Association between the elevation of tumor-infiltrating lymphocytes in different subtypes of primary breast tumors and prognostic outcomes: A meta-analysis

CURRENT STATUS: UNDER REVISION

Lin He
the affiliated hospital of qingdao university

Yaling Wang
the second hospital of qingdao university

Qian Wu
the affiliated hospital of qingdao university

Yuhua Song
the affiliated hospital of qingdao university

Xuezhen Ma
the second hospital of qingdao university

Haiji Wang qdwanghj@tom.com
The affiliated hospital of qingdao university

Corresponding Author

DOI:
10.21203/rs.2.16950/v1

SUBJECT AREAS
Preventive Medicine

KEYWORDS
breast, carcinoma, lymphocytes, meta-analysis
Abstract

Purpose To investigate the impact of the elevation of tumor-infiltrating lymphocytes (TILs) in different molecular subtypes of primary breast cancer, i.e. a 10% increment of TILs in tumor and lymphocyte-predominant breast cancer (LPBC), on long-term survival and pathological complete response (pCR) and to compare the presentation of high-level TILs across these molecular subtypes. Methods Citation retrieval was performed in the PubMed, Cochrane Library, Embase and Web of Science databases. All statistical calculations were performed by the software of StataSE version 12.0. Results Twenty-two eligible clinical trials including 15676 unique patients were included for meta-analysis. The 10% increment of TILs in human epidermal growth factor receptor 2 (HER2)-overexpression (pooled Hazard ratio (HR), 0.92; 95% CI, 0.89-0.95) and triple-negative (TN) (pooled HR, 0.90; 95% CI, 0.89-0.92) breast tumors significantly improved overall survival (OS) but in Luminal tumor subtype was inert to improve that (pooled HR, 1.06; 95% CI, 0.99-1.13). It was also associated with an increased pCR rate in breast cancers (pooled Odds ratio (OR), 1.27; 95% CI, 1.19-13.5). LPBC was significantly related with a higher pCR rate (OR, 2.73; 95% CI, 2.40-3.01) than non-LPBC. This significant difference was also shown in different molecular subtypes of LPBC compared with those of non-LPBC. HER2-amplified (OR, 3.14; 95% CI, 1.95-5.06) and TN (OR, 4.09; 95% CI, 2.71-6.19) phenotypes of breast cancers expressed significantly elevated high-level TILs than Luminal tumor subtype, although the presentation of those between the former two subsets was not significantly different (OR, 1.30; 95% CI, 0.83-2.04). Conclusion The elevation of TILs in breast tumors predicts promising prognostic outcomes, particularly in the HER2-overexpression and TN subtypes. These benefits in Luminal tumor subtype need to be warranted.

Introduction
The tumor microenvironment is thought to play an important role in the germination, development, invasion and metastasis of tumors and is composed of immune cells, cytokines, adipocytes, and cancer-related fibroblasts, as well as the extracellular stroma.1, 2 The interaction of immune lymphocytes and tumor cells are the most important interactions in these procedures of tumors. In the immune system, lymphocytes can eradicate tumor cells and prevent neoplasm development through immune surveillance;3 tumor-infiltrating lymphocytes (TILs) participate in the regulation of the tumor niche and the inhibition of tumor formation and development.2

Lymphocyte-predominant breast cancer (LPBC) favors a good, long-term prognosis and enhanced chemosensitivity in primary aggressive molecular subtypes, including the human epidermal growth factor receptor 2 (HER2)-positive (HER2/neu oncogene overexpressed, hormone-receptor-negative) and triple-negative (TN) subtypes. When TN breast cancer patients undergo chemotherapy, each 10% increment of intratumoral TILs (iTILs) and stromal TILs (sTILs) leads to reductions of the recurrence risk of 17% and 15%, respectively, and to reductions of the death risk of 27% and 17%, respectively.4 The presentation of high-level TILs is positively associated with the survival benefits of anthracycline-based chemotherapy and anti-HER2 targeted therapy (trastuzumab) in HER2-positive breast tumors.5 Of note, a pooled analysis of 3371 patients who underwent neoadjuvant therapy had a higher concentration of TILs, which led to shorter overall survival (OS) in the Luminal phenotype of breast cancer,6 suggesting a different biological feature of immune infiltration in this tumor subtype.

