RESEARCH

Bioentity2vec: Attribute- and behavior-driven representation for predicting multi-type relationships between bioentities

Zhen-Hao Guo, Zhu-Hong You, Yan-Bin Wang, De-Shuang Huang, Hai-Cheng Yi, and Zhan-Heng Chen

1Xinjiang Laboratory of Minority Speech and Language Information Processing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, No. 40-1, Beijing South Road, Urumqi, Xinjiang, China; 2University of Chinese Academy of Sciences, Beijing 100049, China; 3School of Cyber Science and Technology, Zhejiang University, Hangzhou 310000, Zhejiang, China and 4Computer Science Department, Tongji University, Shanghai 200000, China

∗Correspondence address: Zhu-Hong You, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; Tel. +86-991-367-2967; E-mail: zhuhongyou@ms.xjb.ac.cn;
†Equal contribution.

Abstract

Background: The explosive growth of genomic, chemical, and pathological data provides new opportunities and challenges for humans to thoroughly understand life activities in cells. However, there exist few computational models that aggregate various bioentities to comprehensively reveal the physical and functional landscape of biological systems. Results: We constructed a molecular association network, which contains 18 edges (relationships) between 8 nodes (bioentities). Based on this, we propose Bioentity2vec, a new method for representing bioentities, which integrates information about the attributes and behaviors of a bioentity. Applying the random forest classifier, we achieved promising performance on 18 relationships, with an area under the curve of 0.9608 and an area under the precision-recall curve of 0.9572. Conclusions: Our study shows that constructing a network with rich topological and biological information is important for systematic understanding of the biological landscape at the molecular level. Our results show that Bioentity2vec can effectively represent biological entities and provides easily distinguishable information about classification tasks. Our method is also able to simultaneously predict relationships between single types and multiple types, which will accelerate progress in biological experimental research and industrial product development.

Keywords: network biology; system biology; Bioentity2vec; multi-type relationship prediction

Introduction

In the post-genomic era, a key task is to systematically and comprehensively understand the relationships between bioentities in living cells [1]. The foundation for this mission is the rapid development of high-throughput technologies and the discovery of new transcripts or translations [2]. For example, the increasing evidence prove that the biomolecule networks such as protein-protein interaction network, ncRNA-disease association network, drug-target interaction network play important roles...
in protein synthesis [3], gene expression [4], RNA processing [5],
and developmental regulation [6]. Consequently, research into
the relationships between bioentities will not only provide novel
insights into life processes but also facilitate disease prevention,
diagnosis, treatment, and drug development.

Wet lab experiments to identify relationships between bioen-
tities in large-scale datasets are labor-intensive and time-
consuming and have limited real-world utility. Meanwhile,
the extensive amount of accumulated experimental data causes in-
formation overload, which makes it prohibitively costly to ac-
quire valuable knowledge. Hence, biological experiments can be
effectively guided by data-based computer modeling methods to accelerate genomics and proteomics research progress [7].

The computational biology community has developed many computational methods, such as matrix factorization [8], ma-
tine learning [9], and network analysis [10] to detect previ-
ously unknown relationships between entities. Guo et al. pro-
posed a computational model to predict potential associations
between diseases and long noncoding RNA (lncRNA) by integrat-
ing evidence of known associations with disease semantic sim-
ilarity [11]. Wang et al. adopted the logistic model tree method-
ology to integrate information from multiple sources to dis-
cover unknown associations between diseases and microRNA
(miRNA) [12]. Li et al. used the position-specific scoring matrix
to represent proteins, and then put these into an ensemble clas-
sifier to predict self-interacting and non–self-interacting pro-
tins [13]. Wang et al. used rotation forest to discover unknown
drug–target interactions by drug structure and protein sequence
[14].

However, the incompleteness of the data constrains the cred-
ibility of predictions made by these methods, resulting in high
false-positive and false-negative rates [15]. In recent years, the
discovery of new types of bioentities and their relationships has
provided novel insights to improve this situation to some extent.
Additional bioentities may be considered as bridges to synergis-
tically facilitate our knowledge of underlying biological princi-
plies and improve prediction. For example, Chen et al. were able
to effectively improve the prediction of miRNA–disease associ-
atons by taking environmental factors into account [16]. Simi-
larly, Cui et al. drew from gene expression data to make pre-
liminary explorations into predicting drug–disease associations
[17].

In the past few years, much molecular data have accumu-
lated, but computational methods have failed to make signif-
ificant breakthroughs because few people regard cells as being
complete units. In fact, cells comprise nodes (bioentities) and
edges (relationships), much like a network (graph), to maintain
normal life activities and physiological functions. The ability to
establish connections between internal or external factors and
gene expression would be helpful for understanding biological
systems. Here, we constructed a molecular association network
(MAN), based on various online databases, such as NONCODE
[18] and miRBase [19], to help systematically analyze the rela-
tionships between bioentities within human cells.

Faced with such a large-scale network, the most critical chal-
lenge is how to quickly and effectively describe the nodes. In
general, each bioentity can be defined by its own attributes and
behaviors [20, 21]. Attribute features can be represented by RNA
sequences, drug chemical structures, etc. [22–24]. The seman-
tic description of drug or disease can also be considered as a
kind of representation, which is widely used in relationship pre-
diction tasks, such as drug reposition [24]. On the other hand,
network-based methods, especially the rapid development of
graph-embedding (network representation) algorithms, has pro-
vided great hope for being able to clearly describe relationships
between nodes [25–32].

