Trypanosome morphogenesis involves recruitment of a pleckstrin homology domain protein by an orphan kinesin to the microtubule quartet

Corinna Benz1, Nora Müller2, Marie Vancová1,2, Sabine Kaltenbrunner1,2,†, Hana Váchová3, Vladimír Varga3, Julius Lukeš1,2, Hassan Hashimi1,2,*

1 Institute of Parasitology, Biology Center, Czech Academy of Sciences, České Budějovice, Czechia
2 Faculty of Science, University of South Bohemia, České Budějovice, Czechia
3 Laboratory of Cell Motility, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
† Current address: Johannes Kepler University, Medical Faculty, Linz, Austria
*Corresponding author: hassan@paru.cas.cz

Running title: TbKifX2 and TbPH1 associate with the trypanosomal microtubule quartet

ABSTRACT

Kinesins are motor proteins found in all eukaryotic lineages that move along microtubule tracks to mediate numerous cellular processes such as mitosis and intracellular transport of cargo. In
Trypanosomatids, the kinesin protein superfamily has undergone a prominent expansion, giving these protists one of the most diverse kinesin repertoires. This has led to the emergence of two trypanosomatid-restricted groups of kinesins. Here, we characterize in *Trypanosoma brucei* TbKifX2, a hitherto orphaned kinesin that belongs to one of these groups. TbKifX2 tightly interacts with TbPH1, a kinesin-like protein named after a pleckstrin homology (PH) domain present within its carboxy terminal tail. TbKifX2 recruits TbPH1 to the microtubule quartet (MtQ), a characteristic cytoskeletal structure that is part of the multipartite flagellum attachment zone (FAZ) and extends from the basal body to the anterior of the cell body. The proximal proteome of TbPH1 is comprised of four proteins that localize to the FAZ, consistent with the notion that the TbKifX2/TbPH1 complex binds the MtQ along its whole length. Simultaneous ablation of both TbKifX2 and TbPH1 leads to the formation of prominent protrusions from the cell posterior. Thus, we have attributed a morphogenesis role to these two trypanosomatid-restricted proteins, and their remarkably specific localization to the MtQ in a microtubule-rich cell. We hypothesize that the putative TbKifX2/TbPH1 complex transports a cytokinesis auxiliary factor(s) along the MtQ to or from the *T. brucei* posterior. The cohort of proteins found in proximity to TbPH1 may represent one of these factors directly or be involved in their trafficking during cell division in trypanosomatids.

AUTHOR SUMMARY

Trypanosomatids are a group of unicellular parasites that infect a wide range of hosts from land plants to animals. They are also eukaryotes that have been shaped by prolonged independent evolution since this domain of life has radiated from a common ancestor almost 2 billion years ago. Thus, any resulting unique biological properties can be potentially exploited for treatment of infectious diseases caused by trypanosomatids. The cytoskeleton of trypanosomatids represents an ancient organelle that has undergone such modification. Here, we show that two trypanosomatid-
specific proteins named TbPH1 and TbKifX2 form a complex that localizes to the microtubule quartet, a cytoskeletal structure characteristic to trypanosomatids. Ablation of these proteins in *Trypanosoma brucei* leads to severe morphological defects, making them not only intrinsically interesting topics of study, but potential therapeutic targets as well.

INTRODUCTION

The vermiform morphology of the unicellular parasite *Trypanosoma brucei* that causes African trypanosomiasis in humans and nagana in cattle is defined by a subpellicular array of microtubules (MTs) [1–3]. These MTs follow the helical path of the cell and are cross-linked to each other and the plasma membrane via regularly spaced fibrils [4]. A high order is maintained within the corset with the MT plus ends converging at the parasite’s posterior end and the minus ends located at the anterior of the cell [3].

The only place where the continuity of the *T. brucei* MT array is interrupted is at the flagellar pocket, the deep invagination where the flagellum exits the cell body and the only place where endo- and exocytoses occur [5]. The opening of the flagellar pocket is encircled by a collar, which influences the overall shape of this cavity. Distal to the collar, the so-called hook complex covers the flagellum as it exits the flagellar pocket, with two lateral arms also flanking the flagellum attachment zone (FAZ) filament and the MT quartet (MtQ) inside the cell [6]. The FAZ filament and MtQ are among the interconnected fibres, filaments and junctional complexes of the multipartite FAZ [7], which together form a lateral attachment for the flagellum as it follows a helical path along the cell body, connecting the flagellar skeleton to the cytoskeleton through both the flagellar and plasma membranes [8]. The MtQ originates close to the basal bodies, wraps itself around the flagellar pocket and interdigitates within the MT corset next to the FAZ filament. The orientation of MTs in the MtQ is antiparallel to the one found within the MT corset, thus their minus ends are proximal to the basal bodies [3].
The trypanosome MT corset is exceptionally stable and only reorganised during cell division and life cycle transitions [9]. All cytoskeletal structures (MtQ, MT corset, flagellum, basal bodies, which anchor the flagella within the cell, and FAZ) need to be duplicated and faithfully segregated during the cell division cycle, just like other single-copy organelles. In addition, this has to be coordinated with replication and division of the nucleus and the single mitochondrial DNA network termed the kinetoplast, which is located on the opposite side of the basal bodies relative to the flagellum [3,10].

Basal body duplication and segregation are the first visible steps in the cell division cycle and essential for subsequent cytokinesis [11]. The new MtQ starts growing just prior to basal body maturation and once the new flagellum has grown enough to invade the flagellar pocket, morphogenetic changes result in two separate pockets enveloping both the new and old flagella [12]. New corset MTs are nucleated from the side of the existing ones and elongate on both the plus and minus ends during array replication [4]. Once the new flagellum has been nucleated and elongated, new MTs are integrated into the array between the old and new flagella, thereby increasing the overall width of the cell [1].

With its antiparallel orientation, the MtQ together with the FAZ filament create an asymmetric seam within the MT corset, which works as a cellular ruler and helps to determine the site of future furrow ingression during cytokinesis [8]. Any insults to the integrity of these structures result in cytokinesis defects and it is thus tempting to envision the MtQ as a potential specialised “highway” in charge of transport and delivery of cargo to the site of important cytokinesis events. Furthermore, the endoplasmic reticulum associates with parts of the MtQ, although the upshot of this association remains mysterious. The first protein localized to this structure, TbSpef1, is found at the proximal end of the MtQ, between basal bodies and the flagellar pocket collar [13]. Its depletion causes problems with the biogenesis of the MtQ and associated structures as well as motility defects. The minus end of the MtQ MTs is anchored to the basal bodies by a protein named TbSAF1, found in close proximity to TbSpef1 but localized between the pro and mature basal bodies [14]. TbSAF1 was
found in a proximal proteomics screen of proteins adjoining to and/or directly interacting with TbSpef1 (i.e. the TbSpef1 proxisome), which found three additional proteins that localize to the MtQ between the basal body and flagellar pocket collar [14]. However, no proteins that localise along the total length of the MtQ have thus far been identified nor have any motor proteins that may potentially bring cargo to the cytokinesis site.

Kinesins are well-studied motor proteins that regulate MT dynamics, organize MT networks, and transport cargo along MTs. Transporting kinesins can form homo- and heterodimers and consist of a head region containing the kinesin motor domain, which is responsible for ATP hydrolysis and MT binding, and a tail region important for dimerization with a kinesin/kinesin-like partner and cargo binding [15]. In trypanosomatid genomes, kinesins and kinesin-like proteins constitute one of the largest protein superfamilies [16–18]. To date, 47 genes encoding high-likelihood kinesins have been identified in the *T. brucei* genome [19,20]. Moreover, there is a similar number of kinesin-related proteins, which did not make the threshold due to sequence variance [16]. Interestingly, numerous kinesins are members of two major clades named X-1 and X-2 that are restricted to the trypanosomatid lineage [19,20]. Why the kinesin repertoire has expanded so prominently in trypanosomatids remains mysterious.

Hitherto studied kinesins of *T. brucei* have been shown to be important for various processes occurring in different cellular compartments. KinA and KinB are involved in cell cycle progression and localise to the central spindle during mitosis [21] while TbKif13-1 localizes either to the nucleus or the mitotic spindle, where it mediates chromosome segregation during mitosis [22]. KinC and KinD are distributed throughout the cytoskeleton, where they are involved in subpellicular MT organization, basal body segregation and cytokinesis [23,24].

Some kinesins are associated with the flagellum and adjacent FAZ. KIN2A and KIN2B are kinesins involved in intraflagellar transport (IFT), a process that directly affects flagellar biogenesis and in turn affects cell motility and cytokinesis [25,26]. The orphan kinesin KIN-E predominantly localises to the
flagellar tip and is required for elongation of the new FAZ [27]. Another orphan kinesin named KLIF initially localises to the tip of the new, elongating FAZ and associates with the old FAZ as the cytokinetic furrow ingresses towards the posterior end, thus mediating the final stages of cytokinesis [28]. Other kinesins localising to specific cytoskeletal structures include FCP2/TbKinX1 and FCP4/TbKin15, which are found at the flagella connector (FC), a trypanosome-specific structure that connects the outgrowing new flagellum to the old one [29]. Interestingly, FCP2/TbKinX1 belongs to kinesin clade X-1, one of the two trypanosomatid-restricted kinesin families [19,20].

Here we present data on the localisation and function of two members of the kinesin superfamily, TbKifX2 and TbPH1, with the former protein belonging to clade X-2. Functional characterization and the unique localization of these kinesins further expands our knowledge on how these diverse and dexterous proteins affect biology of these extremely diverse and successful parasites.

