Catalytic activation of unstrained C(aryl)-C(aryl) bonds in 2,2’-biphenols

Jun Zhu1, Jianchun Wang1, and Guangbin Dong1
1Department of Chemistry, University of Chicago, Chicago, IL 60637, USA

Abstract

Transition-metal catalysis has emerged as an important means for C-C activation allowing mild and selective transformations. However, the current scope of C-C bonds that can be activated is primarily restricted to either highly strained systems or more polarized C-C bonds. In contrast, catalytic activation of nonpolar and unstrained C-C moieties remains an unmet challenge. Here we report a general approach for catalytic activation of the unstrained C(aryl)-C(aryl) bonds in 2,2’-biphenols. The key is utilizing the phenol moiety as a handle to install phosphinites as a recyclable directing group. Using hydrogen gas as the reductant, mono-phenols are obtained with a low catalyst loading and high functional group tolerance. This approach has also been applied to the synthesis of 2,3,4-trisubstituted phenols. Further mechanistic study suggests that the C-C activation step is mediated by a rhodium(I) mono-hydride species. Finally, a preliminary study on breaking the inert biphenolic moieties in lignin models is illustrated.

Carbon skeletons exist ubiquitously in commodity chemicals, pharmaceuticals, agrochemicals, synthetic polymers, fuels and biomasses. To date, carbon-carbon bond (C–C) cleavage reactions have found important applications in strategic syntheses of complex organic molecules1 and cracking of petroleum chemicals2. Among various approaches to break a C–C bond, transition-metal (TM) catalysis has emerged as an important means3-10 allowing mild and selective transformations. However, the current scope of C–C bonds that can be activated is primarily restricted to either highly strained systems3,8,10, in which strain release provides thermodynamic driving forces, or more polarized C–C bonds6,9, such as carbon–cyanide (C–CN) and carbon–carbonyl (C–CO) bonds, in which the electrophilic

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

Corresponding author: gdbong@uchicago.edu.

Author Contributions

J.Z. and G.D. conceived and designed the experiments. J.Z. performed the experiments. J.W. performed the DFT calculation. J.Z., J.W. and G.D. co-wrote the manuscript.

Data availability. Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition nos. CCDC 1848268 (2z), 1848266 ([Rh(2al)Cl])2, 1848267 (8g). Copies of the data can be obtained free of charge from www.ccdc.cam.ac.uk/structures/. All other data supporting the findings of this study are available within the Article and its Supplementary Information, or from the corresponding author upon reasonable request.

ASSOCIATED CONTENT

Additional information Supplementary information and chemical compound information are available in the online version of the paper. Reprints and permissions information is available online at www.nature.com/reprints. Correspondence and requests for materials should be addressed to G.D.

Competing interests

The authors declare no competing interests.
moiety serves as a handle for the initial reactivity. In contrast, catalytic activation of nonpolar and unstrained C–C moieties remains an unmet challenge.

While breaking hydrocarbon C–C chains has been carried out on multimillion ton scales in the petrochemical industry, i.e. the cracking processes, the related reaction for activating nonpolar unstrained C–C bonds with homogenous catalysis is rare. To the best of our knowledge, the only example of such a transformation was reported by Milstein and co-workers in which scission of an aryl–alkyl bond was achieved in a pincer-type substrate driven by forming a two-five-membered-fused rhodacycle (Fig. 1a). However, despite the prevalence of biaryl compounds, activation of unstrained aryl–aryl bonds remains an elusive transformation, and the challenge is threefold. First, unlike ketones commonly used as substrates in C–C activation, the nonpolar aryl–aryl moiety lacks an electrophilic center for interacting with electron-rich TMs. Second, overlap between the biaryl C–C σ bond and TM d orbitals becomes more difficult due to the preferred twisted conformation of biaryls (for 2,2'-disubstituted biphenyl, the twist angle is close to 90°), which hinders the formation of the initial σ complex (Fig. 1b). Third, the bond-dissociation energy (BDE) of an aryl–aryl bond (often >110 kcal/mol) is significantly higher than typical C–C bonds (e.g. BDE of an acyl-alkyl bond is ca. 82 kcal/mol). Thus, one key factor to enable catalytic aryl–aryl bond activation is to control the conformation of the biaryl structure and bring low-valent TMs in close proximity to the targeted C–C σ bond. Herein, we report a general approach for catalytic activation of the unstrained C(aryl)–C(aryl) bonds in 2,2'-biphenols through utilizing the hydroxyl moieties as a handle to install recyclable directing groups (RDGs), which then guide TM insertion into the aryl–aryl bond (Fig. 1c).

