Integrated human-earth system modeling–state of the science and future directions: Supplementary Material

Katherine Calvin and Ben Bond-Lamberty
1. Full List of Articles and Categorizations

The complete list of articles, with their citation information, is included as a separate csv file. In this section, we provide additional information on the Integrated Models (Table S1) and other included articles (Table S2).

Table S1: Articles describing Integrated Models, including the Citation, DOI, Classification, and Spatial Categorization

Citation	DOI	Classification	Spatial
1 Collins et al. (2015)	10.5194/gmd-8-2203-2015	Integrated Model	Global
2 Yang et al. (2015)	10.1007/s11434-016-1175-x	Integrated Model	Global
3 Yang et al. (2015)	10.1007/s00375-015-5059-6	Integrated Model	Global
4 Scott et al. (2016)	10.1007/s10584-016-1602-8	Integrated Model	Regional-USA
5 Thornton et al. (2017)	10.1038/NCLIMATE3310	Integrated Model	Global
6 Leng and Tang (2014)	10.1175/JHM-D-13-01182.1	Integrated Model	Regional-China
7 Monier et al. (2015)	10.1007/s10584-014-1112-5	Integrated Model	Regional-USA
8 Monier et al. (2013)	10.5194/gmd-6-2053-2013	Integrated Model	Global
9 Hejazi et al. (2015)	10.1073/pnas.1421675112	Integrated Model	Regional-USA
10 Voisin et al. (2017)	10.1002/2016WR019767	Integrated Model	Regional-USA
11 Monier et al. (2013)	10.1088/1748-9326/8/4/045008	Integrated Model	Regional-Eurasia
12 Nordhaus (1993)	10.1016/0928-7655(93)90017-o	Integrated Model	Global
13 Reilly et al. (2007)	10.1016/j.enpol.2006.01.040	Integrated Model	Global
14 Monier et al. (2018)	10.1038/s41467-018-02984-9	Integrated Model	Global
15 Beckage et al. (2018)	10.1038/s41553-017-0031-7	Integrated Model	Global
16 Voldoire et al. (2007)	10.1007/s00382-007-0225-y	Integrated Model	Global
17 Bahn et al. (2006)	10.1007/s10584-006-9108-4	Integrated Model	Global
18 Boumans et al. (2002)	10.1016/S0921-8300(02)00098-8	Integrated Model	Global
19 Jarvis et al. (2012)	doi:10.1038/nclimata1586	Integrated Model	Global
Table S2: Other included articles, including the Citation, DOI, and Classification

Citation	DOI	Classification
Newell (2012)	10.1016/j.gloenvcha.2012.03.006	Commentary
Wang et al. (2011)	NA	Commentary
Prestele et al. (2017)	10.5194/esd-8-369-2017	Commentary
van Vuuren et al. (2016)	10.5194/esd-7-267-2016	Commentary
Johns et al. (2011)	10.1007/s00382-011-1005-5	Commentary
Palmer and Smith (2014)	10.1038/512365a	Commentary
Moss et al. (2010)	10.1038/nature08823	Commentary
Hibbard et al. (2010)	10.1002/joc.2150	Commentary
Lanaak et al. (2013)	10.1016/j.envsoft.2012.09.006	Commentary
Mauser et al. (2013)	10.1016/j.cosust.2013.07.001	Commentary
Liverman and Roman (2008)	10.1002/esp.1715	Commentary
Motesharei et al. (2016)	10.1093/nsr/nww081	Commentary
Heck et al. (2016)	10.5194/esd-7-783-2016	Coupling example
Howells et al. (2013)	10.1038/nclimaiate.1789	Coupling example
Fujimori et al. (2017)	10.1371/journal.pone.0169733	Linking tool
Meiyappan et al. (2014)	10.1016/j.ecolmodel.2014.07.027	Linking tool
Bond-Lamberty et al. (2014)	10.5194/gmd-7-2545-2014	Linking tool
Joshi et al. (2013)	10.1007/s10584-013-0715-6	Linking tool
Di Vittorio et al. (2014)	10.5194/bg-11-6435-2014	Linking tool
West et al. (2014)	10.1088/1748-9326/9/064004	Linking tool
Hurtt et al. (2011)	10.1007/s10584-011-0153-2	Linking tool
Hurtt et al. (2006)	10.1111/j.1365-2486.2006.01150.x	Linking tool
Fowler et al. (2007)	10.1002/joc.1558	Linking tool
Wilby and Wigley (1997)	10.1177/03091339702100403	Linking tool
Mitchell (2003)	10.1023/A:102603530597	Linking tool
van Vuuren et al. (2010)	10.1002/wcc.50	Linking tool
Drobinski et al. (2012)	10.1016/j.envsoft.2012.01.017	Linking tool
Morier et al. (2017)	10.1088/1748-9326/aa7aee	Review
Verburg et al. (2016)	10.1016/j.gloenvcha.2015.08.007	Review
Keyre (2014)	10.1002/wene.98	Review
van Vuuren et al. (2012)	10.1088/1748-9326/72/2024012	Review
Zvoloff et al. (2014)	10.1007/s00267-012-0009-1	Review
Mueller-Hansen et al. (2017)	10.5194/esd-8-977-2017	Review
Diaz and Moore (2017)	10.1038/NCLIMATE3411	Review
Weyant et al. (2017)	doi:10.1093/reep/rew018	Review
Bonan and Doney (2018)	doi:10.1126/science.aam8328	Review

