Article

Penta-C$_{20}$: A Superhard Direct Band Gap Carbon Allotrope Composed of Carbon Pentagon

Wei Zhang 1,*, Changchun Chai 1, Qingyang Fan 2,* , Yanxing Song 1 and Yintang Yang 1

1 Key Laboratory of Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi’an 710071, China; cchhai@mail.xidian.edu.cn (C.C.); syx739686768@163.com (Y.S.); ytyang@xidian.edu.cn (Y.Y.)
2 College of Information and Control Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
* Correspondence: zw_xidian@163.com or wzhang-1993@stu.xidian.edu.cn (W.Z.); qyfan_xidian@163.com or fanqy@xauxt.edu.cn (Q.F.)

Received: 20 March 2020; Accepted: 16 April 2020; Published: 19 April 2020

Abstract: A metastable sp^3-bonded carbon allotrope, Penta-C$_{20}$, consisting entirely of carbon pentagons linked through bridge-like bonds, was proposed and studied in this work for the first time. Its structure, stability, and electronic and mechanical properties were investigated based on first-principles calculations. Penta-C$_{20}$ is thermodynamically and mechanically stable, with equilibrium total energy of 0.718 and 0.184 eV/atom lower than those of the synthesized T-carbon and supercubane, respectively. Penta-C$_{20}$ can also maintain dynamic stability under a high pressure of 100 GPa. Ab initio molecular dynamics (AIMD) simulations indicates that this new carbon allotrope can maintain thermal stability at 800 K. Its Young’s modulus exhibits mechanical anisotropy. The calculated ideal tensile and shear strengths confirmed that Penta-C$_{20}$ is a superhard material with a promising application prospect. Furthermore, Penta-C$_{20}$ is a direct band gap carbon based semiconducting material with band gap of 2.89 eV.

Keywords: carbon allotrope; superhard materials; direct band gap; mechanical property; stability

1. Introduction

Carbon science is one of the most dynamic and competitive research fields. The rapid development of carbon science has extensively and deeply affected many disciplines and various fields of high technology. Carbon science also shows strong vitality as an interdisciplinary field and has formed a research field with a wide range of subject contents and potential application prospects. Carbon atoms have sp, sp^2, and sp^3 hybridization, which enables carbon to form a variety of structures and to exist in nature in the forms of diamond, graphite, graphene, fullerenes, and nanotubes among others. In 1985, Kroto et al. [1] succeeded in synthesizing the buckminsterfullerene (C$_{60}$) molecule by vaporizing graphite, which promoted a considerable amount of research on fullerenes. Soon after, carbon nanotubes were discovered by Iijima [2], pushing the study of carbon science to the world of one-dimensional materials. Currently, the recent discovery of layered carbon material (including graphdiyne [3], graphyne [4], and graphene [5]) is promoting carbon science to a two-dimensional (2D) field. The unique structures give fullerenes, graphene, and nanotubes a wide application prospect in nanoelectronics, biomedicine, gas detection, military defense, and so on [6,7]. To our credit, fundamental theory has improved in recent years, making it possible to predict these carbon structures. In particular, computational material science, consisting of first-principle calculations, has enabled great achievements in material design and property prediction [8–17].
To date, rich and varied kinds of carbon allotropes have been theoretically predicted or experimentally synthesized, such as C_{96} [18], carbon foam [19], P2/m C_{54} [20], M-carbon [21], W-carbon [22], C_{20}-T [23], T-carbon [24], supercubane [25], and other materials [26]. The database SACADA [27] contains about 500 examples up to May 2017. After a topology-based multiscale theoretical study, Baburin et al. [28] reported six carbon allotropes with low energy from about six hundred thousand zeolite nets. These new allotropes are superhard and transparent, and they are at most 0.12 eV/atom more energetic than diamond. In 2016, Wang et al. [23] discovered a superhard all-sp^3 hybridized carbon allotrope, C_{20}-T, which has large cavities and porous structure. C_{20}-T is a superhard carbon allotrope with a calculated Vickers hardness of about 72.76 GPa. In 2019, Zhang et al. [29] designed two superhard three-dimensional (3D) carbon allotropes, P6/mmm-C_{54} and Cmmm-C_{32}, which consist of sp^3 hybridized carbon atom. They found that Cmmm-C_{32} exhibits wide direct band gap semiconducting property. Using first-principle calculations, four 3D C_{60} polymers with ordered binary-alloy-type structures were investigated by Laranjeira et al. [30]. In these polymers, each molecule is in one of the two standard orientations and analogous to four kinds of ordered binary-alloy-type structures. The calculated band structures show that all four polymers exhibit metallic properties. After cold compression of C_{70} peapods, Yang et al. [31] obtained an all-sp^3 hybridized carbon allotrope with monoclinic unit cell, named V-carbon. V-carbon consists of five-, six-, and seven-numbered carbon rings and exhibits a honeycomb structure. The calculation shows that it is a superhard and ultraincompressible material, with a bulk modulus and hardness of 411 and 89.4 GPa, respectively. In order to predict superhard materials, Avery et al. [32] applied machine learning towards the carbon allotropes family and successfully identified 43 potential superhard carbon materials. Through topological analysis of these superhard materials, they found that phases with hardness slightly harder than the diamond phase contain a large number of diamond and/or lonsdaleite in their structures. Recently, Zhang et al. [33] proposed a cyclooctatetraene- and butadiene-based 2D fully sp^2-bonded carbon allotrope, PBCF-graphene. This 2D material has a direct band gap and has higher carrier mobility than monolayer MoS_2. Theoretical studies have shown that it can withstand equibiaxial tensile strains of 17.6% and a high temperature of 1000 K.

