RESEARCH ARTICLE

RaCaT: An open source and easy to use radiomics calculator tool

Elisabeth Pfaehler1*, Alex Zwanenburg2,4,5,6, Johan R. de Jong1, Ronald Boellaard1,7

1 Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands, 2 OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, Dresden, Germany, 3 National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, 4 Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, 5 Helmholtz Association / Helmholtz-Zentrum Dresden—Rossendorf (HZDR), Dresden, Germany, 6 German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany, 7 Department of Radiology & Nuclear Medicine, Amsterdam University Medical Centers, Location VUMC, Amsterdam, The Netherlands

* e.a.g.pfaehler@umcg.nl

Abstract

Purpose

The widely known field ‘Radiomics’ aims to provide an extensive image based phenotyping of e.g. tumors using a wide variety of feature values extracted from medical images. Therefore, it is of utmost importance that feature values calculated by different institutes follow the same feature definitions. For this purpose, the imaging biomarker standardization initiative (IBSI) provides detailed mathematical feature descriptions, as well as (mathematical) test phantoms and corresponding reference feature values. We present here an easy to use radiomic feature calculator, RaCaT, which provides the calculation of a large number of radiomic features for all kind of medical images which are in compliance with the standard.

Methods

The calculator is implemented in C++ and comes as a standalone executable. Therefore, it can be easily integrated in any programming language, but can also be called from the command line. No programming skills are required to use the calculator. The software architecture is highly modularized so that it is easily extensible. The user can also download the source code, adapt it if needed and build the calculator from source. The calculated feature values are compliant with the ones provided by the IBSI standard. Source code, example files for the software configuration, and documentation can be found online on GitHub (https://github.com/ellipfaehlerUMCG/RaCat).

Results

The comparison with the standard values shows that all calculated features as well as image preprocessing steps, comply with the IBSI standard. The performance is also demonstrated on clinical examples.
Conclusions

The authors successfully implemented an easy to use Radiomics calculator that can be called from any programming language or from the command line. Image preprocessing and feature settings and calculations can be adjusted by the user.

Introduction

Features describing image texture contain valuable information about important image characteristics and are applied in multiple disciplines. They can be used for object identification or the definition of region of interests (ROI) in e.g. radar or satellite images [1,2]. In medical images, textural information extracted from tumor regions has shown to provide valuable information about prognosis, tumor staging, and treatment response [3–5].

For this purpose, a large amount of imaging biomarkers is extracted from the tumor region and used for classification purposes. These feature values, also named radiomic features, include besides second-order textural features, shape, first-order statistical, and intensity-histogram based features. Radiomic features are used to build machine learning models which are e.g. used for prediction or classification [6,7]. However, until now, radiomic features are not used for clinical decision making as there is a lack of standardization in the majority of the steps in the radiomics pipeline.

One of these challenges is the lack of a standardized feature definition and calculation. Feature values reported by different institutions do not necessarily follow the same feature definition nor necessarily lead to identical results when used on the same images. This problem is aimed to be solved by the image biomarker standardization initiative (IBSI) by providing mathematical feature definitions and phantom data sets with corresponding feature values in order to standardize feature definitions and calculations [8,9]. Several open-source software packages, like LifeX, IBEX, CaPTK or CGITA, calculating radiomic features have been developed and published [10–14]. However, although this initiative is widely known, only few radiomic feature calculators are also standardizing the image preprocessing part of the radiomic pipeline, which is essential for feature calculations. Furthermore, in the majority of the software packages not all defined features are implemented.

In order to provide a feature calculator that comes with the correct feature implementation of all features defined by the IBSI standard, we developed a Radiomics calculator tool, RaCaT, that is easy to use and does not require any programming skills. We compare the feature values obtained by RaCaT with the feature values reported by IBSI. Moreover, some known feature values were extracted from phantom images and compared with the expected values.

Materials and methods

Description of the radiomics calculator

Radiomics Calculator, RaCaT, calculates and returns a wide range of radiomic features for all kind of medical images. It is a standalone executable written in C++ that can be called from the command line but also from any programming language. It loads and preprocesses an input image and the corresponding mask, it calculates radiomic feature values and stores them in a user-defined output file. Furthermore, it stores the used preprocessing and feature calculation information in a separate file so that the user can easily track which settings were used for feature calculation. The workflow of RaCaT is illustrated in Fig 1.
Installation/Compiling the calculator

In order to use RaCaT, visual C++ x86 has to be installed. The calculator is available in two ways: First, it can be downloaded as an executable that does not require any other library. The executable is available for Windows 32 and 64 bit and all Linux systems. Second, the source
code of RaCaT is available and can be downloaded, modified if required, and be built from source. A precise description of the building process and which requirements have to be met can be found on GitHub (https://github.com/ellipfaehlerUMCG/RaCat).

Implementation of the calculator

The implementation of RaCaT is highly modularized and therefore easily extendable. It consists of two basic classes and several feature group classes. The basic classes are used for reading and storing the information which is later passed to the feature group classes: One basic class reads and stores the parameters given in configuration files, necessary for image preprocessing, while the second class reads and preprocesses image and mask and stores the important image characteristics. All image preprocessing steps are implemented using the library Insight Toolkit (ITK) [13]. The following steps are implemented:

1. Image interpolation:
 The user can choose if the image should be interpolated using 3D or a slice-by-slice 2D interpolation. For both options, the image can be up or down sampled or it can be interpolated to isotropic voxels with 2 mm voxel size. The required interpolation algorithm can be set by the user (possibilities: trilinear, cubic spline or nearest neighbor interpolation).

2. Image discretization:
 Before the calculation of textural features, the image is usually discretized. Two discretization methods are implemented: a discretization with a fixed number of bins and a discretization with a fixed bin width. The number of bins as well as the bin width can be set by the user. Furthermore, the option to discretize the feature group intensity volume histogram separately is implemented.

3. Re-segmentation:
 In order to only include intensity values of a certain range in the volume-of-interest (VOI), the user can set a maximum and minimum intensity value that should be included in the VOI. Furthermore, RaCaT also supports the option to exclude outlier intensities of the VOI.

 Every feature group is realized with a separate class. If classes share feature calculations, the classes inherit from each other, but every feature group is independent and can be calculated separately. Every feature is calculated with a separate function. Therefore, additional feature calculations can be added easily. RaCaT is published under the BSD 3-Clause “New” or “Revised” License, which means that users do not have to submit their changes to the RaCaT repository, but that they have to mention the copyright of RaCaT when redistributing the code. Fig 2 displays as an example the implementation of the NGTD feature class. The attributes of the class are the NGTDM features. For each of these features, a separate function is implemented assigning the feature value to the attribute. Furthermore, the class contains one separate method for the calculation of the NGTD matrix, as well as functions to fill and store the output files. All NGTDM feature groups inherit attributes and feature calculation functions from this class. While every NGTDM feature group calculates a different NGTD matrix and has separate functions to fill and write the output files. All other textural feature classes are implemented in the same way. A more detailed documentation of the code is available on GitHub.

Documentation

The documentation is split in two parts: One part is written for users who are only interested in the use of the calculator. The second part explains more detailed the programming steps,
The class NGTDM features

Attributes:

Class NGTDM features
vector<double> actualSpacing;
string normNGTDM;
int dist;

Features
double coarseness;
double contrast;
double busyness;
double complexity;
double strength;

Functions:

Basic functions
boost::multi_array<double, 2> getNGTDMMatrix
void calculateAllNGTDMFeatures2DMRG
void writeCSVFileNGTDM
void writeOneFileNGTDM
void defineNGTDMFeatures2DMRG
void extractNGTDMData

Feature calculations
void calculateStrength
void calculateComplexity
void calculateCoarseness
Void calculateContrast
void calculateBusyness

Fig 2. Organization of the class NGTDM features. The class has attributes some basic values needed for the calculation of NGTDM features, as well as every NGTDM feature. The functions include the function to create the NGTD matrix, functions that fill and create the output file, and for every feature a function that calculates the feature.

https://doi.org/10.1371/journal.pone.0212223.g002

lists classes and functions, and explains the heritages of the feature classes. Additionally, the code contains more comments which are not visible in the documentation.

