Higher dimensional Chern-Simons supergravity

Máximo Bañados\(^1\), Ricardo Troncoso\(^1,2\) and Jorge Zanelli\(^1,3\)

\(^1\)Centro de Estudios Científicos de Santiago, Casilla 16443, Santiago, Chile
\(^2\)Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3 Santiago, Chile
\(^3\)Departamento de Física, Facultad de Ciencia, Universidad de Santiago de Chile, Casilla 307, Santiago 2, Chile

A Chern-Simons action for supergravity in odd-dimensional spacetimes is proposed. For all odd dimensions, the local symmetry group is a non trivial supersymmetric extension of the Poincaré group. In 2 + 1 dimensions the gauge group reduces to super-Poincaré, while for \(D = 5 \) it is super-Poincaré with a central charge. In general, the extension is obtained by the addition of a 1-form field which transforms as an antisymmetric fifth-rank tensor under Lorentz rotations. Since the Lagrangian is a Chern-Simons density for the supergroup, the supersymmetry algebra closes off shell without the need of auxiliary fields.

FACs numbers: 04.50.+h, 04.65.+e, 11.10.K

I. INTRODUCTION

In the search for an unified theory of all interactions including gravity, higher dimensional models have become standard in theoretical physics. Two important examples are \(D = 10 \) superstrings \(^1\) and \(D = 11 \) supergravity \(^2\) which give rise, upon dimensional reduction, to interesting effective models in four dimensions. In the study of higher and lower dimensional models, Chern-Simons densities play an important role. Although Chern-Simons forms first appeared in the physics literature in the context of anomalies, it is now clear that they have an intrinsic value as dynamical theories in their own right. For example, pure gravity and extended supergravity in three dimensions are Chern-Simons theories for the groups \(SO(2, 2) \) \(^3\) and \(OSP(2|p) \otimes OSP(2|q) \) \(^4\), respectively. Similarly, in five dimensions, supergravity can be written as a Chern-Simons action for the supergroup \(SU(2, 2|N) \) \(^5\). Chern-Simons forms also provide a simple description for pure gravity in all odd-dimensional spacetimes \(^6\). The equations of motion of these theories possess black hole solutions \(^7\) generalizing those found in 2+1 dimensions \(^8\).

The Chern-Simons Lagrangian is constructed as follows. Let \(G_A \) a basis for the Lie algebra of a given (super)group \(G \). Let \(A = A^A G_A \) be the connection for \(G \) and \(F = \text{d} A + A \cdot A = F^A G_A \) its curvature 2-form. The Chern-Simons Lagrangian, \(L \), is a \((2n + 1)\)-form whose exterior derivative (defined in \(2n+2\) dimensions) satisfies:

\[
dL = \langle F \wedge \cdots \wedge F \rangle, = g_{A_1 \ldots A_{n+1}} F^{A_1 \wedge \ldots \wedge A_{n+1}} \tag{1}
\]

where \(g_{A_1 \ldots A_{n+1}} \equiv \langle G_{A_1} \ldots G_{A_{n+1}} \rangle \) is completely symmetric and satisfies the invariance condition

\[
\nabla g_{A_1 \ldots A_{n+1}} = 0. \tag{2}
\]

[In the case of a supergroup, the invariant tensor should have the corresponding (anti-)symmetry properties.]

For a given \(n \), the above condition may have no solutions. Indeed, \((2) \) imposes strong restrictions on the group. As we shall see below, for \(D > 3 \), one needs to enlarge the bosonic sector of the theory in order to produce a supersymmetric extension of Chern-Simons gravity that contains local Poincaré invariance.

It is direct to prove from \((2)\) that, up to a total derivative, \(L \) is invariant under the gauge transformation

\[
\delta \lambda A = \nabla \lambda, \tag{3}
\]

where \(\lambda \) is an arbitrary zero-form parameter and \(\nabla \lambda = d \lambda + [A, \lambda] \). If \(\delta \lambda \) and \(\delta \eta \) are two transformations, with parameters \(\lambda \) and \(\eta \) respectively, then

\[
[\delta \lambda, \delta \eta] A = \delta [\lambda, \eta] A. \tag{4}
\]

The three dimensional supergravity studied by Achúcarro and Townsend \(^9\), as well as the five-dimensional theory studied by Chamseddine \(^10\), are Chern-Simons theories in the sense described above. Their supersymmetry transformations can be written in the form \((3) \) and therefore the supersymmetry algebra closes off-shell without the need of auxiliary fields.

It goes without saying that, apart from the invariance under \((2) \), the Chern-Simons action is also invariant under diffeomorphisms. In 2+1 dimensions that symmetry is not independent from the local gauge group because, as a consequence of the equations of motion, the connection is locally flat. This means that, given two configurations that differ by a diffeomorphism, there always exist a gauge transformation that deforms one into the other. In the canonical formalism this is reflected by the absence of new independent constraints associated with diffeomorphisms.

