Some results on the subadditivity condition of syzygies

Abed Abedelfatah

Abstract
Let $S = K[x_1, \ldots, x_n]$, where K is a field, and t_i denotes the maximal shift in the minimal graded free S-resolution of the graded algebra S/I at degree i. In this paper, we prove:

- If I is a monomial ideal of S and $a \geq b - 1 \geq 0$ are integers such that $a + b \leq \text{proj dim}(S/I)$, then
 $$ t_{a+b} \leq t_a + t_1 + t_2 + \cdots + t_b - \frac{b(b-1)}{2}. $$

- If $I = I_\Delta$ where Δ is a simplicial complex such that $\dim(\Delta) < t_a - a$ or $\dim(\Delta) < t_b - b$, then
 $$ t_{a+b} \leq t_a + t_b. $$

- If I is a monomial ideal that minimally generated by m_1, \ldots, m_r such that $\frac{lcm(m_1, \ldots, m_r)}{lcm(m_1, \ldots, \widehat{m_i}, \ldots, m_r)} \notin K$ for all i, where $\widehat{m_i}$ means that m_i is omitted, then $t_{a+b} \leq t_a + t_b$ for all $a, b \geq 0$ with $a + b \leq \text{proj dim}(S/I)$.

Keywords Betti numbers · Simplicial complex · Monomial ideal · Subadditivity condition

1 Introduction
Let $S = K[x_1, \ldots, x_n]$, where K is a field and let I be a graded ideal of S and suppose S/I has minimal graded free S-resolution
$$ 0 \to F_p = \bigoplus_{j \in \mathbb{N}} S(-j)^{\beta_{pj}} \to \cdots \to F_1 = \bigoplus_{j \in \mathbb{N}} S(-j)^{\beta_{1j}} \to F_0 = S \to S/I \to 0. $$

The numbers $\beta_{ij} = \beta_{ij}(S/I)$, where $i, j \geq 0$, are called the graded Betti numbers of I, which count the elements of degree j in a minimal generator of $(i + 1)$-th syzygy:
\[\text{Syz}_{i+1}(S/I) = \ker(F_i \to F_{i-1}). \] Let \(t_i \) denote the maximal shifts in the minimal graded free \(S \)-resolution of \(S/I \), namely

\[t_i = t_i(S/I) := \max(j : \beta_{ij}^S(S/I) \neq 0). \]

We say that \(I \) satisfies the \textit{subadditivity condition} if \(t_{a+b} \leq t_a + t_b \) for all \(a, b \geq 0 \) and \(a + b \leq \) \(p \), where \(p \) is the projective dimension of \(I \).

It is known that graded ideals may not satisfy the subadditivity condition as shown by the counter example in [1, Section 6]. However, no counter examples are known for monomial ideals. For edge ideals of graphs the inequality \(t_{a+b} \leq t_a + t_b \) was shown by Fernández-Ramos and Gimenez [2, Theorem 4.1]. The same inequality has been shown later for any monomial ideal by Srinivasan and Herzog [3, Corollary 4]. Yazdan Pour [4, Corollary 3.5] independently proved the same result. Bigdeli and Herzog [5, Theorem 1] proved the subadditivity condition, when \(I \) is the edge ideal of a chordal graph or a whisker graph. Some more results regarding subadditivity have been obtained by Khoury and Srinivasan [6, Theorem 2.3], the Abedelfatah and Nevo [7, Theorem 1.3] and Faridi [8, Theorem 3.7].

In this paper we prove in Theorem 3.5 that if \(I \) is a monomial ideal of \(S \) and \(a \geq b - 1 \geq 0 \) are integers such that \(a + b \leq \) \(\text{proj dim}(S/I) \), then

\[t_{a+b} \leq t_a + t_1 + t_2 + \cdots + t_b - \frac{b(b-1)}{2}, \]

which generalizes the well-known inequality \(t_{a+1} \leq t_a + t_1 \).

