Residual Radioisotopes Generated from Neutron Irradiated Aluminum Capsules

Imam Kambali1*, Indra Saptiama1,2, Hari Suryanto1

1Center for Radioisotope and Radiopharmaceutical Technology, National Nuclear Energy Agency (BATAN), Puspiptek Area, Serpong, South Tangerang, Indonesia
2Proton Medical Research Center, Tsukuba University, Japan

*Corresponding email: imamkey@batan.go.id

Received : Juli 29, 2017
Accepted: September, 9, 2017
Online : December 31, 2017

Abstract – Aluminum (Al) is often used to house a molybdenum oxide (MoO3) target for neutron or proton-produced technetium-99m (99mTc) radioisotope. During neutron or proton bombardment of an Al body, residual radioisotopes could be generated following nuclear reactions between the incoming particles and the Al body. In this research, residual radioisotopes produced following nuclear reactor based-neutron irradiation of Al body were experimentally measured using a portable gamma ray spectroscopy system; whereas TALYS 2015 calculated data were used to evaluate various nuclear reactions for the by-product identification. As a comparison, Al body used in a cyclotron-based 99mTc production was also analyzed. Experimental data indicated that relatively long-lived radioisotopes such as 26Al, 22Na and 24Na were identified in the Al body following nuclear reactor-based 99mTc production, whereas the presence of 27Mg radioisotope was, for the first time, experimentally detected in both the Al bodies for nuclear reactor-based and cyclotron-based 99mTc production. A special safety attention should be paid to the radiation workers when producing 99mTc using a nuclear reactor since it generates 26Al (half-life = 716,600 years).

Key words: aluminum, neutron, proton, radioisotope, residual.

Introduction

Technetium-99m is a radioisotope commonly used in nuclear medicine for diagnosis of cardiac-related diseases (Lu et al 2015; de Haro-del Moral et al 2012), liver related cancers (Gates et al 2015; Conway et al 2013), breast cancers (Pinker et al 2011; Silov et al 2014) and prostate cancers (Hillier et al 2013; Vallabhajosula et al 2014). The gamma emitting radioisotope is produced via 99Mo(n,p)99mTc nuclear reaction by exposing molybdenum (Mo) target in neutron beams generated in a nuclear reactor (Pillai et al 2013). In the target preparation, MoO3 target is encapsulated in an aluminum body and then it is placed in a target holder prior to neutron irradiation. During the irradiation, nuclear reactions are expected to occur between the neutrons and Mo target as well as between the neutrons and Al capsule.

Another relatively new method of producing 99mTc is using proton beams generated by cyclotrons, in which enriched Mo target (100Mo) is irradiated via 100Mo(p,2n)99mTc nuclear reaction. Similar to the nuclear-reactor based 99mTc production, the latter method also employs Al body to house the enriched 100Mo target. Therefore, comprehensive theoretical and experimental studies on the residual radioisotopes generated during 99mTc production are of paramount importance since they correspond to the radiation worker’s safety concerns.

Research on residual radionuclides generated during proton bombardment of enriched water target for 18F radionuclide production has been carried out earlier (Kambali et al 2016) whereas radioactive by-products have also been detected on a wall of a cyclotron (Kambali & Suryanto 2016). In case of Al target, recent theoretical studies suggested that long-lived 26Al and 23Na could be produced from fast neutrons-irradiated Al target (Saran et al 2012). Using neutron activation analysis, Kinomura and coworkers (Kinomura et al 2002) also identified 23Na radioisotope which was presumably produced from neutron-induced 27Al when a Ti-Al alloy was irradiated by fast neutrons. Similar investigation is, therefore, required to better understand the origin of residual radioactive sources and also as part of safety measures applied in
the neutron-based 99mTc routine production at the Gerrit Agustinus Siwabessy (G.A. Siwabessy) nuclear reactor in Indonesia as well as experimental proton-based 99mTc production using a cyclotron.

In this investigation, possible nuclear reactions and residual radioisotopes produced when cold, thermal and fast neutrons in the energy range of 0 to 50 MeV hit Al capsule are studied from their nuclear cross-sections using the TALYS 2014 codes (Koning & Rochman 2012). Moreover, experimental data on residual radioisotopes generated from cyclotron-produced 99mTc are compared with that of nuclear reactor-produced 99mTc.

