Cord Blood Vitamin D Levels and Early Childhood Blood Pressure: The Healthy Start Study

Katherine A. Sauder, PhD; Alexandra V. Stamatoiu, BS; Elina Leshchinskaya, BS; Brandy M. Ringham, PhD; Deborah H. Glueck, PhD; Dana Dabelea, MD, PhD

Background—Vitamin D deficiency is associated with cardiovascular events among adults, but it is unclear whether early-life vitamin D deficiency influences cardiovascular risk factors in children.

Methods and Results—We measured total and bioavailable 25-dihydroxyvitamin D (25OHD) in cord blood and in blood from 4- to 6-year-old children, and we assessed cardiovascular risk factors (blood pressure, arterial stiffness, body size, and adiposity) at 4 to 6 years. We tested for racial/ethnic differences in total and bioavailable 25OHD (n=715) and modeled the adjusted association between cord blood 25OHD and childhood cardiovascular risk factors (n=171). We observed racial/ethnic differences in total and bioavailable 25OHD levels in both cord and child blood samples (all P<0.05). Each 25-nmol/L increase in cord blood total 25OHD was associated with a 2.5–mm Hg (SE 0.8) decrease in systolic blood pressure (P=0.002) and a 1.7–mm Hg (SE 0.6) decrease in diastolic blood pressure (P=0.01), independent of childhood 25OHD levels, race/ethnicity, and other covariates. There was no association between cord blood total 25OHD and any other cardiovascular risk factors. Cord blood levels of bioavailable and free 25OHD were not associated with any cardiovascular risk factor in childhood.

Conclusions—In this diverse prebirth cohort, we observed lower systolic and diastolic blood pressure among children with higher total 25OHD levels at birth. Our findings suggest that intrauterine exposure to vitamin D may contribute to early-life programming of offspring blood pressure. Intervention studies are needed to determine whether increasing fetal vitamin D exposure can reduce the risk of elevated blood pressure in childhood. (J Am Heart Assoc. 2019;8:e011485. DOI: 10.1161/JAHA.118.011485.)

Key Words: blood pressure • developmental origins • vitamin D
Studies reported no association of maternal 25OHD with offspring blood pressure, adiposity, or arterial stiffness in childhood. The null studies did not account for childhood 25OHD, which may modify the association between early-life vitamin D intake and cardiovascular risk. Moreover, none of these studies measured bioavailable 25OHD, which is the amount of circulating vitamin D that is not bound tightly to vitamin D binding protein (VDBP). Bioavailable 25OHD is more strongly related to several health outcomes than total circulating 25OHD, including endothelial dysfunction in adolescent females. However, the relative significance of total versus bioavailable 25OHD levels at birth and in early childhood in terms of future cardiovascular health is not clear.

The purpose of this study was to (1) describe the relative concentrations of total and bioavailable 25OHD in cord blood and early childhood samples in a racial/ethnically diverse population and (2) evaluate the association of each form of vitamin D in cord blood with early-childhood cardiovascular risk factors. We hypothesized that there would be racial/ethnic differences in vitamin D levels at each time point, and that low cord blood levels would be associated with cardiovascular risk factors in childhood, independent of vitamin D levels in childhood.

Blood Sample Collection

Cord blood samples were obtained at delivery, stored on ice for up to 20 minutes, and processed by centrifugation. Serum aliquots were stored at 4°C for up to 24 hours before being transported (on ice) to an −80°C freezer for long-term storage. Childhood blood samples were obtained at the childhood visit, allowed to clot for 15 to 30 minutes, and processed by centrifugation. Serum aliquots were immediately stored in an −80°C freezer. Cord blood and childhood serum samples were stored for up to 6.4 years (mean, 4.8±0.6) and 3.0 years (mean, 1.9±0.6), respectively, before analysis of vitamin D. Funds were available to measure vitamin D in a subset of cord blood samples (n=660) and childhood samples (n=275), which were selected based on stored sample volume.

Vitamin D Measurements

According to the free-hormone hypothesis, biological activity of a hormone depends on the concentration of the hormone that is free, or unbound to a protein, in the blood. Approximately 90% of 25OHD is bound tightly to VDBP, whereas the remaining 10% is bound loosely to albumin or completely unbound (free) in the circulation. Estimation of bioavailable 25OHD requires calculating total 25OHD and the relative amounts bound to VDBP, bound to albumin, and unbound. Given the low binding affinity of 25OHD to albumin, both free and albumin-bound 25OHD are considered to be bioavailable.

Assays were performed by the University of Colorado Clinical and Translational Sciences Institute Core Laboratory. Total 25OHD was measured with the iSYS 25OHD assay (ImmunoDiagnostic Systems, Tyne & Wear, UK). This assay is US Food and Drug Administration approved, certified in the Vitamin D Standardization Program, and has been validated against liquid chromatography/tandem mass spectrometry methods. It has 100% cross-reactivity with
Cardiovascular Risk Factor Assessments

