Robust Time Optimization in HD Video Surveillance System

M. Ramamoorthy, N. Ayyanathan, M. Padma Usha, S. Franklin

Abstract: Recent video surveillance systems provide a path to continuously monitor any place at any time. In addition, IP-based surveillance systems help to monitor the place remotely through wide area network. Here the system is designed such that the camera which captures the video act as the front end and the computer which helps as to view the details acts as the client of the system. The main aim of this paper is to increase the transmission time of the IP-based video surveillance system. In this system, we use IP camera to capture the scene and a field-programmable gate array (FPGA) is connected to the local server through the IP network. The FPGA used here is programmed to process the captured video and operate towards effective data transmission in the IP network. The algorithms like connected component labeling, background modeling are analyzed along with High Efficiency Video Coding (HEVC) to enhance the quality of the video captured. In future, updating the designed model using WAP structure the cell phones can be used for the client side of the system. As expected due to the introduction of efficient video coding and IP networking, the transmission time is highly reduced in our proposed system.

Keywords: HEVC; FPGA; Video Surveillance; Image Enhancement.

I. INTRODUCTION

The Internet and its conventions have experienced various improvements to make this advancement conceivable. Exchanging ongoing video on the web requires amazing methods to accomplish great quality video streams even at low bitrates. The universal institutionalization of these procedures is essential so as to make the applications interoperable. This paper investigates the present condition of strategies and measures utilized in transmission of ongoing video on the Internet. One of the advantages of IP video observation innovation, contrasted and conventional simple video hardware, is that advanced video is compacted and transmitted crosswise over standard Ethernet systems utilizing IP which is a similar convention utilized in corporate systems and the Internet. During the most recent couple of years, the fast development of computerized innovation has delivered refined cameras, which can legitimately record superior quality advanced recordings.

Revised Manuscript Received on July 22, 2019

M. Ramamoorthy, Department of CSE, Bharath Institute of Higher Education and Research, Chennai, Tamilnadu, India.

N. Ayyanathan, Department of CSE, B.S. Abdur Rahman Crescent. Institute of Science & Technology, Chennai, India

M. Padma Usha, Department of CSE, B.S. Abdur Rahman Crescent. Institute of Science & Technology, Chennai, India

S. Franklin, Student, Department of CSE, Bharath Institute of Higher Education and Research, Chennai, Tamilnadu, India.
Robust Time Optimization in HD Video Surveillance System

Technology, Tao Li, Office of Student Administration Hunan University of Science and Technology, China, 2011. Quality transmissions, Realizations for video transmission. Video Enhancement for Medical and Surveillance Applications by Ramamoorthy et al. [21]. Proposed the figuring of foundation subtraction utilizing dynamic edge and a blend of Gaussian three fascinating strategies were utilized sensibly for article acknowledgment and analyzed their reason of execution on the exact locale and area. In laparoscope restorative methodology, a camera and light offer examination to the expert, who sees the comprehensive and video redesigned cautious portions on a TV screen. The video discernment framework outlines contrasts, after the thing cutting edge response, and development were settled.

III. SYSTEM ARCHITECTURE

The figure represents the IP based video surveillance system architecture.

Here the IP camera captures the video from the point of abstraction and transferred towards the FPGA board where its interfaced. In FPGA based on the predefined algorithm to process the video noise reduction, enhancement, compression and coding were carried out and transferred to the client through the IP network. From the IP network the video can be retrieved and displayed through an embedded system or connected to the cell phone through WAP architecture.

The video transmission from the purpose of catch to the end show subjects to different changes. The initial phase in the process is to examine the caught simple video flag. The investigation can incorporate tasks, for example, sifting, simple to computerized change, calculation of change coefficients, or connection of the pixels with prestored vector quantization designs. A yield precision of such an examination shifts ordinarily from 8 to 12 bits. Generally no pressure is finished with the investigation. Information is just changed to an arrangement that is more compressible than the first flag group. The second step performs quantization of the flag, either lossless or lossy way. In a lossy framework the quantizer lessens flag exactness such that is satisfactory as conceivable to the eye. In the variable length coding obstruct each flag occasions will have a code with various number of bits. To get pressure, short codes are relegated to as often as possible happening occasions and long codes to inconsistent occasions.

![System Architecture Diagram](image)

Fig. 1: System Architecture

![Functional Diagram for Video Data Transmission](image)

Fig. 2 Functional diagram for video data transmission

The most mind boggling some portion of a codec is the pack/decompress work. Codecs can do their work by equipment yet in addition by programming with quick processors. The primary objective of coding is the bit-rate decrease for capacity and transmission of the video source while holding video quality comparable to conceivable. There are various worldwide norms and furthermore numerous exclusive systems for advanced video pressure. The essential thought behind video pressure is to expel spatial excess inside a video edge and fleeting repetition between contiguous video outlines. This framework is increasingly adaptable and it very well may be expanded further at any reason. Additionally the expense of the framework is likewise exceptionally low when contrasted with some other frameworks.

