News Article Retrieval in Context for Event-centric Narrative Creation

Nikos Voskarides∗
Amazon
Barcelona, Spain
nvoskar@amazon.com

Sabrina Sauer
University of Groningen
Groningen, The Netherlands
s.c.sauer@rug.nl

Edgar Meij
Bloomberg
London, United Kingdom
emeij@bloomberg.net

Maarten de Rijke
University of Amsterdam & Ahold Delhaize Research
Amsterdam, The Netherlands
m.derijke@uva.nl

ABSTRACT

Writers such as journalists often use automatic tools to find relevant content to include in their narratives. In this paper, we focus on supporting writers in the news domain to develop event-centric narratives. Given an incomplete narrative that specifies a main event and a context, we aim to retrieve news articles that discuss relevant events that would enable the continuation of the narrative. We formally define this task and propose a retrieval dataset construction procedure that relies on existing news articles to simulate incomplete narratives and relevant articles. Experiments on two datasets derived from this procedure show that state-of-the-art lexical and semantic rankers are not sufficient for this task. We show that combining those with a ranker that ranks articles by reverse chronological order outperforms those rankers alone. We also perform an in-depth quantitative and qualitative analysis of the results that sheds light on the characteristics of this task.

ACM Reference Format:
Nikos Voskarides, Edgar Meij, Sabrina Sauer, and Maarten de Rijke. 2021. News Article Retrieval in Context for Event-centric Narrative Creation. In Proceedings of the 2021 ACM SIGIR International Conference on the Theory of Information Retrieval (ICTIR ’21), July 26, 2021, Virtual Event, Canada. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3471158.3472247

1 INTRODUCTION

Professional writers such as journalists generate narratives centered around specific events or topics. As shown in recent studies, such writers envision automatic systems that suggest material relevant to the narrative they are creating [10, 19]. This material may provide background information or connections that can help writers generate new angles on the narrative and thus help engage the reader [24].

∗Research conducted when the author was at the University of Amsterdam.

Previous work has focused on developing automatic systems to support writers explore content relevant to the narrative they are writing about. Such systems use content originating from various sources such as as social media [8, 11, 53], political speeches and conference transcripts [29], or news articles [30].

Writers in the news domain often develop narratives around a single main event, and refer to other, related events that can serve different functions in relation to the narrative [44]. These include explaining the cause or the context of the main event or providing supporting information [4]. Recent work has focused on automatically profiling news article content (i.e., paragraphs or sentences) in relation to their discourse function [4, 52].

In this paper, instead of profiling existing narratives, we consider a scenario where a writer has generated an incomplete narrative about a specific event up to a certain point, and aims to explore other news articles that discuss relevant events to include in their narrative. A news article that discusses a different event from the past is relevant to the writer’s incomplete narrative if it relates to the narrative’s main event and to the narrative’s context. Relevance to the narrative’s main event is topical in nature but, importantly, relevance to the narrative’s context is not only topical: to be relevant to the narrative’s context, a news article should enable the continuation of the narrative by expanding the narrative discourse [2].

Table 1 shows an example of an incomplete narrative and a news article relevant to it. The relevant article discusses a different event from the past that is relevant to the writer’s incomplete narrative if it relates to the narrative’s main event and to the narrative’s context. Relevance to the narrative’s main event is topical in nature but, importantly, relevance to the narrative’s context is not only topical: to be relevant to the narrative’s context, a news article should enable the continuation of the narrative by expanding the narrative discourse [2]. We model the problem of finding a relevant news article given an incomplete narrative as a retrieval task where the query is an incomplete narrative and the unit of retrieval is a news article. We automatically generate retrieval datasets for this task by harvesting links from existing narratives manually created by journalists. Using the generated datasets, we analyze the characteristics of this task and study the performance of different rankers on this task. We find that state-of-the-art lexical and semantic rankers are not sufficient...
2.2 Task definition

The task of news article retrieval in context for event-centric narrative creation is defined as follows. Given a query \(q = (e, c, t) \) and a collection of news articles \(D \) published before time \(t \), we need to rank articles in \(D \) w.r.t. their relevance to \(q = (e, c, t) \). Importantly, “relevance to \(e \)” is to be interpreted as topical, whereas “relevance to \(c \)” is not only topical, but it should also enable the continuation of the narrative by expanding the narrative discourse [2]. “Relevance to \(q \)” is taken to mean the same as “relevance to \(e \) and to \(c \)”.

3 RETRIEVAL DATASET CONSTRUCTION

3.1 Dataset construction procedure

In order to construct a retrieval dataset for our news article retrieval task, we rely on existing news articles to simulate incomplete narratives as well as relevant documents. We capitalize on the fact that (complete) news articles often contain links to other news articles manually inserted by journalists in the form of hyperlinks.

