Structural Basis for Cold Adaptation

SEQUENCE, BIOCHEMICAL PROPERTIES, AND CRYSTAL STRUCTURE OF MALATE DEHYDROGENASE FROM A PSYCHROPHILE AQUASPIRILLIUM ARCTICUM

Sun-Yong Kim, Kwang Yeon Hwang, Sung-Hou Kim‡, Ha-Chin Sung§, Ye Sun Han, and Yunje Cho†

From the Structural Biology Center, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 130-650, South Korea, the ‡Department of Biotechnology, Korea University, and the §Department of Chemistry and E. O. Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720

Aquaspillium arcticum is a psychrophilic bacterium that was isolated from arctic sediment and grows optimally at 4 °C. We have cloned, purified, and characterized malate dehydrogenase from A. arcticum (Aa MDH). We also have determined the crystal structures of apo-Aa MDH, Aa MDH-NAD binary complex, and Aa MDH-NAD-oxaloacetate ternary complex at 1.9-, 2.1-, and 2.5-Å resolutions, respectively. The Aa MDH sequence is most closely related to the sequence of a thermophilic MDH from Thermus flavus (Tf MDH), showing 61% sequence identity and over 90% sequence similarity. Stability studies show that Aa MDH has a half-life of 10 min at 55 °C, whereas Tf MDH is fully active at 90 °C for 1 h. Aa MDH shows 2–3-fold higher catalytic efficiency compared with a mesophilic or a thermophilic MDH at the temperature range 4–10 °C. Structural comparison of Aa MDH and Tf MDH suggests that the increased relative flexibility of active site residues, favorable surface charge distribution for substrate and cofactor, and the reduced intersubunit ion pair interactions may be the major factors for the efficient catalytic activity of Aa MDH at low temperatures.

Psychrophiles grow at low temperatures, where most of other organisms cannot grow. In order to survive such extreme environments (less than 4 °C), enzymes from psychrophiles must catalyze efficiently at low temperatures (1–6). While good progress is being made to elucidate the adaptation mechanism of enzymes from some extremophiles including hyperthermophilic or thermophilic counterparts may add new insights into the understanding of catalytic mechanism and analysis of thermostability factors.

As a first step to understand the structural basis of cold adaptation of psychrophilic enzymes, we have carried out biochemical and structural studies of malate dehydrogenase from Aquaspillium arcticum, a psychrophilic bacterium that was isolated from Arctic sediments and grows optimally at 4 °C (11).

MDH1 is a homodimeric enzyme that catalyzes the reversible oxidation of malate to oxaloacetate in the presence of NAD in the citric acid cycle and thus plays a major role in central metabolism (12). Therefore, a certain amount of MDH is always expected to be present in most living organisms. Several MDHs from different sources have been extensively studied in genetic and biochemical aspects; sequences of a large number of malate dehydrogenases from organisms representing Archaea, Bacteria, and Eukarya have been reported, and many of their gene products have been characterized. Furthermore, crystal structures of MDHs from the thermophile Thermus flavus (13), the mesophile Escherichia coli (14, 15), porcine heart mitochondria (16), and cytoplasm (17) have been determined.

Recently, a few psychrophilic enzymes including subtilisin from Bacillus TA41 (3), amyylase from Alteromonas halopalmatis A23 (4), citrate synthase from DS2–3R (5), and alcohol dehydrogenase from Moraxella sp. TAE123 (6) have been isolated, and their characteristics have been compared with mesophilic or thermophilic counterparts. The commonly observed biochemical features of these cold active enzymes are (i) their increased catalytic efficiencies at low temperatures and (ii) significantly increased thermostability compared with mesophilic or thermophilic counterparts. However, it is difficult to understand the properties of cold active enzymes at the molecular level from the studies described above, since most of these studies were carried out in the absence of structures of psychrophilic enzymes.

In the present study, we have cloned a MDH gene from A. arcticum and purified and characterized its product. We also report here the high resolution crystal structures of apo-Aa MDH, Aa MDH-NAD binary complex, and Aa MDH-NAD-oxaloacetate ternary complex (Table I) and describe our analysis of how psychrophilic MDH may catalyze efficiently at low temperatures.

