Estimate Tank Quality Margin

E Sh Gaysin¹, Y A Frolov², O A Nasibullina³

¹Lecturer, Transport and Storage of Oil and Gas Chair, Ufa State Petroleum
Technological University, 8/3 Kosmonavtov str., Ufa 450062, Russian Federation
²Professor, Transport and Storage of Oil and Gas Chair, Ufa State Petroleum
Technological University, 8/3 Kosmonavtov str., Ufa 450062, Russian Federation
³Assistant Professor, Petroleum Technology Equipment Chair, Ufa State Petroleum
Technological University, 1 Kosmonavtov str., Ufa 450062, Russian Federation

E-mail: gaysin.emil@mail.ru

Abstract. The article addresses the issues of ensuring the reliability of tanks taking into
account their life cycle by assessing and maintaining an appropriate level of quality. The work
proposes: a structure that allows to assess the quality of such a complex technical system as a
tank; Methodology, algorithm and formulas for evaluation of integral quality index.

1. Introduction

To date, there are many works dedicated to ensuring the reliability of tanks in terms of extending their
residual life.

However, such work does not take into account many other significant indicators. Reliability is
only one of them for the whole population, referred to as product quality.

The indicators, in turn, are divided into four major categories: characterized properties and their
number, mode of expression and life cycle stages (Table 1).

Table 1. Product Quality Indicators.

By characteristic properties	By the number of characterized properties	By expression method	By Lifecycle Stage
Indicators of assignment	Single		Predicted
Indicators of economic use	Complex		Design
Reliability Indicators	Integral (set of complex)		Production
Transportability indicators			Operational
Standardization and unification indicators	In natural units		
Ergonomic indicators			
Safety Indicators			
Patent and legal indicators			
Environmental indicators			
Esthetic			

Reliability as an indicator falls into the category of characteristic properties (Table 2).
Table 2. Quality indicators by characteristic properties.

Destination indicators:	Ergonomic indicators:	Safety indicators:
- classification (loading capacity, power, capacity);	- hygienic (illumination, temperature, humidity, dust content, radiation);	- chemical;
- functional and technical efficiency (productivity of technological process, faultlessness, accuracy of measurement of quality);	- anthropometrical;	- radiation;
- constructive (dimensions, existence of additional devices);	- physiological and psychophysiological;	- mechanical;
- structure	- psychological	- electric;

Indicators of economic use:		Safety indicators:
- specific consumption of raw materials, materials;		- chemical;
- efficiency;		- radiation;
- total labor input of products at its operation		- mechanical;

Patent and legal indicators:		Safety indicators:
- patent purity;		- electric;
- patent protection		- magnetic;

Environmental indicators:		Safety indicators:
- interaction indicators with the surrounding nature and the habitat of live organisms		- electromagnetic;

Reliability indicators:	Standardization and unification indicators:	Esthetic:
- non-failure operation;	- applicability coefficient;	- information expressiveness;
- durability;	- repeatability coefficient;	- rationality of a form;
- maintainability;	- unification factor for product group	- perfection of execution;
- storageability;		- stability of trade dress;
- complexity		- integrity

Transportability indicators:	Esthetic:
- average duration of preparation of a product for transportation;	- information expressiveness;
- average labor input preparation of a product for transportation;	- rationality of a form;
- the average duration of loading of a product on the vehicle	- perfection of execution;

Each of these indicators has an impact on the quality of the tank as a technical system as a whole, but it is difficult to take them all into account at the initial stage.

