THE ARTINIAN CONJECTURE
(FOLLOWING DJAMENT, PUTMAN, SAM, AND SNOWDEN)

HENNING KRAUSE

Abstract. This note provides a self-contained exposition of the proof of the
artinian conjecture, following closely Djament’s Bourbaki lecture. The original
proof is due to Putman, Sam, and Snowden.

Contents
1. Introduction 1
2. Noetherian posets 2
3. Functor categories 2
4. Noetherian functors 3
5. Gröbner categories 4
6. Base change 5
7. Categories of finite sets 5
8. The artinian conjecture 7
9. FI-modules 7
References 7

1. Introduction

This note provides a complete proof of the celebrated artinian conjecture. The
proof is due to Putman, Sam, and Snowden [6, 7]. Here, we follow closely the elegant
exposition of Djament in [3]. For the origin of the conjecture and its consequences,
we refer to those papers and Djament’s Bourbaki lecture [4]. In addition, the
expository articles by Kuhn, Powell and Schwartz in [5] are recommended.

There are two main result. Fix a locally noetherian Grothendieck abelian cate-
gory A, for instance, the category of modules over a noetherian ring.

Theorem 1.1. Let A be a ring whose underlying set is finite. For the category
$\mathcal{P}(A)$ of free A-modules of finite rank, the functor category $\text{Fun}(\mathcal{P}(A)^{\text{op}}, A)$ is locally
noetherian.

This result amounts to the assertion of the artinian conjecture when A is a finite
field and A is the category of A-modules.

The first theorem is a direct consequence of the following.

Theorem 1.2. For the category Γ of finite sets, the functor category $\text{Fun}(\Gamma^{\text{op}}, A)$
is locally noetherian.
The basic idea for the proof is to formulate finiteness conditions on an essentially small category \(C \) such that \(\text{Fun}(C^{\text{op}}, A) \) is locally noetherian. This leads to the notion of a Gröbner category. Such finiteness conditions have a ‘direction’. For that reason we consider contravariant functors \(C \to A \), because then the direction is preserved (via Yoneda’s lemma) when one passes from \(C \) to \(\text{Fun}(C^{\text{op}}, A) \).

2. Noetherian posets

Let \(C \) be a poset. A subset \(\mathcal{D} \subseteq C \) is a sieve if the conditions \(x \leq y \) in \(C \) and \(y \in \mathcal{D} \) imply \(x \in \mathcal{D} \). The sieves in \(C \) are partially ordered by inclusion.

Definition 2.1. A poset \(C \) is called

1. noetherian if every ascending chain of elements in \(C \) stabilises, and
2. strongly noetherian if every ascending chain of sieves in \(C \) stabilises.

For a poset \(C \) and \(x \in C \), set \(C(x) = \{ t \in C \mid t \leq x \} \). The assignment \(x \mapsto C(x) \) yields an embedding of \(C \) into the poset of sieves in \(C \).

Lemma 2.2. For a poset \(C \) the following are equivalent:

1. The poset \(C \) is strongly noetherian.
2. For every infinite sequence \((x_i)_{i \in \mathbb{N}} \) of elements in \(C \) there exists \(i \in \mathbb{N} \) such that \(x_j \leq x_i \) for infinitely many \(j \in \mathbb{N} \).
3. For every infinite sequence \((x_i)_{i \in \mathbb{N}} \) of elements in \(C \) there is a map \(\alpha : \mathbb{N} \to \mathbb{N} \) such that \(i < j \) implies \(\alpha(i) < \alpha(j) \) and \(x_{\alpha(j)} \leq x_{\alpha(i)} \).
4. For every infinite sequence \((x_i)_{i \in \mathbb{N}} \) of elements in \(C \) there are \(i < j \) in \(\mathbb{N} \) such that \(x_j \leq x_i \).

Proof. (1) \(\Rightarrow \) (2): Suppose that \(C \) is strongly noetherian and let \((x_i)_{i \in \mathbb{N}} \) be elements in \(C \). For \(n \in \mathbb{N} \) set \(C_n = \bigcup_{i \leq n} C(x_i) \). The chain \((C_n)_{n \in \mathbb{N}} \) stabilises, say \(C_n = C_N \) for all \(n \geq N \). Thus there exists \(i \leq N \) such that \(x_j \leq x_i \) for infinitely many \(i \in \mathbb{N} \).

