Correlation between obesity and clinicopathological characteristics in patients with papillary thyroid cancer: a study of 1579 cases: A retrospective study

Huijuan Wang 1, Pingping Wang 2, Yu Wu 3, Xiukun Hou 1, Zechun Peng 4, Weiwei Yang 5, Lizhao Guan 6, Linfei Hu 1, Jingtai Zhi 1, Ming Gao 1, Xiangqian Zheng 1

1 Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
2 Department of Thyroid and Breast Surgery, Rizhao Central Hospital, Shandong, China
3 Department of Head and Neck Surgery, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fujian, China
4 Department of Urology Surgery, Areall, The Second Affiliated Hospital of Hainan Medical University, Hainan, China
5 Department of Otolaryngology-Head and Neck Surgery, Tianjin First Center Hospital, Tianjin, China
6 Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China

Corresponding Author: Xiangqian Zheng
Email address: xzheng05@tmu.edu.cn

Objective: To explore the relationship between body mass index (BMI) and clinicopathological characteristics in patients with papillary thyroid carcinoma (PTC).

Methods: The clinical data of 1579 patients with PTC, admitted to our hospital from May 2016 to March 2017, were retrospectively analyzed. According to the different BMI of patients, it can be divided into underweight recombination(BMI<18.5 kg/m), normal body recombination(24.0 ≥ BMI < 28.0 kg/m2), overweight recombination(24.0 ≥ BMI < 28.0 kg/m2) and obesity group(BMI ≥28.0 kg/m2). The clinicopathological characteristics of PTC in patients with different BMIs group were compared.

Results: In our study, the risk for extrathyroidal extension (ETE), advanced T stage (T III/IV), and advanced tumor-node-metastasis stage (TNM III/IV) in the overweight group were higher, with OR(odds ratio)= 1.99(1.41-2.81), OR=2.01(1.43-2.84), OR=2.94(1.42-6.07), respectively, relative to the normal weight group. The risk for ETE and T III/IV stage in the obese group were higher, with OR=1.82(1.23-2.71) and OR=1.82(1.23-2.70), respectively, relative to the normal weight group.

Conclusion: BMI is associated with the invasiveness of PTC. There is a higher risk for ETE and TNM III/IV stage among patients with PTC in the overweight group and for ETE among patients with PTC in the obese group.
Correlation between obesity and clinicopathological characteristics in patients with papillary thyroid cancer: a study of 1579 cases: A retrospective study

Huijuan Wang, MD1, Pingping Wang, MD2, Yu Wu, MD3, Xiukun Hou, MD1, Zechun Peng, MD4, Weiwei Yang, MD5, Lizhao Gan, PhD5, Linfei Hu, MD1, Jingta Zhi, MD1, Ming Gao, MD, PhD1, and Xiangqian Zheng, MD, PhD1

1Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China.

2Department of Thyroid and Breast Surgery, Rizhao Central Hospital, Shandong, 276806, People's Republic of China.

3Department of Head and Neck Surgery, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fujian, 350001, People's Republic of China.

4Department of Urology Surgery, Area II, The Second Affiliated Hospital of Hainan Medical University, No 48 Baishuitang Road, Longhua District Haikou City, Hainan, 570311, People's Republic of China.

5Department of Otolaryngology-Head and Neck Surgery, Tianjin First Center Hospital, Nankai District of Tianjin Rehabilitation Road No.24, 300192, Tianjin, People's Republic of China.

6Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, People's Republic of China.

Corresponding Author:
Xiangqian Zheng, MD, PhD

Department of Thyroid Tumor, Tianjin Medical University Cancer Institute and Hospital, West Huanhu Rd, Tianjin, China

Email address: xiangqian_zheng@163.com

Abstract
Objective: To explore the relationship between body mass index (BMI) and clinicopathological characteristics in patients with papillary thyroid carcinoma (PTC).

