Mobility enhancement and highly efficient gating of monolayer MoS₂ transistors with polymer electrolyte

Ming-Wei Lin¹, Lezhang Liu¹, Qing Lan¹, Xuebin Tan², Kulwinder S Dhindsa¹, Peng Zeng², Vaman M Naik³, Mark Ming-Cheng Cheng² and Zhixian Zhou¹,4

¹ Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201, USA
² Department of Electrical and Computer Engineering, Wayne State University, Detroit, MI 48202, USA
³ Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI 48128, USA
E-mail: zxzhou@wayne.edu

Received 29 April 2012, in final form 21 June 2012
Published 10 August 2012
Online at stacks.iop.org/JPhysD/45/345102

Abstract
We report electrical characterization of monolayer molybdenum disulfide (MoS₂) devices using a thin layer of polymer electrolyte (PE) consisting of poly(ethylene oxide) (PEO) and lithium perchlorate (LiClO₄) as both a contact-barrier reducer and channel mobility booster. We find that bare MoS₂ devices (without PE) fabricated on Si/SiO₂ have low channel mobility and large contact resistance, both of which severely limit the field-effect mobility of the devices. A thin layer of PEO/LiClO₄ deposited on top of the devices not only substantially reduces the contact resistance but also boost the channel mobility, leading up to three-orders-of-magnitude enhancement of the field-effect mobility of the device. When the PE is used as a gate medium, the MoS₂ field-effect transistors exhibit excellent device characteristics such as a near ideal subthreshold swing and an on/off ratio of 10⁶ as a result of the strong gate-channel coupling.

(Some figures may appear in colour only in the online journal)

1. Introduction
Graphene has opened the tantalizing possibility of ‘post-silicon’ high performance electronics because of its one atomic-layer thickness and extraordinarily high carrier mobility [1–4]. However, the lack of an appreciable bandgap in graphene poses a major problem for conventional digital applications. As a semiconducting analogue of graphene, single-layer MoS₂ has a direct bandgap of ~1.8 eV, which makes it a suitable channel material for low power digital electronics [5]. Similar to graphene, atomic layers of covalently bonded S–Mo–S units can be extracted from bulk MoS₂ crystals by a mechanical cleavage technique due to relatively weak van der Waals interactions between the layers. However, the carrier mobility in monolayer and few-layer MoS₂ field-effect transistors (FETs) fabricated on Si/SiO₂ substrates are typically in the range 0.1–10 cm² V⁻¹ s⁻¹, which is not only orders of magnitude lower than that of graphene but also substantially lower than the phonon-scattering-limited mobility in bulk MoS₂ (which is on the order of 100 cm² V⁻¹ s⁻¹) [6–9]. Radišavljević et al have recently shown that the mobility of monolayer MoS₂ FETs can be improved to at least 200 cm² V⁻¹ s⁻¹ by depositing a thin layer of HfO₂ high-κ gate dielectric on top of MoS₂ devices, where the significant mobility enhancement was attributed to the suppression of Coulomb scattering due to the high-κ environment and modification of phonon dispersion [10]. However, it is not clear to what extent the observed mobility increase can be attributed to the screening of charged impurities and phonon dispersion modification. On the one hand, a temperature-dependent electrical transport study of monolayer and few-layer MoS₂ FETs by Ghatak et al suggests that the relatively low mobility in MoS₂ FET devices fabricated on the Si/SiO₂ substrate is a channel effect, largely limited by the charge-impurity-induced electron localization [7]. On the other hand, Lee et al showed that the mobility in MoS₂...
FETs fabricated on the Si/SiO₂ substrate can be largely underestimated due to the Schottky barriers at the MoS₂/metal contacts [11].

