Abstract

In the past few years, there have been multiple advances in magnetic resonance (MR) instrumentation, in vivo devices, real-time imaging sequences and interventional procedures with new therapies. More recently, interventionists have started to use minimally invasive image-guided procedures and local therapies, which reduce the pain from conventional surgery and increase drug effectiveness, respectively. Local therapy also reduces the systemic dose and eliminates the toxic side effects of some drugs to other organs. The success of MR-guided procedures depends on visualization of the targets in 3D and precise deployment of ablation catheters, local therapies and devices. MR contrast media provide a wealth of tissue contrast and allows 3D and 4D image acquisitions. After the development of fast imaging sequences, the clinical applications of MR contrast media have been substantially expanded to include pre- during- and post-interventions. Prior to intervention, MR contrast media have the potential to localize and delineate pathologic tissues of vital organs, such as the brain, heart, breast, kidney, prostate, liver and uterus. They also offer other options such as labeling therapeutic agents or cells. During intervention, these agents have the capability to map blood vessels and enhance the contrast between the endovascular guidewire/catheters/devices, blood and tissues as well as direct therapies to the target. Furthermore, labeling therapeutic agents or cells aids in visualizing their delivery sites and tracking their tissue distribution. After intervention, MR contrast media have been used for assessing the efficacy of ablation and therapies. It should be noted that most image-guided procedures are under preclinical research and development. It can be concluded that MR contrast media have great value in preclinical and some clinical interventional procedures. Future applications of MR contrast media in image-guided procedures depend on their safety, tolerability, tissue specificity and effectiveness in demonstrating success of the interventions and therapies.

Key words: Magnetic resonance imaging; Contrast media; Magnetic resonance-guided interventions; Tissue ablation; Local therapy

INTRODUCTION

Image-guided procedures are a minimally invasive form of treatment for diseased vessels and organs. Catheters, devices and therapies are introduced into internal organs via different routes and can be guided by real-time imaging...
imaging. Image-guided procedures are consequently less invasive than surgical procedures and demonstrate similar patient outcomes\(^3\). Recent percutaneous intervention studies showed steady increase in the usage of contrast media. Iodinated contrast media are routinely utilized in procedures guided by X-ray fluoroscopy and computed tomography, but these agents have nephrotoxic effects and require ionizing radiation to be visualized, which elevates cancer risk\(^{2,3}\).

In the early 1980 magnetic resonance (MR) contrast media were introduced. MR contrast media exhibit paramagnetic properties that lead to contrast enhancement by shortening the longitudinal (T\(_1\)) or transverse (T\(_2\)) relaxation times. These agents rapidly pass to the extracellular compartment and are quickly eliminated by glomerular filtration. Unlike iodinated contrast media, they do not require ionizing radiation to be visualized. These agents are pivotal for accurate disease detection, pathology characterization and treatment planning. MR contrast media provide a wealth of tissue contrast that can be manipulated by the acquisition sequences. Refinements in imaging sequences can reduce the required dose of MR contrast media. This editorial summarizes the important applications of MR contrast media in MR-guided interventions and therapies.

MR CONTRAST MEDIA

MR contrast media represent alternative diagnostic options in patients at risk for adverse reactions to iodinated contrast media. In the early phase of using MR contrast media, the main problem was their toxicity because investigators used pure paramagnetic heavy metal ions. Later paramagnetic ions were chelated with DTPA, DOTA or BOPTA to reduce their toxicity. The chelation, however, reduced some of the paramagnetic properties of free ions. MR contrast media improve diagnostic accuracy, tissue contrast and visibility of inflammation, necrosis, tumor and vascular plaques.

In the late 1980 and early 1990 the first gadolinium-chelate was approved for clinical routine. Currently, the FDA has approved several extracellular gadolinium-chelates and only one gadolinium-based intravascular agent (gadofosveset trisodium)\(^6\). Other preclinical gadolinium-based intravascular media, which are used to extract physiologic and morphologic information are Gadomer 17\(^7\) and P792\(^8\). Extravasation and elimination of intravascular contrast media are very slow compared with extracellular contrast media.

In general extracellular gadolinium chelate and blood pool iron oxide particle MR contrast media have been safely and successfully used in patients. In 2005 the observation of nephrogenic systemic fibrosis (NSF), however, cautioned the handling of gadolinium-based MR contrast media\(^9,10\). NSF describes a systemic body collagensis, most likely evoked by the deposition of gadolinium ions in the tissue. NSF was observed in patients with reduced renal function (eGFR < 30 mL/min) after the repeated injection of high doses of gadolinium-chelates\(^7\). Besides the dose, the chemical structure of the chelate (defining the complex stability) has a major impact in increasing the risk of developing NSF. Thus, there is a strong need to minimize the dose of MR contrast media, especially in interventional procedures, where patients are subjected to repeated contrast injections.

Classification of MR contrast media is based on: (1) their distribution in the tissue compartments, namely the extracellular compartment (low molecular weight; < 2 kDa), intravascular compartment (high molecular weight; > 50 kDa), or intracellular compartment or (2) their effects on longitudinal (T\(_1\)), transverse (T\(_2\)) relaxation times and susceptibility shift (T\(_2^*\)) of tissues and thereby change tissue signal intensity\(^{9,10}\). While T\(_1\) shortening increases signal intensity, T\(_2\) shortening does the opposite. Extracellular or low molecular weight MR contrast media were widely used in interventional procedures, while intravascular or high molecular weight media, such as iron oxide particles, were used for cell labeling.

