Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Structural and antigenic analysis of the yellow head virus nucleocapsid protein p20

Nusra Sittidilokratna, Natthida Phetchampa, Vichai Boonsaeng, Peter J. Walker

Abstract

Yellow head virus (YHV) is an invertebrate nidovirus that is highly pathogenic for marine shrimp. Nucleotide sequence analysis indicated that the YHV ORF2 gene encodes a basic protein (pI = 9.9) of 146 amino acids with a predicted molecular weight of 16,325.5 Da. The deduced amino acid sequence indicated a predominance of basic (15.1%), acidic (9.6%) and hydrophilic polar (34.3%) residues and a high proportion proline and glycine residues (16.4%). The ORF2 gene was cloned and expressed in Escherichia coli as a Mr = 21 kDa His6-protein that reacted with YHV nucleoprotein (p20) monoclonal antibody. Segments representing the four linear quadrants of the nucleoprotein were also expressed in E. coli as GST-fusion proteins. Immunoblot analysis using YHV polyclonal rabbit antiserum indicated the presence of linear epitopes in all except the V37–Q 74 quadrant. Immunoblot analysis of the GST-fusion proteins and C-terminally truncated segments of the nucleoprotein allowed mapping of YHV monoclonal antibodies Y19, Y20 and YII4 to linear epitopes in the acidic domain between amino acids I116 and E137. The full-length nucleoprotein was expressed at high level in E. coli and was easily purified in quantity from the soluble cell fraction by Ni⁺-NTA affinity chromatography.

1. Introduction

Yellow head virus (YHV) is a virulent pathogen of the black tiger shrimp (Penaeus monodon). The disease was first reported to occur in 1990 in shrimp farms in central Thailand (Limsuwan, 1991). Typical signs of yellow head disease (YHD) include cessation of feeding and erratic swimming, and moribund shrimp often display a pale yellowish hue of the cephalothorax due to discoloration of the underlying hepatopancreas (Chantanachookin et al., 1993). Although the impact of YHD in Asia was quickly overshadowed by the subsequent emergence and explosive spread on white spot disease, yellow head outbreaks remain a serious concern for farmers, commonly resulting in total crop loss within 3 days of the first appearance of dead or moribund shrimp at the pond edge (Flegel et al., 1997; Walker et al., 2001). However, this important pathogen is poorly understood with relatively little information yet available on either the epidemiology of YHD or the molecular biology of YHV infection.

YHV is (+) ssRNA virus that, together with closely related Gill-associated virus (GAV) from Australia, has recently been classified in the family Roniviridae, genus Okaivirus within the order Nidovirales (Walker et al., 2004). YHV virions are rod-shaped, enveloped particles (approximately 70 nm x 180 nm) with prominent surface spikes and an internal helical nucleocapsid (Wongteerasupaya et al., 1995; Nadala et al., 1997). Three YHV structural proteins have been described, transmembrane glycoproteins gp116 and gp64, which are located in the viral envelope, and the nucleoprotein p20 which is the only protein known to be present in nucleocapsids (Jitrapakdee et al., 2003; Soowannayan et al., 2003). For GAV, the 26,235 nt genome has been sequenced and reported to contain at least four long open reading frames (ORFs). ORF1a and ORF1b are in overlapping frames and encode non-structural proteins, including a 3C-like protease. ORF2 and ORF3 are in the same reading frame and encode structural proteins. ORF4 is in a different reading frame and encodes a small non-structural protein (Walker et al., 2004).
protease, and the nucleocapsid protein of other known nidoviruses (including coronaviruses, toroviruses, and arteriviruses), the nucleoprotein gene is located downstream of the genome-length polyadenylated mRNA only following a ribosomal frame-shift at a putative pseudoknot structure in the ORF1a/1b overlap region (Cowley et al., 2000). ORF3 has been shown to encode a long polyprotein with multiple N-linked glycosylation sites and membrane-spanning domains (Cowley and Walker, 2002). GAV ORF2 has recently been shown to encode the GAV nucleoprotein—a remarkable observation as, in all other known nidoviruses (including coronaviruses, toroviruses, and arteriviruses), the nucleoprotein gene is located downstream of the 5′-proximate) rather than upstream (3′-proximate) of the glycoprotein genes (Cowley et al., 2004).

The YHV genome is less well characterized. ORF1b has been shown to share 80.5% overall nucleotide sequence identity with the cognate gene of GAV and encodes a polyprotein containing all recognized functional domains including polymerase, helicase, and metal ion-binding sequence motifs (Sittidilokratna et al., 2002). YHV structural glycoproteins gp116 and gp64 have been shown to be encoded in ORF3 and generated by post-translational proteolytic cleavage of a long polyprotein (Jitrapakdee et al., 2003). The YHV ORF2 region was analyzed using the MacVector 6.0.1 software. Potential phosphorylation sites in the deduced amino acid sequence were predicted using NetPhos 2.0 server of the Technical University of Denmark by imposing a threshold prediction score of 0.9.

