A child with Myhre syndrome presenting with corectopia and tetralogy of Fallot

Marianna Alagia1 | Gerarda Cappuccio1,2 | Michele Pinelli1,2 | Annalaura Torella2,3 | Raffaella Brunetti-Pierri4 | Francesca Simonelli4 | Giuseppe Limongelli5,6 | Guido Oppido6 | Vincenzo Nigro2,3 | Nicola Brunetti-Pierri1,2 | TUDP

1 Department of Translational Medicine, Federico II University, Naples, Italy
2 Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
3 Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
4 Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
5 Department of Cardiothoracic Science, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
6 Monaldi Hospital, AO Colli, Naples, Italy

Correspondence
Nicola Brunetti-Pierri, MD, Telethon Institute of Genetics and Medicine, Via Campi Flegrei, 34, 80078 Pozzuoli, Naples, Italy.
Email: brunetti@tigem.it

Funding information
Fondazione Telethon, Grant number: GSP15001

Myhre syndrome is a rare autosomal dominant disorder caused by a narrow spectrum of missense mutations in the SMAD4 gene. Typical features of this disorder are distinctive facial appearance, deafness, intellectual disability, cardiovascular abnormalities, short stature, short hands and feet, compact build, joint stiffness, and skeletal anomalies. The clinical features generally appear during childhood and become more evident in older patients. Therefore, the diagnosis of this syndrome in the first years of life is challenging. We report a 2-year-old girl diagnosed with Myhre syndrome by whole exome sequencing (WES) that revealed the recurrent p.Ile500Val mutation in the SMAD4 gene. Our patient presented with growth deficiency, dysmorphic features, tetralogy of Fallot, and corectopia (also known as ectopia pupillae). The girl we described is the youngest patient with Myhre syndrome. Moreover, corectopia and tetralogy of Fallot have not been previously reported in this disorder.

KEYWORDS
corectopia, Myhre syndrome, tetralogy of Fallot, WES

1 INTRODUCTION

Myhre syndrome (MIM 139210) is a rare autosomal dominant disorder reported so far in over 60 individuals, mostly males diagnosed in childhood or adolescence (Caputo et al., 2012; Lin et al., 2016). Clinical features of this disorder include poor growth, variable degree of intellectual disability, distinctive dysmorphic features including short palpebral fissures, maxillary hypoplasia, small mouth with thin upper lip and short philtrum, prognathism, and thick skin. Restricted joint mobility and scarring abnormalities are striking features of the disorders (Caputo et al., 2012; Le Goff et al., 2011; Lin et al., 2016). Cardiovascular abnormalities include restrictive cardiomyopathy and...
pericardial disease although congenital heart defects have also been reported (Lin et al., 2016; Starr et al., 2015). Patients with Myhre syndrome might develop various long-term and life-threatening complications including systemic hypertension, cardiomyopathy, pericarditis, laryngo-tracheal stenosis, and pulmonary insufficiency (Garavelli et al., 2016; Lin et al., 2016; Starr et al., 2015).

Myhre syndrome is caused by recurrent missense heterozygous mutations affecting the Ile500 residue of the SMAD4 gene that encodes a tumor-suppressor protein affecting the transforming growth factor β (TGF-β) signaling pathway (Caputo et al., 2012; Le Goff et al., 2011; Piccolo et al., 2014). A mutation in Arg496 has been described in a minority of patients (Caputo et al., 2014; Michot et al., 2014). We report a 2-year-old female child harboring a de novo mutation affecting Ile500 who presented with poor growth, dysmorphic features, corectopia (also known as ectopia pupillae), and tetralogy of Fallot (TOF). This case is remarkable for the early diagnosis and the ocular and cardiac abnormalities which have not been previously reported in individuals with Myhre syndrome.

