GENERALIZED METALLIC STRUCTURES

ADARA M. BLAGA AND ANTONELLA NANNICINI

Abstract. We study the properties of a generalized metallic, a generalized product and a generalized complex structure induced on the generalized tangent bundle of a smooth manifold \(M \) by a metallic Riemannian structure \((J, g)\) on \(M \), providing conditions for their integrability with respect to a suitable connection. Moreover, by using methods of generalized geometry, we lift \((J, g)\) to metallic Riemannian structures on the tangent and cotangent bundles of \(M \), underlying the relations between them.

1. Preliminaries

On a smooth manifold \(M \), besides the almost complex, almost tangent, almost product structures, etc., some other polynomial structures can be considered as \(\mathcal{C}^\infty \)-tensor fields \(J \) of \((1,1)\)-type which are roots of the algebraic equation

\[
Q(J) := J^n + a_n J^{n-1} + \cdots + a_2 J + a_1 I = 0,
\]

where \(I \) is the identity operator on the Lie algebra of vector fields on \(M \). In particular, if \(Q(J) := J^2 - pJ - qI \), with \(p \) and \(q \) positive integers, its solution \(J \) will be called metallic structure \([2]\). The name is motivated by the fact that the \((p,q)\)-metallic number introduced by Vera W. de Spinadel \([8]\) is precisely the positive root of the quadratic equation \(x^2 - px - q = 0 \), namely \(\sigma_{p,q} := \frac{p + \sqrt{p^2 + 4q}}{2} \). For example: if \(p = q = 1 \) we get the golden number \(\sigma = \frac{1 + \sqrt{5}}{2} \); if \(p = 2 \) and \(q = 1 \) we get the silver number \(\sigma_{2,1} = 1 + \sqrt{2} \); if \(p = 3 \) and \(q = 1 \) we get the bronze number \(\sigma_{3,1} = \frac{3 + \sqrt{13}}{2} \); if \(p = 1 \) and \(q = 2 \) we get the copper number \(\sigma_{1,2} = 2 \); if \(p = 1 \) and \(q = 3 \) we get the nickel number \(\sigma_{1,3} = \frac{1 + \sqrt{13}}{2} \), and so on.

We shall briefly recall the basic notions of metallic (Riemannian) geometry.

Definition 1.1 \([3]\). A metallic structure \(J \) on \(M \) is an endomorphism \(J : TM \to TM \) satisfying

\[
J^2 = pJ + qI,
\]

for some \(p, q \in \mathbb{N}^* \). The pair \((M, J)\) is called a metallic manifold. Moreover, if a Riemannian metric \(g \) on \(M \) is compatible with \(J \), that is \(g(JX, Y) = g(X, JY) \),

2010 Mathematics Subject Classification. 53C07, 53C15, 53C38, 53D18.

Key words and phrases. Metallic structures; Generalized geometry; Calibrated geometries.
for any \(X, Y \in C^\infty(TM) \), we call the pair \((J, g)\) a \textit{metallic Riemannian structure} and \((M, J, g)\) a \textit{metallic Riemannian manifold}.

The concept of integrability for a metallic structure is defined in the classical manner.

Definition 1.2. A metallic structure \(J \) is called \textit{integrable} if its Nijenhuis tensor field

\[
N_J(X, Y) := [JX, JY] - J[JX, Y] - J[X, JY] + J^2[X, Y]
\]

vanishes for all \(X, Y \in C^\infty(TM) \).

It is known \[^3\] that an almost product structure \(F \) on \(M \) induces two metallic structures:

\[
J^\pm = \pm \frac{2\sigma_{p,q} - p}{2} F + \frac{p}{2} I
\]

and, conversely, every metallic structure \(J \) on \(M \) induces two almost product structures:

\[
F^\pm = \pm \left(\frac{2}{2\sigma_{p,q} - p} J - \frac{p}{2\sigma_{p,q} - p} I \right),
\]

where \(\sigma_{p,q} = \frac{p + \sqrt{p^2 + 4q}}{2} \) is the metallic number, for \(p, q \in \mathbb{N}^* \).

In particular, if the almost product structure \(F \) is compatible with a Riemannian metric \(g \), then \((J^+, g)\) and \((J^-, g)\) are metallic Riemannian structures.

The analogue concept of locally product manifold is considered in the context of metallic geometry.

Definition 1.3 \(^{[1]}\). A metallic Riemannian manifold \((M, J, g)\) is called \textit{locally metallic} if \(J \) is parallel with respect to the Levi-Civita connection \(\nabla \) of \(g \), that is \(\nabla J = 0 \).

In the following, we shall extend the definition of a metallic structure for any real numbers \(p \) and \(q \). In this way, we also include some other well-known structures; for instance, if \((p, q)\in\{(0, -1), (0, 0), (0, 1), (1, 0)\}\), the solution of \((1.1)\) would yield an almost complex, an almost tangent, an almost product and a \(J(2,1) \)-structure, respectively.

2. **Generalized structures induced by metallic structures**

Let \(TM \oplus T^*M \) be the generalized tangent bundle of a smooth manifold \(M \).

Definition 2.1. A \textit{generalized metallic structure} \(\hat{J} \) on \(M \) is an endomorphism \(\hat{J} : TM \oplus T^*M \to TM \oplus T^*M \) satisfying

\[
\hat{J}^2 = p\hat{J} + qI,
\]

for some real numbers \(p \) and \(q \).

For a linear connection \(\nabla \) on \(M \), we consider the bracket \([\cdot, \cdot]_\nabla \) on \(C^\infty(TM \oplus T^*M) \) \[^6\]:

\[
[X + \alpha, Y + \beta]_\nabla := [X, Y] + \nabla_X \beta - \nabla_Y \alpha,
\]

for all \(X, Y \in C^\infty(TM) \) and \(\alpha, \beta \in C^\infty(T^*M) \).
Definition 2.2. A generalized metallic structure \(\hat{J} \) is called \(\nabla \)-integrable if its Nijenhuis tensor field \(N^\nabla \) with respect to \(\nabla \),
\[
N^\nabla_\sigma(\tau, \nu) := [\hat{J}\sigma, \hat{J}\tau]_{\nabla} - \hat{J}[\hat{J}\sigma, \hat{J}\tau]_{\nabla} - \hat{J}[\sigma, \tau]_{\nabla} + \hat{J}^2[\sigma, \tau]_{\nabla},
\]
vanishes for all \(\sigma, \tau \in C^\infty(TM \oplus T^*M) \).