RESULTS

TbPH1 is a kinesin-like protein that fractionates with the T. brucei cytoskeleton

TbPH1 (Tb927.3.2490) is a 110 kDa protein named after a C-terminal pleckstrin homology (PH) domain, which is followed by a proximate homeodomain-like (HDL) fold and preceded by a coiled coil (CC) domain (Fig. 1). The protein undergoes post-translational modifications, with phosphorylation of a serine at the start of the HDL [30] and a methylarginine in the middle of the primary structure [31]. While TbPH1 has an N-terminal kinesin motor domain, two substitutions of highly conserved amino acids within the Walker A motif (G93P and T/S95R) likely ablate the ATP hydrolase activity. Thus, TbPH1 is unlikely to be a \textit{bona fide} kinesin motor protein.

TbPH1 also belongs to the ~2000 proteins found in the granule-enriched fraction (containing cellular aggregates, nuclei, kinetoplasts and flagella as well as associated cytoskeletal structures) obtained by 'MT sieving', a method originally conceived to purify stress granules from \textit{T. brucei} [32]. In brief
(see S1 Fig. for ‘MT sieving’ pipeline), cells are lysed by non-ionic detergent in low ionic strength buffer, which maintains the cytoskeleton, including the MT corset that in turn cages predominantly detergent insoluble cellular structures with at least one dimension >20-30 nm. The cytoskeleton is then disrupted by 300 mM NaCl to release these elements for subsequent analysis.

To verify TbPH1’s apparent association with cytoskeletal fractions, we subjected a *T. brucei* cell line in which the endogenous *TbPH1* open reading frame was appended with a C-terminal V5 tag [33] to cell fractionation by a procedure identical to ‘MT sieving’. The cell equivalents of the ensuing fractions were inspected for the presence of TbPH1-V5 and SCD6, a stress granule marker that served as a control for this method (Fig. 2A). SCD6 was mostly found in the soluble fractions as previously reported for unstressed *T. brucei* [32], with a distribution across the analysed fractions very distinct from that of TbPH1-V5. TbPH1-V5 was well retained in all cytoskeletal fractions P1 and P2, although a fraction was released in the SN1 with other soluble cytosolic proteins upon initial lysis (Fig. 2A). Importantly, indirect immunofluorescence (IFA) using an anti-V5 antibody on formaldehyde-fixed P2 fraction shows that TbPH1-V5 is localized as a line extending from the DAPI-stained kinetoplast (Fig. 2B) that decreases in signal intensity distally, suggestive of a cytoskeletal localization. This was confirmed by the observation that the vast majority of TbPH1 was released into the soluble SN3 fraction after high salt disintegration of the cytoskeleton. A small amount of TbPH1-V5 was still found in the final pellet P3, which is consistent with its detection in the cohort of proteins retained by ‘MT sieving’ [32]. Thus, TbPH1 is a kinesin-like protein that fractionates with the trypanosomal cytoskeleton.

TbPH1 strongly interacts with the trypanosomatid-restricted orphan kinesin TbKifX2

Because kinesins tend to form dimers [34] and kinesin-like TbPH1 contains a CC domain (Fig. 1), which usually mediates protein-protein interactions [35], we proceeded to see if TbPH1-V5 has an interaction partner by immunoprecipitation (IP) via its C-terminal epitope tag. To enrich for soluble
TbPH1-V5 and augment IP stringency, we followed the previously described fractionation technique above and used fraction SN3 as the input (Fig. 3A). A mock IP control using the parental cell line without an expressed V5 epitope was performed in parallel.

After confirming immunocapture of TbPH1-V5 in the first eluate (Fig. 3A), the IP eluate from this and the mock control were resolved on an SDS-PAGE gel. Sypro Ruby staining showed two prominent bands of ~117 kDa (Fig. 3B, B1), the expected size for TbPH1-V5, and of ~80 kDa (Fig. 3B, B2).

Importantly, these bands were not observed in the mock control, indicating their presence is not due to unspecific binding to the magnetic beads used to immobilize the anti-V5 antibody. Mass spectrometry analysis of these two bands identified TbPH1 itself as expected and a previously uncharacterised kinetoplastid-specific kinesin (Tb927.9.14750) (S1 Dataset), which we call TbKifX2 based on a previously proposed kinesin nomenclature [19]. In contrast to TbPH1, TbKifX2’s kinesin motor domain contains a conventional Walker A motif. This motor domain is located on the N-terminus, indicating that TbKifX2 most likely actively moves toward the plus-end of microtubules [36]. It also contains a CC domain and two serine phosphorylation sites [30], similarly to TbPH1 (Fig. 1).

Interaction between these two proteins was further verified by tagging TbKifX2 with a C-terminal HA tag in the TbPH1-V5 cell line. Indeed, TbKifX2 mirrored the fractionation pattern of TbPH1-V5 (Fig. 3C). As before, the SN3 fraction was used as an input for TbKifX2-HA IP, which co-immunoprecipitated TbPH1-V5. Thus, we verified that TbPH1 and TbKifX2 exhibit a strong interaction that persists even in 300 mM NaCl.

Whole cells expressing TbPH1-V5 and TbKifX2-HA were fixed and permeabilized prior to incubation with antibodies recognizing either epitope-tag (Fig. 3D). We observed that both proteins possess a considerable cell body signal that appears to be nucleus-excluded, with a prominent hook-like signal along the proximal region of the flagellum. This pattern is consistent with the TrypTag localization data, which visualized mNeonGreen-tagged proteins in immobilized live cells [37]. The cell body...
signal likely represents the cytosolic population of both proteins that was also observed in our fractionation data (Figs. 2A and 3C).

Proximity proteomics reveals the spatial organization and interactors of TbPH1 and TbKifX2

Since conventional IP of TbPH1-V5 under high salt conditions identified only TbKifX2 as its major interaction partner, we sought a different method to identify potential cargo and/or interactors of this putative kinesin complex. To do this, we tagged TbPH1 with a C-terminal biotin ligase ‘BioID2’ [38], appended with an HA tag [39], to facilitate proximity-dependent biotin identification (BioID) of neighbouring proteins. First, we determined by IFA on permeabilized whole cells using anti-HA antibody that TbPH1-BioID2-HA localizes adjacent to the kinetoplast, which was also observed for TbPH1-V5 (Figs. 2B and 4A). TbPH1-BioID2-HA also exhibited biotinylation activity in this part of the cell, as visualized by streptavidin-conjugated to Alexa Fluor 488 (Fig. 4B). Thus, we confirmed that the chimeric protein is properly localized and appears to biotinylate TbPH1 itself or proximal proteins.

Purification of biotinylated proteins was performed as described elsewhere [40] (S2 Fig.). Western blotting revealed that the vast majority of TbPH1-BioID2-HA was present in the soluble S1 fraction (Fig. 4C), which was used for subsequent analysis. At first glance, this result appears to disagree with previous findings from the ‘MT sieving’ fractionation, which employs comparable amounts of non-ionic detergent and buffers of low ionic strength; however, we should emphasise that ‘MT sieving’ fractionation uses a different detergent for a shorter incubation time and at a lower temperature in comparison to the BioID purification (see Methods), which likely explains this difference.

Next, the S1 fraction was incubated with streptavidin-coated magnetic beads to capture biotinylated proteins, which were subsequently trypsinized on beads prior to liquid chromatography-tandem mass spectroscopy (LC-MS/MS). A mock control using the parental cell line lacking BioID2 expression
was processed in parallel. A total of 1,131 proteins were detected with high confidence (Andromeda Protein Score ≥20; >1 unique peptide per protein) (S2 dataset). Following imputation of missing values, seven proteins were shown to be preferentially biotinylated by TbPH1-BioID2-HA, as visualised by plotting the -10 log t-test p value versus the t test difference in a volcano plot (Fig. 4D). Statistically significant hits are found above the cut-off curve in this plot.

TbKifX2 was the most enriched protein based on both parameters, consistent with its strong interaction with TbPH1. As expected, TbPH1 is also among the enriched proteins, indicating that TbPH1-BioID2-HA biotinylated itself and/or a nearby untagged, endogenous form of the kinesin-like protein. The sub-cellular location of the five novel proteins was determined using the TrypTag protein localization resource [37]. This allowed us to already exclude one of them (Tb927.10.12110) as a contaminant, given its nuclear localization. A putative kinesin with a C-terminal PH domain (Tb927.6.2880) is enriched in the basal body. Two proteins are enriched in the flagellar pocket: a dynamin-like protein 1/2 (DLP2, Tb927.3.4760; DLP1, Tb927.3.4720) and a flagellar pocket protein FP45 (Tb927.9.9730). DLP1/2 is involved in clathrin-mediated endocytosis [41,42] as well as in mitochondrial scission [41,43]. Interestingly, FP45 has also been demonstrated to be a soluble protein that associates with the membrane surrounding the flagellar pocket by immunogold labelling in an independent study [13]. Furthermore, TrypTag localization of FP45 often demonstrates a line emanating from the flagellar pocket toward the anterior of the cell, similar to TbKifX2 and TbPH1. Only a putative flavin-trafficking protein (Tb927.8.1950) does not have a TrypTag localization entry at this time. However, this protein was found among those that interact with TOEFAZ1, a protein that associates with the tip of the extending FAZ (Fig. 4E) [28]. Furthermore, Hilton and colleagues N-terminally tagged Tb927.8.1950 to determine its localization by IFA, which exhibited an enriched signal in the vicinity of the kinetoplast.

These observations confirm the tight interaction between TbPH1 and TbKifX2. They also suggest that these proteins associate with the basal body, a cytoskeletal element near the flagellar pocket, as
well as the FAZ given the localization of the biotinylated proteins. Indeed, both TbPH1 and TbKifX2 were also found within the TOEFAZ1-BioID proxisome with high statistical significance (P=0.001138 and 0.0032861, respectively), along with DLP1/2 (P=0.029631) (Fig. 4E) [28]. Furthermore, among the most enriched proteins that were biotinylated by TbPH1-BioID2-HA, but just below the statistical significance threshold, was a kinesin (Tb927.8.6830) that was found: 1) in the distal part of the FAZ according to the TrypTag project; 2) within the TOEFAZ1 interactome with very high confidence (P=9.8 × 10^{-6}). Thus, we proceeded to test the basal body and FAZ localization suggested by the TbPH1-BioID (Fig. 4) and IFA (Fig. 2A, 3D) results.

