1. Introduction

Sports teams are a unique form of social group formed in the medium of physical activity; they are also groups in that they have particular goals requiring strong leadership and the pursuit of victory. In order for sports teams to achieve their ultimate goal of victory or to satisfy their members, group structure, such as position, status, and normal must be relatively stable. At the same time, leadership must be clearly established. Sports teams are comprised of players, instructors, and sponsoring committees.

Instructors select players, manage the physical strength of players, teach various skills, and develop tactics, and are always with players. In addition, instructors serve as assistants and supervisors for players and have perhaps the most influential role on them.

Different types of leadership exert different influences on individuals and teams. Therefore, efficient leadership of a sports team is a very important element of the team. The roles of instructors include selecting players, managing their physical strength, teaching skills, and developing tactics; leaders must be invested in how players behave.
during training and in games. In addition, instructors must make efforts to improve cohesion of the team and encourage the desire of the players to win. Instructors directly contribute to improving performance during a game but also influence the internal lives of the players. The type of leadership an instructor exhibits is of vital importance. Leadership type includes the characteristics of the leaders themselves and the circumstances in which instructors exert a leading role, and also the ways in which members are influenced by leaders, which is a complicated relationship.

In a broad sense, coaches are responsible for a significant part of team operation and performance during a game. In particular, since leadership significantly influences the satisfaction of players and the cohesion of a team, which indirectly impacts the skills and tactics of players and the performance of the team as a whole, studies dealing with leadership in sports play a pivotal role in improving the performance of a team. According to a strong emotional response secondary to good leadership positively influences immersion in sports and achievement of the team.

Many studies have found that immersion in exercise is directly related to performance during a game. If players are motivated in an appropriate manner by their instructors, they will be more immersed in exercise. Greater immersion in exercise increases the satisfaction of individual players, exercise recognition ability, confidence, and the cohesion of team members. In particular, if a team is led appropriately by its instructors, it is feasible to improve the behavior of members via the formation of interdependent relationships and improve immersion in exercise and achievement of goals. A high level of immersion in exercise is expected to influence game performance through social and assignment cohesion.

The leadership of instructors influences not only the behaviors and attitudes of instructors but also the functioning of individuals, including their psychological and social development and their interpersonal relationships. In addition, leadership is known to greatly influence the efficiency of sports groups and improve the team, as it contributes to a sense of belonging, positive team spirit, communication, the rate of winning games, and overall performance. According to previous studies, a systematic leadership type is required to analyze the characteristics of teams and players in order to be an outstanding instructor. In spite of the fact that immersion in exercise is an important factor in performance, there have not been many studies addressing this issue focusing on Taekwondo.

Four Korean players participated in the Beijing Olympic in 2008, winning four gold medals. In the London Olympics in 2012, the Korean team acquired one gold medal and two silver medals. Intense efforts on the part of the athletes might have made it possible for them to achieve such dazzling accomplishments. However, the influence of leaders is also a vital factor. When instructors are effective leaders, they positively influence individual members and team performance. Furthermore, it is also anticipated that public interest in Taekwondo will increase. Therefore, studies dealing with types of leadership of Taekwondo instructors and immersion in exercise are very important and will provide information necessary for the improvement of players’ performance and the leadership of instructors.

2. Research Methods

2.1. Study Subjects

This study concentrated on Taekwondo students in middle school or above in the areas of Jeonbuk, Jeonnam, and Gwangju in 2015 in order to identify the relationship between types of leadership and immersion in exercise. A survey was used for stratified cluster random sampling. A total of 200 copies of the survey were distributed. Among them, sixteen surveys with incomplete or poor responses were excluded, and data from 184 surveys were used for the final analysis. The general characteristics of the research subjects are shown in Table 1.

variable	groups	frequency	%
Gender	Male	125	67.9
	Female	59	32.1
Age	Less than age 16	60	32.6
	Between 17 and 19	82	44.6
	Older than 20	42	22.8
Experience	Less than 3 years	43	23.4
as a player	Between 4 and 7 years	67	36.4
	More than 8 years	74	40.2
Total		184	100

