Consenso Brasileiro de Nutrição no Transplante de Células Tronco Hematopoéticas: doença do enxerto contra o hospedeiro

Brazilian Nutritional Consensus in Hematopoietic Stem Cell Transplantation: Graft-versus-host disease

Andréa Z Pereira¹, Afonso Celso Vigorito², Alessandro de Moura Almeida³, Alexandre de Almeida Candolo¹, Ana Carolina Leão Silva⁴, Ana Elisa de Paula Brandão-Anjos⁶, Bianca Laselva de Sá¹, Catarina Lôbo Santos de Souza⁷, Cláudio Galvão de Castro Junior⁸, José Salvador Rodrigues de Oliveira⁹, Juliana Bernardo Barban⁹, Elaine Maria Borges Mancilha⁹, Juliana Todaro¹, Lilian Pinheiro Lopes⁵, Maria Cristina Martins de Almeida Macedo¹⁰, Morgani Rodrigues¹, Paulo Cesar Ribeiro¹, Roberto Luiz da Silva¹⁰, Telma Sigolo Roberto¹¹, Thays de Cásia Ruiz Rodrigues², Vergilio Antonio Rensi Colturato⁶, Eduardo José de Alencar Paton¹², George Mauricio Navarro Barros⁶, Rosana Ducatti Souza Almeida⁴, Maria Claudia Rodrigues Moreira¹⁵, Mary Evelyn Flowers¹⁴

¹ Hospital Israelita Albert Einstein, São Paulo, SP, Brasil.
² Universidade Estadual de Campinas, Campinas, SP, Brasil.
³ Universidade Federal da Bahia, Salvador, BA, Brasil.
⁴ Hospital de Câncer de Barretos, Barretos, SP, Brasil.
⁵ Hospital Sírio-Libanes, São Paulo, SP, Brasil.
⁶ Fundação Hospital Amaral Carvalho, Jaú, SP, Brasil.
⁷ Complexo Hospitalar Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, BA, Brasil.
⁸ Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, RS, Brasil.
⁹ Universidade Federal de São Paulo, São Paulo, SP, Brasil.
¹⁰ Instituto Brasileiro de Controle do Câncer, São Paulo, SP, Brasil.
¹¹ Hospital São Luiz, São Paulo, SP, Brasil.
¹² Oncobio, Nova Lima, MG, Brasil.
¹³ Instituto Nacional de Câncer José Alencar Gomes da Silva - INCA, Rio de Janeiro, RJ, Brasil.
¹⁴ Seattle Cancer Care Alliance, Seattle, WA, United States.

DOI: 10.31744/einstein_journal/2020AE4799

RESUMO
O Consenso Brasileiro de Nutrição no Transplante de Células Tronco Hematopoéticas: doença do enxerto contra o hospedeiro foi aprovado pela Sociedade Brasileira de Transplante de Medula Óssea, com a participação de 26 centros brasileiros de transplante de células-tronco hematopoéticas. O Consenso descreve as principais condutas nutricionais em casos de doença do enxerto contra o hospedeiro, a principal complicação do transplante de células-tronco hematopoéticas.

Descritores: Nutrição; Doença enxerto-hospedeiro; Transplante de células-tronco hematopoéticas

ABSTRACT
The Brazilian Consensus on Nutrition in Hematopoietic Stem Cell Transplantation: Graft-versus-host disease was approved by Sociedade Brasileira de Transplante de Medula Óssea, with the participation of 26 Brazilian hematopoietic stem cell transplantation centers. It describes the main nutritional protocols in cases of Graft-versus-host disease, the main complication of hematopoietic stem cell transplantation.

Keywords: Nutrition; Graft versus host disease; Hematopoietic stem cell transplantation
TRANSPLENTE DE CÉLULAS-TRONCO HEMATOPOIÉTICAS

Nos últimos 20 anos, as pesquisas desenvolvidas no transplante de células-tronco hematopoieticas (TCTH) permitiram melhor seleção de doadores, redução na toxicidade advinda do condicionamento, com desenvolvimento de regimes de intensidade reduzida e melhora no tratamento de suporte, com a diminuição das complicações pós-transplante, aumentando, dessa forma, a sobrevida dos transplantados.(1,2)

A doença do enxerto contra o hospedeiro (DECH) é a maior causa de morbimortalidade relacionada ao TCTH alógênico, sendo responsável por grande impacto na qualidade de vida desses pacientes. Aproximadamente de 30% a 50% dos transplantados alógênicos apresentam DECH no pós-TCTH.(3) A sobrevida global dos pacientes que apresentam DECH, particularmente a forma crônica, é de 72% em 1 ano e de 55% em 5 anos.(3)

A FISIOPATOLOGIA DA DOENÇA DO ENXERTO CONTRA O HOSPEDEIRO

A DECH é causada pela ativação das células T que reconhecem os antígenos do hospedeiro como não próprios, provocando reação do tipo autoimune em órgãos do receptor, como pele, pulmões, figado, trato gastrintestinal (TGI), timo, sistema hematopoético e, possivelmente, mesmo o sistema nervoso central.(1,2)

A DECH aguda (DECH-a) grave se caracteriza por intensas lesões cutâneas, gastrintestinais e hepáticas, enquanto a forma crônica está associada a danos progressivos do tipo ulcerativos em mucosas e lesões sistêmicas em outros órgãos, como a pele e os pulmões.(3)

A DECH crônica (DECH-c) apresenta mais características de aloinunidade e imunodeficiência. Muito semelhante à DECH-a, a DECH-c também é induzida por células imunes do doador, mas sua fisiopatologia é menos compreendida. Apesar dos linfócitos T serem considerados o fator-chave em seu desenvolvimento, dados recentes revelam que as células B também apresentam importante papel.

Classicamente, o desenvolvimento da DECH pode ser dividido em três fases:(3) a primeira fase consiste na lesão dos tecidos do receptor pelos agentes utilizados nos regimes de condicionamento agressivos necessários para prevenir a recidiva das doenças neoplásicas e a rejeição do enxerto. Embora outros órgãos possam ser comprometidos em graus variados de gravidade, o sistema hematopoietico e o TGI são mais suscetíveis a esta toxicidade.

A segunda fase do desenvolvimento da DECH consiste na ativação de linfócitos T por células apresentadoras de antígenos do hospedeiro e, posteriormente, do doador, que adquirem funções de células T helper e secretam citocinas que, subsequenticemente, aceleram a ativação imunológica.(4,5)

Na terceira fase da patogênica da DECH, a ativação imunológica de funções citotóxicas efeetoras de células mediadoras, como as células T CD 81+, provoca lesões diretas das células-alvo características da DECH em órgãos como o figado, a pele e o TGI.(6,7)

Em busca de maior conhecimento sobre a DECH e as maneiras de melhor controlá-la, no ano de 2005 foi estabelecido um consenso com a formação de um grupo de trabalho da National Institutes of Health (NIH), sendo definido que a apresentação clínica, não o tempo, é considerada o mais importante para o diagnóstico e para a diferenciação entre a DECH-c e a DECH-a. Alguns sinais e sintomas mostram-se similares em ambas; as diferenças, entretanto, são pungentes e permitem a delimitação de duas síndromes clínicas distintas.

Tabela 1. Estadiamento da doença do enxerto contra o hospedeiro aguda por órgão(2,6)

Estágio	Achados cutâneos	Achados hepáticos	Achados intestinais
+	Exantema maculopapular em <25% da superfície corporal	Bilirrubina: 2-5mg/dL	Diarreia (500-1.000mL) persistente e náuseas
++	Exantema maculopapular em 25%-50% da superfície corporal	Bilirrubina: 3-6mg/dL	Diarreia (1.000-1.500mL)
+++	Eritrodermia generalizada	Bilirrubina: 8-15mg/dL	Diarreia >1.500mL
++++	Descamação e bolhas	Bilirrubina: >15mg/dL	Dor com ou sem obstrução
DOENÇA DO ENXERTO CONTRA O HOSPEDEIRO CRÔNICA

A DECH-c é uma síndrome clínico-patológica que envolve vários órgãos e sistemas, assemeelhando-se muito às doenças autoimunes.

Esforços foram feitos no sentido de identificar os fatores de risco associados a um aumento da morbimortalidade nos pacientes com DECH-c. As variáveis identificadas incluíram envolvimento de múltiplos órgãos ou locais, piora da performance status, plaquetopenia no momento do diagnóstico, definida como contagem de plaquetas menor do que 100.000/µL, aparecimento de plaquetopenia progressiva na DECH-c, bilirrubinas elevadas e envolvimento extenso de pele (acometimento maior de 50% da superfície corpórea).(2,8,9)

Em 2005, o NIH desenvolveu um projeto para consenso dos critérios que devem ser utilizados em estudos clínicos da DECH-c.(10,11) Foram padronizadas as características utilizadas no diagnóstico, além de serem postos meios para a pontuação dos órgãos envolvidos e avaliação global da gravidade.(8,12) Foram padronizadas as características que devem ser utilizadas em estudos clínicos da DECH-c.(10,11) Foram padronizadas as características utilizadas no diagnóstico, além de serem postos meios para a pontuação dos órgãos envolvidos e avaliação global da gravidade.(8,12)

Estes critérios, revistos em 2014, são úteis para melhor análise da incidência da DECH-c, além de possibilitarem avaliar a gravidade do comprometimento de um órgão ou local, isolado ou combinado, e a influência na mortalidade relacionada ao transplante (MRT). Pelo consenso do NIH, sinais e sintomas diagnósticos se referem a manifestações que estabelecem a presença de DECH-c sem a necessidade de testes ou evidências de outros órgãos acometidos (Tabela 3). Sinais e sintomas distintos se referem àquelas manifestações que não são comumente encontradas na DECH-c, mas são insuficientes para estabelecer diagnóstico preciso de DECH-c sem outros testes ou envolvimento de outros órgãos. Outras características definem manifestações raras, controversas e não específicas de DECH-c e não podem ser utilizadas para firmar o diagnóstico de DECH-c.(10,11)

O consenso recomenda os seguintes critérios para o diagnóstico da DECH-c:(8,9) distinção de DECH-a; presença de pelo menos um sinal clínico diagnóstico da DECH-c, ou presença de pelo menos uma manifestação distinta confirmada por biópsia pertinente de acordo com critérios histopatológicos definidos, testes laboratoriais, ou imagens radiológicas, no mesmo ou em outro órgão; e exclusão de outros diagnósticos possíveis.

