Mitochondrial Mg2+ homeostasis decides cellular energy metabolism and vulnerability to stress

Ryu Yamanaka1, Sho Tabata2, Yutaka Shindo1, Kohji Hotta1, Koji Suzuki3, Tomoyoshi Soga2 & Kotaro Oka1

Cellular energy production processes are composed of many Mg2+ dependent enzymatic reactions. In fact, dysregulation of Mg2+ homeostasis is involved in various cellular malfunctions and diseases. Recently, mitochondria, energy-producing organelles, have been known as major intracellular Mg2+ stores. Several biological stimuli alter mitochondrial Mg2+ concentration by intracellular redistribution. However, in living cells, whether mitochondrial Mg2+ alteration affect cellular energy metabolism remains unclear. Mg2+ transporter of mitochondrial inner membrane MRS2 is an essential component of mitochondrial Mg2+ uptake system. Here, we comprehensively analyzed intracellular Mg2+ levels and energy metabolism in MRS2 knockdown (KD) cells using fluorescence imaging and metabolome analysis. Dysregulation of mitochondrial Mg2+ homeostasis disrupted ATP production via shift of mitochondrial energy metabolism and morphology. Moreover, MRS2 KD sensitized cellular tolerance against cellular stress. These results indicate regulation of mitochondrial Mg2+ via MRS2 critically decides cellular energy status and cell vulnerability via regulation of mitochondrial Mg2+ level in response to physiological stimuli.

Adenosine triphosphate (ATP) is the universal energy currency of cells. ATP binds to magnesium ion (Mg2+) to compose biologically functional form, and most of intracellular ATP and Mg2+ assumed to form Mg-ATP complexes. Because both ATP and Mg2+ are mutually and strongly buffered in cytosol, it had been believed that Mg2+ deeply contributes on energy metabolism. Actually, studies performed in vitro has revealed that the variety of enzymatic activities are dependent on [Mg2+]\textsubscript{cyt}, and some of the Mg2+-dependent enzymes are operated in mitochondria to sustain the cellular function and viability. Some of enzymatic activities of tricarboxylic acid cycle (TCA cycle)2,3 are regulated by [Mg2+]\textsubscript{mito}, and therefore, computer simulation by a realistic metabolic model of TCA cycle also showed mitochondrial Mg2+ level is most important regulating factor. Mg2+ homeostasis is crucial for maintenance of electron transport chain5. Moreover, the mitochondrial ATP-Mg/P\textsubscript{i} carrier exports mitochondrial ATP into cytosol6,7. Therefore, Mg2+ has been implicated as an important regulator of metabolic status in mitochondria8-10.

Mg2+ is an important cation for maintain cellular functions and, therefore, suggested the relation of Mg2+ to various diseases such as cancer, obesity, type 2 diabetes and neurological diseases11-14. Furthermore, intracellular Mg2+ plays roles as a second messenger in the immune system15-18, and it has been recognized as a multi-target metabolic regulator8,19. Therefore, regulation of intracellular Mg2+ is critical for maintenance of cellular functions and tissue integrity. To reveal the regulatory mechanism of intracellular Mg2+, we have developed Mg2+ sensitive fluorescence probes and imaging techniques20-24. These intracellular Mg2+ imaging works revealed Mg2+ mobilization in pathological and physiological conditions25-28, and mitochondria are intracellular Mg2+ stores29. Mitochondria redistribute cytosolic and mitochondrial Mg2+ sufficient to change the cytosolic Mg2+ concentration ([Mg2+]\textsubscript{cyt}) in response to several physiological stimuli25-28. Recent studies using novel Mg2+ fluorescent probe successfully visualized that mitochondrial Mg2+ concentration ([Mg2+]\textsubscript{mito}) dynamically changes29,30.

1Center for Biosciences and Informatics, School of Fundamental Science and Technology Graduate School of Science and Technology, Keio University, Yokohama, 223-8522, Kanagawa, Japan. 2Institute for Advanced Biosciences, Keio University, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan. 3Center for Science and Technology for Designing Functions, School of Integrated Design Engineering, Graduate School of Science and Technology, Keio University, Yokohama, Kanagawa, 223-8522, Japan. Correspondence and requests for materials should be addressed to K.O. (email: oka@bio.keio.ac.jp)
However, it is not clear, in cells, how the changes of $[\text{Mg}^{2+}]_{\text{mito}}$ comprehensively affect the cellular energy metabolism in detail.

Although regulation of $[\text{Mg}^{2+}]_{\text{mito}}$ has not been elucidated in detail, mitochondrial Mg$^{2+}$ channel MRS2 is known to be a molecular machinery associated with Mg$^{2+}$ influx into mitochondria$^{13-34}$. The rats with functional inactivation of mutated MRS2 have major mitochondrial deficits with a reduction in ATP, and increased numbers of mitochondria in oligodendrocytes35. Mg$^{2+}$ uptake into mitochondria via MRS2 is essential for the maintenance of respiratory chain and cell viability5.

In this study, we investigate how dysregulation of mitochondrial Mg$^{2+}$ homeostasis affects cellular energy maintenance and viability using single-cell fluorescence imaging and metabolomics analysis in MRS2 knockout (KD) cells. MRS2 KD induces disruption of mitochondrial Mg$^{2+}$ homeostasis, which results in suppression of mitochondrial ATP production and increased cellular stress susceptibility. These findings suggest that mitochondrial Mg$^{2+}$ plays important roles to maintain energy supply in cells, and its dysregulation causes cellular malfunction and multiple diseases.

Results

RNAi-mediated MRS2 KD in HeLa cells. We investigated the importance of mitochondrial Mg$^{2+}$ homeostasis by an RNAi-mediated MRS2 KD in HeLa cells. The best miRNA to knockdown MRS2 expression was selected by comparing loss of MRS2 mRNA expression in HeLa cells with quantitative real time RT-PCR after 3 days of transfection of miR expression vector (Fig. S1). The miR expression vector #1 was optimal for MRS2 KD in HeLa cells, and it was used for MRS2 KD.