In Theorem 3.3, we prove that if \(I = I_\Delta \) where \(\Delta \) is a simplicial complex such that \(\dim(\Delta) < t_a - a \) or \(\dim(\Delta) < t_b - b \), then \(t_{a+b} \leq t_a + t_b \). The proof of both Theorems 3.3 and 3.5 uses a combinatorial topological argument.

In Theorem 4.1, we prove algebraically, using Taylor resolution, that the subadditivity condition holds when \(I \) is a monomial ideal that minimally generated by \(m_1, \ldots, m_r \) such that \(\frac{\text{lcm}(m_1, \ldots, m_r)}{\text{lcm}(m_1, \ldots, \hat{m}_i, \ldots, m_r)} \notin K \) for all \(i \), where \(\hat{m}_i \) means that \(m_i \) is omitted.

\section{2 Preliminaries}

Fix a field \(K \). Let \(S = K[x_1, \ldots, x_n] \) be the graded polynomial ring with \(\text{deg}(x_i) = 1 \) for all \(i \), and \(M \) be a graded \(S \)-module. The integer \(\beta_{ij}^S(M) = \dim_K \text{Tor}_i^S(M, K) \) is called the \((i,j) \)th \textit{graded Betti number} of \(M \). Note that if \(I \) is a graded ideal of \(S \), then \(\beta_{i+1,j}^S(S/I) = \beta_{i,j}^S(I) \) for all \(i, j \geq 0 \).

For a simplicial complex \(\Delta \) on the vertex set \(\Delta_0 = [n] = \{1, \ldots, n\} \), its \textit{Stanley–Reisner ideal} \(I_\Delta \subset S \) is the ideal generated by the squarefree monomials \(x_F = \prod_{i \in F} x_i \) with \(F \not\in \Delta \). \(F \subset [n] \). The dimension of the face \(F \) is \(|F| - 1 \) and the \textit{dimension of \(\Delta \) is} \(\text{max}\{\dim F : F \in \Delta\} \).

For \(W \subset V \), we write

\[\Delta[W] = \{ F \in \Delta : F \subset W \} \]

for the induced subcomplex of \(\Delta \) on \(W \). We denote by \(\beta_i(\Delta) = \dim_K \widetilde{H}_i(\Delta; K) \) the dimension of the \(i \)-th reduced homology group of \(\Delta \) with coefficients in \(K \). The following result is known as Hochster’s formula for graded Betti numbers.

\begin{theorem}[Hochster] Let \(\Delta \) be a simplicial complex on \([n]\). Then
\end{theorem}
Some results on the subadditivity condition of syzygies

\[\beta_{i,j}(S/I_\Delta) = \sum_{W \subseteq [n], |W| = i+j} \beta_{j-1}(\Delta[W];K) \]

for all \(i, j \geq 0 \).

If \(\Delta_1 \) and \(\Delta_2 \) are two subcomplexes of \(\Delta \) such that \(\Delta = \Delta_1 \cup \Delta_2 \), then there is a long exact sequence of reduced homologies, called the Mayer–Vietoris sequence

\[
\cdots \to \tilde{H}_i(\Delta_1 \cap \Delta_2;K) \to \tilde{H}_i(\Delta_1;K) \oplus \tilde{H}_i(\Delta_2;K) \to \tilde{H}_i(\Delta;K) \\
\to \tilde{H}_{i-1}(\Delta_1 \cap \Delta_2;K) \to \cdots
\]

3 The main theorems

Lemma 3.1 Let \(\Delta = \Delta_1 \cup \cdots \cup \Delta_t \) be a union of subcomplexes. If

\[\tilde{H}_{j-r+1}\left(\bigcap_{m=1}^r \Delta_{i_m};K \right) = 0 \]

for all \(1 \leq i_1 < \cdots < i_r \leq t \), then \(\tilde{H}_j(\Delta;K) = 0 \).