TbPH1 and TbKifX2 localize to the microtubule quartet within the cytoskeleton

We next decided to address whether TbPH1 and TbKifX2 localize to or near the FAZ, as was suggested by the TbPH1 proxisome. Cytoskeletons were detergent-extracted from the TbPH1-V5 and TbKifX-2 expressing cells to visualize any potential localization to discrete cytoskeletal structures. Indeed both proteins co-localized to a long structure running along the long-axis of the cytoskeleton adjacent to the flagellum (Fig. 5A). Furthermore, detergent extraction solubilized the cell body signal (Fig. 3D), confirming it represented the cytosolic population of TbPH1 and TbKifX2 (Figs 2A and 3C).

We proceeded to identify specifically which cytoskeletal element TbPH1 and TbKifX2 associate with. We used antibody recognizing TbKifX2-HA as a proxy for the TbKifX2-TbPH1 complex because of their demonstrated tight interaction (Fig 3), and their co-localization on detergent-extracted cytoskeletons (Fig. 5A). We found TbKifX2-HA to be juxtaposed with the FAZ filament, although the former extended further toward the proximal region of the flagellum (Fig. 5B). This was confirmed by TbKifX2-HA’s co-localization with the basal bodies (Figs. 5C). This pattern led us to investigate whether the kinesin was bound to the MtQ, as it originates close to the basal body and is considered a part of the FAZ [7,8]. Indeed, TbKifX2 shows co-localization with a monoclonal antibody 1B41 recognizing the MtQ [44] (Fig. 5D).
To verify that TbKifX2 indeed binds the MtQ, we employed expansion microscopy (ExM) that enlarges cells by embedding them within a swellable polyacrylamide matrix prior to immunolabelling to allow examination of cellular structures in greater detail [45], and has recently been implemented in *T. brucei* [46,47]. Performing ExM on the TbPH1-V5 and TbKifX2-HA-expressing cell line we observed a punctate signal of an anti-V5 or anti-HA antibody in the cell body (Fig. 5E), consistent with the significant cytosolic fraction of both proteins (Figs. 2A, 3C-D). Moreover, in some cells localization of TbPH1-V5 or TbKifX2-HA to the part of the MtQ, which spirals around the flagellar pocket, was apparent (Fig. 5F); this part of the MtQ is prominent in these ExM preparations [47]. The associated V5 or HA signal was not discernible beyond the point of the MtQ joining the corset MTs, where the signal of FAZ constituents, such as ClpGM6 [48], starts (S3 Fig.). The fact, that the signal of TbPH1-V5 or TbKifX2-HA was apparent only in the part of the MtQ around the flagellar pocket is consistent with this being the region of the highest concentration of the proteins in the cell based on IFA, as well as with a lower sensitivity of ExM due to dilution of epitopes stemming from specimen expansion. Taken altogether, ExM reveals that TbPH1 and TbKifX2 bind to the MtQ element of the *T. brucei* cytoskeleton.

Depletion of TbPH1 and TbKifX2 causes prominent morphological defects to the posterior end of *T. brucei*

To assay the function of the novel kinesin TbKifX2 and its associated kinesin-like protein TbPH1, we depleted their expression by doxycycline-induced RNAi in the cell line expressing TbPH1-V5 and TbKifX2-HA. The downregulation of either protein alone only marginally affected the growth of *T. brucei* in comparison to the non-induced cells, despite efficient depletion of each of the respective tagged proteins (Fig. 6A, S4A Fig.). After 6 days of RNAi-silencing of TbKifX2, we fractionated the cytoskeleton from the cytosol under low salt conditions (Fig. 6B). Consistent with ‘MT sieving’ fractionation (Figs. 2A and 3C) and IFA (Figs 5A and 5B), western blot detection revealed TbKifX2-HA...
and TbPH1-V5 in both cytoskeletal and cytosolic fractions in cells grown in the absence of tetracycline, in which neither protein was downregulated (Fig. 6B). However, TbPH1 was preferentially depleted from the cytoskeleton fraction upon TbKifX2 silencing. This result indicates that TbKifX2 recruits TbPH1-V5 to the MtQ (Fig. 6B).

Since depletion of either TbKifX2 or TbPH1 alone did not yield any other discernible phenotype, we decided to deplete both proteins simultaneously. The cell line, in which both proteins were downregulated, showed more pronounced growth inhibition than the single knock-downs (Fig. 6A). Growth slowed after 3 days of RNAi induction and did not reach levels of the uninduced counterparts at any point during the 7 day time course (S4B Fig.). Depletion of both proteins was confirmed by western blotting (S4C Fig.), although neither protein was decreased below the detection limits of this assay.

Because both TbPH1 and TbKifX2 are modified in a way suggestive of post-translational regulation (Fig. 1), plus both associate with proteins that may regulate the cell cycle (e.g. FP45) [13] and do play a role in cytokinesis (e.g. TOEFAZ1/Cif1) [49,50], we wondered whether the growth inhibition of the double RNAi knockdown is due to a cell cycle defect. Thus, we assayed the proportion of cell cycle stages present over a course of 7 days of TbPH1/TbKifX2 depletion, sorting individual DAPI-stained cells into different cell cycle stages by scoring their number of nuclei (N) and kinetoplasts (K) [3]. The proportion of 1N1K cells decreased while 2N2K cells doubled at the same time from around 10% of the population to about 20% (S4D Fig.). The number of zoids (cells with 1 kinetoplast and lacking a nucleus) reached a peak at day 5, making up about 7% of the population, which may suggest problems with cytokinesis. However, we did not observe the consequent emergence of 2N1K or multinucleated cells, arguing against a specific cytokinesis defect [3]. Thus, we conclude that TbKifX2 and TbPH1 likely do not play a direct role in cell cycle progression and cytokinesis, and thus looked for other phenotypes that would explain the decreased fitness of these cells.
We assayed the MtQ and FAZ after 5 days of RNAi depletion and observed no defects in either of these structures, indicating that TbPH1 and TbKifX2 do not play a role in their biogenesis (Fig. 6C). The lack of an effect on these structures is also consistent with the notion that these proteins do not have a role in cytokinesis. However, by phase contrast microscopy we noticed the emergence of two morphological phenotypes, namely multiple cells joined together on their posterior end, a phenotype resembling abscission defects [51,52] and single cells with protrusions from the posterior end (Fig. 6D).

To better visualize these phenotypes, we observed these cells by scanning electron microscopy (Fig. 7). While control cells showed normal trypomastigote morphology and cytokinesis (Fig. 7), we observed concatenated cells as well as cells with multiple protrusions (arrows) originating from the posterior end (Fig. 7). It should be noted that this stunning phenotype, while frequently observed, did not emerge in all RNAi-induced cells. The occurrence of these cell types was also corroboratively found in transmission electron microscopy, which in addition provided evidence that these protrusions appear to contain normal cellular contents and were surrounded by subpellicular MTs (S5A Fig.). Moreover, the flagellar pocket region appeared to be unaffected by depletion of TbPH1/TbKifX2 (S5B and C Fig.).

This effect of TbPH1/TbKifX2-depletion resembled that of two tubulin-tyrosine-ligase-like (TTLL) proteins, which post-translationally modify the C-terminal tails of α- and β-tubulin by addition of polyglutamate side chains [53]. Upon depletion of either TTLL, protrusions were observed emanating from the posterior end, which prompted the authors to name this morphological change the ‘glove’ phenotype. To determine whether TbPH1/TbKifX2 downregulation truly phenocopies that of each TTLL, we immunodecorated cells 5 days post RNAi-induction with antibodies recognizing glutamyl side chains (GT335 antibody) and tyrosinated α-tubulin (YL 1/2 antibody); the latter antibody was used previously to visualize the basal bodies (Fig. 5C). Upon depletion of either TTLL, polyglutamylation was decreased and α-tubulin tyrosination increased in the posterior end, from
which the protrusions emerged [53]. We did not observe either of these changes in post-
translational modifications upon TbPH1/TbKifX2 silencing by observing them on individual cells by
IFA (S5D Fig.) or the whole cell population by western analysis (S5E Fig.), suggesting the mechanism
underlying the emergence of posterior-end protrusions differs from that of the TTLLs.

DISCUSSION

Kinesins and related kinesin-like proteins constitute one of the largest protein families encoded by
the T. brucei genome [16] and are represented by diverse gene repertoires in other trypanosomatids
as well [17–20]. Among the eukaryotes, trypanosomatids have experienced one of the largest
expansions of the kinesin motor superfamily, suggesting these proteins endow trypanosomes with
unique biological properties, many of which still await elucidation [16,19,20]. Indeed, this expansion
has resulted in the emergence of two trypanosomatid-specific clades of kinesins, named X-1 and X-2.
A kinesin belonging to the former, named FCP2/TbKinX1, has been shown to maintain a connection
of a new flagellum’s distal tip along the side of the old flagellum, thus facilitating the unique
mechanism of templated replication of this cytoskeletal organelle in T. brucei [29].

