grain size fractions (i.e., <63 μm and <150 μm) of detritus yielded comparable results (see Supplementary Material).

2.4. Biogenic silica

Biogenic silica concentrations (wt% BSi) were measured on discrete samples using a molybdate blue spectrophotometric method modified from Strickland and Parsons (1972) and DeMaster (1981). For each analysis ~7 mg of dry, homogenized sediment was leached in 0.1 M NaOH at 85 °C, and sequential aliquots were collected after 2, 3, and 4 hours. After the final sampling hour, molybdate reagent and reducing solution were added to all samples, blanks, and standards to produce a colorimetric reaction,
and absorbance of the 812 nm wavelength was measured using a Shimadzu UV-1800 spectrophotometer. Dissolved silica concentration of unknowns were calculated using a 10-point standard curve with known concentrations ranging from 0 μM to 1200 μM, and data from the three sampling hours were regressed following the method of DeMaster (1981) to calculate wt% BSi. Reproducibility was assessed by replication within each run and across runs. The average standard deviation of replicate measurements was 0.47%.

3. Results and discussion

3.1. Provenance of Pliocene detrital sediments at IODP Site U1361A

Provenance tracing of detrital sediment is an effective tool for deciphering ice sheet histories (Licht and Hemming, 2017). The Wilkes Subglacial Basin is an ideal location for such studies due to the distinct geochemical signature of the lithological terranes in the hinterland (Cook et al., 2017, 2013; Fig. 1b). Our new detrital sediment radiogenic isotope measurements provide evidence for gradual provenance changes across three distinct Pliocene glacial-interglacial cycles (Fig. 2), with consistent co-variation of Sr and Nd isotope fingerprints. In line with previous interpretations from low resolution records at the same site (Cook et al., 2017, 2013), transitions from cooler to warmer periods are characterized by shifts to less radiogenic (lower) 87Sr/86Sr ratios and more radiogenic (higher) ε_{Nd} values (Fig. 2). As such, two distinct isotopic clusters are identified for the Pliocene detrital material at IODP Site U1361A: (1) ε_{Nd} ranging from −12.6 to −15.5 and 87Sr/86Sr from 0.729 to 0.740, and (2) $\varepsilon_{Nd} = −9.0$ to −11.0 and 87Sr/86Sr $= 0.715$–0.723. These denote (1) erosion of Paleozoic granites (87Sr/86Sr = 0.712 to 0.753, $\varepsilon_{Nd} = −9.7$ to −19.8), exposed around the proximal Ninnis Glaciers (i.e. coastal outcrops), and (2) influence of an additional erosion source of inland material within the Wilkes Subglacial Basin (i.e. Ferrar Large Igneous Province and associated Beacon Supergroup (FLIP; 87Sr/86Sr = 0.709 to 0.719, $\varepsilon_{Nd} = −3.5$ to −6.9)) (Fig. 3). The FLIP and Beacon Supergroup lithologies are located mostly inland and constitute the majority of the sedimentary infill in the Central Basin of the Wilkes Subglacial Basin (Ferraccioli et al., 2009; Frederick et al., 2016; Studinger et al., 2004) (Fig. 1b). Since such lithologies are currently covered by ice, significant erosion from this source is not detected in modern core top samples (Cook et al., 2013). Therefore, the appearance of this provenance signature in diatom-rich Pliocene sediments is interpreted to represent significant retreat of the ice margin into the Central Wilkes Subglacial Basin (Cook et al., 2013).