Usage of the calculator

In order to run RaCaT, some essential files have to be provided to the software which are described in more detail below. The locations of these files have to be given as parameter to the
executable, accompanied by specific abbreviations. All required files including the abbreviations are listed in Table 1.

Fig 3 illustrates the steps which have to be performed before the feature calculation starts:

- First, a configuration file has to be modified: here the desired preprocessing steps can be specified. If the same preprocessing steps are used for several images, the configuration file can be reused and has to be changed only once in the beginning.

Table 1. Files required by RaCaT including their abbreviations that have to be given to the executable.

Abbreviation	Parameter
-ini	C:/RadiomicsTool/config.ini
—img	C:/RadiomicsTool/image.nii
—voi if voi is not RT struct	C:/RadiomicsTool/voi.nii
—rts if voi is RT struct	C:/RadiomicsTool/RS_image.dcm
—out	C:/RadiomicsTool/output
—pat	C:/RadiomicsTool/patientInfo.ini
—fod	C:/RadiomicsTool/featuredefinition.ini

Abbreviation Parameter
- ini C:/RadiomicsTool/config.ini Path to configuration file, where preprocessing steps and settings can be set
- img C:/RadiomicsTool/image.nii Path to image file. Image can be any filename. If the image is in DICOM format, every image series should be stored in a separate folder. The path of this folder has to be given as parameter.
- voi C:/RadiomicsTool/voi.nii Path to VOI. VOI can be any file name. If VOI is in DICOM format, path to folder containing the dicom series has to be given.
- rts C:/RadiomicsTool/RS_image.dcm Path to VOI, if VOI is RT struct. RS_image can be any filename.
- out C:/RadiomicsTool/output Path to desired output. The output file is generated automatically and `.csv` is automatically added to the name. If the file already exists, date and time of the calculations are added to the original name and the feature values are saved under this new name.
- pat C:/RadiomicsTool/patientInfo.ini Only for PET images: path to patient info file, containing necessary patient demographics and scan information required for SUV scaling. The user should generate and populate this file.
- fod C:/RadiomicsTool/featuredefinition.ini Optional: path to featuredefinition.ini, where the user can specify which feature groups should be calculated.

https://doi.org/10.1371/journal.pone.0212223.t001

Fig 3. Necessary steps for running the executable.

https://doi.org/10.1371/journal.pone.0212223.g003
• Second, if the input image is a PET image, also a patient information file has to be provided. This patient information file contains all important parameters regarding patient demographics and PET study information required to apply scaling of image intensities (activity concentration in Bq/mL) to SUV.

• Third, the user can optionally select only certain features for calculation. He can do this by adapting a feature output definition file.

Examples of frequently used configuration and feature output definition files as well as a patient information file can be found on GitHub. Furthermore, example commands how to call the executable with different image types can be found in the supplemental (S1 Fig).

Feature calculation

RaCaT contains ten feature groups: morphological features providing information about tumor shape, a group of first-order statistical features, statistical intensity histogram features, intensity volume features and local intensity features. Furthermore, the following textural feature groups are implemented: grey-level co-occurrence matrices (GLCM) [14], grey-level run-length matrices (GLRLM) [15], grey-level size zone matrices (GLSZM) [16], grey-level distance zone matrices (GLDZM) [17], neighborhood-grey-tone difference matrices (NGTDM) [2] and neighborhood-grey-level dependence matrices (NGLDM) [18] (see Table 2). First-order, morphological and local intensity features are calculated before discretization. All other feature groups are calculated after image discretization. All textural features can be calculated slice by slice (2D) and by including the whole volume (3D). For both dimensions, different ways to merge texture matrices and features are implemented. This includes the following options:

• For each 2D directional matrix, features are calculated and then averaged over the 2D directions and slices

• 2D directional matrices are first merged per slice, then features are extracted from this matrix

• The 2D directional matrices are merged per direction and then the average of each direction matrix is calculated. From this matrix, features are extracted.

• Before feature calculation, all 2D directional matrices are merged.

• Features are extracted from each 3D directional matrix. These features are averaged over directions.

| Table 2. Implemented feature groups and corresponding abbreviations. |
|-----------------------------|------------------|------------------|
| **Feature class** | **Feature group** | **Abbreviation** |
| Morphological features | Intensity histogram features | IH |
| Statistical features | Intensity volume histogram features | IVH |
| Intensity histogram features | Grey-level-co-occurrence matrix | GLCM |
| | Grey-level-run-length matrix | GLRLM |
| | Grey-level-size-zone matrix | GLSZM |
| | Grey-level-distance-zone matrix | GLDZM |
| | Neighborhood-grey-tone-difference matrix | NGTDM |
| | Neighborhood-grey-level-dependence matrix | NGLDM |

https://doi.org/10.1371/journal.pone.0212223.t002
- Before feature calculation, all 3D directional matrices are merged.

Required input files

Image and VOI. An image and a corresponding image mask (or VOI) are required as input for the calculator. Mask and image should be aligned and have the same dimensions. The mask can either be provided as binary mask with any constant value marking the VOI (usually 1) or the VOI can be marked by intensity values of a certain range. In this case, the user can set the threshold value up to which percentage of the maximum value the voxels should be included in the mask. This can be done by changing the parameter ThresholdFor-VOI in the configuration file. Mask and image can be given in one of the following formats: nrrd, nifti, DICOM, analyze, as well as raw data. The mask can also be given as a radiotherapy (RT)-struct. If the mask is given as RT-struct, the command to call the executable is slightly different from the call used for the other formats (see Table 1). If image or mask are in DICOM format, it is important that every DICOM image series is stored in a separate folder. The name of this folder has then given to the executable (compare also with the example commands provided in the supplemental S1 Fig). In one run, RaCaT calculates the radiomic features for one image and mask. It is not possible to calculate radiomic features for several images at once. However, an example of a Python script, calling RaCaT for several images and masks is available in GitHub material.

Configuration file. In a config.ini file, the user can select the preprocessing steps that are performed before the feature calculation starts. An example for a config.ini file is displayed in Fig 4. More examples of the config.ini file including the most common used preprocessing steps, can be found in GitHub. If the user wants to calculate radiomic features for several bin width or number of bins, a separate configuration file has to be created for every configuration. As this can be time consuming, a python script how to create several configuration files with different number of bins as well as a script calling the RaCaT executable several times with different configuration files is available.

Additional file for PET images. If the image is a PET image, the program converts the intensity values from Bq/ml to SUV (Standardized Uptake Value) or SUL (Standardized Uptake value normalized to lean body mass). Here fore, some patient characteristics (weight, height, gender) as well as the net injected activity and injection time are required. Furthermore, the user has the possibility to set a scaling parameter. If this scaling parameter is set, all other values are ignored and every image intensity value is simply multiplied with this scaling parameter.

Feature output definition file. Furthermore, the user has the option to select only certain feature groups he wants to include in the calculation. This can be done in a separate file called featureOutputDefinition.ini. This is optional. The location of the feature output definition file has to be given as parameter to the calculator. If no feature output definition file is given, all available features are calculated. An example of a feature output definition file is displayed in Fig 5.

