RESEARCH PAPER

FIA functions as an early signal component of abscisic acid signal cascade in *Vicia faba* guard cells

Yusuke Sugiyama¹, Misugi Urají¹, Megumi Watanabe-Sugimoto¹, Eiji Okuma¹, Shintaro Munemasa¹, Yasuaki Shimoishi¹, Yoshimasa Nakamura¹, Izumi C. Mori², Sumio Iwai³ and Yoshiyuki Murata¹,*

¹ Graduate School of Natural Science and Technology, Division of Bioscience, Faculty of Agriculture, Okayama University, Okayama, 700-8530, Japan
² Institute of Plant Science and Resources, Okayama University, Okayama, 710-0046, Japan
³ Faculty of Agriculture, Kagoshima University, Kohrimoto, Kagoshima, 890-0065, Japan
* To whom correspondence should be addressed. E-mail: muta@cc.okayama-u.ac.jp

Received 7 July 2011; Revised 12 September 2011; Accepted 21 October 2011

Abstract

An abscisic acid (ABA)-insensitive *Vicia faba* mutant, *fia* (fava bean impaired in ABA-induced stomatal closure) had previously been isolated. In this study, it was investigated how FIA functions in ABA signalling in guard cells of *Vicia faba*. Unlike ABA, methyl jasmonate (MeJA), H₂O₂, and nitric oxide (NO) induced stomatal closure in the *fia* mutant. ABA did not induce production of either reactive oxygen species or NO in the mutant. Moreover, ABA did not suppress inward-rectifying K⁺ (Kin) currents or activate ABA-activated protein kinase (AAPK) in mutant guard cells. These results suggest that FIA functions as an early signal component upstream of AAPK activation in ABA signalling but does not function in MeJA signalling in guard cells of *Vicia faba*.

Key words: Abscisic acid, *fia*, guard cell, methyl jasmonate, stomatal closure, *Vicia faba*.

Introduction

Guard cells in pairs surround stomatal pores and respond to various signals including hormones, humidity, light, temperature, and CO₂. In response to drought condition, plants synthesize abscisic acid (ABA), which induces stomatal closure, reducing water loss (Hirayama and Shinozaki, 2007; Shimazaki et al., 2007).

A number of ABA signalling factors, including an ABA receptor complex, have been identified using a model plant, *Arabidopsis thaliana* (Fujii et al., 2009; Ma et al., 2009; Park et al., 2009; Sirichandra et al., 2009; Kim et al., 2010). *Vicia faba* has been widely used for the investigation of ABA signalling in guard cells because it is possible to use experimental techniques which are difficult to apply to model plants (Schwartz et al., 1994; Mori and Muto, 1997).

Iwai et al. (2003) reported an ABA-insensitive *Vicia faba* mutant, *fia* (fava bean impaired in ABA-induced stomatal closure). In the *fia* mutant, ABA-induced stomatal closure and seed dormancy are disrupted (Iwai et al., 2003), suggesting that the *fia* mutation affects ABA signalling components and that the *fia* mutant could be a powerful tool for further dissection of the ABA signalling pathway in *Vicia* guard cells.

ABA induces the production of reactive oxygen species (ROS) mediated by NAD(P)H oxidases in guard cells (Pei et al., 2000; Kwak et al., 2003). Bright et al. (2006) have reported that nitric oxide (NO) requires ROS production in ABA-induced stomatal closure but Lozano-Juste and León (2010) have proposed an NO-independent regulatory mechanism of ABA-induced stomatal closure, indicating that the roles of NO in ABA signalling are still unsettled. Hydrogen peroxide activates Ca²⁺-permeable non-selective cation channels, causing the elevation of cytosolic free Ca²⁺ ([Ca²⁺]_{cyt}) in guard cells (Pei et al., 2000; Murata et al., 2001). The elevation in [Ca²⁺]_{cyt} leads to the activation of S-type anion channels, resulting in the depolarization of the plasma membrane, the release of ions, and the reduction of turgor pressure of guard cells (Vahisalu et al., 2008).
The volatile phytohormone, methyl jasmonate (MeJA) regulates various physiological processes including pollen maturation, tendril coiling, and responses to wounding and pathogen attack (Liechti and Farmer, 2002; Turner et al., 2002). MeJA induces production of ROS in guard cells (Suhita et al., 2004; Islam et al., 2010a), elevation/oscillation of [Ca^{2+}]_{\text{cyt}} (Islam et al., 2010b), activation of K^+ efflux, and inactivation of K^+ influx in guard cells (Evans, 2003; Saito et al., 2008). In Arabidopsis coronatine insensitive1 (coi1) mutant, ABA induces stomatal closure but MeJA does not induce stomatal closure (Munemasa et al., 2007) and MeJA-induced stomatal closure requires endogenous ABA in Arabidopsis (Hossain et al., 2011).

