The Use of NLP-Based Text Representation Techniques to Support Requirement Engineering Tasks: A Systematic Mapping Review

Riad Sonbola,*, Ghaida Rebdawia, Nada Ghneimb

aDepartment of Informatics, Higher Institute for Applied Sciences and Technology (HIAST)
bFaculty of Information and Communication Technology, Arab International University (AIU)

Abstract

Natural Language Processing (NLP) is widely used to support the automation of different Requirements Engineering (RE) tasks. Most of the proposed approaches start with various NLP steps that analyze requirements statements, extract their linguistic information, and convert them to easy-to-process representations, such as lists of features or embedding-based vector representations. These NLP-based representations are usually used at a later stage as inputs for machine learning techniques or rule-based methods. Thus, requirements representations play a major role in determining the accuracy of different approaches. In this paper, we conducted a survey in the form of a systematic literature mapping (classification) to find out (1) what are the representations used in RE tasks literature, (2) what is the main focus of these works, (3) what are the main research directions in this domain, and (4) what are the gaps and potential future directions. After compiling an initial pool of 2,227 papers, and applying a set of inclusion/exclusion criteria, we obtained a final pool containing 104 relevant papers. Our survey shows that the research direction has changed from the use of lexical and syntactic features to the use of advanced embedding techniques, especially in the last two years. Using advanced embedding representations has proved its effectiveness in most RE tasks (such as requirement analysis, extracting requirements from reviews and forums, and semantic-level quality tasks). However, representations that are based on lexical and syntactic features are still more appropriate for other RE tasks (such as modeling and syntax-level quality tasks) since they provide the required information for the rules and regular expressions used when handling these tasks. In addition, we identify four gaps in the existing literature, why they matter, and how future research can begin to address them.

Keywords: Natural Language Processing, Requirements Engineering, Requirements Representation, Syntax, Semantic

*Corresponding author

\textit{Email address: riad.sonbol@hiast.edu.sy} (Riad Sonbol)
1. Introduction

Requirements Engineering (RE) is the most critical phase of the software development life cycle [1]. It aims to specify precisely the requirements that must be met or possessed by the desired system [2]. RE involves a wide range of tasks related to extracting, documenting, analyzing, validating, and managing requirements [3]. The requirement represents the core elements of all these tasks. It is a broad concept describing a purpose, a need, a goal, a functionality, a constraint, a quality, a behavior, a service, a condition, or a capability [4]. Requirements play a major role in the success or failure of software projects [5]. According to many studies, most errors in software development projects stem from the RE phase. The lack of understanding of requirements increases the risk of time and cost overrun of the project [5, 3].

Requirements come from various stakeholders who have different needs, roles, and responsibilities, and are as such prone to the occurrence of conflicts including interference, interdependency, and inconsistency [6]. Moreover, requirements typically are specified in natural languages, which increases the complexity of requirement engineering because of the inherent ambiguity, incompleteness, and inaccuracy of natural languages [7]. These factors make RE tasks challenging, time-consuming, and error-prone work mainly for large projects, as large volumes of requirements need to be processed, analyzed, and understood [8].

Many researches have been carried out on the automation of different RE tasks. The proposed approaches usually start by applying a set of Natural Language Processing (NLP) steps that extract linguistic features and information from requirements texts and construct various NLP-based representations. These representations are used in further stages to solve the targeted task (e.g., classifying requirements [9, 10, 11], detecting trace links, discovering quality defects, etc.).

In the last decade, a growing number of works employed various syntactic and semantic-based features to represent requirements. The used representation is considered one of the most important factors that affect the accuracy of the proposed solutions for different RE tasks [12, 13]. Therefore, there is a need to analyze the related literature to investigate the suggested representations, identify gaps, and guide future research.

To address the aforementioned needs, a systematic mapping review was used as a research method for this study. A mapping review is aimed at providing an understanding of the scope of the research activities in a given area [14]. Compared to a traditional literature review, a mapping review has many advantages, such as a well-defined methodology that reduces bias and a wider context that allows more general conclusions [15]. The review presented in this paper aims to identify all recently published primary literature that employs NLP-based representations to support RE tasks. We classify these works based on two aspects: the targeted RE task and the proposed representation, and identify potentials and gaps in the field to inform future research.

The rest of the paper is structured as follows: In section 2 we provide a background for NLP-related concepts. Section 3 provides a quick overview of related works. Section 4 describes the methodology adopted to conduct this study including the search terms, online databases, and the
systematic mapping process. Section 5 presents and discusses our results. We summarize our findings in section 6 and conclude our paper in section 7.

2. Background: Natural Language Processing

Natural language processing is one of the main artificial intelligence disciplines. It aims to enable computer programs to “understand” and process natural language texts to achieve some specific goals [16] [17]. Traditionally, there are three main levels of processing in an NLP-based approach: lexical and morphological level, syntactic level, and semantic level.

2.1. Morphological (or Lexical) Level

The Morphological level focuses on analyzing words into their morphemes like prefixes, suffixes, and base words. It includes common tasks, such as Tokenization and Lemmatization [18].

- **Tokenization**: the process of splitting a text into a list of tokens. Tokens can be words, numbers, or punctuation marks.

- **Lemmatization**: the process of finding the dictionary form, or the lemma, of each word. For example, the lemma of “Supporting” and “Supported” is “Support”.

2.2. Syntactic Level

The Syntactic level focuses on analyzing the grammatical structure of sentences. This level usually includes Part-of-Speech Tagging (POS-tagging), Chunking, dependency Parsing, and Named-Entity Recognition [18].

- **POS-Tagging**: the process of tagging each token in a sentence with its corresponding part of a speech tag (such as noun, verb, adjective, etc.) based on its syntactical context [19].

- **Chunking**: the process of detecting syntactic constituents such as Noun Phrases and Verb Phrases in a sentence [20].

- **Dependency Parsing**: the process of analyzing the syntactic structure of the sentence, by finding out the grammatically related words, as well as the type of the relationship between them [21].

- **Named-Entity Recognition**: It seeks to locate and classify named entities mentioned in the sentence into pre-defined categories such as person names, organizations, locations, etc [22].

2.3. Semantic Level

The Semantic level focuses on understanding the meaning of the text. The main goal of semantic processing is to automatically map a natural language sentence into a formal representation of its meaning. Different semantic representations have been proposed in the literature, such as:
Ontology-Based Representation: The ontology is a data model that represents a set of concepts within a domain and the relationships between those concepts [23]. WordNet [24] is one of the widely used lexical ontologies. Ontologies are commonly used to assign words to a predefined set of concepts and to measure semantic similarity between them using different ontology-based measures such as Wu and Palmer [25] and path-based similarity [26].

Vector Space Model (VSM): A basic representation model that represents text as a term-by-document matrix [27]. The Bag-of-Words (BOW) model is a special case for VSM where words frequencies are used as weights, and words are used as features. Other weighting factors are used in VSM, such as IDF and TF-IDF.

Topic Modeling-Based Representation: A statistical modeling approach used to discover the latent or abstract topics that occur in a set of texts. These topics are used to represent each text. This approach helps in finding a low-rank approximation to the term-document matrix by retaining the semantic relations between words. Latent Dirichlet Allocation (LDA) [28] and Latent Semantic Analysis (LSA) [29] are two common examples of this approach.

Advanced Embedding Techniques: Embedding is an efficient method for learning high-quality vector representations of words from large amounts of unstructured text data [30]. Word embedding can capture the context of a word within a document, which allows words with similar meanings to have similar vector representations. Many famous pre-trained word embeddings are available to the public, such as Word2Vec [30], GloVe [31], BERT [32], etc.

3. Related Reviews

Many reviews have been published on the relation between NLP and RE tasks [33, 34, 35]. Some of these reviews provide a broad picture of NLP activities and technologies used in the RE domain [36, 37, 38]. Dermeval et al. [36] conducted a systematic literature review to identify the primary studies on the use of ontologies in the RE domain. This study considered 77 studies published between January 2007 and October 2013. Nazir et al. [37] investigated the applications of NLP in the context of RE. It included 27 studies published between 2002 and 2016. Zhao et al. [33] introduced a comprehensive overview of the applications of NLP in RE research focusing on the state of the literature, the state of empirical research, the research focus, the state of the practice, and the NLP technologies used. This study reviewed 404 relevant primary studies reported between 1983 and April 2019.

Other reviews focused on specific RE problems. Bozyigit et al. [38] provided a review of 44 primary studies related to the automatic transformation of software requirements into conceptual models. It covered works published between 1996 and 2020.

On the other hand, a number of reviews have limited their work to specific templates for requirements [35, 34]. Amna et al. [35] reviewed studies that investigate or develop solutions for
problems related to ambiguity in user stories. The study covered 36 researches published between 2001 and 2020. Similarly, Raharjana et al. [34] presented a systematic literature review for research related to the role of NLP on user story specification. This work found 30 primary studies between January 2009 to December 2020.

Although all these works provided good information regarding requirements engineering, no conducted secondary studies have focused on the used techniques to represent textual requirements and the involved syntactic and semantic aspects in these representations.

4. Research Method

This study was undertaken as a systematic mapping review using the guidelines presented in Petersen et al. [15]. The goal of this review is to identify, categorize, and analyze existing literature published between 2010 and 2021 and use syntactic and semantics aspects to represent software requirements when handling RE tasks.

4.1. Planning

In this section, we define our research questions, the search strategy we use, and the inclusion and exclusion criteria considered to filter the results.

4.1.1. Research question

Our work is guided by the following main research questions:

“How are the syntactic and semantics aspects considered to represent software requirements when handling RE tasks?”.

This question is detailed in the following five RQs:

(RQ1) What is the state of the published literature on RE works that use syntactic and semantic representations for requirements?

Group	Main Keyword	Enriched List
Group A	Requirements Engineering	"requirement engineering" AND "software requirement"
Group B	Syntactic Processing	"syntax" OR "POS-tagging" OR "tagging" OR "Dependency Parsing" OR "shallow parsing" OR "chunking" OR "named entity recognition"
Group C	Semantic Processing	"semantic" OR "BERT" OR "word embedding" OR "word2vec" OR "Vector Space Model" OR "VSM" OR "Latent Semantic Analysis" OR "LSA"

Table 1: Keywords used in our study
(RQ2) In which RE tasks are the syntactic and semantic aspects mostly considered to represent requirements?

(RQ3) What are the proposed representations in the literature for RE tasks?

(RQ4) What are the main research directions to represent requirements for each category of RE tasks?

(RQ5) What gaps and potential future directions exist in this field?

While the first question (RQ1) focuses on having a general overview of the published works (number of publications and the top publication venues), the second and the third questions analyze the targeted problems in RE (RQ2) and the proposed solutions (RQ3). The fourth research question (RQ4) explores the current research directions for each category of RE tasks, and the fifth question (RQ5) discusses the gaps and possible future improvements in this domain.

4.1.2. Search Strategies

We used five digital libraries to conduct the automated search: Scopus, IEEE Xplore, ACM Digital Library, ScienceDirect, and SpringerLink. Scopus and ScienceDirect are general indexing systems that help to cover a broader scope for our search. On the other hand, IEEE Xplore, ACM Digital Library, and SpringerLink publish papers related to the most well-known conferences and journals related to the software domain.

The search string is built based on the following three key terms: “Requirements Engineering”, “Syntactic Processing”, and “Semantic Processing”. These terms are derived from our main research question. Each of these terms is enriched by adding synonyms and sub-fields. Table 1 shows the whole set of selected keywords for this study divided into three groups: A, B, and C. These groups were used to create the final search query as follows:

\[A \ AND \ (B \ OR \ C) \]

4.1.3. Inclusion and Exclusion Criteria

Inclusion and exclusion criteria are used to filter out papers that are not relevant to our research questions. We defined three inclusion criteria and four exclusion criteria.

