A Dynamic Phase Selection Strategy for Satisfiability Solvers

Jingchao Chen
School of Informatics, Donghua University
2999 North Renmin Road, Songjiang District, Shanghai 201620, P. R. China
chen-je@dhu.edu.cn

Abstract. The phase selection is an important of a SAT Solver based on conflict-driven DPLL. This paper presents a new phase selection strategy, in which the weight of each literal is defined as the sum of its implied literals static weights. The implied literals of each literal is computed dynamically during the search. Therefore, it is call a dynamic phase selection strategy. In general, computing dynamically a weight is time-consuming. Hence, so far no SAT solver applies successfully a dynamic phase selection. Since the implied literal of our strategy conforms to that of the search process, the usual two watched-literals scheme can be applied here. Thus, the cost of our dynamic phase selection is very low. To improve Glucose 2.0 which won a Gold Medal for application category at SAT 2011 competition, we build five phase selection schemes using the dynamic phase selection policy. On application instances of SAT 2011, Glucose improved by the dynamic phase selection is significantly better than the original Glucose. We conduct also experiments on Lingeling, using the dynamic phase selection policy, and build two phase selection schemes. Experimental results show that the improved Lingeling is better than the original Lingeling.

Key words: SAT solver, conflict-driven DPLL, phase selection for SAT solvers

1 Introduction

As a classic NP-complete problem, Satisfiability (SAT) has been studied for a long time. Numerous state-of-the-art solvers have been developed in order to solve some problems in the fields such as computer aided design, data diagnosis, EDA, logic reasoning, cryptanalysis, planning, equivalence checking, model checking, test pattern generation etc. However, now large real-world SAT problems remain unsolvable yet.

In general, SAT solvers are classified into conflict-driven, look-ahead and random search. Solvers on application instances are almost all conflict-driven DPLL-type solvers. This paper focuses on this type of solvers. A conflict-driven DPLL-type solver consists of variable selection, phase selection, BCP (Boolean
Constraint Propagation), conflict analysis, clause learning and its database maintenance. The optimization of each component is useful for improving the performance of solvers. So far, Numerous optimizing strategies has been proposed. For example, for variable selection, the corresponding optimizing strategy is VSIDS (Variable State Independent Decaying Sum) scheme [6]. To accelerate BCP, two watched-literals scheme was proposed. With respect to conflict analysis, a large amount of optimizing work has been done. For example, first UIP (unique implication points), conflict clause minimization, on-the-fly self-subsuming resolution [7], learned clause minimization [8] etc are used to optimize conflict analysis. To maintain effectively clause learning database, in 2009, Audemard et al. introduced a Glucose-style reduction strategy [9] to remove less important learned clauses. In 2011, they presented further a freezing and reactivating policy [11] to restore the most promising learnt clauses rather than to re-compute them. Due to this new technique, Glucose 2.0 won a Gold Medal for application category at SAT 2011 competition.

Unlike the other components of conflict-driven SAT solvers, the literature on the phase selection of variables is rare. To our best knowledge, up to now, only two phase selection strategies are widely used in conflict-driven SAT solvers. One is the phase selection heuristic used in RSAT (RSAT heuristic for short) [1]. The other is Jeroslow-Wang heuristic [2]. The basic idea of the RSAT heuristic is to save the previous phase and assign the decision variable to the same value when it is visited once again. The basic idea of Jeroslow-Wang heuristic is to define variable polarity as a phase with the maximum weight. The weight of a variable depends on the number of clauses containing that variable and their sizes. In [10], we tried to select a phase of a variable, using the ACE (Approximation of the Combined lookahead Evaluation) weight [4,5]. This is a dynamic policy. Its computation is time-consuming. Therefore, this policy is not so successful, but can be applied to a part of SAT instances in a way similar to portfolio methods. Glucose adopts a phase selection policy based on the RSAT heuristic: it always assigns a decision variable to false if that variable was never visited, and the previous value otherwise. Such a phase selection policy is simple, but in some cases, we found it is not so efficient.