In this work, we obtained a new stable, semiconductor and superhard carbon allotrope Penta-C_{20}, which was obtained by using the random sampling strategy combined with space group and graph theory (RG2) [34,35] to search for structures in orthorhombic systems. After analyzing its underlying topology [36], we found that it is a known net observed in the database of hypothetical zeolites collected by Deem and called PCOD8045750 [37]. Its physical properties have been systematically calculated by applying first-principle calculations. The calculated results illustrate that this novel carbon allotrope is mechanically, thermodynamically, dynamically, and thermal stable. In addition, this material exhibits a wide direct band gap.

2. Calculation Methods

This work was performed with first-principle calculations. Most calculations were implemented within the Vienna ab initio simulation package (VASP, 5.4.4) [38–40], with the projector augmented wave (PAW) [41] method applied to provide pseudopotentials. The Perdew–Burke–Ernzerhof (PBE) generalized gradient approximation (GGA) [42] was employed for the exchange correlation. To expand the valence electron wavefunctions, the plane–wave cutoff energy was set as 500 eV. The Brillouin zone was sampled with 7 × 7 × 7 Monkhorst-Pack (MP) [43] special k-point grids. The convergence criteria for the total energy and the atom force calculations were taken as 1 × 10^{-5} eV and 0.01 eV/Å, respectively. Phonon frequency calculations were performed in the PHONOPY code [44], with forces calculated by density functional perturbation theory (DFPT) [45], as implemented in VASP. Based on the optimized geometry of the structure obtained from the GGA-PBE functional, the hybrid HSE06 functional [46] was used for high-accuracy electronic property calculations. The elastic constants were calculated by the Cambridge Serial Total Energy Package (CASTEP) code [47] using the GGA-PBE functional.
3. Results and Discussion

3.1. Structural Properties

The equilibrium crystal structure of this novel structure is depicted in Figure 1. The equilibrium structure information, including space group, lattice parameters, and density of this novel carbon allotrope are listed in Table 1, together with those of TY-carbon [48], Y-carbon, T-carbon [49], C_{20}^-T [23], and diamond [50] for comparison. In this work, the calculated crystal structure information of TY-carbon, C_{20}^-T, Y-carbon, T-carbon, and diamond are in line with previous work, proving the reliability of our theoretical work. This novel structure belongs to the orthorhombic system and has Cmcm (No. 63) symmetry with \(a = 5.595 \text{ Å}, b = 9.168 \text{ Å}, \) and \(c = 2.577 \text{ Å}. \) As shown in Figure 1a, its orthorhombic unit cell consists of 20 \(sp^3 \) hybridized carbon atoms. Within its unit cell, three inequivalent carbon atoms occupy the Wyckoff positions \(8g (0.28168, 0.84609, 0.75), \) \(8g (0.63477, 0.68028, 0.75), \) and \(4c (0, 0.54828, 0.25), \) which are represented as pastel cyan (C1), light brown (C2), and pastel magenta (C3) spheres in Figure 1. This novel structure consists entirely of carbon pentagons linked through bridge-like bonds and is named Penta-C_{20}, as shown in Figure 2a. In a unit cell, each C1 atom is covalently bonded with one C2 atom and three C3 atoms, while two neighboring C2 atoms and two neighboring C3 atoms are covalently bonded. Penta-C_{20} has five distinct bond lengths. Its basic carbon pentagon building block contains three distinct bond lengths, \(1.557 \text{ Å} \) (C1-C2), \(1.589 \text{ Å} \) (C1-C3) and \(1.505 \text{ Å} \) (C3-C3), while its bridge-like bonds have two different bond lengths: \(1.545 \text{ Å} \) (C1-C3) and \(1.561 \text{ Å} \) (C2-C2). The average bond length is \(1.552 \text{ Å}, \) slightly longer than that of diamond (1.54 Å). Additionally, Penta-C_{20} has eight different bond angles, namely, \(89.630^\circ, 90.370^\circ, 103.126^\circ, 107.077^\circ, 110.961^\circ, 111.360^\circ, 112.747^\circ, \) and \(120.887^\circ. \) Penta-C_{20} has a honeycomb structure along the c-axis. Its largest pore is an ellipse of twelve atoms with a short axis of 3.31 Å. In addition to the ellipse, there are also pentagons and quadrilaterals on the c-axis projection. The honeycomb structure causes the density of Penta-C_{20} (3.031 g/cm\(^3\)) to be lower than the density of diamond (3.518 g/cm\(^3\)).

![Figure 1](image-url)

Table 1. The lattice parameters and mass density for Penta-C_{20} and other carbon allotropes.

