Prediction of possible DK_1 bound states

Xiang-Kun Dong1,2,a, Bing-Song Zou1,2,3,b

1 CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
3 School of Physics, Central South University, Changsha 410083, China

Received: 4 December 2020 / Accepted: 28 March 2021 / Published online: 20 April 2021
© The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Communicated by Che-Ming Ko

Abstract Stimulated by recent experimental observation of $X_1(2900)$ just below the \bar{D}_1K threshold, we extend our previous study of \bar{D}_1D S-wave bound state by vector meson exchange to \bar{D}_1K system as well as similar DK_1, D_1K and DK_1 systems to look for possible bound states. We find that the potential of DK_1 is attractive and strong enough to form bound states with mass around 3110 MeV for $DK_1(1270)$ and 3240 MeV for $DK_1(1400)$. D_1K is also attractive but weaker, hardly enough to form bound states. While $\bar{D}K_1$ becomes further less attractive, the potential between \bar{D}_1K is the weakest, definitely too weak to form any bound state, which excludes the recently observed $X_1(2900)$ to be a \bar{D}_1K bound state. We also give the decay properties of the predicted DK_1 bound states.

1 Introduction

Two new open flavor states were recently reported by LHCb collaboration [1] in the D^-K^+ final state in $B^+ \to D^+D^-K^+$ with statistical significance much larger than 5σ. The fitted masses and widths are

$X_0(2900) : M = 2866.3 \pm 6.5 \pm 2.0$ MeV/c2
$\Gamma = 57.2 \pm 12.2 \pm 4.1$ MeV/c2

$X_1(2900) : M = 2904.1 \pm 4.8 \pm 1.3$ MeV/c2
$\Gamma = 110.3 \pm 10.7 \pm 4.3$ MeV/c2

with corresponding quantum numbers of $J^P = 0^+$ and 1^-, respectively. They are very interesting and of great importance since if confirmed to be real resonances instead of kinetic effects, each of them consists of at least four (anti)quarks which are beyond the conventional quark model. Up to now dozens of works have made efforts to understand these two states [2–10,10–20]. On one hand, $X_0(2900)$ is explained as a $c\bar{u}u\bar{d}$ compact tetraquark [2–5,21], but this explanation is disfavored by explicit calculation of spectra using extended quark model [6]. On the other hand, $X_1(2900)$ is also regarded as a molecule of D^*K^+ [7–11,13,14,19,22]. It is worth mentioning that in Ref. [23] a bound state of D^*K^+ with $I = 0$, $J^P = 0^+$ whose mass is close to that of $X_0(2900)$ is predicted. Similarly, $X_1(2900)$ is explained as a compact tetraquark [3,7,12–14,19,24], a \bar{D}_1K virtual state [10] or a D_1K bound state [25,26]. Besides, these exotic signals in LHCb’s observation are explained as kinetic effect, namely, triangle singularity in Refs. [15,16]. The conflicts among these different interpretations suggest that more experimental results are needed to pin down the nature of these states.

Since the discovery of $X_{c0}(3872)$ [27] in 2003, plenty of exotic states or candidates are observed experimentally, many of which are close to certain hadron pair thresholds and are explained as hadronic molecules [28]. Note that $X_0(2900)$ and $X_1(2900)$ are about 30 and 10 MeV below D^*K^+ and D_1K threshold, respectively. Therefore, it is natural to explore the existence of D^*K^+ and D_1K molecules, which have already been explored in Refs. [7–10,19] with different methods. In our previous works [29,30] we applied the meson exchange model to DD_1 system to investigate the molecular explanation of $Y(4260)$ and an exotic $I^-\Sigma^+$ molecule has been predicted. We now extend the study to D_1K and D_1K systems to look for possible bound states.

Actually, the states related to $c\bar{s}$ have attract attention since the discovery of $D_{s0}^*(2317)$ [31,32] which is explained as a DK molecule. See Ref. [33] for a review on the spectrum of D_{sJ} mesons. Besides the plenty of phenomenological researches, the direct and indirect calculations on lattice [34–37] provide strong evidences favoring the molecular explanation of $D_{s0}^*(2317)$, which almost settles the dispute on the

ae-mail: dongxiangkun@itp.ac.cn (corresponding author)
be-mail: zoubs@itp.ac.cn
nature of $D^*_0(2317)$. Based on this assumption, more kaonic and charmed meson molecules, including D_1K, are predicted, which are possible interpretations of some observed D_{sJ} states \[38\].

