The Value of User-Visible Internet Cryptography

PHILLIP J. BROOKE∗ RICHARD F. PAIGE†
Teesside University University of York

February 6, 2014

Abstract
Cryptographic mechanisms are used in a wide range of applications, including email clients, web browsers, document and asset management systems, where typical users are not cryptography experts. A number of empirical studies have demonstrated that explicit, user-visible cryptographic mechanisms are not widely used by non-expert users, and as a result arguments have been made that cryptographic mechanisms need to be better hidden or embedded in end-user processes and tools. Other mechanisms, such as HTTPS, have cryptography built-in and only become visible to the user when a dialogue appears due to a (potential) problem. This paper surveys deployed and potential technologies in use, examines the social and legal context of broad classes of users, and from there, assesses the value and issues for those users.

Keywords: Security, cryptographic controls, legal aspects, regulation, risk management

1 Introduction
Cryptography mechanisms are embedded in a range of software applications, including Internet banking and online shopping. These cryptographic mechanisms are, in some cases, entirely hidden from end-users; other mechanisms require the users to interact with them directly, and we call these user-visible applications of cryptography. These mechanisms may involve users entering passwords or passphrases for secret keys; other examples include dialogues related to resolving problematic SSL certificates on web sites. The types of application that we are concerned with include email, web browsing, e-commerce and document management systems; these applications are used widely, particularly by non-IT expert users. In all cases, the interactions that an end-user has with cryptographic mechanisms and applications take place in a social and legal context.

∗School of Computing, Teesside University, Middlesbrough, TS1 3BA. pjb@scm.tees.ac.uk
†Department of Computer Science, University of York, YO10 5GH. richard.paige@york.ac.uk
This context includes the user’s objective, such as buying a book from an online store or communicating with friends or colleagues.

This paper surveys and analyses the use and impact of these cryptographic mechanisms and techniques for general users. We highlight common methods and techniques, along with problems in their deployment. We start by describing the legal context of these non-expert end-users, examine security usability issues, then outline the technology at hand. We then use scenario-based analysis to structure a thematic survey of the applications of user-visible cryptography.

We draw the themes together and discuss issues such as trust, deployment, endpoint security and their overall effect on the use of these cryptographic mechanisms, given the users’ context. We will conclude that in general, other mitigations are important in these user interactions, and that substantial automation is appropriate where cryptography is required. We also argue that there are some limited cases where user-visible applications of cryptography has significant value for typical end-users.

1.1 Structure

First, we outline the legal context for our assessment of cryptography in section 2: this work is initially from an English and Welsh perspective, but acknowledges the cross-border aspects of electronic transactions. We continue by surveying existing related work concerning usability and security in section 3.

Section 4 briefly introduces the common, underlying technology that concerns this work. We address emerging approaches in later discussion. Section 5 sets out the scope of our survey. It describes the type of user we are concerned about (a “general Internet user” stereotype) and introduces ten user stories that we use to motivate our later discussions. Section 5.2 identifies three categories of user-visible applications of cryptography.

Sections 6–10 examine the application of cryptography, grouping the user stories together thematically. We consolidate and expand the discussions in sections 6–10 and make some overarching comments in section 11 before concluding in section 12.

2 Legal context

This work is based primarily in a English and Welsh legal context. However, the general observations should be sound in similar jurisdictions, particularly derived legal systems such as Canada and Australia. Moreover, the observations related to issues of data protection and transmission (which impact on several scenarios) are also applicable to European jurisdictions subject to EU directives.

We structure this part of the discussion into two broad areas: contracts and signatures (integrity matters), and confidentiality and privacy.
2.1 Contracts and signatures

The formation of contracts requires agreement, and that agreement is ideally recorded. However, a contract can be made verbally as well as by hand-written signature, but the burden of demonstrating a verbal agreement is greater. Contracts may impose confidentiality and similar requirements on one or more parties.

More relevant to computing, e-commerce requires that the making of contracts is mediated by computers. Thus a simple email indicating agreement, or completing an online form by clicking “accept” can be sufficient to form a contract. This brings us to the use of “signatures”, where examples include hand-written signatures, stamps or images of a company officer’s signature, email signatures that are automatically appended, typed signatures, and so on, all the way to cryptographic digital signatures. Thus we see that “signature” is a rather ambiguous term: Gutmann’s tutorial slides include greater detail in this area (Gutmann, 2007). Additionally, Mason (2011) gives a summary of some forms of electronic signature, and comments “the person relying on the signature (such as where you say you did not sign a cheque, and the bank has paid money out of your account on a cheque) must prove it was your signature where you dispute it was not your signature. This is the same for electronic signatures, although the vendors selling digital signatures try to reverse this rule.” A thorough coverage of the legal issues surrounding electronic signatures is in Mason’s book (Mason, 2012).

Some legislation explicitly addresses the recognition of electronic signatures, such as the Electronic Communications Act 2000 (HMSO, 2000). A result of this is that a wide range of statements can be legally considered an “electronic signature”. For example, Monitor, a regulatory body for part of the UK’s National Health Service, interprets this to mean that

“the following are all examples of an electronic signature

- Typed name
- E-mail address
- Scanned image of a signature
- Automatic e-mail signature” (Monitor, 2008)

This point applies to other media, such as faxes. Chapter 6 of Mason (2012) provides a detailed analysis of the form of electronic signatures and comments on cases illustrating the variability of legal decisions. Mason also quotes the Law Commission writing on ‘Electronic Commerce’, including “[…] the validity of a signature depends on its satisfying the function of a signature, not on its being a form of signature recognised by the law” and “Even if a click is less secure than a manuscript signature, reliability is not essential to validity.” This illustrates a distinction between the validity of a signature (essentially its acceptability) and the reliability of the method or form of the signature.
The later Electronic Signature Regulations 2002 [HMSO, 2002] introduce the notion of an “advanced electronic signature [which means an electronic signature]”

(a) which is uniquely linked to the signatory,
(b) which is capable of identifying the signatory,
(c) which is created using means that the signatory can maintain under his sole control, and
(d) which is linked to the data to which it relates in such a manner that any subsequent change of the data is detectable”

where an electronic signature itself “means data in electronic form which are attached to or logically associated with other electronic data and which serve as a method of authentication”. Additionally, qualified certificates are introduced which have additional liability provisions. These Regulations follow the European Directive 1999/93/EC on a Community framework for electronic signatures [European Parliament and Council, 1999; European Commission, 2011] “addresses three forms of electronic signatures: Basic electronic signature […] Advanced electronic signature […] “Qualified electronic signature […]” and these are criticised in Krawczyk (2010). Mason (2012) comments that the European Commission “may make further efforts to encourage the take-up of digital signatures, in the face of overwhelming evidence that nobody seems to want to use them, unless they are forced to do so.” A more general coverage of the evolution of documents and the use of technology, including cryptography, is given by Blanchette (2012). Although sometimes from a French

Information from computer records themselves also has value. The Civil Evidence Act 1995 [HMSO, 1995] specifically places weight on the evidential value of a computer record rather than the admissibility of the record itself. Thus records of businesses and public authorities can be relatively easily used as evidence. A similar provision exists in the US court system in the form of Rule 803 [Federal Evidence Review, 2012].

There is recognition of the need for reliability in the processes surrounding computer systems and evidence. For example, BS 10008 [British Standards Institute, 2008] and the associated BIPs [Shipman, 2008; Shipman and Howes, 2008; Howes, 2008] provide substantial guidance; supplementary material includes a workbook to assist audit.

Note that other than advanced electronic signatures and some references in BS 10008, nothing above explicitly requires any form of cryptography. Indeed, this, at least so far, poses no problem for the making of contracts in this context.

2.2 Confidentiality and privacy

A major issue for information systems concerns data protection legislation, primarily, the Data Protection Act 1998 [HMSO, 1998], an enactment of the 1995 European Union Data Protection Directive. This imposes obligations; for example, principle 7 states “Appropriate technical and organisational measures
shall be taken against unauthorised or unlawful processing of personal data and against accidental loss or destruction of, or damage to, personal data.” The definition of “appropriate” is, of course, subject to each individual case. Formal notions of “data controller” (a person or persons responsible for the processing of data) and “data processor” (for outsourcing of processing) are given in this Act. Substantial guidance exists, along with a range of standards such as the ISO 27000 series. Besides regulatory requirements, information usually has value to both individuals and businesses, regardless of the presence or absence of personal data. All this needs protecting in the traditional senses of confidentiality, integrity and availability.

Classic examples involve sensitive medical records, bank account and credit card credentials. Within the UK, the Information Commissioner’s Office is responsible for enforcement. Some remedies are also available for data subjects (such as demanding the correction of erroneous records). We remark that public reports of legal action following security lapses are unusual, with Sony’s recent security problems being an exception (Kuchera [2011]). However, such lapses tend to be either failure of access control or loss of devices or media with plaintext data. We discuss this further in section 11.

Privacy is related to, but not synonymous with confidentiality. In this survey, we do not need to consider these difference further with the exception of noting the recent regulations regarding cookies (Information Commissioner’s Office, 2012) due to European Directive 2009/136/EC. Compliance with these regulations is interesting due to the contrast with consent (partially discussed above in relation to clicking “accept”): for example, “Implied consent is a valid form of consent”. Additionally, there are broader matters of (mis)use of web technologies (including cookies) in malware and surveillance.

3 Usability and security

Previous work assessing the effectiveness and value of cryptography has examined usability as well as PKI issues. These areas dominate this paper, so we discuss them here. We also introduce further literature where relevant in the sequel.

