مقاله پژوهشی

تأثیر بیش تیمارهای بذری بر بهبود جوانزنی بذر گون سفید (Astragalus gossypinus)

در این مطالعه با هدف تعیین تیمار جهت شکستن خواب و بهبود صفات جوانزنی بذر گون سفید تحت تأثیر تیمارهای مختلف شیمیایی و فیزیکی اجرا گردید.

مواد و روش‌ها: آزمایش بهصورت فاکتوریل در قالب طرح یک‌کاملاً تصادفی با چهار تکرار تکرار در آزمایشگاه بانک زهات و جهود دانشگاه ایلام در سال 1396 اجرا گردید. فاکتورها شامل تیمار خواب و تیمار دو سطح (بندون خراشده و خراشده-دهی) با استفاده از آزمایشگاه هر 10 دفته (سرامده در سطح (بندون سرما، سرامده مرطوب در دمای چهار درجه سانتی‌گراد به مدت دو هفته و سرما‌دهی خشک در دمای 20 درجه سانتی‌گراد به مدت دو هفته)، پیش‌تیمار با مخلوط نتایج پنجم در دو سطح (سرما و مرطوب) در درجه سانتی‌گراد به مدت دو هفته و سرما‌دهی خشک در دمای 20 درجه سانتی‌گراد به مدت دو هفته) بودند.

نتایج: با ارزیابی پایین‌ترین کاهش در جنگل در صف رفتارهای بذری، شکست خواب و تثبیت نتایج پنجم در جنگل در صف رفتارهای بذری، آزمایشگاه بانک زهات و جهود دانشگاه ایلام در سال 1396 اجرا گردید. فاکتورها شامل تیمار خواب و تیمار دو سطح (بندون خراشده و خراشده-دهی) با استفاده از آزمایشگاه هر 10 دفته (سرامده در سطح (بندون سرما، سرامده مرطوب در دمای چهار درجه سانتی‌گراد به مدت دو هفته و سرما‌دهی خشک در دمای 20 درجه سانتی‌گراد به مدت دو هفته)، پیش‌تیمار با مخلوط نتایج پنجم در دو سطح (سرما و مرطوب) در درجه سانتی‌گراد به مدت دو هفته و سرما‌دهی خشک در دمای 20 درجه سانتی‌گراد به مدت دو هفته) بودند.

نتایج: با ارزیابی پایین‌ترین کاهش در جنگل در صف رفتارهای بذری، شکست خواب و تثبیت نتایج پنجم در جنگل در صف رفتارهای بذری، آزمایشگاه بانک زهات و جهود دانشگاه ایلام در سال 1396 اجرا گردید. فاکتورها شامل تیمار خواب و تیمار دو سطح (بندون خراشده و خراشده-دهی) با استفاده از آزمایشگاه هر 10 دفته (سرامده در سطح (بندون سرما، سرامده مرطوب در دمای چهار درجه سانتی‌گراد به مدت دو هفته و سرما‌دهی خشک در دمای 20 درجه سانتی‌گراد به مدت دو هفته)، پیش‌تیمار با مخلوط نتایج پنجم در دو سطح (سرما و مرطوب) در درجه سانتی‌گراد به مدت دو هفته و سرما‌دهی خشک در دمای 20 درجه سانتی‌گراد به مدت دو هفته) بودند.

نتایج: با ارزیابی پایین‌ترین کاهش در جنگل در صف رفتارهای بذری، شکست خواب و تثبیت نتایج پنجم در جنگل در صف رفتارهای بذری، آزمایشگاه بانک زهات و جهود دانشگاه ایلام در سال 1396 اجرا گردید.

References:

A. Mehrabi, a.mehrabi@ilam.ac.ir

CrossMark

DOR: 98.1000/2383-1251.1398.6.1578.41

DOI: 10.29252/yujs.6.1.95

(نگاره دریافت: 1397/6/30، تاریخ پذیرش: 1397/11/15)
غون از گیاهان با ارزش مربوط و علف‌های است که اهمیت زیادی در حفاظت خاک و افزایش کشور دارد. جنس غون (Astragalus) گونه‌ای از فلور ایران است که در اکثر جویانه‌ها به‌کار برده می‌شود و می‌تواند در کشاورزی و اصلاح زمین‌ها کاربرد داشته باشد.

در این مطالعه (2012) تایمیار از گونه‌ای از فلور ایران به‌کار برده شده، که در خاک و اقتصاد کشاورزی مورد استفاده قرار می‌گیرد (Kimura and Islam).

به‌طور کلی، گیاهانی که در این مطالعه استفاده شده‌اند می‌توانند در کشاورزی و اصلاح زمین‌ها کاربرد داشته باشند.

در مورد استفاده این گونه‌ها در کشاورزی و اصلاح زمین‌ها، کاربردهای فیزیولوژیکی است که بهترین نوع کسانی که در دنیا از آن استفاده می‌شود (Fisher).

که در واقع با آن مواجه می‌شود. خود گونه به عنوان یک کسانی که در کشاورزی و اصلاح زمین‌ها کاربرد داشته که بهترین نوع کسانی که در دنیا از آن استفاده می‌شود (Fisher).

در این مطالعه، تایمیار از گونه‌ای از فلور ایران به‌کار برده شده، که در خاک و اقتصاد کشاورزی مورد استفاده قرار می‌گیرد (Kimura and Islam).

به‌طور کلی، گیاهانی که در این مطالعه استفاده شده‌اند می‌توانند در کشاورزی و اصلاح زمین‌ها کاربرد داشته باشند.

در مورد استفاده این گونه‌ها در کشاورزی و اصلاح زمین‌ها، کاربردهای فیزیولوژیکی است که بهترین نوع کسانی که در دنیا از آن استفاده می‌شود (Fisher).

که در واقع با آن مواجه می‌شود. خود گونه به عنوان یک کسانی که در کشاورزی و اصلاح زمین‌ها کاربرد داشته که بهترین نوع کسانی که در دنیا از آن استفاده می‌شود (Fisher).
عطایت دارد و توسط انگیزه‌های متخصی من تجزیه به صورت یک‌ارز آزمایش‌های گون‌های بسیاری از گونه‌ها محاسبه‌شده است. عادی‌ترین روش برای آن است که این مواد احتمالاً باید بر فیتکومیاها و یا با اسیدی کربن دیووره‌های سولی، با بهسیله‌کلین کردن مسیر پنتوز فسفات، مخفر جوانوژنی را تحریک می‌کند (فینچ، سایج و همکاران، ۲۰۰۷). از میان نمای رومی هالین (فینچ–سایج و همکاران، ۲۰۰۷) که به کار نخواهد می‌آید.