In this paper, we report a simple method to fabricate high mobility (∼10² cm² V⁻¹ s⁻¹) MoS₂ FETs by covering the devices with a thin layer of polymer electrolyte (PE) consisting of poly(ethylene oxide) (PEO) and lithium perchlorate (LiClO₄). The estimated room-temperature field-effect mobility of the monolayer MoS₂ FETs increases by up to three orders of magnitude upon adding the PE. To study the respective influence of the MoS₂/metal contacts and MoS₂ channel on the device characteristics, we fabricated multiple devices with different channel lengths on a single ribbon of monolayer MoS₂ with uniform width. Electrical characterization of these devices reveals that the PE-induced mobility enhancement can be attributed partially to the drastic reduction of contact resistance and partially to the increase in the channel mobility. The improvement of the channel mobility is likely due to the neutralization of the uncorrelated charged impurities on or near the MoS₂ channel by the counter ions in the PE [12–14]. Furthermore, we demonstrate for the first time that near ideal gate-channel coupling can be achieved in our PE-gated MoS₂ FETs with the subthreshold swing approaching the theoretical limit of 60 mV dec⁻¹ at room temperature for metal–oxide–semiconductor field-effect transistors (MOSFETs).

2. Experimental details

Monolayer MoS₂ flakes were produced by repeated splitting of MoS₂ crystals by a mechanical cleavage method, and subsequently transferred to degenerately doped silicon substrates covered with a 290 nm thick thermal oxide layer [6, 15]. An optical microscope was used to identify monolayer (and few-layer) MoS₂ samples, which were further characterized by non-contact mode atomic force microscopy (AFM) and Raman spectroscopy. Figure 1(a) shows an AFM image of a typical monolayer MoS₂. From a line scan of the AFM image (figure 1(b)), we estimate that the MoS₂ sample is ∼0.7 nm thick, corresponding to a single layer [8, 10]. Raman Spectra were collected using a Jobin–Yvon Horiba Triax 550 spectrometer, a liquid-nitrogen cooled charge-coupled device (CCD) detector, an Olympus model BX41 microscope with a 100× objective, and a Modu-Laser (Stellar-Pro-L) Argon-ion laser operating at 514.5 nm. The laser spot size was ∼1 μm in diameter and the laser power at the sample was maintained at low level (∼200 μW) to avoid any heating effect. The Raman spectrum of the sample shows two peaks at 383.5 cm⁻¹ and 403 cm⁻¹ (figure 1(c)), which can be associated with the in-plane E₁²g and out-of-plane A₁g vibrations of a monolayer MoS₂, respectively [16].

FET devices of monolayer MoS₂ were fabricated using standard electron beam lithography and electron beam deposition of 5 nm of Ti and 50 nm of Au [17]. A PE was prepared in air by dissolving PEO and LiClO₄ in the 8:1 weight ratio in de-ionized water, and then drop casted onto the MoS₂ devices, where the PE gate electrodes were simultaneously patterned on the substrate along with the drain and source electrodes [18]. The PE electrode was kept very close to the device channel, and the coverage of the PE was also limited to within an area of less than 100 μm around the channel and PE electrode. Figure 2(a) shows a micrograph of a typical MoS₂ device with schematically illustrated PE. Electrical properties of the devices were measured by a Keithley 4200 semiconductor parameter analyser in vacuum (∼1 × 10⁻⁶ Torr) and at room temperature (unless otherwise specified) both before and after adding the PE. The electrical measurements were conducted in both the Si back gate (with or without PE) and PE-gate configurations. As schematically shown in figure 4(a), when a positive (negative) voltage is applied to a PE-gate-electrode near the device channel, negative (positive) and positive (negative) ions in the PE accumulate on the gate electrode and channel, respectively, forming electric double layers (EDL) at their interfaces with the electrolyte [19].

