Metabolic Profiling of *Varronia curassavica* Jacq. Terpenoids by Flow Modulated Two-Dimensional Gas Chromatography Coupled to Mass Spectrometry

Roselaine Facanali 1, Marcia Ortiz Mayo Marques 2 and Leandro Wang Hantao 1,*

1 Institute of Chemistry, University of Campinas, Campinas 13083-970, SP, Brazil; roselainefacanali@gmail.com
2 Agronomic Institute, Campinas 13075-630, SP, Brazil; mortiz@iac.sp.gov.br
* Correspondence: wang@unicamp.br; Tel.: +55-019-3521-3083

Received: 15 February 2020; Accepted: 9 March 2020; Published: 13 March 2020

Abstract: In this study, a metabolomic approach was used to investigate the effect of seasonality on the chemical composition and yield of anti-inflammatory active principle, α-humulene, in the essential oil of three genotypes of *Varronia curassavica* Jacq. (Syn. *Cordia verbenacea*). The essential oils were extracted by hydrodistillation and analyzed by comprehensive two-dimensional gas chromatography coupled to mass spectrometry (GC×GC-MS). The GC×GC approach a three-fold improvement in qualitative analysis (48 compounds were identified by GC-MS versus 135 by GC×GC-MS). The improved resolving power of GC×GC resolved important coelutions and enabled the detection of unusual substances in *V. curassavica* essential oil. The chromatographic data was analyzed by using peak table-based chemometrics, namely, principal component analysis (PCA) and hierarchical cluster analysis (HCA). The metabolic study showed that seasonality has a significant effect on the chemical composition. The α-humulene content was affected by genotype and season. Spring and summer were the best harvest seasons for the yield of the active ingredient, found in higher concentrations in the VC2 genotype. The proposed metabolomic workflow was successfully applied to terpene analysis found in *V. curassavica* essential oil, and such results have broadened our understanding of the influence of seasonal factors on the specialized metabolism of the species.

Keywords: *Varronia curassavica*; essential oil; seasonality; gas chromatography (GC); comprehensive two-dimensional gas chromatography (GC×GC); flow-modulated

1. Introduction

Essential oils (EOs) are sources of biologically active compounds that can be applied in food, agronomic, cosmetic, and pharmaceutical industries for the elaboration of perfumes, cosmetics, pharmaceuticals, and used as adjuvant in the formulation of medicines. An important example of this application is the essential oil of *Varronia curassavica* Jacq. (syn. *Cordia verbenacea*)—a Brazilian native species, which is mainly found in the Atlantic Rainforest biome, popularly known as ‘erva-baleeira’ [1].

V. curassavica is a medicinal and aromatic plant from the Boraginaceae family with significant economic importance. The EO produced from its leaves is used in the formulation of the topic anti-inflammatory medicine *Acheflan®*, a phytotherapeutic product fully developed with Brazilian technology and currently exported to Japan, Chile, Mexico, Costa Rica, Equator, Peru, the United States, and Canada [2,3]. In Brazil, the product is the leading prescription drug for chronic tendonitis and muscle pain, being responsible for more than 25% of the market sales [3]. The active principle responsible for anti-inflammatory activity of the EO is the sesquiterpene α-humulene [4–6]. The substance α-humulene is considered a chemical marker in the pharmaceutical industry for the quality control of *V. curassavica* essential oil. Besides its anti-inflammatory activity, the species has been demonstrated to...
have other medicinal properties, such as anti-allergenic, antiulcerogenic, antioxidant, antitumor [5,7–11], antibacterial, and antifungal [12,13].

The world’s growing demand for natural products, including essential oils, especially from the pharmaceutical industry, depends on standardizing and elucidating the chemical profile of essential oils safely and effectively. Along with the genetic make-up, environmental factors, including seasonality can coordinate or modify the production rate and composition of essential oil [14–18], influencing EO effectiveness, safety, and stability.

Gas chromatography coupled to mass spectrometry (GC–MS) is the most frequently used hyphenated separation technique for the characterization and identification of volatile organic compounds found in such oils [19–22]. However, the complex nature of the samples and the existence of coelutions are a challenge for qualitative and quantitative analysis [23,24]. Even with high-resolution GC using narrow bore capillary columns, the separation of complex mixtures such as essential oils is still incomplete, with a high number of overlapping chromatographic peaks. [25,26].

In this context, comprehensive two-dimensional gas chromatography (GC×GC) is a well-established technique for the resolution of complex mixtures of volatile organic compounds. The enhanced resolving power of GC×GC is attained by coupling two capillary columns interfaced by the modulator [27–31]. Among the available modulators, the cryogenic modulator is currently the most popular solution [32]. Flow modulators are an interesting alternative for GC×GC experiments, since their separation efficiency may be equivalent to those obtained by thermal modulators [32,33]. For instance, Cordero et al. [34] evaluated the potential of GC×GC with differential flow modulator in medium and high complexity essential oil samples. Mint, lavender and vetiver essential oils were used for this evaluation. The authors reported increased peak capacity attained by differential flow modulation for the analysis of EOs. Accordingly, the benefits of GC×GC have led to an ever-increasing application of the composite technique for the separation and identification of volatile organic compounds in many other fields [35–40], including metabolomics [41–43].

Metabolic profiling of plants is informative to gain an insight into the potential of natural products for commercial use. For instance, the composition of EO is impacted by important factors like geography (soil, altitude, and humidity), seasonality (temperature and light conditions), and genotype. Hence, the chemical composition must be somewhat constant and predictable for quality assurance of the final product for pharmaceutical purposes. All reports characterized individual samples of V. curassavica using 1D-GC-based methods [44,45]. The seasonal effect of essential oil composition was explored using GC-MS [46–48], but without taking into consideration the contribution of plant genotype [48,49]. Marques et al. [48] previously evaluated the seasonal variation of EO from V. curassavica Jacq. accessions for an entire year. However, the authors could not factor into the investigation the accurate contribution of the multiple genotypes, because the biological material was harvested from native plants found in different geographical locations. Furthermore, careful inspection of the 1D-GC chromatograms seemed to indicate significant coelutions, which may have omitted important information regarding EO composition. In this work, we investigated V. curassavica plants with three different genotypes commercially available. All plants were cultivated in the same green house to eliminate the interference of geographical conditions. In addition, a GC × GC-MS-based metabolomic approach was used for V. curassavica EO characterization to improve the chemical analysis, especially for terpenes with overlapping peaks and low-intensity peaks. More specifically, flow modulated comprehensive two-dimensional gas chromatography coupled with mass spectrometry (FM-GC × GC-MS) and chemometric tools were combined in order to interpret the metabolic profile. These results improved our understanding of the influence of seasonal factors on the specialized metabolism of the species and are important to establish reliable data regarding V. curassavica crop behavior to fully explore the potential of this plant for commercial use. Lastly, we have confirmed the benefits of using GC × GC for EO analysis by highlighting previously overlapped peaks in 1D-GC, which were detected for the first time by GC × GC.
2. Material and Methods

2.1. Plant Material

Three genotypes of *V. curassavica* (VC1, VC2, and VC3) were evaluated, comprising a total of nine plants. The plants, obtained from commercial matrices and propagated by stables (VC1 and VC2) and tissue culture (VC3), were kept in 20-L plastic roofed pots at the Center of Plant Genetic Resources of the Agronomic Institute (IAC), located in the city of Campinas, State of São Paulo (22°52' south latitude, 47°04' west longitude, and 677 m altitude). The regional climate, according to the Köppen classification, is classified as
Cwa—subtropical climate with hot summers and dry winters. The climatological data for the sampling period were obtained from the meteorological station of the Agrometric Information Center (Ciaigro) [50]. The aerial parts were harvested in winter (16 August 2018), spring (21 November 2018), summer (21 February 2019) and autumn (30 May 2019). The harvested leaves of *V. curassavica* were manually separated from the stems and dried at 40 °C in an air-circulation oven for 72 h.