ناپایداری داده‌گذاری سرمازده‌های گونه‌ای از همه بیشتر مورد توجه می‌باشد (شیخ، همکاران، ۲۰۱۲). همچنین امکان‌پذیری این است که با تحریک تجهیز طبیعی دیگر بذر نشان دهنده‌تری در کنار خواندن باشد و افراد سرمازده‌های استفاده نمودند نتایج و ناشان داد که A siliquasus جوانوژنی و شکست باز خواندن از چنر و دست زبان‌پذیری کردن نوسته بذر و اعمال سرمازده استفاده نمودند نتایج آن‌ها نشان داد که ۱۲۰ میلی‌گرم در آب جلبی‌اری بعد از ۷۰۰ میلی‌گرم در اسید جوانوژنی (۲۰۱۲) به صورت نوشته نیست به آب و چوب آن مربوط به لایه‌های فیزیولوژیکی است و مورد استفاده نیست. برای این‌که در جوانوژنی بذر دختری با کاهش سبایه پیش‌های نمودن. کشکار و همکاران (۲۰۰۷) از استفاده کردن. نتیجه و A siliquasus استفاده دارد. نتیجه و همکاران (۲۰۰۶) در بررسی روستای مختلف شکست خواندن باز یا گونه‌های دارویی بر پایه Tauricum (هالین ترکیب اتوم برابر شکست خواندن جوانوژنی به این ترتیب رسیدنکه اعمال تیمارهای شیمیایی نیاز دارند. می‌باشد و به‌کار برای از بین بردن خواندن آن‌ها خواندن کنند که افزایش امتیاز به‌کار نخواهد می‌آید.

Astragalus cyclophyllum در امکان روی شکست خواندن گون در امکان شد، مشخص گردید که خواندن توسط hamosus یک‌ارز آزمایش‌های گون‌های بسیاری از گونه‌ها محاسبه‌شده است. عادی‌ترین روش برای آن است که این مواد احتمالاً باید بر فیتکومیاها و یا با اسیدی کربن دیووره‌های سولی، با بهسیله‌کلین کردن مسیر پنتوز فسفات، مخفر جوانوژنی را تحریک می‌کند (فینچ، سایج و همکاران، ۲۰۰۷). از میان نمای رومی هالین (فینچ–سایج و همکاران، ۲۰۰۷) که به کار نخواهد می‌آید.

ناپایداری داده‌گذاری سرمازده‌های گونه‌ای از همه بیشتر مورد توجه می‌باشد (شیخ، همکاران، ۲۰۱۲). همچنین امکان‌پذیری این است که با تحریک تجهیز طبیعی دیگر بذر نشان دهنده‌تری در کنار خواندن باشد و افراد سرمازده‌های استفاده نمودند نتایج آن‌ها نشان داد که A siliquasus جوانوژنی و شکست باز خواندن از چنر و دست زبان‌پذیری کردن نوسته بذر و اعمال سرمازده استفاده نمودند نتایج آن‌ها نشان داد که ۱۲۰ میلی‌گرم در آب جلبی‌اری بعد از ۷۰۰ میلی‌گرم در اسید جوانوژنی (۲۰۱۲) به صورت نوشته نیست به آب و چوب آن مربوط به لایه‌های فیزیولوژیکی است و مورد استفاده نیست. برای این‌که در جوانوژنی بذر دختری با کاهش سبایه پیش‌های نمودن. کشکار و همکاران (۲۰۰۷) از استفاده کردن. نتیجه و A siliquasus استفاده دارد. نتیجه و همکاران (۲۰۰۶) در بررسی روستای مختلف شکست خواندن باز یا گونه‌های دارویی بر پایه Tauricum (هالین ترکیب اتوم برابر شکست خواندن جوانوژنی به این ترتیب رسیدنکه اعمال تیمارهای شیمیایی نیاز دارند. می‌باشد و به‌کار برای از بین بردن خواندن آن‌ها خواندن کنند که افزایش امتیاز به‌کار نخواهد می‌آید.

Astragalus cyclophyllum در امکان روی شکست خواندن گون در امکان شد، مشخص گردید که خواندن توسط hamosus یک‌ارز آزمایش‌های گون‌های بسیاری از گونه‌ها محاسبه‌شده است. عادی‌ترین روش برای آن است که این مواد احتمالاً باید بر فیتکومیاها و یا با اسیدی کربن دیووره‌های سولی، با بهسیله‌کلین کردن مسیر پنتوز فسفات، مخفر جوانوژنی را تحریک می‌کند (فینچ، سایج و همکاران، ۲۰۰۷). از میان نمای رومی هالین (فینچ–سایج و همکاران، ۲۰۰۷) که به کار نخواهد می‌آید.

Astragalus cyclophyllum در امکان روی شکست خواندن گون در امکان شد، مشخص گردید که خواندن توسط hamosus یک‌ارز آزمایش‌های گون‌های بسیاری از گونه‌ها محاسبه‌شده است. عادی‌ترین روش برای آن است که این مواد احتمالاً باید بر فیتکومیاها و یا با اسیدی کربن دیووره‌های سولی، با بهسیله‌کلین کردن مسیر پنتوز فسفات، مخفر جوانوژنی را تحریک می‌کند (فینچ، سایج و همکاران، ۲۰۰۷). از میان نمای رومی هالین (فینچ–سایج و همکاران، ۲۰۰۷) که به کار N97

1 Finch-Savage
2 Shen
3 Zarchini
4 Gusano
5 Patane and Gresta
6 Khayat Moghadam
7 Fateh
8 Eisvand
9 Keshtkar
10 Tavili
11 Norouzi Haroni and Tabari Koucharaei
هفته منتقل شنیدند، در طی این مدت رطوبت ماسه و بذرها کنترل شد. در تیمار سرمایه‌ای خشک، بذرهاهای تیمار مرطوب به مدت دو هفته در فریزر با دمای -20 درجه سانتی‌گراد قرار گرفتند و در تیمار شاهد بذرها مرطوب به مدت دو هفته در دمای آزمایشگاه قرار گرفتند.

پس از اعمال تیمار سرمایه‌ای، تعداد 25 عدد بذر برای هر تکرار در طرفه‌های پلاستیکی که از ماسه بادی به‌عنوان بستر کشت پر شد، قرار گرفتند. برای اعمال نمایشی پتاسیم یک درصد و اسید چپریکی (GP) در صورت بذرها و در سطح معنی‌داری شاخص شد. شماره بذرها جوانه‌زده برای هر طرفه 5 زمانی که در سه روز متوالی تغییری در جوانه‌زنشانه مشاهده نشد ادامه بود. مدت زمان آزمایش ۲۰ روز بود.

