Influence of temperature changes on symbiotic Symbiodiniaceae and bacterial communities’ structure: an experimental study on soft coral Sarcophyton trocheliophorum (Anthozoa: Alcyoniidae)

Hao Lu1†, Alireza Asem1†, Weidong Li2, Wenxue Che3 and Pei-Zheng Wang3

1College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, China; 2College of Ecology and Environment, Hainan University, Haikou, China and 3College of Ecology and Environment, Hainan Tropical Ocean University, Sanya, China

Abstract

It is well concluded that microbial composition and diversity of coral species can be affected under temperature alterations. However, the interaction of environmental accumulation of corals and temperature stress on symbiotic Symbiodiniaceae and bacterial communities are rarely studied. In this study, two groups of soft coral Sarcophyton trocheliophorum were cultured under constant (26 °C) and inconstant (22 °C to 26 °C) temperature conditions for 30 days as control treatments. After that, water was cooled rapidly to decrease to 20 °C in 24 h. The results of diversity analysis showed that symbiotic Symbiodiniaceae and bacterial communities had a significant difference between the two accumulated groups. The principal coordinate analyses confirmed that symbiotic Symbiodiniaceae and bacterial communities of both control treatments were clustered into two groups. Our results evidenced that rapid cooling stress could not change symbiotic Symbiodiniaceae and bacterial communities’ composition. On the other hand, cooling stress could alter only bacterial communities in constant group. In conclusion, our study represents a clear relationship between environmental accumulation and the impact of short-term cooling stress in which microbial composition structure can be affected by early adaptation conditions.

Introduction

Coral bleaching has become a research hotspot for marine science since 1960s. This phenomenon was initially discovered as a consequence of large-scale loss of Symbiodiniaceae in corals under environmental disturbances (Yonge and Nicholls 1931). Goreau (1964) reported that shallow-water corals were whitened and had died in Jamaica due to the abundant inflow of freshwater and further proposed the term ‘coral bleaching’. Nowadays, there are different opinions on the causes of coral bleaching, such as temperature rising (Aronson et al. 2000, Hoegh-Guldberg 1999), photoinhibition (Bhagooli & Hlidaka 2004), and chemical pollutants (Gervino et al. 2003, Philip et al. 2004). Afterwards influence of low temperature and bacterial infection were considered. The large-scale deaths of corals have been reported in Leizhou Peninsula during Holocene due to extensive cooling (Yu et al. 2004). In an experimental study, Kushmaro et al. (1996) documented that infected Oculina patagonica by Vibrio AK-1 bacteria could exhibit bleaching. Further studies showed Vibrio shilonii AK-1 releases quartile sensing signal molecules in the process of coral infection (Li et al. 2016). Additionally, Meyer et al. (2016) confirmed that quartile sensing signal molecules could be involved in the infection process of coral leukosis.

Regarding current studies, there are several causes for coral bleaching. However, a consensus has been achieved that coral bleaching is mainly caused by losing in vivo pigments of symbiotic Symbiodiniaceae. Symbiodiniaceae lives in the vacuole of the endoderm cells of the host and provides more than 95% of the products of photosynthesis (e.g., amino acids, sugar, carbohydrate, and small molecular peptide) for hosts (Loh et al. 2001, Lu et al. 2021a,b). Photosynthetic products can supply energy and essential compounds for corals; instead, Symbiodiniaceae can get elemental nutrients (e.g., amine and phosphate) from the metabolic products by corals (Saaby 2000). Wegler et al. (2007) found that symbiotic microorganisms (e.g., bacteria, fungi, and archaea) play key roles in coral metabolism, such as energy supply, transformation of substances, and disease immunity. Additionally, Anthozoa can provide shelter and raw materials.

The probiotics have an indispensable biological role for corals. During coral bleaching, the nitrogen-fixing bacteria in the mucus of corals can replace with Symbiodiniaceae and provide nutrients for coral. For example, the symbiotic Cyanobacteria can synthesize nutrients through
the bleaching stage in *Oculinaria patagonica* (Teplitski & Ritchie 2009). Moreover, probiotics can also facilitate the ecological balance of flora in the host or in surrounding environments (Merrifield et al. 2010). The symbiotic microorganisms (Symbiodiniaceae and bacteria) of corals are groups of complicated dynamic combinations. Regional disparity (McKeeW et al. 2012), eutrophication (Thurber et al. 2009), and diseases (Rosenberg et al. 2007) can change the symbiotic microflora of corals. Terraneo et al. (2019) used the Internal Transcribed Spacer (ITS) sequence of Symbiodiniaceae to study on *Porites* corals in the Red Sea. It was calculated that the communities' structure of Symbiodiniaceae has a relationship with latitude. Environmental condition can be an important factor to restrict their distribution. Pootakham et al. (2019) also found that coral symbiotic bacteria are sensitive to temperature, and temperature alterations cause a change in the structure of the bacterial community.

