Interface effects of strange quark matter

Xia Cheng-Jun (夏铖君)

Ningbo Institute of Technology,
Zhejiang University

Collaborators:
Guang-Xiong Peng, En-Guang Zhao, Shan-Gui Zhou, Ting-Ting Sun,
Wan-Lei Guo, Ding-Hui Lu, Prashanth Jaikumar

Phys. Rev. D 98, 034031 (2018)
QCD Phase Diagram [McLerran2009_NPB195-275]
Strange quark matter (SQM)

Bodmer first suggested a low energy nuclear state called “collapsed nuclei” [Bodmer1971_PRD4-1601]; Witten reported on the stability of SQM consisting of approximately equal numbers of u, d and s quarks, suggesting that SQM could indeed be stable even at zero external pressure [Witten1984_PRD30-272].

If Witten-Bodmer hypothesis is true, there exists stable lumps of SQM with the baryon number $A \approx 2 \sim 10^{57}$:

Strangelets (A<10^7)
Comparing with nuclei, strangelets have: lower charge-to-mass ratio; larger mass; smaller radius; spherical shape; ...

Nuclearites
[Rujula_Glashow1984_Nature312-734]; Meteorlike Compact Ultradense Objects (CUDO) [Rafelski_Labun_Birrell2013_PRL110-111102]; ...

Strange stars (A ≈ 10^{57})
Comparing with traditional neutron stars, strange stars have: no crust; different mass-radius relations; smaller radii; higher rotational frequencies; ...
Energy per baryon

The shaded region correspond to the results obtained with $B^{1/4} = 152 \pm 7$ MeV. [Xia_Peng_Zhao_Zhou2016_PRD93-085025]

Berger_Jaffe1987_PRC35-213:

$$A_{\text{min}}^\text{meta} = \left(\frac{2c_{\text{surf}}}{3(m_n - \epsilon_0)} \right)^3$$

$$c_{\text{surf}} \equiv 4\pi\sigma R^2 / A^{2/3} \equiv 4\pi\sigma \rho^2$$

$R \equiv \rho A^{1/3}$

The shaded region correspond to the results obtained with $B^{1/4} = 152 \pm 7$ MeV. [Xia_Peng_Zhao_Zhou2016_PRD93-085025]
Energy excess per baryon

The shaded region corresponds to the results obtained with $B_1^{1/4} = 152 \pm \text{7 MeV}$.

[Xia_Peng_Zhao_Zhou2016_PRD93-085025]
[Alford_Han_Reddy2012_JPG39-065201]
Unstable SQM

\[E/N \text{ [MeV]} \]

Tidal deformability

\[\sigma = 1 \text{ MeV/fm}^2 \]
\[\sigma = 5 \text{ MeV/fm}^2 \]
\[\sigma = 10 \text{ MeV/fm}^2 \]
\[\sigma = 20 \text{ MeV/fm}^2 \]
\[\sigma = 30 \text{ MeV/fm}^2 \]
\[\sigma = 50 \text{ MeV/fm}^2 \]

Mass \((M_\odot) \)

Gibbs

Maxwell

GW170817
Estimations of surface tension

Lattice QCD: Huang, Potvin, Rebbi, Sanielevici, Alves, Brower, de Forcrand, Lucini, Vettorazzo, et al.

For **vanishing** chemical potentials!

Effective models:
- **Linear sigma model** [Palhares_Fraga2010_PRD82-125018, Pinto_Koch_Randrup2012_PRC86-025203, Kroff_Fraga2015_PRD91-025017], **Nambu-Jona-Lasinio (NJL) model** [Garcia_Pinto2013_PRC88-025207, Ke_Liu2014_PRD89-074041], **three-flavor Polyakov-quark-meson model** [Mintz_Stiele_Ramos_Schaffner-Bielich2013_PRD87-036004], and **Dyson-Schwinger equation approach** [Gao_Liu2016_PRD94-094030]

\[\sigma = 5\sim30 \text{ MeV/fm}^2 \]

