Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Safety of intranasal corticosteroids in acute rhinosinusitis

Pascal Demoly, MD*

Clinical Department of Allergology, Maladies Respiratoires, INSERM U657, Hôpital Arnaud de Villeneuve, University Hospital of Montpellier, Montpellier Cedex 5, France

Received 24 September 2007

Abstract

Treatment guidelines for acute rhinosinusitis (RS) recommend the use of intranasal corticosteroids (INSs) as monotherapy or adjunctive therapy. However, the adverse event (AE) profiles of oral glucocorticoids, which result largely from the systemic absorption of those agents, have engendered concerns about the safety of INSs. These concerns persist for INSs despite significant or marked clinical differences between them and systemic corticosteroids in systemic absorption and among the INSs in bioavailability, mechanism of action, and lipophilicity, which may contribute to differences in AEs. For example, the systemic bioavailability of the INSs as a percentage of the administered drug is less than 0.1% for mometasone furoate, less than 1% for fluticasone propionate, 46% for triamcinolone acetonide, and 44% for beclomethasone dipropionate. A review of the safety profiles of INSs, as reported in clinical trials in acute and chronic RS and allergic rhinitis, shows primarily local AEs (eg, epistaxis and headache) that are generally classified as mild to moderate, with occurrence rates that are similar to those with placebo. Studies of the safety of mometasone furoate, fluticasone propionate, budesonide, and triamcinolone acetonide did not identify any evidence of systemic AEs, such as growth retardation in children due to suppression of the hypothalamic-pituitary-adrenal axis, bone mineral density loss, or cataracts, which suggests that INSs can be safely administered in patients with acute RS without concern for systemic AEs.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Rhinosinusitis (RS) is an inflammatory disorder of the upper respiratory tract affecting the nasal mucosa and paranasal sinuses. One of the most commonly reported diseases in the United States, RS is estimated to affect approximately 32 million people annually, or 16% of the adult population [1-3], and accounts for an estimated 15 million office visits annually [4]. Rhinosinusitis is usually classified, based on duration, as acute, subacute, chronic, and recurrent. Acute RS is characterized by symptoms lasting for less than 4 weeks, in contrast to subacute (symptoms lasting 4–8 weeks), chronic (symptoms for 8 weeks or longer), and recurrent (3 or more acute episodes per year) RS (Table 1) [5,6]. In most cases, clinical interventions are directed toward the diagnosis and management of acute and chronic RS [5].

Acute RS arises most frequently as a consequence of viral rhinitis (common cold), although bacterial infection can subsequently occur [7]. The incidence of acute RS is particularly high in children (who experience an estimated 7–10 colds per year), although it is also common in adults (who have 2–5 colds per year) [8]. The microbiology of acute RS is varied, with rhinovirus (found in 50% of cases) [9,10], coronavirus (approximately 15%; also responsible for up to 18% of colds) [9,11], and respiratory syncytial, parainfluenza, and influenza viruses being the most commonly isolated [12-14]. Bacterial infections are found in approximately 38% of adults presenting with RS symptoms in general medical practices and in 6% to 18% of children presenting with upper respiratory infections in the primary care setting [15]. However, studies suggest a positive bacterial culture is found in only about 0.5% to 2% of viral RS cases [16]. The bacterial species most frequently involved are Streptococcus pneumoniae, Haemophilus
such as congestion, headache, and facial pain [21, 25]. Shown to reduce the inflammation associated with symptoms are related to the systemic absorption of oral corticosteroids, or formation of mucous secretogogues (eg, histamine, vascular permeability as well as inhibition of the release and/ or formation of mucous secretogogues (eg, histamine, leukotrienes, prostanooids, platelet-activating factor) [5, 20]. Those effects are thought to result from inhibition of the release of proinflammatory mediators, such as adhesion molecules, cytokines, mast cells, basophils, and eosinophils [21]. By binding to the glucocorticoid receptor in the cytoplasm, the glucocorticoid molecule of an INS produces a complex that acts on a variety of transcriptional activities, thereby hastening the elimination of pathogens [5, 19]. Consequently, the Joint Task Force also notes that INS monotherapy may be helpful in patients with acute and chronic RS [5]. Similarly, the European Academy of Allergology and Clinical Immunology recommends INS therapy, either alone or as an adjunct to an antibiotic, for the treatment of moderate and severe RS [8].

The anti-inflammatory effects of INSs include decreased vascular permeability as well as inhibition of the release and/or formation of mucous secretogogues (eg, histamine, leukotrienes, prostanooids, platelet-activating factor) [5, 20]. Those effects are thought to result from inhibition of the release of proinflammatory mediators, such as adhesion molecules, cytokines, mast cells, basophils, and eosinophils [21]. By binding to the glucocorticoid receptor in the cytoplasm, the glucocorticoid molecule of an INS produces a complex that acts on a variety of transcriptional activities, leading to reductions in levels of proinflammatory molecules and cells (Table 2) [21-24]. In acute RS, INSs have been shown to reduce the inflammation associated with symptoms such as congestion, headache, and facial pain [21, 25].

Concerns about the safety of corticosteroids in acute RS are related to the systemic absorption of oral corticosteroids, which may affect hypothalamic-pituitary-adrenal (HPA) axis function, bone metabolism, and ocular pressure [17, 26-28]. These effects may result in adverse events (AEs), such as growth inhibition in children [29, 30], bone mineral density loss [31-34], hip fracture [35], cataracts [36], ocular hypertension or glaucoma [37], hypertension, hyperglycemia [38], and easily bruised skin [31, 39].

Given current recommendations for the use of INSs in acute RS and concerns about the safety of corticosteroids in general, this article will review data from clinical trials to help clarify the safety issues pertaining to the use of the INS drugs for acute RS, as well as the differences in systemic absorption between the older and newer INSs.