In Similan Archipelago (Thailand), large-amplitude internal waves bring daily average temperature differences of 5–7 °C in seawater. Wall et al. (2015) reported that such temperature differences induce the strong adaptation of corals. Studies on the dynamic changes in the holobiont of corals can provide a new approach to better understand coral’s biology and their microbial communities’ relationships with environmental changes. We hypothesize that accumulation condition can cause non-identical responses in coral host to determine symbiotic Symbiodiniaceae and bacterial composition under different environmental stress. The aim of this study was to point out the effect of rapid cooling of water temperature on symbiotic Symbiodiniaceae and bacterial communities’ structure of cultured *Sarcophyton trocheliophorum* under constant (26 °C) and variable (22 °C to 26 °C) temperature conditions.

Materials and methods

Sampling

Following Yu et al. (2020), a specimen of *S. trocheliophorum* was collected (in December 2020) from a fringing reef at a depth of 6 m (salinity: 34 ppt, temperature: 27 °C, water temperature: 25 °C) around the Xiaozhou Island (18°12’30.43”N; 109°23’27.62”E) in South China Sea (Figure S1). Taxonomic status of specimen has been confirmed using 28S and mtMutS markers sequences (Benayahu et al. 2018, Quattrini et al. 2019) and morphology of sclerites (Benayahu et al. 2018). The 17 branches of the specimen were split and cultured in a glacial aquarium (ca. 100 L) filled with water. Wall waves bring daily average temperature differences of 5 °C as cause a change in the structure of the bacterial community.

Temperature acclimation and simulation of cooling event

Twelve well-grown full colonies have been chosen and divided into two groups (constant and inconstant temperatures) in which each group including control and rapid cooling treatments (each treatment consists of three replicates). Temperature of constant group (Cg) was set as acclamation condition (26 °C) following Tang et al. (2018). To simulate the effect of temperature changes, its range was set from 22 °C to 26 °C for inconstant group (Ig), which was automatically coordinated every 12 h. Both groups (including control and rapid cooling treatments) were acclimated to 30 days simultaneously. At the end of 30 days, water temperature was swiftly decreased to 20 °C in rapid cooling treatments. This condition was maintained for 24 h (control treatments continued in the previous temperature condition).

DNA extraction, PCR amplification, and Illumina MiSeq sequencing

Whole DNA from each individual was extracted using the Column Marine Organism DNA Kit (Guangzhou DONGSHENG, China). DNA was stored in Tris-EDTA buffer solution and kept at −20°C for further studies.

PCR amplification of the ITS2 sequence (approximately 320 bp) for Illumina MiSeq platform was performed using primers ITS intfor2 and ITS2 reverse (Coleman et al. 2010, LaJeunesse & Trench 2000). The primer sequences were as follows: Miseq-ITSinf02 (5'−GA ATTCAGAAGTCGATG-3') and Miseq-ITS2-reverse (5'−GG GATCCATATGCTTAAGTTCGAGGTT-3') (Li et al. 2017).

Amplification was performed according to the following protocol. First, PCRs were run with 10 μM primer, 1 μL 2×Taq master Mix (Sangon Biotech Co., Ltd., Shanghai, China), and 15 μL of 20 ng DNA. DNase-free water was added to obtain a total volume of 30 μL. The mixture was exposed to the following condition: denaturation at 94 °C for 3 min; five cycles of denaturation at 94 °C for 30 s, annealing at 45 °C for 20 s, and extension at 65 °C for 30 s; 20 cycles of denaturation at 94 °C for 20 s, annealing at 55 °C for 20 s, and extension at 72 °C for 30 s; and a final extension at 72 °C for 5 min. A second 30 μL of reaction mixture containing 20 ng DNA, 15 μL 2×Taq master Mix (Sangon Biotech Co., Ltd., Shanghai, China), 1 μL of each Bar-PCR primer (10 μM), and DNase-free water was prepared to make a total volume of 30 μL and was used for PCR under the following condition: denaturation at 95 °C for 3 min, five cycles of denaturation at 94 °C for 20 s, annealing at 55 °C for 20 s and extension at 72 °C for 30 s, and a final extension at 72 °C for 5 min. Pooled samples were cleaned with Agencourt AMPure XP magnetic bead system (Beckman Coulter, Brea, CA, USA). The samples were then quantified by Qubit3.0 DNA (Life Technologies, CA, USA) and pooled in equimolar ratios. A PE2×300 library was constructed according to the standard operating procedures of the platform. Finally, sequencing was conducted on the IlluminaMiSeqPE300 platform (Majorbio).

Analysis of sequence data

The Miseq data contains the barcode sequence, the primers, and linker sequences that are added at the time of sequencing. First, cutadapt was used to remove the primer sequence. According to PE overlap between the overlap, PEAR pairs of reads were then used to merge the sequence. The merge sequence overlap area was allowed a maximum mismatch ratio of 0.1. According to the barcode tag sequence used to identify and distinguish the sample to get the sample data, the Prinseq was used to remove the sample in the sample tail mass of 20 or less base. The port was set at 10 bp when the average quality value in the window was less than 20, starting from the window to the back end of the base. The cut contained the N part of the sequence and removed the short sequence in the data according to the length threshold of 200 bp. Low-complex sequence filtering was conducted, and the sample valid data were finally obtained. Usearch and uchime were used to remove chimeraic without non-specific amplification sequences to get filtered
reads. All sample sequences were clustered according to the distance between the sequences. Finally, the sequences were divided into different operational taxonomic units (OTU) using a 97% similarity cut-off.

