STUDY LITERATURE REVIEW: THE EFFECT OF LOCKDOWN ON THE COVID19 PANDEMIC PERIOD ON AIR QUALITY

Shofi Hikmatus Zahro*
1Department of Environmental Health, Public Health Faculty, Airlangga University, Surabaya 60115, Indonesia

Corresponding Author*: shofi.hikmatus.zahro-2016@fkm.unair.ac.id

Abstract

Introduction: Covid19 is an infectious disease caused by the corona virus. This virus was first detected in Wuhan China. Covid19 has been defined as pandemic by the World Health Organization (WHO) since March 11, 2020. So there needs to be a policy to overcome the pandemic by implementing lockdown. The effect on the health sector one of which is environmental health includes air quality. The purpose of this literature review study is to determine the effect of the lockdown policy during the Covid19 pandemic on air quality parameters.

Discussion: This research used a narrative literature review method. Selected journals that match the topic and inclusion criteria. The results of data analysis show that there is an effect of the lockdown policy during the Covid19 pandemic, namely an increase in AQI and O3. Meanwhile, decreased concentration occurs in the PM10; PM2.5; NO2; CO; and SO2 parameters.

Conclusion: Lockdown policy provided a big influence on the air quality in Sale City Marocco and Sao Paulo Brazil. Lockdown policies during the Covid19 period strongly influenced the concentration of NO2.
INTRODUCTION

Covid19 is an infectious disease caused by the corona virus. This virus was first detected in December 2019 in Wuhan, China. Covid19 has been defined as a pandemic by WHO since March 11, 2020 after Covid19 has infected in 114 countries. Based on worldometers data on July 12, 2020 Covid19 has infected 12.897.213 people, caused the death of as many as 568.808 people, and had people underwent treatment in 7.517.940 cases. While in Indonesia until July 12, 2020 Covid19 has infected 75.699 people with 35.638 of people recovered and 3.606 of people died.

Covid19 is transmitted through people infected with the virus to others. Covid19 can be transmitted by the droplets from nose or mouth. Therefore it is important to maintain personal hygiene and minimize contact with other people. Efforts that can be done to prevent virus transmission some of which are such as washing hands and wearing masks and face shields to minimize exposure to nasal and mouth droplets splash from others(1). The use of masks need to follow the right guidelines, such as first, when wearing a mask, make sure to wash your hands second, when you are wearing a mask, it is not recommended to touch its front part, if you want to take it off, just hold the mask straps and take it off. Masks must be kept in a safe place so as not to be contaminated, and after wearing it, we should immediately take it off and discard it if it is a disposable mask. Meanwhile, cloth masks can be washed with detergent (1).

Transmission from Covid19 infected people can be symptomatic and asymptomatic. Symptomatic transmission includes symptoms such as headaches, nasal congestion, sore throat, pain, loss of taste and smell, and rashes on the skin (1). Some of Covid19 cases show no symptoms in the infected people so they are not aware of their Covid19 infection. People with no symptoms have a great risk of transmitting Covid19.

Our body’s immunity will be very important to avoid getting infected with Covid19. Thus people who are vulnerable such as the elderly, infants, toddlers, people who have an illness history will be more susceptible to the virus and exacerbate their disease until death. People with a history of serious illnesses such as diabetes, cardiovascular and respiratory disorders will be more easily infected with Covid19. Meanwhile, people who have good immunity will be easier to recover if infected with Covid19 and can even recover on their own (1).

The growth of positive cases of Covid19 which is increasing every day causes the need for policies to tackle the pandemic. One of the policies carried out by various countries to stop the spread of the virus is lockdown. Lockdown is done to minimize the interaction between people. Lockdown makes many people do their work from home so as to minimize the occurrence of an uncontrolled crowd(2). Another effect of the lockdown is the effect on economic, social, health, and education .

The lockdown effect on the economy is a decline in the economy and people's purchasing power due to a decline in people's income. Many companies are affected by the lockdown effect so there are production stops. This condition eventually makes the company to reduce staff. The transportation industry is experiencing a negative effect from the lockdown policy as well, because there are restrictions on community mobility(3). This causes a declining number of vehicles in operation. The food and beverage industry, such as cafes and restaurants, has decreased revenue as well because it is only allowed to take a take away order. In addition, informal sector workers are the most impactful because they cannot do work from home. The positive effect of lockdown in the economic field is that it increasingly enhances online-based entrepreneurship(4).

The lockdown also affects the social sector both positively and negatively. On the positive side, lockdown has increased people’s empathy by helping and supporting one another such as providing free food for people in need, distributing free masks, distributing free hand sanitizers, and giving knowledge to the public about Covid19 (how to wash hands properly, how to use masks, and transmission of Covid19). Meanwhile, negative effects such as limiting social interaction due to restrictions on community mobility. Thus, causing several social events that allow gathering a lot of time must be postponed or canceled (5).

Furthermore, the lockdown effects on the health sector is an increase in the number of patients resulting in increased working hours of medical staffs/workers. Other than that, PPE needed for medical staffs/workers is increasing, resulting in scarcity and price increases(6). In addition, in the environmental health sector, there is a lockdown effect due to the reduction in community mobility, which causes a decrease in the amount of pollution and an improve in the air quality (7).

The lockdown effect on education both positively and negatively. The positive effect on the education sector is the effort applied to adapt to the Covid19 situation, making teachers and students to be more creative in fulfilling existing competencies. Meanwhile, the negative effect that occurs is the closure of the school because it can be as common as the Covid19 transmission site. Thus, causing a decrease in student interest in learning because of learning from home. There are some constraints on learning activities from home such as lack of technology mastery, additional internet...
quota costs, signal constraints where not all places have good internet connections, there are additional jobs for parents in assisting children in learning, communication and socialization are reduced (8).