2.1. Generalized metallic structure induced by \((J,g) \). Let \((J,g) \) be a metallic Riemannian structure on \(M \) such that \(J^2 = pJ + qI \), \(p, q \in \mathbb{R} \). If we denote by \(\sharp_g : T^*M \to TM \) the inverse of the isomorphism \(\flat_g : TM \to T^*M \), \(\flat_g(X) := i_Xg \), from the \(g \)-symmetry of \(J \) we have \(\sharp_g \circ J^* = J \circ \sharp_g \) and \(\flat_g \circ J = J^* \circ \flat_g \), where \((J^*\alpha)(X) := \alpha(JX) \). Also notice that \(J^* \) is a metallic structure too, namely, \((J^*)^2 = pJ^* + qI \), and easily get that \(\sharp_g \circ (J^*)^k = J^k \circ \sharp_g \) and \(\flat_g \circ J^k = (J^*)^k \circ \flat_g \), for any \(k \in \mathbb{N} \).

On \(TM \oplus T^*M \) we consider the Riemannian metric \(\hat{g}(X + \alpha, Y + \beta) := g(X, Y) + g(\sharp_g\alpha, \sharp_g\beta) \), (2.1) for any \(X, Y \in C^\infty(TM) \) and \(\alpha, \beta \in C^\infty(T^*M) \).

Definition 2.3. A pair \((\hat{J}, \hat{g}) \) of a generalized metallic structure \(\hat{J} \) and a Riemannian metric \(\hat{g} \) such that \(\hat{J} \) is \(\hat{g} \)-symmetric is called generalized metallic Riemannian structure.

Remark that the generalized metallic structure \(\hat{J}_m := \begin{pmatrix} J & 0 \\ 0 & J^* \end{pmatrix} \) induced by the metallic Riemannian structure \((J,g) \) is \(\hat{g} \)-symmetric; hence, \((\hat{J}_m, \hat{g}) \) is a generalized metallic Riemannian structure.

Proposition 2.4. The generalized metallic structure \(\hat{J}_m \) induced by the metallic Riemannian structure \((J,g) \) on \(M \) is \(\nabla \)-integrable if and only if \(J \) is integrable and \((\nabla \nabla_J J) = (\nabla_X J)J \), for any \(X \in C^\infty(TM) \).

Proof. We have:
\[
N^\nabla_{\hat{J}_m}(X,Y) = [JX, JY] - J[JX, Y] - J[X, JY] + J^2[X, Y] = N_J(X,Y)
\]
\[
N^\nabla_{\hat{J}_m}(X,\beta) = [JX, J^*\beta]_{\nabla} - J^*[JX, \beta]_{\nabla} - J^*[X, J^*\beta]_{\nabla} + (J^*)^2[X, \beta]_{\nabla}
\]
\[
= \nabla_{JX}J^*\beta - J^*\nabla_{JX}\beta - J^*\nabla_X J^*\beta + (J^*)^2\nabla_X \beta
\]
\[
= ((\nabla_{JX} J^*) - J^*(\nabla_X J^*)) (\beta)
\]
\[
= \beta((\nabla_{JX} J) - (\nabla_X J) J)
\]
\[
N^\nabla_{\hat{J}_m}(\alpha, \beta) = 0,
\]
for all \(X, Y \in C^\infty(TM) \) and \(\alpha, \beta \in C^\infty(T^*M) \). The proof is thus complete. \(\square \)

Remark that if \(\nabla \) is a \(J \)-connection, that is \(\nabla J = 0 \), then \(\hat{J}_m \) is \(\nabla \)-integrable if and only if \(J \) is integrable. Moreover, if \(T^\nabla \) is the torsion of \(\nabla \), \(T^\nabla(X,Y) := \nabla_X Y - \nabla_Y X - [X,Y] \), then a direct computation gives:
\[
N_J(X, Y) = (\nabla_{JX} J)Y - (\nabla_{JY} J)X + J(\nabla_Y J)X - J(\nabla_X J)Y + \Phi(T^\nabla)(X,Y),
\]
where

\[\Phi(T^\nabla)(X,Y) := -T^\nabla(JX,JY) + JT^\nabla(JX,Y) + JT^\nabla(X,JY) - J^2T^\nabla(X,Y). \]

In particular, if \(\nabla \) is a torsion free \(J \)-connection, then \(\hat{J}_m \) is \(\nabla \)-integrable.

Let \(\nabla^g \) be the Levi-Civita connection of \(g \) and define a linear connection \(D \) on \(M \) by \(D := \nabla^g + F \), where \(F \) is a \((1,2)\)-type tensor field such that

\[
\begin{align*}
DJ &= 0 \\
g &= 0.
\end{align*}
\]

This is equivalent to

\[
\begin{align*}
(\nabla^g_X J)Y &= J(F(X,Y)) - F(X,JY) \\
g(F(X,Y),Z) + g(Y,F(X,Z)) &= 0
\end{align*}
\]

for any \(X, Y, Z \in C^\infty(TM) \).

Consider the bracket \([\cdot,\cdot]_D\) on \(C^\infty(TM \oplus T^*M) \):

\[
[X + \alpha, Y + \beta]_D := [X, Y] + DX\beta - DY\alpha,
\]

for any \(X, Y \in C^\infty(TM) \) and \(\alpha, \beta \in C^\infty(T^*M) \).

