EMBEDDINGS OF \mathbb{C}^*-SURFACES INTO WEIGHTED PROJECTIVE SPACES

HUBERT FLENNER, SHULIM KALIMAN, AND MIKHAIL ZAIDENBERG

Abstract. Let V be a normal affine surface which admits a \mathbb{C}^*- and a \mathbb{C}_+-action. Such surfaces were classified e.g., in [FlZa1, FlZa2], see also the references therein. In this note we show that in many cases V can be embedded as a principal Zariski open subset into a hypersurface of a weighted projective space. In particular, we recover a result of D. Daigle and P. Russell, see Theorem A in [DR].

1. Introduction

If $V = \text{Spec} A$ is a normal affine surface equipped with an effective \mathbb{C}^*-action, then its coordinate ring A carries a natural structure of a \mathbb{Z}-graded ring $A = \bigoplus_{i \in \mathbb{Z}} A_i$. As was shown in [FlZa1], such a \mathbb{C}^*-action on V has a hyperbolic fixed point if and only if $C = \text{Spec} A_0$ is a smooth affine curve and $A_{\pm 1} \neq 0$. In this case the structure of the graded ring A can be elegantly described in terms of a pair (D_+, D_-) of \mathbb{Q}-divisors on C with $D_+ + D_- \leq 0$. More precisely, A is the graded subring $A = A_0[\frac{D_+}{D_+}, \frac{D_-}{D_-}] \subseteq K_0[u, u^{-1}]$, $K_0 := \text{Frac} A_0$, where for $i \geq 0$

\begin{align*}
A_i &= \{ f \in K_0 \mid \text{div} f + iD_+ \geq 0 \} u^i \quad \text{and} \quad A_{-i} = \{ f \in K_0 \mid \text{div} f + iD_- \geq 0 \} u^{-i}.
\end{align*}

This presentation of A (or V) is called in [FlZa1] the DPD-presentation. Furthermore two pairs (D_+, D_-) and (D'_+, D'_-) define equivariantly isomorphic surfaces over C if and only if they are equivalent that is,

\begin{align*}
D_+ = D'_+ + \text{div} f \quad \text{and} \quad D_- = D'_- - \text{div} f \quad \text{for some} \ f \in K_0^\times.
\end{align*}

In this note we show that if such a surface V admits also a \mathbb{C}_+-action then it can be \mathbb{C}^*-equivariantly embedded (up to normalization) into a weighted projective space as a hypersurface minus a hyperplane; see Theorem 2.3 and Corollary 2.5 below. In particular we recover the following result of Daigle and Russell [DR].

Theorem 1.1. Let V be a normal Gizatullin surface\(^1\) with a finite divisor class group. Then V can be embedded into a weighted projective plane $\mathbb{P}(a, b, c)$ minus a hypersurface. More precisely:

(a) If $V = V_{d,e}$ is toric\(^2\) then V is equivariantly isomorphic to the open part\(^3\) $D_+(z)$ of the weighted projective plane $\mathbb{P}(1, e, d)$ equipped with homogeneous coordinates $(x : y : z)$ and with the 2-torus action $(\lambda_1, \lambda_2).(x : y : z) = (\lambda_1 x : \lambda_2 y : z)$.

1991 Mathematics Subject Classification: 14R05, 14R20.

Key words: weighted projective space, \mathbb{C}^*-action, \mathbb{C}_+-action, affine surface.

\(^1\)That is, V admits a completion by a linear chain of smooth rational curves; see Section 3 below.

\(^2\)See 3.1(a) below.

\(^3\)We use the standard notation $V_+(f) = \{ f = 0 \}$ and $D_+(f) = \{ f \neq 0 \}$.

(b) If \(V \) is non-toric then \(V \cong \mathbb{D}_+ (xy - zm) \subseteq \mathbb{P}(a, b, c) \) for some positive integers \(a, b, c \) satisfying \(a + b = cm \) and \(\gcd(a, b) = 1 \).

2. Embeddings of \(\mathbb{C}^* \)-surfaces into weighted projective spaces

According to Proposition 4.8 in [FlZa1] every normal affine \(\mathbb{C}^* \)-surface \(V \) is equivariantly isomorphic to the normalization of a weighted homogeneous surface \(V' \) in \(\mathbb{A}^4 \). In some cases (described in loc.cit.) \(V' \) can be chosen to be a hypersurface in \(\mathbb{A}^3 \). Cf. also [Du] for affine embeddings of some other classes of surfaces.

