Critical Review on cathode–electrolyte Interphase Toward High-Voltage Cathodes for Li-Ion Batteries

Xu, Jijian

Published in:
Nano-Micro Letters

Published: 01/12/2022

Document Version:
Final Published version, also known as Publisher’s PDF, Publisher’s Final version or Version of Record

License:
CC BY

Publication record in CityU Scholars:
Go to record

Published version (DOI):
10.1007/s40820-022-00917-2

Publication details:
Xu, J. (2022). Critical Review on cathode–electrolyte Interphase Toward High-Voltage Cathodes for Li-Ion Batteries. Nano-Micro Letters, 14(1), Article 166. Advance online publication. https://doi.org/10.1007/s40820-022-00917-2

Citing this paper
Please note that where the full-text provided on CityU Scholars is the Post-print version (also known as Accepted Author Manuscript, Peer-reviewed or Author Final version), it may differ from the Final Published version. When citing, ensure that you check and use the publisher's definitive version for pagination and other details.

General rights
Copyright for the publications made accessible via the CityU Scholars portal is retained by the author(s) and/or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Users may not further distribute the material or use it for any profit-making activity or commercial gain.

Publisher permission
Permission for previously published items are in accordance with publisher's copyright policies sourced from the SHERPA RoMEO database. Links to full text versions (either Published or Post-print) are only available if corresponding publishers allow open access.

Take down policy
Contact lbscholars@cityu.edu.hk if you believe that this document breaches copyright and provide us with details. We will remove access to the work immediately and investigate your claim.

Download date: 11/12/2023
Critical Review on cathode–electrolyte Interphase Toward High-Voltage Cathodes for Li-Ion Batteries

Jijian Xu

ABSTRACT The thermal stability window of current commercial carbonate-based electrolytes is no longer sufficient to meet the ever-increasing cathode working voltage requirements of high energy density lithium-ion batteries. It is crucial to construct a robust cathode–electrolyte interphase (CEI) for high-voltage cathode electrodes to separate the electrolytes from the active cathode materials and thereby suppress the side reactions. Herein, this review presents a brief historic evolution of the mechanism of CEI formation and compositions, the state-of-art characterizations and modeling associated with CEI, and how to construct robust CEI from a practical electrolyte design perspective. The focus on electrolyte design is categorized into three parts: CEI-forming additives, anti-oxidation solvents, and lithium salts. Moreover, practical considerations for electrolyte design applications are proposed. This review will shed light on the future electrolyte design which enables aggressive high-voltage cathodes.

KEYWORDS Cathode–electrolyte interphase; High-voltage cathodes; Interfacial chemistry; Electrolyte design; Batteries.

1 Introduction and Scope

Along with the transition to a net-zero emissions future, there is a consistently growing demand for high energy density lithium-ion batteries with high voltage and high specific capacity [1, 2]. The simplest method to further improve the energy density of lithium-ion batteries is to increase the upper cutoff voltages. Taking the representative LiCoO₂ as an example, the discharge capacity increases from 170 to 220 mAh g⁻¹ by changing the upper
cutoff voltages from 4.3 to 4.6 V [3]. However, creating a battery that can withstand high upper cutoff voltages while maintaining low side effects is no small feat. Cutoff voltage fluctuations accelerate interfacial reactions between the cathodes and electrolytes which will inevitably lead to serious consequences such as rapid capacity decay or even battery breakdown.

Since 2011, extensive works on cathode modification and electrolyte design have emerged in the hope of suppressing or even eliminating such interfacial reactions. There are multiple effective cathode modification strategies such as heteroatom doping and surface coating [4, 5]. Heteroatom doping was applied to stabilize the crystal structure of primary particles and inhibit the undesired electrode–electrolyte interfacial reactions [6–9]. Likewise, surface coating strategies including oxides, fluorides, and phosphates have been put forward to prevent electrolyte penetration and transition metal dissolution [10–14]. Atomic layer deposition and molecular layer deposition outperform various surface coating techniques, enabling controllable coating with atomic-level precision, excellent uniformity, and conformity [15, 16]. Conformal surface coating can be effective even under a high temperature of 55 °C: exhibiting capacity retention of 89.4% for Ni-rich cathode [17]. Another promising strategy aims to enhance electrolyte stability by modulating electrode/electrolyte interfacial reactions directly through electrolyte design. In the history of Li-ion batteries, the electrolyte-derived interphase on the anode was observed and defined as “solid electrolyte interphase (SEI),” which is a milestone [18]. In parallel, the interphase formed on the cathode is named “cathode–electrolyte interphase (CEI).” The role of CEI was once overlooked because there is no thermodynamic driving force for electrolyte oxidation for commercial batteries operating within 4.3 V [19]. The understanding of CEI becomes increasingly important due to the requirement of high voltage operation [20–23]. In situ formation of robust CEI via rational electrolyte design is the most promising strategy to separate the electrolyte from active cathodes and prolong the cycle life under high-voltage operation due to its ease of regulation by various components and self-healing ability. A review of CEI from the perspective of electrolyte design could provide fundamental guidance for further research.

This review aims to recount the history of CEI from its concept evolution to practice, including the cumulative cognition of CEI compositions and formation, the latest knowledge about CEI brought by advanced characterizations and modeling effects, and the design principles of CEI especially from the perspective of practical electrolyte design, and future research needs on this topic. All the electrolytes in our review are liquid unless noted; otherwise, the discussion of solid-state electrolytes is not included in the scope of this paper.

2 CEI Chemistry in Evolution

Unlike SEI on the anode side, the important role of CEI was not realized until attempts were made to increase the cutoff voltage beyond the oxidation stability of electrolytes [24]. It is academically accepted that there is virtually no thermodynamic driving force for electrolyte oxidation on most conventional positive electrode materials. However, this law only applies to thermal stability windows below 4.3 V and fails when the cutoff voltage increases.

In addition, the view that CEI is not present on the cathode surface below 4.3 V was also found to be misleading. A lot of studies linked oxidation stability with the highest occupied molecular orbital (HOMO) energy [5]. In general, molecules with higher HOMO energy are more vulnerable to oxidation, from which researchers derive oxidation stability higher than the actual value, leading to the conclusion that CEI is nonexistent under 4.3 V. The new study, however, shows that the oxidation potential strongly depends on the local environment, meaning that there is no direct correlation between HOMO energies and experimentally observed oxidation stability [25, 26]. Therefore, it is more reasonable to use HOMO energy as a qualitative assessment of possible oxidation stability. In contrast, quantum chemistry (QC) calculation which takes the local solvents and anion environments into consideration is a promising direction for predicting oxidation stability [26].

Analogous to the case of graphite anodes, when high voltage operation exceeds the oxidation stability limits of organic electrolytes, a robust CEI is required to suppress side reactions. Before discussing how to design a powerful CEI, a comprehensive understanding of CEI is necessary, which is a challenge due to its sensitive chemical nature, complex formation process entangled with both electrolyte composition as well as surface chemistries of cathodes, and the lack of reliable characterization tools.
2.1 Composition and Formation Mechanisms of CEI

Pioneering works have been carried out to study the CEI even though the validity of the CEI concept was still doubted in the early 1990s [27, 28]. Selected studies show a brief historic evolution of the mechanism of CEI compositions and formation is presented in Fig. 1. A surface layer on LiCoO₂ was firstly suggested by Goodenough et al. through the analysis of impedance spectra in conjunction with electron microscopy observation (Fig. 1a) [29]. The composition of the surface layer was later investigated using in situ Fourier transform infrared (FTIR) spectroscopy, and Fig. 1b demonstrates the presence of carboxylate groups on the surface of cycled LiCoO₂ thin film electrode [30]. A bi-layer CEI model consisting of an inner layer of polymer/polycarbonate and outer layer of LiF as well as precipitated species like Li₃PO₄F₂, phosphorus oxides was proposed according to the X-ray photoelectron spectroscopy (XPS) analysis of cycled LiMn₂O₄ electrodes (Fig. 1d) [31]. Figure 1h illustrates that artificial CEI of conductive polymer on Ni-rich cathodes can effectively suppress the undesired layered to spinel/rock-salt phase transformation and enhance the capacity under high-voltage operation [32]. Meanwhile, a LiF-rich CEI formed in the concentrated electrolyte can also stabilize the cathode structure and improve the electrochemical performance of lithium-rich cathode (Fig. 1i) [33].

One vital but debatable issue in CEI chemistry is the role of fluorinated species, such as LiF. On the one hand, less LiF was reported to result in a thin CEI film with low impedance to enhance high-voltage performance [34, 35]. On the other hand, LiF-rich CEI layers have been well reported with superior cycling performance, especially with concentrated electrolytes [33, 36, 37]. With the development of environmental transmission electron microscopy (TEM),

![Fig. 1](image-url)
in situ visualization of LiF formation on CEI in LiPF$_6$/propylene carbonate was achieved, which shows a remarkable self-healing ability of LiF [38]. Undoubtedly, this work is a milestone that deepens our understanding of LiF formation on CEI and guides us toward improving CEI chemistry.

It is extremely challenging to fully understand the CEI formation mechanism due to the complicated CEI compositions which are still not completely identified so far. However, a number of meaningful explorations have been conducted in recent years. Based on spectroscopic measurements and structural analysis, exchange reactions and nucleophilic reaction mechanisms were proposed for different cathode materials [28]. In the case of nucleophilic cathodes such as LiNiO$_2$, the electrode is covered by ROCO$_2$Li originating from direct reactions between the active materials and the electrolyte solutions (Fig. 1c). However, the existence of all CEI components cannot be explained by this mechanism alone, and more CEI formation mechanisms have been proposed later. As shown in Fig. 1e, Yabuuchi et al. raised a surface reaction mechanism where oxygen can be reduced to superoxide to attack carbonate solvents to form Li$_2$CO$_3$ [39]. It is worth mentioning that the cathode materials undergo surface reconstruction or reduction of transition metal oxidation state in contact with the electrolytes [40, 41], indicating the charge transfer between cathodes and electrolytes. CEI was found to be dominated by ethylene carbonate open-ring reaction activated by PF$_5$ derived from LiPF$_6$ decomposition (Fig. 1f) [42]. Other ethylene carbonate open-ring reactions initiated by electron-abstraction, proton-abstraction, and Lewis base were also discussed [43]. Shao-horn and co-workers found that the ethylene carbonate dissociation leads to hydroxylation of the cathode surface, namely the dehydrogenation reaction mechanism [44]. Importantly, the tendency of ethylene carbonate dissociation is strongly cathode material dependent. Proton transfer, also known as H-transfer reaction, between solvents on the cathode surface followed by solvent oxidation has recently been found to be universal [45]. The oxidation stability of common solvents including carbonates, sulfones, phosphates as well as ether significantly drops when coupled with H-transfer [46, 47]. Such a mechanism understanding shed light on manipulating the CEI chemistry by bringing specific components closer to the cathode surface to facilitate desired redox reactions.

