Canonical Connection on a Class of Riemannian Almost Product Manifolds

Dimitar Mekerov, Dobrinka Gribacheva

July 9, 2009

Abstract. The canonical connection on a Riemannian almost product manifolds is an analogue to the Hermitian connection on an almost Hermitian manifold. In this paper we consider the canonical connection on a class of Riemannian almost product manifolds with nonintegrable almost product structure.

Mathematics Subject Classification (2000). 53C15, 53C25, 53C05, 53C07.

Keywords. Riemannian almost product manifold, Riemannian metric, nonintegrable structure, almost product structure, canonical connection

1 Introduction

On an Hermitian manifold (M, J, g) there exists an unique linear connection D with a torsion tensor T such that $DJ = Dg = 0$ and $T(x, Jy) = T(Jx, y)$ for all vector fields x, y on M. This is the Hermitian connection of the manifold ([4], [5], [1]). The group of the conformal transformations of the metric g generates the conformal group of the transformations of D. Analogously to the Hermitian connection on an almost Hermitian manifold, V. Mihova in [7] find the canonical connection on a Riemannian almost product manifold.

The systematic development of the theory of Riemannian almost product manifolds was started by K. Yano [10]. In [8] A. M. Naveira gives a classification of these manifolds with respect to the covariant differentiation of the almost product structure. Having in mind the results in [8], M. Staikova and K. Gribachev give in [9] a classification of the Riemannian almost product manifolds with zero trace of the almost product structure.

In the present work we consider the canonical connection on the manifolds of the class W_3 from the classification in [9].
2 Preliminaries

Let \((M, P, g)\) be a Riemannian almost product manifold, i.e. a differentiable manifold \(M\) with a tensor field \(P\) of type \((1, 1)\) and a Riemannian metric \(g\) such that

\[P^2 x = x, \quad g(Px, Py) = g(x, y) \]
\[\tag{1} \]

for arbitrary \(x, y\) of the algebra \(\mathfrak{X}(M)\) of the smooth vector fields on \(M\). Obviously \(g(Px, y) = g(x, Py)\).

Further \(x, y, z, w\) will stand for arbitrary elements of \(\mathfrak{X}(M)\).

In this work we consider Riemannian almost product manifolds with \(\text{tr} P = 0\). In this case \((M, P, g)\) is an even-dimensional manifold.

If \(\dim M = 2n\) then the associated metric \(\tilde{g}\) of \(g\), determined by \(\tilde{g}(x, y) = g(Px, Py)\), is an indefinite metric of signature \((n, n)\). Since \(\tilde{g}(Px, Py) = \tilde{g}(x, y)\), the manifold \((M, P, \tilde{g})\) is a pseudo-Riemannian almost product manifold.

The classification in [9] of Riemannian almost product manifolds is made with respect to the tensor field \(F\) of type \((0,3)\), defined by

\[F(x, y, z) = g((\nabla_x P)y, z), \]
\[\tag{2} \]

where \(\nabla\) is the Levi-Civita connection of \(g\). The tensor \(F\) has the following properties:

\[F(x, y, z) = F(x, z, y) = -F(x, Py, Pz), \quad F(x, y, Pz) = -F(x, Py, z). \]
\[\tag{3} \]

The basic classes of the classification in [9] are \(W_1\), \(W_2\) and \(W_3\). Their intersection is the class \(W_0\) of the Riemannian \(P\)-manifolds, determined by the condition \(F(x, y, z) = 0\) or equivalently \(\nabla P = 0\). In the classification there are include the classes \(W_1 \oplus W_2\), \(W_1 \oplus W_3\), \(W_2 \oplus W_3\) and the class \(W_1 \oplus W_2 \oplus W_3\) of all Riemannian almost product manifolds.

