Active power loss reduction by opposition based kidney search algorithm

K. Lenin
Department of EEE, Prasad V. Potluri Siddhartha Institute of Technology, India

ABSTRACT
In this work Opposition based Kidney Search Algorithm (OKS) is used to solve the optimal reactive power problem. Kidney search algorithm imitates the various sequences of functions done by biological kidney. Opposition based learning (OBL) stratagem is engaged to commence the algorithm. This is to make certain high-quality of preliminary population and to expand the exploration steps in case of stagnation of the most excellent solutions. Opposition based learning (OBL) is one of the influential optimization tools to boost the convergence speed of different optimization techniques. The thriving implementation of the OBL engages evaluation of opposite population and existing population in the similar generation to discover the superior candidate solution of a given reactive power problem. Proposed Opposition based Kidney Search Algorithm (OKS) has been tested in standard IEEE 14, 30, 57,118,300 bus test systems and simulation results show that the proposed algorithm reduced the real power loss efficiently.

Keywords: Opposition based kidney search algorithm, Optimal reactive power, Transmission loss

Corresponding Author:
K. Lenin,
Department of EEE,
Prasad V. Potluri Siddhartha Institute of Technology,
Kanuru, Vijayawada, Andhra Pradesh - 520007.
Email: gklenin@gmail.com

1. INTRODUCTION
Reactive power problem plays a key role in secure and economic operations of power system. Optimal reactive power problem has been solved by variety of types of methods [1-6]. Nevertheless, numerous scientific difficulties are found while solving problem due to an assortment of constraints. Evolutionary techniques [7-15] are applied to solve the reactive power problem, but the main problem is many algorithms get stuck in local optimal solution & failed to balance the Exploration & Exploitation during the search of global solution. In this work Opposition based Kidney Search Algorithm (OKS) is used to solve the optimal reactive power problem. Kidney search algorithm imitates the various sequences of functions done by biological kidney. In preliminary segment, a capricious population of feasible solutions is formed and re-absorption, secretion, excretion are replicated in the exploration procedure to verify different conditions well-established to the algorithm. Opposition based learning (OBL) stratagem is engaged to commence the algorithm. This is to make certain high-quality of preliminary population and to expand the exploration steps in case of stagnation of the most excellent solutions. Opposition based learning (OBL) is one of the influential optimization tools to boost the convergence speed of different optimization techniques. The thriving implementation of the OBL engages evaluation of opposite population and existing population in the similar generation to discover the superior candidate solution of a given reactive power problem. In all oppositional based optimization; the conception of OBL is used in the initialization procedure and as well as in each iteration using the generation jumping rate, Jr. Proposed Opposition based Kidney Search Algorithm (OKS) has been tested in standard IEEE 14, 30, 57,118,300 bus test systems and simulation results show the projected algorithm reduced the real power loss comprehensively.

Journal homepage: http://iaescore.com/online/index.php/IJAAS
2. PROBLEM FORMULATION

Objective of the problem is to reduce the true power loss

\[F = P_L = \sum_{k \in \text{Nbr}} g_k \left(V_i^2 + V_j^2 - 2V_iV_j \cos \theta_{ij} \right) \]

(1)

Voltage deviation given as follows

\[F = P_L + \omega \times \text{Voltage Deviation} \]

(2)

Voltage deviation given by

\[\text{Voltage Deviation} = \sum_{i=1}^{N_{pq}} |V_i - 1| \]

(3)

Constraint (Equality)

\[P_G = P_D + P_L \]

(4)

Constraints (Inequality)

\[p_{\text{gslack}}^{\text{min}} \leq P_{\text{gslack}} \leq p_{\text{gslack}}^{\text{max}} \]

(5)

\[q_{gi}^{\text{min}} \leq Q_{gi} \leq q_{gi}^{\text{max}}, \quad i \in N_g \]

(6)

\[v_i^{\text{min}} \leq V_i \leq v_i^{\text{max}}, \quad i \in N \]

(7)

\[t_i^{\text{min}} \leq T_i \leq t_i^{\text{max}}, \quad i \in N_T \]

(8)

\[q_c^{\text{min}} \leq Q_c \leq q_c^{\text{max}}, \quad i \in N_C \]

(9)

