Introduction

Praseodymium (Pr) is one of the rare Earth elements with a commonly open 4f electron shell. The only stable isotope that occurs naturally, with electronic ground state [Xe] 4f⁵ 6s², 4f⁰ ⁹/₂, nuclear magnetic dipole moment μ₁ = 4.2754(5) μN, nuclear spin quantum number I = ⁵/₂ [1] and nuclear electric quadrupole moment Q = −0.0024b [2]. Pr is very rich in optical spectrum. The major portion of spectrum is in visible green region. That is why in lighting industry, it is of valuable importance [3].

Literature survey reveals that in 1928, King initiated investigations of singly ionized Pr (Pr II) [4]. The frequency separation of fine structure components of 173 spectral lines in Pr II ion was observed by H. White in 1929 [5]. Ginibre made great advancements in classification of Pr II lines and levels until 1989 [6–8]. Investigations of spectral lines of Pr II, published after 1989, were concerned with two features: either the measurements of transition probabilities and life times [9, 10] or accuracy measurements of hyperfine structure constants for the levels already known using laser induced fluorescence (LIF) method in a hollow cathode [11] or on a fast ion beam method [12–18]. Using Laser spectroscopy method, Zeeman structure of 6 lines in the wavelength range 649.5728—669.351 nm was recorded [19]. The structures of 32 spectral lines of Pr I were investigated by LIF spectroscopy. Researchers found Lande g₁ factors for 71 new experimental results [20]. In 1953, H. Lew used magnetic resonance technique to investigate hyperfine structure of ground state of Pr for which total electronic angular momentum, nuclear spin and g J value was calculated. It was observed that ⁴I₃/₂ was Pr’s atomic ground state. Further, he showed that the Russell-Saunders coupling also led to this state in accordance with Hund’s rule—the most stable ground state of 4f⁵ 6s² configuration [21]. In addition to research into Pr as an interesting element in atomic physics, spectral lines of Pr II are also extensively investigated with the perspective of other fields in Physics, especially Astrophysics. Wahlgren [22] and Biemont [23] presented a compilation of status of knowledge of all Lanthanide elements. Term values are used to examine the electronic and magnetic properties of inorganic molecules and complexes and helpful in describing energy, spin multiplicity and angular momentum of an atom/ion for any electronic configuration. The knowledge about spectral and magnetic properties of an atom or ion is provided by Russell-Saunders atomic term symbols. Such
technique was employed to calculate atomic terms for non equivalent electrons \((n - 1) d^s l^p\) configuration for which 120 microstates were computed [24]. Russell Saunders coupling scheme was also used by Meena et al to calculate microstates and term values of \(n^6\) and \(n^6\) configurations which were found to be 1001 and 47 respectively [25].

The objective of present study is to determine the term and angular momentum values and also coupled wave functions for \(4f^2 5d^2\) configuration of Pr-II using Russell-Saunders and coefficient of fractional parentage methods.

Methodology

Term values refer to energy states and give information of angular momenta. Atomic terms provide details about magnetic and spectral properties of elements. The number of terms in case of equivalent electrons is lesser in number as compared to that of non-equivalent electrons. Wave functions provide information of allowed values of quantum states and are used to calculate the energy and other radiative properties of states. Term symbols in Russell-Saunders coupling scheme are given in the form of \(^{(2S+1)I}\), where \(S\) denotes the orbital angular momentum, \(L\) takes the spin angular momentum, and \(J\) shows the total angular momentum. In a term symbol, \(L\) takes values 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ..., with each value of \(L\) being represented by English Capital letters 'S, P, D, F, G, H, I, K, ...'. It is assumed in the Russell-Saunders Scheme that spin–orbit coupling \(<\) orbit–orbit coupling \(<\) spin-spin coupling.

