Case Report

Prenatal features and neonatal management of severe hyperparathyroidism caused by the heterozygous inactivating calcium-sensing receptor variant, Arg185Gln: A case report and review of the literature

Marion Aubert-Mucca a,b, Charlotte Dubucs a, Marion Groussolles c, Julie Via l d, Edouard Le Guillou e, Valerie Porquet-Bordes b, Eric Pasman t e, Jean-Pierre Salles b, Thomas Edouard b,*

a Department of Medical Genetics, Toulouse University Hospital, Toulouse, France
b Endocrine, Bone Diseases, and Genetics Unit, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, ERN BOND, OSCAR Network, Children's Hospital, Toulouse University Hospital, Toulouse, France
c Department of Obstetrics and Gynecology, Toulouse University Hospital, Toulouse, France
d Department of Radiology, Children's University Hospital, Toulouse, France
e Department of Genetic and Molecular Biology, Cochin Hospital, AP-HP Centre Université de Paris, Paris, France

ARTICLE INFO

Keywords:
Calcimimetics
Calcium-sensing receptor
Familial hypercalcemic hyperplasia
Neonatal severe hyperparathyroidism

ABSTRACT

Background: Loss-of-function variants in the calcium-sensing receptor (CASR) gene are known to be involved in a clinical spectrum ranging from asymptomatic familial hypocalciuric hypercalcemia (FHH) to neonatal severe hyperparathyroidism (NSHPT). Homozygous or compound heterozygous variants are usually responsible for severe neonatal forms, whereas heterozygous variants cause benign forms. One recurrent pathogenic variant, p. Arg185Gln, has been reported in both forms, in a heterozygous state. This variant can be a de novo occurrence or can be inherited from a father with FHH.

NSHPT leads to global hypotonia, failure to thrive, typical X-ray anomalies (diffuse demineralization, fractures, metaphyseal irregularities), and acute respiratory distress which can be fatal. Phosphocalcic markers show severe hypercalcemia, abnormal urinary calcium resorption, and hyperparathyroidism as major signs. Classical treatment involves calcium restriction, hyperhydration, and bisphosphonates. Unfortunately, the disease often leads to parathyroidectomy. Recently, calcimimetics have been used with variable efficacy. Efficacy in NSHPT seems to be particularly dependent on CASR genotype.

Case presentation: We describe the antenatal presentation of a male with short ribs, initially suspected having skeletal ciliopathy. At birth, he presented with NSHPT linked to the pathogenic heterozygous CASR variant, Arg185Gln, inherited from his father who had FHH. Postnatal therapy with cinacalcet was successful.

Discussion: An exhaustive literature review permits a comparison with all reported cases of Arg185Gln and to hypothesize that cinacalcet efficacy depends on CASR genotype. This confirms the importance of pedigree and parental history in antenatal short rib presentation and questions the feasibility of phosphocalcic exploration during pregnancy or prenatal CASR gene sequencing in the presence of specific clinical signs. It could in fact enable early calcimimetic treatment which might be effective in the CASR variant Arg185Gln.

1. Background

The calcium-sensing receptor (CASR), a G-protein-coupled receptor mainly expressed in parathyroid glands and kidneys, acts as a key regulator of calcium homeostasis (Hofer and Brown, 2003). Under normal conditions, the CASR is activated in response to high extracellular calcium concentrations which leads to parathyroid hormone (PTH) secretion inhibition by the parathyroid cells and inhibition of calcium reabsorption in renal tubule cells. However, lower than set-point calcium concentrations lead to CASR inactivation which triggers PTH secretion.
secretion and renal calcium reabsorption (Pollak et al., 1993). Loss-of-function variants in the CASR gene [MIM* 601199] alter the set point spectrum ranging from benign and often asymptomatic familial hypercalcemic hyperparathyroidism (FHII; MIM#145980) to severe neonatal hyperparathyroidism (NSHPT; MIM#239200) (Marx and Sinaii, 2020). Heterozygous loss-of-function CASR variants usually lead to FHII, whereas homozygous or compound heterozygous CASR variants result in NSHPT (Marx and Golitzman, 2019). However, pathogenic heterozygous loss-of-function CASR variants have also been described in some cases of NSHPT, notably the c.554G>A p.(Arg185Gln) missense pathogenic variant (Fisher et al., 2015; Reh et al., 2011; Forman et al., 2019; Gannon et al., 2014; Obermannova et al., 2009; Bai et al., 1997).