(2) \(\Rightarrow \) (3): Define \(\alpha : \mathbb{N} \to \mathbb{N} \) recursively by taking for \(\alpha(0) \) the smallest \(i \in \mathbb{N} \) such that \(x_j \leq x_i \) for infinitely many \(j \in \mathbb{N} \). For \(n > 0 \) set

\[
\alpha(n) = \min\{ i > \alpha(n-1) \mid x_j \leq x_i \leq x_{\alpha(n-1)} \} \text{ for infinitely many } j \in \mathbb{N} \}.
\]

(3) \(\Rightarrow \) (4): Clear.

(4) \(\Rightarrow \) (1): Suppose there is a properly ascending chain \((C_n)_{n \in \mathbb{N}} \) of sieves in \(C \). Choose \(x_n \in C_{n+1} \setminus C_n \) for each \(n \in \mathbb{N} \). There are \(i < j \in \mathbb{N} \) such that \(x_j \leq x_i \). This implies \(x_j \in C_{i+1} \subseteq C_j \) which is a contradiction. \(\square \)

3. Functor categories

Let \(C \) be an essentially small category and \(A \) a Grothendieck abelian category. We denote by \(\text{Fun}(C^{\text{op}}, A) \) the category of functors \(C^{\text{op}} \to A \). The morphisms between two functors are the natural transformations. Note that \(\text{Fun}(C^{\text{op}}, A) \) is a Grothendieck abelian category.

Given an object \(x \in C \), the evaluation functor

\[
\text{Fun}(C^{\text{op}}, A) \to A, \quad F \mapsto F(x)
\]

admits a left adjoint

\[
A \to \text{Fun}(C^{\text{op}}, A), \quad M \mapsto M[C(-, x)]
\]

where for any set \(X \) we denote by \(M[X] \) a coproduct of copies of \(M \) indexed by the elements of \(X \). Thus we have a natural isomorphism

\[
\text{Fun}(C^{\text{op}}, A)(M[C(-, x)], F) \cong A(M, F(x)).
\]
Lemma 3.1. If \((M_i)_{i \in I}\) is a set of generators of \(\mathcal{A}\), then the functors \(M_i[\mathcal{C}(\mathcal{-}, x)]\) with \(i \in I\) and \(x \in \mathcal{C}\) generate \(\text{Fun}(\mathcal{C}^{\text{op}}, \mathcal{A})\).

Proof. Use the adjointness isomorphism (3.1). \(\square\)

A Grothendieck abelian category \(\mathcal{A}\) is \textit{locally noetherian} if \(\mathcal{A}\) has a generating set of noetherian objects. In that case an object \(M \in \mathcal{A}\) is noetherian iff \(M\) is \textit{finitely presented} (that is, the representable functor \(\mathcal{A}(M, -)\) preserves filtered colimits); see [8] Chap. V for details.

Lemma 3.2. Let \(\mathcal{A}\) be locally noetherian. Then \(\text{Fun}(\mathcal{C}^{\text{op}}, \mathcal{A})\) is locally noetherian iff \(M[\mathcal{C}(\mathcal{-}, x)]\) is noetherian for every noetherian \(M \in \mathcal{A}\) and \(x \in \mathcal{C}\).

Proof. First observe that \(M[\mathcal{C}(\mathcal{-}, x)]\) is finitely presented if \(M\) is finitely presented. This follows from the isomorphism (3.1) since evaluation at \(x \in \mathcal{C}\) preserves colimits. Now the assertion of the lemma is an immediate consequence of Lemma 3.1. \(\square\)

4. Noetherian Functors

Let \(\mathcal{C}\) be an essentially small category and fix an object \(x \in \mathcal{C}\). Set

\[
\mathcal{C}(x) = \bigsqcup_{t \in \mathcal{C}} \mathcal{C}(t, x).
\]

Given \(f, g \in \mathcal{C}(x)\), let \((f)\) denote the set of morphisms in \(\mathcal{C}(x)\) that factor through \(f\), and set \(f \leq g\) if \((f) \subseteq (g)\). We identify \(f\) and \(g\) when \((f) = (g)\). This yields a poset which we denote by \(\bar{\mathcal{C}}(x)\).

A functor is \textit{noetherian} if every ascending chain of subfunctors stabilises.

Lemma 4.1. The functor \(\mathcal{C}(\mathcal{-}, x) : \mathcal{C}^{\text{op}} \to \text{Set}\) is noetherian iff the poset \(\bar{\mathcal{C}}(x)\) is strongly noetherian.

