23rd International Conference on Prenatal Diagnosis and Therapy
7-11 SEPTEMBER 2019
MAX ATRIA @ SINGAPORE EXPO

Invited Speakers
confirmed as of 6 May 2019

David Amor (Australia) Monique Haak (Netherlands)
Art Beaudet (USA) Jon Hyett (Australia)
Lyn Chitty (UK) Brynn Levy (USA)
Rossa Chiu (Hong Kong) Tippi Mackenzie (USA)
Dong Dong (Hong Kong) Dean Nizetic (Singapore)
Rick Finnell (USA) Mark Pertile (Australia)
Jane Fisher (UK) Ritsuko Pooh (Japan)
James Goldberg (USA) Liona Poon (Hong Kong)
Francesca Grati (Italy) Daniela Prayer (Austria)

ispdhome.org/ISPD2019

Clinical Genetics
Fetal Imaging
Fetal Therapy
and much more

International Society for Prenatal Diagnosis
Building Global Partnerships in Genetics and Fetal Care
info@ispdhome.org | +1 434.979.4773 | www.ispdhome.org
Placental MRI and its Application to Fetal Intervention

Running head: Placental MRI and its Application to Fetal Intervention

Words: 3560
Tables: 1
Figures: 6

Authors: Rosalind Aughwané
Emma Ingram
Edward D. Johnstone
Laurent J Salomon
Anna L. David
Andrew Melbourne

Institutions:
1Institute for Women’s Health; University College London, UK
2University of Manchester, UK
3Hôpital Necker-Enfants Malades, AP-HP, EHU PACT & LUMIERE Platform, Université Paris Descartes, Paris, France
4NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom
5School of Biomedical Engineering and Imaging Sciences, King's College London.
6Medical Physics and Biomedical Engineering, University College London.

Corresponding Author: Andrew Melbourne PhD,
School of Biomedical Engineering and Imaging Sciences
9th Floor East, Becket House, Kings College London, 1 Lambeth Palace Road, LONDON, SE1 7EU.
Email: andrew.melbourne@kcl.ac.uk

Funding: This research was supported by the Wellcome Trust (210182/Z/18/Z and Wellcome Trust/EPSRC NS/A000027/1). The funders had no direction in the study design, data collection, data analysis, manuscript preparation or publication decision

Disclosures: We have no conflicts of interest to report.

What is already known about this topic?

- Placental function is responsible for significant morbidity and mortality in fetal growth restriction, and in monochorionic twin pregnancies complicated by selective growth restriction and transfusion conditions.
- Our ability to diagnose placental dysfunction in utero is currently limited, with implications for clinical decision making.
MRI is capable of imaging the whole human placenta at any gestational age, and has been shown to demonstrate differences between normally functioning placentas, and those with growth restriction.

What does this study add?
- This review summarises up-to-date research on placental function that has been carried out using different MRI modalities.
- We discuss how combinations of these techniques have much to contribute to fetal conditions amenable for therapy such as singletons at high risk for FGR through early recognition, appropriate management and monitoring response to treatment; and monochorionic twin pregnancies for planning surgery and counselling for selective growth restriction and transfusion conditions.

Data availability Statement: Data sharing is not applicable to this article as no new data were created or analysed in this study.

ABSTRACT

Objective Magnetic Resonance Imaging (MRI) of placental invasion has been part of clinical practice for many years. The possibility of being better able to assess placental vascularization and function using MRI has multiple potential applications. This review summarises up-to-date research on placental function using different MRI modalities.

Method: We discuss how combinations of these MRI techniques have much to contribute to fetal conditions amenable for therapy such as singletons at high risk for FGR; and monochorionic twin pregnancies for planning surgery and counselling for selective growth restriction and transfusion conditions.

Results The whole placenta can easily be visualized on MRI, with a clear boundary against the amniotic fluid, and a less clear placental-uterine boundary. Contrasts such as Diffusion Weighted Imaging, Relaxometry, Blood Oxygenation Level Dependent MRI and flow and metabolite measurement by Dynamic Contrast Enhanced MRI, Arterial Spin Labeling or spectroscopic techniques are contributing to our wider understanding of placental function.

Conclusion The future of placental MRI is exciting, with the increasing availability of multiple contrasts and new models that will boost the capability of MRI to measure oxygen saturation and placental exchange, enabling examination of placental function in complicated pregnancies.
1 INTRODUCTION

Magnetic Resonance Imaging (MRI) of the placenta has been part of clinical practice for many years, but is most commonly performed to aid in the diagnosis and management of abnormally adherent placentation. However, there is a growing field investigating imaging of the placenta for other applications (Figure 1). This is down to the technique’s ability to image not only structure, but to also provide quantitative measures that relate to the tissue properties and function. Several techniques are sensitive to the vascular structure and to properties such as oxygenation and blood flow and thus reveal functional information. Combinations of these techniques have much to contribute to fetal conditions amenable for therapy such as singletons at high risk for Fetal Growth Restriction (FGR) through early recognition, appropriate management and monitoring response to treatment; and monochorionic twin pregnancies for planning surgery and counselling for selective growth restriction and transfusion conditions.

1.1 FETAL GROWTH RESTRICTION

Placental insufficiency leads to FGR, where a fetus fails to reach their genetic growth potential. Poor fetal nutrition and hypoxia result, with increased risk of cognitive impairment, in cerebral palsy and in lifelong metabolic consequences. The condition is associated with up to two thirds of stillbirths in the UK. FGR can be challenging to diagnose as placental function cannot currently be directly measured. Surrogate markers, such as abnormal fetal growth trajectory, or abnormal blood flow to the placenta are used with varying success. At present there is no treatment for FGR, or the associated condition pre-eclampsia, however trials are exploring several new therapeutic avenues, including; sildenafil, esomeprazole, metformin, pravastatin and vascular endothelial growth factor maternal gene therapy. Developing new techniques to assess placental function and response to management is therefore essential.

FGR is typically divided into early and late-onset, most frequently defined as diagnosis before or after 32 weeks of gestation. These have relatively different clinical phenotypes, with early-onset FGR being relatively less common, but with a high incidence of placental pathology, and late-onset being more common, but with a variety of aetiologies. Clinical challenges in these groups also differ. In early-onset FGR the difficulty is in balancing in utero mortality and morbidity against the associated complications of iatrogenic preterm birth, whereas in late-onset FGR the primary issue is detection and delineation...
from normal small fetuses. Chronic hypoxia is a critical feature of FGR18,24. It is possible that measurement of fetal or placental oxygen saturation or oxygen exchange may be useful in differentiating the normal small fetus from one with early or late-onset FGR, and might predict outcome.

