The Saudi Critical Care Society Practice Guidelines on the Management of COVID-19 in the ICU: Therapy Section

Waleed Alhazzani (waleed.al-hazzani@medportal.ca)
McMaster University

Mohammed Alshahrani
Imam Abdulrahman Bin Faisal University King Fahd Hospital of the University

Fayez Alshamsi
United Arab Emirates University

Ohoud Aljuhani
King Abdulaziz University

Khalid Eljaaly
King Abdulaziz University

Samaher Hashim
University of Tabuk

Rakan Alqahtani
King Saud University College of Medicine

Doaa Alsaleh
King Abdullah International Medical Research Center

Zainab Al Duhallib
King Faisal Specialist Hospital and Research Center

Haifa Algethamy
King Abdulaziz University

Tariq Al-Musawi
Dr Sulaiman Al Habib Hospital

Thamir Alshammari
King Saud University

Abdullah Alqami
Department of Emergencies,Disasters and Medical Transportation, Ministry of health

Danya Khoujah
University of Maryland School of Medicine

Wail Tashkandi
King Abdulaziz University

Talal Dahhan
Manal Al Hazmi
KFSHD: King Fahad Specialist Hospital Dammam

Yasser Mandourah
General Directorate of Military Medical Services, Ministry of Defense

Abdullah Assiri
Infection Prevention and Control, Ministry of Health

Mushira Enani
King Fahad Medical City

Maha Alawi
King Abdulaziz University

Reem Aljindan
Imam Abdulrahman Bin Faisal University

Ahmed Aljabbary
Security Forces Hospital in Riyadh: Security Forces Hospital Program

Abdullah Alrbiaan
King Faisal Specialist Hospital and Research Center

Fahd Algurashi
John Hopkins Aramco Healthcare

Abdulmohsen Alsaawi
King Abdulaziz Medical City

Thamer H. Alenazi
King Abdulaziz Medical City

Mohammed A. Alsultan
Saudi Commission for Health Specialties

Saleh A. Alqahtani
King Faisal Specialist Hospital and Research Center

Ziad Memish
King Saud Medical City

Jaffar A. Al-Tawfiq
Quality Department, John Hopkins Aramco Healthcare

Ahmed Al-Jedai
Therapeutic Affairs, Ministry of Health

Research Article

Keywords: COVID-19, Therapy, Practice guideline, Intensive care unit

DOI: https://doi.org/10.21203/rs.3.rs-543063/v1
Abstract

Background

The rapid increase in coronavirus disease 2019 (COVID-19) cases during the subsequent waves in Saudi Arabia and other countries prompted the Saudi Critical Care Society (SCCS) to put together a panel of experts to issue evidence-based recommendations for the management of COVID-19 in the intensive care unit (ICU).

Methods

The SCCS COVID-19 panel included 51 experts with expertise in critical care, respirology, infectious disease, epidemiology, emergency medicine, clinical pharmacy, nursing, respiratory therapy, methodology, and health policy. All members completed an electronic conflict of interest disclosure form. The panel addressed 9 questions that are related to the therapy of COVID-19 in the ICU. We identified relevant systematic reviews and clinical trials, then used the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach as well as the evidence-to-decision framework (EtD) to assess the quality of evidence and generate recommendations.

Results

The SCCS COVID-19 panel issued 12 recommendations on pharmacotherapeutic interventions (immunomodulators, antiviral agents, and anticoagulants) for severe and critical COVID-19, of which 3 were strong recommendations and 9 were weak recommendations.

Conclusion

The SCCS COVID-19 panel used the GRADE approach to formulate recommendations on therapy for COVID-19 in the ICU. The EtD framework allows adaptation of these recommendations in different contexts. The SCCS guideline committee will update recommendations as new evidence becomes available.

Background

Since the World Health Organization (WHO) declared the coronavirus disease 2019 (COVID-19) pandemic in 2020, over 158 million people worldwide were infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), causing over 3 million deaths. As of May 10th, 2021, over 427,370 COVID-19 cases causing 7,085 deaths were reported in Saudi Arabia (https://covid19.moh.gov.sa/).

The SCCS issued the first guidelines on the management of COVID-19 in the intensive care unit (ICU) in 2020 [1]. Given the rapid evolution of evidence in this field, updating the guidelines is crucial. Therefore, the SCCS, in collaboration with the Ministry of Health in Saudi Arabia, undertook this initiative aiming to produce trustworthy evidence-based practice guidelines focusing on therapy for COVID-19.
Guideline scope

The scope of the current guideline is to provide recommendations to critical care teams on the management of adults with severe or critical COVID-19 in the ICU. We used simplified definition of severe and critical COVID-19 (Supplementary Table).

Target users

The target users of this guideline are healthcare workers caring for COVID-19 patients in the ICU, including intensivists, emergency physicians, infectious diseases physicians, clinical pharmacists, nurses, respiratory therapists, and policymakers.

Guideline structure

The chairs of the practice guidelines chapter under the SCCS selected panel members based on expertise with the aim to maintain gender and geographic balance. The panel included 51 members with collective expertise in critical care, infectious diseases, emergency medicine, clinical pharmacy, epidemiology, respiratory therapy, nursing, public health, clinical research and health policy and administration. We engaged representatives from different governmental and private healthcare sectors across the Kingdom of Saudi Arabia, including the Ministry of Health.

Conflict of interest

All authors completed an electronic WHO conflict of interest form, as previously outlined by Alhazzani et al. for the management of potential conflict of interest [2].

Methods

Systematic review and meta-analysis

With support from the GUIDE (Guidelines in Intensive Care, Development, and Evaluation) group, a professional medical librarian designed a search strategy of Cochrane Central and MEDLINE databases. The search is being updated on a monthly basis, and a dedicated systematic review team reviews titles and abstracts to identify relevant systematic reviews and randomized controlled trials (RCTs). For this guideline, we restricted the eligibility to only include relevant studies published in English prior to April 25, 2021.

When there are more than one RCT but no published meta-analysis on a specific question, we used a random-effects model meta-analysis to pool effect sizes across RCTs. We presented the results as relative risk (RR) and 95% confidence interval (CI) for binary outcomes and mean difference (MD) and 95% CI for continuous outcomes (Supplement).

Quality of evidence
We used the GRADE approach to assess the quality of the body of evidence [3, 4]. Methodologists rated the quality of evidence as high, moderate, low, or very low [5], and used the GRADEpro GDT (guideline development tool) online software (https://gradepro.org/) to produce the evidence summaries [6]. We only used direct evidence from COVID-19 population to inform our recommendations.

Moving from evidence to recommendation

For every recommendation, we used the EtD framework to craft the recommendations. We included all recommendations-specific EtDs in the supplement. Panel members completed the EtD forms for each recommendation online. The methodologist used feedback and input from panel members to refine the judgment on EtD forms and craft the recommendations. In accordance with the GRADE taxonomy, we used the wording “we recommend” to express strong recommendations and “we suggest” to express weak recommendations. We present a summary of the guideline’s recommendations in Table 1 and Figure 1.

Results

I. Immunomodulation therapy

Corticosteroids

Question: Should systemic corticosteroids vs. no corticosteroids be used for severe or critical COVID-19?

Recommendations

1. For adults with severe or critical COVID-19 in the ICU, the panel recommends using systemic corticosteroids (strong recommendation, high quality evidence).

