Title
Outdoor Air Pollution and New-Onset Airway Disease. An Official American Thoracic Society Workshop Report.

Permalink
https://escholarship.org/uc/item/4qd3j4x4

Journal
Annals of the American Thoracic Society, 17(4)

ISSN
2329-6933

Authors
Thurston, George D
Balmes, John R
Garcia, Erika
et al.

Publication Date
2020-04-01

DOI
10.1513/annalsats.202001-046st

Peer reviewed
Abstract

Although it is well accepted that air pollution exposure exacerbates preexisting airway disease, it has not been firmly established that long-term pollution exposure increases the risk of new-onset asthma or chronic obstruction pulmonary disease (COPD). This Workshop brought together experts on mechanistic, epidemiological, and clinical aspects of airway disease to review current knowledge regarding whether air pollution is a causal factor in the development of asthma and/or COPD. Speakers presented recent evidence in their respective areas of expertise related to air pollution and new airway disease incidence, followed by interactive discussions. A writing committee summarized their collective findings. The Epidemiology Group found that long-term exposure to air pollution, especially metrics of traffic-related air pollution such as nitrogen dioxide and black carbon, is associated with onset of childhood asthma. However, the evidence for a causal role in adult-onset asthma or COPD remains insufficient. The Mechanistic Group concluded that air pollution exposure can cause airway remodeling, which can lead to asthma or COPD, as well as asthma-like phenotypes that worsen with long-term exposure to air pollution, especially fine particulate matter and ozone. The Clinical Group concluded that air pollution is a plausible contributor to the onset of both asthma and COPD. Available evidence indicates that long-term exposure to air pollution is a cause of childhood asthma, but the evidence for a similar determination for adult asthma or COPD remains insufficient. Further research is needed to elucidate the exact biological mechanism underlying incident childhood asthma, and the specific air pollutant that causes it.

Keywords: air pollution; asthma; COPD; new-onset airway disease
Overview

This workshop was convened to evaluate the evidence regarding outdoor air pollution as a causal factor in the development of new-onset asthma and/or chronic obstructive pulmonary disease (COPD). The available evidence on epidemiological associations, biological mechanisms, and clinical considerations was evaluated. Workshop participants presented the current state of the science in their respective fields, based on their expertise and review of the latest research available. Key conclusions and recommendations included the following:

- The weight of the evidence is consistent with a causal relationship between new onset of childhood asthma and long-term exposure to outdoor air pollution, especially metrics of traffic-related air pollution (TRAP), such as nitrogen dioxide (NO₂) and black carbon (BC).
- It is unclear whether direct effects of NO₂ (the best-studied TRAP component in epidemiologic studies) or other components of TRAP, such as fuel combustion particles (implicated in toxicologic animal studies), explain the causal link with asthma.
- Further studies are needed to determine whether the relationships found in TRAP studies can be generalized to air pollution from other combustion sources, and to assess the impact of air pollution on the development of adult-onset asthma and/or COPD.
- The reduced incidence of new onset of childhood asthma should be included in future assessments of the health and monetary benefits of lessening exposures to air pollution, especially TRAP.

Introduction

Acute exacerbation of existing respiratory diseases by air pollution is well established and is commonly factored into the decision-making process of policymakers. For example, short-term outdoor air pollution exposures, including fine particulate matter (particulate matter less than or equal to 2.5 μm in aerodynamic diameter [PM₂.₅]), ozone (O₃), NO₂, NO₃, and sulfur dioxide (SO₂) have been accepted by the U.S. Environmental Protection Agency as causally related to acute adverse respiratory health effects. The effects of air pollution on asthma include acute associations with increased symptoms, rescue medication use, school absences, emergency department visits, hospitalizations, asthma lung function deficits, and airway hyperresponsiveness. Similarly, documented adverse COPD health associations with short-term PM₂.₅ exposures include reduced pulmonary function, increased emergency room visits, hospital admissions, and mortality.

Compared with acute exposures and health effects, it has been more challenging to study and evaluate the effects of long-term exposure on incident disease; thus, less evidence has been available in the published literature. However, there is growing evidence that long-term outdoor air pollution exposures may also cause new onset of airway disease. This Workshop was convened to evaluate the evidence of outdoor air pollution as a causal factor in the development of new-onset asthma and/or COPD.

Methods

At the annual American Thoracic Society (ATS) International Conference in May 2018, a cross-disciplinary group met to evaluate the evidence regarding the potential role of air pollution in the onset of new airway disease. The group included researchers experienced in the mechanistic aspects of airway disease development, air pollution epidemiologists, and clinicians with expertise in airway disease pathology/diagnosis. Participants presented the current state of the science in their respective fields, based on their expertise and a review of latest research available on their specific topics. This is a consensus document, rather than a formal systematic examination of all the evidence. Consensus was reached by majority vote. A writing committee summarized the Workshop findings, which all participants could review for an accurate reflection of the proceedings. Potential conflicts of interest were handled in accordance with the policies and procedures of the ATS.

We focused on the development of new-onset asthma or COPD related to outdoor air pollution exposure by addressing several key questions:
Does the available epidemiologic evidence concerning long-term air pollution exposure support an association with new-onset asthma or COPD?

Are there mechanical mechanisms by which air pollution could plausibly cause new asthma or COPD?

Are the health effects of air pollution identified through epidemiologic and mechanistic studies consistent with the diagnosis of new asthma or COPD in a clinical setting?

Is there sufficient overall evidence to conclude that long-term exposure to air pollution contributes to the induction of new asthma and/or COPD?

In this Workshop report, we first summarize the epidemiological associations found to date, and then assess whether these associations are biologically and/or clinically plausible.