Materials and Methods

Direct Neutron Irradiation

A locally made Al body was employed to encapsulate MoO$_3$ target. The target was placed in the Central Irradiation Position (CIP) of the G.A. Siwabessy nuclear reactor in Serpong, Indonesia, and then directly irradiated with neutrons at a neutron flux of 1.12×10^{14} n.cm$^{-2}$.s$^{-1}$ for 5 days. The neutron irradiation procedure has been discussed elsewhere (Saptiama et al 2016). Once the irradiation was completed, the Al body was separated from the MoO$_3$ target and cooled for 4 hours to allow short-lived residual radioisotopes to decay so that the radiation exposure would decrease to a relatively safer level. During the measurement, an exposure of 13 mSv was detected on the outer surface of the Al body at a distance of 1 m.

Secondary Neutron Irradiation

In the secondary neutron irradiation, an aluminum body was used as a target holder for cyclotron-based 99mTc production via 100Mo(p,2n)99mTc nuclear reaction. An 11-MeV proton beam generated from a cyclotron was directed to a solid natural MoO$_3$ target consisting of 9.63% atomic weight of Mo-100 during 99mTc production. During the bombardment, the proton beam was kept at a constant current of 10 µA while the irradiation time was set to be 10 minutes. Secondary neutrons as a result of the 100Mo(p,2n)99mTc were expected to hit the aluminum holder; thus this routine would result in the production of residual radionuclides. The procedures for proton irradiation using an 11-MeV cyclotron have been previously discussed elsewhere (Kambali et al 2016).

Gamma Ray Detection and Identification

A portable gamma ray spectroscopy system consisting of a pocket MCA (Type MCA8000A) made by Amptek, USA with the serial number 2278 coupled to a NaI(Tl) detector was employed to identify the radioactive by-products present in the Al capsules. The energy calibration of the spectroscopy system was performed using 137Cs, 60Co and 241Am standard radioactive sources as discussed elsewhere (Kambali et al 2016; Kambali & Suryanto 2016a; Kambali & Suryanto 2016b). The background-subtracted gamma ray spectrum of the Al capsules was then analyzed for samples irradiated using the G.A Siwabessy nuclear reactor and the 11-MeV cyclotron.

Theoretical Calculations

In this study, the TALYS nuclear model (Koning & Rochman 2012) was used to calculate nuclear cross-sections of the (n,γ), (n,α), (n,p), (n,2n), (n,nα), (n,d) and (n,2nα) reactions for a broad range of neutron energies ranging from cold neutrons (0.00001 eV) to fast neutrons (of up to 200 MeV). The TALYS codes have been widely used elsewhere (Kambali 2014; Bakhtiari et al 2013).

Results and Discussion

Predicted Nuclear Reactions and Radioisotopes

Nuclear reactions potentially occur when neutrons hit Al target and this can be predicted from their nuclear cross-sections. TALYS-calculated nuclear cross-sections of up to 150-MeV neutrons are shown in Fig. 1 which indicate that (n,α) and (n,p) nuclear reactions dominate at neutron energies between 1 and 20 MeV, whereas (n,2n), (n,nα), (n,d) and (n,2nα) are significant at neutron energies over 20 MeV. In addition, (n,γ) nuclear reactions are of importance at thermal energy (Fig. 1, inset). While the maximum cross-sections for (n,2nα) nuclear reaction is only 13.14 mbarn at neutron energy of 46 MeV, the rest of the nuclear reactions investigated here show nuclear cross-sections of greater than 60 mbarn at neutron energies of lower than 40 MeV.
Based on the above nuclear cross-sections, there are several radioactive isotopes potentially generated during neutron bombardment of an Al target, including 28Al which could be produced via 27Al(n,γ)28Al reaction, 26Al generated through 27Al(n,2n)26Al reaction, 22Na produced via 27Al(n,2nα)22Na reaction, 27Mg generated through 27Al(n,p)27Mg reaction, 24Na produced via 27Al(n,α)24Na reaction, and 30Si generated through 27Al(n,d)30Si reaction. In addition, stable isotope 23Na could also be generated via 27Al(n,nα)23Na reaction.

