Counting Perfect Matchings in Dense Graphs Is Hard
Nicolas El Maalouly Yanheng Wang
ETH Zürich, Switzerland
October 26, 2022

Abstract
We show that the problem of counting perfect matchings remains \#P-complete even if we restrict the input to very dense graphs, proving the conjecture in [5]. Here “dense graphs” refer to bipartite graphs of bipartite independence number \(\beta < 2 \), or general graphs of independence number \(\alpha \leq 2 \). Our proof is by reduction from counting perfect matchings in bipartite graphs, via elementary linear algebra tricks and graph constructions.

1 Notations and Technical Lemmas
First let us fix some notations.
- Problem \(\text{Permanent}(\mathcal{G}) \): How many perfect matchings are there for a given graph \(G \in \mathcal{G} \)?
- \(\mathcal{B} \): all bipartite graphs.
- \(\mathcal{B}^0 \): all complete bipartite graphs with potential parallel edges.
- \(\mathcal{B}^0' \): all \((n-3)\)-regular bipartite graphs.
- \(\mathcal{C} \): all graphs with independence number at most 2.
- \(f(n) := \begin{cases} (n-1)!! & n \text{ even} \\ 0 & n \text{ odd} \end{cases} \) counts the number of perfect matchings in \(K_n \).

Towards our hardness results, we will study two special classes of square matrices. A main technical tool is the following theorem from linear algebra.

Theorem 1. (Schur product theorem) If matrices \(M_1, M_2 \) are positive definite, then their entry-wise product \(M_1 \circ M_2 \) is also positive definite.

Lemma 2. The matrix
\[
A_n = \begin{pmatrix}
0! & 1! & \cdots & n! \\
1! & 2! & \cdots & (n+1)! \\
\vdots & \vdots & \ddots & \vdots \\
n! & (n+1)! & \cdots & (2n)! \\
\end{pmatrix}
\]
is positive definite for all \(n \in \mathbb{N} \).

Proof. Let us index the rows and columns from 0 to \(n \). We pull out a factor of \(i! \) from each row \(i \) and a factor of \(j! \) from each column \(j \). This leaves us with a matrix \(A' \) where \(a'_{ij} = \binom{i+j}{j} = \binom{i+j}{i} \). It is a so-called symmetric Pascal matrix \([4]\). Observe that
\[
\binom{i+j}{j} = \sum_{k=0}^{n} \binom{i}{k} \binom{j}{j-k} = \sum_{k=0}^{n} \binom{k}{j} \binom{j}{k}
\]
where the first equality follows from a thought experiment. Suppose we are electing \(j \) leaders out from \(i+j \) candidates. To implement this, divide the candidates into two fixed groups of sizes \(i \) and \(j \), respectively. We elect \(k \) leaders from the first group and the remaining \(j-k \) from the second group, for a varying parameter \(k \).

Given the identity, it follows that
\[\begin{pmatrix}
0! & 1! & \cdots & n! \\
1! & 2! & \cdots & (n+1)! \\
\vdots & \vdots & \ddots & \vdots \\
n! & (n+1)! & \cdots & (2n)! \\
\end{pmatrix} = L L^T \quad \text{where} \quad \ell_{ik} := \binom{i}{k}.
\]
Clearly L is a lower triangular matrix with an all-1 diagonal, which is invertible. So the matrix $A' = LL^T$ (and hence A_n) is positive definite. \hfill \qed

Lemma 3. The matrices

$$B_n := \begin{pmatrix} f(0) & f(2) & \cdots & f(n) \\ f(2) & f(4) & \cdots & f(n+2) \\ \vdots & \vdots & \ddots & \vdots \\ f(n) & f(n+2) & \cdots & f(2n) \end{pmatrix} \quad \text{and} \quad C_n := \begin{pmatrix} f(2) & f(4) & \cdots & f(n) \\ f(4) & f(6) & \cdots & f(n+2) \\ \vdots & \vdots & \ddots & \vdots \\ f(n) & f(n+2) & \cdots & f(2n-2) \end{pmatrix}$$

are positive definite for all $n \in 2\mathbb{N}$.

Proof. Note that C_n is essentially B_n without the first row and the last column. So it suffices to show B_n is positive definite, and the property automatically transfers to C_n.

Let us index the rows and columns of B_n from 0 to $n/2$, thus $b_{ij} = f(2(i+j))$. Recall that for any $t \in \mathbb{N}$, we have

$$f(2t) = (2t-1)!! = \frac{(2t)!}{2^t t!} = \frac{t!}{2^t} \cdot \binom{2t}{t}.$$

This motivates us to split $B_n = U \circ V$, where

$$u_{ij} := \frac{(i+j)!}{2^i+j} \quad \text{and} \quad v_{ij} := \frac{(i+j)!}{2(i+j)}.$$

Observe that U becomes the matrix $A_{n/2}$ in Lemma 2 if we multiply 2^i to each row i and 2^j to each column j. Hence U is positive definite.

Next we argue that V is positive definite as well. First, we have identity

$$\binom{2(i+j)}{i+j} = \sum_{k=-n}^{n} \binom{2i}{i-k} \binom{2j}{j+k} = \sum_{k=-n}^{n} \binom{2i}{i-k} \binom{2j}{j-k}$$

due to the same thought experiment as before. Second, using the symmetry $(\binom{2i}{i-k}) = (\binom{2i}{i+k})$ and $(\binom{2j}{j-k}) = (\binom{2j}{j+k})$, we see that the terms for k and $-k$ have the same value. So we may conclude

$$\binom{2(i+j)}{i+j} = \binom{2i}{i} \binom{2j}{j} + 2 \cdot \sum_{k=1}^{n} \binom{2i}{i-k} \binom{2j}{j-k},$$

and consequently

$$V = L \text{diag}(1, 2, \ldots, 2) L^T \quad \text{where} \quad \ell_{ik} := \frac{2i}{i-k}.$$

Because L is a lower triangular matrix with an all-1 diagonal, V must be positive definite. Finally, by Theorem 1 we see $B_n = U \circ V$ is positive definite. \hfill \qed

Remark. The matrix V in the proof, among many other Hankel matrices starring binomial coefficients, are studied in combinatorics. See for example [1] and [2].