Iron oxide particles have been used as T1 and T2* MR contrast media to increase and decrease signal intensity of the region of interest on magnetic resonance imaging (MRI). Due to their size and composition, the particles remain in the intravascular compartment for a prolonged period. This class of agents has a high safety index and is not associated with NSF. There are two types of iron particles: (1) superparamagnetic iron oxide particles; and (2) ultrasmall superparamagnetic iron oxide particles. These agents are promising since their properties can be tuned for specific applications, such as cell labeling, drug targeting\(^9,10\), tissue ablation\(^10\) and cancer therapy\(^10\). They have also become MR markers of inflammatory and degenerative disorders associated with a high macrophage phagocytic activity\(^9,10\).

APPLICATIONS OF MR CONTRAST MEDIA IN BODY INTERVENTIONS

Endovascular catheters and devices

A considerable research effort is directed at improving the detection of vascular disease with different imaging modalities, such as X-ray, computed tomography, intravascular ultrasound and MR angiography. Because of lack of harmful radiation and high soft tissue contrast, MR angiography is considered the most patient-friendly among these techniques. The main challenge for MR angiography is derived from the fact that the signal originates from water protons, which are abundant in the body. Inevitably, this leads to a background signal in the image and the blood pool cannot exclusively be seen.

Clinical and experimental studies showed that contrast enhanced MR angiography is possible for a selective and exclusive visualization of the vasculature. Delivering MR contrast media during catheter navigation can reduce image blurring and artifacts resulting from the movement of flowing blood, which allows for reaching the steady state earlier. Endovascular catheters and devices appear as dark objects in these cases. Furthermore, intravenous
injection of MR contrast media during vascular intervention ensures procedure safety by enhancing the contrast between the vascular wall and endovascular catheter \(^{[17]}\) (Figure 1) and may prevent vascular perforation \(^{[18]}\). Investigators coated the shaft and tip of endovascular catheters with either T\(_2^*\) or T\(_1\) \(^{[19,20]}\) MR contrast media to enhance the contrast between the blood pool and endovascular catheter, in which the devices appear either hypoenhanced or hyperenhanced based on the sequence and contrast media.

Figure 1 Selected magnetic resonance-guided images of the abdominal aorta prior to the administration of intravascular gadolinium-based (T1 enhancing agent) magnetic resonance contrast medium, the inflated balloon on the catheter is evident (arrow), but suffers substantial downstream signal loss (A). After a blood pool magnetic resonance (MR) contrast medium administration (B), the MR dysprosium-chelate (markers placed on the catheter shaft) becomes evident (arrows, B) and, following inflation, the spatial extent of the balloon is better delineated (arrow, C).

Figure 2 Gadolinium-based magnetic resonance contrast media (T1 enhancing agent) have been used for multiple purposes in cardiac interventions. A: These agents (at a low concentration) have been used to create a target in the myocardium; B: Gadolinium oxide powder was used to coat the endovascular catheter to facilitate navigation into the LV (white arrowhead); C: Magnetic resonance (MR) contrast medium was also used for enhancing and measuring the target (myocardial infarct) (white arrows); D: Selected MR-guided images show an active catheter hitting the infarcted target.

Defining targets

A central challenge for the field of local therapy in tumors and cardiovascular diseases is the capability to visualize the catheter, target and targeting penumbra. MR contrast media showed promising results in visualizing, sizing and targeting penumbra (Figure 2), thereby allowing the interventionalists to determine the dose of the therapy based on size of the pathology. Furthermore, mixing MR contrast media with therapies may assist in ensuring tissue delivery and track its distribution over

Saeed M et al. Contrast media in MR-guided procedures
time (Figures 2 and 3).

MR contrast media are useful in evaluating the efficacy of therapy by allowing the determination of tissue perfusion, blood volume, vascular permeability, angiogenesis and cellular integrity[21,22]. For example, after effective chemotherapy there is a decrease in the size of the lesion and number of microvessels, which can be detected on contrast enhanced MR images.

Body Interventions

Transcatheter embolization of the uterine arteries for treatment of uterine fibroids was introduced 1995 in France and has been performed in the United States since 1996. This technique is currently used for treatment of symptomatic uterine fibroids[23] and hepatocellular tumors[24]. The standard protocol for evaluation of this intervention consists of dynamic gadolinium-enhanced 3D pelvic MR angiography and delayed contrast enhanced MRI[25]. Prior to transcatheter embolization of the uterine arteries, contrast enhanced MRI is performed to confirm the diagnosis, map (determine the size, number and location of the pathology), predict treatment response (high signal intensity associated with poor response) and roadmap the pelvic vasculature[26]. Embolization follow up showed that the procedure was successful when fibroids were unenhanced and the uterine arteries were invisible on perfusion MRI[27]. In a rabbit tumor model, Chung et al[28] used intra-arterial bolus injection of gadolinium-based MR contrast medium to measure uterine fibroid perfusion before and after uterine artery embolization. After positioning a catheter within the uterine artery and injecting the microemboli, they found that uterine tumor perfusion decreased by 76% on MRI. Others found that patchy perfusion suggests incomplete uterine artery occlusion and treatment failure[29,30]. This contrast enhanced MRI technique could be used to determine an optimal embolic endpoint with the long-term goals of improving uterine artery embolization success rates and minimizing procedure-related ischemic pain.