2.2. Extraction of Essential Oil

Essential oils were extracted by hydrodistillation in a Clevenger apparatus for a period of two hours. The essential oil was stored in a freezer (−4 °C) for further characterization of the chemical composition.

2.3. Comprehensive Two-Dimensional Gas Chromatographic Analysis (GC×GC-FID/MS)

Analyses of the essential oils from *V. curassavica* were performed on a GC×GC system, which comprised of a TRACE 1300 GC equipped with a flame ionization detector (FID) and an ISQ single transmission quadrupole mass spectrometer (QMS) (Thermo Scientific—Waltham, MA, USA). Differential flow modulation using the reverse fill/flush configuration was attained using INSIGHT modulator (SepSolve Analytical—Frankfurt, Germany). Data digitalization using FID was attained at 120 Hz. A 40–450 m/z scanning range were used producing 31 scans s⁻¹. The transfer line and the ion source were operated at 300 °C and 220 °C, respectively. Helium was used as carrier gas and auxiliary gas at constant flow rates of 0.5 mL min⁻¹ and 20.0 mL min⁻¹. The column set consisted of a primary 30 m × 0.25 mm-id × 0.25 µm (β of 250) MEGA-5HT and a secondary 5 m × 0.25 mm-id × 0.25 µm (β of 250) HP-50 + wall coated open tubular (WCOT) capillary columns (Agilent Technologies—Santa Clara, CA, USA). Deactivated fused silica capillaries were used as transfer lines for simultaneous MS (5 m × 0.18 mm-id) and FID (5 m × 0.32 mm-id) detection. This setup ensured a reproducible splitting of the 2D effluent to FID (70%) and MS (30%). Sample introduction was performed using a split ratio of 1:20. The GC oven was programmed from 60 to 240 °C at 3 °C min⁻¹. Modulation period was set to 5.0 s with a re-injection (flush) pulse of 100 ms. The chromatographic analyses were performed in triplicate.

Xcalibur software (Thermo Scientific-Waltham, MA, USA) was used for data acquisition and processing was performed using GC Image software (Zoex-Houston, TX, USA). Identification of the terpenes was performed comparing the substance mass spectra with NIST database and filtered by the retention index (LTPRI) using the NIST WebBook and published literature [51]. Retention indices were determined by the injection of a homologous series of C₈-C₂₀ n-alkanes (04070-1ML) (Merck-St. Louis, MO, USA) using the Van den Dool and Kratz equation [52]. The analytes were tentative identified through comparative analysis of mass spectra considering a minimum similarity correspondence of 80% and a deviation of ±25 LTPRI from the NIST and Adams [51].

2.4. Data Analysis

Analysis of variance (ANOVA) followed by Tukey test (p < 0.05) was applied to verify the differences between essential oil yields and α-humulene contents. The results of the chemical analyses were submitted to multivariate statistical analyses, namely, principal components analysis (PCA), and hierarchical clustering analysis (HCA). Such models were built using the software XLSTAT—2020.
version (Addinsoft–Bordeaux, France). Heatmap were constructed using the on-line tool MetaboAnalyst 4.0 [53].

3. Results and Discussions

3.1. Essential Oil Content

The average yield of the essential oils of the three genotypes harvested during the winter, spring, summer, and autumn seasons is shown in Table 1. The yield of essential oils varied from 0.22 to 0.60% (v/w). The yields are in agreement with those reported in other studies, which showed values ranging from 0.16 to 2.74%. [46–48].

Table 1. Average yield (%) of the essential oil of the three genotypes of Varronia curassavica extracted by hydrodistillation. Distinct uppercase letters (A, B and AB) for the rows and lowercase (a) for columns represent statistically significant differences (p < 0.05).

Genotype	Winter B	Spring A	Summer AB	Autumn AB
VC1 a	0.22 ± 0.04	0.42 ± 0.04	0.32 ± 0.08	0.41 ± 0.03
VC2 a	0.36 ± 0.06	0.60 ± 0.03	0.46 ± 0.02	0.52 ± 0.02
VC3 a	0.29 ± 0.04	0.58 ± 0.02	0.45 ± 0.03	0.44 ± 0.04

The analysis of variance (ANOVA) showed that there was a significant difference in the yield of essential oils (p < 0.05) depending on the season. Spring was the season with the highest production (0.533%) and winter the season with the lowest production (0.291%). Between summer and autumn there was no significant difference (0.407 and 0.397%, respectively). The VC2 genotype showed the highest production of essential oil (0.60 ± 0.03%) in spring, a period that coincides with the flowering of the plant. Although this species blooms at any time of the year, it flowers with higher intensity during spring.

The correlation of the results presented in Table 1 with the meteorological data (Figure 1) allows us to ascertain that the climatic conditions also constitute a strong factor. The rainfall exhibited a significant variation, since the accumulated rainfall indexes that varied from 75 to 484 mm. Matias and collaborators [46] also observed the influence of rainfall on the production of V. curassavica essential oil, which corroborates our findings.

Figure 1. Meteorological data for the period of four seasons sampling. T° Max—Maximum temperatures from July 2018 to July 2019; T° Min—low temperatures from July 2018 to July 2019; T° Avg—average temperature from July 2018 to July 2019; rain (mm)—pluviometric precipitation in the period July 2018 to July 2018. Fonte: CIIAGRO [50].
3.2. Characterization of the Essential Oil

The chemical compositions of the EOs of the three genotypes of *V. curassavica*, harvested in four different seasons, were analyzed by GC-MS and GC×GC-MS, as shown in Figure 2. Many substances that were not apparent in 1D-GC, due to overlapping peaks or because they are found in low intensities, are clearly revealed in the GC×GC chromatogram. An example of peaks that were co-eluted in the first dimension (1D) and were resolved in the second dimension (2D), as shown in Figure 3. The composite system resolved the coelution between germacrene D, (E)-β-ionone and tau-elemene (Figure 3A) and between δ-cadinene, cadin-1(2),4-diene, and two unidentified compounds (Figure 3B).

![Figure 2. GC-MS chromatograms (A) and GC×GC-MS chromatograms (B) of the essential oil from three sample of *V. curassavica* (I) genotype VC1; (II) genotype VC2; (III) genotype VC3.](image)

The GC×GC analysis enabled the tentative identification of 135 peaks compared to 48 peaks with GC-MS resulting in a three-fold improvement in qualitative analysis. Previous reports corroborated this improved feature for qualitative analysis [37,38,40,54]. For instance, Santos et al. [24] evaluated the essential oil of two species of Piperaceas (*Manekia obtusa* and *Piper cubataonum*). In *M. obtuse* oil, 80 compounds were identified by GC×GC-MS, while 22 only were assigned by GC-MS. For the leaf
and branch oils of *P. cubataonum*, 57 and 66 compounds were identified by GC×GC compared with only 14 and 20 compounds by GC/MS, respectively.

It is important to note that although 168 compounds were detected in the GC×GC analysis, only 135 (~80%) were tentatively identified. The presence of very similar mass spectra imposed restraints to fully elucidate the compounds present in the EO.

The analysis of essential oils by GC×GC-FID/MS showed that α-pinene (27.1–58.9%) and (E)-caryophyllene (7.1–23.9%) were the terpenes with higher relative proportions in all EO of the three genotypes, regardless of the harvesting season. However, α-pinene and (E)-caryophyllene exhibited different relative proportions across all genotypes. Other terpenes were also detected in high intensities, such as α-tujene, sabinene, β-pinene, 1,8-cineol, and germacrene D. Noteworthy, allo-aromadendrene, and spathulenol were found only in the VC1 and VC2 genotypes. Terpenes like α-santalene, (E)-α-santalal, and (E)-α-bergamotenal were detected only in the VC3 genotype (Table 2).

