OntoRealSumm: Ontology based Real-Time Tweet Summarization

PIYUSH KUMAR GARG, Indian Institute of Technology Patna, India
ROSHNI CHAKRABORTY, Aalborg University, Denmark
SOURAV KUMAR DANDAPAT, Indian Institute of Technology Patna, India

The huge popularity of social media platforms, like Twitter, attracts a large fraction of users to share real-time information and short situational messages during disasters which belong to different topics/categories. A summary of all the messages is required by the government organizations, agencies, and volunteers for efficient and quick disaster response. Therefore, we propose an ontology based real-time tweet summarization (OntoRealSumm) for disasters which generates a summary of the tweets related to disasters with minimum human intervention. Given tweets related to a disaster, OntoRealSumm ensures fulfilment of the objectives related to disaster tweet summarization, such as identification of a category of each tweet and summarization of each category considering the category importance with respect to the disaster and ensuring information coverage of each category and diversity in summary. Comparing the performance with state-of-the-art techniques on 10 disaster datasets validates the effectiveness of OntoRealSumm.

CCS Concepts: • Information systems → Summarizations.

Additional Key Words and Phrases: Disaster tweets, Summarization, Ontology, Category summarization, Social media

1 INTRODUCTION

Recently, social media platforms, like Twitter, have been extensively used by users across the world to share opinions, promote products, spread awareness and updates on events and disasters. It has been often observed that an event is reported on social media platforms before it is covered on any mainstream media [77]. Similarly, the active participation of users on Twitter has made it an important source for continuous updates on any disaster [56]. However, due to the high volume of Twitter messages and continuous generation of real-time updates, it is very difficult to get a holistic view of an ongoing event, like disasters, which continuously generates new information. Continuous monitoring and summarization of messages related to a disaster are required by government and volunteer organizations for effective disaster response. Prior studies [28, 31, 58] show that messages during a disaster are of different categories\(^1\) [28], like infrastructure damage [55, 57], victim needs [3, 16], volunteer operations [4, 32], emotional response [37], affected population [22] and many others. An effective summary of the disaster should include all the relevant information related to all the categories while ensuring information diversity.

Therefore, there are two major steps for tweet summarization related to disasters, identification of the different groups/categories of tweets such that each group/category comprises of tweets that are related to the same topic/sub-event and further, selection of representative tweets from each group/category to form a summary [50, 58, 62, 65]. Existing disaster summarization approaches have proposed unsupervised and supervised learning based approaches for identifying the categories/groups. Existing unsupervised approaches, such as graph-based approaches [17, 19, 20] and topic-based approaches [46] utilize the content similarity of the tweets to identify different categories. However, the high vocabulary diversity, presence of inherent noise and the high number of overlapping keywords present in tweets makes automatic identification of categories and fails of the inherent semantic meaning of tweets by unsupervised approaches challenging. To address this, Rudra et al. [60, 63] proposed a supervised approach for category identification which explicitly identifies the categories of tweets by AIDR [30] and then, create a summary summarize by

\(^1\)A category consists of information related to a same topic/sub-event with respect to any disaster.
selecting appropriate tweets from each category. However, the proposed approach is dependent on AIDR \cite{30} for category identification of a tweet that requires human intervention for each dataset \cite{29}. Therefore, while unsupervised approaches fail to automatically identify categories, supervised approaches require significant human intervention, which is highly difficult to obtain.

In order to select the representative tweets from each category/group in the second step of summarization, existing research works \cite{17, 58, 62} have proposed Integer Linear Programming (ILP) \cite{61}, LUHN \cite{42}, PageRank \cite{52}, Centrality \cite{6}, maximum degree \cite{20}, maximum length \cite{19} and maximum marginal relevance \cite{8}. However, existing disaster summarization approaches consider equal importance of each category given a disaster. Moreover, all categories might not be equally important \cite{9}. Furthermore, none of these approaches considers that the information present in the same category varies across disasters (as shown in Figure 1 and Table 1). Understanding the importance of each category with respect to a disaster guide us in selecting the appropriate number of representative tweets from each category to create the summary. However, to ensure real-time summarization, we need to minimize human intervention.

Table 1. We show the presence of 5 categories in 6 disasters, like Chile Earthquake, 2010 (D$_1$), Italy Earthquake, 2016 (D$_2$), India-Pakistan Flood, 2014 (D$_3$), South Sulawesi Flood, 2019 (D$_4$), Haiyan Typhoon, 2013 (D$_5$), and Megi Typhoon, 2010 (D$_6$) based on the information from Wikipedia.

SNo	Category	D$_1$	D$_2$	D$_3$	D$_4$	D$_5$	D$_6$
1	Affected Population	Yes	Yes	Yes	Yes	Yes	Yes
2	Infrastructure Damage	Yes	Yes	Yes	Yes	Yes	Yes
3	Aftershocks	Yes	Yes	No	No	No	No
4	Donations	No	No	Yes	No	Yes	Yes
5	International Aid	No	No	Yes	No	Yes	Yes

In this paper, we propose an ontology based real-time tweet summarizer, OntoRealSumm to generate a summary automatically given the tweets related to a disaster with minimal human intervention. OntoRealSumm explicitly captures the importance of a category with respect to the disaster and further, ensures information coverage of each category in the final summary by a three-phase system. In the first phase, OntoRealSumm identifies the category of a tweet by ontology based
pseudo-relevance based feedback approach. It follows self-supervised learning by utilizing existing disaster ontology, namely Empathi [21] for automatic classification of tweets into categories and then, utilizes these classified tweets as feedback to determine the categories of the remaining tweets. Therefore, by using an existing ontology, it can handle both the information diversity of each category and manage the vocabulary gap by utilizing semantic similarity [78] without any human intervention. Furthermore, by integration of feedback based information from already classified tweets, it ensures it can handle the inherent issues of tweets, like short length, presence of noise and difference in vocabulary with the ontology to identify the category of a tweet given a disaster with high precision. In the second phase, we determine the specific importance of each category with respect to the disaster. For this, identify disasters which are similar on the basis of categories to automatically identify the importance of a category with respect to each type of disaster. Therefore, identifying a disaster which has similar information content in categories as that of the given disaster aids in automatic determination of the importance of each category of the disaster and thus, determining the number of tweets to be selected from each category. Finally, OntoRealSumm selects the number of tweets from each category which maximizes the information coverage of the category and ensures diversity in summary to form the disaster summary by Maximal Marginal Relevance based [8]. Therefore, it can automatically identify the category of tweets, capture category importance, ensure both information coverage of each category and diversity in summary with minimal human intervention.

We evaluate the effectiveness of OntoRealSumm on 10 disaster events and compare our results with the existing research works in terms of ROUGE-N [40] scores. Our results indicate that OntoRealSumm is better than existing research works by 2.69% to 31.05% ROUGE-1 F1-scores, 5.51% to 41.93% ROUGE-2 F1-scores, and 4.08% to 17.55% ROUGE-L F1-scores on an average. Additionally, we perform experiments to analyze the performance of the OntoRealSumm in identifying the category of a tweets and study the role of the different components of the OntoRealSumm. We finally perform a failure analysis of to highlight the shortcomings of OntoRealSumm. We discuss related works in Section 2 and the datasets details in Section 3. In Section 4, we present problem definition and discuss details of OntoRealSumm in Section 5. We discuss the experiment details in Section 6 and results in Section 6.2. Finally, we conclude our summary in Section 7.