Graph embedding, in which nodes are represented in a net-
work as dense vector forms, is chosen to respond to this situ-
ation [33]. Although some existing bioinformatics models con-
tain the idea of graph embedding, many still focus on tradi-
tional techniques, including principal component analysis [34],
multidimensional scaling [35], Isomap [36], and local linear em-
beddings [37]. In general, these methods offer satisfactory per-
formance for small networks. However, at least quadratic time
complexity restricts the application of these methods to large-
scale data. Recently, deep learning has attracted research atten-
tion. Here, the representation method DeepWalk is applied.

We constructed a MAN and propose a graph-embedding al-
gorithm to represent each node as a vector (Fig. 1). Specifically,
18 kinds of associations or interactions between 8 kinds of
biomolecules were collected from various databases to con-
struct the network. The lower triangular part of the adjacency
matrix, A, simplifies calculation and storage. Each bioentity can
be represented as a vector by combining attribute and behavior
features (see flow chart in Fig. 2). We used random forest to pre-
dict multi-type relationships across an entire network, obtaining
an area under the receiver operating characteristic curve (AUC)
of 0.9608, and an area under the precision-recall curve (AUPR)
of 0.9572, using 5-fold cross-validation. Furthermore, we imple-
mented 3 experiments to compare feature importance, embed-
ding strategy, and proportions of training sets. Our results sug-
uggest the potential utility of MAN for revealing previously uncov-
ered relationships. We hope that this work can provide assis-
tance and guidance for wet experiments and be useful for re-
searchers seeking to understand gene regulation and disease
mechanisms and to discover new drugs at the molecular level.

Materials and Methods

Construction of the molecular association network

To construct the MAN, 18 different experimentally verified asso-
ciations or interactions were collected from various databases
[38–57]. After unifying identifiers, we obtained 8 types of bioen-
tity. All relationships and bioentities were then aggregated to
form the MAN. The quantity and proportion of each type of
bioentity or relationships is shown in Fig. 3.

Node attribute representation: k-mer, semantics, and
fingerprint

Protein and RNA sequences, disease and microbe semantics,
and drug chemical structure are all essential features. We rep-
resented these as vectors using the following methods.

For protein, mRNA, miRNA, lncRNA, and circular RNA (cir-
cRNA), sequences were collected from STRING (STRING, RRID:SCR
R_005223) [56], NCBI (NCBI, RRID:SCR_006472) [58], miRBase (miR-
base, RRID:SCR_003152) [19], NONCODE (NONCODE, RRID:SCR_0
07822) [18], and circBase [59], respectively. Proteins are com-
posed of 20 different amino acids; using the method described
by Shen et al. [60], we first classified these into 4 categories based
on amino acid side chain polarity: (i) alanine, valine, leucine,
isooleucine, methionine, phenylalanine, tryptophan, and proline;
(ii) glycine, serine, threonine, cysteine, asparagine, glycine, and
tyrosine; (iii) arginine, lysine, histidine; and (iv) aspartate and
glutamic acid. RNA, including mRNA, miRNA, lncRNA, and cir-
cRNA, is composed of 4 nucleotides: adenine (A), guanine (G),
cytosine (C), and uracil (U), with the same sequence composi-
Guo et al.

Figure 1: An example of visualization based on molecular association networks (MAN), in which different colors represent different types of bioentities. Each bioentity contains 2 kinds of information: node behavior (relationships with other nodes) and node attribute (sequences of protein or RNA, chemical structure of drug, and semantics of disease and microbe).

Figure 2: Flow chart of the proposed method. Each node in the network can be described in 2 ways: (i) by attribute feature, such as sequence and chemical structure, which can be learned as a 64-dimension vector by k-mer, etc., and (ii) by behavior feature, which can be represented as a 64-dimension vector through DeepWalk. Attribute and behavior feature are distinguished by dashed and unprocessed squares. After combining attribute and behavior information, each node can be represented as a 128-dimension vector. Positive samples are experimentally verified relationships, while negative samples are the same number of unlabeled relationships that are randomly selected in matrix A. Taking the low-dimensional dense vectors as input, random forest is used for prediction.

Diseases and microbes were characterized using Medical Subject Headings (MeSH) descriptors. Top-level categories in the MeSH tree structure are anatomy [A], organisms [B], diseases [C], and so on. The categories corresponding to microbes and diseases are B and C, respectively. As done by Wang et al. [23], we construct a directed acyclic graph (DAG) of diseases and microbes (see Fig. 4) to represent them through their semantics. For example, a microbe M can be represented as a graph $\text{DAG}(M) =$
Bioentity2vec: Predicting multi-type relationships between bioentities

**Figure 3:** Details about the quantity and distribution of 8 kinds of biomolecules and 18 kinds of relationships.

**Figure 4:** Construction of the directed acyclic graph (DAG) of *Staphylococcus*. The father node of the current microbe can be obtained by deleting the last 3 digits of the descriptor. For example, for *Bacillales* (B03.353.500, B03.510.100), we can remove the last 3 digits to get *Firmicutes* (B03.353) and gram-positive bacteria (B03.510).