Inclusion Criteria:

1C1: Peer-reviewed research presents an approach related to the field of software requirements engineering.

2C2: The research uses NLP techniques including syntactic or semantic processing.

3C3: It is published between 2010 and 2021

Exclusion Criteria:

EC1: Secondary research is excluded (such as literature reviews, summaries, etc.)

EC2: The research is published in languages other than English
EC3: Duplicate papers (only the most recent and detailed one is considered)
EC4: The study does not provide detailed information about the proposed approach (such as, short papers, posters, etc.)

4.2. Conducting the Search

The review process consists of five main stages. Figure 1 illustrates these stages and the numbers of selected publications after each stage. Starting from the defined data sources, we obtained a total of 2,227 candidate papers. Duplicated papers were automatically eliminated using Parsifal tool\footnote{https://parsif.al} first, and then additional duplicate entries were manually eliminated by comparing authors, titles, and abstracts. After removing all duplicates, 1,573 papers remained.

These papers are filtered by applying the selection criteria based on titles and abstracts. This stage led to the selection of 252 papers. A full-text review of those papers was then conducted to discard papers that did not satisfy our selection criteria. The remaining primary research papers after this stage are 98. Finally, reference checking led to an additional 6 relevant papers. After these stages, our final list consists of 104 unique primary papers.
4.3. Data Extraction and Classification

A Data Extraction Form (DEF) is developed to collect the required data to answer our RQs. The form is designed in a table format consisting of the following types of information:

- Bibliometric Information: author(s), publication year, type of publication, and publication venue.
- Targeted RE task(s).
- Proposed solution including the Syntactic and semantic information used to represent requirements.
- Evaluation Details: evaluation dataset, used metrics, and the results.
- Limitations and constraints.

5. Results and Discussions

This section describes and explains the results obtained by the analysis of the 104 selected papers answering the RQs exposed in the previous sections.

5.1. (RQ1) What is the state of the published literature on RE works that use syntactic and semantic representations for requirements?

As previously mentioned, our final list consists of 104 unique peer-reviewed research papers. Fig. 2 shows the distribution of these publications per year. This chart reflects a growing interest in the use of syntactic and semantic levels of processing to handle RE tasks. The vast majority of papers (more than 85%) have been published since 2015.

Among the selected papers, 47% of them appeared in journals; 42% of papers were published in conference proceedings, while 11% of papers came from workshops.

The most popular venue for publishing articles related to our study is IEEE International Conference on Requirements Engineering and its workshops with more than 12% of papers, while the most popular journals are: Information and Software Technology, Empirical Software Engineering, Requirements Engineering with 5-6% of papers in each of them.

5.2. (RQ2) In which RE tasks are the syntactic and semantic aspects mostly considered to represent requirements?

We classified the retrieved papers based on the type of the targeted RE task. Fig. 3 shows the hierarchy of all 104 papers categorized into 6 top-level categories and 19 subcategories. The six main categories are:
5.2.1. Requirements Analysis

This category represents the majority of publications (50 out of 104 papers). It includes papers focusing on the following RE tasks:

- **Requirements Classification**: Requirements classification is an important step towards automatically analyzing natural language requirements, especially when handling projects with large numbers of requirements [10]. We recognized 21 papers proposing solutions to various requirements classification tasks. Most of them focused on Functional/Non-Functional classification tasks [39, 40, 41, 10, 11, 42, 43, 44, 45, 46, 47, 48, 49], while the remaining focused on other classification tasks: security/Not security [50, 51, 52], topic-based classification [53], and classification based on requirements importance level [54].

- **Requirements Traceability**: Requirements traceability is used to capture the relationships between the requirements, the design, and the implementation of a system [55]. We recognized 21 papers related to this task, part of which focused on detecting the relationships between requirements (inter-dependency between requirements) [56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66], while the remaining focused on detecting the relationships between requirements and other artifacts (design documents and source code) [67, 55, 68, 69, 70, 71, 72, 73, 74].

- **Requirements Clustering**: Requirements clustering is used to organize software requirements into a set of clusters with high cohesion and low coupling [75]. We recognized 5 papers presenting approaches to cluster requirements. These papers used the resultant clusters to understand the main functional groups or topics over requirements [76, 77, 78], to organize
Figure 3: A chart illustrating the hierarchy of papers categorized based on their targeted RE task.
requirements in a tree structure (hierarchy) [70], or as a step towards discovering redundancy and inconsistency between requirements [80].

- **Semantic Role Labeling:** Semantic role labeling is the task of extracting semantic information from a software requirements specification [81]. Four papers addressed this task [82, 83, 81]. These works focused on mapping requirements to formal representations by extracting their main semantic elements such as actors, actions, and objects.

5.2.2. Requirements Extraction

Requirements extraction (or elicitation) is one of the crucial steps in software development. We recognized 19 papers addressing tasks related to this category. These papers can be divided into three groups:

- **Extracting Requirements from Reviews and Forums:** 9 papers [84, 85, 86, 87, 88, 63, 89, 90, 91] proposed solutions for this task, where various applications reviews and forums are used as a source for input texts such as App Store and Google Play.

- **Extracting Requirements from Textual Documents:** 7 papers [92, 93, 94, 95, 96, 97, 98] presented approaches to extract requirements from SRS documents, policies, user manuals, and emails.

- **Extracting Requirements from Similar applications:** 3 papers [99, 100, 101] focused on recommending requirements based on the specifications of similar applications. This goal is achieved by processing the description of similar products to suggest new possible features and generate creative requirements.

5.2.3. Quality assessment

Quality assessment tasks are concerned with detecting defects in software requirements specifications. [102, 103]. We recognized 17 papers focusing on tasks related to the following quality assessment tasks:

- **Ambiguity Detection:** This task helps in the identification of ambiguous requirements. The works under this sub-category (9 papers) can be further classified based on the discussed level of ambiguity:
 - Lexical Ambiguity: The main focus at this level is the ambiguity caused by words and terms. We recognized 6 papers related to this level [93, 104, 105, 106, 10, 107].
 - Syntactic Ambiguity: This level focuses on detecting sentences that have different possible grammatical structures. We recognized one paper handling this level of ambiguity (Osama et al. [108]).
– Semantic Ambiguity: This level focuses on detecting confusing contexts in sentences such as anaphoric ambiguity and coordination ambiguity. We recognized one paper handling this level (Ezzini et al. [109]).

– Pragmatic Ambiguity: This level focuses on detecting sentences with multiple meanings. We recognized one paper handling this level (Ferrari et al. [110]).

• Incompleteness Detection: This task is concerned with detecting any possible incompleteness in requirements statements. We recognized 3 papers handling this task [111, 112, 113].

• Conformance With Templates: This task focuses on verifying that the requirements are indeed written according to pre-defined templates. We recognized one work proposing a solution to handle this task (Arrora et al. [114]); specifically, this work focused on checking the conformance of requirements with two well-known templates: Rupp [115] and EARS [116] templates.

• Vagueness Detection: Vagueness occurs when a statement can have a continuum of interpretations (e.g., when using words like tall, large, etc.). We recognized one paper focusing on this problem (Cruz et al. [117]).

• General Assessment: Other papers suggest approaches providing a general assessment for different aspects of requirements quality. Three papers can be classified under this type [118, 102, 103].

5.2.4. Modeling
Modeling software requirements is the process of transferring the natural language requirements into models and diagrams [119]. We recognized 12 papers proposing solutions related to this type of RE tasks. One of the main differences between these works is the type of the generated model:

• Use Case Diagrams [120, 121, 119, 122], that focus on actors and their corresponding actions.

• Feature Models [123, 124], that define features and their dependencies.

• Conceptual Diagrams [125, 126], that focus on concepts and relationships between them.

• Glossaries [127, 128], which define technical terms which are specific to an application domain.

• Goal Models [129], that focus on the objectives which a system should achieve through the cooperation of actors in the intended software and the environment.

• Semantic of Business Vocabulary and Rules (SBVR) [130], which defines the semantics of business vocabulary, business facts, and business rules.
5.2.5. Requirements Management

Requirements management is an ongoing activity throughout the development process. We classified two tasks under this category:

- **Requirements Prioritization:** the main target for this task is to determine which candidate requirements of a software product should be included in a certain release. We recognized 5 papers handling this task [132, 133, 134, 135, 136].

- **Effort Estimation:** This task focuses on estimating the effort involved in implementing a requirement [137]. We found 2 papers proposing methods to handle this problem [138, 137]. Both of them focused on estimating the effort in Agile development methodologies.

5.2.6. Others

One of the retrieved papers (Mishra et al. [139]) focused on building a language model for the software requirement domain. This model was based on a domain-specific text corpus collected by crawling the software engineering category on Wikipedia.

5.3. (RQ3) What are the proposed representations in the literature for RE tasks?

In general, almost all covered papers consist of two main phases:

1. **Representation Phase:** NLP processing steps are applied to analyze requirements texts, and to capture linguistic information in order to represent them in various forms.
2. **Solving Phase:** the results of the previous stage are used to solve the targeted problem based on various ML and non-ML approaches.

Fig. 4 shows these two phases and the techniques used for each of them. Overall, we recognized five different text representation techniques used to handle the first phase: Lexical and syntactic features, ontology-based representation, VSM, topic modeling-based representation, and advanced embedding techniques. On the other hand, two families of solutions were proposed for the second phase: Machine Learning approaches which represent 55% of papers, and Rule-Based approaches (in 45% of papers) where patterns, regular expressions, and heuristics were used.

To answer our third research question (RQ3), we explore the representations used in the first phase in more detail:

5.3.1. Lexical and Syntactic features

This part represents the largest group with more than 46% of papers (48 out of the selected 104 papers). The solutions proposed in these papers share a similar pipeline: (1) Applying a set of NLP pre-processing steps. (2) Representing each requirement as a pre-defined set of linguistic features. (3) Then, proceeding to the solving phase which uses ML techniques (such as Decision Trees [97, 138, 81, 118, 62], SVM [53, 10, 88], and RF [90, 60, 90, 49]), or rule-based approach using a set of syntactic regular expressions [125, 95, 126, 130, 117].
The used pre-defined set of features (in step 2) usually includes features related to the following four groups:

- **The lexical and morphological features**, which are based on requirement words and their morphological information, such as token, stem (or lemma), n-gram (sequence of words).

- **The syntactic features**, which are derived from the syntax-related information in the requirement statement, such as POS-tag, chunks (noun or verb phrases), dependency relations, and the entities extracted using NER.

- **The frequency-based features**, which are based on the requirements list frequency metadata such as the number of words and the number of requirements.

- **Dictionary-based features**, which are extracted with the help of special dictionaries representing special words lists.

To further investigate the commonly used features, Fig. 5 shows the most frequently used features and the number of papers that consider each of these features. The most used feature is the POS-tag, as it is considered in 34 out of the total 48 papers related to this type of representation.
5.3.2. Ontology-Based Representation

This group represents about 9% of papers (9 out of 104). It benefits from pre-defined lexicons and semantic resources to extend the lexical and syntactic features. Most of these papers used a rule-based approach in their solutions by applying various ontology-path-based similarity measures. [110, 105, 74, 109, 113].

One of the main differences between these papers is whether the used ontology is general or domain-specific. Fig. 6 shows three types of works under this category based on the type of the used ontology: 6 papers used a general ontology (specifically WordNet) [127, 129, 113, 105, 140, 74], while 2 papers used a domain-specific ontology [110, 109], and one paper merges both approaches in its similarity calculations [83].