Methods: The clinical data of 1579 patients with PTC, admitted to our hospital from May 2016 to March 2017, were retrospectively analyzed. According to the different BMI of patients, it can be divided into underweight recombination (BMI < 18.5 kg/m²), normal body recombination (24.0 ≤ BMI < 28.0 kg/m²), overweight recombination (24.0 ≤ BMI < 28.0 kg/m²) and obesity group (BMI ≥ 28.0 kg/m²). The clinicopathological characteristics of PTC in patients with different BMIs group were compared.

Results: In our study, the risk for extrathyroidal extension (ETE), advanced T stage (T III/IV), and advanced tumor-node-metastasis stage (TNM III/IV) in the overweight group were higher, with OR (odds ratio) = 1.99 (1.41-2.81), OR = 2.01 (1.43-2.84), OR = 2.94 (1.42-6.07), respectively, relative to the normal weight group. The risk for ETE and T III/IV stage in the obese group were higher, with OR = 1.82 (1.23-2.71) and OR = 1.82 (1.23-2.70), respectively, relative to the normal weight group.

Conclusion: BMI is associated with the invasiveness of PTC. There is a higher risk for ETE and TNM III/IV stage among patients with PTC in the overweight group and for ETE among patients with PTC in the obese group.

Keywords: Body mass index; Papillary thyroid cancer; Correlation

Introduction

The incidence of thyroid cancer has been increasing in recent years worldwide. Thyroid cancer in women has become the fifth most common malignant tumor in the United States [1]. Thyroid cancer has become the most common tumor in women in South Korea [2]. Thyroid screening and over-diagnosis do not explain the significant increase in the incidence of primary tumors ≥ 4 cm and the incidence of distant metastasis. Although the rate of thyroid cancer detection has
improved, the survival rate has not increased. This indicates that it is necessary to further explore the causes of the increase in the incidence of thyroid cancer which cannot simply be explained by the increase in detection rates. It is also necessary to study this problem from the perspective of factors such as environmental factors and molecular mechanisms[3, 4]. The real cause of the increase in the incidence of thyroid cancer has not yet been determined; however, environmental factors or lifestyle may contribute to this increase. Several epidemiological studies have confirmed that obesity is positively correlated with the increased risk of thyroid cancer [5-8]. However, the correlation between obesity and the invasive clinicopathological features of thyroid cancer remains controversial.[9-12] In this study, the Chinese body mass index (BMI) classification criteria were used to explore whether the clinicopathological characteristics of PTC are different among patients with different BMIs.

Materials & Methods

Patients

A total of 1702 patients with PTC (including thyroid micropapillary carcinoma, PTMC) who received surgical treatment in Tianjin Medical University Cancer Institute and Hospital from May 2016 to March 2017 were considered. After excluding patients with histories of thyroid surgery, antithyroid drug consumption, and thyroxine administration before surgery, 1579 subjects were eligible for analysis in this study. Each participant signed an informed consent form, which was uploaded in supplementary materials. This study was approved by the Ethics Committee of the Tianjin Medical University Cancer Institute and Hospital. Ethics Committee reference number is Ek2018117.

Methods

We performed a retrospective analysis of the patient's gender, age, serum thyroid stimulating hormone (TSH) levels, combined with postoperative pathological features, including tumor size
(maximum diameter of the tumor), lymph node metastasis, multifocality, and the extrathyroidal extension (ETE) and TNM stage based on the eighth edition of the Union for International Cancer Control (UICC)/American Joint Committee on Cancer (AJCC). We reviewed the height and the weight of the patient during admission, calculated BMI according to the Chinese obesity classification standard (BMI<18.5 kg/m2, underweight; 18.5 \leq BMI < 24.0 kg/m2, normal weight; 24.0 \geq BMI < 28.0 kg/m2, overweight; and BMI \geq28.0 kg/m2, obese)[13]. Subsequently, the pathological characteristics including multifocality, tumor size, ETE, lymph node metastasis, T stage, TNM stage of each group were compared.