EXPERIMENTAL PROCEDURES

Purification—Four liters of A. arcticum cells, obtained from DSM, were grown in tryptic soy broth (Difco) at 4 °C for 3–4 days. Cells were

1 The abbreviations used are: r.m.s., root mean square; MDH, malate dehydrogenase; Aa MDH, A. arcticum malate dehydrogenase; Tf MDH, T. flavus malate dehydrogenase; Ec MDH, E. coli malate dehydrogenase.

‡ Supported by a KAST young scientist award in life science. To whom correspondence should be addressed. Tel.: 822-958-5937; Fax: 822-958-5939; E-mail: yunje@sbcl.kist.re.kr.
harvested and resuspended in 100 mM of Tris-Cl, pH 8.2, buffer containing 0.5 mM phenylmethylsulfonyl fluoride. The cells were lysed in a French press, and the insoluble debris was removed by centrifugation. The supernatant was loaded to a Q-Sepharose column equilibrated with 50 mM Tris-HCl (pH 7.5). Fractions containing MDH were eluted between 0.2 and 0.5 M NaCl. These fractions were pooled, concentrated using ultrafiltration, and applied to a Superase 12 column preequilibrated with same buffer. Aa MDH was eluted with 2 mM NAD. The protein was further purified by a size exclusion column (Superdex 75). SDS-polyacrylamide gel electrophoresis analysis of the final preparation showed a single band of protein with 95% homogeneity.

Kinetics and Thermostability Measurements—Kinetic parameters were determined for Aa MDH, Tf MDH (Sigma), and MDH from E. coli (Ec MDH, Sigma). Reaction mixtures containing 100 mM Tris-HCl (pH 7.5), 500 μM oxaloacetate, and enzyme were incubated at 4, 10, and 37 °C. The NADH (5–200 μM final concentration) were added to the mixture, and the amount of NAD produced was measured at various temperatures and times. K_m and k_cat values were determined by Lineeweaver-Burk plots using the ENZFITTER (18) data analysis program.

Thermostability was measured for Aa MDH, Ec MDH, and Tf MDH in buffer containing 100 mM Tris-HCl, 500 μM oxaloacetate, 100 μM NADH, pH 7.5. Each enzyme was incubated at 55 °C for various times and then cooled on ice. The residual enzyme activity was measured with 500 μM oxaloacetate and 100 μM NADH at 37 °C using the standard protocol described above.

Crystalization—The enzyme was dialyzed against 50 mM Tris-HCl, pH 8.2, 100 mM NaCl. Equal volumes of protein (10 mg/ml) and reservoir buffer (100 mM Tris-HCl, 400 mM sodium acetate, 35% polyethylene glycol 4000, pH 8.0) were mixed and equilibrated with 1 ml of reservoir solution at 18 °C using the hanging drop vapor diffusion method. Crystals with a size of 0.2 × 0.2 × 0.3 mm appeared within 4–10 days. NADH binding was carried out by transferring the crystal to a reservoir solution containing 100 mM NADH for 2 days. To make the ternary complex, the crystal was initially soaked in reservoir solution containing 100 mM oxaloacetate, and enzyme were incubated at 4, 10, and 37 °C. The NADH (5–200 μM final concentration) were added to the mixture, and the amount of NAD produced was measured at various temperatures and times. K_m and k_cat values were determined by Lineeweaver-Burk plots using the ENZFITTER (18) data analysis program.

The crystal was then treated with a cryoprotection buffer composed of 100 mM Tris-HCl, 0.5 M NADH, 30% glycerol, 0.1 M NaCl, and 0.5 M PEG 3350. The crystals were flash frozen in liquid nitrogen and used for x-ray diffraction experiments.

The x-ray diffraction data were collected at 100 K using a Rigaku RU-200 rotating anode x-ray generator. Data were processed using the HKL/SCALA program (19) and scaled using the SCALA package (19).

Overall Structure—We will focus on a structural comparison between psychrophilic Aa MDH and thermophilic Tf MDH throughout this study, since these two enzymes show remarkable structural similarity.

The kinetic constants were determined for MDHs from three species, a psychrophile, a mesophile, and a thermophile at three different temperatures, and are summarized in Table II. The k_cat/K_m of Aa MDH was approximately 2–3-fold higher than that of Ec MDH at 4–10 °C. The activities of Tf MDH at 4–10 °C were too low, and we could not measure the kinetic constant of Tf MDH at these temperatures within our limit. The k_cat/K_m values of Aa MDH and Ec MDH are almost equal at 37 °C.