In dimensions greater than three, however, the Chern-Simons equations of motion do not impose the flatness condition and therefore the diffeomorphism invariance is an independent symmetry giving rise to independent constraints in the canonical formalism (see \((3) \) for more details on this point). For our purposes here it is enough to observe that the gauge transformations \((3) \) form a subgroup of the whole symmetry group.

It is the purpose of this paper to show that the above scheme can be extended to supergravity in all odd dimensions, provided one chooses the bosonic Lagrangian in an
appropriate way. It turns out that for $D > 3$, the Lagrangian for the bosonic sector is not Hilbert’s. Rather, the correct Lagrangian is non-linear in the curvature and yet, gives rise to first order equations for the tetrad and the spin connection.

II. GENERAL RELATIVITY AS A GAUGE THEORY

In this section we shall review some aspects of the vielbein—or gauge—formulation of general relativity. The main point of this section is to display the differences between gravity in odd and even dimensions.

A. Poincaré translations vs. diffeomorphisms

General relativity in four and all even dimensions cannot be construed as a ‘truly’ local gauge theory [4]. On the contrary, for odd-dimensional spacetimes, gravity can be written as a Chern-Simons action for the Poincaré group [4,3,6]. [If the cosmological constant is present, the relevant group is the (anti)-de Sitter group.] The Poincaré group has generators P_a and J_{ab} satisfying:

$$[P_a, J_{bc}] = 0,$$
$$[P_a, J_{bc}] = \eta_{ab} P_c - \eta_{ac} P_b,$$
$$[J_{ab}, J_{cd}] = \eta_{ac} J_{bd} - \eta_{bc} J_{ad} + \eta_{bd} J_{ac} - \eta_{ad} J_{bc}. \quad (5)$$

We define the connection for this group

$$A = e^a P_a + \frac{1}{2} w^{ab} J_{ab}. \quad (6)$$

Let λ be an arbitrary parameter with values in the Lie algebra ($\lambda = \lambda^a P_a + \frac{1}{2} \lambda^{ab} J_{ab}$). Under the infinitesimal gauge transformation $\delta A = \nabla \lambda$, e^a and w^{ab} transform as follows:

Translations: $\delta e^a = D\lambda^a$, $\delta w^{ab} = 0$, $\quad (7)$

Rotations: $\delta e^a = \lambda^a e^b$, $\delta w^{ab} = -D\lambda^{ab}$, $\quad (8)$

where D is the covariant derivative in the connection w.

It might seem puzzling that even though the tetrad and the spin connection carry a representation of the Poincaré group, the Hilbert action constructed purely out of those fields, is not invariant under the Poincaré group in four dimensions. In fact, the action

$$I = \int \epsilon_{abcd} R^{ab} \wedge e^c \wedge e^d$$

is invariant under (4) but not under (5). The reason is simply that under (4) the action changes, modulo boundary terms, by

$$\delta I = 2 \int \epsilon_{abcd} R^{ab} \wedge T^c \wedge \lambda^d, \quad (10)$$

which is not zero for arbitrary λ.

An alternative approach, often followed in the supergravity literature, is the so called 1.5 formalism. That is to set $T^a = 0$ keeping only the tetrad transformation in (3); the variation of w^{ab} is then calculated using the chain rule. This procedure brings the diffeomorphism invariance into the scene because if $T^a = 0$, the variation (4) for the tetrad is equal-up to a rotation- to a Lie derivative with a parameter $\xi^a = \frac{1}{2} \lambda^a$. In sum, the Hilbert action in 3+1 dimensions is invariant under Lorentz rotations and diffeomorphisms, but not under the local translations (4), generated by P_a.

A completely different situation is observed in 2+1 dimensions, in which case the Hilbert action is linear in the dreibein field,

$$I_{2+1} = \int \epsilon_{abc} R^{ab} \wedge e^c. \quad (11)$$

It is straightforward to check, using the Bianchi identity, that the variation of (11) under (4) gives a boundary term and hence, (4) is a symmetry of the 2+1 theory. As Witten has pointed out, this simple fact has deep consequences [3]. Indeed, in three dimensions, one can replace the diffeomorphism invariance by a local Poincaré invariance whose constraint algebra is a true Lie algebra.

One may wonder if there exists an action invariant under (4) in higher dimensions. This generalization indeed exist and is given by

$$I_{2n+1} = \int \epsilon_{a_1 \ldots a_{2n+1}} R^{a_1} \wedge e_{a_2} \wedge \ldots \wedge R^{a_{2n-1}} \wedge e_{a_{2n}} \wedge e^{a_{2n+1}}, \quad (12)$$

which, clearly, exists only in odd dimensions. The fact that (12) can be written for odd dimensional manifolds only is associated to the existence of Chern-Simons forms in those dimensions.

