Abstract

It is commonly believed that algebraic notions of type theory support only universes à la Tarski, and that universes à la Russell must be removed by elaboration. We clarify the state of affairs, recalling the details of Cartmell’s discipline of generalized algebraic theory [Cartmell, 1978], showing how to formulate an algebraic version of Coquand’s cumulative cwfs with universes à la Russell.

To demonstrate the power of algebraic techniques, we sketch a purely algebraic proof of canonicity for Martin-Löf Type Theory with universes, dependent function types, and a base type with two constants.

1 Generalized algebraic theories

Cartmell [1978] defines a notion of generalized algebraic theory, generated by a collection of formation rules for sort symbols, introduction rules for operation symbols, and axioms for both sort equality and term equality. These are all inter-dependent, so care must be taken to stage the construction properly. In this note, we give a more streamlined presentation with a few differences from Cartmell’s:

1. At a superficial level, we use a modernized notation, inspired by logical frameworks.

2. At a technical level, we stage the construction in such a way that, when considering the derived rules available for a signature, we have already assumed that the signature is well-formed.

It’s worth noting that our formulation, while suitable for the development of signatures which are finitary, is less general than the notion considered by Cartmell; our version does not suffice to develop the universal algebra of generalized algebraic theories (including the equivalence between the category of such theories and the category of contextual categories), as noted by Taylor [1999].
1.1 Grammar and substitution

In this section, we present an informal grammar to generate the raw syntax whose well-formedness we characterize in Section 1.3.

\[(judgments) \quad J := \text{thy} \mid \Psi \text{ tel} \mid \Psi \vdash T \mid \Phi \vdash \psi : \Psi \]

\[(theories) \quad T := \emptyset \mid T, \emptyset : D \mid T, E \]

\[(declarations) \quad D := [\Psi \vdash \text{sort}] \mid [\Psi \vdash A] \]

\[(axioms) \quad E := [\Psi \vdash A = B \text{ sort}] \mid [\Psi \vdash M = N : A] \]

\[(telescopes) \quad \Psi := \cdot \mid \Psi, x : A \]

\[(sorts) \quad A := \emptyset \]

\[(terms) \quad M := x \mid \emptyset \]

\[(substitutions) \quad \psi := \cdot \mid \psi, M/x \]

We define the action of raw substitutions on raw sorts and terms \(\psi^*(-)\) and the composition of raw substitutions \(\psi \circ \phi\) by recursion as follows:

\[
\begin{align*}
\cdot x &= x \\
(\psi, M/x)^*x &= x & (\cdot \circ \psi) &= \cdot \\
(\psi, M/y)^*x &= \psi^*x & (\phi, N/x) \circ \psi &= (\phi \circ \psi), (\psi^*N)/x \\
\psi^*\emptyset\phi &= \emptyset(\phi \circ \psi)
\end{align*}
\]

1.2 Judgments and presuppositions

We will define several forms of judgment simultaneously, to specify the well-formedness and equality conditions for theories, sorts, terms and substitutions. Following Martin-Löf [1996], Schroeder-Heister [1987], we explain a form of judgment by first specifying its presuppositions (what are the meaningful instances of the form of judgment?), and then giving rules which specify when a meaningful instance of a form of judgment can be verified.

For instance, to specify a form of judgment like "M is of sort A", we first presuppose that A is already known to be a sort, but require of M only that it is generated from an appropriate production of the raw syntax in Section 1.1; then, rather than being false, the spurious instance "M is of sort 57" is actually not assigned a meaning at all. The discipline of presuppositions enables us to omit many redundant premises from rules.

Convention 1.1 (Subjects and presuppositions). In all cases that we will consider here, a form of judgment expresses that some piece of raw syntax (the subject) is well-formed relative to some other objects which are already presupposed to be well-formed (the parameters); we write the subject in color to distinguish it visually from the parameters.
We indicate this situation schematically for a form of judgment J in the following way:

$$
\begin{array}{ccc}
\mathcal{K}_0(p_0) & \cdots & \mathcal{K}_n(p_n) \\
J(p_0, \ldots, p_n, q) & \text{“Pronunciation of } J(p_0, \ldots, p_n, q) \text{”}
\end{array}
$$

The above schema should be read as asserting that the judgment $J(p_0, \ldots, p_n, q)$ presupposes $\mathcal{K}_0(p_0)$ through $\mathcal{K}_n(p_n)$, transitively presupposing whatever is presupposed by $\mathcal{K}_i(p_i)$, establishing the well-formedness of the raw syntax q.

Once the meaningful instances of a form of judgment have been generated schematically as in Convention 1.1, its correct instances can be characterized inductively by rules of inference.

Relation to traditional presentations The “traditional” presentation of rules of inference, in which all constituents are treated as subjects and inference rules are equipped with extra premises to govern their well-formedness, can be obtained in a completely mechanical way from the more streamlined systems presented here.

A form of judgment $J(\bar{v}, a)$ should be thought of as a family of sets of derivations indexed in $\{(\bar{v}, a) \mid \overline{\mathcal{K}(p)}\}$. The act of forgetting the well-formedness of the parameters induces a contravariant restriction of forms of judgment in an adjoint situation:

$$
\begin{array}{c}
\{(\bar{v}, a) \mid \overline{\mathcal{K}(p)}\} \\
\overline{\mathcal{Jdg}}((\bar{v}, a))
\end{array}
\begin{array}{c}
\exists_i \\
\forall_i
\end{array}
\begin{array}{c}
\{(\bar{v}, a)\} \\
\overline{\mathcal{Jdg}}((\bar{v}, a) \mid \overline{\mathcal{K}(p)})
\end{array}
$$

From the left adjoint \exists_i, we obtain exactly the system of judgments and rules without presuppositions, in which the old presuppositions are added as auxiliary premises to every rule in just the right place.
1.3 Rules for generalized algebraic theories

\[
\text{\textbf{EMPTY}} \quad \text{\textbf{SORT DECL}} \quad \text{\textbf{OPERATION DECL}} \\
\text{T thy} \quad \Psi \text{tele_T} \quad (\emptyset \notin T) \quad \text{T thy} \quad \Psi \text{tele_T} \quad \Psi \vdash T A \text{ sort} \quad (\emptyset \notin T) \\
\emptyset \text{ thy} \quad \text{T, } \emptyset : [\Psi \vdash \text{ sort}] \text{ thy} \quad \text{T, } \emptyset : [\Psi \vdash A] \text{ thy} \\
\text{SORT AXIOM} \quad \text{TERM AXIOM} \\
\text{T thy} \quad \Psi \text{tele_T} \quad \Psi \vdash T A_0 \text{ sort} \quad \Psi \vdash T A_1 \text{ sort} \\
\quad \quad \quad \text{T, } [\Psi \vdash A_0 = A_1 : \text{ sort}] \text{ thy} \\
\text{T thy} \quad \Psi \text{tele_T} \quad \Psi \vdash T A \text{ sort} \quad \Psi \vdash T M_0 : A \quad \Psi \vdash T M_1 : A \\
\quad \quad \quad \text{T, } [\Psi \vdash M_0 = M_1 : A] \text{ thy} \\
\text{\textbf{SNOC}} \quad \Psi \text{tele_T} \quad \Psi \vdash T A \text{ sort} \quad (x \notin \Psi) \\
\quad \quad \quad \Psi, x : A \text{ tele_T} \\
\text{SORT FORMATION} \\
\text{T } \ni \emptyset : [\Phi \vdash \text{ sort}] \quad \Psi \vdash \emptyset \Phi : \Phi \\
\quad \quad \quad \Psi \vdash \emptyset (\Phi) \text{ sort}
\[\Psi \vdash A \text{ sort} \quad \Psi \vdash B \text{ sort} \]

\[\Psi \vdash A = B \text{ sort} \]

"A and B are equal sorts"

Reflexivity
\[
\begin{align*}
\Psi \vdash A &= A \text{ sort} \\
\Psi &\vdash A = A \text{ sort} \\
\end{align*}
\]

Symmetry
\[
\begin{align*}
\Psi \vdash A_0 &= A_1 \text{ sort} \\
\Psi &\vdash A_1 = A_0 \text{ sort} \\
\end{align*}
\]

Transitivity
\[
\begin{align*}
\Psi \vdash A_0 &= A_1 \text{ sort} \\
\Psi &\vdash A_1 = A_2 \text{ sort} \\
\Psi &\vdash A_0 = A_2 \text{ sort} \\
\end{align*}
\]

