New Studies of Randomized Augmentation and Additive Preprocessing *

Victor Y. Pan[1,2],[a] and Liang Zhao[2],[b]

[1] Department of Mathematics and Computer Science
Lehman College of the City University of New York
Bronx, NY 10468 USA
[2] Ph.D. Programs in Mathematics and Computer Science
The Graduate Center of the City University of New York
New York, NY 10036 USA

[a] victor.pan@lehman.cuny.edu
http://comet.lehman.cuny.edu/vpan/
[b] lzhao1@gc.cuny.edu

Abstract

• A standard Gaussian random matrix (hereafter referred to just as Gaussian matrix) has full rank with probability 1 and is well-conditioned with a probability quite close to 1 and converging to 1 fast as the matrix deviates from the square shape and becomes more rectangular.
• If we append sufficiently many Gaussian rows or columns to any normalized and possibly rank deficient or ill-conditioned matrix, then the augmented matrix has full rank with probability 1 and is well-conditioned with a probability close to 1.
• We specify and prove these properties of augmentation and extend them to additive preprocessing, that is, to adding a product of two rectangular Gaussian matrices.
• By applying our randomization techniques to a matrix that has numerical rank r, we accelerate the known algorithms for the approximation of its trailing singular spaces, associated with all its positive singular values, except for the r largest values.
• Our algorithms use much fewer random parameters and run much faster when various random sparse and structured preprocessors replace Gaussian. Empirically the outputs of the resulting algorithms is as accurate as the outputs under Gaussian preprocessing.
• Our novel duality techniques provides formal support, so far missing, for these empirical observations and opens door to de-randomization of our preprocessing and to further acceleration and simplification of our algorithms by using more efficient sparse and structured preprocessors.
• Our techniques and our progress can be applied to various other fundamental matrix computations such as the celebrated low-rank approximation of a matrix by means of random sampling.

2000 Math. Subject Classification: 65F05, 65F35, 15A06, 15A52, 15A12

*Some results of this paper have been presented at the ACM-SIGSAM International Symposium on Symbolic and Algebraic Computation (ISSAC ’2011), San Jose, CA, 2011, the 3rd International Conference on Matrix Methods in Mathematics and Applications (MMA 2011) in Moscow, Russia, June 22-25, 2011, the 7th International Congress on Industrial and Applied Mathematics (ICIAM 2011), in Vancouver, British Columbia, Canada, July 18-22, 2011, the SIAM International Conference on Linear Algebra, in Valencia, Spain, June 18-22, 2012, and the Conference on Structured Linear and Multilinear Algebra Problems (SLA2012), in Leuven, Belgium, September 10-14, 2012.

© 2016. This manuscript version is made available under the Elsevier user license
http://www.elsevier.com/open-access/userlicense/1.0/
Key Words: Randomized matrix algorithms; Gaussian random matrices; Singular subspaces of a matrix; Duality; Derandomization; Sparse and structured preprocessors

1 Introduction

1.1 Randomized augmentation: outline

A standard Gaussian \(m \times n \) random matrix, \(G \) (hereafter referred to just as Gaussian), has full rank with probability 1 (see Theorem B.1). Furthermore, by virtue of Theorems B.2 and B.3, the expected spectral norms \(\|G\| \) and \(\|G^+\| \), for \(G^+ \) denoting the Moore–Penrose generalized inverse, satisfy the following estimates:

1. \(\mathbb{E}(\|G\|) \leq \sqrt{m} + \sqrt{n} \),
2. \(\mathbb{E}(\|G^+\|) \leq \frac{e \sqrt{h}}{|m-n|} \), for \(h = \max\{m, n\} \), \(m \neq n \), and \(e = 2.71828 \ldots \), and so \(\mathbb{E}(\|G^+\|) \to 0 \) as \(|m-n| \to \infty \).

Moreover the random norms \(\|G\| \) and \(\|G^+\| \) deviate from their expected values by a factor \(f \) with a probability that fast converges to 0 as \(f \to \infty \).

Thus an \(m \times n \) Gaussian matrix can be considered well-conditioned with the confidence growing fast as the integer \(|m-n| \) increases from 0, but Theorem B.4 implies that even for \(m = n \), such a matrix can be viewed as reasonably well-conditioned, depending on context.

Motivated by these estimates, we append reasonably many Gaussian rows or columns to any matrix \(A \), possibly rank deficient or ill-conditioned, but normalized, such that \(\|A\| = 1 \). (Our approach can fail without normalization of an input matrix.) Then we prove that the cited properties of a Gaussian matrix also hold for the augmented matrix \(K \) and similarly for the matrix \(C = A + UV^T \) where \(U \) and \(V \) are Gaussian matrices of reasonable sizes.

We, however, prove and confirm empirically that, for the same number of i.i.d. Gaussian parameters involved,\(^2\) augmentation \(A \to K \) above is likely to produce matrices with smaller condition numbers than additive preprocessing \(A \to C = A + UV^T \) and than augmentation performed by appending to a matrix \(A \) two blocks of rows and columns simultaneously.

The main application area of our algorithms is the computations with rank deficient and ill-conditioned matrices. In particular, for a matrix \(A \) that has rank \(r \) and numerical rank \(\rho < r \), we seek an approximate basis of its trailing singular subspace associated with its \(r - \rho \) smallest positive singular values.

The known numerical algorithms produce such a basis by means of computing QR or LU factorization of the input matrix with pivoting or its Singular Value Decomposition (SVD). Computing SVD is most costly, but even pivoting takes its toll – it interrupts the stream of arithmetic operations with foreign operations of comparison, involves book-keeping, compromises data locality, increases communication overhead and data dependence, readily destroys matrix structure and sparseness, and threatens or undermines application of block matrix algorithms.

In Sections 2 and 3 we compute desired approximate bases by applying randomized augmentation or randomized additive preprocessing at a substantially lower computational cost than with the known techniques.

1.2 Randomized sparse and structured preprocessing

Our study has some similarity with the celebrated work on low-rank approximation of a matrix by means of random sampling (cf. [HMT11]) and randomized preprocessing of Gaussian elimination without pivoting\(^3\) in [PQY15]. In particular (see Section 6), similarly to randomized low-rank approximation in [HMT11, Section 11], our techniques, algorithms and their analysis can be extended to the case where preprocessing with Gaussian matrices is replaced by preprocessing with Semisample

1Here and hereafter \(\|M\| \) denotes the spectral norm of a matrix \(M \).
2“i.i.d.” stands for “independent identically distributed”
3Hereafter we use the acronym GENP.
Random Fourier Transform or Semisample Random Hadamard Transform4 structured matrices, of
[HMT11, Section 11] and [T11] (cf. Appendix C).

The transition from Gaussian to SRFT or SRHT preprocessing greatly simplifies the computa-
tions, but increases the estimated probability of failure. This estimate, however, seems to be overly
pessimistic for most inputs because empirical frequency of failure (observed consistently in our tests
and in the tests covered or cited in [HMT11]) was about the same in the cases of Gaussian, SRFT
and SRHT preprocessing.