This work is organized as follows. In Sect. 2, the potentials of different systems are derived and the binding energy of possible bound states are calculated. In Sect. 3, the decay patterns of the predicted bound states are estimated. A brief summary is given in Sect. 4.

2 The potentials and possible bound states

The meson exchanged interactions for DK_1 and D_1K systems are illustrated in Fig. 1 respectively. The relevant Lagrangians are collected in the following.

In the light meson sector, the nature of $K_1(1270)$ and $K_1(1400)$ that both are conventional $q\bar{q}$ mesons \[43–50\] or $K_1(1270)$ is a dynamically generated resonance with possible two pole structure \[51–53\], is still controversial and in this work we adopt the former one. Due to the mass difference between u/d and s quarks, the axialvector K_{1A} (3P_1 state) and pseudovector K_{1B} (1P_1 state) mix and generate the two physical resonances $K_1(1270)$ and $K_1(1400)$. Following Ref. \[49\] the mixing is parameterized as

$$
\left(\begin{array}{c}
|K_1(1270)| \\
|K_1(1400)|
\end{array}\right) = \left(\begin{array}{cc}
\cos \phi & -i \sin \phi \\
-i \sin \phi & \cos \phi
\end{array}\right) \left(\begin{array}{c}
|K_{1A}| \\
|K_{1B}|
\end{array}\right)
$$

with the mixing angle ϕ determined to be $(56.4 \pm 4.3)^\circ$.

From chiral perturbation theory, the pseudoscalar-pseudoscalar-vector coupling reads

$$\mathcal{L}_{ppV} = i\sqrt{2} G_V \text{Tr} \left([\partial_\mu P, P] V^\mu \right).$$

and analogously,

$$\mathcal{L}_{AAV} = i\sqrt{2} G'_V \text{Tr} \left([\partial_\mu A^\nu, A_\nu] V^\mu \right)$$

$$\mathcal{L}_{BBV} = i\sqrt{2} G'_V \text{Tr} \left([\partial_\mu B^\nu, B_\nu] V^\mu \right)$$

with

$$P = \left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} \pi^0 + \frac{1}{\sqrt{6}} \eta_8 & \pi^+ & K^+
\\
\pi^- & -\frac{1}{\sqrt{2}} \pi^0 + \frac{1}{\sqrt{6}} \eta_8 & K^0
\\
K^- & \bar{K}^0 & -\frac{2}{\sqrt{6}} \eta_8
\end{array}\right)$$

$$A(B) = \left(\begin{array}{ccc}
* & K^+_{1A(B)} & *
\\
* & K^0_{1A(B)} & *
\\
K^+_{1A(B)} & \bar{K}^0_{1A(B)} & *
\end{array}\right).$$

The coupling constant $G_V \approx 3.0$ was estimated from the decay width of $\rho \rightarrow \pi \pi$ \[54\] and we adopt the approximation $G'_V \approx -G_V$. Note that the irrelevant axialvector and pseudovector states are not shown explicitly in the corresponding multiplet and represented by "*". Expanding Eq. (6) we obtain the couplings between KKV,

$$\mathcal{L}_{\rho KK} = iG_V \left(\bar{K} \tau (\partial_\mu K) - (\partial_\mu \bar{K}) \tau K \right) \rho^\mu,$n\)

$$\mathcal{L}_{\omega KK} = iG_V \left(\bar{K} (\partial_\mu K) - (\partial_\mu \bar{K}) K \right) \omega^\mu,$n\)

$$\mathcal{L}_{\phi KK} = -\sqrt{2} i G_V \left[\bar{K} (\partial_\mu K) - (\partial_\mu \bar{K}) K \right] \phi^\mu$$

with

$$K = \left(\begin{array}{cc}
K^+ \\
K^0
\end{array}\right), \quad \bar{K} = \left(\begin{array}{c}
K^- \\
K^0
\end{array}\right),$$

$$\rho = \left(\begin{array}{c}
\rho^+ + \rho^- \\
\rho^- - \rho^+
\end{array}\right), \quad \bar{\rho} = \left(\begin{array}{c}
\rho^+ + \rho^- \\
\rho^- - \rho^+
\end{array}\right).$$

[\beta_2 = \beta + 0.9 \text{ \[42\]. As analysed in Ref. \[29\],}]
and $\bar{\tau}$ the Pauli matrices in isospin space. The coupling between K_1K_1V has the same form as Eqs. (11, 12, 13).

