RESEARCH ARTICLE

Dietary patterns and associated factors among pregnant women in Ibadan, Nigeria: Evidence from Ibadan pregnancy cohort study

Ikeola A. Adeoye1,2*, Akinkunmi P. Okekunle3

1 Department of Epidemiology and Medical Statistics, College of Medicine, University of Ibadan, Ibadan, Nigeria, 2 Consortium for Advanced Research in Africa (CARTA), Nairobi, Kenya, 3 Research Institute of Human Ecology, Seoul National University, Seoul, Korea

* adeoyeikeola@yahoo.com

Abstract

Background

Maternal nutrition is vital for an optimal intrauterine environment, foetal development, birth weight, pregnancy and neonatal outcomes. We assessed the maternal dietary patterns using a data-driven technique and the associated sociodemographic factors among pregnant women in Ibadan, Nigeria.

Methodology

Dietary assessment was performed during the enrolment of participants for the Ibadan Pregnancy Cohort Study, a prospective cohort study, conducted among 1745 pregnant women enrolled early in pregnancy (< 20 weeks) at four comprehensive obstetric facilities within the Ibadan metropolis. A qualitative food frequency questionnaire was used to assess the pregnant population’s intake of food and drinks three months prior to their enrollment. We determined dietary patterns by applying principal component analysis with a varimax rotation. Multivariate analysis was used to investigate the association between sociodemographic factors and dietary patterns at 5% statistical significance.

Results

Mean age and gestational age at enrolment were 29.8 (± 5.3) years and 16.4 (±4.2) weeks, respectively. White rice was the most frequently consumed meal [794 (45.5%) daily, 898 (51.4%)] weekly in our study population. Five major dietary patterns were identified, and they accounted for 28.8% of the total variation: "protein-rich diet with non-alcoholic beverages" (15.6%); "fruits" (4.1%); "typical diet with alcohol" (3.8%); "legumes" (2.8%), "refined grains" (2.6%). Maternal education and income were inversely associated with the consumption of "protein-rich diet with non-alcoholic beverages", "typical diet with alcohol", and "legumes" in a dose-response fashion. Also, employed women had a higher mean intake of fruits [adjusted β: 0.33 (0.02; 0.65) p = 0.040] compared with women without employment.
Conclusions and recommendation

We described five dietary patterns of pregnant women using a data-driven technique, principal component analysis, in Nigeria. We also identified factors influencing maternal dietary patterns, which can inform public health interventions, especially behavioural change communication during antenatal care.

Introduction

Nutrition and pregnancy are closely linked because maternal nutrition influences the intrauterine environment [1, 2]. Maternal nutrition is also an important modifiable determinant of foetal development, birth weight, pregnancy and neonatal outcomes [3]. For example, micronutrient deficiencies predominant among pregnant women in low and middle-income countries (LMICs) are risk factors for iron deficiency anaemia, low birth weight, intrauterine growth restriction, and small gestational age [4–6]. However, excess energy intake is a risk factor for obesity, excessive gestation weight gain, gestational diabetes mellitus (GDM), and macrosomia [7, 8] which are emerging public health concerns in LMICs.

Determining the overall significance of food and dietary consumption in a population can be complex, as a single nutrient approach (such as iron, iodine, and folate deficiencies) is limited because nutrients are not consumed singly in diets but rather in the company of several foods/nutrients over time. The overall food and dietary pattern assessment is a suitable methodology for summarising overall food and dietary consumption in populations [9]. Dietary patterns assessment is an objective evaluation of a population's overall food and dietary exposure and is often used in determining the diet-disease association in nutrition epidemiology [10]. It utilises the amount, type, frequency or combination of different foods and beverages typically consumed over time [11] to provide a broader picture of the whole food and nutrient consumption [9, 10]. The dietary pattern approach has increasingly gained popularity in explaining the relationship between habitual diet and chronic disease risk. For instance, increasing quartiles of westernized diet were associated with the risk of coronary artery disease in the United States [12]. Although dietary patterns have received scant attention among pregnant women in LMICs such as Nigeria, certain foods have been associated with lowering the risk of some pregnancy complications. For example, diets high in whole grains, fish, fruits and vegetables have reportedly lowered the risk of gestational diabetes mellitus [13] and gestational hypertension [14].

However, the significance of overall dietary exposure in maternal and neonatal outcomes in LMICs, including in Nigeria, has not been thoroughly investigated. Also, the sociodemographic factors associated with maternal dietary patterns have not been identified in Nigeria. Identifying the overall food consumption and its associated factors among pregnant women is crucial for designing and implementing appropriate nutritional education, counselling and public health interventions for improving maternal and neonatal outcomes, particularly in the light of the escalating burden of maternal obesity in LMICs. Therefore, this study examined derived dietary patterns and the associated factors among pregnant women in Ibadan using the Ibadan Pregnancy Cohort Study.

Materials and methods

Study design, setting and population

The Ibadan Pregnancy Cohort Study (IbPCS) was a multicentre hospital-based study among women and their offspring aimed at assessing the association of maternal obesity and lifestyle.
factors with glycaemic control, gestational weight gain, pregnancy and postpartum outcomes in Ibadan, Nigeria. The study started in April 2018, and the baseline recruitment was completed in March 2019. Details of its methodology have been reported elsewhere [15]. It was a prospective cohort study that recruited 1745 pregnant women in early pregnancy (≤20 weeks) from the four health facilities within the Ibadan metropolis. The study was facility-based and conducted at four hospitals which are major maternal health care services providers and referral centres for comprehensive essential obstetric care within the Ibadan metropolis. These facilities are University College Hospital, Adeoyo Maternity Teaching Hospital, Jericho Specialist Hospital, and Saint Mary Catholic Hospital, Oluyoro, Ibadan.

Data collection procedures

Data were collected using pretested, interviewer-administered questionnaires and structured proforma at booking, third trimester, and delivery. Trained personnel conducted in-person interviews and physical examinations (using standard instruments) to assess information on sociodemographic and lifestyle characteristics and dietary information from respondents at baseline after due informed consent for the study. Sociodemographic information assessed were age (in years), Yoruba ethnicity/ancestry (no or yes), level of education completed (at least primary, secondary or tertiary), average monthly income in naira—N (<N20,000; N20,000—N99,999 or ≥N100,000), employment status (no, yes), religion (Christianity or Islam) and marital status (single or married). Also, respondents reported the number of birth experiences they had prior to the current pregnancy and were classified as; nulliparous, 1–3 or ≥4.