In this work, we have shed light on the function of a member of the trypanosomatid-specific X-2
clade, which we named TbKifX2. We show that TbKifX2 is localized to the MtQ component of the
cytoskeleton while maintaining a cytosolic fraction. Previously, TbSpef1 [13] and three other
proteins of the TbSpef1 proxisome [14] were found to be localized to the MtQ of kinetoplastids.
However, these proteins are located exclusively on the proximal end of the MtQ, in the region
between the basal body and the flagellar collar. While TbKifX2 is enriched in this part of the MtQ,
this is to our knowledge the first protein identified to be also distributed along the entire length of
the MtQ.
TbKifX2 recruits TbPH1, a kinesin-like protein with a C-terminal PH domain, to the MtQ. The proposed complex formation is based on our observation that TbPH1 mainly interacts with TbKifX2 with a strong affinity that defies high salt concentrations, a condition that usually subverts non-covalent interactions between the CC domains [54]. It is not unusual for a kinesin to interact with proteins that have a catalytically-dead kinesin motor domain [55] and we hypothesize that this complex may represent an adaptation for binding the MtQ. How the TbKifX2/TbPH1 complex preferentially interacts with the MtQ over the corset microtubules is an intriguing question. It has been suggested that the MtQ contains β-tubulin with a unique but still unknown modification that is recognized by the 1B41 monoclonal antibody [44,56], and could have an increased affinity to the kinesin complex investigated here. Alternatively, the kinesins could be activated at a specific site, for example at the proximal end of the MtQ, similar to the yeast kinesin Kip2 being recruited to the minus ends of microtubules by the activity of the spindle pole bodies [57]. Whether this is indeed the case, and how such a complex would move along the MtQ [55], remain interesting questions for future research.

The TbPH1 proxisome obtained via BioID labelling revealed interesting properties of TbPH1 and TbKifX2. First, most of the proteins identified in our study were also observed in the TOEFAZ1/CIF1 proxisome with high confidence [28]. This verifies our localization of TbKifX2/TbPH1 along the whole length of the MtQ and not just the proximal end, since TOEFAZ1/CIF1 is enriched in the distal tip of a newly formed FAZ, which also incorporates a new MtQ [8,58]. Second, the TbPH1 proxisome contains DLP1/2, which are involved in clathrin-mediated endocytosis [41–43] and FP45, which surrounds the flagellar pocket where endocytosis takes place. This result suggests that TbPH1 may transport vesicular cargo, as PH domains have been shown to bind phosphoinositides, ubiquitous phospholipids that pepper cellular membranes [59]. Interestingly, another kinesin with a C-terminal PH domain was also found in the TbPH1 proxisome. Third and finally, a putative flavin-trafficking protein was also found to associate with TbPH1 and TOEFAZ1/CIF1 [28]. This annotation is based on the presence of an ApbE-like domain, which is common in prokaryotes but a rare occurrence in
eukaryotic proteins [60]. What an enzyme potentially influencing redox is doing in association with the MtQ is another open question that has been uncovered in this study.

Simultaneous depletion of TbPH1 and TbKifX2 does not affect the overall morphology of MtQ or FAZ, indicating these proteins are likely not involved in the biogenesis of these cellular structures. As these single copy organelles must be faithfully replicated during cell proliferation, it is not surprising that the impact of the double knockdown had a minimal impact on the cell cycle. Nevertheless, TbKifX2/ TbPH1 downregulation has a striking morphogenesis phenotype, namely the accumulation of protrusions from the posterior end of T. brucei. The intracellular contents of these protrusions appear to be comparable to the rest of the cell and they are also surrounded by subpellicular MTs. Interestingly, these protrusions are reminiscent of the ‘glove phenotype’ observed upon depletion of two TTLL enzymes, which are responsible for post-translational modifications appending the C-terminal tails of α- and β-tubulin [53].

However, at this juncture, we can only speculate about the nature of these posterior protrusions. For one, simultaneous TbPH1 and TbKifX2 depletion did not affect polyglutamylation or tyrosination of tubulins, indicating that these proteins do not play a role in regulating either of these post-translational modifications as is the case for either TTLL [53]. Malfunction of regulated polyglutamylation and tyrosination led to mislocalization of EB1, a MT-plus-end-binding protein that binds to the MT corset at the posterior tip [53,61]. It was proposed that EB1 proteins may dock onto tubulins with the aforementioned post-translational modifications [53]. So, the malformations seen in TbPH1/TbKifX2 may affect EB1 or other such MT-plus-end-binding proteins, leading to uncontrolled MT growth or aberrant MT organization. However, it should be noted that EB1 was not identified in the TbPH1 proxisome, so any effect on this protein may be an indirect consequence of RNAi-silencing. The protrusions may also be a consequence of delayed or uncoordinated cytokinesis or represent mechanical damage to the posterior ends due to faulty separation of daughter cells at the final stage of cytokinesis. However, arguing against protrusions arising from a putative
cytokinesis defect is that they were not observed in *T. brucei* unable to pull apart due to motility defects [52].

In summary, we propose the following model (Fig. 8): the TbPH1-TbKifX2 complex moves along the MtQ transporting cargo representing an auxiliary factor for inducing and/or executing cytokinesis at the distal end of FAZ/MtQ. We assume that TbKifX2 is a plus-end directed motor based on the N-terminal position of the kinesin motor domain in the molecule [36]. When TbPH1-TbKifX2 are depleted, this cargo does not reach the anterior end and potentially accumulates at the posterior of the cell instead, thereby causing aberrant organizations of MTs, resulting in the observed protrusions. In the remote possibility that TbKifX2 moves toward the minus end of the MtQ MTs, we propose that this hypothetical factor may regulate proper posterior end remodelling post cytokinesis. In this case, TbPH1-TbKifX2 depletion impedes delivery of this cargo to the posterior end, resulting in aberrant remodelling as exemplified by the observed protrusions. In conclusion, we have discovered a novel kinesin heterocomplex that localizes along the MtQ, which will facilitate understanding of this fascinating structure and how it may impact the gross morphology of trypanosomatids.

MATERIALS AND METHODS

Cells

Procyclic SmOxP9 cells [62] were grown in SDM79 with 1 µg/ml of puromycin. Cell lines bearing epitope tags were grown with 50 µg/ml hygromycin (TbPH1-V5), 15 µg/ml G418 (TbKifX2-HA) and 10 µg/ml blasticidin (TbPH1-BioID2-HA). Selection for RNAi constructs was with 2.5 µg/ml phleomycin (TbKifX2 RNAi, TbPH1 RNAi and TbKifX2+TbPH1 RNAi).

Plasmids and generation of cell lines
For epitope tagging at the endogenous locus with HA and V5, long PCR products were generated with primers TbPH1V5 FW (TTTCTTCCGGTCTTGACTTATTCCGCTCAGGGAAGCTTTATGATTTCTTATGCGAAAGAGAGTCATACCGCTCCCGTACggttctggtagtggttcc) and TbPH1V5 RV (ATAATAAAGGAAGGGAAGGTAAAGTTCAGAAACAAATTCTGTTGGCTCCTGATAACACTCTCATATTTCCTTCACCGCcaatttgagagacctgtgc) and primers TbKifX2HA FW (TTTCTTCCGGTCTTGACTTATTCCGCTCAGGGAAGCTTTATGATTTCTTATGCGAAAGAGAGTCATACCGCTCCCGTACggttctggtagtggttcc) and TbKifX2HA RV (ATAATAAAGGAAGGGAAGGTAAAGTTCAGAAACAAATTCTGTTGGCTCCTGATAACACTCTCATATTTCCTTCACCGCcaatttgagagacctgtgc) using pPOT-V5-HygR and pPOT-HA-NeoR vectors as templates (based on [63] and modified from pPOTv4 [33]). For tagging with the BioID2 ligase [38], a modified version of pPOTv7-Blast-mNG [39] was used with the aforementioned primers for TbPH1 endogenous locus tagging. 50 µl PCR reactions were directly transfected into procyclic SmOxP9 cells using the Amaza Nucleofactor electroporator and selection occurred approximately 16 hours after electroporation.

To create a vector to simultaneously downregulate both TbPH1 and TbKifX2, a fragment of each (as suggested by RNAit2 software (https://dag.compbio.dundee.ac.uk/RNAit/) [64]) was PCR amplified using primers TbPH1-RNAi-Fw (TAATtctagaGTTGCGTGATGAGCTTCAAA), TbPH1-RNAi-Rv (TATAaagcttCTCCTCTAGCACCCTTTGG), TbKifX2-RNAi-Fw (TAATggatccCACCGCCATTCTTGCA AACAA) and TbKifX2-RNAi-Rv (TATAatctagaGTCATTTTGCCTGGGCGATAC) and cloned into BamHI-HindIII sites of p2T7-177 [65] in a three way ligation using XbaI as the restriction site in between the two RNAi fragments. The plasmid was linearised with NotI before electroporation.

RNAi and growth curves

Procyclic form cell lines for depletion of either TbPH1 or TbKifX2 were induced at a density of 2x10^6 cells/ml with 1 µg/ml doxycycline and growth monitored daily with a Z2 Coulter Counter Analyzer (Beckman Coulter). Cells were diluted back to the initial cell density every day. Cell lines carrying the vector for simultaneous depletion of TbPH1 and TbKifX2 were induced at a density of 5x10^5 cells/ml.
with 1 μg/ml doxycycline and growth monitored daily with a Neubauer counting chamber. Cells were
diluted back to the initial cell density every two days.

DAPI counts

For cell cycle analysis, cells either induced or not for depletion of TbKifX2 and TbPH1 were spread on
glass slides, the cell suspension allowed to air-dry and the slides then fixed in methanol at -20 °C.
Slides were rehydrated for 5 minutes in PBS before a drop of ProLong™ Gold antifade reagent with
DAPI (ThermoScientific) was added, a coverslip applied and the slide sealed. At least 200 cells were
scored according to the number of nuclei and kinetoplasts per slide.

Cell fractionation via ‘microtubule sieving’

To entrap non-soluble and cytoskeletal proteins within the MT corset, a ‘MT sieving’ technique as
described in [32] was employed. The experiment was conducted exactly as described before in [32]
(see also S1 Fig.).