The potentials in momentum space are

$$V(q) = f_1 g_D g_K \frac{1}{|q|^2 + m_{\psi}^2}$$

(16)

where the involved constants are listed in Table 1. The relative signs of g_D and g_K for different systems are determined by the following facts. It is easy to see that the vector meson exchange yields an attractive potential of DD system and thus DK system is also attractive since c and s quarks are spectators during the interaction. These are consistent with the potentials from the Weinberg–Tomozawa term [55,56]. Therefore, $D\bar{D}_1$, DK_1 and $D_1\bar{K}$ should all have attractive interactions [38], which in turn fixes the potentials of all other related systems. These determined signs are in agreement with the fact that the $Y(4260)$ contains sizeable components of $D\bar{D}_1$ bound state [57,58].

A form factor should be introduced at each vertex to account for the finite size of the involved mesons. Here we take the commonly used monopole form factor

$$F(q, m, \Lambda) = \frac{\Lambda^2 - m^2}{\Lambda^2 - q^2},$$

(17)

which in coordinate space can be looked upon as a spherical source of the exchanged mesons [59]. The potentials in coordinate space can be obtained by Fourier transformation of Eq. (16), together with the form factor Eq. (17),

$$V(r, m_{\psi}) = f_1 g_D g_K \left(m_{\psi} Y(m_{\psi}r) - \Lambda Y(\Lambda r) \right. \right.$$

$$\left. - \frac{1}{2}(\Lambda^2 - m_{\psi}^2) r Y(\Lambda r) \right)$$

(18)

with $Y(\chi) = e^{-\chi}/4\pi\chi$ the Yukawa potential.

The Schrödinger equations for the potentials in Eq. (18) can be solved numerically. Let’s first focus on the isovector system. For DK_1 or $D_1\bar{K}$ system, ρ and ω exchanges have opposite contributions, leading to an almost vanishing potential due to the their degenerated masses, while for $D\bar{K}_1$ or D_1K system, both ρ and ω exchanges yield repulsive potentials. Therefore, no isovector bound states are possible. Isoscalar systems are easier to form bound states. For DK_1 or D_1K system, both ρ and ω exchanges yield attractive potentials. For $D\bar{K}_1$ or $D_1\bar{K}$, the attractive potential from ρ exchange is about three times of the repulsive potential from ω exchange, resulting in a total attractive potential that is about $1/2$ of that of DK_1 or D_1K systems. The binding energies of different systems from numerical calculation are shown in Fig. 2. We can see that when $\Lambda \gtrsim 1.5$ GeV, DK_1 can form bound states while for D_1K a much larger $\Lambda \gtrsim 2.6$ GeV is needed due to the smaller reduced mass. For the $D\bar{K}_1$ system, bound states are possible only when $\Lambda \gtrsim 3.0$ GeV, which is far beyond the empirical region of the cutoff, say $1 \sim 2$ GeV. We fail to find any bound states of $D_1\bar{K}$ with any Λ value. It is worth mentioning that the $X_1(2900)$ with $J^P = 1^-$ might be related to $D_1\bar{K}$ system since they can couple in S-wave and the mass of $X_1(2900)$ is just 10 MeV below the threshold of $D_1\bar{K}$ but our result excludes the possibility of explaining $X_1(2900)$ as a $D_1\bar{K}$ molecule.

The interactions we considered above also work in the DK system. The parameters that produce a DK bound state corresponding to $D_0(2317)$ can also result in a D_1K bound state with a similar binding energy, but cannot bind \bar{D}_1K together.

