Supporting Information for

Alkylsulfenyl Thiocarbonates: Precursors to Hydropersulfides Potently Attenuate Oxidative Stress

Vinayak S. Khodade, a Sahil Aggarwal, a Blaze M. Pharoah, a Nazareno Paolocci, b and John P. Toscano*. a

aDepartment of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
bDivision of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
Table of Contents

Section	Page
General information	S3
Synthesis and characterization	S4-S6
RSSH generation from 1a in the presence of β-(4-hydroxyphenyl)ethyl iodoacetamide (HPE-IAM)	S7-S8
RSSH generation from 1a-f in the presence of S-methyl methanethiosulfonate (MMTS)	S9-S12
Kinetics of RSSH release from 1a-f and 8 monitored by HPLC	S12
Decomposition of 1a and 8 in the presence of N-acetyl cysteine methyl ester	S13
RSSH generation from 1a in the presence of N-acetyl cysteine (NAC) analyzed by UPLC-MS	S13-S19
RSSH generation from 8 in the presence of NAC analyzed by UPLC-MS	S20-S26
Decomposition of control compound 13 in the presence of NAC	S26
Analysis of COS release from 1a-e and 8 in the presence of thiols using MIMS	S28
RSSH generation from 1a in the presence of L-lysine analyzed by UPLC-MS	S28
Cytotoxicity study of 1a	S32
H9c2 cell protection by precursor 1a, thiol 2, and byproduct phenol (4a) from H2O2-mediated oxidative stress	S33
Intracellular sulfane sulfur detection using the SSP4 probe	S34
References	S35
NMR spectra	S36-44
General Information
Analytical thin layer chromatography (TLC) was performed on silica gel on TLC Al foils with fluorescent indicator F254 plates (Sigma-Aldrich). Visualization was accomplished with UV light (254 nm) or staining with KMnO₄. Starting materials, solvents, and reagents were received from commercial sources (Sigma-Aldrich, Oakwood Chemical, and TCI), unless otherwise noted and were used without purification. Deuterated solvents (Cambridge Isotope Laboratories) were used for NMR spectroscopic analyses. NMR spectra were obtained on a Bruker 400 MHz NMR spectrometer. In the case of ¹H NMR in CDCl₃, chemical shifts are reported relative to tetramethylsilane (δ = 0). The other spectra are referenced internally according to residual solvent signals of deuterated chloroform (¹³C NMR; δ = 77.16 ppm), and DMSO-d₆ (¹H NMR; δ = 2.50 ppm, and ¹³C NMR; δ = 39.52 ppm). High-resolution mass spectra were obtained on a Waters Acquity Q-ToF MS/MS instrument. The kinetics of hydropersulfide release was monitored using a high-performance liquid chromatography (HPLC, Agilent 1100 series) system with a Phenomenex C-18 reverse phase column (250 mm × 4.6 mm, 5 µm). UPLC–MS analysis was carried out with a Waters Acquity/Xevo-G2 UPLC-MS system equipped with ACQUITY UPLC BEH C18 column (2.1 mm × 50 mm, 1.7 µm). The mass signals for products of RSSH trapping with S-methylmethanethiosulfonate (MMTS) were obtained via deconvolution using MassLynx 4.1 software. In addition to the protonated molecule [M+H]⁺, we also observe [M+Na]⁺ adducts during ESI-MS analysis. The pH measurements were performed using a Fisher Scientific Accumet AB15 pH-meter.
General procedure for synthesis of alkylsulfenyl thiocarbonates 1a-f

A solution of chlorocarbonylsulfenyl chloride (1.53 mmol, 1.05 equiv) in CH$_2$Cl$_2$ (5 mL) was added dropwise to a solution of N-acetyl penicillamine methyl ester (1.46 mmol, 1 equiv) in CH$_2$Cl$_2$ (10 mL) at 0 °C under nitrogen atmosphere. The reaction mixture was stirred at 0 °C for 1 h. The volatiles were removed under reduced pressure to obtain methyl-2-acetamido-3-((chlorocarbonyl)disulfaneyl)-3-methylbutanoate, which was used for the next step without further purification.

To a mixture of para-substituted phenols 4a-f (1.46 mmol, 1 equiv) and triethylamine (1.61 mmol, 1.1 equiv) in CH$_2$Cl$_2$ (10 mL), a solution of methyl-2-acetamido-3-((chlorocarbonyl)disulfaneyl)-3-methylbutanoate (1.46 mmol, 1 equiv) in CH$_2$Cl$_2$ (5 mL) was added dropwise at 0 °C. The resulting mixture was stirred at 0 °C until completion of the reaction (analyzed by TLC). The mixture was diluted with water and extracted with CH$_2$Cl$_2$ (10 mL × 3). The combined organic layer was washed with brine, dried over Na$_2$SO$_4$, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel to afford the desired hydropersulfide precursors 1a-f.

