Title	Crystal structure of 1-aminocyclopropane-1-carboxylate deaminase from Hansenula saturnus
Author(s)	Yao, Min; Ose, T.; Sugimoto, Hiroshi; Horiuchi, Atsushi; Nakagawa, Atushi; Wakatsuki, Soichi; Yokoi, Daisuke; Murakami, Toyotaka; Honma, Mamoru; Tanaka, Isao
Citation	Journal of Biological Chemistry. 275(44) P.34557-P.34565
Issue Date	2000-11
Text Version	publisher
URL	http://hdl.handle.net/11094/73646
DOI	10.1074/jbc.M004681200
rights	© the American Society for Biochemistry and Molecular Biology.
Note	
Crystal Structure of 1-Aminocyclopropane-1-carboxylate Deaminase from Hansenula saturnus*

Received for publication, May 31, 2000, and in revised form, August 6, 2000
Published, JBC Papers in Press, August 10, 2000, DOI 10.1074/jbc.M004681200

Min Yao†, T. Ose‡, Hiroshi Sugimoto‡, Atsushi Horiuchi‡, Atsushi Nakagawa§§
Soichi Wakatsuki†, Daisuke Yokoi†, Toyotaka Murakami¶, Mamoru Honma¶, and Isao Tanaka$$$*

From the †Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan, the ‡Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan, and the §European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex, France

The pyridoxal 5′-phosphate (PLP)-dependent enzyme 1-aminocyclopropane-1-carboxylate deaminase (ACCD) catalyzes a reaction that involves a ring opening of cyclopropanoid amino acid, yielding α-ketobutyrate and ammonia. Unlike other PLP-dependent enzymes, this enzyme has no α-hydrogen atom in the substrate. Thus, a unique mechanism for the bond cleavage is expected. The crystal structure of ACCD from Hansenula saturnus has been determined at 2.0 Å resolution by the multiple wavelength anomalous diffraction method using mercury atoms as anomalous scatterers. The model was built on the electron density map, which was obtained by the density averaging of multiple crystal forms. The final model was refined to an R-factor of 22.5% and an Rfre, of 26.8%. The ACCD folds into two domains, each of which has an open twisted α/β structure similar to the β-subunit of tryptophan synthase. However, in ACCD, unlike in other members of the β family of PLP-dependent enzymes, PLP is buried deep in the molecule. The structure provides the first view of the catalytic center of the cyclopropane ring opening.

A pyridoxal 5′-phosphate (PLP)1-dependent enzyme, 1-amino cyclopropane-1-carboxylate deaminase (ACCD), was originally found in a soil bacterium Pseudomonas sp. strain ACP as an enzyme that degrades a cyclopropanoid amino acid 1-amino cyclopropane-1-carboxylic acid (ACC) to α-ketobutyrate and ammonia (1) (Fig. 1). ACC is known to be a key intermediate in the biosynthesis of a plant hormone ethylene that affects diverse growth and fruit ripening (2). In higher plants, ethylene biosynthesis starts with the S-adenosylation of methionine in order to give S-adenosylmethionine. This step is followed by the closing a cyclopropane ring to form ACC, which is then oxidatively cleaved to give ethylene (3). The introduction of ACCD in higher plants by gene technology reduces the production level of ethylene and delays the ripening progression of fruits (4, 5). Thus, this enzyme provides a way to regulate ethylene biosynthesis and plant ripening.

PLP-dependent enzymes catalyze many important reactions that act upon amino acids, including transamination, decarboxylation, β,γ-replacement/elimination, and racemization (6, 7). In all of these reactions (except in the case of the glycogen phosphorylase family), the two basic chemical properties of the PLP are conserved; it forms an external aldimine between its aldehyde group and the α-amino group of the substrates and withdraws electrons from the substrate by serving as an electron sink (7). As a PLP-dependent enzyme, the ACCD’s ring-opening reaction starts with a transformation reaction from an internal aldime between the PLP and the enzyme to an external aldime. In most of the PLP-dependent enzymes, the next step is the nucleophilic abstraction of the α-substituent, either an α-proton or a carboxylate group, to form an α-carbanionic intermediate. This reaction mechanism cannot be applied to ACCD because the substrate (ACC) does not contain α-hydrogen and the carboxyl group is retained in the product. Therefore, the ring-opening reaction of ACC must be initiated without obvious accessibility to an α-carbanionic intermediate, which is, for PLP-dependent enzymes, the common entry for catalysis. One proposed reaction mechanism is the nucleophilic addition to Cα, followed by the cleavage of the Cα-Cβ bond and β-proton abstraction. Because PLP acts as an electron sink, external aldime is fairly electrophilic, and the nucleophilic addition to Cα to rupture the cyclopropane ring of ACC is mechanistically feasible (8, 9).