2.2 Interaction Between CEI and SEI

CEI and SEI were usually studied independently as separate components on the cathode side and anode side. More attention should be paid to the correlation between the two, given that both are important components in the Li-ion battery system. Recently, it was revealed that the SEI transforms from a thick “three-layer” to a thin “two-layer” architecture by tuning the CEI surface chemistry via the amount of lithium bis-(oxalate)borate (LiBOB) additive, demonstrating obvious CEI and SEI interaction (Fig. 2a and b) [48]. The modified CEI layer is composed of B$_2$O$_3$ species with extreme robustness against electrochemical abuse which can effectively prevent the transition-metal crossover, benefiting the formation of a thin (O-enriched exterior layer and Li-dominating interior layer) SEI. Li et al. highlighted the strong interaction between CEI on high voltage LiCoO$_2$ cathode and SEI by quantitative XPS analysis of CEI/SEI components and evolution [49]. The CEI components only slightly changed with fresh Li metal or graphite anode replaced at the charge state, while the CEI thickness increased rapidly with the original charged Li metal during the discharge process, as presented in Fig. 2c. In another example, the generated gas species at a cutoff potential above 4.2 V was migrated to, and then interacted with the SEI layer, as verified by gas chromatography-mass spectrometry measurement [50]. With the ongoing research efforts, increasing evidence has indicated the interaction between CEI and SEI [51, 52]. In parallel with Li-ion batteries, synergistically strengthening the SEI and CEI leads to ultra-stable cycle life of dual-ion batteries [53–55].

3 Micro-Cognition of CEI via Novel Technologies

3.1 Advanced Characterizations

CEI is dynamic during the charge/discharge cycling, and therefore, advanced operando characterizations are crucial to understanding the CEI evolution [56]. Changes in structure and composition of the CEI layer can be monitored by in situ neutron reflectometry [57]. As shown in Fig. 3a and b, the CEI thickness increased to 48.8 nm at 4.2 V for sample (iii) and decreased to 35.6 nm at 3.3 V for sample (iV), suggesting a growth/dissociation of the CEI layer during Li$^+$
extraction/insertion. In situ atomic force microscopy (AFM) visualized the morphological changes of the CEI layer up to a high voltage of 4.5 V, revealing that the CEI films are only formed at the edge plane of LiCoO$_2$ crystal and decomposed at the discharge state (Fig. 3c) [58]. An operando-attenuated total reflection—Fourier transform infrared (ATR—FTIR) technique was developed to study the dynamic mechanism of CEI formation in real time [59]. It was found that the addition of tris(trimethylsilyl)-borate additive can prevent the continuous decomposition of ethylene carbonate at high voltage and promote the stability of the CEI film. Raman bands of CEI exhibited substantial dynamics in strong correlation with the state-of-charge of the LiNi$_{0.33}$Co$_{0.33}$Mn$_{0.33}$O$_2$ electrode by a monolayer of deposited Au nanocubes [60]. Ideally, the in situ characterization techniques should bring minimum interruption to the operating cells and be under real operating conditions [61]. Learning from the anode side, in situ mass spectrometry and Cryo-TEM [62, 63], which dynamically investigate the SEI formation, can also be applied to monitor and visualize CEI formation. Emerging nanoscale X-ray tomography combined with artificial intelligence and machine learning might be able to develop predictive models to analysis the impact of CEI on cell performance [64, 65]. All these techniques have helped us understand the cell failure mechanism. More importantly, we should try to guide the optimization of better electrolytes based on observations from various characterizations.

3.2 Molecular Dynamics (MD) Simulation and Machine Learning

Nowadays, MD simulations play an important role in investigating electrolyte solvation structure, the formation of CEI and its evolution. MD simulation applied in batteries can trace back to the late 1990s [66, 67]. Oleg and co-works investigated the interfacial chemistry on the cathode side using classic MD simulation with applied electrode potentials [45, 68]. On the cathode electrode surface, highly concentrated electrolytes were found to exclude the solvent molecules away and selected anions could be preferentially absorbed for decomposition (Fig. 4a). Density functional theory (DFT) in combination with ab-initio molecular dynamics was conducted to understand the electrolyte role in CEI formation, showing that an electrolyte with high fluorine content can induce a robust fluorinated CEI [69]. Note that the box size and simulation time are very limited due
Fig. 3 a Neutron reflectivity and b analyzed scattering length density for samples at different charge states. Copyright from Ref. [57]. c In situ AFM images of the CEI formation and decomposition on the edge of LiCoO₂ crystal Copyright from Ref. [58]. d Operando ATR–FTIR spectra and schematic of CEI formation during the first charging process at the cathode surface in electrolytes with and without tris(trimethylsilyl)-borate additive Copyright from Ref. [59]. e Operando Raman spectral evolution acquired for a LiNi₀.₃₃Co₀.₃₃Mn₀.₃₃O₂ electrode Copyright from Ref. [60]
to their high computation expense for ab-initio molecular dynamics simulations. The Kristin A. Persson group first incorporated machine learning to predict the decomposition pathway of electrolyte components [70, 71]. As shown in Fig. 4a–b, reaction network was developed to explore possible intermediates and reaction pathways, obtaining 570 candidate molecules and identifying two novel lithium ethylene monocarbonate formation mechanisms. Machine learning models trained upon the known properties including dielectric constant, HOMO energy, and etc. provide a way to rapidly screen new electrolyte solvents and even blended solvents with different ratios. Experimental trial-and-error testing of new compositions of electrolytes can be significantly accelerated with data-driven machine learning [72]. Such data-driven artificial intelligence continues to transform electrolyte design and shows great potential for further optimization of liquid electrolytes and Li-ion cells.

4 Robust CEI: From Electrolyte Design

4.1 CEI-Forming Additives

Adding functional additives that improve cathode stability is the most cost-effective strategy to make conventional carbonate-based electrolytes compatible with aggressive high-voltage cathodes. During the past decades, various types of functional additives and their combination have been investigated [73–75]. In this section, we mainly focus on the CEI-forming additives in carbonate-based electrolytes, and other functional additives, such as overcharge protectants and fire-retardant agents, are out of scope. However, related research could be found in other good reviews [76, 77].

Based on whether the additives participate in interfacial reactions, additives can be classified as sacrificial and non-sacrificial. Sacrificial electrolyte additives electrochemically decompose before the host electrolytes and thereby form CEI on the cathode–electrolyte. These additives include unsaturated carbonate, boron-containing additives [78], nitrogen-containing additives [79, 80], fluorine-containing additives [81], silicon-containing additives [82], phosphorus-containing additives [83], and sulfur-containing additives [84]. Among them, boron-containing chemicals, such as LiBOB, tris (trimethylsilyl) borate [85], trimethyl borate [86], and triethyl borate, were particularly effective. This is because additives containing electron-deficient boron atoms could coordinate with anion PF$_6^-$, which lowers the oxidation potential of the baseline electrolyte and participates in the formation of the protective CEI. A systematic comparison of the CEI formation on LiNi$_{0.5}$Mn$_{1.5}$O$_4$ cathodes with three different lithium borate electrolyte additives has been conducted [87]. As shown in Fig. 5a, the CEI layer thickness increases in the order of lithium catechol dimethyl borate > lithium 4-pyridyl trimethyl borate > LiBOB, suggesting a strong correlation between the CEI layer thickness and reactivity of the additive. A mechanism study for the LiBOB-enabled 4.5 V lithium-rich layered oxides/graphite full cells was further conducted (Fig. 5b), confirming the formation of a uniform interphase with B-F species on high-voltage cathodes under cryo-condition [88]. In situ formation of F- and B-rich CEI layer on LiNiO$_2$ cathode was demonstrated using LiDFOB as an additive, maintaining high capacity retention of > 80% (400 cycles) at a high cutoff voltage of 4.4 V [89].

Another requirement of being sacrificial additives is that they must possess a lower reduction potential than the solvent; otherwise, it needs to create a protective SEI on the anode surface at the same time. With this in line, many studies have developed blended additives or multifunctional additives by combining the advantages of different additives. Synergistic effects of dual additives on protecting the cathodes under high potentials have been investigated. A blend of SEI film-forming additive (vinylene carbonate) and CEI film-forming additive (1,3-propane sultone) resulted in improved capacity retention [90]. Dual additives (trimethyl borate + fluoroethylene carbonate and trimethyl borate + tetramethylene sulfone) in the commercial electrolyte can lower the oxidation potential and form a thinner, more stable CEI, enabling the performance of LiNi$_{0.5}$Co$_{0.1}$Mn$_{0.4}$O$_2$ cathodes charged to 4.5 V [91]. The combination of tris (trimethylsilyl) phosphite and lithium difluoro(oxalato)borate in the electrolyte not only forms a robust CEI but also improves the thermal stability. (Capacity retains more than 91% when stored at 60 °C for 50 days.) [92] A ternary electrolyte additive system consisting of 2% prop-1-ene-1, 3-sultone + 1% methane disulfonate + 1% tris-(trimethylsilyl)-phosphate significantly improves the capacity retention of LiNi$_{0.5}$Mn$_{0.3}$Co$_{0.2}$O$_2$||graphite pouch cells cycled at constant current up to 4.5 V [93]. In addition, several ternary blends of triphenylphosphate with different film-forming additives were reported to have better high-voltage performance.
compared to electrolytes with a single additive [94]. Alternatively, integrating the nitrile and borate groups into a single additive (tris(2-cyanoethyl) borate) results in the in situ-formed rich N and B CEI layer and thus enabling single-crystal Ni-rich cathode to operate at cutoff voltage as high as 4.7 V with outstanding cycling stability [95]. Following the same logic, tris-(trimethylsilyl)-phosphite was used as a multifunctional additive, in which the trivalent phosphorus can scavenge oxygen gas in the cell, the electrophilic silicon can remove nucleophilic lithium oxide species, and the silyl ether component can prevent transition metal dissolution [96, 97].

Fig. 4 a Snapshots on the interfacial structure from MD simulations of (Dimethyl carbonate)\textsubscript{1.2}LiTFSI and preferential decomposition. Copyright from Ref. [45]. b Data-driven machine learning workflow for generating relevant molecules. Copyright from Ref. [70]
Non-sacrificial electrolyte additives are emerging very recently, which activate the CEI formation without self-sacrificing. As well known, sacrificial additives will gradually consume through the interfacial reactions, hence deteriorating the cycling stability of lithium-ion cells eventually. Recent research revealed that employing non-sacrificial electrolyte additives can perfectly address the aforementioned concern. Methyl diphenylphosphonate as a non-sacrificial additive was evaluated by Zhang et al. [98], which can stabilize the $\text{LiNi}_{0.8}\text{Mn}_{0.1}\text{Co}_{0.1}\text{O}_2$ cathode/electrolyte interface by physical absorption. The first principle calculation demonstrates that the methyl diphenylphosphonate additive forms a stable pyramid structure with Mn ions and Li ions on the cathode surface, which also contributes to the thermal stability of the cells at high temperatures. As reported by Wang et al., the local fluoroethylene carbonate (FEC)-Li^+ configuration triggers the oxidative decomposition of the otherwise inert FSI^-, while the FEC additive remains stable against the electrochemical cycling [99].

Overall, electrolyte additives have been proven to be effective in enhancing the electrochemical performance of high-voltage Li-ion cells by forming stable CEI. Considering the abundance of the additive species and their numerous combinations, there is still plenty of space in taking full advantage of the commercial carbonate-based electrolytes.

4.2 Anti-oxidation Solvents

In comparison with traditional commercial carbonate solvents, anti-oxidation solvents not only possess greater stability under high voltage, but also contribute to a robust CEI

Fig. 5 a Effect of lithium borate additives on CEI formation on $\text{LiNi}_{0.8}\text{Mn}_{1.5}\text{O}_4$ electrodes. Copyright from Ref. [87]. b Schematic of enhanced full cell performance for LiBOB additive electrolyte in high-voltage system. Copyright from Ref. [88]
interface when involved in interfacial reactions. In commercial lithium-ion cell systems, carbonate solvents are the most popular ones, exhibiting good performance at cutoff voltages below 4.3 V. However, as the voltage increases, their thermodynamic limitations manifest themselves, which, coupled with enhanced cathode surface reactions, lead to extensive deterioration in cell performance. By introducing anti-oxidation solvents with greater stability such as fluorinated solvents, sulfones, nitrile, and ionic liquid, the electrochemical performance of Li-ion cells with high-voltage cathodes can be effectively improved.