Allowed terms for the configuration \(4f^2 5d^2\) are found by considering equivalent \(f^2\) and \(d^2\). The terms arising from equivalent electron \(f^2\) and \(d^2\) are found by taking Pauli’s Principle into account. Terms of \(f^2\) were used as parent terms of allowed terms of the configuration \(4f^2 5d^2\). Combination rule was applied to combine terms of \(f^2\) and \(d^2\) and to obtain allowed terms of the configuration of interest. To find the characteristic wavefunctions of configuration \(4f^2 5d^2\), necessary data was collected from previous step, coupled wavefunctions and coefficients of fractional parentage were determined [26–28]. A computer program was developed which first found terms of equivalent electrons and then combined them to find allowed terms of configuration; this data is further used by the program to find normalized wavefunctions of the configuration.

Results and discussion

The present work gives information about the term values, total angular momentum (J) values and normalized coupled wave functions of \(4f^2 5d^2\) configuration of singly ionized Praseodymium based on Russell-Saunders and coefficient of fractional parentage methods. The electronic configuration \(4f^2 5d^2\) was investigated for fine structure details of Pr II. Total number of allowed atomic spectroscopic terms calculated for this configuration is 187. In 1989, Ginibre determined various parameters of hyperfine and fine structure for low lying configurations of Pr II. The stability order of term schemes was determined by Hund’s rule [26]. In \(4f^2 5d^2\) out of 187 term values, 9 of them are quintets, 10 are triplets and 11 are singlets. Stability order is \(^3L > ^3K > ^3H > ^3G > ^3F > ^3D > ^3P > ^3S > ^3M > ^1L > ^3K > ^1H > ^3H > ^1G > ^1F > ^1D > ^1P > ^1S\). The ground state term for \(4f^2 5d^2\) configuration is quintet \(L(3L)\).

The configuration \(4f^2 5d^2\)

Configuration \(4f^2 5d^2\) is an even configuration of Pr II; this configuration is studied here in detail. The number of LS terms, number of fine levels and corresponding angular momenta, allowed terms, coefficients of fractional parentage and coupled wave functions are determined. This configuration has 187 LS terms and total fine levels belonging to different \(J\) are 457 for \(4f^2 5d^2\) configuration. The levels with \(J = 4\) have maximum frequency. The terms of equivalent electrons \(f^2\) and \(d^2\) were found first. The terms of \(f^2\) were used as parent terms and are combined with the terms of \(d^2\). The angular momenta of combining terms and parents together with the angular momenta of final terms were used to find the coefficients of fractional parentage and wavefunctions of the terms. The coefficient of fractional parentage provides details about anti-symmetric coupled wave functions for allowed term values.

Table 1. List of LS Terms of \(4f^2 5d^2\).

Terms	\(^3S\)	\(^3P\)	\(^3D\)	\(^3F\)	\(^3G\)	\(^3H\)	\(^3I\)	\(^3K\)	\(^3L\)	\(^3M\)
Quantity	2	4	12	9	13	8	9	4	4	1
Terms \(5S\)	\(^5P\)	\(^5D\)	\(^5F\)	\(^5G\)	\(^5H\)	\(^5I\)	\(^5K\)	\(^5L\)	\(^5M\)	
Quantity	2	11	12	17	14	14	9	7	3	2
Terms \(5S\)	\(^5P\)	\(^5D\)	\(^5F\)	\(^5G\)	\(^5H\)	\(^5I\)	\(^5K\)	\(^5L\)	\(^5M\)	
Quantity	2	2	5	4	5	3	3	3	3	1

Sources

- [24] [25] [26] [27] [28]
Table 2. Designation of fine levels corresponds to 4f² 5d².

J	0	1	2	3	4	5	6	7	8	9	10	Total
Frequency	21	40	70	71	78	61	52	31	21	8	4	457

Wavefunctions of fine levels of configuration 4f² 5d².

(1I) 1N > = 1[f2d2 1G; (1I) 1N >

(1I) 1M > = 1[f2d2 1G; (1I) 1M >

(1I) 1L > = 0.7866[f2d2 1G; (1I) 1L > + 0.6155[f2d2 1G; (1I) 1L >

(1G) 1L > = 0.7866[f2d2 1G; (1G) 1L > + 0.6155[f2d2 1G; (1G) 1L >

(1I) 1K > = 0.9385[f2d2 1G; (1G) 1K > + 0.3498[f2d2 1G; (1I) 1K >

(1G) 1K > = 0.9385[f2d2 1G; (1G) 1K > + 0.346[f2d2 1G; (1I) 1K >

(1I) 1J > = −0.3949[f2d2 1G; (1I) 1J > − 0.3485[f2d2 1G; (1I) 1J > + 0.853[f2d2 1G; (1I) 1J >