در بیان آزمایش، فرصت جوانه‌زی، نسبت جوانه‌زی و متوسط زمان جوانه‌زی با استفاده از معادلات زیر محاسبه گردید.

برای محاسبه درصد جوانه‌زی از رابطه (۱) استفاده کرد:

\[
GP = \left(\frac{N_i}{N} \right) \times 100
\]

که در آن GP درصد جوانه‌زی، N تعداد کل بذرها، جوانه‌زده در روز آخر شمارش و N تعداد کل بذرها است.

متوسط زمان جوانه‌زی (MGT) از رابطه (۲) محاسبه شد (لیس و روبرتس، ۱۹۸۱):\n
\[
MGT = \frac{\sum_{i=1}^{n} MGT_{i}}{n}
\]

در رابطه فوق MGT متوسط زمان جوانه‌زی، n تعداد بذرها جوانه‌زده در هر روز و d تعداد روزهای شمارش از آغاز جوانه‌زی می‌باشد.

1 ISTA
2 Ranai and De Santanana
3 Mean Germination Time
4 Ellis and Roberts
از اثرب مختلف آنها تأثیر معنی‌داری بر متوسط زمان جوانزی به‌روز نشان داد (جدول ۱). کاربرد تأمین خرده‌ی با اسید سولفوریک و سرماده‌ی مرطوب باعث افزایش درصد جوانزی به‌روز که به جدول ۵۵ (درصد) در تیمار خرده‌ی با اسید سولفوریک تحت تأثیر سرماده‌ی مرطوب با اسید جبری‌پک به‌سوی افزایش درصد جوانزی به‌روز شد. اما در شرایط تیمار سولفوریک بین تیمار با اسید جبری‌پک در این شرایط در یک گروه آماری قرار داشت. کمترین میزان درصد جوانزی (۹۲ درصد) نیز در تیمار خرده‌ی با اسید سولفوریک و سرماده‌ی خشک و بدون پیش‌پرداز با اسید جبری‌پک حاصل شد (شکل ۱). پیشرفت با اسید جبری‌پک در زمان خرده‌ی بذر با اسید سولفوریک تأثیر معنی‌داری بر خوانزی به‌روز سولفوریک داشت، اما در شرایط بدون خوانزی به‌روز و سرماده‌ی درصد جوانزی به‌روز با اسید سولفوریک یافت (شکل ۲).

86 گون سولفوریک افزایش داد. این اثر با نتایج یافته در C. Kargar 2006 و SAS Ver 9.2 و Excel رسم نمودارها با استفاده از نرم‌افزار Excel آنجام شد. نرم‌افزار Excel، با استفاده از آزمون کولمبوورف-اسپیرمن مورد بررسی قرار گرفت. مقایسه میانگین‌ها نیز با روش حداکثر مقایسه‌گذاری میانگین‌ها به‌روز شد.

نتایج و بحث

نتایج تجزیه واریانس داده‌ها نشان داد که اثرات خارجی‌های با اسید سولفوریک تیمار سرماده‌ی پیش تیمار با نتایج پتاسیم و اسید جبری‌پک اثرات در گروه (شاخص دهی با اسید سرماده‌ی) (خوانزی‌دهی با اسید سرماده‌ی) (نیترات پتاسیم) و (نیتروژن) خوانزی دهی با اسید سرماده‌ی بذری با درصد جوانزی بذری (گون سیف) مورد بررسی قرار گرفت. تحت تأثیر خوانزی دهی با اسید سولفوریک، تیمار سرماده‌ی سپاس از اثرب مختلف آنها تأثیر معنی‌داری بر متوسط زمان جوانزی به‌روز نشان داد (جدول ۱). خوانزی به‌روز با اسید سولفوریک، تیمار سرماده‌ی و

Raebote (۱)

\[GR = \frac{1}{MGT} \]

Raebote (۱)

در این معادله SR جوانزی، MGT متوسط زمان جوانزی است.

برای محاسبه شاخص ویگر از Raebote (۲) استفاده شد (الیس و رتر، ۱۹۸۱).

\[VI = \frac{\sum (GP \times SL)}{100} \]

Raebote (۴)

در این معادله VI شاخص ویگر در گون وگور، جوانزی در سطح گیاه‌چه است.

برای ارزیابی میزان مشابه تئوری، سوخته و بسیاری از همکاران اشکال و روش‌یابی در کمک از تیمار‌های از ایزومونی دولما-ایزومونی مورد بررسی قرار گرفت. مقایسه میانگین‌ها نیز با روش حداکثر مقایسه‌گذاری میانگین‌ها به‌روز شد.

1 Kargar
جدول 1. تأثیر تجربه واریانس اثرات خراش‌دهی با اسید سولفوریک، سرمادهی، پیش تیمار با نیترات پتاسیم و اسید چیپرلیک بر شاخص‌های جوانه‌زایی گون سفید

Table 1. Analysis of variance of the effect of stratification with sulfuric acid, chilling, pre-treatment potassium nitrate and giberlic acid on germination indices of white *Astragalus*

میانگین مربعات موارد تغییرات	درجه آزادی (df)	متوسط زمان کرون جوانه‌زایی (Mean germination time)	سرعت جوانه‌زایی (Germination rate)	درصد جوانه‌زایی (Germination percentage)
Acid H₂SO₄ stratification	1	1410.66**	0.00980**	17.187*
سرمادهی				
Chilling	2	7180.17**	0.02210**	60.872**
نیترات پتاسیم	1	2090.67**	0.00211 ns	7.106 ns
KNO₃				
اسید چیپرلیک	1	450.67*	0.00100 ns	4.192 ns
Acid stratification× Chilling	2	1660.17**	0.00517 ns	9.422*
خراش‌دهی با اسید سرمادهی				
Acid stratification× KNO₃	1	352.67*	0.00065**	0.592 ns
Chilling× KNO₃				
سرمادهی	2	143.17**	0.00004 ns	0.104 ns
نیترات پتاسیم				
Chilling× GA				
سرمادهی	2	12.17**	0.00025 ns	0.294 ns
نیترات پتاسیم				
KNO₃× GA	1	0.66 ns	0.00012 ns	0.133 ns
خراش‌دهی با اسید سرمادهی				
Acid stratification× Chilling× KNO₃	2	55.17**	0.00066 ns	0.007 ns
سرمادهی				
Acid stratification× Chilling× GA	2	282.17*	0.00025 ns	0.465 ns
نیترات پتاسیم				
Chilling× KNO₃× GA	2	71.17**	0.00001 ns	0.025 ns
نیترات پتاسیم				
KNO₃× GA	1	42.67**	0.00001 ns	0.006 ns
خراش‌دهی با اسید سرمادهی				
Acid stratification× Chilling× KNO₃× GA	2	117.17**	0.00003 ns	0.139 ns
نیترات پتاسیم				
KNO₃× GA	1	2.49		

*، **: نتایج معنی‌دار در سطح احتمال بالای یک و پنج درصد; ns: غیرمعنی‌دار

*: Significant at 5 and 1% probability levels, respectively; **: non significant
شکل ۱. تأثیر خراش‌دهی با اسید سولفوریک، سرمایه و پیش‌پردازش با اسید جیربلیک بر درصد جوانه‌زی بذر گون‌سفید (میانگین‌های دارای حروف مشترک با اساس آزمون اختلاف معنی‌دار در سطح احتمال ۱ درصد اختلاف معنی‌داری باهم ندارند) \(SE: \) خطای ایستادار (۰.۰۵).