2. Materials and methods

2.1. Virus purification, RT-PCR amplification and sequencing

The YHV isolate used in this work was obtained from moribund P. monodon showing signs of yellow head disease that were collected from a farm in Chachoengsao Province, Thailand, in July 1998 and was purified using the protocol described previously (Sittidilokratna et al., 2002). Genomic RNA was extracted from purified YHV using Trizol reagent (Invitrogen), dis-tilled in diethyl pyrocarbonate-treated, sterile water and stored at −80 °C. The generation of a 6.7 kb RT-PCR product extending from the 5′-poly[A] tail of the ORF1b gene to the 3′-poly[A] tail was described previously (Jitrapakdee et al., 2003). The 6.7 kb product was purified using a QIAquick gel-affinity column (Qiagen) and sequenced directly using the Big Dye (ABI) dye-terminator system and the ABI Model 377 automated sequencer at the BioService Unit (BSU), National Science and Technology Development Agency (NSTDA), Bangkok, Thailand. Sequences downstream of the ORF1b gene were obtained by walking from the 5′-end of the 6.7 kb product using sequence-specific primers. Overlapping sequence contigs were com-pleted using SeqEd 1.0.3 (ABI) software. The entire nucleotide sequence of the ORF2 region was analyzed using the MacVector 6.0.1 software. Potential phosphorylation sites in the deduced amino acid sequence were predicted using NetPhos 2.0 server of the Technical University of Denmark by imposing a threshold prediction score of 0.9.

2.2. Amplification and cloning of full-length YHV ORF2

ORF2 was generated by RT-PCR from YHV genomic RNA using forward primer NS2 and reverse primer NA2 (Table 1). The forward primer included a XhoI restriction site immediately upstream of the ORF2 initiation codon. The reverse primer included a Xhol restriction site, a termination codon and a sequence encoding a His6 tag. The RT-PCR reaction was conducted using ~20 pg of YHV RNA, a primer set containing 500 nM total primers and 8 U RNasin (Promega) in a total reaction volume of 25 µl. Amplification was conducted in a Perkin-Elmer 2400 thermal cycler using the following temperature cycles: 1 × 50 °C/30 min, 94 °C/2 min (for cDNA synthesis), 35 × 94 °C/15 s, 58 °C/15 s. 72 °C/30 s (for amplification) and 1 × 72 °C/10 min (for final-filling). The PCR products were fractionated in agarose gels, affinity purified (Qiagen) and cloned into pGEM-T Easy vector (Promega). The nucleotide sequence of the inserts was confirmed. Plasmid pGEM-T-FL containing

Table 1

Primer pair	Sequence	Amplified region	Recombinant plasmid
NS2/NA2	5′-ACTTCTTTACGAGAAGCTGCTGAGGATATGTCGAGCT-3′	M′-SNS2	pET7b-FL
NS5/NA2	5′-ACGTGACCTCAGAGGAGGAGGATATGTCAGGCT-3′	M′-E11	pGEX-5X-1-N
NS4/NA4	5′-CCATTCCAGAATGGCCAGAATGGGATATGTCGAGGCT-3′	Q′-S16	pGEX-5X-1-C
NS5/NA4	5′-CCATTCCAGAATGGCCAGAATGGGATATGTCGAGGCT-3′	Q′-S16	pGEX-5X-1-C
NS7/NA4	5′-ATACCTCTTACGAGAAGCTGCTGAGGATATGTCGAGCT-3′	M′-A2	pGEX-5X-1-NN
NS8/NA4	5′-ATACCTCTTACGAGAAGCTGCTGAGGATATGTCGAGCT-3′	M′-A2	pGEX-5X-1-NN
NS4/NA5	5′-ACGTGACCTCAGAGGAGGAGGATATGTCAGGCT-3′	Q′-K10	pGEX-5X-1-NC
NS6/NA2	5′-ACGTGACCTCAGAGGAGGATATGTCAGGCT-3′	K′S16	pGEX-5X-1-NC
NS2/NA9	5′-ATACCTCTTACGAGAAGCTGCTGAGGATATGTCGAGCT-3′	M′-D10	pET7b-FL-A9
NS2/NA8	5′-TGGATTCTGCTGAGAAGCTGCTGAGGATATGTCGAGCT-3′	M′-A12	pET7b-FL-A18
NS2/NA7	5′-TGGATTCTGCTGAGAAGCTGCTGAGGATATGTCGAGCT-3′	M′-D10	pET7b-FL-A27

* Restriction endonuclease sites are underlined and transcription initiation and termination codons are in bold.
the amplified full-length ORF2 (M1–S146) and expression vector pET17b were digested with NheI and XhoI, ligated and transformed into E. coli DH5α for amplification.

