HABNet: Machine Learning, Remote Sensing Based Detection and Prediction of Harmful Algal Blooms

P.R. Hill, Member, IEEE, A. Kumar, M. Temimi and D.R. Bull, Fellow, IEEE.

Abstract—This paper describes the application of machine learning techniques to develop a state-of-the-art detection and prediction system for spatiotemporal events found within remote sensing data; specifically, Harmful Algal Bloom events (HABs). We propose an HAB detection system based on: a ground truth historical record of HAB events, a novel spatiotemporal datacube representation of each event (from MODIS and GEBCO bathymetry data) and a variety of machine learning architectures utilising state-of-the-art spatial and temporal analysis methods based on Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) components together with Random Forest and Support Vector Machine (SVM) classification methods.

This work has focused specifically on the case study of the detection of Karenia Brevis Algae (K. brevis) HAB events within the coastal waters of Florida (over 2850 events from 2003 to 2018; an order of magnitude larger than any previous machine learning detection study into HAB events).

The development of multimodal spatiotemporal datacube data structures and associated novel machine learning methods give a unique architecture for the automatic detection of environmental events. Specifically, when applied to the detection of HAB events it gives a maximum detection accuracy of 91% and a Kappa coefficient of 0.81 for the Florida data considered.

A HAB forecast system was also developed where a temporal subset of each datacube was used to predict the presence of a HAB in the future. This system was not significantly less accurate than the detection system being able to predict with 86% accuracy up to 8 days in the future.

Index Terms—Harmful Algal Blooms, Deep Learning, CNNs, LSTMs, Random Forest, SVM

I. INTRODUCTION

Algal Blooms are defined as high concentrations of phytoplankton (algae). Harmful Algal Blooms (HABs) are problematic algal blooms causing toxicity and associated environmental impacts. Often termed “Red Tides”, HABs have been a significant world-wide research topic over three decades [1]–[7].

They continue to be of major concern, not only due to their considerable environmental and societal impact but also a recent significant increase in frequency reported around the world [2].

HABs can cause severe environmental and human health problems together with associated economic impacts. Environmental impacts include mass fish stock and marine wildlife kills. Human impacts include toxic reactions to affected seafood and in extreme cases, fatalities. Economic impacts include adverse effects on beach and coastal tourism based activities together with impacts on coastal based industries (e.g. fishing). Within the United States alone, HABs cause an estimated annual economic loss of at least $82 million [8].

Many factors have been cited as causes of HABs but are generally caused by favourable environmental conditions, including increasing nutrient levels [9], light availability [10] water column stratification and/or changes in water temperature [11].

Conventionally, the measuring of algae concentrations has relied on direct water sampling for lab-based cell taxonomy. These manual methods of detection and analysis are extremely labour intensive and are limited spatially and temporally [12]. Conversely, remote sensing based detection methods have excellent coverage in time and space and offer analysis systems that are not labour intensive. However, remote sensing based detection methods often rely on estimated remote sensing products such as Chlorophyll-Chl-a that themselves may be unreliable estimates and not a direct measurement (and therefore not precisely accurate) of cell concentrations.

HABs have a spatiotemporal footprint that ranges from weeks and months to months and from a few square kilometres to thousands of square kilometres [2], [13]. It is implicit that these HABs are spatially and temporally dependent and for the most effective detection and prediction a combined spatial and temporal analysis is required.

A. Background and Contributions

HAB monitoring and forecasting using remote sensing data was first proposed by Steidiner and Haddad in 1981 [1] utilising data from the Coastal Zone Color Scanner (CZCS) sensor onboard Nimbus-7, operational during the 1970s and 1980s.

This work subsequently led to a large number of remote sensing detection, monitoring and forecasting systems developed for more recent sensors and satellites such as MODIS-Aqua, MODIS-Terra, SeaWiFS, MERIS and more recently Sentinel-3 [2]. The methods used for detection, monitoring and forecasting of HAB events have included: reflectance band-ratio based detection; reflectance classification (using anomaly detection); satellite product based detection (using thresholds etc.); and spectral band differences.

The most successful and important methods for HAB detection have used spectrally derived products such as Chl-a (Chlorophyll concentration estimate), as phytoplankton increases the backscattered light within pigment absorption spectral frequencies. An excellent review of these historical and current methods, sensors and satellites is given by Blondeau-Patissier et al. [2].