2. Tank quality assessment procedure
Today, the national standard of the Russian Federation GOST R ISO/TU 29001-2007, which presents a model of quality management system, is in force for organizations supplying products and providing services in the oil, petrochemical and gas industry. Taking into account the characteristics of the different stages of the life cycle, the adapted model may look as follows (Figure 1).
We propose a methodology for assessing the integrated VST (vertical steel tank) quality indicator as a weighted average geometric value, based on the cost of structural elements of the technical system, their quality and weight (depending on the importance and consequences as a result of failure or accident), the life cycle stage of the vehicle and a number of other parameters [1-3]. At the same time, the integral quality of each stage will take into account the quality of previous stages:

\[
K_i^{VST\text{ integr}} = \left(\prod_{j=1}^{i} K_j q_j \right)^{-1},
\]

where

- \(i \) – life cycle stage number for which the tank quality integral indicator is determined;
- \(j \) – stages with 1 on \(i \);
- \(K_j \) – tank quality at arbitrary \(j \)-stage of life cycle;
- \(q_j \) – weight of \(j \)-th stage of life cycle.

If all stages are equal (\(q_{VST}^{j} = 1 \); But if necessary, the sums of certain categories can also be reduced to 1) the integral indicator of tank quality at different stages will be:

\[
\begin{align*}
K_{\text{проект}}^{VST\text{ integr}} &= K_{\text{design}}, \\
K_{\text{изготов}}^{VST\text{ integr}} &= K_{\text{design}} \cdot K_{\text{production}}, \\
K_{\text{транспорт}}^{VST\text{ integr}} &= K_{\text{design}} \cdot K_{\text{production}} \cdot K_{\text{transportation}}, \\
K_{\text{монтаж}}^{VST\text{ integr}} &= K_{\text{design}} \cdot K_{\text{production}} \cdot K_{\text{transportation}} \cdot K_{\text{installation}}, \\
K_{\text{экспл}}^{VST\text{ integr}} &= K_{\text{design}} \cdot K_{\text{production}} \cdot K_{\text{transportation}} \cdot K_{\text{installation}} \cdot K_{\text{operation}},
\end{align*}
\]

where \(K_{\text{design}}, K_{\text{production}}, K_{\text{transportation}}, K_{\text{installation}}, K_{\text{operation}} \) – the quality of the reservoir estimated only by criteria of this stage (design, production, transportation, mounting, operation respectively), and not considering previous.

The presented formulas imply that the condition of the tank as a whole depends on errors or defects not only of the current but also of the previous stages.

It is proposed to use the following Table 3 to evaluate the quality of the tank. The table shows the stages and sub-stages of the VST life cycle, the criteria to be evaluated on each of them, as well as defects and other factors affecting the overall state of the technical system.

Figure 1. Mutual influence of life cycle stages (solid line - direct influence, dotted - reverse in the form of lessons learned in subsequent cycles).
Table 3. Structure of VST quality assessment.