A major limitation of transcatheter arterial embolization is the inability to image and determine the in vivo fate of the injected emboli. Assessment of embolization relies on interpretation of visual blood flow information[23,31] and operator inferences. The limitations of transcatheter arterial embolization were demonstrated in a study probing the perceived and real completeness of uterine fibroid embolization. Investigators found incomplete embolization in 20% of cases despite indications by angiography of complete occlusion. They also found that incomplete embolization of uterine fibroids has led to tumor recurrence and persistence of symptoms[32], while exceeding the endpoint by injecting too much embolic material increases the chances of uterine damage[33]. Until recently, there has been no noninvasive technique to track/map the distribution of embolic materials after intervention, which represents a significant disadvantage. Therefore, Fidelman et al[34] impregnated the embolic materials (300-500 and 500-700 μm in diameters) with gadolinium-chelate by diffusion of the contrast medium into the core of the porous particles to visualize their distribution. Wilson et al[35] used these impregnated embolic materials in visualizing the obstruction of different diameter blood vessels in the kidneys. These materials provided wave-front renal enhancement for > 1 h after injection. Large microemboli preferentially deposited in the medulla, while small microemboli deposited in the cortex. Renal blood flow was significantly reduced after the administration of 300-500 μm microspheres (from 3.9 to 1.0 mL/min per gram) and 500-700 μm microspheres (from 3.5 to 0.2 mL/min per gram) [36] (Figure 4).

In 2008, Cilliers et al[37] synthesized and characterized polyvinyl alcohol embolic particles modified with a clinically approved gadolinium-chelate MR contrast media. The investigators used these particles during transcatheter arterial embolization procedures. The polyvinyl alcohol particles are injected into tumor vessels and prevent blood flow, which results in tumor attenuation. They found that MRI of embolic particles facilitate determination of the endpoint of embolization, observe nontarget embolization, and improve the success rate of the procedure.

In 2011, Bartling et al[38] presented embolization con-

![Figure 3](image-url)
trast media with a property of being visible on MRI and X-ray/computed tomography, namely iodine and iron particles. They proposed that implementation of this new material in clinical radiology will provide optimization of embolization procedures with regard to prevention of particle misplacement and direct intraprocedural visualization, while improving follow-up examinations by utilizing the complementary characteristics of CT and MRI.

An important clinical application of MR contrast media is that shown by Wilson et al [34], where patients with inoperable hepatocellular carcinoma were successfully treated using iron particles bound to doxorubicin. The particles ranged from 0.5-5.0 μm in diameter and were able to leave the vasculature under the influence of the external magnet. Once the particles are outside the vasculature, doxorubicin desorbs from them, resulting in a local response with no systemic toxicity. Figures 5 and 6 show the setting of this clinical trial. Drug-bound iron particles can be precisely directed to selective organs by placement of an external magnet. In this study, MR contrast media showed the need for more therapy because of the lack of coverage of the entire tumor in the initial administration. MR images obtained after each dose of the chemotherapeutic agent showed increasing areas of signal intensity loss due to a magnetic susceptibility artifact caused by the iron.

Tissue ablation

Thermal ablation therapies (radiofrequency ablation, interstitial laser thermotherapy, microwave, cryotherapy and high-intensity focused ultrasound) are minimally invasive or non-invasive alternatives to conventional surgical resection. Ablation has been widely implemented in treating arrhythmia in the heart and tumors in the prostate, lung, liver, kidneys, etc. Contrast enhanced MRI has been successfully used to assess the success of ablation [37-39]. The diagnostic benefits of MR contrast media in differentiating ablated from non-ablated tissue have been confirmed in multiple centers [40,41]. Prior to the administration of MR contrast media, the appearance of thermally ablated tissue varies between hypointense, isointense and hyperintense. After ablation, MR contrast media provide moderate to intense enhancement of the rim surrounding the thermally ablated tissue. In a prostate cancer study, RFA ablated lesions appear hypoenhanced after gadolinium injection [42]. Similarly, Goldberg and Dupuy observed a lack of contrast enhancement after gadolinium injection in ablated liver metastasis [43]. Accordingly, changes in signal intensity, size, and internal contours of ablated tissue on contrast enhanced MRI gives important clues about the success of therapy [44].

Contrast enhanced MRI is also useful for arrhythmic substrate identification [45,46]. This technique has the ability to encompass the target volume through direct imaging of signal enhancement after tissue ablation in patients [47]. Clinical studies have demonstrated the association between infarct scar, peri-infarcted zone and the risk of monomorphic ventricular tachycardia [46,48,49]. An integrated 3D scar reconstruction from delayed gadolinium-enhanced MRI was used to facilitate ventricular tachycardia...
Saeed M et al. Contrast media in MR-guided procedures

Magnetically targeted carrier (MTC-DOX)
1-2 μm Fe-activated carbon complexes bound to doxorubicin
Delivered through arterial catheter
Drawn into tissue by portable external magnet
Readily visible on MRI (Fe susceptibility artifact)

Figure 5 This figure shows a portable magnet (left) and a diagram (right) depicts the mode of action of magnetic targeted therapy in the target. The overall height of the magnet and holding apparatus is 1.4 m. The intra-arterial injected magnetic targeted carrier (iron particles) bound to doxorubicin (MTC-DOX), which is drawn out of the artery into surrounding tumor and/or liver tissue by the influence of the local magnetic field (Image courtesy of FeRx.). MRI: Magnetic resonance imaging.

