Probability Theoretic Generalizations of Hardy’s and Copson’s Inequality

Chris A.J. Klaassen
Korteweg-de Vries Institute for Mathematics
University of Amsterdam
Netherlands
c.a.j.klaassen@uva.nl

Dedicated to centenarian Jaap Korevaar

Abstract

A short proof of the classic Hardy inequality is presented for p-norms with $p > 1$. Along the lines of this proof a sharpened version is proved of a recent generalization of Hardy’s inequality in the terminology of probability theory. A probability theoretic version of Copson’s inequality is discussed as well. Also for $0 < p < 1$ probability theoretic generalizations of the Hardy and the Copson inequality are proved.

Keywords: p-norm, stretched distribution function, rearrangement lemma

2010 MSC: 60E15 (primary), 26D15 (secondary)

1. The classic Hardy inequality for $p > 1$

As described in detail in [7] the classic Hardy inequality was developed in the years 1906–1928. Its integral version may be formulated as follows. If $p > 1$ and ψ is a nonnegative measurable function on $(0, \infty)$, then

\[
\left\{ \int_0^\infty \left(\frac{1}{x} \int_0^x \psi(y) \, dy \right)^p \, dx \right\}^{1/p} \leq \frac{p}{p - 1} \left\{ \int_0^\infty \psi^p(y) \, dy \right\}^{1/p}
\]

(1)
holds. By Lebesgue’s differentiation theorem, Tonelli’s theorem and Hölder’s inequality we have

\[
\int_0^\infty \left(\frac{1}{x} \int_0^x \psi \right)^p \, dx = \int_0^\infty x^{-p} \left(\int_0^y \psi \right)^{p-1} \psi(y) \, dy \, dx \tag{2}
\]

\[
= p \int_0^\infty \int_y^\infty x^{-p} \, dx \left(\int_0^y \psi \right)^{p-1} \psi(y) \, dy \geq \int_0^{\infty} \left(\frac{1}{y} \int_0^y \psi \right)^{p-1} \psi(y) \, dy
\leq \frac{p}{p-1} \left[\int_0^{\infty} \left(\frac{1}{y} \int_0^y \psi \right)^p \, dy \right]^{(p-1)/p} \left[\int_0^{\infty} \psi^p \right]^{1/p},
\]

which implies (1). This proof is a smoothed version of the proof of [4], whose application of partial integration in stead of Tonelli’s theorem introduced some technical complications; see Section 8 of [7] and also observe that partial integration can always be done by applying Tonelli’s or Fubini’s theorem.

With \(\psi(y) = \sum_{k=1}^{\infty} c_k 1_{[k-1,k)}(y) \) and \(c_1 \geq c_2 \geq \ldots \geq 0 \) we have

\[
\frac{1}{x} \int_0^x \psi(y) \, dy = \sum_{k=1}^{n-1} c_k + \frac{(x - n + 1) c_n}{x} \geq \frac{1}{n} \sum_{k=1}^{n} c_k, \quad x \in [n-1, n],
\]

and by substituting this into (1) (cf. [4] and Section 8 of [7]) we obtain the sequence version of Hardy’s inequality, which states that for \(p > 1 \) and nonnegative \(c_1, c_2, \ldots \)

\[
\sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{k=1}^{n} c_k \right)^p \leq \left(\frac{p}{p-1} \right)^p \sum_{k=1}^{\infty} c_k^p \tag{3}
\]

holds. Note that rearranging the \(c_k \) in nonincreasing order does not change the value of \(\sum_{k=1}^{\infty} c_k^p \), but it might increase the value of \(1/n \sum_{k=1}^{n} c_k \) for some values of \(n \) without decreasing this value for any \(n \), as may be seen by interchanging any two \(c_k \) that are not in decreasing order.

2. A probability theoretic Hardy inequality for \(p > 1 \)

Both the integral and sequence version of the Hardy inequality can be derived from a probability theoretic generalization presented in [6], which we sharpen as follows.
Theorem 2.1. Let X and Y be independent random variables with distribution function F on $(\mathbb{R}, \mathcal{B})$, and let ψ be a measurable function on $(\mathbb{R}, \mathcal{B})$, not identically 0. Furthermore, let $p > 1$ and let $\alpha \in [0, 1]$ be the unique root of

$$E (|\psi(Y)|^p) \left[p - 1 + \alpha \right] - p \left\{ E (|\psi(Y)|^p) \right\}^{1/p} \alpha^{1/p} = 0. \quad (4)$$

Then

$$\left\{ E \left(\left| \frac{E (\psi(Y)1_{[Y \leq X]} \mid X)}{F(X)} \right|^p \right) \right\}^{1/p} \leq \frac{p}{p - 1 + \alpha} \left\{ E (|\psi(Y)|^p) \right\}^{1/p} \quad (5)$$

holds.