These calculation can be easily extended to the B_1K and BK_1 cases. The interactions should be the same due to the heavy quark symmetry. For B_1K, the reduced mass is almost the same as that of B_1K and hence a large cutoff $\Lambda \gtrsim 2.6$ GeV is needed to produce bound states. While for BK_1, the reduced mass gets larger than that of DK_1 and hence deeper bound states than DK_1 are expected. For example, the binding energy of $DK_1(1400)$ and $BK_1(1400)$ are 15 and 50 MeV when $\Lambda = 1.8$ GeV.

f_0	f_1	g_D	g_K			
ρ	ω	ρ	ω			
DK_1	3	1	-1	1	$\beta g\sqrt{2}$	$-G_V$
$D\bar{K}_1$	-3	1	1	1	$\beta g\sqrt{2}$	G_V
D_1K	3	1	-1	1	$-\beta g\sqrt{2}$	G_V
$D_1\bar{K}$	-3	1	1	1	$-\beta g\sqrt{2}$	$-G_V$

Table 1 Constants in Eq. (16) for different systems. $f_{1,0}$ is the isospin factors with $I = 0$ or 1. ρ and ω are the exchanged particles. $g_{D,K}$ stands for the $D_{1(i)}D_{1(i)}V/K_{(i)}K_{(i)}V$ coupling constants.
3 The decay properties of DK_1 molecules

With reasonable cutoff we obtain the possible bound states of $DK_1(1400)$ and $DK_1(1270)$, denoted by X, whose binding energies lie in the range of $0 \sim 30$ MeV. It is now desirable to estimate the decay patterns of the predicted molecular states to provide some guidance of their experimental search. We assume that such molecules decay through their components as illustrated in Fig. 3. Since K_1’s have quite large decay widths, we assume that the three-body decays of molecules are dominated by the one shown in Fig. 3 where $P, V = \pi, K^*$ or $K, \rho/\omega$. All possible two-body strong decay channels are listed in Table 2. Note that some exchanged particles in this table are marked by underlines because these diagrams are expected to have much smaller contributions than others. Therefore, we do not consider these diagrams for simplicity.

The coupling between a molecule and its components can be estimated model-independently via Weinberg compositeness criterion [60,61], namely,

$$\mathcal{L}_{\chi DK_1} = yX^\mu D^a \bar{K}_{1\mu}^a + h.c.$$ \hspace{1cm} (19)

with

$$\gamma = 16\pi(m_D + m_{K_1})^{5/2} \sqrt{\frac{2E_b}{m_D m_{K_1}}}.$$ \hspace{1cm} (20)

In the following the binding energy will be fixed to $E_b = 20$ MeV since Eq. (20) mainly contributes an overall factor to the total decay width and has little effect on the branching ratios of different channels.

To describe the transition from DK_1 to final states, the following Lagrangians, besides the ones introduced in the previous section, are needed.

$$\mathcal{L}_{APV} = ia \text{Tr}(A_\mu [V^\mu, P]),$$ \hspace{1cm} (21)

$$\mathcal{L}_{B PV} = b \text{Tr}(B_\mu [V^\mu, P]),$$ \hspace{1cm} (22)

$$\mathcal{L}_{AVV} = a' e^{g_{BDV}} \left(\delta_{sa} K^a_{1,ab} \rho_{\gamma} \bar{K}_{b}^\ast \right)$$

$$+ \delta_{sb} K_{1,ab} \rho_{\gamma} K_{b}^\ast + \cdots$$

$$\mathcal{L}_{AVV} = ib' e^{g_{BDV}} \left(\delta_{sa} K^a_{1,bb} \rho_{\gamma} \bar{K}_{b}^\ast \right)$$

$$- \delta_{sb} K_{1,bb} \rho_{\gamma} K_{b}^\ast + \cdots$$

$$\mathcal{L}_{DDP} = -\frac{2g}{f_\pi} \sqrt{m_D m_{P}} \left(D_b (\partial_\mu P_{ba}) D_{a}^{\mu\dagger} \right)$$

$$- \bar{D}_{a}^{\mu\dagger} (\partial_\mu P_{ab}) D_{b}.$$ \hspace{1cm} (25)

$$\mathcal{L}_{DDV} = i\sqrt{2} g \epsilon_{\alpha\beta\gamma\delta} \left((\delta^\alpha D_a)(\gamma^\beta V_{ab}^\dagger) D_b^{\gamma\dagger} \right)$$

