COMPLEXITY AND INVARIANT MEASURE
OF THE PERIOD-DOUBLING SUBSHIFT

MIROSLAVA POLÁKOVÁ

Abstract. Explicit formulas for complexity and unique invariant measure
of the period-doubling subshift can be derived from those for the Thue-Morse
subshift, obtained by Brlek, De Luca and Varricchio, and Dekking. In this note
we give direct proofs based on combinatorial properties of the period-doubling
sequence. We also derive explicit formulas for correlation integral and other
recurrence characteristics of the period-doubling subshift. As a corollary we
obtain that the determinism of this subshift converges to 1 as the distance
threshold approaches 0.

1. Introduction

The period-doubling sequence
\[\omega = \omega_1 \omega_2 \ldots = 0100 0101 0100 0100 \ldots \]
can be defined in various ways. First, its \(n \)-th member is 0 if and only if the largest
\(k \) such that \(k \)-th power of 2 divides \(n \), is odd; otherwise it is 1. Second, \(\omega \) is a
unique fixed point of the primitive substitution \(0 \mapsto 01, 1 \mapsto 00 \). Third, \(\omega \) is the
Toeplitz sequence defined by patterns \((0*)\) and \((1*)\); for the general definition of
Toeplitz sequences see [12, 8].

The induced subshift, again called period-doubling, is strictly ergodic (i.e. it
is minimal and has a unique invariant measure) and has zero topological entropy.
Dynamical properties of this subshift were studied already in 50s and 60s, see the
book [10] by Gottschalk and Hedlund and the article [12] by Jacobs and Keane; for
some recent references see e. g. [5, 1, 4]. In the book [13], period-doubling subshift
(called Feigenbaum subshift therein) is mentioned many times as an example with
interesting dynamics.

The period doubling sequence is tightly connected with the Thue-Morse se-
quence, which is a unique fixed point of the primitive substitution \(0 \mapsto 01, 1 \mapsto 10 \)
which starts with 0. Complexity of this sequence was studied in [3, 6] and the
invariant measure was considered in [7].

The period-doubling sequence \(\omega \) is a 2-to-1 image of the Thue-Morse sequence
[10, Definition 12.51]; every subword \(w = w_1 \ldots w_n \) of \(\omega \) corresponds to exactly two
subwords \(u = u_1 \ldots u_{n+1} \) of the Thue-Morse sequence such that \(u_i = u_{i+1} \) if and
only if \(w_i = 1 \). This relation and the results from [3, 6, 7] yield formula (1.1) for the
complexity of \(\omega \), and a description of the unique invariant period-doubling measure

\[2010 \text{ Mathematics Subject Classification. Primary 37B10; Secondary 37A35, 68R15.} \]
\[\text{Key words and phrases. period-doubling sequence, invariant measure, correlation integral, de-
}
\text{terminism, recurrence quantification analysis.} \]
μ; namely for every allowed m-word u (m ≥ 1) we have

\[\mu([u]) = \begin{cases}
2 & \text{if } k = 0; \\
3 \cdot 2^{k-1} + 2q & \text{if } k \geq 1 \text{ and } q \leq 2^{k-1}; \\
4 \cdot 2^{k-1} + q & \text{if } k \geq 1 \text{ and } q > 2^{k-1};
\end{cases} \]

where \(k \geq 0 \) is such that \(2^k \leq m < 2^{k+1} \).

These results are well-known, but cannot be easily found in the literature. Since the period-doubling substitution is of constant length, it is possible to study the complexity of it using a general method from [10]; however, it yields a set of non-trivial recurrent formulas and it seems difficult to derive (1.1) from them.

Dekking [7] has described factor frequencies in the Thue-Morse sequence and the Fibonacci sequence. Factor frequencies in generalized Thue-Morse words were studied in [2]. Frid [9] has obtained a precise description of factor frequencies in the Fibonacci sequence. Factor frequencies in generalized Thue-Morse words were trivial recurrent formulas and it seems difficult to derive (1.1) from them.

Theorem 1.1. (Complexity of the period-doubling sequence) Let \(u \) be the least integer such that \(\mu([u]) \) allows us to derive formulas for correlation integrals (for corresponding definitions see Section 2). For \(0 \leq q < 2^k \) and \(k \geq 0 \) be such that \(2^k \leq m < 2^{k+1} \), then the set of all \(m \)-words is equal to the set of first \((3/2)m\) subwords of \(\omega \).

Theorem 1.2. Let \(u \) be an allowed m-word \((m \geq 1)\), \(k \geq 0 \) be such that \(2^k \leq m < 2^{k+1} \) and \(i \) be the least integer such that \(u = w_i^{(m)} \). Then \(1 \leq i \leq 3 \cdot 2^k \), and

1. if \(i \leq 2^k - q \), or \(q < 2^{k-1} \) and \(2^k < i \leq 2^k + 2^{k-1} - q \), then \(\mu([u]) = 2/(3 \cdot 2^k) \);

2. otherwise \(\mu([u]) = 1/(3 \cdot 2^k) \).

Corollary 1.3. Let \(m = 2^k + q \) with \(k \geq 0 \) and \(0 \leq q < 2^k \). Denote by \(r(m) \) the number of m-words \(u \) such that \(\mu([u]) = 2/(3 \cdot 2^k) \). Then

\[r(m) = \begin{cases}
1 & \text{if } k = 0; \\
3 \cdot 2^{k-1} - 2q & \text{if } k \geq 1 \text{ and } q < 2^{k-1}; \\
2^k - q & \text{if } k \geq 1 \text{ and } q \geq 2^{k-1};
\end{cases} \]
\(m_\varepsilon \in \mathbb{N} \) as follows: if \(\varepsilon \geq 1 \) then \(m_\varepsilon = 0 \); otherwise \(m_\varepsilon \) is a unique positive integer such that
\[
2^{-m_\varepsilon} \leq \varepsilon < 2^{-m_\varepsilon + 1}.
\] (1.2)

Theorem 1.4. Let \(\varepsilon > 0 \). Then the correlation integral of the unique invariant measure \(\mu \) of the period-doubling subshift is
\[
c(\mu, \varepsilon) = \lim_{n \to \infty} C(\omega, n, \varepsilon) = \begin{cases}
1 & \text{if } m_\varepsilon = 0; \\
5/9 & \text{if } m_\varepsilon = 1; \\
(3 \cdot 2^{k+1} - 4q)/(3 \cdot 2^k)^2 & \text{if } m_\varepsilon \geq 2 \text{ and } q < 2^{k-1}; \\
(5 \cdot 2^k - 2q)/(3 \cdot 2^k)^2 & \text{if } m_\varepsilon \geq 2 \text{ and } q \geq 2^{k-1};
\end{cases}
\]
where \(k \geq 0 \) and \(0 \leq q < 2^k \) are integers such that \(m_\varepsilon = 2^k + q \).

