Isolation of Coxiella burnetii in patients with nonspecific febrile illness in South Korea

Seung Hun Lee1,2, Jae Hoon Lee3, Sungdo Park1, Hae Kyung Lee1, Seon Do Hwang1, Hye Won Jeong4, Jung Yeon Heo5† and Yeong Seon Lee1†

Abstract

Background: The number of human Q fever cases in South Korea has been rapidly increasing since 2015. We report the first isolation of Coxiella burnetii in Korea in two patients who initially presented with non-specific febrile illness and were finally diagnosed with acute Q fever in South Korea.

Case presentation: Two adult patients with fever had serologic tests against C. burnetii initially negative, and polymerase chain reaction against 16S rRNA using whole blood was also negative. After bacterial amplification of C. burnetii in immune-depressed mice, we isolated C. burnetii from patients with acute Q fever. The isolates KZQ2 and KZQ3 were confirmed by polymerase chain reaction, nucleotide sequence analysis, and morphologic observation using a transmission electron microscope.

Conclusions: These results can help us understand the clinical and epidemiologic features of Q fever in South Korea.

Keywords: Coxiella burnetii, Q fever, Culture isolation, molecular sequencing, electron microscopy

Background

Acute Q fever is an infectious zoonotic disease that is characterized by a sudden onset of fever, headache, and atypical pneumonia. It is primarily diagnosed via a serologic test, and paired samples from the acute and convalescent phases taken several weeks apart are required to confirm the diagnosis. Because of these nonspecific symptoms and diagnostic challenges, acute Q fever has been considered an under-recognized and underdiagnosed infectious disease, particularly in non-endemic or non-epidemic areas. Although acute Q fever is generally self-limiting and resolves in < 14 days, even in untreated patients, it can lead to public health concerns, such as the large-scale outbreaks in the Netherlands, and has the potential of being used as a bioterrorism agent [1, 2]. Furthermore, chronic Q fever can develop after symptomatic or asymptomatic acute infection; for example, as endocarditis or vascular infection. Chronic Q fever develops in approximately < 5% of persons with acute infection [3]. It is therefore necessary to understand the microbiologic and molecular characteristics of Coxiella burnetii in patients with acute Q fever from different geographic areas. However, it is usually not possible to isolate C. burnetii from acutely infected patients because of the difficulty in obtaining suitable samples or handling them safely. Nevertheless, to control diseases and understand epidemiologic features in a Q fever epidemic, we should understand the microbiologic characteristics of circulating C. burnetii through isolation.

A rapid increase in the annual incidence of Q fever has recently occurred in South Korea, with 0.16 cases per 100,000 persons in 2016 and 0.19 cases per 100,000 persons in 2017. Compared to 0.02 cases per 100,000 persons in 2016 and 0.19 cases per 100,000 persons in 2017.

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
persons in 2008, this represents a greater than eight-fold increase. The Korea Centers for Disease Control and Prevention reported that the number of confirmed cases of Q fever was 8 in 2014, 27 in 2015, 81 in 2016, 96 in 2017, and 163 in 2018. Although the number of confirmed Q fever cases has been increasing, there have been no cases on the isolation of *C. burnetii* from human blood in Korea [4]. Here, we report the isolation of *C. burnetii* in two patients who initially presented with non-specific febrile illness but were finally diagnosed with acute Q fever.

Case presentation

Patient 1, a 32-year-old man office worker living in the outskirts of Cheongju-si, Chungcheongbuk-do, South Korea, was admitted to a hospital with a 5-day history of fever and headache in March 2016. On physical examination, he had no remarkable findings except for a body temperature of 39.6 °C. Laboratory tests showed normal transaminase, he had no remarkable findings except for a body fever and headache in March 2016. On physical examination, he had no remarkable findings except for a body temperature of 39.6 °C. Laboratory tests showed normal transaminase, markers, and ALT (40 IU/L) levels. Given his history of animal contact, a serology was collected before administering oral doxycycline for an empirical antibiotic treatment. After administration, the patient had no history of animal contact. Although ceftriaxone was initiated as an empiric antibiotic treatment, antibiotics persisting in the bacterial, we inoculated 400 μL buffy coats from the patients’ blood into immune-depressed BALB/c mice via the intraperitoneal route. On day 49 post-infection (dpi 49), the spleens of the infected animals that had developed splenomegaly were harvested (Additional file 1: Figure S1). The spleens were homogenized for cell culture and gene identification, and DNA was extracted for PCR analyses of the specific genes described above. The PCR results were positive for 16S rRNA, *IS1111*, and *omp*-specific genes of *C. burnetii*.

