SYMMETRY AND CONSERVATION LAWS IN SEMICLASSICAL WAVE PACKET DYNAMICS

TOMOKI OHSAWA

Abstract. We formulate translational and rotational symmetries in semiclassical Gaussian wave packet dynamics and find the corresponding conserved quantities via Noether’s theorem. We consider two slightly different formulations of Gaussian wave packet dynamics; one is based on earlier works of Heller and Hagedorn, and the other based on the symplectic-geometric approach by Lubich and others. In either case, we reveal the symplectic and Hamiltonian nature of the dynamics and formulate natural symmetry group actions in the setting to derive the corresponding conserved quantities (momentum maps). Of particular interest is the momentum map corresponding to the rotational symmetry in the symplectic formulation of the Gaussian wave packet dynamics: We obtain a semiclassical angular momentum that inherits the essential properties of the classical angular momentum as well as naturally corresponds to the quantum picture.

1. Introduction

1.1. Gaussian Wave Packet and Semiclassical Dynamics. Techniques involving the Gaussian wave packets have been used to approximate quantum dynamics in the semiclassical regime for a long time. The origin of the modern usage seems to go back to the works of Heller [10, 11, 12], Hagedorn [8] (see also [9]), and Littlejohn [18, Section 7]; see also references therein. Perhaps the most salient feature of the Gaussian wave packet is that it gives an exact solution to the Schrödinger equation with quadratic potentials, given that the parameters governing the dynamics of the wave packet follow a set of ODEs that is essentially Hamilton’s equations of classical mechanics plus some additional ODEs. It is also established by Hagedorn [8, 9] that, even if the potential is not quadratic, under some regularity assumptions, the Gaussian wave packet approximates quantum dynamics to the order of \(O(\sqrt{\hbar}) \) with the same set of ODEs governing the dynamics of it. Hagedorn [8, 9] pushes it even further to show that one can generate an orthonormal basis of \(L^2(\mathbb{R}^d) \), \(d \) being the dimension of the configuration space, by following a construction analogous to the Hermite functions. Furthermore, it is shown that one may improve the order of approximation by selecting a finite number of elements from the basis, again using the same set of ODEs; such technique is implemented by Faou et al. [6] to solve the semiclassical Schrödinger equation numerically. The key feature of this basis, often called the Hagedorn wave packets, is that the basis elements are time-dependent and their time evolution is governed by the ODEs. Therefore, quantitative and qualitative understanding of the behaviors of the solutions of the ODEs is important in theoretical and numerical studies using the Hagedorn wave packets.

1.2. Symplectic/Hamiltonian View of Gaussian Wave Packet Dynamics. The symplectic/Hamiltonian nature of the dynamics of the ODEs governing the semiclassical Gaussian wave packet has been studied earlier by, e.g., Littlejohn [19], Simon et al. [29], Broeckhove et al. [2], and Pattanayak and Schieve [27]. More recently, Lubich [20] (see also Faou and Lubich [5]) gave a more systematic account of the symplectic formulation of the Gaussian wave packet dynamics, and this was studied further by us in [26] by making use of techniques of geometric mechanics.

Date: October 31, 2014.
2010 Mathematics Subject Classification. 37J15, 70G45, 70H06, 70H33, 81Q05, 81Q20, 81Q70, 81S10.
Key words and phrases. Semiclassical mechanics, Gaussian wave packet dynamics, Hamiltonian dynamics, Symplectic geometry, Noether’s theorem, Momentum maps.
The advantage of the symplectic/Hamiltonian viewpoint is that we can take advantage of the arsenal of tools for Hamiltonian systems; see e.g., Abraham and Marsden [1] and Marsden and Ratiu [21]. Most notably, symmetry and conservation laws in Hamiltonian systems are linked via Noether’s theorem: Practically speaking one may easily find conservation laws by observing symmetry in the system of interest.

The symplectic approach to semiclassical dynamics is also natural in the following sense: Semiclassical dynamics is roughly speaking quantum dynamics in the regime close to classical dynamics; but then the basic equations of classical and quantum dynamics are both Hamiltonian systems with respect to appropriate symplectic structures (see a brief sketch of the symplectic approach to quantum dynamics in Section 2.1). So it is natural to formulate semiclassical dynamics retaining the underlying symplectic structure for quantum dynamics as well as to establish a link with the symplectic structure for classical dynamics.

1.3. Main Results and Outline. The main focus of the paper is to exploit the symplectic geometry behind the Gaussian wave packet dynamics and derive conserved quantities for the dynamics when the potential has symmetries. We are mainly interested in the case with rotational symmetry and the corresponding angular momentum in the semiclassical setting. Needless to say, identifying conserved quantities helps understand the qualitative and quantitative properties of the dynamics. Moreover, in this particular setting, it will be shown how the semiclassical dynamics inherits some of the features of the corresponding classical counterpart, as well as being compatible with the quantum picture; thereby building a bridge between the classical and quantum formalism.

We first formulate symmetry of the Gaussian wave packet dynamics under rotation and translation in Section 3 and then find and look into the properties of the corresponding conserved quantities (momentum maps) in Section 4. It turns out that, thanks to the symplectic formulation, the semiclassical angular momentum inherits the key properties of the classical angular momentum as well as possesses a natural link with the angular momentum operator in quantum mechanics. We also present a simple numerical experiment to illustrate the result. All this is first done based on the symplectic formulation of the Gaussian wave packet dynamics by Lubich [20] and Ohsawa and Leok [26]; this formulation is more amenable to symmetry analysis because the set of ODEs as a whole is formulated as a single Hamiltonian system.

In Section 5, we switch our focus to the other, more prevalent formulation of the Gaussian wave packet dynamics of Hagedorn [8, 9] (see also Heller [13]). The underlying symplectic structure for this formulation is not very prominent: It should be extracted from the so-called first variation equation of classical Hamiltonian system as shown in Section 5 along with Appendix B. Finally, in Section 6 we formulate translational and rotational symmetry for the Hagedorn wave packet dynamics; this, in conjunction with the momentum maps for the first variation equation, leads us to the corresponding conserved quantities for the Hagedorn wave packet dynamics.

2. Symplectic Semiclassical Dynamics

We first give a brief review of the symplectic formulation of the Gaussian wave packet dynamics following our previous work [26].

2.1. Symplectic/Hamiltonian Formulation of Quantum Mechanics. Let us first give a brief sketch of the symplectic structure for the symplectic/Hamiltonian formulation of the Schrödinger equation alluded above. We will exploit this structure in the next subsection to come up with the corresponding symplectic structure for semiclassical dynamics.

Let \mathcal{H} be a complex (often infinite-dimensional) Hilbert space equipped with a (right-linear) inner product $\langle \cdot, \cdot \rangle$. It is well-known (see, e.g., Marsden and Ratiu [21 Section 2.2]) that the two-form Ω on \mathcal{H} defined by

$$\Omega(\psi_1, \psi_2) = 2\hbar \text{Im} \langle \psi_1, \psi_2 \rangle$$
is a symplectic form, and hence \(\mathcal{H} \) is a symplectic vector space. Given a Hamiltonian operator \(\hat{H} \) on \(\mathcal{H} \), we may write the expectation value of the Hamiltonian \(\langle \hat{H} \rangle \) as

\[
\langle \hat{H} \rangle (\psi) := \langle \psi, \hat{H} \psi \rangle,
\]

which defines a real-valued function on \(\mathcal{H} \); the domain of the Hamiltonian operator \(\hat{H} \) is in general not the whole \(\mathcal{H} \) and so \(\langle \hat{H} \rangle \) is not defined on the whole \(\mathcal{H} \), but we do not delve into these issues here. Then the corresponding Hamiltonian flow

\[
X_{\langle \hat{H} \rangle} (\psi) = (\psi, \dot{\psi}) \in T\mathcal{H} \cong \mathcal{H} \times \mathcal{H}
\]
on \(\mathcal{H} \) defined by

\[
i X_{\langle \hat{H} \rangle} \Omega = d \langle \hat{H} \rangle
\]
gives the Schrödinger equation

\[
\dot{\psi} = -\frac{i}{\hbar} \hat{H} \psi.
\]

In this paper, \(\mathcal{H} = L^2(\mathbb{R}^d) \) and the Hamiltonian operator is

\[
\hat{H} = -\frac{\hbar^2}{2m} \Delta + V(x),
\]

and so \(\langle \hat{H} \rangle \) takes the familiar form

\[
i \hbar \frac{\partial}{\partial t} \psi(x,t) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \psi(x,t) + V(x) \psi(x,t).
\]

2.2. The Gaussian Wave Packet. We are interested in the dynamics of the Gaussian wave packet given by

\[
\chi(y; x) := \exp \left\{ \frac{i}{\hbar} \left[\frac{1}{2} (x - q)^T C (x - q) + p \cdot (x - q) + (\phi + i\delta) \right] \right\},
\]

where

\[
y := (q, p, A, B, \phi, \delta)
\]

parametrizes the Gaussian wave packet; more specifically the Gaussian wave packet \(\chi \) depends on the time through the set of parameters \(y \). Each of the parameters lives in the following spaces:

\((q, p) \in T^* \mathbb{R}^d, \phi \in S^1, \delta \in \mathbb{R} \), and \(C = A + iB \) is a \(d \times d \) complex symmetric matrix with a positive-definite imaginary part, i.e., the matrix \(C \) is an element in the Siegel upper half space \(\Sigma_d \) (see also the brief summary in Appendix A of this paper) defined by

\[
\Sigma_d := \left\{ C = A + iB \in \mathbb{C}^{d \times d} \mid A, B \in \text{Sym}_d(\mathbb{R}), B > 0 \right\},
\]

where \(\text{Sym}_d(\mathbb{R}) \) is the set of \(d \times d \) real symmetric matrices, and \(B > 0 \) means that \(B \) is positive-definite. It is easy to see that the (real) dimension of \(\Sigma_d \) is \(d(d + 1) \). Since the dynamics of the above Gaussian wave packet is governed by the set of parameters \(y \), we are essentially looking at the dynamics in the \((d + 1)(d + 2)\)-dimensional manifold

\[
\mathcal{M} := T^* \mathbb{R}^d \times \Sigma_d \times S^1 \times \mathbb{R} = \{(q, p, A, B, \phi, \delta)\}.
\]

The normalized version of \(\chi \) is given by

\[
\psi_0 := \frac{\chi}{\| \chi \|} = \left(\frac{\det B}{(\pi \hbar)^d} \right)^{1/4} \exp \left\{ \frac{i}{\hbar} \left[\frac{1}{2} (x - q)^T (A + iB)(x - q) + p \cdot (x - q) + \phi \right] \right\}.
\]

Ignoring the phase factor \(e^{i\phi/\hbar} \) in the above expression corresponds to taking the equivalence class (i.e., quantum state) \([\psi_0]_{S^1}\) in the projective Hilbert space \(\mathbb{P}(L^2(\mathbb{R}^d)) \) defined by the \(S^1 \) phase action.
apply the Marsden–Weinstein reduction to reduce the system (9) to a lower-dimensional one. The \(\phi \) depend on the phase, e.g., \(\langle \cdot \rangle \). See Ohsawa and Leok [26, Section 3.2] for their coordinate expressions. Then we may define a Hamiltonian system on \(M \) as an embedding of \(M \to H := L^2(\mathbb{R}^d) \) defined by

\[
\iota: M \hookrightarrow H; \quad \iota(y) = \chi(y, \cdot)
\]

One can then show that \(M \) is a symplectic manifold with symplectic form \(\Omega_M := \iota^* \Omega \) pulled back from \(H = L^2(\mathbb{R}^d) \). Similarly, define a Hamiltonian \(H: M \to \mathbb{R} \) by the pull-back \(H := \iota^*(\hat{H}) \), i.e.,

\[
H(y) = \langle \chi(y, \cdot), \hat{H}\chi(y, \cdot) \rangle.
\]

