ON AN INTEGRO–DIFFERENTIAL EQUATION OF ARBITRARY (FRACTIONAL) ORDERS WITH NONLOCAL INTEGRAL AND INFINITE–POINT BOUNDARY CONDITIONS

H. EL-OWAIDY, A. M. A. EL-SAYED AND REDA GAMAL AHMED

(Communicated by C. Lizama)

Abstract. In this paper, we study the existence and uniqueness of solutions for an integro–differential equation of arbitrary (fractional) orders with nonlocal integral and infinite-point boundary conditions, continuous dependence of the solution on nonlocal data, on initial condition and on functional equation also will be study. An examples to prove main results.

1. Introduction

Boundary value problems for nonlinear differential equations (fractional differential equations) have attracted great research efforts worldwide, as they arise from the study of many important problems in various discipline areas such as fluid flows, electrical networks, rheology, biology and chemical physics. In practical applications, it is important to establish the conditions for the existence solutions. Hence, many authors have investigated the existence solutions for various functional differential equation (fractional differential equation) boundary value problems, and for details, the reader is referred to [1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 14, 16, 19] and the references therein.

In [15], the authors proved the existence of absolute continuous solutions of the nonlocal first-order boundary value problem (BVP) with the nonlinear function involving the Liouville-Caputo fractional derivative:

$$\frac{dx}{dt} = f(t, D^\alpha x(t)), \quad a.e \quad t \in (0, 1), \quad 0 < \alpha \leq 1,$$

together with either the Riemann–Stieltjes functional integral boundary condition (with the advanced or deviated argument f) given by \(\int_0^1 x(\phi(s))dg(s) = x_0\), or the infinite-point boundary conditions given by \(\sum_{k=1}^\infty a_k x(\phi(\tau_k)) = x_0\).

Motivated by the above mentioned paper, the purpose of this paper is to investigate the existence solutions for a more general problem. Obviously, our work is different from those in [20, 21, 22].

Mathematics subject classification (2010): 26A33, 34B18, 34A30, 34K37, 34A08, 34B10.

Keywords and phrases: Functional equations, existence of solutions, continuous dependence, fractional–order, boundary value problem, infinite point condition, Liouville–Caputo fractional derivative.

* Corresponding author.
In this paper, we are concerned with the nonlocal problem for the integro-differential equation
\begin{equation}
\frac{dx}{dt} = f(t, x(t), \int_0^t g(s, D^\alpha x(s))ds), \quad a.e \quad t \in (0, 1), \quad \alpha(0, 1],
\end{equation}
with the nonlocal condition
\begin{equation}
\sum_{k=1}^m a_k x(\tau_k) = x_0, \quad a_k \geq 0, \quad \tau_k \in (0, 1).
\end{equation}
The existence solution \(x \in AC[0, T] \) of the nonlocal problem (1)-(2) we be proved. The continuous dependence of the solution on the nonlocal data \(a_k \) and on the function \(g \), will be studied.

As applications, the nonlocal problem of equation (1) with the integral condition
\begin{equation}
\int_0^1 x(s)dg(s) = x_0,
\end{equation}
will be studied. Also, the nonlocal problem of equation (1) with infinite-point boundary condition
\begin{equation}
\sum_{k=1}^m a_k x(\tau_k) = x_0,
\end{equation}
will be studied. Finally, we give an examples to prove main results.

Main results in this paper are based onto Kolmogorov’s Compactness Criterion [6], Schauder’s Fixed Point Theorem [10] and the following definitions:

DEFINITION 1. [18] The fractional order integral of order \(\alpha \) of \(f \in L_1 \) is defined by
\[I^\alpha f(t) = \int_0^t (t-s)^{\alpha-1} \frac{1}{\Gamma(\alpha)} f(s)ds. \]

DEFINITION 2. [18] The Caputo fractional-order derivative \(D^\alpha_a f(t) \) of order \(\alpha \in (0, 1] \) of the absolutely continuous function \(f(t) \) is given by
\[D^\alpha_a f(t) = I^{1-\alpha} \frac{d}{dt} f(t) = \int_a^t \frac{(t-s)^{-\alpha}}{\Gamma(1-\alpha)} \frac{d}{ds} f(s)ds. \]

2. Integral Representation

Consider the nonlocal problem (1)-(2) with the assumptions:

1. \(f : [0, T] \times \mathbb{R}^2 \to \mathbb{R} \) satisfies Caratheodory condition i.e. \(f \) is measurable in \(t \) for any \(x, y \in \mathbb{R} \) and continuous in \(x, y \) for almost all \(t \in [0, 1] \). There exist a function \(a_1 \in L^1[0, 1] \) and a positive constant \(b_1 > 0 \), such that
\[|f(t, \eta, \varphi)| \leq a_1(t) + b_1|\eta| + b_1|\varphi|. \]
2. \(g : [0, 1] \times \mathbb{R} \to \mathbb{R} \) satisfies Caratheodory condition i.e \(g \) is measurable in \(t \) for any \(x \in \mathbb{R} \) and continuous in \(x \) for almost all \(t \in [0, 1] \). There exist a function \(c_2 \in L^1[0, 1] \) and a positive constant \(b_2 > 0 \), such that
\[
|g(t, \eta)| \leq a_2(t) + b_2|\eta|.
\]

3.
\[
\sup_{t \in [0, 1]} \int_0^t a_1(s)ds \leq M_1, \quad \sup_{t \in [0, 1]} \int_0^t \int_0^s a(\theta)d\theta ds \leq M_2.
\]

4. \(2b_1 + \frac{b_1b_2}{\Gamma(2-\alpha)} < 1 \).

