Development and identification of 131 SNP markers in *Sthenoteuthis pteropus* (Steenstrup)

Yan Zhao¹ · Congcong Wang¹,²,³,⁴ · Bilin Liu¹,²,³,⁴ · Gang Li¹,²,³,⁴ · Hao Xu¹

Received: 7 December 2021 / Accepted: 9 September 2022 / Published online: 15 November 2022 © The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract

The orangeback flying squid, *Sthenoteuthis pteropus*, is a species of significant potential value that is widely distributed in the tropical and temperate waters of the Atlantic Ocean. There have been no reports of the population genetics and effective molecular markers for this species due to a lack of reliable information regarding its genetic structure and its many individual differences, as well as its complex and changeable life history. Therefore, the development of auxiliary molecular markers would contribute to the development, sustainable utilization, and protection of the species. In this study, 131 novel single nucleotide polymorphism (SNP) markers were developed by double digest restriction-site associated DNA sequencing (ddRAD-Seq). The observed heterozygosity \((H_o)\) and expected heterozygosity \((H_e)\) ranged from 0.00 to 0.80 and 0.18 to 0.50, respectively. The polymorphism information content (PIC) value ranged from 0.18 to 0.50. None of the marker locations significantly deviated from the Hardy–Weinberg equilibrium \((p > 0.05)\) after a Bonferroni correction. These polymorphic SNPs will be important in the further analysis of the population heredity of *S. pteropus* and its scientific management.

Keywords *Sthenoteuthis pteropus* · SNP markers · Genetic diversity · Double digest restriction-site associated DNA sequencing (ddRAD-Seq)

Sthenoteuthis pteropus, is an economically important species that is widely distributed in the western Atlantic Ocean (from the Madeira Islands to the western Gulf of Guinea) and the eastern Atlantic Ocean (from the Nova Scotia Peninsula to the Gulf of Mexico and the Caribbean) (Merten et al. 2017; Chen et al. 2009). The instantaneous biomass of the species is in the range of 4.2–6.5 million tons, and the annual total biological yield is estimated to be 34–52 million tons, but a dedicated fishery had not yet been established (Merten 2016). Existing studies have mainly focused on the microelement content, age, and growth of *S. pteropus* (Lischka et al. 2018; Laptikhovsky et al. 1993; Arkhipkin and Mikheev 1992). There have been few studies of the population genetics of the species, and corresponding molecular markers have not been developed. It is therefore necessary to study the Atlantic population of *S. pteropus*, especially with regard to its population genetics and the corresponding molecular markers.

In recent years, with the development of double digest restriction-site associated DNA sequencing (ddRAD-Seq), single nucleotide polymorphism (SNP) markers have been widely used in population genetics due to their wide genome coverage, representativeness, and ease of automatic analysis (Xu et al. 2020; Li et al. 2021). There have been few population genetics studies of *S. pteropus*. Therefore, it is necessary to develop and screen a set of easily available SNP loci, which will contribute to the sustainable development and utilization of the species and the conservation of population diversity. In this study, a number of SNP markers...
Table 1 Summary of the 131 SNP markers in *Sthenoteuthis pteropus*

