Abstract. In this work, a model of binary fluids with different densities and viscosities based on the solution of the Navier-Stokes equations, the continuity and the Cahn-Hilliard equation is developed. The process of influence of surface tension and interface thickness on the phase fields of fluids is investigated. The numerical results of the study are obtained on the basis of a phase field model using the lattice Boltzmann method (LBM). The LME uses two sets of distribution functions for incompressible flow: one for tracking the pressure and velocity fields and the other for the phase field. The use of the pressure distribution function can significantly reduce the effect of numerical errors in calculating the interfacial force. A several 2D tests are carried out to demonstrate the validation, which included droplet problem and the Raleigh-Taylor instability. It is shown that the proposed method allows tracking the interface with high accuracy and stability.

Key words: phase field, binary fluid, surface tension, chemical potential, lattice Boltzmann method.
In this paper, we introduce multiphase flow model for incompressible binary fluids, when interface between the different phases is tracked by LBE. To simulate phase interface, we derive free-energy based phase field method. To distinguish transition between different phases we set order of parameter ϕ. Also we obtain the numerical implementation of influence surface tension force (σ) and interface thickness (\mathcal{W}) on the phase field.

Statement of the problem

To check the numerical algorithm, the results obtained within the framework of solving this problem were compared with the results obtained experimentally, which showed good agreement.

A mixture of two immiscible incompressible fluid in a rectangular region Ω with densities ρ_A, ρ_B and dynamic viscosity η_A, η_B is considered (Figure 1). For the computational domain, a two-dimensional rectangle with the corresponding dimensional parameters was taken: $x \in [0,1]$, $y \in [0,1]$. In the center of the area $x \in [0.2, 0.8], y \in [0.4, 0.6]$ is situated a liquid drop with density ρ_A and viscosity η_A.

To distinguish the two different fluids, the order of parameter (phase field function) is introduced $\phi = \{ \phi_A, \text{ fluid A} \}$ $\{ \phi_B, \text{ fluid B} \}$

For a system of binary fluids, the Landau free energy function F can be defined on the basis of ϕ as:

$$F(\phi, \nabla \phi) = \int_V [\Psi(\phi) + \frac{k}{2} |\nabla \phi|^2] dV$$

where $\Psi(\phi)$ – the bulk free energy density, for an isothermal system the following form can be used $\Psi(\phi) = \beta (\phi - \phi_A)^2 (\phi - \phi_B)^2$, k – is the coefficient of surface tension, β – is the coefficient depending on the interface thickness and the surface tension force.

![Figure 1 – Computational domain of bubble immersed in liquid](image)

The basic equations for the phase field consist of the continuity equation, the momentum equation for the mixture and the covective Cahn-Hilliart equation:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

$$\rho \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} \right) = - \frac{\partial P}{\partial x} - \phi \frac{\partial u}{\partial x} + \eta \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$$

$$\rho \left(\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} \right) = - \frac{\partial P}{\partial y} - \phi \frac{\partial v}{\partial y} + \rho g + \eta \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right)$$
where \(u,v \) are the velocity components, \(p \) is the pressure, \(\rho = \frac{\phi - \phi_B}{\phi_A - \phi_B} \rho_A + \frac{\phi_A - \phi}{\phi_A - \phi_B} \rho_B \) is the density, here \(\rho_A, \rho_B \) are the density of fluids, \(\eta = \frac{\eta_A \eta_B (\phi - \phi_B)}{\eta_B (\phi_A - \phi) \eta_A} \), here \(\eta_A = \rho_A \partial_A, \eta_B = \rho_B \partial_B \) are the dynamic viscosity, \(\partial_A, \partial_B \) are the kinematic viscosity, \(\phi \) is the phase field function, \(g \) is the acceleration of gravity, \(M \) is the mobility coefficient, \(\mu \) is the chemical potential, \(\Gamma \) is the force, \(\tau_f, \tau_\phi \) are the relaxation time for the velocity and phase field respectively, \(\Gamma_l \) is a lattice sound speed, \(\tau_\phi \) - is a lattice sound speed, \(\tau_f \) - is the relaxation time for the velocity and phase field respectively, \(\Gamma_l \) - is a lattice sound speed, \(\tau_\phi \) - is the relaxation time for the velocity and phase field respectively.