Lemma 1. Let \(A = \sum_{k=1}^m a_k \neq 0 \), the solution of the nonlocal problem (1)-(2), if it exist, then it can be expressed by the integral equation
\[
x(t) = A^{-1}[x_0 - \sum_{k=1}^m a_k \int_0^{\tau_k} v(s)ds] + \int_0^t v(s)ds.
\]

where
\[
v(t) = f(t, A^{-1}[x_0 - \sum_{k=1}^m a_k \int_0^{\tau_k} v(s)ds] + \int_0^t v(s)ds, \int_0^t g(s, I^{1-\alpha} v(s))ds).
\]

Proof. Let \(\frac{dx}{dt} = v(t) \) in (1), we obtain
\[
v(t) = f(t, x(t), \int_0^t g(s, I^{1-\alpha} v(s))ds), \quad t \in (0, 1), \quad (7)
\]

where
\[
x(t) = x(0) + \int_0^t v(s)ds, \quad (8)
\]

Using the nonlocal condition (2), we get
\[
\sum_{k=1}^m a_k x(\tau_k) = x(0) \sum_{k=1}^m a_k + \sum_{k=1}^m a_k \int_0^{\tau_k} v(s)ds,
\]
then
\[
x(0) = \frac{1}{\sum_{k=1}^m a_k} \left[x_0 - \sum_{k=1}^m a_k \int_0^{\tau_k} v(s)ds \right]. \quad (9)
\]

We obtain (5) and (6) from (7), (8) and (9). This completes the proof.
3. Existence of solution

DEFINITION 3. By a solution of the functional integral equation (6) we mean a function \(v \in L[0,1] \) that satisfies (6).

THEOREM 1. Let the assumptions 1–4 be satisfied, then the functional integral equation (6) has at least one solution \(v \in L[0,1] \).

Proof. Define the operator \(F \) associated with the \(v \in L[0,1] \) by

\[
Fv(t) = f(t, A^{-1} [x_0 - \sum_{k=1}^{m} a_k \int_0^{\tau_k} v(s)ds] + \int_0^s v(t, s, 1 - \alpha v(s))ds) .
\]

Let \(\Omega_l = \{ v \in \mathbb{R} : ||v|| \leq l \} \), where \(l = \frac{M_1 + b_1 A^{-1} ||x_0|| + b_1 M_2}{1 - (2b_1 + \frac{b_1 b_2}{\Gamma(2 - \alpha)})} \).

Then we have, for \(v \in \Omega_l \)

\[
||Fv(t)||_{L_1} \leq \int_0^1 |f(s, A^{-1} [x_0 - \sum_{k=1}^{m} a_k \int_0^{\tau_k} v(s)ds] + \int_0^s v(t, s, 1 - \alpha v(s))ds)|ds.
\]

\[
\leq \int_0^1 |a_1(s) + b_1 A^{-1} [x_0 - \sum_{k=1}^{m} a_k \int_0^{\tau_k} v(s)ds]|ds + b_1 \int_0^s |g(s, 1 - \alpha v(s))|ds.
\]

\[
\leq \int_0^1 a_1(s)ds + b_1 A^{-1} [x_0] + b_1 A^{-1} \sum_{k=1}^{m} a_k \int_0^s 1 - \alpha v(s)ds + b_1 \int_0^s a(s)ds.
\]

\[
+ b_1 b_2 \int_0^s 1 - \alpha v(s)ds.
\]

\[
\leq M_1 + b_1 A^{-1} [x_0] + 2b_1 \|v\|_{L_1} + b_1 M_2.
\]

\[
+b_1 b_2 \int_0^s \int_0^\theta (\theta - \lambda)^{\frac{-\alpha}{\Gamma(1 - \alpha)}} |v(\lambda)|d\lambda d\theta ds.
\]

\[
\leq M_1 + b_1 A^{-1} [x_0] + b_1 M_2 + (2b_1 + \frac{b_1 b_2}{\Gamma(2 - \alpha)}) l = l.
\]

This prove that \(F : \Omega_l \rightarrow \Omega_l \) and the class of functions \(\{Fv\} \) is uniformly bounded in \(\Omega_l \).

Let \(\Omega \) be bounded subset of \(\Omega_l \) and \(F : \Omega_l \rightarrow \Omega_l \). Then \(F(\Omega) \) is also bounded on \(\Omega_l \).
Let \(v \in \Omega \), then
\[
\|(Fv)_{h} - Fv\|_{L_1} = \int_{0}^{1} \frac{1}{h} \int_{\theta}^{\theta+h} (Fv)(s)ds - (Fv)(\theta) |d\theta|
\]
\[
\leq \int_{0}^{1} \frac{1}{h} \int_{\theta}^{\theta+h} |f(s,A^{-1}[x_0 - \sum_{k=1}^{m} a_k \int_{0}^{\theta} u(\lambda)d\lambda]) + \int_{0}^{\theta} v(\lambda)d\lambda,
\]
\[
\int_{0}^{s} g(\lambda,1^{\alpha}v(\lambda))d\lambda - f(\theta,A^{-1}[x_0 - \sum_{k=1}^{m} a_k \int_{0}^{\theta} u(\lambda)d\lambda]
\]
\[
+ \int_{0}^{\theta} v(\lambda)d\lambda, \int_{0}^{\theta} g(\lambda,1^{\alpha}v(\lambda))d\lambda)|dsd\theta,
\]

