Isoparametric functions and harmonic unit vector fields in K-Contact Geometry

Philippe Rukimbira
Department of Mathematics & Statistics, Florida International University
Miami, Florida 33199, USA
E-MAIL: rukim@fiu.edu

Abstract

We provide some examples of harmonic unit vector fields as normalized gradients of isoparametric functions coming from a K-contact geometry setting.

MSC: 57C15, 53C57

Introduction

in [4], the authors showed that given an isoparametric function \(f \) on an Einstein manifold, the normalized gradient vector field \(\frac{\nabla f}{\| \nabla f \|} \) is a harmonic unit vector field. In this paper, without the Einstein assumption, we present explicit isoparametric functions on double K-contact structures and also show that their normalized gradient vector fields are harmonic unit vector fields. We may ask whether or not there are examples of double K-contact structures on non-Einstein manifolds. The answer to this question is negative if K-contact is replaced by Sasakian. A compact, double Sasakian manifold is of constant curvature 1 (see [5], [8]).
1 Transnormal functions

A smooth function f on M is said to be transnormal if there exists a real, smooth function

$$b : \mathbb{R} \to \mathbb{R}^+$$

such that

$$\|\nabla f\|^2 = b(f),$$

(1)

where ∇f is the gradient vector field of f.

The function f is said to be isoparametric if there is another continuous function

$$a : \mathbb{R} \to \mathbb{R}$$

such that the Laplacian of f, Δf satisfies:

$$\Delta f = a(f).$$

(2)

Proposition 1 Let f be a transnormal function on a Riemannian manifold (M, g). Then $N = \frac{\nabla f}{\|\nabla f\|}$ is a geodesic unit vector field defined on the complement of the critical set of f.

Proof Let H be any vector field such that $g(\nabla f, H) = df(H) = 0$. Then, using transnormality,

$$g(\nabla \nabla f, H) = \nabla f g(\nabla f, H) - g(\nabla f, \nabla \nabla f H)$$

$$= -g(\nabla f, \nabla H \nabla f) - g(\nabla f, [\nabla f, H])$$

$$= -\frac{1}{2} Hg(\nabla f, \nabla f) - g(\nabla f, [\nabla f, H])$$
\[
- \frac{1}{2} b'(f) g(\nabla f, H) - g(\nabla f, [\nabla f, H])
= -g(\nabla f, [\nabla f, H])
\]
\[
g(\nabla_{\nabla f} \nabla f, H) = -g(\nabla f, [\nabla f, H]) \tag{3}
\]

But also, the Lie derivative of \(df \) satisfies:
\[
L_{\nabla f} df(H) = \nabla f df(H) - df([\nabla f, H]) = -df([\nabla f, H]) = -g(\nabla f, [\nabla f, H])
\]
and
\[
L_{\nabla f} df(H) = (di_{\nabla f} df)(H) = H\|\nabla f\|^2 = b'(f) df(H) = 0.
\]

We deduce from (3) that
\[
\nabla_{\nabla f} \nabla f = K \nabla f
\]
for some function \(K \) on \(M \). Hence
\[
\nabla N \cdot N = \frac{1}{\|\nabla f\|} \nabla_{\nabla f} \nabla f \frac{\nabla f}{\|\nabla f\|}
= \left[\frac{1}{\|\nabla f\|} \nabla f \left(\frac{1}{\|\nabla f\|} \right) + \frac{K}{\|\nabla f\|^2} \right] \nabla f
\]

Since \(\nabla N \cdot N \) is orthogonal to \(N \), and therefore to \(\nabla f \), it follows that
\(\nabla N \cdot N = 0. \) \(\square \)