2 RELATED WORKS

There is a plethora of existing tweet summarization approaches which differ based on their application, like sports events [23, 25, 27], political events [35, 53], social events [48, 69], disaster [67, 68] and news event [10, 13, 82]. Based on the application, these tweets summarization approaches utilize the temporal [76], the content diversity [2, 11, 45] or both to select the summary tweets. However, as discussed in Section 1, there is high content diversity across different categories of a disaster and further, the presence and importance of categories differ from one disaster to another. Therefore, these existing summarization approaches on different applications can not be directly applied to tweets related to a disaster.

During a disaster, a huge number of tweets that comprises of real-time and situational information is posted by eye-witnesses and affected people [81]. Therefore, to ensure immediate help, there is a requirement of automated techniques that can identify, extract, and summarize the relevant required information from this huge information overload [4, 33, 73]. Existing disaster tweet summarization approaches can be primarily categorized into abstractive [39, 59] or extractive summarization [14, 68] approaches. In this paper, we focus on developing an extractive summarization approach. Most of the existing extractive tweet summarization approaches can further be segregated based on their proposed methodology into graph based [17], content based [71], deep
learning approaches \[15, 36\], or integration of multiple approaches \[66\]. We discuss each of these approaches in details next.

Existing content based disaster summarization approaches explore the high variance in the frequency and presence of keywords related to a disaster \[61, 62\] to generate the summary. Additionally, several approaches initially classify each tweet either as relevant or non-relevant tweets and then, they summarize relevant tweets by semi-supervised learning \[12\] or supervised learning \[44, 58, 65\] on the basis of the tweet content followed by selection of representative tweets from relevant tweets by different techniques, like ILP \[61\], LSA \[24\], LUHN \[42\] or PageRank \[52\]. Additionally, recent research works utilize neural network-based techniques to utilize the tweet contents, such as Dusart et al. \[15\] propose utilization of BERT model \[41\] to identify the importance of a tweet. Li et al. \[36\] proposed the utilization of the graph convolutional neural networks on a tweet similarity graph to calculate the tweet importance and thereby, select tweets with most importance to create a summary. However, both of these approaches require huge training data. However, these summarization approaches do not consider the categories and therefore, fail to ensure the information coverage of each category in the summary \[75\].

In order to handle these challenges, several research works have proposed graph based tweet summarization approaches \[18, 19\] which initially creates the tweet similarity graph which represents tweets as nodes and an edge represent the similarity between a pair of tweets and then, groups similar tweets together by identifying communities from the tweet similarity graph. Finally, these approaches select representative tweets from each group based on the length, degree or centrality based measures to generate the summary \[6\]. Therefore, these approaches ensure integration of similar information together by the edge relationships in the graph, implicit identification of categories and further, ensure information coverage and reduction of redundancy by selecting representative tweets from each category. For example, Dutta et al. \[20\] propose a community based approach to identify the different sub-groups from the tweet similarity graph and finally, select representative tweets by centrality based measures to create a summary. However, these approaches rely on community based measures to inherently identify the categories of the disaster, which is very challenging due to high vocabulary overlap across categories in a disaster. These approaches consider only content based similarity to identify the category, which can not ensure handling of the inherent issues in tweets \[11\]. Additionally, these approaches do not consider the difference in importance of categories and their information content across different disasters.

Therefore, to cater to the different requirements, recent disaster summarization based approaches initially identify the categories from the tweets and then, create a summary from each of these categories. For example, Rudra et al. \[60, 64\] use existing category identification classifier, i.e., AIDR \[30\] to identify the categories. In \[60\], the authors create a word graph for each category and then, select representative tweets from each word graph on the basis of the presence of the most important words while ensuring information coverage in summary. Similarly, in \[64\], the authors initially identify the sub-event from each category for a disaster and then select the representative tweets from each category such that the selected tweet has the maximum number of content words of that (i.e., nouns, verbs, and numerals) to create a summary. However, AIDR requires human intervention for each new disaster event and is applicable only for real-time disaster events. Furthermore, none of these approaches considers the difference in category vocabulary and importance across disasters. Therefore, there is a need to develop a system that can automatically identify the categories of the disaster with minimum human intervention and further, capture the specific and implicit importance of each category given a disaster in the disaster summary.
However, there are several challenges in identifying the category of a tweet, like the presence of a category and high content diversity within a category vary across the different disasters. Therefore, we propose OntoRealSumm that utilizes an existing disaster ontology, Empathi [21] to effectively identify the category of a tweet irrespective of the disaster in the first phase and then, ensure category based representation and information coverage to generate the summary. We discuss datasets details next.

3 DATASET
In this Section, we discuss the datasets, pre-processing details and gold standard summary.

3.1 Dataset Details and Pre-processing
We evaluate the performance of OntoRealSumm on 10 disaster datasets which are as follows. An overview of these datasets is shown in Table 2.

1. D_1: This dataset is prepared based on the Sandy Hook Elementary School Shooting \(^2\) in which around 26 people, including 20 children and 6 adults were killed in December, 2012. This dataset is taken from [17].

2. D_2: This dataset is prepared based on the Uttarakhand Flood \(^3\) which caused dreadful floods and landslides in Uttarakhand, India in June, 2013. This dataset is taken from [17].

3. D_3: This dataset is prepared based on the devastating impact of the strong cyclone, Hagupit Typhoon \(^4\) on Philippines in December, 2014 which led to the death of around 18 people and evacuation of 916 people. This dataset is taken from [17].

4. D_4: This dataset is prepared based on the Hyderabad Blast, India \(^5\) in which two consecutive bomb blasts killed 17 people and injured 119 people in February, 2013. This dataset is taken from [17].

5. D_5: This dataset is prepared based on the Harda Twin Train Derailment, India \(^6\) in which 31 people died, and 100 got injured. The incident happened in August, 2015. This dataset is taken from [61].

6. D_6: This dataset is prepared based on the Los Angeles International Airport Shooting \(^7\) in which around 15 people were injured and 1 person was killed. The incident happened in November, 2013. This dataset is taken from [51].

7. D_7: This dataset is prepared based on the devastating impact of the terrible hurricane, Hurricane Matthew \(^8\) on Haiti in October, 2016 which led to the death of 603 people and evacuation of 1.5 million people. This dataset is taken from [1].

8. D_8: This dataset is prepared based on the Puebla Mexico Earthquake \(^9\) in which 370 people died, and 6011 got injured. The incident happened in September, 2017. This dataset is taken from [1].

9. D_9: This dataset is prepared based on the Pakistan Earthquake \(^10\) in which 40 people died, and 850 got injured. The incident happened in September, 2019. This dataset is taken from [1].

