Anti-Biofouling Defence Mechanism of Basibionts (A Chemical Warfare) - A Critical Review

Olunyi Solomon Ogunola* and Olawale Ahmed Onada

1International Studies in Aquatic Tropical Ecology, University of Bremen, Germany
2Aquaculture and Fisheries Management, University of Ibadan, Nigeria

Abstract

The fouling process is an ecologically complex web of interactions between basibionts e.g., corals, surface-colonizing microbes e.g., bacteria, and fouling biota e.g., Balanus species which are all mediated by chemical signalling. Sessile invertebrates, such as soft corals, sponges and sea cucumbers, evolved in an intense competitive milieu for space, light and nutrients, therefore they have developed chemical defence mechanism by producing secondary metabolites e.g., Terpenes to ward off bio-foulers and maintain clean body surfaces. The settlement of surface-colonizing organisms, commonly referred to as bio-fouling organisms, occurs naturally in a turbulent environment, yet the effects of waterborne versus surface-adsorbed chemical defences have not been compared in flow, therefore limiting our understanding of how they respond to toxic surfaces of the basibionts. Here, we reviewed the evidence that basibionts chemically inhibit the propagules of fouling organisms under natural conditions, and that chemosensory mechanisms may allow the larvae of bio-fouling animals to detect and avoid settling on chemically protected basibionts.

Keywords: Fouling biota; Basibionts; Settlement; Chemical signalling; Toxic surfaces

Introduction

Basibionts are substrate or benthic organisms which are the hosts to epibionts or bio-foulers. Corals and sponges are the most studied groups of benthic invertebrates in marine chemical ecology due to their abundance and distribution in all seas [1,2]. Several studies have been conducted by the benthic ecologists and chemists to unravel the mechanisms of chemical defence of the basibionts which protect their surfaces against fouling from epibiotic association. Many marine invertebrates such as soft corals and sea cucumbers are sessile i.e., steadily attached to the sea bottom or with low movement, thus vulnerable either to predation and threat from a rich surrounding microbiota with pathogenic potential. One of the most important challenges for the benthic organisms is to combat the problems of biofouling. ‘Biofouling’ is the colonisation of submerged surfaces by unwanted organisms such as bacteria, barnacles, algae, etc and has detrimental effects on shipping and leisure vessels, heat exchangers, oceanographic sensors and mariculture, with considerable ecological and economic consequences [3]. Soft corals and sea cucumbers are under intense competitive pressure for space, light, and nutrients. Fouling can have severely deleterious effects on benthic organisms, such as inhibition of photosynthesis, blockage of filter feeding, and elevated risk of mechanical dislodgement or predation. It is not surprising that they have developed a range of chemical defences to ensure their survival. Biofouling has been shown to be a sequential process [4], one stage of succession being conducive to the onset of the next [5]. Although these mechanisms are somewhat different for micro- and macro-organisms the sequence of events follows a similar pattern (Figure 1): settlement, attachment, development and growth of foulers such as bacteria, protists, barnacles, bivalves, hydroids, sedentary polychaetes, brazoanens, anemones, tunicates, diatoms, as well as green, brown and red algae [6-10]. Fouling is described as an on-going process which has no true end, as even a mature fouling community will undergo changes in composition due to season, disturbance, predation, and other biological and abiotic influences. As said earlier, soft corals, sponges, sea cucumbers live in close association with microorganisms like bacteria and other bio-foulers like barnacles and their body surfaces are inevitably colonized by these epibionts; while some of them harbour microorganisms within their digestive tracts or even within tissues and cells. Such interactions are complex and reach from harmful diseases to symbioses of mutual benefit [11]. Associated microorganisms have recently been shown to be involved in the synthesis of numerous metabolites [12]. Numerous studies demonstrate secondary metabolite production by symbionts such as the synthesis of the bicyclic glycopeptide theopealauamide by an associated delta-proteobacterium in the sponge, Theonella swinhoei [13], the synthesis of bryostatin by bacterial symbionts in the bryozoan, Bugula neritina [14], or the antimicrobial activity of different bacterial strains isolated from the sponges, Aplysina aerophoba and A. cavernicola [15]. Bio-foulers like some microbes play a double role in chemical interactions with higher organisms like the corals. They can be harmful and are repelled by chemical defences or they may be useful symbionts for their hosts by providing protection and camouflage against predators hunting by visual or chemical cues [16,17]. Soft corals and sea cucumbers have evolved mechanisms that enable them to distinguish between beneficial and detrimental biofoulers. Secondary metabolites act as a controlling factor in this host-biofouler interaction. They are used as a defence strategy against unwanted colonization (infection) by bio-foulers. These sessile invertebrates, soft corals, sponges, and sea cucumbers (Figure 2), produce an astonishing variety of anti-biofouling compounds (structures in Figure 3) [18], which help them to ward off surface colonization [19,20].

