RESEARCH ARTICLE

Linking Genomo- and Pathotype: Exploiting the Zebrafish Embryo Model to Investigate the Divergent Virulence Potential among Cronobacter spp.

Athmanya K. Eshwar¹, Ben D. Tall², Jayanthi Gangiredla², Gopal R. Gopinath², Isha R. Patel², Stephan C. F. Neuhauss³, Roger Stephan¹, Angelika Lehner¹*

¹ Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland, ² Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, Maryland, United States of America, ³ Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland

* lehnera@fsafety.uzh.ch

Abstract

Bacteria belonging to the genus Cronobacter have been recognized as causative agents of life-threatening systemic infections primarily in premature, low-birth weight and immune-compromised neonates. Apparently not all Cronobacter species are linked to infantile infections and it has been proposed that virulence varies among strains. Whole genome comparisons and in silico analysis have proven to be powerful tools in elucidating potential virulence determinants, the presence/absence of which may explain the differential virulence behaviour of strains. However, validation of these factors has in the past been hampered by the availability of a suitable neonatal animal model. In the present study we have used zebrafish embryos to model Cronobacter infections in vivo using wild type and genetically engineered strains. Our experiments confirmed the role of the RepF1B-like plasmids as “virulence plasmids” in Cronobacter and underpinned the importance of two putative virulence factors—cpa and zpx—in in vivo pathogenesis. We propose that by using this model in vivo infection studies are now possible on a large scale level which will boost the understanding on the virulence strategies employed by these pathogens.

Introduction

Cronobacter (C.) spp. are Gram-negative, rod-shaped, non- sporeforming, motile bacteria of the family Enterobacteriaceae. The genus Cronobacter—as proposed in 2008 —currently consists of seven species according to the “List of prokaryotic names with standing in nomenclature” (http://www.bacterio.net/allnamesac.html, viewed, June 6th 2016) and encompasses organisms that have previously been identified as Enterobacter sakazakii [1, 2]. The extension of the genus Cronobacter by three non-pathogenic Enterobacter species (E. pulvers, E. helveticus and
E. turicensis), as proposed by Brady et al. [3] was withdrawn as the genus membership was experimentally disproved in the study by Stephan et al. [4].

Cronobacter spp. are regarded as opportunistic pathogens linked with life-threatening infections, particularly in premature (<37 weeks of gestation stage), low-birth weight (<2500 g) or immuno-compromised neonates and infants less than 4 weeks of age [5, 6] and its occurrence has been epidemiologically linked to the consumption of reconstituted intrinsically or extrinsically contaminated powdered infant formula (PIF) [7, 8].

Clinical symptoms include necrotising enterocolitis (NEC), bacteremia and meningitis, with case fatality rates ranging between 40 and 80% being reported [9, 10].

Apparently not all Cronobacter species are linked to infantile infections and it has been proposed that virulence varies among strains. Thus C. sakazakii, C. malonaticus, and C. turicensis are the primary pathogenic species which cause the majority of severe illnesses neonates [11]. Some studies suggest that C. malonaticus may be more of an adult pathogen than C. sakazakii or C. turicensis are [12]. Other species of Cronobacter include C. universalis, C. condimenti, C. muytjensii, and C. dublinensis. Except for C. condimenti, all other Cronobacter species cause a variety of infections in humans [1, 7].

Applying a multilocus sequence typing scheme (MLST) to C. sakazakii strains revealed distinct pathovars which are clonal lineages of particular clinical significance, namely clonal complex 4 (CC4) that contains multilocus sequence type 4 (ST4), as well as ST12. These are strongly associated with invasive meningitis and NEC cases. In addition, C. malonaticus clonal complex 7 was found to be linked with adult infections [7, 13, 14, 15].

Whole genome sequencing efforts and in silico analysis revealed a substantial amount of genotypic variation and identified potential determinants encoding for potential virulence determinants, present in some strains but absent in others which may explain that not all Cronobacter spp. are equally virulent and cause invasive disease such as bacteremia and meningitis [11, 16, 17]. However, the validation of putative virulence components has been hampered by the availability of suitable neonatal animal models. So far, in vivo studies have concentrated on the neonatal rat, mouse or gerbil as model organisms [17, 18, 19, 20]. Although valuable information has been obtained from these studies, the lack of possibilities for a real-time analysis and the need for laborious and invasive sample analysis limits the use of mammalian experimental animals.

Alternatively, the nematode Caenorhabditis elegans has been used to study Cronobacter virulence factors and host immune responses [21]. Thus, the role of the Cronobacter sakazakii lipopolysaccharide (LPS) and the p38 MAPK pathway as a major factor in host immune response against LPS-mediated challenges has been elucidated using this model [22]. However, invertebrates are genetically not closely related to humans and their immune system shows many differences from the human immune system.

Zebrafish (Danio rerio) are increasingly used as model to study infections with human pathogens as they offer distinct advantages over mammalian models, such as mice and rats or invertebrate animal models such as the nematode C. elegans. Being vertebrates, zebrafish are evolutionarily closer to humans than are nematodes and they are easier to work with and to study than mice, but retain the advantage of a similar immune system [23]. The execution of large-scale infection studies in zebrafish is possible due to their fecundity and small size. In a recent study we adapted the zebrafish embryo model to study Cronobacter infections [24]. This model proved especially useful, since in embryos only the innate immune system is displayed which resembles the situation during infection in premature infants and neonates.