The variation of the free- energy function \(F \) with respect to the function \(\phi \) is solving chemical potential \(\mu \) as:

\[
\mu = \frac{\delta F}{\delta \phi} = \frac{\partial \psi}{\partial \phi} - k \nabla^2 \phi = 4 \beta (\phi - \phi_A) (\phi - \phi_B) (\phi - \phi_A + \phi_B) - k \nabla^2 \phi ,
\]

where \(W = \frac{1}{\phi_A - \phi_B} \sqrt{\frac{4k}{\beta}} \) is the interface thickness, \(\sigma = \frac{\phi_A - \phi_B^3 \sqrt{2k\beta}}{6} \) is the surface tension force.

The system of equations has the following initial and boundary conditions:

\[
\begin{align*}
\phi_A, & \quad x, y \in \Omega \atop \phi_B, & \quad x, y \in \Omega \atop u = 0, v = 0, \phi = & \quad t = 0, 0 \leq x \leq L, 0 \leq y \leq H
\end{align*}
\]

\[
\begin{align*}
\phi_A, & \quad x, y \in \Omega \atop \phi_B, & \quad x, y \in \Omega \atop u = 0, v = 0, \partial \phi = & \quad 0 \atop x = 0 \atop u = 0, v = 0, \partial \phi = & \quad 0 \atop x = L, 0 \leq y \leq H \atop u = 0, v = 0, \partial \phi = & \quad 0 \atop y = 0 \atop u = 0, v = 0, \partial \phi = & \quad 0 \atop y = H, 0 \leq x \leq L
\end{align*}
\]

Numerical method

We use the lattice Boltzmann equation (LBE) to describe the motion of binary fluids. For this case, the collision term LBM in a two-dimensional square lattice with nine velocities (D2Q9) was used. The lattice Boltzmann equation in the Batnagar-Gross-Krook (BGK) [15] approximation is as follows:

\[
f_i(x + e_i \Delta t, t + \Delta t) - f_i(x, t) = \frac{f_i(x, t) - f_i^{eq}(x, t)}{\tau_f} + (1 - \frac{\Delta t}{2\tau_f}) F_i(x, t) \Delta t
\]

\[
g_i(x + e_i \Delta t, t + \Delta t) - g_i(x, t) = \frac{g_i(x, t) - g_i^{eq}(x, t)}{\tau_\phi} + \Gamma_i^{eq}(x + e_i \Delta t, t + \Delta t) - g_i^{eq}(x, t)
\]

where \(f_i, g_i \) - are the velocity and phase field distribution function respectively, \(e_i \) - is a discrete lattice velocity, \(\tau_f, \tau_\phi \) - are the relaxation time for the velocity and phase field respectively, \(F_i \) - is a force term, \(\Gamma \) - is a constant controlling the mobility, \(\Delta t \) - is a time step, \(f_i^{eq}, g_i^{eq} \) - are the equilibrium distribution function for the velocity and phase field respectively.

The equilibrium distribution functions are introduced as following:

\[
f_i^{eq} = \begin{cases}
(1 - w_0) \frac{p}{c_s^2} - w_0 \frac{u \cdot u}{2c_s^2}, i = 0 \\
w_i p + c_s^2 \rho w_i \left[\frac{e_i \cdot u}{c_s^2} + \frac{(e_i \cdot u)^2}{c_s^4} - \frac{u^2}{2c_s^2} \right], i \neq 0
\end{cases}
\]

\[
g_i^{eq} = \begin{cases}
\phi - \frac{(1 - w_0) \Gamma \mu}{(1 - \Gamma) c_s^2}, i = 0 \\
\Gamma \mu + (e_i u) \phi \left(\frac{w_i}{c_s^2} - \frac{(1 - \Gamma) c_s^2}{c_s^2} \right), i \neq 0
\end{cases}
\]