Blood pressure, arterial stiffness, body size, and body composition were measured in offspring at the childhood visit. Systolic and diastolic blood pressure (mm Hg) were measured in a seated position, after 5 minutes of rest, with an automated blood pressure monitor (Dinamap V100, GE Carescape; GE Healthcare, Waukesha, WI). Three readings were taken, with the average used for analysis. Offspring carotid-femoral pulse wave velocity was measured while supine by tonometry (SphgymoCor CPVH; AtCor Medical Pty Ltd, Sydney, New South Wales, Australia). Spot ECG was used to record heart rhythms, and the distance between the suprasternal notch and the carotid and femoral artery measurement sites was measured. Tonometry was used to obtain waveforms at each site, which are gated by the R-wave on the ECG. Carotid-femoral pulse wave velocity was calculated by the distance between the carotid and femoral sites (in meters) divided by the difference in time that the foot of the R-wave is recorded at each site (in seconds). Greater velocity (m/s) indicates greater arterial stiffness. Height was measured to the nearest 0.1 cm with a stadiometer and weight to the nearest 0.1 kg using an electronic scale, while the child was dressed in light indoor clothing and no shoes. Age- and sex-specific body mass index (BMI) z-scores were calculated using the Centers for Disease Control and Prevention standards\(^40,41\) and used as an assessment of body size. Offspring body composition was measured by whole-body air displacement plethysmography (BOD POD with Pediatric Option; COSMED, Rome, Italy). This device uses a 2-compartment model to estimate fat mass (adipose tissue; g and percent of total mass) and fat-free mass (water, bone, etc; g and percent of total mass). Trained personnel took 2 measurements on each child, with a third measurement taken if the percent fat mass differed by >2%. The average of the 2 closest readings was used for analysis.

Covariates

Maternal age at delivery was calculated from the self-reported date of maternal birth and date of delivery. Maternal race/ethnicity, education, household income, and number of previous term pregnancies (gravidity) were obtained from self-report at enrollment. Prepregnant weight, gestational weight gain, and gestational diabetes mellitus were obtained from medical records. Smoking in pregnancy (including frequency and number of cigarettes) was assessed by self-report at the prenatal and delivery research visits. Physical activity in pregnancy was assessed at the prenatal and delivery research visits with the Pregnancy Physical Activity Questionnaire.\(^42\) Maternal average daily kilocalories was estimated from up to 8 days of 24-hour recall data processed with the National Cancer Institute’s measurement error model,\(^43,44\) as described previously.\(^45\) Offspring gestational age at birth was estimated by prenatal ultrasound measurements and/or self-reported first day of last menstrual period. Offspring sex was obtained from maternal report at the delivery visit. Offspring age was calculated from the date of birth recorded at the delivery visit and offspring age at the childhood study visit.

Statistical Analyses

We calculated unadjusted means (SDs) of total, bioavailable, and free 250HD\(_3\) among all eligible participants and by racial/ethnic groups (Hispanic [all races], non-Hispanic white, non-Hispanic black, and other). Because the majority of vitamin D is synthesized by sun exposure and influenced by skin pigmentation (ie, melanin), we used maternal race/ethnicity for cord blood analyses, and child race/ethnicity for childhood blood analyses. We used a general linear univariate model to determine whether there were racial/ethnic differences in vitamin D levels, using separate models for each time point. Cord blood analyses were adjusted for sex, gestational age at birth, and maternal race/ethnicity. Childhood analyses were adjusted for sex, child age, and child race/ethnicity. When the main effect of race was significant, we used Tukey-adjusted \(P\) values to determine significant differences between each pair of racial/ethnic groups.

We also examined the association between cord blood vitamin D levels with childhood cardiovascular risk factors. We used separate general linear univariate models for each type of vitamin D (total, bioavailable, and free) and each cardiovascular outcome. Given our interest in racial/ethnic differences, we tested for an interaction between cord blood vitamin D levels and race/ethnicity. When nonsignificant, this interaction was removed from the model, and only main effects were interpreted. Models were sequentially adjusted for potential confounders identified from published literature.\(^22,24-26\) Model 1 was adjusted for child sex and childhood...
values of age, the relevant 25OHD (eg, when total 25OHD in cord blood was the predictor, total 25OHD in childhood was included as a covariate), and (for blood pressure and pulse wave velocity outcomes only) childhood BMI z-score. Model 2 included the model 1 covariates plus maternal race/ethnicity, prepregnant BMI, gestational weight gain, and gestational diabetes mellitus. Model 3 included the model 2 covariates plus maternal prenatal smoking, physical activity, daily kilocalories, age at delivery, education, income, gravidity, and offspring gestational age at birth.

Healthy Start participants were included in the descriptive analysis if they had cord blood or childhood blood samples available for vitamin D analyses as of January 30, 2018. Participants were included in the regression analysis if they had vitamin D measured in both cord blood and childhood blood samples, had at least 1 cardiovascular risk factor measured at the childhood visit, and complete data on covariates. All analyses were conducted in SAS software (version v9.4; SAS Institute Inc, Cary, NC). A 2-sided $P<0.05$ was considered statistically significant.

Results

The final analyses included data from 715 of the 1410 Healthy Start participants (Figure 1), with 632 and 258 contributing data to the descriptive analysis of 25OHD levels in cord blood and childhood, respectively. Of these, 175 were included in the childhood cardiovascular outcomes analysis. Participant characteristics for the full Healthy Start cohort ($n=1410$) and the 2 analytical subsets ($n=715$ and 171) are reported in Table 1.

