Synthesis and characterization of tellurium oxide nanoparticles using pulse laser ablation and study their antibacterial activity

Wafaa K. Khalef1, Thoria R. Marzoog 2, Abdulqader D. Faisal2

1,2Applied Science Department / University of Technology/Baghdad/Iraq

*Corresponding author: drwafaa1980@gmail.com

Abstract: In this study, tellurium oxide (TeO2) nanoparticles were synthesized via PLA of tellurium targets with a 1064 nm laser in distilled water. The morphology and the particle size of the nanoparticles were characterized by scanning electron microscope (SEM) and atomic force microscope (AFM) respectively. The optical properties were studied by UV-Visible Spectrophotometer. Tellurium oxide nanoparticles with diameters of 55 nm were formed in a colloid solution. The UV–vis spectrum of the material shows a strong peak of around 200 nm. In addition, the morphology of gram-negative bacteria and gram-positive attachment of TeO2 nanoparticles was studied by using SEM measurement. The activity of TiO2 nanoparticles toward the inhibition and removal of Escherichia coli, Proteus, Pseudomonas bacteria and Staphylococcus aureus was investigated and discussed.

Keywords: Antibacterial, Tellurium oxide, Antimicrobial, TeO2 nanostructure.

1. Introduction

Various nano-sized materials show unique chemical, optical, biological, photoelectrochemical and electronic properties [1,2]. TeO2 belongs the high index of refractive materials which transmit in infrared region; so that it is very interesting for optical applications. The energy gap of TeO2 is about 4.05 eV. It has also been found to exhibit Raman gain up to 30 times that of silicon dioxide; as a result, it is very successful in fiber optic amplification [3, 4]. Because of their beneficial photo-elastic properties TeO2 crystals a good in acousto-optic devices, also due to their low light absorption, high optical homogeneity and high optical damage resistance [3, 5]. TeO2 is an interesting material both in its amorphous and crystalline forms, such as α-TeO2 finds to have applications as an optical storage material, x-ray detectors, laser devices, optical storage material, gas sensors [6-10] and propane oxidation catalysts [11, 12]. Various techniques have been used for TeO2 thin films preparation such as reactive dip-coating, sputtering [13-15], and laser ablation [16-18]. This work represents the activity of TeO2 NPs toward the removal and inactivation of Escherichia coli, Proteus vulgarus, Pseudomonas spp and Staphylococcus aureus was examined. We have successfully produced TeO2 NPs by in distilled water via PLA method. The morphological and optical properties were calculated for TeO2 NPs on quartz substrates.

2. Experimental

2.1 Synthesis method of TeO2 Nanoparticles and characterization
Tellurium oxide nanoparticles, which is a combination of focused pulsed laser (type HUAFEI) of 1064 nm at energy (600) mJ per pulse of a piece of tellurium metal plates (purity: 99.999%) placed in the quartz vessel containing 2 ml of DW [19-21]. The number of laser pulses applied to the Te metal about 50 pulses. Philips PW 1050 X-ray diffract meter of 1.54 Å from Cu-ka used for X-ray diffraction measurements. The examination of the morphological characteristics of TeO₂ nanoparticles using atomic force microscope (AFM) type (Digital Instrument microscopy imaging with an AFM tapping mode) to observe microstructure. UV-Visible Spectrophotometer (Metertech SP 8001), in the range of (190-1100) nm, were used to study optical properties [21].

2.2 Antibacterial activities of TeO₂Np

Antibacterial activity of TeO₂NP was determined by agar- well diffusion method [22, 23]. Test strains, *Escherichia coli* (E.coli), *Proteus vulgarus*, *Pseudomonas* and *Staphylococcus aureus* strains were kindly provided by the lab of biotechnology- department of applied science, University of Technology - Baghdad. The cell culture suspension of each bacterium was adjusted by comparing to McFarland solution as control and that's equal to 10⁷ CFU/ml [24]. Muller – Hinton agar plates were seeded with 0.1 ml of suspensions of each bacterial culture separately, then wells of 5 mm diameter were prepared in each agar plate. The wells were loaded with 100 µl of different concentrations of TeO₂ nanoparticle solution. Plates were incubated at 37 °C for 24 hours, and then the diameters of the inhibition zones were measured in millimeter [22, 24].

3. Results and Discussion

3.1 Morphological and structural analysis of TeO₂ NPs

3.1.1 SEM analysis

The surface morphology of TeO₂ NPs was analyzed in SEM using Inspect S50, FEI Company, Netherland microscope. It is observed that the surface morphology of TeO₂ NPs is quite homogeneous, the shape of the molecules is random and molecule sizes changes between 100 nm to 1 µm (Figure 1).

