Involution on surfaces with $p_g = q = 0$ and $K^2 = 3$

Carlos Rito

Abstract

We study surfaces of general type S with $p_g = q = 0$ and $K^2 = 3$ having an involution i such that the bicanonical map of S is not composed with i. It is shown that, if S/i is not rational, then S/i is birational to an Enriques surface or it has Kodaira dimension 1 and the possibilities for the ramification divisor of the covering map $S \to S/i$ are described. We also show that these two cases do occur, providing an example. In this example S has a hyperelliptic fibration of genus 3 and the bicanonical map of S is of degree 2 onto a rational surface.

2000 MSC: 14J29.

1 Introduction

Minimal surfaces S of general type with $p_g = q = 0$ have been studied by several authors in the last years, but a classification is still missing. For these surfaces the canonical divisor K satisfies $1 \leq K^2 \leq 9$ and there are examples for all values of K^2 (see e.g. [BHPV]). The study of the bicanonical map ϕ_2 of S, and in particular the case where ϕ_2 is composed with an involution of S, has also provided some examples (cf. [CFM], [MP1], [MP2], [MP3], [MP4], [MP5]).

For the case $K^2 = 3$, there are examples with bicanonical map of degree 2 onto a nodal Enriques surface (see [MP3], [MP4]) and with bicanonical map of degree 4 onto a rational surface (see [Bu], [In], [Ca], [Ke], [Na]). In these constructions with $\deg(\phi_2) = 4$ the surface S has involutions i_j, $j = 1, 2, 3$, such that ϕ_2 is composed with i_j and such that S/i_j is birational to an Enriques surface or S/i_j is a rational surface.

There are also the constructions given in [PPS1] and [PPS2], obtained using Q-Gorenstein smoothing theory, and the recent construction given in [BP], but we have no information about the bicanonical map or the existence of an involution in these cases.

In this paper we want to study the case where $K^2_S = 3$ and S has an involution i such that the bicanonical map of S is not composed with i. We show that, if S/i is not rational, then S/i is birational to an Enriques surface or it has Kodaira dimension 1 and we describe the possibilities for the ramification divisor of the covering map $S \to S/i$. We also show that these two cases do occur, providing an example. In this example S has a hyperelliptic genus 3 fibration and the bicanonical map of S is of degree 2 onto a rational surface.

The paper is organized as follows. In Sections 2 and 3 we recall some facts about involutions on surfaces and about the possibilities for the branch locus
(the projection of the ramification divisor) in the quotient surface S/i. This is used to prove our main results in Section 4, Theorems 4 and 5. Section 5 contains the construction of an example, which is obtained as a \mathbb{Z}_2^2 cover of \mathbb{P}^2. The ramification divisor of this covering is computed using the Computational Algebra System Magma [BCP]. The corresponding code lines are given in the Appendix.

Notation

We work over the complex numbers; all varieties are assumed to be projective algebraic.

An *involution* of a surface S is an automorphism of S of order 2. We say that a map is *composed with an involution* i of S if it factors through the double cover $S \to S/i$.

An (-2)-curve N on a surface is a curve isomorphic to \mathbb{P}^1 such that $N^2 = -2$.

An (m_1, m_2, \ldots)-point of a curve, or point of type (m_1, m_2, \ldots), is a singular point of multiplicity m_1, which resolves to a point of multiplicity m_2 after one blow-up, etc.

The rest of the notation is standard in Algebraic Geometry.

Acknowledgements

The author wishes to thank Margarida Mendes Lopes for all the support. He is a member of the Mathematics Center of the Universidade de Trás-os-Montes e Alto Douro and is a collaborator of the Center for Mathematical Analysis, Geometry and Dynamical Systems of Instituto Superior Técnico, Universidade Técnica de Lisboa. This research was partially supported by FCT (Portugal) through Project PTDC/MAT/099275/2008.

2 **General facts on involutions**

The following is according to [CM].

Let S be a smooth minimal surface of general type with an involution i. Since S is minimal of general type, this involution is biregular. The fixed locus of i is the union of a smooth curve R'' (possibly empty) and of $t \geq 0$ isolated points P_1, \ldots, P_t. Let S/i be the quotient of S by i and $p : S \to S/i$ be the projection onto the quotient. The surface S/i has nodes at the points $Q_i := p(P_i)$, $i = 1, \ldots, t$, and is smooth elsewhere. If $R'' \neq \emptyset$, the image via p of R'' is a smooth curve B'' not containing the singular points Q_i, $i = 1, \ldots, t$. Let now $h : V \to S$ be the blow-up of S at P_1, \ldots, P_t and set $R' = h^*(R'')$. The involution i induces a biregular involution \tilde{i} on V whose fixed locus is $R := R' + \sum_i h^{-1}(P_i)$. The quotient $W := V/\tilde{i}$ is smooth and one has a commutative diagram:

\[\begin{array}{ccc}
V & \xrightarrow{h} & S \\
\downarrow{\pi} & & \downarrow{p} \\
W & \xrightarrow{g} & S/i
\end{array}\]

where $\pi : V \to W$ is the projection onto the quotient and $g : W \to S/i$ is the minimal desingularization map. Notice that

\[A_i := g^{-1}(Q_i), \quad i = 1, \ldots, t,\]
are \((-2)\)-curves and \(\pi^*(A_i) = 2 \cdot h^{-1}(P)\).

