Spiders (Araneae) of olive groves and adjacent semi-natural habitats from central Italy

Malayka Samantha Picchi

Abstract. In the Monte Pisano area (Tuscany, central Italy), spiders were collected within two research projects during three years (2010, 2013, 2014). Olive groves and adjacent semi-natural habitats (wood and Mediterranean garrigue) were investigated with three sampling methods (pitfall trapping, beating at branches and hand collection in the canopy). A total of 148 species was identified. The ground spider (Gnaphosidae) Zelotes fulvaster (Simon, 1878) was recorded for the first time in Italy.

Keywords: canepigeon, Mediterranean garrigue, Monte Pisano, wood, Zelotes fulvaster

Material and methods

The research projects were carried out in the years 2010, 2013 and 2014 in the mountain formation of Monte Pisano (about 16000 ha; Bertacchi et al. 2004), between the cities of Pisa and Lucca in the north-west of Tuscany (Italy, highest peak 916 m a.s.l.; Figg. 1), and used different sampling techniques in olive groves and adjacent semi-natural habitats. This area is well suited for olive oil production, in which orchards are traditionally managed with low input practices and where they can be arranged in rain-fed terraces. The climate is typically Mediterranean, with a mean annual temperature of 14.3°C with a dry and hot summer (Niccolai & Marchi 2005, Peel et al. 2007) and average annual precipitation of 1107 mm. Olive groves are placed in hilly landscapes, interspersed in patches of woods and Mediterranean garrigue.

Woods surrounding the olive groves were mainly formed from pine trees (Pinus pinaster Aiton), chestnuts (Castanea sativa Mill.) and oak species (mainly Quercus ilex L. and Q. pubescens Willd.), with associated understory vegetation, whereas Mediterranean garrigue was constituted mainly by shrubs and herbs typical of xerothermic habitats (Polunin & Walters 1985).

In 2010, six sites were sampled. Only ground-dwelling spiders in the olive groves were collected. At each of the six sites, eight pitfall traps with ethylene glycol were set in a transect. Traps were collected three times during summer, from 13 May to 15 Jul., and emptied every three weeks.

The case studies of 2013 and 2014 were part of the QuESA pan-European project (Holland et al. 2014). In addition, the adjacent semi-natural woods or shrublands were studied in their interior (in 2013) and at their edges with the olive groves (2013 and 2014).

In 2013, twelve olive groves bordering woody areas were studied (including some samplings in Mediterranean garrigue patches whose results are included here) and eighteen in 2014 next to patches of woods, shrublands or another olive orchard.

Spiders are widespread predators found in every terrestrial habitat, from the coast to the tops of mountains (Nyffeler & Birkhofer 2017). Italy, a country with a mosaic of landscapes, is extremely rich in spider species within the European Union (Nentwig et al. 2019). Italy also has a high rate of endemicity due to climatic, topographic and geological differences (European Environment Agency 2018). The latest version of the Italian spider checklist documents 1674 species (Pantini & Isaia 2019). The number of recently described new species shows that the knowledge of Italian spiders is still incomplete, especially in the central and southern part of the peninsula (Pantini pers. comm., May 2018). In order to facilitate conservation policies, research on Italian spiders should be encouraged (Franc 2000, Milano et al. 2017) – knowledge advancing through revisions, new descriptions and considering new national records or, at a closer scale, regional records.

In addition, spiders are still understated regarding their role in ecosystems, utility as indicators or potential role in reducing herbivores (Lang 2003, Symondson et al. 1998) like pests against the olive fruit fly Bactrocera oleae (Rossi, 1790) (Picchi et al. 2016, 2020).
Among the sites examined in 2014, five sampling sites were the same as in the previous year and one organic field was the same as in 2010.

In 2013, olive groves and adjacent semi-natural habitats were both sampled using pitfall traps with ethylene glycol for four days in three sampling periods in summer starting on 28. Jun., 20. Jul. and 20. Sep., all according to the protocol of the QuESSA project. Pitfall traps were placed pairwise, in two transects in each habitat, one transect was placed at the centre of the habitat, the other one at the edge.

In 2014, spiders were sampled four times from the canopy of olive trees starting from the edge towards the interior part at four distances, using two techniques: hand collecting of spiders, searching for 8 minutes in the branches and leaves, and a beating technique, both up to 1.5–2.0 m high. For each sampling point, four branches, one in each cardinal direction were beaten ten times and spiders were collected. Four samplings were done from summer to autumn (23. Jun., 22. Jul., 15. Sept. and 15. Oct.) in the daytime, following the life cycle phases of the olive fruit fly (Picchi et al. 2016). In addition, one more sampling point with the same approach as in Picchi et al. (2016) was selected at the margin of the olive groves, inside the adjacent semi-natural habitats (Picchi et al. 2020).

Spiders were mostly identified by the author; part of the spiders sampled in 2010 were identified by Marco Isaia while spiders of uncertain identity collected during the QuESSA project of 2013 were identified by Paolo Pantini. Spiders were identified using Italian and European keys (Roberts 1987, Trotta 2005), the online keys of Nentwig et al. (2019), and comparison with genital images by Oger (2019). Names follow current nomenclature in the World Spider Catalog (2020). Juveniles were assigned to a species only when they had clear characteristics or when an extremely high percentage of the adults of the respective genus were of only one species (Larivée & Buddle 2009). Individuals of the same species were pooled according to their habitat preference. Whenever possible, other individuals were identified to family level, but have not been considered in the lists proposed here. In addition, the lists indicate the microhabitat preference of the spiders if collected on the ground or in the canopy. Moreover, the chorotype (Tab. 2) was assigned to each species (Pantini & Isaia 2018).

Spiders are preserved in 70% alcohol and were deposited in the Department of Life Sciences and Systems Biology of the University of Turin, at the Natural Science Museum “E. Caffi” of Bergamo, and the Biolabs-Institute of Life Science of Sant’Anna School of Advanced Studies (Pisa). The new species record for Italy, Zelotes fulvaster (Simon, 1878), was identified by Paolo Pantini from the Natural Science Museum “E. Caffi” of Bergamo, where specimens of one female and one male are now stored.