Proof. Sending \(F \subseteq \mathcal{C}(\mathcal{-}, x)\) to \(\bigsqcup_{t \in \mathcal{C}} F(t)\) induces an inclusion preserving bijection between the subfunctors of \(\mathcal{C}(\mathcal{-}, x)\) and the sieves in \(\bar{\mathcal{C}}(x)\). \(\square\)

For a poset \(\mathcal{T}\) let \(\text{Set}^{\downarrow} \mathcal{T}\) denote the category consisting of pairs \((X, \xi)\) such that \(X\) is a set and \(\xi : X \to \mathcal{T}\) is a map. A morphism \((X, \xi) \to (X', \xi')\) is a map \(f : X \to X'\) such that \(\xi(a) \leq \xi' f(a)\) for all \(a \in X\).

A functor \(\mathcal{C}^{\text{op}} \to \text{Set}^{\downarrow} \mathcal{T}\) is given by a pair \((F, \phi)\) consisting of a functor \(F : \mathcal{C}^{\text{op}} \to \text{Set}\) and a map \(\phi : \bigsqcup_{t \in \mathcal{C}} F(t) \to \mathcal{T}\) such that \(\phi(a) \leq \phi(F(f)(a))\) for every \(a \in F(t)\) and \(f : t' \to t\) in \(\mathcal{C}\).

Lemma 4.2. Let \(\mathcal{T}\) be a noetherian poset. If \(\mathcal{C}(\mathcal{-}, x)\) is noetherian, then any functor \((\mathcal{C}(\mathcal{-}, x), \phi) : \mathcal{C}^{\text{op}} \to \text{Set}^{\downarrow} \mathcal{T}\) is noetherian.

Proof. Let \((F_n, \phi_n)_{n \in \mathbb{N}}\) be a strictly ascending chain of subfunctors of \((F, \phi)\). The chain \((F_n)_{n \in \mathbb{N}}\) stabilises since \(\mathcal{C}(\mathcal{-}, x)\) is noetherian. Thus we may assume that \(F_n = F\) for all \(n \in \mathbb{N}\), and we find \(f_n \in \bigsqcup_{t \in \mathcal{C}} F(t)\) such that \(\phi_n(f_n) < \phi_{n+1}(f_n)\).

The poset \(\bar{\mathcal{C}}(x)\) is strongly noetherian by Lemma 4.1. It follows from Lemma 2.2 that there is a map \(\alpha : \mathbb{N} \to \mathbb{N}\) such that \(i < j\) implies \(\alpha(i) < \alpha(j)\) and \(f_{\alpha(j)} \leq x f_{\alpha(i)}\).

Thus

\[
\phi_{\alpha(n)}(f_{\alpha(n)}) < \phi_{\alpha(n)+1}(f_{\alpha(n)}) \leq \phi_{\alpha(n+1)}(f_{\alpha(n)}) \leq \phi_{\alpha(n+1)}(f_{\alpha(n+1)}).
\]

This yields a strictly ascending chain in \(\mathcal{T}\), contradicting the assumption on \(\mathcal{T}\). \(\square\)

Definition 4.3. A partial order \(\leq\) on \(\mathcal{C}(x)\) is \textit{admissible} if the following holds:

1. The order \(\leq\) restricted to \(\mathcal{C}(t, x)\) is total and noetherian for every \(t \in \mathcal{C}\).
2. For \(f, f' \in \mathcal{C}(t, x)\) and \(e \in \mathcal{C}(s, t)\), the condition \(f < f'\) implies \(fe < f'e\).
Fix an admissible partial order \(\leq \) on \(\mathcal{C}(x) \) and an object \(M \) in a Grothendieck abelian category \(A \). Let \(\text{Sub}(M) \) denote the poset of subobjects of \(M \) and consider the functor

\[
\mathcal{C}(\cdot, x) \downarrow: M: \mathcal{C}^{\text{op}} \longrightarrow \text{Set Sub}(M), \quad t \mapsto \{\mathcal{C}(t, x), (M)_{f \in \mathcal{C}(t,x)}\}.
\]

