Calculation of geometric parameters of diesel fuel ignition flares

V A Likhanov, O P Lopatin1 and P N Vylegzhanin

Department of thermal engines, automobiles and tractors, Vyatka State Agricultural Academy, 610017, Kirov, October prospect, 133, Russian Federation

1E-mail: nirs_vsaa@mail.ru

Abstract. The fuel flare in the gas-diesel cylinder is the main source of ignition of the methane-air mixture, so the effective combustion of fuel depends on the processes that occur in it when vaporized fuel particles penetrate into the air and form a fuel-air mixture. Thus, the consideration of the parameters and structure of the fuel phase allows us to approach the analysis of the interaction between the methane-air environment and fuel particles, as well as the problems associated with the formation and burning of soot particles in the form of gas diesel.

The sputtered fuel torch is usually characterized by a length L_f, a width B_f, and a solid angle γ_f (figure 1). The volume of the fuel flare will be determined [1-3]

$$V_f = L_f \cdot \sin \frac{\gamma_f}{2}.$$ \hfill (1)

In gas diesel, the ignition dose of diesel fuel is constant and is 20% of the nominal supply, which is also divided into five torches, hence $V_f=3$ mm3.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure1.png}
\caption{Diagram of a sprayed diesel fuel torch: γ_f - angle of the spray jet cone; B_f - width of the fuel torch; L_f - fuel flare length.}
\end{figure}

The angle of the cone γ_f varies from 4° to 40° and higher depending on the design of the sprayer. Of practical interest are the data obtained at high back pressures in the atomization chamber, and it is recommended to determine the angle of the jet cone of the dispersed fuel [4-6]:

$$\gamma_f = 2 \cdot Arctg\left(F_\epsilon \cdot W_c^{0.32} \cdot M^{-0.07} \cdot \rho^{0.5}\right).$$ \hfill (2)
where F_f - empirical coefficient for closed injectors in pulse injection for calculating the maximum speed criteria U_o, $F_f=0.008$;

W_e - Weber’s criterion, which characterizes the ratio of surface tension and inertia forces;

M - criterion that characterizes the ratio of surface tension, inertia, and viscosity forces;

ρ - the ratio of air and fuel densities at the start of fuel injection.

Expression (2) is valid when the criteria are changed in the pre-cases $W_e=(140…725)10^3$, $M=(7.39…33.4)10^{-4}$, $\rho=0.0095…0.028$.

The Weber criterion is defined from the expression [7-9]

$$W_e = \frac{U_o^2 \cdot d_c \cdot \rho_f}{\sigma_f},$$

(3)

where U_o - the average flow rate of the fuel jet from the nozzle, m/s;

d_c - diameter of the nozzle hole of the sprayer, m;

ρ_f - fuel density, $\rho_f=830 \text{ kg/m}^3$;

σ_f - coefficient of surface tension of the fuel, $\sigma_f=28\cdot10^{-3} \text{ N/m}$;

According to [10-14] the average velocity of the fuel jet out of the nozzle

$$U_o = \sqrt{(p_f - p_n) \cdot 2 \cdot 10^6 / \rho_f},$$

(4)

where p_f and p_n - are, respectively, the average injection pressure of the fuel and the average gas pressure in the cylinder during the injection period, MPa.

The p_n value during the injection period will be determined [15-17]

$$p_n \approx 0.95 \cdot p_c,$$

(5)

where p_c - pressure at the end of compression, MPa.

Pressure at the end of polytropic compression

$$p_c = p_a \cdot e^{n_1},$$

(6)

where n_1 - the average value of the compression polytrope, determined by the equation [18-20]

$$n_1 = 1.41 - \frac{100}{n},$$

(7)

where n - the engine crankshaft speed, min$^{-1}$.

Taking $p_f=17.5$ MPa, we get the average speed of fuel consumption through the spray holes $U_o=179 \text{ m/s}$. After substituting the calculated values in formula (3), the Weber criterion will be equal to $W_e=2.3\cdot10^5$.

The M criterion is defined from the expression [21-23]

$$M = \frac{\mu_f^2}{\rho_f \cdot d_c \cdot \sigma_f},$$

(8)

where μ_f - the coefficient of dynamic fuel viscosity, $\mu_f=3\cdot10^{-3} \text{ Pa/m}^2$.

Substituting the found values of indicators in the formula (8) we get the criterion $M=1.3\cdot10^{-3}$.

The ratio of air and fuel densities at the time of fuel injection is determined from the formula [24-26]

$$\rho = \frac{\rho_a}{\rho_f},$$

(9)
where ρ_a - the average air density during the injection period, kg/m3.