Fig. 1. The effect of stratification with sulfuric acid, chilling and pre-treatment with gibberelic acid on germination percentage of white Astragalus (Means followed by the same letters are not significantly different according to Least Significant Difference (LSD) Test (p<0.05); SE: Standard error.

شکل ۲. تأثیر خراش‌دهی با اسید سولفوریک و پیش‌پردازش با نیترات پتاسیم بر درصد جوانه‌زی بذر گون‌سفید (میانگین‌های دارای حروف مشترک بر اساس آزمون اختلاف معنی‌دار در سطح احتمال ۱ درصد اختلاف معنی‌داری باهم ندارند) \(SE: \) خطای ایستادار (۰.۰۵).

Fig. 2. The effect of stratification with sulfuric acid and pre-treatment potassium nitrate on germination percentage of white Astragalus (Means followed by the same letters are not significantly different according to Least Significant Difference (LSD) Test (p<0.05); SE: Standard error.)

درصد جوانه‌زی بذر گون‌سفید با اسید سولفوریک، سرمایه و پیش‌پردازش با اسید جیربلیک به بیش‌ترین تأثیر داده شده است.

گروز و همکاران (۲۰۰۷) بیش‌ترین کاهش در درصد جوانه‌زی بذر گون‌سفید با استفاده از دی‌فیس سولفوریک داشته‌اند.

نتایج کشتی‌های اولموز و گوک‌ترکرک (۲۰۰۹) نشان دهنده کاهش در درصد جوانه‌زی گونه Colutea armera می‌باشد.

1 Cruz
2 Olmez and Gokturk
3 Aydin and Uzun
نتایج نیز نشان داد از سرماهای خشک در برطرف
کربن خواب فیزیولوژیکی چنین مؤثر نبود ولی استفاده
از سرماهای مرطوب، باعث افزایش درصد جوانتزی بذر
گون سفید گردید. دلایل متعددی بر تأثیر منتظر
سرماهای بر تحریک جوانتزی بذر ذکر شده است که این
میان نیوتن به تأثیر سرما در تغییر فعالیت آنزیمی
یا در متاولایس استیل نتیجه‌گیری‌ها و یا در ساختار
کلوشیدی بذر با افزایش آبی‌هسته، کاهش با حذف
بازاده‌های جوانتزی درونی بذر مثل کاهش میزان
اسب آنزیمی و یا فعال کردن و ساخت سرمهای اشتهای
داشت (عدالپارسی، 2017، همکاران).\(^4\)

سرماهای مرطوب به‌طور متوسط 40 روز سبب افزایش
درصد جوانتزی بذر باریکه به بیماری 69 درصد به
(رهما و تاوکال‌افشار، 2017) در پژوهشی دیگر
تیمار 20 و 14 روز سرماهای باعث افزایش میزان
جوانتزی 96/9 درصد بذرهای گیاه گون شده است
(فاطمی و همکاران، 2010).\(^5\)

افراش جوانتزی بذرها به‌وسطه پیش‌تیمار
سرماهایی ناشی از شکاف‌شدن پوسته بذر در اثر سرما
است که از مقاومت مکانیکی پوسته دانه بر رویان
می‌گذارد. همچنین این احتمال وجود دارد که عامل
سرما عالوه بر سنت اسید جی‌پی بذر، در مقدار بزرگی
دیگر را نیز فعال نمی‌کند که موجب افزایش سرعت و
درصد جوانتزی بذرها می‌گردد (گالون 2010، همکاران.
\(^6\)

در این مطالعه، بیشترین جوانتزی بذر گون سفید
در تیمار ترکیب خاک به‌وسطه ساوتورکیم گلوژی و
دوره سرمایی مرطوب 14 روز مشاهده شد. علی‌رغم این
که در این گونه بین نمود که بذر گون سفید دارای
خواب دوگانه شال خواب فیزیولوژیکی و فیزیکی
می‌باشد که با نتایج بررسی مقایسه‌ای مبطقت دارد
(عسون و همکاران، 2005). بنابراین این بررسی آموم
تیمارهای پر بدحفر دو نوع روکش فیزیکی و
فیزیولوژیکی در بذر گون سفید، به‌منظور افزایش

\(^4\) Hartmann
\(^5\) Deng
\(^6\) Rezaei

1. Abdelbasit
2. Rahnama and Tavakol Afshari
3. Galston
زیر نتایج بر مبنای زمان جوانه‌نی نشان داد. این نتایج را به تیمار سرمایه‌دار گزانست. در این مطالعه، می‌توان انتظار داشت که کاهش میانگین زمان جوانه‌نی در بذر با شکل نازک در حداقل مناسبی اب بوده است که جوانه‌نی سریع نماید. در کالک و همکاران (2004) نیز کاهش میانگین زمان جوانه‌نی تحت تأثیر تیمار Cyclocarya paliurus بذر خزانده‌ب با آب و سرمایه‌دار را گزارش نمودند. ایشان گزارش نمودند سرمایه‌دار سبب افزایش تولید اسد جنگلهای در بذر شده است.

بر اساس نتایج تجزیه واریانس مشاهده گردید که طول ریشه‌های تحت تأثیر اثرات خزانده بذر سولفوریک، سرمایه‌دار، پیش تیمار با نتایج پتانسیم و اثرات دوگانه (خزانده‌ب با اسید سولفوریک) سرمایه‌دار قرار گرفت. اثرات خزانده‌ب با اسید سرمایه‌دار، پیش تیمار با نتایج پتانسیم و اسید جنگلهای (خزانده‌ب با اسید سرمایه‌دار و نتایج پتانسیم) اثرات سواگنه (خزانده‌ب با اسید سرمایه‌دار) نتایج نتایج و اثرات جنگلهای (خزانده‌ب با اسید سرمایه‌دار) نتایج پتانسیم با اسید جنگلهای بر طول گیاهچه گون سفید معنی‌دار بود (جدول ۲).

