Range Predecessor and Lempel-Ziv Parsing

Djamal Belazzougui and Simon J. Puglisi

Department of Computer Science, University of Helsinki
Helsinki Institute for Information Technology (HIIT)
Helsinki, Finland
{belazzou, puglisi}@cs.helsinki.fi

Abstract. The Lempel-Ziv parsing of a string (LZ77 for short) is one of the most important and widely-used algorithmic tools in data compression and string processing. We show that the Lempel-Ziv parsing of a string of length n on an alphabet of size σ can be computed in $O(n \log \log \sigma)$ time ($O(n)$ time if we allow randomization) using $O(n \log \sigma)$ bits of working space; that is, using space proportional to that of the input string in bits. The previous fastest algorithm using $O(n \log \sigma)$ space takes $O(n(\log \sigma + \log \log n))$ time. We also consider the important rightmost variant of the problem, where the goal is to associate with each phrase of the parsing its most recent occurrence in the input string. We solve this problem in $O(n(1 + \log \sigma/\log \log n))$ time, using the same working space as above. The previous best solution for rightmost parsing uses $O(n(1 + \log \sigma/\log \log n))$ time and $O(n \log n)$ space. As a bonus, in our solution for rightmost parsing we provide a faster construction method for efficient 2D orthogonal range reporting, which is of independent interest.

* This research is supported by Academy of Finland through grants 258308 and 284598.
1 Introduction

For almost four decades the LZ parsing [45] (or LZ77) has been a mainstay of data compression, and is widely used today in several popular compression tools (such as gzip and 7zip), as a part of larger storage and search systems [3,16,32], and as a basic measure of information content [11].

In addition to its long history in compression, LZ77 also has a wealth of applications in string processing. The factorization reveals much of the repetitive structure of the input string and this can be exploited to design efficient algorithms and data structures. For example, optimal algorithms for computing all the tandem repetitions [28] and seeds [27] in a string, rely on LZ77. More recently, LZ77 has become a basis for pattern matching indexes [19,30] and compressed data structures [6].

Because its computation is a time-space bottleneck in these and other useful and interesting applications, efficient algorithms for LZ77 factorization have been the focus of intense research almost since its discovery (see [1,25] for recent surveys).

The LZ parsing breaks a string \(S \) up into \(z \) phrases (factors). The phrase starting at position \(i \) is either (a) the first occurrence of letter \(S[i] \) in \(S \), or (b) the longest substring starting at position \(i \) that has at least one occurrence starting to the left of position \(i \) in \(S \). For example, the LZ parsing of string \(S = araarraaa \) is \(a | r | a | ar | ra | a \). Compression can be achieved by replacing phrases of type (b) with a pair of integers \((p_i, \ell_i)\) that indicate respectively the starting position and length of a previous occurrence of the phrase in \(S \). For example, the fifth phrase \(raa \) would be represented with \((1,3)\) because substring \(S[1,1 + 3 − 1] = S[1,3] = raa \) is a prior occurrence.

It is important to note that there is sometimes more than one previous occurrence of a phrase, leading to a choice of \(p_i \) value. If \(p_i < i \) is the largest possible for every phrase then we call the parsing rightmost. In their study on the bit-complexity of LZ compression, Ferragina et al. [15] showed that the rightmost parsing can lead to encodings asymptotically smaller than what is achievable with other choices of \(p_i \).

Main results. This article elucidates an important part of the asymptotic landscape of LZ factorization algorithms. In particular:

1. We describe an algorithm that computes the LZ factorization in \(O(n \log \log \sigma) \) time (\(O(n) \) time if randomization is allowed) using only \(O(n \log \sigma) \) bits of working space. This is the first algorithm for LZ parsing that uses compact space\(^1\) and \(o(n(\log \sigma + \log \log n)) \) time.
2. Our initial approach does not provide any guarantees on the \(p_i \) value it computes (other than that it is less than \(i \), of course). In Section 6 we consider the problem of ensuring the \(p_i \) value computed is the rightmost possible (computing the rightmost parsing). For this problem we describe an algorithm using \(O(n \log \sigma) \) bits of space and \(O(n(\log \log \sigma + \log \sigma/)\sqrt{\log n}) \) \(O(n(1 + \log \sigma/\sqrt{\log n})) \) if we allow randomization) time. This significantly improves on the algorithm of Ferragina et al. [15], which runs in \(O(n(1 + \log \sigma/\log \log n)) \) and anyway requires \(O(n \log n) \) bits of space.
3. On the way to our rightmost parsing result we provide a faster preprocessing method for 2D orthogonal range reporting queries — a classic problem in computational geometry. Given \(n \) points the data structure requires \(O(n \log n) \) bits of space, \(O(\log^* n) \) query time (per reported point), and, critically, \(O(n\sqrt{\log n}) \) time to construct. The data structure has the additional property that the reported points are returned in order of their \(x \)-coordinate, which is essential

\(^1\) Compact space means space within a constant factor of the size of the input, excluding lower-order terms; so \(O(n \log \sigma) \) bits of space in our case.
to our rightmost parsing algorithm, and many other applications too (see, e.g., [44, 39]). Our result is a counterpart to the $O(n\sqrt{\log n})$ construction method for 2D orthogonal range counting, by Chan and Pătraşcu [10].

Roadmap. The following section sets notation and lays down basic concepts, data structures, and results. We then review related work in Section 3. Section 4 describes an algorithm for LZ parsing in compact space that runs in $O(n \log \log \sigma)$ time ($O(n)$ time if we allow randomization). Section 6 deals with the rightmost parsing. Section 5 — where we describe our result for range reporting queries — can be read independently of the rest of the document if so desired. Open problems are offered in Section 7.

2 Tools

Our model in this paper is the word RAM. Space bounds will always be expressed as the number of bits used by an algorithm. We now define some of the basic tools we use throughout.

Strings. Throughout we consider a string $X = X[1..n] = X[1]X[2] \ldots X[n]$ of $|X| = n$ symbols drawn from the alphabet $\{0..\sigma - 1\}$. For technical convenience we assume $X[n]$ is a special “end of string” symbol, $\$$, smaller than all other symbols in the alphabet.

The reverse of X is denoted \hat{X}. For $i = 1, \ldots, n$ we write $X[i..n]$ to denote the suffix of X of length $n - i + 1$, that is $X[i..n] = X[i]X[i+1] \ldots X[n]$. We will often refer to suffix $X[i..n]$ simply as “suffix i”. Similarly, we write $X[1..i]$ to denote the prefix of X of length i. $X[i..j]$ is the substring $X[i]X[i+1] \ldots X[j]$ of X that starts at position i and ends at position j. Slightly abusing the notation, a string X will also refer to the integer obtained by considering the bits in decreasing significance in left-to-right order ($X[1]$ is most significant bit followed by $X[2]$ and so on).

Suffix Arrays. The suffix array [34] SA_X (or just SA when the context is clear) of a string X is an array $SA[1..n]$ which contains a permutation of the integers $[1..n]$ such that $X[SA[1..n]] < X[SA[2..n]] < \ldots < X[SA[n..n]]$. In other words, $SA[j] = i$ iff $X[i..n]$ is the j^{th} suffix of X in lexicographical order. The inverse suffix array ISA is the inverse of SA, that is $ISA[i] = j$ iff $SA[j] = i$.

For a string Y, the Y-interval in the suffix array SA_X is the interval $SA[s..e]$ that contains all suffixes having Y as a prefix. The Y-interval is a representation of the occurrences of Y in X. For a character c and a string Y, the computation of cY-interval from Y-interval is called a left extension and the computation of Y-interval from Ye-interval is called a right contraction. Left contraction and right extension are defined symmetrically.

BWT and backward search. The Burrows-Wheeler Transform [8] denoted $L[1..n]$ is a permutation of X such that $L[i] = X[SA[i] - 1]$ if $SA[i] > 1$ and $\$$ otherwise. We also define $LF[i] = j$ iff $SA[j] = SA[i] - 1$, except when $SA[i] = 1$, in which case $LF[i] = ISA[n]$. Clearly, if we know $I = ISA[1]$, we can invert the BWT to obtain the original string right-to-left via repeated applications of LF, outputting $L[I]$, then $L[LF[I]]$, then $L[LF[LF[I]]]$, and so on. Note that, after I, this process also visits the positions in SA of suffixes n, then $n - 1$, and so on.

Let $C[c]$, for symbol c, be the number of symbols in X lexicographically smaller than c. The function $\text{rank}(X, c, i)$, for string X, symbol c, and integer i, returns the number of occurrences of c in $X[1..i]$. It is well known that $LF[i] = C[L[i]] + \text{rank}(L, L[i], i)$ and that this “special” form of
rank (where \(c = X[i] \)) can be computed in \(O(1) \) time after \(O(n) \) time preprocessing to build a data structure of size \(n \log \sigma + O(n \log \log \sigma) \) \cite{7}.

Furthermore, we can compute the left extension using \(C \) and \(\text{rank} \). If \(\text{SA}[s..e] \) is the \(\gamma \)-interval, then \(\text{SA}[C[c] + \text{rank}(L, c, s), C[c] + \text{rank}(L, c, e)] \) is the \(c\gamma \)-interval. This is called backward search \cite{14}. Note that backward search either requires general rank queries, which can be answered in \(O(\log \log \sigma) \) time after \(O(n) \) time preprocessing to build a data structure of size \(n \log \sigma + o(n \log \sigma) \) \cite{22} or can be solved using a more sophisticated data structure which occupies the same asymptotic space but requires \(O(n) \) randomized time preprocessing \cite{7}.

There are many BWT construction algorithms (see \cite{41} for a survey), and some of them operate in compact space. In particular, Hon, Sadakane, and Sung \cite{23} show how to construct the BWT in \(O(n \log \log \sigma) \) time and \(O(n \log \sigma) \) bits of working space. More recently, Belazzougui \cite{5} showed how the BWT can be computed in \(O(n) \) time (randomized) and \(O(n \log \sigma) \) bits of working space.

Wavelet Trees. Wavelet trees \cite{21} are a tool from compressed data structures \cite{36} that encode a string \(S \) on alphabet in \(n \log \sigma + o(n \log \sigma) \) bits and allow fast computation of various queries on the original string such as access to the \(i \)th symbol, \(\text{rank} \), \(\text{select} \), and various range queries \cite{37}. The operation \(\text{rank} \) is as defined above, while operation \(\text{select}(S, c, i) \) for symbol \(c \), and integer \(i \) returns the position of the \(i \)th occurrence of \(c \) in \(X \).

Let \(S[1..n] \) be a string of \(n \) symbols, where each symbol is in the range \([1..\sigma]\). The wavelet tree \(W_S \) of \(S \) is a perfect binary tree with \(\sigma \) leaves. The leaves are labelled left-to-right with the symbols \([1..\sigma]\) in increasing order. For a given internal node \(v \) of the tree, let \(s_v \) be the subsequence of \(S \) consisting of only the symbols on the leaves in the subtree rooted at \(v \). We store at \(v \) a bitvector \(b_v \) of \(|s_v| \) bits, setting \(b_v[i] = 1 \) if symbol \(s_v[i] \) appears in the right tree of \(v \), and \(b_v[i] = 0 \) otherwise. Note that \(s_v \) is not actually stored, only \(b_v \). Clearly \(W_S \) requires \(n \log \sigma + o(n \log \sigma) \) bits.