For stability studies, each enzyme was preheated at various temperatures for a given time, and the activities were measured. The half-time of inactivation (t_1/2) of each MDH is shown in Table II. The activity of Aa MDH decreased by 50% at 55 °C for 10 min. The half-time of inactivation (t_1/2) of Ec MDH was 20 min at 55 °C, showing a 2-fold increase compared with Aa MDH. Tf MDH retains full activity at 55 °C for more than 2 h. It has been reported that Tf MDH is fully active after heating at 90 °C for 1 h (13). Circular dichroism measurement also shows a large difference of T_m values between Aa MDH (58 °C) and Tf MDH (95 °C).

X-ray Structure

The kinetic constants were determined for MDHs from three species, a psychrophile, a mesophile, and a thermophile at three different temperatures, and are summarized in Table II. The k_cat/K_m of Aa MDH was approximately 2–3-fold higher than that of Ec MDH at 4–10 °C. The activities of Tf MDH at 4–10 °C were too low, and we could not measure the kinetic constant of Tf MDH at these temperatures within our limit. The k_cat/K_m values of Aa MDH and Ec MDH are almost equal at 37 °C.

For stability studies, each enzyme was preheated at various temperatures for a given time, and the activities were measured. The half-time of inactivation (t_1/2) of each MDH is shown in Table II. The activity of Aa MDH decreased by 50% at 55 °C for 10 min. The half-time of inactivation (t_1/2) of Ec MDH was 20 min at 55 °C, showing a 2-fold increase compared with Aa MDH. Tf MDH retains full activity at 55 °C for more than 2 h. It has been reported that Tf MDH is fully active after heating at 90 °C for 1 h (13). Circular dichroism measurement also shows a large difference of T_m values between Aa MDH (58 °C) and Tf MDH (95 °C).

X-ray Structure

The kinetic constants were determined for MDHs from three species, a psychrophile, a mesophile, and a thermophile at three different temperatures, and are summarized in Table II. The k_cat/K_m of Aa MDH was approximately 2–3-fold higher than that of Ec MDH at 4–10 °C. The activities of Tf MDH at 4–10 °C were too low, and we could not measure the kinetic constant of Tf MDH at these temperatures within our limit. The k_cat/K_m values of Aa MDH and Ec MDH are almost equal at 37 °C.
able sequence similarity while having notably different biochemical properties. Each monomer of homodimeric Aa MDH folds into two domains with different functions (Fig. 1, b and c). The nucleotide binding domain is formed from a twisted N-terminal six-stranded $\beta$-sheet flanked by $\alpha$-helices. The C-terminal catalytic domain consists of two $\beta$-sheets and several helices. The active site is in a cleft between two domains. The asymmetric unit contains an Aa MDH monomer, and the dimer has a crystallographic 2-fold axis. The dimeric interface is formed from helices $\alpha_1$, $\alpha_2$, $\alpha_6$, and $\alpha_9$-loop-$\alpha_{10}$ (Fig. 1c). As expected from the high sequence similarity, the overall structure of Aa MDH is very similar to that of Tf MDH, and it can be superimposed with an r.m.s. deviation of 0.8 Å for 319 C-$\alpha$ atoms. The largest differences are observed in the loop region.

---

**Fig. 1.** a, sequence alignment and position of secondary structure elements in Aa MDH and Tf MDH. The single letter code for amino acid residues is used. Every 10th residue is marked with a filled circle. Residues interacting with NAD/NADH and oxaloacetate are marked with asterisks. b, ribbon diagram of the overall structure of an Aa MDH subunit. Secondary structure labelings are consistent with those in a. The N-terminal domain is in violet, the C-terminal domain is in blue, NAD is in green, and oxaloacetate is in yellow. c, a stereodiagram of the quaternary structure of Aa MDH. Each subunit is colored in red and blue, NAD is in green, and oxaloacetate is in yellow.
between α10 and β10, where the r.m.s. deviation value is 3.8 Å. Minor differences are observed in the loop between β2 and α2, where two more residues are inserted in Aa MDH. The Aa MDH and Ec MDH show more significant deviations (r.m.s. deviation of 2.4 Å for 256 C-α atoms), reflecting their low sequence identity of 27%.

