Nonstandard $GL_h(n)$ quantum groups and contraction of covariant q-bosonic algebras

C. Quesne

Physique Nucléaire Théorique et Physique Mathématique, Université Libre de Bruxelles,
Campus de la Plaine CP229, Boulevard du Triomphe, B-1050 Brussels, Belgium

January 27, 2018

Abstract

$GL_h(n) \times GL_h(m)$-covariant h-bosonic algebras are built by contracting the $GL_q(n) \times GL_q(m)$-covariant q-bosonic algebras considered by the present author some years ago. Their defining relations are written in terms of the corresponding R_h-matrices. Whenever $n = 2$, and $m = 1$ or 2, it is proved by using $U_h(sl(2))$ Clebsch-Gordan coefficients that they can also be expressed in terms of coupled commutators in a way entirely similar to the classical case. Some $U_h(sl(2))$ rank-1/2 irreducible tensor operators, recently constructed by Aizawa in terms of standard bosonic operators, are shown to provide a realization of the h-bosonic algebra corresponding to $n = 2$ and $m = 1$.

1 Introduction

It is well known that the Lie group $GL(2)$ admits, up to isomorphism, only two quantum group deformations with central determinant: the standard deformation $GL_q(2)$, and the Jordanian deformation $GL_h(2)$ \footnote{Presented at the 7th Colloquium “Quantum Groups and Integrable Systems”, Prague, 18–20 June 1998}. The quantum group $GL_h(2)$, or $SL_h(2)$, and the dual quantum algebra of the latter, $U_h(sl(2))$ \footnote{Directeur de recherches FNRS; E-mail: cquesne@ulb.ac.be}, have been the subject of many recent investigations, among which one may quote the determination of the $U_h(sl(2))$ universal R-matrix \footnote{1}. Two useful tools have been devised for the Jordanian deformation study. One of them is a contraction procedure that allows one to construct the latter from the standard deformation \footnote{2}. In other words, $GL_h(2)$ can be obtained from $GL_q(2)$ by a singular limit
of a similarity transformation. Such a technique has been generalized by Alishahiha to higher-dimensional quantum groups \[3\].

The other tool is a nonlinear invertible map between the generators of \(U_h(\mathfrak{sl}(2)) \) and \(\mathfrak{sl}(2) \) \[4\], yielding an explicit and simple method for constructing the finite-dimensional irreducible representations (irreps) of \(U_h(\mathfrak{sl}(2)) \). In addition, it has provided an explicit formula for \(U_h(\mathfrak{sl}(2)) \) Clebsch-Gordan coefficients (CGC) \[7\], as well as bosonic or fermionic realizations of irreducible tensor operators (ITO) for \(U_q(\mathfrak{sl}(2)) \) \[8\].

As a result, we will obtain \(\mathrm{GL}_h(\mathfrak{sl}(2)) \) algebras constructed by the present author some years ago \[9\], and recently rederived by Van der Jeugt on CGC for \(U_h(\mathfrak{sl}(2)) \) \[8\].

The purpose of the present communication is to apply the contraction procedure of Ref. \[4\], as generalized by Alishahiha \[2\], to the \(\mathrm{GL}_q(n) \times \mathrm{GL}_q(m) \)-covariant \(q \)-bosonic algebras constructed by the present author some years ago \[9\], and recently rederived by Fiore by another procedure \[10\]. As a result, we will obtain \(\mathrm{GL}_h(n) \times \mathrm{GL}_h(m) \)-covariant \(h \)-bosonic algebras. We will then consider the cases where \(n = 2 \), \(m = 1 \), and \(n = m = 2 \) in more detail, and establish some relations with the works of Aizawa on ITO \[8\], and of Van der Jeugt on CGC for \(U_h(\mathfrak{sl}(2)) \) \[10\].