2. The panel suggests using dexamethasone 6 mg daily for 10 days over other corticosteroids (weak recommendation, low quality evidence).

Rationale

Critically ill patients with COVID-19 can experience a systemic inflammatory response resulting in lung injury and/or multisystem organ failure, which is associated with high mortality [7]. A plausible hypothesis is that corticosteroids may help mitigate those effects, particularly in patients with severe disease. COVID-19 is also associated with impaired hypothalamic-pituitary-adrenal axis and with inflammation-induced microthrombi and coagulopathy; all could be potentially improved by corticosteroids therapy [8].

The RECOVERY trial demonstrated that dexamethasone (6 mg daily up to 10 days) in hospitalized patients with COVID-19 (n = 2,104 received dexamethasone and 4,321 received usual care) reduced 28-day mortality (relative risk [RR] 0.83; 95% confidence interval [CI] 0.75 to 0.93), duration of hospitalization and progression to invasive mechanical ventilation [9]. The mortality benefit was observed only in
patients who were mechanically ventilated or needed supplementary oxygen. A meta-analysis of 7 RCTs (n = 1,073) found reduction in mortality with corticosteroid use (odds ratio [OR] 0.66; 95% CI 0.53 to 0.82; high quality) [10].

Corticosteroid therapy in critically ill patients appears to have an acceptable safety profile. A large cohort study found a small increase in adverse events like gastrointestinal bleeding, sepsis, and heart failure with a short course of corticosteroids in an outpatient setting [11]. Additionally, the meta-analysis of COVID-19 corticosteroid trials showed no increase in the risk of adverse events with corticosteroid therapy [10]. Given that corticosteroids are inexpensive and widely available, this recommendation would increase equity and likely be an acceptable intervention to key stakeholders (Supplementary Table). Hence, the panel issued a strong recommendation for using corticosteroids in ICU COVID-19 patients.

There are several questions that remained unanswered. Some panelists felt that higher doses of corticosteroids might be warranted in selected patients with features of acute respiratory distress syndrome or those with organizing pneumonia features on radiological imaging, however; current data demonstrate no definitive subgroup effect suggesting that further studies are needed.

Our recommendation is consistent with the Surviving Sepsis Campaign guidelines and the WHO guidelines [12, 13]. The National Institute of Health (NIH) guidelines recommend dexamethasone plus remdesivir (based on theoretical considerations) for those who require an increased amount of oxygen (within 24 hours of admission) without mechanical ventilation and recommend dexamethasone alone for those who require invasive mechanical ventilation or extracorporeal membrane oxygenation [14]. The Infectious Disease Society of America (IDSA) guidelines recommend dexamethasone for critically ill patients and suggest dexamethasone for severe COVID-19 [15].

There is limited evidence regarding the optimal dosing, timing, duration, and steroids type. The effect of all these variables on mortality and other outcomes needs to be further assessed in clinical trials.

Tocilizumab

Question: Should tocilizumab vs. no tocilizumab be used for severe or critical COVID-19?

Recommendations

1. For adults with COVID-19 who are receiving high-flow nasal cannula (HFNC) or noninvasive ventilation (NIV) in the ICU, the panel suggests using tocilizumab over not using it (weak recommendation, low quality evidence).

Remarks:

Studies shown benefit of tocilizumab when used concomitantly with corticosteroids in patients with elevated C-reactive protein (CRP) > 75 mg/l, or when tocilizumab therapy was initiated within 24 hours of ICU admission.
2. Due to insufficient evidence, we were unable to issue a recommendation for or against the use of tocilizumab in invasively ventilated COVID-19 patients. If clinicians decide to use tocilizumab in this context, it is probably best to use it within 24 hours of admission and/or in patients with CRP level > 75 mg/l.

Rationale

Interleukin-6 (IL-6) is a pleiotropic cytokine with both proinflammatory and anti-inflammatory effects, and IL-6–related cytokine storm has been proposed as a major target for the treatment of COVID-19. Researchers hypothesize that inhibition of IL-6 may attenuate the cytokine release in patients with severe COVID-19 [16]. Tocilizumab is a humanized monoclonal antibody that blocks IL-6 receptors. It is commonly used in cytokine release syndrome and other inflammatory conditions such as rheumatoid arthritis [17–20].

Our search identified 9 RCTs (n = 6,494) that investigate the use of tocilizumab in hospitalized COVID-19 patients [21–29]. The pooled estimate of available data on non-invasively ventilated patients with COVID-19 showed that tocilizumab reduced risk of death compared to usual care (RR 0.87; 95% CI 0.79 to 0.96; moderate quality) (Supplementary Table). However, tocilizumab did not reduce risk of death in the subgroup of patients undergoing invasive mechanical ventilation (RR 0.93; 95% CI 0.80 to 1.08; low quality). Tocilizumab use did not increase serious adverse events or infection compared to usual care (Supplementary Table). However, these results need to be interpreted with caution as tocilizumab is often used with other medications potentially increasing the risk of infection such as corticosteroids. In addition, higher quality evidence from the rheumatoid arthritis literature showed an increased risk of infection [30, 31].

Considering the moderate quality evidence of mortality reduction in non-intubated COVID-19 patients and possible reduction in serious adverse effects, the panel issued a weak recommendation for the use of tocilizumab to treat severe COVID-19 (Supplementary Table). However, given the lack of clear evidence in patients with respiratory failure requiring invasive ventilation, combined with the associated high cost of tocilizumab, the panel did not issue a recommendation in this specific subgroup pending more evidence. If clinicians choose to use tocilizumab in invasively ventilated patients, it is best used in patients who are receiving systemic corticosteroids with elevated CRP level and as early as possible.

Baricitinib

Question: Should baricitinib and remdesivir vs. remdesivir alone be used for severe or critical COVID-19?

Recommendations

1. For adults with critical COVID-19 in the ICU, the panel suggests against the routine use of baricitinib in combination with remdesivir (weak recommendation, low quality evidence).
2. For selected cases with severe COVID-19 on NIV or HFNC who cannot receive corticosteroids or tocilizumab, we suggest using a combination of baricitinib and remdesivir over remdesivir alone (weak recommendation, low quality evidence).

Rationale:

Emerging data suggest that COVID-19 severity may be related to dysregulated inflammatory response [32]. Baricitinib, an orally administered selective inhibitor of Janus kinase 1 and 2, that inhibits the intracellular signaling pathway of cytokines, which are known to be elevated in severe COVID-19. It acts against SARS-CoV-2 through AP2-associated protein kinase 1 impairment and consequently, prevents SARS-CoV-2 cellular entry and infectivity [33–35].

We identified one RCT that enrolled 1,033 hospitalized adults with COVID-19 and randomized them to receive either baricitinib and remdesivir or remdesivir and placebo [36]. Patients received remdesivir intravenously as a 200 mg loading dose on day 1, followed by a 100 mg daily on days 2 through 10 or until hospital discharge. Baricitinib was administered as a 4 mg daily dose for 14 days. In the subgroup of patients receiving HFNC or NIV (n = 216), combination of baricitinib and remdesivir did not reduce risk of death compared to remdesivir alone (hazard ratio [HR] 0.55; 95% 0.22 to 1.38; low quality). Similarly, in the subgroup of patients undergoing invasive ventilation or extracorporeal membrane oxygenation, combination therapy did not reduce the risk of death (HR 1.00; 95% 0.45 to 2.22; low quality) (Supplementary Table). However, combination therapy reduced the risk of invasive ventilation or death (HR 0.69; 95% 0.50 to 0.95; low quality). Overall, patients receiving combination therapy were quicker to recover compared to controls (6 days vs. 7 days, respectively). Adverse events were lower in the combination group than in the control group.

