Parkinson-related neuropathy

Josef Finsterer 1,1,* Fúlvio Alexandre Scorza 1,1,† Carla Alessandra Scorza 1,1,† Ana Claudia Fiorini 1,1,†,‡

1Klinik Landstrasse, Messerli Institute, Vienna, Austria. †Disciplina de Neurociencia. Universidade Federal de Sao Paulo/Escola Paulista de Medicina (UNIFESP/EPFM), Sao Paulo, SP, BR. ‡Programa de Estudos Pos-Graduacao em Fonoaudiologia, Pontificia Universidade Catolica de Sao Paulo (PUC-SP), Sao Paulo, SP, BR. †Departamento de Fonoaudiologia, Escola Paulista de Medicina/Universidade Federal de Sao Paulo (EPM/UNIFESP), Sao Paulo, SP, BR.

Finsterer J, Scorza FA, Scorza CA, Fiorini AC. Parkinson-related neuropathy. Clinics (Sao Paulo). 2021;76:e2675

*Corresponding author. E-mail: fifigs1@yahoo.de

INTRODUCTION

Although Parkinson’s disease (PD) primarily affects the central nervous system, it is a multi-organ disease which also affects the eyes and the peripheral nervous system, including the autonomic fibers (1,2). PD-related disturbance of the peripheral nerves may result in sensory, motor, or autonomic neuropathy. Autonomic dysfunction can manifest as sicca syndrome, hypo-/hyperhidrosis, orthostatic hypotension, reduced blood pressure variability, reduced heart rate variability, nausea, constipation, vomiting, urinary dysfunction, or erectile dysfunction (1). Non-motor manifestations, such as hyposmia, rapid eye movement sleep behavior disorder (RBD), constipation, or depression, may precede these motor symptoms (1). Although PD-related neuropathy (PDRNP) is well recognized, relatively little data about this topic are available. Thus, this mini-review aimed to summarize and discuss previous and current data to provide an overview of the clinical presentation, diagnosis, frequency, and therapeutic management of PDRNP.

METHODS

A review of published literature collected by searching the PubMed and Google-scholar databases using appropriate search terms was performed.

RESULTS

In total, 18 articles dealing with the topic of interest were retrieved (Table 1). Concerning the clinical presentation, patients with PDRNP may complain of motor, sensory, or autonomic symptoms, which can be confirmed by appropriate clinical investigation, autonomic testing, nerve conduction studies (NCSs), and nerve biopsy. In most patients, NCSs revealed an axonal lesion of motor, sensory, or both sensory and motor fibers (Table 1). Hereditary PDRNP is predominantly a large fiber neuropathy, whereas acquired PDRNP manifests frequently as small fiber neuropathy (Table 1). Autonomic testing may reveal cardiovascular autonomic neuropathy or impaired electrochemical skin conductance (3). Thus far, nerve biopsy has not been carried out in patients with PDRNP; therefore, we do not regard nerve biopsy as a cornerstone for diagnosing PDRNP (4) as it is only applied if neuropathy (NP) due to vasculitis, sarcoidosis, amyloidosis, or leprosy is suspected. Although small fiber neuropathy (SFN) can be difficult to diagnose (4), the most sensitive method to detect SFN is skin biopsy (5).

Regarding its etiology, PDRNP is multicausal. It can present due to an underlying genetic defect causing PD and NP, or it may be secondary due to side effects of treatment or concomitant diseases in conjunction with NP (Table 1). Genetic disorders manifesting with PD and NP include mitochondrial disorders (MIDs) (6), spino-cerebellar ataxias (SCAs) (7), and hereditary spastic paraplegia (HSP) (8). An example of an MID manifesting with PDRNP is multisystem MID due to mutations in POLG1 (Table 1) (6). Various mutations in POLG1 that manifest phenotypically with PDRNP have been found (9). In addition to POLG1 variants, mitochondrial PDRNP may also be due to mutations in C10orf22 (twinkle), MPV17, and SLCA2A46, or in mtDNA-related genes (Table 1). An example of a HSP manifesting with PDRNP is HSP39 due to mutations in PNPLA6 (8). An example of SCA manifesting with PDRNP is SCA48 due to mutations in STUB1 (7).