1.2. Assessment of systemic effects of INSs

The motivation for the development of all the intranasal formulations of the corticosteroids—including the older INSs beclomethasone dipropionate (BDP), flunisolide (FLU), budesonide (BUD), and triamcinolone acetonide (TAA) and the more recently developed fluticasone propionate (FP), mometasone furoate (MF), fluticasone furoate, and ciclesonide—was to minimize the risk of systemic absorption and the resulting AEs. The intranasal route of administration delivers drug directly to the target organ, allowing local therapeutic concentrations because of the high affinity of the agents for the glucocorticoid receptor. Approximately 30% of the administered dose is deposited in the nose, where it binds with the glucocorticoid receptor, while the remaining 70% is swallowed. The swallowed drug is subject to hepatic first-pass metabolism, which is about 90% with BUD and TAA, 2 agents with relatively lower lipophilicity (or lipid-partitioning potential), and 99% with MF and FP, which have higher lipophilicity [40]. The rank order of some of the currently available INSs according to lipophilicity (highest to lowest) is MF, FP, BDP, BUD, TAA, and FLU [41, 42].

Concern about the risk of systemic side effects with INSs arises from the possibility that a portion of the drug may reach the systemic circulation through the airway and the gastrointestinal (GI) tract. The main determinant of systemic bioavailability of these drugs is the amount directly absorbed from the lung or nose, which does not undergo first-pass hepatic inactivation as does most of the swallowed portion of the dose [40]. As shown in Table 3, the estimated absolute bioavailability of an intranasal dose is highest with

Table 1
Classification of types of rhinosinusitis [5]
Temporal designation
Acute
Subacute
Chronic
Recurrent

Table 2
Proinflammatory mediators suppressed by INSs [21]
Mediator
Cytokines
Langerhans cells
Lymphocytes
Mast cells
Basophils
Eosinophils
compounds with greater water solubility (eg, BUD and FLU, with 34% and 49% absolute bioavailability, respectively) [43,45,46] and lowest with the less water-soluble, more lipophilic agents (eg, FP with <1% and MF with <0.1% absolute bioavailability) [43,45,47,48]. In a randomized, single-blind, placebo-controlled, 3-way, cross-over study in 15 healthy subjects, MF and FP (both administered at the higher than indicated doses of 400 μg/d for 4 days) produced mean peak plasma concentrations that were slightly above the assay’s lower limit of detection [49].

Investigators used a variety of markers or surrogates to determine the systemic presence of glucocorticoids in the circulation. An excessive level of systemic glucocorticoids would reduce the endogenous production of cortisol, which can be detected by evaluating basal HPA activity. Measurements of HPA function, such as area-under-the-curve cortisol concentrations and urinary free cortisol excretion, are considered the most sensitive indicators of INS systemic bioavailability. Stimulation tests of HPA-axis function, such as tests that measure serum cortisol levels after the administration of adrenocorticotropic hormone (ACTH) or cosyntropin, are not as sensitive in identifying the systemic bioavailability of the INSs, but they predict the likelihood of AEs more accurately [43,50,51]. Corticosteroids also may inhibit linear bone growth [52], an effect that has been assessed in short-term studies using knemometry (a precise measurement of lower-leg growth) [50,53,54] and surrogate markers of bone formation (eg, osteocalcin) [43], as well as in long-term studies using whole-body stadiometry [43,50,51].

2. Safety of INSs in clinical trials

Most of the knowledge about the safety of INSs is derived from studies in patients with allergic rhinitis (AR), which is a common indication for INSs, rather than in RS, for which a relatively small number of clinical studies have been conducted [17]. A correlation exists between RS and AR; AR may contribute from a quarter to more than a half of RS cases, and perennial AR (PAR) may be a predisposing factor for chronic RS [3,55-60]. Consequently, more information about the safety profiles of INSs is available from clinical studies for AR than for acute RS, especially with regard to systemic effects, such as HPA-axis suppression and inhibition of growth in children. This review will therefore summarize the clinical evidence from studies involving patients with AR and acute and chronic RS. Systemic AEs will be discussed first, followed by local effects.

2.1. Systemic effects

A relatively small amount of published data for only a few agents is available on the systemic safety of INSs in patients with RS. Giger et al [61], in a randomized, double-blind, parallel-group trial involving 112 patients with nonallergic chronic RS, did not detect any signs of adrenal suppression or significant changes in morning serum cortisol values with once- or twice-daily intranasal BDP (400 μg/d) administered for 12 weeks. A 3-week, randomized, double-blind, placebo-controlled, multicenter trial with MF 200 μg or 400 μg BID in 967 patients (aged 8–78 years) with acute RS did not find any clinically relevant decreases in plasma cortisol levels, based on 30-minute cosyntropin stimulation tests [62].
Studies in patients with AR also have demonstrated little evidence of systemic effects with most INSs (Table 4). In one of the earliest such studies, an open, longitudinal, multicenter trial involving 25 patients with PAR followed for up to 5.5 years, treatment with intranasal BUD (400 μg/d) did not affect HPA-axis activity, based on response to ACTH challenge. The investigators noted that plasma cortisol values were well within normal ranges, and increases in plasma cortisol levels after ACTH stimulation were high and remained unchanged regardless of duration of treatment [64].

