ONE PROPERTY OF TRAJECTORIES OF TOEPLITZ FLOWS

EUGENE POLULYAKH

Abstract. We consider left shift transform S on the space $X = \Sigma^\mathbb{Z}$ of two-sided sequences over a compact alphabet Σ. We give an important and sufficient condition on $x \in X$ which guarantees the restriction of S onto orbit closure of x to be a Toeplitz flow.

The notion of Toeplitz flow was introduced in 1969 by Jackobs and Keane in paper [1] as certain class of subshifts of finite type. Later this definition was expanded by S. Williams to the much more wide class of subshifts of Bernoulli shift S on the space $X = \Sigma^\mathbb{Z}$ of two-sided sequences over compact metric alphabet Σ (see [2]).

Both in papers [1] and [2] Toeplitz flow is defined as the restriction of S onto orbit closure of so-called Toeplitz sequence.

Let $x = (x_n) \in X$. Say $x_i \in \Sigma$ is in the periodic part of the sequence x if there exists $k \in \mathbb{N}$ such that

$$x_i = x_j \quad \text{for all} \quad j \equiv i \pmod{k}.$$

If it is not the case we say that x_i belongs to the aperiodic part of the sequence $x = (x_n)$. Sequence x is called Toeplitz sequence if it has an empty aperiodic part.

In the paper [2] the set of so-called essential periods is introduced for a nonperiodic Toeplitz sequence x and this set induces in turn the periodic structure on x. Next, this periodic structure defines a certain supernatural number. It appears (see [3]) that the flow $(\text{Orb} x, S)$ admits almost one-to-one projection onto the odometer which is defined by the same supernatural number (for the classification of odometers by means of supernatural numbers see [3] and [4]).

Toeplitz flows are remarkable since the class of all Toeplitz flows coincides with the class of minimal flows which are symbolic and admit almost one-to-one projection onto an odometer (for references and further development of this result see [5]).

The definition of Toeplitz flow is not "homogeneous" in the following sense. It is known (see [4]) that given a Toeplitz flow (T, S) and an almost one-to-one projection $\pi : (T, S) \to G$ onto an odometer G, an arbitrary point $y \in T$ is a Toeplitz sequence if and only if π is one-to-one in the point y (i.e. $\pi^{-1}(\pi(y)) = \{y\}$). Hence the set of all Toeplitz sequences in T is a proper massive subset in T (it contains a dense
Gδ subset of T). That’s why phase space of an arbitrary Toeplitz flow contains at least one element which is not a Toeplitz sequence.

In this connection problem arises to determine whether for a given non Toeplitz sequence \(x \in X \) the dynamical system \((\text{Orb } x, S)\) is a Toeplitz flow. In the case of positive answer another problem appears to find the periodical structure of this flow making use only of the sequence \(x \).

We give an important and sufficient condition on \(x \in X \) which guarantees the restriction of \(S \) onto orbit closure of \(x \) to be a Toeplitz flow. Also we show how to derive the periodical structure of this flow from \(x \).

The technique applied to verify the condition allows us to expand results of S. Williams described above (see [2], theorem 2.2, lemma 2.3 and corollary 2.4) to the case of subshifts on the space of two-sided sequences over a Hausdorff compact alphabet (not necessarily metrizable).

1. Definitions and statement of results.

Let \(\Sigma \) be a compact space, \(X = \Sigma^\mathbb{Z} = \prod_{n \in \mathbb{Z}} \Sigma_n \) with the topology of direct product. By Tikhonov theorem \(X \) is also the compact space. We write elements of \(X \) as \(x = (x_n) \).

In the case when \((\Sigma, \rho)\) is a metric space the distance
\[
d(x, y) = \sum_{n \in \mathbb{Z}} 2^{-|n|} \rho(x(n), y(n))
\]
is known to induce the product topology on \(X \).

In what follows the next property of \(X \) will be useful to us (see. [3]).

Proposition 1. A sequence of points \(\{x_i\} \) in a product \(\prod_{n \in \mathbb{Z}} X_n \) of topological spaces converges to \(x \in \prod_{n \in \mathbb{Z}} X_n \) if and only if the sequence \(\{x_i(n)\} \) converges to \(x(n) \) for every \(n \in \mathbb{Z} \).

Let us designate by \(S : X \to X \) the left shift homeomorphism \(S(x(n)) = x(n + 1), n \in \mathbb{Z} \).

For \(x \in X, p \in \mathbb{N} \) and \(\sigma \in \Sigma \) let
\[
\text{Per}_p(x, \sigma) = \{ n \in \mathbb{Z} \mid x(n') = \sigma \text{ for all } n' \equiv n \pmod{p} \},
\]
\[
\text{Per}_p(x) = \bigcup_{\sigma \in \Sigma} \text{Per}_p(x, \sigma),
\]
\[
\text{Aper}(X) = \mathbb{Z} \setminus \left(\bigcup_{p \in \mathbb{N}} \text{Per}_p(x) \right).
\]

By \(p \)-skeleton of \(x \) we shall name that part of a sequence \((x(n)) \), which has the period \(p \).

Let us designate \(M_p(x) = \max \{ k \in \mathbb{N} \mid \exists n \in \mathbb{Z} : n + i \in \text{Per}_p(x), i = 0, 1, \ldots, k - 1 \} \).
In other words $M_p(x)$ is the maximal length of a block contained in p-skeleton of x. Note, that $M_p(x) = \infty$ for periodic sequence x with period p and $M_p(x) < p$, if the sequence x is not periodic.

Let us remind some important definitions.

Definition 1. Sequence $\eta \in X$ is called **Toeplitz**, if $\text{Aper}(\eta) = \emptyset$ (in this case the dynamic system $(\overline{\text{Orb}(\eta)}, S)$ is also referred as **Toeplitz**).

