Comparison of somatic mutation landscapes in Chinese versus European breast cancer patients

Bin Zhu,1 Lijin Joo,1 Tongwu Zhang,1 Hela Koka,1 DongHyuk Lee,1 Jianxin Shi,1 Priscilla Lee,2 Difei Wang,1,3 Feng Wang,2 Wing-cheong Chan,4 Sze Hong Law,4,5 Yee-kee Tsoi,4 Gary M. Tse,6 Shui Wun Lai,7 Cherry Wu,7 Shuyuan Yang,2 Emily Ying Yang Chan,2 Samuel Yeung Shan Wong,2 Mingyi Wang,1,3 Lei Song,1,3 Kristine Jones,1,3 Bin Zhu,1,3 Amy Hutchinson,1,3 Belynda Hicks,1,3 Ludmila Prokunina-Olsson,1 Montserrat Garcia-Closas,1 Stephen Chanock,1 Lap Ah Tse,2,* and Xiaohong R. Yang1,.*

Summary

Recent genomic studies suggest that Asian breast cancer (BC) may have distinct somatic features; however, most comparisons of BC genomic features across populations did not account for differences in age, subtype, and sequencing methods. In this study, we analyzed whole-exome sequencing (WES) data to characterize somatic copy number alterations (SCNAs) and mutation profiles in 98 Hong Kong BC (HKBC) patients and compared with those from The Cancer Genome Atlas of European ancestry (TCGA-EA, N = 686), which had similar distributions of age at diagnosis and PAM50 subtypes as in HKBC. We developed a two-sample Poisson model to compare driver gene selection pressure, which reflects the effect sizes of cancer driver genes, while accounting for differences in sample size, sequencing platforms, depths, and mutation calling methods. We found that somatic mutation and SCNA profiles were overall very similar between HKBC and TCGA-EA. The selection pressure for small insertions and deletions (indels) in GATA3 (false discovery rate (FDR) corrected p < 0.01) and single-nucleotide variants (SNVs) in TP53 (nominal p = 0.02, FDR corrected p = 0.28) was lower in HKBC than in TCGA-EA. Among the 13 signatures of single-base substitutions (SBS) that are common in BC, we found a suggestively higher contribution of SBS18 in some driver genes and mutational signatures that warrant future investigations in large and diverse Asian populations.

Introduction

Despite being lower than in North America and Europe,1 the incidence rates for invasive female breast cancer (BC) [MIM: 114480] have been increasing rapidly in many Asian populations. Moreover, Asian women seem to have a distinct profile of BC, such as earlier age at onset and higher frequencies of luminal B and HER2-enriched tumors, compared with European populations.2 Recent genomic studies based on a limited number of Asian subjects suggest that Asian breast tumors may display a higher frequency of somatic mutations in TP53[MIM: 191170]3–5 and distinct immune gene expression profiles.4–6 In particular, a germline APOBEC3B deletion polymorphism [MIM:607110], which has been associated with increased BC risk7 and increased APOBEC-associated mutation signatures in BC,8,9 is much more common in East Asians (31.2%) than in Europeans (9.0%) and West Africans (4.2%). These previous studies suggest that East Asian breast tumors may exhibit a distinct somatic profile compared with other BC populations.

Cancer develops as a result of somatic mutations and clonal selection. The selection pressure of somatic mutations in cancer driver genes reflects the adaptiveness or effect size of clonal selection.10,11 The positive selection pressure indicates that the corresponding cancer subclone has a growth advantage over normal cells and other cancer subclones. Selection pressure is frequently measured by dN/dS ratio, which represents the mutation rate of nonsynonymous (NS) mutations (including missense, nonsense, splicing site mutations, and insertions and deletions (indels)) versus the mutation rate of synonymous mutations.12 In previous studies, population differences in the driver gene landscape were compared primarily based on mutation frequencies among study populations. However, these comparisons are sensitive to differences in sequencing platforms and bioinformatic analyses.12 On the other hand, by leveraging mutation rates of synonymous mutations as the reference group, the dN/dS ratio is less sensitive to variations in sequencing and somatic mutation calling, assuming the technical variations are not discriminative against the function of mutations. In

1Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA; 2Division of Occupational and Environmental Health, The Chinese University of Hong Kong, Hong Kong, China; 3Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA; 4Department of Surgery, North District Hospital, Hong Kong, China; 5Department of Pathology, Yan Chai Hospital, Hong Kong, China; 6Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; 7Department of Pathology, North District Hospital, Hong Kong, China

*Correspondence: royang@mail.nih.gov (X.R.Y.), shelly@cuhk.edu.hk (L.A.T.)

https://doi.org/10.1016/j.hgad.2021.100076.