2 | CASE REPORT

The child was born to non-consanguineous parents by cesarean section after 38 weeks of gestation complicated by intrauterine growth retardation and a prenatal diagnosis of TOF. Her birth weight was 2.3 kg (3rd centile). The diagnosis of classic TOF and right aortic arch was confirmed by echocardiogram at birth. She underwent cardiac catheterizations at 3 and 19 days of life for pulmonary balloon dilation that was only partially successful and was followed by 5 mm coronary stent positioning into the right ventricular outflow tract to increase pulmonary blood flow. An aorta of normal caliber was noted during aortic catheterization. At 7 months of age, she underwent complete repair of the TOF with closure of the ventricular septum defect, trans-anular pulmonary patch, and left pulmonary artery patch repair. At the age of 2 years and 10 months, she underwent another surgical intervention for correction of right ventricular outflow tract obstruction. At chest re-opening, a diffusely fibrotic scar tissue around the great vessels, on the epicardium, and on the transanular patch was observed.

At the age of 11 months, she was found to have a tense abdomen and an abdominal ultrasound revealed ascites that resolved within approximately 24 hr following treatment with diuretics and a phosphodiesterase III inhibitor (enoximone). Liver and function tests did not reveal any abnormalities and the cause for the ascites remained unclear.

She had feeding difficulties only in the first months of life. Since birth her growth has been deficient with weight, height, and head circumference all below the 5th centile. She had left esotropia, displacement of the eye pupil from its normal and central position (i.e., corectopia) more evident in the left eye, short palpebral fissures, hypertelorism, flat nasal bridge, highly arched palate, and brachydactyly (Figure 1). Her development was slightly delayed: she was able to sit by 11 months and to walk independently at 20 months. By 16 months of age, she said her first words. At her last evaluation at the age of 23 months, her height was 84.10 cm (<5th centile), height 69.2 cm (<5th centile), and OFC 44.5 cm (<5th centile). The auditory brain steam response (ABR) was normal and the ophthalmology evaluation did not reveal lens dislocation or retinal abnormalities. The array-CGH showed microdeletions 3q29 of 54 kb (from nucleotide 195,419,168 to 195,472,855 on human reference genome hg19), 4q13.3 of 120 kb (71,162,798–71,283,216), 7q34 of 65 kb (142,825,843–142,890,668), and 15q14

![FIGURE 1](a) Patient facial features at the ages of 6 months and 2 years. (b) Flat nasal bridge, short palpebral fissures, smooth philtrum, thin upper lip can be noted. (c) Corectopia of the left eye. [Color figure can be viewed at wileyonlinelibrary.com].

TABLE 1 Summary of the ocular findings reported in patients with Myhre syndrome carrying SMAD4 mutation
Ocular finding
Anterior segment defects
Corectopia
Refractory abnormality
Strabismus
Cataract
Posterior segment defects
Pseudopapillema
Papilledema
Retinitis pigmentosa and maculopathy

Include 53 cases of the literature reviewed by Lin et al. (2016), the additional cases by Erdem, Sahin, and Tatar (2017) and Garavelli et al. (2016) published after Lin et al. (2016), and the current case.
of 71 kb (34,735,949–34,806,953) and a 7q11.21 microduplication of 194 kb (62,460,665–62,654,363) that were all overlapping with copy number variants detected in controls and thus, they were interpreted as non-pathogenic.

2.1 Whole exome sequencing

After informed consent, the child was enrolled in the Telethon Undiagnosed Program (TUDP) and underwent whole exome sequencing (WES). A total of 56,434 high-quality variants were identified in the proband. Of these variants, 50,825 were single nucleotide variants, 5,609 were indels, 10,625 were predicted to impact a protein sequence, and 510 were also rare (frequency <0.01) according to population database queries. Of these, 14 variants were de novo, 2 were X-linked, and 461 were homozygous or compound-heterozygous, considering trio segregation. The subsequent prioritization process was based on the selection of variants with potential loss-of-function effect, with higher Combined Annotation Dependent Depletion (CADD) score (Kircher et al., 2014), and involving genes related to the patient