In this context, the purpose of our study is to settle these issues, including how the 10% increment of TILs in different molecular phenotypes of breast cancer and these subtypes of LPBC versus non-LPBC influence the OS and the pathological complete response (pCR).
rate. We also compare the expression of high-level TILs between these phenotypes.

Methods

Search strategy

Electronic retrievals were performed from the PubMed, Web of Science, Cochrane Library and Embase databases accord to the following search strategy: ((primary breast cancer) OR (primary breast tumor) OR (primary breast tumor)) AND ((tumor-infiltrating lymphocytes) OR (immune cells infiltration) OR (immune cells infiltrating) OR (immune cell infiltration) OR (immune cell infiltrating)) NOT (metastasis OR metastatic OR metastasize).

No restrictions were used during the retrieval process. The deadline for retrieval was 25 March 2019.

Inclusion criteria

Clinical trials;
Female patients with primary a breast tumor;
The impact of a 10% increment of TILs in breast cancer or LPBC on the OS or on the pCR rate was reported in publications. Studies that documented at least two molecular tumor subtypes with the expression of high-level TILs were also included. TILs were quantified on hematoxylin and eosin–stained sections and evaluated by the usage of the guideline of the International TILs Working Group. OS referred to the duration from the date of diagnosis to the date of death or lost follow-up. pCR was defined as the pathologically absent residual tumor foci in the breast and local regional lymph nodes. The definition of the LPBC was the TIL’s presentation in breast tumors greater than 50%. The high-level TILs were defined as TILs with a concentration ≥50%.

Exclusion Criteria

Articles not published in English;
Studies referencing forkhead box P3 (FOXP3) + or programmed death 1 (PD-1) + or programmed death ligand-1 (PD-L1) + TILs;
Type of work: reviews, case reports, conference abstracts and conference papers;
Other conditions that did not meet the inclusion criteria.

The retrieved citations were screened by two reviewers (Yaling Wang and Yuhua Song) in terms of duplicated citations, titles, abstract sand full-texts. Only eligible trials that met the inclusion criteria were included. If there were any inconsistencies, they were addressed by a discussion.
Data abstraction

Two co-authors (Yaling Wang and Yuhua Song) independently used Microsoft Excel version 2016 (Microsoft Corporation, Redmond, Washington, USA) to collect the following information from the eligible papers: the first author, publication year, original nation, median follow-up, median age, total number of analyzed patients, the Hazard Ratio (HR) with its 95% confidence interval (CI) indicating the association of the intervention factor and OS, the event number of pCR in different intervention factor or the Odds ratio (OR) with the 95%CI referencing the association between the intervention factor and pCR, as well as the event number of the presentation of high-level TILs in different subtypes. If some divergences existed, they were resolved by the third co-author (Xuezhen Ma).

Statistical analysis

We protocled the 10% increment of TILs in breast tumors and LPBC arms as the study groups and the non–10% increment of TILs in breast tumors and non-LPBC arms as the control groups. If the trials reported the event number of pCRs in the study cohort and the control cohort, respectively, the crude OR with its 95% CI was calculated and pooled with that from the other studies. In the analysis of the impact of the intervention factors on OS, the crude HRs with their 95% CIs from the included studies were directly pooled. The comparison of the expression of high-level TILs across the three subtypes was computed in terms of the event and total numbers. If the publication was lacking the event number, it was obtained according to the incidence rate of the event or other information. The heterogeneity between analyzed trials was assessed by the heterogeneity Chi2 test (significant level of $p<0.1$) with its I^2 value. The fixed-effect model was used to pool the data if the heterogeneity test of the meta-analysis was not statistically significant; otherwise, the random-effect model was utilized. The publication bias of these analyses
was evaluated by the Egger’s test (significant level of \(p<0.05 \)). The estrogen receptor (ER) status, primary endpoint, and the chemotherapy strategy and chemotherapy regimen as well as the TILs subset in the eligible studies were also discussed. All the statistical tests were conducted by StataSE software (version 12.0) (StataCorp LP, College Station, TX, USA).