Placental insufficiency is generally considered to be as a consequence of inadequate spiral artery remodeling from insufficient trophoblast invasion in early pregnancy25. The most common abnormal histological finding is patchy placental infarcts26. Lesions relating to hypoxia, and therefore suggestive of reduced maternal perfusion are seen more commonly than in normally grown pregnancies. These include syncytiotrophoblast knots, excess cytotrophoblast cells, thickened basement membranes, villous fibrosis, and hypovascular terminal villi, with reduced villous volume, reduced intervillous space, and non-specific inflammatory lesions27. Understanding this pathophysiology is key to timely diagnosis and management of FGR. Imaging the placenta is therefore important to our understanding and ability to manage FGR15–18.

2 COMPLICATED MONOCHORIONIC TWIN PLACENTAS

2.1 Twin-to-twin transfusion syndrome

In monochorionic twin pregnancies the two fetuses are intrinsically linked through connections between their circulatory system within the placenta28,29,30,31. Twin-to-twin transfusion syndrome (TTTS) is caused by haemodynamic unbalance through these vascular connections32, resulting in one hypovolaemic and one hypervolaemic fetus. If managed conservatively the overall survival rate for TTTS is around 30\%33. Laser surgery to coagulate the anastomosing vessels along the placental equator has been shown to be the most effective management option for severe TTTS34. Increasing information on the location of the vascular equator, and the flow mismatch between twins may help clinicians in managing these pregnancies and in planning intervention.

There are limited studies of the villous structure and microcirculation, so placental vascular function is poorly understood. Histological studies have found no difference in histomorphometric variables between shared and non-shared lobules of uncomplicated monochorionic pregnancies35,36. In TTTS however, the donor has reduced average terminal villous diameter, smaller capillaries, reduced vascularization and larger feto-maternal
diffusion distance, compared to the recipient twin35,36, likely due to the haemodynamic imbalance between the twins.

2.2 Selective Fetal Growth Restriction

Selective Fetal Growth Restriction (sFGR) is usually regarded as the combination of one twin <10th centile for estimated fetal weight (EFW) and a growth discordance between monochorionic twins of greater than 20-25%, and occurs in 7-11% of monochorionic pregnancies37–39. It is an important cause of morbidity and mortality40,41. Selective growth restriction provides unique challenges to the obstetrician. Premature delivery comes at the cost of prematurity for the normally grown twin. In some cases, selective reduction of the growth restricted twin is offered in order to optimise the chances for the normally grown fetus. Laser surgery to divide the placentas can also be used, to give both fetuses a chance, whilst protecting the normally grown fetus from harm should the smaller twin die. There is limited information for the clinician on which management option is likely to be the most beneficial for any given situation.

Fetuses with the greater share of the placenta have faster growth velocity than fetuses with the smaller share, unless an arterio-venous anastomosis is present with net transfusion towards the fetus with the smaller territory which will equalize growth velocities30. Additionally the presence of an arterio-arterial anastomosis has been linked to unequal growth in twins with unequal placental share, and absence of an arterio-arterial anastomosis breaks the association42 although this is thought to have a protective association for TTTS. Conversely an increased proportion of arterio-venous anastomoses, although rare, is linked with Twin Anemia Polycythemia Sequence (TAPS)43. Thus studies suggests a combination of the volume of placental tissue available to each fetus, and the degree and balance of transfusion between them, is responsible for the development of selected growth restriction44.

3 MRI

3.1 Structural Imaging of placenta size and shape

The placenta can easily be visualized on MRI, with a clear boundary against the amniotic fluid, and a less clear placental-uterine boundary (Figure 2). The entire placenta can be imaged at any gestational age, measuring the anatomical size, shape and vascular properties across the whole organ. MRI is safe in pregnancy45. T2 weighted structural imaging shows a
homogenous structure with relatively high T2 signal intensity, giving it a light grey appearance. The T2 value falls in placental insufficiency, giving the placenta a darker appearance, with more heterogeneity, possibly due to areas of infarction and fibrosis. The placenta is smaller in FGR compared to normally grown controls, and has a thickened, globular appearance. In twin pregnancies, the two cord locations can be seen, and the larger chorionic vessels identified, allowing identification of the vascular equator. Super-resolution reconstruction techniques can be used to combine data from 2D stacks acquired in multiple-planes into a single 3D volume. This technique has been applied widely to the fetal brain, and extensions of this technique, although made substantially more complicated by non-rigid motion, are being used for other abdominal organs. For placenta size, shape and thickness estimation, these techniques are likely to represent the best way to acquire data. 3D reconstruction of structural MRI data has already been shown to have potential in surgical planning for laser division in TTTS, and as imaging and reconstruction techniques improve is likely to play an increasingly important role.

3.2 Diffusion Weighted Imaging

Diffusion Weighted Imaging (DWI) is widespread in all areas of medical MRI. The sensitisation of the MRI signal to water movement means that the local tissue structure can be measured by changing the parameters of the diffusion pulses. An apparent diffusion coefficient (ADC) value is calculated for each voxel within an image, and this is displayed as a parametric ADC map. Voxels with higher ADC values represent a greater degree of water diffusion such as within fluid, whereas voxels with low ADC values represent restricted and hindered diffusion, such as within cellular tissue. The ADC therefore depends on the tissue being imaged, and if pathology is present and thus the accuracy and the precision of this value depend on the experimental parameters used.

Several studies have looked at DWI of the growth-restricted placenta, with placental ADC values being found to be significantly lower in the placentas of FGR pregnancies compared to normal controls and in sFGR. This suggests the micro-architectural disturbance in FGR placentas is measurable with MRI.

When DWI is performed in well perfused vascular tissues, the measured signal attenuation at low diffusion sensitisation is not only due to free water diffusion in tissue but also from microcirculation within the capillary network. Intra-Voxel Incoherent Motion (IVIM) is the traditional variant of DWI applied to perfused organs. It can be used in the assessment of
capillary flow without the need for injecting contrast agents. As movement of blood within capillaries has no specific orientation and is dependent on the vascular architecture and velocity of the blood it is termed pseudodiffusion. The IVIM model has two compartments, relating to the solid tissue diffusivity and the tissue perfusion, or pseudodiffusivity. The proportion of each signal is given by the perfusion fraction. Naturally the product of this perfusion fraction with the pseudodiffusivity is a correlate of blood flow. Although the model fitting is prone to noise, several authors have attempted to make fitting more robust.

Surgically reduced uterine blood flow in animal models can be observed with IVIM imaging, and in humans the perfusion fraction has been repeatedly shown to be reduced in placental insufficiency compared to normal placentas. Caution however should be applied when interpreting quantitative results from single-contrast MRI which can be confounded by choice of other imaging parameters if not held-constant; in both the liver and the placenta, quantification of the vascular density is affected by the choice of other image acquisition parameters. Specifically it has been found that the estimated perfusion fraction in IVIM is dependent on the chosen echo time. This problem may be overcome using joint models, fitting DWI alongside T2 or T2* relaxation measurements.

