Indoor wet cells as a habitat for melanized fungi, opportunistic pathogens on humans and other vertebrates

Xiaofang Wang1,2, Wenying Cai1, A. H. G. Gerrits van den Ende3, Junmin Zhang1, Ting Xie4, Liyan Xi1,5, Xiqing Li1, Jiufeng Sun6 & Sybren de Hoog3,7,8,9

Indoor wet cells serve as an environmental reservoir for a wide diversity of melanized fungi. A total of 313 melanized fungi were isolated at five locations in Guangzhou, China. Internal transcribed spacer (rDNA ITS) sequencing showed a preponderance of 27 species belonging to 10 genera; 64.22% (n = 201) were known as human opportunists in the orders Chaetothyriales and Venturiales, potentially causing cutaneous and sometimes deep infections. Knufia epidermidis was the most frequently encountered species in bathrooms (n = 26), while in kitchens Ochroconis musae (n = 14), Phialophora oxyspora (n = 12) and P. europaea (n = 10) were prevalent. Since the majority of species isolated are common agents of cutaneous infections and are rarely encountered in the natural environment, it is hypothesized that indoor facilities explain the previously enigmatic sources of infection by these organisms.

Black yeast-like and other melanized fungi are frequently isolated from clinical specimens and are known as etiologic agents of a gamut of opportunistic infections, but for many species their natural habitat is unknown and hence the source and route of transmission remain enigmatic. The majority of clinically relevant black yeast-like fungi belong to the order Chaetothyriales, while some belong to the Venturiales. Propagules are mostly hydrophilic1 and reluctantly dispersed by air, infections mostly being of traumatic origin. Members of the group are associated with mild implantation diseases of skin and nails or chronic mutilating infections such as chromoblastomycosis and phaeohyphomycosis, but some show neurotropic dissemination. All infections may occur in immunocompetent individuals. Since special methods are required for their isolation from nature, a low competitive ability towards fast-growing contaminants has been hypothesized2.

In the environment, black yeast-like fungi have been recovered from unexpected, rather hostile (micro) environments, including rock, creosote-treated wood, hydrocarbon-polluted soil, and lichens3–5. Recent studies have demonstrated that black yeast-like fungi of Chaetothyriales, particularly Exophiala and Cladophialophora species are common colonizers in indoor wet cells6,7. The thermostolerant species Exophiala dermatitidis is frequent in steamaths, house baths and dishwashers8,9. Southeast Asia countries have a similar (sub)tropical climate, hot moisture sustaining thermophilic fungal growth during a large part of the year, although with marked geographical differences. However, disseminated Exophiala deramtitidis infections are particularly observed in East Asia countries10, e.g. Thailand, while the neurotropic species Cladophialaphora bantiana occurs relatively often in India11. In order to understand the origin of infections, screening of households for fungi other than

1Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China. 2Department of Dermatology and Venerology, Guangming New District Central Hospital, Shenzhen, Guangdong Province, China. 3Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands. 4Department of Dermatology, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China. 5Dermatology Hospital of Southern Medical University, Guangzhou, China. 6Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China. 7Center of Expertise in Mycology of Radboudumc/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands. 8Basic Pathology Department, Federal University of Paraná State, Curitiba, Paraná, Brazil. 9Department of Dermatology, First Hospital of Peking University, Beijing, China. Correspondence and requests for materials should be addressed to X.L. (email: lixiqing1965@163.com) or J.S. (email: sunjiuf@163.com)
the common airborne fraction mainly involved in allergy (Aspergillus, Alternaria, Cladosporium) seems overdue. Several selective techniques have been developed enabling recovery of the black yeast-like fungi. In the present study we focused on black fungi in Southern China, where chromoblastomycosis and phaeohyphomycosis are endemic. Our aim was to identify the spectrum of black yeast-like fungi in indoor wet cells, and clarify whether these facilities harbour potential etiologic agents of disease.