Substitution
\[
\begin{align*}
\Phi \vdash A_0 &= A_1 \text{ sort} \\
\Psi &\vdash \phi_0 = \phi_1 : \Phi \\
\Psi &\vdash \phi_0^* A_0 = \phi_1^* A_1 \text{ sort} \\
\end{align*}
\]

Sort Axiom
\[
\begin{align*}
\Theta &\vdash [\Psi \vdash A_0 = A_1 \text{ sort}] \\
\Psi &\vdash A_0 = A_1 \text{ sort} \\
\end{align*}
\]

Term Formation
\[
\begin{align*}
\Theta &\vdash \delta : [\phi + A] \\
\Psi &\vdash \phi : \Phi \\
\Psi &\vdash \delta(\phi) : \phi^* A \\
\end{align*}
\]

Variable
\[
\begin{align*}
\Psi, x : A &\vdash x : A \\
\end{align*}
\]

Conversion
\[
\begin{align*}
\Psi \vdash A_0 &= A_1 \text{ sort} \\
\Psi &\vdash M : A_0 \\
\Psi &\vdash M : A_1 \\
\end{align*}
\]
Reflexivity

Premise	Conclusion
\(\Psi \vdash M = M : A \)	\(\Psi \vdash M = M : A \)

Symmetry

Premise	Conclusion
\(\Psi \vdash M_0 = M_1 : A \)	\(\Psi \vdash M_1 = M_0 : A \)

Transitivity

Premise	Conclusion
\(\Psi \vdash M_0 = M_1 : A \) \(\Psi \vdash M_1 = M_2 : A \)	\(\Psi \vdash M_0 = M_2 : A \)

Contraction

Premise	Conclusion
\(\Psi \vdash M_0 = M_1 : A \)	\(\Psi \vdash M_0 = M_1 : A \)

Sort Substitution

Premise	Conclusion
\(\Phi \vdash \Psi \)	\(\Phi \vdash \Psi \)

Empty

Premise	Conclusion
\(\Phi \vdash \cdot \)	\(\Phi \vdash \cdot \)

SNOC (Same Name, Different Conversions)

Premise	Conclusion
\(\Phi \vdash \psi_0 = \psi_1 : \Psi \)	\(\Phi \vdash \psi_0 = \psi_1 : \Psi \)

Term Axiom

Premise	Conclusion
\(\Gamma \vdash [\Psi \vdash M_0 = M_1 : A] \)	\(\Psi \vdash M_0 = M_1 : A \)

Substitution

Premise	Conclusion
\(\Phi \vdash \psi_0 = \psi_1 : \Psi \)	\(\Phi \vdash \psi_0 = \psi_1 : \Psi \)

Substitution

Premise	Conclusion
\(\Phi \vdash \psi_0 = \psi_1 : \Psi \)	\(\Phi \vdash \psi_0 = \psi_1 : \Psi \)

Extensionality

Premise	Conclusion
\(\Phi \vdash \psi_0 = \psi_1 : \Psi \)	\(\Phi \vdash \psi_0 = \psi_1 : \Psi \)

Substitution

Premise	Conclusion
\(\Phi \vdash \psi_0 = \psi_1 : \Psi \)	\(\Phi \vdash \psi_0 = \psi_1 : \Psi \)

Substitution

Premise	Conclusion
\(\Phi \vdash \psi_0 = \psi_1 : \Psi \)	\(\Phi \vdash \psi_0 = \psi_1 : \Psi \)
Notation 1.2 (Substitution). Abusing notation, we will often write \(\psi, M \) instead of \(\psi, M/x \) when the variable is clear from context; we will also routinely write \(M \) instead of \(\cdot, M \).

Lemma 1.3 (Substitution). When \(\Phi \vdash \psi : \Psi \), we have the following admissible substitution principles:

1. If \(\Psi \vdash T A \text{ sort} \), then \(\Phi \vdash T \psi^* A \text{ sort} \).
2. If \(\Psi \vdash M : A \), then \(\Phi \vdash T \psi^* M : \psi^* A \).
3. If \(\Psi \vdash \xi : \Xi \), then \(\Phi \vdash T \xi \circ \psi : \Xi \).

Proof. By mutual induction on derivations.

1.4 Notation for theories

Based on the rules and grammar that we have given, a generalized algebraic theory is defined by a sequence of declarations of sort symbols and operation symbols and their arities, with equational axioms interspersed, subject to the sorting discipline. For instance, the generalized algebraic theory of monoids is given as follows:

\[
\begin{align*}
\text{ob} & : [\cdot \vdash \text{sort}], \\
\text{id} & : [\cdot \vdash \text{ob}(\cdot)], \\
\text{op} & : [x : \text{ob}(\cdot), y : \text{ob}(\cdot) \vdash \text{ob}(\cdot)], \\
& [x : \text{ob}(\cdot) \vdash \text{op}(x, \text{id}(\cdot)) = x : \text{ob}(\cdot)], \\
& [x : \text{ob}(\cdot) \vdash \text{op}(\text{id}(\cdot), x) = x : \text{ob}(\cdot)], \\
& [x : \text{ob}(\cdot), y : \text{ob}(\cdot), z : \text{ob}(\cdot) \vdash \text{op}(\text{op}(x, y), z) = \text{op}(x, \text{op}(y, z)) : \text{ob}(\cdot)]
\end{align*}
\]

However, for more complex theories, this linear notation will be a hindrance; therefore, we will impose an inference-style notation which will be more ergonomic. In our informal notation, a formation rule for a sort or operation symbol will simultaneously extend the signature with the appropriate declaration, and impose an informal notation for its use. It is crucial to note that these notations are just that: they are not part of the formal theory, but instead part of the informal way that we render the real objects of the theory (concrete trees) into linear text.

Sort declaration The sort formation rule \(\frac{x_0 : A_0 \ldots \quad x_n : A_n}{\square_{x_0 \ldots x_n} \vdash \text{sort}} \) extends the signature by the declaration \(\vartheta : [x_0 : A_0, \ldots, x_n : A_n \vdash \text{sort}] \), and imposes the notational convention \(\vartriangleleft_{x_0 \ldots x_n} = \vartheta(x_0, \ldots, x_n) \).

These notational conventions are permitted to omit arguments which are obvious from context, giving an informal counterpart to the notion of implicit arguments which appear in proof assistants like Agda [Norell, 2009].
Operation declaration The operation formation rule
\[
\frac{x_0 : A_0 \ldots x_n : A_n}{\square x_0 \ldots x_n : B}
\]
extends the signature by the declaration \(\vartheta : [x_0 : A_0, \ldots, x_n : A_n \vdash B]\), and imposes the notational convention \(\square x_0 \ldots x_n \equiv \vartheta(x_0 \ldots x_n)\).

Sort axiom The sort equation rule
\[
\frac{x_0 : A_0 \ldots x_n : A_n}{A = B \text{ sort}}
\]
extends the signature by the axiom \([x_0 : A_0, \ldots, x_n : A_n \vdash A = B \text{ sort}]\).

Term axiom The term equation rule
\[
\frac{x_0 : A_0 \ldots x_n : A_n}{M = N : A}
\]
extends the signature by the axiom \([x_0 : A_0, \ldots, x_n : A_n \vdash M = N : A]\).

Example The theory of monoids can be written using our new notation as follows:

\[
\begin{array}{c}
\text{ob} \quad \text{id} \\
\text{id} : \text{ob} \\
\text{x : ob} \\
\text{y : ob} \\
\text{cmp} \\
\text{x : ob} \\
\text{x \cdot y : ob} \\
\text{x \cdot id = x : ob} \\
\text{id \cdot x = x : ob} \\
\text{x : ob} \\
\text{y : ob} \\
\text{z : ob} \\
\text{(x \cdot y) \cdot z = x \cdot (y \cdot z) : ob} \\
\end{array}
\]

1.5 Related work: logical frameworks

Generalized algebraic theories comprise one point in the space of logical frameworks, which are syntactic disciplines for formulating deductive systems. The purpose of a logical framework is to distinguish between the parts of a deductive system which are particular (for instance, the generators and equations) and the parts which are universal (for instance, the typing or binding discipline). Logical frameworks vary primarily in which aspects of deductive systems they treat as universal, negotiating the duality between expressivity and utility.

1.5.1 First-order algebraic theories

One of the most basic logical frameworks is that of first-order algebra, in which there are only atomic sorts, and contexts have the structure of a strictly associative cartesian product. The science of functorial semantics was developed first in the context of unisorted first-order algebraic theories by Lawvere [2004] in 1968.