Result and discussion

To this end, phosphinites were chosen as RDGs as they can be conveniently installed to and removed (and in principle recycled) from phenols (Fig. 1c). Through carefully tuning the electronic and steric properties of the phosphinite RDGs, directed oxidative addition of the C(aryl)–C(aryl) bond with a low valent TM, e.g. Rh(I), could be imagined to give a spiro-rhodacycle intermediate, which provides mono-phenol products upon hydrogenolysis and hydrolysis. Hence, we commenced our study with bisphosphinite as the model substrate, which can be easily synthesized via phosphorylation of 2,2'-biphenol (Table 1). After examining a range of metal precatalysts, additives, and phosphorous groups, the C(aryl)–C(aryl) bond cleavage was successfully achieved using a low loading (0.5 mol%) of [Rh(C₂H₄)₂Cl]₂ with diisopropylphosphinite as the RDG under 50 psi H₂ atmosphere. The mono-phenol product (3a) was isolated in 77% yield upon workup on silica gel (entry 1). A series of control experiments were subsequently conducted to understand the role of each reactant. Unsurprisingly, in the absence of [Rh(C₂H₄)₂Cl]₂ or H₂, no desired product was obtained (entries 2 and 3). When using diphenylphosphinite as the RDG, only a trace amount of 3a was observed (entry 4). We reasoned that the less electron-rich Ph₂P- moiety might impede the oxidative addition of the aryl–aryl bond to Rh; in contrast, the electron-rich dicyclohexylphosphinite RDG gave a comparable yield (entry 5). Reducing the H₂ pressure to 30 psi still offered 69% yield of mono-phenol 3a (entry 6), and increasing the H₂ pressure marginally improved the yield (entry 7). It is noteworthy that the turnover number (TON) of Rh can reach 298 using 0.13 mol% RhH(PPh₃)₄ as the pre-catalyst (entry 8).
When the reaction was run at a lower temperature or using toluene as solvent, the yield slightly decreased (entries 9 and 10). Finally, other group 9 metals, such as Ir and Co, gave no desired product (entries 11 and 12).

To investigate the generality and robustness of the catalytic system, the substrate scope was then explored (Table 2). The biphenol compounds with substituents at the 5,5’-positions were tested first; it is encouraging that 5,5’-substituents with different lengths and branching properties all provided the desired mono-phenols in good yields. Substrates with bulky alkyl groups (2i and 2j) required more forcing conditions (2.5 mol% [Rh] and 100 psi H\textsubscript{2}) probably to promote rotation of the sterically hindered aryl–aryl bond, which is critical for forming the key C–C σ-complex intermediate. Besides having methoxyl groups at the 3,3’-positions, the corresponding alkyl- (2r–2t) or aryl- (2w) substituted substrates also provided the desired products in high efficiency. For comparison, the 3,3’-unsubstituted (2u) or bromo-substituted substrates (2v) showed very low reactivity probably caused by competing ortho C–H16,17 or C–Br bond activation, respectively. While substitution at the 6,6’-positions inhibited the reactivity under the current conditions likely due to increased steric hindrance around the aryl–aryl bond, the 4,4’-substituted biphenols (2af and 2ag) are highly competent substrates. Moreover, a number of functional groups were found compatible, including electron-rich arenes (2x), furan (2aa), thiophenes (2ab), amides (2o), sulfonamides (2p), nitriles (2q, 2s), silyl ethers (2m), esters (2n, 2t), aryl fluorides (2ac), chlorides (2ad) and bromides (2ae, 2ag). It is noteworthy that, while sulfur moieties often poison heterogeneous catalysts, in this homogeneous system the sulfur-containing substrates (2w, 2x) still show good reactivity.

