ACCEPTED MANUSCRIPT

Accepted manuscripts are the articles in press that have been peer reviewed and accepted for publication by the Editorial Board of the Vojnosanitetski Pregled. They have not yet been copy edited and/or formatted in the publication house style, and the text could still be changed before final publication.

Although accepted manuscripts do not yet have all bibliographic details available, they can already be cited using the year of online publication and the DOI, as follows: article title, the author(s), publication (year), the DOI.

Please cite this article RANDOMIZATION METHODS AND CLUSTER SIZE IN CLUSTER RANDOMIZED TRIALS CONDUCTED IN ELEMENTARY AND HIGH SCHOOLS

TEHNIKE RANDOMIZACIJE I VELIČINA KLASTERA U KLASTER RANDOMIZOVANIM STUDIJAMA SPROVEDENIM U OSNOVNIM I SREDNJIM ŠKOLAMA

Authors Mirjana Pajčin1, Zoran Bukumirić2, Jelena Tomašević1, Aleksandra Ilić1,Vojnosanitetski pregled (2021); Online First October, 2021.

UDC:

DOI: https://doi.org/10.2298/VSP210708087P

When the final article is assigned to volumes/issues of the Journal, the Article in Press version will be removed and the final version appear in the associated published volumes/issues of the Journal. The date the article was made available online first will be carried over.
RANDOMIZATION METHODS AND CLUSTER SIZE IN CLUSTER RANDOMIZED TRIALS CONDUCTED IN ELEMENTARY AND HIGH SCHOOLS

TEHNIKE RANDOMIZACIJE I VELIČINA KLASTERA U KLASTER RANDOMIZOVANIM STUDIJAMA SPROVEĐENIM U OSNOVNIM I SREDNJIM ŠKOLAMA

Mirjana Pajčin¹, Zoran Bukumirić², Jelena Tomašević¹, Aleksandra Ilić¹

¹Department of Preventive Medicine, Faculty of Medicine, University of Priština in Kosovska Mitrovica, Serbia

²Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Serbia

*Corresponding author
Mirjana Pajčin
mirjana.kostic@med.pr.ac.rs
Abstract

Background: Randomization allows study groups to be formed so that they are similar in all characteristics except outcomes. **Aim:** The aim of this study is to examine the frequency of randomization methods and their effect on achieving baseline balance in cluster randomization studies conducted in schools. **Methods:** A literature search of MEDLINE bibliographic database shows that the total number of collected articles in full text was 343, out of which 81 were eligible for inclusion. Each publication was reviewed by two independent reviewers, and data was extracted and analyzed. **Results:** Stratification was the most commonly applied randomization method, reported in 28 trials (34.6%). There was no statistically significant difference in the number of subjects and clusters, as well as in cluster size between trial’s groups in studies in which simple randomization was used. However, there was a statistically significant difference in number of subjects and clusters between groups in trials in which restricted randomization methods were used. Yet, there was no difference in the cluster size. **Conclusion:** Although there is no difference in the size of clusters between trial arms, either at the level of the entire sample or in relation to randomization methods applied, additional research should be conducted on larger sample in order to establish the effect of randomization methods on baseline balance, when the size of clusters is in question.

Key words: randomization, balance, cluster size.

Apstrakt

Uvod: Formiranje studijskih grupa da budu slične prema svim karakteristikama izuzev ishoda obezbeduje se postupkom randomizacije. **Cilj:** Cilj ove studije je da ispita učestalost tehnika randomizacije i njihov uticaj na postizanje ravnoteže na početku istraživanja u klaster randomizovanim studijama koje su sprovedene u školama. **Metode:** Pretraživanjem bibliografske baze podataka MEDLINE ukupan broj prikupljenih radova je bio 343, od kojih je 81 ispunio kriterijume za uključenje. Svaka publikacija je pregledana od strane dva nezavisna istraživača, podaci su ekstrahovani i analizirani. **Rezultati:** Najčešće primenjena tehnika randomizacije bila je stratifikacija koja je saopštena u 28 (34.6 %) studija. U studijama u kojima je primenjena prosta randomizacija nije bilo statistički značajne razlike u broju ispitanika i klastera kao i veličini klastera.
između ispitivanih grupa, dok u studijama u kojima su primenjene tehnike restriktivne randomizacije postoji statistički značajna razlika u broju ispitanika i klastera između grupa, ali ne i u veličini klastera. **Zaključak:** Iako u veličini klastera ne postoji razlika između ispitivanih grupa kako na nivou celog uzorka tako i u odnosu na tehnike randomizacije, trebalo bi sprovesti dodatna istraživanja na većem uzorku kako bi se utvrdio uticaj primenjenih tehnika randomizacije na prisustvo ravnoteže na početku istraživanja kada je u pitanju veličina klastera.

Ključne reči: randomizacija, balans, veličina klastera.

Introduction

Randomized controlled studies in which randomization is conducted at the level of clusters, where all subjects within the same cluster, such as hospitals or general practitioners, are subjected to the same treatment, are called cluster randomized trials\(^1\). Clusters may be groups of subjects, hospitals, schools, geographic regions, etc.

As compared with individually randomized studies, cluster randomization studies are of more complex design and require more subjects to achieve adequate statistical power, and also the application of more complex method of analysis\(^2\). Compared with an individually randomized trial testing the same hypothesis, cluster randomization requires a significantly larger sample size\(^3\).

The main result of such design application is that the outcome for one patient cannot be considered independently from other patients (as in individual randomized studies). Patients in the same cluster will probably have similar outcomes\(^4\).

Formation of study groups so as to be similar in all characteristics except in the outcome is achieved through randomization. Baseline balance among groups shall ensure that all differences obtained at the end of trial are attributed to the effect of study treatment, and not to the existing differences.