2.2. Research Tools

A survey was used to identify the relationship between
leadership types of Taekwondo instructors and immersion in exercise in this study. To measure leadership type, the Leadership Scale Sport (LSS), which was developed by 13 and translated and used by 14 in Korea, was re-organized according to the objectives of this study. Leadership types were assessed by a total of twenty questions that addressed training behavior (four questions), democratic behavior (four questions), assumption-based behavior (four questions), social support (four questions), and positive compensation (four questions). To measure immersion in exercise, the Flow State Scale (FSS) that was manufactured by 15 and translated and used by 16 in immersion in exercise, the Flow State Scale (FSS) that was manufactured by 15 and translated and used by 16 in Korea was re-organized according to the needs of this study. Measurement of immersion in exercise consisted of a total of twenty questions that addressed clear goal recognition (four questions), self control (four questions), ecstasy (four questions), changes in visual sense (four questions), and experience setting goals for oneself (four questions). Responses in the survey were answered on a 5-point Likert scale, where 5 was 'strongly agree,' 4 was 'agree,' 3 was 'neutral,' 2 was 'disagree,' and 1 was 'strongly disagree.'

2.3. Validity and Reliability

In order to assess the validity of the survey, exploratory factor analysis was conducted. Exploratory factor analysis selected only the questions with a factor load higher than 0.40 through orthogonal rotation. The leadership types shown in Table 2 were extracted from five factors with eigenvalues greater than 1.0 and the explanatory power of leadership type on variation was 63.749%. KMO standard appropriateness for verifying the validity of factor analysis states that values between 0.5 and 1 are appropriate for factor analysis 17, 18. In this study, KMO was found to be 0.933, and sig(p) turned out to be 0.000. Therefore, the data were appropriate for factor analysis. $\chi^2=3241.810$ and df=190 were also derived.

Immersion in exercise shown in Table 3 was extracted in five factors with eigenvalues greater than 1.0 and the explanatory power of immersion on exercise was 61.078%. The standard KMO values for verifying the validity of factor analysis state that values between 0.5 and 1 are appropriate for factor analysis 17, 18. Since the KMO value was 0.883, and sig(p) turned out to be 0.000 in this study, the data turned out to be appropriate for factor analysis. $\chi^2=2681.580$ and df=190 were also derived.

Table 2. Factor analysis

item	A	B	C	D	E	h2
item1	.772	-.035	.016	-.055	.091	.609
item2	.684	.249	-.239	-.279	-.119	.679
item3	.793	-.037	.157	-.096	.139	.683
item4	.725	-.122	-.005	.074	.294	.632
item5	.128	.683	-.170	-.167	.202	.580
item6	.220	.721	-.170	-.194	-.048	.637
item7	.249	.688	-.229	-.343	-.058	.708
item8	-.015	.637	.069	-.260	.098	.488
item9	-.082	-.098	.569	-.090	.328	.531
item10	.093	-.006	.739	-.006	.006	.555
item11	.070	-.086	.626	.284	.265	.556
item12	-.035	-.301	.535	.381	.126	.802
item13	.277	-.116	.219	.594	-.315	.590
item14	.251	-.123	.144	.719	.046	.618
item15	.136	-.094	.248	.659	-.245	.583
item16	.161	-.004	.012	.721	-.230	.599
item17	.079	-.079	.322	-.120	.641	.824
item18	-.116	-.211	.342	.137	.710	.607
item19	-.311	-.267	.330	.181	.460	.693
item20	-.365	.044	.392	-.159	.608	.776

eigenvalue	8.026	1.653	1.145	1.025	.900
variance%	40.131	8.265	9.898	7.515	1.980
cumu%	40.131	54.122	7.515	1.980	1.057