IV. DESIGN AND IMPLEMENTATION

In order to enhance the resolution and to reduce the transmission time several algorithms are performed in the hardware. In this system three algorithms are analyzed to optimize the performance and to design the system more efficient. In the following Section we discuss about the BM and CCL and HEVC algorithms in detail.
A. Background Modelling:
The main aim of the BM is to find whether the considered pixel represents Background or Foreground. The Bayes model is used to find whether the given pixel represents background or foreground. This model computes the Bayes factor which is ratio of probability of the current pixel to be foreground or background. The Bayes factor is given by

\[R = \frac{P(\text{foreground})}{P(\text{background})} \]

Where \(R \) is the pixel that is considered at the time \(t \). If the value of \(R \) is small then the pixel belongs to the foreground and if the value of \(R \) is large then the pixel is considered to be the background data. The threshold value is fixed to consider the pixel is background or foreground.

The architecture of BM is given by,

![BM architecture](image)

In this system we are considering for the video so the scene changes continuously so the pixel consideration also will change continuously.

The GMM with \(M \) components is given by

\[p(x^{(t)}|X,BG + FG) = \sum_{m=1}^{M} \pi_m N(x^{(t)}, \mu_m^{(t)}, \sigma_m^{(t)}) \]

Figure 3: BM architecture

B. Connected Component Labeling (CCL):
The associated part naming calculation is utilized to identify the associated district out of sight twofold pictures.

All the conceivable associated squares are acquired once after the setting the edge esteem. There are numerous calculation is utilized to perform CCL. Run-length encoding calculation is utilized to decrease certain successive tasks additionally it diminishes the handling time yet the multifaceted nature increments when it is performed in the FPGA. We use improved two pass calculation, in this calculation we filter a foundation picture in the raster style. A brief name to the picture pixel is given at the main pass and the changeless name is given to the picture pixel at the second pass.

The design for the CCL calculation that utilized in this framework is given by,

Figure 5: CCL work flow

This calculation lessens the multifaceted nature to work with FPGA and has less computational unpredictability.

To spare preparing time, the regressive output is done trailed by the forward sweep. Around 1650 pixel timekeepers is utilized to transmit one line of 720p recordings, 1280 pixel clock is considered for forward checking process. What's more, just 370 pixel is staying for the regressive filtering. As appeared in the figure once the forward checking finished it is put away in the SDRAM. What's more, the last mark is gotten by the comparable table in the second procedure of naming.

C. HEVC Coding Design:
The main aim of the HEVC coding is coding efficiency, to ease the transport system and data loss resilience. In this algorithm each image is spitted to several blocks. First the sequence of video is coded using intra picture prediction method. The video encoded using HEVC has no external coding features. This coding standard provides about 50% increased quality of the video surveillance.

The overall work flow of the HEVC coding design is as shown in the figure.
This algorithm mainly used to reduce the redundant pixels in the same frame or in the multiple frame. And this algorithm is newest of all video coding standard of the video experts group. HEVC significantly increases the compression efficiency. The video coding standard HEVC/H.265 is up-gradation of H.264/MPEG-4 AVC. HEVC is mainly used in many other applications like Television signals transmitted through cable, satellite, mobile network, internet, Blu-ray Discs, video conferencing, video chat and Interactive systems. Also the syntax of HEVC is more generic so that it can be used for other application also and not only for the above applications.

The below plot indicates the HEVC standard clearly outperforms with its predecessors in terms of coding efficiency.

In order to design a VA algorithm an extensive experiments are carried out. The algorithms are tested using PETS2001 dataset and the real time video is captured using IP cameras. The dataset PETS2001 has the resolution of 768 X 576. The processing frames of CCL and BM is represented in the following.
The resource usage of FPGA implementation is given in the following table. We can see that the FPGA performs very well in both 720p and 1080 p resolution. 'Na' represents that the time usage can be ignored.

TABLE II

SYSTEM	TIME USAGE	RESOURCE USAGE
		LUTs
		REGs
BM	16.67ms	5066
CCL	33.33ms	10937
Single view tracking	19.73ms	2676
others	NA	4728
TOTAL	33.3ms	23407

VI. CONCLUSION

In this paper we proposed a system that enhance the video captured in the surveillance using HEVC, BM and CLL algorithms. The design of the system includes high quality IP camera interfaced to the FPGA array to connect with IP network Here different algorithms are examined using FPGA so that to achieve enhancement of video resolution and reduction of latency time. The system is further can be extended and connected to the mobile phones using the WAP server through the wireless gateway.