The automatic retrieval dataset construction procedure that we propose takes as input a news article \(d \) and outputs a set of \((q, d^*)\) pairs, where \(q = (e, c, t) \) is a query and \(d^* \) is the (unique) relevant news article to \(q \). Note that \(e \) is described by the headline \(H \) and the lead paragraph \(L \) of \(d \) (see Section 2.1).

In order to construct the context \(c \) of \(q \), we iteratively look for link sentences \(a_{i,j} \) in \(d \) that contain a hyperlink to another news article \(d^* \). We enforce \(i > 1 \) so that the paragraph where the link sentence appears is after the lead paragraph. We also enforce \(j > 1 \) motivated by the fact that links after the first sentence of a paragraph are tightly related to the main idea of the paragraph, therefore the sentences preceding the link sentence can be considered as context [16]. If such a link sentence \(a_{i,j} \) exists, we consider the sentences \(a_{1,1}, \ldots, a_{i,j-1} \) as the narrative context \(c \) and the article \(d^* \) as the relevant article for \(q \).

Example. To illustrate the procedure described above, consider the example in Table 1. Sentences \#1 and \#2 in Table 1 are the headline and lead paragraph of a news article \(d \), respectively. Sentence \#3 in Table 1 is the first sentence \(a_{i,j-1} \) of a paragraph \(p_i \), \(i > 1 \) in \(d \), which constitutes the narrative context \(c \). The link sentence \(a_{i,j} \) (not shown in the table) is:

- **Example.** To illustrate the procedure described above, consider the example in Table 1. Sentences \#1 and \#2 in Table 1 are the headline and lead paragraph of a news article \(d \), respectively. Sentence \#3 in Table 1 is the first sentence \(a_{i,j-1} \) of a paragraph \(p_i \), \(i > 1 \) in \(d \), which constitutes the narrative context \(c \). The link sentence \(a_{i,j} \) (not shown in the table) is:

3.2 Retrieval dataset description

We consider two collections of news articles written in English and published by major newspapers. The first is a set of news articles published by The Washington Post (WaPo), released by the TREC News Track [41]. It contains 671,947 news articles and blog posts published from January 2012 to December 2019. The second is a set of news articles published by The Guardian, between November...
Table 2: Statistics of the retrieval datasets derived from the WaPo and Guardian newspaper collections. Because of the way we construct the retrieval datasets (see Section 3.1), each query has a single relevant news article.

Dataset Split	#q	#uniq. d	#uniq. e	Link sentence \((a_{i,j})\)	
	i mean	median	j mean	median	
WaPo					
Train	32,963	23,537	24,279	7.9/7	2.5/2
Dev.	1,831	1,286	1,585	8.4/8	2.4/2
Test	1,832	1,216	1,555	9.1/9	2.4/2
Guardian					
Train	31,329	21,730	22,935	7.3/6	2.4/2
Dev.	1,740	1,128	1,526	8.0/7	2.4/2
Test	1,742	1,064	1,532	7.3/7	2.5/2

Figure 1: Histogram of the number of tokens in the query event \(e\) and the query context \(c\).

Figure 2: Histogram of the difference in the number of days between the publication date of the query and its relevant news article.

Table 3: Results of the annotation exercise: assessing relevance of document \(d^a\) w.r.t. \(e\) only (Task 1), and then \(c\) (Task 2). We show the fraction of times the annotator labeled a sample as positive for the task.

Dataset	Task 1	Task 2 Either
WaPo	0.90	0.77 0.91
Guardian	0.85	0.83 0.92

mentioned in the narrative context. And a typical example of a less recent, relevant article can be found when discussing an event that is similar to one mentioned in the query (e.g., an earthquake) but involving different entities (e.g., a person, location, or organization).

3.3 Retrieval dataset quality

The dataset construction procedure we described in Section 3.1 assumes that an article \(d^a\) is relevant to \(e\) because the writer has chosen to link to it in a particular context, which is a fair assumption to make. Nevertheless, we further assess the quality of the automatically constructed retrieval datasets with respect to our task definition (Section 2.2) by performing two annotation tasks. In the first task, we show \(e\) and \(d^a\) to a human annotator and ask whether they understand their connection (binary). In the second task, which is done after the completion of the first task, we additionally show the context \(c\) and ask whether it enhances their understanding of the connection of \(e\) and \(d^a\) (binary). The two tasks can help us validate whether \(d^a\) is topically relevant to \(e\), and relevant to \(c\) in a way that enables the continuation of the narrative (Section 2.2).