3. OPPOSITION BASED KIDNEY SEARCH ALGORITHM

Kidney search algorithm imitates the various sequences of functions done by biological kidney. Filtration, Re-absorption, Secretion, Excretion plays key function in the function of the kidney. In preliminary segment, a capricious population of feasible solutions is formed and re-absorption, secretion, excretion are replicated in the exploration procedure to verify different conditions well-established to the algorithm. Algorithm is built to perk up the exploration even a potential solution stirred to waste (W) and it will be fetch back to the filtered blood (FB). Glomerular filtration rate (GFR) test is employed to authenticate the robustness of kidney. The test roughly gives the capability of blood that pass all the way through the glomeruli every minute. Depending on the GFR test outcome which is less than 15 or falls between 15 and 60 or is more than 60 a meticulous action will be accomplished. This process executed to perk up the rate of exploration and to discover the optimal solution. The GFR testing process is added at the ending of iterations. When GFR level is less than 15, the method is recurring with the population in Filtered Blood. When GFR level is between 15 and 60, development of realistic solutions in Filtered blood is applied as a treatment for abridged kidney function. This sequence augments the searching capability and is designed to assist the algorithm in detection of improved solution. If the GFR level is larger than 60, then kidney function is ordinary, in which case no extra development is added to algorithm.

Movement equation as follows

\[Z_{i+1} = Z_i + \text{rand}(Z_{\text{best}} - Z_i) \]

(10)

Filtering of the solutions is done with a filtration rate and Calculation of the filtration rate \(l_r \) is done using the following equation

\[l_r = \beta \times \frac{\sum_{s=1}^{S_f} f(Y_i)}{S} \]

(11)

\(\beta \) is a constant value between 0 and 1 and is attuned in advance. \(S \) represents the size of the population. \(f(Y_i) \) represents an objective function of solution \(Y \) at \(i \)th iteration [16]. In every iteration,
previous to integration the Filtration of blood (FB) and waste (W) will be population for the subsequent iteration, the algorithm compute the GFR level based on the fr in FB

\[
\text{Glomerular filtration rate}_{\text{minimum}} = 120 - \left(\frac{fr_{FB}^{\text{100}}}{fr} \right)
\]
(12)

Define the Population
Calculate approximate solution in the population
Most excellent solution \(Z_{\text{best}} \), is found
By (11) find the Filtration rate- \(l_r \)
Define waste (W)
Define filtered blood (FB)
Number of iteration will be found
Do while (iteration < number of iterations)
For \(Z_i \), compute new \(Z_i \) by using (10)
Check the value of \(Z_i \) using \(l_r \)
If \(Z_i \) allocated to W then place on re-absorption and produce \(Z_{\text{new}} \) by using (10)
If re-absorption is not fulfilled then \(Z_{\text{new}} \) will not be part of FB
Eradicate \(Z_i \) from W (excretion)
Place randomly \(Z \) into W to exchange \(Z_i \)
End if
\(Z_i \) is reabsorbed
Else
If it is superior than the \(Z_{\text{worst in FB}} \)
\(Z_{\text{worst}} \) is secreted
Calculate the GFR level solutions in FB by using (12)
if 15 < GFR level < 60 ; then implement movement of solutions in FB
End if
if GFR level < 15 ; then algorithm proceeded with the same population in FB
End if
End if
End for
Rank the \(Z_i \) from FB and modernize the \(Z_{\text{best}} \)
Merge W and FB
By (11) amend filtration rate \(l_r \)
End while
Return \(Z_{\text{best}} \)

In this work Opposition based Kidney Search Algorithm (OKS) is used to solve the problem. Opposition based learning (OBL) stratagem is engaged to commence the algorithm. This is to make certain high-quality of preliminary population and to expand the exploration steps in case of stagnation of the most excellent solutions. Opposition based learning (OBL) is one of the influential optimization tools to boost the convergence speed of different optimization techniques [17]. The thriving implementation of the OBL engages evaluation of opposite population and existing population in the similar generation to discover the superior candidate solution of a given reactive power problem. The conception of opposite number requirements is to be defined to explain OBL.

