Comparison of Soil Respiration in Typical Conventional and New Alternative Cereal Cropping Systems on the North China Plain

Bing Gao1, Xiaotang Ju1*, Fang Su1, Fengein Gao1, Qingsen Cao1, Oene Oenema2, Peter Christie1, Xinping Chen1, Fusuo Zhang1

1 College of Resources and Environmental Sciences, China Agricultural University, Beijing, China, 2 Wageningen University and Research Center, Alterra, Wageningen, The Netherlands

Abstract

We monitored soil respiration (Rs), soil temperature (T) and volumetric water content (VWC%) over four years in one typical conventional and four alternative cropping systems to understand Rs in different cropping systems with their respective management practices and environmental conditions. The control was conventional double-cropping system (winter wheat and summer maize in one year - Con.W/M). Four alternative cropping systems were designed with optimum water and N management, i.e. optimized winter wheat and summer maize (Opt.W/M), three harvests every two years (first year, winter wheat and summer maize or soybean; second year, fallow then spring maize - W/M-M and W/S-M), and single spring maize per year (M). Our results show that Rs responded mainly to the seasonal variation in T but was also greatly affected by straw return, root growth and soil moisture changes under different cropping systems. The mean seasonal CO2 emissions in Con.W/M were 16.8 and 15.1 Mg CO2 ha\(^{-1}\) for summer maize and winter wheat, respectively, without straw return. They increased significantly by 26 and 35% in Opt.W/M, respectively, with straw return. Under the new alternative cropping systems with straw return, W/M-M showed similar Rs to Opt.W/M, but total CO2 emissions of W/S-M decreased sharply relative to Opt.W/M when soybean was planted to replace summer maize. Total CO2 emissions expressed as the complete rotation cycles of W/S-M, Con.W/M and M treatments were not significantly different. Seasonal CO2 emissions were significantly correlated with the sum of carbon inputs of straw return from the previous season and the aboveground biomass in the current season, which explained 60% of seasonal CO2 emissions. T and VWC% explained up to 65% of Rs using the exponential-power and double exponential models, and the impacts of tillage and straw return must therefore be considered for accurate modeling of Rs in this geographical region.

Introduction

Soils provide a very large sink of carbon (C) in terrestrial ecosystems with C reserves of about 1500 Pg C (1 Pg = 10\(^{15}\) g) and make a major contribution to the global carbon equilibrium [1]. Slight changes in soil C might therefore lead to significant changes in the concentration of CO2 in the atmosphere. Soil respiration is the main terrestrial source of C return to the atmosphere with a flux reaching 90±12 Pg C in 2008 and increasing at a rate of 0.1 Pg C y\(^{-1}\) from 1989 [2]. Agricultural soils play a very important role in the global C cycle [3,4] and account for 11% of global anthropogenic CO2 emissions [5]. It is therefore important to minimize soil respiration and retain more C sequestered in agricultural soils.

Soil respiration comprises mainly autotrophic respiration by plant roots and heterotrophic respiration of plant residues, root litter and exudates, and soil organic matter by soil microorganisms [6,7]. Its magnitude is affected mainly by soil and climatic conditions [8] such as soil temperature and moisture [1,9,10], vegetation characteristics and management practices [11–14]. Soil respiration therefore shows high spatial and temporal variation [1]. Understanding this variation in different cropping systems in specific region will make a large contribution to the efficient management of C flow in agricultural ecosystems.

Soil respiration in cropland is greatly affected by tillage practices and straw management, with the greatest increase occurring immediately after tillage operations, and cumulative soil CO2 emissions can be lowered significantly by reducing the intensity of tillage [15,16]. Daily CO2 fluxes can differ significantly at some sampling dates between conventional moldboard plow tillage and no tillage in continuous corn [17]. Soil CO2 emission can be enhanced in the short term after crop residues are returned to the
Soil temperature and moisture are two of the most important environmental factors controlling soil respiration [1,21,22]. Soil temperature is significantly positively correlated with soil respiration using linear [7], exponential [1,7], improved Arrhenius [8], power and quadratic [9] and Q10 [10] models in different regions. Soil moisture is also a key factor controlling soil respiration, especially in arid or semi-arid regions where it can be more important than temperature and become the dominant factor [11]. This shows that when one factor linking soil temperature and moisture is in a higher or lower range, the other might become a major factor controlling soil respiration [13,23,24]. The respiration rate will be limited when soil volumetric water content (VWC%) drops below a threshold of 15% [20]. Soil CO2 emission increased significantly with increasing temperature up to 40°C, with emissions reduced at the lowest and highest soil moisture contents [20]. Therefore, the single-factor models cannot describe soil CO2 emission well because they neglect the impacts of interactions between factors. The multiple polynomial models considering both soil temperature and moisture result in a much better description of CO2 ($r^2 = 0.70–0.78$, P<0.0001) emissions than using temperature ($r^2 = 0.27–0.54$, P<0.01) or moisture ($r^2 = 0.29–0.45$, P<0.01) alone [20].