Diffusion measurements of this type can be enhanced by including directional sensitisation and this has been used frequently in other organs to reveal the organisation of the tissue structure, especially the brain. In the placenta the directional sensitivity might reveal information about the structure of the villous tree and how this changes in pathology such as FGR where insufficient spiral artery re-modelling is thought to lead to mechanical damage and immaturity in the fetal villous tree which may reduce the measured diffusion of water. In the human haemomonochorial placenta the technique may be limited by in vivo motion and pulsatility in contrast to the complicated structural exchange interfaces seen in other mammals. The technique is also, in principle, sensitive to water perfusion. There is now some evidence of directionality in flow in the placenta, particularly near to the chorionic plate and this is likely to be associated with net differences in flow properties between chorionic arteries and veins.

Although to date most research has been performed investigating singleton growth restriction, in the future perfusion imaging may be useful to quantify placental perfusion mis-match between twins, and the functional volume of placental tissue. This may guide the best location for laser coagulation, ensuring each twin has sufficient functioning tissue to survive.
or demonstrate that this is not possible, making selective reduction the safest management
option.

3.3 Relaxometry

Relaxometry is the measurement of the signal decay rate in MR by both longitudinal (T1) and
transverse (T2/T2*) decay. These contrasts can be explored independently by careful choice
of pulse sequence. Theoretically, if not practically, these times correspond to independent
physical properties of the tissue.

T2 relaxometry is the quantitative measure of hydrogen proton relaxation following
excitation with a radio frequency pulse. The rate of relaxation is different for each tissue;
tissue has a short T2 relaxation time, whilst blood has a much longer T2 relaxation time\(^77,78\)
(Figure 3b). Tissues with greater all over surface area, whether in the form of cellular
membranes or intracellular or extracellular fibrillary macromolecules, tend to have shorter T2
values. In the placenta T2 relaxation time decreases with increasing gestation\(^79\), possibly
because of the proportional increase in villous tissue compared to intervillous space, and
increasing fibrin volume density\(^80\). T2 relaxation times are significantly reduced in placentas
from pregnancies complicated by FGR compared to those with appropriate growth, possibly
due to increases in fibrosis, necrosis and infarcts within the placental parenchyma\(^81–84\) and
reduced fetal oxygen saturation\(^24,85\).

T2 values are dominated by the level of oxygen saturation\(^78,86,87\), higher oxygen saturation
values result in higher T2 values. MRI may provide a useful indirect measurement for fetoplacental oxygenation since oxygen saturation is difficult to measure directly and invasive
methods carry a risk of miscarriage. MRI relaxometry provides a non-invasive way to
measure fetoplacental oxygen levels, that has been partially validated in sheep\(^88,89\). Oxygen
saturation in the fetoplacental system is typically quite low when compared to healthy adult
measures of oxygen saturation and is found to be significantly lower in growth restricted
fetuses\(^24,90\).

Blood Oxygenation Level Dependent (BOLD) MRI is a T2*-weighted sequence that is able
to detect changes in the proportion of deoxyhaemoglobin, and hence reflects tissue oxygen
saturation. This technique has found much use for mapping brain function where spatial
patterns are used to understand functional networks\(^91,92\), but is increasingly finding other
applications outside of the brain for its ability, in combination with other flow measurements,
to measure oxygen extraction and thus efficiency\(^93\). However, the interpretation of the
placental BOLD signal is complex, with signal changes dependent on other factors including; blood flow, blood volume fraction and haematocrit82,94,95.

BOLD and T2* measurements are often conflated in the literature. The T2* value cannot be directly related to tissue oxygenation as tissue morphology also affects the T2* value, with a reduction in T2* of the placenta with increasing gestation96 (Figure 4). This gestational relationship may be related to the histological maturation of the placenta, and the decrease in placental oxygenation as pregnancy advances97. During a maternal oxygen-challenge (hyperoxia) the difference in the absolute T2* value (ΔT2*) signals the change in placental oxygenation independent of baseline conditions, thus demonstrating tissue oxygen saturation. Changes in BOLD signal with controlled hyperoxia and in FGR have been demonstrated in the placenta and other fetal organs98,99. However, a difference in ΔT2* has not been demonstrated in cases of placental dysfunction related to FGR to date despite conflicting animal data82,100–102.

In T1-weighted Oxygen-Enhanced (OE) MRI100,103,104 the signal change related to the maternal oxygen-challenge reflects changes in tissue pO2, due to the paramagnetic properties of dissolved oxygen. Compared to BOLD, the absolute signal change seen in OE MRI declines with gestational age and is significantly lower in pregnancies with fetal growth restriction100,103. This is thought to support the theory of a relative placental hypoxia in FGR related to placental dysfunction, as more of the dissolved oxygen becomes bound to deoxyhaemoglobin, and hence less becomes dissolved within the tissue.

The potential to estimate fetal oxygen saturations non-invasively has obvious potential in the management of singleton and twin growth restriction. It could inform on response to treatment, and also on timing of delivery and might relate to placental function, allowing assessment of each lobule of the placenta. The dependence of T2 on haematocrit may also be useful in assessment of TTTS, and if TAPS is suspected.

3.4 Multi-compartment multi-contrast models

Conventional T1, T2 and T2* relaxometry are limited having no physiological correlate outside of MRI and an often unknown or intractable dependence on physiological properties of interest such as blood flow, saturation, haematocrit or cellular composition. Pure tissue regions such as fluid can sometimes be used to infer properties directly105 but these are more
often the exception rather than the rule. Most regions of tissue within an imaging voxel will be mixed, particularly in the heterogenous placenta where fetal blood, maternal blood and tissue are present within any given voxel. Using joint acquisition protocols it can be possible to separate the signal contributions from different tissue types. This approach does allow physiological properties of the tissue to be inferred; providing the window for potential histological, complementary or invasive validation methods.

Multi-compartment multi-contrast models of the type used in DWI can also be generated. The first multicompartment placental specific model is DECIDE, which separates the different T2 values of fetal and maternal blood from the background tissue compartment (Figure 5). Doing this results in a mechanism, under certain assumptions, to measure the fetal blood oxygen saturation. This model can also be applied to combined DWI and T2* data. Multi-contrast models of this type represent a paradigm shift in the use of MRI for FGR, giving a non-invasive measurement of placental function. Models such as these carry their own assumptions about the physics and physiology of the signal generation process and so researchers should be aware of the limitations of each model for specific pathologies. In general, they carry the same goal of scanner-independence as for single-compartment models of T2 or diffusivity, in principle allowing the combination and comparison of data between sites and populations, but additionally allowing further validation work because of their physical motivation.