\(^2\)https://en.wikipedia.org/wiki/Sandy_Hook_Elementary_School_shooting
\(^3\)https://en.wikipedia.org/wiki/2013_North_India_floods
\(^4\)https://en.wikipedia.org/wiki/Typhoon_Hagupit_(2014)
\(^5\)https://en.wikipedia.org/wiki/2013_Hyderabad_blasts
\(^6\)https://en.wikipedia.org/wiki/Harda_twin_train_derailment
\(^7\)https://en.wikipedia.org/wiki/2013_Los_Angeles_International_Airport_shooting
\(^8\)https://en.wikipedia.org/wiki/Hurricane_Matthew
\(^9\)https://en.wikipedia.org/wiki/2017_Puebla_earthquake
\(^10\)https://en.wikipedia.org/wiki/2019_Kashmir_earthquake
(10) \(D_{10} \): This dataset is prepared based on the *Midwestern U.S. Floods* \(^{11}\) which caused dreadful floods and massive damages in Midwestern United States in March 2019 to December 2019. This dataset is taken from [1].

Table 2. We show the details of the 10 datasets, including dataset number, year, number of tweets, type of disaster, country, and continent.

SNo	Dataset	Year	Number of tweets	Type of disaster	Country	Continent
1	\(D_1 \)	2012	2080	Man-made	United States	USA
2	\(D_2 \)	2013	2069	Natural	India	Asian
3	\(D_3 \)	2014	1461	Natural	Philippines	Asian
4	\(D_4 \)	2013	1413	Man-made	India	Asian
5	\(D_5 \)	2015	1676	Man-made	India	Asian
6	\(D_6 \)	2013	1409	Man-made	United States	USA
7	\(D_7 \)	2016	1654	Natural	Haiti	USA
8	\(D_8 \)	2017	2015	Natural	Mexico	USA
9	\(D_9 \)	2019	1958	Natural	Pakistan	Asian
10	\(D_{10} \)	2019	1880	Natural	United States	USA

Pre-processing and Gold Standard Summary: As we consider only the tweet text in the OntoRealSumm, we perform pre-processing to remove URLs, usernames, emoticons, punctuation marks, and noise from the tweet text. We use gold standard summary provided by Dutta et al. [17] for \(D_1-D_4 \) and by Rudra et al. [61] for \(D_5 \). For \(D_6-D_{10} \), we ask 3 annotators to prepare a summary of 40 tweets for each dataset. We follow the procedure by Dutta et al. [17] to combine the individual summaries to prepare the final gold standard summary.

4 PROBLEM STATEMENT

Given a disaster event, \(D \), that comprises of \(n \) tweets, \(\mathcal{T} = \{T_1, T_2, \ldots, T_n \} \), we intend to create a summary, \(S \) of \(\mathcal{T} \). As in most summarization applications, we assume that the length of the summary, \(m \), is provided. We previously discussed in Section 1 that a disaster tweet summarization approach must ensure information coverage of all the categories present in \(\mathcal{T} \) where information coverage of a category refers to representation of all the important aspects of that category in \(S \) [80]. As there are many different mechanisms, such as topics, keywords, a combination of content and context based information, to represent aspects [59], we do not provide any specific method to calculate information coverage and only provide an intuition of information coverage next. We refer to information of \(C_i \) as \(\text{In}(C_i) \) which refers to the aspects present in \(C_i \) and measure the information coverage provided by a tweet, \(T_j \), of \(C_i \) as \(\text{ICov}(T_j, \text{In}(C_i)) \). Therefore, \(\text{ICov}(T_j, \text{In}(C_i)) \) measures the number of aspects that are present in \(C_i \) which are covered by \(T_j \). We show all the used notations and corresponding descriptions for OntoRealSumm in Table 3.

As previously highlighted by existing summarization approaches, the tweets selected in summary, \(S \), must be diverse among each other, i.e., no two tweets selected in \(S \) convey same information and every tweet in \(S \) adds novel information [8, 80]. Therefore, diversity ensures to minimize redundancy \(S \). In order to ensure diversity in \(S \), it is required to select that tweet into \(S \) such that it maximizes the novelty of information and reduces redundancy in \(S \). Existing research

\(^{11}\)https://en.wikipedia.org/wiki/2019_Midwestern_U.S._floods
Table 3. We show notations and their corresponding description used in OntoRealSumm.

Notation	Description
D	Given a disaster event dataset
n	Number of tweets in D
T	Set of tweets in D
T_j	j^{th} indexed tweet
m	Desired length summary (number of tweets)
K	Total number of categories
S	Generated summary
C_i	i^{th} category in D
I(C_i)	Importance of a category C_i
ICov(T_j, In(C_i))	Information coverage provided by tweet, T_j of C_i
D(T_j, S)	Diversity if tweet T_j added to S
SemSIM(T_j, C_i)	Semantic Similarity score between T_j and C_i
ConSIM(T_j, C_i)	Content based similarity between T_j and C_i
W(C_i)	Weight score of C_i
Kw(T_j)	Keywords of T_j, such as nouns, verbs, and adjectives
Kw(C_i)	Comprise keywords of C_i
MaxSIM(T_j)	Highest Semantic Similarity score among all C_i for T_j

works measure diversity, i.e., the novelty of information, by the presence of keywords, aspects, content or contextual information that has not been covered by the tweets already selected in summary [62, 64]. We use $D(T_j, S)$ to measure the diversity provided by selecting T_j into S. Therefore, to create S, we need to select tweets iteratively that can maximize both information coverage of each C_i, $ICov(T_j, In(C_i))$, and diversity of the summary, $D(T_j, S)$ simultaneously.

However, this requires knowledge about the category of T which is not known apriori as discussed in Section 1. Additionally, the importance of a category, i.e., the number of tweets to be selected from a category in S is required to create S. However, we have previously shown that the importance of a category varies from disaster to disaster and therefore, requires an automated system that can determine the importance of each category. We refer to the list of categories as $C = \{C_1, C_2, \ldots, C_K\}$ such that there are K categories present in T and the importance of a category, C_i as $I(C_i)$ which measures the number of tweets to be selected from C_i. Thus, we intend to select m tweets from T such that it maximizes the information coverage present in each category, $In(C_i)$ in C and diversity in S on the basis of $I(C_i)$. We formally define the problem as

$$S = \bigcup_{i=1}^{K} \bigcup_{j=1}^{I_i} \max_{T_j \in C_i, 1 \leq j \leq n} (\alpha \cdot ICov(T_j, In(C_i)) + \beta \cdot D(T_j, S))$$

s.t. $\sum_{i=1}^{K} I_i = m$ \hspace{1cm} (1)

where, $I = \{I_1, I_2, I_3, \ldots, I_K\}$ represents the importance of each category/ number of tweets to be selected from each category, α and β are tunable parameters that consider the importance of
information coverage and diversity respectively [8]. Therefore, we intend to propose an automatic tweet summarization approach that fulfils all these objectives.