Methyl 2-acetamido-3-methyl-3-((phenoxy carbonyl) disulfaneyl) butanoate (1a)

![Chemical structure](image)

White solid (293 mg, 60%); 1H NMR (400 MHz, CDCl$_3$) δ 7.42 – 7.34 (m, 2H), 7.29 – 7.25 (m, 1H), 7.20 – 7.17 (m, 2H), 6.63 (d, $J = 9.2$ Hz, 1H), 4.72 (d, $J = 9.0$ Hz, 1H), 3.77 (s, 3H), 2.03 (s, 3H), 1.51 (s, 3H), 1.42 (s, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 170.4, 170.2, 169.5, 151.6, 129.7, 126.6, 121.0, 58.7, 53.5, 52.5, 26.3, 25.3, 23.2; HRMS (ESI) calcd. for C$_{15}$H$_{19}$NO$_5$S$_2$ ([M + H]$^+$ 358.0777, found: 358.0779.

Methyl 2-acetamido-3-methyl-3-(((p-tolyloxy) carbonyl) disulfaneyl) butanoate (1b)

![Chemical structure](image)

White solid (454 mg, 84%); 1H NMR (400 MHz, CDCl$_3$) δ 7.18 (d, $J = 8.2$ Hz, 2H), 7.06 (d, $J = 8.5$ Hz, 2H), 6.65 (d, $J = 8.9$ Hz, 1H), 4.71 (d, $J = 8.9$ Hz, 1H), 3.77 (s, 3H), 2.35 (s, 3H), 2.03 (s, 3H), 1.51 (s, 3H), 1.41 (s, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 170.4, 170.3, 169.7, 149.5, 136.5, 130.2, 120.7, 58.8, 53.5, 52.5, 26.4, 25.5, 23.2, 21.0; HRMS (ESI) calcd. for C$_{16}$H$_{21}$NO$_5$S$_2$ ([M + H]$^+$ 372.0934, found: 372.0934.

Methyl 2-acetamido-3-(((4-methoxyphenoxy) carbonyl) disulfaneyl)-3-methylbutanoate (1c)

![Chemical structure](image)

White solid (407 mg, 86%); 1H NMR (400 MHz, CDCl$_3$) δ 7.10 (d, $J = 9.2$ Hz, 2H), 6.89 (d, $J = 9.2$ Hz, 2H), 6.65 (d, $J = 8.9$ Hz, 1H), 4.71 (d, $J = 8.9$ Hz, 1H), 3.80 (s, 3H), 3.76 (s, 3H), 2.03 (s, 3H), 1.50 (s, 3H), 1.41 (s, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 170.4, 170.2, 169.8, 157.9, 145.2,
121.9, 114.7, 58.7, 55.7, 53.5, 52.5, 26.4, 25.4, 23.2; HRMS (ESI) calcd. for C₁₆H₂₁NO₆S₂ ([M + H]⁺) 388.0883, found: 388.0880.

Methyl 2-acetamido-3-(((4-fluorophenoxy)carbonyl)disulfaneyl)-3-methylbutanoate (1d)

\[
\text{[Structure Image]}
\]

White solid (363 mg, 65%); ¹H NMR (400 MHz, CDCl₃) δ 7.18 – 7.14 (m, 2H), 7.12 – 7.03 (m, 2H), 6.60 (d, J = 8.9 Hz, 1H), 4.72 (d, J = 9.0 Hz, 1H), 3.77 (s, 3H), 2.03 (s, 3H), 1.50 (s, 3H), 1.41 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.5, 170.2, 169.7, 160.65 (d, J(CF) = 245.5 Hz), 147.4 (d, J(CF) = 3.0 Hz), 122.6 (d, J(CF) = 8.5 Hz), 116.4 (d, J(CF) = 23.7 Hz), 58.6, 53.6, 52.5, 26.4, 25.3, 23.2; HRMS (ESI) calcd for C₁₅H₁₈FNO₅S₂ ([M + H]⁺) 376.0684, found: 376.0684.

Methyl 2-acetamido-3-methyl-3-(((4-(trifluoromethyl)phenoxy)carbonyl)disulfaneyl)butanoate (1e)

\[
\text{[Structure Image]}
\]

White solid (524 mg, 84%); ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 8.6 Hz, 2H), 7.33 (d, J = 8.6 Hz, 2H), 6.58 (d, J = 8.8 Hz, 1H), 4.75 (d, J = 9.1 Hz, 1H), 3.77 (s, 3H), 2.04 (s, 3H), 1.50 (s, 3H), 1.42 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.5, 170.2, 169.3, 153.8, 129.4, 129.0, 128.7, 128.4, 127.2, 125.1, 121.6, 58.5, 53.7, 52.5, 26.3, 25.2, 23.2; HRMS (ESI) calcd. for C₁₆H₁₈F₃NO₅S₂ ([M + H]⁺) 426.0651, found: 358.0.651.