2. Detailed Methodology for Figure 5 and Figure S1

Figure 5 in the main text (and Figure S1 in this SM) illustrates the effects of feedbacks from the Integrated Model studies included in this review. Each of these feedbacks effects is shown alongside the results from the Representative Concentration Pathways (RCP; van Vuuren et al., 2011) to provide a sense of the relative size of the effects. We only include studies in this figure that quantify the effect of feedbacks for one of the five identified variables. Several of the studies
(e.g., Boumans et al., 2002; Bahn et al., 2006) develop projections of these variables for alternative scenarios or assumptions using an integrated model, but do not isolate the effect of feedbacks on the results. Jarvis et al. (2012) does isolate the effect of feedbacks. But the authors calculate the feedback parameters required in order to limit temperature to a particular threshold, rather than estimate the effect of feedbacks on temperature rise. These studies are excluded from the figure.

RCP Data

CO₂ emissions and CO₂ concentrations for the RCPs are from the official RCP database.¹ Cropland area is from the University of Maryland’s Land Use Harmonization (LUH) website.² Cropland data was upscaled from the gridded maps provided by LUH to global totals. Global mean temperature (GMT) was calculated as the multimodel mean of the GMT in the CMIP5 models. CMIP5 data was accessed from Earth System Grid.³ The data in Figure 5 show the difference in GMT from 1850 in degrees Celsius. Productivity change due to feedbacks is assumed to be zero for the RCPs, as the RCPs were designed excluding climate change effects (see van Vuuren et al., 2011).

Feedbacks Data

We extracted the effect of human-Earth system feedbacks on the various variables from the individual articles cited, relying on numbers in text/tables where possible and estimating numbers from figures when necessary (see Table S3). First, we identified the relevant scenario. For studies using the RCPs, this identification was straightforward. For other studies, we chose the closest RCP based on 2100 GMT. We then used the reported differences due to feedbacks to calculate an absolute value for Figure 5 by applying those changes to the RCP data. For example, Voldoire et al. (2007) states that “The annual mean global temperature simulated by the new-coupled system (A2-IM-CM3) is rather similar to the CNRM-CM3 simulation until 2000 (A2-CM3). After 2000, there is a rather abrupt warming of about 0.5 K that is not seen in the A2-CM3 simulation. The difference in mean temperature seems to persist throughout the twenty-first century.” The A2 has similar 2100 GMT to the RCP8.5, so we calculated the temperature in 2000 and 2100 for Voldoire et al. (2007) as the RCP8.5 GMT plus 0.5K. Table S3 includes each of the statements and calculations used. Note that in many cases there were full time series of data in the figures from the original studies, but we did not include these time series in Figure 5.

¹ Database url: http://tntcat.iiasa.ac.at/RcpDb/dsd?Action=htmlpage&page=about
² LUH url: http://luh.umd.edu/data.shtml#LUH1_Data
³ See https://esgf-node.llnl.gov/search/cmip5/
Figure S1. Change in key RCP variables (CO₂ emissions, CO₂ concentration, GMT, land productivity, and cropland area) due to feedbacks at the end of the century (2094 for Thornton et al., 2017; 2100 for all other studies). The y-axis indicates no change from the original RCPs. Dots indicate the change due to feedbacks shown in each study. Colors indicate the RCP used for the reference calculation (red = RCP8.5, pink = RCP6.0, blue = RCP4.5, green = RCP2.6). For studies that were not based on the RCPs, we use the closest RCP in terms of 2100 global mean temperature rise and not the original reference scenario.