Table 2: Genetic disorders with corectopia and/or lens dislocation
Condition

Ocular disorders
Familial ectopia lentis
Rieger anomaly and other anterior segment dysgenesis
Connective tissue disorders
Marfan syndrome
Beals syndrome
Ehlers–Danlos syndrome
ADAMTSL4-related disorders
Weill–Marchesani syndrome
Knobloch syndrome
Inborn errors of metabolism
Homocystinuria
Sulfite oxidase deficiency
Molybdenum cofactor deficiency
Multiple congenital anomalies/malformation syndromes
Sturge–Weber syndrome
Traboulsi syndrome
Spondyloepiphysseal dysplasia with cone-rod dystrophy
Stromme syndrome
Microphthalmia/coloboma and skeletal dysplasia syndrome
phenotype. As top candidate, one de novo (g.chr18:48604676A>G according to GRCh37) variant in SMAD4 (NM_000359.5: c.1498A>G) was identified. This variant causes the p.Ile500Val substitution repeatedly found in Myhre syndrome patients (Caputo et al., 2012; Le Goff et al., 2011). The mutation was confirmed by Sanger sequencing. Both parents did not harbor the mutation. Targeted analysis of the reads corresponding to genes associated to anterior segment dysgenesis (Reis & Semina, 2011) (COL1A1, COL4A, B3GALT1, BMP4, BMP7, CYP1B1, FOX2C1, FOXC2, FOXE3, JAG1, LAMB2, PAX6, PIK3CA, PITX2, PITX3) revealed no variants.

3 | DISCUSSION

Previously, the youngest Myhre syndrome patient reported was a 3-year-old boy lacking the distinctive findings such as restricted joint movement, compact build and dysmorphic features who was part of a series reporting the results of WES (Need et al., 2012). Early clinical diagnosis of Myhre syndrome in infancy is difficult because several features become evident in late childhood and thus, WES is an effective method for recognition of this disorder.

Ocular involvement with cataracts, strabismus, retinitis pigmentosa, maculopathy, papilledema, and pseudo-papilledema has been reported in Myhre syndrome (Table 1). However, corectopia has not yet been reported. The lack of variants in known genes associated with anterior segment dysgenesis suggests that the SMAD4 mutation is responsible for the corectopia. Corectopia is generally associated with lens dislocation (Colley et al., 1991), but the child we report herein presented with corectopia without lens dislocation. Although it has not been reported so far in Myhre patients, corectopia with or without lens dislocation has been described in other connective tissue disorders including Marfan patients, corectopia with or without lens dislocation has been described in other connective tissue disorders including Marfan syndrome, Weill-Marchesani syndrome (Colley et al., 1991), and ADAMTS4-related disorder (Chandra et al., 2012; Christensen et al., 2010; Sharifi, Tjon-fo-Sang, Cruysberg, & Maat-Kievit, 2013), which are all characterized by defects of TGF-β pathway (Table 2). Moreover, corectopia has been reported in Fbn2 and ADAMTS4 null mice showing disruption of extracellular microfibril biogenesis (Collin et al., 2015; Shi, Tu, Mecham, & Bassnett, 2013).

Cardiovascular anomalies have been reported in approximately 70% of patients with Myhre syndrome (Lin et al., 2016). The most frequent congenital heart defects are large patent ductus arteriosus, atrial and ventricular septal defects, and stenosis of aortic and mitral valves (Lin et al., 2016). Among these defects, TOF has not been reported. Moreover, patients with Myhre syndrome can develop recurrent pericardial effusion, constrictive pericarditis and cardiomyopathy (Lin et al., 2016; Picco et al., 2013). Given the occurrence of such complications, a timely diagnosis of Myhre syndrome is important.

In conclusion, we report a young child with Myhre syndrome due to SMAD4 mutation that presented corectopia and TOF, two features that have not been previously reported in Myhre syndrome patients.

ACKNOWLEDGMENTS

This work was supported by Telethon Foundation, Telethon Undiagnosed Diseases Program (TUDP, GSP15001): S. Banfi, N. Brunetti-Pierri, A. Bruselles, G. Cappuccio, V. Caputo, R. Castello, G. Chillemi, A. Cioffi, M. D’Antonio, B. Dallapiccola, M. Denti, M. Dionisi, G. Esposito, S. Fecarotta, G. Manzano, S. Maitz, L. Monaco, F. Musacchia, M. Mutarelli, V. Nigro, G. Olivera, G. Parenti, M. Pinelli, S. Pizzi, M. Pizzo, F. Radio, E. Rizzi, A. Selicorni, G. Sgroi, M. Tartaglia, A. Torella, R. Turra.