2.3. Amplification and cloning of ORF2 segments

Segments encoding the N-terminal half (M1–E73) and C-terminal half (Q74–S146) of the ORF2 protein and peptides NN (M1–A36), CN (V37–E73), NC (Q74–K109) and CC (R110–S146) were generated by PCR using plasmid pGEM-T-FL as template and primer pairs NS5/NA4, NS4/NA2, NS5/NA6, NS7/NA4, NS4/NA5 and NS6/NA2 and PCR were performed and the PCR were products gel purified and cloned into pGEM-T Easy vector (Promega) as described above. The selected clones were digested with BamHI and XhoI and the inserts gel purified and ligated into the multiple cloning site of pGEX-5X-1 (Amersham Pharmacia Biotech) to generate plasmids pGEX-5X-1-N, pGEX-5X-1-C, pGEX-5X-1-NN, pGEX-5X-1-CN, pGEX-5X-1-NC and pGEX-5X-1-CC (Table 1). Segments of the His6-ORF2 protein truncated at the C-terminus by 9, 18 and 27 amino acids were also generated by PCR using pGEM-T-FL as a template and primer pairs NS2/NA9, NS2/NA8 and NS2/NA7 (Fig. 1), and cloned into pGEM-T Easy vector as above. Clones encoding the required terminally truncated segments were digested with NheI and XhoI, gel purified and ligated into the multiple cloning site of expression vector pET17b to generate plasmids pET17b-FL-Delta19, pET17b-FL-Delta18 and pET17b-FL-Delta27 (Table 1). All recombinant plasmids were transformed into E. coli DH5α for amplification.

2.4. Expression in E. coli of recombinant ORF2 protein and partial ORF2 segments

Plasmids pET17b-FL, pGEX-5X-1-N, pGEX-5X-1-C, pGEX-5X-1-NN, pGEX-5X-1-CN, pGEX-5X-1-NC, pGEX-5X-1-CC, pET17b-FL-Delta19, pET17b-FL-Delta18 and pET17b-FL-Delta27 were purified and the in-frame orientation of inserts was confirmed by PCR. E. coli BL21 cells were transformed with the plasmids selected clones were incubated overnight at 37 °C in LB medium containing 100 μg/ml ampicillin and 25 μg/ml chloramphenicol to an optical density of 0.6–0.8 A600. A 2 ml aliquot of each culture was induced with 1 mM isopropyl-β-D-thiogalactoside (IPTG) for 0, 1 and 4 h at 37 °C shaking incubator. Cells were collected by centrifugation, resuspended in 100 μl of 1X protein loading buffer (Laemmli, 1970) and 10 μl of each induction was used to analyze directly by SDS-PAGE using a 12.5% gel. Purified YHV was used as positive control and E. coli BL21 containing pET17b and pGEX-5X-1 with no inserts were used as negative controls. Gels were stained with Coomassie brilliant blue R250 and de-stained by standard procedures. Broad range protein molecular weight markers (2–212 kDa) were used to estimate molecular weights of expressed proteins (New England Biolabs).

2.5. Antibodies

Polyclonal YHV antibody was prepared in rabbits at the Institute of Medical and Veterinary Services, Adelaide, South Australia using YHV purified as described previously.

Fig. 1. (a) Clustal W alignment of YHV and GA V ORF2 deduced amino acid sequences indicating predicted phosphorylation sites (underlined) and predicted epitopes for monoclonal antibodies Y19, Y20 and YII4 (boxed); (b) Schematic representation of ORF2 gene segments expressed in E. coli and immunoblot reactions of the expressed segments with polyclonal rabbit antisera and mouse monoclonal antibodies Y19, Y20 and YII4.
Rabbits were injected with 100 µg of purified virus in Freund’s complete adjuvant followed at intervals of 10–14 days by three doses of 100 µg in Freund’s incomplete adjuvant. Mouse monoclonal antibodies were kindly provided by Dr Paisarn Sithigorngul, Srinakarinwirot University, Bangkok, Thailand. Clone Y20 was specific for the YHV nucleocapsid protein p20, clones Y19 and YH4 were also specific for YHV p20 but cross-reacted with GAV. Clone Y3 (V3-2B) was specific for YHV structural glycoprotein gp16 (Sithigorngul et al., 2000, 2002; Soowannayan et al., 2003).