© 2021 The Authors. This is an open access article under the CC BY-NC-ND IGO license (http://creativecommons.org/licenses/by-nc-nd/3.0/igo/).
algorithms (MuTect,15 MuTect2 (GATK tool), Strelka,16 and TNScope andes. Somatic mutations were called using four different algo-

For example, although TPS3 is a driver gene for all BC sub-
types, TPS3 mutations present with higher selection pres-

In this study, we compared driver gene selection pressure, as well as mutational signatures and somatic copy number alteration (SCNA) profiles, between Chinese and TCGA BC patients of European ancestry that had similar distributions of age at diagnosis and PAM50 subtypes.

Methods

Participants and samples

We analyzed data and biospecimens collected from a hospital-

specifically, only tumors with >50% tumor cells and normal tissue with no detected tumor cells were included for dual DNA/RNA extraction.

Whole-exome sequencing (WES) was performed on 98 paired tumor and normal samples at the Cancer Genomics Research Labor-

Whole-exome sequencing (WES) was performed on 98 paired tumor and normal samples at the Cancer Genomics Research Labor-

Bioinformatic analyses

Paired tumor and histologically normal breast tissue samples were processed for pathology review at the Biospecimen Core Resource (BCR), Nationwide Children’s Hospital, using modified TCGA criteria.13 Specifically, only tumors with >50% tumor cells and normal tissue with no detected tumor cells were included for dual DNA/RNA extraction.

Whole-exome sequencing (WES) was performed on 98 paired tumor and normal samples at the Cancer Genomics Research Labor-

Methods

Participants and samples

We analyzed data and biospecimens collected from a hospital-

addition, although the same set of cancer driver genes may present in different populations, the effect size of selection can be different. Cannataro et al. estimated the selection pressure of all recurrent single-nucleotide variants (SNVs) in 22 cancer types in The Cancer Genome Atlas (TCGA) and found that selection pressures varied considerably across cancer types, even within the same cancer type.13 For example, although TPS3 is a driver gene for all BC sub-
types, TPS3 mutations present with higher selection pres-

The captured DNA was then subjected to paired-end sequencing (Roche NimbleGen, Madison, WI) for exome sequence capture. The average sequencing depth was 106.2x for tumors and 47.6x for the paired blood or normal tis-

driver gene selection pressure, as well as mutational signatures and somatic copy number alteration (SCNA) profiles, between Chinese and TCGA BC patients of European ancestry that had similar distributions of age at diagnosis and PAM50 subtypes.

However, we did not perform de novo mutation signature analysis. Instead, we evaluated contributions of 13 COSMIC single-base substitution (SBS) signa-
tures that were previously reported to be common in BC (SBS1, SBS2, SBS5, SBS8, SBS9, SBS13, SBS17a, SBS17b, SBS18, SBS37, SBS40, and SBS41).24 SBS signatures were defined by 96 mutational catalogs, each of which refers to a mutated pyrimidine (C or T) in the center and two flanking nucleotides (flanking 5’ AND-3’ bases). Signatures24 were evaluated using a new SBS signature analysis method and were used to evaluate the contribution of each COSMIC SBS signature (version 3.2) with confidence for each tumor sample.

Mutational signatures

Given the limited sample size of the HKBC study, we did not perform de novo mutation signature analysis. Instead, we evaluated contributions of 13 COSMIC single-base substitution (SBS) signatures that were previously reported to be common in BC (SBS1, SBS2, SBS5, SBS8, SBS9, SBS13, SBS17a, SBS17b, SBS18, SBS37, SBS40, and SBS41). SBS signatures were defined by 96 mutational catalogs, each of which refers to a mutated pyrimidine (C or T) in the center and two flanking nucleotides (flanking 5’ AND-3’ bases). Signatures24 were evaluated using a new SBS signature analysis method and were used to evaluate the contribution of each COSMIC SBS signature (version 3.2) with confidence for each tumor sample.