2 Contraction of \(\mathrm{GL}_q(N) \)

The quantum group \(\mathrm{GL}_q(N) \) is defined by the \(RTT \)-relations, \(RTT' = T_1 T_2 = T_2' T_1' R' \), where \(T' = (T'_{ij}) \in \mathrm{GL}_q(N) \), \(T_1 = T' \otimes I \), \(T_2 = I \otimes T' \), and

\[
R' = R'_q = q \sum_i e_{ii} \otimes e_{ii} + \sum_{i<j} e_{ii} \otimes e_{jj} + \left(q - q^{-1} \right) \sum_{i<j} e_{ij} \otimes e_{ji},
\]

with \(i, j \) running over 1, 2, \ldots, \(N \), and \(e_{ij} \) denoting the \(N \times N \) matrix with entry 1 in row \(i \) and column \(j \), and zeros everywhere else. An equivalent form of the \(RTT \)-relations is obtained by replacing \(R' = R'_{12} \) by \(R'_{21} \). Throughout this communication, \(q \)-deformed objects will be denoted by primed quantities, whereas unprimed ones will represent \(h \)-deformed objects.

Let us consider the similarity transformation \(R'' = (g^{-1} \otimes g^{-1}) R'(g \otimes g) \), \(T'' = g^{-1} T' g \), where \(g \) is the \(N \times N \) matrix defined by \(g = \sum_i e_{ii} + \eta e_{1N} \), in terms of some parameter \(\eta = h/(q - 1) \) \[4\] \[5\]. The \(RTT \)-relations simply become \(RTT'_{12}' = T_2' T_1'' R'' \).

Whenever \(q \) goes to 1, although \(\eta \) becomes singular, the latter have a definite limit \(RT_1 T_2 = T_2' T_1 R \), where \(T = \lim_{q \to 1} T'' \), and

\[
R = R_h = \lim_{q \to 1} R'' = \sum_{ij} e_{ii} \otimes e_{jj} + h \left[e_{11} \otimes e_{1N} - e_{1N} \otimes e_{11} + e_{1N} \otimes e_{NN} - e_{NN} \otimes e_{1N} + 2 \sum_{i=2}^{N-1} (e_{ii} \otimes e_{iN} - e_{iN} \otimes e_{ii}) \right] + h^2 e_{1N} \otimes e_{1N}. \tag{2}
\]

The resulting \(R \)-matrix is triangular, i.e., it is quasi-triangular and \(R_{12}^1 = R_{21} \), showing that the two equivalent forms of \(RTT \)-relations for \(\mathrm{GL}_q(N) \) have actually the same contraction limit. The matrix elements \(T_{ij} \) generate \(\mathrm{GL}_h(N) \).
3 \(\text{GL}_q(n) \times \text{GL}_q(m) \)-covariant \(q \)-bosonic algebras

Let us consider two different copies of \(\text{GL}_q(N) \), corresponding to possibly different dimensions \(n, m \), and let us denote quantities referring to \(\text{GL}_q(n) \) by ordinary letters (\(R', T', \ldots \)), and quantities referring to \(\text{GL}_q(m) \) by script ones (\(\mathcal{R}', \mathcal{T}', \ldots \)). The elements \(T'_{ij} \), \(i, j = 1, 2, \ldots, n \), of \(\text{GL}_q(n) \), and \(T'_{st} \), \(s, t = 1, 2, \ldots, m \), of \(\text{GL}_q(m) \) are assumed to commute with one another.

In Ref. [3], \(q \)-bosonic creation and annihilation operators \(A'_{is}^+, \tilde{A}'_{is}, i = 1, 2, \ldots, n \), \(s = 1, 2, \ldots, m \), that are double ITO of rank \((1|0)_n, (0|1)_m \), with respect to \(U_q(gl(n)) \times U_q(gl(m)) \), respectively, were constructed in terms of standard \(q \)-bosonic operators \(\prod a_{is}^+, a_{is}' \), \(i = 1, 2, \ldots, n \), \(s = 1, 2, \ldots, m \), acting in a tensor product Fock space \(F = \Pi_{i=1}^n \Pi_{s=1}^m F_{is} \). The annihilation operators \(A'_{is} \) contragredient to \(A_{is}^+ \) were also considered. Both sets of annihilation operators \(A'_{is} \) and \(A_{is} \), \(i = 1, 2, \ldots, n \), \(s = 1, 2, \ldots, m \), are related through the equation \(A'_{is} = A'_{is} \tilde{C}'_{is} \), where \(C' = C'C', \tilde{C}' = \sum_{i} (-1)^{n-i} q^{-(n-2i+1)/2} \epsilon_{ii}' \), and \(C' = \sum_{s} (-1)^{m-s} q^{-(m-2s+1)/2} \epsilon_{ss}' \), with \(i' = n - i + 1 \), \(s' = m - s + 1 \).