In the fia mutant, ABA does not induce stomatal closure but exogenous Ca^{2+} induces stomatal closure, suggesting that the fia mutation disrupts ABA signalling between ABA perception and [Ca^{2+}]_{\text{cyt}} elevation (Iwai et al., 2003). However, the effects of fia mutation on ROS production, NO production, and modulation of potassium channel activities in response to ABA remain to be clarified.

In fava bean, ABA activates 48-kDa ABA-activated protein kinase (AAPK) (Li and Assmann, 1996; Mori and Muto, 1997) and a broad-range protein kinase inhibitor, K252a, inhibits both ABA-induced stomatal closure and ABA activation of AAPK (Mori and Muto, 1997). An in-gel protein kinase assay has demonstrated that AAPK phosphorylates the carboxy-terminus of Arabidopsis potassium channel KAT1 (Mori et al., 2000) which is involved in stomatal movement (Kwak et al., 2001). These results suggest that AAPK is a key signal factor in ABA signalling in fava bean.

To understand the details of how the fia mutation affects ABA signalling, stomatal closure, the production of second messengers ROS and NO, the suppression of inward-rectifying K^+ (K_{\text{in}}) currents, and the activation of AAPK in the fia mutant were investigated.

Materials and methods

Plant material and growth

Seeds of Vicia faba L., cv. House Ryousai were purchased from Kyowa Seeds Co. (Chiba, Japan) and seeds of fia mutant were provided by Kagoshima University. Plants were grown in a growth chamber for 4–8 weeks at 23 °C, 80 μmol·m^{-2}·s^{-1} under a 18/6 h light/dark cycle. The plants were watered twice a week.

Stomatal aperture measurements

Stomata apertures were measured according to the method described previously (Iwai et al., 2003) with slight modifications. Excised leaves were floated on medium containing 50 mM KCl and 10 mM MES-KOH (pH 6.15) for 2 h in the light. Leaves were transferred to the bathing medium containing 50 mM KCl, 0.01 mM CaCl₂, and 10 mM MES-KOH (pH 6.15) and the indicated concentration of phytohormone or reagent, and then incubated for 1 h in the light. The leaves were shredded in a blender and epidermal tissues were collected. Twenty stomatal apertures were measured on each individual experiment and averages were obtained from more than four independent experiments.

Detection of ROS and NO

Production of ROS and NO in guard cells was measured as described previously by Munemasa et al. (2007) with slight modifications. For ROS production, epidermal peels were incubated for 3 h in medium containing 5 mM KCl, 50 μM CaCl₂, and 10 mM MES-KOH (pH 6.15), and then 50 μM ROS detection fluorescence dye, 2’,7’-dichlorodihydrofluorescein diacetate (H₂DCF-DA), was added to the medium. The epidermal tissues were incubated for 10 min in the dark and then were washed to remove excess dye. The dye-loaded tissues were treated with 0.1% (v/v) ethanol or 10 μM ABA for 15 min in the light. For NO production, 10 μM NO detection fluorescence dye, 4,5-diaminofluorescein-2 diacetate (DAF-2DA) was added to medium instead of 50 μM H₂DCF-DA. The epidermal tissues were incubated for 1 h in the light and then were washed to remove excess dye. The dye-loaded tissues were treated with 0.1% (v/v) ethanol or 10 μM ABA for 40 min in the light. Fluorescence of guard cells was imaged and analysed using AQUA COSMOS software (Hamamatsu Photonics K. K., Shizuoka, Japan).

