Status of MRST/MSTW PDF sets

R.S. Thorne, A.D. Martin, W.J. Stirling and G. Watt

1- Department of Physics and Astronomy, University College London, WC1E 6BT, UK
2- Institute for Particle Physics Phenomenology, University of Durham, DH1 3LE, UK
3- Cavendish Laboratory, University of Cambridge, CB3 0HE, UK

We outline the historical development of MRST/MSTW parton distribution functions (PDFs), and clarify how they should be regarded when compared to the most up-to-date 2008 MSTW sets, noting which sets are now obsolete and the reasons why.

1 Status of PDFs

Whenever a global fitting group produces a new set of PDFs it is always appropriate to consider how these compare to previous sets, and indeed, to ask what is now the status of those previous sets, which may have already been used in some ongoing piece of analysis. It is presumably always the case that the most recent set is the recommendation of the group, unless it corresponds to some atypical set provided for some specific purpose. It is rarely the case that the previous set should immediately become regarded as obsolete, although there are some exceptions, but it is certainly true that older sets become more and more out-of-date, and at some point this fact alone should limit their use. The question of which PDF sets are still valid was discussed at the DIS 2009 meeting and, for the case of MRST/MSTW, was addressed to some extent in [1]. Here we outline in more detail how the MRST/MSTW PDF sets have developed over the past decade, and give our views on the validity of each in the light of the most up-to-date MSTW2008 sets [2].

1.1 NLO PDF sets

The first MRST PDF set was published in [3]. This marked a transition from the previous MRS sets in a variety of ways. Not only was there an addition to the collaboration, but also the implementation of a general-mass variable flavour number scheme (GM-VFNS) (consistent with MS evolution), instead of the more common zero-mass variable flavour number scheme (ZM-VFNS), and the inclusion of a wide variety of new data sets. The HERA structure function data had reached the point of being truly constraining at small x, E866 data added much more information on the $\bar{u}-\bar{d}$ difference, Tevatron data were starting to be included in a significant manner and fixed-target structure function data were still improving. In this article [3] NLO alone was considered, and as this is still the most widely used, we will first consider the development of NLO sets.

In principle, the MRST98 PDFs are mainly well-defined. The comparison to the structure function data, by far the major constraint, is made using a perfectly consistent GM-VFNS [4]. However, it was soon discovered that the evolution code contained a bug in the NLO P_{gg} term (and a much less significant omission in the charm splitting functions), leading to mistakes of order 1% in the gluon evolution which subsequently feeds through into, at worst, a similar error in quarks. This is a shortcoming, though it should be borne in mind that the size of the error is no larger than the uncertainty quoted for the PDFs due to the accuracy of data even today. A more serious shortcoming, in practice, is the
fact that the data used have improved enormously since this time, and the PDFs have changed significantly to account for this. In particular, in MRST98, prompt photon data were used to constrain the high-x gluon, and the early Tevatron jet data were only compared to qualitatively. Moreover, HERA structure function data quickly improved.

In the MRST99 set the bug in the evolution code was corrected. However, the extraction of the central PDF sets was otherwise essentially unchanged. The uncertainty of the PDF sets was estimated very crudely by a variety of model variations in the fit. Both the central sets and the range of variations should now be considered to be out-of-date.

The MRST2001 set was a significant step forward. This included a fit to very much improved small-x, low-Q^2, data from HERA, indeed much the same as is still used. Furthermore, the final Tevatron Run I data on inclusive jet production were used, albeit via an indirect means of fitting, using pseudodata for the gluon with the correct χ^2 calculated a posteriori (using a K-factor for the NLO cross section). Prompt photon data were dropped. Data for $Q^2 \geq 2$ GeV2 were fitted, and the best fit required the addition of a negative $-A(1-x)^\eta x^{-\delta}$ contribution to the input parameterisation for the gluon. The MRST2001 PDFs are therefore fit to the majority of the data which provide the most important fundamental constraints for today’s sets. Moreover, they use a well-defined, though different, definition of a GM-VFNS. Hence, although they are certainly far from as up-to-date as those of the MSTW2008 set, it is rather strong to view them as obsolete. In general they are not too far from the MSTW central values. One major weakness is that the strange distribution is assumed to be a fixed fraction of the light sea rather than fit directly, and is a little high.