Definition 2. Let (X, F) be a dynamic system with discrete time, $x \in X$. The point x is **recurrent**, if for its arbitrary open neighbourhood U there exists $n(U)$, such that for any $k \in \mathbb{Z}$

$$U \cap \left(\bigcup_{i=k}^{k+n(U)-1} \{ F^i(x) \} \right) \neq \emptyset.$$

Definition 3. Let (X, F) be a dynamic system with discrete time, $x \in X$. The point x is said to be **almost periodic**, if for its arbitrary open neighbourhood U we can find $n(U) \in \mathbb{N}$, such that

$$\bigcup_{k \in \mathbb{Z}} \{ F^{kn(U)}(x) \} \subset U.$$

Clearly each periodic sequence $x \in X$ is Toeplitz. It is easy to check that every Toeplitz sequence is almost periodic since each block of Toeplitz sequence η is contained in its p-skeleton for some p. Hence, according to Birkhoff theorem $\overline{\text{Orb}(\eta)}$ is a minimal set of dynamic system (X, S) (see [2, 3]).

Let $\eta \in X$ be an aperiodic Toeplitz sequence. Generally speaking an equality $\text{Aper}(x) = \emptyset$ is not carried out for an arbitrary $x \in \overline{\text{Orb}(\eta)}$.

Consider a special case when Σ is metric space. From one hand, every Toeplitz flow $(\overline{\text{Orb}(\eta)}, S)$ in X have to be expansive (see [3]). From the other hand, every odometer is an equicontinuous dynamic system (see remark 8 below). It is known that any Toeplitz flow admits almost one-to-one projection onto odometer and such a projection have to be one-to-one precisely in points which are Toeplitz sequences (see [2]). So, if every point of a certain Toeplitz flow is a Toeplitz sequence, then this Toeplitz flow have to be conjugate to an odometer. In particular it must be expansive and equicontinuous simultaneously, and this is impossible.

Properties of sequences from $\overline{\text{Orb}(\eta)}$ are in details investigated in [2]. However it is not known, what should be properties of the point $x \in X$ the set $\overline{\text{Orb}(x)}$ to contain some Toeplitz sequence.

The answer to this question gives the following

Proposition 2. If for some $x \in X$

$$\lim_{p \to \infty} \sup M_p(x) = \infty,$$

(1)
then set $\text{Orb}(x)$ contains a Toeplitz sequence.

If in addition point x is recurrent, then dynamic system $(\text{Orb}(x), S)$ is Toeplitz.

There is a natural question: what additional information it is possible to take about structure of dynamic system $(\text{Orb}(x), S)$ under condition that a point x is recurrent?

Let’s remind definition of periodic structure of a Toeplitz sequence (see [2]).

Remark 1. Let $x \in X$. If $p \mid q$, then $\text{Per}_p(x) \subseteq \text{Per}_q(x)$.

Definition 4. Let’s call p the essential period of a sequence x, $p \in \mathcal{P}(x)$, if for any $q \in \mathbb{N}$

$$\left(\text{Per}_p(x, \sigma) \subseteq \text{Per}_p(x, \sigma) - q \quad \forall \sigma \in \Sigma\right) \Rightarrow \left(p \mid q\right).$$

In other words, $p \in \mathcal{P}(x)$ if and only if p-skeleton of x is not periodic for any smaller period.

Remark 2. It is easily checked, that if p, $q \in \mathcal{P}(x)$, then $\text{lcm}(p, q) \in \mathcal{P}(x)$ (see [2]).

Definition 5. Periodic structure of a nonperiodic Toeplitz sequence η is the growing sequence \(\{p_i\}_{i \in \mathbb{N}} \) of natural numbers, such that

(i) $p_i \in \mathcal{P}(\eta)$ for all $i \in \mathbb{N}$;
(ii) $p_i \mid p_{i+1}$;
(iii) $\bigcup_{i \in \mathbb{N}} \text{Per}_{p_i}(x) = \mathbb{Z}$.

To within the equivalence relation which we will not describe here periodic structure for a Toeplitz sequence is determined uniquely (see [2]). For our purposes it is enough to know that any subsequence of a sequence from previous definition sets an equivalent periodic structure.

Now we shall determine periodic structure for any recurrent sequence $x \in X$ which satisfies the relation (I).

Remark 3. Let $p \mid q$ for some p, $q \in \mathbb{N}$. Then $M_p(x) \leq M_q(x)$.

Definition 6. Periodic structure of an aperiodic sequence x which satisfies the relation (II) is the growing sequence \(\{p_i\}_{i \in \mathbb{N}} \) of natural numbers, such that

(i) $p_i \in \mathcal{P}(\eta)$ for all $i \in \mathbb{N}$;
(ii) $p_i \mid p_{i+1}$;
(iii′) $\lim_{i \to \infty} M_{p_i}(x) = \infty$.

Proposition 3. For each aperiodic sequence x, which satisfies to the relation (II), there exists some periodic structure.

For the benefit of such definition of periodic structure speak the following results.
Theorem 1. Suppose the sequence \(\{p_i\} \) determines certain periodic structure (in the sense of definition 4) for a recurrent sequence \(x \in X \) which satisfies relation (4). Then there exists a Toeplitz sequence \(\eta \in X \), such that \(\text{Orb}(x) = \text{Orb}(\eta) \) and the sequence \(\{p_i\} \) evaluates periodic structure on \(\eta \) (in sense of definition 3).

Corollary 1. Let \(x \in X \) be a recurrent sequence satisfying to equality (4). Then the periodic structure for \(x \) is determined uniquely (to within the relation of equivalence from [2]).