A classic paper in the usability field is Whitten and Tygar (2005) which concerns the ability of users to use PGP 5.0: “Our 12 test participants were generally educated and experienced at using email, yet only one-third of them were able to use PGP 5.0 to correctly sign and encrypt an email message when given 90 minutes in which to do so”. More generally, Furnell and others have investigated the usability of end-user software at length, and find continuing problems with interfaces (Furnell et al., 2006; Furnell, 2007; Ibrahim et al., 2011; Sweikata et al., 2009; Cranor and Garfinkel, 2005; Gutmann and Grigg, 2005). Ho et al. (2010) examined the setup of home wireless networks, and found that “users did not understand the difference between access control lists and encryption, and that devices fail to properly notify users of weak security configuration choices”. They proposed a configuration wizard to partially mitigate
some of these problems. Zurko and Simon (1996) introduced the term “user-centered security” and discussed the application of usability testing to secure systems. Some attention has also been paid to the education of users in the use of security-related software (Reid et al., 2005).

Others comment on the software itself. Kapadia (2007) remarks “I found that [OpenPGP applications] were unusable with nontechnical correspondents because it required them to install additional software”, which relates to some of our remarks on systems such as IronPort and Hushmail in section 7.3. We used a similar approach of server-side cryptography in support of document security (Brooke et al., 2010).

Other work assesses what the users understand about security concerns: Gross and Rosson (2007) interviewed twelve users with differing roles to answer “What do users know about security and threats?”; “How do users manage their security concerns?” and “Who do users believe is responsible for security, and how do they perceive their role in security?”, noting that “entire organizations can be brought down by security failures”. Later work suggests that users do differentiate between security (and privacy) concerns and more general computer problems (such as hardware failure) (Gross and Robson, 2007).

Previous work has also examined PKIs and questioned their effectiveness and usability (Gutmann, 2003; Straub and Baier, 2004). Moreover the need for PKIs, electronic signatures, etc. is not clear in practice (BILETA, 2011) (and our earlier comments in section 2.1). Alternatives involve opportunistic encryption (Garfinkel, 2003b), key continuity management (Gutmann, 2004; Garfinkel and Miller, 2005), identity-based encryption (Shamir, 1985; Martin, 2006) and email-based identification and authentication (EBIA) (Garfinkel, 2003a). However, we are not concerned with some other security properties, such as anonymity in systems such as Mixminion (Mathewson and Dingledine, 2004).

More broadly, notions of return on security investment (National Institute of Standards and Technology, 2005) attempt to capture the return on investment in security processes, policies and infrastructure, though this focuses on capital investment rather than value delivered to end-users. An interesting variation is due to Herley (2009), who argues that users’ rejection of much conventional security advice (for example, ignoring SSL certificate warnings) is rational. This is on the basis of out-of-date advice and false positive warnings against the cost (to the end-user) of acting on this information. Herley examines password rules, phishing site identification and SSL certificate warnings and comments “the burden [to the end-user] ends up being larger than that caused by the ill it addresses”. Similarly, Böhme and Grossklags (2011) argue that human attention is a scarce resource. They too make the point that user inattention can be rational, and produce a simple game model to illustrate typical options for users. A possible way to reduce the demand on attention is the use of social navigation, as suggested by Goecks et al. (2009). They present prototype tools which describe other users’ security decisions (e.g., for cookies and firewalls), although it proved less useful for more complex or ambiguous decisions.
4 Underlying technology

Cryptographic technologies typically address confidentiality and integrity issues. The underlying mathematical concepts of these technologies are the same: both employ a range of asymmetric and symmetric algorithms (e.g., RSA and AES respectively). Typical operations include

- key generation, both for long-lived public/private keys as well as transient session keys;
- encryption and decryption (confidentiality);
- signing and verification (integrity); and
- hashing (e.g., as part of signing, or deriving a key from a password or passphrase).

We do not dwell on the mathematical approaches (an appropriate starting point is (Schneier, 1996)), but instead on how they are encapsulated into the applications and made visible to the user. Later, in section 7.2, we see that this encapsulation is not trivial; for example, different software can interpret normalisation of messages in different ways resulting in false bad verification of signatures.

As well as understanding the basic capabilities and scenarios of interest for non-expert end-users (section 5.1), we also must clarify the technical context in which they work. We briefly summarise several major groups of cryptographic software; our end-users will likely use one or more of them either explicitly or implicitly.

CMS or Cryptographic Message Syntax, based on PKCS#7, is described by RFC5652 (Housley, 2009) and describes a message format for cryptographic messages. It is usually used alongside an X.509 public key infrastructure. The best example of CMS is its use in S/MIME email messages.

X.509 itself defined in RFC5280 (Cooper et al., 2008), provides the most common format for public key infrastructure (PKI) data for the Internet. This usually leads directly to the certificate authority trust/validity model. Certificate revocation lists are also supported in X.509; however, the Online Certification Status Protocol (OCSP) (Myers et al., 1999) perhaps provides an alternative giving more timely updates.

SSL/TLS Significantly for our example users, SSL/TLS is widely deployed on websites and mail servers. (Although not identical, we use SSL and TLS as synonyms in this work.) In this role, it is a near-ubiquitous protocol with native support in common web and mail clients. Public keys (as X.509 certificates) are obtained in the initial SSL/TLS negotiation. The relying party then needs to verify that the presented certificate is signed by a trusted root certificate, possibly via intermediaries. We return to this issue in section 11.4, including comments on alternative approaches.
OpenPGP defined in RFC4880 (Callas et al., 2007), is an alternative to S/MIME for email messages as well as for general file encryption and signing, based on Zimmermann’s PGP. X.509 certificates are not used in OpenPGP; instead a web of trust is usually used instead. The web of trust is not the only option: single and multiple key validation models are supported. Both PGP and GnuPG support this standard and are broadly interoperable.

Other interesting technologies timestamping services, key servers (for OpenPGP keys), and other means of obtaining up-to-date keys, such as integration into Active Directory and LDAP. The Simple Public Key Infrastructure (SPKI) (Ellison, 1999; Ellison et al., 1999; Ellison, 2004), described in experimental Internet RFCs, concerns a more local naming scheme. We will return to some key management issues later in the discussion. More user-friendly approaches include Hushmail and similar services (discussed in section 7.3).

5 Users and user-visible applications of cryptography

We will define what we mean by user-visible applications of cryptography in section 5.2 and first describe the type of users we are concerned with.

5.1 Users of interest and scenarios

The typical users of interest are

1. domestic users with tasks such as social email, online shopping and e-banking;

2. office workers, using software such as office productivity applications, undertaking sensitive discussions by email, or working with sensitive data such as personal data;

3. supervisors and managers interacting with other staff, authorising, approving and auditing business processes;

4. non-IT-specialist users installing or upgrading software, e.g., operating system updates, plugins such as Adobe Flash and entertainment software.

A scenario-based approach (Carroll et al., 1998; Rosson and Carroll, 2002) allows us to structure the analysis by end-user concerns. From an analysis of the literature and incidental observations of end-users we identified a set of ten typical scenarios where cryptography plays a role:

1 — Browsing a social website
2 — Buy goods via a website
3 — Online banking
Browsing social websites was common to most computer users, with Facebook particularly prevalent. Most users had experience of ordering from the Internet, such as Amazon, and using the Internet for banking. Social email is perhaps less common than previously (we speculate that social sites such as Facebook account for this; however, this was not investigated further), although all used email as part of their work. Those in sensitive areas (healthcare, criminal justice) often engaged in discussions of cases by email. Few had agreed formal contracts by email, but negotiations that had an impact on subsequent contracts were commonly mediated by email. Nearly all users had installed software, often games or plugins as well as downloading applications to mobile devices (e.g., iPhones, Android devices). The larger organisations had formal processes that involved rigid workflow processes as well as requirements to “sign” forms in some way. The final user story, dealing with confidentiality of data, concerned those users working with “personal data”.

The ten scenarios are a representative set to allow us to break down user interactions with cryptography. We do not claim they are complete; there are other specialised cases that we do not attempt to address. Instead, we are concerned with a “general Internet” stereotypical user without specialist skills or needs; we do not address scenarios such as the use of ATM cards or RFID-based and similar access control systems. Later sections group these user stories thematically; subsequently, we consolidate the points in section 11.

Before we can analyse these scenarios, we must say more about our assumptions relating to our users and their environment. As we have suggested already, we do not address relatively small, specialised user groups with very high security demands. These specialised populations can reasonably be expected to undertake appropriate training and be supplied with suitable equipment for their tasks. Instead, we are interested in day-to-day use of computers.

A common assumption to all these users is that they have basic computer skills, e.g., word processing and email, but they are not IT specialists and have no need (nor interest, often) to be IT specialists.

Our analysis required us to make assessments of risk. We followed the common method of identifying the likelihood as low, medium or high, and the impact as low, medium or high. A typical approach then assesses the overall risk as low, medium or high from the likelihood and impact. In the sequel we discuss the risks identified, starting with the highest.
5.2 User-visible applications of cryptography

There are three categories of user-visible applications of cryptography that we concern ourselves with here.

1. The most obvious user-visible application of cryptography is the direct, elective invocation of a cryptographic tool, e.g., PGP or GnuPG.

2. Indirect but still explicit, elective use of cryptography involves examples such as
 - asking an S/MIME email client (e.g., MS Outlook) to encrypt or sign an email;
 - encrypting or signing a document in an office application (e.g., MS Office, LibreOffice); or
 - selecting encryption in a ZIP archive application (e.g., 7-Zip).

 Sometimes this is as simple as ticking a box to select encryption and giving a password which is subsequently used (in some form) as a key to a symmetric algorithm. Others, such as signing office documents, requires at least a user certificate for an asymmetric algorithm or a full PKI.

3. Much cryptography occurs in the background. Web browsers and email clients can automatically use SSL, discussed further in Sections 6 and 7. This is implicit and should be unobservable by the user until there is a problem, such as an out-of-date or otherwise invalid certificate causes the client software to warn the user.

 The examples above in categories 1 and 2 usually affect the recipient. A signed document might not require any special interaction, yet the client software may report the state of the signature, possibly raising dialogues or showing warnings. In other cases, the recipient may be completely unaware of the signature (e.g., an office document with an embedded signature, or a multipart signed email) or conversely, the document may be unreadable without using specialist software (such as ASCII-armoured signed emails).

