Increased Placental Nutrient Transport in a Novel Mouse Model of Maternal Obesity with Fetal Overgrowth

Fredrick J. Rosario1,2, Yoshikatsu Kanai3, Theresa L. Powell4, and Thomas Jansson4

Objective: To identify possible mechanisms linking obesity in pregnancy to increased fetal adiposity and growth, a unique mouse model of maternal obesity associated with fetal overgrowth was developed, and the hypothesis that maternal obesity causes up-regulation of placental nutrient transporter expression and activity was tested.

Methods: C57BL/6J female mice were fed a control (C) or a high-fat/high-sugar (HF/HS) pelleted diet supplemented by ad libitum access to sucrose (20%) solution, mated, and studied at embryonic day 18.5.

Results: HF/HS diet increased maternal fat mass by 2.2-fold ($P < 0.01$) and resulted in glucose intolerance with normal fasting glucose. Maternal circulating insulin, leptin, and cholesterol were increased ($P < 0.05$) whereas total and high-molecular-weight adiponectin was decreased ($P < 0.05$). HF/HS diet increased fetal weight (+18%, $P = 0.0005$). In trophoblast plasma membranes (TPM) isolated from placentas of HF/HS-fed animals, protein expression of glucose transporter (GLUT) 1 and 3, sodium-coupled neutral amino acid transporter (SNAT) 2, and large neutral amino acid transporter 1 (LAT1) was increased. TPM System A and L amino acid transporter activity was increased in the HF/HS group.

Conclusions: Up-regulation of specific placental nutrient transporter isoforms may constitute a mechanism underlying fetal overgrowth in maternal obesity.

Introduction

Babies born to mothers with obesity often have increased fat mass and/or birth weight and may be insulin resistant at birth (1). These metabolic disturbances increase the risk for obesity, high triglycerides, low HDL cholesterol, high blood pressure, and elevated fasting glucose in childhood and development of type 2 diabetes and cardiovascular disease in adult age (2). Thus, mothers with a high body mass index (BMI) who give birth to heavier daughters, who are at increased risk for obesity themselves during their reproductive years, propagate a vicious, detrimental cycle of intrauterine transmission of obesity from the mother to her children (3). The strong association between maternal obesity and metabolic syndrome in childhood is of particular concern because almost two thirds of American women of reproductive age are either overweight or obese (4) with similar trends worldwide including the United Kingdom where one in five pregnant woman has obesity (5).

The mechanisms underlying increased fetal adiposity and/or growth in maternal obesity are poorly understood; however, fetal growth and development are critically dependent on nutrient supply, which is intimately related to placental transport of nutrients. Placental transport of glucose occurs via facilitated diffusion mediated by glucose transporters (GLUTs), which transport glucose down its concentration gradient. System A is a Na$^+$-dependent transporter mediating the cellular uptake of non-essential neutral amino acids. System L is a Na$^+$-independent exchanger mediating transport of essential amino acids. The System L amino acid transporter is a heterodimer, consisting of a light chain, typically large neutral amino acid transporter 1 (LAT1) (SLC7A5) or LAT2 (SLC7A8), and a heavy chain, 4F2hc/CD98 (SLC3A2). Fetal overgrowth has been reported to be associated with up-regulation of placental nutrient transporters in some studies but not all (6,7). Specifically, placental glucose transporter activity and protein expression were found to be increased in women with type 1 diabetes and giving birth to large babies (8). Furthermore, the activity of placental System A and L amino acid transporters is up-regulated in diabetes associated with fetal overgrowth (7). We recently reported that System A activity and

1 Center for Pregnancy and Newborn Research, Department of OB/GYN, University of Texas Health Science Center, San Antonio, Texas, USA. Correspondence: Fredrick J. Rosario (fredrick.joseph@ucdenver.edu) 2 Division of Basic Reproductive Sciences, Department of OB/GYN, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA 3 Division of Bio-System Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan 4 Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA

Funding agencies: This study was supported by grants from NIH (OD016724).
Disclosure: The authors declare no conflict of interest.
Additional Supporting Information may be found in the online version of this article.
Received: 3 November 2014; Accepted: 24 April 2015; Published online 20 July 2015. doi:10.1002/oby.21165
sodium-coupled neutral amino acid transporter 2 (SNAT2) protein expression were increased in syncytiotrophoblast microvillous plasma membranes isolated from women with obesity giving birth to large babies (9).