Driver gene detection

dNdScv11 (version 0.1.0) with the default arguments was used to identify driver and significantly mutated genes (SMGs) (the signifi-
cance was defined as false discovery rate (FDR) q < 0.01), which were compared with previously identified BC driver genes.25 For this analysis, we further filtered out somatic mutations with VAF < 0.1. After the filtering step and restricting the variants to those in protein-coding regions, 39,439 mutations from 686 TCGA-ERA samples (98.7% are singletons) and 5,116 mutations from 98 HKBC samples (98.8% singletons) were used for the selection
pressure comparison. To examine if the sample size would impact the number of detected driver genes, we randomly down-sampled the TCGA-EA samples and reran dNdScv.

SCNAs
Allele-specific SCNA analysis was performed using subHMM28 (https://dceg.cancer.gov/tools/analysis/subhmm). An arm-level SCNA was defined if the SCNA event covered 90% of the p or q arm of each chromosome. In addition, subHMM also estimated subclonal genotypes of SCNA events based on the distribution of variant allele fractions. GISTIC2.029 was used to detect significant focal recurrent SCNAS. Following the methods in previous reports,30–32 the SCNA-based homologous recombination deficiency (HRD) was quantified based on loss of heterozygosity (LOH), telomere allelic imbalance (TAI), and large-scale state transition (LST).

Two-sample Poisson model to compare driver gene selection pressure in the two populations
We developed a new statistical test, dNdScf, to compare the selection pressure of 23 known BC driver genes between the two populations, while adjusting for study sample size, background mutation rate, and mutable bases. Specifically, we first estimated the background mutation rates for missense, nonsense, splicing site single-nucleotide variants (SNVs), and indels, using the statistical framework adapted from dNdScv. We then compared selection pressure for each specific driver gene in a two-sample test using a Poisson regression model, which adjusts the sample size of each population and accounts for genome-wide mutation rates, 192 tri-nucleotide context-specific mutation rates, and a gene-specific mutation rate.

Let \(n_{ij} \) be the number of NS mutations for the \(i \)th population and \(j \)th mutation category in the \(g \)th driver gene, \(i = 1, 2, \ldots, 96 \), and \(g = 1.2, \ldots, 23 \). We modeled the number of NS mutations following a Poisson distribution as

\[
\lambda_{ij} = n_{ij} \exp(\beta_i^g + \beta_j^g)
\]

for which \(n_{ij} \) is the sample size of the \(i \)th population, \(\lambda_{ij} \) is the number of detected driver genes, and \(\beta_i^g \) is the selection pressure, measured as \(\text{dN/dS} \), for the \(g \)th driver gene in the \(i \)th population; \(n_{ij} \) and \(\lambda_{ij} \) are given based on the study sample size and human reference genome; \(\beta_i^g \) is a plugged-in estimate from dNdScv;11; \(\alpha \) is a parameter that \(\beta_i^g = \alpha \beta_1^g \). A Poisson regression model was fitted to estimate \(\beta_i^g \) and to test the null hypothesis that \(\text{dN/dSs} \) of two populations are the same, i.e., \(\alpha = 1 \). Rejecting the null hypothesis indicates the disparity of selective pressure between the two populations. Both the \(p \) value and FDR adjusted \(p \) value were reported in the results.

Results
This analysis included 98 Chinese BC patients in HKBC and 686 TCGA-EA BC patients. Distributions of age at diagnosis (mean = 57.9 in HKBC and 58.3 in TCGA-EA) and PAM50 subtypes (44.1% luminal A, 26.9% luminal B, 16.1% HER2-enriched, and 12.9% Basal-like in HKBC; 40.9% luminal A, 26.8% luminal B, 14.2% HER2-enriched, and 18.1% Basal-like in TCGA-EA) were similar in the two datasets (Table S1).

The tumor mutational burden in HKBC was 1.74 mutations/Mb. Figure 1A shows the somatic mutation landscape of the 23 known BC driver genes in HKBC, in which so- matic mutations in these genes were seen in 73.5% of patients. The prevalence of mutations in most driver genes was similar in the two datasets (Table S2), with the exception of CDH1 (MIM:192090; 4% in HKBC versus 13% in TCGA-EA), nominal \(p = 0.015 \), FDR adjusted \(p = 0.35 \) and GATA3 (MIM: 131320; 5% in HKBC versus 12% in TCGA-EA, nominal \(p = 0.075 \), FDR adjusted \(p = 0.74 \), which showed lower frequencies in HKBC than in TCGA-EA (figure 1B). De novo identification of SMGs found five genes in HKBC versus 23 genes in TCGA-EA, using dNdScv. We down-sampled TCGA-EA samples to test if the disparity of the number of driver genes was due to the different sample size in HKBC (n = 98) and TCGA-EA (n = 686).