- **Identification of the category of each tweet, Phase-I**: We propose a self-supervised approach to identify the category, \(C_i \) of a tweet, \(T_j \). The approach identifies the category of \(T_j \) on the basis of semantic similarity of \(T_j \) with an existing ontology and then, uses the relevant knowledge of the identified tweets as feedback to identify the category of tweets which could not be resolved directly by semantic similarity.
- **Determination of importance of each category, Phase-II**: We determine the importance of each \(C_i \), \(I(C_i) \), with respect to \(D \) using a Linear Regression model. On the basis of \(I(C_i) \), we select the number of tweets from \(C_i \) in \(S \).
- **Representative tweets selection from \(C_i \), Phase-III**: We select the representative tweets from \(C_i \) to ensure information coverage of each category while maintaining the importance of the category and diversity in summary. For Phase-I, we propose an ontology based pseudo-relevance feedback approach to identify the category of a tweet. For Phase-II, we proposed a metric to compare the similarity between two disaster events considering content and probability distribution of tweets across categories. By identifying a similar disaster, we predict the number of tweets to be selected from each category in the final summary. Finally, in Phase-III, we select the number of tweets as predicted in Phase-II from each category which ensures information coverage and diversity of each category in the final summary.

5 PROPOSED APPROACH

In this Section, we discuss proposed approach in details.

5.1 Overview

The proposed approach, OntoRealSumm comprises of three phases, Phase-I where we identify the category of \(T \), Phase-II where we compute the importance of \(C_i \) for \(D \), and finally, Phase-III in which we select representative tweets from \(C_i \) that ensures information coverage of each category while maintaining the importance of the category and diversity in summary. For Phase-I, we propose an ontology based pseudo-relevance feedback approach to identify the category of a tweet. For Phase-II, we proposed a metric to compare the similarity between two disaster events considering content and probability distribution of tweets across categories. By identifying a similar disaster, we predict the number of tweets to be selected from each category in the final summary. Finally, in Phase-III, we select the number of tweets as predicted in Phase-II from each category which ensures information coverage and diversity of each category in the final summary.

Although in this sequential process of summarizing, we require some data pre-processing and knowledge base in the form of ontology, it does not require human intervention to get an effective summary in real-time. We show the overview of OntoRealSumm in Figure 2. We next describe each of these steps of the OntoRealSumm in detail.

5.2 Phase-I

To identify the category of a tweet, we propose an ontology based pseudo-relevance feedback approach. Although there are several different disasters specific ontology available [38, 47, 70, 79], we choose Empathi [21] as it provides the maximum number of categories and covers information related to different types of disasters compared to others. The Empathi disaster ontology comprises of 70 categories and the vocabulary of these categories. We identify the category of those tweets which have high similarity with Empathi by Semantic Similarity score [78], \(\text{SemSIM}(T_j, C_i) \) of a category, \(C_i \) with the tweet, \(T_j \) as shown in Equation 2.

\[
\text{SemSIM}(T_j, C_i) = \text{ConSIM}(T_j, C_i) \ast W(C_i)
\]

(2)

\(\text{SemSIM}(T_j, C_i) \) is the product of content based similarity of the tweet with the category, \(\text{ConSIM}(T_j, C_i) \), and the weight of the category, \(W(C_i) \) that represents the number of keywords in \(C_i \). We calculate \(\text{ConSIM}(T_j, C_i) \) as the overlap of the tweet keywords, \(\text{Kw}(T_j) \), with the category keywords,
Fig. 2. An overview of OntoRealSumm is shown

Kw(Ci). We consider only nouns, verbs, and adjectives of Tj as Kw(Tj) [34] and W(Ci) as the normalised number of keywords in Ci as shown in Equation 3.

\[W(C_i) = \frac{Kw(C_i)}{\sum_{i \in k} Kw(C_i)} \]

where, K is the total number of categories. On the basis of SemSIM(Tj, Ci), we assign the category of Tj which has the highest Semantic Similarity score, MaxSIM(Tj) among all categories.

\[MaxSIM(T_j) = \arg \max_{i \in K}(SemSIM(T_j, C_i)) \]

Our observations indicate that around 10 – 30% of the total tweets remain unclassified as they have no overlap with any of the category keywords. The reason being the high vocabulary diversity in tweets [26, 54]. Therefore, we use the information from the classified tweets of the category as feedback to increase the existing vocabulary of the disaster category. We create an extended vocabulary of the category by including only those keywords with frequencies greater than 3 of the already classified tweets [72]. We use this extended vocabulary to determine the category of the unclassified tweets. Although we can not ensure the classification of all the tweets, we observe only a small number of tweets, i.e., around 1 – 10% of the total tweets remain unclassified after this step. We show in Table 4 the fraction of tweets classified in each of the steps and the fraction of tweets that are unclassified for 10 disaster events. We do not consider the tweets whose category could not be determined in Phase-I.

5.3 Phase-II

After identifying the category of the tweets related to a disaster, we determine the importance of a category with respect to a disaster (say Di). The importance of a category, Ij, is needed to
Table 4. We show the % of classified tweets using ontology vocabulary (Pass-I), extended vocabulary (Pass-II), and remaining tweets after Pass-I and Pass-II for 10 datasets.

Event	Pass-I	Pass-II	Remaining tweets	Event	Pass-I	Pass-II	Remaining tweets
D_1	72.64	27.15	0.19	D_6	80.57	14.41	5.01
D_2	89.72	7.43	2.84	D_7	99.51	0.36	0.12
D_3	67.22	22.35	10.41	D_8	99.20	0.44	0.29
D_4	73.58	17.55	8.85	D_9	98.05	1.38	0.56
D_5	76.95	11.29	11.75	D_{10}	97.17	2.34	0.47

determine the number of tweets to be selected from each category in the final disaster summary. Therefore, I_j of C_j represents the total number of tweets to be selected from C_j given D_i. We use a linear regression model to predict the number of tweets to be included in the final summary. This regression model is trained with a disaster dataset (say D_j), which is very similar to D_i in terms of content and tweet distribution across categories. To identify D_j for a given D_i, we propose a metric disaster similarity score.

Disaster Similarity Score : Content of the tweets across the categories and the distributions of the tweets across categories vary with disasters. We propose a disaster similarity score, $DisSIM(D_i, D_j)$ to compute the similarity between any pair of disasters, D_i and D_j. We define $DisSIM(D_i, D_j)$ as the weighted score of information content of the categories, C_{IC} and similarity in probability distribution between categories C_p. We compute C_p as $(1-C_{ds})$ where C_{ds} is the Jensen Shannon Divergence of two events. $DisSIM(D_i, D_j)$ is calculated as:

$$DisSIM(D_i, D_j) = w_1 * C_{IC} + w_2 * C_p$$

(5)

subject to

$$w_1 + w_2 = 1$$

(6)

$$w_1, w_2 \in (0, 1)$$

(7)

where, w_1 and w_2 are the weights of C_{IC} and C_p respectively. We calculate C_{IC}^i as the cosine similarity [49] of the most frequent occurring keywords between D_i and D_j for a category, i and C_{IC} as the average cosine similarity over all categories as shown in Equation 8.

$$C_{IC} = \frac{1}{K} \sum_{i=1}^{K} C_{IC}^i$$

(8)

where K is the total number of categories. We calculate C_p by the Jensen-Shannon divergence [12] of a disaster pair D_i and D_j. C_p measures the similarity of the probability distributions of the categories between D_i and D_j. We select D_q as the disaster which has maximum similarity with D_i on the basis of $DisSIM(D_i, D_q)$ where, $e \in 0, 1, \ldots, Q$ and Q is the total number of disasters we have. We discuss this experiment and our observations in detail in Subsection 6.5.