**NADH Binding Site**—The presence of NADH in the NADH-soaked crystal was clearly identified from the simulated annealed omit map of NADH complex crystal (Fig. 2a). Comparisons between apo-Aa MDH and Aa MDH-NADH complex structures show an r.m.s. deviation of 0.31 Å, suggesting that NADH did not induce any noticeable conformational changes. The NADH is hydrogen-bonded to the side chains of Glu43 (2.7, 2.9 Å), Gln14 (3.3 Å), Asn134 (3.5 Å), and His190 (3.0 Å) and main chain atoms of Gly12 (3.2 Å), Gln16 (2.9 Å), Ile17 (2.9 Å), Val132 (3.0 Å), and Asn134 (3.1 Å) (Fig. 2b). Most of the NADH binding residues are highly conserved both in Aa MDH and Tf MDH (Fig. 1a). However, the side chain of Gln14 of Tf MDH forms a hydrogen bond to the NO1 (3.3 Å) atom and AO-1 (3.1 Å) atom of NADH, whereas the side chain of a corresponding residue, Gln16 in Aa MDH points away from the NADH. These differences may contribute to the increased K₉₉ of NADH in Aa MDH compared with that in Tf MDH at 37 °C.

It has been proposed that the surface loop formed by residues 90–100 plays an important role in the binding of NADH (13, 17). In lactate dehydrogenase, another NADH binding enzyme whose tertiary structure is similar to MDH, significant conformational changes in this loop occur upon binding of NADH (23, 24). While no direct evidence of such gross conformational changes within the surface loop has been observed in MDH, the compositions of the amino acids and the main chain atom positions in this region are very similar in both Aa MDH and Tf MDH.

**Ternary Complex**—MDH catalyzes an ordered reaction, where MDH binds first, followed by the dicarboxylic acid substrate (25). The substrate binding site was identified by first soaking the crystal in buffer containing NAD and later with oxaloacetate. The resulting omit map clearly reveals the presence of a NAD and a substrate (Fig. 3a). Although oxaloacetate binds near NAD, no direct interactions were observed between the two molecules. The C-4 atom of the nicotinamide moiety of NAD is 5.9 Å away from the C-2 atom of oxaloacetate, and a water molecule is present between the two atoms (Fig. 3b). Important residues involved in oxaloacetate binding include Arg165 (2.6 and 3.2 Å), His190 (3.1 Å), and Ser241 (3.3 Å). The main chain atoms of Arg229 (3.5 Å) and Gly230 (2.9 Å) also form hydrogen bonds to oxaloacetate (Fig. 3b). The carbonyl oxygen of Gly230 is 2.9 Å away from the O1A atom of oxaloacetate. Thus, it is possible that these two atoms may form a hydrogen bond if the O1A atom of oxaloacetate becomes protonated.

In lactate dehydrogenase, the C-4 atom of the nicotinamide ring in NADH and the C-2 atom of the substrate analogue, oxamate, are located closer (3.7 Å), such that the proton can be directly transferred to the C-2 atom of lactate from NADH (23, 24). Structure comparison reveals that the binding of substrate to LDH induces a gross conformational change (up to 14 Å) in the surface loop around the NADH binding region, which is equivalent to residues 89–100 in Aa MDH. However, the binding of oxaloacetate to Aa MDH did not induce any notable conformational changes as judged by comparison of the ternary complex structure with apo- and binary Aa MDH enzyme structures (r.m.s. deviation of 0.33 and 0.34 Å, respectively). Therefore, it is possible that the large conformational change upon oxaloacetate binding may be necessary to bring the substrate closer to NAD, and this structural rearrangement is limited inside the crystal due to the crystal packing. Thus far, no ternary complex structures of MDH from other organisms, substrate, and coenzyme have been reported. However, the ternary complex of Ec MDH, NAD, and substrate analogue (citrate) has been determined at 1.9-Å resolution, and the distance between the C-4 atom of the nicotinamide ring in NAD and the C-3 atom of citrate was 4.9 Å (15).

Comparison of the oxaloacetate binding site of Aa MDH and an equivalent region of Tf MDH reveals that all of the residues interacting with oxaloacetate are conserved except for Gly230, which has been replaced by alanine in Tf MDH. Since the main chain of glycine has more conformational freedom than any other amino acid, substitution of Gly230 in Aa MDH from Ala227 may provide more local flexibility in Aa MDH, and this may partly contribute to the high catalytic efficiency of Aa MDH at low temperatures.

