Efficacy and Safety of Angiotensin-Converting Enzyme Inhibitor in Combination with Angiotensin-Receptor Blocker in Chronic Kidney Disease Based on Dose: A Systematic Review and Meta-Analysis

Mingming Zhao†‡, Rumeng Wang†, Yi Yu†, Meiyiig Chang†, Sijia Ma†, Hanwen Zhang‡, Hua Qu‡ and Yu Zhang†

†Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China, ‡Beijing University of Chinese Medicine, Beijing, China, #Department of Statistics, Purdue University, West Lafayette, IN, America, ¶Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China, §National'MPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Beijing, China, ‡National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China

Background: The purpose of this meta-analysis was to evaluate the controversy of angiotensin-converting enzyme inhibitor (ACEI) in combination with angiotensin-receptor blocker (ARB) in the treatment of chronic kidney disease (CKD) based on dose.

Methods: PubMed, EMBASE, and Cochrane Library were searched to identify randomized controlled trials (RCTs) from inception to March 2020. The random effects model was used to calculate the effect sizes. Potential sources of heterogeneity were detected using sensitivity analysis and meta-regression.

Results: This meta-analysis of 53 RCTs with 6,375 patients demonstrated that in patients with CKD, ACEI in combination with ARB was superior to low-dose ACEI or ARB in reducing urine albumin excretion (SMD, −0.43; 95% CI, −0.67 to −0.19; p = 0.001), urine protein excretion (SMD, −0.22; 95% CI, −0.33 to −0.11; p < 0.001), and blood pressure (BP), including systolic BP (WMD, −2.89; 95% CI, −3.88 to −1.89; p < 0.001) and diastolic BP (WMD, −3.02; 95% CI, −4.46 to −1.58; p < 0.001). However, it was associated with decreased glomerular filtration rate (GFR) (SMD, −0.13; 95% CI, −0.24 to −0.02; p = 0.02) and increased rates of hyperkalemia (RR, 2.07; 95% CI, 1.55 to 2.76; p < 0.001) and hypotension (RR, 2.19; 95% CI, 1.35 to 3.54; p = 0.001). ACEI in combination with ARB was more effective than high-dose ACEI or ARB in reducing urine albumin excretion (SMD, −0.84; 95% CI, −1.26 to −0.43; p < 0.001) and urine protein excretion (SMD, −0.24; 95% CI, −0.39 to −0.09; p = 0.002), without decrease in GFR (SMD, 0.02; 95% CI, −0.12 to 0.15; p = 0.78) and increase in rate of hyperkalemia (RR, 0.94; 95% CI, 0.65 to 1.37; p = 0.76). Nonetheless, the combination did not decrease the BP and increased the rate of hypotension (RR, 3.95; 95% CI, 1.13 to 13.84; p = 0.03) compared with high-dose ACEI or ARB.
Conclusion: ACEI in combination with ARB is superior in reducing urine albumin excretion and urine protein excretion. The combination is more effective than high-dose ACEI or ARB without decreasing GFR and increasing the incidence of hyperkalemia. Despite the risk of hypotension, ACEI in combination with ARB is a better choice for CKD patients who need to increase the dose of ACEI or ARB (PROSPERO CRD42020179398).

Keywords: ACEI in combination with ARB, dose, chronic kidney disease, urine albumin excretion, urine protein excretion, glomerular filtration rate, hyperkalemia, hypotension

INTRODUCTION

Chronic kidney disease, characterized by a reduced glomerular filtration rate (GFR) and/or increased urinary albumin excretion, is an increasing public health issue owing to its high prevalence and increased risk of end-stage renal disease, cardiovascular disease, and premature death (Matsushita et al., 2010). The prevalence of CKD is...
TABLE 1 | Characteristics of randomized controlled trials included in this meta-analysis.

Studies	Design	Renin-angiotensin-aldosterone system blockade	N (T/C)	Male (%)	Age (Y)	Duration (months)	GFR (mL/min or mL/min/1.73 m²)	Albuminuria or proteiniuria (g of creatinine or g/24 h)	SBP (mm Hg)	DBP (mm Hg)
Saglimbene et al. (2018)	Parallel-arm	ACEI + ARB	416/413	27.52 28.75 63.40 62.20 32.4 67.85 0.16*	137.90 80.50					
Schier et al. (2014)	Parallel-arm	Lisinopril + telmisartan	273/285	51.65 49.82 37.00 36.30 60 91.50 0.02*	NR NR					
Zweich and Bruzda-Zweich (2013)	Parallel-arm	Ramlip 5 mg + losartan 50 mg	47/47	61.70 59.57 59.90 60.10 4 NR	NR NR					
Nakamura et al. (2013)	Parallel-arm	Lisinopril 5 mg + losartan 50 mg	14/14	71.43 64.29 61.70 61.40 12 87.75 0.25*	130.00 79.00					
Fried et al. (2010)	Parallel-arm	Lisinopril 40 mg + losartan 100 mg	724/724	98.76 99.59 64.50 64.70 26.4 53.65 1.04*	136.95 72.65					
Fernandez juarez et al. (2013)	Parallel-arm	Lisinopril 5 mg + irbesartan 75 mg	70/35	80.00 70.00 63.00 67.90 32 49.00 1.20	152.50 80.50					
Titan et al. (2011)	Parallel-arm	Enalapril 40 mg + losartan 100 mg	28/28	71.43 53.57 58.10 58.00 4 49.87 3.22	148.65 80.45					
Slagman et al. (2011)	Crossover	Lisinopril 40 mg + valsartan 320 mg	52/52	82.69 51.50 1.5 70.50 0.16	131.00 76.25					
Saglimbene et al. (2018)	Parallel-arm	Lisinopril + valsartan 320 mg	52/52	82.69 51.50 1.5 70.50 0.16	131.00 76.25					
Meier et al. (2011)	Crossover	Lisinopril 100 mg + losartan 200 mg	20/20	50.00 53.00 2 67.00 6.39	138.50 83.50					
Ohishi et al. (2010)	Parallel-arm	Imidapril 10 mg + valsartan 160 mg	18/19	86.49 64.00 4 41.05 1.70	106.00 86.00					
Cice et al. (2010)	Parallel-arm	ACEI + telmisartan 80 mg	165/167	53.33 54.49 62.70 62.80 36 NR	NR NR					
Mehdi et al. (2009)	Parallel-arm	Lisinopril 80 mg + losartan 100 mg	26/27	90.00 44.44 52.30 49.30 36 46.33 2.31	140.46 75.47					
Krairittichai and Chaisuvannarat. (2009)	Parallel-arm	Lisinopril 5 mg + irbesartan 75 mg	40/40	53.75 55.67 6 49.87 3.22	148.65 80.45					
Zhu et al. (2008)	Parallel-arm	Lisinopril 40 mg + valsartan 80 mg	27/28	55.56 57.14 56.00 55.00 3 NR	0.33*					
Enalapril 40 mg + telmisartan 80 mg	27/28	55.56 57.14 56.00 57.00 3 NR	0.33*							
Mor-Takeyama et al. (2008)	Parallel-arm	Lisinopril 20 mg + valsartan 80 mg	39/38	56.41 63.16 36.90 37.80 36 94.35 1.35	134.15 82.60					
Menne et al. (2008)	Parallel-arm	Lisinopril 20 mg + valsartan 320 mg	40/47	77.50 70.21 59.20 59.70 7.5 113.05 NR	151.70 90.35					
Knudsen et al. (2008)	Parallel-arm	Lisinopril 20 mg + candesartan 16 mg	25/26	72.00 80.77 56.00 57.00 12 117.50 NR	140.50 83.00					
Ogawa et al. (2007)	Parallel-arm	Temocapril 2 mg + candesartan 4 mg	37/34	48.65 47.06 61.80 62.00 24 NR	0.24*					
Nakamura et al. (2007)	Parallel-arm	Temocapril 2 mg + candesartan 4 mg	37/34	48.65 47.06 61.80 62.00 24 NR	0.24*					
Bakris et al. (2007)	Parallel-arm	Ramlip 10 mg + irbesartan	204/201	60.29 63.68 65.50 65.80 5 NR	163.50 89.50					
Abe et al. (2007)	Parallel-arm	ACEI + losartan 25 mg or 50 mg	14/20	78.57 50.00 59.50 59.80 12 NR	1.35*					
Song et al. (2006)	Parallel-arm	Ramipril 5 mg + candesartan 8 mg	21/21	52.38 49.00 4 NR	4.10					
Sengul et al. (2006)	Parallel-arm	Lisinopril 20 mg + telmisartan 80 mg	47/48	38.30 35.42 50.00 50.70 7 95.15 NR	0.16*					
Horita et al. (2006)	Parallel-arm	Temocapril 1 mg + losartan 12.5 mg	13/14	53.85 57.14 38.00 43.00 12 NR	0.38					
Chrysostomou et al. (2006)	Parallel-arm	Ramipril 5 mg + candesartan 8 mg	13/16	58.35 56.25 38.00 42.00 12 NR	0.38					
Atnaca and Gedik. (2006)	Parallel-arm	Lisinopril 10 mg + losartan 50 mg	8/9	37.50 44.44 55.10 55.10 12 NR	0.38					
Scaglione et al. (2005)	Parallel-arm	Ramlip 5 mg + losartan 50 mg	17/17	47.06 47.06 58.00 58.00 4 NR	0.45*					
Matos et al. (2005)	Crossover	Perindopril 8 mg + irbesartan 300 mg	20/20	25.00 54.74 4 NR	0.45*	162.00 80.00				
(Continued on following page)										
Table 1: Characteristics of randomized controlled trials included in this meta-analysis.