Considering the low quality evidence, unclear effect on mortality, and the associated large cost of the intervention (Supplementary Table), the panel issued a weak recommendation against the routine use of baricitinib in combination with remdesivir in adults with critical or severe COVID-19. However, the panel felt that the use of combination therapy in selected cases requiring HFNC or NIV who are unable receive corticosteroids or tocilizumab is reasonable.

The NIH suggested using combination therapy of baricitinib and remdesivir when corticosteroids cannot be used in non-intubated patients requiring oxygen supplementation [14]. A similar conditional recommendation was issued by the IDSA in their most recent updated guidelines [15]. The addition of baricitinib to corticosteroids remains controversial and needs to be studied further in randomized trials.

Convalescent plasma

Question: Should convalescent plasma vs. no convalescent plasma be used for severe or critical COVID-19?

Recommendation
For adults with severe or critical COVID-19 in the ICU, the panel recommends against using convalescent plasma (strong recommendation, moderate quality evidence).

Rationale

Convalescent plasma (obtained from patients who recovered from COVID-19) has been used to treat severe and critical COVID-19 patients despite the lack of RCTs confirming its benefit. Recently, several RCTs have been published [37, 38], the results of which have been summarized in a systematic review and meta-analysis including 1,060 patients with COVID-19 [39]. The use of convalescent plasma did not reduce risk of death compared to usual care (RR 0.93; 95% CI 0.63 to 1.38). When six additional unpublished RCTs were included in the meta-analysis (10 RCTs, n = 10 722), the results were more precise confirming no benefit of convalescent plasma over usual care (RR 1.02; 95% CI 0.92 to 1.12; moderate quality). In a subgroup of patients receiving invasive mechanical ventilation, convalescent plasma did not reduce risk of death (RR 1.19; 95% CI 0.95 to 1.50; moderate quality). Further, convalescent plasma had no effect on the need for invasive mechanical ventilation (RR 0.81; 95% CI 0.42 to 1.58, low quality). Overall, convalescent plasma was not associated with improvement in any of the measured clinical outcomes. The quality of the evidence was moderate for mortality outcomes and low for other outcomes (Supplementary Table).

Post-infusion adverse events, such as transfusion-related circulatory overload and acute lung injury were not consistently captured in randomized trials. Additionally, convalescent plasma requires plasmapheresis to collect samples from donors, which is of significant cost and not widely available.

Considering the lack of benefit found in randomized trials, overall moderate quality evidence, associated costs, feasibility issues, and the availability of other effective alternatives, we issued a strong recommendation against using convalescent plasma in patients with COVID-19 in the ICU (Supplementary Table). Our recommendation is consistent with other published guidelines [13–15].

Immunoglobulins

Question: Should intravenous immunoglobulin (IVIG) vs. no IVIG be used for severe or critical COVID-19?

Recommendation

For adults with severe or critical COVID-19 in the ICU, the panel suggests against the routine use of IVIG outside the context of clinical trials (weak recommendation, low quality evidence).

Rationale

Intravenous immunoglobulin, a human blood product containing polyclonal immunoglobulin gamma, may improve passive immunity and modulate the hyperinflammatory response in COVID-19 patients through several proposed mechanisms including blocking proinflammatory cytokines as well as neutrophil activation [40, 41].
We identified 3 relevant RCTs (n = 176) that compared the use of IVIG to placebo in patients with severe COVID-19 [42–44]. Doses of IVIG and standard of care varied between trials as follows: the first study enrolled 59 patients, comparing 20 g IVIG daily for 3 days to a placebo [42]. The second study enrolled 84 patients and used 400 mg/kg of IVIG daily for 3 days, in addition to using HCQ and lopinavir/ritonavir in both groups [44]. The third study enrolled 33 patients and used 0.5 g/kg of IVIG daily for 3 days in addition to methylprednisolone [43].

We identified a phase 2 RCT (n = 100) comparing IVIG to standard of care; however, this study focused on mild-to-moderate disease and only a few patients were admitted to the ICU, hence, it was not included in the quantitative analysis [45].

We undertook a meta-analysis pooling the effect sizes across the eligible studies (Supplementary Figure). Immunoglobulin use did not reduce risks of death (RR 0.66, 95% CI 0.31 to 1.42; low quality) or need for mechanical ventilation (RR 0.73, 95% CI 0.18–2.91; very low quality). The effect on ICU and hospital length of stay was unclear (MD 0.93, 95% CI -0.58 to 2.44; very low quality) and (MD 2.96 days, 95% CI 1.39 to 4.53; very low quality), respectively.

Only one trial reported on the safety of IVIG in COVID-19 [45]. However, indirect evidence from use in other conditions showed a good safety profile, with few adverse effects (e.g., chills, headache, low-grade fever, nausea, vomiting, self-limited aseptic meningitis) [46]. IVIG is expensive and is not widely available. Furthermore, we could not find data on cost-effectiveness.

Considering the low quality evidence, unclear effect on patient-important outcomes, associated cost, and availability and feasibility issues, the panel issued a weak recommendation against the routine use of IVIG in critical COVID-19 outside clinical trials. Our recommendation should not be applied to patients on IVIG for other medical conditions. Additionally, IVIG may have some role in neurological complications such as COVID-19-related encephalomyelitis, neuropathy, and demyelinating neuropathies. Our recommendation is consistent with NIH guidelines [14]. More clinical trials are needed to assess the safety and efficacy of IVIG in critical COVID-19.

II. Antiviral therapy

Remdesivir

Question: Should remdesivir vs. no remdesivir be used for invasively ventilated adults with COVID-19?

Recommendation

For mechanically ventilated adults with critical COVID-19, we suggest against using remdesivir outside the context of clinical trials (weak recommendation, low quality evidence).

Rationale
Remdesivir (GS-5734) is a broad-spectrum antiviral agent and a prodrug of its parent adenosine analog, GS-441524 [47]. Since it is a viral RNA-dependent RNA polymerase inhibitor, it can be used against various RNA viruses [48]. Remdesivir was initially developed for the treatment of the Ebola virus; however, clinical trials failed to show survival benefit [49]. Additionally, remdesivir may have antiviral activity against SARS-CoV, Middle East respiratory syndrome coronavirus (MERS-CoV) and Nipah virus [50]. Therefore, remdesivir gained worldwide attention because of its anti-SARS-CoV-2 activity in \textit{in vitro} and animal models.

The SOLIDARITY trial investigators undertook a meta-analysis including other major trials, they performed a subgroup analysis comparing the efficacy of remdesivir with placebo in mechanically ventilated patients (3 RCTs, 1,014 patients) [51]. In this meta-analysis, the effect of remdesivir on risk of death in invasively ventilated patients was unclear (RR 1.16; 95% CI 0.85 to 1.6; low quality).

Although remdesivir use maybe associated with hepatotoxicity and other adverse events such as cardiac toxicity, our meta-analysis (Supplementary Table) of 3 RCTs showed that remdesivir was associated with lower risk of serious adverse events compared to placebo (RR 0.76; 95% CI 0.62 to 0.92; moderate quality).