since \(f \in L_1[0,T] \), It follows that
\[
\frac{1}{h} \int_{\theta}^{\theta+h} [f(s,A^{-1}[x_0 - \sum_{k=1}^{m} a_k \int_{0}^{\theta} u(\lambda)d\lambda]) + \int_{0}^{\theta} v(\lambda)d\lambda,
\]
\[
\int_{0}^{s} g(\lambda,1^{\alpha}v(\lambda))d\lambda - f(\theta,A^{-1}[x_0 - \sum_{k=1}^{m} a_k \int_{0}^{\theta} u(\lambda)d\lambda] + \int_{0}^{\theta} v(\lambda)d\lambda,
\]
\[
\int_{0}^{\theta} g(\lambda,1^{\alpha}v(\lambda))d\lambda)|ds \to 0 \text{ as } h \to 0,
\]

then \((Fv)_{h} \to (Fv)\) uniformly. Hence \(F(\Omega) \) is relatively compact. Hence \(F \) is compact operator.

Let \(\{v_n\} \subset Q_l \) and \(v_n \to v \)
\[
\lim_{n \to \infty} Fv_n = \lim_{n \to \infty} f(t,A^{-1}[x_0 - \sum_{k=1}^{m} a_k \int_{0}^{\tau_{k}} v_n(s)ds] + \int_{0}^{t} v_n(s)ds,
\]
\[
\int_{0}^{t} g(s,1^{\alpha}v_n(s))ds) = Fv.
\]

Then \(v_n \to v \Rightarrow Fv_n \to Fv \) as \(n \to \infty \). This mean that the operator \(F \) is continuous operator.

By Schauder fixed point Theorem [10] there exist at least one solution \(v \in L_1[0,T] \) of the functional integral equations \((6) \).

Thus, based on the Lemma 1, the nonlocal problem \((1)–(2)\) possess a solution \(x \in AC[0,1] \). Now, from \((5) \), we have
\[
x(0) = \lim_{t \to 0} x(t) = x(t) = A^{-1}[x_0 - \sum_{k=1}^{m} a_k \int_{0}^{\tau_{k}} v(s)ds],
\]
and
\[
x(1) = \lim_{t \to 1} x(t) = x(t) = A^{-1}[x_0 - \sum_{k=1}^{m} a_k \int_{0}^{\tau_{k}} v(s)ds] + \int_{0}^{1} u(s)ds.
\]

Therefor the Equation \((5) \) has a solution \(x \in AC[0,1] \). Consequently, the nonlocal problem \((1)–(2)\) has a solution \(x \in AC[0,1] \) given by \((5) \).
4. Uniqueness of the solution

Let f and g satisfy the following assumptions

5. $f : [0, T] \times \mathbb{R}^2 \rightarrow \mathbb{R}$ is measurable in t for any $x, y \in \mathbb{R}$ and satisfies the lipschitz condition

$$|f(t, x, y) - f(t, u, v)| \leq b_1 |x - u| + b_1 |y - v|,$$

6. $g : [0, T] \times \mathbb{R} \rightarrow \mathbb{R}$ is measurable in t for any $x \in \mathbb{R}$ and satisfies the lipschitz condition

$$|g(t, x) - g(t, u)| \leq b_2 |x - u|,$$

7. $\sup_{t \in [0,1]} \int_0^t |f(s, 0, 0)| \, ds \leq L_1, \sup_{t \in [0,1]} \int_0^s |g(\theta, 0)| \, d\theta \, ds \leq L_2.$$

Theorem 2. Let the assumptions 5–7 be satisfied, then the solution of the functional integral equation (6) is unique $v \in L_1[0,1]$.

Proof. From Theorem 1 the solution of the integral equation (6) exists. Let v, y be two the solution of (6), then

$$\int_0^1 |v(t) - y(t)| \, dt = \int_0^1 |f(t, A^{-1}[x_0 - \sum_{k=1}^m a_k \int_0^{\tau_k} v(s) \, ds] + \int_0^t v(s) \, ds, \\
- f(t, A^{-1}[x_0 - \sum_{k=1}^m a_k \int_0^{\tau_k} y(s) \, ds] + \int_0^t y(s) \, ds, \\
- \int_0^t g(s, 1^{1-\alpha} v(s)) \, ds)| \, dt \\
\leq b_1 \int_0^1 A^{-1} \sum_{k=1}^m a_k \int_0^{\tau_k} |v(s) - y(s)| \, ds \, dt \\
+ b_1 \int_0^1 \int_0^t |v(s) - y(s)| \, ds \, dt \\
+ b_1 b_2 \int_0^1 \int_0^t 1^{1-\alpha} |v(s) - y(s)| \, ds \, dt \\
\leq b_1 A^{-1} \sum_{k=1}^m a_k \int_0^1 \int_0^{\tau_k} |v(s) - y(s)| \, ds \, dt \\
+ b_1 \int_0^1 \int_0^t |v(s) - y(s)| \, dt \, ds \\
+ b_1 b_2 \int_0^1 \int_0^t \frac{s - \theta}{\Gamma(1-\alpha)} |v(s) - y(s)| \, d\theta \, ds \, dt.
\[\leq 2b_1\|v - y\| + \frac{b_1b_2}{\Gamma(2-\alpha)}\|v - y\|\].