The operators \(A'_{is}, A_{is} \) or \(A'_{is}^+, \tilde{A}'_{is} \) generate with \(I = I I \) a \(U_q(gl(n)) \times U_q(gl(m)) \)-module algebra or \(\text{GL}_q(n) \times \text{GL}_q(m) \)-comodule algebra, whose \(q \)-commutation relations can be compactly written in coupled form by using \(U_q(gl(n)) \times U_q(gl(m)) \) CGC. When rewritten in componentwise form, such relations can be expressed in terms of the \(\text{GL}_q(n) \) and \(\text{GL}_q(m) \) \(R \)-matrices as [3]

\[
R'A_1^+A_2^+ = A_2^+A_1^+R', \quad R'A_2A_1 = A_1A_2R',
\]

\[
A_2A_1 = I_{21} + R'^{t_1}R'^{t_1} A_2^+A_2,
\]

or

\[
R'A_1^+A_2^+ = A_2^+A_1^+R', \quad R'A_1 = A_1^+R',
\]

\[
\tilde{A}_2^+\tilde{A}_1 = C_{12} + q^2 A_1^+\tilde{A}_2 R^{-1}\tilde{R}',
\]

where \(t_1 \) (resp. \(t_2 \)) denotes transposition in the first (resp. second) space of the tensor product, \(\tilde{R}' \) is defined by \(\tilde{R}' = qC_1'(R'^{-1})^t C'^{-1}_1 = qC_2'(R'^{-1})^{-1} C'^{-1}_2 \), and similar relations hold for \(\tilde{R}' \). The transformations leaving Eqs. (3) and (4) invariant are \(\varphi' \left(A^+ \right) = A^+T'^{t}T', \)

\[
\varphi' \left(\tilde{A}' \right) = T'^{-1}T'^{t} \tilde{A}', \quad \text{and } \varphi' \left(A^+ \right) = A^+T'^{t}T', \quad \varphi' \left(\tilde{A}' \right) = \tilde{A}' T'^{t} \tilde{A}',
\]

respectively. Here \(T' \) and \(T' \) are defined by \(T = C'^{-1}(T'^{-1})^t C' \), and \(\tilde{T}' = C'^{-1}(T'^{-1})^t C' \).

There exists another independent set of \(\text{GL}_q(n) \times \text{GL}_q(m) \)-covariant \(q \)-bosonic operators, which satisfy equations similar to Eq. (3) or (4), but with \(R'_{12} \rightarrow R'^{-1}_{21}, R'_{12} \rightarrow R'^{-1}_{21} \), implying \(q^{-1}R'^{-1}_{12} \rightarrow qR'_{21}, q^{-1}R'_{12} \rightarrow qR'_{21} \).

4 \(\text{GL}_h(n) \times \text{GL}_h(m) \)-covariant \(h \)-bosonic algebras

Let us apply the contraction procedure of Sec. 2 to the \(\text{GL}_q(n) \times \text{GL}_q(m) \)-covariant \(q \)-bosonic algebras, given in two equivalent forms in Eqs. (3) and (4), respectively. Since we now have
two copies of \(\text{GL}_q(N) \), we have to consider two transformation matrices
\[g = \sum e_{ii} + \eta e_{1n}, \]
and \(\bar{g} = \sum e_{is} + \eta e_{1m}, \) acting on \(\text{GL}_q(n) \) and \(\text{GL}_q(m) \), respectively.