Among the identified compounds, neryl acetate was detected only in genotypes VC2 and VC3 in the winter samples. β-copaene was detected in genotype VC1 (winter and autumn) and genotype VC2 (summer only). Terpene cis-muurol-5-en-4-ol was detected only in genotype VC2 (winter and spring), while cis-sesquisabinene hydrate was found only in VC3 (winter and spring). This variation in EO composition with seasonality is supported by previous reports [55,56]. Furthermore, different genotypes cultivated under the same conditions may exhibit differential expressions resulting in distinct chemical profiles, including the occurrence or absence of metabolites [57].
Table 2. Chemical composition (relative %) of *Varronia curassavica* essential oils harvested in different seasons and analyzed by GC×GC-FID/MS. LTPRI - Linear temperature programmed retention indices; Exp.–LTPRI experimental obtained by the injection of a homologous series of C8-C20 n-alkanes using the Van den Dool and Kratz equation [52]; Lit. - LTPRI obtained from literature [51] and NIST WebBook. (*)—LTPRI not found; (**)—Substance identified by comparison with Sciarrone and collaborators [44]; (ta)—Trace amounts (≤0.003); (-)—Absence of the metabolite.

Substance	VC1	VC2	VC3											
exp.	lit.	winter	spring	summer	autumn	winter	spring	summer	autumn	winter	spring	summer	autumn	
tricyclene	930	926	0.464	ta	ta	ta	1.074	ta	ta	ta	0.091	ta	ta	ta
α-thujene	939	930	0.846	5.929	6.047	9.273	9.369	7.188	7.154	9.392	7.479	ta	0.032	0.078
α-pinene	947	939	28.920	35.236	33.769	48.178	27.102	29.058	33.985	33.062	33.029	41.899	45.805	58.864
thuja-2,4(10)-diene	956	951	ta	ta	0.036	ta	0.026	ta	0.067	ta	-	-	-	-
camphene	963	954	0.233	0.212	0.161	0.142	0.288	0.252	0.181	0.182	0.245	0.172	0.158	0.133
α-pinene	983	975	2.048	1.353	1.401	1.621	2.557	1.387	1.321	2.333	0.614	0.372	0.414	0.305
β-pinene	990	979	3.179	2.734	2.535	3.178	5.997	5.341	4.898	5.702	2.106	1.530	1.517	1.585
sabinene	998	990	0.547	0.320	0.403	0.367	0.829	0.427	0.359	0.647	0.442	0.113	0.296	0.212
α-phellandrene	1019	1002	0.038	0.079	0.079	0.124	0.088	0.079	0.074	0.128	0.027	0.019	0.043	ta
α-terpinene	1027	1017	ta	ta	0.036	ta	0.031	ta	0.053	0.051	-	-	-	-
α-cymene	1037	1022	0.122	0.044	ta	0.123	ta	0.049	ta	0.026	ta	0.006	ta	-
limonene	1024	1024	ta	ta	ta	0.147	ta	ta	0.147	-	-	-	-	
β-phellandrene	1029	1025	ta	0.043	ta	ta	ta	0.030	ta	0.532	ta	ta	-	
sylvestrene	1038	1025	0.492	0.556	0.590	0.310	0.356	0.367	0.392	0.349	0.635	ta	0.721	0.399
1,8-cineole	1041	1026	2.016	1.412	1.019	1.455	2.269	1.112	0.702	1.855	1.039	0.853	0.854	0.600
sabinol	1108	1096	0.057	ta	ta	0.052	0.031	ta	ta	ta	ta	-	-	-
α-pinene oxide	1108	1097	0.078	ta	ta	ta	0.021	ta	ta	ta	0.105	tr	tr	tr
n-nonanal	1111	1098	0.029	0.034	ta	ta	0.108	0.034	0.027	ta	0.009	tr	tr	tr
(E)-3(10)-caren-4-ol	1130	*	0.018	ta	ta	ta	0.043	ta	ta	ta	-	-	-	
cis-p-menth-2-en-1-ol	1134	1124	-	-	-	-	0.023	ta	ta	ta	-	-	-	
β-campholenal	1126	1139	ta	ta	0.033	ta	0.025	ta	0.028	ta	0.015	0.012	0.018	tr
trans-pinocarveol	1152	1139	0.026	ta	0.051	ta	ta	0.041	ta	0.028	tr	0.018	tr	
isopinocarveol	1151	1140	ta	0.034	0.016	ta	0.026	ta	0.019	ta	tr	0.032	0.019	tr
trans-sabinol	1157	1142	0.061	0.017	ta	ta	0.049	ta	0.036	ta	0.034	tr	tr	tr
camphor	1157	1146	0.029	0.034	0.028	ta	-	-	-	-	-	-	-	-
Substance	LTPRI	Genotype/Season												
---------------------------	-------	----------------												
	Exp.	VC1	VC2	VC3										
pinocarvone	1174	0.032	ta	0.039	ta	ta	0.030	ta	ta	0.015	0.009	0.011	tr	
borneol	1182	ta	ta	0.009	ta	ta	0.012	ta	ta	0.010	0.015	0.008	tr	
terpinen-4-ol	1190	0.105	0.108	0.103	0.074	0.166	0.077	0.180	0.112	0.033	0.017	0.022	tr	
α-terpineol	1209	0.033	ta	0.016	ta	ta	0.034	ta	0.022	ta	0.006	tr	tr	tr
β-cyclocitrinal	1229	ta	ta	0.018	ta	ta	ta	0.077	ta	ta	0.007	tr	tr	tr
citronellol	1223	ta	ta	0.012	ta	ta	0.017	ta	-	-	-	-	-	-
bornyl acetate	1290	0.857	0.466	0.451	0.373	1.096	0.720	0.830	0.633	0.706	0.576	0.671	0.537	-
trans-pinocarvyl acetate	1302	1298	-	-	-	-	-	-	-	-	-	-	-	-
myrtenyl acetate	1329	1326	-	-	-	-	-	-	-	-	-	-	-	-
β-elemene	1338	1338	0.010	0.022	0.019	0.057	0.006	0.024	0.012	ta	-	-	-	-
α-cubebeine	1351	1351	0.061	0.069	0.064	0.032	0.037	0.042	0.034	ta	0.005	0.017	tr	tr
citronellyl acetate	1353	1352	0.592	0.178	0.143	0.159	0.434	0.098	0.113	0.222	0.315	0.087	0.217	0.069
neryl acetate	1361	1365	-	-	-	-	-	-	-	-	0.008	-	-	-
cyclosativene	1373	1371	0.909	0.669	ta	0.420	ta	0.472	ta	0.356	0.072	0.061	ta	ta
α-Ylangene	1375	1373	ta	ta	0.511	ta	0.566	ta	0.272	ta	ta	ta	0.035	ta
α-copaene	1380	1376	1.568	1.340	1.278	0.879	0.716	0.671	0.537	0.417	0.079	0.078	0.037	0.042
β-bourbonene	1387	1388	0.069	0.193	0.212	0.125	0.127	0.117	0.148	0.081	0.006	0.014	ta	ta
β-cubebeene	1393	1388	1.616	1.499	1.206	1.057	0.755	0.705	0.507	0.571	-	-	-	-
7-epi-sesquithujene	1389	1391	-	-	-	-	-	-	-	-	0.036	0.019	0.051	0.022
β-longipine	1410	1403	0.033	0.032	ta	0.060	0.041	0.034	ta	ta	-	-	-	-
sesquithujene	1404	1405	-	-	-	-	-	-	-	-	1.438	1.473	1.192	1.027
(Z)-caryophyllene	1410	1408	-	-	-	-	-	-	-	-	0.017	0.008	0.010	-
cis-α-bergamotene	1418	1412	-	-	-	-	-	-	-	-	1.125	1.179	0.998	0.860
α-santalene	1425	1417	-	-	-	-	-	-	-	-	10.213	11.887	9.140	9.379
(E)-caryophyllene	1427	1419	7.481	10.997	11.679	7.119	18.026	23.999	22.384	21.548	11.917	14.800	12.330	11.453
β-copaene	1435	1432	0.111	-	-	0.051	-	0.076	-	-	-	-	-	-
trans-α-bergamotene	1435	1434	-	-	-	-	-	-	-	-	0.197	0.271	0.145	0.082
α-guaiene	1451	1439	0.024	ta	0.021	ta	-	-	-	-	-	-	-	-
aromadendrene	1457	1441	0.020	0.172	0.070	ta	0.110	0.197	0.021	ta	-	-	-	-
(Z)-β-Farnesene	1445	1442	-	-	-	-	-	-	-	-	0.212	0.207	0.171	0.105
epi-β-santalene	1451	1447	-	-	-	-	-	-	-	-	ta	0.026	0.020	0.026
cis-muurola-3,5-diene	1450	1449	ta	ta	ta	ta	0.010	0.033	ta	ta	0.035	ta	ta	ta
trans-muurola-3,5-diene	1457	1453	ta	0.030	ta	ta	ta	0.034	ta	ta	ta	ta	ta	ta
sesquisabinene	1454	1454	-	-	-	-	-	-	-	-	0.003	0.003	0.003	-
α-humulene	1463	1454	1.470	2.383	2.442	1.378	2.649	3.821	3.934	3.284	2.892	3.456	2.880	1.574
(E)-β-farnesene	1457	1456	-	-	-	-	-	-	-	-	1.862	1.835	0.057	1.004
allo-aromadendrene	1469	1460	11.904	12.781	13.821	11.513	10.687	8.632	9.879	12.300	-	-	-	-
dehydro-aromadendrene	1471	1462	0.541	0.312	0.573	ta	0.218	ta	0.276	ta	0.154	0.232	ta	ta