For a subfunctor \(F \subseteq M[\mathcal{C}(\cdot, x)] \) define a subfunctor \(\tilde{F} \subseteq \mathcal{C}(\cdot, x) \downarrow M \) as follows:

\[
\tilde{F}: \mathcal{C}^{\text{op}} \longrightarrow \text{Set Sub}(M), \quad t \mapsto \left(\mathcal{C}(t, x), \left(\pi_f(M[\mathcal{C}(t, x)]_f \cap F(t))\right)_{f \in \mathcal{C}(t,x)}\right)
\]

where \(\mathcal{C}(t, x)_f = \{g \in \mathcal{C}(t, x) \mid f \leq g\} \) and \(\pi_f: M[\mathcal{C}(t, x)]_f \to M \) is the projection onto the factor corresponding to \(f \). For a morphism \(e: t' \to t \) in \(\mathcal{C} \), the morphism \(\tilde{F}(e) \) is induced by precomposition with \(e \). Note that

\[
\pi_f(M[\mathcal{C}(t, x)]_f \cap F(t)) \subseteq \pi_{f_e}(M[\mathcal{C}(t', x)]_{f_e} \cap F(t'))
\]

since \(\leq \) is compatible with the composition in \(\mathcal{C} \).

Lemma 4.4. Suppose there is an admissible partial order on \(\mathcal{C}(x) \). Then the assignment which sends a subfunctor \(F \subseteq M[\mathcal{C}(\cdot, x)] \) to \(\tilde{F} \) preserves proper inclusions. Therefore \(M[\mathcal{C}(\cdot, x)] \) is noetherian provided that \(\mathcal{C}(\cdot, x) \downarrow M \) is noetherian.

Proof. Let \(F \subseteq G \subseteq M[\mathcal{C}(\cdot, x)] \). Then \(\tilde{F} \subseteq \tilde{G} \). Now suppose that \(F \neq G \). Thus there exists \(t \in \mathcal{C} \) such that \(F(t) \neq G(t) \). We have \(\mathcal{C}(t, x) = \bigcup_{f \in \mathcal{C}(t,x)} \mathcal{C}(t, x)_f \), and this union is directed since \(\leq \) is total. Thus

\[
F(t) = \sum_{f \in \mathcal{C}(t,x)} (M[\mathcal{C}(t, x)]_f \cap F(t))
\]

since filtered colimits in \(A \) are exact. This yields \(f \) such that

\[
M[\mathcal{C}(t, x)]_f \cap F(t) \neq M[\mathcal{C}(t, x)]_f \cap G(t).
\]

Choose \(f \in \mathcal{C}(t, x) \) maximal with respect to this property, using that \(\leq \) is noetherian. Now observe that the projection \(\pi_f \) induces an exact sequence

\[
0 \longrightarrow \sum_{f < g} (M[\mathcal{C}(t, x)]_g \cap F(t)) \longrightarrow F(t) \longrightarrow \pi_f(M[\mathcal{C}(t, x)]_f \cap F(t)) \longrightarrow 0
\]

since the kernel of \(\pi_f \) equals the directed union \(\sum_{f < g} M[\mathcal{C}(t, x)]_g \). For the directedness one uses again that \(\leq \) is total. Thus

\[
\pi_f(M[\mathcal{C}(t, x)]_f \cap F(t)) \neq \pi_f(M[\mathcal{C}(t, x)]_f \cap G(t))
\]

and therefore \(\tilde{F} \neq \tilde{G} \).

Proposition 4.5. Let \(x \in \mathcal{C} \). Suppose that \(\mathcal{C}(\cdot, x) \) is noetherian and that \(\mathcal{C}(x) \) has an admissible partial order. If \(M \in A \) is noetherian, then \(M[\mathcal{C}(\cdot, x)] \) is noetherian.

Proof. Combine Lemmas 4.2 and 4.3.

5. Gröbner categories

Definition 5.1. An essentially small category \(\mathcal{C} \) is a Gröbner category if the following holds:

1. The functor \(\mathcal{C}(\cdot, x) \) is noetherian for every \(x \in \mathcal{C} \).
2. There is an admissible partial order on \(\mathcal{C}(x) \) for every \(x \in \mathcal{C} \).

Example 5.2. A strongly noetherian poset (viewed as a category) is a Gröbner category.
Theorem 5.3. Let \mathcal{C} be a Gröbner category and \mathcal{A} a Grothendieck abelian category. If \mathcal{A} is locally noetherian, then $\text{Fun}(\mathcal{C}^{\text{op}}, \mathcal{A})$ is locally noetherian.