(M, N(M), E(M)), where N(M) is the set of all nodes in M’s DAG and E(M) is the set of all edges in M’s DAG. The semantic contribution of microbe m, which is in the node set N(M) to M, can be defined as:

\[
V_M(m) = \begin{cases} 
1 & \text{if } m = M \\
\Delta \cdot \max \{ V(m’) | m’ \in \text{children of } m \} & \text{if } m \neq M
\end{cases}
\] (1)

where \(\Delta\) denotes an attenuation factor and is defined as 0.5, according to previous literature [23]. In the DAG generated by microbe M, M’s contribution to itself can be regarded as the maximum and is equal to 1; the remaining diseases will contribute less and less to M as the distance increases. Therefore, the sum of the contributions of microbes, which are in the set N(M) to M, can be calculated as follows:

\[
SV(M) = \sum_{m \in N(M)} V_M(m)
\] (2)

The similarity between microbes \(i\) and \(j\) can then be calculated as follows:

\[
\text{Similarity}(i, j) = \frac{\sum_{m \in N(i) \cap N(j)} [V_M(m) + V_M(m')] SV(i) + SV(j)}{SV(i) + SV(j)}
\] (3)

The node attribute of microbe or disease can be represented by semantics similarity, which is converted into a 64-dimensional vector after feature extraction and transformation using the stack autoencoder. A DAG example of the microbe *Staphylococcus* is as follows: for drugs, we download their Simplified Molecular Input Line Entry Specification (SMILES) [61] from DrugBank (DrugBank, RRID:SCR_002700) [47]. Then, SMILES is transformed into corresponding Morgan molecular fingerprints [62] using the Python package RDKit (RDKit, RRID:SCR_014274) [63]. To unify dimensions and improve feature quality, stack autoencoder is used to convert each original molecular fingerprint into a 64-dimensional vector.
Node behavior representation: DeepWalk

Using “guilt-by-association” assumptions, we use a more general behavioral feature in complex networks. Generally speaking, this involves embedding representations of known edges between nodes in a network. Despite this, a row or column of the adjacency matrix can directly be used as a representation vector for node behavior in a one-hot encoding method. However, there is no concept of similarity between each dimension of such high-dimensional, sparse vectors because it is represented as indices in a relationship. Meanwhile, the one-hot encoding method takes up a lot of storage space and is not conducive to the input of downstream tasks. Hence, how to extract information about behavior from nodes in complex networks such as a MAN is challenging.

Here, we use a network embedding method called DeepWalk [64]. The main idea is to obtain a certain length of the walk sequence through random walk, an ideal mathematical state of Brownian motion that can repeatedly access the visited nodes. After obtaining enough sequences, the vectors of the nodes can be learned by the SkipGram model. The direct analog is to estimate the likelihood of observing vertex vi, given all the previous vertices visited so far in the random walk, i.e.,

\[
P_r(v_i | \{v_1, v_2, \ldots, v_{i-1}\}).
\]

(4)

The goal is to learn a latent representation, and the mapping function is:

\[
\Phi : v \in V \mapsto \mathbb{R}^{V \times d}.
\]

(5)

The problem, then, is to estimate the likelihood:

\[
P_r(v_i | \{\Phi(v_1), \Phi(v_2), \ldots, \Phi(v_{i-1})\}).
\]

(6)

The recent relaxation in language modeling turns the prediction problem, and this yields the optimization problem:

\[
\min_{\Phi} - \log P_r(v_i | \{v_1, \ldots, v_{i-1}\}) - \log P_r(v_{i+1} | \{v_1, \ldots, v_{i+1}\}).
\]

(7)

The main steps of the algorithm are as follows:

Algorithm 1: DeepWalk (G, w, d, y, t).
Input: graph G(V, E)
Window size w
Embedding size d
Walks per vertex y
Walk length t
Output: matrix of vertex representations \( \Phi \in \mathbb{R}^{V \times d} \)
1: Initialization: sample \( \Phi \) from \( U^W \)
2: Build a binary tree \( T \) from \( V \)
3: for \( i = 0 \) to \( y \) do
4: \( O = \text{Shuffle}(V) \)
5: for each \( v_i \in O \) do
6: \( W_n = \text{RandomWalk}(G, v_i, t) \)
7: \( \text{SkipGram}(\Phi, W_n, w) \)
8: end for
9: end for

The effects of the parameters \( w \) and \( t \) on the results were not obvious. At the same time, smaller values can significantly reduce the experimental running time. Larger values of \( w \) and \( t \) may introduce additional noise and increase calculation burden. In fact, the structure of the MAN is totally different from those of previous benchmark datasets such as Facebook and Twitter. For traditional social networks, vertices with the same label are closely related. In the network of the present article, there are generally no edges between vertices of the same label, except in a protein–protein interaction network. The representation of vertices is mainly through the description of relationship with other types of vertices. To ensure as much experimental reproducibility as possible, we set the parameters \( w \) and \( t \) to the commonly used values 10 and 80. After generating the sequence of vertices, a Python package called gensim was applied to generate word-embedding representation.