Given the uncertainty about the desirable effects of remdesivir in invasively ventilated patients, the associated high costs, and limited drug availability in Saudi Arabia, the panel issued a weak recommendation against its routine use outside the context of clinical research (Supplementary Table). If clinicians decide to use remdesivir in selected patients, they should avoid using it in patients with acute or chronic kidney disease and in those with acute liver failure or elevated liver enzymes (>5 times upper normal limit). Similarly, other guidelines, including those from WHO, NIH, and the Surviving Sepsis Campaign, suggested against using remdesivir in critical COVID-19 [13, 14, 52].

\textbf{Favipiravir}

\textbf{Question: Should favipiravir vs. no favipiravir be used for severe or critical COVID-19?}

\textbf{Recommendation}

For adults with severe or critical COVID-19, the panel suggests against the routine use of favipiravir outside the context of clinical trials (weak recommendation, very low quality evidence).

\textbf{Rationale}

Favipiravir is a selective RNA polymerase enzyme inhibitor which can prevent replication of the viral genome and has shown wide range of antiviral activity against different influenza viruses [53–55].

Our search identified two systematic reviews and meta-analyses that summarized the results of RCTs on favipiravir in hospitalized COVID-19 patients [56, 57]. The most recent preprint systematic review and
meta-analysis included 9 RCTs (n = 827) comparing favipiravir to any other intervention; out of those, only 3 studies compared favipiravir to usual care or placebo. [58–60].

Only 3 RCTs reported on mortality [59–61]. Favipiravir did not reduce risk of death compared to other interventions (RR 0.70; 95% CI 0.26 to 1.28; very low quality). At 14 days, favipiravir did not result in clinical improvement (RR 1.10; 95% CI 0.97 to 1.25; very low quality) [59–64]. Two studies reported no effect of favipiravir on the need for ICU transfer compared to controls [60, 63]. Nausea, vomiting, diarrhea, and elevated uric acid and liver transaminases were the most commonly reported adverse events of favipiravir [59, 61–65].

Studies were at high risk of bias. Moreover, the studies included different comparative arms, had small sample sizes, and used different dosing and duration of favipiravir therapy. Therefore, the overall quality of this indirect evidence is very low. There are however, several registered RCTs examining the efficacy and safety of favipiravir in hospitalized COVID-19 (NCT04373733, NCT04345419, NCT04351295, NCT04349241, NCT04356495, NCT04310228, NCT04319900, NCT04333589, NCT04358549, NCT04346628).

Considering the availability of other effective therapies, the lack of direct evidence, and associated adverse effects, the panel issued a weak recommendation against the use of favipiravir in critical COVID-19 outside clinical trials. Future clinical trials are needed to assess the efficacy and safety of favipiravir in critical COVID-19.

II. Hydroxychloroquine (HCQ)

Question: Should HCQ vs. no HCQ be used for severe or critical COVID-19?

Recommendation

For adults with severe or critical COVID-19 in the ICU, the panel recommends against using HCQ (strong recommendation, moderate quality evidence).

Rationale

Few studies showed *in vitro* activity of HCQ against SARS-CoV-2. The long clinical experience, its wide availability, low cost, and relative safety compared to chloroquine encouraged the use of HCQ for COVID-19 therapy early in the pandemic [15, 66].

We identified a systematic review and meta-analysis summarizing 26 RCTs (n = 10,012) on HCQ in COVID-19 [67]. While most trials were small, the evidence from cumulative meta-analysis was dominated by the RECOVERY and the SOLIDARITY trials [51, 68]. Both trials used HCQ in higher doses than all other trials except REMAP-CAP [67]. The meta-analysis revealed no mortality benefit of hospitalized patients with confirmed COVID-19. Of the 4,316 patients treated with HCQ, 606 (14.0%) died compared to 960 (16.9%) of 5,696 patients in the control groups (OR 1.11; 95% CI 1.02 to 1.20, moderate quality,
[Supplement]). The effect was less clear in the subgroup of ICU patients (OR 1.04; 95% CI 0.49 to 2.18, very low quality).

Serious adverse events were reported in 3 RCTs. The pooled analysis showed higher risk of serious adverse events with HCQ use (RR 2.63; CI 1.36–5.09, low quality), the results are summarized in the Supplementary Table.

Considering the moderate quality evidence of no mortality benefit (and possible harm), and the associated serious adverse events, the panel issued a strong recommendation against using HCQ to treat critical COVID-19 cases (Supplementary Table). Our recommendation is consistent with most prominent international guidelines [13–15]. Additional studies on the role of HCQ in critical COVID-19 are probably not needed and future research should be focused on other therapeutic options.

IV. Anticoagulation

Question: Should therapeutic anticoagulation vs. prophylactic dose anticoagulation be used for critical COVID-19?

Recommendation

For adults with critical COVID-19 and no clinical suspicion of venous thromboembolism (VTE), we suggest using prophylactic dosing anticoagulation over therapeutic anticoagulation (weak recommendation, low quality evidence).

Remarks:

This recommendation does not apply to patients with high suspicion of (or confirmed) acute VTE or those with other indications for therapeutic anticoagulation.

Rationale

The rates of arterial thrombosis and VTE in COVID-19 patients are variable but reported to be higher than in non-COVID-19 patients. A systematic review and meta-analysis of 11 observational studies showed VTE rates around 23.9% (95% CI 16.2–33.7%) despite prophylactic anticoagulation [69]. The rate of pulmonary embolism is relatively high in ICU COVID-19 patients (15%; 95% CI 9 to 25%) [69]. Similarly, the rates of arterial thrombosis such as myocardial infarction and stroke are high in ICU COVID-19 patients (13.9% and 3.7%, respectively) [70].

Until recently, there were no peer-reviewed RCTs addressing therapeutic anticoagulation compared to prophylactic anticoagulation in COVID-19 patients. Three open-label platform trials (REMAP-CAP, ATTACC, and ACTIV-4a as preprint) examined the effect of therapeutic anticoagulation, versus prophylactic or intermediate-intensity VTE prophylaxis in ICU COVID-19 patients [71]. Recruitment was terminated for futility after an interim analysis of 1,074 patients. The combined analysis of these trials showed no difference in hospital mortality (OR 1.05, 95% CI 0.82 to 1.35, low quality [Supplement]) or days without
organ support (adjusted OR 0.87, 95% credible interval [CrI] 0.70 to 1.08). In addition, the composite outcome of death or major thrombotic event did not differ between the two groups (adjusted OR 1.05, 95% CrI 0.79 to 1.40). However, therapeutic anticoagulation reduced major thrombotic events (5.7% versus 10.3%, low quality) and resulted in a small increase in the risk of major bleeding (3.1% versus 2.4%, low quality) [71].

These trials have several limitations: the quality of evidence is tempered by lack of blinding, high dropout rate (>10%), and early termination of recruitment. Therefore, the overall quality of evidence was judged to be low (Supplementary Table). In addition, the trials did not focus on high-risk patients such as those with elevated D-dimer levels [70, 72].