Table 2. Cont.
Substance	LTPRI	VC1	VC2	VC3										
	Exp.	Lit.	Winter	Spring	Summer	Autumn	Winter	Spring	Summer	Autumn	Winter	Spring	Summer	Autumn
γ-muurolene	1480	1479	0.840	0.589	0.532	0.290	0.256	0.251	0.168	ta	0.023	0.017	ta	ta
γ-elemene	1480	1488	ta	0.036	0.204	-	-	-	-	-	-	-	-	-
germacrene D	1488	1481	1.716	2.965	3.879	1.585	0.015	3.548	4.855	2.066	0.592	0.498	1.170	0.383
tau-elemene	1484	1484	0.383	0.539	0.216	0.139	0.175	0.163	ta	ta	0.264	ta	ta	ta
(E)-β-ionone	1488	1488	0.168	ta	ta	0.050	ta	ta	ta	ta	0.059	0.244	ta	ta
cis-β-guaiene	1492	1490	ta	0.085	0.087	ta	ta	0.042	ta	ta	ta	ta	ta	ta
α-zingiberene	1500	1493	-	-	-	ta	-	-	-	-	-	-	-	-
trans-muurola-4(14),5-diene	1488	1493	ta	0.021										
γ-amorphene	1496	1493	ta	ta	ta	0.069	ta	ta	0.084	ta	ta	ta	ta	ta
epi-cubebol	1493	1494	ta	ta	0.698	0.121	ta	ta	0.160	0.124	-	-	-	-
bicyclogermacrene	1502	1500	1.283	ta	6.183	3.822	1.051	ta	2.166	1.690	-	-	-	-
α-muurolene	1504	1500	1.016	ta	ta	ta	ta	ta	ta	0.087	0.142	ta	0.057	0.037
trans-β-guaiene	1504	1502	0.845	ta	0.022	ta	0.563	ta	0.017	ta	-	-	-	-
β-bisabolene	1512	1505	-	-	-	-	-	-	2.498	ta	2.438	0.070		
guaia-1(10),11-diene	1516	1509	0.178	0.169	ta	ta	0.072	0.079	ta	ta	-	-	-	-
(E)-γ-bisabolene	1514	1514	-	-	-	-	-	-	ta	ta	0.274	0.034		
cadina-1(2)4-diene	1524	1519	0.023	ta	ta	ta	0.021	ta	ta	ta	-	-	-	-
cubebol	1514	1521	ta	ta	1.186	1.107	ta	ta	0.552	0.317	-	-	-	-
β-sesquiphellandrene	1521	1525	-	-	-	-	-	-	-	-	0.287	0.208		
δ-cadinene	1524	1530	7.217	5.800	3.640	2.924	2.998	1.969	0.830	0.838	0.636	ta	ta	ta
(E)-γ-bisabolene	1531	1531	-	-	-	-	-	1.002	1.390	0.866	0.487			
trans-cadina-1,4-diene	1541	1534	0.045	0.067	0.029	0.037	0.026	0.032	0.016	ta	-	-	-	-
(E)-α-bisabolene	1545	1545	-	-	-	-	-	-	0.023	0.020	0.038			
α-calacorene	1551	1545	0.045	0.020	0.018	ta	-	-	-	-	-	-	-	-
elemol	1557	1549	0.035	0.047	0.017	ta	-	-	-	-	-	-	-	-
cis-muurol-5-en-4-ol	1561	1551	-	-	-	0.048	0.047	-	-	-	-	-	-	-
cis-sesquisabinene hidrate	1551	1559	-	-	-	-	-	-	0.110	0.053				
germacrene B	1567	1561	0.277	0.185	0.063	0.083	0.133	0.086	0.036	ta	-	-	-	-
trans-sesquisabinene hydrate	1561	1565	-	-	-	-	-	-	0.486	0.345	ta	ta		
(E)-nerolidol	1567	1565	ta	ta	0.037	ta	ta	ta	ta	ta	0.039	ta	0.039	
β-calacorene	1573	1565	0.011	ta	0.004	ta								
germacrene D-4-ol	1586	1575	ta	0.059	0.057	0.041	ta	0.018	0.025	ta	ta	ta	ta	
spathulenol	1588	1578	3.738	1.003	1.422	0.527	0.985	0.171	0.535	0.185				
caryophyllene oxide	1594	1583	0.726	0.424	0.438	0.196	2.524	0.502	0.636	0.274	2.509	1.031	0.901	0.644
7-epi-trans-sesquisabinene hydrate	1598	*	-	-	-	-	-	-	ta	ta	0.629	0.327		
salvial-4(14)-en-1-one	1604	1594	0.122	ta	ta	ta	ta	0.015	0.021	ta	ta	ta	ta	
ledol	1615	1602	0.716	0.437	0.410	ta	0.370	0.254	0.282	ta	-	-	-	-
Table 2. Cont.