Like generalized algebraic theories, first-order algebraic theories lack any intrinsic binding structure. As such, they do not natively explain the universal syntactic phenomena which emanate from the lambda calculus and other languages with binding. In contrast, the dependent sorts of generalized algebraic theories lend themselves to a workable formalization of De Bruijn indices and explicit substitutions, which we have employed here.
1.5.2 Second-order algebraic theories

Fiore et al. [1999] initiated the scientific study of second-order algebra — which had already appeared in embryonic form as early as Aczel [1978] — a discipline which encompasses theories whose operations exhibit binding structure of one level, with variables that range over terms and metavariables which range over binders. The functorial semantics of second-order algebraic theories was developed by Fiore and Mahmoud [2010]. A variation on second-order algebra which omits both equations and metavariables, but adds a novel notion of indexed operation, was employed by Harper [2012b] to provide a syntactic discipline for formulating the syntax and semantics of programming languages.

1.5.3 Essentially algebraic theories

Essentially algebraic theories are the closest (semantic) relative to Cartmell’s generalized algebraic theories. Generalized algebraic theories provide dependently-sorted syntax for concepts which exhibit indexing; essentially algebraic theories capture these concepts using fibration rather than parameterization.

Every essentially algebraic theory can be presented as a generalized algebraic theory by axiomatizing proof-irrelevant predicates; generalized algebraic theories can likewise be transformed into essentially algebraic theories by taking the “total sorts” of families and using predicates to specify indices. When transforming an essentially algebraic theory into a generalized algebraic theory, one must choose which relations to express using parameterization and which to express using fibration. For this reason, Voevodsky observed that it is not correct to consider the two disciplines interchangeable [Voevodsky, 2013].

1.5.4 Martin-Löf’s Logical Framework

In Martin-Löf [1984], the use of “higher-level variables” (variables which range over binders) was introduced to the syntax of Intuitionistic Type Theory, a syntactic discipline called a theory of expressions in Nordström et al. [1990]. This simply-typed higher-order logical framework was employed to systematize the treatment of variable binding in Intuitionistic Type Theory, which maintained at the time a separate extrinsic typing discipline which was defined on top of the simple arities.

The theory of expressions was an immediate precursor to dependently typed logical frameworks, principally Martin-Löf’s Logical Framework (LF) and the Edinburgh Logical Framework (ELF). Object theories formulated in the LF use the LF type structure to simultaneously express both their binding structure and their typing discipline: constants are added to a signature together with an LF-type, employing the ambient dependent function type to achieve both binding (of higher level) and parameterization. Signatures in the LF can be extended with equations, analogous to the state of affairs in generalized algebraic theories.

Variable binding in LF Because object theories formulated in the LF inherit their binding discipline from the metalanguage, there is likewise no need to formalize contexts. Whereas in the generalized algebraic theory of categories with families (cwfs)
which we recapitulate in Section 3, we formalize the notion of a context, and then every operator takes as an argument its context Γ in addition to its other parameters, this part of the structure is implicit in the LF. A consequence is, however, that the LF must be revised or extended in order to support languages with exotic binding constructs and context effects, such as modalities.

1.5.5 Edinburgh Logical Framework

Introduced by Harper et al. [1993], the Edinburgh Logical Framework (ELF) shares its type structure with Martin-Löf’s Logical Framework, but its notion of signature is different, and therefore its mode of use also differs. Whereas the LF allowed a signature to be extended with equations as is customary in algebra, the ELF was designed in order to enable a strict bijection (called adequacy) between ELF terms and object-theory derivations, including derivations of formal equality.

For this reason, while Martin-Löf’s Logical Framework is most suited to providing a syntactic discipline for object theories which encompasses both typing and formal equality, the Edinburgh Logical Framework is better adapted to situations in which one wishes to prove a syntactic metatheorem about a formal system by induction on its derivations. The Edinburgh Logical Framework, implemented in the Twelf proof assistant [Pfenning and Schürmann, 1999], has been used to formalize the syntactic metatheory of numerous logics and even programming languages [Lee et al., 2007, Harper and Licata, 2007].

1.5.6 Perspective

The main axes of variation in logical frameworks are to be found in negotiating the universality of type structure, binding structure and formal equality. In LF and ELF, the question of binding structure is essentially subsumed by the type structure, which is treated as universal; in LF, formal equality is treated as universal, whereas in ELF it is treated as particular. Generalized algebraic theories represent a middle ground, in which dependently-sorted first-order syntax can be formalized up to formal equality, including the theory of De Bruijn indices and explicit substitutions.

While such an object-level formalization of binding structure can prove tedious, and necessarily results in a proliferation of axioms about how substitutions propagate through constructors, it is the most natural setting in which to develop an algebraic account of categories of models of type theory, such as categories with families or categories with attributes. The initial category with families (extended with further structure, such as dependent function types), then, serves as a suitable notion of type theory; indeed, the Logical Framework itself arises in this way.

The Logical Framework may be the most natural place to develop many object languages, but we have found generalized algebraic theories to be a useful intermediate point worth developing, if only to have a principled matrix in which to construct the next thousand logical frameworks.
1.6 Categories of signatures vs doctrines

In modern algebra, one considers two parallel perspectives on “notion of theory”:

1. There is the 1-categorical perspective, in which a notion of theory is given by (something equivalent to) a 1-category of signatures and interpretations. This is the perspective that we have followed in Section 1.5, and indeed, in the rest of this note.

2. There is the 2-categorical perspective, in which a notion of theory is given by 2-category of theories (called a doctrine). This usually arises from a universal characterization of the basic structure (like finite products, finite limits, etc.), as opposed to a choice of basic structure.

For instance, the 2-categorical perspective on algebraic theories arises from the doctrine of categories with finite products and functors which preserve finite products. On the other hand, one can define the 1-category of first-order algebraic theories as either the category of algebraic signatures and interpretations Sign_\times, or the 1-category of categories equipped with a choice of strictly-associative finite products Law. Both Sign_\times and Law are equivalent; while Law looks as though it might extend to a 2-categorical notion (because its objects are categories), it is fundamentally 1-categorical because the only sensible class of 2-cells would contain only identities [Hyland and Power, 2007].

Cartmell [1978] treats generalized algebraic theories from a purely 1-categorical perspective. Theories \mathcal{T} are arranged into a 1-category GAT, with morphisms $\mathcal{T} \to \mathcal{T}'$ given by interpretations of the language of \mathcal{T} into the language of \mathcal{T}'; another 1-category of contextual categories Con is defined which plays exactly the role of Law in relation to GAT, which is to forget the difference between derived and generating morphisms.

The 2-categorical perspective given by doctrines is essential for general semantics, but our immediate aim is more restricted: we are using semantic tools to prove theorems about syntax (such as canonicity, normalization, coherence, decidability of equality, etc.); toward these ends, the 1-categorical perspective is the simplest and most immediately adaptable, and we require only 1-categorical initiality results.

In contrast, to prove the equivalence of categories with families and locally cartesian closed categories, one must develop the 2-categorical notion of cwf rather than the 1-categorical notion that we develop here (i.e. the category of models of the theory of cwfs); one does not obtain, for instance, a free locally cartesian closed category from the initial model of the theory of cwfs [Castellan et al., 2017].

1.7 Algebraic semantics and initiality

Every generalized algebraic theory \mathcal{T} gives rise to a category of models $\mathcal{T} \text{- Alg}$: concretely, a model of \mathcal{T} is given by an interpretation of sorts and operations in families of sets. A sort $\cdot \vdash_{\mathcal{T}} A \text{ sort}$ is interpreted as a set $[A]$, whereas a sort $x : A \vdash_{\mathcal{T}} B \text{ sort}$ is interpreted as a $[A]$-indexed family of sets $[B]$, and so on.
Every interpretation \(I : \mathcal{T} \to \mathcal{T}' \) in GAT induces a restriction of algebras \(I' : \mathcal{T}'\text{-Alg} \to \mathcal{T}\text{-Alg} \) (precomposition with the interpretation), and this has a left adjoint \(I! \). Considering the universal interpretation \(!\mathcal{T} : \emptyset \to \mathcal{T} \), we observe that the codomain \(\emptyset\text{-Alg} \) of its restriction functor is actually the terminal category: there is only one model of the theory with no sorts and no operations; from the left adjoint, we therefore obtain an initial object in \(\mathcal{T}\text{-Alg} \), i.e. an initial model.