where \(c_s^2 = \frac{1}{3} - \) is a lattice sound speed, \(p_b = c_s^2 \rho + \beta (\frac{\phi}{2} + \frac{\phi^4}{4}) - \) is a pressure of a mixture. For the D2Q9 model, discrete velocities are calculated as:

\[
e_{ix} = (0,1,1,0,-1,-1,-1,0,1)c
\]

\[
e_{iy} = (0,0,1,1,0,-1,-1,-1)c
\]
The values of the weighting parameters are defined as:

$$w_i = \begin{cases} 4/9 & i = 0 \\ 1/9 & i = 1, 2, 3, 4 \\ 1/36 & i = 5, 6, 7, 8 \end{cases}$$

In this paper, the scheme proposed by Guo et al. [14] is used to approximate the external force in the LBM:

$$F_i(x, t) = \left(1 - \frac{1}{2\tau}\right)w_i \left[\frac{3 c_i - u}{c_s^2} + 9 \frac{c_i - u}{c_s^2} c_i\right]F$$

where, $F = (F_x + F_y + F_b)$

The evolution equation is divided into two steps, collision and propagation:

1. $f^*_i(x, t) = f_i(x, t) - \frac{\Delta t}{\tau_f} \left(f_i(x, t) - f^*_i(x, t)\right)$
2. $g^*_i(x, t) = g_i(x, t) - \frac{\tau}{\tau_f} \left(g_i(x, t) - g^*_i(x, t)\right)$
3. $g_i(x + c_i\Delta t, t + \Delta t) = g^*_i(x, t)$

After the second step, we update the macroscopic parameters (density, phase field, velocity) using the following formulas:

$$\rho = \sum_i f_i \rho u = \sum_i f_i c_a + \frac{F\Delta t}{2}, \phi = \sum_i g_i$$

The following boundary conditions were used to close the system of equations.

Zero velocity condition for all walls:

$$f_i(x_w, t + \Delta t) = f_{-i}(x_w, t + \Delta t), \quad e_i \cdot n > 0,$$

Neumann condition for phase filed on all walls:

$$g_i(x_w, t + \Delta t) = g_{-i}(x_w, t + \Delta t), \quad e_i \cdot n > 0,$$

Numerical results and discussions

First we performance, the numerical calculations of problem where, a stationary droplet immersed in another fluid. This task is used to assess the capability of the proposed model in handling the surface force. Initially, a round drop with a radius of 20 (in lattice units) is placed in the center of a square computational domain with a size of 100x100.

Table 1 – Modeling parameters

Parameters	Physical parameters	LBM parameters
Characteristic length	$L_{char} = 0.01$	
Number of points by x, y	$N_x \times N_y = 128 \times 256$	
Kinematic viscosity	$\theta = \frac{\eta}{\rho}$	$\theta = c_s^2 (\tau - \frac{\Delta x^2}{2}) \frac{\Delta t}{\eta}$
Characteristic time	$T_{char} = \frac{L_{char}}{\theta_{char} \ast \Delta t}$	$\tau = c_s^2 (\tau - \frac{\Delta x^2}{2}) \frac{\Delta t}{\eta}$
Maximum velocity	$U_{char} = \sqrt{\frac{L_{char}}{\theta_{char} \ast \Delta t}} = 0.31305$	$U_{char} = \frac{U_{char}}{c_a}, c_a = \frac{\Delta x}{\Delta t}$
Mixture density	$\rho_{A.char} = 800, \rho_{B.char} = 600$	$\rho_A = \frac{\rho_{A.char}}{\eta_{A.char}}, c_u = \frac{\Delta x}{\Delta t}$
Dynamic viscosities of A and B	$\eta_{A.char} = 0.02, \eta_{B.char} = 0.01$	$\eta_A = \frac{\eta_{A.char}}{\eta_{char}}, \eta_B = \frac{\eta_{B.char}}{\eta_{char}}$

Model parameters are set as: $\tau_f = \tau_\phi = 1, \phi_A = 1, \phi_B = -1, \rho_A = 1, \rho_B = 0.7$. The basic dimensionless parameters for the droplet problem are shown in table 1.