The SkipGram algorithm is as follows:

Algorithm 2: SkipGram (\( \Phi, W_n, w \))
1: for each \( v_j \in W_n \) do
2: for each \( u_k \in W_n[j - w : j + w] \) do
3: \( f(\Phi) = - \log P(r(u_k | \Phi(v_j))) \)
4: \( \Phi = \Phi - \alpha \cdot \langle f(\Phi) \rangle \)
5: end for
6: end for

Note: whenever nodes are processed by DeepWalk, the test edges (relationships) in the network are stripped to ensure that the label information does not leak into the test set. A visualization of DeepWalk can be seen in Fig. 5.

Stack autoencoder (SAE)

Attribute representation vectors of drugs and diseases comprise thousands of dimensions, and this is not helpful for classifier training. Stack autoencoder (SAE) is selected to map the vectors from the original space into a low space, so as to reduce noise and feature dimensions. The autoencoder consists of 2 parts: the encoder, which maps the original input to the new space, and the decoder, which reconstructs the latent representation to the original input. For the original input \( x \), the output \( h_1 \) of the first hidden layer can be calculated by the following formula:

\[
h_1 = f_1(W_1x + b_1).
\]

(8)

where \( f_1 \) is the activation function, \( W_1 \) is the weight matrix between the input layer and the first hidden layer, and \( b_1 \) is the threshold of the first hidden layer neurons. Similarly, the output of each layer of the stack autoencoder can be calculated. The mean squared error between the output \( y \) and the original input \( x \) is:

\[
L = (x, y) = \sum (x_i - y_i)^2.
\]

(9)

Then, the back-propagation algorithm is used to minimize the loss function to obtain the final model. We completed this task using the Python package Keras. The dimension of the hidden layer representation is 64, “MSE” is selected as the loss function, and the optimizer is “Adam.” The epochs and batch sizes are set to 10 and 128, respectively.
Bioentity2vec: Predicting multi-type relationships between bioentities

Random forest classifier

Random forest is a classifier containing multiple decision trees whose output is determined by the mode of the output of each decision tree. It can efficiently process high-dimensional features, even in large data volumes. In addition, its high adaptability makes it possible to accept both discrete and continuous data. Here, we used the Python package sklearn to perform the random forest classifier, with default values.

Results

Relationship prediction based on the whole dataset under 5-fold cross-validation

Relationship prediction is common in both academia and industry. Here, some edges in the original graph are hidden as test sets and we construct the model based on the residual network. We evaluate the proposed method through 5-fold cross-validation. Under this strategy, the whole dataset is divided into 5 mutually exclusive subsets of roughly equal size. Each subset is used as the test set in turn to assess the effect of the classifier, and the remaining 4 subsets are used as a training set to construct the model. In each fold, areas under the receiver operating characteristic curves (ROC) and precision-recall curves (PR) are drawn to visualize the results, respectively. There are 114,150 valid experimental relationships in the whole network. In each fold cross-validation, 80% of the edges of the entire network are processed by Bioentity2vec and are treated as training samples; 20% of edges are considered test samples.

Various evaluation criteria, including accuracy (Acc.), sensitivity (Sen.), specificity (Spec.), precision (Prec.), and Matthews correlation coefficient (MCC) are adopted to measure experimental results. Results are presented in Table 1 and Fig. 6 and show that our method can help to make stable and robust decisions and accurately discover potential associations.

Feature importance comparison

Nodes in a MAN can be represented as vectors by 2 types of information: node attribute and node behavior. To evaluate the effectiveness of these different kinds of feature, we compared the pure attribute-based method, pure behavior-based method, and a combination of these, based on various evaluation metrics: ROC, AUC, PR, and AUPR. Results are presented in Table 2 and Fig. 7 and show that the feature vector generated by combining the 2 kinds of information above provides more competitive performance.

Random forest classifier

Random forest is a classifier containing multiple decision trees whose output is determined by the mode of the output of each decision tree. It can efficiently process high-dimensional features, even in large data volumes. In addition, its high adaptability makes it possible to accept both discrete and continuous data. Here, we used the Python package sklearn to perform the random forest classifier, with default values.

Comparison based on varying proportions of training sets

Data integrity is a top priority in achieving global relationship prediction. To explore the effects of missing data on the results, we separately learned the representation vectors of each node by combining attributes and single-type associations. Considering the “new sample” (cold start) problem in practical biological experiments, we do not guarantee that the degree of each node is >0. When only the sequences of the biological entities are known and their associations with other biomolecules are unknown, this strategy of constructing the vector by combining the node attribute and the node behavior can also predict potential relationships based on new sample and greatly improve the usability of the model.

Additional experiment based on drug–disease association prediction

Here, we take a specific example of drug–disease relationship prediction to carry out an additional experiment to evaluate the performance of our method, and compare it with the traditional single-function method. In total, 17,414 experimentally verified drug–disease associations were collected from the Comparative Toxicogenomics Database (CTD) [57]. Five-fold cross-validation was performed; ROCs and AUCs are shown in Fig. 9.

In Fig. 9a, the baseline for each node is represented as a 64-dimension vector by only its pure attributes, i.e., Morgan fingerprints or disease semantics.