Primer ID	Primer sequences (5–3')	SNP type	Size (bp)	SNP position	PIC	H_0	H_c	P_{HWE}
SNP 1	F: ACGTTGATGATCGCTCTG	C/T	139	89	0.32	0.40	0.32	1.000
	R: ACGTTGATGCGCCACACTCT							
SNP 2	F: ACGTTGATGCGTAATCTG	G/A	139	83	0.18	0.20	0.18	1.000
	R: ACGTTGATGCTGAGAAGACACC							
SNP 3	F: ACGTTGATGCGTAATCTG	C/T	139	89	0.50	0.20	0.50	0.365
	R: ACGTTGATGCGTAATCTG							
SNP 4	F: ACGTTGATGCGTAATCTG	T/A	139	87	0.18	0.20	0.18	1.000
	R: ACGTTGATGCGTAATCTG							
SNP 5	F: ACGTTGATGCGTAATCTG	G/A	140	81	0.18	0.20	0.18	1.000
	R: ACGTTGATGCGTAATCTG							
SNP 6	F: ACGTTGATGCGTAATCTG	A/G	139	85	0.18	0.20	0.18	1.000
	R: ACGTTGATGCGTAATCTG							
SNP 7	F: ACGTTGATGCGTAATCTG	C/T	139	83	0.32	0.00	0.32	0.111
	R: ACGTTGATGCGTAATCTG							
SNP 8	F: ACGTTGATGCGTAATCTG	T/C	139	83	0.18	0.20	0.18	1.000
	R: ACGTTGATGCGTAATCTG							
SNP 9	F: ACGTTGATGCGTAATCTG	A/G	139	81	0.18	0.20	0.18	1.000
	R: ACGTTGATGCGTAATCTG							
SNP 10	F: ACGTTGATGCGTAATCTG	C/G	139	82	0.18	0.20	0.18	1.000
	R: ACGTTGATGCGTAATCTG							
SNP 11	F: ACGTTGATGCGTAATCTG	T/C	139	86	0.18	0.20	0.18	1.000
	R: ACGTTGATGCGTAATCTG							
SNP 12	F: ACGTTGATGCGTAATCTG	G/A	139	82	0.18	0.20	0.18	1.000
	R: ACGTTGATGCGTAATCTG							
SNP 13	F: ACGTTGATGCGTAATCTG	A/C	139	88	0.18	0.20	0.18	1.000
	R: ACGTTGATGCGTAATCTG							
SNP 14	F: ACGTTGATGCGTAATCTG	C/T	139	84	0.40	0.20	0.40	0.333
	R: ACGTTGATGCGTAATCTG							
SNP 15	F: ACGTTGATGCGTAATCTG	G/A	139	91	0.32	0.40	0.32	1.000
	R: ACGTTGATGCGTAATCTG							
SNP 16	F: ACGTTGATGCGTAATCTG	T/C	139	91	0.18	0.20	0.18	1.000
	R: ACGTTGATGCGTAATCTG							
SNP 17	F: ACGTTGATGCGTAATCTG	G/A	140	86	0.18	0.20	0.18	1.000
	R: ACGTTGATGCGTAATCTG							
SNP 18	F: ACGTTGATGCGTAATCTG	G/A	140	86	0.18	0.20	0.18	1.000
	R: ACGTTGATGCGTAATCTG							
SNP 19	F: ACGTTGATGCGTAATCTG	G/A	139	80	0.18	0.20	0.18	1.000
	R: ACGTTGATGCGTAATCTG							
Primer ID	Primer sequences (5–3')	SNP type	Size (bp)	SNP position	PIC	H_o	H_e	P_{HWE}
-----------	-------------------------	----------	----------	--------------	-----	-------	-------	----------
SNP 20	F: ACGTTGGAATTAATCAGTCGACAGGGACTC R: ACGTTGGAATGGCTCCAACAGACCTCCCTTC EXT: taagtgGACCTAAAACCTGAGACTC	T/C	139	86	0.18	0.20	0.18	1.000
SNP 21	F: ACGTTGGAATGGCCACACCTCCTCATAAAAG R: ACGTTGGAATGGCTCAAGGTGGGAAATGACG EXT: ttcattTAGCCACTGACATGCACAC	A/G	140	87	0.18	0.20	0.18	1.000
SNP 22	F: ACGTTGGAATGGGGCTTAAGTGAATAAATC R: ACGTTGGAATGTGTCCTACTCTCCTCTGCTC EXT: ggtGATGACCAAAAGTGAACAC	C/T	139	86	0.42	0.60	0.42	1.000
SNP 23	F: ACGTTGGAATGGGGCTTAAGTGAATAAATC R: ACGTTGGAATGTGTCCTACTCTCCTCTGCTC EXT: ggtGATGACCAAAAGTGAACAC	T/G	139	86	0.18	0.20	0.18	1.000
SNP 24	F: ACGTTGGAATGGGGCTTAAGTGAATAAATC R: ACGTTGGAATGTGTCCTACTCTCCTCTGCTC EXT: ggtGATGACCAAAAGTGAACAC	C/T	139	85	0.42	0.60	0.42	1.000
SNP 25	F: ACGTTGGAATGGGGCTTAAGTGAATAAATC R: ACGTTGGAATGTGTCCTACTCTCCTCTGCTC EXT: ggtGATGACCAAAAGTGAACAC	A/G	140	80	0.18	0.20	0.18	1.000
SNP 26	F: ACGTTGGAATGGGGCTTAAGTGAATAAATC R: ACGTTGGAATGTGTCCTACTCTCCTCTGCTC EXT: ggtGATGACCAAAAGTGAACAC	T/G	140	87	0.18	0.20	0.18	1.000
SNP 27	F: ACGTTGGAATGGGGCTTAAGTGAATAAATC R: ACGTTGGAATGTGTCCTACTCTCCTCTGCTC EXT: ggtGATGACCAAAAGTGAACAC	G/A	139	83	0.32	0.40	0.32	1.000
SNP 28	F: ACGTTGGAATGGGGCTTAAGTGAATAAATC R: ACGTTGGAATGTGTCCTACTCTCCTCTGCTC EXT: ggtGATGACCAAAAGTGAACAC	C/T	140	81	0.18	0.20	0.18	1.000
SNP 29	F: ACGTTGGAATGGGGCTTAAGTGAATAAATC R: ACGTTGGAATGTGTCCTACTCTCCTCTGCTC EXT: ggtGATGACCAAAAGTGAACAC	C/T	140	81	0.18	0.20	0.18	1.000
SNP 30	F: ACGTTGGAATGGGGCTTAAGTGAATAAATC R: ACGTTGGAATGTGTCCTACTCTCCTCTGCTC EXT: ggtGATGACCAAAAGTGAACAC	C/T	140	81	0.18	0.20	0.18	1.000
SNP 31	F: ACGTTGGAATGGGGCTTAAGTGAATAAATC R: ACGTTGGAATGTGTCCTACTCTCCTCTGCTC EXT: ggtGATGACCAAAAGTGAACAC	C/T	140	81	0.18	0.20	0.18	1.000
SNP 32	F: ACGTTGGAATGGGGCTTAAGTGAATAAATC R: ACGTTGGAATGTGTCCTACTCTCCTCTGCTC EXT: ggtGATGACCAAAAGTGAACAC	C/T	140	81	0.18	0.20	0.18	1.000
SNP 33	F: ACGTTGGAATGGGGCTTAAGTGAATAAATC R: ACGTTGGAATGTGTCCTACTCTCCTCTGCTC EXT: ggtGATGACCAAAAGTGAACAC	C/T	140	81	0.18	0.20	0.18	1.000
SNP 34	F: ACGTTGGAATGGGGCTTAAGTGAATAAATC R: ACGTTGGAATGTGTCCTACTCTCCTCTGCTC EXT: ggtGATGACCAAAAGTGAACAC	C/T	140	81	0.18	0.20	0.18	1.000
SNP 35	F: ACGTTGGAATGGGGCTTAAGTGAATAAATC R: ACGTTGGAATGTGTCCTACTCTCCTCTGCTC EXT: ggtGATGACCAAAAGTGAACAC	C/T	140	81	0.18	0.20	0.18	1.000
SNP 36	F: ACGTTGGAATGGGGCTTAAGTGAATAAATC R: ACGTTGGAATGTGTCCTACTCTCCTCTGCTC EXT: ggtGATGACCAAAAGTGAACAC	C/T	140	81	0.18	0.20	0.18	1.000
SNP 37	F: ACGTTGGAATGGGGCTTAAGTGAATAAATC R: ACGTTGGAATGTGTCCTACTCTCCTCTGCTC EXT: ggtGATGACCAAAAGTGAACAC	C/T	140	81	0.18	0.20	0.18	1.000
SNP 38	F: ACGTTGGAATGGGGCTTAAGTGAATAAATC R: ACGTTGGAATGTGTCCTACTCTCCTCTGCTC EXT: ggtGATGACCAAAAGTGAACAC	C/T	140	81	0.18	0.20	0.18	1.000
Table 1 (continued)