3.2. Sequence of Pliocene deglaciation events around the Wilkes Subglacial Basin

Our high resolution provenance study allows us, for the first time, to place variations in the source of the detrital material in direct context with other environmental changes documented in the same core, making the relative timing of events robust and independent of age model uncertainty. Firstly, we compare our new data to marine productivity proxies; continuous Ba/Al ratios (Cook et al., 2013; Patterson et al., 2014) from XRF scans, and biogenic silica data (this study, see also Taylor-Silva and Rieselman, 2018) (Fig. 2). The shift in the geochemical provenance signal coincides closely with changes in both productivity periods. Periods of climatic warmth (i.e. interglacial intervals) are characterized by biogenic-rich facies, with higher Ba/Al ratios (>0.21) and elevated biogenic silica content (5.2–15.4 wt%) (Fig. 4). Colder periods (i.e. glacial intervals) are characterized by biogenic-poor facies, lower Ba/Al ratios (<0.17) and lower biogenic silica content (5.2–15.4 wt%). The new biogenic silica data supports the interpretation made that diatom-rich/bearing mudstones with high Ba/Al ratios are indicative of times with higher productivity and hence warmer climatic periods (Cook et al., 2013; Patterson et al., 2014).

When compared to iceberg rafted debris mass accumulation rates (IBRD MAR; Patterson et al., 2014), the timing of rapid shifts in sediment provenance and increase in productivity coincides with peak IBRD accumulation (Fig. 2). Maxima in IBRD have been interpreted to reflect accelerated calving of marine terminating glaciers (Patterson et al., 2014), which would lead to a dynamic retreat of the ice sheet and subsequent re-stabilization of the ice margin inland, resulting in the observed provenance shifts. Large-scale ice retreat is therefore more likely to cause the observed provenance shifts than a switch in sediment delivery between ice streams. Marine productivity in the local Southern Ocean would subsequently increase as a result of the accompanying decrease in sea ice extent (Armbrecht et al., 2018; Taylor-Silva and Rieselman, 2018) and associated changes in nutrient delivery, allowing marine productivity to increase, as documented in the Ba/Al and biogenic silica records (Fig. 2).

3.3. Ice retreat and Southern Ocean biogeochemistry

We observe a significant negative correlation between XRF Ba/Al and K/Ti ratios in Pliocene marine sediments (Fig. 5; $R^2 = 0.85$). K/Ti ratios indicate the provenance of terrigenous material (Monien et al., 2012), providing a continuous and independent provenance tracer to Nd and Sr isotopes. The inferred provenance shifts at IODP Site U1361A during interglacial intervals introduce a basaltic component to the source material, which carries lower K/Ti ratios, has substantially elevated Fe concentrations and has a higher susceptibility to weathering. Since Fe is a limiting nutrient in the modern Southern Ocean, the supply of highly soluble
reactive Fe in the form of labile (oxy)hydr(oxides) from glaciated terrains (Raiswell et al., 2006) could have played a major role in providing bioavailable trace metals and nutrients, driving Pliocene glacial-interglacial productivity changes.

However, marine productivity did not increase immediately at the time of increased IBRD accumulation (Fig. 2), suggesting that ocean fertilization around icebergs (Duprat et al., 2016) was not the dominant process driving enhanced interglacial productivity. Instead, our data supports the idea that bioavailable Fe trapped within multi-year sea ice (Geibert et al., 2010) could have been released during interglacials. Alternatively, or in addition, increased meltwater fluxes from the recently deglaciated terrains and/or enhanced subglacial erosion may have been important for nutrient delivery to the ocean. Statham et al. (2008) pointed out the large potential for glacially-derived dissolved and colloidal Fe to impact Southern Ocean primary productivity, and Hodson et al. (2017) showed that glacial meltwaters in the Antarctic Peninsula, where the source rock predominantly comprises young basaltic lithologies, contain significant amounts of bioavailable Fe. Additionally, in the Labrador Sea, offshore of the Greenland Ice Sheet, Arrigo et al. (2017) showed that the nutrients supplied in such meltwaters travel vast distances (~500 km) offshore of the coast. Sedimentary facies analysis from the Ross Sea furthermore indicates that the EAIS margin had a similar glacial regime to that of the modern Antarctic Peninsula and East Greenland during the Late Pliocene and Early Pliocene, respectively (McKay et al., 2009), which is consistent with enhanced glacial meltwater delivery at these times and hence enhanced localized nutrient delivery.