$$- D_a (\gamma^\beta V_{ab}^\dagger) (\delta^\alpha D_b^{\gamma\dagger}) + h.c.$$ \hspace{1cm} (26)

where the coupling constants are $g = 0.3 \sim 0.6$ [39], $f_\pi = 132$ MeV, $\lambda = 0.6$ GeV$^{-1}$ [62]. In Ref. [49] the coupling constants corresponding to the mixing angle $\phi = (56.4 \pm 4.3)^\circ$ are estimated to be $a \approx 1.92 \pm 0.09$ GeV and $b \approx -2.47 \pm 0.08$ GeV. The coupling constants after mixing are listed in Table 3. Unlike a and b determined by partial decay widths of K_1, no direct experimental results are available for a' and b' and we use a quark model approach to estimate them as presented in the Appendix.

When performing the loop integral in the triangle diagram of two-body decays, a Gaussian form factor

$$F_0(p, \Lambda_0) = e^{-p^2/\Lambda_0^2}$$ \hspace{1cm} (27)

and a monopole form factor, Eq. (17), are introduced to the $X DK_1$ vertex and the propagator of the exchanged particle A, respectively. p is the three-momentum of the components in the rest frame of the molecule and Λ_0 plays the role of cutting high momentum components off in the wave function of the molecule.

The results for partial widths of the molecules are listed in Tables 4 and 5. In our model, the absolute values of widths may suffer some uncertainty, resulting from the uncertainty of coupling constants as well as the choice of cutoffs. The former just mainly gives a scaling factor of order one to each channel. The latter one may also change the branching ratios of different channels but it turns out that the dominance of some decay channels is not influenced by the cutoffs. Due to the mixture nature of $K_1(1400)$ and $K_1(1270)$, thecouplings of $K_1 K \rho/\omega$ and $K_1 K^* \pi$ are quite different. For the $DK_1(1400)$ molecule, three-body channel $DK^* \pi$ dominates and $D^* K^*$ channel also has considerable contri-
Table 3 Coupling constants of $K_1(1400)/K_1(1270)\, PV$

	$K_1(1400)$	$K_1(1270)$
$K\rho$	$-a \sin(\phi) - b \cos(\phi)$	$a \cos(\phi) - b \sin(\phi)$
$K\omega$	$\sqrt{1/2}(-a \sin(\phi) - b \cos(\phi))$	$\sqrt{1/2}(a \cos(\phi) - b \sin(\phi))$
$K\phi$	$a \sin(\phi) - b \cos(\phi)$	$a \cos(\phi) + b \sin(\phi)$
$K^*\pi$	$a \sin(\phi) - b \cos(\phi)$	$a \cos(\phi) + b \sin(\phi)$
$K^*\eta$	$\sqrt{3/2} a \sin(\phi) + \sqrt{1/6} b \cos(\phi)$	$-\sqrt{3/2} a \cos(\phi) + \sqrt{1/6} b \sin(\phi)$
$K^*\eta_0$	$-\sqrt{3/2} b \cos(\phi)$	$-\sqrt{3/2} b \sin(\phi)$

Table 4 Partial decay width of the predicted $DK_1(1400)$ molecule. Here cutoffs are in unit of GeV while widths are in unity of MeV. aE/β means $a \times 10^\beta$. For the DK^* channel, the sign of $a'b'$ is not determined and the results for both cases are listed here. Note that the three-body decay widths do not depend on cutoffs.