V5 immunoprecipitation

For immunoprecipitation (IP) of TbPH1-V5 from procyclic trypanosome lysates, the V5 antibody
(Thermo Fisher) was coupled and cross-linked to protein G coated dynabeads (Thermo Scientific)
using 6 mg/ml dimethyl pimelidate dihydrochloride in 0.2M triethanolamine. Beads were then
washed in IP wash buffer (20 mM Tris-HCl, pH 7.7, 100 mM KCl, 3 mM MgCl₂, 0.5% TritonX-100,
cOmplete™ EDTA-free protease inhibitor (Roche)) and stored at 4 °C before further usage. For
proteomic analysis of TbPH1 interactions, 1x10⁹ PCF cells were pre-fractionated using the ‘MT
eiving’ technique described above. The SN3 lysate was incubated with V5-coupled dynabeads for 24
hours at 4 °C. Following several washes in IP wash buffer, proteins were eluted using low pH glycine
buffer. Aliquots were taken of the different steps for western blot analysis.

Western blots
Cell lysates were prepared by boiling in 1x SDS sample buffer and the equivalent of 2x10^6 cells (RNAi lines) or 1x10^7 cells (IP samples) was loaded per well. Following western blotting, PVDF membranes were blocked for 1 hour in 5% milk-PBS. Incubation with primary antibodies (anti-V5 at 1:1,000; ThermoScientific, anti-HA at 1:1,000; ThermoScientific, anti-tubulin at 1:5,000; Sigma) was performed at 4 °C overnight. Secondary antibodies (HRP-coupled anti-mouse or –rabbit IgG; Sigma) were used at a concentration of 1:2,000 and signals were visualised using Clarity Western ECL substrate (Bio-Rad) on a ChemiDoc MP (Bio-Rad).

SYPRO Ruby staining

Following electrophoresis, polyacrylamide gels were placed into fixing solution (7% glacial acetic acid, 50% methanol) for 30 minutes at room temperature. Following another, identical fixation step, the gel was incubated with SYPRO Ruby solution overnight at room temperature. A washing step in washing solution (7% glacial acetic acid, 10% methanol) for 30 minutes at room temperature was followed by three 5 minute washes in milliQ water before imaging on a ChemiDoc MP (Bio-Rad).

Immunofluorescence and cytoskeleton extraction

Approximately 2x10^6 cells were used per slide. Cells were washed in PBS and fixed in 2.3% PFA in PBS for approximately 30 minutes before being transferred to microscopy slides (ThermoScientific). Following neutralisation in 0.1M glycine in PBS, slides were incubated in methanol at -20° C overnight for permeabilisation. Slides were then rehydrated in PBS and blocked in 1% BSA in PBS for 1 hour followed by incubation with primary antibody for 1 hour in a humid chamber. The slides were then washed three times with PBS before incubation in AlexaFluor-conjugated secondary antibody (goat anti-rabbit/mouse, used at 1:1,000; Invitrogen). Following three further washes in PBS, a drop of ProLong Gold Antifade reagent with DAPI (ThermoScientific) was added, a coverslip applied and the slide sealed with nail polish. Slides were imaged with a Zeiss Axioscope or an Olympus FluoView FV1000 confocal microscope.
For immunofluorescence analysis of cells extracted using the ‘MT sieving’ fractionation method described above the pellet fraction P2 was fixed in 2.3% PFA as described. All subsequent steps were the same as for whole cell immunofluorescence.

To extract cytoskeletons conventionally, approximately 1×10^7 PCF cells were collected and centrifuged at room temperature for 5 min at 800 x g and the supernatant discarded. Thereafter, the cell pellet was washed once in PBS and after resuspension in PBS applied in a drop-wise fashion to Superfrost plus® slides (ThermoScientific). The cells were left to settle before the addition of PEME buffer (100 mM Pipes, pH 6.9, 1 mM MgSO$_4$, 2 mM EGTA, 0.1 mM EDTA) containing 0.5% (v/v) NP-40 (Igepal) for 10 seconds. This cytoskeleton extraction was followed by a 10 minute fixation step in 4% PFA/-20°C methanol. All subsequent steps were as described above for whole cell immunofluorescence.

Antibodies used in immunofluorescence

Antibody	Dilution	Origin
anti-HA (produced in rabbit)	1:1,000	Sigma, Catalog #: H6908
anti-V5 (produced in mouse)	1:1,000	ThermoScientific, Catalog #: 377500
1B41 (MtQ)1	1:1,000	[44]
L3B2	1:10	[66]
YL1/2	1:50	[67]
GT335	1:2,000	Adipogen Life Sciences, Catalog #: AG-20B-0020

1IgM purified from hybridoma supernatant and not mouse ascitic fluid as in original report.

Scanning and transmission electron microscopy
For TEM, cell pellets were high-pressure frozen, freeze substituted in the presence of 2% OsO4 in acetone, and embedded into Spi-Pon812 resin (SPI) as described previously [63]. For SEM of the TbPH1/TbKifX2 RNAi cell line, cells were fixed in 2.5% glutaraldehyde in 100 mM PBS overnight at 4°C and then spotted onto poly-l-lysine-coated glass cover slips. The cells were post-fixed in 2% osmium tetroxide in 100 mM PBS for 1 h at room temperature and finally washed in the same buffer. After dehydration cells were critical-point dried, coated with gold palladium and imaged.

Expansion microscopy

Expansion microscopy samples were prepared as described previously [47]. In brief, 1x10^6 cells were fixed overnight in a solution containing 4% formaldehyde and 4% acrylamide in PBS and adhered to a poly-l-lysine (Sigma, P4707) coated coverslip. The cells were gelated for 30 min at 37°C in PBS supplemented with 19% sodium acrylate, 10% acrylamide, and 0.1% N, N’-Methylenebisacrylamide, 0.5% N, N’, N’-tetramethylethylenediamine, and 0.5% ammonium persulfate. The specimens were further denatured by a 2 hour incubation at 95°C in a buffer consisting of 50 mM tris(hydroxymethyl)aminomethane-hydrochloride, 200 mM sodium chloride, 200 mM sodium dodecyl sulphate, pH 9.0, and expanded by three 20 min incubations with 15 ml of ultrapure water. Thereafter, the gels were incubated overnight first with a mixture of anti-HA (Cell Signaling Technology, 3724S; used at 1:250) and C3B9 (68, used at 1:10), anti-V5 (Sigma, V8137-.2MG; used at 1:250) and C3B9 or anti-ClpGM6 (48, used at 1:200) and C3B9 antibodies, followed by washes and an overnight incubation with a mixture of secondary antibodies (Invitrogen, A11001 and A21428; used at 1:500). Both primary and secondary antibodies were diluted in PBS supplemented with 2% bovine serum albumin. Finally, the gels were washed with ultrapure water.

Prior to imaging, pieces of gels containing stained expanded cells was transferred to a glass-bottom dish coated with poly-L-lysine, and imaged using a Leica TCS SP8 confocal microscope with an HC PL apochromatic 63x/NA 1.40 oil immersion objective. Z-stacks were acquired with the step size of 100
Confocal z-stacks were processed in Fiji [69]. 3D reconstructions were performed in the 3D viewer plugin.

BioID

PCF cells (TbPH1-BioID2-HA and SmOxP9 as controls) were grown in the presence of 50 µM biotin for 24 hours. For proximity-dependent biotin identification (BioID), 10⁹ PCF cells were extracted in PEME buffer (100 mM Pipes, pH 6.9, 1 mM MgSO₄, 2 mM EGTA, 0.1 mM EDTA) containing 0.5% (v/v) NP-40 (Igepal) for 15 minutes at room temperature resulting in extract E1. Following centrifugation at 3,400 x g for 2 minutes, supernatant S1 was created and pellet P1 was further processed by extraction in lysis buffer (0.4% SDS, 500 mM NaCl, 5 mM EDTA, 1 mM DTT, 50 mM Tris-HCl, pH7.4).

Another centrifugation step at 16,000 x g for 10 minutes created supernatant S2. Both supernatants, S1 and S2, were then incubated with streptavidin-conjugated Dynabeads (company) for 4 hours at 4 °C. An aliquot of flow through samples F1 and F2 were retained for western blotting and the dynabeads were washed five times with PBS. A small sample of the beads was then resuspended in 2x SDS PAGE buffer and boiled for initial western blot analysis. For mass spectrometry analysis of the TbPH1 proxisome, the procedure was repeated as described above, but only the S1 fraction was further processed.

Mass spectroscopy analysis of captured biotinylated proteins

Trypsin-digestion of captured biotinylated proteins was performed on bead prior to liquid chromatography-tandem mass spectroscopy (LC-MS/MS) as previously described [39]. Data was processed using MaxQuant [70] version 1.6.14 which incorporates the Andromeda search engine [71]. Proteins were identified by searching a protein sequence database containing *T. brucei brucei* 927 annotated proteins (Version 51, TriTrypDB [25], http://www.tritrypdb.org/) supplemented with frequently observed contaminants. Search parameters specified an MS tolerance of 6 ppm, an MS/MS tolerance at 0.5 Da and full trypsin specificity, allowing for up to two missed cleavages. Carbamidomethylation of cysteine was set as a fixed modification and oxidation of methionine and
N-terminal protein acetylation were allowed as variable modifications. The experimental design included matching between runs for biological replicates. Peptides were required to be at least 7 amino acids in length, with false discovery rates (FDRs) of 0.01 calculated at the levels of peptides, proteins and modification sites based on the number of hits against the reversed sequence database. The obtained data was subsequently processed in Perseus version 1.6.14 as described in [72].

Data availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD025802.