To understand such a reaction mechanism on a molecular basis, a knowledge of the three-dimensional structure of the enzyme is necessary. The ACC deaminases from the bacterium Pseudomonas sp. (bACCD; EC 4.1.99.4) and the yeast Hansenula saturnus (yACCD; EC 4.1.99.2) have been well characterized (1, 10). These two kinds of ACCD perform the same activities and have amino acid sequences that are 60% identical. Although the bACCD has an estimated molecular weight that corresponds to the trimeric form of a single polypeptide chain of 338 amino acid residues, the yACCD has a molecular weight that corresponds to the dimeric form of a single polypeptide chain of 341 amino acid residues with a molecular mass of 37,500 Da (11). Both proteins have a tightly bound PLP as a cofactor per monomer. We have also purified both proteins from an overexpressing clone of Escherichia coli and crystallized them in earlier studies (12, 13). The crystals of yACCD are the...
more appropriate for diffraction study. Here we present the structure of the yACCD, which was determined by the multiple wavelength anomalous diffraction (MAD) method using mercury atoms as anomalous scatterers.

EXPERIMENTAL PROCEDURES

Crystallization and Data Collection—The yACCD was purified and crystallized as described previously (11, 13). Mercury derivatives of yACCD were obtained by co-crystallization with 0.5 mM p-hydroxymercuribenzenesulfonate (PHMBS) using the hanging drop vapor diffusion method. Two crystal forms appeared under crystallization conditions that were identical except for their protein concentrations; the orthorhombic form appeared with a protein concentration of 10 mg/ml, and the trigonal form appeared with a protein concentration of 20 mg/ml. The orthorhombic and the trigonal form diffracted 2.8 and 2.5 Å resolutions, respectively.

Since only one useful mercury derivative of yACCD was found, and because non-isomorphism between the native and derivative crystals is considerable, we decided to use the MAD technique rather than the single isomorphous replacement method with anomalous scattering. The native data set of 2.0 Å and the MAD data set of 2.5 Å of the orthorhombic form were collected on the MAD beamline BM14 using a MAR imaging plate at the European Synchrotron Radiation Facility, Grenoble, France. Based on the fluorescence spectrum of the mercury atom, three different wavelengths (1.0063 Å (peak), 1.0866 Å (edge), and 0.9183 Å (remote)) were chosen for MAD phasing.

For the mercury derivative of the trigonal form, MAD data were collected at the BL18B station of Factory, Tsukuba, Japan, with a Weissenberg camera (14) using two different wavelengths (1.0090 Å (edge) and 0.9800 Å (peak)), which were chosen at the L-III edge. All data sets were collected from frozen crystals at 100 K and integrated by DENZO (15). Scaling was calculated by SCALEPACK (15) for the orthorhombic form and by the CCP4 program package (16) for the trigonal form. The data collection and processing statistics are shown in Table I.

RESULTS AND DISCUSSION

Structure Description—Native yACCD was crystallized in the orthorhombic form of the space group P212121, with unit cell dimensions of a = 65.7 Å, b = 268.5 Å, and c = 187.2 Å. Attempts to co-crystallize it with mercury derivatives (PHMBS) have led to two crystal forms; the first form is nearly isomorphous with the native crystals (cell dimensions are a = 65.4 Å, b = 268.3 Å, and c = 186.6 Å), and the second belongs to trigonal space group P321, with cell dimensions of a = b = 79.4 Å, c = 243.6 Å, and γ = 120°. The asymmetric unit of C222 crystals contains two dimers with a solvent content of 59% (V_M = 2.98), while P321 crystals contain one dimer of yACCD in the asymmetric unit with a solvent content of 62% (V_M = 3.21). The structure of yACCD was determined by the MAD method using mercury atoms as described under “Experimental Procedures.” The structure was refined against the diffraction data of native C222, crystals.