Methyl 2-acetamido-3-(((4-cyanophenoxy)carbonyl)disulfaneyl)-3-methylbutanoate (1f)

\[
\text{[Structure Image]}
\]

White solid (317 mg, 75%); ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 8.9 Hz, 2H), 7.35 (d, J = 8.9 Hz, 2H), 6.53 (d, J = 9.0 Hz, 1H), 4.75 (d, J = 9.0 Hz, 1H), 3.77 (s, 3H), 2.04 (s, 3H), 1.50 (s, 3H), 1.42 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.5, 170.2, 169.0, 134.0, 122.2, 118.0, 110.6, 58.4, 53.8, 52.5, 26.2, 25.0, 23.2; HRMS (ESI) calcd. for C₁₆H₁₈N₂O₅S₂ ([M + H]⁺) 383.0730, found: 383.0731.

Methyl 2-acetamido-3-(((benzyl)oxy)carbonyl)disulfaneyl)-3-methylbutanoate (8)

\[
\text{[Structure Image]}
\]

This compound was prepared according to the procedure used for precursors 1a-f synthesis.
White solid (65 mg, 12%); 1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\) 7.46 - 7.37 (m, 5H), 6.69 (d, \(J = 8.4\) Hz, 1H), 5.41 - 5.23 (m, 2H), 4.65 (d, \(J = 8.9\) Hz, 1H), 3.73 (s, 3H), 2.03 (s, 3H), 1.45 (s, 3H), 1.36 (s, 3H); 13C NMR (101 MHz, CDCl\textsubscript{3}) \(\delta\) 170.4, 170.39, 170.3, 134.6, 129.1, 128.9, 128.8, 71.1, 58.9, 53.2, 52.5, 26.3, 25.5, 23.2; HRMS (ESI) calcd. for C\textsubscript{16}H\textsubscript{21}N\textsubscript{2}O\textsubscript{5}S\textsubscript{2} ([M + H]+) 372.0934, found: 372.0939.

\textit{Methyl N-acetyl-S-(phenoxycarbonyl)cysteinate (9a)}

\begin{center}
\begin{tikzpicture}
\end{tikzpicture}
\end{center}

To a stirred solution of N-acetyl cysteine methyl ester (1 g, 5.64 mmol) in dichloromethane (10 mL), phenylchloroformate (1.33 g, 8.46 mmol) and triethylamine (571 mg, 5.64 mmol) was added at 0 °C. The resulting mixture was allowed to stir at room temperature for 12 h. The reaction was quenched with saturated aq. NH\textsubscript{4}Cl (20 mL), and the resulting mixture was extracted with EtOAc (20 mL \(\times\) 3). The organic layer was washed with water (20 mL) and brine (20 mL) sequentially. The combined organic phases were dried over anhydrous Na\textsubscript{2}SO\textsubscript{4}, filtered, and concentrated under reduced pressure. Purification by column chromatography afforded compound 9a (769 mg, 46%) as a white solid. 1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\) 7.40 - 7.36 (m, 2H), 7.27 - 7.25 (m, 1H), 7.14 - 7.12 (m, 2H), 6.47 (d, \(J = 7.5\) Hz, 1H), 4.91 (ddd, \(J = 7.6, 5.8, 4.8\) Hz, 1H), 3.76 (s, 3H), 3.44 (ddd, \(J = 20.3, 14.4, 5.3\) Hz, 2H), 2.03 (s, 3H); 13C NMR (101 MHz, CDCl\textsubscript{3}) \(\delta\) 170.7, 170.1, 169.7, 151.2, 129.6, 126.4, 121.1, 52.9, 52.0, 33.2, 23.1; HRMS (ESI) calcd. for C\textsubscript{13}H\textsubscript{15}NO\textsubscript{5}S ([M + H]+) 298.0744, found: 298.0751.