2. Proof of the main results.

2.1. Proof of proposition 3. We fix \(x \in X \). Divide the proof into several steps.

1. Suppose \(\text{Per}_p(x) \neq \emptyset \) for some \(p \in \mathbb{N} \). Find minimal \(k \in \mathbb{N} \), such that \(k \mid p \) and \(\text{Per}_p(x) = \text{Per}_k(x) \).

Let us check that \(k \in P(x) \). Two lemmas will be necessary for this purpose.

Lemma 1. Suppose that the following condition
\[
\text{Per}_p(x, \sigma) = \text{Per}_p(x, \sigma) + m_i \quad \forall \sigma \in \Sigma, \ i = 1, 2
\]
is satisfied for some \(m_1, m_2 \in \mathbb{N} \). Let \(b \in \mathbb{N}, 0 \leq b \leq m_2 - 1 \), be a remainder of the division of \(m_1 \) into \(m_2 \). Then
\[
\text{Per}_p(x, \sigma) = \text{Per}_p(x, \sigma) + b \quad \forall \sigma \in \Sigma.
\]

Proof. On a condition \(m_1 = am_2 + b, a \in \mathbb{Z}_+ \). For every \(\sigma \in \Sigma \)
\[
\text{Per}_p(x, \sigma) = \text{Per}_p(x, \sigma) + m_1 = (\text{Per}_p(x, \sigma) + am_2) + b = \text{Per}_p(x, \sigma) + b.
\]

Lemma 2. Let for some \(q \in \mathbb{N} \) following condition is satisfied
\[
\text{Per}_p(x, \sigma) = \text{Per}_p(x, \sigma) + q \quad \forall \sigma \in \Sigma.
\]

Then \(\text{Per}_{\gcd(p,q)}(x) = \text{Per}_p(x) \).

Proof. Consider Euclidean algorithm of a finding of \(\gcd(p, q) \).
\[
p = a_1q + b_1, \quad 0 \leq b_1 < q;
q = a_2b_1 + b_2, \quad 0 \leq b_2 < b_1;
\ldots
\]
\[
a_{n-2} = a_nb_{n-1} + b_n, \quad 0 \leq b_n = \gcd(p, q) < b_{n-1};
a_{n-1} = a_{n+1}b_n.
\]

Applying the previous lemma by turns to each line of (2) we are convinced that for \(i = 1, \ldots, n \)
\[
\text{Per}_p(x, \sigma) = \text{Per}_p(x, \sigma) + b_i \quad \forall \sigma \in \Sigma.
\]
In particular, \(\text{Per}_p(x, \sigma) = \text{Per}_p(x, \sigma) + \gcd(p, q) \) \(\forall \sigma \in \Sigma \).

Hence, \(\text{Per}_p(x) = \bigcup_{\sigma \in \Sigma} \text{Per}_p(x, \sigma) \subseteq \text{Per}_{\gcd(p,q)}(x) \). On the other hand, since \(\gcd(p, q) \mid p \) the opposite inclusion \(\text{Per}_{\gcd(p,q)}(x) \subseteq \text{Per}_p(x) \) is also true. \(\square \)

So, let \(k \) be the minimal from divisors of \(p \), such that \(\text{Per}_k(x) = \text{Per}_p(x) \). Let for some \(q \in \mathbb{N} \) the equality

\[
\text{Per}_k(x, \sigma) = \text{Per}_k(x, \sigma) + q \quad \forall \sigma \in \Sigma
\]

is hold true. Then \(\text{Per}_{\gcd(k,q)}(x) = \text{Per}_k(x) = \text{Per}_p(x) \) on lemma \(2 \).

Since \(k \mid p \) and \(\gcd(k,q) \mid k \) then \(\gcd(k,q) = k \) by virtue of a choice of \(k \) and \(k \mid q \). That is \(k \in \mathcal{P}(x) \).

Remark 4. As \(\text{Per}_k(x) = \text{Per}_p(x) \) on the construction then \(M_k(x) = M_p(x) \).

2. Now we shall proceed directly to the construction of the periodic structure for \(x \).

Taking into account the equality \((1) \) we shall choose a sequence \(\{p_i\}_{i \in \mathbb{N}} \) of the natural numbers to comply with the relation

\[
\lim_{i \to \infty} M_{p_i}(x) = \infty.
\]

Further, using argument stated before we shall choose the least divisor \(k_i \) of \(p_i \) for every \(i \in \mathbb{N} \) such that \(\text{Per}_{k_i}(x) = \text{Per}_{p_i}(x) \). We shall receive a sequence \(\{k_i\} \) of the essential periods for \(x \) satisfying the relation \(\lim_{i \to \infty} M_{k_i}(x) = \infty \) (see remark \(4 \)).

Set

\[
q_i = \text{lcm}(k_1, k_2, \ldots, k_i)
\]

for every \(i \in \mathbb{N} \). It is easily verified that \(q_i \mid q_{i+1}, \; i \in \mathbb{N} \). **Remark 2** guarantees that a sequence \(\{q_i\} \) contains only the essential periods for \(x \), and the equality

\[
\lim_{i \to \infty} M_{q_i}(x) = \infty
\]

follows from remark \(3 \).

Proposition \(3 \) is completely proved.