NSHPT is usually diagnosed during the first weeks of life in the presence of signs of severe hypercalcemia and hyperparathyroidism including poor feeding, polyuria, failure to thrive, hypotonia, respiratory distress caused by thoracic restriction, and fractures (Forman et al., 2019). Typical biochemical features include hypercalcemia and hypophosphatemia related to hyperparathyroidism, and low fractional excretion of urinary calcium (Marx and Golitzman, 2019). Bone X-ray abnormalities include diffuse demineralization, metaphyseal irregularities, cortical dualization, subperiosteal erosion, and fractures consistent with hyperparathyroidism (Marx and Sinaii, 2020; Roizen and Levine, 2012). If severe hypercalcemia in NSHPT is not detected and treated early, it can lead to potentially life-threatening complications or neurodevelopmental sequelae (Wilhelm-Bals et al., 2012).

Medical treatment of NSHPT is usually based on a combination of calcium restriction, hyperhydration, and bisphosphonates (Sun et al., 2018). When medical treatment fails, the only effective therapy consists of surgical parathyroidectomy with or without autotransplantation of parathyroid tissue in the forearm. However, this surgery can be insufficient and is associated with postoperative complications, especially in infants (Forman et al., 2019). A few case reports have described the efficacy of calcimimetics (cinacalcet), which are allosteric CASR agonists, in some forms of NSHPT (Sun et al., 2018).

In this paper, we describe the prenatal bone and renal features and postnatal management of a new case of NSHPT caused by the pathogenic heterozygous inactivating CASR variant Arg185Gln. We compared the changes in our patient under cinacalcet therapy with those in published case reports.

2. Case report

2.1. Case presentation

A healthy 41-year-old woman was referred to our center after the 22-week gestational ultrasound revealed short ribs and a possible craniosynostosis in the fetus on the second trimester ultrasound. After detailed genetic counselling, an amniocentesis was performed at 24 weeks to investigate the etiology. Array CGH was normal without any unbalanced chromosomal rearrangement, and so were FGFR2 and FGFR3 recurrent variant screening (to rule out FGFR related craniosynostosis syndromes), and the 7-dehydrocholesterol level (to rule out Smith-Lemli-Opitz syndrome). At 26 weeks, computed tomography confirmed short ribs with irregular ends but no craniosynostosis and overall renal cortex echogenicity was noted on ultrasound (Fig. 1). The association of bone and renal abnormalities led to an initial diagnosis of a skeletal ciliopathy spectrum disorder such as Jeune syndrome (asphyxiating thoracic dysplasia). Pregnancy was then complicated by hydramnios requiring amniotic fluid drainage at 33 weeks, which triggered fetal bradycardia and the need for a caesarean delivery. At birth, the newborn male measured in the low normal range for gestational age with a weight of 1800 g (32nd centile), length of 43 cm (39th centile), and an occipito-frontal circumference of 30 cm (26th centile) and an occipito-frontal circumference of 30 cm (26th centile) without craniosynostosis. Soon after birth, he developed hypotonia and respiratory distress requiring oxygen and non-invasive ventilation. Except for a bell-shaped chest, the rest of his clinical examination was unremarkable. A chest X-ray showed a narrowed thoracic cage with short ribs and multiple rib fractures. Subsequently, a skeletal survey revealed diffuse osteopenia with coarse trabecular markings, subperiosteal bone resorption, cortical dualization and metaphyseal corner fractures (Fig. 1). The initial laboratory evaluation revealed severe hypercalcemia (ionized calcium: 1.66 mmol/l; reference range: 1.17–1.27), a slightly low phosphate level (1 mmol/l; reference range: 1–1.95), normal alkaline phosphatase levels (387 IU/l; reference range: 122–469), abnormal urinary calcium (calcium-to-creatinine ratio: 0.78 mmol/l; reference range: 0.2–2.0), and an increased PTH level (325 pg/ml; reference range: 15–65). The diagnosis of NSHPT was then suspected and confirmed by a phosphoclastic NGS panel which revealed the pathogenic heterozygous (PM1, PM2, PM5, PP2, PP3, PP5) variant c.554G>A p.(Arg185Gln) in the CASR gene (NM_000388.3).

