Research Article

Case Study on Berthing and Disembarking of Ships and Traffic Organization in Rugao Port of Nantong

Ping Lu

1Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China
2Changjiang Pilot Center, Jiangyin 214431, China

Correspondence should be addressed to Ping Lu; 20164110001@stu.shmtu.edu.cn

Received 29 May 2022; Accepted 9 July 2022; Published 9 August 2022

Copyright © 2022 Ping Lu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In order to meet the needs of a 12.5 m deep-water channel, Rugao port of Nantong plans to normally berth ship with a draft of 12.0 m. Based on the study of the current situation and development trend of restricted ships entering and leaving Rugao port in Nantong, taking the navigation environment as the boundary condition, and based on the case study of berthing and disembarking of real ships, this paper objectively analyzes and deals with various risks in the process of docking and berthing of restricted ships. The results show that under the smooth and orderly traffic organization, Rugao port in Nantong has the ability to normally berth ships with a draft of 12.0 meters.

1. Introduction

At present, the world’s maritime vessels are increasingly large, standardized trend, the main maritime standard ship type have been in more than 50,000 tons, and the world’s international seaports in the channel depth of 12.5 meters or more.

Jiangsu section of the Yangtze River waterway has been dredged for 8.5 m, 10.5 m, 12.5 m, and other times, which has a significant impact on the ports along the river. After the completion of 12.5 m deep water channel in the Jiangsu section of Yangtze River, it is upgraded from 10.5 m to 12.5 m (where the starting base below Jiangyin is the local theoretical lowest tide surface, and the starting base above Jiangyin is the navigational reference surface of Yangtze River mainline channel), which can meet the two-way navigation of 50,000-ton container ships (actual draft ≤11.5 m) and the two-way navigation of 50,000-ton other sea vessels with reduced load, taking into account the reduced load navigation of 100,000-ton bulk carriers. According to the statistics, the following 12,000 tons of Yangtze River vessels below Nanjing have been opened for navigation.

Severe cold cities are located at the highest latitudes, with the lowest winter temperatures, and are under the control of polar continental air masses throughout the winter. This natural geoclimatic feature adds many difficulties to the creation of urban landscapes. The main problems are that the urban landscape can barely serve people in winter, the outdoor ambient temperature is too low to be tolerated for a long time, the type of outdoor activities becomes monotonous, the capacity of snow-covered traffic space decreases or even prevents the disadvantaged from traveling, and public services are virtually nonexistent, resulting in too few users or too short a stay in the landscape, i.e., low vitality [1, 2].

With the rapid development of the shipping industry and the gradual enlargement of sea vessels entering the river, Nantong Rugao Port has gradually docked 12.0 m draft vessels after load shedding based on the previous docking of restricted vessels and adapting to the needs of 12.5 m deep water channel.

During the period from June 2, 2019 to March 25, 2022, berth 1# of Zhonglin Rugao Port has successfully docked 153 vessels with a draft ≥11.8 meters.

According to statistics, the construction of the 12.5 m deep water channel below Nanjing of the Yangtze River has effectively improved the navigation conditions below
Nanjing of the Yangtze River and enhanced the navigation capacity, with significant economic and social benefits. In 2018, the number of vessels of 50,000 tons, 100,000 tons, and 200,000 tons and above arrived in Hong Kong was 2.9, 3.4, and 4.9 times of 2011 respectively, and the actual carrying capacity was 4.0, 7.6, and 7.7 times of 2011 respectively. The number of ships of 100,000 tons and 200,000 tons and above arriving at the port was 2.9, 3.4, and 4.9 times that of 2011, respectively, and the actual carrying capacity was 4.0, 7.6, and 7.4 times that of 2011, respectively.