Nucleotide sequence accession numbers

Raw reads of Symbiodiniaceae (accession numbers: SRP279038) and bacteria (accession numbers: SRP279036) were submitted to the NCBI SRA.

MiSeq ITS2 sequence analysis

A comparison database corresponding to the Symbiodiniaceae subgroup ITS was downloaded from GeoSymbio (http://sites.google.com/site/geosymbio/downloads), and the ITS2 database was uploaded onto the website of CD-HIT Suite. CD-HIT was set at 100%, and other parameters were set to default. Repetitions were deleted, and annotations were combined. The remaining results were used to construct a non-redundancy ITS database. The best alignment results of OTU sequences were screened, and the results were filtered. The default satisfied a similarity >90%, and a sequence of coverage >90% was used for subsequent classification (Arif et al. 2014, Ziegler et al. 2017). The diversity of single sample was gained from the alpha diversity index based on sample clustering results with Mothur software. OTU abundance and diversity were reflected by Chao 1 and Simpson indices, respectively. To measure the change in the diversity of Symbiodiniaceae from one condition to another, the principal coordinate analysis (PCoA) at the OTU levels (OTU68, OTU49, OTU44, and other identified taxa) has been analyzed.

Bacterial microbiome analysis

Non-repetitive sequences of 16S were extracted from optimal sequences for OTU clustering (excluding single sequence) according to 97% similarity. Chimaeras in the clustering process were eliminated to obtain the representative sequence of OTU. A taxonomic analysis of OTU representative sequences of 97% similar level was conducted using the RDP classifier Bayesian algorithm to acquire the specific classification information of each OTU. Community composition of different samples was analyzed on different classification levels (Inc. domain, kingdom, phylum, class, order, family, genus, and species). The diversity of a single sample was gained from the alpha diversity index analysis of sample clustering results with Mothur software. Coverage, abundance, and diversity of microflora were reflected by coverage, Chao 1, and Simpson indices, respectively. The PCoA has been performed to consider the beta diversity analysis at the genus and OTU levels.

Results

Diversity of Symbiodiniaceae

Based on OTU classification, an abundance of the symbiotic Symbiodiniaceae is summarized in Table 1 and Figure 1. OTUs were identified in three major levels, including OTU68, OTU49, and OTU44. The OTU68 presented the highest abundance in all treatments. The highest and lowest values of OTU68 were recorded in Cg (control: 98.8%, cooling: 96.9%) and Ig (control: 0.51% and cooling: 1.38%), respectively. In contrast, the highest and lowest values of OTU49 and OTU44 were revealed in Ig and Cg treatments consecutively.

Based on OTU levels, PCoA shows that the first and second coordinates held 99.89% and 0.09% of the variance, respectively. PCoA documented that Cg and Ig were completely divided into two clusters following first coordinate, while there was no indicative differentiation between treatments within each group (Figure 2).

Chao and Shannon indices represent significant differences among treatments (Table 2; Figure 3). Overall, the highest values of both Chao and Shannon indices were observed in Cg. Although Shannon index could not show a difference between control (0.979 ± 0.012) and rapid cooling (0.930 ± 0.050) treatments in Cg, the highest value of Chao index was obtained in rapid cooling treatment of Cg (17.3 ± 0.577). There was no significant difference between control and rapid cooling treatments in Ig (p>0.05).

Table 1. Percentage of Symbiodiniaceae OTUs abundance (Cg: constant group, Ig: inconstant group).
OTU
OTU68
OTU49
OTU44
Others

Figure 1. The OTU-based Symbiodiniaceae genera profiles (Cg: constant group, Ig: inconstant group).

Figure 2. Relationships between Symbiodiniaceae diversity and groups/treatments using principal coordinate analysis (PCoA) based on the OTU level.
Table 2. Mean values (± SD) of Chao index and Shannon index for Symbiodiniaceae communities under different treatments. (Cg: constant group, Ig: inconstant group).

Treatment	Chao index	Simpson index
Cg (Control)	13.1±4	0.979±2
Cg (cooling)	17.3±2	0.930±2
Ig (Control)	11.0±1	0.544±1
Ig (cooling)	11.2±1	0.542±1

Same letter in each column shows significant difference (p<0.05).

Figure 3. Mean values (± SD) of Chao index and Shannon index for Symbiodiniaceae communities under different treatments. (Cg: constant group, Ig: inconstant group).

Diversity of bacteria

Four groups of sample databases were obtained from high-throughput sequencing. All samples were screened, and repeated results were eliminated. Table 3 represents the bacterial communities’ structure in different taxonomic levels. Overall, the highest and lowest bacterial contribution were observed in both control and rapid cooling of Cg, respectively. The symbiotic bacterial structure was composed of seven most dominant phyla, including Tenericutes, Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria, Spirochaetae, and Cyanobacteria (Table 4). Percentage of bacterial communities of phyla is shown in Figure 4. Our finding demonstrated that generally there was no significant difference in phyla composition between control and rapid cooling in Ig, while in Cg, Tenericutes (36.3%) and Proteobacteria (53.21%) were dominant phyla in control and rapid cooling treatments, respectively. The highest percentage of cyanobacteria (phototrophic bacteria) was presented in control treatment of Cg samples. Increasing the percentage of Bacteroidetes after rapid cooling in Cg was considerable (7.72% vs. 38.06%). Similar result was recorded in genus level in which both treatments of Ig mostly revealed parallel composition. In the other part, genera composition showed dissimilarity within Cg treatments (Figure 5). Control and rapid cooling treatments contained the highest percentage of Spiroplasma (36.24% vs. 0.14%) and Marinifilum (24.15 vs. 0.00%), respectively. Additionally, the high value of Enterococcus (11.47 vs. 0.00%) was distinguished in the control treatment (Table S1). Vibrio which was known as a pathogen, was recorded in coral treatments, except in the control treatment of Cg although.

