Continuum of extended states in the spectrum of a one-dimensional random potential

Alberto Rodríguez1 and Jose M. Cerveró

Física Teórica. Facultad de Ciencias. Universidad de Salamanca. 37008 Salamanca. Spain

We describe a one-dimensional disordered system, based on the Pöschl-Teller potential, that exhibits a continuum of extended states which is independent of the random or correlated character of the sequence and of the length of the system. The delocalization of the electronic states occurs in the whole positive spectrum where the system shows a perfect transmission.

PACS numbers: 73.20.Jc, 72.15.Rn, 71.23.An

Since the work of Anderson1 localization has been considered as a central tenet of the theory of disordered systems. Its significance as an unavoidable consequence of the presence of disorder in the systems was later enhanced by the results of the Scaling Theory2 that originally predicted the localization of all electronic states for any degree of disorder in 2-D and 1-D structures while the existence of a metal to insulator transition (MIT) was permitted in 3-D systems3. It was subsequently shown that in several configurations of 2-D electron and hole systems a MIT could occur as a function of the density and the presence of disorder in the systems was later enhanced by the results of the Scaling Theory2 that originally predicted the localization of all electronic states for any degree of disorder in 2-D and 1-D structures while the existence of a metal to insulator transition (MIT) was permitted in 3-D systems3. It was subsequently shown that in several configurations of 2-D electron and hole systems a MIT could occur as a function of the density and the presence of disorder in the systems was later enhanced by the results of the Scaling Theory2.

Such experimental observations meant the reopening of the question of considering that each potential unit has a finite range. Hence a cut-off must be included in the Pöschl-Teller potential. Using this approximation one obtains the asymptotic transmission matrix for this potential that together with \(\alpha \) determines the height or depth of the potential. The parameter \(\alpha \), with units of inverse of length, controls the half-width of the potential which reads \(d_{1/2} = 2\alpha^{-1}\text{arcosh}\sqrt{2} \). The larger \(\alpha \) is the narrower and deeper the potential becomes. The Schrödinger equation for the Pöschl-Teller potential is analytically solvable and its solutions are well known12,13. The asymptotic transmission matrix for this potential has been obtained previously by the authors14 and it reads

\[
\mathcal{M} = \left(e^{i\varphi} \sqrt{1 + w^2} - iw e^{-i\varphi} \sqrt{1 + w^2} \right),
\]

where

\[
w = \frac{\sin(\pi b)}{\sinh(\pi k/\alpha)}, \quad b = \frac{1}{2} + \sqrt{\frac{1}{4} - V},
\]

\[
\varphi = \frac{\pi}{2} + \arg \left\{ \frac{\Gamma^2(b + i\kappa/\alpha)}{\Gamma(b + i\kappa/\alpha)\Gamma(1+b+i\kappa/\alpha)} \right\},
\]

\(k = \sqrt{2mE/\hbar} \) and \(\Gamma(z) \) is the complex Euler gamma function, also \(w \) is always a real quantity as can be seen in its alternative definition \(w = \cosh(\pi\sqrt{V-1/4})/\sinh(k\pi/\alpha) \). The dimensionless amplitude in terms of \(b \) reads \(V = -b(b-1) \) which is the usual form found in the literature. Let us remark that the above expressions are only valid for positive energies [i.e. \(k \in \mathbb{R} \)]. From 2 the asymptotic probability of transmission is \(T = (1 + w^2)^{-1} \). To build a chain with the potentials described, one must do the approximation of considering that each potential unit has a finite range. Hence a cut-off must be included in the Pöschl-Teller potential. Using this approximation one obtains matrices suitable to be arranged in linear chains, applying the composition technique described in Ref.14. Let us suppose that the potential is appreciable only inside

\[V(x) = \frac{\hbar^2 \alpha^2}{2m} \frac{V}{\cosh^2(\alpha x)}. \]

It resembles the form of an atomic well or barrier depending on the sign of \(V \), a dimensionless parameter
the interval \([-d^L, d^R]\), as shown in Fig. 1. Outside this interval the wave function is assumed to be a superposition of the free particle solutions. Then the transmission matrix for the cut-off potential reads

\[
M = \begin{pmatrix}
 e^{i[\varphi + k(d^R + d^L)]} \sqrt{1 + w^2} & -i\omega e^{i(k(d^R - d^L))} \\
 i\omega e^{-i(k(d^R - d^L))} & e^{-i[\varphi + k(d^R + d^L)]} \sqrt{1 + w^2}
\end{pmatrix}.
\]

(5)