2.2. **Proof of theorem \(1 \) and proposition \(2 \).** We fix periodic structure \(\{q_i\} \) on \(x \). Passing to subsequence it is possible to suppose that

\[
M_{q_{i+1}}(x) \geq 3q_i + M_{q_i}(x), \quad i \in \mathbb{N}.
\]

(3)

First we shall construct a Toeplitz sequence \(\eta \in \overline{\text{Orb}(x)} \) such that

\[
\mathbb{Z} = \bigcup_{i \in \mathbb{N}} \text{Per}_{q_i}(\eta)
\]

(and thus we shall prove proposition \(3 \)), and then we shall show that \(q_i \in \mathcal{P}(\eta), \; i \in \mathbb{N} \).
1. We fix a sequence \(\{m_i\}_{i \in \mathbb{N}} \) of integers, such that \(m_i + j \in \text{Per}_{q_i}(x) \) for all \(i \in \mathbb{N} \) and \(j \in \{0,1,\ldots,M_{q_i}(x) - 1\} \), that is for every \(i \in \mathbb{N} \) if \(n \equiv 0 \pmod{q_i} \) then
\[
x(m_i + j) = x(m_i + j + n), \quad j = 0,1,\ldots,M_{q_i}(x) - 1.
\]

From the relation (3) it follows that
\[
[M_{q_{i+1}}(x) - (q_i + M_{q_i}(x))] - q_i \geq q_i,
\]
therefore for every \(i \in \mathbb{N} \) there exists
\[
s_i \in [m_{i+1} + q_i, (m_{i+1} + M_{q_{i+1}}(x)) - (q_i + M_{q_i}(x))],
\]
which complies with the equality \(m_i \equiv s_i \pmod{q_i} \).

Let us designate
\[
d_l(i) = s_i - m_{i+1}, \quad d_r(i) = (m_{i+1} + M_{q_{i+1}}(x)) - (s_i + M_{q_i}(x)).
\]

Note that \(d_l(i) \) and \(d_r(i) \) are the numbers of symbols of the block
\[
x(m_{i+1}), x(m_{i+1} + 1), \ldots, x(m_{i+1} + M_{q_{i+1}}(x) - 1),
\]
standing accordingly at the left and at the right of the block
\[
x(s_i), x(s_i + 1), \ldots, x(s_i + M_{q_i}(x) - 1)
\]
of the sequence \(x = (x(n)) \).

It is not difficult to see that
\[
d_l(i) \geq q_i, \\
d_r(i) \geq (m_{i+1} + M_{q_{i+1}}(x)) - \left((m_{i+1} + M_{q_{i+1}}(x)) - (q_i + M_{q_i}(x)) + M_{q_i}(x) \right) = q_i.
\]

Consider a sequence of integers
\[
k_1 = m_1, \\
k_2 = k_1 + (s_1 - m_1) = s_1, \\
\ldots \\
k_j = k_{j-1} + (s_{j-1} - m_{j-1}) = m_1 + (s_1 - m_1) + \ldots + (s_{j-1} - m_{j-1}), \quad j > 1.
\]

and a sequence \(z_j = S^{k_j}(x) \), \(j \in \mathbb{N} \), of elements of the set \(\overline{\text{Orb} \ x} \). We shall note obvious equalities
\[
z_j = S^{k_j-k_l} \circ S^{k_l}(x) = S^{k_j-k_l}(z_l),
\]
\[
k_j - k_l = \sum_{i=l}^{j-1} (s_i - m_i), \quad l < j.
\]

Notice that since for all \(j \in \mathbb{N} \) on construction \(q_j \mid (s_j - m_j) \) and \(q_j \mid q_{j+1} \) then
\[
q_l \mid (k_j - k_l), \quad l < j
\]
and for every \(n \in \text{Per}_{q_l}(x) \) and \(j > l \) we have
\[
z_j(n) = z_l(n) = x(n + k_l).
\]

Let us designate
\[
P_l = \text{Per}_{q_l}(z_l) = \text{Per}_{q_l}(x) - k_l. \tag{5}
\]

Above we have already checked up that \(z_j(n) = z_l(n) \) for all \(j > l \) and \(n \in P_l \). We shall show now that \(\bigcup_{l \in \mathbb{N}} P_l = \mathbb{Z} \).

On construction \([m_l, m_l + M_{q_l}(x) - 1] \subset \text{Per}_{q_l}(x) \), \(l \in \mathbb{N} \), hence \([m_l - k_l, m_l + M_{q_l}(x) - 1 - k_l] \subset P_l \).

Notice that for \(l = 1 \)
\[
m_1 - k_1 = 0,
\]
hence \([0, M_{q_1}(x) - 1] \subset P_1 \).

When \(l \geq 2 \) we have
\[
m_l - k_l = -(s_1 - m_1) - \ldots - (s_{l-1} - m_{l-1}) + m_l =
\]
\[
= -(s_1 - m_2) - \ldots - (s_{l-1} - m_l) =
\]
\[
= -d_l(1) - \ldots - d_l(l - 1) \leq
\]
\[
\leq -q_1 - \ldots - q_{l-1};
\]
\[
m_l + M_{q_l}(x) - 1 - k_l =
\]
\[
= m_l + M_{q_l}(x) - 1 - m_1 - \sum_{i=1}^{l-1} (s_i - m_i) =
\]
\[
= M_{q_l}(x) - 1 + \sum_{i=2}^{l} (m_i - s_{i-1}) =
\]
\[
= M_{q_l}(x) - 1 + \sum_{i=2}^{l} [(m_i + M_{q_l}(x)) - (s_{i-1} + M_{q_{i-1}}(x))] =
\]
\[
= M_{q_l}(x) - 1 + \sum_{i=1}^{l-1} d_r(i) \geq M_{q_1}(x) - 1 + \sum_{i=1}^{l-1} q_i.
\]

Hence, for all \(l > 1 \)
\[
\left[-\sum_{i=1}^{l-1} q_i, M_{q_l}(x) - 1 + \sum_{i=1}^{l-1} q_i\right] \subset P_l. \tag{6}
\]

On construction \(q_i \geq 1, i \in \mathbb{N} \), so \(\bigcup_{l \in \mathbb{N}} P_l = \mathbb{Z} \).

Therefore, it is correctly determined \(\eta \in X \) which meets the equality \(\eta(n) = z_l(n) \), if \(n \in P_l \).