The construction of the left adjoint involves adjoining new rules to the term model (Lindenbaum-Tarski model) of the given theory; Cartmell [1978] constructs this term model in painstaking detail, but merely observes without proof that the left adjoint to the evident restriction functor exists.

The existence of these left adjoints is proved in more detail in the context of essentially algebraic theories by Palmgren and Vickers [2007]. We are not aware of a similarly detailed proof for generalized algebraic theories in the literature. If one is unsatisfied with this state of affairs, one can observe that every generalized algebraic theory induces an essentially algebraic theory with an equivalent category of models, and then transport the initial object along this equivalence.

In recent work, Kaposi et al. [2019] present a more modern account of generalized algebraic theories in terms of finitary quotient inductive types, achieving a more crisp construction of initial algebras. As with the presentation of generalized algebraic theories in Taylor [1999] (in contrast to Cartmell), they do not allow equations on sorts. Lacking sort equations, we cannot reproduce the encodings in this paper in an identical way, but we can recover the essence by encoding the theory of GATs with sort equations as a GAT without sort equations.

2 Warming up: the theory of categories

We define the generalized algebraic theory of categories, \(\mathcal{T}_{\text{cat}} \text{ thy} \).

\[
\begin{align*}
\text{sort} & \quad \text{ob} & \quad \Delta : \text{ob} & \quad \Gamma : \text{ob} \\
\text{hom} & \quad \Delta \Rightarrow \Gamma & \quad \text{sort} & \quad \text{id} : \Gamma \Rightarrow \Gamma \\
\text{cmp} & \quad \gamma : \Delta \Rightarrow \Gamma & \quad \delta : \text{H} \Rightarrow \Delta & \quad \eta : \Xi \Rightarrow \text{H} \\
\text{eq} & \quad \gamma \circ \delta : \text{H} \Rightarrow \Gamma \\
\text{eq} & \quad \text{id} \circ \gamma = \gamma : \Delta \Rightarrow \Gamma \\
\text{eq} & \quad (\gamma \circ \delta) \circ \eta = \gamma \circ (\delta \circ \eta) : \Xi \Rightarrow \Gamma
\end{align*}
\]

The collection of models of \(\mathcal{T}_{\text{cat}} \) induces a \(t\text{-categorical} \) notion of “category”, which we will exploit in our formulation of algebraic cwfs.
3 Algebraic cwfs as a notion of type theory

In semantics, categories with families (cwfs) are a familiar doctrine for type theories [Dybjer, 1996, Fiore, 2012], naturally organized into a 2-category; but another perspective is given by the generalized algebraic theory of cwfs, whose 1-category of models and homomorphisms gives a more algebraic and strict notion of type theory, in which all structure is chosen globally and homomorphisms are arranged to preserve it on the nose. We define the theory of cwfs, T_{cwfs}, by extending T_{cat} with the following sorts, operations and axioms.

Types and elements

\[
\begin{align*}
\Delta, \Gamma : \text{ob} & \quad \gamma : \Delta \Rightarrow \Gamma & \quad A : \text{Ty}(\Gamma) & \quad \text{Ty/act} \\
\Delta, \Gamma : \text{ob} & \quad \gamma : \Delta \Rightarrow \Gamma & \quad A : \text{Ty}(\Gamma) & \quad A[\gamma] : \text{Ty}(\Delta) \\
\Delta, \Gamma : \text{ob} & \quad \gamma : \Delta \Rightarrow \Gamma & \quad A : \text{Ty}(\Gamma) & \quad A[\gamma \circ \delta] = A[\gamma][\delta] : \text{Ty}(H) \\
\Delta, \Gamma : \text{ob} & \quad \gamma : \Delta \Rightarrow \Gamma & \quad A : \text{Ty}(\Gamma) & \quad M : \text{El}(\Delta \vdash A) & \quad \text{El/act} \\
\Gamma : \text{ob} & \quad A : \text{Ty}(\Gamma) & \quad M : \text{El}(\Delta \vdash A) & \quad \text{Ty} & \quad M[\gamma] : \text{El}(\Delta \vdash A[\gamma]) \\
\Gamma : \text{ob} & \quad A : \text{Ty}(\Gamma) & \quad M : \text{El}(\Delta \vdash A) & \quad \text{El} & \quad M[\gamma] = M[\gamma][\delta] : \text{El}(\Delta \vdash A[\gamma])
\end{align*}
\]

Terminal context

\[
\begin{align*}
\text{emp} & : \text{ob} \\
\Gamma : \text{ob} & \quad ! : \Gamma \Rightarrow \cdot & \quad \Delta, \Gamma : \text{ob} & \quad \gamma : \Delta \Rightarrow \Gamma & \quad ! \circ \gamma = ! : \Gamma \Rightarrow \cdot & \quad \text{id} = ! : \cdot \Rightarrow \cdot
\end{align*}
\]

Context comprehension

\[
\begin{align*}
\Gamma : \text{ob} & \quad A : \text{Ty}(\Gamma) & \quad \text{ext} \\
\Delta, \Gamma : \text{ob} & \quad \gamma : \Delta \Rightarrow \Gamma & \quad N : \text{El}(\Delta \vdash A[\gamma]) & \quad \text{snoc} \\
\Delta, \Gamma : \text{ob} & \quad \gamma : \Delta \Rightarrow \Gamma & \quad A : \text{Ty}(\Gamma) & \quad M : \text{El}(\Delta \vdash A[\gamma]) & \quad \text{p}
\end{align*}
\]

\[
\begin{align*}
\Gamma : \text{ob} & \quad A : \text{Ty}(\Gamma) & \quad q : \text{El}(\Delta \vdash A[\gamma]) & \quad \text{q} \\
\Delta, \Gamma : \text{ob} & \quad \gamma : \Delta \Rightarrow \Gamma & \quad A : \text{Ty}(\Gamma) & \quad M : \text{El}(\Delta \vdash A[\gamma]) & \quad \text{p} \circ \gamma = \gamma : \Delta \Rightarrow \Gamma
\end{align*}
\]
\[
\Delta, \Gamma : \text{ob} \quad \gamma : \Delta \Rightarrow \Gamma \quad A : \text{Ty}(\Gamma) \quad M : \text{El}(\Delta \vdash A[\gamma])
\]
\[
\vdash q(\gamma, M) = M : \text{El}(\Delta \vdash A[\gamma])
\]
\[
H, \Delta, \Gamma : \text{ob} \quad \gamma : \Delta \Rightarrow \Gamma \quad \delta : H \Rightarrow \Delta \quad A : \text{Ty}(\Gamma) \quad M : \text{El}(\Delta \vdash A[\gamma])
\]
\[
\vdash \langle \gamma, M \rangle \circ \delta = \langle \gamma \circ \delta, M[\delta]\rangle : H \Rightarrow \Gamma.A
\]
\[
\Gamma : \text{ob} \quad A : \text{Ty}(\Gamma)
\]
\[
\vdash \text{id} = (p, q) : \Gamma.A \Rightarrow \Gamma.A
\]

The highly general results of Cartmell give rise to a category of models of \mathcal{T}_{cwf}, which has an initial object, inducing a functorial semantics in the sense of Lawvere [2004]. This initial object is the free Martin-Löf Type Theory without any connectives, and with a bit of labor, it can be seen to be isomorphic to the Lindenbaum-Tarski model generated by the raw syntax of pure MLTT without connectives.

By extending the theory \mathcal{T}_{cwf} with further structure, such as dependent function types, dependent pair types, universes, identity types, cubical interval, etc., nearly every conceivable extension of MLTT can be obtained, together with the appropriate category of models and homomorphisms. In this note, part of our intention is to show how to obtain some of these extensions which are commonly believed to fall outside the range of applicability of algebraic techniques.

We emphasize that establishing the equivalence between these initial models and Lindenbaum-Tarski model obtained by constraining and then quotienting the “raw syntax” is laborious in a technical sense, and may in the future be seen to be superflous: while some have fetishized the raw syntax of type theory to such a degree that the specific textual/linear rendering of name binding (and the attendant α-convention) has been elevated from an expedient notation to an actual object of study, we predict that the (abstractly presented) initial models for algebraic type theory will ultimately be taken as definitive in the study of type-theoretic syntax, as advocated in Castellan et al. [2017].