China has broad climatic regimes and the different ecosystems depend on regional climatic conditions [25]. The North China Plain (NCP) is a major agricultural region. The soil type is Fluvo-aquic soil and the climate is sub-humid temperate monsoon with abundant solar radiation but with cold and dry conditions in winter and spring and warm and wet weather in summer. Evapotranspiration is intense and the spring drought is an important feature. Winter wheat-summer maize is the typical double cropping system and current farming practice involves application of 300 kg N ha$^{-1}$ yr$^{-1}$ for winter wheat and 250 kg N ha$^{-1}$ yr$^{-1}$ for summer maize with a ratio of basal to topdressing applications of 1:1 and 1:1.5, respectively [26,27]. The soil is rotary tilled to 20 cm depth after maize straw removal for sowing winter wheat, and maize is sown directly after removing the wheat straw. Generally, wheat is irrigated three to four times and maize once or twice depending on precipitation. The amount of irrigation water ranges from 60 to 100 mm on each occasion [26]. About 30–60% of N input could be saved without sacrificing yields while significantly reducing environmental risk by adopting optimum N management in the winter wheat-summer maize system as shown by our earlier study [28]. However, over-exploitation of groundwater has become the main factor restricting sustainable agricultural development [29]. There is therefore concern to explore new alternative cropping systems for sustainable use of groundwater and optimum N fertilization to reduce pollution. Winter wheat–summer maize–spring maize with three harvests over two years and a single spring maize system have shown great potential to reduce water use and N use and can achieve balanced use of groundwater [26], and this cropping system may serve as a new alternative system for efficient resource use and sustainable development. However, it is still unclear how these changes will affect soil respiration in the study region.

Low frequency of measurement, lack of data at some growth stages, and failure to consider the interactive effects of soil moisture and temperature on soil respiration may lead to failure to describe the characteristics of soil respiration in this region [10,30,31]. There are indications that the correlation between soil respiration and soil temperature to 5 cm depth is 0.51 but the study that produced this result involved measurement only 21 times over one year [30]. Meng et al. [31] found that soil respiration had a higher correlation with soil temperature to 5 cm depth using the exponential model through weekly measurements of soil respiration under the typical double-cropping system over a whole year. Soil temperature at 5 cm depth explained 63–74% of soil respiration using the exponential model except during the winter, and the application of crop residues had significant positive impacts on soil respiration [18]. The management of N and water, crop residues and tillage practices will change significantly after conversion to new alternative cropping systems [26], an effect closely related to soil respiration. However, no quantitative information is yet available regarding soil respiration in new alternative cropping systems in this region.

In the present study we have compared soil respiration characteristics in different cropping systems with their respective management practices and environmental variables and we explore the factors affecting these differences. We have also analyzed the effects of straw return on variation in seasonal CO2 emissions on the North China Plain.

Materials and Methods

Site description

A long-term field experiment was set up in October 2007 at Quzhou experimental station (36.87° N, 115.02° E) of China Agricultural University in Hebei province. The site is a sub-humid temperate monsoon area at an altitude of 40 m. The annual mean temperature is 13.2°C. Annual mean precipitation was 494 mm from 1980 to 2010 with a range of 213–480 mm, and 68% of precipitation falls from June to September [26]. The typical double-cropping system is a winter wheat and summer maize rotation which accounts for >80% of agricultural fields in Quzhou county. The soil type is Fluvo-aquic soil and the bulk density of the top 30 cm of the soil profile is 1.37 g cm$^{-3}$, soil pH is 7.72 (1:2.5, soil:water), SOC content 7.31 g kg$^{-1}$, total N 0.7 g kg$^{-1}$, Olsen-P 4.8 mg kg$^{-1}$ and available K 72.7 mg kg$^{-1}$. Fig. 1 shows the daily mean air temperatures and precipitation during the measurement period (also see Table S1).

Field experiment treatments and management

A completely randomized design was employed with five treatments and four replicates. Each plot is 1800 m$^2$ (30×60 m). The control is conventional winter wheat and summer maize based on local farming practice (Con/W/M). Four new alternative cropping systems were designed with high-yielding varieties (using optimum planting density and crop management) and optimum water and N fertilizer management compared with conventional practice. They are: optimized two harvests in one year (winter wheat and summer maize - Opt/W/M), three harvests within two years (first year, winter wheat and summer maize or winter wheat and summer soybean; second year fallow then spring maize - W/M-M and W/S-M) and single spring maize per year (M).

