Efficient Energy Transfer in In$_2$Se$_3$–MoSe$_2$ van der Waals Heterostructures

Jiaqi He,†,‡,§ Taishen Li,$^†,§,∥$ Lu Zhang,† Dawei He,*$†$ Yongsheng Wang,‡ Huaiyi Ding,*$§$ Nan Pan,$^∥$ and Hui Zhao$^⊥$

†Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China
‡Guangxi Colleges and Universities Key Laboratory of Microwave and Optical Wave-Applied Technology, Guilin 541004, China
§Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
∥Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, United States

ABSTRACT: We show that bilayer α-phase In$_2$Se$_3$ and monolayer MoSe$_2$ form a type-I band alignment, with both the conduction band minimum and the valence band maximum located in MoSe$_2$. Samples were fabricated by a two-step chemical vapor deposition method. The photoluminescence yield of the heterostructure sample was found to be similar to monolayer MoSe$_2$, indicating the lack of an efficient charge transfer from MoSe$_2$ to In$_2$Se$_3$. This is further confirmed by the observation that the photocarrier lifetime in the heterostructure is similar to monolayer MoSe$_2$, showing the lack of layer separation of the electrons and holes. Efficient energy transfer from In$_2$Se$_3$ to MoSe$_2$ was observed by the sevenfold enhancement of the differential reflection signal in the heterostructure and its ultrashort rising time. Furthermore, we observed significant photoluminescence quenching in heterostructures formed by bulk In$_2$Se$_3$ and monolayer MoSe$_2$, which suggests efficient charge transfer and therefore type-II band alignment. These findings suggest that α-In$_2$Se$_3$ ultrathin layers can be effectively integrated as light-absorbing layers with other transition metal dichalcogenides for novel optoelectronic applications.

1. **INTRODUCTION**

Since 2010, significant efforts have been devoted to the studies of two-dimensional (2D) materials beyond graphene,$¹⁰−¹³$ such as transition metal dichalcogenides (TMDs) and phosphorene. These new materials possess several attractive features, including their layer-dependent electronic structures,$⁵,⁶$ and crystal symmetry,$⁶,⁷$ the enhanced Coulomb interaction because of reduced dielectric screening,$⁶,⁹$ large optical absorption coefficients because of the van Hove singularity,$¹⁰,¹¹$ and being flexible.$¹²$ On the basis of these novel properties, 2D materials have been considered good candidates for applications such as field-effect transistors,$¹³,¹⁴$ integrated circuits,$¹⁵$ solar cells,$¹⁶$ photodetectors,$¹⁶$ and light-emitting diodes.$¹⁷−¹⁹$

Recently, a relatively less explored 2D material, α-phase In$_2$Se$_3$, has emerged as a promising material for novel optoelectronic applications. Unlike most TMDs that undergo an indirect-to-direct band transition from bulk to monolayer (1L), reports have shown that α-In$_2$Se$_3$ may possess direct band gaps in all thicknesses.$¹⁰$ This could facilitate efficient light absorption and emission, which are beneficial for many optoelectronic applications. Furthermore, its band gap changes from about 1.45 eV in bulk form to about 2.8 eV in few layers.$²⁰$ Such a range is among the largest in 2D materials and allows tuning of the operation wavelength of optoelectronic devices by thickness. Recently, several groups have reported high-gain and high-detectivity photodetectors of multilayer α-In$_2$Se$_3$ that perform better than most-known 2D materials.$²¹−²³$ Demonstration of growth of high-quality monolayers by physical vapor deposition$²⁵$ also indicates potentials of large-scale production.

One advantage of the 2D materials for optoelectronic applications is that they allow fabrication of multilayer heterostructures with tailored properties.$²⁴$ These multilayers are bound by van der Waals interlayer coupling, which does not have individual atomic correspondence. Hence, the lattice-matching requirement, which has been a major constraint when fabricating heterostructures with ionic or covalence materials, is largely relaxed. This new approach can thus produce a vast number of new materials and can potentially transform material

Received: July 3, 2018
Accepted: September 3, 2018
Published: September 26, 2018
discovery. For example, heterostructures combining graphene and TMDs can improve the performance of photodetectors and photovoltaic devices. Combining different TMD monolayers can provide tuning of the optical and transport properties of these materials and control of photocarrier dynamics.