Results

After the systematic retrieval from the abovementioned databases, a total of 914 initial citations were obtained by using the search strategy, and 392 potential citations were left for title and abstract screening following the deletions of duplications (\(n = 285 \)), conference papers (\(n = 219 \)), reviews (\(n = 16 \)) and case reports (\(n = 2 \)). Next, 49 articles remained for full-text assessment due to 343 citations being excluded via title and abstract screening; of these, studies that were reviews (\(n = 2 \)), inconsistent to the criteria of LPBC in our study (\(n = 4 \)), devoid of useful data (\(n = 16 \)) and centered on PD-L1+TILs (\(n = 3 \)) or FOXP3+ TILs (\(n = 2 \)) did not meet the inclusion criteria and hence were excluded. Ultimately, 22 qualified studies were included for meta-analysis.\(^5,\,6,\,8-27\) The procedure of qualified article selection is outlined in Fig. 1.

Of those included studies, the publication year ranged from 2010 to 2019, 14 (63.6%) were retrospective studies with a total of 6958 cases, 10 (45.5%) were originally from Asian countries, 9 (40.9%) documented the breast cancer patients with ER-negative status, and the predominately chemotherapy strategy was in the setting of neoadjuvant therapy. Table 1 also represented the other details involving the median follow-up, the publication year, the median age, the analyzed cases in each analysis, the primary endpoint, and the detailed chemotherapy regimen, as well as the TILs subsets. Four studies recorded the 10% increment of TILs and OS without classification to different
molecular subtypes, and the pooled results showed that the 10% increment of TILs could not significantly improve OS (HR, 0.95; 95% CI, 0.91–1.01). However, there was a significant improvement in OS in terms of the pooled results of multivariate data (HR, 0.92; 95% CI, 0.85–0.98) but not that of univariate data (HR, 1.00; 95% CI, 0.94–1.06) (Fig. 2). In the subgroup analysis of different subtypes, the pooled results showed that, although the 10% increment of TILs in Luminal tumor phenotype did not significantly improve OS (HR, 1.06; 95% CI, 0.99–1.13) (eFig. 1, Supplementary page 1), the improvements in OS were attained by it in HER2-overexpression (HR, 0.92; 95% CI, 0.89–0.95) (eFig. 2, Supplementary page 1) and TN (HR, 0.90; 95% CI, 0.89–0.92) subtypes (eFig. 3, Supplementary page 2). The results were both statistically significant in pooling the univariate data and the multivariate data of the latter two molecular phenotypes (These data were shown in eFig. 2 and eFig. 3, respectively).

Two studies reported the 10% increment of TILs in breast tumors and pCR, and one\(^{25}\) of them divided patients into the training cohort and the validation cohort. Thus, three independently relevant data existed. The pooled results indicated that there was a significantly positive correlation between the 10% increment of TILs in tumor and the increased pCR rate (OR, 1.27; 95% CI, 1.19–1.35). The results of pooling univariate data (OR, 1.33; 95% CI, 1.19–1.47) and multivariate data (OR, 1.21; 95% CI, 1.14–1.28) were still statistically significant (Fig. 3).

Eleven studies provided sufficient data of LPBC and pCR. There was a significant difference in pCR rate between LPBC and non-LPBC (OR, 2.73; 95% CI, 2.40–3.01), and the pooled results of univariate data (OR, 2.84; 95% CI, 2.46–3.21) and multivariate data (OR, 2.35; 95% CI, 1.65–3.05) were also both statistically significant (Fig. 4). In the subgroup analysis, the pooled results all showed a higher pCR rate in Luminal, HER2-overexpression and TN phenotypes of LPBC than those of non-LPBC, respectively (These data were...
Seven studies were collected to perform the comparison of expression of high-level TILs across the different subsets of breast tumors. The pooled data of analysis showed that the presentation of high-level TILs between HER2-overexpression subtype and TN subtype was not significantly different (OR, 1.30; 95% CI, 0.83–2.04), whereas both subtypes experienced significantly elevated expression of high-level TILs as compared to Luminal phenotype (HER2-overexpression vs. Luminal, OR, 3.14; 95% CI, 1.95–5.06; and TN vs. Luminal, OR, 4.09; 95% CI, 2.71–6.19; respectively) (Fig. 5).

Several meta-analyses manifested moderate-to-considerable heterogeneity, and therefore, the random-effect model was employed to pool the data. With the exception of the impact of the 10% increment of TILs in TN tumor subtype on OS ($p = 0.001$) and the impact of LPBC on pCR ($p = 0.007$), there was no likelihood of publication bias in others because the Egg’s tests of them were not statistically significant (eTable 1, Supplementary page 4).