Tab. 1: List of the sites sampled with coordinates and altitude (m a.s.l.). The table contains detailed information for each site: the microhabitat sampled (Ground: species collected by pitfall traps; canopy: species collected by hand or beating technique, the year of sampling (2010, 2013 and 2014) and the type of habitat (OL = olive groves; WA = woods; GA = Mediterranean garrigue)

Number	Latitude	Longitude	Altitude (m a.s.l.)	Sampling/Year/Microhabitat
1	43.80092	10.47663	95	Canopy 2014 OL + GA
2	43.78670	10.45860	151	Canopy 2014 OL + GA
3	43.78335	10.39824	36	Canopy 2014 OL + GA
4	43.78264	10.42667	42	Canopy 2014 OL
5	43.76854	10.44690	109	Canopy 2014 OL + GA
6	43.78422	10.57183	181	Canopy 2014 OL
7	43.70452	10.56907	216	Canopy 2014 OL
8	43.69435	10.54685	122	Canopy 2014 OL + GA
9	43.70472	10.51089	56	Canopy 2014 OL + GA
10	43.76580	10.58849	184	Canopy 2014 OL + WA
11	43.79551	10.40088	90	Ground 2013 OL + GA
12	43.79529	10.52366	229	Ground 2013 OL + WA
13	43.81936	10.47199	147	Ground 2013 OL + WA
14	43.74186	10.47574	65	Ground 2013 OL + WA
15	43.81076	10.42178	155	Ground 2013 OL + WA
16	43.79269	10.48643	88	Ground 2013 OL + WA
17	43.74667	10.51883	267	Ground 2013 OL + WA
18	43.70702	10.58295	74	Ground 2013 OL + WA
19	43.72923	10.49694	117	Ground 2013 OL + WA
20	43.69396	10.54387	74	Ground 2013 OL + GA
21	43.78663	10.43274	238	Ground 2013 OL + WA
22	43.78621	10.56945	236	Ground 2013 OL + WA
23	43.71982	10.53319	111	Ground 2010 OL; Canopy 2014 OL
24	43.69019	10.54933	34	Ground 2010 OL
25	43.74228	10.51958	216	Ground 2010 OL
26	43.70192	10.57565	56	Ground 2010 OL
27	43.72694	10.50762	62	Ground 2010 OL
28	43.73032	10.58426	187	Ground 2010 OL
29	43.73020	10.59661	89	Canopy 2014 OL
30	43.73144	10.57111	230	Canopy 2014 OL + WA
Results
A total of 30 sites (Tab. 1, Fig. 1; QGIS Development Team 2019) was sampled during the three years of research in the Monte Pisano area, from which 6083 spiders were collected, 3623 identified to species level, including all adults. The specimens belong to 148 species in 27 families (Tab. 2): spiders from the Monte Pisano thus represent about 9% of the Italian araneofauna, and include seven Italian endemics. There were 129 species (3228 individuals, 76 species sampled at the ground and 60 from the canopy; Tab. 3) found inside the olive groves, including the new report of Zelotes fulvaster.

In the woods, 71 species were collected (257 individuals, 41 species from the ground and 32 from the canopy; Tab. 4) and 29 species in the Mediterranean garrigue (138 individuals, 14 from the canopy and 15 from the ground; Tab. 5). The spider assemblages of these olive landscapes consist mainly of Linyphiidae, contributing 50.7% of the total species number. Indeed, Linyphiidae is the most abundant family in canopies in all habitats and among the linyphiids found, Frontinellina frutetorum was the dominant species. It comprised 84.9% of the specimens belonging to this family. Tabs 3, 4 and 5 show that considering only the most numerous families in olive groves, woods and garrigue, Araneidae were collected only in canopies, while Gnaphosidae, Lycosidae and Zodariidae were collected exclusively on the ground.

Considering species richness, the highest number of species in olive groves belonged to Theridiidae and Gnaphosidae with 18 species, in woods to Araneidae (13 species), and in the Mediterranean garrigue Salticidae and Araneidae (5 species). However, the highest number of specimens was observed for Scytodes thoracica on the ground of the woods and Olios argelatius in the Mediterranean garrigue.

In addition to these results, three more families were sampled with 14 species identified to genus level, but these are not included in the tables. Species belonged to 26 chorotypes (Tab. 2), the most represented being the Palearctic type (21%, 31 species). Furthermore, Mediterranean species constituted 15.5% (23 species). Eight species have a European chorotype (5.4%) and one species, Erigone autumnalis, is an introduced species from North and Central America (Pesarini 1996).

Seven species (4.7%) are endemic to central Italy, namely Pimoa rupicola (1 male; ALWA: West Alpine-Apenninic), Eratigena vomeroi (1 female and 1 male; APPS: South Apenninic), Dysdera cf. andreinii (1 female APPE: Apenninic) and Cybaeodes marinae (1 female and 1 male: APPE: Apenninic), Gonatium biimpressum and Zodarion vicinum (15 females and 3 males and 26 females and 19 males; TYRR: Tyrrhenian) and Ozyptila salustri Wunderlich, 2011 (3 males; APPC: Central Apenninic) (acronyms see caption Tab. 2).

Tab. 2: List of spider species (alphabetical order) collected in the case studies of 2010, 2013 and 2014 in olive groves and adjacent semi-natural habitats. For each species, the number of specimens and chorotype are reported (AIM = Afrotropico-Indo-Mediterranean; AFM = Afrotropico-Mediterranean; ALWA = West Alpine-Apenninic; APPC = Central Apenninic; APPE = Apenninic; APPS = South Apenninic; ASE = Asiatic-European; CAE = Centralasiatic-European; CAM = Centralasiatic-Mediterranean; COS = Cosmopolite; EUM = Europeo-Mediterranean; EUR = European; MED = Mediterraneo; OLA = Holartic; PAL = Palaearctic; SIE = Sibero-European; SEU = South European; TEM = Turano-Europeo-Mediterraneo; TUE = Turano-European; TUM = Turano-Mediterraneo; TYRR = Tyrrhenian; WME = W-Mediterraneo; WEU = W-European; INT = Introduced; chorotype according to Stoch & Vigna Taglianti 2006)