Let \(N (N \in [x, y]) \) be a real number and the \(N^o \) (opposite number) can be defined as follows

\[
N^o = x + y - N
\]
(13)

In the exploration space it has been extended as

\[
N_i^o = x_i + y_i - N_i
\]
(14)

Where \((N_1, N_2, .. N_d) \) is a point in the dimensional search space, \(N_i \in [x_i, y_i], i \rightarrow \{1,2,3, .. d\} \)
In all oppositional based optimization; the conception of OBL is used in the initialization procedure and as well as in each iteration using the generation jumping rate, Jr.
a. Begin
b. Engender OBL based population
c. Calculate each “Z” in the population and fix the “Z_best”
d. Produce new-fangled “Z” for “Z,” based on mutual information based switching
e. Apply the filtration operator
f. Is “Z,” assigned as “W”? ; if “Yes” apply the reabsorption operator; or check is “Z,” better than the “Z_worst” – if yes then secrete “Z_worst” from FB or secrete “Z,”
g. Can “Z_new” be assigned as FB? If yes remove “Z” from W and insert a random “Z” into “W”
h. Have all “Z,” have been met?
i. If “yes” engender “Z̅_ϕ” or else go to step “d”
j. Is “Z̅_ϕ” better than the “Z_worst” in FB? if “yes” replace “Z_worst” with “Z̅_ϕ”
k. Or else update “Z_best”, merge W ,FB modernize the filtration rate
l. Is end criterion reached? if yes stop or else go to step “d”

4. SIMULATION STUDY

At first in standard IEEE 14 bus system the validity of the proposed Opposition based Kidney Search Algorithm (OKS) has been tested, Table 1 shows the constraints of control variables Table 2 shows the limits of reactive power generators and comparison results are presented in Table 3.

Table 1. Constraints of control variables	Table 2. Constrains of reactive power generators				
System Variables	Minimum (PU)	Maximum (PU)	System	Q Minimum (PU)	Q Maximum (PU)
Generator Voltage	0.95	1.1			
IEEE 14 Bus Transformer Tap	0.9	1.1			
VAR Source	0	0.20			

Table 3. Simulation results of IEEE –14 system

Control variables	Base case	MPSO [18]	PSO [18]	EP [18]	SARGA [18]	OKS
V_G−1	1.060	1.100	1.100	NR*	NR*	1.012
V_G−2	1.045	1.085	1.086	1.029	1.060	1.028
V_G−3	1.010	1.055	1.056	1.016	1.036	1.024
V_G−6	1.070	1.069	1.087	1.097	1.099	1.016
V_G−8	1.090	1.074	1.060	1.053	1.078	1.019
Tap 8	0.978	1.018	1.019	1.04	0.95	0.910
Tap 9	0.969	0.975	0.988	0.94	0.95	0.902
Tap 10	0.932	1.024	1.008	1.03	0.96	0.915
Q_G−9	0.19	14.64	0.185	0.18	0.06	0.146
Q_G (Mvar)	82.44	75.79	76.79	NR*	NR*	71.09
Reduction in PLoss (%)	0	9.2	9.1	1.5	2.5	18.75
Total PLoss (Mw)	13.550	12.293	12.315	13.346	13.216	11.009

NR* - Not reported.

Then the proposed Opposition based Kidney Search Algorithm (OKS) has been tested, in IEEE 30 Bus system. Table 4 shows the constraints of control variables, Table 5 shows the limits of reactive power generators and comparison results are presented in Table 6.

Table 4. Constraints of control variables	Table 5. Constrains of reactive power generators					
System Variables	Minimum (PU)	Maximum (PU)	System	Q Minimum (PU)	Q Maximum (PU)	
IEEE 30 Bus Generator Voltage	0.95	1.1	IEEE 30 Bus	1	0	10
Transformer Tap	0.9	1.1	2	-40	50	
VAR Source	0	0.20	5	-40	40	
PG	272.39	271.32	8	-6	24	
11	-6	24	13	-6	24	
The proposed Opposition based Kidney Search Algorithm (OKS) has been tested in IEEE 57 Bus system. Table 7 shows the constraints of control variables, Table 8 shows the limits of reactive power generators and comparison results are presented in Table 9.