Effects of MRS2 KD on Intracellular Mg$^{2+}$ Homeostasis. MRS2 is primary Mg$^{2+}$ uptake machinery in mitochondria31,32,34. To assess the effects of MRS2 KD on $[\text{Mg}^{2+}]_{\text{mito}}$ homeostasis, $[\text{Mg}^{2+}]_{\text{mito}}$ was compared by using a ratiometric Mg$^{2+}$ indicator Mag-Fura-2. The cell membrane permeabilization protocol was used for the quantification of the $[\text{Mg}^{2+}]_{\text{mito}}$.36 Briefly, after loading Mag-Fura-2, cytosolic Mag-Fura-2 was washed out by cell membrane permeabilization with a detergent digitonin. While Mag-Fura-2 is normally used for the measurement of $[\text{Mg}^{2+}]_{\text{cyto}}$ (Fig. 1a–c), the co-localization of Mag-Fura-2 and a mitochondrial marker MitoFluor Red signals was observed after Mag-Fura-2 wash out from cytosol by digitonin treatment (Fig. 1d–f), indicating that this cell membrane permeabilization protocol by using Mag-Fura-2 enables mitochondrial Mg$^{2+}$ measurement. $[\text{Mg}^{2+}]_{\text{mito}}$ in MRS2 KD cells was lower than that in normal cells (Fig. 1g). MRS2 KD cells were identified by expression of emGFP also coded in miRNA expression vector. $[\text{Mg}^{2+}]_{\text{cyto}}$ was also estimated with Mag-Fura-2 in normal usage (Fig. 1h–j). The comparative analysis revealed the MRS2 KD induced an increase in $[\text{Mg}^{2+}]_{\text{cyto}}$ (Fig. 1k). These results indicate that MRS2 KD in HeLa cells induces a decrease in $[\text{Mg}^{2+}]_{\text{mito}}$ and an increase $[\text{Mg}^{2+}]_{\text{cyto}}$.

Effects of MRS2 KD on Mitochondrial Mg$^{2+}$ Regulatory Systems. The alternation in intracellular distribution of Mg$^{2+}$ level in MRS2 KD cells indicates that MRS2 maintain mitochondrial Mg$^{2+}$ concentration. To investigate the roles of MRS2 on stimulation-induced intracellular Mg$^{2+}$ redistribution, we visualized cytosolic and mitochondrial Mg$^{2+}$ dynamics during stimulation with a mitochondrial uncoupler, carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP; 5 μM) in HeLa cells loaded with highly sensitive cytosolic Mg$^{2+}$ indicator KMG-104 (Fig. 2b,c) or mitochondrial Mg$^{2+}$ indicator KMG-301 (Fig. 2e,f). To distinguish MRS2 KD cells from control cells, MRS2 miR expression vector coding tagBFP was used. As both control and tagBFP-labeled MRS2 KD cells existed in an observed area of single experiments, the traces of $[\text{Mg}^{2+}]_{\text{cyto}}$ and $[\text{Mg}^{2+}]_{\text{mito}}$ in both control and MRS2 KD cells for comparative analysis were simultaneously obtained in the same batch experiments (Fig. 2a–f). As shown in previous studies reporting FCCP-induced Mg$^{2+}$ release from mitochondria into the cytosol25,26,29, the application of FCCP induced $[\text{Mg}^{2+}]_{\text{cyto}}$ increase (Fig. 2g). Measurement of $[\text{Mg}^{2+}]_{\text{cyto}}$ dynamics using KMG-104 revealed that the averaged amplitude of FCCP-induced $[\text{Mg}^{2+}]_{\text{cyto}}$ increase in 2–4 min (initial phase of $[\text{Mg}^{2+}]_{\text{cyto}}$ increase) in MRS2 KD cells was smaller than that in control cells (Fig. 2i, left), supporting the idea that the amount of Mg$^{2+}$ stored in mitochondria before FCCP treatment is lower in MRS2 KD cells. The $[\text{Mg}^{2+}]_{\text{cyto}}$ increase was sustained at least for 8 min in MRS2 KD cells, whereas $[\text{Mg}^{2+}]_{\text{cyto}}$ in control cells returned back to the same level of $[\text{Mg}^{2+}]_{\text{cyto}}$ in MRS2 KD cells in 6–8 min (Fig. 2i, right). In $[\text{Mg}^{2+}]_{\text{mito}}$ imaging using KMG-301 (Fig. 2h), in 2–3 min (initial phase of $[\text{Mg}^{2+}]_{\text{mito}}$ decrease), the averaged amplitudes of FCCP-induced $[\text{Mg}^{2+}]_{\text{mito}}$ decrease in both cells were not different (Fig. 2j, left). During 6–7 min, the averaged amplitudes of FCCP-induced $[\text{Mg}^{2+}]_{\text{mito}}$ decrease in MRS2 KD cells was larger than that in control cells (Fig. 2j, right). These results also indicate that, after the initial phase of FCCP-induced mitochondrial Mg$^{2+}$ release, mitochondria reuptake the released cytosolic Mg$^{2+}$ through MRS2, and mitochondria in MRS2 KD cells failed it. Taken together, MRS2 plays a role as the mitochondrial Mg$^{2+}$ uptake systems in mammalian cells, and MRS2 KD causes the depletion of mitochondrial Mg$^{2+}$ uptake in both steady state and Mg$^{2+}$ mobilization.

Suppression of TCA Cycle Induced by Disruption of Mitochondrial Mg$^{2+}$ Homeostasis. To directly assess the effect of MRS2 KD-induced homeostatic malfunction of mitochondrial Mg$^{2+}$ on global metabolism and, in particular, mitochondrial energy generation, the metabolomics of MRS2 KD and control cells were investigated using capillary electrophoresis mass spectrometry (CE-MS) technique. CE-MS comprehensively quantify metabolites in biological samples37. We examined the differences in metabolite levels between control and MRS2 KD cells. We quantitatively identified a total of 133 metabolites (control and MRS2 KD samples, n = 6 respectively), and 24 metabolites were found to significantly differ between control and MRS2 KD samples, which are overviewed in Fig. 3a (pathway information was obtained by reference to KEGG [http://www.genome.jp/kegg/pathway.html] and a previous report16). Especially, most metabolites of TCA cycle such as malate, citrate, cis-aconitate and succinate, were reduced in MRS2 KD cells (Fig. 3b). These results suggest that dysregulation of mitochondrial Mg$^{2+}$ homeostasis causes suppression of TCA cycle turnover in mitochondria. Despite
suppression of TCA cycle activity, NADH/NAD\(^+\) was not affected in Mrs2KD cells (Fig. 3b). No effect on product of TCA cycle suggests that the direct impact of Mrs2KD is downstream of TCA cycle in mitochondrial energy production.

Mrs2KD Disrupt the Mitochondrial Membrane Potential. Using electron released from NADH and FADH\(_2\) produced in TCA cycle, proton gradient is generated across mitochondrial inner membrane via electron-transport chain, which result in generation of mitochondrial membrane potential (\(\Delta \Psi\)). To assess the \(\Delta \Psi\), we quantified the ratio (red to green) of average mitochondrial fluorescence intensity of 5, 5′, 6, 6′-terachloro-1, 1′, 3, 3′-tetrachloroethidium (JC-1) per cells (Fig. 4a). In Mrs2KD HeLa cells, the red-to-green ratio of JC-1 fluorescence, which indicates the mitochondrial inner membrane potential, was lower than control cells (Fig. 4b). This result suggests the mitochondrial Mg\(^{2+}\) uptake through MRS2 is crucial for maintaining the \(\Delta \Psi\).

