REMARKS ON GENERATORS AND DIMENSIONS OF TRIANGULATED CATEGORIES

DMITRI ORLOV

Abstract. In this paper we prove that the dimension of the bounded derived category of coherent sheaves on a smooth quasi-projective curve is equal to one. We also discuss dimension spectrums of these categories.

Let \mathcal{T} be a triangulated category. We say that an object $E \in \mathcal{T}$ is a classical generator for \mathcal{T} if the category \mathcal{T} coincides with the smallest triangulated subcategory of \mathcal{T} which contains E and is closed under direct summands.

If a classical generator generates the whole category for a finite number of steps then it called a strong generator. More precisely, let \mathcal{I}_1 and \mathcal{I}_2 be two full subcategories of \mathcal{T}. We denote by $\mathcal{I}_1 \ast \mathcal{I}_2$ the full subcategory of \mathcal{T} consisting of all objects such that there is a distinguished triangle $M_1 \to M \to M_2$ with $M_i \in \mathcal{I}_i$. For any subcategory $\mathcal{I} \subset \mathcal{T}$ we denote by $\langle \mathcal{I} \rangle$ the smallest full subcategory of \mathcal{T} containing \mathcal{I} and closed under finite direct sums, direct summands and shifts. We put $\mathcal{I}_1 \circ \mathcal{I}_2 = \langle \mathcal{I}_1 \ast \mathcal{I}_2 \rangle$ and we define by induction $\langle \mathcal{I} \rangle_k = \langle \mathcal{I} \rangle_{k-1} \circ \langle \mathcal{I} \rangle$. If \mathcal{I} consists of an object E we denote $\langle \mathcal{I} \rangle$ as $\langle E \rangle_1$ and put by induction $\langle E \rangle_k = \langle E \rangle_{k-1} \circ \langle E \rangle_1$.

Definition 1. Now we say that E is a strong generator if $\langle E \rangle_n = \mathcal{T}$ for some $n \in \mathbb{N}$.

Note that E is classical generator if and only if $\bigcup_{k \in \mathbb{Z}} \langle E \rangle_k = \mathcal{T}$. It is also easy to see that if a triangulated category \mathcal{T} has a strong generator then any classical generator of \mathcal{T} is strong as well.

Following to [2] we define the dimension of a triangulated category.

Definition 2. The dimension of a triangulated category \mathcal{T}, denoted by $\dim \mathcal{T}$, is the minimal integer $d \geq 0$ such that there is $E \in \mathcal{T}$ with $\langle E \rangle_{d+1} = \mathcal{T}$.

We also can define the dimension spectrum of a triangulated category as follows.

The author was partially supported by grant RFFI 05-01-01034, grant INTAS 05-1000008-8118, grant NSh-9969.2006.1 and Oswald Veblen Fund.
Definition 3. The dimension spectrum of a triangulated category T, denoted by $\sigma(T)$, is a subset of \mathbb{Z}, which consists of all integer $d \geq 0$ such that there is $E \in T$ with $\langle E \rangle_{d+1} = T$ and $\langle E \rangle_d \neq T$.

A. Bondal and M. Van den Bergh showed in [1] that the triangulated category of perfect complexes $\text{Perf}(X)$ on a quasi-compact quasi-separated scheme X has a classical generator. (Recall that a complex of \mathcal{O}_X-modules is called perfect if it is locally quasi-isomorphic to a bounded complex of vector bundles.)

For the triangulated category of perfect complexes on a quasi-projective scheme we can present a classical generator directly.

Theorem 4. Let X be a quasi-projective scheme of dimension d and let \mathcal{L} be a very ample line bundle on X. Then the object $E = \bigoplus_{i=k-d}^k \mathcal{L}^i$ is a classical generator for the triangulated category of perfect complexes $\text{Perf}(X)$.