There is currently no nationwide or international HAB forecasting system for HABs. However, there are specific areas covered by HAB forecasting systems such as NOAA’s HAB forecasting systems (HAB Operational Forecast System: HAB-OFS) for the Florida region [14]. However, this system only forecasts up to 4 days, focuses mainly on the human impact of HABs (respiratory effects etc.) and does not use trained machine learning, capable of generating the most effective predictions. The HABS Observing System (HABSOS) is a detailed observation system of HABs...
within the Gulf of Mexico has also been developed by NOAA \[15\].
HAB-OFS and HABSOS provide forecasts to stakeholders such as local resource and environmental managers, the seafood industry and those managing tourism activities.

Within this paper, state-of-the-art supervised machine learning systems are proposed for HAB detection and prediction within the region of the Gulf of Mexico and also in an alternative case study within the Arabian Gulf.

We conjecture that large scale spatial patterns play an extremely significant role in the effective detection and prediction of HABs. We have therefore utilise machine learning tools that not only effectively characterise spatial patterns but combine them with time series analysis machine learning tools such as LSTMs.

B. Contributions

The contributions of this paper are as follows:

- The definition, pre-processing and analysis of a large ground truth database of positive and negative HAB events
- The creation of a flexible “datacube” supervised training structure for machine learning detection and forecasting of HABs
- The demonstration of the use of state of the art machine learning techniques to generate optimal detection and prediction performance of HABs using the datacube supervised learning structure
- The evaluation of state-of-the-art machine learning techniques including a range of deep network architectures and topologies.
- The extraction of a range of features from satellite modalities. Additionally, the performance of the features in terms of their contribution to the correct classification of HAB events is ranked and the feature ranks analysed.
- The analysis of the forecasting ability of the system using a varying number of days into the future (see Fig. 4)
- The analysis of the ability of the system to detect HABs for a varying number days in the future (see Fig. 3)
- Development of a highly effective and efficient HAB detection and prediction system that could be integrated within a GIS system for flexible detection, prediction and visualisation of HABs

This paper is organised as follows. Section II gives an overview of the problem and applicable machine learning systems. Section III gives an overview of the proposed HAB detection and prediction methods. Section IV describes the “datacube” datastructure and the creation of a large number of datacubes from the ground truth database. Section V then describes the pre-processing of the datacubes in order to make them ready to be ingested into the machine learning system. Then section VI describes and illustrates the created machine learning structure and section VII illustrates how important each modality/feature are for the classification. The classification results are given and discussed within section VIII. An alternative case study (HABs in the Arabian Gulf) is investigated in section IX. Finally, a conclusion is given in section X.

II. REVIEW OF HAB DETECTION METHODS

Previous remote sensing based HAB detection methods have, in the majority of cases used spatially isolated and single satellite sensor data samples. Many methods have been developed for HAB detection utilising a wide range of satellite sensors and bands.

Many common methods of HAB detection are currently based on Chlorophyll concentration products, as Chl-a is in many cases, a very accurate proxy of local algal activity. Phytoplankton is the primary water constituent \[16\], \[17\] thus, Chl-a can often be accurately estimated using the water-leaving reflectance using relationships (such as remote sensing band-ratios) for data from sensors such as SeaWiFS, MERIS and MODIS \[18\], \[19\]. The accuracy of estimating Chl-a by remote sensing sensors have aimed to be within ±35% in deep waters \[2\]. However, this accuracy has not always been found to have been met by simply using band-ratio algorithms (e.g. Moore et al. \[20\]).

These simplistic methods in many cases suffer from a large quantity of false positive detections. The most effective updates to these methods further consider measures of Carbon Dissolved Organic Matter (CDOM) utilising backscattering data from SeaWiFS and MODIS \[21\], \[22\].

HAB detection using these products often use a Chlorophyll anomaly measure that characterises the difference between today’s Chl-a and a background (often monthly or bi-monthly) average concentration \[3\], \[4\], \[23\]. This method is also known as background subtraction \[23\].

Another method of reducing the false positives associated with Chl-a HAB detection is the backscattering ratio algorithm \[21\], \[22\]. This algorithm utilises a thresholded ratio formed from Rrs(555) and Chl-a.

Other optical methods have also been used such as the Spectral Shape (SS) algorithm \[24\]. This system was proposed to discriminate *K*.brevis from other blooms creating high Chl-a values. Alternative methods have used both MODIS derived Fluorescence Line Height (FLH) products and locally tuned algorithms to accommodate common inaccuracies in Chl-a estimation in shallow coastal regions \[22\].