In cluster randomized studies, it is necessary to achieve balance, both at the level of individual subjects and at the level of clusters\(^5\). Due to cluster size, a large number of clusters are often difficult to randomize into every study group, while a small number of clusters is not enough to provide adequate balance among study groups\(^6\). Furthermore, the necessary number of cases depends on the size of the clusters: 100 clusters each containing
10 probands lead to greater statistical power than 10 clusters of 100 probands each7. As regards the use of randomization method in cluster randomized trials, some authors believe that the adequate balance cannot be achieved by application of simple randomization, especially if the number of randomized clusters is small 8. This is the main reason why a matched or stratified design of study is used6, although certain authors 6,9,10 favor stratification when studies of such design are in question.

In systematic review of cluster randomized trials in the field of primary health care, published 1997-2000, Eldridge et al. quote that in 54\% of studies, matching and stratification were applied during randomization 11, while in systematic review of group randomized trials in the field of cancer prevention, published 2002-2006, Murray et al. quote that simple randomization is applied in 40\% of studies, matching is applied in 20\% of studies, stratification in 35\% of studies, while a combination of matching and stratification is applied in 5.3\% of studies 12. In systematic review of Rutterford et al. that included 300 cluster randomized trials published 2000-2008, stratification method is applied in 39\% of studies, simple randomization in 37\% of studies, while matching is applied in 19\% of studies, and minimization in 5\% of studies 13.

The purpose of this study is to investigate frequency of randomization methods and their relation with the size of cluster in terms of achieving baseline balance in cluster randomized trials conducted in schools.

Method

A literature search of MEDLINE bibliographic database was conducted by 31.03.2020, using following key words in the title of the paper: “cluster randomised trial”, “cluster randomized trial”, “randomised cluster trial”, “randomized cluster trial”, “field randomised trial”, “field randomized trial”, “randomised field trial”, “randomized field trial”, “community based randomised trial”, “community based randomized trial”, “randomised community based trial”, “randomized community based trial”, “community randomised trial”, “community randomized trial”, “randomised community trial”, “randomized community trial”, “group randomised trial”, “group randomized trial”, “randomised group trial”, “randomized group trial”, “place based randomised trial”, “place based randomized trial”, “randomised place based trial”, “randomized place based trial”, “randomised place trial”, “randomized place trial”, “place randomised trial”, “place randomized trial”, “place
randomized trial”, “prevention randomised trial”, “prevention randomized trial”, “randomised prevention trial”, “randomized prevention trial”, “randomised prevention trial”. Study inclusion criteria: prospective cluster randomized trials that include two study groups, with schools as randomization units, and students as observation units. Exclusion criteria: studies in which randomization is not performed at the level of clusters, cluster randomized studies in which randomization units are not schools, pilot trials. After reading through the published titles and abstracts, all the ones which meet inclusion criteria were downloaded in extenso. The total number of collected articles in full text was 343, out of which 81 were eligible for inclusion. Each publication was reviewed by two independent reviewers and data about randomization methods, number of subjects and clusters at the beginning of the trial were extracted. The size of the cluster was obtained by dividing the total number of randomized subjects with the number of randomized clusters.
Fig 1 | Identification of cluster randomised trials from PubMed citations indexed in March 2020

Data analysis

For the analysis of primary data descriptive methods and methods for testing statistical hypotheses were used. From descriptive statistical methods, measure of central tendency (median), a measure of variability (IQR), and relative numbers were used. Statistical hypotheses were tested by the Wilcoxon test. Statistical data analysis was performed using IBM SPSS Statistics 21 (SPSS Inc., Chicago, IL, USA). The criterion for statistical significance was $p < 0.05$.

Results

The most often applied randomization method was the method of stratification which was reported in 28 (34.6 %) studies. The following were simple randomization reported in 18 (22.2 %) studies, matching in 12 (14.8%) studies and block randomization in 8 (9.9%) studies. In 9 (11.1%) studies, it wasn’t reported which randomization methods were used. Frequency of other randomization methods was less than 5% (Table 1).

Table 1. Randomization methods in cluster randomized trials conducted in schools as randomization units (n=81)

Allocation techniques	n	%
Stratification	28	34.6
Simple randomization	18	22.2
Matching	12	14.8
Not reported	9	11.1
Block randomization	8	9.9
Balanced randomization	3	3.7
Matching and stratification	1	1.2
Block and stratification	1	1.2
Restricted randomization	1	1.2

When the entire sample is considered, there is a statistically significant difference in the number of subjects and clusters between intervention and control group, while there is no statistically significant difference in the size of clusters between groups. Studies where simple randomization method is applied demonstrated the absence of statistically significant difference between study groups, in the number of subjects and clusters, as well as in the size of clusters, while studies with restrictive randomization methods demonstrated statistically significant difference between study groups, in the number of subjects and clusters, but not in the size of clusters (Table 2).
Table 2. The association of randomization methods and cluster size at baseline

Cluster size at baseline (n=72)	Intervention group	Control group	p**
Number of participants	813 (394-2710)	823 (380-2864)	0.020
Number of clusters	12.5 (7.75-34)	12 (8-31)	0.001
Cluster size	59.2 (33.8-160.4)	62.5 (33.9-158)	0.736

Cluster size at baseline in studies which applied simple randomization (n=18)

	Intervention group	Control group	p**
	314 (113-691)	314 (108-718)	0.088
Number of participants	10 (6-13)	10 (7-12)	0.953
Cluster size	45 (28.9-62.8)	42.6 (24.9-65)	0.365

Cluster size at baseline in studies which applied restricted randomization (n=54)

	Intervention group	Control group	p**
	1115 (669.5-4253)	1093 (628.5-4299)	0.012
Number of participants	20 (10-35)	16 (10-33.5)	<0.001
Cluster size	76.8 (41.8-168.7)	74.7 (40.3-178)	1.000

* number of subjects and clusters in trial’s arms

**Wilcoxon test

Note: Values are given as median and IQR (interquartile range 25-75 percentiles)