5.4 Phase-III

We finally select I_j from each category using a representative tweet selection approach that can captures the maximum information coverage and ensures diversity in summary. Based on the experiment where we compare different selection approaches, such as **Semantic similarity score**

[12]https://en.wikipedia.org/wiki/Jensen%E2%80%93Shannon_divergence
Eigenvector centrality based [5], PageRank based [7], K-mean clustering based [43], and Maximal Marginal Relevance based selection [8], we select MMR in OntoRealSumm. We show the experiment and our observations in details in Subsection 6.6. MMR uses an incremental approach, comparing each tweet to the current summary tweet to determine its inclusion in summary. We discuss the experiments next.

6 EXPERIMENTS

In this Section, we initially discuss the details of the existing research works related to disaster summarization which we use as baseline methods for comparison. Then we provide a performance comparison of baseline methods with the proposed approach OntoRealSumm.

6.1 Baselines

We compare OntoRealSumm with following state-of-the-art summarization approaches:

1. B1: Rudra et al. [63] propose a summarization framework that initially identifies the tweets, which comprises of most important disaster-specific keywords, such as numerals, nouns, verbs, and location. Then, the authors create a graph where the nodes represent all the words of the identified tweets, and an edge is created between two words if they had occurred as a bigram in any of the tweets. Finally, they select those paths from the graph, which can ensure maximum information coverage to generate the summary.

2. B2: Dutta et al. [17] propose an ensemble graph based summarization approach which initially generates summary by 9 existing text summarization algorithms. The authors create a tweet similarity graph where the nodes represent the tweets present in the summary of anyone of the 9 existing text summarization algorithms and the edges represent their content and context similarity. Finally, the authors follow a community detection algorithm to automatically identify the categories and then select representative tweets from each category on the basis of length, informativeness and centrality scores to create the summary.

3. B3: Rudra et al. [64] propose a sub-event based summarization approach that initially identifies the sub-events and then, they generate a summary by selecting representative tweets by Integer Linear Programming based selection such that it ensures maximum information coverage of sub-events.

6.2 Comparison with Existing Research Works

To evaluate the performance of the OntoRealSumm, we compare the summary generated by the OntoRealSumm and the existing research works with the ground truth summary on the basis of ROUGE-N score [40]. ROUGE-N score computes the overlapping words in the generated summary with a set of ground truth summary. We calculate precision, recall and F1-score for 3 different variants of ROUGE-N score, i.e., N=1, 2 and L, respectively. Our observations from Table 5 indicate that OntoRealSumm ensure better ROUGE-N precision, recall and F1-scores in comparison with baselines. The improvement in summary scores of ROUGE-1 F1-score ranges from 1.96% to 62.74%, ROUGE-2 F1-score ranges from 4.34% to 73.33% and ROUGE-L F1-score ranges from 3.57% to 20.68% respectively. The improvement is highest over the B3 baseline and lowest with the B2 baseline. The performance of the OntoRealSumm is the best for D3 baseline and lowest with the B2 baseline. The performance of the OntoRealSumm is the best for D5 with 0.58 – 0.29 and worst for D4 with 0.47 – 0.28 in Rouge-1, Rouge-2 and Rouge-L F1-scores.
Dataset	Approaches	ROUGE-1			ROUGE-2					ROUGE-L		
	Precision	Recall	F1-score	Precision	Recall	F1-score	Precision	Recall	F1-score			
D_1	OntoRealSumm	0.56	0.48	0.51	0.21	0.18	0.20	0.31	0.27	0.29		
	B_1	0.49	0.58	0.53	0.24	0.29	0.26	0.31	0.36	0.33		
	B_2	0.59	0.47	0.52	0.25	0.20	0.22	0.32	0.27	0.29		
	B_3	0.44	0.53	0.48	0.18	0.22	0.20	0.25	0.29	0.27		
D_2	OntoRealSumm	0.46	0.45	0.46	0.17	0.17	0.17	0.27	0.26	0.27		
	B_1	0.32	0.35	0.33	0.14	0.15	0.14	0.23	0.25	0.24		
	B_2	0.44	0.32	0.37	0.18	0.14	0.16	0.28	0.22	0.25		
	B_3	0.39	0.44	0.41	0.11	0.13	0.12	0.23	0.26	0.24		
D_3	OntoRealSumm	0.50	0.48	0.49	0.19	0.18	0.19	0.28	0.27	0.28		
	B_1	0.36	0.36	0.36	0.14	0.14	0.14	0.29	0.29	0.29		
	B_2	0.50	0.34	0.40	0.23	0.15	0.18	0.32	0.23	0.27		
	B_3	0.42	0.47	0.44	0.17	0.18	0.17	0.23	0.25	0.24		
D_4	OntoRealSumm	0.49	0.44	0.47	0.19	0.17	0.18	0.29	0.27	0.28		
	B_1	0.29	0.36	0.32	0.12	0.14	0.13	0.22	0.27	0.24		
	B_2	0.48	0.35	0.41	0.19	0.18	0.16	0.29	0.23	0.26		
	B_3	0.43	0.48	0.45	0.16	0.18	0.17	0.24	0.26	0.25		
D_5	OntoRealSumm	0.58	0.58	0.58	0.29	0.29	0.29	0.31	0.30	0.31		
	B_1	0.35	0.62	0.44	0.18	0.32	0.23	0.24	0.40	0.29		
	B_2	0.48	0.34	0.51	0.22	0.25	0.23	0.26	0.29	0.28		
	B_3	0.48	0.58	0.53	0.23	0.28	0.25	0.25	0.29	0.27		
D_6	OntoRealSumm	0.57	0.56	0.56	0.23	0.23	0.23	0.29	0.28	0.29		
	B_1	0.50	0.47	0.49	0.23	0.22	0.22	0.29	0.28	0.29		
	B_2	0.37	0.41	0.48	0.21	0.15	0.18	0.29	0.22	0.25		
	B_3	0.50	0.55	0.52	0.20	0.22	0.21	0.25	0.27	0.23		
D_7	OntoRealSumm	0.54	0.45	0.49	0.17	0.14	0.15	0.25	0.22	0.23		
	B_1	0.45	0.51	0.48	0.12	0.14	0.13	0.24	0.21	0.22		
	B_2	0.57	0.40	0.47	0.17	0.13	0.14	0.27	0.21	0.22		
	B_3	0.49	0.40	0.44	0.14	0.11	0.12	0.24	0.20	0.22		
D_8	OntoRealSumm	0.48	0.49	0.48	0.15	0.16	0.16	0.25	0.24	0.25		
	B_1	0.43	0.48	0.45	0.13	0.14	0.13	0.22	0.24	0.23		
	B_2	0.51	0.43	0.46	0.15	0.13	0.14	0.26	0.22	0.24		
	B_3	0.43	0.46	0.44	0.13	0.14	0.14	0.22	0.24	0.23		
D_9	OntoRealSumm	0.56	0.45	0.50	0.17	0.14	0.15	0.25	0.21	0.23		
	B_1	0.26	0.16	0.20	0.05	0.03	0.04	0.25	0.17	0.20		
	B_2	0.50	0.44	0.47	0.15	0.13	0.14	0.22	0.20	0.21		
	B_3	0.45	0.45	0.45	0.11	0.11	0.11	0.21	0.21	0.21		
D_{10}	OntoRealSumm	0.51	0.50	0.51	0.13	0.12	0.13	0.22	0.22	0.22		
	B_1	0.46	0.15	0.19	0.06	0.03	0.04	0.22	0.15	0.18		
	B_2	0.51	0.45	0.48	0.10	0.09	0.10	0.22	0.19	0.20		
	B_3	0.50	0.49	0.50	0.12	0.12	0.12	0.22	0.22	0.22		

