Spanners in randomly weighted graphs: Euclidean case

Alan Frieze | Wesley Pegden

Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA

Correspondence
Alan Frieze, Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh PA 15213, USA.
Email: alan@random.math.cmu.edu

Funding information
National Science Foundation

Abstract
Given a connected graph \(G = (V, E) \) and a length function \(\ell : E \rightarrow \mathbb{R} \) we let \(d_{v,w} \) denote the shortest distance between vertex \(v \) and vertex \(w \). A \(t \)-spanner is a subset \(E' \subseteq E \) such that if \(d'_{v,w} \) denotes shortest distances in the subgraph \(G' = (V, E') \) then \(d'_{v,w} \leq t d_{v,w} \) for all \(v, w \in V \). We study the size of spanners in the following scenario: we consider a random embedding \(\mathcal{X}_p \) of \(G_{n,p} \) into the unit square with Euclidean edge lengths. For \(\varepsilon > 0 \) constant, we prove the existence w.h.p. of \((1 + \varepsilon)\)-spanners for \(\mathcal{X}_p \) that have \(O\varepsilon(n) \) edges. These spanners can be constructed in \(O\varepsilon(n^2 \log n) \) time. (We will use \(O\varepsilon \) to indicate that the hidden constant depends on \(\varepsilon \)). There are constraints on \(p \) preventing it going to zero too quickly.

KEYWORDS
random points, shortest paths, spanners

1 | INTRODUCTION

Given a connected graph \(G = (V, E) \) and a length function \(\ell : E \rightarrow \mathbb{R} \) we let \(d_{v,w} \) denote the shortest distance between vertex \(v \) and vertex \(w \). A \(t \)-spanner is a subset \(E' \subseteq E \) such that if \(d'_{v,w} \) denotes shortest distances in the subgraph \(G' = (V, E') \) then \(d'_{v,w} \leq t d_{v,w} \) for all \(v, w \in V \). We say that the stretch of \(E' \) is at most \(t \). In general, the closer \(t \) is to one, the larger we need \(E' \) to be relative to \(E \). Spanners have theoretical and practical applications in various network design problems. For a recent survey on this topic see Ahmed et al. [1]. Work in this area has in the
main been restricted to the analysis of the worst-case properties of spanners. In this note, we assume that edge lengths are random variables and do a probabilistic analysis.

We consider the case where \(\ell_{i,j} = |X_i - X_j| \), where \(\mathcal{X} = \{X_1, X_2, ..., X_n\} \) are \(n \) randomly chosen points from \([0, 1]^2\). The case where the \(n \) points are arbitrarily chosen is the subject of the book [10] by Narasimham and Smid. Section 15.1.2 of this book considers the random model where all \(\binom{n}{2} \) edges between points are available. We denote this mode by \(\mathcal{X}^r \). In this paper, we consider a model where only a specified subgraph of the possible edges are available. In particular, we assume that edges exist between the points in \(\mathcal{X}^r \), independently with probability \(p \). We denote this model by \(\mathcal{X}^p \). It constitutes a random embedding of the random graph \(G_{n,p} \), into \([0, 1]^2\). In the open problem session of CCCG 2009 [11], O’Rourke asked the following question: for what values of \(p \) is it true that w.h.p. \(\mathcal{X}^p \) is a \(t \)-spanner for \(\mathcal{X}^r \), where \(t = O(1) \). Mehrabian and Wormald [7] showed that there is no choice of \(p \) with this property. Frieze and Pegden [3] proved a related negative result and also considered the increase in the shortest path length when going from \(\mathcal{X}^r \) to \(\mathcal{X}^p \).

Now \(d_{ij} = |X_i - X_j| \) when \(\{i, j\} \in \mathcal{X}^p \) implies that with probability one, a 1-spanner contains all \(\approx \binom{n}{2} p \) edges. We prove the following: We write \(O(\cdots) \) if the hidden constant in the big O notation depends on \(\varepsilon, \theta \). At the moment, in some places, these constants can grow rather fast, for example, the dependence on \(\varepsilon \) is only bounded by \(\varepsilon^{-O(1/\varepsilon)} \).

Theorem 1. Suppose that the edges of \(\mathcal{X}^p \) are given their Euclidean length. Let \(\varepsilon, \theta > 0 \) be arbitrary fixed constants. We describe the construction of a \((1 + \varepsilon) \)-spanner \(E_\varepsilon \) for \(\mathcal{X}^p \).

(a) If \(np^{1+\theta} \to \infty \) then \(\mathbb{E}(|E_\varepsilon|) = O_{\varepsilon, \theta}(p^{-\theta}n) \).
(b) If \(\frac{1}{p \log 1/p} = o(\log^{1/2} n) \) then \(\mathbb{E}(|E_\varepsilon|) \leq O(\mathbb{E}(|E_\varepsilon|)) + O(n) \) w.h.p.

The definition of \(E_\varepsilon \) is given below in (7). On the other hand,

Theorem 2. Suppose that the edges of \(\mathcal{X}^p \) are given their Euclidean length. Let \(\varepsilon > 0 \) be an arbitrary fixed constant. If \(np^2 \to \infty \) then w.h.p. any \((1 + \varepsilon) \)-spanner for \(\mathcal{X}^p \) requires \(\Omega(\varepsilon^{-1/2} n) \) edges.

Remark 1. We stress that we describe a \((1 + \varepsilon) \)-spanner for \(\mathcal{X}^p \) and not for \(\mathcal{X}^r \). The results of [7] and [3] rule out \(O(1) \)-spanners for \(\mathcal{X}^r \) that only use edges of \(\mathcal{X}^p \). This is because there will w.h.p. be pairs of points that are close together in Euclidean distance, but relatively far apart in \(\mathcal{X}^p \).

Remark 2. We have assumed in Theorem 1 that \(np^{1+\theta} \to \infty \). If we were to allow \(np^{1+\theta} = o(1) \) then we would find that \(np^{-\theta} \gg n^2 p \) and so the claimed size of our spanner is more than the likely number of edges in \(\mathcal{X}^p \).

Remark 3. The constant \(\theta \) is an artifact of our proof and we conjecture that it can be removed so that w.h.p. there is a \((1 + \varepsilon) \)-spanner of size \(O_{\varepsilon}(n) \).

We note that when points are placed arbitrarily and all pairs of points are connected by an edge then the so-called \(\Theta \)-graph (defined below) produces a \((1 + \varepsilon) \)-spanner with \(O(n/\varepsilon) \) edges. See theorem 4.1.5 of [10].
The argument we present for Theorem 1 can be easily adapted to deal with random geometric graphs \(G_{r, r} \) for sufficiently large radius \(r \). Here we generate \(X \) as in Theorem 1 and now we join two vertices/points \(X, Y \) by an edge if \(|X - Y| \leq r \). See Penrose [12] for an early book on this model.

Theorem 3. If \(r^2 \gg \frac{\log n}{n} \) then w.h.p. there is a \((1 + \varepsilon)\)-spanner using \(O(n\varepsilon^{-2}) \) edges.

We note finally that Frieze and Pegden [4] have also considered the case where edge lengths are independently exponential mean one. The results there are much tighter.