Based on the study of the current situation and development trend of restricted ships entering and leaving Rugao port in Nantong, taking the navigation environment as the boundary condition, and based on the case study of berthing and disembarking of real ships, this paper objectively analyzes and deals with various risks in the process of docking and berthing of restricted ships. The results show that under the smooth and orderly traffic organization, Rugao port in Nantong has the ability to normally berth ships with a draft of 12.0 meters.

2. Analysis of Ship Berthing and Unberthing Elements

2.1. Docks. Nantong Rugao Port (i.e., Zhonglin Rugao Port, commonly known as Rugao Port Service) belongs to Nantong Rugao Port Group Co. Ltd. The location of the terminal is located in the Yangtze River channel mileage of about 120 kilometers, under the mouth of Fujia Shao North Waterway [3], the north bank of the Yangtze River, coordinates: 032°01.807′N 120°35.042′E, for bulk cargo terminal, berth numbers 1, 2, 3, and 4 (bottom-up).

As shown by the completion and acceptance certificate of the port project, berths 1# and 2# of Zhonglin Rugao Port are 50,000-ton bulk berths, and the hydraulic structure of the terminal is reinforced and modified according to the berthing of 150,000-ton bulk vessels at reduced load. According to the scale of waterway, gyratory waters and harbor pond waters, and the actual draught of ships to be berthing, 150,000-ton bulk cargo ships can be berthing at a reduced load [4] (the draught of ships in the near future is controlled within 11.0 meters, and the draught of ships in the long term is controlled within 12.7 meters). The length of the berth is 557.32 meters, and the bottom elevation of the berth front is −14.4 meters (the local theoretical lowest tide surface is the reference surface).

2.2. Boat Type Selection. The standard ship type of the restricted vessels to be connected on a regular basis according to the design ship scale of bulk carriers in the Harbour Master Plan Design Code (JTS165-2013) is as follows in Table 1.

In this paper, a vessel with a draft ≥11.8 m is selected for a reference study of a 150,000-ton bulk carrier [5] berthing at berth 1# in Rugao Port, Zhonglin.

2.3. Choice of Berthing Time

2.3.1. Tidal Flood. The date of berthing is uncertain, and there is a distribution of both large and small tidal floods. See Table 2.

Due to the existence of tidal time difference, assuming that the tide between Wusong and Jiangyin is basically uniform, the tidal propulsion speed of the section from Tiansheng to Rugao can be deduced, as shown in Table 3. It is very important to master the tidal (high tide) propulsion speed in practice.

According to the records of 153 piloted ships in the past, 95.4% of the ships berth between high tide and low tide of the ships berth between low tide and high tide, of which no ships berth before and after 1 h of high tide. This result is consistent with the “common practice of the pilotage community to berth restricted ships in the Yangtze River is to rely on the first drop of water.”

The best berthing time is between 1 h after high tide and low tide, the berthing time is between low tide and 1 h before high tide, and the avoiding berthing time is 1 h before and after high tide. See Table 4.

2.3.2. Berthing Time Selection. In view of the restricted water conditions at the front of the terminal and the complex navigational environment, restricted vessels are berthing and unberthing operations in good daylight at a visibility distance of more than 1500 meters. See Table 5.

2.3.3. Choice of Anchorage. Restricted ships entering the port should try to choose direct berthing during the daytime to avoid or reduce restricted ships anchoring in the Jiangsu section of the Yangtze River sections for berthing. As the time period into the Yangtze River is restricted by the time of importing vessels at the mouth of the Yangtze River, restricted vessels can choose anchor 1, Liu anchor, stop 1 at Taicang port, and anchor 5 at Nantong port if they need to anchor, and be assisted by navigation tug to anchor. See Table 6.

In accordance with the “Standards for the Equipping of Pilotage Tugboats for the Jiangsu Section of the Yangtze River Main Line,” tugboats are prepared. See Table 7.