Epidemiological Evidence

Air Pollution and New-Onset Asthma

Epidemiologic evidence linking exposure to air pollution with the development of new-onset asthma has grown in recent years. Many studies have focused on surrogate metrics of TRAP, as well as individual ambient air pollutants. Commonly studied TRAP components include nitrogen oxides, NO₂, BC, PM₂.₅, and PM less than or equal to 10 µm in aerodynamic diameter (PM₁₀).

Nitrogen Oxides, BC, PM₂.₅, and Other Traffic-related Pollution

TRAP studies in children. TRAP exposures were previously evaluated as a cause of childhood or adult-onset asthma in Health Effects Institute (HEI) Special Report 17 (21). This 2010 publication concluded that living near busy roads is a risk factor for onset of childhood asthma, but the data were insufficient to conclude causality. Several studies on the topic have been published since the release of that report. For example, the Southern California Children’s Health Study (CHS) found an increased risk of new-onset childhood asthma from TRAP at home residences (22). Khreis and colleagues subsequently synthesized 41 studies that focused on children’s TRAP exposures as a potential cause for asthma development (23); and found associations with TRAP metrics, especially NO₂. (Figure 1). A 2017 meta-analysis of 18 studies of prenatal air pollution exposures and childhood asthma similarly found associations for NOₓ and PM₁₀ (24). Findings were null for O₃ and PM₂.₅ mass (perhaps indicating that effects varied by the PM₂.₅ constituent or source). Other primary studies indicated that TRAP, including prenatal exposure, contributes to childhood asthma development (25–33).

In addition, in the United States, Latino and black populations disproportionately live in neighborhoods with higher air pollution levels (34). Puerto Ricans and black individuals have a higher prevalence of asthma than white individuals (35). The largest study of air pollution and incident childhood asthma in U.S. minorities found that early-life NO₂ exposure was associated with childhood asthma in Latinos and African Americans (36). Since this Workshop was convened, a multilevel longitudinal study drawn from three waves of the CHS over a decade of air pollution decline found that decreases in ambient NOₓ and PM₂.₅ between 1993 and 2014 were significantly associated with lower asthma incidence (37). This study is consistent with an inference of causality in the association between air pollution and asthma incidence, as an intervention to reduce exposure was followed by a reduction in disease incidence.

TRAP studies in adults. A review and meta-analysis of cohort studies found a positive association between NO₂ exposure and asthma incidence in adults, but was based on only three studies (38). Another review found that the evidence was insufficient to support a causal role for ambient air pollution, but was qualitatively consistent with a role for TRAP in the development of adult-onset asthma (39). A Canadian study determined that living near a major road was associated with increased odds of new-onset asthma (40). In the U.S. Sister Study (a large cohort of U.S. women), incident asthma was positively associated with PM₂.₅ and NO₂, and both pollutants were significantly positively associated with incident wheeze, the cardinal symptom of asthma (41). The ESCAPE (European Study of Cohorts for Air Pollution Effects) study, a meta-analysis involving six European cohorts, reported positive associations between TRAP and adult-onset asthma (42), with several approaching statistical significance, including NOₓ, nitrogen oxides, and traffic intensity on the nearest road. Two meta-analyses of adult-onset asthma reported positive associations with NOₓ (13, 23), but only one reached statistical significance (43). Since then, there have been four studies in adult populations (40, 44, 45). The largest of these adult studies found a significant hazard ratio for NO₂ (45).

Overall, studies of new-onset asthma and TRAP pollutants indicate the most consistent positive relationship with NO₂ exposure among children, but it remains unclear whether NO₂ itself is the causal agent, simply has less measurement error than other TRAP components, and/or is simply a proxy for the combustion component of TRAP (e.g., fossil fuel combustion PM).

Ozone

There is extensive evidence that O₃ exposure acutely exacerbates asthma, but less support for the hypothesis that long-term exposure causes incident asthma. In a study of long-term exposures, O₃ was associated with new-onset asthma in adult male Seventh-day Adventists (46). A study in Taiwan indicated an association between O₃ exposure and risk of childhood asthma (47). Also, the California CHS found that in communities with high O₃ concentrations, the relative risk of developing asthma was increased in children who played three or more sports as compared with children who played no sports (48). However, prenatal exposure to O₃ has not been associated with subsequent childhood asthma (24). Still, the ambient quenching of O₃ by traffic-emitted nitric oxide (49) can cause a negative correlation between O₃ and NO₂, potentially confounding the relationships between O₃ and respiratory outcomes in epidemiologic models.

Potential PM Composition Influences

Exposure to PM air pollution has been associated with chronic airway diseases, including asthma (23, 30, 41). In a study of TRAP and new-onset asthma in a high-risk cohort, Carlsten and colleagues found that, among the TRAP pollutants considered, PM₂.₅ was the air pollutant most strongly associated with new-onset childhood asthma (50). PM, however, varies greatly in chemical composition as a function of its size and source (1). Also, traffic-related PM (indicated by BC) was found to be significantly related to an increased risk of new-onset asthma in children (23) (Figure 2). Although the investigators of the PIAMA (Prevention and...
Incidence of Asthma and Mite Allergy) birth cohort identified traffic as the major contributing factor in their study area, PM$_{2.5}$ sulfur, a marker for fossil fuel combustion, generally had the largest relative risk for incident asthma among several PM constituents examined (51), so the PM$_{2.5}$ and BC associations reported may not be specific to TRAP only.

Conclusions Regarding the Epidemiology of New-Onset Asthma

- Overall, long-term exposure to air pollution, especially as represented by common metrics of TRAP exposure, is associated with onset of childhood asthma.

- The strongest epidemiologic evidence for a causal relationship with new-onset childhood asthma comes from studies that used NO$_x$ as the TRAP metric.

- Evidence suggests that TRAP plays a role in adult-onset asthma, but it is not yet compelling.

- Greater effects likely occur in subgroups (e.g., genetically susceptible individuals and minorities).