2 | LOWER BOUND: THE PROOF OF THEOREM 2

It is quite easy to prove the lower bound in Theorem 2, so we begin with this. Given an edge \([A, B] \in E(X_p)\) we let \(\text{ellipse}(A, B) \) be the ellipse with foci \(A, B \) defined by \(|X - A| + |X - B| \leq (1 + \varepsilon)r\). The edge \([A, B]\) is lonely if its length is \(r \) and there is no \(X \in X \cap \text{ellipse}(A, B) \) such that \([A, X], [B, X]\) are edges of \(X_p \). Any \((1 + \varepsilon)\)-spanner must contain all of the lonely edges. Now \(\text{ellipse}(A, B) \) has axes of size \(\frac{\varepsilon}{2} r \) and so its volume is \(\psi r^2 \), where \(\psi = \pi (1 + \varepsilon) (2 + \varepsilon^2) / 4 \). By concentrating on points that are at least 0.1 from the boundary \(\partial D \) of \(D = [0, 1]^2 \), we see that the expected number of lonely edges is at least

\[
(0.64 - o(1)) \left(\frac{n}{2} \right) p \int_{r=0}^{0.8 \sqrt{2}} (1 - \psi r^2) n \cdot 2\pi r dr \geq \frac{n^2 \pi}{2 \psi} \int_{s=0}^{\psi p} (1 - s)^n ds \geq \frac{n \pi}{3 \psi},
\]

where we have used \((1 - p)^n = o(1)\).

Concentration around the mean follows will follow from the Chebyshev inequality. In preparation for this, observe that if \(r \geq \rho_\varepsilon = (20 \log n / (np\psi))^{1/2} \) then \((1 - \psi r^2)^n = o(n^{-10})\) and so going back to the first integral in (1) we see that we can concentrate on lonely edges with \(r \leq \rho_\varepsilon \). Next, consider the event \(\mathcal{R} \) that for each \(A \in X \) there are at most \(100 \psi^{-1} \log n X_p \) neighbors \(B \) such that \(|A - B| \leq \rho_\varepsilon \). For a given \(A \), the number of such close neighbors is distributed as a binomial with mean at most \(20 \pi \psi^{-1} \log n \). So the Chernoff bounds imply that \(\mathcal{R} \) occurs with probability \(1 - o(n^{-10}) \). So we let \(Z \) denote the number of lonely edges \(AB \) such that \(|A - B| \leq \rho_\varepsilon \) and observe that \(\mathbb{E}(Z) = \Omega(n/\varepsilon^{1/2} p) \).

Observe also that given an edge \(AB \) there are at most \(O(\varepsilon^{-1} \log^2 n) \) edges \(CD \) for which \(\text{ellipse}(A, B) \cap \text{ellipse}(C, D) \neq \emptyset \), assuming the occurrence of \(\mathcal{R} \). Write \(AB \sim CD \) to denote a nonempty intersection of ellipses. Thus, if \(\mathcal{L}_{A, B} \) is the event that \(AB \) is lonely, then

\[
\mathbb{E}(Z^2 | \mathcal{R}) \leq \sum_{AB} \sum_{CD \neq AB} \mathbb{P}(\mathcal{L}_{A, B} | \mathcal{R}) + \sum_{AB} \sum_{CD \neq AB} \mathbb{P}(\mathcal{L}_{A, B}, \mathcal{L}_{C, D} | \mathcal{R}) \leq O(\mathbb{E}(Z) \varepsilon^{-1} \log^2 n) + (1 + o(1)) \mathbb{E}(Z)^2 = (1 + o(1)) \mathbb{E}(Z)^2.
\]

The Chebyshev inequality implies that \(Z \) is concentrated around its mean. This completes the proof of the lower bound in Theorem 1.
3 | UPPER BOUND: THE PROOF OF THEOREM 1

Suppose that $0 < \varepsilon \ll 1$. It is perhaps instructive to consider the case where $p = 1$, that is, where K_n is being embedded. In this case there are known, simple algorithms for finding a $(1 + \varepsilon)$-spanner. For each $A \in \mathcal{X}$ we define τ cones $K_{\tau}(i, A)$, $0 \leq i < \tau$ with apex A and whose boundary rays make angles $i \varepsilon$ and $(i + 1) \varepsilon$ with the horizontal. We then let $Y(i, A)$ denote the closest point in Euclidean distance to A in $K_p(i, A)$ that is adjacent to A in \mathcal{X}_p. We put $Y(i, A) = \perp$ if there is no such Y and let $d_{A, \perp} = \infty$. Also, define $i = i_{A, B}$ by $B \in K_p(i, A)$. When $p = 1$, the Yao graph \cite{13} consists of the edges $(A, Y(i, A)), 0 \leq i < \tau, A \in \mathcal{X}$.

Remark 4. It is known that the path $P(A, B) = (Z_0 = A, Z_1, ..., Z_m = B)$, where $Z_{i+1} = Y(i_{Z_i, B}, Z_i)$ has length at most $(\cos \varepsilon - \sin \varepsilon)^{-1} |A - B|$ and so the Yao graph has stretch factor $1 + \varepsilon + O(\varepsilon^2)$.

When $p < 1$, $P(A, B)$ may not exist in \mathcal{X}_p and we show below how to overcome this problem.

We should also mention the very similar Θ-graph \cite{9}. Here we replace $Y(i, A)$ by the point in $K_{\tau}(i, A)$ whose projection onto the bisector of $K_{\tau}(i, A)$ is closest to A. The Θ-graph also has a stretch factor of at most $(\cos \varepsilon - \sin \varepsilon)^{-1}$.

Let

$$r_\varepsilon = \left(\frac{M_{\Theta, \varepsilon}}{np^{1+\theta}} \right)^{1/2} \quad \text{and} \quad R_\varepsilon = \left(\frac{K_{\Theta} \log n}{np^{1+\theta}} \right)^{1/2}.$$ \hspace{1cm} (2)

where $M_{\Theta, \varepsilon}$ is sufficiently large to justify some inequalities claimed below.

Let

$$E_1 = \{ \{A, B\} \in \mathcal{X}_p : |A - B| \leq r_\varepsilon \}.$$

We have

$$\mathbb{E}(|E_1|) \leq \left(\frac{n}{2} \right) \pi r_\varepsilon^2 p \leq \frac{M_{\Theta, \varepsilon} n}{2p^\theta}$$ \hspace{1cm} (3)

and then we can assert that

$$|E_1| \leq \frac{M_{\Theta, \varepsilon} n}{p^\theta} \quad \text{w.h.p.}$$ \hspace{1cm} (4)

using the Chebyshev inequality. Here we can use the fact that the events of the form $\{|A - B| \leq r_\varepsilon \}$ are pair-wise independent.

Let

$$E_2 = \{(A, Y(i, A)) : A \in \mathcal{X}, i \in \{0, 1, ..., \tau - 1\}\} \quad \text{so that} \quad |E_2| = O(n/\varepsilon).$$ \hspace{1cm} (5)

The next two lemmas will discuss the case where A, B are sufficiently distant.
Lemma 4. If $|A - B| \geq R_\varepsilon$, then with probability $1 - o(n^{-10})$, $|A - Y| \leq \varepsilon |A - B|$, where $Y = Y(i_{A,B}, A)$.

