Interrelation between policies and safety culture on safety performance and project performance in the construction sector

R A Machfudiyanto1*, Y Latief1, Y Indah1
1Civil Engineering Department, Faculty of Engineering Universitas Indonesia, Depok, Indonesia

*Corresponding author: rossyarmyn@gmail.com

Abstract. The construction industry sector as a contributor to economic development in a country has problems in its implementation. Construction accidents that often occur can have an adverse impact on companies but also for the state. So that it is necessary to identify the relationship between policies and what Safety Culture has the most influence on safety performance and project performance on a construction project. The purpose of this study is to find out what safety policy and culture variables have the most influence on safety performance and project performance in the construction sector. This study uses primary data in the form of a survey of 193 respondents, as well as secondary data from literature which is then validated by experts. The results of the respondent questionnaire survey were then analyzed using the SEM-PLS method, in order to obtain a pattern of relationships between safety policy and culture variables on safety performance and project performance. The result of the research is that safety policies and incentives must be implemented by companies in the construction sector to provide good control of all aspects such as security objectives, procedural mechanisms, construction assessments and resource mobilization.

Keyword: policies, safety culture, safety performance, project performance, construction

1. Introduction
The high rate of work accidents is not only caused by the lack of implementation of the Occupational Safety and Health Management System in the project, but also due to the lack of a special budget for implementing Safety Management System (SMS) based work in the project. Apart from that, other reasons are also due to the lack of necessary knowledge, a lack of the necessary skills of workers, a lack of manpower, and a lack of understanding that investing in SMS provides a big advantage for companies not only in the form of material but also having an impact on good name and reputation. The lack of a separate budget for implementation and occupational safety and health equipment makes it difficult to implement the Occupational Safety and Health Management System on the project. The investment in the OSH Management System itself is influenced by the culture of the country regarding work safety, where the company is established, where the project is carried out and the applicable regulations and policies regarding the cost of security [1]. The project managers usually consider investment in work safety to spend a lot of money and have no big benefits as well as a significant difference between safe and unsafe activities [2].

With a safety culture, it is hoped that it can support the achievement of increased occupational
safety and health (OSH). Safety culture is the traits and attitudes in organizations and individuals that emphasize the importance of safety. Therefore, safety culture requires that all obligations related to safety must be carried out correctly, thoroughly, and with a full sense of responsibility [3].

Therefore, safety policy and culture are very important and become the main foundation which is expected to be able to move all particles in the organization. So, the identification of problems that occur is how the safety policy and culture can improve the safety performance and project management performance.

The aim of this research is:
1. Identify safety policy and culture variables that affect safety performance and construction project performance.
2. Improving safety policies and culture to improve safety performance and construction project performance.

2. Literature Review

One type of project is a construction project. A construction project is defined as a series of activities that are unique and carried out once with limitations on resources, budget and duration. In a series of construction project activities, there is a process aimed at processing both human and material resources so that they can produce a work in the form of a building. The management of a construction project can be complicated and complex with the involvement of many interacting parties and the high demands on project targets such as quality, comfort, safety, aesthetics and sustainability of the project [4].

In previous research, it was revealed that the safety climate can have a positive influence on safety performance in the construction industry. From the perspective of institutional theory, the analysis results show a significant finding that institutional pressure affects the organizational safety climate in the construction industry. Building an organizational safety climate is a very important activity which is motivated not only by the need to reduce accident rates, but also by institutional pressure to comply with safety policies in the environment. From the above explanation, it can be seen that institutional theory will indirectly have an influence on safety performance [5].

3. Methodology

The stages of this research begin with conducting a survey to experts / experts with the help of an initial questionnaire instrument (expert validation form) regarding the variables which are the dimensions of Safety Policy and Culture and Safety Performance and Project Performance. These variables are obtained from literature studies. At the initial stage, the variables from the literature study results were verified, clarified, and validated by experts.

After the verification, clarification and validation process from the experts, the second stage of the questionnaire instrument which is a pilot survey was distributed. The questionnaire was given to prospective respondents in the stage III questionnaire. At this stage, the results will be obtained whether the variables in the questionnaire are easy to understand or simplification is needed.