Methods

Sampling and isolation. Environmental samples were collected from 53 families living in five regions (Yue Xiu, Li Wan, Bai Yun, Tian He, Hai Zhu) of Guangzhou city, during July to September, 2015. Black biofilms were sampled from bathrooms (water ladle, wall, soap box, washtub, door, sprinklers, toothbrush cup, floor, brush, mirror), kitchen (water tank, chopping board, sterilizing cabinet, wall, cooking bench), refrigerator (rubber seal), washing machine (rubber seal, water tap) and water dispenser (water tank) using sterile cotton swabs and immediately contained in sterile tubes. The sampling tubes were stored for max. 24 h at room temperature before processing.

For the inoculation and culture of suspect fungus, 500 gram of Potato Dextrose Agar (PDA) (Oxoid, Thermo Fisher Scientific, Basingstoke, UK) powder was solved in 1.28 liter demi water, and autoclaved under 121 °C, 105 kPa for 30 min. Each 250 mg of Chloramphenicol (Sigma Aldrich, St. Louis, MO, USA) and cycloheximide (Sigma Aldrich, St. Louis, MO, USA) were added into the PDA medium when it reach to about 60 °C, and mixed sufficiently before plating. Sterile cotton swabs contained the suspect fungus specimens were rubbed over the surface of PDA medium plate with 200 mg/L chloramphenicol and 200 mg/L cycloheximide, and incubated at 28 °C for 2 weeks. The workflow of sampling and isolation are shown in Fig. 1.

Morphology. After 2 weeks culturing, the suspected slow-growing, blackish-brown colonies in the same plate were viewed and compared. The predominant colony type in each plate was considered as target colony, and one was selected and transferred to new growth media on PDA using a loop for further culture. Preliminary identification at the generic level was carried out by colony appearance and morphology by microscopy using slide cultures on Sabouraud's glucose agar (SDA) (Oxoid, Thermo Fisher Scientific, Basingstoke, UK) after 2 weeks culturing at room temperature.

DNA extraction. Methods of DNA extraction were those of Sun et al. Briefly, about 1 cm² mycelium or yeasts of 15-d-old cultures was transferred to a 2 mL Eppendorf tube containing 300 μL CTAB (cetyltrimethylammonium bromide) buffer (CTAB 2% (w/v), NaCl 1.4 M, Tris-HCl 100 mM, pH 8.0; EDTA 20 mM, b-mercaptoethanol 0.2% (v/v)) and about 80 mg of a silica mixture (silica gel H, Merck 7736, Darmstadt, Germany/Kieselguhr Celite 545, Machery, Düren, Germany, 2:1, w/w). Cells were disrupted with sterile glass beads (Sigma, St. Louis, MO, USA) for approximately 5 min. Subsequently 200 μL CTAB buffer was added, the mixture was vortexed and incubated for 10 min at 65 °C. After addition of 500 μL chloroform, the solution was mixed and centrifuged for 5 min at 13, 000 rpm and the supernatant transferred to a new tube with 2 vols of ice cold 96% ethanol. DNA was allowed to precipitate for 30 min at −20 °C and then centrifuged again for 5 min at 13, 000 rpm. Subsequently the pellet was washed with cold 70% ethanol. After drying at room temperature it was resuspended in 97.5 μL TE-buffer plus 2.5 μL RNase 20 U.mL⁻¹ and incubated for 5 min at 37 °C, before storage at −20 °C.

Sequencing and molecular identification. Ribosomal DNA (rDNA, codes for ribosomal RNA) Internal Transcribed Spacer (ITS) was amplified using primers V9G and LS266 and sequenced with ITS1 and ITS4. Amplicons were cleaned with GFX PCR DNA purification kit (GE Healthcare, U.K.). Sequencing was performed.
on an ABI 3730XL automatic sequencer. Sequences were edited using the Seqman package (DNASTar, Madison, U.S.A.) and aligned using BioNumerics (Applied Maths, Sint-Martens-Latem, Belgium). Sequences were compared in a research data database of black fungi maintained at Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands, and validated by ex-type strains of known species. In addition, all the ITS sequences were deposited to GenBank database, and conducted Blastn analysis (https://blast.ncbi.nlm.nih.gov/Blast.cgi) as default parameters settings. The most hits sequence of known species was considered as the target species showed in Supplementary (Table S1).