- NO$_x$ may be acting as a marker for PM secondary to combustion of fossil fuels, other reactive gases, or other nontailpipe TRAP pollutants.

Figure 1

Meta-analysis of studies of nitrogen dioxide and new-onset asthma in children. Reprinted by permission from Reference 23. CI = confidence interval; I2 = percentage of variation across studies due to heterogeneity; IV = instrumental variable; SE = standard error.

Figure 2

Meta-analysis of black carbon soot associations with new-onset asthma. Reprinted by permission from Reference 23. CI = confidence interval; I2 = percentage of variation across studies due to heterogeneity; IV = instrumental variable; SE = standard error.
Since the publication of those reviews, a few new COPD studies have emerged. Some included new onset of chronic bronchitis symptoms and/or emphysema as COPD surrogates, and found positive (but not statistically significant) associations with air pollution (53, 54). An analysis of the European Community Respiratory Health Cohort yielded significant associations between NO₂ and chronic bronchitis (55). The ESCAPE study found significant associations between COPD incidence and TRAP among females (56). Most studies that assessed COPD using spirometry revealed positive associations with NO₂ and/or PM₂.⁵ (45, 57–60). One study investigated the development of asthma and COPD overlap syndrome (ACOS) in patients with asthma, and found a significant association between long-term PM₂.⁵ exposure and ACOS development (60). Associations found between indoor exposures to biomass pollution and increased risk of COPD, albeit at much higher than usual ambient PM₂.⁵ levels, are consistent with an association between fine PM and the development of COPD (61).

Only a limited number of studies have examined the associations between O₃ and COPD. A study of adults ≥40 years of age found no association between COPD development and O₃ (58). A survey-based study of 6,040 adults found that O₃ exposure was associated with the development of ACOS in adults with asthma (60), but the association was nonsignificant after adjustment for PM₂.⁵. However, because the large hospital databases or survey cohorts used in these studies lacked important individual risk factors, the results should be interpreted with caution. Overall, there is little firm evidence that O₃ causes new-onset COPD.

Conclusions Regarding the Epidemiology of New-Onset COPD

- Studies indicated that exposure to traffic has adverse effects on COPD, but were not conclusive. The strongest evidence comes from meta-analyses of COPD, and few longitudinal studies have been conducted.
- Overall, the available epidemiological evidence regarding an association between air pollution and new-onset COPD remains insufficient to indicate a causal relationship.

Mechanistic Evidence

A key factor that should be considered in evaluating the causality of the above-discussed epidemiological associations is their biological plausibility (62, 63). The mechanistic literature regarding air pollution and asthma includes animal models and exposure paradigms, but only a few such studies have focused on COPD. Several mechanisms can plausibly explain how air pollution can induce new-onset airway disease with implications for both asthma and COPD, including 1) structural remodeling of lung components, predisposing to respiratory disease; 2) induced immune changes, promoting allergic sensitization or prolonged inflammation; 3) changes in innate cells (e.g., group 2 innate lymphoid cells [ILC2]) in nonatopic asthma; and 4) other modifiers of exposure, including genetics and stress.

Repeated inflammation and long-term air pollution exposure leads to airway remodeling. Early-life changes, including airway remodeling and oxidant stress, can be related to the onset of COPD or asthma, which may further progress to COPD (64). The conducting airways are an epithelial mesenchymal trophic unit (65) composed of airway epithelium, extracellular matrix, and fibroblasts, which interacts with nerves, smooth muscle, and immune cells. These elements grow interactively in a progressive fashion that may be disturbed by air pollution exposure. Alveolar growth and septation occur through young adulthood (66, 67), providing a substantial window of opportunity for air pollution–induced disruption.

Asthma Development

Animal studies have demonstrated that early-life air pollution exposures alter conducting airway and alveolar growth (68–70). Air pollutants impact alveolar growth by pre- and postnatal exposures in mice (71), as well as by postnatal exposures in primates (72). Evidence strongly suggests that the cellular mechanism underlying this altered growth involves decreased cellular proliferation (73). In nonhuman primates, which have a postnatal maturation pattern and lung anatomy similar to those of humans, O₃ (70) and O₃ plus allergic sensitization to allergen induce substantial airway (74) and alveolar (75) remodeling during the early postnatal period. These changes include alterations in smooth muscle, innervation, mucous cell abundance, and allergic sensitization linked to airway hyperresponsiveness (76). The most oxidizing particles, similarly to traffic combustion particles, change airway and/or lung size (68, 69). Thus, oxidant stress may be a common link with reduction in lung growth.

Numerous studies have demonstrated pulmonary responses to oxidant stress after exposure to air pollution. These responses occur in mice and rats with long-term exposure to particulate air pollution (77, 78), diesel exhaust (79–81), iron soot (82), and ambient PM (83), with changes in the antioxidant enzymes 8-hydroxydeoxyguanine (8-OHdG) and glutathione/oxidised glutathione (GSH/GSGS), and oxidation of lipids. Increases in tissue expression of antioxidant genes and proteins are a common response to long-term exposure. Treatment with antioxidants blunts the oxidant effects of particles (84, 85), but early-life responses to oxidant stress may differ from those observed in adults (86). In neonatal rats exposed to polycyclic aromatic hydrocarbon–laden ultrafine PM, which is similar to traffic PM, antioxidant gene and protein expression was not upregulated to levels similar to those observed in adults (87–89). There may be critical windows of time during postnatal lung development when antioxidant defenses are less able to upregulate.

Early-Life Exposure Causes Immune Changes, Including Type 1/Type 2 Skewing

Early-life air pollution exposure promotes allergic sensitization. PM components, such as diesel emission particles (DEP) (90–93), ultrafine particles (94–96), and PM₂.⁵ (97–99), can act as allergen-like adjuvants. Such particles have redox-active metals, can induce inflammation and oxidative stress, shift immune function from a T-helper cell type 1 (Th1) to a Th2 response, and drive lymphocyte proliferation and IgE production.