More generally, these tests as well as our tests (cf. Table 7.4) the tests and the tests for GENP in
[PQY15] have consistently produced outputs with about the same accuracy when preprocessing with
various random sparse and structured matrices (including SRFT and SRHT matrices as a special
subclass) replaced Gaussian preprocessing.

Formal support for such empirical observations has been a challenge for quite a while, and our
simple but novel insight enables us to meet this challenge: we prove that the known estimates
for the impact of preprocessing with a Gaussian multiplier onto any input matrix can be extended
to preprocessing with any well-conditioned multiplier of full rank onto average input matrix and
consequently onto a statistically typical input matrix, that is, onto almost any input matrix with
a narrow class of exceptions. In this basic Duality Theorem we assume that the average matrix is
defined under the Gaussian probability distribution. Such a provision is customary, and it is quite
natural in view of the Central Limit Theorem.

Regarding the class of allowed multipliers, the restriction in the theorem is the mildest possible
and allows us to select sparse and structured multipliers which can be both generated and multiplied
by an input matrix as fast as one could wish. Thus, besides providing the missing formal support
for the cited empirical observations, our results open door to derandomization of our preprocessing
and to further acceleration and simplification of the known algorithms by using more efficient sparse
and structured preprocessors.

Our reports [PZa] and [PZb] have furnished such a simple but novel duality techniques also for
low-rank approximation, GENP, and some other fundamental matrix computations.

1.3 Some related works and further research directions

Our present study continues and enhances the progress in the works [BP94, Section 2.13], [PY07],
[PMRT07], [W07], PIMR08a, [PIMR08b], [PGMQ08], [PY09], [PIMR10], [PQ10], [PQ12], [PQY15],
[PQZC], [PQZ13], and [PY09] on increasing the efficiency of matrix algorithms by means of random-
ized preprocessing. Unlike these earlier works, we support favorable results of our extensive tests
(similar to the test results of the cited works) with detailed formal analysis.

Randomized multiplication algorithms can be traced back to [F77], have been extensively studied
already in [BP94, Section 2.13] and [MR96] and are surveyed in [HMT11] and [M11] (cf. also
[PGMQ08, Section 12.2], [PY09], [PQZ13], [PQY15], [PZ15], [PZa], and [PZb]). Our Algorithm
3.1t shows that the power of randomized multiplication can be enhanced when we combine it with
randomized augmentation or additive preprocessing.

The search for such synergistic combinations is a natural and important research challenge. As
we have pointed out already, our work should motivate bolder application of sparse and structured
preprocessing towards simplification and acceleration of matrix computations. Our progress should
motivate efforts for the extension of our techniques and results to other fundamental matrix com-
putations, by following the first steps in these directions in [PZa] and [PZb].

1.4 Organization of the paper

In the next subsection, Sections 2.1 and 3.1, and the Appendix, we cover some definitions and
auxiliary results. In Sections 2 and 3 we approximate leading and trailing singular subspaces of
a matrix that has smaller numerical rank by applying our randomization techniques. These two
sections make up Part I of our paper, devoted to our algorithms.

4Hereafter we use the acronyms SRFT and SRHT.
In Sections 4 and 5 we estimate the impact of Gaussian augmentation and additive preprocessing on the condition number of a matrix; these estimates imply correctness of our algorithms of Sections 2 and 3. In Section 6 we extend our study to the case of sparse and structured randomization and present our results on dual randomization. Sections 4–6 form Part II of our paper, devoted to the analysis of our algorithms.

Section 7 covers our numerical tests, which are the contribution of the second author. In Section 8 we summarize our study and discuss some directions for further research. Sections 7 and 8 make up Part III of our paper, devoted to the tests, summary, and extension of our algorithms.

1.5 Some basic definitions

Except for Appendix C, we work in the field \(\mathbb{R} \) of real numbers, but a large part of our study can be extended to computations in the field \(\mathbb{C} \) of complex numbers (cf. [E88], [E89], [ES05], [CD05]).

Hereafter the concepts “large”, “small”, “near”, “close”, “approximate”, “ill-conditioned” and “well-conditioned” are quantified in the context. By saying “likely” we mean with a probability close to 1.

\[
(B_1 | \ldots | B_k) = (B_j)_{j=1}^k \text{ denotes a } 1 \times k \text{ block matrix with the blocks } B_1, \ldots, B_k.
\]

\(I_k \) denotes the \(k \times k \) identity matrix; \(O_{k,l} \) denotes the \(k \times l \) matrix filled with zeros, and we drop the subscripts if this causes no confusion.

For a matrix \(M \) having full column rank, \(Q(M) \) denotes a unique orthogonal matrix defined by the QR factorization \(M = QR \) where \(R = R(M) \) is a unique upper triangular square matrix with positive diagonal entries (cf. [GL13, Theorem 5.2.3]).

\(\mathbb{G}^{m \times n} \) is the class of \(m \times n \) Gaussian matrices.

See some additional definitions in Sections 2.1 and 3.1 (Definition 2.1) and the Appendix.

PART I: Randomized Matrix Algorithms

2 Approximation of the Leading Singular Subspaces

2.1 Left inverses, matrix bases, nmbs, and singular subspaces

An \(m \times n \) matrix \(M \) has an \(n \times m \) left inverse matrix \(X = M^{(l)} \) such that \(XM = I_n \) if and only if it has full column rank \(n \). (We can compute at first QR factorization \(M = QR \) for orthogonal \(m \times n \) matrix \(Q \) and then a left inverse \(M^{(l)} = R^{-1}Q^T \), by performing \(O(mn^2) \) flops overall.)

A matrix having full column rank is a matrix basis for its range. A matrix basis \(B \) for the null space \(\mathcal{N}(M) \) is a null matrix basis or a nmnb for the matrix \(M \), denoted \(nmb(M) \). In other words \(B = nmb(M) \) if the matrix \(B \) has full column rank and if \(R(B) = \mathcal{N}(M) \).

Suppose that we are given three integers \(k, m, n \) with \(1 < k < \min\{m,n\} \), an \(m \times n \) matrix \(M \) of rank \(\rho \), and its SVD

\[
M = S_M \Sigma_M T_M^T, \quad \Sigma_M = \text{diag}(\hat{\Sigma}_M, O_{m-\rho,n-\rho}) \tag{2.1}
\]

where \(S_M \) and \(T_M \) are square orthogonal matrices, \(\hat{\Sigma}_M \) is the diagonal matrix of the positive singular values \(\sigma_j = \sigma_j(M), j = 1, \ldots, \rho \),

\[
\hat{\Sigma}_M = \text{diag}(\sigma_j)_{j=1}^\rho, \quad \sigma_1 = |M|, \text{ and } \sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_\rho > 0. \tag{2.2}
\]

Partition the matrices \(S_M, \Sigma_M, T_M \), and \(M \) into their leading and trailing parts as follows,

\[
S_M = (S_{k,M} | S_{M,k}), \quad \Sigma_M = \text{diag}(\Sigma_{k,M}, \Sigma_{M,k}), \quad T_M = (T_{k,M} | T_{M,k}), \text{ and } M = M_k + \hat{M}_k \tag{2.3}
\]

where \(S_{k,M} \in \mathbb{R}^{m \times k} \), \(T_{k,M} \in \mathbb{R}^{n \times k} \), \(\Sigma_{k,M} = \text{diag}(\sigma_j(M))_{j=1}^k \), \(S_{M,k} \in \mathbb{R}^{m \times (m-k)} \), \(T_{M,k} \in \mathbb{R}^{n \times (n-k)} \), and \(\Sigma_{M,k} = \text{diag}(\text{diag}(\sigma_j(M))_{j=k+1}^\rho, O_{m-\rho,n-\rho}) \), \(M_k = S_{k,M} \Sigma_{k,M} T_{k,M}^T \), \(\hat{M}_k = S_{M,k} \Sigma_{M,k} Y_{M,k}^T \), and so \(||M_k|| \leq \sigma_{k+1} \).

