On the Masses of the Universal hypermultiplets in heterotic M-theory

Nasr Ahmed
Astronomy Department, National Research Institute of Astronomy And Geophysics, Helwan, Cairo, Egypt.

1 abstract
The reduced 5D Heterotic M-theory has a deeply rich structure. For every Calabi-Yau compactification, there exists a gravitational hypermultiplet \((g_{\mu\nu}, \psi_\mu, A_\mu)\) and a universal hypermultiplet. In this paper we derive the formulae for the masses of the scalar sector of the universal hypermultiplet \((V, \sigma, \zeta, \bar{\zeta})\) in the framework of 5D Heterotic M-theory.

2 Introduction
In the original formulation of M-theory \cite{1, 2}, all the standard model fields are trapped on two 9-branes located at the end points of an \(S^1/Z_2\) orbifold. The 6 extra dimensions on the branes are compactified. A 5 dimensional reduction of the original Hořava-Witten theory and the corresponding braneworld cosmology is given in \cite{3, 4, 5}.

In the 11-dimensional theory, the supergravity multiplet consists of the graviton field or the metric \(g\), gravitino field \(\psi_I\) and a three index gauge field \(C_{IJK}\) with a field strength \(G_{IJKL}\). The total bulk field content of this 5 dimensional theory is given by the gravity multiplet \((g_{\alpha\beta}, A_\alpha, \psi^I_\alpha)\) together with the universal hypermultiplet \((V, \sigma, \zeta, \bar{\zeta})\). \(A_\alpha\) is a gauge field with field strength \(F_{\alpha\beta} = \partial_\alpha A_\beta - \partial_\beta A_\alpha\). \(\zeta\) is a background complex field, \(V\) is the Calabi-Yau volume and \(\psi^I_\alpha\) is the gravitino field. After the dualization, the three-form \(C_{\alpha\beta\gamma}\) produces a scalar field \(\sigma\). The 5 dimensional effective action can be written as \cite{3}

\[
S_5 = S_{bulk} + S_{bound} \tag{1}
\]

where

\[
S_{bulk} = \frac{-1}{2\kappa_5^2} \int_{M_5} \sqrt{-g} \left[R + \frac{3}{2} F_{\alpha\beta} \tilde{F}^{\alpha\beta} \right] \tag{2}
\]

\[
+ \frac{1}{\sqrt{2}} \epsilon^{\alpha\beta\gamma\delta\epsilon} A_\alpha \tilde{F}_{\beta\gamma} \tilde{F}_{\delta\epsilon} + \frac{1}{2V^2} \partial_\alpha V \partial^\alpha V
\]

\[
+ \frac{1}{2V^2} \left[(\partial_\alpha \sigma - i(\zeta \partial_\alpha \bar{\zeta} - \bar{\zeta} \partial_\alpha \zeta) - 2\alpha \epsilon(x^{11}) A_\alpha)\right] + \frac{2}{V} \partial_\alpha \zeta \partial^\alpha \zeta + \frac{\alpha^2}{3V^2} \right]
\]
and
\[
S_{\text{bound}} = \sqrt{\frac{2}{\kappa_5^2}} \left[\int_{M_4^{(1)}} \sqrt{-g} V^{-1} \alpha - \int_{M_4^{(2)}} \sqrt{-g} V^{-1} \alpha \right] - \frac{1}{16\pi \alpha_{\text{GUT}}}
\]
\[
\sum_{i=1}^{2} \int_{M_4^{(i)}} \sqrt{-g} \left(V \text{tr} F_{\mu \nu}^{(i)} F^{(i) \mu \nu} - \sigma \text{tr} F^{(i)} \tilde{F}^{(i) \mu \nu} \right).
\]
where \(\tilde{F}^{(i) \mu \nu} = \frac{1}{2} \epsilon^{\mu \nu \rho \sigma} F_{\rho \sigma}^{(i)} \) and the expansion coefficients \(\alpha_i \) are
\[
\alpha_i = \frac{\pi}{\sqrt{2}} \left(\frac{\kappa}{4\pi} \right)^{2/3} \frac{1}{v^{2/3} \beta_i},
\]
\[
\beta_i = -\frac{1}{8\pi^2} \int_{C_i} \text{tr}(\mathcal{R} \wedge \mathcal{R}).
\]
with the Calabi-Yau volume \(V \) defined as
\[
V = \frac{1}{v} \int_X \sqrt{g^{(6)}}
\]
where \(g^{(6)} \) is the determinant of the Calabi-Yau metric.

