Important ecosystem function, low redundancy and high vulnerability: The trifecta argument for protecting the Great Barrier Reef's tabular *Acropora*

Juan C. Ortiz1 | Rachel J. Pears2 | Roger Beeden2 | Jen Dryden2 | Nicholas H. Wolff3 | Maria del C. Gomez Cabrera1 | Peter J Mumby4,5

1 Australian Institute of Marine Science, Townsville, Queensland, Australia
2 Great Barrier Reef Marine Park Authority, Townsville, Queensland, Australia
3 Global Science, The Nature Conservancy, Brunswick, Maine, USA
4 School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
5 Australian Research Council Centre of Excellence for Coral Reef Studies, Douglas, Queensland, Australia

Abstract

Identifying organisms that play an important role in maintaining ecosystem function is a key aspect of resilience-based management. For Australia’s Great Barrier Reef (GBR), we found that the recovery ability of shallow exposed fore-reefs is more than 14 times higher when tabular *Acropora* are present. The disproportionate role that tabular *Acropora* play appears to be driven by a combination of traits including high recruitment, high growth rate and, importantly, large maximum colony sizes. Despite this key role, tabular *Acropora* are highly sensitive to most pressures. We compile evidence suggesting that if tabular corals were to decline or disappear on the GBR, the potential for reef recovery on exposed fore-reefs would be considerably slowed. We then consider the merits of placing special emphasis on the protection of tabular *Acropora* within the management of the GBR. Importantly, we recognise that an analysis of costs and benefits of such recognition is vital before any change is implemented. Actions might include targeted crown-of-thorns starfish control, anchoring restrictions and protection for tabular corals on reefs identified as essential for their larval dispersal. In addition, targeted communications about the critical importance of these highly recognisable corals may boost community support and participation in their protection.

KEYWORDS
coral reef recovery rate, ecosystem functioning, ecosystem-based management, functional redundancy, functional role, Great Barrier Reef, resilience-based management, species prioritization, species protection, tabular *Acropora*

1 | INTRODUCTION

Resilience-based management has become a common tool for environmental managers (Anthony et al., 2015; Berkes, 2012; McLeod et al., 2019; McLeod & Leslie, 2009). Although preserving biodiversity continues to be a paramount goal of management agencies, maintaining the ecological functioning of the ecosystems being managed has become crucial given the predicted increase in the...
frequency and/or intensity of disturbances in most world ecosystems (Long et al., 2015).

One of the critical properties of an ecosystem’s function is its ability to recover after disturbances (Cole et al., 2014; Veraart et al., 2012). Given that reductions in recovery rate have been recently documented for several terrestrial and marine ecosystems (Anderson-Teixeira et al., 2013; Ortiz et al., 2018; Turkalo et al., 2017), identifying processes and organisms that play a disproportionate role in the ability of the ecosystem to recover may enable managers to design more effective plans for environmental protection (Flynn et al., 2011; Grman et al., 2010; Oliver et al., 2015; Ortiz, González-Rivero, et al., 2014). Furthermore, as the frequency and intensity of disturbances are expected to increase in the near future, safeguarding the ability of ecosystems to recover in periods between disturbances may become the most effective way to maintain critical ecosystem services.

Autogenic engineers such as corals and trees are the main drivers of physical complexity for the most biodiverse ecosystems (rainforests and coral reefs) and the main providers of habitat for the multitude of organisms inhabiting them (Jones et al., 1994; Nadrowski et al., 2010; Wild et al., 2011). Differences in species characteristics affect the provision and dynamic maintenance of this complexity (Flynn et al., 2011). Although the idea of using a functional approach to explain ecological patterns in coral reefs has been explored in the past (Steneck & Dethier, 1994), only recently has it started to prevail over traditional taxonomic or phylogenetic classifications (Darling et al., 2017; Denis et al., 2017; Madin et al., 2016; Mouillot et al., 2013). In relation to habitat provision in coral reef environments, colony growth form is particularly important. Among coral growth forms, tabular corals provide several ecosystem benefits including tridimensional structure, shelter for fish at different life stages, shelter from wave energy, protection against extreme irradiance for fish and food provision (Graham & Nash, 2013; Hongo & Kayanne, 2011; Johns et al., 2014; Kerry & Bellwood, 2012, 2015; Ortiz, Bozec, et al., 2014; Pratchett, 2007b).

Here, we combine a revision of published information and new analysis from monitoring data to characterise the role tabular corals play on the Great Barrier Reef (GBR). We then evaluate the potential consequences of losing tabular corals on the GBR and propose management that emphasises the protection of critical organisms for maintaining a coral reef’s ability to recover from disturbances.

2 | ECOSYSTEM SERVICES PROVIDED BY TABULAR Acropora

Tabular Acropora provide multiple ecosystem services in coral reefs (Kerry & Bellwood, 2015). Their fast growth rate facilitates a competitive advantage over macroalgae and many other corals, leading to dominance in shallow fore-reefs (Halford et al., 2004; Roelfsema et al., 2018). Although it could be argued that tabular Acropora affect most of the ecosystem services provided by coral reefs, including indirectly through complex ecological interactions, here we will focus on those services more directly influenced by tabular Acropora.

2.1 | As ecosystem engineers

Tabular corals play a significant role in the provision of structural complexity on coral reefs (Denis et al., 2017; Graham & Nash, 2013; Kerry & Bellwood, 2012). Their morphology leads to the creation of a variety of microhabitats of different heights and sizes that can be exploited by a variety of organisms from small epifauna (Vytolina & Willis, 2001) through to small corallivorous fish (Pratchett et al., 2008) to mesopredatory fish (Kerry & Bellwood, 2015). In addition, due to their fast recovery rate, they are one of the few GBR coral type that can provide relatively fast recovery of complexity after structure-altering disturbances such as cyclones (Johns et al., 2014).

2.2 | As habitat for fish

Many reef fish species are highly dependent on tabular Acropora, from small corallivores to midsize and large predators (Kerry & Bellwood, 2015; Pratchett et al., 2008). Several corallivorous fish species show a strong preference for feeding on tabular corals over other coral morphologies (Pratchett, 2005a, 2007b). In some cases, this preference makes them almost entirely dependent on the presence of tabular Acropora (Kerry & Bellwood, 2015). Many midsize and large predators spend significant amount of time under plates of tabular Acropora, leading to different levels of habitat dependency (Kerry & Bellwood, 2015). Perhaps due to this dependency, studies have shown that large reductions in coral cover (in reefs often dominated by tabular corals) lead to reductions in fish diversity and biomass (Bonin, 2012; Cheal et al., 2017; Graham et al., 2007; Munday, 2004).

2.3 | As substrate for coral recruitment

Dead tabular corals provide one of the preferred substrates for coral larval settlement (Yadav et al., 2016). There are
two main mechanisms that are likely to drive this pattern. Coral larvae have a strong preference for settling on crustose coralline algae (CCA) (Babcock & Mundy, 1996; Harrington et al., 2004) and dead tabular coral is often dominated by CCA (Yadav et al., 2016). Secondly, because coral settlement is maximised in shaded areas of shallow coral reefs (Kuffner, 2001; Maida et al., 1994), the underside of dead tabular coral plates provides ideal substrate for coral settlement.

2.4 As regulators of macroalgal abundance

A less well-studied ecosystem benefit provided by tabular *Acropora* is their impact on grazing intensity. Grazing intensity is controlled by the abundance of herbivores, their individual feeding behaviour and the amount of grazable space (Mumby, 2006; Mumby & Steneck, 2008; Williams et al., 2001). When large disturbances reduce live coral cover, grazing occurs over a significantly larger area (the original substrate covered by turf algae and macroalgae plus the new bare substrate provided by the dead coral skeleton) (Bozec et al., 2019; Mumby et al., 2007; Steeneck et al., 2018). As a result, if herbivore biomass is not high enough to compensate for increased grazable space, grazing intensity per unit area may decline, and subsequent coral recovery can be compromised by macroalgal abundance (Cheal et al., 2010; Done, 1992; Hughes, 1994; Mumby, 2009). Within this context, tabular corals likely play an important role in maintaining grazing intensity because they recover space relatively rapidly after disturbance. In other words, recovery of tabular corals may shorten the time grazing intensity remains diluted after disturbances (Johns et al., 2014). Such mechanism influencing grazing intensity may have contributed to the macroalgal bloom observed around Havannah Island on the inshore GBR (Cheal et al., 2010).

2.5 As facilitators of reef recovery

Empirical evidence from the GBR suggests that reefs dominated by tabular *Acropora* tend to recover rapidly (Johns et al., 2014; Linares et al., 2011; Osborne et al., 2011). However, these studies do not focus on the ecological mechanisms of recovery, nor do they explicitly test for differences in recovery as a function of the dominance of specific coral types. Similarly, simulation modelling suggests that tabular *Acropora* are important for coral recovery in the GBR (Ortiz, Bozec et al., 2014), but no formal evaluation of the effect size of the enhancement of recovery rate when tabular *Acropora* are present has been carried out. We therefore undertake such an analysis here.

3 TABULAR *Acropora* AS CATALYSTS FOR REEF RECOVERY IN EXPOSED FORE-REEFS SLOPES

As part of this study, we analysed monitoring data from the GBR to evaluate if the early colonization and growth of remaining tabular corals influence recovery rate, and if other coral types have a similar impact on reef recovery.

3.1 Recovery periods

We used the Australian Institute of Marine Science Long Term Monitoring Program data (Sweatman et al., 2008). The data set contains information for 97 reefs with three sites per reef and five permanent 50-m-long transects per site between 6 and 9 m of depth. The reefs were sampled annually or biannually from 1992 to 2018. All sites in each reef are placed in the northeast flank of the reef. Therefore, this analysis is confined to the upper reef slopes of systems with intermediate wave exposure. These environments have been identified as naturally dominated by tabular acroporids (Madin et al., 2006; Roelfsema et al., 2018; Shimokawa et al., 2014), thus this analysis focuses on whether the recovery of these environments is hindered when tabular corals are not able to fulfil their natural ecological role. However, it is important to highlight that oceanographic and geomorphic properties of reefs or regions may naturally affect the ability of tabular acroporids to dominate some of the study reefs. For this reason, we explored two different data sets (see Supporting Information and Figure S1) to establish that the majority of GBR reefs that have been historically monitored have had at least one flank dominated by tabular *Acropora* in the past.