Mrs2KD Disrupt the Energy Metabolism in Mitochondria. In mitochondria, ATP is made from ADP and phosphate by ATP synthase using an electrochemical gradient of protons across the mitochondrial inner membrane. Therefore, inside-negative \(\Delta \Psi\) across the mitochondrial inner membrane is crucial for maintaining the physiological function of the oxidative phosphorylation to generate ATP. To access the intracellular energy status, we performed live imaging of cells expressing ATeam, which is genetically-encoded fluorescent resonance energy transfer (FRET)-based ATP indicator. In cytosol and nucleus, the ATeam ratio, which indicates ATP level, were lower in Mrs2KD cells than that in control cells (Fig. 4c,e). In contrast to the decrease in extra-mitochondrial ATP levels, in Mrs2KD cells, ATP level increased in mitochondria (Fig. 4d) despite decrease.
of TCA cycle turnover (Fig. 3) and ΔΨm (Fig. 4a,b), suggesting that dysregulation of mitochondrial Mg2+ causes
the imbalances of ATP exports from mitochondria.

Dysregulation of Mitochondrial Mg2+ Affect the Mitochondrial Morphology. Mitochondria are highly dynamic organelle12,40,41, and their morphological changes regulate cellular metabolic processes and vice versa12. We assessed whether the malfunction of mitochondrial Mg2+ regulatory system affects mitochondrial morphology. To obtain the exact mitochondrial morphology, mitochondrion selective probe insensitive to ΔΨm, Mito Tracker Green FM, was loaded into both control and Mrs2 KD cells (Fig. 5b,c). To distinguish Mrs2 KD cells from control cells, Mrs2 miR expression vector coding tagBFP was used (Fig. 5a,c). Whereas the normal morphology of mitochondria in cells was tubular10 (Fig. 5d), the increased accumulation of rounding mitochondria was observed in Mrs2 KD cells (Fig. 5e). In stress condition, the abnormal accumulation of large swollen mitochondria is reported in previous studies42,43. To quantitatively analyze the morphological difference of mitochondria between in control and in Mrs2 KD cells, a morphological feature was evaluated by computer-assisted image processing. The acquired images (Fig. 5f) were processed to generate a mitochondria-specific binary image (Fig. 5g) allowing the quantification of mitochondrial shape (Fig. 5h) as previously described44. From quantitative morphological analysis of mitochondria, the aspect ratio (the ratio between the major and minor axes of the ellipse equivalent to the mitochondrial object) was calculated for each mitochondrion. The mitochondria in Mrs2 KD cells had lower aspect ratio than that in control cells (Fig. 5i), indicating that Mrs2 KD induced mitochondrial rounding.

Cell Vulnerability to Cellular Stress enhanced by Mitochondrial Mg2+ dysregulation. We revealed the dysregulation of mitochondrial Mg2+ results in the reduction of extra-mitochondrial ATP concentration. The negative effects of low ATP levels on cellular vulnerability are suggested45. To investigate the physiological

Figure 2. The effects of Mrs2 KD on mitochondrial Mg2+ regulatory system. (a–c) Representative fluorescence image of control and Mrs2 KD cells loaded with cytosolic Mg2+ indicator KMG-104. (a) Mrs2 KD cells labeled with tagBFP. (b) Control and Mrs2 KD cells stained with KMG-104. (c) The merged image of tagBFP and KMG-104 images. (d–f) Representative fluorescent image of control and Mrs2 KD cells loaded with mitochondrial Mg2+ indicator KMG-301. (d) Mrs2 KD cells labeled with tag BFP. (e) Control and Mrs2 KD cells stained with KMG-301. (f) The merged image of tagBFP and KMG-301 images. (g) Averaged time course of [Mg2+]cyto dynamics in control and Mrs2 KD cells measured with KMG-104. Treatment with mitochondrial uncoupler FCCP (5 μM) triggered the [Mg2+]cyto increase (means ± SEM; black line n = 43 for control cells; red line n = 46 for Mrs2 KD cells from 4 experiments). (h) Averaged time course of [Mg2+]mito dynamics in control and Mrs2 KD cells measured with KMG-301. Treatment with FCCP (5 μM) triggered the [Mg2+]mito decrease in mitochondria (means ± SEM; black line, n = 46 for control, red line for n = 43 Mrs2 KD cells from 4 experiments). (i) Comparison of averaged amplitudes of [Mg2+]cyto increase between control and Mrs2 KD cells at 2–4 min (initial [Mg2+]cyto increase, left) and 6–8 min (late phase, right). Data are represented as mean ± SEM (n = 46 for control and n = 43 Mrs2 KD cells from 4 experiments). (j) Comparison of averaged amplitudes of [Mg2+]mito decrease between control and Mrs2 KD cells at 2–3 min (initial [Mg2+]mito decrease) and 6–7 min (after mitochondrial re-uptake of Mg2+ released into cytosol). Data are represented as means ± SEM (n = 46 for control and n = 43 Mrs2 KD cells from 4 experiments).
effects of inaccessibility to Mg\(^{2+}\) induced energy imbalance on cellular vulnerability to stress, the viabilities were compared under cellular stress conditions between control and Mrs2 KD cells by MTT assay. In Mrs2 KD cells, cell viabilities were lower than in control cells in the condition of 20 ng/mL TNF-α and 1 μg/mL cycloheximide (CHX) (Fig. 6a) and also 1 mM H\(_2\)O\(_2\) conditions (Fig. 6b), respectively. These results indicate that dysregulation of mitochondrial Mg\(^{2+}\) homeostasis causes increased susceptibility under cellular stress conditions. Metabolome analysis revealed that, under H\(_2\)O\(_2\) condition, ATP level in Mrs2 KD samples was lower than that in control cells (Fig. 6c), suggesting Mrs2 KD-induced lower ATP level cause cellular vulnerability against oxidative stress. Next, to investigate the effects of mitochondrial Mg\(^{2+}\) dysregulation on cellular metabolome under stress condition, the overall impact of Mrs2 KD was compared using principal component analysis (PCA) for all detected 104 metabolites among 4 conditioned samples: control and Mrs2 KD cells with/without H\(_2\)O\(_2\). PCA revealed that the clusters of control and Mrs2 KD cells under H\(_2\)O\(_2\) condition were more separated than in normal condition, indicating that Mrs2 KD-induced defection of mitochondrial ATP synthesis had larger impacts under stress conditions (Fig. 6d).
Figure 4. Comparison of ΔΨ and intracellular ATP level between control and Mrs2 KD cells.
(a) Representative fluorescent image of control and Mrs2 KD cells stained with ΔΨ indicatorJC-1 (top right: green fluorescence; bottom left: red fluorescence; bottom right: merged image). Mrs2 KD cells were labeled with tagBFP (top left). (b) Comparative analysis of the green-to-red ratio of JC-1 signals (index of ΔΨ) revealed that Mrs2 KD decreases the ΔΨ (n = 955 and for control and n = 375 Mrs2 KD cells from 4 experiments). (c–e) Cytosolic (c), mitochondrial (d) and nucleic (e) ATP levels in control and Mrs2 KD cells were measured with genetically encoded ATP sensor ATeam. In Mrs2 KD cells, ATP level was decreased in cytosol (n = 1944 control cells from 8 experiments and n = 556 Mrs2 KD cells from 8 experiments) and nucleus (n = 621 control cells from 5 experiments and n = 119 Mrs2 KD cells from 5 experiments), and increased in mitochondrial (n = 388 control cells from 4 experiments and n = 126 Mrs2 KD cells from 4 experiments).