6.3 Identification of Category of a Tweet

In this Subsection, we evaluate the effectiveness of Phase-I of *OntoRealSumm*, proposed self-supervised tweet category identification approach with an existing unsupervised approach (*UnSuA*). We select the approach followed by Dutta et al. [19] for identifying categories to summarize disaster tweets as *UnSuA*. Although there are several existing unsupervised approaches, we found [19] to be most successful. In [19], the authors propose utilization of Louvain community detection algorithm [74] to identify communities which inherently represents categories related to the disaster. For an experiment, we select 20% tweets randomly from each category for Phase-I of *OntoRealSumm* and *UnSuA* from 3 disaster events, such as, D_2, D_3 and D_9. We ask 3 volunteers who had a good knowledge of English and provide them with these tweets for annotation. On comparing the performance of Phase-I of *OntoRealSumm* with *UnSuA* as shown in Table 6, we observe that...
Phase-I of OntoRealSumm has better performance of at least 43% in F1-score. Based on our observations, we found that unsupervised approaches can not directly segregate the tweets into different categories due to the high vocabulary overlap across different categories and immense vocabulary diversity in each category on the basis of information related to tweet text. Utilization of the semantic information from ontology in Phase-I helps in categorization of tweets and therefore, increases the performance.

Table 6. F1-score of Phase-I of OntoRealSumm and unsupervised tweet category identification approach (UnSuA) on comparing the volunteers annotations for 3 disasters, such as, D_2, D_3, and D_6 is shown.

Dataset	Approach	F1-score
D_2	Phase-I of OntoRealSumm	67.07
	UnSuA	38.72
D_3	Phase-I of OntoRealSumm	64.58
	UnSuA	23.37
D_6	Phase-I of OntoRealSumm	62.99
	UnSuA	29.93

6.4 Determining Relevance of Category Importance

In Phase-II of OntoRealSumm, we propose a linear regression based model to calculate the importance of each category given a disaster based on the assumption that the importance of the category varies across disasters. Although we discuss this assumption by intuition in Section 1, we show this through an experiment next. For our experiments, we compare the summaries generated by OntoRealSumm and summaries generated by an approach when each category is given equal importance, EqCatSumm on 6 datasets, such as, D_2, D_3, D_4, D_5, D_6, and D_9. To generate the summary by EqCatSumm, we follow Phase-III of OntoRealSumm for selection of tweets from each category. We show the precision, recall, and F1-score for 3 different variants of the ROUGE-N score, i.e., $N=1$, 2, and L, in Table 7 which indicates that OntoRealSumm performs consistently better than EqCatSumm. Therefore, we have empirically shown how identifying the importance of each category given a disaster is essential for effective disaster tweet summarization.

6.5 Comparing Disaster Similarity

On comparing $\text{DisSIM}(D_i, D_j)$ for every disaster pair, we observe that any disaster has the most similarity score with a disaster that belongs to the same continent, such as USA or ASIA and is of the same type, i.e., man-made or natural. For example, Uttarakhand Flood (D_2) has the highest score with disaster Pakistan Earthquake (D_9) among all the disasters. Similarly, Sandy Hook Elementary School Shooting (D_1) has the highest score with Los Angeles International Airport Shooting (D_6) among all the disasters. Therefore, we term D_i and D_j as homogeneous disasters if they belong to the same continent and is of the same type. Subsequently, we term D_i and D_j as heterogeneous disasters if they do not satisfy either of these two conditions. We validate next the impact of training on a homogeneous disaster or a heterogeneous disaster on the summary quality. We show the results in Table 8.

For each disaster D_i, we predict the number of tweets to be selected from each category as predicted by the linear regression model if it was trained on homogeneous disaster or heterogeneous disaster. We, then, select the representative tweets from each category based on the predicted number of tweets to create the summary and finally, compare the generated summary with the ground-truth summary on the basis of ROUGE-N scores. For the experiments, we randomly select
Table 7. F1-score of ROUGE-1, ROUGE-2 and ROUGE-L score on comparing OntoRealSumm which identifies the importance of each category with an approach when each category gives equal importance, EqCatSumm is shown.

Dataset	Approach	ROUGE-1 F1-score	ROUGE-2 F1-score	ROUGE-L F1-score
D2	OntoRealSumm	0.46	0.17	0.27
	EqCatSumm	0.42	0.14	0.24
D3	OntoRealSumm	0.49	0.19	0.28
	EqCatSumm	0.47	0.17	0.27
D4	OntoRealSumm	0.47	0.18	0.28
	EqCatSumm	0.42	0.13	0.24
D5	OntoRealSumm	0.58	0.29	0.31
	EqCatSumm	0.50	0.20	0.26
D6	OntoRealSumm	0.56	0.23	0.29
	EqCatSumm	0.53	0.19	0.25
D9	OntoRealSumm	0.50	0.15	0.23
	EqCatSumm	0.48	0.14	0.21

5 disasters, such as, D2, D4, D5, D7, and D8. We show the precision, recall, and F1-score for 3 different variants of the ROUGE-N score, i.e., N=1, 2, and L, respectively, in Table 9. Our observations indicate that there is around 7 – 21% and 6 – 9% increase in ROUGE-2 F1-score for any disaster in Asia and USA, respectively, for both man-made and natural disasters. Therefore, our observations indicate that an effective summary for D_i can be ensured if we identify the importance of categories from a D_j which is of the same type and from the same continent as D_j.

Table 8. We show the disaster similarity scores for every disaster pair. The first row and first column of this Table represent the various disasters.

	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10
D1		0.4	0.43	0.44	0.52	0.43	0.39	0.45	0.4	
D2	0.4		0.54	0.48	0.44	0.4	0.45	0.48	0.45	0.4
D3	0.43	0.54		0.44	0.4	0.47	0.46	0.48	0.46	0.44
D4	0.44	0.5	0.44		0.51	0.45	0.43	0.48	0.45	0.45
D5	0.44	0.48	0.4	0.51		0.45	0.46	0.45	0.48	0.47
D6	0.52	0.44	0.47	0.45	0.45		0.44	0.45	0.48	0.43
D7	0.43	0.5	0.46	0.47	0.46	0.44		0.52	0.48	0.55
D8	0.39	0.5	0.46	0.45	0.45	0.45	0.52		0.49	0.52
D9	0.45	0.55	0.51	0.48	0.48	0.48	0.49	0.49		0.46
D10	0.4	0.5	0.44	0.45	0.47	0.43	0.55	0.52	0.46	

6.6 Comparing different Regression Models
In this Subsection, we compare 3 different types of regression models, such as, Linear regression model (R_1), Ridge regression (R_2) model, and Bayesian regression model (R_3) to understand which model should be selected to predict the number of tweets from each category into summary given D_i. In order to understand this, given any similar disaster to D_i, say D_j, we train R_1, R_2 and R_3
Table 9. F1-score of ROUGE-1, ROUGE-2 and ROUGE-L score of OntoRealSumm for training a linear regression model on a dataset from homogeneous and heterogeneous disasters on 5 datasets is shown.