Set \(B' := g^*(B'')\). Since \(\pi\) is a double cover with branch locus \(B' + \sum A_i\), it is determined by a line bundle \(L\) on \(W\) such that

\[2L \equiv B := B' + \sum A_i. \]

It is well known that (cf. [BHPV] V. 22):

\[p_g(S) = p_g(V) = p_g(W) + h^0(W, \mathcal{O}_W(K_W + L)), \]
\[q(S) = q(V) = q(W) + h^1(W, \mathcal{O}_W(K_W + L)), \]
\[K_S^2 - t = K_V^2 = 2(K_W + L)^2 \]

and

\[\chi(\mathcal{O}_S) = \chi(\mathcal{O}_V) = 2\chi(\mathcal{O}_W) + \frac{1}{2}L(K_W + L). \]

Lemma 1 ([CM], [CCM]) The bicanonical map \(\phi_2\) of \(S\) (given by \(|2K_S|\)) is composed with \(i\) if and only if \(h^0(W, \mathcal{O}_W(2K_W + L)) = 0\).

3 Numerical restrictions

Let \(P\) be a minimal model of the resolution \(W\) of \(S/i\) and \(\rho : W \to P\) be the corresponding projection. Denote by \(\overline{B}\) the projection \(\rho(B)\) and by \(\delta\) the "projection" of \(L\).

Remark 2 If \(\overline{B}\) is singular, there are exceptional divisors \(E_i\) and numbers \(r_i \in 2\mathbb{N}\) such that

\[E_i^2 = -1, \]
\[K_W \equiv \rho^*(K_P) + \sum E_i, \]
\[2L \equiv B = \rho^*(\overline{B}) = \sum r_i E_i \equiv \rho^*(2\delta) = \sum r_i E_i. \]

The next result follows from Propositions 2, 3 a) and 4 b) of [Ri1].

Proposition 3 (cf. [CM], [Ri1]) Let \(S\) be a smooth minimal surface of general type with \(p_g = 0\) and \(K^2 = 3\) having an involution \(i\). With the previous notation, we have:

a) \(K_P(K_P + \delta) + \frac{1}{2}\sum (r_i - 2) = h^0(W, \mathcal{O}_W(2K_W + L));\)

b) \(\delta^2 = -2K_P^2 - 3K_P\delta + \frac{1}{2}\sum (r_i - 2)(r_i - 4) + 2h^0(W, \mathcal{O}_W(2K_W + L)) - 2;\)

c) the number of isolated fixed points of \(i\) is \(t = 7 - 2h^0(W, \mathcal{O}_W(2K_W + L));\)

d) \(K_W^2 \geq 2h^0(W, \mathcal{O}_W(2K_W + L)) - 4.\)
4 Possibilities

If \(p_\varphi(S) = 0 \) and the bicanonical map of \(S \) is composed with the involution \(i \), then it is known that \(S/i \) is birational to an Enriques surface or \(S/i \) is a rational surface (cf. [MP3, MP5]). This follows easily from Proposition 3 a), b): we have \(K_P(K_P + \delta) + \frac{1}{2} \sum (r_i - 2) = 0 \), thus \(K_P \) nef implies \(K_P^2 = K_P \delta = 0 \). Hence \(P \) is birational to an Enriques surface or it has Kodaira dimension 1. In this last case \(K_P \delta = 0 \) implies the existence of an elliptic fibration in \(S \), which is impossible because \(S \) is of general type.

Consider the branch divisor \(\overline{B} = B' + \sum A_i \subset W \) as above and let \(\overline{B}, \overline{B}' \) be the projection of \(B, B' \) on the minimal model \(P \) of \(W \). We have the following:

Theorem 4 Let \(S \) be a smooth minimal surface of general type with \(p_\varphi = 0 \) and \(K^2 = 3 \) having an involution \(i \) such that the bicanonical map of \(S \) is not composed with \(i \).