Air quality has been declining so far due to high community mobility. Such as the high number of vehicles causing vehicle gas emissions that can disrupt air quality in the region. In addition, air quality is also influenced by the industry activities. Thus, the lockdown condition during the Covid19 pandemic improves air quality due to the decline in community mobility, closure of some industries, and decrease in the amount of vehicle density on the road/highway(9). Air quality can be seen through several parameters such as Particulate Matter (PM$_{10}$), Particulate Matter (PM$_{2.5}$), Sulfur dioxide (SO$_2$), Carbon monoxide (CO), Ozone (O$_3$), and Nitrogen dioxide (NO$_2$). Based on these parameters we can find out the level of air quality in the environment(10). Air quality can affect public health such as respiratory diseases(11). So there needs to be an effort to maintain air quality in order for the people to remain safe. The purpose of this literature review study is to determine the effect of the lockdown policy during the Covid19 pandemic on parameters air quality.

DISCUSSION

The increased number of Covid19 cases that are spread to many countries lead to the application of lockdown policies. Lockdown causes a decreased amount of community mobility and industry shutdown. Community mobility and industrial activities are strongly related to air quality. Consequently, it is interesting to know the influence of lockdown policy during the Covid19 pandemic on air quality. The researchers conducted a literature review known as a narrative literature review. The process of selecting journals can be seen as followed (figure 1).

Figure 1. Journals Selection Process

The researchers performed the search of journals in PubMed and Google Scholar by using environment, impact, Covid19, air pollution, and air quality as the keywords. Based on those keywords, it had been collected 166 journals. The first screening was conducted to select the same journals, and the total journal that had been passed the first screening was 134 journals. The second screening was based on the national journal with, at least, a Sinta score of 3 or international journals indexed by Google Scholar and the full text of open access journals. According to the second screening, 132 journals had been collected. The third screening based on the inclusion criteria included the journals discussing the air quality during the lockdown in the Covid19 pandemic and the parameter of air quality. Based on the inclusion criteria, 15 journals that would be analyzed. Those journals were conducted in many countries.

Based on table 1, 15 journals had been selected and it was mentioned that there was an influence of lockdown policy during the Covid19 pandemic against the parameter of air quality. The parameter of air quality included the parameter including the concentrations of PM$_{10}$; PM$_{2.5}$; NO$_2$; CO; SO$_2$; and O$_3$. The lockdown policy strongly influenced the parameter of NO$_2$. It could be seen that from the 15 journals that had been analyzed, 14 journals showing the decline.

The Effect of Lockdown on the Covid19 Pandemic Period on Air Quality Indeks (AQI)

AQI is a means of government communication about air quality to the community. AQI can provide information about the effects of air quality on health. AQI describes the status of air quality quantitatively which consists of 6 parameters, such as PM$_{10}$; PM$_{2.5}$; NO$_2$; CO; SO$_2$; and O$_3$. The lockdown policy during the Covid19 pandemic caused AQI to decline, which means better air quality.

Air quality research during the Covid19 pandemic in Central China (Anqing, Hefei, and Suzhou) shows a decrease in AQI of 45.1%. The decrease is based on data from February 2020 compared to February in 2017 to 2019. Based on data from 2017 to 2019, AQI from the lowest starts point is in Anqing, Hefei, and Suzhou cities (7). Research in Northern China shows similar results as in Central China which is, during the lockdown due to Covid19 pandemic, AQI experienced a decline. AQI's weekly decline in Northern China was 19.4 points or 18%. The lockdown policy in Northern China is divided into 2, namely total lockdown and partial lockdown. The total lockdown area has an AQI decreased by 25%. Meanwhile, in the partial lockdown area, experienced a decrease in AQI by 8.8 poin or 7% (2).

Research results from India is in line with research results in China, there is a decrease in AQI...
Table 1. Journal Review