Similarly, no significant differences were seen between 2 dosages of BDP nasal spray (336 μg QD and 168 μg BID) and placebo in plasma cortisol response to cosyntropin stimulation in a randomized, placebo- and positive-controlled, third party–blind, parallel-group, multiple-dose study of 64 adult men with AR who were treated for 36 days. In contrast, a significant (P < .01) difference

Table 4
Summary of systemic AEs in clinical trials of INS

Author/year	N	INS	Treatment regimen	Treatment duration	Patient population	Growth retardation/HPA axis (test)
Acute rhinosinusitis						
Nayak et al [62]	967	MF	200 or 400 μg BID	21 d	Children and adults (8–78 y)	No decreases in cortisol (cosyntropin stimulation)
Chronic rhinosinusitis						
Giger et al [61]	112	BDP	400 μg QD or BID (no PBO arm)	12 wk	Adults (19–66 y)	Minimal decrease in morning serum cortisol levels
Allergic rhinitis						
Pipkorn et al [64]	24	BUD	200–400 μg BID	Up to 5.5 y	Adolescents and adults (17–67 y)	No decreases in cortisol (ACTH challenge)
Grossman et al [67]	250	FP	100 or 200 μg QD	14 d	Children (4–11 y)	No effect on morning cortisol levels
Brannan et al [69]	96	MF	50, 100, or 200 μg QD	7 or 14 d	Children (3–12 y)	No effect on cortisol (cosyntropin stimulation in children aged 3–5 y only)
Nayak et al [68]	80	TAA	220 or 400 μg QD	42 d	Children (6–12 y)	No effect on cortisol (cosyntropin stimulation)
Healthy subjects						
Wihl et al [63]	14	BUD or BDP 200, 400, and 800 μg QD	3 wk	Men (18–47 y)	No significant influence on plasma cortisol, significant decrease in urinary cortisol with BUD 400 and 800 μg	
	32	BUD or BDP 100, 200, and 400 μg BID	4 d	Men (19–41 y)	Significant reductions in urinary cortisol with all BUD doses and BDP 400 μg	
Allergic rhinitis						
Vargas et al [66]	105	FP	200 mcg QD or 400 μg BID; OR	28 d	Adults (18–65 y)	[FP] No effect on cortisol (cosyntropin stimulation)
Agertoft and Pederson [71]*	22	MF or BUD 100 or 200 μg QD	2 wk before crossover	Children (7–12 y)	No short-term effect on growth rate (knemometry)	
Wolthers and Pedersen [53]	44	BUD 200 μg QD (n=14) vs IM methylprednisolone acetate (n=14) vs. terfenadine (n=16)	6 wk	Children (6–15 y)	Suppressed short-term lower-leg growth with BUD and depot steroid (knemometry)	
Schenkel et al [50]	98	MF 100 μg QD	1 y	Children (3–9 y)	No effect on cortisol (cosyntropin stimulation) or growth rate (knemometry)	
Allergic rhinitis						
Skoner et al [51]	100	BDP	168 μg BID	1 y	Children (6–9 y)	No effect on morning cortisol levels or response to cosyntropin stimulation/growth suppression (stadiometry)
Allen et al [70]	150	FP	200 μg QD	1 y	Children (3.5–9 y)	No growth changes
Kim et al [26]	78	BUD	64 μg QD	42 d	Children (2–5 y)	No decreases in cortisol (cosyntropin stimulation)

P indicates prednisone; PBO, placebo.
* Four-way crossover study (results show no sequence or carryover effects).
between patients receiving prednisone or placebo was seen in the plasma cortisol response to cosyntropin stimulation [65]. Vargas et al. [66] reported similar results from a 4-week, randomized, double-blind, double-dummy, placebo-controlled study (N = 105), in which the HPA-axis response to a 6-hour cosyntropin test was not altered with intranasal FP 200 μg QD or FP 400 μg BID, compared with placebo or oral prednisone. Prednisone (7.5 or 15 mg/d) was associated with a significant decline in HPA-axis function compared with placebo, as indicated by lower plasma cortisol levels (area under the curve and peak concentrations) after cosyntropin stimulation and reduced mean 24-hour urinary cortisol excretion [66]. The investigators concluded that FP, whether administered at the recommended dose of 200 μg QD or at 4 times that dose, does not alter HPA-axis response to the 6-hour cosyntropin test.

Studies in children with AR have generally been consistent with adult studies in terms of demonstrating a lack of HPA-axis suppression with INSs. A 2-week, randomized, double-blind, placebo-controlled, parallel-group, multicenter study in children (N = 250; aged 4–11 years) with seasonal AR did not identify any significant differences between FP (100 and 200 μg QD) and placebo in morning plasma cortisol concentrations in all subject groups before and after treatment [67]. Similarly, no significant effects on adrenocortical function at 30 or 60 minutes after cosyntropin stimulation with either of 2 doses of intranasal TAA (220 and 440 μg QD) were seen in a 6-week, randomized, double-blind, placebo-controlled, parallel-group, multicenter study of children (N = 80; aged 6–12 years) with AR [68]. Another 6-week study with a similar design in 78 children (aged 2–5 years) demonstrated no HPA-axis suppression with BUD (64 μg QD), based on plasma cortisol levels at 0, 30, and 60 minutes after cosyntropin stimulation [26].

Brannan et al [69] have reported no clinically relevant systemic exposure to MF in children as young as 3 years of age. In the first phase of a randomized, placebo-controlled, parallel-group, multiple-dose study, 48 children (aged 6–12 years) received MFNS (50, 100, or 200 μg QD) or placebo for 7 days [69]. At the end of treatment, mean plasma cortisol concentrations were not significantly different from baseline values, nor were mean plasma cortisol and 24-hour urinary free cortisol values with MF significantly different from placebo. A second phase of the study was conducted in 48 children (aged 3–5 years) who received the same doses of MF or placebo for 14 days; HPA-axis function was assessed by response to a 30-minute cosyntropin stimulation test administered 2 to 3 hours after the last dose on the final day of treatment. All of the children experienced a normal plasma cortisol response to the cosyntropin challenge, and mean increases in plasma cortisol after cosyntropin stimulation were not significantly different between MF and placebo [69].

The INSs also have been evaluated for risk of growth suppression using stadiometry and knemometry, occasionally with results different from that seen in tests of HPA-axis suppression. For example, no HPA-axis suppression with BDP (168 μg BID), as measured by a 60-minute cosyntropin stimulation test, was reported in a randomized, double-blind, placebo-controlled, parallel-group, multicenter study in 100 children with AR [51]. However, stadiometry testing of these same children found a significantly slower rate of growth. The difference in growth rate was apparent as early as 1 month after the start of treatment and remained statistically significant over the last 6 months of the 1-year study.