Output files. The calculated feature values are stored with floating point precision in one or more comma-separated-value (csv) files. The feature names which are listed in the output files are the names proposed by the IBSI standard. To ease a further documentation, two additional output files are created: The first output is a copy of the used configuration file so that the user can easily access which preprocessing steps were included in the feature calculation. The second output file contains information about the input images and calculated feature groups. The filenames of all output files are aligned so that the user can easily track which output files are belonging to one calculation step.
Testing

To ensure that the toolbox calculates values compliant with the standard, the calculated feature values were compared with the IBSI standard. The initiative provides two phantoms that can be used for comparison: one small, artificial mathematical phantom and a CT-image with a corresponding RT-struct of the VOI. For the CT-image, several configurations with variations in discretization, reserialization, and interpolation method are available for comparison. In order to validate RaCaT, both phantoms have been used for comparison. The calculated feature values, as well as the corresponding IBSI values are listed in supplemental S1 Table, S2 Table, and S3 Table. For every feature value, IBSI provides tolerance levels depending on the used configuration. As can be seen, almost all feature values are in the provided tolerance levels. Only for morphological features, small deviations were found. Here, the volume differed from 0.2% - 1% from the volume given by the IBSI standard, while the surface had a deviation from 2%-10%. Therefore, all morphological features which are dependent of surface and volume also show slight deviations.

Therefore, morphological feature values were further compared with values obtained from a phantom scan. For this purpose, a positron emission tomography combined with computed tomography (PET/CT) scan of the NEMA image quality phantom was acquired on a Siemens Biograph mCT64 (Siemens Healthcare, Knoxville, USA) (see Fig 6). The NEMA image quality...
phantom consists of six spheres with diameters 37, 28, 21, 17, 13, and 10 mm which are placed in a large background compartment. Spheres were filled with a fluorodeoxyglucose (FDG) activity solution of 19.76 kBq/ml, while the background was filled with 1.94 kBq/ml, so that a sphere-to-background ratio of around 10:1 was obtained. The image was reconstructed to a voxel size of 3.1819 x 3.1819 x 2 mm using the vendor provided PSF+TOF reconstruction method with three iterations and 21 subsets (PSFTOF 3i21s). The spheres were manually delineated in the images by placing a sphere with the exact diameter on the right position in the images. Consequently, the correct shape feature values are known and can be used for comparison with the feature values calculated by RaCaT. The expected and calculated feature values are listed in Table 3. The comparison showed that for the bigger spheres (diameter 37–17 mm) the percentage deviation between calculated and expected shape feature values differs from 1–10%, with 93.75% of the features showing a deviation less than 5% (see Table 3). For the smaller spheres (13 mm and 10 mm), the deviation increased to 1–19%.

Application to clinical data

Moreover, radiomic features were extracted from two PET-images of cancer patients. Both patients were scanned on a Siemens Biograph mCT64, and the images were iteratively
reconstructed using the PSF+TOF reconstruction method (PSF+TOF 3i21s) implemented in the scanner and a post-reconstruction smoothing with a 6.5 mm full-width-at-half-maximum Gaussian kernel. Images were reconstructed to a voxel size of 3.1819 mm x 3.1819 mm x 2 mm. Patient 1 was injected with 245 MBq 85 minutes before scan start, while patient 2 was injected with 229 MBq 60 minutes before scan start. Maximum intensity projection images of both patients are displayed in Fig 7. Tumors were manually delineated by an experienced radiologist. All implemented features were calculated by RaCaT and are listed in Table 4. As can be seen, feature values are changing as a function of the tumors.

Discussion

We developed a radiomics calculator that is easy to use and can be called from any programming language. It includes the most frequently used preprocessing steps and complies with the IBSI standards. It can handle several input image formats as well as different VOI types. The created output files are organized in a way that eases further processing of the feature values. In this way, the calculator can be included easily in any radiomics pipeline and the results can be used for further analysis. Furthermore, all preprocessing steps are reported, so that a valid documentation of the performed preprocessing steps can easily be extracted from the output files.

Fig 6. PET Scan of the NEMA image quality phantom. The image quality phantom contains six spheres with different diameters. For comparison, the spheres were segmented in the image and morphological features were calculated.

https://doi.org/10.1371/journal.pone.0212223.g006
Table 3. Morphological features calculated by RaCaT, the expected value, and the percentage differences between these two values for the spheres of the NEMA image quality phantom.

Tool	Expected value	Percentage difference (%)	
Sphere1 Volume	25898.4	26521	2.35
Surface	4194.92	4300	2.44
Maximum 3D diameter	36.7149	37	0.77
Sphericity	1.00912	1	0.91
Sphere2 Volume	11035.7	11494	3.99
Surface	2413.78	2463	2.00
Maximum 3D diameter	0.993085	1	0.69
Sphericity	27.6493	28	1.25
Sphere3 Volume	5811.46	5575	4.24
Surface	1542.14	1521	1.39
Maximum 3D diameter	1.01364	1	1.36
Sphericity	21.6559	22	1.56
Sphere4 Volume	2855.11	2572	11.01
Surface	952.166	907	4.98
Maximum 3D diameter	1.02216	1	2.22
Sphericity	17.4926	18	2.82
Sphere5 Volume	951.702	1150	17.24
Surface	452.697	530	14.59
Maximum 3D diameter	12.0414	12	0.34
Sphericity	1.03358	1	3.36
Sphere6 Volume	425	523	18.74
Surface	259	314	17.52
Maximum 3D diameter	9	10	10.00
Sphericity	1.05	1	5.00

Fig 7. Maximum intensity projection of Patient 1 (left) and patient 2 (right). The tumors used for feature calculation are marked in the images. Tumors were manually segmented and used for computation of radiomic features.

https://doi.org/10.1371/journal.pone.0212223.g007
Table 4. Radiomic features extracted from cancer patients.
If the data is not shown, please provide the missing data.
Morphology
Volume
approximate volume
Surface
Surface to volume ratio
Compactness1
Compactness2
Spherical disproportion
sphericity
asphericity
center of mass shift
maximum 3D diameter
major axis length
minor axis length
least axis length
elongation
flatness
vol density AABB
area density AABB
vol density AEE
integrated intensity
Morans I
Gearys C
local intensity peak
global intensity peak
mean
variance
skewness
kurtosis
median
minimum
10th percentile
90th percentile
maximum
Interquartile range
range
Mean absolut deviation
Robust mean absolute deviation
Median absolute deviation
Coefficient of variation
Quartile coefficient
Energy
Root mean
volume at int fraction 10
volume at int fraction 90
int at vol fraction 10
int at vol fraction 90
difference vol at int fraction

(Continued)
Table 4. (Continued)

