Associação entre processamento temporal auditivo e visual na habilidade de leitura

Association between auditory temporal and visual processing in reading skill

Ana Carla Oliveira Garcia¹,²,³
Douglas de Araújo Vilhena⁴,⁵
Márcia Reis Guimarães³
Ângela Maria Vieira Pinheiro³,⁵
Teresa Maria Momensohn-Santos¹

RESUMO

Objetivo: verificar se alunos rastreados com processamento auditivo temporal alterado possuem maior probabilidade de apresentar processamento visual alterado.

Métodos: participaram 68 crianças, de 9 a 12 anos, 53% meninos, do 5° e 6° ano do ensino fundamental de uma escola estadual. Foram excluídas todas as crianças com alterações na avaliação audiológica ou oftalmológica. Foram utilizados o Teste do Padrão de Duração (rastreio da habilidade auditiva de ordenação temporal), a Escala de Percepção Visual de Leitura (questionário de sintomas de estresse visual e seleção das lâminas espectrais) e o Teste de Taxa de Leitura (número de palavras lidas corretamente por minuto). Foram aplicados os testes estatísticos pertinentes adotando o nível de significância menor que 0,05.

Resultados: participantes rastreados com processamento auditivo alterado apresentaram mais sintomas de estresse visual e menor taxa de leitura, com um efeito significante e moderado (p < 0,05; d < 0,71), quando comparados aos seus pares com processamento auditivo normal. Dentre as crianças com alteração no Teste do Padrão de Duração, 58% melhoraram a taxa de leitura com o uso da lâmina espectral, comparadas a 29% do grupo controle (Odds Ratio = 3,4; p = 0,017).

Conclusão: alunos rastreados com processamento auditivo temporal alterado apresentam uma chance três vezes maior de associação com alterações no processamento visual, por compartilhamento na via magnocelular.

Descritores: Leitura; Aprendizagem; Visão; Audição; Percepção Auditiva

ABSTRACT

Purpose: to verify whether students screened with altered auditory temporal processing are more likely to present altered visual processing.

Methods: the sample consisted of 68 children, aged from 9 to 12 years, 53% males, from the 5th and 6th grades of a public school. All children with alterations in the audiological or ophthalmological evaluation were excluded. The Duration Pattern Test (screening for auditory temporal skill), the Reading Perceptual Scale (visual stress symptom questionnaire and colored overlays selection) and the Rate of Reading Test (number of words correctly read per minute) were used. Appropriate statistical tests were applied adopting the significance level lower than 0.05.

Results: participants screened with abnormal auditory processing had higher visual stress symptoms and lower reading rate, with a significant and moderate effect (p < 0.05; d < 0.71), when compared to their peers with normal auditory processing. Among the children with altered Duration Pattern Test, 58% improved the reading rate with the use of colored overlays, whereas 29% did so in the control group (Odds Ratio = 3.4; p = 0.017).

Conclusion: children screened with altered auditory temporal processing presented a three times higher possibility of association with visual processing alterations, due to shared magnocellular system.

Keywords: Reading; Learning; Vision; Hearing; Auditory Perception
INTRODUÇÃO

Nos últimos 20 anos, os progressos das Neurociências e da psicologia cognitiva contribuíram para maior compreensão dos mecanismos neurais envolvidos no ato de ler. A leitura é um processo multisensorial complexo, que envolve a percepção/processamento visual, memória visual, associação visuo-auditiva, memória/reconhecimento auditivo, processamento fonológico, expressão oral, e processos verbais1-3.

Um aspecto fundamental para a proficiência de leitura é o processamento do sequenciamento temporal da informação auditiva e da visual, que facilita a formação de representações precisas da sequência dos sons e das letras em uma palavra4-6. O processamento auditivo temporal pode ser definido como a percepção da alteração do som dentro de um determinado período de tempo, ou seja, refere-se à habilidade de perceber ou diferenciar estímulos auditivos apresentados em uma rápida sucessão4-6. Já o processamento temporal da informação visual na leitura depende da percepção de movimento e contraste, da preservação da ordem espacial para o reconhecimento rápido dos traços invariantes das letras que formam as palavras e a comparação às imagens previamente armazenadas em nossa memória (vocabulário visual). Assim como o processamento auditivo dinâmico está relacionado à percepção da fala e à consciência fonológica, o processamento visual dinâmico está relacionado à habilidade ortográfica, sendo ambos processamentos preditores do desenvolvimento da habilidade de leitura e de escrita4.

