A Simulation Study on the Performances of Classical Var and Sims-Zha Bayesian Var Models in the Presence of Autocorrelated Errors

M. O. Adenomon*, V. A. Michael, O. P. Evans

Department of Mathematics & Statistics, The Federal Polytechnic, Bida, Nigeria
Email: *admonsagie@gmail.com, vicronz@yahoo.com, patevansjj@gmail.com

Received 11 August 2015; accepted 27 September 2015; published 30 September 2015

Copyright © 2015 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

Abstract

It is well known that a high degree of positive dependency among the errors generally leads to 1) serious underestimation of standard errors for regression coefficients; 2) prediction intervals that are excessively wide. This paper set out to study the performances of classical VAR and Sims-Zha Bayesian VAR models in the presence of autocorrelated errors. Autocorrelation levels of (−0.99, −0.95, −0.9, −0.85, −0.8, 0.8, 0.85, 0.9, 0.95, 0.99) were considered for short term (T = 8, 16); medium term (T = 32, 64) and long term (T = 128, 256). The results from 10,000 simulation revealed that BVAR model with loose prior is suitable for negative autocorrelations and BVAR model with tight prior is suitable for positive autocorrelations in the short term. While for medium term, the BVAR model with loose prior is suitable for the autocorrelation levels considered except in few cases. Lastly, for long term, the classical VAR is suitable for all the autocorrelation levels considered except in some cases where the BVAR models are preferred. This work therefore concludes that the performance of the classical VAR and Sims-Zha Bayesian VAR varies in terms of the autocorrelation levels and the time series lengths.

Keywords

Simulation, Performances, Vector Autoregression (VAR), Classical VAR, Sims-Zha Prior, Bayesian VAR (BVAR), Autocorrelated Errors

1. Introduction

Autocorrelation plays significant role in both time series and cross sectional data [1]. More often autocorrelation

*Corresponding author.

How to cite this paper: Adenomon, M.O., Michael, V.A. and Evans, O.P. (2015) A Simulation Study on the Performances of Classical Var and Sims-Zha Bayesian Var Models in the Presence of Autocorrelated Errors. Open Journal of Modelling and Simulation, 3, 146-158. http://dx.doi.org/10.4236/ojmsi.2015.34016
renders the inferences and decision making about the estimated parameters invalid [2]. In addition, it is well known that a high degree of positive dependency among the errors generally leads to 1) serious underestimation of standard errors for regression coefficients; 2) prediction intervals that are excessively wide [3]. While Gujarati, [4] identified the several reasons that make autocorrelation to occur. They are Inertia, Specification Bias, Excluded variables, incorrect functional form, cobweb phenomenon, lags, data transformation/manipulation, and nonstationarity.

In the time series literature, the standard linear regression model, autocorrelation of the disturbances leads to inefficient but still unbiased estimates of the coefficient [5], while the Least squares estimation of parameters in the general linear model may be highly inefficient in the presence of autocorrelated errors [6]. In the work of Smith, Wong and Kohn, [7] revealed that when a regression model is fitted to time series data the errors are likely to be autocorrelated. In a recent work of Garba et al. [8], they observed that the autocorrelation problem usually afflict time series data, while in a similar study carried out by Adenomon & Oyejola [9], they concluded that classical VAR model tend to forecast where there is no autocorrelation while the Bayesian VAR models with harmonic decay forecast better for both negative and positive autocorrelation level.

This paper therefore studied the forecasting performances of the classical VAR and some versions of Sims-Zha Bayesian VAR with quadratic decay models for bivariate time series with AR(1) error terms using Monte-Carlo experiment.

2. Model Description

2.1. Vector Autoregression (VAR) Model

Given a set of \(k \) time series variables, \(y_t = [y_t, \cdots, y_{t-K}] \), VAR models of the form

\[
y_t = \sum_{i=1}^{p} A_i y_{t-i} + u_t
\]

(1)

provide a fairly general framework for the Data General Process (DGP) of the series. More precisely this model is called a VAR process of order \(p \) or VAR\((p)\) process. Here \(u_t = [u_t, \cdots, u_{t-K}] \) is a zero mean independent white noise process with non singular time invariant covariance matrix \(\Sigma_u \) and the \(A_i \) are \((k \times k)\) coefficient matrices. The process is easy to use for forecasting purpose though it is not easy to determine the exact relations between the variables represented by the VAR model in Equation (1) above [10]. Also, polynomial trends or seasonal dummies can be included in the model.

The process is stable if

\[
\det(I_k - A_1 z - \cdots - A_p z^p) \neq 0 \quad \text{for} \quad |z| \leq 1
\]

(2)

In that case it generates stationary time series with time invariant means and variance covariance structure. The basic assumptions and properties of a VAR processes is the stability condition. A VAR(\(p \)) processes is said to be stable or fulfils stability condition, if all its eigenvalues have modulus less than 1 [11].