Dietary assessment. Participants provided information on foods and drinks consumed in the last three months using an interviewer-administered qualitative food frequency questionnaire (FFQ). The FFQ was designed from a sampling frame of foods and drinks reported by fifty randomly selected women of reproductive age using a 24-hour dietary recall. The FFQ was made of 67 food and drinks classified into ten food groups’ cereals’, ‘starchy roots and tubers’, ‘legumes’, ‘meat, fish and poultry products, ’fruits’, ‘vegetables’, ‘milk’, ‘sugar-sweetened beverages and drinks’, ‘alcohol’ and ‘pastries’. Details of the food and drink items in the FFQ and how they are classified into food groups are presented in Table 1. For each food or drink, participants reported the frequency of food consumption as follows: once daily, more than once daily (i.e. 2–3 times daily): once weekly, more than once weekly (i.e. 2–3 times weekly): once monthly, more than once monthly (i.e. 2–3 times monthly). The consumption frequency was harmonised into daily, weekly, monthly and rarely and transformed into the frequency of daily consumption.

Dietary pattern analysis. The dietary pattern was derived using daily frequency consumption of 67 food items, with a reliability coefficient of 91.0%. Principal Component Analysis (PCA) [16–18], was applied to the correlation matrix of the daily consumption frequency of 67 food items. The factor loadings of foods and drinks were estimated using an orthogonal varimax rotated transformation for interpretability and extraction of uncorrelated components/factors. Five factors were retained based on an eigenvalue, a scree plot and interpretability. Factor loadings were calculated for each food item, and factors were interpreted as dietary patterns. Food or drink items having an absolute loading of ≥0.20 were retained in each dietary pattern. Factor scores of respondents in each dietary pattern were estimated, with higher factor scores typifying a level of closeness of the foods/drinks to the dietary patterns and vice versa. In order to determine the level of adherence to dietary patterns, respondents’ factor scores in each dietary pattern were ranked and stratified into 'low' if the respondent factor score in a dietary pattern falls within the 50th percentile of the factor score distribution in this sample, otherwise 'high' where the factor score is > 50th percentile.
Statistical analysis

Univariate analysis was performed in which categorical and continuous data were presented using percentages and mean (standard deviation). Also, by food groups the frequencies of commonly consumed food items were presented in composite bar graphs. The bivariate analysis examined the five dietary patterns’ sociodemographic and lifestyle characteristics between low and high levels. Linear regression was used to estimate the beta (β) coefficient and 95% confidence intervals (CI) of sociodemographic and lifestyle factors and scores for each dietary pattern. Furthermore, only statistically significant variables in the unadjusted linear regression models were included in the final linear regression models to estimate the adjusted β coefficient and 95% CI of factors associated with each dietary pattern in this sample. All statistical analyses were carried out at a two-sided P < 0.05.

Ethical consideration

The ethical approval for this study was obtained from the University of Ibadan/University College Hospital (UI/UCH) Institutional Review Board (UI/EC/15/0060) and Oyo State Ministry of Health Ethical Committee (AD/13/479/710). Verbal and written informed consent was obtained from the respondents before recruitment into the study. The study protocol and conduct adhered to the principles laid down in the Declaration of Helsinki.

Results

Characteristics of study participants (Table 2) and their food consumption pattern (Fig 1)

The characteristics of the Ibadan pregnancy cohort are presented in Table 2. The mean age was 29.8 (± 5.3) years, and the mean gestational age at enrolment was 16.4 (±4.2) weeks. Also, the majority of the women were within 20–39 years 1648 (94.4%), married 1643 (94.1%), employed 1557 (89.2%), and of Yoruba ancestry 1565 (89.8%). About a third, 583 (33.4%)
earned less than N20,000 per month (minimum wage), and 1011 (58.1%) reported being Christians.

White rice was the most frequently consumed meal (Fig 1) among the study participants: [794 (45.5%) daily, 898 (51.4%) weekly]. Legumes were consumed mostly on a weekly basis: stewed beans (Ewa riro) [158 (9.1%) daily & 1200 (68.7%) weekly] Bean Pudding (Moinmoin) [158 (7.3%) daily & 1176 (67.4) weekly] Beans cake (Akara) [158 (6.3%) daily & 1022 (58.5) weekly]. The commonest sources of animal protein were red meat: [816 (46.7%) daily & 612 (35.1%) weekly, fish: [817 (46.8%) daily & 696 (39.9%) weekly], and eggs [645 (36.9%) daily & 831 (47.6%) weekly]. Plain vegetable soups, such as Okro, Ewedu, and Efo riro, were the most frequently consumed in the fruits and vegetable group.

Dietary pattern of study participants (Table 3)

The factor loading matrix of the dietary patterns obtained from the PCA is presented in Table 3. Five major dietary patterns, which accounted for 28.8% of the total variation, were...
identified in the study population. The first pattern, "protein-rich diet with non-alcoholic beverages", accounted for the highest variance (15.6%) and was characterised by a high intake of red meat, fish, eggs, green vegetables, cream milk, and soft drinks, cocoa beverages, and pastries. The second pattern, "fruits", which accounted for 4.1% variance, was characterised by pawpaw, watermelon, pineapple, tangerine/tangelo, cucumber, avocado pear, carrots, mangoes and cherry. The "typical diet with alcohol" was the third pattern, characterised by *pando yam*, fermented cassava pudding (*fufu*), pork, snail, soya milk, beer, and palm wine. The fourth pattern, "legumes", explained a 2.8% variance and was characterised by stewed beans, bean cake, beans pudding (*moinmoin*) bland beans pudding (*ekuru*). The last pattern was termed "refined grains" and was characterised by high consumption of jollof rice, fried rice, *ofada rice*, corn flakes, oats and golden morn, explaining 2.6% of the total variance.

Association between maternal sociodemographic characteristics and dietary patterns (Tables 4 and 5)

Table 4 displays the association between the sociodemographic factors and dietary patterns--a protein-rich diet with non-alcoholic beverages and fruits and a typical diet with alcohol, legumes, and refined grains among study participants. The protein-rich diet with non-alcoholic beverages, legumes pattern, and refined grains varied by education, income and religion. The consumption of a protein-rich diet with non-alcoholic beverages (primary "40.8%" versus...
tertiary "30.3\%") and legumes (primary "44.9\%" versus tertiary "29.3\%") was less among women with higher education compared with those with less education. On the other hand,