Statistical analysis

Logistic regression analysis was used to analyze the relationship between BMI and the clinical pathological features of thyroid cancer. The odds ratio (OR) and 95% confidence interval were used. The adverse clinicopathological features analyzed included multifocality (number of lesions \geq 2), tumor size \geq 1 cm, ETE, lymph node metastasis, high T stage (stage III + IV), and high TNM stage (stage III + IV). Logistic regression (adjusting for age, gender and TSH) was used to analyze the relationship between BMI and the adverse clinicopathological features of PTC. Similarly, logistic regression analysis (adjusting for age and TSH) was used to analyze the relationship between BMI and adverse clinicopathological features of PTC in men and women. For those older than \geq55 years and <55 years, logistic regression analysis (adjusting for gender and TSH) of the relationship between BMI and adverse clinicopathological features of PTC was performed.

The Chi-square test was used to analyze whether there were differences in gender, age, level of TSH, number of tumors, tumor size, ETE, lymph node metastasis, T stage, and TNM stage among different BMI groups.
Statistical analysis was performed using SAS V9.3 software (Cary, North Carolina, USA) with a statistical significance noted at $P < 0.05$.

Results

Basic clinical biological characteristics of 346 males and 1233 females were recorded. The age ranged from 18 to 76 years, with an average age of (45.98 ± 10.93) years, a median age of 46 years, 1129 patients (71.5%) aged <55 years, and 450 (28.5%) aged ≥ 55 years. BMI ranged from 16.00 to 48.33 kg/m2 with mean BMI 25.52 ± 3.79 kg/m2. A total of 704 patients (44.6%) had lymphatic metastasis, 228 (14.4%) had ETE and 565 (35.5%) had multifocal tumors. With regards to the T stage, 1322 (83.7%) patients were in the T1 stage and 257 patients (16.3%) were in the T3/4 stage. With regards to the TNM stage, 1515 (95.9%) patients were in stage I and II, and 64 patients (4.1%) were in stage III and IV (Table 1).

There are differences in the distribution of gender ($\chi^2=80.28, P<0.0001$) and age ($\chi^2=27.05, P<0.0001$) between different BMI groups. BMI is associated with invasion of the envelope ($\chi^2=22.25, P<0.0001$), T stage ($\chi^2=22.81, P<0.0001$), and TNM stage ($P=0.0002$) in the pathological features of the tumor (Table 2).

We further explored the risk of more aggressive clinicopathological features according to BMI (Table 3). Multiple logistic regression results display that patients who were overweight had a significantly greater risk of ETE (OR=1.99[1.41-2.81], $P<0.0001$), high T stage (OR=2.01[1.43-2.84], $P<0.0001$), and TNM III/IV stage (OR=2.94[1.42-6.07], $P=0.003$) than patients with a normal weight. Subjects in the obese group also had a greater risk of ETE (OR=1.82[1.23-2.71], $P=0.002$) and high T stage (OR=1.82[1.23-2.70], $P=0.003$) than normal weight subjects.

Whether in the overweight or obese group, BMI has no correlation with lymph node metastasis. Among female patients, compared to the normal weight group, the overweight group had a greater risk of ETE (OR=2.10[1.43-3.08], $P=0.0002$), high T stage (OR=2.10[1.43-3.08], P
risk of ETE (OR=2.45[1.58-3.82], P<0.000), high T stage (OR=2.45[1.58-3.82], P<0.000), and TNM III/IV tumors (OR=3.99[1.55-10.28], P=0.0004) (Table 4). In male patients, no significant differences were observed (S1).

When the patient's age was ≥55 years, ETE, high T stage, and TNM III/IV tumors were more common in the overweight group than in the normal weight group, with ORs = 2.19(1.22-3.89), P=0.009, ORs =2.18(1.22-3.89), P=0.008, and ORs =2.42(1.15-5.13), P=0.02, respectively. ETE (OR=2.03[1.06-3.89], P=0.03) and high T stage (OR=2.03[1.06-3.89], P=0.03) were each more frequent in the obese group than in the normal weight group (Table 5).