Maternal obesity is associated with increased serum levels of lipids (10) and growth factors such as insulin (1,11), leptin (1,11), and pro-inflammatory cytokines (1,10) and lower serum adiponectin (11) as compared to pregnant women with a healthy weight as classified by WHO (BMI 18.5-25). Maternal metabolic hormones are key regulators of placental nutrient transport (12). For example, IGF-I, insulin (13), leptin (13) and pro-inflammatory cytokines (14) stimulate whereas adiponectin inhibits placental amino acid transporter activity by inhibiting insulin/IGF-1 signaling (15). Changes in maternal metabolism and hormone levels in obesity may therefore have profound effects on placental function, resulting in altered nutrient delivery to the fetus.

To explore the mechanisms by which exposure to the abnormal metabolic environment of mothers with obesity impacts fetal development and leads to metabolic syndrome in the adult offspring, a large number of animal models have been developed in rodents (16), sheep (17), and non-human primates (18) by feeding a diet rich in fat and/or sugar prior to and/or during pregnancy. Many of these models, however, fail to reproduce key aspects of the human condition, raising questions as to their relevance for pregnant women with obesity. In particular, very few of these models have been able to replicate fetal overgrowth (19,20), which is common in human pregnancy. In addition, very little is known about the impact of maternal obesity on placental function in these models. We have previously established a model where female mice were fed a high-fat diet before and during pregnancy, resulting in fetal overgrowth (21); however, dams were not obese. Our current approach was to use a highly palatable Western diet in the form of pellets complemented with a sucrose solution to induce maternal obesity. Thus, mice were fed a diet high in saturated fat, cholesterol and simple sugars, resembling a diet common in Western societies.

The aim of this study was to develop a mouse model of maternal obesity, resulting in fetal overgrowth and associated with maternal metabolic alterations similar to that observed in the pregnant woman with increased BMI. Once established, we used the model to test the hypothesis that maternal obesity causes up-regulation of placental nutrient transporter expression and activity.

Methods

Animals and diets
The Institutional Animal Care and Use Committee at the University of Texas Health Science Center San Antonio approved all protocols. Female C57BL/6J mice (n = 80), proven breeders (one previous litter) and ~12-weeks old (The Jackson Laboratory, Bar Harbor, ME) were housed five per cage under controlled conditions (25°C, 12-h light/dark cycle). Starting at 13 weeks of age, animals were fed ad libitum with a control (D12499B, 10.6 kcal% fat) or high-fat pellet diet (Western Diet D12079B, 41 kcal% fat) supplemented with ad libitum access to sucrose (20%) solution (high fat/high sugar, HF/HS). The sucrose solution was supplemented with vitamins (Vitamin Mix V10001, 10 g/4,000 kcal) and minerals (Mineral Mix S10001, 35 g/4,000 kcal). Diets were purchased from Research Diets (New Brunswick, NJ). All animals had free access to water. Daily food intake was determined by weighing remaining food at the end of each week and used to calculate daily caloric intake. Consumption of sucrose solution (20%) by the HF/HS group was recorded every day. When females on the HF/HS diet had increased 25% in body weight they, and age-matched females on control diet, were mated with males on control diet. The presence of a plug represented embryonic day (E) 0.5 and dams were maintained on the respective diets throughout gestation. At E18.5, dams were euthanized for collection of blood and tissue samples or animals were anesthetized and a glucose tolerance test was performed.

