Numerical diagonalization study on a phonon-assisted hole pairing mechanism of an extended t-J-Holstein model

T Sakai
Synchrotron Radiation Research Center, Japan Atomic Energy Agency (JAEA), SPring-8, Hyogo 679-5148 and CREST, JST, Japan
sakai@spring8.or.jp

Abstract. The phonon effect of the in-plane oxygen breathing vibration in the high-Tc cuprates is investigated by the numerical diagonalization of an extended t-J-Holstein model, including the modulation of t. As a result, it is found that if the modulation of t due to the phonon is sufficiently large, the breathing mode possibly stabilizes the superconductivity.

1. Introduction
The phonon effect on the high-temperature superconductivity is one of interesting problems in the field of strongly correlated electron systems. Particularly it is quite important to clarify whether the phonon can assist the strong correlation mechanism of the superconductivity. In the present paper, we report the results from the numerical exact diagonalization study on the phonon effect in an extended t-J-Holstein model, which is expected to well describe the physical properties of CuO$_2$ plane in the high-Tc cuprates. In our previous studies[1-3] on the t-J-Holstein model including the breathing and buckling vibrations of the in-plane oxygen atoms, the suppression of hole pairing by the breathing mode was indicated, while the buckling mode was revealed to assist it. In the present study, we take the modulation of the hole hopping parameter t due to the phonon effect into account and reconsider the phonon-assisted hole pairing mechanism. As we mention later, it is found that even the breathing vibration of in-plane oxygen can enhance the hole binding for some realistic parameters.

2. Model
In order to investigate the oxygen breathing phonon effect in the CuO$_2$ plane, we consider an extended t-J-Holstein model defined by the Hamiltonian

\[H = -t \sum_{\langle i,j \rangle, \sigma} (\bar{c}_{j,\sigma}^\dagger \bar{c}_{i,\sigma} + \bar{c}_{i,\sigma}^\dagger \bar{c}_{j,\sigma}) + J \sum_{\langle i,j \rangle} (\vec{S}_i \cdot \vec{S}_j - \frac{1}{4} n_i n_j) \]

\[+ \sum_{i, \delta} \left(\frac{p_{i,\delta}^2}{2m} + \frac{1}{2} m \Omega^2 u_{i,\delta}^2 \right) + g \sum_{i, \delta} u_{i,\delta} (n_i^h - n_i^h) \]

(1)
where $\tilde{c}_{j,\sigma}$ and $\tilde{c}_{j,\sigma}^+$ are the hole operators at each Cu site, and the last two terms describe the in-plane breathing vibration of each O atom between the nearest-neighbor Cu sites. The phonon terms can be rewritten in the boson representation

$$H_{\text{e-ph}} = \Omega \sum_{i,\delta} \left(b_{i,\delta}^+ b_{i,\delta} + \frac{1}{2} \right) + \lambda_0 \sum_{i,\delta} \left(b_{i,\delta}^+ + b_{i,\delta}^+ \right) \left(n_i^h - n_i^h \right)$$

(2)

where $\lambda_0 = \sqrt{1/2m\Omega}$.

In our previous work [1] the modulation of the hopping integral t was neglected. The recent analytical work [4], however, indicated that the renormalization effect of the breathing phonon on t would possibly stabilize the d-wave superconductivity. Thus in the present paper, we reconsider the breathing phonon assisted superconductivity, taking the modulation of t due to the phonon into account. For this purpose we change the parameter t in the Hamiltonian (1) to the following form

$$t \rightarrow t\left[1 + \lambda_i \sum_{i,\delta} \left(b_{i,\delta}^+ + b_{i,\delta}^+ \right) \right]$$

(3)

Since the origin of the modulation should be the same as the breathing phonon, we vary the electron-phonon coupling constants λ_0 and λ_i with the ratio $r = \lambda_i / \lambda_0$ fixed to several values.