3.4. Timescales of ice retreat and the Pliocene history at the Wilkes Subglacial Basin ice margin

Constraining the history of the Antarctic ice sheet is important for improving our ability to project future rates of ice retreat in a warming world. However, obtaining rate information from paleo-records is inherently challenging because of bioturbation, relatively low sedimentation rates, and variable sediment deposition along glaciated margins. Nevertheless, the well-defined chronology and near continuous sediment deposition at U1361A over the Pliocene (Tauxe et al., 2012) allows linear sedimentation rates (0.85 to 5.49 cm/kyr) between direct datums to be utilized to extract information on timescales (Supplementary Table 1). As such, a first data-based estimate for natural timescales of ice retreat under elevated Pliocene temperatures is determined to be in the order of ~3 to 7 kyr. Timescales of deglaciation were estimated based on the distance between samples with isotopic compositions of colder conditions and the first sample representative of warmer conditions. This was found to be 20 cm, 10 cm and 20 cm (~7, 3 and 5 kyr respectively) for the Plio-Pleistocene Boundary, Late Pliocene and Middle Pliocene intervals, respectively. The high fidelity orbital signature of the IBRD signal identified by Patterson et al. (2014) gives us confidence that we are assessing single eccentricity-paced (100 kyr) cycles in the time slices centered on 3.1 and 2.5 Ma, and a single obliquity cycle at 3.9 Ma (Fig. 2). Hence, our geological data provides support that ice margin retreat occurred on timescales similar to recent glacial terminations and modeling results from the Wilkes Subglacial Basin (i.e. <10 kyr; Pollard et al., 2015; Colledge et al., 2017b).

Our new record furthermore reveals similar provenance changes during all Pliocene intervals, providing evidence for continued ice retreat as global climate transitioned from Antarctic-dominated eccentricity control to a bipolar obliquity-paced state in the late Pliocene. While previous studies have suggested changes in ice dynamics around East Antarctica associated with late Pliocene global cooling and Antarctic sea ice expansion (Cook et al., 2014; Escutia et al., 2009; McKay et al., 2012; Oprea et al., 2014; Taylor-Silva and Riesselman, 2018), our new data demonstrates that the Wilkes Subglacial Basin was a highly sensitive ice-ocean-atmosphere system in all climate states, despite significant Antarctic cooling at 3.3 Ma (McKay et al., 2012; Riesselman and Dunbar,
Cook, C.P., Hill, D.J., van de Flierdt, T., Williams, T., Hemming, S.R., Dolan, A.M., Pierce, E.L., Escutia, C., Harwood, D., Cortese, G., Gonzales, J.J., 2014. Sea surface temperature control on the distribution of far-traveled Southern Ocean icerafted detritus during the Pliocene. Paleoceanography 29 (6), 532–548. https://doi.org/10.1002/2014PA002525.

Cook, C.P., van de Flierdt, T., Williams, T., Hemming, S.R., Iwai, M., Kobayashi, M., Jimenez-Espejo, F.J., Escutia, C., Gonzalez, J.J., Khim, B.-K., McKay, R.M., Passchier, S., Bobaty, S.M., Riesselman, C.R., Tause, L., Sugisaki, S., Galindo, A.L., Patterson, M.A., Sangiorgi, F., Pierce, E.L., Brinkhuis, H., Klaus, A., Fehr, A., Bendle, J.A., Bijl, P.K., Carr, S.A., Dunbar, R.B., Flores, J.A., Hayden, T.G., Katsuki, K., Kong, G.S., Nakai, M., Olney, M.P., Pekar, S.F., Pross, J., Rohl, U., Sakai, T., Shrivastava, P.K., Stickleay, C.E., Tuo, S., Welsh, K., Yamane, M., 2013. Dynamic behaviour of the East Antarctic ice sheet during Pliocene warmth. Nat. Geosci. 6 (9), 765–769. https://doi.org/10.1038/ngeo1855.

de Boer, B., Dolan, A.M., Bernales, J., Gasson, E., Geozzer, H., Golledge, N.R., Sutter, J., Huybrechts, P., Lohmann, G., Rogozhina, I., Abe-Ouchi, A., Saito, F., van de Wal, R.S.W., 2017. Simulating the Antarctic ice sheet in the Late-Pliocene warm period. PLEISTO-ANT, an ice-sheet model intercomparison project. Cryosphere 11 (6), 5539–5588. https://doi.org/10.5194/tc-8-5539-2014.