Possible Particle Production

During neutron irradiation of Al target, apart from secondary neutron production, some other particles such as protons, deuterons and alphas could also potentially be generated as can be seen from their nuclear cross-sections (Figure 2). Among the four particles, deuteron production is expected to have the lowest nuclear cross-section and production yield, whereas secondary neutron production has the highest nuclear cross-section and production yield. In general, for incoming neutron energies over 30 MeV, both nuclear cross-sections and production yields increase with increasing neutron energies. For neutron energies greater than 100 MeV, both secondary neutron and proton yields are greater than 1, whereas the yields of the other particles (deuterons and alphas) are lower than 1 as seen in Figure 2, inset.

Figure 1 TALYS calculated (n,γ), (n,α), (n,2n), (n,2nα), (n,d), (n,na), and (n,p) nuclear reactions of Al target

Figure 2 Total cross-sections and production yields of n, p, α and d particles in neutron-irradiated Al target calculated using TALYS codes.

Production of secondary particles could result in generation of either radioactive or stable isotopes when the particles hit materials around them.

1. Secondary alpha particle reactions with Al target
Based on TALYS 2015-calculated nuclear cross-sections, the most significantly possible reactions are \((\alpha,p)\) and \((\alpha,n)\) nuclear reactions which have maximum cross-sections of 287 and 207 mbarn at 11 MeV alpha particles, respectively. The expected isotopes generated when alpha particles hit Al target are stable isotope \(^{30}\text{Si}\) as a result of \(^{27}\text{Al}(\alpha,p)^{30}\text{Si}\) nuclear reaction and radioisotope \(^{30}\text{P}\) due to \(^{27}\text{Al}(\alpha,n)^{30}\text{P}\) reaction. As a positron \((\beta^+)\) emitter and with a half life of 4.298 minutes, \(^{30}\text{P}\) could be experimentally observable with an appropriate gamma ray detecting system.

![Figure 3: Nuclear cross-sections of secondary \(\alpha\) and \(p\) particle-induced Al target](image)

2. Secondary proton reactions with Al target

Calculations using TALYS 2015 codes (Fig. 3) indicate that only \((p,n)\) reaction is significant with a maximum nuclear cross-section of 81.2 mbarn at proton energy of 14 MeV, whereas for \((p,2n)\) the maximum nuclear cross-section is just 1.53 mbarn at 35-MeV protons. In this case, \(^{27}\text{Si}\) radionuclide – a \(\beta^+\) emitter with a half life of 4.160 seconds – could be produced via \(^{27}\text{Al}(p,n)^{27}\text{Si}\) nuclear reaction, whereas \(^{26}\text{Si}\) radionuclide – also a \(\beta^+\) emitter with a half life of 2.234 seconds – could be generated via \(^{27}\text{Al}(p,2n)^{26}\text{Si}\) nuclear reaction, though the latter radioactive yield maybe insignificant due to low cross-section and high threshold energy.

3. Secondary deuteron reactions with Al target

Again, based on TALIS 2015 calculated data (Fig. 4), there are several possible nuclear reactions should secondary deuterons hit Al target, including \((d,p)\), \((d,2p)\), \((d,n)\), \((d,2n)\) and \((d,\alpha)\) reactions. The maximum nuclear cross-sections for the aforementioned reactions vary depending on the incoming deuterons, with the highest cross-section of 285 mbarn for \((d,n)\) reaction at 4 MeV-deuterons. Two stable isotopes and 3 radioactive isotopes could be generated from these reactions, namely \(^{28}\text{Si}\) stable isotope created from \(^{27}\text{Al}(d,n)^{28}\text{Si}\) reaction, \(^{26}\text{Mg}\) stable isotope produced via \(^{27}\text{Al}(d,\alpha)^{26}\text{Mg}\) reaction, \(^{28}\text{Al}\) radioisotope generated from \(^{27}\text{Al}(d,p)^{28}\text{Al}\) reaction, \(^{25}\text{Mg}\) radioisotope as a result of \(^{27}\text{Al}(d,2p)^{25}\text{Mg}\) reaction, and \(^{28}\text{Si}\) radioisotope due to \(^{27}\text{Al}(d,2n)^{28}\text{Si}\) reaction.
To summarize, Table 1 presents all expectedly produced isotopes following neutron and proton irradiation of Al target. In addition, other secondary particles such as alpha and deuteron are also responsible for the creation of various radioactive and stable isotopes. The half lives of the radioisotopes vary from as short as 4.142 seconds to 716,600 years, while the emitted particles from the radioactive decays are mostly β^+ particles, though other particles such as γ and β^- could also be part of the decay modes.