In the present work we consider manifolds from the class \(W_3\). This class is determined by the condition

\[\mathfrak{S}_{x,y,z} F(x, y, z) = 0, \]
\[\tag{4} \]

where \(\mathfrak{S}_{x,y,z}\) is the cyclic sum by \(x, y, z\). This is the only class of the basic classes \(W_1\), \(W_2\) and \(W_3\), where each manifold (which is not Riemannian \(P\)-manifold) has a nonintegrable almost product structure \(P\). This means that in \(W_3\) the Nijenhuis tensor \(N\), determined by

\[N(x, y) = (\nabla_x P)y - (\nabla_{Px} P)y + (\nabla_y P)x - (\nabla_{Py} P)x, \]
\[\tag{5} \]

is non-zero.
In [9] it is introduced an associated tensor \(N^* \) by
\[
N^* (x, y) = (\nabla_x P) y + (\nabla_{P x} P) y + (\nabla_{y P} P) x. \tag{6}
\]
It is proved that the condition (4) is equivalent to \(N^* (x, y) = 0 \).
Further, manifolds of the class \(W_3 \) we call Riemannian \(W_3 \)-manifolds.
As it is known the curvature tensor field \(R \) of a Riemannian manifold with metric \(g \) is determined by
\[
R(x, y) z = \nabla_x \nabla_y z - \nabla_y \nabla_x z - \nabla_{[x, y]} z
\]
and the corresponding tensor field of type (0, 4) is defined as follows
\[
R(x, y, z, w) = g_4 R(x, y) z, w. \tag{7}
\]
Let \((M, P, g) \) be a Riemannian almost product manifold and \(\{e_i\} \) be a basis of the tangent space \(T_p M \) at a point \(p \in M \). Let the components of the inverse matrix of \(g \) with respect to \(\{e_i\} \) be \(g_{ij} \). If \(\rho \) and \(\tau \) are the Ricci tensor and the scalar curvature, then \(\rho^* \) and \(\tau^* \), defined by
\[
\rho^* (y, z) = g_{ij} R(e_i, y, z, P e_j) \quad \text{and} \quad \tau^* = g_{ij} \rho^* (e_i, e_j),
\]
are called an associated Ricci tensor and an associated scalar curvature, respectively. We denote \(\tau^{**} = g_{ij} g_{ks} R(e_i, e_k, P e_s, P e_j) \).

The square norm of \(\nabla P \) is defined by
\[
\| \nabla P \|^2 = g^{ij} g^{ks} g((\nabla_{e_i} P) e_k, (\nabla_{e_j} P) e_s). \tag{8}
\]
Obviously \(\| \nabla P \|^2 = 0 \) iff \((M, P, g)\) is a Riemannian \(P \)-manifold. In [9] it is proved that if \((M, P, g)\) is a Riemannian \(W_3 \)-manifold then
\[
\| \nabla P \|^2 = -2g^{ij} g^{ks} g((\nabla_{e_i} P) e_k, (\nabla_{e_j} P) e_s) = 2 (\tau - \tau^{**}). \tag{9}
\]
A tensor \(L \) of type (0, 4) with the properties
\[
L(x, y, z, w) = -L(y, x, z, w) = -L(x, y, w, z), \tag{10}
\]
\[
\xi L(x, y, z, w) = 0 \quad (\text{the first Bianchi identity})
\]
is called a curvature-like tensor. Moreover, if the curvature-like tensor \(L \) has the property
\[
L(x, y, P z, P w) = L(x, y, z, w), \tag{11}
\]
we call it a Riemannian \(P \)-tensor.
If the curvature tensor \(R \) on a Riemannian \(W_3 \)-manifold \((M, P, g)\) is a Riemannian \(P \)-tensor, i.e. \(R(x, y, P z, P w) = R(x, y, z, w) \), then \(\tau^{**} = \tau \). Therefore \(\| \nabla P \|^2 = 0 \), i.e. \((M, P, g)\) is a Riemannian \(P \)-manifold.

3 Natural connection on Riemannian almost product manifolds

Let \(\nabla' \) be a linear connection with a tensor \(Q \) of the transformation \(\nabla \rightarrow \nabla' \) and a torsion tensor \(T \), i.e.
\[
\nabla'_{x} y = \nabla_x y + Q(x, y), \quad T(x, y) = \nabla'_x y - \nabla'_y x - [x, y].
\]
The corresponding (0,3)-tensors are defined by
\[Q(x, y, z) = g(Q(x, y, z), T(x, y, z) = g(T(x, y, z)). \tag{12} \]

The symmetry of the Levi-Civita connection implies
\[T(x, y) = Q(x, y) - Q(y, x), \tag{13} \]
\[T(x, y) = -T(y, x). \tag{14} \]