Final states	$\Lambda_0 = 0.6$	$\Lambda = 1.5$	$\Lambda = 2.0$	$\Lambda = 100$	$\Lambda = 1.5$	$\Lambda = 2.0$	$\Lambda = 100$
D^*K^*	3.15	4.42	7.70	6.03	9.06	18.8	
D^*K	7.1E-4	2.1E-3	0.11	0.020	6.2E-3	0.035	
$DK^*(a'b' > 0)$	7.1E-3	0.012	0.11	0.020	6.2E-3	0.035	
$DK^*(a'b' < 0)$	3.7E-6	6.0E-6	5.7E-5	1.0E-5	3.5E-5	2.5E-4	
DK	1.4E-4	3.4E-4	7.8E-4	9.5E-4	2.2E-3	3.3E-3	
$D\eta$	8.6E-4	2.2E-3	4.1E-3	6.3E-3	0.17	0.022	
$D\eta'$	9.7E-4	2.3E-3	3.7E-3	5.9E-3	0.15	0.019	
$D\phi$	6.8E-3	0.025	0.12	0.018	0.069	0.44	
$D\phi'$	5.7E-3	0.020	0.096	0.014	0.055	0.33	
DK	3.1E-3	6.0E-3	0.013	8.5E-3	0.018	0.048	
$DK\omega$	2.9E-3	4.9E-3	0.011	6.2E-3	0.011	0.030	
$DK\phi$	0.47	0.73	1.35	0.83	1.38	3.11	
$DK\rho$	0.049						
$DK\omega$	0.015						
$DK^*\pi$	27.0						
Total	31	32	36	34	38	50	

bution due to the π exchange. While for the $DK_1(1270)$ molecule, the partial decay widths to D^*K, DK, D_1K, $D_1\eta$, and $D_1\omega$ channels are not that small as the $K_1(1400)$ case because of the much larger coupling of $K_1(1270)\, K\rho/\omega$. Meanwhile the width of three-body channels become much smaller because of either small coupling of $K_1(1270)\, K\pi$ or vanishing phase space for $DK\rho/\omega$ and $DK_0^*(1430)\, \pi$. The finite width of ρ or $K_0^*(1430)$ needs to be considered because $DK_1(1270)$ molecule lies below the threshold of $DK\rho$ or $DK_0^*(1430)\, \pi$ but ρ and $K_0^*(1430)$ have quite large width. Here we consider the four body decay, $DK_1(1270) \rightarrow DK\rho(DK_0^*\pi) \rightarrow DK\pi\pi$ and refer to Ref. [63] for elegant calculations of phase space integration.

4 Summary and discussion

In this work we have calculate the potential between DK_1 or D_1K systems to check if they are possible to form bound states. The interaction between these components are described by vector meson exchange model with effective Lagrangians. It turns out that for isoscalar systems, DK_1 or D_1K are attractive but only in the former case it is possible to form bound states if the cutoff lies in the empirical region. Isovector systems have either repulsive or too weak attractive potentials and therefore, no bound states are expected. The $X_1(2900)$, recently reported by LHCb collaboration, makes it meaningful to explore the possibility of D_1K bound states since they can couple in S-wave and $X_1(2900)$ lies just about 10 MeV below D_1K threshold. Our results show that D_1K system, no matter isoscalar or isovector, can not be bound together via one meson exchange and the explanation of $X_1(2900)$ as a D_1K is disfavored.

The decay properties of the predicted isoscalar DK_1 molecules are calculated by applying Weinberg compositeness criterion. For the $DK_1(1400)$ bound state, due to the large width of $K_1(1400) \rightarrow K^*\pi$, the three-body channel $DK^*\pi$ dominates the total width of the bound states.
Besides, D^*K^* and $D^*_s\phi$ channels are also good places to search for the predicted molecule. While for the $DK_1(1270)$ bound state, it may be rewarding to look at the D^*K^*, D^*K, D_1K, $D_1^*\omega$ and $DK^*\pi$ channels.

The heavy quark symmetry allows one to predicted the corresponding bound states of BK_1 systems, whose binding energy are around 50 MeV and the decay behaviors should be similar to those of DK_1 bound states.

Acknowledgements Helpful discussions with Feng-Kun Guo, Hao-Jie Jing, Yong-Hui Lin and Mao-Jun Yan are acknowledged. This project is supported by NSFC under Grant No. 11621131001 (CRC110 cofunded by DFG and NSFC), Grant No. 11835015, No. 11947302, and by the Chinese Academy of Sciences (CAS) under Grants No. XDB34030303.

Data Availability Statement This manuscript has no associated data or the data will not be deposited. [Author’s comment: The work is a theoretical calculation and there is no data need deposit.]

