Fine needle aspiration for the diagnosis and treatment of musculoskeletal tumours

Pedro Cardoso a, b, João Rosa a, João Esteves a, Vânia Oliveira a, Ricardo Rodrigues-Pinto a, b, *

a Department of Orthopaedics, Centro Hospitalar do Porto – Hospital de Santo António, Portugal
b Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Portugal

Abstract

Objective: The aim of this study was to evaluate the diagnostic accuracy of FNA and analyse its efficacy in enabling the initiation of treatment in musculoskeletal tumours.

Methods: A total of 130 FNA were performed (94 bone and 36 soft tissue lesions) guided by CT scan (n = 64), ultrasonography (n = 36) and radioscopy (n = 30). Diagnostic yield and accuracy were evaluated. A diagnosis was considered accurate when confirmed by histology or ulterior clinical/imaging evaluation. Exclusion of malignancy or infection was considered as diagnoses.

Results: Ninety diagnoses (69.2%) were obtained: 87 (96.7%) were accurate and 3 were wrong. FNA was non-diagnostic in 40 cases (30.8%) but in 15 (11.5%) it has been possible to conclude if the lesion was malignant (n = 6) or benign (n = 9). This method was completely inconclusive in 25 cases (19.2%).

Conclusion: Despite the low diagnostic yield, accuracy was high. FNA allowed the initiation of treatment in all 87 patients with a correct diagnosis and in 9 in which malignancy was excluded. Two of the 6 biopsies with the information of malignancy were soft tissue lesions. Even here, treatment could be done, as the majority of soft tissue sarcoma protocols begin with surgery. This study validates FNA as a method with a high diagnostic accuracy.

© 2017 Turkish Association of Orthopaedics and Traumatology. Publishing services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Fine needle aspiration (FNA) is a well-established tool for the diagnosis of palpable and non-palpable lesions such as those localised to lymph nodes, salivary glands, breast, liver and pancreas, among others. Less enthusiasm is felt for the usage of this technique in the investigation of bone and soft tissue tumours; this is primarily due to their rarity and to difficulties in studying their morphology and obtaining their diagnoses.1

Even in specialized centres, where pathologists integrate all the clinical and image information, FNA has not reached the value of trucut biopsy, which is considered the main alternative to incisional biopsy.1,2 Several factors are in the basis of the existing scepticism such as the small volume of sample collected, the fact that it only characterizes the sample cytotologically, the overlapping of the cytomorphology of various tumours and the large variability of results published in studies over the years.2

However, given that it is a less invasive procedure, performed in an outpatient basis without general anaesthesia or hospitalization, as well as having a much lower cost, FNA is an attractive technique when compared to more invasive options. FNA has also the advantage of enabling the aspiration of different parts of a same tumour, which is particularly important in large and heterogeneous neoplasms.

The purpose of this study was to evaluate the diagnostic accuracy of fine-needle biopsy, and to analyse to which extent this method enables the initiation of treatment, clarifying its role in addressing musculoskeletal tumours.
Materials and methods

One hundred and thirty patients submitted to FNA-derived cell block over a 3-year period were retrospectively reviewed. In the majority of these cases a diagnosis of bone or soft tissue tumour was necessary to start treatment but in a few the exclusion of malignancy was also important. All procedures were performed by one single team (one orthopaedic surgeon and one radiologist) and samples were analysed by the same pathologist.

The average age of the patients was 53.2 years (12–90). There were 59 males and 71 females. Ninety-four underwent bone and 36 soft tissue biopsies. All FNA were performed under image guidance (Fig. 1). Table 1 depicts the clinical characteristics of the tumours, their anatomical location and the imagiological method used to localize them.

The most suitable route was chosen in order to avoid noble structures such as neurovascular bundles and organs. After the selection of the area, skin was anesthetized with 3–5 ml of 2% Lido-caine and cytoaspiration with a 22-gauge needle was performed. Samples were placed in CytoRich® Red Preservative Fluid and sent to laboratory. The pathologist did not do any preliminary evaluation during the procedure. All samples were centrifuged at 1500 rpm for 10 min, after which the supernatant was discarded. Haematoxylin and Histolgel® were then added and the sample was vortexed for homogenisation. Homogenised sample was then frozen. Frozen tissue was placed in biopsy cassettes and used for histology (Haematoxylin and Eosin) and immunohistochemistry (Fig. 2).

The diagnostic yield (ratio between the number of diagnosis achieved and the number of all procedures) and accuracy (ratio between the confirmed diagnosis and the number of established diagnosis) were evaluated. A diagnosis was considered to be accurate when it was confirmed by histology–trucut biopsy, incisional biopsy, surgery–or ulterior clinical and imaging evaluation as some benign tumours, metastases and hematopoietic lesions do not need histological confirmation. Diagnostic yield and accuracy of soft tissue and bone lesions were analysed and compared. Statistical analysis was performed using GraphPad Prism v. 6.0. The differences between means were compared using t-test. A p value < 0.05 was considered to represent a statistically significant difference.