The key property of (12) is that it is linear in the vielbein field rather than being linear in the curvature, as would be the case for the Hilbert action. This fact makes (12) invariant under the transformation (4), up to a boundary term. Inspide of being non linear in the curvature, this action yields first order differential equations for all the fields. This is not surprising as (12) is a particular case of a Lovelock action [11]. I_{2n+1} describes a Chern-Simons theory of $ISO(D - 1, 1)$, obtained by contraction of $SO(D - 1, 2)$, and possesses solutions with conical singularities [4] analogous to those found in 2+1 dimensions without cosmological constant [4]. It should be mentioned here that the action (12) has a propagating torsion [4] and therefore, the 1.5 formalism is not applicable in this case. The main goal of this paper is to describe the supersymmetric extension of the action (13).
B. Super-Poincaré vs. supergravity

Supergravity if often referred to as the square root of General Relativity [4] much in the same spirit as the Dirac equation is the square root of the Klein-Gordon equation. This is justified by the fact that the commutator of two supersymmetry transformations gives a general change of coordinates plus a rotation and another supersymmetry transformation. A concrete example is the usual $N = 1$ local supersymmetry transformations

$$
\delta \epsilon^a = \frac{1}{2} \psi^a \Gamma^\mu \delta \psi^\mu, \\
\delta \psi^\mu = D_\mu \epsilon.
$$

(13)

Here ψ and ϵ are Majorana spinors; $\bar{\epsilon}$ is the Majorana conjugate $(\bar{\epsilon})_a = C_{a \beta} \epsilon^\beta$ satisfying $\bar{\epsilon} \Gamma^\mu \eta = -\bar{\eta} \Gamma^\mu \epsilon$, and D_μ is the covariant derivative in the spin connection. It is then straightforward to prove that the commutator of two transformations with parameters ϵ and η acts on the tetrad as

$$
[\delta \epsilon, \delta \eta] e^a_\mu = \frac{1}{2} D_\mu (\bar{\epsilon} \Gamma^a \eta).
$$

(14)

The transformation (13) follows from the super-Poincaré algebra when one considers the vielbein and the gravitino as the compensating fields for local translations (P_a) and supersymmetry transformations (Q), respectively. It is not surprising therefore that the right hand side of (14) is a local translation –acting on the tetrad–, with parameter $\lambda^a = \frac{1}{2} \bar{\epsilon} \Gamma^a \eta$.

The trouble with supergravity in 3 + 1 dimensions is that the action is not invariant under local translations. Nevertheless, transformation (14) is still a symmetry of the action provided the transformation of the spin connection preserves the torsion equation $T^a = \frac{1}{2} \bar{\psi} \Gamma^a \psi$ (1.5 formalism). On the surface defined by the torsion equation, the right hand side of (14) can be rewritten as

$$
D_\mu (\bar{\epsilon} \Gamma^a \eta) = \partial \xi e^a_\mu + \xi^\nu w^b_{\nu \mu} e^b_\mu - \xi^\nu \psi_\nu \Gamma^a \psi_\mu.
$$

(15)

The first term in the right hand side of (15) represents a diffeomorphism with parameter $\xi^\mu = \bar{\epsilon} \Gamma^\mu \eta$ ($\Gamma^\mu e^a_\mu = \Gamma^a$), the second term is a rotation with parameter $\xi^\mu w^b_{\nu \mu}$, and the third term is a supersymmetry transformation with parameter $-\xi^\nu \psi_\nu$. Equation (15) shows that, as far as the tetrad is concerned, the algebra of supersymmetry transformations closes. But the fact that we have used the torsion equation implies that the connection is no longer an independent variable. On the contrary, its variation is given in terms of δe^a and $\delta \psi$, and differs from the form dictated by group theory. As a consequence, the local supersymmetry algebra acting on the gravitino closes only on shell and auxiliary fields are required for its closure off shell.

A completely different situation is observed in the case of 2+1 gravity. Although the above discussion applies to this case [3], there is an alternative route which leads more directly to supergravity. The key feature of 2+1 supergravity is that –unlike 3+1 supergravity–, the action is invariant under local Poincaré transformations. This means that in the 2+1 theory it is not necessary to express the right hand side of (14) in terms of diffeomorphisms; the commutator of two supersymmetry transformations gives a local translation, which is a symmetry of the action as well.

In other words, in 2+1 dimensions one can consider a truly first order formalism in which the spin connection transforms independently of the vielbein and gravitino just as dictated by group theory. In particular, under supersymmetry, one can set

$$
\delta w^{ab} = 0
$$

(16)

which, together with (13), is a symmetry of the 2+1 action.

The simplicity of the 2+1 theory can be explicitly exhibited. The action reads [4,16]

$$
I = \int (\epsilon_{abc} R^{ab} \wedge \bar{\psi} \wedge D \psi),
$$

(17)

where ψ is a two component Majorana spinor. [See the Appendix for a summary of conventions.]