Then the number of isolated fixed points of \(i \) is \(t = 5 \) and, if \(S/i \) is not rational, one of the following holds:

a) \(P \) is an Enriques surface and

\[
\begin{align*}
(i) & \quad \overline{B}'^2 = 10, \overline{B}' \text{ has a quadruple point and at most one double point } (\text{thus } p_a(B') = 0 \text{ or } -1), \text{ or} \\
(ii) & \quad \overline{B}'^2 = 8, \overline{B}' \text{ has a } (3, 3)\text{-point and no other singularities } (\text{thus } p_a(B') = -1); \\
\end{align*}
\]

b) \(\text{Kod}(P) = 1, \quad p_\varphi(P) = q(P) = 0, \overline{B}'^2 = -2, \quad p_a(\overline{B}') = 1 \) and \(\overline{B}' \) has at most two double points.

Moreover, cases a) (i) and b) do occur; there is an example with bicanonical map of degree 2 onto a rational surface.

Proof:

Proposition 3 c) of [BHPV] gives \(h^0(W, \mathcal{O}_W(2K_W + L)) \leq 1 \). Since \(\phi_2 \) is not composed with \(i \), we have \(h^0(W, \mathcal{O}_W(2K_W + L)) = 1 \). Then, from Proposition 3 \(\varphi_1 = 5 \) and \(K_W^2 \geq -2 \).

Case 1: \(\text{Kod}(P) = 0 \).

We have \(p_\varphi(P) \leq p_\varphi(S) = q(S) \), thus \(p_\varphi(P) = q(P) = 0 \) and then, from the classification of surfaces (see e.g. [Be] or [BHPV]), \(P \) is an Enriques surface. We obtain from Proposition 3 that \(\sum (r_i - 2) = 2 \) and \(\overline{B}'^2 = (2\delta)^2 = 0 \). Moreover, since \(K_W A_i = 0 \), each \((-2)\)-curve \(A_i \subset B \) is contracted to a singular point of \(\overline{B}' \) or is mapped onto a \((-2)\)-curve of the Enriques surface \(P \).

Case 2: \(\text{Kod}(P) = 1 \).

In this case \(K_P \) is numerically equivalent to a rational multiple of a fibre of an elliptic fibration of \(P \) (see e.g. [BHPV, V, 12]). This implies \(K_P^2 \neq 0 \), because otherwise \(\overline{B}' \) is contained in the elliptic fibration of \(P \) and then \(S \) has an elliptic fibration, which is impossible since \(S \) is of general type. From Proposition 3 a) and b) we get \(\sum (r_i - 2) = 0, \quad K_P \overline{B}' = 2K_P \delta = 2 \) and \(\overline{B}'^2 = (2\delta)^2 = -12 \).

Case 3: \(\text{Kod}(P) = 2 \).
Claim: If $K_P B = 0$, then $\overline{B} = B$ is a disjoint union of (-2)-curves.

Proof: Since P is minimal of general type, K_P is nef and big and then every component of \overline{B} is a (-2)-curve and the intersection form on the components of the reduced effective divisor \overline{B} is negative definite by the Algebraic Index Theorem (see e.g. [HHPV, IV. 2.16]). The claim is true if each connected component C of \overline{B} is irreducible. If C is not irreducible, there is one component θ of C such that $\theta(C - \theta) = 1$ and this implies that B has a (-3)-curve, contradicting $B \equiv 0 \pmod{2}$. \Diamond

Since P is of general type, $K_P^2 \geq 1$. Hence Proposition 3 implies $K_P \delta = 0$, $\sum (r_i - 2) = 0$ and $\delta^2 = -2$. Therefore $\overline{B}^2 = -8$ and then B is a disjoint union of four (-2)-curves. But Proposition 3(c) gives $t = 5 \neq 4$.

An example for a) (i) and b) is given in Section 5.

In the conditions of Theorem 4 S/i is a rational surface, or S/i is birational to an Enriques surface or Kod(S/i) = 1. We have no example for S/i rational (and ϕ_2 not composed with i) but there is at least one possibility that may occur: S is the smooth minimal model of a double cover of \mathbb{P}^2 ramified over a reduced plane curve of degree 16 with a quadruple point and five $(5,5)$-points. The construction of such a curve seems to be a nontrivial computational problem.

We can be more precise about the components of the branch locus $B' + \sum A_i \subset W$.

Theorem 5 Let S be a smooth minimal surface of general type with $p_g = 0$ and $K^2 = 3$ having an involution i such that the bicanonical map of S is not composed with i.

With the previous notation, one of the following holds (here $\Gamma_{a,b}$ denotes a smooth irreducible curve with self-intersection a and genus b):

a) $B' = \Gamma_{-6,0}$, $K^2_W = -1$, or

b) $B' = \Gamma_{-6,0} + \Gamma_{-4,0}$, $K^2_W = -2$, or

c) $B' = \Gamma_{-2,1} + \Gamma_{-4,0}$, $K^2_W = -1$, or

d) $B' = \Gamma_{-2,1} + \Gamma_{-4,0} + \Gamma'_{-4,0}$, $K^2_W = -2$, or

e) $B' = \Gamma_{-2,1}$, $K^2_W = 0$ (and Kod(W) = 1).

