Identification and Evaluation of the Antimicrobial Potential of Strains Derived from Traditional Fermented Dairy Products of Iran as A Biological Preservative Against Listeria monocytogenes, Staphylococcus aureus, Salmonella enterica and Escherichia coli

Ahmad Nasrollahzadeh, Morteza Khomeiri, Mandana Mahmoudi, Alireza Sadeghi, Maryam Ebrahimi

Department of Food Microbiology, Faculty of Food Sciences and Industries, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

ABSTRACT

Background: Today, despite improved food safety, nearly a quarter of the population is at risk for foodborne diseases. Therefore, the use of lactic acid bacteria and their metabolites due to their potential health benefits, safety and production of natural antimicrobial compounds is an appropriate solution to reduce microbial spoilage of food.

Materials & Methods: In this research, lactic isolates were identified by PCR method and Micro-dilution method was used to evaluate the antimicrobial activity of the Cell-Free spent Medium (CFSM).

Results: The sequencing of PCR products showed that the species identified were Lactobacillus and Enterococcus species. Evaluation of the antibacterial properties of the CFSM on the growth of Gram-positive bacteria showed that all isolates were able to prevent the growth of these pathogens, and their inhibitory percentages varied from 86.81 to 38.81 percent. The results of inhibitory effects of lactic isolates on the growth of two gram-negative bacteria of Escherichia coli and Salmonella enterica also showed that the inhibitory levels of the isolates were varied from 2.43 to 36.43 percent and 14.1 to 31.97 percent, respectively. A comparison of the inhibitory effect of lactic isolates on pathogenic bacteria showed that the inhibitory effect of all lactic isolates on gram-positive bacteria was significantly (P <0.05) more than their effect on gram-negative bacteria.

Conclusion: The results of this study showed that native dairy lactic acid isolates and their metabolites could be used as biological preservatives or in combination with synthetic preservatives in the food and drug industry.

Keywords: Antimicrobial, Lactic acid bacteria, Listeria monocytogenes, Staphylococcus aureus, Natural preservatives

Introduction

The term “foodborne diseases” is more commonly referred to as food poisoning, is used to describe the gastrointestinal side effects that occur following the consumption of certain foods or drinks. Foodborne illnesses affect 48 million people in the United States each year (1-3). There are more than 200 identified diseases that can be transmitted through food and by various factors such as bacteria, fungi, viruses, and parasites. According to food safety and health experts, millions of people around the world each year are affected by foodborne pathogens. While food supply and production in the United States is one of the safest in the world, the US Centers for Disease Control and Prevention estimate that foodborne illnesses cause 76 million...
illnesses, more than 300,000 per year hospitalization, and 5,000 deaths in the United States (4-6). This figure is also estimated to be 2366,000 in England and Wales, 21138 hospitalizations, 718 deaths (7). On the other hand, with the frequent spread of diseases caused by new pathogens, the use of antibiotics in livestock breeding and resistance gene transfer to human, and current concerns about bovine spongiform encephalitis are just a few examples of these risks (8).

Thus, despite extensive advances in health and food safety food borne pathogens still cause many poisoning and digestive problems for consumers. Listeria monocytogenes, Staphylococcus aureus, Salmonella enterica and Escherichia coli are food borne pathogens that cause problems for consumers for various reasons such as lack of hygiene before, during or after food production.

Over the past decade, there has been a growing interest in improving the quality and enhancement of food safety by replacing conventional conservation and maintenance systems with natural alternatives. Bio-preservatives are defined as “the use of microorganisms or their metabolites to prevent spoilage, enhance food safety and shelf life” (9,10). Lactic Acid Bacteria (LAB) are bio-preservatives that play a key role in the fermentation process (11). In addition, it has been shown that LAB have antimicrobial activity in fermented foods and therefore can be used as natural preservatives to inhibit the growth of food born pathogenic bacteria and fungi (12,13).

Lactic acid bacteria produce a variety of metabolites including organic acids, bacteriocins, hydrogen peroxide and low molecular weight metabolites such as diacetyl and reuterin with inhibitory effects on Gram-negative and Gram-positive producing food spoilage bacteria (such as Micrococcus, Pseudomonas, Moraxella, Acinetobacter, Shewanella) and as well as food poisoning bacteria (such as S. aureus, L. monocytogenes, Clostridium botulinum type E, Versinia enterococitica) (14). The mechanism of action of bacteriocins is to destabilize the cells and increase the permeability of the cytoplasmic membrane. Lactic bacteria produce a wide range of bacteriocins (nisin, pediocin, lactacin, divergine, diplacin, elastocosterone) that have a different antimicrobial spectrum but are more likely to be effective on Gram-positive pathogenic and food spoilage bacteria (15). In this study, we tried to evaluate the antimicrobial potential of a number of lactic acid bacteria isolated from traditional products against some food-borne pathogens.

Materials and Methods

Bacterial Strains

In this study, bacteria isolated from local yogurt and milk and camel dooq (yogurt drink) of Golestan province with codes M109, M8, Y92, Y91, 8C, Y102, M153, Y73, Y52, Y98, Y89 that were prepared from microbial collection in Department of Food Science and Technology of Gorgan University, were used. To investigate the antimicrobial properties of the pathogenic bacteria, L. monocytogenes (ATCC 19115, PTCC 1298), S. enterica (ATCC 14028, PTCC 1709), E. coli (ATCC 25922, PTCC 1399) and S. aureus (ATCC 25923, PTCC 1431) were used. All pathogenic bacteria were purchased from the Persian Type Culture Collection (PTCC), Tehran, Iran.