One annotator annotated 100 examples from the development set of each dataset (i.e., 200 examples in total). In order to assess the quality of the annotations, a second assessor annotated a subset of 50 examples from each dataset (100 examples in total). The Cohen’s \(\kappa\) [6] score is 0.61 for Task 1 (substantial agreement) and 0.50 for Task 2 (moderate agreement).

The results can be seen in Table 3. We see that, for both datasets, the context \(c\) enhances the understanding of the connection to \(d^a\) for more than 3/4 of the cases (Task 2). Also, for the vast majority of the cases, either the event \(e\) or the context \(c\) is sufficient to understand the connection (third column). We conclude that the automatic dataset construction procedure we proposed in Section 3.1 can produce reliable datasets for the task of news article retrieval in context for event-centric narrative creation.
4 RETRIEVAL METHOD

We follow a standard two-step retrieval pipeline that consists of (i) an unsupervised initial retrieval step, and (ii) a re-ranking step [48]. Note that we do not focus on proposing new methods but rather on studying existing ones on this novel task.

4.1 Initial retrieval

In this step, we score each news article \(d \) in \(D \) w.r.t. \(q = (e, c, t) \) to obtain the initial ranked list \(L_1 \). Here, we are interested in achieving high recall at lower depths in the ranking, since this step is followed by a more sophisticated reranking step. We use BM25 [36], an unsupervised lexical matching function, which is effective for ad-hoc retrieval and other tasks, such as question answering [50]. In order to construct the lexical query, we simply concatenate \(e \) and \(c \).

4.2 Reranking

Here we rerank the initial ranked list \(L_1 \) obtained in the previous step by combining the results of multiple rankers using Reciprocal Rank Fusion (RRF) [7], an unsupervised ranking fusion function that is effective in combining state-of-the-art rankers [27, 46]. RRF is defined as follows:

\[
\sum_{L \in L'} \frac{1}{k + \text{rank}(d, L)},
\]

where \(L' \) is a set of ranked lists, \(\text{rank}(d, L) \) is the rank of article \(d \) in the ranked list \(L \), and \(k \) is a parameter, set to its default value (60).

We use the following rankers:

BM25 The initial retrieval step ranker (Section 4.1), often used in combination with more sophisticated ranking models [28].

BERT BERT [9] has recently achieved state-of-the-art performance for retrieval and recommendation tasks in the news domain [49, 51]. BERT has been shown to prefer semantic matches and is often used in combination with lexical matching ranking functions [35]. Given the query \(q \) and a candidate news article \(d \), we follow [29] and construct the input to BERT as follows: \([\text{CLS}] \quad c \quad \text{<unused>}_d \quad c \quad \text{<SEP>} \quad d\) \], where \(\text{<CLS>} \) is a special token, \(\text{<unused>} \) is a special token that informs the model where the context begins and \(\text{<SEP>} \) is a special token that informs the model where the document \(d \) begins. We add a dropout layer on top of the \(\text{<CLS>} \) token, and a linear layer with a scalar output to obtain the final matching score, which is used to rank the articles in \(L_1 \). Note that, because of the limit of BERT in the number of tokens, we only take into account the headline and lead of \(d \).

Recency This ranker simply sorts the candidate articles in \(L_1 \) by their reversed chronological order.

Note that we have also experimented with using the scores of the above rankers as features in supervised learning to rank models but they only gave minor improvements over RRF. Thus we do not discuss them in this paper.

5 EXPERIMENTAL SETUP

5.1 Evaluation metrics

We use standard IR metrics: Mean Reciprocal Rank (MRR) and recall at different cut-offs (R@20, R@1000). Because of the way we construct our dataset (Section 3.1), we only have one relevant news article per query and thus MRR is equivalent to MAP. We use a cut-off of 20 at recall since we expect writers to be willing to navigate the ranked list to lower positions [23, 38, 45]. We report on statistical significance with a paired two-tailed t-test.

5.2 Implementation and hyperparameters

We use the BM25 implementation of Anserini [50] with default parameters and retrieve the top-1000 articles (Section 4.1). We use the OpenNIR implementation of BERT for retrieval [28]. We fine-tune the bert-base pre-trained model on the training set of each of our datasets separately. We assign a maximum 300 tokens for the query \(q \) and 200 for the article \(d \). We use a batch size of 16 with gradient accumulation of 2; we apply max grad norm of 1, and tune the following hyperparameters for MRR on the development set of each dataset separately: number of negatives \([1, 2, 3] \) and learning rate \([5e − 6, 1e − 5, 2e − 5]\). During training we sample one negative example from the initial ranked list obtained in Section 4.1, and train the model with pairwise ranking loss.

We use Spacy\(^1\) for sentence splitting, POS tagging and Named Entity Recognition. We use the en_core_web_lg model to obtain word vectors.

6 RESULTS

In this section we present our experimental results.