3. Examples of Ship Berthing and Unberthing

The 153 ships berthing in the first period show that the ships of 292 meters in length are loaded to 11.8 meters in draught, and the ships of 254 meters in length and below have 11.98 meters in draught or 12 meters in draught, which shows that the draught has more influence on berth 1# in Rugao Port of Zhonglin than the ship length, so the ships of 12 meters in draught are selected for the reference study of 150,000 tons bulk carrier load reduction berthing. Therefore, a vessel with a 12 m draft is selected for the reference study of 150 kt bulk carrier load shedding berthing.

Take the successful berthing of “Honest 19” with 12 m draft at berth 1# in Rugao Port of Zhonglin as an example, and analyze the berthing maneuvering of ships in Rugao Port of Nantong [8].
Table 1: Design dimensions of bulk carriers.

Ship tonnage DWT (t)	Design ship scale (m)			
	Total length L	Type width B	Type deep H	Full load draft T
150000 (135001 ~ 175000)	289	45.0	24.3	17.9

Table 2: Selection of berthing date.

Berthing date	Vessel (ship)	Percentage (%)
Large tidal flood (the first or fifteenth day of the lunar calendar)	9	5.9
Small tide flood (the eighth or twenty-third of the lunar calendar)	12	7.8
The rest of the time	132	86.3

Table 3: Reference table of tide (high tide) advancing speed from Tiansheng to Rugao.

Segment name	Mileage (km/mile)	High tide time difference (h)	Tidal (high tide) advancement speed (Average value, km)
Tensho port ~ Rugao port	15/8.1	0.5	16.4

Table 4: Selection of berthing tide.

Berthing tides	Vessel (ship)	Percentage (%)
Pre-low tide 0 ~ 4h	55	35.9
After the low tide 0.5h	3	2.0
Pre-climax 2h	4	2.6
After the orgasm 1 ~ 3.5h	91	59.5

Table 5: Selection of berthing time.

Berthing time	Vessel (ship)	Percentage (%)
0600 ~ 1159 times	63	41.2
1200 ~ 1759 times	70	45.7
1800 ~ 2359 times	20	13.1
0000 ~ 0559 times	0	0

Table 6: Selection of navigation route.

Sailing path	Vessel (ship)	Percentage (%)
Wusong ~ Zhonglin Rugao port 1# berth	76	49.7
Taicang (anchor 1, Liu anchor, stop 1) ~ Zhonglin Rugao port berth 1#	30	19.6
Anchor 5 ~ Zhonglin Rugao port berth 1#	47	30.7
3.1. Overview of "Integrity 19" Vessel. Overview of "Integrity 19" in restricted waters on August 28, 2019. See Figure 2.

3.2. The Voyage of "Integrity 19". We fully grasp the operation [9] characteristics of "Honest 19" and assess the channel conditions, complex traffic flow, bad hydro-meteorology and other influences; under the premise of leaving sufficient safety margin and coordination of multiple parties, we take avoidance actions cautiously [1]; when passing through shallow areas, bridge areas and other restricted areas, we make full use of tides, ship ballast and other means; when passing through restricted areas, such as shallow areas and bridge areas, we make full use of tides, ship ballast and other means to adjust the underwater and above-water scales scientifically and reasonably to choose the right time to pass under the premise of ensuring safety; during navigation, we give full play to the role of escort boats, keep the contact open, intervene and prevent potential risks in advance; the restricted ships [2] and the accompanying tugs cooperate closely to ensure that the accompanying tugs [10] can play their proper role in the first time under emergency situations. The specific navigation records are shown in Table 9.

3.3. The Amount of Sinking of the Hull of "Integrity 19". Hull sinking volume [11] is related to water depth, ship scale, and ship speed, and in the case of ships, the speed of the ship is a direct factor. Under certain conditions (water conditions, loading conditions and draught, square coefficient, etc. are not very different), only the ship speed is changeable, the ship speed is fast, and the sinking volume is large; the ship speed is slow and the sinking volume is relatively small.