3.5 MRI Flow and Metabolic Measurement

A key area of MR research is the measurement of the vascular properties of a tissue. The gold-standard technique for this uses an injected para-magnetic contrast agent that makes it unsuitable for fetal and maternal clinical MRI except in the most extreme circumstances. Dynamic Contast Enhanced (DCE) MRI does have the capability to reveal the pharmaocokinetics of the placenta including the input of blood to the uterus and placenta and the exchange of contrast agent into the trophoblast and across to the fetus (Figure 6). Common models describe the delivery of contrast to the maternal side of the placenta and the transfer of contrast agent into the fetal blood pool, thus having the potential to improve our understanding of how these processes are affected in different pathologies. However, the decision to use contrast to image complex pregnancies is challenging.
Flow can be measured with phase contrast MRI, an imaging technique that encodes the blood flow velocity in large arteries, typically of several millimetres in diameter, directly into the MR imaging data. In combination with knowledge of the vessel area this gives a quantitative estimate of blood flow112,113. Due to the readily available use of Doppler ultrasound there is little work in this area114,115.

Arterial Spin Labeling is a further imaging technique that magnetically labels blood water to visualise larger arterial vessels and blood perfusion68,116,117. Arterial blood water is magnetically labelled just below the region of interest using a radiofrequency inversion pulse. This magnetised tracer flows into the slice of interest, reducing the total tissue magnetisation, and consequently reducing the MR signal and image intensity. The difference between a labelled and un-labelled control image provides a measure of perfusion118. ASL is exquisitely sensitive to motion and can be relatively time consuming to acquire due to the low average signal. However, its key strength is the ability to acquire multiple different labels with differing post-label delays or different velocity encodings, thus revealing much about the dynamic perfusion of the placenta. A comparison of IVIM and ASL to assess placental perfusion in the second trimester in normal and FGR pregnancies showed a significant reduction in basal plate ASL signal between normally grown and FGR pregnancies. Basal plate, central placental and whole placental IVIM vascular density was also different between normally grown and FGR pregnancies68. As with IVIM, this technique could be useful in monitoring response to treatment in FGR placentas, and also perfusion differences in twin pregnancies. The benefit of this technique is that it is a more direct measurement of perfusion, however it is challenging to apply in practice.

Placenta metabolites can be measured in principle using MRI via proton magnetic resonance spectroscopy which has been investigated in the placenta. However, high acquisition failure rates and difficulty in interpreting the signal mean this is a relatively immature technique within the placenta119,120.

Lastly, although to the best of our knowledge it has not yet been tested in humans, hyperpolarised MRI represents a unique way to assess the placental barrier and its metabolic behavior and permeability121. The use of different hyperpolarized metabolites could reveal a range of information on different pathways and pathology far beyond that obtained from pharmacokinetic studies of Gadolinium chelates or other heavy contrast molecules.
4 CONCLUSION

The ability of MRI to detect changes in placentas of severely growth restricted fetuses with abnormal Doppler’s is well established71,79,81,96. However, the ability of MRI to measure placental function more broadly has yet to be fully realized or investigated. With further development, MRI is likely to increase our understanding of abnormal placental function, improve diagnostic accuracy, and help guide intervention and monitor response. The advances currently being made in the examination of placentas from pregnancies affected by growth restriction will find application in wider conditions such as complicated twin pregnancies, invasive placentation, chorioangioma, caesarean scar pregnancies and the function of other fetal organs.

One of the limitations to the practical use of placental MRI is the relative rarity of some of the conditions being investigated. This can make it difficult to establish studies with sufficient numbers to fully investigate new imaging techniques and hence make recommendations about clinical practise. Enhanced coordination of studies between centres and the sharing of clinical and technical expertise alongside imaging data are essential when investigating these conditions122 and will help to establish the most useful imaging technologies for each pathology. This will speed up the pace of future feto-placental research for conditions that, for the ubiquity of pregnancy remain quite rare but have lifelong impact.

The future of placental MRI is exciting, the use of multiple contrasts and new models to boost the capability of MRI to measure oxygen saturation73 and placental exchange107,121 will enhance the understanding of placental function in complicated pregnancies.
5 REFERENCES

1. Crispi, F., Miranda, J. & Gratacós, E. Long-term cardiovascular consequences of fetal growth restriction: biology, clinical implications, and opportunities for prevention of adult disease. *American Journal of Obstetrics and Gynecology* (2018). doi:10.1016/j.ajog.2017.12.012

2. Akolekar, R., Bower, S., Flack, N., Bilardo, C. M. & Nicolaides, K. H. Prediction of miscarriage and stillbirth at 11-13 weeks and the contribution of chorionic villus sampling. *Prenat. Diagn.* (2011). doi:10.1002/pd.2644

3. Akolekar, R., Tokunaka, M., Ortega, N., Syngelaki, A. & Nicolaides, K. H. Prediction of stillbirth from maternal factors, fetal biometry and uterine artery Doppler at 19–24 weeks. *Ultrasound Obstet. Gynecol.* (2016). doi:10.1002/uog.17295

4. Lawn, J. E. *et al.* Stillbirths: Where? When? Why? How to make the data count? *Lancet* (2011). doi:10.1016/S0140-6736(10)62187-3

5. Figueras, F. *et al.* Diagnosis and surveillance of late-onset fetal growth restriction. *American Journal of Obstetrics and Gynecology* (2018). doi:10.1016/j.ajog.2017.12.003

6. DeVore, G. R. The importance of the cerebroplacental ratio in the evaluation of fetal well-being in SGA and AGA fetuses. *Am. J. Obstet. Gynecol.* (2015). doi:10.1016/j.ajog.2015.05.024

7. McCowan, L. M., Figueras, F. & Anderson, N. H. Evidence-based national guidelines for the management of suspected fetal growth restriction: comparison, consensus, and controversy. *Am. J. Obstet. Gynecol.* 218, S855–S868 (2018).

8. Kiserud, T. *et al.* The World Health Organization Fetal Growth Charts: A Multinational Longitudinal Study of Ultrasound Biometric Measurements and Estimated Fetal Weight. *PLoS Med.* (2017). doi:10.1371/journal.pmed.1002220

9. Pels, A. *et al.* STRIDER (Sildenafil TheRapy in dismal prognosis early onset fetal growth restriction): An international consortium of randomised placebo-controlled trials. *BMC Pregnancy Childbirth* (2017). doi:10.1186/s12884-017-1594-z

10. Cluver, C. A. *et al.* Double blind, randomised, placebo-controlled trial to evaluate the efficacy of esomeprazole to treat early onset pre-eclampsia (PIE Trial): a study protocol. *BMJ Open* 5, e008211 (2015).