Among the various anti-oxidation solvents, fluorinated solvents have been well investigated in the hope of extending the electrochemical stability window of electrolytes. The fluorine substitution in the solvents shows improvement in oxidation stability due to the strong electron-withdrawing effect of fluorine atoms and also contributes to the enrichment of CEI with fluorinated species. Amine’s group demonstrated that a fluorinated carbonate solvent-based electrolyte provides superior voltage stability on the 5.0 V spinel LiNi0.5Mn1.5O4 cathode at both ambient and elevated temperature at 55 °C (Fig. 6a–b) [100]. Note that fluorine substitution results in simultaneously higher oxidation stability and higher reduction potential. Considering higher reduction potential may lead to instability on the anode side [101], a stable Li4Ti5O12 anode was employed to accurately evaluate the beneficial effect on the cathode side. Wang and co-workers reported an all-fluorinated electrolyte can form a highly fluorinated, conformal, and dense CEI consisting of ultra-high thin fluorine and sulfur-rich CEI layer [109].

Fluorinated solvents have been well investigated in the hope of extending the electrochemical stability window of electrolytes. The fluorine substitution in the solvents shows improvement in oxidation stability due to the strong electron-withdrawing effect of fluorine atoms and also contributes to the enrichment of CEI with fluorinated species. Amine’s group demonstrated that a fluorinated carbonate solvent-based electrolyte provides superior voltage stability on the 5.0 V spinel LiNi0.5Mn1.5O4 cathode at both ambient and elevated temperature at 55 °C (Fig. 6a–b) [100]. Note that fluorine substitution results in simultaneously higher oxidation stability and higher reduction potential. Considering higher reduction potential may lead to instability on the anode side [101], a stable Li4Ti5O12 anode was employed to accurately evaluate the beneficial effect on the cathode side. Wang and co-workers reported an all-fluorinated electrolyte can form a highly fluorinated, conformal, and dense CEI consisting of inorganic species with a thickness of 5–10 nm that stabilizes not only the high voltage LiNi0.8Mn0.1Co0.1O2 (efficiency ~99.93%) and LiCoPO4 (efficiency ~99.81%) cathodes, but also lithium metal (plating/stripping, ~99.2%) [102]. As a result, full cells retain ~93% of their original capacities after 1,000 cycles at a practical loading of 2.0 mAh cm−2. By forming a robust CEI layer (~8.5 nm) in the all-fluorinated electrolyte, 4.5 V high loading (4 mAh cm−2) LiCoO2/graphite pouch cell delivered excellent capacity retention of 80% after 500 cycles (Fig. 6c–d) [3]. However, such an all-fluorinated electrolyte consisting of ultra-high extent of fluorinated solvents might be an “over-kill” [103]. A family of fluorinated ethyl methyl carbonates with different numbers of F atoms was systematically studied to reveal the effects of fluorination extent of carbonate solvents on battery performance (Fig. 6e–f). Yu et al. found that fully fluorinated solvents are not necessarily desirable. Instead, the degree of fluorination needs to be rationally tuned in order to optimize the Li-ion cell performance [104]. Knowing exactly which component functions as the key fluorinating agent for the CEI interphase constitutes the key knowledge to enabling future battery chemistries.

Sulfone-based electrolytes offer another pathway toward enabling aggressive high-voltage cathodes. Angell first reported a sulfone-based electrolyte of 1 M LiPF6 dissolved in ethyl methoxyethyl sulfone, showing remarkable anodic stability of above 5.0 V versus lithium [105]. Later, the electrochemical stability of five sulfone-based electrolytes was evaluated using lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) as a lithium salt. Among these, ethyl methyl sulfone or tetramethyl sulfone exhibited the highest anodic stability [106]. Significant anodic stability is achieved at the cathode–electrolyte interface because of the sulfone group in the molecular which helps to lower the HOMO level. The compatibility between the sulfones and graphite anodes could be addressed by various approaches. Amine and co-workers synthesized β-fluorinated sulfone, which is not only resistant to oxidation on the high voltage LiNi0.6Mn0.2Co0.2O2 cathode but also reductively stable toward the graphite anode [107]. Moreover, β-fluorinated sulfone is a non-flammable solvent with reduced lithium solvating power, mitigating the transition metal dissolution of the cathodes. Ultimately, β-fluorinated sulfone-based electrolytes enable the stable long-term cycling of graphite/LiNi0.6Mn0.2Co0.2O2 full cells with the highest capacity retention of 81% after 400 cycles. Together with concentrated lithium bis(fluorosulfonyl) imide (LiFSI) derived SEI, a sulfone-based electrolyte enables a high voltage (4.85 V) graphite/LiNi0.3Mn1.7O4 full cell to operate over 1000 cycles, retaining 70% of its first-cycle discharge capacity. QC calculations predict that the decomposition of sulfone results in polymerizable products, leading to a thin, sulfur-based CEI which are corroborated by XPS and cryogenic-transmission electron microscopy [108]. Considering sulfones as the electrolyte solvent, one annoying drawback that should be pointed out is the high melting point. Mixing sulfones with other solvents is the most effective method to tackle the issue. By incorporating fluorothioethylene carbonate into tetramethylene sulfone, the mixed electrolyte forms ultra-thin fluorine and sulfur-rich CEI layer [109].

Nitrile-based electrolytes with a wide electrochemical window also serve as attractive candidates for high-voltage Li-ion cells. Generally, the anti-oxidation feature of
nitriles is believed to be caused by the highly nucleophilic -CN groups which can be preferentially chemisorbed on the surface of high-voltage cathodes, generating a monolayer and preventing their oxidative decomposition [79, 110]. However, it is unlikely that a chemisorbed monolayer could be electrochemically tough enough to resist the thermodynamic driving force of electrolyte decomposition.

Taking succinonitrile as an example, Li et al. found the succinonitrile-derived N-containing CEI interphase also makes an important role in improving high-voltage stability [111]. DFT calculation revealed the interaction between salt anion and succinonitrile solvent greatly reduces its resistance against oxidation, thus making the formation of N-containing CEI possible. On the other hand, Cui’s team
demonstrated that the succinonitrile solvent in succinonitrile-based deep eutectic electrolyte reacts with the charged LiCoO₂ cathode by using in situ XRD and in situ FTIR techniques [112]. A uniform, N-containing CEI layer was also observed on the LiNi₀.₅₃Co₀.₁₅Mn₀.₃O₂ for electrolyte with succinonitrile and fluoroethylene carbonate simultaneously as solvents [113]. Concentrated nitrile electrolyte consisting of a solvent mixture of succinonitrile and acetonitrile exhibits interfacial stability at a high cutoff voltage of 4.9 V due to the formation of uniform CEI layers [114].

4.3 Lithium Salts

The conventional wisdom believes that lithium salts remain stable during electrochemical cycling, especially for LiPF₆ which dominates the commercial lithium salts market nowadays. Johansson first explored the intrinsic anion stability of lithium salts by electronic structure calculations [115]. Limited understanding has been reported toward anion-derived CEI in nonaqueous electrolytes. In advancing to more aggressive cathode chemistry at higher voltages, new lithium salts that can contribute to stable CEI formation are urgently needed.

Two representative examples are LiBOB and lithium difluorooxalatoborate (LiDFOB), both of which can decompose and in situ form CEI at high cutoff voltages. LiBOB was reported as anodic unstable at voltages higher than 4.2 V [116], in turn, can be used to form stable CEI. The CEI formed in LiBOB electrolyte enables LiNi₀.₅₃Co₀.₁₅Al₀.₀₅O₂ cathode with better rate capability when compared to the LiPF₆ counterpart [117]. LiBOB was also applied to other high-voltage cathodes (LiNi₀.₅Mn₁.₅O₄, LiCoPO₄) with remarkably improved capacity retention and decreased impedance [118, 119]. Ex situ surface analysis via FTIR and XPS of the cycled LiNi₀.₅Mn₁.₅O₄ cathodes suggests the addition of LiBOB leads to a thinner CEI film containing oxalate species. Unfortunately, LiBOB has limited solubilities in carbonate solvents, restricting its applications.

LiDFOB was found to possess the combined merits of its parent salts of LiBOB and LiBF₄ [120]. The role of LiBOB and LiDFOB on CEI was investigated via electron paramagnetic resonance spectroscopy and both were found involved in one-electron oxidation with the elimination of CO₂ and the generation of an acyl radical (Fig. 7a) [121]. Acyl radicals anchored to bridging oxygens on the cathode surfaces can form dimers through cross-recombination and pile up to form a coating on the cathode surfaces. Differently, another mechanism of the reaction between LiBOB/LiDFOB and dissociated F⁻ anion for forming CEI was proposed based on QC calculations (Fig. 7b) [122]. The BOB⁻ reaction with F⁻ was found to be more energetically favorable, which is supported by the XPS results with a strong signal ascribed to B-F bonds. Although the specific reaction mechanism remains to be further explored, experimentally, there are already many reports with much improved high-voltage performance with the adoption of LiDFOB salt. As illustrated in Fig. 7c, a bi-layer CEI consisting of LiF-rich inner layer and LiBO₂Fₓ-rich outer layer is in situ constructed on the LiNi₀.₅Mn₁.₅O₂ cathode through the oxidative decomposition of LiDFOB [123]. Such a robust CEI effectively protects the cathode from reacting with electrolyte, thereby boosting the capacity retention of 69.8% after 400 cycles as well as a high specific capacity of 127.5 mAh g⁻¹ at 10C.

Single lithium salt still has a tough road ahead in accomplish massive challenges of high-voltage Li-ion cells. Naturally, the synergistic effect between lithium salts and solvents, or dual-salt has great potential to improve the overall electrochemical performance [124, 125]. A combination of LiDFOB salt and sulfur-containing solvents of ethylene sulfite, dimethyl sulfite, and sulfolane has been investigated for 5 V high voltage cells [126]. Among these, the LiDFOB-sulfolane-derived CEI films are suggested to be denser and more stable. Similar synergistic action between LiDFOB salt and sulfolane solvent was also reported on LiNi₀.₅Co₀.₁₅Mn₀.₅O₂ cathode chemistry with more LiF formed in the CEI layer, which improves the cycle performance of the cell [127]. Recently, a dual-salt electrolyte (LiDFOB/LiBF₄ in carbonate solvents) enabled the best performance for anode-free pouch cell-80% capacity retention after 90 cycles [128, 129]. The LiDFOB and LiBF₄ lithium salts were continuously consumed during cycling at 4.3 V, forcing a limited cycle life. Moreover, a dual-salt electrolyte (2 M LiTFSI + 2 M LiDFOB in dimethoxyethane, DME) allowed stable cycling of LiNi₁/₃Mn₁/₃Co₁/₃O₂ cathode at 4.3 V despite the limited oxidative stability of DME (< 4 V) [130]. The key to breaking the voltage limitation for ether-based electrolytes is the formation of stable interfacial layers on cathodes. Four imide-borate dual-salt electrolytes in carbonate solvent were investigated, showing the electrochemical stability in the order of LiTFSI-LiBOB > LiTFSI-LiDFOB > LiFSI-LiDFOB > LiFSI-LiBOB [131]. It is also...
worth mentioning that LiDFOB was shown to be the best inhibitor of Al corrosion in LiFSI-based dual-salt electrolytes [132]. In the search for an ideal lithium salt, LiFSI was considered a magic salt due to its unique ability to dissociate and form protective SEIs [18, 133, 134]. However, the corrosion of aluminum current collectors is a longstanding barrier for imide salts including LiFSI and LiTFSI [135].