Substance	LTPRI	Genotype/Season												
	Exp.	Lit.	Winter	Spring	Summer	Autumn	Winter	Spring	Summer	Autumn				
humulene epoxide II	1621	1608	0.349	0.067	0.083	ta	0.302	0.043	0.083	ta	0.284	0.075	0.049	ta
isooxoromadendrene epoxide	1612	1620	ta	ta	ta	0.237	ta	ta	ta	0.192	-	-	-	
muurola-4,10(14)-dien-1-b-ol	1636	1631	0.426	0.123	0.173	0.097	-	-	-	-	-	-		
cis-Cadin-4-en-7-ol	1636	1636	ta	ta	ta	ta	0.143	0.087	0.069	0.061	ta	0.017	ta	ta
isopothanulenol	1643	1639	0.263	0.162	0.100	ta	0.165	0.027	0.073	ta	-	-	-	
caryophylla-4(12),8(13)-dien-5x-ol	1649	1640	ta	ta	ta	ta	0.121	ta	ta	ta	ta	0.017	ta	ta
tau-cadinol	1640	1640	ta	ta	0.045	ta	ta	ta	ta	0.056	0.035	ta	ta	ta
allo-aromadendrene epoxide	1651	1641	0.054	0.108	ta	ta	-	-	-	-	-	-	-	
cubenol	1655	1646	ta	ta	0.015	ta	ta	0.064	ta	ta	-	-	-	
α-muurolol	1657	1646	1.067	0.500	0.333	0.200	0.366	0.134	0.160	0.093	0.070	0.034	ta	ta
α-cadinol	1666	1654	0.113	0.081	0.151	ta	0.051	0.040	0.102	ta	-	-	-	
cis-calamenen-10-ol	1668	1661	0.300	ta										
intermedeol	1670	1666	0.123	0.070	ta	ta	ta	0.018	ta	ta	ta	ta	ta	
trans-10-hydroxycalamene	1679	1675	0.035	ta	0.025	ta	-	-	-	-	-	-		
ledene oxide (II)	1687	1682	0.093	0.045	0.045	ta	-	-	-	-	-	-		
(2Z,6Z)-farnesal	1684	1684	ta	ta	0.022	ta	ta	0.008	ta	ta	ta	ta	ta	
Zα-trans-bergamotol	1668	1690	-	-	-	-	-	-	-	-	0.491	0.218	ta	ta
(E)-α-bergamotonal	1679	1700	0.113	0.081	ta	ta	0.064	0.026	ta	ta	-	-	-	
(E)-α-Santalal	1689	1700	0.113	0.081	ta	ta	0.064	0.026	ta	ta	-	-	-	
eudesm-7(11)-en-4-ol	1707	1707	-	-	-	-	-	-	-	-	4.098	3.311	4.171	2.212
(Z)-β-santalol	1716	1716	-	-	-	-	-	-	-	-	6.003	5.618	7.227	3.679
(Z)-β-santalol acetate	1780	1780	-	-	-	-	-	-	-	-	0.296	0.139	0.132	0.092
(E)-α-santalol acetate	1795	1794	-	-	-	-	-	-	-	-	0.012	0.017	ta	ta
hexahydrofarnesyl acetone	1812	1812	-	-	-	-	-	-	-	-	-	-	-	
isopimara-9(11),15-diene	1845	1844	0.075	ta	ta	ta	0.009	ta	ta	ta	0.014	ta	ta	ta
isopimara-8,15-diene	1946	1905	0.029	0.014	ta	ta	0.019	0.014	ta	ta	ta	0.038	ta	ta
sandaracopimara-8(14),15-diene	1956	1947	0.032	0.017	ta	ta	0.022	0.014	ta	ta	0.020	0.007	ta	ta

Monoterpene hydrocarbons | 44.129 | 46.541 | 45.223 | 63.426 | 47.939 | 44.206 | 48.712 | 52.070 | 44.717 | 44.637 | 49.040 | 61.576 |
Oxygenated monoterpens | 2.561 | 1.681 | 1.382 | 2.918 | 1.315 | 1.141 | 1.967 | 1.319 | 0.937 | 0.964 | 0.607 |
Sesquiterpene hydrocarbons | 39.683 | 40.834 | 46.600 | 31.881 | 41.388 | 44.908 | 46.209 | 43.322 | 35.460 | 37.470 | 33.926 | 26.870 |
Oxygenated sesquipen | 8.284 | 3.208 | 5.262 | 5.137 | 1.445 | 2.781 | 1.282 | 14.680 | 11.068 | 13.364 | 7.117 |
Others | 2.271 | 0.676 | 0.837 | 0.532 | 1.996 | 0.847 | 1.124 | 0.855 | 1.281 | 0.916 | 0.993 | 0.607 |
Total identified | 96.93 | 92.94 | 99.30 | 99.98 | 99.38 | 92.72 | 99.97 | 99.50 | 97.46 | 95.03 | 98.29 | 96.77 |
The substance α-humulene is the chemical marker in the pharmaceutical industry for the quality control of \textit{V. curassavica} essential oil, which varied from 1.47\% to 3.93\%. Variance analysis (ANOVA) demonstrated significant differences ($p < 0.05$) between the seasons and between the genotypes evaluated (Table 3). Spring and summer were the seasons with the highest average production of the active principle α-humulene (3.82\% and 3.93\%, respectively), while autumn was the season with the lowest average production (1.38\%). The highest average relative proportion was observed in the VC2 genotype during summer (3.93 ± 0.10) (Table 3). Besides environmental factors, genetic characteristics can also determine and modify the production rate of essential oils [58–60].

Table 3. Contents of α-humulene (% Relative and SE Average) in the EO obtained from \textit{V. curassavica} genotypes harvested at different seasons and analyzed by GC×GC-MS. Distinct uppercase letters (A, B and AB) for the rows and lowercase (a, b and ab) for columns represent statistically significant differences ($p < 0.05$).

Genotype	Winter AB	Spring A	Summer A	Autumn B
VC1 b	1.47 ± 0.45	2.38 ± 0.39	2.44 ± 0.19	1.38 ± 0.49
VC2 a	2.65 ± 0.06	3.82 ± 0.31	3.93 ± 0.10	3.28 ± 0.21
VC3 ab	2.89 ± 0.14	3.46 ± 0.09	2.88 ± 0.16	1.57 ± 0.42

The heatmap plot (Figure 4), generated from hierarchical clustering, provides an overview of \textit{V. curassavica} metabolic profile in response to the seasonal cycle and plant genetics. It is possible to observe that the genotype was responsible for most of the variance observed in the samples, highlighting two main blocks. The first block (upper eighteen rows) comprises a group of metabolites that are most abundant and present/absent in the VC3 genotype. For instance, α-pinene (2) is most abundant in the samples of VC3 genotype. The (\textit{E})-α-bergamotenal (53), (\textit{E})-α-santalal (54), e α-santalene (27) are present only in the VC3 genotype. The second block showed similar metabolic profiles, which is the case for the VC1 and VC2 genotypes, which is ascertained by the results attained with PCA analysis, as presented in the following paragraphs. The most different chemical composition was found for the VC3 genotype (Figure 4), suggesting the contribution of other regulatory levels, besides environmental and genetic, in the chemical composition of the essential oils, e.g., physiological cycle of the plant and interaction between genotype and environment. The observations on the intra-class variance may contribute to \textit{V. curassavica} breeding programs aiming at increasing the production of substances with biological activity.

To investigate the effects of seasonality on the volatile compounds of \textit{V. curassavica}, a peak table-based multivariate approach, namely, principal component (PCA) was adopted for pattern recognition of the three evaluated genotypes. A two-component PCA model expressed 71.8\% of the total variance with PC1 being responsible for describing 61.8\% and PC2 10\% of the variance. The scores graph illustrated in Figure 5A indicated that the information contained in PC1 may be used to distinguish the samples into two groups (VC3 and VC1 + VC2). The loadings plot (Figure 5B) describes the most important variables that contributed to such pattern.

The substances responsible for the observed clustering between the samples were α-pinene (2), found in a higher relative proportion in the VC3 genotype samples, and (\textit{E})-α-bisabolene (42), (\textit{E})-β-santol (56), (\textit{E})-α-bergamotenal (53), (\textit{E})-α-santalal (54), α-santaleno (27), cis-α-bergamotene (26), (\textit{Z})-β-Santalol acetate (59), (\textit{E})-α-bergamotene (29), (\textit{Z})-β-farnesene (31), (\textit{E})-β-farnesene (33), (\textit{E})-γ-bisabolene (40), (\textit{Z})-β-Santalol (55), (\textit{Z})-caryophyllene (25), (\textit{Z})-α-Santalol acetate (57), (\textit{Z})-α-trans-bergamotol (52), and (\textit{Z})-α-trans-bergamotol acetate (58).
Figure 4. Heatmap generated from hierarchical clustering of the chemical composition of the essential oils of the three genotypes of *V. curassavica* as a function of the seasons. (Distance measure using Euclidean, and clustering algorithm using Ward’s method).

Figure 5. Scores plot (A) and loadings plot (B) obtained from PCA of data on the chemical composition of the *V. curassavica* essential oil.