Let us first consider Eq. (3), and introduce transformed \(q \)-bosonic operators defined by
\[A''^+ = A'^+ g, \ A'' = g^{-1} A', \]
where \(g = g g \). By using the property \(R'_{12} = R'^{12} \), and a similar one for \(R' \), it is straightforward to show that Eq. (3) becomes

\[
\begin{align*}
A''^+ A''^+ &= A''^+ A''^+ R'^{-1} R'^{12}, & A''^+ A''^+ &= R'^{-1} R'^{12} A''^+ A''^+,
A'' A''^+ &= I_{21} + R'^{m} R'^{m} A'' A''^+.
\end{align*}
\]

(5)

Since \(R \) and \(R' \) are triangular, in the \(q \to 1 \) limit the \(h \)-bosonic operators
\[A_i^+ = \lim_{q \to 1} A_i^+ A_i^+, \]
\[A_i = \lim_{q \to 1} A_i^+ A_i^+ A_i^+ A_i^+ \]
satisfy the relations

\[
\begin{align*}
A_1^+ A_2^+ &= A_1^+ A_2^+ R R, & A_1 A_2 &= R R A_2 A_1, \\
A_2 A_1^+ &= I_{21} + R^T R^T A_1^+, A_2 A_1^+.
\end{align*}
\]

(6)

defining a \(\text{GL}_h(n) \times \text{GL}_h(m) \)-comodule algebra. The transformation \(\varphi(A^+) = A^+ T^T \),
\(\varphi(A) = T^{-1} A^{-1} T \), where \(T_{ij} \in \text{GL}_h(n) \), \(T_{st} \in \text{GL}_h(m) \), leaves Eq. (3) invariant.

Three properties of Eq. (4) are worth noting: (1) Had we started instead from the second form of Eq. (3) corresponding to the substitutions \(R'_{12} \to R'^{-1} \), \(R'^{12} \to R^{12} \), we would have obtained the same contraction limit (3), owing to the triangularity of \(R \) and \(R' \). (2) Contrary to what happens in the \(q \)-bosonic case, \(A_i^+ \) can never be considered as the adjoint of \(A_i^+ \), since no \(* \)-structure is known on \(\text{GL}_h(N) \). (3) For \(m = 1 \), Eq. (3) is consistent with the general form of \(\mathcal{H} \)-covariant deformed bosonic algebras for triangular \(\mathcal{H} \), obtained by Fiore [12].

Let us next consider Eq. (4), and define \(A''^+ = A'^+ g, \ A'' = A' g \), where \(g \) is the same as before. Compatibility of the \(A'' \) and \(A'' \) definitions with \(A'' = A'' C'' \), where \(C'' = C'' C'' \), leads to \(C'' = g C' g, \ C'' = g C' g \). A simple calculation shows that for \(n > 1 \), a contraction limit of \(C'' \) only exists for even \(n \) values, and is given by
\[C = \lim_{q \to 1} C'' = \sum_i (-1)^i e_{ii} + (n - 1) h e_{nn}, \]
Similar results hold for \(C = \lim_{q \to 1} C'' \).

Restricting the range of \(n, m \) values to \(\{1, 2, 4, 6, \ldots \} \), we obtain that after transformation, Eq. (4) contracts into

\[
\begin{align*}
A_1^+ A_2^+ &= A_1^+ A_2^+ R R, & \tilde{A}_1^+ \tilde{A}_2^+ &= \tilde{A}_1^+ \tilde{A}_1^+ R R, \\
\tilde{A}_2 A_1^+ &= C_{12} + A_1^+ \tilde{A}_2 \tilde{A}_1^+ \tilde{A}_1^+.
\end{align*}
\]

(7)

where \(C = C C \), \(\tilde{R} = \lim_{q \to 1} (g^{-1} \otimes g^{-1}) \tilde{R} (g \otimes g) = C_{12}^{-1} (R^{-1} T^1) C_1 = C_2^{-1} (R^2 T^1) C_2, \) and similarly for \(\tilde{R} \). For such restricted \(n, m \) values, Eq. (7) yields another form of the \(\text{GL}_h(n) \times \text{GL}_h(m) \)-covariant \(h \)-bosonic algebra defined in Eq. (3) for arbitrary \(n, m \) values. The transformation leaving Eq. (7) invariant is \(\varphi(A^+) = A^+ T T, \) \(\varphi(A) = \tilde{A} \tilde{T} \tilde{T}, \) where \(\tilde{T} = C^{-1} (T^{-1}) \). However, for \(n \) and/or \(m \in \{3, 5, 7, \ldots \} \), the contraction procedure does not preserve the equivalence between Eqs. (3) and (4), since only the former has a limit.
5 \(GL_h(2) \) and \(GL_h(2) \times GL_h(2) \)-covariant \(h \)-bosonic algebras