Quasiparticle mode [Wen_Li_Liang_Peng2010_PRC82-025809]

\[\sigma = 30\sim70 \text{ MeV/fm}^2 \]

NJL model adopting the MRE method [Lugones_Grunfeld_Ajmi2013_PRC88-045803]

\[\sigma = 145\sim165 \text{ MeV/fm}^2 \]

For **color-flavor locked SQM**, dimensional analysis suggests:

\[\sigma \approx 300 \text{ MeV/fm}^2 \]

For magnetized SQM, \(\sigma \) has a different value in the parallel and transverse directions with respect to the magnetic field [Lugones_Grunfeld2017_PRC95-015804]
Equivparticle model

The Lagrangian density with quark mass scaling [Xia_Peng_Chen_Lu_Xu2014_PRD89-105027]

The confinement parameter is connected to the string tension σ_0, the chiral restoration density ρ^*, and the sum of the vacuum chiral condensates [Peng_Chiang_Yang_Li_Liu1999_PRC61-015201]. The perturbative strength parameter C is linked to the strong coupling constant α_s.

5. The one-gluon-exchange interaction was further included by Chen et al.: $m_T = \frac{D}{m^{1/3}} - Cn^{1/3}$; [Chen_Gao_Peng2012_CPC36-947]

6. The quark matter symmetry energy was considered by Chu and Chen: $m_T = \frac{D}{m^{1/3}} - \tau\delta D_1n^{\alpha}e^{-\beta n}$; [Chu-Chen2014_ApJ780-135]
Strangelets in MFA

For spherically symmetric strangelets, the Dirac spinor of quarks is

\[\psi_{n\kappa m}(\mathbf{r}) = \frac{1}{r} \left(\begin{array}{c} iG_{n\kappa}(r) \\ F_{n\kappa}(r) \sigma \cdot \hat{r} \end{array} \right) Y_{jm}^{l}(\theta, \phi) \]

radial wave functions spinor spherical harmonics

\[\kappa = (-1)^{j+l+1/2}(j + 1/2) \]

Dirac equation

\[
\begin{pmatrix}
V_i + V_S & -\frac{d}{dr} + \frac{\kappa}{r} \\
\frac{d}{dr} + \frac{\kappa}{r} & V_i - V_S - 2m_{i0}
\end{pmatrix}
\begin{pmatrix}
G_{n\kappa} \\
F_{n\kappa}
\end{pmatrix}
= \varepsilon_{n\kappa}
\begin{pmatrix}
G_{n\kappa} \\
F_{n\kappa}
\end{pmatrix}
\]

Mean field scalar and vector potentials

\[V_S = m_I(n_b), \]
\[V_i = \frac{1}{3} \frac{dm_I}{dn_b} \sum_{i=u,d,s} n_i^s + e q_i A_0. \]
Density profiles

\[n_0 = 0.099 \text{ fm}^{-3} \]
\[n_d = 0.19 \text{ fm}^{-3} \]
\[n_u = 0.099 \text{ fm}^{-3} \]
\[n_s = 0.0055 \text{ fm}^{-3} \]

Oertel_Urban2008_PRD77-074015
Surface structures

\[n_0 = 0.11, 0.099, 0.13 \text{ fm}^{-3} \]
Energy per baryon

The multiple reflection expansion (MRE) method: The average effects due to quark depletion are treated with a modification to the density of states, i.e.,

\[N'_i(p) = 6 \left[\frac{p^2 v}{2\pi^2} + f_s \left(\frac{p}{m_i} \right) ps + f_c \left(\frac{p}{m_i} \right) c \right], \]

\[f_s(x) = -\frac{\eta_s}{4\pi^2} \arctan \left(\frac{1}{x} \right), \]

\[f_c(x) = \frac{\eta_c}{12\pi^2} \left[1 - \frac{3}{2} x \arctan \left(\frac{1}{x} \right) \right]. \]

[Madsen1994_PRD50-3328, ...]

\[N_i = \int_0^{\nu_i} N'_i(p) dp \]

\[M = \sum_{i=u,d,s} \int_0^{\nu_i} \sqrt{p^2 + m_i(n_b)^2} N'_i(p) dp + M_{ch} \]