In Theorem 2.3 below we show that any normal \(\mathbb{C}^* \)-surface \(V \) with a \(\mathbb{C}_+ \)-action is the normalization of a principal Zariski open subset of some weighted projective hypersurface.

In the proofs we use the following observation from [Fl].

Proposition 2.1. Let \(R = \bigoplus_{i \geq 0} R_i \) be a graded \(R_0 \)-algebra of finite type containing the field of rational numbers \(\mathbb{Q} \). If \(z \in R_d, d > 0 \), is an element of positive degree then the group of \(d \)th roots of unity \(E_d \cong \mathbb{Z}/d \) acts on \(R \) and then also on \(R/(z - 1) \) via

\[
\zeta \cdot a = \zeta^i \cdot a \quad \text{for} \quad a \in R_i, \quad \zeta \in E_d,
\]

with ring of invariants \((R/(z - 1))/E_d \cong (R[1/z])_0. \) Consequently

\[
(\text{Spec } R/(z - 1))/E_d \cong \mathbb{D}_+(z)
\]

is isomorphic to the complement of the hyperplane \(\{ z = 0 \} \) in \(\text{Proj}(R) \).

Let us fix the notations.

2.2. Let \(V = \text{Spec } A \) be a normal \(\mathbb{C}^* \)-surface with DPD-presentation

\[
A = \mathbb{C}[t][D_+, D_-] \subseteq \mathbb{C}(t)[u, u^{-1}].
\]

If \(V \) carries a \(\mathbb{C}_+ \)-action then according to [FlZa2], after interchanging \((D_+, D_-) \) and passing to an equivalent pair, if necessary, we may assume that

\[
D_+ = -\frac{e_+}{d}[0] \quad \text{with} \quad 0 < e_+ \leq d, \\
D_- = -\frac{e_-}{d}[0] - \frac{t}{k}D_0
\]

with an integral divisor \(D_0 \), where \(D_0(0) = 0 \). We choose a polynomial \(Q \in \mathbb{C}[t] \) with \(D_0 = \text{div}(Q) \); so \(Q(0) \neq 0 \).

Theorem 2.3. Let \(F \) be the polynomial

\[
F = x^ky - s^{k(e_+ + e_-)}Q(s^d/z)z^{\deg Q} \in \mathbb{C}[x, y, z, s],
\]

which is weighted homogeneous of degree \(k(e_+ + e_-) + d \deg Q \) with respect to the weights

\[
\deg x = e_+, \quad \deg y = ke_- + d \deg Q, \quad \deg z = d, \quad \deg s = 1.
\]

Then the surface \(V \) as in 2.2 above is equivariantly isomorphic to the normalization of the principal Zariski open subset \(\mathbb{D}_+(z) \) of the hypersurface \(\mathbb{V}_+(F) \) in the weighted projective 3-space

\[
\mathbb{P} = \mathbb{P}(e_+, ke_- + d \deg Q, d, 1).
\]

\[\text{We note that } e_+ + e_- = d(-D_+(0) - D_-(0)) \geq 0.\]
Example 4.10 in [FlZa]

The cyclic group E_1.

Proposition 4.12 in [FlZa]

with invariant ring A with respect to the Galois group is the group of dth roots of unity E_d acting on L via the identity on K and by $\zeta \cdot s = \zeta \cdot s$ if $\zeta \in E_d$. Let A' be the normalization of A in L. According to Proposition 4.12 in [FlZa],

$$A' = \mathbb{C}[s][D'_+, D'_-] \subseteq \mathbb{C}(s)[u, u^{-1}]$$

with $D'_\pm = \pi_d^*(D_{\pm})$, where $\pi_d : \mathbb{A}^1 \rightarrow \mathbb{A}^1$ is the covering $s \mapsto s^d$. Thus

$$(D'_+, D'_-) = \left(-e_+[0], -e_-[0] - \frac{1}{k} \pi_d^*(D_0) \right) = \left(-e_+[0], -e_-[0] - \frac{1}{k} \text{div}(Q(s^d)) \right).$$

The element $x = s^{e_+}u \in A'_1$ is a generator of A'_1 as a $\mathbb{C}[s]$-module. According to Example 4.10 in [FlZa], the graded algebra A' is isomorphic to the normalization of $B = \mathbb{C}[x, y, s]/(x^k y - s^{k(e_+ + e_-)} Q(s^d))$.