Author	Title	Population	Method	Result	Summary
Dr Ben Anderson and Dr Kim Dirks	A Preliminary Analysis of Changes in Outdoor Air Quality in The City of Southampton During The 2020 COVID-19 Outbreak to Date	Southampton	Quantitative research	Covid-19 Lockdown in Southampton starts Tuesday, March 23, 2020, the results of lockdown was NO₂ parameter level 92% lower than the 2017-2019 average. Significant changes in NO₂ parameters due to the influence of the wind direction.	There was a significant decrease in NO₂ concentration during lockdown.
Li Li, Qing Li, Ling Huang, Qian Wang, Ansheng Zhu, Jian Xua, Ziyi Liu, Hong Li, Lishu Shi, Rui Li, Majid Azari, Yang Jian Wang, Xiao Juan Zhang, Zhiqiang Wang, Xiao Juan Zhang, Andy Chan	Air Quality Changes During The COVID-19 Lockdown Over The Yangtze River Delta Region: An Insight into The Impact of Human Activity Changes on Air Pollution Variation Pattern	Yangtze River Delta Region	Quantitative research	Data were analyzed based on three periods, namely Pre-lockdown (1st January to 23rd January 2020), Level I response (24th January to 25th February 2020), Level II response (26th February to 31st March 2020). During the level I and level II decreased SO₂ by 16-26%, and PM₂.₅ by 27-46%. PM₁₀, NO₂, and SO₂ concentrations in the level I period compared to the same period in 2019 decreased by 31.8%, 45.1% and 20.4%, whereas, PM₁₀, NO₂, and SO₂ concentrations in the level II period compared to the same period in 2019 decreased by 33.2%, 27.2% and 7.6%.	There was a decrease in the parameters SO₂, PM₁₀, NO₂, the highest decrease is the NO₂ parameter in the period I level.
Kaijie Xu, Kangping Cui, Li-Hao Young, Ya Fen Wang, Yun-Kung Hsieh, Shan Wang, Jia Jia Zhang	Air Quality Index, Indicatory Air Pollutants and Impact of Covid-19 Event on The Air Quality Near Central China	Anqing, Hefei, and Suzhou near Central China	Quantitative research	The results show that during February 2020, in the cities of Anqing, Hefei and Suzhou; average ambient air concentration of PM₂.₅ was 41.9 μg/m³, PM₁₀ was 50.1 μg/m³, SO₂ was 2.18 ppb, CO was 0.48 ppm, and NO₂ was 8.97 ppb. PM₂.₅, PM₁₀, SO₂, CO, and NO₂ concentrations decreased when compared with the same period in 2017 to 2019, amounting to 46.5%, 48.9%, 52.4%, 36.2%, and 52.8%. However, an average O₃ of 80.6 ppb did not show significant fluctuations and even slightly increased by 3.6%. The study also analyzed and compared the five highest daily AQI from February 2017-2019 with 2020 for the three cities. The average AQI for 5 days with the highest daily AQI of 122.6 in February 2020 was 45.1% lower than in February 2017-2019 of 223.2.	PM₂.₅, PM₁₀, SO₂, CO, and NO₂ concentrations decrease. The highest decrease is the NO₂ parameter.
Pierre Sicard, Alessandra De Marco, Evgenios Agathokleous, Zhaozhong Peng, Xiaobin Xu, Elena Paololetti, Jose Jaime Diéguez Rodriguez, Vicent Calatayud	Amplified Ozone Pollution in Cities During The Covid-19 Lockdown	South Europe (Nice, Roma, Valencia and Turin) and Wuhan	Quantitative research	Compared to the same period in 2017-2019, the average daily O₃ concentration increased at urban stations 24% in Nice, 14% in Rome, 27% in Turin, 2-4% in Valencia and 36% in Wuhan during lockdown in 2020. A strong reduction in the average NO₂ concentration was observed in all European cities, 53% at city stations, comparable to Wuhan 57%, and 65% at traffic stations.	The highest O₃ increase in Wuhan. The highest drop in NO₂ in Europe occurred at traffic stations.
Jesse D. Berman and Keita Ebisu	Changes in U.S. Air Pollution During The Covid-19 Pandemic	U.S.	Quantitative research	The lockdown period in the US occurs from March 13 to April 21, 2020. Data during the lockdown period will be analyzed by comparing with pre-lockdown data from January 8 to March 12, 2020 and compared to the same period from 2017 to 2019. A decrease in NO₂ significant 25.5% with an absolute decrease of 4.8 ppb. Meanwhile, PM₁₀ also showed a decrease of 11.3%.	The highest decrease is the NO₂ parameter during lockdown in US
Sneha Gautam	COVID-19: Air Pollution Remains Low as People Stay at Home	Asian countries (i.e., China and India) and European countries (i.e., Spain, Italy, and France)	Quantitative research	NO₂ reduction during lockdown occurred in India by 70% and in China by 20-30%. Meanwhile, in European countries (i.e., Spain, Italy, and France) there was a NO₂ decrease of 20 to 30%.	The highest NO₂ reduction in India
Guojun He, Yuhang Pan, and Takanao Tanaka	COVID-19, City Lockdowns, and Air Pollution: Evidence from China	China	Quantitative research	Air quality increased by 25% (28.2 points decrease for AQI, and 22.3 μg/m³ for PM₁₀). PM₂.₅ concentrations in control cities decreased by 8.40 μg/m³, and city locking further reduced PM₁₀ in lockdown cities by 13.9 μg/m³ resulting in a total of 22.3 μg/m³.	During lockdown the air quality increased by 25%
Title: Covid-19's Impact on The Atmospheric Environment in The Southeast Asia Region

Population: Malaysia

Method: Quantitative research

Result: The lockdown period starts from March 18 to June 9. PM$_{2.5}$, NO$_2$, SO$_2$, and CO concentrations decrease when compared with the same period in 2018 and 2019, which are 26-31%, 23-32%, 63-64%, 9-20%, and 25-31%.

Summary: The highest decrease in Malaysia is the NO$_2$ parameter.

Title: Does Lockdown Reduce Air Pollution? Evidence from 44 Cities in Northern China

Population: 44 kota di Northern China

Method: Quantitative research

Result: Data from 1 January and 21 March 2020. Reduction of air pollution is highly related to travel restrictions during this pandemic, on average, the Air Quality Index (AQI) fell 7.80%, and five air pollutants SO$_2$, PM$_{1.0}$, PM$_{2.5}$, NO$_2$, and CO decreased by 6.76%, 5.93%, 13.66%, 24.67% and 4.58%.

Summary: The highest decrease in North China was the NO$_2$ parameter.

Title: Effect of Lockdown Amid Covid-19 Pandemic on Air Quality of The Megacity Delhi, India

Population: Delhi, India

Method: Quantitative research

Result: Lockdown was implemented in India from March 24 to May 3, 2020 and compared with the same period in 2019. PM$_{1.0}$ and PM$_{2.5}$ concentrations experienced a reduction of around 60% and 39%. Other pollutants, NO$_2$ was 52.68%, CO was 30.35%, and SO$_2$ was 17.97%. Air quality increases around 40% to 50% only after four days of lockdown.

Summary: The highest reduction in PM$_{10}$ concentration is the highest in Delhi India during lockdown.

