Age of onset of diabetes and all-cause mortality

Gary Yee Ang

Abstract

Diabetes mellitus continues to present a large social, financial and health system burden across the world. The relationship between age of onset of the different types of diabetes and all-cause mortality is uncertain. In this review paper, the relationship between age of onset of the different types of diabetes and all-cause mortality will be reviewed and an update of the current evidence will be presented. There is strong evidence of the relationship between age of onset of type 2 diabetes mellitus (T2DM) and all-cause mortality, good evidence of the relationship between age of onset of T1DM and all-cause mortality and no evidence of the relationship between age of onset of gestational diabetes or prediabetes and all-cause mortality. Further research is needed to look at whether aggressive management of earlier onset of T2DM can help to reduce premature mortality.

Key words: Diabetes mellitus; Age of onset; Mortality; Type 1 diabetes; Type 2 diabetes; Gestational diabetes; Prediabetes

INTRODUCTION
Diabetes mellitus is potentially reversible but the disease continues to present a large social, financial and health system burden across the world. Lifetime cost of treating type 2 diabetes mellitus (T2DM) in the United States of America has been estimated to range from USD 50000 to USD 130000 and SGD 70000 to SGD 130000 in Singapore depending on age of diagnosis. A systematic review of population-based cohorts found excess mortality in type 1 diabetes mellitus (T1DM) diagnosed in childhood and adolescence. Another systematic review also found that T2DM is associated with a two-fold increase in mortality. In Hongkong, it was found that absolute and relative mortality has declined overall in diabetes patients but there is less marked improvement in patients under 45 years of age, implying a need to improve care in young onset diabetes patients. What is uncertain is the relationship between age of onset of the different types of diabetes and all-cause mortality. This is important as American Diabetes Association recommends screening for T2DM to begin at 45 years for patients with no risk factors while Singapore recommend screening starts at 40 years old with no risk factor. If earlier onset of T2DM is associated with a much higher all-cause mortality, then we must relook at the screening criteria so that we do not miss out on these high-risk group. A better risk stratification model may be needed to ensure that earlier onset T2DM patients are not overlooked to reduce premature mortality.

In this review paper we will look at the relationship between age of onset of the different types of diabetes (T1DM, T2DM, Gestational and Prediabetes) and all-cause mortality and provides an update of the current evidence. This will help to inform readers of the need to pay special attention to the group of DM patients with early onset and not delay treatment unnecessarily.

LITERATURE RESEARCH

A literature search was done as part of this narrative review which included electronic databases of PubMed and Google Scholar. Only English-Language original and review articles were reviewed. As no systematic review has been done on this topic due to insufficient original research studies, we decided to do a narrative review instead. Only relevant studies were included in this narrative review using search terms such as “Diabetes”, “Age of onset”, “Mortality” and “Death”.

AGE OF ONSET OF T1DM

T1DM is most common in youth, accounting for more than 85% of all diabetes case below 20 years of age in the world. A Swedish study found that patients who developed T1DM before 10 years of age had a three-fold increase in mortality compared to controls while those who developed T1DM between 26 to 30 years of age had less than two-fold increase in mortality compared to controls. Another Finnish study found that the standardised mortality ratio was 3.6 in the early onset (0-14 years) cohort and 2.8 in the late onset (15-29 years) cohort. However, an older study of 13 population-based EURODIAB registers in 12 countries did not find any significant difference in the standardised mortality ratios by age of diagnosis.

Based on current evidence, it is probably worthwhile to delay the onset of T1DM if this was possible and there are some recent promising results that showed that it is possible to delay progression to clinical T1DM in high risk individuals. However, routine screening for T1DM is not recommended as there is no therapy currently proven to prevent or significantly delay the onset, so more research is needed in this area to warrant further discussion.

AGE OF ONSET OF T2DM

T2DM which was previously diagnosed in adults is now affecting children and adolescents. It has been found that T2DM presenting at a young age is of aggressive nature by the landmark Search for Diabetes in Youth study. Furthermore, increased lifetime exposure to hyperglycaemia is likely to be associated with higher complication risks. Two Australian studies found an inverse relationship between age of onset of Type 2 Diabetes and complication risk and mortality. A Swedish study also found that patients with T2DM diagnosed below 40 years had the highest excess risk for all-cause mortality and interestingly patients with T2DM diagnosed after 80 years old had no excess mortality.

Based on current evidence, it is likely that younger age of onset of T2DM is likely...
associated with higher all-cause mortality and it is worthwhile to prevent or delay the onset of T2DM. Furthermore, it has been found that the younger age of onset of diabetes is associated with higher levels of lifetime excess medical spending attributed to diabetes both in United States25 and Singapore6.