The cyclic group E_d acts on A' via

$$\zeta \cdot x = \zeta^{e_+} x, \quad \zeta \cdot y = \zeta^{e_-} y, \quad \zeta \cdot s = \zeta s$$

with invariant ring A. Clearly this action stabilizes the subring B. Assigning to x, y, z, s the degrees as in (4), F as in (3) is indeed weighted homogeneous. Since $F(x, y, 1, s) = x^k y - s^{k(e_+ + e_-)} Q(s^d)$, the graded algebra

$$R = \mathbb{C}[x, y, z, s]/(F)$$

satisfies $R/(z - 1) \cong B$. Applying Proposition 2.1, $V = \text{Spec } A$ is isomorphic to the normalization of $\mathbb{D}_+(\mathbb{A}) \cap \mathbb{V}_+(F)$ in the weighted projective space \mathbb{P}.

Remark 2.4. In general not all weights of the weighted projective space \mathbb{P} in (5) are positive. Indeed it can happen that $ke_- + d \deg Q \leq 0$. In this case we can choose $\alpha \in \mathbb{N}$ with $ke_- + d(\deg Q + \alpha) > 0$ and consider instead of F the polynomial

$$(7) \quad \tilde{F} = x^k y - s^{k(e_+ + e_-)} Q(s^d/z)^\alpha \in \mathbb{C}[x, y, z, s],$$

which is now weighted homogeneous of degree $k(e_+ + e_-) + d(\deg Q + \alpha)$ with respect to the positive weights

$$(8) \quad \deg x = e_+, \quad \deg y = ke_- + d(\deg Q + \alpha), \quad \deg z = d, \quad \deg s = 1.$$

As before $V = \text{Spec } A$ is isomorphic to the normalization of the principal open subset $\mathbb{D}_+(\mathbb{A})$ of the hypersurface $\mathbb{V}_+(F)$ in the weighted projective space

$$\mathbb{P} = \mathbb{P}(e_+, ke_- + d(\deg Q + \alpha), d, 1).$$

In certain cases it is unnecessary in Theorem 2.3 to pass to normalization.

Corollary 2.5. Assume that in (2) one of the following conditions is satisfied.

(i) $k = 1$;
(ii) $e_+ + e_- = 0$, and D_0 is a reduced divisor.

Then $V = \text{Spec } A$ is equivariantly isomorphic to the principal open subset $\mathbb{D}_+(\mathbb{A})$ of the weighted projective hypersurface $\mathbb{V}_+(F)$ as in (3) in the weighted projective space \mathbb{P} from (4).
Applying Theorem 2.3 with \(e \) \(C \) is normal. In other words, the quotient \(R/(z-1) \) of the graded ring \(R = \mathbb{C}[x, y, z, s]/(F) \) is normal and so is its ring of invariants \((R/(z-1))^{E_d} \). Comparing with Theorem 2.3 the result follows.

Similarly, in case (ii)

\[
F(x, y, 1, s) = x^k y - Q(s^d) .
\]

Since the divisor \(D_0 \) is supposed to be reduced and \(D_0(0) = 0 \), the polynomials \(Q(t) \) and then also \(Q(s^d) \) both have simple roots. Hence the hypersurface \(F(x, y, 1, s) = 0 \) in \(A^3 \) is again normal, and the result follows as before. \(\square \)

Remark 2.6. The surface \(V \) as in 2.2 is smooth if and only if the divisor \(D_0 \) is reduced and \(-m_+m_-(D_+(0) + D_-(0)) = 1\), where \(m_+ > 0 \) is the denominator in the irreducible representation of \(D_+(0) \), see Proposition 4.15 in [FKZ]. It can happen, however, that \(V \) is smooth but the surface \(V_+(F) \cap D_+(z) \subseteq \mathbb{P} \) has non-isolated singularities. For instance, if in 2.2 \(D_0 = 0 \) (and so \(Q = 1 \)), then \(V \) is an affine toric surface. In fact, every affine toric surface different from \((A^1)^2\) or \(A^1 \times A^1 \) appears in this way, see Lemma 4.2(b) in [FKZ].