Figure 6 Coronal magnetic resonance images of large hepatocellular carcinoma obtained before magnetic targeted carrier bound to doxorubicin administration (A) and after the first (B), second (C) and third (D) dose of magnetic targeted carrier bound to doxorubicin. The selective hepatic arterial catheter was repositioned between each dose. The initial DSA image (E) was obtained during the injection of magnetic targeted carrier bound to doxorubicin (MTC-DOX) into the left hepatic artery supplying the tumor. The next dose was injected into the hepatic artery branch segment (F), while the third dose was injected into a branch of the right hepatic artery (G). As a result, progressively larger areas of the tumor were affected by MTC-DOX, as documented by the progressive loss of signal intensity due to iron susceptibility artifacts (T2*) on the intra-procedural coronal magnetic resonance images obtained after each injection.

A recent experimental study showed the value of MR contrast media in providing diagnostic information on an atrial septal defect, a congenital heart defect in which the wall that separates the atria does not close completely. Schalla et al.[52] found in an experimental study that gadolinium-filled balloon sizing is a useful method for detecting and sizing the atrial septal defects. They also used MR contrast media to demonstrate intracardiac left-to-right shunt prior to the placement of atrial septal defect device ablation59. van Dockum et al[51] evaluated myocardial infarction induced by percutaneous transluminal septal myocardial ablation in symptomatic patients with hypertrophic obstructive cardiomyopathy using contrast-enhanced MRI.

Device deployment
A recent experimental study showed the value of MR
coronary remodeling, using elastin-binding gadolinium. Such data could facilitate the interpretation of clinical findings, enhance risk stratification and provide a means for local therapy. Monitoring extracellular matrix changes by contrast-enhanced MRI appears promising for the assessment of plaque burden in atherosclerosis or neointimal hyperplasia after coronary angioplasty and other therapies[65,66].

MR contrast media have also been used in quantifying the sizes of the area at risk, myocardial infarct and visualizing therapeutic delivery in the target. Saeed et al. used MR contrast media in measuring ischemic and infarcted myocardium prior to and after transendocardial delivery of hepatocyte growth factor gene and endothelial growth factor gene using MR-guided procedures. They found that gene treated animals have better perfusion and significantly smaller infarct size than control animals on contrast enhanced MRI (Figure 8).

MR contrast media have also been used to label cells in order to track their distribution in myocardium after intramyocardial injection under MR-guidance[57,58] or intracoronary infusion[59,60]. Graham et al. were able to follow the distribution of iron oxide labeled bone marrow progenitor cells for 42 d after intracoronary infusion. The transendocardial delivery route has been shown to be safe in patients with end-stage heart failure[61]. Recent preclinical and clinical studies showed the importance of MR contrast media in determining the efficacy of stem cells[62-64]. First pass MR contrast media passage documented the benefits of angiogenic growth factors[71] and angiogenic genes[72] in increasing regional myocardial perfusion (Figure 9). Pearlman et al. were the first to demonstrate the recruitment of collateral vessels after local delivery of angiogenic genes, using perfusion MRI.

Angiography

Visualization of vascular anatomy, pathology (stenosis, aneurism, plaque) or implants (stents, filters, atrio-septal occluders or prosthetic heart valves) is crucial in interventional procedures. MR contrast media have been used in road mapping blood vessels[73,74], demonstrating vascular diseases and easing visualization of endovascular devices[21]. These agents were delivered intravenously or intraarterially to enhance arterial[75,76] or venous vessels[58].

Inflammation is a key process in atherosclerotic progression and has been associated with increased frequency of plaque rupture[77]. Ultrasound superparamagnetic iron oxide particles have been used in characterizing atherosclerotic plaques from many different perspectives. These agents are effective markers of plaque inflammation. Different plaque tissues can then be characterized based on their enhancement properties[78].

Cell labeling

Both gadolinium and iron oxide based contrast media are useful for labeling different types of cells that assist in cell tracking[79,80]. These agents have no negative effects on cell viability, proliferation or differentiation[81,82]. The toxicity of iron oxide particles is less than free gadolinium because free iron particles released from dead iron...
labeled cells are recycled in the body and not associated with NSF.

MR contrast media can be introduced into the intracellular compartments by endocytosis, phagocytosis or magnetoelectroporation. Investigators found that the duration of detection of labeled cells on MRI varies from 5 wk for embolic stem cells\(^7\) to 16 wk for skeletal myoblasts\(^8\). Modo \(et\ al\)\(^9\) observed that gadolinium chelate labeling allows \textit{in vivo} identification of transplanted neural cells up to 1 year after transplantation in rats with

Figure 8 Gadolinium-enhanced magnetic resonance long-axis (left column) and short-axis (right column) images illustrate the extent of myocardial infarct (hyperenhanced myocardium) at 5 wk after infarction and 5 wk after injection of saline (top block, 4 magnetic resonance images) and angiogenic gene (bottom block, 4 magnetic resonance images). Gadolinium-enhanced magnetic resonance (MR) images delineated myocardial infarct and showed substantial reduction in infarct extent and transmurality 5 wk after treatment (bottom block, bottom row, white arrows) compared with control animal (top block, bottom row). The angiogenic gene was delivered transendocardially under MR-guidance as shown in Figure 2. The histopathologic sections (right) show very few blood vessels in control animal (top right, black arrows) and the formation of abundant new blood vessels in gene treated animal (bottom right, black arrows).