The goal of this paper is to find a new phase selection heuristic that improves the phase selection of such solvers as Glucose. If we can select always correctly a phase, all satisfiable formulae will be solved in a linear number of decisions. In theory, no perfect phase selection heuristic exists unless P=NP. In practice, it is possible to develop a phase selection heuristic that significantly reduces the number of conflicts in some cases. To reach conflicts as soon as possible, a dynamic weight seems to be suited for the phase select of variables. A dynamic weight of a literal at a decision level is defined as the sum of weights of its implied literals at that decision level. Implied literals are assignments that were forced by BCP. So the definition of a weight here is actually close to that of the ACE weight [4,5,10]. Our new phase selection strategy is based on this dynamic weight. In general, computing dynamically a weight is time-consuming. Hence, so far no SAT solver applies successfully a dynamic phase selection. However,
since the implied literal of our strategy conforms to that of the search process, the usual two watched-literals scheme can be applied to the weight computation. Thus, our dynamic weight can be computed efficiently, and apply to the phase selection of decision variables. Empirical evidences show that our new phase selection scheme can improve the performance of such state-of-the-art solvers as Glucose and Lingeling [3].

2 A Dynamic Phase selection

In modern conflict-driven SAT solvers, how to select the phase of a variable is an inseparable step that follows the decision variable selection, because we must assign each decision variable to a value. The simplest phase selection policy is that each decision variable is always assigned to false, which is used as a default heuristic of MiniSAT. No evidence shows that such a policy is always efficient. Therefore, other policies are adopted in some solvers. For example, PrecoSAT [3] used Jeroslow-Wang heuristic. Here, we present a new dynamic phase selection policy. Its dynamic weight is based on a static weight. Let \(F \) define an input formula in CNF (Conjunctive Normal Form) clauses. The static weight of a literal \(x \) on \(F \) is defined as

\[
W(x, F) = \sum_{c \in F(x)} 5^{2 - \text{size}(c)}
\]

where \(F(x) \) is the set of clauses in which \(x \) occurs, and \(\text{size}(c) \) is the size of clause \(c \). This is very similar to the definition of a weight in Jeroslow-Wang heuristic [2]. The main difference between two is that the base is different. Our base is 5, while the base of Jeroslow-Wang heuristic is 2. Selecting 5 here is based on the fact that the March solver uses also base 5 [4]. In this paper, we define the dynamic weight of a literal \(x \) as the sum of the static weight of literals implied by it. This definition can be formulated as follows.

\[
DW(x, F, F') = \sum_{x \land F' \vdash y} W(y, F)
\]

where \(F \) and \(F' \) are an input formula and a formula at a search state, respectively. Usually, \(F \) is constant, and \(F' \) varies with the search state. \(x \land F' \vdash y \) means that using the fact that \(x \) is true, applying unit resolution on formula \(F' \) can derive an implication \(y \). That is, \(y \) is an implied literal of \(x \) under \(F' \). Computing implied literals is simple. This can be done by a unit propagation, i.e. so-called BCP. Thus, without developing a new routine, we can use directly a ready-made BCP of a SAT solvers to compute implied literals. The dynamic strategy here is different from that used in [10]. The dynamic strategy in [10] needs such an additional data structure as a full watched-literals scheme. The dynamic strategy here need not any additional data structure, and can apply directly a two watched-literals scheme. Therefore, our dynamic strategy is very efficient. Once a variable is decided, the dynamic strategy elects the branch with the highest dynamic weight \(DW \). \(W(y, F) \) can be computed in advance. In addition, computing implied literals of a literal is consistent with BCP. Therefore, we integrate the computation of dynamic weights with the search procedure
in conflict-driven SAT solvers. Let x be the decision variable. A search on x, including the computation of dynamic weights, may be described as follows.

\begin{verbatim}
search (x,W,F')
 (Y+, Ret) ← BCP(x, F')
 if Ret=UNSAT then return UNSAT
 backtrack to current level
 (Y-, Ret) ← BCP(¬x, F')
 if Ret=UNSAT then return UNSAT
 if DW(W,Y-) > DW(W,Y+) then return ¬x
 backtrack to current level
 BCP(x, F')
 return x
\end{verbatim}

In the above procedure, the parameter W is used to store the static weights of all the literals. F' is the current formula, which can be maintained usually by a trail tack. Y_+ and Y_- are the set of literals implied by x and $¬x$, respectively. In addition to fulfilling two tasks of the usual BCP: compute the implied literals and determine whether it reaches a conflict, $BCP(x, F')$ returns the set Y_+ of literals implied by x. The usual search runs only one time, but our search need to run at most three times. If the dynamic weight of $¬x$ is larger than that of x, we run BCP just two times, since in such a case, the last BCP is consistent with the search direction. Clearly, in the worst case, the cost of our search is at most triple the cost of the usual search if each BCP has the same cost.