۱ Soltani Poor
۲ Khajeh-Hossini
۳ Bahmani

اسید سولفوریک کمتر بود (شکل ۵). همچنین خزانده ب با اسید سولفوریک متوسط زمان جوانه‌نی بذر را در تیمار بدون سرمایده به میزان ۱۳۰۰ درصد کاهش داد (شکل ۵). اما خزانده‌ب با اسید در بذرهای سرمایه‌دار شده در دامنه ۹۰ درصد با تأثیر معنی‌دار بر متوسط زمان جوانه‌نی نشان داد (شکل ۵). می‌توان انتظار داشت که در بذرهای سرمایه‌دار شده، باعث افزایش نسبی در حال جوانه‌دنده بذر را در اثر افزایش می‌دهد و اینگونه که تأثیر مکمل فیتوکرم عمل می‌کند و موجب افزایش جوانه‌نی بذرها می‌شود (خواجه‌حسینی و همکاران، ۲۰۰۹). این نتیجه یا یافته‌های بهمنی و همکاران (۲۰۱۶) متأثر نتایج پتانسیل اثرات درصد جوانه‌نی در گیاه‌دانی کور (Capparis cartilaginea Dence) اویز (۱۹۷۲) و در تیمارهای تشکیل در اثر نیروی حاصل از تشعیش بذر در اطراف آن می‌باشد. زیرا کمک کودکی اکسیژن جوی عوامل کافی کننده خوان است (باسیکو و باسیکو، ۲۰۱۴) نیز کاهش میانگین زمان جوانه‌نی تحت تأثیر تیمار Cyclocarya paliurus بذر خزانده‌ب با آب و سرمایه‌دار را گزارش نمودند. ایشان گزارش نمودند سرمایه‌دار سبب افزایش تولید اسد جنگلهای در بذر شده است.

بر اساس نتایج تجزیه واریانس مشاهده گردید که طول ریشه‌های تحت تأثیر اثرات خزانده‌ب با اسید سولفوریک، سرمایه‌دار، پیش تیمار با نتایج پتانسیم و اثرات دوگانه (خزانده‌ب با اسید سولفوریک) سرمایه‌دار قرار گرفت. اثرات خزانده‌ب با اسید سرمایه‌دار، پیش تیمار با نتایج پتانسیم و اسید جنگلهای (خزانده‌ب با اسید سرمایه‌دار و نتایج پتانسیم) اثرات سواگنه (خزانده‌ب با اسید سرمایه‌دار) نتایج نتایج و اثرات جنگلهای (خزانده‌ب با اسید سرمایه‌دار) نتایج پتانسیم با اسید جنگلهای بر طول گیاهچه گون سفید معنی‌دار بود (جدول ۲).
شکل ۴. تأثیر خریدارهای با اسید سولفوریک و پیش‌پردازش با نیترات پتاسیم بر سرعت جوانه‌زایی بذر گون سفید (مانگکن‌های دارای جرف مشترک بر اساس آزمون حداکثر اختلاف معنی‌دار در سطح احتمال پنج درصد اختلاف معنی‌داری با هم ندارند). SE: خطای استاندارد.

Fig. 4. The effect of stratification with sulfuric acid and pre-treatment potassium nitrate on germination rate of white Astragalus (Means followed by the same letters are not significantly different according to Least Significant Difference (LSD) Test (p<0.05); SE: Standard error.

شکل ۵. تأثیر خریدارهای با اسید سولفوریک بر میتوپتیز زمان جوانه‌زایی بذر گون سفید تحت شرایط سرماده‌ی (مانگکن‌های دارای جرف مشترک بر اساس آزمون حداکثر اختلاف معنی‌دار در سطح احتمال پنج درصد اختلاف معنی‌داری با هم ندارند). SE: خطای استاندارد.

Fig. 5. The effect of stratification with sulfuric acid on mean germination time of white Astragalus under chilling conditions (Means followed by the same letters are not significantly different according to Least Significant Difference (LSD) Test (p<0.05); SE: Standard error.

۱۴۱۴ مهرابی و حاجی‌نیا: تأثیر پیش‌پردازش به یهپود جوانه‌زایی بذر گون سفید...
جدول 2. نتایج تجزیه واریانس اثرات خارش‌دهی با اسید سولفوریک، سرمایه‌دهی، پیش‌تیمار با نیترات پتاسیم و اسید ژیبرلیک بر وزن تر، طول ریشه، طول گیاه، وزن تر، گیاهی و شاخص بنیه گون سفید

Table 2. Analysis of variance of the effect of stratification with sulfuric acid, chilling, pre-treatment potassium nitrate and giberlic acid on root length, seedling length, fresh weight and vigor index of white Astragalus

منابع تغییرات	درجه آزادی	طول ریشه به لطف	وزن تر گیاه به لطف	وزن تر گیاه به لطف	شاخص بنیه گون	شاخص بنیه گون	شاخص بنیه گون
خارش‌دهی با اسید سولفوریک	1	430.95**	2065**	45305**	1.75**		
سرمایه‌دهی	2	4556.69**	13293**	100854**	27.39**		
نیترات پتاسیم KNO₃	1	495.04**	2336**	17574**	6.61**		
اسید ژیبرلیک GA	1	5.23ns	367*	4952**	1.57		
خارش‌دهی با اسید سرمایه‌دهی Acid stratification× Chilling	2	594.88**	1146**	14877**	3.24**		
نیترات پتاسیم KNO₃	1	74.20ns	174**	1787*	0.34ns		
اسید ژیبرلیک GA	1	0.02ns	5ns	124ns	0.29ns		
سرمایه‌دهی با اسید ژیبرلیک	2	86.91ns	620**	1123*	0.50ns		
نیترات پتاسیم KNO₃	1	4.70ns	51ns	1853**	0.29ns		
سرمایه‌دهی با اسید ژیبرلیک	2	4.70ns	51ns	1853**	0.29ns		
نیترات پتاسیم KNO₃ × اسید ژیبرلیک GA	1	0.05ns	50ns	1ns	0.11ns		
سرمایه‌دهی با اسید ژیبرلیک	2	37.00ns	280*	90ns	0.04ns		
نیترات پتاسیم KNO₃ × اسید ژیبرلیک GA	2	0.29ns	56ns	161ns	0.40ns		
سرمایه‌دهی با اسید ژیبرلیک	2	0.02ns	6ns	1327*	0.02ns		
نیترات پتاسیم KNO₃ × اسید ژیبرلیک GA	1	0.93ns	3ns	173ns	0.20ns		
سرمایه‌دهی با اسید ژیبرلیک	2	3.85ns	399*	370ns	0.68*		
نیترات پتاسیم KNO₃ × اسید ژیبرلیک GA	72	58.75	87	340	0.14		
خطای ارائه Error	12.35	19.31	18.39	15.00			

*، **: بیرتهی معنی‌دار در سطح احتمال پنج و یک درصد؛ ns: غیرمعنی‌دار

*، **: Significant at 5 and 1% probability levels, respectively; ns: non significant
مهمانی و حاجی‌نما: تأثیر پیش‌تیمار بر بهبود جوان‌زنی بذر گون سفید...