Figure 9 First pass perfusion magnetic resonance imaging shows the hypoperfused infarct scar (arrows) after bolus administration of Gd-DTPA. The magnetic resonance (MR) images illustrate the delay in the enhancement of infarcted myocardium (arrows) compared with remote myocardium. The images were acquired at 12 s (left) and 60 s (right) after bolus administration of MR contrast media.
middle cerebral artery occlusion. Bulte et al.\(^{10}\) found that the reliable detection limit of a cluster of iron oxide-labeled cells in beating hearts at clinical field strengths is on the order of 100,000 cells. Iron labeling of stem cells generates a hypointense signal (dark region), related to the susceptibility effect of the particles, on T2*-weighted images. Iron oxide particles provide T2\(^*\) parametric map for up to 3 wk\(^{33,39,62}\). In the future, accurate depiction of treated regions with MR labeled cells may permit rapid adjustments of the therapeutic regimen to improve clinical outcomes.

FUTURE PERSPECTIVES

The usage of MR contrast media in MR guided procedures represents a promising modality, beyond traditional anatomical and functional indices. Figure 10 shows a schematic presentation of MR labeled therapy and their routes of delivery.

Saeed et al.\(^{21}\) demonstrated the advantageous effects of vascular endothelial growth factor and hepatocyte growth factor genes, delivered transcerebrodially under MR-guidance, in creating new blood vessels and reducing the size of infarcted myocardium using gadolinium-based MR contrast media\(^{23}\). Others used contrast enhanced MRI for determining the effects of intracoronary stem cell therapy on left ventricular function\(^{80}\). The investigators did not observe evidence of positive effects for intracoronary stem cells compared with placebo therapy with respect to left ventricular ejection fraction, volume indexes or infarct size. Other investigators found intracoronary cell delivery cause microinfarction\(^{80}\). MR contrast media have been recently used to visualize myocardial microinfarct caused by coronary microemboli\(^{77,38}\) and in the validation of manual thrombectomy devices\(^{89}\). Technical developments in mid-field MR interventional units will lead to reduction of the dose of MR contrast media and result in better visualization of interventional devices.

CONCLUSION

MR contrast media are useful in interventional procedures and therapy evaluation. They allow for character-

REFERENCES

1. Chertova E, Chertov O, Coren LV, Roser JD, Trubey CM, Bess JW, Sowder RC, Barsov E, Hood BL, Fisher RJ, Nagashima K, Conrads TP, Veenstra TD, Lifson JD, Ott DE. Proteomic and biochemical analysis of purified human immunodeficiency virus type 1 produced from infected monocye-derived macrophages. *J Virol* 2006; 80: 9039-9052
2. Wagner LK, Eifel P, Geise R. Effects of ionizing radiation. *J Vasc Interv Radiol* 1995; 6: 988-989
3. Zhou W, Parent LJ, Wills JW, Resh MD. Identification of a membrane-binding domain within the amino-terminal region of human immunodeficiency virus type 1 Gag protein which interacts with acidic phospholipids. *J Virol* 1994; 68: 2556-2569
4. Freed EO. HIV-1 Gag: flipped out for PI(4,5)P(2). *Proc Natl Acad Sci USA* 2006; 103: 11101-11102
5. Saad JS, Miller J, Tai J, Kim A, Ghanam RH, Summers MF. Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly. *Proc Natl Acad Sci USA* 2006; 103: 11364-11369
6. Hermita-Matsmoto L, Resh MD. Human immunodeficiency virus type 1 protease triggers a myristoyl switch that modulates membrane binding of Pr55(gag) and p17MA. *J Virol* 1999; 73: 1902-1908
7. Nafhavi MH, Golf SP. Retroviral proteins that interact with the host cell cytoskeleton. *Curr Opin Immunol* 2007; 19: 402-407
8. Tomita Y, Noda T, Fujii K, Watanabe T, Morikawa Y, Kawakami Y. The cellular factors Vps18 and Mon2 are required for efficient production of infectious HIV-1 particles. *J Virol* 2011; 85: 5618-5627
9. Dong X, Li H, Derdowski A, Ding L, Burnett A, Chen X, Peters TR, Dermody TS, Woodruff E, Wang J, Speearman P. AP-3 directs the intracellular trafficking of HIV-1 Gag and plays a key role in particle assembly. *Cell* 2005; 120: 663-674
10. Canus G, Segura-Morales C, Molle D, Lopez-Verges S, Begon-Pescia C, Cazevieille C, Schu P, Bertrand E, Berloz-Torrent C, Basuyuk E. The clathrin adaptor complex AP-1 binds HIV-1 and MLV Gag and facilitates their budding. *Mol Biol Cell* 2007; 18: 3193-3203
11. Parent LJ. New insights into the nuclear localization of retroviral Gag proteins. *Nucleus* 2011; 2: 92-97
12. Dupont S, Sharova N, DeHoratius C, Virbasius CM, Zhu X, Bukrinskaya AG, Stevenson M, Green MR. A novel nuclear export activity in HIV-1 matrix protein required for viral replication. *Nature* 1999; 402: 681-685
13. Jouvenet N, Bieniasz PD, Simon SM. Imaging the biogenesis of individual HIV-1 virions in live cells. *Nature* 2008; 454: 236-240
14. Hadjipanayis CG. Boder MJ, Balakrishnan S, Wang X, Mao H, Hadjipanayis CG. Metallic iron nanoparticles for MRI contrast enhancement and local hyperthermia. *Small* 2008; 4: 1925-1929
15. Pornillos O, Ganser-Pornillos BK, Kelly BN, Hua Y, Whitby FG, Stout CD, Sundquist WI, Hill CP, Yeager M. X-ray structures of the hexameric building block of the HIV capsid. *Cell* 2009; 137: 1282-1292
16. Cortines JR, Monroe EB, Kang S, Prevelige PE. A retroviral chimeric capsid protein reveals the role of the N-terminal β-hairpin in mature core assembly. *J Mol Biol* 2011; 410: 641-652