The MRST2002 set was the first to be generated with quantitative uncertainties. The central set was fit to similar data as MRST2001 and is almost identical. The uncertainties were generated using the Hessian method developed in, with uncertainties being calculated using 15 sets of orthogonal eigenvectors determined using a tolerance of an increase in global χ^2 of 50 for an estimated 90% confidence-level uncertainty. As with the central set there have been various changes in the meantime. The tolerance is now determined in a more sophisticated manner, but gives a rather similar result. There are more, and a better choice of, free parameters determining the eigenvectors (mainly for the strange and antistrange quarks, though there were some problems with the gluon and down valence distributions). Also, the uncertainty due to the data set normalisations was not considered. Overall, the uncertainty in the 2001 set was a little smaller than we would now obtain from fitting the same data, but by no more than a factor of two at the most, and usually rather less than this. Hence, as with the central 2001 set, we would suggest that the PDFs are qualitatively still acceptable, but one should be wary if requiring results with real precision.

The MRST2003 set was obtained by increasing the data cuts at small x, Q^2 and W^2 until the quality of the fit stopped improving. The PDFs were therefore not constrained by data below $x = 0.005$ and $Q^2 = 10$ GeV2, and represented an extreme example of the effect of small-x resummation and higher-twist corrections. It would be interesting to repeat this study, but as an extreme example the 2003 set still plays the same rôle it always has.

The MRST2004 analysis included a few new data sets, particularly some from HERA at moderate x and high Q^2. However, its main change compared to the 2001 analysis was in the parameterisation of the gluon distribution. In an attempt to obtain the best simultaneous fit to HERA structure function data and the Tevatron Run I jet data, or at least to help explain the large high-x gluon required, the gluon was parameterised in the normal manner in the DIS scheme. It then obtained a large contribution at high x from the quarks via the transformation to the $\overline{\text{MS}}$ scheme. This leads to a distinctly different

DIS 2009
shape of the high-\(x\) gluon compared to other MRST/MSTW sets. The Tevatron Run II jet data do not require such a large high-\(x\) gluon. Moreover, the use of fastnlo \[11\] (based on nlojet++ \[12, 13\]) and inclusion of hadronisation corrections mean that even a fit only with Run I jet data does not favour the special 2004 parameterisation. The MRST2004 sets are thus perhaps best viewed as a specialised modification of the 2002 set. No uncertainties were provided for the MRST 2004 PDFs, but it is assumed they would be very similar to the 2002 uncertainties. Some specialised sets, i.e. with QED corrections \[14\] and in fixed-flavour schemes \[15\], are based on MRST2004, so it should be remembered that the high-\(x\) gluon is rather large in these. Updates will be forthcoming.

The MRST2006 NLO PDF set was not publicly distributed, but complements the MRST2006 NNLO set \[16\] which is discussed below. The NLO set differed from MRST2004 only in the application of an updated version of the GM-VFNS heavy flavour treatment. Hence, the difference between the PDFs and those of the 2004 NLO set is a measure of theoretical uncertainty due to heavy flavour schemes \[17\], and can be a couple of percent.

1.2 NNLO PDF sets

The development of the NNLO PDF sets is more complicated than at NLO. The extent to which NNLO corrections have been calculated has increased significantly during the period over which the PDFs have been presented. Hence, there are more serious grounds for excluding some previous NNLO sets than is the case at NLO.

The first study of NNLO PDFs was performed in \[18\]. This used approximate NNLO splitting functions \[19, 20\] obtained from known small-\(x\) limits and fixed-moment calculations \[21\]. The study was distinctly approximate, with anticipated theoretical improvements and much improved HERA data imminent, so the PDFs were not made available. However, this was in fact the first study to include the second term in the gluon parameterisation, allowing it to go negative at very small \(x\), since, as confirmed in all later MRST/MSTW studies, there is more requirement for the gluon to do this at NNLO than at NLO.

The first MRST NNLO set to be distributed was MRST2001 \[22\]. The MRST2002 NNLO set \[7\] is very similar. This used improved approximations for NNLO splitting functions \[23\] made possible by the calculation of additional moments \[24\]. It was fitted to the same dataset as the MRST2001 NLO PDFs, and hence is acceptably complete. However, due to the approximate nature of the splitting functions the NNLO analysis in \[18\] and in \[22\] used a (fully explained) simplification of heavy flavour thresholds, which ignored discontinuities in both \(\alpha_S\) and PDFs. The latter, which awaited an updated definition of the GM-VFNS, turned out to be significant. The preliminary nature of this analysis was reflected in the fact that no error set was produced. These NNLO PDFs are now obsolete.