The minimum follow up was 2 years. Exclusion of malignancy or infection, when clinically suspected, was included in the group of diagnosis.

Results

In 90 patients (69.2%) a diagnosis was obtained and in 87 (96.7%) were accurate. In 36 cases accuracy was confirmed by histology and in 54 cases by clinical and imaging valuation.

In the group of osseous lesions diagnoses were: 28 metastases, 17 primitive malignant tumours, 7 benign tumours, 10 hematologic diseases and 2 infections; in 7 cases pathology could be excluded. In this group only 2 benign lesions were misdiagnosed: a spondylo-discitis of a dorsal vertebra was diagnosed as a Giant Cell Tumour and a low-grade chondrosarcoma of the scapula was assumed as an enchondroma (Table 2).

In the group of soft tissue tumours 10 lesions were found to be benign, 6 malignant and 3 were classified as hematologic diseases.

Fig. 1. Examples of the imagiological methods used for tumour localisation: A) Ultrasonographic view of a soft tissue lesion in the thigh, B) Identification of a bone lesion in the sacrum using CT, C) Identification of a bone lesion in the humerus using X-ray.
In this study, the necessary, with substantially improved results when compared to the pathologist during the procedure, allowing its repetition if the preliminary evaluation comes from the observation of the sample studied and the accomplishment of preliminary evaluation. The reason for the poor overall diagnostic yield (69.2%) was due to technical issues with samples. The yield, however, was significantly higher for bone tumours than for soft tissue lesions (p = 0.0187). Again, this difference may be explained by the same two reasons: analysis of tissue architecture and morphology are more important in identifying and distinguishing between soft tissue lesion subtypes and the fact the clinical and imaging information are more informative in the case of bone than in soft tissue lesions.

The accuracy of a diagnostic technique is the most important parameter in its assessment, and obtaining an exact result is its main objective. In different studies, the diagnostic accuracy of FNA varies between 75% and 98%, where the lowest values are obtained in smaller samples. If it were only considered studies with high samples (n > 300) this value would be greater than 95%. Here, the accuracy was 96.7%, which is even superior to that reported in other studies showing the reliability in the diagnosis of benign tumours, sarcomas, metastases, infections, hematologic disease lesions and in excluding pathology. No significant differences in accuracy were found between soft tissue and bone lesions (p = 0.05704).

In many cases of musculoskeletal tumours, the specific diagnosis has a minor role in the initiation of treatment. The histological grade, staging and anatomical location are the most important factors for therapeutic decisions and it may even be said that the existing protocols are less based on the histological subtype. Some authors go further, referring to the minor importance of histological subtype and highlighting the relevance of the distinction between sarcoma and metastasis, since the treatment of most sarcomas in adults is primarily based on its size, location and proximity to vital structures. Kilpatrick et al. considered FNA sufficient to initiate treatment in 83% of soft tissue tumours and in 87% of bone tumours. In a study conducted in 2010, definitive treatment could be initiated based solely on FNA in 81.3% of benign, in 78% of malignant and in 43% of the indeterminate tumours. Assuming the same criteria, the technique in the present study would therefore allow for the initiation of treatment in all 87 patients with a diagnosis

Table 1: Clinical characteristics of bone and soft tissue lesions diagnosed by FNA.

Total biopsies	Type	Gender	Mean age (range)	Anatomical location	Image guidance
130 biopsies	Bone 94	Male 59	53.2 (12–90)	Lower limb 45	CT-scan 64
	Soft tissue 36	Female 71		Upper limb 22	Ultrasonography 36

Fig. 2. Chordoma of sacrum. A (HE 100×). B (HE 400×). Although "philalporous cells" are not present, epithelioid cells are characteristically arranged as cords and embedded in an extracellular myxoid matrix.
Table 2
Correlation between cytological and final diagnosis in bone and soft tissue tumours.