Structures	Methods	Space Group	\(\rho \) (g/cm\(^3\))	\(a \) (Å)	\(b \) (Å)	\(c \) (Å)	\(E_{tot} \) (eV)
Penta-C_{20}	PBE	Cmcm	3.031	5.595	9.168	2.577	−8.639
T-carbon	PBE	Fd-3m	1.503	7.516	-	-	−7.921
-	PBE [b]	Fd-3m	1.503	7.517	-	-	−7.922
-	Exp. [b]	Fd-3m	-	7.80	-	-	-
with the coordinates of the high symmetry points as follows: Y: (0.5, 0.5, 0), S: (0, 0.5, 0), and R: (0, 0.5, 0.5). As shown in Figure 3a and (b), the phonon spectra at 0

To examine the lattice dynamic stability of Penta-C20, we calculated the total energy of Penta-C20 in comparison with several other previous carbon allotropes. Energetically more

The equilibrium total energy of Penta-C20 is 0.134, 0.568, 0.184, and 0.718 eV/atom lower than those of C20-T, T-carbon, diamond, and Y-carbon, respectively. Notably, T-carbon and supercubane have been synthesized experimentally by Zhang et al. [24] and Liu et al. [25], respectively. Energetically more

- PBE [c]
 - PBE [c]
- PBE [c]
- Exp. [c]
 - Exp. [c]

Table 1. Cont.

Structures	Methods	Space Group	ρ (g/cm³)	a (Å)	b (Å)	c (Å)	E_{tot} (eV)
Y-carbon	PBE	Fd-3m	0.892	9.636	-	-	-8.071
-	PBE [c]	Fd-3m	0.894	9.636	-	-	-8.074
TY-carbon	PBE	Fd-3m	0.524	13.459	-	-	-8.038
-	PBE [c]	Fd-3m	0.523	13.460	-	-	-8.034
C20-T	PBE	P2/13	3.293	4.948	-	-	-8.505
-	PBE [d]	P2/13	3.298	4.945	-	-	-
Diamond	PBE	Fd-3m	3.518	3.567	-	-	-9.093
-	Exp. [c]	Fd-3m	3.516	3.567	-	-	-

[a] Ref. [48]. [b] Ref. [24]. [c] Ref. [49]. [d] Ref. [23]. [e] Ref. [50].

Figure 2. (a) The bond lengths and bridge-like bonds between carbon pentagons in the Penta-C20 structure. The bridge-like bonds are represented as bright yellow sticks. (b) The total energy vs the volume per atom for Penta-C20 in comparison with several other previous carbon allotropes.

3.2. Stability

To study the thermodynamic stability of Penta-C20, we calculated the total energy vs the volume per atom for Penta-C20 in comparison with those of supercubane, C20-T, Y-carbon, diamond, and T-carbon, as shown in Figure 2b. In this work, the equilibrium total energies per atom of Penta-C20, Y-carbon, supercubane, C20-T, T-carbon and diamond are −8.639, −8.071, −8.455, −8.505, −7.921, and −9.093 eV/atom, respectively. Although Penta-C20 is metastable with energy higher than diamond of 0.454 eV/atom, it is energetically more stable than supercubane, Y-carbon, C20-T, and T-carbon: The equilibrium total energy of Penta-C20 is 0.134, 0.568, 0.184, and 0.718 eV/atom lower than those of C20-T, Y-carbon, supercubane, and T-carbon, respectively. Notably, T-carbon and supercubane have been synthesized experimentally by Zhang et al. [24] and Liu et al. [25], respectively. Energetically more stable than supercubane and T-carbons, this novel carbon allotrope may be synthesized experimentally. To examine the lattice dynamic stability of Penta-C20, we calculated the phonon spectra for Penta-C20 at 0 and 100 GPa, as represented in Figure 3a,b. The first Brillouin zone of Penta-C20 is shown in Figure 3c with the coordinates of the high symmetry points as follows: Γ: (0, 0, 0), Z: (0, 0, 0.5), T: (0.5, 0.5, 0.5), Y: (0.5, 0.5, 0), S: (0, 0.5, 0), and R: (0, 0.5, 0.5). As shown in Figure 3a and (b), the phonon spectra at 0 and 100 GPa do not show any imaginary frequencies, indicating that Penta-C20 can maintain lattice dynamic stability under a high pressure of 100 GPa. Furthermore, the predicted highest vibrational frequency of Penta-C20 at 0 GPa is 40.40 THz, which is very similar to that of sp^3-bonded diamond (40.11 THz). Ab initio molecular dynamics (AIMD) simulations is a very important method to examine the thermal stability of materials. In this work, the AIMD simulations of Penta-C20 were performed...
using canonical (NVT) ensemble in a 2 × 2 × 3 supercell. The total energy fluctuations of Penta-C\textsubscript{20} during the simulation time (for 5 ps with a time step of 1 fs) under 300 and 800 K are shown in Figure 4. No dramatic change was observed in structure and the total energy is almost constant, indicating that Penta-C\textsubscript{20} is thermal stable at 300 and 800 K.

![Figure 3](image-url)
Figure 3. The phonon spectra of Penta-C\textsubscript{20} under (a) 0 GPa and (b) 100 GPa, and the coordinates of the high symmetry points in the Brillouin zone of Penta-C\textsubscript{20} (c).