Proof. We have

$$P \left(|A - Y| > \varepsilon |A - B| \right) \leq (1 - \varepsilon \pi (\varepsilon R_\varepsilon)^2 p/2)^{n-1} \leq n^{-\varepsilon^2 \pi M_{\varepsilon}/3p^6}.$$

The 2 in the middle expression allows half the cone to be outside $[0, 1]^2$. \hfill \Box

Lemma 5. If $r \geq R_\varepsilon$ then with probability $1 - o(n^{-10})$, $d_{A,B} \leq (1 + 4\varepsilon)|A - B|$.

Proof. Let X_1, X_2 be points on the line segment AB at distance $|A - B|/3$, $2|A - B|/3$ from A, respectively. Let B_i, $i = 1, 2$ be the ball of radius εr centered at X_i. Let A_1 be the set of χ_ε neighbors of A in X_1 and let A_2 be the set of χ_ε neighbors of B in X_2. $\mathcal{E}_i, i = 1, 2$ be the event that $|A_i| \geq \pi r^2 p / 10$. Then the Chernoff bounds imply that

$$P(\mathcal{E}_1 \land \mathcal{E}_2) \geq 1 - 2e^{-\pi r^2 p / 100} = 1 - O\left(n^{-\pi M_{\varepsilon}/1000p^6}\right).$$

Let \mathcal{E}_3 be the event that there is an χ_ε edge between A_1 and A_2. Then

$$P(\mathcal{E}_3 | \mathcal{E}_1 \land \mathcal{E}_2) \geq 1 - (1 - p)^{\pi r^2 p / 100} = 1 - O\left(n^{-K_{\varepsilon r}/1000p^6}\right).$$

Finally, note that if $\mathcal{E}_i, i = 1, 2, 3$ all occur then $d_{A,B} \leq (1 + 4\varepsilon)|A - B|$. (4 is trivial and avoids any computation). \hfill \Box

For $A, B \in A$, we let $P_{A,B}$ denote the shortest path between A, B in χ_ε and we let $d_{A,B}$ denote the length of $P_{A,B}$.

Let

$$B_\varepsilon = \{(A, B) : d_{A,B} \geq (1 + \varepsilon)|B - A| \text{ and } r = |A - B| \geq r_\varepsilon\}$$

and

$$E_3 = \bigcup_{(A,B) \in B_\varepsilon} E(P_{A,B}).$$

Let

$$C_\varepsilon = \{(A, B) : d_{A,B} \leq (1 + \varepsilon)|B - A| \text{ and } r = |A - B| \in [r_\varepsilon, R_\varepsilon] \text{ and } |A - Y| \geq \varepsilon |A - B|\},$$

where $Y = Y(i_{A,B}, A)$. Let

$$E_4 = \bigcup_{(A,B) \in C_\varepsilon} E(P_{A,B}).$$
We show in Lemmas 8 and 11 that the expected sizes of the sets \(E_3, E_4 \) are \(O(\varepsilon n) \). Let

\[
E_{\varepsilon} = \bigcup_{i=1}^{4} E_i.
\]

Time: The construction of \(E_{\varepsilon} \) can obviously be done in polynomial time. The most time consuming parts being solving the all pairs shortest path problems defined by \(E_3, E_4 \). We show below that these sets consist of \(O(\varepsilon n) \) edges in expectation. So the expected time to solve these \(O(n) \) single source problems via Dijkstra’s algorithm is \(O(n \log \varepsilon) \), see Fredman and Tarjan [2].

For \(X, Y \in \mathcal{X} \) we let \(\widehat{d}_{X,Y} \) denote the length of the path from \(X \) to \(Y \) constructed by the following procedure: Given \(A, B \in \mathcal{X} \) where \(\{A, B\} \notin E \) we construct a path \(A = Z_0, Z_1, ..., Z_k = B \) as follows: in the following, \(Y_j = Y(i, Z_j) \) for \(B \in K(i, Z_j), j \geq 0 \).

CONSTRUCT:

D1 If \(\{Z_j, B\} \in E \) then use \(P_{Z_j,B} \) to complete the path, otherwise,

D2 If \(|Z_j - Y_j| > \varepsilon |Z_j - B| \) then use \(P_{Z_j,B} \) to complete the path, otherwise,

D3 If \(d_{Y_j,B} \geq (1 + 5\varepsilon) |Y_j - B| \) then use \(P_{Z_j,B} \) to complete the path, otherwise,

D4 \(Z_{j+1} \leftarrow Y_j \).

Remark 5. We observe that Lemma 4 implies that with probability \(1 - o(n^{-10}) \) we do not use \(P_{Z_j,B} \) for \(|Z_j - B| \geq R_{\varepsilon} \). Denote the corresponding event by \(\mathcal{U} \).

The next lemma is used to estimate the quality of the path built by **CONSTRUCT.** (We can obviously replace \(8\varepsilon \) by \(\varepsilon \) to get a \((1 + \varepsilon) \)-spanner).

Lemma 6. **CONSTRUCT** produces a path of length at most \((1 + 7\varepsilon) d_{A,B}\).

Proof. Let \(A = Z_0, Z_1, ..., Z_k = B \) be the sequence defined by **CONSTRUCT.** If \(k = 1 \) then **CONSTRUCT** uses that path \(P_{A,B} \) which has stretch one. Otherwise, let \(d_j = |Z_j - B| \) for \(0 \leq j \leq k \) and observe that it is a monotone decreasing sequence. Define \(\widehat{Z}_{j+1} \) to the point on the segment \(Z_jZ_k \) such that \(|Z_{j+1} - Z_k| = |Z_{j+1} - Z_k| \). The assumption that \(|Z_j - Z_{j+1}| \leq \varepsilon |Z_j - Z_k| \) implies that \(\angle Z_{j+1}Z_kZ_{j+1} < \pi/2 \), and thus that the ratio

\[
\frac{|Z_{j+1} - Z_j|}{d_j - d_{j+1}}
\]

can be bounded by considering the case where \(\angle Z_{j+1}Z_kZ_{j+1} = \pi/2 \), as it is drawn in Figure 1.

We have in that case that \(\sin \varepsilon = \frac{d_{j+1}}{|Z_j - Z_{j+1}|} \) and \(\cos \varepsilon = \frac{d_j}{|Z_j - Z_{j+1}|} \), giving \(d_j - d_{j+1} = (\cos \varepsilon - \sin \varepsilon) |Z_j - Z_{j+1}| \). So, if **CONSTRUCT** only uses D4, then the length \(L_{A,B} \) of the path constructed satisfies

\[
L_{A,B} = \sum_{j=0}^{k-1} |Z_{j+1} - Z_j| \leq (\cos \varepsilon - \sin \varepsilon) \sum_{j=1}^{k} (d_j - d_{j+1}) = (\cos \varepsilon - \sin \varepsilon) |A - B| \leq (\cos \varepsilon - \sin \varepsilon) d_{A,B}.
\]
Suppose that CONSTRUCT uses a path in D1, D2, or D3. If \(k = 1 \) then CONSTRUCT uses a shortest path from A to B in \(\mathcal{X}_p \). Assume then that \(k \geq 2 \). It follows from the above argument that

\[
\sum_{j=0}^{k-2} |Z_{j+1} - Z_j| \leq (\cos \varepsilon - \sin \varepsilon) |A - Z_{k-1}|.
\]

Now,

\[
d_{Z_{k-1},B} \leq |Z_{k-2} - Z_{k-1}| + d_{Z_{k-3},B} \leq \varepsilon |Z_{k-2} - B| + (1 + 5\varepsilon) |Z_{k-2} - B|
\]

So,

\[
L_{A,B} \leq (\cos \varepsilon - \sin \varepsilon) |A - Z_{k-1}| + (1 + 6\varepsilon) |Z_{k-2} - B|
\]

\[
\leq (1 + 6\varepsilon)(|A - Z_{k-2}| + |Z_{k-2} - B|)
\]

\[
\leq (1 + 6\varepsilon)(\cos \varepsilon - \sin \varepsilon) |A - B|.
\]

We argue next that

Lemma 7. The edges of the paths \(P_{Z_j,B} \) used in CONSTRUCT are contained in \(E_1 \cup E_3 \cup E_4 \). Furthermore, only edges of length at most \(R_{\varepsilon} \) contribute to \(E_3, E_4 \).