![SEM images of TeO₂ NPs at large and small magnifications with a scale bar of 10 and 5µm respectively.](image)

3.1.2 AFM analysis
Atomic force microscope (AFM) images of TeO$_2$ nanoparticles film drop caste on a quartz substrate prepared via Nd-YAG laser. Figure 2 presents (2D), (3D) AFM images and the grain size distribution shows in (c). The AFM parameters also calculated such as average grain size, root, mean square (Sq) and average roughness (Sa) are 55 nm, 4.51 nm, and 3.23 nm respectively.

3.1.3 XRD analysis

X-ray Diffraction (XRD) was applied to analyze the TeO$_2$ NPs drop-casting on quartz substrate via Laser ablation technique as presented in Figure 3. TeO$_2$ nanoparticles revealed a strong and broaden peak related to the (100) reflection plane. Another small peak corresponding (101).the whole of the reflections in Figure 3 can be indexed on a tetragonal tellurium oxide with lattice constants of $a = b = 0.480$ nm and $c = 0.761$ nm (JCPDS No. 78-1713). [24]. This result is confirmed by other literature's data [15-27]. The crystallite size (grain size) (D) were calculated using the Scherrer formula from the full-width at half-maximum (FWHM) (Δ) (Red) [27-29] with other parameters are listed in the table (1). Where the wavelength of the X-rays and Bragg angle are λ and θ respectively.

$$D = \frac{0.9 \lambda}{\Delta \cos \theta} \ldots \quad (1)$$

Table (1) TeO$_2$NP parameters for preferred orientation (100).
3.2 Optical properties
The band gap (Eg) values of tellurium oxide nanoparticle film are obtained from the following relation [30-32].

\[a\nu = A(\nu - E_g)^{0.5} \quad \ldots \quad (2) \]

Where: A is a constant, \(\alpha \) is the absorption coefficient, \(\nu \) is the photon frequency and \(h \) is Planck’s constant. The absorption spectrum of tellurium oxide nanoparticles in a colloidal is shown in Figure 4a. To have a strong absorption peak at (200) nm, suggesting the formation of TeO\(_2\) nano colloidal solution. The band gap energies (Eg) of the prepared tellurium oxide nanoparticles found to be about 5 eV as shown in figure 4 (b) which is larger than the value for the bulk TeO\(_2\) about 4.02 eV. This due to the band gap of the semiconductors has been found to be particle size-dependent [33, 34].
Figure 4. The Absorption spectrum of TeO$_2$ NPs and Bandgap.

3.3 Antibacterial activity of TiO$_2$ NPs application

The Antibacterial potential of TeO$_2$ was evaluated according to the presence of a clear inhibition zone and its diameter around the wells in each plate of the bacterial strains. The results revealed that TeO$_2$ is a potent antimicrobial agent against two of the tested microorganisms. The maximum inhibition zone diameter was obtained in E. coli with diameter 48 mm in 2.0 mg/ml concentration. Similarly, the same concentration (2.0 mg/ml) showed maximum inhibition zone with a diameter of 40 mm in S. aureus, while there was no antimicrobial activity against Proteus vulgarus, Pseudomonas as explained in Table 2. Figure 5 shows inhibition zones of a) Escherichia coli, b) Staphylococcus aureus, c) Proteus vulgarus and d) Pseudomonas strains using the good diffusion method.

Table (2) Antimicrobial activities of different concentrations of TeO$_2$ NPs on test bacterial strains.

Test organism	Inhibition zone diameter (mm) for concentration (mg/ml)			
	0.5	1.0	1.5	2.0
E. coli	26.5	28	32	48
S. aureus	24	28	32	40
Proteus vulgarus				
Pseudomonas				
From the above consequences, it is generally concurred that the TeO$_2$ nanoparticles have an issue as an antibacterial effect. The presumed explanation is that both gram-negative and gram-positive bacteria carry a negative charge on their cell wall, so there will be an affinity to the positive ions most nanoparticles release, and that will increase the uptake of ions into the bacterial cells and that will lead to intracellular damage. Another presumed mechanism of action of these nanoparticles on a bacterial cell is that the nanoparticles inhibit proteins or Muclopeptides synthesis, but the mechanism of genetic materials from this material is not fully understood. There was no antibacterial effect of TeO$_2$ nanoparticles against *Proteus vulgarus*, *Pseudomonas* and that differs from previous studies. Few studies reported that bacterial strains that multidrug and heavy metal resistant bacteria like *Proteus, Pseudomonas* are unaffected by nanoparticles, which affect other bacteria, and that may be due to producing extracellular matrix that agglomerate and deactivate the nanoparticles [35-38]. Figure 6 a, b shows SEM images of the Gram-negative Bacteria (*E. coli*) and gram-positive (*Staphylococcus aureus*) attachment of TeO$_2$ nanoparticles at different magnifications, respectively. It is clear that the TeO$_2$ nanoparticles seen in the SEM image consist of a number of crystallites.
Conclusion
The results confirm the formation of TeO$_2$ NPs with energy band gap of 5.02 eV for the TeO$_2$ nanoparticles synthesized via PLA method. This result, investigates the good performance of TeO$_2$ nanoparticles colloidal toward the removal and inactivation of *Escherichia coli*, and *Staphylococcus aureus* respectively.