Lemma 1 If \(f \) is a transnormal function on a Riemannian manifold \((M, g)\), with \(\|\nabla f\|^2 = b(f) \), then the mean curvature \(h \) of every regular level surface satisfies:
\[
h = \frac{\Delta f}{\|\nabla f\|} + \frac{b'(f)}{2\sqrt{b}}.
\]
Proof Let $E_i, i = 1, 2, ..., m-1, N = \nabla f/\|\nabla f\|$ be an adapted orthonormal frame field, where $E_i \perp \nabla f$.

\[
 h = -\sum_{i=1}^{m-1} g(\nabla E_i, N, E_i) = -\sum_{i=1}^{m-1} g(\nabla E_i, N, E_i) - g(\nabla N, N) = -\frac{1}{\|\nabla f\|} \left(\sum_{i=1}^{m-1} g(\nabla E_i, \nabla f, E_i) + g(\nabla N, \nabla f, N) \right) + \frac{N(\|\nabla f\|)}{\|\nabla f\|^2} g(\nabla f, N) = \frac{1}{\|\nabla f\|} \Delta f + \frac{b'(f)}{2\sqrt{b}}.
\]

\[\square\]

2 Harmonic unit vector fields

Let (M, g) be an m-dimensional Riemannian manifold. A unit vector field Z on M can be regarded as an immersion $Z: M \to T_1 M$ of M into its unit tangent bundle, which is itself a Riemannian manifold with its Sasaki metric g_S. In this setting, the induced metric on M is given by

\[
 Z^* g_S(X, Y) = g(X, Y) + g(\nabla_X Z, \nabla_Y Z).
\]

Denote by A_Z and L_Z the operators

\[
 A_Z X = -\nabla_X Z
\]

and

\[
 L_Z X = X + A'_Z(A_Z X).
\]
The energy $E(Z)$ is given by

$$E(Z) = \frac{1}{2} \int_M tr L_Z dV_g = \frac{m}{2} Vol(M) + \frac{1}{2} \int_M \|\nabla Z\|^2 dV_g$$

where dV_g is the Riemannian volume form on M. A critical point for the functional E is called a harmonic unit vector field.

The critical point condition for E have been derived in [9]. More precisely, Z is a harmonic unit vector field on (M,g) if and only if the one form ν_Z,

$$\nu_Z(X) = tr (u \mapsto (\nabla_u A^t_Z) X)$$

vanishes on Z^\perp. Equivalently, the critical point condition for harmonic unit vector fields is again

$$\sum_{u_i} g((\nabla_{u_i} A^t_Z) X, u_i) = 0, \quad \forall X \in Z^\perp$$

(4)

where the u_is form an orthonormal basis.

Let N be a geodesic vector field with integrable orthogonal complement N^\perp. The endomorphism $A_N = -\nabla N$ is then symmetric. Indeed, for any $X, Y \perp N$,

$$g(A_N X, Y) = g(-\nabla_X N, Y)$$

$$= -X g(N, Y) + g(N, \nabla_X Y)$$

$$= g(N, \nabla_Y X)$$

$$= Y g(N, X) - g(\nabla_Y N, X)$$

$$= g(X, A_N Y)$$

Since $A_N N = 0$ and $g(A_N X, N) = 0$, it follows that A_N is symmetric. Let $\lambda_i, \ i = 1, 2, 3, \ldots m$ be the eigenvalues of A_N on N^\perp. Let also E_1, \ldots, E_m be
an orthonormal frame of N^\perp consisting of eigenvectors. One has

$$A_N N = A_N^t N = 0, \ A_N E_i = A_N^t E_i, \ i = 1, 2, ..., m$$

and N is a harmonic unit vector field if and only if, for $j = 1, ..., n$

$$0 = \nu_N(E_j) = \sum_{i=1}^{m} g((\nabla_{E_i} A_N^t)E_j, E_i) + g((\nabla_N A^t)E_j, N) \quad (5)$$