2.6. Immunoblot analysis

Proteins separated by SDS-PAGE were electroblotted to nitrocellulose membranes (Protran, Schleicher and Schuel) using a Semi PhorTM Semi-Dry Transfer Unit apparatus (Amerham Pharmacia Biotech). Blots were blocked with 5% skim milk powder in TBS-T buffer (50 mM Tris–HCl pH 8.0, 150 mM NaCl, 0.05% Tween-20) at room temperature overnight. Membranes were probed with mouse monoclonal antibody or rabbit polyclonal antibody (1:200) in 5% skim milk powder for 2 h and then washed three times with TBS-T. Membranes were then incubated with gentle agitation for 1 h at room temperature in alkaline phosphatase-conjugated goat anti-mouse IgG (Zymed) (1:3000) or goat anti-rabbit IgG (Sigma) (1:30,000) in TBS-T buffer. Membranes were then incubated with gentle agitation for 1 h at room temperature in alkaline phosphatase-conjugated goat anti-mouse IgG (Zymed) (1:3000) or goat anti-rabbit IgG (Sigma) (1:30,000) in TBS-T buffer. Membranes were washed three times with TBS-T buffer and developed in the dark in a solution containing 45 µl of 100 mg/ml NBT (p-nitro blue tetrazolium chloride) and 35 µl of 50 mg/ml BCIP (5-bromo-4-chloro-3-indolyl phosphate, p-toluidine salt) in 10 ml of TBS-T. The reaction was stopped by adding 0.5 M EDTA and immunoreactive bands were detected visually. PageRulerTM Prestained Protein Ladder (Fermentas Life Sciences) was used to confirm the size of reactive bands.

2.7. Purification of recombinant ORF2 protein

Following induction for 4 h with IPTG, E. coli BL21 cells transformed with plasmid pET17b-FL and expressing full-length His6-ORF2 protein were suspended in lysis buffer (50 mM NaH2PO4, 300 mM NaCl, 1 mM PMSF [phenylmethyl-sulphonyl fluoride], 20 mM imidazole, pH 8.0) and 1 mg/ml lysozyme. The cells were lysed by three cycles of sonication and centrifuged at 10,000 x g for 30 min. The supernatant fraction was applied to a 0.5 ml Ni-NTA column equilibrated with lysis buffer, washed with two column volumes of lysis buffer containing 30 mM imidazole, and then with four column volumes of lysis buffer containing increasing concentrations up to 100 mM imidazole. The bound His6-ORF2 protein was then eluted by washing with lysis buffer containing 250 mM imidazole. Protein determinations were conducted using the Quick Start Bradford Protein Assay Kit (Bio-Rad Laboratories). The relative intensity of protein bands in Coomassie-stained gels was determined using an ImageScannerTM flatbed scanner (Pharmacia Amersham) and analysed using ImageMaster TotalLab software.

3. Results

3.1. Nucleotide and deduced amino acid sequences of YHV ORF2

The nucleotide sequence of the YHV ORF2 gene is deposited in GenBank under accession number DQ067891. Analysis of the sequence indicated that the ORF2 gene initiation codon is located 352 nucleotides downstream of the termination codon of ORF1b. The characteristics of this long intergenic region have been described previously (Sittidilokratna et al., 2002). The ORF2 gene comprises 441 nucleotides and encodes a polypeptide of 146 amino acids with predicted molecular weight of 16325.5 Da. The ORF2 amino acid sequence indicates a highly hydrophilic, basic polypeptide (pI = 9.9) with a predominance of basic (15.1%), acidic (9.6%) and hydrophilic polar (34.3%) residues. The linear distribution of charged amino acids is highly polar. The extreme N-terminal domain of 27 amino acids contains 9 of the 22 basic residues and no acidic residues; the extreme C-terminal domain contains 9 of the 14 acidic residues and only one basic residue. The ORF2 amino acid sequence also features a high proportion P and G residues (16.4%), which are commonly associated with angular turns in the secondary structure, and 6 potential phosphorylation sites (T9, S19, Y86, T112, S115 and S135) (Fig. 1a). Clustal W alignment of the YHV sequences with GAV ORF2 (Cowley et al., 2004) indicates 79% nucleotide and 84% amino
acid identity. Variations in the deduced amino acid sequences occur primarily in the highly charged N-terminal and C-terminal domains. The central core of the polypeptide is highly conserved with only five conservative and one non-conservative substitutions in 110 amino acid residues, and four of six predicted phosphorylation sites are conserved (Fig. 1a). The overall level of amino acid sequence identity for the YHV and GAV ORF2 proteins is similar to that previously reported for the ORF1b polyprotein (88.9%) (Sittidilokratna et al., 2002).