In the current study we employed the recently developed zebrafish embryo model to (1) determine the virulence spectrum displayed among species and strains within the Cronobacter genus, (2) define the role of the proposed “virulence plasmids” in Cronobacter spp. and (3)
confirm the influence of two putative virulence determinants—the plasmid encoded Cpa and the chromosomally encoded Zpx—in \textit{in vivo} pathogenesis.

Material and Methods

Bacterial strains and culture conditions

The description of the wild type strains used in the study is given in Table 1. The two plasmid-cured strains \textit{C. turicensis} LMG 23827TΔpCTU1 and \textit{C. sakazakii} ATCC BAA-894 ΔpESA3 were constructed in the study by Franco et al. [25]. Those strains together with the \textit{C. sakazakii} strain E899, which is naturally devoid for the pESA3 plasmid were provided by CFSAN, FDA, USA. \textit{Cronobacter} spp. and \textit{E. coli} strains were grown at 37°C in Luria-Bertani (LB) broth with shaking (210 rpm) or on LB agar. Antibiotics were added when required at the following concentrations: ampicillin (100 mg L-1), chloramphenicol (30 mg L-1 and nalidixic acid (256 mg L-1).

A nalidixic acid resistant strain of \textit{C. sakazakii} ATCC BAA-894(Nal256) was constructed according to the method by Johnson et al. [28]. Strain \textit{C. sakazakii} ATCC BAA-894Δcpa was created during transconjugation experiments and was consequently nalidixic acid resistant as well. Both strains were used during quantitative zebrafish embryo infection experiments. Cultures for experiments were grown in LB supplemented with nalidixic acid (256 mg L-1)

For microinjection experiments, the bacteria were grown to stationary phase in LB overnight (approx. 12 hours) at 37°C, harvested by centrifugation at 5000 x \textit{g} for 10 min and washed once in 10 ml of Dubelcco’s phosphate buffered saline (DPBS, Life Technologies.) After a second centrifugation step, the cells were resuspended in DPBS, and appropriate dilutions were prepared in DPBS.

DNA extraction and manipulations

Chromosomal DNA was isolated using the DNeasy Blood and Tissue kit (Qiagen), plasmids were extracted with the QIAprep Spin Miniprep or Plasmid Midi kits (Qiagen) following the

| Table 1. Wild type strains used in the zebrafish embryo infection experiments. |
|-----------------------------|-------------------|---------|---------|-----------------------------|
| Species | Strain ID ATCCa LMGb, other* | O typec | Sequence typed | Source and/or reference |
| \textit{Cronobacter condimenti} | LMG 26250T | O1 | 98 | Spiced meat [2] |
| \textit{Cronobacter dublinensis subsp. dublinensis} | LMG 23823T | O1b | 106 | Milk powder processing environment [1] |
| \textit{Cronobacter dublinensis subsp. lactaridi} | LMG 23815 | O1a | 79 | Milk powder processing environment [1] |
| \textit{Cronobacter dublinensis subsp. lausannensis} | LMG 23824 | O2 | 80 | Basin of a water fountain [1] |
| \textit{Cronobacter malonaticus} | LMG 23826T | O2 | 7 | Human breast abscess [1] |
| \textit{Cronobacter muytjensii} | ATCC 51329T | O2 | 81 | Unknown [1] |
| \textit{Cronobacter sakazakii} | ATCC 29544T | O1 | 8 | Child throat [1] |
| \textit{Cronobacter sakazakii} | ATCC BAA-894 | O1 | 1 | Milk powder [26] |
| \textit{Cronobacter sakazakii} | E899* | O2 | 4 | Clinical |
| \textit{Cronobacter turicensis} | LMG 23827T | O1 | 19 | Neontate [1] |
| \textit{Cronobacter universalis} | LMG 26249T | O1 | 54 | Water [1, 2] |
| \textit{Escherichia coli} | X11 blue | n. a. | n. a. | Agilent |

a.: ATCC = American Type Culture Collection, Manassas, USA
b: LMG = BCCM/LMG Laboratorium voor Microbiologie, Universiteit Gent, Gent, Belgium
c: Type culture collection Institute for Food Safety and Hygiene, University Zurich, Zurich, Switzerland, O serotyped and MLST typed by Center for Food Safety and Applied Nutrition FDA, Laurel, Maryland, USA
d: O (Sero)type and MLST Sequence type designations retrieved from Ogrodzki and Forsythe [27].

n. a.: not applicable

doi:10.1371/journal.pone.0158428.t001
manufacturer’s instructions. For purification purposes (PCR, restriction digestion, agarose gel purification) the Qiagen MinElute PCR Cleanup kit or MinElute Gel Purification kit was employed. Enzymes and respective buffers were obtained from Roche Molecular Diagnostics and used according to the manufacturer’s instructions.

Construction of C. turicensis LMG 23827\(^{T}\)Δzpx and complementation

Bacterial strains, plasmids and primers used for the construction of the mutant are listed in Table 2. An isogenic mutant of the C. turicensis LMG 23827\(^{T}\) devoid of the zpx (CTU_31020) gene was constructed following the protocol described by Philippe et al. [29]. Primers were designed based on the whole genome sequence of Cronobacter turicensis LMG 23827\(^{T}\) (RefSeq accession numbers NC_013282 to NC_013285, GenBank accession numbers FN543093 to FN543096). Briefly, two flanking fragments (upstream, downstream) of the zpx gene were amplified by PCR using oligonucleotide primers zpxF1f (containing a XbaI recognition site), zpxF1r, zpxF2fmod, zpxF2r, zpxConf, zpxConr. Table 2. Material used for zpx mutant construction and complementation.