Hence

\[\left(1 - (2b_1 + \frac{b_1b_2}{\Gamma(2-\alpha)})\right)\|v - y\| \leq 0.\]

since \((2b_1 + \frac{b_1b_2}{\Gamma(2-\alpha)}) < 1\), then \(v(t) = y(t)\) and the solution of the functional integral equation (6) is unique.

Thus, based on the Lemma 1, the nonlocal problem (1)–(2) possess a unique solution \(x \in AC[0, 1]\). Now, from (5), we have

\[x(0) = \lim_{t \to 0} x(t) = x(t) = A^{-1}[x_0 - \sum_{k=1}^{m} a_k \int_0^{\tau_k} v(s)ds],\]

and

\[x(1) = \lim_{t \to 1} x(t) = x(t) = A^{-1}[x_0 - \sum_{k=1}^{m} a_k \int_0^{\tau_k} v(s)ds] + \int_0^1 u(s)ds.\]

Therefore, the Equation (5) has a unique solution \(x \in AC[0, 1]\). Consequently, the nonlocal problem (1)–(2) has a unique solution \(x \in AC[0, 1]\) given by (5).

5. Nonlocal integral condition

Let \(x \in AC[0, 1]\) be the solution of the nonlocal problem (1)-(2). Let \(a_k = h(t_k) - h(t_{k-1})\), \(h\) is increasing functions, \(\tau_k \in (t_{k-1}, t_k)\), \(0 = t_0 < t_1 < t_2, \ldots < t_m = 1\) then, as \(m \to \infty\) the nonlocal conditions (2) will be

\[\sum_{k=1}^{m} h(t_j) - h(t_{k-1})x(\tau_k) = x_0.\]

And

\[\lim_{m \to \infty} \sum_{k=1}^{m} h(t_k) - h(t_{k-1})x(\tau_k) = \int_0^1 x(s)dh(s) = x_0\]

THEOREM 3. Let the assumptions 1–4 be satisfied, then the nonlocal problem of (1)-(3) has at least one absolutely continuous solution.
Proof. As \(m \to \infty \), the solution of the nonlocal problem (1)-(2) will be
\[
x(t) = \lim_{m \to \infty} A^{-1} [x_0 - \sum_{k=1}^{m} a_k \int_0^{\tau_k} u(s)ds] + \int_0^t v(s)ds
\]
\[
= \frac{1}{h(1) - h(0)} [x_0 - \sum_{k=1}^{m} a_k \int_0^{\tau_k} v(s)ds(h(t_j) - h(t_{j-1}))] + \int_0^t v(s)ds
\]
\[
= \frac{1}{h(1) - h(0)} [x_0 - \int_0^1 \int_0^{\tau_k} v(s)ds dh(t)] + \int_0^t v(s)ds,
\]
where
\[
v(t) = f(t, \frac{1}{h(1) - h(0)} [x_0 - \int_0^1 \int_0^{\tau_k} v(s)ds dh(t)])
\]
\[
\int_0^t v(s)ds, \int_0^t g(s, t^{1-\alpha} v(s))ds
\]

6. Infinite-point boundary condition

THEOREM 4. Let the assumptions 1–4 be satisfied, then the nonlocal problem of (1)-(4) has at least one absolutely continuous solution.

Proof. Let the assumptions of Theorem 1 be satisfied. Let \(\sum_{k=1}^{m} a_k \) be convergent, then
\[
x_m(t) = \lim_{m \to \infty} A^{-1} [x_0 - \sum_{k=1}^{m} a_k \int_0^{\tau_k} v_m(s)ds] + \int_0^t v_m(s)ds.
\]
(10)

Where
\[
v_m(t) = f(t, \frac{1}{h(1) - h(0)} [x_0 - \sum_{k=1}^{m} a_k \int_0^{\tau_k} v_m(\theta)d\theta])
\]
\[
+ \int_0^t v_m(s)ds, \int_0^t g(s, t^{1-\alpha} v_m(s))ds).
\]
Take the limit to (10), as \(m \to \infty \), we have
\[
\lim_{m \to \infty} x_m(t) = \lim_{m \to \infty} \frac{1}{\sum_{k=1}^{m} a_k} [x_0 - \sum_{k=1}^{m} a_k \int_0^{\tau_k} v_m(s)ds] + \int_0^t v_m(s)ds.
\]
(11)

Where
\[
\lim_{m \to \infty} v_m(t) = \lim_{m \to \infty} f(t, \frac{1}{\sum_{k=1}^{m} a_k} [x_0 - \sum_{k=1}^{m} a_k \int_0^{\tau_k} v_m(\theta)d\theta])
\]
\[
+ \int_0^t v_m(s)ds, \int_0^t g(s, t^{1-\alpha} v_m(s))ds)
\]
Now
\[|a_k x(\tau_k)| \leq |a_k||x||, \quad |a_k \int_0^{\tau_k} v(s)ds| \leq |a_k||v|, \]
then by comparison test \(\sum_{k=1}^{\infty} a_k x(\tau_k), \sum_{k=1}^{\infty} a_k \int_0^{\tau_k} v(s)ds \) are convergent.

Using assumptions 1–2 and Lebesgue Dominated convergence Theorem [17], from (11) we obtain
\[
x(t) = \frac{1}{\sum_{k=1}^{\infty} a_k} \left[x_0 - \sum_{k=1}^{\infty} a_k \int_0^{\tau_k} v(s)ds \right] + \int_0^t v(s)ds.
\]

Where
\[
v(t) = f(t, \frac{1}{\sum_{k=1}^{\infty} a_k} \left[x_0 - \sum_{k=1}^{\infty} a_k \int_0^{\tau_k} v(s)ds \right] + \int_0^t v(s)ds, \int_0^t g(s, I^{1-\alpha} v(s))ds)\)

The Theorem proved.