Therefore, to estimate the VAR model, one can write a VAR\((p)\) with a concise matrix notation as

\[
Y = BZ + U
\]

where \(Y = [y_1, \cdots, y_T] \), \(Z = [Z_1, \cdots, Z_{T-p}] \)

(3)

Then the Multivariate Least Squares (MLS) for \(B \) yields

\[
\hat{B} = (ZZ')^{-1} ZY
\]

(4)

2.2. Bayesian Vector Autoregression with Sims-Zha Prior

In recent times, the BVAR model of Sims and Zha [12] has gained popularity both in economic time series and political analysis. The Sims-Zha BVAR allows for a more general specification and can produce a tractable multivariate normal posterior distribution. Again, the Sims-Zha BVAR estimates the parameters for the full sys-
temperature in a multivariate regression [13].

Given the reduced form model

\[y_i = c + y_{i-1} B_1 + \cdots + y_{i-p} B_p + u_i \]

where \(c = dA_0^{-1}, B_i = -A_i A_0^{-1}, i = 1, 2, \ldots, p \), \(u_i = \varepsilon_i A_0^{-1} \) and \(\Sigma = A_0^{-1} \Lambda A_0^{-1} \)

The matrix representation of the reduced form is given as

\[Y_{T \times n} = X_{T \times (mp+1)} \beta_{1 \times n} + U_{T \times n}, U \sim MVN(0, \Sigma) \]

We can then construct a reduced form Bayesian SUR with the Sims-Zha prior as follows. The prior means for the reduced form coefficients are that \(B_1 = I \) and \(B_2, \ldots, B_p = 0 \). We assume that the prior has a conditional structure that is multivariate Normal-inverse Wishart distribution for the parameters in the model. To estimate the coefficients for the system of the reduced form model with the following estimators

\[\hat{\beta} = (\Psi^T + XX)^{-1} (\Psi^T \bar{\beta} + XY) \]
\[\hat{\Sigma} = T^{-1} (YY - \hat{\beta}^T (XX + \Psi^T) \hat{\beta} + \bar{\beta}^T \Psi^{-1} \bar{\beta} + \bar{\Sigma}) \]

where the Normal-inverse Wishart prior for the coefficients is

\[\beta/\Sigma \sim N(\bar{\beta}, \Psi) \text{ and } \Sigma \sim IW(\bar{\Sigma}, v) \]

This representation translates the prior proposed by Sims and Zha form from the structural model to the reduced form ([13] 14 and 12 [15]).

The summary of the Sims-Zha prior is given in Table 1.

3. Simulation Procedure

A bivariate time series data that have autocorrelated error of order 1 were simulated using the VAR (2) process of the form:

\[
\begin{bmatrix}
y_1 \\
y_2
\end{bmatrix} =
\begin{bmatrix}
5.0 & 0.5 & 0.2 \\
10.0 & -0.2 & -0.5
\end{bmatrix}
\begin{bmatrix}
y_1 \\
y_2
\end{bmatrix} +
\begin{bmatrix}
-0.3 & -0.7 \\
-0.1 & 0.3
\end{bmatrix}
\begin{bmatrix}
y_1 \\
y_2
\end{bmatrix}
+ \begin{bmatrix}
u_1 \\
u_2
\end{bmatrix}
\]

Such that \(u_1 = u_2 = \delta e_{t-1} + \varepsilon_t \) where \(\varepsilon_t \sim N(0,1) \). The choice here is similar to the work and illustration of Cowpertwait, [16]. This work considered ten autocorrelated levels as \(\delta = (-0.99, -0.95, -0.9, -0.85, -0.8, 0.8, 0.85, 0.9, 0.95, 0.99) \) for short term (T = 8, 16); medium term (T = 32, 64) and long term (T = 128, 256). Sample of generated data are presented in Table 2.

Table 1. Hyperparameters of Sims-Zha reference prior.

Parameter	Range	Interpretation
\(\lambda_0 \)	[0, 1]	Overall scale of the error covariance matrix
\(\lambda_1 \)	>0	Standard deviation around \(A_1 \) (persistence)
\(\lambda_2 \)	=1	Weight of own lag versus other lags
\(\lambda_3 \)	>0	Lag decay
\(\lambda_4 \)	\(\geq 0 \)	Scale of standard deviation of intercept
\(\lambda_5 \)	\(\geq 0 \)	Scale of standard deviation of exogenous variable coefficients
\(\mu_s \)	\(\geq 0 \)	Sum of coefficients/Cointegration (long-term trends)
\(\mu_h \)	\(\geq 0 \)	Initial observations/dummy observation (impacts of initial conditions)
\(\nu \)	>0	Prior degrees of freedom

Source: Brandt and Freeman, [13].
Table 2. Sample of generated data for T = 8.