Title: Effect of Restricted Emissions During COVID-19 on Air Quality in India

Population: India

Method: Quantitative research

Result: Data were analyzed from 16 March to 14 April 2020 and compared with the same period in 2017 to 2019 in 22 cities covering various regions of India. There was a decrease in PM$_{1.0}$ by 43%, PM$_{2.5}$ by 31%, CO by 10%, and NO$_2$ by 18%. Meanwhile, the O$_3$ parameter increased by 17%. The air quality index (AQI) is reduced by 44%, 33%, 29%, 15% and 32% in north, south, east, central and western India.

Summary: The highest decrease in India is the parameter PM$_{2.5}$ and the best air quality in East India.

Title: Impact of Covid-19 Lockdown on PM$_{1.0}$, SO$_2$ and NO$_2$ Concentrations in Salé City (Morocco)

Population: Salé City (Morocco)

Method: Quantitative research

Result: The analysis period is before lockdown (March 11 to 20) and during lockdown (March 21 to April 2). Continuous measurements of PM$_{1.0}$, SO$_2$ and NO$_2$ are carried out before and during the Covid-19 lockdown period. There was a decrease for PM$_{1.0}$ by 75%, SO$_2$ by 49%, and NO$_2$ by 96%.

Summary: The highest reduction in Salé City, Marocco is the NO$_2$ parameter.

Title: Impact of Lockdown Measures During COVID-19 on Air Quality a Case Study of India

Population: India, Delhi dan Mumbai

Method: Quantitative research

Result: Data were analyzed by comparing at the pre-lockdown (01 March to 24 March 2020) and at the lockdown (25 March to 15 April 2020). The parameters that experienced a decrease in Delhi were PM$_{1.0}$ by 55%, PM$_{2.5}$ by 49%, NO$_2$ by 60%, and SO$_2$ by 19%. The parameters that experienced a decrease in Mumbai were PM$_{1.0}$ by 44%, PM$_{2.5}$ by 37%, NO$_2$ of 78%, and SO$_2$ by 39%.

Summary: The highest decrease in Delhi and Mumbai is the NO$_2$ parameter.

Title: Impact of Lockdown Measures to Combat Covid-19 on Air Quality Over Western Europe

Population: Eropa Barat

Method: Quantitative research

Result: Decrease in NO$_2$ concentrations from 30% to 50% in all Western European countries.

Summary: Decrease in NO$_2$ concentration is highest in Portugal.

Title: Covid-19 Pandemic: Impacts on The Air Quality During The Partial Lockdown in São Paulo State, Brazil

Population: São Paulo State, Brazil

Method: Quantitative research

Result: Significant reduction in concentration NO$_2$ of 54.3% and CO 64.8% was observed in urban areas during partial lockouts compared to the five-year monthly average. In contrast, a 30% increase in O$_3$ concentration.

Summary: The highest concentration reduction was NO$_2$ parameter of 54.3%. O$_3$ concentration increased by 30%.

during the lockdown in the Covid19 period. This research was conducted in 22 cities in India. AQI decline in India was divided into 5 regions, which are North India by 44%, South India by 33%, East India by 29%, Central India by 15% and West India by 32%. The decrease is based on data comparing from March 16 to April 14 from 2017 to 2020 (12). AQI can be influenced by the high mobility of the people, especially those who use private transportation and cause congestion. The construction of infrastructure facilities in high traffic areas such as the construction of educational facilities can cause risks for people in the area. The risk is that people who live in high traffic area is 2.8 times more likely to be affected by respiratory disorders than people who live in low traffic (13).

The lockdown policy in China can reduce air pollution by up to 25%. This happens because of the industrial closure and it can be seen that industrial activities are a source of air pollution. The impact of the application of lockdown in cities with high industrial
activity will increasingly decrease air pollution (14). The concentration of AQI is not only influenced by the lockdown policy which causes a decrease in community mobility and closure of various industrial fields. The concentration of AQI is also influenced by the temperature wherein during the summer the concentration of AQI will be low. On the contrary, in the winter, AQI concentration will be high (7). The season will affect the concentration of AQI, this is shown in researches, such as in a research conducted in Anqing, Hefei and Suzhou; it is found that in the summer the AQI will decrease which means that air quality is getting better (7).

The lockdown policy during the Covid19 pandemic has proven to have an influence on AQI. AQI becomes lower which means better air quality. This is proven by 3 studies conducted. In addition, a full lockdown policy has a higher impact on air quality than a partial lockdown.

The Effect of Lockdown on the Covid19 Pandemic Period on Particulate Matter (PM\textsubscript{10})

Particulate Matter (PM\textsubscript{10}) used to determine the number of particles with a diameter of less than 10 µm in air(10). Based on the analyzed journals, it is found that the existence of lockdown can help to reduce PM\textsubscript{10} concentrations so as to minimize health problems such as respiratory disorders. There are 7 journals that discussed the reduction in PM\textsubscript{10} concentrations during the lockdown on Covid19 pandemic. The research sites were in 4 countries namely China (Central China and Northern China), Malaysia, India and Morocco. Based on the time of data collection for analysis, three methods were applied, namely at the time of the previous year.

The highest decrease in PM\textsubscript{10} concentration occurred in Sale City, Morocco. PM\textsubscript{10} concentration before lockdown was 114.6 µg/m3 and at the time of lockdown it became 28.3 µg/m3. Reduction in PM\textsubscript{10} concentration in Sale City, Morocco, was found out to be 75%. These data were analyzed based on the time before the lockdown (11 March to 20 March 2020) and at the time of lockdown (21 March to 2 April 2020) (15). This happened because the lockdown policy was implemented, causing a reduction in the number of vehicles and traffic density.