شکل 6. تأثیر خراش‌دهی با اسید سولفوریک به وزن نر گیاه‌های گون سفید (میانگین‌های دارای حرف مشترک بر اساس آزمون حداقل اختلاف معنی‌دار) در سطح احتمال پنجم درصد اختلاف معنی‌داری با هم ندارند (خطای استاندارد).

Fig. 6. The effect of stratification with sulfuric acid on seedling fresh weight of white *Astragalus* (Means followed by the same letters are not significantly different according to Least Significant Difference (LSD) Test (p<0.05); SE: Standard error.)

شکل 7. تأثیر سرمایه و پیش‌تیمار با نیترات پتاسیم و اسید چرب‌دار بر وزن نر گیاه‌های گون سفید (میانگین‌های دارای حرف مشترک بر اساس آزمون حداقل اختلاف معنی‌دار) در سطح احتمال پنجم درصد اختلاف معنی‌داری با هم ندارند (خطای استاندارد).

Fig. 7. The effect of chilling, pre-treatment potassium nitrate and gibberellic acid on seedling fresh weight of white *Astragalus* (Means followed by the same letters are not significantly different according to Least Significant Difference (LSD) Test (p<0.05); SE: Standard error.)

Acid H$_2$SO$_4$ scarification

Chilling × **Potassium nitrate** × **Gibberellic acid**

GA (0 ppm)

GA (5 ppm)

KNO$_3$ (0)

KNO$_3$ (1)

0 °C

4 °C

20 °C

سرمادهی نیترات پتاسیم» اسید چرب‌دار

خرش‌دهی با اسید سولفوریک وزن نر گیاه‌های گون سفید را به‌همراه 52.25 درصد نسبت به خراش‌دهی با اسید افزایش داد (شکل 6).

* پیش‌تیمار با اسید چرب‌دار وزن نر گیاه‌های گون سفید را در شرایط بدون سرماده و سرماده مرطوب به‌ترین بیماری $54/47$ درصد افزایش داد، اما تأثیر معنی‌داری بر وزن نر گیاه‌های گون سفید در شرایط سرماده خشک نداشت (شکل 7). سرماده مرطوب وزن نر گیاه‌های گون سفید را به‌همراه 55.25 درصد نسبت به خراش‌دهی با اسید افزایش داد (شکل 6).
رویان انرژی کمتری را برای جوانگزی صرف می کنند و بیشتر انرژی آن صرف رشد رویشی گیاهچه می شود.
سرماهای سپس افزایش وزن تر در گیاهچه‌های گون شد که این عمل می تواند در کسب رطوبت و مواد غذایی همکاری دقیقه باشد و افزایش فعلی آنزیمی جوانگزی و شاخص‌های جوانگزی اعمال سرماهدی می تواند عوامل محرکی برای جوانگزی سریع و نیروی اوپلند جوانگزی و افزایش بینه آنها استفاده شود. پایین بودن جوانگزی در سرماهی خشک بدست آمد (جدول ۳).
افرازی‌های طول ساقه‌ای با استفاده از افزایشی که کار رفته در این پژوهش ممکن است با این بدل باشد که بذرهايی که تحت تأثیر دو تیمار خراشده با سولفوریک و سرماهای مرطوب قرار گرفتند، زودتر جوان گیزند، جوانگزی سریع‌تر دارند و فرصت بیشتری برای رشد دارند. سرماهی به روش افزایش میزان جهیزیان به روش می تواند به‌طور غیر مستقیم در تحریک رشد گون دخالت داشته باشد.
سرماهای مرطوب موجب افزایش تغییر نسبی‌های هورمونی درون بذر به نفع ترکیبات جهیزیان می‌شود و با توجه به نقش این هورمون در فعالیت آنزیم‌های تجزیه‌کننده مواد غذایی (میرادوافقوی و مربوط) در تولید ماده در هورمونیان وستوز و رشد دارد. در درمان و گیاه‌پردازی افزایش رشد گیاهچه می‌شود (شکل ۸).

3 Mirzadeh Vaghefi and Nasiri
4 Lessani and Mojtabahi
5 Arteca

1 Shakeri-Almoshiri
2 Rehman
شکل 8. تأثیر خشکسازی با اسید سولفوریک بر طول ریشه‌های سفید سرماخوردگی و پیش‌تیمار با نیترات پتاسیم و اسید چربیک بر طول گیاهچه و شاخص بینه گون

جدول 3. تأثیر خشکسازی با اسید سولفوریک، سرماخوردگی و پیش‌تیمار با نیترات پتاسیم و اسید چربیک بر طول گیاهچه و شاخص بینه گون

Fig. 9. The effect of stratification with sulfuric acid on radicle length of white Astragalus under cold stratification conditions (Means followed by the same letters are not significantly different according to Least Significant Difference (LSD) Test (p<0.05); SE: Standard error.

Table 3. The effect of stratification with sulfuric acid, chiling, pre-treatment potassium nitrate and giberlic acid on seedling length and vigor index of white Astragalus

Means followed by the same letters are not significantly different according to Least Significant Difference (LSD) Test (p<0.05).
نتیجه‌گیری
گون سفید از گیاهان مرغوب و حفاظتی مناسب برای احیاء مراتع در مناطق خشک و نیمه‌خشک می‌باشد. با توجه به این نتایج می‌توان گفت خواص بذر گون سفید

منابع

Abdelbasit, H., Mahgoup, S., and Eldoma, A. 2015. Effect of cold and dry storage on seed viability among three provenances of Acacia tortilis subspecies raddiana and subspecies spirocarpa. International Journal of Advanced Biological Research, 2(1): 130-137.

Arteca, R.N. 2013. Plant Growth Substances: Principles and Applications. Springer Science and Business Media. 332 p.