Proof. Combine Lemma 5.1 and Proposition 5.5. □

6. Base change

Given functors $F, G : \mathcal{C}^{\text{op}} \to \text{Set}$, we write $F \rightsquigarrow G$ if there is a finite chain

$$F = F_0 \hookrightarrow F_1 \hookrightarrow \cdots \hookrightarrow F_{n-1} \hookrightarrow F_n = G$$

of epimorphisms and monomorphisms of functors $\mathcal{C}^{\text{op}} \to \text{Set}$.

Definition 6.1. A functor $\phi : \mathcal{C} \to \mathcal{D}$ is contravariantly finite if the following holds:

1. Every object $y \in \mathcal{D}$ is isomorphic to $\phi(x)$ for some $x \in \mathcal{C}$.
2. For every object $y \in \mathcal{D}$ there are objects x_1, \ldots, x_n in \mathcal{C} such that

$$\bigsqcup_{i=1}^n \mathcal{C}(-, x_i) \to \mathcal{D}(\phi-, y).$$

The functor ϕ is covariantly finite if $\phi^{\text{op}} : \mathcal{C}^{\text{op}} \to \mathcal{D}^{\text{op}}$ is contravariantly finite.

Note that a composite of contravariantly finite functors is contravariantly finite.

Lemma 6.2. Let $f : \mathcal{C} \to \mathcal{D}$ be a contravariantly finite functor and \mathcal{A} a Grothendieck abelian category. Fix $M \in \mathcal{A}$ and suppose that $M[\mathcal{C}(-, x)]$ is noetherian for all $x \in \mathcal{C}$. Then $M[\mathcal{D}(-, y)]$ is noetherian for all $y \in \mathcal{D}$.

Proof. A finite chain

$$\bigsqcup_{i=1}^n M[\mathcal{C}(-, x_i)] = F_0 \hookrightarrow F_1 \hookrightarrow \cdots \hookrightarrow F_{n-1} \hookrightarrow F_n = M[\mathcal{D}(\phi-, y)]$$

of epimorphisms and monomorphisms induces a chain

$$\bigsqcup_{i=1}^n \mathcal{A}[\mathcal{C}(-, x_i)] = F_0 \hookrightarrow F_1 \hookrightarrow \cdots \hookrightarrow F_{n-1} \hookrightarrow F_n = \mathcal{A}[\mathcal{D}(\phi-, y)]$$

of epimorphisms and monomorphisms in $\text{Fun}(\mathcal{C}^{\text{op}}, \mathcal{A})$. Thus $M[\mathcal{D}(\phi-, y)]$ is noetherian. It follows that $M[\mathcal{D}(-, y)]$ is noetherian, since precomposition with ϕ yields a faithful and exact functor $\text{Fun}(\mathcal{D}^{\text{op}}, \mathcal{A}) \to \text{Fun}(\mathcal{C}^{\text{op}}, \mathcal{A})$. □

Proposition 6.3. Let $f : \mathcal{C} \to \mathcal{D}$ be a contravariantly finite functor and \mathcal{A} a locally noetherian Grothendieck abelian category. If $\text{Fun}(\mathcal{C}^{\text{op}}, \mathcal{A})$ is locally noetherian, then $\text{Fun}(\mathcal{D}^{\text{op}}, \mathcal{A})$ is locally noetherian.

Proof. Combine Lemmas 5.2 and 6.2. □

7. Categories of finite sets

Let Γ denote the category of finite sets (a skeleton is given by the sets $\mathbf{n} = \{1, 2, \ldots, n\}$). The subcategory of finite sets with surjective morphisms is denoted by Γ_{sur}. A surjection $f : \mathbf{m} \to \mathbf{n}$ is ordered if $i < j$ implies $\min f^{-1}(i) < \min f^{-1}(j)$. We write Γ_{ord} for the subcategory of finite sets whose morphisms are ordered surjections. Given a surjection $f : \mathbf{m} \to \mathbf{n}$, let $f^j : \mathbf{n} \to \mathbf{m}$ denote the map given by $f^j(i) = \min f^{-1}(i)$. Note that $ff^j = \text{id}$, and $gf = f^jg^j$ provided that f and g are ordered surjections.

\footnote{The terminology follows that introduced by Auslander and Smalø [1] for an inclusion functor.}
Lemma 7.1. (1) The inclusion $\Gamma_{\text{sur}} \to \Gamma$ is contravariantly finite.