Statistical analysis. Descriptive statistics were carried out with the statistical software package Statistical Product and Service Solutions (SPSS, 17.0) (IBM SPSS, Chicago, USA). Mann-Whitney U test for unparametric variables was used for comparison of strains among five different regions. The strains isolated in each family and location were also analyzed using one way ANOVA parametric test, followed with Turkey analysis. For all statistical tests, p-value of <0.05 was considered statistically significant.

Results
A total of 509 samples were taken from 53 families at five regions of Guangzhou, China, of which 399 samples showed positive growth of melanized fungi (Table 1). Subsequently, 313 (61.49%) strains of black yeast-like fungi were isolated from 399 positive samples (Table 2). Eighty-six suspected colonies could not successfully be isolated during subsequent subculturing. Although the percentages of positive isolation per region ranged from 59.48% to 71.88%, no significant differences of total isolates were found between five regions investigated either based on unparametric Mann-Whitney U test (p = 0.427) or one way ANOVA parametric test (p = 0.671), followed by Turkey analysis (p = 0.714–0.999) (Table 2).

Table 1. Summary of samples and strains in different regions of Guangzhou, China. *percentage of samples in each regions versus total samples. %percentage of melanized fungi culturing positive samples in each regions versus total positive samples. 4percentage of identified strains in each regions versus total strains. 5percentage of total strains versus total samples in each regions.

Family	Total samples (%)	Positive samples (%)	Strains (%)	Positive isolation percentage (%)
Yue Xiu	45 (8.84%)	43 (10.78%)	32 (10.25%)	306 (60.12%)
Li Wan	93 (18.28%)	86 (21.56%)	56 (17.90%)	216 (51.14%)
Bai Yun	33 (6.49%)	28 (7.02%)	20 (6.39%)	182 (38.15%)
Tian He	32 (6.29%)	28 (6.52%)	23 (7.35%)	182 (38.15%)
Hai Zhu	306 (60.12%)	216 (51.14%)	182 (38.15%)	306 (60.12%)
In total	509	399	313	509

Table 2. Distribution of isolates in each regions.

Region	Total samples (%)	Positive samples (%)	Strains (%)	Positive isolation percentage (%)
A	45 (8.84%)	43 (10.78%)	32 (10.25%)	306 (60.12%)
B	93 (18.28%)	86 (21.56%)	56 (17.90%)	216 (51.14%)
C	33 (6.49%)	28 (7.02%)	20 (6.39%)	182 (38.15%)
D	32 (6.29%)	28 (6.52%)	23 (7.35%)	182 (38.15%)
E	306 (60.12%)	216 (51.14%)	182 (38.15%)	306 (60.12%)
In total	509	399	313	509

An association analysis between isolation frequency and sampling areas indicated that the bathroom (n = 147, 46.96%) was the most common isolation site, followed by kitchen (n = 116, 37.06%), refrigerator (n = 32, 10.22%), washing machine (n = 17, 5.43%) and water dispenser (n = 1, 0.32%) (Table 4). The distribution of isolates was significantly variable in each location, which is proven by either unparametric Mann-Whitney U test (p = 0.015) of total isolates between four locations (water dispensers were not included in this test due to small data point) or
Families in each region	Haizhu	Liwan	Baiyun	Yuexiu	Tianhe	In total
1	15	0	0	0	0	15
2	8	0	0	0	0	8
3	9	0	0	0	0	9
4	2	0	0	0	0	2
5	4	0	0	0	0	4
6	4	0	0	0	0	4
7	6	0	0	0	0	6
8	5	0	0	0	0	5
9	6	0	0	0	0	6
10	5	0	0	0	0	5
11	20	0	0	0	0	20
12	9	0	0	0	0	9
13	5	0	0	0	0	5
14	6	0	0	0	0	6
15	7	0	0	0	0	7
16	2	0	0	0	0	2
17	3	0	0	0	0	3
18	3	0	0	0	0	3
19	5	0	0	0	0	5
20	7	0	0	0	0	7
21	6	0	0	0	0	6
22	4	0	0	0	0	4
23	5	0	0	0	0	5
24	8	0	0	0	0	8
25	7	0	0	0	0	7
26	2	0	0	0	0	2
27	5	0	0	0	0	5
28	2	0	0	0	0	2
29	3	0	0	0	0	3
30	9	0	0	0	0	9
31	0	12	0	0	0	12
32	0	5	0	0	0	5
33	0	7	0	0	0	7
34	0	9	0	0	0	9
35	0	6	0	0	0	6
36	0	5	0	0	0	5
37	0	4	0	0	0	4
38	0	3	0	0	0	3
39	0	7	0	0	0	7
40	0	0	9	0	0	9
41	0	0	4	0	0	4
42	0	0	7	0	0	7
43	0	0	0	3	0	3
44	0	0	0	8	0	8
45	0	0	0	0	0	0
46	0	0	0	12	0	12
47	0	0	0	9	0	9
48	0	0	0	3	0	3
49	0	0	0	2	0	2
50	0	0	0	5	0	5
51	0	0	0	2	0	2
52	0	0	0	7	0	7
53	0	0	0	4	0	4
Strains (%)a	182 (58.15%)	56 (17.90%)	20 (6.39%)	32 (10.23%)	23 (7.35%)	313