Species	A	B
Agelenidae		
Agelena labyrinthica (Clerck, 1757)	1	PAL
Eratigena faussini (Pavesi, 1873)	5	EUR
Eratigena vomeroi (Brignoli, 1977)	2	APPS
Species	A	B
--	---	---
Agyneta hasei Chyzer, 1897		SEU
Aculepeira armida (Audouin, 1826)		ASE
Agelenatae redit (Scopoli, 1763)		PAL
Araneus angulatus Clerck, 1757	15	OLA
Araneus diadematus Clerck, 1757	46	OLA
Araneus marmoratus Clerck, 1757		OLA
Araneus sturni (Hahn, 1831)		PAL
Araniella cucurbetina (Clerck, 1757)		PAL
Argiope bruennichi (Scopoli, 1772)		PAL
Cyclosa cl. oculata (Walckenaer, 1802)		PAL
Cyclosa conica (Pallas, 1772)		OLA
Cyrtarachne ioxides (Simon, 1870)		OLA
Cyrtophora citricola (Forsskal, 1775)		AIM
Cibharanae bistuberculata (Walckenaer, 1802)		PAL
Hypoplinga sanguinea (C. L. Koch, 1844)		PAL
Mangora acalypha (Walckenaer, 1802)		PAL
Neoscona adianta (Walckenaer, 1802)		PAL
Zilla diozia (Walckenaer, 1802)		PAL
Zygia x-notata (Clerck, 1757)		PAL
Clubiona confusa Blackwall, 1841		PAL
Dictyna cl. munda (O. Pickard-Cambridge, 1861)		EUR
Brigitta clavata (Lucas, 1850)		EUR
Dictyna cl. munda (Linnaeus, 1758)		EUR
Dysderidae		EUR
Dysdera cl. andreinii Caporiacco, 1928		APPE
Dysdera euryst骑ma (Walckenaer, 1802)		EUR
Harpactea arguta (Simon, 1907)		EUR
Filitistidae		EUR
Filitista insidiosa (Forsskal, 1775)		EUR
Gnaphosidae		EUR
Aphantopanae cl. croatica (L. Koch, 1866)		EUR
Civizelotes dentatidens (Simon, 1914)		EUR
Drassodes lopidaus (Walckenaer, 1802)		EUR
Gnaphosa alaris Simon, 1878		EUR
Gnaphosa lucifuga (Walckenaer, 1802)		EUR
Haplopodes dalmatisensis (L. Koch, 1866)		EUR
Haplopodes maccalinus (Thorell, 1871)		EUR
Leptodrassus femineus Simon, 1873		EUR
Marinorhelotes barbatus (L. Koch, 1866)		EUR
Micaria albivittata Lucas, 1846		EUR
Micaria coarctata Lucas, 1846		EUR
Nomisia exornata (C. L. Koch, 1839)		EUR
Scatiphis carperti (O. Pickard-Cambridge, 1872)		EUR
Trachyzelotes pedestrin (C. L. Koch, 1837)		EUR
Zelotes aeneus Simon, 1878		EUR
Zelotes fulvaster Simon, 1878		EUR
Zelotes hermani Chyzer, 1897		EUR
Zelotes oblongus (C. L. Koch, 1833)		EUR
Zelotes parocalus Simon, 1914		EUR
Zelotes tenuis (L. Koch, 1866)		EUR
Species	A	B
---	---	---
Heliophanus kochii Simon, 1868	3	EUM
Heliophanus tribulus Simon, 1868	21	SIE
Icius hamatus (C. L. Koch, 1846)	12	MED
Leptorechtes herodtenis (C. L. Koch, 1846)	2	EUM
Mauroeris nidicolens (Walckenaer, 1802)	10	SEU
Pellenes genericus Simon, 1868	4	CAM
Philaeus chrysops (Poda, 1761)	1	PAL
Philergia brevicolli Lucas, (1846)	5	AFM
Pseudicius encarpatus Walckenaer, 1802	1	EUR
Saltas bistipes Simon, (1868)	1	MED
Saltas mutabilis Lucas, 1846	5	TUE
Saltas tricolor (C. L. Koch, 1837)	4	PAL
Scytodidae		
Scytodes thoracica Latreille, 1802	194	OLA
Sparassidae		
Olios argelasius Walckenaer, 1806	18	MED
Tetragnathidae		
Metellina segmentata Clerck, 1757	6	OLA
Pachygnatha degeeri Sundevall, 1830	2	PAL
Theridiidae		
Argyrodes argyrodes Walckenaer, 1841	35	MED
Abania atima Knoflach, 1996	11	PAL
Crustularia gutta Wider, (1834)	7	SIE
Epineus angustatus (Blackwall, 1836)	1	MED
Euryopes episina (Walckenaer, 1847)	6	TEM
Euryopes laeta Westring, (1861)	9	PAL
Heterotheridion nigrovariegatum Simon, 1873	10	TUM
Kochiura aulica (C. L. Koch, 1838)	57	SEU
Lasaeola convexa Blackwall, (1870)	5	PAL
Parasteatoda lunata Clerck, 1757	3	COS
Phorididae		
Phorididae		
Platnickina tintac Walckenaer, 1802	14	MED
Robberphora nica (Simon, 1873)	7	MED
Robertus mediterraneus Eskov, 1987	1	WME
Spartoctonella (Walckenaer, 1806)	1	OA
Theridion pinastri L. Koch, 1872	2	PAL
Theridion varians Hahn, 1833	1	OLA
Thomisidae		
Bassaniodes bufo Dufour, 1820	5	MED
Bassaniodes robustus (Hahn, 1832)	2	CAE
Missanae varia Clerck, 1757	1	OLA
Ozyptila conspersa (C. L. Koch, 1841)	9	SEU
Ozyptila pullata Thorell, (1875)	1	EUR
Ozyptila salusuri Wunderlich, 2011	3	APPC
Ozyptila sanctaria O. Pickard-Cambridge, 1871	1	EUR
Runcinia gramatica (C. L. Koch, 1837)	23	SCO
Syneira globosa Fabrícius, 1775	28	PAL
Thomisus benus Walckenaer, 1805	1	PAL
Xysticus kochi Thorell, 1872	6	SIE
Titanocidae		
Nursia albomaculata Lucas, (1846)	3	TUE
Uloboridae		
Hyptiotes paradoxus (C. L. Koch, 1834)	1	PAL