The aim and objective of this review is to focus on chemical defence mechanisms of some hard and soft corals, sponges and sea cucumbers against multiple fouling organisms or epibionts in the field.

*Corresponding author: Olunyi Solomon Ogunola, MSc International Studies in Aquatic Tropical Ecology, University of Bremen, Germany, Tel: +4915217802485; E-mail: solomonunila@yahoo.com

Received May 11, 2016; Accepted June 23, 2016; Published June 27, 2016

Citation: Ogunola OS, Onada OA (2016) Anti-Biofouling Defence Mechanism of Basibionts (A Chemical Warfare) - A Critical Review. J Environ Anal Toxicol 6: 380. doi:10.4172/2161-0525.1000380

Copyright: © 2016 Ogunola OS, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Secondary metabolites are widespread among benthic invertebrates and understanding their functional roles in the producing organism has been under intense study in recent times. The hypothesis that sessile or slow-moving organisms, without obvious escape mechanisms and physical protection, are likely to be chemically defended has recently been explored with greater frequency in the marine environment.

For any long-lived sessile benthic organisms like soft corals and sea cucumbers, bio-fouling and epibiosis must either be tolerated or overcome due to the setbacks associated with a colonized surface, these include; inhibition of photosynthesis, blockage of filter feeding apparatus, and increased risk of mechanical dislodgement or predation [21]. In response to this, a variety of chemical compounds are secreted by benthic invertebrates like soft corals, sea cucumbers, sponges to prevent surface fouling [22]. Some of these compounds prevent settlement much more effectively than organotin compounds and at the same time are far less toxic [23]. Chemical-based settlement inhibition against bacteria and other bio-foulers has been reported in sponges [24-30], Ascidians [24,31,32] and Cnidarians [30,33-36] and Bryozoa [23,37].

Because they lack physical defences, soft-bodied sessile invertebrates such as soft corals often use a refined chemical weapon as antifouling agents such as terpenoids, steroids, acetogenins, alkaloids, and polyphenolics [38]. These compounds can act enzymatically by dissolving the adhesives, interfering with the metabolism of the fouling organisms (e.g., nervous pathway interference), inhibiting the settlement, metamorphosis or growth, promoting negative chemotaxis, altering the surface of the organisms and as repellents [39-41]. Octocorals (class Anthozoa, subclass Octocorallia, and order Alcyonacea, family Alcyoniidae) were one of the first benthic invertebrate groups that were systematically screened for secondary metabolites (Tursch, 1976). These compounds, especially cembranoid diterpenes [42], have a function in chemical defence, in competition for space (allelopathy) and against fouling [43-46]. These diterpenes e.g., from *Sinularia flexibilis*, although lipophilic, are highly soluble in seawater and as anti-fouling agents are selectively absorbed onto bio-membranes of fouling organisms. Triterpene glycosides from two sponges, *Erylus formosus* and *Ectyoplasia ferox*, were tested for a suite of activities including predator deterrence, bacterial attachment, fouling, and overall growth by competitors. The results showed a strong inhibition of fouling by invertebrates and algae over a 27-day period [47]. Soft corals may chemically affect the larvae of other corals, interactions at the interface of antifouling and allelopathy. Scleractinian coral recruitment was depressed in a current-dependent directional manner around the soft corals *Sinularia flexibilis* and *Sarcophyton glaucum*, and settlement did not occur on plates containing an extract of *S. flexibilis* [48]. The diterpenes flexibilide, dihydroflexibilide, and sinulariolide from *S. flexibilis* were toxic to fertilized eggs of the hard corals *Montipora digitata* and *Acropora tenuis* during the first 24 hr [49]. The Atlantic species *Eudistoma olivaceum* produces a range of over 20 alkaloids termed eudistomin [50]. The antilarval activity of these compounds was traced to a pair of isomeric carboline alkoloids, eudistomin G and H. Both of these compounds from the ascidian were found to inhibit settlement of *Bugula neritina* larvae at 2 µg per square cm due to their toxicity in bioassay trials [51]. Secondary metabolites, such as 1-methyldenamine from *Aplysilla glacialis* [25], extracts from *Crabe crabe* [26], as well as aerothionin and homoaerothionin from *Aplysina fistularis* [52] showed strong antibacterial and bryozoan larval properties. *Dendronephthya spp.* , a *Cnidarian*, was also reported to contain horamine (N-methyl-4-picolinic acid) that significantly inhibited growth of the co-occurring benthic diatom *Navicula salinolica* [30,33]. The antifouling activity of a series of extracts and secondary metabolites, such as bromopyrrole and diterpene alkaloids, from the epibiont-free Mediterranean sponges, *Incinaria spinulosa*, *Cacospongia scalaris*, *Dysidea sp.*, and *Hippoponosia communis* was investigated by Helfo et al. [53]. A number of the tested metabolites had anti-settlement activity when tested against barnacle, *Balanus amphitrite*, cyprids. The effect of sponge extracts and metabolites on
the settlement of barnacles was tested by Hello et al. using cyprids of Balanus amphitrite. The results of the effectiveness of the sponge extracts or metabolites in inhibiting B. amphitrite settlement is presented in Table I and Figure 4.