The yACCD monomer consists of two domains of different sizes. We refer to them as the small domain (residues 58–169) and the PLP-binding domain (residues 1–57 and 170–341) (Fig. 2). The secondary structure of the yACCD monomer as defined by the program DSSP (27) is shown in Figs. 3 and 5. The enzyme consists of 42.8% helical (including 31α-helix), 15.8% β-strand, 21.4% turn, and 20.8% unclassified coil structures. The small domain folds as an open twisted α/β structure consisting of a central four-stranded (C–F) parallel β-sheet and

![Table I](https://example.com/TableI)

	Native	PHMBS co-crystal form 1	PHMBS co-crystal form 2
	Edge	Peak	Remote
Wavelength (Å)	1.0090	1.0086	0.9183
Resolution (Å)	100 - 2.0	100 - 2.8	100 - 2.8
Space group	C222,	C222,	P321
Number of observed reflections	1,000,373	391,853	386,365
Complement (%)	98.6 (96.3)	95.5 (88.4)	97.1 (85)
Averaged redundancy	9.08 (3.9)	9.89 (3.07)	9.55 (2.87)
Average I/σ(I)	14.6	11.1	11.9

*Values in parentheses are for the outermost resolution shell.
*a R_merge = Σ_iΣ_j |F_i,j| - |F_i,j|/Σ_iΣ_j |F_i,j|, where |F_i,j| is the mean intensity of symmetry-equivalent reflections. Friedel pairs were merged as individual data.
Structure of ACC Deaminase from *H. saturnus*

The summary of phase calculation

Resolution (Å)	PHMBS co-crystal form 1	PHMBS co-crystal form 2
20.0 – 2.5	20.0 – 2.5	
Space group	C222	*P*3₁21
MAD phasing		
*R*_{calc}		
*R*_{free}		
Phasing power _{iso}		
Phasing power _{ano}		
FOM		
Averaging within a crystal form		
FOM		
CC		
R-factor		
Averaging between crystal forms		
FOM		
CC		
R-factor		

Resolution range (Å)	15.0 – 2.0
Number of reflections	101,968 (F > 3.4σ)
Completeness (%)	90.38
Total number of non-hydrogen atoms	
Protein	2607 ± 4
Others	20 ± 4
Solvent	939
R-factor (%)	22.99
*R*_{free}-factor (%)	26.77
r.m.s. deviation from standard values	
Bonds (Å)	0.006
Bond angles (degrees)	1.256
Average B-factor (Å²)	
Main chain	51.0
Side chain	51.8
Others	45.7
Solvent	
Ramachandran plot^c	
Residues in most favored regions (%)	86.2
Residues in additional allowed regions (%)	13.1
Residues in generously allowed regions (%)	0.7
Residues in disallowed regions (%)	0
r.m.s. deviation (C is base) (Å)	0.6566
Overall	0.6475

^a *R*_{calc} is the mean residual lack of closure error divided by dispersive difference. Values are for centric reflections.

^b Phasing power _{iso} is the root mean square of *F*_{iso}*E*, where *F*_{iso} is the dispersive difference of *F*_{obs} and *E* is the lack of closure error.

^c Phasing power _{ano} is as for phasing power _{iso}, except that *F*_{ano} is the anomalous difference of *F*_{obs}.

^d CC is standard linear correlation coefficient between observed and calculated structure factor amplitudes.

^e *R*_{free}-factor value was calculated for *R*-factor, using only an unrefined subset of reflections data (10%).

^f Anisotropic *R*-factor was calculated for overall molecule. It was applied to reflection data by CNS.

^g Ramachandran plot was calculated by PROCHECK (35).

Structure of ACC Deaminase from *H. saturnus*

The four surrounding helices (helices 3–6) (Fig. 2). The PLP-binding domain contains seven α-helices (helices 1, 2, and 7–11), one 3₁₀-helix 12, and six β-strands (A, B, and G–J). The core of this domain is an open twisted α/β structure with a central β-sheet surrounded by four helices (helices 7–9 and 11), similar to the small domain. The central β-sheet is basically parallel, but one terminal short strand, strand A, is antiparallel. These strands are strongly twisted so as to make the sixth strand nearly perpendicular to the first. There is a crevice at the carboxyl ends of the β-strands G and J, which makes a space for bound PLP. Except for α-helices 2 and 10, all α-helices of the two domains have a chain direction toward the molecular surface, and all β-strands are directed toward the molecular center. The 3₁₀-helix 12 at the C terminus consists of 11 residues with a kink in the middle. The 3₁₀-helix is energetically unfavorable, and only short pieces are found in protein structures. The kinked 3₁₀-helix of yACCD is at the interface region between two domains. The two domains are connected by two linkers (residues 56–58 and 162–173). Between the two domains, there is a large internal gap of 5.8 Å × 6.8 Å × 12 Å that includes the crevice mentioned above. This large internal gap provides a space for the active site (Fig. 2).