Figure 1. BC driver gene landscape in the HKBC study
(A) Genomic driver landscape of BC in HKBC. Top bar graph shows the number of NS mutations per tumor. The middle gene panel reports NS mutations in 23 known BC driver genes that were reported previously for the TCGA BC (BRCA) study. Bottom panels show age groups and PAM50 subtypes.

(B) Frequencies of mutations in 23 known BC driver genes in HKBC and TCGA-EA (European ancestry) studies.

Human Genetics and Genomics Advances 3, 100076, January 13, 2022 3
to damage by reactive oxygen species (ROS), appeared to show higher contribution in HKBC than in TCGA-EA (mean contribution by SignatureEstimation: 14.4% in HKBC versus 10.9% in TCGA-EA, p = 0.0064), whereas SBS1, considered as a clock-like signature, showed lower contribution in HKBC (8.2%) than in TCGA-EA (22.2%, p = 3.99x10^-30). The prevalence of these signatures estimated by SIGNAL was much lower as compared with the other two algorithms, resulting in insignificant results for most signatures (Table S3). Notably, contributions of SBS2 and SBS13, the two APOBEC signatures, were similar between HKBC and TCGA-EA across all algorithms (Table S3), despite a much higher frequency of the germline APOBEC3B deletion polymorphism in HKBC (40.4%) than in TCGA-EA (5.7%). We found the expected associations between the APOBEC3B deletion and decreased levels of APOBEC3B RNA expression in both tumor and normal tissue, validating SNP rs12628403 as a proxy for APOBEC3B deletion. In addition, the homozygous deletion of APOBEC3B was associated with higher contributions of SBS2 and SBS13 in HKBC (Figure S2).

We also compared SCNA profiles in HKBC and TCGA-EA and found similar patterns of gains, deletions, or LOH between the two datasets for both clonal and subclonal SCNAs (Figure 4). The frequencies of those recurrent SCNAs in BC, such as 1q gain, 8p loss, 8q gain, 16p gain, and 16q loss, were similar in the two datasets. Focal SCNA regions identified using GISTIC were also very similar in the two datasets (Figure S3), although a greater number of significant regions were identified in TCGA-EA because of the larger sample size.

Discussion

In this study, we compared genomic profiles between a clinically and molecularly well-annotated Asian population and TCGA BC patients of European ancestry that had similar age and subtype distributions. We found that somatic mutation and SCNA profiles were overall very similar in the two populations, which is consistent with the conclusion from a recent large BC genomic study conducted in Malaysia, where the majority of patients were of Chinese ancestry. However, in contrast to findings from previous studies, including the study by Pan et al., we did not find higher frequencies of TP53 mutations and APOBEC signature mutations among Chinese BC patients in Hong Kong. Instead, we found that selection pressure for SNVs in TP53 seemed to be lower in HKBC than in TCGA-EA. The discrepancies might be due to younger age and more aggressive tumor subtypes in previous Asian studies, given that TP53 mutations occur more often in younger women and triple-negative tumors. In our study, the age and subtype distributions were similar between HKBC and TCGA-EA. In addition, comparing mutation frequencies is subject to differences in sequencing coverage and mutation calling pipelines. For example, in
Asian populations are therefore not surprising, high-variations in the BC genomic landscape across different background and sociodemographic characteristics. The heterogeneous population, comprising groups with diverse genetic mutation types. Further, Asians are an extremely heterogeneous assuming the technical variations are uniform regardless of variations in sequencing and somatic mutation calling, comparing driver gene selection pressure is less sensitive mutations as the reference group, our method of

In contrast, by leveraging mutation rates of synonymous
genes among Chinese BC patients than in TCGA overall. Nevertheless, our findings of lower selection pressure for