Quality of the tank	Lack of fusion and lack of penetrations of a weld joint
Life cycle	Violations of a form of a seam (undercuts, shrinkable grooves, exceeding of camber, exceeding of smelting rate, a deposit, removal [angularity/withdrawal], accumulate, burn-throughs, etc)
Design	Other defects of a weld joint (local damage of metal because of accidental ignition of an arc, metal splashes, superficial edge fins, metal thinning, etc)
Quality of a stage	Quality of materials
Preparation of specification	Using low-quality electrodes
Development of the general plan	Quality of installation of equipment
Calculation of construction VST	Quality of weld joints
Development of the project metal constructions and construction metal detail	Quality of mounting of heat insulation
Design of the basis / base	Quality control of installation and construction works
Examination passing	Operation
Production	Substage life cycle (operation): The period extra earnings; The Period of the settled operation; The Period of intensive wear
Quality of production of metal rolling	Quality of the base and basis
Declines	Quality of the basis
Captivities	Slump
Flakes	Gradual settlement
Volosovina	On the area of the basis
Stratifications	On basis perimeter
Microcracks	Differential settlement
Uneven alloying	Roll
Violation of geometry of rolling	In the form of "step"
Edge fins	On the area of the basis
Quality of production of rolled preparations	On basis perimeter
Quality of weld joints	Quality of the base. See also: Slump
Quality of production of equipment	Quality of metalwork
Transportation	The main
Quality of rolled preparations after transportation	Corrosion of metalwork
A uniform bend in the longitudinal direction	Continuous superficial corrosion
Local dents at edge of a roll	Through corrosion
Crushing of a part of a roll	Focal corrosion
Corrugations on a roll surface	Ulcer
Mounting	Pit corrosion
Quality of mounting and preparation of the basis / base	Violations of a geometrical form
Quality of mounting of metalwork	Stability loss
Mounting imperfections	The general
Dents, bouges	Local
Tough fixing of mine ladders orgas-leveling system with VST	Bucklings of a wall or bottom
Metal tear-outs from a panel at deployment	Angular movements or bend of edge
Through breakdowns of metal structures by installation equipment	Vibration
Lack of the base under latches or a gas-leveling system system	Bottom. See also: Violations of a geometrical form, Corrosion of metalwork
Pulling up of a part of a bottom edge to a VST wall before welding	Corrosion of metalwork
Local plastic deformations of a wall, bottom, roof	Roof. See also: Violations of a geometrical form, Corrosion of metalwork
Quality of weld joints	The others
Cracks of a weld joint	Ladder. See also: Corrosion of metalwork
Cavities, a gas time, fistulas, shrinkable sinks, a rough ripple, craters in a weld joint	Platform. See also: Corrosion of metalwork
Firm inclusions in a weld joint	Quality of the equipment
Quality of the equipments	Quality of weld joints
Quality of heat insulation	Quality of weld joints

3. Procedure for assessment of tank structural elements quality

On the basis of analysis of works on determination of technical systems quality, it is proposed to also use weighted average geometric value of quality for structural elements of VST.

\[
K = \prod_{i=1}^{n} \left(k_i^q_i \right)^{1/n}, 0 \leq q_i \leq 1; \quad (2)
\]
\[k_i = q_{ij} \times \frac{P_{ij}}{P_{ij}^{\text{eff}}}, 0 \leq q_{ij} \leq 1, P_{ij}^{\text{min}} \leq P_{ij} \leq P_{ij}^{\text{max}} \leq P_{ij}^{\text{base}}; \]

where q_i and k_i – weight and quantitative assessment of the quality of the i-th structural element, respectively;
q_{ij} – weight of the j-th property of the i-th structural element;
P_{ij} – current absolute value of the j-th property of the i-th element, respectively;
$[P_{ij}^{\text{min}}, P_{ij}^{\text{max}}]$ – certificate (base) interval of values of index of j-th property of i-th element;
$[P_{ij}^{\text{oper} \text{min}}, P_{ij}^{\text{oper} \text{max}}]$ – range of valid operating values of the j-th property of the i-th element;
P_{ij}^{eff} – most effective for operation value of index of j-th property of i-th element;
when $P_{ij} > P_{ij}^{\text{eff}}$ the value $k_i = 1$.

Item quality	Weight	Quality of a system	Item quality	Weight	Quality of a system	Fact difference with the forecast, %
X	0,58	0,03	AWM	0,35	0,03	33,22
Wᵢ	0,09	0,82	GWM	0,06	0,82	40,86
	0	0,02	HWM	0,56	0,02	zero divide
	0	0,71		0,63	0,71	
	0,44	0,23		0,41	0,23	
	0,37	0,95		0,79	0,95	
	0,12	0,48		0,64	0,48	6094
	0,39	0,48		0,6094	0,4086	0,1184
	0,2772	0		0,4086	0,1184	
	0	0,35		0,64	0,48	
	0	0,91		0,91	0,48	
	0,02	0,04		0,63	0,04	
	0,02	0,54		0,97	0,54	
	0,32	0,01		0,84	0,01	
	0,54	0,84		0,75	0,84	
	0,02	0,84		0,75	0,84	
	0,02	0,26		0,01	0,26	

AWM – Arithmetic weighted mean, GWM – Geometric weighted mean, HWM – Harmonic weighted mean

Table 4. Assessment of tank quality margin.