6.1 Initial retrieval

We examine the performance of the initial retrieval step when different variations of the query \(q \) are used. Table 4 shows the results. We observe that, for both datasets, when using both the event \(e \) and the context \(c \) we get better results than when using either of the two alone, especially in terms of R@1000. This shows that both the event \(e \) and the context \(c \) are important for our task.

In Table 4 (bottom row) we also show ranking performance when using the link sentence as the query (see Section 3.1). Even though we do not use the link sentence as part of the query in our task definition (Section 2.2), this can give us a reference point for the “upper bound” performance in this step, since the link sentence has a high lexical overlap with the relevant article \(d^* \) [34]. We observe that, indeed, when using the link sentence as the query, ranking performance is much higher than when using \(q \), achieving close to perfect R@1000. Nevertheless, R@1000 when using \(e & c \)

\[\text{http://spacy.io/}\]

Query	MRR	R@1000	MRR	R@1000
\(e \)	0.117	0.745	0.104	0.723
\(c \)	0.167	0.737	0.154	0.714
\(e & c \)	0.172	0.832	0.149	0.806
LS	0.459	0.944	0.427	0.929
Table 5: Retrieval performance when reranking the ranked list obtained by BM25 (first row).

Method	WaPo MRR	WaPo R@20	Guardian MRR	Guardian R@20
BM25	0.172	0.433	0.149	0.382
Recency	0.086	0.284	0.065	0.065
BERT	0.182	0.451	0.173	0.447
RRF-recency	0.206	0.509	0.195	0.477
RRF	0.236	0.588	0.212	0.533

is relatively close to when using LS, which is an encouraging result given that in this step we are more interested in recall.

6.2 Reranking
Here, we report results on the individual rankers described in Section 4.2 and their combinations with RRF. Table 5 shows the results. First, we see that the performance of the Recency ranker is poor. Also, we see that BERT outperforms BM25 on both datasets, while only using the headline and the lead of the candidate news article.

RFR-recency combines BERT and BM25 achieves an increase over BERT. Finally, when also adding the Recency ranker in RRF, we observe a significant \(p < 0.01 \) increase on all metrics. We conclude that RRF, albeit simple, is effective in combining the three rankers and that all three rankers are useful for this task.

7 ANALYSIS
In this section we analyze our results along different dimensions to gain further insights into this task. For our analysis we use the development set of the WaPo and Guardian datasets.

7.1 Vocabulary gap
The vocabulary gap is a well known challenge in information retrieval [26]. Here, we analyze the performance of the rankers under comparison for this task based on the vocabulary gap between the query \(q \) and the relevant article \(d^* \), using Jaccard similarity.

In Figure 3 we observe that the higher the lexical overlap between \(q \) and \(d^* \) (small vocabulary gap) the higher the performance for all rankers, for both datasets. Also, we see that when the lexical overlap is low (large vocabulary gap), all rankers fail to return the relevant article at the top positions of the ranking. This shows that more sophisticated methods are needed to handle the large vocabulary gap in this task. In Figure 4 we show the lexical overlap between the narrative’s context \(c \) only and the relevant \(d^* \). Even though it follows the same trend as in Figure 3, we see that BERT is consistently better than BM25 as the term overlap between the narrative’s context \(c \) and \(d^* \) increases, for both datasets. This shows that BERT is able to better take into account the narrative’s context \(c \) than BM25.

Next, we show examples of high/low lexical overlap between \(q \) and \(d^* \) in Table 6. In the first example (high lexical overlap), we see that because of high term overlap, all rankers are able to rank \(d^* \) at the top 1–2 positions. In the second example (low lexical overlap), the relevant article \(d^* \) discusses the execution of Alfredo Prieto: this is a case in which Morrogh, a prosecutor in Virginia, was involved (Morrogh is mentioned in the narrative’s context \(c \)). However, the fact that Morrogh is involved in the case is not mentioned explicitly in \(d^* \) and thus all rankers fail to rank the relevant article at the top positions. Incorporating the fact that Morrogh is related to Prieto in the ranking model could potentially be achieved by exploiting knowledge graphs that store event information [14, 37]. We leave the exploration towards this direction for future work.

7.2 Temporal aspects
As discussed in Section 3.2, the retrieval datasets we derived for this task have a strong recency bias. Here, we analyze the performance of the rankers under comparison based on a temporal aspect, i.e., how recent the relevant article is.

In Figure 5 we show the performance of the retrieval methods for different day differences between the query \(q \) and the relevant article \(d^* \). As expected, we observe that for RRF, which uses the recency signal, the performance increases substantially on average when the relevant article is recent, and decreases when it is older.
Next, we look at specific examples to better understand the results. Table 7 shows examples where the relevant article is recent and RRF ranks it at the top of the ranking, while RRF-recency ranks it lower.