In genus level, PCoA represents that the first and second coordinates consist of 40.37% and 22.33% of variation and totally the two coordinates involve with 62.7% of variety (Figure 6). Our results showed that four treatments were grouped into three separated clusters consisting of Cg control, Cg rapid cooling, and another containing both treatments of Ig together. In OTUs level, the first and second PCoA coordinates contribute 32.93% and 22.81% of the variance, respectively (overall, 55.74% of total difference). Same as genus level, Cg control and Cg rapid cooling treatments were divided into two clusters, and Ig control and Ig rapid cooling treatments were placed in a single one (Figure 7).

Chao and Simpson indices evidenced that there was no significant difference in abundance communities composition of bacteria between the control and rapid cooling treatments within each group, as well as between both control treatments (Table 5). The highest and lowest values of Chao index were observed in both rapid cooling treatments in Cg (506.5 ± 73.41) and Ig (328.4 ± 33.39), respectively. Meanwhile, Simpson index presented contrary results, which the highest and lowest values belonged to cooling treatments in Ig (0.32 ± 0.09) and Cg (0.09 ± 0.02), respectively (Figure 8).

Discussion

This is the first experimental study to understand the effect of different conditions of thermal adaptation on the communities’ structure of symbiotic Symbiodiniaceae and bacteria of coral in association with rapid cooling stress.

Diversity changes of Symbiodiniaceae

Diversity of symbiotic Symbiodiniaceae in host was analyzed with ITS2 marker. This method has been widely accepted and used by many researchers to compare the traditional Symbiodiniaceae classification method (Arif et al. 2014, Quigley et al. 2014, Thomas et al. 2014, Ziegler et al. 2017).

With regard to our results, Symbiodiniaceae communities were identified with OTU68, OTU49, and OTU44, out of which OTU68 had the highest abundance in all treatments. According to taxonomical relationship, Symbiodiniaceae has been classified into nine genera which formally named A-I clades (Chen et al. 2019). Four clades of Symbiodiniaceae, including clade A, B, C, and D have been reported as common symbiotic relationships with corals (Pochon et al. 2004, Ziegler et al. 2017). In our study, OTU68 belongs to clade C (Cladocopium), whereas OTU49 and OTU44 fit in clade G (Gerakladium) (see Pochon & Gates 2010) (Figure S2). Clade G has been recorded in stony corals with low abundance from South Chain Sea for the first time by Chen et al. (2019). It is the first time that we could report the existence of clade G in soft coral with high abundance from South Chain Sea. Zhou and Huang (2011) proved the dominant species of Symbiodiniaceae consisted of Clade C in stony corals surrounding the Hainan Island (South China Sea). Cooper et al. (2011) also reported that Clade C showed high distribution of Symbiodiniaceae in Acropora millepora from the Great Barrier Reef (Australia). While different latitudes represented variable communities’ composition of Symbiodiniaceae in corals, the most abundance of OTUs were involved in clade C (Chen et al. 2019). Our study also confirmed that clade C was the dominant community.

Previous studies have documented a significant relationship between temperature extremes and dominance of clade D1 (Oliver & Palumbi 2009, Oliver & Palumbi 2011). Lajeunesse
et al. (2010) concluded that local environmental conditions have most likely impacted the relative dominance of coral symbionts. For example, high temperature and high turbidity may cause increasing frequency of *Symbiodinium trenchi* (clade D1) in the Andaman Sea (northeastern Indian Ocean). They found that with increasing the rate of turbidity among studied localities, abundance and frequency of *S. trenchi* have increased. It was suggested that water transparency and sediment quality (especially nutrient levels) could affect on the distribution of D1 in coral hosts (Cooper et al. 2011). Overall it seems communities’ structure of Symbiodiniaceae can be determined by environmental conditions (Chen et al. 2019).

Our findings evidence that inconstant thermal conditions can significantly increase the abundance of clade G. Though clade G has been identified as the lowest abundance in stony corals (Chen et al. 2019, LaJeunesse et al. 2018), high percentage of this clade in Ig was considerable. Generally there is a lack of information about the relationship between environmental factors and distribution of clade G (Chen et al. 2019). Ziegler et al. (2017) showed that the members of this clade have more potential to adapt with high temperature and salinity. In this study, although OTU68 (clade C) was reported as dominant Symbiodiniaceae in both groups, inconstant thermal conditions (22 °C–26 °C) has distinctly increased the abundance of OTU49, which belongs to clade G (35.22%–33.42% vs. 0.5%–1.38%). Additionally, increasing of OTU44 (clade G) abundance was considerable (0.12%–0.01% vs. 2.44%–2.81%). Our results contradict previous observations in the Arabian Sea by Ziegler et al. (2017). It can be conservatively concluded that clade G might exhibit adaptive potential in relationship with temperature alterations and high/low temperature stress. Additionally, we document that clade C is sensitive to long-term temperature alterations while it cannot be affected by rapid cooling stress.