\textit{SS-benzyl O-(4-methoxyphenyl) carbono(dithioperoxoate) (13)}

\begin{center}
\begin{tikzpicture}
\end{tikzpicture}
\end{center}

A solution of chlorocarbonylsulfenyl chloride (1.05 g, 8.05 mmol) in CH\textsubscript{2}Cl\textsubscript{2} (5 mL) was added dropwise to a solution of benzyl mercaptan (1 g, 8.05 mmol) in CH\textsubscript{2}Cl\textsubscript{2} (10 mL) at 0 °C under nitrogen atmosphere. The reaction mixture was stirred at 0 °C for 1 h. The mixture was added dropwise to a mixture of 4-methoxyphenol (670 mg, 5.40 mmol) and \(N,N\)-diisopropylethylamine (1.05 g, 8.05 mmol) in CH\textsubscript{2}Cl\textsubscript{2} (10 mL) at 0 °C. The resulting mixture was stirred at 0 °C for 1 h. The mixture was quenched with water and extracted with CH\textsubscript{2}Cl\textsubscript{2} (10 mL \(\times\) 3). The combined organic layer was washed with brine, dried over Na\textsubscript{2}SO\textsubscript{4}, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel to afford the compound 13 (1.37 g, 83%) as a colorless oil. 1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\) 7.37 - 7.26 (m, 5H), 7.03 (d, \(J = 9.2\) Hz, 2H), 6.87 (d, \(J = 9.2\) Hz, 2H), 4.05 (s, 2H), 3.79 (s, 3H); 13C NMR (101 MHz, CDCl\textsubscript{3}) \(\delta\) 168.9, 157.8, 145.2, 135.7, 129.7, 128.8, 128.0, 121.9, 114.6, 55.7, 43.3.
RSSH generation from 1a in the presence of β-(4-hydroxyphenyl)ethyl iodoacetamide (HPE-IAM)

RSSH precursor 1a and HPE-IAM were dissolved in DMSO to afford a 10 mM and 100 mM stock, respectively. Briefly, HPE-IAM (30 µL, 100 mM) was added in pH 7.4 ammonium bicarbonate buffer (50 mM, 2.94 mL) containing DTPA (100 µM) as metal chelator. The mixture was preincubated for 10 min at 37 °C. Precursor 1a (30 µL, 10 mM) was added into the mixture and incubated at 37 °C for 2 h. An aliquot of the reaction mixture (500 µL) was withdrawn and quenched with 500 µL of 1% formic acid solution and analyzed by UPLC–MS as follows: Mobile phase: 0–1 min 90% water + 0% ACN + 10% of 0.1% formic acid (v/v) in water; 1–7.5 min gradient up to 10% water + 80% ACN + 10% of 0.1% formic acid (v/v) in water; 7.5–8.4 min 10% water + 80% ACN + 10% of 0.1% formic acid (v/v) in water; 8.4–8.5 min gradient up to 90% water + 0% ACN + 10% of 0.1% formic acid (v/v) in water, 8.5–10 min 90% water + 0% ACN + 10% of 0.1% formic acid (v/v) in water. Flow rate = 0.3 mL/min. These studies were conducted at least in triplicate and representative spectra are presented.

HRMS spectra of RSS-HPE-AM and dialkyl trisulfide formed during incubation of 1a with HPE-IAM

Figure S1. HRMS of the peak eluting at 7.05 min corresponding to RSSH precursor 1a.
Figure S2. HRMS of peak eluting at 5.34 min corresponding to RSS-HPE-AM 5.

Figure S3. HRMS of the peak eluting at 5.93 min corresponding to symmetrical dialkyl trisulfide (S₃).
RSSH generation from 1a-f in the presence of S-methyl methanethiosulfonate (MMTS)

In general, RSSH precursors 1a-f and MMTS were dissolved in DMSO to afford a 10 mM and 100 mM stock, respectively unless stated otherwise. Briefly, MMTS (30 µL, 100 mM) was added in pH 7.4 ammonium bicarbonate buffer (50 mM, 2.94 mL) containing DTPA (100 µM) as metal chelator. The resulting solution was pre-incubated at 37 °C for 10 min. Precursor 1a-f (30 µL, 10 mM) were independently added into the mixture and incubated at 37 °C. An aliquot of the reaction mixture (500 µL) was withdrawn and quenched with 500 µL of 1% formic acid solution and analyzed using UPLC–MS.

![Chemical reaction diagram](image)

HRMS spectra of RSS-S-Me 7 formed during incubation of 1a-f with MMTS

Figure S4. HRMS of peak eluting at 6.39 min corresponding to RSS-S-Me 7.
Figure S5. RSSH generation from 1b (100 μM) in the presence of MMTS (1 mM) in pH 7.4 ammonium bicarbonate buffer (50 mM) incubated for 180 min at 37 °C.

Figure S6. RSSH generation from 1c (100 μM) in the presence of MMTS (1 mM) in pH 7.4 ammonium bicarbonate buffer (50 mM) incubated for 120 min at 37 °C.
Figure S7. RSSH generation from 1d (100 μM) in the presence of MMTS (1 mM) in pH 7.4 ammonium bicarbonate buffer (50 mM) incubated for 120 min at 37 °C.