When the patient's age was <55 years, ETE and high T stage tumors were more common in the overweight group than in the normal weight group, with ORs = 1.77(1.14-2.74), P=0.01, ORs =1.80(1.16-2.78), P=0.008 respectively. ETE (OR=1.70 [1.02-2.83], P=0.04), high T stage (OR=1.68[1.01-2.80], P=0.04) and multifocality (OR=1.50 [1.08-2.09], P=0.02) were each more frequent in the obese group than in the normal weight group (Table 6).

Discussion

Thyroid cancer is the most common malignant tumor in the endocrine system. Its incidence has increased year by year in the past 20 years. In 2012, the number of new cases of thyroid cancer in China accounted for 15.6% of the global number of new cases, and the number of deaths accounted for 13.8%². PTC is the most common histological type of thyroid cancer, accounting for about 80% of its incidence[14]. In recent decades, advances in thyroid ultrasonography, increased use of fine needle biopsy, and occasional findings from other neck imaging studies have been made; however, these do not fully explain the increasing incidence of PTC, including stage III and IV PTC. Some scholars speculate that this incidence may be affected by other
factors such as the environment and lifestyle. At the same time, several epidemiological studies on obesity and cancer have found that the risks of endometrial, colorectal, breast, thyroid, and prostate cancer are closely related to BMI, and the risk of PTC is positively correlated with BMI. It is concerning that with the urbanization of China, the number of overweight and obese patients has become high, and the Chinese population is no longer a population with a low average BMI. According to statistics, overweight and obese people account for close to 29.2% of the total population of China. In this study, the 17 underweight patients accounted for only 1% of the patients enrolled, while those who were overweight and obese accounted for 59.2%.

The epidemiology of obesity and PTC shows significant time-trend correlations, suggesting that obesity acts as a risk factor for the occurrence and development of PTC. At present, the relationship between obesity and the pathological features of PTC remains controversial. Kim et al. found that the risk of ETE among patients with PTC increases with the increase in BMI, and is closely related to the multifocality of the tumor. Another study showed that elevated BMI is associated with tumor size and TNM staging. Our study used the Chinese BMI standard and the TNM staging of the eighth edition of AJCC for all patients. Based on multiple logistic regression, the results showed that the proportion of TNM III/IV tumors (OR=2.86[1.18-6.94], P =0.02) and the risk of ETE (OR=1.99[1.41-2.81],P<0.0001) increased significantly in overweight group, while tumor size, lymph node metastasis, and multifocal tumors were not significantly associated with BMI; the risk of ETE (OR=1.82[1.23-2.71], P =0.002) in the obese group increased with BMI. Kim et al. found that BMI is associated with tumor invasion, lymphatic invasion, lymph node metastasis, and tumor multifocality, in patients with PTC. In contrast, some studies suggest that there is no significant correlation between obesity, and clinical pathological features and the recurrence of PTC. It is worth
noting that clinical BMI has certain limitations as the sole criterion for assessing obesity, especially when it reflects the lack of specificity in centripetal obesity[21]. This may be an important reason for the difference in the conclusions of the above studies. We look forward to establishing a more comprehensive obesity evaluation index system, including BMI and abdominal circumference index, in future research.

At present, molecular mechanisms related to obesity and tumors indicate that obesity can promote tumor invasion and metastasis through a variety of obesity-related factors and metabolic pathways [22, 23]. Adiponectin can reduce the expression of vascular endothelial growth factor (VEGF) and B-cell lymphoma factor-2 (Bcl-2), increase the activity of tumor suppressors such as P53, and inhibit tumor growth and survival. Obesity causes a decrease in adiponectin, and the loss of its receptor expression may be an important mechanism for promoting the progression of PTC. Leptin can increase the expression of VEGF, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) to promote progression and metastasis of thyroid cancer [24]. Overexpression of leptin and its receptors is significantly associated with the aggressiveness of thyroid cancer [25]. Kim et al. found that a high-fat diet induced more aggressive pathological changes, which were mediated by increased activation of the Janus kinase 2-signaling transducer, activation of the transcription 3 (STAT3) signaling pathway, and induction of STAT3 target gene expression [26]. The discovery of these mechanisms not only reveals the potential molecular basis of obesity as a risk factor in the development and progression of thyroid cancer, but also provides a new therapeutic direction for the future.