Always selecting the phase with the highest weight may lead to an early contradiction. Thus, applying fully the above dynamic policy may be profitable in solving unsatisfiable formulae, but not necessarily favours solving satisfiable formulae. To trade off the performances on unsatisfiable formulae against the performances on satisfiable formulae, we combine the above dynamic policy and other phase selection policies. In our SAT solvers, we divide the whole solving process into several search periods. A search period refers to the search process between two restarts. The notion of restarting is from the work of Gomes et al. [12]. Its meaning is that the solver abandons its current partial assignment and starts over again. Restarting is now considered as an essential component of modern backtracking SAT solvers. In different search periods, we can use different phase selection policies. However, in a search period, we use only one phase selection policy. Furthermore, any phase selection policy does not change the restart policy. Below we present a few phase selection schemes, which will be used to improve Glucose.

1. F+Save scheme: This scheme always assigns a decision variable to false if no previous value was saved, and the previous value otherwise. Its phase saving policy is to save the values of visited variables at only the last decision level when backtracking.

2. T+Save scheme: This scheme is the same as the previous scheme except for the initial phase value. That is, it always assigns a decision variable to true if no previous value was saved, and the previous value otherwise.
3. F+All-save scheme: This scheme is the same as the F+Save scheme except for the phase saving policy. The phase saving policy of this scheme is to save the values of visited variables at all the last decision levels when backtracking. This is actually the phase select policy of Glucose.

4. Odd-Even dynamic scheme: This is a hybrid scheme. It interchanges the static policy with the dynamic policy. During the odd numbered search periods, it uses the above dynamic phase selection policy at the odd numbered decision levels, and does the F+Save policy at the even numbered decision levels. During the even numbered search periods, it uses the above dynamic phase selection policy at the even numbered decision levels, and does the F+Save policy at the odd numbered decision levels. Its phase saving policy is the same as the F+Save scheme.

5. Bit-encode scheme: This scheme lets the phase at each decision level correspond to a bit value of the binary representation of an integer. Assume that the binary representation of \(n \) is
\[
n = b_k2^k + b_{k-1}2^{k-1} + \cdots + b_12 + b_0.
\]
This scheme stipulates that during the \(n \)-th search period, the phase of a variable at the \(k \)-th decision level is equal to \(b_k \). Usually, only the first 6 decision levels uses this scheme. And the other levels uses such a policy as the Odd-Even dynamic scheme.

To improve better the performance of such SAT solvers as Glucose, in our SAT solver, we select the phase of a variable in the following way.

1. For a large formula, say, its number of literals is greater than 1600000, within the first 1000000 conflicts, we use the F+All-save scheme. Once the number of fixed variables in a search period exceeds 1%, we switch to Odd-Even dynamic F+Save, T+Save and scheme at the subsequent (3\(k \))-th, (3\(k+1 \))-th and (3\(k+2 \))-th (\(k = 0, 1, \ldots \)) search period, respectively. After the 1000000 conflicts, we continue to use the F+All-save scheme.

2. For a small formula, i.e., its number of literals \(\leq 1600000 \), in general, we use Odd-Even dynamic scheme. However, if at the 600000-th conflicts the number of fixed variables is still smaller than 3, we switch to the combination of Bit-encode scheme and the other schemes. In details, In such a case, we use T+Save, F+Save and Odd-Even dynamic scheme at the subsequent (3\(k \))-th, (3\(k+1 \))-th and (3\(k+2 \))-th (\(k = 0, 1, \ldots \)) search period, but does the Bit-encode scheme at the first 6 decision levels except for the Odd-Even dynamic scheme.

3. When the number of conflicts reaches 5000000, for any formula, we use interchangeably T+Save, F+Save and Odd-Even dynamic scheme. In details, we use these schemes at the the subsequent (3\(k \))-th, (3\(k+1 \))-th and (3\(k+2 \))-th (\(k = 0, 1, \ldots \)) search period, respectively.

As the search process proceeds, the number of fixed variables increases generally. This will result in that the input formula \(F \) can be simplified constantly during the solving process. Many SAT solvers make use of a simplifying process.
The static weight based on the simplified formula should be different from that based on the original formula. Therefore, we re-compute the static weights every time the formula \mathcal{F} is simplified. However, if the refresh frequency of the formula \mathcal{F} is too high, we give up some computations on the static weights to save the solving cost. In details, we remove the re-computing of the static weights where the number of conflicts between two simplifications is less than 200000. That is, only when the formula \mathcal{F} is updated and the number of conflicts between two updates > 200000, we update the static weights.