Food Items	Protein rich diet and non-alcoholic beverages	Fruits	Typical diet with alcohol	Legumes	Refined grains
Jollof Rice	-	-	-	-	0.2815
Fried Rice	-	-	-	-	0.3537
Ofada Rice	-	-	-	-	0.2943
Cornflakes	-	-	-	-	0.3906
Oats	-	-	-	-	0.3184
Golden Morn	-	-	-	-	0.3031
Fufu	-	-	0.2044	-	-
Pando Yam	-	-	0.2346	-	-
Stewed beans	-	-	-	-	0.3104
Bean Cake	-	-	-	-	0.3762
Moinmoin	-	-	-	-	0.3590
Ekuru	-	-	-	-	0.3641
Gbegiri	-	-	-	-	0.2435
Red Meat	0.2432	-	-	-	-
Pork	-	-	0.2635	-	-
Snail	-	-	0.2317	-	-
Fish	0.2137	-	-	-	-
Eggs	0.2025	-	-	-	-
Pawpaw	-	-	0.3101	-	-
Watermelon	-	-	0.2918	-	-
Pineapple	-	-	0.3001	-	-
Apple	-	-	0.2887	-	-
Tangerine	-	-	0.2634	-	-
Cucumber	-	-	0.3107	-	-
Avocado Pear	-	-	0.2621	-	-
English Pear	-	-	0.2563	-	-
Oranges	-	-	0.2108	-	-
Carrot	-	-	0.2892	-	-
Mangoes	-	-	0.2612	-	-
Agbalumo	-	-	0.2567	-	-
Plain vegetables	-	-	0.2543	-	-
Oil-based soups	-	-	0.2337	-	-
Cream milk	0.3059	-	-	-	-
Soya Milk	-	-	0.2344	-	-
Soft drinks	0.2771	-	-	-	-
Malt drinks	0.2398	-	-	-	-
Beverage	0.3116	-	-	-	-
Tea	0.2244	-	-	-	-
Beer	-	-	0.2067	-	-
Palm wine	-	-	0.2358	-	- 0.2388
Pastry	0.2079	-	-	-	-
% Variance	15.62	4.12	3.79	2.79	2.57
%Cumulative variance	28.88	10.08	4.12	2.79	2.57

Varimax rotated factor loadings ≥ 0.2 presented.

https://doi.org/10.1371/journal.pone.0273796.t003
	Protein-rich diet with non-alcoholic beverages	Fruits	Typical diet with alcohol	Legumes	Refined grains					
	Low (High)	p-value								
Age group										
< 20	13 (39.4)	0.172	17 (51.5)	0.641	19 (57.6)	0.741	19 (57.6)	0.551	15 (45.4)	0.0134
20–29	401 (48.2)	0.360	415 (50.1)	0.982	421 (50.6)	0.165	404 (48.6)	0.027	396 (47.6)	0.524
30–39	420 (51.7)	0.551	412 (49.9)	0.305	398 (53.9)	0.418	404 (45.1)	0.001	443 (49.8)	0.023
≥ 40 years	40 (57.4)	0.004	29 (42.7)	0.004	29 (51.5)	0.001	34 (51.3)	0.001	57 (55.9)	0.223
Parity										
Nulliparous	391 (51.6)	0.360	378 (50.3)	0.305	398 (52.4)	0.153	405 (45.1)	0.032	371 (48.8)	0.080
2–4	427 (48.4)	0.004	442 (50.1)	0.305	422 (49.9)	0.418	404 (45.1)	0.001	439 (50.2)	0.023
≥ 5	51 (53.7)	0.004	48 (50.5)	0.305	50 (52.6)	0.153	56 (51.3)	0.001	58 (61.1)	0.223
Marital Status										
Single	39 (38.2)	0.004	46 (45.1)	0.004	55 (51.9)	0.015	46 (45.1)	0.001	57 (55.9)	0.001
Married	834 (50.8)	0.004	63 (49.2)	0.004	76 (49.3)	0.004	816 (49.7)	0.004	816 (49.7)	0.001
Education										
Primary or less	25 (51.0)	0.004	28 (47.3)	0.004	22 (49.0)	0.015	18 (45.1)	0.001	285 (56.6)	0.706
Secondary	221 (52.6)	0.004	251 (49.8)	0.004	236 (46.8)	0.015	198 (50.3)	0.001	219 (43.5)	0.001
Tertiary or more	626 (47.3)	0.004	591 (49.8)	0.004	613 (51.6)	0.015	534 (45.0)	0.001	635 (53.5)	0.001
Employment Status										
Unemployed	97 (51.3)	0.706	106 (56.1)	0.007	106 (56.1)	0.007	107 (56.1)	0.055	97 (51.3)	0.706
Employed	776 (49.9)	0.004	76 (49.3)	0.004	76 (49.2)	0.055	776 (49.9)	0.004	780 (50.1)	0.004
Religion										
Christianity	525 (52.0)	0.004	521 (51.6)	0.004	483 (49.4)	0.004	445 (49.4)	0.001	542 (53.7)	0.001
Islam	345 (47.5)	0.004	349 (48.1)	0.004	385 (53.0)	0.004	537 (55.0)	0.001	327 (45.0)	0.001
Ethnicity										
Non-Yorubas	97 (54.5)	0.026	94 (52.8)	0.029	276 (47.3)	0.000	233 (40.0)	0.001	95 (53.4)	0.326
Yorubas	774 (49.5)	0.026	777 (49.7)	0.029	781 (52.2)	0.000	755 (48.3)	0.001	774 (49.5)	0.002
Income										
<20,000	261 (44.8)	0.012	271 (46.5)	0.028	276 (47.3)	0.000	317 (54.4)	0.001	266 (54.6)	0.002
20,000–99,999	442 (52.4)	0.012	427 (50.7)	0.028	421 (49.9)	0.001	401 (54.3)	0.001	442 (52.4)	0.001
≥ 100,000	58 (53.7)	0.012	52 (48.2)	0.028	57 (52.8)	0.001	317 (54.4)	0.001	266 (54.6)	0.001

https://doi.org/10.1371/journal.pone.0273796.0004
women with high education consumed more refrained grains than less educated women: (primary "29.3%" versus tertiary "41.7%"). The dietary pattern also differed by religion, as Muslims had a higher consumption of a protein-rich diet with non-alcoholic beverages (p = 0.001) and legumes (p = 0.001) but a lower intake of the typical diet with alcohol (p = 0.024). Christians consumed more refrained grains compared to Muslims (p = 0.001). Furthermore, those who earn <N20,000 presented high consumption of a 'protein-rich diet with non-alcoholic beverages' than those earning more than N100,000; 322 (55.2%) vs 50 (46.3%). Similarly, legume consumption was higher among those who earn <N20,000 than those who earn more than N100,000; 350 (60.0%) vs 37 (34.3%).

The modelling of the participants’ sociodemographic characteristics and dietary patterns with the unadjusted and adjusted β and 95% CI are shown in Table 5. The intake of the typical diet with alcohol decreased with the woman’s level of education in a monotonic fashion: secondary school; adjusted β:-0.69 (-1.35; -0.02) p = 0.043 and tertiary education; adjusted β:-0.83 (-1.49; -0.018) p = 0.013 compared with women with primary school education only. Conversely, women with tertiary education had a higher mean dietary score for refined grains [adjusted β: 0.50 (-0.04; 0.95) p = 0.033] compared with women with primary school education only. Income had an inverse association with the consumption of a protein-rich diet with non-alcoholic beverages, a typical diet with alcohol, and legumes in a dose-response fashion.