Appendix A: Estimation of $g_{K_1K^*\pi}$

1 Effective Lagrangian on Hadron Level

The coupling of K_1KV on hadron level can be constructed as

\[\mathcal{L}_{AVV} = a^\prime \epsilon^{\alpha\beta\gamma\delta} \left(\partial_\alpha K^+_{1,\Lambda\beta} \rho^-_\gamma \bar{K}^0_\delta + \cdots \right) \]
\[\mathcal{L}_{BVV} = b^\prime \epsilon^{\alpha\beta\gamma\delta} \left(\partial_\alpha K^+_{1,\Lambda\beta} \rho^-_\gamma \bar{K}^0_\delta - \partial_\alpha K^-_{1,\Lambda\beta} \rho^+_\gamma \bar{K}^0_\delta + \cdots \right). \]

(A3)

We now aim at estimating a^\prime, b^\prime from a, b. Considering the mixing, Eq. (5), we have

\[g_{K_1(1270)K^*\rho} = (a^\prime \cos \varphi + b^\prime \sin \varphi) \]
\[g_{K_1(1400)K^*\rho} = (b^\prime \cos \varphi - a^\prime \sin \varphi). \]

(A5)

(A6)

In the nonrelativistic (NR) limit, the squared amplitudes after sum of polarizations read

\[\frac{1}{2} \sum |M|^2 \approx \begin{cases} (a \text{ or } b)^2 & \text{for } K_1 \to K\rho \\ (a^\prime \text{ or } b^\prime)^2 m_{K_1}^2 & \text{for } K_1 \to K^*\rho \end{cases} \]

(A7)

2 Effective Lagrangian from quark model

Analogous to the quark model describing γN interaction, see Ref. [64] for a detailed discussion, the effective coupling of $K_1K^{(*)}V$ (essentially qqV and we take ρ meson as an example) can be constructed as

\[\mathcal{L} = g \left[2is^j \cdot (k \times \rho) + 2p \cdot \rho \right] \]

(A8)

with g the coupling constant, s the spin operator, ρ the vector field, k the 3-momentum of the vector and q the 3-momentum...
of the quark. This Lagrangian can be derived from the quark level. For a free fermion the Hamiltonian reads

$$H_{\text{free}} = \frac{\not{p}^2}{2m} = \frac{p \cdot p}{2m}. \tag{A9}$$

We introduced the coupling of a vector field to the quark by the following remedy,

$$H = \frac{(\not{p} - g \not{\phi})(\not{p} - g \not{\phi})}{2m} = H_{\text{free}} + H_{\text{int}} \tag{A10}$$

where

$$H_{\text{int}} \approx -g(\not{p} \not{\phi} + \not{\phi} \not{p}) \tag{A11}$$

with

$$\rho_\mu(x) = \int \frac{d^3k}{(2\pi)^3 \sqrt{2E_k}} \left[\epsilon_\mu(k)a_k e^{-ip \cdot x} + \epsilon^*_\mu(k)a^*_k e^{ip \cdot x} \right] \bigg|_{k^0 = E_k} \tag{A12}$$

After contracting with the external vector meson we have

$$H_{\text{int}} \propto -g \frac{e^{ikz}}{\sqrt{2k^0}}(2p \cdot \epsilon^* + \not{k} \not{\phi^*}). \tag{A13}$$

Considering the Dirac representation of γ matrices

$$\gamma^0 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \tag{A14}$$

$$\gamma^i = \begin{pmatrix} 0 & \sigma^i \\ -\sigma^i & 0 \end{pmatrix}, \tag{A15}$$

$$\alpha^i = \gamma^0 \gamma^i = \begin{pmatrix} 0 & \sigma^i \\ \sigma^i & 0 \end{pmatrix}. \tag{A16}$$

we obtain

$$H_{\text{int}} \propto g \frac{e^{ikz}}{\sqrt{2k^0}} \left[2p \cdot \epsilon^* + i\sigma \cdot (k \times \epsilon^*) - 2(p^0 \epsilon^* + k^0 \epsilon) + (k^0 \epsilon^* - \epsilon^0 k) \cdot \alpha \right] \tag{A17}$$

In the NR limit, $\epsilon^0 = 0$, $k^0 = m_\rho$ and $\epsilon^* \cdot \alpha$ mix the large and small components of the spinor. After omitting these terms we obtain

$$H_{\text{int}} \propto g \frac{e^{ikz}}{\sqrt{2m_\rho}} \left[2p \cdot \epsilon^* + i\sigma \cdot (k \times \epsilon^*) \right] \propto e^{ikz} \left[2p \cdot \epsilon^* + i\sigma \cdot (k \times \epsilon^*) \right]. \tag{A18}$$

Note that the first term flips L_z while the second one flips S_z.