![Figure 4](image-url)
Figure 4. The total energy fluctuations of Penta-C\textsubscript{20} as a function of the AIMD simulation at 300 K (a) and 800 K (b). The insets are the atomic configurations of 2 × 2 × 3 supercell of Penta-C\textsubscript{20} at the end of the 5 ps AIMD simulation.

3.3. Mechanical Properties

To characterize the mechanical properties of Penta-C\textsubscript{20}, we examined its single-crystal elastic constant C_{ij}, which is listed in Table 2. For an orthorhombic structure, there are nine independent elastic constants: C_{11}, C_{12}, C_{13}, C_{22}, C_{23}, C_{33}, C_{44}, C_{55}, and C_{66}. According to Born stability criteria \cite{51}, necessary and sufficient mechanical stability criteria are:

\begin{equation}
C_{11} > 0, \quad C_{11}C_{22} > C_{12}^2, \\
C_{11}C_{22}C_{33} + 2C_{12}C_{13}C_{23} - C_{11}C_{23}^2 - C_{22}C_{13}^2 - C_{33}C_{12}^2 > 0, \\
C_{44} > 0, \quad C_{55} > 0, \quad C_{66} > 0.
\end{equation}
where which are ductile materials. The Young’s modulus sphere illustrates that Penta-C has a higher Young’s modulus than HS-C48, C96, superprismane, C72, K6-carbon, and T-carbon. The 3D Young’s modulus given by the above formula is illustrated in Figure 6a. The distorted 3D Young’s modulus sphere illustrates that Penta-C has inherent mechanical anisotropy. The maximum

Table 2. The calculated elastic constants (C_ii, in GPa), elastic modulus (B and G, in GPa), and hardness (H_{USPEX}, H_{Tian} and H_{Exp}, in GPa) for Penta-C_20 and other carbon allotropes.

Materials	C_11	C_12	C_13	C_22	C_23	C_33	C_{44}	C_{55}	C_{66}	B	G	B/G	H_{USPEX}	H_{Tian}	H_{Exp}
Penta-C_20	1020	76	97	539	59	905	289	332	299	313	327	0.96	76.23	58.30	-
HS-C_{48}[a]	656	137	266	151	94	777	112	92	323	287	178	1.61	-	-	-
C_{96}[b]	623	108	-	-	-	194	-	-	-	279	219	1.2	-	-	-
Superprismane	306	136	185	-	-	525	226	-	-	238	150	1.59	-	-	-
C_{72}[d]	273	139	-	-	-	81	-	-	-	183	75	2.46	-	-	-
K_6-carbon	203	136	-	-	-	70	-	-	-	159	52	3.08	-	-	-
T-carbon[e]	1053	119	-	-	-	566	-	-	-	431	524	0.82	89.77	96.73	-
Diamond	1076	125	-	-	-	577	-	-	-	442	634	0.83	89.72±5	93.6±5	96±5

Clearly, all nine independent elastic constants of Penta-C_20 are positive and satisfy the above criteria very well, thus proving the mechanical stability of Penta-C_20. The elastic parameters of HS-C_{48} [52], C_{96} [18], superprismane [53], C_{72} [54], K_6-carbon, T-carbon [55], and diamond [56] are also listed in Table 2. C_{11}, C_{22}, and C_{33} can be used to characterize the resistance of materials to elastic strain along the x, y, and z-axes. As listed in Table 2, for Penta-C_20, C_{11} is higher than C_{33} and C_{22}, indicating that this material is less compressible along the x-axis. Furthermore, C_{11}, C_{22}, and C_{33} values for Penta-C_20 are higher than C_{11}, C_{22}, and C_{33} values for HS-C_{48}, C_{96}, superprismane, C_{72}, K_6-carbon, and T-carbon, as listed in Table 2. We then calculated the average bulk modulus B and shear modulus G of Penta-C_20 according to the Voigt-Ruess-Hill approximation [60], as listed in Table 2. Penta-C_20 has larger bulk and shear modulus (B = 313 GPa and G = 327 GPa) than HS-C_{48}, C_{96}, superprismane, C_{72}, K_6-carbon and T-carbon, indicating that Penta-C_20 has stronger resistance to volume and shape changes than HS-C_{48}, C_{96}, superprismane, C_{72}, K_6-carbon and T-carbon. The B/G value of brittle materials is generally lower than 1.75, while that of ductile materials is greater than 1.75. [61] The B/G value of Penta-C_20 is 0.96, indicating that Penta-C_20 is a brittle material. This is different from C_{72}, K_6-carbon and T-carbon, which are ductile materials. The B/G value of Penta-C_20 is much lower than those of HS-C_{48}, C_{96} and superprismane, indicating that Penta-C_20 may be more brittle than HS-C_{48}, C_{96}, and superprismane.