Write

\[
S_{k,M} = \mathcal{R}(S_{k,M}), \quad T_{k,M} = \mathcal{R}(T_{k,M}), \quad S_{M,k} = \mathcal{R}(S_{M,k}), \text{ and } T_{M,k} = \mathcal{R}(T_{M,k}).
\]
If \(\sigma_k > \sigma_{k+1} \), then \(S_{k,M} \) and \(T_{k,M} \) are the leading left and right singular subspaces associated with the \(k \) largest singular values of the matrix \(M \), respectively, and \(S_{M,k} \) and \(T_{M,k} \) are the trailing left and right singular subspaces associated with the remaining singular values, respectively. For \(\rho = \text{rank}(M) \), we arrive at compact SVD, \(M = M_\rho = S_{\rho,M} \Sigma_{\rho,M} T_{\rho,M}^T \), where \(\Sigma_{\rho,M} = \Sigma_{\rho} \) (cf. (2.2)).

For a positive tolerance \(\eta \), a matrix \(M \) has \(\eta \)-rank \(\rho, \rho = \text{rank}_\eta(M) \), if \(\sigma_\rho(M) > \eta \geq \sigma_{\rho+1}(M) \) or, equivalently, if the matrix \(M \) can be approximated within the norm bound \(\eta \) by a matrix of rank \(\rho \), but not by a matrix of rank \(\rho - 1 \). Notice that

\[
\text{rank}_\eta(M) \leq \text{rank}_\eta'(M) \leq \text{rank}(M) \text{ if } \eta \geq \eta' \geq 0.
\]

\(\eta \)-rank is said to be numerical rank if \(\eta \) is small (in context).

2.2 Linking approximation of a matrix and of its leading singular subspace

For an \(m \times n \) matrix \(A \) having numerical rank \(\rho \), seek approximation to its leading singular subspace \(T_{\rho,A} \). The following theorem closely links this task to the celebrated problem of low-rank approximation of a matrix \(A \), extensively covered in [HMT11].

Theorem 2.1. Let \(\text{rank}(A) = \rho \). Write \(\Delta = Q - T_{\rho,A}V \) for an \(n \times \rho_+ \) matrix \(Q \) and a \(\rho \times \rho_+ \) orthogonal matrix \(V \) where \(\rho_+ \geq \rho \). Then

\[
\frac{||AQQ^T - A||}{||A||} \leq (2 + ||\Delta||)||\Delta|| + \frac{\sigma_{\rho+1}(A)}{\sigma_1(A)}.
\]

Proof. First deduce from the equation \(T_A^T T_{p,A} = (I_\rho \mid O_{n-\rho,p})^T \) that

\[
AT_{p,A} T_{p,A}^T = S_A \Sigma_A T_{p,A}^T T_{p,A} = S_{p,A} \Sigma_{p,A} T_{p,A}^T = A_p.
\]

Recall that \(Q = T_{p,A}V + \Delta, T_A^T T_{p,A} = (I_\rho \mid O_{n-\rho,p})^T, VV^T = I_\rho, A = A_p + \tilde{A}_p, \tilde{A}_p = S_{p,A} \Sigma_{p,A} T_{p,A}^T, \) and \(||\tilde{A}_p|| \leq \sigma_{\rho+1}(A) \). Combine these equations with (2.4) and obtain

\[
AQQ^T - A = A(T_{p,A}V + \Delta)(V^T T_{p,A}^\rho + \Delta^T) - A = -\tilde{A}_p + AT_{p,A}V \Delta^T + A\Delta(V^T T_{p,A}^\rho + \Delta^T).
\]

Therefore

\[
||AQQ^T - A|| \leq ||\tilde{A}_p|| + ||A||(||T_{p,A}|| ||V|| ||\Delta^T|| + ||\Delta||(||V|| ||T_{p,A}|| ||\Delta||)).
\]

Now recall that \(||MT|| = ||M|| \) for all matrices \(M \), substitute \(||\tilde{A}_p|| = \sigma_{\rho+1}(A) \) and \(||T_{p,A}|| = ||V|| = 1 \), and obtain

\[
||AQQ^T - A|| \leq \sigma_{\rho+1}(A) + (2 + ||\Delta||)||\Delta|| ||A||.
\]

The theorem follows because \(||A|| = \sigma_1(A) \). \(\square \)

Remark 2.1. If the error norm \(||\Delta|| \) of the approximation to the leading subspace \(T_{p,A} \) is small, then, by virtue of Theorem 2.1, the relative error of rank-\(\rho \) approximation of the matrix \(A \) by \(AQQ^T \) is also small. Conversely, if the ratio \(\frac{||AQQ^T - A||}{||A||} \) is small, then by applying [HMT11, Algorithm 5.1] one can approximate the matrices \(S_{p,A} \approx QS_{Q^T}Q \) and \(T_{p,A} \approx QS_{A}Q \) of the leading singular vectors essentially at the cost of computing compact SVDs of the matrices \(Q^T A \) and \(AQ \) of smaller sizes (see Remark 2.3 of the next subsection). Having the matrix \(S_{p,A} \) approximated, we can readily approximate at first the matrix \(\Sigma_{p,A} T_{p,A}^T = S_{p,A}^T A \) and then the matrices \(\Sigma_{p,A} \) and \(T_{p,A} \) (thus approximating the leading part of SVD of the matrix \(A \)), and similarly if we are given an approximation of the matrix \(T_{p,A} \).
2.3 Randomized approximation of a leading singular subspace

Definition 2.1. \(E(v) \) denotes the expected value of a random variable \(v \). \(\nu_{m,n}, \nu_{F,m,n}, \nu_{m,n}^+, \) and \(\kappa_{m,n} \) denote the random variables \(||G||, ||G||_F \) (the Frobenius norm of \(G \)), \(||G^+|| \), and \(\kappa(G) = ||G|| ||G^+|| \), respectively, and \(\nu_n^+ = \nu_n^+(A) \) denotes the norm \(||(A + G)^+|| \) provided that \(A \in \mathbb{R}^{n \times n} \) and \(G \in \mathbb{R}^{n \times n} \). (Clearly \(\nu_n^+ \geq \nu_n^+ \).) Assume that all these random variables turn into 1 if \(m = 0 \) or \(n = 0 \). (Notice that \(\nu_{m,n} = \nu_{m,n}, \nu_{m,n}^+ = \nu_{m,n}^+, \) and \(\kappa_{m,n} = \kappa_{m,n} \).)