According to low values of Simpson index, the most important effect of inconstant culture condition (22 °C–26 °C) was the increased diversity of Symbiodiniaceae (Table 5). This showed that temperature changes provide more opportunities for large number of symbiotics to adapt with host corals. Meanwhile low values of

Table 3. Number of bacteria associated with different groups in different taxonomic levels (Cg: constant group, Ig: inconstant group).

Treatment	Phylum	Class	Order	Family	Genus	Species	OTU
Cg (control)	30	59	136	244	488	696	1034
Cg (cooling)	17	36	89	173	341	451	646
Ig (control)	22	45	105	205	380	499	719
Ig (cooling)	22	40	93	192	352	463	636

Table 4. Percentage of bacterial abundance on phylum level (Cg: constant group, Ig: inconstant group).

Phylum	Cg (control)	Cg (cooling)	Ig (control)	Ig (cooling)
Tenericutes	36.3	0.14	54.76	55.86
Proteobacteria	15.24	53.21	25.68	27.59
Bacteroidetes	7.72	38.06	6.18	3.63
Firmicutes	7.07	23.53	5.43	4.99
Actinobacteria	3.82	3.87	4.65	
Spirochaetae	0.04	2.81	2.02	1.93
Cyanobacteria	0.06	6.03	0.4	0.41
Others	0.97	4.55	1.66	0.94

Figure 4. The OTU-based bacteria phyla profiles (Cg: constant group, Ig: inconstant group).
Chao index in this group suggested that symbiotics could not reach too high abundance than constant culture conditions. This finding can be attributed to the effect of temperature changes and/or culture duration (30 days in this experiment). An extended culture duration is suggested to get further information.

PCoA indicated that both groups (constant and inconstant) completely represented different patterns so that, they were divided into two separated clusters, while there was no significant differentiation between structure and abundance of OTUs after cooling within each group. This observation suggested that symbiotic Symbiodiniaceae could change under different long-term condition but short-term rapid cooling could not change the structure of communities. In addition, long-term adaptation could play an important role to maintain diversity and abundance after a sudden decrease in water temperature.

Diversity changes of bacteria

Coral bacterial communities can perform an important practical function in the hosts, such as antibacterial activities (Kelman et al. 1998, Ritchie 2006), nutrient metabolism (Naumann et al. 2009, Wild et al. 2004), and nitrogen fixation (Grover et al. 2014, Lawler et al. 2016). They also can be associated with coral diseases (Egan and Gardiner 2016, Mouchka et al. 2010). It seems beneficial bacterial communities may support coral’s adaptive potential for rapid changes (Yu et al. 2020, Ziegler et al. 2017). Symbiotic bacteria in corals perform a key duty in the nutrition...
resource (Lesser et al. 2004), energy supplying (Mao-Jones et al. 2010), and healthy growth of coral ecosystems (Mahmoud & Kalendar 2016). Temperature alterations represented a significant relationship with bacterial composition (Hutchins & Fu 2017). It was evidenced that change and/or replacement of bacterial communities in corals can be a positive response to adapt with temperature stress (Glasm et al. 2016, Reshef et al. 2006).

Environmental factors can modify relationships between symbiotic bacterial community and its coral hosts. Neulinger et al. (2008) showed that there was no indicative dissimilarity between the bacterial communities of deep-sea stony coral Lophelia from Gulf of Mexico and Norway. In contrast, McKew et al. (2012) documented that bacterial compositions of Porites and Acropora from two distinct geographical localities in Caribbean Sea (Mexico) and Indo-Pacific (Indonesia) were significantly different. In addition, samples of soft coral Scleronephthya gracillimum from different geographical localities showed distinguished differentiation in bacterial communities (Seonock et al. 2017). It is obvious that differences in environmental factors can change the communities of bacteria at different geographical areas. We suggest that differences in colouration of corals in different habitats can be attributed to communities of bacteria with different types and abundance of pigments.

Many studies aim to understand whether diseases are spread in corals by invasive pathogens or by increased symbiotic bacteria (Duvallet et al. 2017, Olesen & Alm 2016). Measuring bacterial diversity and abundance alone cannot supply sufficient information to make a decision for this question (Maher et al. 2019). To better understand the relationship between bacterial communities and coral disease, the first step is to investigate the role of environmental factors on abundance and diversity of symbiotic bacteria. Generally, increasing seawater temperatures have been linked with alterations in the bacterial composition which can cause infections and disease in corals (Seonock et al. 2017) but there is a lack of information about low-temperature stress.