Particle chemical composition is important to biologic potency (99, 100). Simultaneous intranasal administration of ultrafine carbon black particles (CBP)
and allergen (95), has demonstrated increased adjuvant activity. Thus, CBP can directly stimulate dendritic cell maturation (94). DEP and residual oil fly ash (ROFA) can act as adjuvants to increase IgE, bronchoalveolar lavage eosinophilia, lymphocyte reactivity, Th2 cytokine (interleukin-5 and tumor necrosis factor) production, cholinergic airway responses, and allergen-induced bronchoconstriction (95), as can hydrocarbons and soluble transition metals present in DEP and residual oil fly ash, respectively. Thus, DEP and ultrafine particles (UFP) can act as adjuvants in the initial events of allergen sensitization, increasing cytokine production, inflammation, airway hyperresponsiveness (AHR), and airways obstruction.

The role of oxidant stress as a link between air pollution and asthma onset is also supported by studies showing susceptibility based on functional genetic variants in pathways predicted by mechanistic toxicology. For example, Salam and colleagues found that epoxide hydrolase 1 and glutathione-S-transferase variants contribute to the occurrence of childhood asthma and increase asthma susceptibility to pollution exposures from major roads (101). The roles of these enzymes in asthma stem from their function in important xenobiotic metabolic pathways and the subsequent oxidant stress–mediated tissue damage that can contribute to the pathogenesis of asthma.

A Mechanism for Nonatopic Asthma

Consistent with air pollution–induced nonatopic asthma, mice repeatedly exposed to O$_3$, without allergen exposure, were found to develop nasal type 2 immunity and eosinophilic rhinitis with mucous cell metaplasia (Figure 3) (102). These O$_3$–induced airway alterations are mediated by ILC2s, rather than by the more classical T and B lymphoid cells that are important in adaptive immune responses typically associated with allergic rhinitis and allergic asthma (103). Furthermore, repeated exposure to O$_3$ induces ILC2-mediated airway type 2 immunity, eosinophilic inflammation, and mucous cell metaplasia in the pulmonary airways (104, 105). Thus, repeated O$_3$ exposures may induce a nonatopic asthma phenotype characterized by innate type 2 immunity, eosinophilic inflammation, and mucous cell metaplasia. These findings provide plausible paradigms for biological mechanisms underlying the epidemiologically identified associations between airway eosinophilic inflammation and new onset of nonatopic asthma (106, 107). In addition, after this Workshop was conducted in May 2018, another study evaluated the current scientific evidence of a causal link between DEP and asthma, and found consistent evidence of physiological mechanisms by which DEPs can cause new asthma (108).

COPD Development

Relatively few toxicological studies have focused on COPD and air pollution, as most animal models replicate only a few COPD features, and are expensive, technologically challenging, and time-consuming (109, 110). One recent development is spontaneously hypertensive rats that require less time (14 wk vs. 6 mo) to induce COPD-like changes (111). A ferret model developed airway obstruction characteristic of bronchitis and bronchiolitis (112). Short-term PM exposures caused increased pulmonary injuries and attenuated lung antioxidant responses in spontaneously hypertensive rats, providing further evidence of this model’s sensitivity to respiratory changes (113). Long-term exposures to O$_3$ or diesel exhaust are known to induce
remodeling in distal airway regions, which are key to COPD airway obstruction (114–116).

Modifiers of the Impact of Air Pollution on Airway Disease

Interindividual variation has been identified in susceptibility to the pulmonary effects of air pollution, via both extrinsic (environmental) and intrinsic (host) factors (117). Extrinsic factors include socioeconomic status, exposure to other environmental stimuli, nutrition, and coexposures/infections. Intrinsic factors include age, sex, preexisting disease, and genetic background. Other risk factors include host/maternal obesity (118, 119), diabetes and diet (120), childhood rhinovirus and respiratory syncytial virus infections, and psychosocial and maternal stressors (105).

Gaps in the Evidence and Opportunities for Future Research

Various inbred strains and genetic models have been used to investigate susceptibility to respiratory disease; however, these models do not reflect the genetic heterogeneity found in humans. Collaborative Cross and Diversity Outbred models more closely mimic human genetic variability (121). Furthermore, a number of promising animal models of COPD have been developed (111, 112) and used to study factors involved in tobacco smoke–induced COPD, but not air pollution. Because of the structural and immunologic similarities between humans and nonhuman primates, long-term studies in nonhuman primates would be fruitful (122).

Mechanistic Conclusions

- There are asthma-like phenotypes that increase in incidence/severity with long-term exposure to air pollution, especially to PM and O3, consistent with the biological plausibility of air pollution as a causal factor in asthma development.
- Repeated and intermittent air pollution exposures can cause airway remodeling, which leads to the development of asthma, and may also lead to COPD.
- Sufficient toxicological evidence for air pollution as a cause of COPD is still lacking.
- There remain multiple gaps in our knowledge about airway disease development, including a lack of validated mechanistic models for studies at environmentally relevant exposure levels, and evaluations of epigenetic and genetic influences.

Clinical Considerations

Many of the clinical parameters considered in a diagnosis of asthma or COPD, such as symptoms of wheeze, cough and mucus production, dyspnea, airway hyperresponsiveness, reduced lung function, and airway remodeling, are also caused by long-term air pollution exposure (123). Air pollution is therefore a plausible contributor to the risk of a new clinical diagnosis of asthma or COPD. However, there are
challenges in translating epidemiological and toxicological findings to the clinical context. Large observational epidemiological studies often do not have the same information that may be incorporated into a clinician’s diagnostic decision. Studies of exposures to air pollution and the risk of new-onset asthma or COPD have generally relied on self-reported physician diagnoses. For both asthma and COPD, a self-reported physician diagnosis is relatively specific but not sensitive, and cases may be missed or overreported in epidemiologic studies. Additional medical information, including medical history, response to therapeutic medication, physical examination, and lung function measurements, used for the diagnosis of asthma or COPD, may be lacking in epidemiologic studies. For example, pre- and postbronchodilator spirometry and/or methacholine challenge can contribute to a diagnosis, but may not always be included in large epidemiological studies.