Measurement of body composition
When females on the HF/HS diet had increased 25% in body weight dual-energy X-ray absorptiometry (DXA) and whole body quantitative magnetic resonance imaging (qMRI) were carried out in a subgroup of animals to determine pre-pregnancy body composition. Estimates of precision for these and other key analyses used in this study are provided in Supporting Information. For quantitative magnetic resonance measurements, live mice were placed into a thin-walled plastic cylinder (4.7 cm ID, 0.15-cm thick), where they were free to turn around but were limited to 4-cm vertical movements by a plastic insert. The plastic cylinder containing the live mice was then placed into the qMRI machine (EchoMRI, Echo Medical Systems, Houston, TX) for measurement of lean and fat mass. DXA measurements were performed using Lunar PIXImus mouse bone densitometer (GE, Madison, WI) and data were analyzed with PIXImus software. Animals subjected to qMRI or DXA were euthanized following the procedure.

Collection of tissue and blood samples
Dams were fasted (4 h) and then euthanized at E18.5 by carbon dioxide inhalation. Maternal blood was collected by cardiac puncture, allowed to clot, and spun at 4,000 rpm to collect serum and snap-frozen for subsequent analysis. After laparotomy, fetuses and placentas were collected and quickly dried on blotting paper, any remaining fetal membranes were removed, and fetuses and placentas were weighed. All placentas in each litter (approximate weight 0.5 g) were pooled and washed in phosphate buffer saline and transferred to 3 ml of buffer D [250 mM sucrose, 10 mM Hepes-Tris, and 1 mM EDTA (pH 7.4) at 4°C], protease and phosphatase inhibitor cocktail (Sigma-Aldrich, St. Louis, MO) was added at a dilution of 1:1000, and the mixture was homogenized using a Polytron (Kinematica, Bohemia, NY), frozen in liquid nitrogen, and stored at ~80°C until analysis.

Maternal serum biochemical analysis
Maternal serum analyses of total adiponectin, leptin, (Millipore, St Charles, MO), insulin and multimeric high-molecular-weight (HMW) adiponectin (Alpcos Diagnostics, Salem, NH) were performed using commercially available ELISA kits. Maternal serum cholesterol, phospholipids, non-esterified fatty acids and triglycerides were analyzed by the Mouse Metabolic Phenotyping Center at the University of Cincinnati.

Glucose tolerance test
Glucose tolerance tests were performed in a subset of mice on E18.5 after a 4-h fast and under isoflurane anesthesia. Mice were injected i.p. with glucose (2 g kg$^{-1}$ body weight), and blood (5 μl)
was sampled in triplicate from the tail vein at 0, 15, 30, 60, and 90 min after the glucose load. Blood glucose was measured in triplicate immediately using a One Touch Ultra-2 (Life Scan, Milpitas, CA).

Isolation of trophoblast plasma membranes
Trophoblast plasma membranes (TPM) were isolated from frozen placental homogenates using differential centrifugation and Mg\(^{2+}\) precipitation as described (21,22). This protocol results in the isolation of the maternal-facing plasma membrane of trophoblast layer II of mouse placenta, which is believed to be functionally analogous to the syncytiotrophoblast microvillous plasma membrane of the human placenta (22). Protein concentration was determined using the Lowry assay (Bio Rad, CA) and TPM purity was assessed by TPM/homogenate enrichments of alkaline phosphatase activity. The average alkaline phosphatase enrichment for TPM vesicles isolated from control placentas (25.5 ± 5.2, n = 5) was not significantly different from the enrichment in TPM vesicles obtained from placentas of HF/HS animals (22.3 ± 7.2, n = 5).

TPM amino acid transporter activity measurements
The activity of System A and L amino acid transporters in TPM was determined using radiolabeled amino acids and rapid filtration techniques as previously described (22). Na\(^+\)-dependent uptake of MeAIB (corresponding to System A activity) was calculated by subtracting Na\(^+\)-independent uptakes from total uptakes. For leucine, mediated uptake was calculated by subtracting non-mediated transport, as determined in the presence of 20 mM unlabeled leucine, from total uptake. The intra-assay coefficient of variation for System A and L was 10 and 9.5%, respectively.