Table 2. Strains isolated in different regions of Guangzhou, China in this study (n = 313). aPercentage of identified strains in each region versus total number of strains.
Aspergillus, and other melanized fungi. The remaining 110 samples showed no growth of black yeast-like fungi or growth of pathogens.

The remaining 110 samples showed no growth of black yeast-like fungi or growth of pathogens. Only few studies focus on the black yeast and melanized fungi in indoor wet cell environments. In this study, 399 of 509 samples taken in moist indoor environments are available. Clarification of the prevalence of melanized fungi in the wet cell environment is significant to estimate potential transmission routes of melanized fungi. In this study, 399 of 509 samples taken in moist indoor sampling sites of human residences in Guangzhou, Southern China proved to be positive for black yeast-like and other melanized fungi. The remaining 110 samples showed no growth of black yeast-like fungi or growth of airborne contaminant fungi, e.g. Aspergillus and Penicillium species. The black yeast genus Exophiala, containing species that reproduce by budding with slimy conidia, was common (n = 77), followed by Knufia (n = 37),

Order	Genus	Species	Isolates (n)	Positive (%)	
Chaetothyriales (n = 177)	Exophiala (n = 77)	Exophiala lecanii-corni	18	5.94%	
		Exophiala alcaphila	13	4.15%	
		Exophiala oligosperma	10	3.19%	
		Exophiala cancerae	9	2.88%	
		Exophiala equina	9	2.88%	
		Exophiala sp. (11% to E. equina)	1	0.32%	
		Exophiala dermatitidis	5	1.60%	
		Exophiala mesophila	3	0.96%	
		Exophiala sp. (5% to E. nishimurae)	3	0.93%	
		Exophiala sp.	2	0.64%	
		Exophiala xenobiotica	2	0.64%	
		Exophiala sp. (10% to E. aquamarina)	1	0.32%	
		Exophiala sp. (5% to E. jeaneselmei)	1	0.32%	
	Knufia (n = 37)	Knufia epidermidis	37	11.82%	
	Phialaphora (n = 44)	Phialaphora oxyxysora	25	7.99%	
		Phialaphora europaea	18	5.75%	
		Phialaphora verrucosa	1	0.32%	
	Cyphellophora (n = 7)	Cyphellophora fusarioides (1% difference)	5	1.60%	
		Cyphellophora sp. (4% to C. plurisepata)	2	0.64%	
	Rhinocladiella (n = 7)	Rhinocladiella similis	7	2.24%	
	Cladophialophora (n = 4)	Cladophialophora boppii (0.8% difference)	2	0.64%	
		Cladophialophora sp. (2% to C. boppii)	1	0.32%	
		Cladophialophora immandata	1	0.32%	
	Veronaea (n = 1)	Veronaea japonica (6% difference)	1	0.32%	
	Venturiales (n = 38)	Ochroconis musae	32	10.22%	
		Ochroconis humicola (0.2% difference)	6	1.92%	
	Capnodiales (n = 37)	Cladosporium halotolerans	21	6.93%	
		Cladosporium irritans (0.7% difference)	13	4.15%	
		Cladosporium oxyxysporum/tenuissimum	3	0.96%	
	Dothideales (n = 7)	Hortaea werneckii	5	1.60%	
		Hortaea sp. (8% to H. werneckii)	2	0.64%	
	unclassified (n = 54)	unclassified (n = 54)	unknown	54	17.25%
Total	10	27	313	100%	

Table 3. Species identification of the black yeast-like fungi (n = 313).

one way ANOVA parametric test (p = 0.033), but rejected by a successive Turkey analysis among four locations (p = 0.064–0.995).