In (5) $E(\cdot \mid X)$ denotes conditional expectation given X. Note that this inequality (5) is trivial if ψ is not p-integrable. Furthermore, (5) with ψ non-negative implies (3) for arbitrary ψ, since the absolute value of the (conditional) expectation of a random variable is bounded from above by the (conditional) expectation of the absolute value of this random variable.

If $\psi(Y)$ equals a constant a.s., then we have $\alpha = 1$ and (5) is an equality. For $p = 2$ the root from (4) equals $\alpha = (\sqrt{E \psi^2(Y)} - \sqrt{\text{var}|\psi(Y)|})^2 (E|\psi(Y)|)^{-2}$.

Note that taking F uniform on $(0, K)$, denoting the root of (4) by α_K, multiplying (4) by $K^{1/p}$ and (5) by K, and taking limits as $K \to \infty$ we see that α_K converges to 0 and we arrive at Hardy’s inequality (1). Analogously taking F uniform on $\{1, \ldots, K\}$ we obtain Hardy’s inequality (3).

[6] prove (5) with $\alpha = 0$. Their proof generalizes [1]’s proof of (3), discretizes F and applies a limiting procedure. Theorem 2.1 will be proved along the lines of [2] and to this end we need the following rearrangement lemma; cf. [8].

Lemma 2.2. Let χ be a nonnegative p-integrable function on the unit interval. There exists a nonincreasing p-integrable function $\bar{\chi}$ on the unit interval with the same p-norm as χ and with

$$\frac{1}{u} \int_0^u \bar{\chi}(v) \, dv \geq \frac{1}{u} \int_0^u \chi(v) \, dv, \quad 0 \leq u \leq 1. \quad (6)$$

Proof

Let U be uniformly distributed on the unit interval and define the distribution
function $G(x) = P(\chi(U) \leq x), x \in \mathbb{R}$, and the nonincreasing function $\tilde{\chi}(u) = G^{-1}(1 - u) = \inf\{x \mid G(x) \geq 1 - u\}, 0 \leq u \leq 1$. Note that $\tilde{\chi}(U)$ and $\chi(U)$ have the same distribution and hence the same p-norm. Furthermore, by definition of G

$$\frac{1}{u} \int_0^u \tilde{\chi}(v) \, dv = \frac{1}{u} \int_0^u G^{-1}(1 - v) \, dv$$

is the mean of the χ-values over a subset of $[0, 1]$ of measure u that contains the largest χ-values. This implies (6). □

Here is our proof of Theorem 2.1.

Proof

Without loss of generality we assume that ψ is nonnegative and p-integrable. The left-continuous inverse distribution function F^{-1} is defined as $F^{-1}(u) = \inf\{x \mid F(x) \geq u\}, 0 \leq u \leq 1$. Since the left hand side of (5) to the power p may be rewritten as

$$\int_0^1 \left[\int_{[F^{-1}(v) \leq F^{-1}(u)]} \frac{\psi(F^{-1}(v)) \, dv}{F(F^{-1}(u))} \right]^p \, du = \int_0^1 \left[\int_0^{F(F^{-1}(u))} \frac{\psi(F^{-1}(v)) \, dv}{F(F^{-1}(u))} \right]^p \, du,$$

the lemma proves that we may assume that ψ is nonincreasing.