We identified 57 periods of recovery defined by the following criteria:

- Recovery period must start after a significant reduction in total coral cover or at the beginning of the data set.
- Recovery periods must start with an initial coral cover lower than 10% as we focused on early recovery. Ten percent was chosen to ensure that enough recovery trajectories were available.
- The recovery period must have a minimum duration of at least 5 years.
- The recovery periods must end with the next statistically significant reduction of total coral cover or at the end of the data set.
3.2 Reef level recovery rate

For each recovery period, the instantaneous growth rate (IGR) based on total coral cover was calculated assuming exponential growth. Exponential growth was selected to avoid making assumptions about the reef-specific carrying capacity, or the reef-specific inflection point required for models with logistic behaviour. As the initial coral cover is low for all the recovery periods, and most periods were short (less than 10 years), most recovery periods were within the exponential phase of a logistic curve.

3.3 Influence of different coral types on reef-level recovery rate

To evaluate the contribution of six different coral types to the overall reef recovery rate, we explored the relationship between the relative abundance of each coral type at the end of the recovery period and the overall community reef recovery rate (IGR) calculated based on total coral cover (Figure 1). As the explanatory variable is intrinsically linked to the duration of the recovery period, we explored the potential confounding effect of the differences in the duration of the recovery period on the patterns observed in
Figure 1. We found that the duration of the recovery period did not correlate with either the IGR or the final relative abundance of any of the six coral types (Figures S3 and S4). We found a strong positive relationship between reef recovery rate (IGR) and the final relative abundance of tabular Acropora. There was no significant relationship between the abundance of any other coral type on the IGR, except for a negative one for massive corals (Figure 1). In reefs where the final relative abundance of tabular corals was in the top 10 percentile, recovery was 14 times faster than in reefs where the final abundance of tabular corals was in the bottom 10 percentile (Figure 2a). Although limitation in the number of recovery periods prevented us from formally testing the effect of time in this pattern, it appears tabular Acropora’s final relative abundance after disturbances has not changed over time in the GBR (Figure S2).

These results suggest that the presence of tabular Acropora after disturbances (through new recruitment and/or growth of remaining colonies) serves as a catalyst for boosting recovery of shallow fore-reefs. Importantly, the recovery rates observed on reef areas where tabular Acropora did not boost reef recovery were so low (0.038% a year) that it would take these areas an average of 32 years to recover from 5% to 30% coral cover. In contrast, areas where tabular Acropora boosted recovery achieved 30% coral cover in 7.5 years (Figure 2b). Given the observed and predicted increases in the frequency and intensity of disturbances on the GBR (GBRMPA, 2019), even under the most optimistic climate change scenarios, this low recovery rate in the absence of tabular Acropora would not be enough to keep up with the disturbance regime. Therefore, taking action directed at protecting and conserving populations of tabular Acropora could become a key tool to maintain resilience in this physical environment.

4 WHAT IS SPECIAL ABOUT TABULAR CORALS?

Based on the life trait information of different coral types, we explored particularities in tabular Acropora that could explain the disproportionate role they play in coral recovery rates. The traits that might most intuitively explain tabular Acropora influence on reef recovery are colony
somatic growth and recruitment rate. Tabular Acropora are among the fastest growing corals on exposed reef slopes in the GBR (Gold & Palumbi, 2018), but other coral growth forms such as corymbose or branching Acropora have comparable growth rates (Ortiz, Bozec, et al., 2014) and did not show the same ability to enhance reef recovery. Similarly, although species-specific data on recruitment within Acropora are scarce, the available information suggests that although tabular Acropora are good recruiters, other growth forms and taxa, such as corymbose Acropora and pocilloporids, have similar recruitment rates (Ortiz, Bozec, et al., 2014; Wallace, 1985). In contrast, one particularly unique characteristic of tabular Acropora is their large maximum diameter compared with other GBR coral with similar growth and recruitment rates.

4.1 Effect of maximum diameter on the ability of tabular corals to enhance reef recovery

To explore the potential effect that the maximum diameter of tabular corals may have on its ability to enhance coral recovery rate, we use a previously published and validated spatially explicit simulation model of GBR reefs (Ortiz, Bozec, et al., 2014; Ortiz et al., 2018).

The individual-based model simulates the population dynamics of coral colonies distributed across a regular square lattice of 20 × 20 cells. Each cell contains a mixture of living substrata comprising multiple coral colonies and patches of algae. The model captures rates of recruitment, growth, reproduction and mortality of corals and algae as well as their competitive interactions. The model was implemented in MATLAB as a sequence of vectorised instructions so that all the cells of the lattice grid were processed simultaneously for a given matrix. The model was validated using a large independent data set from the GBR; this validation included long-term trajectories of 19 different reefs across a 1200-km section spanning the south and central GBR. We fixed the number of recruits and initial coral cover in all simulations. We simulated different maximum diameters tabular Acropora could grow to. We then plotted tabular coral cover trajectories for each maximum diameter (Figure 3).

As the maximum diameter of tabular Acropora is reduced in the model runs (while maintaining all other parameters unchanged), the simulated recovery trajectories are similar for the initial 5 years (Figure 3). However, a strong divergence is observed after 5 years with much faster recoveries as the maximum diameter increases. After 10 years, the yearly average recovery rate when maximum diameter is 40 cm (such as the one observed in corymbose corals) is 1.1% per year. In contrast, when the maximum diameter is 90 cm (the standard parametrization for tabular Acropora) the average recovery rate is 4.2% per year. The observed differences in recovery rate at different maximum diameters are likely to be the consequence of coral colonies with a planar circular shape increasing in surface area (cover) quadratically with diameter. This analysis suggests that the observed increase in reef recovery rate when tabular Acropora dominates during the recovery period may be a consequence of the combination of

FIGURE 3 Modelled recovery of tabular coral populations as a function of different maximum diameters. Each colour represents simulations of tabular Acropora cover trajectories (left y-axis) for a particular maximum diameter (specified in right y-axis). Each line represents a simulation.
somatic growth rate, high recruitment rate and large maximum diameter.

5 | SENSITIVITY OF TABULAR Acropora TO DIFFERENT DISTURBANCES

Tabular Acropora are among the most sensitive coral morphologies to both natural and anthropogenic pressures. When considering the leading forces driving the degradation of GBR reefs, it becomes clear that the ecosystem services provided by tabular corals are at risk.

5.1 | Coral bleaching

Tabular Acropora have been consistently ranked among the most sensitive corals to the effects of extreme thermal events (Hughes et al., 2018; Loya et al., 2001; Marshall & Baird, 2000). During the three best documented mass bleaching events in the GBR (1998, 2002 and 2016/17), tabular Acropora showed some of the highest levels of bleaching susceptibility and bleaching-related mortality of all coral types (Baird & Marshall, 2002; Berkelmans et al., 2004; Hughes et al., 2018; Marshall & Baird, 2000). This pattern was also observed across the Pacific and Indian oceans (DeCarlo et al., 2017; Loya et al., 2001; McClanahan et al., 2004; Pisapia et al., 2016; Pratchett et al., 2013). Tabular corals naturally inhabit relatively shallow waters, and their morphology maximises the harvesting of light. Therefore, they are particularly sensitive to photo damage and the concomitant effect of high irradiance and high temperature during extreme thermal stress events (Barshis et al., 2013; Gold & Palumbi, 2018). In some areas of the world, tabular corals have suffered dramatic reduction in abundance due to bleaching and subsequent recovery failure (Pisapia et al., 2016; Pratchett et al., 2013).

5.2 | Ocean acidification

The effect of ocean acidification (OA) on corals and particularly on calcification rates has been the focus of intense debate (Bove et al., 2020; Mollica et al., 2018). Although some studies have identified internal upregulation of pH as an acclimatory mechanism for coral to overcome the effect of OA (McCulloch et al., 2012), recent laboratory studies have challenged the magnitude of resistance that this mechanism may provide (Comeau et al., 2019). Reductions in calcification rates in response to natural and controlled reductions in pH have been documented in several coral species (Fabricius et al., 2011; Guo et al., 2020; Mollica et al., 2018), including tabular acroporids (Anderson et al., 2019). If these effects are realised, tabular corals may be particularly threatened by OA due to its morphology. Because these corals are attached to the substrate through a thin (albeit strong) stalk, if the skeletal density of tabular corals is reduced due to the effects of OA, the incidence of colony dislodgement could increase significantly (Fabricius et al., 2011; Hennige et al., 2015; Madin et al., 2008, 2012; Mollica et al., 2018). In contrast to many other coral types, the consequence of colony dislodgement for tabular Acropora is usually whole colony mortality (Madin & Connolly, 2006). Therefore, the reduction in the ability of tabular corals to provide the discussed ecosystem benefits may be exacerbated by the effects of OA.

5.3 | Cyclones

Tabular Acropora require high water flow to thrive, showing maximum dominance in areas with intermediate to high wave exposure (Roelfsema et al., 2018). However, due to their morphology, tabular Acropora have been shown to be among the growth forms most sensitive to extreme wave exposure, mechanistically (Madin, 2005; Madin et al., 2006; Madin & Connolly, 2006) as well as empirically (Roelfsema et al., 2018). There are a number of examples of significant reductions in the abundance of tabular corals in the GBR after cyclones (Beeden et al., 2014; Cheal et al., 2010; Johns et al., 2014; Madin et al., 2008). Even though fast recovery has been observed repeatedly (Osborne et al., 2011), future reductions in larval supply if adjacent coral stocks are simultaneously depleted could jeopardise the ability of tabular Acropora to recolonize after intense storms.

5.4 | Crown-of-thorns starfish outbreaks

Early studies observed that crown-of-thorns starfish (CoTS) do not prey on all coral types equally and actively favour corals of the genus Acropora (De’ath & Moran, 1998). Subsequent analysis demonstrated that within Acropora, tabular forms are preferred over all other forms by a factor of between 5 and 35 times (Pratchett, 2007a). Consequently, even relatively modest CoTS outbreaks could have devastating effects on tabular corals (Pratchett, 2005b). In some cases, recovery after a CoTS outbreak has been poor, even years after the initial event (Lourey et al., 2000; Seymour & Bradbury, 1999).

