On maximal S-free sets and the Helly number for the family of S-convex sets

Gennadiy Averkov

October 6, 2011

Abstract

Let S be a subset of \mathbb{R}^d. A subset K of \mathbb{R}^d is said to be S-free if K is closed, convex and the interior of K is disjoint with S. An S-free set K is said to be maximal if K is not properly contained in another S-free set. We present a condition on S which guarantees that every maximal S-free set is a polyhedron with at most f facets, where the bound f depends only on S. This condition on S is formulated in terms of the Helly number for the family of S-convex sets. The presented result yields corollaries related to the cutting-plane theory from integer and mixed-integer optimization.

2010 Mathematics Subject Classification: Primary 90C11; Secondary 90C10, 52A01, 52C07

Keywords: cutting plane; Doignon’s theorem; Helly’s theorem; Helly number; intersection cut; lattice-free set; S-convex set; S-free set

1 Introduction

Let $d \in \mathbb{N}$ and $S \subseteq \mathbb{R}^d$. A subset K of \mathbb{R}^d is said to be S-free if K is closed, convex and the interior of K is disjoint with S. An S-free set K in \mathbb{R}^d is said to be maximal if there exists no S-free set properly containing K. Dey and Morán [7] have recently studied maximal S-free sets in the case that S is the intersection of \mathbb{Z}^d and a convex set. In particular, in [7] the following result was obtained.

Theorem 1. (Dey & Morán, [7, Theorem 3.4]). Let $S = \mathbb{Z}^d \cap C$, where $C \subseteq \mathbb{R}^d$ is convex. Then every d-dimensional maximal S-free set is a polyhedron with at most 2^d facets.

In the case $S = \mathbb{Z}^d$ Theorem [1] was formulated by Lovász [11, Theorem 3.4] (a proof can be found in [4, §2.2]). Various special cases of Theorem [1] were considered and used in [4, 5, 8, 10]. This note presents a theorem (Theorem [4]), which implies Theorem [1] and also yields the following mixed-integer analog of Theorem [1].

Theorem 2. Let $d, n \in \mathbb{N}$ and $S = (\mathbb{Z}^d \times \mathbb{R}^n) \cap C$, where $C \subseteq \mathbb{R}^d \times \mathbb{R}^n$ is convex. Then every d-dimensional maximal S-free set is a polyhedron with at most 2^d facets.
We remark that maximal S-free sets of dimension less than d can be characterized in rather simple terms: a subset K of \mathbb{R}^d is maximal S-free and of dimension less than d if and only if K is a hyperplane and in both open subspaces determined by K one can find points of S lying arbitrarily close to K. Hence in what follows our considerations are restricted to the case of d-dimensional maximal S-free sets.

A natural question in the context of the cutting-plane theory (from integer and mixed-integer programming) is whether for a given S one can find $f \geq 0$ such that every maximal S-free set is a polyhedron with at most f facets. The motivation provided by the cutting-plane theory is based on the fact that maximal S-free sets for $S := \mathbb{Z}^d \cap C$ (where C is convex) can be used as ‘cutting objects’ for generation of intersection cuts (see, for example, [1, 3, 10]). It is thus desirable to have an upper bound on the combinatorial complexity of such cutting objects.

Our question on the existence of an upper bound f can be expressed in terms of a parameter $f(S)$, which we introduce as follows. If, for a given S, there exist maximal S-free sets which are not polyhedra or if there exist d-dimensional maximal S-free polyhedra with arbitrarily large number of facets we let $f(S) := +\infty$. If there exist no d-dimensional maximal S-free sets (e.g., for $S = \mathbb{R}^d$) we let $f(S) := -\infty$. In the remaining cases the set of d-dimensional maximal S-free sets is nonempty and consists of polyhedra whose number of facets is bounded in terms of S; in such cases we denote by $f(S)$ the largest possible number of facets in a d-dimensional maximal S-free polyhedron. Thus, we ask for conditions on S which ensure $f(S) < +\infty$. The main message of this note is that there exists a strong relation between $f(S)$ and the Helly number associated to the family of S-convex sets.