(1G) 1J > = 0.2666[f2d2 1G; (1G) 1J > + 0.8567[f2d2 1G; (1G) 1J > − 0.4938[f2d2 1G; (1I) 1J >

(1I) 1I > = 0.7032[f2d2 1G; (1I) 1I > + 0.3355[f2d2 1G; (1I) 1I > + 0.6269[f2d2 1G; (1I) 1I >

(1H) 1H > = 0.8873[f2d2 1G; (1I) 1H > + 0.4579[f2d2 1G; (1G) 1H > + 0.0553[f2d2 1G; (1I) 1H >

(1I) 1H > = 0.8873[f2d2 1G; (1I) 1H > + 0.4579[f2d2 1G; (1G) 1H > + 0.0553[f2d2 1G; (1I) 1H >

(1G) 1H > = 0.8873[f2d2 1G; (1G) 1H > + 0.4579[f2d2 1G; (1G) 1H > + 0.0553[f2d2 1G; (1I) 1H >

(1I) 1G > = 0.8873[f2d2 1G; (1I) 1G > + 0.4579[f2d2 1G; (1G) 1G > + 0.3943[f2d2 1G; (1I) 1G > + 0.7319[f2d2 1G; (1I) 1G >

(1G) 1G > = 0.5593[f2d2 1G; (1G) 1G > − 0.1801[f2d2 1G; (1I) 1G > + 0.4316[f2d2 1G; (1I) 1G > + 0.7003[f2d2 1G; (1I) 1G >

(1I) 1F > = 0.7269[f2d2 1G; (1I) 1F > + 0.2955[f2d2 1G; (1I) 1F > + 0.3965[f2d2 1G; (1I) 1F > + 0.4765[f2d2 1G; (1I) 1F >

(1I) 1E > = 0.3212[f2d2 1G; (1I) 1E > − 0.8058[f2d2 1G; (1I) 1E > + 0.4975[f2d2 1G; (1I) 1E >

(1G) 1F > = −0.3212[f2d2 1G; (1I) 1F > + 0.8058[f2d2 1G; (1I) 1F > + 0.4975[f2d2 1G; (1I) 1F >

(1I) 1D > = 0.6424[f2d2 1G; (1I) 1D > + 0.4853[f2d2 1G; (1I) 1D > + 0.3946[f2d2 1G; (1I) 1D >

(1G) 1D > = 0.6424[f2d2 1G; (1I) 1D > + 0.4853[f2d2 1G; (1I) 1D > + 0.3946[f2d2 1G; (1I) 1D >

(1I) 1C > = 0.3573[f2d2 1G; (1I) 1C > + 0.8567[f2d2 1G; (1I) 1C > + 0.3943[f2d2 1G; (1I) 1C >

(1G) 1C > = 0.3573[f2d2 1G; (1I) 1C > + 0.8567[f2d2 1G; (1I) 1C > + 0.3943[f2d2 1G; (1I) 1C >

(1I) 1B > = 0.3262[f2d2 1G; (1I) 1B > + 0.8567[f2d2 1G; (1I) 1B > + 0.3943[f2d2 1G; (1I) 1B >

(1G) 1B > = 0.3262[f2d2 1G; (1I) 1B > + 0.8567[f2d2 1G; (1I) 1B > + 0.3943[f2d2 1G; (1I) 1B >

(1I) 1A > = 0.3262[f2d2 1G; (1I) 1A > + 0.8567[f2d2 1G; (1I) 1A > + 0.3943[f2d2 1G; (1I) 1A >

(1G) 1A > = 0.3262[f2d2 1G; (1I) 1A > + 0.8567[f2d2 1G; (1I) 1A > + 0.3943[f2d2 1G; (1I) 1A >

(1I) 19 > = 0.3041[f2d2 1G; (1I) 19 > − 0.1099[f2d2 1G; (1I) 19 > + 0.7279[f2d2 1G; (1I) 19 >

(1G) 19 > = 0.3041[f2d2 1G; (1I) 19 > − 0.1099[f2d2 1G; (1I) 19 > + 0.7279[f2d2 1G; (1I) 19 >
Continued.