ORCID

Gerarda Cappuccio http://orcid.org/0000-0003-3934-2342

REFERENCES

Burke, J. P., O’Keefe, M., Bowell, R., & Naughten, E. R. (1989). Ocular complications in homocystinuria—early and late treated. British Journal of Ophthalmology, 73, 427–431.

Caputo, V., Bocchinfuso, G., Castori, M., Traversa, A., Pizzuti, A., Stella, L.,… Tartaglia, M. (2014). Novel SMAD4 mutation causing Myhre syndrome. American Journal Medical Genetics Part A, 164A, 1835–1840.

Caputo, V., Cianetti, L., Niceta, M., Carta, C., Cioffi, A., Bocchinfuso, G.,… Tartaglia, M. (2012). A restricted spectrum of mutations in the SMAD4 tumor-suppressor gene underlies Myhre syndrome. American Journal of Human Genetics, 90, 161–169.

Chandra, A., Aragon-Martín, J. A., Hughes, K., Gati, S., Reddy, M. A., Deshpande, C., … Amo, G. (2012). A genotype-phenotype comparison of ADAMTS4 and FBN1 in isolated ectopia lentis. Investigative Ophthalmology and Visual Science, 53, 4889–4896.

Cheong, S. S., Hentschel, L., Davidson, A. E., Gerrelli, D., Davie, R., Rizzo, R.,… Hardcastle, A. J. (2016). Mutations in CPAMD8 cause a unique form of autosomal-recessive anterior segment dysgenesis. American Journal of Human Genetics, 99, 1338–1352.

Christensen, A. E., Fiskerstrand, T., Knappskog, P. M., Boman, H., & Rodahl, E. (2010). A novel ADAMTS4 mutation in autosomal recessive ectopia lentis et pupillae. Investigative Ophthalmology and Visual Science, 51, 6369–6373.

Colley, A., Lloyd, I. C., Ridgway, A., & Donnai, D. (1991). Ectopia lentis et pupillae: The genetic aspects and differential diagnosis. Journal of Medical Genetics, 28, 791–794.

Collin, G. B., Hubmacher, D., Charette, J. R., Hicks, W. L., Stone, L. Yu, M.,… Nishina, P. M. (2015). Disruption of murine Adamts4 results in zonular fiber detachment from the lens and in retinal pigment epithelium dedifferentiation. Human Molecular Genetics, 24, 6958–6974.

Deml, B., Kariminejad, A., Borujerdi, R. H. R., Muheisen, S., Reis, L. M., & Semina, E. V. (2015). Mutations in MAB21L2 result in ocular coloboma, microcornea and cataracts. PLOS Genetics, 11, e1005002.

Erdem, H. B., Sahin, I., & Tatar, A. (2017). Myhre syndrome with novel findings: Bilateral congenital cortical cataract, bilateral papilledema, accessory niple, and adenoid hyperthrophy. Clinical Dysmorphology. Published online May 30, 2017.

Garaveli, L., Maini, I., Baccilieri, F., Ivanovski, I., Pollazzon, M., Rosato, … Tartaglia, M. (2016). Natural history and life-threatening complications in Myhre syndrome and review of the literature. European Journal of Pediatrics, 175, 1307–1315.

Keegan, C. E., Vilain, E., Mohammend, M., Lehoczky, J., Dobyns, W. B., Archer, S. M., & Innis, J. W. (2004). Microcephaly, jejunal atresia, aberrant right bronchus, ocular anomalies, and XY sex reversal. American Journal of Medical Genetics A, 125A, 293–298.
Khan, A. O., Aldahmesh, M. A., Mohamed, J. Y., Al-Mesfer, S., & Alkuraya, F. S. (2012). The distinct ophthalmic phenotype of Knobloch syndrome in children. British Journal of Ophthalmology, 96, 890–895.

Kircher, M., Witten, D. M., Jain, P., O’Roak, B. J., Cooper, G. M., & Shendure, J. (2014). A general framework for estimating the relative pathogenicity of human genetic variants. Nature Genetics, 46, 310–315.