5.5 | Coral diseases

Tabular corals have also been shown to be highly susceptible to coral diseases (Haapkylä et al., 2013; Hobbs et al., 2015; Montano et al., 2016; Roff et al., 2006). The main group of diseases affecting tabular Acropora to date
is White Syndromes (WS) (Bourne et al., 2015). Disease outbreaks have had significant impacts on populations of tabular corals in the Pacific (Brodnicke et al., 2019; Hobbs et al., 2015; Roff et al., 2011). During a single WS outbreak, 36% of all tabular Acropora were killed in Christmas Island, with some sites losing up to 96% of tabular colonies (Hobbs et al., 2015). Similarly, a single outbreak of WS affected more than 50% of all large tabular corals in the Capricorn Bunker Group (southern GBR). Due to the fast progression of the disease, many of these colonies died, reducing the overall cover of tabular corals in the area (Roff et al., 2011). Although the population recovered over time, potentially as a consequence of the high connectivity of the GBR, this example demonstrates how sensitive this growth form is to disease outbreaks.

5.6 | Water quality

Tabular corals are relatively rare in inshore environments characterised by low irradiance, high nutrients and sedimentation (Done, 1982; Fabricius et al., 2005; Shimokawa et al., 2014). Tabular corals have limited ability to supplement energetic needs through particle feeding at least in comparison to other coral types such as massive corals (Ferrier-Pages et al., 2011; Palardy et al., 2005; Porter, 1976). Furthermore, their morphology makes the removal of sediment through mucus secretion difficult (Stafford-Smith & Ormond, 1992). As the growth rates of fast growing corals such as tabular Acropora are linked to light availability (Marubini et al., 2001; Roth et al., 1982), reductions in light such as the ones observed in the mid-shelf of the central GBR (Fabricius et al., 2014, 2016; Logan et al., 2013) have the potential to significantly reduce the growth rate of tabular corals. If light-driven reductions in growth rate are prolonged and coincide with reduced abundance of tabular Acropora because of other disturbances, together these circumstances could prevent tabular corals from providing the rapid recovery rates observed in the previous analysis.

5.7 | Anchor damage

Although specific information on the relative susceptibility of different coral growth forms to anchor damage is scarce, the morphology of tabular corals makes them particularly sensitive (Riegl, & Riegl, 1996). While other coral types, such as branching thickets, may suffer partial colony mortality from anchor damage, this can actually favour reproduction by fragmentation (Riegl & Velimirov, 1991). However, tabular corals will more likely experience whole colony mortality (Liddle, 1991; Riegl, & Riegl, 1996). As discussed previously, the stalk of tabular Acropora is important for whole colony survival (Madin, 2005) and can be broken either by the anchor hitting the colony when deployed, through warp movement while a vessel is at anchor, or as a consequence of retrieving an anchor lodged underneath a tabular coral. As tabular Acropora grow to large sizes, the per capita likelihood of the tabular population to be affected by anchor damage is larger than for other coral types.

6 | FUNCTIONAL REDUNDANCY OF TABULAR ACROPORA ON THE GBR

It has been argued that the GBR has a low risk of losing functional roles due to the amount of redundancy in the system (Bellwood et al., 2003; Flynn et al., 2011; Hoey & Bellwood, 2009; Pillar et al., 2013). There are more than 100 species of Acropora on the GBR (Wallace, 1999) suggesting a high level of redundancy which should minimise the likelihood of function loss. However, there are only 10 species of tabular Acropora on the GBR, and of those, only three are abundant and widespread (Acropora hyacinthus, Acropora cytherea and Acropora clathrata) (Veron, 1986, 2000; Wallace, 1999). This low level of functional redundancy increases the risk of losing their functional role. There are documented examples where the reliance of ecosystem function on a low number of species has led to erosion of ecosystem recovery rate. One such example is the loss of acroporids in the Caribbean.

Although there is no growth form in the Caribbean that is morphologically equivalent to tabular corals in the Pacific, the two species of Acropora previously abundant on Caribbean reefs (Acropora cervicornis and Acropora palmata) used to play an important role in reef recovery (Aronson & Precht, 2001; Bak, 1983). Previous studies have pointed out that Pacific reefs appear to recover more frequently after disturbances than Caribbean reefs over the last 30 years (Baker et al., 2008; Roff & Mumby, 2012). Furthermore, in a comparison of the ecosystem benefits expected for Caribbean and Pacific reefs under different climate change scenarios, Ortiz, Bozec, et al. (2014) demonstrated that the fast recovery observed in Pacific reefs would be diminished if tabular corals were absent (Figure 4).

Despite the vast ecological differences between the Pacific and the Caribbean, the Caribbean case provides an example of how low functional redundancy represents a high risk of losing ecosystem function. Even though there is considerable uncertainty when predicting the consequences of losing tabular Acropora on the GBR, taking early action to prevent steep declines in the populations of these corals could be crucial to reduce the risk of compromising the resilience of the GBR ecosystem.
7 | A FUNCTIONAL APPROACH FOR RESILIENCE-BASED MANAGEMENT

7.1 | A shift in focus from maintaining biodiversity to enhancing key ecosystem functions

Coral reef management around the world has traditionally been driven by principles of maintaining biodiversity and ecosystem functioning (Flynn et al., 2011; Le Saout et al., 2013; Oliver et al., 2015; Pimm et al., 2014; Precht et al., 2004; Selig et al., 2014). The majority of species-specific management actions are focussed on preventing species extinction or protecting and managing species of particular social, economic or cultural interest. Examples include Dugongs (Butler et al., 2012; Preen, 1998), sea turtles (Butler et al., 2012; Mrosovsky, 2003) and Caribbean Acropora (Precht et al., 2004) among others. There are some examples of species being protected due to their role in the ecosystem. Perhaps the best known and oldest examples involve the protection of top predators both in terrestrial and marine environments (Ritchie et al., 2012; Sergio et al., 2006; Terborgh & Estes, 2013). In the past 30 years, a significant body of work has illustrated the cascading effects, including ecosystem collapse, of losing top predators (Terborgh & Estes, 2013). Terrestrial examples include the loss of wolves in U.S. forests, leading to an unprecedented population expansion of herbivores, and subsequent habitat degradation due to intense grazing (McLaren & Peterson, 1994; Ripple & Beschta, 2007). Similarly, the loss of top predators in tropical rainforest has been the cause of ecosystem collapse within a few decades (Terborgh et al., 2001). In marine ecosystems, some examples include the decline of the cod and seal populations in the northern Atlantic leading to loss of ecosystems’ complexity and function (Springer et al., 2003; Steneck et al., 2013). Recently, the functional role of species important for maintaining resilience of coral reef ecosystems has started to be considered under a resilience-based management framework. Herbivorous fish have been given legal protection in some Caribbean reefs based on the role they play in ecosystem function (Kaplan et al., 2015). Empirical and theoretical evidence demonstrated that the loss of herbivore populations could lead coral reef ecosystems to become entrapped in a macroalgal-dominated basin of attraction, making it almost impossible for corals to recover (Hongo, 2012; Mumby et al., 2006, 2007, 2013; Mumby & Steneck, 2008). Although some coral species have been granted legal protection based on their threatened status (NOAA, 2014), and Acropora hyacinthus (a tabular coral) has been designated as ‘Near Threatened’ by the IUCN Red List (Aeby et al., 2008), there are no examples to date where coral species have been conferred legal protection based on their role in maintaining coral reef ecosystem resilience.

7.2 | How can targeted management actions protect tabular corals?

The 10-fold enhancement of coral recovery highlighted in this study, combined with susceptibility to multiple disturbances (Aeby et al., 2008), and the low functional
redundancy of the GBR (Figure 5) suggest that special attention should be given to the maintenance of populations of tabular Acropora in (wave) exposed reef environments (GBRMPA, 2017). Reducing risks associated with current and predicted pressures to species that make key contributions to reef resilience through recovery as well as enhancing populations of these species are key elements of effective resilience-based coral reef management (Anthony et al., 2015; GBRMPA, 2017; McLeod et al., 2019).

We examined potential management options for tabular corals and identified three main types of management actions: protect, restore and adapt. We provide examples for each of these three types of management, how they would benefit tabular corals and the degree of anticipated ecological benefit (Table 1). The relative ecological benefit was ranked from low to high based on the current scale of implementation and the expected feasibility and scalability of established and proposed actions in the future. Table 1 does not represent an exhaustive list of every management action that could help protect tabular corals; rather, it includes examples that have already been implemented (but not targeted to a specific coral taxa) or are considered possible future options. Furthermore, this is not a list of specific recommendations that should be prioritised over new or existing management actions, as a cost–benefit analysis would be required to inform such a prioritization which is outside the scope of this article.

By specifically targeting tabular corals, ‘protective’ management actions would provide direct benefits to coral populations, exposed habitats and individual colonies (Table 1). Some of these protective actions, such as in-water CoTS culling, have demonstrated direct benefits to tabular corals on target reefs of the GBR, with the magnitude of the benefit dependent on the scale of implementation. These culling programs typically target only a limited number of reefs owing to logistic constraints (Babcock et al., 2016; Pratchett et al., 2019). However, prioritizing reefs and reef habitats that are particularly important for the dispersal and growth of tabular Acropora (Hock et al., 2016) could rapidly enhance the ecological and economic effectiveness of CoTS control and enhance overall coral recovery in wave-exposed environments of the GBR. Recent technological innovations have identified other potential protective measures such as shading and cooling. For example, reducing thermal stress by marine cloud brightening could provide low to moderate ecological benefits (Latham et al., 2013; Stjern et al., 2018), particularly if logistical details and scalability are resolved. Other protective actions are based on behavioural change, by regulation or voluntary uptake (e.g. stewardship and stakeholder engagement), for example the reduction of anchor damage associated with recreational and commercial boating activities in tabular coral habitats. At present, such protective measures are focused on high-use areas rather than specific habitats. A proactive approach to reduce anchor damage in preferred tabular Acropora habitats, guided by new GBR habitat maps (Roelfsema et al., 2018) and using available management tools with a coordinated education and stewardship campaign (such as that deployed in the Southern GBR; Beeden et al., 2014), could significantly increase protection effectiveness.