Strains/plasmids/primers	Genotype/characteristic(s)/sequences	Source or reference
Mutant construction strains		
C. turicensis LMG 23827\(^{T}\) _Nal\(^{R}\)_	Acceptor for transconjugation, Nal\(^{R}\)	[30]
E. coli SM10 λpir	Host for pDS132::ΔrpfF, pDS132::ΔrpfR construct generation; thi, thr, leu, tonA lacY supE recA::RP4-2-Tc::Mu, Km, λpir	[31]
E. coli DH5α λpir / pDS132	Host for cloning vector pDS132; sup E44, ΔlacU169 (Φ80lacZΔM15), recA1, endA1, hsdR17, thi-1, gyrA96, relA1, λpir, Cam\(^{R}\)	[32]
E. coli SM10 λpir / pDS132::Δzpx	Donor for transconjugation, harbouring construct pDS132::Δzpx, Cam\(^{R}\)	This study
Plasmids		
pDS132	Low copy cloning vector R6K ori, mobRP4, cat, sacB, Cam\(^{R}\)	[29]
pDS132::Δzpx	Δzpx cloned into pDS132, Cam\(^{R}\)	This study
Primers		
zpxF1f	5’ = AGC TCT AGA AGC GGT CGG AAG AGC CTT TGG–3’	This study
zpxF1r	5’ = TAT CTC GAG GCC ATG ATC GAT AAT GCG GCG–3’	This study
zpxF2fmod	5’ = GGG CTC GAG GCT CAC TCT CGC AGA ATG CGG–3’	This study
zpxF2r	5’ = TGA TCT AGA GGT CTG GTG CTG GTT CAT ACC–3’	This study
zpxConf	5’ = CTA TAC TGC AAG TGT TGG–3’	This study
zpxConr	5’ = CGT CAT CCG TCA GAT CTG–3’	This study
Complementation		
C. turicensis LMG 23827\(^{T}\)	Template for amplification of zpx CDS	[33]
C. turicensis LMG 23827\(^{T}\)Δzpx	Zpx CDS mutant, cloning host for pQE-30, pQE-30::zpx	This study
C. turicensis LMG 23827\(^{T}\)Δzpx / pQE-30	Mutant transformant harbouring expression cloning vector pQE-30, Amp\(^{R}\)	This study
C. turicensis LMG 23827\(^{T}\)Δzpx / pQE-30::zpx	Mutant transformant harbouring construct pQE-30::zpfF, Amp\(^{R}\)	This study
Plasmid		
pQE-30	Cloning/expression vector, Amp\(^{R}\)	Qiagen
Primers		
rpfFComplf	5’ = AAA GCA TGC AAC CAG TCA CGT TAT TCA ACC–3’	This study
rpfFComptr	5’ = AAA CCC GGG CGT CGG CAT CCG TCA GAT CGT–3’	This study
Insert control		
pQE-30mcsf	5’ = CGG ATA ACA ATT TCA CAC AG–3’	Qiagen
pQE-30r	5’ = GTC CTG AGG TCA TTA CTG G–3’	Qiagen

doi:10.1371/journal.pone.0158428.t002
zpxF1r (containing a XhoI restriction site), zpxF2fmod (containing a XhoI recognition site), zpxF2r (containing a XbaI recognition site). The amplification mixes contained 0.4 μM of primers, 1 x AccuPrime (Invitrogen) buffer 2 (60 mM Tris-SO₄ (pH 8.9), 18 mM (NH₄)₂SO₄, 2 mM MgSO₄, 2 mM dGTP, 0.2 mM dATP, 0.2 mM dTTP, 0.2 mM dCTP, thermostable AccuPrime protein, 1% glycerol), 4% dimethylsulfoxid (DMSO), 2 U AccuPrime Taq DNA Polymerase High Fidelity (Invitrogen) and 50 ng of template DNA. Following PCR conditions were used for the amplification: 95°C for 120 s followed by 34 cycles of 95°C for 30 s, 68°C for 270 s and a final elongation step at 68°C for 300 s. The resulting fragments were digested with XbaI and XhoI and ligated into the suicide vector pDS132 digested with XbaI. The construct pDS132::Δzpx was transformed into E. coli SM10 λpir via electroporation. The resulting strain E. coli SM10 λpir/ pDS132::Δzpx served as donor strain for conjugative transfer of the plasmid into C. turicensis LMG 23827T_NalR. Transconjugants were selected on LB agar plates supplemented with both nalidixic acid 256 mg L⁻¹ and chloramphenicol 30 mg L⁻¹. The genetic structure of the mutant was confirmed by the presence of two amplification products—one representing the chromosomal wild type zpx allele and a second product representing the truncated (Δzpx) allele originating from the (integrated) pDS132::Δzpx—after PCR using primer pair zpxContf, zpxContr employing the above mentioned AccuPrime amplification mixture (without DMSO) and following amplification conditions: 95°C for 120 s followed by 32 cycles of 95°C for 30 s, 52°C for 210 s and a final elongation step at 68°C for 300 s. The resulting amplification products were 1101 bp (wt zpx allele) and 240 bp (Δzpx allele).