11. Brownfoot, F. C. *et al.* Metformin as a prevention and treatment for preeclampsia: effects on soluble fms-like tyrosine kinase 1 and soluble endoglin secretion and endothelial dysfunction. *Am. J. Obstet. Gynecol.* 214, 356.e1-356.e15 (2016).
12. Girardi, G. Pravastatin to treat and prevent preeclampsia. Preclinical and clinical studies. *J. Reprod. Immunol.* **124**, 15–20 (2017).
13. Spencer, R. *et al.* EVERREST prospective study: a 6-year prospective study to define the clinical and biological characteristics of pregnancies affected by severe early onset fetal growth restriction. *BMC Pregnancy Childbirth* **17**, 43 (2017).
14. Carr, D. J. *et al.* Uteroplacental adenovirus vascular endothelial growth factor gene therapy increases fetal growth velocity in growth-restricted sheep pregnancies. *Hum. Gene Ther.* (2014). doi:10.1089/hum.2013.214; 10.1089/hum.2013.214
15. Scifres, C. M. & Nelson, D. M. Intrauterine growth restriction, human placental development and trophoblast cell death. in *Journal of Physiology* (2009). doi:10.1113/jphysiol.2009.173252
16. Fox, H. Pathology of the placenta. *Clin. Obstet. Gynaecol.* (1986). doi:10.1097/00004347-199801000-00019
17. Sebire, N. J. & Talbert, D. The role of intraplacental vascular smooth muscle in the dynamic placenta: A conceptual framework for understanding uteroplacental disease. *Med. Hypotheses* (2002). doi:10.1054/mehy.2001.1538
18. Kingdom, J., Huppertz, B., Seaward, G. & Kaufmann, P. Development of the placental villous tree and its consequences for fetal growth. *European Journal of Obstetrics Gynecology and Reproductive Biology* (2000). doi:10.1016/S0301-2115(00)00423-1
19. Mifsud, W. & Sebire, N. J. Placental pathology in early-onset and late-onset fetal growth restriction. *Fetal Diagnosis and Therapy* **36**, 117–128 (2014).
20. Gordijn, S. J. *et al.* Consensus definition of fetal growth restriction: a Delphi procedure. *Ultrasound Obstet. Gynecol.* (2016). doi:10.1002/uog.15884
21. Linsell, L. *et al.* Cognitive trajectories from infancy to early adulthood following birth before 26 weeks of gestation: A prospective, population-based cohort study. *Arch. Dis. Child.* (2018). doi:10.1136/archdischild-2017-313414
22. Ancel, P. Y. *et al.* Survival and morbidity of preterm children born at 22 through 34 weeks’ gestation in France in 2011 results of the EPIPAGE-2 cohort study. *JAMA Pediatr.* (2015). doi:10.1001/jamapediatrics.2014.3351
23. Garite, T. J., Clark, R. & Thorp, J. A. Intrauterine growth restriction increases morbidity and mortality among premature neonates. *Am. J. Obstet. Gynecol.* **191**, 481–487 (2004).
24. Soothill, P. W., Nicolaides, K. H. & Campbell, S. Prenatal asphyxia, hyperlacticaemia, hypoglycaemia, and erythroblastosis in growth retarded fetuses. *Br. Med. J. (Clin. Res.*
25. Lyall, F., Robson, S. C. & Bulmer, J. N. Spiral artery remodeling and trophoblast invasion in preeclampsia and fetal growth restriction relationship to clinical outcome. *Hypertension* (2013). doi:10.1161/HYPERTENSIONAHA.113.01892

26. Mifsud, W. & Sebire, N. J. Placental Pathology in Early-Onset and Late-Onset Fetal Growth Restriction. *Fetal Diagn Ther* 36, 117–128 (2014).

27. Ferrazzi, E. *et al.* Uterine Doppler Velocimetry and Placental Hypoxic-ischemic Lesion in Pregnancies with Fetal Intrauterine Growth Restriction. *Placenta* 20, 389–394 (1999).

28. Bajoria, R., Wigglesworth, J. & Fisk, N. M. Angioarchitecture of monochorionic placentas in relation to the twin-twin transfusion syndrome. *Am. J. Obstet. Gynecol.* 172, 856–63 (1995).

29. Machin, G., Still, K. & Lalani, T. Correlations of placental vascular anatomy and clinical outcomes in 69 monochorionic twin pregnancies. *Am. J. Med. Genet.* 61, 229–36 (1996).

30. Denbow, M. L., Cox, P., Taylor, M., Hammal, D. M. & Fisk, N. M. Placental angioarchitecture in monochorionic twin pregnancies: Relationship to fetal growth, fetofetal transfusion syndrome, and pregnancy outcome. *Am. J. Obstet. Gynecol.* 182, 417–426 (2000).

31. Zhao, D. *et al.* Comparison Between Monochorionic and Dichorionic Placentas With Special Attention to Vascular Anastomoses and Placental Share. *Twin Res. Hum. Genet.* 1–6 (2016). doi:10.1017/thg.2016.19

32. Fisk, N. M., Duncombe, G. J. & Sullivan, M. H. F. The basic and clinical science of twin-twin transfusion syndrome. *Placenta* 30, 379–90 (2009).

33. Berghella, V. & Kaufmann, M. Natural history of twin-twin transfusion syndrome. *J. Reprod. Med.* 46, 480–4 (2001).

34. Senat, M.-V. *et al.* Endoscopic laser surgery versus serial amnioreduction for severe twin-to-twin transfusion syndrome. *N. Engl. J. Med.* 351, 136–44 (2004).

35. Fox, H. & Sebire, N. J. *Pathology of the Placenta.* (Saunders Elsevier, 2007).

36. Wee, L. Y., Sebire, N. J., Bhundia, J., Sullivan, M. & Fisk, N. M. Histomorphometric Characterisation of Shared and Non-shared Cotyledonary Villus Territories of Monochorionic Placentae in Relation to Pregnancy Complications. *Placenta* 27, 475–482 (2006).

37. Sebire, N. J., Snijders, R. J. M., Hughes, K., Sepulveda, W. & Nicolaides, K. H. The
hidden mortality of monochorionic twin pregnancies. Br. J. Obstet. Gynaecol. 104, 1203–1207 (1997).

38. De Paepe, M. E., Shapiro, S., Young, L. & Luks, F. I. Placental characteristics of selective birth weight discordance in diamniotic-monochorionic twin gestations. Placenta (2010). doi:10.1016/j.placenta.2010.02.018

39. Costa-Castro, T. et al. Velamentous cord insertion in dichorionic and monochorionic twin pregnancies – Does it make a difference? Placenta 42, 87–92 (2016).