Hardness is another indispensable parameter to characterize the mechanical properties of materials and has an important influence on the application of materials. In this work, we calculated the hardness of Penta-C_20 and diamond by using the Lyakhov-Oganov model (H_{USPEX}) [57] and Tian model (H_{Tian}) [60]. As listed in Table 2, the hardness calculated in this work for diamond are H_{USPEX} = 89.77 GPa and H_{Tian} = 96.73 GPa, which are consistent with the experimental [59] and previously theoretical values. The calculated hardnesses of Penta-C_20 are H_{USPEX} = 76.23 GPa and H_{Tian} = 58.30 GPa. Considering that the hardness criterion for superhard materials is 40 GPa, the theoretical results calculated by the above two hardness models all prove that Penta-C_20 is a potential superhard carbon material. To further determine the superhard property of Penta-C_20, we then calculated its ideal tensile and shear strength [62], as shown in Figure 5. The figure shows that the minimum tensile and shear strengths of Penta-C_20 reached 48.59 GP (in [111] direction) and 47.67 GP (along the (011)(0–11) slip system), respectively, which still satisfy the hardness criterion for superhard materials. Thus, it turns out that Penta-C_20 is intrinsically a superhard carbon material.

Studying the direction dependence of the Young’s modulus is an effective and intuitive method for describing the mechanical anisotropy of materials. For the orthorhombic system, the direction dependence of the Young’s modulus can be obtained as follow [63]:

$$
\frac{1}{E} = S_{11}I_1^4 + S_{22}I_2^4 + S_{33}I_3^4 + (S_{44} + 2S_{23})(I_2I_3)^2 + (S_{55} + 2S_{13})(I_1I_3)^2 + (S_{66} + 2S_{12})(I_1I_2)^2
$$

where S_{ij} is the elastic compliance constant; I_1, I_2, and I_3 are the direction cosines of the direction vectors. The 3D Young’s modulus given by the above formula is illustrated in Figure 6a. The distorted 3D Young’s modulus sphere illustrates that Penta-C_20 has inherent mechanical anisotropy. The maximum
planes exhibit the largest and smallest mechanical anisotropy, respectively. Namely, the (001), (011), (100), (101), (010), (110), and (111) planes, in Figure 6b. All seven main planes contain the (0, 0, 0) point. The maximum Young’s modulus E_{max}, minimum Young’s modulus E_{min}, and $E_{\text{max}}/E_{\text{min}}$ ratio in the seven main planes are shown in Figure 6c. The distorted 2D Young’s modulus circles illustrate that Penta-C20 exhibits mechanical anisotropy in all seven planes. The maximum $E_{\text{max}}/E_{\text{min}}$ ratio reaches 1.405, whereas the minimum $E_{\text{max}}/E_{\text{min}}$ ratio is 1.24; thus, the (001) and (010) planes exhibit the largest and smallest mechanical anisotropy, respectively.

![Figure 5](image1.png)
Figure 5. The calculated ideal tensile (a) and shear (b) strength of Penta-C20.

![Figure 6](image2.png)
Figure 6. The directional dependence of the (a) 3D Young’s modulus and (b) 2D Young’s modulus for Penta-C20, and (c) the maximum Young’s modulus E_{max}, minimum Young’s modulus E_{min}, and $E_{\text{max}}/E_{\text{min}}$ in the (001), (010), (011), (100), (101), (110), and (111) planes for Penta-C20.
3.4. Electrical Properties

The density of states (DOS) and band structure are effective methods to analyze the electrical properties of crystals. Using the HSE06 hybrid function, the orbital projection band structure and the partial DOS (PDOS) of Penta-C\textsubscript{20} are calculated and shown in Figure 7. As shown in Figure 7, Penta-C\textsubscript{20} is a direct band carbon based semiconducting material with band gap of 2.89 eV, as the conduction band minimum (CBM) and valence band maximum (VBM) are both found at Y point. As the orbital projection band structure shows, both VBM and CBM of Penta-C\textsubscript{20} are composed mainly of the \(-p_x\) orbital, although other orbital contributions are not less significant. Moreover, the electrons in the \(-p_z\) orbital contribute more in VBM than in CBM. The electrons in the \(-p_x, -p_y,\) and \(-p_z\) orbitals contribute more in the valence band than in the conduction band, while the electrons in the \(-s\) orbital contribute more in the conduction band. As shown in the PDOS, C atoms contribute the least to the orbits of the considered energy range. Both VBM and CBM of Penta-C\textsubscript{20} are composed mainly of C\textsubscript{1-}\(p_x\) and C\textsubscript{3-}\(p_x\) orbitals.

![Figure 7. The calculated partial density of states (PDOS) and orbital projection band structure for Penta-C\textsubscript{20}. Cyan, magenta, olive, and orange lines correspond to the \(-s, -p_x, -p_y,\) and \(-p_z\) orbitals of electrons.](image)

4. Conclusions

Based on first-principle calculations, the physical properties (including structural properties, stability, and mechanical and electronic properties) of a novel carbon material, Penta-C\textsubscript{20}, were studied in detail. Penta-C\textsubscript{20} can be formed from carbon pentagons linked through bridge-like bonds. In the direction of the c-axis, Penta-C\textsubscript{20} presents a honeycomb structure composed of quadrilateral, pentagonal, and twelve-sided shapes, which makes its density lower than that of diamond. Under a high pressure of 100 GPa, Penta-C\textsubscript{20} can maintain lattice dynamic stability. Penta-C\textsubscript{20} is energetically more stable than supercubane and T-carbons, illustrating that it has thermodynamic stability and may be synthesized in the future. In terms of mechanical properties, Penta-C\textsubscript{20} is a potential superhard carbon material and exhibits mechanical anisotropy. In terms of the Young’s modulus, the (001) plane exhibits the largest mechanical anisotropy, while the (010) plane shows the smallest mechanical anisotropy. In addition, Penta-C\textsubscript{20} is a semiconducting material with a wide direct band gap of 2.89 eV. The low energy, high stability, superhard property, and wide direct band gap of Penta-C\textsubscript{20} suggest that it has potential value in high-power and high-voltage devices. This work not only enriches the carbon allotrope family but also provides novel superhard direct band gap carbon materials.