While progress has been made to alleviate Al corrosion by blending with other lithium salts [136–138], new imide-based lithium salts offer a radical solution that can intrinsically address the corrosion issues through rational molecular design. A novel lithium salt, lithium (fluorosulfonyl) (nonafluorobutanesulfonyl) imide (LiFNFSI), which does not corrode aluminum was developed by replacing the -CF₃ group with longer perfluorinated alkyl chains [139]. The inorganic fluorosulfonyl (FSO₂⁻) group in LiFNFSI was suggested to be beneficial for forming a protective layer on Al surface to suppress its corrosion, see molecular structure in Fig. 8a [140]. Likewise, another non-corrosive sulfonimide salt, lithium (difluoromethanesulfonyl) (trifluoromethanesulfonyl) imide (LiDFTFSI) that critically prevent the anodic dissolution of the aluminum current collector at high voltages of at least 4.2 V versus Li/Li⁺, was reported recently [141]. The unstable nature of Al(DFTFIS)₃ in carbonate solvents makes it easy to decompose to form AlF₃ and LiF protective layers, thus preventing further anodic dissolution (Fig. 8b). Additionally, the LiDFTFSI also enables the formation of an excellent CEI layer on the LiNi₁/₃Mn₁/₃Co₁/₃O₂ cathode.

It is difficult to synthesize new lithium salts, and most of the newly synthesized lithium salts are not directly usable as sole main salt. These new lithium salts enrich our toolbox for manipulating electrolytes and may yield surprising results when coupled with anti-oxidation solvents or/and CEI-forming additives.
Regarding lithium salts, another parameter that must be mentioned is the concentration. The “1 molarity (M) legacy” of conventional electrolytes stemmed from the quest of maximum ionic conductivities [142]. Notwithstanding, deviation from this “ideal” fixation has opened a new direction known as “solvent-in-salt” electrolytes or “super-concentrated” electrolytes [143–145]. Past MD simulations of concentrated electrolytes have shown that there is a large portion of TFSI− anions in the inner-Helmholtz layer at the cathode side, compelling the solvent away and preventing it from oxidizing [146]. In a high concentration regime, one may expect CEI generated from the decomposition of the anions. As reported, the oxidation stability of concentrated 10 M LiFSI in carbonate electrolyte can be mainly ascribed to the anion-derived fluorine-rich CEI [147]. The F-rich CEI successfully stabilizes the LiNi0.6Mn0.2Co0.2O2 cathode at a high cutoff voltage of 4.6 V, showing remarkable capacity retention of 86% after 100 cycles. As well, the CEI layer formed in concentrated 3 M LiPF6 in carbonate electrolyte was found to be highly homogeneous and robust, which not only effectively inhibits the dissolution of transition metals but also stabilizes the cobalt-free cathode structure [33]. In sharp comparison, Fe and Mn elements are detected on cycled cathodes in 1 M electrolyte because of the uneven and fragile organic-rich CEI layer. A more conformal, anion-based CEI of up to 4.4 V can be obtained using a combination of LiFSI and LiTFSI at a higher concentration in DME in anode-free LiNi0.6Mn0.2Co0.2O2 cell configurations [148]. QC calculations anticipated that all sulfolane molecules are coordinated by Li+ in the high-concentration electrolyte which slows the decomposition of sulfolane and leads to polymerized CEI [108]. Despite the success of concentrated electrolytes in stabilizing the high-voltage cathodes, high concentration itself induces compromises in conductivity and viscosity. There is a continuous trend to change the salt concentration back to 1 M or even low concentration while maintaining the merits of high concentration [149, 150]. A group of localized high-concentration electrolytes has been extensively developed to build protective interphases onto both the anode and the high-voltage cathodes [151–153].

4.4 Practical Considerations

In addition to the fundamental understanding of electrolyte design, we need to pay attention to the critical requirements including cost, eco-friendly, safety, and wide temperature range operation for practical applications. Cost is always the primary factor in commercialization. Electrolytes account for around 5%–15% in the battery cost [154, 155]. Undoubtedly, the adoption of new lithium salts, solvents, or additives will drive the cost of electrolytes up. The good news is that...
the prices of Li-ion batteries have fallen by 97% since their commercialization in the late 1990s, in particular, about 38% of the cost reduction is caused by the increased battery charge density [155]. It means that advanced electrolytes enable high-voltage cathodes to increase energy density and thereby reduce overall cost at the cell level. Nevertheless, the importance of cost cannot be overemphasized, and we should always keep cost in mind during electrolyte design. Furthermore, all the electrolyte components should be eco-friendly, exhibiting the lowest environmental impact.

Upon increasing the energy density by high-voltage cathodes, battery safety becomes more critical [20]. Thermodynamically, higher operation voltage corresponds to a higher risk of electrolyte decomposition, gas generation, and therefore a higher likelihood of safety hazards. To make safer batteries, flammable carbonate-based electrolytes can be replaced by non-flammable electrolytes [156]. It is well acknowledged that introducing flame-retardant solvents in electrolytes results in non-flammability [157, 158], but more rigorous abuse tests, such as nail penetration or heating, are required [159, 160]. A deeper understanding of the thermal runaway mechanism and the design principles of electrolytes for safer batteries would be highly desired.

The widespread application of batteries calls for a correspondingly wide operating temperature range. Traditionally, efforts have focused on thermal management strategies, but Li-ion battery is inherently related to the electrolyte, SEI, and CEI layers [161, 162]. At low temperatures, down to −20 °C, liquid electrolytes confront freezing issues and resultant sluggish ion transportation through the SEI/CEI layers. Low-temperature operation requires electrolytes with low freezing points and low resistance SEI/CEI layers. At high temperatures, up to 60 °C, LiPF6 salt begins to decompose together with the volatility of the organic solvents and severe transition metal dissolution [163]. High-temperature operation requires electrolytes with high thermal stability and inorganic-rich interphases with low solubility. Some innovative works including liquefied gas electrolytes and all-fluorinated solvents have been demonstrated to enable impressive cycling performance on the low-temperature side [164–166]. However, most of them cannot work at high temperatures due to the low boiling point of solvents utilized. Therefore, how to design an electrolyte that enables Li-ion cells to operate within a wide temperature range (−30 ~ + 60 °C) remains a big challenge as well as an exciting opportunity. For specific electric vehicle applications, in addition to a wide temperature range, more stringent parameters such as calendar life (10 years), cycle life (1000 cycles), and cost ($100/kWh) are required [167].

5 Summary and Perspective

The formation of a stable CEI is critical to achieving high voltage lithium-ion cells with long cycling life. Ideally, a CEI should be conformal to separate the electrolytes from cathode materials and self-healing to accommodate the non-uniform electrochemical reactions. Great progress has been made on the CEI components, morphology, and formation mechanism using operando characterizations together with MD simulations. Multiple strategies have been developed to construct robust CEI through electrolyte design including solvents featuring anti-oxidation, multi-lithium salts with synergy effects, as well as additives both sacrificial and non-sacrificial. However, the fundamental question of how to design a controllable CEI with tunable components, thickness, ion conductivity, etc., is still not fully answered. Given that electrolytes, CEI, and cathode materials dynamically interact with each other upon cycling, it is important to consider the following aspects: (i) Universal principles in constructing stable CEI. Emerging techniques such as data-driven analysis and artificial intelligence have shown great potential in the high-throughput screening of electrolytes, which might be able to establish a correlation between CEI and electrolyte composition; (ii) the exact transport mechanism of Li-ion across the CEI. Potentially, isotopic tracing combined with cryo-TEM can be smartly designed to dynamically track the Li-ion transportation crossing the CEI. More collaborations are required to gain insights into the roles of different electrolyte components on CEI formation, making further electrolyte optimization possible. By rational designing electrolytes, robust CEI can be constructed so that Li-ion cells with a long lifespan are achievable even under high voltage operation.

Acknowledgements The author thanks valuable suggestions provided by Prof. Chunsheng Wang (University of Maryland).

Funding Open access funding provided by Shanghai Jiao Tong University.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format.
as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license, and
indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Com-
mons license, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Com-
mons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of
this license, visit http://creativecommons.org/licenses/by/4.0/.