REFERENCES

1. Kumaravel A., Rangarajan K.,Algorithm for automation specification for exploring dynamic layouts, Indian Journal of Science and Technology, V.6-I-SUPPL,PP-4554-4559,2013
2. P. Kavitha, S. Prabakaran “A Novel Hybrid Segmentation Method with Particle Swarm Optimization and Fuzzy C-Mean Based On Partitioning the Image for Detecting Lung Cancer” International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249-8958, Volume-8 Issue-5, June 2019
3. Kumaravel A., Meetei O.N., An application of non-uniform cellular automata for efficient cryptography, 2013 IEEE Conference on Information and Communication Technologies, ICT 2013, V.-I-PP-1200-1205,Y-2013
4. Kumarave A., Rangarajan K., Routing algorithm over semi-regular tessellations, 2013 IEEE Conference on Information and Communication Technologies, ICT 2013, V.-I-PP-1180-1184, Y-2013
5. P. Kavitha, S. Prabakaran “Designing a Feature Vector for Statistical Texture Analysis of Brain Tumor” International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249-8958, Volume-8 Issue-5, June 2019
6. Dutta P., Kumaravel A., A novel approach to trust based identification of leaders in social networks, Indian Journal of Science and Technology, V.9-1-10, PP.-Y-2016
7. Kumaravel A., Dutta P., Application of Pca for context selection for collaborative filtering, Middle - East Journal of Scientific Research, V.20-1-I-PP-88-93, Y-2014
8. Kumaravel A., Rangarajan K., Constructing an automaton for exploring dynamic labyrinths, 2012 International Conference on Radar, Communication and Computing, ICRC 2012, V.-I-PP-161-165,Y-2012
9. P. Kavitha, S. Prabakaran “Adaptive Bilateral Filter for Multi-Resolution in Brain Tumor Recognition” International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075, Volume-8 Issue-8 June, 2019
10. Kumaravel A., Comparison of two multi-classification approaches for detecting network attacks, World Applied Sciences Journal, V.27-1-I-PP-1461-1466, Y-2013
11. Taqi J., Kumaravel A., Construction of cellular automata over hexagonal and triangular tessellations for path planning of multi-robots, 2016 IEEE International Conference on Computational Intelligence and Computing Research, ICCIC 2016, V.-I-PP.-Y-2017
12. Sudha M., Kumaravel A., Analysis and measurement of wave guides using poisson method, Indonesian Journal of Electrical Engineering and Computer Science, V.8-1-I-PP-546-548, Y-2017
13. Ayyappan G., Nalini C., Kumaravel A., Various approaches of knowledge transfer in academic social network, International Journal of Engineering and Technology, V.-I-PP-2791-2794, Y-2017
14. Kaliyamurthie, K.P., Sivaraman, R., Ramesh, S., Imposing data privacy in wireless medical sensor networks through homomorphic cryptosystems, 2016, Journal of Chemical and Pharmaceutical Sciences 9 2.
15. Kaliyamurthie, K.P., Balasubramanian, P.C. An approach to multi secure to historical malformed documents using integer ripple transfiguration 2016 Journal of Chemical and Pharmaceutical Sciences 9
16. A.Sangeetha, C.Nalini, “Semantic Ranking based on keywords extractions in the web”, International Journal of Engineering & Technology,7 (2.6) (2018) 290-292
17. S.V. Gayathri Devi, C. Nalini, N. Kumar, "An efficient software verification using multi-layered software verification tool" International Journal of Engineering & Technology, 7(2.21)2018 454-457
18. C.Nalini, Shwetambari Khare, "A Comparative Study On Different Techniques Used For Finger – Vein Authentication", International Journal Of Pure And Applied Mathematics, Volume 116 No. 8, 2017, 327-333, Issn: 1314-3395
19. M.S. Vivekanandan and Dr. C. Rajabhusanam, “Enabling Privacy Protection and Content Assurance in Geo-Social Networks”, International Journal of Innovative Research in Management, Engineering and Technology, Vol 3, Issue 4, pp. 49-55, April 2018.
20. Dr. C. Rajabhusanam, V. Karthik, and G. Vivek, “Elasticity in Cloud Computing”, International Journal of Innovative Research in Management, Engineering and Technology, Vol 3, Issue 4, pp. 104-111, April 2018.
21. K. Rangaswamy and Dr. C. Rajabhusanam, “CCN-Based Congestion Control Mechanism In Dynamic Networks”, International Journal of Innovative Research in Management, Engineering and Technology, Vol 3, Issue 4, pp. 117-119, April 2018
22. Kavitha, R., Neduvelil, R., “Domain-specific Search engine optimization using healthcare ontology and a neural network backpropagation approach”, 2017, Research Journal of Biotechnology, Special Issue 2:157-166
23. Kavitha, G., Kavitha, R., “An analysis to improve throughput of high-power hubs in mobile ad hoc network”, 2016, Journal of Chemical and Pharmaceutical Sciences, Vol-9, Issue-2: 361-363
24. Kavitha, G., Kavitha, R., “Dipping interference to supplement throughput in MANET”, 2016, Journal of Chemical and Pharmaceutical Sciences, Vol-9, Issue-2: 357-360
25. Michael, G., Chandrasekar, A., “Leader election based malicious detection and response system in MANET using mechanism design approach”, Journal of Chemical and Pharmaceutical Sciences(JCPS) Volume 9 Issue 2; April - June 2016.
26. Michael, G., Chandrasekar, A., “Modeling of detection of camouflaging worm using epidemic dynamic model and power spectral density”, Journal of Chemical and Pharmaceutical Sciences(JCPS) Volume 9 Issue 2, April - June 2016.
27. Pothumani, S., Sriman, M., Sridhar, J., Arul Selvan, G., Secure mobile agents communication on
Robust Time Optimization in HD Video Surveillance System