A classificação revisada do NIH 2014 inclui oito órgãos como principais, por serem aqueles mais acometidos pela doença: pele, boca, olhos, TGI, fígado, pulmão, articulações e trato genital feminino. Os mais acometidos na DECH-c leve são pele, boca e fígado. Envolvimento do pulmão na DECH-c crescenta por si só maior gravidade à doença, segundo o consenso, e, por isso, o dano pulmonar é um critério de gravidade considerado de grande importância nessa classificação.(8,9)

Para facilitar a graduação e estabelecer critérios padronizados de estágios da doença, os órgãos comumente afetados receberam pontuações e escalas de gravidade do dano produzido pela DECH-c. Cada órgão ou local recebeu pontuação de zero a 3, com zero representando nenhum envolvimento e 3, comprometimentos graves.(9)

A avaliação global da gravidade (Tabela 4) nesse consenso é baseada no número de órgãos ou locais envolvidos e no grau de acometimento de cada órgão afetado. Os pacientes são considerados com diagnóstico de DECH-c leve quando apenas um ou dois órgãos (exceto os pulmões) forem afetados, sem dano funcional clinicamente significante, com pontuação máxima de 1 em todos os órgãos ou locais. O diagnóstico de DECH-c moderado é considerado quando pelo menos um órgão ou local apresentar comprometimento clínico significante, porém sem dano maior, com pontuação máxima de 2 em qualquer órgão ou local afetado, ou dois, três ou mais órgãos ou locais forem acometidos, porém sem prejuízo funcional clinicamente significante, com pontuação máxima de 1 em todos os órgãos ou locais afetados. Pontuação de 1 nos pulmões também é considerada moderada. DECH-c grave indica dano maior com pontuação máxima de 3 em qualquer órgão ou local. Pontuação ≥2 nos pulmões é considerada grave.(9,10) Estes valores são todos registrados em questionário validado pelo NIH e atualmente utilizado universalmente por inúmeros centros de pesquisa e assistência.

O estudo da DECH-c inspira crescente interesse na comunidade acadêmica, agregado ao fato do estabelecimento recente de critérios que categorizaram a doença, baseados em evidências sedimentadas; foi iniciado o caminho para um maior entendimento da patogênese da DECH-c.
Tabela 3. Sinais e sintomas relacionados à doença do enxerto contra o hospedeiro crônica\(^{16,11}\)

Órgão ou sítio	Diagnóstico (suficiente para estabelecer o diagnóstico de DECH-c)	Característico (presente na DECH, mas isoladamente é insuficiente para estabelecer o diagnóstico)	Outras características	Comuns à DECH-a e à DECH-c
Pele	Poiquiloderma, Despigmentação, Alterações escleróticas, Morfeia, Órgão e sintomas relacionados à doença do enxerto contra o hospedeiro crônica			
				Eritema
				Rash Maculopapular
				Prurido
Unha				Gengivite
				Mucosite
				Eritema
				Dor
Cúrso cabeludo				Lisma
e pelos				Hiperpigmentação
				Eritema
Boca				Hiperpigmentação
				Eritema
				Prurido
O íntegro				Hiperpigmentação
				Eritema
				Prurido
Genitais				Hiperpigmentação
				Eritema
				Prurido
TGI				Hiperpigmentação
				Eritema
				Prurido
Fígado				Hiperpigmentação
				Eritema
				Prurido
Pulmão				Hiperpigmentação
				Eritema
				Prurido
Musculo, fascia, articulações				Hiperpigmentação
				Eritema
				Prurido
Hematopoietico e imunológico				Hiperpigmentação
				Eritema
				Prurido
Outros				Hiperpigmentação
				Eritema
				Prurido

DECH-c: doença do enxerto contra o hospedeiro crônica; DECH: doença do enxerto contra o hospedeiro; DECH-a: doença do enxerto contra o hospedeiro aguda; ALT: alanina aminotransferase; AST: aspartato aminotransferase; BOOP: Bronquiolo obliterante com pneumonia em organização; AHAI: anemia hemolítica autoimune; PTI: purpura trombocitopênica imunológica.
INTRODUÇÃO SOBRE A IMPORTÂNCIA DO ESTADO NUTRICIONAL NA DOENÇA DO ENXERTO CONTRA O HOSPEDEIRO

Não existem dados de literatura claros sobre a interferência do estado nutricional prévio ao TCTH como causa de maior ou menor incidência de DECH, assim como sobre qual seria a melhor forma de realizar sua avaliação.(13-16) Alguns trabalhos relatam que taxas elevadas de desnutrição(17) e piora do estado nutricional associam-se a maior gravidade da DECH de TGI, de boca e de pulmão.(18)

Por outro lado, apesar da heterogeneidade dos estudos e de não se saber exatamente por meio de qual mecanismo se dá a interferência, tanto a obesidade quanto a desnutrição estão associadas a um maior risco para desenvolvimento de DECH.(19,20)

Recuperar ou melhorar o estado nutricional dos pacientes pré-TCHT poderia trazer consequências melhores ao desfecho.(20)

Entretanto, é conhecida a relação da DECH com os estados carenciais, como os défices vitamínicos.(14-16)

No período pós-transplante imediato (30 a 50 dias), as necessidades nutricionais refletem o aumento do aporte calórico-proteico em razão de condicionamento, infeções, DECH-a, febre e outras complicações metabólicas, afetando, principalmente, o balanço de proteínas, as necessidades energéticas e o metabolismo de micronutrientes.(21,22)

O estado nutricional na DECH-a ou na DECH-c é afetado por vários sintomas, que são amplamente descritos posteriormente, como internações prolongadas e altas doses de corticosteroides, afetando profundamente a composição corporal com maior perda de massa muscular, retenção de líquido e aumento da gordura visceral, atingindo ainda mais o estado nutricional.(18,23-25)

Na DECH-c, nas manifestações orais, pulmonares e gastrintestinais, podemos encontrar até 29% de pacientes desnutridos em decorrência de dor na mucosa oral e atividade da doença, entre outros fatores.(18) Isso influencia diretamente na redução da funcionalidade e da qualidade de vida dos pacientes.(18)

A DECH é uma condição complexa com efeitos significativos sobre a piora do estado nutricional, ocasionando redução da qualidade de vida e da funcionalidade dos pacientes.(18,25) Discutiremos, a seguir, tópicos específicos do estado e da terapia nutricional na DECH-a e na DECH-c.

MICRO E MACRONUTRIENTES NA DOENÇA DO ENXERTO CONTRA O HOSPEDEIRO

A conduta dietoterápica depende da forma que a DECH se manifesta no paciente. A maioria dos pacientes inicia o tratamento com dieta relativamente saudável, mas rapidamente ocorre depleção dessa dieta. Isso se dá devido aos efeitos tóxicos diretos do tratamento ou às complicações secundárias, como as infecções e a própria DECH-a.(15)

A DECH moderada e grave e os regimes multifarmacáceus utilizados em sua prevenção e tratamento resultam em imunossupressão profunda e prolongada. Apenas os avanços no manejo, a DECH continua problema significativo. Os pacientes frequentemente têm as necessidades nutricionais elevadas e alterações no metabolismo de carboidratos, gorduras e proteínas. Apresentam, ainda, dificuldade para comer por uma variedade de razões dependentes do envolvimento de órgãos e em geral requerem dietas modificadas, suplementos orais ou nutrição enteral (NE) ou parenteral (TNP) para prevenir a desnutrição.(26)

Recomendações nutricionais: macronutrientes

Calorias

As necessidades nutricionais em pacientes submetidos ao TCTH aumentam devido ao catabolismo intenso.(27) É sugerido que as necessidades de energia durante a fase inicial do TCTH e da DECH sejam de até 130% a 150% do gasto estimado de energia basal, o que corresponde a 30 a 50kcal/kg de peso corporal por dia, e esse aumento da necessidade energética contribuiria para a perda ponderal desses pacientes.(25,28,29) Esse estado hipermetabólico crônico encontrado nesses pacientes é uma resposta às citocinas inflamatórias (fator de necrose tumoral alfa – TNF-α; interleucinas - IL – 1 e 6) e às alterações no nível de norepinefrina e glucagon.(25,30,31)
Estudos mostram aumento dos níveis séricos de glucagon ocasionando aumento de até 10% do metabolismo basal, principalmente pelo estímulo à gliconeogênese.

O aumento da norepinefrina nesses casos resulta em elevação da produção hepática de glicose, e também contribui para o aumento de metabolismo basal.

Um estudo transversal com 13 pacientes comparou o requerimento energético por calorimetria indireta entre controles saudáveis e pacientes que apresentavam DECH extensa de pele, membranas mucocutâneas, pulmão, olhos e fígado, mostrando que houve pequeno aumento no requerimento de energia (1,9kcal/kg/dia ou 133kcal em uma pessoa de 70kg) e nas alterações das taxas de oxidação de gorduras e carboidratos.

Além disso, foi demonstrado, em modelo animal, aumento da glicólise e do metabolismo de ácidos graxos para adequada função de células T alorreativas e indução da DECH.

Acredita-se, ainda, que o próprio tratamento da DECH possa ter efeitos no metabolismo energético dos pacientes, mas também são escassos os relatos sobre esse tópico.

Nesse caso, recomendamos o uso de 30 a 50kcal/kg de peso corporal por dia para cálculo das necessidades calóricas nesses pacientes.

Proteínas e lipídios

A Organização Mundial de Saúde (OMS) recomenda como aceitável valor de ingestão proteica de 0,83g/kg de peso, sendo a capacidade máxima de síntese proteica atingida com ingestão de 1,5g/kg/dia. Embora não existam estudos bem desenhados para embasarem tal recomendação, existe recomendação de manutenção de níveis extremamente baixos de ingestão proteica (cerca de 1,8 a 2,5g/kg/dia) nos casos de pacientes que desenvolveram DECH.

Tal recomendação baseia-se no fato da perda proteica por exsudação da mucosa intestinal e pelo efeito do uso crônico de corticoides no aumento da necessidade proteica.

Os lipídios podem ser administrados com segurança como triacilgliceróis de cadeia longa (LCTs) ou LCT/ mistura de triacilgliceróis de cadeia média, que geralmente contribuem com 30% a 40% de energia não protética.

Ômega 3

O ácido graxo ômega 3 desempenha papel como fator imunomodulador. Foi teorizado que os lipídios poderiam modular vantajosamente a DECH, controlando a produção de citocinas por meio da via da prostaglandina E2. A manipulação de lipídio está associada ao controle da intolerância à glicose. Desse modo, temos aumento dos ácidos graxos monoinsaturados que substituiriam os ácidos graxos saturados (Tabela 5).

Tabela 5. Suplementos nutricionais recomendados para receptores de transplante de células-tronco hematopoéticas com doença do enxerto contra o hospedeiro na Baylor University Medical Center

Suplementos	Motivo do consumo
Multivitamínico com minerais (com mínimo de ferro para o primeiro ano após o TCTH)	Para assegurar recursos adequados de vitaminas e minerais
Vitamina C (500mg/2veias/dia)	Para ajudar na cicatrização de feridas
Vitamina B12	Para minimizar a desmineralização óssea com uso de esteroides crônicos.
Glutamina	Para satisfazer as elevadas necessidades de produção de hemácias
Zinco (22mg de sulfato de zinco 1 vez/dia, durante 2 semanas)	Para repor as quantidades perdidas na diarreia crônica
Cálcio com vitamina D (dose depende do nível sérico)*	Interação com os níveis celulares para modificação das citocinas, reduzindo o processo inflamatório da DECH
Ômega 3 (2 g/dia)	Interação com os níveis celulares para modificação das citocinas, reduzindo o processo inflamatório da DECH

* Nível sérico < 10ng/mL-50.000UL/semana; 10-30ng/mL-10.000UL/semana.

TCTH: Transplante de células-tronco hematopoéticas; DECH: doença do enxerto contra o hospedeiro.