Discussion

Results of this trial show possible presence bias during randomization. The difference in the number of subjects and clusters between study groups during randomization is small, but it is statistically significant. According to the literature, there is a much greater probability of not achieving balance between trial arms, especially if the number of clusters is small like in the studies from this research. Notwithstanding the aforementioned, there is no statistically significant difference in the number of subjects and clusters between study groups in studies where simple randomization was applied, which leads to conclusion that the baseline balance was achieved although the randomization method otherwise not recommended in cluster randomized trials was applied.
In bibliography, restrictive randomization methods are recommended for cluster randomized trials because they may improve the chances of achieving balanced study groups. Author Lewsey quotes that when cluster randomized trials are in question matching and stratification are especially popular methods, and also quotes that the most commonly used factors of stratification are the size of cluster, cluster-level socio-economic status, geographic location and categorized levels of individual level prognostic factors. On the other hand, this trial shows that there is a significant difference in the number of subjects and clusters between trial arms in studies that applied certain restrictive randomization methods. The number of subjects and clusters is significantly higher in intervention groups.

Although cluster randomized trials are of complex design, in certain cases they are the only choice, for instance if the nature of the intervention requires that it must be performed in the entire community, or to prevent contamination if subjects from both study groups come from the same population. Application of adequate randomization methods in these studies has a great impact on quality of the trial. A number of authors recommend stratification, which is most frequently applied method in one third of all studies in this research. We can find the similar result in the research of Varnell et al., while in the systematic review of cluster randomized trial in the field of oral health, stratification was reported to be the most frequently used randomization method in 48% of studies.

Although certain authors believe that balance in cluster randomized trial cannot be achieved by application of simple randomization, its frequency of 22.2% in this trial is rather high. In bibliography, there is a trial where simple randomization was applied in more than a half number of studies covered by systematic review, but there are also trials where the frequency of this method is similar to our results.

As for individually randomized controlled trials, the goal of randomization in group randomized trials is to achieve a balance of baseline covariates. In contrast to individually randomized trials, another form of baseline balance applies to group randomized trials, namely, baseline balance of group sample size. In case of cluster randomized trials, the most efficient design is achieved when sizes of clusters are equal. Results of this trial show that there are no differences in the size of clusters between study groups. However, possible presence of bias can be seen through the presence of difference in the number of
subjects and clusters in the randomization process. The difference already existing between subjects and clusters at baseline may increase if a loss of subjects and/or clusters occurs during study, for which reason we believe that additional investigation is necessary.

The limitation of this study is the fact that it includes only studies that are conducted in schools as randomization units. There is a heterogeneity between trials that has not been investigated, which also represents a limitation of this trial. Also, the only balance measuring factor we took into consideration, was the size of cluster that represents a number of subjects and clusters in trial arms, without presence of balance in prognostic factors.

Conclusion

The most frequently applied randomization method is stratification, although the frequency of simple randomization is also high. In studies where simple randomization method was applied, there was no difference in the number of subjects and clusters between study groups, unlike in studies where some of restrictive randomization methods were applied. Even though there is no difference in the size of clusters between study groups, either with respect to entire sample or the randomization method applied, additional research should be conducted on larger sample in order to determine the effects of randomization method on achieving baseline balance, when cluster size is in question.

Acknowledgement

In memory of Professor Goran Trajković who helped us with basic idea of this research.
References

1. Manju Md, Candel M, Berger M; Sample size calculation in cost-effectiveness cluster randomized trials: optimal and maximin approaches, Stat Med 2014 Jul 10; 33(15): 2538-53.

2. Eldridge S. A practical guide to cluster randomised trials in health services research. United Kingdom: John Wiley & Sons, Ltd; 2012.

3. Puffer S, Torgerson DJ, Watson J. Cluster randomized controlled trials. J Eval Clin Pract. 2005; 11(5):479–83.

4. Campbell MK, Grimshaw JM. Cluster randomised trials: time for improvement: the implications of adopting a cluster design are still largely being ignored 1998 Oct 31; 317(7167):1171–2.

5. Ivers NM, Halperin II, Barnsley J, Grimshaw JM, Shah BR, Tu K et al. Allocation techniques for balance at baseline in cluster randomized trials: a methodological review. Trials. 2012 Aug 1; 13:120.

6. Hayes RJ. Cluster randomised trials. Francis T&; editor. 2009.

7. Lorenz E, Köpke S, Pfaff H, Blettner M; Cluster-randomized studies-part 25 of a series on evaluating scientific publications. Dtsch Arztebl Int 2018; 115: 163–8.

8. Crespi CM. Improved designs for cluster randomized trials. Annu Rev Public Health. 2016; 37:1–16.

9. Eldridge S. A practical guide to cluster randomised trials in health services research. United Kingdom: John Wiley & Sons, Ltd; 2012.

10. Donner A. Some aspects of the design and analysis of cluster randomization trials. J R Stat Soc Ser C Applied Stat. 1998; 47(1):95–113.

11. Eldridge SM, Ashby D, Feder GS, Rudnicka AR, Ukoumunne OC. Lessons for cluster randomized trials in the twenty-first century: a systematic review of trials in primary care. Clin Trials 2004 Feb; 1(1):80-90.

12. Murray DM, Pals SL, Blitstein JL, Alfano CM, Lehman J. Design and analysis of group-randomized trials in cancer:a review of current practices. J Natl Cancer Inst. 2008 Apr 2; 100(7):483–91.

13. Rutterford C, Taljaard M, Dixon S, Copas A, Eldridge S. Reporting and methodological quality of sample size calculations in cluster randomized trials could be improved: a review. J Clin Epidemiol. 2015 Jun; 68(6):716–23.
14. Esserman D, Allore HG, Travison TG. The method of randomization for cluster-randomized trials: challenges of including patients with multiple chronic conditions. Int J Stat Med Res. 2016 Jan; 8;5(1):2–7.