Figure 5. Morphological analysis of mitochondria in control and Mrs2 KD cells. (a) Mrs2 KD cells were labeled with tagBFP. (b) In control and Mrs2 KD cells, mitochondrial location and shape were visualized with MitoTracker Green FM. (c) The merged image was shown (green: mitochondria, red: Mrs2 KD cells). (d,e) The enlarged images of boxed area in panel b in control (d) and Mrs2 KD cells (e). (f) Representative image of mitochondria stained for digital image processing. (g) Binary image of mitochondria shown in panel (f). (h) Fluorescent image of mitochondria masked with mitochondrial binary image shown in panel g. (i) Comparison of aspect ratio (AR) of mitochondrial shape between in control and in Mrs2 KD cells. The AR of mitochondria in Mrs2 KD cells was smaller than that in control cells, suggesting the rounding of mitochondria (mean ± SEM; n = 20628 mitochondria in 109 cells for control and n = 20159 mitochondria in 84 cells from 8 experiments).
Discussion

We demonstrated that deficit of MRS2, which is a mitochondrial primary Mg$^{2+}$ regulatory system, causes disruption of mitochondrial energy metabolism and cellular sensitization against cellular stress. First, we confirmed that Mrs2 KD causes malfunction of mitochondrial Mg$^{2+}$ uptake (Fig. 2) and reduction of Mg$^{2+}$ stored in mitochondria (Fig. 1). Second, we revealed that Mrs2 KD induces decreases in substrates of TCA cycle (Fig. 3), ΔΨ and extra-mitochondrial ATP levels (Fig. 4) in contrast increased mitochondrial ATP level (Fig. 4). In addition, we observed that mitochondria in Mrs2 KD cells have abnormal morphology (Fig. 5). Lastly, we showed that the effect of Mrs2 KD was noticeable under stress conditions, which sensitized cells to cellular stress (Fig. 6). These results indicate that mitochondrial Mg$^{2+}$ regulate the cellular energy status, and it changes mitochondrial morphology and affects cell vulnerability against biological stress.

Physiological Significance of mitochondrial Mg$^{2+}$ homeostasis. Although partial information has been accumulated about Mg$^{2+}$-dependent regulation of energy metabolism, the comprehensive effects of mitochondrial Mg$^{2+}$ on metabolic status in living cells have not been elucidated. As far as we know, this is the first work to demonstrate a series of relationships between Mg$^{2+}$ regulatory system and cellular energy metabolism. In Mrs2 KD cells, in contrast to decreased substrates of TCA cycle (Fig. 3), collapse of ΔΨ and decreased

Figure 6. Mrs2 KD induced increased vulnerability to cellular stress. (a,b) Comparison of the cell viability under TNF-α/CHX- or H2O_2-induced stress between in control and in Mrs2 KD cells. In Mrs2 KD cells, cell damage (decrease rate in cell viability) in the presence of H2O_2 (a) or TNF-α/CHX (b) is more severe than that in control cells (n = 12 for the control and n = 12 for Mrs2 KD samples), indicating Mrs2 KD cells are more vulnerable to cellular stress. (c) Comparison of ATP level between control and Mrs2 KD cells under H2O_2 condition by metabolome analysis (n = 6 for each sample). (d) Plot of samples under 4 conditions projected onto the first two principal components (PC1 and PC2) identified PCA using all quantified 104 metabolites (n = 6 or 7 for each sample). Each circle indicates a single sample, while the larger ovals represent 95% confidence regions. Each color indicates 4 groups of conditions.
extra-mitochondrial ATP levels (Fig. 4), mitochondrial ATP level are increased (Fig. 4). These results indicate the mitochondrial dis-accessibility to Mg\(^{2+}\) suppress ATP efflux from mitochondria, which is possibly mediated by ATP-Mg\(^{2+}\)/Pi carrier\(^6\). Mitochondrial ATP accumulation inhibits many enzymatic processes in TCA cycle\(^4\) and electron transport chain activities\(^3\) in a negative feedback manner. Suppression of TCA cycle and electron transport chain activities would result in reduced ATP production in mitochondria. Consequently, mitochondrial Mg\(^{2+}\) regulates coupled reactions in mitochondrial energy metabolism, i.e. TCA cycle, electron transport chain and ADP/ATP translocation. In addition, morphological changes of mitochondria were also observed in Mrs2 KD cells (Fig. 5). Abnormal large and round mitochondria are also observed under pharmaceutically ATP synthesis-inhibited condition\(^4\). These are consistent with the idea that mitochondrial morphology is controlled by energy metabolism\(^4\). Abnormal mitochondrial morphology is associated with cancer\(^1\), obesity, type 2 diabetes\(^1\), and neurodegenerative disorders\(^12\)–\(^14\). It may be explained by the idea that metabolic impairment induces cellular vulnerability\(^45\). Actually, sensitization against cellular stress by mitochondrial Mg\(^{2+}\) dysregulation was observed in Mrs2 KD cells (Fig. 6). In contrast, in a cellular model experiments of Parkinson's disease, increase in [Mg\(^{2+}\)]\(_{cyto}\) which probably links to [Mg\(^{2+}\)]\(_{mito}\) increase, protects cells from neurodegeneration by maintaining cellular ATP concentration and suppressing ROS production\(^28\). In summary, mitochondrial Mg\(^{2+}\) regulates the cellular metabolic process via shift of mitochondrial energy metabolism, and it changes mitochondrial morphology and affects the cell viability through changing stress susceptibility.