Two monomers of yACCD interact closely with each other at their nearly flat surfaces, forming a dimer with a dyad axis running through the interacting surfaces (Figs. 4 and 5). The interface between the two monomers is formed through hydrogen bonds and hydrophobic interactions. The buried accessible surface area between the two monomers is 14.0% of the total molecular accessible surface (calculated by the CNS program (Ref. 25)). The monomer–monomer contacts involve 18 pairs of hydrogen bonds by 17 residues (Arg²³–Ala⁸⁹, Arg³⁸–Gly⁴⁴, Ala⁴⁶–Gly²⁸⁶, Ala⁸⁹–Glu²⁸⁶, Arg¹¹⁵–Ser³³⁰, Glu¹²⁰–Leu³²⁹, Arg¹²³–Thr³³⁸, and Gly¹²⁶–Lys³³⁹ and their side chains) and 22 pairs of van der Waals contacts by 18 residues (Phe¹³–Pro¹⁷, Leu⁴⁵–Glu²⁸⁷, Phe⁴⁷–Phe⁴⁷, Ala⁸⁹–Ala²⁸⁴, Ala⁸⁹–Glu²⁸⁶, Glu¹²⁰–Ser³³⁰, Leu¹²¹–Leu²⁹⁰, Ile¹²⁴–Ala²⁸⁴, Ile¹²⁴–Phe³³⁶, Asp¹²⁸–Ala³⁴¹, and their dyad symmetry mates). At the center of the monomer...
monomer interface, a hydrophobic core is formed by five hydrophobic residues from both monomers: Phe47, Leu121, Leu290, Pro227, and Ala326. Most of the residues involved in the contacts are at helices 1, 4, and 12 of the N and C termini. The tightly bound dimer may contribute to the stability of the yACCD.

Crystal Packing—Two crystallographically independent dimers (AB and CD) of yACCD have different packing interactions in the crystal; the CD dimer has more extensive interactions with five symmetry-related CD dimers and two symmetry-related AB dimers, while the AB dimer has contact with four symmetry-related AB dimers and two symmetry-related CD dimers. Because of this obvious difference in the environment in the crystal, the features of the electron densities in the two types of dimers were significantly different; the electron density in the AB dimer was poor in parts. Therefore, the number of water molecules assigned through the refinement was also different: 685 for the CD dimer and 254 for the AB dimer. Main-chain temperature factors of the two crystallographically independent dimers were also significantly different: 685 for the CD dimer and 254 for the AB dimer. Density in the AB dimer was poor in parts. Therefore, the features of the electron densities in the two types of dimers were significantly different; the electron density in the AB dimer was poor in parts. Therefore, the number of water molecules assigned through the refinement was also different: 685 for the CD dimer and 254 for the AB dimer. Main-chain temperature factors of the two crystallographically independent dimers were also significantly different: 685 for the CD dimer and 254 for the AB dimer.

Comparisons with Other PLP-dependent Enzymes—Three-dimensional structure comparisons were carried out using the program DARI (28) with entries from the Protein Data Bank (29) in order to search for all of the related structures. Among all of the PLP-dependent enzymes that have been published in the Protein Data Bank, the β-subunit of tryptophan synthase from Salmonella typhimurium (TRPSβ) (30), O-acetylserine sulphydrylase from S. typhimurium (OASS) (31), and threonine deaminase from E. coli (TD) (32) have some similarity to yACCD (Fig. 5B). All of these molecules belong to the β family of the PLP-dependent enzymes (6). It has been previously suggested that the PLP-binding regions in these enzymes share the same fold, which consist of two domains (33). Some of the earliest descriptions of the structural attributes of yACCD based on a sequence comparison with TRPSβ (16% identities in sequences) also suggested that the fold of yACCD would bare some similarity to that of TRPSβ (11). On the other hand, the sequence comparisons of yACCD with TD and OASS detected (if any) very limited similarity (Fig. 3). The TRPSβ was the first member of the β family of the PLP-dependent enzymes to have its three-dimensional structure determined by x-ray crystallography (30). Tryptophan synthase exists as an αββα type tetramer with a dyad axis between the two β subunits. TD is the allosteric enzyme that exists as a homotetramer with 222 symmetry. Each monomer of TD contains one catalytic domain (the PLP-binding domain) and one regulatory domain. The catastrophic domain of TD is structurally similar to yACCD. OASS is a dimeric molecule with a dyad axis at the center.