If τ is a field of symmetric endomorphisms, then so is $\nabla_E \tau$ for any E. We continue the above calculation

$$0 = g((\nabla_{E_i} A_N)E_i, E_j) + g((\nabla_N A_N)N, E_j)$$

$$= \sum_{i=1}^{m} g(\nabla_{E_i}(A_N E_i), E_j) - g(A_N(\nabla_{E_i} E_i), E_j)$$

$$= \sum_{i=1}^{m} g(\nabla_{E_i}(\lambda_i E_i), E_j) - \lambda_j \sum_{i=1}^{m} g(\nabla_{E_i} E_i, E_j)$$

$$= E_j(\lambda_j) + \sum_{i=1}^{m} (\lambda_i - \lambda_j) g(\nabla_{E_i} E_i, E_j)$$

$$= E_j(\lambda_j) + \sum_{i=1}^{m} (\lambda_i - \lambda_j) g(\nabla_{E_i} E_i, E_j)$$

$$0 = E_j(\lambda_j) + \sum_{i=1}^{m} (\lambda_i - \lambda_j) g(\nabla_{E_i} E_i, E_j) \quad (6)$$

On the other hand, Codazzi equations imply that

$$g(R(E_i, E_j)E_i, N) = -g(R(E_i, E_j)N, E_i)$$

$$= g(\nabla_{E_i}(A_N E_j) - \nabla_{E_j}(A_N E_i) - A_N[E_i, E_j], E_i)$$

$$= E_i g(A_N E_j, E_i) - g(A_N E_j, \nabla_{E_i} E_i) -$$

$$E_j g(A_N E_i, E_i) + g(A_N E_i, \nabla_{E_j} E_i)$$

$$- g([E_i, E_j], A_N E_i)$$
\[\begin{align*}
E_i(\lambda_j g(E_j, E_i) - \lambda_j g(E_j, \nabla E_i) - E_j(\lambda_i) + \\
\lambda_i g(E_i, \nabla E_j E_i) - \lambda_i g([E_i, E_j], E_i)
\end{align*} \]

\[\begin{align*}
E_i(\lambda_j g(E_j, E_i) + \lambda_j E_i g(E_j, E_i) - \\
\lambda_j g(E_j, \nabla E_i E_i) - E_j(\lambda_i) - \lambda_i g([E_i, E_j], E_i)
\end{align*} \]

\[\begin{align*}
E_i(\lambda_j \delta_{ij} + \lambda_j g(\nabla E_i E_j, E_i) - E_j(\lambda_i) - \\
\lambda_i g(\nabla E_i E_j, E_i)
\end{align*} \]

Summing over \(i \) and using \(g(R(N, E_j)N, N) = 0 \), we get:

\[\begin{align*}
-\rho(E_j, N) &= \sum_{i=1}^{m} (\lambda_j - \lambda_i) g(\nabla E_i E_j, E_i) + E_j(\lambda_j) - E_j(\sum_{i=1}^{m} \lambda_i)
\end{align*} \]

\[\begin{align*}
= \sum_{i=1}^{m} (\lambda_i - \lambda_j) g(\nabla E_i E_j, E_j) + E_j(\lambda_j) - E_j(\sum_{i=1}^{m} \lambda_i)
\end{align*} \]

Now, combining with the previous identity (6), one sees that

\[\begin{align*}
-\rho(E_j, N) &= 0 - E_j(\sum \lambda_i)
\end{align*} \]

\[\begin{align*}
\rho(E_j, N) &= E_j(\sum \lambda_i)
\end{align*} \]

(7)

Therefore, we see that \(N \) is harmonic if and only if

\[\begin{align*}
X(h) = \rho(X, N)
\end{align*} \]

for all \(X \perp N \), where \(h = \sum_{i=1}^{m} \lambda_i \) is the mean curvature of \(N^\perp \) and \(\rho \) is the Ricci tensor.

For a geodesic vector field \(N \), with integrable orthogonal complement, Identity (4) reduces to

\[\begin{align*}
X(h) = \rho(X, N), \quad \forall X \perp N
\end{align*} \]

(8)
where h is the mean curvature of N^\perp and ρ is the Ricci tensor.