Asthma is clinically defined by a history of intermittent respiratory symptoms (e.g., wheeze, shortness of breath, chest tightness, and cough) with reversible airways obstruction and/or hyperresponsiveness (124). Several phenotypes (e.g., allergic and nonallergic) and endotypes (e.g., with or without biomarkers of enhanced Th2 response) have been described (125), and air pollution may have differential effects on the risk for new-onset asthma depending on genetic susceptibility, the presence of allergy, coexposures, obesity, age, and sex. The etiology of asthma is likely multifactorial, and air pollution alone may rarely be the sole or even primary cause.

COPD is a condition characterized by more persistent respiratory symptoms (e.g., shortness of breath, chronic cough, and sputum production), defined by fixed airways obstruction that does not reverse with bronchodilator administration (126). COPD also has several phenotypes (e.g., chronic bronchitis and emphysema) and endotypes (e.g., sputum with or without eosinophils) (127). Spirometry is required for a COPD diagnosis (112), but many published observational studies of air pollution exposures and COPD have not used spirometry to define the outcome. It is well recognized that COPD is clinically underdiagnosed (128). Another challenge is inadequate data to adjust for possible confounding from smoking, occupational exposures, or household air pollution from combustion of solid fuels for cooking and heating, and the long latency period for COPD development (52). COPD is likely multifactorial, and air pollution is often working in concert with other determinants of disease risk.

Clinical Conclusions
Many of the clinical parameters considered in a diagnosis of asthma or COPD (e.g., lung function deficits and airway remodeling) are also caused by long-term air pollution exposure, as documented above, indicating that air pollution is a clinically plausible contributor to the development and diagnosis of both asthma and COPD.

Workshop Conclusions and Recommendations
A summary of the Workshop findings and conclusions is presented in Figure 4. At the end of the Workshop, votes were taken on each of the overarching questions, and there was unanimous agreement that:

1. There are biological mechanisms by which air pollution could plausibly cause the induction of new asthma and/or COPD.
2. Air pollution’s known effects on the lung and airways could plausibly contribute to a diagnosis of asthma or COPD in a clinical setting.
3. Epidemiologic and toxicologic evidence convincingly indicates a causal link between long-term exposure to outdoor air pollution (especially TRAP) and new childhood asthma.
4. Based on the above, it is concluded that there is sufficient scientific evidence to conclude that long-term outdoor air pollution exposure causally contributes to the development of new childhood asthma.
5. Although combined toxicological and epidemiologic evidence supports the hypothesis that long-term air pollution is related to adult-onset asthma and COPD onset, further investigations are needed to definitively conclude that there is a causal connection.

Future Directions
1. Developing long-term, well-characterized mechanistic air pollution inhalation exposure models for asthma and COPD.
2. Gaining a better understanding of whether the epidemiological associations found for TRAP are due to direct effects of NO2, or to a component of the PM2.5 mass with which NO2 is commonly associated (e.g., fossil-fuel combustion fine particles).
3. Conducting further investigations of air pollution’s impact on the development of COPD and adult-onset asthma.

This official Workshop report was prepared by an ad hoc subcommittee of the ATS Assembly on Environmental, Occupational and Population Health.

Members of the subcommittee are as follows:

George D. Thurston, Sc.D. (Chair)
John R. Balmes, M.D. (Writing Committee)
Esther Garcia, M.D. (Writing Committee)
Frank D. Gilliland, M.D., Ph.D. (Writing Committee)
Mary B. Rice, M.D., M.P.H. (Writing Committee)
Tamara Schikowski, Ph.D., M.P.H. (Writing Committee)
Laura S. Van Winckel, Ph.D. (Writing Committee)
Isabella Annesi-Maesano, Ph.D. (Writing Committee)
Esteban Burchard, M.D., Ph.D. (Writing Committee)
Christopher Charlsten, M.D. (Writing Committee)
Jack R. Harber, M.D., V.M., Ph.D. (Writing Committee)
Hannek Keifer, Ph.D. (Writing Committee)
Steven Kleeberger, Ph.D. (Writing Committee)
Urmila P. Kodavanti, Ph.D. (Writing Committee)
Stephanie J. London, M.D., Ph.D. (Writing Committee)
Rob McConnell, M.D. (Writing Committee)
Dave B. Peden, M.D., M.S. (Writing Committee)
Kent E. Pinkerton, Ph.D., M.S. (Writing Committee)
Joan Reibman, M.D. (Writing Committee)
Carl W. White, M.D. (Writing Committee)

New York University School of Medicine, New York, New York; University of California, San Francisco, San Francisco, California; University of California, Berkeley, Berkeley, California; Keck School of Medicine, University of Southern California, Los Angeles, California; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Leibniz Research Institute of Environmental Medicine, Duesseldorf, Germany; University of California, Davis, California; Sorbonne University, Paris, France; University of British Columbia, Vancouver, British Columbia, Canada; Michigan State University, East Lansing, Michigan; Texas A&M Transportation Institute, College Station, Texas; Genetics, Environment & Respiratory Disease Group and Department of Health and Human Services, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina; Center for Public Health.
and Environmental Assessment, Environmental Protection Agency, Research Triangle Park, North Carolina; 10th Glissings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina; and 16th University of Colorado Denver, Denver, Colorado.

*Members of the writing committee.