Next we consider approximation of a leading singular subspace \(T_{\rho,A} \) of a matrix \(A \) that has numerical rank \(\rho \). We apply and analyze the technique of random sampling, that is, approximation of \(T_{\rho,A} \) by the range of the matrix \(A^T H \) for a Gaussian \(m \times \rho_+ \) matrix \(H \) and for a nonnegative but not large integer \(\rho_+ - \rho \). This technique has been analyzed in [HMT11] for low-rank approximation of such a matrix \(A \), but our error analysis is a little simpler because we approximate just the space \(T_{\rho,A} \) rather than the matrix \(A \). In the following theorem we estimate the approximation error norm.

Theorem 2.2. Suppose that an \(m \times n \) matrix \(A \) has numerical rank \(\rho \), \(H \) is an \(n \times \rho_+ \) Gaussian matrix, and \(m \geq n \geq \rho_+ \geq \rho > 0 \). Write \(X = A^T H \). Then with probability 1, \(\text{rank}(X) = \rho \), \(\mathcal{R}(X) = T_{\rho,A} \), and

\[
\|A^T H - X\| \leq \sigma_{\rho+1}(A) \nu_{n,\rho_+}.
\]

Proof. Recall equations (2.1) and (2.3), for \(M = A \) and \(k = \rho = \text{rank}(A) \), and observe that

\[
\|A^T H - X\| = \| (A^T - A^T_X) H \| \leq \| A^T - A^T_X \| \| H \| = \sigma_{\rho+1}(A) \nu_{n,\rho_+}.
\]

Furthermore observe that \(\text{rank}(X) \leq \rho \), \(\mathcal{R}(X) \subset T_{\rho,A} \), and the equality hold in the above by virtue of Theorem B.1.

Apply Theorem B.2 and conclude that the bound \(\sigma_{\rho+1}(A) \nu_{n,\rho_+} \) can be large only with a probability close to 0. Therefore one can monitor the approximation error by estimating the ratio \(\|AQ^T - A\| \|Q\| \) for \(Q = Q(A^T H) \) (see Remark 2.1). Probabilistic estimates for this ratio in [HMT11, Sections 10.2 and 10.3] have order \(\sigma_{\rho+1}(A) \) and hold with a probability 1 - \(3/p^p \) for an oversampling integer \(p = \rho_+ - \rho \) if \(p \geq 4 \).

Theorem 2.2 implies correctness of the following simple randomized algorithm, which is a subalgorithm of [HMT11, Algorithm 4.1].

Algorithm 2.1. (Cf. Remarks 2.2 and 2.3.)

Input: Three integers \(m, n, \) and \(\rho_+ \) such that \(m \geq n \geq \rho_+ > 0 \), and an \(m \times n \) matrix \(A \) having numerical rank \(\rho \leq \rho_+ \).

Output: An \(n \times \rho_+ \) matrix \(X \), whose range is likely to approximate the leading singular subspace \(T_{\rho,A} \).

Computations: 1. Generate a Gaussian \(n \times \rho_+ \) matrix \(H \).

2. Compute and output the \(n \times \rho_+ \) matrix \(X = A^T H \).

The algorithm generates \(n \rho_+ \) i.i.d. Gaussian values and then performs \((2n - 1)\rho_+ \) flops.

Remark 2.2. (Cf. [HMT11, Theorem 9.2].) The approximation of a basis for the leading (as well as trailing) singular subspaces is facilitated as the gaps increase between the singular values of the input matrix \(A \). This motivates preprocessing of an input matrix \(A \) by means of the power transforms \(A \mapsto B_h = (AA^T)^h A \) for positive integers \(h \) because \(\sigma_j(B_h) \equiv (\sigma_j(A))^{2h+1} \) for all \(j \).

Remark 2.3. By applying the algorithms of this subsection to the transpose \(A^T \) we can approximate the left singular subspaces of our input matrix \(A \). If, however, an approximation \(Q_T = T_{\rho,A} V + \Delta_T \) to a matrix basis for the right singular subspace \(T_{\rho,A} \) is already available, then the matrix \(AQ_T \) approximates a matrix basis for the left singular subspace \(S_{\rho,A} \). Indeed \(AQ_T = S_A \Sigma_{\rho}^T (T_{\rho,A} V + \Delta_T) = S_A \Sigma_{\rho}^T (T_{\rho,A} V + A \Delta_T) = S_{\rho,A} \Sigma_{\rho,A} V + A \Delta_T \), and so the matrix \(QS = AQ_T \) approximates
a matrix basis $S_{p,A}U$ for the left singular subspace $S_{p,A}$ within the error norm bound $ ||\Delta_S|| \leq ||A|| ||\Delta_T||$. Furthermore write $Q_S^T = U^T S^T_{\rho,A} + \Delta_S$ and observe that $Q_S^T AQ_T = U^T \Sigma_{\rho,A} V + \Delta_S$ where $\Delta_S = \Delta_S^T AQ_T + Q_S^T \Delta_T - \Delta_S^T \Delta_T$, and so $||\Delta_S||_{||A||} \leq ||\Delta_S|| + ||\Delta_T|| + ||\Delta_S|| ||\Delta_T||$. Then the singular values of the $\rho \times \rho$ matrix $Q_S^T AQ_T$ approximate those of the matrix A.

2.4 Oversampling and compression

If we know numerical rank ρ of the input matrix A, we can apply Algorithm 2.1, for $\rho_+ = \rho$. Otherwise we can compute ρ by applying this algorithm in a binary search process. Indeed, let X denote the output matrix of the algorithm. Then the norm $||AQQ^T - A||$ has order of $\sigma_{p+1}(A)$ for $Q = Q(X)$ if $\rho_+ \geq \rho$ (cf. Theorems 2.1 and 2.2), but is at least $\sigma_\rho(A)$ if $\rho_+ < \rho$.

Alternatively, having applied Algorithm 2.1 for $\rho_+ > \rho$, we can compute a rank-revealing QR factorization, a UTV factorization, or SVD of the matrix X (see [GL13, Section 5.4] and [S98, Section 5.4] for these factorizations), and this would immediately enable us to compute the numerical rank of the matrix A and to compress the $n \times \rho_+$ output matrix X into $n \times \rho$ orthogonal matrix. Such computations are relatively inexpensive if $\rho_+ \ll \min\{m,n\}$, and are routine in the extension of the algorithm to low-rank approximation of the matrix A.

For the task of the approximation of the singular subspace $T_{\rho,A}$, however,5 estimated approximation error norms of these computations are a little larger than $\nu_{n,\rho,\sigma_{p+1}}$, even if we compute the matrix $S_{p,X}$ of the ρ leading left singular vectors of the matrix $X = A^T H$ and output it as an approximate matrix basis for the space $T_{\rho,A}$. Here are some relevant estimates.