See Ohsawa and Leok [26 Section 3.2] for their coordinate expressions. Then we may define a Hamiltonian system on \(M \) by

\[
i_{X_H} \Omega_M = dH,
\]

which gives

\[
\dot{q} = \frac{p}{m}, \quad \dot{p} = -\langle \nabla V \rangle, \quad \dot{A} = -\frac{1}{m}(A^2 - B^2) - \langle \nabla^2 V \rangle, \quad \dot{B} = -\frac{1}{m}(AB + BA),
\]

\[
\dot{\phi} = \frac{p^2}{2m} - \langle V \rangle - \frac{h}{2m} \text{tr} B + \frac{h}{4} \text{tr} (B^{-1} \langle \nabla^2 V \rangle), \quad \dot{\delta} = \frac{h}{2m} \text{tr} A,
\]

where \(\nabla^2 V \) is the \(d \times d \) Hessian matrix, i.e.,

\[
(\nabla^2 V)_{ij} = \frac{\partial^2 V}{\partial x^i \partial x^j},
\]

and \(\langle \cdot \rangle \) stands for the expectation value with respect to the normalized Gaussian \(\psi_0 \) defined in (6), e.g.,

\[
\langle V \rangle(q, B) := \langle \psi_0, V \psi_0 \rangle = \sqrt{\frac{\det B}{(\pi h)^d}} \int_{\mathbb{R}^d} V(x) \exp \left[-\frac{1}{h} (x - q)^T B(x - q) \right] dx.
\]

However, the above system has an \(S^1 \) phase symmetry, i.e., the Hamiltonian \(H \) in (8) does not depend on the phase \(\phi \) and so is invariant under the phase shift in \(\phi \in S^1 \). Therefore, one may apply the Marsden–Weinstein reduction to reduce the system (9) to a lower-dimensional one. The \(S^1 \) phase symmetry gives rise to the momentum map

\[
J_M(y) = -h \| \chi(y, \cdot) \|^2 = -h \sqrt{\frac{(\pi h)^d}{\det B}} \exp \left(-\frac{2\delta}{h} \right),
\]

and the Marsden–Weinstein reduction [22] (see also Marsden et al. [24] Sections 1.1 and 1.2) yields the reduced space

\[
M_h := J_M^{-1}(-h)/S^1 = T^*\mathbb{R}^d \times \Sigma_d = \{(q, p, A, B)\},
\]

with the reduced symplectic form

\[
\Omega_h := -d\Theta_h = dq^i \wedge dp_i + \frac{h}{4} B^{-1}_{jm} B^{-1}_{nk} dA_{jk} \wedge dB_{mn}
\]

\[
= dq^i \wedge dp_i + \frac{h}{4} dB^{-1}_{jk} \wedge dA_{jk}.
\]
Remark 2.1. The second term in the above symplectic form is essentially the imaginary part of the Hermitian metric
\[g_{\Sigma_d} := \text{tr} \left(B^{-1} dC B^{-1} dC \right) = B_{ik}^{-1} B_{lj}^{-1} dC_{kl} \otimes dC_{ij} \] (12)
onumber
on the Siegel upper half space \(\Sigma_d \) \([28]\), i.e.,
\[\text{Im} g_{\Sigma_d} = -B_{ik}^{-1} B_{lj}^{-1} dA_{ij} \wedge dB_{kl}, \] (13)
and this gives a symplectic structure on the Siegel upper half space \(\Sigma_d \).

The corresponding Poisson bracket \(\{ \cdot, \cdot \}_h \) is given as follows: For any \(F, G \in C^\infty(\mathcal{M}_h) \),
\[\{ F, G \}_h = \Omega_h(X_F, X_G) = \frac{\partial F}{\partial q^i} \frac{\partial G}{\partial p^i} - \frac{\partial G}{\partial q^i} \frac{\partial F}{\partial p^i} + 4 \left(\frac{\partial F}{\partial \mathcal{B}^{-1}} \frac{\partial G}{\partial \mathcal{A}} - \frac{\partial G}{\partial \mathcal{B}^{-1}} \frac{\partial F}{\partial \mathcal{A}} \right). \] (14)
Then the Gaussian wave packet dynamics \([9]\) is reduced to the Hamiltonian system
\[i_{\mathcal{X}_{\mathcal{H}_h}} \Omega_h = dH_h \] (15)
with the reduced Hamiltonian
\[H_h = \frac{p^2}{2m} + \frac{\hbar}{4m} \text{tr} \left[\mathcal{B}^{-1} (\mathcal{A}^2 + \mathcal{B}^2) \right] + \langle V \rangle(q, \mathcal{B}). \] (16)
Equivalently, in terms of the Poisson bracket \([14]\), one has the system
\[\dot{w} = \{ w, H_h \}_h \]
where
\[w := (q, p, \mathcal{A}, \mathcal{B}) \in \mathcal{M}_h. \]
As a result, \([15]\) gives the reduced set of semiclassical equations:
\[\dot{q} = \frac{p}{m}, \quad \dot{p} = -\langle \nabla V \rangle, \quad \dot{\mathcal{A}} = -\frac{1}{m} (\mathcal{A}^2 - \mathcal{B}^2) - \langle \nabla^2 V \rangle, \quad \dot{\mathcal{B}} = -\frac{1}{m} (\mathcal{A}\mathcal{B} + \mathcal{B}\mathcal{A}). \] (17)
One obstacle in applying the above set of equations to practical problems is that the integral \([10]\) defining the potential term \(\langle V \rangle \) in the Hamiltonian \([16]\) cannot be evaluated explicitly unless the potential \(V(x) \) takes fairly simple forms such as polynomials. Therefore we may evaluate \(\langle V \rangle \) as an asymptotic expansion (see \([26]\) Section 7) to find
\[H_h = H^1_h + O(h^2) \quad \text{with} \quad H^1_h := \frac{p^2}{2m} + V(q) + \frac{\hbar}{4m} \text{tr} \left[\mathcal{B}^{-1} \left(\frac{A^2 + B^2}{m} + \nabla^2 V(q) \right) \right]. \] (18)
Notice that the Hamiltonian is split into the classical one and a semiclassical correction proportional to \(h \). Then the Hamiltonian system \(i_{\mathcal{X}_{\mathcal{H}_h}} \Omega_M = dH^1_h \) gives an asymptotic version of \([17]\):
\[\dot{q} = \frac{p}{m}, \quad \dot{p} = -\frac{\partial}{\partial q} \left(V(q) + \frac{\hbar}{4} \text{tr} \left(B^{-1} \nabla^2 V(q) \right) \right), \]
\[\dot{\mathcal{A}} = -\frac{1}{m} (\mathcal{A}^2 - \mathcal{B}^2) - \nabla^2 V(q), \quad \dot{\mathcal{B}} = -\frac{1}{m} (\mathcal{A}\mathcal{B} + \mathcal{B}\mathcal{A}). \] (19)
Writing \(\mathcal{C} = \mathcal{A} + i\mathcal{B} \), the last two equations above for \(\mathcal{A} \) and \(\mathcal{B} \) are combined into the following single Riccati-type equation:
\[\dot{\mathcal{C}} = -\frac{1}{m} \mathcal{C}^2 - \nabla^2 V(q). \] (20)
The main difference from the equations of Heller \([10]\) \([11]\) \([12]\) and Hagedorn \([8]\) \([9]\) is that the equation for the momentum \(p \) is not the classical one any more: It has a quantum correction term proportional to \(h \). In fact, due to this correction term, the above set of equation \([19]\) realizes semiclassical tunneling; see Ohsawa and Leok \([26]\) Section 9].
Remark 2.2. When \(V(x) \) is quadratic, \([9]\) and \([19]\) recover the equations of Heller \([10, 11, 12]\); hence \([9]\) and \([19]\) are generalizations of the formulation of Heller \([10, 11, 12]\) retaining its key property that it gives an exact solution to the Schrödinger equation \([2]\) when \(V(x) \) is quadratic. See also Ohsawa and Leok \([26, \text{Section 7.1}]\).

3. Symmetry in Semiclassical Dynamics

Suppose that the quantum mechanical system in question has a spatial symmetry, i.e., the potential \(V : \mathbb{R}^d \to \mathbb{R} \) is invariant under the action of the Lie group \(\text{SE}(d) \) on the configuration space \(\mathbb{R}^d \). Does the semiclassical Hamiltonian system \([17]\) or \([19]\) inherit the \(\text{SE}(d) \)-symmetry? If so, what kind of conservation laws follow from Noether’s theorem?

3.1. Basic Setup. Consider the natural action \(\varphi : \text{SE}(d) \times \mathbb{R}^d \to \mathbb{R}^d \) of the Euclidean group \(\text{SE}(d) := \text{SO}(d) \times \mathbb{R}^d \) on the configuration space \(\mathbb{R}^d \), i.e., for any \((R, q_0) \in \text{SE}(d)\),

\[
\varphi(R, q_0) : \mathbb{R}^d \to \mathbb{R}^d; \quad q \mapsto Rq + q_0.
\]

(21)

We assume that the potential \(V : \mathbb{R}^d \to \mathbb{R} \) is \(\text{SE}(d) \)-invariant, i.e.,

\[
V \circ \varphi(R, q_0) = V.
\]

Note however that the full \(\text{SE}(d) \)-symmetry is very restrictive and so it is more practical to consider potentials with only translational or rotational symmetry under the action of the subgroup \(\mathbb{R}^k \) for some \(k \in \{1, 2, \ldots d\} \) or \(\text{SO}(d) \), respectively. In what follows, we proceed with the above assumption \([25]\), and treat the cases with translational or rotational symmetry as special cases.

3.2. Symmetry in Gaussian Wave Packet Dynamics. In order to discuss whether the semiclassical Hamiltonian system \([15]\) inherits the \(\text{SE}(d) \)-symmetry, we first need to find the natural \(\text{SE}(d) \)-action on the symplectic manifold \(\mathcal{M}_h = T^* \mathbb{R}^d \times \Sigma_d \) induced by the action \(\varphi \) defined above in \([21]\). For the cotangent bundle component \(T^* \mathbb{R}^d \), one uses the cotangent lift \(\Phi : \text{SE}(d) \times T^* \mathbb{R}^d \to T^* \mathbb{R}^d \) defined by

\[
\Phi_{(R, q_0)} := T^* \varphi_{(R, q_0)}^{-1} : T^* \mathbb{R}^d \to T^* \mathbb{R}^d; \quad (q, p) \mapsto (Rq + q_0, Rp).
\]

(22)

What is the natural induced action on \(\Sigma_d \) induced by \(\varphi \)? We would like to define the action so that the Gaussian wave packet quantum state \([\psi_0]_{\Sigma_1}\) defined in \([7]\) is invariant under the action on all of its variables \((x, q, p, A, B)\). Notice first that the natural \(\text{SE}(d) \)-action on the variables \((x, q, p)\) is the following: For any \((R, q_0) \in \text{SE}(d)\),

\[
(x, q, p) \mapsto (Rx + q_0, Rq + q_0, Rp).
\]

In order for the state \([\psi_0]_{\Sigma_1}\) to be invariant under the action of \(\text{SE}(d) \), one may define an action of \(\text{SE}(d) \) on \(A + iB \) as follows:

\[
\gamma_{(R, q_0)} : \Sigma_d \to \Sigma_d; \quad A + iB \mapsto R(A + iB)R^T.
\]

(23)

As a result, we have a natural \(\text{SE}(d) \)-action on the symplectic manifold \(\mathcal{M}_h = T^* \mathbb{R}^d \times \Sigma_d \):

Proposition 3.1. Define an \(\text{SE}(d) \)-action \(\Gamma : \text{SE}(d) \times \mathcal{M}_h \to \mathcal{M}_h \) by

\[
\Gamma_{(R, q_0)} : \mathcal{M}_h \to \mathcal{M}_h; \quad (q, p, A, B) \mapsto (Rq + q_0, Rp, RAR^T, RBR^T)
\]

(24)

for any \((R, q_0) \in \text{SE}(d)\). Then:

(i) The Gaussian wave packet state \([\psi_0]_{\Sigma_1}\) in \([7]\) is invariant under the action

\[
\varphi_{(R, q_0)} \times \Gamma_{(R, q_0)} : \mathbb{R}^d \times \mathcal{M}_h \to \mathbb{R}^d \times \mathcal{M}_h;
\]

\[
(x, q, p, A, B) \mapsto (Rx + q_0, Rq + q_0, Rp, RAR^T, RBR^T).
\]

(ii) The action \(\Gamma \) is symplectic with respect to the symplectic form \(\Omega_h \) defined in \([11]\), i.e.,

\[
\Gamma_{(R, q_0)}^* \Omega_h = \Omega_h \text{ for any } (R, q_0) \in \text{SE}(d).
\]
Proof. Follows from simple calculations.