Stadiometry studies of FP and MF did not uncover any evidence of growth suppression. Continuous treatment for 1 year with the maximum recommended dose of intranasal FP (200 μg QD) was found not to affect mean standing height, as measured by stadiometry, in 150 children (aged 3.5–9 years) with AR [70]. In this randomized, double-blind, placebo-controlled study, FP was equivalent to placebo in effects on growth velocity.

A 1-year, randomized, double-blind, placebo-controlled, multicenter study found no growth retardation, as measured by stadiometry, in 98 children (aged 3–9 years) with PAR randomized to receive either MF 100 μg QD or placebo [50]. At all time points, the mean height of MF-treated patients was similar to that of the placebo group; although a significantly greater change in height from baseline was seen in the MF group at weeks 8 and 52, the rate of growth over 12 months was similar in both groups. In a subgroup of 38 subjects enrolled in the cosyntropin arm of the study, subjects receiving MF did not exhibit any evidence of HPA-axis suppression in a 30-minute cosyntropin stimulation test.

A 1993 parallel-group study found evidence of suppressed short-term lower-leg growth, as measured by knemometry, with BUD (200 μg BID) or intramuscular methylprednisolone acetate (60 mg QD) when compared to terfenadine tablets (60 mg QD) in 44 children (aged 6–15 years) with AR. Both of the corticosteroids, administered for 6 weeks, were associated with a significant reduction in lower-leg growth compared with terfenadine (P < .001) and with values observed during a 4-week run-in period (P < .01) [53]. Those findings contrast with a knemometry study conducted with MF in 22 children (aged 7–12 years) with AR. In this randomized, double-blind, placebo-controlled 4-way crossover study, no significant differences were observed in lower-leg growth rates in children treated for 2 weeks with once-daily MF 100 μg or 200 μg, BUD 400 μg, or placebo [71]. Pairwise comparisons showed that patients receiving a 100-μg QD dose of MF experienced greater growth than those receiving BUD (P = .033) or placebo (P = .24). Investigators did not detect any statistically significant sequence, carryover, overall treatment, or period effects on lower-leg growth rates.

2.2. Local adverse events

Table 5 summarizes local AEs observed in clinical trials of patients with acute and chronic RS. In general, the incidence of treatment-related local AEs with INSs was...
Table 5
Summary of commonly reported local AEs in clinical trials of INS

Author/year	N	INS Treatment regimen	Treatment duration	Patient population	Adverse events	Active treatment group	Placebo group
Acute rhinosinusitis							
Meltzer et al [77]	407	MF 400 μg BID as adjunct to ACP	21 d	Adolescents and adults (12–73 y)	Vaginitis 8%	MF (n = 200) 5%	PBO (n = 207) 3%
					Headache 2%		
					Epistaxis 3%		
					Nasal burning 2%		
					Nasal irritation 2%		
					Pharyngitis 2%		
Dolor et al [25]	95	FP 400 μg QD as adjunct to cefuroxime axetil and xylometazoline hydrochloride	21 d	Adults (30–55 y)	Headache 6.5%	FP (n=46) 6.5%	PBO (n=46) 6%
					Epistaxis 6.5%		
					Vaginal itching/yeast infection 4.3%		
					Diarrhea 2.1%		
					Nausea/stomach irritation 4.3%		
Nayak et al [62]	967	MF 200, 400 μg BID as adjunct to ACP	21 d	Children and adults (8–78 y)	Epistaxis 5%	MF (n = 318) 6%	PBO (n = 325) 6%
					Nasal burning 1%		
					Nasal irritation b 1%		
					Headache 2%		
Meltzer et al [7]	981	MF 200, 400 μg QD	15 d	Adolescents and adults (12–76 y)	Headache	Data not published	
					Epistaxis		
Chronic rhinosinusitis							
Lund et al [78]	244	BUD 128 μg BID	20 wk	Adults (19–65 y)	Respiratory infection 13.6%	BUD (n = 81) 13.6%	PBO (n = 86) 8.1%
					Headache 6.2%		
					Blood-tinged secretions 9.9%		
					Viral infections 6.2%		
					Pharyngitis 3.37%		
					Sinusitis 1.2%		
					Flu-like disorder 4.9%		
					Pain 4.9%		
					Rhinitis 4.9%		
					External ear infection 2.5%		
Giger et al [61]	112	BDP 400 μg QD or BID (no placebo arm)	12 wk	Adults (19–66 y)	BUP (n=55) 46.2%	BID (n=57) 43.8%	
					Dryness of nasal mucosa 15.4%		
					Nasal burning 3.85%		
					Nasal itching 3.85%		
					Sinusitis 7.69%		
					Pharyngitis 3.85%		
					Otitis 3.85%		
					Change of taste 3.85%		
					Eczema 3.85%		
					Nausea and diarrhea 7.69%		
Sinusitis							
Meltzer et al [74]	180	Phase I: FLU 300 μg TID as adjunct to ACP	21 d	Adults (mean 36.8 y)	Headache 67%	FLU (n = 89) 67%	PBO (n = 86) 58%
					Digestive system 21%		
					Diarrhea 16%		
					Nausea 8%		
					Abdominal pain 4%		
Author/year	N	INS Treatment regimen	Treatment duration	Patient population	Adverse events	Active treatment group	Placebo group
-------------	---	-----------------------	--------------------	--------------------	---------------	----------------------	---------------
					Taste perversion		
					Vaginitis	FLU (n = 65)	PBO (n = 69)
Barlan et al [75]	89	BUD 100 µg BID as adjunct to ACP	21 d	Children (1–15 y)	No adverse drug reactions observed with BUD (n = 43)		
Yilmaz et al [76]	52	BUD 200 µg BID or pseudoephedrine 60 µg BID as adjunct to cetirizine	10 d	Children (6–16 y)	No adverse drug reactions observed with BUD (n = 26)		
Grossman et al [67]	250	FP 100 or 200 µg QD	14 d	Children (4–11 y)	Headache 10% 8%	FLU (n = 84)	PBO (n = 85)
Brannan et al [65]	64	BDP 336 µg QD (n=16) or BID (n = 16)	36 d	Men (19–44 y)	*Headache 44% *Pharyngitis 9% *Nasal irritation 2%		
Munk et al [72]	140	TAA 220 µg QD	14 d	Adults (20–65 y)	Headache 1.4%	TAA (n = 69)	PBO (n = 70)
Graft et al [73]	349	MF 200 µg QD or BDP 168 µg BID	7 d	Adolescents (12–69 y)	Headache 14%	MF (n = 117)	PBO (n = 116)
Brannan et al [69]	96	MF 50, 100, or 200 µg QD	7 or 14 d	Children (3–12 y)	Headache 4%	MF (n = 49)	PBO (n = 49)
Schenkel et al [50]	98	MF 100 µg QD	1 y	Children (3–9 y)	Epistaxis 12% 8%	PBO (n = 51)	
Skoner et al [51]	100	BDP 168 µg BID	1 y	Children (6–9 y)	Headache 20%	BDP (n = 49)	PBO (n = 51)
Allen et al [70]	150	FP 200 µg QD	1 y	Children (3.5–9 y)	Epistaxis 9%	FP (n = 74)	PBO (n = 76)