Studies	Design	Renin-angiotensin-aldosterone system blockade	N (T/C)	Male (%)	Age (Y)	Duration (months)	GFR (mL/min or mL/min/1.73 m²)	Albuminuria or proteinuria (g/g or g/24 h)	SBP (mm Hg)	DBP (mm Hg)
Esnault et al. (2005)	Crossover	Ramipril 5 mg + valsartan 80 mg	18/18	66.67	49.30	1	NR	3.71	149.06	83.00
Rutzkiowski et al. (2004)	Crossover	Valsartan 160 mg	18/18	66.67	49.30	1	NR	3.71	149.06	83.00
Rutkowski et al. (2004)	Parallel-arm	Lisinopril 20 mg + candesartan 16 mg	23/23	95.65	76.50	1	77.00	NR	142.00	79.80
Nakao et al. (2004)	Parallel-arm	Lisinopril 20 mg + candesartan 16 mg	23/23	95.65	76.50	1	77.00	NR	142.00	79.80
Morgan et al. (2004)	Parallel-arm	Lisinopril 20 mg + candesartan 16 mg	11/10	45.45	40.00	6	92.00	0.74	122.50	76.50
Horita et al. (2004)	Parallel-arm	Ramipril 5–7.5 mg + candesartan 4–8 mg	12/12	83.33	67.90	6	70.00	3.95	151.50	90.50
Song et al. (2003)	Parallel-arm	Lisinopril 40 mg + candesartan 16 mg	15/15	73.33	56.25	18	102.60	NR	123.00	75.00
Rossing et al. (2002)	Parallel-arm	Lisinopril 20 mg + candesartan 16 mg	16/16	56.25	66.67	6	100.00	3.90	134.00	82.00
Kuncard-smith et al. (2002)	Parallel-arm	Lisinopril 40 mg + candesartan 16 mg	16/16	56.25	66.67	6	100.00	3.90	134.00	82.00
Faghi et al. (2002)	Crossover	Ramipril 5 mg + valsartan 80 mg	18/18	66.67	49.30	1	NR	3.71	149.06	83.00
Kim et al. (2002)	Crossover	Lisinopril 20 mg + candesartan 16 mg	23/23	95.65	76.50	1	77.00	NR	142.00	79.80
Campbell et al. (2003)	Crossover	Lisinopril 5 mg + candesartan 16 mg	11/10	45.45	40.00	6	92.00	0.74	122.50	76.50
Rossing et al. (2002)	Parallel-arm	Lisinopril 20 mg + candesartan 16 mg	16/16	56.25	66.67	6	100.00	3.90	134.00	82.00
Nakamura et al. (2002)	Parallel-arm	Lisinopril 20 mg + candesartan 16 mg	16/16	56.25	66.67	6	100.00	3.90	134.00	82.00
Luo et al. (2002)	Parallel-arm	Lisinopril 20 mg + candesartan 16 mg	16/16	56.25	66.67	6	100.00	3.90	134.00	82.00
Kim et al. (2002)	Crossover	Lisinopril 20 mg + candesartan 16 mg	23/23	95.65	76.50	1	77.00	NR	142.00	79.80
Ferrini et al. (2002)	Crossover	Lisinopril 20 mg + candesartan 16 mg	16/16	56.25	66.67	6	100.00	3.90	134.00	82.00
Bergnet et al. (2002)	Crossover	Lisinopril 20 mg + candesartan 16 mg	16/16	56.25	66.67	6	100.00	3.90	134.00	82.00
Tūtūnciu et al. (2001)	Parallel-arm	Lisinopril 20 mg + candesartan 16 mg	16/16	56.25	66.67	6	100.00	3.90	134.00	82.00
Agarwal et al. (2001)	Parallel-arm	Lisinopril 20 mg + candesartan 16 mg	16/16	56.25	66.67	6	100.00	3.90	134.00	82.00

Abbreviations: N, Number of patients; T, treatment group; C, control group; Y, year; sCr, serum creatinine; GFR, glomerular filtration rate; SBP, systolic blood pressure; DBP, diastolic blood pressure; ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin-receptor blocker; NR, not reported.