5.3.3. VSM

Various forms of VSM representation are used in 15% of papers (15 papers). These works combine the BOW technique with different weighting methods. The most frequent combination is BOW with TF-IDF (10 papers). Fig 7 shows all used weighting methods with their frequencies.
5.3.4. Topic modeling based representations

About 8% of papers (8 papers) used topic modeling techniques to represent requirements texts based on automatically discovered latent topics. Two main topic modeling techniques are used in these papers: LSA and LDA. Fig 8 shows the distribution of these two techniques over the related papers.

The output of both techniques is a k-dimensional space that reflects a k latent topics within the processed requirements. Then, each requirement is represented as a vector representation in this k-dimensional space. In most related papers, this representation is employed to calculate the similarity between requirements as a part of similarity-based rules [70, 107] or clustering machine learning techniques [135, 99, 78].

5.3.5. Advanced Embedding Representations

This part represents the second largest group of papers (24 papers) with a major increase in the last couple of years. It is noted that papers that use this kind of representations achieve promising results in many major tasks such as requirement classification [111, 50, 51], traceability [64, 56, 59, 58], ambiguity detection [106], and requirement extraction [98, 91].
Based on this type of representation, each requirement is represented as a vector of floating point values. The proposed representations in the related papers are built following two generic steps (Fig. 9): First, each token in the requirement text is represented using a word embedding technique; then the final requirement representation is constructed using the representation of its words. To further investigate papers that use advanced embedding techniques, we explore the techniques and models used in the implementation of each of these two steps.

- **Word Representation:** Various word embedding techniques were used in the related literature. Word2vec and BERT are the most common techniques utilized in this group; together they were used in 17 out of the total 24 papers related to this group. Other works used GloVe and FastText models, while the remaining papers used an embedding layer instead (added to the front of their neural network model).

 Table 2 shows the related papers for each of the used word embedding techniques.

Word Embedding	Related Papers
word2vec	[101, 104, 106, 139, 59, 67, 50, 43, 58, 76]
BERT	[11, 47, 56, 64, 91, 84, 98]
Embedding Layer	[39, 51, 137, 112]
GloVe	[54]
FastText	[128, 66]

Table 2: The used word embedding techniques with their related papers.

- **Statement Representation:** Papers that use this type of representation can be further classified based on the method used to merge word embeddings in order to represent statements. Table 3 shows all related papers classified into three types of statement embedding techniques.

Statement embedding	Related Papers
Aggregation-based	[11, 47, 50, 64, 91, 84, 98, 128, 66, 101, 104, 59, 58, 76]
RNN-based	[54, 51, 137, 67, 112, 43]
CNN-based	[39, 50]

Table 3: The used statement embedding techniques with their related paper.

The *aggregation approach* is the most used technique (16 out of 24). It produces the requirement representation by applying various aggregation methods on word embedding results such as:

- Using the average of words embedding to represent statements [101, 128, 66].
- For BERT-based word embedding, a special token ([CLS]) is added to the beginning of the sentence and is used to calculate an aggregated representation of the statement [11, 64, 91, 84, 98].
- Combining the syntactic information with the semantic ones by (1) classifying words based on their syntactic role, (2) calculating the weighted average for each role, then (3) concatenating the resultant vectors to form the final representation \[58\].

- Representing requirements by representing its main ”semantic frames” which can be retrieved with the help of FrameNet \[142\]. The representation of these frames is calculated by averaging the embedding vectors of their words \[59\].

Recurrent Neural Network (RNN) based representation takes word embedding vectors as input. It finds a dense and low-dimensional semantic representation for each requirement statement by sequentially and recurrently processing its words. Many RNN architectures have been used in the related papers such as LSTM \[51\] \[137\] \[43\], Bi-LSTM \[51\], Bi-GRU \[67\], and Skip-Thought \[112\].

Convolutional Neural Network (CNN) based representation takes word embedding vectors as input. It finds the final representation through a number of convolutional layers, pooling layers, and fully connected layers \[39\] \[50\].
5.4. (RQ4) What are the main research directions to represent requirements for each category of RE tasks?

To answer this question, we start with a general overview of how the research directions to represent requirements have evolved over the last decade; then we present a deeper analysis of the trends and possible future directions in each category of RE tasks.

5.4.1. General Overview

Fig. 10 shows the number of papers according to the used NLP representation and the year of publication. The bubble chart (Fig. 10) shows clearly how the trend has changed in the last few years from the lexical and syntactic features to the advanced embedding techniques. These embedding representations became the most used type in the last 2 years (2020-2021) with 15 out of 40 published works in that period.

![Figure 10: Bubble chart showing the number of papers according to the used NLP representation and the year of publications](image)

5.4.2. Research directions for each category of RE tasks

To further investigate the trends of various representations, we studied their distribution over the main categories.

Fig. 11 shows the number of papers that used each of these representations for each category. As noted, representing requirements based on a set of lexical and syntactic features is the most used approach in many tasks, especially in quality assessment and requirement modeling. However, there is a clear interest in the use of advanced embedding and VSM-based representations in requirement analysis tasks.

![Figure 11: Number of papers by category and year](image)
The following sub-sections discuss the trends for each category.

• **Requirement Analysis:** Embedding techniques have been proven to be useful for various requirement analysis tasks [11, 64, 58, 59]. Two recent studies [11, 64] compared the performance of lexical-syntactic features representation with advanced embedding representation, and concluded that using embedding vectors led to better results in requirement classification [11] and traceability detection [64] tasks. This finding is consistent with the results observed in the NLP literature [143], which indicate that embedding techniques are powerful in determining the similarity of words and sentences. Similarity represents the core operation in almost all requirements analysis tasks.

• **Quality Assessment:** More than 50% of quality assessment papers used lexical and syntactic features to represent requirements (Fig. 11). However, a deeper analysis of related papers showed that we can differentiate between two types of quality-related RE tasks:
 - The majority of papers focused on lexical and syntactic quality-related issues such as lexical ambiguity and conformance with templates. Many significant contributions provide experiments that indicate the effectiveness of using lexical and syntactic features to represent requirements when handling this category of tasks [103, 102, 114, 144].
 - The remaining papers focused on semantic quality-related issues such as incompleteness, and semantic-level quality problems. For these tasks, the most used representation in the literature is ontology-based representation [109, 113, 111]. Besides, one of the recent interesting works employed advanced embedding representation based on an embedding layer with a Skip-Thought model to handle incompleteness detection problem [112].

• **Requirements Extraction:** It is noted that there are two directions to handle requirements extraction tasks based on the source of data:
 - Extracting requirements from documents: the structured format of these documents
motivated many researchers to use lexical and syntactic features. All retrieved papers under this sub-category used lexical and syntactic representations [92, 96, 95].

- Extracting requirements from reviews, forums, or similar applications: Most of the recent papers (especially the ones published in the last 2 years) used advanced embedding techniques to handle these tasks [84, 91, 101]. This finding could be due to the approaches used to handle this type of requirement extraction tasks; most solutions handle the problem as a classification task (classify sentences or phrases into requirements or not requirements classes) or a clustering task (group sentences that mention the same aspects in the product). Both approaches (clustering and classification) make the embedding technique more suitable (as mentioned previously when discussing the requirement analysis case).

Requirements Modeling: Almost all works under this category represent requirements based on their lexical and syntactic features or using ontology-based representation [130, 120, 129]. These features are used in the form of rules and syntactic patterns to generate various models based on rule-based transfer techniques.

Requirements Management: Most of the papers under this category use lexical and syntactic features representation [136, 133, 134]. However, the number of NLP-based publications related to this category is still limited to have a clear conclusion regarding the suitable representations for this type of tasks.

5.5. (RQ5) What gaps and potential future directions exist in this field?

Our survey shows that the use of NLP-based requirements representation has made remarkable progress over the last decade. Based on our findings in the previous research questions (especially RQ4), the use of advanced embedding techniques to represent requirements seems to be promising for most RE tasks (mainly requirement analysis, extracting requirements from reviews and forums, and semantic-level quality tasks). Besides, representing requirements based on a set of lexical and syntactic features or using ontology-based information seems more suitable for other RE tasks (such as modeling and syntax-level quality tasks).

In the following paragraphs, we will discuss the gaps that represent potential future research directions in this domain.

5.5.1. More RE domain-specific word embedding models

As shown in Fig. 9, word representation plays an essential role in representing requirements (mainly when using embedding techniques). To implement this step, most researchers use generic word embedding pre-trained models in their solutions. One of the main limitations of these generic models is their inability to provide appropriate representations for many domain-specific words.
For example, the domain-specific meaning of words like "virus", "cookies", "Python", "fork", etc. can not be captured based on models trained on generic corpora [139]. Building such domain-specific word embedding models is notoriously a challenging task, especially with the little size of data available in the RE domain. One of the recent works [139] provided an embedding model trained on 92 MB of texts collected from Wikipedia pages related to the software engineering domain. However, more research is needed (1) to have embedding models trained on more practical industrial texts, (2) and to evaluate the use of these models in various RE tasks.

5.5.2. More suitable statements representation techniques

Another important challenge, related to embedding techniques, is the way of merging word vectors to formulate requirements representations (step 2 in Fig 9). Although the suggested techniques lead to good accuracy in some RE tasks (such as requirements classification and traceability detection), these representations can still be considered as a step towards more suitable representations. Most of these works use aggregation techniques (that ignore word order [145]) or RNN-based technique (that usually focus on predicting the next element in a sequence [146]). These works can be further improved by considering more RE domain-specific representations [58]. One of the main potential future directions to handle this problem is using a "syntax-aware sentence embedding" technique that considers both the main syntactic roles in requirement statements (such as actor, action, objects,...) and the semantic aspects of requirements.

5.5.3. More adaptive syntactic processing

Many studies have concluded that there is a gap between RE tasks automation research and its implementation undertaken in industrial and real-life projects [147, 148, 149]. This gap is more obvious in the case of rule-based approaches since they usually need the requirements to be represented based on specific templates [150]; hence, their success strongly depends on the consistency of the requirements with the predefined templates [114, 150]. Using such “template-based” approaches to handle RE tasks could lead to lower accuracy when applied to new requirements written based on some variations of the predefined template or a completely different template. These situations are common in real-life projects when it is hard to control requirements authoring environments, especially in large development projects, or when one has little control over the requirements authoring environments [114, 151, 147, 148, 149, 150, 12]. One of the potential future research directions is working on more adaptive approaches which can be more flexible when handling requirements, such as identifying the syntactic structures automatically and building more adaptive approaches based on the dynamically identified structure.

5.5.4. More research in some RE tasks

Only a few works handled the following RE tasks: requirements prioritization, effort estimation, and semantic and pragmatic level quality tasks. More research should be conducted to explore the efficiency of using advanced embedding techniques for these tasks.
6. Main Findings:

In this section, we summarize the main conclusions and findings in the following points:

(1) There is a significant increase in the number of papers that use NLP-based requirements representation over the last decade. The increase is more obvious in the last 2 years.

(2) We recognized 104 papers that employed an NLP-based representation to solve various RE tasks. We classified these works based on (1) the targeted RE task using a hierarchy consisting of 6 top-level categories and 19 sub-categories (Fig. 3), (2) the used NLP-based representation using 5 classes of text representation techniques (Fig. 4).

(3) Using advanced embedding techniques to represent requirements seems to be promising for most RE tasks (especially requirement analysis, extracting requirements from reviews and forums, semantic-level quality tasks). Besides, representing requirements based on a set of lexical and syntactic features or using ontology-based information seems more suitable for other RE tasks (such as modeling and syntax-level quality tasks).