15. Dickinson LM, Beaty B, Fox C, Pace W, Dickinson WP, Emsermann C et al. Pragmatic cluster randomized trials using covariate constraint randomization: a method for practice-based research networks (PBRNs). J AM Board Fam Med. Sep-Oct 2015; 28(5):663-72.

16. Lewsay JD. Comparing completely and stratified randomized designs in cluster randomized trials when the stratifying factor is cluster size: a simulation study. Stat Med. 2004 Mar 30; 23(6):897-905.

17. Varnell SP, Murray DM, Janega JB, Blitstein JL. Design and analysis of group-randomized trials: a review of recent practices. Am J Public Health. 2004 Mar; 94(3):393–9.

18. Froud R, Eldridge S, Ordaz KD, Marinho VCC, Donner A. Quality of cluster randomized controlled trials in oral health: a systematic review of reports published between 2005 and 2009. 2012 Feb;40 Suppl 1:3–14.

19. Simpson JM, Klar N, Donner A. Accounting for cluster randomization: a review of primary prevention trials, 1990 through 1993. Am J Public Health. 1995;85(10):1378–83.

20. Turner EL, Li F, Gallis JA, Prague M, David M Murray DM. Review of recent methodological developments in group-randomized trials: part I-design. Am J Public Health 2017 Jun;107(6):907-915.

21. Eldridge SM, Ashby D, Kerry S. Sample size for cluster randomized trials: effect of coefficient of variation of cluster size and analysis method. Int J Epidemiol. 2006 Oct;35(5):1292–300.
Appendix: trials included in the analysis

Study	Publication year	Study power	Randomization methods	Intervention group No of participants randomized	Control group No of participants randomized	Intervention group No of clusters randomized	Control group No of clusters randomized
Pereira w^1	2012	Described	Stratification	176843	171240	388	375
Barreto w^2	2011	Described in previous report	Stratification	176843	171240	388	375
Stephenson w^3	2008	Described	Stratification	4516	4250	14	13
Cunha w^4	2008	Described	Stratification	72980	79458	386	375
Cooper w^5	2007	Described	Balanced	2080	2135	13	12
Rodrigues w^6	2006	Described	Block randomization	1164	1209	34	34
Madsen w^7	2013	Described	Not reported	82	74	4	3
Sancho-Garnier w^8	2012	Described	Stratification	798	567	39	31
Tol w^9	2012	Described	Simple randomization	199	200	12	12
James-Burdumy w^10	2012	Not reported	Block randomization	6400	4590	20	16
Ezendam w^11	2012	Described in previous report	Stratification	485	398	11	9
Hartmann w^12	2010	Not reported	Simple randomization	375	378	17	17
Walsh w^13	2010	Described	Stratification	2270	2461	16	11
Hunter w^14	2010	Described	Block randomization	1115	1376	11	11
Wen w^15	2010	Described	Simple randomization	1339	1004	2	2
Berg w^16	2009	Described	Simple randomization	375	378	17	17
Wolfe w^17	2009	Not reported	Stratification	968	754	10	10
Ringwalt w^18	2009	Described	Matching	3990	4348	20	10
Tol w^19	2008	Described	Simple randomization	237	258	7	7
Martinez-Vizcaíno w^20	2008	Described	Simple randomization	691	718	10	10
Naldi w^21	2007	Described in previous report	Stratification	5676	5554	62	60
Martiniuk w^22	2007	Described	Block and stratification	403	380	12	12
Rapp w^23	2006	Described	Simple randomization	605	629	16	16
Martiniuk w^24	2003	Described	Simple randomization	197	271	8	11
Aveyard w^25	2001	Described in previous report	Balanced	4660	4641	27	26
Priest w^26	2014	Described	Stratification	8859	7386	34	34
Halliday w^27	2014	Described	Stratification	2710	2523	51	50
Isensee w^28	2014	Described	Stratification	2437	2335	26	22
Ebenezer w^29	2013	Described	Block randomization	813	808	49	49
Martinez-Vizcaíno w^30	2014	Described in previous	Simple randomization	769	823	10	10
Study	Year	Description	Randomization	N1	N2		
-------	------	-------------	---------------	----	----		
Bere	2014	Described	Stratification	585	1365		
Primack	2014	Described	Stratification	554	578		
Telford	2014	Described in previous report	Stratification	176843	172240		
Kaufman	2014	Described	Stratification	2523	3036		
Sanchez	2014	Described	Stratification	153	176		
Santos	2014	Described	Block randomization	340	347		
Freeman	2013	Described	Stratification	388	375		
O'Leary-Barrett	2013	Not reported	Not reported	1529	1114		
Lewis	2013	Not reported	Matching	7	7		
Peskin	2014	Described	Balanced	598	847		
Coleman	2012	Described	Matching	647	626		
Peterson	2009	Described	Matching	1058	1093		
Telford	2013	Not reported	Not reported	394	314		
Telford-2013	2013	Not reported	Simple randomization	394	314		
LaBrie	2008	Not reported	Not reported	603	559		
Slobo da	2009	Described	Not reported	10028	7292		
Gmel	2012	Described	Matching and stratification	973	885		
Waters	2018	Described	Simple randomization	3433	3601		
Mallick	2018	Described	Stratification	223	231		
Kittayapong	2017	Described	Not reported	1297	1017		
Marciano-Olivier	2019	Described	Simple randomization	86	90		
Nawi	2015	Described	Simple randomization	47	50		
Rathleff	2015	Described	Simple randomization	62	59		
Sutherland	2016	Described	Block randomization	837	631		
Baker-Henningham	2019	Described	Not reported	108	112		
Halliday	2020	Described	Stratification	4850	4721		
Nsangi	2020	Described	Stratification	6383	6256		
Chang Wu	2018	Described	Simple randomization	365	565		
Morgan	2018	Not reported	Matching	118	79		
Bundy	2017	Described in previous report	Simple randomization	113	108		
Rozi	2019	Described	Stratification	738	589		
Andersen	2015	Described	Stratification	2381	1786		
Gerald	2019	Described	Matching	224	169		
Penalo	2015	Described	Stratification	12	12		
Schonfeld	2015	Not reported	Block randomization	692	702		
Sutherland	2016	Described	Block randomization	696	537		
Kaufman	2016	Described	Stratification	565	661		
Sanchez	2019	Described	Not reported	3243	3148		
Dalma	2019	Described	Stratification	6831	5587		
Valente	2020	Described	Simple randomization	3340	3318		
Andrade	2016	Described	Matching	700	740		
Vik	2015	Described	Matching	1713	1681		
A cluster randomized trial. Lancet Infect Dis. 2012 Apr; 12(4):300-6.