Western blot analysis
We determined TPM protein expression of the System A amino acid transporter isoforms SNAT2 and SNAT4, the System L amino acid transporter isoforms LAT1 and LAT2, and CD98, the heavy chain associated with LAT1 and LAT2. A polyclonal SNAT2 antibody generated in rabbits was received as a generous gift from Dr V. Ganapathy and Dr P. Prasad at the University of Georgia, Augusta. GLUT-1 and GLUT3 antibody was purchased from Millipore (Billerica, MA). Western blotting was carried out as previously described (23). Analysis of the blots was performed by densitometry.

Data presentation and statistics
Data are presented as means ± SEM or ± SEM. For fetal and placental data, means of each litter were calculated and used in statistical analysis. Thus, n represents the number of litters. Statistical significance of differences between control and HF/HS groups was assessed using Student’s unpaired t test. A P value <0.05 was considered significant.

Results
Body composition in female mice prior to mating
Feeding mice HF/HS diet for 4-6 weeks resulted in obesity as illustrated by measurement of body composition prior to mating using...
Maternal obesity and placental nutrient transport

Neural glucose injection at E18.5.

As shown in Figure 3, HF/HS-fed pregnant mice were glucose-intolerant as determined by an increased area under the blood-glucose curve (+28%, n = 4-5; P < 0.01) following an intraperitoneal glucose injection at E18.5.

DXA and qMRI (Figure 1). As shown in Figure 1B, maternal fat tissue mass was increased by 2.2-fold (n = 5, P < 0.01) in animals fed a HF/HS diet as compared to control. However, lean tissue mass was comparable between HF/HS and control group.

Food and calorie intake in pregnant mice

Pregnant mice fed a HF/HS diet had a higher daily calorie intake (+55%, P < 0.0001) than those fed a control diet (Figure 2A). As shown in Figure 2B, HF/HS-fed mice had an increased intake of carbohydrates (+1.3-fold, P < 0.0001; n = 15) and fat (+4-fold, P < 0.0001; n = 15). Notably, protein intake was not significantly altered in HF/HS-fed animals.

Maternal endocrine and metabolic profile at E18.5

At E18.5, maternal fasting serum leptin and insulin levels were significantly increased by 44% (P = 0.01) and 3.6-fold respectively (P = 0.0001), in animals fed the HF/HS diet (Table 1). Total maternal serum adiponectin levels were reduced by 11.5% (P = 0.05, Table 1) and multimeric HMW adiponectin levels were decreased by 58% (P = 0.0001, Table 1) in HF/HS group as compared to control. Furthermore, maternal serum levels of cholesterol (P < 0.0002) and phospholipids (P < 0.0002) were elevated at E18.5 in animals fed a HF/HS diet as compared to controls (Table 1). However, maternal fasting triglyceride, non-esterified fatty acids, and glucose levels were comparable between the HF/HS and control groups.

Maternal glucose tolerance at e18.5

As shown in Figure 3, HF/HS-fed pregnant mice were glucose-intolerant as determined by an increased area under the blood-glucose curve (+28%, n = 4-5; P < 0.01) following an intraperitoneal glucose injection at E18.5.

Fetal and placental weight and litter size at E18.5

Fetal weights were increased by 18% (P < 0.01; n = 12 in each group) at E18.5 in the HF/HS group (Figure 4). This was not due to a difference in litter size, which was essentially the same in the control (6.9 ± 0.14, n = 12) and obese groups (6.8 ± 0.32, n = 12). Placental weights were not different between groups (Figure 4).