(4) Most of the proposed embedding-based representations use generic language models that suffer from limitations when representing the meaning of software engineering terms. Having more domain-specific language models to represent words is considered one of the important research directions in future works.

(5) Most of the proposed embedding-based techniques represent requirements statements without giving attention to the special structure of a software requirement that consists of clear components (actor, action, data object, etc). Using syntax-aware statements embedding could be one of the possible solutions to have more domain-specific representations that reflect the semantics of requirements in a better way (compared to traditional aggregation approaches).

(6) There is a need for more flexible approaches in terms of the ability to handle requirements that do not follow (completely or partially) standard requirements templates, which is the common case in real-life projects.

(7) The number of researches that use NLP-based representation is still limited for some RE tasks (requirements prioritization, effort estimation, semantic-based quality assessment).

Finally, tables 4 and 5 summarize the extracted information for all 104 selected papers, in addition to their categorization based on their targeted RE task and the used text representation. In the matrix represented in Table 4 each cell includes the papers related to each category of RE tasks and text representation. Note that two papers ([97] and [98]) are mentioned twice in the table since they are related to both requirement analysis and requirement extraction categories. Table 5 shows a detailed summary of the 104 papers. This table includes detailed information about the input and the output of the approach proposed in each paper. In addition, it encloses other descriptive information including the employed text processing steps, details about the solution technique (e.g., which ML approach is used), the used dataset, and a summary of the results.
Table 4: The final list of selected papers categorized based on the type of targeted RE task and the used text representation

This table provides a starting point for researchers and practitioners in this field to obtain a quick overview of the state-of-the-art in each RE task, including the recommended dataset to be used and the most related publications.

7. Threats To Validity

Likewise any secondary research process, it is almost impossible to guarantee that we found the entire population of all the relevant papers. However, several actions were undertaken to minimize threats to validity.

- To ensure the inclusion of almost all relevant academic works in the field, we followed a systematic mapping review methodology based on the recommended guidelines for similar cases.[15].

- Five reputable and well-known data sources (Scopus, IEEE Xplore, ACM Digital Library, ScienceDirect, and SpringerLink) were chosen to maximize the number of candidate papers.

- We tried to make our search string as general as possible by including various synonyms for each term and by including papers that cover either syntactic or semantic aspects. However,
the final search string may not encompass all the existing synonyms, which might lead to not capturing all the relevant studies. We mitigated this threat by checking the references of the final selected papers to add any additional relevant works.

• To minimize mistakes caused by subjective analyses, we followed a rigorous study selection process, guided by clear inclusion and exclusion criteria. However, the exclusion of papers published in languages other than English may have failed to potentially find some relevant works.

• When there were doubts or conflicts about whether to include an article or not, the final decision is discussed between authors.

• To obtain data consistency and avoid bias in data extraction, we defined a clear data extraction template and discussed our results in several brainstorming sessions.

8. Conclusion

This study presents a systematic mapping review of the used NLP-based representations in various RE tasks. Starting from 2,227 papers retrieved from five well-known digital libraries, we recognized 104 primary papers fulfilling the inclusion and exclusion criteria. We analyzed these works and categorized them based on: the targeted RE task and the used text representation.

Our results indicate that about two-thirds of retrieved publications handle tasks related to requirements classification, requirements traceability, ambiguity detection, and extracting requirements from reviews and documents. On the other hand, Lexical and syntactic features are widely used to represent requirements (more than 45% of publications). Besides, a growing number of papers use advanced word embedding techniques, especially in the last two years. Moreover, we summarize the main research directions to represent requirements in each category, and identify the gaps and possible future directions.

The data extracted from the selected 104 papers and their categorization, can help as a useful set of references for further analysis in each task or category of tasks in RE. Besides, trends and gaps identified from this mapping study have provided many new ideas for research opportunities.
Paper	Targeted Task	Input	Output	Representation Method	Solving Method	Text Processing	Solving Method Details	Dataset	Results
Baker et al.	Classification	a Req	NFR classes	Advanced Embedding	ML	Stop words removal; Tokenization; Stemming;	ANN; CNN*	PROMISE+	F1: 0.82-0.92
Dias et al.	Classification	a Req	FR/NFR; NFR classes	VSM	ML	Stop words removal; Tokenization; Stemming; BOW; TFIDE, CH2 feature selection	SVM*; MNB; KNN; LR	PROMISE (lima version)	F1: FR/NFR 0.91 / NFR: 0.72
Casamayor et al.	Classification	a Req	NFR classes	VSM	ML	Stop words removal; Stemming; BOW + TF-IDF	Bayesian Classifier + EM strategy	PROMISE	Acc: 0.75
Dalpiaz et al.	Classification	a Req	FR/QR	Advanced Embedding	ML	17 lexical-syntactic features including syn. dependency-based features	SVM	PROMISE+	F1: F(0.79); Q(0.76)
Hey et al.	Classification	a Req	FR/QR; NFR classes; FR classes	Advanced Embedding	ML	BERT	FFNN	PROMISE (Dalpiaz Version)	FR/QR up to 0.94; NFR 0.87; FR up to 0.92
Khatian et al.	Classification	a Req	NFR classes	VSM	ML	Stop words removal; Stemming; BOW	DT; KNN; RF; NB; LR*	PROMISE	F1: 0.75
Rahman et al.	Classification	a Req	NFR classes	Advanced Embedding	ML	word2vec	LSTM; GRU; CNN	PROMISE	F1: 0.71
Rashwan et al.	Classification	a Req	NFR classes	Lexical and Syntactic Features	ML	Tokenization, Sentence splitter, Stemming;	SVM	CONCORDIA +PROMISE	F1: 0.67-0.84
Younas et al.	Classification	a Req	NFR classes	Lexical and Syntactic Features	Rule-Based	stopwords removal, stemming, POS-tagging, famous NFR indicator keywords	similarity-based approach	PROMISE	F1: 0.64
Mahmoud et al.	Classification	a Req	NFR classes	Lexical and Syntactic features	Rule-Based	Lemmatization; Normalized Google Distance (NGD)	similarity-based approach	Own Dataset	R: 0.88 /P: 0.52
Authors	Methodology	Task	Features/Models	Algorithms/Models	Datasets/Other	F1 Score			
------------------	------------------------	---------------------------	--	--	--	----------			
Kici et al.	Classification	a Req.	Advanced Embedding	multi-class text classification	DOORS + PROMISE	F1: 0.80			
Raharja et al.	Classification	a Req.	VSM	Tokenization, Stop words removal, Stemming, TF-IDF	6 datasets (PROMISE-)	P: 0.68;			
				Fuzzy similarity measure + KNN	R: 0.55				
Chatterjee et al.	Classification	a Req.	Advanced Embedding	GloVe trained on 124 SRS Bi-LSTM + Attention	Own Dataset	F1: 0.86			
Palacio et al.	Classification	a Req.	word2vec trained on a collected security dataset	CNN	Own Dataset	Acc: 0.71-0.96			
Kobliica et al.	Classification	a Req.	BOW	22 ML algorithm (including LSTM*)	SecReq	Acc: 0.84			
Li et al.	Classification	a Req.	Lexical and Syntactic Features	J48; NB; LR	SecReq + PROMISE	F1: 0.63			
Silva et al.	Classification	a Req.	TF-IDF	LR, MNB, SVM*, RF	PROMISE+	F1: 0.52			
Ott at al.	Classification	a Req.	Tokenization, n-gram, Surrounding requirements	MNB, SVM*	DCU	R: 0.8/ P: 0.6			
Krasniqi et al.	Classification	Issues	VSM	RF	Own Dataset	F1:0.79			
Gulle et al.	Clustering	a set of Req.	advanced embedding	Word Mover’s Distance based clustering	CrowdRE	no measure exists			
Casamayor et al.	Clustering	use-cases	Clusters for functional group	Clustering Based on EM, CohWeb, Xmeans, DBScan	Own Dataset	Rand Index: 0.80			
Misra et al.	Clustering	SRS Document	Topic modeling	Theme based clustering	Own Dataset	Purity: 0.46; F1: 0.52.			
Authors	Task	Two Reqs / Similarity score	Processing	ML	Text Processing	Similarity	Results		
----------------------	-----------------	----------------------------	------------	----	-----------------	------------	---------		
Eyal et al. [79]	Clustering	a set of Req.	Clusters	VSM	Tokenization; stopwords removal; stemming; VSM	Agglomerative Hierarchical clustering (AHC)	Own Dataset	P:0.72-0.83/R:0.54-0.61	
Meghmani et al. [80]	Clustering	SRS Document	Clusters	ML	pos tagging; NP chunking to detect technical business terms	K-mean	Own Dataset	No Available Results	
Das et al. [56]	Traceability	Two Reqs	Similarity score	Rule-Based	BERT	Cos Similarity	800 pairs of reqs	Acc: 0.88	
Blake et al. [57]	Traceability	Two SRS documents	identify overlapping requirements	Rule-Based	Tokenization; stopwords removal; generate synonyms; determine verbs	Similarity between reqs is calculated based on number of similar words	Own Dataset	Not Available	
Sonbol et al. [58]	Traceability	Two Reqs	similarity score	Rule-Based	Advanced Embedding	Manhattan Distance Based Similarity	5,852 pairs of reqs	F1: 0.92	
Alhoshan et al. [59]	Traceability	Two Reqs	Similarity score	Rule-Based	Advanced Embedding	relatedness score based on frame Embeddings and cos sim	1,770 pairs of reqs	F1: 0.86	
Deshpande et al. [60]	Traceability	Two Reqs	Dependence and its type	ML	tokenized, stop words removal; lemmatization	RF, SVM, NB	PURE dataset	F1: 0.89	
Samer et al. [61]	Traceability	Two Reqs	related / not related	ML	Stop words Removal, merged synonyms, lemmatization	Linear SVM, NB,RF*, and KNN	OpenReq Dataset	F1: 0.89	
Sultanov et al. [62]	Traceability	Two Reqs	related / not related	VSM	stop words removal, stemming, VSM+TF-IDF; agent words	swarm intelligence	Own Dataset	F1: 0.58	
Authors	Traceability	Two Reqs	related / not related	lexical and syntactic features	rule based	(A) Jaccard sim based approach (B) stop words removal; stemming; SVM + Freq; Cos similarity	apply two approaches and use fuzzy logic to merge results	Own Data	Acc: 0.83
------------------	--------------	----------	-----------------------	---------------------------------	-----------	--	--	-----------	------------
Lu et al. [63]	Traceability	Two Reqs	related / not related	advanced embedding	ML	BertForSequenceClassification	Redmine Dataset	Own Data	F1: 0.93
Deshpande et al. [61]	Traceability	two Reqs	related / not related	advanced embedding	ML	word2vec trained on a domain corpus	Own Dataset	Mean Average Precision: 0.59	
Guo et al. [67]	Traceability	SRSs and Design documents	related / not related	advanced embedding	ML	RNN (Bidirectional Recurrent Gated Unit)	Own Dataset	F1: 0.56	
Chhabra et al. [73]	Traceability	use cases+code-reqs links	VSM	VSM based model	a set of heuristics	Own Dataset	F1: 0.56		
Wang et al. [55]	Traceability	reqs and artifacts	trace links	VSM	rule based	normalization, stemming, VSM, word2vec	EasyClinic, iTrust, eTour	Not Available	
Wang et al. [65]	Traceability	reqs and artifacts	trace links	Topic modeling	ML	stop words removal, pos tagging, stemming, TF-IDF, Topic Modeling	Biterm Topic Model–Genetic Algo	Own Dataset	R/P larger than 0.70/0.30
Rasekh et al. [69]	Traceability	reqs and artifacts	trace links	VSM	ML	TF-IDF + BoW	Bayesian learning, RBF Network, LR, SVM, DT	EasyClinic, albergate	P:0.91; R:0.94
Mahmoud et al. [70]	Traceability	reqs and artifacts	trace links	Topic modeling	rule based	VSM, VSM with thesaurus support (VSM-T), POS-enabled VSM (VSM-POS), latent semantic indexing (LSI), LDA, explicit semantic analysis (ESA), and normalized Google distance (NGD).	CM-1, VSM-T, VSM-POS, ESA, and NGD outperform LSA and LDA.	Own Data	R:0.94
Author(s)	Year	Area	Methodology	Tools	Results				
---------------------	--------	-----------------------	--	--	--				
Alia et al.	2011	Traceability	VSM, rule based pos tagging, stemming, apply baseline approaches + Constraint-based pruning to approve links	iTrust, Pooka, Lynx, SIP	11%-107% and 8%-64% higher P and R than VSM and JSM				
Aldekhail et al.	2012	Traceability	rule based basic NLP processing, rule based system to identify conflicts	CPMS, ENP, FMS	Accuracy: 100%				
Shah et al.	2013	Traceability	ontology-based tokenization, pos tagging, parser, dependency tree, WordNet	clustering requirements, then process clusters to detect conflicts	5 datasets	F1:0.65			
Arora et al.	2014	Traceability	ontology-based chunking; extract NP and VP; similarity measure using Levenshtein and path based sim	similarity based algorithm	Two industrial case studies	detected 99% of the impacted reqs			
Nicholson et al.	2015	Traceability	advanced embedding ML word embedding	LR*, RF, NN	3 test cases	F1: 0.55-0.67			
Leitao et al.	2016	Traceability	Association Rule Mining	Own Dataset	238 rules were extracted				
Diamantopoulos et al	2017	Semantic Role Labeling	concepts + relations lexical and syntactic features ML	logistic regression classifier	Own Data	F1: 0.76			
Wang et al.	2018	Semantic Role Labeling	semantic roles ontology-based ML	The maximum entropy classifier	Own Dataset	F1:0.85			
Wang et al.	2019	Semantic Role Labeling	SRS semantic roles lexical and syntactic features ML	DT classifier	18 SRS	P: 0.92-0.93; R: 0.91-0.92			
Authors	Ambiguity Detection	Methodology	Features	Tools/Techniques	Evaluation	Notes			
------------------	---------------------	-------------	---	---	-------------	-----------------------------			
Ezzini et al.	Ambiguity Detection	a Req	is ambiguous?	ontology-based rule based	a set of rules and heuristics	20 Reqs	P: 0.80; R: 0.89		
Wang et al.	Ambiguity Detection	a set of Reqs	Overloaded and Synonymous ambiguity	lexical and syntactic features rule based	lexical features, contextual features, pattern based features C-value method to extract candidate concepts	4 projects	Mean average precision : 0.52-0.57		
Osama et al.	Ambiguity Detection	a Req	resolving syntactic ambiguity	lexical and syntactic features rule based	syntactic parsing set of heuristics	126 requirements	P:0.65 precision, R:0.99		
Misra et al.	Ambiguity Detection	a Req	aliases disambiguity	Topic modeling rule based	Similarity-based approach	65 reqs	F1: 0.6		
Ferrari et al.	Ambiguity Detection	a set of Reqs	detect ambiguity	ontology-based rule based	takes the concepts, searches for concept paths within each graph, compare paths	proof of concept with an example	-		
Mishra et al.	Ambiguity Detection	2 corpora: related/not related to the domain	domain specific ambiguous CS words advanced embedding rule based	Tokenization, Punctuation Removal, Stop word removal, PoS Tagging, Lemmatization, learn word2vec from each corpus	find out which of the commonly used CS words have a different meaning	a set of examples	-		
Authors	Type	Techniques	Evaluation						
-------------	-----------------	---	---						
Matsuoka et al. [105]	Ambiguity Detection	SRS detect ambiguous terms, ontology-based rule-based sentence tokenization, extract terms using WordNet, C-Value	For each term: get related sentences, and use C-value and WordNet semantic similarity to cluster them; a set of examples						
Ferrari et al. [106]	Ambiguity Detection	Corpus from different domains ambiguous terms advanced embedding rule-based crawl Wikipedia to extract domain specific documents; Language Models Generation	For each domain: find most freq. nouns, find a set of top similar words for each noun. Compare similar words to find ambiguity score; data from 5 domains Maximum Kendall’s Tau of 88						
Dalpiaz et al. [144]	Ambiguity Detection	A set of terms near-synonyms advanced embedding rule-based lexical and syntactic features	Calculate the similarity between terms then between their context using Cortical.io; 28 data sets R: 0.25; P: 0.51						
Parra et al. [118]	General Assessment	A set of requirements Good or Bad Reqs lexical and syntactic features ML 24 quality metrics that reflect lexical and syntactic information	C4.5*, PART, with Bagging and Boosting INCOSE corpus Acc: 0.87						
Femmer et al. [102]	General Assessment	A set of quality scores lexical and syntactic features rule-based POS Tagging; Lemmatization	A set of rules and heuristics; 1471 reqs P: 0.59; R: 0.82						
Ferrari et al. [103]	General Assessment	A requirement 10 types of defects lexical and syntactic features rule-based Tokenization; POS Tagging; Shallow Parsing; Gazetteers; JAPE rules; dictionaries and rules	D-Pilot and D-Large P: 0.83; R: 0.85						
Authors	Incompleteness Detection	Methodology	Score Calculation	Pilot Study					
---------	--------------------------	-------------	------------------	-------------					
Ferrari et al. [111]	a set of Reqs	Completeness score	POS Tagging, extract POS-based patterns (adjective+noun)	pilot study					
Liu et al. [112]	SRS Document	is incomplete?	ML Tokenization, POS, Stop words removal; Lemmatization; skip-thoughts sent2vec encoder	a graph-based clustering					
Baumer et al. [113]	Req	solve predefined defect cases	rule based Semantic Labeling; Stop-words removal; POS tagging; WordNet	a set of predefined rules to solve some defect cases					
Cruz et al. [117]	a Req	is vague?	rule based sentence splitter, POS-tagging, get adjectives and adverbs that match a blacklist of known vague terms or does not match a whitelist of not vague terms.	pilot study					
Arora et al. [114]	conformance with templates	a Req	Conform or Not	Tokenization; POS tagging; NER; Chunking					
Abualhaija et al. [96]	Extraction from Docs	a textual document	Req or Not Req	20 Features: token-based features, syntactic features, semantic features, frequency-based features					
Haris et al. [95]	Extraction from Docs	SRS	Req or Not Req	POS Tagging, chunking					
Quirchmayr et al. [94]	Extraction from Docs	user manual	list of features	POS tagging; terms extraction; parsing; Pattern-based parse tree transformations and correction	industrial case				