3.2. Identification of ORF2 as the YHV nucleocapsid protein gene

E. coli BL21 cells transformed with recombinant plasmid pET17b-FL containing full-length YHV ORF2 gene were cultured to mid-log phase and induced with IPTG for 0, 1 and 4 h. Following induction, His6-ORF2 protein was expressed at high level, migrating in SDS-PAGE gels as a $M_r=21$ kDa protein (Fig. 2a). Immunoblot analysis (Fig. 2b) indicated that both the YHV virion p20 and the expressed recombinant ORF2 protein reacted with monoclonal antibody Y19 which is known to be specific for the YHV nucleoprotein (Sithigorngul et al., 2002; Soowannayan et al., 2003).

3.3. Location of linear B cell epitopes

E. coli BL21 cells were transformed with recombinant plasmids pGEX-5X-N and pGEX-5X-C, induced with IPTG and analyzed by SDS-PAGE and immunoblotting. Following induction, GST-fusion proteins incorporating the N-terminal half (M1–E73) and C-terminal half (Q74–S146) of the YHV ORF2 nucleoprotein were expressed as 32 and 35 kDa pro-

Fig. 3. Full-length recombinant YHV His6-ORF2 protein and GST-fusion proteins containing partial segments of the ORF2 protein expressed in E. coli and analyzed by SDS-PAGE (panel a) and immunoblot using polyclonal rabbit antiserum to YHV (panel b), monoclonal antibody Y19 (panel c), monoclonal antibody Y20 (panel d), monoclonal antibody Y18 (panel e), and gp116 monoclonal antibody V3-2B (panel f). Molecular weight markers (lane M); purified virus (lane 1); and E. coli transformed with plasmids pET17b-FL (lane 2), pGEX-5X-N (lane 3), pGEX-5X-C (lane 4), pGEX-5X-NN (lane 5), pGEX-5X-CN (lane 6), pGEX-5X-NC (lane 7), pGEX-5X-CC (lane 8) and vector plasmid pGEX-5X-1 (lane 9).
teins, respectively (Fig. 3a). Immunoblot analysis indicated that each expressed segment reacted with polyclonal YHV rabbit antiserum (Fig. 3b). However, staining of the C-terminal segment was significantly stronger, suggesting a relatively greater concentration of immunoreactive epitopes in this half of the protein. In immunoblots using mouse monoclonal antibodies Y19, Y20 and Y14, each reacted only with the C-terminal segment (Figs. 1b and 3c–e). Immunoreactive bands migrating below the 32 and 35 kDa bands were detected with both polyclonal antiserum and monoclonal antibodies and appear to be breakdown products of the expressed fusion proteins.

For more precise location of linear epitopes, E. coli BL21 cells transformed with recombinant plasmids pGEX-5X-NN, pGEX-5X-CN, pGEX-5X-NC and pGEX-5X-CC were induced with IPTG and analyzed by SDS-PAGE and immunoblotting. Following induction, GST-fusion proteins containing four linear quadrants of the N protein, i.e. NN (M1–A 36), CN (V37–E73), NC (Q 74–K 109) and CC (R110–S146), were expressed at similar levels and appeared in gels as 29.5, 29, 29 and 32 kDa bands, respectively (Fig. 3a). The relatively slower migration of the recombinant protein containing the CC quadrant was consistent with slower migration of the GST-fusion protein containing the C-terminal half of the N protein. Immunoblot analysis using YHV polyclonal rabbit antiserum indicated that the NN, NC and CC quadrants contained immunoreactive epitopes (Figs. 1b and 3b). The strongest reaction was with the CC quadrant (R110–S146) which, like the longer C-terminal half, appeared to generate a series of smaller immunoreactive breakdown products. The CN quadrant (V37–E73) did not react with the polyclonal rabbit antiserum. Immunoblot analysis using mouse monoclonal antibodies Y19, Y20 and Y14 indicated that each reacted only with the CC quadrant (Figs. 1b and 3c–e).