Both experimental and computational studies were next carried out to probe the reaction pathway, and the key question is how the C(aryl)–C(aryl) bond is cleaved during this reaction. Based on the previous organometallic studies on C–C activation11,18,19, two pathways are possible. Path a involves a direct oxidative addition of the aryl–aryl bond to Rh(I)–Cl species to generate a diaryl–Rh(III) intermediate; further oxidative addition of H\textsubscript{2} and subsequent two C–H reductive elimination (formal σ-bond metathesis) result in two monomer products (Fig. 2a). Thus, path a involves a Rh(V) intermediate. Alternatively, the Rh(I)–Cl precatalyst can first react with H\textsubscript{2} to give a Rh(I) mono-hydride species, which is more electron-rich than the corresponding Rh(I)–Cl complex and can serve as the real catalyst in this reaction (path b). In this pathway, the Rh(I)–H first undergoes oxidative addition with the aryl–aryl bond to give a Rh(III) intermediate, followed by C–H reductive elimination to give one monomer and a Rh(I)-aryl species. The following oxidative addition of H\textsubscript{2} converts the Rh(I)–aryl species back to the Rh–H catalyst and meanwhile produces another equivalent of the monomer. Thus, path b only involves Rh(I) and Rh(III) intermediates.

In order to differentiate the two pathways, the following experiments have been conducted. First, treatment of the substrate derived from Ph\textsubscript{2}PCl with [Rh(C\textsubscript{2}H\textsubscript{4})\textsubscript{2}Cl\textsubscript{2}] provided a Rh(I) complex containing chloride bridges (Fig. 2b); however, heating the similar complex prepared from i-Pr\textsubscript{2}PCl in the absence of H\textsubscript{2} only gave a trace amount of C–C activation product. The DFT calculation (Supplementary Section 14) shows that direct oxidative addition of the aryl–aryl bond to the Rh(I)–Cl species (path a) can be reversible and
endothermic; in addition, the subsequent H₂ oxidative addition to give the Rh(V) intermediate requires a high energy barrier of 34.2 kcal/mol. Alternatively, in path b, the reaction of Rh(I)–Cl with H₂ should generate one equivalent of HCl²⁰. It is known that HCl would rapidly consume phosphinites through P–O bond cleavage (vide infra, Fig. 3d), thus detrimental to the reaction. Indeed, when a higher [Rh(C₂H₄)₂Cl]₂ loading was used, the yield of C–C cleavage product was dramatically reduced, whereas adding bases under these conditions can restore the good yields (Fig. 2c). These observations suggest that HCl was formed in this reaction. The role of bases is proposed to be two-fold: first, they could promote the formation of the Rh mono-hydride species via reacting with the HCl generated from [Rh(C₂H₄)₂Cl]₂; second, it could also protect the phosphinite substrate from P–O bond cleavage. In addition, reaction of bisphosphinite 2c with Rh(PPh₃)₄H led to a putative Rh–hydride species, which upon heating directly afforded a good yield of the monomer product in the absence of any chloride or H₂ (Fig. 2d). This result strongly supports the Rh–hydride-mediated C–C bond activation pathway (path b). Moreover, consistent with the experiments, the DFT calculation shows that path b is more energetically favorable than path a, and the turnover-limiting step for path b is calculated to be the C–C cleavage step with a barrier of 28.1 kcal/mol (Supplementary Section 14). To further support path b, we hypothesized that, if the C–C bond can be activated by a Rh–H species, by analogy it could also be activated by a Rh–aryl/alkyl species. Treatment of the substrate-Rh(I)Cl adduct with PhLi in pentane led to transmetalation and precipitation of LiCl salt, and upon heating the putative Rh–Ph species in 1,4-dioxane, as expected, provided the desired biaryl product (4c). This observation demonstrates that oxidative addition of a strong aryl–aryl bond to Rh(I)–Ph species is feasible, which should open the door for developing new C–C forming reactions via aryl–aryl bond activation. Altogether, the results from the mechanistic study support C–C activation through path b.