This research is in line with research conducted in Delhi, India. The lockdown policy (March 25 - April 15, 2020) can cause a reduction in PM\textsubscript{10} concentration by 55% when compared to pre-lockdown (March 01 - March 24, 2020) (16). Meanwhile, there are other studies whose data were analyzed in the same period in different years from research in Delhi India, PM\textsubscript{10} concentrations decreased by 60%. Data is taken at lockdown (March 24 to May 3, 2020) and compared with the same period in 2019 (17). The data analysis in this study is in line with research conducted in 22 cities in India, where NO\textsubscript{2} decreased by 31%(12). Apart from the lockdown policy, the level of decline in PM\textsubscript{10} concentration can also be influenced by meteorological factors(18).

The lockdown policy is also implemented in Malaysia with the term Movement Control Order (MCO). The MCO was starting from March 18 to June 9 2020. MCO had decreased community mobility due to the closure of public transportation and public facilities. Decreasing community mobility in Malaysia has led to a decrease in NO\textsubscript{2} concentration by 26-31% when compared to the same period in 2018-1019(19). The lockdown policy that was carried out in Northern China has also led to a decline in community mobility. The reduction in mobility was 69.85% and causes a decrease in NO\textsubscript{2} by 13.66%(2). In addition, it the reduction in mobility was also caused by the dismissal of several industries and construction work that could be a source of dust so far (15). PM\textsubscript{10} is produced mainly from vehicle exhaust and road dust (2).

The lockdown policy during the Covid19 pandemic has proven to have an effect on concentration PM\textsubscript{10}. All of the research that have stated that the lockdown policy caused a decrease in PM\textsubscript{10} concentration. The decrease in PM\textsubscript{10} concentration was between 13% and 75%.

The Effect of Lockdown on the Covid19 Pandemic Period on Particulate Matter (PM\textsubscript{2.5})

Particulate Matter (PM\textsubscript{2.5}) used to determine the number of particles with a diameter of less than 2.5 µm in air(10). Based on the analyzed journals, it is found that there are 9 journals that discussed the decrease in PM\textsubscript{2.5} concentration due to lockdown implementation. The research sites were in 4 countries, namely China (Yangtze River Delta Region, Central China and Northern China), United States of America, Malaysia and India. Based on the time of data collection for analysis, three methods were applied, namely at the time of lockdown, at the time before lockdown and at the time of lockdown, and in the same period as the previous year.

The highest decrease was in Delhi, India, which was 49%. The decrease was seen from the time pre-lockdown and after lockdown. PM\textsubscript{2.5} may experience a decrease in concentration due to the implementation of lockdown where in the industry was not operating normally and there were decreasing number of vehicles which caused decreasing level of dust concentration from traffic, and as well as decreasing level of dust concentration from housing (9). Meanwhile, another research that was also conducted in Delhi India had decreased PM\textsubscript{2.5} by 39%. This happened because the data during the lockdown was compared to the same
period in 2019(17). This is in line with research conducted in 22 cities in India that there was also a decrease in PM\textsubscript{2.5} during lockdown when compared to the same period in the previous year of 43%(12).

PM\textsubscript{2.5} concentrations can come from vehicle gas emissions. There is a correlation between the number of vehicles passing with PM\textsubscript{2.5} concentration (20). Meanwhile, research conducted in the US did not show a significant decrease in PM\textsubscript{2.5} compared to other research of 11.3%. Research in the US shows the decline in PM\textsubscript{2.5} is more significant in urban areas where lockdowns are imposed in rural areas where there are lockdowns(21). Reducing PM\textsubscript{2.5} concentrations by 31.8% in the Yangtze River Delta Region, China has led to reduced emissions sources such as industry, cellphones and dust (9). Reducing PM\textsubscript{2.5} concentration corrects delays in countries that are too late to close business(21).

Significant reduction PM\textsubscript{2.5} in Central China if compared to the same period from 2017 to 2019 by 46.5%(7). This is in line with research conducted in China, the decline in PM\textsubscript{2.5} is proportional to the lockdown policy. The decrease in PM\textsubscript{2.5} in lockdown cities in China was 13.9μg/m3. Meanwhile, PM\textsubscript{2.5} in control cities in China was 8.40μg/m3(14). This happened because of the government’s policy to implement lockdown. In addition, Chinese New Year holiday activities at the end of January 2020 have lowered the PM\textsubscript{2.5} parameters. Then it was lengthened with a lockdown policy that caused a decline in community mobility which eventually lead to the closure of PM\textsubscript{2.5} producing sources such as industry and vehicle gas emissions (7).

The lockdown policy during the Covid19 pandemic has proven to have an effect on PM\textsubscript{2.5} concentrations. All research discussed stated that the lockdown policy caused a decrease in PM\textsubscript{2.5} concentrations. The decrease in PM10 concentration was between 11.3% and 49%.

The Effect of Lockdown on the Covid19 Pandemic Period on Nitrogen dioxide (NO\textsubscript{2}).

NO\textsubscript{2} is an indicator of air quality. NO\textsubscript{2} can come from the combustion process. High NO\textsubscript{2} concentrations can cause health problems such as coughing, red eyes, sore eyes, dizziness, and shortness of breath. This condition will worsen if people who are exposed to NO\textsubscript{2} are old so that they are more susceptible to experience health problems. NO\textsubscript{2} with high concentrations can cause increased sensitivity in people with asthma and bronchitis. Decreased NO\textsubscript{2} concentrations were found in 14 analyzed journals during the Covid19 pandemic. Research sites were in Southampton, England, China (Young River Delta Region, Central China and Northern China), United State of America, Southern Europe, Malaysia, India (Delhi and Mumbai), Morocco, Western Europe, and Sao Paulo State Brazil.