Define the connection \(\hat{D} \) on \(TM \oplus T^*M \) by

\[
\hat{D}X(Y + \beta) := DXY + DX\beta,
\]

for any \(X, Y \in C^\infty(TM) \) and \(\beta \in C^\infty(T^*M) \). It follows that

\[
\hat{D}X(Y + \beta) = \nabla^g_X Y + F(X,Y) + \nabla X\beta - \beta \circ F(X, \cdot).
\]

Let \(n \) be the dimension of \(M \) and assume that \(q \neq 0 \). Denote by \(\{x^1, \ldots, x^n\} \) the local coordinates on \(M \) and let \(\{X_1, \ldots, X_n\} \) be the corresponding local frame for \(TM \). Following [4] we define:

\[
F(X_i, X_j) := \omega(X_j)X_i - \omega(X_i)g^{lk}g_{ij}X_k + \frac{1}{q}\omega(JX_j)JX_i - \frac{1}{q}\omega(JX_i)g^{lk}J_l^sJ_sX_k,
\]

where \(\omega \) is a 1-form on \(M \) and we use Einstein’s convention of summation.

We immediately have that \(g(F(X_i, X_j), X_r) + g(X_j, F(X_i, X_r)) = 0 \), for all \(i, j, r \); therefore, \(Dg = 0 \), for any 1-form \(\omega \). Moreover, the torsion of \(D \) is given by

\[
T^D(X,Y) = \omega(Y)X - \omega(X)Y + \frac{1}{q}\omega(JY)JX - \frac{1}{q}\omega(JX)JY,
\]

for any \(X, Y \in C^\infty(TM) \).

Lemma 2.5. \(T^D \) satisfies the following properties:

\[
T^D(JX,Y) = JT^D(X,Y) = T^D(X,JY)
\]

\[
\Phi(T^D)(X,Y) = 0,
\]

for any \(X, Y \in C^\infty(TM) \).
\textit{Proof.} From a direct computation we get
\[JT_D(X, Y) = \omega(Y)JX - \omega(X)JY + \frac{p}{q}\omega(JY)JX - \frac{p}{q}\omega(JX)JY + \omega(JY)X - \omega(JX)Y, \]
which is equal to \(T^D(JX, Y) \) and \(T^D(X, JY) \).
Consequently, we have \(\Phi(T^\nabla)(X, Y) = 0 \). \(\square \)

Recently, C. Karaman \[4\] constructed metallic semi-symmetric metric \(J \)-connections \(D \) on locally decomposable metallic Riemannian manifolds \((M, J, g)\). These connections satisfy:
\[DJ = 0, \ Dg = 0, \ T^D(X, Y) = \omega(Y)X - \omega(X)Y + \frac{1}{q}\omega(JY)JX - \frac{1}{q}\omega(JX)JY, \]
for any \(X, Y \in C^\infty(TM) \). In particular, we can state the following:

\textbf{Proposition 2.6.} Let \((M, J, g)\) be a locally decomposable metallic Riemannian manifold and let \(D \) be a metallic semi-symmetric metric \(J \)-connection. Then \(\hat{J}_m \) is \(D \)-integrable.

\textbf{Proposition 2.7.} Let \(\left(\hat{J}_m := \begin{pmatrix} J & 0 \\ 0 & J^* \end{pmatrix}, \hat{g} \right) \) be the generalized metallic Riemannian structure induced by the metallic Riemannian structure \((J, g)\) on \(M \) with \(\hat{g} \) the Riemannian metric defined by (2.1). Then:
\begin{enumerate}
 \item \(\hat{D}\hat{J}_m = 0 \) if and only if \(DJ = 0 \);
 \item \(\hat{D}\hat{g} = 0 \) if and only if \(Dg \).
\end{enumerate}

\textit{Proof.} Remark that \(\hat{D}\hat{J}_m = 0 \) is equivalent to \((DX J)Y + \beta \circ DX J = 0\), for any \(X, Y \in C^\infty(TM) \) and \(\beta \in C^\infty(T^*M) \), and \(\hat{D}\hat{g} = 0 \) is equivalent to \((DX g)(Y, Z) - (DX g)(\sharp g \beta, \sharp g \gamma) = 0\), for any \(X, Y, Z \in C^\infty(TM) \) and \(\beta, \gamma \in C^\infty(T^*M) \). \(\square \)

\textbf{Definition 2.8.} A smooth map \(f \) between two metallic manifolds \((M_1, J_1)\) and \((M_2, J_2)\) is called metallic if \(f_* \circ J_1 = J_2 \circ f_* \).

\textbf{Remark 2.9.} A metallic diffeomorphism \(f \) between two metallic manifolds \((M_1, J_1)\) and \((M_2, J_2)\) naturally induces an isomorphism \(\hat{f} \) between their generalized tangent bundles defined by
\[\hat{f} : TM_1 \oplus T^*M_1 \rightarrow TM_2 \oplus T^*M_2, \quad \hat{f}(X + \alpha) := f_*X + ((f_*)^{-1})\alpha, \]
where \(f_* : TM_1 \rightarrow TM_2 \) is the tangent map of \(f \) and \((f_*)^* : T^*M_2 \rightarrow T^*M_1 \) is the dual map of \(f_* \), that is, \((f_*)^*\alpha)(X) := \alpha(f_*X)\), for all \(\alpha \in C^\infty(T^*M_2) \) and \(X \in C^\infty(TM_1) \), which preserves the generalized metallic structures \(\hat{J}_{i,m} := \begin{pmatrix} J_i & 0 \\ 0 & J^*_i \end{pmatrix} \), \(i = 1, 2 \). Indeed, from \(f_* \circ J_1 = J_2 \circ f_* \) follows that \((f_*)^* \circ J^*_2 = J_1^* \circ (f_*)^*\), hence \(\hat{f} \circ \hat{J}_{1,m} = \hat{J}_{2,m} \circ \hat{f} \).
In particular, if \(f : M \rightarrow M \) is a diffeomorphism which preserves the metallic structure \(J \), then \(\hat{f} \) can be defined by
\[\hat{f}(X + \alpha) := f_*X + (f_*)^*\alpha, \]
which coincides with the generalized metallic structure \hat{J}_m when $J = f_*$. In this case, J is invertible and $J^{-1} = \frac{1}{q} J - \frac{p}{q} I$, for $q \neq 0$.