There are only a limited number of machine learning based HAB detection/prediction systems reported in the literature. Support Vector Machines (SVMs) have been proposed for this application by Li et al. \[25\] and Song et al. \[7\]. Spatiotemporal analysis using machine learning methods have also been proposed by Gokaraju et al. \[5\], \[6\]. Other non-machine learning methods have been proposed for HAB monitoring, detection and prediction (e.g. \[26\] and those described within \[2\]). Machine learning techniques have also been combined with GIS methods to produce interactive predictions \[27\].

Our work describes the definition of a unique datacube data structure for supervised machine learning of spatiotemporal events; specifically HAB events together with a novel machine learning architecture to provide optimal HAB event classification and prediction performance.

A. Applicable Machine Learning Methods

Due to improved neural network models and methods combined with improvements in computational power and the availability of extremely large ground truth datasets, image classification performance has recently shown dramatic improvements \[28\]. Deep Convolutional Neural Networks (CNNs) are now commonly used, simple to understand and highly effective neural networks for image classification and characterisation \[29\]–\[32\].

Recurrent Neural Networks (RNNs) \[33\] have been used for state-of-the-art classification and characterisation of temporally based signals. LSTMs (Long Short-Term Memory) are the dominant RNN form able to characterise and model both long and short term
dependencies in temporal information \cite{33, 35}. LSTM methods have given excellent results in many temporal characterisation problems. However, more recently alternative methods based on the concept of “Attention” have given better results in many cases \cite{36}.

HAB detection requires both spatial and temporal classification. Previous spatiotemporal characterisation methods such as video sequence classification \cite{37} and multiview classification \cite{38} have used and combined CNN and LSTM architectures. HAB event characterisation is different from these methods as the input imaging data is multimodal (in our case it has twelve dimensions). We propose a novel architecture that modifies these previous machine learning models and methods to take into account of the multi-modal inputs.

Given that the temporal range investigated within the datacubes (see below) is small, we have also investigated flattening the time series sequences and utilised simple high performance non-network classifiers as a last stage: Random Forests \cite{39}; Support Vector Machines \cite{40}; and non-temporal, fully connected networks (Multi Layer Perceptrons: MLPs).

III. PROPOSED HAB DETECTION SYSTEM

The proposed HAB detection system uses a supervised machine learning method. Supervised machine learning requires a detailed ground truth dataset i.e. labelled positive and negative HAB events defined in time and location together with characterising remote sensing data.

We have obtained some very large HAB event datasets from:

FWC: Florida Fish and Wildlife Conservation Commission \cite{41}

PMN: The Phytoplankton Monitoring Network \cite{42}

HAED: The Harmful Algal Event Database \cite{43}

We have selected the data from the Florida Fish and Wildlife Conservation Commission (FWC) as the dataset is extremely large (of both positive and negative HAB events) together with spanning the dates between 2001 and 2018.

We have chosen a subset of the FWC data from 2003 to June 2018 as it can be effectively characterised by the flight times and data availability of MODIS-Aqua and MODIS-Terra satellites and sensors. More recent and up-to-date satellite sensors such as Sentinel-3 have only recently become active and therefore do not have a large amount of historical sensor data covering the date range within the ground truth.

Only \textit{K. brevis} algae events were extracted from this dataset in order to provide a tractable solution (\textit{K. brevis} is considered to be the most serious cause of HAB events within the Gulf of Mexico region).

In order to further reduce the size of the dataset an HAB event was considered to have occurred when the event count algae abundance in cells/litre is in excess of 50,000. This is chosen as it was the threshold used in previous work by Gokaraju et al. \cite{5}. The selection of \textit{K. brevis} events and the 50,000 threshold led to the number of positive events being 1755 (between 2003 and 2018). 1114 negative events were selected from the entire dataset where the algae count in cells/litre were 0. It was assumed that the sampling positions and times for the positive and negative events were equivalent (i.e. there was no discrimination possible between the times and places sampled and found to be either positive or negative). Fig. 1 shows the spatial distribution of a selection of these positive events with the circle size reflecting the cells/litre count.

IV. DATA CUBES FOR HAB DETECTION

The most effective characterisation of HAB events for HAB event detection needs a “datacube” of remote sensing data that surrounds each HAB event in time and space.

Previous datacube protocols, methods and codebases have been defined and implemented (e.g. Mahecha et al. \cite{44}). However, these datacubes are unable to give the required structure and/or access to remote sensing data surrounding spatially and temporally localised events.