Tanto o sequenciamento auditivo quanto o visual dependem das propriedades do sistema transiente no cérebro, que é mediado pelos neurônios do sistema magnocelular, com rápido processamento temporal e baixo processamento espacial10,11. O sequenciamento bem-sucedido depende da acurácia do tempo das entradas sensoriais auditivas e visuais, cujas vias nervosas são integradas no tálamo pelo corpo geniculado medial e lateral, respectivamente. O sistema magnocelular dorsal media o sequenciamento temporal ao registrar a amplitude e a ordem das mudanças de atenção dos movimentos dos olhos durante a inspeção de cada palavra11. Desempenha um papel vital no controle da alocação da atenção visual para a leitura, o que contribui para o rápido e preciso reconhecimento de cada letra no sequenciamento dentro da palavra8. Esse sistema também é importante para a detecção de mudanças na iluminação, movimentos, controle da busca visual, entre outros.

Parte dos disléxicos possui déficit no sistema magnocelular, caracterizado por menor sensibilidade ao contraste em baixa frequência espacial com alta frequência temporal14. O sistema magnocelular estabelece o tempo de duração de cada fixação ocular, além do direcionamento dos movimentos sacádicos entre as pausas. Uma dificuldade no sistema magnocelular visual leva a uma menor estabilidade da fixação ocular na letra ou na palavra, com consequente desconforto progressivo e estresse visual. A análise foveal da acuidade visual estática, mediada pelos neurônios do sistema parvocelular (que possui baixo processamento temporal e alto processamento espacial), não contém informações suficientes sobre a fluência de leitura ou sobre a qualidade do processamento visual dinâmico.

Os distúrbios do processamento visual provocam uma série de sintomas e sinais14, de forma isolada ou em comorbidade com transtornos do desenvolvimento, como na dislexia14, transtorno do Déficit de Atenção e Hiperatividade9, Síndrome de Tourette e Transtorno do Espectro Autista20. O tratamento com lâminas e filtros espectrais melhora o desempenho de leitura e reduz a prescrição de medicação em pacientes cuja agitação e desatenção são resultantes do comportamento de esquiva devido aos sintomas de estresse visual e dificuldade de adaptação às variadas condições de luminância15,21-25.

Para investigar a associação entre o processamento auditivo e o visual, o presente estudo tem o objetivo de verificar se alunos rastreados com alteração no processamento auditivo temporal possuem maior chances de apresentar distúrbios do processamento visual, quando comparados aos seus pares com processamento auditivo normal.

MÉTODOS

Participantes

Somente participaram da pesquisa as crianças que assinaram o termo de consentimento e cujos pais ou responsáveis assinaram o Termo de Consentimento Livre e Esclarecido, como é garantido pela Resolução do Conselho Nacional de Saúde 466/12. A coleta de dados ocorreu após a aprovação do Comitê de Ética em Pesquisa da Pontifícia Universidade Católica de São Paulo - PUC-SP, conforme o parecer CAAE de número 52510115.9.0000.5482.
Trata-se de um estudo observacional e transversal. A amostra foi composta por 68 crianças, de 9 a 12 anos de idade, 11,2 anos em média (± 0,7 anos), 53% do sexo masculino, regularmente matriculadas no 5º (n = 24) e 6º ano (n = 44) do ensino fundamental de uma escola estadual localizada na cidade de Jacareí/SP. No Sistema de Avaliação de Rendimento Escolar do Estado de São Paulo (SARESP), a referida escola obteve nível de proficiência superior à meta determinada pela Secretaria da Educação do Estado de São Paulo. Como critério de inclusão, participaram da pesquisa todas as crianças sem alterações visuais ou auditivas centrais. Foram excluídas quatorze crianças (não contabilizadas na amostra) que apresentaram resultados alterados no exame oftalmológico (ex., miopia, astigmatismo, hipermetropia, baixa visão, uso de óculos), ou na avaliação audiológica (ex., limiar maior que 25 dBNA em uma frequência na área de 250 a 4000Hz, em uma ou em ambas as orelhas; ou com alteração na Imitanciometria com curvas tipo B, C). A descrição completa da amostra e da avaliação a que ela foi submetida, incluindo a descrição dos instru-mentos e procedimentos, se encontram em Garcia, Momensohn-Santos e Vilhena23.

Instrumentos
O Teste do Padrão de Duração (TPD)26 foi utilizado para a identificação da habilidade auditiva de ordenação temporal. É constituído por estímulos de sons musicais de flauta (tons melódicos), de longa (2000 mseg) e curta duração (500 mseg). São aplicados em dez sequências de três estímulos e dez sequências de quatro estímulos, com frequência fixa de 440 Hz e intervalo interestímulos de 6 milissegundos. Os testes foram realizados em cabine tratada acusticamente, com fone supra-aural a 50 dB NS, de modo binaural. Foi utilizado o audiômetro clínico de dois canais, da marca Maico MA 42 e fones auriculares tipo TDH-39P, marca Telephonics, acoplados em um computador, por meio de um cabo de interface, da saída dos auscultadores a uma das entradas de CD/ Tape do audiômetro.