P: 0.34; R: 0.94
F1: Incomp.(0.76); Ambig. (0.78)

F1: 0.96-1.0

F1: 0.64-1.0; R: 0.64-0.89

F1:0.92
Authors	Extraction from	Feature requests	Feature extraction	lex & syntactic features	ML Techniques	Evaluation Metrics
Wang et al.	Docs	textual	requirements	lexical and syntactic	BiLSTM-CRF	F1: 0.86
Shi et al.	Docs	mailing list	feature requests	lexical and syntactic	rule based	Avg prec: 0.76; Rec: 0.86
De et al.	Reviews	user review	chunk which	advanced embedding	SVM, KNN, NB	F1: 0.87 (0.92 avg); R: 0.86 (0.82 avg)
Bakar et al.	Reviews	user review	main topics	lexical and syntactic	topic modeling, sentiment analysis	P: 0.96; R: 0.87 (0.62 avg), Bug: 0.72; Avg: 0.70-0.81; Avg: 0.70-0.81
Carreno et al.	Reviews	user feedback	topics	lexical and syntactic	SVM*, NB	P: 0.90; R: 0.5-0.8
Jha et al.	Reviews	user requests	bugs or features	VSM*	SVM*, KNN, NB	F1: Features (0.75); Bugs (0.75); Avg: 0.77; Avg: 0.70-0.81; Avg: 0.70-0.81
Li et al.	Reviews	user requests	classify user	lexical and syntactic	SVM*, Naive Bayes*, J48, Bagging*	Avg Acc: 0.77; Avg: 0.73-0.81; Avg: 0.70-0.81
Lu et al.	Reviews	feature requests	classes	advanced embedding	Naive Bayes*, J48, Bagging*	F1: 0.71
Peng et al.	Reviews	user requests	feature requests	lexical and syntactic	Naive Bayes, J48, Bagging*	1924 reviews
Li et al.	Reviews	user requests	4 reviews classes	advanced embedding	Naive Bayes*, J48, Bagging*	4000 sentences
Peng et al.	Reviews	user requests	feature requests	lexical and syntactic	Naive Bayes*, J48, Bagging*	1924 reviews