DeMaster, D.J., 1981. The supply and accumulation of silica in the marine environment. Geochim. Cosmochim. Acta 45 (10), 1715–1732.

Dunton, A., Carlson, A.E., Long, A.J., Milne, G.A., Clark, P.U., Deconto, R., Horton, B.P., Rahmsf., S., Raymo, M.E., 2015. Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science 349, 6244. https://doi.org/10.1126/science.aaa4019.

Escutia, C., Bárcena, M.A., Lucchi, R.G., Romero, O., Ballester, A.M., Gonzalez, J.J., Harwood, D.M., 2009. Circum-Antarctic warming events between 4 and 3.5 Ma recorded in marine sediments from the Prydz Bay (ODP Leg 188) and the Antarctic Peninsula (ODP Leg 178) margins. Glob. Planet. Change 69 (3), 170–184.

Escutia, C., Brinkhuis, H., Klaus, A., Scientists, E., 2011. Proceedings of the Integrated Ocean Drilling Program, 318. Integrated Ocean Drilling Program Management, Inc., Tokyo.

Ferraccioli, F., Armadillo, E., Jordan, T., Bozzo, E., Corr, H., 2009. Aeromagnetic exploration over the East Antarctic ice sheet: a new view of the Wilkes Subglacial Basin. Tectonophysics 478 (1–2), 62–77.

Frederick, R.C., Young, D.A., Blackwell, D.D., Richter, T.G., Kempf, S.D., Ferraccioli, F., Siegert, M., 2016. Distribution of subglacial sediments across the Wilkes Subglacial Basin, East Antarctica. J. Geophys. Res. Earth Surf. 121 (4), 790–813. https://doi.org/10.1002/2015JF003760.

Fretwell, P., Pritchard, H.D., Vaughan, D.G., Bamber, J.L., Barrand, N.E., Bell, R., Bianchi, C., Bingham, R.C., Blankenship, D.D., Casassa, C., Catania, G., Callens, D., Conway, H., Cook, A.J., Corr, H.F.J., Danske, D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni, P., Griggs, J.A., Hindmarsh, R.C.A., Holm, P., Holt, J.W., Jacobel, R.W., Jenkins, A., Jokat, W., Jordan, T. E., Kocurek, K., Krabill, W., Riger-Kusk, M., Langley, K.A., Leitchenkov, G., Luyendyk, B.P., Matsuska, K., Mouginot, J., Nitsche, F.O., Noi, Y., Nost, O.A., Popov, S.V., Rignot, E., Rippin, D.M., Rivera, A., Roberts, J., Ross, N., Siegert, M., Smith, A.M., Steinhaug, D., Studinger, M., Sun, B., Tinto, B.K., Welch, B.C., Wilson, B., Young, D.A., Xiangbin, C., Zirizzotti, A., 2013. Bedmap2: improved ice bed, surface and thickness data for Antarctica. Cryosphere 7 (1), 375–393. https://doi.org/10.5194/cp-7-375-2013.

Gasson, E., DeConto, R.M., Pollard, D., Levy, R.H., 2016. Dynamic Antarctic ice sheet during the early to mid-Miocene. Proc. Natl. Acad. Sci. USA 113 (13), 3459–3464. https://doi.org/10.1073/pnas.1516130113.

Geibert, W., Assmy, P., Bakker, D.C.E., Hanfland, C., Hoppema, M., Pichevin, L.E., Schröder, M., Schwarz, J.N., Stimac, I., Usbeck, R., Webb, A., 2010. High productivity in an ice melting hot spot at the eastern boundary of the Weddell Gyre. Glob. Biogeochem. Cycles 24, GB3007.