For simple inequalities for \(c(\mu, \varepsilon) \) see Corollary [5.1]. Theorem 1.4 together with the results from [11] yield asymptotic values for two of the basic measures of recurrence quantification analysis: recurrence rate (RR) and determinism (DET).

Theorem 1.5 (Recurrence rate of \(\omega \)). Let \(\ell \geq 1 \) and \(\varepsilon > 0 \). Then the recurrence rate \(\text{RR}_\ell(\omega, \varepsilon) \) exists and
\[
\text{RR}_\ell(\omega, \varepsilon) = \begin{cases}
1 & \text{if } m_\varepsilon = 0; \\
5/9 & \text{if } m_\varepsilon = 1 \text{ and } \ell = 1; \\
(3 \cdot 2^{k+1} - 4q + 4\ell - 4)/(3 \cdot 2^k)^2 & \text{if } m_\varepsilon + \ell \geq 3 \text{ and } q < 2^{k-1}; \\
(5 \cdot 2^k - 2q + 2\ell - 2)/(3 \cdot 2^k)^2 & \text{if } m_\varepsilon + \ell \geq 3 \text{ and } q \geq 2^{k-1};
\end{cases}
\]
there, for \(m_\varepsilon + \ell \geq 3 \), \(k \geq 1 \) and \(0 \leq q < 2^k \) are unique integers such that \(m_\varepsilon + \ell - 1 = 2^k + q \).

Theorem 1.6 (Determinism of \(\omega \)). Let \(\ell \geq 2 \) and \(\varepsilon > 0 \). Then \(\text{DET}_\ell(\omega, \varepsilon) \) exists,
\[
\text{DET}_\ell(\omega, \varepsilon) = \frac{\text{RR}_\ell(\omega, \varepsilon)}{\text{RR}_1(\omega, \varepsilon)}
\]
and
\[
\lim_{\varepsilon \to 0} \text{DET}_\ell(\omega, \varepsilon) = 1.
\]
Moreover, \(\text{DET}_\ell(\omega, \varepsilon) = 1 \) if and only if one of the following three cases happens:
(a) \(\varepsilon \geq 1 \);
(b) \(2^k \leq m_\varepsilon < m_\varepsilon + \ell - 1 < 2^k + 2^{k-1} \) for some \(k \in \mathbb{N} \);
(c) \(2^k + 2^{k-1} \leq m_\varepsilon < m_\varepsilon + \ell - 1 < 2^k + 2^{k+1} \) for some \(k \in \mathbb{N} \).

Figure 1 illustrates \(\text{RR}_2 \) and \(\text{DET}_2 \) of the period-doubling sequence.

Remark 1.7. We trivially have that, for every \(\varepsilon < 1 \),
\[
\lim_{\ell \to \infty} \text{DET}_\ell(\omega, \varepsilon) = 0.
\]

Theorems 1.4, 1.5 and 1.6 are stated for embedding dimension 1. For general embedding dimension, see Subsection 5.1. See also [20] for formulas for other recurrence quantifiers.

This paper is organized as follows. Preliminaries are given in Section 2. Complexity of the period-doubling sequence (Theorem 1.1) is derived in Section 3 as a consequence of some other properties of this sequence. In Section 4 we give the proof of Theorem 1.2. In Section 5 we apply these results to prove Theorems 1.4
Moreover, we consider a generalization of our results to arbitrary embedding dimension.

2. Preliminaries

The set of positive integers \(\{1, 2, \ldots \} \) is denoted by \(\mathbb{N} \). The set \(A = \{0,1\} \) is called an alphabet. Put \(A^* = \bigcup_{k \geq 0} A^k \); \(A^* \) endowed with concatenation is a monoid. Members of \(A^* \) are called words. A \textit{word of length} \(m \), or an \textit{\(m \)-word} \((m \geq 1)\), is any \textit{\(m \)-word} \((m \geq 0); v_i \) is the \(i \)-th letter of \(v \). The \textit{empty word} \((the\ unique\ word\ of\ length\ 0)\) is denoted by \(\varepsilon \). A subword of \(v = v_1 \ldots v_n \) \textit{starting at the \(i \)-th letter} is any word \(v_i v_{i+1} \ldots v_{n'} \) with \(i \leq n' \leq n \).

The \textit{period-doubling} substitution \(\zeta \) is defined as follows:

\[
\zeta : A \to A^*, \quad \zeta(0) = 01, \quad \zeta(1) = 00. \tag{2.1}
\]

The substitution \(\zeta \) induces a morphism (denoted also by \(\zeta \)) of the monoid \(A^* \) by putting \(\zeta(\varepsilon) = \varepsilon \) and \(\zeta(w) = \zeta(w_1)\zeta(w_2)\ldots\zeta(w_n) \) for any nonempty word \(w = w_1 w_2 \ldots w_n \). Likewise, \(\zeta \) induces a map (again denoted by \(\zeta \)) from \(A^\mathbb{N} \) to \(A^\mathbb{N} \) by

\[
\zeta(x) = \zeta(x_1)\zeta(x_2)\ldots \quad \text{for} \quad x = (x_n)_{n \in \mathbb{N}} \in A^\mathbb{N}.
\]

The iterates \(\zeta^k (k \geq 1) \) of \(\zeta \) are defined inductively by \(\zeta^1 = \zeta \) and \(\zeta^k = \zeta \circ \zeta^{k-1} \) for \(k \geq 2 \).

\textit{Period-doubling sequence} \(\omega = 01000101010001000100 \ldots \) is the unique fixed point of \(\zeta : A^\mathbb{N} \to A^\mathbb{N} \). Recall that, for every \(i \in \mathbb{N} \), \(\omega_i \) is equal to \(k_i \mod 2 \), where \(k_i \) is the largest integer such that \(2^{k_i} \) divides \(i \). For every integers \(m, i \geq 1 \), the \(m \)-word starting at the position \(i \) is denoted by \(w_i^{(m)} \):

\[
w_i^{(m)} = w_i w_{i+1} \ldots w_{i+m-1}.
\]

For \(m = 2^k (k \geq 1) \) put

\[
0^{(m)} = \zeta^k(0) \quad \text{and} \quad 1^{(m)} = \zeta^k(1);
\]
note that both \(0^{(m)}\) and \(1^{(m)}\) are words of length \(m\).