In a study reported by Limnamol et al. [54], thirty six species of sponges collected from the Gulf of Mannar, India, were tested for their inhibitory effect on fouling bacterial strains and cyprids of Balanus amphitrite. The results showed that Fasciospongia cavernosa and Petrosia nigricans had a high significant inhibitory or anti-settlement activity against the fouling bacteria and Iotrochota baculifera larvae.

The experiment carried out by Yang et al. [55] to test for the anti-fouling property of two-compound extracts (10b-formamidokalihinol-A and kalihinol A) from sponge, Acanthella cavernosa, against the bacterial and larval settlement of a major fouling polychaete, Hydrodoides elegans. The results showed that both compounds inhibited the growth of bacteria isolated from the natural environment whereas kalihinol A suppressed larval settlement due to modification of bacterial communities on their surfaces which has influence on larval settlement of fouling organism (Figures 5 and 6).

Blihoghe et al. [56] reported that agelasine derivatives, from sponges and soft corals, inhibited settling of larvae of Balanus improvisus in an anti-fouling bioassay as well as the growth of planktonic forms of biofilm forming bacteria, Staphylococcus epidermidis.

Several studies conducted have shown that soft corals can yield large quantities of promising antifouling metabolites [57]. Chambers et al. [58] reported that 17.95% of potential antifouling natural compounds are from cnidarians (e.g., soft coral). One of the most promising natural antifouling agent identified so far is an isogesterone isolated from an unspecifed Dendronephthya [37], Lai et al. [59] evaluated the anti-fouling property of diterpenoids, designated as sinulariols A–S, from Chinese soft coral Sinularia rigida on Balanus species and concluded that they inhibited the larval settlement of both Balanus amphitrite and B. neritina. Pereira et al. [60] and Epifaino et al. [61] showed that the diterpene 11β, 12β -epoxypukalide extract from Phyllogorgia dilatata, an octocoral, displayed antifouling property when tested on Perna perna and barnacles. Roper et al. [62] revealed that haliclonaclayamine A and halaminol A isolated from the sponge, Haliclona sp, have similar effects on sponge, polychaeta, gastropod, and bryozoan larvae by inhibiting their settlement and metamorphosis. Qi et al. [63] demonstrated that subergoric acid, isolated from a gorgonian, inhibited settlement of larvae of B. amphitrite and B. neritina, with EC50 values of 1.2 and 3.2 µg/mL respectively and LC50 values of >200 µg/mL. Peters et al. [64] showed that two bromophysostigimines, isolated from the bryozoan, Flustra foliacea, inhibited bacterial quorum sensing (QS) and the growth of bacteria, suggesting the presence of potential anti-fouling compounds.

Discussion and Conclusion

Marine invertebrates are one of the major groups of biological organisms (Porifera, Cnidaria, Mollusca, Arthropoda, Echinodermata, etc.) that are significant for their source of a number of natural products and secondary metabolites with anti-biofouling properties.