We have therefore developed a novel datacube definition as illustrated in Fig. 2. Each datacube associates a range of modalities within a spatial and temporal neighbourhood of each data point with the positive and negative HAB ground truth database, i.e. there is a spatiotemporal window defined (in metres and days) surrounding the central ground truth location (in latitude, longitude and date).

![Fig. 2: Structure of a datacube used in this paper](image)

Extraction of remote sensing data is enabled using NASA’s CMR Common Metadata Repository (CMR) search facility \cite{45}. OB.DAAC L2 satellite file granule names are obtained given a target
latitude and longitude and date of an HAB event. These granules, in NetCDF format, are downloaded and the datacube components are extracted within the spatial and temporal neighbourhood of each HAB event. Datacube generation is summarised in Algorithm 1 below.

Algorithm 1: Creation of ML Datacube

Input: Groundtruth File

for ∀ HAB events in Groundtruth File do
 Extract HAB event Lat, Lon, Date Window
 for ∀ List of Modalities do
 Generate list of granules using NASA CMR search (within 10 days previously of HAB event date)
 for ∀ NetCDF Granules in Date Range do
 wget NetCDF Granule
 Extract modality data in spatial window
 Place cropped data in output Datacube
 end
 end
end

Output: Datacube

Fig. 3: Structure of HABNet Machine Learning system for datacube classification: CNN spatial characterisation followed by either temporal classification by LSTM or non-temporal classification using Multi-Layer Perceptron (MLP), Support Vector Machines (SVMs) or Random Forest (RF) time series classification.

Fig. 4: Variation in temporal prediction structure using datacubes: All uses the entire captured datacube. pred\(_{2,4,6,8}\) sequences vary the number of days into the future for the training set i.e. when testing, the models can predict multiple days into the future. short\(_{2,4,6,8}\) sequences vary the number of days trained but do not predict into the future. This illustrates how the number of days in the training set affects classification.

TABLE I: List of Utilised Modalities

Modality	Description
1	Bathymetry (GEBCO quantised from 500m grid [46])
2	MODISA Bimonthly Chl-a (Estimated Chlorophyll concentration)
3	MODISA Chl-a (Estimated Chlorophyll concentration)
4	MODISA Rrs(412)
5	MODISA Rrs(443)
6	MODISA Rrs(488)
7	MODISA Rrs(531)
8	MODISA Rrs(555)
9	MODISA PAR (Daily Mean Photosynthetically Available Radiation)
10	MODISA SST (Sea surface Temperature)
11	MODIST Chl-a (Estimated Chlorophyll concentration)
12	MODISA Background Anomaly (3-2)

A. Selected Modalities

The datacube architecture and the subsequent machine learning processes should be flexible in supporting a wide range of input modalities. However, to make the system tractable and utilise data that is available across the whole temporal range of the ground truth, only selected sensor data from MODIS-Aqua and MODIS-Terra has been used. Although using both of these satellite sensors provides improved temporal resolution, redundancy of information has led to only Chl-a being used from MODIS-Terra (due to a redundancy of information and the degradation of the Terra sensor over time relative to the Aqua sensor). Higher level (higher than level-2) products were not considered as they lacked the temporal and spatial resolution required for effective HAB detection and prediction. The level-2 products utilised are illustrated in Table I.

Although there is possibly redundancy between the chosen bands and products such as Chl-a, the inclusion of these bands
was intended to provide fine-grain classification and discrimination for the use of this key available data. All these modalities have been used by previous spatiotemporal HAB detection methods [3, 6]. Bathymetry obviously did not vary over time, but the same modality format was used as shown where the image samples were resampled/interpolated to be co-located as the images of the other modalities. Bathymetry was chosen as it has been noted that estimated Chlorophyll concentrations are often inaccurate in shallow water. Including bathymetry should allow the machine learning algorithm to characterise such variations. A list of the utilised modalities are shown in Table I.

V. PRE-PROCESSING OF DATACUBES

In order to utilise the high-performance characterisation performance of pre-trained image based CNNs, the sparse input data of the datacubes were reprojected to a spatially consistent UTM raster image (using the standard WGS84 Ellipsoid).

The spatial representation of the input raster formats within the level-2 MODIS based products are not spatially consistent and therefore not useful for effective machine learning characterisation, detection and prediction. This was due to the capture methods and artefacts such as the “bowtie” effect where horizontal or vertical lines can be repeated in the input 2D raster arrays. The input datapoints were therefore reprojected to locally spatially consistent UTM reprojection.