Figure S8. RSSH generation from 1e (100 μM) in the presence of MMTS (1 mM) in pH 7.4 ammonium bicarbonate buffer (50 mM) incubated for 120 min at 37 °C. Asterisk indicates a small amount of dialkyl trisulfide generation presumably due to the decomposition of 1e prior to incubation with MMTS.
Figure S9. RSSH generation from 1f (100 μM) in the presence of MMTS (1 mM) in pH 7.4 ammonium bicarbonate buffer (50 mM) incubated for 120 min at 37 °C. Asterisk indicates a small amount of dialkyl trisulfide generation presumably due to the decomposition of 1f prior to incubation with MMTS.

Kinetics of RSSH release from precursors 1a-f and 8 monitored by HPLC

MMTS (100 μL, 50 mM) was added in pH 7.4 phosphate buffer saline (4.85 mL) containing the DTPA (100 μM) as metal chelator. This solution was preincubated for 10 min at 37 °C and then precursor 1a-f or 8 (50 μL, 10 mM) were independently added into the mixture (total volume = 5 mL). The resulting solution was incubated at 37 °C. At different time points, an aliquot of 300 μL was taken and quenched with 300 μL 0.1% formic acid solution. These samples were stored at 0 °C until HPLC analysis was performed. The sample (20 μL) was injected into a high-performance liquid chromatography (HPLC) equipped with Phenomenex C-18 reverse phase column (250 mm × 4.6 mm, 5 μm). HPLC Method: mobile phase A (H₂O) and mobile phase B (ACN), flow rate: 1 mL/min, run time: 21 min, the gradient elution method: 10% to 70% B from 0 to 10 min, 70% to 90% B from 10 to 21 min. The elution was monitored by a UV detector at 240 and 275 nm. First-order rate constants were obtained by plotting the precursor decay and phenol byproduct formation as a function of time.
Decomposition of 1a and 8 in the presence of N-acetyl cysteine methyl ester

To a solution of N-acetyl cysteine methyl ester (500 µM) in pH 7.4 phosphate buffer saline (100 mM) containing DTPA (100 µM), precursor 1a or 8 (100 µM) was added. The resulting mixture was incubated at 37°C. At different time points, an aliquot of the reaction mixture (500 µL) was withdrawn and transferred to pre-cooled 0.1% formic acid (500 µL) and analyzed using HPLC. First-order rate constants were obtained by plotting the precursor decay as a function of time.

RSSH generation from 1a in the presence of N-acetyl cysteine analyzed by UPLC-MS

To a solution of N-acetyl cysteine (500 µM) in pH 7.4 ammonium bicarbonate buffer (50 mM) containing DTPA (100 µM), precursors 1a (100 µM) was added. The resulting mixture was incubated at 37°C. An aliquot (200 µL) of reaction mixture was withdrawn at specified time points and quenched with 1% formic acid (200 µL). These samples were stored at 0°C until UPLC-MS analysis was performed.

Figure S10. HRMS of the peak eluting at 7.15 min corresponding to RSSH precursor 1a.
Figure S11. HRMS of the peak eluting at 4.88 min corresponding to \(N\)-acetyl penicillamine methyl ester.

Figure S12. HRMS of the peak eluting at 5.20 min corresponding to 12.
Figure S13. HRMS of the peak eluting at 5.65 min corresponding to the byproduct thiocarbonate 9a.

Figure S14. HRMS of the peak eluting at 4.63 min corresponding to mixed disulfide R¹S-SR² (‘S₂).
Figure S15. HRMS of the peak eluting at 4.71 min corresponding to other diastereomer of R’S-SR2 (‘S2).

Figure S16. HRMS of the peak eluting at 5.03 min corresponding to unsymmetrical dialkyl trisulfide R'SSSR2 (‘S3).
Figure S17. HRMS of the peak eluting at 5.48 min corresponding to unsymmetrical dialkyl tetrasulfide R_1SSSSR_2 (S_4).

Figure S18. HRMS of the peak eluting at 5.85 min corresponding to unsymmetrical dialkyl pentasulfide $R_1SSSSSR_2$ (S_5).
Figure S19. HRMS of the peak eluting at 6.02 min corresponding to symmetrical dialkyl trisulfide (S₃).

Figure S20. HRMS of the peak eluting at 6.46 min corresponding to symmetrical dialkyl tetrasulfide (S₄).
Figure S21. HRMS of the peak eluting at 6.79 min corresponding to symmetrical dialkyl pentasulfide (S_5).