Proof. The scheme X is an open subscheme of a projective scheme $X' \subset \mathbb{P}^N$ and \mathcal{L} is the restriction of $\mathcal{O}_{\mathbb{P}^N}(1)$ on X. Let us take $N+1$ linear independent hyperplanes $H_i \subset \mathbb{P}^N, i = 0, ..., N$. In this case the intersection $H_0 \cap \cdots \cap H_N$ is empty. The hyperplanes H_i give a section s of the vector bundle $U = O(1)^{\oplus(N+1)}$ which does not have zeros. This implies that the Koszul complex induced by s

$$0 \rightarrow \Lambda^{N+1}(U^*) \rightarrow \Lambda^N(U^*) \rightarrow \cdots \rightarrow \Lambda^2(U^*) \rightarrow U^* \rightarrow \mathcal{O}_{\mathbb{P}^N} \rightarrow 0$$

is exact on \mathbb{P}^N. Consider the restriction of the truncated complex on X

$$\Lambda^{d+1}(U_X^*) \rightarrow \cdots \rightarrow \Lambda^2(U_X^*) \rightarrow U_X^*.$$

It has two nontrivial cohomologies, one of which is \mathcal{O}_X. And, moreover, since the dimension of X is equal to d the sheaf \mathcal{O}_X is a direct summand of this complex. Tensoring this complex with \mathcal{L}^{k+1} we obtain that the triangulated subcategory which contains \mathcal{L}^i for $i = k-d, \ldots, k$ also contains \mathcal{L}^{k+1}. Thus, it contains \mathcal{L}^i for all $i \geq k-d$. By duality this category contains also all \mathcal{L}^i for all $i \leq k$. Thus we have all powers \mathcal{L}^i, where $i \in \mathbb{Z}$.

Finally, it easy to see that $\{\mathcal{L}^i\}_{i \in \mathbb{Z}}$ classically generate the triangulated category of perfect complexes $\text{Perf}(X)$. Indeed, for any perfect complex E we can construct a bounded above complex P, where all P^k are direct sums of line bundles \mathcal{L}^i, together with a quasi-isomorphism $P \sim E$. Consider the brutal truncation $\sigma^{\geq-m}P$ for sufficiently large m and the map $\sigma^{\geq-m}P \rightarrow E$. The cone of this map is isomorphic to $\mathcal{F}[m+1]$, where \mathcal{F} is a vector bundle. And since the $\text{Hom}(E, \mathcal{F}[m+1]) = 0$ for sufficiently large m we get that E is a direct summand of $\sigma^{\geq-m}P$. \blacksquare
A. Bondal and M. Van den Bergh also proved that for any smooth separated scheme X the triangulated category of perfect complexes $\text{Perf}(X)$ has a strong generator ([1], Th. 3.1.4). Furthermore, R. Rouquier showed that for quasi-projective scheme X the property to be regular is equivalent to the property that the triangulated category of perfect complexes $\text{Perf}(X)$ has a strong generator (see [2], Prop 7.35). On the other hand, there is a remarkable result of R. Rouquier which says that under some general conditions the bounded derived category of coherent sheaves $D^b(\text{coh}(X))$ has a strong generator. More precisely it says

Theorem 5. (R. Rouquier, [2] Th. 7.39) Let X be a separated scheme of finite type. Then there are an object $E \in D^b(\text{coh}(X))$ and an integer $d \in \mathbb{Z}$ such that $D^b(\text{coh}(X)) \cong \langle E \rangle_{d+1}$. In particular, $\dim D^b(\text{coh}(X)) < \infty$.

Keeping in mind this theorem we can ask about the dimension of the derived category of coherent sheaves on a separated scheme of finite type. It is proved in [2] that

- for a reduced separated scheme X of finite type $\dim D^b(\text{coh}(X)) \geq \dim X$;
- for a smooth affine scheme $\dim D^b(\text{coh}(X)) = \dim X$;
- for a smooth quasi-projective scheme $\dim D^b(\text{coh}(X)) \leq 2 \dim X$.

In this paper we show that the dimension of the derived category of coherent sheaves on a smooth quasi-projective curve C is equal to 1. For affine curve it is known and for \mathbb{P}^1 it is evident. Thus, it is sufficient to consider a smooth projective curve of genus $g \geq 1$.

Theorem 6. Let C be a smooth projective curve of genus $g \geq 1$. Then $\dim D^b(\text{coh}(C)) = 1$.

At first, we should bring an object which generates $D^b(\text{coh}(C))$ for one step. Let \mathcal{L} be a line bundle on C such that $\deg \mathcal{L} \geq 8g$. Let us consider $E = \mathcal{L}^{-1} \oplus \mathcal{O}_C \oplus \mathcal{L} \oplus \mathcal{L}^2$. We are going to show that E generates the bounded derived category of coherent sheaves on C for one step, i.e. $\langle E \rangle_2 = D^b(\text{coh}(X))$.