W2. Barreto ML, Pereira SM, Pilger D, Cruz AA, Cunha SS, Sant'Anna C et al. Evidence of an effect of BCG revaccination on incidence of tuberculosis in school-aged children in Brazil: second report of the BCG-REVAC cluster-randomised trial. Vaccine 2011 Jul 12; 29(31):4875-7.

W3. Stephenson J, Strange V, Allen E, Copas A, Johnson A, Bonell C et al. The long-term effects of a peer-led sex education programme (RIPPLE): a cluster randomised trial in schools in England. Plos Med 2008 Nov; 5(11): e224.

W4. Cunha SS, Alexander N, Barreto ML, Pereira ES, Dourado I, Maroja MdF et al. BCG revaccination does not protect against leprosy in the Brazilian Amazon: a cluster randomised trial. Plos Negl Trop Dis. 2008 Feb 13; 2(2):e167.

W5. Henderson M, Wight D, Raab GM, Abraham C, Parkes A, Scott Set al. Impact of a theoretically based sex education programme (SHARE) delivered by teachers on NHS registered conceptions and terminations: final results of cluster randomised trial. BMJ 2007;334:133.

W6. Cooper PJ, Chico ME, Vaca MG, Moncayo AL, Bland JM, Mafla E et al. Effect of albendazole treatments on the prevalence of atopy in children living in communities endemic for geohelminth parasites: a cluster-randomised trial. Lancet 2006 May 13;367(9522):1598-603.

W7. Rodrigues LC, Pereira SM, Cunha SS, Genser B, Ichihara MY, de Brito SC et al. Effect of BCG revaccination on incidence of tuberculosis in school-aged children in Brazil: the BCG-REVAC cluster-randomised trial. Lancet 2005 Oct 8; 366(9493):1290-5.

W8. Madsen K, Thompson H, Adkins A, Crawford Y. School-community partnerships: a cluster-randomized trial of an after-school soccer program. JAMA Pediatr. 2013 Apr; 167(4):321-6.

W9. Sancho-Garnier H, Pereira B and Césarini P. A cluster randomized trial to evaluate a health education programme “Living with Sun at School”. Int J Environ Res Public Health. 2012 Jul; 9(7): 2345–2361.

W10. Tol WA, Komproe IH, Jordans MJD, Vallipuram A, Sipsma H, Sivayokan S et al. Outcomes and moderators of a preventive school-based mental health intervention for children affected by war in Sri Lanka: a cluster randomized trial. World Psychiatry 2012 Jun; 11(2):114-22.
W11. James-Burdumy S, Goesling B, Deke J, Einspruch E. The effectiveness of mandatory-random student drug testing: a cluster randomized trial. J Adolesc Health 2012 Feb; 50(2):172-8.

W12. Ezendam NPM, Brug J, Oenema A. Evaluation of the Web-based computer-tailored FATaintPHAT intervention to promote energy balance among adolescents: results from a school cluster randomized trial. Arch Pediatr Adolesc Med 2012 Mar; 166(3):248-55.

W13. Hartmann T, Zahner L, Pühse U, Puder JJ, Kriemler S. Effects of a school-based physical activity program on physical and psychosocial quality of life in elementary school children: a cluster-randomized trial. Pediatr Exerc Sci 2010 Nov; 22(4):511-22.

W14. Walsh MM, Langer TJ, Kavanagh N, Mansell C, MacDougal W, Kavanaghet C et al. Smokeless tobacco cessation cluster randomized trial with rural high school males: intervention interaction with baseline smoking. Nicotine Tob Res 2010 Jun;12(6):543-50.

W15. Hunter S, Love-Jackson K, Abdulla R, Zhu W, Lee JH, Wells KJ et al. Sun protection at elementary schools: a cluster randomized trial. J Natl Cancer Inst 2010 Apr 7; 102(7):484-92.

W16. Wen X, Chen W, Gans KM, Colby SM, Lu C, Liang C et al. Two-year effects of a school-based prevention programme on adolescent cigarette smoking in Guangzhou, China: a cluster randomized trial. Int J Epidemiol 2010 Jun; 39(3):860-76.

W17. Berg RL, Pickett W, Fitz-Randolph M, Broste SK, Knobloch MJ, Wood DJ et al. Hearing conservation program for agricultural students: short-term outcomes from a cluster-randomized trial with planned long-term follow-up. Prev Med 2009 Dec; 49(6):546-52.

W18. Wolfe DA, Crooks C, Jaffe P, Chiodo D, Hughes R, Ellis W et al. A school-based program to prevent adolescent dating violence: a cluster randomized trial. Arch Pediatr Adolesc Med 2009 Aug;163(8):692-9.

W19. Ringwalt CL, Clark HK, Hanley S, Shamblen SR, Flewelling RL. Project ALERT: a cluster randomized trial. Arch Pediatr Adolesc Med 2009 Jul; 163(7):625-32.

W20. Tol WA, Komproe IH, Susanty D, Jordans MJD, Macy RD, De Jong JTVM. School-based mental health intervention for children affected by political violence in Indonesia: a cluster randomized trial. JAMA 2008 Aug 13; 300(6):655-62.