(continued on next page)
The INS were reported in 75, 76. Antibiotics in children with acute RS, no AEs associated with INS-antibiotic adjunctive therapy than with placebo, although not all of the AEs may have been due to INS.

MF and placebo groups in 62, 77. Moderate in severity, and their incidence was similar in the MF and placebo groups. The incidence of AEs was similar in active treatment and placebo groups.

The first double-blind, randomized trial of an INS as adjunctive therapy for acute or chronic RS was a parallel-group, multicenter study (N = 180) with FLU (300 μg TID) or placebo as an adjunct to amoxicillin/clavulanate potassium (ACP) for 3 weeks (phase 1), followed by monotherapy with either FLU or placebo for an additional 4 weeks (phase 2) [74]. Approximately two thirds of patients in phase 1 and half of those in phase 2 complained of at least one AE. Most complaints were attributed to the RS itself, to ineffective therapy, or to GI side effects of the antibiotic. During phase 2, headache was the most frequently reported side effect with FLU. The incidence of AEs was similar in the active treatment and placebo groups.

Since that initial study, clinical trials have been conducted with 4 other INSs—MF (200 or 400 μg BID), FP (200 μg QD), BDP (400 μg QD), and BUD (50 μg QD and 200 μg QD in separate studies)—as adjunctive therapy with an antibiotic for acute RS [25, 62, 75, 76].

Similar AEs were seen in 2 studies with MF as adjunctive therapy to oral antibiotics. In two 3-week, double-blind, placebo-controlled, multicenter studies, in which MF (200 or 400 μg twice daily) was given with ACP in patients (N = 407 and N = 967) with acute or acute recurrent RS, the most commonly reported AEs were headache, epistaxis, nasal burning/irritation, and pharyngitis. Most AEs were mild or moderate in severity, and their incidence was similar in the MF and placebo groups [62, 77].

In 2 separate studies of BUD as an adjunct to oral antibiotics in children with acute RS, no AEs associated with the INS were reported [75, 76].

Only one study reported a greater incidence of AEs with INS-antibiotic adjunctive therapy than with placebo, although not all of the AEs may have been due to INS.

In a double-blind, randomized, placebo-controlled trial (N = 95), a greater number of local AEs (eg, headache, epistaxis, vaginal itching/yeast infection, and nausea or stomach irritation) were observed in patients receiving a 21-day course of FP (200 μg/d) as an adjunct to the cephalosporin antibiotic cefuroxime axetil and the topical decongestant xylometazoline hydrochloride than in those receiving placebo. However, investigators noted that the AEs observed with FP may have been a result of the combination of medications or one of the other medications [25].

To date, MF is the only INS to have been investigated in a large-scale clinical trial as monotherapy for acute RS. The randomized, double-blind, double-dummy, dose-ranging study (N = 981) compared MF (200 μg QD and BID) for 15 days both with placebo and with amoxicillin (500 mg TID) [7]. Investigators observed a similar incidence of mild or moderate local AEs in all treatment groups and with placebo; the most common treatment-related events were headache and epistaxis.

Studies in patients with chronic RS have yielded similar information on the local effects of INSs. Only minor differences in AE profiles were observed between patients treated with BUD (128 μg/d) and placebo in a randomized, double-blind, multicenter trial (N = 244; aged 19–65 years). Most AEs (eg, respiratory infection, headache, blood-tinged secretions) were reported as mild or moderate. Although respiratory infection was the most commonly reported AE, there was no statistically significant difference between groups in the incidence of this AE [78]. In a randomized, double-blind, parallel-group comparison of once- or twice-daily BDP (400 μg/d) in 112 patients (aged 19–66 years) with nonallergic chronic RS, Giger et al observed a similar number of local AEs (eg, epistaxis, dryness of nasal mucosa, nasal burning/itching) in the once- and twice-daily groups. Slight differences were seen between groups in terms of the severity of AEs (once-daily: mild, 61.6%; moderate, 34.6%;
References

[1] Anand VK. Epidemiology and economic impact of rhinosinusitis. Ann Otol Rhinol Laryngol 2004;113(Suppl 193):3-5.

[2] Pleis JR, Coles R. Summary health statistics for U.S. adults: National Health Interview Survey, 1998. National Center for Health Statistics. Vital Health Stat 2002;10:1-113.

[3] Kaliner MA, Osguthorpe JD, Fireman P, et al. Sinusitis: bench to bedside. Current findings, future directions. Otolaryngol Head Neck Surg 1997;116(6 Pt 2):S1-S20.