The synthetic utility of this method was first explored in the synthesis of 2,3,4-trisubstituted phenols. Given that electrophilic substitution of phenols is generally para and ortho selective, functionalization at the meta position is often realized via directing group (DG)-based approaches²¹,²². If phenol substrate 5 with a DG at the C4 position is used (Fig. 3a), the less bulky C5 position would be much more reactive than the C3 position from the steric prospect and the C6 position would be more reactive from the electronic viewpoint. Thus, it is difficult to access 2,3,4-trisubstituted phenols through direct functionalization at the C3 position of substrate 5. To address this challenge, we hypothesized that, using the corresponding 2,2' -dimer (via one-step preparation from the monomer) as the substrate, the desired C3 selectivity could be realized as the biaryl moiety should effectively block both the C5 and C6 positions; subsequent C–C cleavage using this hydrogenolysis method should provide 2,3,4-trisubstituted phenols. To test this hypothesis, substrate 5a, prepared in one step from the commercially available 4-bromo-2-methylanisole, was employed as the substrate, and C–H halogenation was attempted as halogen substituents could be conveniently converted to various other FGs. As expected, direct subjection of substrate 5a to the Rh-catalyzed C–H bromination conditions developed by Glorious,²³ followed by deprotection, only led to the 2,4,5-substituted phenol (7a). However, using substrate 6a prepared via a gold-catalyzed dimerization of 5a,²⁴ followed by the sequence of a Rh-catalyzed C–H halogenation, deprotection and the key aryl–aryl cleavage, the desired 2,3,4-
substituted phenols were obtained with good efficiency. Further, the Br or I moiety were easily transformed to a number of other common FGs via cross couplings, such as aryls (8a, 8b), alkynyl (8d), vinyl (8e), allyl (8f), and hetero-aryls (8g, 8h) groups. The amide DG could also be converted to other FGs, such as an amine (8c). Therefore, the key for the success of this synthetic strategy is the use of dimerization as a “traceless” protecting tool to deliver unusual site-selectivity, which is enabled by this new C–C activation method.

On the other hand, the C–C activation protocol is also scalable. On a gram scale, 83% yield was obtained using 1 mol% [Rh(C2H4)2Cl2] under 100 psi H2 (Fig. 3b). Furthermore, a one-pot procedure was also established to allow in-situ RDG installation and subsequence hydrogenolysis, in which free 2,2’-biphenols can be directly employed as the substrate (Fig. 3c). Lastly, while using a catalytic RDG remains challenging at this stage, the diisopropylphosphino RDG moiety could nevertheless be recycled (Fig. 3d). After the C–C activation, the diisopropylphosphino moiety was found to remain bounded to the mono-phenol product; simple treatment of the reaction mixture with dry HCl led to quantitative protonation of the mono-phenol phosphinite 3c’ to give free phenol product 3c in a good yield and the regenerated i-Pr2PCl reagent can be recovered by distillation.

Given that the 2,2’-biphenol moiety has been often found in lignin extracted from softwood, the use of the C(aryl)–C(aryl) activation method was also investigated in a model study for cleaving the biaryl linkages in lignin, i.e. the “5-5” and “dibenzodioxocin” moieties (Fig. 4a). Converting lignin to valued-added products has been attractive from both economic and environmental viewpoints. While breakthroughs have been obtained lately on cleaving the polar C−O bonds (e.g. the “β-O-4” linkage) in lignin much fewer progresses have been achieved for selective disconnection of less polar but more robust C−C bonds, which also commonly present in both extracted and industrial lignins. To our knowledge, selectively breaking the aryl–aryl bonds in “5-5” and/or “dibenzodioxocin” structures has not been reported in either a real system or a model study to date. Considering that most biaryl moieties in native lignin, suggested by recent studies, exist in the form of a “dibenzodioxocin” structural motif, we first explored the feasibility of converting the “dibenzodioxocin” linkage to the “5-5” (free phenol) form through a catalytic C−O bond cleavage. Inspired by Hartwig’s Pd/C-catalyzed C−O cleavage method, “dibenzodioxocin” model compound 9 was subjected to the hydrogen-free conditions with a mixture of 1,4-dioxane/p-cymene (1:1) as the solvent (Fig. 4b). Gratifyingly, using either Pd/C or Ru/C as the catalyst, the desired “5-5” model 1c was provided in good yields. Moreover, improved efficiency (81% yield) was obtained when the reaction was run under a low pressure of H2 in methanol with the Ru/C catalyst. With a reliable procedure of transforming “dibenzodioxocin” to “5-5” moieties in hand, we were motivated to examine the possibility of cleaving biphenolic lignin dimers extracted from natural wood (Fig. 4c). Treatment of wet sawdust (2.5 g × 14 batches) of spruce wood with Ru/C and H2 at 250 °C in MeOH gave 82.9 mg of a crude mixture containing ca. 40.6 mg of lignin dimer 1c. Further reaction of the crude mixture with Et3N and i-Pr2PCl, followed by the Rh-catalyzed C–C activation, afforded 28.6 mg of pure phenol monomer 3c in 70% yield based on extracted 1c, corresponding to a 0.08% w/w overall yield of the product based on the
biomass used. Since this process is conducted in a glove box, it at present only serves to highlight the potential of aryl–aryl bond cleavage in 2,2'-biphenols for lignin valorization.

