Clarification of taxonomic assignment of smelt complete mitochondrial genome: GenBank accession number KP281293.1 (NC_026566.1)

Alla G. Oleinik, Lubov A. Skurikhina and Andrey D. Kukhlevsky

A. V. Zhirmunsky Institute of Marine Biology, National Scientific Center of Marine Biology, Russian Academy of Sciences, Vladivostok, Russia; School of Natural Sciences, Far Eastern Federal University, Vladivostok, Russia

ABSTRACT
According to the reference data in GenBank, the complete mitochondrial genome KP281293.1 presumably belongs to Hypomesus o lidsus from China. The phylogenetic analysis based on the Cytb and Col genes of the smelt genus Hypomesus suggests that the Chinese specimen belongs to Hypomesus nipponensis. The difference in the studied region of mitogenome is low, 0.6%, which is in agreement with the values of intraspecific divergence for the smelts. The use of the sequence KP281293.1 as a marker for H. o lidsus will not help in improving the understanding of the taxonomic relationships gained from previous morphological studies and is phylogenetically misleading.

ARTICLE HISTORY
Received 7 March 2019
Accepted 6 April 2019

KEYWORDS
Osmeridae; Hypomesus o lidsus; Hypomesus nipponensis; complete mitochondrial genome; mtDNA

The geographic distribution pattern of mtDNA sequence polymorphisms of H. o lidsus Pallas 1814, over most of the range in the Northwestern Pacific, was previously examined (Skurikhina et al. 2012). Having studied more samples, we found a mistake in the taxonomic identification of the complete mitochondrial genome of H. o lidsus from Bai et al. (2017). Incomplete phylogeny of the family Osmeridae has been recently published, including the mitogenomes of this smelt (Balakirev et al. 2018). However, taxonomic errors can lead to inaccurate phylogenetic conclusions. In the present study, we would like to warn the investigators against such mistakes.

The specimen KP281293.1 has a taxonomy ID (NCBI: txid240830) and presumably belongs to H. o lidsus from Yuqiao Reservoir, Tianjin, China (40°01’ N/117°54’ E). To explore the phylogenetic position of this specimen, phylogenies involving other smelt species were constructed using public Cytb and Col genes sequences. 119 specimens of H. o lidsus from nine different locations were included to place our findings within a broader phylogenetic group.

CONTACT Alla G. Oleinik alla_oleinik@mail.ru Genetics Laboratory of A. V. Zhirmunsky Institute of Marine Biology, National Scientific Center of Marine Biology, Russian Academy of Sciences, 17 Palchevskogo St., Vladivostok 690041, Russia

© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
include all specimens of *H. olidus* reported by Skurikhina et al. (2012) and Melnikova et al. (2018). All sequences were obtained from the Genbank/NCBI database (HQ115079-HQ115271, FJ205570-FJ205572, FJ010869-FJ010871, MK038781-MK038784, MK038788-MK038807, MK038813-MK038816, MK038818-MK038837, and KY400645-KY400647). The samples of smelts *H. nipponensis* and *H. japonicus* from the Olga Bay of the Sea of Japan (43°43′ N/135°15′ E) were included for comparison. The fish specimens are stored in the collection of Genetics Laboratory, National Scientific Center of Marine Biology, Vladivostok, Russia (www.imb.dvo.ru). The complete mitochondrial genome of *H. nipponensis* (HM106489.1) from Jingpo Lake, China (43°52′ N/128°56′ E) was added to the analysis. The total length of mtDNA nucleotide sequences was 1668 bp.

As shown in the maximum-likelihood tree (Figure 1), the specimen KP281293.1 was clustered with *H. nipponensis* with a very low level of sequence divergence ($D_{xy} = 0.006 \pm 0.002$), while all sequences of *H. olidus* proper formed a different cluster. The low level of sequence divergence was also detected within the group of *H. olidus* (0.0001 ± 0.0001 – 0.0024 ± 0.0010), significantly lower than that between KP281293.1 and *H. olidus* (0.1296 ± 0.0085).

Our results suggest that the specimen KP281293.1 belongs to *H. nipponensis*. With respect to *Hypomesus* phylogeny, the relationships between *H. olidus* and *H. nipponensis* are not yet clear (Ilves and Taylor 2009; Skurikhina et al. 2013). In this situation, the inclusion of the complete mitogenome KP281293.1 may cause a conflicting phylogenetic signal. The arguments for the erroneous taxonomic assignment by Bai et al. (2017) are the following. Of the three species (*H. japonicus*, *H. nipponensis*, and *H. olidus*) inhabiting the Sea of Japan basin, *H. olidus* is only found in its northern part (Chereshnev et al. 2001). We suppose that the specimen KP281293.1 was caught in China, where *H. olidus* is never found in natural populations.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

The study was supported by the Program of fundamental research of the Far Eastern Branch of Russian Academy of Sciences (project no. 1804-042).

References

Bai X, Luo Z, Feng S, Sun Z, Wu HM, Li CY, Jiang JF, Liu X, Wang N. 2017. The complete mitochondrial genome of *Hypomesus olidus* (Osmeriformes: Osmeridae). Mitochondrial DNA (Part B). 2:687–688.

Balakirev ES, Romanov NS, Ayala FJ. 2018. Complete mitochondrial genome of the surf smelt *Hypomesus japonicus* (Osmeriformes, Osmeridae). Mitochondrial DNA (Part B). 3:1071–1072.

Chersheven IA, Shestakov AV, Frolov SV. 2001. On the systematics of species of the genus *Hypomesus* (Osmeridae) of Peter the Great Bay, Sea of Japan. Rus J Marine Biol. 27:296–302.

Ilves KL, Taylor EB. 2009. Molecular resolution of the systematics of a problematic group of fishes (Teleostei: Osmeridae) and evidence for morphological homoplasy. Mol Phylogenet Evol. 50:163–178.

Melnikova MN, SENCHUKOVA AL, Pavlov SD. 2018. New data about mtDNA variability of pond smelt *Hypomesus olidus* (Osmeridae) from the Commander Islands in comparison with other populations of the species. Biol Bull Russ Acad Sci. 45:11–17.

Skurikhina LA, Kukhlevsky AD, Kovpak NE. 2013. Relationships of osmerid fishes (Osmeridae) of Russia: divergence of nucleotide sequences of mitochondrial and nuclear genes. Genes Genom. 35:529–539.

Skurikhina LA, Kukhlevsky AD, Zheleznova KO, Kovalev MY. 2012. Analysis of the mitochondrial DNA variation in pond smelt *Hypomesus olidus* (Osmeridae). Russ J Genet. 48:713–722.