40. Acosta-Rojas, R. et al. Twin chorionicity and the risk of adverse perinatal outcome. Int. J. Gynecol. Obstet. (2007). doi:10.1016/j.ijgo.2006.11.002

41. Gratacós, E. et al. Prevalence of neurological damage in monochorionic twins with selective intrauterine growth restriction and intermittent absent or reversed end-diastolic umbilical artery flow. Ultrasound Obstet. Gynecol. (2004). doi:10.1002/uog.1105

42. Hack, K. E. A. et al. Placental characteristics of monochorionic diamniotic twin pregnancies in relation to perinatal outcome. Placenta 29, 976–81 (2008).

43. Couck, I. & Lewi, L. The Placenta in Twin-to-Twin Transfusion Syndrome and Twin Anemia Polycythemia Sequence. Twin Res. Hum. Genet. (2016). doi:10.1017/thg.2016.29

44. Lewi, L. et al. Placental sharing, birthweight discordance, and vascular anastomoses in monochorionic diamniotic twin placentas. Am. J. Obstet. Gynecol. (2007). doi:10.1016/j.ajog.2007.05.009

45. Ray, J. G., Vermeulen, M. J., Bharatha, A., Montanera, W. J. & Park, A. L. Association between MRI exposure during pregnancy and fetal and childhood outcomes. JAMA - J. Am. Med. Assoc. (2016). doi:10.1001/jama.2016.12126

46. Gowland, P. Placental MRI. Semin. Fetal Neonatal Med. 10, 485–490 (2005).

47. Damodaram, M. et al. Placental MRI in intrauterine fetal growth restriction. Placenta 31, 491–498 (2010).

48. Ebner, M. et al. An automated localization, segmentation and reconstruction framework for fetal brain MRI. in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 313–320 (2018). doi:10.1007/978-3-030-00928-1_36

49. Wang, G. et al. Slic-Seg: A minimally interactive segmentation of the placenta from sparse and motion-corrupted fetal MRI in multiple views. Med. Image Anal. (2016). doi:10.1016/j.media.2016.04.009
50. Kingdom, J. C., Audette, M. C., Hobson, S. R., Windrim, R. C. & Morgen, E. A. A placenta clinic approach to the diagnosis and management of fetal growth restriction. *American Journal of Obstetrics and Gynecology* (2018). doi:10.1016/j.ajog.2017.11.575

51. Dahdouh, S. *et al.* In vivo placental MRI shape and textural features predict fetal growth restriction and postnatal outcome. *J. Magn. Reson. Imaging* (2018). doi:10.1002/jmri.25806

52. OHGIYA, Y. *et al.* MR Imaging of Fetuses to Evaluate Placental Insufficiency. *Magn. Reson. Med. Sci.* (2016). doi:10.2463/mrms.mp.2015-0051

53. Andescavage, N. *et al.* In vivo assessment of placental and brain volumes in growth-restricted fetuses with and without fetal Doppler changes using quantitative 3D MRI. *J. Perinatol.* (2017). doi:10.1038/jp.2017.129

54. Linduska, N. *et al.* Placental Pathologies in Fetal MRI with Pathohistological Correlation. *Placenta* (2009). doi:10.1016/j.placenta.2009.03.010

55. Luks, F. I., Carr, S. R., Ponte, B., Rogg, J. M. & Tracy, T. F. Preoperative planning with magnetic resonance imaging and computerized volume rendering in twin-to-twin transfusion syndrome. *Am. J. Obstet. Gynecol.* 185, 216–219 (2001).

56. Pratt, R., Deprest, J., Vercauteren, T., Ourselin, S. & David, A. L. Computer-assisted surgical planning and intraoperative guidance in fetal surgery: A systematic review. *Prenat. Diagn.* 35, (2015).

57. Melbourne, A. *et al.* NiftyFit: a Software Package for Multi-parametric Model-Fitting of 4D Magnetic Resonance Imaging Data. *Neuroinformatics* (2016). doi:10.1007/s12021-016-9297-6

58. Bonel, H. M. *et al.* Diffusion-weighted MR Imaging of the Placenta in Fetuses with Placental Insufficiency. *Radiology* (2010). doi:10.1148/radiol.10092283

59. Javor, D. *et al.* In vivo assessment of putative functional placental tissue volume in placental intrauterine growth restriction (IUGR) in human fetuses using diffusion tensor magnetic resonance imaging. *Placenta* (2013). doi:10.1016/j.placenta.2013.04.018

60. Fu, L., Zhang, J., Xiong, S. & Sun, M. Decreased apparent diffusion coefficient in the placetas of monochorionic twins with selective intrauterine growth restriction. *Placenta* (2018). doi:10.1016/j.placenta.2018.07.001

61. Le Bihan, D. *et al.* Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. *Radiology* (1988). doi:10.1017/CBO9780511659072

This article is protected by copyright. All rights reserved.
62. Iima, M. & Le Bihan, D. Clinical Intravoxel Incoherent Motion and Diffusion MR Imaging: Past, Present, and Future. *Radiology* (2016). doi:10.1148/radiol.2015150244

63. Le Bihan, D. *et al.* MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. *Radiology* **161**, 401–7 (1986).

64. Manganaro, L. *et al.* MRI and DWI: Feasibility of DWI and ADC maps in the evaluation of placental changes during gestation. *Prenat. Diagn.* (2010). doi:10.1002/pd.2641

65. Orton, M. R., Collins, D. J., Koh, D. M. & Leach, M. O. Improved intravoxel incoherent motion analysis of diffusion weighted imaging by data driven Bayesian modeling. *Magn. Reson. Med.* (2014). doi:10.1002/mrm.24649

66. Slator, P. J. *et al.* Placenta microstructure and microcirculation imaging with diffusion MRI. *Magn. Reson. Med.* (2018). doi:10.1002/mrm.27036

67. Alison, M. *et al.* Use of intravoxel incoherent motion MR imaging to assess placental perfusion in a murine model of placental insufficiency. *Invest. Radiol.* (2013).

68. Derwig, I. *et al.* Association of placental perfusion, as assessed by magnetic resonance imaging and uterine artery Doppler ultrasound, and its relationship to pregnancy outcome. *Placenta* (2013). doi:10.1016/j.placenta.2013.07.006

69. Moore, R. J. *et al.* In utero perfusing fraction maps in normal and growth restricted pregnancy measured using IVIM echo-planar MRI. *Placenta* **21**, 726–32 (2000).

