CHAPTER 23:
WAVES IN SOLAR CORONAL LOOPS

Tongjiang Wang¹,²

Recent observations have revealed the ubiquitous presence of magnetohydrodynamic (MHD) waves and oscillations in the solar corona. The aim of this review is to present recent progress in the observational study of four types of wave (or oscillation) phenomena mainly occurring in active region coronal loops, including (i) flare-induced slow mode oscillations, (ii) fast kink mode oscillations, (iii) propagating slow magnetoacoustic waves, and (iv) ubiquitous propagating kink (Alfvénic) waves. This review not only comprehensively outlines various aspects of these waves and coronal seismology, but also highlights the topics that are newly emerging or hotly debated, thus can provide readers a useful guidance on further studies of their interested topics.

1. INTRODUCTION

The corona is the outer part of the Sun’s atmosphere with the high temperature as much as a few million kelvins (MKs), characterized by highly-structured and dynamic loops when observed in the X-ray band and in the extreme ultraviolet (EUV) bands. The corona is visible in the optical band only during a total solar eclipse or with a coronagraph. Coronal loops are believed to be plasma-filled closed magnetic flux anchored in the photosphere. Based on the temperature regime they are generally classified into cool (<1 MK), warm (~1.5 MK), and hot (>2 MK) loops [Reale, 2014]. The magnetized coronal structures support propagation of various types of magnetohydrodynamics (MHD) waves. As such waves carry information about the structure and the physical properties of the medium, we can determine physical parameters of the corona that cannot be measured directly via a technique called coronal seismology [Uchida, 1970; Roberts et al., 1984; Nakariakov and Verwichte, 2005]. Knowledge of the coronal properties (e.g., magnetic fields, transport coefficients, inhomogeneous length scales) are crucial for enhancing our understanding of many fundamental but enigmatic processes, such as coronal heating [see reviews by Klimchuk, 2006, 2014; Parnell and De Moortel, 2012] and acceleration of the solar wind [see reviews by Ofman, 2010; Cranmer, 2012].

The early evidence for coronal waves was mainly inferred from the periodicity observed in time profiles of fluctuations in radio and X-ray flux [see reviews by Aschwanden, 1987, 2003]. The successful launch of the Solar and Heliospheric Observatory (SOHO) and the Transition Region and Coronal Explorer (TRACE) spacecrafts for the first time enabled us to directly detect coronal wave activity with EUV imaging observations, which led to a variety of discoveries such as global EUV waves [Thompson et al., 1998], flare-generated kink-mode loop oscillations [Aschwanden et al., 1999; Nakariakov et al., 1999], standing slow-mode loop oscillations [Wang et al., 2002, 2003a], and propagating slow magnetoacoustic waves in polar plumes [Ofman et al., 1997, 1999; DeForest and Gurman, 1998], and in coronal loops [Berghmans and Clette, 1999; De Moortel et al., 2000]. Since then a great progress has been made in ground- and space-based imaging observations of coronal waves in almost all wavelengths. For example, propagating fast magnetoacoustic wave trains were observed along a coronal loop during a full solar eclipse [Williams et al., 2001, 2002; Katsiyannis et al., 2003], in post-flare supra-arcades with TRACE [Verwichte et al., 2005], and along faint funnel-like coronal loops recently discovered by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) [Liu et al., 2010, 2011]. A global fast sausage-mode wave was identified in radioheliograph observations of flaring loops [Asai et al., 2001; Nakariakov et al., 2003].

¹Department of Physics, The Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064, USA; tongjiang.wang@nasa.gov, USA.
²NASA Goddard Space Flight Center, Code 671, Greenbelt, MD 20770, USA.
propagating kink (Alfvénic) waves in coronal loops were revealed with ground-based optical observations by the Coronal Multi-channel Polarimeter (CoMP) [Tomczyk et al., 2007; Tomczyk and McIntosh, 2009].

Stimulated by dramatically increasing imaging and spectroscopic observations, considerable progress has been also made in wide applications of coronal seismology over the last decade. Observational reviews on this subject can be found in Aschwanden [2003, 2004, 2012], Nakariakov and Verwichte [2005], De Moortel [2005, 2008], Wang [2004, 2005, 2011], Nakariakov [2007], Banerjee et al. [2007], De Moortel and Nakariakov [2012], and Liu and Ofman [2014]. Reviews of theoretical aspects can be found in Roberts [2000, 2002, 2004, 2008], Roberts and Nakariakov [2003], Goossens et al. [2005, 2006], Erdélyi [2006], Ofman [2009]. In particular, two volumes of Space Science Reviews [Nakariakov and Erdélyi, 2009; Erdélyi and Goossens, 2011] and an IAU Symposium [Erdélyi and Mendoza-Briceñó, 2008] were dedicated to detailed descriptions of various aspects of MHD waves and coronal seismology.

The aim of this review is to reflect recent progress in the observational study of four types of wave (or oscillation) phenomena mainly occurring in coronal loops of active regions (ARs), including (i) flare-excited slow-mode waves, (ii) impulsively-excited kink-mode waves, (iii) propagating slow magnetoacoustic waves, and (iv) ubiquitous propagating kink (Alfvénic) waves. This review not only comprehensively outlines various aspects of these waves and coronal seismology, but also highlights the topics that are newly emerging or hotly debated, thus can provide the reader a useful guidance on further studies. In addition, flare-induced propagating fast-mode wave trains are a new wave phenomenon discovered in the corona with SDO/AIA [Liu et al., 2010, 2011], which was recently reviewed by Liu and Ofman [2014], thus will not be included in this review.