AGE OF ONSET OF GESTATIONAL DIABETES

Gestational diabetes is defined as glucose intolerance that begins or is first recognized during pregnancy26 and this is increasing in prevalence in tandem with increase in prevalence of overweight and obesity in women of reproductive age27. Although gestational diabetes is a strong risk factor for developing T2DM28-30, there are no studies that looked at the relationship between gestational diabetes and all-cause mortality. However, a recent systematic review found that young women with Gestational Diabetes have a twofold higher risk of cardiovascular events postpartum compared with their peers independent of the risk of developing T2DM31. Based on current evidence, little is known of the relationship between age of onset of Gestational Diabetes and all-cause mortality, so more research is needed in this area to warrant further discussion.

AGE OF ONSET OF PREDIABETES

Prediabetes is an intermediate state of hyperglycaemia with glycaemic parameters above normal but below the diabetes threshold32. A systematic review found that impaired glucose tolerance or impaired fasting glucose was associated with all-cause mortality but not mildly raised HbA1c (39-47 mmol/mol)33. However, there are no studies that looked at the relationship between age of onset of Prediabetes and all-cause mortality, so more research is needed in this area to warrant further discussion. Intuitively if we manage to delay the onset of Prediabetes, we may be able to delay the onset of T2DM and there is strong evidence of the effectiveness of diabetes prevention programs34-36.

CONCLUSION

In this narrative review, we found strong evidence of the relationship between age of onset of T2DM and all-cause mortality, good evidence of the relationship between age of onset of T1DM and all-cause mortality and no evidence of the relationship between age of onset of Gestational Diabetes or Prediabetes and all-cause mortality. Further research is needed to look at whether aggressive management of earlier onset of T2DM can help to reduce premature mortality.

REFERENCES

1. Hallberg SJ, Gershuni VM, Hazbun TL, Ahinayarayan SJ. Reversing Type 2 Diabetes: A Narrative Review of the Evidence. *Nutrients* 2019; 11 [PMID: 30939855 DOI: 10.3390/nu11040766]
2. Taylor R. Type 2 diabetes: etiology and reversibility. *Diabetes Care* 2013; 36: 1047-1055 [PMID: 23520370 DOI: 10.2337/dc12-1805]
3. Ang GY. Reversibility of diabetes mellitus: Narrative review of the evidence. *World J Diabetes* 2018; 9: 127-131 [PMID: 30079148 DOI: 10.4239/wjd.v9.i7.127]
4. Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, Malanda B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. *Diabetes Res Clin Pract* 2018; 138: 271-281 [PMID: 29496507 DOI: 10.1016/j.diabres.2018.02.023]
5. Zhou X, Zhang P, Hoerger TJ. Lifetime direct medical costs of treating type 2 diabetes and diabetic complications. *Am J Prev Med* 2013; 45: 253-261 [PMID: 23953350 DOI: 10.1016/j.amepre.2013.04.017]
6. Ang YG, Yap CW, You AX. Lifetime cost for type 2 diabetes mellitus in Singapore. *J Diabetes* 2018; 10: 296-301 [PMID: 28334603 DOI: 10.1111/1753-0407.12604]
7. Morgan E, Cardwell CR, Black CJ, McCance DR, Patterson CC. Excess mortality in Type 1 diabetes diagnosed in childhood and adolescence: a systematic review of population-based cohorts. *Acta Diabetol* 2015; 52: 801-807 [PMID: 25385394 DOI: 10.1007/s00592-014-0702-z]
8. Swaneveld CJ, Ho, Cooper H, Bowen-Jones D. Mortality in type 2 diabetes mellitus: magnitude of the evidence from a systematic review and meta-analysis. *British J Diabetes Vascular Dis* 2013; 13: 192-207 [DOI: 10.1177/1476514313495703]
9. Wu H, Lau ESH, Ma RCW, Kong APS, Wild SH, Goggins W, Chow E, So WY, Chan JCN, Luk AYO. Secular trends in all-cause and cause-specific mortality rates in people with diabetes in Hong Kong, 2001-2016: a retrospective cohort study. *Diabetologia* 2020; 63: 757-766 [PMID: 31942668 DOI: 10.1007/s00125-019-05074-7]
10. Introduction: Standards of Medical Care in Diabetes-2019. *Diabetes Care* 2019; 42 Suppl 1: S1-S2 [DOI: https://www.wjgnet.com WJD https://www.wjgnet.com April 15, 2020 Volume 11 Issue 4