Conclusion

In summary, catalytic activation of aryl–aryl bonds in 2,2'-biphenols is enabled by a RDG strategy. The reaction is chemoselective and scalable with a low catalyst loading. The preliminary synthetic utility of this biaryl-activation method is described in realization of an unconventional site-selectivity for the synthesis of 2,3,4-trisubstituted phenols. In addition, demonstration of the methods usage in breaking lignin aryl–aryl linkages is still at the proof-of-concept stage. It is anticipated that the mechanistic insights obtained from this study should have broad implications for discovering new catalytic methods for activating nonpolar and unstrained C–C bonds in common organic compounds.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We thank the University of Chicago, NIGMS (R01GM109054) and Sloan foundation for research support. We acknowledge Dr. Gang Lu and Prof. Peng Liu (University of Pittsburgh) for helpful discussion on the computational study. Calculations were performed at the Extreme Science and Engineering Discovery Environment (XSEDE) supported by the NSF. J. Z. acknowledges the financial support from Shanghai Institute of Organic Chemistry (SIOC), Pharmaron and Zhejiang Medicine for a joint postdoctoral fellowship. We are grateful to Dr. H. N. Lim for providing some [Rh(C5H4)2Cl]2, Mr. K.-Y. Yoon for X-ray analysis. Prof. Viresh Rawal, Dr. Z. Dong and Mr. J. Xie are thanked for helpful suggestions. We thank Dr. Z. Rong for the assistance of using autoclave and Mr. Y. Xu for checking the experimental procedures.