For \(n = 2, m = 1 \), by making the substitutions

\[
R = \begin{pmatrix}
1 & h & -h & h^2 \\
0 & 1 & 0 & h \\
0 & 0 & 1 & -h \\
0 & 0 & 0 & 1
\end{pmatrix}, \quad C = \begin{pmatrix}
0 & -1 \\
1 & h
\end{pmatrix}, \quad R = C = 1,
\]

(8)

into Eqs. (3) and (4), we obtain that \(A^+_1, A^+_2, A_1, A_2 \) satisfy the commutation relations

\[
\begin{align*}
[A^+_1, A^+_2] &= h \left(A^+_1 \right)^2, \quad [A_1, A_2] = hA^+_2, \\
[A_2, A^+_1] &= 0, \quad [A_1, A^+_2] = h \left(-A^+_1 A_1 - A^+_2 A_2 + hA^+_1 A^+_2 \right), \\
[A_1, A^+_1] &= [A^+_2, A^+_2] = I + hA^+_1 A_2,
\end{align*}
\]

(9)

while \(A^+_1, A^+_2, \tilde{A}_1, \tilde{A}_2 \) fulfil

\[
\begin{align*}
[A^+_1, A^+_2] &= h \left(A^+_1 \right)^2, \quad [\tilde{A}_1, \tilde{A}_2] = h\tilde{A}^+_1, \\
[\tilde{A}_1, A^+_1] &= 0, \quad [\tilde{A}_2, A^+_2] = h(I - A^+_1 \tilde{A}_2 + A^+_2 \tilde{A}_1 + hA^+_1 \tilde{A}_1), \\
[\tilde{A}_1, A^+_2] &= -[\tilde{A}_2, A^+_1] = I + hA^+_1 \tilde{A}_1.
\end{align*}
\]

(10)

Both sets of operators \((A^+_1, A^+_2) \) and \((\tilde{A}_1, \tilde{A}_2) \) may be considered as the components \(m = 1/2 \) and \(m = -1/2 \) of ITO of rank \(1/2 \), or spinors, with respect to the quantum algebra \(U_h(\mathfrak{sl}(2)) \). By considering the adjoint action of the \(U_h(\mathfrak{sl}(2)) \) generators on such spinors, Aizawa [8] recently realized them in terms of standard bosonic operators \(a^+_1, a^+_2, a_1, a_2, \)

\[
A^+_1 = \left(1 - \frac{h}{2} J_+ \right)^{-1} a^+_1, \quad A^+_2 = \left(1 - \frac{h}{2} J_+ \right) a^+_2 + \frac{h}{2} \left(A^+_1 - 2a^+_2 J_0 \right), \\
\tilde{A}_1 = \left(1 - \frac{h}{2} J_+ \right)^{-1} a_2, \quad \tilde{A}_2 = - \left(1 - \frac{h}{2} J_+ \right) a_1 + \frac{h}{2} \left(\tilde{A}_1 - 2a_2 J_0 \right),
\]

(11)

where \(J_+ = a^+_1 a_2 \), and \(J_0 = (a^+_1 a_1 - a_2^2 a_2) / 2 \) are \(\mathfrak{sl}(2) \) generators. As can be easily checked, the operators (11) satisfy Eq. (10), as it should be.