The cut-off matrix is the same as the asymptotic one plus an extra phase term in the diagonal elements that accounts for the total distance \((d^R + d^L)\) during which the particle feels the effect of the potential, and also an extra phase term in the off-diagonal elements measuring the asymmetry of the cut-off \((d^R - d^L)\). These phases are the key quantities since they will be responsible for the interference processes that produce the transmission patterns. In our case due to the rapid decay of the Pöschl-Teller potential the cut-off distance admits very reasonable values. In fact we have seen that for a sensible wide range of the parameters \(\alpha\) and \(V\), one can take as a minimum value for the cut-off distance \(d_0 = 2d_{1/2} \simeq 3.5/\alpha\) where \(d_{1/2}\) is the half-width. Taking \(d_{1/2} \geq d_0\) the connection procedure works really well, as we have checked in all cases considered by comparing the analytical composition technique versus a numerical integration of the Schrödinger equation for the global potential. The above matrices can be used to obtain analytical expressions for the scattering amplitudes of different potential profiles including a few atoms resembling molecular structures. In this work our main interest is to consider the transmission matrix to make a continuous disordered model in the form of a large chain of these potentials with random parameters. Let us consider now the effects of uncorrelated disorder upon this particular model. From one is led to the following canonical relation among the values of the electronic states at contiguous sites of the chain,

\[
\Psi_{j+1} = \left(S_j + S_{j-1} \frac{K_j}{K_{j-1}} \right) \Psi_j - \frac{K_j}{K_{j-1}} \Psi_{j-1},
\]

(6)

where

\[
S_j = -w_j \sin \left[k(d_j^L - d_j^R) \right] + \sqrt{1 + w_j^2} \cos (\Phi_j),
\]

(7)

\[
S_j = w_j \sin \left[k(d_j^L - d_j^R) \right] + \sqrt{1 + w_j^2} \cos (\Phi_j),
\]

(8)

\[
K_j = \omega_j \cos \left[k(d_j^L - d_j^R) \right] + \sqrt{1 + w_j^2} \sin (\Phi_j),
\]

(9)

in terms of \(w\) and \(\varphi\) defined in and in and the \(\Phi_j = k(d_j^L + d_j^R) + \varphi_j\). The amplitudes \(\Psi_j\) correspond to the value of the state at the junction point of the potentials as shown in Fig. 2 and in this case each potential is determined by four parameters: \(d_j^L, d_j^R, \alpha_j, V_j\). The form of the canonical relation obtained from the transmission matrix coincides with the Poincaré map derived by Sánchez and co-workers for one-dimensional potentials, in fact expression is formally independent of the potential model. The canonical equation is essential to obtain the properties of the disordered system in the thermodynamic limit. From the canonical relation, the relevant quantities of the disordered composite Pöschl-Teller model such as density of states (DOS) and localization length can be numerically obtained in the thermodynamic limit by using the functional equation formalism, which has already been successfully applied to other disordered models by the authors. The disordered compositions of Pöschl-Teller potentials give rise to the emergence of exciting properties such as fractal DOS, existence of different types of isolated extended states in the spectrum and the appearance of bound states for the negative spectrum which can be completely delocalized. A thorough study of all these features will be reported elsewhere. This work is devoted to describe the properties of the disordered system composed of a particular type of Pöschl-Teller potentials: the resonant wells. One characteristic feature of the potential is that \(T = 1\) for all energies whenever \(b\) is a real integer. Hence an absolute resonant transmission occurs for potential wells with \(V = -2, -6, -12, -20, \ldots\) independently of the value of \(\alpha\). The resonant wells correspond to potentials with an integer value of \(b > 1\). Since in this case \(w = 0\), the transmission matrix for a resonant well becomes diagonal and its non-zero elements are simply the phases \(e^{\pm ikR_j}\), that is, it is the transmission matrix of a zero potential. The resonant well for positive energies behaves as a zero potential with an effective length \(L_{\text{eff}}(k) \equiv k \alpha / (d^R + d^L)\) that depends on the energy. For a resonant well described by parameters \(\{d_L^R, d_R^L, \alpha, b\}\) it can be proved by induction using the properties of the Gamma function that the following expression holds,

\[
\epsilon_{L_{\text{eff}}}(\epsilon) = \frac{\alpha_j (d_j^L + d_j^R)}{(\alpha_j / \alpha)} - 2 \sum_{j=1}^{b_j-1} \text{arctan} \left(\frac{\epsilon}{j(\alpha_j / \alpha)} \right) + (b_j - 1)\pi,
\]