Gene	HKBC study	TCGA-EA														
	N_s	N_n	N_i	ω_s	ω_n	ω_i	N_s	N_n	N_i	ω_s	ω_n	ω_i	p_w	q_n	p_l	q_l
TP53	2	14	8	94.8 (56, 106)	642.5 (321, 1,285)	0	175	41	167.0 (144, 194)	864.6 (651, 1,201)	0.03*	0.28	0.43	0.70		
PIK3CA	0	36	1	100.9 (73, 140)	59.1 (8, 419)	4	256	12	97.9 (87, 111)	54.2 (31, 96)	0.87	0.93	0.94	0.98		
CDH1	0	0	4	0 (NA)	138.6 (52, 369)	3	41	52	18.4 (14, 25)	340.5 (259, 447)	<0.01*	0.03*	0.05*	0.37		
MAP3K1	0	1	3	1.9 (0.3, 132)	104.7 (34, 325)	3	29	51	7.5 (5, 11)	165.0 (125, 217)	0.08	0.35	0.41	0.70		
PIK3K1	0	0	1	0 (NA)	101.0 (14, 717)	1	17	13	16.7 (10, 27)	146.7 (87, 257)	0.04*	0.28	0.70	0.96		
PTEN	0	5	4	36.5 (15.88)	413.0 (155, 1,100)	0	18	22	18.1 (11, 29)	260.8 (172, 396)	0.19	0.45	0.42	0.70		
MAP2K4	0	0	1	0 (NA)	101.0 (14, 717)	1	17	13	16.7 (10, 27)	146.7 (87, 257)	0.14	0.44	0.75	0.96		
FOXA1	0	2	2	10.8 (3, 43)	160.0 (40, 640)	1	18	7	13.8 (9, 33)	139.3 (87, 257)	0.73	0.93	0.86	0.96		
ATM	0	1	3	1.9 (0.3, 132)	104.7 (34, 325)	3	29	51	7.5 (5, 11)	165.0 (125, 217)	0.08	0.35	0.41	0.70		
GATA3	0	1	4	6.3 (0.9, 45)	157.0 (59, 418)	0	9	75	8.0 (4, 16)	998.3 (796, 1,252)	0.81	0.93	<0.01*	<0.01*		
RUNX1	0	1	1	5.2 (0.7, 37)	76.7 (11, 544)	1	7	16	5.2 (3, 11)	188.2 (115, 307)	0.99	0.99	0.33	0.68		
TP53	2	14	8	94.8 (56, 106)	642.5 (321, 1,285)	0	175	41	167.0 (144, 194)	864.6 (651, 1,201)	0.03*	0.28	0.43	0.70		
PIK3K1	0	1	3	1.9 (0.3, 132)	104.7 (34, 325)	3	29	51	7.5 (5, 11)	165.0 (125, 217)	0.08	0.35	0.41	0.70		
TETR3	0	0	1	0 (NA)	101.0 (14, 717)	1	17	13	16.7 (10, 27)	146.7 (87, 257)	0.14	0.44	0.75	0.96		
GATA3	0	1	4	6.3 (0.9, 45)	157.0 (59, 418)	0	9	75	8.0 (4, 16)	998.3 (796, 1,252)	0.81	0.93	<0.01*	<0.01*		
RUNX1	0	1	1	5.2 (0.7, 37)	76.7 (11, 544)	1	7	16	5.2 (3, 11)	188.2 (115, 307)	0.99	0.99	0.33	0.68		
TP53	2	14	8	94.8 (56, 106)	642.5 (321, 1,285)	0	175	41	167.0 (144, 194)	864.6 (651, 1,201)	0.03*	0.28	0.43	0.70		

The background mutation rates were estimated as \(\lambda_{HK} = 1.28 \times (0.41, 3.96) \) and \(\lambda_{WH} = 1.13 \times (0.74, 1.73) \) (w. 95% CI), assuming the mutation counts following a Poisson distribution.

N_s: the number of synonymous mutations; N_n: the number of NS mutations; N_i: the number of indels. ω_s: selection pressure among indels in cancer genes (relative to indel in non-cancer genes); ω_n: selection pressure among NS mutations (relative to synonymous mutations); ω_i: selection pressure among indels in cancer genes (relative to indel in non-cancer genes). 95% confidence intervals for \(\lambda_{s}, \lambda_{n}, \lambda_{i} \) in brackets.

\(p_w \): p value from two sample Poisson likelihood ratio test for point mutations; \(p_l \): p value from two sample Poisson likelihood ratio test for indels; \(q_w \): q value for two sample Poisson likelihood ratio tests for point mutations; \(q_l \): q value for two sample Poisson likelihood ratio tests for indels.