Tab. 3: List of spider species (alphabetical order) collected in the case studies of 2010, 2013 and 2014 in olive groves (OL). For each species the number of specimens per microhabitat type is reported (Ground: species collected by pitfall traps; canopy: species collected by hand or beating) and the total number of specimens

A = OL_Ground; B = OL_Canopy; C = Total OL

Species	A	B	
Agelenidae			
Agelenetae redii	0	3	
Araneus angulatus	0	13	
Araneus diadematus	0	37	
Araneus marmoreus	0	2	
Araneus sturmi	0	1	
Cyclosa cf. oculata	0	1	
Cyclosa conica	0	3	
Cyrtarachne ixoides	0	6	
Cytotophora citrata	0	16	
Mangora acalypha	0	25	
Nesiosa adianta	0	2	
Zilla diadema	0	1	
Zygella x-notata	0	77	
Clubionidae			
Clubiona brevipes	0	1	
Dictynidae			
Argenna subnigra	1	0	
Dictyna arundinacea	0	1	
Dysderidae			
Dysdera cf. andreinii	1	0	
Dysdera crocata	27	0	
Dysdera erythrina	1	0	
Harpactea arguta	27	0	
Filotatidae			
Filotata insidiatrix	1	0	
Gnaphosidae			
Aphantaulax cincta	4	0	
Civiseolutes dentatidens	2	0	
Drosis aephasa	1	0	
Gnaphosa alavaria	6	0	
Gnaphosa lucifuga	11	0	
Haplodrassus dalmatensis	27	0	
Haplodrassus macellinus	1	0	
Leptodrassus femoralis	1	0	
Marinarozelotes bartholus	28	0	
Micaria alhovittata	3	0	
Species	A	B	C
--------------------------	----	----	----
Micaria coarctata	1	0	1
Nomisia exornata	45	0	45
Setaphis carmieli	16	0	16
Zeoltes fulvaster	2	0	2
Zeoltes harnani	9	0	9
Zeoltes oblongus	14	0	14
Zeoltes paroculus	7	0	7
Zeoltes tenuis	46	0	46
Linnyphiidae			
Agyneta rarestris	4	3	7
Crematoneeta mutinensis	0	1	1
Diploleonius gracius	5	0	5
Erigone automalis	5	2	7
Erigone dentitpalpis	2	0	2
Frontinellina frutetorum	0	1496	1496
Gonatium biimpressum	0	2	2
Linyphia triangularis	0	10	10
Palliduphantes cf. pallidus	0	1	1
Palliduphantes istrianus	150	0	150
Styloteter romanus	1	0	1
Tenuiphantes herbicola	20	2	22
Trichoncus affinis	2	1	3
Trichoncus haekmani	0	1	1
Trichoncus sordidus	8	0	8
Walkenaeria antica	1	0	1
Lycosidae			
Agraecina lineata	3	0	3
Agroeca proxima	2	0	2
Cybaecidae marinae	1	0	1
Lycosidae			
Alopecosa albofasciata	364	0	364
Arctosa personata	13	0	13
Hogna radiata	26	0	26
Trochosa ruicola	76	0	76
Miturgidae			
Zora silvestris	1	0	1
Oonopidae			
Silhouettella loricatula	3	0	3
Oxypodidae			
Ozyopes lineatus	0	6	6
Phidodromidae			
Phidodromus cf. rufus	0	1	1
Phidodromus lividus	0	5	5
Phidodromus longipalpis	0	3	3
Pulchellodromus bistigma	1	0	1
Thanatus atratus	1	0	1
Phurulithidae			
Liocephrillus flavicollis	11	0	11
Phurulithus festivus	3	0	3
Salticidae			
Chalcocisitrus insignus	2	0	2
Euphrosyntis frontalis	7	0	7
Euphrosyntis herbigrada	43	0	43
Evarcha jucunda	0	2	2
Heliophasus cupreas	1	0	1
Heliophasus kochii	3	0	3

Species	A	B	C
Heliophanus tribulosus	0	14	14
Ilius hamatus	0	12	12
Leptorhous berolinensis	1	1	2
Macarorhis ridiculens	0	10	10
Philaeus chrysoeps	0	1	1
Phtegra brenieri	5	0	5
Pseudicius encarpatus	0	1	1
Salticus mandibularis	0	1	1
Salticus mutabilis	0	5	5
Salticus zebraneus	0	4	4
Sicyotidae			
Sicyotes thoracica	156	0	156
Sparassidae			
Olios argelasius	1	7	8
Tetragnathidae			
Metellina segmentata	0	2	2
Patchyntana degerei	0	1	1
Theriidae			
Argyrodes argyrodes	0	26	26
Asagenia italicita	9	0	9
Crustodina gutata	7	0	7
Epinisus cf. angulatus	0	1	1
Euryops episinoidea	3	2	5
Euryops laeta	9	0	9
Heterothroidis nigrovariegatum	0	10	10
Kockière aulica	0	35	35
Lasaelea convexa	0	5	5
Parasteatoda lunata	0	3	3
Parasteatoda tepidariorum	0	4	4
Phorosilia paradoxa	0	1	1
Platnickia tincta	0	9	9
Rhomphura nasica	0	5	5
Robertus mediterraneus	1	0	1
Steatoda paykultiana	1	0	1
Theridion pinastri	0	1	1
Theridion varians	0	3	3
Thomisidae			
Bassaniodes bufo	3	0	3
Bassaniodes robustus	1	0	1
Misumena sutia	0	1	1
Ozyptila confluens	5	0	5
Ozyptila pullata	1	0	1
Ozyptila salustri	0	3	3
Ozyptila sanctuaria	1	0	1
Runicnia grammica	0	19	19
Synema globosum	0	21	21
Thomusius onustus	0	1	1
Xysticus kochi	6	0	6
Uloboridae			
Hyptiotes paradoxus	0	1	1
Zodaridae			
Zodarion elegans	7	0	7
Zodarion italicum	1	0	1
Zodarion fusio	7	0	7
Zodarion vicinus	21	0	21

Total number of specimens

	A	B	C
Species number	1294	1934	3228

Species number

| | 76 | 60 | 129 |
Tab. 4: List of spider species (alphabetical order) collected in the case studies of 2013 and 2014 in woods (WA). For each species the number of specimens per microhabitat type is reported (Ground: species collected by pitfall traps; canopy: species collected by hand or beating) and the total number of specimens.