References
[1] Mohanraj V. J. and Chen Y., 2006 Nanoparticles –A review, Tropical Journal of Pharmaceutical Research 5 561-573.
[2] Abdulrazzaq O.A., Saleem E. T., 2006 Inexpensive near-IR photodetector, *Turkish Journal of Physics* 30 35-39.
[3] Beke S., Sugioka K., Midorikawa K., Peter A., Na’nai L.and Bonse, 2010 Characterization of the ablation of TeO2 crystals in air with femtosecond laser J.pulses, *J. Phys. D: Appl. Phys* 43 1-6.
[4] Li Y., Fan W., Sun H., Cheng X., Li P., & Zhao X., 2010 Structural, electronic, and optical properties of α, β, and γ-TeO2, *Journal of Applied Physics* 107 093506.
[5] Ismail R. A., Rasheed B. G., Salm E. T., Al-Hadethy M., 2007 Transparent and conducting ZnO films prepared by reactive pulsed laser deposition, *Journal of Materials Science: Materials in Electronics* 18 397-400.
[6] Arshak K., Korostynska O., 2004 Preliminary studies of properties of oxide thin/thick films for gamma radiation dosimetry. *Materials Science and Engineering B* **107** 224–232.

[7] Hodgson S.N.B., Weng L., 2000 Sol-gel processing of tellurium oxide and suboxide thin films with potential for optical data storage application, *Journal of Sol-Gel Science and Technology* **18** 145–158.

[8] Agool I. R., Salim E. T., Muhsie M. A.n,. 2011 Optical and electrical properties of SnO2thin film prepared using RTO method, International *Journal of Modern Physics B* **25** 1081-1089.

[9] Hodgson S.N.B., Weng L., 2006 Chemical and sol-gel processing of tellurite glasses for optoelectronics. *Journal of Materials Science: Materials in Electronics* **17** 723–733.

[10] Siciliano T., Giulio M., Tepore M., Filippo E., Micocci G., Tepore A., 2009 Room temperature NO2 sensing properties of reactively sputtered TeO2 thin films, *Sensors and Actuators B* **137** 644–648.

[11] Salim E. T., 2012 Rapid thermal oxidation for silicon nanocrystal based solar cell, *International Journal of Nanoelectronics and Materials* **5(2)** 95-100.

[12] Botella P., Concepcion P., Lopez Nieto J.M., Moreno Y., 2005 The influence of Teprecursor in Mo–V–Te–O and Mo–V–Te–Nb–O catalysts on their catalytic behavior in the selective propane oxidation, *Catalysis Today* **99** 51–57.

[13] Nayak R., Gupta V., Dawar A.L., Sreenivas K., 2003 Optical waveguiding in amorphous tellurium oxide thin films, *Thin Solid Films* **445** 118–126.

[14] Ismail R.A., Salim E.T., Hamoudi W. K., 2013 Characterization of nanostructured hydroxyapatite prepared by Nd:YAG laser deposition, *Materials Science and Engineering C* **33** 47-52.

[15] Lecomte A., Bamiere F., Coste S., Thomas P., Champarnaud-Mesjard J.C., 2007 Sol-gel processing of TeO2 thin films from citric acid stabilized tellurium isopropoxide precursor, *Journal of the European Ceramic Society* **27** 1151–1158.

[16] Jiang Z.Y., Xie Z.X., Zhang X.H., Xie S.Y., Huang R.B., Zheng L.S., 2004 Synthesis of tellurium dioxide nanorods from elemental tellurium by laser ablation, *Inorganic Chemistry Communications* **7** 179–181.

[17] Muhsien M. A., Salim E. T., and Agoo I. R. I, 2013 Preparation and characterization of (Au/n-Sn O2 /Si O2 /Si/Al) MIS device for optoelectronic application, *International Journal of Optics* Article ID 756402, 9 pages

[18] Khalef W.K., 2014 Preparation and Characterization of TeO2 Nanoparticles by pulsed laser Ablation in Water, *Eng. & Tech. Journal* **32** 13-16.

[19] Khashan K. S., Jabir M.S., & Abdulameer F. A., 2019 Carbon Nanoparticles prepared by laser ablation in liquid environment. *Surface Review and Letters* **26** 1950078.