Moreover, if Kod(W) = 1, the possibilities for the multiple fibres m, F_i of the elliptic fibration of W are:

$(m_1, m_2, m_3) = (2, 2, 2)$ or $(m_1, m_2) = (2, 3), (2, 4)$ or $(3, 3).

The corresponding fibrations in S are of genus $3, 7, 5$ or 4, respectively.

There is an example for a) and c).

Remark 6 It is immediate from this theorem that the surface S contains at least a smooth rational curve or a smooth elliptic curve. In cases b), c) and d), K_S is not ample.
Proof of Theorem 5
We have \((2K_W + B')B' = 4K_W L + 4L^2 + 10 = 4L(K_W + L) + 10 = 2\). Since \(B \equiv 0 \pmod{2}\) and \(2K_W + B'\) is nef (because \(2K_S\) is nef), \(B'\) contains an irreducible component \(\Gamma\) such that \((2K_W + B')\Gamma = 2\) and possibly some components \(\Gamma_1, \ldots, \Gamma_l\) such that \((2K_W + B')\Gamma_i = 0, i = 1, \ldots, l\). These components are \((-4)\)-curves, because \(K_V \pi^*(\Gamma_i) = 0\) implies that the support of \(\pi^*(\Gamma_i)\) is a \((-2)\)-curve.

Denote by \(\Gamma_V\) the support of \(\pi^*(\Gamma)\). One has \(K_V \Gamma_V = 1\) and then \(2g(\Gamma_V) = 3 + \Gamma_V \geq 0\). The fact \((2K_W + B')(2K_W + B' - 3\Gamma) = 0\) implies, from the Algebraic Index Theorem, that \((2K_W + B' - 3\Gamma)^2 \leq 0\). This gives \(\Gamma^2 \leq 0\), thus \(\Gamma_V \leq -1\) or \(-3\) (equivalently \(\Gamma^2 = -2\) or \(-6\)).

We have seen above that \(K_V^2 \geq -2\) (Proposition 3 d)) and that, if \(W\) is birational to an Enriques surface, \(K_W^2 \leq -1\) (\(\overline{B}\) is singular). Now we claim that \(K_W^2 \leq -1\) if \(W\) is rational. In fact, \(-K_W(2K_W + B') = -2\) and \(2K_W + B'\) is nef, hence \(h^0(W, \mathcal{O}_W(-K_W)) = 0\) and then \(K_W^2 \leq -1\) from the Riemann-Roch Theorem.

Now from \(2 - 2K_W^2 = K_W B' = K_W \Gamma + 2l = 2g(\Gamma) - 2 + \Gamma^2 + 2l\) one gets
\[-2K_W^2 + 4 + \Gamma^2 = 2g(\Gamma) + 2l.

The possibilities allowed by this equation are:
- \(g(\Gamma) = 0, \Gamma^2 = -6\) and \((K_W^2, l) = (-1, 0)\) or \((-2, 1)\);
- \(g(\Gamma) = 1, \Gamma^2 = -2\) and \((K_W^2, l) = (0, 0), (-1, 1)\) or \((-2, 2)\).

Finally we prove the assertion about the multiple fibres of the elliptic fibration of \(W\), in the case \(\text{Kod}(W) = 1\). The canonical bundle formula (see e.g. [BHPV] V, 12.3) gives \(K_P \equiv -F + \sum_i^m (m_i - 1)F_i\), where \(m_i F_i \equiv F\) is a multiple fibre of the elliptic fibration of the minimal model \(P\) of \(W, i = 1, \ldots, n\). Since \(K_P B = 2\), we have then
\[
B F \left(-1 + \sum_{i=1}^n \frac{m_i - 1}{m_i} \right) = 2 \quad \text{and} \quad B F \geq 2m_i, \quad i = 1, \ldots, n.
\]

This immediately yields \(n \leq 3\) and \(n = 3 \Rightarrow m_1 = m_2 = m_3 = 2\). It is not difficult to see that if \(n = 2\), then \((m_1, m_2) = (2, 3), (2, 4)\) or \((3, 3)\).

The example for cases a) and c) is given in Section 5.

5 Example

5.1 Bidouble covers
A bidouble cover is a finite flat Galois morphism with Galois group \(\mathbb{Z}_2^2\). Following [Ca] or [Pa], to define a bidouble cover \(V \to X\), with \(V, X\) smooth surfaces, it suffices to present:
- smooth divisors \(D_1, D_2, D_3 \subset X\) with pairwise transverse intersections and no common intersection;
· line bundles L_1, L_2, L_3 such that $2L_g \equiv D_j + D_k$ for each permutation (g, j, k) of $(1, 2, 3)$.