A Escala de Percepção Visual de Leitura (EPVL)27 é uma bateria de avaliações utilizada como indicação de risco para distúrbios do processamento visual. É composta por: i) um questionário com 32 itens sobre a dificuldade e o desconforto durante a leitura (Tabela 1); ii) tarefas que intensificam um estresse visual (ex., Figura 1a); e iii) por uma seleção das lâminas espectrais (Figura 1b). O questionário da EPVL sobre dificuldade e desconforto com a leitura possuem correlação positiva e moderada (r = 0,69, p < 0,001)23. As lâminas espectrais (overlays) são folhas de acetato, em dez tonalidades, utilizadas sobrepostas ao texto desde a década de 1980 para melhorar o desempenho de leitura e aumentar o conforto visual de crianças e adultos com sintomas de estresse visual na Leitura23,25,28.

| Tabela 1. Questionário de Dificuldade e de Desconforto da Escala de Percepção Visual de Leitura |
|---|---|
| **Questionário de Dificuldade** | **Questionário de Desconforto** |
| 1. Você pula linhas ou frases acidentalmente? | 1. Seus olhos te incomodam? |
| 2. Você se perde quando está lendo? | 2. Seus olhos ficam vermelhos ou lacrimejam? |
| 3. Você confunde as palavras? | 3. Eles doem ou ardem? |
| 4. Você pula palavras sem querer? | 4. Eles ficam secos, coçam ou tem sensação de areia? |
| 5. Você lê a mesma linha várias vezes? | 5. Você estreaga seus olhos ou ao redor deles? |
| 6. Você confunde palavras das linhas de cima ou de baixo? | 6. Você se sente cansado ou sonolento? |
| 7. Você evita ler em silêncio e em voz alta? | 7. Sua cabeça te incomoda? |
| 8. Sua leitura é lenta ou interrompida? | 8. Você tem dor de cabeça? |
| 9. Você se sente incomodado por páginas brancas ou brilhantes? | 9. Você sente tontura? |
| 10. Você olha ao longe, descansa ou faz intervalos? | 10. Você tem náuseas ou dores de estômago? |
| 11. Você se sente ansioso, agitado ou se distrai facilmente? | 11. Você arregala os olhos? |
| 12. Você acha que a leitura fica cada vez mais difícil? | 12. Você aperta os olhos ou franze a testa? |
| 13. Você usa um marcador ou seu dedo? | 13. Você pisca com muita frequência? |
| 14. Você tem dificuldade em entender o que você lê? | 14. Você se aproxima ou afasta da página? |
| 15. Você tem dificuldade em lembrar o que você leu? | 15. Luzes fluorescentes te incomodam durante a leitura? |
| 16. Você tem que se esforçar para continuar lendo? | 16. É mais difícil ler sob luz branca? |
O Teste de Taxa de Leitura (RRT, Português) foi utilizado para mensurar o efeito das lâminas espectrais na taxa de leitura e para rastrear os participantes com distúrbios do processamento visual. É composto por cinco distintas listas, sendo uma para treino e quatro para teste (ex., Figura 2). As listas são compostas por 15 palavras de alta frequência de ocorrência repetidas em 20 linhas, totalizando 300 palavras. Possui fonte reduzida (tamanho 9) e espaçamento simples, o que diminui o tamanho do movimento sacádico e aumenta o esforço visual. Cada lista é lida em voz alta por até um minuto.

![Figura 1. (a) Exemplo de estímulo estressor visual da Escala de Percepção Visual de Leitura, (b) Exemplo de lâminas espectrais](image)

Figura 1. (a) Exemplo de estímulo estressor visual da Escala de Percepção Visual de Leitura, (b) Exemplo de lâminas espectrais

![Figura 2. Exemplo de uma das listas do Teste de Taxa de Leitura](image)

Figura 2. Exemplo de uma das listas do Teste de Taxa de Leitura
Procedimentos

A coleta de dados foi realizada na própria escola e no Serviço Integrado de Medicina do Sistema Único de Saúde. As avaliações foram realizadas individualmente, em horário não prejudicial à aprendizagem do conteúdo curricular, em sala reservada, distante do trânsito das pessoas e de outros ruídos. Todos os participantes foram examinados por um oftalmologista, com o objetivo de verificar uma limitação na acuidade visual, sinalizada pela ocorrência de erro de refração, que pudesse acarretar uma dificuldade de leitura devido a perda da nitidez. Aquelas que apresentaram alteração oftalmológica foram excluídos do estudo e encaminhados para orientação e intervenção terapêutica adequada. Inicialmente, estabeleceu-se um diálogo informal (rapport) para obter uma boa interação com o participante.