Electrophysiology

For whole-cell patch-clamp recording of K_{\text{in}} channels, guard cell protoplasts (GCPs) were prepared from epidermal tissues with digestion solution containing 1.0% (w/v) cellulase filtrase, 0.5% (w/v) macerozyme filtrase, 0.1% (w/v) bovine serum albumin, 0.1% (w/v) kanamycin, 10 mM ascorbic acid, 0.1 mM KCl, 0.1 mM CaCl₂, and 500 mM d-mannitol (pH 5.5 with KOH) as described previously (Pei et al., 1997). Whole-cell currents were recorded using a CEZ-2200 whole-cell patch clamp amplifier (Nihon Kohden, Tokyo, Japan). The resulting values were corrected for liquid junction potential, and leak currents were not subtracted. For data analysis, pCLAMP 8.1 software (Molecular Devices, Sunnyvale, CA, USA) was used. For K_{\text{in}} current measurement, the pipette solution containing 150 mM K-Glu, 10 mM KCl, 2 mM MgCl₂, 2 mM EGTA, 5 mM ATP, and 10 mM HEPES-KOH (pH 7.8) and the bathing solution containing 50 mM KCl, 10 mM CaCl₂, and 5 mM MES-KOH (pH 5.6) were used. Osmolality was adjusted to 560 mosmol kg^{-1} (pipette solution) and 530 mosmol kg^{-1} (bathing solution) with d-sorbitol.

In-gel protein kinase assay

The in-gel kinase assay was performed as described previously by Mori and Muto (1997) with slight modifications. Proteins were isolated from 4×10⁶ GCPs and dissolved in Laemmli’s sample buffer containing phosphatase inhibitor cocktail 2 (Sigma-Aldrich, St Louis, MO, USA). The artificial substrate protein (myelin basic protein, MBP) for protein kinase was mixed with SDS-PAGE gel (10% polyacrylamide) before polymerization. After fractionation of proteins by SDS-PAGE, SDS in gels was removed by washing with 20% (v/v) isopropanol in 20 mM TRIS-HCl (pH 8.0). Fractionated proteins in gels were denatured completely by the treatment with 6 M guanidine-HCl and then renatured by washing the gels with 20 mM TRIS-HCl (pH 8.0) containing 1 mM 2-mercaptoethanol and 0.03% (w/v) Tween 20. The gels were equilibrated with 25 ml of the reaction mixture containing 20 mM TRIS-HCl, pH 7.5, 5 mM MgCl₂, 4 mM 2-mercaptoethanol, and 1 mM EGTA and incubated in 10 ml of the reaction mixture supplemented with 25 μM [γ-³P]ATP (740 kBq) and 37.5 μM ATP. Phosphorylation was carried out overnight at 30 °C and terminated by removing the reaction mixture and adding 30 ml of 5% (w/v) TCA-PPI. Unreacted ³P was removed by successive washing with TCA-PPI. The washed gels were dried on filter paper and the radioactivity of the gels was detected with X-ray film.

Immunoblot analysis

Protein samples were fractionated by 10% SDS-PAGE and transferred to PVDF membranes (Millipore, Billerica, MA, USA) with blotting buffer containing 25 mM TRIS, 192 mM glycine, and 20% (v/v) methanol. After blocking with 5% (w/v) skim milk in TBS-T buffer.
(10 mM TRIS-HCl, pH 7.4, 0.1 M NaCl, and 0.1% (v/v) Tween 20), membranes were incubated with the anti-AAPK antibody at a dilution of 1:100 (v/v) for 1 h at room temperature. The membrane was washed with TBS-T four times, and then the membrane was incubated with horseradish peroxidase-conjugated anti-rabbit IgG antibody (Santa Cruz Biotechnology, Santa Cruz, CA, USA) at a dilution of 1:2000 (v/v) for 1 h at room temperature. After washing as described above, AAPK proteins were visualized using Chemi-Lumi One (Nacalai tesque, Kyoto, Japan) and AAPK activities were evaluated using LAS3000 (FUJIFILM, Tokyo, Japan).

Statistical analysis
Significance of differences between data sets was assessed by Student’s t test analysis in all parts of this article. Differences at the level of $P < 0.05$ were regarded as significant.