In the current study, our results suggested that the genetic make-up is likely the most important factor contributing to the chemical composition of *V. curassavica* essential oils, whereas seasonal contributes to modulate the metabolite profile. Several factors have been demonstrated to contribute...
to the metabolic profile of plant essential oils [61,62], such as abiotic stress [63–65], genetics [58,59], and plant-pathogen interactions [60,66–68]. Furthermore, environmental biotic and abiotic conditions modulate several regulatory levels determined by the plant genotype affecting the profile of specialized metabolites of essential oils [57,69]. The determination of the contribution of distinct factors to the chemical profile of plant essential oils may help breeding and agricultural strategies to increase the yield of metabolites of interest, as well as in the selection of genotypes for the development of breeding programs.

4. Conclusions

Two-dimensional gas chromatography has proved to be a versatile tool for analyzing complex mixtures such as V. curassavica essential oil. GC×GC-QMS allowed the identification of 135 constituents in the essential oil, three times more when compared to 1D-GC. The improved resolving power of GC×GC has resolved co-eluting peaks facilitating the detection of trace substances in the essential oil of V. curassavica. The metabolic study of volatile constituents showed that the metabolic profile and the content of the anti-inflammatory active principle, α-humulene, were significantly influenced by the genotype and seasonality. The content of the active principle was higher during spring and summer, being recommended for leaf harvest. Among the investigated genotypes, VC2 displayed higher amounts of the active principle.

Author Contributions: R.F., M.O.M.M. and L.W.H. conceived and planned the experiments. R.F. performed the experiments and collected and processed all the data. R.F. and L.W.H. wrote the paper with input from all authors. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Council for Scientific and Technological Development (CNPq grant N. 400182/2016-5, fellowships 164918/2017-5 and 302748/2018-0) and the São Paulo Research Foundation (FAPESP, Grant N. 17/25490-1).

Acknowledgments: Nova Analítica and ThermoFisher Scientific are also acknowledged for supporting our research.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Gilbert, B.; Favoreto, R. Cordia verbenacea DC. Boraginaceae. Revista Fitos 2012, 7, 17–25.
2. Aché Laboratórios Farmacêuticos Brazil. Available online: http://www.ache.com.br/arquivos/26-05HellevachaegaaoMéxicooAchelflantambem.pdf (accessed on 8 January 2020).
3. Oliveira, M. Laboratório em renovação. Pesquisa Fapesp 2017, 255, 74–77.
4. Fernandes, E.S.; Passos, G.F.; Medeiros, R.; Cunha, F.M.; Ferreira, J.; Campos, M.M.; Pianowski, L.F.; Calixto, J.B. Anti-inflammatory effects of compounds alpha-humulene and (−)-trans-caryophyllene isolated from the essential oil of Cordia verbenacea. Eur. J. Pharmacol. 2007, 569, 228–236. [CrossRef] [PubMed]
5. Passos, G.F.; Fernandes, E.S.; Cunha, F.M.; Ferreira, J.; Pianowski, L.F.; Campos, M.M.; Calixto, J.B. Anti-inflammatory and anti-allergic properties of the essential oil and active compounds from Cordia verbenacea. J. Ethnopharmacol. 2007, 110, 323–333. [CrossRef] [PubMed]
6. Medeiros, R.; Passos, G.F.; Vitor, C.E.; Koepp, J.; Mazzuco, T.L.; Pianowski, L.F.; Campos, M.M.; Calixto, J.B. Effect of two active compounds obtained from the essential oil of Cordia verbenacea on the acute inflammatory responses elicited by LPS in the rat paw. Br. J. Pharmacol. 2007, 151, 618–627. [CrossRef] [PubMed]
7. Roldão, E.F.; Witaicenis, A.; Seito, L.N.; Hiruma-Lima, C.A.; Di Stasi, L.C. Evaluation of the antiulcerogenic and analgesic activities of Cordia verbenacea DC. (Boraginaceae). J. Ethnopharmacol. 2008, 119, 94–98. [CrossRef]
8. Oliveira, D.M.; Luchini, A.C.; Seito, L.N.; Gomes, J.C.; Crespo-López, M.E.; Di Stasi, L.C. Cordia verbenacea and secretion of mast cells in different animal species. J. Ethnopharmacol. 2011, 135, 463–468. [CrossRef]
9. Michielin, E.M.Z.; Wiese, L.P.L.; Ferreira, E.A.; Pedrosa, R.C.; Ferreira, S.R.S. Radical-scavenging activity of extracts from Cordia verbenacea DC obtained by different methods. J. Supercrit. Fluids 2011, 56, 89–96. [CrossRef]
10. Parisotto, E.B.; Michielin, E.M.Z.; Biscaro, F.; Ferreira, S.R.S.; Filho, D.W.; Pedrosa, R.C. The antitumor activity of extracts from *Cordia verbenacea* D.C. obtained by supercritical fluid extraction. *J. Supercrit. Fluids* **2012**, *61*, 101–107. [CrossRef]

11. Pimentel, S.P.; Barrella, G.E.; Casarin, R.C.V.; Cirano, F.R.; Casati, M.Z.; Foglio, M.A.; Figueira, G.F.; Ribeiro, F.V.R. Protective effect of topical *Cordia verbenacea* in a rat periodontitis model: Immune-inflammatory, antibacterial and morphometric assays. *BMC Complement. Altern. Med.* **2012**, *12*, 224. [CrossRef]

12. Rodrigues, F.F.; Oliveira, L.G.; Rodrigues, F.F.; Saraiva, M.E.; Almeida, S.C.; Cabral, M.E.; Campos, A.R.; Costa, J.G. Chemical composition, antibacterial and antifungal activities of essential oil from *Cordia verbenacea* DC leaves. *Pharmacobio. Res.** **2012**, *4*, 161–165. [CrossRef] [PubMed]

13. Matias, E.F.F.; Alves, E.F.; Silva, M.K.N.; Carvalho, V.R.A.; Santos, F.A.V.; Silveira, E.R.; Barros, M.P.; Suffredini, I.B. Interference of seasonal variation on the antimicrobial and cytotoxic activities of the essential oils from the leaves of *Iryanthera polynesia* in the Amazon Rain Forest. *Chim. Biodivers.* **2019**, *16*, e1900374. [CrossRef] [PubMed]

14. Martins, E.R.; Díaz, I.E.C.; Paciencia, M.I.B.; Fana, S.A.; Morais, D.; Eberlin, M.N.; Silva, J.S.; Silveira, E.R.; Lima, G.P.P. Seasonality effects on chemical composition, antibacterial activity and essential oil yield of three species of *Nectandra*. *PLoS ONE* **2018**, *13*, e0204132. [CrossRef]

15. Sun, C.X.; Li, M.Q.; Gao, X.X.; Liu, L.N.; Wu, X.F.; Zhou, J.H. Metabolic response of maize plants to multi-factorial abiotic stress. *Plant Biol.* **2016**, *18*, 120–129. [CrossRef] [PubMed]

16. Asghari, G.; Gholamali, H.; Mahmoudi, Z.; Asghari, M. Diurnal variation of essential of the oil components of *Eucalyptus camaldulensis* leaves grown in Tunisia. *BioSci. Med. Res.** **2018**, *e7856517*. [CrossRef]

17. Ferraz, E.O.; Vieira, M.A.R.; Ferreira, M.I.; Fernandes, A., Jr.; Marques, M.O.M.; Minatel, I.O.; Albano, M.; Sambo, P.; Lima, G. G.P.P. Seasonality effects on chemical composition, antibacterial activity and essential oil yield of three species of *Nectandra*. *PLoS ONE* **2018**, *13*, e0204132. [CrossRef]

18. Zouari-Bouassida, K.; Trigui, M.; Makni, S.; Jlatel, L.; Tounsi, S. Seasonal variation in essential oils composition and the biological protective effects of *Mentha longifolia* leaves grown in Tunisia. *BioSci. Med. Res.** **2018*, *e7856517*. [CrossRef]

19. Medbouhi, A.; Benbelaïd, F.; Djabou, N.; Beaufay, C.; Bendahou, M.; Quetin-Leclercq, J.; Tintaru, A.; Costa, J.; Muselli, A. Essential Oil of Algerian *Eryngium campestre*: Chemical Variability and Evaluation of Biological Activities. *Molecules* **2019**, *24*, 2575. [CrossRef]