Let F be a distribution function with discontinuities, i.e., atoms, one of which is located at a with mass p_a. We remove this discontinuity by stretching the distribution function F to

$$\tilde{F}(x) = \begin{cases}
F(x) & x < a \\
F(a-) + x - a & \text{for } a \leq x \leq a + p_a \\
F(x - p_a) & a + p_a \leq x
\end{cases} \quad (8)$$

and adapt the function ψ accordingly as follows

$$\tilde{\psi}(x) = \begin{cases}
\psi(x) & x < a \\
\psi(a) & \text{for } a \leq x \leq a + p_a \\
\psi(x - p_a) & a + p_a \leq x
\end{cases} \quad (9)$$

Note

$$\int_{\mathbb{R}} \tilde{\psi}^p(y) \, d\tilde{F}(y) = \int_{\mathbb{R}} \psi^p(y) \, dF(y). \quad (10)$$
Since this also holds for \(p = 1 \), the value of \(\alpha \) in (4) does not change when replacing \(\psi \) and \(F \) by \(\tilde{\psi} \) and \(\tilde{F} \), respectively. For \(a \leq x \leq a + p_a \) the monotonicity of \(\psi \) implies
\[
\frac{\int_{(-\infty, x]} \tilde{\psi}(y) \, d\tilde{F}(y)}{\tilde{F}(x)} = \frac{\int_{(-\infty, a]} \psi(y) \, dF(y) + \psi(a)(x - a)}{F(a) + x - a} \\
= \frac{\int_{(-\infty, a]} [\psi(y) - \psi(a)] \, dF(y)}{F(a) + x - a} + \psi(a) \\
\geq \frac{\int_{(-\infty, a]} [\psi(y) - \psi(a)] \, dF(y)}{F(a)} + \psi(a) = \frac{\int_{(-\infty, a]} \psi(y) \, dF(y)}{F(a)}
\]
and for \(a + p_a < x \)
\[
\frac{\int_{(-\infty, x]} \tilde{\psi}(y) \, d\tilde{F}(y)}{\tilde{F}(x)} = \frac{\int_{(-\infty, x]} \psi(y) \, dF(y) + \psi(a)p_a + \int_{[a + p_a, x]} \psi(y - p_a) \, dF(y - p_a)}{F(x - p_a)} \\
= \frac{\int_{(-\infty, x - p_a]} \psi(y) \, dF(y)}{F(x - p_a)}
\]
holds.

Together with the definitions of \(\tilde{F} \) and \(\tilde{\psi} \) these relations yield
\[
\int_R \left[\frac{\int_{(-\infty, x]} \tilde{\psi}(y) \, d\tilde{F}(y)}{\tilde{F}(x)} \right]^p \, d\tilde{F}(x) \\
\geq \int_{(-\infty, a]} \left[\frac{\int_{(-\infty, x]} \psi(y) \, dF(y)}{F(x)} \right]^p \, dF(x) + \int_a^{a + p_a} \left[\frac{\int_{(-\infty, a]} \psi(y) \, dF(y)}{F(a)} \right]^p \, dx \\
+ \int_{(a + p_a, \infty)} \left[\frac{\int_{(-\infty, x - p_a]} \psi(y) \, dF(y)}{F(x - p_a)} \right]^p \, dF(x - p_a) \quad (11)
\]
Since an arbitrary distribution function \(F \) has at most countably many discontinuities, it might be that the stretch procedure from (8) and (9) has to be repeated countably many times in order to obtain a continuous distribution function \(\tilde{F} \) and an adapted function \(\tilde{\psi} \) such that (10) holds and the left hand side of (11) equals at least its right hand side. Consequently, we may and do assume that \(F \) is continuous.
Next we prove
\[
\left[\int_{(-\infty,x]} \psi \, dF \right]^p = p \int_{(-\infty,x]} \left[\int_{(-\infty,y]} \psi \, dF \right]^{p-1} \psi(y) \, dF(y). \tag{12}
\]