Table 6: Examples from the WaPo dev. set with high/low lexical overlap between q and d^* (top/bottom).

Query event c	Narrative's context c	Link sentence	Relevant article d^*	Top-ranked article RRF	Rank of d^*
Last week, a Chinese court scheduled Schellenberg’s appeal hearing to begin hours after his extradition hearing in Vancouver.	After a Canadian court pushed back a decision in Schellenberg’s case, the Chinese court announced it would delay a ruling on whether Schellenberg would be put to death.	Chinese court delays ruling on Schellenberg’s appeal.	d^*	2	
Last week, China’s influence on exports continues to grow. Chinese executive. Chinese court delays ruling on Schellenberg’s appeal.	After years of feeling fortunate about their economic relationship with China, Australians are starting to worry about the cost.	Threat from China recalls Nazi Germany’s expansion to the root of Germany.	3	2	
Despite national security concerns, GOP leader McCarthy blocked bipartisan bid to limit China’s role in the U.S.	After years of feeling fortunate about their economic relationship with China, Australians are starting to worry about the cost.	Threat from China recalls Nazi Germany’s expansion to the root of Germany.	3	2	

Table 7: Examples from the WaPo dev. set with a recent relevant article where RRF ranks the relevant article at the top, while RRF-recency ranks it lower.

Query event c	Narrative's context c	Link sentence	Relevant article d^*	Top-ranked article RRF-recency	Rank of d^*
China’s influence on counterparts continues to grow. Chinese executive.	After years of feeling fortunate about their economic relationship with China, Australians are starting to worry about the cost.	Threat from China recalls Nazi Germany’s expansion to the root of Germany.	3	2	
Despite national security concerns, GOP leader McCarthy blocked bipartisan bid to limit China’s role in the U.S.	After years of feeling fortunate about their economic relationship with China, Australians are starting to worry about the cost.	Threat from China recalls Nazi Germany’s expansion to the root of Germany.	3	2	

Next, we look at specific examples to better understand the results. Table 7 shows examples where the relevant article is recent and RRF ranks it at the top of the ranking, while RRF-recency ranks it lower. In both examples, RRF-recency’s top-ranked article seems to be relevant to the query, but the writer chose to refer to a more recent event [32]. Note that the fact that only one article is relevant to each query is an artifact of our dataset and not of the task itself.

Table 8 shows examples where the relevant article is old and RRF-recency ranks it at the top of the ranking, while RRF ranks it lower. In the first example, the relevant article discusses a development on the injury of Scherzer, a player of the Washington Nationals team, and RRF-recency correctly brings that at the top position. However, RRF ranks a more recent event at the top position that discusses an injury of a different player of the same team. In the second example, RRF brings at the top position an article that discusses an event about India that is more recent than the one that the relevant article discusses, however the article is off-topic.

The above phenomena suggest that more sophisticated methods that model recency should be explored for this task. For instance, it would be interesting to try to predict which queries are of temporal nature based on the characteristics of the underlying collection [22, 33]. However, methods that build on features derived from user interactions are not applicable to our setting [12].

7.3 Entity popularity

Entities play a central role in event-centric narratives, especially in the news domain [37]. We examine whether entity popularity affects retrieval performance in our task by measuring the Inverse Document Frequency (IDF) of entities mentioned in the query [31].
An entity with a high IDF in the collection is less popular than an entity with a low IDF.

In Figure 6 we show the performance depending on the average IDF of the entities in the query in the underlying collection. We observe that the rankers that use the query and article text (BM25, BERT, RRF-recency) perform worse for queries with more popular entities (low IDF) than for queries with less popular entities. This is because popular entities appear in multiple events, and thus there are many potentially relevant articles for a query. We also see that RRF, which takes recency into account, is more robust to entity popularity. This might also be related to the fact that a recent event that involves a popular entity is more likely to be relevant in general than a less recent event that involves the same entity (also see examples in Section 7.2, Table 7).

Link sentence

Recall that we do not use the link sentence as part of the query (see Section 3.1). Thus, our rankers are not aware of its content. However, we found that in some cases the link sentence contains information that is crucial for the connection of the complete narrative and the relevant news article. Thus, in such cases, the query event e and the narrative’s context c are not sufficient. Table 9 shows examples of such cases. Note that in the first example, the relevant article was not even retrieved in the top-1000 of the initial retrieval step (see Section 4.1). In the second example, the relevant article is ranked very low by all rankers.

One direction for future work would be to detect parts of the link sentence that contain such crucial information and add them to the narrative’s context c. This could be performed as a manual annotation task or modeled as a prediction task [21].