The maximum draught control standard for ships in the 12.5 m deep water channel of the Jiangsu section of the Yangtze River announced on May 7, 2018 is: the maximum draught of ships in 12.5 m deep water channel below Jiangyin is controlled at 12.0 m and below. Understanding the amount of hull sinking when the ship navigates in shallow water is beneficial to leave enough surplus water depth. According to the "Regulations on Surplus Water Depth for Vessel Navigation on Yangtze River Main Line," sea vessels entering the river (subject to light draught) leave sufficient surplus water depth, according to the requirement that the actual draught is 10.5 meters and above, not less than 10% of the ship's draught.

The following is the sinking volume of the vessel "Honest 19" in restricted waters led on August 28, 2019. See Figure 2. The surplus water depth of "Honest 19" is 1.2 meters; in order to reduce the sinking volume of the ship, the ship speed should be controlled within 10 knots before passing through the restricted shallow point waters [12] during navigation, so as to ensure that the ship has enough surplus water depth to pass through the shallow shoal and shallow point waters smoothly.

3.4. "Honest 19" Inbound Operation. The vessel "Honest 19," with a draft of 12.0 meters, entered the river from the mouth of the Yangtze River and sailed to berth #1 in Rugao Port of Zhonglin, which required passing through a narrow and complicated section of water [13]. When the vessel arrived at the berth, four high horsepower tugboats were arranged to assist [14–17] in berthing and other safety measures.

3.4.1. Full Tugboat Escort. In accordance with the requirements of the pilotage vessel accompanying tug in the Jiangsu section of the Yangtze River Main Line, see Table 10. The requirements of the accompanying tug are shown in Figure 3.

(1) When "Honest 19" enters the river, arrange Changgang tug #6 maintenance from Yangtze River #3 floating to Suqiao #5 floating, and arrange Zhonggang tug #1 maintenance from Suqiao #5 floating to Zhonglin Rugao port #1 berth, with 4000 horsepower of Zhonggang tug #1001.

(2) During the navigation, the accompanying tug adjusts its position according to the actual situation to make itself in the most favorable position to deal with water emergencies.

(3) During the voyage in the Jiangsu section of the Yangtze River, "Honest 19" used light diesel fuel, prepared anchor head throughout the voyage, and prepared emergency towing cable on the port and starboard side of the bow.

3.4.2. Fugansha North Waterway Entrance to the Wharf front Waters. When "Honest 19" arrived at the entrance of Yangtze River Fugansha North Waterway, there were escort boats in the lower entrance of Fugansha North Waterway for maintenance. Three tugboats were arranged to assist in the main channel. The tugboats were located on both sides of "Honest 19" to assist "Honest 19" in controlling the heading.

Region	Navigational aid situation	Number of tugboats equipped (ship) tugboat power (horsepower)	Number of tugboats equipped (ship) tugboat power (horsepower)
Taicang port	Access to the anchorage Ship length ≥230 m or draft ≥11.5 m in and out of Taicang No. 1A, No. 1B, No. 1 anchorage need to turn around the operation of the ship	1	Not less than 3000
Nantong port	Access to the anchorage Vessel length ≥220 meters or draft ≥11.0 meters in and out of No. 4, No. 5 anchorage need to turn around operation	1	Not less than 3000

Table 7: Standard of auxiliary tug.
and decelerating. FB#2 black floating surplus water depth is small, need to deviate from the middle of the channel to choose 12.5 meters isobath navigation. If 3 tugboats are brought in the port side at the mouth of the north channel of Fujiang Sha, they cannot control the bow direction and position of the ship very well. The asymmetry of the towing force of the port tug produces a left deflection moment, and the rear tug produces a left deflection moment in order to control the hull top transom (the ship was turning the center amidships to the front), which causes the ship’s bow to reverse to the left [17–20]. At this time, the advantages of tugboats placed on both sides of the ship respectively are manifested, and it is found that the bow is deflected to the left, so that the right full rudder can be used to enter at full speed, or the right rear tugboat can be used to top the stern or the right front tugboat can be used to pull the bow so that the ship can turn to the right and the bow can be reversed at full speed after the black float of FB#3. After passing the shallow point FB#2 black float safely, then put the 3 tugboats on the port side. See Figure 4.