Outcrossing was performed by plating serial dilutions of confirmed transconjugants onto LB agar plates supplemented with 5% sucrose and no NaCl. Successful allelic exchange was verified in selected chloramphenicol sensitive and sucrose resistant strains by the presence of the mutant allele after PCR using the above mentioned procedure.

For complementation the zpx gene was amplified using primers zpxComplf and zpxComplr (containing an SphI and XmaI site respectively) and using the above mentioned Accuprime mixture (without DMSO) and following conditions: 95°C for 120 s followed by 32 cycles of 95°C for 30 s, 64°C for 30 s, 68°C for 120 s and a final elongation step at 68°C for 300 s. The resulting fragments were cloned into pQE-30 expression vector and the resulting plasmid pQE-30::zpx transformed into E. coli XL1blue or C. sakazakii ATCC BAA-894Δcpa.

Construction of C. sakazakii ATCC BAA-894Δcpa and complementation

The construction of the cpa isogenic mutant, was completed according to the method published by Franco et al. [34]. For complementation experiments, the cpa was cloned into pQE-30 expression vector (Qiagen) by PCR amplification using the primers XmaI, (5’-AAA CCC GGG AAT AAG AAA CTT ATT GTC GTG GCG- 3’) and SalI, (5’-AAA GTC GAC AAC CCG CCG GCA GCG GG- 3’). The recombinant plasmid was transformed into E. coli XL1blue or C. sakazakii ATCC BAA-894Δcpa.

Zebrafish infection studies

Zebrafish (Danio rerio) strains used in this study were albino lines. Husbandry, breeding and microinjection of approx. 50 CFU of bacteria into the yolk sac of 2 dpf embryos was performed following the procedure described in the study by Fehr et al. [24]. A total of thirty embryos (10 x 3) were injected per individual experiment (i.e. per strain).

A set of uninjected embryos, incubated in E3 maintenance medium (5 mM NaCl, 0.17 mM KCl, 0.33 mM CaCl₂, 0.33 mM MgSO₄) was included in order to determine the quality of the embryos; embryos injected with DPBS served as controls. Prior to injection, embryos were manually dechorionated and anesthetized with 200 mg L⁻¹ buffered tricaine (Sigma-Aldrich).
After injection, the infected embryos were allowed to recover in a petri dish with fresh E3 medium for 15 min. Injected embryos were transferred into 24-well plates (1 embryo per well) in 1 ml E3 medium per well, incubated at 28°C and inspected for survival under a stereomicroscope. At regular time points after infection, the number of dead larvae was determined visually based on the absence of a heartbeat. Experiments were carried out until 96 hours post infection (hpi). Surviving embryos were euthanized with an overdose of 4 g L⁻¹ buffered tricaine at the end of the experiments. Generally, with the assessment of discomfort and pain by behavioral observations, animals were euthanized by overdose of tricaine by prolonged immersion and were left in the solution for at least 10 minutes following cessation of opercular movement. Since pain perception has not been developed at these earlier stages (4 dpf – 7 dpf), this is not considered a painful procedure.

The maximum age reached by the embryos during experimentation was 144 hpf. Embryos had not reached free feeding stage then. In addition, research was conducted with approval (NO 216/2012) from the Veterinary Office, Public Health Department, Canton of Zurich (Switzerland) allowing experiments with embryos and larvae older than 120 dpf. The applied methods were carried out following the approved guidelines.

Survival assay

Thirty 2 dpf embryos were microinjected as mentioned above and maintained individually in 24-well plates in E3 medium at 28°C. Growth behaviour of strains *C. sakazakii* ATCC BAA-894 and *C. sakazakii* ATCC BAA-894Δcpa was monitored until 72 hpi.

Bacterial enumeration by plate counting

The larvae were transferred to 1.5 ml centrifuge tubes and disintegrated by repeated pipetting and vortexing for 3 min in 1 mL of DPBS supplemented with 1% Triton X-100 (Sigma-Aldrich). Subsequently, serial dilutions of this mixture were plated onto LB plates supplemented with 256 mg L⁻¹ nalidixic acid. The plates were incubated up to 48 h at 37°C.

Statistical analysis

Kaplan Meier survival analysis, log rank (Mantel-Cox) test and graphs were performed using GraphPad Prism 6 (GraphPad Software, San Diego, USA). Experiments were executed in triplicates (i.e. 10 embryos x 3 per bacterial strain).