This action is invariant under Lorentz rotations,

$$
\delta \omega^{ab} = -D \lambda^a, \quad \delta e^a = \lambda^a \epsilon^\mu, \\
\delta \psi = \frac{1}{4} \lambda^{ab} \Gamma_{ab} \psi;
$$

(18)

Poincaré translations,

$$
\delta w^{ab} = 0, \quad \delta e^a = D \lambda^a, \quad \delta \psi = 0;
$$

(19)

and supersymmetry transformations,

$$
\delta w^{ab} = 0, \quad \delta e^a = \frac{1}{2} \bar{\epsilon} \Gamma^a \psi, \quad \delta \psi = D \epsilon.
$$

(20)

The fields e^a, w^{ab} and ψ transform as components of a connection for the super Poincaré group and therefore the supersymmetry algebra implied by (18)-(20) is the super Poincaré Lie algebra. The invariance of the action (17) under the super Poincaré group should come as no surprise because it is the Chern-Simons action for the connection $A = e^a P_a + \frac{1}{2} w^{ab} J_{ab} + Q \psi$, whose generators are P_a, J_{ab} and Q^a. Indeed, the action (7) can be written as

$$
I = \int <A \cdot dA + \frac{2}{3} A \cdot A \cdot A >,
$$

(21)

where the bracket $< \cdots >$ stands for a properly normalized trace on the algebra, with $< J_{ab}, P_c > = \epsilon_{abc}$ and $< Q_a, Q_b >= -i C_{\alpha \beta}$ are the only non-vanishing traces. [$C_{\alpha \beta}$ is the charge conjugation matrix.]
III. FIVE DIMENSIONAL POINCARÉ SUPERGRAVITY

We turn now to the supersymmetric version of the action (22) in higher dimensions. To illustrate the ideas we start with the five dimensional case which already contains the main ingredients. The general case will be indicated in the next section.

A. The Action

The analog of the action (17) in five dimensions has three pieces;

\[I_{G/susy} = I_G + I_b + I_\psi \]

(22)

where \(I_G \) is the purely gravitational term, \(I_b \) is a second bosonic term needed by supersymmetry, and \(I_\psi \) is the fermionic term. The explicit formulas are:

\[I_G = \frac{1}{2} \int \epsilon_{abcdl} R^{ab,c} R^{cd,e} e^f, \]

\[I_b = \int R^{ab} \wedge R_{ab} \wedge b, \]

\[I_\psi = - \int R^{ab} (\bar{\psi} \Gamma_{ab} \wedge D\psi + D\bar{\psi} \Gamma_{ab} \wedge \psi). \]

Here the gravitino field is a Dirac spinor 1-form, and \(b \) is a 1-form Lorentz pseudo-scalar. The form of \(b \) is dictated by the transformation of \(I_G \) and \(I_\psi \) under supersymmetry. [See section V for an alternative way to see this through the integrability conditions of the classical equations of motion.]

Since we are interested in the geometrical aspects of this theory only, we have set all the coupling constants equal to one. The Lorentz covariant derivative \(D \) in the spinorial representation is given by \(D\psi = d\psi + \frac{1}{2} w^{ab} \Gamma_{ab} \wedge \psi \). We work with Dirac spinors in order to avoid the dimensional dependence of Majorana spinors which only exist -on a Minkowskian signature- in dimensions \(2, 3, 4 \mod 8 \). All the main results of this paper carry through for Majorana spinors when they exist. The Dirac conjugate is defined as \(\bar{\psi} = \psi \Gamma_0 \) and in the action, \(\psi \) and \(\bar{\psi} \) are varied independently. [See the Appendix.]

Besides local Lorentz rotations, the above action is invariant under the Abelian translations,

\[\delta e^a = D\lambda^a, \]

\[\delta w^{ab} = 0, \]

\[\delta b = d\rho, \]

\[\delta \psi = 0, \]

(24)

where \(\lambda^a \) is a 0-form Lorentz vector and \(\rho \) is a 0-form Lorentz pseudo-scalar. The invariance of (22) under (24) follows directly from the Bianchi identity. The action \(I_{G/susy} \) is also invariant under supersymmetry transformations,

\[\delta e^a = -i(\bar{\epsilon} \Gamma^a \psi - \bar{\psi} \Gamma^a \epsilon), \]

\[\delta w^{ab} = 0, \]

\[\delta b = \bar{\epsilon} \psi - \bar{\psi} \epsilon, \]

\[\delta \psi = D\epsilon. \]

(25)