Nitrogen input and irrigation for Con.W/M were described in the Introduction above. The basal fertilizer for wheat was surface broadcast before rotary tillage to 20 cm depth after removal of maize straw from the soil and topdressing was broadcast at shooting for wheat followed by irrigation, with both fertilizer
applications at 150 kg N ha$^{-1}$ in the form of urea. The basal application for summer maize comprised 45 kg N ha$^{-1}$ applied to the soil as 15-15-15 compound fertilizer with a seed drill after removing the wheat straw from the soil, and 55 kg N ha$^{-1}$ surface broadcast as urea followed by irrigation and the topdressing 150 kg N ha$^{-1}$ was applied at the ten-leaf stage of summer maize in the form of urea. In the other systems optimized N management was devised according to the N target values minus the soil nitrate-N content in the root zone before side-dressing as described by Cui et al. [27]. For summer maize 45 kg N ha$^{-1}$ was applied as a basal dressing in the same way as for Con.W/M and 80 and 60 kg N ha$^{-1}$ were side-dressed using a soil cover of 0–5 cm after band application at the six- and ten-leaf stages of summer maize, respectively. No other N fertilizer except 45 kg N ha$^{-1}$ was applied as a basal application for soybean as for Con.W/M. Irrigation times and rates were determined by testing the soil water content before the critical growing seasons as described by Meng et al. [26]. The details of nitrogen input and irrigation rate over the whole study are shown in Table 1. Wheat straw was mulched after chopping into 5–10 cm pieces and summer maize or soybean was sown directly. Summer and spring maize and soybean residues were also chopped into 5–10 cm pieces and mechanically ploughed into the top 30 cm of the soil after maize and soybean were harvested and then winter wheat was sown if there was no fallow the following season. The soil was rotavated to 20 cm depth before sowing spring maize.

We measured soil respiration in each plot of the experiment from May 2009 to October 2012. Crops present in the different treatments during gas measurement are shown in Fig. 2.

**Soil respiration measurement**

Soil respiration was representatively determined in every plot using an automatic soil CO$_2$ flux system (LI-COR LI-8100, Lincoln, NE). Measurements were carried out daily for 10 days after fertilization events and 3–5 days after irrigation or precipitation events (>10 mm) depending on the size of gas fluxes; for the remaining periods emissions were measured twice per week and once a week when the soil was frozen. Two bases were used in each plot, one on a row and the other in the middle of the row during the maize and soybean seasons. Each base was a PVC tube with an inner diameter of 20 cm and a height of 13 cm inserted 9 cm into the soil for measurement and was removed only before sowing. Soil respiration was measured directly by LI-8100 in units of μmol CO$_2$ m$^{-2}$ s$^{-1}$ in the field between 08:30 and 11:00 am. Soil respiration is presented as the mean values of four replicated measurements on four different plots. The seasonal amounts of CO$_2$ emissions were sequentially linearly determined from the emissions between every two adjacent intervals of the measurements.

**Auxiliary measurements**

Soil temperature to 5 cm depth was measured directly by Li-8100 through a temperature sensing probe during the measurement time. Soil moisture at 0–5 cm is expressed as volumetric water content (VWC%) and was measured directly by Li-8100 through an ECH2O type of EC-10 soil water sensing probe (Decagon Devices, Inc, Pullman, WA). We also measured the top 20 cm depth SOC content in each plot of this field experiment after summer maize harvest in 2011 using the method described by Huang et al. [19]. The daily mean air temperatures and precipitation data during the field experiment were obtained from

---

**Figure 1. Daily mean air temperature (°C) and precipitation (mm) during the field experiment.**

doi:10.1371/journal.pone.0080887.g001

---
Correlations between soil respiration and soil temperature and moisture

The compound factor models of soil respiration with soil temperature and moisture (equations 1–4) were employed as follows:

\[ \text{Rs} = a + bT + cW \]  
\[ \text{Rs} = aT^cW^d \]  
\[ \text{Rs} = aT^cW^d + cW \]  
\[ \text{Rs} = aT^cW^d + cW^e \]  

We established the four compound factor models above among soil respiration (Rs), soil temperature (Ts) and VWC(%) (Ws) using Sigmaplot 12.0 (Systat Software Inc., Erkrath, Germany). The primary data were processed using Microsoft Excel 2003 spreadsheets. Total CO2 emissions in the different treatments were tested by analysis of variance and mean values were compared using SAS statistical software (Version 9.2; SAS Institute, Inc., Cary, NC) to calculate least significant difference (LSD) at the 5% level. Compound factor regression analysis among soil respiration, T and VWC% were performed using SigmaPlot 12.0 (Systat Software Inc., Erkrath, Germany).