Proof We prove the assertion by induction on \(t \). It is trivial for \(t = 1 \). Let \(t = 2 \). Using the Mayer–Vietoris sequence

\[
\cdots \to \tilde{H}_j(\Delta_1;K) \oplus \tilde{H}_j(\Delta_2;K) \to \tilde{H}_j(\Delta;K) \to \tilde{H}_{j-1}(\Delta_1 \cap \Delta_2;K) \to \cdots
\]

and the assumptions \(\tilde{H}_j(\Delta_1;K) = \tilde{H}_j(\Delta_2;K) = \tilde{H}_{j-1}(\Delta_1 \cap \Delta_2;K) = 0 \), we get \(\tilde{H}_j(\Delta;K) = 0 \).

Let \(t > 2 \). Now, we consider the Mayer–Vietoris sequence

\[
\cdots \to \tilde{H}_j(\Delta_1;K) \oplus \tilde{H}_j(\Delta_2 \cup \cdots \cup \Delta_t;K) \to \tilde{H}_j(\Delta;K) \\
\to \tilde{H}_{j-1}((\Delta_1 \cap \Delta_2) \cup \cdots \cup (\Delta_1 \cap \Delta_t);K) \to \cdots
\]

by induction assumption, we have

\[\tilde{H}_j(\Delta_2 \cup \cdots \cup \Delta_t;K) = \tilde{H}_{j-1}((\Delta_1 \cap \Delta_2) \cup \cdots \cup (\Delta_1 \cap \Delta_t);K) = 0. \]

Hence \(\tilde{H}_j(\Delta;K) = 0 \) as desired. \(\square \)

Proposition 3.2 Let \(\Delta \) be a simplicial complex on the set \([n]\) and \(W \subseteq [n] \) such that \(|W| = t_a + s + l + 1 \), where \(a \leq \text{proj dim}(S/I_\Delta) \), \(s \geq 0 \) and \(l \geq 1 \). Then for all \(A \subseteq W \) with \(|A| = s' + l \) where \(0 \leq s' \leq s \), we have

\[\tilde{H}_{l-a+s}\left(\bigcup_{B \subseteq A : |B| = l} (\Delta[W \setminus B];K) \right) = 0. \]

Proof We prove the proposition by induction on \(l \). Let \(l = 1 \). Note that for all \(1 \leq r \leq |A| \), we have \(\beta_{a,l+a+2-r}(S/I_\Delta) = 0 \). So

\[\square \]
\[
\widehat{H}_{t_a-a+\delta-r+1}(\Delta[W\backslash B_1] \cap \cdots \cap \Delta[W\backslash B_r];K) = 0.
\]

for all distinct singleton subsets \(B_1, \ldots, B_r\) of \(A\). By Lemma 3.1, we obtain that
\[
\widehat{H}_{t_a-a+\delta}(\bigcup_{B \subseteq A: |B|=l} \Delta[W\backslash B];K) = 0.
\]

Let \(l > 1\) and \(A = \{b_1,\ldots, b_s, b_{s+1}, \ldots, b_{s'+1}\}\). For \(1 \leq j \leq s' + 1\), denote by \(B_j\) the set of all \(B \subseteq A\) such that \(|B| = l\), \(b_j \in B\) and \(\{b_1, \ldots, b_{j-1}\} \cap B = \emptyset\). For \(1 \leq j \leq s' + 1\), let \(\Delta_j = \bigcup_{B \in B_j} \Delta[W\backslash B]\). We have that
\[
\bigcup_{B \subseteq A: |B|=l} \Delta[W\backslash B]) = \Delta_{i_1} \cup \cdots \cup \Delta_{i_r}.
\]

Let \(1 \leq i_1 < \cdots < i_r \leq s' + 1\). Denote by \(W'\) the set \(W\backslash \{b_{i_1}, \ldots, b_{i_r}\}\) and by \(A'\) the set \(A\backslash \{b_1, \ldots, b_{i_r}\}\). Let \(\tilde{s} = s - r + 1\) and \(\tilde{l} = l - 1\). We have that \(|W'| = t_a + \tilde{s} + \tilde{l} + 1\) and
\[
\Delta_{i_1} \cap \cdots \cap \Delta_{i_r} = \bigcup_{B \subseteq A': |B|=\tilde{l}} \Delta[W'\backslash B].
\]

By induction hypothesis, we have that
\[
\widehat{H}_{t_a-a+\delta}(\Delta_{i_1} \cap \cdots \cap \Delta_{i_r};K) = 0.
\]

By Lemma 3.1 we get
\[
\widehat{H}_{t_a-a+\delta}(\bigcup_{B \subseteq A': |B|=\tilde{l}} \Delta[W'\backslash B];K) = 0.
\]

Now, we prove the main results.