Definition 3. Let \mathcal{F} be a nonempty family of sets with $\mathcal{F} \neq \{\emptyset\}$. Then the Helly number $h(\mathcal{F})$ of \mathcal{F} is defined to be the minimal $h \in \mathbb{N}$ such that the following implication holds: If X is an arbitrary finite subfamily of \mathcal{F} such that X contains at least h sets and every h-element subfamily of X has nonempty intersection, then also X has nonempty intersection. If no $h \in \mathbb{N}$ as above exists, we let $h(\mathcal{F}) := +\infty$. We also define the Helly number of $\{\emptyset\}$ by $h(\{\emptyset\}) := 0$.

A subset A of \mathbb{R}^d is called S-convex if $A = S \cap C$ for some convex subset C of \mathbb{R}^d. The notion of S-convexity is reduced to the standard notion of convexity for $S = \mathbb{R}^d$ and to the notion of lattice-convexity for $S = \mathbb{Z}^d$. Let $h(S)$ denote the Helly number for the family of all S-convex sets. That is

$$h(S) := h\left(\left\{S \cap C : C \text{ is a convex subset of } \mathbb{R}^d\right\}\right).$$

The equality

$$h(\mathbb{R}^d) = d + 1$$

represents the classical theorem of Helly (see, for example, [13, Theorem 1.1.6]). Doignon [9, (4.2)] proved the equality

$$h(\mathbb{Z}^d) = 2^d,$$

which is the analog of Helly’s theorem for \mathbb{Z}^d-convex sets. See also [14, §16.5] for interpretation of (2) in terms of integer optimization. The result of Doignon and its special cases have often been rediscovered (see [6, 12, 15]). Based on [11] and [2] the authors of [2] showed

$$h(\mathbb{Z}^d \times \mathbb{R}^n) = (n + 1)2^d$$

(3)
for all \(d, n \in \mathbb{N}\). Equality (3) is the mixed-integer analog of Helly’s theorem.

Now we are ready to formulate our main result.

Theorem 4. Let \(S \subseteq \mathbb{R}^d\). Then \(f(S) \leq h(S)\).

As a consequence of Theorem 4 and (2) we obtain

Theorem 5. Let \(d, n \in \mathbb{N}\). Let \(A \subseteq \mathbb{R}^d\) and \(B \subseteq \mathbb{R}^d \times \mathbb{R}^n\) be convex. Then

\[
\begin{align*}
f(A \cap \mathbb{Z}^d) &\leq 2^d, \\
f(\mathbb{Z}^d) &\leq 2^d, \\
f(B \cap (\mathbb{Z}^d \times \mathbb{R}^n)) &\leq 2^d, \\
f(\mathbb{Z}^d \times \mathbb{R}^n) &\leq 2^d.
\end{align*}
\]

Comparing (5), (7) with (2), (3) we see that, for different choices of \(S\), in Theorem 4 one can have the equality \(f(S) = h(S)\) as well as the strict inequality \(f(S) < h(S)\).

Inequalities (4) and (6) represent the assertions of Theorems 1 and 2, respectively. The authors of [7] indicate that their proof of Theorem 1 is quite technical (see [7, p. 382, remark after Proposition 3.3]). In contrast to this, our arguments lead to a shorter and less technical proof of Theorem 1.

2 Proofs

We use standard terminology from the theory of polyhedra (see, for example, [14, Part III]). For \(n \in \mathbb{N}\) let \([n] := \{1, \ldots, n\}\). The standard scalar product of \(\mathbb{R}^d\) is denoted by \(\langle \cdot, \cdot \rangle\). By \(\text{int}\) we denote the interior with respect to the Euclidean topology of \(\mathbb{R}^d\).