34
Authors	Area	Method	Model	Features/Techniques	Dataset/Settings	F1 Score				
Yang et al.	Extraction from Reviews	user reviews	lexical and syntactic features	ML: Sentence splitting, sentiment analysis, POS tagging, stemming	RF: reviews for 6 products	0.72				
Wu et al.	Extraction from Reviews	reviews key features advanced embedding	ML: tokenization, pos tagging, dependency parsing, BERT	A regression model to identify features	RF: 200 app with 1.1M reviews.	0.78				
Jiang et al.	Extraction from Similar Apps	features+ suggested new features	ML: BOW+LDA	clustering technique	533 annotated features from 100 apps.					
Abbas et al.	Extraction from Similar Apps	corpus of reqs recommended requirement	ML: Stop words removal, pos tagger, Lemmatization, TF-IDF clustering requirements+ use Neighbours to recommend reqs	188 requirements	Acc: 0.74					
Do et al.	Extraction from Similar Apps	set of requirements suggested new requirements	ML: stemming, tokenization, doc2vec, POS tagging clustering based BIRCH algorithm	571 systems from 3 domains	Human evaluation					
Hussain et al.	Effort Estimation	a set of reqs Function Point Level	lexical and syntactic features	features including: NP; Parentheses; Active Verbs; Tokens in parentheses; Conjunctions; Pronouns; VP; Words; Sentences; Uniques (hapax legomena)	C4.5: 4 projects	0.66				
Choetkertikul et al.	Effort Estimation	requirements story points advanced embedding	ML: word embedding	LSTM and recurrent highway network	LSTM and recurrent highway network					
Ali et al.	Prioritization	set of requirements priority	VSM rule based	Tokenization, POS tagging, Stemming, Stop words removal, BOW	case-based reasoning (CBR) technique					
Reference	Technique	Source	Lexical and syntactic features	Rule based	Tokenization, stemming, sentiment analysis, intention score, severity score	SMT solver + AHP	100 reqs (top 20 are annotated)	41 requirements	19 projects	average top3 acc 81%
------------------	---	--------	--------------------------------	------------	---	-----------------	-----------------------------------	-----------------	--------------	-----------------
Shafiq et al.	Prioritization	a set of Reqs	suggested priority	ML	pos tagging, entities and action extraction, LSA		semi-automatic approach			
Al-Hroob et al.	Modeling (UML)	a set of Requirements	Use Cases	ML	AN to predict the role of each word					
Elaaloui et al.	Modeling (UML)	a set of Requirements	use cases	rule based	pos tagging		rule based			
Hamza et al.	Modeling (UML)	a set of Requirements	use cases	rule based	Tokenization; POS tagging; Chunking; Grammar patterns tagging					
Tiwari et al.	Modeling (UML)	a set of Requirements	use cases	rule based	POS Tagger, Dependency Tree					
Haj et al.	Modeling (SBVR)	a set of Requirements	SBVR	rule based	Lemmatization, pos tagging, dependency tree, NER					
Lucassen et al.	Modeling (Conceptual Model)	a set of Requirements	concepts and relations	rule based	tokenization; pos tagging, dependency parsing					
Authors	Task	Type	Input	Features	Preprocessing	Output	Techniques	Notes		
------------------	-----------------------	--------------------------	-------	---------------------------	---------------	--------	------------	----------------------------		
Thakur et al. [125]	Modeling (Conceptual Model)	a set of Reqs concepts and relations	lexical and syntactic features	rule based tokenization, pos tagging, dependency parsing	rule based	40 use cases	Acc: 0.91			
Hamza et al. [124]	Modeling (Features Model)	a set of Reqs Features Model	lexical and syntactic features	rule based tokenization, pos tagging	a set of heuristic rules	4 case studies	human evaluation			
Sree-Kumar et al. [123]	Modeling (Features Model)	a set of Reqs Features Model	lexical and syntactic features	rule based Stop words removal, Tokenization, NP chunking, TF-IDF	Set of heuristics rules	6 case studies	Features: P 0.40-0.73 / R 0.57-0.93 Relation: P 0.41-0.87 / R 0.48-0.76			
Arora et al. [127]	Glossary Terms Extraction	a set of Reqs Glossary + clustering terms	ontology-based	rule based tokenization, pos tagging, chunking, Soft TF-IDF, wordNet	a set of heuristic rules + similarity-based approach	3 sets each consists of 110-380 reqs	F: 0.52 - 0.64			
Bhatia et al. [128]	Glossary Terms Extraction	a set of Reqs Glossary + clustering terms	advanced embedding	ML Similarity Matrix is calculated based on fastText + EM for clustering	CrowdRE Dataset	F1: Terms (0.39); Clustering (0.65)				
Gunes et al. [129]	Modeling (Goal Model)	a set of Reqs goal model	ontology-based	rule based stopwords removal, pos tagging, extract user story elements, similarity scores	heuristic rules	a test case	-			
Mishra et al. [130]	Language Model	corpus of texts from wiki SE word embeddings model	advanced embedding	ML word embedding	word2vec	size of our trained model is 92MB	-			
Authors	Task	Data	Features	Model	F1: Extraction	F1: Classification				
------------------	---	---------------------------------	--	-------------------	-----------------	--------------------				
Dollmann et al.	Extraction From Docs + Semantic Labeling	a set of sentences	reqs+Semantic labeling + lexical and syntactic features	ML						
				ExtraTreeClassifier						
				dataset						
				from SourceForge						
Sainani et al.	Extraction From Docs/Classification	Contracts documents	Obligation or not + advanced embedding	ML						
				BiLSTM						
				contracts						
				document						
				(250 pages,						
				1608 sentences)						

Table 5: The Detailed Info for all 104 selected papers
References

[1] A. Tahir, R. Ahmad, Requirement engineering practices—an empirical study, in: 2010 International Conference on Computational Intelligence and Software Engineering, IEEE, 2010, pp. 1–5.

[2] IEEE, Ieee standard glossary of software engineering terminology (std. 610.12-1990) (1990).

[3] T. Ambreen, N. Ikram, M. Usman, M. Niazi, Empirical research in requirements engineering: trends and opportunities, Requirements Engineering 23 (1) (2018) 63–95.

[4] I. Jureta, J. Mylopoulos, S. Faulkner, Revisiting the core ontology and problem in requirements engineering, in: 2008 16th IEEE International Requirements Engineering Conference, IEEE, 2008, pp. 71–80.

[5] A. Aurum, C. Wohlin, Requirements engineering: setting the context, in: Engineering and managing software requirements, Springer, 2005, pp. 1–15.

[6] A. Van Lamsweerde, R. Darimont, E. Letier, Managing conflicts in goal-driven requirements engineering, IEEE transactions on Software engineering 24 (11) (1998) 908–926.

[7] C. Denger, D. M. Berry, E. Kamsties, Higher quality requirements specifications through natural language patterns, in: Proceedings 2003 Symposium on Security and Privacy, IEEE, 2003, pp. 80–90.

[8] R. Vlas, W. N. Robinson, A rule-based natural language technique for requirements discovery and classification in open-source software development projects, in: 2011 44th Hawaii International Conference on System Sciences, IEEE, 2011, pp. 1–10.

[9] Z. Kurtanović, W. Maalej, Automatically classifying functional and non-functional requirements using supervised machine learning, in: 2017 IEEE 25th International Requirements Engineering Conference (RE), IEEE, 2017, pp. 490–495.

[10] F. Dalpiaz, D. Dell’Anna, F. B. Aydemir, S. Çevikol, Requirements classification with interpretable machine learning and dependency parsing, in: 2019 IEEE 27th International Requirements Engineering Conference (RE), IEEE, 2019, pp. 142–152.

[11] T. Hey, J. Keim, A. Koziol, E. Tichy, Norbert: Transfer learning for requirements classification, in: 2020 IEEE 28th International Requirements Engineering Conference (RE), IEEE, 2020, pp. 169–179.

[12] A. Ferrari, F. Dell’Orletta, A. Esuli, V. Gervasi, S. Gaesi, Natural language requirements processing: A 4d vision., IEEE Softw. 34 (6) (2017) 28–35.
[13] R. Garigliano, D. Perini, L. Mich, Which semantics for requirements engineering: From shallow to deep., in: The 1st Workshop on Natural Language Processing for REquirements Engineering (NLP4RE), 2018.

[14] A. Booth, A. Sutton, M. Clowes, M. Martyn-St James, Systematic approaches to a successful literature review.

[15] K. Petersen, S. Vakkalanka, L. Kuzniarz, Guidelines for conducting systematic mapping studies in software engineering: An update, Information and Software Technology 64 (2015) 1–18.

[16] D. Jurafsky, Speech and language processing: an introduction to natural language processing, computational linguistics, and speech recognition, Prentice Hall, Upper Saddle River, N.J, 2000.

[17] V. Teller, Speech and language processing: an introduction to natural language processing, computational linguistics, and speech recognition (2000).

[18] D. Jurafsky, J. H. Martin, Speech and language processing: An introduction to natural language processing, computational linguistics, and speech recognition.

[19] K. Toutanova, D. Klein, C. D. Manning, Y. Singer, Feature-rich part-of-speech tagging with a cyclic dependency network, in: Proceedings of the 2003 Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics, 2003, pp. 252–259.

[20] S. Abney, Partial parsing via finite-state cascades, Natural Language Engineering 2 (4) (1996) 337–344.

[21] M.-C. De Marneffe, C. D. Manning, Stanford typed dependencies manual, Tech. rep., Technical report, Stanford University (2008).

[22] D. Nadeau, S. Sekine, A survey of named entity recognition and classification, Linguisticae Investigationes 30 (1) (2007) 3–26.

[23] T. R. Gruber, A translation approach to portable ontology specifications, Knowledge acquisition 5 (2) (1993) 199–220.

[24] G. A. Miller, Wordnet: a lexical database for english, Communications of the ACM 38 (11) (1995) 39–41.

[25] Z. Wu, M. Palmer, Verb semantics and lexical selection, in: 32nd Annual Meeting of the Association for Computational Linguistics, 1994, pp. 133–138.

[26] R. Rada, H. Mili, E. Bicknell, M. Blettner, Development and application of a metric on semantic nets, IEEE transactions on systems, man, and cybernetics 19 (1) (1989) 17–30.
[27] G. Salton, Automatic text processing-addison-wesley longman publishing co., inc.

[28] D. M. Blei, A. Y. Ng, M. I. Jordan, Latent dirichlet allocation, the Journal of machine Learning research 3 (2003) 993–1022.

[29] S. T. Dumais, Latent semantic analysis, Annual review of information science and technology 38 (1) (2004) 188–230.

[30] T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient estimation of word representations in vector space, arXiv preprint arXiv:1301.3781.

[31] J. Pennington, R. Socher, C. D. Manning, Glove: Global vectors for word representation, in: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), 2014, pp. 1532–1543.

[32] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT: Pre-training of deep bidirectional transformers for language understanding, in: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Association for Computational Linguistics, Minneapolis, Minnesota, 2019, pp. 4171–4186. doi:10.18653/v1/N19-1423 URL https://aclanthology.org/N19-1423

[33] L. Zhao, W. Alhoshan, A. Ferrari, K. J. Letsholo, M. A. Ajagbe, E.-V. Chioasca, R. T. Batista-Navarro, Natural language processing for requirements engineering: A systematic mapping study, ACM Computing Surveys (CSUR) 54 (3) (2021) 1–41.

[34] I. K. Raharjana, D. Siahaan, C. Fatichah, User stories and natural language processing: A systematic literature review, IEEE Access 9 (2021) 53811–53826.

[35] A. R. Amna, G. Poels, Ambiguity in user stories: A systematic literature review, Information and Software Technology (2022) 106824.

[36] D. Dermeval, J. Vilela, I. I. Bittencourt, J. Castro, S. Isotani, P. Brito, A systematic review on the use of ontologies in requirements engineering, in: 2014 Brazilian Symposium on Software Engineering, IEEE, 2014, pp. 1–10.

[37] F. Nazir, W. H. Butt, M. W. Anwar, M. A. K. Khattak, The applications of natural language processing (nlp) for software requirement engineering-a systematic literature review, in: International conference on information science and applications, Springer, 2017, pp. 485–493.

[38] F. Bozyiğit, Ö. Aktaş, D. Kilnç, Linking software requirements and conceptual models: A systematic literature review, Engineering Science and Technology, an International Journal 24 (1) (2021) 71–82.
[39] C. Baker, L. Deng, S. Chakraborty, J. Dehlinger, Automatic multi-class non-functional software requirements classification using neural networks, in: 2019 IEEE 43rd annual computer software and applications conference (COMPSAC), Vol. 2, IEEE, 2019, pp. 610–615.

[40] E. Dias Canedo, B. Cordeiro Mendes, Software requirements classification using machine learning algorithms, Entropy 22 (9) (2020) 1057.

[41] A. Casamayor, D. Godoy, M. Campo, Identification of non-functional requirements in textual specifications: A semi-supervised learning approach, Information and Software Technology 52 (4) (2010) 436–445.

[42] V. M. Khatian, Q. A. Arain, M. Alenezi, M. O. Raza, F. Shaikh, I. Farah, Comparative analysis for predicting non-functional requirements using supervised machine learning, in: 2021 1st International Conference on Artificial Intelligence and Data Analytics (CAIDA), IEEE, 2021, pp. 7–12.

[43] M. A. Rahman, M. A. Haque, M. N. A. Tawhid, M. S. Siddik, Classifying non-functional requirements using rnn variants for quality software development, in: Proceedings of the 3rd ACM SIGSOFT International Workshop on Machine Learning Techniques for Software Quality Evaluation, 2019, pp. 25–30.

[44] A. Rashwan, O. Ormandjieva, R. Witte, Ontology-based classification of non-functional requirements in software specifications: a new corpus and svm-based classifier, in: 2013 IEEE 37th Annual Computer Software and Applications Conference, IEEE, 2013, pp. 381–386.

[45] M. Younas, D. N. Jawawi, I. Ghani, M. A. Shah, Extraction of non-functional requirement using semantic similarity distance, Neural Computing and Applications 32 (11) (2020) 7383–7397.

[46] A. Mahmoud, G. Williams, Detecting, classifying, and tracing non-functional software requirements, Requirements Engineering 21 (3) (2016) 357–381.