Theorem 3.3 Let \(\Delta\) be a simplicial complex on the set \([n]\) and \(a, b\) are non negative integers such that \(a, b \leq \text{proj dim}(S/I_{\Delta})\). If \(\text{dim}(\Delta) < t_a - a\) or \(\text{dim}(\Delta) < t_b - b\), then \(t_{a+b} \leq t_a + t_b\).

Proof Without loss of generality, assume that \(\text{dim}(\Delta) < t_b - b\). We have to show that \(\beta_{a+b, t_a-t_b+1}(S/I_{\Delta}) = 0\) for all integer \(r \geq 0\). Let \(W \subseteq [n]\) of size \(t_a + t_b + r + 1\) and \(A\) be any subset of \(W\) with \(|A| = t_a + r\), where \(r \geq 0\). Since \(\Delta\) does not contains a face of dimension \(t_b - b\), it follows that
\[
\Delta[W] = \bigcup_{B \subseteq A: |B|=b} \Delta[W\backslash B].
\]

By 3.2 (taking \(s = s' = t_b - b + r\) and \(l = b\)), it follows that
\[
\tilde{H}_{t_a-a+t_b-b+r}(\Delta[W];K) = 0.
\]
Example 3.4 Let Δ be a graph on the vertices $[n]$ and assume that there is two disjoint non-edges in G. So $t_2 \geq 4$ and $\dim(\Delta) = 1 < t_2 - 2$. By Theorem 3.3, it follows that $t_{a+2} \leq t_a + t_2$ for all a such that $a + 2 \leq \proj \dim(S/I_\Delta)$.

Theorem 3.5 If I is a monomial ideal of S, $b \geq 1$ and $a \geq b - 1$ are integers such that $a + b \leq \proj \dim(S/I)$, then

$$t_{a+b} \leq t_a + t_1 + t_2 + \cdots + t_b - \frac{b(b - 1)}{2}.$$

Proof By polarization, we may assume that I is a squarefree ideal, and so $I = I_\Delta$, where Δ is a simplicial complex on $[n']$. First, we prove that

$$t_{c+1} \leq t_c + t_d - d + 1, \quad (1)$$

for all $d \geq 1$ and $d - 1 \leq c \leq \proj \dim(S/I)$. Assume on contrary, that $\beta_{c+1,\Delta+d+r+2}(S/I) \neq 0$ for some $r \geq 0$. It follows that there exists a subset W of $[n']$ so that $|W| = t_c + t_d - d + r + 2$ and $H_{t_{c+1},\Delta+d+r}(\Delta[W]; K) \neq 0$. In particular, $\proj \dim(S/I_{\Delta[W]}) \geq c + 1$.

If $\deg(m) \geq t_d - d + r + 2$ for all minimal generator m of $I_{\Delta[W]}$, then $\beta_{1,s}(S/I_{\Delta[W]}) = 0$ for all $x \leq t_d - d + r + 1$. So $\beta_{d+1}(S/I_{\Delta[W]}) = 0$ for all $x \leq t_d - d + r + d = t_d + r$. It follows that $\proj \dim(S/I_{\Delta[W]}) < d \leq c + 1$. This is a contradiction.

We obtain that there is a subset A of W with $|A| = t_d - d + r + 1$ and

$$\Delta[W] = \bigcup_{B \subseteq A: |B| = 1} \Delta[W \setminus B].$$

By 3.2 (taking $s = s' = t_d - d + r$ and $l = 1$), it follows that

$$\tilde{H}_{t_{c+1},t_d+d+r}(\Delta[W]; K) = 0,$$

a contradiction.