Latasiewicz, M., Fontecilla, C., Milia, E., & Sánchez, A. (2016). Marfan syndrome: Ocular findings and novel mutations in pursuit of genotype-phenotype associations. Canadian Journal of Ophthalmology, 51, 113–118.

Le Goff, C., Mahaut, C., Abbyanark, A., Le Goff, W., Serre, V., Afenjar, A., & Cormier-Daire, V. (2011). Mutations at a single codon in Mad homology 2 domain of SMAD4 cause Myhre syndrome. Nature Genetics, 44, 85–88.

Lin, A. E., Michot, C., Cormier-Daire, V., L’Ecuyer, T. J., Matherne, G. P., Barnes, B. H., & Lindsay, M. E. (2016). Gain-of-function mutations in SMAD4 cause a distinctive repertoire of cardiovascular phenotypes in patients with Myhre syndrome. American Journal Medical Genetics Part A, 170A, 2617–2631.

Lueder, G. T., & Steiner, R. D. (1995). Ophthalmic abnormalities in molybdenum cofactor deficiency and isolated sulfite oxidase deficiency. Journal of Pediatric Ophthalmology and Strabismus, 32, 334–337.

Micheal, S., Siddiqui, S. N., Zafar, S. N., Venselaar, H., Qamar, R., Khan, M. I., & den Hollander, A. I. (2016). Whole exome sequencing identifies a sector iris hemangioma. American Journal of Human Genetics, 98, 583–587.

Shi, Y., Yu, T., Meacham, R. P., & Bassnett, S. (2013). Ocular phenotype of Fbn2-null mice. Investigative Ophthalmology and Visual Science, 54, 7163–7173.

Shields, C. L., Atalay, H. T., Wuthisiri, W., Levin, A. V., Lally, S. E., & Shields, J. A. (2015). Sector iris hemangioma in association with diffuse choroidal hemangioma. Official Publication of the American Association for Ophthalmology and Strabismus, 19, 83–86.

Shih, V. E., Abroms, I. F., Johnson, J. L., Carney, M., Mandrell, R., Robb, R. M., … Rajagopalan, K. V. (1977). Sulfite oxidase deficiency. Biochemical and clinical investigations of a hereditary metabolic disorder in sulfur metabolism. The New England Journal of Medicine, 297, 1022–1028.

Starr, L. J., Grange, D. K., Delaney, J. W., Yetman, A. T., Hammel, J. M., Sanmann, J. N., … Olney, A. H. (2015). Myhre syndrome: Clinical features and restrictive cardiopulmonary complications. American Journal Medical Genetics Part A, 167A, 2893–2901.

Tümer, Z., & Bach-Holm, D. (2009). Axenfeld-Rieger syndrome and spectrum of PITX2 and FOXC1 mutations. European Journal of Human Genetics, 17, 1527–1539.

Yamamoto, G. L., Baratela, W. A. R., Almeida, T. F., Lazar, M., Afonso, C. L., Oyamad, M. K., … Bertola, D. R. (2014). Mutations in PCYT1A cause spondylometaphyseal dysplasia with cone-rod dystrophy. American Journal of Human Genetics, 94, 113–119.

Vlijoen, D. (1994). Congenital contractual arachnodactyly (Beals syndrome). Journal of Medical Genetics, 31, 640–643.

Verdin, H., Sorokina, E. A., Meire, F., Casteels, I., de Ravel, T., Semina, E. V., & De Baere, E. (2014). Novel and recurrent PITX3 mutations in Belgian families with autosomal dominant congenital cataract and anterior segment dysgenesis have similar phenotypic and functional characteristics. Orphanet Journal of Rare Diseases, 9, 26.

Zhang, L., Lai, Y. H., Capasso, J. E., Han, S., & Levin, A. V. (2015). Early onset ectopia lentis due to a FBN1 mutation with non-penetrance. American Journal of Medical Genetics, A167, 1365–1368.

How to cite this article: Alagia M, Cappuccio G, Pinelli M, et al. A child with Myhre syndrome presenting with correctopia and tetralogy of Fallot. Am J Med Genet Part A. 2018;176A:426–430. https://doi.org/10.1002/ajmg.a.38560