| KMO=933, χ²=3241.810, df=190, p=.000 |

Table 3. Factor analysis

item	A	B	C	D	E	h2
item1	.653	-.226	.076	-.134	-.138	.521
item2	.542	.089	-.131	-.353	-.350	.566
item3	.587	.125	-.244	.365	-.237	.609
item4	.641	.240	.347	.054	-.307	.758
item5	-.223	-.688	.152	.041	-.041	.549
item6	-.145	-.657	-.020	-.204	.059	.499
item7	.300	.408	-.330	.113	-.175	.479
item8	.104	.612	-.044	-.235	-.197	.481
item9	.361	.173	.598	.092	-.257	.675
item10	.120	-.250	.637	.304	.133	.593
item11	-.179	-.150	.692	-.154	.249	.619
item12	-.165	.162	.684	-.400	.039	.683
item13	.348	.360	-.235	.582	-.026	.646
item14	.176	.039	.183	.669	.323	.692
item15	.203	-.323	.046	.581	.217	.607
item16	-.178	-.146	-.004	.684	.266	.592
item17	.134	.095	-.273	-.300	.674	.645
item18	-.019	.240	-.377	.398	.573	.686
item19	.126	.363	.331	-.037	.664	.699
item20	.155	-.324	.162	.308	.541	.618

eigenvalue	6.463	1.980	1.503	1.214	1.057
variance%	32.314	9.898	7.515	6.069	5.283
cumu%	32.314	42.212	49.727	55.796	61.078

KMO=.883, χ²=2681.580, df=190, p=.000
In order to analyze the reliability of each of the factors, Cronbach’s \(\alpha \) coefficient was calculated. The results of reliability analysis are shown in Table 4. The reliability values turned out to be 0.880 for training order behavior, 0.881 for democratic behaviors, 0.881 for assumption-based behaviors, 0.879 for social supporting behaviors, 0.880 for positive compensating behaviors, 0.871 for accurate goal recognition, 0.872 for self control, 0.874 for ecstasy, 0.870 for changes in temporal sense, and 0.872 for experience of setting goals for oneself.

Table 4. Reliability coefficients

Factors	Reliability
Leadership types	
Training order behavior	.880
Democratic behavior	.881
Assumption-based behavior	.881
Social supporting behaviors	.879
Positive compensating behaviors	.880
Immersion on exercise	
Recognition of clear goals	.871
Self-controlling ability	.872
Ecstasy	.874
Changes in temporal sense	.870
Experience of self-goals	.872

2.4. Data Analysis

Among the returned copies of the survey, the ones with incomplete responses were excluded, and data available for analysis were entered into a computer for statistical processing. The SPSS 20.0 statistical program was used for exploratory factor analysis, reliability analysis (Cronbach’s \(\alpha \)), descriptive statistical analysis, correlation analysis, and multiple regression analysis. The level of statistical significance was set as \(\alpha = .05 \).

3. Results

3.1. Results of correlation analysis

The Table 5 shows the results of correlation analysis that was conducted in order to identify the relationship between leadership types and immersion in exercise. All factors were positively correlated with one another. Therefore, they satisfy the standard criteria among variables. Leadership types and immersion in exercise were positively correlated with recognition of clear goals (\(r = .405 \)), self control (\(r = .407 \)), ecstasy (\(r = .430 \)), changes in temporal sense (\(r = .314 \)), and experience of setting goals (\(r = .317 \)). Democratic behavior was positively correlated with recognition of clear goals (\(r = .319 \)), self control (\(r = .372 \)), ecstasy (\(r = .394 \)), changes in temporal sense (\(r = .273 \)), and experience of setting goals for oneself (\(r = .286 \)). Social supporting behaviors were positively correlated with recognition of clear goals (\(r = .364 \)), self control (\(r = .364 \)), ecstasy (\(r = .414 \)), changes in temporal sense (\(r = .273 \)), and experience setting goals (\(r = .332 \)). Positive compensating behavior was positively correlated with recognition of clear goals (\(r = .146 \)), self control (\(r = .168 \)), ecstasy (\(r = .193 \)), changes in temporal sense (\(r = .242 \)), and experience setting goals (\(r = .193 \)).