Although the chemistries involved in these enzymatic reactions and quaternary association are different (two of the four members are tetramers), the overall folding topologies of these molecules are clearly related each other (Fig. 5A). Also, the dimer interface is more or less conserved in the four enzymes (Fig. 5B). A careful comparison of the two crystallography of these molecules reveals several important regions in the enzymes. The largest difference in the folding topology of ACCD and other members in the β family of the PLP-dependent enzymes is at helix 9. In three other members (TRPSβ, TD, and OASS), helix 9 of ACCD is replaced by a region consisting of a long loop and helices (Fig. 5A). This inserted region makes close contact with the re face of PLP and may be important for positioning the PLP at a proper place for adapting to each substrate. This inserted region is actually one of the most diverted regions in these three enzymes. Although ACCD does not contain this region, the PLP is nonetheless exposed to the molecular surface due to the presence of a loop between strand I and helix 10 (residues 262–273) and two extra loops mentioned in the following section. Topologically, the folding of ACCD is the simplest and probably represents a more ancient fold in this family of proteins.

Coenzyme Binding Site—As a typical open twisted αβ structure, the PLP cofactor is positioned at a crevice between the β-strands (G and J) of the PLP-binding domain and lies on the large internal gap between the two domains (Fig. 2). The PLP cofactor is covalently bound through a Schiff base linkage to NZ of Lys51 with C4 (the internal aldimine) (Fig. 6). This mode of binding is consistently observed in the PLP-dependent enzymes. However, the environments surrounding PLP are fairly different from those of other PLP-dependent enzymes. The re side of the internal aldimine of the β family of PLP-dependent proteins, whose tertiary structures have been determined, faces the active-site entrance and is open. At the front side of the PLP pyridine of the yACCD, however, the three extra loops bury the PLP deep in the interior of the molecule (Fig. 7). These are the loops between strand D and helix 5 (residues 101–116), and between strand E and helix 6 (residues 132 and 141) in the small domain, and the loop between strand I and helix 10 (residues 262–273) in the PLP-binding domain.

Behind these loops, two cavities with different sizes were formed, as calculated by VOIDOO (34) of the Uppsala program package and the MS" program (Fig. 7). The small (inner diameter, 3.2 × 7.5 Å) one is located along the direction of the substrate tunnel of the tryptophan synthase. The residues Arg450, Gln207, and Gln167 are positioned at the entrance. However, this cavity does not pass through to the active center without a movement of the peptide chain, since Ala180 and Thr202 (CB of Ala180 and OE of Thr202) close the gate to the active center. The large cavity has an inner diameter size of 8.9 × 18.2 Å, including the substrate area. The cavity links the active center to the surface of the molecule along a loop between strand C and helix 4. The walls of these cavities are formed mostly by aromatic residues (Trp102, Tyr113, Tyr269, and

2 C. P. Libeu, unpublished result.
Tyr295) and hydrophobic residues (Val103, Ile138, and Val294).

These aromatic and hydrophobic residues favor the formation of hydrophobic environments for the enzymatic reaction and of a tight channel for substrate/product transportation.

A more detailed inspection of the structure around the PLP revealed further differences between this enzyme and other members of the \(\beta \) family of the PLP-dependent proteins. In three other members of the \(\beta \) family of the PLP-dependent proteins, the residues immediately preceding PLP-bound Lys are aromatic or bulky hydrophobic, such as His86 of TRPS \(\beta \) (30), Phe61 of TD (32), and Val40 of OASS (31). These residues may function to prevent a backward tilt of the coenzyme pyridine ring (31). In the case of ACCD, the Asn50 immediately preceding Lys51 is involved in the hydrogen-bonding network mediated by water molecules (Fig. 8). This residue and Leu323 are close to the PLP and seem to play a role in supporting the pyridinium plane from the backside. The front side (re face) is also different from other members of the \(\beta \) family of PLP-dependent proteins. The phenol group of Tyr295 is stacked to the plane of the pyridinium ring with a distance of 3.9 Å, and an angle of about 20° (Fig. 6). Although this is the first observation of such stacking in the \(\beta \) family of the PLP-dependent proteins, the stacking of two rings has been found in other types of PLP-dependent enzymes (36–38). This finding may represent convergent evolutions, since the sequence comparison suggested that there is no evolutionary relationship between the \(\beta \) family and other types of PLP-dependent enzymes (6).