2. MHD MODES AND IDENTIFICATION

It is known that a magnetized homogeneous medium supports three basic MHD waves: the slow-mode wave, the fast-mode wave, and the incompressible Alfvén wave. In the highly-structured solar corona, a magnetic cylinder is generally considered as an ideal model of common structures such as coronal loops. Under usual coronal condition (i.e., \(C_s < C_A < C_{Ac} \), where \(C_s \) is the sound speed inside the magnetic cylinder, \(C_A \) and \(C_{Ac} \) are the internal and external Alfvén speeds), the linear MHD wave theory predicts an infinite variety of trapped modes in coronal loops depending on their radial wavenumber \(l \), azimuthal wavenumber \(m \), and longitudinal wavenumber \(n \) [Edwin and Roberts, 1983; Roberts et al., 1984]. However, generally only low order modes are detectable [for instance, the modes with \(l=0, m=0-1, \) and \(n=1-3 \); see a review by Nakariakov, 2007]. The slow modes, fast kink modes, fast sausage modes, and torsional Alfvén modes are four main types of MHD modes in a coronal loop.

The slow modes have a characteristic phase speed near the sound speed with only a weak dispersion. As the slow mode is dominated by longitudinal motions, it is often referred to as the longitudinal mode. The slow-mode waves propagate almost following magnetic field lines in the low-\(\beta \) coronal condition. The kink modes are the branch of the fast-mode regime when \(m=1 \), corresponding to asymmetric oscillations of a flux tube that appear as periodic transverse displacements. As the kink modes are dominated by the restoring force of magnetic tension with only weak compression, some studies also suggest to name it as Alfvén waves or surface Alfvén waves [Goossens et al., 2009, 2012; McIntosh et al., 2011]. The kink modes have a phase speed lying between \(C_A \) and \(C_{Ac} \).

In the long-wavelength regime of \(k a \ll 1 \) where \(k = 2 \pi/\lambda \) is the wavenumber and \(\lambda \) the loop radius, the phase speed of the kink modes is equal to the kink speed, \(C_k \), defined by \(C_k = (2\rho_0/\rho_0 + \rho_e) \cdot C_A \), where \(\rho_0 \) and \(\rho_e \) are the plasma densities inside and outside the tube. The fast sausage modes are the branch of the fast-mode regime when \(m = 0 \), corresponding to symmetric radial oscillations of a flux tube. The fast sausage modes are strongly dispersive and have a cutoff at small wavenumbers, where the waves propagate with a speed close to \(C_{Ac} \). If wavenumbers are too small, the waves become leaky [called leaky modes, see Cally, 1986].

Because of this cutoff, the trapped global (fundamental) sausage modes can exist only under special conditions [e.g., in short and dense flare loops, see Nakariakov et al., 2003; Aschwanden et al., 2004]. The detectable global sausage leaky modes may be supported in long loops with realistic internal to external density contrast [Pascoe et al., 2007]. The last one, torsional Alfvén modes, are axisymmetric with \(m = 0 \), showing as periodic magnetic twist and plasma rotation [Van Doorsselaere et al., 2008a]. As the torsional waves are completely incompressible, they can only be identified based on Doppler shift patterns using spectroscopic observations [Williams, 2004; De Moortel and Nakariakov, 2012].

Both standing waves with fixed spatial nodes (zero displacement) and propagating waves are supported in coronal loops. Because a coronal loop has the natural node at both endpoints due to the photospheric line-tied condition of the magnetic field, the standing waves (also called eigen-
TABLE 1. Major types of MHD waves identified in coronal loops

Wave type	Period	Phase speed	T_e	Observations	References
		(km/s)	(MK)		
Standing Waves					
Slow mode	7–31 min	300–600	6–10	SUMER Fe xix/Fe xxi	Wang et al. [2003b]
	8–18 min	300–400	6–10	SUMER, Yohkoh/SXT	Wang et al. [2007]
	3–8 min	–	12–14	Yohkoh/BCS	Mariska [2006]
Kink mode	13–14 min	300	7–18	Radio 17 GHz, AIA 335 Å	Kim et al. [2012]
	12–14 min	240–1660	1	TRACE 171 Å	Aschwanden et al. [2002]
	~16 min	600-1100	2	NOGIS Fe xiv	Hori et al. [2007]
	2–10 min	1000–3600	1	SDO/AIA 171 Å	White and Verwichte [2012]
	12–80 min	–	1–1.5	SDO/AIA 171/193 Å	Liu and Ofman [2014]
	5 min	3100	9–11	SDO/AIA 131/94 Å	White et al. [2012]
Fast sausage mode	14–17 s	3200	5–10	Nobeyama radio	Nakariakov et al. [2003]
					Melnikov et al. [2005]

Propagating Waves	Prop. speed	Period	Observations	References	
Slow-mode waves	10–15 min	75–200	1.5	SOHO/EIT 195 Å	Berghmans and Clette [1999]
	2–9 min	70–235	1	TRACE 171 Å	De Moortel et al. [2000, 2002a]
	~12 min	132	1	STEREO/EUVI 171 Å	Marsh et al. [2009]
	12 & 25 min	100–120	1	Hinode/EIS Fe xii	Wang et al. [2009b]
	2–6 min	30–150	0.4–1.2	SDO/AIA 131/171/193 Å	Kiddie et al. [2012]
	10 & 16 min	70–100	1–1.5	SDO/AIA 171/193 Å	Krishna Prasad et al. [2012b]
Reflected slow waves	11 min	160–350	2	NOGIS Fe xiv	Hori et al. [2007]
Fast-mode waves	6 s	460–510	8–10	SDO/AIA 131/94 Å	Kumar et al. [2013]
	90–220 s	2100	2	SECIS Fe xiv	Williams et al. [2002]
	25–400 s	100–500	20	TRACE 195 Å (Fe xxiv)	Verwichte et al. [2005]
		500–2200	1	SDO/AIA 171 Å	Liu et al. [2010, 2011]
Kink (Alfvénic) waves	~5 min	600–700	1.8	CoMP Fe xiii	Tomczyk et al. [2007]

* The phase speed is estimated based on the fundamental mode.