LZ77. Before defining the LZ77 factorization, we introduce the concept of a longest previous factor (LPF). The LPF at position \(i \) in string \(X \) is a pair \(\text{LPF}_X[i] = (p_i, \ell_i) \) such that, \(p_i < i \), \(X[p_i..p_i+\ell_i) = X[i..i+\ell_i) \), and \(\ell_i \) is maximized. In other words, \(X[i..i+\ell_i) \) is the longest prefix of \(X[i..n] \) which also occurs at some position \(p_i < i \) in \(X \).

The LZ77 factorization (or LZ77 parsing) of a string \(X \) is then just a greedy, left-to-right parsing of \(X \) into longest previous factors. More precisely, if the \(j \)th LZ factor (or phrase) in the parsing is to start at position \(i \), then we output \((p_i, \ell_i)\) (to represent the \(j \)th phrase), and then the \((j+1)\)th phrase starts at position \(i + \ell_i \). The exception is the case \(\ell_i = 0 \), which happens iff \(X[i] \) is the leftmost occurrence of a symbol in \(X \). In this case we output \((X[i], 0)\) (to represent \(X[i..i] \)) and the next phrase starts at position \(i + 1 \). When \(\ell_i > 0 \), the substring \(X[p_i..p_i+\ell_i) \) is called the source of phrase \(X[i..i+\ell_i) \). We denote the number of phrases in the LZ77 parsing of \(X \) by \(z \).

Theorem 1 (e.g., Kärkkäinen \cite{24}). The number of phrases \(z \) in the LZ77 parsing of a string of \(n \) symbols on an alphabet of size \(\sigma \) is \(O(n/\log_\sigma n) \)

3 Related Work

There have been many LZ parsing algorithms published, especially recently. Most of these results make no promise about the rank of the previous factor occurrence they output. The current fastest algorithm in practice (ignoring memory constraints) is due to Kärkkäinen et al. \cite{26}. Their algorithm
runs in optimal $O(n)$ time and uses $2n \log n + n \log \sigma$ bits of space. Goto and Bannai [20] improve space usage to $n \log n + n \log \sigma$ bits, while maintaining linear runtime.

Compact-space algorithms are due to Ohlebusch and Gog [40], Kreft and Navarro [30], Kärkkäinen et al. [25], and Yamamoto et al. [43]. All these approaches take in $O(n \log n)$ time. Very recently a solution with $n \log \sigma + O(n)$ space and $O(n \log \sigma + \log \log n)$ time has been proposed in [29]. We show a significant improvement — to $O(n \log \log \sigma)$ time — is possible in the compact setting. If we allow randomization, then our time becomes linear.

There are significantly fewer results on the rightmost problem. Early algorithmic work is due to Amir, Landau and Ukkonen [2], who provide an $O(n \log n)$ time and space solution, but it should be noted that selection of rightmost factors had already been used as a heuristic in the data compression community for years (for example, in the popular gzip compressor). Recently, Larsson [31] showed how to compute the rightmost parsing online in the same $O(n \log n)$ time and space bounds as Amir et al. Currently the best prior result for rightmost parsing is an $O(n \log n)$ space and $O(n + n \log \sigma / \log \log n)$ time algorithm due to Ferragina, Nitto and Venturini [15]. We provide a faster algorithm that uses significantly less space.

Our result for rightmost makes use of an improved technique for *range predecessor queries*\(^2\). By combining text indexing with range reporting our thus work continues a long tradition in string processing, recently surveyed by Lewenstein [33]. Given a set of two-dimensional points P, the answer to an orthogonal range predecessor query $Q = [a, +\infty) \times [c, d]$ is the point $p \in P$ with largest y-coordinate among all points that are in the rectangle Q.

If one is allowed $O(n \log n)$ bits of space, a data structure due to Yu, Hon, and Wang [44] supports range predecessor queries in $O(\log n / \log \log n)$ time and takes $O(n \log n / \log \log n)$ time to construct. Navarro and Nekrich [39] subsequently improved query time to $O(\log^\epsilon n)$, where ϵ is an arbitrarily small positive constant, however their structure has $O(n \log n)$ construction time [38]. Multiary wavelet trees are also capable of answering range predecessor queries, and recently Munro, Nekrich, and Vitter [35] (and contemporaneously Babenko, Gawrychowski, Kociumaka, and Starikovskaya [4]) showed how to construct wavelet trees in $O(n \log \sigma / \sqrt{\log n})$ time using $O(n \log n)$ bits of working space, and supporting queries in $O(\log \sigma / \log \log n)$ time.

Finally, we note that a data structure for range predecessor queries immediately implies one for the classic and much studied 2D orthogonal range reporting problem from computational geometry [9], in which we seek a data structure to report all points contained in a four-sided query rectangle $Q = [a, b] \times [c, d]$. Our range predecessor result is a $O(n \log n)$-bit data structure with query time $O(\log^\epsilon n)$ (for any constant $\epsilon < 1$) that can be built in $O(n \sqrt{\log n})$ time. This matches the best known query time of for this problem when using $O(n \log n)$ bits of space, and to our knowledge is the first to offer construction time $o(n \log n / \log \log n)$. To put our result in context, Chan and Pătraşcu [10] have shown that a 2D range *counting* data structure with $O(\log n)$ query time and $O(n \log n)$ bits of space can be built in $O(n \sqrt{\log n})$ time.

4 Lempel-Ziv Parsing in Compact Space

Assume the next LZ factor starts at position i in the string. Our basic approach to compute the factor is to treat $X[i, n]$ as a pattern and perform a prefix search for it in X, which we simulate via backward search steps on the FM-index of the reverse text X'. Consider a generic step j of this backward search, in which we have a range $[s_j, e_j]$ of the BWT and SA of X'. The factor beginning

\(^2\) Elsewhere these queries are variously called range successor [39] and range next value queries [12].
at \(i \) has length at least \(j \) if and only if \(\text{SA}_X'[s_j, e_j] \) contains a value \(p_i > i \). To see this, observe that the presence of such a \(p_i \) in \(\text{SA}_X'[s_j, e_j] \) means there is a substring \(X'[p_i..p_i + j] \) that occurs after substring \(X[i..i + j] = X'[n - i - j..n - i] \) in \(X' \), which in turn implies there is an occurrence of \(X[i..i + j] \) before position \(i \) in \(X \) (starting at position \(n - p_i \), in fact).

Our problem now is to be able to determine if \(\text{SA}_X'[s_j, e_j] \) contains a value larger than \(i \) at any given step in the above process. One solution is to preprocess \(\text{SA} \) for range maximum queries. However, this requires that we either first store \(\text{SA} \) in plain form, which requires \(O(n \log n) \) bits, or that we obtain the values of \(\text{SA} \) left-to-right \(\text{SA}[1], \text{SA}[2], \ldots \) (the order in which they are required for RMQ preprocessing) via repeated decoding using the \(\text{SA} \) sample, requiring \(O(n \log n) \) time. Either of these straightforward methods uses more space or time than we desire.

Our approach instead then is to logically divide the BWT into equal-sized blocks of size \(b = \log n / 2 \). We then invert the BWT, and during the inversion we record for each block the maximum value of \(\text{SA}[i] \) that we see over the whole inversion process. We store an array, \(A[1, n/b] \) of these block maxima. Storing \(A \) requires \(n \log n / b = 2n = O(n) \) bits. We now build the succinct RMQ data structure of Fischer and Heun [18] on the array \(A \), which requires \(3n / b + o(n/b) \) bits (including during construction) and \(O(n) \) time. So far we have used \(O(n) \) bits and \(O(n) \) time for the inversion.

We are now ready to describe the LZ factorization algorithm, which will involve another inversion of the BWT. This time we maintain a bit vector \(B[1, n] \). If, during inversion, we visit position \(j \) in the BWT, then we set \(B[j] = 1 \). At the same time (i.e. while) we are inverting we will perform a backward search for the next LZ factor, using the as yet unprocessed portion of \(X \) as the pattern.

Say we have factorized part of the string and we are now looking for the LZ factor that starts at \(i \). We match symbols of \(i \) using backward search. At a given point in this process we have matched \(\ell \) symbols and have an interval of the \(\text{SA} \), say \(\text{SA}[s, e] \). We need to decide if there exists a \(p < i \in \text{SA}[s, e] \), which will tell us there is an occurrence of \(X[p..p + \ell] = X[i..i + \ell] \) before \(i \).

\(\text{SA}[s, e] \) can be divided into at most three subranges: one that is covered by a series of block maxima (i.e. a subarray of \(A \)), and at most two small subranges at each end, \([s, s']\) and \([e', e]\), each of size at most \(\lfloor \log n / 2 \rfloor \). We compute the maximum value covered by the block maxima in \(O(1) \) time using the RMQ data structure we built over \(A \). For the two small subranges at each end of \(\text{SA}[s, e] \) that are not fully covered by block maxima we consult \(B \). If there is a bit set in either of the \(B[s, s'] \) or \(B[e', e] \) then we know there is some suffix in there that is greater than \(i \) (because it has already been visited in the inversion process). Because the (sub)bitvectors \(B[s, s'] \) or \(B[e', e] \) are so small (< \(\lfloor \log n / 2 \rfloor \)), we can use a lookup table to determine if there is a set bit in \(O(1) \) time, and further we can have the lookup table return the position of one of these set bits. In this way we are able to determine in constant time whether we have reached the end of the current factor.

Having determined the length of the current factor, it is then simply a matter of using a sampled \(\text{SA} \) of size \(O(n / \log n) \) elements that allows us to extract arbitrary \(\text{SA} \) elements in \(O(\log n) \) time [14] to obtain one of the candidate \(\text{SA} \) values from the previous round in the search for the current factor (so that we can output a \(p_i \) value for the factor). This takes \(O(\log n) \) time per factor, which over all the \(z = O(n / \log \sigma n) \) factors takes \(O(n \log \sigma) \). However, runtime can be further reduced to \(O(n) \) over all factors if we first record the positions of the candidate \(p_i \) values for each factor (using \(O(n \log \sigma) \) bits of space) and obtain them all in a single further inversion of the BWT.

As described, our factorization algorithm requires \(O(n) \) time and \(O(n \log \sigma) \) bits of space in addition to the resources needed to construct the BWT and perform \(n \) backward search steps. We thus have the following theorem.
Theorem 2. Given a string S of n symbols on an ordered alphabet of size σ we can compute the LZ factorization of S using $O(n \log \sigma)$ bits of space and $O(n \log \log \sigma)$ time or $O(n)$ time (randomized).

5 Faster preprocessing for range-predecessor queries

In the range predecessor problem in rank space, we are to preprocess n points on a $[1, n] \times [1, n]$ grid, where all points differ in both coordinates, so as to answer the following kind of query: given integers x_1, x_2 and y find the point (u, v) such that $x_1 \leq u \leq x_2$, $v \leq y$ and v is maximal.

Navarro and Nekrich presented a solution to this problem [39] that uses space $O(n \log n/\epsilon)$ bits and answers queries in time $O(\log^\epsilon n)$. However, they did not show how to efficiently construct their data structure.

We now show how to efficiently build a variant of the known solutions for range predecessor. The solution we describe here has query time $O(\sqrt{\log n} \log n)$. We later show how to generalize it to have query time $O(\log^\epsilon n)$ for arbitrary $0 < \epsilon < 1$.

We start by defining the sequence Y of length n over alphabet $[1..n]$ obtained by setting $Y[x] = y$ for every point (x, y) in the set of input points. We similarly define the sequence X such that $X[y] = x$ for every input point (x, y).