Dataset	Training disaster	ROUGE-1	ROUGE-2	ROUGE-L
D1	D5	0.50	0.19	0.29
	D6	0.51	0.20	0.30
	D9	0.49	0.18	0.28
	D10	0.49	0.19	0.28
D2	D1	0.43	0.14	0.25
	D5	0.43	0.15	0.25
	D8	0.44	0.15	0.25
	D9	0.46	0.17	0.27
D3	D4	0.58	0.29	0.30
	D6	0.56	0.27	0.28
	D7	0.56	0.27	0.29
	D9	0.53	0.23	0.28
D4	D1	0.47	0.12	0.21
	D5	0.46	0.11	0.21
	D9	0.47	0.13	0.22
	D10	0.49	0.15	0.23
D5	D1	0.45	0.12	0.23
	D2	0.46	0.15	0.24
	D4	0.46	0.14	0.24
	D7	0.48	0.16	0.25

respectively on the categories of D_j and predict the number of tweets from each category for D_i. We evaluate the performance of R_1, R_2 and R_3 through mean squared error as shown in Equation 9.

$$MSE(R_i) = \frac{1}{K} \sum_{s=1}^{K} (N_g - N_r)^2$$

where N_g and N_r are the number of tweets from each category in ground truth summary and predicted by the regression model respectively. K is the number of categories in D_i and i could be 1, 2 or 3. Therefore, lower the value of $MSE(R_i)$, better is the performance of R_i. For the experiments, we randomly select 5 different disasters, such as, D_1, D_4, D_5, D_6, and D_9 and compare the performance of R_1, R_2 or R_3 on the basis of $MSE(R_i)$. We show our observations in Table 10 which indicate that R_1 performs the best followed by R_2 and R_2. Therefore, based on these observations, we select R_1, i.e., Linear regression model in OntoRealSumm to automatically identify the number of tweets to be selected from a category given a disaster.

6.7 Identifying Representative Tweets from a Category

In this Subsection, we compare the performance of Semantic similarity score based [78] (S_1), Eigenvector centrality based [5] (S_2), PageRank based [7] (S_3), K-mean clustering based [43] (S_4), and Maximal Marginal Relevance based selection [8] (S_5) for Phase-III. For the experiments, we randomly select 4 different disasters, such as D_2, D_3, D_5, and D_6. We compute the F1-scores for 3 different variants of ROUGE-N score, i.e., N=1, 2, and L respectively. Our observation from Figure 3 indicate
Table 10. We compare Mean Square Error (MSE) of 3 different regression models, i.e, Linear, Ridge, and Bayesian models.

Dataset	Linear	Ridge	Bayesian
D_1	2.84	2.93	3.22
D_2	1.12	1.14	1.15
D_3	1.37	2.19	2.28
D_4	1.66	1.85	2.88
D_5	4.13	4.13	4.40

Fig. 3. F1-score of ROUGE-1 in Figure 3(a), ROUGE-2 in Figure 3(b) and ROUGE-L score in Figure 3(c) of OntoRealSumm for 5 different representative tweets selection methods, i.e., Semantic similarity score based (S_1), Eigenvector centrality based (S_2), PageRank based (S_3), k-mean clustering based (S_4), and Maximal Marginal Relevance (MMR) based (S_5) on 4 disasters is shown.

that S_5 consistently performs the best followed by S_1 and S_2. S_3 performs the worst irrespective of the dataset. Therefore, based on our observations, we select S_5, i.e., MMR based selection approach in OntoRealSumm.
6.8 Limitations of OntoRealSumm

We discuss the limitations of OntoRealSumm that we have observed next.

1. Dependence on Existing Ontology: As OntoRealSumm relies on an existing ontology to identify the categories of a tweet, it is not directly applicable for other summarization applications, like news events, user opinions regarding products, etc., unless an existing ontology for that application is available. We are working towards developing an ontology automatically from publicly available resources for any application as a future direction so that OntoRealSumm is not dependent on an existing ontology.

2. Identification of category of a Tweet: OntoRealSumm can not identify the categories of all tweets. For example, we found among all the disasters, OntoRealSumm performs the worst for D5, where it could not identify the category for around 12% of the tweets. Therefore, we believe Phase-I of OntoRealSumm could be further improved such that the category of more number of tweets could be identified.

3. Generalizability of OntoRealSumm: As we currently do not have any dataset from other continents except Asia and USA, we can not ensure the generalizability of OntoRealSumm irrespective of location. To resolve this, we are working towards collection of tweets related to disasters from different locations and preparation of ground truth summaries for them such that we can validate the performance of OntoRealSumm as one of our future directions.

7 CONCLUSIONS AND FUTURE WORKS

In this paper, we propose OntoRealSumm which can generate a real-time tweet summary for a disaster with minimal human intervention. OntoRealSumm utilizes a three-phase approach to explicitly handles multiple challenges, like improving categorization quality, finding the importance of each category, ensuring information coverage and information diversity of each category in the final summary. Our experimental analysis shows that OntoRealSumm can ensure 6 – 42% increase in Rouge-N F1-scores over existing research works. Through experiments, we show the effectiveness of each Phase of OntoRealSumm in generating a summary with minimum human intervention.

As a future goal, we plan to extend OntoRealSumm such that it is not dependent on an ontology by automatically creating the ontology as well as we are working towards improvement in the categorization of Phase-I.

REFERENCES

[1] Firoj Alam, Umair Qazi, Muhammad Imran, and Ferda Ofli. 2021. HumAID: Human-Annotated Disaster Incidents Data from Twitter with Deep Learning Benchmarks. In Proceedings of the Fifteenth International AAAI Conference on Web and Social Media, ICWSM. AAAI Press, 933–942.

[2] Syed Muhammad Ali, Zeinab Noorian, Ebrahim Bagheri, Chen Ding, and Feras Al-Obeidat. 2020. Topic and sentiment aware microblog summarization for twitter. Journal of Intelligent Information Systems 54, 1 (2020), 129–156.

[3] Moumita Basu, Anurag Shandilya, Kripabandhu Ghosh, and Saptarshi Ghosh. 2018. Automatic matching of resource needs and availabilities in microblogs for post-disaster relief. In Companion Proceedings of the The Web Conference 2018. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland, 25–26.

[4] Moumita Basu, Anurag Shandilya, Prannay Khosla, Kripabandhu Ghosh, and Saptarshi Ghosh. 2019. Extracting resource needs and availabilities from microblogs for aiding post-disaster relief operations. IEEE Transactions on Computational Social Systems 6, 3 (2019), 604–618.

[5] Phillip Bonacich. 1972. Factoring and weighting approaches to status scores and clique identification. Journal of mathematical sociology 2, 1 (1972), 113–120.

[6] Stephen P Borgatti. 2005. Centrality and network flow. Social networks 27, 1 (2005), 55–71.