For elements whose property indicators are difficult to determine from primary measurements, or additional calculations (for example, tank wall), the quality can be determined by the following formula

\[k_i = \frac{T_{\text{resid} \text{act}}}{T_{\text{serv}}}, 0 \leq k_i \leq 1; \]

when $T_{\text{resid} \text{act}}$ – actual residual service life (or life) determined in the course of calculations based on diagnostic results;
T_{serv} – service life (or service life) assigned to the object from the moment of its commissioning (specified in the design specification or in the certificate); when
Further, knowing the quality of each component of the technical system, it is possible to estimate the integral quality index of the tank according to formula (1) and the quality margin (Table 4).

The choice of weighted average geometric evaluation method is due to the following - when any of the tank elements fails (its quality is 0), then:
1) its further operation is unacceptable, and the quality of the entire system should fall to 0 (that is why the weighted arithmetic mean is not suitable);
2) the harmonic weighted mean cannot be determined due to the division by 0 operation (therefore this method is also not suitable).

Of the existing three weighted averages, only the weighted geometric average remains, which fully meets all requirements.

As can be seen from the example in the table above, the integral tank quality indicator at the moment is forecast (carried out, for example, at the time of the previous technical diagnosis) to be 0 (due to wear), however, since the calculation often uses safety margin factors, the actual current tank quality indicator is 0.4086 (40.86%). Thus, the VST has a quality margin of 40.86-0 = 40.86%, i.e. its wear was less than planned.

4. Tank quality assessment algorithm

Follow the following algorithm to estimate the integral tank quality.

1. Collect data on failures (repairs, accidents) and other information on structural elements of the tank from reports on technical diagnostics and certificates of tanks, and summarize them in the table (Table 5).

The refused element	Model	Date of commissioning	Date of refusal	Total oper. time from the beginning of operation	Total oper. time from last recovery to current failure	Recovery time
Emergency level announciator	V3C-107	05.07.2014	07.08.2015	398 (days)	347 (days)	2 (days)

2. Perform data analysis and identify functional dependencies of reliability indicators with number and terms of failures (repairs, accidents) for each structural element: \(\omega(t), \lambda(t), P(t), Q(t) \).

3. Determine the weight of the structural elements of the tank (if necessary, use the program developed by the authors) [4].

4. In accordance with the Table 3, determine the current (actual) and predicted (at the moment from the moment of commissioning or the last repair taking into account the known parameters of tank wear, for example, corrosion rate, number of loading cycles, etc.) quality of the tank according to formula (1).

5. Calculate the tank quality margin as the difference between the actual quality and the predicted quality.

5. Appendices

Thus, the reserve of tank quality found according to the proposed method will allow to estimate the residual life of the whole system, adjust the time of preparation of preventive measures to prevent possible accidents, draw up an annual schedule of major repairs taking into account many significant factors in the aggregate, which were not previously taken into account.

References

[1] Gaysin E Sh 2012 Methodical Approach to Evaluation of Quality of Technical Systems Taking
into Account their Life Cycle on the Example of Vertical Steel Tank *Oil and Gas Business* vol 3 pp 83-86

[2] Gaysin E Sh 2013 Ranking of elements of vertical steel tank by cost method *Oil and gas business* vol 11 3 pp 70-75

[3] Gaysin E Sh 2013 Comparative analysis of results of assessment of knots, details and tank vertical steel in general cost and expert by methods *Online scientific magazine "Neftegazovoye Delo"* 3 pp 132-141 http://www.ogbus.ru/authors/GaysinESh/GaysinESh_1.pdf

[4] Gaysin E Sh, Afanasiev I A, Frolov Yu A Certificate 2018613508 Federation Certificate of state registration of the program for the computer "Assessment of quality of vertical steel tank" Applicant and patent holder of the Ufa State Petroleum Technological University Request № 2017662954 from 12.12.2017 published 15.03.2018