Author Contributions: W.Z. designed the project; W.Z., Q.F., Y.S., and C.C. performed the calculations; W.Z. and Y.Y. analyzed the results, W.Z. and Y.S. wrote the manuscript. All authors have read and agreed to the published version of the manuscript.
Funding: This work was supported by the Natural Science Foundation of China (No. 61974116 and 61804120) and China Postdoctoral Science Foundation (No. 2019TQ0243 and 2019M663646).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kroto, H.W.; Heath, J.R.; O’Brien, S.C.; Curl, R.F.; Smalley, R.E. C60—A new form of carbon. Nature 1985, 318, 162–163. [CrossRef]
2. Iijima, S. Synthesis of carbon nanotubes. Nature 1991, 354, 56–58. [CrossRef]
3. Matsuoka, R.; Sakamoto, R.; Hoshiko, K.; Sasaki, S.; Masunaga, H.; Nagashio, K.; Nishihara, H. Crystalline graphdiyne nanosheets produced at a gas/liquid or liquid/liquid interface. J. Am. Chem. Soc. 2017, 139, 3145–3152. [CrossRef]
4. Diederich, F.; Kivala, M. All-carbon scaffolds by rational design. Adv. Mater. 2010, 22, 803–812. [CrossRef]
5. Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [CrossRef] [PubMed]
6. Neto, A.H.C.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162. [CrossRef]
7. Andrew, R.C.; Mapasha, R.E.; Ukpong, A.M.; Chetty, N. Mechanical properties of graphene and boronitrene. Phys. Rev. B 2012, 85, 125428. [CrossRef]
8. Zhang, W.; Chai, C.; Fan, Q.; Weng, K.; Yang, Y. Theoretical investigations of Ge1–xSnx alloys (x = 0, 0.333, 0.667, 1) in P42/mcm phase. J. Mater. Sci. 2018, 53, 9611–9626. [CrossRef]
9. Zhang, W.; Chai, C.; Song, Y.; Fan, Q.; Yang, Y. Structural, mechanical, anisotropic, and thermal properties of AlAs in c12 and hP6 phases under pressure. Materials 2018, 11, 740. [CrossRef]
10. Song, Y.; Chai, C.; Fan, Q.; Zhang, W.; Yun, S. Physical properties of Si–Ge alloys in C2/m phase: A comprehensive investigation. J. Phys. Condens. Matter 2019, 31, 255703. [CrossRef]
11. Fan, Q.; Zhang, W.; Song, Y.; Zhang, W.; Yun, S. P63/mmc-Ge and their Si-Ge alloys with a mouldable direct band gap. Semicond. Sci. Tech. 2020. In press. [CrossRef]
12. Miao, J.; Chai, C.; Zhang, W.; Song, Y.; Yang, Y. First-Principles Study on Structural, Mechanical, Anisotropic, Electronic and Thermal Properties of III-Phosphides: XP (X = Al, Ga, or In) in the P6422 Phase. Materials 2020, 13, 686. [CrossRef] [PubMed]
13. Fan, Q.; Duan, Z.; Song, Y.; Zhang, W.; Zhang, Q.; Yun, S. Electronic, Mechanical and Elastic Anisotropy Properties of X-Diamondyne (X = Si, Ge). Materials 2019, 12, 3589. [CrossRef] [PubMed]
14. Fan, Q.; Wang, H.; Zhang, W.; Wei, M.; Song, Y.; Zhang, W.; Yun, S. Si–Ge alloys in C2/c phase with tunable direct band gaps: A comprehensive study. Curr. Appl. Phys. 2019, 19, 1325–1333. [CrossRef]
15. Zhang, W.; Chai, C.; Song, Y.; Fan, Q.; Yang, Y. Six novel carbon and silicon allotropes with their potential application in photovoltaic field. J. Phys. Condens. Matter 2020. In press. [CrossRef]
16. Liu, Y.; Jiang, X.; Fu, J.; Zhao, J. New metallic carbon: Three dimensionally carbon allotropes comprising ultrathin diamond nanostripes. Carbon 2018, 126, 601–610. [CrossRef]
17. Fan, Q.; Xu, J.; Zhang, W.; Song, Y.; Yun, S. Physical properties of group 14 semiconductor alloys in orthorhombic phase. J. Appl. Phys. 2019, 126, 045709. [CrossRef]
18. Li, D.; Tian, F.; Chu, B.; Duan, D.; Wei, S.; Lv, Y.; Zhang, H.; Wang, L.; Lu, N.; Liu, B.; et al. Cubic C 96: A novel carbon allotrope with a porous nanocube network. J. Mater. Chem. A 2015, 3, 10448–10452. [CrossRef]
19. Umemoto, K.; Saito, S.; Berber, S.; Tománek, D. Carbon foam: Spanning the phase space between graphite and diamond. Phys. Rev. B 2001, 64, 193409. [CrossRef]
20. Li, X.; Xing, M. Prediction of a novel carbon allotrope from first-principle calculations: A potential superhard material in monoclinic symmetry. Mater. Chem. Phys. 2020, 104, 125504.
21. Li, Q.; Ma, Y.; Oganov, A.R.; Wang, H.; Wang, H.; Xu, Y.; Cui, T.; Mao, H.K.; Zhou, G. Superhard monoclinic polymorph of carbon. Phys. Rev. Lett. 2009, 102, 175506. [CrossRef] [PubMed]
22. Wang, J.T.; Chen, C.; Kawazoe, Y. Low-temperature phase transformation from graphite to orthorhombic carbon. Phys. Rev. Lett. 2011, 106, 075501. [CrossRef] [PubMed]
23. Wang, J.Q.; Zhao, C.X.; Niu, C.Y.; Sun, Q.; Jia, Y. C 20–T carbon: A novel superhard sp^3 carbon allotrope with large cavities. J. Phys. Condens. Matter 2016, 28, 475402. [CrossRef] [PubMed]
24. Zhang, J.Y.; Wang, R.; Zhu, X.; Pan, A.; Han, C.X.; Li, X.; Zhao, D.; Ma, C.S.; Wang, W.; Su, H.B.; et al. Pseudo-topotactic conversion of carbon nanotubes to T-carbon nanowires under picosecond laser irradiation in methanol. *Nat. Commun.* **2017**, *8*, 683. [CrossRef] [PubMed]