Any subword of \(\omega\) (including the empty one) is called allowed. The language \(\mathcal{L}_\omega\) of \(\omega\) is the set of all allowed words. The set of all allowed \(m\)-words is denoted by \(\mathcal{L}_\omega^m\). Complexity function of \(\omega\) is the map \(p = p_\omega : \mathbb{N} \to \mathbb{N}\) such that, for every \(m \in \mathbb{N}\), \(p(m) = \#\mathcal{L}_\omega^m\) is the number of allowed \(m\)-words.

Note that for every \(m = 2^k (k \geq 0)\) we have \(0^{(1)} = 0, 1^{(1)} = 1, \) and
\[
0^{(2m)} = 0^{(m)}1^{(m)}, \quad 1^{(2m)} = 0^{(m)}0^{(m)}. \quad (2.2)
\]

A measure-theoretical dynamical system is a system \((X, \mathcal{B}, \mu, f)\), where \(X\) is a set, \(\mathcal{B}\) is \(\sigma\)-algebra over \(X\), \(\mu\) is a probability measure and \(f : X \to X\) is a \(\mu\)-measurable and \(f\)-invariant transformation, i.e. \(f^{-1}(B) \in \mathcal{B}\) and \(\mu(f^{-1}(B)) = \mu(B)\) for every \(B \in \mathcal{B}\). The system \((X, \mathcal{B}, \mu, f)\) is ergodic if \(\mu(B) = 0\) or \(\mu(B) = 1\) for every \(B \in \mathcal{B}\) with \(f^{-1}(B) = B\).

A pair \((X, f)\) is called a topological dynamical system if \(X\) is a compact metric space and \(f : X \to X\) is a continuous map. A dynamical system \((X, f)\) is minimal if there is no proper subset \(M \subset X\) which is nonempty, closed and \(f\)-invariant (a set \(M\) is \(f\)-invariant if \(f(M) \subset M\)). Let \(\mathcal{B}_X\) denote the system of all Borel subsets of \(X\). A probability measure \(\mu\) is said to be invariant if \(\mu(f^{-1}(A)) = \mu(A)\) for every \(A \in \mathcal{B}_X\); that is, \((X, \mathcal{B}_X, \mu, f)\) is a measure-theoretical dynamical system. By Krylov-Bogolyubov theorem, for every \((X, f)\) there exists an invariant measure \(\mu\). System \((X, f)\) is called uniquely ergodic if such a measure \(\mu\) is unique. Moreover, if \((X, f)\) is also minimal, we call it strictly ergodic.

Metric \(\rho\) on \(\Sigma = A^\mathbb{N}\) is defined for every \(\alpha, \beta \in \Sigma\) by \(\rho(\alpha, \beta) = 0\) if \(\alpha = \beta\), and \(\rho(\alpha, \beta) = 2^{-k+1}\) if \(\alpha \neq \beta\), where \(k = \min\{i : \alpha_i \neq \beta_i\}\). Note that \((\Sigma, \rho)\) is a compact metric space. For an \(m\)-word \(v\) we define the cylinder \([v]\) by \([v] = \{\alpha \in \Sigma : \alpha_i = v_i\ \text{for}\ i \leq m\}\). Cylinders form a basis of the topology and \([v] = B(x, \varepsilon)\) for every \(x \in [v]\) and \(\varepsilon = 2^{-|v|}\), where \(B(x, \varepsilon)\) denotes the closed ball with the center \(x\) and radius \(\varepsilon\). A shift is the map \(\sigma : \Sigma \to \Sigma\) defined by \(\sigma(\alpha_1\alpha_2\alpha_3\ldots) = \alpha_2\alpha_3\ldots\). For each nonempty closed \(\sigma\)-invariant subset \(Y \subset \Sigma\), the restriction of \((\Sigma, \sigma)\) to \(Y\) is called a subshift. The closure of the orbit \((\sigma^n(\alpha))_{n \geq 0}\) of any \(\alpha \in \Sigma\) defines a subshift, as it is always nonempty, closed and \(\sigma\)-invariant set. Period-doubling subshift is the orbit closure of the period-doubling sequence.

Let \((X, \sigma)\) be a subshift over \(A\), \(\rho\) be the metric defined above and \(\mu\) be a \(\sigma\)-invariant measure. Correlation integral of \(\mu\) is defined for \(\varepsilon > 0\) as follows:
\[
c(\mu, \varepsilon) = \mu \times \mu \{ (x, y) \in X \times X : \rho(x, y) \leq \varepsilon \}.
\]
If \(2^{-m} \leq \varepsilon < 2^{-m+1}\) then clearly
\[
c(\mu, \varepsilon) = \sum_{v \in \sigma^m} \mu([v])^2.
\]
For \(x \in X, n \in \mathbb{N}\) and \(\varepsilon > 0\), correlation sum is defined by
\[
C(x, n, \varepsilon) = \frac{1}{n^2} \# \{ (i, j) : 0 \leq i, j < n, \ \rho(\sigma^i(x), \sigma^j(x)) \leq \varepsilon \}.
\]
For uniquely ergodic systems, \(\lim_n C(x, n, \varepsilon) = c(\mu, \varepsilon)\) for every but countably many \(\varepsilon > 0\) and every \(x \in X\) [13].

For any \(\ell \geq 1\) consider Bowen’s metric
\[
\rho_\ell(\alpha, \beta) = \max_{0 \leq k < \ell} \rho(\sigma^k(\alpha), \sigma^k(\beta)) \quad .
\]
An easy computation gives that we always have

$$\rho(\alpha, \beta) = \begin{cases} 1 & \text{if } \alpha_i \neq \beta_i \text{ for some } 1 \leq i \leq \ell, \\ 2^{\ell-1} \rho(\alpha, \beta) & \text{if } \alpha_i = \beta_i \text{ for all } 1 \leq i \leq \ell. \end{cases}$$ \hfill (2.3)

We can now define

$$C_\ell(x, n, \varepsilon) = \frac{1}{n^2} \# \{(i, j) : 0 \leq i, j < n, \rho(\sigma^i(x), \sigma^j(x)) \leq \varepsilon\}. \hfill (2.4)$$

Recurrence quantification analysis ([22], see also [14, 21]) gives several complexity measures quantifying structures in recurrence plots, which are useful for visualization of recurrence. Two of them are recurrence rate (RR) and determinism (DET). By [11, Proposition 1], recurrence rate and determinism can be expressed by correlation sums as follows:

$$RR_\ell = \ell \cdot C_\ell - (\ell - 1) \cdot C_{\ell + 1} \quad \text{and} \quad \text{DET}_\ell = \frac{RR_\ell}{RR_1}, \hfill (2.5)$$

where ℓ is the minimal required line length; arguments x, n, ε are omitted and we consider embedding dimension 1. For general embedding dimension d see Subsection 5.1.