A avaliação da habilidade auditiva de ordenação temporal, por meio do TPD, foi realizada sempre pela mesma fonoaudióloga, com a finalidade de evitar desvios e diferenças nos procedimentos da coleta. O participante foi solicitado a verbalizar (nomear) a sequência de tons ouvida. O número e a porcentagem de acertos foram registrados, sendo considerado como erro a inversão da sequência dos sons apresentados. Para crianças a partir de nove anos, o padrão de normalidade para o TPD de três sons é de 100% de acertos, e para o de quatro sons é de 90% de acertos.

Os participantes responderam ao questionário da EPVL (Tabela 1), que inclui questões sobre releitura de linhas, omissão de palavras ou linhas, perda de lugar, má qualidade de escrita, falta de eficiência na cópia de livros ou na cópia do quadro, esfregar os olhos, piscar excessivamente, lacrimejar, sombrear os olhos, aversão a luzes fortes, entre outros. A pontuação dos itens foi dada com sua frequência de ocorrência durante atividades de leitura: com frequência (1 ponto), às vezes (0,5 pontos), nunca ou não sabe responder (0 ponto). A seguir foram submetidos a tarefas de esforço visual, onde o desconforto é progressivo até que se manifeste o estresse visual, sendo sua atenuação medida por meio do uso de uma ou até duas lâminas espectrais, apresentadas de forma padronizada e em sequência. A primeira lista de

RESULTADOS

Aqueles que apresentaram resultado normal e os demais 26 (38,2%) foram rastreados com alteração da habilidade auditiva de ordenação temporal (Tabela 2). A classificação amostral do TPD foi utilizada nas análises da EPVL e do RRT para identificar a associação entre o processamento auditivo e o processamento visual. Os participantes com alteração no TPD, quando analisados tomando como referência o questionário clínica das diferenças, o de Cohen de 0,2 representa tamanho do efeito pequeno, 0,5 para um efeito médio e 0,8 para um efeito grande. O valor de p inferior a 0,05 foi considerado estatisticamente significante.
(desempenho <5%). Dentre as crianças com alteração no TDP, 58% melhoraram a taxa de leitura com o uso da lâmina espectral, enquanto 29% do grupo controle apresentou ganhos (Tabela 2). Ou seja, alunos que apresentaram alteração no TDP tiveram três vezes mais chance de melhorar a taxa de leitura com a lâmina espectral, quando comparadas aos pares com TPD normal (Odds Ratio = 3,41; CI = 1,22 – 9,5; chi-square = 5,69; \(p = 0,017 \)).

Tabela 2. Frequências e porcentagem de alunos entre as classificações do rastreio do processamento auditivo (Teste do Padrão de Duração, TPD) e do processamento visual (Teste de Taxa de Leitura, RRT)

Visual (RRT)		Total	
	Alterado	Normal	
Auditivo (TPD) Alterado	15	11	26
% dentro de TPD Alterado	57,7%	42,3%	100,0%
Normal	12	30	42
% dentro de TPD Normal	28,6%	71,4%	100,0%
Total	27	41	68
% dentro da Amostra Total	39,7%	60,3%	100,0%

Legenda: TPD: Teste do Padrão de Duração; RRT: Teste de Taxa de Leitura; Processamento Auditivo (Alterado = acurácia menor que <100% no três sons e <90% no quatro sons); Processamento Visual (Alterado = melhora de pelo menos ≥5% na taxa de leitura com o uso de lâmina espectral; Normal = diferença <5% na taxa de leitura). Fonte: elaboração própria.

DISCUSSÃO

Os resultados do presente estudo, com base em instrumentos de rastreio, demonstram que há uma associação entre o processamento auditivo e o processamento visual. Cerca de 38% dos alunos apresentaram alteração no rastreio da habilidade auditiva de ordenação temporal, que é a capacidade de discriminar corretamente a ordem de ocorrência de um sinal acústico, dentro de um intervalo definido de tempo. Foi verificado que essas crianças com alteração auditiva possuíam mais sintomas de estresse visual, menor taxa de leitura, e maior chance de melhorar a velocidade de leitura com o uso de lâminas espectrais, quando comparadas ao grupo controle. Ou seja, crianças rastreadas com alteração no processamento auditivo temporal provavelmente também possuem um déficit no processamento visual.