It is now easy to see that $\text{SE}(d)$-symmetry of the potential V implies that of the semiclassical Hamiltonian (16) or (18):

Lemma 3.2. If the potential $V \in C^2(\mathbb{R}^d)$ is invariant under the $\text{SE}(d)$-action φ in (21), i.e.,

$$V \circ \varphi_{(R,q_0)} = V,$$

then the Hamiltonians H_\hbar and H^1_\hbar, (16) and (18) respectively, are invariant under the $\text{SE}(d)$-action (24), i.e.,

$$H_\hbar \circ \Gamma_{(R,q_0)} = H_\hbar, \quad H^1_\hbar \circ \Gamma_{(R,q_0)} = H^1_\hbar.$$

Proof. The invariance of the terms that do not involve the potential V follows from simple calculations. For those terms with the potential V, we first have

$$\langle V(Rq + q_0, RB R^T) = \sqrt{\frac{\det B}{(\pi \hbar)^d}} \int_{\mathbb{R}^d} V(x) \exp \left[-\frac{1}{\hbar} (x - Rq - q_0)^T R B R^T (x - Rq - q_0) \right] dx$$

$$= \sqrt{\frac{\det B}{(\pi \hbar)^d}} \int_{\mathbb{R}^d} V(R\xi + q_0) \exp \left[-\frac{1}{\hbar} (\xi - q)^T B (\xi - q) \right] d\xi$$

$$= \langle V(q, B),$$

where we set $\xi = R^T(x - q_0)$. The invariance of the Laplacian $\nabla^2 V$ follows from the $\text{SE}(d)$-invariance of the Laplacian and the potential V itself:

$$(\nabla^2 V) \circ \varphi_{(R,q_0)} = \nabla^2 (V \circ \varphi_{(R,q_0)}) = \nabla^2 V.$$

4. Momentum Maps in Semiclassical Dynamics

Recall that Noether’s theorem (see, e.g., Marsden and Ratiu [21, Theorem 11.4.1 on p. 372]) states that if a Hamiltonian $H: P \to \mathbb{R}$ on a symplectic manifold (P, Ω) has a symmetry under a symplectic action of a Lie group G, then the Hamiltonian system $i_{\chi^*} \Omega = dH$ possesses a corresponding conserved quantity called *momentum map* $J: P \to g^*$, where g^* is the dual of the Lie algebra g of the Lie group G.

4.1. Noether’s Theorem and $\text{SE}(d)$ Momentum Map. What follows immediately from Proposition 3.1 and Lemma 3.2 via Noether’s theorem is the following:

Proposition 4.1. Suppose that the potential $V \in C^2(\mathbb{R}^d)$ is invariant under the $\text{SE}(d)$-action φ in (21), i.e., (25) holds for the potential V. Then the corresponding momentum map $J^{\text{se}(d)}: \mathcal{M}_\hbar \to \text{se}(d)^*$ is conserved along the solutions of the semiclassical system (17) or (19).

Proof. Follows from Noether’s theorem, because Proposition 3.1 guarantees that there exists a symplectic $\text{SE}(d)$-action on the symplectic manifold $\mathcal{M}_\hbar = T^\ast \mathbb{R}^d \times \Sigma_d$, and the assumption on the $\text{SE}(d)$-symmetry of the potential V along with Lemma 3.2 implies that the Hamiltonian H_\hbar and H^1_\hbar are both invariant under the action.

In the rest of the section, we calculate the expressions for the momentum map $J^{\text{se}(d)}: \mathcal{M}_\hbar \to \text{se}(d)$ for the actions of the two subgroups \mathbb{R}^d and $\text{SO}(d)$ separately; they constitute the components of the $\text{SE}(d)$ momentum map $J^{\text{se}(d)}$ and give linear and angular momentum in the semiclassical setting.
4.2. Translational Symmetry and Linear Momentum. Take the subgroup \mathbb{R}^d of $SE(d)$ and consider the following \mathbb{R}^d-action on \mathcal{M}_h:

$$\Gamma^d_{q_0} := \Gamma_{(I,q_0)} : \mathcal{M}_h \to \mathcal{M}_h; \quad w = (q,p,A,B) \mapsto (q + q_0,p,A,B)$$

The Lie algebra of \mathbb{R}^d is \mathbb{R}^d itself, and for an element ξ in the Lie algebra \mathbb{R}^d, the corresponding infinitesimal generator is

$$\xi^\mathbb{R}^d_{\mathcal{M}_h}(w) := \frac{d}{d\varepsilon} \Gamma^d_{\mathcal{M}_h}(w) \bigg|_{\varepsilon=0} = \xi \cdot \partial / \partial q.$$

The corresponding momentum map $J^\mathbb{R}^d : \mathcal{M}_h \to \mathbb{R}^d$ is defined by the condition

$$\langle J^\mathbb{R}^d(w),\xi \rangle = \langle \Theta_{\mathcal{M}_h}(w), \xi^\mathbb{R}^d_{\mathcal{M}_h}(w) \rangle = \langle p,\xi \rangle,$$

for any $\xi \in \mathbb{R}^d$ and hence we find

$$J^\mathbb{R}^d(w) = p.$$

Therefore, the conservation of momentum due to translational symmetry is retained in the semiclassical Hamiltonian system \cite{17} or \cite{19}.

4.3. Rotational Symmetry and Angular Momentum. For the subgroup $SO(d)$ of $SE(d)$, we have the action

$$\Gamma^d_{SO(d)} := \Gamma_{(R,0)} : \mathcal{M}_h \to \mathcal{M}_h; \quad (q,p,A,B) \mapsto (Rq,Rp,RAR^T,RBR^T).$$

For an element ξ in the Lie algebra $\mathfrak{so}(d)$, the corresponding infinitesimal generator is then given by

$$\xi^\mathfrak{so}(d)_{\mathcal{M}_h}(w) := \frac{d}{d\varepsilon} \Gamma^d_{\mathcal{M}_h}(w) \bigg|_{\varepsilon=0} = \xi q \cdot \partial / \partial q + [\xi,A]_{jk} \partial / \partial A_{jk} + [\xi,B]_{jk} \partial / \partial B_{jk}. $$

Let us equip $\mathfrak{so}(d)$ with the inner product $\langle \cdot,\cdot \rangle$ defined as

$$\langle \cdot,\cdot \rangle : \mathfrak{so}(d) \times \mathfrak{so}(d) \to \mathbb{R}; \quad (\xi,\eta) \mapsto \langle \xi,\eta \rangle := \frac{1}{2} \text{tr}(\xi^T \eta).$$

Note that the dual $\mathfrak{so}(d)^*$ of the Lie algebra $\mathfrak{so}(d)$ may be identified with $\mathfrak{so}(d)$ itself via the inner product.

We may then define $J^\mathfrak{so}(d)_{\mathcal{M}_h}(\xi) : \mathcal{M}_h \to \mathbb{R}$ for each $\xi \in \mathfrak{so}(d)$ as

$$J^\mathfrak{so}(d)_{\mathcal{M}_h}(\xi)(w) := \langle \Theta_{\mathcal{M}_h}(w), \xi^\mathfrak{so}(d)_{\mathcal{M}_h}(w) \rangle$$

$$= p^T \xi q - \frac{\hbar}{4} \text{tr}(B^{-1}[\xi,A])$$

$$= \langle q \circ p - \frac{\hbar}{2} [B^{-1},A],\xi \rangle,$$

where $q \circ p$ is the element in $\mathfrak{so}(d)$ defined by (see, e.g., Holm \cite{17} Remark 6.3.3 on p. 150)

$$(q \circ p)_{ij} := q^i p_j - q^j p_i.$$

We also used the following identity: For any $\xi,\eta,\zeta \in \mathfrak{so}(d)$,

$$\langle \xi,[\eta,\zeta] \rangle = \langle \eta,[\zeta,\xi] \rangle.$$

Then the corresponding momentum map $J^\mathfrak{so}(d)_{\mathcal{M}_h}(\xi) : \mathcal{M}_h \to \mathfrak{so}(d)^*$ is defined so that, for any $\xi \in \mathfrak{so}(d)$,

$$J^\mathfrak{so}(d)_{\mathcal{M}_h}(\xi)(w) = \langle J^\mathfrak{so}(d)_{\mathcal{M}_h}(\xi)(w),\xi \rangle,$$

which gives the following semiclassical angular momentum

$$J^\mathfrak{so}(d)_{\mathcal{M}_h}(\xi)(w) := q \circ p - \frac{\hbar}{2} [B^{-1},A].$$
In particular, if \(d = 3 \), we may identify \(\mathfrak{so}(3) \) with \(\mathbb{R}^3 \) by the “hat map” (see, e.g., Marsden and Ratiu [21, p. 289])
\[
(\hat{\cdot}): \mathbb{R}^3 \to \mathfrak{so}(3); \quad v = (v_1, v_2, v_3) \mapsto \hat{v} := \begin{bmatrix} 0 & -v_3 & v_2 \\ v_3 & 0 & -v_1 \\ -v_2 & v_1 & 0 \end{bmatrix}
\]
and write its inverse as \(\vee: \mathfrak{so}(3) \to \mathbb{R}^3 \); then \(\hat{\mathfrak{q}} \times \mathfrak{p} = \mathfrak{q} \circ \mathfrak{p} \) or equivalently \((\mathfrak{q} \circ \mathfrak{p})^\vee = \mathfrak{q} \times \mathfrak{p} \). As a result, we have
\[
\langle \mathbf{J}_h^{\mathfrak{so}(3)}(w), \xi \rangle = \left(\mathfrak{q} \times \mathfrak{p} - \frac{\hbar}{2}[\mathcal{B}^{-1}, \mathcal{A}]^\vee \right) \cdot \xi^\vee
\]
and thus may define the 3-dimensional semiclassical angular momentum vector \(\mathbf{J}_h^\vee : \mathcal{M}_h \to \mathbb{R}^3 \) as follows:
\[
\mathbf{J}_h^\vee(w) := (\mathbf{J}_h^{\mathfrak{so}(3)}(w))^\vee = \mathfrak{q} \times \mathfrak{p} - \frac{\hbar}{2}[\mathcal{B}^{-1}, \mathcal{A}]^\vee.
\]
So the semiclassical angular momentum vector \(\mathbf{J}_h^\vee \) is the classical angular momentum vector \(\mathfrak{q} \times \mathfrak{p} \) plus an additional quantum term proportional to \(\hbar \).