Primer ID	Primer sequences (5′–3′)	SNP type	Size (bp)	SNP position	PIC	H_0	H_e	P_{HWE}
SNP 39	F: ACGTTGATGCTTCATGGTTTCTTCCTCTCCG R: ACGTTGATGCCAAGCAGGCTATCAC TTTGTTCTCCTTCTGGTTTCTTCTCTCCG	C/T	140	91	0.18	0.20	0.18	1.000
SNP 40	F: ACGTTGATGCTTCATGGTTTCTTCCTCTCCG R: ACGTTGATGCCAAGCAGGCTATCAC TTTGTTCTCCTTCTGGTTTCTTCTCTCCG	A/G	139	82	0.18	0.20	0.18	1.000
SNP 41	F: ACGTTGATGCTTCATGGTTTCTTCCTCTCCG R: ACGTTGATGCCAAGCAGGCTATCAC TTTGTTCTCCTTCTGGTTTCTTCTCTCCG	A/G	139	82	0.18	0.20	0.18	1.000
SNP 42	F: ACGTTGATGCTTCATGGTTTCTTCCTCTCCG R: ACGTTGATGCCAAGCAGGCTATCAC TTTGTTCTCCTTCTGGTTTCTTCTCTCCG	G/A	140	81	0.32	0.40	0.32	1.000
SNP 43	F: ACGTTGATGCTTCATGGTTTCTTCCTCTCCG R: ACGTTGATGCCAAGCAGGCTATCAC TTTGTTCTCCTTCTGGTTTCTTCTCTCCG	G/A	140	81	0.32	0.40	0.32	1.000
SNP 44	F: ACGTTGATGCTTCATGGTTTCTTCCTCTCCG R: ACGTTGATGCCAAGCAGGCTATCAC TTTGTTCTCCTTCTGGTTTCTTCTCTCCG	G/A	140	81	0.32	0.40	0.32	1.000
SNP 45	F: ACGTTGATGCTTCATGGTTTCTTCCTCTCCG R: ACGTTGATGCCAAGCAGGCTATCAC TTTGTTCTCCTTCTGGTTTCTTCTCTCCG	G/A	140	81	0.32	0.40	0.32	1.000
SNP 46	F: ACGTTGATGCTTCATGGTTTCTTCCTCTCCG R: ACGTTGATGCCAAGCAGGCTATCAC TTTGTTCTCCTTCTGGTTTCTTCTCTCCG	G/A	140	81	0.32	0.40	0.32	1.000
SNP 47	F: ACGTTGATGCTTCATGGTTTCTTCCTCTCCG R: ACGTTGATGCCAAGCAGGCTATCAC TTTGTTCTCCTTCTGGTTTCTTCTCTCCG	G/A	140	81	0.32	0.40	0.32	1.000
SNP 48	F: ACGTTGATGCTTCATGGTTTCTTCCTCTCCG R: ACGTTGATGCCAAGCAGGCTATCAC TTTGTTCTCCTTCTGGTTTCTTCTCTCCG	G/A	140	81	0.32	0.40	0.32	1.000
SNP 49	F: ACGTTGATGCTTCATGGTTTCTTCCTCTCCG R: ACGTTGATGCCAAGCAGGCTATCAC TTTGTTCTCCTTCTGGTTTCTTCTCTCCG	G/A	140	81	0.32	0.40	0.32	1.000
SNP 50	F: ACGTTGATGCTTCATGGTTTCTTCCTCTCCG R: ACGTTGATGCCAAGCAGGCTATCAC TTTGTTCTCCTTCTGGTTTCTTCTCTCCG	G/A	140	81	0.32	0.40	0.32	1.000
SNP 51	F: ACGTTGATGCTTCATGGTTTCTTCCTCTCCG R: ACGTTGATGCCAAGCAGGCTATCAC TTTGTTCTCCTTCTGGTTTCTTCTCTCCG	G/A	140	81	0.32	0.40	0.32	1.000
SNP 52	F: ACGTTGATGCTTCATGGTTTCTTCCTCTCCG R: ACGTTGATGCCAAGCAGGCTATCAC TTTGTTCTCCTTCTGGTTTCTTCTCTCCG	G/A	140	81	0.32	0.40	0.32	1.000
SNP 53	F: ACGTTGATGCTTCATGGTTTCTTCCTCTCCG R: ACGTTGATGCCAAGCAGGCTATCAC TTTGTTCTCCTTCTGGTTTCTTCTCTCCG	G/A	140	81	0.32	0.40	0.32	1.000
SNP 54	F: ACGTTGATGCTTCATGGTTTCTTCCTCTCCG R: ACGTTGATGCCAAGCAGGCTATCAC TTTGTTCTCCTTCTGGTTTCTTCTCTCCG	G/A	140	81	0.32	0.40	0.32	1.000
SNP 55	F: ACGTTGATGCTTCATGGTTTCTTCCTCTCCG R: ACGTTGATGCCAAGCAGGCTATCAC TTTGTTCTCCTTCTGGTTTCTTCTCTCCG	G/A	140	81	0.32	0.40	0.32	1.000
SNP 56	F: ACGTTGATGCTTCATGGTTTCTTCCTCTCCG R: ACGTTGATGCCAAGCAGGCTATCAC TTTGTTCTCCTTCTGGTTTCTTCTCTCCG	G/A	140	81	0.32	0.40	0.32	1.000
SNP 57	F: ACGTTGATGCTTCATGGTTTCTTCCTCTCCG R: ACGTTGATGCCAAGCAGGCTATCAC TTTGTTCTCCTTCTGGTTTCTTCTCTCCG	G/A	140	81	0.32	0.40	0.32	1.000
Table 1 (continued)

