Gastro-intestinal Helminthic Infection in Herbivore Safari at Nandankanan Zoological Park

S. Das¹, M. Dehuri²*, M.R. Panda², N. Sahoo³, B.N. Mohanty² and T. Mahapatra¹

¹Fisheries and Animal Resource Department, Government of Odisha, India
²Department of Veterinary Parasitology, Orissa University of Agriculture and Technology, Bhubaneswar, Odisha, India
³Department of Preventive Medicine and In charge of Regional Centre for Wildlife Health, Orissa University of Agriculture and Technology, Odisha, India

*Corresponding author

A B S T R A C T

A study on the prevalence of gastrointestinal parasites of herbivores was undertaken in herbivore safari at Nandankanan Zoological Park, Odisha by collecting a total number of 509 faecal samples of 4 species which includes Spotted deer (Axis axis), Sambar (Cervus unicolor), Chausingha / four-horned antelope (Tetracerus quadricornis), and Barking deer (Muntiacus muntjac). 210 faecal samples were positive for helminthic infection indicating a total prevalence of 41.26%. Coprological examination of the faecal samples revealed four types of helminths; Amphistomes (17%), Strongyles (16%), Strongyloides sp(2%) and Trichuris sp(1%). The prevalence of gastrointestinal helminths in Sambar, Spotted deer, Barking deer and Chausingha were found to be 68.8%, 42.61%, 17.12% and 16.28% respectively. Highest percentage of infection was observed during the rainy season 56.36% followed by winter (43.75%) and summer (23.81%).

Keywords
Prevalence, Gastrointestinal parasites, Herbivore, Odisha

Introduction

India is unique in having immense natural beauty and possessing a rich and diverse wildlife. Wild animals usually suffer from a wide range of various infectious agents like bacteria, viruses and parasites from time to time. A number of factors threaten the existence of wild animals in our country including wildlife diseases, in particular those arising from gastrointestinal parasites (Thawait and Maiti, 2015). In nature, practically no animal is free from parasites. Inspite of quarantine measures, the parasitized animals when brought from wild to captivity, the new conditions of zoos are usually unfavorable for the animal but favorable to the parasites. Although the wild animals are usually infected with many species of parasites, yet massive death of epizootics because of them rarely occur (Banerjee et al., 2005). Epidemiological studies are essential to
know the status and establish a data base of parasites in wild animals. Our study provides an overview of parasites present in the herbivore safari of Nandankanan Zoological Park.

Materials and Methods

This study was undertaken during August 2015 to July 2016 in Herbivore Safari at Nandankanan Zoological Park. A total of 509 faecal samples were collected randomly from 4 species of wild herbivore viz. Spotted deer (*Axis axis*), Sambar (*Cervus unicolor*), Chausingha or four-horned antelope (*Tetracerus quadricornis*), and Barking deer (*Muntiacus muntjac*). During the study period, 125, 230, 111 and 43 number of faecal samples were collected from Sambar, Spotted Deer, Barking deer and Chausingha respectively. Freshly dropped pooled faecal samples were collected in a clean, dry and individually labeled polythene bag and extreme care was taken to avoid extraneous contamination. The faecal samples were brought to the departmental laboratory for further investigation. Examination of faecal sample was done by Direct smear method, Sedimentation method, Floatation method using MgSO4 and identification was based on morphological features of the parasitic ova (Soulsby, 1982). The counting of eggs was done by Stoll’s dilution technique and Mc Master Technique. Faecal culture was done to know the species of the parasite infecting the herbivores. Statistical analysis were carried out by Statistical Package for Social Science (SPSS) version 22 using chi-square test.

Results and Discussion

Out of the total 509 faecal samples examined, 210 faecal samples were positive for helminthic infection while 299 were negative for presence of any parasitic ova indicating a total prevalence of 41.26%. Faecal sample examination from 210 positive samples, showed 76.66% of samples having single infection while there was presence of mixed infection with two species of helminths in 23.33% of total positive samples. Coprological examination of the faecal samples revealed four types of helminths; Amphistomes (17%), Strongyles (16%), *Strongyloides* sp (2%), *Trichuris* sp (1%). The prevalence of gastrointestinal helminths in Sambar, Spotted deer, Barking deer and four horned antelope were found to be 68.8%, 42.61%, 17.12% and 16.28% respectively.