Time series data for T = 8	Autocorrelated errors $\delta = 0.95$
y_1	y_2
5.00505541	0.005055408
10.917722	0.001469533
8.68460254	1.034463062
4.482366	0.271733404
0.82311917	1.381950068
9.292715	0.952238044
5.215348	0.942238044
-3.07110720	0.07930944
9.938322	0.07930944
0.12451823	0.131419986
7.026048	0.131419986
-0.07930944	0.393861135
10.026048	0.393861135
1.90017153	0.097920078
7.032359	0.097920078

Model Specification

The time series were generated data using a VAR model with lag 2. The choice here is to obtain a bivariate time series with the true lag length. While the VAR and BVAR models of lag length of 2 was used for modeling and forecasting purpose.

For the BVAR model with Sims-Zha prior, we consider the following range of values for the hyperparameters given below and the Normal-Inverse Wishart prior was employed.

We consider two tight priors and two loose priors as follows:

The Tight priors are as follows:

- BVAR1 = $(\lambda_0 = 0.6, \lambda_1 = 0.1, \lambda_2 = 2, \lambda_3 = 0.07, \mu_5 = \mu_6 = 5)$
- BVAR2 = $(\lambda_0 = 0.8, \lambda_1 = 0.1, \lambda_2 = 2, \lambda_3 = 0.07, \mu_5 = \mu_6 = 5)$

The Loose priors are as follows:

- BVAR3 = $(\lambda_0 = 0.6, \lambda_1 = 0.15, \lambda_2 = 2, \lambda_3 = 0.15, \mu_5 = \mu_6 = 2)$
- BVAR4 = $(\lambda_0 = 0.8, \lambda_1 = 0.15, \lambda_2 = 2, \lambda_3 = 0.15, \mu_5 = \mu_6 = 2)$

where $n\mu$ is prior degrees of freedom given as $m + 1$ where m is the number of variables in the multiple time series data. In work $n\mu$ is 3 (that is two (2) time series variables plus 1(one)).

Our choice of Normal-Inverse Wishart prior for the BVAR models follow the work of Kadiyala & Karlsson, [17] that Normal Wishart prior tends to performed better when compared to other priors. In addition Sims and Zha, [12] proposed Normal-Inverse Wishart prior because of its suitability for large systems while Breheny, [18] reported that the most advantage of wishart distribution is that it guaranteed to produce positive definite draws. Our choice of the overall tightness $\lambda_0 = 0.6$ and 0.8 is in line with work of Brandt, Colaresi and Freeman [19].

In this work we assumed that the bivariate time series follows a quadratic decay. The Quadratic Decay (QD) model has many attractive theoretical properties that is why it is been applied to many fields of endeavour ([20]-[22]).

The following are the criteria for Forecast assessments used:

1) Mean Absolute Error (MAE) has a formular $MAE_j = \frac{\sum |e_i|}{n}$. This criterion measures deviation from the series in absolute terms, and measures how much the forecast is biased. This measure is one of the most common ones used for analyzing the quality of different forecasts.

2) The Root Mean Square Error ($RMSE$) is given as $RMSE_j = \sqrt{\frac{\sum (y_i - y_i^f)^2}{n}}$ where y_i is the time series data and y_i^f is the forecast value of y [23].

For the two measures above, the smaller the value, the better the fit of the model [24].
In this simulation study, \[\text{RMSE} = \frac{1}{N} \sum_{j=1}^{N} \text{RMSE}_j \quad \text{and} \quad \text{MAE} = \frac{1}{N} \sum_{j=1}^{N} \text{MAE}_j \] where \(N = 10,000 \). Therefore, the model with the minimum RMSE and MAE result as the preferred model.

4. Results and Discussion

The entire simulation and analysis was carried out in R environment. The values of the RMSE and MAE for short, medium and long terms are presented in Tables A1-A3 respectively in Appendix A. While the ranks for short, medium and long terms are presented in Tables B1-B3 respectively in Appendix B. In general the values of the RMSE and MAE increased as a result of increase in the autocorrelated levels. In addition the values of the RMSE and MAE decreased as a result of increase in the time series lengths.

The preferred model for short, medium and long terms are presented in Tables 3(a)-(c) respectively.

Table 3(a) revealed that the BVAR model with loose prior (BVAR4) is preferred for negative autocorrelation levels except in few cases, while BVAR model with tight prior (BVAR1) is preferred for positive autocorrelation levels in the short term

In Table 3(b), the BVAR model with loose prior (BVAR4) is preferred for autocorrelation level of \(-0.99, -0.95, -0.9, -0.85, -0.8\) and from 0.9 to 0.99. The classical VAR (VAR(2)) is preferred for autocorrelation levels of \(-0.8, 0.8, 0.85, 0.9, 0.95, 0.99\) for \(T = 64 \). While in other autocorrelation levels the preferred models varies among BVAR models with tight prior, classical VAR and BVAR model with loose prior respectively.

Table 3. (a) The preferred models for short term (\(T = 8, 16 \)); (b) The preferred models for medium short (\(T = 32, 64 \)); (c) The preferred models for long short (\(T = 128, 256 \)).