8 RELATED WORK

8.1 Supporting narrative creation

Recent work on developing automatic applications to support writers has focused on designing tools that track and filter information from social media to support journalists [11, 53]. Cucchiarelli et al. [8] track the Twitter stream and Wikipedia edits to suggest potentially interesting topics that relate to a new event that a writer can include in their narrative when reporting on the event. In contrast, instead of relying on external sources, we aim to retrieve news articles that describe events from the past that can help the writer expand the incomplete narrative about a specific event.

Perhaps the closest to our task are the works by Maiden and Zachos [30] and MacLaughlin et al. [29]. Maiden and Zachos [30] focus on suggesting articles that would help journalists discover new, creative angles on a current incomplete narrative. The difference with our work is that they aim to suggest creative angles on articles and retrieve articles depending on the angle the writer selects. In addition, they evaluate their system in a living lab scenario, whereas we create static retrieval datasets from historical data and use them to train ranking functions. Evaluating our system in a living lab scenario would be a promising direction for future work.

MacLaughlin et al. [29] retrieve paragraphs that contain quotes from political speeches and conference transcripts, so that writers can use them in their incomplete narratives. Even though their retrieval task definition is similar to ours, our task differs in that our work is that they aim to suggest creative angles on articles that describe events from the past that can help the writer expand the incomplete narrative about a specific event.

![Image](image_url)

Figure 6: MRR vs avg. IDF of the entities in the query q.
speech). Moreover, our unit of retrieval (article) is timestamped, which makes the temporal aspect prominent in our task.

8.2 Context-aware citation recommendation

The task of context-aware citation recommendation is to find articles that are relevant to a specific piece of text a writer has generated [17]. It has mainly been studied in the scientific domain [13, 18, 20, 39], but also in the news domain [25]. The main difference between the aforementioned works and our task is that we aim to retrieve articles to expand existing incomplete narratives instead of finding citations for complete narratives.

8.3 Event extraction & retrieval

Events are the starting points of narrative news items. Recent work has focused on extracting and characterizing events from large streams of documents [3] and extracting the most dominant events from news articles [5]. In our work, we assume that a news article is associated with a single main event, which is described by the article’s headline and lead paragraph [4]. More related to our task is work focused on retrieving events given a query event [25, 40]. However, this work does not consider additional context in the query as we do, and thus it is not directly comparable to ours.

9 CONCLUSION AND FUTURE WORK

In this paper, we have proposed and studied the task of news article retrieval in context for event-centric narrative creation. We have proposed an automatic dataset construction procedure and have shown that it can generate reliable evaluation sets for this task. Using the generated datasets, we have compared lexical and semantic rankers and found that they are insufficient. We have found that combining those rankers with one that ranks articles by their reverse chronological order significantly improves retrieval performance over those rankers alone.

As to broader implications of this work, we believe that this work provides new avenues for information retrieval researchers as we aim to retrieve articles to expand existing incomplete narratives.

Table 9: Examples from the WaPo dev. set where the link sentence contains crucial information for the connection of the complete narrative and the relevant article.

Query event e	Narrative’s context e	Link sentence	Relevant article a	Top-ranked article BRF	Rank of a
Americans are drinking more "gourmet" coffee. This doesn't mean they're drinking great coffee. The National Coffee Association USA recently dropped its annual survey results, and, as usual, there's a wealth of information to sift through to better understand the state of coffee drinking in America.	According to this year's findings, coffee remains the No. 1 drink: Sixty-three percent of the respondents said they drink a coffee beverage (drip coffee, espresso, latte, cold brew, Unicorn Frappuccino, etc.) the previous day; a click down from 64 percent in 2018.	By the way, the second-most consumed beverage was unflavored bottled water, which might help explain the Great Pacific Garbage Patch.	Plastic within the Great Pacific Garbage Patch is increasing exponentially, experts find. Seventy-nine thousand tons of plastic debris, in the form of 1.8 trillion pieces, now occupy an area three times the size of France in the Pacific Ocean between California and Hawaii, a scientific team reported on Thursday.	371	N/A
DATA
To facilitate reproducibility, we share the scripts used to generate the datasets used in this paper at https://github.com/nickvosk/icir2021-news-retrieval-in-context.

ACKNOWLEDGMENTS
This research was supported by the Netherlands Organisation for Scientific Research (NWO) under project nr CI-14-25. All content represents the opinion of the authors, which is not necessarily shared or endorsed by their respective employers and/or sponsors.