Discussion

Previous meta-analyses have shown that the value of total TILs is that they are associated with an improved outcome in breast cancer following neoadjuvant chemotherapy, but not in hormone receptor-negative subtypes. There is, however, already controversy about whether this benefit is indeed confined to patients with hormone receptor positivity. To investigate this issue, we evaluate all available evidence regarding the Luminal subtype with the hormone receptor-positive and HER2-amplified and TN phenotypes that are both hormone receptor-negative from a pool of clinical studies and demonstrate that a 10% increment of TILs in breast tumors improves OS in HER2-amplified and TN molecular subtypes, but not in the Luminal phenotype. Our results also agree with Denkert’s and West’s trials, which both suggest that a high TILs concentration increases the tumor
response to neoadjuvant chemotherapy and anthracycline-based chemotherapy, and is in association with better long-term survival in the HER2-overexpression and TN breast tumors.

In the study by Denkert et al.,⁶ it is found that the increased TILs may be an adverse factor to OS in breast cancer patients with the Luminal subtype, which differs from our results. This difference may be explained as follows. First, they only evaluated the OS in Luminal-HER2-negative tumors, while our study also includes Luminal-HER-positive of breast cancer patients. Furthermore, they only center on the assessment of the impact of sTILs on OS, but we additionally assess the iTILs. Last, the treatment strategies are not identical, as only neoadjuvant chemotherapy is included in their study but adjuvant chemotherapy is yet included in ours. Collectively, the elevation of the TILs concentration in breast tumors is not advantageous for predicting prolonged OS in patients with the Luminal subtype, largely because of the following reasons: Luminal breast cancer is a predominantly immunologically cold tumor with a low mutation burden of TILs, which can worsen the tumor response to aromatase inhibitor (AIs) treatment;⁶ in addition, the T cell-related mRNA signatures are relevant to a favorable prognosis in breast cancers of the TN or HER2-positive subtypes but not of the Luminal subtype, although B cell-related mRNA signatures indicate good prognosis in Luminal breast cancer;²⁸, ²⁹ third, breast cancer is an immunogenic tumor that can be targeted by immunomodulatory therapy,⁶ but our results show that the expression of high-level TILs in the Luminal subtype is significantly lower than that in the HER2-positive and TN subtypes, making them inefficient in immunomodulatory therapy in Luminal breast tumors.

A large number of clinical trials are enthusiastic about the association between the presence of TILs and the pCR rate after chemotherapy in HR-negative breast cancer. The
2013 San Antonio Breast Cancer Symposium5 and 2014 American Society of Clinical Oncology 50th Annual Meeting30 reported that the presentation of TILs was associated with a higher pCR rate in breast tumors with the HER2-overexpression and TN phenotypes that underwent neoadjuvant chemotherapy (HER2-overexpression breast cancer routinely received trastuzumab treatment). These results map to our findings that a 10% increment of TILs preages a higher pCR rate in breast carcinoma, but it is imperfect as lack of enough data to perform the subgroup analysis of different disease subtypes. Consequently, the understudied association between the 10% increment of TILs and pCR rate in Luminal breast cancer needs to be warranted. Of note, the association between different molecular subtypes of LPBC and pCR rate is well delineated in our study, i.e. the increased pCR rate favors all subtypes of LPBC when compared to those of non-LPBC. Consistently, West and colleagues reaffirm that HER2-amplified and TN subtypes of LPBC have promising chemosensitivity to anthracycline-based adjuvant or neoadjuvant chemotherapy.10

In our study, breast cancers with the HER2-positive and TN subtypes greatly increase the expression of high-level TILs compared with the Luminal subtype; however, there is no significant difference in expression between the former two tumor subtypes. These disparate results may be attributed to the evaluation of different subtypes of immune cells. A variety of lymphocyte subtypes form TILs, which have different activities, from cytotoxicity to immune escaping effects. In TILs, the infiltration of cytotoxic CD8+ T cells predicts improved responses to anthracycline- and taxane-based regimens in primary breast cancers and significantly prolongs survival of patients. However, the infiltration of FOXP3+ T cells is a predictor of poor prognosis in that these cells mediate tumor immune escape. A meta-analysis of 17 trials demonstrated that FOXP3+ and PD-1+ TILs were
associated with a worse prognosis in breast tumors.2 Thus, articles with reference to PD-1+, PD-L1+ and FOXP3+ TILs are included in our study. Our results at a certain extent explain why Luminal breast carcinoma is a predominantly immune cold tumor, the reasons for the good response to anti-HER2 targeted therapy, mediated in part by immune effector mechanisms, of HER2-positive breast cancer and of the strong immunogenic characteristic of breast tumors with the TN subtype.