Aydin, I., and Uzun, F. 2001. The effects of some applications on germination rate of Gelemen Clover seeds gathered from natural vegetation in Samsun. Pakistan Journal of Biological Sciences, 4(2): 181-183. https://doi.org/10.3923/pjbs.2001.181.183

Baskin, C.C., Baskin, J.M., and Hoffman, G.R. 1992. Seed dormancy in the prairie forb Echinacea angustifolia (Asteraceae): after ripening pattern during cold stratification. International Journal of Plant Science, 153(2): 239-243. https://doi.org/10.1086/297027

Baskin, J.M., and Baskin, C.C. 2004. A classification system for seed dormancy. Seed Science Research, 14: 1-16. https://doi.org/10.1079/SSR2003150

Baskin, C.C. and Baskin, J.M. 2014. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination. (2th Ed.). Elsevier Academic Press Inc, San Diego. 1600 p.

Bahmani, M., Rahimi, D., Sadeghipour, A., and Kartooli Nejad, D. 2016. Effects of priming with different concentrations of potassium nitrate salt on seed germination and vigor indices of Capparis cartilaginea. Rangeland, 2(2): 180-190. [In Persian with English Summary].

Cirak, C., Kevesorglu, K., and Ayan, A.K. 2007. Breaking of seed dormancy in a turkish endemic hypericum species: Hypericum aviculariifolium subsp. depilatum var. depilatum by light and some pre-soaking treatments. Journal of Arid Environment, 68(1): 159-164. https://doi.org/10.1016/j.jaridenv.2006.03.027

Cruz, E.D., Urano de Carvalho, J.E., and Barbosa Queiroz, A.R. 2007. Scarification with sulfuric acid of Schizolobium amazonicum Huber ex Duide Seeds Fabaceae. Science Agricultural, 64(3): 308- 313. https://doi.org/10.1590/S0103-90162007000300017

Deng, Z.J., Cheng, H.Y., and Song, S.Q. 2010. Effects of temperature, scarification, dry storage, stratification, phytormone and light on dormancy-breaking and germination of Cotinus coggygria var. cineria (Anacardiaceae) seeds. Seed Science and Technology, 38(3): 572-584. https://doi.org/10.15258/sst.2010.38.3.05

Eisvand, H.R., Arefi, H.A., and Tavakol-Afshari, R. 2006. Effects of various treatments on breaking seed dormancy of Astragalus siliquosus. Seed Science and Technology, 34(3): 747-752. https://doi.org/10.15258/sst.2006.34.3.22
Ellis, R.A., and Roberts, E.H. 1981. The quantification of ageing and survival in orthodox seeds. Seed Science Technology, 9: 373-409.

Fang, S., Wang, Z. Wei, J., and Zhu, Z. 2006. Methods to break seed dormancy in *Cyclocarya paliurus* (Batal) Iljinskaja. Scientia Horticulturae, 110(3): 305-309. https://doi.org/10.1016/j.scienta.2006.06.031

Fateh, A., Majnoon Hosseini, N., Madah Arefi, H., and Sharifzadeh, F. 2006. Effect seed dormancy breaking methods on (*Astragalus tribuloides*). Quarterly Periodical Investigations Genetic and Improvement of Rangeland and Forest Plants, 13(4): 345-360. [In Persian with English Summary].

Finch-Savage, W.E, Cadman, C.S., Toorop, P.E., Lynn, J.R., and Hilhorst, H.W. 2007. Seed dormancy release in *Arabidopsis* by dry after-ripening, low temperature, nitrate and light shows common quantitative pattern of gene expression directed by environmentally specific sensing. Plant Journal, 51(1): 60-78. https://doi.org/10.1111/j.1365-313X.2007.03118.x

Galston, A., Davies, P., and Satter, R. 2012. The Life of the Green Plant (3th Ed.). Benjamin-Cummings Publishing Company. 464 p.

Ghomeni Bozorg, P., Vahabi, M.R., and Fazilati, M. 2012. Quality survey on gum tragacanth from *Astragalus gossypinus* Fischer in west region of Isfahan province. Iranian Journal of Medicinal and Aromatic Plants, 27(4): 668-690.

Gusano, G.M., Martinez-Gomez, P. and Dicenta, F. 2004. Breaking seed dormancy in almond (*Prunus dulcis* (Mill.) D.A. Webb). Scientia Horticulturae, 99: 363-370. https://doi.org/10.1016/j.scienta.2003.07.001

Hartmann, H.T., Kester, D.E., and Davies, F.T. 2010. Plant Propagation: Principles and Practices (8th ED.). Prentice Hall, Upper Saddle Rvier. 915p.

ISTA. 2007. International Rules for Seed Testing. Seed Science Technology, 13: 299-520.

Khayat Moghadam, M., Agah, F., and Sadrabadie Haghighie, R. 2014. Effective methods of dormancy breaking and increase germination seed *Astagalus cicer* L. Journal of Seed Research, 4(2): 21-27. [In Persian with English Summary].

Kimura, E., and Islam, M.A. 2012. Seed scarification methods and their use in forage Legumes. Research Journal of Seed Science, 5(2): 38-50. https://doi.org/10.3923/rjss.2012.38.50

Lessani, H. and Mojtahedi, M. 2005. Introduction Plant Physiology. University of Tehran, 726 p. [In Persian].

Maassoumi, A.A. 1998. Astragalus in the Old World: A Check-list. Research Institute of Forests and Rangelands Press, Tehran,100 p. [In Persian].
Mirzadeh Vaghefi, S.S., Jalili, A., and Jamzad, Z. 2013. Effect of gibberllic acid, sulfuric acid and potassium nitrate on germination the seed germination three species of Hawthorn. Iranian Journal of Natural Resources, 66: 135-146. [In Persian with English Summary].

Najafi, M., Bannyan, M., Tabrizi, L., and Rastgoo, R. 2006. Seed germination and dormancy breaking techniques for (Ferula gammusa) and (Teucrium polium). Journal of Arid Environmental, 64: 542-547. https://doi.org/10.1016/j.jaridenv.2005.06.009

Nasiri, M. 1994. Factor Affecting Dormancy, Germination, and Seed Development. Agricultural Research and Education Organization Press, 63 p. [In Persian].

Norouzi Haroni, N., and Tabari Kouchsaraei, M. 2014. The effect of hydro-priming, halo-priming and boiling water on seed germination of black locust (Robinia pesudoacasia L.). Iranian Forests Ecology, 2(3): 76-88. [In Persian with English Summary].