3.4.3. Berthing and Handling Program. We choose slow flow to berth, allocate tugs reasonably, avoid berthing at a large angle, and stabilize the ship when approaching the quay to keep it parallel to the quay. During berthing, we use rudder step by step and use a tugboat to effectively reduce the kinetic energy of the ship and reduce the impact on the quay. Before leaving the berth, we fully consider the risk and difficulty of entering the channel after leaving the berth, give full play to the role of the escort boat, and choose the right time to leave the berth. As far as possible, the three processes of leaving the berth, turning around and entering the channel should be operated in steps to minimize the operational risks. See Table 11.

Time	Ship position	Voyage records
1316time	Yangtze river #1 float	Changgang towing 6 in Yangtze river #5 floating launch
1317time	Yangtze river #3 float	Changgang tug 6 floated down in Yangtze river #4 and started escorting
1509time	Yangtze river #1 float	
1518time	Yangtze river #3 float	
1532time	Yangtze river #5 float	Changgang tow 6 end maintenance, Zhonggang tow 1001 (horsepower 4000 horsepower) maintenance

Figure 2: Case study on squat of “Chengxin 19” in restricted waters.

Table 8: Ship’s particular.

Ship name	Integrity 19	Nationality	Hong Kong, China	Wall	VRJY9
Captain	254 m	Boat width	43 m	Draught	12 m
Total tons	64769	Clarity	36935	Deadweight tons	115396 ton
Ship type	Bulk carrier	Name of goods	Baoshan~Zhonglin Rugao	Cargo capacity	85000 ton
Construction	2012	Port of origin and destination	August 28, 2019	Previous port	Ningbo
Boarding and departure time					

Table 9: Logbook.

Time	Ship position	Voyage records
1316time	Yangtze river #1 float	Changgang towing 6 in Yangtze river #5 floating launch
1317time	Yangtze river #3 float	Changgang tug 6 floated down in Yangtze river #4 and started escorting
1509time	Yangtze river #1 float	
1518time	Yangtze river #3 float	
1532time	Yangtze river #5 float	Changgang tow 6 end maintenance, Zhonggang tow 1001 (horsepower 4000 horsepower) maintenance

Table 8: Ship’s particular.

Ship name	Integrity 19	Nationality	Hong Kong, China	Wall	VRJY9
Captain	254 m	Boat width	43 m	Draught	12 m
Total tons	64769	Clarity	36935	Deadweight tons	115396 ton
Ship type	Bulk carrier	Name of goods	Baoshan~Zhonglin Rugao	Cargo capacity	85000 ton
Construction	2012	Port of origin and destination	August 28, 2019	Previous port	Ningbo
Boarding and departure time					
Because “Honest 19” was the first time to berth at berth # in Rugao Port of Zhonglin with 12 m draft, 4 tugboats were used to assist in berthing. Four high-powered tugboats (at least 2 of them not less than 4,000 hp) assisted in berthing in advance to prepare for the berthing before “Honest 19” reached the front waters of the quay. “Tug 1” moved from the starboard side of the bow of “Honest 19” to the port side of the bow and worked with “Tug 2” to control “Honest 19.” “Tug 1” moved from the starboard side of the bow of “Honest 19” to the port side of the bow, and worked with “Tug 2” to control the operation of “Honest 19.” “Tug 3” and “Tug 4” were on the port side of the stern of “Honest 19.”

According to the requirements of the “Standard for Equipping Tugboats for Berthing and Pilotage or Mooring Auxiliary Operations of Yangtze River Main Line Vessels,” the standard for equipping tugboats for berthing and mooring auxiliary operations of Yangtze River main line vessels is as follows.