25. Liu, P.; Cui, H.; Yang, G.W. Synthesis of body-centered cubic carbon nanocrystals. *Cryst. Growth Des.* **2008**, *8*, 581–586. [CrossRef]

26. Fan, Q.; Wang, H.; Song, Y.; Zhang, W.; Yun, S. Five carbon allotropes from Squaroglitter structures. *Comp. Mater. Sci.* **2020**, *178*, 109634. [CrossRef]

27. Hoffmann, R.; Kabanov, A.A.; Golov, A.A.; Proserpio, D.M. Homo citans and carbon allotropes: For an ethics of citation. *Angew. Chem. Int. Ed.* **2016**, *55*, 10962–10976. [CrossRef]

28. Baburin, I.A.; Proserpio, D.M.; Saleev, V.A.; Shipilova, A.V. From zeolite nets to sp³ carbon allotropes: A topology-based multiscale theoretical study. *Phys. Chem. Chem. Phys.* **2015**, *17*, 1332–1338. [CrossRef]

29. Zhang, W.; Chai, C.; Fan, Q.; Song, Y.; Yang, Y. Two novel superhard carbon allotropes with honeycomb structures. *J. Appl. Phys.* **2019**, *126*, 145704. [CrossRef]

30. Laranjeira, J.; Marques, L.; Fortunato, N.M.; MelleFranco, M.; Strutyński, K.; Barroso, M. Three-dimensional C60 polymers with ordered binary-alloy-type structures. *Carbon* **2018**, *137*, 511–518. [CrossRef]

31. Yang, X.; Yao, M.; Wu, X.; Liu, S.; Chen, S.; Yang, K.; Liu, R.; Cui, T.; Sundqvist, B.; Liu, B. Novel Superhard sp³ Carbon Allotrope from Cold-Compressed C 70 Peapods. *Phys. Rev. Lett.* **2017**, *118*, 245701. [CrossRef] [PubMed]

32. Avery, P.; Wang, X.; Oses, C.; Gossett, E.; Proserpio, D.M.; Toher, C.; Curtarolo, S.; Zurek, E. Predicting superhard materials via a machine learning informed evolutionary structure search. *NPJ Comput. Mater.* **2019**, *5*, 89. [CrossRef]

33. Zhang, W.; Chai, C.; Fan, Q.; Song, Y.; Yang, Y. PBCF-graphene: A 2Dsp³ hybridized honeycomb carbon allotrope with a direct band gap. *ChemNanoMat* **2020**, *6*, 139–147. [CrossRef]

34. Shi, X.; He, C.; Pickard, C.J.; Tang, C.; Zhong, J. Stochastic generation of complex crystal structures combining group and graph theory with application to carbon. *Phys. Rev. B* **2018**, *97*, 014104. [CrossRef]

35. He, C.; Shi, X.; Clark, S.J.; Li, J.; Pickard, C.J.; Ouyang, T.; Zhang, C.; Tang, C.; Zhong, J. Complex low energy tetrahedral polymorphs of group IV elements from first principles. *Phys. Rev. Lett.* **2018**, *121*, 175701. [CrossRef] [PubMed]

36. Blatov, V.A.; Shevchenko, A.P.; Proserpio, D.M. Applied topological analysis of crystal structures with the program package ToposPro. *Cryst. Growth Des.* **2014**, *14*, 3576–3586. [CrossRef]

37. Foster, M.D.; Treacy, M.M.J. A Database of Hypothetical Zeolite Structures. Available online: http://www.hypotheticalzeolites.net/DATABASE/DEEM/DEEM_PCOD/index.php (accessed on 7 April 2020).