In the MRST2004 PDFs the full NNLO splitting functions \[23, 20\] were used for the first time. Hence, no approximation was applied in this respect. However, since MRST2004 was essentially a specific modification of MRST2002 concentrating on the high-\(x\) gluon and Tevatron jets, no other significant improvements were made at NNLO, particularly in the case of heavy flavour. Hence, these sets are also now obsolete.

For MRST2006 NNLO PDFs a full NNLO GM-VFNS was used for the first time using the scheme of \[27\], which combines elements of \[4\] and \[28\] and makes the explicit extension to NNLO. The NNLO Drell–Yan differential boson rapidity distributions also became available \[31, 32\]. This NNLO set is much more theoretically complete, and the production of uncertainty eigenvectors reflects this. The PDF grids were improved to deal with the PDF
discontinuities and the opportunity was taken to extend them. It is a perfectly valid, though slightly out-of-date set, with the major unusual element being the scheme-transformation-inspired enhancement of the high-\(x\) gluon which is the same as in the MRST2004 sets. This leads to a peculiar feature in the uncertainty of the high-\(x\) gluon (see Fig. 17(b) of [2]).

1.3 LO PDF sets

There have been fewer updates of LO sets, partially because of less demand for and interest in these, but also because some of the changes, e.g. the scheme transformation behind the MRST2004 sets, do not apply at LO. Moreover, the quality of the LO fit is not as good as it misses large higher-order corrections to both coefficient and splitting functions.

The first LO MRST set was MRST98 [23]. It used the same approach as the MRST98 NLO set, but did not have the bug which occurred at NLO, and was therefore not updated in 1999. It is significantly out of date due to the data used.

The LO fit was updated in [22], producing MRST2001. This is on a similar footing to the MRST2001 NLO sets, i.e. somewhat out of date, but with no very significant features which would lead one to dismiss the PDFs as obsolete. However, no uncertainties were made available. As in the most up-to-date sets, a \(K\)-factor is needed to fit Drell–Yan data effectively and the fitted \(\alpha_S\) values are very large at LO.

2 Conclusions

We would, of course, recommend the use of MSTW2008 (LO, NLO, NNLO) PDFs as default. These contain the most up-to-date data sets, the broadest parameterisations of input PDFs, the most sophisticated treatment of heavy flavours, a heavy flavour scheme which is applied at NNLO, the fullest theoretical treatment in comparing data with calculations, a definition of the coupling which is identical to many other sets (and for the first time completely consistent at NNLO), and many other (in practice) minor improvements, e.g. the tiny difference between quark and antiquark evolution at NNLO, leading to the perturbative generation of a \(q - \bar{q}\) asymmetry for all flavours, is applied for the first time. However, few of the improvements at this, or previous stages of development, are sufficiently dramatic to require older versions of PDFs to become obsolete. The most up-to-date data leads to significant changes, but all roughly in line with our previously quoted uncertainties. The most significant change in the 2008 PDFs from this source is to the high-\(x\) gluon, but in practice it is fairly similar to the high-\(x\) gluon in the 2001 set. The major improvement in HERA data and Tevatron jet data around 2000 renders the pre-2000
PDFs of all groups obsolete in our view. As seen in [30], the error from using the ZM-VFNS instead of a GM-VFNS can be large. Since MRST adopted a GM-VFNS from the outset, the changes at LO and NLO since then, from this source, are measures of theoretical uncertainty. At NNLO this aspect was treated correctly only from 2006 onwards, so MRST NNLO PDFs prior to this are obsolete. The change in the coupling constant definition is of order a percent or so. Our treatment of parameterisations and/or uncertainties has improved, but is qualitatively the same as in previous sets, except for the particular case of the strange distribution, so if sensitivity to this is important then MSTW2008 is essential. Our previous uncertainties are perhaps a little underestimated. A measure of the change in our PDFs is represented in Fig. 1, where one sees that the values of the W and Z cross sections at the LHC are quite stable, except for the outlying pre-2006 NNLO sets, though the ratio varies a little more, at least in part due to the change in the strange quark contribution.