ACKNOWLEDGEMENTS

We thank Keith Gull (University of Oxford), Linda Kohl (Muséum National d'Histoire Naturelle), Bill Wickstead (University of Nottingham), and Ziyin Li (University of Texas Medical School at Houston) for helpful comments, Susanne Kramer (University of Würzburg), Cynthia He (National University of Singapore), and Chris de Graffenried (Brown University) for antibodies, Peter Gorilak (Institute of Molecular Genetics) for assistance with imaging, as well as Karel Harant and Pavel Talacko (BIOCEV, Prague) and Zbyněk Zdráhal and David Potěšil (CEITEC, Brno) for mass spectroscopy analysis on BioID samples and excised bands, respectively. This work was supported by the Czech Science Foundation grants 20-23513S to HH, and 21-09283S and ERC CZ LL1601 to JL, the ERD funds of the Czech Ministry of Education 16_019/0000759 to HH and JL, and BiolImaging grant LM2018129 to MV. Work in the VV laboratory was supported by an EMBO Installation Grant and by the J. E. Purkyne Fellowship of the Czech Academy of Sciences. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

REFERENCES
1. Wheeler RJ, Scheumann N, Wickstead B, Gull K, Vaughan S. Cytokinesis in *Trypanosoma brucei* differs between bloodstream and tsetse trypomastigote forms: implications for microtubule-based morphogenesis and mutant analysis. Mol Microbiol. 2013;90: 1339–1355. doi:10.1111/mmi.12436

2. Gull K. The cytoskeleton of trypanosomatid parasites. Annual Review of Microbiology. Annu Rev Microbiol; 1999. pp. 629–655. doi:10.1146/annurev.micro.53.1.629

3. Robinson DR, Sherwin T, Ploubidou A, Byard EH, Gull K. Microtubule polarity and dynamics in the control of organelle positioning, segregation, and cytokinesis in the trypanosome cell cycle. J Cell Biol. 1995;128: 1163–1172. doi:10.1083/jcb.128.6.1163

4. Sherwin T, Gull K. Visualization of detyrosination along single microtubules reveals novel mechanisms of assembly during cytoskeletal duplication in trypanosomes. Cell. 1989;57: 211–221. doi:10.1016/0092-8674(89)90959-8

5. Field MC, Carrington M. The trypanosome flagellar pocket. Nat Rev Micro. 2009;7: 775–786. Available: http://dx.doi.org/10.1038/nrmicro2221

6. Albisetti A, Florimond C, Landrein N, Vidilaseris K, Eggenspieler M, Lesigang J, et al. Interaction between the flagellar pocket collar and the hook complex via a novel microtubule-binding protein in *Trypanosoma brucei*. PLoS Pathog. 2017;13: e1006710. doi:10.1371/journal.ppat.1006710

7. Lacomble S, Vaughan S, Gadelha C, Morphew MK, Shaw MK, McIntosh JR, et al. Three-dimensional cellular architecture of the flagellar pocket and associated cytoskeleton in trypanosomes revealed by electron microscope tomography. J Cell Sci. 2009;122: 1081–1090. doi:10.1242/jcs.045740

8. Sunter JD, Gull K. The Flagellum Attachment Zone: ‘The Cellular Ruler’ of Trypanosome Morphology. Trends in Parasitology. Elsevier Ltd; 2016. pp. 309–324.
9. Sinclair AN, de Graffenried CL. More than Microtubules: The Structure and Function of the Subpellicular Array in Trypanosomatids. Trends in Parasitology. Elsevier Ltd; 2019. pp. 760–777. doi:10.1016/j.pt.2019.07.008

10. Wheeler RJ, Gull K, Sunter JD. Coordination of the cell cycle in trypanosomes. Annu Rev Microbiol. 2019;73: 133–154. doi:10.1146/annurev-micro-020518-115617

11. Woodward R, Gull K. Timing of nuclear and kinetoplast DNA replication and early morphological events in the cell cycle of Trypanosoma brucei. J Cell Sci. 1990;95 (Pt 1): 49–57. Available: http://www.ncbi.nlm.nih.gov/pubmed/2190996

12. Lacomble S, Vaughan S, Gadelha C, Morphew MK, Shaw MK, McIntosh JR, et al. Basal body movements orchestrate membrane organelle division and cell morphogenesis in Trypanosoma brucei. J Cell Sci. 2010;123: 2884–2891. doi:10.1242/jcs.074161

13. Gheiratmand L, Brasseur A, Zhou Q, He CY. Biochemical characterization of the bi-lobe reveals a continuous structural network linking the bi-lobe to other single-copied organelles in Trypanosoma brucei. J Biol Chem. 2013;288: 3489–3499. doi:10.1074/jbc.M112.417428

14. Dong X, Lim TK, Lin Q, He CY. Basal Body Protein TbSAF1 Is Required for Microtubule Quartet Anchorage to the Basal Bodies in Trypanosoma brucei. Hajduk SL, editor. mBio. 2020;11:e00668-20. doi:10.1128/mBio.00668-20

15. Hirokawa N, Noda Y. Intracellular transport and kinesin superfamily proteins, KIFs: Structure, function, and dynamics. Physiol Rev. 2008;88: 1089–1118. doi:10.1152/physrev.00023.2007

16. Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renaudl H, Bartholomeu DC, et al. The genome of the African trypanosome Trypanosoma brucei. Science. 2005;309: 416–422. doi:10.1126/science.1112642
17. El-Sayed NM, Myler PJ, Bartholomeu DC, Nilsson D, Aggarwal G, Tran AN, et al. The genome sequence of *Trypanosoma cruzi*, etiologic agent of Chagas disease. Science. 2005;309: 409–415. doi:10.1126/science.1112631

18. Ivens AC, Peacock CS, Worthey EA, Murphy L, Aggarwal G, Berriman M, et al. The genome of the kinetoplastid parasite, *Leishmania major*. Science. 2005;309: 436–442. doi:10.1126/science.1112680

19. Wickstead B, Gull K, Richards TA. Patterns of kinesin evolution reveal a complex ancestral eukaryote with a multifunctional cytoskeleton. BMC Evol Biol. 2010;10: https://doi.org/10.1186/1471-2148-10-110. doi:10.1186/1471-2148-10-110

20. Wickstead B, Gull K. A “Holistic” Kinesin Phylogeny Reveals New Kinesin Families and Predicts Protein Functions. Mol Biol Cell. 2006;17: 1734–1743. doi:10.1091/mbc.E05

21. Li Z, Lee JH, Chu F, Burlingame AL, Günzl A, Wang CC. Identification of a Novel Chromosomal Passenger Complex and Its Unique Localization during Cytokinesis in *Trypanosoma brucei*. Carlow CKS, editor. PLoS One. 2008;3: e2354. doi:10.1371/journal.pone.0002354

22. Wickstead B, Carrington JT, Gluenz E, Gull K. The expanded kinesin-13 repertoire of trypanosomes contains only one mitotic kinesin indicating multiple extra-nuclear roles. PLoS One. 2010;5: e0015020. doi:10.1371/journal.pone.0015020

23. Hu L, Hu H, Li Z. A kinetoplastid-specific kinesin is required for cytokinesis and for maintenance of cell morphology in *Trypanosoma brucei*. Mol Microbiol. 2012;83: 565–578. doi:10.1111/j.1365-2958.2011.07951.x

24. Wei Y, Hu H, Lun Z-R, Li Z. The Cooperative Roles of Two Kinetoplastid-Specific Kinesins in Cytokinesis and in Maintaining Cell Morphology in Bloodstream Trypanosomes. PLoS One. 2013;8: e73869. doi:10.1371/journal.pone.0073869

25. Aslett M, Aurrecoechea C, Berriman M, Brestelli J, Brunk BP, Carrington M, et al. TriTrypDB: A
26. Bertiaux E, Morga B, Blisnick T, Rotureau B, Bastin P. A Grow-and-Lock Model for the Control of Flagellum Length in Trypanosomes. Curr Biol. 2018;28: 3802-3814.e3. doi:10.1016/j.cub.2018.10.031

27. An T, Li Z. An orphan kinesin controls trypanosome morphology transitions by targeting FLAM3 to the flagellum. Hill KL, editor. PLOS Pathog. 2018;14: e1007101. doi:10.1371/journal.ppat.1007101

28. Hilton NA, Sladewski TE, Perry JA, Pataki Z, Sinclair-Davis AN, Muniz RS, et al. Identification of TOEFAZ1-interacting proteins reveals key regulators of Trypanosoma brucei cytokinesis. Mol Microbiol. 2018;109: 306–326. doi:10.1111/mmi.13986

29. Varga V, Moreira-Leite F, Portman N, Gull K. Protein diversity in discrete structures at the distal tip of the trypanosome flagellum. Proc Natl Acad Sci U S A. 2017;114: E6546–E6555. doi:10.1073/pnas.1703553114

30. Urbaniak MD, Guther MLS, Ferguson M a J. Comparative SILAC proteomic analysis of Trypanosoma brucei bloodstream and procyclic lifecycle stages. PLoS One. 2012;7: e36619. doi:10.1371/journal.pone.0036619

31. Lott K, Li J, Fisk JC, Wang H, Aletta JM, Qu J, et al. Global proteomic analysis in trypanosomes reveals unique proteins and conserved cellular processes impacted by arginine methylation. J Proteomics. 2013;91: 210–225. doi:10.1016/j.jprot.2013.07.010

32. Fritz M, Vanselow J, Sauer N, Lamer S, Goos C, Siegel TN, et al. Novel insights into RNP granules by employing the trypanosome’s microtubule skeleton as a molecular sieve. Nucleic Acids Res. 2015;43: 8013–8032. doi:10.1093/nar/gkv731

33. Dean S, Sunter J, Wheeler RJ, Hodkinson I, Gluenz E, Gull K. A toolkit enabling efficient,
30 scalable and reproducible gene tagging in trypanosomatids. Open Biol. 2015;5: 140197.

doi:10.1098/rsob.140197

34. Marx A, Hoenger A, Mandelkow E. Structures of kinesin motor proteins. Cell Motil Cytoskeleton. 2009;66: 958–966. doi:10.1002/cm.20392

35. Burkhard P, Stetefeld J, Strelkov S V. Coiled coils: A highly versatile protein folding motif. Trends in Cell Biology. Trends Cell Biol; 2001. pp. 82–88. doi:10.1016/S0962-8924(00)01898-5