A partial decomposition of the space \(T \) of the torsion tensors \(T \) of type (0,3) (i.e. \(T(x, y, z) = -T(y, x, z) \)) is valid on a Riemannian almost product manifold \((M, P, g)\):
\[T = T_1 \oplus T_2 \oplus T_3 \oplus T_4, \]
where \(T_i (i = 1, 2, 3, 4) \) are invariant orthogonal subspaces \([7]\). For the projection operators \(p_i \) of \(T \) in \(T_i \) is established:
\[p_1(x, y, z) = \frac{1}{8} \left\{ 2T(x, y, z) - T(y, z, x) - T(z, x, y) - T(Pz, x, Py) + T(Py, z, Px) + T(z, Px, Py) - 2T(Px, Py, z) + T(Py, Pz, x) + T(z, Px, Pz) - T(y, Pz, Px) \right\}, \]
\[p_2(x, y, z) = \frac{1}{8} \left\{ 2T(x, y, z) + T(y, z, x) + T(z, x, y) + T(Pz, x, Py) - T(Py, z, Px) - T(z, Px, Py) - 2T(Px, Py, z) - T(Py, Pz, x) - T(z, Px, Pz) + T(y, Pz, Px) \right\}, \]
\[p_3(x, y, z) = \frac{1}{4} \left\{ T(x, y, z) + T(Px, Py, z) - T(Pz, x, y) - T(x, Py, Pz) \right\}, \]
\[p_4(x, y, z) = \frac{1}{4} \left\{ T(x, y, z) + T(Px, Py, z) + T(Pz, x, y) + T(x, Py, Pz) \right\}. \]

A linear connection \(\nabla' \) on a Riemannian almost product manifold \((M, P, g)\) is called a natural connection if \(\nabla'P = \nabla'g = 0 \). The last conditions are equivalent to \(\nabla'g = \nabla'\tilde{g} = 0 \). If \(\nabla' \) is a linear connection with a tensor \(Q \) of the transformation \(\nabla \rightarrow \nabla' \) on a Riemannian almost product manifold, then it is a natural connection iff the following conditions are valid:
\[F(x, y, z) = Q(x, y, Pz) - Q(x, Py, z), \tag{15} \]
\[Q(x, y, z) = -Q(x, z, y). \] (16)

Let \(\Phi \) be the \((0,3)\)-tensor determined by
\[\Phi(x, y, z) = g\left(\nabla x y - \nabla x y, z \right), \] (17)
where \(\nabla \) is the Levi-Civita connection of the associated metric \(\tilde{g} \).

Theorem 3.1 ([7]). A linear connection with the torsion tensor \(T \) on a Riemannian almost product manifold \((M, P, g)\) is natural iff
\[4p_1(x, y, z) = -\Phi(x, y, z) + \Phi(y, z, x) - \Phi(x, P y, P z) - \Phi(y, P z, P x) + 2\Phi(z, P x, P y), \] (18)
\[4p_3(x, y, z) = -g(N(x, y), z) = -2 \{ \Phi(z, P x, P y) + \Phi(x, y, z) \}. \] (19)

In [9] it is proved that the both basic tensors \(F \) and \(\Phi \) on a Riemannian almost product manifold \((M, P, g)\) are related as follows:
\[\Phi(x, y, z) = \frac{1}{2} \{-F(P z, x, y) + F(x, y, P z) + F(y, P z, x)\}, \] (20)
\[F(x, y, z) = \Phi(x, y, P z) + \Phi(x, z, P y). \] (21)

If \((M, P, g)\) is a Riemannian \(W_3 \)-manifold then (3), (4) and (20) imply
\[\Phi(x, y, z) = -F(x, P y, z) - F(y, P x, z), \] (22)
which is equivalent to
\[\Phi(x, y, z) = -F(P z, x, y). \] (23)

Theorem 3.2. For a natural connection with a torsion tensor \(T \) on a Riemannian \(W_3 \)-manifold \((M, P, g)\), which is not Riemannian \(P \)-manifold, the following properties are valid
\[p_1 = 0, \quad p_3 \neq 0. \] (24)