References

[1] Slides: http://indico.cern.ch/contributionDisplay.py?contribId=87&sessionId=0&confId=53294

[2] A. D. Martin et al., Eur. Phys. J. C (to be published) [arXiv:0901.0002 [hep-ph]].

[3] A. D. Martin et al., Eur. Phys. J. C 4 (1998) 463 [arXiv:hep-ph/9803445].

[4] R. S. Thorne and R. G. Roberts, Phys. Rev. D 57 (1998) 6871 [arXiv:hep-ph/9709442].

[5] A. D. Martin et al., Eur. Phys. J. C 14 (2000) 133 [arXiv:hep-ph/9907231].

[6] A. D. Martin et al., Eur. Phys. J. C 23 (2002) 73 [arXiv:hep-ph/0110215].

[7] A. D. Martin et al., Eur. Phys. J. C 28 (2003) 455 [arXiv:hep-ph/0211080].

[8] J. Pumpkin et al., Phys. Rev. D 65 (2001) 014013 [arXiv:hep-ph/0101032].

[9] A. D. Martin et al., Eur. Phys. J. C 35 (2004) 325 [arXiv:hep-ph/0308087].

[10] A. D. Martin et al., Phys. Lett. B 604, 61 (2004) [arXiv:hep-ph/0410230].

[11] T. Kluge, K. Rabbertz and M. Wobisch, [arXiv:hep-ph/0609285].

[12] Z. Nagy, Phys. Rev. Lett. 88 (2002) 122003 [arXiv:hep-ph/0110315].

[13] Z. Nagy, Phys. Rev. D 68 (2003) 094002 [arXiv:hep-ph/0307268].

[14] A. D. Martin et al., Eur. Phys. J. C 39 (2005) 155 [arXiv:hep-ph/0411040].

[15] A. D. Martin, W. J. Stirling and R. S. Thorne, Phys. Lett. B 636 (2006) 259 [arXiv:hep-ph/0603143].

[16] A. D. Martin et al., Phys. Lett. B 652 (2007) 292 [arXiv:0706.0459 [hep-ph]].

[17] R. S. Thorne and W. K. Tung, [arXiv:0805.0714 [hep-ph]].

[18] A. D. Martin et al., Eur. Phys. J. C 18 (2000) 117 [arXiv:hep-ph/0007099].

[19] W. L. van Neerven and A. Vogt, Nucl. Phys. B 568 (2000) 263 [arXiv:hep-ph/9907472].

[20] W. L. van Neerven and A. Vogt, Nucl. Phys. B 588 (2000) 345 [arXiv:hep-ph/0006154].

[21] S. A. Larin et al., Nucl. Phys. B 492 (1997) 338 [arXiv:hep-ph/9605317].

[22] A. D. Martin et al., Phys. Lett. B 531 (2002) 216 [arXiv:hep-ph/0201217].

[23] W. L. van Neerven and A. Vogt, Phys. Lett. B 490 (2000) 111 [arXiv:hep-ph/0007362].

[24] A. Retey and J. A. M. Vermaseren, Nucl. Phys. B 604 (2001) 281 [arXiv:hep-ph/0007294].

[25] S. Moch, J. A. M. Vermaseren and A. Vogt, Nucl. Phys. B 688 (2004) 101 [arXiv:hep-ph/0403192].

[26] A. Vogt, S. Moch and J. A. M. Vermaseren, Nucl. Phys. B 691 (2004) 129 [arXiv:hep-ph/0404111].

[27] R. S. Thorne, Phys. Rev. D 73 (2006) 054019 [arXiv:hep-ph/0601243].

[28] W. K. Tung, S. Kretzer and C. Schmidt, J. Phys. G 28 (2002) 983 [arXiv:hep-ph/0110247].

[29] A. D. Martin et al., Phys. Lett. B 443 (1998) 301 [arXiv:hep-ph/9808371].

[30] W. K. Tung et al., JHEP 0702 (2007) 053 [arXiv:hep-ph/0611254].

[31] C. Anastasiou et al., Phys. Rev. Lett. 91 (2003) 182002 [arXiv:hep-ph/0306192].

[32] C. Anastasiou et al., Phys. Rev. D 69 (2004) 094008 [arXiv:hep-ph/0312266].

DIS 2009