For Fig. 9b, node behaviors are represented based on only drug–disease associations. Taking the idea of “guilt-by-association,” each node is abstracted into a 128-dimension vector by combining attributes and single-type associations. Compared to Fig. 9a, a slightly elevated AUC confirms the results of our feature importance comparison experiment and shows that
Table 1: Results of accuracy (Acc.), sensitivity (Sen.), specificity (Spec.), precision (Prec.), and Matthews correlation coefficient (MCC) obtained under 5-fold cross-validation on the whole network

| Fold | Acc. (%) | Sen. (%) | Spec. (%) | Prec. (%) | MCC (%) | AUC (%) |
|------|----------|----------|-----------|-----------|---------|---------|
| 0    | 91.66    | 87.49    | 95.83     | 95.45     | 83.61   | 96.49   |
| 1    | 91.66    | 87.71    | 95.61     | 95.23     | 83.58   | 96.29   |
| 2    | 91.33    | 86.90    | 95.76     | 95.35     | 82.99   | 95.86   |
| 3    | 91.47    | 87.32    | 95.62     | 95.22     | 83.23   | 95.73   |
| 4    | 91.37    | 87.18    | 95.56     | 95.16     | 83.04   | 96.03   |
| Mean ± SD | 91.50 ± 0.16 | 87.32 ± 0.31 | 95.68 ± 0.11 | 95.28 ± 0.12 | 83.29 ± 0.29 | 96.08 ± 0.31 |

Figure 6: Performance obtained by the proposed method. Based on the whole network, the model achieved an area under the receiver operating characteristic curve (AUC) of 0.9608 and an area under the precision-recall curve (AUPR) of 0.9572 under 5-fold cross-validation.

Table 2: Results of accuracy (Acc.), sensitivity (Sen.), specificity (Spec.), precision (Prec.), and Matthews correlation coefficient (MCC) obtained by feature importance comparison experiments under 5-fold cross-validation on the whole network

| Feature | Acc. (%) | Sen. (%) | Spec. (%) | Prec. (%) | MCC (%) | AUC (%) |
|---------|----------|----------|-----------|-----------|---------|---------|
| Attribute | 90.85 ± 0.09 | 89.79 ± 0.19 | 91.90 ± 0.11 | 91.73 ± 0.10 | 81.72 ± 0.17 | 95.91 ± 0.05 |
| Behavior | 88.67 ± 0.15 | 82.15 ± 0.24 | 95.19 ± 0.18 | 94.47 ± 0.19 | 78.00 ± 0.29 | 93.28 ± 0.13 |
| Both ± SD | 91.50 ± 0.16 | 87.32 ± 0.31 | 95.68 ± 0.11 | 95.28 ± 0.12 | 83.29 ± 0.29 | 96.08 ± 0.31 |

measuring the local function of biomolecules improves prediction performance to some extent.

Figure 9c shows that we can consider the method proposed in this article as a kind of global embedding method. In each cross-validation, Bioentity2vec handles 80% drug–disease pairs with 17 kinds of relationships. Taking the 128-dimension vectors that integrate attributes and behaviors as inputs, the random forest classifier is chosen for training and testing. Compared with previous methods, the results that we obtained indicate that the extra edges serve as an intermediary to facilitate the prediction of associations when faced with specific problems.

For Fig. 9d, we carried out a special embedding strategy based on that described by Chen [65]. The remaining 17 types of relationship without drug–disease association pairs were learned by DeepWalk to obtain behavior representation vectors. This process does not depend on direct drug-disease associations. To eliminate the influence of the attribute feature on prediction performance, each node representation vector was constructed only by using behavior features under this special strategy. Nevertheless, the model still achieved a mean AUC of 0.7562 under 5-fold cross-validation, which implies that our MAN contains a wealth of biological information.

Note: to ensure the fairness of the experiment, negative samples of 4 experiments and each subset under 5-fold cross-validation were all consistent.

A case study based on drug–disease association

A case study of ataxia was implemented to assess the performance of the proposed method in a real-world environment. As mentioned, we collected 17,414 drug–disease associations from
Figure 7: The receiver operating characteristic curves (ROCs), areas under the receiver operating characteristic curves (AUCs), precision-recall curves (PRs), and areas under the precision-recall curves (AUPRs) of the proposed method under 5-fold cross-validation. Representations of vectors combining attribute and behavior features are better than single types of information.

Table 3: Results of accuracy (Acc.), sensitivity (Sen.), specificity (Spec.), precision (Prec.), and Matthews correlation coefficient (MCC) obtained trained and tested by different proportions of edges in the entire network

| Proportion | Acc. (%) | Sen. (%) | Spec. (%) | Prec. (%) | MCC (%) | AUC (%) |
|------------|----------|----------|-----------|-----------|---------|---------|
| 20%        | 82.09    | 71.99    | 92.20     | 90.22     | 65.54   | 87.10   |
| 40%        | 85.54    | 77.48    | 93.61     | 92.38     | 72.03   | 90.19   |
| 60%        | 87.35    | 80.20    | 94.49     | 93.58     | 75.47   | 91.84   |
| 80%        | 88.64    | 82.35    | 94.92     | 94.19     | 77.89   | 93.17   |

Figure 8: Performance comparison achieved by the proposed method, which was trained on different proportions of edges in the molecular association network.