Glutamina

A utilização da glutamina é controversa. Parece haver alguns benefícios de seu uso oral na redução da mucosite e da DECH, enquanto a glutamina endovenosa pode reduzir as infecções.

Segundo a revisão Cochrane, a glutamina não só modula a função do sistema imunológico no trato digestivo, mas também pode promover a cicatrização intestinal e reduzir a gravidade da mucosite e também da DECH-TGI.

Já a recente diretriz da European Society for Clinical Nutrition and Metabolism (ESPN) conclui que não há evidências suficientes para recomendação da suplementação com glutamina para redução de toxicidade ao tratamento em pacientes com DECH-TGI.

Então, devido à essa inconsistência da literatura, não se recomenda o uso de glutamina nessa população.

Recomendações nutricionais: micronutrientes

Vitamina B12

Os efeitos da DECH no estômago, reduzindo o fator intrínseco, e no intestino, reduzindo a absorção de vitamina B12, e o regime de condicionamento do TCTH, resultando na degeneração das células de cripta, associam-se à diminuição dessa vitamina (Tabela 5).

Vitamina C

Estudos mostram que a vitamina C tem importante papel no combate de mucosite em pacientes com DECH. Pacientes com deficiência em vitamina C que receber-
ram tratamento com 2.000mg/mês de ácido ascórbico apresentaram significantes melhorias visuais na mucosite e conseguiram voltar a comer(45) (Tabela 5).

Zinco
A diarreia crônica e a malabsorção ocasionadas pela DECH podem levar a uma deficiência de zinco, que é importante na manutenção do paladar e da integridade da mucosa gastrintestinal.(25) Além disso, o zinco atua na cicatrização e na percepção do sabor, e é importante defesa contra as infecções intestinais, devido à manutenção da integridade da mucosa intestinal.(46)

Diversos estudos recomendam sua suplementação em pacientes com DECH, como Roberts et al.,(29) que recomendam que a suplementação de zinco é interessante para o tratamento de lesões recorrentes. Ripamonti et al.,(47) sugerem que a suplementação (até 3 doses/dia de 45mg ZnSO4) é segura e efetiva para tratamento da percepção do sabor.

Além disso, estudos experimentais têm sugerido papel desse elemento na ativação de células T regulatórias, podendo ser interessante para o TCTH(48) (Tabela 5).

Vitamina D
Alguns estudos já descreveram a presença de deficiência de vitamina D em pacientes após o TCTH e sua relação com o desenvolvimento da DECH e com a redução da densidade mineral óssea.(49) A despeito de sua associação com uma nutrição inadequada, a deficiência de vitamina D não tem sido caracterizada como complicação direta do desenvolvimento da DECH,(50) mas parece ter papel em seu desenvolvimento. Sproat et al., em estudo retrospectivo com número reduzido de pacientes (58 pacientes transplantados entre 2000 e 2009), relataram prevalência de hipovitaminose D de 89,7%, e a maioria destes pacientes tiveram DECH (94,8%) e fizeram uso de corticosteroides (98,3%).(51) Contudo, outros estudos também observaram essa associação de baixos níveis séricos de vitamina D (<25ng/mL) e DECH, além de reativação de citomegalovírus (CMV) pós-transplante.(52,53)

A redução dos efeitos da DECH pode ser explicada pelo aparente papel da vitamina D no sistema imunológico, regulando o funcionamento de células dendríticas, macrófagos e linfócitos B e T.(54-56)

Os pacientes com DECH-a tratados com corticosteroides revelam tendência para menor diminuição da vitamina D. O monitoramento de seus níveis e, se necessário, o tratamento para sua correção, podem ser indicados em intervalos regulares antes do TCTH e durante o seguimento destes pacientes.(49)

A reposição de cálcio e vitamina D em combinação com bifosfonatos, ou a suplementação com metabólitos ativos como 1,25 (OH)2D3 vitamina D ou 25 (OH)3 vitamina D trazem efeitos benéficos para a massa óssea e a modulação da DECH.(57,58)

O estudo da suplementação de vitamina D no TCTH é relativamente recente, mas já oferece resultados promissores. A dosagem de seu nível sérico deveria ser realizada no pré-TCTH e no pós-TCTH, e a deficiência deve ser corrigida.

Magnésio
A principal alteração do metabolismo nos pacientes com DECH é a hipomagnesemia, causada pelos inibidores de calcineurina, uma das classes de medicações mais utilizadas, tanto na profilaxia quanto no tratamento da doença. Contudo, há relatos de caso em que houve hiper magnesemia severa após o uso de medicações la xantes, com alta concentração de magnésio, provavelmente associadas à desidratação e à alta permeabilidade intestinal vista na DECH.(59)

Ferro
A sobrecarga de ferro é uma complicação comum dos TCTH, devido ao aumento de absorção de ferro secundária à anemia e à múltiplas transfusões. A sobrecarga de ferro pode aumentar o risco de DECH, sobretudo aguda, pela tendência a causar toxicidade hepática direta. Além disso, a ferritina parece ser marcador de pior prognóstico em pacientes com DECH.(25,50) Recomenda-se o uso de multivitamínicos que não contenham ferro nessa população.(61)

As recomendações nutricionais em pacientes com doença do enxerto contra o hospedeiro são apresentadas no tabela 6.

Tabela 6. Recomendações nutricionais em pacientes com doença do enxerto contra o hospedeiro

Recomendações Nutricionais
Aconselhar aspectos nutricionais referentes à segurança alimentar e orientar o risco de transmissão de doenças por alimentos durante a imunossupressão
Suplementar com multivitamínicos/minerais (sem ferro, devido ao risco de hemocromatose); outros suplementos, como vitamina C, zinco, ácido fólico e ômega 3, podem ser benéficos
Aconselhar aspectos nutricionais referentes à segurança alimentar e orientar o risco de transmissão de doenças por alimentos durante a imunossupressão
Suplementar com multivitamínicos/minerais (sem ferro, devido ao risco de hemocromatose); outros suplementos, como vitamina C, zinco, ácido fólico e ômega 3, podem ser benéficos
Aconselhar aspectos nutricionais referentes à segurança alimentar e orientar o risco de transmissão de doenças por alimentos durante a imunossupressão

Fonte: Adaptado de Roberts S, Thompson J. Graft-vs-host disease: nutrition therapy in a challenging condition. Nutr Clin Pract. 2005;20(4):440-50.(29)

Fonte: Adaptado de Roberts S, Thompson J. Graft-vs-host disease: nutrition therapy in a challenging condition. Nutr Clin Pract. 2005;20(4):440-50.(29)

DECH: com doença do enxerto contra o hospedeiro.
COMPLICAÇÕES NUTRICIONAIS MAIS COMUNS NA DOENÇA DO ENXERTO CONTRA O HOSPEDEIRO

Devido à importância desse tema, tentaremos revisar a seguir as principais complicações nutricionais da DECH, tanto causadas por seu desenvolvimento quanto relacionadas à sua terapia. Os efeitos colaterais relacionados a aspectos nutricionais das principais medicações utilizadas para tratamento da DECH estão demonstrados na tabela 7.

ALTERAÇÕES MECÂNICAS NO TRATO GASTROINTESTINAL

O TGI é envolvido na maioria dos pacientes com DECH, podendo acometer qualquer parte do tubo digestivo. Embora sejam mais raras, as alterações mecânicas e estruturais do trato digestivo merecem ser relatadas, devido à sua gravidade e à necessidade de abordagem precoce. (62)

As complicações esofágicas são raras e incluem ulceracao, varizes esofágicas e doença vesiculoleio. As disfágias com severa estenose requerem dilatação esofágaica. (62)

Uma das complicações mais graves do intestino é a perfuração intestinal; no entanto, a mais frequente é a diarreia. (63)

ALTERAÇÃO NA ABSORÇÃO DE NUTRIENTES

A alteração da absorção vista em pacientes com DECH pode estar associada a alterações hepáticas e pancreáticas. As alterações hepáticas podem ser decorrentes da excreção prejudicada de sais biliares, tendo importante papel no metabolismo lipídico. (64)

Tabela 7. Principais medicações e terapias imunossupressoras utilizadas no tratamento da doença do enxerto contra o hospedeiro e seus efeitos colaterais nutricionais e metabólicos

Medicação/terapia	Mecanismo de ação	Efeitos nutricionais e metabólicos
Corticoides	Resposta anti-inflamatória, inibe IL-1, diminui IL-2 e suprime a proliferação de linfócitos	Relação de sódio e água, hiperglicemia, hipercolesterolemia, aumento de apetite, ganho de peso, desmineralização óssea e efeitos musculares
Ciclosporina/tacrolimus	Inibe proliferação/resposta de linfócitos T e altera produção de IL-2	Hipertensão, dislipidemia, hiperglicemia, hipomagnesemia, hipercalemia, nefrotoxicidade, neurotoxicidade, náuseas, vômitos, alterações do paladar e diarreia
Metotrexato	Antimetabólico e imunossupressor	Anorexia, náuseas, vômitos, diarreia, estomatite, mucosite, hepatotoxicidade e nefrotoxicidade
Mofetilolato de mofetila	Diminui a atividade linfocítica e a proliferação de células B e T, suprime a formação de anticorpos	Náuseas, vômitos, diarreia, constipação, sangramento gastrointestinal e edema periférico
Sirolimus	Inibe a proliferação de linfócitos B e T	Dislipidemia, hipertensão e edema periférico
Taldomida	Propriedades imunossupressoras e anti-inflamatórias	Neuropatia e constipação
Globulina antimiócito (ATG)	Diminuição dos linfócitos circulantes	Dor abdominal, náuseas, vômitos, diarreia, hipercalemia, hipertensão e edema periférico
Etanercept	Antagonista do TNF-α	Dor abdominal e vômitos
Ácido ursodesoxicólico	Substitui ácidos biliares nativos humanos; diminui a expressão de antígenos de HLA nos hepatócitos	Náuseas, vômitos, diarreia e dor abdominal
Daclizumabe	Anticorpo anti-IL-2	Vômitos, edema, hipertensão e hipotensão
Azatioprina	Preve a proliferação citotóxica de linfócitos T e B por inibir a síntese de DNA e RNA	Hipersensibilidade gastrointestinal, hepatotoxicidade, anemia megaloblastica e pancreatite
Hidroxicloroquina	Interfer na processamento de antígenos e na apresentação, proliferação, produção de TNF-α e citotóxicidade	Náuseas, vômitos e diarreia
Infliximibe	Anticorpo anti-TNF-alfa	Dor abdominal, náuseas, vômitos
Psoralen e PUVA	Interfer na apresentação de antígenos e na produção de citocinas pró-inflamatórias	Náuseas e hepatotoxicidade
Fotoafêse extracorpórea	Induz apóiese de células T alorreativas, fotoinativação de células apresentadoras de antígenos	Hipocalcemia (uso de citrato) e transtornos gastrointestinal
Ciclofosfamida	Atividade imunossupressora e bloqueio de crescimento celular por ligação de metabólitos ao DNA	Anorexia, náuseas, vômitos e mucosite
Rituximabe	Anticorpo anti-CD20	Dor abdominal, diarreia, náuseas, vômitos, hipertensão e hiperglicemia
Pentostatina	Bloqueio da síntese de DNA	Náuseas, vômitos, fadiga, diarreia, anorexia e estomatite
Imatinibe	Inibição do PDGF-r	Náuseas, fadiga, diarreia, dor abdominal, vômito, ganho de peso, hepatotoxicidade, hiperglicemia e miopatia

Fonte: Adaptado de Roberts S, Thompson J. Clinical Observations Graft vs Host Disease: Nutrition Therapy in a Challenging Condition. Nutr Clin Pract. 2005;20:440-50. (62)

IL: interleucina; TNF-α: fator de necrose tumoral alfa; HLA: antígeno humano leucocitário; PUVA: psoralen + irradiação ultravioleta A; PDGF-r: receptor do fator de crescimento derivado de plaquetas.
As alterações pancreáticas já foram relatadas em autópsias de modelos experimentais, sendo associadas por acometimento da DECH; contudo, estas alterações, que podem incluir atrofia, também podem ser decorrentes de medicações como azatioprina, ciclosporina e corticoides. Os principais sintomas da insuficiência exócrina pancreática são estatorreia, fadiga, dor abdominal, perda ponderal e flatulência. Tais sintomas estão mais frequentes no pós-transplante em pacientes com sinais de DECH, sendo mais frequentes entre graus mais avançados da doença.