Primer ID	Primer sequences (5–3')	SNP type	Size (bp)	SNP position	H_o	H_e	P_{HWE}	
SNP 58	F: ACGTTGAGATGTTGTTCAGATGGAGGTCAGAG	G/A	140	83	0.32	0.00	0.32	0.111
	R: ACGTTGAGATGCTCAAAAATCAAGAAATTTTGAG							
	EXT: cAGGTCAGTGGTTTGGGT							
SNP 59	F: ACGTTGAGATGAGATTTGTTCAGATGGAGGTCAGAG	T/A	140	80	0.18	0.20	0.18	1.000
	R: ACGTTGAGATGCTCAAAAATCAAGAAATTTTGAG							
	EXT: ccATTTGCGTTATATTTGAG							
SNP 60	F: ACGTTGAGATGAGATTTGTTCAGATGGAGGTCAGAG	A/G	139	84	0.18	0.20	0.18	1.000
	R: ACGTTGAGATGCTCAAAAATCAAGAAATTTTGAG							
	EXT: cAGGTAGTGGCGTCTATTATTTGAG							
SNP 61	F: ACGTTGAGATGAGATTTGTTCAGATGGAGGTCAGAG	G/A	139	89	0.18	0.20	0.18	1.000
	R: ACGTTGAGATGCTCAAAAATCAAGAAATTTTGAG							
	EXT: cAGGTAGTGGCGTCTATTATTTGAG							
SNP 62	F: ACGTTGAGATGAGATTTGTTCAGATGGAGGTCAGAG	C/G	140	91	0.18	0.20	0.18	1.000
	R: ACGTTGAGATGCTCAAAAATCAAGAAATTTTGAG							
	EXT: cAGGTAGTGGCGTCTATTATTTGAG							
SNP 63	F: ACGTTGAGATGAGATTTGTTCAGATGGAGGTCAGAG	T/C	140	87	0.18	0.20	0.18	1.000
	R: ACGTTGAGATGCTCAAAAATCAAGAAATTTTGAG							
	EXT: cAGGTAGTGGCGTCTATTATTTGAG							
SNP 64	F: ACGTTGAGATGAGATTTGTTCAGATGGAGGTCAGAG	A/G	140	89	0.18	0.20	0.18	1.000
	R: ACGTTGAGATGCTCAAAAATCAAGAAATTTTGAG							
	EXT: cAGGTAGTGGCGTCTATTATTTGAG							
SNP 65	F: ACGTTGAGATGAGATTTGTTCAGATGGAGGTCAGAG	G/A	140	83	0.18	0.20	0.18	1.000
	R: ACGTTGAGATGCTCAAAAATCAAGAAATTTTGAG							
	EXT: cAGGTAGTGGCGTCTATTATTTGAG							
SNP 66	F: ACGTTGAGATGAGATTTGTTCAGATGGAGGTCAGAG	A/G	139	82	0.18	0.20	0.18	1.000
	R: ACGTTGAGATGCTCAAAAATCAAGAAATTTTGAG							
	EXT: cAGGTAGTGGCGTCTATTATTTGAG							
SNP 67	F: ACGTTGAGATGAGATTTGTTCAGATGGAGGTCAGAG	A/T	139	81	0.50	0.20	0.50	0.365
	R: ACGTTGAGATGCTCAAAAATCAAGAAATTTTGAG							
	EXT: cAGGTAGTGGCGTCTATTATTTGAG							
SNP 68	F: ACGTTGAGATGAGATTTGTTCAGATGGAGGTCAGAG	G/T	139	81	0.18	0.20	0.18	1.000
	R: ACGTTGAGATGCTCAAAAATCAAGAAATTTTGAG							
	EXT: cAGGTAGTGGCGTCTATTATTTGAG							
SNP 69	F: ACGTTGAGATGAGATTTGTTCAGATGGAGGTCAGAG	G/A	140	81	0.18	0.20	0.18	1.000
	R: ACGTTGAGATGCTCAAAAATCAAGAAATTTTGAG							
	EXT: cAGGTAGTGGCGTCTATTATTTGAG							
SNP 70	F: ACGTTGAGATGAGATTTGTTCAGATGGAGGTCAGAG	G/A	140	84	0.18	0.20	0.18	1.000
	R: ACGTTGAGATGCTCAAAAATCAAGAAATTTTGAG							
	EXT: cAGGTAGTGGCGTCTATTATTTGAG							
SNP 71	F: ACGTTGAGATGAGATTTGTTCAGATGGAGGTCAGAG	C/A	140	81	0.18	0.20	0.18	1.000
	R: ACGTTGAGATGCTCAAAAATCAAGAAATTTTGAG							
	EXT: cAGGTAGTGGCGTCTATTATTTGAG							
SNP 72	F: ACGTTGAGATGAGATTTGTTCAGATGGAGGTCAGAG	C/T	139	80	0.18	0.20	0.18	1.000
	R: ACGTTGAGATGCTCAAAAATCAAGAAATTTTGAG							
	EXT: cAGGTAGTGGCGTCTATTATTTGAG							
SNP 73	F: ACGTTGAGATGAGATTTGTTCAGATGGAGGTCAGAG	A/G	140	85	0.18	0.20	0.18	1.000
	R: ACGTTGAGATGCTCAAAAATCAAGAAATTTTGAG							
	EXT: cAGGTAGTGGCGTCTATTATTTGAG							
SNP 74	F: ACGTTGAGATGAGATTTGTTCAGATGGAGGTCAGAG	A/G	140	85	0.18	0.20	0.18	1.000
	R: ACGTTGAGATGCTCAAAAATCAAGAAATTTTGAG							
	EXT: cAGGTAGTGGCGTCTATTATTTGAG							
SNP 75	F: ACGTTGAGATGAGATTTGTTCAGATGGAGGTCAGAG	C/T	139	80	0.18	0.20	0.18	1.000
	R: ACGTTGAGATGCTCAAAAATCAAGAAATTTTGAG							
	EXT: cAGGTAGTGGCGTCTATTATTTGAG							
SNP 76	F: ACGTTGAGATGAGATTTGTTCAGATGGAGGTCAGAG	C/T	140	85	0.18	0.20	0.18	1.000
	R: ACGTTGAGATGCTCAAAAATCAAGAAATTTTGAG							
	EXT: cAGGTAGTGGCGTCTATTATTTGAG							
Primer ID	Primer sequences (5’–3’)	SNP type	Size (bp)	SNP position	H_0	H_e	P_{HWE}	
-----------	--------------------------	----------	----------	--------------	------	------	----------	
SNP 77	F: ACGTTGATGTCCTTTTACTGGATTTCTTC R: ACGTTGATGCGGTAATCTGCAGAAATG EXT: cgtgttggtgtaatagtagtagaa	T/G	140	87	0.18	0.20	0.18	1.000
SNP 78	F: ACGTTGATGAGATGAGTGCTCAGTTAGGC R: ACGTTGATGAGATCTACACAAATTTGTGATG EXT: agttaggctctctcataatagtattagaa	A/G	140	81	0.18	0.20	0.18	1.000
SNP 79	F: ACGTTGATGAGATGAGTGCTCAGTTAGGC R: ACGTTGATGACATCTACACAAATTTGTGATG EXT: ctagctcttcctcataatagtattagaa	T/C	140	82	0.48	0.80	0.48	0.429