Results

ABA- and MeJA-induced stomatal closure in fia mutants

Abscisic acid and MeJA induce stomatal closure with their signalling cross-talk (Suhita et al., 2004). ABA- and MeJA-induced stomatal closure was investigated in the fia mutant. Application of 1 and 10 μM ABA induced stomatal closure in the wild type but did not in the fia mutant (Fig. 1A), which is consistent with our previous result (Iwai et al., 2003). Application of MeJA induced stomatal closure in the wild type and the fia mutant (Fig. 1B). These results indicate that FIA functions in early ABA signalling in guard cells of fava bean but not in MeJA signalling. Therefore, responses to ABA were analysed in the fia mutant in the following experiments.

ROS production and ROS-induced stomatal closure in fia mutant

ABA induces ROS production and H$_2$O$_2$ elicits [Ca$^{2+}$]$_{cyt}$ elevation/oscillation, resulting in stomatal closure (Pei et al., 2000; Murata et al., 2001; Zhang et al., 2001). ROS production was measured in guard cells of the fia mutant using H$_2$DCF-DA and H$_2$O$_2$-induced stomatal closure in the fia mutant was examined.

Application of 10 μM ABA elicited ROS production in guard cells of the wild type but ABA failed to elicit ROS production in guard cells of the fia mutant (Fig. 2A). Moreover, exogenous H$_2$O$_2$ induced stomatal closure in the wild type and the fia mutant (Fig. 2B). These results suggest that FIA functions upstream of ROS production in ABA signalling and that signal components downstream of ROS production are intact in the fia mutants.

NO production and NO-induced stomatal closure in fia mutants

ABA induces NO production to induce stomatal closure and exogenous NO induces stomatal closure (Neill et al., 2002; Desikan et al., 2002; Bright et al., 2006). NO production in guard cells of the fia mutant was measured using DAF-2DA and NO-induced stomatal closure in the fia mutant was investigated.

Potassium channel currents in fia mutants

Abscisic acid suppresses plasma membrane K_{in} channel activity in guard cells, which is favourable to ABA-induced stomatal closure (Schroeder and Hagiwara, 1989). A whole-cell
The patch-clamp technique was used to measure K_{in} channel currents of ABA-treated GCPs. Treatment with ABA reduced the steady-state K_{in} currents in the wild-type GCPs (Fig. 3A, C) but not in the fia mutant GCPs (Fig. 3B, D). The steady-state outward-rectifying K^+ (K_{out}) currents were not significantly affected by ABA treatment in either the wild-type GCPs (Fig. 3A, C) or the fia mutant GCPs (Fig. 3B, D). These results suggest that FIA is involved in suppression of K_{in} channel currents by ABA.

Activation of AAPK in fia mutants

It has been found that AAPK is an ABA-responsible protein kinase (Li and Assmann, 1996; Mori and Muto, 1997). To confirm that FIA functions in earlier ABA signalling of guard cells, activation of AAPK in guard cells of the wild type and the fia mutant in response to ABA was examined using an in-gel protein kinase assay. Treatment with 10 μM ABA for 5 min activated a 48-kDa protein kinase in guard cells of the wild type (Fig. 4A, upper panel), where the 48-kDa protein was confirmed as AAPK by immunoblot analysis using anti-AAPK antiserum raised against AAPK of fava bean (Fig. 4A, lower panel), in agreement with our previous result (Mori and Muto, 1997). As previously reported (Mori and Muto, 1997), the activities of two other kinases (46 kDa and 49 kDa) were also detected but these activations were constitutive and independent of ABA and these bands did not react with the anti-AAPK antibody (Fig. 4A, lower panel). In the fia mutant, ABA did not activate AAPK (Fig. 4A, upper panel) or affect expression of AAPK proteins in guard cells.
Treatment with ABA did not affect the activities of the other two kinases in the wild type and the
\textit{fia} mutant (Fig. 4A, upper panel). These results indicate that the \textit{fia} mutation impairs AAPK activation in response to ABA.

To analyse the amino acid sequence of AAPK in the \textit{fia} mutant, AAPK cDNA was isolated from the \textit{fia} mutant and the DNA sequence was determined. Comparison of the amino acid sequences between the \textit{fia} mutant and the wild type indicated that Ser is substituted with Phe at amino acid residue 96 (Fig. 4B). However, an ATP-binding site and an activation loop of AAPK, which are important for AAPK kinase activity, were fully conserved in the \textit{fia} mutant (Fig. 4B).