In this context, it is interesting to explore integration of In$_2$Se$_3$ with other 2D materials, such as TMDs. The effort will also expand the horizon of van der Waals heterostructures by introducing new materials with different lattice structures. Here, we report a study on two key issues for developing such heterostructures, the nature of the band alignment, and the interlayer energy and charge transfer. Understanding the band alignment is the first step to developing strategies to tailor the electronic and optical properties of these materials, whereas efficient energy or charge transfer is highly desired for harnessing emergent properties of 2D heterostructures.

2. RESULTS AND DISCUSSION

Presently, the nature of the band alignment between 2L In$_2$Se$_3$ and 1L MoSe$_2$ is still unclear. Kelvin probe force microscopy measurements have shown that the difference of the Fermi levels between 2L In$_2$Se$_3$ and 1L MoSe$_2$ is only about 200 meV. Because each Fermi level is near the bottom of the conduction band and the band gap of 2L In$_2$Se$_3$ is about 2.8 eV, much larger than the optical band gap of 1L MoSe$_2$ of 1.55 eV, it is safe to assume that the valence band maximum (VBM) of MoSe$_2$ is higher than In$_2$Se$_3$ by a large amount. However, the sign of the conduction band offset is unknown. If the conduction band minimum (CBM) of 1L MoSe$_2$ is lower than 2L In$_2$Se$_3$, as shown in Figure 1a, the heterostructure would be of type-I nature. In this case, one would expect energy transfer from In$_2$Se$_3$ to MoSe$_2$ (indicated by the arrow) via either Dexter or Förster mechanisms. Neither charge transfer nor energy transfer would occur from MoSe$_2$ to In$_2$Se$_3$. On the other hand, a type-II heterostructure could form if the CBM of MoSe$_2$ is higher than In$_2$Se$_3$, as shown in Figure 1b. Such a band alignment would facilitate charge transfer, i.e., electron transfer from MoSe$_2$ to In$_2$Se$_3$, as indicated by the dashed arrow, and hole transfer from In$_2$Se$_3$ to MoSe$_2$ (not shown).

In the following discussions, we will show that the band alignment is type-I, and that the energy transfer from In$_2$Se$_3$ to MoSe$_2$ is ultrafast and highly efficient.

Figure 1a shows the atomic model of the In$_2$Se$_3$–MoSe$_2$ heterostructures studied here, which were fabricated by chemical vapor deposition (CVD) (see Experimental Section). Figure 2b shows the optical microscope image of the 1L MoSe$_2$ and the heterostructure samples. Because the flakes are on Si–SiO$_2$ substrates, the interference of multiple reflections results in different colors and contrasts of the two samples, which allow us to safely identify the samples. The identification procedure has also been confirmed by atomic force microscopy measurements.

The samples were characterized by Raman spectroscopy with a 532 nm laser. The black curve in Figure 2c shows the Raman spectrum obtained from a 1L-MoSe$_2$ flake. Four peaks are clearly observed, which are assigned to the E$_{1g}$ (about 145 cm$^{-1}$), A$_1g$ (about 239 cm$^{-1}$), E$_{2g}$ (about 286 cm$^{-1}$), and defect modes (about 252 cm$^{-1}$), respectively, according to previous reports. The Raman spectrum measured from a heterostructure formed by bulk In$_2$Se$_3$ and 1L MoSe$_2$ is shown as the blue curve in Figure 2c. We observed three peaks at about 110, 174, and 207 cm$^{-1}$. These peaks are reasonably consistent with the previous reports of Raman spectra of α-InSe,23,44 and can be assigned to A$_1$(LO + TO), A$_1$(TO), and A$_2$(LO) modes, respectively. Raman peaks from the underneath 1L MoSe$_2$ are reduced but still visible, with no apparent shifts. The red curve in Figure 2c shows the Raman spectrum from the heterostructure formed by 2L In$_2$Se$_3$ and 1L MoSe$_2$. The In$_2$Se$_3$ peaks are greatly reduced because of the smaller thickness, whereas the peaks from MoSe$_2$ are similar to the 1L-MoSe$_2$ sample. It has been well-established that the width of these phonon modes in TMDs is sensitive to charge density and broadens noticeably when the charge density is changed because of doping or interlayer charge transfer.35,45 The lack of broadening of these modes appears to suggest that the charge transfer in these heterostructures is insignificant. Furthermore, because the lattice strain often results in a redshift of these phonon modes,$^{46−48}$ the absence of such shifts further confirms the strain-free growth of the heterostructures.