Esses resultados se encontram coerentes com o déficit no sistema magnocelular visual em disléxicos. Pammer e Wheatley\(^{14}\) verificaram que um grupo de 21 disléxicos tiveram um desempenho mais fraco na detecção de um estímulo visual seletivo do sistema magnocelular, quando comparados a 19 leitores do grupo controle (\(F_{1,38} = 13,6, p < 0,001 \)), com sensibilidade diminuída em comparação com a coorte etária padronizada. No estudo de Flint e Pammer\(^{12}\), adultos analfabetos obtiveram o mesmo desempenho do que os leitores normais e semi-analfabetos em tarefas temporais e espaciais específicas do sistema magnocelular visual, tendo todos os três grupos um desempenho melhor do que o grupo de leitores disléxicos. Os autores concluem\(^{12}\) que essa falha funcional da via visual dorsal na dislexia provavelmente não é consequência da falta de leitura e apontam para um papel causal do processamento magnocelular.

A avaliação das habilidades que sustentam o aprendizado da leitura e dos distúrbios que podem afetar a sua proficiência se faz cada dia mais importante. Foi verificado que o TPD, a EPVL e o RRT são recursos importantes na clínica para rastrear crianças suspeitas de apresentarem alteração no processamento auditivo e visual. O RRT permite mensurar o número de palavras lidas corretamente por minuto (taxa de leitura), sendo sensível para identificar o efeito de lâminas espectrais, de forma rápida, simples e de baixo custo. O RRT possui reduzido grau de processamento linguístico, uma vez que demanda o reconhecimento e a pronúncia em voz alta de substantivos de alta frequência de ocorrência sem relação sintática ou semântica entre si. A não exigência da compreensão da palavra, da sentença e do texto (micro ou macroestrutura textual) reduz o acesso ao sistema semântico e a componentes cognitivos de alta ordem. Esses fatores, se não controlados, podem aumentar a variabilidade no escore da taxa de leitura. Ademais, a reduzida configuração estrutural do espaçamento entre as linhas do
RRT se assemelha a padrões de listras senoidais de média frequência espacial (2 a 5 ciclos por grau), que são reconhecidos como gatilhos inductores de desconforto e distorções visuo perceptuais34.

Evans, Allen, e Wilkins15 consultaram 22 clínicos experientes sobre os indicadores do diagnóstico de estresse visual. Consideram que deve haver a presença de pelo menos três de seis sintomas típicos: i) palavras movem durante leitura; ii) palavras fundem; iii) padrões ou sombras no texto (ex., “rios”); iv) texto parece destacar em 3D acima da página; v) palavras ou letras desaparecem ou escurecem; e vi) desconforto com certas luzes artificiais e flicker. Ademais, deve haver a presença de pelo menos dois de três sinais de investigação: i) uso voluntário e espontâneo de lâminas espectrais por três meses ou mais; ii) melhora da taxa de leitura ≥15% com o uso das lâminas; e iii) dificuldade e desconforto visual com grades senoidais de média frequência espacial.

Garcia et al.23 verificaram, na mesma amostra de participantes do presente estudo (N = 68), que 31%, 22%, 18% e 13% dos alunos apresentaram um ganho de pelo menos ≥5%, ≥8%, ≥10% e ≥15% na taxa de leitura com o uso das lâminas espectrais, respectivamente. O critério de corte mais rigoroso de melhora de ≥15% na taxa de leitura com os overlays possui validade clínica, pois é um sinal diagnóstico de estresse visual15, e representa um aumento na taxa de leitura além do intervalo da variação intraindividual35. Ou seja, pelo menos uma em cada dez crianças apresenta uma melhora significante da taxa de leitura com as lâminas espectrais. Esses resultados com uma amostra brasileira, corroboram os valores encontrados em diferentes estudos internacionais30-33,36, o que fornece evidências de validade de critério para o Teste de Taxa de Leitura.

Veszeli e Shepherd35 avaliaram o efeito das lâminas espectrais em 106 crianças típicas, de 4 a 7 anos, do 1º ano ao 3º ano. Os autores verificaram melhora significante da taxa de leitura tanto com a lâmina selecionada como a mais eficaz (F1,104 = 332, p < 0.001) quanto com a que gerou mais conforto visual (F1,104 = 116, p < 0.001), em comparação a linha de base. As maiores reduções do tempo de leitura ocorreram nos leitores mais jovens, o que indica que as lâminas espectrais podem ser particularmente eficazes para os leitores menos proficientes. Veszeli e Shepherd reportaram que todos os participantes, exceto quatro crianças, reduziram o tempo de leitura com uma das lâminas e também que todas, exceto uma, relataram maior nitidez visual do texto. O uso da lâmina espectral também melhorou a acuidade visual para leitura (visão de perto, a 40 centímetros) em mais de 40% das crianças, cuja média do equivalente de Snellen passou de 20/25 para 20/20 (p < 0.001).