*Value represents urinary albumin excretion.

Mean arterial pressure.
estimated to be 8–16% worldwide (Jha et al., 2013). CKD is a great global-health challenge, especially in low- and middle-income countries (Mills et al., 2015). National and international efforts for the prevention, detection, and treatment of CKD are needed to reduce its morbidity and mortality worldwide.

Hypertension commonly coexists with CKD, and its prevalence progressively increases with decline in kidney function (Muntner et al., 2010; Egan et al., 2014). According to recent guidelines, angiotensin-converting enzyme inhibitor (ACEI) or angiotensin-receptor blocker (ARB) should be the drugs of first choice for CKD (Kalaitzidis and Elisaf, 2018). The 2020 Kidney disease: Improving Global Outcomes (KDIGO) guideline recommends that treatment with an ACEI or an ARB be initiated in patients with diabetes, hypertension, and albuminuria and that these medications be titrated to the highest approved dose that is tolerated. The 2012 KDIGO guideline on IgA nephropathy recommends long-term ACEI or ARB treatment when proteinuria is >1 g/d, with up-titration of the drug depending on blood pressure (BP), and to achieve proteinuria <1 g/day. However, some CKD patients still have proteinuria after ACEI or ARB treatment (Igarashi et al., 2006; Slagman et al., 2011). Previous studies have suggested that the additive antiproteinuric and hypotensive effects of combined renin–angiotensin–aldosterone system (RAAS) blockade were superior to single RAAS blockade in CKD (Susantitaphong et al., 2013). Nonetheless, the use of ACEI in combination with ARB is not supported by all recent guidelines owing to concerns regarding adverse events such as renal dysfunction, hyperkalemia, and symptomatic hypotension in high-risk CKD patients (Estares et al., 2015). Whether ACEI in combination with ARB or increasing the dose of ACEI or ARB is more effective in the treatment of CKD remains controversial. Therefore, the present meta-analysis of randomized controlled trials (RCTs) was designed to assess the efficacy and safety of ACEI in combination with ARB in patients with CKD based on the dose.

METHODS

Data Sources and Searches
We searched PubMed, EMBASE, and Cochrane Library from inception to March 2020 to retrieve relevant articles. Two reviewers (Mingming Zhao and Rumeng Wang) independently screened the titles and abstracts of all electronic citations and full-text articles were retrieved for comprehensive review and independently rescreened. If a disagreement occurred between them, it was resolved by consulting with a third investigator (Yu Zhang). Medical Subject Headings and free-text terms were used in each database with the following relevant keywords: “diabetic nephropathy,” “hypertensive nephropathy,” “glomerular disease,” “proteinuria,” “renal insufficiency,” “kidney disease,” “chronic renal failure,” “chronic kidney disease,” “drug therapy combination,” “renin–angiotensin system,” “angiotensin-converting enzyme inhibitor,” and “angiotensin receptor blocker” (Supplementary Material S1).

TABLE 2 | Summary effect of ACEI in combination with ARB vs. ACEI or ARB.

Outcome	No. study arms	No. participants	Random-effects model	Assessment of heterogeneity	Publication bias (p-value)			
			95% CI	p-value	I² (%)	p-value	Begg’s test	Egger’s test
ACEI in combination with ARB vs. low-dose ACEI or ARB								
Urine albumin excretion (g/g of creatinine or g/24 h)	14	472	SMD: −0.43 (−0.67, −0.19)	0.001	39.0	0.07	0.01	0.01
Urine protein excretion (g/g of creatinine or g/24 h)	26	1,321	SMD: −0.22 (−0.33, −0.11)	<0.001	0.0	0.83	0.09	0.92
Glomerular filtration rate (mL/min or mL/min/1.73m²)	31	2,161	SMD: −0.13 (−0.24, −0.02)	0.02	0.0	1.00	0.87	0.79
Systolic blood pressure (mmHg)	41	1,727	WMD: −2.89 (−3.88, −1.89)	<0.001	0.0	0.87	0.17	0.06
Diastolic blood pressure (mmHg)	41	1,727	WMD: −3.02 (−4.46, −1.58)	<0.001	72.5	<0.001	0.07	<0.001
Development of hyperkalemia	16	5,079	RR: 2.07 (1.55, 2.76)	<0.001	0.0	0.59	0.50	0.81
Development of hypertension	15	2,590	RR: 2.19 (1.35, 3.54)	0.001	0.0	0.87	0.37	0.11
ACEI in combination with ARB vs. high-dose ACEI or ARB								
Urine albumin excretion (g/g of creatinine or g/24 h)	6	446	SMD: −0.84 (−1.26, −0.43)	<0.001	75.4	0.001	0.71	0.02
Urine protein excretion (g/g of creatinine or g/24 h)	17	851	SMD: −0.24 (−0.39, −0.09)	0.002	11.4	0.32	0.04	0.02
Glomerular filtration rate (mL/min or mL/min/1.73m²)	16	866	SMD: 0.02 (−0.12, 0.15)	0.78	0.0	0.80	0.30	0.98
Systolic blood pressure (mmHg)	25	1,369	WMD: −0.19 (−1.28, 0.91)	0.74	0.0	0.53	0.94	0.01
Diastolic blood pressure (mmHg)	25	1,369	WMD: −0.57 (−1.36, 0.22)	0.16	0.0	0.91	0.91	0.82
Development of hyperkalemia	6	441	RR: 0.94 (0.65, 1.37)	0.16	0.0	0.71	0.26	0.02
Development of hypertension	4	214	RR: 3.95 (1.13, 13.84)	0.03	0.0	0.93	0.73	0.82
Study Selection
We included studies that met the following inclusion criteria: 1) patients (>18 years old) with CKD (KDIGO: CKD is defined as abnormalities of kidney structure or function, present for >3 months, with implications for health); 2) the intervention group received ACEI in combination with ARB (dual therapy), and the comparison group received ACEI or ARB (single therapy); 3) the outcomes involved albuminuria, proteinuria, GFR (creatinine clearance or estimated GFR), BP, hyperkalemia (>5.5 mmol/L or as defined in the individual studies), or hypotension (as defined in the individual studies); 4) randomized, controlled, crossover, or parallel trials; 5) the articles were published in English language.