Lemma 6. Let \(S \subseteq \mathbb{R}^d\) and \(f \in \mathbb{N}\). Assume that every \(d\)-dimensional \(S\)-free rational polyhedron \(P\) is contained in an \(S\)-free polyhedron \(Q\) with at most \(f\) facets. Then every \(d\)-dimensional maximal \(S\)-free set is a polyhedron with at most \(f\) facets.

Proof. Let \(K\) be an arbitrary \(d\)-dimensional maximal \(S\)-free set. It suffices to show that \(K\) is contained in an \(S\)-free polyhedron with at most \(h\) facets. We consider a sequence \((P_n)_{n=1}^{+\infty}\) of \(d\)-dimensional rational polytopes such that

\[
P_n \subseteq P_{n+1} \quad \forall n \in \mathbb{N}
\]

and

\[
\text{int}(K) = \bigcup_{n=1}^{+\infty} P_n.
\]

Such polytopes \(P_n\) can be constructed as follows. Let \((z_n)_{n=1}^{+\infty}\) be a sequence of all rational points of \(\text{int}(K)\) such that the first \(d+1\) points \(z_1, \ldots, z_{d+1}\) are affinely independent. Then, for every \(n \in \mathbb{N}\), we define \(P_n\) to be the convex hull of \(\{z_1, \ldots, z_{n+d}\}\).

By the assumption, each \(P_n\) is contained in an \(S\)-free polyhedron \(Q_n\) having at most \(f\) facets. Every \(Q_n\) can be represented by

\[
Q_n = \{x \in \mathbb{R}^d : \langle u_{1,n}, x \rangle \leq \beta_{1,n}, \ldots, \langle u_{f,n}, x \rangle \leq \beta_{f,n}\}
\]
where \(u_{1,n}, \ldots, u_{f,n} \in \mathbb{R}^d \) are vectors of unit (Euclidean) length and \(\beta_{1,n}, \ldots, \beta_{f,n} \in \mathbb{R} \). There exists an infinite subset \(\mathbb{N}_\infty \) of \(\mathbb{N} \) such that, for every \(i \in [f] \), the vector \(u_{i,n} \) converges to some unit vector \(u_i \) and \(\beta_i \) converges to some \(\beta_i \in (-\infty, +\infty) \), as \(n \) goes to infinity over points of \(\mathbb{N}_\infty \). We define the polyhedron

\[
Q := \left\{ x \in \mathbb{R}^d : \langle u_1, x \rangle \leq \beta_1, \ldots, \langle u_f, x \rangle \leq \beta_f \right\}.
\]

By construction, \(P_1 \subseteq P_n \subseteq Q_n \) for every \(n \in \mathbb{N} \). Hence \(P_1 \subseteq Q \), which shows that \(Q \) is \(d \)-dimensional. Let us show that \(Q \) is \(S \)-free. We assume the contrary. Then there exists \(x \in S \) belonging to \(\text{int}(Q) = \{ x \in \mathbb{R}^d : \langle u_1, x \rangle < \beta_1, \ldots, \langle u_f, x \rangle < \beta_f \} \). The latter implies \(\langle u_{i,n}, x \rangle < \beta_{i,n} \) for all \(i \in [f] \) if \(n \in \mathbb{N}_\infty \) is sufficiently large. This implies \(x \in S \cap \text{int}(Q_n) \) for all sufficiently large \(n \in \mathbb{N}_\infty \), contradicting the fact that \(Q_n \) is \(S \)-free. We also show \(\text{int}(K) \subseteq Q \) arguing by contradiction. If \(x \) is a point belonging to \(\text{int}(K) \) but not to \(Q \), then one can fix \(i \in [f] \) such that \(\langle u_i, x \rangle > \beta_i \). Consequently, \(\langle u_{i,n}, x \rangle > \beta_{i,n} \) for all sufficiently large \(n \in \mathbb{N}_\infty \). The inequality \(\langle u_{i,n}, x \rangle > \beta_{i,n} \) implies \(x \notin Q_n \) and, by this, \(x \notin P_n \). Thus, \(x \notin P_n \) for all sufficiently large \(n \in \mathbb{N}_\infty \). Since the sequence of \(P_n \)'s is monotone (as described by (3)), we get \(x \notin P_n \) for every \(n \in \mathbb{N} \). Consequently, \(x \notin \bigcup_{n=1}^{\infty} P_n \). In view of (9), we obtain \(x \notin \text{int}(K) \), which is a contradiction. We have verified the inclusion \(\text{int}(K) \subseteq Q \). Taking the closure of the left and the right hand side we arrive at \(K \subseteq Q \). This finishes the proof. \(\square \)