Further mapping of linear epitopes within the CC quadrant was conducted using three terminally truncated clones of the YHV nucleoprotein. E. coli BL21 cells transformed with recombinant plasmids pET17b-FL-Δ9, pET17b-FL-Δ18 and pET17b-FL-Δ27 were induced with IPTG and analyzed by SDS-PAGE and immunoblotting. Following induction, recombinant nucleoproteins truncated at the C-terminus by 9, 18 and 27 amino acids were expressed at similar levels and appeared in gels as 16, 14.5, and 13.5 kDa bands, respectively (Fig. 4a). The significant reduction in Mr (5 kDa) following removal of the C-terminal 9 amino acids confirms that this short highly acidic domain is the primary cause of the difference between the observed Mr and deduced molecular weight of the full-length nucleoprotein. Immunoblot analysis indicated each truncated nucleoprotein segment reacted with YHV polyclonal antiserum (Figs. 1b and 4b). In the Δ27-truncated protein, a second minor 14.5 kDa band detected by SDS-PAGE following induction also reacted strongly with the polyclonal antiserum. The origin of this band is not yet determined but monoclonal antibody reactions (see below) indicate that it also includes the Δ27 truncation. Monoclonal antibodies Y19 and Y14 reacted with each of the Δ9- and Δ18-truncated nucleoproteins but not the Δ27-truncated protein, indicating the epitopes are located either within the deleted E129–E137 segment or span the point of trun-
by Ni⁺-NTA affinity chromatography. The expressed nucleo-
toprotein is located either within the deleted P120–A 128 segment or
cation (Figs. 1b and 4d and f). Monoclonal antibody Y20 reacted
Fig. 5. Purification of recombinant YHV His6-ORF2 protein by Ni⁺-NTA affin-
ity chromatography analysed by SDS-PAGE (panel a) and immunoblot using
YHV monoclonal antibody Y19 (panel b). Molecular weight markers (lane M);
purified virus (lane 1); whole cell lysate of E. coli induced with IPTG for 4 h. Following
induction, His₆-ORF2 protein was purified from the cell lysate by Ni⁺-NTA affinity chromatography
analysed by SDS-PAGE (panel a) and immunoblot using YHV monoclonal antibody Y19 (panel b).
Fig. 5. Purification of recombinant YHV His₆-ORF2 protein by Ni⁺-NTA affin-
ity chromatography analysed by SDS-PAGE (panel a) and immunoblot using
Yellow head virus

1.15 mg/ml and the overall efficiency of purification was approx-
rnantly 30%.

3.4. Purification of recombinant YHV nucleocapsid protein

E. coli BL21 cells transformed with recombinant plasmid pET17b-FL containing full-length YHV ORF2 gene were cul-
tured to mid-log phase and induced with IPTG for 4 h. Following
induction, His₆-ORF2 protein was purified from the cell lysate by Ni⁺-NTA affinity chromatography.

3. Discussion

Yellow head virus is an invertebrate nidovirus that is classi-
ified in the genus Okavirus of the family Roniviridae (Walker et
al., 2004). Key criteria for the taxonomic placement of YHV and
closely related Gill-associated virus (GAV) are the existence of a (+) ssRNA genome containing two overlapping long open-
reading-frames (ORF1a and ORF1b) that are aligned during
translation by a −1 ribosomal frame-shift, and a characteris-
tic 'SDD' motif in the active site of the RNA-dependent RNA
polymerase (Cowley et al., 2000; Sittidilokratna et al., 2002).

It has also been reported that the GAV genome is transcribed as a
nested set of 3′-coterminal sub-genomic mRNAs (Cowley et al., 2002). However, unlike the known vertebrate nidoviruses (coronaviruses, toroviruses and arteriviruses), the GAV nucle-
oprtein gene (ORF2) is located upstream, rather than down-
stream, of the glycoprotein gene (Cowley et al., 2004). In this
paper, we confirm that the YHV nucleocapsid protein (p20) is
also encoded in ORF2 which immediately precedes the gene
encoding the transmembrane glycoproteins gp116 and gp64 (i.e.
ORF3) (Jitrapakdee et al., 2003). The function of the YHV ORF2
gene is evident from the deduced amino acid sequence, which
shares a high level identity (84%) with the GAV nucleoprotein.
It is also demonstrated by the reaction of the E. coli-expressed recombinant ORF2 protein with YHV monoclonal antibody Y19
which is known to be specific for virion structural protein p20
(Sithigorgngul et al., 2002), the only known polypeptide compo-
nent of YHV nucleocapsids (Sowñawanyan et al., 2003). The
unusual location of the YHV and GAV nucleoprotein genes
may be a consequence of genetic recombination in an ancestral
nidovirus. High-frequency genetic recombination is known to
occur commonly in (+) ssRNA viruses, including nidoviruses
(Lai et al., 1985; van der Most and Spaan, 1995; Snijder et
al., 1991; Lai, 1992), and it has been proposed that the diverse
structural and morphological characteristics of nidoviruses may
have occurred by a modular evolutionary process that results in
exchange by recombination of complete genes or gene
sets (Snijder and Horzinek, 1993, 1995; Snijder and Spaan,
1995).