Conclusions

In summary, obesity is closely related to the risk of PTC and the invasiveness of tumors. Controlling body weight through regular exercise and a reasonable diet and reducing obesity
should be important prevention and treatment methods for patients with papillary thyroid cancer
and high-risk groups.

Acknowledgements
This work was supported by grants from National Natural Science Foundation of China (Grant
Nos. 81872169,81702629), Tianjin key research and development program science and
technology support key projects (Grant No. 17YFZCSY00690), and Tianjin Municipal Science
and technology project(Grant No. 19JCYBJC27400). There was no additional external funding
received for this study.

References:
[1] Siegel RL, Miller KD and Jemal A. Cancer statistics, 2018. CA Cancer J Clin 2018, 68: 7-30.
[2] McGuire S. World Cancer Report 2014. Geneva, Switzerland: World Health Organization, International
Agency for Research on Cancer, WHO Press, 2015. ADV NUTR 2016, 7: 418-419.
[3] Chen AY, Jemal A and Ward EM. Increasing incidence of differentiated thyroid cancer in the United States,
1988-2005. CANCER-AM CANCER SOC 2009, 115: 3801-3807.
[4] Enewold L, Zhu K, Ron E, Marrogi AJ, Stojadinovic A, Peoples GE and Devesa SS. Rising Thyroid Cancer
Incidence in the United States by Demographic and Tumor Characteristics, 1980-2005. CANCER EPIDEM BIOMAR
2009, 18: 784-791.
[5] Pappa T and Alevizaki M. Obesity and thyroid cancer: a clinical update. THYROID 2014, 24: 190-199.
[6] Schmidt D, Ricci C, Behrens G and Leitzmann MF. Adiposity and risk of thyroid cancer: a systematic review
and meta-analysis. OBES REV 2015, 16: 1042-1054.
[7] Patel D, Kitahara CM, Park Y, Liao LM, Linet M, Kebebew E and Nilubol N. Thyroid Cancer and
Nonsteroidal Anti-Inflammatory Drug Use: A Pooled Analysis of Patients Older Than 40 Years of Age. THYROID
2015, 25: 1355-1362.
[8] Yin D, He H, Yu K, Xie J, Lei M, Ma R, Li H, Wang Y and Liu Z. The association between thyroid cancer
and insulin resistance, metabolic syndrome and its components: A systematic review and meta-analysis. INT J SURG
2018, 57: 66-75.
[9] Kwon H, Kim M, Choi YM, Jang EK, Jeon MI, Kim WG, Kim TY, Shong YK, Song DE, Baek JH, Hong
SJ and Kim WB. Lack of Associations between Body Mass Index and Clinical Outcomes in Patients with Papillary
Thyroid Carcinoma. Endocrinol Metab (Seoul) 2015, 30: 305-311.
[10] Paes JE, Hua K, Nagy R, Kloos RT, Jarjoura D and Ringel MD. The relationship between body mass index
and thyroid cancer pathology features and its components: a clinicopathological cohort study. J Clin Endocrinol Metab
2010, 95: 4242-4250.
[11] Grani G, Lamartina L, Montesato T, Ronga G, Maggissano V, Falcone R, Ramundo V, Giacomelli L, Durante
C, Russo D and Maranghi M. Lack of association between obesity and aggressiveness of differentiated thyroid cancer.
[12] J ENDOCRINOL INVEST 2019, 42: 85-90.
[13] Lee J, Lee CR, Ku CR, Kang SW, Jeong JJ, Shin DY, Nam KH, Jung SG, Lee EJ, Chung WY and Jo YS.
Association Between Obesity and BRAFV600E Mutation Status in Patients with Papillary Thyroid Cancer. ANN
SURG ONCOL 2015, 22 Suppl 3: S683-S690.
[14] Qian J, Li N and Ren X. Obesity and depressive symptoms among Chinese people aged 45 and over. SCI
REP-UK 2017, 7.
[15] Ahmad F, Nathani R, Venkat J, Bharda A, Vanere V, Bhatia S and Das BR. Molecular evaluation of BRAF
gene mutation in thyroid tumors: Significant association with papillary tumors and extra thyroidal extension indicating
its role as a biomarker of aggressive disease. EXP MOL PATHOL 2018, 105: 380-386.
[15] Lauby-Secretan B, Scoccianti C, Loomis D, Grosse Y, Bianchini F and Straif K. Body Fatness and Cancer--
Viewpoint of the IARC Working Group. N Engl J Med 2016, 375: 794-798.