2.2. Generalized product structure induced by (J,g). Let (J,g) be a metallic Riemannian structure on M such that $J^2 = pJ + qI$, $p, q \in \mathbb{R}$. Then $\hat{J}_p := \left(\begin{array}{cc} J & (I - J^2) b_g \\ b_g & -J^* \end{array} \right)$ is a generalized product structure on M, that is $\hat{J}_p^2 = I$.

A direct computation gives the following.

Proposition 2.10. The generalized product structure \hat{J}_p induced by the metallic Riemannian structure (J,g) on M is ∇-integrable if and only if the following conditions are satisfied:

\[
\begin{align*}
N_J - (I - J^2) b_g(d\nabla g) &= 0 \\
(\nabla_{JX} g)Y - (\nabla_{JY} g)X + J^*((\nabla_{X} g)Y - (\nabla_{Y} g)X) + g((\nabla_Y J)X - (\nabla_X J)Y) \\
&+ g(T^\nabla(X, JY) + T^\nabla(JX, Y)) = 0 \\
(d^\nabla)(I - J^2)Y, X) - (\nabla_X J^*)g(Y) + (\nabla_{X} g)(JY) &= 0 \\
(\nabla_{(I-J^2)X} J^*)g(Y) - (\nabla_{(I-J^2)Y} J^*)g(X) &= 0 \\
(\nabla_{(I-J^2)X} J^2)Y - (\nabla_{(I-J^2)Y} J^2)X + (\nabla_{X} g)(JY) + (\nabla_{X} J^2)Y - J^2(\nabla_{X} J)Y &- (I - J^2) b_g((\nabla_{JX} g)Y - (\nabla_{JX} g)Y) \\
&+ \nabla(JX, (I - J^2)Y) + J\nabla(JX, (I - J^2)Y) = 0,
\end{align*}
\]

for all $X, Y \in C^\infty(TM)$, where we denoted b_g by g and the exterior differential associated to ∇ acting on g by $(d^\nabla g)(X,Y) := (\nabla_X g)(Y) - (\nabla_Y g)(X) + g(T^\nabla(X, Y))$.

Proposition 2.11. Let (M, J, g) be a locally metallic Riemannian manifold. Then \hat{J}_p is ∇-integrable, for ∇ the Levi-Civita connection of g.

Proof. From the previous proposition, we have that the generalized product structure \hat{J}_p is ∇-integrable if and only if the following conditions are satisfied:

\[
\begin{align*}
N_J &= 0 \\
(\nabla_Y J)X - (\nabla_X J)Y &= 0 \\
(\nabla_X J^*)Y - (\nabla_{X} J^*)Y &= 0 \\
(\nabla_{(I-J^2)X} J^*)g(Y) - (\nabla_{(I-J^2)Y} J^*)g(X) &= 0 \\
(\nabla_{(I-J^2)X} J^2)Y - (\nabla_{(I-J^2)Y} J^2)X &= 0 \\
-(\nabla_{JX} J^2)Y - (\nabla_{(I-J^2)Y} J^2)X + (\nabla_{X} J)Y + J(\nabla_{X} J^2)Y - J^2(\nabla_{X} J)Y &= 0 \\
-(\nabla_{JX} J^2)Y + (\nabla_{(I-J^2)Y} J^2)X - (\nabla_{X} J)Y + J(\nabla_{X} J^2)Y - J^2(\nabla_{X} J)Y &= 0,
\end{align*}
\]

for all $X, Y \in C^\infty(TM)$. In particular, if $\nabla J = 0$, then \hat{J}_p is ∇-integrable. \qed
Definition 2.12. A generalized product structure \(\hat{J} \) on \(M \) is called _anti-pseudo-calibrated_ if it is \((\cdot, \cdot) \)-anti-invariant and the bilinear symmetric form defined by \((\cdot, \hat{J} \cdot) \) on \(TM \) is non-degenerate, where

\[
(X + \alpha, Y + \beta) := -\frac{1}{2}(\alpha(Y) - \beta(X))
\]

is the natural symplectic structure on \(TM \oplus T^*M \).

Remark 2.13. The generalized product structure \(\hat{J}_p \) is anti-pseudo-calibrated with respect to \((\cdot, \cdot) \).

Proposition 2.14. Let \(\hat{J}_p \) be the generalized product structure defined by the metallic Riemannian structure \((J, g) \) on \(M \). Then

\[
G(\sigma, \tau) := (\sigma, \hat{J}_p(\tau)),
\]

with \(\sigma, \tau \in C^\infty(TM \oplus T^*M) \), is a neutral metric.

Proof. Locally we can write \(2G \) in block matrix form as:

\[
\begin{pmatrix}
g & -J \\
-J & -(I - J^2)\sharp_g
\end{pmatrix}.
\]

As \(J \) is \(g \)-symmetric, pointwise, we can take \(g = I \) and \(J = \Lambda \) the diagonal matrix with eigenvalues \(\lambda_1, \ldots, \lambda_n \) which are solutions of the metallic equation \(\lambda^2 - p\lambda - q = 0 \). Then we get:

\[
\begin{pmatrix}
I & -\Lambda \\
-\Lambda & p\Lambda + (q - 1)I
\end{pmatrix}.
\]

In order to compute the indices of \(2G \), we can use the Gauss–Lagrange algorithm and by elementary operations on rows and columns of the matrix we get the form

\[
\begin{pmatrix}
I & 0 \\
0 & -I + (\Lambda^2 - p\Lambda - qI)
\end{pmatrix};
\]

therefore

\[
\begin{pmatrix}
I & 0 \\
0 & -I
\end{pmatrix}.
\]

hence \(2G \) has \(n \) positive and \(n \) negative eigenvalues and the proof is complete. \(\square \)

Proposition 2.15. Let \(\hat{J}_p := \left(J, (I - J^2)^\sharp_g \right), \hat{g} \) be the generalized product structure induced by the metallic Riemannian structure \((J, g) \) on \(M \), with \(\hat{g} \) the Riemannian metric defined by \((2.1) \). Then

\[
\hat{D}\hat{J}_p = 0 \text{ if and only if } DJ = 0 \text{ and } Dg = 0.
\]

Proof. Remark that \((\hat{D}_Y \hat{J}_p) X = (D_Y J) X + (D_Y g) X \), for any \(X, Y \in C^\infty(TM) \) and \((\hat{D}_Y \hat{J}_p) \alpha = -p(D_Y (J^\sharp g)) \alpha - (q - 1)(D_Y \sharp g) \alpha - (D_Y J^* \alpha), \) for any \(Y \in C^\infty(TM) \) and \(\alpha \in C^\infty(T^*M) \), therefore the statement. \(\square \)
Remark 2.16. Starting with a metallic structure on a manifold, with minimal restrictions on p and q, some other generalized metallic structures on its generalized tangent bundle can be constructed as follows.