Discussion

In this study, the aim was to elucidate the function of FIA in ABA signal transduction leading to stomatal closure in \textit{Vicia faba}. The \textit{fia} mutation impaired ABA-induced stomatal closure but not MeJA-induced stomatal closure (Fig. 1), indicating that FIA acts as a signal component of guard cell ABA signalling and that FIA functions upstream of the branching point of the MeJA and ABA signal pathways.

ABA did not induce ROS production in the guard cells of the \textit{fia} mutant in contrast to the wild type (Fig. 2A). Exogenous H$_2$O$_2$ induced stomatal closure in both the \textit{fia} mutant and the wild type (Fig. 2B), suggesting that FIA functions upstream of ROS production and that downstream of ROS production in the ABA signal pathway is intact in the \textit{fia} mutant. The \textit{fia} mutation suppressed ABA-induced NO production in guard cells (Fig. 2C) and the application of an NO donor, SNAP, induced stomatal closure in the \textit{fia} mutant guard cells as well as the wild-type guard cells (Fig. 2D), suggesting that FIA functions upstream of NO production.

Production of ROS and NO is induced by variety of stimuli (Neill \textit{et al.}, 2003; Apel and Hirt, 2004). ABA induces NO production leading to stomatal closure (Desikan \textit{et al.}, 2002; García-Martí and Lamattina, 2002; Neill \textit{et al.}, 2002), although Lozano-Juste and León (2010) have recently shown that NO acts as a negative regulator of ABA signalling. Moreover, Clarke \textit{et al.} (2000) have shown that production of ROS and NO are induced in parallel and Bright \textit{et al.} (2006) have demonstrated that ABA-induced NO production in guard cells depends on ABA-induced ROS production. Therefore, the involvement of NO to ABA signalling leading to stomatal closure is still controversial.

ABA activates S-type anion channels and suppresses K$_{\text{in}}$ channels (Schroeder and Hagiwara, 1989; Schmidt \textit{et al.}, 1995). Steady-state K$_{\text{in}}$ currents in the \textit{fia} mutant GCPs were not suppressed by treatment with ABA (Fig. 3B, D)
contrast to results in the wild-type GCPs (Fig. 3A, C), indicating that FIA functions in the early stages of ABA signalling in guard cells.

The results of in-gel kinase assay showed that the fia mutation disrupted activation of AAPK by ABA (Fig. 4). Orthologues of AAPK in Arabidopsis, Snf1-related kinase 2 (SnRK2) proteins, including OST1, had been identified as positive regulators in ABA signalling (Yoshida et al., 2002; Mustilli et al., 2002). SnRK2 proteins are implicated in phosphorylation of ABA response element binding factors, which regulate transcription of ABA-responsive genes (Fujii et al., 2007). In faba bean, AAPK is autophosphorylated in the presence of ABA (Li and Assmann, 1996) and in Arabidopsis, autophosphorylation sites of OST1 are critical for OST1 functions as a protein kinase and as a signal component leading to stomatal closure (Belin et al., 2006).

AAPK conserves the SnRK2-specific domain required for kinase activity of OST1 (Mustilli et al., 2002; Belin et al., 2006). AAPK phosphorylates AAPK-interacting protein 1, which is an RNA-binding protein A/B (Li et al., 2002). AAPK also phosphorylates the recombinant peptide of the C-terminal region of KAT1 in a fava bean protoplast system (Mori et al., 2000). Recently, the related phosphorylation site of KAT1 has been identified (Sato et al., 2009). The comparison of sequences of AAPK between the fia mutant and the wild type. Ser was substituted with Phe at amino acid residue 96 in the fia mutant. Sequences were aligned by GENETIX ver. 8.0 software (GENETIX, Tokyo, Japan).