Proof. First, consider the path \(P = P_{Z_j,B} \) used in D1. Because \(\{Z_j, B\} \in E_1 \), we have that \(d_{Z_j,B} \leq r_{\varepsilon} \), and so all the edges of \(P_{Z_j,B} \) are also in \(E_1 \).

Next, consider the path \(P = P_{Z_j,B} \) used in D2. If \(d_{Z_j,B} \geq (1 + \varepsilon)|Z_j - B| \) then \(E(P) \subseteq E_3 \). Otherwise, \(E(P) \subseteq E_4 \).

Now consider the path \(P = P_{Z_j,B} \) used in D3. If \(d_{Z_j,B} \geq (1 + \varepsilon)|Z_j - B| \) then \(E(P) \subseteq E_3 \).

So assume that \(d_{Z_j,B} \leq (1 + \varepsilon)|Z_j - B| \). If \(|Z_j - Y_j| \geq \varepsilon |Z_j - B| \) then \(E(P) \subseteq E_4 \). So assume that \(|Z_j - Y_j| \leq \varepsilon |Z_j - B| \). At this point we have

\[
(1 + 5\varepsilon)|Y_j - B| \leq d_{Y_j,B} \leq |Z_j - Y_j| + d_{Z_j,B} \leq (1 + 2\varepsilon)|Z_j - B| \leq (1 + 2\varepsilon)(|Z_j - Y_j| + |Y_j - B|).
\]
This implies that $|Z_j - Y_j| \geq 3\varepsilon|Y_j - B|/(1 + 2\varepsilon)$. If $|Y_j - B| \geq |Z_j - B|/2$ then we have $E(P) \subseteq E_4$. So assume that $|Y_j - B| < |Z_j - B|/2$. But then $|Z_j - Y_j| \geq |Z_j - B| - |Y_j - B| \geq |Z_j - B|/2$, a contradiction.

The next two lemmas bound the expected number of edges in the sets E_3, E_4.

3.1 $\mathbb{E}(|E_3|)$

Lemma 8. $\mathbb{E}(|E_3|) = O_{\varepsilon, \rho} \left(\frac{n}{\rho} \right)$.

Proof. Fix a pair of points $A, B \in \mathcal{X}$ and let $r = |A - B|$ where $r \leq r \leq R$ (r, R defined in 6). Note next that shortest paths are always induced paths. We let $L_{k, k, A, B}$ denote the set of induced paths from A to B with $k + 1 \geq 2$ edges in \mathcal{X}_p, of total length in $[(1 + K\varepsilon)r, (1 + (K + 1)\varepsilon)r]$.

We let $L_{K, k, A, B} = |L_{K, k, A, B}|$. Then we have

$$|E_3| \leq \sum_{A, B \in \mathcal{X}} \sum_{k, K=1}^{\infty} k|P \in L_{K, k, A, B}|.$$

(9)

This is because if $d_{A, B} \geq (1 + \varepsilon)|A - B|$ then the shortest path from A to B has its length in $J_{K, r} = [(1 + K\varepsilon)r, (1 + (K + 1)\varepsilon)r]$, for some $K \geq 1$. Next define, for $L \geq 1$,

$$F(L, \varepsilon) := (2L\varepsilon + L^2\varepsilon^2)^{1/2}.$$

Claim 1. There are constants Λ, c such that for $K \geq 1$,

$$\mathbb{E}(|L_{K, k, A, B}| |A - B| = r) \leq \left(\frac{AF(K + 1, \varepsilon)(1 + (K + 1)\varepsilon)r^2np(1 - p)^{(K - 1)/2}}{k^2(K\varepsilon(1 + K\varepsilon))^{1/4}} \right)^k e^{-cF(K+1,\varepsilon)(1+(K+1)\varepsilon)r^2np}.$$

(10)

Proof of Claim 1. Let $E_{A, B}(L)$ denote the ellipse with center the midpoint of AB, foci at A, B so that one axis is along the line through AB and the other is orthogonal to it. The axis lengths a, b being given by $a = (1 + L\varepsilon)r$ and $b = r((1 + L\varepsilon)^2 - 1)^{1/2} = rF(L, \varepsilon)$. Thus $E_{A, B}(L)$ is the set of points whose sum of distances to A, B is at most $(1 + L\varepsilon)r$.

Given k points $P_1, ..., P_k$, the path $P = (A = P_0, P_1, ..., P_k, P_{k+1} = B)$ is of length at most $(1 + (K + 1)\varepsilon)r$ only if all these points lie in $E_{A, B}(K + 1)$. Thus for all i the point P_{i+1} lies in an ellipse with axes $2a, 2b$ centered at P_i. Here we are using the fact that if a point x lies in an ellipse E then E is contained in a copy of $2E$ centered at x. Indeed, suppose that $(x_i, y_i), i = 1, 2$ are two points in the ellipse $E = \left\{ \frac{x^2}{\xi^2} + \frac{y^2}{\eta^2} \leq 1 \right\}$. Then

$$\frac{(x_i - x_j)^2}{\xi^2} + \frac{(y_i - y_j)^2}{\eta^2} \leq \frac{2(x_i^2 + x_j^2)}{\xi^2} + \frac{2(y_i^2 + y_j^2)}{\eta^2} = 2 \sum_{i=1}^{2} \left(\frac{x_i^2}{\xi^2} + \frac{y_i^2}{\eta^2} \right) \leq 4.$$

(11)

It follows that (x_i, y_i) is contained in a copy of $2E$ centered at (x, y).

FRIEZE and PEGDEN
So, the probability of the event that \((A = P_0, P_1, ..., P_k)\) is in \(E_{A,B}(K + 1)\) is at most \(\prod_{i=1}^k P(P_i)\), where \(P_i\) is the event that \(P_{i+1}\) is in the ellipse congruent to \(2E_{A,B}(K + 1)\), centered at \(P_i\). So,

\[
P((A = P_0, P_1, ..., P_k, B) \text{ is in } E_{A,B}(K + 1)) \leq (\pi r F(K + 1, \varepsilon)(1 + (K + 1)\varepsilon))^k p.
\]

(12)

The final \(p\) factor is \(P\left(\{P_k, B\} \in E\right)\). Given \(P_1, P_2, ..., P_k\) the length of \(P\) is at most the sum \(Z_1 + \cdots + Z_k\) of independent random variables where \(Z_i\) is the distance to the origin of a random point in an ellipse with axes \(2a, 2b\) centered at the origin.

\[\square\]

Lemma 9.