(10)

where \(kL_{\text{eff}}(k) \equiv \epsilon_{L_{\text{eff}}}(\epsilon)\) and the variable \(\epsilon \equiv k/\alpha\) is a dimensionless representation of the energy and \(\alpha\) is the reference value for the parameters \(\{\alpha_j\}\). Now let us consider a disordered chain entirely composed of resonant wells with different parameters. For positive energies the functions appearing in the canonical equation of the system reduce to \(S_j = \cos [kL_{\text{eff}}(k)]\) and \(K_j = \sin [kL_{\text{eff}}(k)]\). It can be easily checked that these functions define the canonical equation for a zero potential where the wave function is evaluated at different distances corresponding to the effective length of each potential. It is then clear that the electronic states for all
energies remain extended in the disordered system. The transmission of the whole structure is maximum for all energies since the system globally behaves as a zero potential. Let us remark that the fully resonant behaviour of the Pöschl-Teller well provided \(b_\gamma \) is an integer is independent of \(d_L^\gamma \), \(d_R^\gamma \), and \(\alpha_\gamma \) as long as the minimum value for the cut-off distances is preserved. In fact, the real dimensional depth of the well reads \(h^2 \alpha_\gamma^2 V_\gamma/(2m) \), hence one can choose at will the depth of the resonant well by varying \(\alpha_\gamma \), although it also means a change in the width of the potential. Therefore, one can build a disordered chain of resonant wells with different widths and depths that can even be placed at arbitrary distances from one another with absolutely no correlations in the sequence, which can be completely random indeed, and the structure will behave as a transparent potential for all energies. To our knowledge this is the first theoretical model for which one can build totally random arrays that exhibit a full continuum of extended states and hence an interval of complete transparency: the whole positive spectrum. Let us calculate analytically the distribution of states of these disordered chains in the thermodynamic limit. For a zero potential of length \(L \) the integrated density of states is trivially \(N(k) = Lk/\pi \). From this fact one is led to the conclusion that a resonant well should provide the spectrum of the system with \(kL_{\text{eff}}(k)/\pi \) available states with energy less than \(k \). Since all species behave effectively as zero potentials, the IDOS of the chain per piece of length \(\alpha^{-1} \) in the thermodynamic limit is just the composition of the contributions of the different species with their respective concentrations \(\{c_\gamma\} \).

\[
n(\epsilon) = \frac{1}{\pi} \sum_\gamma c_\gamma \frac{(\alpha_\gamma/\alpha)}{\alpha_\gamma(d_L^\gamma + d_R^\gamma)} \epsilon L_{\text{eff},\gamma}(\epsilon).
\]

(11)

And the DOS would be obtained differentiating with respect to \(\epsilon \). Inserting expression (11) into the latter definition one finally gets

\[
g(\epsilon) = \frac{1}{\pi} - \frac{2}{\pi} \sum_\gamma c_\gamma \frac{(\alpha_\gamma/\alpha)}{\alpha_\gamma(d_L^\gamma + d_R^\gamma)} \sum_{j=1}^{b_\gamma-1} j(\alpha_\gamma/\alpha)^2 + \epsilon^2.
\]

(12)

Using the same reasoning the analytical expression for the DOS can also be straightforwardly obtained when the parameters \(\{\alpha_\gamma, d_L^\gamma, d_R^\gamma\} \) obey a continuous distribution. We have carefully checked how the analytical expression reproduces exactly the distribution of states calculated numerically via the functional equation formalism. The DOS for the resonant chains is a continuous and smooth function without gaps that does not vanish for zero energy, and it registers relatively small changes by varying the concentrations or the number of different resonant wells. In Fig. 3 the tolerance of the properties of a binary resonant chain are evaluated when their parameters are deviated from the resonant values. As can be seen, a small change of the parameters mean the loss of the full resonant behaviour for all energies. Nevertheless for deviations of order 1% – 5% in the dimensionless amplitudes, the efficiency of transmission is still much higher than for any other non-resonant binary chain composed of wells. Naturally, for the resonant chains the Lyapunov exponent \(\lambda \) in the thermodynamic limit, corresponding to the inverse of the localization length, calculated via the functional equation vanishes for all energies. It can also be checked that the inverse participation ratio for finite resonant chains as a function of the energy is simply a straight line at the value \(N^{-1} \) where \(N \) is the number of potentials, as it must be for flat extended states.

One must not forget that the transmission matrix proposed for the Pöschl-Teller potential is an approximation, since we have assumed that at the cut-off distance the asymptotic form of the states can be used. In fact, this approximation is quite correct; the error that it entails is almost irrelevant for an individual potential and the larger the cut-off distance is the smaller the error becomes. However it might happen that when applying the composition procedure of the potentials to build a disordered array, these small individual deviations give rise to an error growing exponentially with the length of the chain. If it were true, then the behaviour of a real continuous composition of Pöschl-Teller units [i.e. the sum of all the contributions of the potentials centred at different positions] would be far from the results obtained using our techniques. In particular it would be dramatic for a resonant chain for which its resonant behaviour and the delocalization of the electronic states could disappear in the real continuous composition. To show that this exponential error does not occur, we have calculated the transmission probability of several random resonant

![Figure 3](image-url)
chains with 100, 200 and 400 potentials, by integrating numerically the Schrödinger equation for the continuum spectrum. The upper box shows the random potential profile for 100 potentials. For all lengths the chains include three different species with symmetric cut-off \(d = d_k \). The parameters are \(\{\alpha, V, d\} \{c_n\} = \{1, -2.4\} \{0.4\}, \{0.75, -6.5.5\} \{0.3\}, \{0.65, -12.6\} \{0.3\} \).