Table 5. Results of correlation analysis

	A	B	C	D	E	F	G	H	I	J
A	-									
B	.772***	-								
C	.565***	.566**	-							
D	.702***	.623***	.557***	-						
E	.320***	.339***	.312***	.312***	-					
F	.405***	.319***	.393***	.364***	.146***	-				
G	.407***	.372***	.371***	.364***	.168***	.590***	-			
H	.430***	.394***	.423***	.414***	.193***	.619***	.597***	-		
I	.314***	.273***	.370***	.277***	.242***	.491***	.577***	.609***	-	
J	.317***	.286***	.395***	.332***	.193***	.513***	.539***	.614***	.691***	-

***p<.001
3.2. Relationship between leadership types and immersion in exercise

3.2.1 Relationship between leadership types and recognition of clear goals

As shown in Table 6, leadership types of Taekwondo instructors were found to statistically significantly influence the recognition of clear goals (F=19.461, p<.001). The explanatory power of leadership type on all variables turned out to be about 21.1% (R²=.211). According to the Beta value, which reflects the relative influence of leadership type and recognition of clear goals, there is a positive influence on training order behavior (β=.264, p<.001) and assumption-based behavior (β=.242, p<.001).

Table 6. Relationship between leadership types and Recognition of clear goals

B	SE	β	t	Tolerance	
Constant	1.525	.227	6.715***		
Training order behavior	.237	.074	.264	3.203***	
Democratic behavior	-.063	.064	-.076	-.987	
Assumption-based behavior	.275	.069	.242	4.000***	
Social supporting behaviors	.091	.064	.097	1.416	
Positive compensating behaviors	-.019	.053	-.018	-.362	

R²=.211, F=19.461, p=.001

3.2.2 Relationship between leadership types and self control

As shown in Table 7, leadership types of Taekwondo instructors statistically significantly influence the capacity of students for self control (F=18.291, p<.001). Leadership type explained about 20.1% (R²=.201) of all variation. According to the Beta value, which measures the influence of leadership types on ecstasy, leadership type has a positive influence on training order behavior (β=.192, p<.05), assumption-based behavior (β=.220, p<.001), and social supporting behavior (β=.143, p<.05).

Table 7. Relationship between leadership types and self control

B	SE	β	t	Tolerance	
Constant	1.518	.237	6.397***		
Training order behavior	.179	.077	.192	2.318*	
Democratic behavior	.060	.067	.070	.902	
Assumption-based behavior	.204	.072	.173	2.849**	
Social supporting behaviors	.087	.067	.089	1.292	
Positive compensating behaviors	.001	.056	.001	.019	

R²=.201, F=18.291, p=.001

*p<.05, **p<.01, ***p<.001

3.2.3 Relationship between leadership types and ecstasy

As shown in Table 8, leadership types of Taekwondo instructors statistically significantly influence ecstasy (F=23.469, p<.001). Leadership type explained approximately 24.4% (R²=.244) of the variation. According to the Beta value, which measures the influence of leadership types on ecstasy, leadership type has a positive influence on training order behavior (β=.161, p<.05), assumption-based behavior (β=.220, p<.001), and social supporting behavior (β=.143, p<.05).

Table 8. Relationship between leadership types and ecstasy

B	SE	β	t	Tolerance	
Constant	1.485	.227	6.547***		
Training order behavior	.147	.074	.161	1.996*	
Democratic behavior	.045	.064	.052	.698	
Assumption-based behavior	.255	.069	.220	3.719***	
Social supporting behaviors	.136	.064	.143	2.218*	
Positive compensating behaviors	.011	.053	.010	.209	

R²=.244, F=23.469, p=.001

p<.01, *p<.001

3.2.4 Relationship between leadership types and changes in temporal sense

As shown in Table 9, leadership types of Taekwondo instructors statistically significantly influence changes in temporal sense (F=14.481, p<.001). Leadership type explained about 16.6% (R²=.166) of the total variance. According to the Beta value, leadership has a positive influence on assumption-based behaviors (β=.264, p<.001) and positive compensating behaviors (β=.122, p<.05).