Activation of Isolates and Phenotypic Identification

For this purpose, the isolates were first cultured in MRS broth under anaerobic conditions at 37°C. Identification of the isolates in early stages was performed using phenotypic criteria such as colony shape and cell morphology, Gram staining and catalase activity. MRS agar and MRS broth and yeast extracts were prepared from Merck, Germany and Muller Hinton Agar (MHA) from Sigma, USA.

Molecular Identification of Isolates

The DNA extraction was carried out using a commercial DNA extraction kit (Takapouzist, South Korea). To identify molecularly LAB by PCR, Universal primers (1492R: 5’-GGTACCTGTACGACCT-3’ and 27F: 5’-AGAGTTTGATCCTGGCTCAG-3’) were used to amplify 16S rDNA variable regions. The length of the amplified DNA fragment was 1500 bp.

The PCR was performed in a volume of 30 µL with optimized amounts of 15 µL of Red 2X Master Mix (Macrogen, South Korea), 5.5 µL of each primer, 3 µL of DNA and 11 µL of water in a thermo cycler (Corbett research, CG1-96, Australia).

PCR products were sent to Macrogen Company in South Korea for sequencing. Sequences were compared with available sequences in the world gene bank (NCBI) using the Blast program. Isolates with the highest percentage of similarity of their sequences with the stored sequences in the gene bank were identified as the same species.

Evaluation of Antibacterial Activity of the Isolates

The micro-dilution method was used to evaluate the antimicrobial activity of the Cell Free Spent Medium (CFSM) of 24-hour culture of lactic isolates against pathogenic bacteria including L. monocytogenes, S. aureus, S. enterica and E. coli. At first, LAB were cultured in MRS broth under anaerobic conditions at 37°C. At the end of the logarithmic phase, CFSMs were centrifuged at 6,000 rpm for 10 min and then filtered with a 0.45 µm syringe filter and were used for antimicrobial testing. To determine the antimicrobial effect, 185 µL of CFSM of each lactic isolate along with 15 ìL of pathogenic bacteria (10^5 cfu/mL) were added into each well. After 24 h of incubation under aerobic conditions at 37°C, the samples were observed for growth inhibition.
absorbance were measured at 600 nm. The inhibitory percentage of lactic isolates was calculated as follows:

\[
1- \frac{\text{the growth in test well}}{\text{the growth in positive control well}} \times 100
\]

Statistical Analysis

The results of this study were analyzed by one-way ANOVA and LSD at the significant level of 0.05 in three replications using SPSS 19 (SPSS In., Chicago, IL, USA) and Microsoft Excel 2007 software was used to draw charts.

Results

Molecular Identification of Activated Isolates

To confirm DNA replication, the PCR products were loaded onto gel electrophoresis (Figure 1).

As shown in Figure 1, the PCR products of each of the 11 extracted DNA samples had a length of 1500 bp. After blasting the PCR product sequences with the data in the NCBI database, it was found that the isolates were *Lactobacillus acidophilus*, *Lactobacillus fermentum*, *Enterococcus faecium*, *Lactobacillus brevis* and *Lactobacillus rhamnosus* (Table 1). Based on the above results and the obvious differences between molecular and biochemical identification, it can be concluded that molecular identification of microbial strains using the 16S rDNA gene region is the most accurate method.

![Figure 1. Gel Electrophoresis of PCR products containing specific primer with 500 Bp target sequence on 1.5% gel agarose. 1: Marker, 2: Positive control (*Lactobacillus plantarum*), No. 12 to 22: activated samples from 1 to 11, respectively.](image)

No.	Isolate code	source	Molecular identification	Biochemical identification
1	Y92	Local yogurt	*Lactobacillus brevis*	*Lactobacillus* spp.
2	M153	Local milk	*Lactobacillus rhamnosus*	*Lactobacillus* spp.
3	C8	Camel dooq	*Enterococcus faecium*	*Pediococcus pentosaceus*
4	M109	Local milk	*Enterococcus faecium*	*Enterococcus* spp.
5	Y98	Local yogurt	*Lactobacillus acidophilus*	*Lactobacillus* spp.
6	Y52	Local yogurt	*Lactobacillus brevis*	*Lactobacillus* spp.
7	M8	Local milk	*Enterococcus faecium*	*Enterococcus* spp.
8	Y91	Local yogurt	*Lactobacillus reuteri*	*Lactobacillus* spp.
9	Y102	Local yogurt	*Lactobacillus rhamnosus*	*Lactobacillus* spp.
10	Y73	Local yogurt	*Enterococcus faecium*	*Enterococcus hirae*
11	Y89	Local yogurt	*Lactobacillus rhamnosus*	*Lactobacillus* spp.
Antibacterial Activity of the Isolates

Among the identified isolates, 11 isolates of different genera and species were selected and then their antimicrobial activity against pathogenic bacteria was investigated by micro-dilution method (Figures 2 to 5). The results of the evaluation of the inhibitory effects of the CFSM of lactic isolates on the growth of *L. monocytogenes* (Figure 2) showed that the percentage of inhibition of the CFSM of the lactic isolates varied from 29.96 to 30.99 percent. Among the isolates, *E. faecium* C8 isolated from camel dooq showed the highest inhibitory percentage (*P*<0.05). Also, no significant difference was observed in the inhibitory percentage among *L. rhamnosus* Y89, *E. faecium* M109 and *L. reuteri* Y91. Also, *L. brevis* Y92 had the lowest inhibitory percentage (*P*<0.05).