There is a significant difference between the molecu-
lar weight of the YHV nucleocapsid protein predicted from
the deduced amino acid sequence (M.W. = 16.6 kDa) and the
observed electrophoretic mobility of the virion nucleoprotein
by SDS-PAGE (Mr ∼20 kDa). The deduced sequence indicates
several unusual structural features that may contribute to aber-
rant migration in gels including a relatively high proportion of
proline and glycine residues and a highly polar arrangement
of charged residues. The discrepancy between predicted size
and electrophoretic mobility is also evident in the His₆-tagged
full-length recombinant protein expressed in E. coli (Fig. 2).
It was also observed that the expressed GST-fusion proteins con-
taining the C-terminal half (Q₁⁴⁵–S¹⁵⁴) and the CC quadrant
(R¹⁵⁸–S¹⁶⁸) of the nucleoprotein were retarded relative to the
migration of fusion proteins containing other segments of sim-
ilar size (Fig. 3). The 5 kDa reduction in Mr following removal
of the C-terminal 9 amino acids indicates that, despite the over-
all predominance of basic residues (pI = 9.9), this short highly
acidic domain is primarily responsible for the relatively slow
electrophoretic migration of the nucleoprotein.

Immunoblot analysis using polyclonal rabbit antiserum
raised against nonionic detergent-disrupted, purified YHV iden-
tified reactive linear epitopes in all quadrants of the nucleoprotein except for the CN quadrant (V172–E175). This region has a low antigenicity index (Hopp and Woods, 1981) and a low predicted surface probability (Janin, 1979) and may well be buried in the core of the folded nucleoprotein. The most intense reactions occurred with the acidic CC quadrant (R110–S146), which also contained the epitopes for three available mouse monoclonal antibodies. Monoclonal antibodies Y19 and YII4 each mapped to linear sites either within the deleted E129–E137 segment or downstream of the upstream region spanning the point of truncation. Y19 and YII4 were derived from different cell fusions. Each reacts with both YHV and GAV and so must target highly conserved sequences comprising the 6–7 amino acids of a linear B cell epitope. This identifies the sequence TPQPDSL spanning the point of truncation as the only possible epitope for Y19 and YII4 (Fig. 1b). Monoclonal antibody Y20 is specific for YHV and so must target a 6–7 amino acid sequence that is not identical in GAV either within the deleted E129–E137 segment or the upstream region spanning the point of truncation (Fig. 1b). This identifies a maximum span of 15 amino acids from D123 to E137 (DIENLAEGIHAM145). Therefore, the Y20 epitope must be located in one of the variable regions at either end of this 15 amino acid sequence.

His6-tagged recombinant YHV N protein was expressed in E. coli at high levels and was easily purified from the bacterial cell lysate by Ni2+-NTA-affinity chromatography. The purified product will assist future structural studies of the YHV nucleoprotein and may be applied for the development of immunodiagnostic reagents. It has been reported previously that structural proteins VP19 and VP28 of white spot syndrome virus (WSSV) are used for the formation of virus-like particles of WSSV. While the nature of the protective mechanism is not known, it is possible that structural proteins of other shrimp viruses could also induce protective immunity. High-level expression and purification of recombinant YHV nucleoprotein will facilitate similar studies for this second major pathogen of farmed shrimp.

Acknowledgements

The authors wish to thank Dr Paisarn Sithigorngul for providing mouse monoclonal antibodies. We also thank Dr Jeff Cowley for useful discussions and Mr Lee Cadogan for assistance with preparation of rabbit antisera.

References

Chanthachokeen, C., Boonyaratpalin, S., Kasomchandra, J., et al., 1993. Histology and ultrastructure reveal a new granulocytic-like virus in Penaeus monodon affected by yellow-head disease. Dis. Aquat. Org. 17, 145–152.

Cowley, J.A., Cadogan, L.C., Spann, K.M., et al., 2004. The gene encoding the nucleoprotein p23 of Penaeus monodon shrimp: a highly conserved structural protein. Genet. Mol. Biol. 27, 143–1446.

Cowley, J.A., Dimmock, C.M., Walker, P.J., 2002. Gill-associated midvirus of Penaeus monodon prawns transcribes 3′-coterminal subgenomic RNAs that do not possess V-leader sequences. J. Gen. Virol. 83, 927–935.

Cowley, J.A., Walker, P.J., 1977–1987. The complete sequence of gill-associated midvirus of Penaeus monodon prawns indicates a gene organisation unique among midviruses. Arch. Virol. 147.

Flegel, T.W., Boonyaratpalin, S., Wibulchiunchumkiat, B., 1997. Progress in research on yellow-head virus and white-spot virus in Thailand. In: Flegel, T.W., Maclaren, J.H. (Eds.), Diseases in Asian Aquaculture III. Fish Health Section, Asian Fisheries Society, Manila, pp. 265–269.

Hopp, T.P., Woods, K.R., 1981. Prediction of protein antigenic determinants from amino acid sequences. Proc. Natl. Acad. Sci. U.S.A. 86, 152–156.

Janin, J., 1979. Surface and inside volumes in globular proteins. Nat. Lond. 277, 491–492.