In normal cells, mitochondrial Mg\(^{2+}\) would play a role as a regulator of metabolic state under physiological condition. A wide variety of hormonal regulations of intracellular Mg\(^{2+}\) homeostasis has been reported\(^39\). In human, circadian rhythm for the serum Mg\(^{2+}\) level with the peak around noon are reported\(^50\), which is corresponding to circadian Mg\(^{2+}\) excretory rhythm with the peak at night\(^51\). In facts, a recent study revealed circadian rhythms in the intracellular [Mg\(^{2+}\)] regulate cellular metabolism\(^32\). Because Mg\(^{2+}\) transport through MRS2 depends on extra-mitochondrial Mg\(^{2+}\) concentration\(^39\), mitochondrial Mg\(^{2+}\) homeostasis is also probably governed by circadian regulation. In addition, we recently demonstrated mitochondrial Mg\(^{2+}\) regulation mediated by second messenger pathways\(^26\). These studies support that cells dynamically regulate [Mg\(^{2+}\)]\(_{mito}\) in response to various signals and circadian rhythm under physiological condition. A respiration-dependent mitochondrial Mg\(^{2+}\) regulation\(^34\) is consistent with the coupling of [Mg\(^{2+}\)]\(_{mito}\) regulation with mitochondrial activities. Consequently, cells would modulate energy production and metabolic states via regulation of mitochondrial Mg\(^{2+}\) in response to environmental information.

Methods

HeLa cells culture. HeLa cells were seeded in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% heat-inactivated fetal bovine serum (FBS) and 50 U/mL penicillin and 50 mg/mL streptomycin (Life technologies, Carlsbad, CA, USA) and cultured at 37 °C in a humidified atmosphere containing 5% CO\(_2\). The cells were plated on glass-bottomed dishes (Iwaki, Tokyo, Japan), 100 mm cell culture dishes (Thermo Fisher Scientific, Waltham, MA, USA), or 48 well dishes (Thermo Fisher Scientific) for fluorescence imaging, metabolomics analysis or MTT assay, respectively. The medium was changed in every other day.

Knockdown of Mrs2 in HeLa cells. For knockdown of Mrs2, BLOCK-iTTM Pol II miR RNAi Expression Vector Kits (Life technologies) was used. BLOCK-iT RNAi Designer from Life Technologies was used to design four single-stranded DNA oligonucleotides encoding the target pre-miRNA. These vectors are specifically designed to allow expression of miRNA sequences and contain specific miR flanking sequences that allow proper processing of the miRNA. Sequences of pre-miRNA insert in miRNA vectors for knockdown were designed as follow:

%5′-GTAGCTACTGATTCCACAGAGATGTTTGGCCACTGACTGACTCTTTGATCAGTACGTA-3′ (Mrs2 KD #1),
%5′-GAATGCTAGCTACTGATTCCACAGAGATGTTTGGCCACTGACTGACTCTTTGATCAGTACGTA-3′ (Mrs2 KD #2),
%5′-GTTGAAGATGCCTACTGATTCCACAGAGATGTTTGGCCACTGACTGACTCTTTGATCAGTACGTA-3′ (Mrs2 KD #3), and
%5′-GTTTGAAGATGCCTACTGATTCCACAGAGATGTTTGGCCACTGACTGACTCTTTGATCAGTACGTA-3′ (Mrs2 KD #4), respectively.

To identify the cells transfected with microRNA expression vector for Mrs2 knockdown, the sequence coding EmGFP or tagBFP were incorporated into the vectors. The miR RNAi vectors were transfected into cells 3 days prior to the experiments using Lipofectamine LTX (Life technologies) in the experiments except preparation for metabolome analysis.

Real time RT-PCR. To determine Mrs2 mRNA levels in miR transfected cells, total RNA from HeLa cells were isolated and purified by using the RNAeasy mini kit (QIAGEN, Tokyo, Japan). Total RNA was reverse-transcribed using SuperScript VILO (Life technologies), and the generated cDNA was used as template for quantitative real time PCR amplification with SYBR GreenERTM (Life technologies). The Mrs2 mRNA levels were normalized to GAPDH signals as an internal standard. Quantitative real time PCR were performed using the following primers: Mrs2 forward 5′-CAGTGGCTGAGGAGTCAA-3′, Mrs2 reverse 5′-AAGGATCACTGGCTGAAAA-3′, GAPDH forward 5′-CAACCACCTCCTACACCTTG-3′ and GAPDH reverse 5′-CATGAGGTCACCAACCGTGT-3′.
Fluorescence imaging of the cytosolic or mitochondrial Mg\(^{2+}\) levels. For the quantification of cytosolic Mg\(^{2+}\) level in cells, HeLa cells were loaded with Mag-Fura-2-AM (Life technologies). For dye loading, HeLa cells were incubated in medium with 1 μM and 0.02% F-127 for 45 min at 37 °C in a humidified atmosphere containing 5% CO\(_2\). The cells were gently washed twice with 1.0 mL of Hanks’ balanced salt solution (HBSS) at pH 7.4 (adjusted with NaOH) that consisted of (in mM) 137 NaCl, 5.4 KCl, 1.3 CaCl\(_2\), 0.5 MgCl\(_2\), 0.4 MgSO\(_4\), 0.3 Na\(_2\)HPO\(_4\), 0.4 KH\(_2\)PO\(_4\), 4.2 NaHCO\(_3\), 5.6 D-glucose, 5.0 HEPES. Then, further incubation was carried out for 15 min to allow for complete de-esterification of AM esters. For the measurement of the emitted fluorescence values at the excitation of 340 nm and 380 nm, a fluorescence microscope ECLIPSE TE300 (Nikon, Tokyo, Japan) equipped with a ×20 objective (S Fluor, Nikon) was used. A Xe lamp (150 W) with a monochromator unit was used for 340 nm and 380 nm excitation, and fluorescence was measured with a CCD camera (HISCA, Hamamatsu Photonics, Shizuoka, Japan). The ratios of the fluorescence with excitation at 340 nm to that at 380 nm were calculated as an indicator of the cytosolic Mg\(^{2+}\) levels. For the detection of Mrs2 KD cells, emGFP was illuminated with the excitation at 488 nm. Region of interest (ROI) was located on the respective cell areas. In each ROI, spatial averaged ratios of the emitted fluorescence with excitation at 340 nm to that at 380 nm was calculated as an indicator of the Mg\(^{2+}\) levels.