Now, we prove by induction on $1 \leq b' \leq b$ that

$$t_{a+b'} \leq t_a + t_1 + t_2 + \cdots + t_{b'} - \frac{b'(b' - 1)}{2}.$$

The case $b' = 1$ follows by (1). Let $b' > 1$. By the induction hypothesis, we have

$$t_{a+b'} = t_{(a+b'-1)+1} \leq t_{a+b'-1} + t_{b'} - b' + 1 \leq t_a + t_1 + \cdots + t_{b'-1} - \frac{(b'-1)(b'-2)}{2} + t_{b'} - b' + 1 = t_a + t_1 + t_2 + \cdots + t_{b'} - \frac{b'(b' - 1)}{2}.$$
4 The Taylor resolution

Let I be a monomial ideal with $G(I) = \{m_1, \ldots, m_r\}$. For a subset F of $G(I)$, set $\text{lcm}(F) = \text{lcm}\{m_i : m_i \in F\}$ and define a formal symbol $[F]$ with multidegree equal to $\text{lcm}(F)$. Let $T_0 = S$ and for each $i \geq 1$, let T_i be the free S-module with basis $\{[F] : [F] = i\}$. Note that T_i is a multigraded S-module.

Let $\phi_0 : T_0 \to S/I$ be the canonical homomorphism and define the multigraded differential $\phi_i : T_i \to T_{i-1}$ by

$$[F] \longmapsto \sum_{k=1}^{i} (-1)^{k-1} \cdot \frac{\text{lcm}(F)}{\text{lcm}(F \setminus \{m_j\})} \cdot [F \setminus \{m_j\}]$$

where $F = \{m_j, \ldots, m_i\}$, written with the indices in increasing order.

The free resolution

$$\mathbb{T} : 0 \to T_r \xrightarrow{\phi_r} \cdots \to T_1 \xrightarrow{\phi_1} T_0 \xrightarrow{\phi_0} S/I \to 0$$

is called the Taylor resolution of I.

We denote by $H_a(\mathbb{T})$ the a-th homology group, of the chain complex

$$\mathbb{T} : 0 \to T_r \otimes_S K \xrightarrow{\phi_r \otimes_K K} \cdots \to T_1 \otimes_S K \xrightarrow{\phi_1 \otimes_K K} T_0 \otimes_S K \to 0.$$

Note that $\beta_{a,b}(S/I) = \dim_K(H_a(\mathbb{T}))_b$ and for all $0 \leq j \leq r$

$$T_j \otimes_S K \cong T_j \otimes_S S/M \cong T_j/MT_j = \overline{T}_j$$

where M is the maximal ideal (x_1, \ldots, x_n) of S.

Proposition 4.1 Let I be a monomial ideal with $G(I) = \{m_1, \ldots, m_r\}$. If there exists $0 \neq [F] \in H_{a+b}(\mathbb{T})$ such that $\text{deg}(\text{lcm}(F)) = t_{a+b}$, then $t_{a+b} \leq t_a + t_b$.

Proof Without loss of generality, assume that $F = \{w_1, \ldots, w_{a+b}\}$ and

$$G(I) = \{m_1, \ldots, m_{r-(a+b)}, w_1, \ldots, w_{a+b}\}.$$

Set $F_1 = \{w_1, \ldots, w_a\}$ and $F_2 = \{w_{a+1}, \ldots, w_{a+b}\}$. Since $[F] \in \ker \overline{\phi}_{a+b}$, it follows that $\frac{\text{lcm}(F)}{\text{lcm}(G)} \notin K$, for all $G \subseteq F$. So we have that $[F_1] \in \ker \overline{\phi}_{a}$ and $[F_2] \in \ker \overline{\phi}_{b}$. If $[F_1] \in \text{Im} \overline{\phi}_{a+1}$, then there exist $[F_{1,1}], \ldots, [F_{1,s}] \in \overline{T}_{a+1}$ and $a_1, \ldots, a_s \in K$ such that

$$[F_1] = a_1 \overline{\phi}_{a+1}[F_{1,1}] + \cdots + a_s \overline{\phi}_{a+1}[F_{1,s}].$$