Species	A	B	C
Agelenidae	0	1	1
Agelena labyrinthica	0	2	2
Eratigena fuesslini	0	1	1
Tegenaria hasperi	0	1	1
Araneidae	0	1	1
Araneus angulatus	0	1	1
Araneus diadematus	0	1	1
Araneus marmoreus	0	1	1
Araniella cucurbitina	0	1	1
Argiope bruennichi	0	1	1
Cyclosa conica	0	1	1
Cyrtophora citricola	0	1	1
Gambiana bituberculata	0	1	1
Hypsosinga sanguinea	0	1	1
Mangora acalypha	0	1	1
Nesocosa adiata	0	1	1
Zilla diadia	0	1	1
Zygiella x-notata	0	1	1
Clubionidae	0	1	1
Clubiona brevipes	0	1	1
Dictynidae	0	1	1
Brigitta clevia	0	1	1
Dysderidae	0	1	1
Hapacte a arguta	0	1	1
Gnaphosidae	0	1	1
Gnaphosa alacris	0	1	1
Haplodrassus macellinus	0	1	1
Micaria albovittata	0	1	1
Nomisua exornata	0	1	1
Setophis carmeli	0	1	1
Trachyzelotes pedestris	0	1	1
Zelotes aeneus	0	1	1
Zelotes bermani	0	1	1
Zelotes oblongus	0	1	1
Zelotes parochus	0	1	1
Zelotes tenuis	0	1	1
Linyphiidae	0	21	21
Frontinellina frutetorum	1	15	16
Gonatium biimpressum	0	14	14
Linyphia triangularis	2	0	2
Styloctetor romanus	1	0	1
Tapinocyba praecox	0	1	1
Tenuiphantes herbicola	0	3	3
Tenuiphantes tenuis	0	3	3
Tramboncus backmani	0	1	1
Tramboncus sordidus	0	3	3
Wallemena antica	1	0	1
Lycosidae	0	1	1
Alopecosa albofasciata	0	1	1
Arctosa personata	0	1	1
Hogna radiata	0	1	1
Mimicidae	0	1	1
Mimetus lacvigatus	0	1	1
Philodromidae	0	1	1
Philodromus lividus	0	1	1
Philodromus longipalpis	0	2	2
Salticidae	0	3	3
Chalcisritus infimus	0	4	4
Euphryx frontalis	0	1	1
Euphryx petrensis	0	1	1
Evarcha juundu	0	2	2
Heliothulus tribulus	0	1	1
Pellenes gelicaulatus	0	2	2
Saitis barbipes	0	1	1
Scytodidae	0	38	38
Scytodes thoracica	0	38	38
Sparassidae	0	1	1
Olios argelserius	0	1	1
Tetragonitidae	0	2	2
Metelina segmentata	0	2	2
Pachygnatha degerei	0	2	2
Therididae	0	1	1
Argyrodus argyodes	0	1	1
Asagenia italicla	0	3	3
Platsinchina tincta	0	4	4
Eurypis episinosides	0	4	4
Rhamphaea nasica	0	4	4
Tetrarchia pinastri	0	4	4
Tetrarchia varian	0	4	4
Thomisidae	0	1	1
Bassaniodes roubus	0	1	1
Ozypilus confliens	0	1	1
Runcinia grammica	0	1	1
Symplocus globosum	0	1	1
Titanococidae	0	3	3
Nusria albomaculata	0	3	3
Zodriadae	0	14	14
Zodaria vicinum	0	14	14
Total number of specimens	141	110	251
Species number	41	32	71

Tab. 5: List of spider species (alphabetical order) collected in the case studies of 2013 and 2014 in the Mediterranean garrigue (GA). For each species the number of specimens per microhabitat type is reported (Ground: species collected by pitfall traps; canopy: species collected by hand or beating) and the total number of specimens.

Species	A	B	C
Araneidae	0	1	1
Aculepeira arnida	0	1	1
Agalenatae redii	0	1	1
Araneus diadematus	0	1	1
Cyrtophora citricola	0	1	1
Zygiella x-notata	0	4	4
Dictynidae	0	1	1
Brigitta clevia	0	1	1
Gnaphosidae	0	1	1
Gnaphosa alacris	0	1	1
Gnaphosa lucifuga	0	3	3
Nomisua exornata	0	1	1
Zelotes fulvaster (Simon, 1878) (Gnaphosidae) (Fig. 2a-b)

Material examined. ITALY: Tuscany, Monte Pisano, olive groves: Avane (Pisa), 43.79444°N, 10.39905°E, 117 m a.s.l., 1 ♀, pitfall trap (20.–24. Sep. 2013); Pozzuolo (Lucca), 43.81887°N, 10.47096°E, 135 m a.s.l., 1 ♀, pitfall trap (20.–24. Sep. 2013); leg. M. S. Picchi, det. P. Pantini.

Distribution. France, Bulgaria, North Macedonia, Greece, Iran (Jézéquel 1962, Komnenov 2014, Nentwig et al. 2019, Senglet et al. 2011), new record for Italy, and confirmed in the southern part of the Balkans (Greece and Macedonia), in Corsica (France) and, outside Europe, in Iran (Senglet et al. 2011). Since this is a new species report for Italy, its known distribution range is extended here to the West-Mediterranean part of Southern Europe, consistent with its Mediterranean chorotype. Previous reports of this species come from xeric habitats (Komnenov 2014) and this preference for arid habitats partially matches the microclimate of olive orchards.

Pimoa rupicola is a troglobiotic species with some reports from central Apennine regions (Mammola et al. 2016), where it was found in pitfall traps in a rock, contrary to G. biimpunctatum, of which more specimens were found in the foliage of the forest trees, whereas D. andreinii and E. comosus were collected at the ground level of olive orchards. Cybaeodes marinae was sampled with pitfall traps on the ground of one olive orchard. This night-active species is typical of Mediterranean woods and it is probably related to a warm and dry environment (Di Franco 1989). Three endemic species were described from Tuscany: Zodarion vicinum was originally described by Denis (1935) from individuals collected on the island of Giglio (Tuscany), whereas D. andreinii was described by di Caporiacco (1928) from the island of Capraia (Tuscany). Ozyptila salustri was described based on samples collected in Grosseto (Tuscany) by Wunderlich (2011).