(a)

AUTOCORRELATION LEVELS (\(\delta \))	\(T = 8 \)	\(T = 16 \)		
	RMSE	MAE	RMSE	MAE
-0.99	BVAR4	BVAR4	BVAR4	BVAR4
-0.95	BVAR4	BVAR4	BVAR4	BVAR4
-0.9	BVAR4	BVAR4	BVAR4	BVAR4
-0.85	BVAR4	BVAR4	BVAR4	BVAR4
-0.8	BVAR4	BVAR2	BVAR2	BVAR4
0.8	BVAR1	BVAR1	BVAR1	BVAR1
0.85	BVAR1	BVAR1	BVAR1	BVAR1
0.9	BVAR1	BVAR1	BVAR1	BVAR1
0.95	BVAR1	BVAR1	BVAR1	BVAR1
0.99	BVAR1	BVAR1	BVAR1	BVAR1

(b)

AUTOCORRELATION LEVELS (\(\delta \))	\(T = 32 \)	\(T = 64 \)		
	RMSE	MAE	RMSE	MAE
-0.99	BVAR4	BVAR4	BVAR4	BVAR4
-0.95	BVAR4	BVAR4	BVAR4	BVAR4
-0.9	BVAR2	BVAR2	BVAR4	BVAR4
-0.85	BVAR1	BVAR2	VAR(2)	BVAR4
-0.8	VAR(2)	BVAR1	VAR(2)	VAR(2)
0.8	BVAR4	VAR(2)	VAR(2)	VAR(2)
0.85	BVAR4	BVAR4	VAR(2)	VAR(2)
0.9	BVAR4	BVAR4	BVAR4	BVAR4
0.95	BVAR4	BVAR4	BVAR4	BVAR4
0.99	BVAR4	BVAR4	BVAR3	BVAR3
In Table 3(c), the classical VAR (VAR(2)) model is preferred for autocorrelation levels of -0.85 to 0.9, the BVAR model with loose prior (BVAR4) is preferred for autocorrelation levels of 0.95 and 0.99, while in other autocorrelation levels the preferred models varies among BVAR models with loose prior, BVAR models with tight prior and the classical VAR model respectively.

5. Conclusions and Recommendation

In conclusion, the performances of the forecasting models depend on the autocorrelation levels and the time series length.

It is therefore recommended that the autocorrelation levels and the time series length should be considered in using an appropriate model for forecasting.

Acknowledgements

We wish to thank TETFUND Abuja-Nigeria for sponsoring this research work. Our appreciation also goes to the Rector and the Directorate of Research, Conference and Publication of the Federal Polytechnic Bida for giving us this opportunity to undergo this research work.

References

[1] Oloyede, I. and Yahya, W.B. (2015) Bayesian Generalized Least Squares with Autocorrelated Error. *Book of Abstract of the 34th Annual Conference of the Nigerian Mathematical Society (NMS)*, 23-26 June 2015.

[2] Okorie, C.E., Abubakar, U.Y and Adetutu, O.M. (2015) Analysis of Autocorrelated Data. *Book of Abstract of the 34th Annual Conference of the Nigerian Mathematical Society (NMS)*, 23-26 June 2015.

[3] Huitema, B.E., Mckean, J.W. and Zhao, J. (1996) The Runs Test for Autocorrelated Errors: Unacceptable Properties. *Journal of Educational & Behavioural Statistics*, 21, 390-404. http://dx.doi.org/10.3102/10769986021004390

[4] Gujarati, D.N. (2003) Basic Econometrics. 4th Edition, The McGraw-Hill Co., New Delhi.

[5] Rao, P. and Griliches, Z. (1969) Small-Sample Properties of Several Two-Stage Regression Methods in the Context of Autocorrelated Errors. *Journal of American Statistical Association*, 64, 253-272. http://dx.doi.org/10.1080/01621459.1969.10500968

[6] Berenblut, I.I. and Webb, G.I. (1973) A New Test for Autocorrelated Errors in the Linear Regression Model. *Journal of Royal Statistical Society B*, 35, 33-50.

[7] Smith, M., Wong, C.-M. and Kohn, R. (1998) Additive Non-Parametric Regression with Autocorrelated Errors. *Journal of Royal Statistical Society B*, 60, 311-331. http://dx.doi.org/10.1111/1467-9868.00127

[8] Garba, M.K., Oyejola, B.A. and Yahya, W.B. (2013) Investigations of Certain Estimators for Modelling Panel Data Under Violations of some Basic Assumptions. *Mathematical Theory and Modeling*, 3, 47-53.