Previous studies have been documented that Proteobacteria is typically dominated phylum in deepsea, tropical, and cold water stony corals (Kellogg et al. 2009, Robertson et al. 2016). Additionally, in some samples, Spirochaetes (van de Water et al. 2016) and Tenericutes (Holm & Heidelberg 2016) were the most abundant phyla. In this study, sequencing of a partial of the 16S rRNA marker provided us a dataset to identify differences in bacterial communities between different thermal culture conditions. As observed, rapid cooling could change the bacterial composition and diversity in Cg. According to our results, Tenericutes and Firmicutes have been replaced with Proteobacteria and Bacteroidetes by cooling stress, while there was non-significant change in bacterial community’s structure after cooling in Ig, statistically. Furthermore, bacterial families, including Rhodobacteraceae, Vibrionaceae, Flavobacteriaceae, Burkholderiaceae, and Campylobacteraceae were formerly reported in high abundance in diseased corals (Daniels et al. 2015, Weiler et al. 2018). Within this group, pathogenicity of Rhodobacteraceae is considerable (Roder et al. 2014, Sunagaw et al. 2009). In our data, three families of Rhodobacteraceae, Vibrionaceae, and Flavobacteriaceae were reported. Interestingly abundance and diversity of these three families increased after rapid cooling in constant temperature conditions, meanwhile their increase was not noticeable in Ig.

In this study, rapid cooling treatments completely represented different consequences in different groups. While rapid cooling could change the bacterial composition in Cg, inconstant condition maintained bacterial abundance against cooling stress. Same observations were recorded using PCoA in genus and OTU levels. Both treatments of Cg were strongly divided into two clusters, and treatments of Ig were placed in single one. This evidenced that long-term temperature changes can provide suitable adaptation situations for bacterial communities to prevent the effect of short-term changes. Weiler et al. (2018) proved the bacterial compositions of seawater were dissimilar with communities of host corals. We cautiously suggest that environmental

Table 5. Mean values (± SD) of Chao index and Shannon index for bacterial communities under different treatments. (Cg: constant group, Ig: inconstant group).

Treatment	Chao index	Simpson index
Cg (control)	489.1 ± 221.58	0.28 ± 0.334
Cg (cooling)	506.5 ± 173.41	0.09 ± 0.027
Ig (control)	435.3 ± 109.35	0.25 ± 0.203
Ig (cooling)	328.4 ± 133.39	0.32 ± 0.097

Same letter in each column shows significant difference (p<0.05).
alterations may cause primary symbiotic communities structure; and in this condition, bacteria in surrounding seawater cannot play an important role in new communities’ composition.

Conclusion

In this study, we noted the soft coral S. trocheliophorum symbionts association during long-term temperature adaptation and its response to rapid cooling changes. Because examined individuals have been originated from single specimen, consequently the results can be only referred to host response to temperature changes. Our results show that microbial communities’ composition is directly related to water temperature conditions. Symbiodiniaceae composition was strongly adapted with long-term temperature acclimation of hosts while there was no significant difference in their diversity and abundance after rapid cooling. On the other hand, temperature compatibility has different effects on the bacterial communities. Our findings prove that bacterial composition of S. trocheliophorum that cultured under constant temperature conditions can be significantly altered with rapid cooling stress while long-term acclimation under inconstant temperature conditions increased coral adaptation ability to sustain its microbial communities’ structure. Overall, it can be hypothesised that long-term adjustment following inconstant thermal state in nature provides adaptive conditions which may protect Symbiodiniaceae and bacterial communities of corals against rapid temperature decreasing during seasonal typhoons and internal waves. Although rapid cooling stress has been suggested as a key factor in increasing the incidence of disease in corals via increasing abundance and diversity of pathogenic bacteria, long-term acclimation under temperature range can greatly reduce the risk of infection after rapid cooling stress rather than constant thermal conditions.

In conclusion, temperature changes in the experimental states can provide better symbiotic adaptation between microbial communities and corals. This adaptation can play a protective role for Symbiodiniaceae and bacterial compositions against cold stress and can protect corals from disease. Additional experimental studies on different thermal conditions are needed to get more information about the relationship between thermal adaptations and environmental stress on coral microbial communities’ structure.

Acknowledgments. We thank Prof. Benayahu for his assistance in species identification.

Financial support. This work was supported by Sanya Science and Technology Industry Information Bureau under Grant 2019YD06 and Hainan Province Science and Technology Department Key Research and Development Program (ZDYF2019154).

Supplementary material. To view supplementary material for this article, please visit https://doi.org/10.1017/S0266467421000109

References

Arif C, Daniels C, Bayer T, Banguera-Hinestroza E, Barbrook A, Howe CJ, LaJeunesse TC and Voolstra CR (2014) Assessing symbiodinium diversity in scleractinian corals via next-generation sequencing-based genotyping of the its2 rDNA region. Molecular Ecology 23, 4418–4433.

Aronson RB, Precht WF, Mcintyre IG and Murdoch TJ (2000) Coral bleach-out in Belize. Nature 405, 36.

Benayahu Y, van Otwegen LP, Dai Ch, Jeng M, Soong K, Shlagman A. et al. (2018) The Octocorals of Dongsha Atoll (South China Sea): An Iterative Approach to Species Identification Using Classical Taxonomy and Molecular Barcodes. Zoological Studies 57, 50.

Bhagooli R and Hildaka M (2004) Photoinhibition, bleaching susceptibility and mortality in two scleractinian corals, Platygryra ryukyuensis and Stylophora pistillata, in response to thermal and light stresses. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology 137, 547–555.