Calcium metabolism tests and genetic screening were then requested from both asymptomatic parents. These analyses revealed

![Fig. 1. Pre- and postnatal features of NSHPT and changes under treatment.](image-url)
hypercalcemia (total serum calcium: 3.32 mmol/l, reference range: 2.2–2.6 mmol/l), low phosphate levels (0.59 mmol/l, reference range: 0.84–1.4 mmol/l), low calcium-to-creatinine ratio (0.16 mmol/mmol, reference range: 0.2–0.6 mmol/mmol) and hyperparathyroidism (PTH: 42 pg/ml, reference range: 15–65) in the father who harbored the same heterozygous CASR variant. Mineral homeostasis (25-hydroxyvitamin D level: 24 ng/ml) and CASR sequencing were normal in the mother. The family history revealed that the paternal grandmother also had FHH discovered as a result of recurrent urinary lithiasis (Fig. 2). Similarly, FHH affected various members of the paternal branch.

2.2. Treatment

Initial therapy included hyperhydration, phosphate supplementation and a low-calcium milk formula. Hypercalcemia did not improve. Therefore, treatment with pamidronate (0.5 mg/kg intravenous on days 9 and 14) was started. After a moderate transient response to pamidronate, serum calcium levels subsequently increased and were associated with very high PTH levels (1671 pg/ml). Clinically, the patient had persistent restrictive lung disease caused by significant rib fractures requiring oxygen and analgesics. Therefore, after confirmation of the genetic diagnosis of NSHPT treatment with calcimimetics (cinacalcet) was initiated on day 22 at 0.5 mg/kg PO daily and progressively increased to 3 mg/kg in 2 doses. The cinacalcet dose titration normalized the PTH in 25 days but serum calcium remained at approximately 3 mmol/l (Fig. 3).

2.3. Follow-up and outcomes

Hyperparathyroidism control provided significant improvement in clinical signs. The patient was discharged on day 73, and oxygen therapy could be discontinued at 6 months of age. Psychomotor development and growth were normal. At 6 months of age, X-rays showed complete normalization of bone abnormalities (Fig. 1) and ultrasound revealed nephrocalcinosis. At 11 months of age, parathyroid gland ultrasound showed no abnormality.

3. Material and methods

DNA extraction was performed with the Maxwell 16 LEV Blood DNA Kit (Promega, Charbonnières-les-Bains, France) on an EDTA blood sample. Experiments were performed at the NGS facility at Cochin Hospital, Paris (Assistance Publique-Hôpitaux de Paris AP-HP, France). A customized hybridization panel (Roche NimbleGen, Madison, WI, USA) and a NextSeq 500 system (Illumina, San Diego, CA, USA) were used to sequence the coding and IVS flanking (25 bp) regions of eight genes associated with parathyroid disorders (AIP, AP2S1, CASR CDC73, CDKN1B, GCM2, GNA11, MEN1). After demultiplexing and generation of FASTQ files, the sequence analysis was performed according to the Genome Analysis Tool Kit (GATK) guidelines using the Polyquery (Université de Paris, France) and MOABI (AP-HP) bio-informatic platforms. Variant pathogenicity was assessed according to the American College of Medical Genetics and Genomics and the Association for