Considering the lack of clear benefit, the potential for harm, and the low quality of evidence, the panel issued a weak recommendation favoring the use of prophylactic dosing VTE prophylaxis over therapeutic anticoagulation in COVID-19 patients. Our recommendation is similar to that of the American Society of Hematology [73]. In patients with D-dimer above 10,000 ng/ml [70], clinicians might need to rule out VTE, however, the optimal approach to address this problem is unclear. There remains uncertainty about using D-dimer levels to guide therapeutic decisions; that could be further studied in future research.

Future updates

The SCCS Guidelines Chapter members will meet monthly to discuss new evidence on relevant topics to this guideline. We plan to update recommendations in view of new evidence that would likely result in changing the recommendation strength and/or direction.

Discussion

The SCCS COVID-19 panel included 51 experts with expertise in critical care, respirology, infectious disease, epidemiology, emergency medicine, clinical pharmacy, nursing, respiratory therapy, methodology, and health policy. The panel addressed 9 questions that are related to the therapy of COVID-19 in the ICU. We used the GRADE approach and the evidence-to-decision framework (EtD) to generate recommendations.

The SCCS COVID-19 panel issued 12 recommendations on pharmacotherapeutic interventions for severe and critical COVID-19, of which 3 were strong recommendations and 9 were weak recommendations.

There are several strengths of these guidelines. The guidelines were developed using rigorous methodology, including comprehensive evidence synthesis and assessment, application of robust tools to allow reproducibility of the guidelines, and selecting panel members with attention to clinical, gender, and geographic diversity.

Although some members of the panel have suffered from COVID-19 and recovered, we did not formally include patient representatives in the guideline development process.
Conclusion

The SCCS COVID-19 recommendations can be used to facilitate evidence-based clinical decisions at the bedside. Additionally, the EtD framework allows adaptation of these recommendations to different contexts. The SCCS guideline committee will update recommendations as new evidence becomes available.

List Of Abbreviations

ARDS Acute respiratory distress syndrome
CI Confidence interval
Crl Credible interval
CRP C-reactive protein
EtD Evidenced to decision
GDT Guideline development tool
GRADE Grading of Recommendations, Assessment, Development and Evaluation
GUIDE Guidelines in intensive care, development, and evaluation
HR Hazard ratio
HCQ Hydroxychloroquine
HFNC High flow nasal cannula
ICU Intensive care unit
IDSA Infectious Disease Society of America
MI Myocardial infarction
NIH National Institute of Health
NIV Noninvasive ventilation
OR Odds ratio
PE Pulmonary embolism
RCT Randomized controlled trials
Declarations

Ethical Approval and consent to participate

Not applicable

Consent for publication

Copyright is transferred to the publisher in case of acceptance. The corresponding author had full access to all data presented and the final responsibility of deciding to submit the study for publication.

Availability of supporting data

All data produced and analyzed in this study are included in this article in Table 1, Figure 1 and supplement material.

Competing interest

All panel members completed the WHO declaration forms; none of the panel members declared any financial conflicts relevant to this guideline. Dr Waleed Alhazzani is a co-chair of the surviving sepsis campaign COVID-19 guidelines and member of the GRADE Working Group, Dr Yaseen Arabi is a co-investigator on REMAP-CAP trial.

Funding

The production of this guideline did not receive grant from any funding agency in the public, commercial or nonprofit sectors.

Author's contributions

All authors confirm substantial contribution and provided content expertise on the production and final revision of this guideline. The corresponding author attests that all listed authors meet authorship criteria and that none have been intentionally omitted.

Acknowledgement

Authors would like to express gratitude to Drs. Kimberly Lewis and Manoj Mammen for helping with the meta-analysis and Ms. Laila Perlas Asonto for clerical assistance.
References

1. Alhazzani W, Al-Suwaidan F, Al Aseri Z, Al Mutair A, Alghamdi G, Rabaan A, Algamdi M, Alohal A, Asiri A, Alshahrani M et al: The saudi critical care society clinical practice guidelines on the management of COVID-19 patients in the intensive care unit. Saudi Critical Care Journal 2020, 4(2):27-44.

2. Alhazzani W, Lewis K, Jaeschke R, Rochwerg B, Moller MH, Evans L, Wilson KC, Patel S, Coopersmith CM, Cecconi M et al: Conflicts of interest disclosure forms and management in critical care clinical practice guidelines. Intensive Care Med 2018, 44(10):1691-1698.

3. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, Schunemann HJ, Group GW: GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008, 336(7650):924-926.

4. Balshem H, Helfand M, Schunemann HJ, Oxman AD, Kunz R, Brozek J, Vist GE, Falck-Ytter Y, Meerpohl J, Norris S et al: GRADE guidelines: 3. Rating the quality of evidence. J Clin Epidemiol 2011, 64(4):401-406.

5. Andrews J, Guyatt G, Oxman AD, Alderson P, Dahm P, Falck-Ytter Y, Nasser M, Meerpohl J, Post PN, Kunz R et al: GRADE guidelines: 14. Going from evidence to recommendations: the significance and presentation of recommendations. J Clin Epidemiol 2013, 66(7):719-725.

6. Guyatt GH, Oxman AD, Santesso N, Helfand M, Vist G, Kunz R, Brozek J, Norris S, Meerpohl J, Djulbegovic B et al: GRADE guidelines: 12. Preparing summary of findings tables-binary outcomes. J Clin Epidemiol 2013, 66(2):158-172.

7. Al Sulaiman KA, Aljuhani O, Eljaaly K, Alharbi AA, Al Shabasy AM, Alsaade AS, Al Mutairi M, Badreldin HA, Al Harbi SA, Al Haji HA et al: Clinical features and outcomes of critically ill patients with coronavirus disease 2019 (COVID-19): A multicenter cohort study. Int J Infect Dis 2021, 105:180-187.

8. Arabi YM, Chrousos GP, Meduri GU: The ten reasons why corticosteroid therapy reduces mortality in severe COVID-19. Intensive Care Med 2020, 46(11):2067-2070.

9. Group RC, Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, Linsell L, Staplin N, Brightling C, Ustianowski A et al: Dexamethasone in Hospitalized Patients with Covid-19. N Engl J Med 2021, 384(8):693-704.

10. Group WHOREAfC-TW, Sterne JAC, Murthy S, Diaz JV, Slutsky AS, Villar J, Angus DC, Annane D, Azevedo LCP, Berwanger O et al: Association Between Administration of Systemic Corticosteroids and Mortality Among Critically Ill Patients With COVID-19: A Meta-analysis. JAMA 2020, 324(13):1330-1341.

11. Yao TC, Huang YW, Chang SM, Tsai SY, Wu AC, Tsai HJ: Association Between Oral Corticosteroid Bursts and Severe Adverse Events: A Nationwide Population-Based Cohort Study. Ann Intern Med 2020, 173(5):325-330.
12. Lamontagne F, Agoritsas T, Macdonald H, Leo YS, Diaz J, Agarwal A, Appiah JA, Arabi Y, Blumberg L, Calfee CS et al.: A living WHO guideline on drugs for covid-19. BMJ 2020, 370:m3379.

13. Alhazzani W, Evans L, Alshamsi F, Moller MH, Ostermann M, Prescott HC, Arabi YM, Loeb M, Ng Gong M, Fan E et al.: Surviving Sepsis Campaign Guidelines on the Management of Adults With Coronavirus Disease 2019 (COVID-19) in the ICU: First Update. Crit Care Med 2021, 49(3):e219-e234.

14. COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. National Institutes of Health. 2021.

15. Bhimraj A, Morgan RL, Shumaker AH, Lavergne V, Baden L, Cheng VC, Edwards KM, Gandhi R, Muller WJ, O'Horo JC et al.: Infectious Diseases Society of America Guidelines on the Treatment and Management of Patients with COVID-19. Clin Infect Dis 2020.

16. Chen X, Zhao B, Qu Y, Chen Y, Xiong J, Feng Y, Men D, Huang Q, Liu Y, Yang B et al.: Detectable serum SARS-CoV-2 viral load (RNAemia) is closely associated with drastically elevated interleukin 6 (IL-6) level in critically ill COVID-19 patients. medRxiv 2020:2020.2002.20029520.

17. Brunner HI, Ruperto N, Zuber Z, Keane C, Harari O, Kenwright A, Lu P, Cuttica R, Keltsev V, Xavier RM et al.: Efficacy and safety of tocilizumab in patients with polyarticular-course juvenile idiopathic arthritis: results from a phase 3, randomised, double-blind withdrawal trial. Annals of the Rheumatic Diseases 2015, 74(6):1110-1117.

18. Genovese MC, van Adelsberg J, Fan C, Graham NMH, van Hoogstraten H, Parrino J, Mangan EK, Spindler A, Huizinga TWJ, van der Heijde D et al.: Two years of sarilumab in patients with rheumatoid arthritis and an inadequate response to MTX: safety, efficacy and radiographic outcomes. Rheumatology (Oxford) 2018, 57(8):1423-1431.

19. Yokota S, Imagawa T, Mori M, Miyamae T, Aihara Y, Takei S, Iwata N, Umebayashi H, Murata T, Miyoshi M et al.: Efficacy and safety of tocilizumab in patients with systemic-onset juvenile idiopathic arthritis: a randomised, double-blind, placebo-controlled, withdrawal phase III trial. Lancet 2008, 371(9617):998-1006.

20. Le RQ, Li L, Yuan W, Shord SS, Nie L, Habtemariam BA, Przepiorka D, Farrell AT, Pazdur R: FDA approval summary: tocilizumab for treatment of chimeric antigen receptor T cell-induced severe or life-threatening cytokine release syndrome. The oncologist 2018, 23(8):943.

21. Group RC: Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet 2021, 397(10285):1637-1645.

22. Hermine O, Mariette X, Tharaux PL, Resche-Rigon M, Porcher R, Ravaud P, Group C-C: Effect of Tocilizumab vs Usual Care in Adults Hospitalized With COVID-19 and Moderate or Severe Pneumonia: A Randomized Clinical Trial. JAMA Intern Med 2021, 181(1):32-40.

23. Investigators R-C, Gordon AC, Mouncey PR, Al-Beidh F, Rowan KM, Nichol AD, Arabi YM, Annane D, Beane A, van Bentum-Puijk W et al.: Interleukin-6 Receptor Antagonists in Critically Ill Patients with Covid-19. N Engl J Med 2021, 384(16):1491-1502.

24. Rosas IO, Brau N, Waters M, Go RC, Hunter BD, Bhagani S, Skiest D, Aziz MS, Cooper N, Douglas IS et al.: Tocilizumab in Hospitalized Patients with Severe Covid-19 Pneumonia. N Engl J Med 2021,
Salama C, Han J, Yau L, Reiss WG, Kramer B, Neidhart JD, Criner GJ, Kaplan-Lewis E, Baden R, Pandit L et al: **Tocilizumab in Patients Hospitalized with Covid-19 Pneumonia.** *N Engl J Med* 2021, **384**(1):20-30.

Salvarani C, Dolci G, Massari M, Merlo DF, Cavuto S, Savoldi L, Bruzzi P, Boni F, Braglia L, Turra C et al: **Effect of Tocilizumab vs Standard Care on Clinical Worsening in Patients Hospitalized With COVID-19 Pneumonia: A Randomized Clinical Trial.** *JAMA Intern Med* 2021, **181**(1):24-31.

Soin AS, Kumar K, Choudhary NS, Sharma P, Mehta Y, Kataria S, Govil D, Deswal V, Chaudhry D, Singh PK et al: **Tocilizumab plus standard care versus standard care in patients in India with moderate to severe COVID-19-associated cytokine release syndrome (COVINTOC): an open-label, multicentre, randomised, controlled, phase 3 trial.** *Lancet Respir Med* 2021, **9**(5):511-521.

Stone JH, Frigault MJ, Serling-Boyd NJ, Harvey L, Foulkes AS, Horick NK, Healy BC, Shah R, Bensaci AM et al: **Efficacy of Tocilizumab in Patients Hospitalized with Covid-19.** *N Engl J Med* 2020, **383**(24):2333-2344.

Veiga VC, Prats J, Farias DCL, Rosa RG, Dourado LK, Zampieri FG, Machado FR, Lopes RD, Berwanger O, Azevedo LCP et al: **Effect of tocilizumab on clinical outcomes at 15 days in patients with severe or critical coronavirus disease 2019: randomised controlled trial.** *BMJ* 2021, **372**:

Campbell L, Chen C, Bhagat SS, Parker RA, Ostor AJ: **Risk of adverse events including serious infections in rheumatoid arthritis patients treated with tocilizumab: a systematic literature review and meta-analysis of randomized controlled trials.** *Rheumatology (Oxford)* 2011, **50**(3):552-562.

Geng Z, Yu Y, Hu S, Dong L, Ye C: **Tocilizumab and the risk of respiratory adverse events in patients with rheumatoid arthritis: a systematic review and meta-analysis of randomised controlled trials.** *Clin Exp Rheumatol* 2019, **37**(2):318-323.

Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, Hlh Across Speciality Collaboration UK: **COVID-19: consider cytokine storm syndromes and immunosuppression.** *Lancet* 2020, **395**(10229):1033-1034.

Cantini F, Niccoli L, Matarrese D, Nicastri E, Stobbione P, Goletti D: **Baricitinib therapy in COVID-19: A pilot study on safety and clinical impact.** *J Infect* 2020, **81**(2):318-356.

Sims JT, Krishnan V, Chang CY, Engle SM, Casalini G, Rodgers GH, Bivi N, Nickoloff BJ, Konrad RJ, de Bono S et al: **Characterization of the cytokine storm reflects hyperinflammatory endothelial dysfunction in COVID-19.** *J Allergy Clin Immunol* 2021, **147**(1):107-111.

Stebbing J, Phelan A, Griffin I, Tucker C, Oechsle O, Smith D, Richardson P: **COVID-19: combining antiviral and anti-inflammatory treatments.** *Lancet Infect Dis* 2020, **20**(4):400-402.

Kalil AC, Patterson TF, Mehta AK, Tomashek KM, Wolfe CR, Ghazaryan V, Marconi VC, Ruiz-Palacios GM, Hsieh L, Kline S et al: **Baricitinib plus Remdesivir for Hospitalized Adults with Covid-19.** *N Engl J Med* 2021, **384**(9):795-807.

Simonovich VA, Burgos Pratx LD, Scibona P, Beruto MV, Vallone MG, Vazquez C, Savoy N, Giunta DH, Perez LG, Sanchez MDL et al: **A Randomized Trial of Convalescent Plasma in Covid-19 Severe...**
38. Li L, Zhang W, Hu Y, Tong X, Zheng S, Yang J, Kong Y, Ren L, Wei Q, Mei H et al: Effect of Convalescent Plasma Therapy on Time to Clinical Improvement in Patients With Severe and Life-threatening COVID-19: A Randomized Clinical Trial. JAMA 2020, 324(5):460-470.