If the limit of $C_\ell(x, n, \varepsilon)$ for $n \to \infty$ exists, it is denoted by $C_\ell(x, \varepsilon)$. Analogously we define $RR_\ell(x, \varepsilon)$ and $\text{DET}_\ell(x, \varepsilon)$.

3. Complexity of the period-doubling sequence

3.1. Length $m = 2^k$. In this section, we prove Theorem 1.1 in the special case when the length m is a power of 2. We start with two lemmas. The first one follows by induction using (2.2) and the second one is a direct consequence of $\zeta^k(\omega) = \omega$.

Lemma 3.1. For any $m = 2^k$ ($k \geq 0$), the m-words $0^{(m)}$, $1^{(m)}$ differ exactly at the m-th letter:

$$(0^{(m)})_i = (1^{(m)})_i \quad \text{for } i < m, \quad (0^{(m)})_m \neq (1^{m})_m.$$

Moreover, if k is even then $(0^{(m)})_m = 0$ and $(1^{(m)})_m = 1$, and if k is odd then $(0^{(m)})_m = 1$ and $(1^{(m)})_m = 0$.

Lemma 3.2. Let $m = 2^k$ ($k \geq 0$). Then the period-doubling sequence ω can be written in the form $\omega = (\omega_1)^{(m)}(\omega_2)^{(m)} \ldots$. That is, for every $i \in \mathbb{N}$,

$$w_{(i-1)m+1}^{(m)} = \begin{cases} 0^{(m)} & \text{if } \omega_i = 0, \\ 1^{(m)} & \text{if } \omega_i = 1. \end{cases}$$

Lemma 3.3. For the period-doubling sequence ω, $p(1) = 2$ and $p(2) = 3$. Moreover, the allowed 1-words are $w_1^{(1)} = 0$ and $w_2^{(1)} = 1$, and the allowed 2-words are $w_1^{(2)} = 01$, $w_2^{(2)} = 10$, and $w_3^{(2)} = 00$.

Proof. We only need to prove that the word 11 is not allowed. But this immediately follows from the fact that $\omega_{2i-1} = 0$ for every i. \hfill \square

Lemma 3.4. Let $m = 2^k$ ($k \geq 1$). Then the words $w_i^{(m)}$ ($1 \leq i \leq \frac{3}{2}m$) are pairwise distinct.
Proof. We start by showing that, for \(\frac{3}{2}m < i \leq 4m, \)
\[
 w_i^{(m)} = \begin{cases}
 w_{i-m/2}^{(m)} & \text{if } \frac{3}{2}m < i \leq 2m; \\
 w_{i-2m}^{(m)} & \text{if } 2m < i \leq 3m; \\
 w_{i-3m}^{(m)} & \text{if } 3m < i \leq 4m.
 \end{cases}
\] (3.1)

To see this, realize that \(\omega = 0^{(m)}1^{(m)}0^{(m)}0^{(m)}\ldots \) by Lemma 3.2. Hence, by Lemma 3.1, \(w_i^{(m)} = w_{i-2m}^{(m)} \) for \(2m < i \leq 3m \) and \(w_i^{(m)} = w_{i-3m}^{(m)} \) for \(3m < i \leq 4m. \)
Furthermore, \(\omega = 0^{(n)}1^{(n)}0^{(n)}0^{(n)}1^{(n)}\ldots \) where \(n = m/2. \) So analogously, \(w_i^{(m)} = w_{i-n}^{(m)} \) for \(\frac{3}{2}m < i < 2m. \)

We now proceed by induction on \(k. \) For \(k = 1, \) the claim follows from Lemma 3.3. Assume now that the claim is valid for some \(k \geq 1; \) we are going to show that it is valid for \(k + 1. \) Put \(m = 2^k. \) Since \(w_i^{(2m)} = w_i^{(m)}w_{i+m}^{(m)} \) (3.1) and the induction hypothesis yield that the words \(w_i^{(2m)} \) for \(1 \leq i \leq 3m \) are pairwise distinct. \(\square \)

Lemma 3.5. Let \(m = 2^k \) \((k \geq 1)\) and \(v \) be any allowed \(m \)-word. Then exactly one of the following is true:

1. \(v \) is a subword of \(0^{(m)}1^{(m)} \) starting at the \(i \)-th letter with \(i \leq m; \)
2. \(v \) is a subword of \(1^{(m)}0^{(m)} \) starting at the \(i \)-th letter with \(i \leq m/2. \)

Proof. We start by showing that at least one of (1), (2) is true. If \(v \in \{0^{(m)}, 1^{(m)}\}, \) we are done. Otherwise, by Lemma 3.2, \(v \) is a subword of \(0^{(m)}0^{(m)} \) or \(0^{(m)}1^{(m)} \) or \(1^{(m)}0^{(m)} \), starting at an index \(j \leq m. \) By Lemma 3.1, \(v \) is a subword of \(0^{(m)}1^{(m)} \) or \(1^{(m)}0^{(m)}. \) In the former case we have (1). In the latter case, we have (2) since \(1^{(m)}0^{(m)} = 0^{(m)}0^{(m)}0^{(m)}1^{(n)} \) by (2.2), where \(n = m/2. \)

Moreover, \(\omega \) starts with \(0^{(m)}1^{(m)}0^{(m)}, \) so \(v = w_i^{(m)} \) for some \(1 \leq i \leq \frac{3}{2}m. \) By Lemma 3.4, the words \(w_i^{(m)} \) \((1 \leq i \leq \frac{3}{2}m)\) are pairwise distinct, so only one of (1) and (2) is true. \(\square \)

Proposition 3.6. Let \(m = 2^k \) \((k \geq 1). \) Then \(p(m) = \frac{3}{2}m \) and \(L_m^\omega = \{w_i^{(m)} : 1 \leq i \leq \frac{3}{2}m\}. \)