(2) The inclusion $\Gamma_{\text{os}} \to \Gamma_{\text{sur}}$ is contravariantly finite.

Proof. (1) For each integer $n \geq 0$ there is an isomorphism

$$\bigsqcup_{m \to n} \Gamma_{\text{sur}}(-, m) \xrightarrow{\sim} \Gamma(-, n)$$

which is induced by the injective maps $m \to n$.

(2) For each integer $n \geq 0$ there is an isomorphism

$$\Gamma_{\text{os}}(-, n) \times \mathcal{S}_n \xrightarrow{\sim} \Gamma_{\text{sur}}(-, n)$$

which sends a pair (f, σ) to σf. The inverse sends a surjective map $g : m \to n$ to $(\tau^{-1}g, \tau)$ where $\tau \in \mathcal{S}_n$ is the unique permutation such that g^{τ} is increasing. □

Fix an integer $n \geq 0$. Given $f, g \in \Gamma(n)$ we set $f \leq g$ if there exists an ordered surjection h such that $f = gh$.

Lemma 7.2. The poset $(\Gamma(n), \leq)$ is strongly noetherian.

Proof. We fix some notation for each $f \in \Gamma(m, n)$. Set $\lambda(f) = m$. If f is not injective, set

$$\mu(f) = m - \max\{i \in m \mid \text{there exists } j < i \text{ such that } f(i) = f(j)\}$$

and $\pi(f) = f(m - \mu(f))$. Define $\tilde{f} \in \Gamma(m - 1, n)$ by setting $\tilde{f}(i) = f(i)$ for $i < m - \mu(f)$ and $\tilde{f}(i) = f(i + 1)$ otherwise.

Note that $f \leq \tilde{f}$. Moreover, $\mu(f) = \mu(g)$, $\pi(f) = \pi(g)$, and $\tilde{f} \leq \tilde{g}$ imply $f \leq g$.

Suppose that $(\Gamma(n), \leq)$ is not strongly noetherian. Then there exists an infinite sequence $(f_r)_{r \in \mathbb{N}}$ in $\Gamma(n)$ such that $i < j$ implies $f_j \nleq f_i$; see Lemma 7.2. Call such a sequence bad. Choose the sequence minimal in the sense that $\lambda(f_1)$ is minimal for all bad sequences $(g_r)_{r \in \mathbb{N}}$ with $g_j = f_j$ for all $j < i$. There is an infinite subsequence $(f_{\alpha(r)})_{r \in \mathbb{N}}$ (given by some increasing map $\alpha : \mathbb{N} \to \mathbb{N}$) such that μ and π agree on all $f_{\alpha(r)}$, since the values of μ and π are bounded by n. Now consider the sequence $f_0, f_1, \ldots, f_{\alpha(0) - 1}, f_{\alpha(0)}, f_{\alpha(1)}, \ldots$ and denote this by $(g_r)_{r \in \mathbb{N}}$. This sequence is not bad, since $(f_r)_{r \in \mathbb{N}}$ is minimal. Thus there are $i < j$ in \mathbb{N} with $g_j \not\leq g_i$. Clearly, $j < \alpha(0)$ is impossible. If $i < \alpha(0)$, then

$$f_{\alpha(i - \alpha(0))} \leq f_{\alpha(j - \alpha(0))} = g_j \leq g_i = f_i,$$

which is a contradiction, since $i < \alpha(0) \leq \alpha(j - \alpha(0))$. If $i \geq \alpha(0)$, then $f_{\alpha(j - \alpha(0))} \leq f_{\alpha(i - \alpha(0))}$; this is a contradiction again. Thus $(\Gamma(n), \leq)$ is strongly noetherian. □

Proposition 7.3. The category Γ_{os} is a Gröbner category.

Proof. Fix an integer $n \geq 0$. The poset $\Gamma_{\text{os}}(n)$ is strongly noetherian by Lemma 7.2 and it follows from Lemma 4.1 that the functor $\Gamma_{\text{os}}(-, n)$ is noetherian.

The admissible partial order on $\Gamma_{\text{os}}(n)$ is given by the lexicographic order. Thus for $f, g \in \Gamma_{\text{os}}(m, n)$, we have $f < g$ if there exists $j \in m$ with $f(j) < g(j)$ and $f(i) = g(i)$ for all $i < j$. □

Theorem 7.4. Let \mathcal{A} be a locally noetherian Grothendieck abelian category. Then the category $\text{Fun}(\Gamma_{\text{os}}, \mathcal{A})$ is locally noetherian.