Fig. 4. ABA-activated protein kinase (AAPK) activation and amino acid sequences of AAPK. (A) Guard cell protoplasts (GCPs) from the wild-type (WT) plants and the fia (faba bean impaired in ABA-induced stomatal closure) plants were incubated with indicated concentration of abscisic acid (ABA) for 5 min. Each sample contained proteins isolated from 4x10⁴ GCPs. The protein kinase assay was performed with a substrate, MBP, as described in Materials and methods. The amount of AAPK protein in each sample was confirmed by the immunoblot analysis (lower panel). Equal amount of protein extracts from GCPs were fractionated by SDS-PAGE, and followed by immunoblot analysis using anti-AAPK antibody. (B) Alignment of the amino acid sequences of AAPK in faba bean wild type (accession no. AF186020) and in fia mutant (in this study) and OST1 in Arabidopsis (accession no. AJ316009). The AAPK sequences were highly conserved between the fia mutant and the wild type. Ser was substituted with Phe at amino acid residue 96 in the fia mutant. Sequences were aligned by GENETIX ver. 8.0 software (GENETIX, Tokyo, Japan).
conserved among SnRK2 proteins. These results suggest that FIA is not AAPK itself but a signal component that functions upstream of AAPK in ABA signalling.

Recently, PYR/PYL/RCARs have been identified as ABA receptors in Arabidopsis (Ma et al., 2009; Park et al., 2009). PYR/PYL/RCAR proteins bind to ABA and ABA-bound PYR/PYL/RCAR proteins interact with type 2C protein phosphatases (PP2Cs), including ABI1 and ABI2, resulting in suppression of their phosphatase activities. The detailed mechanism of ABA sensing via PYR/PYL/RCAR proteins has been clarified by crystal structure analysis (Melcher et al., 2009; Miyazono et al., 2009; Nishimura et al., 2009). However, FIA is unlikely to function as an ABA receptor because PYR/PYL/RCARs redundantly function in ABA sensing in Arabidopsis (Ma et al., 2009; Park et al., 2009).

Furthermore, Arabidopsis novel GPCR-type G proteins, GTG1 and GTG2, also bind to ABA, mediating ABA signalling (Pandey et al., 2009) and indicating the redundancy and diversity of ABA perception. Hence, it is not likely that the ABA insensitivity of the fia mutants is caused by disruption of ABA perception which involves PYR/PYL/RCAR proteins or GPCR-type G proteins. The detailed mechanism of signalling between the perception of ABA and AAPK activation remains to be clarified. Furuichi et al. (2005) indicated that recombinant AAPK protein was phosphorylated only with the extract from ABA-treated guard cells, suggesting the presence of a kinase functioning upstream of AAPK.

In conclusion, our results suggest that FIA functions as an early signal component upstream of AAPK activation in ABA signalling but does not function in MeJA signalling in guard cells of Vicia faba (Fig. 5). To clarify whether FIA functions as a positive regulator of AAPK after ABA perception, further investigations are required.

Acknowledgements

This research was supported in part by The Asahi Glass Foundation; NOVARTIS Foundation (Japan) for the Promotion of Science (to YM); Grant-in-Aid for Young Scientists from the Ministry of Education, Culture, Sports, Science and Technology of Japan (14704018 to YM); Grants for Scientific Research on Priority Areas from the Ministry of Education, Culture, Sports, Science and Technology of Japan (17078006 to ICM and YM).

References

Apel K, Hirt H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55, 373–399.
Belin C, de Franco PO, Bourbousse C, Chaignepain S, Schmitter JM, Vavasseur A. Giraudat J, Barbier-Brygoo H, Thomine S. 2006. Identification of features regulating OST1 kinase activity and OST1 function in guard cells. Plant Physiology 141, 1316–1327.
Bright J, Desikan R, Hancock JT, Weir IS, Neil SJ. 2006. ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. The Plant Journal 45, 113–122.
Clarke A, Desikan R, Hurst RD, Hancock JT, Neil SJ. 2000. NO way back: nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures. The Plant Journal 24, 667–677.
Desikan R, Griffiths R, Hancock J, Neil S. 2002. A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, USA 99, 16314–16318.
Evans NH. 2003. Modulation of guard cell plasma membrane potassium currents by methyl jasmonate. Plant Physiology 131, 8–11.
Fujii H, Verslues PE, Zhu JK. 2007. Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. The Plant Cell 19, 485–494.
Fujii H, Chinnusamy V, Rodrigues A, Rubio S, Antoni R, Park SY, Cutler SR, Sheen J, Rodriguez PL, Zhu JK. 2009. In vitro reconstitution of an abscisic acid signalling pathway. Nature 462, 660–664.
Furuichi T, Mori IC, Muto S. 2005. Protein kinase cascade involved in rapid ABA-signaling in guard cells of Vicia faba. Zeitschrift für Naturforschung C 60, 769–773.
negative guard cell K+ channel mutants reduce inward-rectifying K+

García-Marta C, Lamattina L. 2002. Nitric oxide and abscisic acid cross talk in guard cells. *Plant Physiology* 128, 790–792.