A star mark (*) indicates a test is significant at level 0.05.

the Chinese study by Zhang et al.,\(^{35}\) the coverage of the targeted sequencing was about 20 times higher (~1,200x) than that of TCGA (~60x), which likely contributed to the higher frequencies of mutations in more cancer driver genes among Chinese BC patients than in TCGA overall. In contrast, by leveraging mutation rates of synonymous mutations as the reference group, our method of comparing driver gene selection pressure is less sensitive to variations in sequencing and somatic mutation calling, assuming the technical variations are uniform regardless of mutation types. Further, Asians are an extremely heterogeneous population, comprising groups with diverse genetic background and sociodemographic characteristics. The variations in the BC genomic landscape across different Asian populations are therefore not surprising, highlighting the importance of conducting more genomic studies in different Asian populations to capture the complete spectrum of the BC genomic landscape in Asia. Nevertheless, our findings of lower selection pressure for TP53 in HKBC are in line with the highest survival rate among Asian Americans at all stages among BC patients of all race/ethnic groups in the United States,\(^{36}\) given that TP53 mutations are known to be associated with poor prognosis in multiple cancer types.

Despite a much higher prevalence of the germline APOBEC3B deletion polymorphism in HKBC than in TCGA-EA and the expected associations between the APOBEC3B deletion and decreased levels of APOBEC3B RNA expression in both tumor and normal tissue, the fractions of APOBEC signatures (SBS2/13) were similar between
HKBC and TCGA-EA. The percentage of samples with SBS2 was actually lower in HKBC, suggesting that this germline deletion polymorphism may not play a major role in APOBEC-related mutagenesis in our Hong Kong study.

Notably, we found a consistent increase in SBS18 in HKBC; both the percentage of patients with SBS18 and the mean fraction of SBS18 were higher in HKBC than in TCGA-EA. SBS18 has been associated with ROS damage and defective base excision repair due to germline MUTYH mutations. However, a germline pathogenic variant in MUTYH was only seen in one patient in HKBC and zero in TCGA-EA. Given the sample size and variations in

Figure 3. SBS mutational spectrum and prevalence of SBS signatures in HKBC

(A and B) Mutational spectrum in HKBC (A) and TCGA-EA studies (B). (C) The contributions of COSMIC SBS signatures for each patient in HKBC.

Figure 4. Comparisons of SCNAs between HKBC and TCGA-EA studies

(A) Main clones (left: HKBC, right: TCGA-EA). Each panel shows the frequency of copy number gain, loss, and copy number neutral LOH across the samples in each study. (B) Subclones (left: HKBC, right: TCGA-EA).
signature estimates across different algorithms, future studies are warranted to follow up these findings in additional Asian studies.

The major limitation of the HKBC study is the small sample size, which limited the power to agnostically identify HK-specific events, to extract de novo mutational signatures, and to compare selection pressure for less frequently mutated genes. In addition, lack of whole-genome sequencing data prohibited us from assessing HRD signatures based on structural variants. Nevertheless, taking advantage of the existing knowledge of BC genomics, we found suggestive differences in mutational signatures and selection pressure for several genes, suggesting some extent of racial heterogeneity in mutation generation and selection. Future large studies are warranted to confirm these findings and to relate these genomic differences with germline genetic variants and other etiologic factors.

Data and code availability

Sequencing data generated in the HKBC study has been deposited in the dbGaP database under Accession Code phs001870.v1.p1 at https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001870.v1.p1.

Supplemental information

Supplemental information can be found online at https://doi.org/10.1016/j.xhgg.2021.100076.

Acknowledgments

This research was supported by the Intramural Research Program of the National Institutes of Health, National Cancer Institute, Division of Cancer Epidemiology and Genetics, and Research Grants Council (grant number 474811 to Dr. Tse), Hong Kong SAR.

Declaration of interests

The authors declare no competing interests.

Received: September 9, 2021
Accepted: November 30, 2021

Web resources

Online Mendelian Inheritance in Man: http://www.omim.org.