References

1. Drahl MA, Manjadi M & Williams LJ C–C fragmentation: origins and recent applications. Angew. Chem. Int. Ed. 52, 11222–11251 (2013).
2. Fahim MA, Alsahhaf TA & Elkilani A Fluidised catalytic cracking, in Fundamentals of Petroleum Refining. 199–235 (Elsevier, 2010).
3. Murakami M & Ito Y Cleavage of carbon–carbon single bonds by transition metals. Top. Organomet. Chem. 3, 97–129 (1999).
4. Rybtchinski B & Milstein D Metal insertion into C–C bonds in solution. Angew. Chem. Int. Ed. 38, 870–883 (1999).
5. Chen F, Wang T & Jiao N Recent advances in transition-metal-catalyzed functionalization of unstrained carbon–carbon bonds. Chem. Rev. 114, 8613–8661 (2014). [PubMed: 25062400]
6. Dong G (ed.) C–C Bond Activation Vol. 346 of Top. Curr. Chem. (Springer, 2014).
7. Souillart L & Cramer N Catalytic C–C bond activations via oxidative addition to transition metals. Chem. Rev. 115, 9410–9464 (2015). [PubMed: 26044343]
8. Murakami M (ed.) Cleavage of Carbon-Carbon Single Bonds by Transition Metals (Wiley-VCH Verlag GmbH & Co. KGaA, 2015)
9. Kim D-S, Park W-J & Jun C-H Metal–organic cooperative catalysis in C–H and C–C bond activation. Chem. Rev. 117, 8977–9015 (2017). [PubMed: 28060495]
10. Fumagalli G, Stanton S & Bower JF Recent methodologies that exploit C–C single-bond cleavage of strained ring systems by transition metal complexes. Chem. Rev. 117, 9404–9432 (2017). [PubMed: 28075115]
(11). Gozin M, Weisman A, Ben-David Y & Milstein D Activation of a carbon-carbon bond in solution by transition-metal insertion. Nature 364, 699–701 (1993).
(12). Gozin M et al. Transfer of methylene groups promoted by metal complexation. Nature 370, 42–44 (1994).
(13). Ruhland K, Obenhuber A & Hoffmann SD Cleavage of unstrained C(sp²)–C(sp²) single bonds with Ni0 complexes using chelating assistance. Organometallics 27, 3482–3495 (2008).
(14). Grein F Twist angles and rotational energy barriers of biphenyl and substituted biphenyls. J. Phys. Chem. A 106, 3823–3827 (2002).
(15). Rousseau G & Breit B Removable directing groups in organic synthesis and catalysis. Angew. Chem. Int. Ed. 50, 2450–2494 (2011).
(16). Lewis LN & Smith JF Catalytic carbon-carbon bond formation via ortho-metalated complexes. J. Am. Chem. Soc. 108, 2728–2735 (1986).
(17). Bedford RB, Coles SJ, Hursthouse MB & Limmert ME The catalytic intermolecular orthoarylation of phenols. Angew. Chem. Int. Ed. 42, 112–114 (2003).
(18). Liou S-Y, Gozin M & Milstein D Directly observed oxidative addition of a strong carbon-carbon bond to a soluble metal complex. J. Am. Chem. Soc. 117, 9774–9775 (1995).
(19). Liou S-YE van der Boom M & Milstein D Catalytic selective cleavage of a strong C–C single bond by rhodium in solution. Chem. Commun., 427–428 (1998).
(20). Evans D, Osborn JA & Wilkinson G Hydroformylation of alkenes by use of rhodium complex catalysts. J. Chem. Soc.A, 3133–3142 (1968).
(21). Dai H-X, Li G, Zhang X-G, Stepan AF & Yu J-Q Pd(II)-catalyzed ortho- or meta-C–H olefination of phenol derivatives. J. Am. Chem. Soc. 135, 7567–7571 (2013). [PubMed: 23614807]
(22). Luo J, Preciado S & Larrosa I Overriding ortho–para selectivity via a traceless directing group relay strategy: The meta-selective arylation of phenols. J. Am. Chem. Soc. 136, 4109–4112 (2014). [PubMed: 24612008]
(23). Schröder N, Wencel-Delord J & Glorius F High-yielding, versatile, and practical [Rh(III)/Cp*] catalyzed ortho bromination and iodination of arenes. J. Am. Chem. Soc. 134, 8298–8301 (2012). [PubMed: 22548632]
(24). Kar A, Mangu N, Kaiser HM, Beller M & Tse MK A general gold-catalyzed direct oxidative coupling of non-activated arenes. Chem. Commun. 386–388 (2008)
(25). Zakzeski J, Bruijninxcx PCA, Jongerius AL & Weckhuysen BM The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110, 3552–3599 (2010). [PubMed: 20218547]
(26). Sergeev AG & Hartwig JF Selective, nickel-catalyzed hydrogenolysis of aryl ethers. Science 332, 439–443 (2011). [PubMed: 21512027]
(27). Rahimi A, Azarpira A, Kim H, Ralph J & Stahl SS Chemoselective metal-free aerobic alcohol oxidation in lignin. J. Am. Chem. Soc. 135, 6415–6418 (2013). [PubMed: 23570328]
(28). Rahimi A, Ulbrich A, Coon JJ & Stahl SS Formic-acid-induced depolymerization of oxidized lignin to aromatics. Nature 515, 249–252 (2014). [PubMed: 25363781]
(29). Van den Bosch S et al. Reductive lignocellulose fractionation into soluble lignin-derived phenolic monomers and dimers and processable carbohydrate pulps. Energy Environ. Sci. 8, 1748–1763 (2015).
(30). Gao F, Webb JD, Sorek H, Wemmer DE & Hartwig JF Fragmentation of lignin samples with commercial Pd/C under ambient pressure of hydrogen. ACS Catal. 6, 7385–7392 (2016).
(31). Shuai L et al. Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization. Science 354, 329–333 (2016). [PubMed: 27846566]
(32). Karkas MD, Matsuura BS, Monos TM, Magallanes G & Stephenson CRJ Transition-metal catalyzed valorization of lignin: the key to a sustainable carbon-neutral future. Org. Biomol. Chem. 14, 1853–1914 (2016) [PubMed: 26732312]
(33). Zakzeski J & Weckhuysen BM Lignin solubilization and aqueous phase reforming for the production of aromatic chemicals and hydrogen. ChemSusChem 4, 369–378 (2011). [PubMed: 21246746]
(34). Dimmel D & Gellerstedt G Chemistry of Alkaline Pulping, in Lignin and Lignans Advances in Chemistry (eds Heitner C, Dimmel D & Schmidt J) 349–391 (CRC Press, 2010).