The projected datapoints were resampled onto a spatiotemporal grid where each grid element was of extent (1km×1km×1 days) using triangulation-based linear interpolation (the default method of the MATLAB griddata function). The default triangulation linear interpolation method uses a convex hull for interpolation. The use of a convex hull generates inaccurate resampled values where it would be better that they were discounted. Holes and disjoint regions are further discounted using the MATLAB alphashape function with a threshold of 0.2. Discounted samples were set to zero for input to the Neural Network (see below).

Given a temporal-spatial span of 100Km and 10 days the output size of each resampled modality datacube is of dimension (100×100×10); (width×height×days). This structure is illustrated in Fig. 2.

A. Dealing with Sparse Data

Due to the dependence on sea surface reflectance on the majority of the chosen modalities, a large amount of the data is missing due to cloud cover. This is problematic in effectively characterising any of the HAB events where there is little data. In order to most effectively characterise events in the ground truth database, datacubes containing less than a threshold of data are discarded from the training/testing process. As the estimated Chlorophyll concentration (Chl-a) is the most important modality within the chosen set it is used to indicate unacceptable sparsity within dataset events. The threshold chosen was: if more than half of the datapoints within the Chl-a modality (averaged over the entire temporal range) are missing, the datacube is discarded from training.

Furthermore, missing datapoints are usually indicated as NaN values in the original OB.DAAC L2 granules. When resampling (and the use of alphashape) the original data, grid points that are not able to be resampled are set to zero. The use of unique flags such as zero representing non-data is common within machine learning systems (e.g. Jaritz et al. [47]). As these zero values will not be correlated with either class (HAB or non-HAB) they will not affect the characterisation and classification of the machine learning system. There have been a few CNN methods proposed specifically for coping with sparse data [38, 49]. However, more recent work has indicated that CNNs are able to learn from sparse representations directly without explicitly changing the network structure and design [47].

VI. Machine Learning Structure

To fully exploit the spatial and temporal discrimination information contained within all the modalities of each datapoint, a novel machine learning structure has been designed and implemented within this work. The application within this paper requires both spatial and temporal characterisation and classification. CNNs and LSTMs have often been combined to provide such characterisation in applications such as video sequence classification [37], [38]. However, our application has the added complexity of multimodal 2D inputs from each quantised time step within a temporal sequence. We, therefore, propose the novel machine learning structure illustrated within Fig. 5. This figure shows that a single feature vector is extracted from each single image modality at each time step. This is achieved through a form of transfer learning. It has been recognised that utilising pre-trained layer weights of existing CNNs can provide an effective characterisation of visual features in new domains where (as is the case in this application) there is a limited amount of training data and computational resources. For each evaluated CNN, the final classification layer is removed and a flattened subset of the penultimate was used as a feature extractor (see Fig. 5). These feature vectors are then concatenated for all modalities. This concatenated feature vector is then the input to a sequenced LSTM across all of the quantised time range (in our case for example, ten days). A single classification output of the LSTM is used as a binary classifier ∈{HAB, NoHAB}.

The index of the considered time sequence is denoted \(t \) where \(t \in \{1, 2, \ldots, T\} \) where in this case \(T = 10 \). The modality index is denoted \(m \) where \(m \in \{1, 2, \ldots, M\} \) where in this case \(M = 12 \). There are therefore 120 input images (12 modalities per each of the 10 time steps) per HAB event (each image denoted \(x_{t,m} \)). The concatenated outputs \(z_t \) of the CNNs are therefore created as follows.

\[
z_t = \{\phi(x_{t,1}), \phi(x_{t,2}), \ldots, \phi(x_{t,M})\},
\]

where \(\phi(\cdot) \) is the operation of the CNN that outputs flattened output as illustrated in Fig. 2.

For non-temporally based classification, the concatenated outputs \(z_t \) are themselves concatenated into a single vector \(z_{all} \). The LSTM temporal classification models take as input all of the concatenated outputs \(z_t \) to generate the classification \(y \) where \(y \in \{\text{HAB}, \text{NoHAB}\} \):

\[
y = \Psi(z_{1}, z_{2}, \ldots, z_{T})
\]

Where \(\Psi(\cdot) \) is the LSTM temporal classification operation that outputs the HAB/No HAB classification.