Traditional presentations of type theory using raw syntax and unstructured masses of inference rules took hold in the years before a workable account of dependently typed universal algebra had been obtained; rather than making a virtue out of ancient necessity, we hold that the most suitable notion of syntax arises abstractly in a purely algebraic way (much like how previous generations of type theorists had already eschewed the antique identification of syntax with punctuated sequences of symbols [Aczel, 1978]).

From the perspective of a user of type theory, we stress, there is no serious gap presented by the abstract syntax induced by the initial cwf; in fact, concrete computerized implementations of type theory tend to be much closer to the abstract syntax of

2Castellan et al. argue that it is circular to obtain the initial cwf from the generalized algebraic theory of cwfs, because "the notion of a generalised algebraic theory is itself based on dependent type theory". On the contrary, the notion of generalized algebraic theory is developed primitively by Cartmell [1978, 1986] in the ambient set theory without making use of any pre-existing type-theoretic machinery. Therefore, we maintain that no circularity ensues from the algebraic generation of the initial cwfs; a posteriori, the latent cwf structure involved in defining the notion of generalized algebraic theories can be observed, underscoring the unity between the metatheory of type theory and type theory itself.
the initial cwf than to the “raw” syntax which some have insisted is a primary object of study.

4 Algebraic type hierarchies

We begin by showing how to extend the theory of cwfs to include predicative hierarchies of type systems, giving an algebraic treatment to Coquand’s cumulative cwfs [Coquand, 2018]; then we will show how to add a hierarchy of universes à la Russell in a modular way. We will replace the Ty operator with something parameterized in a universe level α, giving the sort of types of level α.

Theory of type levels

$$
\begin{align*}
\alpha & : \text{lvl} & 0 & : \text{lvl} & \alpha + 1 & : \text{lvl} & \alpha, \beta & : \text{lvl} & \text{lt} \\
\text{lt/z} & & \alpha & < \alpha + 1 & \text{lt/s} & & \alpha, \beta & : \text{lvl} & p & : \alpha < \beta & \text{lt/lift} \\
\alpha & < \beta & & \alpha, \alpha', \beta : \text{lvl} & p & : \alpha < \alpha' & q & : \alpha' < \beta & \text{lt/cmp} \\
\end{align*}
$$

Types and elements

$$
\begin{align*}
\alpha & : \text{lvl} & \Gamma & : \text{ob} & \text{Ty} \\
\text{Ty}_{\alpha}(\Gamma) & : \text{sort} & \alpha & : \text{lvl} & \text{ob} & A & : \text{Ty}_{\alpha}(\Gamma) & \text{El} \\
\text{El}(\Gamma + A) & : \text{sort} \\
\end{align*}
$$

We will not recapitulate the remainder of the theory (e.g. context comprehension), noting that it proceeds by adding $\alpha : \text{lvl}$ to most telescopes. Instead, we focus on what must be added to achieve the algebraic version of cumulativity for types, and then (algebraically) cumulative universes à la Russell.

Remark 4.1 (Algebraic cumulativity). In this note, we consider an algebraic form of cumulativity which does not require any kind of subtyping. Instead, we have explicit shifts between universes which are ensured by algebraic laws to commute with all the connectives of type theory: to put it crudely, we require $\|A \times B = \|A \times \|B$.

4.1 Algebraic cumulativity and lifting

In order to achieve cumulativity, we add an operator which lifts a type of level α to level $\beta > \alpha$:
4.2 Type-theoretic connectives

Adding connectives (like dependent function types) to the algebraic theory of cumulative cwfs is simple, but we must take care to ensure that level shifting commutes through the connectives properly. In the case of dependent function types, we go beyond the usual only in adding enough axioms to make the shifts “irrelevant” (for instance, equating $\uparrow^\beta_\alpha A$ and $\Pi(\uparrow^\beta_\alpha A, \Pi^\beta_\alpha B)$).

PI formation

$$\alpha : \text{lv} \quad \Gamma : \text{ob} \quad A : \text{Ty}_\alpha(\Gamma) \quad B : \text{Ty}_\alpha(\Gamma.A) \quad \Pi$$

Pi lifting

$$\alpha, \beta : \text{lv} \quad \Gamma : \text{ob} \quad A : \text{Ty}_\alpha(\Gamma) \quad B : \text{Ty}_\alpha(\Gamma.A) \quad \Pi(\uparrow^\beta_\alpha A, B) = \Pi(\uparrow^\beta_\alpha A, \Pi^\beta_\alpha B) : \text{Ty}_\beta(\Gamma)$$

PI substitution

$$\alpha : \text{lv} \quad \Delta, \Gamma : \text{ob} \quad \gamma : \Delta \Rightarrow \Gamma \quad A : \text{Ty}_\alpha(\Gamma) \quad B : \text{Ty}_\alpha(\Gamma.A) \quad \Pi(\Delta, \Gamma)[\gamma] = \Pi(\Gamma, \Pi[A[\gamma], B[\gamma \circ p, q]] : \text{Ty}_\alpha(\Delta$$

Pi introduction

$$\alpha : \text{lv} \quad \Gamma : \text{ob} \quad A : \text{Ty}_\alpha(\Gamma) \quad B : \text{Ty}_\alpha(\Gamma.A) \quad M : \text{El}(\Gamma.A \vdash B) \quad \lambda(M) : \text{El}(\Gamma + \Pi(A, B))$$
we add generators for the universe types themselves.

\[\Delta, \Gamma : \text{ob} \quad A : \text{Ty}_\alpha(\Gamma) \quad B : \text{Ty}_\alpha(\Gamma, \Delta) \quad M : \text{El}(\Gamma, \Delta \Rightarrow \Pi(\Delta, B)) \]

\[\lambda(\beta, \Gamma, \Gamma \Rightarrow \Pi(\Delta, B), M) = \lambda(\alpha, \Gamma, A, B, M) : \text{El}(\Gamma, \Delta \Rightarrow \Pi(\Delta, B)) \]

Lambda Substitution

\[\alpha : \text{lvl} \quad \Delta, \Gamma : \text{ob} \quad \gamma : \Delta \Rightarrow \Gamma \quad A : \text{Ty}_\alpha(\Gamma) \quad B : \text{Ty}_\alpha(\Gamma, A) \quad M : \text{El}(\Gamma, \Delta \Rightarrow \Pi(\Delta, B)) \]

\[\lambda(M)[\gamma] = \lambda(M[\gamma \circ p, q]) : \text{El}(\Delta \Rightarrow \Pi(\gamma, B[\gamma \circ p, q])) \]

Pi Elimination

\[\alpha : \text{lvl} \quad \Gamma : \text{ob} \quad A : \text{Ty}_\alpha(\Gamma) \quad B : \text{Ty}_\alpha(\Gamma, A) \quad M : \text{El}(\Gamma, \Delta \Rightarrow \Pi(\Delta, B)) \quad N : \text{El}(\Gamma, \Delta) \]

\[\text{app}(M, N) : \text{El}(\Gamma \Rightarrow B[\langle \text{id}, N \rangle]) \]

App Lifting Naturality

\[p : \alpha < \beta \quad \Gamma : \text{ob} \quad A : \text{Ty}_\alpha(\Gamma) \quad B : \text{Ty}_\alpha(\Gamma, A) \quad M : \text{El}(\Gamma, \Delta \Rightarrow \Pi(\Delta, B)) \quad N : \text{El}(\Gamma, \Delta) \]

\[\text{app}(\beta, \Gamma, \Gamma \Rightarrow \Pi(\Delta, B), M, N) = \text{app}(\alpha, \Gamma, A, B, M, N) : \text{El}(\Gamma, \Delta \Rightarrow \Pi(\Delta, B[\langle \text{id}, N \rangle])) \]

App Substitution

\[\alpha : \text{lvl} \quad \Delta, \Gamma : \text{ob} \quad \gamma : \Delta \Rightarrow \Gamma \quad A : \text{Ty}_\alpha(\Gamma) \quad B : \text{Ty}_\alpha(\Gamma, A) \quad M : \text{El}(\Gamma, \Delta \Rightarrow \Pi(\Delta, B)) \quad N : \text{El}(\Gamma, \Delta) \]

\[\text{app}(M, N)[\gamma] = \text{app}(M[\gamma], N[\gamma]) : \text{El}(\Delta \Rightarrow \Pi(\gamma, N[\gamma])) \]