The analysis between isolation frequency of each species and sampling areas showed that in bathrooms, the most frequently encountered species were K. epidermidis (n = 26), E. lecanii-corni (n = 14), P. oxyxysora (n = 12), O. musae (n = 12) and E. alcaphila (n = 10), while in kitchens, the most frequently isolated species were O. musae (n = 14), P. oxyxysora (n = 12), and P. europaea (n = 10) (Table 5). In refrigerators, Cladosporium species such as C. halotolerans were commonly encountered (n = 9). In washing machines and water dispensers, only few black fungal isolates were found other than K. epidermidis (n = 6) and O. musae (n = 5) (Table 5).

Discussion

Implantation of contaminated thorns or wooden splinters has been hypothesized to be a main infection route of chromoblastomycosis or phaeohyphomycosis, and therefore the agents of both diseases probably originate from the natural environment. Systemic occurrence of black yeasts probably has a pulmonary route of infection, for which hot indoor wet cells have been suggested, such as steambaths. We establish the prevalence of black yeast-like fungi in the wet cell environment, which thus far has been neglected in indoor studies. Most studies of indoor fungi focus on airborne fungi (Alternaria, Cladosporium, Penicillium, Aspergillus, Rhizopus and Mucor). Those fungi grow very fast compared with black yeast-like fungi, which make it difficult to recover black yeast by direct isolation. The fungal community described in this study is very different from that of studies focus on indoor airborne fungi. Only few studies focus on the black yeast and melanized fungi in indoor wet cell environments are available. Clarification of the prevalence of melanized fungi in the wet cell environment is significant to estimate potential transmission routes of melanized fungi. In this study, 399 of 509 samples taken in moist indoor sampling sites of human residences in Guangzhou, Southern China proved to be positive for black yeast-like and other melanized fungi. The remaining 110 samples showed no growth of black yeast-like fungi or growth of airborne contaminant fungi, e.g. Aspergillus and Penicillium species. The black yeast genus Exophiala, containing species that reproduce by budding with slimy conidia, was common (n = 77), followed by Knufia (n = 37),
Families	Bathroom	Kitchen	Refrigerator	Washing machine	Water dispenser
1	7	4	1	3	0
2	7	1	0	0	0
3	5	1	0	3	0
4	1	0	0	1	0
5	2	0	1	1	0
6	1	2	0	0	0
7	1	3	0	2	0
8	4	0	0	0	0
9	2	0	0	0	0
10	5	0	0	0	0
11	11	6	0	0	0
12	6	3	0	0	0
13	3	1	0	0	0
14	1	5	0	0	0
15	4	3	0	0	0
16	0	2	0	0	0
17	0	3	0	0	0
18	0	3	0	0	0
19	3	2	0	0	0
20	3	1	0	0	0
21	3	2	1	0	0
22	2	2	0	0	0
23	1	4	0	0	0
24	8	0	0	0	0
25	4	3	0	0	0
26	2	0	0	0	0
27	2	1	2	0	0
28	1	1	1	0	0
29	1	0	0	0	0
30	8	1	0	0	0
31	5	4	3	0	0
32	2	1	0	0	0
33	4	3	0	0	0
34	4	4	1	0	0
35	0	5	1	0	0
36	1	2	2	0	0
37	3	1	0	0	0
38	2	1	0	0	0
39	1	3	1	0	0
40	5	4	2	0	0
41	3	1	0	0	0
42	3	4	0	0	0
43	1	2	0	0	0
44	3	5	0	0	0
45	0	0	0	0	0
46	3	6	2	0	1
47	1	1	0	0	0
48	1	1	0	0	0
49	1	0	1	0	0
50	2	3	0	0	0
51	1	1	0	0	0
52	2	4	0	1	0
53	1	2	1	0	0
Total	**147**	**116**	**32**	**17**	**1**