![Figure 1](image_url)
Figure 1. Hot loop oscillations observed by SOHO/SUMER [from Wang et al., 2007]. (a) Yohkoh/SXT image, indicating that the SUMER slit was located at the apex of two soft X-ray loops. Time distance plots of the Fe xix line intensity (b) and Doppler shift (c), showing that the fundamental standing slow-mode waves are detected as Doppler shift oscillations with a quick decay in the two loops.
3. SLOW-MODE OSCILLATIONS OF HOT CORONAL LOOPS

3.1. Overview of Properties from SUMER Observations

3.1.1. Fundamental standing modes

3.1.2. Exciters

3.1.3. Decay

3.2. New Properties from SDO/AIA

4. FAST KINK-MODE OSCILLATIONS

4.1. Overview of flare-induced oscillations

4.2. Exciters

4.3. Decay and undecay

4.4. Horizontal and vertical polarizations

4.5. Multiple harmonics

4.6. Oscillating loops with flows

4.7. Persistent decayless oscillations

5. PROPAGATING SLOW-MODE WAVES

5.1. Overview of properties for propagating coronal disturbances (PCDs)

5.2. Evidence of propagating slow waves in coronal structures above sunspots

5.3. Debate on interpretations of the PCDs in loops above plages

5.3.1. Properties of coronal outflows and PCDs

5.3.2. Towards resolving the controversy

6. PROPAGATING KINK-MODE WAVES

6.1. Observed properties

6.2. Theoretical interpretation

7. FINAL REMARKS

ACKNOWLEDGMENTS. This work was supported by NASA grants from NNX12AB34G and the NASA Cooperative Agreement NNG11PL10A to CUA. I thank Pankaj Kumar and Steven Tomczyk for providing the original figures. Figures 1, 2, 4, 5 and 6 are reproduced by permission of the AAS. Figure 3 is reproduced by permission of Astronomy & Astrophysics, @ ESO.

NOTES

1. Contact the author (email: tongjiang.wang@nasa.gov) to request an electronic version.

REFERENCES

Abedini, A., Safari, H., and Nasiri, S. (2012). Slow-Mode Oscillations and Damping of Hot Solar Coronal Loops, Solar Phys., 280(1), 137–151, doi:10.1007/s11207-012-0054-1.

Al-Ghafari, K. S., and Erdélyi, R (2013). Effect of Variable Background on an Oscillating Hot Coronal Loop. Solar Phys., 283, 413–428, doi:10.1007/s11207-013-0225-8.

Al-Ghafari, K. S., Ruderman, M. S., Williamson, A., Erdélyi, R. (2014). Longitudinal Magnetohydrodynamics Oscillations in Dissipative, Cooling Coronal Loops, Astrophys. J., 786, 36–43, doi:10.1088/0004-637X/786/1/36.

Andries, J., van Doorsselaere, T., Roberts, B., et al. (2009). Coronal Seismology by Means of Kink Oscillation Overtones, Space Sci. Rev., 149, 3–29, doi:10.1007/s11214-009-9561-2.

Anfinogentov, S., Nisticò, G., Nakariakov, V. M. (2013). Decay-less kink oscillations in coronal loops, Astron. Astrophys., 560, A107–A112, doi:10.1051/0004-6361/201322094.

Antolin, P., and Verwichte, E. (2011). Transverse Oscillations of Loops with Coronal Rain Observed by Hinode/Solar Optical Telescope, Astrophys. J., 736, 121–131, doi:10.1088/0004-637X/736/2/121.

Antolin, P., Yokoyama, T., and Van Doorsselaere, T. (2014). Fine Strand-like Structure in the Solar Corona from Magnetohydrodynamic Transverse Oscillations, Astrophys. J. Lett., 787, L22–L27, doi:10.1051/0004-6361/200912270.

Arregui, I., Ballester, J. L., and Goossens, M. (2008). On the Scaling of the Damping Time for Resonantly Damped Oscillations in Coronal Loops, Astrophys. J. Lett., 676, L77–L80, doi:10.1086/587098.

Arregui, I., Asensio Ramos, A., and Pascoe, D. J. (2013). Determination of Transverse Density Structuring from Propagating Magnetohydrodynamic Waves in the Solar Atmosphere, Astrophys. J. Lett., 769, L34–L39, doi: 10.1088/2041-8205/769/2/L34.

Asai, A., Shimojo, M., Isobe, H., Morimoto, T., Yokoyama, T., et al. (2001). Periodic Acceleration of Electrons in the 1998 November 10 Solar Flare, Astrophys. J. Lett., 562, L103–L106, doi:10.1086/338502.

Aschwanden, M. J. (1987). Theory of radio pulsations in coronal loops, Solar Phys., 111, 113–136, doi:10.1007/BF00145445.