PDRNP may also be caused by long-term usage of L-DOPA. L-DOPA may not only cause vitamin-B12 deficiency (L-DOPA induced vitamin-B12 deficiency), but also folate deficiency (10). The notion that L-DOPA causes vitamin-B12 or folate deficiency, and thus secondary PDRNP, has been challenged by findings from third world countries showing that low vitamin-B12 and folate levels do not play a significant role in the development of PDRNP (11). It has been increasingly recognized that levodopa/carbidopa intestinal gel (LCIG) can be implicated by NP, particularly SFN (12,13). In a study of 33 patients treated with LCIG, three patients developed symptomatic PDRNP and seven developed subclinical PDRNP (13).

Diagnosis of NP relies on the history, clinical exam, blood tests, NCSs, electromyography (EMG), and autonomic testing (4). EMG may serve as a supplementary method to explore the effects of motor neuropathy on the skeletal muscles.
CONCLUSIONS

The etiologic spectrum of PDRNP is wider than anticipated, and genetic causes need to be increasingly considered. Diabetes or anti-Parkinson medications should not be readily considered as the most frequent cause of PDRNP to avoid overlooking genetic causes, and a thorough genetic work-up should be implemented.

REFERENCES

1. Choi JH, Kim JM, Yang HK, Lee HJ, Shin CM, Jeong SJ, et al. Clinical Perspectives of Parkinson’s Disease for Ophthalmologists, Otorhinolaryngologists, Cardiologists, Dentists, Gastroenterologists, Urologists, Psychiatrists, and Psychologists. J Korean Med Sci. 2020;35(28):e230. https://doi.org/10.3346/jkms.2020.35.e230

2. Klingelhofer L, Reichmann H. Parkinson’s disease as a multisystem disorder. J Neural Transm (Vienna). 2017;124(6):709-13. https://doi.org/10.1007/s00429-016-1337-8

3. Huang CC, Lai YR, Lien CY, Cheng BC, Tsai NW, Lu CH. The Role of Electrochemical Skin Conductance as a Screening Test of Cardiovascular Autonomic Neuropathy in Patients with Parkinson’s Disease. Int J Environ Res Public Health. 2020;17(21):7751. https://doi.org/10.3390/ijerph17217751

4. Paul DA, Qureshi AR, Rana AQ. Peripheral neuropathy in Parkinson’s disease. Neurol Sci. 2020;41(10):2691-701. https://doi.org/10.1007/s10072-020-04407-4

5. Saperspin DS. Small Fiber Neuropathy. Neurol Clin. 2020;38(3):607-18. https://doi.org/10.1016/j.ncl.2020.04.001

6. Hsieh PC, Wang CC, Tsai CL, Yeh YM, Lee YS, Wu YR. POLG R964C and SDHB mutations leading to parkinsonism and a phenotypical disorder. J Neurol. 2020;267(9):2749-53. https://doi.org/10.1007/s00415-020-09247-7

7. Mathukumalli NL, Kandadai MR, Shaik JA, Kanikannan MA, Borgohain R. Serum BI2, Homocysteine Levels, and their Effect on Peripheral Neuropathy in Parkinson’s Disease: Indian Cohort. Ann Indian Acad Neurol. 2020;23(1):48-53. https://doi.org/10.4103/ain.AIN_47_18

8. Abbruzzese G, Pigullo S, Schenone A, Bellone E, Marchese R, Di Maria E, et al. FIG4 mutations leading to parkinsonism and a phenotypical disorder (PARK9). Clin Genet. 2012;82(3):256-63. https://doi.org/10.1111/j.1398-0901.2012.01869.x