Author Disclosures: J.R.B. is the Physician Member of the California Air Resources Board. M.B.R. received research support from the NIH. L.S.V.W. has ownership or investment interests with Amgen; received research support from the Chloropicrin Manufacturers Association, C.C.; served on an advisory committee for Bayer; received research support and served on an advisory committee for GlaxoSmithKline. D.B.P. received research support from the EPA and the NEIHS. J.R. served as a consultant for Novartis; served on an advisory committee for AstraZeneca and Genentech; received research support from the American Lung Association and the CDC-NIOSH, G.D.T., E.G., F.D.G., T.S., I.-M. E.G.B., J.R.H., H.K., S.R.K., U.P.K., S.J.L., R.M., K.E.P., and C.W.W. reported no relationships with relevant commercial interests.

References

1 U.S. Environmental Protection Agency. Integrated science assessment for particulate matter (EPA/600/R-08/139F). Washington, DC: U.S. Environmental Protection Agency; 2009.
2 U.S. Environmental Protection Agency. Integrated Science Assessment of Ozone and Related Photochemical Oxidants (PA/600/R-10/076F). Washington, DC: U.S. Environmental Protection Agency; 2013.
3 U.S. Environmental Protection Agency. Integrated science assessment for oxides of nitrogen—health criteria (EPA/600/R-15/068). Washington, DC: U.S. Environmental Protection Agency; 2016.
4 U.S. Environmental Protection Agency. Integrated science assessment for sulfur oxides—health criteria (EPA/600/R-17/451). Washington, DC: U.S. Environmental Protection Agency; 2017.
5 Ostro B, Lipsitt M, Mann J, Braxton-Owens H, White M. Air pollution and exacerbation of asthma in African-American children in Los Angeles. Epidemiology 2001;12:200–208.
6 Gent JF, Triche EW, Holford TR, Belanger K, Bracken MB, Beckett WS, et al. Association of low-level ozone and particulate matter with respiratory symptoms in children with asthma. JAMA 2003;290:1859–1867.
7 Gilliland FD, Berhane K, Rappaport EB, Thomas DC, Avol E, Gauderman WJ, et al. The effects of ambient air pollution on school absenteeism due to respiratory illnesses. Epidemiology 2001;12: 43–54.
8 Bates DV. The effects of air pollution on children. Environ Health Perspect 1995;103:49–53.
9 Strickland MJ, Darrow LA, Klein M, Flanders WD, Sarnat JA, Waller LA, et al. Short-term associations between ambient air pollutants and pediatric asthma emergency department visits. Am J Respir Crit Care Med 2010;182:307–316.
10 Mar TF, Koenig JQ, Primomo J. Associations between asthma emergency visits and particulate matter sources, including diesel emissions from stationary generators in Tacoma, Washington. Inhal Toxicol 2010;22:445–448.
11 Sheffield PE, Zhou J, Shmool JL, Clougherty JE. Ambient ozone exposure and children’s acute asthma in New York City: a case-crossover analysis. Environ Health 2015;14:25.
12 Chen K, Glonek G, Hansen A, Williams S, Tukey J, Saltar A, et al. The effects of air pollution on asthma hospital admissions in Adelaide, South Australia, 2003–2013: time-series and case-crossover analyses. Clin Exp Allergy 2016;46:1416–1430.
13 Spektor DM, Thurston GD, Mao J, He D, Hayes C, Lippmann M. Effects of single- and multi-day ozone exposures on respiratory function in active normal children. Environ Res 1991;55:107–122.
14 Spira-Cohen A, Chen LC, Kendall M, Lall R, Thurston GD. Personal exposures to traffic-related air pollution and acute respiratory health among Bronx schoolchildren with asthma. Environ Health Perspect 2011;119:559–565.
15 Balmes JR, Earnest G, Katz PP, Yelin EH, Eiserud MD, Chen H, et al. Exposure to traffic: lung function and health status in adults with asthma. J Allergy Clin Immunol 2009;123:626–631.
16 Ierodiakonou D, Zanobetti A, Coull BA, Melly S, Postma DS, Bozen HM, et al.; Childhood Asthma Management Program Research Group. Ambient air pollution, lung function, and airway responsiveness in asthmatic children. J Allergy Clin Immunol 2016; 137:380–389.
17 Greenhaw E. Effects of short- and long-term exposures to ambient air pollution on COPD. Eur Respir J 2014;44:558–561.
18 Weichenthal SA, Lavigne E, Evans GJ, Godi Pollitt KJ, Burnett RT. Fine particulate matter and emergency room visits for respiratory illness. Effect modification by oxidative potential. Am J Respir Crit Care Med 2016;194:577–586.
19 Dominici F, Peng RD, Bell ML, Pham L, McDermott A, Zeger SL, et al. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA 2006;295: 1127–1134.
20 Li MH, Fan LC, Mao B, Yang JW, Choi AMK, Cao WJ, et al. Short-term exposure to ambient fine particulate matter increases hospitalizations and mortality in COPD: a systematic review and meta-analysis. Chest 2016;149:447–458.
21 Health Effects Institute. Traffic-related air pollution: a critical review of the literature on emissions, exposure, and health effects; 2010.
22 McConnell R, Islam T, Shankardass K, Jretter M, Lurrman F, Gilliland F, et al. Childhood asthma prevalence and traffic-related air pollution at home and school. Environ Health Perspect 2010;118:1021–1026.
23 Khreis H, Kelly C, Tate J, Parslow R, Lucas K, Nieuwenhuijsen M. Exposure to traffic-related air pollution and risk of development of childhood asthma: a systematic review and meta-analysis. Environ Int 2017;100:232–230.
24 Hehua Z, Qing C, Shanyan G, Qijun W, Yuhong Z. The impact of prenatal exposure to air pollution on childhood wheezing and asthma: A systematic review. Environ Res 2017;159:519–530.
25 Lee JY, Leem JH, Kim HC, Lamichhanse DK, Hwass SG, Kim JH, et al. Effects of traffic-related air pollution on susceptibility to infantile bronchiolitis and childhood asthma: a cohort study in Korea. J Asthma 2018;55:223–230.
26 Perera AF, Strickland MJ, Klein M, Zhai X, Bates JT, Drews-Botsch C, et al. Exposure to mobile source air pollution in early-life and childhood asthma incidence: the Kaiser Air Pollution and Pediatric Asthma Study. Epidemiology 2018;29:22–30.
27 Rancière F, Bougas N, Viola M, Momas I. Early exposure to traffic-related air pollution, respiratory symptoms at 4 years of age, and potential effect modification by parental allergy, stressful family environment, and sex: a prospective follow-up study of the PARIS birth cohort. Environ Health Perspect 2017;125:737–745.
28 Rice MB, Rífas-Shiman SL, Litonjua AA, Gillman MW, Liebman N, Koloo I, et al. Lifetime air pollution exposure and asthma in a pediatric birth cohort. J Allergy Clin Immunol 2018;141: 1932–1934.e7.
29 Lavigne E, Blair MA, Rodriguez Duque D, Do MT, Stieb DM, Hystad P, et al. Effect modification of perinatal exposure to air pollution and childhood asthma incidence. Environ Res J 2018;pii:1701884.2262.e5.
30 Tétreault LF, Ducet M, Gamache P, Fournier M, Brand A, Kosatsky T, et al. Childhood exposure to ambient air pollutants and the onset of asthma: an administrative cohort study in Québec. Environ Health Perspect 2018;126:1276–1282.
31 Yang A, Janssen NA, Brunekreef B, Cassee FR, Hoek G, Gehring U. Childhood respiratory and oxidative potential of PM2.5: the PIAMA birth cohort study. Occup Environ Med 2016;73:154–160.
32 Deng Q, Lu C, Li Y, Sundell J, Dan Norbäck. Exposure to outdoor air pollution during trimesters of pregnancy and childhood asthma, allergic rhinitis, and eczema. Environ Res 2016;150:119–127.
33 Jung CR, Chen W, Tang YH, Hwang BF. Fine particulate matter exposure during pregnancy and infancy and incident asthma. J Allergy Clin Immunol 2019;143:2254–2262.e5.
34 Moff L. The disproportionate impact of environmental health threats on children of color. Environ Health Perspect 1995;103:33–35.
92 Løvik M, Høgseth AK, Gaarder PI, Hagemann R, Eide I. Diesel exhaust
91 Gilmour MI, Selgrade MJ, Lambert AL. Enhanced allergic sensitization
89 Chan JK, Vogel CF, Baek J, Kodani SD, Uppal RS, Bein KJ,
85 Dick CA, Singh P, Daniels M, Evansky P, Becker S, Gilmour MI. Murine
83 Wan Q, Cui X, Shao J, Zhou F, Jia Y, Sun X,
84 Alessandrini F, Weichenmeier I, van Miert E, Takenaka S, Karg E, Blume
88 Chan JK, Kodani SD, Charrier JG, Morin D, Edwards PC, Anderson DS,
87 Chan JK, Charrier JG, Kodani SD, Vogel CF, Kado SY, Anderson DS,
AMERICAN THORACIC SOCIETY DOCUMENTS
Toxicology
ovalbumin and particle matter to induce adjuvant activity in
Loveren H. Optimization of route of administration for coexposure to
in animals exposed to particulate air pollution.
Am J Respir Cell Mol Physiol 2012;32:1399–1409.
86 Wan G, Rajagopalan S, Sun Q, Zhang K. Real-world exposure of
Airway in young adult rat lungs.