At a high-level, the solution uses a top-level data structure that resembles a multiary wavelet tree [17] with arity $2^{\sqrt{\log n}}$ and depth $\sqrt{\log n}$. We note that a standard wavelet tree can answer range predecessor queries in time $O(\log n)$. Without loss of generality, we assume that $\sqrt{\log n}$ is integral and that $\log n$ is divisible by $\sqrt{\log n}$. The top-level data structure is a tree with $\sqrt{\log n}$ levels. The arity of the tree is exactly $2^{\sqrt{\log n}}$. At any level $i \in [0..\sqrt{\log n} - 1]$, we will have $2^{i \sqrt{\log n}}$ nodes labelled with values $[0..2^i \sqrt{\log n} - 1]$ (note that at level 0 we will only have the root node, which is labelled by 0). Any node α at level i will have as children all nodes β at level $i + 1$ such that $\beta[1..i \sqrt{\log n}] = \alpha$.

To every node α in the tree we associate a sequence Y_α of length n_α. The sequence Y_α will be over alphabet $[1..2^{\sqrt{\log n}}]$, while the sequence Y_α' is a sequence of integers from $[1..2^{(\sqrt{\log n} - i) \sqrt{\log n}}]$. Every node of the tree will contain the following substructures:

1. A plain representation of the sequence Y_α. This sequence occupies $n \sqrt{\log n}$ bits of space.
2. A regular wavelet tree [21] W_α over the sequence Y_α. This wavelet tree will have depth $\sqrt{\log n}$.
 It can be used to answer to range predecessor queries over the sequence Y_α in time $O(\sqrt{\log n})$.
3. Exactly $2^{\sqrt{\log n}}$ predecessor data structures that support predecessor (rank) queries in $O(\log \log n)$ time. For each character, $c \in [1..2^{\sqrt{\log n}}]$, we store its positions of occurrence in Y_α in a predecessor data structure denoted $P_{(\alpha, c)}$. The predecessor data structures are implemented using Elias-Fano data structure in such a way that they occupy in total $O(n_\alpha \sqrt{\log n})$ bits of space.
4. A range minimum query data structure on the sequence Y_α denoted Rmin_α. The data structure will occupy $O(n_\alpha)$ bits and answer queries in constant tile.
5. A range maximum query data structure on the sequence Y_α denoted Rmax_α. This data structure will also occupy $O(n_\alpha)$ bits and answer queries in constant tile.

All data structures of a node α will use $O(n_\alpha \sqrt{\log n})$ bits of space (for predecessor data structures we count the space as if it was one single structure) except for range minimum and range maximum data structures, which will use $O(n_\alpha)$ bits. A detailed description of the predecessor data structure is given in Appendix C. The space for all nodes at the same level will sum up to $O(n \sqrt{\log n})$ and since we have $\sqrt{\log n}$ levels, the total space will sum up to $O(n \log n)$ bits.
We now define how the sequences Y'_α and Y_α are built. At any level $i \in [0..\sqrt{\log n} - 1]$ we will have $2^i \sqrt{\log n}$ nodes. For $\alpha \in [0..2^i \sqrt{\log n} - 1]$, the sequence Y'_α is built by first constructing the subsequence Y''_α of n_α values in Y whose $i \sqrt{\log n}$ most significant bits equal α (i.e. $Y[1..i \sqrt{\log n}] = \alpha$), and then removing the most significant $i \sqrt{\log n}$ bits from every element in Y'' (that is $Y''[j] = Y''[j| i \sqrt{\log n} + 1..\log n]$ for all $j \in [1..n_\alpha]$). Then Y_α is obtained from Y'_α by taking the most significant $\sqrt{\log n}$ bits from every element of Y'_α (that is $Y[j] = Y''[j|1..\sqrt{\log n}]$ for all $j \in [1..n_\alpha]$). Notice that for the root node we will have $Y'_0 = Y$. The total number of nodes will be dominated by the nodes at the lowest level, summing up to $\Theta(n/2\sqrt{\log n})$.

With our data structure now defined, we will next show how to construct it efficiently. The description of how queries are answered is given in Appendix B.

5.1 Construction of the range-predecessor data structure

Building all subsequences Y_α and wavelet trees W_α can be done in time $O(n \sqrt{\log n})$ using a variation of the algorithm shown in [35][14]. Details are shown in Appendix A. The construction of Elias-Fano data structures can also easily be done in overall time $O(n \sqrt{\log n})$. Details are shown in Appendix C[11].

Each range minimum and maximum query data structure can be constructed in time $O(n_\alpha)$ using the algorithm of Fischer and Heun [15]. When summed over all the nodes α, the construction and range minimum (maximum) data structures takes time $O(n \sqrt{\log n})$, since the total number of elements stored in all the structures is $O(n \sqrt{\log n})$. We have thus proved the following theorem.

Theorem 3. Given n points from the grid $[1,n]^2$, we can in $O(n \sqrt{\log n})$ time build a data structure that occupies $O(n \log n)$ bits of space and that answers range predecessor queries in $O(\sqrt{\log n} \log \log n)$ time. The construction uses $O(n \log n)$ bits of working space.

We can generalize the data structure as follows.

Theorem 4. Assume that we have available space N and preprocessing time $O(N)$ with word-length $w \geq \log N$. Then given n points from the grid $[1,n]^2$, with $n < N$ and a parameter $c \geq 2$, we can in $O(n(\log n/\sqrt{\log N} + c))$ time build a data structure that occupies $O(cn \log n)$ bits of space and that answers range predecessor queries in $O(c \log(1/c) n \log \log n)$ time. The construction of the data structure uses $O(n \log n)$ bits of working space and a precomputed global table of size $o(N)$ that can be built in $o(N)$ time. The precomputed table can be shared by many instances of the data structure.

Proof. The proof is more involved. To prove the result we will use multiple levels of granularity. At the top level, we will have a tree of $\log^{1/c} n$ (tree) levels (to avoid confusion we call these tree levels), where each node handles a subsequence of Y over alphabet $[1..2^{\log(1-c)/c} n]$ [4]. The level of granularity of this tree is $\log^{(c-1)/c} n$. For each node the data structures are exactly the same as the ones in Theorem 4 except that the wavelet tree of each sequence is replaced by tree at level of granularity $\log^{(c-2)/c} n$, which contains $\log^{1/c} n$ (tree) levels, each of which handles a sequence over alphabet $[1..2^{\log(1-c)/c} n]$. The recursion continues in the same way until we get to trees at level

3 Note that the sequence Y'_α is not used explicitly in the data structure. It will however be used later, when we show how the data structure is queried and constructed.

4 We assume without loss of generality that $\log^{1/c} n$ is integral.
of granularity 1, which is implemented using a wavelet tree. Queries are answered in two phases. In the first we determine the longest common prefix between the y coordinate of the query and the y coordinate of the answer by traversing trees at decreasing levels of granularities (tree at level $\log^{(c-1)/c} n$, then level of granularity $\log^{(c-2)/c} n$ and so on) and querying the range-maximum and predecessor data structures at each traversed node. Then the remaining bits of the answer are determined by traversing trees of increased levels of granularity, querying range-maximum and predecessor data structures. The time bound $O(c \log^{1/c} n \log \log n)$, follows because we have c levels of granularity and at most $O(\log^{1/c} n)$ nodes are traversed at each level of granularity, where queries at each node cost $O(\log \log n)$ time. Details of how queries are answered are given in Appendix B.1.

The main challenge is to quickly construct the Elias-Fano data structures. This is shown in Appendix C.2. The construction for range minimum (maximum) or queries is shown in Appendix D. Both construction methods make use of bit-level parallelism to accelerate processing.

As an immediate corollary, we have the following:

Corollary 1. Given n points from the grid $[1, n]^2$, for any integer $c \geq 2$, we can in $O(n \sqrt{\log n})$ time build a data structure that occupies $O(cn \log n)$ bits of space and that answers range predecessor queries in $O(c \log^{(1/c)} n \log \log n)$ time.

6 Rightmost Parsing

We will now apply the construction for range predecessor detailed above to obtain a faster algorithm for computing rightmost previous occurrences of LZ phrases. An algorithm by Ferragina et al. [15] achieves $O(n(1 + \log \sigma / \sqrt{\log n}))$ time, but requires $O(n \log n)$ bits of space that can not trivially be reduced.

In this section, we will achieve time $O(n(1 + \log \sigma / \sqrt{\log n}))$ and $O(n \log \sigma)$ bits of space, significantly improving the bounds achieved by Ferragina et al. [15]. We first present a preliminary solution from [15] in Section 6.1 and then present an initial version of our solution that uses $O(n \log n)$ space (sections 6.2, 6.3, and 6.5). The solution works by decomposing the phrases into 3 categories. Finding the rightmost occurrences will be fast for different reasons. For the first two categories, the reason is that the number of phrases is small, while for the last the reason is that the rightmost occurrence for each individual phrase will be easier to find.

We divide the full range $[1..n]$ in the suffix array into blocks of a certain size B. Phrases longer than a certain length ℓ are handled in Section 6.2, phrases shorter than a certain length ℓ whose suffix array ranges cross a block boundary are handled in Section 6.3. Finally the remaining phrases are handled in Section 6.4.

6.1 Basic solution of Ferragina et al.

We present the basic solution of [15]. The original algorithm uses $O(n\sigma)$ time and $O(n \log n)$ space. Here, we describe a slightly improved version that uses only $O(n \log \sigma)$ bits. The algorithm works as follows. To each phrase, we can associate a leaf and an internal node in the suffix tree. The leaf corresponds to the suffix (text position) that starts at the same position as the phrase and the internal node corresponds to the range of suffixes prefixed by the phrase. We mark in the suffix tree all the internal nodes that are associated with phrases. To each leaf, we associate the nearest marked ancestor. This requires $O(n)$ bits and $O(n)$ time in total. Also, to each leaf associated with a
phrase, we keep a pointer to the internal node that corresponds to that phrase. This association can be coded in $O(n \log \sigma)$ bits, since we can use a bitvector to mark leaves together with an array of at most $z = O(n/\log \sigma n)$ pointers, each of $O(\log n)$ bits. All the structures can be built in $O(n)$ time. We keep only the marked nodes in the suffix tree. To each marked node, we keep all the phrases that correspond to it. To each marked node α, we keep a text position p_α that will point to the rightmost position among all the leaves that have node α as their nearest marked ancestor. Overall the space occupied by all data structures is $O(n \log \sigma)$ bits. The algorithm works by scanning the inverse suffix array in left-to-right order. That is, at every step i, we extract the suffix array position (suffix tree leaf) that points to text position i, and update the variable p_α, where α is the nearest marked ancestor of the leaf. When we arrive at a leaf that corresponds to a phrase, we go to the corresponding node, and then explore the entire subtree under that node and take the maximum of all variables p_α for all nodes α in the subtree. The scanning of the inverse suffix array, can be done by inverting the Burrows-Wheeler transform in increasing text order. This can be done using the select operation which can be answered in constant time. Thus the inversion takes time $O(n)$. The overall space is $O(n \sigma)$. The time bound comes from the fact that each internal node corresponds to a phrase of length m, and can only have at most m ancestors. Since at most σ phrases are associated with each of the ancestors, the node can only be explored σm times: σ times for each of its m ancestors. Since the total length of the phrases is n, we conclude that the total running time is $O(n \sigma)$. We thus have the following theorem.

Theorem 5 (space improved from [15]). We can find the right-most positions of all phrases in time $O(n \sigma)$ and working space $O(n \log \sigma)$ bits.