The N1 nitrogen (pyridinium N) of the cofactor pyridine ring is within hydrogen bonding distance of the OE1 of Glu296. This
position is occupied by Ser in three other members of the β family of PLP-dependent enzymes whose tertiary structures have been determined. Since Glu296 is negatively charged, it stabilizes the positively charged PLP, thereby increasing the electron-withdrawing properties of the cofactor. OE1 of Glu296 also forms strong hydrogen bonds to the main-chain nitrogen atom of Ile323 and to a water molecule (Fig. 8). The O3' of the cofactor is in close contact with the side chain of Asn79, which also forms strong hydrogen bonds to ND of Asn118 and to NH of Arg82. Moreover, OD of Asn50 is involved in a hydrogen-bond-

![Diagram of ACC Deaminase from H. saturnus](http://www.jbc.org/)

Fig. 5. Comparison of the β family of PLP-dependent enzymes. The abbreviations are explained in Fig. 3. A, comparison of the folding topology of the β family of the PLP-dependent enzymes. The rectangles represent the α-helix, and arrows represent the β-strand. The red star is the position of the Lys residue to which PLP is bound. b, ribbon representation of the dimer molecules viewed from the two-fold axis. In case of TD (32), regulatory domains (data not shown) have stronger interactions; thus, the interactions of the catalytic domains are weak. Molecules are drawn in the colors changing from the N-terminal blue to the C-terminal red.

Structure of ACC Deaminase from H. saturnus
B

yACCD

TRPS β-subunit

OASS

TD catalytic domain

FIG. 6. A stereoscopic view of the active site region of yACCD. The PLP cofactor (drawn in wine color) is covalently bound in Schiff base linkage to NZ of Lys51 with C4' (the internal aldimine). The environments surrounding PLP are fairly different from those of other PLP-dependent enzymes (30–32). The re face of the cofactor is stacked to the plane of phenol group of Tyr295 with a distance of 3.9 Å and an angle of about 20°. The bound sulfoxide ion is also drawn in blue wire, and water molecules are drawn as blue spheres.

Despite these major differences in the cofactor binding, these enzymes have a common recognition mechanism as well. The phosphate group of PLP was tightly fixed in a pocket formed by the residues Lys54, Val201, Thr202, Gly203, and Thr205 with their hydrogen bonding networks around the loop region between β-strand G and helix 8 (Fig. 8). Val201 and Gly203 made hydro-
gen bonds to the Op2 via their main-chain nitrogen atoms. There was a water molecule located between Op2 and Cys199/Thr206 within hydrogen-bonding distance. The three hydrogen bonds of Op3 were formed by N and OG of Thr202 and a water molecule. There were three hydrogen bonds between Op1 and NZ of Lys54, and between N and OG of Thr205. These environments of the phosphate group-binding pocket are conserved in three other PLP-dependent enzymes of the β-family (TRPSβ, TD, and OASS).

Reaction Mechanism—An earlier experiment showed that ACC deaminase opens the cyclopropane ring at a bond between a carbon and pre-S methylene carbon (Fig. 1) (40). Furthermore, ACC deaminase showed reactivity toward d-amino acids such as d-alanine and d-serine (but not l-isomers) (8), which suggested the presence of a base at the active site for the removal of a proton from the a carbon of the d-amino acid. Previous chemical and genetic studies have also implicated residues that contribute to catalysis. The enzymatic activity of ACCD is inhibited by modifying Cys162 of bACCD (which corresponds to Cys165 of yACCD) with sulfhydryl-modifying reagents (41). However, further experiments have shown that substitution of this residue to Ala does not affect the enzymatic activity, suggesting that Cys165 is not directly involved in the enzymatic activity (42). On the other hand, the replacement of Lys51 with Ala at the PLP-binding site caused a loss of detectable ACC deamination activity (42). The present structure analysis is consistent with these earlier observations. Cys162 is positioned at the internal gap between the two domains. The chemical modification by the bulky reagents may have altered
the relative orientation of the two domains, thereby causing the loss of enzymatic activity. Although the crystals of yACCD were grown without any substrates or inhibitors, the present analysis has shown an important clue to the enzymatic reaction mechanism, namely that the electron density map (with phases calculated by MAD and density modification) or the difference Fourier map revealed a significant peak with a trigonal bipyramidal shape that could be interpreted to be a sulfoxide or phosphorous ion (Fig. 9). This is the largest peak in the difference Fourier map. The position of the peak is close to the PLP and within hydrogen-binding distance of the OG of Ser78, OH of Tyr295, N of Glu80, and N of Asn78. It is thus very likely that the substrate pocket is occupied by the sulfoxide or phosphorous ion in the crystallization buffer. A model of the substrate ACC was built into the peak position of the electron density map using the graphical software O (23). In order to form an external aldime between the ACC and PLP, the PLP should be rotated by about 20° around the pyridinium ring of PLP is parallel to the phenol group of Tyr295 (Fig. 9). The resulting complex structure suggests that Tyr295 at the re side of the PLP may play a role in binding the substrates by the hydrogen bond.