**Flexibility**—It has been proposed that increased flexibility is the most important factor for the catalytic efficiency of phosphorilic enzymes at low temperatures (1, 2). The crystallographic thermal factors of the structures of Aa MDH and Tf MDH have been compared to analyze the flexibility of both enzymes. Aa MDH/NADH complex had an average B-factor of 15.10 Å² for main chain atoms, significantly lower than that of Tf MDH/NADH, 23.56 Å². Also, average B-factors for main chain atoms of each domain in Aa MDH (N-domain, 14.75 Å², C-domain, 15.45 Å²) show similar differences compared with those in Tf MDH (N-domain, 23.14 Å², C-domain, 24.03 Å²). However, differences in resolution, packing, solvent content, and quality of data could contribute to B-factors. To correlate the local flexibility of each MDH in an equivalent scale of thermal parameters, we have divided the B-factors of all atoms in each enzyme by an average B-factor of a whole molecule (termed relative B-factor) and compared these values for the two proteins (Fig. 4). All main chain atoms (Gly12, Gln16, Ile17, Val132, Asn134, Gly227, Arg229, Gly230) and most of the side chain atoms (Glu14, Arg165, Ser241) interacting with NADH and oxaloacetate in Aa MDH had up to approximately 2-fold increased relative B-factors, reflecting their increased relative flexibility (Fig. 4). We have also used two different methods to compare the relative flexibility of the active site regions in both MDHs. First, the B-factors for the atoms of active site residues were divided by the average B-factors of the rest of the atoms in the whole molecule. This was to remove any bias resulting from the active site residues in local flexibility calculation. Second, the average B-factors for the whole molecule without the active site residues were subtracted from the B-factors for each of the

---

**Table II**

| Parameters | Aa MDH | Ec MDH | Tf MDH |
|------------|--------|--------|--------|
| Kinetics   |        |        |        |
| 4°C        | 152 ± 22 | 93 ± 15 | ND²    |
| Kᵢ₉₉ (µM)  | 16 ± 4  | 23 ± 5  | ND     |
| Kᵢ₉₉/Kᵢ₉₉ | 11 4    |        |        |
| 10°C       | 277 ± 18 | 171 ± 18 |        |
| Kᵢ₉₉ (µM)  | 23 ± 4  | 26 ± 4  | ND     |
| Kᵢ₉₉/Kᵢ₉₉ | 12 7    |        |        |
| 37°C       | 1111 ± 150 | 1109 ± 280 | 419 ± 23 |
| Kᵢ₉₉ (µM)  | 45 ± 10 | 56 ± 11 | 14 ± 4 |
| Kᵢ₉₉/Kᵢ₉₉ | 25 20   | 30      |        |
| Thermolability |        |        |        |
| t₁/₂       | 10 min |        | >2 h   |
| Tₙ       | 58 °C  |        | >95 °C |

² ND, kinetic constants could not be determined because of low enzyme activity at these temperatures.
atoms in the active site, and these values were divided by the S.D. values for the average B-factors of the whole molecule without the active site residues. In either case, the values that may represent the relative local flexibility for the MDHs were higher in Aa MDH compared with Tf MDH, suggesting that the active site in Aa MDH is relatively more flexible (Fig. 4). The slightly increased flexibility in the regions of NADH and oxaloacetate binding sites in Aa MDH may facilitate the catalytic

**FIG. 2.** a, a simulated annealed omit map around the NADH in Aa MDH-NADH complex. The map is shown with a contour level of 1σ. b, a stereodiagram of the NADH binding site in Aa MDH. Important residues interacting with NADH are labeled, and distances between them are shown.

**FIG. 3.** a, an omit map around the oxaloacetate in the Aa MDH ternary complex. The map is shown with a contour level of 1σ. b, a stereodiagram of the oxaloacetate binding site in Aa MDH. Important residues interacting with oxaloacetate are labeled, and distances between them are shown.