Data Extraction and Quality Assessment
Two reviewers (Mingming Zhao and Rumeng Wang) extracted data independently and disagreements were resolved by consulting with a third investigator (Yu Zhang). The following data were extracted from each of the published studies included in our review: the first author’s name, publication year, study design, intervention, dose of ACEI or ARB (low-dose: single dose compared with the same RAAS blockade in ACEI in combination with ARB group; high-dose: more than single dose compared with the same RAAS blockade in ACEI in combination with ARB group), sample size, percentage of men, mean age of subjects, duration of intervention, GFR, urine albumin or protein excretion rate, systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure, hyperkalemia, and hypotension. The methodological quality of the included studies was evaluated according to the recommendation of the Cochrane Handbook, including random sequence generation, allocation concealment, blinding of participants and personnel, blinding of outcome assessment, incomplete outcome data, selective reporting, and other bias. Marked 1 point when the risk was low.

Data Synthesis and Analysis
The random effects model was used to calculate the effect sizes of eligible studies. For continuous outcomes, we calculated a weighted mean difference (WMD) or standard mean difference (SMD) with a 95% confidence interval (CI). For dichotomous outcomes, we estimated the relative risk (RR) with a 95% CI.
Heterogeneity of the included studies was described with the I^2 index and the chi-square test. $I^2 \geq 50\%$ and $p < 0.05$ were used to indicate medium-to-high heterogeneity. We detected the potential sources of heterogeneity using meta-regression based on a priori selected study characteristics, including baseline of GFR, duration of intervention, mean age of subjects, and quality of included studies. Sensitivity analysis was performed to assess the robustness of the pooled results. The publication bias was evaluated using Begg’s test and Egger’s test. Statistical analysis was performed using Stata (version 15.1). The methodological quality of the included studies was assessed using RevMan5.3. We have registered the protocol for the present systematic review and meta-analysis, and the registration number in PROSPERO is CRD42020179398.

RESULTS

Characteristics and Quality of the Studies

A total of 24,880 studies (18,664 from PubMed, 4,034 from EMBASE, and 2,182 from the Cochrane Library) were identified, of which 53 studies met the inclusion criteria (Figure 1A).

The characteristics of the individual trials are presented in Table 1. Fifty-three studies with 6,375 patients consisted of 19 crossover and 34 parallel-arm RCTs. The sample size varied from 10 to 1,448. The mean age of the subjects of the trials ranged from 31 to 76 years, and the duration of intervention ranged from 1 to 60 months. Twenty-eight studies enrolled patients with GFR ≥ 60 mL/min or mL/min/1.73 m² and eight studies enrolled patients with GFR <60 mL/min or mL/min/1.73 m². Seventeen
studies did not report the subjects’ baseline kidney function. Fourteen studies were of fair quality (score 1–3) and 39 were of good quality (score 4–7) (Figure 1B).

Efficacy and Safety of ACEI in Combination with ARB vs. Low-Dose ACEI or ARB

Compared with low-dose ACEI or ARB, ACEI in combination with ARB significantly reduced urine albumin excretion (SMD, −0.43; 95% CI, −0.67 to −0.19; p = 0.001), urine protein excretion (SMD, −0.22; 95% CI, −0.33 to −0.11; p < 0.001), and BP (SBP: WMD, −2.89; 95% CI, −3.88 to −1.89; p < 0.001; DBP: WMD, −3.02; 95% CI, −4.46 to −1.58; p < 0.001) (Table 2; Figures 2–4). However, dual therapy was associated with decreased GFR (SMD, −0.13; 95% CI, −0.24 to −0.02; p = 0.02), increased rates of hyperkalemia (RR, 2.07; 95% CI, 1.55 to 2.76; p < 0.001) and hypotension (RR, 2.19; 95% CI, 1.35 to 3.54; p = 0.001) compared with low-dose ACEI or ARB (Table 2; Figures 5–7).

Efficacy and Safety of ACEI in Combination with ARB vs. High-Dose ACEI or ARB

Compared with high-dose ACEI or ARB, ACEI in combination with ARB significantly reduced urine albumin excretion (SMD, −0.84; 95% CI, −1.26 to −0.43; p < 0.001) and urine protein excretion (SMD, −0.24; 95% CI, −0.39 to −0.09; p = 0.002) (Table 2; Figures 8, 9). The combination did not decrease SBP (WMD, −0.19; 95% CI, −1.28 to 0.91; p = 0.74) and DBP (WMD, −0.57; 95% CI, −1.36 to 0.22; p = 0.16) (Table 2; Figure 10). ACEI in combination with ARB was not associated with decreased GFR (SMD, 0.02; 95% CI, −0.12 to 0.15; p = 0.78) and an increased rate of hyperkalemia (RR, 0.94; 95% CI, 0.65 to 1.37; p = 0.76) compared with high-dose ACEI or ARB (Table 2; Figures 11, 12). However, dual therapy was associated with an increased rate of hypotension (RR, 3.95; 95% CI, 1.13 to 13.84; p = 0.03) (Table 2; Figure 13).

Sensitivity Analysis and Meta-Regression

To ensure reliability of the present meta-analysis, we evaluated the robustness of the results (Table 2) using sensitivity analysis, which indicated that the results of the meta-analysis were robust. Significant heterogeneities were observed for DBP and urine albumin excretion (Table 2). We detected the potential sources of heterogeneity using meta-regression based on a priori selected study characteristics, including the mean age of subjects, duration of intervention, baseline of GFR, and quality of included studies. A significant heterogeneity was observed for the outcome of urine albumin excretion (Table 2, summary effect of ACEI in combination with ARB vs. high-dose ACEI or ARB, I² = 75.4%, p = 0.001), which was dependent on the mean age of subjects (exp, 1.30; 95% CI, 1.04 to 1.63; adjusted R² = 89.09%; p = 0.03) and duration of intervention (exp, 1.27; 95% CI, 1.09 to 1.48; adjusted R² = 100.00%; p = 0.01). Using meta-regression, it was found that the heterogeneity of DBP (Table 2, summary effect of ACEI in combination with ARB vs. low-dose ACEI or ARB) was not associated with a priori selected study characteristics.

Publication Bias

Begg’s test and Egger’s test were used to evaluate publication bias based on the key outcomes of the trials included in the
The results suggested less susceptibility to publication bias, except for urine albumin excretion and urine protein excretion (Table 2).

DISCUSSION

In the present meta-analysis of 53 RCTs encompassing 6,375 participants, we aimed to compare the efficacy and safety of ACEI in combination with ARB vs. low-dose and high-dose ACEI or ARB. We demonstrated that ACEI in combination with ARB was superior to low-dose ACEI or ARB in reducing urine albumin excretion, urine protein excretion, and BP, including SBP and DBP. However, the combination was associated with a decreased GFR and increased rates of hyperkalemia and hypotension. ACEI in combination with ARB was more effective in reducing urine albumin excretion and urine protein excretion than high-dose ACEI or ARB, without decreased GFR and increased rate of hyperkalemia. Nonetheless, the combination did not decrease the BP and increased the rate of hypotension compared with the high-dose ACEI or ARB.