The highest drop in NO\textsubscript{2} concentration was found in Sale City, Morocco. The decrease was seen based on the data pre-lockdown and after lockdown. The decrease was 96% from NO\textsubscript{2} concentration of 5.6 μg/m3 to 0.2 μg/m3 (15). This research is in line with research conducted in Delhi, India. The lockdown policy (March 25 - April 15, 2020) can cause a reduction in NO\textsubscript{2} concentration by 60% when compared to pre-lockdown (March 01 - March 24, 2020) (16).This happened due to the effect of the lockdown policy so that had made activity and mobilization of the community was stopped. The increase in NO\textsubscript{2} concentration is directly correlated to the number of vehicles (22). So, the lockdown policy that was implemented automatically would reduce the number of vehicles so as to reduce the NO\textsubscript{2} concentration.

High NO\textsubscript{2} concentrations will cause aerosol nitrate formation and acid rain. NO\textsubscript{2} in Morocco showed a significant decrease because the lockdown policy implemented caused the cessation of industrial activities and transportation as the main contributor to NO\textsubscript{2}. The reduction in NO\textsubscript{2} concentration is higher in Asian countries than European countries(23). This happens because Asian countries first apply lockdown. The decrease in NO\textsubscript{2} concentration is higher in cities that do a total lockdown. As for the city of Turin with a high industrial sector and many food industries that cannot be locked so the decline is not significant (24). The highest reduction in April 2020 occurred in Jakarta with a contribution of 34%. Meanwhile, to compare with previous years in Sumatra and Kalimantan, NO\textsubscript{2} changes were not so noticeable due to forest fires (19).

NO\textsubscript{2} concentration can also be affected by meteorological parameters such as temperature, humidity, and air velocity. The increase in temperature will be directly correlated to the increase in concentration of NO\textsubscript{2}. If the humidity is high and the temperature decreases it will affect NO\textsubscript{2} concentration(22). This is in line with the research carried out in Southampton England at the time of the Covid19 pandemic, where in the results show that the NO\textsubscript{2} parameter’s concentration is influenced by wind speed. In that research, there were 3 different wind speed firstly, wind speed that causing low NO\textsubscript{2} if the wind was dominated from north-east northeast to north; secondly, causing high NO\textsubscript{2} if the wind was dominated by east wind; and lastly causing the lowest NO\textsubscript{2} if the wind blows from north to east (18).

The lockdown policy during the Covid19 pandemic has proven to have an effect on NO\textsubscript{2} concentrations. All research discussed stated that the lockdown policy caused a decrease in NO\textsubscript{2} concentrations. The decrease in NO\textsubscript{2} concentration was between 18% and 96%.
The Effect of Lockdown on the Covid19 Pandemic Period on Carbon monoxide (CO)

CO is one of the parameters of air quality which has a more dangerous effect than the other parameters. CO is the third smallest carbon after CO₂ and CH₄. CO can cause chemical changes in the blood that can cannot be detected and increased cardiovascular symptoms both in smokers and nonsmokers. CO can cause pneumonia health problems in toddlers (11). CO can come from incomplete combustion such as factory heating furnaces, electricity generators, and vehicle gas emissions.

Decreased CO concentrations were analyzed in 6 journals during the Covid19 pandemic. Research sites in the journal were in China (Central China and Northern China), Malaysia, India and Sao Paulo State Brazil. The highest decline occurred in Sao Paulo State, Brazil. The decrease in CO concentration during lockdown was 64.8% compared to the data obtained for the same period from the last five years. The data analysis period were taken from four weeks pre-lockdown and four weeks during lockdown then these data were compared with the data from February to April in 2015 -2019 . The decrease in CO in Brazil was due to the lockdown policy of the local government wherein closures were made in areas that allowed crowds to occur, such as shopping centers, industries, offices, and educational facilities. Thus, decreasing the community mobility and, eventually, reducing CO concentration(25). Meanwhile, there are other studies whose data were analyzed in the same period in different years from research in Malaysia, CO concentrations decreased by 25–31%. Data is taken at lockdown (March 18 to June 9, 2020) and compared with the same period in 2018 to 2019 (19).

Research that shows the effect of the lockdown policy during the Covid19 pandemic on CO concentrations occurred in China and India. Research in China during the lockdown period decrease in CO concentration was between 4.58% and 36.2%. Meanwhile, Research in India during the lockdown period decrease in CO concentration was between 10% and 30.35%.

The lockdown policy during the Covid19 pandemic has proven to have an effect on CO concentrations. All research discussed stated that the lockdown policy caused a decrease in CO concentrations. The decrease in CO concentration was between 4.58% and 64.8%.

The Effect of Lockdown on the Covid19 Pandemic Period on Sulfur dioxide (SO₂)

SO₂ is one of the parameters of air quality. SO₂ can come from burning coal and petroleum containing sulfur. SO₂ can cause health problems such as allergies and increased sensitivity in people with asthma and bronchitis (10). Decreased SO₂ concentrations during the Covid19 pandemic were found in 7 analyzed journals. The research sites in the journals were in China (Young River Delta Region, Central China and Northern China), Malaysia, India (Delhi and Mumbai), and Morocco.

The highest SO₂ decline occurred in Central China. SO₂ concentration during the Covid19 pandemic, which is in February 2020, amounted to 2.18 ppb. Then an analysis is conducted, in which the data obtained were then compared to the data from the same month in 2017-2019, the results show a decrease of 52.5%. SO₂ concentrations decreased significantly in Central China in January to March 2020 compared to the same period of the last 3 years. This happened because of the lockdown policy which caused the suspension of production for the Chinese New Year and production restrictions(7). This research is in line with research conducted in 44 cities in northern China. The lockdown policy (January 1 and March 21 2020.) can cause a reduction in SO₂ concentration by 6.76%(2).