Results

Pathogenicity varies within the *Cronobacter* genus and among strains

Infection experiments using 10 strains—the type strains of the 7 species and 2 subspecies within the *Cronobacter* genus plus one additional *C. sakazakii* strain ATCC BAA-894—revealed a substantial degree of variation as determined from the mortality rate in the embryos. Hundred per cent mortality was observed within 36 hours post inoculation (hpi) in infection experiments using *C. sakazakii* ATCC 29544ᵀ and *C. turicensis* LMG 23827ᵀ (Fig 1A and 1B). This rate was also reached during experiments using *C. universalis* NCT9529ᵀ and *C. dublinensis* ssp. *dublinensis* LMG 23823ᵀ, although although death of the embryos occurred at a later time point (72 hpi). For *C. sakazakii* ATCC BAA-894 the highest mortality rate (82%) was reached at 96 hpi. Also eighty per cent mortality was observed for *C. malonaticus* LMG23826ᵀ, *C. dublinensis* ssp. *lactaridi* LMG 23825 and *C. condimenti* LMG 26249ᵀ at 96 hpi. For *C. dublinensis* ssp. *lausannensis* LMG 23824 infection experiments, a 40% mortality rate was observed at 96 hpi and *C. muytjensii* ATCC 51329ᵀ was completely avirulent (Fig 1A and 1B).
The role of pESA3 and pCTU1 as “virulence plasmids” is confirmed in vivo

In one of the first comparative genomics studies performed on whole genomes available for the two Cronobacter species C. sakazakii ATCC BAA-894 and C. turicensis z3032 (= LMG 23827T) by Franco et al. [25] it was reported that multiple plasmids were present in the strains including two homologous plasmids identified as pESA3 in C. sakazakii BAA-894 and pCTU1 in C. turicensis LMG 23827T. In silico analysis revealed that both plasmids encode similar groups of genes or gene clusters comprising the “backbone” of the plasmid, the same RepFIB-like origin of replication gene (repA), two iron acquisition systems, an aerobactin-like siderophore (named cronobactin), and an ABC ferric-iron transporter gene cluster, as well as several species-specific virulence gene determinants. It has been proposed that these plasmids may represent “virulence plasmids” conferring virulence to Cronobacter isolates.

In order to test the hypothesis that these RepFIB-like plasmids harbored by Cronobacter spp. are involved in pathogenesis, zebrafish embryo infection studies were performed using the plasmid cured strains of C. turicensis LMG 23827ΔpCTU1 and C. sakazakii ATCC BAA-894ΔpESA3. As can be retrieved from Fig 2, the mortality of both plasmid-cured strains was considerably reduced compared to the results obtained with the wild type strains. In addition, when using C. sakazakii strain E899, which is naturally devoid of the pESA3 homologue in infection experiments, a maximum mortality rate of 20% was recorded at 96 hpi.

The two putative virulence factors Cpa and Zpx play a role in in vivo pathogenesis

In two studies by Franco et al. [25, 34], C. sakazakii plasmid pESA3 was shown to encode the putative virulence factor Cronobacter plasminogen activator (cpa) gene locus. It was demonstrated that the outer membrane protease Cpa provides serum resistance to C. sakazakii ATCC BAA-894 by proteolytically cleaving complement components, as well as by activating plasminogen and inactivating the plasmin inhibitor α2-AP. To test its influence in an in vivo model a knock out mutant (ATCC BAA-894Δcpa) was constructed and tested together with the wild type strain and ATCC BAA-894Δcpa complemented with the cpa gene in trans in the zebrafish embryo model. In addition, E. coli XL1blue carrying the Cpa determinant in trans was included in the experiments. As shown in Fig 3, C. sakazakii ATCC BAA-894Δcpa displayed only 10% mortality compared to 80% mortality observed in experiments with the wild type parental strain. Virulence was partially restored to 40% with the complemented mutant. In
addition, infection experiments using *E. coli* X11blue carrying the Cpa determinant displayed a moderately elevated mortality rate (20%) when compared to *E. coli* wild type strain.

In order to obtain more quantitative kinetic information on the progression of the infection, growth experiments using the BAA-894 wt and *cpa* mutant (Fig 4) were carried out. Growth of the strains in the zebrafish embryo model was comparable until 24 hpi when growth slowed in the mutant and then at 48 hpi a sharp drop was observed in the bacterial counts of the mutant suggesting that the embryos were able to clear the infection. Growth curves in LB grown cultures suggested no growth defect in the mutant (S1 Fig).

Another putative virulence factor, the zinc containing metalloprotease *zpx*, was described by Kothary et al. [35]. In contrast to the above mentioned Cpa determinant, the *zpx* locus is
chromosomally encoded and is supposed to be present in all *Cronobacter* species [31, 4]. Although activity of this protease against Chinese hamster ovary cells (CHO) in tissue culture has been reported, its contribution to virulence has never been tested before. A *zpx* mutant strain was constructed in *C. turicensis* LMG 23827^T^ and tested in the zebrafish embryo infection model together with its wild type, the complemented mutant and an *E. coli* X11blue strain carrying the *Zpx* determinant. The results of these experiments are depicted in Fig 5. The mortality rate in the
C. turicensis LMG 23827T Δzpx mutant was diminished by 60% and in experiments using the complemented mutant virulence was restored to a large extent (80%). As expected, the mortality rate using the E. coli X11blue harbouring the zpx locus was also elevated to 70%, thus underpinning the role of this important violence factor in Cronobacter spp. disease.

Discussion

The results presented in this study may to some extent be correlated to the “clade theory” proposed by Grim et al. [36]. According to this hypothesis, Cronobacter have diverged into two clades, one consisting of C. dublinensis and C. muytjensii (Cdub-Cmuy) and the other comprised of C. sakazakii, C. malonaticus, C. universalis, and C. turicensis, (Csak-Cmal-Cuni-Ctur) from the most recent common ancestral species. It was shown, that the Cdub-Cmuy clade genomes contained several accessory genomic regions important for survival in a plant-associated environmental niche, while the Csak-Cmal-Cuni-Ctur clade genomes harbored numerous virulence-related genetic traits.