In this case the integer \(k > 0 \) can be chosen arbitrarily. For any \(k > 1 \), the affine hypersurface \(V_+(F) \cap D_+(z) \subseteq \mathbb{P} \) with equation \(x^k y - s^{k(e_+ + e_-)} = 0 \) has non-isolated singularities and hence is non-normal. Its normalization \(V = \text{Spec} A \) can be given as the Zariski open part \(D_+(z) \) of the hypersurface \(V_+(xy' - s^{e_+ + e_-}) \in \mathbb{P}' = \mathbb{P}(e_+, e_-, d, 1) \) (which corresponds to the choice \(k = 1 \)). Indeed, the element \(y' = s^{e_+ + e_-}/x \in K \) with \(y'^k = y \) is integral over \(A \). However cf. Theorem 1.1(a).

Example 2.7. (Danilov-Gizatullin surfaces) We recall that a Danilov-Gizatullin surface \(V(n) \) of index \(n \) is the complement to a section \(S \) in a Hirzebruch surface \(\Sigma_d \), where \(S^2 = n > d \). By a remarkable result of Danilov and Gizatullin up to an isomorphism such a surface only depends on \(n \) and neither on \(d \) nor on the choice of the section \(S \), see e.g., [DaGi], [CN], [FKZ].

According to [FKZ] §5, up to conjugation \(V(n) \) carries exactly \((n-1) \) different \(\mathbb{C}^* \)-actions. They admit DPD-presentations

\[
(D_+, D_-) = \left(-\frac{1}{d}[0], -\frac{1}{n-d}[1] \right), \quad \text{where} \quad d = 1, \ldots, n-1 .
\]

Applying Theorem 2.3 with \(e_+ = 1, e_- = 0 \), and \(k = n-d \), the \(\mathbb{C}^* \)-surface \(V(n) \) is the normalization of the principal open subset \(D_+(z) \) of the hypersurface \(V_+(F_{n,d}) \subseteq \mathbb{P}(1, d, d, 1) \) of degree \(n \), where

\[
F_{n,d}(x, y, z, s) = x^{n-d}y - s^{n-d}(s^d - z) .
\]

Taking here \(d = 1 \) it follows that \(V(n) \) is isomorphic to the normalization of the hypersurface \(x^{n-1}y - (s-1)s^{n-1} = 0 \) in \(A^3 \).

As our next example, let us consider yet another remarkable class of surfaces. These were studied from different viewpoints in [MM] Theorem 1.1, [FKZ] Theorem 1.1(iii), [GMMR] 3.8-3.9, [KK] Theorem 1.1. and Example 1, [Za] Theorem 1(b) and Lemma

\(5\) See 3.1(a) below.
Theorem 2.8. For a smooth affine surface \(V \), the following conditions are equivalent.

(i) \(V \) is not Gizatullin and admits an effective \(\mathbb{C}^* \)-action and an \(\mathbb{A}^1 \)-fibration \(V \to \mathbb{A}^1 \) with exactly one degenerate fiber, which is irreducible\(^6\).

(ii) \(V \) is \(\mathbb{Q} \)-acyclic, \(\overline{k}(V) = -\infty \) and \(V \) carries a curve \(\Gamma \cong \mathbb{A}^1 \) with \(\overline{k}(V \setminus \Gamma) \geq 0 \).

(iii) \(V \) is \(\mathbb{Q} \)-acyclic and admits an effective \(\mathbb{C}^* \)- and \(\mathbb{C}_+ \)-actions. Furthermore, the \(\mathbb{C}^* \)-action possesses an orbit closure \(\Gamma \cong \mathbb{A}^1 \) with \(\overline{k}(V \setminus \Gamma) \geq 0 \).

(iv) The universal cover \(\tilde{V} \to V \) is isomorphic to a surface \(x^k y - (s^d - 1) = 0 \) in \(\mathbb{A}^3 \), with the Galois group \(\pi_1(V) \cong E_d \) acting via \(\zeta \cdot (x,y,s) = (\zeta x, \zeta^{-k} y, \zeta^e s) \), where \(k > 1 \) and \(\gcd(e,d) = 1 \).