Conversely, for the non-temporally based classifiers (RF, SVM and MLPs) the classifiers take the fully concatenated vector \(z_{all} \) as input to generate \(y \):

\[
y = \psi(z_{all})
\]

where \(\psi(\cdot) \) is the non-temporal classification operation (RF, SVM and MLPs) that outputs the HAB/No HAB classification.
A large number of components were tested within the architecture depicted in Fig. 5. A variety of LSTM structures were also tested alongside simple alternatives including MLPs (Multi-Layer Perceptrons) and Random Forest (RF) classifiers. Initial tests showed that NASNET:Mobile produced the best results for the spatial CNN stage. Table III shows the classification results using a NASNET:Mobile CNN and a variety of temporal classification methods.

Regularisation using L_1 and L_2 norm conditions did not improve the results and therefore was not used. Standard ADAM optimisation was used with a (decaying) learning rate of 10^{-5}.

A. List of Considered Temporal Classifiers

Table IV shows a list of the considered temporal classifiers (i.e. the classifiers to take the bottleneck features generated by the CNNs and generate binary classifications (i.e. $\{HAB, NoHAB\}$). All of the LSTM based methods take the concatenated bottleneck outputs as a time series ($z_{1...10}$) whereas the remaining methods take the totally concatenated bottleneck features (z_{all}).

![Fig. 5: NASNet-Mobile extraction of translationally invariant bottleneck features. The last NASNet layer has feature length 1056 and has the spatial dimensions of 7×7. The central region selected (to be flattened) is the central 3×3 regions (as illustrated).]

B. Translationally Variant Features

Commonly, bottleneck features are extracted from one of the flat final 1D layers of a CNN. However, these features are translation invariant due to the max pooling i.e. they do not discriminate between objects and features found in different spatial positions. This is not what is required in this work as the HAB has been identified as occurring specifically in the spatial centre of the input image. In order to make the most use of the abstractions found in the lower layer of a CNN the central spatial region of the penultimate layer is flattened to form translationally variant features. By using these flattened features without max pooling the spatial arrangement of CNN outputs is characterised.

C. Choice of CNN and Bottleneck Features

Many different CNN models were tested including a variety of Inception [50], VGG [51] and NASNet [52] architectures. The choice for all the subsequent experiments was NASNetMobile as it gave the best results and had a smaller architecture than most other models. Large flattened central regions will lead to excessively large bottleneck features. For the architectures described below the choice of region size was 3×3. As the last layer of the NASNet-Mobile model has a size feature size of 1056, all of the temporal models input bottleneck features of size $1056 \times 3 \times 3 = 9504$. This is illustrated in Fig. 5.

VII. Feature Classification Importance

To evaluate the classification importance of the features given in Table IV feature vector (input into the last temporal classifier) importance is estimated using a Random Forest classifier [59] and its associated capability at estimating feature importances [53]. Due to the very large feature vector length of the CNN bottleneck features, the most effective way to determine modality importance is to extract bottleneck feature importances for the entire bottleneck feature vector and average the importances for each combination of modality and day. Figs. 6 and 7 show the averaged importances for each modality and day. The modality index shows those modalities labelled in Table I and the day indicates the number of days in the past (from the HAB event). These figures illustrate that there is a slight decrease in importance the further in the past the features are. Additionally, it is apparent that the most important features are those indexed [1,2,3,9,11]. This indicates that the individual Rrs reflectances [4,5,6,7,8], SST[10] and Background anomaly[12] features are relatively unimportant (in terms of classification).

![Fig. 6: Feature Importances (From Random Forest Analysis [54]): Modality vs. Time from events. Modality described in Table I.]

VIII. Results

The most effective way to evaluate the performance of a classifier is using nested cross validation [55]. Nested cross validation utilises two nested cross validation stages. The outer cross validation iteratively splits the whole dataset (2869 datapoints) into 5 folds in our case (each fold having separate training and testing subsets). For each of the outer folds the outer training set is further split into training and validation sets. The inner validation set is used to validate and optimise model and parameter choice. The results shown in Tables III, IV and VI show the average and standard deviation across all 5 outer folds.

\[\text{1these "unimportant modalities" are therefore omitted in a subset of subsequent experiments in order to reduce the concatenated feature length and therefore the computational load and memory requirements} \]
The best results were obtained using the LSTM model combined with non time series analysis tool such as an LSTM or attention based network. A comparison to show the reduction in the number of features does not significantly decrease the performance of the classifiers. Additionally, these results show that considering the outputs of the bottleneck features as a time series and analysing them with an appropriate time series analysis tool such as an LSTM or attention based network does not give significant improvements in performance compared to non time series classification tools such as SVMs. This is considered to be because time series of length 10 (temporal data points) are difficult to evaluate using such temporal analysis tools.