Furthermore, the delivery of the stage III questionnaire through a survey of respondents. The questionnaire was given to respondents to choose the level of influence on the variables produced in the second stage questionnaire instrument. The stage III questionnaire survey was given to respondents who were executing parties who were directly technically involved in construction work.

In the next stage, primary data collection, the variables are analyzed using Structural Equation Modeling Partial Least Square (SEM-PLS). This method is a statistical technique that is able to analyze relationship patterns. The purpose of the method is between latent constructs and indicators,
latent constructs with one another, and direct measurement errors.

Figure 1. Research Methodology

Figure 2. Conceptual Framework Model

4. Results and Discussions

From the results of literate studies and validation by experts, the variables of policy, safety culture, safety performance and project performance are obtained as shown in table 1 below.

Table 1. Identification variables of research

Code	Policy	Code	Safety Culture	Code	Safety Performance	Code	Project Performance
X1	Safety Policy	X5	Physical Culture	Y1	Safety Performance	Y2	Project Performance

Safety Policy	Financing Policy	Reward Policy	Punishment Policy
Physical Culture	Behavioural Culture	Norm and Management Culture	Ideology Culture
Safety Culture	Safety Performance	Project Performance	

Safety Policy	X1	Safety Policy	Y1	Safety Performance			
Physical Culture	X5	X5	Y2	Project Performance			
Behavioural Culture	Y1	Y1	Y2	Project Performance			
Norm and Management Culture	Y2	Y2	Y2	Project Performance			
Ideology Culture	Y3	Y3	Y3	Project Performance			
Code	Policy	Code	Safety Culture	Code	Safety Performance	Code	Project Performance
-------	-------------------------------	-------	--	-------	--------------------	-------	---------------------
X1.1	Criteria in tenders	X5.1	Risk Control in the workplace	Y1.1	Safety Awareness	Y2.1	Cost
X1.2	Construction safety training	X5.2	Preparation of safety standards	Y1.2	Safety Costs	Y2.2	Quality
X1.3	Safety performance measurement	X5.3	Preparation of OHS Guidelines	Y1.3	Accident records	Y2.3	Time
X1.4	Requirements for passing the safety training program	X5.4	Implementation of safety schedule	Y1.4	Productivity	Y2.4	Scope
X1.5	Element of construction safety assessment	X5.5	Harmonious and integrated OSH laws and regulations	Y1.5	Self-discipline management	Y2.5	Environment
X1.6	Focus on construction safety	X5.6	Evaluation of safety rules and regulations	Y1.6	Performance		
					measurement		
X1.7	An assessment of the act or omission of safety standards						
X2	Financing Policy	X6	Behavioral Culture				
X2.1	Cost of implementing a safety program		Creation of a good work environment in the company				
X2.2	Operational cost efficiency	X6.2	Capacity building of construction Safety institutions in companies				
X2.3	Percentage of the amount of safety costs	X6.3	Increased worker participation in safety				
X2.4	Safety costs	X6.4	Introduction of safety in all sectors				
X2.5	Non-safety costs						
X3	Reward Policy	X7	Cultural Norms and Management				
X3.1	Incentives for workers' safe conditions, damaged equipment, public and environmental conditions	X7.1	Commitment and support from company management				
X3.2	Incentives in the form of bonuses	X7.2	Implementation of safety training				
X3.3	The quality of the relationship between workers and managers	X7.3	Provision of work equipment and facilities that support certification				
Code	Policy	Code	Safety Culture	Code	Safety Performance	Code	Project Performance
------	--------	------	---------------	------	--------------------	------	---------------------
X3.4	Safety Incentive Program	X7.4	Application of reward and punishment systems				
X3.5	Employee promotion	X7.5	Implementation of safety behavior (safe behavior) by supervisors				
X7.6			Increasing the role and status of safety				
X4	Punishment Policy	X8	Ideological Culture				
X4.1	Loss of a job	X8.1	Establishment of the Golden Safety Rules				
X4.2	IDR 30 billion fine with the risk of death or serious / fatal injury	X8.2	Safety socialization, participation and information				
X4.3	The safety manager was fined Rp. 6 billion or 5 years in prison for failing to comply with construction safety obligations	X8.3	Award for the implementation of Safety in the workplace				
X4.4	Workers are fined IDR 3 billion or 5 years in prison for failing to comply with construction safety obligations	X8.4	Improved Safety coordination between central, provincial districts / cities				
X4.5	The company will terminate / fire workers for every worker who violates organizational rules						
X4.6	The company provides a warning letter as a warning of violating regulations and work discipline						
X4.7	Application of a fee penalty system						
X4.8	Penalty application for a deterrent effect						