It is easy to see that \(P_l \subseteq \text{Per}_{q_l}(\eta) \), \(l \in \mathbb{N} \). Furthermore, from proposition \(\square \) it follows that \(\eta = \lim_{i \to \infty} z_i \).
Remark 5. So, we have constructed the Toeplitz sequence η ∈ \text{Orb} x. In the argument above we have nowhere used recurrence of x.

Let now a point x is recurrent. Under Birkhoff theorem the set \text{Orb} x is minimal, hence \text{Orb} η = \text{Orb} x.

2. Let η ∈ X be a Toeplitz sequence, x, y ∈ \text{Orb} η. Let us prove that \(M_\eta(x) = M_\eta(y) \) for every \(p \in \mathbb{N} \) and \(P(x) = P(y) \).

Lemma 3. Let A be a minimal subset of dynamic system \((X, S)\), \(x, y \in A \). Let \(\text{Per}_\eta(x) \neq \emptyset \) for some \(p \in \mathbb{N} \). Then there exists \(n(p) \in \mathbb{Z} \) which satisfies the conditions

(i) \(\text{Per}_\eta(y) = \text{Per}_\eta(x) - n(p) \);
(ii) \(x(k + n(p)) = y(k) \) for every \(n \in \text{Per}_\eta(x) \);

Proof. 1. First we shall prove that there exists \(n(p) \in \mathbb{Z} \) which satisfies to a condition (ii) (hence for this \(n(p) \) inclusion \(\text{Per}_\eta(x) \subseteq \text{Per}_\eta(y) + n(p) \) is valid).

Since the set A is minimal then \(A = \text{Orb} x = \text{Orb} y \) and there exists a sequence \(\{z_j = S^{k_1}(x)\}_{j \in \mathbb{N}} \) converging to a point y.

Let us say that \(k_i \sim k_j \) if \(k_i \equiv k_j \pmod{p} \). Under this relation the set \{\(k_i \)\} will fall into no more than on p classes of equivalence. Obviously, at least one of these classes contains infinite number of elements. Hence, passing to a subsequence we can assume that \(k_i \equiv k_j \pmod{p} \) for all \(i, j \in \mathbb{N} \).

Then \(\text{Per}_\eta(z_i) = \text{Per}_\eta(z_1) = \text{Per}_\eta(x) - k_1 \) for all \(i \in \mathbb{N} \) (we shall designate \(P(p) = \text{Per}_\eta(x) - k_1 \)). Moreover, \(z_i(k) = z_1(k) = x(k + k_1) \) for all \(k \in P(p) \).

From proposition \(\[\] \) it follows that \(y(k) = z_1(k) = x(k + k_1) \) for every \(k \in P(p) \). Therefore, \((\text{Per}_\eta(x) - k_1) \subseteq \text{Per}_\eta(y) \) also it is possible to let \(n(p) = k_1 \).

2. Let us check now a correlation (i).

Assume that \(\text{Per}_\eta(x) \nsubseteq \text{Per}_\eta(y) + n(p) \). Repeating the argument of item 1 and changing roles of x and y, we shall find \(m(p) \in \mathbb{Z} \) such that \(\text{Per}_\eta(y) \subseteq \text{Per}_\eta(x) + m(p) \). Then \(\text{Per}_\eta(y) + n(p) \subseteq \text{Per}_\eta(x) + (m(p) + n(p)) \) and

\[
\text{Per}_\eta(x) \nsubseteq \text{Per}_\eta(x) + (m(p) + n(p)) .
\]

Clearly, \(m(p) + n(p) \neq 0 \).

Obviously, for every \(r \in \mathbb{Z} \)

\[
\text{Per}_\eta(x) + r \nsubseteq \text{Per}_\eta(x) + (m(p) + n(p)) + r . \quad (7)
\]

Let \(s = \text{lcm}(m(p) + n(p), p) \). Then \(s = a(m(p) + n(p)) \) for certain \(a \in \mathbb{Z} \setminus \{0\} \).
Assume that $a < 0$ (the case $a > 0$ is examined similarly). Using a relation (4), we shall receive the following chain of inclusions

$$\text{Per}_p(x) \supsetneq \text{Per}_p(x) - (m(p) + n(p)) \supsetneq \text{Per}_p(x) - 2(m(p) + n(p)) \supsetneq \ldots \supsetneq \text{Per}_p(x) + a(m(p) + n(p)).$$

However, on construction $p \mid s$, hence

$$\text{Per}_p(x) + a(m(p) + n(p)) = \text{Per}_p(x) + s = \text{Per}_p(x)$$

by definition of $\text{Per}_p(x)$.

The received contradiction finishes the proof of lemma.

\textbf{Corollary 2.} $M_p(x) = M_p(y)$ for every $p \in \mathbb{N}$ and $\mathcal{P}(x) = \mathcal{P}(y)$.

Applying now lemma 3 and corollary 2 to the sequence $\{q_i\}$ we verify that $P_i = \text{Per}_{q_i}(\eta)$ and $q_i \in \mathcal{P}(\eta)$, $i \in \mathbb{N}$. For the completion of the proof of theorem 3 it remains to recall the equality $\bigcup_{i \in \mathbb{N}} P_i = \mathbb{Z}$ which we have already checked above.

\section{Toeplitz subshifts on the space of two-sided sequences over a Hausdorff compact alphabet}

\subsection{Odometers and periodic partitions of dynamic systems.}

\textbf{Definition 7.} A non-bounded sequence $\{a_i \in \mathbb{N}\}_{i \in \mathbb{N}}$ is called regular if a_i divides a_{i+1} for every $i \in \mathbb{N}$.