Figure S22. HRMS of the peak eluting at 7.20 min corresponding to symmetrical dialkyl hexasulfide (S_6).
RSSH generation from 8 in the presence of N-acetyl cysteine analyzed by UPLC-MS

To a solution of N-acetyl cysteine (500 µM) in pH 7.4 ammonium bicarbonate buffer (50 mM) containing DTPA (100 µM), precursors 8 (100 µM) was added. The resulting mixture was incubated at 37°C. An aliquot (200 µL) of reaction mixture was withdrawn at specified time points and quenched with 1% formic acid (200 µL). These samples were stored at 0 °C until UPLC-MS analysis was performed.
Figure S23. UPLC-MS chromatograms of RSSH generation from 8 (100 μM) in the presence of NAC (500 μM) incubated in pH 7.4 ammonium bicarbonate (50 mM) with the metal chelator DTPA (100 μM) at 37 °C. RSSH-derived symmetrical dialkyl polysulfide, labeled as S_3 to S_5 ($R^1SS_nSR^1$, $n=1$-3, cyan highlight), and unsymmetrical dialkyl polysulfides labeled as $'S_2$ to $'S_5$ ($R^1SS_nSR^2$, $n=0$-3, pink highlight) formation is evident.

Figure S24. HRMS of the peak eluting at 7.21 min corresponding to RSSH precursor 8.
Figure S25. HRMS of the peak eluting at 4.58 min corresponding to mixed disulfide R¹S-SR² (‘S₂).

Figure S26. HRMS of the peak eluting at 4.67 min corresponding to other diastereomer of R¹S-SR² (‘S₂).
Figure S27. HRMS of the peak eluting at 4.83 min corresponding to N-acetyl penicillamine methyl ester.

Figure S28. HRMS of the peak eluting at 4.99 min corresponding to unsymmetrical dialkyl trisulfide R¹S₂R² (‘S₃).
Figure S29. HRMS of the peak eluting at 5.42 min corresponding to unsymmetrical dialkyl tetrasulfide R_1SSSSR_2 (S_4).

Figure S30. HRMS of the peak eluting at 5.82 min corresponding to S-alkyl thiocarbonate 9b.
Figure S31. HRMS of the peak eluting at 5.95 min corresponding to symmetrical dialkyl trisulfide (S₃).

Figure S32. HRMS of the peak eluting at 6.43 min corresponding to symmetrical dialkyl tetrasulfide (S₄).
Figure S33. HRMS of the peak eluting at 6.72 min corresponding to symmetrical dialkyl pentasulfide (S₅).

Decomposition of control compound 13 in the presence of N-acetyl cysteine

\[
\begin{align*}
\text{Ph-S-S-} & + \text{HS-C(=O)OH} \rightarrow \text{Ph-S-S-} + \text{S(SHC)COO}\text{Me} + \text{NHAc} \\
\text{13} & \quad \text{14} \\
\text{13} & \quad \text{11c}
\end{align*}
\]

UPLC-MS analysis of decomposition of 13 in the presence of N-acetyl cysteine shows exclusive unsymmetrical disulfide 14 formation, indicating that NAC selectively reacts at the disulfide bond (eq. 1). Alternatively, thiol can react at the carbonyl carbon to produce BnSSH and S-alkyl thiocarbonate 9c (eq. 2). However, we do not observe evidence of 9c formation under these conditions.
Figure S34. UPLC-MS chromatogram of compound 13 (100 µM) decomposition in the presence of NAC (500 µM) incubated in pH 7.4 ammonium bicarbonate (50 mM) with the metal chelator DTPA (100 µM) for 15 min at 37 °C. A peak at 5.93 min attributed to the unsymmetrical disulfide 14 (R₁S-SR₂) is observed.

Figure S35. HRMS of the peak eluting at 5.93 min corresponding to unsymmetrical disulfide (R₁S-SR₂).
Analysis of COS release from RSSH precursors in the presence of thiols using MIMS

COS was analyzed using a Hiden HPR-40 MIMS system with a sample cell and membrane probe that have been optimized to detect gases dissolved in aqueous solution as described previously. Stock solutions of N-acetyl-cysteine (25 mM) and glutathione (25 mM) were prepared in DI water. RSSH precursors stock solutions (5 mM) were prepared in DMSO. These solutions were degassed by purging with nitrogen for 10 min. Typically, 20 mL phosphate buffer solution (10 mM) was added to the sample cell, degassed and purged with a continuous flow of argon for 25 min. N-acetyl cysteine (200 µL, 25 mM) or glutathione (200 µL, 25 mM) and RSSH precursor (200 µL, 5 mM) were then injected using a gas tight syringe and ion current at m/z 60 (COS+) were collected (source pressure was approximately 1 × 10⁻⁷ to 5× 10⁻⁷ Torr).

Figure S36. COS measurement using MIMS generated from the RSSH precursor 8 (50 µM) with NAC, and GSH (0.25 mM, 5 equiv.) in PBS (pH 7.4, 10 mM) with DTPA (100 µM) at 37 °C.