SNP 80	F: ACGTTGATGAGATGAGTGCTCAGTTAGGC R: ACGTTGATGAGATCTACACAAATTTGTGATG EXT: agttaggctctctcataatagtattagaa	A/G	140	83	0.32	0.40	0.32	1.000
SNP 81	F: ACGTTGATGAGATGAGTGCTCAGTTAGGC R: ACGTTGATGAGATCTACACAAATTTGTGATG EXT: ctagctcttcctcataatagtattagaa	G/A	139	86	0.32	0.40	0.32	1.000
SNP 82	F: ACGTTGATGAGATGAGTGCTCAGTTAGGC R: ACGTTGATGAGATCTACACAAATTTGTGATG EXT: ctagctcttcctcataatagtattagaa	G/A	139	86	0.32	0.40	0.32	1.000
SNP 83	F: ACGTTGATGAGATGAGTGCTCAGTTAGGC R: ACGTTGATGAGATCTACACAAATTTGTGATG EXT: ctagctcttcctcataatagtattagaa	T/C	139	87	0.48	0.80	0.48	0.051
SNP 84	F: ACGTTGATGAGATGAGTGCTCAGTTAGGC R: ACGTTGATGAGATCTACACAAATTTGTGATG EXT: ctagctcttcctcataatagtattagaa	C/T	140	84	0.48	0.00	0.48	1.000
SNP 85	F: ACGTTGATGAGATGAGTGCTCAGTTAGGC R: ACGTTGATGAGATCTACACAAATTTGTGATG EXT: ctagctcttcctcataatagtattagaa	A/G	139	85	0.32	0.40	0.32	1.000
SNP 86	F: ACGTTGATGAGATGAGTGCTCAGTTAGGC R: ACGTTGATGAGATCTACACAAATTTGTGATG EXT: ctagctcttcctcataatagtattagaa	T/C	139	80	0.18	0.20	0.18	1.000
SNP 87	F: ACGTTGATGAGATGAGTGCTCAGTTAGGC R: ACGTTGATGAGATCTACACAAATTTGTGATG EXT: ctagctcttcctcataatagtattagaa	G/T	140	84	0.18	0.20	0.18	1.000
SNP 88	F: ACGTTGATGAGATGAGTGCTCAGTTAGGC R: ACGTTGATGAGATCTACACAAATTTGTGATG EXT: ctagctcttcctcataatagtattagaa	A/G	139	85	0.32	0.40	0.32	1.000
SNP 89	F: ACGTTGATGAGATGAGTGCTCAGTTAGGC R: ACGTTGATGAGATCTACACAAATTTGTGATG EXT: ctagctcttcctcataatagtattagaa	T/C	139	87	0.18	0.20	0.18	1.000
SNP 90	F: ACGTTGATGAGATGAGTGCTCAGTTAGGC R: ACGTTGATGAGATCTACACAAATTTGTGATG EXT: ctagctcttcctcataatagtattagaa	T/C	139	91	0.32	0.40	0.32	1.000
SNP 91	F: ACGTTGATGAGATGAGTGCTCAGTTAGGC R: ACGTTGATGAGATCTACACAAATTTGTGATG EXT: ctagctcttcctcataatagtattagaa	T/C	139	83	0.18	0.20	0.18	1.000
SNP 92	F: ACGTTGATGAGATGAGTGCTCAGTTAGGC R: ACGTTGATGAGATCTACACAAATTTGTGATG EXT: ctagctcttcctcataatagtattagaa	A/T	140	83	0.18	0.20	0.18	1.000
SNP 93	F: ACGTTGATGAGATGAGTGCTCAGTTAGGC R: ACGTTGATGAGATCTACACAAATTTGTGATG EXT: ctagctcttcctcataatagtattagaa	A/T	140	83	0.18	0.20	0.18	1.000
SNP 94	F: ACGTTGATGAGATGAGTGCTCAGTTAGGC R: ACGTTGATGAGATCTACACAAATTTGTGATG EXT: ctagctcttcctcataatagtattagaa	A/T	140	83	0.18	0.20	0.18	1.000
SNP 95	F: ACGTTGATGAGATGAGTGCTCAGTTAGGC R: ACGTTGATGAGATCTACACAAATTTGTGATG EXT: ctagctcttcctcataatagtattagaa	A/T	140	83	0.18	0.20	0.18	1.000
Primer ID	Primer sequences (5–3')	SNP type	Size (bp)	SNP position	H_0	H_e	P_{HWE}	
-----------	-------------------------	----------	-----------	--------------	-------	-------	-----------	
SNP 96	F: ACGTTGAGTGGCGGAGAAATAGCAGACC R: ACGTTGAGTGGCGGAGAAATAGCAGACC EXT: tctccAAATAGCGGAGAAGGCAGACCA	A/G	140	89	0.18	0.20	0.18	1.000
SNP 97	F: ACGTTGAGTGGCGGAGAAATAGCAGACC R: ACGTTGAGTGGCGGAGAAATAGCAGACC EXT: tctccAAATAGCGGAGAAGGCAGACCA	T/A	139	83	0.18	0.20	0.18	1.000
SNP 98	F: ACGTTGAGTGGCGGAGAAATAGCAGACC R: ACGTTGAGTGGCGGAGAAATAGCAGACC EXT: tctccAAATAGCGGAGAAGGCAGACCA	C/T	139	83	0.18	0.20	0.18	1.000
SNP 99	F: ACGTTGAGTGGCGGAGAAATAGCAGACC R: ACGTTGAGTGGCGGAGAAATAGCAGACC EXT: tctccAAATAGCGGAGAAGGCAGACCA	G/A	139	83	0.18	0.20	0.18	1.000
SNP 100	F: ACGTTGAGTGGCGGAGAAATAGCAGACC R: ACGTTGAGTGGCGGAGAAATAGCAGACC EXT: tctccAAATAGCGGAGAAGGCAGACCA	T/C	140	89	0.18	0.20	0.18	1.000
SNP 101	F: ACGTTGAGTGGCGGAGAAATAGCAGACC R: ACGTTGAGTGGCGGAGAAATAGCAGACC EXT: tctccAAATAGCGGAGAAGGCAGACCA	T/G	139	82	0.18	0.20	0.18	1.000
SNP 102	F: ACGTTGAGTGGCGGAGAAATAGCAGACC R: ACGTTGAGTGGCGGAGAAATAGCAGACC EXT: tctccAAATAGCGGAGAAGGCAGACCA	G/A	140	88	0.18	0.20	0.18	1.000
SNP 103	F: ACGTTGAGTGGCGGAGAAATAGCAGACC R: ACGTTGAGTGGCGGAGAAATAGCAGACC EXT: tctccAAATAGCGGAGAAGGCAGACCA	C/A	139	80	0.18	0.20	0.18	1.000
SNP 104	F: ACGTTGAGTGGCGGAGAAATAGCAGACC R: ACGTTGAGTGGCGGAGAAATAGCAGACC EXT: tctccAAATAGCGGAGAAGGCAGACCA	C/T	140	84	0.18	0.20	0.18	1.000
SNP 105	F: ACGTTGAGTGGCGGAGAAATAGCAGACC R: ACGTTGAGTGGCGGAGAAATAGCAGACC EXT: tctccAAATAGCGGAGAAGGCAGACCA	T/C	139	91	0.18	0.20	0.18	1.000