References

1. J.B. Goodenough, K.S. Park, The Li-ion rechargeable battery: a
perspective. J. Am. Chem. Soc. 135(4), 1167–1176 (2013). https://doi.org/10.1021/ja3091438
2. X. Fan, C. Wang, High-voltage liquid electrolytes for Li
batteries: progress and perspectives. Chem. Soc. Rev. 50,
10486–10566 (2021). https://doi.org/10.1039/D1CS00450F
3. J. Zhang, P.F. Wang, P. Bai, H. Wan, S. Liu et al., Interfacial
design for a 4.6 V high-voltage single-crystalline LiCoO2
cathode. Adv. Mater. 34(8), 2108353 (2022). https://doi.org/10.1002/adma.202108353
4. U.H. Kim, D.W. Jun, K.J. Park, Q. Zhang, P. Kaghashi et al.,
Pushing the limit of layered transition metal oxide cathodes
for high-energy density rechargeable Li ion batteries. Energy
Environ. Sci. 11(5), 1271–1279 (2018). https://doi.org/10.1039/C8EE00227D
5. W. Li, B. Song, A. Manthiram, High-voltage positive elec-
trode materials for lithium-ion batteries. Chem. Soc. Rev.
46(10), 3006–3059 (2017). https://doi.org/10.1039/C6CS00875E
6. D. Kong, J. Hu, Z. Chen, K. Song, C. Li et al., Ti-gradient
doping to stabilize layered structure for high-performance
high-Ni oxide cathode of Li-ion battery. Adv. Energy
Mater. 9(41), 1901756 (2019). https://doi.org/10.1002/aenm.201901756
7. H. Yu, Y. Cao, L. Chen, Y. Hu, X. Duan et al., Surface enrich-
ment and diffusion enabling gradient-doping and coating of
Ni-rich cathode toward Li-ion batteries. Nat. Commun. 12,
4564 (2021). https://doi.org/10.1038/s41467-021-24893-0
8. J.N. Zhang, Q. Li, C. Ouyang, X. Yu, M. Ge et al., Trace
doping of multiple elements enables stable battery cycling of
LiCoO2 at 4.6 V. Nat. Energy 4(7), 594–603 (2019). https://doi.org/10.1038/s41560-019-0409-z
9. W. He, F. Ye, J. Lin, Q. Wang, Q. Xie et al., Boosting the
electrochemical performance of Li- and Mn-rich cathodes by
a three-in-one strategy. Nano-Micro Lett. 13, 205 (2021).
https://doi.org/10.1007/s40820-021-00725-0
10. S.W. Lee, M.S. Kim, J.H. Jeong, D.H. Kim, K.Y. Chung et al., Li2PO4 surface coating on Ni-rich LiNi0.54Co0.35Mn0.11O2
by a citric acid assisted sol-gel method: improved thermal
stability and high-voltage performance. J. Power Sources 360,
206–214 (2017). https://doi.org/10.1016/j.jpowsour.2017.05.
042
11. J. Qian, L. Liu, J. Yang, S. Li, X. Wang et al., Electrochemical
surface passivation of LiCoO2 particles at ultrahigh voltage
and its applications in lithium-based batteries. Nat. Commun.
9, 4918 (2018). https://doi.org/10.1038/s41467-018-07296-6
12. J.S. Park, X. Meng, J.W. Elam, S. Hao, C. Wolverton et al.,
Ultrathin lithium-ion conducting coatings for increased inter-
facial stability in high voltage lithium-ion batteries. Chem.
Mater. 26(10), 3128–3134 (2014). https://doi.org/10.1021/cm500512n
13. Q. Wu, Y. Yin, S. Sun, X. Zhang, N. Wan et al., Novel AlF3
surface modified spinel LiMn1.3Ni0.7O4 for lithium-ion bat-
teries: performance characterization and mechanism explora-
Electrochem. Acta 158, 73–80 (2015). https://doi.org/10.
1016/j.electacta.2015.01.145
14. Z. Zhao, M. Sun, T. Wu, J. Zhang, P. Wang et al., A bifunc-
tional-modulated conformal Li/Mn-rich layered cathode for
fast-charging, high volumetric density and durable Li-ion full
cells. Nano-Micro Lett. 13, 118 (2021). https://doi.org/10.
1007/s40820-021-00643-1
15. Y. Zhao, L. Zhang, J. Liu, K. Adair, F. Zhao et al., Atomic/
molecular layer deposition for energy storage and conversion.
Chem. Soc. Rev. 50, 3889–3956 (2021). https://doi.org/10.
1039/D0CS00156B
16. E. Wang, Y. Zhao, D. Xiao, X. Zhang, T. Wu et al., Compos-
ite nanostructure construction on the grain surface of Li-rich
layered oxides. Adv. Mater. 32, 1906070 (2020). https://doi.
org/10.1002/adma.201906070
17. B.J. Chae, J.H. Park, H.J. Song, S.H. Jang, K. Jung et al.,
Thiophene-initiated polymeric artificial cathode-electrolyte
interface for Ni-rich cathode material. Electrochem. Acta 290,
465–473 (2018). https://doi.org/10.1016/j.electacta.2018.09.
103
18. K. Xu, Nonaqueous liquid electrolytes for lithium-based
rechargeable batteries. Chem. Rev. 104(10), 4303–4418
(2004). https://doi.org/10.1021/cr030203g
19. M. Gauthier, T.J. Carney, A. Grimaud, L. Giordano, N. Pour
et al., Electrode–electrolyte interface in Li-ion batteries: cur-
rent understanding and new insights. J. Phys. Chem. Lett.
6(22), 4653–4672 (2015). https://doi.org/10.1021/jpclett.
5b01727
20. Y. Wu, X. Liu, L. Wang, X. Feng, D. Ren et al., Development
of cathode-electrolyte-interphase for safer lithium batteries.
Energy Storage Mater. 37, 77–86 (2021). https://doi.org/10.
1016/j.ensm.2021.02.001
21. H.M.K. Sari, X. Li, Controllable cathode–electrolyte inter-
facing of Li[Ni0.52Co0.25Mn0.23]O2 for lithium-ion batteries: a
review. Adv. Energy Mater. 9(39), 1901597 (2019). https://doi.
org/10.1002/aenm.201901597
22. S.P. Kühn, K. Edström, M. Winter, I. Cekic-Laskovic, Face
to face at the cathode electrolyte interphase: from interface
features to interphase formation and dynamics. Adv. Mater.
Interfaces 9(8), 2102078 (2022). https://doi.org/10.1002/admi.
202102078

© The authors
23. Q. Li, Y. Wang, X. Wang, X. Sun, J.N. Zhang et al., Investigations on the fundamental process of cathode electrolyte interphase formation and evolution of high-voltage cathodes. ACS Appl. Mater. Interfaces 12(2), 2319–2326 (2019). https://doi.org/10.1021/acsami.9b16727

24. K. Xu, Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114(23), 11503–11618 (2014). https://doi.org/10.1021/cr500030w

25. P. Peljo, H.H. Girault, Electrochemical potential window of battery electrolytes: the homo–lumo misconception. Energy Environ. Sci. 11(9), 2306–2309 (2018). https://doi.org/10.1039/C8EE01286E

26. O. Borodin, Challenges with prediction of battery electrolyte electrochemical stability window and guiding the electrode–electrolyte stabilization. Curr. Opin. Electrochem. 13, 86–93 (2019). https://doi.org/10.1016/j.coelec.2018.10.015

27. K. Edstroem, T. Gustafsson, J.O. Thomas, The cathode–electrolyte interface in the Li-ion battery. Electrochim. Acta 50(2–3), 397–403 (2004). https://doi.org/10.1016/j.electacta.2004.03.049

28. D. Aurbach, Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. J. Power Sources 89(2), 206–218 (2000). https://doi.org/10.1016/S0378-7753(00)00431-6

29. M. Thomas, P.G. Bruce, J.B. Goodenough, Ac impedance analysis of polycrystalline insertion electrodes: application to Li1−xCoO2. J. Electrochem. Soc. 132(7), 1521 (1985). https://doi.org/10.1149/1.2114158

30. K. Kanamura, S. Toriyama, S. Shiraishi, M. Ohashi, Z.I. Takehara, Studies on electrochemical oxidation of non-aqueous electrolyte on the LiCoO2 thin film electrode. J. Electroanal. Chem. 419(1), 77–84 (1996). https://doi.org/10.1016/S0022-0728(96)04862-0

31. T. Eriksson, A. Andersson, C. Gejke, T. Gustafsson, J.O. Thomas, Influence of temperature on the interface chemistry of LiMn2O4 electrodes. Langmuir 18(9), 3609–3619 (2002). https://doi.org/10.1021/la011554m

32. G.L. Xu, Q. Liu, K.K. Lau, Y. Liu, X. Liu et al., Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes. Nat. Energy 4(6), 484–494 (2019). https://doi.org/10.1038/s41580-019-0387-6

33. W. Liu, J. Li, W. Li, H. Xu, C. Zhang et al., Inhibition of transition metals dissolution in cobalt-free cathode with ultrathin robust interphase in concentrated electrolyte. Nat. Commun. 11, 3629 (2020). https://doi.org/10.1038/s41467-020-17396-x

34. S. Bolloju, C.Y. Chiou, T. Vikramaditya, J.T. Lee, (Pentfluorophenyl) diphosphine as a dual-functional electrolyte additive for LiNi0.5Mn1.5O4 cathodes in high-voltage lithium-ion batteries. Electrochim. Acta 299, 663–671 (2019). https://doi.org/10.1016/j.electacta.2019.01.037

35. Z.P. Zhuang, X. Dai, W.D. Dong, L.Q. Jiang, L. Wang et al., Tris (trimethylsilyl) borate as electrolyte additive alleviating cathode electrolyte interphase for enhanced lithium-selenium battery. Electrochim. Acta 393, 139042 (2021). https://doi.org/10.1016/j.electacta.2021.139042

36. D. Wu, J. He, J. Liu, M. Wu, S. Qi et al., Li2CO3/LiF-rich heterostructured solid electrolyte interphase with superior lithiophilic and Li+−transferred characteristics via adjusting electrolyte additives. Adv. Energy Mater. 12(18), 2200337 (2022). https://doi.org/10.1002/aenm.202200337

37. F. Li, J. He, J. Liu, M. Wu, Y. Hou et al., Gradient solid electrolyte interphase and lithium-ion solvation regulated by bisfluorocetamide for stable lithium metal batteries. Angew. Chem. Int. Ed. 60(12), 6600–6608 (2021). https://doi.org/10.1002/anie.202013993

38. Q. Zhang, J. Ma, L. Mei, J. Liu, Z. Li et al., In situ tem visualization of LiF nanosheet formation on the cathode-electrolyte interphase (CEI) in liquid-electrolyte lithium-ion batteries. Matter 5(4), 1235–1250 (2022). https://doi.org/10.1038/s45396-022-00015-x

39. N. Yabuuchi, K. Yoshii, S.T. Myung, I. Nakai, S. Komaba, Detailed studies of a high-capacity electrode material for rechargeable batteries, Li1−xMnO2−LiCo0.5Ni0.5Mn0.5O2. J. Am. Chem. Soc. 133(12), 4404–4419 (2011). https://doi.org/10.1021/ja108588y

40. F. Lin, I.M. Markus, D. Nordlund, T.C. Weng, M.D. Asta et al., Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat. Commun. 5, 3529 (2014). https://doi.org/10.1038/ncomms4529

41. K. Yamamoto, T. Minato, S. Mori, D. Takamatsu, Y. Ori-kasa et al., Improved cyclic performance of lithium-ion batteries: an investigation of cathode/electrolyte interface via in situ total-reflection fluorescence x-ray absorption spectroscopy. J. Phys. Chem. C 118(18), 9538–9543 (2014). https://doi.org/10.1021/jp5011132

42. J.L. Tebbe, T.F. Fuerst, C.B. Musgrave, Degradation of ethylene carbonate electrolytes of lithium ion batteries via ring opening activated by LiCoO2 cathode surfaces and electrolyte species. ACS Appl. Mater. Interfaces 8(40), 26664–26674 (2016). https://doi.org/10.1021/acsami.6b06157

43. M.A. Teshager, S.D. Lin, B.J. Hwang, F.M. Wang, S.H. Haregewoin et al., In situ drifts analysis of solid-electrolyte interphase formation on Li-rich Li1.2Ni0.2Mn0.6O2 and LiCoO2 cathodes during oxidative electrolyte decomposition. ChemElectroChem. 3(2), 337–345 (2016). https://doi.org/10.1002/celc.201500290

44. C. Cárdenas, N. Rabí, P.W. Ayers, C. Morell, P. Jaramillo et al., Chemical reactivity descriptors for ambiphilic reagents: dual descriptor, local hypersoftness, and electrostatic potential. J. Phys. Chem. A 113(30), 8660–8667 (2009). https://doi.org/10.1021/jp092792n

45. O. Borodin, X. Ren, J. Vatamanu, A.W. Cresce, J. Knap et al., Modeling insight into battery electrolyte electrochemical stability and interfacial structure. Acc. Chem. Res. 50(12), 2886–2894 (2017). https://doi.org/10.1021/acs.accounts.7b00486
46. O. Borodin, M. Olguin, C.E. Spear, K.W. Leiter, J. Knap, Towards high throughput screening of electrochemical stability of battery electrolytes. Nanotechnology 26(35), 354003 (2015). https://doi.org/10.1088/0957-4484/26/35/354003

47. O. Borodin, M. Olguin, C. Spear, K. Leiter, J. Knap et al., Challenges with quantum chemistry-based screening of electrochemical stability of lithium battery electrolytes. ECS Transact. 69(1), 113 (2015). https://doi.org/10.1149/06901.0113est

48. J.N. Zhang, Q. Li, Y. Wang, J. Zheng, X. Yu et al., Dynamic evolution of cathode electrolyte interface (CEI) on high voltage LiCoO2 cathode and its interaction with Li anode. Energy Storage Mater. 14, 1–7 (2018). https://doi.org/10.1016/j.ensm.2018.02.016

49. J.N. Zhang, Q. Li, Y. Wang, J. Zheng, X. Yu et al., Dynamic evolution of cathode electrolyte interface (CEI) on high voltage LiCoO2 cathode and its interaction with Li anode. Energy Storage Mater. 14, 1–7 (2018). https://doi.org/10.1016/j.ensm.2018.02.016