[16] Ma J, Huang M, Wang L, Ye W, Tong Y and Wang H. Obesity and risk of thyroid cancer: evidence from a
meta-analysis of 21 observational studies. Med Sci Monit 2015, 21: 283-291.

[17] Gordon-Larsen P, Wang H and Popkin BM. Overweight dynamics in Chinese children and adults. OBES
REV 2014, 15: 37-48.

[18] Kim SK, Woo JW, Park I, Lee JH, Choe JH, Kim JH and Kim JS. Influence of Body Mass Index and Body
Surface Area on the Behavior of Papillary Thyroid Carcinoma. THYROID 2016, 26: 657-666.

[19] Dieringer P, Klass EM, Caine B and Smith-Gagen J. Associations between body mass and papillary thyroid
cancer stage and tumor size: a population-based study. J CANCER RES CLIN 2015, 141: 93-98.

[20] Kim S, Park HS, Kim K, Yoo H, Chae B, Bae J, Jung S and Song B. Correlation between obesity and
clinicopathological factors in patients with papillary thyroid cancer. SURG TODAY 2015, 45: 723-729.

[21] Rosen ED and Spiegelman BM. What We Talk About When We Talk About Fat. CELL 2014, 156: 20-44.

[22] Marcello MA, Cunha LL, Batista FA and Ward LS. Obesity and thyroid cancer. Endocr Relat Cancer 2014,
21: T255-T271.

[23] Avgerinos KI, Spyrou N, Mantzoros CS and Dalamaga M. Obesity and cancer risk: Emerging biological
mechanisms and perspectives. METABOLISM 2019, 92: 121-135.

[24] Vansaun MN. Molecular pathways: adiponectin and leptin signaling in cancer. CLIN CANCER RES 2013,
19: 1926-1932.

[25] Fan YL and Li XQ. Expression of leptin and its receptor in thyroid carcinoma: distinctive prognostic
significance in different subtypes. Clin Endocrinol (Oxf) 2015, 83: 261-267.

[26] Park S, Willingham MC, Qi J and Cheng SY. Metformin and JQ1 synergistically inhibit obesity-activated
thyroid cancer. Endocr Relat Cancer 2018, 25: 865-877.
Table 1 (on next page)

Clinicopathological characteristics of 1579 patients with papillary thyroid carcinoma
Table 1. Clinicopathological characteristics of 1579 patients with papillary thyroid carcinoma

Clinicopathological characteristics	n=1579
Gender	
Female	1233 (78.1%)
Male	346 (21.9%)
age	
<55	1129 (71.5%)
≥55	450 (28.5%)
Tumor size	
<1 cm	906 (57.4%)
≥1 cm	673 (42.6%)
Extrathyroidal invasion	
	228 (14.4%)
multifocality	
	565 (35.5%)
T staging	
T1	1322 (83.7%)
T2	28 (1.8%)
T3	153 (9.7%)
T4	76 (4.8%)
N staging	
N0	875 (55.4%)
N1a	441 (27.9%)
N1b	263 (16.7%)
TNM staging	
I / II	1515 (95.9%)
III / IV	64 (4.1%)
Table 2 (on next page)