**FIG. 4.** Bar graphs showing relative B-factors for residues at active site. Black bars and gray bars represent Aa MDH and Tf MDH, respectively. Three different approaches are used as explained in the text: method 1, $B_{\text{residue}}/B_{\text{whole}}$; method 2, $B_{\text{residue}}/B_{\text{whole without active site residues}}$; method 3, $(B_{\text{residue}} - B_{\text{whole without active site residues}})/(B_{\text{whole without active site residues}})^{1/2}$. On the basis of their interactions with a cofactor and a substrate, values 1–8 are calculated using main chain atoms, and values 9–14 are calculated using side chain atoms.
activity at low temperatures. Recent comparative studies of citrate synthase from Antarctic bacterial strain DS2–3R and its hyperthermophilic counterpart have shown that an overall average main chain B-factor was much lower in psychrophilic citrate synthase compared with that of hyperthermophilic enzyme (26). However, the small domain in psychrophilic citrate synthase showed more flexibility compared with the large domain, and this difference is more significant in the psychrophilic enzyme than that of its hyperthermophilic counterpart (26). Thus, the domain movement of citrate synthase for enzymatic catalysis upon substrate binding at low temperature is more favorable in psychrophilic citrate synthase. The hydrogen exchange experiments also show evidence for an enhanced rigidity of thermophilic proteins as compared with those from mesophilic proteins (27).

Electrostatic Potential—One of the most remarkable differences between the structures of Aa MDH and Tf MDH is their charge distributions in the accessible surface (28). As seen in Fig. 5, the surface around the NADH binding region in TF MDH is dominated by negative potentials, whereas that in Aa MDH has significantly weaker negative potentials around the corresponding region. The differences in the position of basic residues of the surface loop comprising residues 91–100 (Arg91 and Lys102) and Lys106 in TF MDH/Arg83, Arg85, and Lys102 in Aa MDH) results in the different charge distributions within this loop (Fig. 5). The oxaloacetate binding regions in each MDH also show some discrepancies in charge distribution. The oxaloacetate binding region of Aa MDH has more basic regions compared with TF MDH, since Arg174, His178, and Lys228 are present in Aa MDH, whereas Arg161, His165, and Gln228 are in the equivalent region in TF MDH.

The increased positive potential at and around the oxaloacetate binding site and the significantly decreased negative surface potential at the NADH binding region in Aa MDH may facilitate the interaction of a negatively charged substrate toward the surface of the enzyme and may increase the catalytic activity.

---

**Fig. 5. Comparison of the electrostatic potential of Aa MDH (left) and TF MDH (right).** NADH is shown in green, and oxaloacetate is in yellow. The positive potential is in blue, and the negative potential is in red. The electrostatic potential is calculated for each molecule in the absence of NADH and oxaloacetate.

**Fig. 6. Stereodiagrams showing the difference of intersubunit ion pairs in Aa MDH (a) and in TF MDH (b).** Subunit A is in green with a thick line; subunit B is in green with a thin line; positively charged residues are in blue; and negatively charged residues are in red. Some residues have not been labeled for clarity.

---

**Table III**

Comparisons of ion pairs, hydrogen bonds, and surface area of two MDHs

|                | Aa MDH       | Tf MDH       |
|----------------|--------------|--------------|
| No. of intrasubunit ion pairs/subunit | 12           | 8            |
| No. of intrasubunit ion pairs/residue | 0.04         | 0.03         |
| No. of intersubunit ion pairs in dimer (buried/total) | 4/6          | 5/10         |
| No. of intrasubunit hydrogen bonds/subunit | 813          | 800          |
| No. of intersubunit hydrogen bonds in dimer | 46           | 56           |
| Accessible surface area of a subunit (Å²) | 13925.5      | 14318.9      |
| Buried surface area of dimer (Å²) | 3048.7       | 3165.0       |
| Total Hydrophobic | 1937.3       | 1988.3       |
| Polar           | 553.2        | 438.5        |
| Charged         | 558.2        | 738.2        |
| No. of the completely buried atoms in a subunit | 1277         | 1253         |
| Fraction        | 0.52         | 0.50         |
| No. of the completely buried atoms in the dimer | 2680         | 2577         |
| Fraction        | 0.54         | 0.53         |
| Cavities/subunit | 8            | 8            |

The number of ion pairs and hydrogen bonds in TF MDH have been analyzed from a subunit B. The distance range is 2.2–4.0 Å for an ion pair and 2.2–3.5 Å for a hydrogen bond. All the values of TF MDH are calculated using the subunit B of TF MDH structure (accession code 1bmd of the Protein Data Bank).
efficiency at low temperature.

**Thermal stability**—It has been suggested that high flexibility of an enzyme is tightly correlated to the increased thermolability of the enzyme. Thus, we have analyzed the several factors that could contribute to enzyme stability. These include the number and location of proline/glycine residues and the number of inter- and intrasubunit ion pairs, hydrogen bonds, buried surface areas, and cavities (Table III).