We fix regular sequence $\{n_i \in \mathbb{N}\}_{i \in \mathbb{N}}$ (without loss of generality it is possible to assume that $n_{i+1} \neq n_i$, $i \in \mathbb{N}$).

Let us consider a sequence of finite cyclic groups $\mathbb{Z}_{n_i} = \mathbb{Z}/n_i\mathbb{Z}$ and group homomorphisms

$$\varphi_i : \mathbb{Z}_{n_{i+1}} \to \mathbb{Z}_{n_i},$$

$$\varphi : 1 \mapsto 1.$$

Let us take an inverse limit $A = \text{proj lim}_{i \to \infty} \mathbb{Z}_{n_i}$ of this sequence of groups and homomorphisms. We receive an abelian group $(A, +)$.

Provide each set $\mathbb{Z}_{n_i} = \{0, 1, \ldots, n_i - 1\}$ with discrete topology. Each of maps φ_i is continuous in this topology. Space A with topology \mathcal{T} of the inverse limit is homeomorphic to a Cantor set Γ.

It is easy to see, that in the group $(A, +)$ operation of addition and pass to an opposite element are continuous in the topology \mathcal{T}, thus A turns to be a continuous group.

\textbf{Remark 6.} We remind that an inverse limit $A = \text{proj lim}_{i \to \infty} \mathbb{Z}_{n_i}$ could be imagined as a subset

$$A = \{\bar{a} = (a_i \in \mathbb{Z}_{n_i}) | \varphi_i(a_{i+1}) = a_i, i \in \mathbb{N}\}$$ (8)
of the direct product
\(\prod_{i \in \mathbb{N}} \mathbb{Z}_{n_i} \). \((9) \)

In such notation the operation of addition in \(A \) is defined component-wise, that is \(\vec{a} + \vec{b} = (a_i + b_i) \) for any \(\vec{a} = (a_i) \), \(\vec{b} = (b_i) \in A \).

As is known, the topology of the direct product (9) is set through a basis consisting of so-called cylindrical sets
\[
U(x_{i_1}, \ldots, x_{i_k}) = \{(a_i) \mid a_{i_s} = x_{i_s}, \ s = 1, \ldots, k\};
\]
\(x_{i_s} \in \mathbb{Z}_{n_{i_s}}, \ i_1 < \ldots < i_k, \ k \in \mathbb{N} \).

From definition of the set \(A \) (see relation (8)) it is easy to see that
\[
U(x_{i_1}, \ldots, x_{i_k}) \cap A = U(x_{i_k}) \cap A
\]
for any \(k \in \mathbb{N}, i_1 < \ldots < i_k \) and \(x_{i_s} \in \mathbb{Z}_{n_{i_s}} \). So, the family of sets
\[
V_{x_j} = U(x_j) \cap A = \{(a_i) \in A \mid a_j = x_j\} = \{(a_i) \in A \mid a_j = x_j, \ a_k = \varphi_k \circ \ldots \circ \varphi_{j-1}(x_j) \text{ when } k < j\};
\]
\(j \in \mathbb{N}, \ x_j \in \mathbb{Z}_{n_j} \)
\((10) \)
is base of the topology of space \(A \).

The natural metric \(d : A \times A \to \mathbb{R}_+ \) on \(A \) associated with the sequence \(\{n_i\} \) is defined as follows
\[
d(\vec{x}, \vec{y}) = \frac{1}{m}, \quad m = \min\{i \in \mathbb{N} \mid x_k = y_k \text{ when } k < i \text{ and } x_i \neq y_i\}.
\]
The correctness of this definition is checked immediately.

Consider an element \(\vec{e} = (1) = (1, \ldots, 1, \ldots) \in A \). This element is called generator of group \(A \) and has the property that the cyclic subgroup \(\langle \vec{e} \rangle \) generated by it is dense in \(A \) in the topology \(T \).

Obviously, shift mapping
\[
g : A \to A, \quad g : \vec{x} \mapsto \vec{x} + \vec{e},
\]
is a homeomorphism.

Definition 8. Dynamic system \((A, g)\) is called an odometer.

Remark 7. From the fact the subgroup \(\langle \vec{e} \rangle \) is dense in \(A \) it immediately follows that each trajectory of d. s. \((A, g)\) is dense in \(A \), that is odometer always is a minimal dynamic system.

Remark 8. It is easy to verify that in the natural metric defined above the mapping \(g \) is isometric. Specially, the family of mappings \(\{g^k\}_{k \in \mathbb{Z}} \) is equicontinuous, so the odometer \((A, g)\) is the equicontinuous dynamic system.

Actually, it is known that odometers are precisely all equicontinuous minimal dynamic systems on the Cantor set.
Assume a compact Hausdorff space X and homeomorphism $f : X \to X$ are given.

Definition 9. We call a finite family $\{W_i\}_{i=0}^{n-1}$ of subsets of space X a *periodic partition* of the dynamic system (X, f) of length m, if it satisfies to the following requirements:

(i) all W_i are open-closed subsets of X;
(ii) $W_i = f(W_{i-1})$, $i = 1, \ldots, n-1$ and $W_0 = f(W_{n-1})$;
(iii) $W_i \cap W_j = \emptyset$ when $i \neq j$;
(iv) $X = \bigcup_{i=0}^{n-1} W_i$.

Lemma 4. Assume (A, g) is an odometer built with the help of a regular sequence $\{n_i\}_{i \in \mathbb{N}}$.

For any $k \in \mathbb{N}$ and $x_k \in \mathbb{Z}_{n_k}$ a family of sets $\{W_j^{(n_k)} = V_{x_k+j}\}_{j=0, \ldots, n_k-1}$ forms periodic partition of a dynamic system (A, g) of length n_k.