Table 7. Constraints of control variables

System	Variables	Minimum (PU)	Maximum (PU)
IEEE 57 Bus	Generator Voltage	0.95	1.1
	Transformer Tap	0.9	1.1
	VAR Source	0	0.2

Table 8. Constraints of reactive power generators

System	Variables	Q Minimum (PU)	Q Maximum (PU)
IEEE 57 Bus	1	-140	200
	2	-17	50
	3	-10	60
	6	-8	25
	8	-140	200
	9	-3	9
	12	-150	155

Table 9. Simulation results of IEEE 57 system

Control variables	Base case	MPSO [18]	PSO [18]	EP [18]	AGA [18]	CGA [18]	OKS
VG-1	1.060	1.101	1.100	NR*	NR*	1.028	
VG-2	1.045	1.086	1.072	1.097	1.094	1.029	
VG-3	1.017	1.047	1.038	1.049	1.053	1.017	
VG-5	1.010	1.057	1.048	1.033	1.059	1.028	
VG-12	1.082	1.048	1.058	1.092	1.099	1.019	
VG-13	1.071	1.068	1.080	1.091	1.099	1.026	
Tap11	0.978	0.983	0.987	1.01	0.99	0.920	
Tap12	0.969	1.023	1.015	1.03	1.03	0.921	
Tap15	0.932	1.020	1.020	1.072	0.98	0.922	
Tap36	0.968	0.988	1.012	0.99	0.96	0.929	
QC10	0.19	0.077	0.077	0.19	0.19	0.199	
QC24	0.043	0.119	0.128	0.04	0.107		
PG (MW)	300.9	299.54	299.54	NR*	NR*	297.08	
QG (Mvar)	133.9	130.83	130.94	NR*	NR*	131.78	
Total PLoss (%)	0	8.4	7.4	6.6	8.3	14.46	
Total PLoss (Mw)	17.55	16.07	16.25	16.38	16.09	15.012	

NR* - Not reported.
Then the proposed Opposition based Kidney Search Algorithm (OKS) has been tested in IEEE 118 Bus system. Table 10 shows the constraints of control variables and the comparison results are presented in Table 11 as shown in appendix.

System	Variables	Minimum (PU)	Maximum (PU)
IEEE 118 Bus	Generator Voltage	0.95	1.1
	Transformer Tap	0.9	1.1
	VAR Source	0	0.20

Then IEEE 300 bus system [19] is used as test system to validate the performance of the Opposition based Kidney Search Algorithm (OKS). Table 12 shows the comparison of real power loss obtained after optimization.

Parameter	Method EGA [20]	Method EEA [20]	Method CSA [21]	OKS
PLOSS (MW)	646.2998	650.6027	635.8942	613.0974

5. CONCLUSION

In this work Opposition based Kidney Search Algorithm (OKS) has been successfully applied for solving optimal reactive power problem. Opposition based learning (OBL) stratagem is engaged to commence the algorithm. The prosperous execution of the OBL employ assessment of opposite population and existing population in the analogous generation to find out the better candidate solution of a given reactive power problem. In all oppositional based optimization; the conception of OBL is used in the initialization procedure and as well as in each iteration using the generation jumping rate. Proposed Opposition based Kidney Search Algorithm (OKS) has been tested in standard IEEE 14, 30, 57,118,300 bus test systems and simulation results show that the proposed algorithm reduced the real power loss efficiently.