Pothumani, S., Sriram, M., Sridhar, A various schemes for database encryption-a survey. Journal of Chemical and Pharmaceutical Sciences, volume 9, Issue 3, Pg No S103-S106, 2016

Pothumani, S., Sriram, M., Sridhar, A novel economic framework for cloud and grid computing. Journal of Chemical and Pharmaceutical Sciences, volume 9, Issue 3, Pg No S29-S31, 2016

Priya, N., Sridhar, J., Sriram, M. “E-commerce Transaction Security Challenges and Prevention Methods- New Approach” 2016, Journal of Chemical and Pharmaceutical Sciences, JCPS Volume 9 Issue 3, page no:S66-S68.

Priya, N., Sridhar, J., Sriram, M. “Vehicular cloud computing security issues and solutions” Journal of Chemical and Pharmaceutical Sciences (JCPS) Volume 9 Issue 2, April - June 2016

Priya, N., Sridhar, J., Sriram, M. “Mobile large data storage security in cloud computing environment- a new approach” JCPS Volume 9 Issue 2, April - June 2016

Anuradha.C, Khanna.V, “Improving network performance and security in WSN using decentralized hypothesis testing” Journal of Chemical and Pharmaceutical Sciences (JCPS) Volume 9 Issue 2, April - June 2016.

Anuradha.C, Khanna.V, “A novel gsm based control for e-devices” Journal of Chemical and Pharmaceutical Sciences (JCPS) Volume 9 Issue 2, April - June 2016.

Anuradha.C, Khanna.V, “Secured privacy preserving sharing and data integration in mobile web environments ” Journal of Chemical and Pharmaceutical Sciences (JCPS) Volume 9 Issue 2, April - June 2016.

Sundarraj, B., Kaliyamurthie, K.P. Social network analysis for decisive the ultimate classification from the ensemble to boost accuracy rates 2016 International Journal of Pharmacy and Technology 8

Sundarraj, B., Kaliyamurthie, K.P. A content-based spam filtering approach victimisation artificial neural networks 2016 International Journal of Pharmacy and Technology 8, 3.

Sundarraj, B., Kaliyamurthie, K.P. Remote sensing imaging for satellite image segmentation 2016 International Journal of Pharmacy and Technology 8, 3.

Sivaraman, K., Senthil, M. Intuitive driver proxy control using artificial intelligence 2016 International Journal of Pharmacy and Technology 8, 4.

Sivaraman, K., Kaliyamurthie, K.P. Cloud computing in mobile technology 2016 Journal of Chemical and Pharmaceutical Sciences 9, 2.

Sivaraman, K., Khanna, V. Implementation of an extension for browser to detect vulnerable elements on web pages and avoid click jacking 2016 Journal of Chemical and Pharmaceutical Sciences 9, 2.

AUTHORS PROFILE

M. Ramamoorthy, Department of CSE, Bharath Institute of Higher Education and Research, Chennai, Tamilnadu, India

N.Ayyanathan, Department of CSE, B.S. Abdur Rahman Crescent. Institute of Science & Technology, Chennai, India

M.Padma Usha, Department of CSE, B.S. Abdur Rahman Crescent. Institute of Science & Technology, Chennai, India

S.Franklin, Student, Department of Computer Science & Engineering, Bharath Institute of Higher Education and Research, Chennai, India