Considering the chorotype profiles, it is suggested here that besides common species (11% OLA: 16 species and 21% PAL: 31 species), the Mediterranean chorotype is represented by a high number of species (15.6%; 23 species). This is an expected result since Tuscany is typically associated with Mediterranean climatic conditions and vegetation associations. Generally, species in traditional olive landscapes are mesophilic species, often associated with garrigue or sunny localities (Gaymard & Lecigne 2018), e.g. Kochiura aulica (canopy) and Nomisia exornata (ground).

The most abundant species in olive canopies was the linyphiid Frontinellina frutetorum, also observed by Gaymard & Lecigne (2018) in mesophile woods. In fact, this species was numerous in the samples from woods and garrigue next to olive groves, despite previous analyses highlighting a lower number of F. frutetorum in garrigue-dominant landscapes (Picchi et al. 2016), probably due to the risk of desiccation (Pékár 2013). Likewise, Frontinellina frutetorum was dominant among 48 species in Italian olive groves (Ghavami 2006).

On the ground, among olive trees sampled in 2010, the most abundant spider was the lycosid Alopecosa albifasciata, already known to be common in olive groves (Thaler et al. 2000), in grass and in the garrigue. It has been regularly found in open sunny and arid places (Lugetti & Tongiorgi 1969). These results suggest that olive groves qualify as a mesophile habitat with species typical of drier habitats.

Considering species numbers in olive landscapes, Linyphiidae and Salticidae were represented by 20 species each.
Gnaphosids are common in all Mediterranean areas (Cardoso et al. 2007). The present results confirm those from the other studies (Cárdenas et al. 2012, Dinis et al. 2015). Jumping spiders are one of the richest families in dry shrubland, and most species collected were usually associated to garrigue. Nyffeler & Sunderland (2003) suggested that jumping spiders usually have a higher abundance in warmer regions because at low temperatures they are less active and their hunting efficiency is lower. Salticids were also one of the most abundant families found by Morris et al. (1999) in olive groves of Spain.

Olive groves provide spiders with more habitats for overwintering and food resources than the annual crops, therefore spiders are less dependent on adjacent non-crop and semi-natural vegetation (Picchi et al. 2016). In fact, olive groves have higher stability and are structurally and vegetationally more diverse (Maloney et al. 2003, Öberg et al. 2008) than annual crops and thus provide a high diversity of niches (Arambourg 1986), including for instance dry-stone walls and stones on the ground (Benhadi-Marin et al. 2018) that influence the occurrence of spiders (Samu et al. 1999).

Such a hypothesis was also supposed for vineyards by D’Alberto et al. (2012). They suggested there were only weak relationships between woody vegetation and the abundance of spiders in vineyards at all spatial scales and that this could be due to differences in the crop structure. Remarkably, perennials (type of crop) have a greater structural and compositional complexity than annuals (Lelevre et al. 2016). At the same time, other authors showed the importance of vineyards for the conservation of endangered or rare species of spiders (Košulić & Hula 2013, 2014, Košulić et al. 2014). The same conclusion could be applied to olive groves in the light of the presence of endemic species.

In olive groves of other Mediterranean countries, the species richness was similar. In research conducted in Spain 142 species of spiders were collected (Cárdenas & Barrientos 2011) with 33 species in common to Monte Pisano’s area, while in southern Portugal 144 spider species were sampled (Sousa Da Silva 2013) and 36 species were shared with the present study. In the northern part of Portugal, knowledge of the spider assemblages of olive groves increased recently (Benhadi-Marin et al. 2018, 2020) – the authors found 24 species common to the list of spiders in Monte Pisano’s olive groves. Considering these three countries, European olive groves share 12 species, and among them, many have a Mediterranean distribution. For instance, Spiders of Mediterranean geographical distribution, and even endemics. Although it is a perennial agroecosystem with periodic human intervention, olive groves appear to represent a stable and elaborate crop able to host many spider species. Application for environmentally friendly solutions to pest control issues through conservation biological control and conservation aims should encourage the study of this group of predators.

Acknowledgements

Species lists in this article were defined during several years of research in different institutes and the author wishes to thank all the colleagues involved, as well as farmers and partners. I am grateful to Paolo Pantini for his help in the identification of uncertain spiders, Elena Pelizzoli for the drawings of the genitalia of Z. fulvaster, Marco Isaia as supervisor of my M.Sc. project and for the identification of species collected in 2010. I acknowledge Camilla Moonen, Martin H. Entling and Ruggero Petacchi as supervisors of the Ph.D. project. Thanks to Elena Tondini, Alice Caselli and Piergiorgio Di Pompeo for their useful suggestions. The case studies of 2013 and 2014 are part of the QuESSA Project and received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under the grant agreement No 311879.

References

Arambourg Y 1986 Entomologie oleicole. Conseil Oleicole International, Madrid. 360 pp.

Benhadi-Marin J, Pereira JA, Barrientos JA, Sousa JP & Santos SAP 2018 Stones on the ground in olive groves promote the presence of spiders (Araneae). – European Journal of Entomology 115: 372–379 – doi: 10.14411/EJE.2018.037

Benhadi-Marin J, Pereira JA, Bento A, Sousa P & Santos SAP 2017 Biodiversity of spiders in agroecosystems: from community structure to conservation biological control of pest. In: Santos SAP (ed.) Natural enemies: identification, protection strategies and ecological impacts. Nova, New York. pp. 43-109

Benhadi-Marin J, Pereira JA, Sousa JP & Santos SAP 2020 Distribution of the spider community in the olive grove agroecosystem (Portugal): potential bioindicators. – Agricultural and Forest Entomology 22: 10-19 – doi: 10.1111/afe.12352

Bertacchi A, Sani A & Tomei PE 2004 La vegetazione del Monte Pisano. Felici Editore, Pisa. 56 pp.