Admittedly, this meta-analysis has limitations. First, a selection bias might exist because of the inclusion criterion that confined the condition to English publications and the exclusion criteria that omitted the immune cell subsets of PD-1+TILs, PD-L1+TILs and FOXP3+TILs. Second, to obtain more evidence and larger scale of cases, analysis of pCR rate between LPBC and non-LPBC also included trials centering on CD8+LPBC, giving rise to considerable heterogeneity. Finally, there may be clinical heterogeneity among the included studies, such as application of different chemotherapy regimens and treatment strategies, as well as investigation of different TILs subtypes.

Despite these limitations, this was the first meta-analysis that systematically elucidated the influence of a 10% increment of TILs in breast cancer and LPBC on OS and pCR, and compared the presentation of high-level TILs in different molecular subtypes. Moreover, the molecular mechanisms of the antitumor effects of CDK4/6 inhibitors were summarized in the Discussion section. Future studies will need to supplement the underrecognized and understudied landscapes whether a higher pCR rate is related to the 10% increment of TILs in the Luminal subtype of breast cancer and Luminal and HER2-overexpression phenotypes of LPBC is beneficial to improved OS.

Conclusion

The 10% increment of TILs in breast tumors predicts improved OS and pCR rate of
patients, specifically in the HER2-overexpression and TN molecular subtypes. Moreover, all subsets of LPBC benefit greater pCR rate than those of non-LPBC. Although there is no difference between the expression of high-level TILs among HER2-overexpression and TN phenotypes of breast cancer, they both have high expression than that relative to the Luminal tumor subtype.

Declarations

Ethics Statement

Ethics approval and consent to participate

This article does not contain any studies with human participants or animals performed by any of the authors.

Acknowledgement

Not applicable

Disclosure Statement

The authors declare that they have no competing interests.

References

1. Liotta LA, Kohn EC. The microenvironment of the tumour-host interface. *Nature* 2001; 411(6835): 375–9.

2. Yu X, Zhang Z. Prognostic and predictive value of tumor-infiltrating lymphocytes in breast cancer: a systematic review and meta-analysis. 2016; 18(5): 497-506.

3. Swann JB, Smyth MJ. Immune surveillance of tumors. *The Journal of clinical investigation* 2007; 117(5): 1137-46.

4. Loi S, Sirtaine N, Piette F, et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast
cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02–98. *Journal of clinical oncology: official journal of the American Society of Clinical Oncology* 2013; 31(7): 860–7.

5. Loi S, Michiels S, Salgado R, et al. Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive for trastuzumab benefit in early breast cancer: results from the FinHER trial. *Annals of oncology: official journal of the European Society for Medical Oncology* 2014; 25(8): 1544–50.

6. Denkert C, von Minckwitz G, Darb-Esfahani S, et al. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy. *The Lancet Oncology* 2018; 19(1): 40–50.

7. Salgado R, Denkert C, Demaria S, et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. *Annals of oncology: official journal of the European Society for Medical Oncology* 2015; 26(2): 259–71.

8. Sonderstrup IMH, Jensen MB, Ejlertsen B, et al. Evaluation of tumor-infiltrating lymphocytes and association with prognosis in BRCA-mutated breast cancer. *Acta oncologica (Stockholm, Sweden)* 2019: 1–8.

9. Hida AI, Sagara Y, Yotsumoto D, et al. Prognostic and predictive impacts of tumor-infiltrating lymphocytes differ between Triple-negative and HER2-positive breast cancers treated with standard systemic therapies. *Breast cancer research and treatment* 2016; 158(1): 1–9.

10. West NR, Milne K, Truong PT, Macpherson N, Nelson BH, Watson PH. Tumor-infiltrating lymphocytes predict response to anthracycline-based chemotherapy in estrogen receptor-negative breast cancer. *Breast Cancer Research* 2011; 13(6).

11. Seo AN, Lee HJ, Kim EJ, et al. Tumour-infiltrating CD8+ lymphocytes as an independent
predictive factor for pathological complete response to primary systemic therapy in breast cancer. *British journal of cancer* 2013; 109(10): 2705-13.