W21. Martínez Vizcaíno V, Aguilar FS, Gutiérrez RF, Martínez MS, López MS, Martínez S et al. Assessment of an after-school physical activity program to prevent obesity among 9- to 10-year-old children: a cluster randomized trial. Int J Obes (Lond) 2008 Jan; 32(1):12-22.

W22. Naldi L, Chatenoud L, Bertuccio P, Zinetti C, Di Landro A, Scotti Let al. Improving sun-protection behavior among children: results of a cluster-randomized trial in Italian elementary schools. The "SoleSi SoleNo-GISED" Project. J Invest Dermatol 2007 Aug; 127(8):1871-7.

W23. Martiniuk ALC, Speechley KN, Secco M, Campbell MK, A Donner A. Evaluation of an epilepsy education program for Grade 5 students: a cluster randomized trial. Epilepsy Behav 2007 Jun; 10(4):604-10.

W24. Rapp K, Büchele G, Jähnke AG, Weiland SK. A cluster-randomized trial on smoking cessation in German student nurses. Prev Med 2006 Jun; 42(6):443-8.

W25. Martiniuk ALC, Steel O'Connor K, King WD. A cluster randomized trial of a sex education programme in Belize, Central America. Int J Epidemiol 2003 Feb; 32(1):131-6.
W26. Aveyard P, Sherratt E, Almond J, Lawrence T, Lancashire R, Griffin C, Cheng KK. The change-in-stage and updated smoking status results from a cluster-randomized trial of smoking prevention and cessation using the transtheoretical model among British adolescents. Prev Med 2001 Oct; 33(4):313-24.

W27. Priest P, McKenzie JE, Audas R, Poore M, Brunton C, Reeves L. Hand sanitiser provision for reducing illness absences in primary school children: a cluster randomised trial. PLoS Med 2014 Aug 12; 11(8):e1001700.

W28. Halliday KE, Okello G, Turner EL, Njagi K, Mcharo M, Kengo J, Allen E et al. Impact of intermittent screening and treatment for malaria among school children in Kenya: a cluster randomised trial. PLoS Med 2014 Jan 28; 11(1):e1001594.

W29. Isensee B, Hansen J, Maruska K, Hanewinkel R. Effects of a school-based prevention programme on smoking in early adolescence: a 6-month follow-up of the 'Eigenstandig werden' cluster randomised trial. BMJ Open 2014 Jan 21; 4(1):e004422.

W30. Ebenezer R, Gunawardena K, Kumarendran B, Pathmeswaran A, Jukes MCH, Drake LJ et al. Cluster-randomised trial of the impact of school-based deworming and iron supplementation on the cognitive abilities of schoolchildren in Sri Lanka's plantation sector. Trop Med Int Health 2013 Aug; 18(8):942-51.

W31. Martínez-Vizcaíno V, Sánchez-López M, Notario-Pacheco B, Salcedo-Aguilar F, Solera-Martínez M, Franquelo-Morales P et al. Gender differences on effectiveness of a school-based physical activity intervention for reducing cardiometabolic risk: a cluster randomized trial. Int J Behav Nutr Phys Act 2014 Dec 10;11:154.

W32. Bere E, Klepp KI, Overby NC. Free school fruit: can an extra piece of fruit every school day contribute to the prevention of future weight gain? A cluster randomized trial. Food Nutr Res 2014 Aug 11;58.

W33. Primack BA, Douglas EL, Land SR, Miller E, Fine MJ. Comparison of media literacy and usual education to prevent tobacco use: a cluster-randomized trial. J Sch Health 2014 Feb;84(2):106-15.

W34. Barreto ML, Pilger D, Pereira SM, Genser B, Cruz AA, Cunha SS et al. Causes of variation in BCG vaccine efficacy: examining evidence from the BCG REVAC cluster randomized trial to explore the masking and the blocking hypotheses. Vaccine 2014 Jun 24; 32(30):3759-64.

W35. Muhumuza S, Olsen A, Katahoire A, Kiragga AN, Nuwaha F. Effectiveness of a pre-treatment snack on the uptake of mass treatment for schistosomiasis in Uganda: a cluster randomized trial. PLoS Med 2014 May 13;11(5):e1001640.

W36. Tol WA, Komproe IH, Jordans MJD, Ndayisaba A, Ntamutumba P, Sipsma H et al. School-based mental health intervention for children in war-affected Burundi: a cluster randomized trial. BMC Med 2014 Apr 1;12:56.

W37. Santos RG, Darksen A, Rabbani R, Chanoine JP, Miln AL, Mayer T et al. Effectiveness of peer-based healthy living lesson plans on anthropometric measures and physical activity in elementary school students: a cluster randomized trial. JAMA Pediatr 2014 Apr; 168(4):330-7.

W38. Freeman MC, Clasen T, Brooker SJ, Akoko DO, Rheingans R. The impact of a school-based hygiene, water quality and sanitation intervention on soil-transmitted helminth reinfection: a cluster-randomized trial. Am J Trop Med Hyg 2013 Nov; 89(5):875-83.
W39. O'Leary-Barrett M, Topper L, Al-Khudhairy N, Pihl RO, Castellanos-Ryan N, Mackie CJ et al. Two-year impact of personality-targeted, teacher-delivered interventions on youth internalizing and externalizing problems: a cluster-randomized trial. J Am Acad Child Adolesc Psychiatry 2013 Sep; 52(9):911-20.

W40. Lewis KM, DuBois DL, Bavarian N, Acock A, Silverthorn N, Day J et al. Effects of positive action on the emotional health of urban youth: a cluster-randomized trial. J Adolesc Health 2013 Dec;53(6):706-11.

W41. Peskin MF, Markham CM, Shegog R, Baumler ER, Addy RC, Tortolero SR. Effects of the it's your game keep it real program on dating violence in ethnic-minority middle school youths: a group randomized trial. Am J Public Health 2014 Aug; 104(8):1471-7.