Chen B, Yu K, Liang J, Huang W, Wang G, Su H, Qin Z, Huang X, Pan Z, Luo W, Luo Y and Wang Y (2019) Latitudinal Variation in the Molecular Diversity and Community Composition of Symbiodiniaceae in Coral From the South China Sea. Frontiers in Microbiology 10, 1278.

Coleman AW, Suarez A and Goff LJ (2010) Molecular delineation of species and syngens in volvoccean green algae (chlorophyta). Journal of Phycology 30, 80–90.

Cooper TF, Berkelmans R, Ulstrup KE, Weeks S, Radford B, Jones AM, Doyle J, Canto M, O’Leary RA and Oppen MJH (2011) Environmental Factors Controlling the Distribution of Symbiodinium Harboured by the Coral Acropora millepora on the Great Barrier Reef. PLoS ONE 6, e25536.

Daniels CA, Baumgarten S, Yum LK, MiHelt CT, Bayer T, Arif C, Roder C, Weil E and Voolstra CR (2015) Metatranscriptome analysis of the reef-building coral Orbicella faveolata indicates holobiont response to coral disease. Frontiers in Marine Science 2, 62.

Duvallet C, Gibbons SM, Gurry T, Irizarry RA and Alm EJ (2017) Meta-analysis of gut microbiome studies identifies disease-specific and shared responses. Nature Communications 8, 1784.

Egan S and Gardiner M (2016) Microbial dysbiosis: rethinking disease in marine ecosystems. Frontiers in Microbiology 7, 991.

Gervino JM, Hayes RL, Honovich M, Goreau TJ, Jones S and Rubec PJ (2003) Changes in zooxanthellae density, morphology, and mitotic index in hermatypic corals and anemones exposed to cyanide. Marine Pollution Bulletin 46, 573–586.

Glis B, Herndl GJ, Frade PR (2016) The microbiome of coral surface mucus has a key role in mediating holobiont health and survival upon disturbance. The ISME Journal 10, 2280–2292.

Goreau TF (1964) Mass expulsion of zooxanthellae from jamaican reef communities after hurricane flora. Science 145, 383–386.

Grover R, Ferrier-Pages C, Maguer JF, Ezzat L and Fine M (2014) Nitrogen fixation in the mucus of Red Sea corals. Journal of Experimental Biology 217, 3962–3963.

Hoegh-Guldberg O (1999) Climate, coral bleaching and the future of the world’s coral reefs. Marine and Freshwater Research 50, 839–866.

Holm JB and Heidelberg KB (2016) Microbiomes of Muricea californica and M. fruticosa: comparative analyses of two co-occurring Eastern Pacific Octocorals. Frontiers in Microbiology 7, 917.

Hutchins DA and Fu F (2017) Microorganisms and ocean global change. Nature Microbiology 2, 17058.

Kellogg CA, Lisle JT and Galkiewicz JP (2009) Culture-Independent Characterization of Bacterial Communities Associated with the Cold-Water Coral Lophelia pertusa in the Northeastern Gulf of Mexico. Applied and Environmental Microbiology 75, 2294.

Kelman D, Kushmaro A, Loya Y, Kashman Y and Benayahu Y (1998) Antimicrobial activity of the Red Sea soft coral Parerythropodium falvum: reproductive and developmental considerations. Marine Ecology Progress 169, 87–95.

Kushmaro A, Loya Y and Fine M (1996) Bacterial infection and coral bleaching. Nature 380, 396.

LaJeunesse TC and Trench RK (2000) Biogeography of two species of Symbiodinium (Freudenthal) inhabiting the intertidal sea anemone Anthopleura elegantissima (Brandt). Biology Bulletin 199, 126–134.

LaJeunesse TC, Everett PJ, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR and Santos SR (2018) Systematic Revision of Symbiodiniaceae Highlights the Antiquity and Diversity of Coral Endosymbionts. Current Biology 28, 2570–2580.

LaJeunesse TC, Petty D, Sarnpayo EM, Phongsuwan N, Brown B, Obura DO, Hoegh-Guldberg O and Fitt WK (2010) Longstanding environmental conditions, geographic isolation and host-symbiont specificity influence the relative ecological dominance and genetic differentiation of coral endosymbionts in the genus Symbiodinium. Journal of Biogeography 37, 785–800.
Pochon X, Lajeunesse TC and Pawlowski J. (2004) Biogeographic partitioning and host specialization among foraminiferan dinoflagellate symbionts (Symbiodinium; Dinophyta). Marine Biology 146, 17–27.

Pootakham W, Muhaontong W, Yooya T, Putchim I, Homchai N, Sonthirod C, Naktang C, Kongkachana W and Tangphatsornruang S (2019) Heat-induced shift in coral microbiome reveals several members of the Rhodobacteraceae family as indicator species for thermal stress in Porites lutea. MicrobiologyOpen 8, e935.

Quattrini AM, Wu T, Soong K, Jeng M-Sh, Benayahu Y and McFadden DS (2019) A next generation approach to species delimitation reveals the role of hybridization in a cryptic species complex of corals. BMC Evolutionary Biology 19, 116.