	Melanoma 2	Melanoma 3
intensity volume difference int at volume fraction	19	9
Intensity histogram mean	40.9937	19.6191
Intensity histogram variance	791.594	176.755
Intensity histogram skewness	0.470703	0.421877
Intensity histogram kurtosis	-0.761046	-0.94283
Intensity histogram median	37	18
Intensity histogram minimum	1	1
Intensity histogram 10th percentile	7	3
Intensity histogram 90th percentile	80	39
Intensity histogram maximum	119	51
Intensity histogram mode	2	1
Intensity histogram Interquartile range	45	22
Intensity histogram range	118	50
Intensity histogram Mean absolut deviation	23.8357	11.3695
Intensity histogram Robust mean absolute deviation	18.6017	9.22622
Intensity histogram Coefficient of variation	0.686331	0.677653
Intensity histogram Quartile coefficient	0.56962	0.578947
Intensity histogram Entropy	6.61231	5.49251
Intensity histogram Uniformity	0.0111764	0.024041
Intensity histogram Energy	1.62E+07	841933
Intensity histogram Maximum histogram gradient	14	8.5
Intensity histogram Maximum histogram gradient grey level	56	15
Intensity histogram Minimum histogram gradient	-12	-19
Intensity histogram Minimum histogram gradient grey level	32	1
glcmFeatures2Davg joint maximum	0.0202253	0.061685
glcmFeatures2Davg joint average	40.4281	18.3173
glcmFeatures2Davg joint variance	551.638	104.981
glcmFeatures2Davg joint entropy	7.47154	5.15897
glcmFeatures2Davg difference average	13.6741	9.01583
glcmFeatures2Davg difference variance	112.914	39.6169
glcmFeatures2Davg difference entropy	4.61465	3.37
glcmFeatures2Davg sum average	80.8563	36.6345
glcmFeatures2Davg sum variance	1889.54	286.275
glcmFeatures2Davg sum entropy	5.9103	3.9222
glcmFeatures2Davg angular second moment	0.0114301	0.048791
glcmFeatures2Davg contrast	317.009	133.648
glcmFeatures2Davg dissimilarity	13.6741	9.01583
glcmFeatures2Davg inverse difference	0.156578	0.173049
glcmFeatures2Davg inverse difference normalised	0.903083	0.822705
glcmFeatures2Davg inverse difference moment	0.0856765	0.092541
glcmFeatures2Davg inverse difference moment normalised	0.979129	0.91682
glcmFeatures2Davg inverse variance	0.0922006	0.100673
glcmFeatures2Davg correlation	0.630216	0.239559
glcmFeatures2Davg autocorrelation	2215.83	442.887
glcmFeatures2Davg cluster tendency	1889.54	286.275
glcmFeatures2Davg cluster shade	14816.1	160.837

(Continued)
glcmFeatures2Davg	Melanoma 2	Melanoma 3
cluster prominence	9.05E+06	244779
first measure of information correlation	-0.66432	-0.72547
second measure of information correlation	0.998302	0.955912
joint maximum	0.0011916	0.00301
joint average	45.5856	22.8963
joint variance	749.941	175.007
joint entropy	12.00463	10.4439
difference average	13.84643	10.4439
difference variance	128.924	54.4645
difference entropy	5.16868	4.67357
sum average	91.1712	45.7926
sum variance	2671.56	552.294
sum entropy	7.5715	6.40143
angular second moment	0.000292373	0.001045
contrast	328.216	167.736
dissimilarity	13.8464	10.4439
inverse difference	0.154703	0.166918
inverse difference normalised	0.90218	0.84211
inverse difference moment	0.0829486	0.086833
inverse difference moment normalised	0.978452	0.944593
inverse variance	0.087643	0.091594
correlation	0.78118	0.526972
autocorrelation	2664.74	615.467
cluster tendency	2671.55	552.294
cluster shade	60986.8	2780.95
cluster prominence	1.64E+07	588513
joint maximum	0.010219	-0.18583
joint average	40.3951	18.3675
joint variance	552.561	105.171
joint entropy	9.12932	6.81417
difference average	13.5621	8.9456
difference variance	119.146	42.6295
difference entropy	4.97349	4.02724
sum average	80.7901	36.7351
sum variance	1897.84	290.538
sum entropy	6.7243	5.02938
angular second moment	0.00424268	0.018702
contrast	312.403	130.146
dissimilarity	13.5621	8.9456
inverse difference	0.157532	0.17777
inverse difference normalised	0.90378	0.836062
inverse difference moment	0.0863837	0.095707
inverse difference moment normalised	0.979421	0.930654
inverse variance	0.0929435	0.105291
correlation	0.63678	0.266349

(Continued)
Table 4. (Continued)

Feature	Melanoma 2	Melanoma 3
glcmFeatures2Dmrg autocorrelation	2215.28	444.145
glcmFeatures2Dmrg cluster tendency	1897.84	290.538
glcmFeatures2Dmrg cluster shade	14138.1	112.888
glcmFeatures2Dmrg cluster prominence	9.13E+06	249776
glcmFeatures2Dmrg first measure of information correlation	-0.361666	-0.31522
glcmFeatures2Dmrg second measure of information correlation	0.978974	0.92285
glcmFeatures2Dvmrg joint maximum	0.0010181	0.002227
glcmFeatures2Dvmrg joint average	45.551	22.8755
glcmFeatures2Dvmrg joint variance	750.815	174.593
glcmFeatures2Dvmrg joint entropy	12.4418	10.7059
glcmFeatures2Dvmrg difference average	13.7442	10.2998
glcmFeatures2Dvmrg difference variance	135.013	56.9565
glcmFeatures2Dvmrg difference entropy	5.22235	4.74088
glcmFeatures2Dvmrg sum average	91.1019	45.751
glcmFeatures2Dvmrg sum variance	2679.36	535.329
glcmFeatures2Dvmrg sum entropy	7.59971	6.45314
glcmFeatures2Dvmrg angular second moment	0.000219332	0.00069
glcmFeatures2Dvmrg contrast	325.917	163.041
glcmFeatures2Dvmrg dissimilarity	13.744	10.2998
glcmFeatures2Dvmrg inverse difference	0.155523	0.168325
glcmFeatures2Dvmrg inverse difference normalised	0.902821	0.843792
glcmFeatures2Dvmrg inverse difference moment	0.0835302	0.087826
glcmFeatures2Dvmrg inverse difference moment normalised	0.978729	0.945953
glcmFeatures2Dvmrg correlation	0.0882732	0.092581
glcmFeatures2Dvmrg autocorrelation	2663.74	616.36
glcmFeatures2Dvmrg cluster tendency	2679.35	535.329
glcmFeatures2Dvmrg cluster shade	60503.1	2787.42
glcmFeatures2Dvmrg cluster prominence	1.65E+07	592233
glcmFeatures2Dvmrg first measure of information correlation	-0.134096	-0.07906
glcmFeatures2Dvmrg second measure of information correlation	0.912545	0.765345
glcmFeatures3Davg joint maximum	0.00127655	0.003497
glcmFeatures3Davg joint average	45.5488	22.8304
glcmFeatures3Davg joint variance	752.246	175.424
glcmFeatures3Davg joint entropy	11.9768	10.0788
glcmFeatures3Davg difference average	13.7407	10.2897
glcmFeatures3Davg difference variance	133.057	55.5321
glcmFeatures3Davg difference entropy	5.14368	4.65039
glcmFeatures3Davg sum average	91.0975	45.6608
glcmFeatures3Davg sum variance	2675.58	533.909
glcmFeatures3Davg sum entropy	7.59145	6.40178
glcmFeatures3Davg angular second moment	0.000302383	0.001075
glcmFeatures3Davg contrast	333.4	167.789
glcmFeatures3Davg dissimilarity	13.7407	10.2897
glcmFeatures3Davg inverse difference	0.159499	0.175979
glcmFeatures3Davg inverse difference normalised	0.903224	0.844849
glcmFeatures3Davg inverse difference moment	0.0870708	0.096589