It is reported that the secondary metabolites of some species of basibionts can vary quantitatively and qualitatively, depending on the biogeographical location [65], while other species have similar compositions of these metabolites in different habitats [66]. Fusetani proposed that these organisms secrete chemicals that prevent larvae of other marine organisms from settling and growing on them [67]. From the data presented here, it can be concluded that extracts of the various basibionts control a number of epibionts and bio-foulers from settling on their surfaces. Walls et al. [68] and Shellenberger and Ross [69], reported a negative correlation between the presence of secondary metabolites, the antibacterial activity of the extracts and a reduction of fouling, which might indicate an antifouling function for secondary metabolites. Investigations on the Caribbean sponges, Erysus formosa and Ectyoplasia ferox, showed that stertane glycosides has multiple ecological functions to deter predation, microbial attachment, and fouling of invertebrates and algae [47,70]. It was found that the metabolites are apparently restricted to the sponge surface and the biological effect is through direct contact with the sponge rather than by water borne interactions. These results support the hypothesis that

Group I (Active and toxic metabolites/extracts)	LC50 (ppm)	EC (ppm)
Incin in I	4.7	5.0
Incin in I&II acetates	4.9	5.0
Furodyisin	18.1	5.0
Incin ors OHC26Cl extract	21.7	50.0
7-Deacetoxyolepupane	106.2	100.0
Dysidea sp. CH2Cl2 extract	52.5	65.9

Group II (Non-active and nontoxic metabolites/extracts)	%Survival	%Settlement	Concentration (µg/mL)
Spongi-12-16-one	100	60.3	100
Hydroquinone A	100	59.4	100
Hydroquinone C	100	57.3	100
Fasciculatin	100	58.0	100
Dysidea sp. aqueous extract	100	59.1	100
11β-Acetoxypongii-12-16-one	100	53.5	100

Group II (Active and nontoxic metabolites/extracts)	%Survival	%Settlement	Concentration (µg/mL)
Euryfurans	100	24.7	100
Hydroquinone A-acetate	100	19.9	100
Dihydrofurospongion II	100	11.2	100
Hydroquinone C-acetate	100	0.0	10
Dysidea sp. alcohol extract	100	0.0	25

Metabolites/extracts are classified according to their activity on inhibition of settlement. In group I, results are expressed as effective concentration for 0% settlement (EC) and concentration including 50% lethality (LC50). For groups II and III, results are expressed as percentage of survival and of settlement for the reported concentrations.

| Table 1: Settlement inhibition activity against Balanus amphitrite cyprids [53]. |
Figure 4: Effect of the most active nontoxic metabolites/extracts (0 to 100 μg/mL) on B. amphitrite cyprid settlement. Results are expressed as percentage settled (± SEM) and percentage swimming (± SEM). Results significantly different from the control, *P<0.05; **P<0.001; ***P<0.001 [53].

Figure 5: Bacterial density on the surface of Phytagels1 embedded with kalihinol A and the control containing DMSO (n = 3). The Phytagels1 were exposed to flow-through natural seawater for 3 d at 20°C in March 2005 [56]. DMSO: Dimethyl sulfoxide.

invertebrate metabolites are involved in the regulation of microbial and other bio-fouler distributions in the marine environment, and may act as a chemical defence aimed at controlling surface colonization. Therefore, it can now be concluded that surfaces of marine invertebrates, e.g., sponges, soft corals, are usually remarkably free of fouling organisms, supporting the assumption that this is achieved by secretion of anti-fouling compounds [71,72].

A lot of antifouling compounds have been isolated and reported from marine sponges, sea anemones, soft coral, etc but their molecular structures are too intricate to be artificially synthesized. Better understanding of the natural function of these secondary metabolites will to develop new strategies for the correct management and protection of these potentially important natural resources, the basibionts, for the future and find new biotechnological applications for these products in our day-to-day lives. Exploiting these marine biotas could lead to scarce supply of anti-fouling compounds widely used by many industries such as aquaculture, pharmaceutical and shipping.