From the results of the Path Coefficient, the dominant variable is reshaped based on the relationship between dimensions according to the initial conceptual model. The results can be seen in Figure 3.
Relationship Between Safety Policy and Culture

The relationship between the policy and the dominant safety culture is between the variables of Policy Punishment significantly influencing Culture Ideology. This relationship is in line with [6] research theory which states that the punishment variable can motivate workers to comply with safety regulations. The higher the punishment intensity carried out by the company, the higher the level of motivation of workers in complying with safety regulations.

The recommendation for the relationship between these variables is that the company provides information that workers can lose their jobs if they commit violations so that it is necessary to conduct OHS socialization, participation and information continuously.

Relationship Between Safety Policy and Safety Performance

The dominant relationship between the policy and safety performance is that the reward policy variable has a significant effect on safety performance. This relationship is in line with [7] research theory which states that the reward system affects productivity. The reward system in question is a safety incentive program that aims to increase productivity so as to improve safety performance. And in line with the theory, [8] states that the factor that affects performance is the expectation that is burdened with consequences, which includes reward or punishment in it.

Recommendations for the relationship between these variables are to increase worker participation in OSH, starting from the leadership to the workers in order to create safety awareness.

Relationship Between Policy and Project Performance

The dominant relationship between policy and project performance is that the variable punishment policy significantly affects project performance. This relationship is in line with [9] research theory which states that the punishment variable affects performance. The higher the punishment, the performance will increase, and vice versa, the lower the punishment, the performance will decrease. And in line with the theory, states that the factors that affect performance are expectations that are burdened with consequences, which includes reward or punishment in it.

The recommendation for the relationship between these variables is that the Company provides a warning letter (SP) as a warning of violating regulations and work discipline for workers who ignore work safety which affects the increased project scope.

Relationship Between Safety Culture and Safety Performance

Figure 3. Dominant structure equation model the relationship between safety policies and safety culture on safety performance and project performance
The dominant relationship between safety culture and safety performance is that the cultural norms and management variables significantly influence safety performance. This relationship is in line with [10] research theory that work facilities have a significant effect on performance. According to [11] "Work facilities are a form of company service to employees in order to support performance in meeting employee needs, so as to increase employee productivity". So, it can be concluded that if the company can provide work facilities such as providing PPE for each worker, it can increase productivity so that safety performance will increase.

Recommendations for the relationship between these variables are that the company provides work equipment and facilities that support safety certification to ensure construction safety, the company has good control of all aspects, such as security objectives, construction assessment procedures mechanisms and resource mobilization.

Recommendation

From the results of the discussion of the dominant relationship, the current existing conditions are sought, and by looking at the existing regulations, recommendations for improvement efforts will be proposed. The method used to obtain these results is by conducting gap analysis and expert validation. For more details, see the following Table 2.

Results of the analysis of the dominant relationship	Existing Findings / Conditions	Regulation	Policy Improvement	Stakeholder / PIC
Punishment policy (the company gives a warning letter) to the ideological culture (establishment of golden safety rules)	Not all construction companies have golden safety rules	➢ PP 50 of 2012 concerning Implementation of SMK3	The company provides a warning letter (SP) as a warning of violating regulations (such as not wearing PPE) and work discipline by making Golden Safety Rules (for example: obedience, care and intervention) in improving work safety.	Company
Reward policy (safety incentive program) on safety performance (productivity)	No company has yet established a safety incentive program	➢ PP 50 of 2012 concerning Implementation of SMK3	establish a safety incentive program to control safety performance.	Companies and the Ministry of Manpower
Punishment policy (the company gives	Not all construction companies have	➢ PP 50 of 2012 concerning Implementation of	Ministry of Public Works	

a warning letter) issued a warning letter to their workers who violate the regulations

Culture of norms and management	There are still many construction companies that have not provided their workers with self-protection tools due to the cost factor
(Provision of work equipment and facilities that support certification) on safety performance (productivity)	Minister of Manpower and Transmigration Regulation No. PER.08 / MEN / VII / 2010 About Personal Protection Tools.
SMK3	A regulation is made on punishment (punishment) every time there is an incident of negligence in work towards work safety both for companies and workers
Companies and the Ministry of Manpower	

In the results of this study, it is explained that the reward and punishment policies have a strong influence in forming a safety culture to improve safety performance. This is also in line with research [12] which explains that the policy dimension is one of the important components in building a safety culture in a construction project.