A. Conventional Comparative Methods

Comparable methods of HAB detection include Spectral Shape (SS), thresholded backscattering ratio [21], [22] and thresholded Chl-a anomaly [3], [4], [23]. These three methods are used to compare the performance with our developed methods.

B. Results: Discussion

All of the results for the developed methods for HAB classification shown in Table III gave significantly better results than the conventional methods shown in Table V. It is assumed that adopting a two stage machine learning based approach is able to much more effectively characterise spatial and temporal discriminating
As an alternative case study region, the Arabian Gulf was chosen at it has significantly different environmental factors and the availability of ground truth data. HABs occur regularly within the Arabian Gulf with serious outbreaks having happened most years over the last few decades [60]–[63].

Over 38 types of algal taxa have been identified in the Arabian Gulf [64]. A very serious outbreak in 2008 affected over 1200 km of coastline while destroying thousands of tons of fish and marine life. Such serious HAB events can do considerable damage to local aquaculture and can potentially shutdown vital local desalination plants (a major source of local potable water [65]).

A number of local research projects into HAB monitoring and prediction have been undergone in the last ten years [64], [66]. These methods have focused on remote sensing data such as MODIS-A and MERIS. However, these works have not generated quantitative results in the detection and/or prediction of a database of HAB events within the Gulf. They instead have used HAB indicators focused on optical measures such as the modified Fluorescence Line Height (mFLH) and enhanced RedGreenBlue (eRGB) measures together with flow models such as HYCOM [67].

A. Ground Truth

A considerably smaller set of ground truth HAB events (compared to that obtained for the Florida area by the FWC) have been obtained from the Environment Agency-Abu Dhabi (EAD) between the dates of 2002 and 2018 (covered by the flight times of MODIS). This ground truth dataset contains 249 positive events from multiple species (from generic labels such as Cyanobacteria, specific HAB detection species such as Cochlodinium and multi-species detections). Alongside the 249 positive events 374 negative events were generated that were distinct (in time and space from the positive events) within the same Arabian Gulf region (off the coast of Abu Dhabi: see Fig. 8). These detections were not accompanied by concentrations (in cells/litre). This means it was implicitly assumed they were “significant events”. However, this does render it difficult to make this case study analysis comparable to the Florida case above (as within the Florida case there was an explicit threshold of concentrations that constituted an HAB “event”).

B. Results

As per the mechanisms described in section [IV], datacubes were extracted for all the spatial locations given by the positive and negative events. The datacubes were comprised of the same list of modalities listed in Table [II]. However, (due to the same analysis given in section [IV]) the modalities used for classification were actually a subset of those included in the datacubes (as shown in Table [VI]).

The results are shown in Table [VI] giving classification accuracy, F1 and Kappa metrics for the given temporal classifiers. As with the previous work in Florida, the temporal CNN analysis (to produce bottleneck features) was the NASNet:Mobile CNN producing flattened 3×3 translationally variant features. The temporal classification stages (LSTM0, LSTM1 etc.) are defined as shown in Table [II].

This table shows that SVMs in this case give the best classification results (in terms of classifier accuracy, F1 and the Kappa coefficient).
(using machine learning methods) of temporally and spatially isolated events such as HAB events. A very large database of positive and negative HAB events was utilised over the last two decades off the coast of Florida. Seadas tools combined with NASA’s CMR web-based enquiry method were used to populate a ground truth database of datacubes (one per data point in the ground truth database). 12 modalities were chosen including estimated sea surface temperature, Chlorophyll concentrations, reflectance bands (from MODIS sensors) and bathymetry. A combined CNN/LSTM spatiotemporal classification system was implemented to classify and discriminate between HAB and non-HAB events. Using a small NASNet-mobile CNN with an LSTM temporal stage a classification accuracy and Kappa coefficient of 91% and 0.81 were achieved respectively. This is a significant improvement compared to results generated from historical methods (e.g. Chl-a anomaly: Maximum Kappa = 0.08) and other reported state of the art classification methods (spatiotemporal classification method using for a very small dataset: Maximum Kappa = 0.65). Our results represent a significant correct classification rate (and Kappa coefficient) given that the number of datapoints is an order of magnitude greater than any previous study. In the future, targeted integration of supplementary modalities and optimisation of machine learning methods and structures are anticipated to lead improved classification rates.

Furthermore, our study shows that the datacube method is able to effectively predict HABs up to 8 days in the future without significant degradation of classification accuracy.