Also, employed women had a higher mean of fruits [adjusted β: 0.33 (0.02; 0.65) p = 0.040] compared with women without employment. Parity had a significant association with the intake of a typical diet with an alcoholic beverage as multiparous women [adjusted β: 0.30 (0.08; 0.52) p = 0.009] had significantly higher consumption compared with nulliparous women. Muslims had a higher intake of legumes [adjusted β: 0.28 (-0.92; 0.47) p = 0.004] and a protein-rich diet with non-alcoholic beverage [adjusted β: 0.25 (0.01; 0.50) p = 0.039] compared to Christians.

Discussion

Maternal nutrition is an important modifiable factor for optimal foetal development, pregnancy and neonatal outcomes, and mitigating the future risk of non-communicable diseases among women of reproductive age [19–21]. Therefore, understanding the dietary patterns of pregnant women, especially in LMIC societies undergoing epidemiologic and nutritional transitions such as Nigeria, is essential for predicting disease risk, formulating nutritional policies and providing nutritional interventions for pregnant women. We identified five dietary patterns: “protein-rich diet with non-alcoholic beverage”, “fruits”, and “typical diet with alcohol” legumes and “refined grains” among pregnant women in this study. We also ascertained the sociodemographic factors associated with maternal dietary patterns in Ibadan, Nigeria. Dietary pattern using factor analysis is gaining some attention in Nigeria but has been scarcely examined among pregnant women. Nwaru et al. (2012) examined the dietary pattern through a 24-hour dietary recall among mothers and children using Nigerian Demographic and Health Surveys data [22]. Unlike the food frequency questionnaire used in this study, the 24-hour dietary recall does not capture habitual dietary patterns. Recently researchers have begun examining the dietary pattern of specific Nigerian sub-populations, including school children [23] out-of-school adolescents [24], university undergraduates [25], and households [26].

The protein-rich diet with non-alcoholic beverages explained the highest variance in the dietary pattern in our study population. This dietary pattern was essentially healthy and nutrient-dense because it provided multiple sources of macro and micronutrients from animal protein–fish, eggs and red meat–an essential nutrient for foetal growth and development. Green leafy vegetables are important sources of minerals and vitamins (vitamins A, C, K, and E,
Table 5. Modelling the participants’ sociodemographic characteristics and dietary patterns.

Protein-rich diet and non-alcoholic beverages	Fruits	Typical diet with alcohol							
Unadjusted β coefficient (95% CI)	p-value	Adjusted β coefficient (95% CI)	p-value	Unadjusted β coefficient (95% CI)	p-value	Adjusted β coefficient (95% CI)	p-value	Unadjusted β coefficient (95% CI)	p-value
Age group									
< 20	Ref	0.35(-1.12; 0.43)	0.383	0.49(-1.49; 1.46)	0.327	-0.13(-0.86; 0.61)	0.737	0.40(-0.40; 1.19)	0.327
20–29	-0.47 (-1.25; 0.31)	0.237	0.60(-1.39; 1.58)	0.234	-0.07(-0.81; 0.66)	0.844	0.45(-0.36; 1.26)	0.279	0.31(-0.41; 1.03)
30–39	-0.80 (-1.72; 0.13)	0.093	0.61(-1.51; 1.72)	0.284	-0.06(-0.94; 0.82)	0.887	0.37(-0.54; 1.29)	0.423	0.17(-1.18; 1.03)
≥ 40 years	0.20 (-0.02; 0.41)	0.070	-0.08 (-0.31; 0.16)	0.521	-0.05 (-0.25; 0.15)	0.614	0.12(-0.49; 0.40)	0.216	0.31 (0.11; 0.50)
Parity									
Nulliparous	Ref	0.578	-0.10(-0.80; 0.60)	0.773	-0.07(-0.69; 0.55)	0.835	-1.33(-0.88; 0.22)	0.238	-0.74(-1.34; -0.13)
Married	-0.19 (-0.81; 0.59)	0.578	-0.10 (-0.80; 0.60)	0.773	-0.07 (-0.69; 0.55)	0.835	-1.33 (-0.88; 0.22)	0.238	-0.74 (-1.34; -0.13)
Marital Status									
Single	Ref								
Married	-0.26 (-0.71; 0.19)	0.251	-0.84(-1.38; 0.30)	0.002	-0.38(-0.80; -0.04)	0.078	-0.84 (0.04; 0.30)	0.178	0.07 (0.35; 0.48)
Education									
Primary or less	Ref								
Secondary	-0.63 (-1.27; 0.01)	0.052	-0.44 (-1.14; 0.25)	0.206	-0.14 (-0.75; 0.46)	0.643	-1.77 (-1.32; -0.28)	0.005	-0.98 (-1.57; -0.39)
Tertiary	-0.46 (-1.12; 0.20)	0.070	-0.08 (-0.31; 0.16)	0.521	-0.05 (-0.25; 0.15)	0.614	0.12 (-0.49; 0.40)	0.216	0.31 (0.11; 0.50)
Employment Status									
Unemployed	Ref								
Employed	0.31 (-0.03; 0.65)	0.072	0.18 (-0.49; 0.86)	0.590	0.33 (0.02; 0.65)	0.040	0.38 (-0.17; 0.93)	0.178	0.44 (0.12; 0.75)
Religion									
Christianity	Ref								
Islam	0.40 (0.19; 0.62)	0.000	0.25 (0.01; 0.50)	0.039	0.16 (0.05; 0.36)	0.131	0.27 (-0.07; 0.47)	0.007	-0.01 (-0.21; -0.19)
Ethnicity									
Non-Yorubas	Ref								
Yorubas	0.49 (0.15; 0.84)	0.005	-0.62 (-0.89; 0.12)	0.188	-0.03 (-0.36; 0.30)	0.867	0.14 (-0.17; 0.44)	0.386	-0.49 (-0.81; -0.16)
Income									
<20,000	Ref								
20,000–99,999	-0.51 (-0.74; -0.27)	0.001	-0.37 (-0.62; -0.12)	0.004	-0.20 (-0.42; 0.02)	0.079	-1.42 (-0.63; -0.23)	<0.001	-0.38 (-0.60; -0.15)
≥ 100,000	-0.60 (-1.06; -0.14)	0.011	-0.38 (-0.85; 0.09)	0.111	-0.18 (-0.61; -0.26)	0.421	-0.51 (-0.89; -0.14)	0.007	-0.53 (-0.97; -0.09)
Typical Diet with alcohol	Adjusted β coefficient (95% CI)	p-value	Unadjusted β coefficient (95% CI)	p-value	Adjusted β coefficient (95% CI)	p-value	Unadjusted β coefficient (95% CI)	p-value	
Age group									
< 20	Ref								
20–29	0.35 (-0.67; 1.37)	0.505	0.06 (-0.55; 0.68)	0.842	0.32 (-0.66; 1.29)	0.527	-0.02 (-0.56; 0.53)	0.952	
30–39	0.27 (-0.76; 1.31)	0.610	0.03 (-0.59; 0.64)	0.937	0.18 (-0.81; -1.17)	0.727	-0.08 (-0.63; 0.47)	0.779	
≥ 40 years	-0.11 (-1.27; 1.06)	0.860	0.07 (-0.67; 0.81)	0.849	0.01 (-1.12; 1.13)	0.992	-0.05 (-0.07; 0.60)	0.871	
Parity									
Nulliparous	Ref								
≥ 1	0.30 (0.08; -0.52)	0.009	0.19 (0.02; 0.36)	0.028	0.14 (-0.35; 0.32)	0.115	0.02 (-0.13; 0.17)	0.776	
Marital Status									
Single	Ref								