We next probe the potential charge- and energy-transfer processes in the heterostructures by comparing their photoluminescence (PL) with 1L MoSe$_2$. The black curve in Figure 2d shows the PL spectrum of 1L MoSe$_2$ under the excitation of a 532 nm continuous-wave laser. The spectrum and the PL yield are consistent with previous results.32,43 With the same experimental conditions, the PL peak from the 2L-In$_2$Se$_3$/1L-MoSe$_2$ heterostructure (red curve) is similar to 1L MoSe$_2$. The small decrease of the intensity can be attributed to the additional loss when the excitation laser beam and the PL goes through the In$_2$Se$_3$ layer. The slight shift (from 819 to 821 nm) could be attributed to the effect of different dielectric environments on the optical band gap of 1L MoSe$_2$. On the contrary, the heterostructure formed by bulk In$_2$Se$_3$ and 1L MoSe$_2$ shows no detectable PL under the same experimental conditions, as shown by the blue curve in Figure 2d.

The lack of PL quenching in the 2L-In$_2$Se$_3$/1L-MoSe$_2$ heterostructure suggests that the interlayer charge transfer is insignificant, which suggests that 2L In$_2$Se$_3$ and 1L MoSe$_2$ do not form a type-II band alignment. In type-II heterostructures formed by 2D materials, PL quenching induced by an efficient charge transfer has been generally observed.$^{31,36,58,49−53}$ The separation of the electrons and holes to the two layers suppresses their radiative recombination in either layers. In the PL measurement of 2L-In$_2$Se$_3$/1L-MoSe$_2$ heterostructure, the 532 nm laser only injects electrons and holes in MoSe$_2$ because its...
photon energy is smaller than the optical band gap of 2L In$_2$Se$_3$. If the band alignment was type-II, electrons would transfer to In$_2$Se$_3$, as illustrated in Figure 1b, instead of radiatively recombining with the holes in MoSe$_2$. This process would induce significant quenching of MoSe$_2$ PL in comparison with 1L MoSe$_2$ samples.

Figure 2. (a) Schematic of the heterostructure sample formed by bilayer (2L) In$_2$Se$_3$ on monolayer (1L) MoSe$_2$. (b) Optical microscope image of the 1L MoSe$_2$ and the heterostructure on the Si/SiO$_2$ substrate. (c) Raman spectra of 1L MoSe$_2$, 2L In$_2$Se$_3$ on 1L MoSe$_2$, and bulk (nL) In$_2$Se$_3$ on 1L MoSe$_2$ obtained under the same condition. (d) PL spectra of 1L MoSe$_2$, 2L In$_2$Se$_3$ on 1L MoSe$_2$, and bulk (nL) In$_2$Se$_3$ on 1L MoSe$_2$ obtained under the same condition. (e) Atomic force microscopic image of the 1L MoSe$_2$ and 2L In$_2$Se$_3$ on 1L MoSe$_2$ sample. (f) Line scan of the atomic force microscopic image shown by the red line in (e).