Unadjusted means and SDs of total, free, and bioavailable 25OHD are reported in Table 2, overall and by racial/ethnic groups at each time point. After adjustment for age and sex, we observed significant racial/ethnic differences for all vitamin D types and time points (Figure 2, all $P<0.05$). In cord blood samples, non-Hispanic whites had significantly higher levels of total 25OHD compared with all other groups (all Tukey, $P<0.0001$). Non-Hispanic blacks had significantly higher levels of bioavailable and free 25OHD compared with Hispanics (all Tukey, $P<0.02$), whereas non-Hispanic whites and other races had intermediate levels that were not significantly different from any other group. In childhood blood samples, non-Hispanic whites had significantly higher levels of total, bioavailable, and free 25OHD compared with Hispanics and non-Hispanic blacks (all Tukey, $P<0.001$). Participants of other races had significantly higher free 25OHD compared with non-Hispanic blacks (Tukey, $P=0.04$).

In terms of the association between cord blood vitamin D levels and childhood cardiovascular outcomes, we did not observe any significant interaction between vitamin D levels and race/ethnicity; thus, only main effects are reported. We observed significant inverse associations of cord blood levels of total 25OHD with childhood systolic ($P<0.01$ in all models) and diastolic blood pressure ($P=0.01$ in all models; Table 3). Each 25-nmol/L increase in total 25OHD at birth was...
Table 1. Participant Characteristics

	Full Healthy Start Cohort	Vitamin D Type Analysis	Childhood Outcome Analysis
	n Mean (SD) or n (%)	n Mean (SD) or n (%)	n Mean (SD) or n (%)
Maternal characteristics			
Age, y	1410 27.8 (6.2)	715 27.6 (6.2)	171 27.8 (6.1)
Race, n	1410	715	171
Hispanic			
Non-Hispanic white	751 (53%)	387 (54%)	88 (51%)
Black	219 (16%)	109 (15%)	34 (20%)
Other	89 (6%)	39 (5%)	9 (5%)
Education, n	1410	715	171
< High school degree			
High school degree	259 (18%)	131 (18%)	23 (13%)
Some college or 2-y degree	334 (24%)	173 (24%)	41 (24%)
4-y degree	309 (22%)	149 (21%)	40 (23%)
Graduate degree	304 (22%)	153 (21%)	37 (22%)
Household income, n	1410	715	171
<$40 000			
$40 000 to $70 000			
>$70 000			
Missing/do not know			
Gravidity (live births), n	1410 1.4 (1.5)	715 1.3 (1.5)	171 1.2 (1.3)
Prepregnant BMI, kg/m²	1406 25.7 (6.2)	715 26.2 (6.6)	171 27.2 (7.8)
Gestational weight gain, kg	1404 13.2 (6.9)	715 14.1 (6.6)	171 13.6 (6.4)
Gestational diabetes mellitus, n	1270 55 (4%)	688 30 (4%)	171 9 (5%)
Prenatal smoking, n	1410 124 (9%)	715 66 (9%)	171 13 (8%)
Daily oral vitamin D intake during pregnancy (IU)	1363 641 (497)	696 645 (476)	169 602 (421)
Maternal physical activity in late pregnancy (METS)	1311 166.8 (90.8)	704 166.4 (86.5)	171 168.4 (90.2)
Offspring characteristics			
Female, n	1342 646 (48%)	715 341 (48%)	171 79 (46%)
Race, n	1410	715	
Hispanic			
Non-Hispanic white			
Black			
Other			
Gestational age at birth, weeks	1331 39.2 (1.9)	715 39.6 (1.1)	171 39.5 (1.1)
Season of birth, n	1363	715	171
Summer (June, July, August)			
Fall (September, October, November)	1363 328 (24%)	167 (23%)	40 (23%)
Winter (December, January, February)	1363 305 (22%)	148 (21%)	22 (13%)
Spring (March, April, May)			

Continued
associated with a 2.5–mm Hg decrease in systolic blood pressure and 1.7–mm Hg decrease in diastolic blood pressure at a mean age of 4.7 years (SD, 0.6). There was no significant association between cord blood total 25OHD with any other cardiovascular risk factors. Cord blood levels of bioavailable and free 25OHD were not significantly associated with any cardiovascular risk factor in childhood (data not shown).

Discussion

In this diverse prebirth cohort, we observed lower systolic and diastolic blood pressure among children with higher total 25OHD levels at birth. This association was independent of 25OHD levels in childhood and did not differ by race/ethnicity. We did not observe any association between cord blood total 25OHD and childhood arterial stiffness or body size and composition, nor any relationship of bioavailable 25OHD with any cardiovascular risk factor. Our findings suggest that intrauterine exposure to vitamin D may contribute to early-life programming of offspring blood pressure, and that optimizing prenatal vitamin D may be a potential strategy for reducing the risk of elevated blood pressure in childhood.

Our blood pressure findings are consistent with previous studies: The ALSPAC (Avon Longitudinal Study of Parents and Children) reported lower systolic blood pressure at 9.9 years among children born to mothers with higher total 25OHD levels at 25 weeks’ gestation,22 and the Odense Child Cohort study reported lower systolic and diastolic blood pressure in 3-year-old female children who had higher total 25OHD in cord blood.46 The ALSPAC results were also independent of childhood 25OHD levels, again demonstrating that low intrauterine vitamin D levels may have effects on offspring blood pressure that persist after the exposure period ends. In vitro studies provide a plausible biological pathway for this effect: 1α,25-dihydroxyvitamin D (1,25OHD), the active vitamin D hormone, has been shown to suppress renin gene expression47,48 and regulate both vascular smooth muscle cell proliferation11 and cardiomyocyte development.49 Higher levels of active vitamin D also inhibit parathyroid hormone secretion and therefore may be able to help prevent the increases in blood pressure, vascular tone, and vascular stiffness that result from elevations in parathyroid hormone.50 These studies suggest that low 25OHD levels during critical periods of fetal development may alter cardiovascular structure and function with lasting effects on blood pressure. We note that our effect estimates did not noticeably change upon further adjustment for potential covariates, which suggests that there is minimal confounding and adds credence to the above biological pathway. Randomized clinical trials are now needed to conclusively determine whether increasing fetal