Defining the distribution function \(F_x(y) = \int_{(-\infty,y\wedge x]} \psi \, dF / \int_{(-\infty,x]} \psi \, dF \) for \(x \) with \(F(x) > 0 \) we see that this equality is equivalent to
\[
1 = p \int_{-\infty}^{\infty} F_x^{p-1}(y) \, dF_x(y) = pE \left([F_x(F_x^{-1}(U))]^{p-1} \right), \tag{13}
\]
where the random variable \(U \) is uniformly distributed on the unit interval. Since \(F \) has no point masses, \(F_x \) has none, i.e., \(F_x \) is continuous. Consequently \(F_x(F_x^{-1}(u)) = u, 0 < u < 1 \), holds and hence \(\text{[13] and [12]} \). By \(\text{[12]} \) and Tonelli’s theorem we have
\[
\int_{-\infty}^{\infty} \left(\int_{(-\infty,x]} \psi(y) \, dF(y) \right) \frac{dF(x)}{F(x)} = p \int_{-\infty}^{\infty} (F(x))^{-p} \int_{(-\infty,x]} \left[\int_{(-\infty,y]} \psi \, dF \right]^{p-1} \psi(y) \, dF(y) \, dF(x) \tag{14}
\]
\[
= p \int_{-\infty}^{\infty} \int_{[y,\infty)} (F(x))^{-p} \, dF(x) \left[\int_{(-\infty,y]} \psi \, dF \right]^{p-1} \psi(y) \, dF(y).
\]
Since \(F \) is continuous,
\[
\int_{[y,\infty)} (F(x))^{-p} \, dF(x) = \int_{[y \leq F^{-1}(u)]} (F(F^{-1}(u)))^{-p} \, du
\]
\[
= \int_{F(y)}^{1} u^{-p} \, du = \frac{1}{p-1} \left[(F(y))^{1-p} - 1 \right]
\]
holds. Together with \([14]\), Hölder’s inequality and \([12]\) with \(x = \infty\) we obtain
\[
\int_{-\infty}^{\infty} \left(\frac{\int_{-\infty}^{x} \psi(y) \, dF(y)}{F(x)} \right)^p \, dF(x)
\]
\[
= \frac{p}{p-1} \int_{-\infty}^{\infty} \left[\frac{1}{F(y)} \int_{-\infty}^{y} \psi \, dF \right]^{p-1} \psi(y) \, dF(y)
\]
\[
- \frac{p}{p-1} \int_{-\infty}^{\infty} \left[\int_{-\infty}^{y} \psi \, dF \right]^{p-1} \psi(y) \, dF(y)
\]
\[
\leq \frac{p}{p-1} \left[\int_{-\infty}^{\infty} \left(\frac{\int_{-\infty}^{y} \psi \, dF}{F(y)} \right)^p \, dF(y) \right]^{(p-1)/p}
\]
\[
- \frac{1}{p-1} \left[\int_{-\infty}^{\infty} \psi(y) \, dF(y) \right]^p.
\]
Introducing shorthand notation we write this inequality as
\[
z^p \leq \frac{p}{p-1} z^{p-1} \nu - \frac{1}{p-1} \mu^p.
\]
This is equivalent to
\[
\chi(z) = p \nu z^{p-1} - (p-1) z^p - \mu^p \geq 0.
\] (15)
The function \(\chi\) is increasing – decreasing on the positive half line with a nonnegative maximum at \(\nu\). Furthermore
\[
\chi \left(\frac{\nu}{p-1+\alpha} \right) = 0
\] (16)
holds in view of \([14]\). Since the left hand side of \([14]\) is convex in \(\alpha\) on \([0, \infty)\) and is nonnegative at \(\alpha = 0\) and nonpositive at \(\alpha = 1\), the root \(\alpha\) from \([14]\) satisfies \(\alpha \in [0, 1]\) and hence \(\nu \leq \nu/(p-1+\alpha)\). Together with \([15]\) and \([16]\) this proves \(z \leq \nu/(p-1+\alpha)\), i.e., \([5]\).

Remark 2.3. Since the function
\[
u \mapsto \frac{1}{u} \int_0^u \psi(F^{-1}(\nu)) \, dv, \quad 0 \leq u \leq 1,
\]
is nonincreasing for nonnegative, nonincreasing \(\psi\), we have
\[
\int_0^1 \left[\frac{\int_0^{F(F^{-1}(u))} \psi(F^{-1}(v)) \, dv}{F(F^{-1}(u))} \right]^p \, du \leq \int_0^1 \left[\frac{1}{u} \int_0^u \psi(F^{-1}(v)) \, dv \right]^p \, du
\] (17)
in view of \(F(F^{-1}(u)) \geq u \). We define \(\psi(F^{-1}(v)) = 0 \) for \(v > 1 \). Applying \(\ref{7} \), \(\ref{77} \) and \(\ref{1} \) for nonnegative, nonincreasing \(\psi \) we arrive at

\[
E \left(\left[\frac{E(\psi(Y)1_{Y \leq X})}{F(X)} \right]^p \right) \leq \int_0^1 \left[\frac{1}{u} \int_0^u \psi(F^{-1}(v)) \, dv \right]^p \, du
\]

\[
\leq \int_0^\infty \left[\frac{1}{u} \int_0^u \psi(F^{-1}(v)) \, dv \right]^p \, du \leq \left(\frac{p}{p-1} \right)^p \int_0^\infty (\psi(F^{-1}(v)))^p \, dv
\]

\[
= \left(\frac{p}{p-1} \right)^p \int_0^1 (\psi(F^{-1}(v)))^p \, dv = \left(\frac{p}{p-1} \right)^p E(\psi(Y)).
\]