 Encrypted emails and ZIP archives nearly always require a direct interaction to give the relevant key, usually in the form of a password or passphrase. For an email, the relevant private key may already be accessible for automatic decryption, as in some configurations of MS Outlook.

 Similarly, the first two categories may require explicit key management on part of the users.

 In this survey, we concern ourselves with the examples above where the user becomes aware of the presence of some problem or issue in the underlying structure. Importantly, the user does not necessarily have to relate this to a cryptographic system at all; consider Ho et al. (2010)’s comments on users not understanding the difference between different concepts.

 Although we will discuss some issues of endpoint security, mostly in section 11.3, this is in relation to the overall risk for different scenarios. Thus we do not discuss the use of passwords and other authenticators beyond that.
6 Web

We now examine the ten user stories, grouped thematically. We start with three typical web-based scenarios.

User story 1 — Browsing a social website Alice reads and sometimes posts on a social website, e.g., FaceBook or web forums. We suggest that the overall risk here is low: antisocial behaviour and account hijacking are the main risks, but the assets concerned are limited, at least from Alice’s perspective. A greater risk might be posed by Alice posting something she later regrets.

User story 2 — Buy goods via a website Alice wants to buy something from an e-commerce site. She will necessarily use her credit card or a service like Paypal. Either way, at some point, she has to pay money in the expectation that the purchase is delivered as specified. The risks are high here: phishing, website spoofing and non-delivery of goods are the canonical examples, along with theft of payment and other details from the recipient site.

User story 3 — Online banking Alice views account details and pays bills using her bank’s online service. The risks here are as in the previous story: bank details have an obvious value to criminals.

Although relatively obvious, we can find illustrations of these user stories in Anderson’s text in sections 23.3.3, 23.3 and 1.3 respectively, and additionally for the latter two user stories in Cronin (1998). Evidence of interest in social networking more broadly can be seen in SOCIALNETS (2009).

Secure web connections via the HTTPS protocol are relevant to these three user stories. In each case, Alice will have to point her web browser to the correct URL: this URL might have been bookmarked from a previous visit, found via a search engine or typed in, perhaps from an advert in a newspaper, or from memory.

Before we consider HTTPS directly, let us address the risks. The main risk is the compromise of login credentials: these credentials are useful to attackers for harassment/nuisance via social media, theft from online banking or misuse of credit card details. Compromised credentials can then be used to call into question the integrity of any transaction involving those credentials or to present the possibility of compromised credentials for “plausible deniability”. Additionally, the re-use of passwords, even on ostensibly low-security websites clearly permits further exploitation of credentials: “a substantial number of the randomly verified email accounts revealed that 75 percent of the users rely on the same password to access both their social networking and email accounts” (BitDefender, 2010).

At some point, payment details are required. The web browser is redirected to a “secure page” accessed via HTTPS if the entire site is not already HTTPS
based. At this point, we encounter our first problem. The reliance on certificate authorities for X.509 certificates to bootstrap what is essentially a trust relationship has been highlighted previously (Perlman, 1999) and was brought sharply into focus with the Comodo compromise in 2011 (InfoSecurity, 2011) and the more recent issues with DigiNotar (Corbet, 2011). A secondary issue to the Comodo and similar compromises concerns the limited use of CRLs and OCSP by clients to revoke bad certificates. Mozilla Security Blog (2011) reports that the offending certificates were quickly revoked using both the CRL and OCSP mechanisms. We see other examples of this later. Trust in the computers concerned is a deeper problem (Parno et al., 2010).

Common advice given to users for e-commerce transactions typically includes “Check that the padlock sign is shown on your browser and that the URL includes \texttt{https}.” Regardless, users still find it difficult to assess whether or not “a connection [to a web site] is secure” (Friedman et al. 2002). Complications include extended validation and more sophisticated phishing attacks (Jackson et al., 2007). Kirlappos et al. (2012) argue that trust seals are ineffective, and conclude that “automatic verification of authenticity” is required. Rapidly changing browser environments are also likely to confuse users; for example, Mozilla Firefox has changed its indication of secure connections several times (Shultz, 2012). What Alice really needs is sufficient evidence that her web client is connected to the correct server and that the connection to that server is encrypted.

Observation of some user populations at our institutions (in our cases, academics and students) demonstrates that the security afforded through CAs is brittle at best. Warning dialogues are often disregarded (Likarish et al., 2008): we have effectively trained our users to ignore the warnings because they have to workaround problems. One of the ICT departments at the authors’ institutions included instructions to set up a wireless connection which explicitly directed the user to accept an invalid certificate because of the server’s setup.

The difficulty in assuring that the client has connected to the correct server is one factor that enables phishing. In one sense, this is an artefact of a global naming scheme (the DNS) and we see that SPKI suggests local naming schemes in closed groups. But this poses difficulties for, say, the banking scenario.

A moderately na"ıve solution for online banking would be for a bank to tell users the fingerprint of the correct certificate: but we do not believe that any but the most security-conscious user would actually check this. Essentially, the computer is a tool and fine management of it is simply not a conscious matter for the user. Hence our focus on \textit{user-visible} applications of cryptography.

The issue of root certificates aside, the actual usability is relatively good: we do not see people having great difficulties making e-commerce purchases. We return to this in our discussion in section 11.

7 Email

Our next set of scenarios relates to use of email, at different levels of sophistication and hence, with different requirements for use of cryptography.
User story 4 — Social email Alice wants to email her relative or friend, say, Bob. The overall risk is low: the main asset is the email, and it is unlikely to be particularly valuable although potentially embarrassing. From Bob’s perspective, someone pretending to be Alice is a very low risk.

User story 5 — Sensitive discussion by email Suppose Alice and Bob work together and need to discuss a serious problem with a particular task. Email is one possible medium. The risks revolve around confidentiality.

User story 6 — Agree a contract by email Alice agrees by email to undertake some work for a small business. The main risk here concerns non-repudiation by the business or vice versa. Thus it is not so much an issue of making the contract but one of evidencing that the contract has been properly made, i.e., that the elements of consideration, intention, offer and acceptance are all present.

An example of sensitive email is given in [Gaw et al. (2006)](Gawetal2006). Movement of email services into the “cloud” is advancing, with outsourcing to Google and Hotmail in evidence, and along with suggestions for the US Federal Government ([Cloud Computing Security Working Group, 2011](CWSG2011)).

Email is, for many users, an effective communication medium, although the prevalence of both spam, which we do not directly address, and large volumes of legitimate email can degrade this. The essential risks here are twofold: one is the loss of confidentiality, the second risk concerns spoofing or modification (integrity) and non-repudiation.

This is a good example for opportunistic encryption ([Garfinkel, 2003b](Garfinkel2003b)). A mail user agent or mail submission agent connecting to a server may use SSL/TLS to encrypt the conversation with the server. This has the same problems as for web servers, i.e., how does the user know that they have connected to the correct server? But differently from the HTTPS example, mail servers are arguably harder to spoof. Two major classes of mail server are those within a particular business and those for the user’s ISP. In both cases, we should have a good level of confidence that the relevant part of the DNS is correct, at least from the client’s perspective, and that regardless of the certificate, we have connected to the correct server. Some users may be in a closed or partially restricted environment (e.g., healthcare) further reducing the incidence of problems. However, this observation leads us to a further point: within a particular business, how many users are likely to be actively sniffing the network?

We develop this point further. Older, hub or broadcast-type networks are very easy to monitor for other users’ traffic. Newer switched wired networks are harder to monitor although some switches are believed to degrade to operate as hubs. Wireless connections are an instance of broadcast networks, which are potentially easier to monitor unless encrypted, say, WPA2. Since it is relatively cheap and easy to arrange for a mail server to offer SSL/TLS connections, it is proportionate to do so and thus not worry about any possible sniffing by insiders or those with access to the network.
Mobile users provide a complication. The argument above does not apply to a user temporarily visiting another organisation or using a hotspot as they cannot rely on the infrastructure to the same degree (for example, there is more delegation of DNS). This is no worse than the general HTTPS case.

Thus for most users, they can assume that their ISP or business mail server does receive their email, and opportunistic encryption using SSL/TLS defeats any local sniffing. However, if the ISP or local mail server is not trusted, the user may be reluctant to trust this encryption of the connection. Further, this is only transport encryption, not storage encryption. The email must be stored on the mail server, even if only transiently, as email must be stored temporarily on each server that handles it. Certainly in the case of a business mail server, there is a significant broader problem: if the users cannot trust their own servers, then what else is wrong with the infrastructure?

7.1 S/MIME and OpenPGP email

This leads us to consider S/MIME and OpenPGP for emails. Capable users might choose to generate key pairs and use one of these cryptosystems to ensure confidentiality of their messages. However, these are, by observation, a tiny minority of the population as a whole. One barrier to adoption of this approach for secrecy is the need for the recipient to have a public key: this results in multiple attempts to create public keys on demand, e.g., identity-based encryption. We discuss these and similar approaches such as Hushmail in section 7.3.

Moreover, within a particular organisation — with an assumption of a trusted infrastructure — the emails are already safe due to opportunistic encryption, other than at the endpoints. These endpoints are the sender’s and receiver’s computers. Here, we can remark that some user’s security hygiene is negligible, e.g., our remarks about screenlocks on page 25. It is, of course, notable that users’ desktop machines are a major entry point of malware, via the web or USB sticks. For example McQueen (2010, slides 108–109) reported that 20% of users inserted a thumb drive found in a public place into their computer. In our discussion (section 11) we further comment on endpoint security.

Returning to the point of opportunistic encryption, we note that discovery of the correct settings can be challenging. We speculate that increased outsourcing of email services in large organisations may be to blame. Some software, such as Apple’s Mail, seems remarkably robust. Mozilla’s Thunderbird needed much help to connect to the student mail system at one of the authors’ institution.