W42. Coleman KJ, Shordon M, Caparosa SL, Pomichowski ME, Dzewaltowski DA. The healthy options for nutrition environments in schools (Healthy ONES) group randomized trial: using implementation models to change nutrition policy and environments in low income schools. Int J Behav Nutr Phys Act 2012 Jun 27;9:80.

W43. Peterson Jr AV, Kealey KA, Mann SL, Marek PM, Ludman EJ, Liu J et al. Group-randomized trial of a proactive, personalized telephone counseling intervention for adolescent smoking cessation. J Natl Cancer Inst 2009 Oct 21; 101(20):1378-92.

W44. Telford RD, Cunningham RB, Waring P, Telford RM, Olive LS, Abhayaratna WP. Physical education and blood lipid concentrations in children: the LOOK randomized cluster trial. PLoS One 2013 Oct 25; 8(10):e76124.

W45. Telford RD, Cunningham RB, Telford RM, Daly RM, Olive LS, Abhayaratna WP. Physical education can improve insulin resistance: the LOOK randomized cluster trial. Med Sci Sports Exerc 2013 Oct; 45(10):1956-64.

W46. LaBrie JW, Hummer JF, Neighbors C, Pedersen ER. Live interactive group-specific normative feedback reduces misperceptions and drinking in college students: a randomized cluster trial. Psychol Addict Behav 2008 Mar; 22(1):141-8.

W47. Sloboda Z, Stephens RC, Stephens PC, Grey SF, Teasdale B, Hawthorne RD et al. The adolescent substance abuse prevention study: a randomized field trial of a universal substance abuse prevention program. Drug Alcohol Depend 2009 Jun 1;102(1-3):1-10.

W48. Gmel G, Venzin V, Marmet K, Danko G, Labhart F. A quasi-randomized group trial of a brief alcohol intervention on risky single occasion drinking among secondary school students. Int J Public Health 2012 Dec; 57(6):935-44.

W49. Waters E, Gibbs L, Tadic M, Ukoumunne OC, Magarey A, Okely AD et al. Cluster randomised trial of a school-community child health promotion and obesity prevention intervention: findings from the evaluation of fun ‘n healthy in Moreland! BMC Public Health 2017 Aug 3;18(1):92.

W50. Mallick R, Kathard H, Borhan ASM, Pillay M, Thabane L. A cluster randomised trial of a classroom communication resource program to change peer attitudes towards children who stutter among grade 7 students. Trials 2018 Nov 29;19(1):664.

W51. Kittayapong P, Olanratmanee P, Maskhao P, Byass P, Logan J, Tozan Y et al. Mitigating diseases transmitted by aedes mosquitoes: a cluster-randomised trial of permethrin-impregnated school uniforms. PLoS Negl Trop Dis. 2017 Jan; 11(1): e0005197.
W52. *Marcano-Olivier M, Pearson R, Ruparell A, Horne P, Viktor S, Erjavec M*. A low-cost behavioural nudge and choice architecture intervention targeting school lunches increases children's consumption of fruit: a cluster randomised trial. Int J Behav Nutr Phys Act 2019 Feb 13;16(1):20.

W53. *Nawi AM, Jamaludin FIC*. Effect of internet-based intervention on obesity among adolescents in Kuala Lumpur: a school-based cluster randomised trial. Malays J Med Sci-Jul-Aug 2015;22(4):47-56.

W54. *Rathleff MS, Roos EM, Olesen JL, Rasmussen S*. Exercise during school hours when added to patient education improves outcome for 2 years in adolescent patellofemoral pain: a cluster randomised trial. Br J Sports Med 2015 Mar; 49(6):406-12.

W55. *Sutherland R, Campbell E, Lubans DR, Morgan PJ, Okely AD, Nathan N et al*. 'Physical activity 4 everyone' school-based intervention to prevent decline in adolescent physical activity levels: 12 month (mid-intervention) report on a cluster randomised trial. Br J Sports Med 2016 Apr; 50(8):488-95.

W56. *Baker-Henningham H, Scott Y, Bowers M, Francis T*. Evaluation of a violence-prevention programme with Jamaican primary school teachers: a cluster randomised trial. Int J Environ Res Public Health 2019 Aug 6; 16(15):2797.

W57. *Halliday KE, Witek-McManus SS, Opondo C, Mtali A, Allen A, Bauleni A et al*. Impact of school-based malaria case management on school attendance, health and education outcomes: a cluster randomised trial in southern Malawi. BMJ Glob Health 2020 Jan 14; 5(1):e001666.

W58. *Nsangi A, Semakula D, Oxman AD, Austvoll-Dahlgren A, Oxman M, Rosenbaum R et al*. Effects of the informed health choices primary school intervention on the ability of children in Uganda to assess the reliability of claims about treatment effects, 1-year follow-up: a cluster-randomised trial. Trials 2020 Jan 6; 21(1):27.

W59. *Wu PC, Chen CT, Lin KK, Sun CC, Kuo CN, Huang HM et al*. Myopia prevention and outdoor light intensity in a school-based cluster randomized trial. Ophthalmology 2018 Aug; 125(8):1239-1250.

W60. *Morgan L, Hooker JL, Sparapani N, Reinhardt VP, Schachtsneider C, Wetherby AM*. Cluster randomized trial of the classroom SCERTS intervention for elementary students with autism spectrum disorder. J Consult Clin Psychol 2018 Jul; 86(7):631-644.

W61. *Bundy A, Engelen L, Wyver S, Tranter P, Ragen J, Bauman A et al*. Sydney playground project: a cluster-randomized trial to increase physical activity, play, and social skills. J Sch Health 2017 Oct; 87(10):751-759.

W62. *Razi S, Zahid N, Roome T, Lakhdir MPA, Sawani S, Razzak A et al*. Effectiveness of a school based smokeless tobacco intervention: a cluster randomized trial. J Community Health 2019 Dec; 44(6):1098-1110.