The results of the evaluation of the inhibitory effects of CFSM of lactic isolates on the growth of *S. aureus* are shown in Figure 3. As shown, *L. rhamnosus* Y89 and *E. faecium* M109 had the highest percentage of inhibition against *S. aureus*. Also, *E. faecium* Y73 had significantly the least inhibitory effect (*P*<0.05).

In another part of this study, the inhibitory effects of the CFSM of lactic isolates on the growth of two gram-negative bacteria including *E. coli* (Figure 4) and *S. enterica* were investigated (Figure 5). The results showed that the inhibitory rate of the isolates on the growth of *E. coli* and *S. enterica* varied from 2.42 to 36.93 percent and from 1.14 to 31.97 percent, respectively. Also, the highest inhibitory effect on *E. coli* belonged to *E. faecium* M109 isolated from milk and the lowest inhibitory rate belonged to *L. brevis* Y92 isolated from yogurt (*P*<0.05).

![Figure 2. Inhibitory effects of CFSM of lactic isolates on growth of *Listeria monocytogenes*.](image1)

* Similar letters in each column indicate no significant difference at 0.05 level.

![Figure 3. The inhibitory effects of the CFSM of lactic isolates on the growth of *Staphylococcus aureus*.](image2)

* Similar letters in each column indicate no significant difference at 0.05 level.

![Figure 4. The inhibitory effects of the CFSM of lactic isolates on the growth of *Escherichia coli*.](image3)

* Similar letters in each column indicate no significant difference at 0.05 level.

![Figure 5. The inhibitory effects of the CFSM of lactic isolates on the growth of *Salmonella enterica*.](image4)

* Similar letters in each column indicate no significant difference at 0.05 level.

* Y: Local yogurt; M: Local milk; C: Camel dooq
Table 2. Comparison of inhibitory effect of lactic isolates on pathogenic bacteria

No.	Isolate code	Listeria monocytogenes	Staphylococcus aureus	Escherichia coli	Salmonella enterica
1	Y92	0.92 ±30.29	0.17 ±28.12	0.15 ±2.44	0.64 ±1.4
2	M153	0.42 ±80.46	0.69 ±71.17	1.76 ±22.29	0.9 ±18.46
3	C8	0.85 ±86.14	0.43 ±59.11	0.53 ±19.96	0.74 ±20.93
4	M109	0.08 ±84.48	1.04 ±81.59	1.61 ±36.93	1.21 ±31.97
5	Y98	0.42 ±80.46	0.62 ±71.71	1.36 ±18.21	0.55 ±16.74
6	Y52	1.25 ±46.56	3.12 ±33.15	2.29 ±4.41	0.37 ±4.31
7	M8	0.5 ±83.06	1.48 ±77.67	0.95 ±29.08	1.32 ±30.34
8	Y91	0.17 ±84.4	1.3 ±68.14	1.4 ±11.44	0.52 ±13.67
9	Y102	0.67 ±80.87	0.26 ±59.98	0.67 ±2.5	0.68 ±3.78
10	Y73	0.59 ±85.49	0.13 ±21.38	0.88 ±25.43	0.83 ±13.95
11	Y89	0.67 ±84.9	0.17 ±84.71	2.07 ±4.63	0.46 ±5.65

Similar letters in each row indicate no significant difference at the 0.05 level.

Discussion

According to the results of this study, Lactobacillus and Enterococcus genera were isolated and identified as lactic isolates from traditional fermented dairy products. Other studies have also confirmed the presence of these genera in traditional and native dairy products. In this regard, research by Haghshenas et al. (2014) indicated that they were able to identify Enterococcus mundtii 50H, Enterococcus daurans 39C and Enterococcus faecalis 13C in traditional dairy products (18). Tulumoğlu et al. (2014) also identified 7 strains of Lactobacillus fermentum in a study of more than 100 isolates from Tulum cheese (19). Research by Leite et al. (2015) on the study of lactic acid bacteria from Brazilian kefir grains led to the identification of Leuconostoc mesenteroides, Lactococcus lactis, Lactobacillus paracasei isolate and Lactococcus lactis subsp. lactis (16). Thus, the Lactobacillus and Enterococcus genera are the most lactic acid bacteria isolated from traditional and native dairy products. The results of evaluation of the inhibitory effect of lactic isolates on L. monocytogenes and Staphylococcus aureus showed that all isolates had good antibacterial activity against these two pathogens and the highest inhibition percentage was related to C8 isolate (isolated from camel dough) and Y89 (isolated from local yogurt), respectively. These results are consistent with the findings of Leite et al. (2015) who showed that the lactic isolates of Lactococcus lactis, Leuconostoc mesenteroides and Lactobacillus paracasei have inhibitory effect on L. monocytogenes, S. aureus, S. enterica and E. coli (16). The inhibitory properties of lactic isolates can be attributed to various antimicrobial metabolites such as lactic acid, acetic acid, hydrogen peroxide, carbon dioxide and bacteriocin (20, 21). Casaburi et al. (2016) also isolated Lactobacillus curvatus 54M16 from Campania’s traditional fermented sausage. It produced more than one bacteriocin, including saccharin X, T and P, and showed inhibitory effects on L. monocytogenes, Bacillus cereus, and Brochothrix thermosphacta (22). The results of the inhibitory effects of lactic isolates on the growth of E. coli and S. enterica also showed that all strains identified from traditional Iranian dairy products except a few strains were able to inhibit the growth of mentioned pathogenic bacteria and the highest inhibition percentage was related to M109 isolate (isolated from local yogurt). In addition, it was found that, among all the isolates, the highest inhibition percentage was related to C8 isolated from camel dough. Also, the cause of less resistance of Gram-positive bacteria than Gram-negative bacteria can be attributed to the impermeable wall and the complex and multilayer structure of these bacteria as well as the presence of an outer membrane. Sabir et al. (2010) also isolated L. acidophilus strain Z1L from kefir, which was able to significantly inhibit E. coli growth (23). Paris Silia et al. (2015) also evaluated the antimicrobial effect of different species of Lactobacillus genus from traditional Cucido Mexican cheese. Their results showed that the bacteriocin-like compounds produced by these bacteria exhibit significant antimicrobial activity against Listeria innocua, Staphylococcus aureus, Salmonella typhimurium, and Escherichia coli. Recently, numerous reports have been published on the antimicrobial activity of lactic acid isolates (24-26). For example, Angmo et al. (2016) isolated and identified Lactobacillus plantarum K172784 from Ladakh and Assohoun et al. (2016) isolated and identified Lactobacillus fermentum from Doklu that both isolates were able to produce antimicrobial compounds including bacteriocins (24, 25).