Statistical analysis

Over a complete rotation cycle soil respiration gradually increased from March, reached a maximum in July and gradually decreased from August to November, and then remained at the lowest values during winter, in a pattern similar to soil temperature (Figs. 2 and 3A). The mean soil respiration values were 3.35, 4.55, 4.03, 3.35 and 3.25 μmol CO2 m⁻² s⁻¹ for Con.W/M, Opt.W/M, W/M-M, W/S-M and M throughout the study period, with ranges of 0.02–12.4, 0.26–14.9, 0.31–12.1, 0.34–11.3 and 0.30–11.2 μmol CO2 m⁻² s⁻¹, respectively. Three peaks per year occurred in the typical double-cropping system, at the shooting stage of winter wheat, six-leaf of summer maize and the period after winter wheat sowing, the first two peaks caused by rapid crop growth and the last by the return of summer maize straw combined with soil tillage. Soil respiration of Opt.W/M was higher than of Con.W/M at the six-leaf stage of summer maize in the middle of July and the period after winter wheat sowing. The maximum peaks of soil respiration in Con.W/M were 8.2, 7.7, 7.8, 12.4 and 4.9, 2.8, 3.6, 2.9 μmol CO2 m⁻² s⁻¹ during these two periods for four growing seasons, respectively, and they increased to 10.8, 9.6, 10.1, 14.9 and 7.6, 10.3, 6.5, 11.2 μmol CO2 m⁻² s⁻¹ in Opt.W/M during the corresponding periods. Under the new alternative cropping systems one peak disappeared in the fallow season [season with no winter wheat planted]. The highest value of soil respiration was around 7.0 μmol CO2 m⁻² s⁻¹ in the spring maize season under the new alternative cropping systems, but it increased to more than 10.0 μmol CO2 m⁻² s⁻¹ for summer maize in Opt.W/M at the corresponding time (Fig. 2).

Table 1. Nitrogen fertilizer rates and irrigation rates throughout the study period.

| Year | N application rate (kg N ha⁻¹) | Irrigation rate (mm) |
|------|-------------------------------|---------------------|
|      | Con.W/M¹ | Opt.W/M | W/M-M | W/S-M | M | Con.W/M | Opt.W/M | W/M-M | W/S-M | M |
| 2009 | W300 | W263 | F⁻² | F⁻ | F⁻ | W250 | W215 | F⁻ | F⁻ | F⁻ |
| 2010 | W300 | W100 | W140 | W140 | F⁻ | W180 | W120 | W120 | W120 | F⁻ |
| 2011 | W300 | W139 | F⁻ | F⁻ | F⁻ | W240 | W275 | F⁻ | F⁻ | F⁻ |
| 2012 | W300 | W140 | W162 | W158 | F⁻ | W180 | W160 | W160 | W170 | F⁻ |
| Total | 2200 | 1382 | 969 | 776 | 661 | 1130 | 1050 | 615 | 635 | 415 |

¹ Con.W/M, Opt.W/M, W/M-M, W/S-M and M represent conventional and optimized winter wheat–summer maize, winter wheat–summer maize–spring maize, winter wheat–summer soybean and spring maize treatment, respectively. W, M1, M2, S and F represent winter wheat, summer maize, spring maize, summer soybean and fallow. W, M1, M2, S and F represent winter wheat, summer maize, spring maize, summer soybean and fallow. W, M1, M2, S and F represent winter wheat, summer maize, spring maize, summer soybean and fallow.

Statistical analysis

The primary data were processed using Microsoft Excel 2003 spreadsheets. Total CO2 emissions in the different treatments were tested by analysis of variance and mean values were compared using SAS statistical software (Version 9.2; SAS Institute, Inc., Cary, NC) to calculate least significant difference (LSD) at the 5% level. Compound factor regression analysis among soil respiration, T and VWC% were performed using SigmaPlot 12.0 (Systat Software Inc., Erkrath, Germany).

Table 1. Nitrogen fertilizer rates and irrigation rates throughout the study period.

| Year | N application rate (kg N ha⁻¹) | Irrigation rate (mm) |
|------|-------------------------------|---------------------|
|      | Con.W/M¹ | Opt.W/M | W/M-M | W/S-M | M | Con.W/M | Opt.W/M | W/M-M | W/S-M | M |
| 2009 | W300 | W263 | F⁻² | F⁻ | F⁻ | W250 | W215 | F⁻ | F⁻ | F⁻ |
| 2010 | W300 | W100 | W140 | W140 | F⁻ | W180 | W120 | W120 | W120 | F⁻ |
| 2011 | W300 | W139 | F⁻ | F⁻ | F⁻ | W240 | W275 | F⁻ | F⁻ | F⁻ |
| 2012 | W300 | W140 | W162 | W158 | F⁻ | W180 | W160 | W160 | W170 | F⁻ |
| Total | 2200 | 1382 | 969 | 776 | 661 | 1130 | 1050 | 615 | 635 | 415 |

¹ Con.W/M, Opt.W/M, W/M-M, W/S-M and M represent conventional and optimized winter wheat–summer maize, winter wheat–summer maize–spring maize, winter wheat–summer soybean and spring maize treatment, respectively. W, M1, M2, S and F represent winter wheat, summer maize, spring maize, summer soybean and fallow.
Soil respiration was very low even after summer soybean stover return to the field in W/S-M in mid-November 2010 when the soil temperature in the top 5 cm ranged from $-2.3$ to $+4.7^\circ C$ within a month of soil tillage. A similar phenomenon occurred at the end of October 2012 due to the late spring maize and summer soybean harvests and the soil was tilled when soil temperature to 5 cm depth was around $10^\circ C$, and the peaks of W/M-M, W/S-M and M were only one third of the values of those at the corresponding times in other years. In addition, soil respiration showed large between-year change, so that peaks of soil respiration occurred after irrigation at shooting of winter wheat in other years, but not in winter wheat in 2010.