Hollingsworth et al.37 reforçam que as crianças surdas são duplamente desfavorecidas na leitura, uma vez que apresentam reduzidas habilidades visuais e fonológicas. Os achados mostraram que os participantes surdos tiveram maior ametropia, com redução da amplitude de acomodação, ponto próximo de convergência afastado, e menor taxa de leitura. Os autores37 verificaram que 100% (n = 31/31) dos participantes com surdez escolheram pelo menos uma lâmina espectral, sendo mais frequente a tonalidade Yellow (45%, 14/31). Já no grupo controle de ouvintes, 67% (n = 26/39) escolheram pelo menos um overlay, sem que nenhum dos participantes tenha optado pela Yellow. Entre os surdos que escolheram a Yellow, a taxa de leitura aumentou em 18%, sem diferença estatística nos demais surdos e no grupo controle de ouvintes.

A leitura pressupõe diferentes habilidades visuais, como a sincronicidade e foco binocular, conforto e imagens nítidas e estáveis, movimento ocular eficaz, um processamento dinâmico acurado e uma interpretação rápida após breve período de fixação ocular. Estudo28 demonstrou que alunos do 5º ano com dificuldade de leitura e escrita (DLE, n = 11) apresentaram diferença significante na acuidade visual dinâmica (mas não na acuidade estática) e no movimento sacádico, quando comparado ao grupo controle (n = 7) (p < 0.05).

A oculomotricidade foi avaliada por três eletrodos colocados na face, cujos resultados foram registrados pela agulha do polígrafo em papel milimetrado. Na análise do movimento sacádico, todos os participantes do grupo DLE registraram irregularidade na movimentação do globo ocular ao acompanhar com o olhar o dedo da avaliadora, que era levantado esporadicamente em pontos aleatórios no plano horizontal. A dificuldade unânime no grupo DLE em acompanhar um alvo no espaço pode ter sido fator determinante para o mau rendimento escolar, dificultando o desenvolvimento da leitura e da escrita, habilidades que exigem refinado controle do movimento ocular em busca do sequenciamento das letras no papel.

No presente estudo, os alunos com alteração no rastreio do processamento auditivo reportaram mais sintomas de estresse visual no questionário da EPVL do que os com TPD normal. Resultado equivalente foi encontrado em pesquisa18 que identificou que um grupo de universitários disléxicos (n = 16) relatou
mais sintomas de estresse visual do que o grupo controle sem dislexia ($n = 26$) ($F_{(1, 40)} = 15.1, p < 0.05$). Independentemente da condição, uma das formas de redução nos sintomas de estresse visual, em especial em atividades de leitura prolongada, tem sido por meio de lâminas espectrais. Garcia, Momensohn-Santos, Vilhena verificaram que os alunos identificados com desconforto visual severo durante a leitura ($n = 11$) apresentaram três vezes mais chance (odds ratio $= 3.36$) de melhorar a taxa de leitura com a lâmina auto-escolhida, quando comparados com os participantes com menos desconforto.

Ressalta-se a importância da integração sensorial auditiva e visual para melhorar o desempenho escolar das crianças. A organização temporal, que é a seriação de ordenação de fatos no tempo, é uma habilidade importante para a aprendizagem da leitura. Os processos de identificação e de intervenção empregados nos pacientes com dislexia são distintos dos utilizados nos distúrbios do processamento visual. O diagnóstico e o tratamento da dislexia envolvem seções de intervenção fonológica e lexical. É fundamental capacitar profissionais da educação para a identificação precoce dos sintomas e sinais de estresse visual na leitura do aluno alfabetizado, em especial aqueles com alteração do processamento auditivo, para que se possa encaminhar para o profissional da saúde investigar e intervir nos problemas oftalmológicos e nos distúrbios do processamento visual.

CONCLUSÃO

Alunos com alteração no processamento auditivo temporal possuem maior chance de apresentar comprometimento concomitante no processamento visual, quando comparados aos seus pares com processamento auditivo normal. Profissionais da área da Saúde e da Educação devem examinar todas as crianças em idade escolar, a fim de identificar e intervir precocemente nas alterações do processamento auditivo e visual. Quanto aos instrumentos utilizados na presente pesquisa – TPD, EPVL e RRT – todos se mostraram ferramentas importantes de investigação das habilidades que medem, processamento auditivo, processamento visual e taxa de leitura, respectivamente. No contexto das condições investigadas na presente pesquisa, se deve considerar o nível genético (incidência na família), o nível cerebral (déficit magnocelular), o nível cognitivo (déficit no processamento temporal auditivo e visual), e o nível do comportamento (dificuldade de leitura, soletação e escrita).