REFERENCES
[1] Jun Araki, Lamala Mulaffer, Arun Pandian, Yukari Yamakawa, Kermal Olafazer, and Teruko Mitamura. 2018. Interoperable Annotation of Events and Event Relations across Domains. In 14th Joint ACL - ISKO Workshop on Interoperable Semantic Annotation. ACL.
[2] David Caswell and Konstantin Dörr. 2018. Automated Journalism 2.0: Event-driven Narratives. Journalism Practice 12, 4 (2018).
[3] Allison Chaney, Hanna Wallach, Matthew Connelly, and David Blei. 2016. Detecting and Characterizing Events. In EMNLP. ACL.
[4] Prafulla Kumar Choubey, Aaron Lee, Ruihong Huang, and Lu Wang. 2020. Discourse as a Function of Event: Profiling Discourse Structure in News Articles around the Main Event. In ACL. ACL.
[5] Prafulla Kumar Choubey, Kausik Raju, and Ruihong Huang. 2018. Identifying the Most Dominant Event in a News Article by Mining Event Coreference Relations. In NAACL-HLT. ACL.
[6] Jacob Cohen. 1968. Multiple Regression as a General Data-analytic System. Psychological Bulletin 70, 6, Pt. 1 (1968).
[7] Gordon V. Cormack, Charles L. Clarke, and Stefan Buechter. 2009. Reciprocal Rank Fusion Outperforms Concordance and Individual Rank Learning Methods. In SIGIR. ACM Press.
[8] Alessandro Cucchiarelli, Christian Morbidoni, Giovanni Stilo, and Paola Velardi. 2019. A Topic Recommender for Journalists. Information Retrieval 22, 1 (2019).
[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). ACL.
[10] Nikolaos Diakopoulos. 2019. Automating the News: How Algorithms Are Rewriting the Media. Harvard University Press.
[11] Nikolaos Diakopoulos, Munmun De Choudhury, and Mor Naaman. 2012. Finding and Assessing Social Media Information Sources in the Context of Journalism. In CHI. ACM.
[12] Anlei Dong, Yi Chang, Zhaohui Zheng, Gilad Mishne, Jing Bai, Ruiqiang Zhang, Nicholas Diakopoulos, Munmun De Choudhury, and Mor Naaman. 2014. Using Temporal Bursts for Query Modeling. Information Retrieval Journal 17, 1 (2014), 74–108.
[13] Yifan Qiao, Chenshan Xiong, Zhenghao Liu, and Zhiyuan Liu. 2019. Understanding the Behaviors of BERT in Ranking. arXiv preprint arXiv:1904.07531 (2019).
[14] Stephen Robertson and Hugo Zaragoza. 2009. The Probabilistic Relevance Framework: BM25 and Beyond. Foundations and Trends in Information Retrieval 3, 4 (2009).
[15] Marco Rospocher, Marieke van Erp, Piek Voskuil, Ants national. Danyang Liu, Xing Xie, Jianfeng Gao, Winnie Wu, and Ming Zhou. 2020. MIND: A Large-scale Dataset for News Retrieval. In WSDM. ACM.
[16] Simon Gottschalk and Elena Demidova. 2018. EventKG: A Multilingual Event-Centric Temporal Knowledge Graph. In ISWC. Springer.
[17] Simon Gottschalk and Elena Demidova. 2019. HapPenIn: HapPen, Predict, Infer—Event Series Completion in a Knowledge Graph. In ISWC. Springer.
[18] Diana Hacker and Nancy Sommers. 2011. A Writer’s Reference with Writing in the Disciplines. Macmillan.
[19] Qi He, Jian Pei, Daniel Kifer, Prasenjit Mitra, and Lee Giles. 2010. Context-aware Citation Recommendation. In WWW. ACM.
[20] Hanwool Jeong, Siom Jang, Hyuna Shin, Eunjung Park, and Sungchul Choi. 2019. A Context-Aware Citation Recommendation Model with BERT and Graph Convolutional Networks. arXiv preprint arXiv:1903.06464 (2019).
[21] Rahul Jha, Amjad-Abu Jbara, Vahed Qazvinian, and Dragomir R. Radev. 2017. NLP-driven Citation Analysis for Scientometrics. Natural Language Engineering 23, 1 (2017).
[22] Nattiya Kanhanuab, Roi Blanco, and Kjetil Nervåg. 2015. Temporal Information Retrieval. Foundations and Trends in Information Retrieval 9, 2 (2015).
[23] Youngho Kim, Jangwon Seo, and W. Bruce Croft. 2011. Automatic boolean query suggestion for professional search. In SIGIR. ACM.
[24] Keith Kirkpatrick. 2015. Putting the Data Science into Journalism. Commun. ACM 58, 5 (2015).
[25] Cheng Li, Michael Bendersky, Vijay Garg, and Sujith Ravi. 2017. Related Event Discovery. In WSDM. ACM.