7. Continuous dependence

7.1. Continuous dependence on \(x_0 \)

DEFINITION 4. The solution \(x \in AC[0,1] \) of the nonlocal problem (1)-(2) depends continuously on \(x_0 \), if
\[
\forall \varepsilon > 0, \quad \exists \delta(\varepsilon) \text{ s.t } |x_0 - x^*_0| < \delta \Rightarrow ||x - x^*||_C < \varepsilon,
\]
where \(x^* \) is the solution of the nonlocal problem
\[
\frac{dx^*}{dt} = f(t, x^*(t), \int_0^t g(s, D^\alpha x^*(s))ds), \quad a.e \quad t \in (0,1),
\]
with the nonlocal condition
\[
\sum_{k=1}^{n} a_k x^*(\tau_k) = x^*_0, \quad a_k \geq 0, \quad \tau_k \in (0,1).
\]

THEOREM 5. Let the assumptions of Theorem 2 be satisfied, then the solution of the nonlocal problem (1)-(2) depends continuously on \(x_0 \).
Proof. Let \(x, x^* \) be two solutions of the nonlocal problem (1)-(2) and (12)-(13) respectively. Then
\[
\left| \int_0^1 |v(t) - v^*(t)| dt \right| = \int_0^1 |f(t, A^{-1}[x_0 - \sum_{k=1}^m a_k \int_0^{\tau_k} v(s) ds] + \int_0^t v(s) ds, \\
\int_0^t g(s, I^{1-\alpha} v(s)) ds - f(t, A^{-1}[x_0^* - \sum_{k=1}^m a_k \int_0^{\tau_k} v^*(s) ds] + \int_0^t v^*(s) ds, \\
\int_0^t g(s, I^{1-\alpha} v^*(s)) ds) dt \\
\leq b_1 A^{-1} |x_0 - x_0^*| + b_1 \int_0^1 A^{-1} \sum_{k=1}^m a_k \int_0^{\tau_k} |v(s) - v^*(s)| ds dt \\
+ b_1 \int_0^1 \int_0^t |v(s) - v^*(s)| ds dt + b_1 b_2 \int_0^1 \int_0^t I^{1-\alpha} |v(s) - v^*(s)| ds dt \\
\leq b_1 A^{-1} \delta + b_1 A^{-1} \sum_{k=1}^m a_k \int_0^1 \int_{\tau_k}^t |v(s) - v^*(s)| ds dt \\
+ b_1 \int_0^1 \int_0^1 |v(s) - v^*(s)| ds dt \\
+ b_1 b_2 \int_0^1 \int_0^t \int_0^s \left(\frac{s - \theta}{\Gamma(1-\alpha)} \right)^{\alpha-1} |v(s) - v^*(s)| ds dt \\
\leq b_1 A^{-1} \delta + 2b_1 \| v - v^* \|_{L_1} + \frac{b_1 b_2}{\Gamma(2-\alpha)} \| v - v^* \|_{L_1}.
\]
Hence
\[
\| v - v^* \|_{L_1} \leq \frac{b_1 A^{-1} \delta}{1 - (2b_1 + \frac{b_1 b_2}{\Gamma(2-\alpha)})}.
\]
And
\[
|x(t) - x^*(t)| = |A^{-1}[x_0 - \sum_{k=1}^m a_k \int_0^{\tau_k} v(s) ds] + \int_0^t v(s) ds - A^{-1}[x_0^* - \sum_{k=1}^m a_k \int_0^{\tau_k} v^*(s) ds] + \int_0^t v^*(s) ds| \\
\leq A^{-1} |x_0 - x_0^*| + 2 \| v - v^* \|_{L_1}.
\]
Hence
\[
\| x - x^* \|_C \leq A^{-1} \delta + \frac{2b_1 A^{-1} \delta}{1 - (2b_1 + \frac{b_1 b_2}{\Gamma(2-\alpha)})} = \varepsilon.
\]
Therefor the solution of the nonlocal problem (1)-(2) depends continuously on \(x_0 \).
7.2. Continuous dependence on \(a_k \)

Definition 5. The solution \(x \in AC[0, 1] \) of the nonlocal problem (1)-(2) depends continuously on \(a_k \), if

\[
\forall \varepsilon > 0, \quad \exists \quad \delta(\varepsilon) \quad s.t \quad |a_k - a_k^*| < \delta \Rightarrow \|x - x^*\|_C < \varepsilon,
\]

where \(x^* \) is the solution of the nonlocal problem

\[
\frac{dx^*}{dt} = f(t, x^*(t), \int_0^t g(s, D^\alpha x^*(s))ds), \quad a.e \quad t \in (0, 1), \tag{14}
\]

with the nonlocal condition

\[
\sum_{k=1}^n a_k x^*(\tau_k) = x_0, \quad a_k \geq 0, \quad \tau_k \in (0, 1). \tag{15}
\]

Theorem 6. Let the assumptions of Theorem 2 be satisfied, then the solution of the nonlocal problem (1)-(2) depends continuously on \(a_k \).