(Continued)
Feature	Melanoma 2	Melanoma 3
glcmFeatures3Davg inverse difference moment normalised	0.978248	0.944981
glcmFeatures3Davg inverse variance	0.0900469	0.101335
glcmFeatures3Davg correlation	0.778516	0.528182
glcmFeatures3Davg autocorrelation	2661.41	613.059
glcmFeatures3Davg cluster tendency	2675.58	533.909
glcmFeatures3Davg cluster shade	60809.1	2814.04
glcmFeatures3Davg cluster prominence	1.65E+07	594057
glcmFeatures3Davg first measure of information correlation	-0.203614	-0.1904
glcmFeatures3Davg second measure of information correlation	0.963043	0.936539
glcmFeatures3DWmrg joint maximum	0.00102245	0.001574
glcmFeatures3DWmrg joint average	45.5004	22.7831
glcmFeatures3DWmrg joint variance	753.414	175.218
glcmFeatures3DWmrg joint entropy	12.5416	10.8285
glcmFeatures3DWmrg difference average	13.5902	10.0637
glcmFeatures3DWmrg difference variance	142.512	59.9825
glcmFeatures3DWmrg difference entropy	5.22012	4.74307
glcmFeatures3DWmrg sum average	91.0008	45.5663
glcmFeatures3DWmrg sum variance	2686.45	539.612
glcmFeatures3DWmrg sum entropy	7.6062	6.46966
glcmFeatures3DWmrg angular second moment	0.000208636	0.000632
glcmFeatures3DWmrg contrast	327.204	161.26
glcmFeatures3DWmrg dissimilarity	13.5902	10.0637
glcmFeatures3DWmrg inverse difference	0.160884	0.179246
glcmFeatures3DWmrg inverse difference normalised	0.90416	0.847648
glcmFeatures3DWmrg inverse difference moment	0.0881152	0.099262
glcmFeatures3DWmrg inverse difference moment normalised	0.978639	0.94692
glcmFeatures3DWmrg inverse variance	0.0911324	0.103955
glcmFeatures3DWmrg correlation	0.782853	0.53983
glcmFeatures3DWmrg autocorrelation	2660.1	613.66
glcmFeatures3DWmrg cluster tendency	2686.45	539.612
glcmFeatures3DWmrg cluster shade	60150	2769.21
glcmFeatures3DWmrg cluster prominence	1.66E+07	601776
glcmFeatures3DWmrg first measure of information correlation	-0.119212	-0.05671
glcmFeatures3DWmrg second measure of information correlation	0.892214	0.684467
GLRLMFeatures2Davg short run emphasis	0.982296	0.984213
GLRLMFeatures2Davg long runs emphasis	1.07575	1.06635
GLRLMFeatures2Davg Low grey level run emphasis	0.0324134	0.094494
GLRLMFeatures2Davg High grey level run emphasis	2054.96	419.531
GLRLMFeatures2Davg Short run low grey level emphasis	0.0317711	0.097206
GLRLMFeatures2Davg Short run high grey level emphasis	2004.49	410.815
GLRLMFeatures2Davg Long run low grey level emphasis	0.0351005	0.093822
GLRLMFeatures2Davg Long run high grey level emphasis	2272.94	456.173
GLRLMFeatures2Davg Grey level non uniformity	2.76352	1.91514
GLRLMFeatures2Davg Grey level non uniformity normalized	0.0311729	0.103436
GLRLMFeatures2Davg Run length non uniformity	138.548	36.1029
GLRLMFeatures2Davg Run length non uniformity normalized	0.955012	0.961134
GLRLMFeatures2Davg Run percentage	0.976466	0.979813

(Continued)
GLRLM Features	2Davg	Melanoma 2	Melanoma 3
Grey level variance	591.391	110.68	
Run length variance	0.0257278	0.021467	
Run entropy	5.65022	4.09108	
Short run emphasis	0.982153	0.983986	
Long runs emphasis	1.07741	1.06786	
Low grey level run emphasis	0.0255311	0.059194	
High grey level run emphasis	244.626	557.77	
Short run low grey level emphasis	0.0250214	0.058634	
Short run high grey level emphasis	2383.49	545.847	
Long run low grey level emphasis	0.0277585	0.061457	
Long run high grey level emphasis	2717.29	607.536	
Grey level non uniformity	71.7374	35.4012	
Grey level non uniformity normalized	0.0112313	0.024136	
Run length variance	0.0269803	0.023212	
Run entropy	6.75124	5.6079	
Short run emphasis	0.98251	0.984799	
Long runs emphasis	1.07485	1.06385	
Grey level non uniformity	785.802	175.835	
Grey level non uniformity normalized	0.0309069	0.102976	
Run percentage	0.0269803	0.023212	
Run length non uniformity	0.0350563	0.097095	
Grey level non uniformity	857.29	35.4012	
Grey level non uniformity normalized	0.0317799	0.094445	
Low grey level run emphasis	2055.04	419.533	
High grey level run emphasis	0.0317799	0.093787	
Short run low grey level emphasis	2004.9	410.987	
Short run high grey level emphasis	0.0350563	0.097095	
Long run low grey level emphasis	2271.6	455.445	
Long run high grey level emphasis	10.9891	7.60756	
Grey level non uniformity	554.013	144.253	
Grey level non uniformity normalized	0.0309069	0.102976	
Run length non uniformity	0.0257427	0.021532	
Run entropy	5.71411	4.15618	
Run length non uniformity	0.0317799	0.094445	
Run percentage	0.0269803	0.023212	
Grey level non uniformity	976466	979813	
Grey level variance	591.52	35.4012	
Grey level non uniformity	591.52	35.4012	
Run length variance	0.0257427	0.021532	
Run entropy	5.71411	4.15618	
Grey level variance	0.0350563	0.097095	
Grey level non uniformity	24373.8	5624.04	
Grey level non uniformity	24373.8	5624.04	
Run length non uniformity	0.954002	0.958588	

(Continued)
Table 4. (Continued)

GLRLMFeatures2Dvmmr	Run percentage	Melanoma 2	Melanoma 3
GLRLMFeatures2Dvmmr	Grey level variance	0.97574	0.978486
GLRLMFeatures2Dvmmr	Run length variance	2.01E+07	1.03E+06
GLRLMFeatures2Dvmmr	Run entropy	689.218	136.164
GLRLMFeatures2Dvmmr	Run percentage	-201228	-40420
GLRLMFeatures3Davg	short run emphasis	0.980412	0.981167
GLRLMFeatures3Davg	long runs emphasis	1.08557	1.08249
GLRLMFeatures3Davg	Low grey level run emphasis	0.0257903	0.05891
GLRLMFeatures3Davg	High grey level run emphasis	2444.81	558.033
GLRLMFeatures3Davg	Short run low grey level emphasis	0.0254143	0.057993
GLRLMFeatures3Davg	Short run high grey level emphasis	2377.03	544.775
GLRLMFeatures3Davg	Long run low grey level emphasis	0.0273925	0.062963
GLRLMFeatures3Davg	Long run high grey level emphasis	2741.96	615.531
GLRLMFeatures3Davg	Grey level non uniformity	71.5843	35.2249
GLRLMFeatures3Davg	Grey level non uniformity normalized	0.0112336	0.024114
GLRLMFeatures3Davg	Run length non uniformity	6053.15	1390.71
GLRLMFeatures3Davg	Run length non uniformity normalized	0.949712	0.951732
GLRLMFeatures3Davg	Grey level variance	0.973478	0.974496
GLRLMFeatures3Davg	Grey level variance	786.11	175.765
GLRLMFeatures3Davg	Run length variance	0.0299645	0.028894
GLRLMFeatures3Davg	Run entropy	6.76268	5.62812
GLRLMFeatures3Davg	short run emphasis	0.98049	0.981291
GLRLMFeatures3Davg	long runs emphasis	1.08516	1.08189
GLRLMFeatures3Davg	Low grey level run emphasis	0.0257892	0.058913
GLRLMFeatures3Davg	High grey level run emphasis	2444.9	558.061
GLRLMFeatures3Davg	Short run low grey level emphasis	0.0254144	0.058007
GLRLMFeatures3Davg	Short run high grey level emphasis	2377.37	544.889
GLRLMFeatures3Davg	Long run low grey level emphasis	0.0273848	0.062922
GLRLMFeatures3Davg	Long run high grey level emphasis	2740.75	615.11
GLRLMFeatures3Davg	Grey level non uniformity	930.273	457.594
GLRLMFeatures3Davg	Grey level non uniformity normalized	0.0112296	0.0472876
GLRLMFeatures3Davg	Run length non uniformity	786.146	175.777
GLRLMFeatures3Davg	Run length non uniformity normalized	0.994743	0.951766
GLRLMFeatures3Davg	Run percentage	0.973478	0.974496
GLRLMFeatures3Davg	Grey level variance	786.146	175.777
GLRLMFeatures3Davg	Run length variance	0.0299309	0.028857
GLRLMFeatures3Davg	Run entropy	6.78179	5.66008
GLSZMFeatures2Davg	small zone emphasis	0.933076	0.939815
GLSZMFeatures2Davg	Large zone emphasis	1.34218	1.29124
GLSZMFeatures2Davg	Low grey level zone emphasis	0.0320386	0.096903
GLSZMFeatures2Davg	High grey level zone emphasis	1995.37	410.732
GLSZMFeatures2Davg	Small zone low grey level emphasis	0.0294297	0.094436
GLSZMFeatures2Davg	Small zone high grey level emphasis	1818.57	376.276
GLSZMFeatures2Davg	Large zone low grey level emphasis	0.0438078	0.108737
GLSZMFeatures2Davg	Large zone high grey level emphasis	2997.25	574.297
GLSZMFeatures2Davg	Grey level non uniformity GLSZM	2.52354	1.7533
GLSZMFeatures2Davg	Grey level non uniformity normalized GLSZM	0.0302619	0.102261
GLSZMFeatures2Davg	Zone size non uniformity	114.018	30.1663