TPM nutrient transporter isoform expression

Protein expression of SNAT2 in TPM isolated from placentas of HF/HS-fed mice was increased (+3.5-fold, P < 0.05) compared to controls (n = 6; Figure 5A and B); however, no changes could be

TABLE 1 The maternal endocrine and metabolic profile at E18.5
Analysis
Leptin (ng ml⁻¹)
Insulin (ng ml⁻¹)
Adiponectin (µg ml⁻¹)
HMW adiponectin (µg ml⁻¹)
Glucose (mg dl⁻¹)
Cholesterol (mg dl⁻¹)
NEFA (mEq l⁻¹)
Phospholipids (mg dl⁻¹)
Triglycerides (mg dl⁻¹)

Fasting (4 h) serum samples at E18.5, n = 18-20 in each group; values are means ± SEM, unpaired Student’s t test.

Data were tested for normal distribution (Shapiro Wilk test), and insulin, NEFA, and triglycerides were found to deviate from normal distribution. Therefore, these data were log transformed, which made the data normally distributed, and Student’s t test was performed on the log transformed data.
observed in SNAT4 expression levels ($n = 6$; Figure 5A and B). Feeding a HF/HS diet significantly increased the expression of the System L transporter isoform LAT1 (16.4 fold, $P < 0.05$) in placental TPM ($n = 6$; Figure 5C and D). In contrast, TPM expression of LAT2 and CD98 were comparable between control and HF/HS group. Furthermore, protein expression of GLUT1 and GLUT3 in TPM isolated from placentas of HF/HS-fed mice was increased (GLUT1, +5.3 fold; GLUT3, +3.4 fold, $n = 6$; $P < 0.05$) as compared to control (Figure 5E and F).

TPM nutrient transport activity
TPM System A activity was increased by 1.9-fold ($P < 0.05$) in the HF/HS group compared with control (Figure 5G). Similarly, System
L activity was 2.1-fold ($P < 0.05$) higher in the HF/HS group as compared to control (Figure 5H).

Discussion

Babies born to mothers with overweight or obesity are often large at birth and have an increased risk of developing obesity, diabetes, and cardiovascular disease in childhood or in adult life; however the underlying mechanisms are largely unknown. A lack of relevant animal models has hampered progress in this area. Here, we report a novel mouse model of maternal obesity with fetal overgrowth and a maternal endocrine and metabolic profile similar to that of pregnant women with obesity. The most significant novel findings in this study are that maternal obesity increased (i) the protein expression of specific isoforms of the System A and System L amino acid transporters and glucose transporters (ii) the activity of the System A and L amino acid transport systems in the placental barrier. We propose that an increased placental transfer of nutrients constitutes one of the mechanisms underlying fetal overgrowth in pregnancies complicated by overweight or obesity.

In the current study, HF/HS-fed mice had an increased calorie intake in the form of carbohydrates and fat. Although assessments of
dietary intake in human pregnancy suffer from considerable under-reporting among women with overweight or obesity (24), the high calorie intake from fat and carbohydrates in our HF/HS-fed mice resembles the diet in women with high BMI (25), contributing to its relevance for the human condition. Notably, protein intake was not significantly reduced in HF/HS-fed animals. This is important because protein malnutrition is common in models of diet-induced obesity and it is well established that maternal protein deficiency in pregnancy results in IUGR (23) and programs the offspring for later metabolic and cardiovascular disease.

Maternal serum leptin and insulin levels were increased and total and HMW adiponectin decreased in HF/HS pregnant mice at E18.5, consistent with observations in pregnant women with obesity (11,26). The markedly higher fasting serum insulin levels in HF/HS dams suggest that this model replicates the insulin resistance characteristic for pregnant women with obesity (27). Fasting glucose was not elevated in the HF/HS group demonstrating that obese mice are not diabetic. However, they were glucose-intolerant as determined by an increased area under the blood-glucose curve following an intraperitoneal glucose injection. Any degree of abnormal glucose homeostasis in pregnancy (i.e., not just GDM) independently predicts glucose intolerance in the postpartum period (28). The importance of maternal glycemic control in determining fetal growth and adiposity was highlighted in the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study of more than 23,000 pregnant women, in which a linear relationship between the maternal plasma glucose following a oral glucose tolerance test and birth weight was observed, even amongst non-diabetic women (29). Furthermore, infant adiposity as determined by the sum of skinfold thickness, exhibited a similar strong linear relationship with maternal glycemic control (29).