3. Results and discussions

We first measured the electrical properties of several monolayer MoS₂ FET devices without PE and found a
MoS2 FET (device A) measured in the Si-back gate configuration with schematically sketched PE. (before and after adding the PEO/LiClO4 PE. consistently low mobility between 0.1 and 1.5 cm² V⁻¹ S⁻¹, which is in agreement with the values reported in the literature [6, 7, 20]. Upon adding the PE, a significant mobility increase is observed in all devices. Figure 2(b) shows the low-bias linear conductivity defined as \(\sigma = L/W \times I_{ds}/V_{ds} \) versus back gate voltage in a typical monolayer MoS2 device (device A) before and after adding the PE layer. Here \(L, W, I_{ds}, \) and \(V_{ds} \) are the channel length (5.9 \(\mu \)m), channel width (0.6 \(\mu \)m), drain-source current and drain-source voltage, respectively. The field-effect mobility estimated from the linear region of the transfer characteristics of the device using the formula \(\mu = \Delta \sigma / (C_{bg} \Delta V_{bg}) \) before and after adding the PE is \(~0.1 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1} \) and \(~150 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1} \), respectively. Here \(C_{bg} = 1.2 \times 10^{-8} \text{ F cm}^{-2} \) and \(\varepsilon_{e} = 3.9 \). Similar mobility improvement has been observed in monolayer MoS2 FETs by Radisavljevic et al upon depositing a thin layer of HfO2 on top, which was attributed to the suppression of the Coulomb scattering due to the high-\(k \) dielectric environment and modification of phonon dispersion in MoS2 monolayers [10]. However, the dielectric constant of the PE (\(\varepsilon = 5 \)) used in this study is much lower than that of HfO2 [21]. Moreover, the mobility of the devices drops drastically upon cooling below the freezing temperature of the ions in the PE, ruling out dielectric screening as the dominant mechanism responsible for the mobility enhancement in our devices (see figure 3(c) and detailed discussion below).

A possible mechanism for the field-effect mobility improvement in our devices is the ionic screening effect. At any given back gate voltage, the free counter ions in the PE accumulate on the graphene surface to neutralize the uncorrelated charged impurities [12–14]. Two orders of magnitude increase in mobility has previously been observed in graphene FETs immersed in ionic solutions, which was attributed to the ionic screening of charged impurity scattering in graphene [12, 14]. Although the PE is expected to introduce additional charged impurities, studies on PE-gated carbon nanotube and graphene FETs show that the mobility of these devices remains high (on the order of \(10^4 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1} \)) upon adding PEO/LiClO4 PE [1, 8, 19, 22]. One likely scenario is that the Li⁺ and ClO₄⁻ ions accumulated on the channel surfaces are correlated in contrast to the uncorrelated initial charged impurities near or on the channel surfaces. Even modest correlations in the position of charged impurities has been shown to substantially increase the mobility in graphene [23]. Therefore, the neutralization of the uncorrelated charged impurities on or near the MoS2 surface by the counter ions from the PE is likely, at least partially, responsible for the orders of magnitude increase in the mobility upon addition of PE.

A second possibility is that the mobility of our MoS2 devices without PE is substantially underestimated due to the presence of Schottky barriers at the MoS2/metal contacts (the contact resistance was not excluded in calculating the mobility). Figure 3(a) shows the drain–source current (\(I_{ds} \)) versus bias voltage (\(V_{bg} \)) measured at different back gate voltages for the same MoS2 device (device A) before depositing the PE. Although the device exhibits linear and symmetric \(I_{ds}–V_{ds} \) dependence at low \(V_{bg} \) (figure 3(a) inset), the \(I_{ds}–V_{ds} \) behaviour is non-linear and asymmetric at high bias voltages. When the drain and source electrode connections are physically exchanged, the \(I_{ds}–V_{ds} \) characteristics also change suggesting the presence of asymmetry and possibly non-negligible Schottky barriers at the contacts. It has been recently reported that the current flow in MoS2 can be largely limited by the contact barriers leading to a significant underestimate of the mobility [11]. Modelling the \(I_{ds}–V_{ds} \) characteristics of individual MoS2 flakes with proper consideration of the contact barriers yields mobility values comparable to the estimated field-effect mobility in our PE-covered monolayer MoS2 devices as well as that reported in HfO2-covered MoS2 devices [10]. Liu et al have further demonstrated that the field-effect mobility of multilayer (~20 monolayers) MoS2 FETs exceeds 500 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1} due to the smaller bandgap (thus smaller Schottky barrier) compared with monolayer MoS2 [24]. Therefore, a substantial reduction of the contact barriers is also likely to significantly increase the slope of the transfer characteristics (\(d\sigma/dV_{bg} \)), leading to a higher estimated field-effect mobility.