The proof of the invariance of (22) under (24) is straightforward. An important test of the consistency of (24) is the fact that the commutator of two supersymmetry transformations gives local translation (24). Indeed, if \(\delta_{\epsilon} \) and \(\delta_{\eta} \) are supersymmetry transformations with parameters \(\epsilon \) and \(\eta \), we have,

\[[\delta_{\epsilon}, \delta_{\eta}] e^a = -i D(\bar{\epsilon} \Gamma^a \eta - \bar{\eta} \Gamma^a \epsilon), \]

\[[\delta_{\epsilon}, \delta_{\eta}] w^{ab} = 0, \]

\[[\delta_{\epsilon}, \delta_{\eta}] b = d(\bar{\epsilon} \eta - \bar{\eta} \epsilon), \]

\[[\delta_{\epsilon}, \delta_{\eta}] \psi = 0. \]

(26)

The symmetries of the action (22) are generated by the local super-Poincaré generators \(P_a, J_{ab}, Q^\alpha, \bar{Q}_\alpha \), plus the Abelian generator \(K \), responsible for the non-zero transformation of \(b \) in (24). These generators form an extension of the super-Poincaré algebra whose only non-vanishing (anti-)commutator is

\[\{Q^\alpha, \bar{Q}_\beta\} = -i (\Gamma^a)_{\beta}^{\alpha} P_a + \delta^\alpha_\beta K, \]

(27)

plus the Poincaré algebra. The commutators of \(K, Q^\alpha \), and \(\bar{Q}_\alpha \) with the Lorentz generators can be read off from their tensor character.

Note that \(K \) commutes with all the generators in the algebra and therefore, it is as a central charge in the super Poincaré algebra. This is, however, a peculiarity of five dimensions. For other odd dimensions, the generator \(K \) is a completely antisymmetric tensor of fifth rank, which has a non-vanishing commutator with the Lorentz generator.

B. Chern-Simons formulation

The fact that the symmetries of the action (22) close without the need of any auxiliary fields strongly suggest that (23) may be written as a Chern-Simons action for the supergroup. In this section we prove that this is indeed the case.

Consider a connection \(A \) for the superalgebra found in the last section,

\[A = e^a P_a + \frac{1}{2} w^{ab} J_{ab} + b K - \bar{\psi}_a Q^\alpha - \bar{Q}_\alpha \psi^a. \]

(28)

The super-curvature \(F = dA + A \wedge A \) is then found by direct application of (5) and (22).
Here \(\tilde{T}^a := T^a - i\bar{\psi}\Gamma^a\gamma^5\psi \) and \(\tilde{F} := df + \bar{\psi}\gamma^a\psi \); \(T^a \) is the torsion 2-form, and \(R^{ab} \) is the 2-form Lorentz curvature.

We recall that a Chern-Simons Lagrangian in five dimensions, \(L_g \), is defined by the relation

\[
g_{ABC}F^A\wedge F^B\wedge F^C = dL_g,
\]

where the trilinear form \(g_{ABC} \equiv <G_A,G_B,G_C> \) is an invariant tensor of the Lie algebra with generators \(G_A \). Different choices of the invariant tensor \(g_{ABC} \) give different five dimensional Lagrangians \(L_g \).

To prove that (22) is a Chern-Simons action we need to find an invariant tensor such that \(L_g \) is equal, up to a total derivative, to the Lagrangian in (22). This tensor indeed exists and is given by,

\[
< J_{ab}, J_{cd}, P_e > = \epsilon_{acde}, \\
< J_{ab}, J_{cd}, K > = \epsilon_{acde} - \epsilon_{ade} \eta_{bc}, \\
< Q^a, J_{ab}, \bar{Q}_\beta > = -2(\Gamma_{ab})^\beta_\gamma.
\]

It is straightforward to prove that, up to a total derivative and an overall factor, the 5-form \(L_g \) associated to the above tensor is equal to the supersymmetric Lagrangian in (22).

From the above result it is now evident that the action is invariant under supersymmetry transformations up to a total derivative. All the symmetry transformations of the action can now be collected together in the form \(\delta A = \nabla \lambda \) where \(\nabla \) is the covariant derivative of the supergroup and \(\lambda \) is a zero-form Lie algebra-valued vector in the adjoint representation. From this formula it is also evident that the algebra of supersymmetry transformations closes as dictated by group theory,

\[
[\delta_\lambda, \delta_\eta]A = \delta_{[\lambda, \eta]}A.
\]

The Chern-Simons action (22) can be obtained from the action found in (2) by an appropriate Wigner-Inonu contraction. The closure of the supersymmetry algebra, however, was not mentioned in (2). In the next section we prove that the above scheme is not exclusive of the three and five dimensional theories but it can be extended to any odd-dimensional spacetime.