Maternal serum levels of cholesterol and phospholipids were elevated in the HF/HS pregnant mice in general agreement with the metabolic phenotype of the pregnant woman with obesity (10). Collectively, these data demonstrate that the maternal metabolic phenotype of our novel mouse model resembles the metabolic profile of non-diabetic pregnant women with obesity.

Fetal growth is critically dependent on the capacity of the placenta to transport nutrients. A significant body of evidence demonstrates that the activity of key placental amino acid transporters is decreased in human IUGR (30) and both placental amino acid and glucose transporters have been reported to be up-regulated in fetal overgrowth. SNAT2 expression in TPM but not SNAT 4 was up-regulated in HF/HS group. These findings are in agreement with other studies of SNAT isofrom regulation in the placenta, suggesting that SNAT2 is a highly regulated isoform (23). We recently reported that the activity of the System A amino acid transporter and the protein expression of SNAT2 are increased in placentas of Swedish women with obesity delivering large babies (9), supporting the relevance of our mouse model. In addition, System L amino acid transporter isoforms LAT1 but not LAT2 and CD98 expression in placental TPM was up-regulated in HF/HS group as compared to control. Glucose is the primary energy substrate for the placenta and the fetus and fetoplacental glucose needs are met entirely by transfer from the maternal circulation (31). In late pregnancy GLUT1 (SLC2A3) is the primary placental glucose transporter in the human (32) whereas both GLUT1 and GLUT3 (SLC2A3) mediate placental glucose transport in the rodent (33). GLUT3 makes a greater contribution to total glucose transporter expression in the placenta as gestation proceeds (34). Interestingly, placental TPM GLUT1 and GLUT3 protein expression was significantly increased in HF/HS group. Fetal glucose stimulates the secretion of pancreatic insulin and IGF-I, the two primary fetal growth hormones, providing a direct link between fetal glucose availability and fetal growth (35). In addition, glucose is readily converted to fat and contributes to fetal fat accumulation, consistent with the possibility that increased glucose availability could increase fetal adiposity.

We have previously reported that female CS7/BL6 mice fed a high-fat diet before and during pregnancy did not develop obesity (21). However, high-fat diet alone stimulated fetal growth and increased placental protein expression of GLUT1 and SNAT2 in mice (21). In the present study, feeding mice a HF/HS diet before and during pregnancy resulted in maternal obesity and caused fetal overgrowth. The increase in placental TPM nutrient transporter isoform expression and fetal growth in response to a HF/HS diet in our mouse model resembles our previous reports in pregnant women in which fetal overgrowth in women with type 1 diabetes was associated with increased glucose transporter activity and GLUT1 expression and increased System A amino acid transporter activity in isolated syncytiotrophoblast plasma membranes (6,8). Collectively, these reports and the current study suggest that the expression of placental nutrient transporters is positively correlated with fetal growth, consistent with the possibility that changes in placental nutrient transport directly contribute to altered fetal growth and programming of metabolic disease in the offspring.

Almost one third of women of reproductive age have obesity, with significant socioeconomic costs directly attributable to the increased risk of maternal and neonatal complications (36). Lifestyle changes and anti-obesity drugs result in only modest weight reduction in individuals with obesity (37), and bariatric surgery is the only treatment with well-documented long-term weight loss (38). However, surgical treatment is a realistic option only for a small fraction of individuals with obesity. There is, therefore, an immediate need for novel approaches to prevent and/or treat obesity. Measures to alleviate fetal overgrowth and/or adiposity in pregnant women with obesity represent an early intervention strategy that could contribute to a decrease in the prevalence of obesity and diabetes in future generations. Thus, it is essential that a new model of maternal obesity is developed in the mouse, because it is the only species that currently allows systematic cause-and-effect studies of the molecular mechanisms underlying programming of metabolic syndrome in offspring of mothers with obesity. As with all animal studies, extrapolation of findings in this mouse model to pregnant women with obesity has to be done with caution. For example, the mouse has a large litter and there are significant structural differences in the placentas of humans and mice introducing some limitations in using the mouse as a model for human pregnancy. However, the extensive functional similarities between the two species (39) suggest that this novel mouse model of maternal obesity will be a valuable tool to advance our understanding of regulation placental function and fetal growth in pregnancies complicated by obesity.