Table 9. Relationship between leadership types and changes in temporal sense

B	SE	β	t	Tolerance	
Constant	1.498	.227	6.612***		
Training order behavior	.148	.074	.163	2.076*	
Democratic behavior	.046	.064	.053	.708	
Assumption-based behavior	.256	.069	.221	3.721***	
Social supporting behaviors	.136	.064	.144	2.221*	
Positive compensating behaviors	.011	.053	.010	.210	

R²=.166, F=14.481, p=.001

*p<.05, **p<.01, ***p<.001
Table 9. Relationship between leadership types and changes in temporal sense

	B	SE	β	t	Tolerance
Constant	1.482	.230	6.431***		
Training order behavior	.130	.075	.147	1.732	3.131
Democratic behavior	-.033	.065	-.040	-.507	2.705
Assumption-based behavior	.297	.070	.264	4.255***	1.681
Social supporting behaviors	.012	.065	.013	.185	2.172
Positive compensating behaviors	.128	.054	.122	2.363*	1.168

R²=.166, F=14.481, p=.001
*p<.05, ***p<.001

3.2.5 Relationship between leadership types and experience of self-set goals

As shown in Table 10 leadership types of Taekwondo instructors statistically significantly influence the experience of self-set goals (F=15.780, p<.001). Leadership type explained about 17.9% (R²=.179) of the total variance. According to the Beta value, there is a positive influence of leadership type on assumption-based behaviors (β=.283, p<.001).

Table 10. Relationship between leadership types and experience of self-set goals

	B	SE	β	t	Tolerance
Constant	1.585	.219	7.235***		
Training order behavior	.063	.071	.075	.889	3.131
Democratic behavior	-.020	.062	-.026	-.328	2.705
Assumption-based behavior	.304	.066	.283	4.594***	1.681
Social supporting behaviors	.108	.062	.122	1.739	2.172
Positive compensating behaviors	.051	.051	.051	.991	1.168

R²=.179, F=15.780, p=.001
*p<.05, ***p<.001

4. Discussion

This study was conducted to clarify the relationship between leadership types of Taekwondo instructors and immersion in exercise. According to the results of correlation analysis conducted to clarify the relationship between leadership types and immersion in exercise, leadership types turned out to be positively related to immersion in exercise. Such a result is consistent with the results from a study by which showed that leadership types were significantly and positively correlated with immersion in exercise. In addition, concluded that leadership types were related to team performance in a study conducted on soccer players and also discussed how leaders should lead players by utilizing the most effective types of leadership.

Therefore, players and instructors should maintain a positive relationship and adopt the most pro-active and appropriate approaches in terms of patterns or training methods by identifying the characteristics of individual players. In particular, Taekwondo instructors are required to provide leadership that stabilizes improvements in performance and cohesion of players through feedback on the behavioral results of players. and found that leadership types significantly influenced players’ performance. However, when considering how leadership types of instructors influenced immersion in exercise, it is clear that they must select behavioral types through interactions with individual players. In order to achieve the highest levels of performance, it seems that interactions between instructors and players are required on a continuous basis. Taekwondo requires a high level of concentration and physical strength, as it is a combination of physical and mental agility, unlike some other sports. Since leadership types of instructors are a way of influencing the achievement of goals, leadership is very important, and players are able to improve their Taekwondo skills depending on leadership types.