Patient	Bone/Soft tissue tumour	Cytological diagnosis	Final diagnosis
1	Bone	Osteosarcoma	Osteosarcoma
2	Bone	Benign lesion	Enchondroma
3	Bone	Malignant lesion	Ewing sarcoma
4	Soft tissue	Inconclusive	Neurofibroma
5	Soft tissue	Haemangiomma	Haemangiomma
6	Bone	Malignant lesion	Ewing sarcoma
7	Soft tissue	Synovial sarcoma	Synovial sarcoma
8	Bone	Metastasis	Metastasis
9	Bone	Myeloma	Myeloma
10	Bone	Benign lesion	Osteoid osteoma
11	Bone	Inconclusive	Infection
12	Soft tissue	Lymphoma	Lymphoma
13	Bone	Giant Cell Tumour	Infection
14	Bone	Giant Cell Tumour	Giant Cell Tumour
15	Soft tissue	Benign	Schwannoma
16	Bone	Chondrosarcoma	Chondrosarcoma
17	Bone	Benign lesion	Chondromyxoid fibroma
18	Soft tissue	Inconclusive	Lipoma
19	Bone	Chondrosarcoma	Chondrosarcoma
20	Bone	Myeloma	Myeloma
21	Soft tissue	Haemangiomma	Haemangiomma
22	Bone	Infection	Infection
23	Bone	Exclusion tumour	Exclusion tumour
24	Bone	Inconclusive	Chondrosarcoma
25	Bone	Inconclusive	Osteochondroma
26	Soft tissue	Inconclusive	Synovial sarcoma
27	Soft tissue	Myeloma	Myeloma
28	Bone	Inconclusive	Chondrosarcoma
29	Soft tissue	Lymphoma	Lymphoma
30	Soft tissue	Inconclusive	Myositis ossificans
31	Soft tissue	Benign lesion	Haemangiomma
32	Soft tissue	Inconclusive	Haemangiomma
33	Bone	Chondrosarcoma	Chondrosarcoma
34	Soft tissue	Ewing sarcoma	Ewing sarcoma
35	Bone	Inconclusive	Haemangiomma
36	Soft tissue	Inconclusive	Myxoma
37	Bone	Myeloma	Myeloma
38	Bone	Chondrosarcoma	Chondrosarcoma
39	Soft tissue	Ganglion cyst	Ganglion cyst
40	Bone	Inconclusive	Myeloma
41	Bone	Chordoma	Chordoma
42	Bone	Ewing Sarcoma	Ewing Sarcoma
43	Bone	Metastasis	Metastasis
44	Bone	Metastasis	Metastasis
45	Bone	Metastasis	Metastasis
46	Bone	Chordoma	Chordoma
47	Bone	Myeloma	Myeloma
48	Bone	Enchondroma	Chondrosarcoma
49	Bone	Giant Cell Tumour	Giant Cell Tumour
50	Bone	Infection	Infection
51	Bone	Metastasis	Metastasis
52	Bone	Metastasis	Metastasis
53	Bone	Metastasis	Metastasis
54	Soft tissue	Inconclusive	Angiolipoma
55	Bone	Metastasis	Metastasis
56	Bone	Osteosarcoma	Osteosarcoma
57	Soft tissue	Benign lesion	Haemangiomma
58	Bone	Benign lesion	Aneurysmal bone Cyst
59	Soft tissue	Liposarcoma	Aggressive fibromatosis
60	Bone	Benign lesion	Aneurysmal bone cyst
61	Soft tissue	Lipoma	Lipoma
62	Soft tissue	Inconclusive	Schwannoma
63	Bone	Metastasis	Metastasis
64	Bone	Brown tumour	Brown tumour
65	Bone	Exclusion tumour	Exclusion tumour
66	Bone	Osteosarcoma	Osteosarcoma
67	Bone	Exclusion tumour	Exclusion tumour
68	Bone	Angiosarcoma	Angiosarcoma
69	Bone	Exclusion tumour	Exclusion tumour
70	Bone	Benign lesion	Non ossifying fibroma
71	Bone	Metastasis	Metastasis
72	Bone	Metastasis	Metastasis
73	Bone	Inconclusive	Osteosarcoma

(continued on next page)
proven correct and in the other 9 in which malignancy had been excluded. This would be 96 of the 130 (73.8%) – Table 4. Considering the 6 biopsies without diagnosis but with the information of being malignant, 2 were soft tissue lesions. Even in these cases, treatment could have been done, as the great majority of soft tissue sarcoma protocols begin with surgical excision. Moreover, if the treatment had been done according to the 3 wrong diagnoses, in these cases, the final result would not be considered a disaster.

Finally, caution should be taken in malignancies since the initial treatment is different according to each diagnosis. The utility of cytogenetics in the routine work-up of sarcomas collected by FNA has been reinforced.16 It is possible, for instance, to confirm an Ewing...
sarcoma by the characteristic chromosome translocation $t(11,12)$ in samples of FNA. Nevertheless this was not done in this study.

In conclusion, despite the low diagnostic yield the accuracy of FNA was very high and would therefore permit the initiation of treatment in most cases, except in those in which the result suggests malignancy without a precise diagnosis.