12.Hwang HW, Jung H, Hyeon J, et al. A nomogram to predict pathologic complete response (pCR) and the value of tumor-infiltrating lymphocytes (TILs) for prediction of response to neoadjuvant chemotherapy (NAC) in breast cancer patients. *Breast cancer research and treatment* 2019; 173(2): 255-66.

13.Lee HJ, Seo JY, Ahn JH, Ahn SH, Gong G. Tumor-Associated Lymphocytes Predict Response to Neoadjuvant Chemotherapy in Breast Cancer Patients. *Journal of breast cancer* 2013; 16(1): 32-9.

14.Kim YA, Lee HJ, Heo SH, et al. MxA expression is associated with tumor-infiltrating lymphocytes and is a prognostic factor in triple-negative breast cancer. *Breast cancer research and treatment* 2016; 156(3): 597-606.

15.Luen SJ, Salgado R, Dieci MV, et al. Prognostic implications of residual disease tumor-infiltrating lymphocytes and residual cancer burden in triple-negative breast cancer patients after neoadjuvant chemotherapy. *Annals of oncology: official journal of the European Society for Medical Oncology* 2019; 30(2): 236-42.

16.Dieci MV, Mathieu MC, Guarneri V, et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in two phase III randomized adjuvant breast cancer trials. *Annals Of Oncology* 2015; 26(8): 1698-704.

17.Pruneri G, Vingiani A, Bagnardi V, et al. Clinical validity of tumor-infiltrating lymphocytes analysis in patients with triple-negative breast cancer. *Annals Of Oncology* 2016; 27(2): 249-56.

18.Burugu S, Gao D, Leung S, Chia SK, Nielsen TO. LAG-3+tumor infiltrating lymphocytes in breast cancer: clinical correlates and association with PD-1/PD-L1+tumors. *Annals Of Oncology* 2017; 28(12): 2977-84.
19. Pruneri G, Gray KP, Vingiani A, et al. Tumor-infiltrating lymphocytes (TILs) are a powerful prognostic marker in patients with triple-negative breast cancer enrolled in the IBCSG phase III randomized clinical trial 22–00. Breast cancer research and treatment 2016; 158(2): 323–31.

20. Luen SJ, Salgado R, Fox S, et al. Tumour-infiltrating lymphocytes in advanced HER2-positive breast cancer treated with pertuzumab or placebo in addition to trastuzumab and docetaxel: a retrospective analysis of the CLEOPATRA study. The Lancet Oncology 2017; 18(1): 52-62.

21. Tian T, Ruan M, Yang W, Shui R. Evaluation of the prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers. Oncotarget 2016; 7(28): 44395–405.

22. Kochi M, Iwamoto T, Niikura N, et al. Tumour-infiltrating lymphocytes (TILs)-related genomic signature predicts chemotherapy response in breast cancer. Breast cancer research and treatment 2018; 167(1): 39–47.

23. Watanabe T, Hida AI, Inoue N, et al. Abundant tumor infiltrating lymphocytes after primary systemic chemotherapy predicts poor prognosis in estrogen receptor-positive/HER2-negative breast cancers. Breast cancer research and treatment 2018; 168(1): 135–45.

24. Galvez M, Castaneda CA, Sanchez J, et al. Clinicopathological predictors of long-term benefit in breast cancer treated with neoadjuvant chemotherapy. World Journal Of Clinical Oncology 2018; 9(2): 33–41.

25. Denkert C, Loibl S, Noske A, et al. Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 2010; 28(1): 105–13.

26. Denkert C, von Minckwitz G, Brase JC, et al. Tumor-infiltrating lymphocytes and
response to neoadjuvant chemotherapy with or without carboplatin in human epidermal growth factor receptor 2-positive and triple-negative primary breast cancers. *Journal of clinical oncology: official journal of the American Society of Clinical Oncology* 2015; 33(9): 983-91.

27. Adams S, Gray RJ, Demaria S, et al. Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase I II randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. *Journal of clinical oncology: official journal of the American Society of Clinical Oncology* 2014; 32(27): 2959-66.

28. Bianchini G, Qi Y, Alvarez RH, et al. Molecular anatomy of breast cancer stroma and its prognostic value in estrogen receptor-positive and -negative cancers. *Journal of clinical oncology: official journal of the American Society of Clinical Oncology* 2010; 28(28): 4316-23.