3. Numerical diagonalization
Using the numerical exact diagonalization of finite-size clusters, we obtain the ground state wave function of the present model (1) including the modulation of the hopping integral t. The boson degrees of freedom is in principle infinite and it is difficult to treat by the numerical diagonalization. Thus we approximately truncate the phononic Hilbert space to a finite number of bosonic states up to n_{ph} at each oxygen site. Within the one-phonon approximation ($n_{ph}=1$), we perform the numerical diagonalization based on the Lanczos algorithm to study $\sqrt{8} \times \sqrt{8}$ unit-cell cluster with periodic boundary conditions, with a total of 16 phonon modes, namely a Cu$_8$O$_{16}$ cluster. We fix $J/t=0.4$ as a realistic parameter and take t as a unit of energy.

4. Results
The two-hole binding energy is one of the best parameters to measure the stability of the two-hole pairing state. It is defined by the form

$$\Delta_2 = E_0^{(2)} + E_0^{(1)} - 2E_0^{(1)}$$

(4)

where $E_0^{(0)}$, $E_0^{(1)}$ and $E_0^{(2)}$ are the ground state energies with zero, one and two holes, respectively. The λ_0 dependence of Δ_2 with r fixed to 0.5, 1.0, 1.5 and 2.0 is shown in Fig. 1. It indicates that Δ_2 decreases with increasing λ_0 for $r>1$, while increases for $r<1$. It suggests that the electron-phonon interaction would enhance the hole pairing, if λ_i is larger than λ_0. Thus the result implies that even the breathing phonon possibly stabilizes the hole pairing.
Next, in order to investigate the polaronic effect of breathing phonon, we show the λ_0 dependence of the kinetic energy for the one-hole ground state in Fig. 2. The kinetic energy is defined by the expectation value of the t term in the Hamiltonian (1) and (3). It indicates that the absolute value of the kinetic energy increases with λ_0 increasing for $r > 1$, while decreases for $r < 1$. Thus it is expected that the breathing phonon does not give rise to the self localization due to the polaronic effect. Namely, even the breathing mode does not suppress the superconductivity for $r > 1$.

Finally, we consider the phonon effect on the static magnetic ordering. The (π, π) component of the spin structure factor $S_{\pi,\pi}$ is plotted versus λ_0 for $r=0.5$, 1.0, 1.5 and 2.0 in Fig. 3. It suggests that the breathing phonon suppresses the antiferromagnetic order for $r > 1$, while stabilizes for $r < 1$.

Figure 1. λ_0 dependence of the binding energy Δ_2.

Figure 2. λ_0 dependence of the kinetic energy.
Figure 3. λ_0 dependence of the antiferromagnetic spin structure factor in the single-hole ground state.

5. Summary
The present numerical study on the in-plane oxygen breathing vibration including the modulation of the hopping integral t suggests that there is some critical value r_c of the ratio $r = \lambda_1 / \lambda_0$ and even this breathing phonon possibly stabilizes the superconductivity for $r > r_c$.

Acknowledgment
This work has been partly supported by Grants-in-Aid for Scientific Research (B) (No.17340100) and Priority Areas "Invention of Anomalous Quantum Materials -New Physics through Innovation Materials-" and "Physics of New Quantum Phases in Superclean Materials" from the Ministry of Education, Culture, Sports, Science and Technology of Japan. We further thank the Supercomputer Center, Institute for Solid State Physics, University of Tokyo for computational facilities.

References
[1] Sakai T, Poilblanc D and Scalapino D J 1997 Phys Rev. B 55 8445.
[2] Sakai T and Poilblanc D 2001 in Physics in Local Lattice Distortions, eds. H. Oyanagi and A. Bianconi (Ammerican Institute of Physics) p.102.
[3] Sakai T and Poilblanc D 2006 AIP Conf. Proc. 850 553.
[4] Ishihara S, Nagaosa N 2004 Phys. Rev. B 69 144520.