The average air density during the fuel injection period will be determined using (5) of the equation [27-29]

$$\rho_a = \frac{0.95 \cdot p_e \cdot 10^6}{R_a \cdot T_e},$$

(10)

where R_a - the universal gas constant for air, $R_a=287$ J/kg·deg; T_e - temperature at the end of the compression process, K.

$$T_e = T_a \cdot e^{(m-1)},$$

(11)

where T_a - the temperature at the end of the inlet, K.

Substituting the calculated and experimental data in the expression (11), we get $T_e=817$ K. At the same time, $\rho_a=15.6$ kg/m3; $\rho=0.019$; $\gamma=11.1^\circ$.

Then the length of the torch is determined from expression (2) and will have the form [30-33]

$$L_f = \sqrt{\frac{V_f}{\sin^2 \gamma_f}} = 17.9 \text{ mm.}$$

(12)

Based on the found length of L_f, it is possible to construct a geometric model of the propagation of five ignition flares in the combustion chamber and determine the average coefficient of excess air α in the experimental zone 1 (figure 2) and in the zone where the methane-suffocating mixture prevails [34-37].

The hemispherical volume occupied by fuel flares in the combustion chamber is calculated by the formula [38-40]

![Figure 2. Model of distribution of fuel flares when injecting an initial dose of diesel fuel with a multi-hole nozzle into the combustion chamber of the CNIDI type: 1 - zone of distribution of fuel flares; 2 - zone with a predominance of a methane-air mixture.](image)
When the value $L_f = 17.9$ mm found in equation (12), the hemispherical ignition volume V_i is 16.1% of the volume of the diesel combustion chamber, equal to $V_c = 74.2$ cm3 [41-43]. This indirectly confirms the correctness of the calculation of the torch length L_f and the accepted hemispherical shape of the ignition volume (13).

The process of mixing the ignition dose of diesel fuel with air when the gas-diesel engine is running at idle should not differ from this process in a diesel engine that has a volume–film mixing at idle. At idle this length of fuel flares L_f can provide a mostly volumetric method of mixing in the ignition volume [44-46]

$$V_i = 0.218 \cdot V_c.$$ \hspace{1cm} (14)

At the same time the average coefficient of excess air when the diesel engine is running at the rated mode

$$\alpha_n = \frac{G_{an}}{14.3 \cdot G_{an}},$$ \hspace{1cm} (15)

where G_{an} – air consumption by diesel when operating at rated mode, kg/h.

The average coefficient of excess air in the hemispherical volume covering the fuel flares when the diesel engine is running at idle is determined by

$$\alpha_{ix} = \alpha_n \cdot \frac{G_{fk}}{G_{fn}} \cdot \frac{V_{sx}}{V_i}.$$ \hspace{1cm} (16)

where G_{fn} and G_{fk} - diesel fuel consumption, respectively, in nominal mode and at idle, kg/h.

Below are calculations of the average value of the excess air coefficient depending on the average effective pressure, which are shown in figure 3.

![Figure 3. The values of the average coefficient of excess air from the average effective pressure: 1 – in the zone of distribution of fuel flares (zone 1 in figure 2), 2-in the zone of predominance of the methane-air mixture (zone 2 in figure 2).](image-url)

The second zone is dominated by a methane-air mixture. Carbon is formed in areas at a relatively high temperature, in which the particles quickly burn without soot formation, while at low loads the growth of soot particles in the exhaust gases should be insignificant at modes close to the nominal and higher, the supply of gas-like fuel increases, with the constant supply of diesel fuel, and consequently decreases α, which leads to a lack of oxidizer and intensive soot formation [45-47].
References