3 Empirical evaluation

Instance	# var	# clauses	Glucose 2.0	improved Glucose
slp-synthesis-aes-bottom14	22886	76038	>9000	545.6
slp-synthesis-aes-top26	76943	245006	3794.3	>9000
slp-synthesis-aes-top28	88763	282870	>9000	3263.5
slp-synthesis-aes-top29	94998	302862	>9000	4546.3
minxorminand128	153834	459965	>9000	8398.7
gss-22-s100.cnf	31616	95110	>9000	7246.8
AProVE07-01	7502	28770	>9000	8349.1
eq.atree.braun.12.unsat	1694	5726	>9000	6139.9
comb1	5910	16804	>9000	479.6
rand_net70-60-10	8400	25061	>9000	820.0
k2fix_gr_rcs_w8	10056	271393	4134.0	>9000
vmpec_35	1225	211785	6586.7	>9000
vmpec_36	1296	230544	>9000	1463.9

Table 2. Performance of solvers on 300 application instances in SAT 2011

Solver	Instances Solved	Average time (in seconds) per solved instance
Glucose 2.0	214	1023.1
Improved Glucose	221	998.1

We evaluated the new phase selection strategy, using the following experimental platform: Intel Core 2 Quad Q6600 CPU with speed of 2.40GHz and 2GB memory. This is a 32-bit machine. From our empirical results, this machine seems to be about half the speed of the experimental platform used by SAT 2011.
Fig. 1. Comparing the runtimes of Glucose 2.0 and improved Glucose on application instances from SAT 2011.

Fig. 2. The number of instances that Glucose 2.0 and improved Glucose are able to solve in a given amount of time. The x-axis denotes the number of solved instances, while the y-axis denotes running time in seconds.
competition. Therefore, we set the timeout for solving an instance to 9000 seconds, which is almost double that of SAT 2011 competition. The instances used in the experiment are from SAT 2011 competition. We use Glucose 2.0, which won a Gold Medal for application category in the SAT competition 2011, to test performance of the new phase selection strategy. The main different between our improved Glucose and the original Glucose is that the improved Glucose adopts the phase selection scheme given in the previous section. The preprocessing of the improved Glucose is the same as that of Glucose 2.0. Both solvers use SatElite for preprocessing.

Table 1 shows instances that solved by Glucose 2.0 and the improved Glucose. Among the 13 instances, 3 instances were solved by only Glucose 2.0, while the other 10 instances were solved by only the improved Glucose, except for the 13 instances, on application category in SAT 2011 competition, the numbers of instances solved by the two solvers are the same. Table 2 presents the number of solved instances and the average running time per solved instance in seconds. Glucose 2.0 and the improved Glucose solved 214 and 221 out of 300 application instances, respectively. In terms of the average running time, the improved Glucose was a little faster than Glucose 2.0. On application instances, the performance of Glucose 2.0 here is consistent with that in SAT 2011 competition, except for slp-synthesis-aes-top29. This instance was not solved by Glucose 2.0 on our machine. This may be because the double precision of our machine is different from that of SAT 2011 competition.

Figures 1 shows a log-log scatter plot comparing the running times of Glucose 2.0 and the improved Glucose on application instances from SAT 2011. Each point corresponds to a given instance. The climax (9000,9000) means that the instances on that point were not solved by any of two solvers. As shown in Figures 1, many points are centralised at the nearby diagonal. This is because on about 50 instances, both solvers use the same phase selection policy. Points below the diagonal correspond to instances solved faster by Glucose 2.0. It is easy to see that the number of instances solved faster by Glucose 2.0 is less than that solved faster by the improved Glucose. Figure 2 shows a cactus plot related to the comparison of the two solvers. Clearly, our phase selection strategy outperforms that of Glucose 2.0. In the cactus plot, our curve is always below Glucose 2.0. That is, in a given amount of time, we solved more instances than Glucose 2.0.

To improve Lingeling, we devise the following two phase selection schemes.

1. full dynamic scheme: This scheme always assigns a decision variable to a polarity with the highest dynamic weight.
2. half dynamic scheme: This scheme always assigns a decision variable to a polarity with the highest dynamic weight if no previous value was saved, and the previous value otherwise.

In the improved Lingeling, we select the phase of a variable in the following way.

(1) For a large formula, say, its number of literals is greater than 1500, in the first stage we use the half dynamic scheme. In the second stage, we use
Table 3. Runtime (in seconds) required by Lingeling 587f and improved Lingeling to solve some application problems.