If Pic(X) has no 2-torsion, the L_i's are uniquely determined by the D_i's.

Let $N := 2K_X + \sum L_i$. One has $2K_V \equiv \psi^*(N)$ and

$$H^0(V, \mathcal{O}_V(2K_V)) \simeq H^0(X, \mathcal{O}_X(N)) \oplus \bigoplus_{i=1}^3 H^0(X, \mathcal{O}_X(N - L_i)).$$

The bicanonical map of V is composed with the involution i_g, associated to $2L_g \equiv D_j + D_k$ for each permutation (g, j, k) of $(1, 2, 3)$. We verify below that the quotients $W_g := V/i_g$ satisfy:

· W_1 is birational to an Enriques surface;
· Kod$(W_2) = 1$, $p_g(W_2) = q(W_2) = 0$;
· W_3 is rational.

Moreover, the surface S has an hyperelliptic fibration of genus 3 and the bicanonical map ϕ_2 of S is of degree 2 onto a rational surface. The map ϕ_2 is composed with the involution induced by i_3 and is not composed with the involutions induced by i_1 and i_2.

Step 1: Construction of S

Let $p_0, p_1, p_2 \in \mathbb{P}^2$ be distinct points and T_1, T_2 be the lines p_0p_1, p_0p_2, respectively. In the Appendix we use the Magma functions LinSys and ParSch given in [Ri2] to compute plane curves C_6 of degree 6 and C_5 of degree 5 such that:

· the singularities of C_6 are a double point at p_0, $(2, 2)$-points at p_1, p_2 tangent to T_1, T_2 and a triple point p_3 which resolves to a $(2, 2)$-point after one blow-up;
· the singularities of C_5 are a $(2, 2)$-point at p_1 tangent to T_1 and a $(2, 2, 2, 2)$-point at p_2 tangent to T_2 such that the intersection number of C_5 and C_6 at p_2 is 12;
· C_5 contains p_0 and intersects C_6 with multiplicity 7 at p_3.

Let $\mu : X \to \mathbb{P}^2$ be the map which resolves the singularities of $C_5 + C_6$ and let E_i, E'_i, \ldots be the exceptional divisors (with self-intersection (-1)) corresponding to the blow-ups at p_i, $i = 0, \ldots, 3$. Let T denote a general line in \mathbb{P}^2 and let the notation $\tilde{\cdot}$ denote the total transform $\mu^*(\cdot)$ of a curve.
Let $V \to X$ be the bidouble cover determined by the divisors
\[
D_1 := \tilde{C}_5 - E_0 - (E_1 + 2E'_1) - (2E_2 + 2E'_2 + 2E'''_2) - (E_3 + E'_3 + E'''_3),
\[
D_2 := \tilde{T}_1 - E_0 - 2E'_1 + E_3 - E'_3 + E'''_3,
\[
D_3 := \tilde{C}_6 + \tilde{T}_2 - 3E_0 - (2E_1 + 2E'_1) - (2E_2 + 4E'_2 + 0E''_2 + 2E'''_2) - (3E_3 + E'_3 + 3E''_3)
\]
and let S be the minimal model of V.

Step 2: Invariants of S.

We have
\[
L_1 \equiv 4\tilde{T} - 2E_0 - (E_1 + 2E'_1) - (E_2 + 2E'_2 + 2E'''_2) - (E_3 + E'_3 + E'''_3),
\]
\[
L_2 \equiv 6\tilde{T} - 2E_0 - (2E_1 + 2E'_1) - (2E_2 + 3E'_2 + 2E''_2) - (2E_3 + E'_3 + 2E''_3),
\]
\[
L_3 \equiv 3\tilde{T} - E_0 - (E_1 + 2E'_1) - (E_2 + 2E'_2 + E''_2 + E'''_2) - E_3
\]
and
\[
K_X + L_1 \equiv \tilde{T} - E_0 - E'_1 - E'_2 + E''_2,
\]
\[
K_X + L_2 \equiv 3\tilde{T} - E_0 - (E_1 + E'_1) - (E_2 + 2E'_2 + E''_2) - (E_3 + E''_3),
\]
\[
K_X + L_3 \equiv -E'_1 + E'_3 + E''_3.
\]

One has
\[
\chi(O_S) = 4\chi(O_X) + \frac{1}{2} \sum_{i=1}^{3} L_i(K_X + L_i) = 4 - 1 - 1 = 1
\]
and
\[
p_g(S) = p_g(X) + \sum_{i=1}^{3} h^0(X, O_X(K_X + L_i)) = 0
\]
(see the Appendix for the computation of $h^0(X, O_X(K_X + L_3))$).

Step 3: Calculation of K_S^2.