(1G) 1I >	1f2d2 1D; (1G) 1I >	51			
(1G) 1G >	0.7237	2d2 1D; (1D) 1G >	0.6901	2d2 1D; (1G) 1G >	52
(1D) 1G >	0.7237	2d2 1D; (1D) 1G >	0.6901	2d2 1D; (1G) 1G >	53
(3H) 5L >	1f2d2 1F; (3H) 5L >	54			
(3H) 5K >	1f2d2 3F; (3H) 5K >	55			
(3H) 5I >	0.8819	2d2 3F; (3H) 5I >	0.4714	2d2 3F; (3H) 5I >	56
(3F) 5I >	0.8819	2d2 3F; (3F) 5I >	0.4714	2d2 3F; (3F) 5I >	57
(3H) 1I >	-0.4714	2d2 3F; (3H) 1I >	0.8819	2d2 3F; (3H) 1I >	58
(3F) 1I >	0.4714	2d2 3F; (3F) 1I >	-0.8819	2d2 3F; (3F) 1I >	59
(3H) 5H >	1f2d2 3F; (3H) 5H >	60			
(3F) 5H >	1f2d2 3F; (3F) 5H >	61			
(3H) 5G >	0.5283	2d2 3F; (3H) 5G >	-0.4866	2d2 3F; (3H) 5G >	62
(3F) 5G >	0.2762	2d2 3F; (3F) 5G >	0.8819	2d2 3F; (3F) 5G >	63
(3P) 5G >	0.8591	2d2 3F; (3P) 5G >	0.2808	2d2 3F; (3P) 5G >	64
(3H) 1G >	-0.5118	2d2 3F; (3H) 1G >	0.4714	2d2 3F; (3H) 1G >	65
(3F) 1G >	-0.5118	2d2 3F; (3F) 1G >	0.4714	2d2 3F; (3F) 1G >	66
(3P) 1G >	0.5118	2d2 3F; (3P) 1G >	-0.4714	2d2 3F; (3P) 1G >	67
(3H) 5F >	-0.1592	2d2 3F; (3H) 5F >	0.4864	2d2 3F; (3H) 5F >	68
(3F) 5F >	0.378	2d2 3F; (3F) 5F >	0.5774	2d2 3F; (3F) 5F >	69
(3P) 5F >	0.9636	2d2 3F; (3P) 5F >	0.2265	2d2 3F; (3P) 5F >	70
(3H) 1F >	0.2673	2d2 3F; (3H) 1F >	-0.8165	2d2 3F; (3H) 1F >	71
(3F) 1F >	-0.2673	2d2 3F; (3F) 1F >	0.8165	2d2 3F; (3F) 1F >	72
(3P) 1F >	0.2673	2d2 3F; (3P) 1F >	0.8165	2d2 3F; (3P) 1F >	73
(3H) 5D >	-0.4795	2d2 3F; (3H) 5D >	-0.3453	2d2 3F; (3H) 5D >	74
(3F) 5D >	0.3499	2d2 3F; (3F) 5D >	0.8819	2d2 3F; (3F) 5D >	75
(3P) 5D >	0.7559	2d2 3F; (3P) 5D >	-0.4082	2d2 3F; (3P) 5D >	76
(3H) 3D >	-0.399	2d2 3F; (3H) 3D >	-0.543	2d2 3F; (3H) 3D >	77
(1G) 3D >	0.6712	2d2 3F; (1G) 3D >	0.2808	2d2 3F; (1G) 3D >	78
(1I) 3D >	0.5575	2d2 3F; (1I) 3D >	0.6022	2d2 3F; (1I) 3D >	79
(3F) 3D >	-0.2912	2d2 3F; (3F) 3D >	-0.317	2d2 3F; (3F) 3D >	80
(3P) 3D >	0.629	2d2 3F; (3P) 3D >	-0.2568	2d2 3F; (3P) 3D >	81
(3H) 3D >	0.6547	2d2 3F; (3H) 3D >	0.4714	2d2 3F; (3H) 3D >	82
(1D) 3D >	0.6547	2d2 3F; (1D) 3D >	0.4714	2d2 3F; (1D) 3D >	83
(1G) 3P >	0.346	2d2 3F; (1G) 3P >	0.5099	2d2 3F; (1G) 3P >	84
(3F) 3P >	0.8321	2d2 3F; (3F) 3P >	0.8321	2d2 3F; (3F) 3P >	85
(1D) 3P >	0.8133	2d2 3F; (1D) 3P >	0.4714	2d2 3F; (1D) 3P >	86
(1G) 1F >	0.8452	2d2 1D; (1G) 1F >	0.5345	2d2 1D; (1G) 1F >	87
(1I) 1D >	0.6831	2d2 1D; (1I) 1D >	0.4646	2d2 1D; (1I) 1D >	88
(3F) 5P >	1	2d2 3F; (3F) 5P >	95		
(3F) 1S >	1	2d2 3F; (3F) 1S >	96		
The wavefunctions are given by