IV. THE GENERAL CASE

In this section we show how the results of the previous sections are generalized to any odd-dimensional manifold. In order to simplify the notation we introduce the symbol \(R_{abc} \) defined by,

\[
R_{abc} := \epsilon_{abca_{d+3}}R^{a_1a_2}\cdots R^{a_{d-2}a_{d-3}}.
\]

Just as in the five dimensional case, the supersymmetric action in dimension \(2n+1 \) has three terms;

\[
I_{2n+1/susy} = I_G + I_b + I_\psi
\]

where the bosonic ‘geometric’ term \(I_G \) is given by,

\[
I_G = \int R_{abc}R^{abc}e^c.
\]

(35)

\(I_b \) is a second bosonic term involving a fifth-rank 1-form field, \(b^{abcde} \),

\[
I_b = -\frac{1}{6}\int R_{abc}R_{de}b^{abcde}.
\]

(36)

(Note that this term vanishes in three dimensions and in five dimensions \(b^{abcde} \) is a Lorentz pseudo-scalar.) Finally, the fermionic part is

\[
I_\psi = \frac{i}{3}\int R_{abc}\bar{\psi}\Gamma_{abc}\gamma^5\psi + D\bar{\psi}\Gamma_{abc}\gamma^5\psi.
\]

(37)

Each term in the action (34) is independently invariant under local Lorentz transformations. The complete action is invariant under the Abelian translations,

\[
\delta \epsilon^a = D\lambda^a, \quad \delta w^{ab} = 0, \quad \delta b^{abcde} = Db^{abcde},
\]

\[
\delta \psi = 0,
\]

(38)

and supersymmetry transformations,

\[
\delta \epsilon^a = -i(\bar{\epsilon}\Gamma^a\psi - \bar{\psi}\Gamma^a\epsilon), \quad \delta w^{ab} = 0, \quad \delta b^{abcde} = -i(\bar{\epsilon}\Gamma^{abcde}\psi + h.c.), \quad \delta \psi = D\epsilon,
\]

(39)

where \(D \) represents the Lorentz covariant derivative.

The proof of the invariance of (34) under supersymmetry transformations is straightforward. One starts by varying the fermionic part. Up to a boundary term one easily obtains

\[
\delta I_\psi = \frac{i}{12}\int R_{abc}R_{de}(\bar{\psi}\Gamma_{abc}D\epsilon + D\bar{\psi}\Gamma_{abc}D\epsilon + h.c.).
\]

(40)

Using the formula (A3) of the Appendix, we find that (40) has a term proportional to a 5-rank Dirac matrix \(F^{\epsilon e c e} \) plus a term proportional to a Dirac matrix \(\Gamma^a \). It is direct to see that the first term is cancelled by the variation of \(I_b \) while the second term is cancelled by the variation of \(I_G \).

As in the lower dimensional cases \((D = 3, 5) \), the commutator of two supersymmetry transformations gives a local Abelian translation (38). Thus, the supersymmetric extension of the Poincaré algebra that leaves the action invariant has generators \(\{P_a, J_{ab}, K_{abcde}, Q^a, \bar{Q}_\beta\} \).

The only non-vanishing (anti-)commutator is

\[
\{Q^a, \bar{Q}_\beta\} = -i(\Gamma^a)^\beta_\gamma P_a - i(\Gamma^{abcde})^\beta_\gamma K_{abcde},
\]

(41)

plus the Poincaré algebra. The commutators of the \(Q, \bar{Q} \) and \(K \) with the Poincaré generators can be read from their tensorial character.
The action $I_{2n+1/susy}$ is also a Chern-Simons action. The connection now is
\[A = e^a P_a + \frac{1}{2} w^{ab} J_{ab} + b^{abcde} K_{abcde} + \bar{\psi}_a Q^a - \bar{\psi}_a \psi^a, \]
(42)
and the Lagrangian is defined by $\langle F, \cdots, F \rangle = dL_{2n+1}$ where the invariant $(n+1)$ multilinear form $\langle \cdots \rangle$ is defined by
\[< J_{a_1 a_2} \cdots J_{a_{D-2} a_D} P_{a_D} > = \epsilon_{a_1 \cdots a_D}, \]
\[< J_{a_1 a_2} \cdots J_{a_{D-2} a_D} K_{abcde} > = \frac{1}{12} \epsilon_{a_1 \cdots a_{D-3} abc} \eta_{[fg][de]}, \]
\[< Q J_{a_1 a_2} \cdots J_{a_{D-4} a_{D-2}} \bar{Q} > = 2^{n} \Gamma_{a_1 \cdots a_{D-3}} \]
(43)
(this remaining brackets are zero). This completes the construction of the $(2n + 1)$-dimensional Chern-Simons action for supergravity.

V. INTEGRABILITY OF THE EQUATIONS OF MOTION.

A remarkable feature of supersymmetric theories in general and supergravity in particular is the fact that the integrability conditions for the fermionic field equations are the bosonic equations. The study of the integrability conditions of the fermionic equation in our model sheds some light on the role of the bosonic field b^{abcde}.