[7] Sergey Brin and Lawrence Page. 1998. The anatomy of a large-scale hypertextual web search engine. Computer networks and ISDN systems 30, 1-7 (1998), 107–117.
[8] Jaime Carbonell and Jade Goldstein. 1998. The use of MMR, diversity-based reranking for reordering documents and producing summaries. In Proceedings of the 21st annual international ACM SIGIR conference on Research and development in information retrieval. ACM, New York, NY, USA, 335–336.

[9] Carlos Castillo. 2016. Big crisis data: social media in disasters and time-critical situations. Cambridge University Press.

[10] Roshi Chakraborty, Maitry Bhavsar, Sourav Dandapat, and Joydeep Chandra. 2017. A network based stratification approach for summarizing relevant comment tweets of news articles. In International Conference on Web Information Systems Engineering. Springer, 33–48.

[11] Roshi Chakraborty, Maitry Bhavsar, Sourav Kumar Dandapat, and Joydeep Chandra. 2019. Tweet summarization of news articles: An objective ordering-based perspective. IEEE Transactions on Computational Social Systems 6, 4 (2019), 761–777.

[12] Yan Chen, Xiaoming Zhang, Zhoujun Li, and Jun-Ping Ng. 2015. Search engine reinforced semi-supervised classification and graph-based summarization of microblogs. Neurocomputing 152 (2015), 274–286.

[13] Yijun Duan and Adam Jatowt. 2019. Across-time comparative summarization of news articles. In Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining. ACM, New York, NY, USA, 735–743.

[14] Alexis Dusart, Karen Pinel-Sauvagnat, and Gilles Hubert. 2021. ISSumSet: a tweet summarization dataset hidden in a TREC track. In Proceedings of the 36th Annual ACM Symposium on Applied Computing. 665–671.

[15] Alexis Dusart, Karen Pinel-Sauvagnat, and Gilles Hubert. 2021. TSSuBERT: Tweet Stream Summarization Using BERT. arXiv preprint arXiv:2106.08770 (2021).

[16] Ritam Dutt, Moumita Basu, Kripabandhu Ghosh, and Saptarshi Ghosh. 2019. Utilizing microblogs for assisting post-disaster relief operations via matching resource needs and availabilities. Information Processing & Management 56, 5 (2019), 1680–1697.

[17] Soumi Dutta, Vibhash Chandra, Kanav Mehra, Asit Kumar Das, Tanmoy Chakraborty, and Saptarshi Ghosh. 2018. Ensemble algorithms for microblog summarization. IEEE Intelligent Systems 33, 3 (2018), 4–14.

[18] Soumi Dutta, Vibhash Chandra, Kanav Mehra, Sujata Ghatak, Asit Kumar Das, and Saptarshi Ghosh. 2019. Summarizing microblogs during emergency events: A comparison of extractive summarization algorithms. In Emerging Technologies in Data Mining and Information Security. Springer, 859–872.

[19] Soumi Dutta, Asit Kumar Das, Abhishek Bhattacharya, Gourav Dutta, Komal K Parikh, Atin Das, and Dipsa Ganguly. 2019. Community Detection Based Tweet Summarization. In Emerging Technologies in Data Mining and Information Security. Springer, 797–808.

[20] Soumi Dutta, Sujata Ghatak, Moumita Roy, Saptarshi Ghosh, and Asit Kumar Das. 2015. A graph based clustering technique for tweet summarization. In 2015 4th international conference on reliability, infocom technologies and optimization (ICRITO)(trends and future directions). IEEE, 1–6.

[21] Manas Gaur, Saeedeh Shekarpour, Amelie Gyrard, and Amit Sheth. 2019. empathi: An ontology for emergency managing and planning about hazard crisis. In 2019 IEEE 13th International Conference on Semantic Computing (ICSC). IEEE, 396–403.

[22] Saptarshi Ghosh, Kripabandhu Ghosh, Debasis Ganguly, Tanmoy Chakraborty, Gareth JF Jones, Marie-Francine Moens, and Muhammad Imran. 2018. Exploitation of social media for emergency relief and preparedness: Recent research and trends. Information Systems Frontiers 20, 5 (2018), 901–907.

[23] Mehreen Gillani, Muhammad U Ilyas, Saad Saleh, Jalal S Alowibdi, Naif Aljohani, and Fahad S A lotaiabi. 2017. Post summarization of microblogs of sporting events. In Proceedings of the 26th International Conference on World Wide Web Companion. ACM, New York, NY, USA, 59–68.

[24] Yihong Gong and Xin Liu. 2001. Generic text summarization using relevance measure and latent semantic analysis. In Proceedings of the 24th annual international ACM SIGIR conference on Research and development in information retrieval. ACM, New York, NY, USA, 19–25.

[25] Poonam Goyal, Prerna Kaushik, Pranjal Gupta, Dev Vashisth, Shavak Agarwal, and Navneet Goyal. 2019. Multilevel event detection, storyline generation, and summarization for tweet streams. IEEE Transactions on Computational Social Systems 7, 1 (2019), 8–23.

[26] Mahmud Hasan, Mehmet A Orgun, and Rolf Schwitter. 2019. Real-time event detection from the Twitter data stream using the TwitterNews+ Framework. Information Processing & Management 56, 3 (2019), 1146–1165.

[27] Yue Huang, Chao Shen, and Tao Li. 2018. Event summarization for sports games using twitter streams. World Wide Web 21, 3 (2018), 609–627.

[28] Muhammad Imran and Carlos Castillo. 2015. Towards a data-driven approach to identify crisis-related topics in social media streams. In Proceedings of the 24th International Conference on World Wide Web. Association for Computing Machinery, New York, NY, USA, 1205–1210.

[29] Muhammad Imran, Carlos Castillo, Jesse Lucas, Patrick Meier, and Jakob Rognstadius. 2014. Coordinating human and machine intelligence to classify microblog communications in crises. In ISCRAM. ISCRAM.
[77] Henning M Wold, Linn Vikre, Jon Atle Gulla, Özlem Özdöbek, and Xiaomeng Su. 2016. Twitter topic modeling for breaking news detection. (2016).

[78] Chia-Wei Wu and Chao-Lin Liu. 2003. Ontology-based Text Summarization for Business News Articles. Computers and their applications 2003 (2003), 389–392.

[79] Hasniza Yahya and Rohaini Ramli. 2020. Ontology for Evacuation Center in Flood Management Domain. In 2020 8th International Conference on Information Technology and Multimedia (ICIMU). IEEE, 288–291.

[80] Rui Yan, Xiaojun Wan, Jahna Otterbacher, Liang Kong, Xiaoming Li, and Yan Zhang. 2011. Evolutionary timeline summarization: a balanced optimization framework via iterative substitution. In Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval. 745–754.

[81] Kiran Zahra, Muhammad Imran, and Frank O Ostermann. 2020. Automatic identification of eyewitness messages on twitter during disasters. Information processing & management 57, 1 (2020), 102107.

[82] Xin Zheng, Aixin Sun, and Karthik Muthuswamy. 2021. Tweet-aware News Summarization with Dual-Attention Mechanism. In Companion Proceedings of the Web Conference 2021. ACM, New York, NY, USA, 473–480.