Além da função pancreática, a DECH em intestino delgado também tem sido estudada como possível causa de alteração digestiva em pacientes pós-transplante. Além dos estudos endoscópicos por cápsula, um marcador que vem sendo testado é a citrulina. O intestino delgado é a principal fonte deste aminoácido em nosso organismo. Estudos prévios em pacientes sem DECH demonstraram correlação entre os níveis plasmáticos reduzidos de citrulina e dano intestinal. Tais achados foram também descritos em pacientes com DECH intestinal. Esse aminoácido tem demonstrado efeito sobre o apetite. Malone et al., demonstraram maior ingestão oral entre pacientes sem DECH ou com DECH-a grau 1 comparado com os demais. Os sintomas associados à DECH, sobretudo do trato digestivo, são relacionados como agentes causais da nutrição inadequada. No entanto, isso não é tão facilmente explicado. Parece que a própria atividade da DECH pode ter papel sobre a supressão do apetite.

DIARRÉIA E ENTEROPATIA PERDEDORA DE PROTEÍNAS

A diarreia é um dos principais sintomas da DECH de trato digestivo baixo. Contudo, sua etiologia nesta entidade é multifatorial, podendo incluir atrofia vilosa, ulcerção de mucosa, disfunção secretória, fatores osmóticos, insuficiência pancreática e alteração do trânsito intestinal. Ela é frequentemente esverdeada, líquida, mucoid e pode ser de grande quantidade.

O dano do tecido gastrintestinal provocado pela DECH pode levar a diversos problemas, incluindo desidratação, perda de eletrólitos e enteropatia perdedora de proteínas. Tal situação é definida pelo aumento da reabsorção de sais biliares e colesterol serem excretados pelo duto biliar. Ademais, a síndrome nefrótica, que pode levar à dislipidemia significante, o que pode levar a um risco aumentado de DECH. Por outro lado, a DECH pode também, por meio de mecanismos inflamatórios, levar a um estado de hiperglycemia. Além disso, os corticosteroides utilizados no tratamento da DECH possuem hiperglycemia como um dos efeitos colaterais mais comuns.

Com relação à dislipidemia, diversas medicações utilizadas no tratamento da DECH estão relacionadas ao desenvolvimento desta complicação (Tabela 7). Contudo, não apenas as medicações imunossupressoras afetam a homeostase lipídica. A DECH do figado pode levar a elevações de colesterol e triglicerídeos, pela inabilidade dos sais biliares e colesterol serem excretados pelo duto biliar. Ademais, a síndrome nefrótica, que pode ser uma complicação grave da DECH, também pode levar à dislipidemia significante.

ALTERAÇÕES NO METABOLISMO DE CARBOÍDRATO E LIPÍDIOS

O controle glicêmico é importante durante o período pós-transplante. Hiperglicemia causa não somente impacto na função imune, mas também causa prejuízos em outros tecidos, como disfunção endotelial, elevação das citocinas pró-inflamatórias, catabolismos muscular e adiposo. Teoricamente, a hiperglycemia pode aumentar o nível de citocinas e o risco de doenças infecciosas, o que pode levar a um risco aumentado de DECH. Por outro lado, a DECH pode também, por meio de mecanismos inflamatórios, levar a um estado de hiperglycemia.

Com relação à dislipidemia, diversas medicações utilizadas no tratamento da DECH estão relacionadas ao desenvolvimento desta complicação (Tabela 7). Contudo, não apenas as medicações imunossupressoras afetam a homeostase lipídica. A DECH do figado pode levar a elevações de colesterol e triglicerídeos, pela inabilidade dos sais biliares e colesterol serem excretados pelo duto biliar. Ademais, a síndrome nefrótica, que pode ser uma complicação grave da DECH, também pode levar à dislipidemia significante.

PERDA DE MASSA MAGRA E MIOPATIA

A perda de massa magra é frequente entre pacientes com DECH e consequência das alterações nutricio-
nais por ela ocasionadas. A terapia com corticosteroide influencia de forma significativa nessa complicação. O desenvolvimento de DECH-c parece ser fator de risco independente para a perda de massa corpórea magra, sendo maior a probabilidade entre aqueles com DECH extensa e naqueles que necessitaram de uso de corticosteroides.\(^{(75,76)}\)

INTERVENÇÃO NUTRICIONAL NA DOENÇA DO ENXERTO CONTRA O HOSPEDEIRO AGUDA E CRÔNICA

Os pacientes com DECH têm dificuldade para ingerir alimentos por várias razões, dependendo do órgão envolvido. Frequentemente, necessitam de modificações na dieta, suplementos orais e terapia de suporte nutricional (TSN), para prevenir ou tratar a desnutrição.\(^{(77)}\)

Segundo Bassim et al.,\(^{(18)}\) as principais indicações para o início da TSN são náuseas e vômitos não controlados, diarreia volumosa, dor na mucosa oral e esofágica, disfagia, disgeusia, xerostomia, anorexia, saciedade precoce e perda de peso. Em especial, a DECH-a de TGI e a DECH-c oral, gastrintestinal e pulmonar produzem desnutrição grave e levam a um comprometimento da capacidade funcional e da qualidade de vida dos pacientes, daí a necessidade do início precoce de TSN.

A terapia nutricional é de extrema importância como suporte ao tratamento para combater os efeitos deletérios da DECH e contornar os efeitos adversos dos medicamentos.\(^{(15,25,77,78)}\)

MANEJO DE SINTOMAS POR MODIFICAÇÕES NUTRICIONAIS

De acordo com o Consenso de Nutrição Oncológica do Instituto Nacional do Câncer José de Alencar,\(^{(21)}\) algumas intervenções nutricionais podem ser orientadas para melhorar e controlar os sintomas gastrintestinais.

Saciedade precoce

Conscientizar o paciente da importância da alimentação; realizar fracionamento da dieta (de seis a oito refeições/dia); modificar as fibras da dieta por meio de cocção e/ou trituração, para reduzir a saciedade (frutas sem casca, legumes e verduras cozidos, sopas e sucos líquidificados); aumentar a densidade calórica e proteica das refeições; não ingerir líquidos durante as refeições; utilizar carnes magras, cozedas, picadas, desfiadas ou moídas em porções reduzidas; evitar alimentos e preparações ricos em gorduras; e preferir bebidas não gaseificadas.\(^{(21)}\)

Diarreia

O fracionamento da dieta é importante, bem como reduzir o volume de alimentos por refeição; avaliar a restrição de lactose, sacarose, glúten, gordura, fibras insolúveis, cafeína e teína; aumentar a ingestão hídrica e de líquidos isotônicos para, no mínimo, 3L/dia; evitar alimentos fluidulentos e hiperosmolares; e evitar temperaturas extremas.\(^{(21)}\)

Disfagia

Acompanhamento com o fonouaudiólogo, para adequar a modificação da dieta; orientar o paciente quanto a cuidados com alimentos secos e duros, e preferir alimentos pastosos, de fácil mastigação e deglutição; ingerir pequenos volumes de líquidos junto às refeições, para facilitar a mastigação e a deglutição; e manter a cabeceira elevada para alimentar-se.\(^{(21)}\)

Xerostomia

O consumo de, no mínimo, 2L/dia de água e líquidos em geral até 3L/dia é necessário; estimular a ingestão de alimentos mais prazerosos; adequar a consistência dos alimentos conforme a aceitação do paciente; evitar o consumo de café, chá e refrigerantes que contenham cafeína; manter higiene oral e hidratação labial; utilizar gotas de limão nas saladas e bebidas; evitar alimentos flatulentos e hiperosmolares; e evitar temperaturas extremas.\(^{(21)}\)

Náuseas e vômitos

É necessário orientar uma alimentação fracionada em pequenos volumes; dar preferência a alimentos mais secos, cítricos, salgados e frios ou gelados; manter a higiene oral; não realizar jejuns prolongados; chupar gelo 40 minutos antes das refeições; não comer frituras e alimentos gordurosos; evitar alimentos e preparações que exalam odor forte e de sabor muito doce; procurar realizar as refeições em locais arejados; não ingerir líquidos durante as refeições, utilizando-os em pequenas quantidades nos intervalos, preferencialmente gelados (por exemplo, picolé); não deixar logo após as refeições; e utilizar gengibre pelo seu efeito antiemético, por meio de infusão, como tempero ou adicionado a sucos.\(^{(21)}\)
Anorexia
O paciente deve ser orientado acerca da importância de uma ingestão alimentar adequada; fracionamento da dieta e volume reduzido; maior densidade calórica e proteica das refeições; consumir alimentos com melhor tolerância e consistência, conforme preferências do paciente.\(^{(21)}\)

Odinofagia
A consistência da dieta deve ser modificada conforme a tolerância; melhorar a densidade calórica e proteica das refeições; boa higiene oral; não consumir alimentos secos, duros, cítricos, salgados, picantes e condimentados; evitar temperaturas extremas.\(^{(21)}\)

Dieta oral
Nos envolvimentos leves da cavidade oral, deve-se evitar o consumo de alimentos ácidos; em casos mais graves com estenose de esôfago, a consistência e a temperatura da dieta devem ser modificadas, dando preferência para forma líquida ou liquidificada, servidas em temperatura moderada ou ambiente.\(^{(21,74)}\)

Durante o tratamento com altas doses de glicocorticoides e/ou inibidores de calcineurina é importante a orientação adequada ao paciente. São recomendadas refeições frequentes e fracionadas, alimentação rica em fibras solúveis e insolúveis, dieta hiperproteica, com redução de carboidratos simples e de alto índice glicêmico, redução de sódio, boa ingestão hídrica e consumo adequado de alimentos-fontes de vitamina D, cálcio, magnésio, zinco e, se necessário, a suplementação destes elementos.\(^{(79,80)}\)