Note that $\text{lcm}(F_j) = \text{lcm}(F_{1,j})$ for all $1 \leq j \leq s$, so $F_{1,j} \cap F_2 = \emptyset$ for all $1 \leq j \leq s$. For all $1 \leq j \leq s$ let $\hat{F}_{1,j} = F_{1,j} \cup F_2$ and assume that the elements of $\hat{F}_{1,j}$ are ordered as the order of $G(I)$. We obtain that $[F] = a_1 \overline{\phi}_{a+b+1}[\hat{F}_{1,1}] + \cdots + a_s \overline{\phi}_{a+b+1}[\hat{F}_{1,s}]$, which contradicts to the fact that $[F] \notin \text{Im} \overline{\phi}_{a+b+1}$. Similarly, $[F_2] \notin \text{Im} \overline{\phi}_{b+1}$.

It follows that

$$t_{a+b} = \text{deg}(\text{lcm}(F)) \leq \text{deg}(\text{lcm}(F_1)) + \text{deg}(\text{lcm}(F_2)) \leq t_a + t_b.$$

\square
Corollary 4.2 Let I be a monomial ideal with $G(I) = \{m_1, \ldots, m_r\}$. If $\frac{\lcm(m_1, \ldots, m_i)}{\lcm(m_1, \ldots, \hat{m}_i, \ldots, m_r)} \notin K$ for all i, where \hat{m}_i means that m_i is omitted, then $t_{a+b} \leq t_a + t_b$.

Proof Let $[F]$ be a generator of T_{a+b} with $\deg(\lcm(F)) = t_{a+b}$. By the assumption, it follows that $[F] \in \ker \phi_{a+b}$ and $[F] \notin \text{Im} \phi_{a+b+1}$. Hence the assertion follows from Proposition 4.1.

Example 4.3 Let $S = K[a, b, c]$ and I be the ideal of S which generated by $G(I) = \{a^4bc, b^3c^2, c^5a^3\}$. Note that
\[
\frac{\lcm(G(I))}{\lcm(b^3c^2, c^5a^3)} = a, \quad \frac{\lcm(G(I))}{\lcm(a^4bc, c^5a^3)} = b^2, \quad \frac{\lcm(G(I))}{\lcm(a^4bc, b^3c^2)} = c^3.
\]
So by Corollary 4.2, I satisfies the subadditivity condition.

References

1. Avramov, L.L., Conca, A., Iyengar, S.: Subadditivity of syzygies of Koszul algebras. Math. Ann. 361, 511–534 (2015)
2. Fernández-Ramos, O., Gimenez, P.: Regularity 3 in edge ideals associated to bipartite graphs. J. Algebraic Comb. 39, 919–937 (2014)
3. Herzog, J., Srinivasan, H.: A note on the subadditivity problem for maximal shifts in free resolutions. In: Commutative Algebra and Noncommutative Algebraic Geometry, II, vol. 68, pp. 245–250. MSRI Publications (2015)
4. Yazdan Pour, A.A.: Candidates for nonzero Betti numbers of monomial ideals. Commun. Algebra 4, 1488–1492 (2017)
5. Bigdeli, M., Herzog, J.: Betti diagrams with special shape. In: Homological and Computational Methods in Commutative Algebra. Springer INdAM Series, vol. 20, pp. 33–52. Springer, Cham (2017)
6. Khoury, S.E., Srinivasan, H.: A note on the subadditivity of syzygies. J. Algebra Appl. 16(9), 1750177 (2017)
7. Abedelfatah, A., Nevo, E.: On vanishing patterns in j-strands of edge ideals. J. Algebraic Comb. 46(2), 287–295 (2017)
8. Faridi, S.: Lattice complements and the subadditivity of syzygies of simplicial forests (2016). arXiv:1605.07727

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.