Acknowledgments

The analysis of serum lipids was performed by the Mouse Metabolic Phenotyping Center (DK59630) at University of Cincinnati.

© 2015 The Obesity Society
References

1. Catalano PM, Presley L, Minium J, Hauguel-de Mouzon S. Fetuses of obese mothers develop insulin resistance in utero. Diabetes Care 2009;32:1076-1080.

2. Alturaldi MZ, Ozanne SE. Developmental programming in response to maternal overnutrition. Front Genet 2014;1:27.

3. Catalano PM. Obesity and pregnancy—the propagation of a viscous cycle? J Clin Endocrinol Metab 2003;88:3505-3506.

4. Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of obesity in the United States, 2009-2010. NCHS Data Brief 2012;1-8.

5. Heslehurst N, Rankin J, Wilkinson JR, Summerbell CD. A nationally representative study of maternal obesity in England. UK trends in incidence and demographic inequalities in 619 323 births, 1989-2007. Int J Obes 2010;34:420-428.

6. Jansson T, Ekstrand Y, Bjorn C, Wennergren M, Powell TL. Alterations in the activity of the system a amino acid transporter in microvillous membrane vesicles from placentas of macromosaic babies born to diabetic women. J Clin Invest 1994;94:689-695.

7. Jansson T, Wennergren M, Powell TL. Placental glucose transport and GLUT 1 expression in insulin-dependent diabetes. Am J Obstet Gynecol 1999;180:163-168.

8. Jansson N, Rosario FJ, Giaccioli F, et al. Activation of placental mTOR signaling and amino acid transporters in obese women giving birth to large babies. J Clin Endocrinol Metab 2013;98:105-113.

9. Ramssy JF, Ferrell WR, Crawford L, Wallace AM, Greer IA, Sattar N. Maternal obesity is associated with dysregulation of metabolic, vascular and inflammatory pathways. J Clin Endocrinol Metab 2002;87:4231-4237.

10. Jansson N, Nilsfelt A, Gellerstedt M, et al. Maternal hormones linking maternal body mass index and dietary intake to birth weight. Am J Clin Nutr 2008;87:1743-1749.

11. Janssen HJN, Powell TL, Jansson T. Regulation of placental nutrient transport. A review. Placenta 2007;28:763-774.

12. Jansson N, Greenwood SL, Johansson BR, Powell TL, Jansson T. Leptin stimulates the activity of the system a amino acid transporter in human placental villous fragments. J Clin Endocrinol Metab 2003;88:1205-1211.

13. Janson H, Janson T, Powell TL, IL-6 stimulates system A amino acid transporter activity in trophoblast cells through STAT3 and increased expression of SNAT2. Am J Physiol Cell Physiol 2009;297:C1228-C1235.

14. Janson H, Janson T, Powell TL. Full-length adiponectin attenuates insulin signaling and inhibits insulin-stimulated amino acid transport in human primary trophoblast cells. Diabetes 2010;59:1161-1170.

15. Samuelsson AM, Morris A, Igosheva N, et al. Evidence for sympathetic origins of hypertension in juvenile offspring of obese rats. Hypertension 2010;55:76-82.

16. Zhang J, Long NM, Heim SM, Ma Y, Nathanielsz PW, Ford SP. Maternal obesity in ewes results in reduced fetal pancreatic beta-cell numbers in late gestation and decreased circulating insulin concentration at term. Domest Anim Endocrinol 2011;40:30-39.