However, mortality rates such as seen with C. dublinensis ssp. dublinensis LMG 23825T, which is supposed to be a member of the “environmental/plant associated (Cdub-Cmuy) clade” but exhibiting an equally high mortality rate as the putative “virulence associated (Csak-Cmal-Cuni-Ctur) clade” members suggests, that additional virulence factors may exist, which are more crucial for the pathogenesis/mortality (at least in this model) than others. Whole genome comparisons are currently needed in order to elucidate other potential factors that may contribute to the highly virulent phenotype observed for this strain in our model.

One striking result was the finding that infection studies performed with the C. muytjensii ATCC 51329T type strain resulted in zero mortality. It has been previously reported that this strain does not harbor a RepFIB-like “virulence plasmid”[25]. The results from our experiments suggest that the presence of the these plasmid strongly contributes to virulence. Our experiments using the plasmid-cured strains compared to parental wt strains underpinned the role of these plasmids in virulence, as mortality rates were reduced by approx. half in the plasmid-cured strains C. sakazakii BAA-894 and C. turicensis LMG 23827T. However, these strains did not become completely avirulent, again suggesting the presence of additional factors which contribute to pathogenicity.

In silico analysis of pESA3 and pCTU1 revealed a high degree of similarity concerning the presence of putative virulence genes and gene clusters. However, it has also been shown, that particular virulence factors are exclusively found along species-specific evolutionary lines [25]. One of those factors—the Cronobacter plasminogen activator Cpa—is encoded by pESA3 and was demonstrated to be present in C. sakazakii strains [34]. This factor is supposed to play an important role in survival of the bacterium in the blood. Our results from the infection experiments using the isogenic cpa mutant confirmed an important role of this determinant in in vivo pathogenesis. From previous studies we know, that Cronobacter is not capable to replicate in blood [37] thus, for infection studies in zebrafish, bacteria have to be injected into the yolk saculum where they start to proliferate before traversing into the blood followed by dissemination into embryonic tissues- causing fatal bacteremia [20]. When we perfomed quantitative growth experiments in embryos using wt and cpa mutant we observed equal growth behaviour for both strains until 48 hpi. However, at later time points the bacterial counts decreased significantly in infections with the cpa mutant. We hypothesize that at time points > 48 h post infection the bacterium had already transversed into the blood where a mutant deficient of the cpa determinant was efficiently eliminated by the host immune system.

In conclusion, we show, that the zebrafish embryo infection model is an extremely useful tool to study the contributions of putative virulence factors whether they have been derived by
in silico analysis or from previous in situ experiments. The potential of this model for use in large scale infection studies holds much promise in improving the understanding of the virulence potential of these pathogens.

Supporting Information
S1 Fig. Growth curves of the C. sakazakii ATCC BAA-894 wt and the cpa mutant gown in LB. Bacterial growth was monitored over 24 h at 37°C at 600 nm in 200 μl volumes of medium in 96 well plates using the Bio-Tek microplate reader (Synergy HT; Bio-Tek, Germany).

Author Contributions
Conceived and designed the experiments: AE BDT SCFN RS AL. Performed the experiments: AE BDT SCFN RS. Analyzed the data: AE BDT JG IRP. Contributed reagents/materials/analysis tools: BDT SCFN RS. Wrote the paper: AE BDT RS AL.