Hirayama T, Shinozaki K. 2007. Perception and transduction of abscisic acid signals: keys to the function of the versatile plant hormone ABA. *Trends in Plant Science* 12, 343–351.

Hossain MA, Munemasa S, Misugi U, Nakamura Y, Mori IC, Murata Y. 2011. Involvement of endogenous abscisic acid in methyl jasmonate-induced stomatal closure in *Arabidopsis*. *Plant Physiology* 156, 430–438.

Islam MM, Hossain MA, Jannat R, Munemasa S, Nakamura Y, Mori IC, Murata Y. 2010a. Cytosolic alkalization and cytosolic calcium oscillation in *Arabidopsis* guard cells response to ABA and MeJA. *Plant and Cell Physiology* 51, 1721–1730.

Islam MM, Munemasa S, Hossain MA, Nakamura Y, Mori IC, Murata Y. 2010b. Roles of AtTPC1, a vacuolar two pore channel 1, in *Arabidopsis* stomatal closure. *Plant and Cell Physiology* 51, 302–311.

Iwai S, Shimomura N, Nakashima A, Etoh T. 2003. New fava bean guard cell signaling mutant impaired in ABA-induced stomatal closure. *Plant and Cell Physiology* 44, 909–913.

Kim TH, Bohmer M, Hu H, Nishimura N, Schroeder JI. 2010. Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. *Annual Review of Plant Biology* 61, 561–591.

Kwak JM, Murata Y, Baizabal-Aguirre VM, Merrill J, Wang M, Kemper A, Hawke SD, Tallman G, Schroeder JI. 2001. Dominant negative guard cell K+ channel mutants reduce inward-rectifying K+ currents and light-induced stomatal opening in *Arabidopsis*. *Plant Physiology* 127, 473–485.

Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JDG, Schroeder JI. 2003. NADPH oxidase AtBohD and AtBohF genes function in ROS-dependent ABA signaling in *Arabidopsis*. *The EMBO Journal* 22, 2623–2633.

Li J, Assmann SM. 1996. An abscisic acid-activated and calcium-independent protein kinase from guard cells of fava bean. *The Plant Cell* 8, 2359–2368.

Li J, Kinoshita T, Pandey S, Ng CKY, Gygi SP, Shimazaki K, Assmann SM. 2002. Modulation of an RNA-binding protein by abscisic-acid-activated protein kinase. *Nature* 418, 793–797.

Liechti R, Farmer EE. 2002. The jasmonate pathway. *Science* 296, 1649–1650.

Lozano-Juste J, León J. 2010. Enhanced abscisic acid-mediated responses in *nia1nia2noa1–2* triple mutant impaired in NIA/NR- and AtNOA1-dependent nitric oxide biosynthesis in *Arabidopsis*. *Plant Physiology* 152, 891–903.

Ma Y, Sztostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E. 2009. Regulators of PPK2C phosphatase activity function as abscisic acid sensors. *Science* 324, 1064–1068.

Melcher K, Ng LM, Zhou XE, et al. 2009. A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors. *Nature* 462, 602–608.

Miyazono K, Miyakawa T, Sawano Y, et al. 2009. Structural basis of abscisic acid signalling. *Nature* 462, 609–614.

Mori IC, Muto S. 1997. Abscisic acid activates a 48-kilodalton protein kinase in guard cell protoplasts. *Plant Physiology* 113, 833–839.

Mori IC, Uozumi N, Muto S. 2000. Phosphorylation of the inward-rectifying potassium channel KAT1 by ABR kinase in *Vicia* guard cells. *Plant and Cell Physiology* 41, 850–856.

Munemasa S, Oda K, Watanabe-Sugimoto M, Nakamura Y, Shimoishi Y, Murata Y. 2007. The coronatine-insensitive1 mutation reveals the hormonal signalling interaction between abscisic acid and methyl jasmonate in *Arabidopsis* guard cells. Specific impairment of ion channel activation and second messenger production. *Plant Physiology* 143, 1398–1407.