[4] Schappert SM, Burt CW. Ambulatory care visits to physician offices, hospital outpatient departments, and emergency departments: United States, 2001-02. National Center for Health Statistics. 2006; 159:1-66.

[5] Slavin RG, Spector SL, Bernstein IL. The diagnosis and management of sinusitis: a practice parameter update. J Allergy Clin Immunol 2005;116:S13-S47.

[6] Meltzer EO, Hamilos DL, Hadley JA, et al. Rhinosinusitis: establishing definitions for clinical research and patient care. J Allergy Clin Immunol 2004;114:S155-212.

[7] Meltzer EO, Bachert C, Staudinger H. Treating acute rhinosinusitis: comparing efficacy and safety of mometasone furoate nasal spray, amoxicillin, and placebo. J Allergy Clin Immunol 2005;116:1289-95.

[8] Fokkens W, Lund V, Mullot J, on behalf of the European Position Paper on Rhinosinusitis and Nasal Polyps group. European position paper on rhinosinusitis and nasal polyps 2007. Rhinology 2007;1-136 (Suppl 20).

[9] Pitkaranta A, Arvola E, Malmberg H, et al. Detection of rhinovirus in sinus brushings of patients with acute community-acquired sinusitis by reverse transcription-PCR. J Clin Microbiol 1997;35:1791-3.

[10] Pitkaranta A, Starck M, Savolainen S, et al. Rhinovirus RNA in the maxillary sinus epithelium of adult patients with acute sinusitis. Clin Infect Dis 2001;33:909-11.

[11] MacNaughton MR. Occurrence and frequency of coronavirus infections in humans as determined by enzyme-linked immunosorbent assay. Infect Immun 1982;38:419-23.

[12] Gwaltney Jr JM, Sydhon Jr A, Scande MA. Etiology and antimicrobial treatment of acute sinusitis. Ann Otol Rhinol Laryngol 1981;90:68-71.

[13] Wald ER, Milmoe GJ, Bowen A. Acute maxillary sinusitis in children. N Engl J Med 1981;304:749-54.

[14] Gwaltney Jr JM. The common cold. In: Mandell GL, Douglas Jr RG, Bennett JE, editors. Principles and practice of infectious diseases. 3rd ed. New York (NY): Churchill Livingstone; 1990. p. 489-93.

[15] Lau J, Zucker D, Engels EA, et al. Diagnosis and treatment of acute bacterial rhinosinusitis. Evidence Report/Technology Assessment No. 9 (Contract 290-97-0019 to the New England Medical Center), Rockville (Md): Agency for Health Care Policy and Research; 1999. Available at: http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=hstat1.chapter.13219 Accessed April 17, 2007.

[16] Gwaltney JM. Acute community-acquired sinusitis. Clin Infect Dis 1996;23:1209-23.

[17] van Cauwenberge P, Van Hoecke H, Vandenbuleke L, et al. Glucocorticosteroids in allergic inflammation: clinical benefits in allergic rhinitis, rhinosinusitis, and otitis media. Immunol Allergy Clin North Am 2005;25:489-509.

[18] Berg O, Carenfelt C, Kronvall G. Bacteriology of maxillary sinusitis in relation to character of inflammation and prior treatment. Scand J Infect Dis 1988;20:511-6.

[19] Slavin RG. Sinusitis in adults and its relation to allergic rhinitis, asthma, and nasal polypos. J Allergy Clin Immunol 1988;82:950-6.

[20] Spector SL, Bernstein IL, Adkins KK, et al. Glucocorticoid receptors: another perspective on glucocorticoid resistance. J Allergy Clin Immunol 1999;102(2 Pt 2):S107-44.

[21] Mygind N, Nielsen LP, Hoffmann HJ, et al. Mode of action of intranasal corticosteroids. J Allergy Clin Immunol 2001;108:S16-25.

[22] Hutchison KA, Scherrer LC, Czar MJ, et al. Regulation of glucocorticoid receptor function through assembly of a receptor–heat shock protein complex. Ann NY Acad Sci 1993;684:35-48.

[23] Wissink S, van de Stolpe A, Caldenhoven E, et al. NF-kappa B/Rel family members regulating the ICAM-1 promoter in monocyctic THP-1 cells. Immunobiology 1997;198:50-64.

[24] LeVan TD, Behr FD, Adkins KK, et al, for the Ceftin and Flonase Investigators' Group. Early intervention with budesonide in mild persistent asthma: a randomised, double-blind trial. Lancet 2003;361:61-7.

[25] Gwaltney Jr JM. Acute community-acquired sinusitis. J Allergy Clin Immunol 1996;23:1209-23.

[26] van Cauwenberge P, Van Hoecke H, Vandenbuleke L, et al. Glucocorticosteroids in allergic inflammation: clinical benefits in allergic rhinitis, rhinosinusitis, and otitis media. Immunol Allergy Clin North Am 2005;25:489-509.

[27] Berg O, Carenfelt C, Kronvall G. Bacteriology of maxillary sinusitis in relation to character of inflammation and prior treatment. Scand J Infect Dis 1988;20:511-6.

[28] Slavin RG. Sinusitis in adults and its relation to allergic rhinitis, asthma, and nasal polypos. J Allergy Clin Immunol 1988;82:950-6.

[29] Spector SL, Bernstein IL, Adkins KK, et al. Glucocorticoid receptors: another perspective on glucocorticoid resistance. J Allergy Clin Immunol 1999;102(2 Pt 2):S107-44.

[30] Mygind N, Nielsen LP, Hoffmann HJ, et al. Mode of action of intranasal corticosteroids. J Allergy Clin Immunol 2001;108:S16-25.

[31] Hutchison KA, Scherrer LC, Czar MJ, et al. Regulation of glucocorticoid receptor function through assembly of a receptor–heat shock protein complex. Ann NY Acad Sci 1993;684:35-48.

[32] Wissink S, van de Stolpe A, Caldenhoven E, et al. NF-kappa B/Rel family members regulating the ICAM-1 promoter in monocyctic THP-1 cells. Immunobiology 1997;198:50-64.