Additional aggravations concern the use of passwords and passphrases used for securing cryptographic keys. For example, some systems do not require a password after importing a PKCS12 file: the private key is accessible on demand. Thus someone with access to that desktop machine can read any email, even if it is encrypted to that particular key.

Further, key management remains a major problem. Gutmann (2003) reports that obtaining a key from a public CA “takes a skilled technical user between 30 minutes and 4 hours work”. Little has changed since then, and in any case, these certificates are “low value”. Local CAs using the SPKI model
Table 1: Email clients examined

Email Client	S/MIME	OpenPGP
MS Outlook	native	Enigmail plugin
Mozilla Thunderbird	native	various filters
Apple Mail	native & filters	
Alpine		

can more easily issue certificates for their own servers, and can ensure that centrally provisioned machines have the relevant root certificate installed. But external users do not benefit from this.

The problem goes on step further. We have seen examples of users in the public sector sending emails with S/MIME signatures. “Good”, one might think. However, the certificate issuer is one of these local CAs: we can decide to accept the issuing certificate in our mail client. But some software, such as gpgsm takes the decision that certificate revocation lists must be checked: this is correct in our view. At this point, we discover that the machine which serves the CRL is not accessible outside of that organisation. The value of the CRL, and thus the certificate overall, is massively reduced. Moreover, the particular characteristics of the organisation in our example make it very unlikely that unauthorised users would have access to even that organisation’s buildings, let alone the computers within them.

Even if a user perseveres and obtains a key for use with their email client, configuration and setup often remains challenging. Dialogues remain unintuitive for the most part. In the course of other work, we counted 8–9 steps to import an S/MIME certificate from a PKCS12 file, depending on email client.

So we assert that there is no real value in signed email except in the case where users have both good reason to fear spoofing or modification or their messages, and when they have had opportunity to confirm, ideally face-to-face, that the cryptographic certificates are correct.

7.2 Interoperability and robustness

Even if we addressed the issues above, interoperability is poor in contrast to general use of web browsers with HTTPS. We examined a range of email clients, using versions current in early 2011, as listed in Table 1. Although S/MIME is generally well-supported natively, OpenPGP often requires plugins and these are not available for some MUAs, notably MS Outlook. This means that communities of users need to agree on the cryptosystem to be used; yet these communities are often not well-defined and have porous boundaries.

We sent and received emails using either S/MIME or OpenPGP. For OpenPGP, we examined both “inline” and MIME/OpenPGP messages. Encrypted messages were uncomplicated and mostly worked. On some occasions, they were simply not recognised and were ignored by the client: the common feature in these cases is that the multipart/encrypted message was not the top-level
MIME part. However, such messages are entirely valid in terms of MIME and arguably, could occur in practice when digests are sent.

Verification of clearencrypted messages was much more brittle. Again, some clients required that the **multipart/signed** message was the top-level, or it would be ignored and not displayed. Others had trouble verifying messages they had sent themselves! Clearsigning is strongly preferred over opaque messages, as clearencrypted messages are readable by users who do not have software capable of verifying the signature.

When we find that some mail servers also rewrite MIME messages causing clearencrypted messages to fail to verify, we conclude that the technology remains too brittle and interoperability is relatively weak. This is disappointing after so many years. The problems are well-known, including suitable treatment of whitespace, line-endings and character sets (indeed, we had to address the same canonicalisation process when working with XMdoc (Brooke et al., 2010)). That email systems remain so brittle in respect of clearencrypted messages mitigates against their use, as false negative verifications degrade the usefulness of signing even further. They lead to the same issue that we encounter with web server certificates, where users are trained to ignore the warning messages, if they actually check the signature at all. Indeed, we speculate that it would take other users a long time to notice if we sent signed emails with a revoked key.

7.3 Transparent solutions and gateways

Sending an encrypted email requires that the recipient has a key to decrypt it. Both symmetric and asymmetric cryptosystems have well-understood problems.

Identity-based cryptosystems are rooted in Shamir (1985)’s work; other work includes Martin (2006). Typically, the key generating centre is a trusted third party, and can compromise the system. This is not necessarily a problem, given that some trust is required at some point. Boneh and Franklin (2003) provide an example of an identity-based encryption system, and give several useful properties such as restriction to dates and security classifications, easy revocation and delegation of decryption keys. Cocks (2001) describes a scheme based on quadratic residues, and comments that multiple authorities “will be desirable”. This point is addressed by Lee et al. (2004), Gentry (2003) and similar work, although the fine details do not concern us at this point. In general, we need to trust some infrastructure, and simpler schemes have obvious single points of failure and escrow.

A related approach is to make this as transparent to the end-user as possible, particularly in terms of software requirements which we relate to the earlier quote in section 3 from Kapadia (2007)). We use IronPort (Cisco, 2011) and Hushmail (Hushmail, 2011) as exemplars here. Both can use a Java applet so that decryption occurs on the client machine. Additionally, both offer an option for processing messages on the server machine via a secure web session. In this latter configuration, these services are not significantly stronger than HTTPS as described above: this is recognised in such services (Hushmail, 2011; 2011; Singel, 2007). Some implementations send the email directly and only the
decryption key is escrowed, which has some positive impact.

A positive side effect is that policy engines such as IronPort can be used to reduce the “fat-fingering” of emails by requiring that all out-of-organisation emails are subject to policy enforcement (e.g., encryption, or simply disallowing some outbound traffic).

Thus our point remains: for a typical user, what threats does this mitigate? The endpoints remain a problem: for example, some local users of health service data receive messages via a secure email service of a similar design as discussed above. But the data is stored locally, as plaintext. If we combine local plaintext storage with a transparent approach and implicit trust in the service provider, there seems to be little security advantage over opportunistic encryption of email or a “secure web Dropbox”.

Key continuity management (KCM) (Gutmann, 2004), based on imprinting (Stajano and Anderson, 2000) or trust-on-first-use (as in SSH), are further options: we implicitly trust the first contact and only warn if credentials change unexpectedly. Garfinkel and Miller (2005) experimented with S/MIME, Outlook Express and KCM, and concluded that “KCM is more secure than today’s alternative to KCM: no cryptographic protection at all” but also “it is not the panacea to the mail security problem for which we are looking”. Related attempts include STEED (Koch and Brinkmann, 2011), which argues for end-to-end encryption and (similar to earlier points) trust-on-first-use. STEED also includes further attempts to make key management easier: automatic key generation and key distribution via DNS.

8 Software signing

User story 7 — Install or upgrade software Alice installs some software from the Internet. How can she be sure that it is free of malware and from the correct publisher?

The primary objective here is to ensure the integrity of the system as a whole. Once installed, operating systems typically receive updates over their lifespan, for example Microsoft (2007) and Debian (2010). Application software is initially installed and subsequently updated. In all these cases, the intent is to ensure that the “correct” software is installed or updated, in the sense it should be “approved” or at least “certified” by someone responsible. The simplest case is that the original publisher or developer has made the updates available, but there is an obvious competitive argument in favour of third parties making plugins, updates, etc., available. Typical examples include drivers and updates on Microsoft Windows and package signing in the Linux distributors, e.g., Debian’s checking of signatures via apt (Joey Hess and others, 2006).

We make much use of “scare” quotes in the previous paragraph: the exact purpose or value of the software can vary between stakeholders. For example, some vendors may wish to restrict the platform so that only software they approve is installed (perhaps for control of a “marketplace”), or to limit potentially bad interactions of packages.
The risks are obvious: malware can masquerade as “genuine” software, and thus we make the reasonable leap to cryptographically signing software. We observe that some security incidents in own institutions are due to attempts to install software of relatively dubious origin.

From observation of users, we see two well-known issues:

- As with the web and email examples, users disregard warnings because they obstruct the user’s intention: to install some software.

 Note that we do not concern ourselves with policy issues. For example, some system administrators may wish to ensure that only particular patches are installed; involuntary upgrades may break other software. Additionally, some patches are large, and may inconveniently use disproportionate amounts of bandwidth for roaming users.

- Software signing uses public key cryptography: thus some public keys have to be trusted. We have the usual root trust problem as described in section 6. Indeed, this scenario can be viewed as a subset of the connecting-to-a-web-server scenarios.

9 Form signing

This set of user stories is somewhat different, and relates to applications in use in specific domains and industries — particularly those with requirements for signing electronic documents.

User story 8 — Internal application process An applicant, with the assistance of his supervisors, completes part of an application form. Two different department heads need to sign off various resources and indicate their support, as well as obtaining certification from a finance department clerk. This documentation is then forwarded for a final decision to be made.

The risks are a little more subtle than some of our earlier user stories. If everyone is cooperating and trustworthy, there is no problem. However, some people do attempt to defeat the checks-and-balances in such schemes: we discuss this further below.

User story 9 — Signing a form A variation on the agreement of a contract: a publisher requests that Alice signs an agreement, e.g., our motivating example here is a transfer of copyright form. As in the earlier example, this is a low risk example: the problem is to be able to provide evidence if the agreement was subsequently challenged.

We have previously examined the issue of distributed non-centralised forms with requirements such as integrity and auditability in [Brooke et al. 2010]. One of the motivating scenarios there was our current **Internal application process (8)** user story. A very specialised form of signing (certification, in this instance) covers court documents, as described in [Reiniger and Francoeur 2010].
Some services provide a web-centric approach, such as Adobe’s EchoSign service (Adobe, 2013).

However, we now look at the broader process in the event of a subsequent problem, and compare with the “sign form” scenario.

A non-computer approach for the latter scenario is for the publisher to post the form to Alice, who signs it and posts it back. A more common method is to email a document, e.g., PDF, MS Word, and ask for a signed copy to be scanned then emailed or FAXed. A final option (which the authors have seen several times lately) is for the publisher to offer an option of signing the PDF file using an X.509 certificate. Again, this causes a dependence on certificate authorities as discussed earlier.