Suplementos orais
Independentemente do tipo e do grau da DECH, quando o paciente apresenta ingestão alimentar abaixo de 70% das necessidades energéticas nos últimos 3 dias e sintomas que prejudiquem a alimentação adequada é importante intervir com o uso de suplementos nutricionais hiperclorídicos e hiperproteicos (adaptados de acordo com a liberação e a fase da dieta restrita, no caso de DECH intestinal). A suspensão do suplemento nutricional via oral é indicada somente na presença de instabilidade hemodinâmica e/ou piora da absorção intestinal, distensão abdominal, mucosite, diarreia, vômitos incoercíveis, ileo paralítico e sangramento intestinal.\(^{(21)}\)

Existem fortes evidências indicando que a introdução precoce de NE pode diminuir tanto a incidência quanto a gravidade da DECH-TGI, podendo ser uma forma de profilaxia. Além disso, a NE está associada a uma menor mortalidade relacionada a infeções e a períodos mais curtos de enxertia de neutrófilos.\(^{(81)}\)

NUTRIÇÃO ENTERAL
Caso a ingestão alimentar esteja abaixo de 60% das necessidades energéticas nos últimos 3 dias ou a via oral estiver contraindicada, a NE pode ser prescrita.\(^{(21)}\) A via enteral, se tolerável e clinicamente possível, pode ser escolhida por manter a função digestiva e a integridade da barreira mucosa, prevenindo a translocação bacteriana no trato digestivo.\(^{(25)}\)

De acordo com a American Society for Parenteral and Enteral Nutrition,\(^{(77)}\) quando a contagem de neutrófilos e a de plaquetas estão dentro da normalidade e o TGI está cicatrizado, a NE é segura para transição da terapia nutricional parenteral para dieta oral ou quando há necessidade de TSN no caso de DECH, entre outras complicações tardias do TCTH.

Segundo revisão sistemática realizada por Baumgartner et al.,\(^{(15)}\) vários estudos têm comparado a NE com TNP, mostrando resultados superiores para a via enteral e moderada a alta tolerância à sonda, sendo a TNP recomendada somente em casos de insuficiência gastrintestinal. A NE é contraindicada na presença de instabilidade hemodinâmica e/ou piora da absorção intestinal, distensão abdominal, mucosite, diarreia, vômitos incoercíveis, ileo paralítico e sangramento intestinal.\(^{(21)}\)

Existem fortes evidências indicando que a introdução precoce de NE pode diminuir tanto a incidência quanto a gravidade da DECH-TGI, podendo ser uma forma de profilaxia. Além disso, a NE está associada a uma menor mortalidade relacionada a infeções e a períodos mais curtos de enxertia de neutrófilos.\(^{(81)}\)

DIETA PARENTERAL
A TNP também pode ser indicada para pacientes que apresentam aceitação da dieta oral inferior a 60% a 70% das necessidades nutricionais por 3 dias consecutivos,\(^{(82)}\) ou, ainda, em pacientes com défice energético-proteico, com uso exclusivo de NE.\(^{(83)}\)

As diretrizes da ESPEN recomendam dieta oral ou enteral, desde que sejam possíveis, mas, no caso de vômitos, diarreia incoercível, mucosite grave ou má absorção importante, a TNP deve ser a via preferencial.\(^{(36)}\)

Estudos demonstram que pacientes com DECH graus III-IV recebem mais TNP que pacientes com DECH graus I-II, não estando isentos de apresentarem complicações clínicas, relacionadas com a progressão do número de dias que recebem a TNP.\(^{(84)}\)

É importante salientar alguns cuidados com a prescrição e o acompanhamento da TNP. Pacientes desnutridos, com risco de síndrome de realimentação, devem receber aporte energético progressivo, na fase inicial (primeiro ao terceiro dia), com 20% das necessidades
energéticas basais. A oferta proteica pode ser oferecida desde o início, respeitando as funções renais e hepáticas. O controle glicêmico deve ser realizado respeitando níveis de glicemia menores que 180mg/dL e com a prevenção de hipertrigliceridemia, mantendo nível sérico inferior a 400mg/dL.(83) Além do acompanhamento da função hepática, com dosagem de AST, ALT, gama glutamil transferase, fosfatase alcalina e bilirrubina duas vezes por semana, devem ser incluídos nos exames de rotina ureia, creatinina, dosagem sérica de eletrólitos (potássio, magnésio, fósforo, cálcio e sódio), colesterol, total e frações. O desmame da TNP deve ser gradativo, respeitando a oferta e a aceitação da dieta oral ou enteral pelo paciente.(83)

Manejo nutricional na doença do enxerto contra o hospedeiro intestinal

A avaliação nutricional dos pacientes acometidos por essa complicações pode ser muito difícil, visto que muitos apresentam retenção de líquidos relacionados a baixos níveis de albumina sérica, o que mascara a perda de peso corporal. Além disso, o tratamento padrão da DECH-TGI é corticoterapia, que tem efeitos diretos na composição corporal, levando a aumento da gordura corporal, diminuição da massa magra, retenção hídrica e de sódio, hipertrigliceridemia, hipercolesterolemia, sarcopenia e desmineralização óssea, podendo mascarar o estado nutricional dos pacientes.(25)

Os objetivos da terapia nutricional na DECH-TGI são fornecer o suporte nutricional adequado e individualizado para manter ou recuperar o estado nutricional do paciente, controlar os sintomas, reestabelecer a integridade da mucosa intestinal, satisfazer o paciente e lhe promover qualidade de vida, sempre que possível.(25,85)

TERAPIA NUTRICIONAL NA DOENÇA DO ENXERTO CONTRA O HOSPEDEIRO INTESTINAL

Dieta oral

No National Cancer Center Japan, realizou-se um estudo com a terapia nutricional escalonada com protocolo próprio, tendo sido observado que o estado nutricional dos pacientes tende a melhorar com esse tipo de terapia; porém, não foi observada melhora na evolução do grau da DECH-TGI.(86)

No Seattle Cancer Care Alliance, de acordo com o guia para médicos, a terapia nutricional também é baseada nesse tipo de terapia nutricional escalonada, e a evolução da dieta do paciente ocorre de acordo com sua tolerância e sintomas apresentados.(87)

O uso de suplementos orais artesanais ou industriais pode ser desencadeante, se a dieta da etapa correspondente e a vontade do paciente. Baseado nessa literatura segue a tabela 8, na qual a terapia nutricional do paciente deve alterada de acordo com os sintomas, a evolução clínica e sua tolerância; se, ao passar para uma etapa subsequente, o paciente não tolerar a alteração da dieta, esta deve ser regredida para a etapa anterior.

Tabela 8. Progressão escalonada da terapia nutricional de pacientes acometidos por doença do enxerto contra o hospedeiro intestinal

Etapa	Sintomas	Terapia nutricional
1. Repouso intestinal	Grande volume de diarreia aquosa (acima de 1.000mL/dia); cólicas intestinais; depleção da albumina sérica; diminuição do trânsito intestinal; obstrução intestinal; náuseas e vômitos	Somente TNP
2. Introdução de alimentação oral/enteral	Volume de diarreia menor que 500mL/dia; diminuição das cólicas intestinais; melhora do tempo de trânsito intestinal; diminuição das náuseas e vômitos	TNP + dieta oral/enteral com características: líquida isossomótica, sem resíduos, sem lactose, sem ácidos e hipogordurosa
3. Introdução de alimentos sólidos	Ausência ou diminuição das cólicas e fezes mais consistentes	Dieta oral/enteral com características: alimentos sólidos, sem resíduos, sem lactose, hipogordurosa e sem ácidos e irritantes gástricos
4. Expansão da dieta	Ausência ou diminuição das cólicas e fezes mais consistentes	Dieta oral/enteral (se necessário, de acordo com a individualidade do paciente) com características: pobre em fibras, lactose, ácidos, irritantes gástricos e gordura de acordo com tolerância do paciente
5. Introdução da dieta habitual do paciente	Ausência de cólicas e fezes em consistência normal	Dieta oral com características: introdução gradual e de acordo com a tolerância do paciente de alimentos ácidos, irritantes gástricos, com fibras, lactose e gordura

Fonte: Adaptado de Fred Hutchinson Cancer Research Center. Long-term follow-up after hematopoietic stem cell transplant. Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance [Internet]. Seattle, WA; 2014 [citado 25 Jun 2019]. Disponível em: https://www.fredhutch.org/content/dam/public/Treatment-Support/Long-Term-Follow-Up/physician.pdf.(80) Gauvreau JM, Lenssen P, Cheney CL, Aker SN, Hutchinson ML, Barale KV. Nutritional management of patients with intestinal graft-versus-host disease. J Am Diet Assoc. 1981;79(6):673-7.(88)
Dieta parenteral
Os pacientes com DECH-TGI na fase aguda e inicial da doença geralmente apresentam volume de diarreia >1.000mL/dia, inviabilizando a nutrição por via oral ou enteral, suficiente para suprir suas necessidades nutricionais mínimas. Isso pode durar dias ou semanas. Desse modo, a terapia nutricional mais indicada seria a repouso do TGI com jejum e uso da terapia nutricional por via parenteral.\(^{[20]}\)

A abordagem mais tradicional no manejo nutricional na DECH-TGI tem sido a administração de TNP e o início da ingestão oral após a recuperação dos sintomas do TGI. Porém, devido ao tempo prolongado de uso da TNP, ocorrem danos à mucosa intestinal, induzindo a do TGI. Porém, devido ao tempo prolongado de uso da TNP, ocorrem danos à mucosa intestinal, induzindo a atrofia e mais disfunções intestinais.

Dieta enteral
A introdução da dieta oral ou NE a partir da etapa 2 deve acontecer após redução do volume de diarreia para menos que 500mL/dia; diminuição das cÓlicas intestinais; melhora do tempo de trânsito intestinal; diminuição das náuseas e vômitos. Essa introdução gradativa deve ser priorizada, pois auxilia na manutenção do trofismo intestinal, ajudando a preservar a barreira mucosa, e a imunidade local e sistêmica, e, também, a evitar translocação bacteriana.\(^{[13]}\)

A escolha pela via oral, enteral ou concomitante durante as etapas de evolução da terapia nutricional se dá de acordo com os sintomas, a possibilidade de alimentação por via oral e nas situações em que a dieta oral for inadequada para alcançar as necessidades nutricionais.

A NE, se escolhida como via de nutrição ou de suplementação, deve seguir as características de cada etapa. A partir da etapa 2, o paciente não tolera grandes volumes de dieta oral e/ou enteral, de forma que a TNP não precisa ser suspensa, a fim de suprir todas as necessidades nutricionais do paciente.

Estudos mostram que o uso de NE na DECH-TGI, em comparação ao uso da TNP, por preservar o trofismo intestinal, melhorar a função da barreira do intestinal e, assim, diminuir o risco de translocação bacteriana, reduz as complicações infecciosas.\(^{[89,90]}\) Porém, historicamente, os centros de transplante preferem a TNP à NE, dificultando seu uso precoce ou durante o TCTH.