References

1. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., and Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424.
2. Yap, Y.S., Lu, Y.S., Tamura, K., Lee, J.E., Ko, E.Y., Park, Y.H., et al. (2019). Insights into breast cancer in the East vs the west: a review. JAMA Oncol. 5, 1489–1496.
3. Yap, Y.S., Singh, A.P., Lim, J.H.C., Ahn, J.H., Jung, K.H., Kim, J., Dent, R.A., Ng, R.C.H., Kim, S.B., and Chiang, D.Y. (2018). Elucidating therapeutic molecular targets in premenopausal Asian women with recurrent breast cancers. NPJ Breast Cancer 4, 19.
4. Kan, Z., Ding, Y., Kim, J., Jung, H.H., Chung, W., Lal, S., Cho, S., Fernandez-Banet, J., Lee, S.K., Kim, S.W., et al. (2018). Multi-omics profiling of younger Asian breast cancers reveals distinctive molecular signatures. Nat. Commun. 9, 1725.
5. Pan, J.-W., Ahmad Zabidi, M.M., Ng, P.-S., Meng, M.-Y., Hasan, S.N., Sandey, B., et al. (2020). The molecular landscape of Asian breast cancers reveals clinically relevant population-specific differences. Nat. Commun. 11, 6433.
6. Zhu, B., Tse, L.-A., Wang, D., Koka, H., Zhang, T., Abubakar, M., Lee, P., Wang, F., Wu, C., Tsang, K.H., et al. (2019). Immune gene expression profiling reveals heterogeneity in luminal breast tumors. Breast Cancer Res. 21, 147.
7. Long, J., Delahanty, R.J., Li, G., Gao, Y.T., Lu, W., Cai, Q., Xiang, Y.B., Li, C., Ji, B.T., Zheng, Y., et al. (2013). A common deletion in the APOBEC3 genes and breast cancer risk. J. Natl. Cancer Inst. 105, 573–579.
8. Cancer Genome Atlas, N. (2012). Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70.
9. Chen, Z., Wen, W., Bao, J., Kuhs, K.L., Cai, Q., Long, J., Shu, X.O., Zheng, W., and Guo, X. (2019). Integrative genomic analyses of APOBEC-mutational signature, expression and germline deletion of APOBEC3 genes, and immunogenicity in multiple cancer types. BMC Med. Genomics 12, 131.
10. Greaves, M., and Maley, C.C. (2012). Clonal evolution in cancer. Nature 481, 306–313.
11. Martincorena, I., Raine, K.M., Gerstung, M., Dawson, K.J., Haase, K., Van Loo, P., Davies, H., Stratton, M.R., and Campbell, P.J. (2017). Universal patterns of selection in cancer and somatic tissues. Cell 171, 1029–1041 e1021.
12. Xiao, W., Ren, L., Chen, Z., Fang, L.T., Zhao, Y., Lack, J., Guan, M., Zhu, B., Jaeger, E., Kerrigan, L., et al. (2021). Toward best practice in cancer mutation detection with whole-genome and whole-exome sequencing. Nat. Biotechnol. 39, 1141–1150.
13. Cannataro, V.L., Gaffney, S.G., and Townsend, J.P. (2018). Effect sizes of somatic mutations in cancer. J. Natl. Cancer Inst. 110, 1171–1177.
14. Li, M., Tse, L.-A., Chan, W.C., Kwok, C.H., Leung, S.L., Wu, C., Yu, W.C., Lee, P.M., Tsang, K.H., Law, S.H., et al. (2017). Nighttime eating and breast cancer among Chinese women in Hong Kong. Breast Cancer Res. 19, 31.
15. Cibulskis, K., Lawrence, M.S., Carter, S.L., Sivachenko, A., Jaffe, D., Sougnez, C., Gabriel, S., Meyerson, M., Lander, E.S., and Getz, G. (2013). Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 31, 213–219.
16. Saunders, C.T., Wong, W.S., Swamy, S., Becq, J., Murray, L.J., and Cheetham, R.K. (2012). Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs. Bioinformatics 28, 1811–1817.
17. Freed, D., Pan, R., and Aldana, R. (2018). TNScope: accurate detection of somatic mutations with haplotype-based variant candidate detection and machine learning filtering. bioRxiv, 250647.
18. Genomes Project C, A., Abecasis, G.R., Altshuler, D., Auton, A., Brooks, L.D., Durbin, R.M., Gibbs, R.A., Hurles, M.E., and McVean, G.A. (2010). A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073.
19. Lek, M., Karczewski, K.J., Minikel, E.V., Samocha, K.E., Banks, E., Fennell, T., O’Donnell-Luria, A.H., Ware, J.S., Hill, A.J., Cummings, B.B., et al. (2016). Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291.

20. Middlebrooks, C.D., Banday, A.R., Matsuda, K., Udquim, K.I., Onabajo, O.O., Paquin, A., Figueroa, J.D., Zhu, B., Koutros, S., Kubo, M., et al. (2016). Association of germline variants in the APOBEC3 region with cancer risk and enrichment with APOBEC-signature mutations in tumors. Nat. Genet. 48, 1330–1338.

21. Li, B., and Dewey, C.N. (2011). RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323.

22. Paquet, E.R., and Hallett, M.T. (2015). Absolute assignment of breast cancer intrinsic molecular subtype. J. Natl. Cancer Inst. 107, 557.