[9] Adenomon, M.O. and Oyejola, B.A. (2015) Forecasting Bivariate Time Series with AR(1) Error Terms. *A Paper Presented at the 39th Annual Conference of the Nigerian Statistical Association (NSA)*, Osun State, 9-11 September 2015.
[10] Lütkepohl, H. and Breitung, J. (1997) Impulse Response Analysis of Vector Autoregressive Processes: System Dynamic in Economic and Financial Models.
http://dx.doi.org/10.1111/1368-423X.00089

[11] Yang, M. (2002) Lag Length and Mean Break in Stationary VAR Models. *The Econometrics Journal*, 5, 374-386.
http://dx.doi.org/10.1111/1368-423X.00089

[12] Sims, C.A. and Zha, T. (1998) Bayesian Methods for Dynamic Multivariate Models. *International Economic Review*, 39, 949-968.
http://dx.doi.org/10.1093/pan/mpi035

[13] Brandt, P.T. and Freeman, J.R. (2006) Advances in Bayesian Time Series Modeling and the Study of Politics: Theory, Testing, Forecasting and Policy Analysis. *Political Analysis*, 14, 1-36.
http://dx.doi.org/10.1093/pan/mpp001

[14] Brandt, P.T. and Freeman, J.R. (2009) Modeling Macro-Political Dynamics. *Political Analysis*, 17, 113-142.
http://dx.doi.org/10.1093/pan/mpp001

[15] Sims, C.A. and Zha, T. (1999) Error Bands for Impulse Responses. *Econometrica*, 67, 1113-1155.
http://dx.doi.org/10.1111/1468-0262.00071

[16] Cowpertwait, P.S.P. (2006) Introductory Time Series with R. Springer Science + Business Media, LLC., New York.

[17] Kadiyala, K.R. and Karlsson, S. (1997) Numerical Methods for Estimation and Inference in Bayesian VAR Models. *Journal of Applied Econometrics*, 12, 99-132.
http://dx.doi.org/10.1002/(SICI)1099-1255(199703)12:2<99::AID-JAE429>3.0.CO;2-A

[18] Breheny, P. (2013) Wishart Priors. BST 701: Bayesian Modelling in Biostatistics.
http://web.as.uky.edu/statistics/users/pbreheny/701/S13/notes/3-28.pdf

[19] Brandt, P.T., Colaresi, M. and Freeman, J.R. (2008) Dynamic of Reciprocity, Accountability and Credibility. *Journal of Conflict Resolution*, 52, 343-374.
http://dx.doi.org/10.11177/0022002708314221

[20] Merkin, J.H. and Needman, D.J. (1990) The Development of Travelling Waves in a Simple Isothermal Chemical System II. Cubic Autocatalysis with Quadratic and Linear Decay. *Proceedings: Mathematical & Physical Sciences*, 430, 315-345.

[21] Merkin, J.H. and Needman, D.J. (1991) The Development of Travelling Waves in a Simple Isothermal Chemical System IV. Quadratic Autocatalysis with Quadratic Decay. *Proceedings: Mathematical & Physical Sciences*, 434, 531-554.

[22] Worsley, K.J., Evans, A.C., Strother, S.C. and Tyler, J.L. (1991) A Linear Spatial Correlation Model with Applications to Positron Emission Tomography. *Journal of the American Statistical Association*, 86, 55-67.
http://dx.doi.org/10.1080/01621459.1991.10475004

[23] Caraiani, P. (2010) Forecasting Romanian GDP Using a BVAR Model. *Romanian Journal of Economic Forecasting*, 4, 76-87.

[24] Cooray, T.M.J.A. (2008) Applied Time Series Analysis and Forecasting. Narosa Publishing House, New Delhi.
Appendix A

Table A1: RMSE and MAE of the Models for short term (T = 8, 16)

AUTOCORRELATION LEVELS (δ)	Models	T = 8	T = 16		
		RMSE	MAE	RMSE	MAE
−0.99	VAR(2)	N/A	N/A	15.61070	12.46684
	BVAR1	8.268939	6.159536	10.247713	8.557597
	BVAR2	7.988318	6.030353	9.777068	8.162389
	BVAR3	6.828580	5.532507	9.411352	7.511767
	BVAR4	6.696952	5.424807	9.101631	7.228307
−0.95	VAR(2)	N/A	N/A	10.694678	8.404044
	BVAR1	6.868568	5.117551	7.565327	6.217715
−0.9	VAR(2)	6.767191	5.096843	7.302214	6.018805
	BVAR1	5.970514	4.810123	7.124959	5.611988
	BVAR2	5.841910	4.712191	6.999561	5.492313
	BVAR3	N/A	N/A	8.222785	6.426044
	BVAR4	5.761336	4.313672	5.953596	4.825443
−0.8	VAR(2)	N/A	N/A	7.245699	5.314589
	BVAR1	5.053004	3.795841	5.050312	4.060008
−0.8	VAR(2)	5.003829	3.777888	4.962080	4.000081
	BVAR1	5.878971	3.796238	4.941124	3.827773
	BVAR2	5.705957	3.752238	4.912545	3.795789
−0.8	VAR(2)	N/A	N/A	5.570151	4.202644
	BVAR1	4.552127	3.429420	4.472638	3.566182
−0.8	VAR(2)	N/A	N/A	4.604481	3.387338
	BVAR1	3.170552	2.328981	3.115189	2.402498
0.8	VAR(2)	N/A	N/A	3.263207	2.539760
	BVAR1	3.206466	2.366413	3.134324	2.425714
	BVAR2	3.441772	2.677405	3.236948	2.572512
	BVAR3	3.462605	2.700449	3.195356	2.536710
−0.8	VAR(2)	N/A	N/A	3.528748	3.917063
	BVAR1	3.205167	2.351426	3.263207	2.539760
0.8	VAR(2)	N/A	N/A	3.264149	2.542133
	BVAR1	3.224667	2.376088	3.264149	2.542133
	BVAR2	3.475158	2.707142	3.384553	2.711048
	BVAR3	3.472026	2.703957	3.340094	2.668608
−0.8	VAR(2)	N/A	N/A	8.085072	5.479093
	BVAR1	3.21618	2.36365	3.399855	2.660100
0.9	VAR(2)	N/A	N/A	3.426421	2.695679
	BVAR1	3.241386	2.395118	3.426421	2.695679
	BVAR2	3.504280	2.731006	3.549209	2.858683
	BVAR3	3.512631	2.740081	3.497261	2.813078
−0.9	VAR(2)	N/A	N/A	8.57251	5.99339
	BVAR1	3.249457	2.389992	3.571661	2.810530
0.9	VAR(2)	N/A	N/A	3.617310	2.865264
	BVAR1	3.253510	2.403027	3.617310	2.865264
	BVAR2	3.525785	2.745731	3.747034	3.044939
	BVAR3	3.534562	2.763094	3.718684	3.013547
0.95	VAR(2)	N/A	N/A	11.691166	7.641045
	BVAR1	3.252371	2.385865	3.709390	2.915292
0.99	VAR(2)	N/A	N/A	11.691166	7.641045
	BVAR1	3.273087	2.411261	3.799228	3.014318
	BVAR2	3.521370	2.729458	3.897329	3.155196
	BVAR3	3.543619	2.759944	3.848584	3.111145
Table A2. RMSE and MAE of the models for medium term (T = 32, 64).