Table 1 Predicted secondary particles and their associated isotopes produced from primary neutron and proton interactions with Al target

Secondary particle	Isotope	Half life	Nuclear Reaction	Remarks
neutron	26Al	716,600 years	27Al(n,2n)26Al	β^+ emitter
	22Na	2.605 years	27Al(n,2n)22Na	β^+ emitter
	27Mg	9.458 minutes	27Al(n,p)27Mg	γ emitter
	27Na	14.959 hours	27Al(n,α27Na	γ emitter
	23Na	-	27Al(n,nα27Na	stable
alpha	30P	4.298 minutes	27Al(a,n)30P	β^+ emitter
	30Si	-	27Al(a,p)30Si	stable
	30P	4.142 seconds	27Al(a,2n)30P	β^+ emitter
	29Al	6.567 minutes	27Al(a,2p)29Al	β emitter
proton	27Si	4.16 seconds	27Al(p,n)27Si	β^+ emitter
	26Si	2.234 seconds	27Al(p,2n)26Si	β^+ emitter
deuteron	28Al	2.241 minutes	27Al(d,p)28Al	β emitter
	27Mg	9.458 minutes	27Al(d,2p)27Mg	γ emitter
	28Si	-	27Al(d,n)28Si	stable
	27Si	4.160 seconds	27Al(d,2n)27Si	β^+ emitter
	25Mg	-	27Al(d,α25Mg	stable

Experimentally Identified Residual Radioisotopes

Following neutron exposure of the Al capsule in the G.A. Siwabessy nuclear reactor, there are three pronounced peaks captured by the gamma ray spectroscopy system, at gamma energies of 0.511, 0.844 and 1.368 MeV as can be seen in Fig. 5. The gamma energies of 0.844 MeV and 1.368 MeV clearly correspond to 27Mg and 24Na radioisotopes, respectively. Radioisotope 27Mg identified here, could be due to

Figure 4 Nuclear cross-sections of secondary d-particle-induced Al target
27Al(n,p)27Mg and 27Al(d,2p)27Mg nuclear reactions, whereas 24Na is presumably as a result of 27Al(n,α)24Na nuclear reaction. On the other hand, the strong annihilation peak at 0.511 MeV could be due to β^+ emitting radioisotopes such as 26Al from 27Al(n,2n)26Al reaction, and 22Na from 27Al(n,2nα)22Na reaction. Since the observation was conducted 4 days after the Al irradiation in the nuclear reactor, it rules out any involvement of the other short-lived radioisotopes predicted in Table 1 to the strong 0.511 MeV annihilation peak.

Figure 5 Experimentally observed radioisotopes following Al exposures in the G.A. Siwabessy nuclear reactor and the Radioisotope Delivery System (RDS) 111 Cyclotron

The observed 26Al and 22Na radioisotopes agree with the theoretical calculations previously predicted by Saran and co-workers (Saran et al. 2012). Moreover, for the first time, our experimental investigation has detected 27Mg radioisotope which has not been reported elsewhere. It should also be noted that the presence of the very long lived 26Al residue (half life = 716,600 years) requires special concern regarding radiation worker’s safety when 99mTc is produced using a nuclear reactor.

As shown in Fig. 5, for proton exposure of the Al body in the RDS 111 cyclotron, there is only a pronounced peak at 0.844 MeV observed experimentally. The 0.844 MeV peak belongs to 27Mg radioisotope, which is due to secondary neutron irradiation of the Al holder via 27Al(n,p)27Mg reaction. In other words, secondary neutrons dominate over the generated secondary particles during the proton bombardment of the Al body, whereas the other secondary particles such as protons, alphas and deuterons were insignificantly produced. In terms of radiation worker’s safety, 99mTc production using a proton-accelerating cyclotron is safer than that of using a nuclear reactor since there are no 26Al or other long lived residues generated.