Let $N = 2K_X + \sum_{i=1}^{3} L_i$. From the computations in the Appendix we get
\[
h^0(V, O_V(2K_V)) = h^0(X, O_X(N)) + \sum_{i=1}^{3} h^0(X, O_X(N - L_i)) = 4.
\]
The surface V contains at least eight (-1)-curves (in $\tilde{T}_1 + \tilde{T}_2$), hence $K_S^2 \geq K_V^2 + 8 = N^2 + 8 = 1$ and then S is of general type. Since $h^0(V, O_V(2K_V)) = h^0(S, O_S(2K_S)) = K_S^2 + 1$ (see e.g. [BHPV], VII. 5.), then $K_S^2 = 3$.

Step 4: The surface W_1.

Let W_1 be the double cover of X with branch locus $D_2 + D_3$. It is well known...
that the smooth minimal model of W_1 is an Enriques surface (see e.g. [CD]).

Step 5: The surface W_2.
Let W_2 be the double cover of X with branch locus $D_1 + D_3$. One has

$$\chi(O_{W_2}) = 2\chi(O_X) + \frac{1}{2}L_2(K_X + L_2) = 2 - 1 = 1$$

and

$$p_g(W_2) = p_g(X) + h^0(X, O_X(K_X + L_2)) = 0.$$

We show in the Appendix that

$$h^0(X, O_X(K_X + 2L_2)) = 1 \quad \text{and} \quad h^0(X, O_X(6K_X + 6L_2)) = 2.$$

This implies $\text{Kod}(W_2) > 0$ and, since

$$h^0(W_2, O_{W_2}(2K_{W_2})) = h^0(X, O_X(2K_X + L_2)) + h^0(X, O_X(2K_X + 2L_2)) = 1,$$

W_2 is not of general type (see e.g. [BHPV] VII. 5.). This way $\text{Kod}(W_2) = 1$.

Step 6: The surface W_3.
Let $\rho : W_3 \to X$ be the double cover with branch locus $D_1 + D_2$. The pencil of conics tangent to the lines T_1, T_2 at p_1, p_2 lifts to a rational fibration of W_3 (and lifts to a genus 3 fibration of S). Since

$$\chi(O_{W_3}) = 2\chi(O_X) + \frac{1}{2}L_3(K_X + L_3) = 2 - 1 = 1$$

and

$$p_g(W_3) = p_g(X) + h^0(X, O_X(K_X + L_3)) = 0,$$

then W_3 is a rational surface.

Step 7: Bicanonical map.
As computed in the Appendix, one has

$$h^0(X, O_X(2K_X + L_1 + L_2)) = 1,$$

$$h^0(X, O_X(2K_X + L_1 + L_3)) = 0,$$

$$h^0(X, O_X(2K_X + L_2 + L_3)) = 0,$$

hence the bicanonical map ϕ_2' of V is not composed with the involutions i_1 and i_2 and is composed with i_3. Let $\psi_1 : V \to W_3$ be the double cover corresponding to i_3 and let $\psi_2 : W_3 \to \mathbb{P}^3$ be the map induced by

$$H^0(X, O_X(p^*(2K_X + L_1 + L_2 + L_3))) \oplus H^0(X, O_X(p^*(2K_X + L_1 + L_2 + R))),$$

where R is the ramification divisor of the map $\rho : W_3 \to X$ defined above. We have

$$\phi_2' = \psi_1 \circ \psi_2.$$

It is shown in the Appendix that the degree of $\psi_2(W_3)$ is 6. Since $(2K_S)^2 = 12$, this implies that the bicanonical map of S is of degree 2.
Appendix: Magma code

Here the Computational Algebra System Magma ([BCP]) is used to perform some calculations.
We use the following Magma functions, given in [Ri2]: LinSys, which computes linear systems of plane curves with non-ordinary singularities, and ParSch, whose output is a scheme which parametrizes given degree plane curves with given singularities.

1) First we compute the curves C_5 and C_6 referred in Section [5.2].

```magma
K:=Rationals();
A<x,y>:=AffineSpace(K,2);
L:=\{LinearSystem(A,6),LinearSystem(A,5),LinearSystem(A,3),
    LinearSystem(A,2),LinearSystem(A,2),LinearSystem(A,1),LinearSystem(A,1)\};
P:=\{A![0,0],A![0,1],A![1,0],A![1,1]\};
M:=\{[[2],[2,2],[2,2,2],[1,1,1]],
    [[1],[1,1],[1,1,1],[1,1,1]],
    [[0],[1,1],[1,0,0],[1,0,0]],
    [[0],[1,1],[1,0,0],[0,0,0]],
    [[0],[0,0],[1,1,1],[0,0,0]],
    [[0],[0,0],[0,0,0],[1,1,1]]\};
T:=\{[],[0,1],[1,0],[1,15/61*r1 + 443/2745],[1,-21465/95648*r1 - 23559/59780]\};
S:=ParSch(L,P,M,T,[],[],5);
```

We want to compute points (some infinitely near) such that:
- the sets of elements of $L[1], L[2]$ which have singularities, at those points, of multiplicities given by $M[1], M[2]$ are non-empty;
- the five sets of elements of $L[3], \ldots, L[7]$ of curves with singularities, at those points, of multiplicities given by $M[3], \ldots, M[7]$ are empty.