Pi Unicity

\[\alpha : \text{lvl} \quad \Gamma : \text{ob} \quad A : \text{Ty}_\alpha(\Gamma) \quad B : \text{Ty}_\alpha(\Gamma, A) \quad M : \text{El}(\Gamma, \Delta \Rightarrow \Pi(\Delta, B)) \quad N : \text{El}(\Gamma, \Delta) \]

\[M = \lambda(M[p, q]) : \text{El}(\Gamma, \Delta \Rightarrow \Pi(\Delta, B[\langle \text{id}, N \rangle])) \]

Pi Computation

\[\alpha : \text{lvl} \quad \Gamma : \text{ob} \quad A : \text{Ty}_\alpha(\Gamma) \quad B : \text{Ty}_\alpha(\Gamma, A) \quad M : \text{El}(\Gamma, \Delta \Rightarrow \Pi(\Delta, B)) \quad N : \text{El}(\Gamma, \Delta) \]

\[\text{app}(M, N) = M[\langle \text{id}, N \rangle] : \text{El}(\Gamma \Rightarrow B[\langle \text{id}, N \rangle]) \]

4.3 Universes à la Russell

Now we see how to add universes à la Russell to the theory of cumulative cwfs. First we add generators for the universe types themselves.

\[\alpha, \beta : \text{lvl} \quad p : \alpha < \beta \quad \Gamma : \text{ob} \]

\[U_\alpha : \text{Ty}_\beta(\Gamma) \]

\[U_\beta = U_\alpha : \text{Ty}_\beta(\Gamma) \]

\[\alpha, \beta : \text{lvl} \quad p : \alpha < \beta \quad q : \alpha < \beta \quad \Gamma : \text{ob} \]

\[\Gamma \Rightarrow \text{ob} \]

\[U_\alpha[\gamma] = U_\alpha : \text{Ty}_\beta(\Gamma) \]

To characterize the elements of the universes, it suffices to impose a sort equation.
between the \(\text{El}(\Gamma \vdash U_\alpha) \) and \(\text{Ty}_\alpha(\Gamma) \):

\[
\begin{array}{c}
\text{UNIVERSE ELEMENTS} \\
\alpha, \beta : \text{lv} \quad p : \alpha < \beta \quad \Gamma : \text{ob} \\
\text{El}(\Gamma \vdash U(\alpha, \beta, p, \Gamma)) = \text{Ty}_\alpha(\Gamma) \text{ sort}
\end{array}
\]

4.4 A base type and constants

We extend our theory with a base type and two constants; this will be useful for illustrating a non-trivial metatheorem using algebraic methods.

FORMATION	SUBSTITUTION 1	
\(\alpha : \text{lv} \quad \Gamma : \text{ob} \)	\(\alpha : \text{lv} \quad \Delta, \Gamma : \text{ob} \)	
\(\text{color} : \text{Ty}_\alpha(\Gamma) \)	\(\gamma : \Delta \Rightarrow \Gamma \)	
OBS LIFTING	OBS SUBSTITUTION	
\(\alpha, \beta : \text{lv} \quad p : \alpha < \beta \quad \Gamma : \text{ob} \)	\(\alpha : \text{lv} \quad \Delta, \Gamma : \text{ob} \)	
	\(\gamma : \Delta \Rightarrow \Gamma \)	
INTRODUCTION 1	SUBSTITUTION 2	
\(\alpha : \text{lv} \quad \Gamma : \text{ob} \)	\(\alpha : \text{lv} \quad \Delta, \Gamma : \text{ob} \)	
\(\text{red} : \text{El}(\Gamma \vdash \text{color}) \)	\(\gamma : \Delta \Rightarrow \Gamma \)	
INTRODUCTION 2	SUBSTITUTION 1	
\(\alpha : \text{lv} \quad \Gamma : \text{ob} \)	\(\alpha : \text{lv} \quad \Delta, \Gamma : \text{ob} \)	
\(\text{green} : \text{El}(\Gamma \vdash \text{color}) \)	\(\gamma : \Delta \Rightarrow \Gamma \)	

We do not add any elimination rules for the \text{color} type: its role is only to serve as an observable with which to phrase a canonicity result.

5 Canonicity for Martin-Löf Type Theory

One of the major benefits of the algebraic approach to defining type theories is that powerful semantic tools are immediately available for developing syntactic metatheory. As an example, we prove canonicity for Martin-Löf Type Theory with dependent function types and a hierarchy of universes à la Russell, following Coquand [2018], Shulman [2015] and Martin-Löf [1975]. We will write \(T^{\text{H}}_{\text{cwf}} \) for the theory defined in the previous sections.

5.1 The computability construction

Starting from any model \(C : T^{\text{H}}_{\text{cwf}} \Rightarrow \text{Alg} \), we will show how to construct a new model \(\overline{C} : T^{\text{H}}_{\text{cwf}} \Rightarrow \text{Alg} \) which glues each context from \(C \) together with a logical family over its closed elements, following Coquand [2018].\(^3\) The logical families construction is a

\(^3\)We prefer the term "logical family" to the more common term "proof-relevant logical predicate".
modern and thoroughly constructive version of the method of computability, in which predicates and relations are eschewed in favor of proof-relevant families.

A consequence of this streamlined approach is that there is no need to consider raw terms and partial equivalence relations, something which had previously been essential for developing the syntactic metatheory of dependent type theory with universes.

Remark 5.1 (Categorical digression). While it is not our intention here to explain categorical gluing for dependent type theory (see Coquand [2018] and Shulman [2015]), we briefly observe that what we will unleash in type-theoretic language below can be understood more abstractly as an instance of the gluing construction, in which the fundamental fibration is pulled back along the global sections functor of the category of contexts:

\[
\begin{array}{ccc}
\mathcal{C} & \xrightarrow{\text{Set}} & \mathcal{C} \\
\downarrow & & \downarrow \pi_{\text{cod}} \\
\mathcal{C}(\cdot, -) & \xrightarrow{\text{Set}} & \text{Set}
\end{array}
\]

The remainder of the work, then, is to observe that the cwf structure lifts from \(\mathcal{C}\) to \(\overline{\mathcal{C}}\). All aspects of the interpretation are forced except for the interpretation of the base type and the universe, which we are free to choose; in fact, it is the choice of \(\overline{\mathcal{C}}\)-interpretation of the base type in which the essence of the proof of canonicity lies.

Assumption 5.2 (Set-theoretic universes). As a simplifying move, we assume a transfinite hierarchy of Grothendieck universes \(V_\alpha\) in the ambient set theory for \(\alpha \in \{0, 1, \ldots, \omega\}\). The universe \(V_\omega\) is only a convenience, and could be eliminated using a more verbose schematic or fibered construction.

To exhibit \(\overline{\mathcal{C}}\) as a model, we must determine families of sets \(\llbracket \theta \rrbracket_{\overline{\mathcal{C}}}\) to interpret each sort symbol \(\theta : [\Psi \vdash \text{sort}] \in \Pi_{\text{cwf}}\); and likewise for operation symbols. We begin by imposing some notation:

1. We will write \(\llbracket \Gamma \rrbracket\) for \(\llbracket \text{hom} \rrbracket_{\mathcal{C}}(\cdot, \cdot)_\mathcal{C}, \Gamma)\) when \(\Gamma \in \llbracket \text{ob} \rrbracket_{\mathcal{C}}\).
2. We will write \(\llbracket A \rrbracket\) for \(\llbracket \text{El} \rrbracket_{\mathcal{C}}(\alpha, \cdot, \cdot)_\mathcal{C}, A)\) when \(A \in \llbracket \text{Ty} \rrbracket_{\mathcal{C}}(\alpha, \cdot, \cdot)\).
3. When it is unambiguous, we will use the notation of the algebraic theory itself to refer to objects in the models \(\mathcal{C}\) and \(\overline{\mathcal{C}}\); for instance, \(\Delta \Rightarrow \Gamma\) rather than \(\llbracket \text{hom} \rrbracket_{\mathcal{C}}(\Delta, \cdot, \cdot)\), and \(\overline{\Delta} \Rightarrow \overline{\Gamma}\) rather than \(\llbracket \text{hom} \rrbracket_{\overline{\mathcal{C}}} (\Delta, \overline{\cdot})\). To avoid ambiguity, we will write the \(\overline{\mathcal{C}}\)-interpretations of unary sorts and operations with an overline, e.g. \(\overline{\text{ob}}\) for \(\llbracket \text{ob} \rrbracket_{\overline{\mathcal{C}}}\).