SNP 106	F: ACGTTGAGTGGCGGAGAAATAGCAGACC R: ACGTTGAGTGGCGGAGAAATAGCAGACC EXT: tctccAAATAGCGGAGAAGGCAGACCA	A/T	140	86	0.18	0.20	0.18	1.000
SNP 107	F: ACGTTGAGTGGCGGAGAAATAGCAGACC R: ACGTTGAGTGGCGGAGAAATAGCAGACC EXT: tctccAAATAGCGGAGAAGGCAGACCA	C/A	139	82	0.18	0.20	0.18	1.000
SNP 108	F: ACGTTGAGTGGCGGAGAAATAGCAGACC R: ACGTTGAGTGGCGGAGAAATAGCAGACC EXT: tctccAAATAGCGGAGAAGGCAGACCA	T/A	140	80	0.18	0.20	0.18	1.000
SNP 109	F: ACGTTGAGTGGCGGAGAAATAGCAGACC R: ACGTTGAGTGGCGGAGAAATAGCAGACC EXT: tctccAAATAGCGGAGAAGGCAGACCA	T/G	140	91	0.32	0.00	0.32	0.111
SNP 110	F: ACGTTGAGTGGCGGAGAAATAGCAGACC R: ACGTTGAGTGGCGGAGAAATAGCAGACC EXT: tctccAAATAGCGGAGAAGGCAGACCA	T/A	139	93	0.42	0.06	0.42	1.000
SNP 111	F: ACGTTGAGTGGCGGAGAAATAGCAGACC R: ACGTTGAGTGGCGGAGAAATAGCAGACC EXT: tctccAAATAGCGGAGAAGGCAGACCA	T/C	139	83	0.32	0.00	0.32	0.111
SNP 112	F: ACGTTGAGTGGCGGAGAAATAGCAGACC R: ACGTTGAGTGGCGGAGAAATAGCAGACC EXT: tctccAAATAGCGGAGAAGGCAGACCA	A/G	140	88	0.18	0.20	0.18	1.000
SNP 113	F: ACGTTGAGTGGCGGAGAAATAGCAGACC R: ACGTTGAGTGGCGGAGAAATAGCAGACC EXT: tctccAAATAGCGGAGAAGGCAGACCA	T/A	139	88	0.18	0.20	0.18	1.000
SNP 114	F: ACGTTGAGTGGCGGAGAAATAGCAGACC R: ACGTTGAGTGGCGGAGAAATAGCAGACC EXT: tctccAAATAGCGGAGAAGGCAGACCA	A/G	139	82	0.32	0.40	0.32	1.000
Primer ID	Primer sequences (5–3')	SNP type	Size (bp)	SNP position	H_o	H_e	P_{HWE}	
-----------	-------------------------	----------	-----------	--------------	--------	--------	-----------	
SNP 115	F: ACGTGTGGATGGCAAGCTGTAGCCGACACC R: ACGTGTGGATGGCAAGCTGTAGCCGACACC EXT: GGTCTACATAGTATGTAGCC	G/A	140	91	0.18	0.20	0.18	1.000
SNP 116	F: ACGTGTGGATGGCAAGCTGTAGCCGACACC R: ACGTGTGGATGGCAAGCTGTAGCCGACACC EXT: gAGAGCATAATGTGAAACAG	A/G	139	80	0.18	0.20	0.18	1.000
SNP 117	F: ACGTGTGGATGGCAAGCTGTAGCCGACACC R: ACGTGTGGATGGCAAGCTGTAGCCGACACC EXT: tctctGGAAAACCCCCACTCTAC	A/G	139	80	0.18	0.20	0.18	1.000
SNP 118	F: ACGTGTGGATGGCAAGCTGTAGCCGACACC R: ACGTGTGGATGGCAAGCTGTAGCCGACACC EXT: ctctacCTGAAAGCAGCTTTTGC	C/T	139	87	0.32	0.40	0.32	1.000
SNP 119	F: ACGTGTGGATGGCAAGCTGTAGCCGACACC R: ACGTGTGGATGGCAAGCTGTAGCCGACACC EXT: AAGTATAGCTGAACTTAACT	A/G	140	84	0.18	0.20	0.18	1.000
SNP 120	F: ACGTGTGGATGGCAAGCTGTAGCCGACACC R: ACGTGTGGATGGCAAGCTGTAGCCGACACC EXT: AAGTATAGCTGAACTTAACT	A/C	139	86	0.18	0.20	0.18	1.000
SNP 121	F: ACGTGTGGATGGCAAGCTGTAGCCGACACC R: ACGTGTGGATGGCAAGCTGTAGCCGACACC EXT: AAGTATAGCTGAACTTAACT	G/T	139	85	0.32	0.00	0.32	0.111
SNP 122	F: ACGTGTGGATGGCAAGCTGTAGCCGACACC R: ACGTGTGGATGGCAAGCTGTAGCCGACACC EXT: AAGTATAGCTGAACTTAACT	A/T	139	88	0.18	0.20	0.18	1.000
SNP 123	F: ACGTGTGGATGGCAAGCTGTAGCCGACACC R: ACGTGTGGATGGCAAGCTGTAGCCGACACC EXT: AAGTATAGCTGAACTTAACT	C/A	140	82	0.18	0.20	0.18	1.000
SNP 124	F: ACGTGTGGATGGCAAGCTGTAGCCGACACC R: ACGTGTGGATGGCAAGCTGTAGCCGACACC EXT: AAGTATAGCTGAACTTAACT	G/T	140	85	0.18	0.20	0.18	1.000
SNP 125	F: ACGTGTGGATGGCAAGCTGTAGCCGACACC R: ACGTGTGGATGGCAAGCTGTAGCCGACACC EXT: AAGTATAGCTGAACTTAACT	G/T	139	88	0.18	0.20	0.18	1.000
SNP 126	F: ACGTGTGGATGGCAAGCTGTAGCCGACACC R: ACGTGTGGATGGCAAGCTGTAGCCGACACC EXT: AAGTATAGCTGAACTTAACT	C/T	140	86	0.32	0.00	0.32	0.111
SNP 127	F: ACGTGTGGATGGCAAGCTGTAGCCGACACC R: ACGTGTGGATGGCAAGCTGTAGCCGACACC EXT: AAGTATAGCTGAACTTAACT	C/A	139	88	0.18	0.20	0.18	1.000
SNP 128	F: ACGTGTGGATGGCAAGCTGTAGCCGACACC R: ACGTGTGGATGGCAAGCTGTAGCCGACACC EXT: AAGTATAGCTGAACTTAACT	C/A	140	83	0.18	0.20	0.18	1.000
SNP 129	F: ACGTGTGGATGGCAAGCTGTAGCCGACACC R: ACGTGTGGATGGCAAGCTGTAGCCGACACC EXT: AAGTATAGCTGAACTTAACT	T/G	139	9	0.20	0.18	0.18	1.000
SNP 130	F: ACGTGTGGATGGCAAGCTGTAGCCGACACC R: ACGTGTGGATGGCAAGCTGTAGCCGACACC EXT: AAGTATAGCTGAACTTAACT	A/G	139	82	0.18	0.20	0.18	1.000
SNP 131	F: ACGTGTGGATGGCAAGCTGTAGCCGACACC R: ACGTGTGGATGGCAAGCTGTAGCCGACACC EXT: AAGTATAGCTGAACTTAACT	T/A	139	93	0.32	0.00	0.32	0.111