CTD [57] and processed these as described by Zhang et al. [66]. To verify the prediction ability of the proposed model for new disease, we removed 61 association pairs related to ataxia. The remaining 17,353 drug–disease associations were used as a training set to generate features and construct the model. Ataxia is paired with each drug to form the test set. The top 10 results can be seen in Table 4. All association pairs were verified by CTD. Inference score and references were provided by CTD. The term “unconfirmed” refers to an association pair that we were not able to find in the CTD. We sorted all drugs by Direct Evidence Rank, and the top 10 results are presented in Table 4.

Such prediction results can be attributed to the following 2 points: (i) in an open environment, there are many problems associated with new samples (cold start). These samples can only be represented by attributes because there are not enough known relationships. (ii) CTD and DrugBank are 2 different databases, and their differences lead to insufficient relationships to generate expressive behavior representations of abiotic entities.
Figure 9: Comparison of receiver operating characteristic curves (ROCs), areas under the receiver operating characteristic curves (AUCs), precision-recall curves (PRs), and areas under the precision-recall curves (AUPRs) with 4 kinds of representation methods under 5-fold cross-validation based on a drug–disease association dataset.

Table 4: The proposed method was applied to ataxia to predict potential disease-related drugs; 8 of the top 10 predicted drugs were confirmed in the CTD database.

| No. | DrugBank ID | Evidence | CTD chemical name | Inference score | References | Direct evidence rank |
|-----|-------------|-----------|-------------------|-----------------|------------|---------------------|
| 1   | db00313     | CTD       | Valproic acid     | 32.61           | 22         | 263                 |
| 2   | db00252     | CTD       | Phenytoin         | 3.04            | 32         | 50                  |
| 3   | db00635     | CTD       | Prednisone        | null            | 1          | 178                 |
| 4   | db00563     | CTD       | Methotrexate      | 6.89            | 8          | 8                   |
| 5   | db00544     | CTD       | Fluorouracil      | 3.12            | 5          | 46                  |
| 6   | db00907     | CTD       | Cocaine           | 4.94            | 7          | 18                  |
| 7   | db00477     | CTD       | Chlorpromazine    | 3.79            | 2          | 31                  |
| 8   | db01577     | CTD       | Metamfetamine     | Unconfirmed     | Unconfirmed| Unconfirmed           |
| 9   | db00661     | CTD       | Verapamil         | Null            | 2          | 205                 |
| 10  | db00363     | CTD       | Unconfirmed       | Unconfirmed     | Unconfirmed| Unconfirmed           |

Conclusion

Current biological entity relationship calculation methods only focus on a single type of relationship and cannot simultaneously detect complex multi-type relationships between bioentities. The model proposed here may solve this issue. Specifically, in developing a comprehensive molecular association network, we propose the use of Bioentity2vec to generate represen-
tation vectors for different bioentities. Combined with the random forest classifier, promising results have been demonstrated in single- and multi-type relationship prediction. Our research represents a preliminary exploration from isolated molecules to complex molecular association networks. The concepts expressed in our research may yield novel ideas for the development of new theoretical systems, expand research objects, and accelerate the integration of proteomics and genomics.

Availability of Supporting Source Code and Requirements
Project name: Bioentity2vec
Project home page: https://github.com/CocoGzh/Bioentity2vec
Operating systems: Windows
Programming language: Python 3.7
Other requirements: Anaconda3, Open-NE
License: MIT
RRID: SCR_018179

Availability of Supporting Data and Materials
All source code and supporting data are available in the GigaScience GigaDB database [67] and GitHub [68].

Abbreviations
Acc: accuracy; AUC: area under receiver operating characteristic curve; AUPR: area under precision-recall curve; circRNA: circular RNA; CTD: Comparative Toxicogenomics Database; DAG: directed acyclic graph; IncRNA: long noncoding RNA; MAN: molecular association network; MCC: Matthews correlation coefficient; MeSH: Medical Subject Headings; mRNA: messenger RNA; miRNA: microRNA; NCBI: National Center for Biotechnology Information; ncRNA: noncoding RNA; PR: precision-recall curve; Prec: precision; ROC: receiver operating characteristic curve; SAE: stack autoencoder; Sen: sensitivity; SMILES: simplified molecular input line entry specification; Spec: specificity; SD: standard deviation.

Competing Interests
The authors declare that they have no competing interests.

Funding
This work was supported by a grant from the National Key R&D Program of China (grant No. 2018YFA0902600) and grants from the National Science Foundation of China (grant Nos. 61722212, 61861146002, 61732012, and 61902342).

Authors’ Contributions
Z.-H.G. and Z.-H.Y. considered the algorithm, arranged the datasets, and performed the analyses. Y.-B.W., D.-S.H., H.-C.Y. and Z.-H.C. wrote the manuscript. All authors read and approved the final manuscript.