Golledge, N.R., Levy, R.H., McKay, R.M., Naish, T.R., 2017a. East Antarctic ice sheet most vulnerable to Weddell Sea warming. Geophys. Res. Lett. 44, 2343–2351. https://doi.org/10.1002/2016GL072422.

Golledge, N.R., Thomas, Z.A., Levy, R.H., Gasson, E.G.W., Naish, T.R., McKay, R.M., Kowalikowski, D.E., Fogwill, C.J., 2017b. Antarctic climate and ice-sheet configuration during the early Pliocene interglacial at 4.23 Ma. Clim. Past 13 (7), 953–979. https://doi.org/10.5194/cp-13-953-2017.

Haywood, A.M., Dowsett, H.J., Dolan, A.M., 2016. Integrating geological archives and climate models for the mid-Pliocene warm period. Nat. Commun. 7. https://doi.org/10.1038/ncomms10646.

Hodson, A., Nowak, A., Sabacka, M., Jungblut, A., Navarro, F., Pearce, D., Ávila-Jiménez, M.L., Conway, P., Vieira, G., 2017. Climatically sensitive transfer of iron to marine Antarctic ecosystems by surface runoff. Nat. Commun. 8. https://doi.org/10.1038/s41467-017-00006-y.

Lambelet, M., van de Flierdt, T., Crocket, K., Rehkämper, M., Kreisig, K., Coles, B., Rijksberg, M.J.A., Geringa, L.J.A., de Baar, H.J.W., Steinfeldt, R., 2016. Neodymium isotopic composition and concentration in the Western North Atlantic Ocean: results from the GEOTRACES GA02 section. Geochim. Cosmochim. Acta 177, 1–25. https://doi.org/10.1016/j.gca.2015.12.019.
Raymo, M.E., Lisiecki, L.E., Nisanciglo, K.H., 2006. Plio-pleistocene ice volume, antarctic climate, and the global δ18O record. Science 313 (5786), 492–495. https://doi.org/10.1126/science.1123296.

Reinardy, B.T., Escutia, C., Iwai, M., Jimenez-Espejo, E.J., Cook, C., van de Flierdt, T., Brinkhuis, H. 2015. Repeated advance and retreat of the East Antarctic Ice Sheet on the continental shelf during the early Pliocene warm period. Palaeogeogr. Palaeoclimatol. Palaeoecol. 422, 65–84. https://doi.org/10.1016/j.palaeo.2015.01.009.

Riesselman, C.R., Dunbar, R.B., 2013. Diatom evidence for the onset of Pliocene cooling from AND-1B, McMurdo Sound, Antarctica. Palaeogeogr. Palaeoclimatol. Palaeoecol. 369, 136–153. https://doi.org/10.1016/j.palaeo.2012.10.014.

Rintoul, S.R., Silvano, A., Pena-Molino, B., van Wijck, E., Rosenberg, M., Greenbaum, J.S., Blankenship, D.D., 2016. Ocean heat drives rapid basal melt of the Totten Ice Shelf. Sci. Adv. 2 (12). https://doi.org/10.1126/sciadv.1601616.

Sangiorgi, F., Bijl, P.K., Passchier, S., Salzmann, U., Schouten, S., McKay, K.R., Röder, D.R., Pross, J., van de Flierdt, T., Bohaty, S.M., Levy, R., Williams, T., Escutia, C., Brinkhuis, H., 2018. Southern Ocean warming and Wilkes Land ice sheet retreat during the mid-Pliocene. Nat. Commun. 9 (1), 317. https://doi.org/10.1038/s41467-017-02069-7.

Shen, Q., Wang, H., Shum, C.K., Jiang, L., Hsu, H.T., Dong, J., 2018. Recent high-resolution Antarctic ice velocity maps reveal increased mass loss in Wilkes Land, East Antarctica. Sci. Rep. 8 (1), 4477. https://doi.org/10.1038/s41598-018-22765-0.

Statham, P.J., Skidmore, M., Tranter, M., 2008. Inputs of glacially derived dissolved and colloidal iron to the coastal ocean and implications for primary productivity. Glob. Biogeochem. Cycles 22, GB3013. https://doi.org/10.1029/2007GC001306.