3 Double K-Contact structures

A contact metric structure on an odd-dimensional $(2n+1)$ manifold M is determined by the data of a 1-form α with Reeb field Z together with a Riemannian metric g, called the adapted contact metric, and a partial complex structure J such that the following identities hold:

i) $\alpha \wedge (d\alpha)^n$ is a volume form on M.

ii) $J^2A = -A + \alpha(A)Z$

iii) $d\alpha(A,B) = 2g(A,JB)$ for any tangent vectors A and B.

If Z is an infinitesimal isometry for g, then the structure is called K-contact. If in addition, the identity

$$(\nabla_A J)B = g(A,B)Z - \alpha(B)A$$

is satisfied for any two tangent vectors A and B, then the structure is called Sasakian.

Definition 1 A double K-contact structure on a manifold M is a pair of K-contact forms α and β with same contact metric g and commuting Reeb vector fields Z and X.

An example: On $S^3 \hookrightarrow \mathbb{R}^4$ with coordinates x_1, y_1, x_2, y_2, $x_1^2 + y_1^2 + x_2^2 + y_2^2 = 1$. The standard K-contact form is $\alpha = y_1 dx_1 - x_1 dy_1 + y_2 dx_2 - x_2 dy_2$ with Reeb field $Z = y_1 \partial x_1 - x_1 \partial y_1 + y_2 \partial x_2 - x_2 \partial y_2$. Another K-contact form
with same adapted metric is $\beta = -y_1 dx_1 + x_1 dy_1 + y_2 dx_2 - x_2 dy_2$ with Reeb field $X = -y_1 \partial x_1 + x_1 \partial y_1 + y_2 \partial x_2 - x_2 \partial y_2$.

$[X, Z] = 0$ and the angle function $g(X, Z) = -y_1^2 - x_1^2 + y_2^2 + x_2^2$ is isoparametric. Its gradient vector field is

$$2JX = 2((-x_1 \partial x_1 - y_1 \partial y_1 + x_2 \partial x_2 + y_2 \partial y_2) +$$

$$2(x_1^2 + y_1^2 x_2^2 - y_2^2)(x_1 \partial x_1 + y_1 \partial y_1 + x_2 \partial x_2 + y_2 \partial y_2).$$

J is the standard partial complex structure on S^3.

$N = \frac{2JX}{\|2JX\|}$ is a harmonic unit vector field as it will follow from results in the following sections. Similar examples as the above one can be repeated on any odd dimensional unit sphere.

Proposition 2 In the case of a double K-contact structure (M, α, Z, β, X), the angle function $f = g(X, Z)$ is always transnormal.

Proof Let’s denote by J and ϕ the respective complex structures on the contact sub-bundles. Then, the gradient of f is given by

$$\nabla f = 2JX = 2\phi Z.$$

Its norm square is therefore

$$\|\nabla f\|^2 = 2\|JX\|^2 = 4(1 - g(X, Z)^2) = 4(1 - f^2) = b(f)$$

with $b(t) = 4(1 - t^2)$.

Lemma 2 The Laplacian of the transnormal function $f = g(Z, X)$ satisfies:

$$\Delta f = (4n + 4)f + 2 \sum_{i=1}^{2n-2} g(J\phi E_i, E_i),$$

9
where \(E_i \) are orthonormal and each is perpendicular to \(Z, X, \) and \(N \).