70. Siauve, N. *et al.* Assessment of human placental perfusion by intravoxel incoherent motion MR imaging. *J. Matern. Neonatal Med.* (2019). doi:10.1080/14767058.2017.1378334

71. Aughwane, R. *et al.* MRI measurement of placental perfusion and fetal blood oxygen saturation in normal pregnancy and placental insufficiency. in *Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)* 913–920 (2018). doi:10.1007/978-3-030-00934-2_101

72. Jerome, N. P. *et al.* Extended T2-IVIM model for correction of TE dependence of pseudo-diffusion volume fraction in clinical diffusion-weighted magnetic resonance imaging. *Phys. Med. Biol.* (2016). doi:10.1088/1361-6560/61/24/N667

73. Melbourne, A. *et al.* Separating fetal and maternal placenta circulations using multiparametric MRI. *Magnetic resonance in medicine* (2018). doi:10.1002/mrm.27406

74. Hutter, J. *et al.* Multi-modal functional MRI to explore placental function over
gestation. *Magnetic Resonance in Medicine* (2018). doi:10.1002/mrm.27447

75. Le Bihan, D. *et al.* Diffusion tensor imaging: Concepts and applications. *J. Magn. Reson. Imaging* (2001). doi:10.1002/jmri.1076

76. Behrens, T. E. J. *et al.* Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. *Nat. Neurosci.* (2003). doi:10.1038/nn1075

77. de Bazelaire, C. M. J., Duhamel, G. D., Rofsky, N. M. & Alsop, D. C. MR Imaging Relaxation Times of Abdominal and Pelvic Tissues Measured in Vivo at 3.0 T: Preliminary Results. *Radiology* (2004). doi:10.1148/radiol.2303021331

78. Portnoy, S. *et al.* Relaxation properties of human umbilical cord blood at 1.5 Tesla. *Magn. Reson. Med.* 77, 1678–1690 (2017).

79. Derwig, I. *et al.* Association of placental T2relaxation times and uterine artery Doppler ultrasound measures of placental blood flow. *Placenta* (2013). doi:10.1016/j.placenta.2013.03.005

80. Sinding, M. *et al.* Placental magnetic resonance imaging T2* measurements in normal pregnancies and in those complicated by fetal growth restriction. *Ultrasound Obstet. Gynecol.* (2016). doi:10.1002/uog.14917

81. Ingram, E., Naish, J., Morris, D., Myers, J. & Johnstone, E. D. MRI measurements of abnormal placental oxygenation in pregnancies complicated by FGR. *Am. J. Obstet. Gynecol.* (2018).

82. Sinding, M. *et al.* Placental baseline conditions modulate the hyperoxic BOLD-MRI response. *Placenta* (2018). doi:10.1016/j.placenta.2017.11.002

83. Schabel, M. C. M. C. *et al.* Functional imaging of the nonhuman primate Placenta with endogenous blood oxygen level–dependent contrast. *Magn. Reson. Med.* (2016). doi:10.1002/mrm.26052

84. Sinding, M. *et al.* Prediction of low birth weight: Comparison of placental T2* estimated by MRI and uterine artery pulsatility index. *Placenta* (2017). doi:10.1016/j.placenta.2016.11.009

85. Portnoy, S. *et al.* Relaxation properties of human umbilical cord blood at 1.5 Tesla. *Magn. Reson. Med.* 77, 1678–1690 (2017).

86. Portnoy, S., Seed, M., Sled, J. G. & Macgowan, C. K. Non-invasive evaluation of blood oxygen saturation and hematocrit from T1 and T2 relaxation times: In-vitro validation in fetal blood. *Magn. Reson. Med.* (2017). doi:10.1002/mrm.26599

87. Portnoy, S., Milligan, N., Seed, M., Sled, J. G. & Macgowan, C. K. Human umbilical cord blood relaxation times and susceptibility at 3 T. *Magn. Reson. Med.* (2018).
88. Zhu, M. Y. et al. The hemodynamics of late-onset intrauterine growth restriction by MRI. Am. J. Obstet. Gynecol. (2016). doi:10.1016/j.ajog.2015.10.004
89. Schrauben, E. M. et al. Fetal hemodynamics and cardiac streaming assessed by 4D flow cardiovascular magnetic resonance in fetal sheep. J. Cardiovasc. Magn. Reson. 21, 8 (2019).
90. SIGGAARD-ANDERSEN, O. & HUCH, R. The oxygen status of fetal blood. Acta Anaesthesiol. Scand. (1995). doi:10.1111/j.1399-6576.1995.tb04347.x
91. Kim, S. G. & Ogawa, S. Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals. Journal of Cerebral Blood Flow and Metabolism (2012). doi:10.1038/jcbfm.2012.23
92. Raichle, M. E. et al. A default mode of brain function. Proc. Natl. Acad. Sci. U. S. A. (2001). doi:10.1073/pnas.98.2.676
93. Hoge, R. D. et al. Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex. Proc. Natl. Acad. Sci. (1999). doi:10.1073/pnas.96.16.9403
94. Ugurbil, K. et al. Magnetic resonance studies of brain function and neurochemistry. Annu. Rev. Biomed. Eng. (2000).
95. Chalouhi, G. E. & Salomon, L. J. BOLD-MRI to explore the oxygenation of fetal organs and of the placenta. BJOG: An International Journal of Obstetrics and Gynaecology (2014). doi:10.1111/1471-0528.12805
96. Sinding, M. et al. Placental T2* measurements in normal pregnancies and in pregnancies complicated by fetal growth restriction. Ultrasound Obstet. Gynecol. (2016). doi:10.1002/uog.14917
97. Wright, C. et al. Magnetic resonance imaging relaxation time measurements of the placenta at 1.5 T. Placenta (2011). doi:10.1016/j.placenta.2011.07.008
98. Sørensen, A. et al. Placental oxygen transport estimated by the hyperoxic placental BOLD MRI response. Physiol. Rep. (2015). doi:10.14814/phy2.12582
99. Sørensen, A. et al. Changes in human placental oxygenation during maternal hyperoxia estimated by blood oxygen level-dependent magnetic resonance imaging (BOLD MRI). Ultrasound Obstet. Gynecol. (2013). doi:10.1002/uog.12395
100. Ingram, E. et al. MR Imaging Measurements of Altered Placental Oxygenation in Pregnancies Complicated by Fetal Growth Restriction. Radiology (2017). doi:10.1148/radiol.2017162385

This article is protected by copyright. All rights reserved.
101. Aimot-Macron, S. et al. In vivo MRI assessment of placental and foetal oxygenation changes in a rat model of growth restriction using blood oxygen level-dependent (BOLD) magnetic resonance imaging. *Eur. Radiol.* (2013). doi:10.1007/s00330-012-2712-y

102. Clément, O. et al. Fetoplacental Oxygenation in an Intrauterine Growth Restriction Rat Model by Using Blood Oxygen Level–Dependent MR Imaging at 4.7 T. *Radiology* (2013). doi:10.1148/radiol.13121742

103. Huen, I. et al. R1 and R2* changes in the human placenta in response to maternal oxygen challenge. *Magn. Reson. Med.* (2013). doi:10.1002/mrm.24581