Proof. Let \(B^* = \sum_{k=1}^n a_k^* \neq 0 \) and \(x, x^* \) be two solutions of the nonlocal problem (1)-(2) and (14)-(15) respectively. Then

\[
\int_0^1 |v(t) - v^*(t)|dt = \int_0^1 \left| f(t, \frac{1}{\sum_{k=1}^m a_k} \left[x_0 - \sum_{k=1}^m a_k \int_0^{\tau_k} v(s)ds \right] + \int_0^t v(s)ds, \right| - f(t, \frac{1}{\sum_{k=1}^m a_k^*} \left[x_0 - \sum_{k=1}^m a_k^* \int_0^{\tau_k} v^*(s)ds \right] + \int_0^t v^*(s)ds, \right| dt
\]

\[
\leq \frac{m\delta|x_0| b_1}{AA^*} + b_1 \int_0^1 |A^{-1} \sum_{k=1}^m a_k \int_0^{\tau_k} v(s)|dsdt - A^{-1} \sum_{k=1}^m a_k^* \int_0^{\tau_k} v^*(s)dsdt + b_1 \int_0^1 \int_0^t |v(s) - v^*(s)|dsdt + b_1 b_2 \int_0^1 |t^{1-\alpha}||v(s) - v^*(s)|dsdt
\]

\[
\leq \frac{m\delta|x_0| b_1}{AA^*} + 2b_1 A^{-1}lm\delta + 2b_1 \|v - v^*\|_{L_1} + \frac{b_1 b_2}{\Gamma(2 - \alpha)}\|v - v^*\|_{L_1}.
\]

Hence

\[
\|v - v^*\|_{L_1} \leq \frac{m\delta|x_0| b_1 A^{-1} A^{-1^*} + 2b_1 A^{-1}lm\delta}{1 - (2b_1 + \frac{b_1 b_2}{\Gamma(2 - \alpha)})}.
\]
And

\[|x(t) - x^*(t)| = |A^{-1}x_0 - \sum_{k=1}^{m} a_k \int_{0}^{\tau_k} v(s)ds + \int_{0}^{t} v(s)ds - A^{-1}x_0 - \sum_{k=1}^{m} a_k \int_{0}^{\tau_k} v^*(s)ds + \int_{0}^{t} v^*(s)ds| \leq 2\|v - v^*\|_{L_1}. \]

Hence

\[\|x - x^*\|_{C} \leq \frac{2m\delta |x_0|b_1A^{-1}A^{-1} + 4b_1A^{-1}lm\delta}{1 - (2b_1 + \frac{b_1b_2}{\Gamma(2-\alpha)})} = \varepsilon. \]

This means that the solution of the nonlocal problem (1)-(2) depends continuously on \(a_k \). The proof is completed.

7.3. Continuous dependence on the functional \(g \)

Definition 6. The solution \(x \in AC[0,1] \) of the nonlocal problem (1)-(2) depends continuously on the functional \(g \), if

\[\forall \varepsilon > 0, \ \exists \ \delta(\varepsilon) \ s.t \ |g - g^*| < \delta \Rightarrow \|x - x^*\|_{C} < \varepsilon, \]

where \(x^* \) is the solution of the nonlocal problem

\[\frac{dx^*}{dt} = f(t,x^*(t), \int_{0}^{t} g^*(s,x^*(s))ds), \ a.e \ \ t \in (0,1), \quad (16) \]

with the nonlocal condition

\[\sum_{k=1}^{n} a_k x^*(\tau_k) = x_0, \quad a_k \geq 0, \quad \tau_k \in (0,1). \quad (17) \]

Theorem 7. Let the assumptions of Theorem 2 be satisfied, then the solution of the nonlocal problem (1)-(2) depends continuously on the functional \(g \).
Proof. Let x, x^* be two solutions of the nonlocal problem (1)-(2) and (16)-(17) respectively. Then

$$\int_0^1 |v(t) - v^*(t)| dt = |\int_0^1 f(t, A^{-1}[x_0 - \sum_{k=1}^m a_k \int_0^{\tau_k} v(s) ds] + \int_0^t v(s) ds, $$

$$\int_0^t g(s, t^{1-\alpha} v(s)) ds)$$

$$-f(t, A^{-1}[x_0 - \sum_{k=1}^m a_k \int_0^{\tau_k} v^*(s) ds] + \int_0^t v^*(s) ds, $$

$$\int_0^t g^*(s, t^{1-\alpha} v^*(s)) ds) | dt$$

$$\leq b_1 \int_0^1 A^{-1} \sum_{k=1}^m a_k \int_0^{\tau_k} |v(s) - v^*(s)| ds dt$$

$$+ b_1 \int_0^1 \int_0^t |v(s) - v^*(s)| ds dt$$

$$+ b_1 \int_0^1 \int_0^t (g(s, t^{1-\alpha} v(s)) - g^*(s, t^{1-\alpha} v^*(s))) ds dt$$

$$\leq b_1 A^{-1} \sum_{k=1}^m a_k \int_0^1 \int_0^{\tau_k} |v(s) - v^*(s)| dt ds$$

$$+ b_1 \int_0^1 \int_0^t |v(s) - v^*(s)| dt ds$$

$$b_1 \delta + b_1 b_2 \int_0^1 \int_0^t \int_0^s \frac{(s - \theta)^{-\alpha}}{\Gamma(1-\alpha)} |v(s) - v^*(s)| d\theta ds dt$$

$$\leq b_1 \delta + 2b_1 \|v - v^*\|_{L_1} + \frac{b_1 b_2}{\Gamma(2-\alpha)} \|v - v^*\|_{L_1}$$