References

1. Layfield LJ, Dodd LG, Hirschowitz S, Crabtree SN. Fine-needle aspiration of primary osseous lesions: a cost effectiveness study. Diagn Cytopathol. 2010;38:239-243. http://dx.doi.org/10.1002/dc.21172.
2. Khalbuss WE, Teot LA, Monaco SE. Diagnostic accuracy and limitations of fine-needle aspiration cytology of bone and soft tissue lesions: a review of 1114 cases with cytological-histological correlation. Cancer Cytopathol. 2010;118:24-32. http://dx.doi.org/10.1002/ccy.20058.
3. Kasraian S, Allison DC, Ahlmann ER, Fedenko AN, Menendez LR. A comparison of fine-needle aspiration, core biopsy, and surgical biopsy in the diagnosis of extremity soft tissue masses. Clin Orthop Relat Res. 2010;468:2992-3002. http://dx.doi.org/10.1002/s11999-010-1401-x.
4. Yang YJ, Damron TA. Comparison of needle core biopsy and fine-needle aspiration for diagnostic accuracy in musculoskeletal lesions. Arch Pathol Lab Med. 2004;128:759-764. http://dx.doi.org/10.1043/1543-2165(2004)128-759:CONCB-2.0.CO;2.
5. Jorda M, Rey L, Hanly A, Ganjei-Azar P. Fine-needle aspiration cytology of bone: accuracy and pitfalls of cytdiagnosis. Cancer. 2000;90:47-54. http://dx.doi.org/10.1002/(SICI)1097-0142(20000225)90:1<47::AID-CNCR7>3.0.CO;2-T.
6. Kreicbergs A, Bauer HC, Brossjö O, Lindholm J, Skoog L, Söderlund V. Cytological diagnosis of bone tumours. J Bone and Joint Surg British volume. 1996;78:258-263. http://bjj.boneandjoint.org.uk/content/78-B/2/258.long, http://dx.doi.org/10.1309/YN14-XB14-SF11-DC8.
7. Söderlund V. Combined radiology and cytology in the diagnosis of bone lesions – a review of 399 cases. Acta Orthopaed Scand Suppl. 2004;75:31-56. http://dx.doi.org/10.1080/00016470410001303-1.
8. Hirachand S, Lakhhey M, Singh A, Devkota S, Akhter J. Fine needle aspiration (FNA) of soft tissue tumours (STT). Kathmandu Unniv Med J (KUMJ). 2007;5:374–377. http://imsear.ir.mahidol.ac/th/handle/123456789/46483, PMID: 18640507.
9. Maitra A, Ashfaq R, Saboorian MH, Lindberg G, Golaskan ST. The role of fine-needle aspiration biopsy in the primary diagnosis of mesenchymal lesions: a community hospital-based experience. Cancer. 2000;90:178–185. http://dx.doi.org/10.1002/1097-0142(20000625)90:3<33C178::AID-CNCR6>3.0.CO;2-5/full.
10. Bommer KK, Ramzy I, Mody D. Fine-needle aspiration biopsy in the diagnosis and management of bone lesions: a study of 450 cases. Cancer. 1997;81:148–156. http://dx.doi.org/10.1002/(SICI)1097-0142(19970625)81:3<33:C148::AID-CNCR6>3.0.CO;2-N/full.
11. Nagira K, Yamamoto T, Akiyue T, et al. Reliability of fine-needle aspiration biopsy in the initial diagnosis of soft-tissue lesions. Diagn Cytopathol. 2002;27:354–361. http://dx.doi.org/10.1002/dc.10200.
12. Ng VY, Thomas K, Crist M, Wakeley J, Mayerson J. Fine needle aspiration for clinical triage of extremity soft tissue masses. Clin Orthop Relat Res. 2010;468:1120–1128. http://dx.doi.org/10.1007/s11999-009-1100-7.
13. Domanski HA, Akerman M, Birgitta C, et al. Core-needle biopsy performed by the cytopathologist: a technique to complement fine-needle aspiration of soft tissue and bone lesions. Cancer. 2005;105:229-239. http://dx.doi.org/10.1002/cncr.21154.
14. Domanski HA. Fine-needle aspiration cytology of soft tissue lesions: diagnostic challenges. Diagn Cytopathol. 2007;35:768-773. http://dx.doi.org/10.1002/dc.20765.
15. Kilpatrick SE, Cappellari JO, Bos GD, Gold SH, Ward WC. Is fine-needle aspiration biopsy a practical alternative to open biopsy for the primary diagnosis of sarcoma? Experience with 140 patients. Am J Clin Pathology. 2001;115:59–68. http://dx.doi.org/10.1309/V297-X814-XFI1-DC8.
16. Kilpatrick SC, Bergman S, Pettenati MJ, Gulley ML. The usefulness of cytogenetic analysis in fine needle aspirates for the histologic subtyping of sarcomas. Modern Pathol Off J United States Canadian Acad Pathol Inc. 2006;19:815–819. http://dx.doi.org/10.1038/modpathol.3800598.