Proof. From equalities (23), (18), (3), (4) we get \(p_1 = 0 \). If we suppose \(p_3 = 0 \) then (18) implies \(N = 0 \). Because of the last condition and \(N^{*} = 0 \), the manifold \((M, P, g)\) becomes a Riemannian \(P \)-manifold, which is a contradiction. Therefore, \(p_3 \neq 0 \) is valid. \(\square \)
4 Canonical connection on Riemannian \mathcal{W}_3-manifolds

Definition 4.1 ([7]). A natural connection with torsion tensor T on a Riemannian almost product manifold (M, P, g) is called a canonical connection if

$$T(x, y, z) + T(y, z, x) + T(Px, y, Pz) + T(y, Pz, Px) = 0.$$ \hspace{1cm} (25)

In [7] it is shown that (25) is equivalent to the condition

$$p_2 = p_4 = 0,$$ \hspace{1cm} (26)

i.e. to the condition $T \in T_1 \oplus T_3$. The same paper shows that on every Riemannian almost product manifold (M, P, g) there exists an unique canonical connection ∇', and it is determined by

$$g(\nabla'_x y, z) = g(\nabla_x y, z) + \frac{1}{4} \{ \Phi(x, y, z) - 2\Phi(z, x, y) - \Phi(x, Py, Pz) \}.$$ \hspace{1cm} (27)

For the torsion tensor T of this connection it is valid

$$T(x, y, z) = \frac{1}{4} \{ \Phi(y, z, x) - \Phi(z, x, y) + \Phi(y, Pz, Px) + \Phi(Pz, x, Py) \}.$$ \hspace{1cm} (28)

By virtue of (28) and (25) we obtain the following property for a Riemannian \mathcal{W}_3-manifold

$$T(Px, y) = -PT(x, y).$$ \hspace{1cm} (29)

Then the torsion tensor T of the canonical connection on a Riemannian \mathcal{W}_3-manifold has the properties:

$$T(x, y, z) = -T(y, x, z), \quad T(Px, y, z) = T(x, Py, z) = -T(x, y, Pz).$$ \hspace{1cm} (30)

From Theorem 3.2 and condition (26) we obtain immediately the following

Theorem 4.1. For the torsion tensor T of the canonical connection on a Riemannian \mathcal{W}_3-manifold the equality $T = p_3$ is valid, i.e. $T \in T_3$. \hspace{1cm} \square

Equalities (25) and (27) imply the following

Proposition 4.2. The canonical connection ∇' on a Riemannian \mathcal{W}_3-manifold (M, P, g) is determined by

$$\nabla'_x y = \nabla_x y + \frac{1}{4} \{ - (\nabla_y P) Px + (\nabla_{Py} P) x - 2 (\nabla_x P) Py \}.$$ \hspace{1cm} (31)

\hspace{1cm} \square
Let ∇' be the canonical connection on a Riemannian W_3-manifold (M, P, g). According to (31), for the tensor Q of the transformation $\nabla \to \nabla'$ we have

$$Q(x, y) = \frac{1}{4} \left\{ - (\nabla_y P) P x + (\nabla P_y) P x - 2 (\nabla_x P) P y \right\}. \quad (32)$$

Then

$$T(x, y) = -\frac{1}{2} \{ (\nabla_x P) P y + (\nabla P_x) P y \}. \quad (33)$$

Hence, having in mind $N^* = 0$, (2) and (12), we obtain

$$T(x, y, z) = -\frac{1}{2} \{ F(x, P y, z) + F(P x, y, z) \}. \quad (34)$$

The equalities (32), (12) and (2) imply

$$Q(x, y, z) = -\frac{1}{4} \left\{ F(y, P x, z) - F(P y, x, z) + 2F(x, P y, z) \right\}. \quad (35)$$