The nucleotide sequences of the isolates KZQ2 (patient 1) and KZQ3 (patient 2) [16S rRNA (KX825917, KY498541), *IS1111* (MG793228, MG793229), and *omp* (MG836249, MG836250)] were matched to *C. burnetii*. Comparison of the 16S rRNA nucleotide sequences showed high similarity (99.6–100%) with *C. burnetii* sequences (USA: CP001019, USA: D89791, Japan: D89795) (Fig. 1a). The sequences were identical to South Korea: KX825917, KY498541, and KY879841 as well as USA: M21291. The nucleotide sequences of *IS1111* were identical to those of *C. burnetii* (Fig. 1b); those of *omp* showed 80.30–99.75% sequence similarity to tick and human sequences from South Korean isolates (tick: ASY342038, human: KM11542, MG836249, and MG836250).

Homogenized spleens were infected in the African green monkey kidney epithelial cell line Vero (KCLB-10081) in RPMI1640 medium (GIBCO, Waltham) supplemented with 2% fetal bovine serum (GIBCO, Waltham) and 0.4 mM L-glutamine (GIBCO, Waltham) and cultured in an incubator at 37 °C with 5% CO₂; the medium was changed regularly. Before cell passage, the infected cells were examined under a transmission electron microscope after Diff-Quik (Sysmex, Japan) staining and in-house IFA testing.

Bacterial isolation from the animals was performed under Animal Biosafety Level-3 conditions, and cell infections were performed under Biosafety Level 3...
conditions. All protocols using live animals were reviewed and approved by an Institutional Animal Care and Use Committee (IACUC, KCDC-045-16-2A) and we used for four-week-old Balb/c mice were purchased from Orientbio (Seoul, South Korea) which used CO2 euthanasia.

During cell infection, *C. burnetii* antigens were confirmed with the in-house IFA method using seropositive serum (Focus Diagnostics, CA) as the primary antibody and human IgG-fluorescein-conjugated isothiocyanate (Focus Diagnostics, CA) as the secondary antibody. Every 2 weeks, the infected cells were passaged. On dpi 3, we observed fluorescent *C. burnetii* antigens in the cell pellet using the in-house IFA test (Additional file 2: Figure S2). On dpi 10, an evaluation of the morphology of *C. burnetii* with Diff-Quik (Sysmex, Japan) staining (Additional file 3: Figure S3) and transmission electron microscopy revealed replication of *C. burnetii* in the vacuole within the cytoplasm of the infected cells (Fig. 2).

Discussion and conclusions

We first isolated *C. burnetii* from the whole blood of two patients with acute Q fever who presented with non-specific febrile illness in South Korea. Although the IFA against *C. burnetii* and PCR of 16S rRNA were initially negative, we were able to isolate *C. burnetii* after bacterial amplification in immune-depressed mice. The *C. burnetii* isolates KZQ2 and KZQ3 were verified by PCR, sequence analysis, and morphologic observations.

The molecular characteristics of *C. burnetii* have been previously reported from milk samples, and *C. burnetii* was detected in ticks, livestock, and humans in South Korea [5–9]. We assume that *C. burnetii* may be more widespread in South Korea than previously reported. To confirm this suspicion, additional investigations in patients, animals, ticks, and environmental samples are needed.

It is difficult to identify patients with acute Q fever if they initially have negative serologies against *C.
To accurately confirm acute Q fever, serologic tests should be conducted using paired sera from the acute and convalescent stages taken 4–6 weeks apart. However, symptomatic acute Q fever usually presents the duration of fever within 2 weeks [10, 11]. Without epidemiologic factors such as livestock raiser and slaughterhouse worker, patients with acute Q fever who have negative serology at the acute stage of illness are more likely to be neglected. This is the reason two cases in our study were confirmed to have acute Q fever at 9 and 14 weeks after the initial serologic test. Delayed diagnosis also hinders proper monitoring of patients with chronic Q fever. Most physicians usually consider that bacterial infection does not progress to chronic infections. Therefore, no follow up was organized for these patients, and we could not perform echocardiography and monitor their follow-up serology.

Although quantitative PCR could not be performed, we demonstrated bacterial isolation using methods such as TEM, Diff-Quick, IFA, and genetic analysis from cell culture. It may be meaningful that the study is useful because the extant clinical isolate has been obtained from Korean Q fever patient, which will provide a basis for characterizing a human isolate and identifying isolate methods in South Korea.

The human isolates KZQ2 and KZQ3 identified in the present case study are the first isolates from patients with Q fever in South Korea. These results provide a clue to understanding the bacterial characterization of *C. burnetii* isolated from Korean patients and might help healthcare providers understand the clinical and epidemiologic features of these patients. Future studies should analyze the pathogenicity and infectivity of Korean *C. burnetii* isolates.

Supplementary information

Supplementary information accompanies this paper at https://doi.org/10.1186/s12879-020-05130-3.

Additional file 1: Figure S1. The spleen of a Balb/c mouse infected with the patient’s buffy coat; day 49; splenomegaly. The spleen is twice as large as the normal.