(Continued)
Table 4. (Continued)

Feature Category	Feature Description	Melanoma 2	Melanoma 3
GLSZMFeatures2Davg	Zone size non uniformity normalized	0.842786	0.860976
GLSZMFeatures2Davg	Zone percentage GLSZM	0.909545	0.921198
GLSZMFeatures2Davg	Grey level variance GLSZM	577.607	110.069
GLSZMFeatures2Davg	Zone size variance	0.127238	0.100304
GLSZMFeatures2Davg	Zone size entropy	5.76471	4.16039
GLSZMFeatures2Dvmrg	Small zone emphasis	0.934618	0.938805
GLSZMFeatures2Dvmrg	Large zone emphasis	1.35072	1.30153
GLSZMFeatures2Dvmrg	Low grey level zone emphasis	0.0251546	0.061019
GLSZMFeatures2Dvmrg	High grey level zone emphasis	2371.63	544.046
GLSZMFeatures2Dvmrg	Small zone low grey level emphasis	0.0230808	0.059012
GLSZMFeatures2Dvmrg	Small zone high grey level emphasis	2153.7	496.801
GLSZMFeatures2Dvmrg	Large zone low grey level emphasis	0.0350439	0.070911
GLSZMFeatures2Dvmrg	Large zone high grey level emphasis	3616.15	766.913
GLSZMFeatures2Dvmrg	Grey level non uniformity GLSZM	577.607	110.069
GLSZMFeatures2Dvmrg	Grey level non uniformity normalized GLSZM	0.909545	0.921198
GLSZMFeatures2Dvmrg	Zone size non uniformity	5011.05	1170.12
GLSZMFeatures2Dvmrg	Zone size non uniformity normalized	0.843327	0.852234
GLSZMFeatures2Dvmrg	Zone percentage GLSZM	0.90773	0.915944
GLSZMFeatures2Dvmrg	Grey level variance GLSZM	767.831	172.677
GLSZMFeatures2Dvmrg	Zone size variance	0.137093	0.109568
GLSZMFeatures2Dvmrg	Zone size entropy	7.02124	5.86214
GLSZMFeatures3D	Small zone emphasis	0.813499	0.79262
GLSZMFeatures3D	Large zone emphasis	3.12934	2.81191
GLSZMFeatures3D	Low grey level zone emphasis	0.0273345	0.061632
GLSZMFeatures3D	High grey level zone emphasis	2352.63	519.802
GLSZMFeatures3D	Small zone low grey level emphasis	0.022273	0.050623
GLSZMFeatures3D	Small zone high grey level emphasis	1620.14	389.07
GLSZMFeatures3D	Large zone low grey level emphasis	0.05964	0.154209
GLSZMFeatures3D	Large zone high grey level emphasis	9643.6	1750.46
GLSZMFeatures3D	Grey level non uniformity GLSZM	3616.15	766.913
GLSZMFeatures3D	Grey level non uniformity normalized GLSZM	0.014101	0.024492
ngtdmFeatures2avg	Coarseness	0.0471159	0.100679
ngtdmFeatures2avg	Contrast	3.69375	2.81191
ngtdmFeatures2avg	Busyness	0.0330006	0.090373
ngtdmFeatures2avg	Complexity	19785.2	2763.6
ngtdmFeatures2avg	Strength	140.446	40.8436
ngtdmFeatures2Dvmrg	Coarseness	0.00517834	0.003713
ngtdmFeatures2Dvmrg	Contrast	0.876573	0.967
ngtdmFeatures2Dvmrg	Busyness	0.218762	0.523067
ngtdmFeatures2Dvmrg	Complexity	55714.2	8060.35
ngtdmFeatures2Dvmrg	Strength	10.9094	4.23507

(Continued)
Features Type	Feature	Melanoma 2	Melanoma 3
ngtdmFeatures3D	coarseness	0.0016733	0.004049
ngtdmFeatures3D	contrast	0.834316	0.892503
ngtdmFeatures3D	busyness	0.206339	0.479654
ngtdmFeatures3D	complexity	52577	7434.46
ngtdmFeatures3D	strength	11.4619	4.58857
glzdzmFeatures2Davg	small distance emphasis GLDZM	0.485879	0.700448
glzdzmFeatures2Davg	Large distance emphasis GLDZM	6.1895	2.67393
glzdzmFeatures2Davg	Low grey level zone emphasis GLDZM	0.0320386	0.096903
glzdzmFeatures2Davg	High grey level zone emphasis GLDZM	1995.37	410.732
glzdzmFeatures2Davg	Zone distance non uniformity GLDZM	33.9535	15.1022
glzdzmFeatures2Davg	Zone percentage GLDZM	0.305874	0.51943
glzdzmFeatures2Davg	Zone percentage GLDZM	0.909545	0.921198
glzdzmFeatures2Davg	Grey level variance GLDZM	31.3469	0
glzdzmFeatures2Davg	Zone distance variance GLDZM	1.29699	0.401122
glzdzmFeatures2Davg	Zone distance entropy GLDZM	6.06286	4.23159
glzdzmFeatures2Dmrg	small distance emphasis GLDZM	0.425335	0.629694
glzdzmFeatures2Dmrg	Large distance emphasis GLDZM	7.27129	3.19519
glzdzmFeatures2Dmrg	Low grey level zone emphasis GLDZM	0.0251546	0.061019
glzdzmFeatures2Dmrg	High grey level zone emphasis GLDZM	2371.63	544.046
glzdzmFeatures2Dmrg	Small distance low grey level emphasis GLDZM	0.0246857	0.060325
glzdzmFeatures2Dmrg	Large distance low grey level emphasis GLDZM	324.83	158.264
glzdzmFeatures2Dmrg	Large distance low grey level emphasis GLDZM	0.0287398	0.064406
glzdzmFeatures2Dmrg	Large distance high grey level emphasis GLDZM	30951.9	3192.03
glzdzmFeatures2Dmrg	Grey level non uniformity GLDZM	67.7991	33.6278
glzdzmFeatures2Dmrg	Grey level non uniformity normalized GLDZM	0.0114101	0.024492
glzdzmFeatures2Dmrg	Zone distance non uniformity GLDZM	1425.64	558.978
glzdzmFeatures2Dmrg	Zone distance non uniformity normalized GLDZM	0.239925	0.407122
glzdzmFeatures2Dmrg	Zone percentage GLDZM	0.226932	0.228986
glzdzmFeatures2Dmrg	Grey level variance GLDZM	767.831	172.677
glzdzmFeatures2Dmrg	Zone distance variance GLDZM	1.65642	0.569046
glzdzmFeatures2Dmrg	Zone distance entropy GLDZM	7.91749	6.14384
glzdzmFeatures3D	small distance emphasis GLDZM	0.469261	0.662652
glzdzmFeatures3D	Large distance emphasis GLDZM	6.01905	2.9195
glzdzmFeatures3D	Low grey level zone emphasis GLDZM	0.02717	0.061783
glzdzmFeatures3D	High grey level zone emphasis GLDZM	2170.54	524.408
glzdzmFeatures3D	Small distance low grey level emphasis GLDZM	0.0268065	0.061231
glzdzmFeatures3D	Small distance high grey level emphasis GLDZM	342.609	166.064
glzdzmFeatures3D	Large distance low grey level emphasis GLDZM	0.0297729	0.064514
glzdzmFeatures3D	Large distance high grey level emphasis GLDZM	24688	2833.94
glzdzmFeatures3D	Grey level non uniformity GLDZM	52.7628	25.5975
glzdzmFeatures3D	Grey level non uniformity normalized GLDZM	0.0119671	0.024828