(35). Rinaldi R et al. Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angew. Chem. Int. Ed. 55, 8164–8215 (2016).

(36). Argyropoulos DS et al. Abundance and reactivity of dibenzodioxocins in softwood lignin. J. Agric. Food Chem. 50, 658–666 (2002). [PubMed: 11829625]
Figure 1. Catalytic activation of nonpolar unstrained C–C bonds.

a, Milstein’s seminal work on cleavage of the C(aryl)–C(alkyl) bond in a pincer ligand. b, Challenge for biaryl substrates: unlike activation of the C(aryl)–C(alkyl) bond, the twisted conformation of biaryls hinders the formation of the initial σ complex. c, Strategy of catalytic activation of unstrained C(aryl)–C(aryl) bonds of 2,2'-biphenols: the phenol moieties are used as the handle.
Figure 2. Exploratory mechanistic study.

a. Two proposed mechanistic pathways for the C–C activation step. Path a starts with a Rh–Cl species and involves a formal Rh(V) intermediate; path b involves a Rh–H-mediated oxidative addition of the aryl–aryl bond. For computed activation energy, see Supplementary Section 14 for the DFT study.

b. Stoichiometric Rh–Cl-mediated transformations in the absence of H₂ afforded a trace amount of product after heating, and the chlorine bridged dirhodium complex could be obtained at room temperature.

c. A higher [Rh(C₅H₄Cl₂)₂Cl]₂ loading led to significantly reduced yields and adding bases restored the yields.

d. Zhu et al. Page 10

Nat Chem. Author manuscript; available in PMC 2019 May 05.
Stoichiometric reactions with Rh–H and Rh–Ph species. Stoichiometric Rh(PPh$_3$)$_4$H afforded product 3c in a moderate yield in the absence of H$_2$. PhLi could be used to transfer a phenyl group to the aryl–aryl bond. These results support path b.
Figure 3. Catalytic reductive cleavage of C(aryl)–C(aryl) bonds in 2,2′-biphenols.

a. Synthesis of 2,3,4-trisubstituted phenols. This method could be useful to prepare 2,3,4-trisubstituted phenols from substrate 5a. In contrast, the direct C–H activation approach only gives the 2,4,5-substituted product. For experimental details, see Supplementary Section 4.

b. Scalability. The reaction can be run on a gram scale with a good yield.

c. The reaction can be run in one pot directly from 2,2′-biphenols.

d. The RDG moiety can be recycled. Simple treatment of the reaction mixture after C–C activation with dry HCl regenerates i-Pr$_2$PCl.
with a quantitative conversion. The lower isolated yield of \(\text{-Pr}_2\text{PCl} \) is mainly caused by its volatility during the handling and purification.
Figure 4. Model study for the cleavage of aryl–aryl bonds in lignin dimers.

a. Representative structure of softwood lignin, highlighting “5-5” and “dibenzodioxocin” units, which are arguably the most difficult linkers to be cleaved; in contrast, cleavage of the β-O-4 linkage has been widely studied. b. Conversion of “dibenzodioxocin” to “5-5” linkages. c. Conversion of wet spruce sawdust (2.5 g × 14 batches) to lignin monomers. For experimental details, see Supplementary Section 12.
Table 1

Selected optimization of reaction conditions.