Instance	# var	# clauses	Lingeling 587f	improved Lingeling
slp-synthesis-aes-bottom14	22886	76038	>9000	4780.3
bobsmdhc2-tseitin	44692	129620	5335.5	>9000
pdtvisus3p02-tseitin	163622	488120	3808.7	>9000
countbits128-tseitin	95810	287045	8993.4	>9000
minandmaxor128	249327	746444	>9000	7099.1
partial-10-13-s	234673	1071339	>9000	5284.0
vmpe_{32}	1024	161664	>9000	2338.2
vmpe_{34}	1156	194072	>9000	181.4
vmpe_{35}	1225	211785	>9000	4548.0
SAT.dat.k85	181484	890298	>9000	2056.6

Table 4. Performance of solvers on 300 application instances in SAT 2011

Solver	Instances Solved	Average time (in seconds) per solved instance
Lingeling 587f	208	993.8
Improved Lingeling	212	1080.5

the full dynamic scheme. From the third stage to the end, we use the half dynamic scheme again. The maximal numbers of conflicts at the first and second stage are limited to 300000 and 100000, respectively.

(2) For a small formula, i.e., its number of literals ≤ 1500, in the first stage we use the full dynamic scheme. In the second stage, we use the half dynamic scheme. From the third stage to the end, we use the full dynamic scheme again. The maximal numbers of conflicts at the first and second stage are limited to 10000 and 490000, respectively.

We conducted also experiments on Lingeling to justify the effectiveness of the dynamic phase select policy. Table 3 shows instances that solved by Lingeling 587f and the improved Lingeling. Table 4 presents the number of solved instances and the average running time per solved instance in seconds. Compared with the previous experimental results, it is easy to see that the improvement on Lingeling is a little poorer than the improvement on Glucose. The improved Lingeling solved only 4 instances more than Lingeling 587f did. However, in terms of the average running time, the improved Lingeling was a little slower than Lingeling 587f. This maybe because the Jeroslow-Wang policy of Lingeling is close to our dynamic phase selection policy.
4 Conclusions and Future work

To improve the performance of conflict-driven SAT solvers, we have developed a new dynamic phase selection policy. Unlike the ACE dynamic weight used in [10], the new dynamic weight is simple. And its computation cost is low. So, it is easy to embed the new phase selection policy in modern SAT solvers. Empirical results demonstrate that our new phase selection policy can improve significantly the performance of solvers.

Is a phase selection policy related to the other components such as the restart policy, the learnt clause management policy, etc? This is an open problem that is worth studying.

Another important is how to improve the new phase selection policy and combine it and the existing phase selection policy. As a future research subject, we will study it further.

Whether in theory or in practice, we believe that the phase selection policies known so far are not certainly the best. However, does there exist the best phase selection policy? If exist, how do we find out it? This is a very valuable research topic.

References

1. Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for satisfiability solvers, SAT 2007, LNCS 4501, 294–299 (2007)
2. Jeroslow, R., Wang, J.: Solving propositional satisfiability problems, Annals of Mathematics and Artificial Intelligence, 1, 167–187 (1990)
3. Biere, A.: Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race 2010, http://baldur.iti.uka.de/sat-race-2010/descriptions/solver_1+2+3+6.pdf
4. Heule, M. : March: towards a look-ahead SAT solver for general purposes, Master thesis, 2004.
5. Chen, J.C.: Building a Hybrid SAT Solver via Conflict-driven, Look-ahead and XOR Reasoning Techniques, SAT 2009, LNCS 5584, 298–311 (2009)
6. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L.T., Malik, S.: Chaff: Engineering an Efficient SAT Solver, Design Automation Conference (DAC) (2001)
7. Han, H., Somenzi, F.: On-the-fly clause improvement, SAT 2009, LNCS 5584, 209–222 (2009)
8. Sörensson, N., Biere, A.: Minimizing Learned Clauses, SAT 2009, LNCS 5584, 237–243 (2009)
9. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers, IJCAI 2009, 399–404 (2009)
10. Chen, J.C.: Phase Selection Heuristics for Satisfiability Solvers, http://arxiv.org/abs/1106.1372
11. Audemard, G., Lagniez, J.M., Mazure, B., Saü, L.: On Freezing and Reactivating Learnt Clauses, SAT 2011, LNCS 6695, 188–200 (2011)
12. Gomes, C.P., Selman, B., Crato, N: Heavy-tailed distributions in combinatorial search. Principles and Practice of Constraint Programming, pp. 121–135 (1997)