Paillart JC, Shehu-Xililaga M, Marquet R, Mak J. Dimerization of retroviral RNA genomes: an inseparable pair. Nat Rev Microbiol 2004; 2: 461-472

Saeed M, Henk CB, Weber O, Martin A, Wilson M, Shunk K, Saloner D, Higgins CB. Delivery and assessment of endovascular stents to repair aortic coarctation using MR and X-ray imaging. J Magn Reson Imaging 2006; 24: 371-378

Wyma DJ, Jiang J, Shi J, Zhou J, Lineberger JJ, Miller MD, Aiken C. Coupling of human immunodeficiency virus type 1 fusion to virion maturation: a novel role of the gp41 cytoplastic tail. J Virol 2004; 78: 3429-3435

Unal O, Li J, Cheng W, Yu H, Strother CM. MR-visible coatings for endovascular device visualization. J Magn Reson Imaging 2006; 23: 765-769

Saeed M, Martin Acquier A, Bucknor M, Saloner D, Do L, Ussel P, Su H, Kan YW, Higgins CB. Permanent coronary artery occlusion: cardiovascular MR imaging is platform for percutaneous transcendocardial delivery and assessment of gene therapy in canine model. Radiology 2008; 249: 560-571

Zhang H, Zhao Q, Bhattacharya S, Waheeda AA, Tong X, Hong A, Heck S, Currell F, Goger M, Cowburn D, Freed EO, Debnath AK. A cell-penetrating helical peptide as a potential HIV-1 entry inhibitor. J Mol Biol 2008; 378: 355-366

Adamson CS, Freed EO. Novel approaches to inhibiting HIV-1 replication. Antiviral Res 2010; 85: 119-141

Castrucci M, Sironi S, De Cobelli F, Salvioni D, Del Maschio A. Plain and gadolinium-DTPA-enhanced MR imaging of hepatocellular carcinoma treated with transarterial chemoradioembolization. Abdom Imaging 1996; 21: 488-494

Mueller GC, Gemmijte Jj, Carlso RC. Diagnostic imaging and vascular embolization for uterine leiomyomata. Semin Reprod Med 2004; 22: 131-142

Kelly BN, Kyere S, Kinde I, Tang C, Howard BR, Robinson H, Sundquist WI, Summers MF, Hill CP. Structure of the antiviral assembly inhibitor CAP-1 complex with the HIV-1 CA protein. J Biol Chem 2007; 332: 355-366

Freed EO. HIV-1 and the host cell: an intimate association. Trends Microbiol 2004; 12: 170-177

Chung JC, Wang D, Lewandowski RJ, Tang R, Chrisman HB, Vogelzang RL, Woloschak GE, Larson AC, Omary RA, Ryu RK. Four-dimensional transcatheater intra-arterial perfusion MR imaging before and after uterine artery embolization in the rabbit VX2 tumor model. J Magn Reson Imaging 2010; 31: 1137-1143

Porillos O, Alam SL, Davis DR, Sundquist WI. Structure of the Tsg101 UEV domain in complex with the PTAP motif of the HIV-1 p6 protein. Nat Struct Biol 2002; 9: 812-817

Liu F, Stephen AG, Waheeda AA, Aman MJ, Freed EO, Fisher RJ, Burke TR. SAR by oxime-containing peptide libraries: application to Tsg101 ligand optimization. ChemBiochem 2006; 9: 30-35

Huang JY, Kafy S, Dugas A, Valenti D, Tulandi T. Failure of uterine fibroid embolization. Fertil Steril 2006; 85: 30-35

Dorenberg EJ, Segerson N, Airey Kj, Akoum N, Fish E, Badger TJ, DiBella EV, Parker D, MacLeod RS, Marrouche NF. New magnetic resonance imaging-based method for defining the extent of left atrial wall injury after the ablation of atrial fibrillation. Am J Cardiol 2008; 52: 1263-1271