Aschwanden, M. J. (2003). Theory of MHD waves in the solar corona, in Turbulence, Waves and Instabilities in the Solar Plasma, (Eds.) R. Erdélyi, K. Petrovay, B. Roberts, M. Aschwanden, vol. 124 of NATO Science Series II, p. 215–237, (Kluwer, Dordrecht, Netherlands; Boston, U.S.A., 2003).

Aschwanden, M. J. (2004). Physics of the Solar Corona, Springer, Berlin, Germany; New York, U.S.A.

Aschwanden, M. J. (2009). The 3D Geometry, Motion, and Hydrodynamic Aspects of Oscillating Coronal Loops, Space Sci. Rev., 149, 31–64, doi:10.1007/s11214-009-9505-x.
De Moortel, I., Hood, A. W., Ireland, J., and Walsh, R. W. (2002b), Longitudinal intensity oscillations in coronal loops observed with TRACE - II. Discussion of Measured Parameters, Solar Phys., 209, 89-108, doi: 10.1023/A:1020960505133
De Moortel, I., Ireland, J., Hood, A. W., and Walsh, R. W. (2002c), The detection of 3 & 5 min period oscillations in coronal loops, Astron. Astrophys., 387, L13-L16, doi:10.1051/0004-6361:20020436.
De Moortel, I., Antolin, P., and Van Doorsselaere, T. (2015), Observational Signatures of Waves and Flows in the Solar Corona, Solar Phys., 290, 399–421, doi:10.1007/s11207-014-0610-y.
De Pontieu, B., McIntosh, S. W., and Poedts, S. (2005), Solar coronal loop oscillations: theory of resonantly damped oscillations and comparison with observations, in AIP Conf. Proc. of Magnetic Fields in the Universe: From Laboratory and Stars to Primordial Structures, (eds.) E. M. de Gouveia Dal Pino et al., vol. 784, p. 114–128, doi:10.1063/1.2077176.

De Pontieu, B., Erdélyi, R., and De Moortel, I. (2005), How to channel photospheric oscillations into the corona?, Astron. J. Lett., 624, L61–L64, doi:10.1086/430345.
De Pontieu, B., McIntosh, S. H., Hansteen, V. H., et al. (2007), A Tale of Two Spicules: The Impact of Spicules on the Magnetic Chromosphere, Publ. Astron. Soc. J., 59, S655–S662, doi:10.1093/pasj/59.s3.p655.
De Pontieu, B., McIntosh, S. W., Carlsson, M., et al. (2011), The origins of hot plasma in the solar corona, Science, 331, 55–59, doi:10.1126/science.1197738.

Del Zanna, G. (2008), Flows in active region loops observed by Hinode EIS, Astron. Astrophys., 481, L49–L52, doi:10.1051/0004-6361:200709087.
Del Zanna, G., and Mason, H. E. (2003), Solar active regions: SOHO/CDS and TRACE observations of quiescent coronal loops, Astron. Astrophys., 406, 1089-1103, doi:10.1051/0004-6361:20030970.

Del Zanna, G., Antiochos, S. K., Klein, K.-L., and Türök, T. (2011), A single picture for solar coronal outflows and radio noise storms, Astron. Astrophys., 526, A137–A148, doi:10.1051/0004-6361/201015231.

Doschek, G. A., Warren, H. P., Mariska, J. T., et al. (2008), Flows and Nonthermal Velocities in Solar Active Regions Observed with the EUV Imaging Spectrometer on Hinode: A Tracer of Active Region Sources of Heliospheric Magnetic Fields?, Astron. Astrophys., 486, 1362-1371, doi:10.1051/0004-6361:201015231.

Dymova, M. V., and Ruderman, M. S. (2006), The geometry effect on transverse oscillations of coronal loops, Astron. Astrophys., 459, 241–244, doi:10.1051/0004-6361:20054506.

Edwin, P. M., and Roberts, B. (1983), Wave propagation in a magnetic cylinder, Solar Phys., 88, 179–191, doi:10.1007/BF00196186.

Erdélyi, R. (2006), Magnetic seismology of the lower solar atmosphere, in Proc. of SOHO 18/GONG 2006/HELAS I, Beyond the spherical Sun, (ed.) Karen Fletcher, ESA SP-624, p. 1–13.

Erdélyi, R., and Mendoza-Briceño, C. A. (eds.) (2008), in Waves & Oscillations in the Solar Atmosphere: Heating and Magnetohydrodynamics, vol. 217 of IAU Symposium.

Erdélyi, R., and Goossens, M. (2011), Magnetohydrodynamic Waves and Seismology of the Solar Atmosphere, Space Sci. Rev., 158, 167-168, doi:10.1007/s11214-011-9800-1.

Erdélyi, R., and Taroyan, Y. (2008), Hinode EUV spectroscopic observations of coronal oscillations, Astron. Astrophys., 489, L49–L52, doi:10.1051/0004-6361:200810263.

Erdélyi, R., Malins, C., Tóth, G., and De Pontieu, B. (2007), Leakage of photospheric acoustic waves into non-magnetic solar atmosphere, Astron. Astrophys., 467, 1299–1311, doi:10.1051/0004-6361:20066857.

Erdélyi, R., Luna-Cardozo, M., and Mendoza-Briceño, C. A. (2008), Dissipation of Longitudinal Oscillations in Stratified Nonisothermal Hot Coronal Loops, Solar Phys., 252, 305-329, doi:10.1007/s11207-008-9274-9.

Fedun, V., Erdélyi, R., and Shelyag, S. (2009), Oscillatory Response of the 3D Solar Atmosphere to the Leakage of Photospheric Motion, Solar Phys., 258, 219–241, doi:10.1007/s11207-009-9407-9.