(v) \(V \) is isomorphic to the \(\mathbb{C}^* \)-surface with DPD presentation \(\text{Spec} \mathbb{C}[t][D_+, D_-] \), where

\[
(D_+, D_-) = \left(-\frac{e}{d} [0], \frac{e}{d} [0] - \frac{1}{k} [1] \right) \quad \text{with} \quad 0 < e \leq d \quad \text{and} \quad k > 1.
\]

(vi) \(V \) is isomorphic to the Zariski open subset

\[
\mathbb{D}_+(x^k y - s^d) \subseteq \mathbb{P}(e, d - ke, 1), \quad \text{where} \quad 0 < e \leq d \quad \text{and} \quad k > 1.
\]

Proof. In view of the references cited above it remains to show that the surfaces in (v) and (vi) are isomorphic. By Corollary 2.5(ii) with \(e_+ = -e_- = e \), the surface \(V \) as in (v) is isomorphic to the principal open subset \(\mathbb{D}_+(z) \) in the weighted projective hypersurface

\[
V_+(x^k y - (s^d - z)) \subseteq \mathbb{P}(e, d - ke, d, 1).
\]

Eliminating \(z \) from the equation \(x^k y - (s^d - z) = 0 \) yields (vi). \(\square \)

These surfaces admit as well a constructive description in terms of a blowup process starting from a Hirzebruch surface, see [GMR, 3.8] and [KK, Example 1].

An affine line \(\Gamma \cong \mathbb{A}^1 \) on \(V \) as in (ii) is distinguished because it cannot be a fiber of any \(\mathbb{A}^1 \)-fibration of \(V \). In fact there exists a family of such affine lines on \(V \), see [Za].

Some of the surfaces as in Theorem 2.8 can be properly embedded in \(\mathbb{A}^3 \) as Bertin surfaces \(x^e y - x - s^d = 0 \), see [FlZa, Example 5.5] or [Za, Example 1].

3. Gizatullin surfaces with a finite divisor class group

A Gizatullin surface is a normal affine surface completed by a zigzag i.e., a linear chain of smooth rational curves. By a theorem of Gizatullin [Gi] such surfaces are characterized by the property that they admit two \(\mathbb{C}_+ \)-actions with different general orbits.

In this section we give an alternative proof of the Daigle-Russell Theorem 1.1 cited in the Introduction. It will be deduced from the following result proven in [FKZ2, Corollary 5.16].

Proposition 3.1. Every normal Gizatullin surface with a finite divisor class group is isomorphic to one of the following surfaces.

\(^6\)Since \(V \) is not Gizatullin there is actually a unique \(\mathbb{A}^1 \)-fibration \(V \to \mathbb{A}^1 \). A surface \(V \) as in (i) is necessarily a \(\mathbb{Q} \)-homology plane (or \(\mathbb{Q} \)-acyclic) that is, all higher Betti numbers of \(V \) vanish.

\(^7\)As usual, \(\overline{k} \) stands for the logarithmic Kodaira dimension.
(a) The toric surfaces $V_{d,e} = \mathbb{A}^2/E_d$, where the group $E_d \cong \mathbb{Z}_d$ of d-th roots of unity acts on \mathbb{A}^2 via
$$\zeta(x,y) = (\zeta x, \zeta^e y).$$

(b) The non-toric \mathbb{C}^*-surfaces $V = \text{Spec} \mathbb{C}[t][D_+, D_-]$, where
$$D_+, D_- = \left(-\frac{e}{m}[p], \frac{e}{m}[p] - c[q]\right) \quad \text{with} \quad c \geq 1, \ p, q \in \mathbb{A}^1, \ p \neq q,$$
and with coprime integers e, m such that $1 \leq e < m$.

Conversely, any normal affine \mathbb{C}^*-surface V as in (a) or (b) is a Gizatullin surface with a finite divisor class group.

Let us now deduce Theorem 1.1.

Proof of Theorem 1.1. To prove (a), we note that according to 2.1 the cyclic group E_d acts on the ring $\mathbb{C}[x, y, z]/(z-1) \cong \mathbb{C}[x, y]$ via $\zeta x = \zeta x, \zeta y = \zeta^e y$, and $\zeta z = z$, where $\deg x = 1, \ \deg y = e, \ \text{and} \ \deg z = d$.

Hence $D_+(z) = \text{Spec} \mathbb{C}[x, y]^{E_d} = V_{d,e}$, as required in (a).