**Figure 2. CO$_2$ emissions of different cropping systems.** Con.W/M, Opt.W/M, W/M-M, W/S-M and M represent conventional winter wheat–summer maize in one year, optimized winter wheat–summer maize in one year, winter wheat–summer maize (or summer soybean) –spring maize three harvests in two years and single spring maize system in one year; W, M1, M2, S and F represent winter wheat, summer maize, spring maize, soybean and fallow.

doi:10.1371/journal.pone.0080887.g002
Total CO2 emissions in each cropping season and each rotation cycle

Total CO2 emissions in each cropping season and each rotation cycle were system dependent (Table 2). The mean seasonal total CO2 emissions of Con.W/M were 16.8 and 15.1 Mg CO2 ha\(^{-1}\) for summer maize and winter wheat, respectively. They increased significantly by 26 and 35% in Opt.W/M in the corresponding season. Under the new alternative cropping systems W/M-M showed similar results to Opt.W/M, and the seasonal total CO2 emission of W/M-M was significantly higher than the corresponding season of Con.W/M except spring maize in 2009. However, W/S-M showed no significant difference from Con.W/M in each cropping season and the total CO2 emissions in the fallow season and spring maize of W/S-M were clearly affected by

Figure 3. Dynamics of (A) soil temperature and (B) soil VWC% to 5 cm depth.
doi:10.1371/journal.pone.0080887.g003
summer soybean planting. Total CO2 emission of M in each cropping season also showed no clear difference from Con.W/M except spring maize in 2011. In order to compare the impacts of cropping systems on CO2 emissions of each rotation cycle we calculated the total CO2 emissions during the period 2011–2012, which included two rotation cycles of Con.W/M, Opt.W/M, and M and a completely rotation cycle of W/M-M and W/S-M. Total CO2 emission of Con.W/M was 61.9 Mg CO2 ha\(^{-1}\), and increased significantly by 37 and 29% in Opt.W/M and W/M-M treatment, respectively. The total CO2 emission of W/M-M was not significantly different from Opt.W/M when there was only one season of winter wheat in two years, but total CO2 emission of W/S-M decreased sharply in contrast to Opt.W/M when summer soybean was planted to replace summer maize of W/M-M because soil respiration was reduced significantly in the following fallow and spring maize seasons after the low biomass of soybean straw was returned to the soil. Total CO2 emissions expressed as one complete rotation cycle of W/S-M, Con.W/M and M treatments were not significantly different (Table 2).

**Soil respiration as affected by C input in each growth season**

The measured soil respiration rates in this study consisted mainly of autotrophic respiration by crop roots in the current season, heterotrophic respiration of root litter and exudates in the current season, and heterotrophic respiration of crop straw return to the soil from the previous season and soil organic matter. As Fig. 2 and Table 2 show, the characteristics and total seasonal cumulative CO2 emissions were greatly affected by straw return and crop growth status. To further explain soil respiration driven by C input in each growing season, we analyzed the correlation of seasonal cumulative CO2 emissions with: (1) current-season aboveground biomass only; (2) the sum of C input of straw return to the soil from the previous season and the aboveground biomass in the current season. The relationship is improved significantly by inclusion of straw inputs (Fig. 4, equation A) compared to current-season aboveground biomass only (Fig. 4, equation B). Carbon input of straw return from the previous season and the aboveground biomass in the current season explains up to 60% of seasonal cumulative CO2 emissions, much higher than that of 27% with current-season aboveground biomass only, which demonstrates that straw C inputs from the previous season can significantly affect soil respiration.

**Correlation between soil respiration and soil temperature and VWC% to 5 cm depth**

Large changes in soil respiration followed the variation in temperature over a complete year (Figs. 2 and 3A). Soil temperature explained 45% of soil respiration using the quadratic model (Fig. 5, equation A). In addition, soil moisture exerted some impacts on soil respiration under our climatic conditions such as inhibition within a short period after irrigation at shooting and grain filling stages of winter wheat and then a sharp increase which was derived from the effects of drying and wetting cycles. Soil respiration showed significant correlations with soil VWC% using the linear (Rs = 2.7535+0.0447V, R\(^2\) = 0.04, n = 2282) and power (Rs = 17.708V\(^{0.2488}\), R\(^2\) = 0.06, n = 2282) models at P<0.001. However, soil VWC% explained only 4–6% of soil respiration. We further examined the combined effects of soil temperature and VWC% using four compound models, namely the linear, power, exponential-power and double exponential models (Table 3). The results indicate that the Rs values combining temperature and VWC% are significantly higher than using the quadratic model only considering soil temperature. Soil temperature and VWC% explained up to 65% of soil respiration using the exponential-power and double exponential models.