Goossens, M., Andries, J., Arregui, I., Doorsselaere, T. V., and Poedts, S. (2005), Solar coronal loop oscillations: theory of resonantly damped oscillations and comparison with observations, in AIP Conf. Proc. of Magnetic Fields in the Universe: From Laboratory and Stars to Primordial Structures, (eds.) E. M. de Gouveia Dal Pino et al., vol. 784, p. 114–128, doi:10.1063/1.2077176.

Goossens, M., Andries, J., and Arregui, I. (2006), Damping of magnetohydrodynamic waves by resonant absorption in the solar atmosphere, Solar Phys., 209, 313–326, doi:10.1007/s11207-005-9274-9.

Harra, H., Watanabe, T., Harra, L. K., et al. (2008), Coronal Plasma Motions near Footpoints of Active Region Loops Revealed from Spectroscopic Observations with Hinode EIS, Astrophys. J. Lett., 678, L67–L71, doi:10.1086/588252.

Harra, L. K., Sakao, T., Mandrini, C. H., et al. (2008), Outflows at the Edges of Active Regions: Contribution to Solar Wind Formation?, Astrophys. J. Lett., 676, L147–L150, doi:10.1086/587485.

Haynes, M., Arber, T. D., and Verwichte, E. (2008), Coronal loop slow mode oscillations driven by the kink instability, Astron. Astrophys., 479, 235–239, doi:10.1051/0004-6361:20078534.

He, J.-S., Marsch, E., Tu, C.-Y., Guo, L.-J., and Tian, H. (2010), Intermittent outflows at the edge of an active region A possible source of the solar wind?, Astron. Astrophys., 516, A14–A22, doi:10.1051/0004-6361/200913712.

Hindman, B. W., and Jain, R. (2014), An Interpretation of Flare-induced and Decayless Coronal-loop Oscillations as Interference Patterns, Astrophys. J., 794, 103–112, doi:10.1088/0004-637X/794/2/103.

Hudson, H. S., Ichimoto, K., Sakurai, T. (2007), Flare-Associated Oscillations in Coronal Multiple-Loops Observed with the Norikura Green-Line Imaging System, In ASP Conf. Proc. of New Solar Physics with Solar-B Mission, vol. 369, p.213.

Hudson, H. S., and Warmuth, A. (2004), Coronal Loop Oscillations and Flare Shock Waves, Astrophys. J. Lett., 614, L85–L88, doi:10.1086/425314.
Nakariakov, V. M., Melnikov, V. F., and Reznikova, V. E. (2002), Coronal Waves Damping by Thermal Conduction, Astrophys. J. Lett., 576, L113–L116, doi:10.1086/343886.

Nakariakov, V. M., and Wang, T. J. (2004), Hot Coronal Loop Oscillations Observed by SUMER: Slow Magnetosonic Wave Damping by Thermal Conduction, Astrophys. J. Lett., 580, L85–L88, doi:10.1086/345548.

Nakariakov, V. M., and Wang, T. J. (2008), Hinode observations of transverse waves with waves in coronal loops, Astron. Astrophys., 482, L9–L12, doi:10.1051/0004-6361:20079340.

Nakariakov, V. M., Ofman, L., and Wang, T. J. (2012), Slow Magnetosonic Waves and Fast Flows in Active Region Loops, Astrophys. J., 754, 111–123, doi:10.1088/0004-637X/754/2/111.

Ogrodowczyk, R., and Murawski, K. (2007), Numerical simulations of slow magnetosonic standing waves in a straight solar coronal slab, Astron. Astrophys., 467, 311–316, doi:10.1051/0004-6361:20077130.

Ogrodowczyk, R., Murawski, K., and Solanki, S. K. (2009), Slow magnetoacoustic standing waves in a curved solar coronal slab, Astron. Astrophys., 495, 313–318, doi:10.1051/0004-6361:20081077.

Parnell, C. E., and De Moortel, I. (2012), A contemporary view of coronal heating, Trans. Royal Soc. A, 370, 3217–3240, doi:10.1098/rsta.2012.0113.

Pascoc, D. J., Nakariakov, V. M., and Arber, T. D. (2007), Sausage oscillations of coronal loops, Astron. Astrophys., 461, 1149–1154, doi:10.1051/0004-6361:20065986.

Pascoc, D. J., De Moortel, I., and McLaughlin, J. A. (2009), Impulsively generated oscillations in a 3D coronal loop, Astron. Astrophys., 505, 319–327, doi:10.1051/0004-6361/200912270.

Pascoc, D. J., Wright, A. N., and De Moortel, I. (2010), Coupled Alfvén and Kink Oscillations in Coronal Loops, Astrophys. J., 711, 990–996, doi:10.1088/0004-637X/711/2/990.

Pascoc, D. J., Wright, A. N., and De Moortel, I. (2011), Propagating Coupled Alfvén and Kink Oscillations in an Arbitrarily Inhomogeneous Corona, Astrophys. J., 731, 73–81, doi:10.1088/0004-637X/731/1/73.

Petralia, A., Reale, F., Orlando, S., and Klimchuk, J. A. (2014), MHD modelling of coronal loops: injection of high-speed chromospheric flows, Astron. Astrophys., 567, A70–A78, doi:10.1051/0004-6361/201323012.
“The Effect of Flows on Transverse Oscillations of Longitudinally Stratified Coronal Loops with Variable Cross Section, Astrophys. J., 686, 694–700,” 10.1086/591444.