References
1. Iversen C, Mullane N, McCardell B, Tall BD, Lehner A, Fanning S, et al. Cronobacter gen. nov., a new genus to accommodate the biogroups of Enterobacter sakazakii, and proposal of Cronobacter sakazakii gen. nov., comb. nov., Cronobacter malonicus sp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov., Cronobacter genomospecies 1, and of three subspecies, Cronobacter dublinensis subsp. dublinensis subsp. nov., Cronobacter dublinensis subsp. lausannensis subsp. nov. and Cronobacter dublinensis subsp. lactaridi subsp. nov. Int J Syst Evol Microbiol. 2008; 58: 1442–1447. doi: 10.1099/ijs.0.65577-0 PMID: 18523192
2. Joseph S, Cetinkaya E, Drahovska H, Levican A, Figueras MJ, Forsythe SJ. Cronobacter condimenti sp. Nov., isolated from spiced meat and Cronobacter universalis sp. nov., a novel species designation for Cronobacter sp. genomospecies 1, recovered from a leg infection, water, and food ingredients. Int J Syst Evol Microbiol. 2012; 62: 1277–1283. doi: 10.1099/ijs.0.032292-0 PMID: 22661070
3. Brady C, Cleenwerck I, Venter S, Coutinho T, De Vos P. Taxonomic evaluation of the genus Enterobacter based on multilocus sequence analysis (MLSA): proposal to reclassify E. nimi pressuralis and E. amnigenus into Lelliottia gen. nov. as Lelliottia nimi pressuralis comb. nov. and Lelliottia amnigena comb. nov., respectively, E. gergoviae and E. pyrini into Pluralibacter gen. nov. as Pluralibacter gergoviae comb. nov. and Pluralibacter pyrini comb. nov., respectively E. cowani, E. radiciclinans, E. oryzae and E. arachidis into Kosakonia gen. nov. as Kosakonia cowanii comb. nov., Kosakonia radiciclan comb. nov., Kosakonia oryzae comb. nov. and Kosakonia arachidis comb. nov., respectively, and E. turicensis, E. helveticus and E. pulveris into Cronobacter as Cronobacter zurichensis nom. nov., Cronobacter helveticus comb. nov. and Cronobacter pulveris comb. nov., respectively, and emended description of the genera Enterobacter and Cronobacter. Syst Appl Microbiol. 2013; 36: 309–319. doi: 10.1016/j.syapm.2013.03.005 PMID: 23632228
4. Stephan R, Grim CJ, Gopinath GR, Mammel MK, Sathyamoorthy V, Trach LH, et al. Re-examination of the taxonomic status of Enterobacter helveticus sp. nov., Enterobacter pulveris sp. nov., and Enterobacter turicensis sp. nov., as members of Cronobacter: proposal of two new genera Siccibacter gen. nov., and Francinobacter gen. nov., and descriptions of Siccibacter turicensis sp. nov., Francinobacter helveticus sp. nov., and Francinobacter pulveris sp. nov. Int J Syst Evol Microbiol. 2014; 64: 3402–3410. doi: 10.1099/ijs.0.059832-0 PMID: 25028159
5. Centers for Disease Control and Prevention (CDC). Enterobacter sakazakii infections associated with the use of powdered infant formula—Tennessee. MMWR Morb Mortal Wkly Rep. 2002; 51: 297–300. PMID: 12002167
6. Mullane NR, Iversen C, Healy B, Walsh C, Whyte P, Wall PG, et al. Enterobacter sakazakii an emerging bacterial pathogen with implications for infant health. Minerva Pediatr. 2007; 59: 137148.
7. Joseph S, Forsythe S. Insights into the emergent bacterial pathogen Cronobacter spp., generated by multilocus sequence typing and analysis. Front Microbiol. 2012; 3: 397. doi: 10.3389/fmicb.2012.00397 PMID: 23189075
8. Yan QQ, Condell O, Power K, Butler F, Tall BD, Fanning S. Cronobacter species (formerly known as Enterobacter sakazakii) in powdered infant formula: a review of our current understanding of the biology of this bacterium. J Appl Microbiol. 2012; 113: 1–15. doi: 10.1111/j.1365-2672.2012.05281.x PMID: 22420458
9. Bowen AB, Braden CR. Invasive Enterobacter sakazakii disease in infants. Emerg Infect Dis. 2006; 12: 1185–1189. PMID: 16965695

10. Friedemann M. Enterobacter sakazakii in food and beverages (other than infant formula and milk powder). Int J Food Microbiol. 2007; 116: 1–10. PMID: 17331606

11. Jaradat ZW, Al Mousa W, Elbietehea A, Al Nabilsi A, Tall BD. Cronobacter spp.- opportunistic foodborne pathogens. A review of their virulence and environmental-adaptive traits. Front Microbiol. 2012; 3: 397.

12. Alsonosi A, Hariri S, Kajsik M, Orieskova M, Hanulik V, Röderova M et al. The speciation and genotyping of Cronobacter isolates from hospitalised patients. Eur J Clin Microbiol Infect Dis. 2015; 34: 1979–1988. doi: 10.1007/s10096-015-2440-8 PMID: 26173692

13. Forsythe SJ, Dickins B, Jolley KA. Predominance of Cronobacter sakazakii in food and beverages (other than infant formula and milk powder). Int J Food Microbiol. 2007; 116: 1–10. PMID: 17331606

14. Friedemann M. Enterobacter sakazakii in food and beverages (other than infant formula and milk powder). Int J Food Microbiol. 2007; 116: 1–10. PMID: 17331606

15. Jaradat ZW, Al Mousa W, Elbietehea A, Al Nabilsi A, Tall BD. Cronobacter spp.- opportunistic foodborne pathogens. A review of their virulence and environmental-adaptive traits. Front Microbiol. 2012; 3: 397.

16. Alsonosi A, Hariri S, Kajsik M, Orieskova M, Hanulik V, Röderova M et al. The speciation and genotyping of Cronobacter isolates from hospitalised patients. Eur J Clin Microbiol Infect Dis. 2015; 34: 1979–1988. doi: 10.1007/s10096-015-2440-8 PMID: 26173692

17. Townsend SM, Hurrell E, Gonzalez-Gomez I, Lowe J, Frye JG, Forsythe S et al. The speciation and genotyping of Cronobacter isolates from hospitalised patients. Eur J Clin Microbiol Infect Dis. 2015; 34: 1979–1988. doi: 10.1007/s10096-015-2440-8 PMID: 26173692

18. Mittal R, Wang Y, Hunter CJ, Gonzalez-Gomez I, Prasad Rao NV. Brain damage in newborn rat model of meningitis by Enterobacter sakazakii: a role for outer membrane protein A. Lab Invest. 2009; 89: 263–277. doi: 10.1038/labinvest.2008.164 PMID: 19139724

19. Pagotto FJ, Farber JM. Enterobacter sakazakii (Enterobacter sakazakii): advice, policy and research in Canada. Int J Food Microbiol. 2009; 136: 238–245. doi: 10.1016/j.ijfoodmicro.2009.05.010 PMID: 19487040