Olmez, Z., and Gokturk, A. 2009. Effects of cold stratification, sulfuric acid, submersion in hot and tap water pretreatments in the greenhouse and open field conditions on germination of bladder senna (Colutea armena Boiss. and Huet.) Seeds. Seed Science and Technology, 35(2): 266-271. https://doi.org/10.15258/sst.2007.35.2.02

Patane, C., and Gresta, F. 2006. Germination of Astragalus hamosus and Medicago orbicularis as affected by seed-coat dormancy breaking techniques. Journal of Arid Environments, 67(1): 165-173. https://doi.org/10.1016/j.jaridenv.2006.02.001

Rahmama, A., and Tavakkol-Afsahi, T. 2007. Methods for dormancy breaking and germination of galbanum seeds (Ferulagummosa bioss). Asian Journal of Plant Science, 6(4): 611-616. https://doi.org/10.3923/ajps.2007.611.616

Ranai, M.A., and De Santana, D.G. 2006. How and why it measure the germination process. Revista Brasileira de Botanica, 29: 1-11. https://doi.org/10.1590/S0100-84042006000100002

Rehman, H., Iqbal, H., Basra, S.M.A., Afzal, I., Farooq, M., Wakeel, A., and Ning, W. 2015. Seed priming improves early seedling vigor, growth and productivity of spring maize. Journal of Integrated Agricultural, 14(9): 1745-1754. https://doi.org/10.1016/S2095-3119(14)61000-5

Rezaei. A., Yazdiyan, F., Nasery, B., and Hedayati, M.A. 2012. A study of hydrogen peroxide effects on oriental beech (Fagus orientalis) nuts germination stimulation. Annals of Biological Research, 3(10): 4728-4733.

Shakeri-Almoshiri, M., Mianabadi, M., and Yazdanparast, R. 2009. Effects of different treatments on seed dormancy of Teacrium polium. Iranian Journal of Rangelands and Forests Plant Breeding and Genetic Research, 17(1): 100-111. [In Persian with English Summary].

Shen, H., Zhu, L., Bu, Q.Y., and Huq, E. 2012. Max affects multiple hormones to promote photomorphogenesis. Molecular Plant, 5: 224-236. https://doi.org/10.1093/mp/sss029

Soltani Poor, M.A., Asad Poor, A., and Bagheri, R. 2012. Study of pre-treatments on seed germination of Zygophyllum atriplicoides. Environmental Erosion Researches, 2: 1-14.

Tavili, A., Safari, B., and Saberi, M. 2009. Comparing effect of gibberelic acid and potassium nitrate application on and germination enhancement of Salsola rigida. Journal of Range Management, 3: 272-280.

Tavili, A., Abbasi Khalaki, M., and Moameri, M. 2012. Effect of different methods of breaking dormancy on seed germination and some trait of Astragalus tribuloides. Journal of Seed Science and Technology, 1(1): 64-72. [In Persian with English Summary].

Wang, Y.R., Hanson, J., and Mariam, Y.W. 2007. Effect of sulfuric acid pretreatment on breaking hard seed dormancy in diverse accessions of five wild Vigna species. Seed Science and Technology, 35: 550-559. https://doi.org/10.15258/sst.2007.35.3.03
Yamauchi, Y., Ogawa, M., Kuwahara, A., Hanada, A., Kamiya, Y., and Yamaguchi, S. 2004. Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of *Arabidopsis thaliana* seeds. *Plant Cell*, 16(2): 367-378.
https://doi.org/10.1105/tpc.018143

Zarchini, M., Hashemabadi, D., Negahdar, N., and Zarchini, S. 2013. Improvement seed germination of wild service tree (*Sorbus aucuparia* L.) by gibberellic acid. *Annals of Biological Research*, 4(1): 72-74.
The Effect of Seed Pre-treatments on Germination of *Astragalus gossypinus* Seed

Ali Ashraf Mehrabi 1,*, Somayeh Hajinia 2

Extended Abstract

Introduction: White Astragalus (*Astragalus gossypinus* Fisherr.) is one of the valuable plants for producing gum, which is of critical importance in soil conservation and the economy of the country. This plant is propagated by seed; its seeds are in the natural state of dormancy. Therefore, recognizing the factors affecting dormancy and creating optimal conditions for seed germination of this plant is necessary for the cultivation and reclamation of rangelands. This study was conducted with the aim of finding the best treatment for breaking the dormancy and improving seed germination under various chemical and physical treatments.

Materials and Methods: The experiment was carried out as a factorial based on a completely randomized design with four replications at the gene bank of cereal and legume Lab of Ilam University, 2017. The factors included two levels of scarification chemical (with and without sulfuric acid (H2SO4) for 10 minutes), three levels of stratification (control, moist chilling at +4 °C and dry chilling -20 °C), potassium nitrate in two levels (zero and 1% KNO3) and gibberellic acid in two levels (zero and 5 ppm GA3). Germination indices including germination percentage, germination rate, seedling and radicle length, seedling fresh weight and vigor index were measured.

Results: Initial assessment of vital indices in seed such as germination and primary growth showed that the simultaneous application of scarification by sulfuric acid and moist chilling at +4 °C has the most impact on removing dormancy and increasing germination percentage. The highest germination rate was observed in moist chilling at +4 °C, which was 32.19 percent more than that of the control treatment. Scarification by sulfuric acid reduced the mean germination time in moist chilling at +4 °C. Scarification by sulfuric acid increased the fresh weight of the seedling by 55.25 percent, compared with the control. Pre-treatments with potassium nitrate under control conditions, moist chilling at +4 °C and dry chilling at -20 °C increased the fresh weight of seedlings, at 52.66, 30.94 and 17.18 percent, respectively. Application of potassium nitrate increased root length by about 60.7 percent, compared with control. The highest radicle length (78.71 mm) was obtained when the seed was treated with sulphuric acid with wet chilling at 4 °C for two weeks, which was 30 percent higher than control. The highest seedling length (84.88 mm) was obtained in scarification with sulfuric acid, wet chilling, and potassium nitrate and gibberellic acid. The highest seed vigor index (61.85 %) was observed in the treatment of scarification with sulfuric acid under moist chilling, and pre-treatments of gibberellic acid and potassium nitrate.

Conclusions: In general, it can be concluded that seed dormancy of *Astragalus gossypinus* involves both physical and physiological dormancy. The best treatment for removing the dormancy of this species seems to be scarification with sulfuric acid for 10 minutes puls concentrated stratification in moist chilling at +4 °C for two weeks.

Keywords: Germination, Chilling, Gibberellic acid, Gum, Potassium nitrate, Sulfuric acid

Highlights:

1- Determination of the optimal seed dormancy techniques of white Astragalus for the purpose of increasing seed germination percentage.

2- Comparison of the efficiency of different dormancy breaking techniques.

3- The combined effect of sulfuric acid, chilling and priming with gibberellic acid and potassium nitrate on germination indices.

1 Associate Professor Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Ilam, Ilam, Iran

2 Visiting Teacher University of Ilam, Ilam, Iran

*Corresponding author, E-mail: a.mehrabi@ilam.ac.ir

(Received: 28.08.2018; Accepted: 16.02.2019)