3 The Non-linear Sigma model Lagrangian for the background \(V \) and \(\zeta \) fields

In gaugino condensates the gaugino acquires non-zero vacuum expectation value which breaks the supersymmetry. The gaugino condensates lead to a background \(\zeta \) field. So, now we have a background \(V \) field (represents the size of Calabi-Yau space), a background \(\zeta \) field and a background metric. We take the following nonlinear sigma model lagrangian
\[
L = -\frac{(\partial V)^2}{4V^2} - \frac{1}{V} (\partial \zeta)(\partial \bar{\zeta}) - U
\]
\[
U = \frac{\alpha^2}{6V^2}.
\]
Where \(U = \frac{\alpha^2}{6V^2} \). We define the metric as
\[
dh^2 = \frac{dV^2}{4V^2} + \left(\frac{d\sigma - i(\zeta d\bar{\zeta} - \bar{\zeta} d\zeta)}{4V^2} \right)^2 + \frac{d\zeta d\bar{\zeta}}{V}
\]
and introduce the one-forms \(u \) and \(v \) with their complex conjugate \(\bar{u} \) and \(\bar{v} \)
\[
w^a = (u, \bar{u}, v, \bar{v})
\]
\[
\text{Where}
\]
\[
u = \frac{1}{2V} (dV + id\sigma + \zeta d\bar{\zeta} - \bar{\zeta} d\zeta)
\]
This leads to
\[
du = -\frac{1}{2}(v + \bar{v}) \wedge u
\]
\[
dv = -\bar{v} \wedge v - \bar{\bar{u}} \wedge u
\]
and the connection two-forms
\[
w_{\nu v} = \bar{v} - v
\]
\[
w_{\mu u} = \frac{1}{2}(\bar{v} - v)
\]
\[
w_{\nu v} = -u
\]
Cartan’s structure equation are
\[
T^a = d\theta^a + w_b^a \wedge \theta^b
\]
\[
\Omega_b^a = dw_b^a + w_c^a \wedge w_b^c
\]
For the torsion and curvature 2-form respectively. The curvature 2-form gives (when expressed locally)

\[\Omega^a_b = \frac{1}{2} R^a_{bcd} \theta^c \wedge \theta^d \]

(18)

Where the components \(R^a_{bcd} \) are in orthonormal basis. The affine connection form satisfies

\[w_{ab} + w_{ba} = dg_{ab}, \quad w_{ab} = g_{ac} w^c_b \]

(19)

Since for the orthonormal metric \(g_{ab} = \eta_{ab} \) is constant, we have For the curvature 2-form we have

\[\Omega_{ab} = g_{ac} \Omega^c_b = -\Omega_{ba} \]

(20)

For a free torsion space, Cartan’s first structure equation is

\[d\theta^a = -w^a_b \wedge \theta^b \]

(21)

So, the key formulas we are going to use to derive the connection coefficients and the corresponding curvature tensor are

\[w_{ab} = -w_{ba} \]

(22)

\[d\theta^a = -w^a_b \wedge \theta^b \]

(23)

\[\frac{1}{2} R^a_{bcd} \theta^c \wedge \theta^d = dw^a_b + w^a_c \wedge w^c_b \]

(24)

For the Ricci tensor we find

\[R^u_u = \frac{1}{2} R^u_{a\beta} w^a \wedge \theta^\beta = (\bar{v} \wedge v) + (\bar{u} \wedge u) \]

(25)

And

\[R^u_v = (\bar{u} \wedge u) - (\bar{v} \wedge v) \]

(26)

The components of the curvature tensor are \((g_{\alpha\bar{u}} = \frac{1}{2})\):

\[R_{\alpha\beta\bar{u}\bar{u}} = 1, \quad R_{\alpha\bar{u}v\bar{v}} = \frac{1}{2}, \quad R_{v\bar{v}v\bar{v}} = 1, \]

\[R_{\bar{u}\bar{u}v\bar{v}} = \frac{1}{2}, \quad R_{\bar{u}\bar{u}v\bar{v}} = -1, \quad R_{\bar{u}\bar{u}v\bar{v}} = -1, \]

\[R_{\bar{v}\bar{v}v\bar{v}} = -1, \quad R_{\bar{v}\bar{v}v\bar{v}} = -\frac{1}{2}, \quad R_{\bar{v}\bar{v}v\bar{v}} = -\frac{1}{2}, \]

\[R_{\bar{v}\bar{v}v\bar{v}} = -1, \quad R_{\bar{v}\bar{v}v\bar{v}} = 1, \quad R_{\bar{v}\bar{v}v\bar{v}} = \frac{1}{2}, \]

\[R_{\bar{v}\bar{v}v\bar{v}} = \frac{1}{2}, \quad R_{\bar{v}\bar{v}v\bar{v}} = \frac{1}{2}, \quad R_{\bar{v}\bar{v}v\bar{v}} = -1, \]

\[R_{\bar{v}\bar{v}v\bar{v}} = \frac{1}{2}, \quad R_{\bar{v}\bar{v}v\bar{v}} = \frac{1}{2}, \quad R_{\bar{v}\bar{v}v\bar{v}} = -1. \]

The grad of the potential \(U \) is

\[\nabla U = -\frac{\alpha^2}{3V^2}(v + \bar{v}) \]

(27)

\[\nabla^2 U = \frac{2\alpha^2}{3V^2}(v + \bar{v}) \otimes (v + \bar{v}) - \frac{\alpha^2}{3V^2} \]

(28)

\[(v - \bar{v}) \otimes (v - \bar{v}) + \frac{2\alpha^2}{3V^2} u \otimes \bar{u} \]