$$|a^m_b^n; (S_{\text{o}}, L_{\text{o}})\alpha SL > = \sum_{\alpha' L'S'} (a^{\alpha' b^n}\alpha SL \{|a^\alpha L'S', b^n\}| a^m_b^n; (L'S')SL >$$

Where \((a^{\alpha' b^n}\alpha SL \{|a^\alpha L'S', b^n\}| a^m_b^n; (L'S')SL >)\) is known as coefficient of fractional parentage, \(L', L_{\text{o}}\), \(L\) are orbital angular momenta of parent term, principal parent term and final term of the configurations. Similarly, \(S', S_{\text{o}}, S\) are spin angular momenta of parent term, principal parent term and final term of the configuration.

In this paper all the wavefunctions are given in as shown in equation given below;

$$|{(1S)3P} > = 0.8268| f^2d^2; (1S)3P > + 0.4510| f^2d^2; (3P)3P > + 0.3361| f^2d^2; (1D)3P >$$

All the coefficients of capital letters (e.g. 1S) are multiplicities, all integers after small letters (e.g. f2) are number of electrons. On left hand side the term in bracket is principal parent and the next term is one of the final terms of configuration. The numerical values on right hand side are coefficient of fractional parentage. All the wavefunctions are shown in equation (1) to (106), these wavefunctions are normalized, the wavefunctions of the terms having same values of \(L\) and \(S\) (see table 1) are non-orthogonal, they can be made orthogonal using Gram Schmidt Procedure of orthogonalization. In table 1 final LS terms of the configuration \(4f^25d^2\) of Pr II are given with their frequencies. Table 2 shows that the possible \(J\) values for the configuration lie between \(0 \leq J \leq 10\). The second row of table 2 gives the frequency of occurrence of each of the angular momenta. There are 106 fine levels of Pr II belonging to the configuration mentioned above. Wave functions of these fine levels are given from equation (1) to (106).

As an example, for the calculation of energy of the terms; CFP of the two of the wavefunctions for the terms \(3F\) and \(3H\) have been used to calculate corresponding energies and are compared with the energies given by Ginibre [8]. To calculate coulomb interaction energy following equations have been used [29].

$$E(f^2d^2; 3F) = 0.026F_2(nf; nd) - 0.0815F_2(nf; nd) + 0.127G_1(nf; nd)$$
$$+ 0.1275G_2(nf; nd) - 0.0109G_3(nf; nd)$$

$$E(f^2d^2; 3H) = -0.0699F_2(nf; nd) - 0.0081F_3(nf; nd) + 0.1768G_1(nf; nd)$$
$$+ 0.0891G_3(nf; nd) - 0.0506G_5(nf; nd)$$

To calculate the energy due to spin–orbit interaction following equation is used.

$$d = \left(\frac{3}{2}l(l+1)(2l+1)\right)^{0.5} (-1)^{l+r+j} \left\{\begin{array}{ccc} l & s & j \\ s & l & 1 \end{array}\right\}$$

The total energy calculate with the help of equations (1)–(3) are shown in table 3.