4.4. Properties of the Semiclassical Angular Momentum

The semiclassical angular momentum \(\mathbf{J}_h^{\mathfrak{so}(d)}: \mathcal{M}_h \to \mathfrak{so}(d)^* \) retains the main features of the classical angular momentum due to its geometrically natural construction. Particularly, we have the following:

Proposition 4.2. The semiclassical angular momentum \(\mathbf{J}_h^{\mathfrak{so}(d)}: \mathcal{M}_h \to \mathfrak{so}(d)^* \) defined in (27) is an equivariant momentum map under the \(\mathbf{SE}(d) \)-action, and satisfies the equality
\[
\left\{ \mathbf{J}_h^{\mathfrak{so}(d)}(\mathfrak{h}, \mathfrak{r}), \mathbf{J}_h^{\mathfrak{so}(d)}(\mathfrak{h}, \mathfrak{s}) \right\}_h = \mathbf{\delta}_{kr} \mathbf{J}_h^{\mathfrak{so}(d)}(\mathfrak{h}, \mathfrak{j}_s) - \mathbf{\delta}_{ks} \mathbf{J}_h^{\mathfrak{so}(d)}(\mathfrak{h}, \mathfrak{j}_r) + \mathbf{\delta}_{js} \mathbf{J}_h^{\mathfrak{so}(d)}(\mathfrak{h}, \mathfrak{k}_r) - \mathbf{\delta}_{jr} \mathbf{J}_h^{\mathfrak{so}(d)}(\mathfrak{h}, \mathfrak{k}_s),
\]
with respect to the semiclassical Poisson bracket [14], where \(j, k, r, s \in \{1, \ldots, d\} \). Particularly, when \(d = 3 \), the semiclassical angular momentum vector \(\mathbf{J}_h^\vee : \mathcal{M}_h \to \mathbb{R}^3 \) defined in (29) satisfies, for any \(i, j, k \in \{1, 2, 3\} \) such that \(\epsilon_{ijk} = 1 \),
\[
\left\{ (\mathbf{J}_h^\vee)_i, (\mathbf{J}_h^\vee)_j \right\}_h = (\mathbf{J}_h^\vee)_k.
\]
That is, the semiclassical angular momentum (27) along with the semiclassical Poisson bracket (14) is a natural extension of the classical angular momentum.

Proof. Let \(\text{Ad}^*_R^{-1}: \mathfrak{so}(d)^* \to \mathfrak{so}(d)^* \) be the coadjoint action of \(\mathbf{SO}(d) \) on \(\mathfrak{so}(d) \), i.e.,
\[
\text{Ad}^*_R^{-1} \mu = R \mu R^T.
\]
Then it is straightforward to check that the semiclassical angular momentum \(\mathbf{J}_h^{\mathfrak{so}(d)}: \mathcal{M}_h \to \mathfrak{so}(d)^* \) defined in (27) is an equivariant momentum map, i.e.,
\[
\mathbf{J}_h^{\mathfrak{so}(d)} \circ \Gamma^{\mathbf{SO}(d)}_R = \text{Ad}^*_R^{-1} \circ \mathbf{J}_h^{\mathfrak{so}(d)},
\]
or more concretely,
\[
\mathbf{J}_h^{\mathfrak{so}(d)}(Rq, Rp, RAR^T, RBR^T) = R \mathbf{J}_h^{\mathfrak{so}(d)}(q, p, A, B) R^T,
\]
just like the classical angular momentum \(\mathbf{J}_0^{\mathfrak{so}(d)}(q, p) := q \circ p:
\[
\mathbf{J}_0^{\mathfrak{so}(d)}(Rq, Rp) = R \mathbf{J}_0^{\mathfrak{so}(d)}(q, p) R^T.
\]
Furthermore, the equivariance (32) implies that (see, e.g., [1, Corollary 4.2.9 on p. 281]), for any \(\xi, \eta \in \mathfrak{so}(d) \),
\[
\left\{ \mathbf{J}_h^{\mathfrak{so}(d)}(\xi), \mathbf{J}_h^{\mathfrak{so}(d)}(\eta) \right\}_h = \mathbf{J}_h^{\mathfrak{so}(d)}([\xi, \eta]),
\]
where $\{\cdot, \cdot\}_h$ is the Poisson bracket defined in (14). Now let $E_{ij} := e_i e_j^T - e_j e_i^T$, where $e_i \in \mathbb{R}^d$ with $i \in \{1, \ldots, d\}$ is the unit vector whose i-th entry is 1. Clearly $E_{ij} \in \mathfrak{so}(d)$ for any $i, j \in \{1, \ldots, d\}$, and for any $A \in \mathfrak{so}(d)^* \cong \mathfrak{so}(d)$, we have $\langle A, E_{ij} \rangle = A_{ij}$, and so (26) gives

$$J_h^{\mathfrak{so}(d)}(E_{jk}) = J_{h,jk}^{\mathfrak{so}(d)}.$$

They also satisfy the identity

$$[E_{jk}, E_{rs}] = \delta_{kr} E_{js} - \delta_{ks} E_{jr} + \delta_{js} E_{kr} - \delta_{jr} E_{ks.$$

Therefore we have

$$\left\{J_h^{\mathfrak{so}(d)}(E_{jk}), J_h^{\mathfrak{so}(d)}(E_{rs})\right\}_h = J_h^{\mathfrak{so}(d)}([E_{jk}, E_{rs}]) = \delta_{kr} J_h^{\mathfrak{so}(d)}(E_{js}) - \delta_{ks} J_h^{\mathfrak{so}(d)}(E_{jr}) + \delta_{js} J_h^{\mathfrak{so}(d)}(E_{kr}) - \delta_{jr} J_h^{\mathfrak{so}(d)}(E_{ks}),$$

which gives (30).

In particular, for $d = 3$, let $i, j, k \in \{1, 2, 3\}$ such that $\epsilon_{ijk} = 1$, we have, without assuming summation on k,

$$\left\{J_{h,3k}^{\mathfrak{so}(3)}, J_{h,ki}^{\mathfrak{so}(3)}\right\}_h = J_{h,3i}^{\mathfrak{so}(3)} = -J_{h,ij}^{\mathfrak{so}(3)}.$$

Notice however $J_{h,3k}^{\mathfrak{so}(3)} = -(\vec{J}_h)_k$, etc., and so the components of \vec{J}_h satisfy the relationship (31) again just like the classical angular momentum \vec{J}_0 does with the classical Poisson bracket. \hfill \qed

The semiclassical angular momentum is compatible with the quantum picture as well: Let X and P be the position and momentum operators of the canonical quantization, i.e., X is the multiplication by the position vector x, whereas $P := -i\hbar \nabla$. Then, it is a tedious but straightforward calculation to show that

$$\langle X \times P \rangle = \langle \psi_0, (X \times P) \psi_0 \rangle = \vec{J}_h,$$

that is, the expectation value of the angular momentum operator $X \times P$ with respect to the normalized Gaussian wave packet ψ_0 coincides with the semiclassical angular momentum \vec{J}_h.

4.5. Example and Numerical Results. We would like to illustrate the conservation of the semiclassical angular momentum (27) in the following simple two-dimensional example with rotational symmetry.

Example 4.3 (Two-dimensional quartic potential). Let $m = 1$ and $\hbar = 0.005$, and consider the two-dimensional case, i.e., $d = 2$, with the following quartic potential with $\text{SO}(2)$-symmetry:

$$V(x_1, x_2) = V_R(|x|) \quad \text{where} \quad V_R(r) = \frac{r^2}{2} + \frac{r^4}{4}.$$

The initial condition is chosen as follows:

$$q(0) = (1, 0), \quad p(0) = (0, 1), \quad \mathcal{A}(0) + i\mathcal{B}(0) = \begin{bmatrix} 1 + i & 0.5(1 + i) \\ 0.5(1 + i) & 1 + i \end{bmatrix}.$$

We used the variational splitting method of Lubich [20, Chapter IV.4] (see also Faou and Lubich [5]) for the semiclassical equations (19); it is easy to see that the integrator preserves the symplectic structure Ω_h. The corresponding classical solution is obtained by the Störmer–Verlet method and the time step is $\Delta t = 0.01$ for both solutions.

Figure 1 shows the classical and semiclassical orbits for $0 \leq t \leq 50$ as well as the time evolution of the classical angular momentum $\vec{J}_h^{\mathfrak{so}(2)} = q_1 p_2 - p_1 q_2$ and the semiclassical one $\vec{J}_h^{\mathfrak{so}(2)}$ (the third component of (27) both along the solution of the semiclassical equations (19). One sees that

\footnote{The variational splitting integrator is a natural extension of the Störmer–Verlet method in the sense that it recovers the Störmer–Verlet method as $\hbar \to 0$ [5].}
the semiclassical angular momentum $J_h^{s\alpha(2)}$ is conserved, whereas the classical one $J_0^{s\alpha(2)}$ fluctuates significantly.

5. Geometry of the Hagedorn Wave Packet Dynamics

So far we have been looking into symmetry and conservation laws based on the symplectic formulation of the Gaussian wave packet dynamics from Section 2. In this section, we change our focus to the more prevalent formulation by Hagedorn [8, 9]. This formulation leads to the elegant derivation by Hagedorn [9] of raising and lowering operators for the Gaussian wave packet and also an orthonormal basis generated from them. Faou et al. [6] exploited this orthonormal basis to develop a numerical method to solve the semiclassical Schrödinger equation more efficiently than with the Fourier basis.

5.1. The Hagedorn Wave Packet Dynamics. Hagedorn [8] (see also Heller [13] and Lubich [20, Chapter V]) used a slightly different parametrization of the Gaussian wave packet (3). More precisely, the elements $C = A + iB$ in the Siegel upper half space Σ_d are parametrized as $C = PQ^{-1}$ with Q and P being $d \times d$ complex matrices that satisfy

$$Q^TP - P^TQ = 0 \quad \text{and} \quad Q^*P - P^*Q = 2iI_d.$$

So the Gaussian wave packet (3) can now be written as

$$\chi(y; x) = \exp \left\{ i \frac{1}{\hbar} \left[\frac{1}{2}(x - q)^T PQ^{-1}(x - q) + p \cdot (x - q) + (\phi + i\delta) \right] \right\},$$

where $y := (q, p, Q, P, \phi, \delta)$. Its norm is then

$$N(Q, \delta) := \|\chi(y; \cdot)\|^2 = (\pi\hbar)^{d/2} |\det Q| \exp \left(- \frac{2\delta}{\hbar} \right).$$
Hence the wave packet is normalized as follows:
\[
\frac{\chi(y; x)}{\|\chi(y; x)\|} = (\pi \hbar)^{-d/4} |\det Q|^{-1/2} \exp \left\{ \frac{i}{\hbar} \left[\frac{1}{2} (x - q)^T P Q^{-1} (x - q) + p \cdot (x - q) + \phi \right] \right\}
\]
\[= e^{iS/\hbar} \varphi_0(q, p, Q, P; x), \tag{33} \]
where we defined the new variable
\[S := \phi - \frac{\hbar}{2} \arg(\det Q)\]
and the “ground state” \(\varphi_0\) of the Hagedorn wave packets
\[
\varphi_0(q, p, Q, P; x) := (\pi \hbar)^{-d/4}(\det Q)^{-1/2} \exp \left\{ \frac{i}{\hbar} \left[\frac{1}{2} (x - q)^T P Q^{-1} (x - q) + p \cdot (x - q) \right] \right\},
\]
where an appropriate branch cut is taken for \((\det Q)^{1/2}\).

Hagedorn [9] showed that (33) is an exact solution of the Schrödinger equation if the potential \(V(x)\) is quadratic and also the parameters \((q, p, Q, P)\) satisfy
\[
\dot{q} = \frac{p}{m}, \quad \dot{p} = -\nabla V(q), \quad \dot{Q} = \frac{P}{m}, \quad \dot{P} = -2 \nabla V(q) Q, \tag{34}
\]
and the quantity \(S(t)\) is the classical action integral evaluated along the solution \((q(t), p(t))\), i.e.,
\[
S(t) = S(0) + \int_0^t \left(\frac{p(s)^2}{2m} - V(q(s)) \right) ds.
\]
As we shall see below, the dynamics (34) is defined on the manifold \(T^* \mathbb{R}^d \times \text{Sp}(2d, \mathbb{R})\); its dimension is \(2d^2 + 3d = d(2d + 3)\), which is odd if \(d\) is odd. Thus the system (34) is not Hamiltonian in the symplectic sense for an arbitrary dimension \(d\); compare this with the symplectic semiclassical system (17) or (19) which is Hamiltonian in the symplectic sense. Therefore we need to take a slightly different route from that of Section 3 in formulating symmetries in the Hagedorn wave packet dynamics.