Since any object of $D^b(\text{coh}(X))$ is a direct sum of its cohomologies it is sufficient to prove that any coherent sheaf \mathcal{G} belongs to $\langle E \rangle_2$. Further, each coherent sheaf \mathcal{G} on a curve is a direct sum of a torsion sheaf T and a vector bundle \mathcal{F}.

Lemma 7. Let C be a smooth projective curve of genus $g \geq 1$ and let \mathcal{L} be a line bundle on C as above. Then there is an exact sequence of the form

$$(\mathcal{L}^{-1})^{\oplus r_1} \longrightarrow \mathcal{O}_C^{\oplus r_0} \longrightarrow T \longrightarrow 0$$

for any torsion coherent sheaf T on C.
Let \mathcal{F} be a vector bundle on the curve C. Consider the Harder-Narasimhan filtration $0 = \mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{F}_n = \mathcal{F}$. It is such filtration that every quotient $\mathcal{F}_i/\mathcal{F}_{i-1}$ is semi-stable and $\mu(\mathcal{F}_i/\mathcal{F}_{i-1}) > \mu(\mathcal{F}_{i+1}/\mathcal{F}_i)$ for all $0 < i < n$, where $\mu(\mathcal{G})$ is the slope of a vector bundle \mathcal{G} and is equal to $c_1(\mathcal{G})/r(\mathcal{G})$.

Main Lemma 8. Let \mathcal{L} be a line bundle with $\deg \mathcal{L} \geq 8g$. Let \mathcal{F} be a vector bundle on C and let $0 = \mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{F}_n = \mathcal{F}$ be its Harder-Narasimhan filtration. Choose $0 \leq i \leq n$ such that $\mu(\mathcal{F}_i/\mathcal{F}_{i-1}) \geq 4g > \mu(\mathcal{F}_{i+1}/\mathcal{F}_i)$. Then there are exact sequences of the form

\[
\begin{align*}
\text{(a)} & \quad (\mathcal{L}^{-1})^{\oplus r_1} \xrightarrow{\alpha} \mathcal{O}_C^{\oplus r_0} \rightarrow \mathcal{F}_i \rightarrow 0, \\
\text{(b)} & \quad 0 \rightarrow \mathcal{F}/\mathcal{F}_i \rightarrow \mathcal{L}^{\oplus s_0} \xrightarrow{\beta} (\mathcal{L}^2)^{\oplus s_1}.
\end{align*}
\]

To prove Lemma 7 and the Main Lemma 8 we need the following lemma which is well-known.

Lemma 9. Let \mathcal{G} be a vector bundle on a smooth projective curve C over a field k. Denote by $\overline{\mathcal{G}}$ its pullback on $\overline{C} = C \otimes_k \overline{k}$. Assume that for any line bundle \mathcal{M} on \overline{C} with $\deg \mathcal{M} = d$ we have $H^1(\overline{C}, \overline{\mathcal{G}} \otimes \mathcal{M}) = 0$. Then

i) $H^1(C, \mathcal{G} \otimes \mathcal{N}) = 0$ for any \mathcal{N} on C with $\deg \mathcal{N} \geq d$;

ii) any sheaf $\mathcal{G} \otimes \mathcal{N}$ is generated by the global sections for all \mathcal{N} with $\deg \mathcal{N} > d$.

Proof. i) Since any field extension is strictly flat it is sufficient to check that $H^1(\overline{C}, \overline{\mathcal{G}} \otimes \mathcal{N}) = 0$. From an exact sequence

\[
0 \rightarrow \overline{\mathcal{G}} \otimes \mathcal{N}(-x) \rightarrow \overline{\mathcal{G}} \otimes \mathcal{N} \rightarrow (\overline{\mathcal{G}} \otimes \mathcal{N})_x \rightarrow 0
\]

on \overline{C} we deduce that if $H^1(\overline{C}, \overline{\mathcal{G}} \otimes \mathcal{N}(-x)) = 0$ then $H^1(\overline{C}, \overline{\mathcal{G}} \otimes \mathcal{N}) = 0$. This implies i).