20. Lee HA, Hong S, Park H, Kim H, Kim O. Enterobacter sakazakii infection induced fatal clinical sequelae including meningitis in infant neonatal ICR mice. Lab Anim Res. 2011; 27: 59–62. doi: 10.5625/iar.2011.27.1.59 PMID: 21826162

21. Sivamaruthi BS, Ganguli A, Kumar M, Bhaviya S, Pandian SK, Balamurugan K. Caenorhabditis elegans as a model for studying Cronobacter sakazakii ATCC BAA-894 pathogenesis. J Basic Microbiol. 2011; 51: 540–549. doi: 10.1002/jobm.201000377 PMID: 21656805

22. Sivamaruthi BS, Prasanth MI, Balamurugan K. Alterations in Caenorhabditis elegans and Cronobacter sakazakii lipopolysaccharide during interaction. Arch Microbiol. 2015; 197: 327–337. doi: 10.1007/s00203-014-1064-1 PMID: 25416126

23. Meijer AH, Spanik HP. Host-pathogen interactions made transparent with the zebrafish model. Curr Drug Targets. 2011; 12: 1000–17. PMID: 21366518

24. Fehr A, Eshwar AK, Neuhauess SC, Ruetten M, Lehner A, Vaughan L. Evaluation of the zebrafish as a model to study the pathogenesis of the opportunistic pathogen Cronobacter turiensis. Emerg Microbes Infect. 2015; 4: e29. doi: 10.1038/emi.2015.29 PMID: 26060602

25. Franco AA, Hu L, Grim CJ, Gopinath G, Sathyamoorthy V, Jarvis KG, et al. Characterization of putative virulence genes encoded on the related RepFIb plasmids harboured by Cronobacter spp. Appl Environ Microbiol. 2011; 77: 3255–3267 doi: 10.1128/AEM.03203-10 PMID: 21421789

26. Kucerova E, Clifton SW, Xia X-Q, Long F, Porwalokk S, Fulton L, et al. Genome sequence of Cronobacter sakazakii BAA-894 and comparative genomic hybridization analysis with other Cronobacter species. PLoS One. 2010; 5: e9556. doi: 10.1371/journal.pone.0009556 PMID: 22421447

27. Ogrodtzki P, Forsythe S. Capsular profiling of the Cronobacter genus and the association of specific Cronobacter sakazakii and C. malonaticus capsule types with neonatal meningitis and necrotizing enterocolitis. BMC Genomics. 2015; 16: 758. doi: 10.1186/s12864-015-1960-z PMID: 26449381

28. Johnson JR, Johnston B, Kuszowski MA, Colondner R, Raz R. Spontaneous conversion to quinolone and fluoroquinolone resistance among wild-type Escherichia coli isolates in relation to phylogenetic background and virulence genotype. Antimicrob Agents Chem. 2005; 49: 4739–4744.

29. Philippe N, Alcaraz JP, Coursange E, Geiselmann J, Schneider D. Improvement of pCVD442, a suicide plasmid for gene allel exchange in bacteria. Plasmid. 2004; 51: 246–255. PMID: 15109831
30. Eshwar AK, Tasara T, Stephan R, Lehner A. Influence of FkpA variants on survival and replication of Cronobacter spp. in human macrophages. Res Microbiol. 2015; 166: 186–195. doi:10.1016/j.resmic.2015.02.005 PMID: 25724920

31. Donnenberg MS Kaper JB. Construction of an eae deletion mutant of enteropathoenic Escherichia coli by using a positive selection suicide vector. Infect Immun. 1991; 59: 4310–317. PMID: 1937792

32. Simon R, Priefer U, Püliher AA. Broad host range mobilisation system for in vivo genetic engeneering: transposon mutagenesis in gram-negative bacteria. Bio/Technology. 1983; 1: 784–791.

33. Stephan R, Lehner A, Tischler P, Rattei T. Complete genome sequence of Cronobacter turicensis LMG 23827, a food-borne pathogen causing deaths in neonates. J Bacteriol 2011; 193: 309–310. doi: 10.1128/JB.01162-10 PMID: 21037008

34. Franco AA, Kothary MH, Gopinath G, Jarvis KG, Grim CJ, Hu L, et al. Cpa, the outer membrane protease of Cronobacter sakazakii, activates plasminogen and mediates resistance to serum bactericidal activity. Infect Immun. 2011; 79: 1578–1587. doi: 10.1128/IAI.01165-10 PMID: 21245266

35. Kothary MH, McCardell BA, Frazar CD, Deer D, Tall B. Characterization of the zinc-containing metalloprotease (zpx) and development of a species-specific detection method for Enterobacter sakazakii. Appl Environ Microbiol. 2007; 73: 4142–4151. PMID: 17483271

36. Grim CJ, Kotewicz ML, Power KA, Gopinath G, Franco AA, Jarvis KG, et al. Pan-genome analysis of the emerging foodborne pathogen Cronobacter spp. suggests a species-level bidirectional divergence driven by niche adaptation. BMC Genomics. 2013; 14: 366. doi: 10.1186/1471-2164-14-366 PMID: 23724777

37. Schwizer S, Tasara T, Zurfluh K, Stephan R, Lehner A. Identification of genes involved in serum tolerance in the clinical strain Cronobacter sakazakii ES5. BMC Microbiology. 2013; 13: 38. doi: 10.1186/1471-2180-13-38 PMID: 23414256