[26] Hang Li and Jun Xu. 2014. Semantic Matching in Search. Foundations and Trends in Information Retrieval 7, 5 (2014), 343–469.
[27] Jimmy Lin, Rodrigo Nogueira, and Andrew Yates. 2020. Pretrained transformers for text ranking: Bert and beyond. arXiv preprint arXiv:2010.06467 (2020).
[28] Sean MacAvaney. 2020. OpenNER: A Complete Neural Ad-Hoc Ranking Pipeline. In WSDM 2020. ACM.
[29] Ansel MacLaughlin, Tao Chen, Burcu Karagol Ayan, and Dan Roth. 2021. Context-Based Quotation Recommendation. In ECWS. ACM.
[30] N. Maiden and K. Zachos. 2020. INJECT: Algorithms to Discover Creative Angles on News. In Computation + Journalism 2020.
[31] Christopher D Manning, Prabhakar Raghavan, and Hinrich Schütze. 2008. Introduction to Information Retrieval. Cambridge University Press.
[32] Vlad Niculae, Carolina Suein, Justine Zhang, Cristian Danescu-Niculescu-Mizil, and Jure Leskovec. 2015. QUTOS: The Structure of Political Media Coverage as Revealed by Quoting Patterns. In WWW. ACM.
[33] Vlad-Maria Hendriks Peets, Edgar Meij, and Maarten de Rijke. 2014. Using Temporal Bursts for Query Modeling. Information Retrieval Journal 17, 1 (2014), 74–108.
[34] Hao Peng, Jing Liu, and Chinh-Yen Lin. 2016. News Citation Recommendation with Implicit and Explicit Semantics. In ACL. ACL.
[35] Yuan Qiao, Chenshan Xiong, Zhenghao Liu, and Zhiyuan Liu. 2019. Understanding the Behaviors of BERT in Ranking. arXiv preprint arXiv:1904.07531 (2019).
[36] Teun A. van Dijk. 1988. Discourse and Context in the Media. Cambridge University Press.
[37] Tony Russell-Rose, Jon Chamberlain, and Leif Azzopardi. 2018. Information Retrieval in the Workplace: A Comparison of Professional Search Practices. Information Processing & Management 54, 6 (2018).
[38] Tarek Saar and Michael Farber. 2020. Semantic Modelling of Citation Contexts for Context-Aware Citation Recommendation. In ECIR 2020. Springer.
[39] Vinay Setty and Katja Hose. 2018. Event2Vec: Neural Embeddings for News Events. In SIGIR. ACM.
[40] Ian Soboroff, Shulong Huang, and Donna Harman. 2018. TREC 2018 News Track Overview. In TREC. NIST.
[41] Simone Teufel, Jean Carletta, and Marc Moens. 1999. An Annotation Scheme for Discourse-level Argumentation in Research Articles. In EACL. ACL.
[42] Simone Teufel, Advaith Siddharthan, and Dan Tidhar. 2006. Automatic Classification of Citation Function. In EMNLP. ACL.
[43] Susanne Verbeeren, Jyrin He, Udo Kruschwitz, Gineke Wiggers, Birger Larsen, Tony Russell-Rose, and Arjen P. de Vries. 2019. First International Workshop on Professional Search. SIGIR Forum 52, 2 (2019).
[44] Nikos Voskarides, Edgar Meij, Ridho Reinda, Abhinav Khaitan, Miles Osborne, Giorgio Stefanoni, Kambadur Prabhajan, and Maarten de Rijke. 2018. Weakly-supervised Contextualization of Knowledge Graph Facts. In SIGIR. ACM.
[45] Lidan Wang, Jimmy Lin, and Donald Metzler. 2011. A Cascade Ranking Model for Efficient Ranked Retrieval. In SIGIR. ACM.
[46] Fangzhou Wu, Ying Qiao, Jian-Hung Chen, Chuhan Wu, Tao Q, Jianxun Lian, Danyang Liu, Xin Xie, Jianfeng Gao, Winnie Wu, and Ming Zhou. 2020. MIND: A Large-scale Dataset for News Recommendation. In ACL. ACL.
[47] Peilin Yang, Hui Fang, and Jimmy Lin. 2017. Anserini: Enabling the Use of Lucene for Information Retrieval Research. In SIGIR. ACM.
[48] Wei Yang, Haotian Zhang, and Jimmy Lin. 2019. Simple Applications of BERT for Ad Hoc Document Retrieval. arXiv preprint arXiv:1903.09792 (2019).
[49] W. Victor Yarlow, Cristina Cornelio, Tian Gao, and Mark Finlayson. 2018. Identifying the Discourse Function of News Article Paragraphs. In Workshop on Events and Stories in the News 2018. ACM.
[50] Arkaitz Zubiaga, Heng Ji, and Kevin Knight. 2013. Curating and Contextualizing Twitter Stories to Assist with Social Newsgathering. In IUI. ACM.