In common with the “agree a contract by email” user story, we note that an email itself, even without any cryptographic measures, is likely to be sufficient as evidence. Similarly, due to legislation such as the Civil Evidence Act 1995 (HMSO, 1995), the document signing scenario is relatively easy: we would assert that the computer system is functioning correctly and the existence of the records would be sufficient. One party would have to actively dispute the validity of the assertion. Of course, cross-border issues complicate this, but all agreements we have seen include choice of law clauses, thus mitigating this issue.

Interestingly, we can raise difficulties with demonstrating that a signatory has seen and understood the terms of an agreement. Click-through agreements are believed to be enforceable (Mason, 2011) although particular clauses may not be.

9.1 Audit and integrity

Complications concern the splicing of documents, whether intended to subvert organisational controls, or simply to expedite a process.

We assert that people are essentially trusting. Consider again the Internal application process (8) user story above; a more specific instantiation is the approval of a course of training within an organisation (based directly on a real system). The process itself is relatively involved, but a major problem in terms of audit and good governance concerns the signing of these forms. In a purely paper process, a single document should be signed by all the parties (applicant, supervisors, department heads and finance clerk). But the difficulty of obtaining all these signatures with an increasingly mobile workforce often results in multiple signature pages being submitted for a given document. Worse, there is no guarantee that the signatures are attached to the correct version of the document: multipage documents can be easily spliced together.

The next step is to consider how these documents are handled when emails become involved. The committee that makes the final decision on these documents now routinely sees a word-processed form, with some signatures on printed pages and some printouts of emails from various principals asserting their support of the application.

In both the purely paper process and the process involving emails there is trust that no one is actually trying to defeat the system by presenting an
application with putative signatures that are in some sense false. The emails are being sent within the same organisation, using the same central mail service, and thus those relying on the veracity of these emails and hand-written signatures trust the system as a whole. Essentially, we assert that there is no demand in typical domestic or business processes for cryptographic assurance of emails.

Interestingly, this appears to be backed by the experiences with qualified certificates (e.g., Krawczyk, 2010), referred to in Section 2: there is simply no real market for them outside of very specialised demands. This is likely to continue while there is no statutory requirement to use an advanced electronic signature or qualified certificate, since the existing legal framework accepts the name on the email as being sufficient replacement for a hand-written signature. So a simple email is sufficient for authorisation and implicitly, also for audit purposes, but is not what many in the information security sector would view as sufficient for integrity.

10 Disk and file encryption

User story 10 — Data confidentiality Alice has some data on a laptop computer that is the subject of data protection obligations. Laptops can be lost or stolen relatively easily, thus the risk is medium or high.

Disk and file encryption is purely about confidentiality, with some large examples described by Lane (2009). We suggest that this is the simplest of our selection of problems. Essentially, media can be lost: making it hard for the records on that media to be (ab)used is an obligation in most data processing scenarios.

Examples are easy to find in the media; we are aware of local cases, e.g., involving sensitive medical records. The Information Commissioner’s Office has a range of press releases (Information Commissioner’s Office, 2011) detailing some of these incidents. In terms of risk assessment, we suggest that this is one of the most significant risks facing most organisations. Whereas we argue in our earlier stories that the integrity of information is relatively rarely challenged, there is a high likelihood of accidental loss of storage media and computing equipment; similarly the type of information can range from trivial to highly compromising.

We initially suggest that this should be relatively easy to manage. A range of software is available, including paid-for and free applications. Small installations can rely on simple use of passwords, while larger organisations may use some form of enterprise management capabilities such as Symantec’s PGP Whole Disk Encryption.

As usual, we observe that the practicalities are not so easy. Discussions with local SMEs during short (one-day) basic IT security courses demonstrate that some simply do not recognise the need to protect data from inappropriate disclosure although the need for antivirus software is commonly recognised. Those that do sometimes suffer from choice-paralysis: how do non-experts choose a suitable piece of software?
Built-in options are little better: “scary” but otherwise correct dialogues about encryption passwords being critical deter users. The well-known costs associated with managing additional software, handling keys, issues with backup and recovery, etc., become relevant. As a final remark, we note that a small, but significant minority of our undergraduates found TrueCrypt’s dialogues confusing: these students managed to overwrite existing files when they were trying to create new file containers.

However, given the risks for most users, we argue that any reasonable disk encryption is effective, as the aim is to prevent compromise due to accidental loss and casual thieves, albeit not effective at dealing with determined attackers.

11 Discussion

We have examined a range of common applications. We now examine four overarching themes in relation to user-visible applications of cryptography:

- risk and value;
- deployment problems;
- endpoint security; and
- trust problems.

11.1 Risk and value

We have identified a range of risks in our user stories above. We can place them into three groups:

- risks best mitigated by user-visible applications of cryptography;
- low risks; and
- risks that are mitigated by legal, societal or other technological measures.

We now take these in turn.

11.1.1 Risks mitigated by user-visible applications of cryptography

The Data confidentiality (10) user story is an outlier compared to our other user stories. It demonstrates an effective mitigation of the risk using user-visible applications of cryptography, although problems such as the (mis)management of encryption keys can occur. Essentially it can convert accidental and inevitable loss of readable data on portable media into the loss of encrypted data. Thus in this case, the use of cryptography is valuable compared to the risk. Even then, it can be automated further by inclusion in the boot process. A diligent attempt to use encryption can form part of the management of the legal risk from, say, the UK’s Data Protection Act 1998.
11.1.2 Low risks

The risks in some of these user stories are low as the impact of a breach is low, for example in social websites and social email. The lower this risk, the less justification there is for the costs —time, effort and money— for user-visible applications of cryptography as distinct from technologies such as opportunistic encryption. Users perceiving a low impact, whether consciously or unconsciously, are unlikely to attempt to mitigate that risk.

11.1.3 Risks mitigated by legal, societal or other technological measures

The remaining medium or high risks can be mitigated by other means. Although we have concentrated on UK (albeit primarily English and Welsh and related systems such as Canadian and Australian) law, the legislative situation is similar in other jurisdictions. For example, for data protection issues, European countries have their own implementations of the 1995 European Union Data Protection Directive. Procedural and audit safeguards are often in place, particularly relevant for environments where a relatively large number of users may legitimately access data (such as in the health and law enforcement sectors).

Notably, cryptographic signatures typically have no added legal value over other types of signatures (as described in section 2). This applies particularly to the Buy goods via a website (2), Online banking (3) and Agree a contract by email (6) user stories, and to a lesser degree, the two scenarios discussed in section 9. The mitigation in all these cases is that the parties have recourse to the legal systems, where courts would be asked to decide if a contract existed. A simple email without a cryptographic signature may be sufficient for a court. Chapter 8 of Mason (2012) discusses issues of liability further.

For financial transactions, reactive monitoring systems, as exemplified by credit card companies, identify anomalous patterns of use which triggers out-of-band authorisation to the credit card holder. This monitoring, along with legal guarantees limiting the risk to the card holder, can substantially reduce the risk at least to the card holder; the merchant may take on greater risk, along with the issuing bank. However, we commented earlier on the variability of such legal protection. The advertised guarantees to account holders and the relatively low likelihood of any particular individual becoming a victim versus the obvious convenience of online banking can reasonably account for the popularity of online banking. The issues with CAs and SSL simply do not pose a sufficient problem for these users to decline to use online banking and similar services.

11.1.4 Limitations to our evaluation of risks

There are limitations to our evaluation of security risks. The argument advanced so far is qualitative. A finer-grained analysis requires quantitative data and suitable objective metrics, as suggested by Stolfo et al. (2011). In their work, they describe at least three kinds of adversaries.
• nation state actor,
• expert operator adversary, and
• insider expert developer.

However, evidence from reported incidents suggests that casual, opportunistic and accidental risks such as phishing and inadvertently losing storage media should be of greater concern to most end-users of the type we are concerned with in this work. Moreover, in the absence of strong compartmentalisation, the technologies discussed in this paper are unlikely to deter or restrain any of Stolfo et al.’s adversaries.

Moreover, the evaluation of value or impact is notoriously dependent on the viewpoint of individual stakeholders. For example, Schneier refers to externalities (Schneier, 2007) and Ackerman et al. (1999) discuss the varying value of different types of information according to individual preferences.

11.2 Deployment problems

The previous section has illustrated the value or lack thereof of user-visible applications of cryptography for mitigating the risks in our user stories. We now examine how these mitigations are sometimes undermined in practice.

There are two ways this undermining occurs:

• through lack of individual and organisational awareness for the need for cryptography; and
• (mis)use of that cryptography.

The former point applies to both the selection and implementation of suitable systems by organisations, as well as actual use by individual end-users. For example, organisations may not recognise the need for encryption of sensitive data. Even if an organisation does recognise this need, individual end-users may not recognise it, or may disregard it for other reasons. Thus organisations promulgate their need via policies and procedures. Other authors have also commented on awareness, as well as technological and regulatory issues. For example, Srivastava (2009) considers the Australian environment and remarks “there is significant evidence of Australian businesses’ lack of awareness and understanding of electronic signatures and the associated legislation, despite a regulatory framework to facilitate their use”.

The correlation between risk and the awareness of need for cryptography is unclear. This is illustrated in our user stories. For example, in the lowest risk user stories such as social email, we would not expect any awareness of need. At the other end of the scale such as online banking, awareness should be high in part due to media coverage. Interaction with users suggests this is the case. However, other user stories are problematic. The risks with handling removable media are often not recognised, as evidenced in the UK by reports from the Information Commissioner’s Office (Information Commissioner’s Office, 2011).
Additionally, inadvisable software installation is implicated in malware infections on end-user computers. There is little surprising in terms of awareness here, and it remains an open question how end-users can be made aware. Automation (discussed shortly) remains the most obvious option.