38. Kresse, G.; Furthmüller, J. Self-interaction correction to density functional approximation for many electron systems. *Phys. Rev. B* **1996**, *54*, 11169. [CrossRef]

39. Hohenberg, P.; Kohn, W. Density functional theory (DFT). *Phys. Rev.* **1964**, *136*, B864. [CrossRef]

40. Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. *Phys. Rev.* **1965**, *140*, A1133. [CrossRef]

41. Blöchl, P.E. Projector augmented-wave method. *Phys. Rev. B* **1994**, *50*, 17953. [CrossRef]

42. Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. *Phys. Rev. Lett.* **1996**, *77*, 3865. [CrossRef] [PubMed]

43. Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. *Phys. Rev. B* **1976**, *13*, 5188. [CrossRef]

44. Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. *Phys. Rev. B* **1976**, *13*, 5188. [CrossRef]

45. Togo, A.; Oba, F.; Tanaka, I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl₂-type SiO₂ at high pressures. *Phys. Rev. B* **2008**, *78*, 134106. [CrossRef]

46. Gonze, X.; Vigneron, J.P. Density-functional approach to nonlinear-response coefficients of solids. *Phys. Rev. B* **1989**, *39*, 13120–13128. [CrossRef] [PubMed]

47. Clark, S.J.; Segall, M.D.; Pickard, C.J.; Hasnip, P.J.; Probert, M.I.J.; Refson, K.; Payne, M.C. First principles methods using CASTEP. *Z. Kristallogr.* **2005**, *220*, 567–570. [CrossRef]

48. Jo, J.Y.; Kim, B.G. Carbon allotropes with triple bond predicted by first-principle calculation: Triple bond modified diamond and T-carbon. *Phys. Rev. B* **2012**, *86*, 075151. [CrossRef]
49. Sheng, X.L.; Yan, Q.B.; Ye, F.; Zheng, Q.R.; Su, G. T-carbon: A novel carbon allotrope. Phys. Rev. Lett. 2011, 106, 155703. [CrossRef]

50. Niu, C.Y.; Wang, X.Q.; Wang, J.T. K6 carbon: A metallic carbon allotrope in sp3 bonding networks. J. Chem. Phys. 2014, 140, 054514. [CrossRef]

51. Mouhat, F.; Couder, F.X. Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B 2004, 90, 224104. [CrossRef]

52. Fu, W.; Zhang, Y.; Shang, J.; Zeng, L.; Cai, Y. Lattice thermal conductivity and bandgap engineering of a three-dimensional sp2-hybridized Dirac carbon material: HS-C48. Comput. Mater. Sci. 2018, 155, 293–297. [CrossRef]

53. Nulakani, N.V.R.; Subramanian, V. Superprismane: A porous carbon allotrope. Chem. Phys. Lett. 2019, 715, 29–33. [CrossRef]

54. Ma, J.L.; Song, D.L.; Wu, Y.L.; Fu, Z.F.; Zhou, J.P.; Liu, P.; Zhu, X.; Wei, Q. C72: A novel low energy and direct band gap carbon phase. Phys. Lett. A 2020, 126325. [CrossRef]

55. Wei, Q.; Zhang, Q.; Zhang, M.G.; Yan, H.Y.; Guo, L.X.; Wei, B. A novel hybrid sp-sp2 metallic carbon allotrope. Front. Phys. 2018, 13, 136105. [CrossRef]

56. Grimsditch, M.H.; Ramdas, A.K. Brillouin scattering in diamond. Phys. Rev. B 1975, 11, 3139. [CrossRef]

57. Hill, R. The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. Lond. 1952, 65, 349. [CrossRef]

58. Pugh, S.F. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 1954, 45, 823–843. [CrossRef]

59. Lyakhov, A.O.; Oganov, A.R. Evolutionary search for superhard materials: Methodology and applications to forms of carbon and TiO2. Phys. Rev. B 2011, 84, 092103. [CrossRef]

60. Tian, Y.; Xu, B.; Zhao, Z. Microscopic theory of hardness and design of novel superhard crystals. Int. J. Refract. Met. Hard Mater. 2012, 33, 93–106. [CrossRef]

61. Andrievski, R.A. Superhard materials based on nanostructured high-melting point compounds: Achievements and perspectives. Int. J. Refract. Met. Hard Mater. 2001, 19, 447–452. [CrossRef]

62. Zhang, M.; Lu, M.; Du, Y.; Gao, L.; Lu, C.; Liu, H. Hardness of FeB4: Density functional theory investigation. J. Chem. Phys. 2014, 140, 174505. [CrossRef] [PubMed]

63. Ting, T.C.T. On anisotropic elastic materials for which young’s modulus e(n) is independent of n or the shear modulus G(n,m) is independent of n and m. J. Elasticity 2005, 81, 271–292. [CrossRef]