Figure 3. (a) Differential reflection signals measured with 410 nm pump and 820 probe pulses from a 1L MoSe$_2$ flake. Black, blue, and green curves are signals with pump fluences of 24.9, 33.2, and 41.5 μJ cm$^{-2}$, respectively. Red curves are biexponential decay fits. (b) Peak differential reflection signal from 1L MoSe$_2$ as a function of the pump fluence. The inset shows the two decay constants as a function of the pump fluence. The red line is a linear fit. (c) Same as (a) but from the 2L-In$_2$Se$_3$/1L-MoSe$_2$ heterostructure. The inset shows the same signals but in a smaller range of the probe delay. (d) Peak differential reflection signal from the 2L-In$_2$Se$_3$/1L-MoSe$_2$ heterostructure. The red line is the fit (see text). The two decay constants are summarized in the inset.
One alternative explanation of the lack of charge transfer is the poor interface quality of the heterostructure samples. In manually stacked heterostructures, interface contamination could be introduced during the fabrication process, which can prevent the interlayer charge transfer. However, the In$_2$Se$_3$ layer was directly grown on MoSe$_2$ by CVD. Hence, the interface is expected to be free of contamination. Indeed, the significant PL quenching in nL-In$_2$Se$_3$/1L-MoSe$_2$ heterostructure confirms the high quality of the interface between MoSe$_2$ and In$_2$Se$_3$. Because nL In$_2$Se$_3$ has a much smaller band gap than 2L In$_2$Se$_3$, it is very likely that it forms type-II alignment with 1L MoSe$_2$. Because the interface quality between nL In$_2$Se$_3$ and 1L MoSe$_2$ is high enough to allow such efficient charge transfer, the interface of the 2L-In$_2$Se$_3$/1L-MoSe$_2$ samples obtained during the same fabrication procedure should have comparable quality. Hence, the lack of charge transfer is most likely because of a type-I band alignment, as illustrated in Figure 1a.

Study of photocarrier dynamics in 2L-In$_2$Se$_3$/1L-MoSe$_2$ heterostructures can provide further evidence on its type-I band alignment and information on the interlayer energy transfer from In$_2$Se$_3$ to MoSe$_2$, as illustrated in Figure 1a. We performed transient absorption measurements in reflection geometry with the setup shown in Figure 4. We started with the 1L MoSe$_2$ sample. A tightly focused pump pulse of 410 nm injects photocarriers. The differential reflection (dR/R$_0$) of an 820 nm probe pulse was detected as a function of the probe delay (defined as the arrival time of the probe pulse at the sample with respect to the pump pulse). The probe wavelength is near the PL peak of the sample for efficient detection of the photocarriers. The results are shown in Figure 3a. The decay of the signal can be fit by a biexponential function, as shown by the red curves in Figure 3a. The two time constants are summarized in the inset of Figure 3b. The fast process of 0.9 ps has a weight of about 70%. This process has been previously observed in TMDs and has been attributed to the exciton formation process. The slow process of 24 ps can be attributed to the exciton recombination in 1L MoSe$_2$. Figure 3b shows the peak signal as a function of the pump fluence. The linear dependence confirms that the signal is proportional to the photocarrier density.

These measurements were repeated with the 2L-In$_2$Se$_3$/1L-MoSe$_2$ heterostructure under the same experimental conditions. The results are shown in Figure 3c. Similarly, the decay is fit by biexponential functions (red curves), with two time constants shown in the inset of Figure 3d. The fast and slow processes have weights of about 60 and 40%, respectively. Compared with the 1L MoSe$_2$, the magnitude of the signal is about 7 times higher. Because the probe mainly monitors the photocarriers in MoSe$_2$, the enhancement of the signal can only come from the photocarriers that were injected in In$_2$Se$_3$ and subsequently transferred to MoSe$_2$. If the band alignment was type-II, as shown in Figure 1b, only holes would transfer. These transferred holes would have a very long lifetime in MoSe$_2$ because their recombination with electrons (that are in the In$_2$Se$_3$ layer) was greatly suppressed by their spatial separation. However, we observed a similar (slightly shorter) decay time of the signal in the heterostructure. This shows that the holes transferred have a short lifetime that is comparable to the photocarriers injected in 1L MoSe$_2$. Hence, we can conclude that electrons injected in In$_2$Se$_3$ also transfer to MoSe$_2$ and that the band alignment is type-I.

Because both electrons and holes injected in In$_2$Se$_3$ transfer to MoSe$_2$, there is no net charge transfer. The overall process is an energy-transfer process. A closer look at the rising part of the signal, as shown in the inset of Figure 3c, indicates that the signal reaches a peak on a time scale that is close to the instrument response time. Hence, the transfer of energy from 2L In$_2$Se$_3$ occurs on an ultrafast time scale of a fraction of 1 ps at most. The energy transfer can be achieved by two mechanisms: Förster-type and Dexter-type energy transfers. The former occurs via nonradiative dipole–dipole coupling of the two layers: an electron–hole pair (or exciton) in the first layer recombines nonradiatively, transferring the energy for the excitation of an electron–hole pair (or exciton) in the second layer. The latter involves sequential or simultaneous transfer of both electrons and holes. From the experiments, we are unable to reveal which mechanism is responsible for the observed transfer because both mechanisms have the same final result.