demographic and clinico-pathological characteristics of patients with different BMI
characteristic	BMI<18.5 N (%)	18.5≤BMI<24 N (%)	24≤BMI<28 N (%)	BMI≥28 N (%)	χ²	P
gender						
male	0(0.00)	78(12.44)	141(24.23)	127(35.98)	80.28	<0.0001
female	17(100.00)	549(87.56)	441(75.77)	226(64.02)		
age						
<55	14(82.35)	494(78.79)	378(64.95)	242(68.75)	27.05	<0.0001
≥55	3(17.65)	133(21.21)	204(35.05)	110(31.25)		
TSH						
normal	16(94.12)	590(94.10)	552(94.85)	327(92.63)	1.92	0.5884
abnormal	1(5.88)	37(5.90)	30(5.15)	26(7.37)		
Number of tumors						
1	12(70.59)	415(66.19)	373(64.09)	218(61.76)	2.26	0.5207
≥2	5(29.41)	212(33.81)	209(35.91)	135(38.24)		
Tumor size						
<1	8(47.06)	374(59.65)	326(56.01)	198(56.09)	2.74	0.4327
≥1	9(52.94)	253(40.35)	256(43.99)	155(43.91)		
Extrathyroid extension						
absent	16(94.12)	567(90.43)	475(81.62)	293(83.00)	22.25	<0.0001
present	1(5.88)	60(9.57)	107(18.38)	60(17.00)		
lymph node metastasis						
absent	8(47.06)	348(55.50)	332(57.04)	187(52.97)	1.96	0.5810
present	9(52.94)	279(44.50)	250(42.96)	166(47.03)		
T staging						
I + II	16(94.12)	567(90.43)	474(81.44)	293(83.00)	22.81	<0.0001
III+IV	1(5.88)	60(9.57)	108(18.56)	60(17.00)		
TNM staging						
I + II	17(100.00)	617(98.41)	545(93.64)	336(95.18)	—	0.0002*
III+IV	0(0.00)	10(1.59)	37(6.36)	17(4.82)		

*fisher exact test was performed because one expected frequency less than 1
Table 3 (on next page)

Logistic regression of BMI level on different adverse clinico-pathological characteristics
Table 3. Logistic regression of BMI level on different adverse clinico-pathological characteristics

	BMI<18.5	18.5≤BMI<24	24≤BMI<28	BMI≥28
Multifocality				
N=17				
OR (95%CI)	0.80(0.28,2.31)	Reference	1.12(0.88,1.43)	1.26(0.95,1.66)
P	0.68		0.36	0.10
tumor size ≥ 1 cm		Reference	1.13(0.89,1.43)	1.12(0.84,1.45)
OR (95%CI)	1.69(0.64,4.46)	Reference	0.29	0.47
P	0.28			
Extrathyroidal extension				
N=17		Reference		
OR (95%CI)	0.60(0.08,4.65)	Reference	1.99(1.41,2.81)	1.82(1.23,2.71)
P	0.63		<0.0001	0.002
lymph node metastasis		Reference	0.92(0.73,1.16)	1.02(0.78,1.34)
OR (95%CI)	1.47(0.56,3.87)	Reference	0.48	0.88
P	0.43			
T staging (stage III + IV)				
N=17		Reference		
OR (95%CI)	0.61(0.08,4.66)	Reference	2.01(1.43,2.84)	1.82(1.23,2.70)
P	0.63		<0.0001	0.003
TNM staging (stage III + IV)				
N=17		Reference		
OR (95%CI)	—	Reference	2.94(1.42,6.07)	2.23(0.99,5.05)
P	—		0.003	0.05
Table 4 (on next page)