Primer sequences for each locus including a forward primer (F), a reverse Primer (R) and an extension primer (EXT). H_o observed heterozygosity, H_e expected heterozygosity, P_{HWE} the P value of the departures from Hardy–Weinberg equilibrium.
of *S. pteropus* were developed and effectively identified by ddRAD-Seq.

Muscle samples of 55 *S. pteropus* individuals were collected in the Middle East Atlantic Ocean (*n* = 55, 1° 12’ W–8° 00’ W, 1°16’–S–5°01’ S). Genomic DNA was extracted by the phenol–chloroform method (Russell and Sambrook, 2001). The quality of DNA was determined by 0.8% agarose gel electrophoresis, and DNA was quantified using a UV spectrophotometer. Five *S. pteropus* individuals were randomly selected for database construction following ddRAD-Seq, and the ddRAD-Seq libraries were performed following two restriction enzymes (*DpnII* and *BfaI*, New England Biolabs, NEB, USA) digesting the double-strand genomic DNA for several fragments with size of a range of 500–600 bp. A sample-specific adapter was ligated to the end of digested fragments and then pooled together. After filtration, about 500 bp of fragments were remained in the pooled mixture. The target ddRAD-Seq tags were amplified with specific primer to produce the final 220–450 bp size product for constructing sequencing library (Wang et al. 2010), and Illumina NovaSeq™ and PE150 was used for sequencing. A total of 16.92 G raw data were obtained by Illumina double-terminal sequencing, with an average of 3.38 G per sample. The base quality, Q30, reached 91.37% of reads. After resetting the screening parameters, the minor allele frequencies (MAF) were 0.05–0.10, the deletion rate was ≤ 0.05, and the minimum sequencing depth was 5, with a total of 1896 SNPs obtained. To improve the reliability, we screened SNP loci from 70 to 90 bp and retained 131 SNP markers. The 131 SNP markers were detected by a multiplex polymerase chain reaction (PCR) using 50 *S. pteropus* individuals. The PCR amplification primers and single base extension primers were designed using the Massarray Assay Design software (Sequenom, San Diego, CA, USA). The PCR reaction system included 1 μL DNA (10–30 ng/μL), 0.25 μL of each primer, and 1.1 μL PCR mix, with ddH2O added to 5 μL of the final mixture. The PCR reaction conditions were as follows: 94 °C for 3 min, then 40 cycles of 94 °C for 30 s, an annealing temperature of 56 °C for 25 s, an extension at 72 °C for 30 s, and a final extension at 72 °C for 3 min, with the reaction saved at 4 °C. The amplified products were detected by a Massarray Analyzer Compac Mass spectrometer (Sequenom), the results were analyzed using TYPER software, and SNP markers were detected by the SNP typing results. For the validated sequence of SNPs, observed heterozygosity (*H*o) and expected heterozygosity (*He*) were calculated using the Stacks Pipeline analysis tool and the population computing program (Catchen et al. 2013). The polymorphism information content (PIC) value and Hardy–Weinberg equilibrium were estimated and tested using PowerMarker V3.25 software (Liu and Muse, 2005). The linkage disequilibrium (LD) was calculated using PLINK 2.0 Alpha software (Chang et al. 2015).