Acknowledgements

I am grateful to the German Academic Exchange Service, Bonn, Germany for their financial support.
References

1. Jackson JBC (1977) Competition on marine hard substrata: the adaptive significance of solitary and colonial strategies. Am Nat 3: 743-767.
2. Uriz MJ, Rosell D and Martin D (1992) The sponge population of the Cabrera archipelago (Balearic Islands): characteristics, distribution, and abundance of the most representative species. Mar Ecol 13: 101-117.
3. Vimala R (2016) Marine organisms: A potential source of natural antifouling metabolites. International Journal of ChemTech Research 9: 208-217.
4. Raiklin AI (2004) Marine biofouling. Colonization processes and defenses.
5. Connell JH and Slatyer RO (1977) Mechanisms of succession in natural communities and their role in community stability and organization. American Naturalist 11: 1119-1144.
6. Christensen BE and Characklis WG (1990) Physical and chemical properties of biofilms. In Characklis WG and Marshall KC (eds). Biofilms, New York: J Wiley & Sons. pp: 93-130.
7. Hadfield MG, Unabia CRC, Smith CM, Michael TM (1994) Settlement preferences of the ubiquitous fouler Hydroidea elegans. In: Thompson MF, Hadfield MG, Unabia CRC, Smith CM, Michael TM (1994) Settlement & Recruitment of marine invertebrates – a Comparison to Settlement. Journel of Experimental Marine Biology and Ecology 190: 169-198.
8. Keough MJ, Raimondi PT (1995) Responses of settling invertebrate larvae to bioorganic films: effects of different types of films. J Exp Mar Biol Ecol 185: 235-263.
9. Slattery M, McClintock JB, Heine JH (1995) Chemical defenses in Antarctic soft corals: evidence for antifouling compounds. J Exp Mar Biol Ecol 190: 61-77.
10. Steinert M, Hentschel U, Hacker J (2000) Symbiosis and pathogenesis: evolution of the microbe-host interaction. Naturwissenschaften 87: 1-11.
11. Hildebrand M, Waggeron LE, Lim GE, Sharp KH, Riley CP, et al. (2004) Approaches to identify, clone, and express symbiont bioactive metabolite genes. Nat Prod Rep 21: 122-142.
12. Schmidt EW, Obraztsova AY, Davidson SK, Faulkner DJ, Haygood MG (2000). Identification of the antifungal peptide-containing symbiont of the marine sponge Theoneb swinhoei as a novel delta-Proteobacterium, "Candidatus Entotheonella palauensis". Marine Biology 136: 969-977.
13. Davidson SK, Allen SW, Lim GE, Anderson CM, Haygood MG (2001) Evidence for the biosynthesis of bryostatins by the bacterial symbiont "Candidatus Endobugula sertula" of the bryozoan Bugula neritina. Apol Environ Microbiol 67: 4531-4537.
14. Hentschel U, Schmid M, Wagner M, Fieseler L, Gernert C, et al. (2001) Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponges Aplysina aerophora and Aplysina cavernicola. FEMS Microbiol Ecol 35: 305-312.
15. Lauden J, Wahl M (1999) Indirect effects of epibiosis on host mortality: seastar predation on differently fouled mussels. Mar Ecol 20: 35-47.
16. Stachowicz JJ, Hay ME (1999) Reducing predation through chemically mediated camouflage: indirect effects of plant defenses on herbivores. Ecology 80: 495-509.
17. Paul VJ, Puglisi MP (2004) Chemical mediation of interactions among marine organins. Nat Prod Rep 21: 189-209.
18. Dobretsov S, Dahms Hu, Tosi MY, Qian PY (2005) Chemical control of epibiosis by Hong Kong sponges: The effect of sponge extracts on micro- and macrofouling communities. Marine Ecology Progress Series 297: 119-129.
19. Kelly SR, Garo E, Jensen PR, Fenical W, Pawlik JR (2005) Effects of Caribbean sponge secondary metabolites on bacterial surface colonization. Aquatic Microbial Ecology 40: 191-203.
20. Krug PJ (2006) Defense of benthic invertebrates against surface colonization by larvae: a chemical arms race. In Müller WEG, Fusetani N, Clare AS (eds). Antifouling Compounds, Heidelberg: Springer, pp: 1-53.
21. Hadfield MG (1986) Settlement and recruitment of marine invertebrates – a perspective and some proposals. Bulletin of Marine Science 39: 418-425.
22. Konya K, Shimizudzu N, Adachi K, Miki W (1994) 2,5,6-tribromo-1-methylgramine, an antifouling substance from the marine bryozoon Zootobryozon pellucidum. Fisheries Science 60: 773-777.
23. Sears MA, Gerhart DJ, Rittschof D (1990) Antifouling agents from marine spongeLisiodendron isodictyalis cartleri. J Chem Ecol 16: 791-799.
24. Bobzin SC, Faulkner DJ (1992) Chemistry and chemical ecology of the Bahaman spongeAplysilla glacialis. J Chem Ecol 18: 309-332.
25. Becerro M, Uriz M, Turon X (1997) Chemically mediated interactions in benthic organisms: the chemical ecology of Crambe crambe (Porifera, Poecilosclerida). Hydrobiologia 356: 77-89.
26. Armstrong E, McKenzie JD, Goldworthy GT (1999) Aquaculture of sponges on scallops for natural products research and antifouling. Journal of Biotechnology 70: 163-174.
27. Pawlik JR, McFall G, Zea S (2002) Does the odor from sponges of the genus Ircinia protect them from fish predators? J Chem Ecol 28: 1103-1115.
28. Tsoukatas M, Helly C, Vagias C, Harvala C, Rousvis V (2002) Chemical defense and antifouling activity of three Mediterranean sponges of the genus Ircinia. Z Naturforsch C 57: 161-171.
29. Omae I (2003) Organotin antifouling paints and their alternatives. Applied Organometallic Chemistry, 17, 81-105.
30. Davis AR (1991) Alkaloids and ascidian chemical defense: evidence for the ecological role of natural products from Eudistoma ovisacrum. Mar Biol 111: 375-379.
31. Wahl M, Jensen PR, Fenical W (1994) Chemical control of bacterial epibiosis on ascidians. Mar Ecol Prog Ser 110: 45-57.
32. Targett NM, Bishop SS, Mcconnell OJ, Yoder JA (1983) Antifouling agents against the benthic marine diatom, Navicula salinica - homarine from the gorgonians Leptogorgia virgulata and setacea and analogs. Journal of Chemical Ecology 9: 817-829.
33. Slattery M, Hamann MT, McClintock JB, Perry TL, Puglisi MP, et al. (1997) Ecological roles for water-borne metabolites from Antarctic soft corals. Mar Ecol 181: 133-144.
34. Tomono Y, Hirota H, Fusetani N (1999) Iosogostosterones A-D, antifouling 13,17-seco steroids from an octocoral Dendronephthya sp. J Org Chem 64: 2272-2275.
35. Sant A, Fenical W (1983) Gramine-derived bromo-alkaloids from the marine sponge Theonella palauensis. J Chem Ecol 9: 208-217.
36. Temraz TA, Houssen WE, Jaspars M, Woolley DR, Wease KN, et al. (2006) A pyridinium derivative from Red Sea soft corals inhibited voltage-activated calcium channels. Arch Biochem Biophys 445: 275-280.
potassium conductances and increased excitability of rat cultured sensory neurons. BMC Pharmacol 6: 1-19.