Restorative actions are mainly focused on promoting reef recovery (Ceccarelli et al., 2018) such as improving physical conditions for recruitment (e.g. rubble consolidation). At present, these actions would have relatively low to medium ecological benefit due to limitations of large-scale implementation. Recent advances in large-scale techniques to increase coral recruitment (e.g. artificially enhancing larval supply – Dela Cruz & Harrison, 2017) could deliver medium levels of ecological benefit (Table 1). Although this approach has proven to be effective in other corals species, albeit at a small scale, perfecting these techniques for tabular Acropora would be a logical next step towards resilience-based management.

Regardless of the effectiveness of protective and restorative measures, corals will still be vulnerable to the ongoing impacts of climate change, such as coral bleaching, increasing storm intensity and OA. Novel interventions (e.g. holobiont enhancement through assisted evolution) are emerging that focus on limiting the effect of stressors on corals and some could potentially be implemented at ecologically relevant scales (Chan et al., 2018; McLeod et al., 2019; Richards, 2018; van Oppen et al., 2018). Adaptation actions could provide low to medium ecological benefits depending on the scale of the implementation and the level of enhancement achieved (Table 1). Among these interventions, using assisted evolution to artificially enhance coral’s capacity to tolerate further ocean warming shows promise for reducing reef degradation (van Oppen et al., 2018). Species of tabular Acropora should be among the first targeted for assisted evolution to maximise
TABLE 1 Example management actions that may help protect tabular *Acropora* in the GBR

Management type	Example measures	Target	Type of benefits to tabular corals	Anticipated ecological benefit at present	Anticipated ecological benefit after further research and development
Protect	Prioritise crown-of-thorns starfish culling in preferred tabular coral habitat and in areas that are crucial for the dispersion of larvae by tabular *Acropora*	Colony habitat population	Maintaining population state by reducing predation, increasing population recovery rate	Medium	Medium to high depending on spatial scale
	Marine cloud brightening in areas identified as essential for the protection or recovery of tabular corals	Habitat population	Maintain population state or increase recovery rate by reducing intensity of disturbance (extreme temperature)	Not ready for implementation	Low to medium depending on scale of implementation Limited empirical information on feasibility
	Reduce Marine Park user anchor damage (e.g. through reef protection markers, no anchoring areas, moorings, maps and education) in tabular coral habitats	Colony habitat	Maintaining population state by reducing colony mortality	Low due to current limitations for broad implementation	Medium. Level of benefit could increase when GIS layers of preferred habitat for tabular corals are available
Restore	Target tabular corals in programs focusing on active larval re-seeding of corals	Population	Increasing recovery rate by enhancing larval supply	Low only tested at very small spatial scales	Medium. Recent innovations suggest potential for increased benefit in the near future
	Rubble consolidation to promote recovery after disturbances	Habitat	Increasing recovery rate by facilitating recruitment	Minimal	Low to medium due to logistical limitations in implementation Could increase benefit in the future with new innovations
Adapt	Target tabular corals in programs using innovative actions aimed at enhancing coral holobiont tolerance to multiple stressors	Colony population	Maintaining population state by reducing sensitivity to disturbances	Not ready for implementation	Low to medium depending on level of enhancement and scale of implementation Recent innovations suggest potential for increased benefit in the future
	Include tabular *Acropora*’s key life traits (fast growth rate, high recruitment ability and large maximum colony size) as key targets in assisted evolution approaches	Colony population	Maintaining population state by reducing sensitivity to disturbances	Not ready for implementation	Low to medium depending on level of enhancement and scale of implementation Recent innovations suggest potential for increased benefit in the future
ecosystem benefit (Voolstra et al., 2015). Furthermore, the traits identified in this study that are important for the provision of fast recovery (i.e. high growth rate and large maximum diameter) should be explored along with tolerance to disturbance traits in the targets of assisted evolution programs.

7.3 | Special management status of tabular corals as a catalyst for effective resilience-based management

As the anticipated ecological benefits from individual management actions were generally low to medium and given that some of the actions considered are still in the development phase, a package of measures may be needed for tabular Acropora. This will help to ensure tabular corals are not subject to unsustainable pressures and their abundance is maintained or enhanced to support reef recovery. Species (or ecosystem) protection by legislation under one or more jurisdictions (Miller et al., 2007; Rodriguez et al., 2015) represents an additional action, which would confer special status at regional to international levels to protect and promote the recovery and enhancement of designated tabular coral species (Aebly et al., 2008). Whether such actions would galvanise effort to improve the efficacy of management actions is not yet clear but would warrant exploration. As has been the case in the Caribbean, regulatory protection could also serve to influence research priorities to advance understanding of tabular corals (e.g. taxa-specific ‘omics’ approaches – Voolstra et al., 2015). Furthermore, stakeholder engagement, community support and participation in resilience-based actions could be enhanced by targeted communications and stewardship campaigns about the critical role that tabular Acropora play in the resilience of coral reef ecosystems.

It is important to note, however, that providing any taxa with special management status has additional consequences including the need for continual monitoring and reporting, as well as the actual cost of providing protection. Consequently, a cost–benefit analysis and other regulatory evaluations would need to be performed before adoption.

8 | THE RISK OF SELECTING LOW-DIVERSITY, TABULAR-DOMINATED REEFS AND POTENTIAL ASSOCIATED LOSS OF OTHER ECOSYSTEM FUNCTIONS

If special attention is given to tabular Acropora, there might be a perceived risk that actively increasing the relative abundance of this group could potentially lead to a reduction of overall coral diversity. This perceived risk arises because many GBR reef areas that are highly dominated by tabular corals have lower coral diversity in comparison to areas where tabular Acropora is less dominant (Done, 1982; Johns et al., 2014). However, the following factors suggest that the risk of reducing GBR diversity by protecting tabular corals is low.

8.1 | Natural distribution of tabular Acropora

In general, tabular corals only dominate reef areas where the natural wave exposure is favourable for them (Madin et al., 2006; Roelfsema et al., 2018; Shimokawa et al., 2014). In the absence of a large, recent disturbance, tabular corals often dominate the flanks of mid-shelf and offshore reefs of the GBR with intermediate wave exposure (Done, 1982; Linares et al., 2011; Roelfsema et al., 2018). Furthermore, historical records suggest that tabular corals have been highly abundant in the GBR over geological time (Montaggioni, 2005). However, areas of the reef protected from wave exposure are less commonly dominated by tabular corals (Roelfsema et al., 2018). The most likely explanation for this spatial distribution is that tabular corals require relatively high flow and high-light environments (Shimokawa et al., 2014). Similarly, in areas with extreme wave exposure tabular corals are rare, as they tend to be dislodged by hydrodynamic forces (Madin, 2005; Madin et al., 2006; Madin & Connolly, 2006; Shimokawa et al., 2014; Stafford-Smith & Ormond, 1992). Therefore, even if the management actions to protect tabular corals are successful, it would only lead to ensuring their abundance remains high in the areas that are naturally favourable for them, as opposed to increasing their abundance in habitats where they are less successful.

8.2 | Benefit to other coral types

Whilst the actions considered here are centred on tabular Acropora, none are likely to have negative effects on other coral species. In fact, the protection of tabular Acropora is likely to have positive effects on other growth forms. As explained earlier, tabular Acropora provide many ecosystem services, some of which are crucial for the success of other coral types. In particular, there is some evidence that coral larva tend to prefer recruiting on dead tabular coral (Yadav et al., 2016). Although recruiting on tabular corals in an area with high dominance of live tabular Acropora may lead to a low survivorship due to competition, in transition areas between habitats that are favourable to tabular Acropora and habitats that are not, this preferential
CONCLUDING REMARKS

In this article, we have demonstrated the critical importance of tabular Acropora to the function of a widespread coral reef habitat on the GBR. Indeed, approximately, 30% of GBR fore-reef habitat has the requisite wave exposure for tabular Acropora. Yet, this functional group does not always form a key part of reef recovery even when the environment is appropriate (Figure 1). The causes of periodic ‘failures’ of tabular coral recovery are unclear but the high sensitivity of these corals to most stressors implies that considerable scope exists for management to improve reef recovery and ensure that tabular corals lead recovery more often. More detailed studies are needed to explore the specific opportunities that management provides to facilitate recovery in these habitats. Assuming such scope exists, then actions prioritised to manage threats in this habitat should serve to deliver a relatively high ‘bang for buck’ in terms of facilitating recovery after disturbance. In short, the case to consider the importance of tabular corals as part of a reef-wide resilience strategy seems clear. Further studies are needed to examine the scope for management efficacy and evaluate the cost and benefits of a suite of interventions across multiple coral community types.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the Advance Queensland Fellowship to JCO as a partial funder of this work. The authors are also grateful to Yves-Marie Bozec for discussions about the data analysis and David Wachenfeld for comments on the manuscript.

AUTHOR CONTRIBUTIONS

JCO and PJM conceived the study. JCO, RJP, RB and JD conceptualised management section. JCO and NHW ran the analysis. JCO and MdCGC designed and edited the images. All authors contributed to writing and editing the manuscript.

DATA ACCESSIBILITY STATEMENT

All data will be made accessible from the authors on request.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ORCID

Peter J Mummy © https://orcid.org/0000-0002-6297-9053

REFERENCES

Aeby, G., Lovell, E., Richards, Z., Delbeek, J. C., Reboton, C., & Bass, D. (2008). Acropora hyacinthus. The IUCN Red List of Threatened Species 2008. https://doi.org/10.2305/IUCN.UK.2008.2.RLTS.T133479A3765052.en

Anderson, K. D., Cantin, N. E., Casey, J. M., & Pratchett, M. S. (2019). Independent effects of ocean warming versus acidification on the growth, survivorship and physiology of two Acropora corals. Coral Reefs, 38(6), 1225–1240.

Anderson-Teixeira, K. J., Miller, A. D., Mohan, J. E., Hudiburg, T. W., Duval, B. D., & DeLucia, E. H. (2013). Altered dynamics of forest recovery under a changing climate. Global Change Biology, 19(7), 2001–2021.