[1] Powertrain: Optimal Control. IEEE Transactions on Vehicular Technology 53 872-81
[2] Cho Y, Song S and Chun K M 2014 International Journal of Hydrogen Energy 39(12) 6746-52
[3] Gureev V M, Khairullin A K, Varlamov F A, Gumerov I F and Khafizov R K 2016 Russian Aeronautics 59(4) 554-8
[4] Likhanov V A and Lopatin O P 2019 Ecology and Industry of Russia 23(9) 60-5
[5] Ghazikhani M, Feyz M E and Joharchi A 2010 Applied Thermal Engineering 30(13) 1711-18
[6] Chen S, Cui K, Zhu J, Zhao Y, Wang L C and Mutuku J K 2019 Aerosol and Air Quality Research 19(4) 812-9
[7] Likhanov V A and Lopatin O P 2018 IOP Conf. Series: Materials Science and Engineering 457 012011
[8] Kuropyatnyk O A and Sagin S V 2019 Nase More 66(1) 1-9
[9] Zhao Y, Xu G, Li M, Chen Q and Wang Z 2016 Research of Environmental Sciences 29(11) 1672-8
[10] Likhanov V A and Lopatin O P 2017 Thermal Engineering 64(12) 935-44
[11] Chuvashov A N, Chuprakov A I and Anfilatov A 2020 IOP Conf. Series: Materials Science and Engineering 734 012184
[12] Lazarev E, Lazarev V, Pomaz A and Salov A 2017 WIT Transactions on Ecology and the Environment 224(1) 91-9
[13] Likhanov V A and Lopatin O P 2019 Journal of Physics: Conf. Series 1399 055016
[14] Kawahara N, Tomita E, Ohtsuki A and Aoyagi Y 2011 Proceedings of the Combustion Institute 33(2) 2903-10
[15] Aldhaidhawi M, Chiriac R and Badescu V 2017 Renewable and Sustainable Energy Reviews 73 178-86
[16] Likhanov V A and Lopatin O P 2019 Journal of Physics: Conf. Series 1399 055020
[17] Dwivedi G, Verma P and Sharma M P 2016 Journal of Materials and Environmental Science 7(12) 4540-55
[18] Yasin M H M, Ali M H, Mamat R, Yusop A F and Izzudin M I 2016 MATEC Web of Conferences "2nd International Conference on Automotive Innovation and Green Vehicle, AiGEV 2016" 01079
[19] Likhanov V A, Lopatin O P and Yurlov A S 2019 Journal of Physics: Conf. Series 1399 055026
[20] Ramos L P, Kothe V, César-Oliveira M A F, Muniz-Wypych A S, Nakagaki S, Krieger N, Wypych F and Cordeiro C S 2017 Revista Virtual de Quimica 9(1) 317-69
[21] Skryabin M L 2020 IOP Conf. Series: Earth and Environmental Science 421 072012
[22] Likhanov V A and Lopatin O P 2020 IOP Conf. Series: Materials Science and Engineering 734 012202
[23] Markov V A, Kamaltdinov V G, Zykov S A and Savastenko A A 2019 Journal of Physics: Conference Series 052022
[24] Oğuz H, Öğüt H, Aydin F, Ciniviz M and Eryılmaz T 2019 Renewable Energy 143 692-702
[25] Likhanov V A and Lopatin O P 2020 IOP Conf. Series: Earth and Environmental Science 421 072018
[26] Song W, Zhang Y, Yi C, Xie S and Fu C 2019 Fuel 242 41-9
[27] Chernova N I 2018 Powerman 10 39-44
[28] Likhanov V A and Lopatin O P 2018 Ecology and Industry of Russia 22(10) 54-9
[29] Frusteri L, Perathoner S, Bonura G 2018 RSC Green Chemistry 56 144-80
[30] Markov V A, Kamaltdinov V G, Savastenko A A 2018 Journal of Physics: Conference Series 012077
[31] Marchuk A, Likhanov V A and Lopatin O P 2019 Theoretical and Applied Ecology 3 080-6
[32] Prasetyo J, Adiarso A, Murti S D S, Senda S P, Rödh S M, Prada Y E and Oktariani E A 2018 IOP Conference Series: Materials Science and Engineering 3 012005
[33] Hlaváčová Z, Božíková M, Hlaváč P, Regrunt T and Ardonová V 2018 International
Agrophysics (Lublin) 32(1) 93-100

[34] Lopatin O P 2020 IOP Conf. Series: Materials Science and Engineering 734 012199
[35] Chuvashev A N and Chuprakov A I 2019 Journal of Physics: Conf. Series 1399 055085
[36] Neonufa G F, Soerawidjaja T H and Prakoso T 2017 Journal of Engineering and Technological Sciences 49(5) 575-86
[37] Jeong H, Kim S H, Lee S-W, Kim E-Y and Yoon S H 2017 Journal of Microbiology and Biotechnology 27(6) 1171-9
[38] Lopatin O P 2020 IOP Conf. Series: Earth and Environmental Science 421 072019
[39] Strebkov D S 2015 Frontiers of Agricultural Science and Engineering 2(1) 1-12
[40] Patel A, Arora N, Sartaj K et al. 2016 Renewable and Sustainable Energy Reviews 62 836-55
[41] Likhanov V A, Lopatin O P and Yurlov A S 2020 IOP Conf. Series: Materials Science and Engineering 734 012208
[42] Sitoe B V, Mitsutake H, Guimaraës E et al. 2016 Energy and Fuels 30(2) 1062-70
[43] Makareviciene V and Sendzikiene E 2015 Environmental Technology 36(14) 1745-50
[44] Yang W, Lang Y-H, Bai J and Li Z-Y 2015 Ecological Engineering 74 117-24
[45] Romanyuk V, Likhanov V A and Lopatin O P 2018 Theoretical and Applied Ecology 3 27-32
[46] Kozlov A N, Anfilatov A A and Chuvashev A N 2019 Journal of Physics: Conf. Series 1399 055051
[47] Jing W, Fang T and Roberts W L 2015 Energy Conversion and Management 89 525-40
[48] Paris R S, Lopez L, Barrientos J et al. 2015 Catalysis 27 62-143