This last step is needed in order to obtain a non-reduced curve. The following gives a scheme which parametrizes such curves.

```magma
S:=ParSch(L,P,M,T,[],[],5);
```

This scheme is zero dimensional. We compute a point in S

```magma
PointsOverSplittingField(S);
```

and we use the function LinSys to compute the reduced curves C_5 and C_6.

```magma
R<r1>:=PolynomialRing(Rationals());
K<r1>:=NumberField(r1^2 + 1496/675*r1 + 10976/625);
A<x,y>:=AffineSpace(K,2);
L5:=LinearSystem(A,5);L6:=LinearSystem(A,6);
P:=\{A![0,0],A![0,1],A![1,0],A![1,1]\};
M5:=\{[[2],[2,2],[2,2,2],[1,1,1]],
    [[0],[1,1],[1,0,0],[0,0,0]],
    [[0],[1,1],[0,0,0],[1,1,1]],
    [[1],[],[1,0,0],[1,1,1]],
    [[0],[],[0,0,0],[1,1,1]]\};
T:=\{[],[0,1],[1,0],[1,15/61*r1 + 443/2745],[1,-21465/95648*r1 - 23559/59780]\};
J5:=LinSys(L5,P,M5,T);C_5:=Curve(A,Sections(J5)[1]);
J6:=LinSys(L6,P,M6,T);C_6:=Curve(A,Sections(J6)[1]);
```

The equations of C_5 and C_6 are, in affine space:
\[3660x^5y^5(-900x+1341)x^4y-16640x^4y^4(-3550x-12858)x^3y^2+4500x-300)x^3y^2 +21960x^3y^{12}(1500x+14313)x^{12}y+23780x^2y^3+700x+3412)x^{12}y +3660x-915y^2+3660y^4-5690y^{12}+3660y^2-915y \]

and
\[35882945x^6y^2-12929700x+26583872)x^4y^2 \]

with \(x^2 + 1496/675x + 10976/625 = 0 \).

2) From Section 5.2 one has:
\[2K_X + \sum L_i \equiv 7\overline{E} - 3E_0 - (2E_1 + 4E_1') - (2E_2 + 4E_2' + 2E_2'') - \cdots \]

Below we compute the dimension of the first cohomology group \(h^0(\mathcal{O}_X(\cdot)) \) for each of these divisors (it is immediate that \(h^0(2K_X + L_1 + L_3) = 0 \)). We obtain 3, 0, 1, 2, 1, 0, respectively.

\[M := \left[\begin{array}{c} [3], [2, 4], [2, 4, 0, 2], [1, 1, 1], \\ [1, 1, 1], [1, 2, 0, 1], [1, 0, 1], \\ [2], [2, 2], [2, 4, 0, 2], [2, 0, 2], \\ [6], [6, 6], [6, 12, 0, 6], [6, 0, 6], \\ [2], [1, 2], [1, 3, 0, 0], [1, 0, 1], \\ [1], [1, 2], [1, 2, 0, 1], [0, 0, 0] \end{array} \right] \]

\[d := [7, 3, 6, 18, 4, 3] \]

3) Now we describe how to compute the degree of the scheme \(\psi_2(W_3) \) referred in Section 5.2 Step 7. The complete code is available at http://home.utad.pt/~crito/magma_code.html

Let \(f_0 \) be the defining equation of the curve \(D_1 + D_2 \), \(f_1 \) be the equation of the unique effective plane curve corresponding to \(2K_X + L_1 + L_2 \) and let \(J_7 \) be the linear system of plane curves corresponding to \(2K_X + L_1 + L_2 + L_3 \). We define (a singular model of) \(W_3 \) in a weighted projective space and we define the map \(\psi_2 : W_3 \to \mathbb{P}^3 \).

\[WP<x, y, z> := \text{ProjectiveSpace}(K, [3, 1, 1, 1]) \]
\[W3 := \text{Scheme}(WP, w^2-f6) \]
\[P3 := \text{ProjectiveSpace}(K, 3) \]
\[psi2 := \text{map}(W3 \to P3 | \text{(Sections}(J7) \text{ div } (x*y)) \text{ cat } [w*(f4 div (x*y))]) \]

We want to compute
but 6 GB of computer memory are not enough for this task. Thus we compute
the degree of the intersection of two hyperplane sections of $\psi_2(W_3)$.

We obtain degree 6.