5.2. The Hagedorn Parametrization and Symplectic Group \(\text{Sp}(2d, \mathbb{R})\). As pointed out by Lubich [20, Section V.1], the matrices \(Q\) and \(P\) used above to parametrize the Siegel upper half space \(\Sigma_d\) constitute a symplectic matrix of degree \(d\). Specifically, Lubich [20, Section V.1] shows that the symplectic group \(\text{Sp}(2d, \mathbb{R})\) is written as follows:
\[
\text{Sp}(2d, \mathbb{R}) = \left\{ \begin{bmatrix} \text{Re} Q & \text{Im} Q \\ \text{Re} P & \text{Im} P \end{bmatrix} \in M_{2d}(\mathbb{R}) \mid Q, P \in M_d(\mathbb{C}), Q^T P - P^T Q = 0, Q^* P - P^* Q = 2iI_d \right\}
\]
\[= \left\{ (Q, P) \in M_d(\mathbb{C}) \times M_d(\mathbb{C}) \mid Q^T P - P^T Q = 0, Q^* P - P^* Q = 2iI_d \right\},
\]
and also that Hagedorn’s parametrization of \(\Sigma_d\) is nothing but the explicit description of the map \(\pi_{U(d)}:\text{Sp}(2d, \mathbb{R}) \to \Sigma_d\) given by
\[
\pi_{U(d)}:\begin{bmatrix} \text{Re} Q & \text{Im} Q \\ \text{Re} P & \text{Im} P \end{bmatrix} \text{ or } (Q, P) \mapsto PQ^{-1}. \tag{35}
\]
As shown in Appendix A, this is the natural quotient map that comes from the fact that the Siegel upper half space \(\Sigma_d\) is identified as the homogeneous space \(\text{Sp}(2d, \mathbb{R})/U(d)\). This suggests that the Hagedorn wave packet dynamics is a lift of the \(\Sigma_d\)-component of the semiclassical dynamics (17) or (19) to the symplectic group \(\text{Sp}(2d, \mathbb{R})\):

Proposition 5.1. The \(\Sigma_d\)-component of the semiclassical equations (19), i.e.,
\[
\dot{c} = -\frac{1}{m} c^2 - \nabla^2 V(q) \tag{20}
\]
is the projection by the quotient map \(\pi_{U(d)} : \text{Sp}(2d, \mathbb{R}) \to \Sigma_d \) to the Siegel upper half space \(\Sigma_d \) of a curve

\[
Y(t) = \begin{bmatrix} \text{Re } Q(t) & \text{Im } Q(t) \\ \text{Re } P(t) & \text{Im } P(t) \end{bmatrix}
\] (36)

in the symplectic group \(\text{Sp}(2d, \mathbb{R}) \) defined by

\[
\dot{Y}(t) = \xi(t) Y(t)
\] (37a)

with \(\xi(t) \in \text{sp}(2d, \mathbb{R}) \) being

\[
\xi(t) := \begin{bmatrix} 0 & \frac{I_d}{m} \\ -\nabla^2 V(q(t)) & 0 \end{bmatrix},
\] (37b)

or equivalently,

\[
\dot{Q} = \frac{P}{m}, \quad \dot{P} = -\nabla^2 V(q) Q.
\]

Furthermore, the lift (37) is unique in the following sense: For the vector field on \(\text{Sp}(2d, \mathbb{R}) \) defined by (37) to project via \(\pi_{U(d)} \) to (20) on \(\Sigma_d \) for any \(C \in \Sigma_d \), \(\xi(t) \) has to take the form (37b).

Proof. Let \(C(t) \) be a curve in \(\Sigma_d \) defined by (20). As shown in Appendix A, the action of the symplectic group \(\text{Sp}(2d, \mathbb{R}) \) on \(\Sigma_d \) defined as

\[
\Psi : \text{Sp}(2d, \mathbb{R}) \times \Sigma_d \to \Sigma_d ; \quad \left(\begin{bmatrix} A & B \\ C & D \end{bmatrix}, Z \right) \mapsto (C + DZ)(A + BZ)^{-1}
\] (38)

is transitive. Therefore, there exists a corresponding curve \(X(t) \) in \(\text{Sp}(2d, \mathbb{R}) \) such that \(\Psi_{X(t)}(C(0)) = C(t) \) and \(X(0) = I_d \). Now, let \(Y_0 \in \text{Sp}(2d, \mathbb{R}) \) be an element such that \(\pi_{U(d)}(Y_0) = C(0) \), and define the curve \(Y(t) := X(t)Y_0 \). Then clearly we have \(\pi_{U(d)} \circ Y(t) = C(t) \), i.e., the following diagram commutes as in (52); see also (52) in Appendix A.

\[
\begin{array}{cccc}
\text{Sp}(2d, \mathbb{R}) & \xrightarrow{L_{X(t)}} & \text{Sp}(2d, \mathbb{R}) & \\
\downarrow \pi_{U(d)} & & \downarrow \pi_{U(d)} & \\
\Sigma_d & \xrightarrow{\Psi_{X(t)}} & \Sigma_d & \\
\end{array}
\]

\[
Y_0 \quad \xrightarrow{C(0)} \quad X(t)Y_0 \quad \xrightarrow{C(t)}
\]

Let us then write

\[
\xi(t) := \dot{Y}(t) Y(t)^{-1} = \dot{X}(t) X(t)^{-1},
\]

which is in the Lie algebra \(\text{sp}(2d, \mathbb{R}) \); thus it takes the form

\[
\xi(t) = \begin{bmatrix} \xi_{11}(t) & \xi_{12}(t) \\ \xi_{21}(t) & -\xi_{11}(t)^T \end{bmatrix},
\]

where \(\xi_{ij} \) with \(i, j \in \{1, 2\} \) are all \(d \times d \) real matrices and \(\xi_{12} \) and \(\xi_{21} \) are both symmetric; then it is easy to see that \(\dot{Y} = \xi Y \) gives

\[
\dot{Q} = \xi_{11} Q + \xi_{12} P, \quad \dot{P} = \xi_{21} Q - \xi_{11}^T P.
\]

Therefore, from (35) and the above expressions, we have

\[
T_Y \pi_{U(d)}(Y) = \dot{P} Q^{-1} - PQ^{-1} \dot{Q} Q^{-1}
= \xi_{21} - \xi_{11}^T C - C \xi_{11} - C \xi_{12} C.
\]

where we also used the relation \(\pi_{U(d)} \circ Y(t) = C(t) \), i.e., \(PQ^{-1} = C \). However, taking the time derivative of \(\pi_{U(d)} \circ Y(t) = C(t) \), we have \(T \pi_{U(d)}(Y) = \dot{C} \), which implies, using the above expression and (20),

\[
\xi_{21} - \xi_{11}^T C - C \xi_{11} - C \xi_{12} C = \frac{1}{m} C^2 - V(q).
\] (39)
Now, let us find the entries for $\xi(t)$ such that the above equality holds for any $C \in \Sigma_d$. Setting $C = iI_d$ in the above equality (39) gives

$$\xi_{12} + \xi_{21} = \frac{1}{m} I_d - \nabla^2 V(q), \quad \xi_{11} + \xi_{11}^T = 0,$$

whereas setting $C = 2iI_d$ in (39) gives

$$4\xi_{12} + \xi_{21} = \frac{4}{m} I_d - \nabla^2 V(q), \quad \xi_{11} + \xi_{11}^T = 0,$$

Therefore, we have

$$\xi_{12} = \frac{1}{m} I_d, \quad \xi_{21} = -\nabla^2 V, \quad \xi_{11}^T = -\xi_{11}.$$

So (39) now reduces to

$$\xi_{11} C - C \xi_{11} = 0.$$

Writing $C = A + iB$ and taking real part:

$$\xi_{11} A - A \xi_{11} = 0,$$

where A is an arbitrary $d \times d$ symmetric matrix. Setting $A = e_j e_j^T$, with $e_j \in \mathbb{R}^d$ being the unit vector whose j-th entry is 1, shows that the j-th column of ξ_{11} is 0. Since $j \in \{1, \ldots, n\}$ is taken arbitrary, we have $\xi_{11} = 0$. It is clear that (39) holds for any $C \in \Sigma_d$ with the above choice of elements in ξ. □

Remark 5.2. One may recognize (20) as an example of the matrix Riccati equation. In fact, there is a similar geometric structure behind the matrix Riccati equation: As shown in Hermann and Martin [14] and Doolin and Martin [4], one considers the action of a general linear group on a Grassmannian using the linear fractional transformation of the form (38) (see also (49) in Appendix A), and then performs virtually the same calculations as above to derive the matrix Riccati equation.

The above lift may also be regarded as an example of the Hirota bilinearization of the matrix Riccati equation. See, e.g., Hirota [15, 16]; the method is applied to the scalar Riccati equation in the references, but the same idea works for the matrix Riccati equation.

5.3. First Variation Equation and Evolution in Symplectic Group $Sp(2d, \mathbb{R})$. Here we give a brief overview of the well-known connection (see, e.g., Littlejohn [18, Section 2]) between the equation (34) of Hagedorn and the so-called first variation equation of the classical Hamiltonian system

$$\dot{q} = \frac{\partial H}{\partial p}, \quad \dot{p} = -\frac{\partial H}{\partial q},$$

(40)
on $T^* \mathbb{R}^d$. Consider the linearization along a solution $z(t) := (q(t), p(t))$ of the above Hamiltonian system:

$$\frac{d}{dt} \begin{bmatrix} \delta q(t) \\ \delta p(t) \end{bmatrix} = \begin{bmatrix} D_1 D_2 H(z(t)) & D_2 D_2 H(z(t)) \\ -D_1 D_1 H(z(t)) & -D_2 D_1 H(z(t)) \end{bmatrix} \begin{bmatrix} \delta q(t) \\ \delta p(t) \end{bmatrix},$$

where D_1 and D_2 stand for the derivatives with respect to q and p, respectively, of functions of (q, p). We may rewrite it in a more succinct form

$$\frac{d}{dt} \delta z(t) = \mathbb{J} \nabla^2 H(z(t)) \delta z(t) = \xi(t) \delta z(t),$$

(41)

where we set

$$\delta z(t) := \begin{bmatrix} \delta q(t) \\ \delta p(t) \end{bmatrix} \in T_{z(t)} (T^* \mathbb{R}^d) \cong \mathbb{R}^{2d}$$
and \(\mathbb{J} := \begin{bmatrix} 0 & I_d \\ -I_d & 0 \end{bmatrix} \), and \(\xi(t) \in \mathfrak{sp}(2d, \mathbb{R}) \) is defined as

\[
\xi(t) := \mathbb{J} \nabla^2 H(z(t)) = \begin{bmatrix} D_1 D_2 H(z(t)) & D_2 D_2 H(z(t)) \\ -D_1 D_1 H(z(t)) & -D_2 D_1 H(z(t)) \end{bmatrix}.
\]

The system consisting of (40) and (41), i.e.,

\[
\dot{z} = \mathbb{J} \nabla H, \quad \dot{\delta z} = \xi \delta z,
\]

is called the first variation equation of (40); as shown in Appendix B, it is also a Hamiltonian system

\[
i_X \Omega_{T \mathbb{R}^d} = d \tilde{H}
\]

on the tangent bundle

\[
T(T^* \mathbb{R}^d) \cong T^* \mathbb{R}^d \times \mathbb{R}^{2d} \cong \mathbb{R}^{4d} = \{(z, \delta z)\} = \{(q, p, \delta q, \delta p)\}
\]

with the symplectic structure

\[
\Omega_{T \mathbb{R}^d} = d\delta q \wedge dp + dq \wedge d\delta p
\]

and the Hamiltonian \(\tilde{H} : T(T^* \mathbb{R}^d) \to \mathbb{R} \) defined by

\[
\tilde{H}(z, \delta z) := dH(z) \cdot \delta z = \frac{\partial H}{\partial q} \cdot \delta q + \frac{\partial H}{\partial p} \cdot \delta p.
\] (43)

In particular, with the Hamiltonian of the form

\[
H = \frac{p^2}{2m} + V(q),
\] (44)

we have

\[
\xi(t) = \begin{bmatrix} 0 & I_d/m \\ -\nabla^2 V(q(t)) & 0 \end{bmatrix} \in \mathfrak{sp}(2d, \mathbb{R})
\]
as in (37b). Therefore, defining a curve \(Y(t) \) in \(\mathfrak{Sp}(2d, \mathbb{R}) \) by (37), we have the set of equations

\[
\dot{q} = \frac{p}{m}, \quad \dot{p} = -\nabla V(q), \quad \dot{Y}(t) = \xi(t) Y(t).
\] (45)

This is nothing but the equations (34) of Hagedorn by writing the components of \(Y(t) \) as in (36); as mentioned earlier, Eq. (45) generalizes the first variation equation (42) in the sense that (45) effectively keeps track of solutions of the first variation equation for all initial conditions \(\delta z(0) \in T_z(0)(T^* \mathbb{R}) \cong \mathbb{R}^{2d} \) at the same time, as opposed to following a single trajectory \(\delta z(t) \) for a single particular initial condition \(\delta z(0) \): In fact, for any \(\delta z_0 \in \mathbb{R}^{2d} \),

\[
\delta z(t) = Y(t) Y(0)^{-1} \delta z(0)
\] (46)

satisfies the linearized equation (41).