[47] D. Kici, G. Malik, M. Cevik, D. Parikh, A. Bașar, A bert-based transfer learning approach to text classification on software requirements specifications.

[48] I. M. S. Raharja, D. O. Siahaan, Classification of non-functional requirements using fuzzy similarity kmm based on iso/iec 25010, in: 2019 12th International Conference on Information & Communication Technology and System (ICTS), IEEE, 2019, pp. 264–269.

[49] R. Krasniqi, A. Agrawal, Analyzing and detecting emerging quality-related concerns across oss defect report summaries, in: 2021 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER), IEEE, 2021, pp. 12–23.
[50] D. N. Palacio, D. McCrystal, K. Moran, C. Bernal-Cárdenas, D. Poshylvanyk, C. Shenefiel, Learning to identify security-related issues using convolutional neural networks, in: 2019 IEEE International conference on software maintenance and evolution (ICSME), IEEE, 2019, pp. 140–144.

[51] A. Kobilica, M. Ayub, J. Hassine, Automated identification of security requirements: A machine learning approach, in: Proceedings of the Evaluation and Assessment in Software Engineering, 2020, pp. 475–480.

[52] T. Li, Z. Chen, An ontology-based learning approach for automatically classifying security requirements, Journal of Systems and Software 165 (2020) 110566.

[53] D. Ott, Automatic requirement categorization of large natural language specifications at mercedes-benz for review improvements, in: International Working Conference on Requirements Engineering: Foundation for Software Quality, Springer, 2013, pp. 50–64.

[54] R. Chatterjee, A. Ahmed, P. R. Anish, Identification and classification of architecturally significant functional requirements, in: 2020 IEEE Seventh International Workshop on Artificial Intelligence for Requirements Engineering (AIRE), IEEE, 2020, pp. 9–17.

[55] H. Wang, G. Shen, Z. Huang, Y. Yu, K. Chen, Analyzing close relations between target artifacts for improving ir-based requirement traceability recovery, Frontiers of Information Technology & Electronic Engineering 22 (7) (2021) 957–968.

[56] S. Das, N. Deb, A. Cortesi, N. Chaki, Sentence embedding models for similarity detection of software requirements, SN Computer Science 2 (2) (2021) 1–11.

[57] M. B. Blake, I. Saleh, Y. Wei, I. D. Schlesinger, A. Yale-Loehr, X. Liu, Shared service recommendations from requirement specifications: A hybrid syntactic and semantic toolkit, Information and Software Technology 57 (2015) 392–404.

[58] R. Sonbol, G. Rebdawi, N. Ghneim, Towards a semantic representation for functional software requirements, in: 2020 IEEE Seventh International Workshop on Artificial Intelligence for Requirements Engineering (AIRE), IEEE, 2020, pp. 1–8.

[59] W. Alhoshan, R. Batista-Navarro, L. Zhao, Using frame embeddings to identify semantically related software requirements., in: REFSQ Workshops, 2019.

[60] G. Deshpande, C. Arora, G. Ruhe, Data-driven elicitation and optimization of dependencies between requirements, in: 2019 IEEE 27th International Requirements Engineering Conference (RE), IEEE, 2019, pp. 416–421.

[61] R. Samer, M. Stettinger, M. Atas, A. Felfernig, G. Ruhe, G. Deshpande, New approaches to the identification of dependencies between requirements, in: 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), IEEE, 2019, pp. 1265–1270.
[62] H. Sultanov, J. H. Hayes, W.-K. Kong, Application of swarm techniques to requirements tracing, Requirements Engineering 16 (3) (2011) 209–226.

[63] M. Lu, P. Liang, Automatic classification of non-functional requirements from augmented app user reviews, in: Proceedings of the 21st International Conference on Evaluation and Assessment in Software Engineering, 2017, pp. 344–353.

[64] G. Deshpande, B. Sheikhi, S. Chakka, D. L. Zotevouon, M. N. Masahati, G. Ruhe, Is bert the new silver bullet?-an empirical investigation of requirements dependency classification, in: 2021 IEEE 29th International Requirements Engineering Conference Workshops (REW), IEEE, 2021, pp. 136–145.

[65] M. Aldekhalil, M. Almasri, Intelligent identification and resolution of software requirement conflicts: Assessment and evaluation, COMPUTER SYSTEMS SCIENCE AND ENGINEERING 40 (2) (2022) 469–489.

[66] A. Nicholson, G. J. LC, Issue link label recovery and prediction for open source software, in: 2021 IEEE 29th International Requirements Engineering Conference Workshops (REW), IEEE, 2021, pp. 126–135.

[67] J. Guo, J. Cheng, J. Cleland-Huang, Semantically enhanced software traceability using deep learning techniques, in: 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE), IEEE, 2017, pp. 3–14.

[68] B. Wang, R. Peng, Z. Wang, X. Wang, Y. Li, An automated hybrid approach for generating requirements trace links, International Journal of Software Engineering and Knowledge Engineering 30 (07) (2020) 1005–1048.

[69] A. H. Rasekh, S. M. Fakhrhmad, M. H. Sadreddini, Mining traces between source code and textual documents, International Journal of Computer Applications in Technology 59 (1) (2019) 43–52.

[70] A. Mahmoud, N. Niu, On the role of semantics in automated requirements tracing, Requirements Engineering 20 (3) (2015) 281–300.

[71] N. Ali, H. Cai, A. Hamou-Lhadj, J. Hassine, Exploiting parts-of-speech for effective automated requirements traceability, Information and Software Technology 106 (2019) 126–141.

[72] V. Leitão, I. Medeiros, Srxcrm: Discovering association rules between system requirements and product specifications., in: REFSQ Workshops, 2021.

[73] J. K. Chhabra, et al., Requirements traceability through information retrieval using dynamic integration of structural and co-change coupling, in: International Conference on Advanced Informatics for Computing Research, Springer, 2017, pp. 107–118.
[74] C. Arora, M. Sabetzadeh, A. Goknil, L. C. Briand, F. Zimmer, Change impact analysis for natural language requirements: An nlp approach, in: 2015 IEEE 23rd International Requirements Engineering Conference (RE), IEEE, 2015, pp. 6–15.

[75] T. N. Al-Otaiby, M. AlSherif, W. P. Bond, Toward software requirements modularization using hierarchical clustering techniques, in: Proceedings of the 43rd annual Southeast regional conference-Voliume 2, 2005, pp. 223–228.

[76] K. J. Gülle, N. Ford, P. Ebel, F. Brokhausen, A. Vogelsang, Topic modeling on user stories using word mover’s distance, in: 2020 IEEE Seventh International Workshop on Artificial Intelligence for Requirements Engineering (AIRE), IEEE, 2020, pp. 52–60.

[77] A. Casamayor, D. Godoy, M. Campo, Functional grouping of natural language requirements for assistance in architectural software design, Knowledge-Based Systems 30 (2012) 78–86.

[78] J. Misra, S. Sengupta, S. Podder, Topic cohesion preserving requirements clustering, in: 2016 IEEE/ACM 5th International Workshop on Realizing Artificial Intelligence Synergies in Software Engineering (RAISE), IEEE, 2016, pp. 22–28.

[79] H. Eyal Salman, M. Hammad, A.-D. Seriai, A. Al-Sbou, Semantic clustering of functional requirements using agglomerative hierarchical clustering, Information 9 (9) (2018) 222.

[80] M. Mezghani, J. Kang, F. Sédes, Industrial requirements classification for redundancy and inconsistency detection in seqmis, in: 2018 IEEE 26th International Requirements Engineering Conference (RE), IEEE, 2018, pp. 297–303.

[81] Y. Wang, Semantic information extraction for software requirements using semantic role labeling, in: 2015 IEEE International Conference on Progress in Informatics and Computing (PIC), IEEE, 2015, pp. 332–337.

[82] T. Diamantopoulos, M. Roth, A. Symeonidis, E. Klein, Software requirements as an application domain for natural language processing, Language Resources and Evaluation 51 (2) (2017) 495–524.

[83] Y. Wang, Automatic semantic analysis of software requirements through machine learning and ontology approach, Journal of Shanghai Jiaotong University (Science) 21 (6) (2016) 692–701.

[84] A. F. de Araújo, R. M. Maracini, Re-bert: automatic extraction of software requirements from app reviews using bert language model, in: Proceedings of the 36th Annual ACM Symposium on Applied Computing, 2021, pp. 1321–1327.

[85] N. H. Bakar, Z. M. Kasirun, N. Salleh, H. A. Jalab, Extracting features from online software reviews to aid requirements reuse, Applied Soft Computing 49 (2016) 1297–1315.
[86] L. V. G. Carreno, K. Winbladh, Analysis of user comments: an approach for software requirements evolution, in: 2013 35th international conference on software engineering (ICSE), IEEE, 2013, pp. 582–591.

[87] N. Jha, A. Mahmoud, Using frame semantics for classifying and summarizing application store reviews, Empirical Software Engineering 23 (6) (2018) 3734–3767.

[88] C. Li, L. Huang, J. Ge, B. Luo, V. Ng, Automatically classifying user requests in crowdsourcing requirements engineering, Journal of Systems and Software 138 (2018) 108–123.

[89] Z. Peng, J. Wang, K. He, M. Tang, An approach of extracting feature requests from app reviews, in: International Conference on Collaborative Computing: Networking, Applications and Worksharing, Springer, 2016, pp. 312–323.

[90] C. Yang, L. Wu, C. Yu, Y. Zhou, A phrase-level user requests mining approach in mobile application reviews: Concept, framework, and operation, Information 12 (5) (2021) 177.

[91] H. Wu, W. Deng, X. Niu, C. Nie, Identifying key features from app user reviews, in: 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE), IEEE, 2021, pp. 922–932.

[92] L. Shi, C. Chen, Q. Wang, B. Boehm, Automatically detecting feature requests from development emails by leveraging semantic sequence mining, Requirements Engineering 26 (2) (2021) 255–271.

[93] Y. Wang, I. L. M. Gutiérrez, K. Winbladh, H. Fang, Automatic detection of ambiguous terminology for software requirements, in: International Conference on Application of Natural Language to Information Systems, Springer, 2013, pp. 25–37.

[94] T. Quirchmayr, B. Paech, R. Kohl, H. Karey, G. Kasdepke, Semi-automatic rule-based domain terminology and software feature-relevant information extraction from natural language user manuals, Empirical Software Engineering 23 (6) (2018) 3630–3683.

[95] M. S. Haris, T. A. Kurniawan, F. Ramdani, Automated features extraction from software requirements specification (srs) documents as the basis of software product line (spl) engineering, JITeCS (Journal of Information Technology and Computer Science) 5 (3) (2020) 279–292.

[96] S. Abualhaija, C. Arora, M. Sabetzadeh, L. C. Briand, M. Traynor, Automated demarcation of requirements in textual specifications: a machine learning-based approach, Empirical Software Engineering 25 (6) (2020) 5454–5497.

[97] M. Dollmann, M. Geierhos, On-and off-topic classification and semantic annotation of user-generated software requirements, in: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 2016, pp. 1807–1816.
[98] A. Sainani, P. R. Anish, V. Joshi, S. Ghaisas, Extracting and classifying requirements from software engineering contracts, in: 2020 IEEE 28th International Requirements Engineering Conference (RE), IEEE, 2020, pp. 147–157.

[99] H. Jiang, J. Zhang, X. Li, Z. Ren, D. Lo, X. Wu, Z. Luo, Recommending new features from mobile app descriptions, ACM Transactions on Software Engineering and Methodology (TOSEM) 28 (4) (2019) 1–29.