References
1. Barabasi A-L, Oltvai ZN. Network biology: understanding the cell’s functional organization. Nat Rev Genet 2004; 52:101.
2. Hertzberg RP, Pope AJ. High-throughput screening: new technology for the 21st century. Curr Opin Chem Biol 2000;4(4):445–51.
3. Moore PB. The three-dimensional structure of the ribosome and its components. Annu Rev Biophys Biomol Struct 1998;27(1):35–58.
4. Mata J, Marguerat S, Bähler J. Post-transcriptional control of gene expression: a genome-wide perspective. Trends Biochem Sci 2009;30(8):506–14.
5. Singh R. RNA–protein interactions that regulate pre-mRNA splicing. Gene Expr 2002;10(1–2):79–92.
6. Tian B, Bevilacqua FC, Diegelman-Parente A, et al. The double-stranded-RNA-binding motif: interference and much more. Nat Rev Mol Cell Biol 2004;5(12):1013.
7. You Z-H, Huang Z-A, Zhu Z, et al. PBMDA: A novel and effective path-based computational model for miRNA-disease association prediction. PLoS Comput Biol 2017;13(3):e1005455.
8. Li J-Q, Rong Z-H, Chen X, et al. MCMDA: Matrix completion for MiRNA-disease association prediction. Oncotarget 2017;8(13):21187.
9. Wang Y-B, You Z-H, Li X, et al. Predicting protein–protein interactions from protein sequences by a stacked sparse autoencoder deep neural network. Mol Biosyst 2017;13(7):1336–44.
10. Huang Z-A, Huang Y-A, You Z-H, et al. Novel link prediction for large-scale miRNA–lncRNA interaction network in a bipartite graph. BMC Med Genet 2018;11(6):133.
11. Guo Z-H, You Z-H, Wang Y-B, et al. A learning-based method for IncRNA-disease association identification combining similarity information and rotation forest. iScience 2019;19:786–95.
12. Wang L, You Z-H, Chen X, et al. LMTRDA: Using logistic model tree to predict MiRNA-disease associations by fusing multi-source information of sequences and similarities. PLoS Comput Biol. 2019;15(3):e1006865.
13. Li J-Q, You Z-H, Li X, et al. PSPEL: in silico prediction of self-interacting proteins from amino acids sequences using ensemble learning. IEEE/ACM Trans Comput Biol Bioinform 2017;14(5):1165–72.
14. Wang L, You Z-H, Chen X, et al. RfDT: A rotation forest-based predictor for predicting drug-target interactions using drug structure and protein sequence information. Curr Protein Pept Sci 2018;19(5):445–54.
15. Ashburner TT, Thor KB. Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov 2004;3(8):673.
16. Chen X, Liu M-X, Cui Q-H, et al. Prediction of disease-related interactions between microRNAs and environmental factors based on a semi-supervised classifier. PLoS One 2012;7(8):e43425.
17. Cui H, Zhang M, Yang Q, et al. The prediction of drug-disease correlation based on gene expression data. Biomed Res Int 2018;2018:4028473.
18. Fang S, Zhang L, Guo J, et al. NONCODEVS: a comprehensive annotation database for long non-coding RNAs. Nucleic Acids Res 2017;46(D1):D308–D14.
19. Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res 2018;47(D1):D155–D62.
20. Guo Z-H, Yi H-C, You Z-H. Construction and comprehensive analysis of a molecular association network via IncRNA–miRNA–disease–drug–protein graph. Cells 2019;8(8):866.
21. Guo Z-H, You Z-H, Yi H-C. Integrative construction and analysis of molecular association network in human cells by fus-
ing node attribute and behavior information. Mol Ther Nucleic Acids 2020;19:498–506.
22. Wang Y, You Z-H, Yang S, et al. A high efficient biological language model for predicting protein–protein interactions. Cells 2019;8(2):122.
23. Wang D, Wang J, Lu M, et al. Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases. Bioinformatics 2010;26(13):1644–50.
24. Ngo DL, Yamamoto N, Tran VA, et al. Application of word embedding to drug repositioning. J Biomed Sci Eng 2016;9(01):7.
25. Goyal P, Ferrara E. Graph embedding techniques, applications, and performance: A survey. Knowl Based Syst 2018;151:78–94.
26. Ozcan A, Oguducu SG. Link prediction in evolving heterogeneous networks using the NARX neural networks. Knowl Inf Syst 2018;55(2):333–60.
27. Ozcan A, Oguducu SG. Multivariate time series link prediction for evolving heterogeneous network. Int J Inf Technol Decis Mak 2019;18(01):241–86.
28. Su C, Tong J, Zhu Y, et al. Network embedding in biomedical data science. Brief Bioinform 2018;1–16.
29. Martínez V, Navarro C, Cano C, et al. DrugNet: Network-based drug–disease prioritization by integrating heterogeneous data. Artif Intell Med 2015;63(1):41–9.
30. Zeng X, Zhu S, Liu X, et al. deepDR: a network-based deep learning approach to in silico drug repositioning. Bioinformatics 2019;35(24):5191–8.
31. Wei X, Zhang Y, Huang Y, et al. Predicting drug–disease associations by network embedding and biomedical data integration. Data Technol Appl 2019;53(2):217–29.
32. Lotfi Shahreza M, Ghadiri N, Mousavi SR, et al. A review of network-based approaches to drug repositioning. Brief Bioinform 2017;19(5):878–92.