The exponential-power and double exponential models (Table 3) gave significant improvements compared to the linear and power models. We again compared MAE, ME and d, RMSE, MSE, and MSEE among the four models and comprehensively evaluated the model performances by the sizes of these indicators and the value of MSEE/(MSEE+MSEE\(_{\text{sys}}\)). The exponential-power model was much better for description of soil respiration in response to soil temperature and VWC% (both in the top 5 cm) in our study because it had lower MAE, MSE, MSEE and higher
Discussion

Soil respiration in croplands is affected mainly by soil properties, cropping system (which is related to crop species), tillage and straw management, water and nutrient management, and environmental variables (soil temperature, moisture etc.) [1,6,20,35]. There is temporal variation within the same cropping system and spatial variation among different cropping systems [16,17,31]. Changes in soil respiration in our sub-humid temperate monsoon region are largely affected by the seasonal variation in temperature, which is in line with most previous reports [30,31,36]. However, soil respiration responded little to soil temperature as shown in Fig. 5, equation A using the quadratic model because some data points did not fit the model with the impacts of soil tillage before the wheat crop was sown. The R² value improved by 18%, and up to 53% when the data within one month after tilling were excluded (Fig. 5, equation B). Moreover, we found that soil respiration tended to follow the variation in temperature from August to the following March when the data after tilling were excluded (Figs. 2 and 3A). Soil temperature explained 74% of soil respiration when only the data from August to March were included (Fig. 6, equation A). Therefore, the impacts of tillage must be considered for modeling soil respiration on the NCP.

The short decline in soil respiration after irrigation might be attributable to blocked diffusion of CO₂ with high moisture and limited oxygen concentrations in the soil matrix [37], and the flushes afterwards may be due to the stimulation of decomposition of plant residues [21], root litter and exudates or autotrophic respiration of rapid root growth, which taken together induced the effects of drying and wetting cycles. Soil respiration would be limited when soil moisture was too high or too low and the maximum range is usually close to field water holding capacity [38]. The disappearance of respiration flushes was due to the low soil temperatures within a week after irrigation at the shooting stage of wheat in 2010 relative to other years (6–10°C in 2010 vs 12–21°C in 2011 and 12–19°C in 2012) (Fig. 3A). Soil moisture was not the key driving factor over the whole study period but did affect soil respiration slightly at particular stages and therefore only explained a very small proportion of the variation in soil respiration in our study area.

Numerous studies have reported that soil respiration is significantly affected by tillage practices combined with straw management [14–16]. Total soil respiration was significantly higher in Opt.W/M than Con.W/M as the latter soil was rotary tilled to 20 cm depth after maize straw removal and Opt.W/M was ploughed into the top 30 cm of the soil after maize straw return to the soil, soil respiration increased sharply after soil disturbance by tillage operations possibly because increased soil aeration accelerated the decomposition rate of crop residues which was associated with higher microbial activity [14,15,39]. However, the impacts of maize straw return and tillage were lowered by delaying tillage until the soil temperature to a depth of 5 cm reached 10°C or lower.

Although seasonal cumulative CO₂ emission in Opt.W/M and W/M-M increased significantly relative to Con.W/M as a result of...
straw return [14,15], this practice also increases the SOC content over the long term [16,17,40]. The SOC content in the top 20 cm of the soil profile in straw return treatments increased by 3.9–16.5% relative to the straw removal treatments in winter wheat–summer maize double-cropping systems on the NCP, with a mean increase in rate of 0.04 to 1.44 t C ha$^{-1}$ y$^{-1}$ over a six-year period as shown by Huang et al. [19]. We also measured SOC to a depth of 20 cm in the present field experiment after summer maize harvest in 2011 and all values increased to 8.07, 8.71, 7.93 and 7.52 g kg$^{-1}$ in Con.W/M, Opt.W/M, W/M-M and W/S-M, respectively, with the sole exception of a slight decrease to 7.18 g kg$^{-1}$ in M (from 7.31 g kg$^{-1}$ at the start of the field experiment in 2007). Although there was no crop straw return, Con.W/M also showed a clear increment relative to the initial value in line with Huang et al. [19], and this may have been due to the large amounts of crop roots and rhizo-deposited carbon. Con.W/M showed a greater increase in SOC than W/M-M, W/S-M and M, possibly due to the lower intensity of tillage in Con.W/M than in W/M-M, W/S-M and M. Our results show that soil respiration responded mainly to the seasonal variation in soil temperature but was also greatly affected by straw return, root growth and soil moisture changes under the different cropping systems.

**Supporting Information**

**Table S1** Measured soil respiration fluxes, soil temperature and soil volumetric water content to 5 cm depth, daily mean air temperature and precipitation in the field experiments from 18th May 2009 to 11th November 2012.