The surface tension σ are given, the coefficients k and β can be determined as follows:

$$k = \frac{3\sigma W}{8}, \quad \beta = \frac{3\sigma}{4W}$$
The numerical solution showed that with the decrease of the coefficient σ of surface tension, leads to the decrease of the chemical tension of the phases, as shown in Figure 2.

Figure 2 – The dynamics of the change in the shape of a drop in a fluid at different time for $\sigma = 0.01, W = 1$. The time normalized by characteristic time T_{char}.

Figure 3 shows when surface tension σ is decreased, the force of surface attraction decreases and the shape of the drop does not change. In addition, with an increase in the interface thickness coefficient W, the surface tension β decreases, which contributes to a more rapid formation of a ball-like shape, as shown in Figure 4.

To further demonstrate the ability of this model to solve more complex flows, we simulated the Rayleigh-Taylor instability, which occurs when there is a small disturbance at the interface between a heavy (fluid A) and a light fluid (fluid B).

The basic dimensionless parameters for the Rayleigh-Taylor instability problem are shown in Table 1. The initial interface between the two fluids is shown in Figure 5 $(t=0)$. Reflection boundary conditions are applied to the lower and upper boundaries, and periodic boundary conditions are applied to the side boundaries. In our simulations, the physical parameters are fixed as:

$$U_{\text{char}} = 0.04, W = 4, \sigma = 0.1,$$

$$Re = \frac{\rho_{\text{char}} U_{\text{char}} L_{\text{char}}}{\eta_{\text{char}}}, At = \frac{\rho_{\text{char}} - \rho_{B,\text{char}}}{\rho_{A,\text{char}} + \rho_{B,\text{char}}} = 0.1$$
Figure 4 – The dynamics of the change in the shape of a drop in a fluid at different times for $\sigma = 0.01, W = 4$

Figure 5 – Dynamics of concentration separation in the fluid phase at different times
In the early stages, the growth of the fluid interface remains symmetrical up and down. Later, the heavy liquid settles down, and the light fluid rises, forming bubbles. Starting from \(t = 0.4 \) (Fig. 5), the heavy fluid begins to curl up into two oncoming vortices. These discontinuities disappear over time, as at \(t = 0.7 \), the Rayleigh-Taylor instability appears. At \(t = 0.9 \), it can be seen that the heavy fluid has completely settled, and the light fluid has gone up. Thus, the problem of the Rayleigh-Taylor instability describes well the process of settling of a heavy fluid.

The problem was also solved for the case when \(\Delta t = 0.1428, \tau_f = 0.8, \sigma = 0.01, W = 2 \). Below in Figures 6-8 the simulation result is shown, which illustrates the dynamics of concentration separation of a mixture of heavy and light liquids at different times: Figure 6 - for times \(t = 0; 0.2; 0.32; 0.36 \) (from left to right, respectively); Figure 7 - \(t = 0.4; 0.5; 0.56; 0.6 \) (left to right, respectively); Figure 8 - \(t = 0.64; 0.72; 0.74; 0.8 \) (left to right, respectively). It can be seen from the figures that for the case when a more viscous liquid is considered (the separation boundary of the mixture components is thinner), a slower process of establishing equilibrium is observed - over time, first the formation of vortices occurs, then a rupture of the interface of the liquid boundaries is observed, the formation of separate structures of a fluid of higher density occurs inside a fluid of lower density, the formation of bubbles, the boundary of which breaks over time, equilibrium is established due to the chemical velocity of attraction of the phases.