(a) \(Z_1\) is distributed as \(2(U(a^2 \cos^2(2\pi V) + b^2 \sin^2(2\pi V)))^{1/2}\) where \(U, V\) are independent uniform \([0, 1]\) random variables.

(b) \(Z_1\) stochastically dominates \(\zeta^{-1/2}U^{1/2}(K\varepsilon(1 + K\varepsilon))^{1/4}r\) for some \(\zeta > 0\).

Proof:

(a) This follows from the fact that a point in \(E\) is of the form \((a \cos 2\pi \theta, b \sin 2\pi \theta) u\), where \(0 \leq u, \theta \leq 1\).

(b) We have

\[
P(Z_1 \leq x) = \mathbb{P}\left(U \leq \frac{x^2}{4(a^2 \cos^2(2\pi V) + b^2 \sin^2(2\pi V))}\right)
\]

\[
= \mathbb{E}\left(\min\left\{1, \frac{1}{4}x^2(a^2 \cos^2(2\pi V) + b^2 \sin^2(2\pi V))^{-1}\right\}\right)
\]

\[
\leq \min\left\{1, \mathbb{E}\left(\frac{x^2}{a^2 \cos^2(2\pi V) + b^2 \sin^2(2\pi V)}\right)\right\}.
\]

Now

\[
\mathbb{E}\left(\frac{1}{a^2 \cos^2(2\pi V) + b^2 \sin^2(2\pi V)}\right) = \frac{2}{\pi} \int_{z=0}^{\pi/2} \frac{dz}{a^2 \cos^2(z) + b^2 \sin^2(z)} = \frac{2}{\pi} \int_{z=0}^{\pi/2} \frac{dz}{a^2 \sin^2(z) + b^2 \cos^2(z)}
\]

\[
= \frac{2}{\pi} \int_{z=0}^{\pi/2} \frac{dz}{(a^2 - b^2)\sin^2(z) + b^2}
\]

\[
\leq \frac{4}{\pi r^2} \int_{z=0}^{1/2} \frac{dz}{z^2 + 2K\varepsilon + K^2\varepsilon^2} + O\left(\frac{1}{a^2}\right)
\]

\[
= \frac{4}{\pi r^2} \int_{z=0}^{1/2} \frac{dz}{z^2 + 2K\varepsilon + K^2\varepsilon^2} + O\left(\frac{1}{(1 + (K + 1)\varepsilon)^2r^2}\right).
\]

\[
= \frac{4}{\pi r^2} \arctan\left(\frac{1}{2(2K\varepsilon + K^2\varepsilon^2)^{1/2}}\right) + O\left(\frac{1}{(1 + (K + 1)\varepsilon)^2r^2}\right).
\]
So
\[
P(Z_1 \leq x) \leq \frac{\zeta^2}{(K\varepsilon(1 + K\varepsilon))^{1/2}r^2}
\]

for some \(\zeta > 0\).

This implies that \(Z_1\) dominates \(\zeta^{-1/2}U^{1/2}(K\varepsilon(1 + K\varepsilon))^{1/4}/r\). \(\square\)

Lemma 9 of Frieze and Tkocz [5] implies that if \(U_1, U_2, \ldots, U_k\) are independent copies of \(U^{1/2}\) then
\[
P\left(U_1^{1/2} + U_2^{1/2} + \cdots + U_k^{1/2} \leq u\right) \leq \frac{(2u)^{2k}}{(2k)!}.
\]

Putting \(u = \frac{\alpha^{1/2}}{(K\varepsilon(1 + K\varepsilon))^{1/4}r}\), we see that
\[
P(\sum_{i=1}^{k} Z_i \leq (1 + (K + 1)\varepsilon)r) \leq \frac{\alpha(1 + (K + 1)\varepsilon)}{(K\varepsilon(1 + K\varepsilon))^{1/4}} \cdot \frac{2^k}{(2k)!} \cdot \frac{e^{2k}}{k^{2k}2^{2k}}.
\]

Thus, given \(k\) random points \(P_1, \ldots, P_k\), the probability that \(A, P_1, \ldots, P_k\) is an induced path of length \(\leq (1 + (K + 1)\varepsilon)r\) is at most
\[
\left(\frac{\Lambda F(K + 1, \varepsilon)(1 + (K + 1)\varepsilon)r^2n p(1 - p)^{(k - 1)/2}}{k^2(K\varepsilon(1 + K\varepsilon))^{1/4}}\right)^k.
\]

To get the exponential term in (10), we need to also make make use of the fact that \(d_{A,B} \geq (1 + \varepsilon K)r\).

Case 1: \(K\varepsilon \leq 1\): Let \(\gamma = [1 + \Theta^{-1}]\). We define \(\gamma\) rhombi, \(R_i, i = 1, 2, \ldots, \gamma\). We partition \(AB\) into \(\gamma\) segments \(L_1, L_2, \ldots, L_\gamma\) of length \(r/\gamma\). The rhombus \(R_i\) has one diagonal \(L_i\) and another diagonal of length \(h = ((K + 1)\varepsilon)^{1/2}r/10\gamma\), that is, orthogonal to \(AB\) and bisects it. Finally, let \(\widehat{R}_i = R_i \cap [0, 1]^2\). Note that \(\widehat{R}_i\) has area at least 1/2 of the area of \(R_i\). Thus if \(K \geq 1\) then since \(K\varepsilon \leq 1\),
\[
\alpha \geq \alpha_i = \text{area}(\widehat{R}_i) \geq \frac{((K + 1)\varepsilon)^{1/2}r^2}{20\gamma} \geq \frac{\alpha}{100},
\]
where
\[
\alpha = \frac{F(K + 1, \varepsilon)(1 + (K + 1)\varepsilon)r^2}{\gamma}.
\]

For a pair of points \(A, B\) and set \(X \subseteq X\), let \(d_{A,B}^*(X)\) denote the minimum length of a path \(Q = (A, S_1, S_2, \ldots, S_\gamma, B)\) in \(X\), where \(S_i \in \widehat{R}_i \setminus \bar{X}\). Here \(X\) will stand for \(P_1, P_2, \ldots, P_k\) in the
analysis below. Furthermore we can restrict our attention to $|X| = k = o(n)$, as shown in (26) below. We first wish to show that

$$\ell(Q) < (1 + K\varepsilon)r \quad \text{for all choices of } S_1, S_2, ..., S_\gamma. \quad (15)$$

Now fix i and consider the function $f(S) = \ell(A, S_1, S_2, ..., S_{i-1}, S, S_{i+1}, ..., S_\gamma, B)$. This is a convex function of S and so it is maximized at an extreme point of $\mathcal{R}_i \setminus X$. Thus, to verify (15), it is enough to check paths that only use the vertices of the rhombi. We claim that

$$Q \leq (1 + (K + 1)\varepsilon)r, \quad (16)$$

where we have used $K\varepsilon \leq 1$ for the last inequality. Equation (16) follows from the fact that $(4h^2 + 1/\gamma)_{1/2}$ maximizes the distance between points in adjacent rhombi.