References

[BHPV] W. Barth, K. Hulek, C. Peters and A. Van de Ven, *Compact complex surfaces. 2nd enlarged ed.*, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge 4. Berlin: Springer. xii, 436 p. (2004).

[BP] I. Bauer and R. Pignatelli, *The classification of minimal product-quotient surfaces with $p_g = 0* (2010), arXiv:1006.3209v1 [math.AG].

[Be] A. Beauville, *Surfaces algébriques complexes*, vol. 54, Astérisque (1978).

[BCP] W. Bosma, J. Cannon and C. Playoust, *The Magma algebra system. I. The user language.*, J. Symbolic Comput., 24 (1997), no. 3–4, 235–265.

[Bu] P. Burniat, *Sur les surfaces de genre P_{12}* > 0, Ann. Mat. Pura Appl., IV. Ser., 71 (1966), 1–24.

[CCM] A. Calabri, C. Ciliberto and M. Mendes Lopes, *Numerical Godeaux surfaces with an involution*, Trans. Am. Math. Soc., 359 (2007), no. 4, 1605–1632.

[Ca] F. Catanese, *Singular bidouble covers and the construction of interesting algebraic surfaces*, Contemp. Math. 241, Am. Math. Soc, 97–120 (1999).

[CFM] C. Ciliberto, P. Francia and M. Mendes Lopes, *Remarks on the bicanonical map for surfaces of general type*, Math. Z., 224 (1997), no. 1, 137–166.

[CM] C. Ciliberto and M. Mendes Lopes, *On surfaces with $p_g = q = 2$ and non-birational bicanonical map*, Adv. Geom., 2 (2002), no. 3, 281–300.

[CD] F. Cossec and I. Dolgachev, *Enriques surfaces. I.*, Progress in Mathematics, 76. Boston, MA etc.: Birkhäuser Verlag. ix, 397 p. DM 96.00 (1989).

[In] M. Inoue, *Some new surfaces of general type*, Tokyo J. Math., 17 (1994), no. 2, 295–319.

[Ke] J. H. Keum, *Some new surfaces of general type with $p_g = 0**, preprint, 1988.

[MP1] M. Mendes Lopes and R. Pardini, *The bicanonical map of surfaces with $p_g = 0$ and $K^2 \geq 7*., Bull. Lond. Math. Soc., 33 (2001), no. 3, 265–274.
[MP2] M. Mendes Lopes and R. Pardini, *A survey on the bicanonical map of surfaces with $p_g = 0$ and $K^2 \geq 2$*, Beltrametti, Mauro C. (ed.) et al., Algebraic geometry. A volume in memory of Paolo Francia. Berlin: de Gruyter. 277-287 (2002).

[MP3] M. Mendes Lopes and R. Pardini, *Enriques surfaces with eight nodes*, Math. Z., 241 (2002), no. 4, 673–683.

[MP4] M. Mendes Lopes and R. Pardini, *The bicanonical map of surfaces with $p_g = 0$ and $K^2 \geq 7$*, Bull. Lond. Math. Soc., 35 (2003), no. 3, 337–343.

[MP5] M. Mendes Lopes and R. Pardini, *A new family of surfaces with $p_g = 0$ and $K^2 = 3$*, Ann. Sci. c. Norm. Supr. (4), 37 (2004), no. 4, 507–531.

[MP6] M. Mendes Lopes and R. Pardini, *Surfaces of general type with $p_g = 0$, $K^2 = 6$ and non birational bicanonical map*, Math. Ann., 329 (2004), no. 3, 535–552.

[Na] D. Naie, *Surfaces d’Enriques et une construction de surfaces de type général avec $p_g = 0$*, Math. Z., 215 (1994), no. 2, 269–280.

[Pa] R. Pardini, *Abelian covers of algebraic varieties*, J. Reine Angew. Math., 417 (1991), 191–213.

[PPS2] H. Park, J. Park and D. Shin, *A complex surface of general type with $p_g = 0$, $K^2 = 3$ and $H_1 = \mathbb{Z}/2\mathbb{Z}$* (2008), arXiv:0803.1322v2 [math.AG].

[PPS1] H. Park, J. Park and D. Shin, *A simply connected surface of general type with $p_g = 0$ and $K^2 = 3$*, Geom. Topol., 13 (2009), no. 2, 743–767.

[Ri1] C. Rito, *Involutions on surfaces with $p_g = q = 1$*, Collect. Math., 61 (2009), no. 1, 81–106.

[Ri2] C. Rito, *On the computation of singular plane curves and quartic surfaces* (2010), arXiv:0906.3480v3 [math.AG].

Carlos Rito
Departamento de Matemática
Universidade de Trás-os-Montes e Alto Douro
5001-801 Vila Real
Portugal

e-mail: crito@utad.pt