Finally, the slightly shorter lifetime of excitons in the heterostructure can be attributed to additional contributions from exciton–exciton annihilation. Under the same excitation pump fluence, the signal from the heterostructures is about 7 times larger than that of 1L MoSe$_2$. This suggests that the exciton density in the MoSe$_2$ layer of the heterostructure sample is 7 times higher than that of the 1L MoSe$_2$ sample. It has been generally observed in TMDs that at high densities, exciton–exciton can induce shorter carrier lifetimes. Indeed, we observe a saturation effect in the heterostructures, where the peak signal shows a sublinear dependence on the pump fluence, as shown in Figure 3d. The data can be fit by a saturation model, $ΔR/R_0 = F/(F + F_s)$, as shown by the red curve, with the saturation fluence of $F_s = 11.4$ μJ cm$^{-2}$.

3. CONCLUSIONS
In summary, we found that CVD-grown heterostructures of 2L-α-In$_2$Se$_3$/1L-MoSe$_2$ have a type-I band alignment, with both the CBM and the VBM located in MoSe$_2$. This conclusion is supported by several experimental findings, such as the lack of PL quenching and similar exciton lifetimes in the heterostructure. The energy transfer from In$_2$Se$_3$ to MoSe$_2$ was found to be highly efficient, from the enhanced differential reflection signal from the heterostructure with an ultrashort rising time. We also found that bulklike In$_2$Se$_3$ ultrathin layers can be effectively integrated with other TMD 1Ls for novel optoelectronic applications, with the capability of band alignment control by thickness.

4. EXPERIMENTAL SECTION
The samples were fabricated by a two-step CVD technique. First, 1L MoSe$_2$ was synthesized on a SiO$_2$/Si substrate. As precursors, elemental Se and MoO$_3$ powders were put in zone 1 and zone 2 of a two-zone furnace. The substrate was located near MoO$_3$. Zone 1 and zone 2 were heated to 100 and 780 °C, respectively, in 15 min. Then, zone 1 was heated further to 270 °C in 5 min and kept for 30 min, with zone 2 kept at 780 °C. The reaction was under 40 sccm Ar and 10 sccm H$_2$ atmosphere. In the second step, In$_2$Se$_3$ was grown on the substrate with 1L MoSe$_2$. Se and In$_2$O$_3$ powders were used as precursors. Other conditions were kept the same as for MoSe$_2$, except that the temperature of zone 2 was reduced to 660 °C and was kept for 25 min. Figure 2e shows an atomic force microscopic image of the 1L MoSe$_2$ and 2L In$_2$Se$_3$ on 1L MoSe$_2$ sample. The thickness of the monolayer MoSe$_2$ is about 1 nm, and the thickness of the In$_2$Se$_3$ layers on 1L MoSe$_2$ sample is about 1.9 nm. Hence, the
heterostructure samples are fabricated with bilayer, that is, InSbSe$_2$ on the top of monolayer MoSe$_2$.

Time-resolved differential reflection measurements were performed with a setup that is schematically shown in Figure 4. A Ti:sapphire laser generates 100 fs pulses with a repetition rate of 80 MHz. The central wavelength of the pulse is 820 nm with a full width at half maximum (fwhm) of about 10 nm. The 820 nm beam is split to 2 parts with a beamsplitter. One part serves as the probe pulse, whereas the other is focused to a beta barium borate crystal to generate its second harmonic at 410 nm, serving as the pump. The two beams are combined with a beamsplitter and focused on to the sample through the objective lens of a microscope. The sizes of the pump and probe spots are 1.5 and 2.5 μm in fwhm, respectively. The reflected probe is collected by the same lens and is sent to a silicon photodiode. A set of filters is put in front of the photodiode to block the reflected pump beam. The output of a photodiode is measured with a lock-in amplifier. A mechanical chopper is placed in the pump beam to modulate its intensity at about 2 kHz. All of the measurements were taken at room temperature with samples exposed in air. With this configuration, the lock-in amplifier measures the differential reflection, \(\Delta R/R_0 = (R - R_0)/R_0 \), where \(R \) and \(R_0 \) are the reflection coefficient of the probe with and without the presence of the pump beam, respectively.\(^{54}\)