REFERENCES

[1] K. Y. Lee., "Fuel-cost minimisation for both real and reactive-power dispatches," Proceedings Generation, Transmission and Distribution Conference, vol. 131(3), pp. 85-93, 1984.
[2] N. I. Deeb, "An efficient technique for reactive power dispatch using a revised linear programming approach," Electric Power System Research, vol. 15(2), pp. 121-134, 1998.
[3] M. R. Bjelogrlic, M. S. Calovic, and B. S. Babic, "Application of Newton’s optimal power flow in voltage/reactive power control," IEEE Trans Power System, vol. 5(4), pp. 1447-1454, 1990.
[4] S. Granville, "Optimal reactive dispatch through interior point methods," IEEE Transactions on Power System, vol. 9(1), pp. 136-146, 1994.
[5] N. Grudinin, "Reactive power optimization using successive quadratic programming method," IEEE Transactions on Power System, vol. 13(4), pp. 1219-1225, 1998.
[6] Ng Shin Mei, R. Sulaiman, M. H. Mustaffa, Z., and Daniyal, H., "Optimal reactive power dispatch solution by loss minimization using moth-flame optimization technique," Appl. Soft Comput., vol. 59, pp. 210-222, 2017.
[7] Chen, G. Liu, L. Zhang, Z, and Huang, S., "Optimal reactive power dispatch by improved GSA-based algorithm with the novel strategies to handle constraints," Appl. Soft Comput., 2017, vol. 50, pp. 58-70, 2017.
[8] Naderi, E, Narimani, H, Fathi, M, and Narimani, M.R., "A novel fuzzy adaptive configuration of particle swarm optimization to solve large-scale optimal reactive power dispatch," Appl. Soft Comput. 2017, vol. 53, pp. 441-456, 2017.
[9] Heidari, A.A, Ali Abbaspour, R, and Rezaee Jordehi, A., "Gaussion bare-bones water cycle algorithm for optimal reactive power dispatch in electrical power systems," Appl. Soft Comput. 2017, vol. 57, pp. 657-671, 2017.
[10] Mahalechumi Morgan, Nor Rul Hasma Abdullah, Mohd Herwan Sulaiman, Mahfuzah Mustafa, and Rosdiyana Samad., "Benchmark Studies on Optimal Reactive Power Dispatch (ORPD) Based Multi-objective Evolutionary Programming (MOEP) Using Mutation Based on Adaptive Mutation Adapter (AMO) and Polynomial Mutation Operator (PMO)," Journal of Electrical Systems, 12-1, 2016.
[11] Rebecca Ng Shin Mei, Mohd Herwan Sulaiman, and Zuriani Mustaffa, "Ant Lion Optimizer for Optimal Reactive Power Dispatch Solution," Journal of Electrical Systems, Special Issue AMPE2015, pp. 68-74, 2016.
[12] P. Anbarasan and T. Jayabarathi, "Optimal reactive power dispatch problem solved by symbiotic organism search algorithm," Innovations in Power and Advanced Computing Technologies, pp. 1-8, 2017.
[13] Gagliano A. and Nocera F. "Analysis of the performances of electric energy storage in residential applications," International Journal of Heat and Technology, vol. 35(1), pp. S41-S48, 2017.
APPENDIX

Table 11. Simulation results of IEEE −118 system

	Base case	MPPOSO [18]	PSO [18]	PSO [18]	CLPSO [18]	OKS
VG 1	0.955	1.021	1.019	1.085	1.033	1.012
VG 4	0.998	1.044	1.038	1.042	1.055	1.016
VG 6	0.990	1.044	1.044	1.080	0.975	1.028
VG 8	1.015	1.063	1.039	0.968	0.966	1.019
VG 10	1.050	1.084	1.040	1.075	0.981	1.012
VG 12	0.990	1.032	1.029	1.022	1.009	1.028
VG 15	0.970	1.024	1.020	1.078	0.978	1.019
VG 18	0.973	1.042	1.016	1.049	1.079	1.006
VG 19	0.962	1.031	1.015	0.977	1.078	1.015
VG 24	0.992	1.058	1.033	1.082	1.028	1.014
VG 25	1.050	1.064	1.059	0.956	1.030	1.013
VG 26	1.015	1.033	1.049	1.080	0.987	1.022
VG 27	0.968	1.020	1.021	1.087	1.015	0.999
VG 31	0.967	1.023	1.012	0.960	0.961	0.906
VG 32	0.963	1.023	1.018	1.100	0.985	0.905
VG 34	0.984	1.034	1.023	0.961	1.015	1.014
VG 36	0.980	1.035	1.014	1.036	1.084	1.003
VG 40	0.970	1.016	1.015	0.991	0.983	0.950
VG 6	0.985	1.019	0.970	1.051	1.051	1.008
VG 46	1.005	1.010	1.017	1.039	0.975	1.010
VG 49	1.025	1.045	1.030	0.983	0.983	1.011
VG 54	0.955	1.029	1.020	0.976	0.963	0.912
VG 55	0.952	1.031	1.017	1.010	0.971	0.929
VG 56	0.954	1.029	1.018	0.953	1.025	0.944
VG 59	0.985	1.052	1.042	0.967	1.000	0.932
VG 61	0.995	1.042	1.029	1.093	1.077	0.910
VG 62	0.998	1.029	1.029	1.097	1.048	0.922
VG 65	1.005	1.054	1.042	1.089	0.968	1.006
VG 66	1.050	1.056	1.054	1.086	0.964	1.049
VG 69	1.035	1.072	1.058	0.966	0.957	1.012
VG 70	0.984	1.040	1.031	1.078	0.976	1.010
VG 72	0.980	1.039	1.039	0.950	1.024	1.008
VG 73	0.991	1.028	1.015	0.972	0.965	1.009
VG 74	0.958	1.032	1.029	0.971	1.073	1.002
VG 76	0.943	1.005	1.021	0.960	1.030	1.006
VG 77	1.006	1.038	1.026	1.078	1.027	1.008
VG 80	1.040	1.049	1.038	1.078	0.985	1.004
VG 85	0.985	1.024	1.024	0.956	0.983	1.010
VG 87	1.015	1.019	1.022	0.965	1.088	1.002
VG 89	1.000	1.074	1.061	0.974	0.989	1.031
VG 90	1.005	1.045	1.032	1.024	0.990	1.010
VG 91	0.980	1.052	1.033	0.961	1.028	1.009
VG 92	0.990	1.058	1.038	0.956	0.976	1.018
VG 93	1.010	1.031	1.023	0.954	1.088	1.005
VG 100	1.017	1.049	1.037	0.958	0.961	1.003
VG 101	1.010	1.045	1.031	1.016	0.961	1.009
VG 104	0.971	1.035	1.031	1.099	1.012	1.017
VG 105	0.965	1.043	1.029	0.969	1.068	1.028