The numbers of glycine and proline residues are very similar in both MDHs, and the positions of these residues are highly conserved in Aa MDH and Tf MDH (Fig. 1a). While the numbers of Asp, Lys, and His residues are similar, Tf MDH has significantly more Glu and Arg than Aa MDH. Despite such differences, Tf MDH has the same number of intrasubunit ion pairs compared with those of Aa MDH (Table III). Also, an equal number of intrasubunit ion pairs are found in Aa MDH (ArgGlu Asp29–Lys35, Glu21–Arg101– Glu320) and in Tf MDH (ArgGlu Asp27–Lys31, Glu251–Arg156– Asp255). However, Aa MDH has about half the number of intersubunit ion pairs as Tf MDH (Fig. 6). In addition, only three residues, A-Arg62, B-Asp27, and A-Arg229 (A and B represent each subunit) form ion pair networks, whereas five residue ion pair networks (B-Lys126, A-Glu57, B-Arg229, A-Asp58, and B-Arg161) are observed in Tf MDH.

Ion pairs have emerged as a critical force in stabilizing hyperthermophilic enzymes (29–31). However, the relative importance of intra- or intersubunit ion pairs are still unclear. Also, the contribution of ion pairs to the stability of general proteins other than hyperthermophilic proteins requires further analyses. Nevertheless, the formation of an ion pair network is known to be important to the protein stability. The decreased number of intersubunit ion pairs and ion pair networks is probably one of the major forces in the thermolability of Aa MDH. Recent comparative studies of psychrophilic citrate synthase and its hyperthermophilic counterpart reveal that the psychrophilic enzyme has more intrasubunit and fewer intersubunit ion pairs, emphasizing the importance of intersubunit ion pairs and agreeing with our present analyses (26).

The numbers of hydrogen bonds in both MDHs show similar patterns of ion pairs; Aa MDH has more intrasubunit hydrogen bonds, whereas more intersubunit hydrogen bonds are found in Tf MDH.

The Aa MDH subunit has slightly lower accessible surface area compared with a subunit of Tf MDH (Table III). Aa MDH dimer has 116 Å of less buried surface area compared with that of Tf MDH. Considering that each square Å has about 25 cal/mol of energy gain, the decreased buried surface area of Aa MDH provides an ~2.9-kcal loss. The more significant difference is found in the nature of the buried surface area in each MDH. While the hydrophobic character is similar in both enzymes, the portion of charged residues in the buried surface area is remarkably smaller in Aa MDH (28%) compared with that of Tf MDH (37%). The increased charged character of the buried surface interface in Tf MDH results in the increased number of intersubunit ion pairs and charged polar group interactions. It has been proposed that the increased number of buried ion pairs in the protein interfaces could contribute to protein stability unlike those present in the core of a protein because of the differences in the surrounding environment and desolvation energy (32). Thus, slightly decreased buried surface area and a smaller portion of charged residues in dimeric interface may contribute to the increased thermolability of Aa MDH.

The number of cavities in both MDHs is the same, and the size of the cavities was very similar (33).

**Conclusion**

In this paper, we have reported the isolation and biochemical characterization of a MDH from the psychrophilic bacterium, *A. arcticum*, as well as three X-ray structures of Aa MDH. The psychrophilic MDH shows some interesting features: (i) it has 2–3-fold higher $k_{cat}/K_m$ values compared with a mesophilic MDH at a temperature range of 4–10 °C; (ii) its primary structure is highly similar to that of a thermophilic MDH from Tf MDH; and (iii) Aa MDH shows significantly increased thermolability compared with Tf MDH.

Our comparative studies of MDHs from a psychrophile and a thermophile point out three important factors for efficient catalysis by a psychrophilic MDH at low temperatures: (i) an increased relative flexibility at and near the active site region of Aa MDH; (ii) more positive potential in the active site around the oxaloacetate binding site and decreased negative potential around the NADH binding site compared with Tf MDH; and (iii) an increased thermolability of Aa MDH, which is largely contributed by the significantly decreased intersubunit ion pairs and buried surface area in the dimer.