Theorem 2.3. Under the assumptions of Theorem 2.2, write

$$\phi = \sqrt{n - \rho} \sigma_{p+1}(A) \nu_{F,n,\rho_+} ||(A^T H)^+||. \quad (2.5)$$

Let the matrix $A^T H$ have full rank ρ and let $5\phi < 1$. Then the $n \times \rho$ orthogonal matrix $S_{A^T H}$ of the ρ leading left singular vectors of the matrix $A^T H$ approximates a matrix basis of the leading singular subspace $T_{\rho,A}$ of the matrix A within the Frobenius error norm bound 4ϕ.

Proof. Recall equations (2.1) and (2.3), for $M = A$ and $k = \rho = \text{rank}(A)$, and write

$$A^T H = A^T_H + \tilde{A}^T_H, \quad A^T_H = S_{\rho,A} \Sigma_{\rho,A} T_{\rho,A}^T, \quad \text{and} \quad \tilde{A}^T_H = S_{A^T_H} \Sigma_{A^T_H} T_{A^T_H}^T.$$

Then

$$A^T_H = T_{\rho,A} \Sigma_{\rho,A} S_{\rho,A}^T H + ||\tilde{A}^T_H|| \leq ||\tilde{A}^T_H|| \leq ||H|| = \sigma_{p+1}(A) \nu_{F,n,\rho_+}. \quad (2.6)$$

Equation (2.6) implies that $R(T_{\rho,A}) = R(S_{A^T H})$. Recall that $A^T H = A^T_H + \tilde{A}^T H$ and combine the upper bound (2.6) on the norm $||\tilde{A}^T H||$ with [GL13, Theorem 8.6.5] where $E = \tilde{A}^T H$ and A is replaced by $A^T H$ (which implies that $\delta = ||(A^T H)^+||$ in that theorem).

Theorem 2.4. Under the assumptions of Theorem 2.2, it holds that

$$||(A^T H)^+|| \leq \frac{\nu_{F,n,\rho_+}^+}{\sigma_\rho(A)}.$$

Proof. Recall that $A^T H = T_{\rho,A} \Sigma_{\rho,A} B$ for $B = S_{\rho,A}^T H$.

Write $F = \Sigma_{\rho,A} B$ and let $F = S_F \Sigma_F T_F^T$ and $B = S_B \Sigma_B T_B^T$ be compact SVDs.

$T_{\rho,A} S_F$ is an orthogonal matrix because S_F is an $\rho \times \rho$ orthogonal matrix.

Now write $S_{A^T_H} = T_{\rho,A} S_F$ and notice that $A^T_H = S_{A^T_H} \Sigma_F T_F^T$ is a compact SVD.

Consequently $||(A^T H)^+|| = ||F^+||$.

Furthermore $F = \Sigma_{\rho,A} B \Sigma_B T_B^T$ where $\Sigma_{\rho,A}$, S_B, and S_B are $\rho \times \rho$ nonsingular matrices.

Therefore $F^+ = T_B \Sigma_B^+ S_B^+ T_{\rho,A}^{-1}$ where $||S_B|| = ||T_B||=1$.

It follows that $||(A^T H)^+|| = ||F^+|| \leq ||\Sigma_B^{-1}|| ||\Sigma_{\rho,A}^{-1}|| = \frac{\nu_{F,n,\rho_+}^+}{\sigma_\rho(A)}$.

5Among important applications, recall the computation of CUR decomposition (cf. [M11, Sections 5.1 and 5.2]).
The latter two theorems together imply the following corollary.

Corollary 2.1. Under the assumption of Theorem 2.2, write

\[\phi_+ = \sqrt{n-\rho} \nu_{F,n,\rho_+} \nu_{\rho,\rho_+} \frac{\sigma_{\rho+1}(A)}{\sigma_\rho(A)}. \]

(2.7)

Then, with a probability at least Probability\{5\phi_+ < 1\} (cf. Remark 2.4 below), the \(n \times \rho \) matrix \(S_{A^T}^H \) of the \(\rho \) leading left singular vectors of the matrix \(A^T \) approximates a matrix basis of the leading singular subspace \(T_{\rho,A} \) of the matrix \(A \) within the Frobenius error norm \(4\phi_+ \).

Remark 2.4. For \(\rho_+ > \rho \), equation (2.7) and Theorems B.2 and B.3 together imply that

\[\mathbb{E}(\phi_+) < e (1 + \sqrt{n} + \sqrt{\rho_+}) \sqrt{n-\rho} \frac{\sigma_{\rho+1}(A)}{\sigma_\rho(A)} \frac{\sqrt{n+\rho}}{\rho_+ - \rho}, \]

for \(e = 2.71282 \ldots \).

2.5 Leading singular subspaces via the maximal volume

The algorithm of [GOSTZ10] has been devised for the approximation of the so-called CUR decomposition of a matrix, but can be also applied as an alternative means for the approximation of its leading singular subspaces. The algorithm is heuristic, but consistently converges fast according to its extensive tests by the authors.

It accesses only a small fraction of the entries of the input matrix. This makes it particularly efficient for sparse matrices. The algorithm interchanges rows and columns of an input matrix, destroying Toeplitz-like, Hankel-like, and even Vandermonde-like matrix structures, but one can fix this deficiency by means of the back and forth transition to Cauchy-like matrices [P15], whose structure is invariant in row and column interchange.

The approach is motivated by the following result where \(v_\rho(M) = \max_X |\det(X)| \) for the maximum over all \(\rho \times \rho \) submatrices \(X \) of a matrix \(M \). (\(v_\rho(M) \) is said to be the maximal volume of the \(\rho \times \rho \) submatrices of the matrix \(M \).)

Theorem 2.5. [GT01, Corollary 2.3]. Let an \(n \times m \) matrix \(A^T = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \) have a nonsingular \(\rho \times \rho \) leading block \(A_{11} \). Write \(\nu = \frac{v_\rho(A)}{|\det(A_{11})|} \), \(C = \begin{pmatrix} A_{11} \\ A_{21} \end{pmatrix} \), and \(R = (A_{11} | A_{12}) \) and let \(||\cdot||_C \) denote the element-wise (Chebyshev) norm, \(||M|| \leq \sqrt{mn} ||M||_C \) for a matrix \(M \in \mathbb{R}^{m \times n} \). Then

\[||A - CA_{11}^{-1}R||_C \leq (\rho + 1)\sigma_{\rho+1}(A)\nu. \]

By virtue of the theorem, the rank-\(\rho \) matrix \(CA_{11}^{-1}R \) approximates the matrix \(A \) within a factor of \((\rho + 1)\nu \sqrt{mn} \) from the optimal error bound \(\sigma_{\rho+1}(A) \). (\(CA_{11}^{-1}R \) is a CUR decomposition if the matrices \(A_{11} \) and \(U = A_{11}^{-1} \) are unitary.)

In the authors’ tests, the iterative algorithm of [GOSTZ10] has consistently produced \(\rho \times \rho \) submatrices of the matrix \(A \) that have reasonably bounded ratios \(\nu \). This work is linked to our study because a rank-\(\rho \) approximation \(CA_{11}^{-1}R \) to the matrix \(A \) induces approximations by the matrices \(C \) and \(CA_{11}^{-1} \) to \(n \times \rho \) matrix bases of the leading singular subspace \(T_{\rho,A^T} \).