(XLS)

**Figure 5. Impacts of soil tillage combined with straw return on soil respiration.** Correlation between soil respiration and soil temperature at 5 cm depth over the whole year (equation A) and the correlation between soil respiration and soil temperature at 5 cm depth excluding the data within one month of tillage (equation B).

doi:10.1371/journal.pone.0080887.g005

**Table 3.** Correlation between soil respiration and soil temperature and VWC(%) to 5 cm depth.

| Model                  | Fitting equation                  | $n$  | $R^2$ | MAE | ME  | RMSE | MSE$\alpha$ | MSE$\epsilon$ | $d$  |
|------------------------|-----------------------------------|------|-------|-----|-----|------|-------------|-------------|------|
| Linear                 | $R_s = 0.7712 + 0.1581T - 0.0030V$ | 1905 | 0.47**| 1.11| 0.48| 1.48 | 1.28        | 1.03        | 0.80 |
| Power (T>0)            | $R_s = 0.6291 + 0.0592T - 0.0096V$| 1811 | 0.56* | 1.17| 0.36| 1.57 | 2.13        | 0.59        | 0.70 |
| Exponential-power      | $R_s = 0.9347e^{0.069T}-0.046V$   | 1905 | 0.65* | 1.14| 0.38| 1.61 | 1.41        | 1.67        | 0.80 |
| Double exponential     | $R_s = 0.8924e^{0.0397T}-0.0040V$| 1905 | 0.65* | 1.20| 0.31| 1.69 | 1.36        | 1.81        | 0.78 |

$R_s$, $T$ and $V$ represent soil respiration, soil temperature and VWC(%) to 5 cm depth, respectively.

$**$ represents highly significant correlation at $P<0.001$.

doi:10.1371/journal.pone.0080887.t003
Author Contributions
Concurrency and designed the experiments: XJ XC FZ. Performed the experiments: BG FS FG QC. Analyzed the data: BG XJ. Contributed reagents/materials/analysis tools: XJ. Wrote the paper: BG XJ. Given some suggestion and modified the language for the manuscript OO PC.