To show (b) we consider $V = \text{Spec} A$ as in 3.1(b), where
$$A = \mathbb{C}[t][D_+, D_-] \subseteq \mathbb{C}[t][u, u^{-1}].$$

By definition (1) the homogeneous pieces $A_{\pm 1}$ of A are generated as $\mathbb{C}[t]$-modules by the elements
$$u_+ = tu \quad \text{and} \quad u_- = (t-1)^eu^{-1},$$
and similarly $A_{\pm m}$ by
$$v_+ = t^e u_m \quad \text{and} \quad v_- = t^{-e}(t-1)^cm u^{-m}.$$ Thus
$$u_+^m = t^{m-e}v_+, \quad u_-^m = t^e v_-, \quad \text{and} \quad u_+u_-=t(t-1)^e.$$ The algebra A is the integral closure of the subalgebra generated by u_+, v_+ and t.

Consider now the normalization A' of A in the field $L = \text{Frac}(A)[u'_+], u'_-, \text{where}$
$$u'_+ = \sqrt{v_+} \quad \text{with} \quad d = cm.$$ Clearly the elements $\sqrt{v_+} = t^{e-m}u_+$ and then also t^{e-m} both belong to L. Since e and m are coprime we can choose $\alpha, \beta \in \mathbb{Z}$ with $\alpha(e-m) + \beta m = 1$. It follows that the element $\tau := \frac{1}{m} = t^{\alpha(e-m)}$ is as well in L whence being integral over A we have $\tau \in A'$.

The element u'_+ as in (10) also belongs to A' and as well $u'_- = \sqrt{v_-} \in A'$. Now $v_+v_- = (t-1)^cm$, so taking dth roots we get for a suitable choice of the root u'_-,
$$u'_+u'_- = \tau^m - 1.$$ We note that u_+, v_+ and t are contained in the subalgebra $B = \mathbb{C}[u'_+, u'_-, \tau] \subseteq A'$. The equation (11) defines a smooth surface in \mathbb{A}^3. Hence B is normal and so
$$A' = B \cong \mathbb{C}[u'_+, u'_-, \tau]/(u'_+u'_- - (\tau^m - 1)).$$

By Lemma [3.2] below, for a suitable $\gamma \in \mathbb{Z}$ the integers $a = e - \gamma m$ and d are coprime. We may assume as well that $1 \leq a < d$. We let E_d act on A' via $\zeta.u'_+ = \zeta^a u'_+$ and...
On log coprime. However, the latter is evident since the residue classes of CNR P. Cassou-Noguès, P. Russell:

Birational morphisms to a transposition and up to replacing (a, b) by $(a', b') = (a - sm, b + sm)$, while keeping $\gcd(a', b') = 1$.

The algebra $B = \mathbb{C}[u'_+, u'_-, \tau]$ is naturally graded via

$$\deg u'_+ = a, \quad \deg u'_- = b, \quad \text{and} \quad \deg \tau = c.$$

According to Proposition [2.1] Spec $A = \text{Spec } A^{E_d}$ is the complement of the hypersurface $V_+(f)$ of degree $d = a + b$ in the weighted projective plane

$$\text{Proj}(B) = \mathbb{P}(a, b, c), \quad \text{where} \quad f = u'_+ u'_- - \tau^m,$$

proving (b).

To complete the proof we still have to show the following elementary lemma.

Lemma 3.2. Assume that $c, m \in \mathbb{Z}$ are coprime. Then for every $c \geq 2$ there exists $\gamma \in \mathbb{Z}$ such that $\gamma m - e$ and c are coprime.

Proof. Write $c = c' \gamma$ such that c' and m have no common factor and every prime factor of γ occurs in m. Then for every $\gamma \in \mathbb{Z}$ the integers $\gamma m - e$ and γ have no common prime factor. Indeed, such a prime must divide m and then also $e = \gamma m - (\gamma m - e)$. Hence it is enough to establish the existence of $\gamma \in \mathbb{Z}$ such that $\gamma m - e$ and c' are coprime. However, the latter is evident since the residue classes of $\gamma m, \gamma \in \mathbb{Z}$, in \mathbb{Z}/c' cover this group. \hfill \Box

Remark 3.3. 1. Two triples $(1, e, d)$ and $(1, e', d)$ as in Theorem [1.1](a) define the same affine toric surface if and only if $ee' \equiv 1 \mod d$, see [FZa] Remark 2.5].