AUTOCORRELATION LEVELS (δ)	Models	T = 32		T = 64	
	RMSE	MAE		RMSE	MAE
0.99	18.51937	15.32571	22.47805	18.50490	
VAR(2)	13.44155	11.20306	16.85493	13.96209	
BVAR1	13.39895	11.13304	16.45158	13.60912	
BVAR2	12.029086	9.707249	14.19239	11.53329	
BVAR3	11.170522	8.978522	13.9217	11.4063	
BVAR4	11.59479	9.37044	11.235892	9.146275	
VAR(2)	8.204827	6.620134	9.048921	7.125616	
BVAR1	8.207244	6.605890	8.31793	7.063148	
BVAR2	8.372768	6.617752	9.034040	7.14074	
BVAR4	8.048093	6.376259	8.753774	6.974093	
VAR(2)	6.167595	4.886693	6.64525	5.109532	
BVAR1	6.157462	4.850431	6.518469	5.025112	
BVAR2	6.380995	4.925847	6.673274	5.135679	
BVAR4	6.270225	4.876456	6.362430	4.949103	
VAR(2)	5.716131	4.613260	5.248532	4.195248	
BVAR1	5.177526	4.067993	5.598164	4.270608	
BVAR2	5.192059	4.051523	5.465794	4.176788	
BVAR3	5.483297	4.192094	5.641280	4.294666	
BVAR4	5.323288	4.089317	5.268442	4.041161	
VAR(2)	4.573355	3.688970	4.111588	3.267457	
BVAR1	4.579310	3.582714	5.007763	3.813774	
BVAR2	4.612613	3.584074	4.848271	3.692432	
BVAR3	4.928052	3.755175	5.043621	3.826875	
BVAR4	4.768427	3.644363	4.672554	3.565822	
VAR(2)	2.911991	2.226130	2.364223	1.830622	
BVAR1	3.061780	2.446032	2.960311	2.404376	
BVAR2	3.029923	2.419689	2.900026	2.352158	
BVAR3	2.968358	2.389509	2.923218	2.387972	
BVAR4	2.896568	2.324630	2.789921	2.270791	
VAR(2)	3.664264	2.842395	2.819089	2.209700	
BVAR1	3.321767	2.670342	3.253465	2.674904	
BVAR2	3.317626	2.671295	3.186185	2.588476	
BVAR3	3.174913	2.571598	3.127688	2.558588	
BVAR4	3.113732	2.516620	3.020891	2.463131	
VAR(2)	4.941591	3.819592	3.709760	2.97056	
BVAR1	3.729089	3.031137	3.710443	3.030718	
BVAR2	3.725952	3.034219	3.656403	2.984484	
BVAR3	3.524312	2.877726	3.507946	2.876968	
BVAR4	3.471619	2.827012	3.405919	2.781972	
VAR(2)	8.940905	6.335658	6.951095	5.454921	
BVAR1	4.384650	3.619267	4.793900	3.963677	
BVAR2	4.340558	3.572655	4.687418	3.859172	
BVAR3	4.099345	3.386899	4.433082	3.662572	
BVAR4	4.094079	3.381934	4.378921	3.606226	
VAR(2)	9.886464	7.534475	11.759527	9.301805	
BVAR1	4.964834	4.104314	6.687535	5.596650	
BVAR2	5.000935	4.135764	6.650984	5.553134	
BVAR3	4.812514	3.998640	6.250987	5.223581	
BVAR4	4.79703	3.98559	6.314432	5.270220	
Table A3. RMSE and MAE of the models for Long term (T = 128, 256).