3 Approximation of Trailing Singular Subspaces

3.1 The basic theorems

The following results from [PQ10] and [PQ12] are basic for the approximation of the trailing singular subspace \(T_{A,\rho} \). We assume that we have already computed the numerical rank \(\rho \), e.g., by applying Algorithm 2.1 (cf. Remark 2.1).
Theorem 3.1. Suppose that \(A \in \mathbb{R}^{m \times n}, V \in \mathbb{R}^{n \times s}, \tilde{K} = \begin{pmatrix} VT \\ A \end{pmatrix}, \) \(\text{rank}(V) = s, \) \(\text{rank}(\tilde{K}) = n, \)

\(m \geq n. \) Write \(\hat{Y} = \tilde{K}(I) \begin{pmatrix} I_s \\ O_{m,s} \end{pmatrix}. \) Then

\((a) \ N(A) \subseteq \mathcal{R}(\hat{Y}), \)
\((b) \ N(A) = \mathcal{R}(\hat{Y}) \) if \(s + \text{rank}(A) = n, \)
\((c) \ N(A) = \mathcal{R}(\hat{Y} \tilde{Z}) \) if \(\mathcal{R}(\tilde{Z}) = N(A\tilde{Y}). \)

Proof. See [PQ12, Correctness proof of Algorithm 6.1].

Theorem 3.2. Suppose that \(A \in \mathbb{R}^{m \times n}, U \in \mathbb{R}^{m \times q}, V \in \mathbb{R}^{n \times s}, W \in \mathbb{R}^{s \times q}, \) \(K = \begin{pmatrix} W & VT \\ U & A \end{pmatrix}, \)

\(\text{rank}(W) = q \geq \text{null}(A), \) \(\text{rank}(K) = n + q, m \geq n. \) Write \(\hat{Y} = (O_{n,q} \mid I_n)K(I) \begin{pmatrix} O_{s,q} \\ U \end{pmatrix}. \) Then

\((a) \ N(A) \subseteq \mathcal{R}(\hat{Y}), \)
\((b) \ N(A) = \mathcal{R}(\hat{Y}) \) if \(\text{rank}(U) + \text{rank}(A) = n, \)
\((c) \ N(A) = \mathcal{R}(\hat{Y} \tilde{Z}) \) if \(\mathcal{R}(\tilde{Z}) = N(A\tilde{Y}). \)

Proof. See [PQ12, Theorems 11.2 and 11.3].

Theorem 3.3. [PQ10, Theorem 3.1 and Corollary 3.1]. Suppose a matrix \(A \in \mathbb{R}^{m \times n} \) has rank \(\rho, \)
\(U \in \mathbb{R}^{m \times r}, V \in \mathbb{R}^{n \times r}, \) and the matrix \(C = A + UV^T \) has full rank \(n. \) Write \(\hat{Y} = C(I)U. \) Then

\((a) \ N(A) \subseteq \mathcal{R}(\hat{Y}) \) and \(r \geq n - \rho, \)
\((b) \ N(A) = \mathcal{R}(\hat{Y}) \) if \(r + \rho = n, \)
\((c) \ N(A) = \mathcal{R}(YZ) \) if \(\mathcal{R}(Z) = N(AY). \)

Remark 3.1. Given a matrix \(A \) and its numerical rank \(\rho, \) observe that the matrix \(T_{A,\rho} \) is a nmb of the matrix \(A_{\rho} \) defined by (2.3) for \(M = A. \) Therefore \(T_{A,\rho} = \mathcal{R}(W) \) if \(W \) is a nmb\((A_{\rho}). \) Furthermore
\(\text{nmbs of the matrix } A \text{ approximate nmbs of the matrix } A_{\rho} \text{ because } A \approx A_{\rho}. \) Now assume that the matrices \(U, V, \) and \(W \) of Theorems 3.1–3.3 are Gaussian. Then the matrices \(\hat{K}, K, \) and \(C \) have full
\(\text{rank with probability } 1 \) by virtue of Theorem B.1 and are well-conditioned with a probability close to\(1 \) and estimated in Sections 4–6. If indeed they are well-conditioned matrices of full rank, then we can apply the expressions of Theorems 3.1–3.3 for nmbs of the matrix \(A \) through the matrices \(\hat{K}, \)
\(K, \) and \(C, \) thus approximating nmbs of the matrix \(A_{\rho} \) and the trailing singular subspace \(T_{A,\rho}. \)

3.2 Randomized approximation of a trailing singular subspace

Assume that \(m \geq n \) and we are given an \(m \times n \) matrix \(A \) and its numerical rank \(\rho = n - r \) and seek
an approximate basis for the trailing singular subspace \(T_{A,\rho}. \) This can be also viewed as the search
for an approximate solution of the homogeneous linear system \(Az = 0. \)

We can first compute an \(n \times \rho \) approximate singular matrix basis \(B \) for the leading singular subspace \(T_{\rho,A}, \)
by applying Algorithm 2.1 (which involve \(n_{p+} \) random parameters and \(2n -1)m_{p+} \) flops), and then compute an approximate matrix basis \(\text{nmbs}(B). \) We refer to this computation as Algorithms 3.1t.

At the stage of computing a nmbs\((B), \) we can apply the algorithms supporting Theorems 3.1–3.3,
but in this application to \(m \times \rho \) matrix \(AH, \) for \(\rho < m, \) they are superseded by [PQ12, Algorithm
4.1], which generates an \(n \times n \) Gaussian multiplier and then performs about \(2(n + \rho)n\rho \) flops.

Next, by relying on Theorems 3.1–3.3 and Remark 3.1, we devise some randomized alternative
guaranteed to produce a random \(m_{p+} \) matrices of full rank, but in both cases only with a probability close
to \(0 \) according to our estimates in Sections 4–6, and they never fail in our extensive tests. Moreover,
if failure occurs, we can detect it by following the recipe of Remark 2.1.

Algorithm 3.1. An approximate basis for the trailing singular subspace by using randomized
preprocessing.

INPUT: A normalized matrix \(A \in \mathbb{R}^{m \times n} \) for \(m \geq n, \) its numerical rank \(\rho = n - r, \) computed, say,
by Algorithm 2.1 (cf. Remark 2.1), and a tolerance value \(\tau \gg \sigma_{p+1}(A). \)
OUTPUT: An approximate matrix basis B of the trailing singular subspace $T_{A,\rho}$ within a relative
error norm bound τ.

INITIALIZATION: Choose one of Theorems 3.1–3.3 and generate the auxiliary Gaussian matrices
U, U and V, or U, V, and W involved into it.

Computations:

1. Compute an approximate orthogonal matrix basis X for the trailing singular subspace $T_{A,\rho}$
 by setting $X = Y$, $X = \hat{Y}$, or $X = \hat{Y}$ and using the expression of the selected theorem.