Table 1. Continued
Cord blood 25OHD
Total, nmol/L
Bioavailable, nmol/L
Free, pmol/L
Childhood 25OHD
Total, nmol/L
Bioavailable, nmol/L
Free, pmol/L
Age at childhood visit, y
Systolic blood pressure, mm Hg
Diastolic blood pressure, mm Hg
Pulse wave velocity, m/s
BMI z-score
Waist-to-height ratio
Total mass, kg
Fat-free mass, kg
Fat mass, kg
Adiposity, %

25OHD indicates 25-dihydroxyvitamin D; BMI, body mass index; METS, metabolic equivalents.

DOI: 10.1161/JAHA.118.011485

Journal of the American Heart Association
vitamin D exposure can reduce offspring blood pressure in humans.

We note variation in the reported magnitude of the association between 25OHD and systolic blood pressure: we observed a 2.6–mm Hg decrease with every 25-nmol/L increase in cord blood 25OHD, whereas the Odense study reported a 0.7–mm Hg decrease with every 10-nmol/L increase in cord blood 25OHD, and the ALSPAC study reported only a 0.48–mm Hg decrease with every 50-nmol/L increase in mid-gestational 25OHD. These differences may be attributed to measurement timing for the exposure and outcome; indeed, 3 other studies found no association between maternal 25OHD in early-mid pregnancy with offspring blood pressure at 5 to 9 years of age. It is possible that cord blood 25OHD levels, which reflect neonatal status at birth, are more relevant to future blood pressure than maternal 25OHD status earlier in gestation, but this can only be confirmed in future studies that include multiple

Table 2. Vitamin D Levels Among All Participants and by Racial/Ethnic Groups

	All Participants	Hispanic	Non-Hispanic White	Non-Hispanic Black	Other					
	n	Mean (SD)								
Cord blood levels										
Total 25OHD, nmol/L	632	55.8 (21.1)	163	48.4 (19.4)	343	63.4 (19.7)	90	43.5 (18.7)	36	48.4 (19.5)
Bioavailable 25OHD, nmol/L	599	9.0 (4.7)	155	8.3 (4.9)	326	9.2 (4.1)	87	10.1 (6.0)	31	8.4 (4.4)
Free 25OHD, pmol/L	599	25.4 (12.8)	155	23.0 (13.4)	326	25.9 (11.4)	87	28.5 (15.6)	31	23.3 (12.5)
Childhood levels										
Total 25OHD, nmol/L	258	77.7 (21.5)	75	70.2 (16.6)	125	85.1 (22.8)	48	70.2 (17.2)	10	78.3 (25.8)
Bioavailable 25OHD, nmol/L	258	10.0 (2.7)	75	9.1 (2.2)	125	10.9 (2.8)	48	8.7 (1.9)	10	11.0 (3.5)
Free 25OHD, pmol/L	258	25.2 (6.5)	75	22.9 (4.9)	125	27.5 (6.8)	48	22.4 (5.3)	10	26.2 (8.1)

Data are unadjusted means (SDs), stratified by maternal race/ethnicity for cord blood samples and child race/ethnicity for childhood samples. 25OHD indicates 25-dihydroxyvitamin D.

Figure 2. Age- and sex-adjusted levels of 25OHD, stratified by maternal race/ethnicity for cord blood measurements and child race/ethnicity for childhood measurements. 25OHD indicates 25-dihydroxyvitamin D; NHB, non-Hispanic black; NHW, non-Hispanic white. *Tukey, P<0.05 between denoted race/ethnicity groups.
assessments throughout pregnancy to determine the critical window(s) of exposure. Although the 2.6–mm Hg difference we observed is modest and of questionable clinical relevance, it has the potential to be clinically relevant. For children aged 4 to 6 years, the difference in diagnostic thresholds for elevated systolic blood pressure (90th percentile) versus hypertension (95th percentile) is only 4 mm Hg.52 Furthermore, our results suggest that increasing cord blood 25OHD from the minimum to the maximum observed in our sample (15 versus 120 nmol/L) would result in a reduction of systolic blood pressure of >10 mm Hg, which approaches the 14–mm Hg difference between the 90th and 50th percentiles at this age. This indicates that increases in neonatal 25OHD could be clinically meaningful for an individual child. At a population level, a 5–mm Hg decrease in systolic blood pressure among adults is projected to reduce cardiovascular and all-cause mortality by 7% to 14%, saving up to 28 000 lives per year.53 Given that blood pressure tends to increase with age,54 understanding and targeting factors that raise blood pressure levels early in life is important for preventing hypertension and related comorbidities later in life.