In the notation introduced in Sec. IV, the fermionic field equations are
\[R_{abc} \Gamma^{abc}, D\psi = 0, \]
(44)
and similarly for the Dirac conjugate spinor. Taking the covariant derivative of (44) we find the integrability condition,
\[R_{abc} \cdot R^{d} \Gamma^{abc}_{de} \psi = 0. \]
(45)
This equation should be satisfied for any ψ. Using elementary properties of the Dirac matrices we obtain the following equations for the bosonic fields,
\[R_{abc} R^{abc} \Gamma^{e} = 0, \]
(46)
\[R_{abc} R^{abc} \Gamma^{b} = 0, \]
(47)
Eq. (46) is the equation of motion for the vielbein field, while Eq. (47) is the equation of motion for the $b-$field. Had we not included b, supersymmetry would not have been achieved and the integrability conditions would not have been satisfied.

VI. COMMENTS AND PROSPECTS

We have shown in this note that the successful methods used in three dimensions to construct supersymmetric extensions of general relativity can be generalized to any odd-dimensional spacetime. We have restricted ourselves, however, to Poincaré supergravity. The full anti-de Sitter extension remains an open problem. In five dimensions, a Chern-Simons action for anti-de Sitter supergravity has been known for some time [3]. That action reduces to the action considered here after a proper contraction is performed.

There are good reasons to seek a full anti-de Sitter Chern-Simons formulation of supergravity. First, the bosonic Lagrangian in the Poincaré case does not contain the Hilbert term thus making the contact with four dimensional theories rather obscure [6]. Secondly, the Poincaré theory in odd dimensions does not possess black hole solutions while the anti-de Sitter theory does [3].

In principle, a Chern-Simons anti-de Sitter supergravity can be constructed from the knowledge of the associated supergroup and an invariant tensor only (finding the invariant tensor, however, may prove to be a non-trivial task). In five dimensions, the relevant supergroup is $SU(2,2|1)$ [7] while in the important example of eleven dimensions the supergroup is $OSp(32|1) [8]$. As the space-time dimension increases, one faces a growing multiplicity of choices for the invariant tensor. To illustrate this issue, consider the problem of classifying all the invariants that can be constructed out the Lorentz curvature in a given dimension [18]. In four dimensions we only have,
\[\epsilon_{abcd} R^{ab} \wedge R^{cd}, \]
\[R^{ab} \wedge R_{ab}, \]
(48)
while in eight dimensions we have,
\[\epsilon_{abcd efgh} R^{ab} \wedge R^{cd} \wedge R^{ef} \wedge R^{gh}, \]
\[R^{ab} \wedge R_{ab} \wedge R^{cd} \wedge R_{cd}, \]
\[R^{ab} \wedge R_{bc} \wedge R^{cd} \wedge R_{da}. \]
(49)
Of course, all the above scalars define Chern-Simons Lagrangians in dimension five and seven respectively. A similar proliferation of scalars appears in supergravity. A good candidate for the right theory could be a linear combination of all possible invariants such that, under an appropriate Wigner-Inonu contraction, reduces to the Poincaré theories studied here.

The particular case of eleven dimensions seems to be particularly suited to admit an anti-de Sitter Chern-Simons formulation. As shown in [8], the super anti-de Sitter group is $OSp(32|1)$. A natural basis for the Lie algebra of $Sp(32)$ is given by the Dirac matrices $\Gamma_a, \Gamma_{ab}, \Gamma_{abcde}$, and this basis is easily extended to expand the superalgebra of $OSp(32|1)$. Thus, the supergroup $OSp(32|1)$ naturally accommodates the field content of the Poincaré Chern-Simons supergravity considered here. One could expect, therefore, that a Chern-Simons Lagrangian for the supergroup $OSp(32|1)$ in eleven dimensions should reduce to the supersymmetric action [34].
upon contraction. For example, it is easy to check that the superalgebra obtained in Sec. I can be obtained from $OSp(32|1)$ by a Wigner-Inomu contraction:

\[
G_a \rightarrow \lambda^{-1} P_a, \quad G_{ab} \rightarrow J_{ab}, \quad G_{abcd} \rightarrow \lambda^{-1} K_{abcd}, \quad Q^a \rightarrow \lambda^{-\frac{2}{3}} Q^a. \tag{50}
\]

At the level of the Lagrangian, however, the problem is more complicated. Due to the ambiguity in the choice of the invariant tensors and the large number of terms in the super anti-de Sitter Chern-Simons action, it is a non-trivial problem to find an expression such that, under contraction, reduces to the action considered in this paper [21].

Finally we mention that the Poincaré-supersymmetric Chern-Simons actions found in this paper are not the only possibilities. In dimensions greater than five, the fermionic Lagrangian the term, $\sum_{\sigma} \text{sgn}(\sigma) \Gamma_{\sigma(1)} \cdots \Gamma_{\sigma(p)}$, gives (52). Thus, the integrability condition is satisfied and the action is supersymmetric. A complete classification of all possible fermionic Lagrangians for a given dimension and their corresponding supersymmetry algebras is beyond the scope of this work. We would like to point out, however, that the method outlined here seems to provide a simple way to generate extensions of the super-Poincaré algebra involving extra bosonic fields.