Bacteriocins inhibit cell wall synthesis by binding to lipid II, leading to cell death by removing lipid II from the membrane structure and pore formation. They also inhibit DNA replication by blocking the activity of DNA gyrase enzyme, destroying DNA by nuclease.

Year 13, Issue 5 (November & December 2019) Iranian Journal of Medical Microbiology
activity, and blocking protein synthesis by disrupting ribosomal activity (27). According to the results of Schillinger et al. (2005), L. acidophilus had significant accumulation potential against pathogenic bacteria due to its high level of hydrophobicity on the cell surface. There is a direct relationship between the rate of cell wall hydrophobicity and the ability of lactic acid bacteria to accumulate against pathogenic bacteria (28). L. acidophilus and Lactobacillus gasseri isolated by Fernandez et al. (2003) were also able to prevent the growth of Salmonella, Listeria and Campylobacter bacteria without interfering with the microbial flora of the gastrointestinal tract (29). Lactic acid bacteria also have the ability to decrease cholesterol levels, immune system immunization and anti-tumor activity (30).

Due to the importance of specific properties of lactic isolates from traditional and indigenous dairy products, identifying and evaluating the potential properties of these isolates is of great importance.

According to the results of this study, lactic strains isolated from traditional dairy products can be used separately or in combination with other preservatives to reduce the consumption of synthetic preservatives or as starter culture in the food industry.

Conclusion

The sequencing results of PCR products led to the identification of Lactobacillus and Enterococcus genera from traditional fermented dairy products. Also the results of evaluation of the inhibitory effect of Lactic isolates on the growth of L. monocytogenes and S. aureus showed that all isolates were able to prevent the growth of these two pathogens and their inhibitory percentages varied from 86.14 to 14.14 percent. L. rhamnosus Y89 isolated from yogurt and E. faecium isolated from camel dough showed the highest inhibition percentage on L. monocytogenes and S. aureus, respectively.

Comparison of the inhibitory effect of lactic isolates on pathogenic bacteria showed that the inhibitory effect of all tested lactic isolates on Gram-positive bacteria was significantly (P<0.05) more than their effect on Gram negative bacteria. According to the results of this study, all strains isolated and identified from these dairy products are able to prevent the growth of Gram-positive pathogenic L. monocytogenes and S. aureus and except for some strains, all lactic isolates have the ability to inhibit the growth of Gram-negative bacteria E. coli and S. enterica. Therefore, it is suggested that the lactic isolates obtained from yogurt, milk and camel dough be used as bio-preservatives in the food and drug industry.

Acknowledgment

......

Conflict of Interest

Authors declared no conflict of interests.
نتایج حاصل از ارزیابی خصوصیت ضد باکتریایی محیط مایع مصرف شده بدون سلول کشت بر یک راه حل مناسب برای کاهش فساد میکروبی بالقوه لاکتیک بر روی باکتری گرم منفی که از ماست، شیر محلی و دوغ شتر گلستان جداسازی شده‌اند، همچنین در ناشی از مواد غذایی در جهان است. مرکز کنترل و پیشگیری از مواد غذایی، دانشکده بهداشت و ایمنی مواد غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، ایران.

چکیده

شناخته شده‌اند که بیماری‌های غذایی ناشی از مواد غذایی محسوب می‌شوند. این بیماری‌ها می‌توانند تا یک چهارم جمعیت ناشی از هر سال میلیون نفر در جهان باشند. در این مقاله به خصوصیت ضد باکتریایی محیط مایع مصرف شده بدون سلول کشت در جریان کشت باکتری‌های گرم منفی مورد بررسی قرار گرفته‌اند.

مقدمه

نتیجه‌گیری: در مقایسه با باکتری‌های اسید لاکتیک، لیستریا مونوسیتوژنز، استافیلوکوکوس اورئوس، نگهدارنده اشریشیا کلاین، همه جدایه‌های گرم منفی بیشتر تحت تأثیر CFSM 0.05 آمده‌اند. به گونه‌ای که با استفاده از روش واکنش زنجیره پلیمراز، نشان داد که گونه‌های بیماری آماده‌بود. نتایج اثرات بازدارندگی جدایه‌های میکروبی طبیعی گروه میکروبیولوژی مواد غذایی، دانشکده علوم و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، ایران در مورد سلامت بهداشت و ایمنی مواد غذایی، ابراهیم سالمونلا انتریکا زا نشان داد که میزان

کیفیت © مجله میکروب‌شناسی پزشکی ایران

کپیرایت: مجله میکروب‌شناسی پزشکی ایران Majallah-i mikrob/shināsī-i pizishkī-i Irān.
میزان انگلستان و ولز به سه‌رتبه ۳۳۸۰۰۰ بیماری در ۲۱۷۸ مهر و مرگ به‌ندرست زده شده است (۲) از طرفی با شیوع مکر بیماری‌های ناشی از پاتوژن‌های جدید، استفاده از آنتی‌به‌پاتوژن‌ها در پرورش دام و انتقال زن مقاومت به انسان و تغذیه‌های جدایی در مورد آنتی‌بیوتیک‌ها اسکچ کیا، تنها چند نمونه از این خطرات است (۸).