Proteinuria and hypertension are risk factors for CKD progression (Liu and Lv, 2019; Nagai et al., 2019). Proteinuria is also an independent predictor of all-cause mortality. A
combination of severely decreased GFR and proteinuria further increases the risk of all-cause mortality (Wu et al., 2018). For CKD patients with proteinuria, the updated hypertension guidelines recommend a BP goal of <130/80 mmHg (Hamrahian, 2017). More-intensive BP control is associated with a reduced risk of all-cause mortality compared with less-intensive BP goals in this high-risk population (Jurashcek and Appel, 2018). Nevertheless, proportions with uncontrolled BP were greater in those with CKD than in those without CKD, and multiple medications and ACEI/ARB were associated with less uncontrolled BP (Plantinga et al., 2009). It should be emphasized that to lower albuminuria and achieve BP goals, moderate to high doses of ACEI or ARB are often required. However, ACEI or ARB may only reduce proteinuria by up to 40–50% in a dose-dependent manner, particularly if the patient complies with dietary salt restriction (Nakamura et al., 2000). This leads to a recommendation to use a more complete RAAS blockade to maximize kidney protection and improve outcomes. In order to study the effect of dose on ACEI in combination with ARB, we defined low-dose and high-dose as relative values. Compared with the same RAAS blocker in ACEI in combination with ARB group, a low-dose was defined as single dose, and the high-dose was defined as greater than single dose. According to our meta-analysis, ACEI in combination with ARB was superior to low-dose and high-dose ACEI or ARB in reducing urine albumin excretion and urine protein excretion. It is more effective to use ACEI in combination with ARB than to increase the dose of ACEI or ARB.

Although experimental and clinical studies have demonstrated that dual RAAS blockade therapy is more effective in reducing proteinuria and preventing structural lesions than either drug alone (Susantitaphong et al., 2013; Zhang et al., 2017), it is associated with higher incidences of adverse effects than monotherapy. The key safety issues associated with ACEI in combination with ARB are hypotension, which may lead to syncope, and impaired kidney function, which may lead to
FIGURE 7 | Comparison of ACEI in combination with ARB vs. low-dose ACEI or ARB for development of hypotension.

FIGURE 8 | Comparison of ACEI in combination with ARB vs. high-dose ACEI or ARB for urine albumin excretion (g/g of creatinine or g/24 h).
hyperkalemia (Oktaviono and Kusumawardhani, 2020). In this meta-analysis, although ACEI in combination with ARB was associated with a decrease in GFR and increased incidences of hyperkalemia and hypotension relative to low-dose ACEI or ARB, dual therapy did not decrease GFR nor increase the incidence of hyperkalemia compared with high-dose ACEI or ARB. Except for hypotension, the safety of ACEI in combination with ARB was equivalent to that of high-dose ACEI or ARB, and hypotension in some patients is temporary and mild (Song et al., 2006; Meier et al., 2011).

In recent years, the use of ACEI in combination with ARB has raised controversies, and no systemic review and meta-analysis have analyzed the efficacy and safety of the use of ACEI in combination with ARB in patients with CKD. This meta-analysis evaluated the effect of ACEI in combination with ARB on kidney-related endpoints, BP, and adverse events based on the dose. However, there are certain limitations to this study. First, only a few RCTs have evaluated the efficacy and safety of ACEI in combination with ARB vs. high-dose ACEI or ARB. More large-scale studies are needed to further clarify the application prospect of ACEI in combination with ARB in CKD. Second, some of the studies included in the present analysis were of a fair quality. Third, the included studies were heterogeneous; we performed sensitivity analysis and meta-regression to warrant the reliability of the present meta-analysis. Fourth, most of the included studies were aimed at CKD patients with a normal GFR or only a mildly reduced GFR. There are few with moderately reduced renal function and none with severely reduced renal function. The results of this meta-analysis are only applicable to CKD patients with a fairly maintained kidney function.

CONCLUSION

In conclusion, ACEI in combination with ARB is superior to low-dose and high-dose ACEI or ARB in reducing urine albumin excretion and

FIGURE 9 | Comparison of ACEI in combination with ARB vs. high-dose ACEI or ARB for urine protein excretion (g/g of creatinine or g/24 h).
FIGURE 10 | Comparison of ACEI in combination with ARB vs. high-dose ACEI or ARB for blood pressure. (A) systolic blood pressure (mmHg); (B) diastolic blood pressure (mmHg).

FIGURE 11 | Comparison of ACEI in combination with ARB vs. high-dose ACEI or ARB for glomerular filtration rate (mL/min or mL/min/1.73m²).
Although ACEI in combination with ARB is associated with a decreased GFR and increased rates of hyperkalemia and hypotension compared with low-dose ACEI or ARB, the combination is more effective than high-dose ACEI or ARB without decreasing GFR and increasing the incidence of hyperkalemia. Despite the risk of hypotension, ACEI in combination with ARB is a better choice for CKD patients who need to increase the dose of ACEI or ARB. The results of this meta-analysis are only applicable to CKD patients with a fairly maintained kidney function.
DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/Supplementary Material; further inquiries can be directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

Research idea and study design: MZ, RW, HQ, and YZ; data acquisition: MZ, RW, YY, MG, and SM; data analysis/interpretation: MZ, RW, YY, HZ, HQ, and YZ; statistical analysis: MZ, RW, MG, SM, and HZ; supervision or mentorship: MZ, RW, HQ, and YZ. All authors contributed to manuscript revision, read, and approved the submitted version.

REFERENCES

Abe, H., Minatoguchi, S., Ohashi, H., Murata, I., Minagawa, T., Okuma, T., et al. (2007). Renoprotective effect of the addition of losartan to ongoing treatment with an angiotensin converting enzyme inhibitor in type-2 diabetic patients with nephropathy. Hypertens. Res. 30 (10), 929–935. doi:10.1291/hypres.30.929

Agarwal, R. (2001). Add-on angiotensin receptor blockade with maximized ACE inhibition. Kidney Int. 59 (6), 2282. doi:10.1046/j.1523-1755.2001.00745.x

Atmaca, A., and Gedik, O. (2006). Effects of angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers, and their combination on microalbuminuria in normotensive patients with type 2 diabetes. Adv. Ther. 23 (4), 615. doi:10.1007/s00228-006-0049

Bakris, G. L., Ruijlopes, L., Locatelli, F., Praszyznyska, A., Pieke, B., de Champlain, J., et al. (2007). Treatment of microalbuminuria in hypertensive subjects with elevated cardiovascular risk: results of the IMPROVE trial. Kidney Int. 72 (7), 879. doi:10.1038/sj.ki.5002455