Ang GY. Onset of diabetes and mortality
Ang GY. Onset of diabetes and mortality

10.2337/dc19-Sim01

Goh SY, Ang SB, Bee YM, Chen YT, Gardner DS, Ho ET, Adiakina K, Lee YC, Lee CH, Lim FS, Lim HB, Lim SC, Seow J, Soh AW, Sum CF, Tai ES, Thai AE, Wong TY, Yap F. Ministry of Health Clinical Practice Guidelines: Diabetes Mellitus. Singapore Med J 2015; 55: 334-347 [PMID: 25017499 DOI: 10.11162/smedj.2014079]

Vandewalle CL, Coeckelberghs MI, De Leeuw IH, Du Caju MV, Schuit FC, Pipeleers DG, Gorus FK. Epidemiology, clinical aspects, and biology of IDDM patients under age 40 years. Comparison of data from Antwerp with complete ascertainment with data from Belgium with 40% ascertainment. The Belgian Diabetes Registry. Diabetes Care 1997; 20: 1556-1561 [PMID: 9316635 DOI: 10.2337/diabetes.20.10.1556]

SEARCH for Diabetes in Youth Study Group. Liese AD, D’Agostino RB Jr, Hamman RF, Kelgo PD, Lawrence JM, Liu LL, Loots B, Linder B, Marconva C, Rodriguez B, Standford D, Williams DE. The burden of diabetes mellitus among US youth: prevalence estimates from the SEARCH for Diabetes in Youth Study. Pediatrics 2006; 118: 1510-1518 [PMID: 17015542 DOI: 10.1542/ped.2006-0690]

Rawshani A, Sattar N, Fanizni S, Rawshani A, Hattersley AT, Svensson AM, Eliasson B, Gudbjornsdottir S. Excess mortality and cardiovascular disease in young adults with type 1 diabetes in relation to age at onset: a nationwide, register-based cohort study. Lancet 2018; 392: 477-486 [PMID: 30128964 DOI: 10.1016/S0140-6736(18)31556-X]

Harjutsalo V, Forsblom C, Group PH. Time trends in mortality in patients with type 1 diabetes: nationwide population based cohort study. BMJ 2011; 343: d5364 [PMID: 21903695 DOI: 10.1136/bmj.d5364]

Patterson CC, Dahliquist G, Harjutsalo V, Joner G, Felbouwer RG, Svensson J, Schuber E, Gyuríus E, Castell C, Urbanonán B, Rosenbauer J, Iotova V, Thorsson AV, Sato G. Early mortality in EURODIAB population-based cohorts of type 1 diabetes diagnosed in childhood since 1989. Diabetes Mellitus 2007; 50: 2439-2442 [PMID: 17901942 DOI: 10.1007/s00125-007-0824-8]

Herold KC, Bundy BN, Long SA, Bluestone JA, DiMeglio LA, Dufort MJ, Gitelman SE, Gottlieb PA, Krscher JP, Linsley PS, Marks JB, Moore W, Moran A, Rodriguez H, Russell WE, Schatz D, Skyler JS, Tsaialan E, Wherrett DK, Ziegler AG, Greenbaum C. Type 1 Diabetes TrialNet Study Group. An Anti-CD3 Antibody, Teplizumab, in Relatives at Risk for Type 1 Diabetes. N Engl J Med 2019; 381: 603-613 [PMID: 31181904 DOI: 10.1056/NEJMoa1902226]

Narendran P. Screening for type 1 diabetes: are we nearly there yet? Diabetologia 2019; 62: 24-27 [PMID: 30826167 DOI: 10.1007/s00125-018-4774-4]

Bingley PJ, Bonifacio E, Ziegler AG, Schatz DA, Atkinson MA, Eisenbarth GS; Immunology of Diabetes Society. Proposed guidelines on screening for risk of type 1 diabetes. Diabetes Care 2001; 24: 598 [PMID: 11213398 DOI: 10.2337/diabetes.24.2.598]

Fagot-Campagna A. Emergence of type 2 diabetes mellitus in children: epidemiological evidence. J Pediatr Endocrinol Metab 2008; 21: Suppl 6: 1395-1402 [PMID: 11022015 DOI: 10.1515/jcem-2000-s613]

Hillier TA, Pedula KL. Complications in young adults with early-onset type 2 diabetes: losing the relative protection of youth. Diabetes Care 2003; 26: 2999-3005 [PMID: 14578230 DOI: 10.2337/diabetes.26.11.2999]