Anthony, K. R. N., Marshall, P. A., Abdulla, A., Beeden, R., Bergh, C., Black, R., Eakin, C. M., Game, E. T, Gooch, M., Graham, N. A. J, Green, A., Heron, S. F., van Hooidonk, R., Knowland, C., Manguiharai, S., Marshall, N., Maynard, J. A., McGinnity, P., McLeod, E., … Wear, S. (2015). Operationalizing resilience for adaptive coral reef management under global environmental change. Global Change Biology, 21(1), 48–61. https://doi.org/10.1111/gcb.12700

Aronson, R. B., & Precht, W. F. (2001). White-band disease and the changing face of Caribbean coral reefs. Hydrobiologia, 460, 25–38.

Babcock, R., & Mundy, C. (1996). Coral recruitment: Consequences of settlement choice for early growth and survivorship in two scleractinians. Journal of Experimental Marine Biology and Ecology, 206(1-2), 179–201. https://doi.org/10.1016/s0022-0981(96)02622-6

Babcock, R. C., Dambacher, J. M., Morello, E. B., Plaganyi, E. E., Hayes, K. R., Sweatman, H. P. A., & Pratchett, M. S. (2016). Assessing different causes of Crown-of-Thorns Starfish outbreaks and appropriate responses for management on the Great Barrier Reef. PLoS ONE, 11(12), e0169048. https://doi.org/10.1371/journal.pone.0169048

Baird, A. H., & Marshall, P. A. (2002). Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef. Marine Ecology Progress Series, 237, 133–141. https://doi.org/10.3354/meps237133

Bak, R. P. M. (1983). Neoplasia, regeneration and growth in the reef-building coral Acropora palmata. Marine Biology, 77(3), 221–227. https://doi.org/10.1007/bf00395810

Baker, A. C., Glynn, P. W., & Riegl, B. (2008). Climate change and coral reef bleaching: An ecological assessment of long-term impacts, recovery trends and future outlook. Estuarine Coastal and Shelf Science, 80(4), 435–471. https://doi.org/10.1016/j.ecss.2008.09.003

Barshis, D. J., Ladner, J. T., Oliver, T. A., Seneca, F. O., Traylor-Knowles, N., & Palumbi, S. R. (2013). Genomic basis for coral resilience to climate change. Proceedings of the National Academy of Sciences of the United States of America, 110(4), 1387–1392. https://doi.org/10.1073/pnas.1210224110

Beeden, R., Maynard, J., Johnson, J., Dryden, J., Kininmonth, S., & Marshall, P. (2014). No-anchoring areas reduce coral damage in an effort to build resilience in Keppel Bay, southern Great Barrier
Reef. *Australasian Journal of Environmental Management, 21*(3), 311–319. https://doi.org/10.1080/14486563.2014.881307

Bellwood, D. R., Hoey, A. S., & Choat, J. H. (2003). Limited functional redundancy in high diversity systems: Resilience and ecosystem function on coral reefs. *Ecology Letters, 6*(4), 281–285. https://doi.org/10.1046/j.1461-0248.2003.00432.x

Berkelmans, R., De’ath, G., Kininmonth, S., & Skirving, W. J. (2004). A comparison of the 1998 and 2002 coral bleaching events on the Great Barrier Reef: Spatial correlation, patterns, and predictions. *Coral Reefs, 23*(1), 74–83. https://doi.org/10.1007/s00338-003-0353-y

Berkes, F. (2012). Implementing ecosystem-based management: Evolution or revolution? *Fish and Fisheries*, 13(4), 465–476.

Bonin, M. C. (2012). Specializing on vulnerable habitat: *Acropora* selectivity among damselfish recruits and the risk of bleaching-induced habitat loss. *Coral Reefs, 31*(1), 287–297. https://doi.org/10.1007/s00338-011-0843-2

Bourne, D. G., Ainsworth, T. D., Pollock, F. J., & Willis, B. L. (2015). Towards a better understanding of white syndromes and their causes on Indo-Pacific coral reefs. *Coral Reefs, 34*(1), 233–242. https://doi.org/10.1007/s00338-014-1239-x

Bove, C. B., Umbanhowar, J., & Castillo, K. D. (2020). Meta-analysis reveals reduced coral calcification under projected ocean warming but not under acidification across the Caribbean Sea. *Frontiers in Marine Science*, 7, 127.

Bozec, Y.-M., Doropoulos, C., Roff, G., & Mumby, P. J. (2019). Transient grazing and the dynamics of an unanticipated coral-algal phase shift. *Ecosystems, 22*(2), 296–311. https://doi.org/10.1007/s10021-018-0271-z

Brodnicke, O. B., Bourne, D. G., Heron, S. F., Pears, R. J., Stella, J. S., Smith, H. A., & Willis, B. L. (2019). Unraveling the links between heat stress, bleaching and disease: Fate of tabular corals following a combined disease and bleaching event. *Coral Reefs, 38*(4), 591–603. https://doi.org/10.1007/s00338-019-01813-9

Butler, J. R. A., Tawake, A., Skewes, T., Tawake, L., & McGrath, V. (2012). Integrating traditional ecological knowledge and fisheries management in the Torres Strait, Australia: The catalytic role of turtles and dugong as cultural keynote species. *Ecology and Society, 17*(4), 34. https://doi.org/10.5751/es-05165-170434

Ceccearelli, D. M., Loffler, Z., Bourne, D. G., Al Moajil-Cole, G. S., Bostrom-Einarsson, L., Evans-Illidge, E., Fabricius, K., Glasl, B., Marshall, P., McLeod, I., Read, M., Schaffelke, B., Smith, A. K., Jorda, G. T., Williamson, D. H., & Bay, L. (2018). Rehabilitation of coral reefs through removal of macroalgae: State of knowledge and considerations for management and implementation. *Restoration Ecology, 26*(5), 827–838. https://doi.org/10.1111/rec.12852

Chan, W. Y., Peplow, L. M., Menendez, P., Hoffmann, A. A., & van Oppen, M. J. H. (2018). Interspecific hybridization may provide novel opportunities for coral reef restoration. *Frontiers in Marine Science, 5*, 160. https://doi.org/10.3389/fmars.2018.00160

Cheal, A. J., MacNeil, M. A., Cripps, E., Emslie, M. J., Jonker, M., Schaffelke, B., & Sweatman, H. (2017). The threat to coral reefs from more intense cyclones under climate change. *Global Change Biology, 23*(4), 1511–1524. https://doi.org/10.1111/gcb.13593

Cole, L. E., Bhagwat, S. A., & Willis, K. J. (2014). Recovery and resilience of tropical forests after disturbance. *Nature Communications*, 5, 3906.

Comeau, S., Cornell, C. E., DeCarlo, T. M., Doo, S. S., Carpenter, R. C., & McCulloch, M. T. (2019). Resistance to ocean acidification in coral reef taxa is not gained by acclimatization. *Nature Climate Change, 9*(6), 477–483.

Darling, E. S., Graham, N. A., Januchowski-Hartley, F. A., Nash, K. L., Pratchett, M. S., & Wilson, S. K. (2017). Relationships between structural complexity, coral traits, and reef fish assemblages. *Coral Reefs, 36*(2), 561–575.

De’ath, G., & Moran, P. J. (1998). Factors affecting the behaviour of crown-of-thorns starfish (*Acanthaster planci*) on the Great Barrier Reef: 2. Feeding preferences. *Journal of Experimental Marine Biology and Ecology, 220*(1), 107–126.

DeCarlo, T. M., Cohen, A. L., Wong, G. T. F., Davis, K. A., Lohmann, P., & Soong, K. (2017). Mass coral mortality under local amplification of 2 degrees C ocean warming. *Scientific Reports*, 7, 44586. https://doi.org/10.1038/srep44586

Dela Cruz, D. W., & Harrison, P. L. (2017). Enhanced larval supply and recruitment can replenish reef corals on degraded reefs. *Scientific Reports*, 7(1), 13985. https://doi.org/10.1038/s41598-017-14546-y

Denis, V., Ribas-Deulofeu, L., Struraro, N., Kuo, C.-Y., & Chen, C. A. (2017). A functional approach to the structural complexity of coral assemblages based on colony morphological features. *Scientific Reports*, 7(1), 9849.

Done, T. (1982). Patterns in the distribution of coral communities across the central Great Barrier Reef. *Coral Reefs, 1*, 95–107.

Done, T. J. (1992). Phase-shifts in coral-reef communities and their ecological significance. *Hydrobiologia, 247*(1-3), 121–132. https://doi.org/10.1016/0018-8158(92)90121-0

Fabricius, K., De’ath, G., McCook, L., Turak, E., & Williams, D. M. (2005). Changes in algal, coral and fish assemblages along water quality gradients on the inshore Great Barrier Reef. *Marine Pollution Bulletin, 51*(1-4), 384–398. https://doi.org/10.1016/j.marpolbul.2004.10.041

Fabricius, K. E., Langdon, C., Uthicke, S., Humphrey, C., Noonan, S., De’ath, G., Okazaki, R., Muehllehner, N., Glas, M. S., & Lough, J. M. (2011). Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. *Nature Climate Change, 1*(3), 165–169. https://doi.org/10.1038/nclimate1122

Fabricius, K. E., Logan, M., Weeks, S., & Brodie, J. (2014). The effects of river run-off on water clarity across the central Great Barrier Reef. *Marine Pollution Bulletin, 84*(1-2), 191–200. https://doi.org/10.1016/j.marpolbul.2014.05.012

Fabricius, K. E., Logan, M., Weeks, S. J., Lewis, S. E., & Brodie, J. (2016). Changes in water clarity in response to river discharges on the Great Barrier Reef continental shelf: 2002–2013. *Estuarine Coastal and Shelf Science, 173*, A1–A15. https://doi.org/10.1016/j.ecss.2016.03.001

Ferrier-Pages, C., Hoogenboom, M., & Houlbroque, F. (2011). The role of plankton in coral trophodynamics. In Z. Dubinsky & N. Stambler (Eds.), *Coral reefs: An ecosystem in transition* (pp. 215–229). Springer.