In sambar, prevalence of amphistomes and strongyles were 45% and 18.4% respectively. There was no record of *Strongyloides* sp and *Trichuris* sp in Sambar, while mixed infection was seen in 5.6 % of positive samples. Strongyles showed highest prevalence (20.43%) in Spotted deer followed by amphistomes (11.3%) and *Trichuris* sp. In Barking deer, the highest prevalence was recorded for ova of strongyles (8.1%) followed by *Strongyloides* sp.(7.21%) while amphistomes showed a mere prevalence of 0.9 % only. Mixed infection was seen in 0.9% of positive samples. In Chausingha, Amphistomes had a higher presence followed by Strongyles and *Strongyloides* sp (Figure 1).

Highest percentage of infection was observed during the rainy season 56.36%, winter prevalence was 43.75% while during summer season there was only 23.81% (Table 1) with high significance in summer and significance during rainy season.

Overall prevalence of gastro-intestinal parasites in Herbivore Safari was 41.26%, which is more or less similar to findings by Mohan and Coumarene (2007) from Puducherry; Sahoo *et al.*, (2009) from the same zoo and Thawait and Maiti (2015) in Kanan Pandari Zoo of Bilaspur. A survey of gastro-intestinal parasites in herbivores by
Gupta *et al.*, 2011 around forests of Jabalpur as well as Rahman *et al.*, (2014) at Dhaka National Zoological Garden detected a much higher prevalence (70-80%). The variation could be due to difference in number and distribution of animals and variation in topography and climatic factors. A lower prevalence of 25.71% was reported by Singh *et al.*, (2006) in wild herbivores at Mahendra Chaudhury Zoological Park, Punjab. The conflicting report might be due to inclusion of more number of animal species (sixteen different herbivore species) and differences in geographical condition. The prevalence of mixed infection was seen in 22.33% of the total sample while Singh *et al.*, 2006 from Punjab reported a higher rate, which could be due to differences in sample size and management condition. The most common infection during our survey was found to be of amphistomes (41%) followed by Strongyles (39%), *Strongyloides* sp (4%) and *Trichuris* sp (3%). In wild herbivores at Mudumalai Wildlife Sanctuary, TamilNadu highest infection of Strongyles (41.7%), followed by amphistomes (15.6%) and *Strongyloides* sp. (11.5%) has been reported by Mandal *et al.*, (2002).

Table 1 Prevalence of gastro-intestinal helminths in different seasons in Herbivore Safari

Name of the Season	No. of total sample collected	No. of Positive samples	No. of negative samples	Chi sqare test (p value)
Rainy	165	93	72	0.02644*
Winter	176	77	99	2.642
Summer	168	40	128	0.0001516**
Total	509	210	299	

Highly significant**(p < 0.01); Significant*(p<0.05); Non-significant (p>0.05)

Fig.1 Prevalence of gastro-intestinal helminths in different animals of herbivore safari
In Van Vihar National Park, Bhopal Singh et al., (2009), noted the highest prevalence for Strongyles (26.15%) followed by Strongyloides sp. (7.13%), amphistomes (1.98%) and Trichuris sp. (1.84%) in free ranging herbivores. The predominance of amphistomes in our study could be due to evidence of presence of snail intermediate host i.e. aquatic snails (Indoplanorbis spp and Lymnea spp) in the fodder farm at the back side of the Safari, from where fodder is supplied to the animals.

As per our research, the overall prevalence of parasites was higher in the rainy season which supports the findings of Modi et al., (1997) in Bihar, Dharmarajan et al., (2005) in South India and Singh et al., (2009) in Bhopal detecting a higher prevalence of parasites in the rainy season in herbivores. The increase can be attributed to higher humidity and favourable condition with increased larval survival and increase in intermediate host population. Jadhav et al., (2010) and Hussain et al., (2002) have reported higher prevalence of gastro-intestinal parasites in rainy season which agrees with our findings in spotted deer.