17. Frias AE, Morgan TK, Evans AE, et al. Maternal high-fat diet disturbs uteroplacental hemodynamics and increases the frequency of stillbirth in a nonhuman primate model of excess nutrition. Endocrinology 2011;152:2456-2464.

18. Mazzucco MB, Higa R, Capobianco E, Kurtz M, Jawerbaum A, White V. Saturated fat-rich diet increases fetal lipids and modulates LPL and leptin receptor expression in rat placentas. J Endocrinol 2013;217:303-315.

19. Jones HN, Woollett LP, Barbour N, Prasad PP, Powell TL, Jansson T. High fat diet before and during pregnancy causes marked up-regulation of placental nutrient transport and fetal overgrowth in c57bl6 mice. FASEB J 2009;23:271-278.

20. Kasinski LC, Jones CJ, Baker PN, Sibley CP, Glazier JD. Isolation of plasma membrane vesicles from mouse placenta at term and measurement of system a and system beta amino acid transporter activity. Placenta 2010;31:53-59.

21. Rosario FJ, Jansson N, Kanayi Y, Prasad PD Powell TL, Jansson T. Maternal protein restriction in the rat inhibits placental insulin, mTOR, and stat3 signaling and down-regulates placental amino acid transporters. Endocrinology 2011;152:1119-1129.

22. Kang L, Mauckman R, McMullen LM, Nakasako K, Lee JS, Hanley AJ. Glucose intolerance in pregnancy and future risk of pre-diabetes or diabetes. Diabetes Care 2008;31:2026-2031.

23. The HAPO Study Cooperative Research Group. Hyperglycemia and adverse pregnancy outcome (HAPO) study: associations with neonatal anthropometrics. Diabetes 2009;58:453-459.

24. Glazier JD, Cetin I, Perugino G, et al. Association between the activity of the system a amino acid transporter in the microvillus plasma membrane of the human placenta and severity of fetal compromise in intrauterine growth restriction. Pediatr Res 1997;42:514-519.

25. Nien JK, Mazzaki-Tovi S, Romero R, et al. Plasma adiponecin concentrations in non pregnant, normal pregnancy and overweight pregnant women. J Perinat Med 2007;35:522-531.

26. Catalano PM. Obesity, insulin resistance, and pregnancy outcome. Reproduction 2010;140:365-371.

27. Retnakaran R, Qi Y, Sermer M, Connelly PW, Hanley AJ, Zinman B. Glucose intolerance in pregnancy and future risk of pre-diabetes or diabetes. Diabetes Care 2008;31:2026-2031.

28. The HAPO Study Cooperative Research Group. Hyperglycemia and adverse pregnancy outcome (HAPO) study: associations with neonatal anthropometrics. Diabetes 2009;58:453-459.

29. Ganguly A, Collins L, Devaskar SU. Placental glucose and amino acid transport in calorie-restricted wild-type and GLUT3 null heterozygous mice. Endocrinology 2012;153:3995-4007.

30. Lin Y, Zhao Y, Fang ZF, Che LQ, Wu D. Effect of maternal dietary energy types on placenta nutrient transporter gene expressions and intrauterine fetal growth in rats. Nutrition 2012;28:1037-1043.

31. Pedersen J. Weight and length at birth of infants of diabetic mothers act. Endocrinology 1954;16:330-342.

32. Chu SY, Bachman DJ, Callaghan WM, et al. Association between obesity during pregnancy and increased use of health care. N Engl J Med 2008;358:1444-1453.

33. Norris SL, Zhang X, Avenell A, et al. Long-term effectiveness of weight-loss interventions in adults with pre-diabetes: a review. Am J Prev Med 2005;28:126-139.

34. Sjostrom L, Peltonen M, Jacobson P, et al. Bariatric surgery and long-term cardiovascular events. JAMA 2012;307:56-65.

35. Dilworth MR, Sibley CP. Review: transport across the placenta of mice and women. Placenta 2013;34 (Suppl):S34-S39.