33. Hamilton WL, Ying R, Leskovec J. Representation learning on graphs: Methods and applications. arXiv 2017:1709.05584.
34. Wold S, Esbensen K, Geladi P. Principal component analysis. Chemometr Intell Lab Syst 1987;2(1–3):37–52.
35. Borg I, Groenen P. Modern multidimensional scaling: Theory and applications. J Educ Meas 2003;40(3):277–80.
36. Tenenbaum JB, De Silva V, Langford JC. A global geometric framework for nonlinear dimensionality reduction. Science 2000;290(5500):2319–23.
37. Roweis ST, Saul LK. Nonlinear dimensionality reduction by locally linear embedding. Science 2000;290(5500):2323–6.
38. Yao D, Zhang L, Zheng M, et al. Circ2Disease: a manually curated database of experimentally validated circRNAs in human disease. Sci Rep 2018;8(1):11018.
39. Zhao Z, Wang K, Wu F, et al. circRNA disease: A manually curated database of experimentally supported circRNA–disease associations. Cell Death Dis 2018;9(5):475.
40. Bao Z, Yang Z, Huang Z, et al. LncRNA Disease 2.0: An updated database of long non-coding RNA–associated diseases. Nucleic Acids Res 2018;47(D1):D1034–D7.
41. Fan C, Lei X, Fang Z, et al. Circ2Disease: A manually curated database for experimentally supported circular RNAs associated with various diseases. Database (Oxford) 2018, doi:10.1093/database/bay044.
42. Bhattacharya A, Cui Y. SomamiR 2.0: A database of cancer somatic mutations altering microRNA–ceRNA interactions. Nucleic Acids Res 2015;44(D1):D1005–D10.
43. Piñero J, Bravo A, Queralt-Rosinach N, et al. DisGeNET: A comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res 2017;45:D833–9.
44. Ma W, Zhang L, Zeng P, et al. An analysis of human microbiome disease associations. Brief Bioinform 2016;18(1):85–97.
45. Hewett M, Oliver DE, Rubin DL, et al. PharmGKB: The pharmacogenetics knowledge base. Nucleic Acids Res 2002;30(1):163–5.
46. Rizkallah MR, Gamal-Eldin S, Saad R, et al. The pharmacobiomics portal: a database for drug-microbiome interactions. Curr Pharmacogenom Peri Med 2012;10(3):195–203.
47. Wishart DS, Feunang YD, Guo AC, et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res 2017;46(D1):D1074–D82.
48. Chen G, Wang Z, Wang D, et al. LncRNA Disease: a database for long-non-coding RNA–associated diseases. Nucleic Acids Res 2012;41(D1):D983–D6.
49. Miao Y-R, Liu W, Zhang Q, et al. IncRNAsNP2: An updated database of functional SNPs and mutations in human and mouse IncRNAs. Nucleic Acids Res 2017;46(D1):D276–D80.
50. Cheng L, Wang P, Tian R, et al. LncRNA2Target v2.0: A comprehensive database for target genes of IncRNAs in human and mouse. Nucleic Acids Res 2018;47(D1):D140–D4.
51. Yuan J, Wu W, Xie C, et al. NPInter v2.0: An updated database of ncRNA interactions. Nucl Acids Res 2013;42(D1):D104–D8.
52. Huang Z, Shi J, Gao Y, et al. HMDD v3.0: A database for experimentally supported human microRNA–disease associations. Nucleic Acids Res 2018;47(D1):D1013–D7.
53. Liu X, Wang S, Meng F, et al. SM2miR: a database of the experimentally validated small molecules’ effects on microRNA expression. Bioinformatics 2012;29(3):409–11.
54. Chou C-H, Shrestha S, Yang C-D, et al. miRtarBase update 2018: a resource for experimentally validated microRNA–target interactions. Nucleic Acids Res 2017;46(D1):D296–302.
55. Tong Z, Cui Q, Wang J, et al. TransmiR v2.0: an updated transcription factor-microRNA regulation database. Nucleic Acids Res 2018;47(D1):D253–D8.
56. Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2018;47(D1):D607–D13.
57. Davis AP, Grondin CJ, Johnson RJ, et al. The comparative toxicogenomics database: Update 2019. Nucleic Acids Res 2018;47(D1):D948–D54.
58. NCBI Resource Coordinators. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 2017;45(Database issue):D12.
59. Glazár P, Papavasileiou P, Rajewsky N. circBase: A database for circular RNAs. RNA 2014;20(11):1666–70.
60. Shen J, Zhang J, Luo X, et al. Predicting protein–protein interactions based only on sequences information. Proc Natl Acad Sci U S A 2007;104(11):4337–41.
61. Weininger D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Model 1988;28(1):31–6.
62. Rogers D, Hahn M. Extended-connectivity fingerprints. J Chem Inf Model 2010;50(5):742–54.
63. Landrum G. RDKit: open-source cheminformatics software. 2016. http://rdkit.org. Accessed on 2019.
65. Chen X. Predicting lncRNA-disease associations and constructing lncRNA functional similarity network based on the information of miRNA. Sci Rep 2015;5:13186.
66. Zhang W, Yue X, Lin W, et al. Predicting drug-disease associations by using similarity constrained matrix factorization. BMC Bioinformatics 2018;19(1):233.
67. Guo Z, You Z, Huang D, et al. Supporting data for “Biotype2vec: Attribute- and behavior-driven representation for multi-type relationship prediction between various bioentities.” GigaScience Database 2020. http://dx.doi.org/10.5524/1000713.
68. Bioentity2vec. 2020. https://github.com/CocoGzh/Bioentity2vec. Accessed on February 19, 2020.