REFERENCES

(1) Gibney, E. The Super Materials that Could Trump Graphene. Nature 2015, 522, 274–276.
(2) Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.
(3) Lin, Z.; et al. 2D Materials Advances: From Large Scale Synthesis and Controlled Heterostructures to Improved Characterization Techniques, Defects and Applications. 2D Mater. 2016, 3, 042001.
(4) Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chiu, C.-Y.; Galli, G.; Wang, F. Emerging Photoluminescence in Monolayer MoS$_2$. Nano Lett. 2010, 10, 1271–1275.

(5) Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically Thin MoS$_2$: A New Direct-Gap Semiconductor. Phys. Rev. Lett. 2010, 105, 136805.
(6) Kumar, N.; Najmaei, S.; Cui, Q.; Ceballos, F.; Ajayan, P. M.; Lou, J.; Zhao, H. Second Harmonic Microscopy of Monolayer MoS$_2$. Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 87, No. 161403(R).
(7) Li, Y.; Yao, Y.; Mak, K. F.; You, Y.; Wang, S.; Dean, C. R.; Heinz, T. F. Probing Symmetry Properties of Few-Layer MoS$_2$ and h-BN by Optical Second-Harmonic Generation. Nano Lett. 2013, 13, 3329–3333.
(8) Chemikov, A.; Berkelbach, T. C.; Hill, H. M.; Rigosi, A.; Li, Y.; Aslan, O. B.; Reichman, D. R.; Hybertsen, M. S.; Heinz, T. F. Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS$_2$. Phys. Rev. Lett. 2014, 113, 076802.
(9) He, K.; Kumar, N.; Zhao, L.; Wang, Z.; Mak, K. F.; Zhao, H.; Shan, J. Tightly Bound Excitons in Monolayer WS$_2$. Phys. Rev. Lett. 2014, 113, 026803.
(10) Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belse, B. D.; Mishchenko, A.; Kim, Y.-J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V.; Grigorenko, A. N.; Geim, A. K.; Casiraghi, C.; Neto, A. H. C.; Novoselov, K. S. Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films. Science 2013, 340, 1311–1314.
(11) Liu, H.-L.; Shen, C.-C.; Su, S.-H.; Hsu, C.-L.; Li, M.-Y.; Li, L.-J. Optical Properties of Monolayer Transition Metal Dichalcogenides Probed by Spectroscopic Ellipsometry. Appl. Phys. Rev. 2014, 105, 201905.
(12) Georgiou, T.; Jalil, R.; Belse, B. D.; Britnell, L.; Gorbachev, R. V.; Morozov, S. V.; Kim, Y.-J.; Gholinia, A.; Haigh, S. J.; Makarovsky, O.; Eaves, L.; Ponomarenko, L. A.; Geim, A. K.; Novoselov, K. S.; Mishchenko, A. Vertical Field-Effect Transistor Based on Graphene WS$_2$ Heterostructures for Flexible and Transparent Electronics. Nat. Nanotechnol. 2013, 8, 100–103.
(13) Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-Layer MoS$_2$ Transistors. Nat. Nanotechnol. 2011, 6, 147–150.
(14) Radisavljevic, B.; Kis, A. Mobility Engineering and a Metal-Insulator Transition in Monolayer MoS$_2$. Nat. Mater. 2013, 12, 815–820.
(15) Wang, H.; Yu, L.; Lee, Y.-H.; Shi, Y.; Hsu, A.; Chin, M. L.; Li, L.-J.; Dubey, M.; Kong, J.; Palacios, T. Integrated Circuits Based on Bilayer MoS$_2$ Transistors. Nano Lett. 2012, 12, 4674–4680.
(16) Baugher, B. W. H.; Churchill, H. O. H.; Yang, Y.; Jarillo-Herrero, P. Optoelectronic Devices Based on Electrically Tunable P-N Diodes in a Monolayer Dichalcogenide. Nat. Nanotechnol. 2014, 9, 262–267.
(17) Zhang, Y.-J.; Oka, T.; Suzuki, R.; Ye, J. T.; Iwasa, Y. Electrically Switchable Chiral Light-Emitting Transistor. Science 2014, 344, 725–728.
(18) Ross, J. S.; Kleinert, P.; Jones, A. M.; Ghimire, N. J.; Yan, J.; Mandrus, D. G.; Taniguchi, T.; Watanabe, K.; Kitamura, K.; Yao, W.; Cobden, D. H.; Xu, X. Electrically tunable excitonic light-emitting
(19) Pospischil, A.; Furchi, M. M.; Mueller, T. Solar-Energy Conversion and Light Emission in an Atomic Monolayer P-N Diode. Nat. Nanotechnol. 2014, 9, 268–272.