To shed more light on the origin of the PE-induced mobility enhancement in our MoS2 FET devices, it is necessary to investigate the respective contributions of the MoS2/metal

Figure 2. (a) An optical micrograph of a typical MoS2 FET device with schematically sketched PE. (b) Conductivity of a representative MoS2 FET (device A) measured in the Si-back gate configuration before and after adding the PEO/LiClO4 PE.
contacts and the MoS$_2$ channel to the total resistance of the device at various gate voltages before and after adding the PE. In figure 3(b), we plot the resistances of multiple FETs fabricated on the same monolayer MoS$_2$ ribbon with uniform width as a function of the channel length before adding the PE, where each resistance value is calculated from the slope of the I_{ds}–V_{ds} characteristics in the low-bias linear regime, as shown in the inset of figure 3(a). It is obvious that the resistance increases nearly linearly with the channel length, from which the contact resistance is estimated to be 40 MΩ and 150 MΩ at $V_{bg} = 40$ and 30 V, respectively. The scattering of data at $V_{bg} = 30$ V may be due to the contact resistance variation among different devices. The channel resistance for the device with $L = 5.9 \mu m$ (device A) is several times larger than its contact resistance at all gate voltages, suggesting that the field-effect behaviour in our long channel devices is dominated by the channel instead of the contacts. This finding is consistent with that of Radisavljevic et al [10]. Upon applying the PE, the low-bias resistance of the device decreases to below 2 MΩ for $V_{bg} > 3$ V, as shown in the inset of figure 3(b). In the linear region of the transfer characteristics (from which the field-effect mobility is estimated), the total resistance of the device (device A) with PE remains below 7 MΩ, which is significantly lower than either the contact resistance or the channel resistance alone without the PE. This finding shows that covering our single layer MoS$_2$ FETs with PE not only reduces the channel resistance but also lowers the contact barriers, both of which are critical to improving the field-effect
mobility of the MoS2 FETs. While the improvement of the channel mobility can be attributed to the neutralization of uncorrelated charged impurities, the reduction of the contact barriers could be due to the modification of the metal work function at the contacts by the PE. It has been shown that the adsorption of certain molecules on electrode-metal surfaces can induce a strong decrease in the work function [25]. As our MoS2 devices are n-type, reducing the work function lowers the Schottky barriers at the contacts [11]. Due to the interplay of the variations in the channel mobility enhancement and contact barrier reduction, the resistance of the devices does not follow the linear dependence on the channel length, making it difficult to accurately extract the contact resistance in MoS2 devices with PE.

Addition of a top dielectric medium has also been shown to increase the back gate capacitance by up to two orders of magnitude in graphene FETs, leading to an overestimation of the mobility when this dramatic capacitance increase was not accounted for [26, 27]. In order to rule out this possibility and further verify that the increase in \(\frac{\sigma}{dV_g} \) upon applying the PE was indeed due to the combined effects of contact resistance reduction and channel mobility increase, we show in figure 3(c) the transfer characteristics of another monolayer MoS2 device (device B) measured below and above the freezing temperature of the Li\(^+\) and ClO\(_4\)\(^-\) ions. The nearly two orders of magnitude lower \(\frac{\sigma}{dV_g} \) (which is proportional to the mobility) at 220 K than at 295 K is likely due to the freezing of both the Li\(^+\) and ClO\(_4\)\(^-\) ions inside the PEO polymer. Thus they are no longer able to dynamically neutralize the charged impurities on or near the MoS2 channel as the charged impurities (including those in the SO\(_2\) dielectric) move and redistribute during the back gate voltage sweeps [23, 28]. The dramatic decrease in the mobility below the freezing temperature of Li\(^+\) and ClO\(_4\)\(^-\) ions eliminates the possibility of overestimating the mobility in PE covered MoS2 devices due to the dielectric-media-induced capacitance increase. To further rule out the possibility of PE-induced capacitance increase as a major cause of the observed mobility increase, we also estimated the back gate capacitance with PE from the drain–source current versus PE-gate voltage \((I_{ds}–V_{tg}) \) measured at different \(V_{bg} \) values, as shown in figure 3(d). When \(V_{bg} \) is changed by 40 V, the \(I_{ds}–V_{tg} \) curve shifts by 0.7–0.8 V along the \(V_{tg} \) axis. Assuming that the PE-gate capacitance \((C_{tg}) \) is \(\sim 10^{-6} \text{ F cm}^{-2} \) [19], the back gate capacitance with PE is estimated to be \(\sim 10^{-8} \text{ F cm}^{-2} \) (based on \(C_{bg} = \Delta V_{tg}/\Delta V_{bg} \times C_{tg} \)) consistent with the \(C_{bg} \) value without PE, suggesting that the PE does not substantially influence the back gate capacitance.