W63. *Andersen A, Krølner R, Bast LS, Thygesen LC, Due P*. Effects of the X:IT smoking intervention: a school-based cluster randomized trial. Int J Epidemiol 2015 Dec; 44(6):1900-8.

W64. *Gerald JK, Fisher JM, Brown MA, Clemens CJ, Moore MA, Carvajal SC et al*. School-supervised use of a once-daily inhaled corticosteroid regimen: a cluster randomized trial. J Allergy Clin Immunol 2019 Feb; 143(2):755-764.

W65. *Peñalvo JL, Santos-Beneit G, Sotos-Prieto M, Bodega P, Oliva B, Orrit X et al*. The SI! Program for cardiovascular health promotion in early childhood: a cluster-randomized trial. J Am Coll Cardiol 2015 Oct 6;66(14):1525-1534.
W66. Schonfeld DJ, Adams RE, Fredstrom BK, Weissberg RP, Gilman R, Voyce C et al. Cluster-randomized trial demonstrating impact on academic achievement of elementary social-emotional learning. Sch Psychol Q 2015 Sep; 30(3):406-420.
W67. Sutherland RL, Campbell EM, Lubans DR, Morgan PJ, Nathan NK, Wolfenden L et al. The physical activity 4 everyone cluster randomized trial: 2-Year outcomes of a school physical activity intervention among adolescents. Am J Prev Med 2016 Aug; 51(2):195-205.
W68. Kaufman ZA, DeCeljes J, Bhauti K, Hershow RB, Weiss HA, Chaibva C et al. A sport-based intervention to increase uptake of voluntary medical male circumcision among adolescent male students: results from the MCUTS 2 cluster-randomized trial in Bulawayo, Zimbabwe. Acquir Immune Defic Sydndr 2016 Aug 15; 72 Suppl 4(Suppl 4):S292-8.
W69. Sanchez ZM, Valente JY, Fidalgo TM, Leal AP, Fausta de Pimentel de Medeiros P, Cogo-Moreira H. The role of normative beliefs in the mediation of a school-based drug prevention program: a secondary analysis of the #Tamojunto cluster-randomized trial. PLoS One 2019 Jan 7; 14(1):e0208072.
W70. Dalma A, Petralias A, Tsiampalis T, Nikolakopoulos S, Veloudaki A, Kastorini CM et al. Effectiveness of a school food aid programme in improving household food insecurity; a cluster randomized trial. Eur J Public Health 2020 Feb 1;30(1):171-178.
W71. Valente JY, Cogo-Moreira H, Sanchez ZM. Decision-making skills as a mediator of the #Tamojunto school-based prevention program: Indirect effects for drug use and school violence of a cluster-randomized trial. Drug Alcohol Depend 2020 Jan 1;206:107718.
W72. Andrade S, Lachat C, Cardon G, Ochoa-Avilés A, Verstraeten R, Van Camp J et al. Two years of school-based intervention program could improve the physical fitness among Ecuadorian adolescents at health risk: subgroups analysis from a cluster-randomized trial. BMC Pediatr 2016 Apr 22;16:51.
W73. Vik FN, Lien N, Berntsen S, De Bourdeaudhuij I, Grillenberger M, Manios Y et al. Evaluation of the UP4FUN intervention: a cluster randomized trial to reduce and break up sitting time in European 10-12-year-old children. PLoS One 2015 Mar 31; 10(3):e0122612.
W74. Chard AN, Garn JV, Chang HH, Clasen T, Freeman MC. Impact of a school-based water, sanitation, and hygiene intervention on school absence, diarrhea, respiratory infection, and soil-transmitted helminths: results from the WASH HELPS cluster-randomized trial. J Glob Health 2019 Dec; 9(2):020402.
W75. Džiaugytė L, Aleksejūnienė J, Brukiienė V, Pečiulienė V. Self-efficacy theory-based intervention in adolescents: a cluster randomized trial-focus on oral self-care practice and oral self-care skills. Int J Paediatr Dent 2017 Jan;27(1):37-46.
W76. Okely AD, Lubans DR, Morgan PJ, Cotton W, Peralta L, Miller J et al. Promoting physical activity among adolescent girls: the girls in sport group randomized trial. Int J Behav Nutr Phys Act 2017 Jun 21; 14(1):81.
W77. Asdigian NL, Whitesell NR, Keane EM, Mousseau AC, Kaufman CE. Effects of the "Circle of Life" HIV-prevention program on marijuana use among American Indian middle school youths: a group randomized trial in a Northern Plains tribe. Am J Drug Alcohol Abuse 2018; 44(1):120-128.
W78. Peterson Jr AV, Marek PM, Kealey KA, Bricker JB, Ludman EJ, Heffner JL. Does effectiveness of adolescent smoking-cessation intervention endure into young adulthood? 7-year follow-up results from a group-randomized trial. PLoS One 2016 Feb 1; 11(2):e0146459.

W79. Bauer KW, Foster GD, Weeks HM, Polonsky HM, Davey A, Sherman S et al. Breakfast in the classroom initiative and students' breakfast consumption behaviors: a group randomized trial. Am J Public Health 2020 Apr; 110(4):540-546.

W80. Potter SC, Coyle KK, Glassman JR, Kershner S, Prince MS. It's your game…keep it real in South Carolina: a group randomized trial evaluating the replication of an evidence-based adolescent pregnancy and sexually transmitted infection prevention program. Am J Public Health 2016 Sep; 106(S1):S60-S69.

W81. Praena-Crespo M, Aquino-Llinares N, Fernández-Truan JC, Castro-Gómez L, Segovia-Ferrera C, GESA network. Asthma education taught by physical education teachers at grade schools: a randomised cluster trial. Allergol Immunopathol (Madr) Jul-Aug 2017; 45(4):375-386.

Received on July 8, 2021.
Revised on September 9, 2021.
Accepted October 1, 2021.
Online First October, 2021.