This proves \(\ref{2} \) with \(\alpha = 0 \), which is the probability theoretic version of Hardy’s inequality given in Theorem 2.1 of \(\ref{6} \). Arguably this proof is simpler and more elegant than the one given in \(\ref{6} \).

3. A probability theoretic Hardy inequality for \(0 < p < 1 \)

Theorem 337 on page 251 of \(\ref{5} \) states that for \(0 < p < 1 \) and \(\psi \) a nonnegative measurable function on \((0, \infty) \)

\[
\left\{ \int_0^\infty \left(\frac{1}{x} \int_x^\infty \psi(y) \, dy \right)^p \, dx \right\}^{1/p} \geq \frac{p}{1-p} \left\{ \int_0^\infty \psi(y) \, dy \right\}^{1/p}
\]

(18)

holds. A smoothed version of their proof similar to the one in \(\ref{2} \) can be given, but with the inverse Hölder inequality this time;

\[
\int_0^\infty \left(\frac{1}{x} \int_x^\infty \psi \right)^p \, dx = \int_0^\infty x^{-p} \int_x^\infty p \left(\int_y^\infty \psi \right)^{p-1} \psi(y) \, dy \, dx
\]

\[
= p \int_0^\infty \int_0^y x^{-p} \, dx \left(\int_y^\infty \psi \right)^{p-1} \psi(y) \, dy
\]

\[
= \frac{p}{1-p} \int_0^\infty \left(\frac{1}{y} \int_y^\infty \psi \right)^{p-1} \psi(y) \, dy
\]

\[
\geq \frac{p}{1-p} \left[\int_0^\infty \left(\frac{1}{y} \int_y^\infty \psi \right)^p \, dy \right]^{(p-1)/p} \left[\int_0^\infty \psi^p \right]^{1/p}.
\]

Our probability theoretic generalization of this inequality reads as follows.

Theorem 3.1. Let \(X \) and \(Y \) be independent random variables with distribution function \(F \) on \((\mathbb{R}, \mathcal{B}) \), and let \(\psi \) be a nonnegative measurable function on \((\mathbb{R}, \mathcal{B}) \).
For $0 < p < 1$

$$\left\{ E \left(\left(\frac{E(\psi(Y)1_{Y \geq X} | X)}{F(X-)} \right)^p \right) \right\}^{1/p} \geq \frac{p}{1-p} \left\{ E(\psi^p(Y)) \right\}^{1/p}$$

(20)

holds.

Proof The proof is analogous to the one for Theorem 2.1 but with essential modifications. Let F be a distribution function with discontinuities, one of which is located at a with jump size p_a. We remove this discontinuity by stretching the distribution function F to

$$F(x) = \begin{cases}
F(x + p_a) & x < a - p_a \\
F(a) + x - a & \text{for } a - p_a \leq x \leq a \\
F(x) & a < x
\end{cases}$$

(21)

and adapt the function ψ accordingly as follows

$$\tilde{\psi}(x) = \begin{cases}
\psi(x + p_a) & x < a - p_a \\
\psi(a) & \text{for } a - p_a \leq x \leq a \\
\psi(x) & a < x.
\end{cases}$$

(22)

Note

$$\int_{\mathbb{R}} \tilde{\psi}(y) d\tilde{F}(y) = \int_{\mathbb{R}} \psi(y) dF(y).$$

(23)