Proof of Theorem 4 Let us first consider degenerate cases. If \(S = \emptyset \), we have \(h(S) = h(\{\emptyset\}) = 0 \). On the other hand, for \(S = \emptyset \), the whole space \(\mathbb{R}^d \) is the only maximal \(S \)-free set, and thus \(f(S) = 0 \). If \(S \) is nonempty we have \(h(S) \in \mathbb{N} \) or \(h(S) = +\infty \). In the case \(h(S) = +\infty \) the assertion is trivial. Now assume \(h(S) \in \mathbb{N} \).

Let us verify the assumption of Lemma 6 for \(f := h(S) \). Let \(P \) be an arbitrary \(d \)-dimensional \(S \)-free rational polyhedron in \(\mathbb{R}^d \). We represent \(P \) by \(P = H_1 \cap \cdots \cap H_n \), where \(n \in \mathbb{N} \) and \(H_1, \ldots, H_n \) are closed rational halfspaces. Then \(\text{int}(H_1) \cap \cdots \cap \text{int}(H_n) \cap S \) are \(S \)-convex sets whose intersection is empty. By the definition of the Helly number \(h(S) \), there exist indices \(i_1, \ldots, i_f \in [n] \) such that \((\text{int}(H_{i_1}) \cap \cdots \cap \text{int}(H_{i_f})) \cap S = \emptyset \). It follows that \(P \subseteq Q := H_{i_1} \cap \cdots \cap H_{i_f} \), where \(Q \) is an \(S \)-free polyhedron with at most \(f \) facets. Thus, the assumption of Lemma 6 is fulfilled. Lemma 6 yields the assertion. \(\square \)

Proof of Theorem 5 Directly from the definition of the Helly number it follows that for every \(S \subseteq \mathbb{R}^d \) and every convex set \(A \subseteq \mathbb{R}^d \) one has

\[
h(S \cap A) \leq h(S).
\]

(10)

Using Theorem 3 (10) and Doignon’s theorem (represented by (2)) we obtain \(f(A \cap \mathbb{Z}^d) \leq h(A \cap \mathbb{Z}^d) \leq h(\mathbb{Z}^d) = 2^d \), which shows (11).

For the verification of (5) it suffices to establish the existence of maximal \(\mathbb{Z}^d \)-free polyhedra with \(2^f \) facets. Such polyhedra can easily be constructed. Let \(\| \cdot \|_1 \) be the \(l_1 \)-norm in \(\mathbb{R}^d \) and let \(c \) be the vector in \(\mathbb{R}^d \) whose components are all equal to \(1/2 \). Let \(P := \{ x \in \mathbb{R}^d : \| x - c \|_1 \leq d/2 \} \). The polytope \(P \) is \(\mathbb{Z}^d \)-free since \(\| z - c \|_1 \geq d/2 \) for all \(z \in \mathbb{Z}^d \) and is maximal \(\mathbb{Z}^d \)-free since each of the \(2^f \) facets of \(P \) is ‘blocked’ by a point from \(\{0, 1\}^d \). This shows \(f(\mathbb{Z}^d) \geq 2^f \) and yields (5).