As a notational convenience, we will generally write \(\overline{X} \equiv (X, X^*)\) for something in the computability model, the gluing of \(X\) from \(\mathcal{C}\) with its “realizer” \(X^*\).
Contexts and substitutions We are now ready to define the glued interpretation of the contexts and substitutions.

\[\overline{\text{ob}} = \bigsqcup_{\Gamma \in \text{ob}} (|\Gamma| \to \mathcal{V}_{\alpha}) \]

(objects)

We will write \(\overline{\Gamma} \) for \((\Gamma, \Gamma^*) \in \overline{\text{ob}} \). Substitutions are interpreted as \(C \)-substitutions together with realizers of the logical family.

\[\overline{\Delta} \Rightarrow \overline{\Gamma} = \prod_{\gamma \in \Delta} \prod_{\delta \in |\Delta|} \prod_{\delta^* \in \Delta^*} \Gamma^*(y \circ \delta) \]

(substitutions)

When interpreting operations \(\overline{\varphi} \) whose sort-interpretations in \(\overline{C} \) glue a \(C \)-construct together with a realizer, we follow convention of merely exhibiting the realizer \(\overline{\varphi}^* \) rather than \((\overline{\varphi}, \overline{\varphi}^*) \).

\[\text{id}^* y y^* = y^* \]

(identity substitution)

\[(\overline{\varphi} \circ \overline{\delta})^* \eta \theta^* = y^* (\delta \circ \eta)(\delta^* \theta^*) \]

(substitution composition)

Levels First, observe that we can embed any natural number \(\alpha \) as a term of sort \(\text{lvl} \) in \(\text{Val} \); write \(\lfloor \alpha \rfloor \) for its interpretation in \(C \). Then, we interpret \(\text{lvl} \) in the computability model as a \(C \)-level together with a compatible natural number (its “realizer”):

\[\overline{\text{lvl}} = \bigsqcup_{\alpha \in \text{lvl}} \{ \alpha \in \mathbb{N} \mid \lfloor \alpha \rfloor = \alpha \} \]

\(\overline{z} = (\mathbf{z}, 0) \)

\(s(\overline{z}) = (s(\alpha), \alpha^* + 1) \)

Writing \(\overline{\alpha} \) for \((\alpha, \alpha^*) \in \overline{\text{lvl}} \), we interpret the order on levels in the obvious way:

\[\left(\overline{\alpha} < \overline{\beta} \right) = \{ p : \alpha < \beta \mid \alpha^* < \beta^* \} \]

The interpretation is always subsingleton, so it validates the proof irrelevance axiom that we imposed on \(\text{lvl} \).

Types and elements A type is interpreted as a \(C \)-type together with a logical family of the appropriate size defined over its closed instances:

\[\overline{\text{Ty}}(\overline{\Gamma}) = \bigsqcup_{A \in \text{Ty}_\alpha(\overline{\Gamma})} \prod_{\gamma \in |\Gamma|} \prod_{\gamma^* \in \Gamma^*} (|A\gamma| \to \mathcal{V}_{\alpha^*}) \]

(types)

\[\overline{\text{El}}(\overline{\Gamma} \vdash A) = \bigsqcup_{M \in \text{El}(\Gamma; A)} \prod_{\gamma \in |\Gamma|} \prod_{\gamma^* \in \Gamma^*} A^* y \gamma^* M \gamma \]

(elements)

Terminal context

\[\cdot^* \eta = \{ \ast \} \]

(terminal context)

\[!^* \eta \theta^* = \ast \]

(universal substitution)
Context comprehension

\[\overline{\Gamma} \cdot A \ni \eta = \bigsqcup_{y \in \Gamma(p \circ \eta)} A^*(p \circ \eta)y^*(q[\eta]) \]
(context extension)

\[\langle \overline{\Gamma}, \overline{N} \rangle \circ \delta^* = (\gamma^* \delta^*, N^* \delta^*) \]
(substitution extension)

\[\overline{p}(y^*, N^*) = y^* \]
(projection)

\[\overline{q}(y^*, N^*) = N^* \]
:variables

Type lifting The following interpretation of type lifting is well-defined, because we have imposed the axiom that the lifting of a type has the same elements as the type itself, and because the set-theoretic universe hierarchy \(V_\alpha \) is cumulative.

\[\left(\overline{\mu^A} \right)^{YY}M = A^*YY^*M \]
(type lifting)

Dependent function types

\[\Pi(\overline{A}, \overline{B})^{YY^*M} = \prod_{N \in [A]} \prod_{N^* \in A^*YY^*N} B^*(y, N)(y^*, N^*)(\text{app}(M, N)) \]
(formation)

\[\lambda(\overline{A})^{YY^*NN^*} = M^*(y, N)(y^*, N^*) \]
(introduction)

\[\text{app}(\overline{M}, \overline{N})^{YY^*} = M^*YY^*NN^* \]
(elimination)

Universes à la Russell A realizer for an element of the \(\overline{\alpha} \)th universe is an \(\alpha^* \)-small logical family over its closed elements:

\[U_{\alphaYY}^*A = |A| \to V_{\alpha^*} \]
(formation)

Fixing \(\overline{\alpha}, \overline{\beta} \in \overline{\text{lv}} \) with \(\overline{\beta} : \overline{\alpha} < \overline{\beta} \) and \(\overline{\Gamma} \in \overline{\text{ob}} \), we need to see that \(\text{El}(\overline{\Gamma} \vdash U_{\overline{\alpha}}) = \text{Ty}_{\overline{\alpha^*}}(\overline{\Gamma}) \). Calculate:

\[\text{El}(\overline{\Gamma} \vdash U_{\overline{\alpha}}) \]
(by def.)

\[= \prod_{A \in \text{El}(\overline{\alpha} \cdot U_{\overline{\alpha}})} \prod_{y \in [\overline{\Gamma}]} \prod_{y^* \in YY^*A^*}\text{U}_{\alphaYY}^*A[y] \]
(C has universes)

\[= \prod_{A \in \text{Ty}_{\overline{\alpha^*}}(\overline{\Gamma})} \prod_{y \in [\overline{\Gamma}]} \prod_{y^* \in YY^*A^*\to V_{\alpha^*}}(A[y] \to V_{\alpha^*}) \]
(by def.)

\[= \text{Ty}_{\overline{\alpha^*}}(\overline{\Gamma}) \]
(by def.)

Base type Finally, we give the interpretation of the base type.

\[\text{color}^*YY^*M = \{ \star \mid M = \text{red} \} + \{ \star \mid M = \text{green} \} \]

\[\text{red}^*YY^* = \text{inl}(\star) \]

\[\text{green}^*YY^* = \text{inr}(\star) \]

Projection from the computability model There is an evident projection \(\pi : \overline{C} \to C \) which merely forgets the realizers; it is easy to see that it is a homomorphism of \(\overline{\text{cwf}} \)-algebras.
5.2 The canonicity theorem

In this section, we let C be the initial model for Π_{\cwf}^Π.

Theorem 5.3 (Canonicity). If $\cdot \vdash_{\Pi_{\cwf}^\Pi} M : \El(\cdot \vdash \text{color})$, then either $M = \text{red}$ or $M = \text{green}$.

Proof. Because \overline{C} is a model of Π_{\cwf}^Π, we have some (N, N^*) in the interpretation of M such that $\pi M = N$ and $N^*(\cdot)(\star)$ is an element of the following set:

$$\{ \star \mid N = \text{red} \} + \{ \star \mid N = \text{green} \}$$

Therefore, it suffices to observe that $M = N$; this is guaranteed by the universal property of the initial Π_{\cwf}^Π-algebra C and the fact that π is a homomorphism of Π_{\cwf}^Π-algebras.

Acknowledgements

Thanks to Carlo Angiuli, John Cartmell, David Thrane Christiansen, Thierry Coquand, Daniel Gratzer, Robert Harper, Ambrus Kaposi, Darin Morrison, Anders M"ortberg, Michael Shulman, and Thomas Streicher for helpful conversations about algebraic type theory, logical frameworks and the method of computability. We also thank Paul Taylor for his \texttt{diagrams} package, which we have used to typeset the commutative diagrams in this note. Special thanks to David Thrane Christiansen, Daniel Gratzer and Jacques Carette for comments on an earlier version of this note.

References

Andreas Abel, Thierry Coquand, and Peter Dybjer. On the algebraic foundation of proof assistants for intuitionistic type theory. In Jacques Garrigue and Manuel V. Hermenegildo, editors, *Functional and Logic Programming*, pages 3–13. Springer Berlin Heidelberg, 2008. ISBN 978-3-540-78969-7.