All 131 SNP loci were detected in 50 *S. pteropus* individuals, and the 131 potential SNP markers were polymorphic and biallelic (Supplementary Table 1). The statistics of genetic diversity are shown in Table 1. The ranges of *Ho* and *He* were 0.00 to 0.80 and 0.18 to 0.50, respectively. The PIC ranged from 0.18 to 0.50. After a Bonferroni correction, all loci were in accordance with the Hardy–Weinberg equilibrium. No significant LD was detected. To the best of our knowledge, this is the first SNP marker developed for *S. pteropus*. These new SNP markers will enable further population genetics analysis and a better understanding of this important species, which will lead to the use of *S. pteropus* resources and the protection of its population.

Supplementary Information The online version of this article contains supplementary material available https://doi.org/10.1007/s12686-022-01293-0.

Author contributions YZ carried out all the experiments; CW and HX designed the methods and experiments, interpreted the results and finished the discussion. BL and GL were responsible for overall supervision, and participated in coordination. All authors read and approved the final manuscript.

Funding This work was sponsored by the National Key R&D Program of China (2019YFD0901404), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning under contract 0810000243, the National Nature Science Foundation of China (41876141) and the Shanghai Science and Technology Innovation Action Plan (19DZ1207502).

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Ethical approval Experimental protocols involving live animals were approved by the Ethics Committee for the Use of Animal Subjects of Shanghai Ocean University.

References

Arkhipkin A, Mikheev A (1992) Age and growth of the squid *Sthenoteuthis pteropus* (Oegopsida: Ommastrephidae) from the Central-East Atlantic. J Exp Mar Biol Ecol 163(2):261–276. https://doi.org/10.1016/0022-0981(92)90054-E

Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA (2013) Stacks: an analysis tool set for population genomics. Mol Ecol Res 13:520–533. https://doi.org/10.1111/1755-0998.12029

Chang CC, Chow CC, Cam TL, Shashaan K, Purcell SM, Lee JJ (2015) Second-generation PLINK: rising to the challenge of larger and richer datasets. Giga Science 4(1):7. https://doi.org/10.1186/s13742-015-0047

Chen XJ, Liu BL, Wang YG (2009) Cephalopods of the world. China Ocean Press.

Laptikhovsky VV, Arkhipkin AI, Golub AA (1993) Larval age, growth and mortality in the oceanic squid *Sthenoteuthis pteropus* (Cephalopoda, Ommastrephidae) from the eastern tropical Atlantic. J...
Li XL, Hu XX, Lu HJ, Liu Y, Wang CC (2021) Development and validation of 107 SNP markers in Todarodes pacificus (Ommastrephidae). Conserv Genet Resour 13:417–424. https://doi.org/10.1007/s12686-021-01227-2

Lischka A, Lacoue-Labarthe T, Hoving H, Javidpour J, Pannell JL, Merten V, Churlaud C, Bustamante P (2018) High cadmium and mercury concentrations in the tissues of the orange-back flying squid, Sthenoteuthis pteropus, from the tropical Eastern Atlantic. Ecotoxicology & Environmental Safety 163(NOV):323–330. https://hal.archives-ouvertes.fr/hal-02014990

Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21(9):2128–2129. https://doi.org/10.1093/bioinformatics/bti282

Merten V, Christiansen B, Javidpour J, Piatkowski U, Puebla O, Gasca R, Hoving HT (2017) Diet and stable isotope analyses reveal the feeding ecology of the orangeback squid Sthenoteuthis pteropus (steenstrup 1855) (mollusca, ommastrephidae) in the eastern tropical atlantic. PLoS ONE 12(12):e0189691. https://doi.org/10.1371/journal.pone.0189691

Merten VJ (2016) The trophic ecology of the oceanic orangeback squid Sthenoteuthis pteropus (Steenstrup) in the eastern tropical Atlantic.

Russell D, Sambrook J (2001) Molecular Cloning: A Laboratory Manual.

Wang K, Li M, Hakonarson H (2010) ANNOVAR: Functional annotation of genetic variants from next-generation sequencing data. Nucleic Acids Res 38:e164. https://doi.org/10.1093/nar/gkq603

Xu H, Wang CC, Liu Y, Liu BL, Li G (2021) Development and characterization of 101 SNP markers in jumbo flying squid, Dosidicus gigas. Conserv Genet Resour 13:13–20. https://doi.org/10.1007/s12686-020-01177-1

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.