Mitigation of risk using cryptography is also undermined by intentional or accidental misuse. Of particular interest is the usability of these tools. We have previously asserted that users of interest to us have basic computer skills, *e.g.*, word processing and email. Requiring them to directly operate cryptographic software poses a substantial problem when considering usability ([Whitten and Tygar](2005)). The problems continue, and anecdotal evidence is in good supply. For example, Roger Grimes says

> "Case in point: I routinely use Pretty Good Privacy (PGP) and SMIME to secure e-mails and file transfers. Yet frequently, even somewhat knowledgeable IT security people get confused about which keys to use when. In order to for someone to send me encrypted content, I need to send that person my public key. Similarly, I need the recipient’s public key so that I can send him or her encrypted content. We should never share private keys. That’s why they are called private. Pretty simple — or so you would think. More often than not, if the person isn’t overly familiar with PGP/SMIME, even if they’ve been using it, they send me their private key.

> “Being the good citizen that I am, I delete their private key and ask again for their public key, explaining that with their private key, I could be them, for all digital purposes. About half the newly educated group then sends back my public key back or, if they’re using PGP, their private key ring, which contains all their private keys. You might think that I’m making this stuff up, but it’s pretty much been this way with PKI and PGP exchanges since they were invented. PGP’s own Phil Zimmerman has often written on this subject.” ([Grimes](2009))

Simplicity of use is obviously beneficial. We might reasonably consider that user-visible applications of cryptography have an inherent requirement for user effort, and that deployment involves consideration of training requirements. However, our end-users are trying to achieve relatively simple tasks; the computers are a means to an end and our user might view the computer as nothing more than a tool like a washing machine. Thus our argument is that in the scenarios we consider, asking for any significant user effort to understand and correctly use these cryptographic features is unreasonable and likely to result in non-conformance and inadvertent misuse.

11.3 Endpoint security

The problem is not limited to the tools alone. General issues of security hygiene arise such as leaving computers unlocked in vulnerable environments; indeed,
some organisations such as universities and Internet cafes disable the screen locks to prevent monopolisation of shared computers. Poor password practice is common (Weber et al., 2008); a typical scenario is demonstrated by technicians as illustrated by “Ted”, a technician who had arrived to update some software for user “Alice” who had gone to speak to a colleague on the other side of their open-plan workspace.

Ted (shouting across the room) “Alice, what’s your password?”
Alice (shouting back) “It’s (her real password).”

This particular workplace dealt with medically-sensitive information, and all the workers were (at least in theory) aware of the need to control this information. This same workplace, despite using a relatively modern mail server, insisted that the only way for one user to access the email of another user while that user was on long-term leave was to ask the absent user for her password. The more appropriate mechanism involved auditable delegation via the mail server.

Thus the endpoints, the computers our end-users are using, are a significant weak link. Data is accessible on these machines, and some store CMS keys with no further protection. Gene Spafford is quoted as saying

“Using encryption on the Internet is the equivalent of arranging an armored car to deliver credit-card information from someone living in a cardboard box to someone living on a park bench.”

The changing consumer computer environment produces challenges: desktop machines are relatively well-understood, but the use of mobile devices with operating systems such as iOS and Android pose additional challenges. They are easier to steal, and in some cases, have a more limited access control model (Hayashi et al., 2012).

Some attempts to secure endpoints address the difficulty of handling many, good quality passwords. For example, IDSpace proposes a single user interface that supports a range of existing identity management technologies (Al-Sinani and Mitchell, 2011). More ambitious is Stajano’s Pico (Stajano, 2011). This involves a proposed hardware device that takes over the role of authentication. Of course, this brings issues of authenticating the user to the Pico; the use of a swarm of picosiblings (using k out of n secret sharing) and biometrics is suggested. A very broad discussion of proposals for replacing passwords is due to Bonneau et al. (2012).

Lastly, reidentification and recovery issues provide a potential weak point in many deployed systems. Forcing password recovery via some means an attacker controls is well known.

The problem of endpoint security relates back to issues of liability, and the legal and contractual context of these transactions. ENISA states that

“many online banking systems dangerously rely on PCs being secure, but banks should instead presume all customer PCs are infected.” (ENISA, 2012)

On the same theme, Krebs comments
“No online banking authentication system works unless it starts with the premise that the customer’s machine is already compromised by malware that gives thieves complete control over the customer system. But for better or worse, the commercial banks have no (dis)incentive to do much to improve the integrity of online banking transactions because the current regulations effectively hold them blameless when a customer loses money.” (Krebs, 2010)

The latter point is a significant point of variation. Recovery of funds lost to criminal activity vary amongst different jurisdictions. Even where regulations apparently are in the consumers’ favour, the reality can be different (Anderson and Bohm, 2008; Mason and Bohm, 2011).

11.4 Trust problems

So far, we have discussed the value of user-visible applications of cryptography for the mitigation of risks in our user stories. We now take a more holistic view and examine trust.

We place trust in cryptographic protocols which are believed to be sound, and their implementation due to testing, review, credibility, etc. But for most of our user stories, data confidentiality being an exception, these depend on trusted third parties (TTPs): the certificate authorities. These TTPs are used to bootstrap trust when there is no prior relationship between the first and second parties. The users trust the CA to check the identity of the service provider and correctly link the offered X.509 certificate to that identity.

However, we have seen that this trust may be misplaced: in section 6 we noted issues with bootstrapping trust relationships (Perlman, 1999) and highlighted the Comodo and more recent compromises (InfoSecurity, 2011). In section 7 we remarked that some of these issues can be mitigated by the local network infrastructure, e.g., to allow opportunistic encryption, if that local infrastructure is trusted.

There are alternatives to a naming scheme that is world-wide (i.e., requesting a certificate from a well-known CA): one is to use local, closed CAs. A further option is web of trust style keying. These have been discussed at some length earlier.

Others attempt to fix the existing CA environment include “pinning” which whitelists public keys that are expected by a particular browser to make it harder for untrustworthy certificate chains to go undetected. More interesting is the use of multiple notaries as illustrated in the Perspectives project (Wendlandt et al., 2008) and the subsequent Convergence add-on/daemon (Convergence, 2011): both have users selecting notaries that they trust rather than relying on the default root CAs provided in (say) a web browser. However our earlier arguments suggest that casual users will not be willing to engage in any additional work to choose their trust relationships as there is no real improvement in their situation given the user effort required; this broadly matches with Herley’s conclusions (Herley, 2009). A broader discussion about how trust operates in societies...
is given by Schneier (2012). Despite the issues with CAs described earlier, we may ask why companies such as Verisign and Entrust amongst others can run a business selling SSL certificates. We suggest that there are two major factors:

- regulatory compliance, such as the PCI SSC Data Security Standard (PCI Security Standards Council, 2010); and
- the inclusion of their root certificates in major web browser installation packages.

For the relatively low cost per unit, an individual business will not need to consider the purchase for long; yet the vendors have a wide range of potential buyers and this is a business that scales well.

In practice, the TTP infrastructure might not be trustworthy but users use it anyway, and when warning dialogues appear they are disregarded. Some protocols, e.g., SSH, can record the known host keys and warn when it changes in the style of key continuity management (discussed earlier in section 7.3); similarly, we observe that many users disregard this and continue with their connection. These points relate to the awareness and education issues previously highlighted.

12 Conclusions

We have examined user-visible applications of cryptography. In part, our analysis has been structured by ten user stories in the context of the UK regulatory environment. None of these are what would be classically considered “critical systems”. Instead, they are routine, day-to-day scenarios. These user stories have been addressed by scenario-based analysis and we have examined the balance of risk and value of user-visible applications of cryptography, and the subsidiary deployment and trust issues.

We see that despite the apparent problems, particularly those associated with deployment, endpoint security and trust (especially of CAs), the deployed systems work relatively well. Our survey suggests that this is due to the presence of mitigating factors, such as guarantees to bank account holders and recourse to the legal system.

We return to the three categories of user-visible applications of cryptography from section 5.2.

1. Direct, elective invocation of a cryptographic tool is very rare in the user populations.

2. Indirect but still explicit, elective use of cryptography is valuable in the Data confidentiality (10) user story, but does not appear elsewhere.

3. Implicit, background use of cryptography accounts for most of the usage. Even where problems occur, we argue that users ignore or otherwise accept
the risks (similar to Herley’s argument) or are content for other mitigations to operate.

Any application of user-visible cryptography must make sense in that particular context. Our survey illustrates that the social/legal framework often does not demand any cryptographic mechanism, or that users, software and/or the infrastructure compromise its effectiveness. A significant exception is the use of encryption to ensure data confidentiality, particularly for removable media. In general, the potential security issues are essentially peripheral to the user’s concerns; the users are trying to achieve some other objective using the computer as a tool.

In the work leading to this survey, we see three particularly relevant areas for further work:

• metrics to objectively establish quantitative measures for the value of user-visible applications of cryptography in these types of user story;

• usability and education issues, as discussed by other authors in section 3 and

• the balance of automation and control, which we discuss next.

We have remarked that the endpoint computing devices are a significant vulnerability. We suggest the following definitions:

Automation This relates to the computer making decisions with minimal, if any, user intervention, and incorporates elements such as robustness. For example, if the user is asked to handle a failed verification that could be due to network problems, incompatibilities of cryptography, inadvertently modified files or malicious attack, this is a lack of automation.

Control This is the ability of a principal to dictate the usage of a computing device, access to information, and may include some authority or opinion over trust models and trust roots.

A locked-down computer, where the end-user cannot install anything that is not approved by the original vendor could be viewed as overly paternalistic, but could, if the vendor has suitable judgement, increase the possible automation in terms of certificate authorities. These are more computer appliances than general purpose computers. Of course, this approach is anathema to the free/libre open source software (FLOSS) community.

We remark firstly that automation and control are not necessarily opposing, although there is an obvious tension. Moreover, they are potentially different for each stakeholder, _e.g._, computer user _vs._ system administration _vs._ software publisher _vs._ software developer. Both automation and control need to be balanced against the overall risk.