Flynn, D. F., Mirochnick, N., Jain, M., Palmer, M. I., & Naeem, S. (2011). Functional and phylogenetic diversity as predictors of biodiversity–ecosystem-function relationships. *Ecology, 92*(8), 1573–1581.
Great Barrier Reef Marine Park Authority (GBRMPA). (2017). Great Barrier Reef blueprint for resilience. Author. http://hdl.handle.net/11017/3287

Great Barrier Reef Marine Park Authority (GBRMPA). (2019). Great Barrier Reef Outlook Report 2019. Author.

Gold, Z., & Palumbi, S. R. (2018). Long-term growth rates and effects of bleaching in Acropora hyacinthus. Coral Reefs, 37(1), 267–277.

Graham, N., & Nash, K. (2013). The importance of structural complexity in coral reef ecosystems. Coral Reefs, 32(2), 315–326.

Graham, N. A. J., Wilson, S. K., Jennings, S., Polunin, N. V. C., Robinson, J., Bijoux, J. P., & Daw, T. M. (2007). Lag effects in the impacts of mass coral bleaching on coral reef fish, fisheries, and ecosystems. Conservation Biology, 21(5), 1291–1300. https://doi.org/10.1111/j.1523-1739.2007.00754.x

Grman, E., Lau, J. A., Schoolmaster, D. R., & Gross, K. L. (2010). Mechanisms contributing to stability in ecosystem function depend on the environmental context. Ecology Letters, 13(11), 1400–1410.

Guo, W., Bokade, R., Cohen, A. L., Mollica, N. R., Leung, M., & Brainard, R. E. (2020). Ocean acidification has impacted coral growth on the Great Barrier Reef. Geophysical Research Letters, 47(19), e2019GL086761.

Haapakylä, J., Melbourne-Thomas, I., Flavell, M., & Willis, B. L. (2013). Disease outbreaks, bleaching and a cyclone drive changes in coral assemblages on an inshore reef of the Great Barrier Reef. Coral Reefs, 32(3), 815–824. https://doi.org/10.1007/s00338-013-1029-x

Halford, A., Cheal, A., Ryan, D., & Williams, D. M. (2004). Resilience to large-scale disturbance in coral and fish assemblages on the Great Barrier Reef. Ecology, 85(7), 1892–1905.

Harrington, L., Fabricius, K., De’Ath, G., & Negri, A. (2004). Recognition and selection of settlement substrate determine post-settlement survival in corals. Ecology, 85(12), 3428–3437. https://doi.org/10.1890/04-0298

Hennige, S. J., Wicks, L. C., Kamenos, N. A., Perna, G., Findlay, H. S., & Roberts, J. M. (2015). Hidden impacts of ocean acidification to live and dead coral framework. Proceedings of the Royal Society B: Biological Sciences, 282(1813), 20150990.

Holb, J.-P. A., Frisch, A. J., Newman, S. J., & Wakefield, C. B. (2015). Selective impact of disease on coral communities: Outbreak of white syndrome causes significant total mortality of Acropora plate corals. PLoS ONE, 10(7), e0132528. https://doi.org/10.1371/journal.pone.0132528

Hock, K., Wolf, N. H., Beeden, R., Hoey, J., Condie, S. A., Anthony, K. R. N., Possingham, H. P., & Mumby, P. J. (2016). Controlling range expansion in habitat networks by adaptively targeting source populations. Conservation Biology, 30(4), 856–866. https://doi.org/10.1111/cobi.12665

Hoey, A. S., & Bellwood, D. R. (2009). Limited functional redundancy in a high diversity system: Single species dominates key ecological process on coral reefs. Ecosystems, 12(8), 1316–1328. https://doi.org/10.1007/s10021-009-9291-z

Hongo, C. (2012). Holocene key coral species in the Northwest Pacific: Indicators of reef formation and reef ecosystem responses to global climate change and anthropogenic stresses in the near future. Quaternary Science Reviews, 35, 82–99.

Hongo, C., & Kayanne, H. (2011). Key species of hermatypic coral for reef formation in the northwest Pacific during Holocene sea-level change. Marine Geology, 279(1-4), 162–177.

Hughes, T. P. (1994). Catastrophes, phase-shifts, and large-scale degradation of a Caribbean coral-reef. Science, 265(5178), 1547–1551. https://doi.org/10.1126/science.265.5178.1547

Hughes, T. P., Kerry, J. T., Baird, A. H., Connolly, S. R., Dietzel, A., Eakin, C. M., Heron, S. F., Hoey, A. S., Hoogenboom, M. O., Liu, G., McWilliam, M. J., Pears, R. J., Pratchett, M. S., Skirving, W. J., Stella, J. S., & Torda, G. (2018). Global warming transforms coral reef assemblages. Nature, 556(7702), 492–496. https://doi.org/10.1038/s41586-018-0041-2

Johns, K., Osborne, K., & Logan, M. (2014). Contrasting rates of coral recovery and reassembly in coral communities on the Great Barrier Reef. Coral Reefs, 33(3), 553–563.

Jones, C., Lawton, J., & Shachak, M. (1994). Organisms as ecosystem engineers. In F. B. Samson & F. L. Knopf (Eds.), Ecosystem management (pp. 130–147). Springer.

Kaplan, K. A., Ahmadia, G. N., Fox, H., Glew, L., Pomeranz, E. F., & Sullivan, P. (2015). Linking ecological condition to enforcement of marine protected area regulations in the greater Caribbean region. Marine Policy, 62, 186–195. https://doi.org/10.1016/j.marpol.2015.09.018

Kerry, J. T., & Bellwood, D. R. (2012). The effect of coral morphology on shelter selection by coral reef fishes. Coral Reefs, 31(2), 415–424. https://doi.org/10.1007/s00338-011-0859-7

Kerry, J. T., & Bellwood, D. R. (2015). Do tabular corals constitute keystone structures for fishes on coral reefs? Coral Reefs, 34(1), 41–50. https://doi.org/10.1007/s00338-014-1232-4

Khan, J. A., Goatley, C. H. R., Brandl, S. J., Tebbett, S. B., & Bellwood, D. R. (2017). Shelter use by large reef fishes: Long-term occupancy and the impacts of disturbance. Coral Reefs, 36(4), 1123–1132. https://doi.org/10.1007/s00338-017-1604-7

Kuffner, I. B. (2001). Effects of ultraviolet (UV) radiation on larval settlement of the reef coral Pocillopora damicornis. Marine Ecology Progress Series, 217, 251–261. https://doi.org/10.3354/meps217251

Latham, J., Kleypas, J., Hauser, R., Parkes, B., & Gadian, A. (2013). Can marine cloud brightening reduce coral bleaching? Atmospheric Science Letters, 14(4), 214–219. https://doi.org/10.1002/asl.442

Le Saout, S., Hoffmann, M., Shi, Y., Hughes, A., Bernard, C., Brooks, T. M., Bertzyk, B., Butchart, S. H. M., Stuart, S. N., Badman, T., & Rodrigues, A. S. L. (2013). Protected areas and effective biodiversity conservation. Science, 342(6160), 803–805.

Liddle, M. J. (1991). Recreation ecology - Effects of trampling on plants and corals. Trends in Ecology & Evolution, 6(1), 13–17. https://doi.org/10.1016/0169-5347(91)90141-j

Linares, C., Pratchett, M., & Coker, D. (2011). Recolonisation of Acropora hyacinthus following climate-induced coral bleaching on the Great Barrier Reef. Marine Ecology Progress Series, 438, 97–104.

Logan, M., Fabricius, K., Weeks, S., Canto, M., Noonan, S., Wolanski, E., & Brodie, J. (2013). The relationship between Burdekin River discharges and photic depth in the central Great Barrier Reef. Reef and Rainforest Research Centre Limited, Australian Institute of Marine Science.

Long, R. D., Charles, A., & Stephenson, R. L. (2015). Key principles of marine ecosystem-based management. Marine Policy, 57, 53–60.

Lourey, M. J., Ryan, D. A. J., & Miller, I. R. (2000). Rates of decline and recovery of coral cover on reefs impacted by, recovering from and unaffected by crown-of-thorns starfish Acanthaster planci: A regional perspective of the Great Barrier Reef. Marine Ecology Progress Series, 196, 179–186. https://doi.org/10.3354/meps196179
Loya, Y., Sakai, K., Yamazato, K., Nakano, Y., Sambali, H., & van Woesik, R. (2001). Coral bleaching: The winners and the losers. *Ecology Letters, 4*(2), 122–131.

Madin, J. S. (2005). Mechanical limitations of reef corals during hydrodynamic disturbances. *Coral Reefs, 24*(4), 630–635. https://doi.org/10.1007/s00338-005-0042-0

Madin, J. S., Black, K. P., & Connolly, S. R. (2006). Scaling water motion on coral reefs: From regional to organismal scales. *Coral Reefs, 25*(4), 635–644. https://doi.org/10.1007/s00338-006-0137-2

Madin, J. S., & Connolly, S. R. (2006). Ecological consequences of major hydrodynamic disturbances on coral reefs. *Nature, 444*(7118), 477–480.

Madin, J. S., Hoogenboom, M. O., Connolly, S. R., Darling, E. S., Falter, D. S., Huang, D., Keith, S. A., Mizerek, T., Pandolfi, J. M., Putnam, H. M., & Baird, A. H. (2016). A trait-based approach to advance coral reef science. *Trends in Ecology & Evolution, 31*(6), 419–428.

Madin, J. S., Hughes, T. P., & Connolly, S. R. (2012). Calcification, storm damage and population resilience of tabular corals under climate change. *PLOS ONE, 7*(10), e46637. https://doi.org/10.1371/journal.pone.0046637

Madin, J. S., O’Donnell, M. J., & Connolly, S. R. (2008). Climate-mediated mechanical changes to post-disturbance coral assemblages. *Biological Letters, 4*(5), 490–493.

Maida, M., Coll, J. C., & Sammarco, P. W. (1994). Shedding new light on scleractinian coral recruitment. *Journal of Experimental Marine Biology and Ecology, 180*(2), 189–202. https://doi.org/10.1016/0022-0981(94)90066-3

Marshall, P. A., & Baird, A. H. (2000). Bleaching of corals on the Great Barrier Reef: Differential susceptibilities among taxa. *Coral Reefs, 19*(2), 155–163.