Equation (10) can be recast into an alternative form by using coupled commutators

\[
\left[U^{j_1}, V^{j_2} \right]_m^j = \left[U^{j_1} \times V^{j_2} \right]_m^j - (-1)^\epsilon \left[V^{j_2} \times U^{j_1} \right]_m^j, \quad \epsilon = j_1 + j_2 - j,
\]

(12)

where \(U^{j_1} \) and \(V^{j_2} \) denote two ITO of rank \(j_1 \) and \(j_2 \) with respect to \(U_h(\mathfrak{sl}(2)) \), respectively,

\[
\left[U^{j_1} \times V^{j_2} \right]_m^j = \sum_{m_1 m_2} \langle j_1 m_1, j_2 m_2 | jm \rangle \left[U^{j_1} \right]_{m_1} \left[V^{j_2} \right]_{m_2}.
\]

(13)
and $\langle , | \rangle_h$ denotes a $U_h(\text{sl}(2))$ CGC, as determined in Ref. [7]. The results read

$$[A^+, A^+_0]_0 = [\tilde{A}, \tilde{A}]_0 = [\tilde{A}, A^+]_m = 0, \quad [\tilde{A}, A^+]_0 = \sqrt{2}I.$$ \hfill (14)

For $n = m = 2$, R and C take the same form as R and C in Eq. (8). Relations similar to those in Eqs. (9) and (10) can be easily written. The operators $A^i_{is}, \tilde{A}^i_{is}, i, s = 1, 2$, may now be considered as the components of double spinors with respect to $U_h(\text{sl}(2)) \times U_h(\text{sl}(2))$, and they satisfy the coupled commutation relations

$$[A^+, A^+]_{m,0}^1 = [A^+, A^+]_{0,m'}^1 = [\tilde{A}, \tilde{A}]_{m,0}^1 = [\tilde{A}, \tilde{A}]_{0,m'}^1 = 0,$$

$$[\tilde{A}, A^+]_{j,j'}_{m,m'} = 2\delta_{j,0}\delta_{j',0}\delta_{m,0}\delta_{m',0}I,$$ \hfill (15)

where in the definition of coupled commutators there now appear two ϵ phases, and two $U_h(\text{sl}(2))$ CGC.

It is remarkable that both Eqs. (14) and (15) are formally identical with those for $\text{sl}(2)$ and $\text{sl}(2) \times \text{sl}(2)$, respectively. Contrary to what happens in the q-bosonic case where the commutators are q-deformed, here all the dependence upon the deforming parameter h is contained in the CGC.

6 Conclusion

In this communication, we showed that $\text{GL}_h(n) \times \text{GL}_h(m)$-covariant h-bosonic algebras can be obtained by contracting $\text{GL}_q(n) \times \text{GL}_q(m)$-covariant q-bosonic ones. Some extensions of the present work to h-fermionic and multiparametric algebras are under current investigation.

References

[1] Kupershmidt B.A.: J. Phys. A 25 (1992) L1239.

[2] Ohn C.: Lett. Math. Phys. 25 (1992) 85.

[3] Ballesteros A. and Herranz F. J.: J. Phys. A 29 (1996) L311.

Shariati A., Aghamohammadi A., and Khorrami M.: Mod. Phys. Lett. A 11 (1996) 187.

[4] Aghamohammadi A., Khorrami M., and Shariati A.: J. Phys. A 28 (1995) L225.

[5] Alishahiha M.: J. Phys. A 28 (1995) 6187.

[6] Abdesselam B., Chakrabarti A., and Chakrabarti R.: Mod. Phys. Lett. A 11 (1996) 2883.

[7] Van der Jeugt J.: Czech. J. Phys. 47 (1997) 1283; J. Phys. A 31 (1998) 1495.
[8] Aizawa N.: J. Phys. A 31 (1998) 5467.

[9] Quesne C.: Phys. Lett. B 298 (1993) 344; 322 (1994) 344.

[10] Fiore G.: J. Phys. A 31 (1998) 5289.

[11] Biedenharn L. C.: J. Phys. A 22 (1989) L873.
 Macfarlane A. J.: J. Phys. A 22 (1989) 4581.

[12] Fiore G.: in Proc. Quantum Group Symp. at Group21, Goslar, Germany, 1996 (Eds. H.-D. Doebner and V. K. Dobrev). Heron Press, Sofia, 1997, p. 84.