[33] LeVan TD, Behr FD, Adkins KK, et al, for the Ceftin and Flonase Investigators’ Group. Early intervention with budesonide in mild persistent asthma: a randomised, double-blind trial. Lancet 2003;361:61-7.

[34] Gwaltney Jr JM. Acute community-acquired sinusitis. J Allergy Clin Immunol 1996;23:1209-23.

[35] van Cauwenberge P, Van Hoecke H, Vandenbuleke L, et al. Glucocorticosteroids in allergic inflammation: clinical benefits in allergic rhinitis, rhinosinusitis, and otitis media. Immunol Allergy Clin North Am 2005;25:489-509.

[36] Berg O, Carenfelt C, Kronvall G. Bacteriology of maxillary sinusitis in relation to character of inflammation and prior treatment. Scand J Infect Dis 1988;20:511-6.

[37] Slavin RG. Sinusitis in adults and its relation to allergic rhinitis, asthma, and nasal polypos. J Allergy Clin Immunol 1988;82:950-6.

[38] Spector SL, Bernstein IL, Li JT, et al. Parameters for the diagnosis and management of sinusitis. J Allergy Clin Immunol 1998;102(6 Pt 2):S107-44.

[39] N Mygind, LP Nielsen, HJ Hoffmann, et al. Mode of action of intranasal corticosteroids. J Allergy Clin Immunol 2001;108:S16-25.

[40] Hutchison KA, Scherrer LC, Czar MJ, et al. Regulation of glucocorticoid receptor function through assembly of a receptor–heat shock protein complex. Ann NY Acad Sci 1993;684:35-48.
[31] The Lung Health Study Research Group. Effect of inhaled triamcinolone on the decline in pulmonary function in chronic obstructive pulmonary disease. N Engl J Med 2000;343:1902-9.

[32] Tattersfield AE, Town GI, Johnell O, et al. Bone mineral density in subjects with mild asthma randomised to treatment with inhaled corticosteroids or non-corticosteroid treatment for two years. Thorax 2001;56:272-8.

[33] Israel E, Banerjee TR, Fitzmaurice GM, et al. Effects of inhaled glucocorticoids on bone density in premenopausal women. N Engl J Med 2001;345:941-7.

[34] Wong CA, Walsh LJ, Smith CJP, et al. Inhaled corticosteroid use and bone-mineral density in patients with asthma. Lancet 2000;355: 1399-403.

[35] Hubbard RB, Smith CJP, SMEETH L, et al. Inhaled corticosteroids and hip fracture: a population-based case-control study. Am J Respir Crit Care Med 2002;166:1563-6.

[36] Cumming RG, Mitchell P, Leeder SR. Use of inhaled corticosteroids and the risk of cataracts. N Engl J Med 1997;337:8-14.

[37] Garbe E, LeLorier J, Bivon JF, et al. Inhaled and nasal glucocorticoids and the risks of ocular hypertension or open-angle glaucoma. JAMA 1997;277:722-7.

[38] Haynes RC. Adrenocorticotrophic hormone; adrenocortical steroids and their synthetic analogs; inhibitors of the synthesis and actions of adrenocortical hormones. In: Rall TW, Nies AS, Taylor P, editors. Goodman and Gilman’s The Pharmacological Basis of Therapeutics. 8th ed. New York (NY): Pergamon Press; 1990. p. 1431-62.

[39] Pauwels RA, Lofdahl CG, Litinien LA, et al, for the European Society for Respiratory Study on Chronic Obstructive Pulmonary Disease. Long-term treatment with inhaled budesonide in persons with mild chronic obstructive pulmonary disease who continue smoking. N Engl J Med 1999;340:1948-53.

[40] Lipworth BJ, Jackson CM. Safety of inhaled and intranasal corticosteroids: lessons for the new millennium. Drug Saf 2000;23:11-33.

[41] Corren J. Intranasal corticosteroids for allergic rhinitis: how do different agents compare? J Allergy Clin Immunol 1999;104:S144-9.

[42] Johnson M. Pharmacodynamics and pharmacokinetics of inhaled glucocorticoids. J Allergy Clin Immunol 1996;97:96-106.

[43] Allen DB. Systemic effects of inhaled steroids: an endocrinologist’s perspective. J Allergy Clin Immunol 2000;106:S179-90.

[44] Daley-Yates PT, Richards RH. Pharmacokinetic and pharmacodynamic relationships for intranasal corticosteroids (INCS). J Allergy Clin Immunol 2001;107:S313.

[45] Richards DH, Daley-Yates PT. Choice of inhaled and intranasal steroids when used in combination for asthma and rhinitis in children. Allergy 2000;55:61 (abstr 185) (suppl).

[46] Pakes GE, Brogden RN, Heel RC, et al. Flunisolide: a review of its pharmacological properties and therapeutic efficacy in rhinitis. Drugs 1980;19:397-411.

[47] Lumry WR. A review of the preclinical and clinical data of newer intranasal steroids used in the treatment of allergic rhinitis. J Allergy Clin Immunol 1999;104(Suppl):S150-8.

[48] Daley-Yates PT, McAllister T. Systemic bioavailability of fluticasone propionate administered as nasal drops (FP-Drops) and aqueous nasal spray formulations (FPANS). Allergy 1998;53:412 (abstr).

[49] Daley-Yates PT, Kunka RL, Yin Y, et al. Bioavailability of fluticasone propionate and mometasone furoate aqueous nasal sprays. Eur J Clin Pharmacol 2004;60:265-8.

[50] Schenkel EJ, Skoner DP, Bronsky EA, et al. Absence of growth retardation in children with perennial allergic rhinitis after one year of treatment with mometasone furoate aqueous nasal spray. Pediatrics 2000;105:E22.

[51] Skoner DP, Rachelesky GS, Meltzer EO, et al. Detection of growth suppression in children during treatment with intranasal beclomethasone dipropionate. Pediatrics 2000;105:e25.