The study concluded that trematodes and nematodes, though of low intensity were prevalent in the herbivore safari of Nandankanan Zoological Park. The existing infection can be controlled by adopting suitable anthelmintic therapy while ensuring proper administration of drug, along with proper management practices. Elimination of snail intermediate host could also help in reducing the parasitic burden on the animals.

Acknowledgement

The authors are grateful to Sri Sisir Kumar Acharya, Director, Nandankanan Zoological Park for his kind support, helpful suggestion and encouragement during the research work.

References

Ananda, K.J., S. Chandrasekhar, N. Yeshaswari, A.K. Ramesh and M. Devraj. 2012. Proceedings of XXII National Congress of IAAVP and National Symposium on Integrated research Approaches in Veterinary Parasitology from Basic to Molecular Technique, March 15-17, 2012, 28.

Atanaskova, E., Z. Kochevski, J. Stefanovska and G. Nikolovski. 2011. Endoparasites in wild animals at the zoological garden in Skopje, Macedonia, Journal of Threatened Taxa, 3(7): 1955–1958.

Aviruppola, A.J.M.K., R.P.V.J. Rajapakse and R.S. Rajakaruna. 2016. Coprological survey of gastrointestinal parasites of mammals in Dehiwala National Zoological Gardens, Sri Lanka, Ceylon Journal of Science, 45(1): 83-96.

Banerjee, P.S., R. Garg, C.L. Yadav and H. Ram.2005. Parasitic infections in some wild animals of Uttarakhand, Indian Journal of Animal Sciences, 75(2): 206-208.

Bante, S., R.K. Bagherwal and V. Agrawal.2013. Prevalence of Helminth Parasites in Wild Animals of Zoological Park at Indore, Indian Veterinary Journal, 90(7): 84–86.

Barmon, B.C., N. Begum, S.S. Labony, U.K. Kundu, A.R. Dey and T.R. Dey.2014. Study of gastrointestinal parasites of deer at char kukri mukri in Bholag district,Bangladesh Journal of Veterinary Medicine, 12 (1): 27-33.

Borghare, A.T., V.P. Bagde, A.D. Jaulkar, D.D. Katre, P.D Jumde, D.K. Maske and G.N. Bhangale. 2009. Incidence of
gastrointestinal helminthiasis in captive deers at Nagpur, Veterinary World, 2(9): 337-338.

Chhabra, M.B. and K.M.L. Pathak. 2013. An overview of parasites of wildlife in India. I. Herbivores, primates and reptiles, Indian Journal of Animal Sciences, 83(5): 463-472.

Cossio-Bayugar, A., E. Romero, S. Gallina, G. Suzan, and S. Ibanez-Bernal. 2015. Variation of gastro-intestinal parasites in mule deer and cattle in Mapimi Biosphere Reserve, Mexico, Southwestern Naturalist, 60(2/3): 180-185.

Dharmarajan, G., M. Raman, and M.C. John. 2005. Effect of season on helminth loads of wild herbivores and cattle in the Mudumalai wildlife sanctuary, Southern India, Zoo’s Print Journal, 20(2): 1766-1769.

Gorman, T.R., V. Riveros, H.A. Alcaino, D.R. Salas and E.R. Thiermann. 1986. Helminthiasis and toxoplasmosis among exotic mammals at the Santiago National Zoo, Journal of the American Veterinary Medical Association, 189(9): 1068-1070.

Gupta, A., A.K. Dixiit, P.Dixit, C. Mahajan and A.B. Shrivastava. 2011. Incidence of gastro-intestinal parasites in wild ruminants around Jabalpur, India, Journal of Threatened Taxa, 3(11): 2226-2228.

Hussain, K., N.P. Dakshinkar, A.M. Rode, M.D. Kothekar and D.K. Maske. 2002. Prevalence of helminthic infection in axis deer at Nagpur. Indian Vet. J. 79(12): 87-88.

Islam, S.K.M.A., S. Ahmed, M.A. Hoque, M.A. Alim and M.M. Hassan. 2003. Gastrointestinal parasites of captive deer and their response to selected anthelmintics. Bangladesh Veterinary Journal, 37: 63-66.