(Continued)
including calcium, iron, fibre and folate, which are essential for preventing neural tube defects. This pattern was also rich in milk, sugar-sweetened beverages (SSBs) and added sugars from pastries. Cream milk benefits women and the growing foetus because of the high calcium content required for solid bones and cell function.

Conversely, pregnant women should consume SSBs and added sugars in moderation or eliminate and replace them with low or no calorie-containing drinks such as water, particularly women that are obese [27]. SSBs have been associated with poor dietary quality [28], high energy intake [29], weight gain [30] and increased cardiometabolic risk that results from the spike of blood glucose and insulin levels, and high glycaemic load leading to decreased insulin sensitivity [31–34]. Additionally, the protein-rich diet with non-alcoholic beverages was inversely associated with income; women with lower income consumed a more protein-rich diet with non-alcoholic beverages than women with high income. This implies that these food items are likely inexpensive, readily accessible and available to women. An inverse association with socioeconomic status was also observed for the typical diet with alcoholic beverage and legumes dietary pattern.

The typical diet with alcohol consisted of commonly consumed food items in Nigeria, namely pando/pounded yam, fermented cassava pudding (fufu), pork, snail, oil-based soups, soya milk and importantly alcoholic drinks such as beer and palm wine. The alcoholic content makes it a harmful dietary pattern because of its teratogenic effects and the associated adverse pregnancy and developmental outcomes. For example, alcohol ingestion during pregnancy is the leading cause of preventable congenital anomalies in developed countries [35]. There is growing evidence of a rise in the intake of alcohol among women of reproductive age, especially in developing countries [36, 37]. In sub-Saharan Africa, the rise in alcohol consumption among women has been linked to urbanisation, economic growth, increasing social acceptability of the habit, changing gender roles and so on [37]. The WHO has stipulated that no amount

Table 5. (Continued)	Married	-0.32 (-0.89; 0.25)	0.265	-0.76 (-0.43; 0.28)	0.676	-0.16 (-0.71; 0.38)	0.562	0.07 (-0.25; 0.38)	0.679		
Education	Primary or less	Ref									
	Secondary	-0.69 (-1.35; -0.02)	0.043	-0.52 (-1.03; -0.01)	0.046	-0.36 (-0.90; 0.18)	0.194	0.29 (-0.1; 0.75)	0.223	0.27 (-0.19; 0.73)	0.253
	Tertiary	-0.83 (-1.49; -0.18)	0.013	-1.11 (-1.61; -0.61)	0.001	-0.78 (-1.32; -0.24)	0.005	0.54 (0.09; 0.99)	0.019	0.50 (-0.04; 0.95)	0.033
Employment Status	Unemployed	0.27 (-0.40; 0.95)	0.431	-0.32 (-0.54; -0.59)	0.019	0.38 (-0.17; 0.993)	0.174	0.07 (-0.17; 0.31)	0.578	0.967	
	Employed	Ref									
Religion	Christianity	Ref									
	Islam	0.19 (-0.06; 0.44)	0.134	0.48 (0.31; 0.65)	0.001	0.28 (0.92-0.47)	0.004	-0.18 (-0.33; -0.26)	0.021	-0.10 (-0.26; 0.05)	0.196
Ethnicity	Non-Yorubas	Ref									
	Yorubas	0.31 (-0.08; 0.71)	0.115	0.42 (0.15; 0.70)	0.003	-.59 (-.97; 0.12)	0.002	-0.18 (-0.42; -0.07)	0.156		
Income	<20,000	Ref									
	20,000–99,999	-0.32 (-0.56; -0.08)	0.009	-0.59 (-0.77; -0.40)	0.001	-0.42 (-0.62; 0.22)	0.004	0.07 (-0.10; -0.24)	0.447		
	≥ 100,000	-0.47 (-0.93; -0.02)	0.065	-0.74 (-1.10; -0.38)	0.001	-0.51 (-0.88; -0.14)	0.376	0.05 (-0.28; 0.38)	0.776		
of alcohol is safe during pregnancy and that pregnant women should abstain from alcohol to prevent the associated adverse perinatal and developmental outcomes [38, 39]. Therefore, it is necessary to assess alcohol intake and encourage abstinence during antenatal care. This dietary pattern increased with parity, suggesting that women with higher parity than nulliparous women reported a higher intake of alcohol-containing diet. This association has been reported by other researchers in Africa [40, 41]. Additionally, socioeconomic status had a negative association with this dietary pattern, i.e., women with low education and income had a higher consumption of this alcohol-based diet, perhaps due to a lack of awareness of the adverse effects of alcohol consumption during pregnancy. A study in Uganda reported that the availability of cheap alcoholic drinks and their free distribution during celebrations make alcoholic intake common among low-income earning women [40]

The legumes and fruit patterns were homogenous groups explaining 4.1% and 2.8% variations, respectively. Legumes are plant proteins rich in dietary fibre with a low-glycaemic index (GI). Legumes are a healthy and inexpensive diet high in phytochemicals, fibre, proteins, minerals and vitamins [42]. Legumes enhance cardio-metabolic health by maintaining insulin sensitivity, improving lipid profiles, preventing insulin resistance [43], obesity [44], and cardiovascular risk scores [45] and these have been well reported in the literature. During pregnancy, legumes are beneficial in preventing gestational diabetes and excessive weight gain by maintaining postprandial glucose excursions, blood glucose and insulin levels. Legumes are, however, underutilised in our environment and often consumed by more impoverished individuals and families. Our study showed that legume consumption declined significantly in a dose-response fashion with the level of education and income. For example, the mean dietary score of legumes for women with tertiary education was much less [Adjusted β = -0.78 (p = 0.005)] compared with women with primary education or less. Some reasons for the underutilisation of legumes, especially among educated women, might be their prolonged cooking time and less palatability. It might also be associated with gastrointestinal side effects like increased flatulence, among others [46, 47]. For instance, legumes are regarded as the poor man’s meat [46], and our study shows higher consumption among low-income women. Hence the need to encourage women to consume legumes in various forms and find innovative ways of preparing them.