Table 3. Term energies of the terms \(^3F\) and \(^3H\).

Parent term	Resultant term	\(J\)	Energy	Energy [\(\text{eV}\)]
3H	3F	3	25 043.9	24 796
1G	3H	4	25 059.66	25 818

Table 2. (Continued.)

\(J\)	0	1	2	3	4	5	6	7	8	9	10	Total
\((3P)5D\) >	1	f^2d^2 3P; (3P)5D >	97									
\((1D)3D\) >	0.8321	f^2d^2 3P; (3P)3D > + 0.5547	f^2d^2 3P; (1D)3D >	98								
\((3P)3D\) >	0.8321	f^2d^2 3P; (3P)3D > + 0.5547	f^2d^2 3P; (1D)3D >	99								
\((1D)1S\) >	1	f^2d^2 1D; (1D)1S >	100									
\((1D)3P\) >	0.3482	f^2d^2 3P; (1S)3P > - 0.5222	f^2d^2 3P; (3P)3P > + 0.7785	f^2d^2 3P; (1D)3P >	101							
\((3P)3P\) >	0.3692	f^2d^2 3P; (1S)3P > + 0.8321	f^2d^2 3P; (3P)3P > - 0.4134	f^2d^2 3P; (1D)3P >	102							
\((1S)3P\) >	0.8018	f^2d^2 3P; (3P)3P > + 0.5976	f^2d^2 3P; (1D)3P >	103								
\((3P)5P\) >	1	f^2d^2 3P; (3P)5P >	104									
\((3P)1S\) >	1	f^2d^2 3P; (3P)1S >	105									
\((1S)1S\) >	1	f^2d^2 1S; (1S)1S >	106									
Conclusion

We studied fine structure of Pr II for electronic configuration 4f²5d. It is an even parity configuration. Terms arising from F are used as a parent and are combined with the terms of equivalent electrons d. Coupling of angular momenta is carried out using Russell-Saunders method. Number of terms generated by 4f²5d configuration are 187, most of them are repeated terms with different frequency of occurrence (see table 1). 4f²5d configuration has a total number of 457 fine levels whose angular momenta are given in table 2 and most frequent value for angular momentum is J = 4. Wavefunctions (106 in numbers) are also calculated along with the coefficients of fractional parentage. These wavefunctions could further be used to calculate transition probability, energy, etc. As example calculated energies for the terms ²F and ³H have been shown in table 3.

ORCID iDs

Saba Javaid https://orcid.org/0000-0003-4051-1836
Zaheer Uddin https://orcid.org/0000-0002-8807-6186