Berger, E. D., Bader, B. D., Ebert, C., Risler, T., and Erley, C. M. (2002). Reduction of proteinuria; combined effects of receptor blocker and low dose angiotensin-converting enzyme inhibition. J. Hypertens. 20 (4), 739. doi:10.1097/01.jht.000008472-200204000-00033

Campbell, R., Sangalli, F., Pertucci, E., Aros, C., Viscarra, C., Perina, A., et al. (2003). Effects of combined ACE inhibition and angiotensin II antagonist treatment in human chronic nephropathies. Kidney Int. 63 (3), 1094. doi:10.1046/j.1523-1755.2003.00832.x

Chrysostomou, A., Pedagogos, E., MacGregor, L., and Becker, G. J. (2006). Double-blind, placebo-controlled study on the effect of the aldosterone receptor antagonist spironolactone in patients who have persistent proteinuria and are on long-term angiotensin-converting enzyme inhibitor therapy, with or without an angiotensin II receptor blocker. Cmaj 1 (2), 256. doi:10.2215/CJN.01040905

Cice, G., Di Benedetto, A., D’Isa, S., D’Andrea, A., Marcelli, D., Gatti, E., et al. (2010). Effects of telmisartan added to angiotensin-converting enzyme inhibitors on mortality and morbidity in hemodialysis patients with chronic heart failure. J. Am. Coll. Cardiol. 56 (21), 1701–1708. doi:10.1016/j.jacc.2010.03.105

Egan, B. M., Li, J., Hutchison, F. N., and Ferdinand, K. C. (2014). Hypertension in the United States, 1999 to 2012. Circulation 130 (19), 1692–1699. doi:10.1161/circulationaha.114.010676

Essault, V. L. M., Ekhlas, A., Delcroix, C., Moutel, M.-G., and Nguyen, J.-M. (2005). Diuretic and enhanced sodium restriction results in improved antiproteinuric response to RAS blocking agents. Jasn 16 (2), 474. doi:10.1611/jasn.2004080505

Esteras, R., Perez-Gomez, M. V., Rodriguez-Osorio, L., Ortiz, A., and Fernandez-Fernandez, B. (2015). Combination use of medicines from two classes of renin-angiotensin system blocking agents: risk of hyperkalemia, hypotension, and impaired renal function. Ther. Adv. Drug Saf. 6 (4), 166–176. doi:10.1177/2042098615589995

Fernandez-Juarez, G., Luhe, J., Barrio, V., de Vinuesa, S. G., Praga, M., Goicochea, M., et al. (2013). Effect of dual blockade of the renin-angiotensin system on the progression of type 2 diabetic nephropathy: a randomized trial. Am. J. kidney Dis. 61 (2), 211. doi:10.1053/j.jkd.2012.07.011

Ferrari, P., Marti, H.-P., Pfister, M., and Frey, F. J. (2002). Additive antiproteinuric effect of combined ACE inhibition and angiotensin II receptor blockade. J. Hypertens. 20 (1), 125–130. doi:10.1097/00004872-200201000-00018

Fried, L. F., Emanuele, N., Zhang, J. H., Brophy, M., Conner, T. A., Duckworth, W., et al. (2013). Combined angiotensin inhibition for the treatment of diabetic nephropathy. N. Engl. J. Med. 369 (20), 1892. doi:10.1056/NEJMoa1303154

Hamrahan, S. M. (2017). Management of hypertension in patients with chronic kidney disease. Curr. Hypertens. Rep. 19 (5), 43. doi:10.1007/s11906-017-0739-9

Horita, Y., Tadokoro, M., Taura, K., Suyama, N., Taguchi, T., Miyazaki, M., et al. (2004). Low-dose combination therapy with temocapril and losartan reduces proteinuria in normotensive patients with immunoglobulin A nephropathy. Hypertens. Res. 27 (12), 963. doi:10.1291/hypres.27.963

Horita, Y., Taura, K., Taguchi, T., Furu, A., and Kohno, S. (2006). Aldosterone breakthrough during therapy with angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers in proteinuric patients with immunoglobulin A nephropathy. Nephrology 11 (5), 462. doi:10.1111/j.1440-1797.2006.00665.x

Igarashi, M., Hata, Y., Kadomoto, Y., and Tomimaga, M. (2006). Dual blockade of angiotensin II with enalapril and losartan reduces proteinuria in hypertensive patients with type 2 diabetes. Endocr. J. 53 (4), 493. doi:10.1507/endocrj.06-k025

Jacobsen, P., Andersen, S., Rossing, K., Hansen, B. V., and Parving, H.-H. (2002). Dual blockade of the renin-angiotensin system in type 1 patients with diabetic nephropathy/Nephrol. Dial. Transplant. 17 (6), 1019–1024. doi:10.1093/ndt/17.6.1019

Jacobsen, P., Andersen, S., Jensen, B. R., and Parving, H. H. (2003a). Additive effect of ACE inhibition and angiotensin II receptor blockade in type I diabetic patients with diabetic nephropathy. J. Am. Soc. 14, 992–999. doi:10.1097/01.asn.0000054549.96193

Jacobsen, P., Andersen, S., Rossing, K., Jensen, B. R., and Parving, H.-H. (2003b). Dual blockade of the renin-angiotensin system versus maximal recommended dose of ACE inhibition in diabetic nephropathy. Kidney Int. 63 (5), 1874–1880. doi:10.1046/j.1523-1755.2003.00940.x

Jha, V., Garcia-Garcia, G., Iseki, K., Li, Z., Naicker, S., Plattner, B., et al. (2013). Chronic kidney disease: global dimension and perspectives. The Lancet 382 (9888), 260–272. doi:10.1016/s0140-6736(13)60687-x

Jurashvili, S. P., and Appel, L. J. (2018). Intensive blood pressure reduction lowers mortality in CKD. Nat. Rev. Nephrol. 14 (1), 5–6. doi:10.1038/nrneph.2017.154

Kalaitzidis, R. G., and Elisaf, M. S. (2018). Treatment of hypertension in chronic kidney disease. Curr. Hypertens. Rep. 20 (8), 64. doi:10.1007/s11906-018-0864-0

FUNDING

This work was supported by the National Natural Science Foundation of China (grant number 81873300); Capital Health Research and Development of Special (grant number 2018-2-4173); and Fundamental Research Funds for the Central public welfare research institutes (grant number ZZ11-023).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fphar.2021.638611/full#supplementary-material
Kanno, Y., Takenaka, T., Nakamura, T., and Suzuki, H. (2006). Add-on angiotensin receptor blocker in patients who have proteinuric chronic kidney diseases and are treated with angiotensin-converting enzyme inhibitors. Cjajn 1 (4), 730. doi:10.2215/CJN.01110905