Hence, because of (3) and (4), we conclude that

$$Q(x, y, z) = -Q(y, x, z) - F(P z, x, y). \quad (36)$$

Theorem 4.3. Let τ' and τ be the scalar curvatures for the canonical connection ∇' and the Levi-Civita connection ∇, respectively, on a Riemannian W_3-manifold. Then

$$\tau' = \tau + \frac{1}{8} \| \nabla P \|^2. \quad (37)$$

Proof. According to (11) and (31), for a Riemannian almost product manifold we have $g^{ij} F(P z, e_i, e_j) = 0$. Then, from (36), after contraction by $x = e_i$, $y = e_j$, we obtain

$$g^{ij} Q(e_i, e_j, z) = 0. \quad (38)$$

Because of $\nabla g^{ij} = 0$ (for the Levi-Civita connection ∇) and (35), we get

$$g^{ij} (\nabla_x Q) (e_i, e_j, z) = 0. \quad (39)$$
It is known that for the curvature tensors R' and R of ∇' and ∇, respectively, the following is valid:

$$R'(x, y, z, w) = R(x, y, z, w) + (\nabla_x Q)(y, z, w) - (\nabla_y Q)(x, z, w) + Q(x, Q(y, z), w) - Q(y, Q(x, z), w).$$

Then from (16) and (12) it follows that

$$R'(x, y, z, w) = R(x, y, z, w) + (\nabla_x Q)(y, z, w) - (\nabla_y Q)(x, z, w) - g(Q(x, w), Q(y, z)) + g(Q(y, w), Q(x, z)).$$

(40)

for a Riemannian almost product manifold (M, P, g).

Using a contraction by $x = e_i$, $w = e_j$ in (40) and combining (16), (38) and (39), we find that the Ricci tensors ρ' and ρ for ∇' and ∇ satisfy

$$\rho'(y, z) = \rho(y, z) + g^{ij}(\nabla_{e_i} Q)(y, z, e_j) + g^{ij}g(Q(y, e_j), Q(e_i, z)).$$

(41)

Similarly, after a contraction by $y = e_k$, $z = e_s$ in (41) and according to (39), we obtain

$$\tau' = \tau + g^{ij}g^{ks}g(Q(e_k, e_j), Q(e_i, e_s)),$$

(42)

for the scalar curvatures τ' and τ for ∇' and ∇. The equalities (42) and (32) imply

$$g^{ij}g^{ks}g(Q(e_k, e_j), Q(e_i, e_s)) = \frac{1}{16}g^{ij}g^{ks}g(A_{jk}, A_{si})$$

(43)

for a Riemannian \mathcal{W}_3-manifold (M, P, g), where

$$A_{jk} = - (\nabla_{e_k} P) P e_k + (\nabla_{P e_k} P) e_k - 2 (\nabla_{e_k} P) P e_j.$$

From (43), (1), (7) and (8) we get

$$g^{ij}g^{ks}g(Q(e_k, e_j), Q(e_i, e_s)) = \frac{1}{8}\|\nabla P\|^2.$$

The last equality and (42) imply (37).

Corollary 4.4. A Riemannian \mathcal{W}_3-manifold is a Riemannian P-manifold if and only if the scalar curvatures for the canonical connection and the Levi-Civita connection are equal.
5 Canonical connection with Riemannian P-tensor of curvature on a Riemannian W_3-manifold

The curvature tensor R' of a natural connection ∇' on a Riemannian almost product manifold (M, P, g) satisfies property (9), according to (40). Since $\nabla'P = 0$, the property (11) is also valid. Therefore, R' is Riemannian P-tensor iff the first Bianchi identity (10) is satisfied. On the other hand, it is known ([3]) that for every linear connection ∇' with a torsion T and a curvature tensor R' the following equality (the first Bianchi identity) is valid

$$\mathfrak{S}_{x,y,z} R'(x, y, z) = \mathfrak{S}_{x,y,z} \left\{ (\nabla'_x T) (y, z) + T(T(x, y), z) \right\}.$$

Since we have $\mathfrak{S} \nabla'g = 0$, the last equality implies

$$\mathfrak{S}_{x,y,z} R'(x, y, z, w) = \mathfrak{S}_{x,y,z} \left\{ (\nabla'_x T) (y, z, w) + T(T(x, y), z, w) \right\}.$$

Thus, R' satisfies (10) iff

$$\mathfrak{S}_{x,y,z} \left\{ (\nabla'_x T) (y, z, w) + T(T(x, y), z, w) \right\} = 0.$$ (44)

This leads to the following

Lemma 5.1. The curvature tensor for the natural connection ∇' with a torsion T on a Riemannian almost product manifold is a Riemannian P-tensor iff (44) is valid. □