2. Compute the matrix AX.

3. Output $B = X$ and stop if $\|AX\| \leq \tau\|A\|$. Otherwise output FAILURE and stop.

We have three options for proceeding with any of three Theorems 3.1–3.3 and thus arrive at the
three variants of the algorithm. Hereafter we refer to them as Algorithms 4.1.1, 4.1.2, and 4.1.3.

The algorithms generate nr, $(m+n+r)\tau$, and $(m+n)\tau$ i.i.d. Gaussian parameters, respectively,
and then perform order of $(m+r)n^2$, $(m+r)(n+r)^2$, and $(n+r)mn$ flops, respectively.

Remark 3.2. In the case where $m = n$ the computations are simplified and stabilized numerically.
We can reduce to this case the computation for a rectangular matrix A, e.g., by observing that

\[N(A) = N(A^T A), \]

\[N(A) = N(B^T A) \text{ if } A, B \in \mathbb{R}^{m \times n} \text{ and if the matrix } B \text{ has full rank } \leq n, \]

\[(A \mid O_{m,m-n})u = 0_m \text{ if and only if } A\hat{u} = 0_m \text{ provided that } m \geq n \text{ and } \hat{u} = (I_n \mid O_{n,m-n})u, \]

\[(A^T \mid O_{n,m-n})v = 0_n \text{ if and only if } \hat{v} = 0^T_n \text{ provided that } m < n \text{ and } \hat{v} = (I_m \mid O_{n,m,n})v. \]

Furthermore, here is an alternative option. Represent an $m \times n$ matrix A for $m > n$ as a block
vector $A = (B_1^T \mid B_2^T \mid \ldots \mid B_h^T)^T$ for $k_1 \times n$ blocks B_i, $i = 1, \ldots, h$, and $\sum_{i=1}^h k_i = n$. Notice that

\[N(A) = \cap_{i=1}^h N(B_i) \text{ and apply [GL13, Theorem 6.4.1] to compute the intersection of null spaces.} \]

Remark 3.3. Recursive randomized approximation of the bases of singular subspaces. Given a
matrix A and two small positive values η and $\eta' < \eta$, suppose that we have computed the integers
$\rho = \text{rank}_\eta(A)$ and $\rho' = \text{rank}_{\eta'}(A)$, by applying Algorithm 2.1, as well as an approximate basis
$Y = Y_\eta$ for the trailing singular subspace $T_{A,\rho}$, by applying Algorithm 3.1, 4.1.1, 4.1.2, or 4.1.3.
Now suppose that we seek an approximate matrix basis $Y' = Y_{\eta'}$ for the trailing singular subspace
$T_{\rho',A}$. Then again we can apply one of these algorithms to the matrix A, but we can apply it to the
matrix AY instead. In this case we would increase the precision u of computing to $u' > u$ such that
$2^u' = O(\sigma_{\rho'+1}(A))$, but would decrease the arithmetic cost by a factor of n/ρ, which is substantial if
$\rho \ll n$. Correctness of this recipe follows from Theorems 3.1–3.3, and the approach can be extended
recursively.

PART II: Augmentation and Additive Preprocessing

4 Analysis of Randomized Augmentation

Our algorithms of the previous two sections rely on the power of randomized augmentation and
additive preprocessing, which we prove in this and the next two sections.

Row and column permutations make no impact on the singular values of a matrix, and so we can
restrict our next study to western, northern and northwestern augmentation, that is, to appending
Gaussian rows on the top of a matrix or Gaussian columns on the left of it. Furthermore, western
augmentation for a matrix turns into northern augmentation for its transpose and vice versa, and
so it is sufficient to analyze western and northwestern augmentation.
In the next two subsections we prove a quite reasonable upper bound on the condition numbers of two matrices obtained from an ill-conditioned matrix by means of western and northwestern augmentation, respectively, but in order to yield this upper bound, the northwestern augmentation requires about twice as many random parameters. Our tests in Section 7 complement these results by clearly showing superior performance of western versus northwestern augmentation as well as versus additive preprocessing. Some potential applications, however, may require northwestern rather than western augmentation (see, e.g., the end of Section 8).

4.1 Analysis of western and northern augmentation

Assumption 1. We will simplify our presentation by omitting the restriction "with probability 1". For example, by saying that a random matrix A has full rank or showing an estimate for the norm $\|A\|$, we will assume by default (although will not state explicitly) that these property or estimate hold with probability 1.

Theorem 4.1. (Cf. Remark 4.1 and Definition 2.1.) Assume that an $m \times n$ matrix A has numerical rank ρ and is normalized so that $\|A\| = 1$. Define its randomized western augmentation by the map $A \mapsto K = (U \mid A)$ for $U \in G^{m \times q}$. Then

$$\|K\| \leq |\|A\| + |U\| = 1 + \nu_{m,q}, \quad (4.1)$$

for the random variable $\nu_{m,q}$ defined in Section 2.3 and Appendix B, and so $\mathbb{E}(\|K\|) \leq 2 + \sqrt{m} + \sqrt{q}$. Furthermore

(i) the matrix K is rank deficient or ill-conditioned if $q + \rho < l = \min\{m, n\}$.

(ii) Otherwise it has full rank and

(iii) satisfies the following bound,

$$\|K^+\| \leq n_{m,q,\rho,A}^+ = \max\{1, \nu_{m,q,\rho,A}^+\} \frac{1 + \nu_{\rho,m-\rho}}{\sigma_\rho(A)}. \quad (4.2)$$

Proof. Readily verify (4.1) and part (i). Deduce part (ii) from Theorem B.1. It remains to prove bound (4.2) provided that $l \leq q + \rho$.

With no loss of generality, replace the matrix A by the diagonal matrix Σ_A of its singular values, that is, write

$$A = \Sigma_A = \text{diag}(\Sigma, \Sigma'_{\rho,n-\rho})$$

and

$$K = \begin{pmatrix} U_0 & \Sigma_{\rho} \\ \bar{U} & O_{m-\rho, \rho} \end{pmatrix}, \quad \Sigma_{\rho} = \text{diag}(\sigma_j(A))_{j=1}^\rho.$$}

where $\|\Sigma'_{\rho,n-\rho}\| = \sigma_{\rho+1}(A)$, $\Sigma_{\rho} = \Sigma_{\rho,A} = \text{diag}(\sigma_j(A))_{j=1}^\rho$. U_0 and \bar{U} are r/r Gaussian matrices (cf. Definition B.2), namely $U_0 \in G_{\rho,m,q}$ and $\bar{U} \in G_{m-\rho,m,q}$, and consequently $U_0 \in G^\rho \times q$ and $\bar{U} \in G^{(m-\rho) \times q}$ by virtue of part (ii) of Theorem B.5.

Indeed, we arrive at these equations by applying the orthogonal map $K \to S_A^T K \text{diag}(I_q, T_A)$, which also induces the map $A \to S_A^T A T_A = \Sigma_A$. Here S_A and T_A are the matrices of the singular vectors in SVD $A = S_A \Sigma_A T_A^T$, and we notice that $S_A^T U \text{diag}(I_q, T_A) \in G_{m,m,q}$ and that the map preserves all singular values of the matrix K. We call such maps Gaussian diagonalization.