Fig. 2. Familial pedigree of the proband (indicated by an arrow)
Dotted line: individuals with asymptomatic hypocalciuric hypercalcemia; hatch fill: individuals with recurrent lithiasis; solid fill: individual with severe neonatal hyperparathyroidism. CASR genotype reported under the proband and his parents.
Fig. 3. Changes in biochemical parameters under cinacalcet treatment.
Molecular Pathology (ACMG-AMP) guidelines (Richards et al., 2015).

We performed an exhaustive review of the literature using the PubMed database to compile clinical data on individuals with the same pathogenic variant, Arg185Gln in NSHPT and all descriptions of cinacalcet therapy in NSHPT (Table 1) (Pollak et al., 1993; Fisher et al., 2015; Reh et al., 2011; Forman et al., 2019; Gannon et al., 2014; Obermannova et al., 2009; Bai et al., 1997; Szalat et al., 2015; Heath et al., 1996) using the following terms: “NSHPT”, “neonatal severe hyperparathyroidism”, “R185Q”, “p.(Arg185Gln)”, “CASR”, “CaSR”, “CaSR”, “cinacalcet”, and “calcimetics”.

4. Discussion

In this paper, we describe a new case of NSHPT caused by the pathogenic heterozygous inactivating CASR variant Arg185Gln, with prenatal bone and renal features. As was the case in a few previous reports, treatment with cinacalcet successfully controlled hyperparathyroidism and corrected bone abnormalities in our patient. Table 1 summarizes the clinical presentation and management of NSHPT with the pathogenic heterozygous CASR variant Arg185Gln.

4.1. Prenatal features

To our knowledge, this is the first report of prenatal onset NSHPT with bone and renal presentation. In fact, children with NSHPT are often diagnosed during the first weeks of life as a result of poor feeding, polyuria, failure to thrive, hypopituitarism, and respiratory distress due to a poorly developed thoracic cage (Table 1). The only prenatal features that have been reported are oligohydramnios (Reh et al., 2011; Gannon et al., 2014) or, on the contrary, polyhydramnios (Murphy et al., 2016).

Interestingly, the association of short ribs and renal abnormality led to an initial diagnosis of Jeune syndrome in our patient. The same diagnosis was initially suspected in a male patient reported by Fisher et al. who presented at birth with global hypopituitarism, bell-shaped chest, and metaphyseal irregularities (Fisher et al., 2015). In this case, the patient was secondarily diagnosed with NSHPT at 11 months of age after further review of the radiographs revealed signs of metabolic bone disease (diffuse osteopenia, short ribs with irregular rib ends, and metaphyseal sclerosis at the ends of multiple long bones) and a biochemical evaluation indicated PTH-dependent hypercalcemia (Fisher et al., 2015). Jeune syndrome (MIM#208500) is an autosomal recessive skeletal ciliopathy in which a narrowed/bell-shaped thorax is associated with short ribs and irregular rib ends, short long bones with an irregular metaphysis, renal abnormalities, and less frequently, polydactyly, and hepatic, retinal, or pancreatic abnormalities (Baujat et al., 2013). Short ribs are noted if chest-to-abdominal circumference ratio is below 0.8, and a ratio below 0.6 is strongly suggestive of lethality (Yoshimura et al., 1996; Krakow et al., 2009). Our case report suggests that NSHPT can be considered in a differential diagnosis of Jeune syndrome pre- and postnatally. Prenatally, the family history and biochemical evaluation of the parent’s vitamin D levels when assessed after birth, but her status during pregnancy is unknown. In the literature, all seven NSHPT cases with the pathogenic heterozygous variant Arg185Gln were either de novo or paternally-transmitted (Table 1). At least fourteen individuals with the same variant were diagnosed with a FHH phenotype and no neonatal symptoms (Glaudo et al., 2016). The basis for this variability is not fully understood and may involve environmental factors and genetic modifiers.