We substitute Pz for z and Pw for w in (44). Hence, according to (30), we obtain

$$(\nabla'_x T) (y, z, w) - (\nabla'_y T) (z, x, w) + (\nabla'_Pz T) (x, y, Pw)$$

$$+ T(T(x, y), z, w) + T(T(y, Pz), x, w) + T(T(Pz, x), y, Pw) = 0.$$

We add the last equality to (44), and substitute Px for x and Pw for w in the result. Then, using (30), we get

$$(\nabla'_x T) (x, y, z) - (\nabla'_Pz T) (x, Py, w)$$

$$+ 2T(T(y, z), x, w) + 2T(T(z, x), y, w) = 0.$$ (45)

We substitute Py, Pz for y, z, respectively, and we apply (30). We subtract the obtained equality from (45) and we reapply (30). This leads to

$$T(T(z, x), y, w) = 0.$$
Hence, (34) and (3) imply
\[F(Py, w, T(z, x)) = -T(y, w, T(z, x)), \]
and from (2) and (12) we obtain
\[g\left(T(x, z), T(y, w) - (\nabla Py) w\right) = 0. \tag{46} \]

Since, according to (33) and (2), we have
\[T(y, w) = -\frac{1}{2}\left\{ (\nabla y) Pw + (\nabla Py) w\right\}, \]
the following equality is valid
\[T(y, w) + (\nabla Py) w = -\frac{1}{2}\left\{ (\nabla y) Pw - (\nabla Py) w\right\}. \]
Thus, using (46), we arrive at the following

Theorem 5.2. Let \((M, P, g)\) be a Riemannian \(W_3\)-manifold, whose canonical connection has a Riemannian \(P\)-tensor of curvature. Then the following equality is valid
\[g\left((\nabla x) Pz + (\nabla Px) z, (\nabla Py) w - (\nabla y) Pw\right) = 0. \]

\[\square \]

6 Canonical connection with parallel torsion on a Riemannian \(W_3\)-manifold

In this section we consider a canonical connection \(\nabla'\) with parallel torsion \(T\) (i.e. \(\nabla'T = 0\)) on a Riemannian \(W_3\)-manifold \((M, P, g)\).

According to the Hayden theorem (2)
\[Q(x, y, z) = \frac{1}{2}\left\{ T(x, y, z) - T(y, z, x) + T(z, x, y)\right\}. \tag{47} \]
Combining this with (13), (15), (35), leads to the following

Proposition 6.1. Let \(\nabla'\) be a natural connection on a Riemannian almost product manifold \((M, P, g)\). Then the tensors \(T\), \(Q\) and \(F\) are parallel or non-parallel at the same time with respect to \(\nabla'\).

\[\square \]
Let ∇' be a natural connection with parallel torsion on a Riemannian almost product manifold (M, P, g). According to Proposition 6.1 we have $\nabla' Q = 0$. Then, having in mind the formula for the covariant derivative of Q, we obtain

$$x Q(y, z, w) - Q(\nabla_x y, z, w) - Q(y, \nabla_x z, w) - Q(y, z, \nabla_x w) = 0.$$ \hfill (48)

Since Q is the tensor of the deformation $\nabla \rightarrow \nabla'$, applying the formula for the covariant derivative of Q with respect to ∇ and equalities (12) and (13), we obtain the following

Lemma 6.2. Let R' be the curvature tensor for a natural connection ∇' with a parallel torsion T on a Riemannian almost product manifold (M, P, g). Then the following equality is valid

$$R'(x, y, z, w) = R(x, y, z, w) + Q(T(x, y), z, w)$$

$$+ g(Q(y, z), Q(x, w)) - g(Q(x, z), Q(y, w)).$$ \hfill (49)

Let (M, P, g) be a Riemannian \mathcal{W}_3-manifold whose canonical connection ∇' has a parallel torsion T. Then, according to (16), (36) and (2), we have

$$Q(T(x, y), z, w) = g(Q(z, w), T(x, y)) - g((\nabla P_w P) z, T(x, y)).$$

The last equality and Lemma 6.2 imply

Theorem 6.3. Let (M, P, g) be a Riemannian \mathcal{W}_3-manifold whose canonical connection ∇' has a parallel torsion T. Then for the curvature tensor R' of ∇' we obtain

$$R'(x, y, z, w) = R(x, y, z, w)$$

$$+ g(Q(y, z), Q(x, w)) - g(Q(x, z), Q(y, w))$$

$$+ g(Q(z, w), T(x, y)) - g((\nabla P_w) z, T(x, y)).$$ \hfill (50)