[100] M. Abbas, M. Saadatmand, E. Enoiu, D. Sundamark, C. Lindskog, Automated reuse recommendation of product line assets based on natural language requirements, in: International Conference on Software and Software Reuse, Springer, 2020, pp. 173–189.

[101] Q. A. Do, T. Bhowmik, G. L. Bradshaw, Capturing creative requirements via requirements reuse: A machine learning-based approach, Journal of Systems and Software 170 (2020) 110730.

[102] H. Femmer, D. M. Fernández, S. Wagner, S. Eder, Rapid quality assurance with requirements smells, Journal of Systems and Software 123 (2017) 190–213.

[103] A. Ferrari, G. Gori, B. Rosadini, I. Trotta, S. Bacherini, A. Fantechi, S. Gnesi, Detecting requirements defects with nlp patterns: an industrial experience in the railway domain, Empirical Software Engineering 23 (6) (2018) 3684–3733.

[104] S. Mishra, A. Sharma, On the use of word embeddings for identifying domain specific ambiguities in requirements, in: 2019 IEEE 27th International Requirements Engineering Conference Workshops (REW), IEEE, 2019, pp. 234–240.

[105] J. Matsuoka, Y. Lepage, Ambiguity spotting using wordnet semantic similarity in support to recommended practice for software requirements specifications, in: 2011 7th International Conference on Natural Language Processing and Knowledge Engineering, IEEE, 2011, pp. 479–484.

[106] A. Ferrari, A. Esuli, An nlp approach for cross-domain ambiguity detection in requirements engineering, Automated Software Engineering 26 (3) (2019) 559–598.

[107] J. Misra, S. Das, Entity disambiguation in natural language text requirements, in: 2013 20th Asia-Pacific Software Engineering Conference (APSEC), Vol. 1, IEEE, 2013, pp. 239–246.

[108] M. Osama, A. Zaki-Ismail, M. Abdelrazek, J. Grundy, A. Ibrahim, Score-based automatic detection and resolution of syntactic ambiguity in natural language requirements, in: 2020 IEEE International Conference on Software Maintenance and Evolution (ICSME), IEEE, 2020, pp. 651–661.

47
[109] S. Ezzini, S. Abualhaija, C. Arora, M. Sabetzadeh, L. C. Briand, Using domain-specific corpora for improved handling of ambiguity in requirements, in: 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE), IEEE, 2021, pp. 1485–1497.

[110] A. Ferrari, S. Gnesi, Using collective intelligence to detect pragmatic ambiguities, in: 2012 20th IEEE International Requirements Engineering Conference (RE), IEEE, 2012, pp. 191–200.

[111] A. Ferrari, F. Dell’Orletta, G. O. Spagnolo, S. Gnesi, Measuring and improving the completeness of natural language requirements, in: International Working Conference on Requirements Engineering: Foundation for Software Quality, Springer, 2014, pp. 23–38.

[112] C. Liu, Z. Zhao, L. Zhang, Z. Li, Automated conditional statements checking for complete natural language requirements specification, Applied Sciences 11 (17) (2021) 7892.

[113] F. S. Bäumer, M. Geierhos, Flexible ambiguity resolution and incompleteness detection in requirements descriptions via an indicator-based configuration of text analysis pipelines, in: Proceedings of the 51st Hawaii International Conference on System Sciences, 2018.

[114] C. Arora, M. Sabetzadeh, L. Briand, F. Zimmer, Automated checking of conformance to requirements templates using natural language processing, IEEE transactions on Software Engineering 41 (10) (2015) 944–968.

[115] C. Rupp, K. Pohl, Requirements engineering fundamentals, Rocky Nook.

[116] A. Mavin, P. Wilkinson, A. Harwood, M. Novak, Easy approach to requirements syntax (ears), in: 2009 17th IEEE International Requirements Engineering Conference, IEEE, 2009, pp. 317–322.

[117] B. D. Cruz, B. Jayaraman, A. Dwarakanath, C. McMillan, Detecting vague words & phrases in requirements documents in a multilingual environment, in: 2017 IEEE 25th International Requirements Engineering Conference (RE), IEEE, 2017, pp. 233–242.

[118] E. Parra, C. Dimou, J. Llorens, V. Moreno, A. Fraga, A methodology for the classification of quality of requirements using machine learning techniques, Information and Software Technology 67 (2015) 180–195.

[119] M. Elallaoui, K. Nafil, R. Touahni, Automatic transformation of user stories into uml use case diagrams using nlp techniques, Procedia computer science 130 (2018) 42–49.

[120] S. Tiwari, D. Ameta, A. Banerjee, An approach to identify use case scenarios from textual requirements specification, in: Proceedings of the 12th Innovations on Software Engineering Conference (Formerly Known As India Software Engineering Conference), 2019, pp. 1–11.
[121] Z. A. Hamza, M. Hammad, Generating uml use case models from software requirements using natural language processing, in: 2019 8th International Conference on Modeling Simulation and Applied Optimization (ICMSAO), IEEE, 2019, pp. 1–6.

[122] A. Al-Hroob, A. T. Imam, R. Al-Heisa, The use of artificial neural networks for extracting actions and actors from requirements document, Information and Software Technology 101 (2018) 1–15.

[123] A. Sree-Kumar, E. Planas, R. Clarisó, Extracting software product line feature models from natural language specifications, in: Proceedings of the 22nd International Systems and Software Product Line Conference-Volume 1, 2018, pp. 43–53.

[124] M. Hamza, R. J. Walker, Recommending features and feature relationships from requirements documents for software product lines, in: 2015 IEEE/ACM 4th International Workshop on Realizing Artificial Intelligence Synergies in Software Engineering, IEEE, 2015, pp. 25–31.

[125] J. S. Thakur, A. Gupta, Identifying domain elements from textual specifications, in: Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering, 2016, pp. 566–577.

[126] G. Lucassen, M. Robeer, F. Dalpiaz, J. M. E. Van Der Werf, S. Brinkkemper, Extracting conceptual models from user stories with visual narrator, Requirements Engineering 22 (3) (2017) 339–358.

[127] C. Arora, M. Sabetzadeh, L. Briand, F. Zimmer, Automated extraction and clustering of requirements glossary terms, IEEE Transactions on Software Engineering 43 (10) (2016) 918–945.

[128] K. Bhatia, S. Mishra, A. Sharma, Clustering glossary terms extracted from large-sized software requirements using fasttext, in: Proceedings of the 13th Innovations in Software Engineering Conference on Formerly known as India Software Engineering Conference, 2020, pp. 1–11.

[129] T. Göneş, F. B. Aydemir, Automated goal model extraction from user stories using nlp, in: 2020 IEEE 28th International Requirements Engineering Conference (RE), IEEE, 2020, pp. 382–387.

[130] A. Haj, A. Jarrar, Y. Balouki, T. Gadir, The semantic of business vocabulary and business rules: An automatic generation from textual statements, IEEE Access 9 (2021) 56506–56522.

[131] P. Tzortzopoulos, R. Cooper, P. Chan, M. Kagioglou, Clients’ activities at the design frontend, Design studies 27 (6) (2006) 657–683.
[132] S. Ali, Y. Hafeez, S. Hussain, S. Yang, M. Jamal, Requirement prioritization framework using case-based reasoning: A mining-based approach, Expert Systems 38 (8) (2021) e12770.

[133] F. M. Kifetew, A. Perini, A. Susi, A. Siena, D. Muñante, I. Morales-Ramírez, Automating user-feedback driven requirements prioritization, Information and Software Technology 138 (2021) 106635.

[134] J. McZara, S. Sarkani, T. Holzer, T. Eveleigh, Software requirements prioritization and selection using linguistic tools and constraint solvers—a controlled experiment, Empirical Software Engineering 20 (6) (2015) 1721–1761.

[135] J. Misra, S. Sengupta, S. Das, Latent semantic centrality based automated requirements prioritization, in: Proceedings of the 7th India Software Engineering Conference, 2014, pp. 1–10.

[136] S. Shafig, A. Mashkoor, C. Mayr-Dorn, A. Egyed, Nlp4ip: Natural language processing-based recommendation approach for issues prioritization, in: 2021 47th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), IEEE, 2021, pp. 99–108.

[137] M. Choetkiertikul, H. K. Dam, T. Tran, T. Pham, A. Ghose, T. Menzies, A deep learning model for estimating story points, IEEE Transactions on Software Engineering 45 (7) (2018) 637–656.

[138] I. Hussain, L. Kosseim, O. Ormandjieva, Approximation of cosmic functional size to support early effort estimation in agile, Data & Knowledge Engineering 85 (2013) 2–14.

[139] S. Mishra, A. Sharma, Crawling wikipedia pages to train word embeddings model for software engineering domain, in: 14th Innovations in Software Engineering Conference (formerly known as India Software Engineering Conference), 2021, pp. 1–5.

[140] U. Shah, S. Patel, D. C. Jinwala, Detecting intra-conflicts in non-functional requirements, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 29 (03) (2021) 435–461.

[141] V. Silva-Rodríguez, S. E. Nava-Muñoz, L. A. Castro, F. E. Martínez-Pérez, H. G. Pérez-González, F. Torres-Reyes, Classifying design-level requirements using machine learning for a recommender of interaction design patterns, IET Software 14 (5) (2020) 544–552.

[142] C. F. Baker, C. J. Fillmore, J. B. Lowe, The berkeley framnet project, in: COLING 1998 Volume 1: The 17th International Conference on Computational Linguistics, 1998.

[143] Y. Li, T. Yang, Word embedding for understanding natural language: a survey, in: Guide to big data applications, Springer, 2018, pp. 83–104.

50
[144] F. Dalpiaz, I. Van Der Schalk, S. Brinkkemper, F. B. Aydemir, G. Lucassen, Detecting terminological ambiguity in user stories: Tool and experimentation, Information and Software Technology 110 (2019) 3–16.

[145] C. De Boom, S. Van Canneyt, T. Demeester, B. Dhoedt, Representation learning for very short texts using weighted word embedding aggregation, Pattern Recognition Letters 80 (2016) 150–156.

[146] S. Dupond, A thorough review on the current advance of neural network structures, Annual Reviews in Control 14 (2019) 200–230.

[147] Z. Liu, B. Li, J. Wang, R. Yang, Requirements engineering for crossover services: Issues, challenges and research directions, IET Software 15 (1) (2021) 107–125.

[148] A. Mavin, P. Wilkinson, S. Teufl, H. Femmer, J. Eckhardt, J. Mund, Does goal-oriented requirements engineering achieve its goal?, in: 2017 IEEE 25th international requirements engineering conference (RE), IEEE, 2017, pp. 174–183.

[149] U. Eklund, H. H. Olsson, N. J. Strøm, Industrial challenges of scaling agile in mass-produced embedded systems, in: International Conference on Agile Software Development, Springer, 2014, pp. 30–42.

[150] G. Fanmuy, A. Fraga, J. Llorens, Requirements verification in the industry, in: Complex systems design & management, Springer, 2012, pp. 145–160.

[151] Y. Wautelet, S. Heng, M. Kolp, I. Mirbel, Unifying and extending user story models, in: International Conference on Advanced Information Systems Engineering, Springer, 2014, pp. 211–225.

[152] A. Di Thommazo, T. Ribeiro, G. Olivatto, V. Werneck, S. Fabbri, An automatic approach to detect traceability links using fuzzy logic, in: 2013 27th Brazilian Symposium on Software Engineering, IEEE, 2013, pp. 21–30.

[153] Y. Wang, J. Zhang, Experiment on automatic functional requirements analysis with the efrf’s semantic cases, in: 2016 International Conference on Progress in Informatics and Computing (PIC), IEEE, 2016, pp. 636–642.