Red solid: \(\eta_s = 1, \eta_c = 1. \)
Energy per baryon

Liquid-drop type formula:
\[
\frac{M}{A} = \frac{E_0}{n_0} + \frac{\alpha_S}{A^{1/3}} + \frac{\alpha_C}{A^{2/3}}
\]
\[
\sigma = \alpha_S \left(\frac{n_0^2}{36\pi} \right)^{1/3},
\]
\[
\lambda = \alpha_C \left(\frac{n_0}{384\pi^2} \right)^{1/3}.
\]

[Oertel_Urban2008_PRD77-074015]

\[
f_c(x) = \frac{\eta_c}{12\pi^2} \left[1 - \frac{3}{2} x \arctan \left(\frac{1}{x} \right) \right].
\]

[Madsen1994_PRD50-3328, ...]

Parameters	Bulk properties	MFA	MRE method	\(\sigma_{\text{MFA}} / \sigma_{\text{MRE}}\)									
C	\(\sqrt{D}\)	\(n_0\)	\(E_0 / n_0\)	\(f_S\)	\(\alpha_S\)	\(\alpha_C\)	\(\sigma\)	\(\lambda\)	\(\alpha_S\)	\(\alpha_C\)	\(\sigma\)	\(\lambda\)	\(\sigma_{\text{MFA}} / \sigma_{\text{MRE}}\)
0.4	129	0.11	850.91	0.20	56	177	2.7	5.49	190.5	86.1	9.247	2.67	0.29
0.7	129	0.099	918.94	0.056	54	172	2.4	5.12	173.5	85.7	7.681	2.54	0.31
0.7	140	0.13	995.77	0.14	61	185	3.3	6.03	191.1	90.9	10.18	2.96	0.32
Energy per baryon

The multiple reflection expansion (MRE) method: The average effects due to quark depletion are treated with a modification to the density of states, i.e.,

\[
N_i'(p) = 6 \left[\frac{p^2 v}{2\pi^2} + f_s \left(\frac{p}{m_i} \right) ps + f_c \left(\frac{p}{m_i} \right) c \right],
\]

\[
f_s(x) = -\frac{\eta_s}{4\pi^2} \arctan \left(\frac{1}{x} \right),
\]

\[
f_c(x) = \frac{\eta_c}{12\pi^2} \left[1 - \frac{3}{2} x \arctan \left(\frac{1}{x} \right) \right].
\]

[\text{Madsen1994_PRD50-3328, ...}]

\[
N_i = \int_0^{\nu_i} N_i'(p) dp
\]

\[
M = \sum_{i=u,d,s} \int_0^{\nu_i} \sqrt{p^2 + m_i(n_b)^2} N_i'(p) dp + M_{ch}
\]

Red solid: \(\eta_s = 1, \eta_c = 1\).

Blue dashed: \(\eta_s = 0.3, \eta_c = 0.1\).
Charge-to-mass ratio and Strangeness per baryon
Ratio of root-mean-square radius to baryon number

\[r_0 = \frac{\langle r^2 \rangle^{1/2}}{A^{1/3}} \text{ (fm)} \]

- \(C = 0.4, \sqrt{\bar{D}} = 129 \text{ MeV} \)
- \(C = 0.7, \sqrt{\bar{D}} = 129 \text{ MeV} \)
- \(C = 0.7, \sqrt{\bar{D}} = 140 \text{ MeV} \)
Summary

Based on an equivparticle model, we study the interface effects in strangelets adopting mean-field approximation (MFA). It is found that

1. the surface tension and curvature term of strange quark matter (SQM) become larger for larger confinement strength and smaller perturbative strength;
2. if SQM is absolutely stable and a strange star can reach 2 solar mass, the surface tension is \(\sim 2.4 \text{ MeV/fm}^2 \);
3. the MRE method overestimates the surface tension and underestimates the curvature term, which can be fixed be introducing proper damping factors; . . .

Thank you!!!
The single-particle levels for u-quarks