[20] Salim E. T., Al-Wazny M.S., Fakhri M. A., 2013 Glancing angle reactive pulsed laser deposition (GRPLD) for Bi 2O3/Si heterostructure, *Modern Physics Letters B*, **27**(16) 1350122.

[21] Khalef W.K., 2013 Synthesis of Antimony Oxide Nanoparticles by Pulsed Laser Ablation in Wet Media, *IJAP* **9** 1-5.

[22] Jabir M.S., Nayef U.M, Jawad K.H, Taqi Z.J. & Ahmed N.R. 2018 Porous silicon nanoparticles prepared via an improved method: a developing strategy for a successful antimicrobial agent against Escherichia coli and Staphylococcus aureus, In *IOP Conference Series: Materials Science and Engineering* **454** 012077.

[23] Salim E.T., Fakhri M. A., H. Hassen,. 2013 Metal oxide nanoparticles suspension for optoelectronic devises fabricacion, *International Journal of Nanoelectronics and Materials* **6** 121-128.
[24] Sulaiman G.M, Hussien N.N, Marzoog T.R., 2013 Green Synthesis, Antimicrobial and Cytotoxic Effect of Silver Nanoparticules Using Eucalyptus champaniana leaves Extract. Asian Pacific J. of Tropical Biomedicine 3 58- 63.

[25] Neamtu C., Darabont A.L., Surducan E., Borodi. Gh., 2000 Crystal growth and electrical properties of TeO2 single crystal, Journal of Optoelectronics and Advanced Materials 2 487-492.

[26] Salim E. T., 2013 Surface morphology and X-ray diffraction analysis for silicon nanocrystal-based heterostructures, Surface Review and Letters, 20 1350046.

[27] Faisal A. D., Khalef W. K., 2017 Morphology and structure of CuO nanostructures grown via thermal oxidation on glass, silicon, and quartz at different oxidation temperatures. Mater Sci: Mater Electron 28 18903–18912.

[28] Khalef W. K., Aljubouri A. A., Faisal A. D.,. 2020 Photo detector fabrication based ZnO nanostructure on silicon substrate. Optical and Quantum Electronics 52:334 https://doi.org/10.1007/s11082-020-02445-y.

[29] Salim E.T., Al-Douri, Y. Al Wazny M.S, Fakhri M.A., 2014 Optical properties of Cauliflower-like Bi2O3nanostructures by reactive pulsed laser deposition (PLD) technique, Solar Energy 107 523-529.

[30] ALJUBOURI A. A., FAISAL A. D., KHALEF W. K.,. 2018 Fabrication of temperature sensor based on copper oxide nanowires grown on titanium coated glass substrate. Materials Science-Poland 36 460-468

[31] Tharsika T., Haseeb A. S. M. , Akbar S. A., & Sabri M. F. M., 2014 Co-synthesis of ZnO/SnO2 Mixed Nanowires via a Single-step Carbothermal Reduction Method, Ceramics International 40 5039–5042.

[32] Fakhri M. A. , Hashim U. , Salim E. T. ,. 2015 Optical investigations of photonics lithium niobate, Solar Energy 120 381-388.

[33] Faisal A.D. and Khalef W. K. 2019 Synthesis, Characterization and Visible Light/NIR Photodetector of CuO Nanowires Fabrication, International Journal of Nanoelectronics and Materials 12 25-36.

[34] Fakhri M. A. , Al-Douri Y. , Hashim U. , Salim E. T. , Deo Prakash, Verma K. D. ,. 2015 Optical investigation of nanophotonic lithium niobate-based optical waveguide, Applied Physics B: Lasers and Optics 121(1) 107-116.

[35] Karimipour S.N. and Tonomand, 2016 Evaluating of Antibacterial Activity of the NPs of Silver on Pseudomonas Aruginosa A, International J.of medical research and health science 11 424-430.

[36] Qin B., Bai Y., Zhou Y., J.Liu, Xie X.& Zheng W., Structure and characterization of TeO2 nanoparticles prepared in acid medium , Materials Letters 63 (2009) 1949-1951

[37] Mohamed S.G. , Abdul F.A. Ameer, and Marzoog T .R., Synthesis, 2014 Antibacterial activity of TiO2 NPs Suspension induced by laser Ablation in Liquid, Eng and Tech. J 32 877-884.

[38] Fakhri M.A., Al-Douri Y. , Salim E.T. , Hashim U. , Yusof Y., Choo E.B., Salim Z.T, Jurn, Y. N.. 2016 Structural properties and surface morphology analysis of nanophotonic LINBO3, ARPN Journal of Engineering and Applied Sciences 11 4974-4978.