5. Conclusion

Some recommendations for improvement on safety policies and culture based on the dominant variables are as follows:

The company provides a warning letter (SP) as a warning of violating regulations (such as not wearing PPE) and work discipline by making Golden Rules for safety (for example: obeying, caring and intervening) in improving work safety. Adding a non-safety cost component to the regulation on costs safety. Creating a safety incentive program in controlling safety performance so that it is necessary to make laws and regulations governing an intensive safety program so that companies are obliged to carry out the program.

A regulation is made on punishment (punishment) every time there is an incident of negligence in work towards work safety both for companies and workers. The company provides equipment and work facilities that support safety certification to ensure construction safety so that the company has good control of all aspects, such as security objectives, construction assessment procedures mechanisms and resource mobilization.

Acknowledgement

The Authors would like to thank the financial support provided by Ministry of Research and Technology/National Research and Innovation Agency through PDUPT Grant 2020 with contract number: NKB-2875/UN2.RST/HKP.05.00/2020 managed by the Directorate for Research and Community Engagement (DRPM) Ministry of Research and Technology/National Research and Innovation Agency.
References

[1] Alonso, M. L´opez. (2015). Safety cost management in construction companies: A proposal classification : Spanyol

[2] Cagno, E., Micheli, G. J., Masi, D., & Jacinto, C. (2013). Economic evaluation of OSH and its way to SMEs: A constructive review. Safety science, 53, 134-152.

[3] Latief, Y., Machfudyanto, R. A., Arifuddin, R., & Yogiswara, Y. (2017, March). Understanding the relationship between safety culture dimensions and safety performance of construction projects through partial least square method. In AIP Conference Proceedings (Vol. 1818, No. 1, p. 020028). AIP Publishing LLC.

[4] Machfudyanto, R. A., Latief, Y., Suraji, A., & Soeharso, S. Y. (2018). Improvement of policies and institutional in developing safety culture in the construction industry to improve the maturity level, safety performance and project performance in Indonesia. International Journal of Civil Engineering and Technology, 9(10), 1022-1032.

[5] Qinghua He et al. (2015). "Systematic impact of institutional pressures on safety climate in the construction industry". Elsevier

[6] Pamungkas, Dini Age (2012), "Hubungan Reward dan Punishment dengan Tingkat Motivasi Karyawan Dalam Mematuhi Peraturan Keselamatan dan Kesehatan Kerja". Jurnal Kesehatan Masyarakat Vol.1 no.2.

[7] Sari, Atika P. (2012). Pengaruh Pelaksanaan Program Keselamatan Kesehatan Kerja Terhadap Produktivitas Kerja pada Karyawan Engineering BP Tangguh, Teluk Bintuni, Papua. Skripsi

[8] Koencoro, G. D. (2012). Pengaruh Reward dan Punishment Terhadap Kinerja karyawan PT. INKA Persero Madiun.

[9] Brookes, N. J., & Locatelli, G. (2015). Power plants as megaprojects: Using empirics to shape policy, planning, and construction management. Utilities Policy, 36, 57-66.

[10] Suraji dan Bambang Endroyo. (2009), Kecelakaan Konstruksi, Teori dan Pengalaman Empirik. Buku Konstruksi Indonesia tahun 2009. Jakarta: Departemen Pekerjaan Umum

[11] Wardani, D. K. (2013). Pengaruh Sikap Pengetahuan Keselamatan Kerja Dan Iklim Keselamatan Kerja Terhadap Perilaku Keselamatan Pada Karyawan Produksi Pt. Semen Indonesia (Persero) Tbk. Skripsi Jurusan Psikologi-Fakultas Pendidikan Psikologi UM.

[12] Machfudyanto, R. A., Latief, Y., Arifuddin, R., & Yogiswara, Y. (2017). Identification of safety culture dimensions based on the implementation of OSH management system in construction company. Procedia Engineering, 171, 405-412.