Al-Saeed AH, Constantino MJ, Molyneaux L, D’Souza M, Limacher-Gisler F, Luo C, Wu T, Twigg SM, Yue DK, Wong J. An Inverse Relationship Between Age of Type 2 Diabetes Onset and Complication Risk and Mortality: The Impact of Youth-Onset Type 2 Diabetes. Diabetes Care 2015; 38: 823-829 [PMID: 27006511 DOI: 10.2337/dc15-0991]

Huo L, Maglano DJ, Rancière P, Harding JL, Nanayakkara N, Shaw JE, Carstensen B. Impact of age at diagnosis and duration of type 2 diabetes on mortality in Australia 1997-2011. Diabetes Mellitus 2018; 61: 1055-1063 [PMID: 29473119 DOI: 10.1007/s00125-018-4544-z]

Sattar N, Rawshani A, Fanizni S, Rawshani A, Svensson AM, Rosengren A, McGuire DK, Eliasson B, Gudbjornsdottir S. Age at Diagnosis of Type 2 Diabetes Mellitus and Associations With Cardiovascular and Mortality Risks. Circulation 2019; 139: 2228-2237 [PMID: 30955347 DOI: 10.1161/CIRCULATIONAHA.118.037885]

Zhou X, Zhang P, Barker L, Albright A, Thompson TJ, Gregg E. The lifetime cost of diabetes and its implications for diabetes prevention. Diabetes Care 2014; 37: 2557-2564 [PMID: 23147254 DOI: 10.2337/dc13-2484]

Ben-Haroush A, Yeger Y, Hod M. Epidemiology of gestational diabetes mellitus and its association with Type 2 diabetes. Diabet Med 2004; 21: 103-113 [PMID: 14984444 DOI: 10.1046/j.1464-5491.2003.00985.x]

Kampmann U, Madsen LR, Skagia GO, Iversen DS, Moeller N, Ovesen P. Gestational diabetes: A clinical update. World J Diabetes 2015; 6: 1065-1072 [PMID: 26240703 DOI: 10.4239/wjd.v6i18.1065]

Bellamy L, Casas JP, Hingorani AD, Williams D. Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis. Lancet 2009; 373: 1773-1779 [PMID: 19465322 DOI: 10.1016/S0140-6736(09)60731-5]

Feig DS, Zinman B, Wang X, Hux JE. Risk of development of diabetes mellitus after diagnosis of gestational diabetes. CMAJ 2008; 179: 229-234 [PMID: 18663202 DOI: 10.1503/cmaj.080812]

Noctor E, Dumme FP. Type 2 diabetes after gestational diabetes: The influence of changing diagnostic criteria. World J Diabetes 2015; 6: 234-244 [PMID: 25789105 DOI: 10.4239/wjd.v6i6.2234]

Kramer CK, Campbell S, Retnakaran R. Gestational diabetes and the risk of cardiovascular disease in women: a systematic review and meta-analysis. Diabetologia 2019; 62: 905-914 [PMID: 30843102 DOI: 10.1007/s00125-019-4840-2]

Bansal N. Prediabetes diagnosis and treatment: A review. World J Diabetes 2015; 6: 296-303 [PMID: 25789110 DOI: 10.4239/wjd.v6i6.296]

Huang Y, Cai X, Mai W, Li M, Hu Y. Association between prediabetes and risk of cardiovascular disease and all cause mortality: systematic review and meta-analysis. BMJ 2016; 355: i593 [PMID: 27881363 DOI: 10.1136/bmj.i593]

Herman WH, Edelstein SL, Ratner RE, Montez MG, Ackermann RT, Orchard TJ, Foulkes MA, Zhang P, Saudek CD, Brown MB, Diabetes Prevention Program Research Group. Effectiveness and cost-effectiveness of diabetes prevention among adherent participants. Am J Manag Care 2013; 19: 194-202 [PMID: 23944761]

Neamah HH, Sebert Kuhlmann AK, Tabak RG. Effectiveness of Program Modification Strategies of the Diabetes Prevention Program: A Systematic Review. Diabetes Educ 2016; 42: 153-165 [PMID: 26879459]
Lindström J, Ilanne-Parikka P, Peltonen M, Aunola S, Eriksson JG, Hemiö K, Hämäläinen H, Härkönen P, Keinanen-Kiukaanniemi S, Laakso M, Louheranta A, Mannelin M, Paturi M, Sundvall J, Valle TT, Uusitupa M, Tuomilehto J. Finnish Diabetes Prevention Study Group. Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: follow-up of the Finnish Diabetes Prevention Study. Lancet 2006; 368: 1673-1679 [PMID: 17098085 DOI: S0140-6736(06)69701-8]