Proof. Lemma 3.5 gives \(p(m) \leq \frac{3}{2}m. \) On the other hand, \(p(m) \geq \frac{3}{2}m \) by Lemma 3.4. The description of \(L_m^\omega \) now follows from Lemma 3.4. \(\square \)

Remark 3.7. For \(m = 2^k \) \((k \geq 1)\) we also have \(L_m^\omega = \{w_i^{(m)} : \frac{3}{2}m < i \leq 3m\}; \) this follows from (3.1). \(\square \)

3.2. General length \(m. \)

Lemma 3.8. Let \(m = 2^k + q, \) where \(k \geq 1 \) and \(1 \leq q < 2^k. \) Let \(1 \leq i < j \leq 3 \cdot 2^k. \) Then \(w_i^{(m)} = w_j^{(m)} \) if and only if exactly one of the following conditions holds:

1. \(1 \leq i \leq 2^k - q \) and \(j = i + 2^{k+1}; \)
2. \(q < 2^{k-1}, 2^{k+1} + 1 \leq i \leq 3 \cdot 2^{k-1} - q, \) and \(j = i + 2^{k-1}. \)

Consequently, for every \(1 \leq i < 3 \cdot 2^k \) there is at most one \(j \) such that \(i < j \leq 3 \cdot 2^k \) and \(w_i^{(m)} = w_j^{(m)}. \)

Proof. For \(1 \leq i < j \leq 3 \cdot 2^k \) put
\[
 \varphi(i, j) = \min\{1 \leq h \leq 2^{k+1} : \omega_{i+h-1} \neq \omega_{j+h-1}\};
\]
It is clear that $w_i^{(m)} = w_j^{(m)}$ if and only if $\varphi(i, j) > m$. \hspace{1cm} (3.2)

It is clear that

$$\text{if } \varphi(i, j) \geq 2 \text{ then } \varphi(i + 1, j + 1) = \varphi(i, j) - 1.$$ \hspace{1cm} (3.3)

Fix $1 \leq i < j \leq 3 \cdot 2^k$ and assume that $w_i^{(m)} = w_j^{(m)}$; we are going to show that either $[1]$ or $[2]$ is true. Since $m \geq 2^k$ we have that $w_i^{(2^k)} = w_j^{(2^k)}$ and, by (3.1), exactly one of the following is true:

(a) $1 \leq i \leq 2^k$ and $i = j + 2^k + 1$;
(b) $2^k < i \leq 3 \cdot 2^k - 1$, and $j = i + 2^k - 1$.

Assume that $[a]$ is true. Since $\varphi(1, 2^{k+1} + 1) = 2^{k+1}$ and $j = i + 2^k \leq 3 \cdot 2^k$, (3.3) implies

$$\varphi(i, j) = 2^{k+1} - (i - 1). \hspace{1cm} (3.4)$$

Since $w_i^{(m)} = w_j^{(m)}$ by assumption, (3.2) implies $2^{k+1} - (i - 1) > m$, that is $i \leq 2^k - q$. So we have [1].

If $[b]$ is true then, by Lemma 3.2, $w_i^{(2^k + 1)} = 0(n)0(n)1^{(n)}(n)$ and $w_i^{(2^k + 1)} = 0(n)0(n)1^{(n)}(n)$ for $n = 2^{k-1}$. From Lemma 3.1 it follows that $\varphi(1 + 2^k, 1 + 2^k - 1) = 3 \cdot 2^{k-1}$. Since $2^k < i \leq 3 \cdot 2^k - 1$ and $j = i + 2^k - 1$, (3.3) yields

$$\varphi(i, j) = \varphi(p + 2^k, p + 2^k + 2^k - 1) = 3 \cdot 2^{k-1} - (p - 1),$$

(3.5)

(notice that $0 < p \leq 2^{k-1}$). By the assumption $w_i^{(m)} = w_j^{(m)}$ and so, by (3.2), $\varphi(i, j) > m = 2^k + q$. Now (3.5) gives $3 \cdot 2^{k-1} - q \geq i$, so we have [2].

Now assume that one of the conditions [1], [2] holds. If [1] holds we have $w_i^{(m)} = w_j^{(m)}$, since (3.4) implies $\varphi(i, j) > m$. Similarly, if [2] is true then $\varphi(i, j) > m$ by (3.5), so again $w_i^{(m)} = w_j^{(m)}$.

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. It is clear from Lemma 3.3 that [1] is true for $k = 0$, so we may assume that $k > 0$. Let $n = 2^{k+1}$. By Proposition 3.6

$$p(m) = p(n) - \#\{(i, j) : 1 \leq i < j \leq 3 \cdot 2^k, w_i^{(m)} = w_j^{(m)}\}.$$

If $q \geq 2^{k-1}$ then only [1] from Lemma 3.8 occurs, consequently, $p(m) = p(n) - (2^k - q) + 4 \cdot 2^{k-1} + 2q$. Otherwise, both [1] and [2] from Lemma 3.8 occur and so $p(m) = p(n) - (2^k - q) - (2^{k-1} - q) = 3 \cdot 2^{k-1} + 2q$. \hspace{1cm} \square

From Theorem 1.1 we immediately have that

$$p(m + 1) - p(m) \in \{1, 2\} \text{ for every } m$$

and

$$\frac{3}{2} m \leq p(m) \leq \frac{5}{3} m \text{ for every } m \geq 2.$$
4. Invariant measure of the period-doubling subshift

Let (X, σ) be the period-doubling subshift; i.e. X is the orbit closure of ω and $\sigma : X \to X$ is the left shift. By [15] (see also [19, Proposition 5.2 and Theorem 5.6]), (X, σ) is strictly ergodic.

Denote the unique invariant measure of (X, σ) by μ. By [17],

$$\mu([v]) = \lim_{n \to \infty} \frac{1}{n} \# \{1 \leq i \leq n : w_i^{(m)} = v\}$$

for every $v \in \mathcal{L}^m$. In this section we prove Theorem 1.2 which gives an explicit formula for measures of cylinders $[v]$. We follow [19, Sections 5.3-5.4]. Fix an integer $m \in \mathbb{N}$ and recall that \mathcal{L}^m is the set of all m-words in ω. Define a substitution $\zeta^{(m)}$ over alphabet \mathcal{L}^m as follows: for $u \in \mathcal{L}^m$, write $\zeta(u) = y_1 y_2 \ldots y_{2m}$, and define $\zeta^{(m)}(u) = (y_1 \ldots y_m)(y_2 \ldots y_{m+1})$. Let M^m be the composition matrix of $\zeta^{(m)}$, that is M^m is a $p(m) \times p(m)$ non-negative matrix such that, for $u, v \in \mathcal{L}^m$, $(M^m)_{uv}$ is the number of occurrences of v in $\zeta^{(m)}(u)$. Trivially every member of M^m belongs to $\{0, 1, 2\}$.