Immersion in exercise is a part of mental status that can occur in daily life through sports and also indicates a series of tasks that can occur when interacting with a given set of circumstances in an optimal manner. Immersion in exercise serves as a driving force to create the optimal level of performance or allows athletes to reach their prime. In addition, it also serves as an important motivating factor for players. According to the results of this study, which identified how leadership types of Taekwondo instructors influenced immersion in exercise, training order behavior and assumption-based behavior turned out to influence the ability for self control. Training order behavior and assumption-based behavior are strongly associated with opinions given by instructors rather than the players’ own opinions.
Leadership is especially important if the goals of players are not set in stone, or if players are not thoroughly motivated or have difficulty controlling their emotions. In addition, training order behavior, assumption-based behavior, and social supporting behaviors influenced temporal sense, and assumption-based behavior and positive compensating behavior influenced temporal sense.

In addition, assumption-based behavior influenced the experience of self-goals. In regard to this finding, reported that immersion was increased the most when instructors provided a means for promoting the achievement of goals and also motivated players to make their best efforts by suggesting clear goals. insisted that the teaching behavior types of golf instructors positively influenced immersion in exercise, which is in agreement with the results of this study. Such results indicate that there is a need for instructors to establish various teaching methods and environments for players to focus on exercise through various means.

In addition, reported that if instructors suggested a vision appropriate to an individual player and led players to sacrifice their own opinions and listen to the opinions of team members, psychological pleasure was derived while maximizing the immersion in exercise and hence the level of exercise performance at the same time. It was found that instructors’ best efforts to provide alternatives for the future and predictable conviction on players significantly influenced the immersion of players in exercise.

5. Conclusions

This study was conducted to clarify the relationship between the leadership types of Taekwondo instructors and immersion in exercise. The subjects of this study were 184 Taekwondo students in Jeonbuk, Jeonnam, and Gwangju who responded to a survey. The data were processed via exploratory factor analysis, reliability verification, correlation analysis, and multiple regression analysis. First of all, the correlation between leadership types of Taekwondo instructors and immersion in exercise turned out to be positive for all sub-variables. Secondly, among leadership types of Taekwondo instructors, training order behavior and assumption-based behavior most influenced the recognition of clear goals and the ability for self control. Training order behavior, assumption-based behavior, and social supporting behavior influenced ecstasy. Assumption-based behavior and positive compensating behavior influenced changes in temporal sense, and assumption-based behavior influenced the experience of self-driven goals. Given the aforementioned conclusions, we infer that assumption-based behavior among leadership types of Taekwondo instructors is effective in improving the immersion of Taekwondo players in exercise.

6. References

1. Min LG, Chol YK. A Study on the Types of Leadership and Organizational Performance in Sports Industry. The e-Business Studies. 2012; 13(2):111–29.
2. Jin CD, Hyun KJ. The Comparison of the Perception of the Handball Instructors’ Coaching Behaviors to Those of Their Players’ Coaching Behaviors. Research of sports science. 2000; 11:39–51.
3. Yong PC, Sook PN, Ja PS. A Study of Relationship Among Leadership Style Athletes’ Satisfaction in Athletes Group. Journal of Physical Education and Sports Science. 1996; 12:77–87.
4. Jang LB, Seok CK. Relationship between the Leadership role structure of Sports team and Esteem of leaders. Journal of the Research Institute of Physical Education. 1995; 16(1): 39–53.
5. Min PY, Seog LE, Gyu LH. The Relationship between Coaching Style of Golf Instructors and Perceived Teaching Effectiveness. Korean Journal of Physical Education. 2003; 42(4):223–233.
6. Howell JM, Avolio BJ. Transformational Leadership, Transactional Leadership, Locus of Control and Support for Innovation: Key Predictors of Consolidated-Business-Unit Performance. Journal of Applied Psychology. 1993; 78(6):891.
7. Sup CB. The Effect of Mid/High School Golf Athletes’ Self Leadership on Sports Absorption and Spot Performance. Journal of Sport and Leisure Studies. 2011; 46(1):833–42.
8. Soo CT, Sung H. Relationship of Charismatic Leadership of a Coach of an Amateur Tennis Lover with Immersion in Exercise, Satisfaction with Exercise, and Performance. Journal of Sport and Leisure Studies. 2009; 36(2):1019–33.
9. Hong LJ, Sun CM, Hyouck L. The Influence of the Coaches’ Charismatic Leadership on Group Cohesiveness and Players’ Absorption in of Gymnastics, Journal of Sport and Leisure Studies. 2011; 45(1):545–55.
10. Bong LJ, Hyeong CL. The Relationship Among Charismatic Leadership, Trust in Leader, and Instructing Effectiveness of Taekwondo Instructor. Korean Alliance of Martial Arts. 2009; 11(2):233–45.
11. Jowett S, Cockerill I M. Olympic Medalists’ Perspective of the Athlete-coach Relationship. Psychology of sport and exercise. 2003; 4(4):313–31.
12. Hye JI. In University Basketball Teams, the Relationship between the Type of Coach’s Leader Behavior and Team Cohesion according to their winning Record, Korean Society of Sport Psychology. 2004; 15(1):65–77.
13. Chelladurai P, Carron AV. Leadership (CANPER Sociology
of sport monograph Series). Calgary, Alberta: University of Calgary. 1978.