4.3. Treatment

In NSHPT, hyperparathyroidism is considered to cause an increase in bone resorption. Consequently, the use of bisphosphonates which inhibit osteoclastic bone resorption seems logical. However, it has been reported that this treatment has variable efficacy in newborns, and may sometimes be accompanied by a rebound increase in serum PTH and hypercalcemia as was documented in our patient (Fisher et al., 2015; Reh et al., 2011; Sun et al., 2018; Murphy et al., 2016; Savas-Erdeve et al., 2016).

A better understanding of the molecular basis of NSHPT helps to define specific treatment such as calcimetics. Within the transmembrane domain, cinacalcet binds to a separate site from the activating domain and changes CASR conformation (Sun et al., 2018; Capozza et al., 2018). This positive allosteric modulation enhances CASR sensitivity to extracellular calcium and specifically causes the calcium set point abnormality found in NSHPT patients (Garcia-Solcheuro et al., 2013). NSHPT patients with bi-allelic variants are usually unresponsive to cinacalcet (Maz and Sinaii, 2020). In contrast, as with our patient, several cases of NSHPT caused by the pathogenic heterozygous variant Arg185Gln have been successfully treated with cinacalcet (Fisher et al., 2015; Reh et al., 2011; Forman et al., 2019; Gannon et al., 2014) (Table 1), suggesting residual CASR functionality (Zhang et al., 2002). The dose of cinacalcet required to control hyperparathyroidism was highly variable among individuals (ranging from 2.4 to 9.6 mg/kg/day). As it has been previously reported (Fisher et al., 2015; Gannon et al., 2014), although cinacalcet normalizes serum PTH levels, it does not restore normal serum calcium levels. It has been suggested that this could be due to reduced sensitivity of diverse cells to extracellular calcium due to a CASR dominant-negative effect (Gannon et al., 2014).

These data reinforce the premise that medical management with cinacalcet can successfully control hypercalcemia in NSHPT caused by the pathogenic heterozygous variant Arg185Gln and prevents surgical treatment. Genetic diagnosis may contribute to the use of cinacalcet as a first-line treatment.

5. Conclusion

In this paper, we describe a case of NSHPT with prenatal onset of bone and renal features. Clinicians should be aware of this diagnosis in the presence of short ribs or a bell-shaped thoracic cage, and it should be borne in mind in the differential diagnosis when skeletal ciliopathies are suspected in the antenatal period. Phosphocalcic evaluation of both parents should be considered, as FHH is highly frequent, asymptomatic, and can be discovered at that time. It could guide the diagnosis of NSHPT. In addition, the mother’s vitamin D status plays a role in the
Table 1
Reports of clinical presentation and changes in NSHPT with the pathogenic heterozygous CASR variant Arg185Gln under cinacalcet therapy.