39. Abazura S, Jakubowsky S (1995) Biotechnological investigation for the prevention of biofouling. I. Biological and biochemical principles for the prevention of biofouling. Marine Ecology Prog Ser 123: 301-312.

40. Steinberg PD, De Nys R, Kjelleberg S (1999) A new method for determining surface concentrations of marine natural products on seaweeds. Mar Ecol Prog Ser 162: 79-87.

41. Rittschof D (2000) Natural product antifoulants: One perspective on the challenges related to coatings development. Biofouling 15: 119-127.

42. Hirozono M, Ojika M, Mimura H, Nakasumi Y, Masumoto M (2003) Acylspermidine derivatives isolated from a soft coral, Sinularia sp, inhibit plant vacuolar H(+)−pyrophosphatase. J Biochem 133: 811-816.

43. Sheu JH, Ahmed AF, Shieh RT, Dai CF, Kuo YH (2002) Scabrioroles A-D, four new norlertepenoids isolated from the soft coral Sinularia scabra. J Nat Prod 65: 1904-1906.

44. Ojika M, Islam MK, Shintani T, Zhang Y, Okamoto T, et al. (2003) Three new cytotoxic acylspermidine from the soft coral, Sinularia sp. Biosci Biotechnol Biochem 67: 1410-1412.

45. Kelman D, Kashman Y, Rosenberg E, Kushmaro A, Loya Y (2006) Antimicrobial activity of Red Sea corals. Mar Biol 149: 357-363.