The metallic structure J on M induces two almost product structures on M:

$$F^\pm := \pm \left(\frac{2}{2\sigma_{p,q} - p} J - \frac{p}{2\sigma_{p,q} - p} I \right);$$

the almost product structures F^\pm induce two generalized product structures on $TM \oplus T^*M$:

$$\hat{F}^\pm := \begin{pmatrix} F^\pm & 0 \\ 0 & (F^\pm)^* \end{pmatrix};$$

and the generalized product structures \hat{F}^\pm induce two generalized metallic structures on $TM \oplus T^*M$:

$$\hat{\sigma}_{+,-m} := \pm \frac{2\sigma_{p,q} - p}{2} \hat{F}^+ + p \frac{I}{2}, \quad \hat{\sigma}_{-,m} := \pm \frac{2\sigma_{p,q} - p}{2} \hat{F}^- + p \frac{I}{2},$$

where

$$\hat{\sigma}_{+,-m} = \frac{J}{\sigma} \left(\begin{array}{c} 0 \\ \sigma \end{array} \right),$$

and

$$\hat{\sigma}_{-,m} = \frac{J}{\sigma} \left(\begin{array}{c} -J + pI \\ \sigma \end{array} \right).$$

The metallic structure J on M induces a generalized product structure on $TM \oplus T^*M$:

$$\hat{\sigma}_p := \begin{pmatrix} J & (I - J^2)\sigma_g \\ -J^* & -\sigma \end{pmatrix},$$

and the generalized product structure $\hat{\sigma}_p$ induces two generalized metallic structures on $TM \oplus T^*M$:

$$\hat{\sigma}_m := \pm \frac{2\sigma_{p,q} - p}{2} \hat{\sigma}_p + p \frac{I}{2},$$

namely,

$$\hat{\sigma}_m = \left(\begin{array}{c} \frac{2\sigma_{p,q} - p}{2} J + p \frac{I}{2} \\ \sigma \end{array} \right),$$

and

$$\hat{\sigma}_m = \left(\begin{array}{c} -\frac{2\sigma_{p,q} - p}{2} J + p \frac{I}{2} \\ \sigma \end{array} \right).$$

2.3. Generalized complex structure induced by (J, g). Let (J, g) be a metallic Riemannian structure on M such that $J^2 = pJ + qI$, $p, q \in \mathbb{R}$. Then $\hat{\sigma}_c := \begin{pmatrix} J & -(I + J^2)\sigma_g \\ -J^* & -\sigma \end{pmatrix}$ is a generalized complex structure on M, that is, $\hat{\sigma}_c^2 = -I$. A direct computation gives the following.
The generalized complex structure \(\hat{J}_c \) induced by the metallic Riemannian structure \((J, g)\) on \(M\) is \(\nabla\)-integrable if and only if the following conditions are satisfied:

\[
N_J + (I + J^2)\alpha_g (d\nabla g) = 0
\]
\[
(\nabla_J X) Y - (\nabla_J Y) X + J^*((\nabla_X g) Y - (\nabla_Y g) X) + g((\nabla_Y J) X - (\nabla_X J) Y)
\]
\[
+ g(T\nabla (X, JY) + T\nabla (JX, Y)) = 0
\]
\[
(d\nabla g)((I + J^2) X, Y) + (\nabla_X J^*) g(Y) - (\nabla_J X J^*) g(Y) = 0
\]
\[
(\nabla_{(I + J^2) X} J^2) Y - (\nabla_{(I + J^2) Y} J^2) X - T\nabla ((I + J^2) X, (I + J^2) Y)
\]
\[
- (I + J^2)\alpha_g ((\nabla_{(I + J^2) X} g) Y - (\nabla_{(I + J^2) Y} g) X) = 0
\]
\[
- (\nabla_J X J^2) Y + (\nabla_{(I + J^2) Y} J) X - (\nabla_X J) Y + J((\nabla_X J^2) Y - J^2(\nabla_X J) Y)
\]
\[
+ (I + J^2)\alpha_g ((\nabla_J X g) Y - (\nabla_Y g) J Y)
\]
\[
+ T\nabla (J X, (I + J^2) Y) - JT\nabla (X, (I + J^2) Y) = 0,
\]

for all \(X, Y \in C^\infty(TM)\), where we denoted \(\alpha_g\) by \(g\) and the exterior differential associated to \(\nabla\) acting on \(g\) by \((d\nabla g)(X, Y) := (\nabla_X g)(Y) - (\nabla_Y g)(X) + g(T\nabla (X, Y)).\)

Proposition 2.18. Let \((M, J, g)\) be a locally metallic Riemannian manifold. Then \(\hat{J}_c\) is \(\nabla\)-integrable, for \(\nabla\) the Levi-Civita connection of \(g\).