REFERÊNCIAS

1. Carvalho NG, Novelli CVL, Colella-Santos MF. Factors in childhood and adolescence that may influence the auditory processing: a systematic review. Rev. CEFAC. 2015;17(5):1590-603. Doi: 10.1590/1982-0216201517519014.

2. Dehaene S. Os neurônios da leitura: como a ciência explica a nossa capacidade de ler. Porto Alegre: Penso; 2012.

3. Pedroza BAC, Dourado JS, Lemos SMA. Lexical development, speech language disorders and school performance: literature review. Rev. CEFAC. 2015;17(5):1633-42. Doi: 10.1590/1982-0216201517519913

4. Boets B, Wouters J, Van Weeringen A, De Smedt B, Hesquiére P. Modelling relations between sensory processing, speech processing, orthographic and phonological ability, and literacy achievement. Brain Lang. 2008;106(1):29-40.

5. Matos GGO, Frota S. Temporal resolution in sensorineural hearing loss. Audiol. Commun. Res. 2013;18(1):30-6. Doi: 10.1590/S2317-6431201300100007.

6. Oliveira AC, César CPHAR, Matos GG, Passos PS, Pereira LD, Alves T et al. Hearing, language, motor and social skills in the child development: a screening proposal. Rev. CEFAC. 2018;20(2):218-27. Doi: 10.1590/1982-0216201820216617.

7. Stein J, Walsh V. To see but not to read; the magnocellular theory of dyslexia. Trends Neurosci. 1997;20(4):147-52.

8. Vidyasagar TR, Pammer K. Dyslexia: a déficit in visuo-spatial attention, not in phonological processing. Trends Cogn Sci. 2010;14(2):57-63.

9. Arseno VA, Carvalho CA, Castro MP, Duarte SG, Reis ACMB, Marangoni AC et al. Comparative study of temporal resolution test results in young adults. Rev. CEFAC. 2016;18(6):1277-84. Doi: 10.1590/1982-021620161684312

10. Vidyasagar TR. Reading into neuronal oscillations in the visual system: implications for developmental dyslexia. Front Hum Neurosci. 2013;7(1):811. Doi: 10.3389%2Ffnhum.2013.00811

11. Stein J. The current status of the magnocellular theory of developmental dyslexia. Neuropsychologia. 2019;130:66-77. Doi: 10.1016/j. neuropsychologia.2018.03.022.

12. Flint S, Pammer K. It is the egg, not the chicken; dorsal visual deficits present in dyslexia.
are not present in illiterate adults. Dyslexia. 2018;25(1):69-83. Doi: 10.1002/dys.1607

13. Gori S, Seitz AR, Ronconi L, Franceschin S, Facoetti A. Multiple causal links between magnocellular-dorsal pathway deficit and developmental dyslexia. Cereb Cortex. 2016;26(11):4356-69. Doi: 10.1093/cercor/bhv206

14. Pammer K, Wheatley C. Isolating the M(y)-cell response in dyslexia using the spatial frequency doubling illusion. Vision Res. 2001;41(16):2139-47. Doi: 10.1016/S0042-6989(01)00092-X

15. Evans BJW, Allen PM, Wilkins AJ. A Delphi study to develop practical diagnostic guidelines for visual stress (pattern-related visual stress). J Optom. 2017;10(3):161-8. Doi: 10.1016/j.optom.2016.08.002

16. Soares A, Gontijo LS. Production of knowledge: genetic basis, biochemical and immunological of Meares-Irlen Syndrome. Rev Bras Oftalmol. 2016;75(5):412-5. Doi: 10.5935/0034-7280.20160084

17. Guimarães MFCR, Vilhena DA, Guimarães RQ. Relação do processamento óptico, neurovisual e cognitivo nas dificuldades de leitura. Acta científica. 2017;8(1):193-212.

18. Henderson LM, Tsogka N, Snowling MJ. Questioning the benefits that coloured overlays can have for reading in students with and without dyslexia. J Res Spec Educ Needs. 2013;13(1):57-65. Doi: 10.1111/j.1471-3802.2012.01237.x

19. Loew SJ, Watson K. The prevalence of symptoms of scotopic sensitivity/Meares-Irlen syndrome in subjects diagnosed with ADHD: does misdiagnosis play a significant role? Hrvatska revija za rehabilitacijskaistraživanja. 2013;49(Supplement):64-72.

20. Ludlow AK, Wilkins AJ. Atypical sensory behaviours in children with Tourette’s Syndrome and in children with Autism Spectrum Disorders. Research in Developmental Disabilities. 2016;56(1):108-16. Doi: 10.1016/j.ridd.2016.05.019.