23. Bailey, M.H., Tokheim, C., Porta-Pardo, E., Sengupta, S., Bertrand, D., Weerasinghe, A., Colaprico, A., Wendl, M.C., Kim, J., Reardon, B., et al. (2018). Comprehensive Characterization of cancer driver genes and mutations. Cell 174, 1034–1035.

24. Alexandrov, L.B., Kim, J., Haradhvala, N.J., Huang, M.N., Tian Ng, A.W., Wu, Y., Boot, A., Covington, K.R., Gordenin, D.A., Bergstrom, E.N., et al. (2020). The repertoire of mutational signatures in human cancer. Nature 578, 94–101.

25. Huang, X., Wojtowicz, D., and Przytycka, T.M. (2018). Detecting presence of mutational signatures in cancer with confidence. Bioinformatics 34, 330–337.

26. Degasperi, A., Amarante, T.D., Czarnecki, J., Shooter, S., Zou, X., Glodzik, D., Morgenella, S., Nanda, A.S., Badja, C., Koh, G., et al. (2020). A practical framework and online tool for mutational signature analyses show inter-tissue variation and driver dependencies. Nat. Cancer 1, 249–263.

27. Hubschmann, D., Jopp-Saile, L., Andresen, C., Kramer, S., Gu, Z., Heilig, C.E., Kreutzfeldt, S., Teleanu, V., Frohling, S., Eils, R., et al. (2021). Analysis of mutational signatures with yet another package for signature analysis. Genes Chromosomes Cancer 60, 314–331.

28. Choo-Wosoba, H., Albert, P.S., and Zhu, B. (2019). A hidden markov modeling approach for identifying tumor subclones in next-generation sequencing studies. bioRxiv, 675512.

29. Merrem, C.H., Schumacher, S.E., Hill, B., Meyerson, M.L., Beroukhim, R., and Getz, G. (2011). GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol. 12, R41.

30. Sinha, S., Mitchell, K.A., Zingone, A., Bowman, E., Sinha, N., Schäffer, A.A., Lee, J.S., Ruppin, E., and Ryan, B.M. (2020). Higher prevalence of homologous recombination deficiency in tumors from African Americans versus European Americans. Nat. Cancer 1, 112–121.

31. Swisher, E.M., Lin, K.K., Oza, A.M., Scott, C.L., Giordano, H., Sun, J., Konecny, G.E., Coleman, R.L., Tinker, A.V., O’Malley, D.M., et al. (2017). Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): an international, multicentre, open-label, phase 2 trial. Lancet Oncol. 18, 75–87.

32. Telli, M.L., Timms, K.M., Reid, J., Hennessy, B., Mills, G.B., Jensen, K.C., Zallasi, Z., Barry, W.T., Winer, E.P., Tung, N.M., et al. (2016). Homologous recombination deficiency (HRD) score predicts response to platinum-containing neoadjuvant chemotherapy in patients with triple-negative breast cancer. Clin. Cancer Res. 22, 3764–3773.

33. Poetsch, A.R. (2020). The genomics of oxidative DNA damage, repair, and resulting mutagenesis. Comput. Struct. Biotechnol. J. 18, 207–219.

34. Nik-Zainal, S., Davies, H., Staf, J., Ramakrishna, M., Glodzik, D., Zou, X., Martinezcorena, L., Alexandrov, L.B., Martin, S., Wedge, D.C., et al. (2016). Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature 534, 47–54.

35. Zhang, G., Wang, Y., Chen, B., Guo, L., Cao, L., Ren, C., Wen, L., Li, K., Jia, M., Li, C., et al. (2019). Characterization of frequently mutated cancer genes in Chinese breast tumors: a comparison of Chinese and TCGA cohorts. Ann. Transl. Med. 7, 179.

36. DeSantis, C.E., Ma, J., Gaudet, M.M., Newman, L.A., Miller, K.D., Goding Sauer, A., Jemal, A., and Siegel, R.L. (2019). Breast cancer statistics, 2019. CA Cancer J. Clin. 69, 438–451.

37. Thibodeau, M.L., Zhao, E.Y., Reisle, C., Ch’ng, C., Wong, H.L., Shen, Y., et al. (2019). Base excision repair deficiency signatures implicate germline and somatic MUTYH aberrations in pancreatic ductal adenocarcinoma and breast cancer oncogenesis. Cold Spring Harb. Mol. Case Stud. 5, a003681.