6.2 Long factors

Because factors do not overlap, there can only be $O(n/\ell)$ factors of length at least ℓ. We thus can afford to use time $O(\ell)$ to find the rightmost occurrence of each factor. We sample every rth position in the text (r and ℓ will be set later). We then build a five-sided 3D range maximal query data structure as follows. We will have the text $X[1..n]$ with split points at positions $ir, (i+1)r, \ldots$. We then store n/r points as follows. For every $i \in [1..n/r]$, we store point (x, y, i) where x represents the lexicographic rank of the reverse of substring $X[(i-1)r+1..ir]$ among all substrings $X[(i-1)r+1, ir]$, and y the rank of the suffix $X[ir+1..n]$. A query will consist of a triplet $([x_1, x_2], [y_1, y_2], z)$ and will return the point (x, y, i) with maximal coordinate i among all points that satisfy that $x \in [x_1, x_2]$, $y \in [y_1, y_2]$ and $z < i$. In this way we store $n' = O(n/r)$ points in total. We store the set S of reverse of all substrings $X[(i-1)r+1, ir]$ for $i \in [1..n/r]$ in a table T_S sorted in lexicographic order. Given any string p, we can to determine the range of elements of S which have reverse of p as a prefix. The table T_S can be built in $O((n/r)(\log n + \frac{\log \sigma}{\log n})) = O(n(\frac{\log n}{r} + \frac{\log \sigma}{\log n})))$. Reverting every string of p can be done by using a lookup table LT which stores the reverse of every possible string of length $\log\sigma n/2$. The space used by the lookup table will be $O(\sqrt{n} \log n)$ bits and will allow to revert every string of length $\log\sigma n/2$ in constant time.

The data structure we use occupies $O(n' \log (n')) = O(n \log^2 n/r)$ bits of space and answers queries in time $O(\log^2 n' \log \log n')$. This is obtained by building $\log n$ data structures for 2D range maximal queries [13]. By building a perfect binary search tree on the third dimension z, then building a 2D range maximum query data structure for all points that fall in one subtree (we use only coordinates x and y), one multiplies the space and the query time by factor $\log n'$. Since the original data structure uses space $O(n')$ words and answers in $O(\log n' \log \log n')$ time, we obtain
the bounds above by multiplying the time and space bounds by \(\log n' \). By replacing \(n' \) by \(n/r \), the total space usage is \(O(n \log^2 n/r) \) bits and the query time is \(O(\log^2 n \log \log n) \).

Given a factor \(p \) of length at least \(\ell \), we will issue \(r \) queries each of which will take \(O(\log^2 n \log \log n) \) time. The final result will be maximum over all the results of the queries. In order to determine the queries to the 3D range-max structure, we will binary search the table \(T_S \) for every suffix of \(p \) of length \(i \in [1, r] \) (we first revert the suffix in time \(O(r \log \frac{\sigma}{n}) \) using the table \(LT \)). This will determine the range \([x_1, x_2]\). The ranges \([y_1, y_2]\) are determined by querying the BWT of \(X \) in total time \(O(\ell) \) (by backward searching).

Thus the total query time will be \(O(r(\log^2 n \log \log n + \ell \log \frac{\sigma}{n})) \) and the space \(O(n \log^2 n/r) \).

Choosing \(\ell \geq \log^5 n \) and \(r = \log^2 n \) ensures that the total time per factor is \(O(\log^4 \log \log n + \ell) \) which amortizes to \(O((\log^4 \log \log n + \ell)/\log^5 n + 1) = O(1) \) time per character of the factor. The total space is dominated by the space used by \(T_S \) which is \(O(n \log \sigma) \) bits, and the total preprocessing time is dominated by the time needed to construct \(T_2 \) which is \(O(n(\log \frac{n}{r} + \log \frac{\sigma}{\log n})) \) = \(O(n \frac{\log \sigma}{\log n}) \).

6.3 Sparsified tree

If we divide the universe \(x[1..n] \) into blocks of equal size \(B \) and moreover only solve queries for factors whose suffix array range crosses a boundary and whose phrase lengths is at most \(\ell \), then the number of nodes considered can not be more than \(O(\frac{n}{B}) \). To justify this, consider for every boundary the deepest node that crosses a specific boundary. Obviously this node is unique, since if two nodes cross the same boundary, one has to be parent of the other and then one of them would not be the deepest. Thus there can be not more than \(O(n/B) \) such nodes. We call those nodes basic nodes. On the other hand, any node that crosses a boundary has to be ancestor of one of the basic nodes. Since, by definition a basic node cannot have more than \(\ell \) ancestors, we deduce that the total number of nodes is \(n' = O(\frac{n}{B}) \). Recall now that the algorithm described in Section 6.3 traverses the tree of phrases and for each leaf updates the minimum of the nearest marked ancestor and then for each phrase computes the rightmost pointer by traversing the whole subtree under the node of that phrase. Since, there are at most \(\sigma \) phrases per node, each of the \(n' \) nodes will be traversed \(O(\ell \sigma) \) times, at most \(\sigma \) times for each of its (at most) \(\ell \) ancestors. Thus, the total cost will be \(O(n + n' \ell \sigma) = O(n + \frac{n \ell^2 \sigma}{B}) \). Choosing \(B = \ell^2 \sigma \) ensures \(O(n) \) overall running time. The total additional used space will be \(O(n) \) bits dominated by the space needed to store the nearest-marked ancestor information (see Section 6.1).

6.4 Remaining factors

We will use Theorem 3 for short factors that do not cross a block boundary. For each block we build a range-predecessor data structure. We can use parameter \(N = n \) and use a global precomputed table that adds \(o(n) \) bits of space. Since each block contains at most \(B \) points, construction takes \(O(B \log B / \sqrt{\log n}) \) time. Each query is solved in time \(O((\log B)^{1/c} \log \log n) \). Choosing \(B = \ell^2 \sigma \) means total construction time adds up to \(O(n \log \sigma / \sqrt{\log n}) \). This dominates the total query time, which adds up to \(O(\frac{n}{\log \sigma} \log^{1/c}(\ell^2 \sigma) \log \log n) \). Notice that the \(y \) coordinates in each block are originally in \([1..n]\). In addition to the range-predecessor structure, we will use a predecessor structure to reduce the \(y \) coordinate of a query to the interval \([1..B]\). For that we assume that we have available all the values \(y \) coordinates of the points that fall in the block sorted in increasing order. We also assume that the \(y \) coordinates of the points stored in the range-predecessor data structure have
been reduced to the interval $[1..B]$. That is, instead of storing the original y coordinate of each, we store the rank of that coordinate among all values of y coordinates that appear in the block.

6.5 Putting pieces together and getting optimal space

Combining together the three categories above, we can get total time $O(n(1 + \frac{\log \sigma}{\sqrt{\log n}}))$ and space $O(n \log n)$ bits. Details are shown in Appendix F.1. The space can be reduced to optimal $O(n \log \sigma)$ bits. This is shown in Appendix F.2. We thus have proved the following.

Theorem 6. We can find the rightmost occurrences of Lempel-Ziv factors in time $O(n(\log \log \sigma + \log \sigma/\sqrt{\log n}))$ and space $O(n \log \sigma)$ bits. The time is $O(n(1 + \log \sigma/\sqrt{\log n}))$ if randomization is allowed.

7 Conclusions and Open Problems

We leave two main open problems. Firstly, is it possible to compute the rightmost parsing in $O(n)$ time, independent of the alphabet size? Note that even using $O(n \log n)$ memory and $O(n)$ time would be interesting. The algorithm introduced in Section 6 is the current fastest running in $O(n(1 + \log \sigma/\sqrt{\log n}))$ time (and using compact space). Secondly, are the time bounds we achieve, or anything $o(n \log n)$ for that matter, possible if processing must be online?

Acknowledgements

Our deep thanks go to: Hideo Bannai for feedback on an early rendering of the algorithm of Section 4; and to Juha Kärkkäinen, Dominik Kempa, and Travis Gagie, for frequent, wide-ranging and inspiring discussions on LZ parsing and its properties.
References