50. J. Li, W. Li, Y. You, A. Manthiram, Extending the service life of high-Ni layered oxides by tuning the electrode–electrolyte interface. Adv. Energy Mater. 8(29), 1801957 (2018). https://doi.org/10.1002/aenm.201801957

51. J. Li, W. Li, Y. You, A. Manthiram, Extending the service life of high-Ni layered oxides by tuning the electrode–electrolyte interface. Adv. Energy Mater. 8(29), 1801957 (2018). https://doi.org/10.1002/aenm.201801957

52. S. Li, C. Chen, X. Xia, J. Dahn, The impact of electrolyte oxidation products in LiNi0.5Mn1.5O4/Li4Ti5O12 cells. J. Electrochem. Soc. 160(9), A1524 (2013). https://doi.org/10.1149/2.0951603jes

53. S. Krueger, R. Kloepsch, J. Li, S. Nowak, S. Passerini et al., How do reactions at the anode/electrolyte interface determine the cathode performance in lithium-ion batteries? J. Electrochem. Soc. 160(4), A542 (2013). https://doi.org/10.1149/2.022304jes

54. S. Li, C. Chen, X. Xia, J. Dahn, The impact of electrolyte oxidation products in LiNi0.5Mn1.5O4/Li4Ti5O12 cells. J. Electrochem. Soc. 160(9), A1524 (2013). https://doi.org/10.1149/2.051309jes

55. Y. Wang, Y. Zhang, S. Wang, S. Dong, C. Dang et al., Ultrafast charging and stable cycling dual-ion batteries enabled via an artificial cathode–electrolyte interface. Adv. Funct. Mater. 31(29), 2102360 (2021). https://doi.org/10.1002/adfm.202102360

56. W.H. Li, Y.M. Li, X.F. Liu, Z.Y. Gu, H.J. Liang et al., All-climate and ultrastable dual-ion batteries with long life achieved via synergistic enhancement of cathode and anode interfaces. Adv. Funct. Mater. 32(21), 2201038 (2022). https://doi.org/10.1002/adfm.202201038

57. W.H. Li, H.J. Liang, X.K. Hou, Z.Y. Gu, X.X. Zhao et al., Feasible engineering of cathode electrolyte interphase enables the profoundly improved electrochemical properties in dual-ion battery. J. Energy Chem. 50, 416–423 (2020). https://doi.org/10.1016/j.jechem.202001038

58. J. Lu, T. Wu, K. Amine, State-of-the-art characterization techniques for advanced lithium-ion batteries. Nat. Energy 2(3), 17011 (2017). https://doi.org/10.1038/energy.2017.11

59. T. Minato, H. Kawaura, M. Hirayama, S. Tamakita, K. Suzuki et al., Dynamic behavior at the interface between lithium cobalt oxide and an organic electrolyte monitored by neutron reflectivity measurements. J. Phys. Chem. C 120(36), 20082–20088 (2016). https://doi.org/10.1021/acs.jpcc.6b02523

60. Y. Meng, G. Chen, L. Shi, H. Liu, D. Zhang, Operando fourier transform infrared investigation of cathode electrolyte interphase dynamic reversible evolution on Li1.2Ni0.2M0.6O2. ACS Appl. Mater. Interfaces 11(48), 45108–45117 (2019). https://doi.org/10.1021/acsamat.9b17438

61. D. Chen, M.A. Mahmoud, J.H. Wang, G.H. Waller, B. Zhao et al., Operando investigation into dynamic evolution of cathode–electrolyte interfaces in a Li-ion battery. Nano Lett. 19(3), 2037–2043 (2019). https://doi.org/10.1021/acs.nanolett.9b00179

62. Y. Chu, Y. Shen, F. Guo, X. Zhao, Q. Dong et al., Advanced characterizations of solid electrolyte interphases in lithium-ion batteries. Electrochem. Energy Rev. 3, 187–219 (2020). https://doi.org/10.1007/s41918-019-00058-y

63. Z. Zhu, Y. Zhou, P. Yan, R. Vemuri, W. Xu et al., In situ mass spectrometric determination of molecular structural evolution at the solid electrolyte interphase in lithium-ion batteries. Nano Lett. 15(9), 6170–6176 (2015). https://doi.org/10.1021/acs.nanolett.5b02479

64. Y. Li, Y. Li, A. Pei, K. Yan, Y. Sun et al., Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science. 358(6362), 506–510 (2017). https://doi.org/10.1126/science.aan6014

65. J. Scharf, M. Chouchane, D.P. Finegan, B. Lu, C. Redquest et al., Bridging nano-and microscale x-ray tomography for battery research by leveraging artificial intelligence. Nat. Nanotechnol. 17, 446–459 (2022). https://doi.org/10.1038/s41565-022-01081-9

66. T.T. Nguyen, J. Villanova, Z. Su, R. Tucoulou, B. Fleutot et al., 3D quantification of microstructural properties of LiNi0.5Mn0.5Co0.5O2 high-energy density electrodes by x-ray holographic nano-tomography. Adv. Energy Mater. 11(8), 2003529 (2021). https://doi.org/10.1002/aenm.202003529

67. M. Garcia, E. Webb, S. Garofalini, Molecular dynamics simulation of V2O5/Li2SiO3 interface. J. Electrochem. Soc. 145(6), 2155 (1998). https://doi.org/10.1149/1.1838611

68. G. Nuspl, M. Nagaoka, K. Yoshizawa, F. Mohri, T. Yamabe, Lithium diffusion in Li2O2 electrode materials. B Chem. Soc. Jpn. 71(9), 2259–2265 (1998). https://doi.org/10.1246/bcsj.71.2259

69. L. Xing, J. Yamada, O. Borodin, G.D. Smith, D. Bedrov, Electrode/electrolyte interface in sulfolane-based electrolytes for Li ion batteries: a molecular dynamics simulation study. J. Phys. Chem. C 116(45), 23871–23881 (2012). https://doi.org/10.1021/jp3054179

70. S. Wu, B. Su, K. Ni, F. Pan, C. Wang et al., Fluorinated carbonate electrolyte with superior oxidative stability enables long-term cycle stability of Na2(2)Ni1/3Mn2/3O2 cathodes in sodium-ion batteries. Adv. Energy Mater. 11(9), 2002737 (2021). https://doi.org/10.1002/aenm.202002737
70. X. Xie, E.W.C. Spotte-Smith, M. Wen, H.D. Patel, S.M. Blau et al., Data-driven prediction of formation mechanisms of lithium ethylene monokarbonate with an automated reaction network. J. Am. Chem. Soc. 143(33), 13245–13258 (2021). https://doi.org/10.1021/jacs.1c05807

71. S.M. Blau, H.D. Patel, E.W.C. Spotte-Smith, X. Xie, S. Dwaraknath et al., A chemically consistent graph architecture for massive reaction networks applied to solid-electrolyte interface formation. Chem. Sci. 12(13), 4931–4939 (2021). https://doi.org/10.1039/D0SC05647B

72. M.H. Park, Y.S. Lee, H. Lee, Y.K. Han, Low Li$^+$ binding affinity: an important characteristic for additives to form solid electrolyte interphases in Li-ion batteries. J. Power Sources 365(11), 5109–5114 (2011). https://doi.org/10.1016/j.jpowsour.2011.01.106

73. J. Zhao, X. Zhang, Y. Liang, Z. Han, S. Liu et al., Interphase engineering by electrolyte additives for lithium-rich layered oxides: advances and perspectives. ACS Energy Lett. 6(7), 2552–2564 (2021). https://doi.org/10.1021/acsenergylett.1c00750

74. Y. Qian, P. Niehoff, M. Börner, M. Grützke, X. Mönnighoff et al., Influence of electrolyte additives on the cathode electrolyte interphase (CEI) formation on LiNi$_{0.6}$Mn$_{0.4}$O$_2$ in half cells with Li metal counter electrode. J. Power Sources 329, 31–40 (2016). https://doi.org/10.1016/j.jpowsour.2016.08.023

75. R. Wagner, B. Streipert, V. Kraft, A.R. Jiménez, S. Röser et al., Counterintuitive role of magnesium salts as effective electrolyte additives for high voltage lithium-ion batteries. Adv. Mater. Interfaces 3(15), 1600096 (2016). https://doi.org/10.1002/admi.201600096

76. S.S. Zhang. A review on electrolyte additives for lithium-ion batteries. J. Power Sources 162(2), 1379–1394 (2006). https://doi.org/10.1016/j.jpowsour.2006.07.074

77. C.G. Shi, C.H. Shen, X.X. Peng, C.X. Luo, L.F. Shen et al., A special enabler for boosting cyclic life and rate capability of LiNi$_{0.5}$Mn$_{0.5}$O$_2$: green and simple additive. Nano Energy 65, 104084 (2019). https://doi.org/10.1016/j.nanoen.2019.104084

78. Y.Q. Chen, T.Y. Chen, W.D. Hsu, T.Y. Pan, L.J. Her et al., An electrolyte additive with boron-nitrogen-oxygen alky group enabled stable cycling for high voltage LiNi$_{0.5}$Mn$_{0.5}$O$_4$ cathode in lithium-ion battery. J. Power Sources 477, 228473 (2020). https://doi.org/10.1016/j.jpowsour.2020.228473

79. R. Chen, F. Liu, Y. Chen, Y. Ye, Y. Huang et al., An investigation of functionalized electrolyte using succinonitrile additive for high voltage lithium-ion batteries. J. Power Sources 306, 70–77 (2016). https://doi.org/10.1016/j.jpowsour.2015.10.105

80. Z. Sun, H. Zhou, X. Luo, Y. Che, W. Li et al., Design of a novel electrolyte additive for high voltage LiCoO$_2$ cathode lithium-ion batteries: lithium 4-benzonitrile trimethyl borate. J. Power Sources 503, 230033 (2021). https://doi.org/10.1016/j.jpowsour.2021.230033

81. J. Ahn, J. Im, H. Seo, S. Yoon, K.Y. Cho, Enhancing the cycling stability of Ni-rich LiNi$_{0.85}$Co$_{0.11}$Mn$_{0.06}$O$_2$ cathode at 4.5 V via 2, 4-difluorobiphenyl additive. J. Power Sources 512, 230513 (2021). https://doi.org/10.1016/j.jpowsour.2021.230513

82. Y. Zheng, N. Xu, S. Chen, Y. Liao, G. Zhong et al., Construction of a stable LiNi$_{0.8}$Co$_{0.2}$Mn$_{0.0}$O$_2$ (NCM811) cathode interface by a multifunctional organosilicon electrolyte additive. ACS Appl. Energy Mater. 3(3), 2837–2845 (2020). https://doi.org/10.1021/acsenermater.9b02486

83. N. Aspern, D. Diddens, T. Kobayashi, M. Börner, O. Stubbmann-Kazakova et al., Fluorinated cyclic phosphorous (III)-based electrolyte additives for high voltage application in lithium-ion batteries: impact of structure–reactivity relationships on CEI formation and cell performance. ACS Appl. Mater. Interfaces 11(18), 16605–16618 (2019). https://doi.org/10.1021/acsami.9b03339

84. G. Lan, L. Xing, D. Bedrov, J. Chen, R. Guo et al., Enhanced cyclic stability of Ni-rich lithium ion battery with electrolyte film-forming additive. J. Alloys Compd. 821, 153236 (2020). https://doi.org/10.1016/j.jallcom.2019.153236