39. Janiaud P, Axfors C, Schmitt AM, Gloy V, Ebrahimi F, Hepprich M, Smith ER, Haber NA, Khanna N, Moher D et al: Association of Convalescent Plasma Treatment With Clinical Outcomes in Patients With COVID-19: A Systematic Review and Meta-analysis. JAMA 2021, 325(12):1185-1195.

40. Hung IFN, To KKW, Lee CK, Lee KL, Yan WW, Chan K, Chan WM, Ngai CW, Law KI, Chow FL et al: Hyperimmune IV immunoglobulin treatment: a multicenter double-blind randomized controlled trial for patients with severe 2009 influenza A(H1N1) infection. Chest 2013, 144(2):464-473.

41. Yang Y, Yu X, Zhang F, Xia Y: Evaluation of the Effect of Intravenous Immunoglobulin Dosing on Mortality in Patients with Sepsis: A Network Meta-analysis. Clin Ther 2019, 41(9):1823-1838 e1824.

42. Gharebaghi N, Nejadrahim R, Mousavi SJ, Sadat-Ebrahimi SR, Hajizadeh R: The use of intravenous immunoglobulin gamma in patients with COVID-19: a randomized placebo-controlled double-blind clinical trial. BMC Infect Dis 2020, 20(1):786.

43. Sakoulas G, Geriak M, Kullar R, Greenwood KL, Habib M, Vyas A, Ghafourian M, Dintyala VNK, Haddad F: Intravenous Immunoglobulin Plus Methylprednisolone Mitigate Respiratory Morbidity in Coronavirus Disease 2019. Crit Care Explor 2020, 2(11):e0280.

44. Tabarsi P, Barati S, Jamaati H, Haseli S, Marjani M, Moniri A, Abtahian Z, Dastan A, Yousefian S, Eskandari R et al: Evaluating the effects of Intravenous Immunoglobulin (IVIg) on the management of severe COVID-19 cases: A randomized controlled trial. Int Immunopharmacol 2021, 90:107205.

45. R SR, Barge VB, Darivenula AK, Dandu H, Kartha RR, Bafna V, Aravinda VT, Raghuram TC: A Phase II Safety and Efficacy Study on Prognosis of Moderate Pneumonia in COVID-19 patients with Regular Intravenous Immunoglobulin Therapy. J Infect Dis 2021.

46. Delforge M, Farber CM, Spath P, Kaveri S, Witte T, Misbah SA, Hubner R, Haerynck F, Latinne D, Muylle L et al: Recommended indications for the administration of polyclonal immunoglobulin preparations. Acta Clin Belg 2011, 66(5):346-360.

47. Amirian ES, Levy JK: Current knowledge about the antivirals remdesivir (GS-5734) and GS-441524 as therapeutic options for coronaviruses. One Health 2020, 9:100128.

48. Pokhrel R, Chapagain P, Siltberg-Liberles J: Potential RNA-dependent RNA polymerase inhibitors as prospective therapeutics against SARS-CoV-2. J Med Microbiol 2020, 69(6):864-873.

49. Pardo J, Shukla AM, Chamarthi G, Gupte A: The journey of remdesivir: from Ebola to COVID-19. Drugs Context 2020, 9.

50. Saqrane S, El Mhammedi MA, Lahrich S, Laghrib F, El Bouabi Y, Farahi A, Bakasse M: Recent knowledge in favor of remdesivir (GS-5734) as a therapeutic option for the COVID-19 infections. J Infect Public Health 2021, 14(5):655-660.

51. Consortium WHO, Pan H, Peto R, Henao-Restrepo AM, Preziosi MP, Sathiyamoorthy V, Abdool Karim Q, Alejandria MM, Hernandez Garcia C, Kiene MP et al: Repurposed Antiviral Drugs for Covid-
19 - Interim WHO Solidarity Trial Results. *N Engl J Med* 2021, **384**(6):497-511.

52. Rochwerg B, Agarwal A, Zeng L, Leo YS, Appiah JA, Agoritsas T, Bartoszko J, Brignardello-Petersen R, Ergan B, Ge L *et al*. Remdesivir for severe covid-19: a clinical practice guideline. *BMJ* 2020, **370**:m2924.

53. Furuta Y, Gowen BB, Takahashi K, Shiraki K, Smee DF, Barnard DL: Favipiravir (T-705), a novel viral RNA polymerase inhibitor. *Antiviral Res* 2013, **100**(2):446-454.

54. Smee DF, Hurst BL, Wong MH, Bailey KW, Tarbet EB, Morrey JD, Furuta Y: Effects of the combination of favipiravir (T-705) and oseltamivir on influenza A virus infections in mice. *Antimicrob Agents Chemother* 2010, **54**(1):126-133.

55. Sleeman K, Mishin VP, Deyde VM, Furuta Y, Klimov AI, Gubareva LV: In vitro antiviral activity of favipiravir (T-705) against drug-resistant influenza and 2009 A(H1N1) viruses. *Antimicrob Agents Chemother* 2010, **54**(6):2517-2524.

56. Shrestha DB, Budhathoki P, Khadka S, Shah PB, Pokharel N, Rashmi P: Favipiravir versus other antiviral or standard of care for COVID-19 treatment: a rapid systematic review and meta-analysis. *Virol J* 2020, **17**(1):141.

57. Hassanipour S, Arab-Zozani M, Amani B, Heidarzad F, Fathalipour M, Martinez-de-Hoyo R: The efficacy and safety of Favipiravir in treatment of COVID-19: A systematic review and meta-analysis of clinical trials. *medRxiv* 2021:2021.2002.2014.21251693.

58. Ivashchenko AA, Dmitriev KA, Vostokova NV, Azarova VN, Blinow AA, Egorova AN, Gordeev IG, Ilin AP, Karapetian RN, Kravchenko DV *et al*. AVIFAVIR for Treatment of Patients with Moderate COVID-19: Interim Results of a Phase II/III Multicenter Randomized Clinical Trial. *Clin Infect Dis* 2020.

59. Udwadia ZF, Singh P, Barkate H, Patil S, Rangwala S, Pendse A, Kadam J, Wu W, Caracta CF, Tandon M: Efficacy and safety of favipiravir, an oral RNA-dependent RNA polymerase inhibitor, in mild-to-moderate COVID-19: A randomized, comparative, open-label, multicenter, phase 3 clinical trial. *Int J Infect Dis* 2021, **103**:62-71.

60. Khamis F, Al Naabi H, Al Lawati A, Ambusaidi Z, Al Sharji M, Al Barwani U, Pandak N, Al Balushi Z, Al Baharni M, Al Salmi I *et al*. Randomized controlled open label trial on the use of favipiravir combined with inhaled interferon beta-1b in hospitalized patients with moderate to severe COVID-19 pneumonia. *Int J Infect Dis* 2021, **102**:538-543.

61. Dabbous HM, Abd-Elsalam S, El-Sayed MH, Sherief AF, Ebeid FFS, El Ghafar MSA, Soliman S, Elbahnasawy M, Badawi R, Tageldin MA: Efficacy of favipiravir in COVID-19 treatment: a multi-center randomized study. *Arch Virol* 2021, **166**(3):949-954.