AUTOCORRELATION LEVELS (\(\delta \))	Models	RMSE T = 128	MAE T = 128	RMSE T = 256	MAE T = 256
	VAR(2)	25.29136	20.57803	24.89353	20.27533
	BVAR1	18.97229	15.49887	20.52371	16.50237
-0.99BVAR2	18.42898	15.04846	20.34156	16.36560	
	VAR(2)	18.01198	14.71195	22.94825	18.68689
	BVAR4	19.21266	15.78985	25.37395	20.58512
-0.95BVAR(2)	10.608058	8.434172	9.521107	7.454405	
	BVAR1	9.445834	7.330077	9.376191	7.226121
-0.9BVAR2	9.157944	7.155402	9.161844	7.097149	
	VAR(2)	9.280705	7.288772	9.322954	7.246612
	BVAR4	9.130834	7.228411	9.377873	7.328429
-0.9BVAR2	6.416899	5.071596	6.055986	4.697850	
	BVAR1	6.837341	5.195836	6.550906	4.979713
-0.8BVAR2	6.498645	4.975510	6.257913	4.790203	
	VAR(2)	6.491610	4.994156	6.266058	4.815668
	BVAR4	6.226952	4.834336	6.128210	4.732092
-0.8BVAR2	4.721675	3.713432	4.645043	3.597282	
	BVAR1	5.734427	4.332739	5.377073	4.066994
-0.85BVAR2	5.363857	4.072418	5.007710	3.815148	
	VAR(2)	5.312746	4.049472	4.929922	3.727202
	BVAR4	4.982521	3.835193	4.755215	3.661254
-0.8BVAR2	3.858129	3.020307	3.80270	2.94512	
	BVAR1	5.142641	3.881026	4.727391	3.570719
-0.8BVAR2	4.739819	3.589527	4.298829	3.266398	
	VAR(2)	4.655187	3.535919	4.19855	3.20381
	BVAR4	4.269902	3.268957	3.957584	3.042249
0.8BVAR2	2.218726	1.720205	2.176999	1.695073	
	BVAR1	3.124369	2.580126	3.226327	2.693960
0.8BVAR2	2.950443	2.428861	2.828942	2.337125	
	VAR(2)	2.972579	2.455268	2.722261	2.238176
	BVAR4	2.68660	2.19352	2.427032	1.950018
0.85BVAR2	2.519725	1.970158	2.482135	1.938329	
	BVAR1	3.339102	2.754286	3.427334	2.852653
0.85BVAR2	3.172200	2.605337	3.056416	2.509326	
	BVAR3	3.170801	2.611133	2.959596	2.419124
0.9BVAR4	2.913734	2.369758	2.691089	2.154252	
	VAR(2)	3.147020	2.498148	3.016211	2.370271
	BVAR1	3.733826	3.072094	3.797471	3.135458
0.9BVAR2	3.577652	2.924736	3.472985	2.827289	
	VAR(2)	3.552882	2.914901	3.379560	2.738709
	BVAR4	3.324255	2.694440	3.154541	2.516101
0.95BVAR2	5.099671	4.142258	4.452966	3.562149	
	BVAR1	4.768778	3.913935	4.735043	3.860720
0.95BVAR2	4.651729	3.797358	4.479936	3.608397	
	VAR(2)	4.518151	3.696097	4.413060	3.545852
	BVAR4	4.360350	3.535585	4.253486	3.388638
0.99BVAR2	13.44323	11.03769	12.76596	10.67239	
	BVAR1	8.305355	6.915693	9.126759	7.511420
0.99BVAR2	8.035857	6.681232	9.071670	7.436501	
	VAR(2)	7.899572	6.569464	9.094940	7.440822
	BVAR4	7.789944	6.479641	9.031439	7.446020
Appendix B

Table B1: Ranks of RMSE and MAE of the Models for short term (T = 8, 16).