SO₂ can come from industrial activities, transportation, and also housing(26). So that when India imposed a lockdown there was a decrease in SO₂ concentration. There were 2 studies located in India and all showed decreased SO₂ concentrations during lockdown. Research in Delhi India shows a 19% decrease in SO₂ when compared to pre-lockdown data(16). In addition, an effort to reduce SO₂ concentrations can be done by expanding green open space.

The MCO policy implemented by the government caused a 9-20% decrease in SO₂ when compared to the same period in 2018-2019(19). The decrease in the amount of SO₂ concentration also causes a decrease in the number of people with Acute Respiratory Infections (ARI) (26). This is in line with the research conducted in Surabaya area wherein the results show that there is a relationship between the amount of SO₂ concentration and the level of ARI sufferers (27).

The lockdown policy during the Covid19 pandemic has proven to have an effect on SO₂ concentrations. All research discussed stated that the lockdown policy caused a decrease in SO₂ concentrations. The decrease in SO₂ concentration was between 6.76% and 52.5%.

The Effect of Lockdown on the Covid19 Pandemic Period on Ozone (O₃)

O₃ concentration is influenced by temperature, in which the formation of O₃ is affected by photochemical reactions. A low NO₂ concentration will cause a low concentration of NOₓ. Thus reducing the possibility of O₃ accumulation. The change in NOₓ concentration and
O3 concentration in the urban area have a negative correlation. The lockdown policy can reduce vehicle gas emissions so that the NO2 concentration decreases. So, the O3 concentration increases because there is no reaction (7).

The implementation of the lockdown policy during the Covid19 pandemic caused an increase in O3 concentration. 3 journals that discussed this matter were analyzed. The research sites were in Southern Europe (Nice, Rome, Turin and Valencia), India, and Sao Paulo State Brazil. The highest increase in O3 concentration was found in Sao Paulo, Brazil. Increased O3 concentration was found to be 30%, compared with the data obtained for the same period from the last five years. Time for the data analysis was four weeks pre-lockdown and four weeks lockdown (24) these data were then compared with the data from February to March and April in 2015-2019. This research is in line with research conducted in 22 cities in India. The lockdown policy (March 16 to April 14, 2020) can cause an increase in O3 concentration by 17%, when compared to the same period from 2017 to 2019 (12). Meanwhile, the average concentration of O3 in Southern Europe during lockdown increased between 2.4% and 27% and Wuhan during lockdown increased 36%, when compared to the same period from 2017 to 2019 (24). The highest average O3 concentrations, reaching 90 μg.m -3 in summer, are collected in Turin and Wuhan. Increasing the concentration of O3 as a secondary pollutant will be taken from the publication of primary pollutants (24).

The lockdown policy during the Covid19 pandemic has proven to have an effect on O3 concentrations. All research discussed stated that the lockdown policy caused a decrease in O3 concentrations. The decrease in O3 concentration was between 2.4% and 36%.

CONCLUSION
The air quality at the time of lockdown during Covid19 pandemic improved. AQI has decreased, which means we have better air quality. The highest decline in AQI was found in Central China (Anqing, Hefei, and Suzhou) by 45.1%. AQI on the total lockdown policy more decreased of the partial lockdown. Lockdown policy provided a big influence on the air quality in Sale City Marocco and Sao Paulo Brazil. The concentrations of PM10 and NO2 were decreased significantly in Sale City, Marocco. Meanwhile, in Sao Paulo, Brazil, the concentration of CO was decreased significantly and the concentration of O3 was increased significantly compared to other countries. Consequently, it can be found that the increase in air quality during the Covid19 pandemic is based on the decreased concentrations of PM10, PM2.5, SO2, NO2, and CO. Meanwhile, the concentration of O3 was increased. Lockdown policies during the Covid19 period strongly influenced the concentration of NO2.

REFERENCES
1. World Health Organization. Recommendations Regarding the Use of Masks in the Context of Covid19. Indonesia : World Health Organization; 2020. https://www.who.int
2. Bao R, Zhang A. Does Lockdown Reduce Air Pollution? Evidence from 44 Cities in Northern China. Sci Total Environ. 2020;731(139052):1-12. https://doi.org/10.1016/j.scitotenv.2020.139052
3. Bherwani H, Nair M, Musugu K, Gautam S, Gupta A, Kapley A, et al. Valuation of Air Pollution Externalities: Comparative Assessment of Economic Damage and Emission Reduction Under Covid-19 Lockdown. Air Qual Atmos Heal. 2020;13(6):683–694. https://doi.org/10.1007/s11869-020-00845-3
4. Pakpahan AK. Covid-19 dan Implikasi Bagi Usaha Mikro, Kecil, dan Menengah. J Ilm Hub Int. 2020;16(1):59–64. https://doi.org/10.26593/jihi.v6i1.24546
5. Tuwu D. Kebijakan Pemerintah dalam Penanganan Pandemi Covid-19. J Publicuho. 2020;3(2):267–278. http://dx.doi.org/10.35817/jpv.3i2.12535
6. Fadli F, Safruddin S, Ahmad AS, Sumbara S, Baharuddin R. Faktor yang Mempengaruhi Kecemasan pada Tenaga Kesehatan dalam Upaya Pencegahan Covid-19. J Pendidik Keperawatan Indonesia. 2020;6(1):57–65. https://doi.org/10.17509/jpki.v6i1.24546
7. Xu K, Cui K, Young LH, Wang YF, Hsieh YK, Wan S, et al. Air quality index, Indicatory Air Pollutants and Impact of Covid-19 Event on The Air Quality Near Central China. Aerosol Air Qual Res. 2020;20(6):1204–1221. https://doi.org/10.4209/aaqr.2020.04.0139
8. Purwanto A, Pramono R, Asbari M, Santoso P B, Wijayanti L M, Hyun C C, Putri R S. Studi Eksploratif Dampak Pandemi Covid-19 terhadap Proses Pembelajaran Online di Sekolah Dasar. Journal of Education, Psychology, and Counseling. 2020;2(1):165–170. https://ummaspul.e-journal.id/Edupsycouns/article/view/397
9. Li L, Li Q, Huang L, Wang Q, Zhu A, Xu J, et al. Air Quality Changes During The Covid-19 Lockdown Over The Yangtze River Delta Region: An Insight Into The Impact of Human Activity Pattern Changes on Air Pollution Variation. Sci Total Environ. 2020;732(139282):1-11. https://doi.org/10.1016/j.scitotenv.2020.139282
10. Ministry of Environment and Forestry Republic Indonesia. Air Quality Index. Jakarta: Ministry of Environment and Forestry Republic Indonesia; 1966.
11. Utami HT, Windraswara R. Korelasi Meteorologi
12. Sharma S, Zhang M, Anshika, Gao J, Zhang H, Kota SH. Effect of Restricted Emissions During COVID-19 on Air Quality in India. *Sci Total Environ.* 2020;728(138878):1-8. https://doi.org/10.1016/j.scitotenv.2020.138878