The reaction mechanism of the ACCD was studied previously by NMR method using modified substrates including cyclic and acyclic substrates. Such studies have suggested two mechanistic routes: 1) a nucleophilic attack on pro-S to cleave the bond between pro-S and Cα of ACC followed by the abstraction of proton from pro-R (nucleophilic route), 2) direct pro-S-proton abstraction to initiate the cyclopropane ring fragmentation (direct abstraction route) (8). The first route is more likely because the second route requires abstraction of an inert proton from the ring for initial reaction and such an anion-induced ring cleavage is stereoelectronically unfavorable (9). In the light of these previous descriptions, we sought for the residues that are involved in the enzymatic reaction. Although no clear-cut reaction mechanism could be proposed from the present analysis alone, the most likely candidate for the nucleophile is Ser78. This residue is hydrogen-bonded to Thr51 and is close to the putative ACC molecule. In this case, the released Lys51 is the most likely candidate for base for proton abstraction. In order to clarify such reaction mechanism, the site-directed mutagenesis studies are currently under way.

Acknowledgments—We thank A. Thompson and V. Stojanoff of the European Synchrotron Radiation Facility (Grenoble, France) and N. Sakabe, N. Watanabe, M. Suzuki, and N. Igarashi of the Photon Factory, National Laboratory for High Energy Physics (Tsukuba, Japan), for their kind help during data collection. We also thank S. Aimoto at the Institute for Protein Research (Suita, Japan) for valuable comments.