The fruit pattern was clearly identified in this study population. Fruits and vegetables are rich in vitamins and minerals: A, C, E, magnesium, zinc, phosphorus, folic acid, fibre and antioxidants but low in calorie and dietary fat. The benefit of eating fruits and vegetables derived from their antioxidants, vitamins and phytochemicals [48]. Fruits were only significantly associated with women’s employment status, with employed women having a higher mean intake of fruits than unemployed women [Adjusted β = 0.33 p = 0.040]. This implies a lack of access to fruits because of cost; hence, only employed women can readily access fruits.

The refined grains pattern was high in rice and refined cereals, which have a high GI and can increase the risk of metabolic dysfunctions because they are lower in fibre and essential nutrients than whole grains [49, 50]. In this study, high intakes of refined cereals were associated with higher education and income. Refined cereals are usually fortified with micronutrients and quick to prepare but are high in added sugars and expensive [51–53]. Hence we noted a higher level of consumption among women with higher education than those with primary education. Similarly, nulliparous women were also observed to have a high intake of refined grains, which may explain their susceptibility to obesity in subsequent pregnancies due to excessive weight gain and postpartum weight retention [54, 55].

This study is likely the first to describe the dietary pattern of pregnant women using a data-driven technique such as PCA in Nigeria. We also identified factors that can influence the dietary patterns of pregnant women in this population, which can inform public health
interventions, especially behavioural change communication during antenatal care. These findings are likely applicable to women across all spectrums of reproductive age and crucial for designing public health policies and advisories to guide public health interventions for women’s health and quality of life in LMICs.

However, our study also has limitations. First, the dietary assessment was conducted using a qualitative food frequency questionnaire without quantifying portion sizes. Also, the dietary assessment was conducted at baseline; hence the study could not account for dietary changes during pregnancy. We relied on participants’ recollection of food consumption, and bias in reporting healthy eating habits is not unlikely, particularly among women with higher education. The other limitations are those associated with the complex hierarchical nature of data-driven techniques like factor analysis.[9, 22].

Conclusion
Prenatal nutrition impacts birth outcomes and is also an essential modifiable factor. We described five dietary patterns of pregnant women using a data-driven technique such as PCA in Nigeria. We also identified factors influencing maternal dietary patterns, which can inform public health policy and interventions, especially behavioural change communication during antenatal care.

Acknowledgments
We would like to thank our research team for their dedication, support and hard work—research nurses, laboratory scientists, research assistants Data personnel. We also wish to appreciate the health workers—doctors, nurses, and clinic staff as well as the record staff of the various health facilities for their cooperation and support in the four facilities: University College Hospital, Adeoyo Maternity Teaching Hospital, Jericho Specialist Hospital, and Saint Mary Catholic Hospital Oluyoro, Ibadan. We appreciate the input of CARTA (Consortium for Advanced Research Training for Africa) for all its training, care, support, oversight, funding and sponsorship efforts. The contributions of Dr Fagbamigbe’s input into the manuscript are acknowledged. The input of Prof Rasaki Sanusi and Dr Folake Samuel of the Department of Human Nutrition and Dietetics, University of Ibadan, in developing the food frequency questionnaire is appreciated.

Author Contributions
Conceptualization: Ikeola A. Adeoye.
Data curation: Ikeola A. Adeoye.
Formal analysis: Ikeola A. Adeoye.
Funding acquisition: Ikeola A. Adeoye.
Investigation: Ikeola A. Adeoye.
Methodology: Ikeola A. Adeoye, Akinkunmi P. Okekunle.
Project administration: Ikeola A. Adeoye.
Resources: Ikeola A. Adeoye, Akinkunmi P. Okekunle.
Software: Ikeola A. Adeoye, Akinkunmi P. Okekunle.
Supervision: Ikeola A. Adeoye, Akinkunmi P. Okekunle.
Validation: Ikeola A. Adeoye, Akinkunmi P. Okekunle.
Visualization: Ikeola A. Adeoye, Akinkunmi P. Okekunle.

Writing – original draft: Ikeola A. Adeoye.

Writing – review & editing: Ikeola A. Adeoye, Akinkunmi P. Okekunle.

References

1. Belkacemi L, Nelson DM, Desai M, Ross MG. Maternal Undernutrition Influences Placental-Fetal Development I. Biology of Reproduction. 2010; 83(3):325–31.

2. Marangoni F, Cetin I, Verduci E, Canzone G, Giovannini M, Scollo P, et al. Maternal Diet and Nutrient Requirements in Pregnancy and Breastfeeding. An Italian Consensus Document. Nutrients. 2016; 8 (10):829. https://doi.org/10.3390/nu8100629 PMID: 27754423

3. Berti C, Cetin I, Agostoni C, Deseyo G, Davelier R, Emmett PM, et al. Pregnancy and Infants’ Outcome: Nutritional and Metabolic Implications. Critical reviews in food science and nutrition. 2016; 56 (1):82–91. https://doi.org/10.1080/10408398.2012.745477 PMID: 24628089

4. Gete DG, Waller M, Mishra GD. Effects of maternal diets on preterm birth and low birth weight: a systematic review. The British journal of nutrition. 2020; 123(4):446–61. https://doi.org/10.1017/S0007114519002897 PMID: 31711550

5. Kjøllesdal MKR, Holmboe-Ottesen G. Dietary Patterns and Birth Weight-a Review. AIMS public health. 2014; 1(4):211–25. https://doi.org/10.3934/publichealth.2014.4.211 PMID: 29546087

6. Okubo H, Miyake Y, Sasaki S, Tanaka K, Murakami K, Hirota Y, et al. Maternal dietary patterns in pregnancy and fetal growth in Japan: the Osaka Maternal and Child Health Study. The British journal of nutrition. 2012; 107(10):1526–33. https://doi.org/10.1017/S0007114511004636 PMID: 21929833

7. Catalano P, deMouzon SH. Maternal obesity and metabolic risk to the offspring: why lifestyle interventions may have not achieved the desired outcomes. International journal of obesity (2005). 2015; 39 (4):642–9.