In addition to serving as a contact-barrier reducer and channel-mobility booster, the PE can also be used as a gate material to substantially improve the gate efficiency by taking advantage of the large EDL capacitance at the PE/MoS2 interface. In order to avoid chemically induced sample degradation, the applied PE-gate voltage was limited to a conservative range, in which the leak current was maintained below 200 pA. The Raman spectra of the single layer MoS2 before adding the PE and after removing the PE (upon completion of all electrical measurements) are nearly identical, excluding the possibility of electrochemically induced sample degradation. Figure 4(b) shows the transfer characteristic of device B (the same device as in figure 3(c)) measured in the PE-gate configuration. The overall PE-gate dependence of the drain–source current closely resemble those reported in [10], where 30 nm of HfO\(_2\) was used as the top-gate dielectric. The transfer characteristics remain essentially unchanged at different gate voltage sweeping rates. For a drain–source voltage of 300 mV, a current on–off ratio of \(10^6 \) is reached for \(-2 < V_{tg} < 0.5 \) V, and a subthreshold swing \((S) \) of \(\sim 62 \text{ mV/decade} \) is obtained. This \(S \) value is notably smaller than the \(S = 74 \text{ mV/decade} \) reported in [10], and approaches the theoretical limit of 60 mV/decade, indicating that the gate efficiency of our PE-gated MoS2 device is close to 1. Such a large gate efficiency can be attributed to the large EDL.
capacitance of the PE. The near ideal subthreshold swing along with the strongly linear dependence of I_D on V_D at various top-gate voltages (figure 4(b) inset) further suggests that the PE reduces the Schottky barriers to nearly ohmic [29].

4. Conclusion

We have fabricated high mobility and high gate-efficiency monolayer MoS$_2$ FETs by simply adding PEO/LiClO$_4$ PE on top of the devices. A channel-length dependent study of the device characteristics suggests that the over 103 time mobility increase upon adding the PE is due partially to the reduction of contact resistance and partially to the enhancement of channel mobility by the PE. We have also demonstrated excellent device performance with a nearly ideal subthreshold swing (∼60 mV/decade at room temperature) and an on/off ratio of 106 in PE-gated devices.

Acknowledgments

This work was supported by the NSF (No ECCS-1128297). Part of this research was conducted at the Center for Nanophase Materials Sciences under project No CNMS2011-066.