The wave functions of related particles are collected in the following:

$$|K_{1A}(1, m)\rangle = \sum_{m_1 + m_2 = m} \langle 1, m_1, 1, m_2 | 1, m \rangle |\Psi_{1, m_1} \chi_{1, m_2}\rangle \tag{A19}$$

$$|K_{1B}(1, m)\rangle = |\Psi_{1, m} \chi_{0, 0}\rangle \tag{A20}$$

$$|K_0(1, m)\rangle = |\Psi_{0, 0} \chi_{0, 0}\rangle \tag{A21}$$

where Ψ and χ represent the spatial and spin wave functions, respectively. Then let’s fix the kinetics. $K_{1A/B}$ decays into $K^{(*)} \rho$ where K_1 is at rest with $P = (m_{K_1}, 0, 0, 0)$ and ρ flies along the z–axis with $k = (m_\rho, 0, 0, k)$. The polarization of ρ, represented by the ϵ in the Lagrangian, reads explicitly

$$\epsilon(1) = -\frac{1}{\sqrt{2}}(1, i, 0) \tag{A22}$$

$$\epsilon(0) = (0, 0, 1) \tag{A23}$$

$$\epsilon(-1) = \frac{1}{\sqrt{2}}(1, -i, 0) \tag{A24}$$

and in turn

$$2p \cdot \epsilon^* + i\sigma \cdot (k \times \epsilon^*) = \begin{cases} \sqrt{2}p_- - \frac{k}{\sqrt{2}}\sigma_- & \text{for } \epsilon(1) \\ 2p_\perp & \text{for } \epsilon(0) \\ \sqrt{2}p_+ + \frac{k}{\sqrt{2}}\sigma_+ & \text{for } \epsilon(-1) \end{cases} \tag{A25}$$

with $\sigma_\pm = \sigma_\uparrow \pm i\sigma_\downarrow$ and $p_\pm = p_\perp \pm ip_\parallel$.

Now the calculation of the amplitude of $K_{1A/B} \rightarrow K^{(*)} \rho$ is straightforward. Let’s first define the following constants

$$l_- = \left|\langle \Psi_{0, 0}|e^{-ikz}\sqrt{2}p_-|\Psi_{1, 1}\rangle\right|^2 \tag{A26}$$

$$l_+ = \left|\langle \Psi_{0, 0}|e^{-ikz}\sqrt{2}p_+|\Psi_{1, 1}\rangle\right|^2 \tag{A27}$$

$$l_0 = \left|\langle \Psi_{0, 0}|e^{-ikz}2p_\perp|\Psi_{1, 0}\rangle\right|^2 \tag{A28}$$

$$s_0 = \frac{k}{2\sqrt{2}}\left|\langle \Psi_{0, 0}|e^{-ikz}|\Psi_{1, 0}\rangle\right|^2 \tag{A29}$$

and then we have

$$\frac{1}{3} \sum |M|^2 = \begin{cases} \frac{4}{9}l_0 = a^2 & \text{for } K_{1A} \rightarrow K\rho \\ \frac{1}{3}(l_+ + l_- + l_0) = b^2 & \text{for } K_{1B} \rightarrow K\rho \\ \frac{1}{3}(s_0 + l_0 + l_0) = 2a^2m_{K_{1A}}^2 & \text{for } K_{1A} \rightarrow K^*\rho \\ \frac{1}{3}s_0 = 2b^2m_{K_{1B}}^2 & \text{for } K_{1B} \rightarrow K^*\rho \end{cases} \tag{A30}$$

$$a = 1.92 \text{ GeV}, b = -2.47 \text{ GeV}, m_{K_{1A}} = 1.36 \text{ GeV} \text{ and } m_{K_{1B}} = 1.31 \text{ GeV} \text{ as inputs yield } |a'| = 1.15 \text{ and } |b'| = 0.73. \text{ The relative sign of } a' \text{ and } b' \text{ cannot be determined within this model.} \tag{A31}$$