29. Rody A, Holtrich U, Pusztai L, et al. T-cell metagene predicts a favorable prognosis in estrogen receptor-negative and HER2-positive breast cancers. *Breast cancer research: BCR* 2009; 11(2): R15.

30. OJotASoC O. Abstracts American Society of Clinical Oncology 50th Annual Meeting: J Clin Oncol; 2014.

Tables

Characteristic	Studies, No. (%) (N=22)	Primary Breast Cancer Patients, No. (%) (N=15676)
Study type		
Randomized trial	5 (22.7)	3578 (22.8)
Retrospective	14 (63.6)	6958 (44.4)
Pooled	1 (4.5)	3771 (24.1)
Prospective-retrospective	1 (4.5)	934 (6.0)
Prospective	1 (4.5)	435 (2.8)
Publication date, median (range), y	2016 (2010-2019)	
Follow-up, median (range), mo* 90.6 (48.0-190.8)
Median age, median (range), y* 50.0 (46.5-54.0)
10% increment of TILs and OS, total (range), n

Subtype	TILs	OS
All subtypes	4460	(399-2346)
Luminal	1886	(463-832)
HER2-enriched	1985	(112-986)
TNBC	3847	(92-897)

10% increment of TILs and pCR, total (range), n

Subtype	TILs	pCR
All subtypes	1638	(218-840)
Luminal	1717	(91-1366)
HER2-enriched	1801	(40-1379)
TNBC	1425	(48-906)

LPBC and pCR, total (range), n

Subtype	LPBC	pCR
All subtypes	6697	(40-3771)
Luminal	1717	(91-1366)
HER2-enriched	1801	(40-1379)
TNBC	1425	(48-906)

High TILs cross different subtypes, total (range), n

Subtype	TILs
TNBC vs Luminal	6524
HER2-enriched vs Luminal	6696
TNBC vs HER2-enriched	3722

Original area

Region	Count (Percentage)
Asia	10 (45.5)
America	4 (18.2)
Europe	8 (36.4)

ER status

ER Status	Count (Percentage)
ER-positive	0 (0.0)
ER-negative	9 (40.9)
ER-combined	13 (59.1)

Primary endpoint

Endpoint	Count (Percentage)
pCR	10 (45.5)
OS	11 (50.0)
Others	1 (4.5)

Chemotherapy strategy

Strategy	Count (Percentage)
Neoadjuvant	15 (68.2)
Adjuvant	5 (22.7)
Unknown	2 (9.1)

Chemotherapy regimen
Treatment Type	Count	(%)	Count	(%)
Anthracycline-based	3	13.6	2113	13.5
Taxanes-based	1	4.5	3771	24.1
Anthracycline- and taxanes-based	10	45.5	3822	24.4
Methotrexate-based	3	13.6	1915	12.2
Unknown	5	22.7	4055	25.9

TILs subsets

Subset	Count	(%)	Count	(%)
TILs	11	50.0	8014	51.1
iTILs	3	13.6	4135	26.4
sTILs	6	27.3	3199	20.4
CD8+TILs	1	4.5	175	1.1
CD4+TILs	1	4.5	153	1.0

Table 1. Summary of the characteristics of the 21 included Studies.

Abbreviations: TILs, tumor-infiltrating lymphocytes; OS, overall survival; HER2, human epidermal growth factor receptor 2; TNBC, triple-negative breast cancer; pCR, pathological complete response; LPBC, lymphocyte-predominant breast cancer; ER, estrogen receptor; iTILs, intratumoral tumor-infiltrating lymphocytes; sTILs stromal tumor-infiltrating lymphocytes.

*Median value is calculated in terms of available data.

Figures
Figure 1

Flow diagram of eligible article selection.
Study ID	HR [95% CI]	Weight (%)	Hazard ratio
Univariable analysis			
Denkert (2018)	1.01 [0.97-1.05]	22.16	
Loi (2014)	1.07 [0.95-1.20]	9.57	
Dieci (2015)	0.94 [0.86-1.03]	14.50	
Subtotal (I²=40%; p=0.19)	1.00 [0.94-1.06]	46.23	
Multivariable analysis			
Sønderstrup (2019)	0.92 [0.84-1.00]	15.28	
Denkert (2018)	0.97 [0.92-1.01]	21.31	
Loi (2014)	0.81 [0.61-1.10]	3.42	
Dieci (2015)	0.85 [0.77-0.95]	13.76	
Subtotal (I²=56%; p=0.08)	0.92 [0.85-0.98]	53.77	
Total (I²=64%; p=0.01)	**0.95 [0.91-1.01]**	**100.00**	