For the quantification of mitochondrial Mg\(^{2+}\) level in cells using ratiometric Mg\(^{2+}\) indicator Mag-Fura-2, the cell permeabilization method using digitonin was performed as described previously. Briefly, cells were stained with Mag-Fura-2 as described above. Cells loaded with Mag-Fura-2 were permeabilized with 20 μg/mL digitonin in intracellular-like medium (ICM; 120 mM KCl, 10 mM NaCl, 1 mM KH\(_2\)PO\(_4\), 20 mM HEPES-Tris at pH 7.2 and 2 mM MgATP) buffer for 3 min, followed by washout of the released cytosolic Mag-Fura-2 with ICM. For the confirmation of mitochondrial localization and leakage from cytosol of Mag-Fura-2, fluorescence imaging was conducted with a confocal laser scanning microscope system, FV1000, equipped with a ×60 oil objective (IX81; Olympus) equipped with a ×60 objective. For the measurements Mag-Fura-2 signals, the cells were illuminated with the excitation wavelength at 405 nm from diode laser, and the signals from Mag-Fura-2 and Mito Fluor Red were separated using a 510 nm dichroic mirror and obtained at 480–510 nm for mseCFP and at 535–565 nm for cp173-mVenus.

Real time imaging of cytosolic Mg\(^{2+}\) dynamics. For real time imaging of cytosolic Mg\(^{2+}\) dynamics, highly selective Mg\(^{2+}\) fluorescent dye KMG-104AM was used. For loading KMG-104, cells were incubated with 5 μM KMG-104AM and 0.02% F-127 in pH adjusted HBSS for 30 min at 37 °C. Then, the cells were washed twice with HBSS and incubated in HBSS for 15 min at 37 °C in a humidified atmosphere containing 5% CO\(_2\) to allow for complete hydrolysis of the acetoxymethyl ester form. Fluorescence imaging was conducted with a confocal laser scanning microscope system, FV1000, equipped with a ×40 oil objective. For the measurements of KMG-104 signals, the cells loaded with KMG-104 were illuminated with the excitation wavelength at 488 nm from argon (Ar) laser. The fluorescence was obtained by detecting the signals at 500–600 nm. For the detection of tagBFP-labeled Msr2 KD cells, the cells were illuminated with the excitation wavelength at 405 nm from diode laser, and its fluorescence was obtained by detecting the signals at 425–475 nm.

Real time imaging of mitochondrial Mg\(^{2+}\) dynamics. For real time imaging of mitochondrial Mg\(^{2+}\) dynamics, HeLa cells were stained with 20 μg/mL highly selective mitochondrial Mg\(^{2+}\) fluorescent dye KMG-301AM in pH adjusted HBSS for 10 min on ice, so that hydrolysis of the acetoxymethyl ester by esterase present in the cytosol would be avoided. Then, the cells were washed twice with HBSS and incubated in HBSS for 15 min at 37 °C in a humidified atmosphere containing 5% CO\(_2\) to allow for complete hydrolysis of the acetoxymethyl ester form in mitochondria. The detailed property and usage of KMG-301AM was described in our previous report. Fluorescence imaging was conducted with a confocal laser scanning microscope, FV1000, equipped with a ×40 oil objective. The cells loaded with KMG-301 were illuminated with the excitation wavelength at 559 nm from diode laser, and its fluorescence was obtained by detecting signals at 570–670 nm. For the detection of tagBFP-labeled Msr2 KD cells, the cells were illuminated with the excitation wavelength at 405 nm from diode laser, and its fluorescence was obtained by detecting the signals at 425–475 nm.

Fluorescence imaging of the intracellular ATP levels. For the quantification of intracellular ATP levels in living cells, ATeam1.03 was transfected into HeLa cells using Lipofectamine LTX. The transfection was conducted the day before observation. Fluorescent imaging was conducted with a confocal laser scanning microscope system equipped with a ×20 air objective. For the measurements of ATeam signals, the cells were illuminated with the excitation wavelength at 440 nm from diode laser, and the signals from mseCFP and cp173-mVenus were separated using a 510 nm dichroic mirror and obtained at 480–510 nm for mseCFP and at 535–565 nm for cp173-Venus, respectively. The ratios of cp173-mVenus to mseCFP signals were calculated as an indicator of the cytosolic ATP levels.

Fluorescence imaging of the mitochondrial membrane potentials. For the quantification of mitochondrial membrane potential in living cells, HeLa cells were loaded with mitochondrial membrane potential sensitive dye 5, 5′, 6, 6′-terachloro-1, 1′, 3’, 3’-tetrachlorobenzimidazolylcarbocyanine iodide (JC-1; Life technologies). For dye loading, HeLa cells were incubated in pH adjusted HBSS with 10 μg/mL JC-1 for 15 min at 37 °C in a humidified atmosphere containing 5% CO\(_2\) . The cells were gently washed twice with 1.0 mL of HBSS. Fluorescent imaging was conducted with a confocal laser scanning microscope system, FV1000, equipped with a ×20 air objective.
objective. For the measurements of JC-1 signals, the cells were illuminated with the excitation wavelength at 488 nm from Ar laser, and the signals from JC-1 were separated using a 560 nm dichroic mirror and obtained by detecting the signals at 520–560 nm for green channel and at 575–620 nm for red channel, respectively. The ratio of signals from red channels to that from green channels was calculated as an indicator of the mitochondrial membrane potential. For the detection of tagBFP-labeled Mrs2 KD cells, the cells were illuminated with the excitation wavelength at 405 nm from diode laser, and its fluorescence images were obtained by detecting the signals at 425–475 nm.

Measurement of mitochondrial morphology. For assessment of mitochondrial morphology in living cells, mitochondria were stained with Mito Tracker Green FM and their morphology were quantified by hand-made digital image processing software using MATLAB (MathWorks, Cambridge, UK). The algorithm for quantification of morphological feature is previously described. Briefly, mitochondrial binary images were obtained from Mito Tracker Green FM-stained images, and aspect ratio of each mitochondrion was calculated as the ratio between the major and minor axes of the ellipse equivalent to the mitochondrial object.

Measurement of cell viability. For quantification of vulnerability against cellular stress, cell viabilities under the stress inducer H$_2$O$_2$- or TNFα/CHX-treated condition were measured using MTT assay. Control and Mrs2 KD cells were treated with H$_2$O$_2$ (1 mM) or TNFα (20 ng/mL) plus cycloheximide (CHX; 1 μg/mL) for 24 h. Then, the cells were incubated in the medium containing 0.5 mg/mL of MTT for 2 h at 37 °C in a humidified atmosphere containing 5% CO$_2$. Then, the medium was removed, and 100 μL of dimethylsulfoxide (DMSO, nacalai tesque, Kyoto, Japan) was added in each well to dissolve the precipitated MTT. The absorbance at 570 nm under stress condition (ABS$_{stress}$) and normal condition (ABS$_{control}$) were measured using a microplate reader (Fluoroskan Ascent FL, Thermo Fisher Scientific). Cell viability was defined as the ABS$_{stress}$/ABS$_{control}$

Image analysis and statistics. The fluorescence was calculated as the mean intensity over a ROI on the cell body of each cell using the software package, FluoView (Olympus), Aquacosmos (Hamamatsu Photonics) or handmade software by MATLAB.