Earlier comments about usability lead us to conclude that one partial mitigation is for software to require proactive changes of security settings rather
than reactive changes. As an example, consider access to a website using an SSL certificate that has not been suitably signed. A reactive approach allows the user to add exceptions. Instead, the software could simply refuse access as an extreme level of automation. The proactive approach requires that the user take deliberate action unprompted by access to the web server: this gives the user some control, but with reduced compromise of automation. Essentially, this is to make it harder for users to say “I don’t care, just let me access the web site”. A multitude of controls and fine-grained options has no value if the user will click “okay, get on with it” no matter what; perhaps heavy automation with strong controls is a suitable amelioration. This deserves further user-focused study, perhaps by systematic repetition of our scenarios but examining the interactions of particular interfaces more closely. A practical implication is that simplified, constrained applications may be a short-term compromise that reduces the risks while still allowing sufficient utility.

Acknowledgements

This paper has been through several revisions over the past two or so years. We thank the various anonymous reviewers who have made valuable comments on this work.

References

ACKERMAN, M. S., CRANOR, L. F., AND REAGLE, J. 1999. Privacy in e-commerce: Examining user scenarios and privacy preferences. In Proceedings of the 1st ACM conference on Electronic commerce. EC ’99.

ADobe. 2013. EchoSign. https://www.echosign.adobe.com/ last checked 8th March 2013.

AL-SINANI, H. S. AND MITCHELL, C. J. 2011. A universal client-based identity management tool. In Proc. TRUST 2012. LNCS, vol. 7163. 49–74.

ANDERSON, R. AND BOHM, N. 2008. FIPR submission to The Hunt Review. http://www.fipur.org/080116huntreview.pdf last checked 19th July 2012.

ANDERSON, R. J. 2008. Security Engineering: A Guide to Building Dependable Distributed Systems, 2nd ed. Wiley.

BILETA. 2011. Response to Digital Agenda for Europe: Electronic identification, authentication and signatures in the European digital single market public consultation. http://ec.europa.eu/information_society/policy/esignature/docs/pub_cons/offline_contrib/blend/bileta/ improv.pdf last checked 9th September 2011.

BitDEFENDER. 2010. Bitdefender finds exposed social media credentials often provide access to email accounts.
http://www.bitdefender.co.uk/NW1684-uk--BitDefender-Finds-Exposed-Social-Media-Credential last checked 29 July 2011.

BLANCHETTE, J.-F. 2012. Burdens of Proof: Cryptographic Culture and Evidence Law in the Age of Electronic Documents. MIT Press.

BÖHME, R. AND GROSSKLAGS, J. 2011. The security cost of cheap user interaction. In Proc. New Security Paradigms Workshop.

BONEH, D. AND FRANKLIN, M. 2003. Identity-based encryption from the weil pairing. SIAM J. of Computing 32, 3, 586–615.

BONNEAU, J., HERLEY, C., OORSCHOT, P. C. V., AND STA JANO, F. 2012. The quest to replace passwords: a framework for comparative evaluation of web authentication schemes. Tech. Rep. UCAM-CL-TR-817, University of Cambridge, Computer Laboratory. March.

BRITISH STANDARDS INSTITUTE. 2008. Evidential weight and legal admissibility of electronic information — specification. BS 10008:2008.

BROOKE, P. J., PAIGE, R. F., AND POWER, C. 2010. Document-centric XML workflows with fragment digital signatures. Software Practice & Experience 40, 8, 655–672.

CALLAS, J., DONNERHACKE, L., FINNEY, H., SHAW, D., AND THAYER, R. 2007. OpenPGP message format. http://tools.ietf.org/html/rfc4880

CARROLL, J., ROSSON, M., CHIN, G., J., AND KOENEMANN, J. 1998. Requirements development in scenario-based design. Software Engineering, IEEE Transactions on 24, 12 (Dec), 1156–1170.

CISCO. 2011. Cisco IronPort Email Security Appliances. http://www.cisco.com/en/US/products/p s10154/index.html last checked 29th July 2011.

CLOUD COMPUTING SECURITY WORKING GROUP. 2011. Cloud computing security considerations and recommendations — usage scenario: Software as a service (SaaS) electronic mail. http://www.actgov.org/knowledgebank/whitepapers/Documents/Shared Interest Groups/SIG Collaborative last checked 27th July 2011.

COCKS, C. 2001. An identity based encryption scheme based on quadratic residues. In Cryptography and Coding, B. Honary, Ed. LNCS, vol. 2260. Springer-Verlag, 360–363.

CONVERGENCE. 2011. Convergence. http://convergence.io/ last checked 24th July 2012.
Cooper, D., Santesson, S., Farrel, S., Boeyen, S., Housley, R., and Polk, W. 2008. Internet X.509 public key infrastructure certificate and certificate revocation list (CRL) profile. http://tools.ietf.org/html/rfc5280

Corbet, J. 2011. Fraudulent *.google.com certificate issued. http://lwn.net/Articles/456798/ last checked 8th September 2011.

Cranor, L. F. and Garfinkel, S., Eds. 2005. Security and Usability: Designing Secure Systems that People Can Use. O’Reilly.

Cronin, M. J., Ed. 1998. Banking and finance on the Internet. Wiley.

Debian. 2010. Debian FAQ: Keeping your Debian system up-to-date. http://www.debian.org/doc/FAQ/ch-uptodate.en.html last checked 26th July 2011.

Ellison, C. 1999. SPKI requirements. http://tools.ietf.org/html/rfc2692

Ellison, C., Frantz, B., Lampson, B., Rivest, R., Thomas, B., and Ylonen, T. 1999. SPKI certificate theory. http://tools.ietf.org/html/rfc

Ellison, C. M. 2004. SPKI/SDSI certificates. http://world.std.com/~cme/html/spki.html last checked 29th July 2011.

ENISA. 2012. EU cyber security agency ENISA: “high roller” online bank robberies reveal security gaps. http://www.enisa.europa.eu/media/press-releases.eu-cyber-security-agency-enisa-201chigh-roll last checked 19th July 2012.

European Commission. 2011. European legislation on eSignature. http://ec.europa.eu/information_society/policy/esignature/eu_ legislation/index_en.htm last checked 20th July 2011.

European Parliament and Council. 1999. Directive 1999/93/EC of the European Parliament and of the Council of 13 December 1999 on a community framework for electronic signatures. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31999L0093:en:NOT last checked 20th July 2011.

Federal Evidence Review. 2012. Rule 803. Exceptions to the rule against hearsay — regardless of whether the declarant is available as a witness. http://federalevidence.com/rules-of-evidence#Rule803 last checked 9th March 2012.

Friedman, B., Hurley, D., Howe, D. C., Felten, E., and Nissenbaum, H. 2002. Users’ conceptions of web security: A comparative study. In Proc. CHI 2002.
Furnell, S. 2007. Making security usable: Are things improving? *Computers
& Security* 26, 434–443.

Furnell, S., Jusoh, A., and Katsabas, D. 2006. The challenges of understanding and using security: A survey of end-users. *Computers & Security* 25, 27–35.

Garfinkel, S. L. 2003a. Email-based identification and authentication: An alternative to PKI? *IEEE Security & Privacy* 1, 6 (November/December), 20–26.

Garfinkel, S. L. 2003b. Enabling email confidentiality through the use of opportunistic encryption. In *Proc. Digital Government Research*.

Garfinkel, S. L. and Miller, R. C. 2005. Johnny 2: A user test of key continuity management with S/MIME and Outlook Express. In *Proc. Symposium On Usable Privacy and Security*.

Gaw, S., Felten, E. W., and Fernandez-Kelly, P. 2006. Secrecy, flagging, and paranoia: adoption criteria in encrypted e-mail. In *Proc. CHI 2006*.

Gentry, C. 2003. Certificate-based encryption and the certificate revocation problem. In *Proceedings of the 22nd international conference on Theory and applications of cryptographic techniques*. EUROCRYPT’03. Springer-Verlag, 272–293.

Goecks, J., Edwards, W. K., and Mynatt, E. D. 2009. Challenges in supporting end-user privacy and security management with social navigation. In *Proc. Symposium on Usable Privacy and Security (SOUPS)*.

Grimes, R. 2009. Don’t trust a public PC with your digital identity. [http://www.infoworld.com/d/security-central/dont-trust-public-pc-your-digital-identity-12 last checked 29th July 2011.](http://www.infoworld.com/d/security-central/dont-trust-public-pc-your-digital-identity-12)

Gross, J. B. and Robson, M. B. 2007. End user concern about security and privacy threats. In *Proc. Symposium on Usable Privacy and Security (SOUPS)*.

Gross, J. B. and Rosson, M. B. 2007. Looking for trouble: Understanding end-user security management. In *Proc. CHIMIT’07*.

Gutmann, P. 2003. Plug-and-play PKI: A PKI your mother can use. In *Proc. 12th USENIX Security Symposium*. 45–58.

Gutmann, P. 2004. Why isn’t the Internet secure yet, dammit? http://www.cs.auckland.ac.nz/~pgut001/pubs/dammit.pdf AusCERT conference slides.

Gutmann, P. 2007. Digital signature legislation. http://www.cypherpunks.to/~peter/T2b_Signature_Law.pdf last checked 13th July 2011.
GUTMANN, P. AND GRIGG, I. 2005. Security usability. *IEEE Security & Privacy*, 56–58.

HAYASHI, E., RIVA, O., STRAUSS, K., BRUSH, A. B., AND SCHECHTER, S. 2012. Goldilocks and the two mobile devices: Going beyond all-or-nothing access to a device’s applications. In *Proc. Symposium on Usable Privacy and Security (SOUPS)*.

HERLEY, C. 2009. So long, and no thanks for the externalities: The rational rejection of security advice by users. In *Proc. New Security Paradigms Workshop*.

HMSO. 1995. Civil Evidence Act. (c.38).

HMSO. 1998. Data Protection Act. (c.29).

HMSO. 2000. Electronic Communications Act. (c.7).

HMSO. 2002. The Electronic Signatures Regulations. (no.318).