By [19, Corollary 5.2], the Perron-Frobenius eigenvalue of M^m is $\lambda = 2$. Furthermore, if $d^m = (d^m_{u,v})_{u \in \mathcal{L}^m}$ is the unique normalized eigenvector of M^m corresponding to λ, then $\mu([u]) = d^m_{\cdot u}$ by [19, Corollary 5.4], see also [9, Proposition 1].

Lemma 4.1. Let $m = 2^k$ $(k \geq 1)$. Then $d^m = \frac{2}{3m}(1, 1, \ldots, 1)$. Consequently, $\mu([v]) = \frac{2}{3m}$ for every allowed m-word v.

Proof. It is enough to show that every row sum of M_m is equal to 2. For $m = 2$ it is easy. So assume that $m \geq 4$. By (3.1) we have

$$\zeta^{(m)}(w_{\lfloor i/2 \rfloor}^{(m)}) = \sum_{j=1}^{\lfloor i/4 \rfloor} \left(\frac{w_{\lfloor i/4 \rfloor}^{(m)}w_{\lfloor j/2 \rfloor}^{(m)}}{w_{\lfloor i/4 \rfloor}^{(m)}} \right) \text{ for } i \leq \frac{3}{4}m;$$

$$(\text{4.1})$$

$$\zeta^{(m)}(w_{\lfloor i/4 \rfloor}^{(m)}) = \frac{w_{\lfloor (i-1)/2 \rfloor}^{(m)}w_{\lfloor (i-1)/4 \rfloor}^{(m)}}{w_{\lfloor (i-1)/2 \rfloor}^{(m)}} \text{ for } \frac{3}{4}m < i \leq m;$$

$$(\text{4.2})$$

$$\zeta^{(m)}(w_{\lfloor i/4 \rfloor}^{(m)}) = \frac{w_{\lfloor (i-1)/2 \rfloor}^{(m)}w_{\lfloor (i-1)/2 \rfloor}^{(m)}}{w_{\lfloor (i-1)/2 \rfloor}^{(m)}} \text{ for } m < i \leq \frac{3}{2}m.$$}

Hence, for $1 \leq j \leq m$, the word $w_{\lfloor j/2 \rfloor}^{(m)}$ occurs in $\zeta^{(m)}(w_{\lfloor i/2 \rfloor}^{(m)})$ for $i = \lfloor \frac{j}{4} \rfloor$ and $i = \lfloor \frac{j}{2} \rfloor + m$. Further, for $m < j \leq \frac{3}{4}m$, the word $w_{\lfloor j/4 \rfloor}^{(m)}$ occurs in $\zeta^{(m)}(w_{\lfloor i/4 \rfloor}^{(m)})$ for $i = \lfloor \frac{j}{2} \rfloor$ and $i = \lfloor \frac{j}{2} \rfloor + \frac{m}{2} + \frac{m}{4}$. The proof is complete.

Proof of Theorem 1.3. Theorem 1.2 holds for $q = 0$ by the previous lemma, so let $q \geq 1$. Put $n = 2^{k+1}$. If (1) is true then, by Lemma 3.8, there is exactly one index j such that $i < j \leq 3 \cdot 2^k$ and $w_{\lfloor i/4 \rfloor}^{(m)} = w_j^{(m)}$; in this case $[v] = [w_i^{(n)}] \cup [w_j^{(n)}]$. Otherwise, $[v] = [w_i^{(n)}]$. Now the theorem follows from Lemma 4.1.

5. Correlation integral and RQA measures

Proof of Theorem 1.4. By [18], modified to uniquely ergodic systems, $\lim C(\omega, n, \varepsilon) = c(\mu, \varepsilon)$ provided $c(\mu, \varepsilon)$ is continuous at ε. Since the metric ρ attains only values from $2^{2n0} \cup \{0\}$, $C(\omega, n, \varepsilon)$ and $c(\mu, \varepsilon)$ are constant on $\varepsilon \in [2^{-m}, 2^{-m+1})$ for every m. This easily implies $\lim_n C(\omega, n, \varepsilon) = c(\mu, \varepsilon)$ for every ε. Since

$$c(\mu, \varepsilon) = \sum_{v \in \mathcal{L}^m} \mu([v])^2,$$

Theorem 1.2 and Corollary 1.3 yield the desired result.

□
Corollary 5.1. Let $0 < \varepsilon < \frac{1}{2}$ and m_ε be defined as in (1.2). Then

$$\frac{2}{3m_\varepsilon} \leq c(\mu, \varepsilon) \leq \frac{25}{36m_\varepsilon}.$$

Moreover, if $m_\varepsilon \in \{2^k, 2^k + 2^{k-1}, k \geq 1\}$ then $c(\mu, \varepsilon) = \frac{2}{3m_\varepsilon}$, and if $m_\varepsilon \in \{2^k + 2^{k-1}, k \geq 1\}$ then $c(\mu, \varepsilon) = \frac{25}{36m_\varepsilon}$.

Proof. Write $m_\varepsilon = 2^k + q$ with $k \geq 1$ and $0 \leq q < 2^k$. Let $x = \frac{q}{m_\varepsilon} \in [0, \frac{1}{2})$. Using Theorem 1.4 and substituting $2^k = m_\varepsilon - q$ into $m_\varepsilon c(\mu, \varepsilon)$ we get

$$m_\varepsilon c(\mu, \varepsilon) = \frac{6 - 10x}{9(1-x)^2} \quad \text{for } 0 \leq q < 2^{k-1},$$

$$m_\varepsilon c(\mu, \varepsilon) = \frac{5 - 7x}{9(1-x)^2} \quad \text{for } 2^{k-1} \leq q < 2^k.$$