104. Nye, G. A. et al. Human placental oxygenation in late gestation: Experimental and theoretical approaches. *Journal of Physiology* (2018). doi:10.1113/JP275633

105. Duan, A. Q. et al. Feasibility of phase-contrast cine magnetic resonance imaging for measuring blood flow in the sheep fetus. *Am. J. Physiol. Integr. Comp. Physiol.* ajpregu.00273.2017 (2017). doi:10.1152/ajpregu.00273.2017

106. Chalouhi, G. E. et al. Dynamic contrast-enhanced magnetic resonance imaging: Definitive imaging of placental function? *Semin. Fetal Neonatal Med.* (2011). doi:10.1016/j.siny.2010.09.001

107. Siauve, N. et al. Functional imaging of the human placenta with magnetic resonance. *American Journal of Obstetrics and Gynecology* (2015). doi:10.1016/j.ajog.2015.06.045

108. Frias, A. E. et al. Using dynamic contrast-enhanced MRI to quantitatively characterize maternal vascular organization in the primate placenta. *Magn. Reson. Med.* 73, 1570–1578 (2015).

109. Schabel, M. C. et al. Functional imaging of the nonhuman primate Placenta with endogenous blood oxygen level–dependent contrast. *Magn. Reson. Med.* (2016).

110. Brunelli, R. et al. Intervillous circulation in intra-uterine growth restriction. Correlation to fetal well being. *Placenta* 31, 1051–1056 (2010).

111. Millischer, A. E. et al. Dynamic contrast enhanced MRI of the placenta: A tool for prenatal diagnosis of placenta accreta? *Placenta* (2017). doi:10.1016/j.placenta.2017.03.006

112. Tsai-Goodman, B., Zhu, M. Y., Al-Rujaib, M., Seed, M. & Macgowan, C. K. Foetal blood flow measured using phase contrast cardiovascular magnetic resonance - Preliminary data comparing 1.5 T with 3.0 T. *J. Cardiovasc. Magn. Reson.* (2015). doi:10.1186/s12968-015-0132-2
113. Jansz, M. S. *et al.* Metric optimized gating for fetal cardiac MRI. *Magn. Reson. Med.* (2010). doi:10.1002/mrm.22542

114. Pates, J. A., Hatab, M. R., McIntire, D. D., Cunningham, F. G. & Twickler, D. M. Determining uterine blood flow in pregnancy with magnetic resonance imaging. *Magn. Reson. Imaging* **28**, 507–510 (2010).

115. Hawkes, R. A. *et al.* Uterine artery pulsatility and resistivity indices in pregnancy: Comparison of MRI and Doppler US. *Placenta* (2016). doi:10.1016/j.placenta.2016.04.002

116. Shao, X. *et al.* Measuring human placental blood flow with multidelay 3D GRASE pseudocontinuous arterial spin labeling at 3T. *J. Magn. Reson. Imaging* (2018). doi:10.1002/jmri.25893

117. Wong, E. C. *et al.* Velocity-selective arterial spin labeling. *Magn. Reson. Med.* (2006). doi:10.1002/mrm.20906

118. Alsop, D. C. *et al.* Recommended implementation of arterial spin-labeled Perfusion MRI for clinical applications: A consensus of the ISMRM Perfusion Study group and the European consortium for ASL in dementia. *Magn. Reson. Med.* (2015). doi:10.1002/mrm.25197

119. Story, L. *et al.* Brain metabolism in fetal intrauterine growth restriction: A proton magnetic resonance spectroscopy study. *Am. J. Obstet. Gynecol.* (2011). doi:10.1016/j.ajog.2011.06.032

120. Song, F., Wu, W., Qian, Z., Zhang, G. & Cheng, Y. Assessment of the placenta in intrauterine growth restriction by diffusion-weighted imaging and proton magnetic resonance spectroscopy: A pilot study. *Reprod. Sci.* (2017). doi:10.1177/1933719116667219

121. Markovic, S. *et al.* Placental physiology monitored by hyperpolarized dynamic 13C magnetic resonance. *Proc. Natl. Acad. Sci.* (2018). doi:10.1073/pnas.1715175115

122. Slator, P. *et al.* Placenta Imaging Workshop 2018 report: Multiscale and multimodal approaches. *Placenta* (2018). doi:10.1016/j.placenta.2018.10.010
Figure 1. Use of MRI in human placental conditions other than accreta, papers discussed in this review. Abbreviations in text.
Figure 2. MRI of placenta from a normally grown (left) and FGR (right) fetus. The placentas are marked with white stars. Note the difference in appearance in T2 weighted imaging, with the normal placenta appearing lighter in colour and more homogeneous.
Figure 3. Example of placental single-compartment ADC and T2 maps generated by linear least-squares fitting.
Figure 4. T2 weighted structural image of axial slice through maternal abdomen, demonstrating uterine cavity, fetus and placenta. Superimposed R2* map of the placental ROI (s⁻¹).
Figure 5. Physiological model-fitting of the placenta73. Parametric maps can be produced corresponding to fetal and maternal perfusion fractions (bottom row) simultaneously to conventional ADC and T2 maps (top row).
Figure 6. Dynamic enhancement of the placenta with DCE-MRI. Baseline image (1), arrival and wash-in (2-4), wash-out (5-6).
Table 1 Future applications of MRI in placental conditions amenable to therapy

Technique	MRI signal sensitivity	Future applications	
T2weighted	Structural features, fluid boundaries, volumetrics	Placental share in complicated twins, cord insertions, chorionic vessel mapping, computer assisted surgical planning	
DWI	Diffusivity, micro-architecture, fluid not specific to oxygenation/flow. Diffusivity, micro-vasculature, fluid, perfusion. Chorionic flow. Non-specific to oxygenation	Micro-vascular structural differences in FGR/PET/sFGR	
IVIM	Diffusivity, micro-vasculature, fluid, perfusion. Chorionic flow. Non-specific to oxygenation	Functional share in complicated twins. Flow changes in FGR. Post-intervention redistribution + outcome prediction.	
T2weighted	Sensitive to oxygenation, tissue compartments	Changes in fetal oxygenation functional redundancy and capacity	
T2*	Sensitive to oxygenation, tissue compartments	Changes in fetal oxygenation, functional redundancy and capacity	
BOLD	Sensitive to functional change in oxygenation	Changes in function, and tissue redundancy and capacity over time	
T1	Sensitive to oxygenation	Maternal blood flow changes in FGR. Redistribution post-laser TTTS	
MRS & metabolic	Transfer rates, tissue maturation	Therapeutic changes in transfer and exchange	
ASL	Sensitive to flow and perfusion	Maternal blood flow changes in FGR. Redistribution	
DCE	Sensitive to flow and transfer rate	Changes in maternal flow and transfer kinetics.	post-laser TTTS
--------------	------------------------------------	---	-----------------