نباید این بر ریز پیشرفت‌های گسترشده‌ای که در زمینه بهداشت و ایمنی مواد غذایی صورت گرفته است، هنوز هم پاتوژن‌های شاخص باعث مشکلات ایجاد سامومی و مشکلات گوارشی متعددی برای مصرف کننده‌ها است. ابستراویتی، استفاده از اوریکس، سالومیتالا انتاکرا و اشمیدیا کلاسی از جمله این پاتوژن‌های شاخص هستند که با دلایل مختلف نظر عده‌ها به‌داشت قلب حیاتی و باعث ایجاد مقدار غنی با ایجاد مشکل برای مصرف کننده‌ها می‌شوند.

در طول دهه گذشته، علائم زیادی به بهبود کیفیت و افزایش ایمنی مواد غذایی از طریق چاپگری درستی، تبدیل به صورت ریزه‌پوشانی مرور با جایگزینی طبیعی توانسته شده است. تغییر‌های جدیدی این صنعت احیا و نگهداری باکتری‌های ناشی از پاتوژن‌ها در پرورش دام و انتقال زن مقاومت به انسان و تغذیه‌های جدایی در مورد آنتی‌بیوتیک‌ها اسکچ کیا، تنها چند نمونه از این خطرات است (۸).

مجله میکروبیشناسی پژوهشی ایران
سال ۱۳۹۸ شماره ۵ آذر و دی
یک بررسی به‌منظور ارزیابی خاصیت ضد میکروبی مفید، مایع مصرف شده بدون سلول (Cell Free spent Medium) (CFU) تعیین گردید.

به‌منظور ارزیابی خاصیت ضد میکروبی فعالیت را در دمای 37 درجه سانتی‌گراد در شرایط نور و دمای 50 درجه سانتی‌گراد در شرایط تاریک بررسی کرد.

لیست‌های مایع مصرف شده بدون سلول (CFU) شامل سلول واکنش محصولات واکنشی که در این مقاله ارائه شده است، شامل سلول واکنشی که در این مقاله ارائه شده است، شامل سلول واکنشی که در این مقاله ارائه شده است، شامل سلول واکنشی که در این مقاله ارائه شده است، شامل سلول واکنشی که در این مقاله ارائه شده است، شامل سلول واکنشی که در این مقاله ارائه شده است، شامل سلول واکنشی که در این مقاله ارائه شده است.
همچنین بین درصد بی‌بازدارندگی لکتوپاسیلوس رامنوسوس Y89 انترکوکوس فاسیوم M109 و لکتوپاسیلوس برپوس Y92 تفاوت معنی‌داری مشاهده نشد. همچنین لکتوپاسیلوس برپوس Y92 به شکل معنی‌داری (P < 0.05) کمترین درصد بی‌بازدارندگی را به خود اختصاص داد.

در بخش دیگری از این پژوهش، اثرات بی‌بازدارندگی محیط مایع مصرف شده بدون سلول کشت جدایی‌های لکتوپاسیلوس بر شکل دو باکتری گرم منفی شامل اشریشیا کلای (شکل 4) و سالمونلا انتریکا (شکل 5) بررسی شد. نتایج به دست آمده نشان داد که میزان بی‌بازدارندگی جدایی‌های مورسی بر اساس اپاسیلوس کلای و سالمونلا انتریکا به ترتیب از ی/36/14-1/43 درصد و ی/71 درصد متفاوت بود. همچنین بیشترین مقدار بی‌بازدارندگی بر روی رشد اشیریا کلای متعلق به انترکوکوس فاسیوم M109 جدایی شده از شیر و کمترین مقدار بی‌بازدارندگی متعلق به لکتوپاسیلوس برپوس Y92 جدایی شده از ماست بود (P < 0.05).

شکل 1. ژل الکتروفورز محصولات واکنش زنجیره‌ای پلیمراز دارای پرایمر اختصاصی با توالی هدف 500 جفت بازی روی ژل آگارز 5/1%. چاهک 1: مارکر، چاهک 2: کنترل مثبت Lactobacillus plantarum. چاهک‌های 3 تا 11 نمونه‌های فعال شده به ترتیب از شماره‌های 1 تا 11.

شکل 2. اثرات بی‌بازدارندگی محیط مایع مصرف شده بدون سلول کشت جدایی‌های لکتوپاسیلوس بر شکل دو باکتری لیستریا مونوسیتوژنز

* حروف مشابه در هر ستون، نشانگر عدم تفاوت معنی‌دار در سطح 0/05 است.
* حروف مشابه در هر ستون، نشانگر عدم تفاوت معنی‌دار در سطح Y است.
* ماست محلی M شیر محیط C دوای شرایط Y است.
در بین همه جدایه‌های میزان بازدارنده گاز های لاکتیکی بر روی باکتری
باکتری‌های بیماری‌زا نشان داد که میزان بازدارنگی تمام
جدایه‌های لاکتیکی مورد بررسی بر روی باکتری‌های گرم منبب
به شکل معنی‌داری (P<0.05) بیشتر از تأثیر آنها بر روی
باکتری‌های گرم منفی بود. همچنین، بین همه جدایی‌ها، بیش جدایی
Y92 و Y89 میزان بازدارنگی بر روی استافیلوکوک‌های مونوکوتوژن‌ها با میزان
باکتری‌های لاکتیکی مورد بررسی بر روی استافیلوکوک‌های مونوکوتوژن‌ها و
بجز باکتری‌های لاکتیکی بر روی استافیلوکوک‌های مونوکوتوژن‌ها.