APPENDIX A: GAMMA MATRICES

The Clifford algebra in $D = 2n + 1$ dimensions with Minkowskian signature can be generated by a set of $2^n \times 2^n$ matrices; the unit I and D matrices Γ^a, satisfying $\{\Gamma^a, \Gamma^b\} = 2\eta^{ab}I$, where $a, b, \ldots = 1, 2, \ldots, 2n + 1$ and $\eta^{ab} = \text{diag}(-, +, \ldots, +)$. In this signature, $\Gamma_0 = \Gamma_0^a \Gamma_0^a$. It is always possible to find a representation of Γ^a matrices in which

\[
\Gamma := \Gamma^1 \Gamma^2 \cdots \Gamma^D = (-i)^{n+1} I. \tag{A1}
\]

We define $\Gamma^{a_1 \cdots a_p}$ as the totally antisymmetric product of gamma matrices,

\[
\Gamma^{a_1 \cdots a_p} = \frac{1}{p!} \sum_{\sigma} \text{sgn}(\sigma) \Gamma_{\sigma(1)} \cdots \Gamma_{\sigma(p)}. \tag{A2}
\]

Two useful formulas implicitly used in the text are:

\[
\frac{1}{2} \{\Gamma^{abc}, \Gamma^{de}\} = \Gamma^{abcde} - \eta^{[ab]}[dc] \Gamma^c + \text{perm}(abc), \tag{A3}
\]

where $\eta^{[ab]}[dc] = \eta^{ad} \eta^{bc} - \eta^{ac} \eta^{bd}$.

Acknowledgments

The authors are grateful to M. Contreras, C. Martínez and, especially, C. Teitelboim for helpful discussions. This work was supported in part by grants 1930910 and 2950047 from Fondecyt (Chile), 27-953/ZI-Dicyt (University of Santiago) and grant No. PG-023-95 of Fondo de Investigación de la Universidad de Chile. M.B. was partially supported by a grant from Fundación Andes. R.T. thanks CONICYT for financial support. Institutional support to CeCs from a group of Chilean private companies (COPEC, CGEI, Empresa CMPC, ENERSIS, MINERA LA ESCONDIDA, IBM and XEROX-Chile) is also acknowledged.

[1] For a complete treatment see, M.B. Green, J.H. Schwarz and E. Witten, *Superstrings*, Cambridge University Press, 1987.
[2] E. Cremmer, B. Julia and J. Scherk, *Phys. Lett.* B76, 409 (1978).
[3] E. Witten, *Nucl. Phys.* B 311, 46 (1988).
[4] A. Achúcarro and P.K. Townsend, *Phys. Lett.* B180, 89 (1986).
[5] A.H. Chamseddine, *Nucl. Phys.* B 346, 213 (1990).
[6] A.H. Chamseddine, *Phys. Lett.* B233, 291 (1989).
[7] M. Bañados, C. Teitelboim and J.Zanelli, *Phys. Rev.* D49, 795 (1994). See also, JJ Giambiagi Festschrift, H. Falomir, R. Gamboa, P. Léafl and F. Shaposnik eds. (World Scientific, Singapore, 1991).
[8] M. Bañados, C. Teitelboim and J.Zanelli, *Phys. Rev. Lett.* 69, 1849 (1992).
[9] M. Bañados, L.J. Garay and M. Henneaux, *Phys. Rev.* D, in press.
[10] T. Regge, *Phys. Rep.* 137, 31 (1986).
[11] D. Lovelock, *J. Math. Phys.* 12, 498 (1971).
[12] S. Deser, R. Jackiw and G. ’t Hooft, *Ann. Phys.* 152, 220 (1984).
[13] M. Bañados, L.J. Garay and M. Henneaux, in preparation.

[14] C. Teitelboim, *Phys. Rev. Lett.* **38**, 1106 (1977); C. Teitelboim and R. Tabensky, *Phys. Lett.* **69 B**, 240 (1977).

[15] For a review see P. van Nieuwenhuizen, *Phys. Rep.* **68**, 4 (1981).

[16] For earlier work on three dimensional supergravity see N. Marcus and J.H. Schwarz, *Nucl. Phys.* **B228**, 145 (1983); S. Deser and J.H. Kay, *Phys. Lett.* **B120**, 97 (1983).

[17] W. Nahm, *Nucl. Phys.* **B135**, 149 (1978).

[18] J. W. van Holten and A. Van Proeyen, *J. Phys.* **A15**, 3763 (1982).

[19] A. Mardones and J. Zanelli, *Class. & Quant. Grav.* **8**, 1545 (1991).

[20] M. Bañados, R. Troncoso and J. Zanelli, in preparation.