In summary we have described a class of random resonant chains with a continuum of delocalized states. The composition of resonant Pöschl-Teller wells behaves as a transparent potential for all positive energies. As long as the dimensionless amplitude of the well belongs to an infinite set of discrete values that provide the resonant behaviour, the rest of the parameters of the well can be varied randomly, therefore the configuration of the resonant chain is quite versatile. And of course the delocalization of the electronic states for positive energies is absolutely independent of the random or correlated character of the disordered sequence. Then, at least it is possible to find a theoretical model for which disordered arrays of potentials exhibits a full continuum of extended states which is independent of the length of the system. It is in principle a pure academic model whose properties are tightly bound to the functional dependence of the potentials. Hence, its real importance depends up to a point on the possibility to reproduce experimentally such a structure. Semiconductor heterostructures may be considered as applicants for this task. Advances in the epitaxial growing techniques have made it possible to manipulate the profiles of the band conduction inside the heterostructure in order to build for example confining parabolic wells. Then if not now, perhaps in the future it might be possible to control the growing process of semiconductor samples in such a manner that the spatial profile of the band conduction follows the functional dependence of the Pöschl-Teller well and therefore having the possibility to check experimentally the predicted behaviour. The Pöschl-Teller potential shows an ensemble of very interesting properties which will be described in detail and also a completely new behaviour not expected from a disordered system.

We thank E. Diez for useful discussions. We acknowledge financial support from DGICYT under contract No BFM2002-02609.

* Electronic address: argon@usal.es

1 P. W. Anderson, Phys. Rev. 109, 1492 (1958).
2 E. Abrahams, P. W. Anderson, D. C. Licciardello and T. V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).
3 P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).
4 S. V. Kravchenko et al, Phys. Rev. B 50, 8039 (1994)
5 D. Shahar et al, Solid State Commun. 107, 19 (1998); J. Yoon, C. C. Li, D. Shahar, D. C. Tsui and M. Shayegan, Phys. Rev. Lett. 84, 4421 (2000).
6 J. C. Flores, J. Phys. C 1, 8471 (1989); D. H. Dunlap, H-L. Wu and P. W. Phillips, Phys. Rev. Lett. 65, 88 (1990); A. Bovier, J. Phys. A 25, 1021 (1992); J. C. Flores and M. Hilleke, J. Phys. A 26, L125 (1993); M. Hilleke, J. Phys. A 30, L367 (1997); E. Diez, A. Sánchez and F. Domínguez-Adame, Phys. Rev. B 50, 14359 (1994); J. M. Cerveró and A. Rodriguez, Eur. Phys. J. B 43, 543 (2005).
7 A. Sánchez, E. Maciá and F. Domínguez-Adame, Phys. Rev. B 49, 147 (1994)
8 J. M. Cerveró and A. Rodríguez, Eur. Phys. J. B 30, 239 (2002); Eur. Phys. J. B 32, 537 (2003).
9 F. A. B. F. de Moura and M. L. Lyra, Phys. Rev. Lett. 81, 3735 (1998); Physica A 266, 465 (1999); F. M. Izrailev and A. A. Krokhin, Phys. Rev. Lett. 82, 4062 (1999); F. M. Izrailev, A. A. Krokhin and S. E. Ulloa, Phys. Rev. B 63, 041102(R) (2001); L. Tessieri, J. Phys. A 35, 9585 (2002).
10 V. Bellani et al, Phys. Rev. Lett. 82, 2159 (1999).
11 U. Kuhl, F. M. Izrailev, A. A. Krokhin and H. -J. Stöckmann, Appl. Phys. Lett. 77, 633 (2000); A. Krokhin et al, Physica E 13, 695 (2002).
12 S. Flügge, Practical quantum mechanics. Springer-Verlag, Berlin, 1970.
13 J. W. Dabrowska, A. Khare and U. P. Sukhatme, J. Phys. A: Math. Gen. 21, L195 (1988).
14 J. M. Cerveró and A. Rodriguez, Phys. Rev. A 70, 052705 (2004).
15 A. Rodriguez and J. M. Cerveró, In preparation.