Table 4. Strains distribution in each isolation location in this study (n = 313).

and *Phialophora* (n = 44), while also many strains of *Rhinocladiella*, *Cyphellophora*, and *Cladophialophora* were encountered. All these genera belong to a single fungal order, *Chaetothyriales*. The genus *Ochroconis*, which is unrelated (order *Venturiales*) but has similar ecology as *Exophiala* was also common (n = 38). Except for *E. dermatitidis*, the majority of isolated fungi have been listed by de Hoog et al. as potential agents of mild skin and nail infections, confirming Lian and de Hoog who noticed that bathrooms harbour a remarkably large number of skin fungi that were until then not known from environmental sources. Lian and de Hoog hypothesized that human skin that is softened during bathing might be more vulnerable to fungal infection. Our study underlines that indoor wet areas serve as reservoir for fungi known to be involved in human infections. Temperatures of our sampling sites usually do not exceed 37 °C, which might be a reason that only species were encountered that infect human skin and nails, rather than species causing systemic infections. In contrast, hot moist indoor environments such as steam baths and dishwashers are regularly colonized by thermophilic systemic opportunists, such as the black yeast *Exophiala dermatitidis* and the white yeasts *Candida parapsilosis* and *Magnusiomyces capitatus*.

Exophiala species are often isolated from indoor water sources, such as sinks, drainpipes, swimming pools, and bathing facilities, and also occur in municipal drinking water enabling biofilm formation. Chaetothyrialean species of Table 3 are involved in mild cutaneous and nail mycoses. Our isolation of *E. dermatitidis* from a kitchen (n = 4) and from the rubber seal of a refrigerator (n = 1) may be coincidental. The fungus can occasionally be found in sites with lower temperature, such as sinks and humidifiers, but is very abundant in steam baths.

Knufia epidermidis was a common species in the bathroom. It was first described from a superficial skin lesion with blackish discoloration in an 80-yr-old Chinese patient. Subsequent studies detected this species in human toes, skin and nails. *Phialophora europaea*, currently classified in *Cyphellophora*, is among the fungi causing mild skin and nail infections. The species thus far has rarely been found outside the human host, but we encountered it at high

Table 5. Quantity and percentage of species in different sampled locations (n = 313).

Name	Total strain number	Kitchen	Bathroom	Refrigerator/rubber seal	Water dispenser	Washing machine/rubber seal
Exophiala lecanii-corni	18	4	14	0	0	0
Exophiala alcalophila	13	3	10	0	0	0
Exophiala oligosperma	10	8	0	2	0	0
Exophiala cancerae	9	1	7	1	0	0
Exophiala equina	9	3	6	0	0	0
Exophiala capitola (1% difference)	1	1	0	0	0	0
Exophiala dermatisitidis	5	4	0	1	0	0
Exophiala mesophilae	3	1	2	0	0	0
Exophiala nishimurae (5% difference)	3	3	0	0	0	0
Exophiala xenobiotica	2	2	0	0	0	0
*Exophiala species (0.3% difference)	2	0	0	1	0	1
Exophiala jeanesmei (5% difference)	1	1	0	0	0	0
Exophiala aquamarina (10% difference)	1	0	1	0	0	0
Knufia epidermidis	37	8	26	0	0	3
Phialophora oxyphora	25	12	12	1	0	0
Phialophora europaea	18	10	5	2	0	1
Phialophora verrucosa	1	1	0	0	0	0
Cyphellophora fusarioides (1% difference)	5	0	4	0	0	1
Cyphellophora phusciphsata (4% difference)	2	1	1	0	0	0
Rhinocladiella similis	7	5	1	1	0	0
*Cladosiphialaphora boppis (0.8% difference)	2	2	0	0	0	0
*Cladosiphialaphora boppis (2% difference)	1	0	1	0	0	0
Cladosiphialaphora immunda	1	1	0	0	0	0
Veronaea japonica (6% difference)	1	1	0	0	0	0
Ochroconis musae	32	14	12	1	0	5
Ochroconis humicolica (0.2% difference)	6	0	6	0	0	0
Cladosporium irritans (0.7% difference)	13	5	1	6	0	1
Cladosporium halotolerans	21	2	7	9	1	2
Cladosporium oxysporum/teuenuitum	3	0	1	1	0	1
Hortaea werneckii	5	2	1	2	0	0
Hortaea werneckii (8% difference)	2	1	0	0	0	1
Unknown species	54	20	29	4	0	1
Total	313	116	147	32	1	17
Percentage	100%	37.06%	46.96%	10.22%	0.32%	5.43%
isolation rates in bathrooms and kitchens. The genus *Cyphellophora*, along with some species formerly classified in *Phialocephala* phylogenetically separate from the main group of human opportunists in *Herpotrichiellaceae*. The two *Cyphellophora* species identified in this study suggest wide spread in indoor wet cells. *Cladophialohora boppii* seems to have a similar ecology, occasionally being found as a colonizer on human skin and nails, as well as in bathrooms. *Rhinocladiella similis* was originally described as the sympodial counterpart of *Exophiala jeaneselmei*, and has occasionally been reported from human infections. We isolated several strains from bathroom facilities, confirming data of Matos et al.