(20) Quereda, J.; Biele, R.; Rubio-Bollinger, G.; Agraït, N.; D’Agosta, R.; Castellanos-Gomez, A. Strong Quantum Confinement Effect in the Optical Properties of Ultrathin α-InS3. Adv. Opt. Mater. 2016, 4, 1939–1943.

(21) Island, J. O.; Blanter, S. I.; Buscema, M.; van der Zant, H. S.; Castellanos-Gomez, A. Gate Controlled Photocurrent Generation Mechanisms in High-Gain In2Se3 Phototransistors. Nano Lett. 2015, 15, 7853–7858.

(22) Jacobs-Gedrim, R. B.; Shannugam, M.; Jain, N.; Durcan, C. A.; Murphy, M. T.; Murray, T. M.; Matyi, R. J.; Moore, R. L.; Yu, B. Extraordinary photoresponse in two-dimensional In2Se3 nanosheets. ACS Nano 2014, 8, 514–521.

(23) Zhou, J.; Zeng, Q.; Lv, D.; Sun, L.; Niu, L.; Fu, W.; Liu, F.; Shen, Z.; Jin, C.; Liu. Z. Controlled Synthesis of High-Quality Monolayered α-InS3 via Physical Vapor Deposition. Nano Lett. 2015, 15, 6400–6405.

(24) Geim, A. K.; Grigorieva, I. V. Van der Waals Heterostructures. Nature 2013, 499, 419–425.

(25) Liu, Y.; Weiss, N. O.; Duan, X.; Cheng, H.-C.; Huang, Y.; Duan, X. van der Waals Heterostructures and Devices. Nat. Rev. Mater. 2016, 1, 16042.

(26) Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Neto, A. H. C. 2D Materials and van der Waals Heterostructures. Science 2016, 353, 9439.

(27) Yu, W. J.; Liu, Y.; Zhou, H.; Yin, A.; Li, Z.; Huang, Y.; Duan, X. Highly Efficient Gate-Tunable Photocurrent Generation in Vertical Heterostructures of Layered Materials. Nat. Nanotechnol. 2013, 8, 952–958.

(28) De Fazio, D.; Goykhman, I.; Yoon, D.; Bruna, M.; Eiden, A.; Di Cera, F.; Arents, M. E. High Responsivity, Large-Area Graphene/MoS2 Flexible Photodetectors. ACS Nano 2016, 10, 8252–8262.

(29) Yu, W. J.; Vu, Q. A.; Oh, H.; Nam, H. G.; Zhou, H.; Cha, S.; Kim, J.-Y.; Carvalho, A.; Jeong, M.; Choi, H.; Castro Neto, A. H.; Lee, Y. H.; Duan, X. Unusually Efficient Photocurrent Extraction in Monolayer van der Waals Heterostructure by Tunelling through Discretized Barriers. Nat. Commun. 2016, 7, 13278.

(30) Chiu, M.-H.; Zhang, C.; Shi, H.-W.; Chuu, C.-P.; Chen, C.-H.; Chang, C.-Y. S.; Chen, C.-H.; Chou, M.-Y.; Shih, C.-K.; Li, L.-J. Determination of Band Alignment in the Single-Layer MoS2/WSe2 Heterojunction. Nat. Commun. 2015, 6, 7666.

(31) Fang, H.; et al. Strong Interlayer Coupling in van der Waals Heterostructures Built From Single-Layer Chalcogenides. Proc. Natl. Acad. Sci. USA 2014, 111, 6198–6202.