Proof. From the previous proposition, we have that the generalized complex structure \(\hat{J}_c\) is \(\nabla\)-integrable if and only if the following conditions are satisfied:

\[
N_J = 0
\]
\[
(\nabla_J X) Y - (\nabla_X J) Y = 0
\]
\[
(\nabla_X J^*) J^* - (\nabla_J X J^*) = 0
\]
\[
(\nabla_{(I + J^2) X} J^2) Y - (\nabla_{(I + J^2) Y} J^2) X = 0
\]
\[
- (\nabla_J X J^2) Y + (\nabla_{(I + J^2) Y} J) X - (\nabla_X J) Y + J((\nabla_X J^2) Y - J^2(\nabla_X J) Y) = 0,
\]

for all \(X, Y \in C^\infty(TM)\). In particular, if \(\nabla J = 0\), then \(\hat{J}_c\) is \(\nabla\)-integrable. \(\square\)

Definition 2.19. A generalized complex structure \(\hat{J}\) on \(M\) is called *calibrated* if it is \((\cdot, \cdot)\)-invariant and the bilinear symmetric form defined by \((\cdot, \hat{J}\cdot)\) on \(TM\) is non-degenerate and positive definite, where

\[
(X + \alpha, Y + \beta) := -\frac{1}{2}(\alpha(Y) - \beta(X))
\]

is the natural symplectic structure on \(TM \oplus T^*M\).

Remark 2.20. The generalized complex structure \(\hat{J}_c\) is calibrated with respect to \((\cdot, \cdot)\).
Proposition 2.21. Let \((\hat{J}_c := \begin{pmatrix} J & -(I + J^2) \hat{g} \\ \hat{g} & -J^* \end{pmatrix}, \hat{g})\) be the generalized complex structure induced by the metallic Riemannian structure \((J, g)\) on \(M\) with \(\hat{g}\) the Riemannian metric defined by \((2.1)\). Then:

\[
\hat{D}\hat{J}_c = 0 \quad \text{if and only if} \quad DJ = 0 \quad \text{and} \quad Dg = 0.
\]

Proof. Remark that \((\hat{D}_Y \hat{J}_c)X = (D_Y J)X + (D_Y g)X\), for any \(X, Y \in C^\infty(TM)\) and \((\hat{D}_Y \hat{J}_c)\alpha = -p(D_Y (J^*_g)g)\alpha - (q + 1)(D_Y \hat{g})\alpha - (D_Y J^*)\alpha\), for any \(Y \in C^\infty(TM)\) and \(\alpha \in C^\infty(T^*M)\), therefore the statement. \(\square\)

Definition 2.22. A pair \((\hat{J}_c, \hat{J}_p)\) of a generalized complex structure and a generalized product structure is called generalized complex product structure if \(\hat{J}_c\hat{J}_p = -\hat{J}_p\hat{J}_c\).

Remark 2.23. If \((J, g)\) is a metallic Riemannian structure on \(M\), then \((\hat{J}_c, \hat{J}_p)\), for \(\hat{J}_c := \begin{pmatrix} J & -(I + J^2) \hat{g} \\ \hat{g} & -J^* \end{pmatrix}\) and \(\hat{J}_p := \begin{pmatrix} J & (I - J^2) \hat{g} \\ \hat{g} & -J^* \end{pmatrix}\), is a generalized complex product structure.

3. Metallic structures on tangent and cotangent bundles

3.1. Metallic structure on the tangent bundle. Let \((M, J, g)\) be a metallic Riemannian manifold and let \(\nabla\) be a linear connection on \(M\). \(\nabla\) defines the decomposition into the horizontal and vertical subbundles of \(T(TM)\):

\[
T(TM) = TH(TM) \oplus TV(TM).
\]

Let \(\pi : TM \rightarrow M\) be the canonical projection and \(\pi_* : T(TM) \rightarrow TM\) be the tangent map of \(\pi\). If \(a \in TM\) and \(A \in T_a(TM)\), then \(\pi_*(A) \in T_{\pi(a)}M\) and we denote by \(\chi_a\) the standard identification between \(T_{\pi(a)}M\) and its tangent space \(T_a(T_{\pi(a)}M)\).

Let \(\Psi^V : TM \oplus T^*M \rightarrow T(TM)\) be the bundle morphism defined by

\[
\Psi^V(X + \alpha) := X_a^H + \chi_a(\hat{g}^\alpha),
\]

where \(a \in TM\) and \(X_a^H\) is the horizontal lifting of \(X \in T_{\pi(a)}M\).

Let \(\{x^1, \ldots, x^n\}\) be local coordinates on \(M\), let \(\{\tilde{x}^1, \ldots, \tilde{x}^n, y^1, \ldots, y^n\}\) be respectively the corresponding local coordinates on \(TM\), and let \(\{X_1, \ldots, X_n, \frac{\partial}{\partial \tilde{x}^1}, \ldots, \frac{\partial}{\partial y^n}\}\) be a local frame on \(T(TM)\), where \(X_i = \frac{\partial}{\partial \tilde{x}^i}\). We have:

\[
X_i^H = X_i - y^k \Gamma_{ik}^l \frac{\partial}{\partial y^l},
\]

\[
X_i^V = y^k \Gamma_{ik}^l \frac{\partial}{\partial y^l},
\]

\[
\left(\frac{\partial}{\partial y^i}\right)^H = 0.
\]
where i, k, l run from 1 to n and Γ^k_{il} are the Christoffel symbols of ∇.

Let $\Psi \nabla : TM \oplus T^* M \to T(TM)$ be the bundle morphism defined before (which is an isomorphism on the fibres). In local coordinates, we have the following expressions:

$$
\Psi \nabla \left(\frac{\partial}{\partial x^i} \right) = X_i^H
$$

$$
\Psi \nabla (dx^j) = g^{jk} \frac{\partial}{\partial y^k}.
$$

Let $\tilde{\mathcal{J}}_m$, $\tilde{\mathcal{G}}$ be the generalized metallic structure defined in the previous section. The isomorphism $\Psi \nabla$ allows us to construct a natural metallic structure $\tilde{\mathcal{J}}_m$ and a natural Riemannian metric $\tilde{\mathcal{G}}$ on TM in the following way.