Let Z denote the number of paths Q such that all edges exist in \mathcal{X}_p. We use Janson’s inequality [6] to bound the probability that $Z = 0$. We have, with $\nu = \frac{\alpha p}{100}\gamma \leq \sum_{i=1}^\gamma \alpha_i \geq \left(\frac{\alpha n p}{100}\right)^{\gamma} \frac{p}{2}$.

Then for a pair of paths Q, Q' let $\rho(Q, Q'), \sigma(Q, Q')$, denote the number of vertices and edges the Q, Q' have in common. (Exclude A, B from this count). We write $Q \sim Q'$ to mean that $\rho(Q, Q') > 0$. Then,

$$\tilde{\Delta} = \sum_{Q \sim Q'} P(Q, Q') \leq 2^{2\gamma} \sum_{1 \leq \sigma \leq 2^{\gamma+1}} (\alpha n)^{2\gamma-\sigma} p^{2^{\gamma+2-\sigma}} \leq 2^{2\gamma+1}(\alpha n)^{2\gamma-1} p^{2^{\gamma+1}}. \quad (17)$$

Explanation for (17): Because $r \geq r$, we have $\alpha n p \gg 1$. Thus the sum in (17) is dominated by the term $\rho = \sigma = 1$, where Q, Q' only share an edge incident to A or B. The factor $2^{2\gamma}$ accounts for the places on Q, Q' that share a common vertex.

It follows that if $K \geq 1$ then

$$\rho_{k,K,\varepsilon} = P\left(d_{A,B}^r + (1 + K\varepsilon)r \geq r, P_1, ..., P_k\right) \leq \exp\left\{-\frac{\mathbb{E}(Z)^2}{2\tilde{\Delta}}\right\} \leq \exp\left\{-\frac{F(K + 1, \varepsilon)(1 + (K + 1)\varepsilon)r^2np}{2^{2\gamma+4}10^{4\gamma}p^\delta}\right\} \leq \exp\left\{-\frac{M_{\beta,\varepsilon}F(K + 1, \varepsilon)(1 + (K + 1)\varepsilon)}{2^{2\gamma+4}10^{4\gamma}p^\delta}\right\}$$

Case 2: $K\varepsilon \geq 1$: Let R be the rectangle with center the midpoint of AB and one side of length $(1 + (K + 1)\varepsilon/10)r$ parallel to AB and the other of side $K\varepsilon/10$ orthogonal to AB. We partition R into rectangles $W_i, W_2, ..., W_\gamma$ where each W_i has side lengths $(1 + (K + 1)\varepsilon/10)r/\gamma$ and $K\varepsilon/10$. Putting $\hat{W}_i = W_i \cap [0, 1]^2, i = 1, 2, ..., \gamma$ we see that all we need do now is to prove the equivalent of (14) and (15). Then,
We have used \(K \varepsilon \geq 1 \) to justify the second inequality.

We further have that for all \(S_i \in \tilde{S}_i \), \(i = 1, 2, \ldots, \gamma \) that, using the triangle inequality,

\[
\ell (A, S_1, \ldots, S_\gamma, B) \leq \gamma \left(1 + \frac{(K + 1) \varepsilon}{10} \right) r + \gamma \left(\frac{K \varepsilon}{10} + \frac{4(K + 1) \varepsilon}{10} \right) r < (1 + (K + 1) \varepsilon) r.
\]

Thus, the probability \(\rho_{k,K,\varepsilon} \) defined above satisfies

\[
\rho_{k,K,\varepsilon} \leq \left(\frac{\Lambda F(K + 1, \varepsilon)(1 + (K + 1) \varepsilon)r^2 np(1 - p)^{(k - 1)/2}}{k^2} \right)^k e^{-cF(K + 1, \varepsilon)(1 + (K + 1) \varepsilon)r^2 np},
\]

and the claim follows by linearity of expectation.

End of proof of Claim 1. It will be convenient to replace \(r \) by \(\frac{\rho}{(np)^{1/2}} \) and write \(J_p = \left[\frac{\rho}{n^{1/2}}, \frac{\rho + 1}{n^{1/2}} \right] \) and let \(\rho_{\min} = r_c(np)^{1/2} \). Then,

\[
E (E_j) \leq \left(\begin{array}{c} \frac{n}{2} \\ \rho \end{array} \right) \sum_{\rho = \rho_{\min}}^{\infty} \sum_{K = 1}^{\infty} \sum_{k = 1}^{n - 2} k \left(\frac{\Lambda F(K + 1, \varepsilon)(1 + (K + 1) \varepsilon)r^2 np(1 - p)^{(k - 1)/2}}{k^2(K \varepsilon(1 + K \varepsilon))^{1/4}} \right)^k \times e^{-cF(K + 1, \varepsilon)(1 + (K + 1) \varepsilon)r^2 np} P (A - B_i \in J_p)
\]

\[
\leq \left(\begin{array}{c} \frac{n}{2} \\ \rho \end{array} \right) \sum_{\rho = \rho_{\min}}^{\infty} \sum_{K = 1}^{\infty} \sum_{k = 1}^{n - 2} k \left(\frac{\Lambda F(K + 1, \varepsilon)(1 + (K + 1) \varepsilon)r^2 np(1 - p)^{(k - 1)/2}}{k^2(K \varepsilon(1 + K \varepsilon))^{1/4}} \right)^k \times e^{-cF(K + 1, \varepsilon)(1 + (K + 1) \varepsilon)r^2 np} \left(\frac{2 \rho + 1}{n} \right)
\]

\[
\leq 2 \pi n^{\frac{n - 2}{2}} k \sum_{K = 1}^{\infty} k \left(\frac{\Lambda F(K + 1, \varepsilon)(1 + (K + 1) \varepsilon)(1 - p)^{(k - 1)/2}}{k^2(K \varepsilon(1 + K \varepsilon))^{1/4}} \right)^k \sum_{\rho = \rho_{\min}}^{\infty} e^{-cF(K + 1, \varepsilon)(1 + (K + 1) \varepsilon)r^2 \rho} 2^{k + 1}
\]

\[
\leq 2 \pi n^{\frac{n - 2}{2}} k \sum_{K = 1}^{\infty} k \left(\frac{\Lambda F(K + 1, \varepsilon)(1 + (K + 1) \varepsilon)(1 - p)^{(k - 1)/2}}{k^2(K \varepsilon(1 + K \varepsilon))^{1/4}} \right)^k \int_{s = 0}^{\infty} e^{-cF(K + 1, \varepsilon)(1 + (K + 1) \varepsilon)s^2 \rho} ds
\]

\[
= 2 \pi n^{\frac{n - 2}{2}} k \sum_{K = 1}^{\infty} k \left(\frac{\Lambda F(K + 1, \varepsilon)(1 + (K + 1) \varepsilon)(1 - p)^{(k - 1)/2}}{k^2(K \varepsilon(1 + K \varepsilon))^{1/4}} \right)^k \left(\frac{1}{cF(K + 1, \varepsilon)(1 + (K + 1) \varepsilon)} \right)^{k + 1} k!
\]

\[
\leq 2 \pi n^{\frac{n - 2}{2}} k \left(\frac{\Lambda (1 - p)^{(k - 1)/2}}{ke^{1/4}} \right)^k \sum_{K = 1}^{\infty} \left(\frac{1}{cF(K + 1, \varepsilon)(1 + (K + 1) \varepsilon)} \right)^{k + 1} k!
\]

\[
= O_\varepsilon (n).
\]