20. Dosoky, N.S.; Satyal, P.; Barata, L.M.; Silva, J.K.R.; Setzer, W.N. Volatiles of Black Pepper Fruits (*Piper nigrum* L.). *Molecules* **2019**, *24*, 4244. [CrossRef]

21. Souza, T.S.; Da Silva Ferreira, M.F.; Menini, L.; De Lima Souza, J.R.C.; De Oliveira Bernandes, C.; Ferreira, A. Chemotype diversity of *Psidium guajava* L. *Phytochemistry* **2018**, *153*, 129–137. [CrossRef] [PubMed]

22. Roberts, M.T.; Dufour, J.P.; Lewis, A.C. Application of comprehensive two-dimensional gas chromatography combined with time of flight mass spectrometry (GC×GC-TOFMS) for high resolution analysis of hop essential oil. *J. Sep. Sci.* **2004**, *27*, 473–478. [CrossRef] [PubMed]

23. Santos, T.G.; Fukuda, K.; Kato, M.J.; Sartorato, A.; Duarte, M.C.T.; Ruiz, A.L.T.G.; Carvalho, J.E.; Augusto, F. Characterization of the essential oils of two species of *Piperacea* by one- and two-dimensional chromatographic techniques with quadrupole mass spectrometric detection. *Microchem. J.* **2014**, *115*, 113–120. [CrossRef]

24. Koek, M.M.; Kloet, F.M.; Kleemann, R.; Kooistra, T.; Verheij, E.R.; Hankemeier, T. Semi-automated non-target processing in GC×GC-MS metabolomics analysis: Applicability for biomedical studies. *Metabolomics* **2011**, *7*, 1–14. [CrossRef]

25. Dallüge, J.; Beens, J.; Brinkman, U.A.T. Comprehensive two-dimensional gas chromatography: A powerful and versatile analytical tool. *J. Chromatogr. A* **2003**, *1000*, 69–108. [CrossRef]

26. Tranchida, P.Q.; Franchina, F.A.; Mondello, L. Analysis of essential oils through comprehensive two-dimensional gas chromatography: General utility. *Flavour Frag. J.* **2017**, *32*, 218. [CrossRef]

27. Wong, Y.F.; Perlmutter, P.; Marriott, P.J. Untargeted metabolic profiling of *Eucalyptus* spp. leaf oils using comprehensive two-dimensional gas chromatography with high resolution mass spectrometry: Expanding the metabolic coverage. *Metabolomics* **2017**, *13*, 46. [CrossRef]
29. Seeley, J.V.; Seeley, S.K. Multidimensional gas chromatography: Fundamental advances and new applications. *Anal. Chem.* 2013, 85, 557–578. [CrossRef]

30. Meinert, C.; Meierhenrich, U.J. A new dimension in separation science: Comprehensive two-dimensional gas chromatography. *Angew. Chem. Int. Ed. Engl.* 2012, 51, 10460–10470. [CrossRef]

31. Pedroso, M.P.; Godoy, L.A.F.; Fid

32. Duhamel, C.; Cardinael, P.; Peulon-agasse, V.; Firor, R.; Augusto, F. Cromatografia gasosa bidimensional abrangente (GC×GC). *Quim. Nova* 2009, 32, 421–430. [CrossRef]

33. Cordero, C.; Rubiolo, P.; Reichenbach, S.E.; Carreta, A.; Cobelli, L.; Giardina, M.; Picchi, C. Method translation and full metadata transfer from thermal to differential flow modulated comprehensive two dimensional gas chromatography: Profiling of suspected fragrance allergens. *J. Chromatogr. A* 2017, 1480, 70–82. [CrossRef] [PubMed]

34. Cordero, C.; Rubiolo, P.; Cobelli, L.; Stani, G.; Miliazza, A.; Giardina, M.; Firor, R.; Picchi, C. Potential of the reversed-inject differential flow modulator for comprehensive two-dimensional gas chromatography in the quantitative profiling and fingerprinting of essential oils of different complexity. *J. Chromatogr. A* 2015, 1417, 79–95. [CrossRef] [PubMed]

35. Barbará, J.A.; Nicoll, K.P.; Souza-Silva, E.A.; Biasoto, A.C.T.; Welke, J.E.; Zini, C.A. Volatile profile and aroma potential of tropical Syrah wines elaborated in different maturation and maceration times using comprehensive two-dimensional gas chromatography and olfactometry. *Food Chem.* 2020, 308, 125552. [CrossRef]

36. Lukić, I.; Carlin, S.; Horvat, I.; Vrhovsek, U. Combined targeted and untargeted profiling of volatile aroma compounds with comprehensive two-dimensional gas chromatography for differentiation of virgin olive oils according to variety and geographical. *Food Chem.* 2019, 270, 403–414. [CrossRef] [PubMed]

37. Dos Santos, A.L.; Novaes, A.D.S.; Polidoro, A.D.S.; Barros, M.E.; Mota, J.S.; Lima, D.B.M.; Krause, L.C.; Cardosos, C.A.L.; Jacques, R.A.; Camarão, E.B. Chemical characterisation of *Piper amalago* (Piperaceae) essential oil by comprehensive two-dimensional gas chromatography coupled with rapid-scanning quadrupole mass spectrometry (GC×GC/qMS) and their antilithiasic activity and acute toxicity. *Phytochem. Anal.* 2018, 29, 432–445. [CrossRef]

38. Yan, D.; Wong, Y.F.; Tedone, L.; Shellie, R.A.; Marriott, P.J.; Whittock, S.P.; Koutoulis, A. Chemotyping of new hop (*Humulus lupulus* L.) genotypes using comprehensive two-dimensional gas chromatography with quadrupole accurate mass-time-of-flight mass spectrometry. *J. Chromatogr. A* 2018, 1536, 110–121. [CrossRef]

39. Filippi, J.J.; Belhassen, E.; Baldovini, N.; Brevard, H.; Meierhenrich, U.J. Qualitative and quantitative analysis of vetiver essential oils by comprehensive two-dimensional gas chromatography and comprehensive two-dimensional gas chromatography/mass spectrometry. *J. Chromatogr. A* 2013, 1288, 127–148. [CrossRef]

40. Fidélis, C.H.V.; Augusto, F.; Sampaio, P.T.B.; Krainovic, P.M.; Barata, L.E.S. Chemical characterization of rosewood (*Aniba rosaeodora* Ducke) leaf essential oil by comprehensive two-dimensional gas chromatography coupled with quadrupole mass spectrometry. *J. Essent. Oil Res.* 2012, 24, 245–251. [CrossRef]

41. Keppler, E.A.H.; Jenkins, C.L.; Davis, T.J.; Bean, H.D. Advances in the application of comprehensive two-dimensional gas chromatography in metabolomics. *TrAC Trend Anal. Chem.* 2018, 109, 275–286. [CrossRef]

42. Morimoto, J.; Rosso, M.C.; Kfouri, N.; Picchi, C.; Cordero, C.; Robbat, A., Jr. Untargeted/Targeted 2D gas chromatography/mass spectrometry detection of the total volatile Tea metabolome. *Molecules* 2019, 24, 3757. [CrossRef] [PubMed]

43. Da Ros, A.; Masuero, D.; Riccadonna, S.; Bubola, K.B.; Mulinacci, N.; Mattivi, F.; Lukić, I.; Vrhovsek, U. Complementary untargeted and targeted metabolomics for differentiation of extra virgin Olive oils of different origin of purchase based on volatile and phenolic composition and sensory quality. *Molecules* 2019, 24, 2896. [CrossRef] [PubMed]