2 Hardness for bounded β

Now we are ready to prove our hardness results. The method is inspired by Okamoto, Uehara and Uno [6].

Theorem 4. Permanent(B) reduces to Permanent(B'). As a result, the latter is $\mathbf{\#P}$-complete.

Proof. Given a bipartite $G \in B$ with n vertices on each side, we construct a graph $G_i \in B'$ for each $i = 0, \ldots, n$ as follows:

- add i vertices to the left part and i vertices to the right part;
- then add an edge for each left-right vertex pair, even if they were connected in G.

Let p_i be the number of perfect matchings in G_i, which is assumed efficiently computable.

|Section 2|
Denote by \(m_j \) the number of matchings \(M \subseteq E(G) : |M| = j \). Every such \(M \) extends to exactly \((n + i - j)! \) perfect matchings \(M' \subseteq E(G_i) \) with \(M' \cap E(G) = M \). Clearly different \(j, M \) contribute distinct \(M' \), and they cover all possible perfect matchings. Hence \(p_i = \sum_{j=0}^n (n + i - j)! \cdot m_j \). Writing in matrix form, we have \((p_0, \ldots, p_n) = (m_n, \ldots, m_0) A_n\), where \(A_n \) is exactly the invertible matrix in Lemma 2. Hence we could recover \((m_n, \ldots, m_0)\), in particular \(m_n\), from vector \((p_0, \ldots, p_n)\). \(\square\)

Remark. Our \(B' \) allows parallel edges, which is somewhat undesirable. Better reduction exists in the literature. Dagum and Luby [3] gave a purely combinatorial reduction to \(\text{Permanent}(B') \). Since any \(G \in B'' \) has \(\beta(G) \leq 3\), their result has similar philosophical implication.

3 Hardness for bounded \(\alpha \)

Theorem 5. \(\text{Permanent}(B) \) reduces to \(\text{Permanent}(C) \). As a result, the latter is \(\#P \)-complete.

Proof. Given a bipartite \(G \in B \) with \(n \) vertices on each side, we construct a graph \(G_i \in C \) for each \(i = 0, \ldots, n \) as follows:

- add \(i \) vertices to the left part and \(i \) vertices to the right part;
- then connect every pair of vertices in the left (resp. right) part.

By a mirror argument to Theorem 4, we establish a linear equation \(p_i = \sum_{j=0}^n f^2(n + i - j) \cdot m_j \). Writing in matrix form, we have \((p_0, \ldots, p_n) = (m_n, \ldots, m_0) Q \) where

\[
Q := \begin{pmatrix}
 f^2(0) & f^2(1) & \cdots & f^2(n) \\
 f^2(1) & f^2(2) & \cdots & f^2(n+1) \\
 \vdots & \vdots & \ddots & \vdots \\
 f^2(n) & f^2(n+1) & \cdots & f^2(2n)
\end{pmatrix}.
\]

It remains to prove that \(Q \) is invertible, so that we could recover \((m_n, \ldots, m_0)\), in particular \(m_n\), from vector \((p_0, \ldots, p_n)\).

As before, we index the rows and columns from 0 to \(n \). Observe that \(Q \) has a “checkerboard” pattern since \(q_{ij} = 0 \) iff \(i + j \) is odd. To clean up the picture, we lift even rows to the top, and then push even columns to the left. When \(n \) is even we derive

\[
Q' = \begin{pmatrix}
 B_n \circ B_n & 0 \\
 0 & C_n \circ C_n
\end{pmatrix},
\]

and similarly, when \(n \) is odd we derive

\[
Q' = \begin{pmatrix}
 B_{n-1} \circ B_{n-1} & 0 \\
 0 & C_{n+1} \circ C_{n+1}
\end{pmatrix}.
\]

By Theorem 1, both the top-left and bottom-right blocks are positive definite, hence invertible. Therefore \(\det(Q') \neq 0 \), showing the invertibility of \(Q' \) (and thus also \(Q \)). \(\square\)

References

[1] Martin Aigner. Catalan-like numbers and determinants. *Journal of Combinatorial Theory, Series A*, 87(1):33–51, 1999.

[2] Mario García Armas and BA Sethuraman. A note on the Hankel transform of the central binomial coefficients. *Journal of Integer Sequences*, 11(2):3, 2008.

[3] Paul Dagum and Michael Luby. Approximating the permanent of graphs with large factors. *Theoretical Computer Science*, 102(2):283–305, 1992.

[4] Alan Edelman and Gilbert Strang. Pascal matrices. *The American Mathematical Monthly*, 111(3):189–197, 2004.

[5] Nicolas El Maamouly and Raphael Steiner. Exact matching in graphs of bounded independence number. *ArXiv preprint arXiv:2202.11988*, 2022.

[6] Yoshiho Okamoto, Ryuhei Uehara, and Takeaki Uno. Counting the number of matchings in chordal and chordal bipartite graph classes. In *International Workshop on Graph-Theoretic Concepts in Computer Science*, pages 296–307. Springer, 2009.