Marubini, F., Barnett, H., Langdon, C., & Atkinson, M. J. (2001). Dependence of calcification on light and carbonate ion concentration for the hermatypic coral *Porites compressa*. *Marine Ecology Progress Series, 220*, 153–162. https://doi.org/10.3354/meps220153

McClanahan, T. R., Baird, A. H., Marshall, P. A., & Toscano, M. A. (2004). Comparing bleaching and mortality responses of hard corals between southern Kenya and the Great Barrier Reef, Australia. *Marine Pollution Bulletin, 48*(3-4), 327–335.

McCulloch, M., Falter, J., Trotter, J., & Montagna, P. (2005). Mechanical limitations of reef corals during storm damage and population resilience of tabular corals under climate change. *PLOS ONE, 7*(10), e46637. https://doi.org/10.1371/journal.pone.0046637

McClanahan, T. R., Mcleod, K., Nyström, M., Obura, D., Parker, B., Possingham, H. P., … Tamelander, J. (2019). The future of resilience-based management in coral reef ecosystems. *Journal of Environmental Management, 233*, 291–301. https://doi.org/10.1016/j.jenvman.2018.11.034

McLeod, K., & Leslie, H. (Eds.). (2009). *Ecosystem-based management for the oceans*. Island Press.

Miller, R. M., Rodriguez, J. P., Aniskowicz-Fowler, T., Bambrađeniya, C., Boles, R., Eaton, M. A., Gärdenfors, U., Keller, V., Molur, S., Walker, S., & Pollock, C. (2007). National threatened species listing based on IUCN criteria and regional guidelines: Current status and future perspectives. *Conservation Biology, 21*(3), 684–696. https://doi.org/10.1111/j.1523-1739.2007.00656.x

Molina, N. R., Guo, W., Cohen, A. L., Huang, K. F., Foster, G. L., Donald, H. K., & Solow, A. R. (2018). Ocean acidification affects coral growth by reducing skeletal density. *Proceedings of the National Academy of Sciences, 115*(8), 1754–1759.

Montagionni, L. F. (2005). History of Indo-Pacific coral reef systems since the last glaciation: Development patterns and controlling factors. *Earth-Science Reviews, 71*(1-2), 1–75. https://doi.org/10.1016/j.earscirev.2005.01.002

Montano, S., Strona, G., Sevoso, D., Maggioni, D., & Galli, P. (2016). Widespread occurrence of coral diseases in the central Maldives. *Marine and Freshwater Research, 67*(8), 1253–1262. https://doi.org/10.1071/mf14373

Mouillot, D., Graham, N. A., Villeger, S., Mason, N. W., & Bellwood, D. R. (2013). A functional approach reveals community responses to disturbances. *Trends in Ecology & Evolution, 28*(3), 167–177.

Mrosovsky, N. (2003). Predicting extinction: Fundamental flaws in IUCN's Red List system, exemplified by the case of sea turtles. University of Toronto.

Mumby, P. J. (2006). The impact of exploiting grazers (Scaridae) on the dynamics of Caribbean coral reefs. *Ecological Applications, 16*(2), 747–769. https://doi.org/10.1890/1051-0761(2006)016%5B747:TIOEGs%5D2.0.CO;2

Mumby, P. J. (2009). Phase shifts and the stability of macroalgal communities on Caribbean coral reefs. *Coral Reefs, 28*(3), 761–773. https://doi.org/10.1007/s00338-009-0506-8

Mumby, P. J., Dahlgren, C. P., Harborne, A. R., Kappel, C. V., Micheli, F., Brumbaugh, D. R., Holmes, K. E., Mendes, J. M., Broad, K., Sanchirico, J. N., Buch, K., Box, S., Stoffle, R. W., & Gill, A. B. (2006). Fishing, trophic cascades, and the process of grazing on coral reefs. *Science, 317*(5577), 98–101.

Mumby, P. J., Harborne, A. R., Williams, J., Kappel, C. V., Brumbaugh, D. R., Micheli, F., Holmes, K. E., Dahlgren, C. P., Paris, C. B., & Blackwell, P. G. (2007). Trophic cascade facilitates coral recruitment in a marine reserve. *Proceedings of the National Academy of Sciences of the United States of America, 104*(20), 8362–8367.

Mumby, P. J., & Steneck, R. S. (2008). Coral reef management and conservation in light of rapidly evolving ecological paradigms. *Trends in Ecology & Evolution, 23*(10), 555–563. https://doi.org/10.1016/j.tree.2008.06.011

Mumby, P. J., Steneck, R. S., & Hastings, A. (2013). Evidence for and against the existence of alternate attractors on coral reefs. *Oikos, 122*(4), 481–491.

Munday, P. L. (2004). Habitat loss, resource specialization, and extinction on coral reefs. *Global Change Biology, 10*(10), 1642–1647. https://doi.org/10.1111/j.1365-2486.2004.00839.x

Nadowski, K., Wirth, C., & Scherer-Lorenzen, M. (2010). Is forest diversity driving ecosystem function and service? *Current Opinion in Environmental Sustainability, 2*(1-2), 75–79.

NOAA. (2014). Endangered and threatened wildlife and plants: Final listing determinations on proposal to list 66 reef-building coral species and to reclassify elkhorn and staghorn corals. *Federal Register. Rules and Regulations, 79*(175), 5385–54123. https://www.federalregister.gov/d/2014-20814.

Oliver, T. H., Heard, M. S., Isaac, N. J., Roy, D. B., Procter, D., Eigenbrod, F., Freckleton, R., Hector, A., Orme, C. D. L., Petchey, O. L., Proença, V., Raffaelli, D., Suttle, K. B., Mace, G. M.,
Martín-López, B., Woodcock, B. A., & Bullock, J. M. (2015). Biodiversity and resilience of ecosystem functions. Trends in Ecology & Evolution, 30(11), 673–684.

Ortiz, J. C., Bozec, Y.-M., Wolff, N. H., Doropoulos, C., & Mumby, P. J. (2014). Global disparity in the ecological benefits of reducing carbon emissions for coral reefs. Nature Climate Change, 4(12), 1090–1094.

Ortiz, J. C., González-Rivero, M., & Mumby, P. J. (2014). An ecosystem-level perspective on the host and symbiont traits needed to mitigate climate change impacts on Caribbean coral reefs. Ecosystems, 17(1), 1–13.

Ortiz, J. C., Wolff, N. H., Anthony, K. R. N., Devlin, M., Lewis, S., & Mumby, P. J. (2018). Impaired recovery of the Great Barrier Reef under cumulative stress. Science Advances, 4(7), eaar6127. https://doi.org/10.1126/sciadv.aar6127

Osborne, K., Dolman, A. M., Burgess, S. C., & Johns, K. A. (2011). Disturbance and the dynamics of coral cover on the Great Barrier Reef (1995-2009). PLoS ONE, 6(3), e17516. https://doi.org/10.1371/journal.pone.0017516

Palardy, J. E., Grottoli, A. G., & Matthews, K. A. (2005). Effects of upwelling, depth, morphology and polyp size on feeding in three species of Panamanian corals. Marine Ecology Progress Series, 300, 79–89. https://doi.org/10.3354/meps300079

Pillar, V. D., Blanco, C. C., Müller, S. C., Sosinski, E. E., Joner, F., & Duarte, L. D. (2013). Functional redundancy and stability in plant communities. Journal of Vegetation Science, 24(5), 963–974.

Pimm, S. L., Jenkins, C. N., Abell, R., Brooks, T. M., Gittleman, J. L., Joppa, L. N., Raven, P. H., Roberts, C. M., & Sexton, J. O. (2014). The biodiversity of species and their rates of extinction, distribution, and protection. Science, 344(6187), 1246752.

Pisapia, C., Burn, D., Yoosuf, R., Njeeb, A., Anderson, K. D., & Pratchett, M. S. (2016). Coral recovery in the central Maldives archipelago since the last major mass-bleaching, in 1998. Scientific Reports, 6, 34720. https://doi.org/10.1038/srep34720

Porter, J. W. (1976). Autotrophy, heterotrophy, and resource partitioning in Caribbean reef-building corals. American Naturalist, 110(975), 731–742. https://doi.org/10.1086/283100

Pratchett, M. S. (2005a). Dietary overlap among coral-feeding butterflyfishes (Chaetodontidae) at Lizard Island, northern Great Barrier Reef. Marine Biology, 148(2), 373–382.

Pratchett, M. S. (2005b). Dynamics of an outbreak population of Acanthaster planci at Lizard Island, northern Great Barrier Reef (1995-1999). Coral Reefs, 24(3), 453–462.

Pratchett, M. S. (2007a). Feeding preferences of Acanthaster planci (Echinodermata: Asteroidea) under controlled conditions of food availability. Pacific Science, 61(1), 113–120.

Pratchett, M. S. (2007b). Dietary selection by coral-feeding butterflyfishes (Chaetodontidae) on the Great Barrier Reef, Australia. Raffles Bulletin of Zoology, 14, 171–176.

Pratchett, M. S., Berumen, M. L., Marnane, M. J., Eagle, J. V., & Pratchett, D. J. (2008). Habitat associations of juvenile versus adult butterflyfishes. Coral Reefs, 27(3), 541–551.

Pratchett, M. S., Lang, B. J., & Matthews, S. (2019). Culling crown-of-thorns starfish (Acanthaster cf. solaris) on Australia’s Great Barrier Reef: Rationale and effectiveness. Australian Zoologist, 40(1), 13–24.

Pratchett, M. S., McCowan, D., Maynard, J. A., & Heron, S. F. (2013). Changes in bleaching susceptibility among corals subject to ocean warming and recurrent bleaching in Moorea, French Polynesia. PLoS ONE, 8(7), e70443. https://doi.org/10.1371/journal.pone.0070443

Precht, W. F., Robbart, M. L., & Aronson, R. B. (2004). The potential listing of Acropora species under the US Endangered Species Act. Marine Pollution Bulletin, 49(7-8), 534–536.

Preen, A. (1998). Marine protected areas and dugong conservation along Australia’s Indian Ocean coast. Environmental Management, 22(2), 173–181. https://doi.org/10.1007/s002679900094

Richards, Z. (2018). Navigating the new world of coral reef interventions in a time of climate change. Interaction, 46, 1.