91 de Haar C, Kool M, Hassing I, Bol M, Lambrecht BN, Pieters R. Lung dendritic cells are stimulated by ultratfine particles and play a key role in particle adjuvant activity. J Allergy Clin Immunol 2008;121:1246–1249.
90 Xia T, Zhu Y, Mu L, Zhang ZF, Liu S. Pulmonary diseases induced by ambient ultrafine and engineered nanoparticles in twenty-first century. Natl Sci Rev 2016;3:416–429.
89 Alberg T, Hansen JS, Lovik M, Nygaard UC. Particles influence allergic responses in mice—role of gender and particle size. J Toxicol Environ Health A 2014;77:281–292.
88 Falcon-Rodriguez CI, De Vizcaya-Ruiz A, Rosas-Pérez IA, Osornio-Vargas AR, Segura-Medina P. Inhalation of concentrated PM2.5 from Mexico City acts as an adjuvant in a guinea pig model of allergic asthma. Environ Pollut 2017;228:474–483.
87 Castañeda AR, Bein KJ, Smiley-Jewell S, Pinkerton KE. Fine particulate matter (PM2.5) enhances allergic sensitization in BALB/c mice. J Toxicol Environ Health A 2017;80:197–207.
86 Harkema JR, Keeler G, Wagner J, Morishita M, Timm E, Hotchkiss J, et al. Effects of concentrated ambient particles on normal and hypereffector airways in rats. Res Rep Health Eff Inst 2004:120:1–68; discussion 69–79.
85 Gavett SH, Haykal-Coates N, Copeland LB, Heinrich J, Gilmour MI. Natural composition of ambient PM2.5 influences severity of allergic airways disease in mice. Environ Health Percep 2003;111:1477–1471.
84 Salam MT, Lin PC, Avol EL, Gauderman WJ, Gillilland FD. Microsomal epoxide hydrolase, glutathione S-transferase P1, traffic and childhood asthma. Thorax 2007;62:1050–1057.
83 Ong CB, Kumagai K, Brooks PT, Brandenberger C, Lewandowski RP, Jackson-Humbles DN, et al. Ozone-induced type 2 immunity in nasal airways, development and lymphoid cell dependence in mice. Am J Respir Cell Mol Biol 2016;54:331–340.
82 Kumagai K, Lewandowski R, Jackson-Humbles DN, Li N, Van Dyken SJ, Wagner JG, et al. Ozone-induced nasal type 2 immunity in mice is dependent on innate lymphoid cells. Am J Respir Cell Mol Biol 2016;54:782–791.
81 Kumagai K, Lewandowski RP, Jackson-Humbles DN, Buglak L, et al. Innate lymphoid cells mediate pulmonary eosinophilic inflammation, airway mucous cell metaplasia, and type 2 immunity in mice exposed to ozone. Toxicol Pathol 2017;45:692–704.
80 Harkema JR, Hotchkiss LA, Vetter NA, Jackson-Humbles DN, Lewandowski RP, Wagner JG. Strain differences in a murine model of air pollutant-induced nonasthmatic asthma and rhinitis. Toxicol Pathol 2017;45:161–171.
79 Frischer T, Studnicka M, Halmerbauer G, Horak FJ, Gartner C, Tauber E, et al. Ambient ozone exposure is associated with eosinophil activation in healthy children. Clin Exp Allergy 2001;31:1213–1219.
78 Nishimura KK, Iwakana K, Oh SS, Pino-Yanes M, Eng C, Kesawan A, et al. Early-life ozone exposure associated with asthma without sensitization in Latino children. J Allergy Clin Immunol 2016;138:1703–1706.e1.
77 Muñoz X, Barreiro E, Bustamante V, Lopez-Campos JL, Gonzalez-Barcala FJ, Cruz MJ. Diesel exhausts particles: their role in increasing the incidence of asthma. Reviewing the evidence of a causal link. Sci Total Environ 2019;652:1129–1138.
76 Jones B, Donovan C, Liu G, Gomez HM, Chimankar V, Harrison CL, et al. Animal models of COPD: what do they tell us? Respirology 2017;22:21–32.
75 Huang G, Xu XC, Zhou JS, Li ZY, Chen HP, Wang Y, et al. Neutrophilic inflammation in the immune responses of chronic obstructive pulmonary disease: lessons from animal models. J Immunol Res 2017;2017:791579.
74 Bolton SJ, Alleran K, Orefo V, Foster M, Pinkerton KE. Characterisation of the proximal airway squamous metaplasia induced by chronic tobacco smoke exposure in spontaneously hypertensive rats. Respir Res 2009;10:118.
73 Raju SV, Kim H, Byzeak SA, Tang LP, Trombley JE, Jackson P, et al. A ferret model of COPD-related chronic bronchitis. JCI Insight 2016;1: e87536.
113 Kodavanti UP, Schladweiler MC, Ledbetter AD, Watkinson WP, Campen MJ, Winsett DW, et al. The spontaneously hypertensive rat as a model of human cardiovascular disease: evidence of exacerbated cardiopulmonary injury and oxidative stress from inhaled emission particulate matter. *Toxicol Appl Pharmacol* 2000; 164:250–263.