A IMPORTÂNCIA DA MICROBIOTA NO TRANSPLANTE DE CÉLULAS-TRONCO HEMATOPOIÉTICAS
Microbiota intestinal
O TGI humano pode ser povoado por até 100 trilhões de bactérias (para comparação, o número de células no corpo humano é estimado em 10 trilhões), além de vírus e fungos presentes também em considerável número e diversidade, e que podem pertencer a aproximadamente mil espécies diferentes em um único indivíduo; já foram identificadas mais de 15 mil espécies diferentes em amostras derivadas de TGI humanos.\(^{[91]}\)

O sistema imunológico do TGI é a primeira linha de defesa contra microrganismos e outras substâncias ingeridas, e evoluiu não apenas para a proteção contra potenciais patógenos, mas, também, para tolerar bactérias comensais que possuem um papel benéfico na homeostase, permitindo simbiose com a microbiota intestinal. O sistema imunológico gastrintestinal mantém a barreira mucosa por meio da secreção de peptídeos e anticorpos antimicrobianos, e a microbiota comensal participa da fisiologia intestinal do hospedeiro.\(^{[92,93]}\)

A exposição intestinal a bactérias está relacionada ao recrutamento de linfócitos T regulatórios (Tregs).\(^{[94,95]}\) As células Tregs são fundamentais para o desenvolvimento de uma resposta imunológica apropriada a antígenos dentro do TGI, mas também influenciam na imunidade sistêmica.\(^{[96,97]}\)

As bactérias intestinais são responsáveis pela quebra de fibras da dieta, sendo tambémimportantes para a produção de uma série de metabólitos com funções na fisiologia intestinal. Os mais bem conhecidos destes metabólitos são os ácidos graxos de cadeias curtas (SCFAs - short chain fatty acids), como o butirato, o propionato e o acetato, que servem como fontes de energia para as células epiteliais intestinais e induzem respostas imunológicas regulatórias de proteção tanto localmente no TGI quanto sistemicamente.\(^{[98,99]}\)

Disbiose
A quimioterapia e os regimes de condicionamento alteram a composição da microbiota intestinal, provocando a redução de Clostridium clusters XIV e bifidobactérias, e o aumento de Enterococcus. Essa alteração da microbiota é chamada disbiose.\(^{[100-102]}\)

Um estudo específico com pacientes submetidos ao TCTH encontrou níveis aumentados de proteobactérias, incluindo espécies de Escherichia e redução dos níveis de Firmicutes, incluindo espécies de Blautia após a quimioterapia.\(^{[102]}\)

Entretanto, a relação causal entre quimioterapia e microbiota é difícil de ser estabelecida, pois muitos dos pacientes estudados receberam antibióticos profiláticos concomitantemente com a quimioterapia.

Microbiota intestinal e doença do enxerto contra o hospedeiro
A microbiota intestinal normal apresenta grande diversidade e é dominada por bactérias anaeróbias.\(^{[103]}\) Durante a
Pereira AZ, Vigorito AC, Almeida AM, Candolo AA, Silva AC, Brandão-Anjos AE, Silva RL, Souza CL, Castro Junior CG, Oliveira JS, Barban JB, Mancilha EM, Todaro J, Lopes LP, Macedo MC, Rodrigues M, Ribeiro PC, Silva RL, Roberto TS, Rodrigues TC, Cottsura VA, Paton EJ, Barros GM, Almeida RD, Moreira MC, Flowers ME

intração, muitos pacientes submetidos ao TCTH per- dem esta diversidade, e as mudanças que ocorrem são influenciadas tanto pelos tratamentos antimicrobianos quanto pelo desenvolvimento de DECH.\(^{(104-106)}\)

O impacto da microbiota sobre a DECH foi inicial- mente proposto nos anos 1970, após demonstração de que camundongos mantidos em condições livres de germes desenvolviam menos DECH de TGI.\(^{(107,108)}\) Estudos clínicos subsequentes que evidenciaram resultados pro- missores na descontaminação intestinal de pacientes transplantados\(^{(109,110)}\) não foram confirmados em pes- quisas posteriores.\(^{(111,112)}\)

Amplo estudo prospectivo focando a descontami- nação de bactérias anaeróbicas evidenciou redução no desenvolvimento de DECH, indicando que a descon- taminação seletiva poderia ter efeitos benéficos.\(^{(113)}\)

A perda da diversidade intestinal observada em pa- cientes submetidos ao TCTH é geralmente associada à perda de espécies de Clostridium, que reconhecidamen- te produzem ácidos graxos de cadeia curta a partir das fibras da dieta.\(^{(114)}\)

O butirato é a fonte de energia preferencial das células epiteliais intestinais, e um estudo sugere que quanti- dades reduzidas de butirato são encontradas nas células epiteliais intestinais de camundongos submetidos ao TCTH, e a adição destes ácidos graxos reduz as lesões intestinais e o desenvolvimento de DECH.\(^{(115)}\)

Estes achados são reproduzidos pela administração de espécies variadas de bactérias produtoras de butira- to pertencentes à classe Clostridia, e estudo clínico de- monstrou que a abundância intestinal de bactérias do gé- nero Blautia, da classe Clostridia, correlaciona-se com risco reduzido de mortalidade devido à DECH.\(^{(116)}\)

A administração de antibióticos para tratamento da neutropenia febril é, provavelmente, o principal fator que afeta as mudanças da microbiota observadas na evolu- ção dos pacientes transplantados, e a escolha do regime de antibiótico utilizado influencia na incidência de DECH. A administração de imipenem-cilastatina e piperacilina-tazobactam foi associada a maior mortalida- de relacionada à DECH em 5 anos de seguimento, em um estudo retrospectivo.\(^{(117)}\) Este mesmo estudo não de- monstrou a associação entre metronidazol e redução de DECH reportado anteriormente,\(^{(113)}\) o que pode ser de- vido a inúmeros fatores, incluindo o uso de combinações diferentes de antibióticos entre os estudos, bem como diferenças culturais e geográficas, que podem influen- ciar na flora intestinal.

A microbiota intestinal pode não apenas predispor a DECH, mas também atuar na recuperação e até na prevenção da doença. Os danos intestinais causados pe- los regimes de condicionamento provocam aumento na permeabilidade intestinal que permite a translocação

> de bactérias por meio da barreira entérica. Como con- sequência, a estimulação imunológica por uma série de patógenos e moléculas associadas, como os lipopolissa- carídeos e o peptidoglicano bacterianos, reforça a res- posta inflamatória mediada por citocinas, propiciando o cenário ideal para a ativação aloógênicos dos linfócitos T.

O grau de perda da diversidade da microbiota intesti- nal é um fator de risco para a mortalidade relaciona- da ao transplante (MRT), incluindo a mortalidade por DECH, infecções e falências orgânicas após TCTH.\(^{(118)}\)

I NUTRIÇÃO A MICROBIOTA

O uso de TNP reduz o montante de nutrientes que alcan- ça o epitélio intestinal, e, dessa maneira, algumas das alterações na microbiota observada durante o TCTH podem decorrer da quantidade insuficiente de nutrien- tes no TGI para manter uma flora equilibrada.\(^{(116)}\)

O estudo que evidenciou associação entre a redu- ção de Blautia e a DECH também mostrou correlação entre este achado e prolongada TNP.\(^{(116)}\) Estes achados sugerem que NE, ao contrário da TNP, pode exercer efeito benéfico na flora intestinal pós-TCTH e, talvez, acelerar a recuperação do paciente.

Uso de probióticos e prebióticos

Uma atenção crescente tem sido dada ao potencial de probióticos e prebióticos na prevenção e no tratamento da disbiose intestinal. Os probióticos são suplementos nutricionais que contêm quantidade definida de mi- croorganismos viáveis, cuja administração pode conferir benefícios ao paciente,\(^{(119)}\) enquanto os prebióticos con- sistem em ingredientes alimentares não digeríveis (por exemplo, fibras não digeríveis), que favorecem o cresci- mento de bactérias benéficas.\(^{(119)}\)

Até pouco tempo atrás, o uso de probióticos em indivíduos imunossuprimidos era totalmente proscrito, pois se acreditava que os mesmos, por serem bactérias vivas, poderiam causar doenças infecciosas graves. Por- rêm, esse conceito vem sendo gradualmente modificado por vários estudos que demonstram, inicialmente, sua segurança nesse perfil de pacientes, além de potenciais efeitos de melhor prognóstico.

De maneira geral, vários estudos demonstram que o uso de probióticos em diversas condições clínicas - como nas doenças inflamatórias intestinais - é seguro pelo fato de serem indivíduos imunossuprimidos e também por estar relacionado à redução da resposta inflamatória sis- têmica e local, por meio de adequada resposta imune; portanto, a indicação para o uso de probióticos em pa- cientes submetidos ao TCTH alogênico baseia-se nesta condição.\(^{(120,121)}\)
Sabe-se que estes microrganismos podem inibir a atuação de patógenos externos; e melhorar a função de barreira intestinal, aumentando a produção de muco e de peptídeos com propriedades bactericidas, melhorando a estrutura das junções celulares entre os enterócitos e prevenindo apoptose celular precoce.\(^{(120,121)}\)

Uma das cepas que mais tem sua segurança comprovada é o *Lactobacillus plantarum* (LPB). Além da segurança, também comprova-se *in vitro* que seu uso pré-TCTH diminui gravidade e mortalidade por DECH.\(^{(104)}\)

Segundo Coehn et al., a análise retrospectiva de prontuários de 3.796 pacientes submetidos ao TCTH no período de 2002 a 2011, com o intuito de identificar infecção de corrente sanguínea por agentes probióticos (*Lactobacillus*, *Bifidobacterium*, *Streptococcus thermophilus* e *Saccharomyces*), evidenciou que apenas 0,5% (n=19) desenvolveu esta condição 1 ano após o transplante, sendo que, dos 19 doentes, 74% receberem TCTH alogeênico, sendo 98% de infecção de corrente sanguínea por *Lactobacillus*.\(^{(121)}\)

Em 2004, Gerbitz et al., demonstraram em estudo experimental em ratos que o grupo tratado com *Lactobacillus rhamnosus* teve menor mortalidade que o grupo controle, principalmente no pós-TCTH recente (7 a 14 dias após infusão das células), além de apresentar manifestações mais brandas da DECH.\(^{(122)}\)

Em 2015, Laval et al., publicaram outro estudo *in vitro*, considerando tanto a hipótese de que a permeabilidade das células intestinais está aumentada em várias doenças inflamatórias intestinais e inclusive na DECH, quanto a já comprovada teoria de que determinadas cepas probióticas podem aumentar a integridade intestinal. Nesse estudo, demonstram que o uso de *Lactobacillus rhamnosus* pode restaurar parcialmente a função de barreira dos enterócitos e também aumentar a produção de dipeptídeos protetores da mucosa intestinal.\(^{(123)}\)

Em 2017, Gorshein et al., demonstraram em estudo com 31 pacientes submetidos a TCTH alogeênico que receberam *Lactobacillus rhamnosus* na dose diária de 10 bilhões de cepas, que seu uso é seguro e sem correlação com complicações infecciosas graves; porém, não foi evidenciada diferença estatística na morbimortalidade em ambos os grupos.\(^{(124)}\)

Segundo Ladas et al., o uso de LPB é submetido à rigorosa análise microbiológica e, por isso, comprovadamente descontaminado, na dose de 1×108 colônias ofertada do dia -7 até o dia +14. Em estudo envolvendo 31 crianças e adolescentes (2 a 17 anos) submetidos ao TCTH alogeênico com regime de condicionamento mioablativo mostrou-se seguro, de forma que não foi observado episódio de bacteremia por LPB, bem como nenhuma outra complicação grave relacionada ao uso do LPB.\(^{(125)}\)

Ainda segundo Ladas et al., 70% dos pacientes não desenvolveram DECH-a no d+100 e nenhum dos pacientes que vieram a óbito no d+100 desenvolveu DECH-a. Dos 30% que desenvolveram DECH-a, nenhum paciente apresentou gravidade máxima (grau 4).\(^{(125)}\)

Embora o uso destes tratamentos pareça promissor, são necessários mais estudos clínicos para estabelecer a segurança e a eficácia dessas terapias. Um importante aspecto na eficácia do tratamento probiótico reside na capacidade de os microrganismos ingeridos sobreviverem ao ambiente ácido do estômago e do intestino delgado. Muitas cepas de lactobacilos, incluindo os mais comumente presentes em laticínios comuns, são sensíveis ao baixo pH gastrintestinal e não puderam ser reisolados em amostras fecais após administração em humanos,\(^{(126)}\) dificultando a interpretação de sua eficácia.