RSSH generation from 1a in the presence of L-lysine analyzed by UPLC-MS

To a solution of L-lysine (500 µM) in pH 7.4 ammonium bicarbonate buffer (50 mM) containing DTPA (100 µM), precursor 1a (100 µM) was added. The resulting mixture was incubated at 37°C. An aliquot (200 µL) of reaction mixture was withdrawn at the specified time points (as shown in Figure 5 in the manuscript) and quenched with 1% formic acid (200 µL). These samples were stored at 0 °C until UPLC-MS analysis was performed.
Figure S37. HRMS of the peak eluting at 4.20 min corresponding to carbamate 15.

Figure S38. HRMS of the peak eluting at 5.52 min corresponding to dialkyl disulfide (S₂).
Figure S39. HRMS of the peak eluting at 5.98 min corresponding to symmetrical dialkyl trisulfide (S_3).

Figure S40. HRMS of the peak eluting at 6.42 min corresponding to symmetrical dialkyl tetrasulfide (S_4).
Figure S41. HRMS of the peak eluting at 6.79 min corresponding to symmetrical dialkyl pentasulfide (S₅).

Figure S42. HRMS of the peak eluting at 7.16 min corresponding to 1a.
Culture of cells

H9c2 embryonic rat heart myoblasts were obtained from the American Type Culture Collection. Cells were grown in Dulbecco’s minimal essential medium (DMEM), supplemented with fetal bovine serum (FBS) 10%, penicillin 100 U/mL and streptomycin 100 μg/mL. They were propagated in T75-flasks, split before reaching 70–80% confluence (usually every day or every second day), and used within 11 passages. Cells were passaged to tissue culture treated 96-well microtiter plates at the specified density in 180 μL volumes and incubated for 24 h.

Cytotoxicity study of 1a

Cells were seeded at a density of 1 x 10^4 cells/well. After 24 h, the media was replaced and compound added in 20 μL volumes using DMSO:H_2O (<0.01% DMSO) as the vehicle. Cells were incubated for an additional 24 h before media was removed. Then, 100 μL of media containing 3 μM Sytox Green nucleic acid stain (Invitrogen) was added and the cells were incubated for 2 h before fluorescence readings were obtained at 485 Ex/538 Em (Step 1). Finally, an additional 100 μL of media containing 3 μM Sytox and 0.2% Triton X-100 was added in order to permeabilize all cells and incubated for 1 h before fluorescence values measured (Step 2). The relative % cells surviving was calculated as a 100% minus the ratio of the fluorescence value of Step 1 over Step 2 (% cells surviving = 100% - (FL_538 (Step 1) / FL_538(Step 2)).

Figure S43. Cell viability assay conducted on H9c2 cells with Precursor 1a (12.5, 50, 100 and 200 μM) and byproduct phenol (4a) (200 μM) using Sytox Green nucleic acid stain. Results are expressed as the mean ± SEM (n = 5 for each treatment group) with 3 independent experiments.
H9c2 cell protection by precursor 1a from H$_2$O$_2$-mediated oxidative stress

Cell Counting Kit-8 (CCK-8)2

Cells were seeded at a density of 5 x 103 cells/well. After 24 h, precursor 1a or phenol byproduct 4a was added at 20 µL volumes using DMSO:H$_2$O (<0.01% DMSO as the vehicle). Cells were incubated for 2 h before media was removed and the cells gently washed with PBS (pH 7.4). Then, 180 µL of fresh media and 20 µL H$_2$O$_2$ diluted into H$_2$O were added and cells were incubated for an additional 2 h. At the completion of H$_2$O$_2$ exposure, each well is carefully washed 3 times with PBS (pH 7.4) before adding 100 µL of media, without-FBS, containing 10% v/v CCK-8 (Dojindo) and incubated for 3 h prior to obtaining absorbance values at 450 nm. The relative % viability was calculated as 100 times the ratio of the Abs$_{450}$ (pretreated, H$_2$O$_2$-exposed) over Abs$_{450}$ (vehicle-treated, non H$_2$O$_2$-exposed).

Sytox Green nucleic acid stain3

Cells were seeded at a density of 1 x 104 cells/well. After 24 h, precursor 1a or phenol byproduct 4a is added in 20 µL volumes using DMSO:H$_2$O (<0.01% DMSO). Cells were incubated for 2 h before media was removed and the cells gently washed with PBS (pH 7.4). Then, 180 µL of fresh media and 20 µL H$_2$O$_2$ diluted in H$_2$O were added before cells were incubated for an additional 1 h. After removing this media, 100 µL of media containing 3 µM Sytox Green nucleic acid stain was added, and the cells incubated for 2 h before fluorescence readings were obtained at 485$_{ex}$/538$_{em}$ (Step 1). Finally, an additional 100 µL of media containing 3 µM Sytox and 0.2% Triton X-100 was added in order to permeabilize all cells and incubated for 1 h before fluorescence values measured (Step 2). The relative % cells surviving was calculated as a 100% minus the ratio of the fluorescence value of Step 1 over Step 2 (% cells surviving = 100% - (FL$_{538}$ (Step 1)/ FL$_{538}$ (Step 2)). Fluorescence values for vehicle-treated, non-H$_2$O$_2$-exposed wells were treated as background cell death and this value is added to the % cell survival for each subsequent group.