9. De Michele G, Galatolo D, Barghigiani M, Dello Iacovo D, Trovato R, Tessa A, et al. Spinocerebellar ataxia type 48: last but not least. Neurol Sci. 2020;41(10):2691-701. https://doi.org/10.1007/413-020-09247-7

10. Vatta OM, Tohaneanu N, Pintea S, Perju-Dumbrava L. Large-Fiber Neuropathy in Parkinson’s Disease: Clinical, Biological, and Electroneurographic Assessment of a Romanian Cohort. J Clin Med. 2019;8(10):1533. https://doi.org/10.3390/jcm8101533

11. Rispoli V, Simioni V, Capone JC, Golffre Andreasi N, Preda F, Sette E, et al. Peripheral neuropathy in 30 duodopa patients with vitamins B supplementation. Acta Neurol Scand. 2017;136(6):660-7. https://doi.org/10.1111/ane.12783

12. de Araújo DF, de Melo Neto AP, Oliveira IS, Brito BS, de Araújo IT, Barros IS, et al. Small (autonomic) and large fiber neuropathy in Parkinson disease: Clinical, Biological, and Electroneurographic Assessment of a Romanian Cohort. J Clin Med. 2019;8(10):1533. https://doi.org/10.3390/jcm8101533

13. Menola A, Romagnolo A, Zibetti M, Bernardini A, Coccito D, Lopiano L. Peripheral neuropathy associated with levodopa-carbidopa intestinal infusion: a long-term prospective assessment. Eur J Neurol. 2016;23(3):501-9. https://doi.org/10.1111/ejn.12846

14. Hernandez Fustes OJ, Hernandez Fustes OJ. Sensory Neuropathy in Parkinson Disease: Electrodiagnostic Evaluation. Neurodiagn J. 2020;60(3):177-84. https://doi.org/10.1080/21646821.2020.1796414

15. Rispoli V, Simioni V, Capone JC, Golffre Andreasi N, Preda F, Sette E, et al. Peripheral neuropathy in 30 duodopa patients with vitamins B supplementation. Acta Neurol Scand. 2017;136(6):660-7. https://doi.org/10.1111/ane.12783

16. de Araújo DF, de Melo Neto AP, Oliveira IS, Brito BS, de Araújo IT, Barros IS, et al. Small (autonomic) and large fiber neuropathy in Parkinson disease: Case report and literature review. Brain Behav. 2019;9(5):e10216. https://doi.org/10.1002/bbr2.10216

17. De Michele G, Galatolo D, Barghigiani M, Dello Iacovo D, Trovato R, Tessa A, et al. Spinocerebellar ataxia type 48: last but not least. Neurol Sci. 2020;41(10):2691-701. https://doi.org/10.1007/10.1093/brain/118.5.1077

18. Abbruzzese G, Pigullo S, Schenone A, Bellone E, Marchese R, Di Maria E, et al. Does parkin play a role in the peripheral nervous system? A family report. Mov Disord. 2004;19(8):978-81. https://doi.org/10.1002/mds.12783

19. Greco CM, Berman RE, Martin RM, Tassone F, Schwartz PH, Chang A, et al. Neuropathology of fragile X-associated tremor/ataxia syndrome (FXTAS). Brain. 2006;129(Pt 1):243-55. https://doi.org/10.1093/brain/awh683

20. Giunti P, Sweeney MG, Harding AE. Detection of the Machado-Joseph disease/spinocerebellar ataxia three trinucleotide repeat expansion in families with autosomal dominant motor disorders, including the Drew family of Walworth. Brain. 1995;118(Pt 5):1077-85. https://doi.org/10.1093/brain/118.5.1077

21. Eiberg H, Hansen L, Korbo L, Nielsen IM, Svenstrup K, Bech S, et al. Novel mutation in ATP13A2 widens the spectrum of Kufor-Rakeb syndrome (PARK9). Clin Genet. 2012;82(3):256-63. https://doi.org/10.1111/j.1399-0094.2011.01745.x

22. Zimmermann M, Schuster S, Boesch S, Koenenke GC, Mohr J, Reichbauer J, et al. FIG4 mutations leading to parkinsonism and a phenotypical

Table 1 - Causes of NP in patients with PD.