O uso de probióticos e prebióticos no TCTH ainda não é recomendado de forma rotineira.

I TRANSPLANTE DE MICROBIOTA FECAL

O transplante de microbiota fetal (TMF) pode ser utilizado para restaurar uma flora intestinal danificada. Um estudo com pequena série de pacientes com DECH refratária ou dependente de corticosteroides apresentou resultados promissores;\(^{(127)}\) no entanto, estudos maiores e mais bem controlados são necessários para determinar a eficácia do TMF no tratamento da DECH.

O TMF para o tratamento de infecções por *Clostridium difficile* resistentes já é uma técnica bem descrita em diversas populações.\(^{(128)}\) Seu uso ainda é modesto no contexto de pacientes pós-transplante, e uma das experiências pioneiras foi feita no Brasil, sem que houvesse maiores complicações.\(^{(129)}\) Desde então, outros casos já foram relatados com sucesso, utilizando doadores familiares ou não, e usando alguns métodos, como enteroscopia retrógrada ou a ingestão de cápsulas que se abrem somente no jejuno, liberando a nova microbiota.\(^{(130)}\)

No momento da publicação deste consenso, o TMF para fins de imunomodulação e tratamento da DECH é algo promissor, mas que só deve ser feito dentro de estudos clínicos bem delineados. É necessário entender quais componentes da microbiota são desejáveis, assim como saber qual seria o melhor momento de realizar esse tipo de intervenção. Já seu uso no tratamento de infecções por *Clostridium difficile*, embora careça de ensaios randomizados e grandes séries de casos nesse grupo de pacientes, pode ser considerado em situações especiais, já que, até o momento, não foram relatadas complicações.

II UM ORGANOGRAMA PRÁTICO

Abaixo as figuras 1 e 2 resumem de modo prático as condutas nutricionais na DECH.
TCTH: transplante de células-tronco hematopoéticas; TNO: terapia de nutrição oral; TNE: terapia de nutrição enteral; TNP: terapia de nutrição parenteral.

Figura 1. Planejamento nutricional ao transplante de células-tronco hematopoéticas

DECH: doença do enxerto contra o hospedeiro; TGI: trato gastrintestinal.

Figura 2. Planejamento nutricional da doença do enxerto contra o hospedeiro do trato gastrintestinal

Etapas condutas

1. Repouso intestinal/dieta zero até volume de diarreia <500mL.
2. Dieta líquida isotônica, sem lactose e pobre em resíduos (60mL a cada 2 - 3 horas).
3. Introduzir alimentos sólidos, em lactose, irritantes gástricos ou ácidos e pobre em gordura (20 e 40 gramas/dia); várias e pequenas refeições cada 3 - 4 horas.
4. Mantê-la alimentação sólida, aumentar lentamente a ingestão de gordura.
5. Progredir para dieta oral geral através das adições de alimentos restritos (1/dia), para avaliar a tolerância.
REFÉRENCIAS

1. Martin PJ, Schoch G, Fisher L, Byers V, Anasetti C, Appelbaum FR, et al. A retrospective analysis of therapy for acute graft-versus-host disease: initial treatment. Blood. 1990;76(8):1464-72.

2. Sullivan KM, Agura E, Anasetti C, Appelbaum F, Badger C, Bearman S, et al. Chronic graft-versus-host disease and other late complications of bone marrow transplantation. Semin Hematol. 1991;28(3):250-9. Review.

3. Ferrara JL, Levine JE, Reddy P, Holler E. Graft-versus-host disease. Lancet. 2009;373(9674):1550-61. Review.

4. Nikolic B, Lee S, Bronson RT, Grusby MJ, Sykes M. Th1 and Th2 mediate acute graft-versus-host disease, each with distinct end organ targets. J Clin Invest. 2000;105(9):1298-99.

5. Carlson MJ, West ML, Coghill JM, Panoskaltsis-mortari A, Blazar BR, Serody JS. In vitro differentiated Th17 cells mediate acute graft-versus-host disease with severe cutaneous and pulmonary pathology. Blood. 2008;113(6):1385-95.

6. Serody JS, Burkett SE, Panoskaltsis-Mortari A, Ng-Cashin J, McMahon E, Matsushima GK, et al. T-lymphocyte production of macrophage inflammatory protein-1alpha is critical to the recruitment of CCR9 (+) T cells to the liver, lung, and spleen during graft-versus-host disease. Blood. 2000;96(9):2973-80.

7. Kim YM, Sachs T, Asavaroengchai W, Bronson R, Sykes M. Graft-versus-host disease can be separated from graft-versus-lung effects by control of lymphocyte trafficking with FTY720. J Clin Invest. 2003;111(5):859-69.

8. Filipovich AH, Weisdorf D, Pavletic S, Socie G, Wingard JR, Lee SJ, et al. National Institutes of Health Consensus development panel on criteria for clinical trials in chronic graft-versus-host disease: I. Diagnosis and staging working group report. Biol Blood Marrow Transplant. 2005;111(2):945-56.

9. Jagniela MH, Ginimix HT, Avra M, Williams KM, Wolff D, Cowen EW, et al. National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: I. The 2014 Diagnosis and Staging Working Group report. Biol Blood Marrow Transplant. 2015;21(3):389-401.e1.
29. Roberts S, Thompson J. Graft-versus-host disease: nutrition therapy in a challenging condition. Nutr Clin Pract. 2005;20(4):440-50.

30. Zauner C, Rabitsch W, Schneeweiss B, Schiefermeier M, Greinix HT, Keil F, et al. Energy and substrate metabolism in patients with chronic extensive graft-versus-host disease. Transplantation. 2001;71(4):524-8.

31. Browning B, Thomann K, Seshadri R, Duerst R, Kletzel M, Jacobsohn DA. Weight loss and reduced body mass index: a critical issue in children with multorgan chronic graft-versus-host disease. Bone Marrow Transplant. 2006;37(5):527-33.

32. Nguyen HD, Chatterjee S, Haarberg KM, Wu Y, Bastian D, Heinrichs J, et al. Metabolic reprogramming of alloantigen-activated T cells after hematopoietic cell transplantation. J Clin Invest. 2016;126(4):1337-52.

33. Byersdorfer CA, Tkachov V, Opipari AW, Goodell S, Swanson J, Sandquist B, et al. Effector T cells require fatty acid metabolism during murine graft-versus-host disease. Blood. 2013;122(18):3230-7.

34. Weisfogel SA, Salati LM, Longsdorf JA, Ramsay NK, Sharp HL. Graft-versus-host disease of the intestine: a protein losing enteropathy characterized by fecal alpha-1-antitrypsin. Gastroenterology. 1983;85(5):1076-81.

35. Papadopoulou A, Lloyd DR, Williams MD, Darbyshire PJ, Booth IW. Gastrointestinal and nutritional sequelae of bone marrow transplantation. Arch Dis Child. 1996;75(3):208-13.

36. Arends J, Bachmann P, Baracos V, Barthelemy N, Bertz H, Bozzetti F, et al. ESPEN guidelines on nutrition in cancer patients. Clin Nutr. 2017;36(1):11-48.

37. Ziegler TR. Glutamine supplementation in cancer patients receiving bone marrow transplantation and high dose chemotherapy. J Nutr. 2001;131(9 Suppl):2578S-84S; discussion 2590S. Review.

38. Forchielli ML, Azzi N, Cadranel S, Paolucci G. Total parenteral nutrition in bone marrow transplant: what is the appropriate energy level? Oncology. 2003;64(1):7-13.

39. Nogue M, Rambaud J, Fabre S, Filippi N, Jorgensen C, Pers YM. Long-term nutritional support in chronic intestinal failure: results from a large-scale randomized trial. JPEN J Parenter Enteral Nutr. 2015;39(4):401-9.

40. Schloerb PR, Skikne BS. Oral and parenteral glutamine in bone marrow transplantation: a randomized, double-blind study. JPEN J Parenter Enteral Nutr. 1999;23(3):117-22.

41. Pegram AA, Kennedy LD. Prevention and treatment of veno-occlusive disease. Ann Pharmacother. 2001;35(7-8):935-42. Review.

42. Simopoulos AP. Omega-3 fatty acids in inflammation and autoimmune disease. Am J Clin Nutr. 2008;88(3):438S-448S; discussion 449S.

43. Heyland DK, Elke G, Cook D, Berger MM, Wischmeyer PE, Albert M, et al. Omega-3 fatty acids in inflammation and autoimmune disease. Am J Clin Nutr. 2008;88(3):438S-448S; discussion 449S.

44. Carpenter PA, Hoffmeister P, Chesnut CH 3rd, Storer B, Charuhas PM, Woolfrey AE, et al. Biphosphonate therapy for reduced bone mineral density in children with chronic graft-versus-host disease. Biol Blood Marrow Transplant. 2007;13(6):683-90.

45. Benashid M, Morys K, Mohty M, Savani BN. Vitamin D deficiency, autoimmunity, and graft-versus-host disease risk: implication for preventive therapy. Exp Hematol. 2012;40(4):263-7. Review.

46. Rosenthal J, Toprak SK, Demirer T. Current Review of Iron Overload and Related Complications in Hematopoietic Stem Cell Transplantation. Turk J Haematol. 2017;34(1):1-9.

47. Majhail NS, Lazarus HM, Burns LJ. Iron overload in hematopoietic cell transplantation. Bone Marrow Transplant. 2008;41(12):997-1003. Review.

48. Trabulo D, Ferreira S, Lage P, Rego RL, Teixeira G, Pereira AD. Esophageal stenosis with sloughing esophagitis: A curious manifestation of graft-versus-host disease. World J Gastroenterol. 2015;21(30):9217-22.

49. Palaniappa NC, Doyon L, Divino CM. Colonic perforation in graft versus host disease: a case report. Int Surg. 2012;97(1):14-6.