Hence

$$\|v - v^*\|_{L_1} \leq \frac{b_1 \delta}{1 - (2b_1 + \frac{b_1 b_2}{\Gamma(2-\alpha)})}.$$

And

$$|x(t) - x^*(t)| = |A^{-1}[x_0 - \sum_{k=1}^m a_k \int_0^{\tau_k} v(s) ds] + \int_0^t v(s) ds$$

$$-A^{-1}[x_0 - \sum_{k=1}^m a_k \int_0^{\tau_k} v^*(s) ds] + \int_0^t v^*(s) ds|$$

$$\leq 2\|v - v^*\|_{L_1}.$$

Hence

$$\|x - x^*\|_{C} \leq \frac{2b_1 \delta}{1 - (2b_1 + \frac{b_1 b_2}{\Gamma(2-\alpha)})} = \varepsilon.$$
This means that the solution of the nonlocal problem (1)-(2) depends continuously on the functional g. The proof is completed.

8. Examples:

In this section we offer some examples to illustrate our results

EXAMPLE 1. Consider the following nonlinear integro–differential equation

$$\frac{dx}{dt} = t^3 e^t + \frac{\ln(1 + x(t))}{3 + t^2} + \int_0^t \frac{1}{9}(\cos(3s + 3) + e^s D_+^\frac{1}{2}x(s))dt, \; a.e \; t \in (0, 1), \quad (18)$$

with infinite point boundary condition

$$\sum_{k=1}^{\infty} \frac{1}{k^3} x(\frac{k^2 + 2k - 1}{k^2 + 2k}) = x_0. \quad (19)$$

Set

$$f(t, v(t), \int_0^t g(s, I^{1-\alpha} v(s))ds) = t^3 e^t$$

$$\ln(1 + \frac{1}{\sum_{k=1}^{\infty} k^3} \frac{1}{k^3} [x_0 - \sum_{k=1}^{\infty} \frac{1}{k^3} \int_0^t v(s)ds + \int_0^t v(s)ds])$$

$$+ \int_0^t \frac{1}{9}(\cos(3s + 3) + e^s I^{\frac{1}{2}} v(s))dt.$$

Then

$$|f(t, v(t), \int_0^t g(s, I^{1-\alpha} v(s))ds)| = |t^3 e^t| + \frac{1}{3}|v(t)|$$

$$+ \int_0^t \frac{1}{3}|\cos(3s + 3) + e^s I^{\frac{1}{2}} v(s)|dt,$$

and also

$$|g(s, I^{1-\alpha} v(s))| \leq \frac{1}{3}|\cos(3s + 3)| + \frac{1}{3}|v(s)|.$$

It is clear that the assumptions 1–4 of Theorem 1 are satisfied with $c_1(t) = t^3 e^t \in L^1[0, 1], \quad c_2(t) = \frac{1}{2}|\cos(3t + 3)| \in L^1[0, 1], \quad b_1 = \frac{1}{9}, \quad b_2 = \frac{1}{3}, \quad \frac{2}{3} + \frac{1}{\Gamma(\frac{1}{2})} < 1,$

and the series: $\sum_{k=1}^{\infty} \frac{1}{k^3}$, is convergent. Therefore, by applying to Theorem 1, the given nonlocal problem (18)-(19) has an absolutely continuous solution.

EXAMPLE 2. Consider the following nonlinear integro–differential equation

$$\frac{dx}{dt} = t^3 + t^2 + \frac{x(t)}{\sqrt{t + 9}} + \frac{1}{9} \int_0^t (\sin^2(3s + 3)$$

$$+ \frac{sD_+^\frac{1}{2}x(s)}{2(1 + D_+^\frac{1}{2}x(s))})dt, \; a.e \; t \in (0, 1), \quad (20)$$
with infinite point boundary condition

\[
\sum_{k=1}^{\infty} \frac{1}{k^3} x \left(\frac{k^2 + 3k - 1}{k^2 + 3k} \right) = x_0. \tag{21}
\]

Set

\[
f(t, v(t), \int_0^t g(s, t^{1-\alpha} v(s)) ds) = t^3 + t^2 \\
\ln(1 + \frac{1}{\sum_{k=1}^{\infty} \frac{1}{k^3}} [x_0 - \sum_{k=1}^{\infty} \frac{1}{k^3} \int_0^t v(s) ds + \int_0^t v(s) ds]) \\
+ \frac{1}{9} \int_0^t (\sin^2(3s + 3) + \frac{s I^{\frac{1}{2}} v(s)}{2(1 + I^{\frac{1}{2}} v(s))}) dt.
\]

Then

\[
|f(t, v(t), \int_0^t g(s, t^{1-\alpha} v(s)) ds)| \leq t^3 + t^2 + \frac{1}{3} |v| + \frac{1}{3} \int_0^t \frac{1}{3} |(\sin^2(3s + 3) \\
+ \frac{s I^{\frac{1}{2}} v(s)}{2(1 + I^{\frac{1}{2}} v(s))})| dt,
\]

and also

\[
|g(s, t^{\frac{1}{2}} v(s))| \leq \frac{1}{3} |(\sin^2(3s + 3)| + \frac{1}{6} |v(s)|.
\]

It is clear that the assumptions 1–4 of Theorem 1 are satisfied with \(c_1(t) = t^3 + t^2 \in L^1[0, 1], \ c_2(t) = \frac{1}{3} |(\sin^2(3s + 3)| \in L^1[0, 1], \ b_1 = \frac{1}{3}, \ b_2 = \frac{1}{6}, \ 2 + \frac{b_1}{b_2} < 1, \)
and the series: \(\sum_{k=1}^{\infty} \frac{1}{k^3}, \) is convergent. Therefore, by applying to Theorem 1, the given nonlocal problem (20)-(21) has an absolutely continuous solution.