Caporiccia L, di 1928 Aracnidi della Capraja. – Bollettino della Società Entomologica Italiana 60: 124-127

Cárdenas M & Barrientos J 2011 Arañas del olivar andaluz (Araneae; Araneida; Araneae). Aspectos faunísticos. Spiders from Andalusian garrigue. – Società Entomologica Italiana 60: 124-127

Cárdenas M, Castro J & Campos M 2012 Short-term response of soil spiders to cover-crop removal in an organic olive orchard in a Mediterranean setting. – Journal of Insect Science 12: 1-18 – doi: 10.1673/031.012.6101

Cardoso P, Silva I, De Oliveira NG & Serrano ARM 2007 Seasonality of spiders (Araneae) in Mediterranean ecosystems and its implications in the optimum sampling period. – Ecological Entomology 32: 516–526 – doi: 10.1111/j.1365-2311.2007.00894.x

D’Alberto CF, Hoffmann AA & Thomson LJ 2012 Limited benefits of non-crop vegetation on spiders in Australian vineyards: regional or crop differences? – BioControl 57: 541-552 – doi: 10.1007/s10526-011-9435-x
Deaca A & Huber S 2017 Description of a new Nemosa species from Sardinia that constructs a remarkable star-shaped trapdoor (Araneida: Mygalomorphae: Nemesisidae). – Arachnology 17: 188-194 – doi: 10.13156/arach.2017.17.4.188

Denis J 1935 Les Araignées du genre Zadorian Walck. appartenant à la faune d'Italie. – Memorie della Società Entomologica Italiana 146: 83.

Dinis AM, Pereira JA, Pimenta MC, Oliveira J, Benhardi-Marín J & Santos SAP 2015 Suppression of Bactrocera oleae (Diptera: Tephritidae) pupae by soil arthropods in the olive grove. – Journal of Applied Entomology 140: 677–687 – doi: 10.1111/jen.12291

European Environment Agency 2018 Biodiversity Information System for Europe. – Internet: https://biodiversity.europa.eu/countries/italy (10. Mar. 2018)

Franc V 2000 Spiders (Araneae) on the red lists of European countries. – Ekológia (Bratislava) 19, Suppl. 4: 23-28

Di Franco F 1988 Cybaeodes marinae, nuova specie di Gnaphosidae (Arachnida, Araneidae) d’Italia. – Animalia 15: 25-36

Gaymard M & Lecigne S 2018 Contribution à la connaissance de l’ésotrophé des lésotrophes du Gard et en particulier du mésosang des Gorges du Gardon (Occitanie, France). – Bulletin de l’Association Française d’Arachnologie 1: 2-39

Ghavami S 2006 Abundance of spiders (Araneida: Araneae) in olive orchards in northern part of Iran. – Pakistan Journal of Biological Sciences 9: 795–799 – doi: 10.3923/pjbs.2006.795.799

Holland J, Jeanneret P, Herzog F, Moonen AC, Rossing W, Werf W & Paoletti MG (eds.) Soil biota, nutrient cycling and farming systems. Open Source Geospatial Foundation Project. – Internet: https://www.qgis.org/it/site/ (24. Jul. 2019)

Jézéquel JF 1962 Contribution a l’étude des femelles (Araneida: Araneae) des espèces de la sous-famille Cybaeomorphae. – Bulletin du Museum National d'Histoire Naturelle de Paris (2) 33: 594-610

Košulič O & Hula V 2014 Rare and remarkable spiders (Araneae: Mygalomorphae: Nemesiidae). – Arachnology 17: 188-194 – doi: 10.13156/arach.2017.17.4.188

Košulic O & Hula V 2014 Recent artificial vineyard terraces as a refuge for rare and endangered spiders in a modern agricultural landscape. – Ecological Engineering 68: 133-142 – doi: 10.1016/j.ecoleng.2014.03.030

Kosůl O & Hula V 2014 A faunistic study on spiders (Araneae) from vineyard terraces in Pálava region (South Moravia, Czech Republic). – Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 61: 663-676 – doi: 10.11118/actaun201361030663

Kosůl O & Hula V 2014 A faunistic study on spiders (Araneae) from vineyard terraces in the municipalities of Morkvky and Mutěnice (South Moravia, Czech Republic). – Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 62: 137-154 – doi: 10.11118/actaun201462010137

Kosůl O, Michalko R & Hula V 2014 Recent artificial vineyard terraces as a refuge for rare and endangered spiders in a modern agricultural landscape. – Ecological Engineering 68: 133-142 – doi: 10.1016/j.ecoleng.2014.03.030

Lang A 2003 Intraguild interference and biocontrol effects of generalist predators in a winter wheat field. – Oecologia 134: 144-153 – doi: 10.1007/s00442-002-1091-5

Larrivée M & Buddle CM 2009 Diversity of canopy and understory spiders in north-temperate hardwood forests. – Agricultural and Forest Entomology 11: 225-237 – doi: 10.1111/j.1461-9563.2008.00421.x

Lasinio PJ & Zapparoli M 1993 First data on the soil arthropod community in an olive grove in central Italy. In: Coleman DC, Foissner W & Paoletti MG (eds.) Soil biota, nutrient cycling and farming systems. Lewis Publishers, Boca Raton. pp. 113-121

Lefebvre M, Franck P, Toubon J-F, Bouvier J-C & Lavigne C 2016 The impact of landscape composition on the occurrence of a canopy dwelling spider depends on orchard management. – Agriculture, Ecosystems & Environment 250: 20-29 – doi: 10.1016/j.agee.2015.09.003

Lugetti G & Tongiorgi P 1969 Ricerche sul genere Alopecosa Simon (Araneae-Lycosidae). – Atti della Società Toscana di Scienze Naturali (B) 76: 1-100

Maloney D, Drummond F & Alford R 2003 Spider predation in agroecosystems: can spiders effectively control pest populations? – The University of Maine: department of Biological Sciences Technical Bulletin 190: 1-32

Mammola S, Hornig M, Arnaldo MA & Isaia M 2016 Unexpected diversity in the relictual European spiders of the genus Pimza (Araneae: Pimzidae). – Invertebrate Systematics 30: 566-587 – doi: 10.1071/IS16017

Milano F, Pantini P, Mammola S & Isaia M 2017 La conservazione dell’araneofauna in Italia e in Europa. – Atti Accademia Nazionale Italiana di Entomologia: 91-103