ii) By the same reason as above it is enough to show that the sheaf $\overline{\mathcal{G}} \otimes \mathcal{N}$ is generated by the global sections. Since $H^1(\overline{C}, \overline{\mathcal{G}} \otimes \mathcal{N}(-x)) = 0$ the map

\[
H^0(\overline{C}, \overline{\mathcal{G}} \otimes \mathcal{N}) \rightarrow H^0(\overline{C}, (\overline{\mathcal{G}} \otimes \mathcal{N})_x)
\]

is surjective for any $x \in \overline{C}$. Hence, $\overline{\mathcal{G}} \otimes \mathcal{N}$ and $\mathcal{G} \otimes \mathcal{N}$ are generated by the global sections for all \mathcal{N} of degree greater than d. \square

Proof of Lemma 7. Any torsion sheaf T is generated by the global sections. Consider the surjective map $\mathcal{O}_C^{\oplus r_0} \rightarrow T$, where $r_0 = \dim H^0(T)$. Denote by U the kernel of this map. Now it is evident that $H^1(U \otimes \mathcal{M}) = 0$ for any line bundle \mathcal{M} on \overline{C} with $\deg \mathcal{M} \geq 2g - 1$, because $H^1(\mathcal{M}) = 0$. Applying Lemma 9 we get that $U \otimes \mathcal{L}$ is generated by the global sections. Hence, there is an exact sequence of the form

\[
(\mathcal{L}^{-1})^{\oplus r_1} \rightarrow \mathcal{O}_C^{\oplus r_0} \rightarrow T \rightarrow 0.
\]

for any torsion sheaf T. \square
Proof of the Main Lemma. If \(G \) is a semi-stable vector bundle on \(C \) with \(\mu(G) \geq 2g \) then by Serre duality we have \(H^1(C, G \otimes \mathcal{M}) = 0 \) for all \(\mathcal{M} \) with \(\deg \mathcal{M} \geq -1 \). Therefore, by Lemma \(\# \) the bundle \(G \) is generated by the global sections.

Now \(F_i \subseteq F \) as an extension of semi-stable sheaves with \(\mu \geq 4g \) is generated by the global sections as well. Consider the short exact sequence

\[
0 \rightarrow U \rightarrow O_C^{\oplus r_0} \rightarrow F_i \rightarrow 0,
\]

where \(r_0 \) is the dimension of \(H^0(F_i) \). Take a line bundle \(\mathcal{M} \) on \(\overline{C} \) of degree \(2g \) and consider the diagram

\[
\begin{array}{ccccccc}
0 & 0 & 0 & 0 \\
\downarrow & \downarrow & \downarrow & \downarrow \\
0 & \overline{U} \otimes \mathcal{M} & (\mathcal{M}^{-1})^{\oplus r_0} & \overline{F}_i \otimes \mathcal{M}^{-1} & \rightarrow & 0 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
0 & \overline{U}^{\oplus 2} & O_C^{\oplus 2r_0} & \overline{F}_i^{\oplus 2} & \rightarrow & 0 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
0 & \overline{U} \otimes \mathcal{M} & \mathcal{M}^{\oplus r_0} & \overline{F}_i \otimes \mathcal{M} & \rightarrow & 0 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
0 & 0 & 0 & 0
\end{array}
\]

Since the sheaf \(\overline{F}_i \otimes \mathcal{M}^{-1} \) is the extension of semi-stable sheaves with \(\mu \geq 2g \) we have \(H^1(\overline{F}_i \otimes \mathcal{M}^{-1}) = 0 \). Hence, the map \(H^0(\overline{F}_i^{\oplus 2}) \rightarrow H^0(\overline{F}_i \otimes \mathcal{M}) \) is surjective. Further, we know that the map \(H^0(O_C^{\oplus 2r_0}) \rightarrow H^0(O_C^{\oplus 2r_0}) \) is surjective and the map \(H^0(O_C^{\oplus 2r_0}) \rightarrow H^0(\mathcal{M}^{\oplus r_0}) \) is injective. This implies that the map \(H^0(\mathcal{M}^{\oplus r_0}) \rightarrow H^0(\overline{F}_i \otimes \mathcal{M}) \) is surjective as well. Hence \(H^1(\overline{U} \otimes \mathcal{M}) = 0 \). Therefore, by Lemma \(\# \) the bundle \(\overline{U} \otimes \mathcal{M}' \) is generated by the global sections for all \(\mathcal{M}' \) with \(\deg \mathcal{M}' \geq 2g + 1 \). In particular, \(U \otimes \mathcal{L} \) is generated by the global sections. Thus, we get an exact sequence

\[
(L^{-1})^{\oplus r_1} \xrightarrow{\alpha} O_C^{\oplus r_0} \rightarrow F_i \rightarrow 0.
\]