REFERENCES

[1] AHMED EL-SAYED AND REDA GAMAL, Infinite point and Riemann-Stieltjes integral conditions for an integro-differential equation, Nonlinear Analysis: Modelling and Control, 24, 5(2019), 733–754.

[2] BINGMEI LIU, JUNLING LI, LISHAN LIU AND YONGQING WANG, Existence and uniqueness of nontrivial solutions to a system of fractional differential equations with Riemann–Stieltjes integral conditions, Advances in Difference Equations, 2018, 1(2018), 306.

[3] A. BOUCHERIF, A First-Order Differential Inclusions with Nonlocal Initial Conditions, Applied Mathematics Letters, 63, 15 (2002), 409–414.

[4] A. BOUCHERIF AND RADU PRECUP, On The Nonlocal Initial Value Problem For First Order Differential Equations, Fixed Point Theory, 4, 2 (2003), 205–212.

[5] DANDAN MIN, LISHAN LIU AND YONGHONG WU, Uniqueness of positive solutions for the singular fractional differential equations involving integral boundary value conditions, Boundary Value Problems, 2018, 1 (2018), 23.

[6] J. DUGUNDJI AND A. GRANAS, Fixed Point Theory, Monografie Matematyczne. PWN. Warsaw, 1982.
[7] H. El-Owaidy, A. M. A. El-Sayed and Reda Gamal Ahmed, Existence of solutions of a coupled system of functional integro-differential equations of arbitrary (fractional) orders, Malaya J. Mat, 6, 4(2018), 774–780.

[8] A. M. A. El-Sayed and Reda Gamal Ahmed, Existence of Solutions for a Functional Integro-Differential Equation with Infinite Point and Integral Conditions, International Journal of Applied and Computational Mathematics, 24, 4 (2019), 108.

[9] H. Gao and X. Han, Existence of positive solutions for fractional differential equation with nonlocal boundary condition, Int. J. Differ. Equ, 2011, (2011), 10 pages.

[10] K. Goebel and W. A. Kirk, Topics in Metric Fixed point theory, Cambirdge University Press, 1990.

[11] F. Ge, H. Zhou and C. Kou, Existence of solutions for a coupled fractional differential equations with infinitely many points boundary conditions at resonance on an unbounded domain, Differ. Equ. Dyn. Syst, 24, (2016), 1–17.

[12] G. M. Guerekata, A Cauchy problem for some fractional abstract differential equation with non local conditions, Nonlinear Analysis, 70, (2009), 1873–1876.

[13] L. Guo, L. Liu and Y. Wu, Existence of positive solutions for singular fractional differential equations with infinite-point boundary conditions, Nonlinear Analysis: Modelling and Control, 21, (2016), 635–650.

[14] S. Hamani, M. Benchohra and J. R. Graef, Existence results for boundary-value problems with nonlinear fractional differential inclusions and integral conditions, EJQTDE, 20, (2010), 1–16.

[15] Hari M. Srivastava, Ahmed M. A. El-Sayed and Fatma M. GAAFAR, A Class of Nonlinear Boundary Value Problems for an Arbitrary Fractional-Order Differential Equation with the Riemann-Stieltjes Functional Integral and Infinite-Point Boundary Conditions, Symmetry, 10, 10(2018), 508.

[16] Hussein A. H. Salem, On the fractional order m-point boundary value problem in reflexive Banach spaces and weak topologies, Journal of Computational and Applied Mathematics, 224, 2 (2009), 565–572.

[17] A. N. Kolomogorov and S. V. Fomin, Introductory real analysis, Dover Puble. Inc, 1975.

[18] I. Podlubny, Fractional differential equations, Academic Press, 1999.

[19] Q. Zhong, X. Zhang, Positive solution for higher-order singular infinite-point fractional differential equation with p-Laplacian, Adv. Differ. Equ, 2016:11, (2016).

[20] Xinguo Zhang, Lishan Liu, Yonghong Wu and Yumei Zou, Fixed-Point Theorems for Systems of Operator Equations and Their Applications to the Fractional Differential Equations, Journal of Function Spaces, 2018, (2018).

[21] Xinguo Zhang, Lishan Liu, Yonghong Wu and Yumei Zou, Existence and uniqueness of solutions for systems of fractional differential equations with Riemann–Stieltjes integral boundary condition, Advances in Difference Equations, 2018, 1(2018), 204.

[22] Xiaqian Liu, Lishan Liu and Yonghong Wu, Existence of positive solutions for a singular nonlinear fractional differential equation with integral boundary conditions involving fractional derivatives, Boundary Value Problems, 2018, 1(2018), 24.

(Received March 10, 2019)

H. El-Owaidy
Faculty of Science
Al-Azhar University
Cairo, Egypt
e-mail: elowaidy@yahoo.com

A. M. A. El-Sayed
Faculty of Science
Alexandria University
Alexandria, Egypt
e-mail: amasayed@alexu.edu.eg

Reda Gamal Ahmed
Faculty of Science
Al-Azhar University
Cairo, Egypt
e-mail: redagamal@azhar.edu.eg