For $x < a - p_a$ we have

$$\frac{\int_{[x,\infty)} \tilde{\psi}(y) d\tilde{F}(y)}{F(x-)} = \frac{\int_{[x,a-p_a)} \psi(y + p_a) dF(y + p_a) + \psi(a)p_a + \int_{(a,\infty)} \psi(y) dF(y)}{F(x + p_a-)} = \frac{\int_{[x+p_a,\infty)} \psi(y) dF(y)}{F(x + p_a-)},$$

for $a - p_a \leq x \leq a$ the nonnegativity of ψ implies

$$\frac{\int_{[x,\infty)} \tilde{\psi}(y) d\tilde{F}(y)}{F(x-)} = \frac{\psi(a) - x + \int_{(a,\infty)} \psi(y) dF(y)}{F(a) + x - a} \leq \frac{\int_{[a,\infty)} \psi(y) dF(y)}{F(a-)}$$

and for $a < x$ we have

$$\int_{[x,\infty)} \tilde{\psi}(y) d\tilde{F}(y)/\tilde{F}(x-) = \int_{[x,\infty)} \psi(y) dF(y)/F(x-).$$
Together with the definitions of \bar{F} and $\bar{\psi}$ these relations yield

$$
\int_\mathbb{R} \left[\frac{\int_{[x,\infty)} \bar{\psi}(y) d\bar{F}(y)}{F(x^-)} \right]^p d\bar{F}(x)
\leq \int_{(-\infty,a-p_a)} \left[\frac{\int_{[x+p_a,\infty)} \psi(y) dF(y)}{F(x + p_a^-)} \right]^p dF(x + p_a)
+ \int_{a-p_a}^a \left[\frac{\int_{[a,\infty)} \psi(y) dF(y)}{F(a^-)} \right]^p dx
+ \int_{a,\infty)} \left[\frac{\int_{[x,\infty)} \psi(y) dF(y)}{F(x^-)} \right]^p dF(x)
= \int_\mathbb{R} \left[\frac{\int_{[x,\infty)} \psi(y) dF(y)}{F(x^-)} \right]^p dF(x).
$$

(24)

Since an arbitrary distribution function F has at most countably many discontinuities, it might be that the stretch procedure from (21) and (22) has to be repeated countably many times in order to obtain a continuous distribution function \bar{F} and an adapted function $\bar{\psi}$ such that (23) holds and the left hand side of (24) equals at most its right hand side. Consequently, we may and do assume that F is continuous.

For x with $\int_{[x,\infty)} \psi dF > 0$ we define

$$
G_x(y) = \int_{[x,y\vee x]} \psi dF / \int_{[x,\infty)} \psi dF, \quad y \in \mathbb{R}.
$$

(25)

Since F is continuous, G_x is and we have

$$
p \int_{\mathbb{R}} (1 - G_x(y))^{p-1} dG_x(y) = p \int_0^1 (1 - G_x(G_x^{-1}(u)))^{p-1} du
= p \int_0^1 (1 - u)^{p-1} du = 1
$$

and hence

$$
\left(\int_{[x,\infty)} \psi dF \right)^p = p \int_{[x,\infty)} \left(\int_{[y,\infty)} \psi dF \right)^{p-1} \psi(y) dF(y). \quad (25)
$$

By (25), Tonelli’s theorem, the continuity of F and the inverse Hölder inequality
we obtain
\[
\int_{-\infty}^{\infty} \left(\frac{\int_{[x,\infty)} \psi(y) dF(y)}{F(x-)} \right)^p dF(x)
= p \int_{-\infty}^{\infty} (F(x))^{-p} \int_x^\infty \int_y^\infty \psi(y) dF(y) dF(x)
= p \int_{-\infty}^{\infty} \int_y^\infty (F(x))^{-p} dF(x) \int_y^\infty \psi(y) dF(y)
= \frac{p}{1-p} \int_{-\infty}^{\infty} \left(\frac{\int_y^\infty \psi(y) dF(y)}{F(y)} \right)^{p-1} \psi(y) dF(y)
\geq \frac{p}{1-p} \left[\int_{-\infty}^{\infty} \left(\frac{\int_y^\infty \psi(y) dF(y)}{F(y)} \right)^p dF(y) \right]^{(p-1)/p} \left[\int_{-\infty}^{\infty} \psi^p(y) dF(y) \right]^{1/p},
\]
which implies (20). \qed

Note that taking \(F \) uniform on \((0,K)\), multiplying (20) by \(K \) and taking limits as \(K \to \infty \) we arrive at Hardy’s inequality (18).