Ochroconis musae (order *Venturiales*) was the most frequently encountered species in kitchens and bathrooms, confirming findings of Lian and de Hoog. The species was originally described as *O. mirabilis* from strains from humans and moist sources, but Lu et al. had found a strain of the same species on a banana leaf and introduced the *O. musae* one month earlier. However, it is not a plant-associated fungus but is regularly associated with low-nutrient waters. It occasionally causes skin and nail infections of immunocompetent patients, and is particularly common as an invader of cold-blooded, waterborne vertebrates such as frogs and fish. Yew et al. found that melanin production, osmoregulation, expanded gene family encoding taurine catabolism dioxygenase (*TalD/TdlA* domain), glutathione-S-transferase domains and RTA1-like protein families enabled the fungus to thrive under hostile oligotrophic conditions, such as low-nutrient and moist environments.

Hortaea wenneckii (order *Capnodiales*) is a halophilic black yeast. In humans it is known from superficial colonization the hand called tinea nigra which is explained by salty cutaneous conditions e.g. during beach holidays. Our consistent finding of the species in indoor environments demonstrates that the halotolerant amplitude of the fungus is very wide and includes oligotrophic habitats. The fungus has no opportunistic potential. *Cladosporium* species (order *Capnodiales*) are airborne fungi, considered as biofilm formers and contaminants with no clinical significance. *Cladosporium halotolerans* was recently segregated from *C. sphaerospermum* as an osmotolerant fungus commonly isolated from hypersaline water of salterns and other environments with low water activity such as peanut shells; it is regularly encountered on bathroom walls. In humans *Cladosporium* species are isolated from the respiratory tract (54.5%), followed by superficial (28.4%) and deep tissues and fluids (14.7%) but very few unambiguously proven clinical cases exist. The most common isolation sites of *Cladosporium* species such as *C. irritans* were rubber seals of refrigerators and bathrooms, suggesting temperature-independent oligotrophism. *Cladosporium oxysporum/tenuissimum* was isolated from the same sites as *C. halotolerans*, indicating similar ecology. *Cladosporium irritans* otherwise has been reported from plant leaves and other environmental sources and from respiratory specimens without signs of invasion. In conclusion, we noticed that most of the black fungi that were recovered from indoor wet cells mostly belong to the order *Chaetothyriales* and the family *Herpotrichiellaceae* within this order it otherwise known to contain numerous agents of superficial skin and nail infections. Maximum growth temperatures of most species are around 40 °C. Notably, the related fungus *Exophiala dermatitidis*, able to grow above 40 °C and found at higher temperatures in the indoor environment, viz. in steam baths and dishwashers, potentially causes disseminated, potential fatal human infections. *Exophiala* species with maximum growth temperatures around 33 °C are particularly found infecting waterborne cold-blooded animals. This suggests that thermotolerance is an important virulence factor in black fungi, determining that the fungi which are not capable of growing under human conditions (33–37 °C) are not able to infect humans.