**REFERENCES**

1. Feller, G., Narin, E., Arpinay, J. L., Aittaleb, M., Baie, E., Genicot, S., and Gerday, C. (1996) *FEMS Microbiol. Rev.* 18, 189–202.
2. Feller, G., and Gerday, C. (1997) *Cell. Mol. Life Sci.* 53, 830–841.
3. Davoli, S., Feller, G., Narin, E., and Gerday, C. (1994) *J. Biol. Chem.* 269, 17448–17453.
4. Feller, G., Payan, F., Theys, F., Qian, M., Haser, R. R., and Gerday, C. (1994) *Eur. J. Biochem.* 224, 441–447.
5. Gerike, U., Danson, M. J., Russell, N. J., and Hough, D. W. (1997) *Eur. J. Biochem.* 248, 49–57.
6. Tsigou, I., Veliona, K., Smonou, I., and Bourriotis, V. (1998) *Eur. J. Biochem.* 254, 356–362.
7. Goldman, A. (1995) *Structure* 3, 1277–1279.
8. Danson, M. J., and Hough, D. W. (1997) *Struct. Comp. Biochem. Physiol.* 117A, 307–312.
9. Frolow, F., Harel, M., Sussman, J. L., Mevarech, M., and Shoham, M. (1996) *Nature Struct. Biol.* 3, 452–458.
10. Herbert, R. A. (1992) *Trends Biootechnol.* 10, 395–402.
11. Jordan, D. C., and McNicol, P. J. (1979) *Can. J. Microbiol.* 25, 947–948.
12. Goward, C. R., and Nicholls, D. J. (1994) *Protein Sci.* 3, 1883–1888.
13. Kelly, C. A., Nishiyama, M., Ohnishi, Y., Beppu, T., and Birktoft, J. J. (1993) *Biochemistry* 32, 3913–3922.
14. Hall, M. D., Levitt, D. G., and Banaszak, L. J. (1992) *J. Mol. Biol.* 226, 867–882.
15. Hall, M. D., and Banaszak, L. J. (1993) *J. Mol. Biol.* 232, 213–222.
16. Gleemann, W. B., Pu, Z., Birktoft, J. J., and Banaszak, L. J. (1994) *Biochemistry* 33, 2078–2088.
17. Birktoft, J. J., Rhodes, G., and Banaszak, L. J. (1989) *Biochemistry* 28, 8065–8081.
18. Lutterbary, R. J. (1987) *ENZFITTER: A Nonlinear Regression Data Analysis Program for the IBM PC/AT 32* Elsevier Biosoft, Cambridge, United Kingdom.
19. Ostrowski, Z., and Minor, W. (1997) *Methods Enzymol.* 276, 307–326.
20. Brunger, A. T., Kuriyan, J., and Karplus, M. (1987) *Science* 235, 458–460.
21. Sacks, J. S. (1988) *J. Mol. Graphics* 6, 224–225.
22. Englyst, R. A., and Huber, R. (1993) *Acta Crystallogr. Sec. A* 47, 392–400.
23. Abad-zapatero, C., Griffith, J. P., Sussman, J. L., and Rossman, M. G. (1987) *Biochemistry* 26, 3915–3922.
24. Dunn, C. R., Wilks, H. M., Halsall, D. J., Atkinson, T., Clarke, A. R., Muirhead, H., and Holbrook, J. J. (1991) *Phyto. Trans. R. Soc. Lond. Biol. Sci.* 332, 177–184.
25. Silverstein, R. E., and Sulebele, G. (1969) *Biochemistry* 8, 2545–2550.
26. Russell, R. J. M., Gerike, U., Danson, M. J., Hough, D. W., and Taylor, G. L. (1998) *Structure* 6, 351–361.
27. Ono, H., Backmann, J., Kath, T., Naumann, D., and Schafner, G. (1996) *Arch. Biochem. Biophys.* 332, 75–84.
28. Nicholas, A., Sharp, K. A., and Honig, B. (1991) *Proteins* 11, 281–296.
29. Lim, J.-H., Yu, Y. G., Han, Y. S., Cho, S.-J., Ahn, B.-Y., Kim, S.-H., and Cho, Y. (1997) *J. Mol. Biol.* 270, 259–274.
30. Yip, K. S. P., Stillman, T. J., Britton, K. L., Armin, E., and Hough, D. W. (1995) *Acta Crystallogr. Sec. A* 47, 392–400.
31. Rice, D. W. (1995) *Trends Biootechnol.* 3, 174–180.
32. Xu, D., Lin, S. L., and Nussinov, R. (1997) *J. Mol. Biol.* 265, 68–84.
33. Kleywegt, G. J., and Jones, A. T. (1994) *Acta Crystallogr. Sec. D* 50, 178–185.