References	Inheritance	Gender	Prenatal features	Postnatal features	Narrowed thorax	Nephrocalcinosis	X-rays description	Pamidronate	Cinacalcet		
Current report	Paternal inheritance	M	Ribs and renal abnormalities, hydramnios	Initial respiratory distress at birth, narrowed thorax	Yes	Yes	Generalized skeletal under-mineralization	2 injections at 0.5 mg/kg: PTH increases	Day 15	3 mg/kg/day in 2 doses	
Fisher 1 2015	De novo	M	None	At 11 month of age, global hypotonia, gross motor, fine motor and speech delays	Dysphagia requiring gastrostomy tube feedings	Yes	N/A	Metaphyseal irregularities	Single dose of pamidronate (0.5 mg/kg IV): transient response but serum calcium rose to 13.8 mg/dl 2 weeks later	12 months	Ranged from 2.4 to 7.4 mg/kg per day
Fisher 2 2015	De novo	F	None	At day 26, failure of linear growth, poor weight gain, and cough	No	Yes	Multiple rib fractures	No	4 months	Ranged from 1.68 to 2.7 mg/kg per day	
Reh 2011	De novo	F	Oligoamnios and pregnancy-induced hypertension	At day 11, failing to thrive	No	No	Diffuse osteopenia with coarse trabecular changes in the long bones and thinning of the diaphyseal cortices but no fractures	Single dose of pamidronate (0.5 mg/kg iv) given at 2 weeks: 24 h normalized Ca but within 36 h became hypocalcemic	Day 23	20 mg/m², PO twice-daily	
Forman 2018	Assumed de novo	M	None	At day 3, respiratory distress, feeding difficulties, and depressed mental status	No	No	Diffuse demineralization and subperiosteal bone resorption, abnormal contour of the thoracic cage and metaphyseal irregularities in the long bones	Rejected due to concerns for prolonged hypocalcemia and possible respiratory distress in a patient with an ongoing oxygen requirement	Day 7	5 mg/kg/day	
Gannon 2014	Paternal inheritance	M	Oligoamnios	At day 2, hypotonia, apnea and bradycardia	No	N/A	Diffuse demineralization, multiple rib fractures, chondrodystrophy of the distal humerus and femur, and a butterfly vertebra also noted on the chest radiograph	No	Before 21 days	9.6 mg/kg/day thrice daily	
Obermannova 2009	De novo or paternal inheritance	M	None	At birth, respiratory distress leading to intubation and mechanical ventilation, narrowed thorax	Yes	N/A	Bell-shaped hypoplastic chest and visible leg fractures - multiple pathological skeletal fractures (ribs, right femur diaphysis, bilateral fractures of the proximal and	Over three consecutive days at 0.5 mg/kg/d, transient suppression of serum calcium levels and PTH levels, subtotal then total parathyroidectomy	No	Cinacalcet N/A	

(continued on next page)
severity of NSHPT, and should be corrected in case of deficiency. Moreover, targeted detection of the recurrent pathogenic CASR variant Arg185Gln should be considered for similar antenatal presentations to confirm the diagnosis and to permit the initiation of cinacalcet as soon as possible, as efficacy in this variant has now been well-established.

Funding
No financial assistance was received in support of the study.

URLs
*ClinVar: https://www.ncbi.nlm.nih.gov/clinvar/
*NCBI Database: https://www.ncbi.nlm.nih.gov/
*Oimid: https://www.omim.org/

Declaration of competing interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements
We acknowledge the patients and their families for their generous support.

References
Bai, M., Pearce, S.H., Kifor, O., Trivedi, S., Stauffer, U.G., Thakker, R.V., et al., 1997. In vivo and in vitro characterization of neonatal hyperparathyroidism resulting from a de novo, heterozygous mutation in the Ca2+-sensing receptor gene: normal maternal calcium homeostasis as a cause of secondary hyperparathyroidism in familial benign hypocalciuric hypercalcemia. J. Clin. Invest. 99 (1), 88–96. https://doi.org/10.1172/JCI19197.

Bajaj, G., Huber, C., El Hokayem, J., Gaumes, R., Do Ngoc Thanh, C., David, A., et al., 2013. Asphyxiating thoracic dysplasia: clinical and molecular review of 39 families. J. Med. Genet. 50 (2), 91–98. https://doi.org/10.1136/jmedgenet-2012-101282.

Capozza, M., Chinellato, I., Guarnieri, V., Di Lori, N., Accadia, M., Traggiai, C., et al., 2018. Case report: acute clinical presentation and neonatal management of primary hyperparathyroidism due to a novel CaSR mutation. BMC Pediatr. 18 (1), 340. https://doi.org/10.1186/s12887-018-1319-5.