Table 10: Standard of accompanying tug.

Region	Accompanying navigation scenario	Number of tugs equipped (ship)	Companion segment
Yangtze river 12.5 m deep	260 < length ≤ 300 meters of the ship	1	Full range
water channel below Nanjing	Ships with draft > 11.5 m below Jiangyin bridge	1	Full range

Note: 1. The tugboats in this table are full-swing tugboats with power > 2000 HP, speed > 12 knots, and good maneuvering performance. 2. The number of tugboats accompanying each section and situation in this table is not cumulative.

Figure 3: Tug following in whole voyage.

Table 11: Standard for tugs on berthing and disembarking in Yangtze River.

Length of boat (m)	Draught (m)	Number of tugs equipped (ship)	Tug power (hp)
260 < Captain ≤ 300	Draught > 11.0	4	Are not less than 3000, of which at least 2 not less than 4000

(1) Because “Honest 19” was the first time to berth at berth # in Rugao Port of Zhonglin with 12 m draft, 4 tugboats were used to assist in berthing. Four high-powered tugboats (at least 2 of them not less than 4,000 hp) assisted in berthing in advance to prepare for the berthing before “Honest 19” reached the front waters of the quay. “Tug 1” moved from the starboard side of the bow of “Honest 19” to the port side of the bow and worked with “Tug 2” to control “Honest 19.” “Tug 1” moved from the starboard side of the bow of “Honest 19” to the port side of the bow, and worked with “Tug 2” to control the operation of “Honest 19.” “Tug 3” and “Tug 4” were on the port side of the stern of “Honest 19.”

According to the requirements of the “Standard for Equipping Tugboats for Berthing and Pilotage or Mooring Auxiliary Operations of Yangtze River Main Line Vessels,” the standard for equipping tugboats for berthing and mooring auxiliary operations of Yangtze River main line vessels is as follows.
(2) Berthing principle. “Under normal circumstances, it is not recommended to berth on port side after turning operation of loaded and restricted vessels.

(3) Berthing principles. The ship “Honest 19” should control the remaining speed of berthing (in general, the lower end of the bow berth should not exceed 2 knots), adjust the angle of berthing, and keep enough distance across. Four tugboats controlled the forward and backward direction of “Honest 19” and the left and right direction of the bow and stern of the ship so that the ship slowly (normal speed not more than 0.05 m/s ≈ 0.1 km) and as far as possible parallel to the berth. See Figure 5.

(4) Sub-pile tethering each cable against the dock. The cableway is “422,” that is, 4 bow (stern) cables, 2 horizontal cables, and 2 inverted cables. The bow cable and stern cable are each brought on two bollards. The ship’s cable is shown in Figure 6.

Since the vessels departing from berth 1# at Zhonglin Rugao Port are 150,000-ton unladen vessels currently operating on a regular basis, they are not discussed further in this article. Our company should carry out regular mapping of the quay front, and accurately grasp the time of berthing of restricted vessels under the condition of ensuring the surplus water depth of vessels, and do a good job of unloading, and strengthen the inspection during berthing. Implement safety measures such as the stationing of high-powered tugboats to prevent the occurrence of dangerous situations such as broken cables and collisions.

It should strengthen coordination and contact, implement safety measures, ensure smooth communication channels, and effectively implement safety measures in order to timely respond to and prevent possible dangerous situations and accidents in the process of receiving and docking restricted vessels.

4. Traffic Organization

Develop the maintenance plan and traffic organization for restricted vessels [16] to ensure the safety of restricted vessel navigation and berthing.

After receiving the maintenance application, the VTS center will notify the information to the escort vessel in time, and the escort vessel will rush to the lower entrance of Fubei in advance to carry out on-site maintenance and traffic organization.

The escort boat issued the dynamic, standardized the navigation order of upstream and downstream vessels, reminded the upstream vessels to pay attention to the restricted vessels’ dynamic, adjusted the heading and speed in time, passed through the restricted vessels’ transom as far as possible, and did not rush the head navigation.