We define $\tilde{\mathcal{J}}_m : T(TM) \to T(TM)$ by

$$
\tilde{\mathcal{J}}_m := (\Psi \nabla) \circ \dot{\mathcal{J}}_m \circ (\Psi \nabla)^{-1}
$$

and the Riemannian metric $\tilde{\mathcal{G}}$ on TM by

$$
\tilde{\mathcal{G}} := ((\Psi \nabla)^{-1})^* (\dot{\mathcal{G}}).
$$

Proposition 3.1. $(TM, \tilde{\mathcal{J}}_m, \tilde{\mathcal{G}})$ is a metallic Riemannian manifold.

Proof. From the definition it follows that $\tilde{\mathcal{G}}^2_m = p\tilde{\mathcal{J}}_m + qI$ and $\tilde{\mathcal{G}}(\tilde{\mathcal{J}}_m X, Y) = \tilde{\mathcal{G}}(X, \tilde{\mathcal{J}}_m Y)$, for any $X, Y \in C^\infty (T(TM))$. □

In local coordinates, we have the following expressions for $\tilde{\mathcal{J}}_m$ and $\tilde{\mathcal{G}}$:

$$
\left\{ \begin{array}{l}
\tilde{\mathcal{J}}_m (X_i^H) = J^k_i X_k^H \\
\tilde{\mathcal{J}}_m \left(\frac{\partial}{\partial y^i} \right) = g_{ji} J^k_j g^{kl} \frac{\partial}{\partial y^l} = J^k_j \frac{\partial}{\partial y^k} \\
\tilde{\mathcal{G}}(X_i^H, X_j^H) = g_{ij} \\
\tilde{\mathcal{G}}\left(X_i^H, \frac{\partial}{\partial y^j} \right) = 0 \\
\tilde{\mathcal{G}}\left(\frac{\partial}{\partial y^i}, \frac{\partial}{\partial y^j} \right) = g_{ij}.
\end{array} \right.
$$

Moreover,

$$
\tilde{\mathcal{J}}_m (X_i) = J^k_i X_k - y^l (J^k_i \Gamma^s_{kl} - J^s_i \Gamma^k_{il}) \frac{\partial}{\partial y^s}
$$

$$
\left\{ \begin{array}{l}
\tilde{\mathcal{G}}(X_i, X_j) = g_{ij} + y^k y^h \Gamma^l_{ik} \Gamma^s_{jh} g_{hk} \\
\tilde{\mathcal{G}}\left(X_i, \frac{\partial}{\partial y^j} \right) = y^k \Gamma^l_{ik} g_{lj}.
\end{array} \right.
$$
Computing the Nijenhuis tensor of \bar{J}_m, we get the following:

$$N_{\bar{J}_m} \left(\frac{\partial}{\partial y^i}, \frac{\partial}{\partial y^j} \right) = 0$$

$$N_{\bar{J}_m} \left(X^H_i, \frac{\partial}{\partial y^j} \right) = \left(\nabla_{JX^i} J \right) X_j \left(\nabla_{X^j} J \right) X^k \frac{\partial}{\partial y^k}$$

$$N_{\bar{J}_m} \left(X^H_i, X^H_j \right) = \left(N_J (X_i, X_j) \right)^k X^H_k$$

$$- y^s \left(J^k_j J^h_i R^r_{kh} \right) - J^r_i J^k_j R^l_{kjs} - J^h_j J^r_i R^l_{ih} + p J^r_i R^l_{ij} + q R^r_{ij} \frac{\partial}{\partial y^r}.$$

Therefore we can state the following.

Proposition 3.2. Let (M, J, g) be a flat locally metallic Riemannian manifold. If ∇ is the Levi-Civita connection of g, then (\bar{J}_m, \bar{g}) is an integrable metallic Riemannian structure on TM.

3.2. Metallic structure on the cotangent bundle

Let (M, J, g) be a metallic Riemannian manifold and let ∇ be a linear connection on M. ∇ defines the decomposition into the horizontal and vertical subbundles of $T(T^* M)$:

$$T(T^* M) = T^H(T^* M) \oplus T^V(T^* M).$$

Let $\pi : T^* M \to M$ be the canonical projection and $\pi_* : T(T^* M) \to TM$ be the tangent map of π. If $a \in T^* M$ and $A \in T_a(T^* M)$, then $\pi_*(A) \in T_{\pi(a)} M$ and we denote by χ_a the standard identification between $T_{\pi(a)} M$ and its tangent space $T_{\pi(a)} T^* M$.

Let $\Phi^{\nabla} : TM \oplus T^* M \to T(T^* M)$ be the bundle morphism defined by [5]:

$$\Phi^{\nabla}(X + \alpha) := X^H_a + \chi_a(\alpha),$$

where $a \in T^* M$ and X^H_a is the horizontal lifting of $X \in T_{\pi(a)} M$.

Let $\{x^1, \ldots, x^n\}$ be local coordinates on M, let $\{\tilde{x}^1, \ldots, \tilde{x}^n, y_1, \ldots, y_n\}$ be respectively the corresponding local coordinates on $T^* M$ and let $\{X_1, \ldots, X_n, \frac{\partial}{\partial y_1}, \ldots, \frac{\partial}{\partial y_n}\}$ be a local frame on $T(T^* M)$, where $X_i = \frac{\partial}{\partial \tilde{x}^i}$. We have:

$$X^H_i = X_i + y_k \Gamma^k_{il} \frac{\partial}{\partial y_l}$$

$$X^V_i = - y_k \Gamma^k_{il} \frac{\partial}{\partial y_l}$$

$$\begin{pmatrix} \frac{\partial}{\partial y_i} \end{pmatrix}^H = 0$$

$$\begin{pmatrix} \frac{\partial}{\partial y_i} \end{pmatrix}^V = \frac{\partial}{\partial y_i},$$

where i, k, l run from 1 to n and Γ^k_{il} are the Christoffel symbols of ∇.

Rev. Un. Mat. Argentina, Vol. 61, No. 1 (2020)
Let $Φ^\nabla : TM \oplus T^*M \to T(T^*M)$ be the bundle morphism defined before (which is an isomorphism on the fibres). In local coordinates, we have the following expressions:

$$Φ^\nabla \left(\frac{\partial}{\partial x^i} \right) = X_i^H$$
$$Φ^\nabla (dx^j) = \frac{\partial}{\partial y_j}.$$

Let (\hat{J}_m, \hat{g}) be the generalized metallic structure defined in the previous section. The isomorphism $Φ^\nabla$ allows us to construct a natural metallic structure \tilde{J}_m and a natural Riemannian metric \tilde{g} on T^*M in the following way.