Proof Let \(E_i \perp Z, X, JX \) for \(i=1, \ldots, 2n-2 \), \(E_{2n-1} = Z, E_{2n} = \frac{X-\alpha(X)}{\sqrt{1-\alpha^2(X)}}, N = \frac{JX}{\sqrt{1-\alpha^2(X)}} \) be an orthonormal frame field.

\[
\Delta f = -2\sum_{i=1}^{2n} g(\nabla_{E_i} JX, E_i) + g(\nabla_N JX, N)
\]

\[
= -2\sum_{i=1}^{2n} g(R(Z, E)X, E) - g(J\phi E_i, E_i) + g(R(Z, N)X, N) - g(J\phi N, N)
\]

\[
= 2\text{Ricci}(Z, X) + 2\sum_{i=1}^{2n} g(J\phi E_i, E_i) + 2g(J\phi N, N)
\]

\[
= 2\text{Ricci}(Z, X) + 2\sum_{i=1}^{2n-2} g(J\phi E_i, E_i) + 2\alpha(X)g(N, N) + 2g(J\phi N, N)
\]

\[
= 2\text{Ricci}(Z, X) + 2\sum_{i=1}^{2n-2} g(J\phi E_i, E_i) + 2\alpha(X)g(N, N) + 2\alpha(X)g(JN, JN)
\]

\[
= (2(2n) + 4)g(X, Z) + 2\sum_{i=1}^{2n-2} g(J\phi E_i, E_i)
\]

\[
= (4n + 4)g(X, Z) + 2\sum_{i=1}^{2n-2} g(J\phi E_i, E_i)
\]

\[
\Delta f = (4n + 4)g(X, Z) + 2\sum_{i=1}^{2n-2} g(J\phi E_i, E_i). \quad (9)
\]

\[
\square
\]

4 Double K-contact structures in dimensions 3 and 5

A transnormal function doesn’t have to be isoparametric except in some particular cases. One of these cases is the angle function of double K-contact structures in lower dimensions.
Theorem 1 Let \((M, \alpha, Z, \beta, X, g)\) be a double K-contact structure on a closed 3-dimensional or 5-dimensional manifold \(M\). Then the transnormal angle function \(f = g(X, Z)\) is isoparametric.

Proof In dimension 3, Identity (9) reduces to

\[
\Delta f = 8g(X, Z) = 8f.
\]

In dimension 5, Identity (9) reduces to

\[
\Delta f = 12g(X, Z) + 2 \sum_{i=1}^{2} g(J\phi E_i, E_i) = 12f \pm 4
\]

since in this case one has \(J = \pm \phi\) on the orthogonal complement of \(\{Z, X, JX\}\).

5 Harmonic Unit vector fields in K-contact geometry

On any Riemannian manifold \((M, g)\), with Ricci tensor \(\rho\), one defines the Ricci endomorphism \(Q\) by

\[
\rho(A, B) = g(QA, B).
\]

If \((M, g, \alpha, Z, J)\) is a K-contact structure on \(M\), then one has

\[
QZ = 2nZ.
\] \hspace{1cm} (10)

If the K-contact structure is Sasakian one has also the following identity:

\[
QJ = JQ,
\] \hspace{1cm} (11)
that is, the Ricci endomorphism commutes with the transverse complex structure. (See [2] for these and more identities on K-contact structures.)

Lemma 3 On a double K-contact manifold \((M, \alpha, Z, \beta, X)\), suppose that one of the contact forms, say \(\alpha\), is Sasakian. Then one has \(\phi J = J\phi\) on the subbundle orthogonal to \(\{Z, X, JX = \phi Z\}\). Moreover, \(\phi J\) is symmetric and its only eigenvalues are \(\pm 1\).

Proof Let’s denote by \(\mathcal{H}\) the tangent sub-bundle orthogonal complement of \(\{Z, X, JX\}\). It is easily seen that \(\mathcal{H}\) is \(\phi\) and \(J\) invariant. The gradient \(\nabla f\) of \(f = g(X, Z)\) is given by \(\nabla f = 2JX\). The Hessian, \(\text{Hess}_f\) is given by

\[
\text{Hess}_f(A, B) = (\nabla df)(A, B) = g(\nabla_A \nabla f, B) = 2g(\nabla_A (JX), B).
\]