If there is a shallow point in FB#2 black floating waters, implement emergency measures such as tugboats in advance, and the channel department should organize dredging vessels for channel maintenance in time.

When berthing, the escort boat will release the restricted ship dynamic through high frequency without interruption to remind the nearby ships to drive carefully and cooperate with the restricted ship to berth; the restricted ship will strengthen the lookout and communicate with the ship in advance to eliminate the adverse effect brought by the blind area of the ship as far as possible. The traffic organization of the escorting vessel will continue until the restricted vessel safely berths.

Departure from berth, restricted vessels leave berth, turn around, and enter the channel according to the requirements of the implementation of tugboat assistance and other safety measures, if necessary, the scene of the sea patrol boat to do a good job in advance traffic organization.

Figure 7 shows the path diagrams during training: (a) to (d) are the results of the 423rd, 1,566th, 3,532nd, and 4,879th training sessions, respectively. Because of the high random probability in the early stage of training, our algorithm in Figure 4(a) does not converge and the unmanned boat collides with the obstacle [21].
5. Conclusion

Avoiding the 1 h before and after high tide, daytime, visibility distance greater than 1500 m, wind less than or equal to 6, implementing a high horsepower tug to escort the whole process, adding 2 more tugboats to assist in entering the waterway under the mouth of Fujiang Sha North Waterway, and an escort boat to escort the ship, 4 high horsepower tugboats to assist in berthing when it arrives at the port, and applying for VTS key monitoring and implementation of traffic organization and other safety measures. To prevent poor visibility and waiting for berthing, emergency anchorages should be implemented along the way [17]; anchor 1 and anchor 5 can be selected. Nantong Rugao Port is located in the lower section of the northern waterway of the Yangtze River Fujiang Sha, close to the Gaoxiang steam ferry line and Rongsheng shipyard wharf, where the water is crowded with ship traffic flow, frequent ship crossings, and an unusually complex navigational environment. In order to ensure the safety of berthing and loading/unloading operations of restricted vessels, it is necessary to implement various safety measures.

Data Availability

The raw data supporting the conclusions of this article can be obtained from the author upon request.

Conflicts of Interest

The author declared that there are no conflicts of interest regarding this work.

References

[1] Q. Liu, C. Liu, and Y. Wang, “Integrating external dictionary knowledge in conference scenarios the field of personalized machine translation method,” Journal of Chinese Informatics, vol. 33, no. 10, pp. 31–37, 2019.

[2] P. An, Z. Wang, and C. Zhang, “Ensemble unsupervised autoencoders and Gaussian mixture model for cyberattack detection,” Information Processing & Management, vol. 59, no. 2, p. 102844, 2022.

[3] P. Lois, J. Wang, A. Wall, and T. Ruxton, “Formal safety assessment of cruise ships,” Tourism Management, vol. 25, no. 1, pp. 93–109, 2004.

[4] G. Cai, Y. Fang, J. Wen, S. Mumtaz, Y. Song, and V. Frascolla, “Multi-carrier M-ary DCSK system with Code index modulation: an efficient solution for chaotic communications,” IEEE Journal of Selected Topics in Signal Processing, vol. 13, no. 6, pp. 1375–1386, 2019.

[5] K. Chandra, A. S. Marcano, S. Mumtaz, R. V. Prasad, and H. L. Christiansen, “Unveiling capacity gains in ultradense networks: using mm-wave NOMA,” IEEE Vehicular Technology Magazine, vol. 13, no. 2, pp. 75–83, 2018.

[6] A. Radwan, M. F. Domingues, and J. Rodriguez, “Mobile caching-enabled small-cells for delay-tolerant e-Health apps,”
in Proceedings of the 2017 IEEE International Conference on Communications Workshops (ICC Workshops), pp. 103–108, IEEE, Paris, France, May, 2017.