References

[1] Macfarlane R M, Burum D P and Shelby R M 1982 New determination of the nuclear magnetic moment of Pr 141 Phys. Rev. Lett. 49 656
[2] Boklen K D, Bossert T, Foerster W, Fuchs H H and Nachtsheim G 1975 Hyperfine structure measurements in the 419/2 ground state of 141 Pr Zeitschrift für Physik A Atoms and Nuclei 274 195–201
[3] Haynes W M 2014 CRC Handbook of Chemistry and Physics (New York: CRC press)
[4] King A S 1928 A S King Astrophys. J. 88 194
[5] White H E 1929 Hyperfine structure in singly ionized praseodymium Phys. Rev. 34 1397
[6] Ginibre A 1989 Fine and hyperfine structures of singly ionized praseodymium: I. energy levels, hyperfine structures and Zeeman effect, classified lines Phys. Scr. 39 694
[7] Ginibre A 1990 Classified strong lines of singly ionized praseodymium (Pr II) between 2783 and 25 000 cm⁻¹ At. Data Nucl. Data Tables 44 1–29
[8] Ginibre A 1989 Fine and hyperfine structures of singly ionized praseodymium: II. parametric interpretation of fine and hyperfine structures for the even levels of singly ionized praseodymium Phys. Scr. 39 710
[9] Ivarsson A S, Litzén U and Wahlgren G M 2001 Accurate wavelengths, oscillator strengths and hyperfine structure in selected praseodymium lines of astrophysical interest Phys. Scr. 64 455
[10] Biemont E, Lefebvre P H, Quinet P, Svanberg S and Xu H L 2003 Radiative lifetime measurements and oscillator strength determination for transitions in singly ionized praseodymium (Pr II) The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics 27 33–41
[11] Furmann B, Stefatiska D, Stachowska E, Ruczkowski J and Dembczynski J 2001 Hyperfine-structure measurements and new levels evaluation in singly ionized praseodymium The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics 17 275–84
[12] Jimura H, Nakahara Y, Ichikawa S I, Kotani K, Wakisagi M and Horiguchi T 1990 Measurement of hyperfine structure of the 4 F3 5 d 5 G–4 F3 6 p 5 H in PrII by collinear laser-ion-beam spectroscopy J. Phys. Soc. Jpn. 59 4208–10
[13] Hongliang M, Xiaohua C, Zhijun C, Wei S, Fuquan L, Jiayong T and Fujia Y 1999 Hyperfine structure in the 576 nm line of Pr II by collinear fast-ion-beam laser spectroscopy J. Phys. B: At. Mol. Opt. Phys. 32 1345
[14] Li M, Ma H, Chen M, Chen Z, Lu F, Tang J and Yang F 2000 Measurement of hyperfine structure in the lines 578.77 nm and 587.04 nm of PrII Hyperfine Interact. 128 417–22
[15] Maosheng L, Hongliang M, Xiaohua C, Fuquan L, Jiayong T and Fujia Y 2000 Hyperfine-structure measurements in 141 Pr II and 143, 145 Nd II by collinear laser-ion-beam spectroscopy Phys. Rev. A 62 052504
[16] Hong-Liang M 2002 Hyperfine structure of singly ionized praseodymium and praseodymium Chin. Phys. 11 905
[17] Rivest R C, Izawa M R, Rosner S D, Scholl T J, Wu G and Holt R A 2002 Laser spectroscopic measurements of hyperfine structure in Pr II Can. J. Phys. 80 557–62
[18] Ma H L and Yang F J 2004 Measurement of hyperfine coupling constants of singly ionized rare earth ions At. Data Nucl. Data Tables 86 3–18
[19] Werbowy S, Güney C and Windholz L 2016 Experimental investigations of the Zeeman effect of fine structure levels of Lanthanum and Praseodymium Spectrochim. Acta, Part B 116 16–20
[20] Sobolewski L M, Windholz L and Kvela J 2017 Laser induced fluorescence spectroscopy used for the investigation of Landé gf-factors of praseodymium energy levels J. Quant. Spectrosc. Radiat. Transfer 194 24–30
[21] Lew H 1953 The ground state hyperfine structure and nuclear magnetic moment of praseodymium Phys. Rev. 89 530
[22] Wahlgren G M 2002 The lanthanide elements in stellar and laboratory spectra Phys. Scr. 2002 22
[23] Biemont E and Quinet P 2003 Recent advances in the study of lanthanide atoms and ions Phys. Scr. 2003 38
[24] Murphy H A and Miao V 2017 A study on atomic spectroscopic term symbols for non-equivalent electrons of (n–1)d s p configuration using Russell-Saunders coupling scheme Int. Journal of Engineering & Research 7 27–33
[25] Meena P L, Kumar N, Meena A S and Meena K S 2014 Comparative studies on Russell-Saunders atomic term symbols (terms) for equivalent electrons of nf4 and nf10 configurations Bulgarian Chemical Communications 46 141–9
[26] Sobel’man I I 1967 Introduction to the theory of Atomic Spectra (No. FTD–MT–64–542), FOREIGN TECHNOLOGY DIV WRIGHT-PATTERSON ABF OHIO (Oxford: Pergamon Press)
[27] Condon E U and Odabasi H 1980 Atomic Structure (Cambridge: Cambridge University Press)
[28] Cowan R D 1981 The Theory of Atomic Structure and Spectra (Berkeley: University of California Press)
[29] Javaid S, Zafar R and uddin Z 2019 Coulomb Energies for the configuration 4f²5d and fine level details of the configurations 4f³ 6p & 4f³ 6s of singly ionized Praseodymium (Pr II) International Journal of Advance Research 7 294–302