Fisher, M.M., Cabrera, S.M., Insel, E.A., 2015. Successful treatment of neonatal severe hyperparathyroidism with cinacalcet in two patients. Endocrinol. Diabetes Metab. Case Rep. 2015, 150040 https://doi.org/10.1530/EDM-15-0040.

Forman, T.E., Niemi, A.K., Prabahad, P., Shi, R.Z., Nally, L.M., 2019. Cinacalcet monotherapy in neonatal severe hyperparathyroidism: a case report and review of the literature. J. Pediatr. Endocrinol. Metab. 32 (3), 305–310. https://doi.org/10.1515/jcem-2018-0307.

Gannon, A.W., Monk, H.M., Levine, M.A., 2014. Cinacalcet monotherapy in neonatal severe hyperparathyroidism: a case study and review. J. Clin. Endocrinol. Metab. 99 (1), 7–11. https://doi.org/10.1210/jc.2013-2834.

García Soblechero, E., Ferrer Castillo, M.T., Jimenez Crespo, B., Dominguez Quiñtero, M. L., González Puentes, C., 2013. Neonatal hypercalcaemia due to a homozygous mutation in the calcium-sensing receptor: failure of cinacalcet. Neonatology 104 (2), 104–108. https://doi.org/10.1159/000350540.

Glado, M., Letz, S., Quinkler, M., Bogner, U., Elbelt, U., Strasburger, C.J., et al., 2016. Heterozygous inactivating CaSR mutations causing neonatal hyperparathyroidism: function, inheritance and phenotype. Eur. J. Endocrinol. 175 (5), 421–431. https://doi.org/10.1530/EJE-15-0222.

Heath, 3rd, H., Odellberg, S., Jackson, C.E., Teh, B.T., Hayward, N., Larsson, C., et al., 1996. Clustered inactivating mutations and benign polymorphisms of the calcium receptor gene in familial benign hypocalciuric hypercalcaemia suggest receptor functional domains. J. Clin. Endocrinol. Metab. 81 (4), 1312–1317. https://doi.org/10.1210/jcem.81.4.8636323.

Hofer, A.M., Brown, E.M., 2003. Extracellular calcium sensing and signalling. Nat. Rev. Mol. Cell Biol. 4 (7), 530–538. https://doi.org/10.1038/nrm1154.

Huang, Y., Zhou, Y., Castilblanco, A., Yang, W., Brown, E.M., Yang, J.J., 2009. Multiple Ca(2+)-binding sites in the extracellular domain of the Ca(2+)-sensing receptor corresponding to cooperative Ca(2+)/response. Biochemistry 48 (2), 388–398. https://doi.org/10.1021/bi8014604.

Krakow, D., Lachman, R.S., Rimoin, D.L., 2009. Guidelines for the prenatal diagnosis of fetal skeletal dysplasias. Genet. Med. 11 (2), 127–133 e-pub ahead of print 2009/03/07. https://doi.org/10.1097/GIM.0b013e3181971cc.

Marx, S.J.,戈尔茨曼, D., 2019. Evolution of our understanding of the hyperparathyroid syndromes: a historical perspective. J. Bone Miner. Res. 34 (1), 22–37. https://doi.org/10.1002/jbmr.3650.
Marx, S.J., Sinaii, N., 2020. Neonatal severe hyperparathyroidism: novel insights from calcium, PTH, and the CASR gene. J. Clin. Endocrinol. Metab. 105 (4) https://doi.org/10.1210/clinem/dgz253.

Murphy, H., Patrick, J., Baez-IZarrarry, E., Lacassie, Y., Gomez, R., Vargas, A., et al., 2016. Neonatal severe hyperparathyroidism caused by homozygous mutation in CASR: a rare cause of life-threatening hypercalcemia. Eur. J. Med. Genet. 59 (4), 227–231. https://doi.org/10.1016/j.ejmg.2016.02.001.