Metabolome analysis. The cells were transfected with a plasmid for Mrs2 knockdown by electroporation using Neon (Life Technologies). The cells were plated on a 100 mm dish, and grown for 3 days at 37 °C in a humidified atmosphere containing 5% CO$_2$. Culture medium was changed every day. Procedure for sample preparation of metabolome analysis was previously described. Briefly, after washing cells twice with ice-cold 5% mannitol, metabolites were extracted by 1 mL ice-cold methanol containing internal standards (25 μM each of methionine sulfone (MetSul; Wako, Osaka, Japan), 2-(N-morpholino)ethanesulfonic acid (MES; wako), D-Camphor-10-sulfonic acid (CSA; Wako)). 400 μL of collected extracts were transferred into another tube, mixed with 400 μL chloroform and 200 μL Milli-Q water, and centrifuged at 10,000 × g for 3 min at 4 °C. A 400 μL aliquot of the aqueous layer was centrifugally filtered through a 5 kDa cutoff membrane. The absorbance at 203 nm for Metabolome Analysis; Human Metabolome Technologies, Yamagata, Japan) to remove proteins from samples, followed by the centrifugal-concentration at 42 °C. CE-MS experiments were performed using Agilent CE Capillary Electrophoresis System.

References

1. de Baaij, J. H., Hoenderop, J. G. & Bindels, R. J. Magnesium in man: implications for health and disease. *Physiol Rev.* 95, 1–46 (2015).
2. Panov, A. & Scarpa, A. Mg$^{2+}$ control of respiration in isolated rat liver mitochondria. *Biochemistry* 35, 12849–12856 (1996).
3. Rodriguez-Zavala, J. S. & Moreno-Sanchez, R. Modulation of oxidative phosphorylation by Mg$^{2+}$ in rat heart mitochondria. *J Biol Chem.* 273, 7850–7855 (1998).
4. Kohn, M. C., Achs, M. J. & Garfinkel, D. Computer simulation of metabolism in pyruvate-perfused rat heart. II. Krebs cycle. *Am J Physiol.* 237, R159–R166 (1979).
5. Piskacek, M., Zотовa, L., Zsarka, G. & Schreyen, R. J. Conditional knockdown of hMRs2 results in loss of mitochondrial Mg$^{2+}$ uptake and cell death. *J Cell Mol Med.* 13, 693–700 (2009).
6. April, I. R. Mechanism and regulation of the mitochondrial ATP-Mg$^2+$ carrier. *J Bioenerg Biomembr.* 25, 473–481 (1993).
7. Chinopoulos, C. et al. A novel kinetic assay of mitochondrial ATP-ADP exchange rate mediated by the ANT. *Biochem J.* 396, 2490–2504 (2009).
8. Wolf, P. I., Trapani, V. & Cittadino, A. Magnesium and the control of cell proliferation: looking for a needle in a haystack. *Magnes Res.* 21, 83–91 (2008).
9. Romani, A. M. Cellular magnesium homeostasis. *Arch Biochem Biophys.* 512, 1–23 (2011).
10. Gunther, T. Concentration, compartmentation and metabolic function of intracellular free Mg$^{2+}$. *Magnes Res.* 19, 225–236 (2006).
11. Alroiou, E. & Martinou, J. C. Mitochondria and cancer: is there a morphological connection? *Oncogene.* 25, 4706–4716 (2006).
12. Roy, M., Reddy, P. H., Iijima, M. & Sesaki, H. Mitochondrial division and fusion in metabolism. *Curr Opin Cell Biol.* 33, 111–118 (2015).
13. Westermann, B. Mitochondrial fusion and fission in cell life and death. *Nat Rev Mol Cell Biol.* 11, 872–884 (2010).
14. Imai, Y. & Lu, B. Mitochondrial dynamics and mitophagy in Parkinson's disease: disordered cellular power plant becomes a big deal in a major movement disorder. *Curr Opin Neurobiol.* 21, 935–941 (2011).
15. Li, F. Y. et al. Second messenger role for Mg$^{2+}$ revealed by human T-cell immunodeficiency. *Nature.* 475, 471–476 (2011).
16. Wu, N. & Veillette, A. Immunology: Magnesium in a signalling role. *Nature.* 475, 452–453 (2011).
17. Brandaq, K., Deason-Towne, F., Perraud, A. L. & Schmitz, C. The role of Mg$^{2+}$ in immune cells. *Immunol Res.* 55, 261–269 (2013).
18. Chaigne-Delalande, B. & Lenardo, M. J. Divalent cation signaling in immune cells. *Trends Immunol.* 35, 332–344 (2014).
19. Ruben, H. The logic of the Membrane, Magnesium, Mitosis (MMM) model for the regulation of animal cell proliferation. *Arch Biochem Biophys.* 458, 16–23 (2007).
20. Suzuki, Y. et al. Design and synthesis of Mg$^{2+}$-selective fluororesonophores based on a coumarin derivative and application for Mg$^{2+}$ measurement in a living cell. *Anal Chem.* 74, 1423–1428 (2002).
21. Kubota, T. et al. Investigation of intracellular magnesium mobilization pathways I PC12 cells B simultaneous Mg-Ca fluorescent imaging. *J Am Coll Nutr.* 23, 7425–7445 (2004).
22. Shindo, Y. et al. Newly developed Mg\(^{2+}\)-selective fluorescent probe enables visualization of Mg\(^{2+}\) dynamics in mitochondria. *PLoS One* 6, e23684 (2011).
23. Fuji, T. et al. Design and synthesis of a FLAsH-type Mg\(^{2+}\) fluorescent probe for specific protein labeling. *J Am Chem Soc.* 136, 2374–2381 (2014).
24. Komatsu, H. et al. Design and synthesis of highly sensitive and selective fluorescein-derived magnesium fluorescent probes and application to intracellular 3D Mg\(^{2+}\) imaging. *J Am Chem Soc.* 126, 16353–16360 (2004).
25. Shindo, Y., Fujimoto, A., Hotta, K., Suzuki, K. & Oka, K. Glutamate-induced calcium increase mediates magnesium release from mitochondria in rat hippocampal neurons. *Neurosci Res.* 88, 3125–3132 (2010).
26. Yamanaka, R., Shindo, Y., Hotta, K., Suzuki, K. & Oka, K. NO/cGMP/PKG signaling pathway induces magnesium release mediated by mitoKATP channel opening in rat hippocampal neurons. *FEBS Lett.* 587, 2643–2648 (2013).
27. Yamanaka, R. et al. Neural depolarization triggers Mg\(^{2+}\) influx in rat hippocampal neurons. *Neuroscience.* 310, 731–741 (2015).