References

[1] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P and Stormer H L 2008 Ultrahigh electron mobility in suspended graphene Solid State Commun. 146 351
[2] Bolotin K I, Sikes K J, Hone J, Stormer H L and Kim P 2008 Temperature-dependent transport in suspended graphene Phys. Rev. Lett. 101 096802
[3] Du X, Skachko I, Barker A and Andrei E Y 2008 Approaching ballistic transport in suspended graphene Nature Nanotechnol. 3 491
[4] Dean C R et al 2010 Boron nitride substrates for high-quality graphene electronics Nature Nanotechnol. 5 722
[5] Yoon Y, Ganapathi K and Salahiuddin S 2011 How good can monolayer MoS$_2$ transistors be? Nano Lett. 11 3768
[6] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V and Geim A K 2004 Electric field effect in atomically thin carbon films Science 306 666
[7] Lee C, Yan H, Brus L E, Heinz T F, Hone J and Ryu S 2010 Anomalous lattice vibrations of single- and few-layer MoS$_2$ ACS Nano 4 2695
[8] Lin M-W, Ling C, Agapito L A, Kioussis N, Zhang Y, Cheng M M-C, Wang W L, Kaxiras E and Zhou Z 2011 High-throughput synthesis of graphene by intercalation–exfoliation of graphite oxide and study of ionic screening in graphene transistor ACS Nano 3 3587
[9] Wang S, Ang P K, Wang Z, Tang A L L, Thong J TL and Loh K P 2009 High mobility, printable, and solution-processed graphene electronics Nano Lett. 10 92
[10] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Electric field effect in atomically thin carbon films Science 306 666
[11] Lee K, Kim H-Y, Lotya M, Coleman J N, Kim G-T and Duesberg G S 2011 Electrical characteristics of molybdenum disulfide flakes produced by liquid exfoliation Adv. Mater. 23 4178
[12] Chen F, Xia J and Tao N 2009 Ionic Screening of charged-impurity scattering in graphene Nano Lett. 9 1621
[13] Ang P K, Wang S, Bao Q, Thong J TL and Loh K P 2009 High-throughput synthesis of graphene by intercalation–exfoliation of graphite oxide and study of ionic screening in graphene transistor ACS Nano 3 3587
[14] Wang S, Ang P K, Wang Z, Tang A L L, Thong J TL and Loh K P 2009 High mobility, printable, and solution-processed graphene electronics Nano Lett. 10 92
[15] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Electric field effect in atomically thin carbon films Science 306 666
[16] Lee C, Yan H, Brus L E, Heinz T F, Hone J and Ryu S 2010 Anomalous lattice vibrations of single- and few-layer MoS$_2$ ACS Nano 4 2695
[17] Lin M-W, Ling C, Agapito L A, Kioussis N, Zhang Y, Cheng M M-C, Wang W L, Kaxiras E and Zhou Z 2011 High-throughput synthesis of graphene by intercalation–exfoliation of graphite oxide and study of ionic screening in graphene transistor ACS Nano 3 3587
[18] Wang S, Ang P K, Wang Z, Tang A L L, Thong J TL and Loh K P 2009 High mobility, printable, and solution-processed graphene electronics Nano Lett. 10 92
[19] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Electric field effect in atomically thin carbon films Science 306 666
[20] Lee C, Yan H, Brus L E, Heinz T F, Hone J and Ryu S 2010 Anomalous lattice vibrations of single- and few-layer MoS$_2$ ACS Nano 4 2695
[21] Lin M-W, Ling C, Agapito L A, Kioussis N, Zhang Y, Cheng M M-C, Wang W L, Kaxiras E and Zhou Z 2011 High-throughput synthesis of graphene by intercalation–exfoliation of graphite oxide and study of ionic screening in graphene transistor ACS Nano 3 3587
[22] Wang S, Ang P K, Wang Z, Tang A L L, Thong J TL and Loh K P 2009 High mobility, printable, and solution-processed graphene electronics Nano Lett. 10 92
[23] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Electric field effect in atomically thin carbon films Science 306 666
[24] Lee C, Yan H, Brus L E, Heinz T F, Hone J and Ryu S 2010 Anomalous lattice vibrations of single- and few-layer MoS$_2$ ACS Nano 4 2695
[25] Lin M-W, Ling C, Agapito L A, Kioussis N, Zhang Y, Cheng M M-C, Wang W L, Kaxiras E and Zhou Z 2011 High-throughput synthesis of graphene by intercalation–exfoliation of graphite oxide and study of ionic screening in graphene transistor ACS Nano 3 3587
[26] Wang S, Ang P K, Wang Z, Tang A L L, Thong J TL and Loh K P 2009 High mobility, printable, and solution-processed graphene electronics Nano Lett. 10 92
[27] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Electric field effect in atomically thin carbon films Science 306 666
[28] Lee C, Yan H, Brus L E, Heinz T F, Hone J and Ryu S 2010 Anomalous lattice vibrations of single- and few-layer MoS$_2$ ACS Nano 4 2695
[29] Lin M-W, Ling C, Agapito L A, Kioussis N, Zhang Y, Cheng M M-C, Wang W L, Kaxiras E and Zhou Z 2011 High-throughput synthesis of graphene by intercalation–exfoliation of graphite oxide and study of ionic screening in graphene transistor ACS Nano 3 3587
[30] Wang S, Ang P K, Wang Z, Tang A L L, Thong J TL and Loh K P 2009 High mobility, printable, and solution-processed graphene electronics Nano Lett. 10 92