Quigley KM, Davies SW, Kenkel CD, Willis BL, Matz MV and Bay LD (2014) Deep-Sequencing Method for Quantifying Background Abundances of Symbiodinium Types: Exploring the Rare Symbiodinium Biosphere in Reef-Building Corals. PLoS ONE 9, e94297.

Reshef I, Koren O, Loya Y, Zilber-Rosenberg I and Rosenberg E (2006) The Coral Probiotic Hypothesis. Environmental Microbiology 8, 2068–2073.

Ritchie KB (2006) Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Marine Ecology Progress 322, 1–14.

Robertson V, Halfit B, McCauley E, Overy D and Kerr R (2016) Highly variable bacterial communities associated with the octocoral Antilllogorgia elisabethae. Microorganisms 4, 1–23.

Roder C, Ariş C, Daniels C, Weil E and Voolstra CR (2014) Bacterial profiling of White Plague Disease across corals and oceans indicates a conserved and distinct disease microbiome. Molecular Ecology 23, 965–974.

Rosenberg E, Koren O, Reshef I, Efrony R and Zilber-Rosenberg I (2007) The role of microorganisms in coral health, disease and evolution. Nature Reviews Microbiology 5, 355–362.

Saxby T (2000) Coral Bleaching: the synergistic effect of temperature and photoinhibition. For degree of the Bachelor of Science in Department of Botany the University of Queensland. 1–40. Available at https://ian.umces.edu/tracey/saxby_honours_litreval_2000.pdf (accessed 1 August 2020).

Seonock W, Shan-Hua Y, Hsing-Ju C, Yu-Fang T, Sung-Jin H, Stephane DP, Vianney D, Yukimitsu I, Fumihito I, Seungshic Y and Sen-Lin T (2017) Geographical variations in bacterial communities associated with soft coral Scleronephthya gracillimum. PLoS ONE 12, e0183663.

Sunagaw S, Desantis TZ, Piceno Y, Brodie EL, Desalvo M, Voolstra CR and arseny T (2006) Metagenomic analysis of stressed coral holobionts. Nature Reviews Microbiology 8, 1204–1237.

Terraneo TL, Fusi M, Hume BCC, Arrigoni R, Voolstra CR, Benzoni F, Forsman ZH and Berumen ML (2019) Environmental latitudinal gradients and host-specificity shape Symbiodiniaceae distribution in Red Sea Porites corals. Journal of Biogeography 46, 2323–2335.

Thomas L, Kendrick G, Kennington WR, Richards ZT and Stat M (2014) Exploring Symbiodinium diversity and host specificity in Acropora corals from geographical extremes of Western Australia with 454 amplicon pyrosequencing. Molecular Ecology 23, 3113–3126.

Thurber RV, Willner-Hall D, Rodriguez-Mueller B, Desnues C, Edwards RA, Angly F, Dinsdale E, Kelly L and Rohwer F (2009) Metagenomic analysis of stressed coral holobionts. Environmental Microbiology 11, 2148–2163.

van de Water JAM, Melkonian R, Junca H, Voolstra CR, Reynaud S, Allemand D and Ferrier-Pages C (2016) Spirochaetes dominate the microbial community associated with the red coral Corallium rubrum on a broad geographic scale. Scientific Reports 6, 27277.

Wall M, Putchim I, Schmidt GM, Jantzen C, Khokhliatvong S and Richter C (2015) Large-amplitude internal waves benefit corals during thermal stress. Proceedings of the Royal Society B: Biological Sciences 282, 20140650.
Weglry L, Edward R, Rodriguez-Brito B, Liu H and Rohwer F (2007) Metagenomic analysis of the microbial community associated with the coral *Porites astreoides*. *Environmental Microbiology* 9, 2707–2719.

Weiler BA, Verhoeven JTP and Dufour SC. (2018). Bacterial Communities in Tissues and Surficial Mucus of the Cold-Water Coral *Paragorgia arborea*. *Frontiers in Marine Science* 5, 378.

Wild C, Huettel M, Klueter A and Kremb SG (2004) Coral mucus functions as an energy carrier and particle trap in the reef ecosystem. *Nature* 428, 66–70.

Yonge CM and Nicholls AG (1931) Studies on the physiology of corals. IV. The structure, distribution and physiology of the zooxanthellae. *Scientific Reports* 1, 135–176.

Yu KF, Zhao JX, Liu TS, Wei GJ, Wang PX and Collerson KD (2004) High-frequency winter cooling and reef coral mortality during the Holocene climatic optimum. *Earth and Planetary Science Letters* 224, 143–155.

Yu XP, Yu KF, Huang W and Liang JY (2020) Thermal acclimation increases heat tolerance of the scleractinian coral *Acropora pruinosa*. *Science of The Total Environment* 733, 139319.

Zhou GW and Huang H (2011) Low genetic diversity of symbiotic dinoflagellates (*Symbiodinium*) in scleractinian corals from tropical reefs in southern Hainan Island, China. *Journal of Systematics and Evolution* 49, 598–605.

Ziegler M, Arif C, Burt JA, Dobretsov S, Roder C, Lajeunesse TC and Voolstra CR (2017) Biogeography and molecular diversity of coral symbionts in the genus *Symbiodinium* around the Arabian Peninsula. *Journal of Biogeography* 44, 674–686.