Bello D, Fieno DS, Kim RJ, Pereles FS, Passman R, Song G, Kadiash AH, Goldberger JJ. Infarct morphology identifies patients with substrate for sustained ventricular tachycardia. J Am Coll Cardiol 2000; 35: 1104-1113

Schmidt A, Azevedo CF, Cheng A, Gupta SN, Blumenke DA, Foo TK, Gerstenblith G, Weiss RG, Marbain E, Tomasselli GF, Lima JA, Wu KC. Infarct tissue heterogeneity by magnetic resonance imaging identifies enhanced cardiac arrhythmic susceptibility in patients with left ventricular dysfunction. Circulation 2007; 115: 2006-2014

Dickfeld T, Tian J, Al-Ahmad G, Jimenez A, Turgeman A, Kuk R, Peters M, Saliiari A, Saba M, Shorosky S, Sedy J. MRI-Guided ventricular tachycardia ablation: integration of late gadolinium-enhanced 3D scar in patients with implantable cardioverter-defibrillators. Circ Arrhythm Electrophysiol 2011;
January 28, 2012

van Dockum WG , ten Cate FJ, ten Berg JM, Beek AM, Twisk JW, Vos J, Hofman MB, Visser CA, van Rossum AC. Myocardial infarction after percutaneous transluminal septal myocardial ablation in hypertrophic obstructive cardiomyopathy: evaluation by contrast-enhanced magnetic resonance imaging. J Am Coll Cardiol 2004; 43: 27-34.

Schall G, Saeed M, Haggins CW, Werdell O, Martin A, Moore P. Balloon sizing and transcatheter closure of acute aortal septal defects guided by magnetic resonance fluoroscopy: assessment and validation in a large animal model. J Magn Reson Imaging 2005; 21: 204-211.

Allen KB, Dowling RD, Fudge TL, Schoettle GP, Selinger SL, Ganghwar DM, Angell WW, Pettrack MR, Skaar CJ, O’Neill WW. Comparison of transmyocardial revascularization with medical therapy in patients with refractory angina. N Engl J Med 1999; 341: 1029-1036.

Ruel M, Laham RJ, Parker JA, Post MJ, Ware JA, Simons M, Sellke FW. Long-term effects of surgical angiogenic therapy with fibroblast growth factor 2 protein. J Thorac Cardiovasc Surg 2002; 124: 28-34.

Stamm C, Kleine HD, Choi YH, Dunkelmann S, Laufls JA, Lowney KD, Wohlert A, Liebold A, Niemander C, Zurakowski D, Freund M, Steinhoff G. Intramyocardial delivery of CD133+ bone marrow cells and coronary artery bypass grafting for chronic ischemic heart disease: safety and efficacy studies. J Thorac Cardiovasc Surg 2007; 133: 717-725.

Vulliet PR, Greetley M, Halloran SM, MacDonald KA, Kittleson MD. Intra-coronary arterial injection of mesenchymal stromal cells and microinfiltration in dogs. Lancet 2004; 363: 783-784.

Saeed M, Hets SW, Do L, Wilson MW. MRI study on volume effects of coronary emboli on myocardial function, perfusion and viability. Int J Cardiol 2011; Epub ahead of print.

Saeed M, Hets SW, UrSELL PC, Do L, Kolli KP, Wilson MW. Evaluation of the acute effects of distal coronary microembolization using multiparameter computed tomography and magnetic resonance imaging. Magn Reson Med 2011; Epub ahead of print.

Maintz D, Ozgun M, Hoffmeier A, Fischbach R, Kim WY, Connelly KA, Vijayaraghavan R, Detsky JS, Hough MR, Stewart DJ, Wright GA, Dick AJ. Long-term tracking of bone marrow progenitor cells following intracoronary injection post-myocardial infarction in swine using MRI. Am J Physiol Heart Circ Physiol 2010; 299: H1125-H1133.

Perin EC, Dohmann HF, Bororevic R, Silva SA, Sousa AL, Mesquita CT, Rossi MI, Carvalho AC, Dutra HS, Dohmann HJ, Silva GV, Belém L, Vivacqua R, Rangel FO, Esproncette R, Geng YJ, Vaughn WK, Assad JA, Mesquita ET, Willerson JT. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 2003; 107: 2294-2302.

Assmus B, Honold J, Schächinger V, Britten MB, Fischer-Rasokat U, Lehmann R, Teupe C, Pistorius K, Martin H, Abolmaali ND, Tonn T, Dimmeler S, Zeiher AM. Transcoro- nary transplantation of progenitor cells after myocardial infarction. N Engl J Med 2006; 355: 1222-1232.

Menasche P, Allien O, Jansenes M, McKenna W, Reichenspurner H, Trinquet L, Vilquin JT, Marolleau JP, Seymour B, Larghero J, Lake S, Chatellier G, Solomon S, Desnos M, Haggège AA. The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation 2008; 117: 1189-1200.

Narazaki G, Uosaki H, Teranishi M, Okita K, Kim B, Matsuoka S, Yamanaka S, Yamashita JK. Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation 2008; 118: 498-506.

Pearlman JD, Hibberd MG, Chuang ML, Harada K, Lopez JJ, Gladstone SR, Friedman M, Sellke FW, Simons M. Magnetic resonance mapping demonstrates benefits of VEGF-induced myocardial angiogenesis. Nat Med 1995; 1: 1085-1089.