For every \(S \subseteq \mathbb{R}^d \) the trivial equality \(f(S \times \mathbb{R}^n) = f(S) \) holds. The latter equality and Doignon’s theorem yield \(f(\mathbb{Z}^d \times \mathbb{R}^n) = f(\mathbb{Z}^d) = 2^d \), which verifies (7). Inequality (11) is a straightforward consequence of (7) and (10). \(\square \)
Remark 7. As can be seen from the proof of Theorem 4, the inequality \(f(S) \leq h(S) \) can be improved to
\[
f(S) \leq h \left(\{ \text{int}(P) \cap S : P \text{ is a rational polyhedron in } \mathbb{R}^d \} \right).
\]
Thus, in the proof of Theorem 5 it is sufficient to apply the following ‘rational’ version of Helly’s theorem:
\[
h \left(\{ \text{int}(P) \cap S : P \text{ is a rational polyhedron in } \mathbb{R}^d \} \right) = 2^d.
\]
(11)

Note that, for (11), replacing int\((P)\) by \(P\) does not change the family on the left hand side. A very short proof of (11) was given by Bell [6].

We also remark that (11) can be used to show \(h(\mathbb{Z}^d) = 2^d \) (the full version of Doignon’s theorem). This is done as follows. Let \(n \in \mathbb{N}, n \geq 2^d \) and let \(A_1, \ldots, A_n \) be convex sets in \(\mathbb{R}^d \) such that for all \(1 \leq i_1 < \cdots < i_{2^d} \leq n \) one has \(A_{i_1} \cap \cdots \cap A_{i_{2^d}} \cap \mathbb{Z}^d \neq \emptyset \). Using (11) we now show \(A_1 \cap \cdots \cap A_n \cap \mathbb{Z}^d \neq \emptyset \). Consider the box \(B := [-N, N]^d \) with \(N > 0 \) large enough to guarantee that for all \(1 \leq i_1 < \cdots < i_{2^d} \leq n \) one has \(A_{i_1} \cap \cdots \cap A_{i_{2^d}} \cap B \cap \mathbb{Z}^d \neq \emptyset \). Since, for every \(i \in [n] \), the convex hull of \(A_i \cap B \cap \mathbb{Z}^d \) \((i \in [n])\) is an integral polytope, one can determine rational polytopes \(P_1, \ldots, P_n \) such that, for every \(i \in [n] \), one has \(A_i \cap B \cap \mathbb{Z}^d = \text{int}(P_i) \cap \mathbb{Z}^d \). Applying (11) to the sets \(\text{int}(P_1) \cap \mathbb{Z}^d, \ldots, \text{int}(P_n) \cap \mathbb{Z}^d \) we deduce \(\text{int}(P_1) \cap \cdots \cap \text{int}(P_n) \cap \mathbb{Z}^d \neq \emptyset \). Hence \(A_1 \cap \cdots \cap A_n \cap \mathbb{Z}^d \neq \emptyset \). This implies \(h(\mathbb{Z}^d) \leq 2^d \). The inequality \(h(\mathbb{Z}^d) \geq 2^d \) follows by considering the family \(\mathcal{F} \) of 2^d sets \(\{0,1\}^d \setminus \{z\} \) with \(z \in \{0,1\}^d \). The elements of \(\mathcal{F} \) are \(\mathbb{Z}^d \)-convex, the intersection of \(\mathcal{F} \) is empty, and the intersection of every nonempty proper subfamily of \(\mathcal{F} \) is nonempty.

Remark 8. We indicate that the authors of [7] work under somewhat more general assumptions than the assumptions of Theorem 4. They consider the following sets:

- an affine subspace \(W \) of \(\mathbb{R}^n \) (where \(n \in \mathbb{N} \));
- a subset \(S \) of \(W \subseteq \mathbb{Z}^n \) such that \(S = \mathbb{Z}^d \cap C \) for some convex set \(C \subseteq W \);
- a closed, convex set \(K \) such that \(K \subseteq W \), the relative interior of \(K \) does not contain points of \(S \) and such that \(K \) is inclusion-maximal with respect to the above properties.