36. Hirokawa N, Noda Y, Tanaka Y, Niwa S. Kinesin superfamily motor proteins and intracellular transport. Nature Reviews Molecular Cell Biology. Nature Publishing Group; 2009. pp. 682–696. doi:10.1038/nrm2774

37. Dean S, Sunter JD, Wheeler RJ. TrypTag.org: A Trypanosome Genome-wide Protein Localisation Resource. Trends in Parasitology. Elsevier Ltd; 2017. pp. 80–82.

doi:10.1016/j.pt.2016.10.009

38. Kim DI, Jensen SC, Noble KA, Kc B, Roux KH, Motamedchaboki K, et al. An improved smaller biotin ligase for BioID proximity labeling. Mol Biol Cell. 2016;27: 1188–1196.

doi:10.1091/mbc.E15-12-0844

39. Pyrih J, Rašková V, Škodová-Sveráková I, Pánek T, Lukeš J. ZapE/Afg1 interacts with Oxa1 and its depletion causes a multifaceted phenotype. PLoS One. 2020;15: e0234918.

doi:10.1371/journal.pone.0234918

40. Morriswood B, Havlicek K, Demmel L, Yavuz S, Sealey-Cardona M, Vidilaseris K, et al. Novel bilobe components in *Trypanosoma brucei* identified using proximity-dependent biotinylation. Eukaryot Cell. 2013;12: 356–367. doi:10.1128/EC.00326-12

41. Benz C, Stříbrná E, Hashimi H, Lukeš J. Dynamin-like proteins in *Trypanosoma brucei*: A division of labour between two paralogs? PLoS One. 2017;12: e0177200.

doi:10.1371/journal.pone.0177200
42. Morgan GW, Goulding D, Field MC. The single dynamin-like protein of *Trypanosoma brucei* regulates mitochondrial division and is not required for endocytosis. J Biol Chem. 2004;279:10692–701. doi:10.1074/jbc.M312178200

43. Chanez A-L, Hehl AB, Engstler M, Schneider A. Ablation of the single dynamin of *T. brucei* blocks mitochondrial fission and endocytosis and leads to a precise cytokinesis arrest. J Cell Sci. 2006;119:2968–74. doi:10.1242/jcs.03023

44. Gallo JM, Précigout E, Schrével J. Subcellular sequestration of an antigenically unique beta-tubulin. Cell Motil Cytoskeleton. 1988;9:175–183. doi:10.1002/cm.970090209

45. Gambarotto D, Zwettler FU, Le Guennec M, Schmidt-Cernohorska M, Fortun D, Borgers S, et al. Imaging cellular ultrastructures using expansion microscopy (U-ExM). Nat Methods. 2019;16:71–74. doi:10.1038/s41592-018-0238-1

46. Amodeo S, Kalichava A, Fradera-Sola A, Bertiaux-Lequoy E, Guichard P, Butter F, et al. Characterization of the novel mitochondrial genome segregation factor TAP110 in *Trypanosoma brucei*. J Cell Sci. 2021;134:jcs.254300. doi:10.1242/jcs.254300

47. Gorilak P, Pružincová M, Vachova H, Olšinová M, Varga V. Expansion microscopy facilitates quantitative super-resolution studies of cytoskeletal structures in kinetoplastid parasites. Open Biol. 2021;11:210131. Available: https://doi.org/10.1101/2021.04.20.440601

48. Hayes P, Varga V, Olego-Fernandez S, Sunter J, Ginger ML, Gull K. Modulation of a cytoskeletal calpain-like protein induces major transitions in trypanosome morphology. J Cell Biol. 2014;206:377–384. doi:10.1083/jcb.201312067

49. McAllaster MR, Ikeda KN, Lozano-Núñez A, Anrather D, Unterwurzacher V, Gossenreiter T, et al. Proteomic identification of novel cytoskeletal proteins associated with TbPLK, an essential regulator of cell morphogenesis in *Trypanosoma brucei*. Mol Biol Cell. 2015;26:3013–3029. doi:10.1091/mbc.E15-04-0219
50. Zhou Q, An T, Pham KTM, Hu H, Li Z. The CIF1 protein is a master orchestrator of trypanosome cytokinesis that recruits several cytokinesis regulators to the cytokinesis initiation site. J Biol Chem. 2018;293: 16177–16192. doi:10.1074/jbc.RA118.004888

51. Benz C, Clucas C, Mottram JC, Hammarton TC. Cytokinesis in bloodstream stage *Trypanosoma brucei* requires a family of katanins and spastin. PLoS One. 2012;7: e30367. doi:10.1371/journal.pone.0030367

52. Ralston KS, Lerner AG, Diener DR, Hill KL. Flagellar motility contributes to cytokinesis in *Trypanosoma brucei* and is modulated by an evolutionarily conserved dynein regulatory system. Eukaryot Cell. 2006;5: 696–711. doi:10.1128/EC.5.4.696-711.2006

53. Jentzsch J, Sabri A, Speckner K, Lallinger-Kube G, Weiss M, Ersfeld K. Microtubule polyglutamylation is important for regulating cytoskeletal architecture and motility in *Trypanosoma brucei*. J Cell Sci. 2020;133. doi:10.1242/jcs.248047

54. Grigoryan G, Keating AE. Structural specificity in coiled-coil interactions. Current Opinion in Structural Biology. Curr Opin Struct Biol; 2008. pp. 477–483. doi:10.1016/j.sbi.2008.04.008

55. Allingham JS, Sproul LR, Rayment I, Gilbert SP. Vik1 Modulates Microtubule-Kar3 Interactions through a Motor Domain that Lacks an Active Site. Cell. 2007;128: 1161–1172. doi:10.1016/j.cell.2006.12.046

56. Gallo JM, Precigout E. Tubulin expression in trypanosomes. Biol Cell. 1988;64: 137–143. doi:10.1016/0248-4900(88)90073-1

57. Chen X, Widmer LA, Stangier MM, Steinmetz MO, Stelling J, Barral Y. Remote control of microtubule plus-end dynamics and function from the minus-end. Elife. 2019;8: 1–32. doi:10.7554/eLife.48627

58. Campbell PC, de Graffenried CL. Alternate histories of cytokinesis: lessons from the trypanosomatids. Mol Biol Cell. 2020;31: 2631–2639. doi:10.1091/mbc.E19-12-0696
64. Redmond S, Vadivelu J, Field MC. RNAit: An automated web-based tool for the selection of RNAi targets in *Trypanosoma brucei*. Mol Biochem Parasitol. 2003;128: 115–118. doi:10.1016/S0166-6851(03)00045-8

65. Wickstead B, Ersfeld K, Gull K. Targeting of a tetracycline-inducible expression system to the transcriptionally silent minichromosomes of *Trypanosoma brucei*. Mol Biochem Parasitol. 2002;125: 211–6. doi:10.1016/S0166-6851(02)00238-4

66. Kohl L, Sherwin T, Gull K. Assembly of the paraflagellar rod and the flagellum attachment zone complex during the *Trypanosoma brucei* cell cycle. J Eukaryot Microbiol. 1999;46: 105–109. doi:10.1111/j.1550-7408.1999.tb04592.x

67. Sherwin T, Schneider A, Sasse R, Seebeck T, Gull K. Distinct localization and cell cycle
dependence of COOH terminally tyrosinolated α-tubulin in the microtubules of *Trypanosoma brucei*. J Cell Biol. 1987;104: 439–446. doi:10.1083/jcb.104.3.439

68. Woods A, Sherwin T, Sasse R, MacRae TH, Baines AJ, Gull K. Definition of individual components within the cytoskeleton of *Trypanosoma brucei* by a library of monoclonal antibodies. J Cell Sci. 1989;93 (Pt 3): 491–500. Available: http://europepmc.org/abstract/MED/2606940

69. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: An open-source platform for biological-image analysis. Nature Methods. Nature Publishing Group; 2012. pp. 676–682. doi:10.1038/nmeth.2019

70. Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26: 1367–1372. doi:10.1038/nbt.1511

71. Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen J V., Mann M. Andromeda: A peptide search engine integrated into the MaxQuant environment. J Proteome Res. 2011;10: 1794–1805. doi:10.1021/pr101065j

72. Zoltner M, del Pino RC, Field MC. Sorting the Muck from the Brass: Analysis of Protein Complexes and Cell Lysates. Methods in Molecular Biology. Humana Press Inc.; 2020. pp. 645–653. doi:10.1007/978-1-0716-0294-2_38

73. Kramer S, Queiroz R, Ellis L, Webb H, Hoheisel JD, Clayton C, et al. Heat shock causes a decrease in polysomes and the appearance of stress granules in trypanosomes independently of eIF2α phosphorylation at Thr169. J Cell Sci. 2008;121: 3002–3014. doi:10.1242/jcs.031823

Figure Legends

Fig. 1: Domain architecture of TbPH1 and TbKifX2. Schematic depiction includes phosphorylation and arginine methylation sites. The consensus Walker A motif is shown in comparison with the...
respective motifs of TbPH1 and TbKifX2. Key residues in ATP hydrolysis shown in red and mutations in purple. CC: coiled coil domain, PH: pleckstrin homology domain, HDL: homeodomain-like fold.

Fig. 2: TbPH1-V5 fractionates with the cytoskeleton. (A) Western blot of-trypanosome cell fractions. Fractionation procedure is summarized in S1 Fig. Antibodies used were anti-V5 and anti-SCD6 [73]. T: total lysate, SN: supernatant, P: pellet. (B) IFA of fraction P2. Cells were labelled with anti-V5 antibody (green) and DAPI. The scale bar corresponds to 5 µm.