2. As follows from Theorem 0.2 in [FKZa], the integers c, m in Theorem [1.1](b) are invariants of the isomorphism type of V. Indeed, the fractional parts of both divisors D_+ as in (9) being nonzero and concentrated at the same point, there is a unique DPD presentation for V up to interchanging D_+ and D_-, passing to an equivalent pair and applying an automorphism of the affine line $\mathbb{A}^1 = \text{Spec } \mathbb{C}[t]$.

Furthermore, from the proof of Theorem [1.1] one can easily derive that

$$a \equiv e \mod m \quad \text{and} \quad b = mc - a \equiv -e \mod m.$$

Therefore also the pair (a, b) is uniquely determined by the isomorphism type of V up to a transposition and up to replacing (a, b) by $(a', b') = (a - sm, b + sm)$, while keeping $\gcd(a', b') = 1$.

References

[CNR] P. Cassou-Noguès, P. Russell: *Birational morphisms $\mathbb{C}^2 \to \mathbb{C}^2$ and affine ruled surfaces*, in: Affine algebraic geometry. In honor of Prof. M. Miyanishi, 57–106. Osaka Univ. Press, Osaka 2007.

[DR] D. Daigle, P. Russell: *On log \mathbb{Q}-homology planes and weighted projective planes*. Can. J. Math. 56 (2004), 1145–1189.
[DaGi] V. I. Danilov, M. H. Gizatullin: *Automorphisms of affine surfaces*. II. Math. USSR Izv. 11 (1977), 51–98.

[Du] A. Dubouloz: *Embeddings of Danielewski surfaces in affine spaces*. Comment. Math. Helv. 81 (2006), 49–73.

[Fl] H. Flenner: *Rationale quasihomogene Singularitten*, Arch. Math. 36 (1981), 35–44.

[FKZ₁] H. Flenner, S. Kaliman, M. Zaidenberg: *Completions of C*-surfaces*, in: Affine algebraic geometry. In honor of Prof. M. Miyanishi, 149-200. Osaka Univ. Press, Osaka 2007.

[FKZ₂] H. Flenner, S. Kaliman, M. Zaidenberg: *Uniqueness of C*- and C⁺-actions on Gizatullin surfaces*. Transformation Groups 13:2 (2008), 305–354.

[FKZ₃] H. Flenner, S. Kaliman, M. Zaidenberg: *On the Danilov-Gizatullin Isomorphism Theorem*. arXiv:0808.0459, 6p.

[FKZ₄] H. Flenner, S. Kaliman, M. Zaidenberg, *Smooth Gizatullin surfaces with non-unique C*-actions*, 55p. (in preparation).

[FlZa₁] H. Flenner, M. Zaidenberg: *Normal affine surfaces with C*-actions*, Osaka J. Math. 40, 2003, 981–1009.

[FlZa₂] H. Flenner, M. Zaidenberg: *Locally nilpotent derivations on affine surfaces with a C*-action*. Osaka J. Math. 42, 2005, 931–974.

[FlZa₃] H. Flenner, M. Zaidenberg: *On a result of Miyanishi-Masuda*. Arch. Math. 87 (2006), 15–18.

[Gi] M.H. Gizatullin: *Quasihomogeneous affine surfaces*. (in Russian) Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 1047–1071.

[GMMR] R.V. Gurjar, K. Masuda, M. Miyanishi, P. Russell: *Affine lines on affine surfaces and the Makar-Limanov invariant*. Canad. J. Math. 60 (2008), 109–139.

[KK] T. Kishimoto, H. Kojima: *Affine lines on Q-homology planes with logarithmic Kodaira dimension −∞*. Transform. Groups 11 (2006), 249–267. ibid. 13:1 (2008), 211–213.

[MM] M. Miyanishi, K. Masuda: *Affine Pseudo-planes with torus actions*. Transform. Groups 11 (2006), 249–267.

[Za] M. Zaidenberg: *Affine lines on Q-homology planes and group actions*. Transform. Groups 11 (2006), 725–735.

Fakultät für Mathematik, Ruhr Universität Bochum, Geb. NA 2/72, Universitätsstr. 150, 44780 Bochum, Germany

E-mail address: Hubert.Flenner@ruhr-uni-bochum.de

Department of Mathematics, University of Miami, Coral Gables, FL 33124, U.S.A.

E-mail address: kaliman@math.miami.edu

Université Grenoble I, Institut Fourier, UMR 5582 CNRS-UMJ, BP 74, 38402 St. Martin d’Hères cédex, France

E-mail address: zaidenberg@ujf-grenoble.fr