We define $\tilde{J}_m : T(T^*M) \to T(T^*M)$ by

$$\tilde{J}_m := (Φ^\nabla) \circ \hat{J}_m \circ (Φ^\nabla)^{-1}$$

and the Riemannian metric \tilde{g} on T^*M by

$$\tilde{g} := ((Φ^\nabla)^{-1})^*(\hat{g}).$$

Proposition 3.3. $(T^*M, \tilde{J}_m, \tilde{g})$ is a metallic Riemannian manifold.

Proof. From the definition it follows that $\tilde{J}_m^2 = p\tilde{J}_m + qI$ and $\tilde{g}(\tilde{J}_m X, Y) = \hat{g}(X, \hat{J}_m Y)$, for any $X, Y \in C^\infty(T(T^*M)).$ \hfill \qed

In local coordinates, we have the following expressions for \tilde{J}_m and \tilde{g}:

\[
\begin{cases}
\tilde{J}_m (X_i^H) = J_i^k X_k^H \\
\tilde{J}_m \left(\frac{\partial}{\partial y_j} \right) = J_k^j \frac{\partial}{\partial y_k} \\
\tilde{g} (X_i^H, X_j^H) = g_{ij} \\
\tilde{g} \left(X_i^H, \frac{\partial}{\partial y_j} \right) = 0 \\
\tilde{g} \left(\frac{\partial}{\partial y_i}, \frac{\partial}{\partial y_j} \right) = g^{ij}.
\end{cases}
\]

Moreover,

\[
\begin{cases}
\tilde{J}_m (X_i) = J_i^k X_k + y_l (J_i^k \Gamma_{kr}^l - J_r^s \Gamma_{is}^l) \frac{\partial}{\partial y_r} \\
\tilde{g} (X_i, X_j) = g_{ij} + y_k y_h \Gamma_{ii}^k \Gamma_{hr}^j \tilde{g}^{lr} \\
\tilde{g} \left(X_i, \frac{\partial}{\partial y_j} \right) = -y_k \Gamma_{ik}^d g^{dj}.
\end{cases}
\]

Computing the Nijenhuis tensor of \tilde{J}_m, we get the following:

$$N_{\tilde{J}_m} \left(\frac{\partial}{\partial y_i}, \frac{\partial}{\partial y_j} \right) = 0.$$
\[N_{\tilde{J}_m} \left(X^H_i, \frac{\partial}{\partial y_j} \right) = \left((\nabla_{JX_i} J) X_k - J (\nabla_{X_i} J) X_k \right) \frac{\partial}{\partial y_k} \]

\[N_{\tilde{J}_m} \left(X^H_i, X^H_j \right) = (N_J (X_i, X_j))^k X^H_k \]

\[+ y^l \left(J^k J^j R^l_{kh}s - J^r_s J^k J^j R^l_{kr} - J^r_s J^k J^j R^l_{ijr} + p J^k J^j R^l_{ikr} + q R^l_{ijr} \right) \frac{\partial}{\partial y_s} . \]

Therefore we can state the following.

Proposition 3.4. Let \((M, J, g)\) be a flat locally metallic Riemannian manifold. If \(\nabla\) is the Levi-Civita connection of \(g\), then \((\tilde{J}_m, \tilde{g})\) is an integrable metallic Riemannian structure on \(T^* M\).

Remark 3.5. The metallic structures \(\tilde{J}_m\) and \(\tilde{J}_m\) on the tangent and cotangent bundles respectively, satisfy:

\[\tilde{J}_m \circ (\Psi \nabla \circ (\Phi \nabla)^{-1}) = (\Psi \nabla \circ (\Phi \nabla)^{-1}) \circ \tilde{J}_m. \]

References

[1] A.M. Blaga and C.E. Hrețcanu, Metallic conjugate connections, *Rev. Un. Mat. Argentina* **59** (2018), no. 1, 179–192. MR 3825769

[2] S.I. Goldberg and K. Yano, Polynomial structures on manifolds, *Kodai Math. Sem. Rep.* **22** (1970), 199–218. MR 0267478

[3] C.E. Hrețcanu and M. Crasmareanu, Metallic structures on Riemannian manifolds, *Rev. Un. Mat. Argentina* **54** (2013), no. 2, 15–27. MR 3263648

[4] C. Karaman, On metallic semi-symmetric metric \(F\)-connections, *Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat.* **67** (2018), no. 2, 242–251. MR 3756462

[5] A. Nannicini, Almost complex structures on cotangent bundles and generalized geometry, *J. Geom. Phys.* **60** (2010), no. 11, 1781–1791. MR 2679421

[6] A. Nannicini, Calibrated complex structures on the generalized tangent bundle of a Riemannian manifold, *J. Geom. Phys.* **56** (2006), no. 6, 903–916. MR 2225103

[7] A. Nannicini, Norden structures on cotangent bundles, *Boll. Unione Mat. Ital.* **12** (2019), no. 1-2, 165–175. MR 3936301

[8] V.W. de Spinadel, The metallic means and design, in: *Nexus II: Architecture and Mathematics (Mantua, 1998)*, 143–157, Collana “Gli Studi”, 5, Erba, Fucecchio, 1998, MR 1999340

A. M. Blaga
Department of Mathematics, West University of Timișoara, Bld. V. Pârvan nr. 4, 300223
Timișoara, România
adarablaga@yahoo.com

A. Nannicini
Department of Mathematics and Informatics “U. Dini”, University of Florence, Viale Morgagni, 67/a, 50134 Firenze, Italy
antonella.nannicini@unifi.it

Received: July 30, 2018
Accepted: April 11, 2019

Rev. Un. Mat. Argentina, Vol. 61, No. 1 (2020)