85. X. Zuo, C. Fan, J. Liu, X. Xiao, J. Wu et al., Effect of tris (trimethylsilyl) borate on the high voltage capacity retention of LiNiO$_x$Mn$_y$O$_2$O$_2$/graphite cells. J. Power Sources 229, 308–312 (2013). https://doi.org/10.1016/j.jpowsour.2012.12.056

86. Z. Chen, C. Wang, L. Xing, X. Wang, W. Wu et al., Borate electrolyte additives for high voltage lithium nickel manganese oxide electrode: a comparative study. Electrochim. Acta 249, 353–359 (2017). https://doi.org/10.1016/j.electacta.2017.08.027

87. Y. Dong, B.T. Young, Y. Zhang, T. Yoon, D.R. Heskett et al., Effect of lithium borate additives on cathode film formation in LiNi$_{0.5}$Mn$_{0.5}$O$_4$/Li cells. ACS Appl. Mater. Interfaces 9(24), 20467–20475 (2017). https://doi.org/10.1021/acsami.7b01481

88. Y. Li, W. Li, R. Shimizu, D. Cheng, H. Nguyen et al., Elucidating the effect of borate additive in high-voltage electrolyte for Li-rich layered oxide materials. Adv. Energy Mater. 12(11), 2103033 (2022). https://doi.org/10.1002/aenm.202103033

89. T. Deng, X. Fan, L. Cao, J. Chen, S. Hou et al., Designing in-situ-formed interphases enables highly reversible cobalt-free LiNiO$_2$ cathode for Li-ion and Li-metal batteries. Joule 3(10), 2550–2564 (2019). https://doi.org/10.1016/j.joule.2019.08.004

90. M. Xu, W. Li, B.L. Lucht, Effect of propane sultone on elevated temperature performance of anode and cathode materials in lithium-ion batteries. J. Power Sources 193(2), 804–809 (2009). https://doi.org/10.1016/j.jpowsour.2009.03.067

91. Q. Liu, G. Yang, S. Li, S. Zhang, R. Chen et al., Synergy effect of trimethyl borate on protecting high-voltage cathode materials in dual-additive electrolytes. ACS Appl. Mater. Interfaces 13(18), 21459–21466 (2021). https://doi.org/10.1021/acsami.1c04389

92. Q. Gu, M. Wang, Y. Liu, Y. Deng, L. Wang et al., Electrolyte additives for improving the high-temperature storage
performance of Li-ion battery NCM523\text{Li}graphite with overcharge protection. ACS Appl. Mater. Interfaces 14, 4759–4766 (2022). https://doi.org/10.1021/acsami.1c22304

93. L. Madec, L. Ma, K.J. Nelson, R. Petibon, J.P. Sun et al., The effects of a ternary electrolyte additive system on the electrode/electrolyte interfaces in high voltage Li-ion cells. J. Electrochem. Soc. 163(6), A1001 (2016). https://doi.org/10.1149/2.105160jes

94. E.G. Shim, T.H. Nam, J.G. Kim, H.S. Kim, S.I. Moon, Effect of vinyl acetate plus vinylene carbonate and vinyl ethylene carbonate plus biphenyl as electrolyte additives on the electrochemical performance of Li-ion batteries. Electrochim. Acta 53(2), 650–656 (2007). https://doi.org/10.1016/j.electacta.2007.07.026

95. F. Liu, Z. Zhang, Z. Yu, X. Fan, M. Yi et al., bifunctional nitrile-borate based electrolyte additive enables excellent electrochemical stability of lithium metal batteries with single-crystal Ni-rich cathode at 4.7 V. Chem. Eng. J. 434, 134745 (2022). https://doi.org/10.1016/j.cej.2022.134745

96. Y.M. Song, J.G. Han, S. Park, K.T. Lee, N.S. Choi, A multifunctional phosphite-containing electrolyte for 5 V-class LiNi0.5Mn1.5O4 cathodes with superior electrochemical performance. J. Mater. Chem. A 2(25), 9506–9513 (2014). https://doi.org/10.1039/C4TA01129E

97. T. Yim, S.G. Woo, S.H. Lim, W. Cho, J.H. Song et al., Effect of vinyl acetate plus vinylene carbonate and vinyl ethylene carbonate plus biphenyl as electrolyte additives on the electrochemical performance of Li-ion batteries. Electrochim. Acta 53(2), 650–656 (2007). https://doi.org/10.1016/j.electacta.2007.07.026

98. Y. Cui, Y. Wang, S. Gu, C. Qian, T. Chen et al., An effective interface-regulating mechanism enabled by non-sacrificial additives for high-voltage nickel-rich cathode. J. Power Sources 453, 227852 (2020). https://doi.org/10.1016/j.jpowsour.2020.227852

99. L. Zou, P. Gao, H. Jia, X. Cao, H. Wu et al., Nonsacrificial additive for tuning the cathode–electrolyte interphase of lithium-ion batteries. ACS Appl. Mater. Interfaces 14(3), 4111–4118 (2022). https://doi.org/10.1021/acsami.1c020789

100. Z. Zhang, L. Hu, H. Wu, W. Wang, M. Koh et al., Fluorinated electrolytes for 5 V lithium-ion battery chemistry. Energy Environ. Sci. 6(6), 1806–1810 (2013). https://doi.org/10.1039/C3EE24414H

101. T. Achiha, T. Nakajima, Y. Ozawa, M. Koh, A. Yamauchi et al., Thermal stability and electrochemical properties of fluorine compounds as nonflammable solvents for lithium-ion batteries. J. Electrochem. Soc. 157(6), A707 (2010). https://doi.org/10.1149/1.3377084

102. X. Fan, L. Chen, O. Borodin, X. Ji, J. Chen et al., Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nat. Nanotech. 13(8), 715–722 (2018). https://doi.org/10.1038/s41565-018-0183-2

103. C. Wang, Y.S. Meng, K. Xu, Perspective—fluorinating interphases. J. Electrochem. Soc. 166(3), A5184 (2018). https://doi.org/10.1149/2.0281903jes

104. Z. Yu, W. Yu, Y. Chen, L. Mondonico, X. Xiao et al., Tuning fluorination of linear carbonate for lithium-ion batteries. J. Electrochem. Soc. 169, 040555 (2022). https://doi.org/10.1149/1945-7111/ac6715

105. X.G. Sun, C.A. Angell, New sulfone electrolytes for rechargeable lithium batteries Part I Oligoether-containing sulfones. Electrochem. Commun. 7(3), 261–266 (2005). https://doi.org/10.1016/j.elecom.2005.01.010

106. A. Abouimrane, I. Belharouak, K. Amine, Sulfone-based electrolytes for high-voltage Li-ion batteries. Electrochem. Commun. 11(5), 1073–1076 (2009). https://doi.org/10.1016/j.elecom.2009.03.020

107. C.C. Su, M. He, J. Shi, R. Amine, Z. Yu et al., Principle in developing novel fluorinated sulfone electrolyte for high voltage lithium-ion batteries. Energy Environ. Sci. 14(5), 3029–3034 (2021). https://doi.org/10.1039/D0EE03890C

108. J. Alvarado, M.A. Schroeder, M. Zhang, O. Borodin, E. Gobrogge et al., A carbonate-free, sulfone-based electrolyte for high-voltage Li-ion batteries. Mater. Today 21(4), 341–353 (2018). https://doi.org/10.1016/j.jmatlett.2018.02.005

109. L. Dong, Y. Liu, D. Chen, Y. Han, Y. Ji et al., Stabilization of high-voltage lithium metal batteries using a sulfone-based electrolyte with bi-electrode affinity and LiSO2F-rich interphases. Energy Storage Mater. 44, 527–536 (2022). https://doi.org/10.1016/j.ensmat.2021.10.045

110. Y. Abu-Lebdeh, I. Davidson, High-voltage electrolytes based on adiponitrile for Li-ion batteries. J. Electrochem. Soc. 156(1), A60 (2008). https://doi.org/10.1149/1.3023084

111. H. Zhi, L. Xing, X. Zheng, K. Xu, W. Li, Understanding how nitriles stabilize electrolyte/electrode interface at high voltage. Phys. Chem. Lett. 8(24), 6048–6052 (2017). https://doi.org/10.1021/acs.jpclett.7b02734

112. F. Xian, J. Li, Z. Hu, Q. Zhou, C. Wang et al., Investigation of the cathodic interfacial stability of a nitrile electrolyte and its performance with a high-voltage LiCoO2 cathode. Chem. Commun. 56(37), 4998–5001 (2020). https://doi.org/10.1039/D0CC0049C

113. Q. Zhang, K. Liu, F. Ding, W. Li, X. Liu et al., Enhancing the high voltage interface compatibility of LiNi0.5Mn0.5O2 in the succinonitrile-based electrolyte. Electrochim. Acta 298, 818–826 (2019). https://doi.org/10.1016/j.electacta.2018.12.104

114. H. Moon, S.J. Cho, D.E. Yu, S.Y. Lee, A nitrile electrolyte strategy for 4.9 V-class lithium-metal batteries operating in flame. Energy Environ. Mater. (2022). https://doi.org/10.1002/eem2.12383

115. P. Johansson, Intrinsic anion oxidation potentials. J. Phys. Chem. A 110(44), 12077–12080 (2006). https://doi.org/10.1021/jp070202i

116. K. Xu, Tailoring electrolyte composition for LiBOB. J. Electrochem. Soc. 155(10), A733 (2008). https://doi.org/10.1149/1.2961055

117. C. Täubert, M. Fleischhammer, M. Wohlfahrt-Mehrens, U. Wietelmann, T. Buhrmester, LiBOB as electrolyte salt or additive for lithium-ion batteries based
118. V. Aravindan, Y.L. Cheah, W.C. Ling, S. Madhavi, Effect of fluorinated solvents for improving high voltage NaNi0.5 Mn1.5 O4 cathode. J. Electrochem. Soc. 162(7), E111–E114 (2015).