Morris TJ, Campos M, Kidl NAC, Jervis MA & Symondson WC 1999 Dynamics of the predatory arthropod community in Spanish olive grove. – Agricultural and Forest Entomology 1: 219-228 – doi: 10.1046/j.1461-9563.1999.00030.x

Nentwig W, Bläck T, Gloor D, Hänggi A & Kropf C 2019 Araneae – Spiders of Europe, version 07.2019. – Internet: https://araneae.unibe.ch/ (27. Jul. 2019 – doi: 10.24436/0

Nicaud M & Marchi S 2005 Note. – Bulletin du Museum National d'Histoire Naturelle de Paris (2) 33: 594-610

Nyffeler M & Birkhofer K 2017 An estimated 400–800 million tons of prey are annually killed by the global spider community – The Science of Nature 104: 30 – doi: 10.1007/s00114-017-1440-1

Nyffeler M & Sunderland KD 2003 Composition, abundance and pest control potential of spider communities in agroecosystems: a comparison of European and US studies. – Agriculture, Ecosystems & Environment 95: 579–612 – doi: 10.1016/S1085-8565(02)00181-0

Öberg S, Mayr S & Dauber J 2008 Landscape effects on recolonisation patterns of spiders in arable fields. – Agriculture, Ecosystems and Environment 123: 211-218 – doi: 10.1016/j.agee.2007.06.005

Oggi P 2019 Les araignées de Belgique et de France.– Internet: https://en.acrachuo.piwigo.com/ (9. Sep. 2018)

Pantaleoni RA, Lentini A & Delio G 2001 Lacewings in Sardinian olive groves. In: McEwen P, New T & Whittington A (eds.) Lacewings in the crop environment. Cambridge University Press, New York. pp. 435–446 – doi: 10.1017/CBO9780511666117.027

Pantini P & Isaia M 2019 Araneae.it: the online catalog of Italian spiders with addenda on other arachnid orders occurring in Italy (Arachnida: Araneae, Opiliones, Palpigradi, Pseudoscorpionida, Scorpiones, Solifugae). – Fragmenta entomologica 51: 127-152 – Internet: http://www.araneae.it (5. Nov. 2019)

Pantini P & Mazzoleni F 2018 I Ragni di Calabria. – Rivista del Museo Civico di Scienze Naturali Enrico Caffi 31: 1-70

Pen DC, Griesser J, Beck C, Rudolf B & Ruel F 2007 Updated world map of the Koppen-Geiger climate classification. – Meteorologische Zeitschrift 11: 1633-1644 – doi: 10.1071/0978051166117027

Pesariin C 1996 Note su alcuni Erigonidae italiani, con descrizione di una nuova specie (Araneae). – Atti della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano 135: 413-429

Picchi MS 2019 Invasive spider species and landscape factors on spiders and olive fruit flies. – Agriculture, Ecosystems & Environment 2948/2006/0130

Picchi MS, Bocci G, Petacci R & Entling MH 2020 Taxonomic and functional differentiation of spiders in habitats in traditional olive producing landscapes in Italy. – European Journal of Entomology 117:18-26 – doi: 10.14411/eje.2020.002

Polinin O & Walters M 1985 A guide to the vegetation of Britain and Europe. Oxford, New York. 238 pp.

QGIS Development Team 2019 QGIS Geographic Information System. Open Source Geospatial Foundation Project. – Internet: https://www.qgis.org/it/site/ (24. Jul. 2019)
Roberts MJ 1987 The spiders of Great Britain and Ireland, Volume 2. Harley Books, Colchester. 204 pp.
Samu F, Sunderland KD & Szinetár C 1999 Scale-dependent dispersal and distribution patterns of spiders in agricultural systems: a review. – Journal of Arachnology 27: 325-332 – doi: 10.2307/3706004
Singlet A 2011 New species in the Zelotes tenuis-group and new or little known species in other Zelotes groups (Gnaphosidae, Araneae). – Revue suisse de zoologie 118: 513-559 – doi: 10.5962/bhl.part.117816
Souza da Silva A 2013 Diversidade de Aranhas nos diferentes sistemas de cultivo de olival no Alentejo (Portugal). Dissertation, Instituto Politécnico de Beja. 100 pp.
Stoch F & Vigna Taglianti A 2006 The chorotypes of the Italian fauna. In: Ruffo S & Stoch F (eds) Checklist e distribuzione della fauna italiana. – Memorie del Museo Civico di Storia Naturale di Verona (2A) 17: 25-28
Sunderland K & Samu F 2000 Effects of agricultural diversification on the abundance, distribution, and pest control potential of spiders. – Entomologia Experimentalis et Applicata 95: 1-13 – doi: 10.1046/j.1570-7458.2000.00635.x
Symondson WOC, Sunderland KD & Greenstone MH 2002 Can generalist predators be effective biocontrol agents? – Plant Science 47: 561-594 – doi: 10.1146/annurev.ento.47.091201.145240
Thaler K, Buchar J & Knoflach B 2000 Notes on wolf spiders from Greece (Araneae, Lycosidae). – Linzer Biologische Beiträge 32: 1071-1091
Thaler K & Zapparoli M 1993 Epigeic spiders in an olive-grove in Central Italy (Araneae). – Redia 86: 307-316
Trotta A 2005 Introduzione al ragni italiani (Arachnida Araneae). – Memorie della Società Entomologica Italiana 83: 3-178
World Spider Catalog 2020 World spider catalog. Version 21.5. Natural History Museum, Bern. – Internet: https://wsc.nmbe.ch (30. Aug. 2020) – doi: 10.24436/2
Wunderlich J 2011 On extant West-Palaearctic (mainly Southern European) spiders (Araneae) of various families, with new descriptions. – Beitrage zur Araneologie 6: 158-338
ZOBODAT - www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database
Digitale Literatur/Digital Literature
Zeitschrift/Journal: Arachnologische Mitteilungen
Jahr/Year: 2020
Band/Volume: 60
Autor(en)/Author(s): Picchi Malayka Samantha
Artikel/Article: Spiders (Araneae) of olive groves and adjacent semi-natural habitats from central Italy 1-11