Entry a	Changes	Yield (%) b	Entry a	Changes	Yield (%) b
1	as above	77	7	150 psi H$_2$	79
2	no [Rh]	nd	8	0.13 mol% RhH(PPh$_3$)$_4$	39
3	50 psi Ar instead of H$_2$	nd	9	130 °C	70
4	R = Ph instead of Pr	trace	10	toluene as solvent	71
5	R = Cy instead of Pr	58	11	[Ir(COD)Cl]$_2$(2.5 mol%)	nd
6	30 psi H$_2$	69	12	CO$_2$(CO)$_3$(2.5 mol%)	nd

*Reaction conditions:

a All reactions were run on a 0.3 mmol scale; [Rh] = [Rh(C$_2$H$_4$)$_2$Cl$_2$]; nd = not detected.

b Isolated yields.

c 150 psi H$_2$.

d 1.2 mmol of 2a were used and GC yield was obtained.
Table 2

Substrate scope for the reductive C–C cleavage of 2,2’-biphenols.

*Reaction conditions: 2 (0.3 mmol), [Rh(C2H4)2Cl]2 (0.0015 mmol), H2 (50 psi), 150 °C, 24 h. All reactions were worked up on silica gel. All yields are isolated yields.

\[R - \text{C} - \text{C} - R' \]

- \(R = \text{Me}, R' = \text{Me} \) (3a, 77%)
- \(R = \text{Et}, R' = \text{OMe} \) (3b, 80%)
- \(R = \text{n-Pr}, R' = \text{OMe} \) (3c, 76%)
- \(R = \text{n-Bu}, R' = \text{OMe} \) (3d, 69%)
- \(R = \text{n-C6H13}, R' = \text{OMe} \) (3e, 76%)
- \(R = \text{Pr}, R' = \text{OMe} \) (3f, 72%)
- \(R = \text{Me}, R' = \text{OMe} \) (3g, 66%)

- \(R = \text{Me}, R' = \text{OH} \) (3h, 79%)
- \(R = \text{Me}, R' = \text{OMe} \) (3i, 77%)
- \(R = \text{Me}, R' = \text{OMe} \) (3j, 77%)
- \(R = \text{Me}, R' = \text{CH} \) (3k, 70%)
- \(R = \text{Me}, R' = \text{Me} \) (3l, 71%)
- \(R = \text{Me}, R' = \text{Me} \) (3m, 64%)

- \(R = \text{Ph}, R' = \text{OMe} \) (3n, 70%)
- \(R = \text{Ph}, R' = \text{OH} \) (3o, 62%)
- \(R = \text{Ph}, R' = \text{OH} \) (3p, 56%)
- \(R = \text{Ph}, R' = \text{OH} \) (3q, 73%)
- \(R = \text{Ph}, R' = \text{OH} \) (3r, 76%)
- \(R = \text{Ph}, R' = \text{OH} \) (3s, 70%)

- \(R = \text{Ph}, R' = \text{OH} \) (3t, 68%)
- \(R = \text{Ph}, R' = \text{OH} \) (3u, trace)
- \(R = \text{Ph}, R' = \text{OH} \) (3v, 0%)
- \(R = \text{Ph}, R' = \text{OMe} \) (3w, 70%)
- \(R = \text{Ph}, R' = \text{OMe} \) (3x, 68%)
- \(R = \text{Ph}, R' = \text{OH} \) (3y, 77%)

\[Ar = 4-\text{CH}_2\text{C}_6\text{H}_4 - \]

- \(R = \text{Ph}, R' = \text{OH} \) (3aa, 79%)
- \(R = \text{Ph}, R' = \text{OMe} \) (3ab, 78%)
- \(R = \text{Ph}, R' = \text{OMe} \) (3ac, 55%)
- \(R = \text{Ph}, R' = \text{OMe} \) (3ad, 77%)
- \(R = \text{Ph}, R' = \text{OMe} \) (3ae, 75%)
- \(R = \text{Ph}, R' = \text{OMe} \) (3af, 82%)
- \(R = \text{Ph}, R' = \text{OMe} \) (3ag, 85%)

*2.5 mol% [Rh(C2H4)2Cl]2, 100 psi H2 was used.

b 0.2 mmol 2 was used.

Nat Chem. Author manuscript; available in PMC 2019 May 05.