Etiology	Fiber size	Fiber types	NCSSs	Reference
Acquired				
L-DOPA	LFN	sensory	axonal	(14)
LCIG	SFN	sensory	normal	(12)
Duodopa	LFN	sensory-motor	axonal	(15)
Diabetes	SFN/LFN	sensory-motor	axonal	(16)
Thyroid disease	SFN/LFN	sensory-motor	axonal	(16)
B12-deficiency	SFN/LFN	sensory	axonal	(16)
Hereditary				
PARK2	LFN	sensory, HNPP	axonal	(17)
FMR1	LFN	sensori-motor	axonal	(18)
ATXN3	LFN	sensori-motor	axonal	(19)
ATPL3A2	nr		axonal	(20)
STUB1	LFN	nr		(7)
FIG4	LFN	sensori-motor	demyelinating	(21)
SNCA	SFN	sensory	normal	(22)
GBA	LFN	motor	axonal	(6)
POLG1	LFN	motor	axonal	(6)
C10orf12	LFN	sensory-motor	axonal	(6)
MPV17	LFN	sensori-motor	axonal	(24)
SLC25A46	LFN	sensori-motor	nr	(25)
12S-rRNA	LFN	sensory	axonal	(26)
tRNA(Lys)	LFN	sensory	axonal	(27)
ND4	LFN	nr	axonal	(28)
continuum between CMT4J and Yunis Varón syndrome. Parkinsonism Relat Disord. 2020;74:6-11. https://doi.org/10.1016/j.parkreldis.2020.03.021

22. Carmona-Abellan M, Gabilondo I, Murueta-Goyena A, Khurana V, Tijero B, Luquin MR, et al. Small fiber neuropathy and phosphorylated alpha-synuclein in the skin of E46K-SNCA mutation carriers. Parkinsonism Relat Disord. 2019;65:139-45. https://doi.org/10.1016/j.parkreldis.2019.05.038

23. Baloh RH, Salavaggione E, Milbrandt J, Pestronk A. Familial parkinsonism and ophthalmoplegia from a mutation in the mitochondrial DNA helicase twinkle. Arch Neurol. 2007;64(7):998-1000. https://doi.org/10.1001/archneur.64.7.998

24. Garone C, Rubio JC, Calvo SE, Naini A, Tanji K, Dimauro S, et al. MPV17 Mutations Causing Adult-Onset Multisystemic Disorder With Multiple Mitochondrial DNA Deletions. Arch Neurol. 2012;69(12):1648-51. https://doi.org/10.1001/archneurol.2012.405

25. Bitetto G, Malaguti MC, Ceravolo R, Monfrini E, Straniero L, Morini A, et al. SLC25A46 mutations in patients with Parkinson’s Disease and optic atrophy. Parkinsonism Relat Disord. 2020;74:1-5. https://doi.org/10.1016/j.parkreldis.2020.03.018

26. Thyagarajan D, Bressman S, Bruno C, Przedborski S, Shanske S, Lynch T, et al. A novel mitochondrial 12SrRNA point mutation in parkinsonism, deafness, and neuropathy. Ann Neurol. 2000;48(5):730-6. https://doi.org/10.1002/1531-8249(200001)48:5<730::AID-ANA6>3.0.CO;2-0

27. Horvath R, Kley RA, Lochmüller H, Vorgerd M. Parkinson syndrome, neuropathy, and myopathy caused by the mutation A8344G (MERRF) in tRNALys. Neurology. 2007;68(1):56-8. https://doi.org/10.1212/01.wnl.0000250334.48038.7a

28. Simon DK, Pulst SM, Sutton JP, Browne SE, Beal MF, Johns DR. Familial multisystem degeneration with parkinsonism associated with the 11778 mitochondrial DNA mutation. Neurology. 1999;53(8):1787-93. https://doi.org/10.1212/WNL.53.8.1787