Sakao, T., Kano, R., Narukage, N., et al. (2007), Continuous plasma outflows from the edge of a solar active region as a possible source of solar wind, Science, 318, 1585–1589, 10.1126/science.1147292.

Selwa, M., and Ofman, L. (2009), 3-D numerical simulations of coronal loops oscillations, Ann. Geophys., 27, 3899–3908, doi:10.5194/angeo-27-3899-2009.

Selwa, M., and Ofman, L. (2010), The Role of Active Region Topology in Excitation, Trapping, and Damping of Coronal Loop Oscillations, Astrophys. J., 714, 170–177, doi:10.1088/0004-637X/714/1/170.

Selwa, M., Murawski, K., Solanki, S. K., and Wang, T. J. (2007), Energy leakage as an attenuation mechanism for vertical kink oscillations in solar coronal wave guides, Astron. Astrophys., 462, 1127–1135, doi:10.1051/0004-6361:20065122.

Selwa, M., Ofman, L., and Solanki, S. K. (2011a), The Role of Active Region Loop Geometry. I. How Can it Affect Coronal Seismology?, Astrophys. J., 726, 42–51, doi:10.1088/0004-637X/726/1/42.

Selwa, M., Solanki, S. K., and Ofman, L. (2011b), The Role of Active Region Loop Geometry. II. Symmetry Breaking in Three-dimensional Active Region: Why are Vertical Kink Oscillations Observed so Rarely?, Astrophys. J., 728, 87–98, doi:10.1088/0004-637X/728/2/87.

Schrijver, C. J., Aschwanden, M. J., and Title, A. M. (2002), Transverse oscillations in coronal loops observed with TRACE - I. An Overview of Events, Movies, and a Discussion of Common Properties and Required Conditions, Solar Phys., 206, 69–98, 10.1023/A:1014957715396.

Simões, P. J. A., Fletcher, L., Hudson, H. S., and Russell, A. J. B. (2013), Implosion of Coronal Loops during the Impulsive Phase of a Solar Flare, Astrophys. J., 777, 152–160, doi:10.1088/0004-637X/777/2/152.

Soler, R., Oliver, R., and Ballester, J. L. (2009), Propagation of Nonadiabatic Magnetohydrodynamic Waves in a Threaded Prominence With Mass Flows, Astrophys. J., 693(2), 1601–1609, doi:10.1088/0004-637X/693/2/1601.

Srivastava, A. K., and Goossens, M. (2013), X6.9-class Flare-induced Vertical Kink Oscillations in a Large-scale Plasma Currant as Observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly, Astrophys. J., 777, 17-25, doi:10.1088/0004-637X/777/1/17.

Su, J. T., Liu, Y., Liu, S., et al. (2013), Simultaneous Observation of Solar Oscillations Associated with Coronal Loops from the Photosphere to the Corona, Astrophys. J., 762, 42–49, doi:10.1088/0004-637X/762/1/42.

Sun, X., Hoeksema, J. T., Liu, Y., et al. (2012), Evolution of Magnetic Field and Energy in a Major Eruptive Active Region Based on SDO/HMI Observation, Astrophys. J., 748, 77–91, doi:10.1088/0004-637X/748/2/77.

Taroyan, Y., and Bradshaw, S. (2008), Coronal loop oscillations and diagnostics with Hinode/EIS, Astron. Astrophys., 481, 247–252, doi:10.1051/0004-6361:20078610.

Terradas, J. (2009), Excitation of Standing Kink Oscillations in Coronal Loops, Space Sci. Rev., 149, 255–282, doi:10.1007/s11214-009-9560-3.

Terradas, J., Oliver, R., and Ballester, J. L. (2006), Damping of Kink Oscillations in Curved Coronal Loops, Astrophys. J. Lett., 650, L91–L94, doi:10.1086/508569.

Terradas, J., Andries, J., and Goossens, M. (2007), Coronal loop oscillations: energy considerations and initial value problem, Astron. Astrophys., 693(3), 1135–1143, doi:10.1051/0004-6361:20077404.

Terradas, J., Goossens, M., and Ballai, I. (2010a), The effect of longitudinal flow on resonantly damped kink oscillations, Astron. Astrophys., 515, A46–A53, doi:10.1051/0004-6361:200913487.
Van Doorsselaere, T., Nakariakov, V. M., and Verwichte, E. (2008b), Coronal magnetic field measurement using loop oscillations observed by Hinode/EIS, *Astron. Astrophys.*, 487, L17–L20, doi:10.1051/0004-6361:200810186.

Van Doorsselaere, T., Verwichte, E., and Terradas, J. (2009a), The Effect of Loop Curvature on Coronal Loop Kink Oscillations, *Space Sci. Rev.*, 149, 299–324, doi:10.1007/s12121-009-9530-9.

Van Doorsselaere, T., Birtill, D. C. C., and Evans, G. R. (2009b), Detection of three periodicities in a single oscillating coronal loop, *Astron. Astrophys.*, 508, 1485–1491, doi:10.1051/0004-6361:200912753.

Van Doorsselaere, T., Wardle, N., Del Zanna, G., Jansari, K., Verwichte, E., and Nakariakov, V. M. (2011), The first measurement of the adiabatic index in the solar corona using time-dependent spectroscopy of Hinode/EIS observations, *Astrophys. J. Lett.*, 727, L32–L35, doi:10.1088/2041-8205/972/2/L32.

Van Driel-Gesztelyi, L., Cullane, J. L., Baker, D., et al. (2012), Magnetic Topology of Active Regions and Coronal Holes: Implications for Coronal Outflows and the Solar Wind, *Solar Phys.*, 281, 237–262, doi:10.1007/s11217-012-0076-8.