Obermannova, B., Banghova, K., Sumnik, Z., Dvorakova, H.M., Betka, J., Fenc, F., et al., 2009. Unusually severe phenotype of neonatal primary hyperparathyroidism due to a heterozygous inactivating mutation in the CASR gene. Eur. J. Pediatr. 168 (5), 569–573. https://doi.org/10.1007/s00431-008-0794-y.

Pollak, M.R., Brown, E.M., Chou, Y.H., Hebert, S.C., Marx, S.J., Steinmann, B., et al., 1993. Mutations in the human Ca(2+) sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Cell 75 (7), 1297–1303. https://doi.org/10.1016/0092-8674(93)90617-y.

Reh, C.M., Hendy, G.N., Cole, D.E., Jeandron, D.D., 2011. Neonatal hyperparathyroidism with a heterozygous calcium-sensing receptor (CASR) R185Q mutation: clinical benefit from cinacalcet. J. Clin. Endocrinol. Metab. 96 (4), E707–E712. https://doi.org/10.1210/jc.2010-1306.

Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., et al., 2015. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17 (5), 405–424 e-pub ahead of print 2015/03/06. https://doi.org/10.1038/gim.2015.30.

Roizen, J., Levine, M.A., 2012. Primary hyperparathyroidism in children and adolescents. J. Chin. Med. Assoc. 75 (9), 425–434. https://doi.org/10.1016/j.jcma.2012.06.012.

Savas-Erdeve, S., Sagsak, E., Keskin, M., Magdelaine, C., Liehnardt-Roussie, A., Kurnaz, E., et al., 2016. Treatment experience and long-term follow-up data in two severe neonatal hyperparathyroidism cases. J. Pediatr. Endocrinol. Metab. 29 (9), 1103–1110. https://doi.org/10.1515/jpep-2015-0261.

Sun, X., Huang, L., Wu, J., Tao, Y., Yang, F., 2018. Novel homozygous inactivating mutation of the calcium-sensing receptor gene in neonatal severe hyperparathyroidism responding to cinacalcet therapy: a case report and literature review. Medicine 97 (45), e13128. https://doi.org/10.1097/MD.0000000000013128.

Szalat, A., Shahar, M., Shpitzien, S., Nachmias, B., Munter, G., Gillis, D., et al., 2015. Calcium-sensing receptor sequencing in 21 patients with idiopathic or familial parathyroid disorder: pitfalls and characterization of a novel I32 V loss-of-function mutation. Endocrine 48 (2), 444–453. https://doi.org/10.1007/s12020-014-0370-3.

Wilhelm-Bals, A., Parver, P., Magdeleine, C., Girardin, E., 2012. Successful use of bisphosphonate and calcimimetic in neonatal severe primary hyperparathyroidism. Pediatrics 129 (3), e812–e816. https://doi.org/10.1542/peds.2011-0128.

Yoshimura, S., Masuzaki, H., Gotoh, H., Fukuda, H., Ishimaru, T., 1996. Ultrasonographic prediction of lethal pulmonary hypoplasia: comparison of eight different ultrasonographic parameters. Am. J. Obstet. Gynecol. 175 (2), 477–483 e-pub ahead of print 1996/08/01. https://doi.org/10.1016/s0002-9378(96)70165-5.

Zajickova, K., Vrublina, K., Canaff, L., Pawelek, P.D., Goltzman, D., Hendy, G.N., 2007. Identification and functional characterization of a novel mutation in the calcium-sensing receptor gene in familial hypocalciuric hypercalcemia: modulation of clinical severity by vitamin D status. J. Clin. Endocrinol. Metab. 92 (7), 2616–2623. https://doi.org/10.1210/jc.2007-0123.

Zhang, Z., Qiu, W., Quinn, S.J., Conigrave, A.D., Brown, E.M., Bai, M., 2002. Three adjacent serines in the extracellular domains of the CaR are required for L-amino acid-mediated potentiation of receptor function. J. Biol. Chem. 277 (37), 33727–33735. https://doi.org/10.1074/jbc.M200976200.