62. Zhao H, Zhu Q, Zhang C, Li J, Wei M, Qin Y, Chen G, Wang K, Yu J, Wu Z *et al*. Tocilizumab combined with favipiravir in the treatment of COVID-19: A multicenter trial in a small sample size. *Biomed Pharmacother* 2021, **133**:110825.

63. Lou Y, Liu L, Yao H, Hu X, Su J, Xu K, Luo R, Yang X, He L, Lu X *et al*. Clinical Outcomes and Plasma Concentrations of Baloxavir Marboxil and Favipiravir in COVID-19 Patients: An Exploratory Randomized, Controlled Trial. *Eur J Pharm Sci* 2021, **157**:105631.
64. Cai Q, Yang M, Liu D, Chen J, Shu D, Xia J, Liao X, Gu Y, Cai Q, Yang Y et al: Experimental Treatment with Favipiravir for COVID-19: An Open-Label Control Study. *Engineering (Beijing)* 2020, 6(10):1192-1198.

65. Prakash A, Singh H, Kaur H, Semwal A, Sarma P, Bhattacharyya A, Dhibar DP, Medhi B: Systematic review and meta-analysis of effectiveness and safety of favipiravir in the management of novel coronavirus (COVID-19) patients. *Indian J Pharmacol* 2020, 52(5):414-421.

66. Eljaaly K, Alireza KH, Alshehri S, Al-Tawfiq JA: Hydroxychloroquine safety: A meta-analysis of randomized controlled trials. *Travel Med Infect Dis* 2020, 36:101812.

67. Axfors C, Schmitt AM, Janiaud P, Van't Hooft J, Abd-Elsalam S, Abdo EF, Abella BS, Akram J, Amaravadi RK, Angus DC et al: Mortality outcomes with hydroxychloroquine and chloroquine in COVID-19 from an international collaborative meta-analysis of randomized trials. *Nat Commun* 2021, 12(1):2349.

68. Group RC, Horby P, Mafham M, Linsell L, Bell JL, Staplin N, Emberson JR, Wiselka M, Ustianowski A, Elmahi E et al: Effect of Hydroxychloroquine in Hospitalized Patients with Covid-19. *N Engl J Med* 2020, 383(21):2030-2040.

69. Chi G, Lee JJ, Jamil A, Gunnam V, Najafi H, Memar Montazerin S, Shojaei F, Marszalek J: Venous Thromboembolism among Hospitalized Patients with COVID-19 Undergoing Thromboprophylaxis: A Systematic Review and Meta-Analysis. *J Clin Med* 2020, 9(8).

70. Bilaloglu S, Aphinyanaphongs Y, Jones S, Iturrate E, Hochman J, Berger JS: Thrombosis in Hospitalized Patients With COVID-19 in a New York City Health System. *JAMA* 2020.

71. Zarychanski R: Therapeutic Anticoagulation in Critically Ill Patients with Covid-19 – Preliminary Report. *medRxiv* 2021:2021.2003.2010.21252749.

72. Al-Samkari H, Karp Leaf RS, Dzik WH, Carlson JCT, Fogerty AE, Waheed A, Goodarzi K, Bendapudi PK, Bornikova L, Gupta S et al: COVID-19 and coagulation: bleeding and thrombotic manifestations of SARS-CoV-2 infection. *Blood* 2020, 136(4):489-500.

73. Cuker A, Tseng EK, Nieuwlaat R, Angchaisuksiri P, Blair C, Dane K, Davila J, DeSancho MT, Diuguid D, Griffin DO et al: American Society of Hematology 2021 guidelines on the use of anticoagulation for thromboprophylaxis in patients with COVID-19. *Blood Adv* 2021, 5(3):872-888.

Table
Table 1.
Summary of recommendations

Agent	Clinical Question	Recommendation(s)	Strength of Recommendation and quality of evidence
I. Immunomodulation therapy			
Corticosteroids	1. For adults with severe or critical COVID-19 in the ICU, the panel recommends using systemic corticosteroids	Strong recommendation, high quality evidence.	
	2. The panel suggests using dexamethasone 6 mg daily for 10 days over other corticosteroids	Weak recommendation, low quality evidence.	
Tocilizumab	3. For adults with COVID-19 who are receiving high-flow nasal cannula or noninvasive ventilation, the panel suggests using tocilizumab over not using it	Weak recommendation, low quality evidence.	
	Remark: Studies shown benefit of tocilizumab when used concomitantly with corticosteroids in patients with elevated C-reactive protein (CRP) >75 mg/l, or when tocilizumab therapy was initiated within 24 hours of ICU admission.		
	4. Due to insufficient evidence, we were unable to issue a recommendation for or against the use of tocilizumab in invasively ventilated COVID-19 patients. If clinicians decide to use tocilizumab in this context, it is probably better to use it early (within 24 hours of admission) and/or in patients with CRP level >75 mg/l.	No recommendation	
Baricitinib	5. For adults with critical COVID-19; the panel suggests against the routine use of baricitinib in combination with remdesivir	Weak recommendation, low quality evidence.	
	6. For selected cases with severe COVID-19 on NIV or HFNC who cannot receive corticosteroids or tocilizumab, we suggest using a combination of baricitinib and remdesivir over remdesivir alone	Weak recommendation, low quality evidence.	
Convalescent plasma	Should convalescent plasma vs. no convalescent plasma be used for severe or critical COVID-19?	7. For adults with severe or critical COVID-19 in the ICU, the panel recommends against using convalescent plasma	Strong recommendation, moderate quality evidence.
---------------------	---	---	--
Immunoglobulins	Should intravenous immunoglobulin (IVIG) vs. no IVIG be used for severe or critical COVID-19?	8. For adults with severe or critical COVID-19 in the ICU, the panel suggests against the routine use of IVIG outside the context of clinical trials	Weak recommendation, low quality evidence.
II. Antiviral therapy			
Remdesivir	Should remdesivir vs. no remdesivir be used for critical COVID-19?	9. For mechanically ventilated adults with critical COVID-19, we suggest against using remdesivir outside the context of clinical trials	Weak recommendation, low quality evidence.
Favipiravir	Should favipiravir vs. no favipiravir be used for severe or critical COVID-19?	10. For adults with severe or critical COVID-19 in the ICU, the panel suggests against the routine use of favipiravir outside the context of clinical trials	Weak recommendation, very low quality evidence.
III. Hydroxychloroquine (HCQ)		11. For adults with severe or critical COVID-19 in the ICU, the panel recommends against using HCQ	Strong recommendation, moderate quality evidence.
HCQ	Should HCQ vs. no HCQ be used for severe or critical COVID-19?		
VI. Anticoagulation			
Therapeutic anticoagulation	Should therapeutic anticoagulation vs. prophylactic dose anticoagulation be used for critical COVID-19?	12. For adults with critical COVID-19 and no clinical suspicion of venous thromboembolism (VTE), we suggest using prophylactic dosing anticoagulation over therapeutic anticoagulation	Weak recommendation, low quality evidence.
	Remark:	This recommendation does not apply to patients with high suspicion of acute VTE or those with other indications for therapeutic anticoagulation.	

Figures
Figure 1

Approach to pharmacotherapy for COVID-19 in the ICU

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupplementFinal1.docx