We did not observe any association between cord blood 25OHD levels and childhood arterial stiffness, body size, or body composition. Some studies in Europe and India have also reported no association between mid-gestational or cord blood 25OHD levels and arterial stiffness or adiposity at 5 to 9 years of age.24–26,55 Other cross-sectional studies in pediatric populations have reported inconsistent results with regard to the association between 25OHD and arterial stiffness,31,56–59 although clearer associations tend to be observed among participants with chronic health conditions (diabetes mellitus57,58 or chronic kidney disease56). It is possible that healthy children do not have sufficient variability or subclinical impairment in arterial stiffness to detect an association with pulse wave velocity, especially in relatively small samples such as ours (n = 125). In terms of adiposity, the Southampton Women’s Study, Generation R, and Screening for Pregnancy Endpoints studies have all reported that higher maternal levels of 25OHD at 15 to 34 weeks’ gestation were associated with significantly lower adiposity at 5 to 6 years of age.23,51,60 Heterogeneity in study methods may account for the inconsistent results, as well as latitude-driven differences in background vitamin D levels. In vitro studies demonstrate that low levels of 25OHD promote adipogenesis61–63 and limit lipolysis,64 resulting in increased adiposity, and corroborating in vivo evidence would be helpful for understanding why past results have varied between populations. A meta-analysis could also be useful for synthesizing and systematic drawing conclusions from the accumulating observational evidence.

Despite previous reports that bioavailable 25OHD is a better predictor of health outcomes than total 25OHD,28–30,39 we found no association between bioavailable 25OHD and any childhood cardiovascular risk factors. In a cross-sectional analysis of 47 adolescent females, low bioavailable 25OHD was significantly associated with greater endothelial dysfunction, although this relationship was attenuated after adjustment for potential confounders.31 Other reports demonstrate the significance of bioavailable 25OHD in terms of bone mineral density,28,39 osteoporotic fractures,30 and end-stage renal disease.29 However, at least 1 study has shown that total 25OHD is significantly correlated with 1,25OHD (the active vitamin D metabolite), whereas free 25OHD is not.65 Other studies have reported that total 25OHD is more affected by disease states (liver disease,66 obesity,67 and multiple sclerosis68) and factors such as race/ethnicity7,31,65 compared with free or bioavailable 25OHD, suggesting that the pathways underlying the associations between vitamin D

Table 3. Association Between Cord Blood Total 25OHD (Per 25 nmol/L) and Cardiovascular Risk Factors at 4 to 6 Years

	n	Model 1		P Value	Model 2		P Value	Model 3		P Value
		Estimate (SE)	P Value		Estimate (SE)	P Value		Estimate (SE)	P Value	
Systolic blood pressure, mm Hg	170	-2.6 (0.7)	0.0003		-2.5 (0.7)	0.001		-2.5 (0.8)	0.002	
Diastolic blood pressure, mm Hg	170	-1.5 (0.6)	0.01		-1.6 (0.6)	0.01		-1.7 (0.6)	0.01	
Pulse wave velocity, m/s	125	-0.02 (0.10)	0.80		0.06 (0.10)	0.52		0.04 (0.11)	0.69	
BMI z-score	171	0.05 (0.09)	0.63		0.13 (0.09)	0.14		0.13 (0.10)	0.21	
Waist-to-height ratio	170	0.002 (0.004)	0.55		0.004 (0.004)	0.26		0.005 (0.004)	0.25	
Total mass, g	153	148 (279)	0.60		343 (279)	0.22		351 (304)	0.25	
Fat-free mass, g	153	32 (170)	0.85		139 (175)	0.43		102 (188)	0.59	
Fat mass, g	153	116 (162)	0.47		205 (161)	0.21		249 (172)	0.15	
Adiposity (%)	153	0.42 (0.55)	0.45		0.58 (0.56)	0.30		0.74 (0.59)	0.21	

Model 1: adjusted for child sex and childhood (4–6 years) visit age, total 25OHD, and (for blood pressure and pulse wave velocity only) BMI z-score. Model 2: model 1 covariates + maternal race/ethnicity, prepregnant BMI, gestational weight gain, and gestational diabetes mellitus. Model 3: model 2 covariates + maternal prenatal smoking, prenatal physical activity, prenatal daily kilocalories, age at delivery, education, income, gravidity, and offspring gestational age at birth. 25OHD indicates 25-dihydroxyvitamin D; BMI, body mass index.

DOI: 10.1161/JAHA.118.011485 Journal of the American Heart Association
and health outcomes may not be specifically dependent on vitamin D bioavailability. Alternatively, our null findings could be attributed to nonspecificity in VDBP affinity: We used a genotype-nonspecific binding affinity because genetic information was not available. Polymorphisms in VDBP genes, which are often observed between racial/ethnic groups, have been noted to affect concentrations of bioavailable 25OHD. Previous studies have also shown that measured free 25OHD has better precision than calculated 25OHD, which could have limited our ability to detect associations. It is well recognized that vitamin D concentrations are affected by factors such as genetics, liver function, kidney disease, and pregnancy. Because previous studies of prenatal vitamin D and offspring outcomes have not included free or bioavailable 25OHD, additional studies in diverse populations are needed to understand the relative importance of each form of 25OHD in early life for offspring health.