[52] Allen DB. Growth suppression by glucocorticoid therapy. Endocrinol Metab Clin North Am 1996;25:699-717.

[53] Wolthers OD, Pedersen S. Short-term growth in children with allergic rhinitis treated with oral antihistamines, depot and intranasal glucocorticosteroids. Acta Paediatr 1993;82:635-40.

[54] Wolthers OD. Long-, intermediate- and short-term growth studies in asthmatic children treated with intrhaled glucocorticosteroids. Eur Respir J 1996;9:821-7.

[55] Kaliner M. Rhinosinusitis—the role of the allergist in diagnosis and treatment. Allergy Clin Immunol Int 1998;10:141-8.

[56] McNally PA, White MV, Kaliner MA. Sinusitis in an allergists’ office: analysis of 200 consecutive cases. Allergy Asthma Proc 1997;18:169-75.

[57] Shapiro GG, Virant FS, Furukawa CT, et al. Immunologic defects in patients with refractory sinusitis. Pediatrics 1991;87:311-6.

[58] Savolainen S. Allergy in patients with acute maxillary sinusitis. Allergy 1989;44:116-22.

[59] Kogutt MS, Swischuk LE. Diagnosis of sinusitis in infants and children. Pediatrics 1973;52:121-4.

[60] Slavin RG. Complications of allergic rhinitis: implications for sinusitis and asthma. J Allergy Clin Immunol 1998;101(2 pt 2):S357-60.

[61] Giger R, Pasche P, Cheseaux C, et al. Comparison of once- versus twice-daily use of beclomethasone dipropionate aqueous nasal spray in the treatment of allergic and non-allergic chronic rhinosinusitis. Eur Arch Otorhinolaryngol 2003;260:135-40.

[62] Nayak AS, Settipane GA, Pedinoiff A, et al, and the Nasonex Sinusitis Group. Effective dose range of mometasone furoate nasal spray in the treatment of acute rhinosinusitis. Ann Allergy Asthma Immunol 2002;89:271-8.

[63] Wihl JA, Andersson KE, Johansson SA. Systemic effects of two nasally administered glucocorticosteroids. Allergy 1999;57:620-6.

[64] Pipkorn U, Pukander J, Suopaan J, et al. Long-term safety of budesonide nasal aerosol: a 5.5-year follow-up study. Clin Allergy 1988;18:253-9.

[65] Branman MD, Herron JM, Reidenberg P, et al. Lack of hypothalamic-pituitary-adrenal axis suppression with once-daily or twice-daily beclomethasone dipropionate aqueous nasal spray administered to patients with allergic rhinitis. Clin Ther 1995;17:637-47.

[66] Vargas R, Dockhorn RJ, Findlay SR, et al. Effect of fluticasone propionate aqueous nasal spray versus oral prednisone on the hypothalamic-pituitary-adrenal axis. J Allergy Clin Immunol 1998;102:191-7.

[67] Grossman J, Banov C, Bronsky EA, et al. Fluticasone propionate aqueous nasal spray is safe and effective for children with seasonal allergic rhinitis. Pediatrics 1993;92:594-9.

[68] Nayak AS, Ellis MH, Gross GN, et al. The effects of triamcinolone acetonide aqueous nasal spray on adrenocortical function in children with allergic rhinitis. J Allergy Clin Immunol 1998;101(2 Pt 1):157-62.

[69] Branman MD, Herron JM, Affrime MB. Safety and tolerability of once-daily mometasone furoate aqueous nasal spray in children. Clin Ther 1997;13:330-9.

[70] Allen DB, Meltzer EO, Lemanske Jr RF, et al. No growth suppression in children treated with the maximum recommended dose of fluticasone propionate aqueous nasal spray for one year. Allergy Asthma Proc 2002;23:407-13.

[71] Agertolf L, Pedersen S. Short-term lower leg growth rate in children with rhinitis treated with intranasal mometasone furoate and budesonide. J Allergy Clin Immunol 1999;104:948-52.

[72] Munk ZM, LaForce C, Forst JA, et al. Efficacy and safety of triamcinolone acetonide aqueous nasal spray in patients with seasonal allergic rhinitis. Ann Allergy Asthma Immunol 1996;77:277-81.

[73] Graft D, Aaronson D, Chervinsky P, et al. A placebo- and active-controlled randomized trial of prophylactic treatment of seasonal allergic rhinitis with mometasone furoate aqueous nasal spray. J Allergy Clin Immunol 1996;98:724-31.

[74] Meltzer EO, Orgel HA, Backhaus JW, et al, for the Nasonex Sinusitis Group. Effective dose range of mometasone furoate nasal spray in the treatment of acute rhinosinusitis. Ann Allergy Asthma Immunol 2002;89:271-8.

[75] Barlan IB, Erkan E, Bakir M, et al. Intranasal budesonide spray as an adjunct to oral antibiotic therapy for sinusitis. J Allergy Clin Immunol 1993;92:912-3.

[76] Barlan IB, Erkan E, Bakir M, et al. Intranasal budesonide spray as an adjunct to oral antibiotic therapy for acute sinusitis in children. Ann Allergy Asthma Immunol 1997;78:598-601.
[76] Yilmaz G, Varan B, Yilmaz T, et al. Intranasal budesonide spray as an adjunct to oral antibiotic therapy for acute sinusitis in children. Eur Arch Otorhinolaryngol 2000;257:256-9.

[77] Meltzer EO, Charous BL, Busse WW, et al, and the Nasonex Sinusitis Group. Added relief in the treatment of acute recurrent sinusitis with adjunctive mometasone furoate nasal spray. J Allergy Clin Immunol 2000;106:630-7.

[78] Lund VJ, Black JH, Szabo LZ. Efficacy and tolerability of budesonide aqueous nasal spray in chronic rhinosinusitis patients. Rhinology 2004; 42:57-62.