1. Al-Hafeedh, A., Crochemore, M., Ilie, L., Kopylova, E., Smyth, W., Tischler, G., Yusufu, M.: A comparison of index-based Lempel-Ziv LZ77 factorization algorithms. ACM Computing Surveys 45(1), 5:1–5:17 (2012)
2. Amir, A., Landau, G.M., Ukkonen, E.: Online timestamped text indexing. Information Processing Letters 82(5), 253–259 (2002)
3. Apache: Lucene (2014), http://lucene.apache.org/
4. Babenko, M.A., Gawrychowski, P., Kociumaka, T., Starikovskaya, T.A.: Wavelet trees meet suffix trees. In: Proc. SODA. pp. 572–591 (2015)
5. Belazzougui, D.: Linear time construction of compressed text indexes in compact space. In: Proc. STOC. pp. 184–193 (2014)
6. Belazzougui, D., Gabizon, T., Gawrychowski, P., Kärkkäinen, J., Onodera, A., Puglisi, S.J., Tabei, Y.: Queries on LZ-bounded encodings. In: Proc. Data Compression Conference. pp. 83–92. IEEE Computer Society (2015)
7. Belazzougui, D., Navarro, G.: Alphabet-independent compressed text indexing. ACM Transactions on Algorithms 10(4), 23 (2014)
8. Burrows, M., Wheeler, D.: A block sorting lossless data compression algorithm. Tech. Rep. 124, Digital Equipment Corporation, Palo Alto, California (1994)
9. Chan, T.M., Larsen, K.G., Pătraşcu, M.: Orthogonal range searching on the ram, revisited. In: Proc. SoCG. pp. 1–10. ACM (2011)
10. Chan, T.M., Pătraşcu, M.: Counting inversions, offline orthogonal range counting, and related problems. In: Proc. SODA. pp. 161–173 (2010)
11. Charras, M., Lehman, E., Liu, D., Panigrahy, R., Prabhakaran, M., Sahai, A., Shelat, A.: The smallest grammar problem. IEEE Trans. Inf. Theory 51(7), 2554–2576 (2005)
12. Crochemore, M., Iliopoulos, C.S., Kociumaka, T., Rahman, M.S., Tischler, G., Walen, T.: Improved algorithms for the range next value problem and applications. Theor. Comput. Sci. 434, 23–34 (2012)
13. Farzan, A., Munro, J.I., Raman, R.: Succinct indices for range queries with applications to orthogonal range maxima. In: Proc. ICALP. pp. 327–338. LNCS 7391, Springer (2012)
14. Ferragina, P., Manzini, G.: Indexing compressed text. J. ACM 52(4), 552–581 (2005)
15. Ferragina, P., Mäkinen, V., Navarro, G.: Compressed representations of sequences and full-text indexes. ACM Trans. Alg. 3(2), 20 (2007)
16. Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum queries on static arrays. SIAM J. Comput. 40(2), 465–492 (2011)
17. Gabizon, A., Gawrychowski, P., Kärkkäinen, J., Nekrich, Y., Puglisi, S.J.: LZ77-based self-indexing with faster pattern matching. In: Proc. LATIN. pp. 731–742. LNCS 8392 (2014)
18. Goto, K., Bannai, H.: Space efficient linear time Lempel-Ziv factorization for small alphabets. In: Proc. DCC. pp. 163–172. IEEE Computer Society (2014)
19. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes. In: Proc. 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). pp. 841–850. ACM/SIAM (2003)
20. Grossi, R., Orlandi, A., Raman, R.: Optimal trade-offs for succinct string indexes. In: Proc. ICALP. vol. LNCS 6198, pp. 678–689 (2010)
21. Hon, W.K., Sadakane, K., Sung, W.K.: Breaking a time-and-space barrier in constructing full-text indices. SIAM J. Comput. 38(6), 2162–2178 (2009)
22. Kärkkäinen, J.: Repetition-based Text Indexes. Ph.D. thesis, University of Helsinki, Department of Computer Science (1999)
23. Kärkkäinen, J., Kempa, D., Puglisi, S.J.: Lightweight Lempel-Ziv parsing. In: Proc. SEA. pp. 139–150. LNCS 7933 (2013)
24. Kärkkäinen, J., Kempa, D., Puglisi, S.J.: Linear time Lempel-Ziv factorization: Simple, fast, small. In: Proc. CPM. pp. 189–200. LNCS 7922 (2013)
25. Kociumaka, T., Kubica, M., Radoszewski, J., Rytter, W., Walen, T.: A linear time algorithm for seeds computation. In: Proc. SODA. pp. 1095–1112 (2012)
26. Kolpakov, R., Kucherov, G.: Finding maximal repetitions in a word in linear time. In: Proc. FOCS. pp. 596–604 (1999)
27. Kosolobov, D.: Faster lightweight lempel-ziv parsing. arXiv preprint arXiv:1504.06712 (2015)
30. Kreft, S., Navarro, G.: On compressing and indexing repetitive sequences. Theor. Comp. Sci. 483, 115–133 (2013)
31. Larsson, N.J.: Most recent match queries in on-line suffix trees. In: Proc. CPM. vol. LNCS 8486, pp. 252–261 (2014)
32. Lemur: Indri search engine (2014), http://www.lemur.com
33. Lewenstein, M.: Orthogonal range searching for text indexing. In: Space-Efficient Data Structures, Streams, and Algorithms - Papers in Honor of J. Ian Munro on the Occasion of His 66th Birthday. pp. 267–302. LNCS 8066, Springer (2013)
34. Manber, U., Myers, G.W.: Suffix arrays: a new method for on-line string searches. SIAM J. Comp. 22(5), 935–948 (1993)
35. Munro, J.I., Nekrich, Y., Vitter, J.S.: Fast construction of wavelet trees. In: Proc. SPIRE. pp. 101–110. LNCS 8799 (2014)
36. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Computing Surveys 39(1), article 2 (2007)
37. Navarro, G.: Wavelet trees for all. Journal of Discrete Algorithms 25, 2–20 (2014)
38. Navarro, G., Nekrich, Y.: personal communication (November 2013)
39. Nekrich, Y., Navarro, G.: Sorted range reporting. In: Proc. SWAT. pp. 271–282. LNCS 7357 (2012)
40. Ohlebusch, E., Gog, S.: Lempel-Ziv factorization revisited. In: Proc. CPM. pp. 15–26. LNCS 6661 (2011)
41. Puglisi, S.J., Smyth, W.F., Turpin, A.: A taxonomy of suffix array construction algorithms. ACM Comput. Surv. 39(2) (2007)
42. Willard, D.E.: Log-logarithmic worst-case range queries are possible in space θ (n). Information Processing Letters 17(2), 81–84 (1983)
43. Yamamoto, J., I, T., Bannai, H., Inenaga, S., Takeda, M.: Faster compact on-line Lempel-Ziv factorization. In: Proc. STACS. pp. 675–686. LIPIcs 25 (2014)
44. Yu, C.C., Hon, W.K., Wang, B.F.: Improved data structures for the orthogonal range successor problem. Comp. Geom. 44(3), 148–159 (2011)
45. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Transactions on Information Theory 23(3), 337–343 (1977)
A Wavelet tree construction

We first describe the core procedure used to build the wavelet tree and then describe the wavelet tree construction itself. We then describe how range-predecessor queries are solved using the wavelet tree.

A.1 Core procedure

Suppose that we have are given a parameter \(N \leq 2^w \) bits, and that we can spend \(o(N) \) time preprocessing to build (universal) tables that occupy \(o(N) \) bits of space. The core procedure to build the wavelet tree is as follows. We are given an array of integers \(V[1..m] \) and a bit position \(p \), where \(V[i] \in [0, \sigma] \) for all \(i \in [1..m] \), and the goal is to produce two arrays \(V_0[1..m_0] \) and \(V_1[1..m_1] \) such that \(V_0 \) is the subsequence of integers of \(V \) whose \(p \)th most significant bit equals 0 and \(V_1 \) is the subsequence of elements of \(V \) whose \(p \)th most significant bit equals 1. We will describe a procedure that runs in time \(O(\frac{\log \sigma}{\log N}) \).

In order to fill the vectors \(V_0 \) and \(V_1 \) we use two counters \(C_0 \) and \(C_1 \), initially set to 1. We scan the array \(V \) and read it in blocks of \(B = \frac{\log N}{2\log \sigma} \) elements. Suppose that a block contains \(t_0 \) elements whose bit number \(p \) equals 0 and \(t_1 = B - t_0 \) whose bit number \(p \) equals 1. We denote by \(b \) the block and by \(b_0 \) (resp. \(b_1 \)), the subsequence of elements of \(b \) whose bit number \(p \) equals 0 (resp. 1).

We append the blocks \(b_0 \) (resp. \(b_1 \)) at the end of \(V_0 \) (resp. \(V_1 \)) respectively at positions indicated by \(C_0 \) (resp. \(C_1 \)) and then set \(C_0 = C_0 + t_0 \) (resp. \(C_1 = C_1 + t_1 \)).

We will use a lookup table \(L[1..\sigma^B] \) that produces tuples \((b_0, t_0, b_1, t_1)\) for every possible block \(b \) of \(B \) elements of length \(\log \sigma \) bits each. Since we have \(\sigma^B = O(\sqrt{N}) \) possible blocks and every element in the table uses \(O(\log N) \) bits, the size of the lookup table will be \(O(\sqrt{N} \log N) \) bits.

Reading a block \(b \), reading the entry \(L[b] \), incrementing \(C_0 \) (\(C_1 \)), and appending \(b_0 \) (\(b_1 \)) to \(V_0 \) (\(V_1 \)), can all be done in constant time, since each of the blocks \(b, b_0, b_1 \) fit in \(\log N/2 < w \) bits and reading or writing blocks of this size requires only a constant number of bit shifts and bitwise logical operations.

A.2 Construction

A wavelet tree for a sequence \(S[1..m] \) over alphabet \(\sigma \) can be built in time \(O(m(\frac{\log \sigma}{\log N})^2 + \sigma) \) by repeating the core procedure for each node of the wavelet tree.

More precisely at first level, we use the procedure to produce two arrays \(S_0[1..m_0] \) and \(S_1[1..m_1] \) such that \(S_0 \) is the subsequence of integers of \(S \) whose most significant bit equals 0 and \(S_1 \) is the subsequence of elements of \(S \) whose most significant bit equals 1. Notice that the bitvector stored at the root can be trivially obtained from \(S \) in \(O(m) \) time, by just scanning \(S \) and extracting the most significant bit of every element of \(V \) and append it to the bitvector. This process can be accelerated to run in \(O(m\frac{\log \sigma}{\log N}) \), by using again a lookup table that gives the sequence of \(B \) most significant bits for every possible blocks of \(B = \frac{\log N}{2\log \sigma} \) blocks of characters.

At the second level, we will apply the same algorithm to \(S_0 \) (\(S_1 \)), to get the subsequence to produce two arrays \(S_{00}[1..m_0] \) and \(S_{01}[1..m_1] \) \((S_{10}[1..m_0] \) and \(S_{11}[1..m_1] \)), such that \(S_{00}(S_{10}) \) is the subsequence of integers of \(S \) whose second most significant bit equals 0 and \(S_{01}(S_{11}) \) is the subsequence of elements of \(S \) whose second most significant bit equals 1. At that point, we can generate the bitvector \(b_0 \) (\(b_2 \)) that contains the second most significant bit of \(S_0 \) (\(S_1 \)) in time \(O(|S_0|\frac{\log \sigma}{\log N} + 1) \) \((O(|S_1|\frac{\log \sigma}{\log N} + 1)) \) and finally throw \(S_0 \) (\(S_1 \)). The generation of those two bitvectors
(which are to be stored at the two children of the root of the tree) can also be done in total time $O(m \log \sigma \log N + 1)$. Once a bitvector has been generated we index it so as to support rank and select queries. This is done in times $O(|S_0| \log \sigma \log N + 1)$ and $O(|S_1| \log \sigma \log N + 1)$ respectively for S_0 and S_1 using the technique described in [4], which uses lookup tables of size $o(N)$ bits. We continue applying the algorithm in the same way for every node at every level, until we get to a leaf of the wavelet tree.

Since we have σ nodes and $\log \sigma$ levels, the total running time is $O(m \frac{\log \sigma}{\log N} + \sigma)$. The total space used for the lookup tables is $O(\sqrt{N} \log N \log \sigma)$ bits and the total temporary space used during the construction is $O(m \log \sigma)$ bits, since only bitvectors are kept after a given level is constructed.

We thus get the following lemma:

Lemma 1. Given a sequence Y of length m over alphabet $[1..\sigma]$ and global precomputed tables of total size $o(N)$, where $\sigma \leq m \leq N \leq 2^w$, we can build the wavelet tree over Y in time $O(m \frac{\log \sigma}{\log N} + \sigma)$, using $O(n \log \sigma)$ bits of temporary space.

A.3 Range-predecessor queries using wavelet tree

We now show how range-predecessor queries are solved using a wavelet tree. We are given integers x_1, x_2 and y_2 and must find the point (x, y) such that $x_1 \leq x \leq x_2$, $y \leq y_2$ and v is maximal. We assume that there is no point (x, y_2) such that $x \in [x_1, x_2]$. Otherwise, the answer to the query is trivial. The query proceeds in two phases. In the first phase, we find the longest common prefix between y_2 and y, and in second phase, we determine the remaining bits of y. At this second phase, a bit number i is determined by traversing a node at level i and its value is the maximal value for which the query issued at that node gives a non-empty answer (queries and their answers are defined more precisely below).

The first phase proceeds as follows. At the root level, we check whether there interval $[x_1, x_2]$ in the bitvector b stored at the root contains an occurrence of $y[1]$, by checking that $\text{rank}(b, y[1], x_1 - 1) < \text{rank}(b, y[1], x_2)$. If that is the case, we continue to child number $y[1]$ of the root and recurse using the interval $[x'_1, x'_2] = [\text{rank}(b, y[1], x_1 - 1) + 1, \text{rank}(b, y[1], x_2)]$. Let $b_{y[1]}$ be the bitvector associated with child number $y[1]$. At the next level, we use two rank queries on $b_{y[1]}$ with symbol $y[2]$ and points x'_1 and x'_2 and check whether the interval $[\text{rank}(b_{y[1]}, y[2], x'_1 - 1) + 1, \text{rank}(b_{y[1]}, y[2], x'_2)]$ is non-empty. We continue in the same way down the tree, until we reach a node α for which we have an empty interval. Let i be the level of that node. Suppose that $y_2[i] = 1$, then the answer is in the subtree of α, and we can deduce that the longest common prefix between y_2 and y of $i - 1$. If $y_2[i] = 0$, then we go up the tree decrementing i at each step and at a node α at level i, check whether $y_2[i] = 1$, and if so requery the bitvector at that node with the interval with which we already queried it before, but this time with bit value 0. If the query is successful, we stop climbing the tree and we will have determined that the longest common prefix between y and y_2 is $i - 1$.