AUTOCORRELATION LEVELS (δ)	Models	T = 8	T = 16		
		RMSE	MAE	RMSE	MAE
−0.99	VAR(2)	N/A	N/A	5	5
	BVAR1	4	4	4	4
	BVAR2	3	3	3	3
	BVAR3	2	2	2	2
	BVAR4	1	1	1	1
	VAR(2)	N/A	N/A	5	5
	BVAR1	4	4	4	4
−0.95	BVAR2	3	3	3	3
	BVAR3	2	2	2	2
	BVAR4	1	1	1	1
−0.9	VAR(2)	N/A	N/A	5	5
	BVAR1	4	4	4	4
−0.85	BVAR2	3	3	3	3
	BVAR3	2	2	2	2
	BVAR4	1	1	1	1
−0.8	VAR(2)	N/A	N/A	5	5
	BVAR1	4	2	4	4
−0.8	BVAR2	3	1	1	3
	BVAR3	2	4	3	2
	BVAR4	1	3	2	1
0.8	VAR(2)	N/A	N/A	5	5
	BVAR1	1	1	1	1
0.85	BVAR2	2	2	2	2
	BVAR3	3	3	4	4
	BVAR4	4	4	3	3
0.9	VAR(2)	N/A	N/A	5	5
	BVAR1	1	1	1	1
0.95	BVAR2	2	2	2	2
	BVAR3	3	3	4	4
	BVAR4	4	4	3	3
0.99	VAR(2)	N/A	N/A	5	5
	BVAR1	1	1	1	1
0.99	BVAR2	2	2	2	2
	BVAR3	3	3	4	4
	BVAR4	4	4	3	3
AUTOCORRELATION LEVELS (δ)	Models	T = 32	T = 64		
---	---	---	---		
		RMSE	MAE	RMSE	MAE
0.99	VAR(2)	5	5	5	5
	BVAR1	4	4	4	4
	BVAR2	3	3	3	3
	BVAR3	2	2	2	2
	BVAR4	1	1	1	1
	VAR(2)	5	5	5	5
	BVAR1	2	4	4	3
0.95	BVAR2	3	2	2	2
	BVAR3	4	3	3	4
	BVAR4	1	1	1	1
	VAR(2)	5	5	5	5
	BVAR1	2	3	3	3
0.9	BVAR2	1	1	2	2
	BVAR3	4	4	4	4
	BVAR4	3	2	1	1
	VAR(2)	5	5	1	3
	BVAR1	1	2	4	4
0.85	BVAR2	2	1	3	2
	BVAR3	4	4	5	5
	BVAR4	3	3	2	1
	VAR(2)	1	4	1	1
	BVAR1	2	1	4	4
0.8	BVAR2	3	2	3	3
	BVAR3	5	5	5	5
	BVAR4	4	3	2	2
	VAR(2)	2	1	1	1
	BVAR1	5	5	5	5
0.85	BVAR2	4	4	3	3
	BVAR3	3	3	4	4
	BVAR4	1	2	2	2
	VAR(2)	5	5	1	3
	BVAR1	4	3	5	5
0.9	BVAR2	3	4	4	4
	BVAR3	2	2	3	3
	BVAR4	1	1	2	2
	VAR(2)	5	5	4	3
	BVAR1	4	3	5	5
0.95	BVAR2	3	3	3	3
	BVAR3	2	2	2	2
	BVAR4	1	1	1	1
	VAR(2)	5	5	5	5
	BVAR1	4	4	4	4
0.99	BVAR2	4	4	3	3
	BVAR3	2	2	1	1
	BVAR4	1	1	2	2
AUTOCORRELATION LEVELS (δ)	Models	T = 128	T = 256		
----------------------------------	---------	---------	---------		
		RMSE	MAE	RMSE	MAE
−0.99	VAR(2)	5	5	4	4
	BVAR1	3	3	2	2
	BVAR2	2	2	1	1
	BVAR3	1	1	3	3
	BVAR4	4	4	5	5
	VAR(2)	5	5	5	5
	BVAR1	4	4	3	2
−0.95	BVAR2	2	1	1	1
	BVAR3	3	3	2	3
	BVAR4	1	2	4	4
	VAR(2)	2	4	1	1
	BVAR1	5	5	3	3
−0.9	BVAR2	4	2	3	3
	BVAR3	3	3	4	4
	BVAR4	1	1	2	2
	VAR(2)	1	1	1	1
	BVAR1	5	5	5	5
−0.85	BVAR2	4	4	4	4
	BVAR3	3	3	3	3
	BVAR4	2	2	2	2
	VAR(2)	1	1	1	1
	BVAR1	5	5	5	5
−0.8	BVAR2	4	4	4	4
	BVAR3	3	3	3	3
	BVAR4	2	2	2	2
	VAR(2)	1	1	1	1
	BVAR1	5	5	5	5
0.8	BVAR2	3	3	4	4
	BVAR3	4	4	3	3
	BVAR4	2	2	2	2
	VAR(2)	1	1	1	1
	BVAR1	5	5	5	5
0.85	BVAR2	4	3	4	4
	BVAR3	3	4	3	3
	BVAR4	2	2	2	2
	VAR(2)	1	1	1	1
	BVAR1	5	5	5	5
0.9	BVAR2	4	4	4	4
	BVAR3	3	3	3	3
	BVAR4	2	2	2	2
	VAR(2)	5	5	3	3
	BVAR1	4	4	4	4
0.95	BVAR2	3	3	4	4
	BVAR3	2	2	2	2
	BVAR4	1	1	1	1
	VAR(2)	5	5	5	5
	BVAR1	4	4	4	4
0.99	BVAR2	3	3	2	1
	BVAR3	2	2	3	2
	BVAR4	1	1	1	3