Kim, M. I., Song, J. H., Suh, J. H., Lee, S. W., and Kim, G. A. (2003). Additive antiproteinuric effect of combination therapy with ACE inhibitor and angiotensin II receptor antagonist: differential short-term response between IgA nephropathy and diabetic nephropathy. Yonsei Med J. 44 (3), 463. doi:10.3349/yjm.2003.44.3.463

Kincade-Smith, P., Fairley, K., and Packham, D. (2002). Randomized controlled crossover study of the effect on proteinuria and blood pressure of adding an angiotensin II receptor antagonist to an angiotensin converting enzyme inhibitor in normotensive patients with chronic renal disease and proteinuria. Nephrol. Dial. Transplant. 17 (4), 597–601. doi:10.1093/ndt/17.4.597

Knudsen, S. T., Andersen, N. H., Poulsen, S. H., Eiskjaer, H., Hansen, K. W., Helleberg, K., et al. (2008). Pulse pressure lowering effect of dual blockade with candesartan and lisinopril vs. high-dose ACE inhibition in hypertensive type 2 diabetic subjects: a CALM II study post-hoc analysis. Am. J. Hypertens. 21 (2), 172. doi:10.1038/ajh.2007.2

Krairithitchai, U., and Chaisavanararat, V. (2009). Effects of dual blockade of renin-angiotensin system in type 2 diabetes mellitus patients with diabetic nephropathy. J. Med. Assoc. Thai 92 (5), 631

Liu, D., and Lv, L.-L. (2019). New understanding on the role of proteinuria in chronic kidney disease. Eur. J. Intern. Med. 61, 51–58. doi:10.1016/j.ejim.2018.07.019

Luño, J., Barrio, V., Goicoechea, M. Á., González, C., de Vinuesa, S. G., Gómez, F., Matos, J. P. S., Rodrigues, M. d. L., Ismerim, V. L., Boasquevisque, E. M., Genelhu, M. V., and Francischetti, E. A. (2005). Effects of dual blockade of the renin-angiotensin system with both drugs on the suppression of diabetic nephropathy. Hypertension. 45 (2), 413–419. doi:10.1161/01.HYP.0000168650.86301.26

Mehdi, U. F., Adams-Huet, B., Raskin, P., Vega, G. L., and Toto, R. D. (2009). Addition of angiotensin receptor blocker or mineralocorticoid antagonism to maximal angiotensin-converting enzyme inhibition in diabetic nephropathy. J. Am. Soc. Nephrol. 20 (12), 2641. doi:10.1681/ASN.2009070737

Meier, P., Maillard, M. P., Meier, J. R., Treemblay, S., Gauthier, T., and Burnier, M. (2011). Combining blockers of the renin-angiotensin system or increasing the dose of an angiotensin II receptor antagonist in proteinuric patients: a randomized triple-crossover study. J. Hypertens. 29 (6), 1228. doi:10.1097/ HJH.0b013e328346d5e5

Menje, J., Farsang, C., Deik, L., Klebs, S., Meier, M., Handrock, R., et al. (2008). Valsartan in combination with lisinopril versus the respective high dose monotherapies in hypertensive patients with microalbuminuria: the VALERIA trial. J. Hypertens. 26 (9), 1860. doi:10.1097/HJH.0b013e32830508aa

Mills, K. T., Xu, Y., Zhang, W., Bundy, J. D., Chen, C.-S., Kelly, T. N., et al. (2015). A systematic analysis of worldwide population-based data on the global burden of chronic kidney disease in 2010. Kidney Int. 88 (5), 950–957. doi:10.1016/j.kint.2015.230

Morgan, T., Anderson, A., Bertram, D., and MacInnis, R. J. (2004). Effect of candesartan and lisinopril alone and in combination on blood pressure and microalbuminuria. J. Renin Angiotensin Aldosterone Syst. 5 (2), 64. doi:10.1017/s1474214804000187

Mori-Takeyama, U., Minagochi, S., Murata, I., Fujisawa, H., Ozaki, Y., Ohno, M., et al. (2008). Dual blockade of the renin-angiotensin system versus maximal recommended dose of angiotensin II receptor blocker in chronic glomerulonephritis. Clin. Exp. Nephrol. 12 (1), 33. doi:10.1007/s12245-007-0013-6

Muntner, P., Anderson, A., Charleston, J., Chen, Z., Ford, V., Makos, G., et al. (2010). Hypertension awareness, treatment, and control in adults with CKD: results from the chronic renal insufficiency cohort (CRIC) study. Am. J. Kidney Dis. 55 (3), 441–451. doi:10.1053/j.ajkd.2009.09.014

Nagai, K., Yamagata, K., Iseki, K., Moriyama, T., Tsuruya, K., Fujimoto, S., et al. (2019). Antihypertensive treatment and risk of cardiovascular mortality in patients with chronic kidney disease diagnosed based on the presence of proteinuria and renal function: a large longitudinal study in Japan. PloS One 14 (12), e0225812. doi:10.1371/journal.pone.0225812

Nakamura, A., Shikata, K., Nakatou, T., Kitamura, T., Kajitani, N., Ogawa, D., et al. (2013). Combination therapy with an angiotensin-converting-enzyme inhibitor and an angiotensin II receptor antagonist ameliorates microinflammation and oxidative stress in patients with diabetic nephropathy. J. Diabetes Invest. 4 (2), 195–201. doi:10.1111/jdi.12004

Nakamura, T., Inoue, T., Sugaya, T., Kawagoe, Y., Suzuki, T., Ueda, Y., et al. (2007). Beneficial effects of olmesartan and temocapril on urinary liver-type fatty acid-binding protein levels in normotensive patients with immunoglobulin A nephropathy. Am. J. Hypertens. 20 (11), 1195. doi:10.1016/j.amjhype.2007.06.003

Nakamura, T., Ushiyama, C., Osada, S., Takahashi, Y., Shimada, N., Ebihara, I., et al. (2002). Combination therapy of trandolapril and candesartan cilexetil reduces microalbuminuria and urinary endothelin-1 excretion in patients with type 2 diabetes. Clin. Exp. Nephrol. 6 (3), 135–139. doi:10.1007/s101570000203

Ohishi, M., Takeya, Y., Tatara, Y., Yamamoto, K., Onishi, M., Maekawa, Y., et al. (2010). Strong suppression of the renin-angiotensin system has a renal-protective effect in hypertensive patients: high-dose ARB with ACE inhibitor (Hawaii study). Hypertens. Res. 33 (11), 1150. doi:10.1038/hr.2010.145

Oktaviono, Y. H., and Kusumawardhani, N. (2020). Hyperkalemia associated with angiotensin converting enzyme inhibitor or angiotensin receptor blockers in chronic kidney disease. Acta Med. Indones 52 (1), 74–79.