Jadhav, P., K. Jadhav, P. Chavan, B. Baviskar, and D.K. Maske. 2010. Seasonal variation in prevalence of helminthic infection in the captive spotted deer at Nagpur, Zoo’s Print Journal, XXV(5): 18.

Jaiswal, A., A. Srivastava, V. Sudan, R. Singh, D. Shanker and R. Parashar. 2014. Prevalence of endoparasitic infections in wild cervids of Army Golf Course, Mathura, Journal of Parasitic Diseases, 38(4): 358-360.

Kanungo, S., A. Das, M. Das Gupta, and Shakif-ul-Azam. 2010. Prevalence of gastro-intestinal helminthiasis in captive deer of Bangladesh, Wayamba Journal of Animal Science, 578X (1288421279): 42-45.

Kafil, H., D. B Sarode, N. P. Dakshinkar, A. M. Rode, M. D. Kothekar and D. K. Maske. 2002. Prevalence of helminths infection in axis deer from Nagpur, India, Indian Veterinary Journal, 7: 1313-1314.

Kashid, K.P., G.B. Shrikhande, and G.R. Bhojne. 2003. Incidence of gastrointestinal helminthes in captive wild animals at different locations, Zoo’s print journal, 18(3): 1053-1054.

Khan, I.A., J.D Shaikh, M.K. Kale, V.D. Jadhav, L.B. Dama and Ragade Vinod. 2014. Prevalence of gastro-intestinal parasites in captive animals of Siddhartha garden zoo at Aurangabad city, Maharashtra, India, Trends in Parasitology Research, 3(1): 12-16.

Mandal P., M.G. Jayathangaraj, L. John, B.R. Latha and M. Raman. 2002. Prevalence of helminthic infection in free ranging chital (Axis axis) at Mudumalai Wildlife Sanctuary, Tamil Nadu. Proceedings of the XIII National Congress of Veterinary Parasitology, (February. 14-16), Kolkata.

Modi GS, B.N. Prasad, B.K. Sinha. 1997. Seasonal effect on prevalence of
parasitic zoonotic diseases among zoo animals of Bihar. *Zoos Print* 12: 8-11.

Mohan M. and Coumarane K. 2007. Endoparasitic infection of Spotted Deer (Axis axis) in Puducherry. *Zoo's Print*; 22 (12). P.2952.

Singh P., M.P. Gupta, L.D. Singla, S. Sharma, B.S. Sandhu and D.R.Sharma.2006. Parasitic infections in wild herbivores in the Mahendra Choudhury zoological park, Chhatabir, Punjab, *Zoo's print journal*, 21 (11): 2459-246.

Singh S., A.B. Shrivastav and R.K. Sharma. 2009. The epidemiology of gastrointestinal parasitism and body condition in free-ranging herbivores, *Journal of Threatened Taxa*, 1(10): 535-537.

Rahman S.M., A.R. Dey, U.K. Kundu and N. Begum (2014). Investigation of gastrointestinal parasites of herbivores at Dhaka National Zoological Garden of Bangladesh, *Journal of Bangladesh Agriculture University*, 12 (1): 79–85.

Sahoo N., P.K. Roy, A. Das, R.K. Samantaray, M. Dehuri and K.M.N. Bharti (2009) Gastrointestinal helminthic infection in animals of Nandankanan Zoological Park, *Journal of Veterinary Parasitology*, 23 (1): 95-96.

Thawait Virendra Kumar and S.K. Maiti (2015). Prevalence of gastro-intestinal parasites in captive wild animals of Kanan Pandari Zoo, Bilaspur, *Journal of Animal Research*, 5 (1): 199-202.

How to cite this article:

Das, S., M. Dehuri, M.R. Panda, N. Sahoo, B.N. Mohanty and Mahapatra, T. 2018. Gastro-intestinal Helminthic Infection in Herbivore Safari at Nandankanan Zoological Park. *Int.J.Curr.Microbiol.App.Sci*. 7(08): 1034-1039. doi: https://doi.org/10.20546/ijcmas.2018.708.116