We do provide novel evidence that there are racial/ethnic differences in total, bioavailable, and free 25OHD that varied between birth and 4- to 6-year measurements. Non-Hispanic whites had the highest levels of total 25OHD at birth and all 25OHD types in childhood. Non-Hispanic blacks had the highest levels of bioavailable and free 25OHD at birth, but the lowest levels of bioavailable and free 25OHD by 4 to 6 years of age. It is well known that vitamin D deficiency is more common among blacks than whites; however, previous reports indicate that blacks also have less VDBP, resulting in similar amounts of circulating 25OHD that is unbound or loosely bound to albumin (ie, similar bioavailable 25OHD). Thus, we expected to see differences between whites and blacks in total 25OHD at both time points, as well as whites and the other racial/ethnic groups because of melanin-driven differences in vitamin D synthesis from sunshine exposure. But we did not expect to see differences in bioavailable 25OHD, particularly in divergent directions across the 2 time points. We confirmed that these results are not attributed to racial/ethnic misclassification by repeating the cord blood analysis with child race/ethnicity in place of maternal race/ethnicity; this replacement affected classification for only 3% of participants and did not change the results. We also confirmed, in an exploratory analysis, that these results were not attributed to differences in intake of vitamin D from food and/or dietary supplements. Rather, we hypothesize that these time-varying differences in 25OHD fractions are attributed to genotype-specific binding affinities (which was not measured in this study as noted above) or real differences in vitamin D exposure from dietary intake and sun exposure. Reports of bioavailable and free 25OHD in pediatric populations are sparse; thus, our work provides early contributions to our understanding of vitamin D availability in children. Importantly, the inverse association we observed between cord blood total 25OHD and childhood blood pressure was not modified by race/ethnicity, indicating its potential as a prevention strategy for all subpopulations.

Our study has strengths and limitations. We included a diverse sample with longitudinal assessments of total, bioavailable, and free 25OHD, which has not previously been reported. The use of cord blood samples allowed us to evaluate neonatal status at birth rather than using maternal status during pregnancy as a proxy. We measured body composition using the gold standard for offspring at birth and during childhood to obtain more-direct assessments of adiposity risk than weight or BMI alone. Our analysis was limited to the subset of participants with complete data, which was largely attributed to the cost and required sample volume for the vitamin D blood measurements. However, the analytical samples of 715 and 171 were similar to the total Healthy Start sample of 1410 in terms of maternal/child sociodemographics (age, sex, race/ethnicity, and education), prenatal exposures (maternal obesity, gestational diabetes mellitus, smoking, diet, and physical activity), offspring vitamin D levels (total, free, and bioavailable in cord blood and childhood blood), and offspring cardiovascular risk factors (blood pressure, pulse wave velocity, BMI, and body composition). This suggests that the subsets were representative of the larger sample and reduces concerns about selection bias. The sample size for some racial/ethnic groups was particularly small, which may have reduced power to detect interactions or obtain more-precise effect estimates. We did not include childhood physical activity or dietary intake as covariates in our analysis because of missing data for these variables, which would have reduced our analytical sample further. However, exploratory analyses of the smaller subsets with complete data for physical activity and diet resulted in similar findings, suggesting that our results are not confounded by these health behaviors. We did not adjust for multiple comparisons, and thus our blood pressure findings could be type 1 error, highlighting the need for replication in larger samples. However, we note that the significance of systolic blood pressure result would have persisted even if we had used a Bonferroni correction to adjust the threshold for significance (0.002 in the fully adjusted analysis compared with 0.05/9 outcomes=0.005). Furthermore, the finding is in agreement with previous studies. Last, our use of genotype-nonspecific binding coefficients for the calculation of bioavailable and free 25OHD may have resulted in measurement error.

In conclusion, we have shown that higher 25OHD levels at birth is associated with lower blood pressure at 4 to 6 years of age, independent of childhood 25OHD levels, race/ethnicity, and child BMI. Our study provides further evidence in support of the developmental origins of health and disease theory and highlights the importance of optimizing intrauterine nutritional exposures to improve for offspring health.
Continued follow-up of the Healthy Start cohort and confirmation of our findings in other studies, including clinical trials, will clarify the role of early-life vitamin D exposure on cardiovascular health as children enter adolescence and adulthood.

Acknowledgments

We are grateful to the staff and participants of the Healthy Start study.

Author Contributions

Sauder, Ringham, Glaueck, and Dabelea designed the analysis. Stamatoiu and Leshchinskaya collected the data. Sauder and Sauder, Ringham, Glueck, and Dabelea designed the analysis. Sauder and Ringham conducted the analysis in consultation with Stamatoiu. Sauder and Leshchinskaya collected the data. Sauder interpreted the data, revised the manuscript. All authors interpreted the data, revised the manuscript critically for intellectual content, and approved the final version of the manuscript. Sauder takes responsibility for data integrity and contents of the manuscript.

Sources of Funding

This work was supported by the National Institutes of Health (R01DK076648, UL1TR001018, and R01GM121081) and the American Heart Association (16MCRP29710005). The contents are the authors’ sole responsibility and do not necessarily represent views of the funders. The funders had no role in the design, conduct, or reporting of this work.

Disclosures

None.