Proof. Obviously,

$$A = \bigcup_{s \in \mathbb{Z}_{n_k}} V_s = \bigcup_{j \in \mathbb{Z}_{n_k}} V_{x_k+j}.$$

Hence, for the family $\{W_j^{(n_k)}\}$ the requirement (iv) of Definition 9 is carried out.

Since all sets V_{x_k+j}, $j \in \mathbb{Z}_{n_k}$, are open on definition and pairwise disjoint, family $\{W_j^{(n_k)}\}$ satisfies also to properties (i) and (iii) of a periodic partition.

For completion of the proof we need to verify that $g(V_{a_k}) = V_{a_k+1}$ (here $1 \in \mathbb{Z}_{n_k}$) for every $a_k \in \mathbb{Z}_{n_k}$.

Let $\vec{b} = (b_i) \in V_{a_k}$. Then $b_k = a_k$ and $g(\vec{b}) = \vec{b} + \vec{c} = (b_k + 1) \in V_{a_k+1}$. Hence, $g(V_{a_k}) \subseteq V_{a_k+1}$.

Back, let $\vec{c} = (c_i) \in V_{a_k+1}$. Then $c_k = a_k + 1$ and $g^{-1}(\vec{b}) = \vec{c} - \vec{c} = (c_k - 1) \in V_{a_k}$. Hence, $g(V_{a_k}) \supseteq V_{a_k+1}$. \qed

3.2. Toeplitz subshifts and projections onto odometers

Let Σ be a compact Hausdorff space, $X = \Sigma^\mathbb{Z}$, $S : X \to X$ is the left shift on X.

Assume $x = (x(n)) \in X$ is non–periodic recurrent point, $\{p_i \in \mathcal{P}(x)\}$ is a sequence which complies with all conditions of definition 8.

Let us consider a family of sets

$$A_j^i = \{y(n) \in \overline{\text{Orb}(y)} \mid y(k + j) = x(k) \ \forall k \in \text{Per}_{p_i}(x)\} =$$

$$= \{y(n) \in \overline{\text{Orb}(y)} \mid y(n) = x(k) \ \forall n \equiv k + j \pmod{p_i}, k \in \text{Per}_{p_i}(x)\},$$

$$j \in \{0, 1, \ldots, p_i - 1\}, \quad i \in \mathbb{N}.$$

(11)

We can describe A_j^i as the set of all points from $\overline{\text{Orb}(x)}$ which have the same p_i–skeleton with $S^j(x)$.

Lemma 5 (compare with lemma 2.3 from [2]). The family of sets \(\{A^i_j\} \) complies with the following properties

(i) For every \(i \in \mathbb{N} \) the family \(\{A^i_j\}_{j=0}^{p_i-1} \) is the periodic partition of the dynamic system \((\text{Orb}(x), S)\) of length \(p_i \).

(ii) \(A^i_n \supset A^i_m \) when \(i < j \) and \(m \equiv n \pmod{p_i} \).

Proof. We mark first that for every \(y \in X \) and for all \(q_1, q_2 \), such that \(\text{Per}_{q_1}(y), \text{Per}_{q_2}(y) \neq \emptyset \), the following implication is valid

\[
(q_1 \text{ divides } q_2) \Rightarrow (\text{Per}_{q_1}(y, \sigma) \subseteq \text{Per}_{q_2}(y, \sigma), \sigma \in \Sigma). \tag{12}
\]

Let \(x \in X \) and \(\{p_i \in \mathcal{P}(x)\}_{i \in \mathbb{N}} \) satisfy to requirements of lemma. Then from theorem [4] it follows that the dynamic system \((\text{Orb}(x), S)\) is Toeplitz and specially it is minimal.

We fix \(i \in \mathbb{N} \).

From lemma [3] it immediately follows that

\[
\text{Orb}(x) = \bigcup_{j=0}^{p_i-1} A^i_j
\]

and the family of sets \(\{A^i_j\}_{j=0}^{p_i-1} \) satisfies to the requirement (iv) of definition [3].

Verify now the validity of requirement (iii) of this definition. Assume that \(A^i_j \cap A^i_k \neq \emptyset \) for some \(j \neq k \). Then from lemma [3] and definition of the set \(\text{Per}_{p_i}(x, \sigma) \) we get \(x(n) = y(n+j) = y(n+k) \) for all \(n \in \text{Per}_{p_i}(x) \) and

\[
\text{Per}_{p_i}(x, \sigma) = \text{Per}_{p_i}(y, \sigma) - j = \text{Per}_{p_i}(y, \sigma) - k \quad \forall \sigma \in \Sigma.
\]

From corollary [3] we have \(p_i \in \mathcal{P}(y) \). Hence, \(p_i \) divides \(|j - k| \) by definition of essential period. And it contradicts to the inequality \(0 < |j - k| < p_i \).

Let us prove now property (ii) of definition [3].

From definition of sets \(A^i_j \) the relations follow

\[
S(A^i_{j-1}) \subseteq A^i_j, \quad j \in \{1, \ldots, p_i - 1\};
\]

\[
S(A^i_{p_i-1}) \subseteq A^i_0.
\]

With the help of these relations we immediately conclude that

\[
S^{p_i}(A^i_j) \subseteq A^i_j, \quad j \in \{0, 1, \ldots, p_i - 1\}. \tag{14}
\]

The map \(S \) is a homeomorphism. Hence, if even at least one of the inclusions (13) is strict, then

\[
S^{p_i}(A^i_j) \subsetneq A^i_j, \quad j \in \{0, 1, \ldots, p_i - 1\}.
\]

From this remark and property (iii) of definition [3], which we have already verified, we conclude that in this case

\[
S^{p_i} \left(\text{Orb}(x) \right) = S^{p_i} \left(\bigcup_{j=0}^{p_i-1} A^i_j \right) = \bigcup_{j=0}^{p_i-1} S^{p_i} (A^i_j) \subsetneq \bigcup_{j=0}^{p_i-1} \text{Orb}(x).
\]
Since the set $\overline{\text{Orb}(x)}$ is Hausdorff and compact and S^{p_i} is a homeomorphism, then

$$K = \bigcap_{m \geq 0} S^{mp_i} \left(\overline{\text{Orb}(x)} \right) \neq \emptyset$$

is the proper closed invariant subset of the dynamic system $(\overline{\text{Orb}(x)}, S)$ contrary to the minimality of it.