Sequence b) can be obtained by dualizing of sequence a) applied for the sheaf \(F^* \otimes \mathcal{L} \). \(\square \)

Proof of Theorem \(\# \). At first, since the category of coherent sheaves on \(C \) has homological dimension one we see that any torsion sheaf \(T \) is a direct summand of the complex of the form \((L^{-1})^{\oplus r_1} \rightarrow O_C^{\oplus r_0} \). Hence, it belongs to \(\langle E \rangle_2 \).

Now consider a vector bundle \(F \) on \(C \) with the Harder-Narasimhan filtration \(0 = F_0 \subset F_1 \subset \cdots \subset F_n = F \). As above let us fix \(0 \leq i \leq n \) such that \(\mu(F_i/F_{i-1}) \geq 4g > \mu(F_{i+1}/F_i) \).
Applying the Main Lemma we obtain the following long exact sequence

$$0 \longrightarrow \text{Ker } \alpha \longrightarrow (\mathcal{L}^{-1})^{\oplus r_1} \overset{\alpha}{\longrightarrow} \mathcal{O}_C^{\oplus r_0} \longrightarrow \mathcal{F} \longrightarrow \mathcal{L}^{\oplus s_0} \overset{\beta}{\longrightarrow} (\mathcal{L}^2)^{\oplus s_1} \longrightarrow \text{Coker } \beta \longrightarrow 0.$$

Furthermore, it is easy to see that the canonical map $\text{Ext}^1(\mathcal{L}^{\oplus s_0}, \mathcal{O}_C^{\oplus r_0}) \longrightarrow \text{Ext}^1(\mathcal{F}/\mathcal{F}_i, \mathcal{F}_i)$ is surjective. Let us fix $e \in \text{Ext}^1(\mathcal{F}/\mathcal{F}_i, \mathcal{F}_i)$ which defines \mathcal{F} as the extension and choose some its pull back $e' \in \text{Ext}^1(\mathcal{L}^{\oplus s_0}, \mathcal{O}_C^{\oplus r_0})$.

Now let us consider the map

$$\phi : (\mathcal{L}^{-1})^{\oplus r_0} \oplus \mathcal{L}^{\oplus s_0}[-1] \longrightarrow \mathcal{O}_C^{\oplus r_0} \oplus (\mathcal{L}^2)^{\oplus s_1}[-1], \quad \text{where } \phi = \begin{pmatrix} \alpha & e' \\ 0 & \beta \end{pmatrix}$$

and take a cone $C(\phi)$ of ϕ. The cone $C(\phi)$ is isomorphic to a complex that has three nontrivial cohomologies $H^{-1}(C(\phi)) \cong \text{Ker } \alpha$, $H^1(C(\phi)) \cong \text{Coker } \beta$ and, finally, $H^0(C(\phi)) \cong \mathcal{F}$. Thus, \mathcal{F} is a direct summand of $C(\phi)$ and, consequently, it belongs to $\langle \mathcal{E} \rangle_2$. This implies that the whole bounded derived category of coherent sheaves on C coincides with $\langle \mathcal{E} \rangle_2$ and the dimension of $\mathcal{D}^b(\text{coh}(C))$ is equal to 1.

Having in view of the given theorem we may assume, that the following conjecture can be true.

Conjecture 10. Let X be a smooth quasi-projective scheme of dimension n. Then $\dim \mathcal{D}^b(\text{coh}(X)) = n$.

Remark 11. For a non regular scheme it is evidently not true. For example, the dimension of the bounded derived category of coherent sheaves on the zero-dimension scheme $\text{Spec}(k[x]/x^2)$ equals to 1.