Ultimately, using Sasakian identities like \((\nabla_U J)V = g(U, V)Z - \alpha(V)U\), one obtains:

\[
\text{Hess}_f(A, B) = 2g(A, X)g(Z, B) - 2\alpha(X)g(A, B) - 2g(J\phi A, B).
\]

(12)

Since \(\text{Hess}_f(., .)\) is a symmetric bilinear form, one deduce from Identity (12) that for any two sections \(A\) and \(B\) of \(\mathcal{H}\),

\[
g(J\phi A, B) = g(J\phi B, A)
\]

that is \(J\phi\) is a symmetric endomorphism of \(\mathcal{H}\). Moreover,

\[
g(J\phi A, B) = g(J\phi B, A) = g(B, \phi JA),
\]

which means that \(\phi\) and \(J\) commute on \(\mathcal{H}\).
As a consequence,

$$ (\phi J)^2 = \phi J\phi J = \phi J^2 = Id $$

on \mathcal{H} and hence the only eigenvalues are ± 1.

\begin{proof}

Theorem 2 Let (M, α, Z, β, X) be a double K-contact structure on a $2n+1$ -
dimensional closed manifold M with one of the contact forms, say α, Sasakian.

Then the function $f = g(Z, X)$ is isoparametric and the vector field $N = \frac{\nabla f}{\|\nabla f\|}$
is a harmonic unit vector field.

Proof

Isoparametricity holds thanks to the fact that on the distribution orthogonal to $\{Z, X JX\}$, the endomorphisms J and ϕ commute by Lemma 3. Using

an orthonormal basis of eigenvectors of $J\phi$, Identity (9) reduces to

$$ \Delta f = (4n + 4)g(X, Z) + 2 \sum_{i=1}^{2n-2} g(\pm E_i, E_i) = (4n + 4)f + 2 \sum_{i=1}^{2n-2} (\pm 1). $$

Harmonicity follows from the critical point condition for a geodesic unit vector field with integrable orthogonal complement (see Identity (8)).

$$ E(h) = \rho(E, N) $$

for any $E \perp N$. From the isoparametric condition, h is a function of f, hence

$E(h) = 0$. But also, using identities (10) and (11),

$$ \rho(E, N) = \rho(E, \frac{JX}{\|JX\|}) = \frac{1}{\|JX\|} g(E, QJX) = \frac{1}{\|JX\|} g(E, JQX) $$

$$ = \frac{2n}{\|JX\|} g(E, JX) = 0. $$

\end{proof}
References

[1] Wang, Q.M., Isoparametric Functions on Riemannian Manifolds. I, Math. Ann. 277 (1987), 639-646.

[2] Blair, D., Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Mathematics 203, Birkhäuser, Boston. Basel. Berlin, 2002.

[3] Boeckx, E. and Vanhecke, L., Harmonic and minimal radial vector fields, Acta Math. Hung. 90 (2001), 317-331.

[4] Boeckx, E. and Vanhecke, L., Isoparametric functions and harmonic and minimal unit vector fields, Contemporary Mathematics 288 (2001), 20-31.

[5] Draghici, T. and Rukimbira, P., Sasakian metrics with an additional contact structure, Afr. Diaspora J. Math. 14 (2012), no.2, pp.118-133.

[6] Kashiwada, T., A note on a riemannian space with sasakian 3-structure, Natural Sci. Rep. Ochonomizu Univ., 22 (1975), 1-2.

[7] Rukimbira, P., Topology and closed characteristics of K-contact manifolds, Differential Geometry and its Applications, Proceedings of the 7th International Conference, Brno, August 10-14, 1998. Pages 399-412.

[8] Tachibana, S. and Yu, W. N., On a riemannian space admitting more than one Sasakian structure, Tôhoku Math. J. 22(1970), 536-540.

[9] Wiegmink, G., The total bending of vector fields on Riemannian manifolds, Math. Ann. 303(1995), 325-344.