46. Kamel HN, Fronzcek FR, Khalilah SL, Stalley M (2007) Microbial transformation of 5-epinsulisponolid. Chem Pharm Bull (Tokyo) 55: 537-540.

47. Kubanek J, Whalen KE, Engel S, Kelly SR, Henkel TP, et al. (2002) Multiple defensive roles for tetrerpene glycosides from two Caribbean sponges. Oecologia 131: 125-136.

48. Maida M, Sammarco PW, Coll JC (1995) Effects of soft corals on scleractinian coral recruitment. I. Directional allelopathy and inhibition of settlement. Mar Ecol Prog Ser 121: 191-202.

49. Acetel TL, Sammarco PW, Coll JC (1995) Effects of diterpenes derived from the soft coral Sinularia flexibilis on the eggs, sperm and embryos of the scleractinian corals Montipora digitata and Acorpora tenuis. Mar Biol 122: 317-323.

50. Rinehart KL, Kobayashi J, Harbour GC, Gilmore J, Mascal M, et al. (1987) Eudistomin A-Q, beta carbolines from the antiviral Caribbean sponge Eudistoma olivaceum. J Chem Ecol 13: 1349-1357.

51. Walker TP, Thompson JE, Faulkner DJ (1985) Exudation of biologically active metabolites in the sponge Aplysina fistularis. II. Chemical evidence. Mar Biol 88: 27-32.

52. Hello C, Tsoukatou M, Maréchal JP, Aldred N, Beaulieu C, et al. (2005) Inhibitory effects of Mediterranean sponge extracts and metabolites on larval settlement of the barnacle Balanus amphitrite. Mar Biotechnol (NY) 7: 297-305.

53. Limnmal VP, Raveendran TV, Paravesaran PS, Kunnath RJ, Sathyan V, et al. (2010) Antifouling sesquiterpene from the marine sponge Agelas elegans. J Exp Mar Biol Ecol 379: 258-266.

54. Yang LH, Lee OO, Jin T, Li XC, Qian PY (2006) Antifouling properties of 10beta-formamidokalihinol-A and kalihinol A isolated from the marine sponge Phyllogorgia dilata. Biochem Syst Ecol 34: 446-448.

55. Roper KE, Beamiish H, Lourie MJ, Skilleter GA, Degnam BM (2006) Evidence of antifouling activities of structurally distinct bioactive compounds synthesized within two sympatric Haliclonia demospheres. Mar Biotechnol 11: 186-198.

56. Qi SH, Zhang S, Yang LH, Qian PY (2008) Antifouling and antibacterial compounds from the gorgonians Subergorgia suberosa and Scripearia gracilis. Nat Prod Res 22: 154-166.

57. Peters L, König GM, Wright AD, Pukall R, Stackebrandt E, et al. (2003) Secondary metabolites of Flustra foliacea and their influence on bacteria. Appl Environ Microbiol 69: 3469-3475.

58. Harvell CD, Fenical W, Rousi V, Rueinsink JL, Griggs CC, et al. (1993) Local and geographic variation in the defensive chemistry of a West Indian gorgonian coral (Briareum asbestinum). Mar Ecol Prog Ser 93: 165-173.

59. Puglisi MP, Paul VJ, Stalley M (2000) Biogeographic comparisons of chemical and structural defenses of the Pacific gorgonians Annella mollis and A. reticulata. Mar Ecol Prog Ser 207: 263-272.

60. Fusetani N (2004) Biofouling and antifouling. Nat Prod Rep 21: 94-104.

61. Walls JT, Ritz DA, Blackman AJ (1993) Fouling, surface bacteria and antibacterial agents of four bryozoan species found in Tasmania, Australia. J Exp Mar Biol Ecol 169: 1-13.

62. Shellenberger JS, Ross JRP (1998) Antibacterial activity of two species of bryozoans from northern Puget Sound. Northwest Sci 72: 23-33.

63. Kubanek J, Pawlik JR, Eve TM, Fenical W, Griggs CC, et al. (2000) Tetrerpene glycosides defend the Caribbean reef sponge Erylus forosus from predatory fishes. Marine Ecology Progress Series 207: 69-77.

64. Rubio C (2002) Thèse de l'Université de Paris VI.

65. Satheesh S, Ba-akdah MA, Al-Sofyani AA (2015) Natural antifouling compound production by microbes associated with marine macroorganisms - A review. Electronic J of Biotechnology.