HO, J. T., DEARMAN, D., AND TRUONG, K. N. 2010. Improving users’ security choices on home wireless networks. In *Proc. Symposium on Usable Privacy and Security (SOUPS)*.

HOUSESSION, R. 2009. Cryptographic message syntax (CMS). http://tools.ietf.org/html/rfc5652.

HOWES, P. 2008. *Evidential weight and legal admissibility of linking electronic identity to documents: Code of practice for the implementation of BS 10008*, 4th ed. Number BIP 0008-3. British Standards Institution.

HUSHMAIL. 2010. Using Java with Hushmail. https://help.hushmail.com/entries/245155-using-java-with-hushmail, last checked 19th July 2011.

HUSHMAIL. 2011. How Hushmail can protect you. http://www.hushmail.com/about/technology/security/, last checked 19th July 2011.

IBRAHIM, T., FURNELL, S. M., PAPADAKI, M., AND CLARKE, N. L. 2010. Assessing the usability of end-user security software. In *Proc. TrustBus*, S. Katasikas, J. Lopez, and M. Soriano, Eds. LNCS, vol. 6264. 177–189.

INFORMATION COMMISSIONER’S OFFICE. 2011. Latest news releases. http://www.ico.gov.uk/news/latest_news.aspx, last checked 29th July 2011.

INFORMATION COMMISSIONER’S OFFICE. 2012. Cookies. http://www.ico.gov.uk/for_organisations/privacy_and_electronic_communications/the_guide/cookies, last checked 23rd July 2012.
INFOSECURITY. 2011. Comodo certificate compromise has iranian fingerprints. http://www.infosecurity-magazine.com/view/16874/comodo-certificate-compromise-has-iranian fingerprints last checked 29th July 2011.

JACKSON, C., SIMON, D. R., TAN, D. S., AND BARTH, A. 2007. An evaluation of extended validation and picture-in-picture phishing attacks. In Proc. Usable Security.

JOEY Hess and others. 2006. SecureApt: All about secure apt. http://wiki.debian.org/SecureApt, last checked 26th July 2011.

KAPADIA, A. 2007. A case (study) for usability in secure email communication. IEEE Security & Privacy 5, 2 (March/April), 80–84.

KIRLAPPOS, I., SASSE, M. A., AND HARVEY, N. 2012. Why trust seals don’t work: A study of user perceptions and behaviour. In Proc. TRUST 2012. LNCS, vol. 7344. 308–324.

KOCH, W. AND BRINKMANN, M. 2011. STEED — usable end-to-end encryption. Tech. Rep. October, G10 Code GmbH.

KRAWCZYK, P. 2010. When the EU qualified electronic signature becomes an information services preventer. Digital Evidence & Elec. Signature L. Rev 7.

KREBS, B. 2010. e-banking bandits stole $465,000 from Calif. escrow firm. http://krebsonsecurity.com/2010/06/e-banking-bandits-stole-465000-from-calif-escrow-firm/ last checked 19th July 2012.

KUCHERA, B. 2011. Lawsuit: Sony laid off security staff, unprepared for ps3 hacks. http://arstechnica.com/gaming/news/2011/06/lawsuit-sony-laid-off-security-staff-was-unpre last checked 28th July 2011.

LANE, A. 2009. Database encryption, part 6: Use cases. http://securosis.com/blog/database-encryption-part-6-use-cases, last checked 26th July 2011.

LEE, B., BOYD, C., DAWSON, E., KIM, K., YANG, J., AND YOO, S. 2004. Secure key issuing in id-based cryptography. In Proceedings of the second workshop on Australasian information security, Data Mining and Web Intelligence, and Software Internationalisation. ACSW Frontiers ’04, vol. 32. Australian Computer Society, Inc., 69–74.

LIKARISH, P., JUNG, E., DUNBAR, D., HANSEN, T. E., AND HOURCADE, J. P. 2008. B-APT: Bayesian anti-phishing toolbar. In Proc. IEEE International Conference on Communications.

MARTIN, L. 2006. Fitting square pegs into round holes. IEEE Security & Privacy 4, 5 (September/October), 64–66.
MASON, S. 2011. Forms of electronic signature. http://www.stephenmason.eu/e-signatures/ last checked 20th July 2011.

MASON, S. 2012. Electronic Signatures in Law, 3rd ed. Cambridge University Press.

MASON, S. AND BOHM, N. 2011. Banking and fraud (written evidence submitted to treasury committee. http://www.publications.parliament.uk/pa/cm201011/cmselect/cmtreasy/430/430vw25.htm last checked 19th July 2012.

MATHEWSON, N. AND DINGLEDINE, R. 2004. Mixminion: Strong anonymity for financial cryptography. In Proc. FC 2004, A. Juels, Ed. LNCS, vol. 3110. 227–232.

MCQUEEN, M. 2010. Software and human vulnerabilities (implications for protection of our critical infrastructures). In Proc. IECON. Tutorial slides.

MICROSOFT. 2007. How to keep your Windows computer up-to-date. http://support.microsoft.com/kb/311047 last checked 26th July 2011.

MONITOR. 2008. Electronic signature policy. http://www.monitor-nhsft.gov.uk/sites/all/modules/fckeditor/plugins/ktbrowser/_openTKFile

Mozilla Security Blog. 2011. Comodo certificate issue – follow up. http://blog.mozilla.com/security/2011/03/25/comodo-certificate-issue-follow-up/ last checked 29th July 2011.

MYERS, M., ANKNEY, R., MALPANI, A., GALPERNI, S., AND ADAMS, C. 1999. X.509 internet public key infrastructure online certificate status protocol (OCSP). http://tools.ietf.org/html/rfc2560.

National Institute of Standards and Technology. 2005. Integrating it security into the capital planning and investment control process. http://csrc.nist.gov/publications/nistpubs/800-65/SP-800-65-Final.pdf

PARNO, B., MCCUNE, J. M., AND PERRIG, A. 2010. Bootstrapping trust in commodity computers. In Proc. IEEE Symposium on Security and Privacy.

PCI Security Standards Council. 2010. Data security standard. https://www.pcisecuritystandards.org/security_standards/index.php last checked 24th July 2012.

PERLMAN, R. 1999. An overview of PKI trust models. IEEE Network.

REID, R. C., PLATT, R. G., AND WEI, J. 2005. A teaching module to introduce encryption for web users. In Proc. Information Security Curriculum Development Conference. 60–65.
Reiniger, T. and Francoeur, J. R. 2010. Justice and sheriff: Practical and authoritative methods for the electronic issuance of officially certified documents in the United States. Digital Evidence & Elec. Signature L. Rev 7.

Rosson, M. B. and Carroll, J. 2002. Scenario-based design. In The Human-Computer Interaction Handbook. Lawrence Earlbaum Associates, Chapter 53, 1032–1050.

Schneier, B. 1996. Applied Cryptography, 2nd ed. Wiley.

Schneier, B. 2007. Information security and externalities. http://www.schneier.com/blog/archives/2007/01/information_sec_1.html last checked 23rd August 2011.

Schneier, B. 2012. Liars and Outliers: Enabling the Trust That Society Needs to Thrive. Wiley.

Shamir, A. 1985. Identity-based cryptosystems and signature schemes. In Advances in Cryptology, G. Blakley and D. Chaum, Eds. LNCS, vol. 196. Springer-Verlag, 47–53.

Shipman, A. 2008. Evidential weight and legal admissibility of information stored electronically: Code of practice for the implementation of BS 10008, 4th ed. Number BIP 0008-1. British Standards Institution.

Shipman, A. and Howes, P. 2008. Evidential weight and legal admissibility of information transferred electronically: Code of practice for the implementation of BS 10008, 4th ed. Number BIP 0008-2. British Standards Institution.

Shultze, S. 2012. Firefox changes its https user interface... again. https://freedom-to-tinker.com/blog/sjs/firefox-changes-its-https-user-interface-again/ last checked 26th July 2012.

Singel, R. 2007. Encrypted e-mail company Hushmail spills to Feds. http://www.wired.com/threatlevel/2007/11/encrypted-e-mai/ last checked 29th July 2011.

SOCIALNETS. 2009. Deliverable D4.1: Barriers and opportunities for social networks. http://www.social-nets.eu/deliverables_pdfs/D4.1_v2.pdf last checked 26th July 2011.

Srivastava, A. 2009. Businesses’ perception of electronic signatures: an Australian study. Digital Evidence & Elec. Signature L. Rev 6.

Stajano, F. 2011. Pico: No more passwords! In Proc. Security Protocols Workshop 2011. LNCS, vol. 7114. 49–81.

Stajano, F. and Anderson, R. 2000. The resurrecting duckling: Security issues for ad-hoc wireless networks. In Proc. Security Protocols 7th International Workshop. LNCS, vol. 1796. 172–182.
Stolfo, S., Bellovin, S. M., and Evans, D. 2011. Measuring security. IEEE Security & Privacy, 60–65.

Straub, T. and Baier, H. 2004. A framework for evaluating the usability and the utility of PKI-enabled applications. In Proc. EuroPKI.

Sweikata, M., Watson, G., and Frank, C. 2009. The usability of end user cryptographic products. In Proc. Information Security Curriculum Development Conference. 55–59.

Weber, J., Guster, D., and Safonov, P. 2008. Password security and weak passwords: a developmental perspective. Journal of Information Technology Management 19, 3.

Wendlandt, D., Andersen, D. G., and Perrig, A. 2008. Perspectives: Improving SSH-style host authentication with multi-path probing. In Proc. USENIX Annual Technical Conference.

Whitten, A. and Tygar, J. D. 2005. Why Johnny can’t encrypt: A usability evaluation of PGP 5.0. In Security and Usability: Designing Secure Systems that People Can Use, L. F. Cranor and S. Garfinkel, Eds. O’Reilly, 669–692.

Zurko, M. E. and Simon, R. T. 1996. User-centered security. In Proc. New Security Paradigms Workshop.