(Continued)
Feature	Melanoma 2	Melanoma 3
gldzmFeatures3D Zone distance non uniformity GLDZM	1199.29	449.805
gldzmFeatures3D Zone distance non uniformity normalized GLDZM	0.27201	0.43628
gldzmFeatures3D Zone percentage GLDZM	0.673541	0.687792
gldzmFeatures3D Grey level variance GLDZM	723.5	167.231
gldzmFeatures3D Zone distance variance GLDZM	1.35486	0.511129
gldzmFeatures3D Zone distance entropy GLDZM	7.66533	6.0446
ngldmFeatures2Davg Low dependence emphasis	0.87133	0.887265
ngldmFeatures2Davg High dependence emphasis	1.61322	1.51255
ngldmFeatures2Davg Low grey level count emphasis	0.0325137	0.093737
ngldmFeatures2Davg High grey level count emphasis	2075.48	422.07
ngldmFeatures2Davg Low dependence low grey level emphasis	0.0276252	0.089119
ngldmFeatures2Davg Low dependence high grey level emphasis	1719.51	356.977
ngldmFeatures2Davg High dependence low grey level emphasis	0.0533236	0.115751
ngldmFeatures2Davg High dependence high grey level emphasis	3894.25	707.096
ngldmFeatures2Davg Grey level non uniformity	2.85545	1.97342
ngldmFeatures2Davg Grey level non uniformity normalized	0.0314145	0.103863
ngldmFeatures2Davg Dependence count non uniformity	106.547	28.6239
ngldmFeatures2Davg Dependence count non uniformity normalized	0.72342	0.764331
ngldmFeatures2Davg Dependence count percentage	1	1
ngldmFeatures2Davg Grey level variance	595.774	110.807
ngldmFeatures2Davg Dependence count variance	0.194989	0.150106
ngldmFeatures2Davg Dependence count entropy	5.8177	4.18319
ngldmFeatures2Davg dependence Count Energy	0.0266979	0.098093
ngldmFeatures2Davg Low dependence emphasis	0.870168	0.880351
ngldmFeatures2Davg High dependence emphasis	1.64253	1.54837
ngldmFeatures2Davg Low grey level count emphasis	0.025608	0.058652
ngldmFeatures2Davg High grey level count emphasis	2472.08	561.663
ngldmFeatures2Davg Low dependence low grey level emphasis	0.0216438	0.054694
ngldmFeatures2Davg Low dependence high grey level emphasis	2028.56	470.824
ngldmFeatures2Davg High dependence low grey level emphasis	0.0429454	0.077768
ngldmFeatures2Davg High dependence high grey level emphasis	4760.04	957.841
ngldmFeatures2Davg Grey level non uniformity	73.1607	36.038
ngldmFeatures2Davg Grey level non uniformity normalized	0.0111764	0.024041
ngldmFeatures2Davg Dependence count non uniformity	4665.79	1096.4
ngldmFeatures2Davg Dependence count non uniformity normalized	0.712769	0.731422
ngldmFeatures2Davg Dependence count percentage	1	1
ngldmFeatures2Davg Grey level variance	791.594	176.755
ngldmFeatures2Davg Dependence count variance	0.216866	0.174513
ngldmFeatures2Davg Dependence count entropy	7.28585	6.09145
ngldmFeatures2Davg dependence Count Energy	0.00834373	0.018491
ngldmFeatures3D Low dependence emphasis	0.636942	0.621879
ngldmFeatures3D High dependence emphasis	3.82004	3.48699
ngldmFeatures3D Low grey level count emphasis	0.025608	0.058652
ngldmFeatures3D High grey level count emphasis	2472.08	561.663
ngldmFeatures3D Low dependence low grey level emphasis	0.017273	0.039185
ngldmFeatures3D Low dependence high grey level emphasis	1326.35	313.408
ngldmFeatures3D High dependence low grey level emphasis	0.0703404	0.176361

(Continued)
To make radiomic studies comparable across studies and institutions, it is essential that the different radiomic software packages calculate the same feature values for every defined feature. Therefore, the standardization of feature definitions and calculations is essential [19,20]. IBSI provides benchmark feature definitions and feature values extracted from phantom scans. As RaCaT follows these definitions and calculates feature values in compliance with these standards, it could be used to standardize other software packages.

Some small deviations were found in the calculation of the morphological features when compared with the IBSI standard. These deviations include the calculated volume and surface of the object and therefore all features depending on these two values. These deviations are due to a different implementation of the 3D presentation of the image mask. Also when comparing the morphological features extracted from the spheres of the NEMA image quality phantom, the deviations between ideal and calculated volume were in the majority of the cases small. Only for the smaller spheres, the deviation increased. This increase in deviation is likely more due to the partial volume effect than to mistakes in the implementation. The partial volume effect has especially an impact on smaller objects.

One limitation of RaCaT is that it does not provide any Graphical User Interface or automatic algorithm to perform segmentation tasks. It calculates radiomic features from previous performed segmentations. Moreover, after feature calculation, it provides also no further processing of the calculated features. I.e. no machine or deep learning algorithm are implemented and RaCaT can therefore not directly be used to build predictive models. However, as it can be called by any programming language, it can easily be included in any machine or deep learning script.

Further development

The following additional features will be implemented in further releases:

Additional discretization methods

Many other ways for image discretization have been proposed. Among them intensity histogram equalization and the Lloyd-max algorithm [21]. The next release will include both discretization methods.

Read several DICOM series stored in one folder

When images are extracted from the scanner, different image series are often stored in one folder. For a future release, it will be possible to read a folder containing several DICOM image series and the program will calculate for every DICOM image series the features separately.

Table 4. (Continued)

Feature	Melanoma 2	Melanoma 3	
ngldmFeatures3D	High dependence high grey level emphasis	12867.8	2371.72
ngldmFeatures3D	Grey level non uniformity	73.1607	36.038
ngldmFeatures3D	Grey level non uniformity normalized	0.011764	0.024041
ngldmFeatures3D	Dependence count non uniformity	2626.57	598.625
ngldmFeatures3D	Dependence count non uniformity normalized	0.401248	0.39935
ngldmFeatures3D	Dependence count percentage	1	1
ngldmFeatures3D	Grey level variance	791.594	176.755
ngldmFeatures3D	Dependence count variance	0.965357	0.721061
ngldmFeatures3D	Dependence count entropy	8.06942	6.88305
ngldmFeatures3D	dependence Count Energy	0.00500475	0.010548

https://doi.org/10.1371/journal.pone.0212223.t004
Several tumors in one mask

Up to now, the calculator can only handle masks that come with one marked VOI. For future releases, it will be possible that more than one VOI can be marked in one mask and the feature values of the different VOIs will be calculated separately.