Because of (38) we have $g^{ij} Q(e_i, e_j) = 0$. Then, from (50) via a contraction by $x = e_i, w = e_j$, we get

$$\rho'(y, z) = \rho(y, z) - g^{ij} g(Q(e_i, z), Q(y, e_j))$$

$$+ g^{ij} g(Q(z, e_j), T(e_i, y)) - g^{ij} g((\nabla P_{e_j}) z, T(e_i, y)),$$ \hfill (51)

where ρ' and ρ are the Ricci tensors for ∇' and ∇, respectively.
Combining (12), (36), (30), (4), (13), (3) and (2), we obtain
\[
g(Q(z, e_j), T(e_i, y)) = g(Q(e_j, z), Q(y, e_i)) - g(Q(e_j, z), Q(e_i, y)) + g((\nabla e_j P) z, T(e_i, y)) + g((\nabla P e_j) z, T(e_i, y)).
\] (52)

We get the following equality from (51) and (52):
\[
\rho'(y, z) = \rho(y, z) - g^{ij} g(Q(e_j, z), Q(e_i, y)) + g^{ij} g((\nabla P e_j) e_i, T(e_i, y)).
\] (53)

A contraction by \(y = e_k, z = e_s\) leads to
\[
\tau' = \tau - g^{ij} g^{ks} g(Q(e_j, e_s), Q(e_i, e_k)) + g^{ij} g^{ks} g((\nabla P e_s) e_j, T(e_i, e_k)),
\] (54)
where \(\tau'\) and \(\tau\) are the respective scalar curvatures for \(\nabla'\) and \(\nabla\).

Using (31), (8) and (7), we get
\[
g^{ij} g^{ks} g(Q(e_j, e_s), Q(e_i, e_k)) = \frac{1}{4} \|\nabla P\|^2.
\] (55)

From (8) and \(2T(e_i, e_j) = - (\nabla e_i P) e_k + (\nabla P e_i) e_k\) we have
\[
g^{ij} g^{ks} g((\nabla P e_s) e_j, T(e_i, e_k)) = \frac{1}{2} \|\nabla P\|^2.
\] (56)

Then, (54), (55) and (56) imply
\[
\tau' = \tau + \frac{1}{4} \|\nabla P\|^2.
\]

From the last equality and (37) we obtain the following

Theorem 6.4. Let \((M, P, g)\) be a Riemannian \(W_3\)-manifold whose canonical connection \(\nabla'\) has a parallel torsion \(T\). Then \((M, P, g)\) is Riemannian \(P\)-manifold.

\(\square\)

References

[1] A. Gray, M. Barros, A. Naveira, L. Vanheke, The Chern numbers of holomorphic vector bundles and formally holomorphic connections of complex vector bundles over almost complex manifolds. P. reine ande w. Math. 314 (1980), 84–98.

[2] H. Hayden, Subspaces of a space with torsion. Proc. London Math. Soc. 34 (1934), 27–50.
[3] S. Kobayashi, K. Nomizu, Foundations of differential geometry, vol. 1, Intersci. Publ., New York, 1963.

[4] A. Lihnerowicz, Généralization de la géométrie kählerienneglobale. Coll. de Géom. diff. Louvain 16 (1955), no. 2, 99–122.

[5] A. Lihnerowicz, Un théorème sur les espaces homogènes complexes. Arch. Math. 5 (1954), 207–215.

[6] D. Mekerov. On Riemannian almost product manifolds with nonintegrable structure, J. Geom. 89 (1-2) (2008), 119–129.

[7] V. Mihova, Cannonical connections and the cannonical conformal group on a Riemannian almost product manifold, Serdica Math. P. 15 (1989), 351–358.

[8] A. M. Naveira, A classification of Riemannian almost product manifolds, Rend. Math. 3 (1983) 577–592.

[9] M. Staikova, K. Gribachev, Canonical connections and their conformal invariants on Riemannian P-manifolds, Serdica Math. P. 18 (1992), 150–161.

[10] K. Yano, Differential geometry of complex and almost complex spaces. Pergamon press, 1965.