14. Jin MK, Sik PK. The Effect of Leadership Behavior Type on Group Cohesion and Players’ Satisfaction Elementary School Soccer Team Coach’s, The Korean Journal of the Elementary Physical Education. 2003; 9(1):37–48.

15. Jackson SA, Marsh HW. Development and Validation of a Scale to Measure Optimal Experience: The Flow State Scale. Journal of Sports Science. 1996; 18(1):17–35.

16. Pyo KJ, Chul JY, Young KJ. Influence of Boxers’ Self-Management upon Exercise Flow and Exercise Satisfaction. The Journal of Martial Arts. 2011; 22(1):151–62.

17. Soo KG. Virtual Internet Community Service and e-Value Creation: Using Structural Equation Modeling. The Korean Academic society of Business Administration. 2005; 34(4):1101–23.

18. Nunnally JC, Bernstein IH. Psychometric theory, McGraw-Hill: New York, 1994.

19. Yun LJ, Su BJ. Effects of Transformational and Transactional Leadership on the Achievement Motivation, Motor Flow, and Instructing Effectiveness Perceptional of Korea and China Player’s, Korean Society of Sport Psychology. 2008; 19(1):1–18.

20. Arm CB. The Effects of Leadership Styles on Leadership Effectiveness and Sport Performance in Soccer. Journal of Coaching Development. 2007; 9(3):381–91.

21. Ho AJ, Sun CM. The Relationship between Cohesion and Perceived Performance along with the Basketball Coach’s Leadership Behaviors, Korea sport research. 2003; 20(1): 201–09.

22. Joo HH, Yeon YS. An Analysis of Efficiency of Leadership Type of Judo Leader and Its Effects on Performance, Korea sport research. 2004; 15(3):611–15.

23. Keun YJ. The Effects of Coach’s Leadership Behavior on the Member Satisfaction in the Individual Sports Competition, Korean Association of school physical education. 2002; 12(2):33–41.

24. Li KS, Rim KH, Ho KK. Relationship between Participation on Extreme Sports, and Participate Motivation, Sports Flow and Self-Actualization. Journal of Coaching Development. 2004; 6(3):77–87.

25. Ho KS. A Theoretical Review of Sport Flow for Concept Formation, Sport Science review, 2007; 1(2):81–92.

26. Bok NS, Hee LC. The Effects of Taekwondo Coaches’ Transactional Transformational Leadership on Achievement Goal Orientation and Exercise Flow. Journal of Korean Physical Education Association for Girls and Women. 2008; 22(1):149–61.

27. Shik MH, Jung CK. The Relation of Golf Coach’s Teaching Style to Immersion and Exercise Adherence Intention. Journal of Korean Sociology of Sport. 2012; 25(3):155-76.

28. Soo KH. The Effects of Athlete Satisfaction, Team Cohesion, and Exercise Commitment according to Taekwondo Leader’s Leadership Style, Journal of coaching development, 2013; 15(1):43–54.