(18)
Lemma 10. The expected number of \((k+1)\)-edge induced paths of length at most \((1 + \varepsilon)r\) from \(A\) to \(B\) in \(X_p\) can be bounded by

\[
E(|E_4|) \leq \left(\frac{\pi r^2 p}{1 - \pi \varepsilon^2 r^2 p} \right)^{k(k-1)/2} (1 - \pi \varepsilon^2 r^2 p)^{n-k-2} \cdot \left(\frac{e^2 (1 + \varepsilon)^2}{2k^2} \right)^k (1 - \pi \varepsilon^2 r^2 p)^{n-k-2}. \tag{19}
\]

Proof. Let \(\rho_k\) denote the probability that \(k\) fixed points \(X_1, \ldots, X_k\) satisfy that:

- \(A = X_0, X_1, \ldots, X_k\) is an induced path
- For all \(i = 1, \ldots, k\), \(X_i\) lies in a copy of the ellipse \(E_{A,B}\), translated to be centered at \(X_{i-1}\), and
- The total length of the path has total length at most \((1 + \varepsilon)r\).
- \(\{X_k, B\} \in X_p\).

From the discussion immediately before (11), we see that \(\rho_k\) bounds the probability that the path has total length at most \((1 + \varepsilon)r\). So we have that

\[
\rho_k \leq \left(\frac{2 \pi \varepsilon (1 + \varepsilon) r^2 p}{1 - \pi \varepsilon^2 r^2 p} \right)^k (1 - p)^{k(k-1)/2} \left(\frac{e^2 (1 + \varepsilon)^2}{2k^2} \right)^k p.
\]

Thus, by linearity of expectation, the number of induced paths \(A = X_0, \ldots, X_k\) such that

- the total length of the path is at most \((1 + \varepsilon)r\), and
- no point off the path lies within distance \(\varepsilon r\) of \(A\) in the cone \(K(i,A)\)

is at most

\[
n^k \left(\frac{2 \pi \varepsilon (1 + \varepsilon) r^2 p}{1 - \pi \varepsilon^2 r^2 p} \right)^k (1 - p)^{k(k-1)/2} \left(\frac{e^2 (1 + \varepsilon)^2}{2k^2} \right)^k (1 - \pi \varepsilon^2 r^2 p)^{n-k-2}.
\]

Lemma 11. \(E(|E_4|) = O_\varepsilon(n)\).

Proof. We have

\[
E(|E_4|) \leq 2\pi \int_{r=R/2}^{\infty} \left(\frac{n}{2} \right)^k p \sum_{k=1}^{\infty} \left(\frac{n \pi r^2 p (1 - p)^{k-1} \varepsilon (1 + \varepsilon)^2}{3k^2} \right)^k (1 - \pi \varepsilon^2 r^2 p)^{n-k-2} rdr \tag{20}
\]
\[\leq 2\pi \left(\frac{n}{2} \right) p \sum_{k=1}^{\infty} k \int_{r=r_\varepsilon}^{R_\varepsilon} \left(\frac{e\pi r^2 np(1-p)^{(k-1)/2}}{k^2} \right)^k e^{-\pi r^2 np dr} \]
\[\leq \frac{n}{\varepsilon^3} \sum_{k=1}^{\infty} k \int_{s=A}^{\infty} \left(\frac{e(1-p)^{(k-1)/2} s}{\varepsilon^3 k^2} \right)^k e^{-s ds}, \]

where \(A = \pi \varepsilon^2 r_\varepsilon^2 np = M_{\theta,\varepsilon} p^{-\theta}. \) Now,

\[I_k = \int_{s=A}^{\infty} s^k e^{-s} = k! \sum_{\ell=0}^{k} \frac{e^{-A} A^\ell}{\ell!} \leq 2e^{-A} A^k, \text{ if } k \leq A/2. \]

(Use \(I_k = kA^{k-1}e^{-A} + kI_{k-1} \) to obtain the equation).

Using (22) in (21) we get, for small \(\varepsilon \) and \(k_0 = 10 \log_b 1/\varepsilon, \) where \(b = 1/(1-p), \)

\[\sum_{k=1}^{k_0} k \int_{s=A}^{\infty} \left(\frac{e(1-p)^{(k-1)/2} s}{\varepsilon^2 k^2} \right)^k e^{-s ds} \leq e^{-A} \sum_{k=1}^{k_0} \left(\frac{eA}{\varepsilon^2 k^2} \right)^k \]
\[\leq A k_0 \exp \{-M_{\theta,\varepsilon} p^{-\theta} + (M_{\theta,\varepsilon} p^{-\theta})^{1/2} \} \leq \exp \left\{ -\frac{M_{\theta,\varepsilon}}{2p^\theta} \right\}, \]

where we have used \((eC/x^2)^x \leq e^{2C^2/x} \) for \(C > 0. \)

Finally,

\[\sum_{k=k_0+1}^{\infty} k \int_{s=A}^{\infty} \left(\frac{e(1-p)^{(k-1)/2} s}{\varepsilon^2 k^2} \right)^k e^{-s ds} \leq \int_{s=A}^{\infty} e^{-s} \sum_{k=k_0+1}^{\infty} \left(\frac{2e\varepsilon^3 s}{k^2} \right)^k ds \]
\[\leq \int_{s=A}^{\infty} e^{-(1-\varepsilon)s} ds \leq e^{-A/2}. \]

Substituting (23) and (24) into (21) we see that \(\mathbb{E}(|E_d|) = O\left(\frac{n}{\varepsilon^2} \right). \)

We have argued that CONSTRUCT builds a \((1+\varepsilon)\)-spanner w.h.p. The set of edges in this spanner is that of \(\bigcup_{i=0}^{N} E_i \). Part (a) of Theorem 1 now follows from (3), (5), Lemma 8 and Lemma 11.

3.3 Concentration of measure

Theorem 1 claims a high probability result. We apply McDiarmid’s inequality [8] to prove that \(|E_3|, |E_4| \) are within range w.h.p. We do not seem to be able to apply the inequality directly and so a little preparation is necessary. We first let \(m = \left\lfloor 1/R_\varepsilon \right\rfloor \) and divide \([0,1]^2\) into a grid of \(m^2 \) subsquares \(C = (C_1, C_2, \ldots, C_m^2) \) of size \(1/m \geq R_\varepsilon. \) The Chernoff bounds imply that with probability \(1-o(n^{-10}) \) each \(C \in C \) contains at most \(\rho_0 = 2nR_\varepsilon^2 \) randomly chosen points of \(\mathcal{X}. \) Suppose that we generate the points one by one and color a point blue if it is one of the first \(\rho_0 \)
points in its subsquare. Otherwise, color it red. Let \(B \) be the event that all points of \(\mathcal{X} \) are blue and we note that

\[
P(B) = 1 - o(n^{-10}).
\]

Let

\[
\kappa_1 = \frac{100 \log^{1/2} n}{p}.
\]

The significance of \(\kappa_1 \) is that the factors \((1 - p)^k(k-1)/2\) in Equations (18) and (20) imply that with probability \(1 - o(n^{-2}) \), no path contributing to \(E_3 \) or \(E_4 \) has more than \(\kappa_1 \) edges.