119. I.A. Shkrob, Y. Zhu, T.W. Marin, D.P. Abraham, Mechanistic insight into the protective action of bis (oxalato) borate on improvement of compatibility for LiDFOB-based high-voltage electrolytes. Nat. Energy 3(9), 19661–19671 (2018). https://doi.org/10.1038/s41560-018-0199-8

120. S.S. Zhang, An unique lithium salt for the improved electrolyte of Li-ion battery. Electrochem. Commun. 8(9), 1423–1428 (2006). https://doi.org/10.1016/j.elecom.2006.06.016

121. I.A. Shkrob, Y. Zhu, T.W. Marin, D.P. Abraham, Mechanistic insight into the protective action of bis (oxalato) borate and difluoro (oxalate) borate anions in Li-ion batteries. J. Phys. Chem. C 117(45), 23750–23756 (2013). https://doi.org/10.1021/ip407714p

122. E. Zhao, O. Borodin, X. Gao, D. Lei, Y. Xiao et al., Lithium–iron (III) fluoride battery with double surface protection. Adv. Energy Mater. 8(26), 1800721 (2018). https://doi.org/10.1002/aenm.201800721

123. M. Yao, B. Huang, Q. Li, C. Wang, Y.B. He et al., In-situ construction of hierarchical cathode electrolyte interphase for high performance LiNi0.5Co0.2Mn0.3O2/Li metal battery. Nano Energy 78, 105282 (2020). https://doi.org/10.1016/j.nanoen.2020.105282

124. H. Lu, L. He, Y. Yuan, Y. Zhu, B. Zheng et al., Synergistic effect of fluorinated solvents for improving high voltage performance of LiNi0.5Mn1.5O4 cathode. J. Electrochem. Soc. 167(12), 120534 (2020). https://doi.org/10.1149/1945-7111/ab334a

125. G. Xu, X. Shangguan, S. Dong, X. Zhou, G. Cui, Formulation of blended-lithium-salt electrolytes for lithium batteries. Angew. Chem. Int. Ed. 59(9), 3400–3415 (2020). https://doi.org/10.1002/anie.201906494

126. D. Zhao, P. Wang, X. Cui, L. Mao, C. Li et al., Robust and sulfur-containing ingredient surface film to improve the electrochemical performance of LiDFOB-based high-voltage electrolyte. Electrochim. Acta 260, 536–548 (2018). https://doi.org/10.1016/j.electacta.2017.12.103

127. F. Zhang, C. Wang, D. Zhao, L. Yang, P. Wang et al., Synergistic effect of sulfolane and lithium difluoro (oxalate) borate on improvement of compatibility for LiNi0.8Co0.15Al0.05O2 electrode. Electrochim. Acta. 337, 135727 (2020). https://doi.org/10.1016/j.electacta.2020.135727

128. R. Weber, M. Genovese, A. Louli, S. Hames, C. Martin et al., Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nat. Energy 4(8), 683–689 (2019). https://doi.org/10.1038/s41560-019-0428-9

129. C. Martin, M. Genovese, A. Louli, R. Weber, J. Dahn, Cycling lithium metal on graphite to form hybrid lithium-ion/lithium metal cells. Joule 4(6), 1296–1310 (2020). https://doi.org/10.1016/j.joule.2020.04.003

130. S. Jiao, X. Ren, R. Cao, M.H. Engelhard, Y. Liu et al., Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nat. Energy 3(9), 739–746 (2018). https://doi.org/10.1038/s41560-018-0199-8

131. X. Li, J. Zheng, M.H. Engelhard, D. Mei, Q. Li et al., Effects of imide–orthoborate dual-salt mixtures in organic carbonate electrolytes on the stability of lithium metal batteries. ACS Appl. Mater. Interfaces 10(3), 2469–2479 (2018). https://doi.org/10.1021/acsami.7b15117

132. K. Park, S. Yu, C. Lee, H. Lee, Comparative study on lithium borates as corrosion inhibitors of aluminum current collector in lithium bis (fluorosulfonyl) imide electrolytes. J. Power Sources 296, 197–203 (2015). https://doi.org/10.1016/j.jpowsour.2015.07.052

133. B. Mandal, T. Sooksimuang, B. Griffin, A. Padhi, R. Filler, New lithium salts for rechargeable battery electrolytes. Solid State Ionics 175(1–4), 267–272 (2004). https://doi.org/10.1016/j.ssi.2003.11.037

134. I.A. Shkrob, T.W. Marin, Y. Zhu, D.P. Abraham, Why bis (fluorosulfonyl) imide is a “magic anion” for electrochemistry. J. Phys. Chem. C 118(34), 19661–19671 (2014). https://doi.org/10.1021/jp506567p

135. L.J. Krause, W. Lamanna, J. Summerfield, M. Engle, G. Korba et al., Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfonyl imides: new lithium salts for lithium-ion cells. J. Power Sources 68(2), 320–325 (1997). https://doi.org/10.1016/S0378-7753(97)02517-2

136. N. Wongittharom, T.C. Lee, I.M. Hung, S.W. Lee, Y.C. Wang et al., Ionic liquid electrolytes for high-voltage rechargeable Li/LiFePO4-based batteries at elevated temperatures. J. Mater. Chem. A 2(10), 3613–3620 (2014). https://doi.org/10.1039/C3TA14423B

137. L. Xia, Y. Jiang, Y. Pan, S. Li, J. Wang et al., Lithium bis (fluorosulfonyl) imide-lithium hexafluorophosphate binary-salt electrolytes for lithium-ion batteries: aluminum corrosion behaviors and electrochemical properties. ChemistrySelect 3(7), 1954–1960 (2018). https://doi.org/10.1002/slct.201702488

138. X. Chen, W. Xu, M.H. Engelhard, J. Zheng, Y. Zhang et al., Mixed salts of LiTFSI and LiBOB for stable LiFePO4-based batteries at elevated temperatures. J. Mater. Chem. A 2(7), 2346–2352 (2014). https://doi.org/10.1039/C3TA13043F

139. H. Han, J. Guo, D. Zhang, S. Feng, W. Feng et al., Lithium (fluorosulfonyl) nonafluoroobutanesulfonyle imide (LiFNFSI) as conducting salt to improve the high-temperature resilience of lithium-ion cells. Electrochem. Commun. 13(3), 265–268 (2011). https://doi.org/10.1016/j.elecom.2010.12.030

140. Z. Fang, Q. Ma, P. Liu, J. Ma, Y.S. Hu et al., Novel concentrated Li[FSO3]n (n-C6F5SO2)N]-based ether electrolyte for superior stability of metallic lithium anode. ACS Appl. Mater. Interfaces 9(5), 4282–4289 (2017). https://doi.org/10.1021/acsami.6b03857

141. L. Qiao, U. Oteo, M. Martinez-Ibáñez, A. Santiago, R. Cid et al., Stable non-corrosive sulfonimide salt for 4-V-class lithium metal batteries. Nat. Mater. 21(4), 455–462 (2022). https://doi.org/10.1038/s41563-021-0190-1
142. O. Borodin, J. Self, K.A. Persson, C. Wang, K. Xu, Uncharted waters: super-concentrated electrolytes. Joule 4(1), 69–100 (2020). https://doi.org/10.1016/j.joule.2019.12.007

143. J. Wang, Y. Yamada, K. Sodeyama, C.H. Chiang, Y. Tateyama et al., Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nat. Commun. 7, 12032 (2016). https://doi.org/10.1038/ncomms12032

144. L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho et al., “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350(6263), 938–943 (2015). https://doi.org/10.1126/science.aab1595

145. J. Xu, X. Ji, J. Zhang, C. Yang, P. Wang et al., Aquous electrolyte design for super-stable 2 V LiMn2O4/Li4Ti5O12 pouch cells. Nat. Energy 7(2), 186–193 (2022). https://doi.org/10.1038/s41560-021-00977-5

146. J. Vatamanu, O. Borodin, Ramifications of water-in-salt interfacial structure at charged electrodes for electrolyte electrochemical stability. J. Phys. Chem. Lett. 8(18), 4362–4367 (2017). https://doi.org/10.1021/acs.jpclett.7b01879

147. X. Fan, L. Chen, X. Ji, T. Deng, S. Hou et al., Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 4(1), 174–185 (2018). https://doi.org/10.1016/j.chempr.2017.10.017

148. J. Alvarado, M.A. Schroeder, T.P. Pollard, X. Wang, J.Z. Lee et al., Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes. Energy Environ. Sci. 12(2), 780–794 (2019). https://doi.org/10.1039/C8EE02601G

149. J. Xu, C. Wang, Perspective—electrolyte design for aqueous batteries: from ultra-high concentration to low concentration? J. Electrochem. Soc. 169(3), 035030 (2022). https://doi.org/10.1149/1945-7111/ac5ba9

150. Y. Li, Y. Yang, Y. Lu, Q. Zhou, X. Qi et al., Ultralow-concentration electrolyte for Na-ion batteries. ACS Energy Lett. 5(4), 1156–1158 (2020). https://doi.org/10.1021/acsenergylett.0c00337

151. X. Ren, L. Zou, X. Cao, M.H. Engelhard, W. Liu et al., Enabling high-voltage lithium-metal batteries under practical conditions. Joule 3(7), 1662–1676 (2019). https://doi.org/10.1016/j.joule.2019.05.006

152. S. Chen, J. Zheng, D. Mei, K.S. Han, M.H. Engelhard et al., High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv. Mater. 30(21), 1706102 (2018). https://doi.org/10.1002/adma.201706102

153. X. Ren, S. Chen, H. Lee, D. Mei, M.H. Engelhard et al., Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries. Chem 4(8), 1877–1892 (2018). https://doi.org/10.1002/chem.201805002

154. R. Schmich, R. Wagner, G. Hörpel, T. Placke, M. Winter, Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 3(4), 267–278 (2018). https://doi.org/10.1038/s41560-018-0107-2

155. M.S. Ziegler, J. Song, J.E. Trancik, Determinants of lithium-ion battery technology cost decline. Energy Environ. Sci. 14(12), 6074–6098 (2021). https://doi.org/10.1039/D1EE01313K

156. R. Gond, W. Ekeren, R. Mogensen, A.J. Naylor, R. Younesi, Non-flammable liquid electrolytes for safe batteries. Mater. Horiz. 8, 2913–2928 (2021). https://doi.org/10.1039/D1MH00748C

157. H. Ota, A. Kominato, W.J. Chun, E. Yasukawa, S. Kasuya, Effect of cyclic phosphate additive in non-flammable electrolyte. J. Power Sources 119, 393–398 (2003). https://doi.org/10.1016/S0378-7753(03)00259-3

158. T. Tsujikawa, K. Yabuta, T. Matsushita, T. Matsushima, K. Hayashi et al., Characteristics of lithium-ion battery with non-flammable electrolyte. J. Power Sources 189(1), 429–434 (2009). https://doi.org/10.1016/j.jpowsour.2009.02.010

159. J. Hou, L. Lu, L. Wang, A. Ohma, D. Ren et al., Thermal runaway of lithium-ion batteries employing LiNi(SO4)2-based concentrated electrolytes. Nat. Commun. 11, 5100 (2020). https://doi.org/10.1038/s41467-020-18868-w

160. X. Feng, D. Ren, X. He, M. Ouyang, Mitigating thermal runaway of lithium-ion batteries. Joule 4(4), 743–770 (2020). https://doi.org/10.1016/j.joule.2020.02.010

161. M.T.F. Rodrigues, G. Babu, H. Gullapalli, K. Kalaga, F.N. Sayed et al., A materials perspective on Li-ion batteries at extreme temperatures. Nat. Energy 2(8), 17108 (2017). https://doi.org/10.1038/nenergy.2017.108

162. X. Zhang, L. Zou, Y. Xu, X. Cao, M.H. Engelhard et al., Advanced electrolytes for fast-charging high-voltage lithium-ion batteries in wide-temperature range. Adv. Energy Mater. 10(22), 2000368 (2020). https://doi.org/10.1002/aenm.202000368

163. C.L. Campion, W. Li, B.L. Lucht, Thermal decomposition of LiPF6-based electrolytes for lithium-ion batteries. J. Electrochem. Soc. 152(12), A2327 (2005). https://doi.org/10.1149/1.2083267

164. C.S. Rustomji, Y. Yang, T.K. Kim, J. Mac, Y.J. Kim et al., Liquefied gas electrolytes for electrochemical energy storage devices. Science 356(6345), aal4263 (2017). https://doi.org/10.1126/science.aal4263

165. X. Fan, X. Ji, L. Chen, J. Chen, T. Deng et al., All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nat. Energy 4(10), 882–890 (2019). https://doi.org/10.1038/s41560-019-0474-3

166. J. Holoubek, H. Liu, Z. Wu, Y. Yin, X. Xing et al., Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature. Nat. Energy 6(3), 303–313 (2021). https://doi.org/10.1038/s41560-021-00783-z

167. A. Masias, J. Marcicki, W.A. Paxton, Opportunities and challenges of lithium ion batteries in automotive applications. ACS Energy Lett. 6(2), 621–630 (2021). https://doi.org/10.1021/acsenergylett.0c02584