It is also very interesting to understand what the spectrum $\sigma(\mathcal{D}^b(\text{coh}(X)))$ forms. In particular we can ask the following questions

Question 12. Is the spectrum of the bounded derived category of coherent sheaves on a smooth quasi-projective scheme bounded? Is it bounded for a non smooth scheme?

Question 13. Does the spectrum of the bounded derived category of coherent sheaves on a (smooth) quasi-projective scheme form an integer interval?

Let us try to calculate the dimension spectra of the derived categories of coherent sheaves on some smooth curves.

Proposition 14. Let C be a smooth affine curve. Then the dimension spectrum $\sigma(\mathcal{D}^b(\text{coh } C))$ coincides with $\{1\}$.

Proof. If \(\mathcal{E} \) is a strong generator then it has a some locally free sheaf \(\mathcal{F} \) as a direct summand. Now since \(C \) is affine then there is an exact sequence of the form
\[
\mathcal{F}^{r_1} \rightarrow \mathcal{F}^{r_0} \rightarrow \mathcal{G} \rightarrow 0
\]
for any coherent sheaf \(\mathcal{G} \) on \(C \). Hence, any coherent sheaf \(\mathcal{G} \) belongs to \(\langle \mathcal{E} \rangle_2 \). Since the global dimension of \(\text{coh} \ C \) is equal to 1 we obtain that \(\langle \mathcal{E} \rangle_2 = D^b(\text{coh} \ C) \). \(\square \)

We can also find the dimension spectrum of the projective line.

Proposition 15. The dimension spectrum \(\sigma(D^b(\text{coh} \mathbb{P}^1)) \) coincides with the set \(\{1, 2\} \).

Proof. Indeed, 1 is the dimension. And, for example, the object \(\mathcal{E} = \mathcal{O}(-1) \oplus \mathcal{O} \) generate the whole category \(D^b(\text{coh} \mathbb{P}^1) \) for one step. Now, the object \(\mathcal{E} = \mathcal{O}_p \oplus \mathcal{O}_p \), where \(p \) is a point, is a generator, because \(\mathcal{O}(-1) \) belongs to \(\langle \mathcal{E} \rangle_2 \). This also implies that \(\langle \mathcal{E} \rangle_3 \cong D^b(\text{coh} \mathbb{P}^1) \). On the other hand, \(\langle \mathcal{E} \rangle_2 \not\cong D^b(\text{coh} \mathbb{P}^1) \). To see it we can check that an object \(\mathcal{O}_q \), where \(q \neq p \), doesn’t belong to \(\langle \mathcal{E} \rangle_2 \). Indeed, \(\mathcal{O}_q \) is completely orthogonal to \(\mathcal{O}_p \) and doesn’t belong to subcategory generated by \(\mathcal{O} \). Finally, it easy to see that any object \(\mathcal{E} \), which generates the whole category, generates it at least for two steps, i.e. \(\langle \mathcal{E} \rangle_3 \cong D^b(\text{coh} \mathbb{P}^1) \). If \(\mathcal{E} \) contains as direct summands two different line bundles then it generates the whole category for one step. If \(\mathcal{E} \) has only one line bundle as a direct summand then it also has a torsion sheaf as a direct summand. This implies that \(\langle \mathcal{E} \rangle_2 \) has another line bundle. Therefore, \(\langle \mathcal{E} \rangle_3 \) is the whole category. \(\square \)

Another simple result says

Proposition 16. Let \(C \) be a smooth projective curve of genus \(g > 0 \) over a field \(k \). Assume that \(C \) has at least two different points over \(k \). Then the dimension spectrum \(\sigma(D^b(\text{coh} \ C)) \) contains \(\{1, 2\} \) as a proper subset, i.e. \(\{1, 2\} \) is strictly contained in the dimension spectrum.