A discrete version of Theorem 3.37 from [5] and its proof are given in Theorem 3.38 on page 252 of [5]. This Theorem 3.38 states that for \(0 < p < 1 \) and \(a_i \geq 0, i = 1, 2, \ldots \),
\[
\left(1 + \frac{1}{1-p} \right) \left(\sum_{i=1}^{\infty} a_i \right)^p + \sum_{j=2}^{\infty} \left(\frac{1}{j} \sum_{h=j}^{\infty} a_h \right)^p \geq \left(\frac{p}{1-p} \right)^p \sum_{i=1}^{\infty} a_i^p. \tag{26}
\]
This inequality follows from our Theorem 3.1 by the choices
\[
F(x) = \frac{x}{K} 1_{[0<x<1]} + \sum_{i=1}^{K} \frac{1}{K} 1_{[i \leq x]}, \quad \psi(x) = \sum_{i=1}^{\infty} a_i 1_{[x=i+1]}, \quad x \in \mathbb{R}, \tag{27}
\]
where \(K \) is a natural number. Indeed, we have
\[
\lim_{K \to \infty} K E(\psi^p(Y)) = \lim_{K \to \infty} \sum_{i=1}^{K-1} a_i^p = \sum_{i=1}^{\infty} a_i^p. \tag{28}
\]
\[
\lim_{K \to \infty} K \mathbb{E} \left(\left(\frac{E(\psi(Y)1_{Y \geq X} | X)}{F(X-)} \right)^p \right)
= \lim_{K \to \infty} \int_0^1 \left(\sum_{i=1}^{K-1} \frac{a_i}{x} \right)^p dx + \sum_{j=2}^K \left(\frac{1}{j-1} \sum_{h=j-1}^{K-1} a_h \right)^p
= \frac{1}{1-p} \left(\sum_{i=1}^{\infty} a_i \right)^p + \sum_{h=1}^{\infty} \left(\frac{1}{h} \sum_{j=h}^{\infty} a_j \right)^p,
\]

which equals the left hand side of (26).

Remark 3.2. For \(p = 1 \) no general inequality exists like in Theorems 2.1 and 3.1. With \(\psi \) nonnegative nondecreasing we have

\[
E \left(\frac{E(\psi(Y)1_{Y \leq X} | X)}{F(X)} \right) \leq E \left(\frac{\psi(X)1_{Y \leq X}}{F(X)} \right) = E(\psi(X))
\]

and with \(\psi \) nonnegative nonincreasing

\[
E \left(\frac{E(\psi(Y)1_{Y < X} | X)}{F(X)} \right) \geq E \left(\frac{\psi(X)1_{Y < X}}{F(X)} \right) = E(\psi(X)).
\]

Similarly we get \(E(\psi(X)(1 - F(X))/F(X-)) \) as both an upper and a lower bound to the left hand side of (26) with \(p = 1 \).

4. The probability theoretic Copson inequality

Dual to Hardy’s inequality is Copson’s inequality. It was presented in [2]; see also Section 5 of [6]. Inspired by [2] we present a short proof of the probability theoretic Copson inequality as given in [6].

Theorem 4.1. Let \(X \) and \(Y \) be independent random variables with distribution function \(F \) on \((\mathbb{R}, \mathcal{B})\), and let \(\psi \) be a measurable function on \((\mathbb{R}, \mathcal{B})\). With \(p \geq 1 \)

\[
\left\{ E \left(\left| \frac{E(\psi(Y)1_{Y \geq X})}{F(Y)} \right|^{1/p} \right)^p \right\}^{1/p} \leq p \{ E(\psi(Y)) \}^{1/p}
\]

holds.
Proof

For $p = 1$ we have

$$E \left(\left| \frac{\psi(Y)}{F(Y)} 1_{\{Y \geq X\}} \right| | X \right) \leq E \left(\left| \frac{\psi(Y)}{F(Y)} \right| 1_{\{Y \geq X\}} \right) = E(\left| \psi(Y) \right|).$$

Without loss of generality we assume $p > 1$ and that ψ is nonnegative and p-integrable. For x with $F(x) > 0$ we have $\int_{[x,\infty)} \psi/F \, dF \leq E(\psi(X))/F(x) < \infty$. Consequently, for such x that satisfy $\int_{[x,\infty)} \psi/F \, dF > 0$ as well

$$G_x(y) = \int_{[x,y]} \frac{\psi(z)}{F(z)} dF(z) \left[\int_{[x,\infty)} \frac{\psi(z)}{F(z)} dF(z) \right]^{-1}, \quad y \in \mathbb{R},$$

is a well defined distribution function. For any distribution function G and corresponding left-continuous inverse distribution function G^{-1} the inequalities $G(G^{-1}(u)) \geq u$ and $G(G^{-1}(u) -) \leq u$ hold. Consequently with U uniformly distributed we have

$$p E_{G_x} \left(|1 - G_x(Y -)|^{p-1} \right) = p E \left(|1 - G_x(G^{-1}_x(U) -)|^{p-1} \right) \geq p E \left(|1 - U|^{p-1} \right) = 1. \tag{30}$$