Now we would like to express the lagrangian (7) in terms of the one-forms \(u \) and \(v \). We make use of the general form of the nonlinear sigma model lagrangian with a background field \(\zeta \)

\[L = -\frac{1}{2} g_{ij}(D_u \zeta^i)(D^j \zeta^j) \]

(29)

\[+ \frac{1}{2}(\partial_i \phi^j)(\partial^i \phi^j)R_{ijkl} \zeta^k \zeta^l - \frac{1}{2} U;ij \zeta^i \zeta^j. \]

Where \(R_{ijkl} \) is the curvature of \(g_{ij} \). After some manipulations we get the lagrangian in the form

\[L = L_1 + L_2 \]

(30)
Where

\[L_1 = -(D_\alpha \zeta^u)(D^\alpha \zeta^u)-(D_\alpha \zeta^v)(D^\alpha \zeta^v) \]
(31)

And

\[L_2 = \frac{\alpha^2}{2} V^{-2} \left([(\zeta^u - \bar{\zeta}^\bar{u}) + C(\zeta^u - \bar{\zeta}^\bar{u})] \right)^2 \]
(32)

\[= \frac{\alpha^2}{2} V^{-2} (\zeta^u - C\zeta^v)(\bar{\zeta}^\bar{u} - C\bar{\zeta}^\bar{v}) \]

\[= \frac{\alpha^2}{2} V^{-2} (\zeta^u + \zeta^v)^2 - \frac{\alpha^2}{3} V^{-2} \zeta^u \zeta^v \]

The first part \(L_1 \) is diagonalized and we need to diagonalize the second part \(L_2 \) to get the eigen Values. To do that we make the following change of variables

\[\zeta^v = \frac{1}{\sqrt{2}} (X + iY) , \quad \zeta^u = \frac{1}{\sqrt{2}} (Z + iW) \]
(33)

That means we have 4 fields \(X, Y, Z, \) and \(W \). In terms of the new fields, the lagrangian \(L_2 \) becomes

\[L_2 = -\alpha^2 V^{-2} (Y + CW)^2 \]

\[- \frac{\alpha^2}{4} V^{-2} \left((Z - CX)^2 + (W - CY)^2 \right) \]

\[- \frac{\alpha^2}{3} V^{-2} \left(2X^2 + Y^2 + \frac{1}{2} Z^2 + \frac{1}{2} W^2 \right) \]

Which could be written in a matrix form as

\[L_2 = \frac{\alpha^2}{V^2} \begin{pmatrix} 2 & 0 & -C & 0 \\ 0 & \frac{1}{3} + \frac{C^2}{4} & 0 & 2C \\ -\frac{C}{2} & 0 & \frac{5}{12} & 0 \\ 0 & -\frac{C}{2} & 0 & \frac{5}{12} + C^2 \end{pmatrix} \]

After diagonalization, the eigen values that represent the masses of the scalar sector of the universal hypermultiplet \((V, \sigma, \zeta, \bar{\zeta})\) are

\[\frac{\alpha^2}{24V^2} \left(-21 - 15C^2 + \sqrt{121 - 774C^2 + 81C^4} \right) \]
(35)

\[\frac{\alpha^2}{24V^2} \left(-21 - 15C^2 + \sqrt{121 - 774C^2 + 81C^4} \right) \]
(36)

\[\frac{\alpha^2}{24V^2} \left(-13 - 3C^2 + 3\sqrt{1 + 18C^2 + C^4} \right) \]
(37)

\[\frac{\alpha^2}{24V^2} \left(-13 - 3C^2 - 3\sqrt{1 + 18C^2 + C^4} \right) \]
(38)

4 Conclusion

Making use of the non-linear sigma model Lagrangian of the background fields, we derived the formulae for the masses of the scalar sector of the universal hypermultiplet \((V, \sigma, \zeta, \bar{\zeta})\) in the reduced 5D Heterotic M-theory.

5 Acknowledgment

I am so grateful to Prof. Ian Moss from Newcastle University for the very useful discussions during this work.

References

[1] Horava, P., and Witten, E. Heterotic and Type I string dynamics from eleven dimensions. Nucl. Phys. B 460 (1996) 506-524 [hep-th/9510209].

[2] Horava, P., and Witten, E. Eleven-Dimensional Supergravity on a Manifold with Boundary. Nucl. Phys. B 475 (1996) 94-114 [hep-th/9603142].
[3] Lukas, A., Ovrut, B.A., Stelle, K.S., and Waldram, D. The Universe as a domain wall. Phys. Rev. D, 59 (1999) 08600119 [hep-th/9803235].

[4] Lukas, A., Ovrut, B.A., and Waldram, D. Cosmological solutions of Horava-Witten theory. Phys. Rev. D, 60 (1999) 086001111 [hep-th/9806022].

[5] Lukas, A., Ovrut, B.A., and Waldram, D. Boundary inflation. Phys. Rev. D, 61 (2000) 023506 118.

[6] Z. Lalak and S. Thomas. Gaugino Condensation, Moduli Potential and Supersymmetry Breaking in M–theory Models. Nucl. Phys. B515 (1998) 55-72 [hep-th/9707223].