Additional distances for the calculation of textural matrices

In the current version of RaCaT only distance 1 is used for the calculation of textural matrices as this is the common distance for calculations. In future releases, also other distances can be set by the user.

Additional output formats

Up to now, the output is only available as .csv file. It is planned that an output in ontology format [22] is also available.

Conclusion

We implemented and tested successfully RaCaT, an easy to use Radiomics calculator that can be included in any programming language or used from the command line. The calculated features are meeting the IBSI standards. The calculator is ready to use without requiring any programming skills, but can also be downloaded, built from source and extended if needed. As the implementation of the calculator is highly modularized, it is easily extendable. A documentation including the description of how to use the calculator as well as a more extensive description of the programming concepts, can be found on GitHub.

Supporting information

S1 Fig. Example commands to call executable. (DOCX)

S1 Table. Feature values for mathematical phantom provided by the image biomarker standardization initiative. Benchmark feature values and values calculated by RaCaT as well as their differences and percentage differences for the mathematical digital phantom provided by the Image Biomarker standardization initiative. (DOCX)

S2 Table. Feature values for realistic phantom provided by IBSI–config A. Benchmark feature values and values calculated by RaCaT as well as their differences and percentage differences for the realistic phantom, config A provided by IBSI. (DOCX)

S3 Table. Feature values for realistic phantom provided by IBSI–config C. Benchmark feature values and values calculated by RaCaT as well as their differences and percentage differences for the realistic phantom, config C provided by IBSI. (DOCX)

Author Contributions

Conceptualization: Elisabeth Pfaehler, Ronald Boellaard.

Methodology: Elisabeth Pfaehler, Ronald Boellaard.

Project administration: Elisabeth Pfaehler, Ronald Boellaard.
Resources: Elisabeth Pfaehler.

Software: Elisabeth Pfaehler, Alex Zwanenburg, Johan R. de Jong.

Validation: Elisabeth Pfaehler, Alex Zwanenburg.

Writing – original draft: Elisabeth Pfaehler.

Writing – review & editing: Elisabeth Pfaehler, Johan R. de Jong, Ronald Boellaard.

References

1. Shanmugan KS, Narayanan V, Frost VS, Stiles JA, Holtzman JC. Textural Features for Radar Image Analysis. IEEE Trans Geosci Remote Sens. 1981; GE-19: 153–156. https://doi.org/10.1109/TGRS.1981.350344
2. Amadasun M, King R. Textural features corresponding to textural properties. IEEE Trans Syst Man Cybern. 1989; 19: 1264–1274. https://doi.org/10.1109/21.44046
3. Lambin P, Rios-velazquez E, Leijenaar R, Carvalho S, Granton P, Zegers CML, et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2015; 48: 441–446. https://doi.org/10.1016/j.ejca.2011.11.036.Radiomics
4. Avanzo M, Stancanello J, El I. Beyond imaging: The promise of radiomics. Phys Medica. Associazione Italiana di Fisica Medica; 2017; 38: 122–139. https://doi.org/10.1016/j.ejmp.2017.05.071 PMID: 28595812
5. Parekh V, Jacobs MA, Science R, Comprehensive K. Radiomics: a new application from established techniques. Expert Rev Precis Med Drug Dev. 2017; 1: 1–45. https://doi.org/10.1080/23808993.2016.1164013.Radiomics
6. Parmar C, Leijenaar RTH, Grossmann P, Rios E, Bussink J, Rietveld D, et al. Radiomic feature clusters and Prognostic Signatures specific for Lung and Head & Neck cancer. Nat Sci Reports. Nature Publishing Group; 2015; 5: 1–10. https://doi.org/10.1038/srep11044 PMID: 26251068
7. Coroller TP, Grossmann P, Hou Y, Rios E, Leijenaar RTH, Hermann G, et al. CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiother Oncol. Elsevier Ireland Ltd; 2018; 114: 345–350. https://doi.org/10.1016/j.radonc.2015.02.015 PMID: 25746350
8. Zwanenburg A, Leger S, Vallières M, Löck S. Initiative for the IBS. Image biomarker standardisation initiative. 2016; https://doi.org/10.17195/candat.2016.08.1
9. Zwanenburg A. EP-1677: Multicentre initiative for standardisation of image biomarkers. Radiother Oncol. 2017; 123: S914–S915. https://doi.org/10.1016/S0167-8140(17)32209-0
10. Nicoche C, Orthac F, Boughdad S, Reuzé S, Goya-Outi J, Robert C, et al. LIFEx: A Freeware for Radiomic Feature Calculation in Multimodality Imaging to Accelerate Advances in the Characterization of Tumor Heterogeneity. Cancer Res. 2018; 78: 4786–4789. https://doi.org/10.1158/0008-5472.CAN-18-0125 PMID: 29959149
11. Zhang L, Fried D V, Fave XJ, Hunter LA, Yang J, Court LE. IBEX: an open infrastructure software platform to facilitate collaborative work in radiomics. Med Phys. 2015; 42: 1341–53. https://doi.org/10.1118/1.4908210 PMID: 25735289
12. Davatzikos C, Rathore S, Bakas S, Pati S, Bergman M, Kalarot R, et al. Cancer imaging phenomics toolkit: quantitative imaging analytics for precision diagnostics and predictive modeling of clinical outcome. J Med Imaging. 2018; 5: 1. https://doi.org/10.1117/1.JMI.5.1.011018 PMID: 29340286
13. Johnson, McCormick I. The ITK Software Guide: Introduction and Development Guidelines. 2015.
14. Haralick RM, Shanmugam K, Dinstein I. Textural Features for Image Classification. IEEE Trans Syst Man Cybern. 1973; SMC-3: 610–621. https://doi.org/10.1109/TSMC.1973.4309314
15. Chu A, Sehgal CM, Greenleaf JF. Use of gray value distribution of run lengths for texture analysis. Pattern Recognit Lett. 1990; 11: 415–419. https://doi.org/10.1016/0167-8655(90)90112-F
16. Thibault G, Ferti B, Navarro C, Pereira S, Cau P, Levy N, et al. Texture Indexes and Gray Level Size Zone Matrix Application to Cell Nuclei Classification. Pattern Recognit Inf Process. 2008; 140–145. ArtN 13575202/D0i 10.1142/S0218014135750024
17. Thibault G, Angulo J, Meyer F. Advanced Statistical Matrices for Texture Characterization: Application to Cell Classification. IEEE Trans Biomed Eng. 2014; 61: 630–637. https://doi.org/10.1109/TBME.2013.2286400 PMID: 24108747
18. Sun C, Wee WG. Neighbouring gray level dependence matrix for texture classification. Comput Vision, Graph Image Process. 1983; 23: 341–352. https://doi.org/10.1016/0734-189X(83)90032-4
19. Hatt M, Tixier F, Pierce L, Kinahan PE, Cheze C, Rest L, et al. Characterization of PET / CT images using texture analysis: the past, the present . . . any future? Eur J Nucl Med Mol Imaging. European Journal of Nuclear Medicine and Molecular Imaging; 2017; 44: 151–165. https://doi.org/10.1007/s00259-016-3427-0 PMID: 27271051

20. Data TA, Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More than. 2016; 278.

21. Vallières M, Freeman CR, Skamene SR, El Naqa I. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol. 2015; 60: 5471–5496. https://doi.org/10.1088/0031-9155/60/14/5471 PMID: 26119045

22. Traverso A. Radiomics Ontology [Internet]. Available: https://bioportal.bioontology.org/ontologies/RO