8. Chu SY, Callaghan WM, Kim SY, Schmid CH, Lau J, England LJ, et al. Maternal obesity and risk of gestational diabetes mellitus. Diabetes care. 2007; 30(8):2070–6. https://doi.org/10.2337/ajcn.78.12.1947 PMID: 17416786

9. Hu FB. Dietary pattern analysis: a new direction in nutritional epidemiology. Current opinion in epidemiology. 2002; 13(1):3–9. https://doi.org/10.1097/00041433-200202000-00002 PMID: 11790957

10. Hu FB, Rimm E, Smith-Warner SA, Feskanich D, Stampfer MJ, Ascherio A, et al. Reproducibility and validity of dietary patterns assessed with a food-frequency questionnaire. Am J Clin Nutr. 1998; 69 (2):243–9. https://doi.org/10.1093/ajcn/69.2.243 PMID: 9999687

11. Sanchez-Villegas A, Martinez de Lapiscina E. A Healthy Diet for Your Heart and Your Brain. 2018. p. 169–97.

12. Hu FB. Plant-based foods and prevention of cardiovascular disease: an overview. The American journal of clinical nutrition. 2003; 78(3):544S–51S. https://doi.org/10.1093/ajcn/78.3.544S PMID: 12936948

13. Shin D, Lee KW, Song WO. Dietary Patterns during Pregnancy Are Associated with Risk of Gestational Diabetes Mellitus. Nutrients. 2015; 7(11):9369–82. https://doi.org/10.3390/nu7115472 PMID: 26569302

14. Schoenaker DA, Soedamah-Muthu SS, Mishra GD. The association between dietary factors and gestational hypertension and pre-eclampsia: a systematic review and meta-analysis of observational studies. BMC medicine. 2014; 12:157. https://doi.org/10.1186/s12916-014-0157-7 PMID: 25241701

15. Adeoye I.A., Bamgboye E.A., Omigbodun A.O. The Ibadan Pregnancy Cohort Study (IbPCS), a Prospective Cohort Study Protocol. African journal of biomedical research. 2022; 25(2):273–80.

16. Lara KM, Levitan EB, Gutierrez OM, Shikany JM, Satford MM, Judd SE, et al. Dietary Patterns and Incident Heart Failure in U.S. Adults Without Known Coronary Disease. J Am Coll Cardiol. 2019; 73 (16):2036–45. https://doi.org/10.1016/j.jacc.2019.01.067 PMID: 31023426

17. Stricker MD, Onland-Moret NC, Boer JMA, van der Schouw YT, Verschuren WMM, May AM, et al. Dietary patterns derived from principal component- and k-means cluster analysis: Long-term association with coronary heart disease and stroke. Nutrition, Metabolism and Cardiovascular Diseases. 2013; 23 (3):250–6. https://doi.org/10.1016/j.numecd.2012.02.006 PMID: 22647416

18. Fung TT, Stampfer MJ, Manson JE, Rexrode KM, Willett WC, Hu FB. Prospective Study of Major Dietary Patterns and Stroke Risk in Women. Stroke. 2004; 35(9):2014–9. https://doi.org/10.1161/01.STR.0000135762.89154.92 PMID: 15232120
19. Goldsmith GA. Relationships between nutrition and pregnancy as observed in recent surveys in Newfoundland. American journal of public health and the nation’s health. 1950; 40(8):953–9. https://doi.org/10.2105/ajph.40.8.953 PMID: 15425676

20. Veena SR, Gale CR, Krishnaveni GV, Kehoe SH, Srinivasan K, Fall CH. Association between maternal nutritional status in pregnancy and offspring cognitive function during childhood and adolescence; a systematic review. BMC pregnancy and childbirth. 2016; 16:220. https://doi.org/10.1186/s12884-016-1011-z PMID: 27520466

21. Koletzko B, Godfrey KM, Poston L, Szajewska H, van Goudoever JB, de Waard M, et al. Nutrition During Pregnancy, Lactation and Early Childhood and its Implications for Maternal and Long-Term Child Health: The Early Nutrition Project Recommendations. Annals of nutrition & metabolism. 2019; 74(2):93–106. https://doi.org/10.1159/000496471 PMID: 30673669

22. Nwaru BI, Onyeka IN, Ndiokwu C, Esangbedo DO, Ngwu EK, Okolo SN. Maternal and child dietary patterns and their determinants in Nigeria. Maternal & child nutrition. 2015; 11(3):283–96. https://doi.org/10.1111/mcn.12011 PMID: 23167662

23. Sanusi RA, Wang D, Aniyi O, Eyinla TE, Tassy M, Eldridge AL, et al. Food Sources of Key Nutrients, Meal and Dietary Patterns among Children Aged 4–13 Years in Ibadan, Nigeria: Findings from the 2019 Kids Nutrition and Health Study. Nutrients 2022; 14(2):274–88. https://doi.org/10.1093/ajcn/84.1.274 PMID: 31022225

24. FO S, RA A, IA A, A O. Nutritional Status, Dietary Patterns and associated factors among out-of-school Adolescents in Ibadan, Nigeria. World Nutrition. 2021; 12(1):51–64.

25. P U, A O. Association of Dietary Patterns and Overweight among University Students Southeast, Nigeria Nigerian Journal of Nutritional Sciences. 2020; 41(1):15–26.

26. Ikudayisi AA. Exploring Urban Dietary Pattern in Nigerian Households: A Case for Nutrient Adequacy Asian Journal of Advanced Research and Reports. 2020; 13(4):24–34.

27. Stookey JD, Constant F, Gardner CD, Popkin BM. Replacing sweetened caloric beverages with drinking water is associated with lower energy intake. Obesity (Silver Spring, Md). 2007; 15(12):3013–22. https://doi.org/10.1083/oby.2007.359 PMID: 18198310

28. Gamba RJ, Leung CW, Petito L, Abrams B, Laraia BA. Sugar sweetened beverage consumption during pregnancy is associated with lower diet quality and greater total energy intake. PloS one. 2019; 14(4):e0215686. https://doi.org/10.1371/journal.pone.0215686 PMID: 31022225

29. Malik VS, Schulze MB, Hu FB. Sugar-sweetened beverages and weight gain: a systematic review. The American journal of clinical nutrition. 2006; 84(2):274–88. https://doi.org/10.1093/ajcn/84.1.274 PMID: 16895873

30. Malik VS, Pan A, Willett WC, Hu FB. Sugar-sweetened beverages and weight gain in children and adults: a systematic review and meta-analysis. The American journal of clinical nutrition. 2013; 98(4):1084–102. https://doi.org/10.3945/ajcn.113.058362 PMID: 23966427

31. Schulze MB, Liu S, Rimm EB, Manson JE, Willett WC, Hu FB. Glycemic index, glycemic load, and dietary fiber intake and incidence of type 2 diabetes in younger and middle-aged women. The American journal of clinical nutrition. 2004; 80(2):348–56. https://doi.org/10.1093/ajcn/80.2.348 PMID: 15277155