جدول 2: مقایسه میزان بازدارنگی جدایه‌های لاکتیکی بر روی باکتری‌های بیماری‌زا

Salmonella enterica	Escherichia coli	Staphylococcus aureus	Listeria monocytogenes	کد جدایه	شماره
Y92	1				
M153	2				
Y98	5				
Y52	6				
M8	7				
Y91	8				
Y102	9				
Y73	10				
Y89	11				

1 حروف مشابه در هر رنگ، نشانگر عدم تفاوت معنی‌دار در سطح 0/05 است.
نتایج از پژوهش‌های لاتکتوسایسوس و انترکوکوس به عنوان چند منبع از این گروه با توجه به شاخص‌های مانند تحریک‌های جداسازی و اکتیویتاسیون سنگین نشان داده شده‌اند که موجب تغییراتی در فصل‌های سلولی نیست. این تغییرات به شکلی اثر می‌گذارند که موجب تغییراتی در فصل‌های سلولی نیست. این تغییرات به شکلی اثر می‌گذارند که موجب تغییراتی در فصل‌های سلولی نیست. این تغییرات به شکلی اثر می‌گذارند که موجب تغییراتی در فصل‌های سلولی نیست. این تغییرات به شکلی اثر می‌گذارند که موجب تغییراتی در فصل‌های سلولی نیست. این تغییرات به شکلی اثر می‌گذارند که موجب تغییراتی در فصل‌های سلولی نیست. این تغییرات به شکلی اثر می‌گذارند که موجب تغییراتی در فصل‌های سلولی نیست. این تغییرات به شکلی اثر می‌گذارند که موجب تغییراتی در فصل‌های سلولی نیست. این تغییرات به شکلی اثر می‌گذارند که موجب تغییراتی در فصل‌های سلولی نیست. این تغییرات به شکلی اثر می‌گذارند که موجب تغییراتی در فصل‌های سلولی نیست. این تغییرات به شکلی اثر می‌گذارند که موجب تغییراتی در فصل‌های سلولی نیست. این تغییرات به شکلی اثر می‌گذارند که موجب تغییراتی در فصل‌های سلولی نیست. این تغییرات به شکلی اثر می‌گذارند که موجب تغییراتی در فصل‌های سلولی نیست. این تغییرات به شکلی اثر می‌گذارند که موجب تغییراتی در فصل‌های سلولی نیست. این تغییرات به شکلی اثر می‌گذارند که موجب تغییراتی در فصل‌های سلولی نیست. این تغییرات به شکلی اثر می‌گذارند که موجب تغییراتی در فصل‌های سلولی نیست. این تغییرات به شکلی اثر می‌گذارند که موجب تغییراتی در فصل‌های سلولی نیست. این تغییرات به شکلی اثر می‌گذارند که موجب تغییراتی در فصل‌های سلولی نیست. این تغییرات به شکلی اثر می‌گذارند که موجب تغییراتی در فصل‌های سلولی نیست. این تغییرات به شکلی اثر می‌گذارند که موجب تغییراتی در فصل‌های سلولی نیست. این تغییرات به شکلی اثر می‌گذارند که موجب تغییراتی در فصل‌های سلولی نیست. این تغییرات به شکلی اثر می‌گذارند که موجب تغییراتی در فصل‌های سلولی نیست. این تغییرات به شکلی اثر می‌گذارند که موجب تغییراتی در فصل‌های سلولی نیست. این تغییرات به شکلی اثر می‌گذارند که موجب تغییراتی در فصل‌های سلولی نیست. این تغییرات به شکلی اثر می‌گذارند که موجب تغییراتی در فصل‌های سلولی نیست. این تغییرات به شکلی اثر می‌گذارند که موجب تغییراتی در فصل‌های سلولی نیست. این تغییرات به شکلی اثر می‌گذارند که موجب تغییراتی در فصل‌های سلولی نیست. این تغییرات به شکلی اثر می‌گذارند که موجب تغییراتی در فصل‌های سلولی نیست. این تغییرات به شکلی اثر می‌گذارند که موجب تغییراتی در فصل‌های سلولی نیست. این تغییرات به شکلی اثر می‌گذارند که موجب تغییراتی در فصل‌های سلولی نیست. این تغییرات به شکلی اثر می‌گذارند که موجب تغییراتی در فصل‌های سلولی نیست. این تغییرات به شکلی اثر می‌گذارند که موجب تغییراتی در فصل‌های سلولی نیست. این تغییرات به شکلی اثر می‌گذارند که موجب تغییراتی در فصل‌های سلولی نیست. این تغییرات به شکلی اثر می‌گذارند که موجب تغییراتی در فصل‌های سلولی نیست. این تغییرات به شکلی اثر می‌گذارند که موجب تغییراتی در فصل‌های سلولی نیست. این تغییرات به شکلی اثر می‌گذارند که موجب تغییراتی در فصل‌های سلولی نیست. این تغییرات به شکلی اثر می‌گذارند که موجب تغییراتی در فصل‌های سلولی نیست. این تغییرات به شکلی اثر می‌گذارند که موجب تغییراتی در فصل‌های سلولی نیست. این تغییرات به شکلی اثر می‌گذارند که موجب تغییراتی در فصل‌های سلولی نیست. این تغییرات به شکلی اثر می‌گذارند که موجب تغییراتی در فصل‌های سلولی نیست. این تغییرات به شکلی اثر می‌گذارند که موجب تغییراتی در فصل‌های سلولی نیست. این تغییرات به شکلی اثر می‌گذارند که موجب تغییراتی در فصل‌های سلولی نیست. این تغییرات به شکلی اثر می‌گذارند که موجب تغییراتی در فصل‌های سلولی نیست. این تغییرات به شکلی اثر می‌گذارند که موجب تغییراتی در فصل‌های سلولی نیست. این تغییرات به شکلی اثر می‌گذارند که موجب تغییراتی در فصل‌های سلولی نیست. این تغییرات به شکلی اثر می‌گذا
عنوان نگهدارنده زیستی در صنعت غذا و دارو آمده از ماست، های گرم قابلیت (بیشتر از تأثیر آنها بر روی های گرم مثبت) نشان داد که میزان بازدارندگی تمام های لاکتیکی بر روی در این مطالعه با ما همکاری نمود کمال از معاون پژوهشی مرکز تحقیقات کشاورزی خوزستان و نیز مدیریت بدین وسیله نویسندگان این مقاله بر خود لازم می دانند که بنابراین و به جز چند سویه، همه لیستریا جدا شده از این محصولات لبنی، قابلیت جلوگیری از رشد باکتری های بیماری زای گرم منفی را نیز دارند. همچنین در این تحقیق نیز نشان داد، همه لیستریا جدا شده از محصولات لبنی سنتی و بومی، منجر به کاهش مصرف نگهدارنده اسید لاکتیکی جدا شده از محصولات این نگهدارنده را کاهش خاصیت ضد توموری است. با توجه به نتایج حاصل از این تحقیق نیز نیز نشان داد، همه لیستریا جدا شده از محصولات لبنی سنتی و بومی، منجر به کاهش مصرف نگهدارنده اسید لاکتیکی جدا شده از محصولات در صنعت غذا و دارو است. استفاده شود.