13. Wulansari A. Kualitas Udara Ambien dan Fungsi Paru Siswa Sekolah Dasar di Yogyakarta. *BKM J Community Med Public Heal.* 2016;32(3):83–88. https://doi.org/10.22146/bkm.7589

14. He G, Pan Y, Tanaka T. COVID-19, City Lockdown, and Air Pollution: Evidence from China. *Preprints MedRxiv.* 2020;1-20. https://www.medrxiv.org/content/10.1101/2020.03.29.20046649v2

15. Otmani A, Benchri A, Tahri M, Bounakhla M, Chakir EM, El Bouch M, et al. Impact of Covid-19 Lockdown on PM$_{10}$, SO$_2$ and NO$_x$ Concentrations in Salé City (Morocco). *Sci Total Environ.* 2020;735(139541):1-5. https://doi.org/10.1016/j.scitotenv.2020.139541

16. Kumari P, Toshniwal D. Impact of Lockdown Measures During COVID-19 on Air Quality– A Case Study of India. *Int J Environ Health Res.* 2020;1:9. https://doi.org/10.1080/09603123.2020.1778646

17. Mahato S, Pal S, Ghosh KG. Effect of Lockdown Amid Covid-19 Pandemic on Air Quality of The Megacity Delhi, India. *Sci Total Environ.* 2020;730(139086):1-23. https://doi.org/10.1016/j.scitotenv.2020.139086

18. Anderson B, Dirks K. A Preliminary Analysis of Changes in Outdoor Air Quality in the City of Southampton During the 2020 COVID-19 Outbreak to Date: A Response to DEFRA’s Call for Evidence on Estimation of Changes in Air Pollution Emissions, Concentrations and Exposure during the COVID-19 Outbreak in the UK. Southampton: University of Southampton; 2020. https://eprints.soton.ac.uk/439813/

19. Kanniah KD, Zaman NAF, Kaskaoutis DG, Latif MT. Covid-19’s Impact on The Atmospheric Environment In The Southeast Asia Region. *Sci Total Environ.* 2020;736(139658):1-11. https://doi.org/10.1016/j.scitotenv.2020.139658

20. Muliane U, Lestari P. Pemantauan Kualitas Udara Ambien Daerah Padat Lalu Lintas dan Komersial DKI Jakarta: Analisis Konsentrasi PM$_{10}$ dan Black Carbon. *J Tek Lingkung.* 2011;18(2):175-188. http://dx.doi.org/10.15294%20/jtek.v3i4/31037

21. Berman JD, Ebisu K. Changes in U.S. Air Pollution During The Covid-19 Pandemic. *Sci Total Environ.* 2020;739(139864):1-4. https://doi.org/10.1016/j.scitotenv.2020.139864

22. Darmawan R. Environmental Health Risk Assessment of NO$_2$ Ambient Level and Toll Collectors Officer’s Health Complaints. *J Kesehat Lingkung.* 2018;10(1):116-126. https://doi.org/10.20473/jkl.v10i1.2018.116-126

23. Gautam S. Covid-19: Air Pollution Remains Low As People Stay at Home. *Air Qual Atmos Heal.* 2020;(13):853–857. https://doi.org/10.1007/s11869-020-00842-6

24. Sicard P, De Marco A, Agathokleous E, Feng Z, Xu X, Paoletti E, et al. Amplified Ozone Pollution Cities During The Covid-19 Lockdown. *Sci Total Environ.* 2020;735(139542):1-10. https://doi.org/10.1016/j.scitotenv.2020.139542

25. Nakada LYK, Urban RC. Covid-19 Pandemic: Impacts on The Air Quality During The Partial Lockdown in São Paulo State, Brazil. *Sci Total Environ.* 2020;730(139087):1-5. https://doi.org/10.1016/j.scitotenv.2020.139087

26. Sundari S. Polusi Udara Kendaraan Bermotor Tidak Berpengaruh terhadap Penyakit ISPA. *Jurnal Kesehatan Lingkungan : Jurnal dan Aplikasi Teknik Kesehatan Lingkungan.* 2019;16(1):697–706. https://doi.org/10.31964/jkl.v16i1.157

27. Putra A, Sulistyorini L. kadar SO$_2$ dan Kejadian ISPA diKota Surabaya menurut Tingkat Pencemaran yang Berasal dari Kendaraan Bermotor. *IPTEK Journal of Proceedings Series.* 2016;3 (5):16–19. http://dx.doi.org/10.12962/j23546026.y2017i5.3109