References
1. Davidson EA, Belk E, Boone RD (1998) Soil water content and temperature as independent or confounded factors controlling soil respiration in temperate mixed hardwood forest. Global Change Biol 4: 217–227.
2. Bond-Lamberty B, Thomson A (2010) Temperature-associated increases in the global soil respiration record. Nature 464: 579–582.
3. Robertson GP, Paul EA, Harwood RR (2000) Greenhouse gases in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphere. Science 288: 1922–1926.
4. Mahecha MD, Reichstein M, Carvalhais N, Lasslop G, Lange H, et al. (2010) Global convergence in the temperature sensitivity of respiration at ecosystem level. Science 329: 838–840.
5. Grace J, Rayment M (2000) Respiration in the balance. Nature 404: 819–820.
6. Raich JW, Schlesinger WH (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B 44: 81–99.
7. Milling L, Hatake R, Geh KJ (2000) Soil CO2 flux from three ecosystems in tropical peatland of Sarawak, Malaysia. Tellus B 52: 1–11.
8. Lloyd J, Taylor JA (1994) On the temperature dependence of soil respiration. Funct Ecol 8: 515–523.
9. Fang C, Moncrieff JB (2001) The dependence of soil efflux on temperature. Soil Biol Biochem 33: 155–165.
10. Li HJ (2008) Studies on soil respiration and its relations to environmental factors in different ecosystems. Shannxi: PhD thesis, Shannxi University (in Chinese).
11. Wang WJ, Dalal RC, Moody PV, Smith CJ (2005) Relationships of soil respiration to microbial biomass, substrate availability and clay content. Soil Biol Biochem 37: 273–284.
12. Carlisle EA, Steenwerth KL, Smart DR (2006) Effects of land use on soil respiration: Conversion of Oak woodlands to vineyards. J Environ Qual 35: 1306–1404.
13. Reu A, Pogorzal E, Tedeschi V, De Parri I, Jarvis PG, et al. (2002) Annual variation in soil respiration and its components in a coppice oak forest in central Italy. Global Change Biol 8: 851–866.
14. Bayin TK, Griffis TJ, Baker JM, Venterena RT (2009) Impact of reduced tillage and cover cropping on the greenhouse gas budget of a maize/soybean rotation ecosystem. Agric Ecosystem Environ 134: 234–242.
15. Al-Kaisi MM, Yin NH (2005) Tillage and crop residue effects on soil carbon and carbon dioxide emission in corn-soybean rotation. J Environ Qual 34: 437–445.
16. Mosier AR, Halvorsen AD, Rede CA, Liu XJ (2006) Net global warming potential and greenhouse gas intensity in irrigated cropping systems in Northeastern Colorado. J Environ Qual 35: 1584–1590.
17. Allione P, Halvorsen AD, Del Grosso SJ (2009) Nitrogen, tillage, and crop rotation effects on carbon dioxide and methane fluxes from irrigated cropping systems. J Environ Qual 38: 2023–2033.
18. Zhang QZ, Wu WL, Wang MX, Zhou ZR, Chen SF (2005) The effects of crop residue amendment and N rate on soil respiration. Acta Ecologica Sinica 25: 3963–3967 (in Chinese with English abstract).
19. Huang T, Gao B, Christie P, Ju XT (2013) Net global warming potential and greenhouse gas intensity in a double cropping cereal rotation as affected by nitrogen and straw management. Bioscience Discus 10: 13191–13229.
20. Iqbal J, Hu RG, Liu S, Ahamadou B, Feng ML (2009) Carbon dioxide emissions from Ultisol under different land uses in mid-subtropical China. Geoderma 152: 63–73.
21. Xu LK, Baldochi DD, Tang JW (2004) How soil moisture, rainfall pulses, and growth alter the response of ecosystem respiration to temperature. Global Biogeochem Cyc 18: GB4002.
22. Conant RT, Dalla-Bett P, Klopatek CC, Klopatek JM (2008) Controls on soil respiration in semiarid soils. Soil Biol Biochem 36: 945–951.
23. Howard DM, Howard PJA (1993) Relationships between CO2 evolution, moisture content, and temperature for a range of soil types. Soil Biol Biochem 25: 1537–1546.
24. Zeiok-Kovacs E, Kovacs-Lung E, Bonta-Dukat Z, Kalapos T, Emmet B, et al. (2011) Thresholds and interactive effects of soil moisture on the temperature response of soil respiration. Eur J Soil Biol 47: 247–255.
25. Fang JY, Chen AP, Peng CH, Zhao SQ, Cig LIJ (2001) Changes in forest biomass carbon storage in China between 1949 and 1998. Science 292: 2320–2322.
26. Meng QF, Sun QP, Chen XP, Cui ZL, Yue SC, et al. (2012) Alternative cropping systems for sustainable water and nitrogen use in the North China Plain. Agric Ecosyst Environ 146: 93–102.
27. Cui ZL, Chen XP, Zhang FS (2010) Current Nitrogen management status and measures to improve the intensive wheat-maize system in China. Anhui 39: 376–384.
28. Ju XT, Xing GX, Chen XP, Zhang SL, Zhang LJ, et al. (2009) Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc Natl Acad Sci USA 106: 3041–3046.
29. Hu G, Delgado JA, Zhang XS, Ma L. (2005) Assessment of groundwater use by wheat (Triticum aestivum L.) in the Luancheng Xian Region and potential implications for water conservation in the Northwestern North China Plain. J Soil Water Conserv 60: 80–88.
30. Niu LA, Hao JM, Zhang BZ, Niu XS, Lu ZY (2009) Soil respiration and carbon balance in farmland ecosystems on North China Plains. Ecol Environ Sci 18: 1054–1060 (in Chinese with English abstract).
31. Meng FQ, Guan GH, Zhang QZ, Si YJ, Qu B, et al. (2006) Seasonal variation in soil respiration under different long-term cultivation practices on high yield farmland in the North China Plain. Acta Scientiae Circumstantiae 26: 992–999 (in Chinese with English abstract).
32. Guo RY, Nendel C, Rahm C, Jiang CG, Chen Q (2010) Tracking nitrogen losses in a greenhouse crop rotation experiment in North China using the EU-Rotate_N simulation model. Environ Pollut 158: 2218–2229.
33. Willmott CJ (1982) Some comments on the evaluation of model performance. Am Meteorological Soc 63: 1309–1313.
34. Xiao M (2006) Effect of long-term fertilization on soil carbon and nitrogen storages and dynamics of nitrogen mineralization. Beijing: China Agricultural University (in Chinese).
35. Lohila A, Aurela M, Regina K, Laurila T (2003) Soil and total ecosystem respiration in agricultural fields: effect of soil and crop type. Plant Soil 251: 303–317.
36. Hao GN, Zhou GS, Xu ZZ, Yang Y, Liu JH, et al. (2007) Soil temperature and biotic factors drive the seasonal variation of soil respiration in a maize (Zea mays L.) agricultural ecosystem. Plant Soil 291: 15–26.
37. Gaumont-Guay D, Black TA, Griffin TJ, Barr AG, Jassal RS, et al. (2006) Interpreting the dependence of soil respiration on soil temperature and water content in a boreal aspen stand. Agric For Mete 140: 220–235.
38. Davidson EA, Verchot LV, Cattaneo IH, Ackerman IL, Carvalho JEM (2000) Effects of soil water on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry 48: 53–69.
39. Jackson LE, Calderon FJ, Steenwerth KL, Scow KM, Rolston DE (2003) Responses of soil microbial processes and community structure to tillage events and implications for soil quality. Geoderma 114: 305–317.
40. Huang Y, Sun WJ (2006) Changes in topsoil organic carbon of croplands in mainland China over the last two decades, Chinese Sci Bull 51: 1785-1803.