32. AiEssa HB, Ley SH, Rosner B, Malik VS, Willett WC, Campos H, et al. High Fiber and Low Starch Intakes Are Associated with Circulating Intermediate Biomarkers of Type 2 Diabetes among Women. The Journal of nutrition. 2016; 146(2):306–17. https://doi.org/10.3945/jn.115.219915 PMID: 26764316

33. Xi B, Huang Y, Reilly KH, Li S, Zheng R, Barrio-Lopez MT, et al. Sugar-sweetened beverages and risk of hypertension and CVD: a dose–response meta-analysis. British Journal of Nutrition. 2015; 113(5):709–17. https://doi.org/10.1038/s0007114514004383 PMID: 25735740

34. Malik VS, Popkin BM, Bray GA, Després J-P, Willett WC, Hu FB. Sugar-Sweetened Beverages and Risk of Metabolic Syndrome and Type 2 Diabetes: A meta-analysis. Diabetes care. 2010; 33(11):2477–83. https://doi.org/10.2337/dc10-1079 PMID: 20693348

35. Clarke ME, Gibbard WB. Overview of fetal alcohol spectrum disorders for mental health professionals. Can Child Adolesc Psychiatr Rev. 2003; 12(3):57–63. PMID: 19030526

36. Popova S, Lange S, Probst C, Shield K, Kraicer-Melamed H, Ferreira-Borges C, et al. Actual and predicted prevalence of alcohol consumption during pregnancy in the WHO African Region. Tropical medicine & international health: TM & IH. 2016; 21(10):1209–39. https://doi.org/10.1111/tmi.12755 PMID: 27429168

37. Addila AE, Bisetegn TA, Gete YK, Mengistu MY, Beyene GM. Alcohol consumption and its associated factors among pregnant women in Sub-Saharan Africa: a systematic review and meta-analysis’ as given in the submission system. Substance abuse treatment, prevention, and policy. 2020; 15(1):29. https://doi.org/10.1186/s13011-020-00269-3 PMID: 32293479

38. WHO. Global status report on alcohol and health World Health Organization. 2018.

39. WHO. Global alcohol action plan 2022–2030. World Health Organization. 2021.
40. Agiresaasi A, Nassanga G, Maina GW, Kiguli J, Nabwemba E, Tumwesigye NM. Various forms of alcohol use and their predictors among pregnant women in post conflict northern Uganda: a cross sectional study. Substance abuse treatment, prevention, and policy. 2021; 16(1):3. https://doi.org/10.1186/s13011-020-00337-8 PMID: 33397420

41. Da Pilma Lekettey J, Dako-Gyeke P, Agyemang SA, Aikins M. Alcohol consumption among pregnant women in James Town Community, Accra, Ghana. Reprod Health. 2017; 14(1):120. https://doi.org/10.1186/s12978-017-0384-4 PMID: 28950877

42. Mitchell S, Kendall CCW, Augustin LSA, Sahye-Pudaruth S, Meija SB, Chiavaroli L, et al. Effect of Pulses as Part of a Low Glycemic Index Diet on Glycemic Control and Cardiovascular Risk Factors in Type 2 Diabetes. Canadian Journal of Diabetes. 2012; 36(5):S19.

43. Gao R, Duff W, Chizen D, Zello GA, Chilibeck PD. The Effect of a Low Glycemic Index Pulse-Based Diet on Insulin Sensitivily, Insulin Resistance, Bone Resorption and Cardiovascular Risk Factors during Bed Rest. Nutrients. 2019; 11(9). https://doi.org/10.3390/nu11092012 PMID: 31461862

44. Tonstad S, Malik N, Haddad E. A high-fibre bean-rich diet versus a low-carbohydrate diet for obesity. Journal of human nutrition and dietetics: the official journal of the British Dietetic Association. 2014; 27 Suppl 2:109–16. https://doi.org/10.1111/jhn.12118 PMID: 23627924

45. Jenkins DJ, Kendall CW, Augustin LS, Mitchell S, Sahye-Pudaruth S, Blanco Mejia S, et al. Effect of legumes as part of a low glycemic index diet on glycemic control and cardiovascular risk factors in type 2 diabetes mellitus: a randomized controlled trial. Archives of internal medicine. 2012; 172(21):1653–60. https://doi.org/10.1001/2013.jamainternalmed.70 PMID: 23089999

46. Popoola J, Ojuederie O, C O, A A. Neglected and Underutilized Legume Crops: Improvement and Future Prospects. Recent Advances in Grain Crops Research. 2019.

47. Subuola F WY, Kehinde T. Processing and Utilization of Legumes in the Tropics, Trends in Vital Food and Control Engineering,. 2012.

48. Duthie SJ, Duthie GG, Russell WR, Kyle JAM, Macdiarmid JI, Rungapamestry V, et al. Effect of increasing fruit and vegetable intake by dietary intervention on nutritional biomarkers and attitudes to dietary change: a randomised trial. European journal of nutrition. 2018; 57(5):1855–72. https://doi.org/10.1007/s00394-017-1469-0 PMID: 28560503

49. Della Pepa G, Vetrani C, Vitale M, Riccardi G. Wholegrain Intake and Risk of Type 2 Diabetes: Evidence from Epidemiological and Intervention Studies. Nutrients. 2018; 10(9):1288. https://doi.org/10.3390/nu10091288 PMID: 29823002

50. Seal CJ, Brownlee IA. Whole-grain foods and chronic disease: evidence from epidemiological and intervention studies. The Proceedings of the Nutrition Society. 2015; 74(3):313–9. https://doi.org/10.1017/S0029665115002104 PMID: 26062574

51. McNulty H, Eaton-Evans J, Woulahan G, Strain J, editors. The contribution of breakfast to daily micronutrient intakes of adults in Great Britain. PROCEEDINGS-NUTRITION SOCIETY OF LONDON; 1994: Cambridge University Press.

52. Albertson AM, Thompson D, Franko DL, Kleinman RE, Barton BA, Crockett SJ. Consumption of breakfast cereal is associated with positive health outcomes: evidence from the National Heart, Lung, and Blood Institute Growth and Health Study. Nutrition research (New York, NY). 2008; 28(11):744–52.

53. Williamson C. Breakfast cereals--why all the bad press? Nutrition Bulletin. 2010; 35(1):30–3.

54. Gillman MW. Interrupting Intergenerational Cycles of Maternal Obesity. Nestle Nutrition Institute workshop series. 2016; 85:59–69. https://doi.org/10.1159/000439487 PMID: 27088333

55. Gunderson EP, Abrams B. Epidemiology of gestational weight gain and body weight changes after pregnancy. Epidemiologic reviews. 1999; 21(2):261–75. https://doi.org/10.1093/oxfordjournals.epirev.a018001 PMID: 10682262