Saeed M, Saloner D, Martin A, Do L, Webster O, UrSELL PC, Jacquier A, Lee R, Higgins CB. Adeno-associated viral vector-encoding vascular endothelial growth factor gene: effect on cardiovascular MR perfusion and infarct resorption measurements in swine. Radiology 2007; 243: 451-460.

Omary RA, Green JD, Fang WS, Viohl I, Finn JP, Li D. Use of internal coils for independent and direct MR imaging-guided endovascular device tracking. J Vasc Interv Radiol 2005; 14: 247-254.

Omary RA, Green JD, Schirf BE, Li Y, Finn JP, Li D. Real-time magnetic resonance imaging-guided coronary catheterization in swine. Circulation 2003; 107: 2656-2659.

Serfaty JM, Yang X, Aksit P, Quick HH, Solaiyappan M, Atalar E. Toward MRI-guided coronary catheterization: visualization of guiding catheters, guidewires, and anatomy in real time. J Magn Reson Imaging 2000; 12: 590-594.

Paetzel C, Zorger N, Bachthaler M, Hamer OW, Strehl A, Feuerbach S, Lenhart M, Völk M, Holerd T, Kasprzak P, Nitz WR. Magnetic resonance-guided percutaneous angioplasty of femoral and popliteal artery stenoses using real-time imaging and intra-arterial contrast-enhanced magnetic resonance angiography. Invest Radiol 2005; 40: 257-262.

Jeziorska M, Woolley DE. Local neovascularization and cellular composition within vulnerable regions of atherosclerotic plaques of human carotid arteries. J Pathol 1999; 188: 189-196.

Kerwin WF, Paz O. Cardiac resynchronization therapy: overcoming ventricular dyssynchrony in dilated heart failure. Circulat Rev 2003; 11: 221-239.

Hill JM, Dick AJ, Raman VK, Thompson RB, Yu ZX, Hinds KA, Pessanha B, Gotman MA, Varnett TR, Martin BJ, Dunbar CE, McVeigh ER, Lederman RJ. Serial cardiac magnetic resonance imaging of injected mesenchymal stem cells. Circulation 2003; 108: 1009-1014.

Kraitchman DL, Tatsumi M, Gilson WD, Ishimori T, Kedzio...
rok D, Walczak P, Segars WP, Chen HH, Fritzges D, Izbudak I, Young RG, Marcelino M, Pittenger MF, Solaiyappan M, Boston RC, Tsui BM, Wahl RL, Bulte JW. Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. *Circulation* 2005; 112: 1451-1461

81 Amsalem Y, Mardor Y, Feinberg MS, Landa N, Miller L, Daniels D, Ocherashvilli A, Holbova R, Yosef O, Barbash IM, Leor J. Iron-oxide labeling and outcome of transplanted mesenchymal stem cells in the infarcted myocardium. *Circulation* 2007; 116: 138-145

82 Carr CA, Stuckey DJ, Tatton L, Tyler DJ, Hale SJ, Sweeney D, Schneider JE, Martin-Rendon E, Radda GK, Harding SE, Watt SM, Clarke K. Bone marrow-derived stromal cells home to and remain in the infarcted rat heart but fail to improve function: an in vivo cine-MRI study. *Am J Physiol Heart Circ Physiol* 2008; 295: H333-H342

83 Himes N, Min JY, Lee R, Brown C, Shea J, Huang X, Xiao YF, Morgan JP, Burstein D, Oettgen P. In vivo MRI of embryonic stem cells in a mouse model of myocardial infarction. *Magn Reson Med* 2004; 52: 1214-1219

84 Cahill KS, Germain S, Byrne BJ, Walter GA. Non-invasive analysis of myoblast transplants in rodent cardiac muscle. *Int J Cardiovasc Imaging* 2004; 20: 593-598

85 Modo M, Beech JS, Meade TJ, Williams SC, Price J. A chronic 1 year assessment of MRI contrast agent-labelled neural stem cell transplants in stroke. *Neuroimage* 2009; 47 Suppl 2: T133-T142

86 Bulte JW, Kraitchman DL. Monitoring cell therapy using iron oxide MR contrast agents. *Curr Pharm Biotechnol* 2004; 5: 567-584

87 Frank JA, Miller BR, Arbab AS, Zywiec HA, Jordan EK, Lewis BK, Bryant LH, Bulte JW. Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. *Radiology* 2003; 228: 480-487

88 Wöhrlé J, Merkle N, Mailänder V, Nusser T, Schauwecker P, von Scheidt F, Schwarz K, Bommer M, Wiesneth M, Schrenzenmeier H, Hombach V. Results of intracoronary stem cell therapy after acute myocardial infarction. *Am J Cardiol* 2010; 105: 894-812

89 Sardella G, Mancone M, Bucciarelli-Ducci C, Agati L, Scardà R, Carbone I, Franco M, Di Roma A, Benedetti G, Conti G, Fedele F. Thrombus aspiration during primary percutaneous coronary intervention improves myocardial reperfusion and reduces infarct size: the EXPIRA (thrombectomy with export catheter in infarct-related artery during primary percutaneous coronary intervention) prospective, randomized trial. *J Am Coll Cardiol* 2009; 53: 309-315

S- Editor Cheng JX **L- Editor** O’Neill M **E- Editor** Zheng XM