Additional file 2: Figure S2. Light micrograph of *Coxiella burnetii* cultured in African green monkey kidney epithelial cell line (Vero) (KZQ2 and KZQ3; Diff-Quick staining). Original magnification (A and B; × 1000).

Additional file 3: Figure S3. In-house immunofluorescence staining of isolate *Coxiella burnetii* from patient in African green monkey kidney epithelial cell line (Vero) (dpi 3). Culture preparations stained by IFA using an anti-*C. burnetii* serum. Green indicates intracytoplasmic inclusions filled with numerous bacteria. Fluorescence magnification (A-B; × 400).

Abbreviations

C. burnetii: *Coxiella burnetii*; IFA: Indirect fluorescent antibody; PCR: Polymerase chain reaction; omp: outer membrane protein

Acknowledgments

None.

Authors’ contributions

Conception and design: YSL, SDH. Acquisition of data: SHL, JYH, JHL. Analysis and interpretation of data: SHL, HKL, YSL, HWJ, SP. Manuscript preparation: SHL, JYH. Manuscript approval: all authors.

Funding

This study was supported by research grants (2017-NIS2002-00 and 4838–303–210-13) from the Korea Centers for Disease Control and Prevention.

Availability of data and materials

The data used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate

This study was approved by the Institutional Animal Care and Use Committee (IACUC, KCDC-045-16-2A). Two participants gave their written consent to participate.

Consent for publication

Written informed consent was obtained from two participants for their data to be used for research and publication.
Competing interests
The authors declare that they have no competing interests.

Author details
1Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Osongsaengmyeong 2-ro, Cheongju-si 28159, South Korea. 2Yeosu National Quarantine station, Yeosu-si, Jeollanam-do 58729, South Korea. 3Wonkwang University College of Medicine, Iksan-si, Jeollabuk-do 54538, South Korea. 4Chungbuk National University College of Medicine, Cheongju-si, Chungcheongbuk-do 28644, South Korea. 5Division of Infectious Diseases, Ajou University School of Medicine, Suwon-si, Gyeonggi-do 16499, South Korea.

Received: 25 July 2019 Accepted: 1 June 2020

Published online: 17 June 2020

References
1. Schneeberger PM, Wintenberger C, van der Hoek W, Stahl JP. Q fever in the Netherlands - 2007-2010: what we learned from the largest outbreak ever. Med Mal Infect. 2014;44:339–53.
2. Madariaga MG, Rezai K, Trenholme GM, Weinstein RA. Q fever: a biological weapon in your backyard. Lancet Infect Dis. 2003;3:709–21.
3. Fenollar F, Fourrier PE, Carriere MP, Habb G, Mesiana T, Raoult D. Risks factors and prevention of Q fever endocarditis. Clin Infect Dis. 2001;33:312–6.
4. Q fever patients: Infectious disease statics system assessment [http://www.cdc.go.kr/npt/]. Accessed 25 July 2019.
5. Lee JH, Park HS, Jang WI, Koh SE, Park TK, Kang SS, et al. Identification of the Coxiiella sp. detected from Haemaphysalis longicornis ticks in Korea. Microbiol Immunol. 2004;48:125–30.
6. Kwak W, Chu H, Hwang S, Park JH, Hwang KJ, Gwack J, et al. Epidemiological characteristics of serologically confirmed Q fever cases in South Korea, 2006-2011. Osong Public Health Res Perspect. 2013;4:34–8.
7. Chu H, Yoo SJ, Hwang KJ, Lim HS, Lee K, Park MY. Seroreactivity to Q fever among slaughterhouse workers in South Korea. J Prev Med Public Health. 2017;50:195–200.
8. Seo MG, Ouh IO, Lee SH, Kwak D. Detection and genotyping of Coxiiella burnetii in pags, South Korea, 2014-2015. Emerg Infect Dis. 2016;22:2192–5.
9. Seo MG, Ouh IO, Lee SH, Kim JW, Rhee MH, Kwon OD, et al. Prevalence of Coxiiella burnetii in cattle at south Korean national breeding stock farms. PLoS One. 2017;12:e0177478.
10. Anderson A, Bijlmer H, Fourrier P-E, Graves S, Hartzell J, Kersh GJ, et al. Diagnosis and management of Q fever-United States, 2013: recommendations from CDC and the Q fever working group. Morb Mortal Wkly Rep Recomm Rep. 2013;62:321–30.
11. Heo JY, Choi YW, Kim EJ, Lee SH, Lim SK, Hwang SD, et al. Clinical characteristics of acute Q fever patients in South Korea and time from symptom onset to serologic diagnosis. BMC Infect Dis. 2019;19(1):903. https://doi.org/10.1186/s12879-019-4479-0.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.