Conclusions

Theoretical and experimental investigation has been performed to analyze possible isotopes produced during primary neutron and proton irradiation of Al bodies used in 99mTc production. Various radioactive isotopes and some stable isotopes could be produced during the bombardment. Apart from the primary neutron and proton particles responsible for the creation of residual radioisotopes, there are also some other secondary particles such as alphas and deuterons, which could cause further radioactive and stable isotope production. The resulting radioisotopes have half-lives between 4.142 seconds and 716,600 years with emissions of mostly β^+, γ, and β. Experimental results indicate that there are four radioisotopes captured in the gamma ray spectroscopy system following irradiation of Al in the G.A. Siwabessy, namely 27Mg, 24Na, 26Al, and 22Na, whereas only 27Mg is detected after irradiation of Al in the RDS 111 cyclotron. The presence of 26Al residue (half-life = 716,600 years) requires special concern regarding radiation worker’s safety when 99mTc is produced using a nuclear reactor.

Acknowledgments

The authors would like to acknowledge the funding source from the Indonesian National Nuclear Energy Agency (BATAN) and The World Academy of Sciences (TWAS) under the Principal Investigator’s
Research Grant Number: 15-020 RG/PHYS/AS_I. Technical assistance by Mr. Bisma Barron Patronesha and Mr. Abidin is also greatly acknowledged.

References

Bakhtiari, M., Sadeghi, M., Bakht, M. and Ghafoori-Fard, H. (2013) Nuclear model calculations of charged-particle-induced reaction cross section data for the production of the radiohalogen 84Cl. Phys. Rev. C, 87: 034621–03421-12.

Conway, O., Lloyd, S. and Grüning, T. (2013) Global Hepatic Uptake of 99mTc-MAA During VQ Scintigraphy Secondary to Synchronous Superior and Inferior Vena Caval Obstruction: a Demonstration of Trans-Portal Venous Collateral Pathways. Nucl. Med. Mol. Imaging, 47: 291–293.

de Haro-del Moral, F.J., Sánchez-Lajusticia, A., Gómez-Bueno, M., García-Pavía, P., Salas-Antón, C. and Segovia-Cubero, J. (2012) Role of cardiac scintigraphy with 99mTc-DPD in the differentiation of cardiac amyloidosis subtype. Rev. Esp. Cardiol. (Engl. Ed.), 65: 440–6.

Gates, V.L., Singh, N., Lewandowski, R.J., Spies, S. and Salem, R. (2015) Intraarterial Hepatic SPECT/CT Imaging Using 99mTc-Macroaggregated Albumin in Preparation for Radioembolization. J. Nucl. Med., 56: 1157–62.

Hillier, S.M., Maresca, K.P., Lu, G.L., Merkin, R.D., Marquis, J.C., Zimmerman, C.N., Eckelman, W.C., Joyal, J.L. and Babich, J.W. (2013) Tc-99m-Labeled Small-Molecule Inhibitors of Prostate-Specific Membrane Antigen for Molecular Imaging of Prostate Cancer. J. Nucl. Med., 54: 1369–1376.

Kambali, I. (2014) Calculated Radioactivity Yields of Cu-64 from Proton-Bombarded Ni-64 Targets Using SRIM Codes. Atom Indonesia, 3: 129–134.

Kambali, I., Suryanto, H. and Parwanto. (2016) Radioactive by-products of a self-shielded cyclotron and the liquid target system for F-18 routine production. Australas. Phys. Eng. Sci. Med., 39: 403–412.

Kambali, I. and Suryanto, H. (2016a) Identification and Angular Distribution of Residual Radionuclides Detected on the Wall of BATAN’s Cyclotron Cave. Atom Indonesia, 42: 1–8.

Kambali, I. and Suryanto, H. (2016b). Measurement of Seawater Flow-Induced Erosion Rates for Iron Surfaces using Thin Layer Activation Technique. J. Eng. Technol. Sci., 48: 482–594.

Koning, A.J. and Rochman, D. (2012) Modern Nuclear Data Evaluation with the TALYS Code System. Nucl. Data Sheets, 113: 2927–2934.

Koning, A.J. and Rochman, D. (2012) Modern Nuclear Data Evaluation with the TALYS Code System. Nucl. Data Sheets, 113: 2927–2934.

Koning, A.J. and Rochman, D. (2012) Modern Nuclear Data Evaluation with the TALYS Code System. Nucl. Data Sheets, 113: 2927–2934.

Koning, A.J. and Rochman, D. (2012) Modern Nuclear Data Evaluation with the TALYS Code System. Nucl. Data Sheets, 113: 2927–2934.

Koning, A.J. and Rochman, D. (2012) Modern Nuclear Data Evaluation with the TALYS Code System. Nucl. Data Sheets, 113: 2927–2934.