44. Sciarrone, D.; Giuffrida, D.; Rotondo, A.; Micalizzi, G.; Zoccali, M.; Pantò, S.; Donato, P.; Rodrigues-das-Dores, R.G.; Mondello, L. Quali-quantitative characterization of the volatile constituents in *Cordia verbenacea* D.C. essential oil exploiting advanced chromatographic approaches and nuclear magnetic resonance analysis. *J. Chromatogr. A* 2017, 1524, 246–253. [CrossRef] [PubMed]
45. Silva, K.P.; Santos, T.A.C.; Moutinho, B.L.; Silva, R.S.; Pinto, V.S.; Blank, A.F.; Corrêa, C.B.; Scher, R.; Fernandes, R.P.M. Using Varronia curassavica (Cordiaceae) essential oil for the biocontrol of Phytophthora serpens. Ind. Crops Prod. 2019, 139, 111523. [CrossRef]

46. Matias, E.F.; Alves, E.F.; Silva, M.K.N.; Carvalho, V.R.A.; Fegueiredo, F.G.; Ferreira, J.V.A.; Coutinho, H.D.M.; Silva, M.F.L.; Ribeiro-Filho, J.; Costa, J.G.M. Seasonal variation, chemical composition and biological activity of the essential oil of Cordia verbenaceae DC (Boraginaceae) and the sabine. Ind. Crops Prod. 2016, 87, 45–53. [CrossRef]

47. Queiroz, T.B.; Mendes, A.D.R.; Silva, J.C.R.L.; Fonseca, F.S.A.; Martins, E.R. Content and chemical composition of the essential oil of ‘erva-baleeira’ (Varronia curassavica Jacq.) as a function of harvesting times. Rev. Bras. Plantas Med. 2016, 18, 356–362. [CrossRef]

48. Marques, A.P.S.; Bonfim, F.P.G.; Dantas, W.F.C.; Puppi, R.J.; Marques, M.O.M. Chemical composition of essential oil from Varronia curassavica Jacq. accessions in different seasons of the year. Ind. Crops Prod. 2019, 140, 111656. [CrossRef]

49. Santos, A.V.; Defaveri, A.C.A.; Bizzo, H.R.; Gil, R.A.S.S.; Sato, A. In vitro propagation, histochemistry, and analysis of essential oil from conventionally propagated and in vitro-propagated plants of Varronia curassavica Jacq. In Vitro Cell. Dev. Biol. Plant 2013, 49, 405–413. [CrossRef]

50. CIIAGRO—Centro Integrado de Informações Agrometeorológicas. Instituto Agronômico de Campinas (IAC). Available online: http://www.ciiagro.sp.gov.br/ (accessed on 8 January 2020).

51. Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy, 4.1rd ed.; Allured Publ. Corp: Carol Stream, IL, USA, 2017.

52. Van Den Dool, H.; Kratz, D.J. A generalization of the retention index system including liner temperature programmed gas-liquid partition chromatography. J. Chromatogr. 1963, 11, 463–467. [CrossRef]

53. Chong, J.; Wishart, D.S.; Xia, J. Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis. Curr. Protoc. Bioinforma. 2019, 68, e86. [CrossRef]

54. Fidelis, C.H.V.; Sampaio, P.T.B.; Krainovic, P.M.; Augusto, F.; Barata, L.E.S. Correlation between maturity of tree and GCxGC-qMS chemical profiles of essential oil from leaves of Aniba rosaedora Ducke. Microchem. J. 2013, 109, 73–77. [CrossRef]

55. Kaya, D.A.; Arslan, M.; Rusu, L.-C. Effects of harvesting hour on essential oil content and composition of Thymus vulgaris. Farmacia 2013, 61, 1194–1203.

56. Lakušić, B.S.; Ristić, M.S.; Slavkovska, V.N.; Stojanović, D.L.; Lakušić, D.V. Variations in essential oil yields and compositions of Salvia officinalis (Lamiaceae) at different developmental stages. Botanica Serbica 2013, 37, 127–139.

57. Mishra, R.; Gupta, A.K.; Kumar, A.; Lal, R.K.; Saikia, D.; Charotiyta, C.S. Genetic diversity, essential oil composition, and in vitro antioxidant and antimicrobial activity of Curcuma longa L. germplasm collections. J. Appl. Res. Med. Aromat. Plants 2018, 10, 75–84. [CrossRef]

58. Alemu, A.; Garedew, W.; Gebre, A. Essential oil yield and yield components of basil (Ocimum basilicum L.) as affected by genotype and intrarow spacing at Jimma, SW Ethiopia. Acta Agrobot. 2018, 71, 1743. [CrossRef]

59. Külheim, C.; Padovan, A.; Hefer, C.; Krause, S.T.; Kollner, T.G.; Myburg, A.A.; Degenhardt, J.; Foley, W.F. The Eucalyptus terpene synthase gene family. BMC Genom. 2015, 16, 450. [CrossRef]

60. Facanali, R.; Colombo, C.A.; Teixeira, J.P.F.; Ming, L.C.; Zucchi, M.I.; Marques, M.O.M. Genetic and chemical diversity of native populations of Ocimum selii Benth. Ind. Crops Prod. 2015, 76, 249–257. [CrossRef]

61. Padovan, A.; Keszei, A.; Külheim, C.; Foley, W.J. The evolution of foliar terpene diversity in Myrtaceae. Phytochem. Rev. 2014, 13, 695–716. [CrossRef]

62. Souza, T.S.; Ferreira, M.F.S.; Menini, L.; Souza, J.R.C.L.; Parreira, L.A.; Cecon, P.R.; Ferreira, A. Essential oil of Psidium guajava: Influence of genotypes and environment. Sci. Hortic. 2017, 216, 38–44. [CrossRef]

63. Gasparetto, A.; Cruz, A.B.; Wagner, T.M.; Bonomini, T.J.; Correa, R.; Malheiros, A. Seasonal variation in the chemical composition, antimicrobial and mutagenic potential of essential oils from Piper cernuum. Ind. Crops Prod. 2017, 95, 256–263. [CrossRef]

64. Macêdo, D.G.; Souza, M.M.A.; Morais-Braça, M.E.B.; Coutinho, H.D.M.; Santos, A.T.L.; Cruz, R.P.; Costa, J.G.M.; Rodrigues, F.F.G.; Quintans-junior, L.J.; Almeida, J.R.G.S.; et al. Effect of seasonality on chemical profile and anti fungal activity of essential oil isolated from leaves Psidium salutare (Kunth) O. Berg. PeerJ 2018, 6, e5476. [CrossRef] [PubMed]
65. Gomes, A.F.; Almeida, M.P.; Leite, M.F.; Schwaiger, S.; Stuppner, H.; Halabalaki, M.; Amaral, J.G.; David, J.M. Seasonal variation in the chemical composition of two chemotypes of *Lippia alba*. *Food Chem.* 2019, 273, 186–193. [CrossRef] [PubMed]

66. Pinto, J.A.O.; Blank, A.F.; Nogueira, P.C.L.; Arrigoni-Blank, M.F.; Andrade, T.M.; Sampaio, T.S.; Pereira, K.L.G. Chemical characterization of the essential oil from leaves of basil genotypes cultivated in different seasons. *Bol. Latinoam. Caribe Plant Med. Aromat.* 2019, 18, 58–70. [CrossRef]

67. Mendes, L.A.; Souza, T.S.; Menini, L.; Guilhen, J.H.S.; Bernardes, C.O.; Ferreira, A.; Ferreira, M.F.S. Spring alterations in the chromatographic profile of leaf essential oils of improved guava genotypes in Brazil. *Sci. Hortic.* 2018, 238, 295–302. [CrossRef]

68. He, X.; Wang, S.; Shi, J.; Sun, Z.; Lei, Z.; Yin, Z.; Qian, Z.; Tang, H.; Xie, H. Genotypic and Environmental Effects on the Volatile Chemotype of *Valeriana jatamansi* Jones. *Front. Plant Sci.* 2018, 9, 1003. [CrossRef]

69. Schluttenhofer, C.; Yuan, L. Regulation of specialized metabolism by WRKY transcription factors. *Plant Physiol.* 2015, 167, 295–306. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).