Combining this inequality with Tonelli’s theorem and Hölder’s inequality we see that the left hand side of (30) equals and satisfies

$$\int_{-\infty}^{\infty} \left[\int_{[y,\infty)} \frac{\psi(y)}{F(y)} dF(y) \right]^{p-1} \psi(y) dF(y) \leq \int_{-\infty}^{\infty} \left[\int_{[y,\infty)} \frac{\psi(y)}{F(y)} dF(y) \right]^{p-1} \psi(y) dF(y) \leq \int_{-\infty}^{\infty} \left[\int_{[y,\infty)} \frac{\psi(y)}{F(y)} dF(y) \right]^{p-1} \psi(y) dF(y) \leq p \left\{ \int_{-\infty}^{\infty} \left[\int_{[y,\infty)} \frac{\psi(y)}{F(y)} dF(y) \right] dF(y) \right\}^{(p-1)/p} \left\{ \int_{-\infty}^{\infty} \psi^p(y) dF(y) \right\}^{1/p},$$

which proves (30).

Slight modifications in this proof yield a probability theoretic generalization of Copson’s inequality for $0 < p < 1$; cf. Theorem 2.3 with $c = \kappa = p$ in [3].
Theorem 4.2. Let X and Y be independent random variables with distribution function F on \mathbb{R}, and let ψ be a nonnegative measurable function on $(\mathbb{R}, \mathcal{B})$. With $0 < p < 1$

$$\left\{ E \left(\left(E \left(\frac{\psi(Y)}{F(Y)} 1_{Y \geq X} \mid X \right) \right)^p \right) \right\}^{1/p} \geq p \{ E(\psi^p(Y)) \}^{1/p} \quad (31)$$

holds.

Proof
We may and do assume that the left hand side of (31) is finite and hence that $\int_{[x,\infty)} \psi/F dF < \infty$ holds for F-almost all x. Consequently, for such x with $F(x) > 0$ and $\int_{[x,\infty)} \psi/F dF > 0$ the distribution function G_x from the preceding proof is well defined. Noting $0 < p < 1$ and replacing Hölder’s inequality by its reversed version we see that the preceding proof is valid with all inequality signs reversed. \hfill \square

Acknowledgements
The author would like to thank Jon Wellner for suggesting the topic of extending Hardy’s inequality in a probability theoretic way, for his collaboration on this topic resulting in [6], and for suggesting to write this note. Furthermore I owe thanks to the late Jaap Fabius who once said to me: ”Partial integration is just Fubini.”

References

[1] Broadbent, T.A.A. (1928). A proof of Hardy’s convergence theorem. J. London Math. Soc. 3 242–243. MR1574000

[2] Copson, E.T. (1927). Note on series of positive terms. J. London Math. Soc. 2 9–12. MR1574056 MR1574056
[3] Copson, E.T. (1928). Note on series of positive terms. *J. London Math. Soc.* 3 49–51. MR1574443

[4] Hardy, G.H. (1925). Notes on some points in the integral calculus, (LX). an inequality between integrals. *Messenger of Math.* 54 150–156.

[5] G. H. Hardy, J. E. Littlewood, and G. Pólya, *Inequalities*, Cambridge, at the University Press, 1952, 1967 reprint of the 1952 2d ed. MR0046395

[6] Klaassen, C.A.J. and Wellner, J.A. (2021). Hardy’s inequality and its descendants: a probability approach. *Electron. J. Probab.* 26 1–34. MR4346672, https://doi.org/10.1214/21-EJP711

[7] Kufner, A., Maligranda,L. and Persson, L.-E. (2006). The prehistory of the Hardy inequality. *Amer. Math. Monthly* 113 715–732. MR2256532

[8] Riesz, F. (1932). Sur un Théorème de Maximum de Mm. Hardy et Littlewood. *J. London Math. Soc.* 7 10–13. MR1574451