An alternative case study was investigated for multi-species HAB ground truth events within the Arabian Gulf. Good results were also obtained from this study given a maximum classification rate of 93% and a Kappa coefficient of 0.85 (using a NASNet-Mobile CNN and an SVM temporal stage).

A transfer learning method to use the present work for characterisation transferred to the use of more up to data sensors such as Sentinel-3 would be an essential follow-up project. Furthermore, a study of the effect of spatial and temporal resolution on classification performance would also be key for subsequent studies.

Acknowledgment

The authors would like to thank the British Council for funding: British Council Award ref 279334808. The FWC for the ground truth data in Florida and EAD (UAE) for the ground truth data in the Arabian Gulf.

References

[1] K. A. Steidinger and K. D. Haddad, “Biologic and hydrographic aspects of red tides,” *Biogeochemistry*, vol. 31, no. 11, pp. 814–819, 1981.

[2] D. Bloudeau-Patissier, J. Grower, A. Dekker, S.R. Phinn and V.E. Brando, “A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans;” *Progress in oceanography*, vol. 123, pp. 123–144, 2014.

[3] R.P. Stumpf, M.E. Culver, P.A. Tester, M. Tomlinson, G.J. Kirkpatrick, B.A. Pederson, E. Truby, V. Ransbirhalamakul and M. Soracco, “Monitoring karenia brevis blooms in the gulf of mexico using satellite ocean color imagery and other data;” *Harmful Algae*, vol. 2, no. 2, pp. 147–160, 2003.

[4] M.C. Tomlinson, R.P. Stumpf, V. Ransbirhalamakul, E.W. Truby, G.J. Kirkpatrick, B.A. Pederson, G.A. Vargo and C.A. Heil, “Evaluation of the use of seafwi’s imagery for detecting karenia brevis harmful algal blooms in the eastern gulf of mexico,” *Remote Sensing of Environment*, vol. 91, no. 3-4, pp. 293–303, 2004.

[5] B. Gokaraju and S. S. Durba and R. L. King and N. H. Younan, “A machine learning based spatio-temporal data mining approach for detection of harmful algal blooms in the gulf of mexico,” *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, vol. 4, no. 3, pp. 710–720, September 2011.

[6] B. Gokaraju, S.S. Durba and R.L. King and N.H. Younan, “Ensemble methodology using multistage learning for improved detection of harmful algal blooms,” *IEEE Geoscience and Remote Sensing Letters*, vol. 9, no. 5, pp. 827–831, 2012.

[7] W. Song, J.M Dola, D. Cline and G. Xiong, “Learning-based algal bloom event recognition for oceanographic decision support system using remote sensing data,” *Remote Sensing*, vol. 7, no. 10, pp. 13 564–13 585, 2015.

[8] P. Hoagland and S. Scatassa, “The economic effects of harmful algal blooms,” *Ecology of Harmful Algae*, vol. 23, pp. 971–989, 2003.

[9] R. Santoleri et al., “Year-to-year variability of the phytoplankton bloom in the southern adriatic sea (1998-2000): sea-viewing wide field-of-view sensor observations and modeling study,” *Journal of Geophysical Research*, vol. 108, pp. 8122, 2003.

[10] F. Gollan et al., “Satellite and in situ observations of a late winter phytoplankton bloom, in the Northern Bay of Biscay,” *Continental Shelf Research*, vol. 23, pp. 1117–1141, 2003.

[11] A.C. Thomas et al., “Satellite-measured phytoplankton variability in the Gulf of Maine,” *Continental Shelf Research*, vol. 23, pp. 971–989, 2003.

[12] S.E. Craig, S.E. Lohrenz, Z.P. Lee, K.L. Mahoney, G.J. Kirkpatrick, O. M. Schofield and R.G. Steward, “Use of hyperspectral remote sensing reflectance for detection and assessment of the harmful alga, karenia brevis,” *Appl. Opt.*, vol. 45, pp. 5414–5425, 2006.

[13] C.R. McClain, “A decade of satellite ocean color observations;” *Annual Review of Marine Science*, vol. 1, pp. 19–42, 2009.

[14] “Gulf of Mexico Harmful Algal Bloom Forecast,” https://tidesandcurrents.noaa.gov/habsof/mgx.html.

[15] “Harmful Algal BloomS Observing System,” https://habos.noaa.gov/.

[16] A. Morel and L. Prieur, “Analysis of variations in ocean color 1,” *Limnology and oceanography*, vol. 22, no. 4, pp. 709–722, 1977.