114 Tyler WS, Tyler NK, Last JA, Gillespie MJ, Barstow TJ. Comparison of daily and seasonal exposures of young monkeys to ozone. *Toxicology* 1988;50:131–144.

115 Harkema JR, Hotchkiss JA. Ozone- and endotoxin-induced mucous cell metaplasias in rat airway epithelium: novel animal models to study toxicant-induced epithelial transformation in airways. *Toxicol Lett* 1993;68:251–263.

116 Hyde DM, Plopper CG, Weir AJ, Murnane RD, Warren DL, Last JA, et al. Peribronchiolar fibrosis in lungs of cats chronically exposed to diesel exhaust. *Lab Invest* 1985;52:195–206.

117 Hooper LG, Kaufman JD. Ambient air pollution and clinical implications for susceptible populations. *Ann Am Thorac Soc* 2018;15:S64–S68.

118 Moon KY, Park MK, Leikauf GD, Park CS, Jang AS. Diesel exhaust particle-induced airway responses are augmented in obese rats. *Int J Toxicol* 2014;33:21–28.

119 Gordon CJ, Phillips PM, Johnstone AFM, Schmid J, Schladweiler MC, Ledbetter A, et al. Effects of maternal high-fat diet and sedentary lifestyle on susceptibility of adult offspring to ozone exposure in rats. *Inhal Toxicol* 2017;29:239–254.

120 Snow SJ, Cheng WY, Henriquez A, Hodge M, Bass V, Nelson GM, et al. Ozone-induced vascular contractility and pulmonary injury are differentially impacted by diets enriched with coconut oil, fish oil, and olive oil. *Toxicol Sci* 2018;163:57–69.

121 Roberts A, Pardo-Manuel de Villena F, Wang W, McMillan L, Threadgill DW. The polymorphism architecture of mouse genetic resources elucidated using genome-wide resequencing data: implications for QTL discovery and systems genetics. *Mamm Genome* 2007;18: 473–481.

122 Plopper CG, Hyde DM. The non-human primate as a model for studying COPD and asthma. *Pulm Pharmacol Ther* 2008;21:755–766.

123 National Asthma Education and Prevention Program. Expert Panel Report 3 (EPR-3): guidelines for the diagnosis and management of asthma—summary report 2007. *J Allergy Clin Immunol* 2007;120(Suppl S94–S138).

124 Global Initiative for Asthma. Global strategy for asthma management and prevention; 2018.

125 Wenzel SE. Asthma phenotypes: the evolution from clinical to molecular approaches. *Nat Med* 2012;18:716–725.

126 Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, management and prevention of chronic obstructive pulmonary disease; 2018.

127 Barker BL, Brightling CE. Phenotyping the heterogeneity of chronic obstructive pulmonary disease. *Clin Sci (Lond)* 2013;124: 371–387.

128 Hangaard S, Kronborg T, Hejlesen OK. Characteristics of subjects with undiagnosed COPD based on post-bronchodilator spirometry data. *Respir Care* 2019;64:63–70.