تشکر و قدردانی

دهن و سیله نوبستد گان این مقاله بر خود لازم می داند که از معنوی پژوهشی مرکز تحقیقات کشاورزی خوزستان و نیز مدیریت شرکت پرهم جنوب که در این مطالعه با ما همکاری نمودند کمال تشکر و قدردانی را به عمل اورد.

تمارض منافع

بین نوبستدگان تعارض منافع گزارش نشده است.

Reference

1. Scallan E, Griffin PM, Angulo FJ, Tauxe RV, Hoekstra RM. Foodborne illness acquired in the United States: unspecifed agents. Emerging Infect. Dis. 2011; 17:16. [DOI:10.3201/eid1701.P21101] [PMID] [PMCID]

2. Dewey-Mattia D, Manikonda K, Hall AJ, Wise ME, Crowe SJ. Surveillance for foodborne disease outbreaks—United States, 2009–2015. MMWR Surveillance Summaries. 2018 Jul 27;67(10):1.. [DOI:10.15585/mmwr.ss6710a1] [PMID] [PMCID]

3. Upadhyay UPPDD, Evum PCVVV. Food-home Pathogens of Animal Origin- Diagnosis, Prevention, Control and Their Zoonotic Significance: A Review. Pak J Biol Sci. 2013; 16: 1076-85. [DOI:10.3923/pjbs.2013.1076.1085] [PMID]

4. Control CID, Prevention. Multistate outbreak of Salmonella serotype typhimurium infections associated with drinking unpasteurized milk—Illinois, Indiana, Ohio, and Tennesse, 2002-2003. MMWR Morbidity and mortality weekly report. 2003; 52: 613.

5. Control CID, Prevention. Preliminary FoodNet data on the incidence of infection with pathogens transmitted commonly through food—selected sites, United States, 2003. MMWR Morbidity and mortality weekly report. 2004; 53: 338.

6. Oliver SP, Jayarao BM, Almeida RA. Foodborne pathogens, mastitis, milk quality, and dairy food safety. InNMC Annual Meeting Proceedings 2005 (Vol. 1).

آب گیری دیواره سلولی و قابلیت تجمع باکتری‌های اسید لاکتیک بر ضد باکتری‌های بیماری‌زا ارتباط مستقیمی گزارش شده است (48). لاتکتوسیلوز اسمی فیلوس و لاتکتوسیلوز گازی جد شده توسط و همکاران (2002) مشاهده کردند که باکتری‌های سالمونا، لیستریا و کمپسوم باکتری‌های بدون ایجاد تداخل در فلور میکروبی، باکتری‌های گرم منفی بروز و در صورت حسی به خاصیت ضد توموری به شدت (42). توانایی تولید برازیلیا برخی از انیکوپیکس و ترکیبات زیست فعال خصوصاً باکتریوسنی تیست این باکتری‌ها هجه کنترل و درمان بیماری‌ها را نشان داد.
7. Rocourt J, Moy G, Vierk K, Schlundt J. The present state of foodborne disease in OECD countries. World Heath Organization: Geneva.