50. Katić M, Fisler F, Steinberg MM, Dobbin M, Curtis LM, Pulanić D, et al. Vitamin D levels and their associations with survival and major disease outcomes in a large cohort of patients with chronic graft-versus-host disease. Croat Med J. 2016;57(3):276-86.

51. Sproat L, Bolwell B, Rybicki I, Dean R, Sobecsks B, Pohlan B, et al. Vitamin D level after allogeneic hematopoietic stem cell transplant. Biol Blood Marrow Transplant. 2011;17(7):1079-83.

52. von Bahr L, Blennow O, Alm J, Björklund A, Malmberg KJ, Mougakakos D, et al. Increased incidence of chronic GVHD and CMV disease in patients with vitamin D deficiency before allogeneic stem cell transplantation. Bone Marrow Transplant. 2015;50(9):1217-23.

53. Glotzbach B, Ho VT, Aldridge J, Kim HT, Horowitz G, Ritz J, et al. Low levels of 25-hydroxyvitamin D before allogeneic hematopoietic SCT correlate with the development of chronic GVHD. Bone Marrow Transplant. 2013;48(4):593-7.

54. Benashid M, Morys K, Mohty M, Savani BN. Vitamin D deficiency, autoimmunity, and graft-versus-host disease risk: implication for preventive therapy. Exp Hematol. 2012;40(4):263-7. Review.

55. Rosenthal J, Toprak SK, Demirer T. Current Review of Iron Overload and Related Complications in Hematopoietic Stem Cell Transplantation. Turk J Haematol. 2017;34(1):1-9.

56. Majhail NS, Lazarus HM, Burns LJ. Iron overload in hematopoietic cell transplantation. Bone Marrow Transplant. 2008;41(12):997-1003. Review.

57. Carpenter PA, Hoffmeister P, Chesnut CH 3rd, Storer B, Charuhas PM, Woolfrey AE, et al. Biphosphonate therapy for reduced bone mineral density in children with chronic graft-versus-host disease. Biol Blood Marrow Transplant. 2007;13(6):683-90.

58. Wallace G, Jodele S, Howell J, Myers KC, Teusink A, Zhao X, Setchell K, Holtzapel C, Lane A, Taggart C, Laskin BL, Davies SM. Vitamin D Deficiency, and Survival in Children after Hematopoietic Stem Cell Transplant. Biol Blood Marrow Transplant. 2015;21(9):1627-31.

59. Leong DP, Kleing TJ, Kimber TE, Bady PG. Severe hypermagnesaemia related to laxative use in acute gastrointestinal graft-versus-host disease. Bone Marrow Transplant. 2006;38(11):71-2.

60. Attila E, Toprak SK, Demirer T. Current Review of Iron Overload and Related Complications in Hematopoietic Stem Cell Transplantation. Turk J Haematol. 2017;34(1):1-9.

61. Majhail NS, Lazarus HM, Burns LJ. Iron overload in hematopoietic cell transplantation. Bone Marrow Transplant. 2008;41(12):997-1003. Review.

62. Trabulo D, Ferreira S, Lage P, Rego RL, Teixeira G, Pereira AD. Esophageal stenosis with sloughing esophagitis: A curious manifestation of graft-versus-host disease. World J Gastroenterol. 2015;21(30):9217-22.

63. Palaniappa NC, Doyon L, Divino CM. Colonic perforation in graft versus host disease: a case report. Int Surg. 2012;97(1):14-6.

64. Marini BL, Choi SW, Byersdorfer CA, Cronin S, Frame DG. Treatment of dyslipidemia in allogeneic hematopoietic stem cell transplant patients. Biol Blood Marrow Transplant. 2015;21(5):809-20. Review.

65. Grigg AP, Angus PW, Hoyt R, Szer J. The incidence, pathogenesis and natural history of steatorrhea after bone marrow transplantation. Bone Marrow Transplant. 2003;31(8):701-3.

66. Nakasone H, Ito A, Endo H, Kida M, Koji I, Usuki K. Pancreatic atrophy is associated with gastrointestinal chronic GVHD following allogeneic PBSC transplantation. Bone Marrow Transplant. 2015;21(5):809-20. Review.

67. van der Velden WJ, Herbers AH, Brüggemann RJ, Feuth T, Peter Donnelly J, Blijlevens NM. Citrulline and albumin as biomarkers for gastrointestinal mucositis in recipients of hematopoietic SCT. Bone Marrow Transplant. 2013;48(7):977-81.

68. van der Velden WJ, Herbers AH, Feuth T, Schaad NP, Donnelly JP, Blijlevens NM. Intestinal damage determines the inflammatory response and early complications in patients receiving conditioning for a stem cell transplant. PLoS One. 2010;5(12):e15156.
Consenso Brasileiro de Nutrição no Transplante de Células Tronco Hematopoéticas: doença do enxerto contra o hospedeiro
108. Jones JM, Wilson R, Bealmear PM. Mortality and gross pathology of secondary disease in germfree mouse radiation chimeras. Radiat Res. 1971;45(3):577-88.

109. Storb R, Prentice RL, Buckner CD, Clift RA, Appelbaum F, Deeg J, et al. Graft-versus-host disease and survival in patients with aplastic anemia treated by marrow grafts from HLA-identical siblings. Beneficial effect of a protective environment. N Engl J Med. 1983;308(6):302-7.

110. Vossen JM, Heidt PJ, van den Berg H, Gerritsen EJ, Hermans J, Dooren LJ. Prevention of infection and graft-versus-host disease by suppression of intestinal microflora in children treated with allogeneic bone marrow transplantation. Eur J Clin Microbiol Infect Dis. 1990;9(1):14-23.

111. Passweg JR, Rowlings PA, Atkinson KA, Barrett AJ, Gale RP, Gratwohl A, et al. Influence of protective isolation on outcome of allogeneic bone marrow transplantation for leukemia. Bone Marrow Transplant. 1992;9(12):1231-8.

112. Petersen FB, Buckner CD, Clift RA, Nelson N, Counts GW, Meyers JD, et al. Infectious complications in patients undergoing marrow transplantation: a prospective randomized study of the additional effect of decontamination and laminar air flow isolation among patients receiving prophylactic systemic antibiotics. Scand J Infect Dis. 1987;19(5):559-67.

113. Beelen DW, Elmaagacil A, Müller KD, Hirche H, Scharer UW. Influence of intestinal bacterial decontamination using metronidazole and ciprofloxacin or ciprofloxacin alone on the development of acute graft-versus-host disease after marrow transplantation in patients with hematologic malignancies: final results and long-term follow-up of an open-label prospective randomized trial. Blood. 1999;93(10):3267-75.

114. Ganapathy V, Thangaraju M, Prasad PD, Martin PM, Singh N. Transporters and receptors for short-chain fatty acids as the molecular link between colonic bacteria and the host.Curr Opin Pharmacol. 2013;13(6):869-74. Review.

115. Mathewson ND, Jenq R, Mathew AV, Koenigskench M, Harash A, Toubai T, et al. Gut microbiome-derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease. Nat Immunol. 2016;17(5):505-13. Erratum in: Nat Immunol. 2016;17(12):1235.

116. Jenq RR, Taur Y, Devlin SM, Ponce DM, Goldberg JD, Ahr KF, et al. Intestinal Blautia Is Associated with Reduced Death from Graft-versus-Host Disease. Biol Blood Marrow Transplant. 2015;21(8):1373-83.

117. Shono Y, Docampo MO, Peled JU, Perobelli SM, Velardi E, Tsai JJ, et al. Increased GVHD-related mortality with broad-spectrum antibiotic use after allogeneic hematopoietic stem cell transplantation in human patients and mice. Sci Transl Med. 2016;8(339):339ra71.

118. Taur Y, Jenq RR, Peralles MA, Littmann ER, Morjaria S, Ling L, et al. The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation. Blood. 2014;124(7):1174-82.

119. de Vrese M, Schrezenmeir J. Probiotics, prebiotics, and synbiotics. Adv Biochem Eng Biotechnol. 2008;111:1-66. Review.

120. Taur Y, Xavier JB, Lipuma L, Ubeda C, Goldberg J, Gobourne A, et al. Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. Clin Infect Dis. 2012;55(7):905-14.

121. Cohen SA, Woodfield MC, Boyle N, Stednick Z, Boechl M, Fergam SA. Incidence and outcomes of bloodstream infections among hematopoietic cell transplant recipients from species commonly reported to be in over-the-counter probiotic formulations. Transpl Infect Dis. 2016;18(5):697-705.

122. Gerbitz A, Schultz M, Wilke A, Linde HJ, Schölmerich J, Andreesen R, et al. Probiotic effects on experimental graft-versus-host disease: let them eat yogurt. Blood. 2004;103(11):4365-7.

123. Laval L, Martin R, Natividade JN, Chain F, Miquel S, Desclée de Maredsous C, et al. Lactobacillus rhamnosus CNCM I-3690 and the commensal bacterium Faecalibacterium prausnitzii A2-165 exhibit similar protective effects to induced barrier hyper-permeability in mice. Gut Microbes. 2015;6(1):1-9.

124. Gorshein E, Wei C, Ambrosy S, Budney S, Vivas J, Shenkerman A, et al. Lactobacillus rhamnosus GG probiotic enteric regimen does not appreciably alter the gut microbiome or provide protection against GVHD after allogeneic hematopoietic stem cell transplantation. Clin Transplant. 2017;31(5):e12947.

125. Ladus EJ, Bhatia M, Chen L, Sandler E, Petrovic A, Berman DM, et al. The safety and feasibility of probiotics in children and adolescents undergoing hematopoietic cell transplantation. Bone Marrow Transplant. 2016;52(2):262-6.

126. Jacobsen CN, Rosenfeldt Nielsen V, Hayford AF, Møller PL, Michaelensen KF, Paerregaard A, et al. Probiotic effects on experimental graft-versus-host disease: let them eat yogurt. In vitro techniques and evaluation of the colonization ability of five selected strains in humans. Appl Environ Microbiol. 1999;65(11):4949-56.

127. Kakihana K, Fujioka Y, Suda W, Najima Y, Kuwata G, Sasajima S, et al. Fecal microbiota transplantation for patients with steroid-resistant acute graft-versus-host disease of the gut. Blood. 2016;128(16):2083-8.

128. Aroniadis OC, Brandt LJ, Greenberg A, Borody T, Kelly CR, Mellow M, et al. Long-term Follow-up Study of Fecal Microbiota Transplantation for Severe and/or Complicated Clostridium difficile Infection: A Multicenter Experience. J Clin Gastroenterol. 2016;50(5):398-402.

129. de Castro CG Jr, Ganc AJ, Ganc RL, Hammerschlag NL. Fecal microbiota transplantation after hematopoietic SCT: report of a successful case. Bone Marrow Transplant. 2015;50(1):145.

130. Webb BJ, Brunner A, Ford CD, Gaedik MA, Petersen FB, Huda D. Fecal microbiota transplantation for recurrent Clostridium difficile infection in hematopoietic stem cell transplant recipients. Transpl Infect Dis. 2016;18(4):629-33.