Peter Aczel. A general Church-Rosser theorem, 1978.

Alexandre Buisse and Peter Dybjer. Towards formalizing categorical models of type theory in type theory. *Electronic Notes in Theoretical Computer Science*, 196:137–151, 2008.

John Cartmell. Generalised algebraic theories and contextual categories, January 1978.

John Cartmell. Generalised algebraic theories and contextual categories. *Annals of Pure and Applied Logic*, 32:209–243, 1986. ISSN 0168-0072.

Simon Castellan, Pierre Clairambault, and Peter Dybjer. Undecidability of equality in the free locally cartesian closed category (extended version). *Logical Methods in Computer Science*, 13(4), 2017.
Thierry Coquand. Canonicity and normalization for Dependent Type Theory, October 2018. URL https://arxiv.org/abs/1810.09367.

Peter Dybjer. Internal type theory. In Stefano Berardi and Mario Coppo, editors, Types for Proofs and Programs: International Workshop, TYPES ’95 Torino, Italy, June 5–8, 1995 Selected Papers, pages 120–134. Springer Berlin Heidelberg, 1996. ISBN 978-3-540-70722-6.

Marcelo Fiore. Semantic analysis of normalisation by evaluation for typed lambda calculus. In Proceedings of the 4th ACM SIGPLAN International Conference on Principles and Practice of Declarative Programming, PPDP ’02, pages 26–37. ACM, 2002. ISBN 1-58113-528-9. doi: 10.1145/571157.571161. URL http://doi.acm.org/10.1145/571157.571161.

Marcelo Fiore. Discrete generalised polynomial functors, 2012. URL https://www.cl.cam.ac.uk/~mpf23/talks/ICALP2012.pdf. Slides from talk given at ICALP 2012.

Marcelo Fiore and Ola Mahmoud. Second-order algebraic theories. In Petr Hliněný and Antonín Kučera, editors, Mathematical Foundations of Computer Science 2010: 35th International Symposium, MFCS 2010, Brno, Czech Republic, August 23-27, 2010. Proceedings, pages 368–380. Springer Berlin Heidelberg, 2010. ISBN 978-3-642-15155-2.

Marcelo Fiore, Gordon Plotkin, and Daniele Turi. Abstract syntax and variable binding. In Proceedings of the 14th Symposium on Logic in Computer Science, pages 193–202, 1999.

Robert Harper. Notes on logical frameworks, November 2012a. URL http://www.cs.cmu.edu/~rwh/papers/lfias/lf.pdf. Lecture on logical frameworks given at the IAS.

Robert Harper. Practical Foundations for Programming Languages. Cambridge University Press, first edition, 2012b.

Robert Harper and Daniel R. Licata. Mechanizing metatheory in a logical framework. Journal of Functional Programming, 17(4-5):613–673, July 2007. ISSN 0956-7968. doi: 10.1017/S0956796807006430. URL http://dx.doi.org/10.1017/S0956796807006430.

Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. J. ACM, 40(1):143–184, January 1993. ISSN 0004-5411. doi: 10.1145/138027.138060. URL http://doi.acm.org/10.1145/138027.138060.

Martin Hofmann. Syntax and semantics of dependent types. In Semantics and Logics of Computation, pages 79–130. Cambridge University Press, 1997.

Martin Hyland and John Power. The category theoretic understanding of universal algebra: Lawvere theories and monads. Electronic Notes in Theoretical Computer Science, 172:437–458, 2007. ISSN 1571-0661. doi: https://doi.org/10.1016/j.entcs.2007.02.019. Computation, Meaning, and Logic: Articles dedicated to Gordon Plotkin.
Bart Jacobs. *Categorical Logic and Type Theory*. Number 141 in Studies in Logic and the Foundations of Mathematics. North Holland, 1999.

Ambrus Kaposi, András Kovács, and Thorsten Altenkirch. Constructing quotient inductive-inductive types. *Proc. ACM Program. Lang.*, 3(POPL):2:1–2:24, January 2019. ISSN 2475-1421. doi: 10.1145/3290315. URL http://doi.acm.org/10.1145/3290315.

William F. Lawvere. Functorial Semantics of Algebraic Theories, 2004. URL http://tac.mta.ca/tac/reprints/articles/5/tr5.pdf.

Daniel K. Lee, Karl Crary, and Robert Harper. Towards a mechanized metatheory of standard ml. In *Proceedings of the 34th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages*, POPL ’07, pages 173–184. ACM, 2007. ISBN 1-59593-575-4. doi: 10.1145/1190216.1190245. URL http://doi.acm.org/10.1145/1190216.1190245.

Per Martin-Löf. About models for intuitionistic type theories and the notion of definitional equality. In Stig Kanger, editor, *Proceedings of the Third Scandinavian Logic Symposium*, volume 82 of *Studies in Logic and the Foundations of Mathematics*, pages 81–109. Elsevier, 1975.

Per Martin-Löf. An intuitionistic theory of types: Predicative part. In H. E. Rose and J. C. Shepherdson, editors, *Logic Colloquium ’73*, volume 80 of *Studies in Logic and the Foundations of Mathematics*, pages 73–118. Elsevier, 1975. doi: https://doi.org/10.1016/S0049-237X(08)71945-1. URL http://www.sciencedirect.com/science/article/pii/S0049237X08719451.

Per Martin-Löf. *Intuitionistic Type Theory*, volume 1 of *Studies in Proof Theory*. Bibliopolis, 1984. ISBN 88-7088-105-9.

Per Martin-Löf. Amendment to Intuitionistic Type Theory, 1986. Notes from a lecture given in Göteborg.

Per Martin-Löf. The Logic of Judgements, February 1987. Workshop on General Logic, Laboratory for Foundations of Computer Science.

Per Martin-Löf. Analytic and synthetic judgements in type theory. In Paolo Parrini, editor, *Kant and Contemporary Epistemology*, pages 87–99. Springer Netherlands, 1994. ISBN 978-94-011-0834-8.

Per Martin-Löf. On the meanings of the logical constants and the justifications of the logical laws. *Nordic Journal of Philosophical Logic*, 1(1):11–60, 1996.

Bengt Nordström, Kent Peterson, and Jan M. Smith. *Programming in Martin-Löf’s Type Theory*, volume 7 of *International Series of Monographs on Computer Science*. Oxford University Press, 1990.

Ulf Norell. Dependently typed programming in agda. In *Proceedings of the 4th International Workshop on Types in Language Design and Implementation*, TLDI ’09, pages 1–2. ACM, 2009. ISBN 978-1-60558-420-1.
E. Palmgren and S. J. Vickers. Partial Horn logic and cartesian categories. *Annals of Pure and Applied Logic*, 145(3):314–353, 2007. ISSN 0168-0072. doi: https://doi.org/10.1016/j.apal.2006.10.001. URL http://www.sciencedirect.com/science/article/pii/S0168007206001229.

Frank Pfenning and Carsten Schürmann. System description: Twelf — a meta-logical framework for deductive systems. In *Automated Deduction — CADE-16*, pages 202–206. Springer Berlin Heidelberg, 1999. ISBN 978-3-540-48660-2.

Peter Schroeder-Heister. Structural frameworks with higher-level rules: Philosophical investigations on the foundations of formal reasoning, 1987. Habilitation thesis.

Michael Shulman. Scones, logical relations, and parametricity. https://golem.ph.utexas.edu/category/2013/04/scones_logical_relations_and_p.html, 2006.

Michael Shulman. Univalence for inverse diagrams and homotopy canonicity. *Mathematical Structures in Computer Science*, 25(5):1203–1277, 2015. doi: 10.1017/S0960129514000565.

Thomas Streicher. *Semantics of Type Theory: Correctness, Completeness, and Independence Results*. Birkhauser Boston Inc., 1991. ISBN 0-8176-3594-7.

Thomas Streicher. Categorical intuitions underlying semantic normalisation proofs. In O. Danvy and P. Dybjer, editors, *Preliminary Proceedings of the APPSEM Workshop on Normalisation by Evaluation*. Department of Computer Science, Aarhus University, 1998.

Paul Taylor. *Practical Foundations of Mathematics*. Cambridge studies in advanced mathematics. Cambridge University Press, 1999. ISBN 0-521-63107-6.

Vladimir Voevodsky. A test type system, January 2013. URL http://www.math.ias.edu/Voevodsky/files/files-annotated/Dropbox/Unfinished_papers/Dynamic_logic/Stage_current/2013_03_05_TTS.pdf.