(32) Latini, S.; Winther, K. T.; Olsen, T.; Thygesen, K. S. Interlayer Excitons and Band Alignment in MoS2/hBN/WSe2 van der Waals Heterostructures. Nano Lett. 2017, 17, 938–945.

(33) Hill, H. M.; Rigosi, A. F.; Rim, K. T.; Flynn, G. W.; Heinz, T. F. Band Alignment in MoS2/WS2 Transition Metal Dichalcogenide Heterostructures Probed by Scanning Tunneling Microscopy and Spectroscopy. Nano Lett. 2016, 16, 4831–4837.

(34) Hong, X.; Kim, J.; Shi, S.-F.; Zhang, Y.; Jin, C.; Sun, Y.; Tongay, S.; Wu, J.; Zhang, Y.; Wang, F. Ultrafast Charge Transfer in Atomically Thin MoS2/WS2 Heterostructures. Nat. Nanotechnol. 2014, 9, 682–686.

(35) Ceballos, F.; Bellus, M. Z.; Chiu, H.-Y.; Zhao, H. Ultrafast Charge Separation and Indirect Exciton Formation in a MoS2-MoS2 van der Waals Heterostructure. ACS Nano 2014, 8, 12717–12724.

(36) Rivera, P.; Schaibley, J. R.; Jones, A. M.; Ross, J. S.; Wu, S.; Aivazian, G.; Klement, P.; Seyler, K.; Clark, G.; Ghimire, N. J.; Yan, J.; Mandrus, D. G.; Yao, W.; Xu, X. Observation of Long-Lived Interlayer Excitons in Monolayer MoS2/WSe2 Heterostructures. Nat. Commun. 2015, 6, 6242.
(55) Ceballos, F.; Cui, Q.; Bellus, M. Z.; Zhao, H. Exciton Formation in Monolayer Transition Metal Dichalcogenides. *Nanoscale* 2016, 8, 11681–11688.

(56) Thilagam, A. Exciton Formation Assisted by Longitudinal Optical Phonons in Monolayer Transition Metal Dichalcogenides. *J. Appl. Phys.* 2016, 120, 124306.

(57) Steinleitner, P.; Merkl, P.; Nagler, P.; Mornhinweg, J.; Schüller, C.; Korn, T.; Chernikov, A.; Huber, R. Direct Observation of Ultrafast Exciton Formation in a Monolayer of WSe2. *Nano Lett.* 2017, 17, 1455–1460.

(58) Hoeben, F. J. M.; Jonkheijm, P.; Meijer, E. W.; Schenning, A. P. H. J. About Supramolecular Assemblies of π-Conjugated Systems. *Chem. Rev.* 2005, 105, 1491–1546.

(59) Dexter, D. L. A Theory of Sensitized Luminescence in Solids. *J. Chem. Phys.* 1953, 21, 836–850.

(60) Murphy, C. B.; Zhang, Y.; Troxler, T.; Ferry, V.; Martin, J. J.; Jones, W. E. Probing Förster and Dexter Energy-Transfer Mechanisms in Fluorescent Conjugated Polymer Chemosensors. *J. Phys. Chem. B* 2004, 108, 1537–1543.

(61) Kumar, N.; Cui, Q.; Ceballos, F.; He, D.; Wang, Y.; Zhao, H. Exciton-Exciton Annihilation in MoSe2 Monolayers. *Phys. Rev. B: Condens. Matter Mater. Phys.* 2014, 89, 125427.

(62) Sun, D.; Rao, Y.; Reider, G. A.; Chen, G.; You, Y.; Brézin, L.; Harutyunyan, A. R.; Heinz, T. F. Observation of Rapid Exciton-Exciton Annihilation in Monolayer Molybdenum Disulfide. *Nano Lett.* 2014, 14, 5625–5629.

(63) Yuan, L.; Huang, L. Exciton Dynamics and Annihilation in WS2 2D Semiconductors. *Nanoscale* 2015, 7, 7402–7408.

(64) Poellmann, C.; Steinleitner, P.; Leierseder, U.; Nagler, P.; Plechinger, G.; Porer, M.; Bratschitsch, R.; Schüller, C.; Korn, T.; Huber, R. Resonant Internal Quantum Transitions and Femtosecond Radiative Decay of Excitons in Monolayer WSe2. *Nat. Mater.* 2015, 14, 889–893.