References

1. Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA. 2014;311:806–814.
2. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR, De Simone G, Fullerton HJ, Frick MH,福特 HJ, Ford ES, Furie K, Furie B, Gillespie C, Goldenberg R, Greenlund K, Haase N, Hailpern S, Heit J, Howard VJ, Huffman MD, Judd SE, Kissela B, 2013–2014 period. Am J Clin Nutr 2015;103:362–371.
3. Johnsen MS, Grimnes G, Figenschau Y, Torjesen PA, Almas B, Jorde R. Serum 25(OH)D levels, osteoporosis, and hip fracture risk. PLoS One. 2014;9:e81437.
4. Ginde AA, Sullivan AF, Mansbach JM, Camargo CA Jr. Vitamin D insufficiency in pregnant and nonpregnant women of childbearing age in the United States. Am J Obstet Gynecol. 2010;202:436.e1–8.
5. Dijkstra SH, van Beek A, Janssen JW, de Vleeschouwer LH, Huysman WA, van den Akker EL. High prevalence of vitamin D deficiency in newborns of high-risk mothers. Arch Dis Child. 2009;94:750–753.
6. Williams DM, Fraser A, Fraser WD, Hayton E, Davey Smith G, Deanfield J, Hingorani A, Sattar N, Lewlou DA. Associations of maternal 25-hydroxyvitamin D in pregnancy with offspring cardiovascular risk factors in childhood and adolescence: findings from the Avon Longitudinal Study of Parents and Children. Heart. 2015;101:814–816.
7. Crozier SR, Harvey NC, Inskip HM, Godfrey KM, Cooper C, Robinson SM; SWS Study Group. Maternal vitamin D status in pregnancy is associated with adiposity in the offspring: findings from the Southampton Women’s Survey. Am J Clin Nutr. 2012;96:57–63.
8. Hruday EJ, Reynolds RM, Oostwegel AJ, Brouwer IA, Vrijkotte TG. The association between maternal 25-hydroxyvitamin D concentration during gestation and early childhood cardiometabolic outcomes: is there interaction with pre-pregnancy BMI? Plast Reconstr Surg. 2015;136:905–911.
9. Krishnaveni GV, Veena SR, Winder NR, Hill JC, Noonan K, Boucher BJ, Karat SC, Fall CH. Maternal vitamin D status during pregnancy and body composition and cardiovascular risk markers in Indian children: the Mysore Parthenon Study. Am J Clin Nutr. 2011;93:628–635.
10. Gale CR, Robinson SM, Harvey NC, Javid MA, Jiang B, Martyn CN, Godfrey KM, Cooper C; Princess Anne Hospital Study Group. Maternal vitamin D status in pregnancy and childhood outcomes. Eur J Clin Nutr. 2008;62:68–77.
11. Powe CE, Evans MK, Wengar J, Zonderman AB, Berg AH, Nalls M, Tamez H, Zhang D, Bhan I, Karunanithi SA, Powe NR, Thadhani R. Vitamin D-binding protein and vitamin D status of black Americans and white Americans. N Engl J Med. 2013;369:1991–2000.
12. Johnson MS, Grimmis G, Figenschau Y, Torjesen PA, Almas B, Jorde R. Serum free and bioavailable 25-hydroxyvitamin D correlates better with bone density
than serum total 25-hydroxyvitamin D. Scand J Clin Lab Invest. 2014;74:177–183.

29. Rebholz CM, Grams ME, Lutsey PL, Hoofnagle AN, Misialek JR, Inker LA, Levey AS, Selvin E, Husu CY, Kimmel PL, Vasan RS, Eckfeldt JH, Coresh J. Chronic Kidney Disease Biomarkers Consortium. Biomarkers of vitamin D status and risk of ESRD. Am J Kidney Dis. 2016;67:235–242.

30. Harris SS. Vitamin D and African Americans. J Nutr. 2006;136:1126–1129.

31. Ashraf AF, Alvarez JA, Dudenhoffel T, Calhoun D, Griffin R, Wang X, Hanks LJ, Gower BA. Associations between vascular health indices and serum total, free, and bioavailable 25-hydroxyvitamin D in adolescents. PLoS One. 2014;9:e114689.

32. Mendel CM. The free hormone hypothesis: a physiologically based mathematical model. Endocr Rev. 1989;10:232–274.

33. Chun RF, Peercy BE, Orris RM, Grams ME, Lutsey PL, Hoofnagle AN, Misialek JR, Inker LA, Levey AS, Selvin E, Husu CY, Kimmel PL, Vasan RS, Eckfeldt JH, Coresh J. Chronic Kidney Disease Biomarkers Consortium. Biomarkers of vitamin D status and risk of ESRD. Am J Kidney Dis. 2016;67:235–242.

34. Centers for Disease Control and Prevention. CDC Vitamin D Standardization-Certification Program (VDSCP)—total 25-hydroxyvitamin D certified procedures. Atlanta, GA: Centers for Disease Control and Prevention; 2015.

35. Department of Health and Human Services. 510(k) Substantial equivalence determination decision summary—IDS-iSYS 25-hydroxy vitamin D3 assay. 2013.

36. Cluse ZN, Fudge AN, Whiting MJ, McWhinney B, Parkinson I, O’Loughlin PD. Evaluation of 25-hydroxy vitamin D assay on the immunoassay systems (iSYS) analyser. Ann Clin Biochem. 2012:49:159–165.

37. Koivula MK, Turpeinen U, Laitinen P, Risteli J. Comparison of automated 25-OH vitamin D immunoassays with liquid chromatography isotope dilution tandem mass spectrometry. Clin Lab. 2012;58:1253–1261.

38. ImmunoDiagnostic Systems. IDS-iSYS 25-hydroxy vitamin D: instructions for use. 2015.

39. Powe CE, Ricciardi C, Berg AH, Eredensanana D, Collerane G, Ankers E, Wenger J, Karumanchi SA, Thadhani R, Bhan I. Vitamin D-binding protein modifies the vitamin D-bone mineral density relationship. J Bone Miner Res. 2011;26:1609–1616.

40. Kuczynski RJ, Flgel KM. Criteria for definition of overweight in transition: background and recommendations for the United States. Am J Clin Nutr. 2000;71:1074–1081.

41. Kuczynski RJ, Ogden CL, Grummer-Strawn LM, Flegal KM, Mei Z, Wei R, Curtin LR, Roche AF, Johnson CL. 2000 CDC growth charts for the United States: methods and development. Vital Health Stat 11. 2002;(246):1–190.