Active power loss reduction by opposition based kidney search algorithm (K. Lenin)
Table 11. Simulation results of IEEE −118 system (continued)

VG 107	MPSO [18]	PSO [18]	PSO [18]	CLPSO [18]	OKS	
0.952	1.023	1.008	0.965	0.976	1.012	
VG 110	0.973	1.032	1.028	1.087	1.041	1.016
VG 111	0.980	1.035	1.039	1.037	0.979	1.019
VG 112	0.975	1.018	1.019	1.092	0.976	1.092
VG 113	0.993	1.043	1.027	1.075	0.972	1.016
VG 116	1.005	1.011	1.031	0.959	1.033	1.018
Tap 8	0.985	0.999	0.994	1.011	1.004	0.932
Tap 32	0.960	1.017	1.013	1.090	1.060	1.004
Tap 36	0.960	0.994	0.997	1.003	1.000	0.949
Tap 51	0.935	0.998	1.000	1.000	1.000	0.912
Tap 93	0.960	1.000	0.997	1.008	0.992	1.018
Tap 95	0.985	0.995	1.020	1.032	1.007	0.930
Tap 102	0.935	1.024	1.004	0.944	1.061	1.012
Tap 107	0.935	0.989	1.008	0.906	0.930	0.930
Tap 127	0.935	1.010	1.009	0.967	0.957	1.014
QC 34	0.140	0.049	0.048	0.093	0.117	0.010
QC 44	0.100	0.026	0.026	0.093	0.098	0.024
QC 45	0.100	0.196	0.197	0.086	0.094	0.110
QC 46	0.100	0.117	0.118	0.089	0.026	0.109
QC 48	0.150	0.056	0.056	0.118	0.028	0.020
QC 74	0.120	0.120	0.120	0.046	0.005	0.112
QC 79	0.200	0.139	0.140	0.105	0.148	0.109
QC 82	0.200	0.180	0.180	0.164	0.194	0.140
QC 83	0.100	0.166	0.166	0.096	0.069	0.106
QC 105	0.200	0.189	0.190	0.089	0.090	0.110
QC 107	0.060	0.128	0.129	0.050	0.049	0.121
QC 110	0.060	0.014	0.014	0.055	0.022	0.015
PG(MW)	4374.8	4359.3	4361.4	NR*	4358.02*	
QG(MVAR)	759.6	604.3	653.5	NR*	605.97*	
Reduction in PLOSS (%)	0	11.7	10.1	0.6	1.3	13.38
Total PLOSS (Mw)	132.8	117.19	119.34	131.99	130.96	115.02

NR* - Not reported.