28. Shindo, Y., Yamanaka, R., Suzuki, K., Hotta, K. & Oka, K. Intracellular magnesium level determines cell viability in the MPP+ model of Parkinson’s disease. *Biochim Biophys Acta.* 1853, 3182–3191 (2015).
29. Kubota, T. et al. Mitochondria are intracellular magnesium stores: investigation by simultaneous fluorescent imagings in PC12 cells. *Biochim Biophys Acta.* 1744, 19–25 (2005).
30. Zhang, G., Gruszko, J., Afzal, M. & Buccella, D. Visualizing changes in mitochondrial Mg\(^{2+}\) during apoptosis with organelle-targeted triazole-based ratiometric fluorescent sensors. *Chem Sci.* 6, 6841–6846 (2015).
31. Zourka, G., Gregan, J. & Schweyn, R. J. The human mitochondrial Mrs2 protein functionally substitutes for its yeast homologue, a candidate magnesium transporter. *Genomics.* 72, 158–168 (2001).
32. Schindl, R., Weghuber, J., Romanin, C. & Schweyn, R. J. Mrs2p forms a high conductance Mg\(^{2+}\) selective channel in mitochondria. *Biophys J.* 93, 3872–3883 (2007).
33. Schmitz, C., Deason, F. & Perraud, A. L. Molecular components of vertebrate Mg\(^{2+}\)–homeostasis regulation. *Magnes Res.* 20, 6–18 (2007).
34. Quamme, G. A. Molecular identification of ancient and modern mammalian magnesium transporters. *Am J Physiol Cell Physiol.* 298, C407–C429 (2010).
35. Kuramoto, T. et al. A mutation in the gene encoding mitochondrial Mg\(^{2+}\) channel MRS2 results in demyelination in the rat. *PLoS Genet.* 7, e1001262 (2011).
36. Cooradas, G. & Hajnoczky, G. Plasticity of mitochondrial calcium signaling. *J Biol Chem.* 278, 42273–42282 (2003).
37. Soga, T. et al. Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. *J Proteome Res.* 2, 488–494 (2003).
38. Kitagawa, M., Ikeda, S., Tashiro, E., Soga, T. & Imoto, M. Metabolic identification of the target of the filopodia protrusion inhibitor glucopridicin A. *Chem Biol.* 17, 989–998 (2010).
39. Imamura, H. et al. Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. *Proc Natl Acad Sci USA.* 106, 15651–15656 (2009).
40. Lackner, L. L. Determining the shape and cellular distribution of mitochondria: the integration of multiple activities. *Curr Opin Cell Biol.* 25, 471–476 (2013).
41. Friedman, J. R. & Nunnari, J. Mitochondrial form and function. *Nature.* 505, 335–344 (2014).
42. Einheber, S., Bhat, M. A. & Salzer, J. L. Disrupted axo-glial junctions result in accumulation of abnormal mitochondria at nodes of ranvier. *Neuron Glia Biol.* 2, 165–174 (2006).
43. Egan, D. F. et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. *Science.* 331, 456–461 (2011).
44. Koopman, W. J., Distelmaier, F., Esseling, J. J., Smeitink, J. A. & Willems, P. H. Computer-assisted live cell analysis of mitochondrial membrane potential, morphology and calcium handling. *Methods.* 46, 304–311 (2008).
45. Wang, X. & Michaelis, E. K. Selective neuronal vulnerability to oxidative stress in the brain. *Front Aging Neurosci.* 2, 12 (2010).
46. LaNote, K. F., Bryla, J. & Williamson, J. R. Feedback interactions in the control of citric acid cycle activity in rat heart mitochondria. *J Biol Chem.* 247, 667–679 (1972).
47. Leonard, A. P. et al. Quantitative analysis of mitochondrial morphology and membrane potential in living cells using high-content imaging, machine learning, and morphological binning. *Biochim Biophys Acta.* 1853, 348–360 (2015).
48. Youle, R. J. & van der Bliek, A. M. Mitochondrial fission, fusion, and stress. *Science.* 337, 1062–1065 (2012).
49. Romani, A. M. & Scarpa, A. Regulation of cellular magnesium. *Front Biosci.* 5, D720–D734 (2000).
50. Toutout, Y., Toutot, C., Bogdan, A., Beck, H. & Reiner, A. Serum magnesium circadian rhythm in human adults with respect to age, sex and mental status. *Clin Chim Acta.* 87, 35–41 (1978).
51. Jahnen-Dechent, W. & Ketelter, M. Magnesium basics. *Clin Kidney J.* 6, 13–114 (2012).
52. Feeney, K. A. et al. Daily magnesium fluxes regulate cellular timekeeping and energy balance. *Nature.* (2016).
53. Kolisek, M. et al. Mrss2p is an essential component of the major electrophoretic Mg\(^{2+}\) influx system in mitochondria. *Embo J.* 22, 1235–1244 (2003).
54. Jung, D. W., Panzeeter, E., Baysal, K. & Brieler, G. P. On the relationship between matrix free Mg\(^{2+}\) concentration and total Mg\(^{2+}\) in heart mitochondria. *Biochim Biophys Acta.* 1320, 310–320 (1997).

Acknowledgements

The authors are grateful to Dr. H. Imamura for the generous gift of intracellular ATP indicator ATeam 1.03. This work was supported by Grant-in-Aid for Scientific Research, KAKENHI (24240045, 16H101751) and Ministry of Education, Culture, Sport, Science, and Technology, Japan (MEXT)-Supported Program for the Strategic Research Foundation at Private Universities in 2014–2018 (S1411003).

Author Contributions

R.Y., Y.S., and K.O. designed the research. R.Y. and S.T. performed the experiments and analyzed the data. K.S. designed and synthesized the compounds. R.Y., Y.S. and K.O. designed and wrote the paper. T.S. and K.O. supervised the project. All authors participated in the discussion of the data and in production of the final version of the manuscripts.

Additional Information

Supplementary information accompanies this paper at http://www.nature.com/srep

 Competing financial interests: The authors declare no competing financial interests.

 How to cite this article: Yamanaka, R. et al. Mitochondrial Mg\(^{2+}\) homeostasis decides cellular energy metabolism and vulnerability to stress. *Sci. Rep.* 6, 30027; doi: 10.1038/srep30027 (2016).