Verth, G., and Erdélyi, R. (2008), Effect of longitudinal magnetic and density inhomogeneity on transversal coronal loop oscillations, *Astron. Astrophys.*, 486, 1015–1022, doi:10.1051/0004-6361:200809626.

Verth, G., Erdélyi, R., and Jess, D. B. (2008), Refined Magnetoseismological Technique for the Solar Corona, *Astrophys. J. Lett.*, 687, L45–L48, doi:10.1086/593184.

Verth, G., Terradas, J., and Goossens, M. (2010), Observational Evidence of Resonantly Damped Propagating Kink Waves in the Solar Corona, *Astrophys. J. Lett.*, 718, L102–L105, doi:10.1088/2041-8205/718/2/L102.

Verwichte, E., Nakariakov, V. M., Ofman, L., and Deluca, E. E. (2004), Characteristics of transverse oscillations in a coronal loop arcade, *Solar Phys.*, 223, 77–94, doi:10.1007/s11217-004-0807-6.

Verwichte, E., Nakariakov, V. M., and Cooper, F. C. (2005), Transverse waves in a post-flare supra-arcade, *Astron. Astrophys.*, 430, L65–L68, doi:10.1051/0004-6361:200400133.

Verwichte, E., Foulon, C., and Nakariakov, V. M. (2006a), Fast magnetosonic waves in curved coronal loops, *Astron. Astrophys.*, 446, 1139–1149, doi:10.1051/0004-6361:20053955.

Verwichte, E., Foulon, C., and Nakariakov, V. M. (2006b), Fast magnetosonic waves in curved coronal loops. II. Tunneling modes, *Astron. Astrophys.*, 449, 769–779, doi:10.1051/0004-6361:20054398.

Verwichte, E., Foulon, C., and Nakariakov, V. M. (2006c), Seismology of curved coronal loops with vertically polarised transverse oscillations, *Astron. Astrophys.*, 452, 615–622, doi:10.1051/0004-6361:20054437.

Verwichte, E., Haynes, M., Arber, T. D., and Brady, C. S. (2008), Damping of Slow MHD Coronal Loop Oscillations by Shocks, *Astrophys. J.*, 685, 1286–1290, doi:10.1086/591077.

Verwichte, E., Aschwanden, M. J., Van Doorsselaere, T., Foulon, C., and Nakariakov, V. M. (2009), Seismology of a Large Solar Coronal Loop from EUVI/STEREO Observations of its Transverse Oscillations, *Astron. Astrophys.*, 508, 1485–1491, doi:10.1051/0004-6361:200810186.
Verwichte, E., Marsh, M., Foullon, C.. et al. (2010b), Periodic Spectral Line Asymmetries in Solar Coronal Structures from Slow Magnetoacoustic Waves, Astrophys. J. Lett., 724, L194–L198, doi:10.1088/2041-8205/724/2/L194.

Verwichte, E., Van Doorsselaere, T., Foullon, C., and White, R. S. (2013a), Coronal Alfvén Speed Determination: Consistency between Seismology Using AIA/SDO Transverse Loop Oscillations and Magnetic Extrapolation, Astrophys. J., 767, 16–22, doi:10.1088/0004-637X/767/1/16.

Verwichte, E., Van Doorsselaere, T., White, R. S., and Antolin, P. (2013b), Statistical seismology of transverse waves in the solar corona, Astron. Astrophys., 552, A138–A146, doi:10.1051/0004-6361/201220456.

Winebarger, A. R., Warren, H., van Ballegooijen, A., DeLuca, E. E., and Golub, L. (2002), Steady Flows Detected in Extreme-Ultraviolet Loops, Astrophys. J. Lett., 567, L89–L92, doi:10.1086/339796 .

Wang, T. J. (2004), Coronal loop oscillations: Overview of recent results in observations, in Proc. of SOHO 13, Waves, Oscillations and Small-Scale Transient Events in the Solar Atmosphere: A Joint View from SOHO and TRACE, (ed.) H. Lacoste, vol. SP-547, p.417–426, (ESA, Noordwijk). see http://adsabs.harvard.edu/abs/2004ESASP.547..417W

Wang, T. J. (2005), Oscillations and waves in coronal loops, in Proc. of the International Scientific Conference on Chromospheric and Coronal Magnetic Fields, (eds.) D.E. Innes, A. Lagg, S.K. Solanki et al., vol. SP-596, p.42–53, (ESA, Noordwijk). see http://adsabs.harvard.edu/abs/2005ESASP.596E..42W

Wang, T. J. (2011), Standing Slow-Mode Waves in Hot Coronal Loops: Observations, Modeling, and Coro Seismology, Space Sci. Rev., 158, 397–419, doi:10.1007/s11214-010-9716-1.

Wang, T. J., and Solanki, S. K. (2004), Vertical oscillations of a coronal loop observed by TRACE, Astron. Astrophys., 421, L33–L36, doi:10.1051/0004-6361:20040186.

Wang, T. J., Solanki, S. K., Curdt, W., Innes, D. E., and Dammash, I. E. (2002), Doppler Shift Oscillations of Hot Solar Corona Plasma Seen by SUMER: A Signature of Loop Oscillations?, Astrophys. J. Lett., 574, L101–L104, doi:10.1086/342189.

Wang, T. J., Solanki, S. K., Innes, D. E., Curdt, W., and Marsch, E. (2003a), Slow-mode standing waves observed by SUMER in hot coronal loops, Astron. Astrophys., 402, L17–L20, doi:10.1051/0004-6361:20030448.