Riegl, B., & Riegl, A. (1996). Studies on coral community structure and damage as a basis for zoning marine reserves. Biological Conservation, 77(2-3), 269–277. https://doi.org/10.1016/0006-3207(95)00138-7

Riegl, B., & Velimirov, B. (1991). How many damaged corals in Red Sea reef systems - A quantitative survey. Hydrobiologia, 216, 249–256. https://doi.org/10.1007/bf00026471

Ripple, W. J., & Beschta, R. L. (2007). Restoring Yellowstone’s aspen with wolves. Biological Conservation, 138(3-4), 514–519. https://doi.org/10.1016/j.biocon.2007.05.006

Ritchie, E. G., Elmhagen, B., Glen, A. S., Letnic, M., Ludwig, G., & McDonald, R. A. (2012). Ecosystem restoration with teeth: What role for predators? Trends in Ecology & Evolution, 27(5), 265–271.

Rodriguez, J. P., Keith, D. A., Rodriguez-Clark, K. M., Murray, N. J., Nicholson, E., Regan, T. J., Miller, R. M., Barrow, E. G., Bland, L. M., Boe, K., Brooks, T. M., Oliveira-Miranda, M. A., Spalding, M., & Wit, P. (2015). A practical guide to the application of the IUCN Red List of Ecosystems criteria. Philosophical Transactions of the Royal Society B-Biological Sciences, 370(1662), 20140003. https://doi.org/10.1098/rstb.2014.0003

Roelfsema, C., Kovacs, E., Ortiz, J. C., Wolff, N. H., Callaghan, D., Wettle, M., Ronan, M., Hamylton, S. M., Mumby, P. J., & Phinn, S. (2018). Coral reef habitat mapping: A combination of object-based image analysis and ecological modelling. Remote Sensing of Environment, 208, 27–41.

Roff, G., Hoegh-Guldberg, O., & Fine, M. (2006). Intra-colonial response to Acroporid “White syndrome” lesions in tabular Acropora spp. (Scleractinia). Coral Reefs, 25(2), 255–264.

Roff, G., Kvennefors, E. C. E., Fine, M., Ortiz, J., Davy, J. E., & Hoegh-Guldberg, O. (2011). The ecology of Acroporid White Syndrome’, a coral disease from the southern Great Barrier Reef. PLoS ONE, 6(12), e26829. https://doi.org/10.1371/journal.pone.0026829

Roff, G., & Mumby, P. J. (2012). Global disparity in the resilience of coral reefs. Trends in Ecology & Evolution, 27(7), 404–413. https://doi.org/10.1016/j.tree.2012.04.007

Roth, A. A., Clausen, C. D., Yahiku, P. Y., Clausen, V. E., & Cox, W. W. (1982). Some effects of light on coral growth. Pacific Science, 36(1), 65–81.

Selig, E. R., Turner, W. R., Troëng, S., Wallace, B. P., Halpern, B. S., Kaschner, K., Lascelles, B. G., Carpenter, K. E., & Mittermeier, R. A. (2014). Global priorities for marine biodiversity conservation. PLoS ONE, 9(1), e82898.

Sergio, F., Newton, I., Marchesi, L., & Pedrini, P. (2006). Ecologically justified charisma: Preservation of top predators delivers biodiversity conservation. Journal of Applied Ecology, 43(6), 1049–1055.

Seymour, R. M., & Bradbury, R. H. (1999). Lengthening reef recovery times from crown-of-thorns outbreaks signal systemic degradation of the Great Barrier Reef. Marine Ecology Progress Series, 176, 1–10. https://doi.org/10.3354/meps176001
Shimokawa, S., Murakami, T., Ukai, A., Kohno, H., Mizutani, A., & Nakase, K. (2014). Relationship between coral distributions and physical variables in Amitore Bay, Iriomote Island, Japan. *Journal of Geophysical Research-Oceans, 119*(12), 8336–8356. https://doi.org/10.1002/2014JC010307

Springer, A. M., Estes, J. A., van Vliet, G. B., Williams, T. M., Doak, D. F., Danner, E. M., Forney, K. A., & Pfister, B. (2003). Sequential megafaunal collapse in the North Pacific Ocean: An ongoing legacy of industrial whaling? *Proceedings of the National Academy of Sciences of the United States of America, 100*(21), 12223–12228. https://doi.org/10.1073/pnas.1635156100

Stafford-Smith, M. G., & Ormond, R. F. G. (1992). Sediment-rejection mechanisms of 42 species of Australian scleractinian corals. *Australian Journal of Marine and Freshwater Research, 43*(4), 683–705. https://doi.org/10.1071/mf9920683

Steneck, R. S., & Dethier, M. N. (1994). A functional-group approach to the structure of algal-dominated communities. *Oikos, 69*(3), 476–498. https://doi.org/10.2307/3545860

Steneck, R. S., Leland, A., McNaught, D. C., & Vavrinec, J. (2013). Ecosystem flips, locks, and feedbacks: The lastling effects of fisheries on Maine’s kelp forest ecosystem. *Bulletin of Marine Science, 89*(1), 31–55.

Steneck, R. S., Mumby, P. J., MacDonald, C., Rasher, D. B., & Stoyte, G. (2018). Attenuating effects of ecosystem management on coral reefs. *Science Advances, 4*(5), eaao5493. https://doi.org/10.1126/sciadv.aao5493

Stjern, C. W., Muri, H., Ahlm, L., Boucher, O., Cole, J. N. S., Ji, D., Jones, A., Haywood, J., Kravitz, B., Lenton, A., Moore, J. C., Niemeier, U., Phipps, S. J., Schmidt, H., Watanabe, S., & Kristjanson, J. E. (2018). Response to marine cloud brightening in a multi-model ensemble. *Atmospheric Chemistry and Physics, 18*(2), 621–634. https://doi.org/10.5194/acp-18-621-2018

Sweatman, H., Cheal, A., Coleman, G., Emshie, M., Johns, K., Jonker, M., Miller, I. R., & Osbourne, K. (2008). Long-term monitoring of the Great Barrier Reef. *Australian Institute of Marine Science.*

Terborgh, J., & Estes, J. A. (2013). *Trophic cascades: Predators, prey, and the changing dynamics of nature.* Island Press.

Terborgh, J., Lopez, L., Nuñez, P., Rao, M., Shahabuddin, G., Orihuela, G., Riveros, M., Ascanio, R., Adler, G. H., Lambert, T. D., & Ballas, L. (2001). Ecological meltdown in predator-free forest fragments. *Science, 294*, 1923–1926.

Turkalo, A. K., Wreege, P. H., & Wittemeyer, G. (2017). Slow intrinsic growth rate in forest elephants indicates recovery from poaching will require decades. *Journal of Applied Ecology, 54*(1), 153–159.

van Oppen, M. J. H., Bongaerts, P., Frade, P., Peplow, L., Boyd, S. E., Nim, H. T., & Bay, L. K. (2018). Adaptation to reef habitats through selection on the coral animal and its associated microbiome. *Molecular Ecology, 27*(14), 2956–2971. https://doi.org/10.1111/mec.14763

Veraart, A. J., Faassen, E. J., Dakos, V., van Nes, E. H., Lürling, M., & Scheffer, M. (2012). Recovery rates reflect distance to a tipping point in a living system. *Nature, 481*(7381), 357–359.

Veron, J. E. N. (1986). *Corals of Australia and the Indo-Pacific.* University of Hawaii Press.

Veron, J. E. N. (2000). *Corals of the world* (Vol. 1). AIMS and CRR QLD Pty Ltd.

Vytopil, E., & Willis, B. (2001). Epifaunal community structure in *Acropora* spp. (Scleractinia) on the Great Barrier Reef: Implications of coral morphology and habitat complexity. *Coral Reefs, 20*(3), 281–288.

Voolstra, C. R., Miller, D. J., Ragan, M. A., Hoffman, A. A., Hoegh-Guldberg, O., Bourne, D. G., Ball, E. E., Ying, H., Forêt, S., Taka-hashi, S., Weynberg, K. D., van Oppen, M. J. H., Morrow, K., Chan, C. X., Rosic, N., Leggat, W., Sprungala, S., Imelfort, M., Tyson, G. W., … Fyffe, T. (2015). The ReFuGe 2020 Consortium—Using “omics” approaches to explore the adaptability and resilience of coral holobionts to environmental change. *Frontiers in Marine Science, 2*, 68. https://doi.org/10.3389/fmars.2015.00068

Wallace, C. (1985). Reproduction, recruitment and fragmentation in nine sympatric species of the coral genus *Acropora*. *Marine Biology, 88*(3), 217–233.

Wallace, C. (1999). *Staghorn corals of the world: A revision of the genus Acropora.* CSIRO Publishing.

Wild, C., Hoegh-Guldberg, O., Naumann, M. S., Colombo-Pallotta, M. F., Atemewberhan, M., Fitt, W. K., Iglesias-Prieto, R., Palmer, C., Bythell, J. C., Ortiz, J. C., Loya, Y., & Van Woesik, R. (2011). Climate change impedes scleractinian corals as primary reef ecosystem engineers. *Marine and Freshwater Research, 62*(2), 205–215.

Williams, I. D., Polunin, N. V. C., & Hendrick, V. J. (2001). Limits to grazing by herbivorous fishes and the impact of low coral cover on macroalgal abundance on a coral reef in Belize. *Marine Ecology Progress Series, 222*, 187–196. https://doi.org/10.3354/meps222187

Yadav, S., Rathod, P., Alcoverro, T., & Arthur, R. (2016). Choice* and destiny: The substrate composition and mechanical stability of settlement structures can mediate coral recruit fate in post-bleached reefs. *Coral Reefs, 35*(1), 211–222.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Ortiz JC, Peers RJ, Beeden R, Dryden J, Wolff NH, Gomez Cabrera MdC, Mumby PJ. Important ecosystem function, low redundancy and high vulnerability: The trifecta argument for protecting the Great Barrier Reef’s tabular *Acropora*. *Conservation Letters.* 2021:e12817. https://doi.org/10.1111/conl.12817