Using elementary calculus we obtain that $\frac{2}{3} \leq m_\varepsilon c(\mu, \varepsilon) \leq \frac{25}{36}$ if $0 \leq q < 2^{k-1}$ and $\frac{2}{3} \leq m_\varepsilon c(\mu, \varepsilon) \leq \frac{25}{36} < \frac{25}{36}$ if $2^{k-1} \leq q < 2^k$. Moreover, minimum is attained at the points $x = 0$ and $x = \frac{3}{7}$, corresponding to $q = 0$ and $q = 2^{k-1}$, and maximum is attained at the point $x = \frac{1}{5}$ corresponding to $q = 2^{k-2}$. \hfill \Box

Proof of Theorem 1.3. If $\varepsilon \geq 1$ then, by (2.5) and Theorem 1.4, $RR_\ell(\omega, n, \varepsilon) = 1$ for every n, hence $RR_\ell(\omega, \varepsilon) = 1$. So assume that $0 < \varepsilon < 1$. By (2.3), for every $x, y \in X$ we have $\rho(x, y) \leq \varepsilon$ if and only if $\rho(x, y) \leq 2^{-\ell+1}\varepsilon$. So

$$C_\ell(\omega, n, \varepsilon) = C(\omega, n, 2^{-\ell+1}\varepsilon).$$

Thus, by (2.5) and Theorem 1.4

$$RR_\ell(\omega, \varepsilon) = \lim_{n \to \infty} RR_\ell(\omega, n, \varepsilon) = \ell c(\mu, 2^{-\ell+1}\varepsilon) - (\ell - 1) c(\mu, 2^{-\ell}\varepsilon). \quad (5.1)$$

Notice that $m_{2^{-\ell+1}\varepsilon} = m_\varepsilon + \ell$ and $m_{2^{-\ell+1}\varepsilon} = m_\varepsilon + \ell - 1$, since $\varepsilon < 1$ and $\ell \geq 1$. Put $m = m_\varepsilon + \ell - 1$. If $m = 1$ (i.e., $m_\varepsilon = 1$ and $\ell = 1$), then $RR_\ell(\omega, \varepsilon) = 5/9$ by (5.1) and Theorem 1.4. So we may assume that $m \geq 2$ (i.e. $m_\varepsilon + \ell \geq 3$) and hence we may write $m = 2^k + q$ with $k \geq 1$ and $0 \leq q < 2^k$.

Now we consider four cases: $q < 2^{k-1} - 1$, $q = 2^{k-1} - 1$, $2^{k-1} \leq q < 2^k - 1$, and $q = 2^k - 1$. In the first and third cases we have $m_{2^{-\ell+1}\varepsilon} = m + 1 = 2^k + (q + 1)$ with $q + 1 < 2^{k-1}$ and $2^{k-1} \leq q < 2^k$, respectively. So (5.1) and Theorem 1.4 give the formulas for $RR_\ell(\omega, \varepsilon)$.

In the second case ($q = 2^{k-1} - 1$) we can write $m_{2^{-\ell+1}\varepsilon} = 2^k + 2^{k-1}$ and in the fourth case ($q = 2^k - 1$) we can write $m_{2^{-\ell+1}\varepsilon} = 2^{k+1} + 0$; as above, (5.1) and Theorem 1.4 yield the formula for $RR_\ell(\omega, \varepsilon)$. \hfill \Box

Proof of Theorem 1.6. From (2.5) and the definition of determinism, we have

$$DET_\ell(\omega, n, \varepsilon) = \frac{RR_\ell(\omega, n, \varepsilon)}{RR_1(\omega, n, \varepsilon)}.$$

Using (5.1) and the fact that $RR_1(\omega, \varepsilon) = c(\mu, \varepsilon) > 0$, we obtain

$$DET_\ell(\omega, \varepsilon) = \lim_{n \to \infty} DET_\ell(\omega, n, \varepsilon) = \frac{RR_\ell(\omega, \varepsilon)}{RR_1(\omega, \varepsilon)}. \quad (5.2)$$
It is clear that $\text{DET}_\ell(\omega, \varepsilon) = 1$ for $\varepsilon \geq 1$, so assume that $\varepsilon < 1$. Let $m_\varepsilon = 2^k + q$ and $m_\varepsilon + \ell - 1 = 2^{k'} + q'$, where $k, k' \geq 0$, $0 \leq q < 2^k$ and $0 \leq q' < 2^{k'}$. We now compute $\text{DET}_\ell(\omega, \varepsilon)$ using Theorems 4.4, 1.5, and (5.2). We distinguish three cases.

(a) Let $\varepsilon \in (0, 1)$ be such that $k' = k$; then $q' = q + \ell - 1$; we write $\varepsilon \in E_a$. If $0 \leq q < q' < 2^{k-1}$ or $2^{k-1} \leq q < q' < 2^k$, we immediately have $\text{DET}_\ell(\omega, \varepsilon) = 1$. Otherwise $0 \leq q < 2^{k-1} \leq q' < 2^k$

\[
\text{DET}_\ell(\omega, \varepsilon) = \frac{5 \cdot 2^k - 2q}{6 \cdot 2^k - 4q} < 1.
\]

Here $2^{k-1} - \ell + 1 \leq q < 2^{k-1}$ and so $q^{2-k} \rightarrow 1/2$ for $\varepsilon \rightarrow 0$. Thus we have

\[
\lim_{\varepsilon \rightarrow 0} \text{DET}_\ell(\omega, \varepsilon) = 1.
\]

(b) Let $\varepsilon \in (0, 1)$ be such that $k' = k+1$; we write $\varepsilon \in E_b$. Then $q' = q + \ell - 1 - 2^k$, and so

\[
\text{DET}_\ell(\omega, \varepsilon) = \frac{3 \cdot 2^k + \Delta}{3 \cdot 2^k + 2\Delta} < 1, \quad \text{where } \Delta = -q' + l - 1 \in \{1, \ldots, \ell - 1\}.
\]

Clearly

\[
\lim_{\varepsilon \rightarrow 0} \text{DET}_\ell(\omega, \varepsilon) = 1.
\]

(c) If $\varepsilon \in (0, 1) \setminus (E_a \cup E_b)$, then $k' \geq k + 2$ and we again have $\text{DET}_\ell(\omega, \varepsilon) < 1$. Since this can happen only for large enough ε, this case does not affect the limit $\lim_{\varepsilon \rightarrow 0} \text{DET}_\ell(\omega, \varepsilon)$. (In fact, if $\varepsilon < \min(2^{-(\ell-2)}, 1)$ then $m_\varepsilon \geq \ell - 1$, and so $2^{k'} + q' = m_\varepsilon + \ell - 1 \leq 2m_\varepsilon = 2(2^k + q)$. From this we immediately have $k' \leq k + 1$.)