42. Chasan-Taber L, Schmidt MD, Roberts DE, Hosmer D, Markenson G, Freeoord PS. Development and validation of a Pregnancy Physical Activity Questionnaire. Med Sci Sports Exerc. 2004;36:1750–1760.

43. Subar AF, Kirkpatrick S, Butz B, Zimmerman TP, Thompson FE, Bingley C, Willis G, Islam NG, Baranowski T, McNutt S, Potischman N. The Automated Eating and Activity Monitor (EAM): estimating the distribution of usual intake of nutrients: the NCI method. J Nutr. 2004;134:2069–2076.

44. Tooze JA, Kipnis V, Buckman DW, Carroll RJ, Freedman LS, Guenther PM, Briefel RR, Thamm DK, Cappella J, Schaffer L. The relationship between maternal 25-hydroxyvitamin D status in pregnancy and childhood adiposity and allergy: an observational study. Int J Obes (Lond). 2017;41:1755–1760.

45. Bikle D. Nonclassic actions of vitamin D. J Clin Endocrinol Metab. 2009;94:26–34.

46. Shi H, Norman AW, Okamura WH, Pentz A, Zerby PV. 1alpha,25-Dihydroxyvitamin D3 modulates human adipocyte metabolism via nongenomic action. FASEB J. 2001;15:2751–2753.

47. McCarty MF, Thomas CA. PTH excess may promote weight gain by impeding catecholamine-induced lipolysis-implications for the impact of calcium, vitamin D, and alcohol on body weight. Med Hypotheses. 2003;61:535–542.

48. Kong J, Li YC. Molecular mechanism of 1,25-dihydroxyvitamin D3 inhibition of adipogenesis in 3T3-L1 cells. Am J Physiol Endocrinol Metab. 2006;290:E916–E924.

49. Aloia JF, Dallal RW, Mikhail M, Shieh A, Stolberg A, Fazzari M, Abrams SA. Free 25(OH)D and calcium absorption, PTH, and markers of bone turnover. J Clin Endocrinol Metab. 2015;100:410–414.

50. Bikle DD, Halloran BP, Gee E, Ryan E, Haddad JG. Free 25-hydroxyvitamin D levels are normal in subjects with liver disease and reduced total 25-hydroxyvitamin D levels. J Clin Endocrinol. 1986;78:748–752.

51. Powe CE, Seely EW, Rana S, Bhan I, Ecker J, Karumanchi SA, Thadhani R. First trimester vitamin D, vitamin D binding protein, and subsequent preeclampsia. Hypertension. 2010;56:758–763.

52. Behrens JR, Rasche L, Giess RM, Pfuhl C, Wakonig K, Freitag E, Deuschle K, Smith SM, Bukan AD, Dott KW. A revised-effects model approach for estimating the distribution of usual intake of nutrients: the NCI method. Stat Med. 2010;29:2857–2868.

53. Olerod G, Hulten LM, Hammarsten O, Klingberg E. The variation in free 25-OH vitamin D levels. Pediatr Res. 1991;17:I161–I167.

54. Azizzaman NS, Dawson-Hughes B, Nelson J, Storberg A, Ragolia L, Fazzari M, Abrams SA. Free 25(OH)D and calcium absorption, PTH, and markers of bone turnover. J Clin Endocrinol Metab. 2015;100:410–414.

55. Schwatz JB, Lai J, Lizaola B, Kane L, Markova S, Weyland P, Teraurt NA, Stottand NL, Bikle D. A comparison of measured and calculated free 25(OH) vitamin D levels in clinical populations. J Clin Endocrinol Metab. 2014;99:1631–1637.

56. Olerud G, Hulten LM, Hammarsten O, Klingberg E. The variation in free 25-hydroxvitamin D and vitamin D-binding protein with season and vitamin D status. Endocr Connect. 2017;6(11):1120–1127.

57. Tuszypko Y, Chen X, Hochof RF, Skoblo R, Lianghong Y, Hochof B. Why should we measure free 25(OH) vitamin D? J Steroid Biochem Mol Biol. 2018;180:87–104.

58. Seto TL, Tabangin ME, Langdon G, Mangeot C, Dawood A, Steinhoff M, Narendran V. Racial disparities in cord blood vitamin D status and its association with small-for-gestational-age infants. J Perinatol. 2016;36:623–628.
74. Wierzejska R, Jarosz M, Sawicki W, Bachanek M, Siuba-Strzelinska M. Vitamin D concentration in maternal and umbilical cord blood by season. Int J Environ Res Public Health. 2017;14:E1121.

75. Handel MN, Frederiksen P, Cohen A, Cooper C, Heitmann BL, Abrahamsen B. Neonatal vitamin D status from archived dried blood spots and future risk of fractures in childhood: results from the D-tect study, a population-based case-cohort study. Am J Clin Nutr. 2017;106:155–161.

76. Kassai MS, Cafeo FR, Affonso-Kaufman FA, Suano-Souza FI, Sarni RO. Vitamin D plasma concentrations in pregnant women and their preterm newborns. BMC Pregnancy Childbirth. 2018;18:412.

77. Josefson JL, Reisetter A, Scholtens DM, Price HE, Metzger BE, Langman CB; Group HSCR. Maternal BMI associations with maternal and cord blood vitamin D levels in a North American subset of hyperglycemia and adverse pregnancy outcome (HAPO) study participants. PLoS One. 2016;11:e0150221.