We now describe the second phase of the query. The remaining $\log \sigma - i + 1$ bits of y can be completed by traversing down from node α.

For that we continue by querying the bitvector at node α with the same interval which we already used for querying node α, but this time using bit value 0 instead of 1.

We then continue to traverse down the tree, for each traversed node querying the bitvector for bit value 1. If the returned interval is non-empty, we continue traversing down the tree with the interval. Otherwise we query the for bit value 0 and continue traversing with the returned interval (which is necessarily non-empty). When we reach the leaf, we will have constructed the whole value.
of coordinate y and will have a singleton interval $[1, 1]$. In order to reconstruct the value of x, we climb up the tree traversing (in reverse order) the nodes we already traversed, and for a node at level i issue a select query using the bit value $y[i]$ for the single position that we obtained from the previous select query (or position 1 for the first select query). At this point we will have determined both coordinates x and y of the answer.

B Range-predecessor query answering

We now describe how we answer range predecessor queries with the data structure used in Theorem 3. The algorithm can be thought of as a generalization of the query algorithm used for the wavelet tree. We are given integers x_1, x_2 and y_2 and must find the point (x, y) such that $x_1 \leq x \leq x_2, y \leq y_2$ and y is maximal. A query will first proceed by traversing the tree top-down, where at level i a rank query at a node α_i will allow to determine the range in $Y_{\alpha_{i+1}}$ from the range in Y_{α_i}, where α_{i+1} is the next node at level $i + 1$. The range minimum query data structure at level i will allow to determine whether the y coordinate of the answer shares at least i chunks with y_2. Once it has been determined that the y coordinate shares a chunk of length t with y_2, then the value of the next chunk (chunk number $i + 1$) of y should be smaller than the corresponding chunk of y_2 and then the next chunks will all need to have maximal values. Hence, we will use range maximum queries for at all next levels. With the y coordinate determined we can read the x coordinate from $X[y]$.

We now give a detailed description of how the queries are solved. Before delving into the details, we first show how to handle the easy case in which the answer is a point (x, y) such that $y = y_2$. To eliminate the case, it suffices to test that $x_1 \leq X[y_2] \leq x_2$, and if it is, then the answer is $(X[y_2], y_2)$. We now show how queries are answered under the assumption that $X[y_2] \notin [x_1, x_2]$.

We traverse the tree top-down, successively for the root node, then the node $\alpha_1 = y_2[1..\log n]$, then the node $\alpha_2 = y_2[1..2\log n]$ and so on. For the root node, we first compute the value $m_0 = \min(Y[x_1..x_2])$. Then query the predecessor data structure $P_{(0, \alpha_1)}$ to check whether $Y[x_1, x_2]$ contains the value α_1. The predecessor data structure will then be able to return a pair of values $(x_{1,0}, x_{2,0})$ where $(x_{1,0})$ (resp. $(x_{2,0})$) is the leftmost (resp. rightmost) position in $[x_1, x_2]$ such that $Y[x_{1,0}] = \alpha_1$ (resp. $Y[x_{2,0}] = \alpha_1$). If the interval $Y[x_1, x_2]$ does not contain the value α_1, we stop at the first level. Otherwise, we go to the second level to node α_2, compute $m_1 = \min(Y[x_{1,0}..x_{2,0}])$, and query the predecessor data structure $P_{(\alpha_2, y_2[1..2\log n])}$ for the pair $(x_{1,0}, x_{2,0})$ to check whether $Y_{\alpha_1}[x_{1,0}, x_{2,0}]$ contains the value $y_2[\sqrt{\log n} + 1..2\sqrt{\log n}]$. If that is the case, then the predecessor data structure will return a pair $(x_{1,1}, x_{2,1})$ such that $(x_{1,1})$ (resp. $(x_{2,1})$) is the leftmost (resp. rightmost) position in $[x_{1,0}, x_{2,0}]$ with $Y[x_{1,1}] = y_2[\sqrt{\log n} + 1..2\sqrt{\log n}]$ (resp. $Y[x_{2,1}] = y_2[\sqrt{\log n} + 1..2\sqrt{\log n}]$). We continue the traversal of the tree in the same way until the predecessor query fails at a certain level i.

We let j be the deepest level such that $m_j < y_2[(j - 1)\sqrt{\log n} + 1..j\sqrt{\log n}]$. This tells us that the final value for y is prefixed by $y_2[1..(j - 1)\sqrt{\log n}]$, but is followed by a chunk that differs from (more precisely, is strictly smaller than) $y_2[(j - 1)\sqrt{\log n} + 1..j\sqrt{\log n}]$.

Then we query the wavelet tree W_α with $\alpha = \alpha_j$ to find the range predecessor of $y_2[(j - 1)\sqrt{\log n} + 1..j\sqrt{\log n}]$ in the interval $Y_\alpha[x_{1,j}..x_{2,j}]$. This will produce the next $\sqrt{\log n}$ bits of y (denoted by y') and an interval $(x_{1,j+1}, x_{2,j+1})$. We then continue to the node $\alpha = y_2[1..(j - 1)\sqrt{\log n} + 1..j\sqrt{\log n}]$.

Note that one of the predecessor queries will have to fail, because we have eliminated the case that the y component of the query answer equals y_2.

16
1) $\sqrt{\log n} \cdot y'$, but this time the next bits of y will be produced by the range maximum query data structure over interval $Y_d[x_{1,j+1}..x_{2,j+1}]$. We continue traversing the tree in this way until the bottom node, at which point we will have induced the full value of y. To get x we simply read $X[y]$.

B.1 Faster queries

We now show how queries are answered using the data structure from Theorem 4. The algorithm can be thought of as a generalization of the query algorithm presented in beginning of Section 2.

Recall that we are given integers x_1, x_2 and y_2 and must find the point (x, y) such that $x_1 \leq x \leq x_2$, $y \leq y_2$ and y is maximal. As usual we eliminate the trivial case that $x_1 \leq X[y_2] \leq x_2$, in which case the answer is $(X[y_2], y_2)$. As before the query proceeds in two phases. The first phase determines the longest common prefix between y and y_2 and the second phase allows us to determine the remaining bits of y. Finally, the value of x can be determined by reading $X[y]$. We now give details of the two phases. In the first phase, the longest common prefix between y and y_2, is determined in chunks of $\log((c-1)/c) n$ bits by traversing the tree of granularity $\log((c-1)/c) n$. Then at most $\log((c-1)/c) n - 1$ bits will remain to be determined, and we continue from a node in the tree at level of granularity $\log((c-2)/c) n$, labelled by $y_2[(i-1)]\log((c-1)/c) n + 1, \log((c-1)/c) n]$, for some integer i. Since we have to determine less than $\log((c-1)/c) n$ bits, the number of traversed tree levels will be less than $\log(1/c) n$.

We then continue refining the length of longest common prefix by traversing trees at decreasing levels of granularity until we reach a node at level of granularity 1, which is an ordinary wavelet tree. As before at each node, we will use a range-minimum query to determine whether the label of the node is a prefix of the longest common prefix of y and y_2 and use the predecessor query to determine whether we continue exploring the next node at the next tree level and the interval to be used at that next node. In the second phase, we will traverse trees of increasing level of granularities, from the node at which the first phase has stopped. This time we will use range-maximum queries to determine both the next node to explore and the next chunk of bits of y (the chunk length being the level of granularity). We switch from a level of granularity $\log((d+1)/c) n$ to the next one of granularity $\log((d+1)/c) n$, whenever the number of determined bits of y is multiple of $\log((d+1)/c) n$ and the first node at that level will be the one labelled by the bits of y which have been determined so far. As before the range to be used at next tree level will be determined using predecessor query on the range at current node, using the current chunk determined from the range-maximum query. It is easy to see that the query time of both phases is $O(c\log 1/c n \log \log n)$, since we have c levels of granularity and at each such level we traverse at most $\log(1/c) n$ nodes, spending $O(\log \log n)$ time at each node. This finishes the description and analysis of the queries.

We traverse the tree top-down, successively for the root node, then the node $\alpha_1 = y_2[1..\sqrt{\log n}]$, then the node $\alpha_2 = y_2[1..\sqrt{\log n}]$ and so on. For root node, we first compute the value $m_0 = \min(Y[x_1..x_2])$. Then query the predecessor data structure $P_{(0,\alpha_1)}$ to check whether $Y[x_1..x_2]$ contains the value α_1. The predecessor data structure will then be able to return a pair of values $(x_{1,0}, x_{2,0})$ such that $(x_{1,0})$ (resp. $(x_{2,0})$) is the leftmost (resp. rightmost) position in $[x_1..x_2]$ such that $Y(x_{1,0}) = \alpha_1$ (resp. $Y(x_{2,0}) = \alpha_1$). If the interval $Y[x_{1,0}..x_{2,0}]$ does not contain the value α_1, we stop at the first level. Otherwise, we go to the second level to node α_2, compute $m_1 = \min(Y[x_{1,0}..x_{2,0}])$ and query the predecessor data structure $P_{(\alpha_2,y_2[1..\sqrt{\log n}]})$ for the pair $(x_{1,0}, x_{2,0})$ to check whether $Y_{\alpha_1}[x_{1,0}..x_{2,0}]$ contains the value $y_2[\sqrt{\log n}+1..\sqrt{\log n}]$. If that is the case, then the predecessor data structure will return a pair $(x_{1,1}, x_{2,1})$ such that $(x_{1,1})$ (resp. $(x_{2,1})$) is the leftmost (resp. rightmost) position in $[x_{1,0}, x_{2,0}]$ such that $Y(x_{1,1}) = y_2[\sqrt{\log n}+1..\sqrt{\log n}]$ (resp. $Y(x_{2,1}) =
$y_2[\sqrt{\log n} + 1..2\sqrt{\log n}]$. We continue the traversal of the tree in the same way until the predecessor query fails at a certain level y_i.

C Elias-Fano based predecessor data structure

We now show how Elias-Fano predecessor data structures are built. Suppose that we have a set S of n keys from interval $[1..u]$ (where for simplicity u and n are powers of two). We can show a data structure that uses $n(2 + \log(u/n)) + o(n)$ bits of space and that allows us to answer to predecessor (rank) queries in $O(\log \log u)$ time as well as finding the key of rank i (select queries) in constant time. The Elias-Fano encoding is composed of two substructure. Let $x_1 < x_2 < \ldots < x_n$ be the sequence of keys to be encoded with $x_i \in [1..u]$ for all $i \in [1..n]$. The first substructure is an array $A[1..n]$, where $A[i]$ contains the least significant $\log(u/n)$ bits of x_i. The second substructure is a bitvector V of length $2n$ bits which contains the sequence $0^{x_1/2 - x_1'}\ldots0^{x_n/2 - x_n'}1$, where $x_i' = x_i/(u/n)$. In other words, the bitvector V encodes the most significant $\log n$ bits of elements x_i. In order to support the select operation for position i (computing x_i), we can first go to $A[i]$ to retrieve the least significant $\log(u/n)$ bits of x_i and then do a select query to find the location of the ith one in V. If that location is j then the value of the most significant $\log n$ bits of x are equal to the number of zeros before position j, which is $j - i$. Thus a select query can be answered in constant time. To answer to rank queries, we will build a y-fast trie predecessor data structure \[\text{[12]}\] on the set S' of $n/\log^2 u$ keys $x_1, x_{\log^2 u + 1}, \ldots, x_n$. This data structure will occupy $O(n/\log^2 u) = o(n)$ bits of space and allows to determine the predecessor of a query key x in S' in $O(\log \log u)$ time. This will allow to restrict the predecessor search in S to a small interval of size n. The predecessor search can then be completed by a binary search over that set, by doing select queries. This binary search also takes $O(\log \log u)$ time.