Thus we have proved that $\text{DET}_\ell(\omega, \varepsilon) = 1$ if and only if one of (a)–(c) happens (otherwise $\text{DET}_\ell(\omega, \varepsilon) < 1$) and that $\lim_{\varepsilon \rightarrow 0} \text{DET}_\ell(\omega, \varepsilon) = 1$.

\[
\square
\]

5.1. General embedding dimension. Up to now we considered recurrence characteristics without embedding. The results can be easily generalized to arbitrary embedding dimension $d \geq 1$.

If x is a sequence over $A = \{0, 1\}$, then the embedded sequence x^d is a sequence over $A^d = \{0, 1\}^d$ defined by

\[
x^d = x_1^d x_2^d \ldots = (x_1 x_2 \ldots x_d)(x_{2d} x_{3d} \ldots x_{d+1}) \ldots
\]

A metric ρ^d in the embedding space $(A^d)^N$ is defined as in Section 2 that is,

\[
\rho^d(x^d, y^d) = \begin{cases} 2^{-k+1} & \text{if } x^d \neq y^d, \text{ where } k = \min\{i : x_i^d \neq y_i^d\}, \\ 0 & \text{if } x^d = y^d. \end{cases}
\]

If $k > 1$ then trivially

\[
\rho^d(x^d, y^d) = 2^{-k+1} \quad \text{if and only if} \quad \rho(x, y) = 2^{-(d+k-2)}.
\]

So for correlation sums C^d_ℓ, defined by (2.4) with ρ_ℓ replaced by ρ^d_ℓ, it holds that

\[
C^d_\ell(x^d, n, \varepsilon) = C(x, n, 2^{-(l-1)-(d-1)} \varepsilon)
\]
for every $x \in A^N, \varepsilon \in (0, 1)$ and $n \in \mathbb{N}$. This together with Theorem 1.4 yield an explicit formula for (embedded) correlation integrals $c^d_\ell(\omega^d, \varepsilon)$ for the period-doubling sequence ω. To obtain formulas for $RR^d_\ell(\omega^d, \varepsilon)$ and $DET^d_\ell(\omega^d, \varepsilon)$ it suffices to use (2.5):

$$RR^d_\ell(\omega^d, n, \varepsilon) = \ell \cdot C^d_\ell(\omega^d, n, \varepsilon) - (\ell - 1) \cdot C^d_{\ell + 1}(\omega^d, n, \varepsilon),$$

$$DET^d_\ell(\omega^d, n, \varepsilon) = \frac{RR^d_\ell(\omega^d, n, \varepsilon)}{RR^d_1(\omega^d, n, \varepsilon)}.$$

Acknowledgements

The author gratefully acknowledges the many helpful suggestions of Vladimír Špitalský. This work was supported by the Slovak Research and Development Agency under the contract No. APVV-15-0439, and by VEGA grant 1/0768/15.

References

[1] S. V. Avgustinovich, J. Cassaigne, and A. E. Frid. Sequences of low arithmetical complexity. *RAIRO-Theoretical Informatics and Applications*, 40(4):569–582, 2006.

[2] L. Balková. Factor frequencies in languages invariant under more symmetries. *arXiv preprint arXiv:1107.0471*, 2011.

[3] S. Brlek. Enumeration of factors in the Thue-Morse word. *Discrete Applied Mathematics*, 24(1-3):83–96, 1989.

[4] E. M. Coven, M. Keane, and M. LeMasurier. A characterization of the morse minimal set up to topological conjugacy. *Ergodic Theory and Dynamical Systems*, 28(5):1443–1451, 2008.

[5] D. Damanik. Local symmetries in the period-doubling sequence. *Discrete applied mathematics*, 100(1-2):115–121, 2000.

[6] A. de Luca and S. Varricchio. Some combinatorial properties of the Thue-Morse sequence and a problem in semigroups. *Theoretical Computer Science*, 63(3):333–348, 1989.

[7] F. M. Dekking. On the Thue-Morse measure. *Acta Universitatis Carolinae. Mathematica et Physica*, 33(2):35–40, 1992.

[8] T. Downarowicz. Survey of odometers and Toeplitz flows. *Contemporary Mathematics*, 385:7–38, 2005.

[9] A. E. Frid. On the frequency of factors in a D0L word. *Journal of Automata, Languages and Combinatorics*, 3(1):29–42, 1998.

[10] W. H. Gottschalk and G. A. Hedlund. *Topological dynamics*, volume 36. American Mathematical Soc., 1955.

[11] M. Grendár, J. Majerová, and V. Špitalský. Strong laws for recurrence quantification analysis. *Internat. J. Bifur. Chaos*, 23(08):1350147, 2013.

[12] K. Jacobs and M. Keane. 0-1-sequences of Toeplitz type. *Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete*, 13(2):123–131, 1969.

[13] P. Kürka. *Topological and symbolic dynamics*, volume 11. SMF, 2003.

[14] N. Marwan, M. C. Romano, M. Thiel, and J. Kurths. Recurrence plots for the analysis of complex systems. *Physics reports*, 438(5-6):237–329, 2007.

[15] P. Michel. Straté ergodité densseminax de substitution. In *Théorie Ergodique*, pages 189–201. Springer, 1976.
[16] B. Mossé. Reconnaissabilité des substitutions et complexité des suites automatiques. *Bull. Soc. Math. France*, 124(2):329–346, 1996.

[17] J. C. Oxtoby. Ergodic sets. *Bulletin of the American Mathematical Society*, 58(2):116–136, 1952.

[18] Y. B. Pesin. On rigorous mathematical definitions of correlation dimension and generalized spectrum for dimensions. *Journal of statistical physics*, 71(3-4):529–547, 1993.

[19] M. Queffélec. *Substitution dynamical systems-spectral analysis*, volume 1294. Springer, 2010.

[20] V. Spitalský. Recurrence quantification analysis of the period-doubling sequence. *International Journal of Bifurcation and Chaos*, 28(14):1850181, 2018.

[21] C. L. Webber Jr and N. Marwan. Recurrence quantification analysis. *Theory and Best Practices*, 2015.

[22] J. P. Zbilut and C. L. Webber Jr. Embeddings and delays as derived from quantification of recurrence plots. *Physics letters A*, 171(3-4):199–203, 1992.

Department of Mathematics, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, Banská Bystrica, Slovakia

E-mail address: miroslava.sartorisova@umb.sk