Proof. The spectrum contains 1 as the dimension of the category. Let us now take a line bundle \(\mathcal{L} \) on \(C \) which satisfies the condition as in Theorem \(\S \) i.e. \(\deg \mathcal{L} \geq 8g \) and consider the object \(\mathcal{E} = \mathcal{O}_C \oplus \mathcal{L}^2 \). It is easy to see that the line bundles \(\mathcal{L}^{-1} \) and \(\mathcal{L} \) belong to \(\langle \mathcal{E} \rangle_2 \), because there are exact sequences
\[
0 \rightarrow \mathcal{O}_C \rightarrow \mathcal{L}^{-2} \rightarrow \mathcal{L}^2 \rightarrow 0 \quad \text{and} \quad 0 \rightarrow \mathcal{L}^{-1} \rightarrow \mathcal{O}_C^3 \rightarrow \mathcal{L}^2 \rightarrow 0.
\]

The proof of Theorem \(\S \) (see the map \(\exists \)) implies that \(\langle \mathcal{E} \rangle_3 \cong D^b(\text{coh} \ C) \). On the other hand, the subcategory \(\langle \mathcal{E} \rangle_2 \) doesn’t coincide with the whole \(D^b(\text{coh} \ C) \). For example, a nontrivial line bundle \(\mathcal{M} \) from \(\text{Pic}^0 C \) doesn’t belong to \(\langle \mathcal{E} \rangle_2 \), because it is completely orthogonal to the structure sheaf \(\mathcal{O}_C \) and, evidently, could not be obtained from the line bundle \(\mathcal{L}^2 \).
Let us take a point \(p \in C \) and consider the object \(\mathcal{E} = \mathcal{O}_C \oplus \mathcal{O}_p \), where \(\mathcal{O}_p \) is the skyscraper in \(p \). This object is a strong generator and we can show that \(\langle \mathcal{E} \rangle_3 \neq D^b(\text{coh} C) \).

Take another point \(q \neq p \) and consider the skyscraper sheaf \(\mathcal{O}_q \). It is completely orthogonal to \(\mathcal{O}_p \) and have only one-dimensional 1-st Ext to \(\mathcal{O}_C \). Hence, if \(\mathcal{O}_q \) belongs to \(\langle \mathcal{E} \rangle_3 \) then it should be a direct summand of an object \(M \) which is included in an exact triangle of the form

\[
\mathcal{O}_C^{\oplus k} \rightarrow N \rightarrow M \rightarrow \mathcal{O}_C^{\oplus k}[1],
\]

where \(N \in \langle \mathcal{E} \rangle_2 \). Since the 1-st Ext from \(\mathcal{O}_q \) to \(\mathcal{O}_C \) is one-dimensional we can take \(k = 1 \). The composition of the map \(\mathcal{O}_q \rightarrow M \) with \(M \rightarrow \mathcal{O}_C \) should be the nontrivial 1-st Ext from \(\mathcal{O}_q \) to \(\mathcal{O}_C \). Now object \(N \) is a direct sum of indecomposable objects from \(\langle \mathcal{E} \rangle_2 \). It is easy to see that we can consider only objects for which there are nontrivial homomorphisms from \(\mathcal{O}_C \) and nontrivial homomorphisms to \(\mathcal{O}_q \). All other can be removed from \(N \). Thus \(N \) is a direct sum of \(\mathcal{O}(p) \) and objects \(U \) that are extensions

\[
0 \rightarrow \mathcal{O}_C^{\oplus r_1} \rightarrow U \rightarrow \mathcal{O}_C^{\oplus r_2} \rightarrow 0.
\]

Finally, split embedding \(\mathcal{O}_q \rightarrow M \) gives us a nontrivial map from \(\mathcal{O}(q) \) to \(N \). But there are no nontrivial maps from \(\mathcal{O}(q) \) to \(\mathcal{O}(p) \) and to \(U \) of the form (3). Therefore, \(\mathcal{O}_q \) can not belong to \(\langle \mathcal{E} \rangle_3 \).

Acknowledgments: I am grateful to Igor Burban and Pierre Deligne for useful notes and to Calin Lazaroiu, Tony Pantev and Raphael Rouquier for very interesting discussions. I would like to thank Institute for Advanced Study, Princeton, USA for a hospitality and a very stimulating atmosphere.

References

[1] A. Bondal and M. Van den Bergh, Generators and representability of functors in commutative and noncommutative geometry, Mosc. Math. J., 3 (2003), pp. 1–36, arXiv:math/0204218.

[2] R. Rouquier, Dimension of triangulated categories (2003), arXiv:math/0310134. Will appear in Journal of K-theory.

Algebra Section, Steklov Math. Institute of RAS, 8 Gubkin str., Moscow, 119991 Russia
E-mail address: orlov@mi.ras.ru