Logistic regression of BMI level on different adverse clinico-pathological characteristics (female)
Characteristic	BMI<18.5	18.5≤BMI<24	24≤BMI<28	BMI≥28
N=17				
Multifocality		Reference		
OR (95%CI)	0.80(0.28,2.30)	1.07(0.82,1.39)	1.34(0.97,1.85)	
P	0.68	0.64	0.08	
tumor size ≥1 cm		Reference		
OR (95%CI)	1.68(0.64,4.44)	1.14(0.89,1.48)	1.07(0.78,1.47)	
P	0.29	0.30	0.68	
Extrathyroidal extension		Reference		
OR (95%CI)	0.64(0.08,4.95)	2.10(1.43,3.08)	2.45(1.58,3.82)	
P	0.67	0.0002	<0.000	
lymph node metastasis		Reference		
OR (95%CI)	1.53(0.58,4.03)	0.94(0.73,1.22)	1.19(0.88,1.64)	
P	0.39	0.66	0.27	
T staging (stage III + IV)		Reference		
OR (95%CI)	0.64(0.08,4.95)	2.10(1.43,3.08)	2.45(1.58,3.82)	
P	0.67	0.0002	<0.000	
TNM staging (stage III + IV)		Reference		
OR (95%CI)	—	2.86(1.18,6.94)	3.99(1.55,10.28)	
P	—	0.02	0.0004	
Table 5 (on next page)

Logistic regression of BMI level on different adverse clinico-pathological characteristics (age ≥ 55)
Table 5. Logistic regression of BMI level on different adverse clinico-pathological characteristics (age ≥ 55)

	BMI<18.5	18.5≤BMI<24	24≤BMI<28	BMI≥28
	N=3	N=133	N=204	N=110

- **Multifocality**
 - OR (95%CI) — Reference 1.02(0.65,1.60) 0.76(0.45,1.31)
 - P — 0.95 0.32

- **Tumor size ≥ 1 cm**
 - OR (95%CI) — Reference 1.38(0.88,2.15) 1.28(0.77,2.14)
 - P — 0.16 0.34

- **Extrathyroidal extension**
 - OR (95%CI) — Reference 2.19(1.22,3.89) 2.03(1.06,3.89)
 - P — 0.009 0.03

- **Lymph node metastasis**
 - OR (95%CI) — Reference 1.07(0.68,1.67) 1.18(0.71,1.98)
 - P — 0.78 0.52

- **T staging (stage III + IV)**
 - OR (95%CI) — Reference 2.18(1.22,3.89) 2.03(1.06,3.89)
 - P — 0.008 0.03

- **TNM staging (stage III + IV)**
 - OR (95%CI) — Reference 2.42(1.15,5.13) 2.01(0.87,4.67)
 - P — 0.02 0.10

2 — The number of people in this group is too small to calculate the correlation
3
4
Table 6 (on next page)

Logistic regression of BMI level on different adverse clinico-pathological characteristics (age <55)
Table 6. Logistic regression of BMI level on different adverse clinico-pathological characteristics (*age*<55)

Characteristic	BMI<18.5	18.5≤BMI<24	24≤BMI<28	BMI≥28
	N=14	N=494	N=378	N=243
Multifocality				
OR (95%CI)	1.13(0.37,3.44)	Reference	1.02(0.65,1.60)	0.76(0.45,1.31)
P	0.82	Reference	0.95	0.32
Tumor size ≥1 cm				
OR (95%CI)	2.68(0.88,8.16)	Reference	1.38(0.88,2.15)	1.28(0.77,2.14)
P	0.08	Reference	0.16	0.34
Extrathyroidl extension				
OR (95%CI)	0.83(0.11,6.49)	Reference	2.19(1.22,3.89)	2.03(1.06,3.89)
P	0.86	Reference	0.009	0.03
Lymph node metastasis				
OR (95%CI)	1.69(0.58,4.95)	Reference	1.07(0.68,1.67)	1.18(0.71,1.98)
P	0.34	Reference	0.78	0.52
T Staging (stage III + IV)				
OR (95%CI)	0.83(0.11,6.52)	Reference	2.18(1.22,3.89)	2.03(1.06,3.89)
P	0.86	Reference	0.008	0.03