Figure 2

Impact of a 10% increment of tumor-infiltrating lymphocytes in breast tumor on overall survival.
Figure 3

Impacts of a 10% increment of tumor-infiltrating lymphocytes in breast tumor on the pathological complete response.
Study ID	OR [95% CI]	Weight (%)	Odds ratio
Denkert (2018)	2.62 [2.21-3.10]	54.51	
Lee (2013)	2.46 [0.93-6.46]	1.42	
Denkert (2010)	4.12 [2.63-6.47]	2.93	
Denkert (2010)	6.98 [2.71-17.98]	0.19	
Galvez (2018)	2.60 [1.40-4.84]	3.64	
Watanabe (2018)	5.73 [2.73-12.03]	0.50	
Denkert (2015)	2.92 [1.98-4.31]	7.97	
West (2011)	6.33 [2.49-16.08]	0.23	
Seo (2013)	7.33 [2.02-26.21]	0.07	
Kochi (2018)	3.50 [2.43-5.13]	5.94	
Watanabe (2018)	5.73 [2.73-12.00]	0.50	
Subtotal (I²=0%; p=0.50)	2.84 [2.46-3.21]	77.90	

Multivariable analysis

Study ID	OR [95% CI]	Weight (%)	Odds ratio
Denkert (2015)	2.66 [1.76-4.02]	8.47	
West (2011)	6.42 [2.08-19.80]	0.14	
Seo (2013)	2.38 [0.48-11.69]	0.34	
Kochi (2018)	2.02 [1.30-3.14]	12.78	
Watanabe (2018)	4.97 [1.94-12.80]	0.37	
Subtotal (I²=0%; p=0.65)	2.35 [1.65-3.05]	22.10	
Total (I²=0%; p=0.58)	**2.73 [2.40-3.01]**	**100.00**	

Figure 4

Impacts of lymphocyte-predominant breast cancer on the pathological completed response.
Figure 5

Comparison of the expression of high-level TILs across different subtypes of breast tumors.

Study ID	OR [95% CI]	Weight (%)	Odds ratio
TNBC vs Luminal			
Denkert (2018)	2.99 [2.42-3.71]	18.10	**1-V, Random, 95%CI**
Kim (2016)	8.68 [4.62-16.30]	13.18	
Burugu (2017)	6.87 [5.05-9.34]	17.22	
Hwang (2018)	3.20 [1.61-6.36]	12.48	
Dieci (2015)	3.74 [2.08-6.71]	13.77	
Watanabe (2017)	5.39 [2.29-12.67]	10.47	
Galvez (2018)	1.86 [1.12-3.08]	14.79	
Subtotal (I²=82%; p<0.01)	**4.09 [2.71-6.19]**	**100.00**	

| **HER2+++ vs Luminal** |
Denkert (2018)	1.63 [1.32-2.01]	18.26	
Kim (2016)	5.50 [2.48-12.22]	12.37	
Burugu (2017)	3.66 [2.49-5.38]	16.84	
Hwang (2018)	3.02 [1.32-6.92]	12.05	
Dieci (2015)	6.69 [3.61-12.38]	14.38	
Watanabe (2017)	1.34 [9.52-3.45]	10.80	
Galvez (2018)	3.44 [2.02-5.86]	15.30	
Subtotal (I²=83%; p<0.01)	**3.14 [1.95-5.06]**	**100.00**	

| **TNBC vs HER2+++** |
Denkert (2018)	1.84 [1.51-2.24]	18.81	
Kim (2016)	1.58 [0.80-3.12]	13.42	
Burugu (2017)	1.88 [1.23-2.87]	16.58	
Hwang (2018)	1.06 [0.47-2.39]	11.86	
Dieci (2015)	0.56 [0.31-1.00]	14.67	
Watanabe (2017)	4.03 [1.61-10.08]	10.73	
Galvez (2018)	0.54 [0.28-1.03]	13.93	
Subtotal (I²=81%; p<0.01)	**1.30 [0.83-2.04]**	**100.00**	
Figure 6

Supplementary Files

This is a list of supplementary files associated with the primary manuscript. Click to
download.
PRISMA 2009 checklist.doc