Murata Y, Pei ZM, Mori IC, Schroeder JI. 2001. Abscisic acid activation of plasma membrane Ca2+ channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1–1 and abi2–1 protein phosphatase 2C mutants. *The Plant Cell* 13, 2513–2523.

Mustilli AC, Merlot S, Vavasseur A, Fenzi F, Giraudat J. 2002. *Arabidopsis* OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. *The Plant Cell* 14, 3089–3099.

Neill SJ, Desikan R, Clarke A, Hancock JT. 2002. Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. *Plant Physiology* 128, 13–16.

Neill SJ, Desikan R, Hancock JT. 2003. Nitric oxide signalling in plants. *New Phytologist* 159, 11–35.

Nishimura N, Hitomi K, Arval AS, Rambo RP, Hitomi C, Cutler SR, Schroeder JI, Getzoff ED. 2009. Structural mechanism of abscisic acid binding and signaling by dimeric PYR1. *Science* 326, 1373–1379.

Pandey S, Nelson DC, Assmann SM. 2009. Two novel GPCR-type G-proteins are abscisic acid receptors in *Arabidopsis*. *Cell* 136, 136–148.

Park SY, Fung P, Nishimura N, et al. 2009. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. *Science* 324, 1068–1071.

Pei ZM, Kuchitsu K, Ward JM, Schwarz M, Schroeder JI. 1997. Differential abscisic acid regulation of guard cell slow anion channels in *Arabidopsis* wild-type and abi1 and abi2 mutants. *The Plant Cell* 9, 409–423.

Pei ZM, Murata Y, Benning G, Thomine S, Klütsener B, Allen DJ, Grill E, Schroeder JI. 2000. Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells. *Nature* 406, 731–734.

Saito N, Munemasa S, Nakamura Y, Shimoishi Y, Mori IC, Murata Y. 2008. Roles of RCN1, regulatory A subunit of protein phosphatase 2A, in methyl jasmonate signaling and signal crosstalk between methyl jasmonate and abscisic acid. *Plant and Cell Physiology* 49, 1396–1401.

Sato A, Sato Y, Fukao Y, et al. 2009. Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase. *Biochemical Journal* 424, 439–448.

Schmidt C, Schelle I, Liao YJ, Schroeder JI. 1995. Strong regulation of slow anion channels and abscisic acid signaling in guard cells by phosphorylation and dephosphorylation events. *Proceedings of the National Academy of Sciences, USA* 92, 9535–9539.
Schroeder JI, Hagiwara S. 1989. Cytosolic calcium regulates ion channels in the plasma membrane of Vicia faba guard cells. Nature 338, 427–430.

Schwartz A, Wu W, Tucker EB, Assmann SM. 1994. Inhibition of inward K+ channels and stomatal response by abscisic acid: an intracellular locus of phytohormone action. Proceedings of the National Academy of Sciences, USA 91, 4019–4023.

Shimazaki K, Doi M, Assmann SM, Kinoshita T. 2007. Light regulation of stomatal movement. Annual Review of Plant Biology 58, 219–247.

Sirichandra C, Wasilewska A, Vlad F, Valon C, Leung J. 2009. The guard cell as a single-cell model towards understanding drought tolerance and abscisic acid action. Journal of Experimental Botany 60, 1439–1463.

Suhita D, Raghavendra AS, Kwak JM, Vavasseur A. 2004. Cytoplasmic alkalization precedes reactive oxygen species production during methyl jasmonate- and abscisic acid-induced stomatal closure. Plant Physiology 134, 1536–1545.

Turner JG, Ellis C, Devoto A. 2002. The jasmonate signal pathway. The Plant Cell 14, S153–S164.

Vahisalu T, Kollist H, Wang Y, et al. 2008. SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. Nature 452, 487–491.

Yoshida R, Hobo T, Ichimura K, Mizoguchi T, Takahashi F, Aronso J, Ecker JR, Shinozaki K. 2002. ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis. Plant and Cell Physiology 43, 1473–1483.

Zhang X, Zhang L, Dong F, Gao J, Galbraith DW, Song CP. 2001. Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiology 126, 1438–1448.