REFERENCES
1. Honma, M., and Shimomura, T. (1978) Agric. Biol. Chem. 42, 1825–1831
2. Burroughs, L. P. (1957) Nature 179, 360–361
3. Adams, D. O., and Yang, S. F. (1979) Proc. Natl. Acad. Sci. U. S. A. 76, 170–174
4. Klee, H. J., Hayford, M. B., Kretzmer, K. A., Barry, G. F., and Kishore, G. M. (1991) Plant Cell 3, 1187–1193
5. Reed, A. J., Kretzmer, K. A., Naylor, M. W., Finn, R. F., Magin, K. M., Hammond, B. G., Leimgruber, R. M., Rogers, S. G., and Fuchs, R. L. (1996) J. Agric. Food Chem. 44, 388–394
6. Alexander, P. W., Sandmeier, E., Mehta, P. K., and Christen, P. (1994) Eur. J. Biochem. 219, 953–960
7. John, R. A (1995) Biochim. Biophys. Acta 1248, 81–96
8. Walsh, C., Pascual, R. A., Jr., Johnston, M., Raines, R., Dikshit, D., Krantz, A., and Honma, M. (1994) Biochemistry 33, 7509–7519
9. Li, K., Du, W., Que, N. L. S., and Liu, W. H. (1996) J. Am. Chem. Soc. 118, 8763–8764
10. Sheehy, R. E., Honma, M., Yamada, M., Sasaki, T., Martineau, B., and Hiatt, W. R. (1991) J. Bacteriol. 173, 5260–5265
11. Minami, R., Uchiyama, K., Murakami, T., Kawai, J., Mikami, K., Yamada, T., Yokoi, D., Ito, H., Matsuhi, H., and Honma, M. (1998) J. Biochem. (Tokyo) 123, 1112–1118
12. Yao, M., Tanaka, I., and Honma, M. (1994) J. Struct. Biol. 113, 251–253
13. Yao, M., Horiuchi, A., Tanaka, I., and Honma, M. (1996) Protein Peptide Lett. 2, 305–306
14. Sakabe, N. (1991) Nucl. Instrum. Methods 303, 448–463
15. Otwinowski, Z., and Minor, W. (1997) Methods Enzymol. 276, 307–32
16. Collaborative Computational Project, Number 4 (1994) Acta Crystallogr. Sect. D Biol. Crystallogr. 50, 760–763
17. Sheldrick, G. M., Dauter, Z., Wilson, K. S., Hope, H., and Sieker, L. C. (1999) Acta Crystallogr. Sect. D Biol. Crystallogr. 49, 18–23
18. Knight, S. (1989) Ribulose 1,5-bisphosphate Carboxylase/Oxygenase—A Structural Study. Ph.D. thesis, Swedish University of Agricultural Sciences, Upsala, Sweden
19. De La Fortelle, E., and Bricogne, G. (1997) Methods Enzymol. 276, 472–494
20. Abraham, J. M., and Leslie, A. G. W. (1996) Acta Crystallogr. Sect. D Biol. Crystallogr. 52, 30–42
21. Kleywegt, G. J., and Read, R. J. (1997) Structure 5, 1557–1569
22. Navaza, J. (1994) Acta Crystallogr. Sect. A 50, 157–163
23. Jones, T. A., Zou, J. Y., Cowan, S. W., and Kjeldgaard, M. (1991) Acta Crystallogr. Sect. A 47, 110–119
24. Read, R. J. (1986) Acta Crystallogr. Sect. A 42, 140–149
25. Brunger, A. T., Adams, P. D., Clore, G. M., Delano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J.-S., Kuszewski, J., Nip, N., Pannu, N., S., Read, R. J., Rice, L. M., Simonson, T., and Warren, G. L., (1998) Acta Crystallogr. Sect. D Biol. Crystallogr. 54, 905–921
26. Kleywegt, G. J., and Jones, T. A. (1998) Acta Crystallogr. Sect. D Biol. Crystallogr. 54, 1119–1131
27. Kabsch, W., and Sander, C. (1983) Biopolymers 22, 2577–2637
28. Holm, L., and Sander, C. (1996) Science 273, 589–596
29. Abola, E. E., Sussman, J. L., Pruijssyk, J., and Manning, N. O. (1997) Methods Enzymol. 276, 556–571
30. Hyde, C. C., Ahmed, S. A., Padlan, E. A., Miles, E. W., and Davies, D. R. (1988) J. Biol. Chem. 263, 17857–17871
31. Burkhard, P., Rao, G. S. J., Hohenerste, E., Schnackert, K. D., Cook, P. F., and Janssen, J. N. (1998) J. Mol. Biol. 283, 121–133
32. Gallagher, D. T., Gilliland G. L., Xiao, G., Zondlo, J., Fisher, K. E., Chinchilla, W. R. (1991) J. Bacteriol. 173, 5260–5265
33. Schneider, G., Kacek, H., and Lindqvist, Y. (2000) Structure 8, R1–R6
34. Kleywegt, G. J., and Jones, T. A. (1994) Acta Crystallogr. Sect. D Biol. Crystallogr. 50, 178–183
35. Laskowski, R. A., Mac Arthur, M. W., Moss, D. S., and Thornton, J. M. (1993) J. Appl. Crystallogr. 26, 283–291
36. Ford, G. C., Eichele, G., and Jansonius, J. N. (1980) Proc. Natl. Acad. Sci. U. S. A. 77, 2559–2563
37. Kern, A. D., Oliveira, M. A., Coffino, P., and Hackert, M. L. (1999) Structure 7, 567–581
38. Clausen, T., Schlegel, A., Peit, R., Schneider, E., Steegborn, C., Chang, Y. S., Haase, A., Bourenkov, G. P., Bartunik, H. D., and Boos, W. (2000) EMBO J. 19, 831–842
39. Dunathan, H. C. (1966) Proc. Natl. Acad. Sci. U. S. A. 55, 712–716
40. Honma, M., Shimomura, T., Shiraihisa, K., Ichihara, A., and Sakamura, S. (1979) Agric. Biol. Chem. 43, 1677–1679
41. Honma, M. (1985) Agric. Biol. Chem. 49, 567–571
42. Murakami, T., Kuchi, M., Ito, H., Matsuhi, H., and Honma, M. (1997) Biosci. Biotech. Biochem. 61, 506–509
Crystal Structure of 1-Aminocyclopropane-1-carboxylate Deaminase from
Hansenula saturnus

Min Yao, T. Ose, Hiroshi Sugimoto, Atsushi Horiuchi, Atsushi Nakagawa, Soichi
Wakatsuki, Daisuke Yokoi, Toyotaka Murakami, Mamoru Honma and Isao Tanaka

J. Biol. Chem. 2000, 275:34557-34565.
doi: 10.1074/jbc.M004681200 originally published online August 10, 2000

Access the most updated version of this article at doi: 10.1074/jbc.M004681200

Alerts:
 • When this article is cited
 • When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 41 references, 8 of which can be accessed free at
http://www.jbc.org/content/275/44/34557.full.html#ref-list-1