6. Symmetry and Conservation Laws in the Hagedorn Wave Packet Dynamics

Suppose that the classical Hamiltonian system (40) has a symmetry. What is the symmetry inherited by the semiclassical equations (34) of Hagedorn? Now that the first variation equation is linked with the semiclassical equation of Hagedorn, we exploit the Hamiltonian structure of the first variation equation to answer this question.
6.1. Symmetry in the Hagedorn Wave Packet Dynamics. Let us first find the relevant SE(d)-actions in this setting. Suppose that the potential \(V \) is invariant under the SE(d)-action (22). Then the classical Hamiltonian (44) is clearly invariant under the SE(d)-action and, by Lemma B.3, so is the Hamiltonian \(\tilde{H} \) in (43) for the first variation equation under the tangent SE(d)-action

\[
T\Phi : SE(d) \times T(T^*\mathbb{R}^d) \to T(T^*\mathbb{R}^d)
\]

defined by

\[
T\Phi_{(R,q_0)} : T(T^*\mathbb{R}^d) \to T(T^*\mathbb{R}^d); \quad (q,p,\delta q,\delta p) \mapsto (Rq + q_0, Rp, R\delta q, R\delta p).
\]

However, since the system (45) evolves in the manifold \(T^*\mathbb{R}^d \times \text{Sp}(2d,\mathbb{R}) \), we would also like to find the corresponding SE(d)-action on the manifold \(T^*\mathbb{R}^d \times \text{Sp}(2d,\mathbb{R}) \). The action on the \(T^*\mathbb{R}^d \) is the cotangent lift in (22), and so we need to fill in the \(\text{Sp}(2d,\mathbb{R}) \) portion. To that end, first recall that we obtained Hagedorn’s equations (34) by defining \(Y(t) \in \text{Sp}(2d,\mathbb{R}) \) as

\[
Y(t) := \begin{bmatrix} \text{Re} \ Q(t) & \text{Im} \ Q(t) \\ \text{Re} \ P(t) & \text{Im} \ P(t) \end{bmatrix}
\]

and setting \(\delta z(t) = Y(t) \delta z_0 \) as in (46) with an arbitrary \(\delta z_0 \in T_z(0)(T^*\mathbb{R}) \cong \mathbb{R}^{2d} \). Since \(\delta z \) is transformed under the SE(d)-action (47) as

\[
\delta z = \begin{bmatrix} \delta q \\ \delta p \end{bmatrix} \mapsto \begin{bmatrix} R \delta q \\ R \delta p \end{bmatrix} = \tilde{R} \delta z \quad \text{with} \quad \tilde{R} := \begin{bmatrix} R & 0 \\ 0 & R \end{bmatrix} \in \text{Sp}(2d,\mathbb{R}),
\]

we have the actions \(\delta z(t) \mapsto \tilde{R} \delta z(t) \) and \(\delta z_0 \mapsto \tilde{R} \delta z_0 \), hence the corresponding action \(Y(t) \mapsto R \cdot Y(t) \) should satisfy

\[
\tilde{R} \delta z(t) = (R \cdot Y(t)) \tilde{R} \delta z_0,
\]

which leads us to the conjugation \(R \cdot Y(t) = \tilde{R}Y(t)\tilde{R}^T \), i.e.,

\[
Y = \begin{bmatrix} \text{Re} \ Q & \text{Im} \ Q \\ \text{Re} \ P & \text{Im} \ P \end{bmatrix} \mapsto \begin{bmatrix} R & 0 \\ 0 & R \end{bmatrix} \begin{bmatrix} \text{Re} \ Q & \text{Im} \ Q \\ \text{Re} \ P & \text{Im} \ P \end{bmatrix} \begin{bmatrix} R^T & 0 \\ 0 & R^T \end{bmatrix} = \begin{bmatrix} R(\text{Re} \ Q)R^T & R(\text{Im} \ Q)R^T \\ R(\text{Re} \ P)R^T & R(\text{Im} \ P)R^T \end{bmatrix}.
\]

Remark 6.1. The above transformation gives rise to the SE(d)-action \(\hat{\gamma} : SE(d) \times \text{Sp}(2d,\mathbb{R}) \to \text{Sp}(2d,\mathbb{R}) \) defined by

\[
\hat{\gamma}_{(R,q_0)} : \text{Sp}(2d,\mathbb{R}) \to \text{Sp}(2d,\mathbb{R}); \quad \begin{bmatrix} A & B \\ C & D \end{bmatrix} \mapsto \begin{bmatrix} RAR^T & RBR^T \\ RCR^T & RDR^T \end{bmatrix}.
\]

This action is compatible with the action on \(\Sigma_d \) defined in (23), i.e., the diagram

\[
\begin{array}{ccc}
\text{Sp}(2d,\mathbb{R}) & \xrightarrow{\hat{\gamma}_{(R,q_0)}} & \text{Sp}(2d,\mathbb{R}) \\
\pi_{U(d)} & & \pi_{U(d)} \\
\Sigma_d & \xrightarrow{\gamma_{(R,q_0)}} & \Sigma_d
\end{array}
\]

commutes for any \((R,q_0) \in SE(d) \), where \(\pi_{U(d)} : \text{Sp}(2d,\mathbb{R}) \to \Sigma_d \) is the quotient map defined in (51) of Appendix A.

The cotangent lift (22) combined with the above action induces an SE(d)-action on \(T^*\mathbb{R}^d \times \text{Sp}(2d,\mathbb{R}) \): For any \((R,q_0) \in SE(d) \), we define

\[
\Upsilon_{(R,q_0)} : T^*\mathbb{R}^d \times \text{Sp}(2d,\mathbb{R}) \to T^*\mathbb{R}^d \times \text{Sp}(2d,\mathbb{R}); \quad (z,Y) \mapsto (\Phi_{(R,q_0)}(z), \hat{\gamma}_{(R,q_0)}(Y)).
\]
6.2. Conservation Laws in the Hagedorn Wave Packet Dynamics. We now exploit the above connection between the equation (45) (or (34)) of Hagedorn and the first variation equation (42) to formulate a Noether-type theorem for the equation (45) of Hagedorn in the presence of symmetry. The basic idea is to construct conserved quantities from the momentum map of the first variation equation (see Section B.3 in Appendix B).

Proposition 6.2. Suppose that the classical Hamiltonian system (40) on $T^*\mathbb{R}^d$ has a symmetry under the action of a Lie group G, i.e., let $\phi: G \times \mathbb{R}^d \to \mathbb{R}^d$ be the action of G on the configuration space \mathbb{R}^d, and suppose that the Hamiltonian $H: T^*\mathbb{R}^d \to \mathbb{R}$ has a G-symmetry under the action of the cotangent lift $\Phi := T^*\phi : G \times T^*\mathbb{R}^d \to T^*\mathbb{R}^d$, i.e., $H \circ \Phi_g = H$. Let $J : T^*\mathbb{R}^d \to \mathfrak{g}^*$ be the corresponding momentum map. Then the quantity

$$\frac{\partial J}{\partial z_j}(z(t)) Y_{jk}(t)$$

for $k \in \{1, \ldots, d\}$ is conserved along the solutions $(z(t), Y(t)) \in T^*\mathbb{R}^d \times \text{Sp}(2d, \mathbb{R})$ of the equation (45) of Hagedorn.

Proof. Let $(z(t), Y(t)) = (q(t), p(t), Y(t)) \in T^*\mathbb{R}^d \times \text{Sp}(2d, \mathbb{R})$ be a solution of (45). Setting $\delta z(t) = Y(t) \delta z_0$ with an arbitrary $\delta z_0 \in T_z(0)(T^*\mathbb{R}^d) \cong \mathbb{R}^d$, the curve $(z(t), \delta z(t))$ in $T(T^*\mathbb{R}^d)$ is a solution of the first variation equation (42) with the initial condition $(z(0), Y(0) \delta z_0)$. (Note that $Y(0)$ is not necessarily the identity; see (46).) Now, the assumption on G-symmetry implies that this is a special case of the setting discussed in Appendix B with $P = T^*\mathbb{R}^d$. Hence by Proposition B.4, the momentum map $\tilde{J} : T(T^*\mathbb{R}^d) \to \mathfrak{g}^*$ defined by

$$\tilde{J}(z, \delta z) := dJ(z) \cdot \delta z$$

is conserved along the solutions of the first variation equation (42). Therefore,

$$\tilde{J}(z(t), Y(t) \delta z_0) = dJ(z(t)) \cdot Y(t) \delta z_0$$

is conserved along the solution $(z(t), Y(t))$. However, since δz_0 is chosen arbitrarily, the quantity

$$\frac{\partial J}{\partial z_j}(z(t)) Y_{jk}(t)$$

for $k \in \{1, \ldots, d\}$ is conserved along the solution $(z(t), Y(t))$ of the equation (45) of Hagedorn. \[\Box\]

Example 6.3 (Translational symmetry). The momentum map $J : T^*\mathbb{R}^d \to \mathbb{R}^d$ is given by $J = p$. Then we have the $d \times 2d$ matrix

$$\frac{\partial J}{\partial z} = \begin{bmatrix} 0 & I_d \end{bmatrix}. $$

Therefore the conserved quantity (48) is given by

$$\frac{\partial J}{\partial z} Y = \begin{bmatrix} \text{Re} P & \text{Im} P \end{bmatrix}. $$

So the matrix P is conserved along the solutions of the semiclassical equations (34) (or (45)) of Hagedorn.