Jitrapakdee, S., Unajak, S., Sithigorngul, N., et al., 2003. Identification and analysis of gp116 and gp64 structural glycoproteins of yellow head midvirus of Penaeus monodon shrimp. J. Gen. Virol. 84, 863–873.

Laemmli, U.K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nat. Lond. 274, 680–685.

Lai, M.M., 1992. RNA recombination in animal and plant viruses. Microbiol. Rev. 56, 61–79.

Lai, M.M., Baric, R.S., Makino, S., et al., 1985. Recombination between non-segmented RNA genomes of murine coronaviruses. J. Virol. 56, 449–456.

Limawan, C., 1991. Handbook for Cultivation of Black Tiger Prawns. Tan-setsuki Co. Ltd, Bangkok (in Thai).

Naladu, E.C.B., Tapay, L.M., Loh, P.C., 1997. Yellow head virus: a diarrhoea-like pathogen of penaeid shrimp. Dis. Aquat. Org. 31, 141–146.

Sithigorngul, P., Chauychuwong, P., Sithigorngul, W., et al., 2000. Development of a monoclonal antibody specific to yellow head virus (YHV) from Penaeus monodon. Dis. Aquat. Org. 492, 27–34.

Snijder, E.J., Horzinek, M.C., 1993. Toroviruses: replication, evolution and differentiation of yellow head complex viruses using monoclonal antibodies. Dis. Aquat. Org. 50, 87–93.

Snijder, E.J., den Boon, J., Horzinek, M.C., et al., 1991. Comparison of the genome organization of toro- and coronaviruses: both divergence from a common ancestor and RNA recombination have played a role in Borna virus evolution. Virology 180, 448–452.

Snijder, E.J., Horzinek, M.C., 1993. Toroviruses: replication, evolution and comparison with other members of the coronavirus-like superfamily. J. Gen. Virol. 74, 2305–2316.

Snijder, E.J., Horzinek, M.C., 1995. The molecular biology of toroviruses. In: Siddell, S.G. (Ed.), The Coronavirusidae. Plenum Press, New York, pp. 236–291.

Snijder, E.J., Spaan, W.J.M., 1995. The molecular biology of coronavirus-like superfamily. In: Siddell, S.G. (Ed.), The Coronavirusidae. Plenum Press, New York, pp. 239–255.

Snijder, E.J., Horzinek, M.C., 1993. Toroviruses: replication, evolution and comparison with other members of the coronavirus-like superfamily. J. Gen. Virol. 74, 2305–2316.

Snijder, E.J., Horzinek, M.C., 1995. The molecular biology of toroviruses. In: Siddell, S.G. (Ed.), The Coronavirusidae. Plenum Press, New York, pp. 11–31.

Snijder, E.J., Spaan, W.J.M., 1995. Coronavirus replication, transcription and RNA recombination. In: Siddell, S.G. (Ed.), The Coronavirusidae. Plenum Press, New York, pp. 11–31.

Sithigorngul, P., Boonyaratpalin, S., Wibulchiunchumkiat, B., 1997. Progress in research on yellow-head virus and white-spot virus in Thailand. In: Flegel, T.W., Maclaren, J.H. (Eds.), Diseases in Asian Aquaculture III. Fish Health Section, Asian Fisheries Society, Manila, pp. 265–269.

Walker, P.J., Cadogan, L.C., Spann, K.M., et al., 2001. Yellow head complex viruses: transmission cycles and topographical distribution in the Asia-Pacific region. In: Browdy, C.L., Jory, D.E. (Eds.), The New Wave: Proceedings of the Special Session on Sustainable Shrimp Culture. Aquaculture 2001. The World Aquaculture Society, Baton Rouge, pp. 227–237.

Walker, P.J., Bonami, J.R., Boomsang, V., 2004. Roniviridae. In: Fauquet, C.M., Mayo, M.A., Maniloff, J., et al. (Eds.), Virus Taxonomy, VIIth Report of the ICTV. Elsevier/Academic Press, London, pp. 973–977.
Witteveldt, J., Ciliento, C.C., Vlak J.M., et al., 2004. Protection of Penaeus monodon against infection with white spot syndrome virus by oral vaccination. J. Virol. 78, 2057-2061.

Wongteerasupaya, C., Vickers, J., Skinnertenes, S., et al., 1995. A non-occluded, systemic baculovirus that occurs in cells of ectodermal and mesodermal origin and causes high mortality in the black tiger prawn Penaeus monodon. Dis. Aquat. Org. 21, 66-77.

Ziebuhr, J., Bayer, S., Cowley, J.A., et al., 2003. The 3C-like proteinase of an invertebrate nidovirus links coronavirus and potyvirus homologs. J. Virol. 77, 1415-1426.