21. Beasley IG, Davies LN. Visual stress symptoms secondary to stroke alleviated with spectral filters and precision tinted ophthalmic lenses: a case report. Clin Exp Optom. 2013;96(1):117-20. Doi: 10.1111/j.1444-0938.2012.00794.x

22. Evans BJW, Allen PM. A systematic review of controlled trials on visual stress using Intuitive Overlays or the Intuitive Colorimeter. J Optom. 2016;9(4):205-18. Doi: 10.1016/j.optom.2016.04.002

23. Garcia ACO, Momensohn-Santos TM, Vilhena DA. Effects of spectral overlays on reading performance of brazilian elementary school children. Folia Phoniatri. Logop. 2017;69(5-6):219-25. Doi: 10.1159/000484139

24. Tosta S, Irlen H, Lewine J, Annibali J. Precision-tinted coloured filters: a successful intervention for medically resistant headaches and migraines after brain injury. In Brain Inj. 2014;28(5-6):683.

25. Veszeli J, Shepherd AJ. A comparison of the effects of the colour and size of coloured overlays on young children’s reading. Vision Res. 2019;156(1):73-83. Doi: 10.1016/j.visres.2019.01.006.

26. Pereira LD, Schochat E. Testes auditivos comportamentais para avaliação do processamento auditivo central. São Paulo: Pró-Fono. 2011.

27. Irlen H. Irlen Reading Perceptual Scale (IRPS). Long Beach, CA: Perceptual Development Corporation; 2003.

28. Vilhena DA, Guimarães MFCR, Pinheiro AMV, Guimarães RQ. Tratamento do estresse visual na leitura: características físicas e mecanismos neurais de ação das lâminas espectrais (overlays). Paidéia. 2018;13(19):3131-9.

29. Vilhena DA, Guimarães MFCR, Guimarães RQ, Pinheiro AMV. Adaptação do Teste de Taxa de Leitura: seleção dos vocábulos. Trabalho premiado na categoria Pesquisador Sênior. Encontro Mineiro de Neuropsicologia Escolar, Universidade Federal de Minas Gerais, Belo Horizonte. 2019.

30. Pinheiro AMV. Frequency of occurrence of words in textbooks exposed to brazilian children in the early years of elementary school. Childes – Child Language Data Exchange System. 2015. Disponível em: http://childes.talkbank.org/derived

31. Northway N. Predicting the continued use of overlays in school children--a comparison of the Developmental Eye Movement test and the Rate of Reading Test. Ophthalmic Physiol Opt. 2003;23(5):457-64.

32. Wilkins AJ, Jeanes RJ, Pumfrey PD, Laskier M. Rate of Reading Test: its reliability, and its validity in the assessment of the effects of coloured overlays. Ophthalmic Physiol Opt. 1996;16(6):491-7. Doi: 10.1016/j.1475-1313.1996.96000282.x

33. Wilkins AJ, Lewis E, Smith F, Rowland E, Tweedie W. Coloured overlays and their benefit...
for reading. J Res Read. 2001;24(1):41-64. Doi: 10.1111/1467-9817.00132

34. Allen PM, Hussain A, Usherwood C, Wilkins AJ. Pattern-related visual stress, chromaticity, and accommodation. Invest Ophthalmol Vis Sci. 2010;51(12):6843-9. Doi: 10.1167/iovs.09-5086

35. Srinivasan K, Krishnan G, Wilkins A, Allen P. Reliability and validity of a Kannada rate of reading test. Indian J Ophthalmol. 2018;66(5):630-3. Doi:10.4103/ijo.IJO_807_17

36. Kriss I, Evans BJ. The relationship between dyslexia and Meares-Irlen syndrome. J Res Read. 2005;28(3):350-64. Doi: 10.1111/j.1467-9817.2005.00274.x

37. Hollingsworth RS, Ludlow AK, Wilkins AJ, Calver RI, Allen PM. Visual performance and the use of colored filters in children who are deaf. Optom Vis Sci. 2015;92(6):690-9. Doi: 10.1097/OPX.0000000000000595

38. Sales R, Colafêmina JF. The influence of eye movement and the vestibular-ocular reflex in reading and writing. Rev. CEFAC. 2014;16(6):1791-7. Doi: 10.1590/1982-0216201419013

39. Silva C, Capellini SA. Efficacy of phonological intervention program in students at risk for dyslexia. Rev. CEFAC. 2015;17(6):1827-37. Doi: 10.1590/1982-021620151760215

40. Monger L, Wilkins A, Allen P. Identifying visual stress during a routine eye examination. JOptom. 2015;8(2):140-5. Doi: 10.1016/j.optom.2014.10.001