Example 6.4 ($\text{SO}(3)$-symmetry). An interesting special case is $d = 3$ with $G = \text{SO}(3)$, i.e., the classical Hamiltonian system (40) in $T^*\mathbb{R}^3$ with a rotational symmetry. The momentum map $J : T^*\mathbb{R}^3 \to \mathfrak{so}(3)^* \cong \mathbb{R}^3$ is given by $J = q \times p$. Then we have the 3×6 matrix

$$\frac{\partial J}{\partial z} = \begin{bmatrix} -\hat{p} & \hat{q} \end{bmatrix}, $$

\[2\]We slightly abused the notation here and Appendix B and denote by δz an element in TP as well as a tangent vector in $T_z P$; what we write $(z, \delta z)$ here is denoted by δz in Appendix B.
where we used the hat map \((\hat{\cdot}): \mathbb{R}^3 \to \mathfrak{so}(3)\) defined in (28). Therefore the conserved quantity (48) is given by
\[
\frac{\partial J}{\partial z} = [\hat{q} \Re P - \hat{p} \Re Q , \hat{q} \Im P - \hat{p} \Im Q]
\]
that is, the complex \(3 \times 3\) matrix-valued quantity \(J: T^* \mathbb{R}^d \times \text{Sp}(2d, \mathbb{R}) \to M_3(\mathbb{C})\) defined by
\[
J(z, Y) := \hat{q} P - \hat{p} Q
\]
is conserved along the solutions of the semiclassical equations (34) (or (45)) of Hagedorn. This quantity is also equivariant under the natural SO(3)-actions, i.e., for any \(R \in \text{SO}(3)\),
\[
J \circ T_{(R,0)}(z, Y) = R \, J(z, Y) R^T.
\]

Acknowledgments

This work was inspired by the discussions with Luis García-Naranjo and Joris Vankerschaver at the 2013 SIAM Annual Meeting in San Diego, and was partially supported by the AMS–Simons Travel Grant.

Appendix A. The Siegel Upper Half Space \(\Sigma_d\)

A.1. Geometry of the Siegel Upper Half Space \(\Sigma_d\). Recall that the \(d \times d\) complex matrix \(C = A + iB\) in the Gaussian wave packet (3) belongs to the so-called Siegel upper half space \(\Sigma_d\) defined as (see Eq. (5))
\[
\Sigma_d := \left\{ A + iB \in \mathbb{C}^{d \times d} \mid A, B \in \text{Sym}_d(\mathbb{R}), B > 0 \right\}.
\]
The key to understanding the geometry of the Hagedorn wave packet dynamics in Section 5.1 is the fact that the Siegel upper half space \(\Sigma_d\) is a homogeneous space. Specifically, we can show that (see Siegel [28] and also Folland [7, Section 4.5] and McDuff and Salamon [25, Exercise 2.28 on p. 48])
\[
\Sigma_d \cong \text{Sp}(2d, \mathbb{R})/U(d),
\]
where \(\text{Sp}(2d, \mathbb{R})\) is the symplectic group of degree 2\(d\) over real numbers and \(U(d)\) is the unitary group of degree \(d\). In fact, consider the (left) action of \(\text{Sp}(2d, \mathbb{R})\) on \(\Sigma_d\) defined by
\[
\Psi: \text{Sp}(2d, \mathbb{R}) \times \Sigma_d \to \Sigma_d; \quad \left(\begin{bmatrix} A & B \\ C & D \end{bmatrix} , \mathcal{Z} \right) \mapsto (C + D\mathcal{Z})(A + B\mathcal{Z})^{-1}.
\]
This action is transitive: By choosing
\[
X := \begin{bmatrix} A & B \\ C & D \end{bmatrix} [I_d , 0] = [B^{-1/2} , 0] \begin{bmatrix} B^{-1/2} & 0 \\ 0 & B^{1/2} \end{bmatrix} = \begin{bmatrix} B^{-1/2} & 0 \\ AB^{-1/2} & B^{1/2} \end{bmatrix},
\]
which is easily shown to be symplectic, we have
\[
\Psi_X(iI_d) = A + iB.
\]
Now, the isotropy group of the element \(iI_d \in \Sigma_d\) is given by
\[
\text{Sp}(2d, \mathbb{R})_{iI_d} = \left\{ \begin{bmatrix} U & V \\ -V & U \end{bmatrix} \in M_{2d}(\mathbb{R}) \mid U^T U + V^T V = I_d , U^T V = V^T U \right\} = \text{Sp}(2d, \mathbb{R}) \cap \text{O}(2d),
\]
where \(\text{O}(2d)\) is the orthogonal group of degree 2\(d\); however \(\text{Sp}(2d, \mathbb{R}) \cap \text{O}(2d)\) is identified with \(U(d)\) as follows:
\[
\text{Sp}(2d, \mathbb{R}) \cap \text{O}(2d) \to U(d); \quad \begin{bmatrix} U & V \\ -V & U \end{bmatrix} \mapsto U + iV.
\]
Hence \(\text{Sp}(2d, \mathbb{R})_{iI_d} \cong U(d)\) and thus \(\Sigma_d \cong \text{Sp}(2d, \mathbb{R})/U(d)\). Indeed, we may identify \(\text{Sp}(2d, \mathbb{R})/U(d)\) with \(\Sigma_d\) by the following map:
\[
\text{Sp}(2d, \mathbb{R})/U(d) \to \Sigma_d; \quad [Y]_{U(d)} \mapsto \Psi_Y(iI_d),
\]
where \([\cdot]_{U(d)}\) stands for a left coset of \(U(d)\) in \(Sp(2d, \mathbb{R})\); then this gives rise to the explicit construction of the quotient map
\[
\pi_{U(d)} : Sp(2d, \mathbb{R}) \rightarrow Sp(2d, \mathbb{R})/U(d) \cong \Sigma_d; \quad Y \mapsto \Psi_Y(iI_d),
\] (51)
or more specifically,
\[
\pi_{U(d)} \begin{bmatrix} A & B \\ C & D \end{bmatrix} = (C + iD)(A + iB)^{-1}.
\]
Therefore, we have the following diagram, which simply shows that the action \(\Psi\) is indeed a left action: Note that the map \(L_X : Sp(2d, \mathbb{R}) \rightarrow Sp(2d, \mathbb{R})\) is the standard matrix multiplication from the left by \(X\).

As shown by Siegel [28], the map \(\Psi_X : \Sigma_d \rightarrow \Sigma_d\) is an isometry of the Hermitian metric [12] for any \(X \in Sp(2d, \mathbb{R})\) and therefore is symplectic with respect to the symplectic form [13]. This suggests that the \(\Sigma_d\)-component of the symplectic dynamics defined by the reduced semiclassical equations [17] may be lifted to the symplectic group \(Sp(2d, \mathbb{R})\); see Proposition 5.1

A.2. The Iwasawa Decomposition and the Siegel Upper Half Space. We may make the above geometric structure more explicit by making use of the so-called Iwasawa decomposition of symplectic matrices (see, e.g., de Gosson [3, Section 2.2.2]). The Iwasawa decomposition renders any symplectic matrix \(X_1 := \begin{bmatrix} A & B \\ C & D \end{bmatrix} \in Sp(2d, \mathbb{R})\) into the following factorization of symplectic matrices:
\[
X_1 = \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} I_d & 0 \\ P & I_d \end{bmatrix} \begin{bmatrix} L & 0 \\ 0 & L^{-1} \end{bmatrix} \begin{bmatrix} U & V \\ -V & U \end{bmatrix} = X_2 U,
\]
where \(P\) and \(L\) are both symmetric \(d \times d\) matrices, and we defined \(X_2 := \begin{bmatrix} L & 0 \\ PL & L^{-1} \end{bmatrix}\) and \(U := U + iV\).

It is easy to find the relationships between the entries in \(X_1\) and \(X_2\):
\[
P = (CAT + DB^T)(AA^T + BB^T)^{-1},
\]
\[
L = (AA^T + BB^T)^{1/2},
\]
\[
U + iV = (AA^T + BB^T)^{-1/2}(A + iB).
\]

Then we see that \(U = U + iV \in U(d)\), and therefore the matrices \(X_1\) and \(X_2\) define the same coset in \(Sp(2d, \mathbb{R})/U(d)\), i.e., \([X_1]_{U(d)} = [X_2]_{U(d)}\) because \(\Psi_{X_1}(iI_d) = \Psi_{X_2}(iI_d) = \Psi_{X_2}(iI_d)\).

Now, take any element \(A + iB\) in the Siegel upper half space \(\Sigma_d\); we saw in (50) that, with the choice \(P = A\) and \(L = B^{-1/2}\), we have \(\Psi_{X_2}(iI_d) = A + iB\) and thus \(\Psi_{X_2}(iI_d) = A + iB\) as well. This gives those conditions to be satisfied by the entries of \(X_1 \in Sp(2d, \mathbb{R})\) so that \(\Psi_{X_1}(iI_d) = A + iB\). To summarize:

Proposition A.1. Let \(X := \begin{bmatrix} A & B \\ C & D \end{bmatrix}\) be an element in the symplectic group \(Sp(2d, \mathbb{R})\) and \(A + iB\) be an element in the Siegel upper half space \(\Sigma_d\). Then \(\Psi_X(iI_d) = A + iB\) if and only if the entries of \(X\) satisfy the following identities:
\[
(CAT + DB^T)(AA^T + BB^T)^{-1} = A, \quad AA^T + BB^T = B^{-1}.
\]
APPENDIX B. GEOMETRY OF THE FIRST VARIATION EQUATION

This section gives a brief summary of the geometry of the first variation equation. Our main references are Tulczyjew [31], Sniatycki and Tulczyjew [30], Abraham and Marsden [1], and Marsden et al. [23].

B.1. Symplectic Structure for the First Variation Equation. Let P be a symplectic manifold with symplectic form Ω_P and $H: P \to \mathbb{R}$ be a Hamiltonian, and define the Hamiltonian system

$$i_{X_H} \Omega_P = dH,$$

(53)
on P, where X_H is the corresponding Hamiltonian vector field on P. Let $\phi_t: P \to P$ be the flow defined by the vector field X_H, i.e., for any $z \in P$,

$$\frac{d}{dt} \phi_t(z) \bigg|_{t=0} = X_H(z).$$

Let $\tau_P: TP \to P$ be the tangent bundle of P. Then TP is an example of a *special symplectic manifold* (see [31] and also [30] and [1, Exercise 3.3I on p. 200]) and is an exact symplectic manifold with the symplectic form $\Omega_{TP} := -d\Theta_{TP}$ with the canonical one-form Θ_{TP} on TP defined as follows: For any $\delta z \in TP$ and $v_{\delta z} \in T_{\delta z}(TP)$,

$$\Theta_{TP}(\delta z) \cdot v_{\delta z} = \Omega_P(T \tau_P(v_{\delta z}), \delta z).$$

(54)

This canonical one-form has the following nice property:

Lemma B.1. If $f: P \to P$ is symplectic, then its tangent map $Tf: TP \to TP$ preserves the canonical one-form Θ_{TP}, i.e., $(Tf)^* \Theta_{TP} = \Theta_{TP}$, and hence is symplectic with respect to $\Omega_{TP}:= - d \Theta_{TP}$.