Figure 6 – Dynamics of concentration separation in the fluid phase at different times.
Figure 7 – Dynamics of concentration separation in the fluid phase at different times

Figure 8 – Dynamics of concentration separation in the fluid phase at different times
Thus, a mathematical model has been developed for the separation of components of binary fluids with different density and viscosity. A 2D numerical algorithm based on the D2Q9 model of the lattice Boltzmann method to simulate a multiphase flow of an incompressible fluid in a bounded rectangular cavity is developed. For incompressible flow, two sets of distribution functions are used: one for tracking the pressure and velocity fields, and the other for the phase field. The use of the pressure distribution function makes it possible to significantly reduce the effect of numerical errors in calculating the interfacial force. Numerical modeling was carried out for the two-dimensional Rayleigh-Taylor instability and for the fluid droplet problem. The main conclusion of this problem can be considered the following: if the thickness interface between two immiscible fluids is large, then spherical drops appear faster than in the case when the boundary is thin. In addition, by implementation of the developed mathematical model, the process of mass transfer of two fluids of different density and viscosity in a given area is clearly shown.

Acknowledgement

This work was supported by Ministry of Education and Science of the Republic of Kazakhstan [Grant № AP08053154, 2020].

References

1 P. Yue, J.J. Feng, Ch. Liu, J. Shen. A diffuse-interface method for simulating two-phase flows of complex fluids. J. Fluid Mech. № 515 (2004): 293–317.

2 J. W. Cahn, J. E. Hilliard. Free Energy of a Nonuniform System. I. Interfacial Free Energy. Journal of chemical physics Vol. 28, №2(1958): 258-267.

3 J.J. Huang, H. Huang, X. Wang. Numerical study of drop motion on a surface with stepwise wettability gradient t and contact angle hysteresis. Physics of Fluids № 26 (2014), 062101.

4 J. Shen and X. Yang. Energy stable schemes for Cahn-Hilliard phase-field model of two phase incompressible flows equations. Chinese Annals of Mathematics, Series B, 31B (5) (2010): 743–758.

5 J. Shen and X. Yang. A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities. SIAM J. Sci. Comput. №32 (2010): 1159–1179.

6 Y. Q. Zu and S. He. Phase-field-based lattice Boltzmann model for incompressible binary fluid systems with density and viscosity contrasts. Physical Review E. 87 (2013): 043301.

7 J.D. van der Waals, Verhandel. Konink. Akad. Wetens. AmsterdamSect vol. 1 No. 8 (Dutch) (1893), Translation of J.D. van der Waals (The thermodynamic theory of capillarity under the hypothesis of a continuous density variation) J. Stat. Phys. (1979).

8 A. Kuzmina, M. Januszewski, D. Eskinc, F. Mostowfic, J.J. Derksen. Three-dimensional binary-liquid lattice Boltzmann simulation of microchannels with rectangular cross sections. Chemical Engineering Journal №178 (2011): 306-316.

9 T. Ménard, S. Tanguy, A. Berlemont. Coupling level set/VOF/ghost fluid methods: Validation and application to 3D simulation of the primary break-up of a liquid jet. Int. J. Multiphase Flow №33 (2007): 510–524.

10 Ch. Zhang, K. Yang, Zh. Guo. A discrete unified gas-kinetic scheme for immiscible two-phase flows. Int. J. Heat & Mass. Transfer. № 126 (2018): 1326–1336.

11 H. Kusumaatmaja, E.J. Hermingway, S. M. Fielding. Moving contact line dynamics: from diffuse to sharp interfaces. J. Fluid Mech. 778 (2016): 209-227.

12 T. Inamuro, T. Ogata, S. Tajima, N. Konishi. A lattice Boltzmann method for incompressible two-phase flows with large density differences. J. Comput. Phys. 198 (2) (2004): 628–644.

13 D. Jacqmin. Calculation of two-phase Navier-Stokes flows using phase-filed modeling. Journal of Computational Physics 155(1999): 96-127.

14 Z. Guo, C. Zheng, B. Shi. Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys. Rev. E. № 65 (2002): 1–6.

15 P.L. Bhattachar, E.P. Gross, M. Krook. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94 (3) (1954): 511-525.