Plantinga, L. C., Miller, E. R., 3rd, Stevens, L. A., Saran, R., Messer, K., Flowers, N., et al. (2009). Blood pressure control among persons without and with chronic kidney disease. Hypertension 54 (1), 47–56. doi:10.1161/hypertensionaha.109.129841

Renke, M., Tylicki, L., Rutkowski, P., and Rutkowski, B. (2004). Low-dose angiotensin II receptor antagonists and angiotensin II-converting enzyme inhibitors alone or in combination for treatment of primary glomerulonephritis. Scand. J. Urol. Nephrol. 38 (5), 427. doi:10.1080/0365594010015687

Rosing, K., Christensen, P. K., Jensen, B. R., and Parving, H.-H. (2002). Dual blockade of the renin-angiotensin system in diabetic nephropathy: a randomized double-blind crossover study. Diabetes care 25 (1), 95–100. doi:10.2337/diacare.25.1.95

Rossing, K., Jacobson, P., Pietraszek, L., and Parving, H.-H. (2003). Renoprotective effects of adding angiotensin II receptor blocker to maximal recommended doses of ACE inhibitor in diabetic nephropathy: a randomized double-blind crossover trial. Diabetes care 26 (8), 2268–2274. doi:10.2337/diacare.26.8.2268

Rulope, L. M., Aldrigg, J. C., Ponticelli, C., Oddou-Stock, P., Botteri, F., and Mann, J. F. (2000). Safety of the combination of valsartan and benazepril in patients with chronic renal disease. J. Hypertens. 18 (1), 89–95. doi:10.1093/oxfordjournals.jhype.a023041

Saglimbene, V., Palmer, S. C., Ruoso, M., Natale, P., Maione, A., Nicolucci, A., et al. (2018). The long-term impact of renin-angiotensin system (RAS) inhibition on cardiorenal outcomes (LIRICO): a randomized, controlled trial. Jasn 29 (12), 2890. doi:10.1681/ASN.2018040443
Scaglione, R., Argano, C., Corrao, S., Chiara, T. D., Licata, A., and Licata, G. (2005). Transforming growth factor β1 and additional renoprotective effect of combination ACE inhibitor and angiotensin II receptor blocker in hypertensive subjects with minor renal abnormalities: a 24-week randomized controlled trial. J. Hypertens. 23 (3), 657. doi:10.1097/01.hjh.0000160225.01845.26

Schrier, R. W., Abebe, K. Z., Perrone, R. D., Torres, V. E., Braun, W. E., Steinman, T. I., et al. (2014). Blood pressure in early autosomal dominant polycystic kidney disease. N. Engl. J. Med. 371 (24), 2255. doi:10.1056/NEJMoa1402685

Segura, J., Praga, M., Campo, C., Rodicio, J. L., and Ruilope, L. M. (2003). Combination is better than monotherapy with ACE inhibitor or angiotensin receptor antagonist at recommended doses. J. Renin Angiotensin Aldosterone Syst. 4 (1), 43. doi:10.3317/jraas.2003.007

Sengul, A. M., Altuntas, Y., Kürklü, A., and Aydın, L. (2006). Beneficial effect of lisinopril plus telmisartan in patients with type 2 diabetes, microalbuminuria and hypertension. Diabetes Res. Clin. Pract. 71 (2), 210. doi:10.1016/j.diabres.2005.06.010

Slagman, M. C. J., Waanders, F., Hemmelder, M. H., Woittiez, A.-J., Janssen, W. M. T., Lambers Heerspink, H. J., et al. (2011). Moderate dietary sodium restriction added to angiotensin converting enzyme inhibition compared with dual blockade in lowering proteinuria and blood pressure: randomised controlled trial. BMJ 343, d4366. doi:10.1136/bmj.d4366

Song, J. H., Cha, S. H., Lee, H. J., Lee, S. W., Park, G. H., Lee, S. W., et al. (2006). Effect of low-dose dual blockade of renin-angiotensin system on urinary TGF-β in type 2 diabetic patients with advanced kidney disease. Nephrol. Dial. Transplant. 21 (3), 683–689. doi:10.1093/ndt/gfl310

Song, J. H., Lee, S. W., Suh, J. H., Kim, E. S., Hong, S. B., Kim, K. A., et al. (2003). The effects of dual blockade of the renin-angiotensin system on urinary protein and transforming growth factor-β excretion in 2 groups of patients with IgA and diabetic nephropathy. Cn 60 (5), 318. doi:10.5414/cn60318

Susantitaphong, P., Sewaralthahab, K., Balk, E. M., Eiam-ong, S., Madias, N. E., and Jaber, B. L. (2013). Efficacy and safety of combined vs. single renin-angiotensin-aldosterone system blockade in chronic kidney disease: a meta-analysis. Am. J. Hypertens. 26 (3), 424–441. doi:10.1093/ajh/hpt038

Titan, S. M., Jr., J. M. V., Dominguez, W. V., Barros, R. T., and Zatz, R. (2011). ACEI and ARB combination therapy in patients with macroalbuminuric diabetic nephropathy and low socioeconomic level: a double-blind randomized clinical trial. Cn 76 (4), 273. doi:10.5414/cn107013

Tütüncü, N. B., Gürlek, A., and Gedik, O. (2001). Efficacy of ACE inhibitors and ATII receptor blockers in patients with microalbuminuria: a prospective study. Acta Diabetol. 38 (4), 157. doi:10.1007/s592-001-8073-2

Wu, J., Jia, J., Li, Z., Pan, H., Wang, A., Guo, X., et al. (2018). Association of estimated glomerular filtration rate and proteinuria with all-cause mortality in community-based population in China: a Result from Kailuan Study. Sci. Rep. 8 (1), 2157. doi:10.1038/s41598-018-20554-3

Zhang, F., Liu, H., Liu, D., Liu, Y., Li, H., Tan, X., et al. (2017). Effects of RAAS inhibitors in patients with kidney disease. Curr. Hypertens. Rep. 19 (9), 72. doi:10.1007/s11906-017-0771-9

Zhu, S., Liu, Y., Wang, L., and Meng, Q. H. (2008). Transforming growth factor-1 is associated with kidney damage in patients with essential hypertension: renoprotective effect of ACE inhibitor and/or angiotensin II receptor blocker. Nephrol. Dial. Transplant. 23 (9), 2841–2846. doi:10.1093/ndt/gfn159

Zwiech, R., and Bruzda-Zwiech, A. (2013). The dual blockade of the renin-angiotensin system in hemodialysis patients requires decreased dialysate sodium concentration. Int. Urol. Nephrol. 45 (5), 1365. doi:10.1007/s11255-012-0320-z

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Zhao, Wang, Yu, Chang, Ma, Zhang, Qu and Zhang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.