[7] F. B. Saghezchi, A. Radwan, J. Rodriguez, and T. Dagiuklas, “Coalition formation game toward green mobile terminals in heterogeneous wireless networks,” IEEE Wireless Communications, vol. 20, no. 5, pp. 85–91, 2013.

[8] S. Palanisamy, B. Thangaraju, O. I. Khalaf, Y. Alotaibi, S. Alghamdi, and F. Alasser, “A novel approach of design and analysis of a hexagonal fractal antenna array (HFAA) for next-generation wireless communication,” Energies, vol. 14, no. 19, p. 6204, 2021.

[9] S. Nagi Alsubari, S. N Deshmukh, A. Abdullah Alqarni et al., “Data analytics for the identification of fake reviews using supervised learning,” Computers, Materials & Continua, vol. 70, no. 2, pp. 3189–3204, 2022.

[10] Y. Wang, K. A. Jung, G. T. Yeo, and C. C. Chou, “Selecting a cruise port of call location using the fuzzy-AHP method: a case study in East Asia,” Tourism Management, vol. 42, pp. 262–270, 2014.

[11] J. I. Castillo-Manzano, X. Fageda, and F. Gonzalez-Laxe, “An analysis of the determinants of cruise traffic: an empirical application to the Spanish port system,” Transportation Research Part E: Logistics and Transportation Review, vol. 66, pp. 115–125, 2014.

[12] M. R. Nevins, C. M. Macal, and J. C. Joines, “A discrete-event simulation model for seaport operations,” Simulation Series, vol. 70, no. 4, pp. 213–223, 1998.

[13] C. M. Chen, H. W. Jyan, S. C. Chien et al., “Containing COVID-19 among 627, 386 persons in contact with the Diamond Princess cruise ship passengers who disembarked in Taiwan: big data analytics,” Journal of Medical Internet Research, vol. 22, no. 5, Article ID e19540, 2020.

[14] K. I. Kim and K. M. Lee, “Deep learning-based caution area traffic prediction with automatic identification system sensor data,” Sensors, vol. 18, no. 9, p. 3172, 2018.

[15] T. E. Notteboom and H. E. Haralambides, “Port management and governance in a post-COVID-19 era: quo vadis?” Maritime Economics & Logistics, vol. 22, no. 3, pp. 329–352, 2020.

[16] Y. Yamahata and A. Shibata, “Preparation for quarantine on the cruise ship Diamond Princess in Japan due to COVID-19,” JMIR public health and surveillance, vol. 6, no. 2, Article ID e18821, 2020.

[17] A. Mazaheri, J. Montewka, J. Nisula, and P. Kujala, “Usability of accident and incident reports for evidence-based risk modeling—A case study on ship grounding reports,” Safety Science, vol. 76, pp. 202–214, 2015.

[18] G. W. Wang, A. A. Pallis, and T. E. Notteboom, “Incentives in cruise terminal concession contracts,” Research in Transportation Business & Management, vol. 13, pp. 36–42, 2014.

[19] G. B. B. Vieira, R. M. D. Silva, L. A. D. S. Senna, F. J. K. Neto, and P. C. Costa, “The VTMIS implementation and their impact on pilotage and mooring operations: a comparative study between the ports of Barcelona (Spain) and Santos (Brazil),” International Journal of Logistics Systems and Management, vol. 32, no. 1, pp. 110–131, 2019.

[20] A. K. Deb Nath, H. C. Chin, and M. M. Haque, “Modelling port water collision risk using traffic conflicts,” Journal of Navigation, vol. 64, no. 4, pp. 645–655, 2011.

[21] Di Wu, Y. Lei, M. He, C. Zhang, and Li Ji, “Deep reinforcement learning-based path control and optimization for unmanned ships,” Wireless Communications and Mobile Computing, vol. 2022, pp. 1–8, Article ID 7135043, 2022.