Proof. For any $\delta z \in TP$ and $v_{\delta z} \in T_{\delta z}(TP)$,

$$(Tf)^* \Theta_{TP}(\delta z) \cdot v_{\delta z} = \Theta_{TP}(Tf(\delta z)) \cdot TTf(v_{\delta z})$$

$$= \Omega_P(T \tau_P \circ Tf(v_{\delta z}), Tf(\delta z))$$

$$= \Omega_P(T(\tau_P \circ Tf)(v_{\delta z}), Tf(\delta z))$$

$$= \Omega_P(Tf \circ \tau_P(v_{\delta z}), Tf(\delta z))$$

$$= f^* \Omega_P(T \tau_P(v_{\delta z}), \delta z)$$

$$= \Omega_P(T \tau_P(v_{\delta z}), \delta z)$$

$$= \Theta_{TP}(\delta z) \cdot v_{\delta z},$$

where we used the identity $\tau_P \circ Tf = f \circ \tau_P$ and symplecticity of f with respect to Ω_P. \hfill \Box

Now, consider the tangent map of the flow $T \phi_t: TP \to TP$ and let \tilde{X}_H be the vector field on TP defined by the flow $T \phi_t$, i.e., for any $\delta z \in TP$,

$$\tilde{X}_H(\delta z) := \frac{d}{dt} T \phi_t(\delta z) \bigg|_{t=0}.$$

Proposition B.2 (See, e.g., [1] Exercise 3.8E on p. 252 and references therein). The vector field \tilde{X}_H on TP is the Hamiltonian vector field on TP with respect to the symplectic form Ω_{TP} and the Hamiltonian $\tilde{H}: TP \to \mathbb{R}$ defined by

$$\tilde{H}(\delta z) := d \tilde{H}(z) \cdot \delta z$$

(55)

for any $\delta z \in T_zP$, where $z = \tau_P(\delta z)$; that is, we have $\tilde{X}_H = X_{\tilde{H}}$, where $X_{\tilde{H}}$ is the Hamiltonian vector field on TP for the above Hamiltonian \tilde{H}, i.e.,

$$i_{X_{\tilde{H}}} \Omega_{TP} = d \tilde{H}.$$

(56)
Proof. Taking the time derivative at \(t = 0 \) of the identity
\[
\tau_P \circ T\phi_t(\delta z) = \phi_t(z),
\]
we obtain
\[
T\tau_P \circ \dot{X}_H(\delta z) = X_H(z).
\]
Therefore, from the definition \((54)\) of the canonical one-form \(\Theta_{\tau_P} \)
\[
i_{\dot{X}_H} \Theta_{\tau_P}(\delta z) = \Omega_P \left(T\tau_P \circ \dot{X}_H(\delta z), \delta z \right)
\]
\[
= \Omega_P(X_H(\delta z), \delta z)
\]
\[
= dH(z) \cdot \delta z.
\]
\[
= \tilde{H}(\delta z),
\]
where we used the definition \((55)\) of \(\tilde{H} \). Taking the exterior differential of the above, we have
\[
d i_{\dot{X}_H} \Theta_{\tau_P} = d \tilde{H}.\]
However, since \(\phi_t \) is symplectic, we have \((T\phi_t)^*\Theta_{\tau_P} = \Theta_{\tau_P} \) by Lemma \(\text{B.1} \) and so \(\mathcal{L}_{\dot{X}_H} \Theta_{\tau_P} = 0 \); then Cartan’s formula gives
\[
d i_{\dot{X}_H} \Theta_{\tau_P} = -i_{\dot{X}_H} d \Theta_{\tau_P} = i_{\dot{X}_H} \Omega_{\tau_P}.\]
\[
\square
\]
B.2. Local Expressions and the First Variation Equation. Canonical coordinates \(z = (q, p) \) for \(P \) induces the coordinates \(\delta z = (q, p, \delta q, \delta p) \) on \(TP \) and then we have
\[
\Theta_{\tau_P}(\delta z) = \delta p \cdot dq - \delta q \cdot dp
\]
and
\[
\Omega_{\tau_P}(\delta z) = d\delta q \wedge dp + dq \wedge d\delta p.
\]
Also, the Hamiltonian \(\tilde{H} \) can be written as follows:
\[
\tilde{H}(\delta z) = \frac{\partial H}{\partial q} \cdot \delta q + \frac{\partial H}{\partial p} \cdot \delta p.
\]
Then the Hamiltonian system \(i_{\dot{X}_H} \Omega_{\tau_P} = d \tilde{H} \) gives the first variation equation, i.e., the classical Hamiltonian system \((40)\) with the linearized system \((41)\) along its solution.

B.3. Symmetry and Conservation Laws in the First Variation Equation. Let \(G \) be a Lie group and consider its symplectic action \(\Phi: G \times P \to P \) on the symplectic manifold \(P \), and suppose that the Hamiltonian system \((53)\) (or locally \((40)\)) on \(P \) has a \(G \)-symmetry. Then one can easily show that the first variation equation \((56)\) also has a symmetry under the action \(T\Phi: G \times TP \to TP \) induced by the tangent map \(T\Phi_g \) of \(\Phi_g \):

Lemma B.3. If the Hamiltonian \(H: P \to \mathbb{R} \) is invariant under the \(G \)-action, i.e., \(H \circ \Phi_g = H \) for any \(g \in G \), then so is the Hamiltonian \(\tilde{H}: TP \to \mathbb{R} \), i.e., \(\tilde{H} \circ T\Phi_g = \tilde{H} \) for any \(g \in G \).

Proof. Follows easily from the following simple calculations: For any \(\delta z \in TP \) with \(z = \tau_P(\delta z) \) and any \(g \in G \),
\[
\tilde{H} \circ T\Phi_g(\delta z) = dH(\Phi_g(z)) \cdot T\Phi_g(\delta z)
\]
\[
= (\Phi_g^* dH)(z) \cdot \delta z
\]
\[
= d(\Phi_g^* H)(z) \cdot \delta z
\]
\[
= dH(z) \cdot \delta z
\]
\[
= \tilde{H}(\delta z).\]
\[
\square
\]
Now we are ready to state Noether’s theorem for the first variation equation:
Proposition B.4. Suppose that the Hamiltonian $H: P \to \mathbb{R}$ is invariant under the G-action, and let $J: P \to g^*$ be the corresponding momentum map; then the momentum map $\tilde{J}: TP \to g^*$ corresponding to the induced action $T\Phi$ on TP is given by

$$\tilde{J}(\delta z) := dJ(z) \cdot \delta z,$$

and \tilde{J} is conserved along the flow of the first variation equation (56).

Proof. Let ξ be an arbitrary element in the Lie algebra g of G, and ξ_P and ξ_{TP} be its infinitesimal generators on P and TP, respectively, i.e.,

$$\xi_P(z) := \frac{d}{dt} \Phi_{\exp t\xi}(z) \bigg|_{t=0}, \quad \xi_{TP}(\delta z) := \frac{d}{dt} T\Phi_{\exp t\xi}(\delta z) \bigg|_{t=0}.$$

By taking the time derivative at $t = 0$ of the identity

$$\tau_P \circ T\Phi_{\exp t\xi}(\delta z) = \Phi_{\exp t\xi} \circ \tau_P(\delta z),$$

we have

$$T\tau_P \circ \xi_{TP} = \xi_P \circ \tau_P.$$ \hfill (57)

Also recall that the momentum map $J: P \to g^*$ satisfies

$$i_{\xi_P} \Omega_P(z) = d\langle J(z), \xi \rangle.$$ \hfill (58)

Now, since Φ is a symplectic action, $T\Phi$ preserves the canonical one-form Θ_{TP} by Lemma B.1; hence we can calculate the momentum map $\tilde{J}: TP \to g^*$ as follows (see, e.g., [1] Theorem 4.2.10 on p. 282):

$$\langle \tilde{J}(\delta z), \xi \rangle = i_{\xi_{TP}} \Theta_{TP}(\delta z).$$

$$= \Omega_P(T\tau_P \circ \xi_{TP}(\delta z), \delta z)$$

$$= \Omega_P(\xi_P(z), \delta z)$$

$$= d\langle J(z), \xi \rangle \cdot \delta z$$

$$= (dJ(z) \cdot \delta z, \xi),$$

where we also used (57) and (58). \hfill \square

References

[1] R. Abraham and J. E. Marsden. *Foundations of Mechanics*. Addison–Wesley, 2nd edition, 1978.

[2] J. Broeckhove, L. Lathouwers, and P. Van Leuven. Time-dependent variational principles and conservation laws in wavepacket dynamics. *Journal of Physics A: Mathematical and General*, 22(20):4395–4408, 1989.

[3] M. A. de Gosson. *Symplectic Geometry and Quantum Mechanics*. Birkhäuser, 2006.

[4] B. F. Doolin and C. Martin. *Introduction to differential geometry for engineers*. M. Dekker, New York, 1990.

[5] E. Faou and C. Lubich. A Poisson integrator for Gaussian wavepacket dynamics. *Computing and Visualization in Science*, 9(2):45–55, 2006.

[6] E. Faou, V. Gradinaru, and C. Lubich. Computing semiclassical quantum dynamics with Hagedorn wavepackets. *SIAM Journal on Scientific Computing*, 31(4):3027–3041, 2009.

[7] G. B. Folland. *Harmonic Analysis in Phase Space*. Princeton University Press, 1989.

[8] G. A. Hagedorn. Semiclassical quantum mechanics. *Communications in Mathematical Physics*, 71(1):77–93, 1980.

[9] G. A. Hagedorn. Raising and lowering operators for semiclassical wave packets. *Annals of Physics*, 269(1):77–104, 1998.
[10] E. J. Heller. Time-dependent approach to semiclassical dynamics. *Journal of Chemical Physics*, 62(4):1544–1555, 1975.

[11] E. J. Heller. Classical S-matrix limit of wave packet dynamics. *Journal of Chemical Physics*, 65(11):4979–4989, 1976.

[12] E. J. Heller. Frozen Gaussians: A very simple semiclassical approximation. *Journal of Chemical Physics*, 75(6):2923–2931, 1981.

[13] E. J. Heller. Wavepacket dynamics and quantum chaosology. In M.J. Giannoni, A. Voros, and J. Zinn-Justin, editors, *Chaos and quantum physics*, pages 547–663. North-Holland, 1991.

[14] R. Hermann and C. Martin. Lie theoretic aspects of the Riccati equation. *Decision and Control including the 16th Symposium on Adaptive Processes and A Special Symposium on Fuzzy Set Theory and Applications, 1977 IEEE Conference on*, 16:265–270, 1977.

[15] R. Hirota. Nonlinear partial difference equations. v. nonlinear equations reducible to linear equations. *Journal of the Physical Society of Japan*, 46(1):312–319, 1979.

[16] R. Hirota. *The Direct Method in Soliton Theory*. Cambridge University Press, 2004.

[17] D. D. Holm. *Geometric Mechanics, Part II: Rotating, Translating and Rolling*. Imperial College Press, 2nd edition edition, 2011.

[18] R. G. Littlejohn. The semiclassical evolution of wave packets. *Physics Reports*, 138(4-5):193–291, 1986.

[19] R. G. Littlejohn. Cyclic evolution in quantum molecular mechanics and the phases of Bohr–Sommerfeld and Maslov. *Physical Review Letters*, 61(19):2159–2162, 1988.

[20] C. Lubich. *From quantum to classical molecular dynamics: reduced models and numerical analysis*. European Mathematical Society, Zürich, Switzerland, 2008.

[21] J. E. Marsden and T. S. Ratiu. *Introduction to Mechanics and Symmetry*. Springer, 1999.

[22] J. E. Marsden and A. Weinstein. Reduction of symplectic manifolds with symmetry. *Reports on Mathematical Physics*, 5(1):121–130, 1974.

[23] J. E. Marsden, T. Ratiu, and G. Raugel. Symplectic connections and the linearisation of Hamiltonian systems. *Proceedings of the Royal Society of Edinburgh, Section: A Mathematics*, 117(3-4):329–380, 1991.

[24] J. E. Marsden, G. Misiolek, J. P. Ortega, M. Perlmutter, and T. S. Ratiu. *Hamiltonian Reduction by Stages*. Springer, 2007.

[25] D. McDuff and D. Salamon. *Introduction to Symplectic Topology*. Oxford University Press, 1999.

[26] T. Ohsawa and M. Leok. Symplectic semiclassical wave packet dynamics. *Journal of Physics A: Mathematical and Theoretical*, 46(40):405201, 2013.

[27] A. K. Pattanayak and W. C. Schieve. Gaussian wave-packet dynamics: Semiquantal and semiclassical phase-space formalism. *Physical Review E*, 50(5):3601–3615, 1994.

[28] C. L. Siegel. Symplectic geometry. *American Journal of Mathematics*, 65(1):1–86, 1943.

[29] R. Simon, E. C. G. Sudarshan, and N. Mukunda. Gaussian pure states in quantum mechanics and the symplectic group. *Physical Review A*, 37(8):3028–3038, 1988.

[30] J. Sniatycki and W. M. Tulczyjew. Generating forms of Lagrangian submanifolds. *Indiana Univ. Math. J.*, 21:267–275, 1972. ISSN 0022-2518.

[31] W. M. Tulczyjew. *Les sous-variétés lagrangiennes et la dynamique hamiltonienne*. *C. R. Acad. Sc. Paris*, 283:15–18, 1976.