8. Medeiros LC, Hillers VN, Kendall PA, Mason A. Food safety education: what should we be teaching to consumers. J Nutr Educ. 2001; 33: 108-13. https://doi.org/10.1016/S1499-4046(06)60174-7 [DOI:10.1016/S1499-4046(06)60067-5]

9. Cortés-Zavaleta O, López-Malo A, Hernández-Mendoza A, García H. Antifungal activity of lactobacilli and its relationship with 3-phenyllactic acid production. Int J Food Microbiol. 2014; 173: 30-5. [DOI:10.1016/j.ijfoodmicro.2013.12.016] [PMID]

10. Muhaidlin BJ, Hassan Z. Screening of lactic acid bacteria for antifungal activity against Aspergillus oryzae. Am J Appl Sci. 2011; 8: 447. [DOI:10.3844/ajassp.2011.447.451]

11. Pawłowska AM, Zannini E, Coffey A, Arendt EK. 5” Green Preservatives”: Combating Fungi in the Food and Feed Industry by Applying Antifungal Lactic Acid Bacteria. Adv Food Nutr Res. 2012; 66: 217. [DOI:10.1016/B978-0-12-394597-6.00005-7] [PMID]

12. Li H, Zhang S, Lu J, Liu L, Uluko H, Pang X, et al. Antifungal activities and effect of Lactobacillus casei AST18 on the mycelia morphology and ultrastructure of Penicillium chrysogenum. Food Control. 2014; 43: 57-64. [DOI:10.1016/j.foodcont.2014.02.045]

13. Ahmadova A, Todorov SD, Hadji-Sfaxi I, Choiset Y, Rabesona H, Messaoudi S, et al. Antimicrobial and antifungal activities of Lactobacillus curvatus strain isolated from homemade Azerbaijani cheese. Anaerobe. 2013; 20: 42-9. [DOI:10.1016/j.anaerobe.2013.01.003] [PMID]

14. Lauzon, H.L. 2002. Development of biological control for Listeria spp., in the manufacture of cold-smoked fish. Project Report. Icelandic Fisheries Laboratories.

15. Naidu, S.A. 2000. Natural food antimicrobial system, (1st ed.) CRC press. Washington, USA . [DOI:10.1201/9781420039368] [PMICID]

16. Leite AMO, Miguel MAL, Peixoto RS, Ruas-Madiedo P, Paschoalin VMF, Mayo B, Delgado S. Probiotic potential of selected lactic acid bacteria strains isolated from Brazilian kefir grains. J Dairy Sci. 2015; 6: 3622-3632. [DOI:10.3168/jds.2014-9262] [PMID]

17. Méndez-Vilas A, editor. Microbial pathogens and strategies for combating them: science, technology and education. Formax Research Center; 2013.

18. Haghshenas B, Nami Y, Abdullah N, Radiah D, Rosli R, Yari Khosroushahi A. Anti-proliferative effects of Enterococcus strains isolated from fermented dairy products on different cancer cell lines. J Funct Foods. 2014; 11: 363-374. [DOI:10.1016/j.jff.2014.10.002]

19. Tulumoğlu S, Kaya HI, Simsek o. Probiotic characteristics of Lactobacillus fermentum strains isolated from tulum cheese. Anaerobe. 2014; 30: 120-125. [DOI:10.1016/j.anaerobe.2014.09.015] [PMID]

20. Patil MM, Pal A, Anand T, Ramana K.V. Isolation and characterization of Lactic acid bacteria from curd and cucumber. Indian J Biotechnol. 2010; 9, 166-172.

21. Leroy F, De Vuyst L. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci Tech. 2004; 15: 67-78. [DOI:10.1016/j.tifs.2003.09.004]

22. Casaburi A, Martino VD, Ferranti P, Picariello L, Villani F. Technological properties and bacteriocins production by Lactobacillus curvatus 54M16 and its use as starter culture for fermented sausage manufacture. Food Control. 2016; 59: 31-45. [DOI:10.1016/j.foodcont.2015.05.016]

23. Sabir F, Beyatli Y, Cunmhr C. Assessment of potential probiotic properties of lactobacillus spp., lactococcus spp., and pediococcus spp. strains isolated from kefir. J Food Sci. 2010; 759: 568-573. [DOI:10.1111/j.1750-3841.2010.01855.x] [PMID]

24. Angmo K, Kumar A, Savitri A, Bhalla TC. Probiotic characterization of lactic acid bacteria isolated from fermented foods and beverage of ladakh. Food Sci Tech. 2016; 66: 428-432. [DOI:10.1016/j.lwt.2015.10.057]

25. Assouhoun-Djeni, NMC, Djeni NT, Messaoudi S, Lhomme E, Koussoumon-Camara M, Ouassa T, et al. Biodiversity, dynamics and antimicrobial activity of lactic acid bacteria involved in the fermentation of maize flour for doklu production in Côte d’Ivoire. Food Control. 2016; 62: 397-404. [DOI:10.1016/j.foodcont.2015.09.037]

26. Caballero B, Finglas P, Tolnáf F. Encyclopedia of food and health. Academic Press; 2015 Aug 26.

27. Schaechter M. Encyclopedia of microbiology. 5th ed. Academic Press; 2011 Jan 14; 85-90.

28. Schillinger U, Guigas C, Holzapfel, WH. In vitro adherence and other properties of lactobacilli used in probiotic yoghurt-like products. Int Dairy J. 2005; 15: 1289-1297. [DOI:10.1016/j.idairyj.2004.12.008]

29. Fernandez M, Boris S, Barbes C. Probiotic properties of human lactobacilli strains to be used in the gastrointestinal tract. J Appl Microbiol. 2003; 94: 449-455. [DOI:10.1046/j.1365-2672.2003.01850.x] [PMID]

30. Poutanen K, Flander L, Katina K. Sourdough and cereal fermentation in a nutritional perspective. Food Microbiol. 2009; 26: 693-699. [DOI:10.1016/j.fm.2009.07.011] [PMID]