The data structure can be generalized as follows. Given a parameter $v \leq u$ (again assume that v is a power of two), we can build a data structure that occupies $v + n(1 + \log u/v) + o(v + n)$ bits of space and that answers to rank and select queries within the same amount of time. To implement the data structure, we will use a bitvector V of size $n + v$ bits with n ones and v zeros (the ones and zeros are stored as was defined before except that $x_i' = x_i/(u/v)$) and store in V the least significant (u/v) bits of each key. The query time bounds are preserved.

Lemma 2. Given a set $S \subset [1..u]$ with $|S| = n$ and a number $v \leq u$, we can build a data structure which occupies $v + n(1 + \log u/v) + o(v + n)$ (assuming n,v and u are powers of two) and answers to rank queries in time $O(\log \log u)$ and select queries in constant time.

C.1 Simple Construction

We can now show the following lemma:

Lemma 3. Given a sequence Y of length n over alphabet $[1..\sigma]$ (where $\sigma \leq n$ and both σ and n are powers of two), we can build σ predecessor data structures so that the data structure number c stores the positions of character c in the sequence Y such that:

1. The total space occupied by all predecessor data structures is $n(2 + \log \sigma) + o(n)$ bits of space.

\[\text{[13]}\] note that one of the predecessor queries will have to fail, because we have eliminated the case that the y component of the query answer equals y_2. To see why notice that the last query is for node y_α where $\alpha = y_2[1..\log n - \sqrt{\log n}]$ and the last query is for $y' = y_2[\log n - \sqrt{\log n} + 1..\log n]$.
2. The total construction time of the data structures is $O(n)$ time.

3. A predecessor (rank) query is answered in time $O(\log \log n)$ and a select query is answered in constant time.

Proof. We will build σ Elias-Fano data structures (generalized as above) denoted E_{α} for $\alpha \in [1..\sigma]$. For each data structure we set $v = n/\sigma$. The space used by data structure α is $v + n_\alpha(1 + \log(n/v)) + o(v + n_\alpha) = v + n_\alpha(1 + \log \sigma) + o(v + n_\alpha)$. Since n_α and v sum up to n, we get that the total space usage is $n(2 + \log \sigma) + o(n)$ bits of space. The vectors V_α and A_α can be built easily in $O(n_\alpha)$. For that, we can first build the sequence of positions P_{α} from Y (initially the sequences are empty), by scanning Y and appending for each $Y[i] = c$ append position i to sequence P_{α}. Then, building V_α and A_α is done by scanning P_{α} and for each element writing its least significant $\log \sigma$ bits in A_α and writing a number of zeros and a one in V_α (the number of zeros is based on the $\log n - \log \sigma$ most significant bits).

In order to support rank queries, for each E_α containing at least $\log^2 n$ elements, we sample every $\log^2 n$th occurrences of character α in Y storing the resulting positions in a y-fast trie Tr_α. A predecessor query on E_α is then solved by first querying Tr_α, which will answer in time $O(\log \log n)$ and complete with binary search for an area of length at most $\log^2 n$ doing $O(\log \log n)$ select queries on E_α. The construction of Tr_α clearly takes $O(1 + |E_\alpha|)$ and the space is clearly $O(|E_\alpha|/\log n)$ bits of space. When added over all $\alpha \in [1..\sigma]$, the construction time for rank and select structures on V_α sums up to $O(n)$ and for all Tr_α sums up to $O(\sigma + n/\log^2 n)$. This finishes the proof of the lemma. □

C.2 Bit-parallel Construction

We now exploit the bitparallelism to show a faster construction, showing the following lemma:

Lemma 4. Given a sequence Y of length n over alphabet $[1..\sigma]$ (where σ and n are both powers of two) and a global precomputed table of size N such that $\sigma \leq n \leq N \leq 2^w$, we can build σ predecessor data structures so that the data structure number c stores the positions of character c in the sequence Y such that:

1. The total space occupied by all predecessor data structures is $n(2 + \log \sigma) + o(n)$ bits of space.
2. The total construction time of the data structures is $O(n(\log \sigma)^2/\log N + \sigma)$.
3. The temporary space used during the construction is $O(n \log \sigma)$ bits.
4. A predecessor (rank) query is answered in time $O(\log \log N)$ and a select query is answered in constant time.

The global precomputed table can be shared by many instances of the data structures.

Proof. We will build σ Elias-Fano data structures (generalized as above) denoted E_α for $\alpha \in [1..\sigma]$. For each data structure we set $v = n/\sigma$. The space used by data structure α is $v + n_\alpha(1 + \log(n/v)) + o(v + n_\alpha) = v + n_\alpha(1 + \log \sigma) + o(v + n_\alpha)$. Since n_α and v sum up to n, we get that the total space usage is $n(2 + \log \sigma) + o(n)$ bits of space. As in Lemma 3 we will build σ Elias-Fano data structures (generalized as above) denoted E_α for $\alpha \in [1..\sigma]$, in which we set we set $v = n/\sigma$ for each data structure. As shown above the total space usage of the data structures sums up to $n(2 + \log \sigma) + o(n)$.

We now describe the construction procedure. The construction proceeds in $\log \sigma$ phases. We describe the first phase, the subsequent phases will be (almost) identical, but will have different input and output. Before doing the first phase, we construct a vector $A[1..n]$ such that $A[i]$ =
i mod log σ and a bitvector \(V = (01^{\log \sigma})^{n/\log \sigma} \). Notice that these two vectors represent together the Elias-Fano representation of the sequence \(1, 2, \ldots, n \). The phase will have as input the arrays \(A, V \) and the sequence \(Y \) and will output a pair of vectors \((A_0, A_1)\), a pair of bitvectors \((V_0, V_1)\), and a pair of sequences \((Y_0, Y_1)\). The sequence \(Y_0 \) (resp. \(Y_1 \)) will store the subsequence of characters from \(Y \) which belong to the first (resp. second) half of the alphabet. The array \(A_0 \) (resp. \(A_1 \)) will store the values from \(A \) whose corresponding positions in \(Y \) belong to first (resp. second) half of the alphabet. Finally the bits of \(V \) are copied into \(V_0 \) and \(V_1 \). More precisely every 0 in \(V \) is copied to both \(V_0 \) both \(V_1 \) while every 1 is copied to either \(V_0 \) or \(V_1 \). The vector \(V \) is scanned right-to-left and the \(i \)th 1 in \(V \) is in correspondence with the \(i \)th element of \(Y \). If \(Y[i] \) belongs to the first (resp. second) half of the alphabet (this can be checked by looking at most significant bit of \(Y[i] \)), then it is appended to \(V_0 \) (resp. \(V_1 \)). Whenever a 0 is encountered in \(V \), it is appended to both \(V_0 \) and \(V_1 \). One can now easily see that \(A_0 \) and \(V_0 \) (resp. \(A_1 \) and \(V_1 \)) is the Elias-Fano representation of the occurrences of characters from the first (resp. second) half of the alphabet in the sequence \(Y \). The first phase can thus easily construct the output by simultaneously scanning \(A, Y \) and \(V \) in left-to-right order and appending at the end of \(A_0, A_1, V_0, V_1, Y_0 \) and \(Y_1 \). In order to efficiently implement the first phase, we will make use of the four Russian technique. We read \(A, V \) and \(Y \) into consecutive blocks of \(b = \lceil \log N / 3 \log \sigma \rceil \) consecutive elements, which occupy \(b(1 + 2\log \sigma) \) bits of space. We use a lookup table which for each combination of 3 blocks from \(A, V \) and \(Y \), will indicate the blocks to be appended at the end of \(A_0, A_1, V_0, V_1, Y_0, Y_1 \) as well as by how much we advance the scanning pointers into \(A \) and \(Y \) (which will be the number of 1s in the block read from \(V \)). The information stored for every combination easily fits into \(O(\log n) = O(\log N) \) bits of space and the total number of possible combinations is \(O(2^{b(1+2\log \sigma)}) = O(2^{2\log N / 3 + \log \sigma \cdot N}) \) and thus the lookup table occupies \(O(2^{2\log N / 3 + \log \sigma \cdot N} \log N) \) bits of space. In the second phase, we build a pair of vectors \((A_{00}, A_{01})\) (resp. \((A_{10}, A_{11})\)), a pair of bitvectors \((V_{00}, V_{01})\) (resp. \((V_{10}, V_{11})\)), and a pair of sequences \((Y_{00}, Y_{01})\) (resp. \((Y_{10}, Y_{11})\)) based on \(A_0, V_0 \) and \(Y_0 \) (resp. \(A_1, V_1 \) and \(Y_1 \)). The procedure is similar to the one used in the first phase, except that now the distribution of elements in the output is based on the second most significant bit of elements of \(Y_0 \) (resp. \(Y_1 \)). The lookup table for the second occupies the same space as the one built in the first phase. At the end of the second phase the pairs \((A_{00}, V_{00}), (A_{00}, V_{00}), (A_{01}, V_{01}), (A_{10}, V_{11})\) will represent Elias-Fano representations of the occurrences of characters from respective subalphabets \([1..\sigma/4], [\sigma/4+1..\sigma/2], [\sigma/2+1..3\sigma/4]\) and \([3\sigma/4+1..\sigma]\) in the original sequence \(Y \). We continue in the same way doing \(\log \sigma - 2 \) more phase, where at phase \(i \) we will have built Elias-Fano for subalphabets of size \(\sigma / 2^i \). At the end we will get the Elias-Fano representation of the occurrences of each distinct character in the sequence \(Y \). We now analyze the time and space used by the algorithm. The total space used by all the \(O(\log \sigma) \) lookup tables will be \(O(2^{2\log N / 3 + \log \sigma \cdot N} \log N \log \sigma) = o(N) \) bits of space. For the running time it is easy to see that a phase \(i \) runs in time \(O(2^i + n/b) \) time, since we have \(2^i \) subalphabets and we process \(b \) elements of each processed vector in constant time. Over all \(\log \sigma \) phases the total running time sums up to \(O(\sigma + n \log \sigma / b) = O(\sigma + n \log \sigma / \log n) \). Let \(E_\alpha = (V_\alpha, A_\alpha) \) be the Elias-Fano representation for occurrences of character \(\alpha \in [1..\sigma] \). In order to complete the construction, we need to construct the support for \texttt{rank} and \texttt{select} queries on each vector \(V_\alpha \). This can be done in time \(O(1 + |V_\alpha| / \log N) \) for the bitvector \(|V_\alpha| \), by using the construction in [4]. This allows us to support \texttt{select} queries on \(E_\alpha \) in constant time. In order to support \texttt{rank} queries, for each \(E_\alpha \) containing at least \(\log^2 N \) elements, we sample every \(\log^2 N \)th occurrences of character \(\alpha \) in \(Y \) by doing \texttt{select} queries on \(E_\alpha \) for positions \(1, \log^2 N, 2 \log^2 N, \ldots \) and store the resulting positions in a \(y \)-fast trie \(\text{Tr}_\alpha \). A predecessor query on \(E_\alpha \) is then solved by first querying \(\text{Tr}_\alpha \) which will answer
in time \(O(\log \log n) \) and complete with binary search for an area of length at most \(\log^2 N \) doing \(O(\log \log N) \) select queries on \(E_\alpha \). The construction of \(Tr_\alpha \) clearly takes \(O(1 + |E_\alpha|/\log N) \) and the space is clearly \(O(|E_\alpha|/\log n) \) bits of space. When added over all \(\alpha \in [1..\sigma] \), the construction time for rank and select structures on \(V_\alpha \) sums up to \(O(\sigma + n/\log N) \) and for all \(Tr_\alpha \) sums up to \(O(\sigma + n/\log^2 N) \). This finishes the proof of the lemma. \(\square \)

D Sampled range-minimum queries

We first start by constructing a sampled sequence \(S' \) from the sequence \(S \) we want to index. Initially \(S' \) is empty. Suppose that we allow \(o(N) \) precomputation of a table of size \(o(N) \) bits that can be shared by all instances of the range minimum or maximum queries. We assume that \(N \geq \sigma \). We divide \(S \) into blocks of size \(b = \frac{\log N}{2 \log \sigma} \) elements each, then scan it in left-to-right order, compute minimum element in each block and append the result at the end of \(S' \). We then build a rmq \(R' \) on top of \(S' \) in time \(O(\lceil n \log \sigma \log N \rceil) \). To compute the minimum in each block, we use a lookup table that returns the minimum element on all possible blocks of size \(b \). The table stores \(O(\sigma^b) \) elements each of length \(\log \sigma \) bits, for a total space of \(O(\sigma^b \log \sigma) = o(N) \) bits.