Wang, T. J., Solanki, S. K., Curdt, W., Innes, D. E., Dammash, I. E., and Kliem, B. (2003b), Hot coronal loop oscillations observed with SUMER: Examples and statistics, Astron. Astrophys., 406, 1105–1121, doi:10.1051/0004-6361:20030858.

Wang, T. J., Solanki, S. K., Innes, D. E., and Curdt, W. (2005), Initiation of hot coronal loop oscillations: Spectral features, Astron. Astrophys., 435, 753–764, doi:10.1051/0004-6361:20052680.

Wang, T. J., Innes, D. E., and Qiu, J. (2007), Determination of the Coronal Magnetic Field from Hot-Loop Oscillations Observed by SUMER and SXT, Astrophys. J., 656, 598–609, doi:10.1086/510424.

Wang, T. J., Solanki, S. K., and Selwa, M. (2008), Identification of different types of kink modes in coronal loops: principles and application to TRACE results, Astron. Astrophys., 489, 1307–1317, doi:10.1051/0004-6361:200810230.

Wang, T. J., Ofman, L., and Davila, J. M. (2009b), Propagation of Slow Magnetoacoustic Waves in Coronal Loops Observed by Hinode/EIS, Astrophys. J., 696, 1448–1460, doi:10.1088/0004-637X/696/2/1448.

Wang, T. J., Ofman, L., Davila, J. M., and Mariska, J. T. (2009b), Hinode/EIS observations of propagating low-frequency slow magnetoacoustic waves in fan-like coronal loops, Astron. Astrophys., 503, L25–L28, doi:10.1051/0004-6361/200912534.

Wang, T. J., Ofman, L., Davila, J. M., and Su, Y. (2012a), Growing Transverse Oscillations of a Multistranded Loop Observed by SDO/AIA, Astrophys. J. Lett., 751, L27–L32, doi:10.1088/2041-8205/751/2/L27.

Wang, T. J., Ofman, L., and Davila, J. M. (2012b), Propagating Intensity Disturbances in Fan-like Coronal Loops: Waves or Flows?, in Proc. of 4th Hinode Science Meeting: Unsolved Problems and Recent Insights, (eds.) L. R. Bellot Rubio, F. Reale, and M. Carlsson, vol. 455 of ASP Conf. Series, p.227–235.

Wang, T. J., Ofman, L., and Davila, J. M. (2012c), Spectroscopic Diagnosis of Propagating Disturbances in Coronal Loops: Waves or Flows?, in Proc. of 5th Hinode Science Meeting: Exploring the Active Sun, (eds.) L. Golub, I. De Moor, and T. Shimizu, vol. 456 of ASP Conf. Series, p.91–96.

Wang, T. J., Ofman, L., and Davila, J. M. (2013), Three-dimensional Magnetohydrodynamic Modeling of Propagating Disturbances in Fan-like Coronal Loops, Astrophys. J., 775, L23–L28, doi:10.1088/2041-8205/775/1/L23.

Warren, H. P., Ugarte-Urra, I., Young, P. R., and Stenberg, G. (2011), The Temperature Dependence of Solar Active Region Outflows, Astrophys. J., 727, 58–62, doi:10.1088/0004-637X/727/1/58.

White, R. S., and Verwichte, E. (2012), Transverse coronal loop oscillations seen in unprecedented detail by AIA/SDO, Astron. Astrophys., 537, A49–A58, doi:10.1051/0004-6361/201118093.

White, R. S., Verwichte, E., and Foullon, C. (2012), First observation of a transverse vertical oscillation during the formation of a hot post-flare loop, Astron. Astrophys., 545, A129–A138, doi:10.1051/0004-6361/201219856.

Williams, D. R. (2004), Diagnosing MHD Wave Detections in Solar Coronal Loops: Torsional Effects, in Proc. of SOHO 13, Waves, Oscillations and Small-Scale Transient Events in the Solar Atmosphere: A Joint View from SOHO and TRACE, (ed.) H. Lacoste, vol. SP-547, p.513–517, (ESA, Noordwijk).

Williams, D. R., Phillips, K. J. H., Rudawy, P., et al. (2001), High-frequency oscillations in a solar active region coronal loop, Mon. Not. R. Astron. Soc., 326, 428–436, doi:10.1046/j.1365-8711.2001.04491.x.

Williams, D. R., Mathioudakis, M., Gallagher, P. T., et al. 2002, An observational study of a magneto-acoustic wave in the solar corona, Mon. Not. R. Astron. Soc., 336, 747–752, doi:10.1046/j.1365-8711.2002.05764.x.

Withbroe, G. L., and Noyes, R. W. 1977, Mass and energy flow in the solar chromosphere and corona, Annu. Rev. Astron. astrophys., 15, 363–387, doi:10.1146/annurev.aa.15.090177.002051.

Young, P. R., Del Zanna, G., Mason, H. E., et al. (2007), EUV Emission Lines and Diagnostics Observed with Hinode/EIS, Publ. Astron. Soc. J., 59, S857–S864, doi:10.1086/503587.

Yuan, D., Sych, R., Reznikova, V. E., and Nakariakov, V. M. (2014), Multi-height observations of magnetoacoustic cut-off frequency in a sunspot atmosphere, Astron. Astrophys., 561, A19–A24, doi:10.1051/0004-6361/201220208.

Corresponding author: Tongjiang Wang, USA.
(tongjiang.wang@nasa.gov)