Proof. The category Γ_{os} is a Gröbner category by Proposition 7.3. It follows from Theorem 5.3 that $\text{Fun}(\Gamma_{\text{os}}^{\text{op}}, \mathcal{A})$ is locally noetherian. The inclusion $\Gamma_{\text{os}} \to \Gamma$ is contravariantly finite by Lemma 7.1. Thus $\text{Fun}(\Gamma^{\text{op}}, \mathcal{A})$ is locally noetherian by Proposition 6.3. □
THE ARTINIAN CONJECTURE

8. The artinian conjecture

Let \(A \) be a ring. We denote by \(\mathcal{P}(A) \) the category of free \(A \)-modules of finite rank. If \(A \) is finite, then the functor \(\Gamma \to \mathcal{P}(A) \) sending \(X \) to \(A[X] \) is a left adjoint of the forgetful functor \(\mathcal{P}(A) \to \Gamma \).

Lemma 8.1. Let \(A \) be finite. Then the functor \(\Gamma \to \mathcal{P}(A) \) is contravariantly finite.

Proof. The assertion follows from the adjointness isomorphism
\[
\mathcal{P}(A)(A[X], P) \cong \Gamma(X, P).
\]

Theorem 8.2. Let \(A \) be a finite ring and \(\mathcal{A} \) a locally noetherian Grothendieck abelian category. Then the category \(\text{Fun}(\mathcal{P}(A)^{op}, \mathcal{A}) \) is locally noetherian.

Proof. Combine Theorem 7.4 with Lemma 8.1 and Proposition 6.3.

9. FI-modules

The proof of the artinian conjecture yields an alternative proof of the following result due to Church, Ellenberg, Farb, and Nagpal.

Let \(\mathcal{G}_{\text{inj}} \) denote the category whose objects are finite sets and whose morphisms are injective maps.

Theorem 9.1 ([2, Theorem A]). Let \(\mathcal{A} \) be a locally noetherian Grothendieck abelian category. Then the category \(\text{Fun}(\mathcal{G}_{\text{inj}}, \mathcal{A}) \) is locally noetherian.

Proof. The following argument has been suggested by Kai-Uwe Bux. Consider the functor \(\phi: \mathcal{G}_{\text{os}} \to (\mathcal{G}_{\text{inj}})^{op} \) which is the identity on objects and takes a map \(f: m \to n \) to \(f': n \to m \) given by \(f'(i) = \min f^{-1}(i) \). This functor is contravariantly finite, since for each integer \(n \geq 0 \) the morphism
\[
\Gamma_{\text{os}}(\cdot, n) \times \mathfrak{S}_n \longrightarrow \Gamma_{\text{inj}}(n, \cdot)
\]
which sends a pair \((f, \sigma)\) to \(f'\sigma \) is an epimorphism.

It follows from Proposition 6.3 that \(\text{Fun}(\mathcal{G}_{\text{inj}}, \mathcal{A}) \) is locally noetherian, since \(\text{Fun}(\Gamma_{\text{os}}^{op}, \mathcal{A}) \) is locally noetherian by Proposition 7.3 and Theorem 5.3.

References

[1] M. Auslander and S. O. Smalø, Preprojective modules over Artin algebras, J. Algebra 66 (1980), no. 1, 61–122.
[2] T. Church, J. S. Ellenberg, B. Farb, R. Nagpal, FI-modules over Noetherian rings, Geom. Top., to appear, arXiv:1210.1852.
[3] A. Djament, La conjecture artinienne, d’après Steven Sam, preprint, May 2014.
[4] A. Djament, La propriété noethérienne pour les foncteurs entre espaces vectoriels, Séminaire Bourbaki, vol. 2014/2015.
[5] H. Krause and C. M. Ringel (eds.), Infinite length modules, Trends in Mathematics, Birkhäuser, Basel, 2000.
[6] A. Putman and S. V. Sam, Representation stability and finite linear groups, arXiv:1408.3694.
[7] S. V. Sam and A. Snowden, Gröbner methods for representations of combinatorial categories, arXiv:1409.1679.
[8] B. Stenström, Rings of quotients, Springer, New York, 1975.

Henning Krause, Fakultät für Mathematik, Universität Bielefeld, 33501 Bielefeld, Germany.

E-mail address: hkrause@math.uni-bielefeld.de