Strickland, J.D.H., Parsons, T.R., 1972. A Practical Handbook of Seawater Analysis, 2nd edition. Minister of Supply and Services, Ottawa, Canada.

Struve, T., van de Flierdt, T., Burke, A., Robinson, L.F., Hammond, S.J., Crocket, K.C., Brandtmeier, L.L., Auro, M.E., Mohamed, K.J., White, N.J., 2017. Neodymium isotope and concentrations in aragonitic scleractinian cold-water coral skeletons – modern calibration and evaluation of palaeo-applications. Chem. Geol. 453, 146–168. https://doi.org/10.1016/j.chemgeo.2017.01.022.

Studinger, M., Bell, R.E., Buck, W.R., Carner, G.D., Blankenship, D.D., 2004. Sub-ice geology inland of the Transantarctic Mountains in light of new aerogeophysical data. Earth Planet. Sci. Lett. 220 (3–4), 391–408. https://doi.org/10.1016/j.epsl.2004.08.034.

Tanaka, T., Togashi, S., Kamioka, H., Amakawa, K., Kagami, H., Hamamoto, T., Yuhara, M., Oishi, Y., Yoneda, S., Shimizu, H., Kunimaru, T., Takahashi, K., Yanagi, T., Nakano, T., Fujimaki, H., Shindo, R., Asahara, Y., Tanizumi, M., Dragoasuna, C., 2000. Jndi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chem. Geol. 168, 279–281.

Tauxe, L., Stickley, C.E., Sugisaki, S., Bijl, P.K., Bohaty, S.M., Brinkhuis, H., Escutia, C., Flores, J.A., Houben, A.J.P., Iwai, M., Jiménez-Espejo, F., McKay, R., Passchier, S., Pross, J., Riesselyan, C.R., Röhl, U., Sangiori, F., Welsh, K., Klaus, A., Fehr, A., Bendle, J.A.P., Dunbar, R., González, J., Hayden, T., Katsuki, K., Olney, M.P., Pekar, S.F., Shivastava, P.K., van de Flierdt, T., Williams, T., Yamanu, M., 2012. Chronostratigraphic framework for the IODP Expedition 318 cores from the Wilkes Land Margin: constraints for paleoceanographic reconstruction. Paleoceanography 27 (2), PA2214. https://doi.org/10.1029/2011PA002308.

Tauxe, L., Sugisaki, S., Jimenez-Espejo, F., Escutia, C., Cook, C.P., van de Flierdt, T., Iwai, M., 2015. Geology of the Wilkes land sub-basin and stability of the East Antarctic Ice Sheet: insights from rock magnetism at IODP Site U1361. Earth Planet. Sci. Lett. 412, 61–69. https://doi.org/10.1016/j.epsl.2014.12.034.

Taylor-Silva, B.J., Riesselyan, C.R., 2018. Polar frontal migration in the warm late Pliocene: diatom evidence from the Wilkes Land margin, East Antarctica. Paleocenogr. Palaeoclimatol. Palaeoecol. 33, 76–92. https://doi.org/10.1002/2017PA003225.

Tütken, T., Eisenhauer, A., Wiegand, B., Hansen, B.T., 2002. Glacial-interglacial cycles in Sr and Nd isotopic composition of Arctic marine sediments triggered by the Svalbard/Barents Sea ice sheet. Mar. Geol. 182 (3–4), 351–372. https://doi.org/10.1016/S0025-3227(01)00248-1.

Weis, D., Kieffer, B., Maerschalk, C., Barling, J., de Jong, J., Willimas, G.A., Hanano, D., Pretorius, W., Mattielli, N., Scoates, J.S., Golaaloo, A., Friedman, R.M., Mahoney, J.B., 2008. High-precision isotopic characterization of USCG reference materials by TMS and MC-ICP-MS. Geochim. Geosyst. 7, B. https://doi.org/10.1029/2006GC001283.