Consider now property (i) of definition 9.

All sets A_{ij} are closed. Really, we fix $j \in \{0, 1, \ldots, p_i - 1\}$ and a convergent sequence $y_k = y_k(n) \in A_{ij}$. Let $y \in \overline{\text{Orb}(x)}$ is a limit of this sequence. Since we have $y_k(m) = x(m - j)$, $k \in \mathbb{N}$ for all $m \in \text{Per}_{p_i}(x) + j$, then proposition 1 guarantees $y(m) = x(m - j)$ for $m \in \text{Per}_{p_i}(x) + j$.

Consequently, $y \in A_{ij}$ and the sets A_{ij} are closed. That is $\{A_{ij}\}_{j=0}^{p_i-1}$ is the closed finite partition of the dynamic system $(\overline{\text{Orb}(x)}, S)$. Therefore, each set A_{ij} is open–closed in $\overline{\text{Orb}(x)}$ in the induced topology.

The property (ii) of lemma immediately follows from definition of sets A_{ij}, relations (12) and (14) and from lemma 3.

Let an odometer (A, g) is built with the help of the sequence $\{p_i\}$.

Assume

$$\vec{a} = (n_i) \in \prod_{i \in \mathbb{N}} \mathbb{Z}_{p_i}.$$

We denote

$$A_{\vec{a}} = \bigcap_{i \in \mathbb{N}} A_{n_i}^{i}.$$

From the condition (ii) of lemma it immediately follows that

$$(A_{\vec{a}} \neq \emptyset) \iff \left(\vec{a} \in A \subset \prod_{i \in \mathbb{N}} \mathbb{Z}_{p_i} \right). \quad (15)$$

The condition (i) of lemma mentioned guarantees that the family of sets $\{A_{\vec{a}}, \vec{a} \in A\}$ is partition of the space $\overline{\text{Orb}(x)}$ and

$$S(A_{\vec{a}}) = A_{\vec{a}+\vec{e}} \quad (16)$$

for every $\vec{a} \in A$.

Consider the following correspondence

$$\pi : \overline{\text{Orb}(x)} \to A;$$

$$\pi : A_{\vec{a}} \mapsto \vec{a}, \quad \vec{a} \in A.$$

From correlation (13) we consequence the correctness of this definition and formula (16) guarantees the equality $\pi \circ S = g \circ \pi$.

Mark that the map π is continuous since $\pi^{-1}(V_{x_j}) = A_{x_j}^{j}$ for all $n \in \mathbb{N}$, $x_j \in \mathbb{Z}_{p_j}$. In other words all sets from the family (10), which as
we know that the base of topology of the space A, have open–closed preimages in $\text{Orb}(x)$ according to lemma 5.

Theorem 2. Assume that a point $x \in X$ is recurrent and a sequence $\{p_i\}_{i \in \mathbb{N}}$ is a periodic structure on x in sense of definition 6.

Then the odometer (A, g) built with the help of the sequence $\{p_i\}$ is an almost one-to-one factor of the flow $(\text{Orb}(x), S)$ under the mapping π.

Moreover, two following conditions are equivalent:

1) a sequence $y \in \overline{\text{Orb}(x)}$ is Toeplitz;
2) $\pi^{-1}(\pi(y)) = \{y\}$.

Proof. Theorem is proved similarly to theorem 2.2 from [2] (the single change is that the above lemma 5 must be referred to instead of lemma 2.3 from [2]).

References

[1] Jacobs, Konrad; Keane, Michael 0 − 1-sequences of Toeplitz type
Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 13 (1969), pp. 123–131;

[2] Williams S. Toeplitz minimal flows which are not uniquely ergodic
Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 67 (1984), pp. 95–107;

[3] Glimm J. On a certain class of operator algebra Trans. Amer. Mat. Soc., 95 (1960), N 2, pp. 318–340;

[4] G. Barat, T. Downarowicz, A. Iwanik & P. Liardet Propriétés topologiques et
combinatoires des échelles de numération Colloq. Math., 84/85, part 2 (2000),
pp. 285-306;

[5] Downarowicz T., Durand F. Factors of Toeplitz flows and other almost 1-1
extensions over group rotations Math. Scand. (to appear)
(the preliminary version is available at http://www.im.pwr.wroc.pl/ downar/publ.html);

[6] Kelley John L. General topology . D. Van Nostrand Company, Inc., Toronto-
New York-London, 1955;

[7] Alekseev, V. M. Symbolic dynamics. (Russian) Eleventh Mathematical School
(Summer School, Kolomyya, 1973) (Russian), pp. 5–210. Izdanie Inst. Mat.
Akad. Nauk Ukrain. SSR, Kiev, 1976;

[8] Morse, Marston; Hedlund, Gustav A. Symbolic dynamics I Amer. J. Math. 60
(1938), pp. 1–42;

[9] Gjerde R., Johansen O. Bratteli–Vershik models for Cantor minimal systems:
applications to Toeplitz flows Ergod. Th. & Dynam. Sys., 20 (2000), pp. 1687–
1710.

Department of Topology, Institute of Mathematics NAS Ukraine,
Tereshchenkovska str., 3, Kiev, Ukraine, 01601

E-mail address: polulyah@imath.kiev.ua