We let \(Z_3 \) denote the number of edges \(e = \{A, B\} \) that satisfy

(i) \(A, B \) are blue.

(ii) \(r_\varepsilon \leq |A - B| \leq 2R_\varepsilon \) and \(|Y(i_{A,B}, A) - A| \geq \varepsilon |A - B| \).

(iii) \(e \) is on an induced path in \(\mathcal{X}_p \) that has length at least \((1 + \varepsilon)|A - B|\) and at most \(\kappa_1 \) edges, each of length at most \(R_\varepsilon \).

Similarly, let \(Z_4 \) denote the number of edges \(e = \{A, B\} \) that satisfy

(i) \(A, B \) are blue.

(ii) \(r_\varepsilon \leq |A - B| \leq 2R_\varepsilon \).

(iii) \(e \) is on an induced path in \(\mathcal{X}_p \) that has length at most \((1 + \varepsilon)|A - B|\) and at most \(\kappa_1 \) edges, each of length at most \(R_\varepsilon \).

Let \(Z_i', i = 3, 4 \) be defined as for \(Z_i \), without (i). Note that Lemma's 8 and 11 estimate \(|E_i|\) through \(|E_i| \leq Z_i'\) and showing \(\mathbb{E}(Z_i') = O(n) \). Furthermore, \(Z_i = Z_i', i = 3, 4 \) if \(\mathcal{U}, \mathcal{B} \) (see Remark 5) occur and these two events occur with probability \(1 - o(n^{-10}) \). Thus we have for \(i = 3, 4 \),

\[
|E_i| \leq Z_i, \text{ w.h.p.}
\]

and

\[
E(Z_i) \leq \mathbb{E}(Z_i'|B \cap \mathcal{U}) \mathbb{P}(B \cap \mathcal{U}) + n^2 \mathbb{P}(\neg B \lor \neg \mathcal{U}) \leq \mathbb{E}(Z_i') + n^2 \mathbb{P}(\neg B \lor \neg \mathcal{U}) = O(n).
\]

We will therefore bound the probability that either \(Z_3 \) or \(Z_4 \) exceeds its mean by \(n \). We let \(W = Z_3 + Z_4 \). To apply McDiarmid’s Inequality we have to establish a Liptschitz bound for \(W \).

Our probability space consists of \(\chi^{m^2}_{i=1} \Omega_i \times \chi_{C_j \sim C_k}^{m^2} \Omega_{j,k} \), where \(\Omega_i \) is a set of at most \(\rho_0 \) random points in subsquare \(C_j \) together with a list of all of the edges inside \(C_j \). We say that \(C_j \sim C_k \) if there boundaries share a common point. Thus for a fixed \(C_j \) there are usually eight subsquares \(C_k \) such that \(C_j \sim C_k \). The set \(\Omega_{j,k} \) determines the edges between points in \(C_j \) and \(C_k \). It can be
represented by a \(\rho_0 \times \rho_0 \{0, 1\} \)-matrix in which each entry appears independently with probability \(p \). All in all there are \(n^{1-o(1)} \) components of this probability space.

A point \(X \in \mathcal{X} \) is in at most \(\nu_0 = (9\rho_0)^{\nu_1} = n^{o(1)} \) of the paths counted by \(W \). So, changing an \(\Omega_i \) or an \(\Omega_{i,j} \) can only change \(W \) by at most \(\nu_1 = 2\rho_0 \nu_0 \nu_1 = n^{o(1)} \) and so the random variable \(W \) is \(\nu_1 \)-Liptschitz. It then follows from McDiarmid's inequality that

\[
\Pr(W \geq \mathbb{E}(W) + n) \leq \exp\left(-\frac{n^2}{2n^{1-o(1)} \nu_1^2}\right) = e^{-n^{1-o(1)}}.
\]

This completes the proof of Theorem 1.

4 | PROOF OF THEOREM 3

For this we only have to observe that w.h.p. \(K(X, i) \) exists for all \(X, i \). This follows from the Chernoff bounds and the fact that the expected number of vertices in \(K(X, i) \) grows faster than \(\log n \). We can therefore use Lemma 6 to prove the existence of the required spanner.

5 | SUMMARY AND OPEN QUESTIONS

There is a significant gap between the upper and lower bounds of Theorems 1 and 2, in their dependence on \(\varepsilon, p \). Closing this gap is our greatest interest.

We have considered a Euclidean version, asking for a \((1 + \varepsilon) \)-spanner and random geometric graphs. We could probably extend the results of Theorems 1, 2, and 3 to \([0, 1]^d, d \geq 3 \). This does not seem difficult. There is a slight problem in that the cones \(K(i, X) \) intersect in sets of positive volume. The intersection volumes are relatively small and so the problems should be minor. We do not claim to have done this.

ACKNOWLEDGMENTS

This research was supported in part by NSF grant DMS1363136.

DATA AVAILABILITY STATEMENT

Data sharing not applicable to this article as no data sets were generated or analysed during the current study.

ORCID

Alan Frieze http://orcid.org/0000-0002-8481-5615

REFERENCES

1. R. Ahmed, G. Bodwin, F. Sahneh, K. Hamm, M. Javad, S. Kobourov, and R. Spence, Graph spanners: a tutorial review. Comput. Sci. Rev. 37 (2020).
2. M. Fredman and R. Tarjan, Fibonacci heaps and their uses in improved network optimization algorithms, 25th Annual Symposium on Foundations of Computer Science, IEEE, 1984, pp. 338–346.
3. A. M. Frieze and W. Pegden, Travelling in randomly embedded random graphs, Random Struct. Algorithms. 55 (2019), 649–676.
4. A. M. Frieze and W. Pegden, Spanners in randomly weighted graphs: independent edge lengths. Discret. Appl. Math. 309 (2022), 68–74.
5. A. M. Frieze and T. Tkocz, Shortest paths with a cost constraint: a probabilistic analysis. Discret. Appl. Math. 302 (2021), 46–53.
6. S. Janson, Poisson approximation for large deviations, Random Struct. Algorithms. 1 (1990), 221–230.
7. A. Mehrabian and N. Wormald, On the stretch factor of randomly embedded random graphs, Disc. Computat. Geometry. 49 (2013), 647–658.
8. C. McDiarmid, On the method of bounded differences, Surv. Combin. 141 (1989), 148–188.
9. G. Narasimhan and M. Smid, Approximating the stretch of Euclidean graphs, SIAM J. Comput. 30 (2000), 978–989.
10. G. Narasimhan and M. Smid, Geometric spanner networks, Cambridge University Press, New York, NY, 2007.
11. E. D. Demaine and J. O’Rourke, Open problems from CCCG 2009, Proceedings of the 22nd Canadian Conference on Computational Geometry (CCCG 2010), pp. 83–86.
12. M. Penrose, Random geometric graphs, Oxford University Press, Oxford, 2003.
13. A. C. Yao, On constructing minimum spanning trees in k-dimensional spaces and related problems, SIAM J. Comput. 11 (1982), 721–736.

How to cite this article: A. Frieze and W. Pegden, Spanners in randomly weighted graphs: Euclidean case, J. Graph Theory. 2023;104:87–103. https://doi.org/10.1002/jgt.22950