To answer a rmq query for \(S[i..j] \), we first check whether the query is contained in one or two blocks of \(S \). If that is the case, then we read the blocks compute the minimum in each block in constant time, and compute the minimum of all the 2 block also in constant time. For that we use a precomputed table that will contain \(O(\sigma^b \log^2 b) \) elements each using \(\log b \) bits. The table contains the answers to all possible queries (\(O(\log^2 b) \)) over all possible blocks (\(\sigma^b \)). The space is \(O(\sigma^b \log^2 b \log \sigma) = o(N) \) bits. If the query spans more than two blocks, then we can divide it into three parts. A head and tails parts which are contained in one block each and a central part, whose length is multiple of a block length. We answer compute the minimum on head and tail in constant time, using the precomputed table and compute the minimum on the central part using \(R' \), and finally take the minimum of the three.

We thus have proved the following lemma:

Lemma 5. Given a sequence \(Y \) of length \(n \) over alphabet \([1..\sigma]\) (where \(\sigma \leq n \) and both \(\log \sigma \) and \(n \) are powers of two) and global precomputed tables total of size \(o(N) \), where \(N \leq 2^w \), we can build a range min data structure on top of \(Y \):

1. The space used by the data structure is \(O(n/\log \sigma N) \) bits.
2. A query is answered in constant time.
3. The data structure can be constructed in time \(O(n/\log \sigma N) \).
4. The temporary space used during the construction is \(O(n/\log \sigma N) \) bits.

The precomputed tables can be shared by many instances of the data structure and can be built in \(o(N) \) time.

E Construction of the fast range-predecessor data structure

In this section, we show the construction of the data structure used in Theorem \[.\] The main ingredients are lemmas \[5\] and \[4\]. We let \(L_1 = \log^{i/c} n \) be the level of granularity such that \(\log^{i/c} n \geq \sqrt{\log N} \) and \(L_2 = \log^{(i-1)/c} n < \sqrt{\log N} \). For level \(L_1 \) and higher, we will use simple linear time algorithms to build the predecessor and range minimum (maximum) data structures. The time for
these levels is dominated by the time used for level L_1 for which the total number of elements stored in all sequences (and hence in predecessor and range minimum or maximum data structures) at all nodes will be $O(n \log n / L_1) = O(n \log n / \sqrt{\log N})$. The sum of alphabet sizes at all nodes is clearly $O(n)$.

Hence the construction time at that level will be $O(n(1 + \log n / \sqrt{\log N}))$. For the next higher level the construction time will be $O(n(1 + \log n / \log L_2))$. Continuing the same way we deduce that the construction time for these levels will be $O(n(c_1 + \log n / \sqrt{\log N}))$, where c_1 is the number of levels.

For level L_2 and lower we will use bitparallel construction algorithm. For an given node α containing n_α elements, the construction time will be $O(\sigma + n_\alpha (\log \sigma)^2 / \log N)$ (which is dominated by the time for construction the Elias-Fano predecessor data structure), where $\sigma = 2^L_2 = O(2^{\sqrt{\log N}})$. The total sum of the σ term over all nodes is $t_1 = O(n)$ and the total sum of the terms $n_\alpha (\log \sigma)^2 / \log N$ will be $t_2 = O(\log \sigma / \log N)$, since the total number of elements stored in all nodes is $O(n/L_2)$. Thus, we have $t_2 = O(\log n / \sqrt{\log N})$. Since we have $L_2 \leq \sqrt{\log N}$, we conclude that $t_2 = O(n \log n / \sqrt{\log N})$. We notice that t_2 will decrease by factor $\log^{1/c} n$ each time we go to the next smaller level of granularity. The term t_1 remains stable. Since, the term t_2 of level L_2 will dominate the terms t_2 of all lower levels, and the term $t_3 = O(n)$ remains stable over the lower levels, we conclude that the total construction time for level L_2 and lower levels will be $O(n(c_2 + \log n / \sqrt{\log N}))$, where c_2 is the number of levels. Summing up the construction times of all levels we get the construction time stated in Theorem 3.

F Rightmost Parsing

F.1 The full picture

We now present the complete algorithm. We first categorize each query. Queries that fall in the same block are redirected to the range-predecessor data structure responsible for handling that block and queries that are longer than ℓ are put aside to be solved by the data structure for handling long factors. For the remaining factors (short factors with ranges that cross block boundaries) we will construct the tree of queries. This can be done in $O(n)$ time, by sorting the query ranges first by starting positions and then by the negation of their ending positions. The sorting can be done in $O(\sqrt{n} + n / \log n)$ time using radix-sort.

The rest of the algorithm is straightforward, except for few details on how the points stored in the range-predecessor data structure are constructed. This is done as follows. The generated points are pairs consisting of a suffix array position (x coordinate) and text position (y coordinate). We first notice that we need to divide the points according to their x coordinates, such that the points whose x coordinate is in $[1..B]$ go to the first range-predecessor data structure, points with coordinate in $[B + 1, 2B]$ go to second data structure and so on. The points are generated by inverting the Burrows-Wheeler transform in left-to-right order. This generates the values of y coordinates that appear in each block in sorted order. Finally, for each block, we need as input to building its range-predecessor data structure, the points sorted by x coordinate and for each point the y coordinate replaced by the rank of the value among all values of y that appear inside the block. Since we extract the points by increasing value of y, we can keep an array $C[1..n/B]$ that stores the number of points that have been extracted so far for each block. The counter is incremented each time
we extract a point, and the rank of the y value of a point that has been just extracted in block \(i\) will equal the counter \(C[i]\). Finally we need to sort all the extracted points by their \(x\) coordinates, and this done via radix-sort. The algorithm uses \(O(n \log n)\) bits and \(O(n(1 + \log \sigma/\sqrt{\log n}))\) time overall.

\[\text{F.2 Optimal space}\]

It remains to show how to reduce the space to the optimal \(O(n \log \sigma)\) bits. The additional space used for long factors (Section 6.2) and short factors crossing block boundaries (Section 6.3) is \(O(n)\) bits. The bottleneck is for the factors with small range (see Section 6.4) in which the used space is \(O(n \log n)\). In what follows, we show how to reduce the space to \(O(n \log \sigma)\) bits.

To this end we divide the range of \(y\) into \(\log n/2\) equal sub-ranges. We now build the tree of all queries that do not cross a block boundary in the same way we did for the short factors that cross a block boundary in Section 6.3. As before, for every leaf of the suffix tree, we associate the nearest ancestor that corresponds to a query range. Additionally for each node in the query tree, we associate a bitmap \(B_\alpha[1..\log n/2]\) of size \(\log n/2\) bits. The query tree occupies \(O(n \log \sigma)\) bits. We now invert the BWT and, for each leaf that has been extracted, we mark the bit \(B_\alpha[i]\), where \(i\) is the block in which the text position falls and \(\alpha\) is the internal node pointed to by the leaf. We finally do a complete postorder traversal of the tree so that the bitmap of each node is bitwise OR’d with all the bitmaps of its children. At the end, for every query range \([l_\alpha, r_\alpha]\) corresponding to a node \(\alpha\), \(B_\alpha\) will mark every subrange of \(y\) where there exists a point \((a, b)\) such that \(a \in [l_\alpha, r_\alpha]\) and \(b\) belongs to the subrange of \(y\).

We now build \(\log n/2\) query trees (henceforth local query trees). For every node of the tree (henceforth main query tree), we know that all range-predecessor queries will have the same interval \([l_\alpha, r_\alpha]\) on the \(x\) axis, but a different \(b\) on the \(y\) axis.

For every query, the answer can only be in two sub-ranges: the sub-range \(R_b\) that contains \(b\) if \(B_\alpha[R_b]\) is marked or the largest \(R'_b < R_b\) such \(B_\alpha[R'_b]\) contains a marked bit. The \(\log n/2\) local query trees are built via a preorder traversal of the main query tree and for every query determining the one or two target local query trees to which the query should be copied. That is a query will be copied to the local query trees \(R_b\) (if \(B_\alpha[R_b]\) is marked) and \(R'_b\) (if \(R'_b\) exists).

The nodes of the query trees (and the queries attached to them) are built on-the-fly during the traversal of the main query tree, by keeping a stack for every query tree. For every query in a local query tree, we keep a pointer to the originating query in the main query tree. Note that the total space used by all the local query trees remains bounded by \(O(n \log \sigma)\) bits, which is the same as the main query tree.

We will now apply the algorithm described in Section 6.4 on every subrange of \(y\). In more detail, we invert the BWT left-to-right. We do this in \(\log n/2\) phases, where in phase \(i\) we will compute all the positions in \(SA\) that point to text positions in \([[(i-1)n/C+1..iC]\) with \(C = 2n/\log n\). That is, we output all pairs \((x, SA[x])\), such that \(SA[x] \in [((i-1)n/C+1..iC]\). During the course of phase \(i\), we apply the algorithm of Section 6.4 verbatim, except that now the points are only the one with \(y \in [((i-1)n/C+1..iC]\) and the queries are from the \(i\)th local query tree and not the main query tree.

\[\text{\footnotesize{Notice the time is deterministic and not randomized. The source of randomization is the construction and indexation of the BWT, which is subsequently inverted. However this is not needed anymore, since we can build the suffix array of }X\text{ in deterministic linear time and }O(n \log n)\text{ bits of space.}}\]
It is easy to see that the time complexity stays exactly as it was before. The construction time of
the range-predecessor and predecessor data structures for every phase will now be $O((n/\log n)(\log \sigma/\sqrt{\log n}))$.
In particular the radix sort done on the x values can now be executed in $O(\sqrt{n} + n/\log n)$ time and
using $O(\sqrt{n})$ words of space. The space usage of the range-predecessor and predecessor structures
over all phases will be just $O(n)$ bits. Both structures are destroyed at the end of each phase, so
that the total peak space usage of the whole algorithm is $O(n \log \sigma)$ bits.