H9c2 cell protection by thiol 2 from H$_2$O$_2$-mediated oxidative stress

![Graph](image-url)

Figure S44 Cell viability of H9c2 cardiac myoblasts pretreated with N-acetyl-penicillamine methyl ester (2) at 0, 5, 10, 25, and 50 µM for 4 h followed by exposure to H$_2$O$_2$ (200 µM) for 2 h. Quantification of viability was carried out using Cell Counting Kit-8 (CCK-8). Results are expressed as the mean ± SEM (n = 5 for each treatment group) with two independent experiments.
Intracellular sulfane sulfur detection using the SSP4 probe

Cells were seeded at a density of 1.5 x 10^4 cells/well. After 24 h, the media is removed, and the cells are washed two times with fresh serum-free media. Then, 20 μM SSP4 and 500 μM CTAB are introduced to the cells in a 100 μL volume of serum-free media for 20 minutes. The SSP4/CTAB solution is removed, and the cells are washed two times with fresh serum-free media. Finally, 100 μL of serum-free media containing 50, 100, or 200 μM of 1a is added to the wells and incubated at 37 °C. The fluorescence readings were measured using a plate reader at the emission and excitation wavelengths of 482 nm and 515 nm, respectively. Results are normalized to the 0 μM value at each time point and expressed as the mean ± SEM (n = 3 for each treatment group) with three independent experiments.

Figure S45 Intracellular RSSH release in H9c2 cardiac myoblasts. H9c2 cells were pretreated with SSP4 (20 μM) and CTAB (500 μM) for 20 min, followed by incubation with N-acetyl O-methyl cysteine trisulfide at 0, 50, 100, 25, and 200 μM. Fluorescence intensity was measured at the indicated times. Results are normalized to the 0 μM value at each time point and expressed as the mean ± SEM (n = 3 for each treatment group) with three independent experiments.
SSP4 probe response from various sulfane sulfur species

(a) \(\text{Na}_2\text{S}_3 \)
(b) \(\text{N-Ac-OMe-Cys(S)_3} \)
(c) \(1\text{a} \)

Figure S46. Fluorescence enhancement \((F/F_0)\) of SSP4 probe in the presence of increasing concentration of (a) disodium trisulfide, (b) \(N\)-acetyl \(O\)-methyl cysteine trisulfide, and (c) \(1\text{a} \). These species were first incubated at 37 °C in DMEM medium for 3 h and then the SSP4 probe (20 µM) was added. The resulting mixture was incubated for 30 min and fluorescence was measured at \(\lambda_{ex} = 485 \text{ nm} \) and \(\lambda_{em} = 515 \text{ nm} \).

Figure S47. Plot of \(\log (K_x/K_H) \) for RSSH release from \(1\text{a-f} \) versus the Hammett substitution constant \(\sigma \) (reaction constant \(\rho = 0.71 \); \(R^2 = 0.920 \)).

References

1. M. R. Cline, C. Tu, D. N. Silverman and J. P. Toscano, *Free Radical Biol. Med.*, 2011, **50**, 1274-1279.
2. H. Tominaga, M. Ishiyama, F. Ohseto, K. Sasamoto, T. Hamamoto, K. Suzuki and M. Watanabe, *Anal. Commun.*, 1999, **36**, 47-50.
3. J. P. Hofgaard, K. S. Sigurdardottir and M. Treiman, *Pharmacol. Res.*, 2006, **54**, 303-310.
4. W. Chen, C. Liu, B. Peng, Y. Zhao, A. Pacheco and M. Xian, *Chem. Sci.*, 2013, **4**, 2892-2896.
Figure S48. 1H and 13C NMR spectra of 1a.
Figure S49. 1H and 13C NMR spectra of 1b.
Figure S50. 1H and 13C NMR spectra of 1c.
Figure S51. 1H and 13C NMR spectra of 1d.
Figure S52. 1H and 13C NMR spectra of 1e.
Figure S53. 1H and 13C NMR spectra of 1f.
Figure S54. 1H and 13C NMR spectra of 8.
Figure S55. 1H and 13C NMR spectra of 9a.
Figure S56. 1H and 13C NMR spectra of 13.