In addition to the above known black yeast-like fungi, a high rate of unknown strains (n = 54, 17.25%) was recovered in our dataset. The most interesting finding is that 44/54 isolates, which previously identified as unknown species against the black yeast database at Westerdijk Fungal Biodiversity Institute, hit 4 known species on GenBank. The remained 10 isolates were also identified in order or genus level. It suggests the stochastic blast analysis on a massive, multifarious nucleotides database, such as GenBank, may guide the further identification of novel species. However, when all 259 known strains sequences were blasted on this database, only 14/27 species hit the correct nucleotides sequences archived in GenBank. The remained 13 species were identified in genus level or completely misidentified. One reasonable explanation is that GenBank is a stock center for nucleotides sequences which deposited by researcher worldwide. The blast analysis only depend on the nucleotides sequences similarity, not refer to either morphology or other test. Another reason is that frequently nomenclature change of dispute species, thus this results suggest that well maintained and organized database will be the preference for novel isolates identification, e.g. the database at Westerdijk Fungal Biodiversity Institute for black yeast. Nevertheless, further studies are needed to describe these strains as novel taxa.

References

1. Satow, M. M., Attili-Angelis, D., de Hoog, G. S., Angelis, D. F. & Vicente, V. A. Selective factors involved in oil flotation isolation of black yeasts from the environment. *Stud Mycol.* 61, 157–163 (2008).
2. Vicente, V. A. et al. Environmental isolation of black yeast-like fungi involved in human infection. *Stud Mycol.* 61, 137–144 (2008).
3. Gumral, R. et al. Black yeast diversity on creosoted railway sleepers changes with ambient climatic conditions. *Microb Ecol. 68*, 699–707 (2014).
4. Muggia, L., Kocourkova, J. & Knudsen, K. Disentangling the complex of Lichenothelia species from rock communities in the desert. *Mycologia.* 107, 1233–1253 (2015).
5. Lutzoni, F., Pagel, M. & Reeb, V. Major fungal lineages are derived from lichen symbiotic ancestors. *Nature.* 411, 937–940 (2001).
6. Figel, I. C. et al. Black yeast-like fungi isolated from dialysis water in hemodialysis units. *Microb Ecol. 68*, 699–707 (2014).
7. Lian, X. & de Hoog, G. S. Indoor wet cells harbour melanized agents of cutaneous infection. *Med Mycol.* 48, 622–628 (2010).
8. Zalar, P., Novák, M., de Hoog, G. S. & Gunde-Cimerman, N. Dishwashers—a man-made ecological niche accommodating human opportunistic fungal pathogens. *Fungal Biol.* 115, 997–1007 (2011).
9. Nishimura, K., Miyaji, M., Taguchi, H. & Tanaka, R. Fungi in bathwater and sludge of bathroom drainpipes. 1. Frequent isolation of *Exophiala* species. *Mycopathologia.* 97, 17–23 (1987).
10. Sudhadham, M. et al. The neurotropic black yeast *Exophiala dermatitidis* has a possible origin in the tropical rain forest. *Stud Mycol.* 61, 145–155 (2008).
41. Sandoval-Denis, M.

44. de Ana, S. G., Torres-Rodriguez, J. M., Ramirez, E. A., Garcia, S. M. & Belmonte-Soler, J. Seasonal distribution of

42. Crous, P. W., Braun, U., Schubert, K. & Groenewald, J. Z. Delimiting

40. Segers, F. J.

39. Zalar, P.

38. Brasch, J. et al. Toenail infection by Cladophialophora boppii. Med Mycol. 49, 190–193 (2011).

29. de Hoog, G. S.

28. Brasch, J.

27. de Hoog, G. S., Stavric, I., Andujar, F. C. & de Hoog, G. S. High prevalence of the neurotrope

26. Brasch, J. et al. Note on the taxonomic affinities of the genus, and its relation to

25. de Hoog, G. S.

24. Shi, D. et al. Subcutaneous infection by Ochrornum mirabilis in an immunocompetent patient. Med Mycol Case Rep. 11, 44–47 (2016).

23. Kaur, H., Rudramurthy, S. M., Mohindra, S., Gupta, S. & Chakrabarti, A. Ochrornum humicola coexisting with esthesioneuroblastoma: an incidental coloniser or allergen? Mycospathology. 178, 79–84 (2013).
Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-26071-7.

Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018