Also in this more general situation the polyhedrality of \(K \) and a bound on the number of facets of \(K \) can be determined using Theorem 4 and Doignon’s theorem. Let \(d \) be the dimension of \(W \). It suffices to consider the case that \(K \) is \(d \)-dimensional and \(S \neq \emptyset \). Let us fix a nonsingular affine transformation \(T : W \to \mathbb{R}^d \) which maps some point of \(W \cap \mathbb{Z}^d \) to the origin. Then \(\Lambda := T(W \cap \mathbb{Z}^d) \) is a lattice in \(\mathbb{R}^d \) and \(T(K) \) is a maximal \(T(S) \)-free set. Doignon’s theorem implies \(h(\Lambda) = 2^r \), where \(r \) is the rank of \(\Lambda \). Furthermore, \(h(T(S) \cap \Lambda) \leq h(\Lambda) \). Taking into account Theorem 4 we deduce that \(h(T(K)) \) (and, by this, also \(K \)) is a polyhedron with at most \(2^r \) facets.

References

[1] K. Andersen, Q. Louveaux, R. Weismantel, and L. A. Wolsey, Inequalities from two rows of a simplex tableau, Integer programming and combinatorial optimization, Lecture Notes in Comput. Sci., vol. 4513, Springer, Berlin, 2007, pp. 1–15.
[2] G. Averkov and R. Weismantel, *Transversal numbers over subsets of linear spaces*, 10pp., Preprint [arXiv:1002.0948](http://arxiv.org/abs/1002.0948) (to appear in *Adv. Geom.*), 2009.

[3] E. Balas, *Intersection cuts—a new type of cutting planes for integer programming*, Operations Res. 19 (1971), 19–39.

[4] A. Basu, M. Conforti, G. Cornuéjols, and G. Zambelli, *Maximal lattice-free convex sets in linear subspaces*, Math. Oper. Res. 35 (2010), no. 3, 704–720.

[5] ——–, *Minimal inequalities for an infinite relaxation of integer programs*, SIAM J. Discrete Math. 24 (2010), no. 1, 158–168.

[6] D. E. Bell, *A theorem concerning the integer lattice*, Studies in Appl. Math. 56 (1977), no. 2, 187–188.

[7] S. S. Dey and D. A. Morán R., *On maximal S-free convex sets*, SIAM J. Discrete Math. 25 (2011), no. 1, 379–393.

[8] S. S. Dey and L. A. Wolsey, *Constrained infinite group relaxations of MIPs*, SIAM J. Optim. 20 (2010), no. 6, 2890–2912.

[9] J.-P. Doignon, *Convexity in crystallographical lattices*, J. Geometry 3 (1973), 71–85.

[10] R. Fukasawa and O. Günlük, *Strengthening lattice-free cuts using non-negativity*, Discrete Optim. 8 (2011), no. 2, 229–245.

[11] L. Lovász, *Geometry of numbers and integer programming*, Mathematical programming (Tokyo, 1988), Math. Appl. (Japanese Ser.), vol. 6, SCIPRESS, Tokyo, 1989, pp. 177–201.

[12] H. E. Scarf, *An observation on the structure of production sets with indivisibilities*, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), no. 9, 3637–3641.

[13] R. Schneider, *Convex Bodies: The Brunn-Minkowski Theory*, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1993.

[14] A. Schrijver, *Theory of Linear and Integer Programming*, Wiley-Interscience Series in Discrete Mathematics, John Wiley & Sons Ltd., Chichester, 1986, A Wiley-Interscience Publication.

[15] M. J. Todd, *The number of necessary constraints in an integer program: A new proof of Scarf’s theorem*, Technical Report 355, School of Operations Research and Industrial Engineering, Cornell University, Ithaca, N.Y., 1977.