Fig. 3: TbPH1 interacts with TbKifX2, a kinetoplastid-specific kinesin. (A) Western blot verifying immunoprecipitation of TbPH1-V5. The blot was probed with anti-V5 and anti-α-tubulin antibodies. The parental cell line SmOxP9 was used as a control. T: total lysate, SN: supernatant 3, FT: flow through, E: elution. (B) SyproRuby-stained gel of elution fractions of TbPH1-V5 IP and mock control (SmOxP9). B1 and B2: bands excised and identified by mass spectrometry. (C) Western blot showing interaction of TbPH1-V5 and TbKifX2-HA. TbKifX2-HA was immunoprecipitated in the same way as PH1-V5. T: total lysate, SN: supernatant, P: pellet, FT: flow through, E: elution. (D) IFA on whole cells detecting TbPH1-V5 (top) and TbKifX2-HA (bottom). Cells were counterstained with antibody recognizing α-tubulin (top) and acetylated α-tubulin (bottom). The scale bar corresponds to 5 µm.

Fig. 4: The proxisome of TbPH1. (A) IFA showing localisation of TbPH1-BioID2-HA. Cells were labelled with anti-HA (red) and DAPI. The scale bar corresponds to 5 µm. (B) IFA showing localisation of biotinylated proteins. Cells were labelled with streptavidin-AF488 (green) and DAPI. The scale bar corresponds to 5 µm. (C) Western blot (top panel) and stain-free gel (bottom panel) of a representative BioID experiment. The blot was probed with anti-HA to confirm the presence of TbPH1-BioID2-HA in the respective fractions. E: extract, SN: supernatant, F: flow through, B: boiled beads. (D) Volcano plot with -10 log t-test p value plotted against the t-test difference between TbPH1-BioID2-HA sample and mock (SmOxP9 cells) from three biological replicates. Statistically significant hits are found above the curve in the top right quadrant and their identity is indicated. Accession numbers are given with additional annotations in parentheses; these are color coded.
based on their localization determined by TrypTag [37]. (E) Heat map of SAINTq score (i.e. P value) of proteins interacting with TOEFAZ1 [28], positions of proteins also found in the TbPH1 proxisome are indicated. a: Tb927.8.6830 (kinesin), b: Tb927.3.2490 (PH1), c: Tb927.8.1950 (ApbE-like domain), d: Tb927.9.15470 (KifX2), e: Tb927.3.4720/60 (DLP1/2).

Fig. 5: TbKifX2 localises to the MtQ. (A) IFA on extracted cytoskeletons probing co-localisation of TbKifX2-HA with an HA antibody. Cells were counterstained with anti-V5 to detect TbPH1-V5. (B) IFA on extracted cytoskeletons probing co-localisation of TbKifX2-HA with the FAZ. Cells were counterstained with L3B2 (recognising the FAZ filament, green). (C) IFA on extracted cytoskeletons probing co-localisation of TbKifX2-HA with anti-HA antibody with basal bodies. Cells were counterstained with YL1/2 (recognising mature basal bodies, green) (D) IFA on extracted cytoskeletons probing co-localisation of TbKifX2-HA with the MtQ. Cells were counterstained with mAB 1B41 (recognising the MtQ, green). The scale bar for all IFAs corresponds to 5 µm. (E) Ultrastructure expansion microscopy of TbPH1 and TbKifX2. Cells were labelled with anti-V5/HA antibody (purple) and anti-tubulin antibody C3B9 (grey) to visualize the MT corset. Punctate cytosolic signals are visible in these preparations. (F) Ultrastructure expansion microscopy of TbPH1 and TbKifX2 (close-up view of posterior part of the cell). Cells were labelled with anti-V5/HA antibody (purple) and anti-tubulin antibody C3B9 (grey) to visualize the MT corset. Purple arrows are pointing to the MtQ signal.

Fig. 6: Depletion of TbPH1 and TbKifX2 causes multicellular aggregates and affects posterior end remodelling. (A) Bar chart showing population doubling times for TbPH1, TbKifX2 and TbPH1/TbKifX2 depletion cell lines. -/+: -/+ doxycycline to induce RNAi, the average difference in hours from three experiments is shown above the respective bars. (B) Western blot of cellular fractionation experiment following TbKifX2 RNAi. The blot was probed with anti-HA (to detect TbKifX2), anti-V5 (to detect TbPH1) and anti-α-tubulin as a loading control. WCL: whole cell lysate. (C) IFA of TbPH1/TbKifX2 RNAi cells. + tet: induced for 5 days. Extracted cytoskeletons were labelled
with L3B2 (recognising the FAZ filament, red), mAB 1B41 (recognising the MtQ, green) and DAPI. The scale bar corresponds to 5 µm. (D) Phase contrast images of TbPH1/TbKifX2 RNAi cells. + tet: induced for 5 days. The scale bar corresponds to 5 µm. Arrows indicate morphological defects.

Fig. 7: Scanning electron microscopy of TbPH1/TbKifX2 RNAi cells. Boxed images: uninduced cells. Remaining images: cells 5 days post induction. Arrows pointing to posterior end protrusions. The scale bar on the top left corresponds to 10 µm and is valid for all images except the one at the top right in which the scale bar corresponds to 1 µm.

Fig. 8: Model depicting the potential role of the putative TbPH1/TbKifX2 heterocomplex. On left is a close up of the heterocomplex. The ATPase activity of the N-terminal kinesin motor domain of TbKifX2 likely drives movement to the plus end of the MtQ, while the PH domain is presumed to carry a still unidentified cargo (X in yellow circle). Top right shows the heterocomplex in the context of the *T. brucei* cell, depicting the more likely scenario that the heterodimer moves from the minus ends of the MtQ MTs (red) between the mature and pro-basal bodies (pink) to their plus ends at the anterior of the cell body, carrying auxiliary factor X. Upon RNAi depletion of TbPH1 and TbKifX2, this factor accumulates at the posterior end, promoting extrusion formation.

S1 Fig.: Schematic depiction of ‘microtubule sieving’ technique. According to [32].

S2 Fig.: Schematic depiction of proximity-dependent biotinylation (BioID). According to [40]. Only steps in black were performed in our study.

S3 Fig.: Ultrastructure expansion microscopy of a cell labelled with anti-ClpGM6 (to detect the FAZ, purple) and anti-tubulin antibody C3B9 (grey) to visualize the MT corset.

S4 Fig.: TbPH1/TbKifX2 RNAi. (A) Growth curves of TbPH1 and TbKifX2 RNAi cell lines. Filled circles: TbKifX2 – tet, open circles: TbKifX2 + tet, filled triangles: TbPH1 – tet, open triangles: TbPH1 + tet. Insets show western blots probed with anti-HA (to detect TbKifX2), anti-V5 (to detect TbPH1) and anti-α-tubulin as a loading control. (B) Growth curve of TbPH1/TbKifX2 RNAi cell line. Filled circles:
Western blot showing depletion of TbPH1/TbKifX2. Samples were taken at the same time as the growth curve in B was performed. The blot was probed with anti-HA (to detect TbKifX2), anti-V5 (to detect TbPH1) and anti-α-tubulin as a loading control. Bar chart depicting different cell cycle phases during TbPH1/TbKifX2 RNAi time course. DAPI counts were performed in triplicate with at least 200 cells counted per time point. N: nucleus, K: kinetoplast.

S5 Fig.: Transmission electron microscopy and IFA of TbPH1/TbKifX2 RNAi cell line. Cells were induced for 5 days. (A) Image depicting posterior end protrusions (arrow). The scale bar corresponds to 1 µm. (B) Flagellar pocket region of cells not induced for TbPH1/TbKifX2. The scale bar corresponds to 500 nm. (C) Flagellar pocket region of cells induced for TbPH1/TbKifX2 RNAi. The scale bar corresponds to 500 nm. (D) IFA on cytoskeletons probing effects of TbPH1/TbKifX2 depletion post-translational modifications of tubulin. Cells were counterstained with GT335 (red, staining glutamyl side chains) and YL1/2 (green, staining tyrosinated α-tubulin). The scale bar corresponds to 5 µm. (E) Western blots taken after 3 to 5 days (d) of growth in presence (+) or absence (-) of doxycycline probed with antibodies recognizing GT335, YL1/2 and α-tubulin, the last as a loading control.

S1 Dataset: Mass spectrometry analysis of excised bands B1 and B2 from Fig. 3B.

S2 Dataset: Mass spectrometry data of TbPH1 BioID experiment. Data with and without imputation and filtered for Andromeda scores >20 and presence of >1 peptide, which was used to generate the volcano plot in Fig. 4D.
Fig. 1

Kinesin Motor Domain

TbPH1
(110 KDa)

GVRSTPKR
GXXXXXGKT/S
GQGTSGKT

Consensus Walker A motif (P-Loop)

Kinesin Motor Domain

TbKIFX2
(74.6 KDa)

50 AA

Figure 1
Figure 2

A

T	T(wt)	SN1 P1	SN2 P2	SN3 P3
150				
110				
37				

TbPH1-V5

SCD6

B

DAPI

TbPH1-V5

merge

Figure 2
Figure 3

A. Western blot analysis of TbPH1-V5 and SmOxp9 proteins under different conditions (T, SN3, FT, E).

B. Gel electrophoresis showing bands corresponding to TbPH1-V5 and SmOxp9 proteins.

C. Western blot analysis of TbPH1-V5 and TbKifX2-HA proteins under different conditions (T, SN1, P1, SN2, P2, SN3, P3, FT, E).

D. Immunofluorescence microscopy images of TbPH1-V5 and TbKifX2-HA proteins with α-tubulin, merge, and phase images.
Figure 5
Figure 6

(A) Doubling time (hours) for different conditions.

(B) Western blot analysis for WCL, soluble, and insoluble fractions with and without tet.

(C) Fluorescence images showing FAZ and DAPI staining for different conditions.

(D) Phase-contrast images with and without tet, showing arrows indicating changes.
Fig. 8

ATP

TbPH1

TbKifX2

TbPH1↓

TbKifX2↓

Figure 8