With no loss of generality assume that $n = \rho = l \leq m$ and that

$$K = \begin{pmatrix} U_0 & \Sigma_{\rho} \\ \bar{U} & O_{m-\rho, \rho} \end{pmatrix} \in \mathbb{R}^{m \times (n+q)}$$

because the $n-q$ rightmost columns of the matrix K are filled with zeros, and we can just delete them. Notice that Theorem B.1 and Assumption 1 together imply that the $(m-\rho) \times q$ matrix \bar{U} has full rank, and so $\text{rank}(K) = m$ because $q + \rho \geq m$.

Then again apply Gaussian diagonalization by writing

$$\hat{K} = \text{diag}(I_\rho, S_\bar{U}^T) K \text{diag}(T_\bar{U}^T, I_\rho) = \begin{pmatrix} U_{00} & U_{01} \\ \Sigma'_{\bar{U}} & O_{m-\rho,q+p-m} \end{pmatrix} \frac{\Sigma_{\rho}}{\sigma_\rho(A)}$$

$$\|K^+\| \leq n_{m,q,\rho,A}^+ = \max\{1, \nu_{m,q,\rho,A}^+\} \frac{1 + \nu_{\rho,m-\rho}}{\sigma_\rho(A)}. \quad (4.2)$$

Proof. Readily verify (4.1) and part (i). Deduce part (ii) from Theorem B.1. It remains to prove bound (4.2) provided that $l \leq q + \rho$.

With no loss of generality, replace the matrix A by the diagonal matrix Σ_A of its singular values, that is, write

$$A = \Sigma_A = \text{diag}(\Sigma, \Sigma'_{\rho,n-\rho})$$

and

$$K = \begin{pmatrix} U_0 & \Sigma_{\rho} \\ \bar{U} & O_{m-\rho, \rho} \end{pmatrix}, \quad \Sigma_{\rho} = \text{diag}(\sigma_j(A))_{j=1}^\rho.$$}

where $\|\Sigma'_{\rho,n-\rho}\| = \sigma_{\rho+1}(A)$, $\Sigma_{\rho} = \Sigma_{\rho,A} = \text{diag}(\sigma_j(A))_{j=1}^\rho$. U_0 and \bar{U} are r/r Gaussian matrices (cf. Definition B.2), namely $U_0 \in G_{\rho,m,q}$ and $\bar{U} \in G_{m-\rho,m,q}$, and consequently $U_0 \in G^\rho \times q$ and $\bar{U} \in G^{(m-\rho) \times q}$ by virtue of part (ii) of Theorem B.5.

Indeed, we arrive at these equations by applying the orthogonal map $K \to S_A^T K \text{diag}(I_q, T_A)$, which also induces the map $A \to S_A^T A T_A = \Sigma_A$. Here S_A and T_A are the matrices of the singular vectors in SVD $A = S_A \Sigma_A T_A^T$, and we notice that $S_A^T U \text{diag}(I_q, T_A) \in G_{m,m,q}$ and that the map preserves all singular values of the matrix K. We call such maps Gaussian diagonalization.

With no loss of generality assume that $n = \rho = l \leq m$ and that

$$K = \begin{pmatrix} U_0 & \Sigma_{\rho} \\ \bar{U} & O_{m-\rho, \rho} \end{pmatrix} \in \mathbb{R}^{m \times (n+q)}$$

because the $n-q$ rightmost columns of the matrix K are filled with zeros, and we can just delete them. Notice that Theorem B.1 and Assumption 1 together imply that the $(m-\rho) \times q$ matrix \bar{U} has full rank, and so $\text{rank}(K) = m$ because $q + \rho \geq m$.

Then again apply Gaussian diagonalization by writing

$$\hat{K} = \text{diag}(I_\rho, S_\bar{U}^T) K \text{diag}(T_\bar{U}^T, I_\rho) = \begin{pmatrix} U_{00} & U_{01} \\ \Sigma'_{\bar{U}} & O_{m-\rho,q+p-m} \end{pmatrix} \frac{\Sigma_{\rho}}{\sigma_\rho(A)}$$

$$\|K^+\| \leq n_{m,q,\rho,A}^+ = \max\{1, \nu_{m,q,\rho,A}^+\} \frac{1 + \nu_{\rho,m-\rho}}{\sigma_\rho(A)}. \quad (4.2)$$

Proof. Readily verify (4.1) and part (i). Deduce part (ii) from Theorem B.1. It remains to prove bound (4.2) provided that $l \leq q + \rho$.
where \(\bar{U} = S_{\bar{U}} \Sigma_{\bar{U}} T_{\bar{U}}^T \) is SVD,
\[
\Sigma_{\bar{U}} = (\Sigma'_{\bar{U}} \mid O_{m-\rho,q+p-m}, \quad (U_{00} \mid U_{01}) = U_0 T_{\bar{U}}^T \in \mathcal{G}_{\rho,m,q}, \quad U_{00} \in \mathcal{G}_{\rho,m,m-\rho},
\]
and consequently \((U_{00} \mid U_{01}) \in \mathcal{G}^{\rho \times q} \) and \(U_{00} \in \mathcal{G}^{\rho \times (m-\rho)} \) by virtue of part (ii) of Theorem B.5.
Notice that \(||K^+|| = ||\hat{K}^+||. \)
The \(m \times m \) submatrix
\[
\hat{K} = \begin{pmatrix} U_{00} & \Sigma_{\rho} \\ \Sigma'_{\bar{U}} & O_{m-\rho,p} \end{pmatrix}
\]
of the matrix \(\hat{K} \), obtained by deleting the submatrix \(\begin{pmatrix} O_{m-\rho,q+p-m} \\ O_{m-\rho,q+p-m} \end{pmatrix} \), is nonsingular by virtue of Theorem B.1 (cf. Assumption 1). Moreover ||\(\hat{K}^+ || = ||K^+|| \leq ||\hat{K}^-|| \) by virtue of Lemma A.3.
Now observe that
\[
\hat{K}^{-1} = \begin{pmatrix} O_{m-\rho,p} \\ \Sigma_{\rho}^{-1} \end{pmatrix}^{-1} = \text{diag}(I_{\rho}, \Sigma_{\rho}^{-1}) \begin{pmatrix} O_{m-\rho,p} & I_{\rho} \\ I_{m-\rho,m-\rho} & U_{00} \end{pmatrix} \text{diag}(I_{\rho}, \Sigma_{\rho}^{-1}),
\]
\[
\| \left(\begin{pmatrix} O_{m-\rho,p} & I_{\rho} \\ I_{m-\rho,m-\rho} & U_{00} \end{pmatrix} \right) \| \leq 1 + ||U_{00}||,
\]
\[
\| \text{diag}(I_{\rho}, \Sigma_{\rho}^{-1}) \| = \max \{ 1, ||\Sigma_{\rho}^{-1}|| \} = \max \{ 1, ||\bar{U}^+|| \},
\]
\[
\| \text{diag}(I_{\rho}, \Sigma_{\rho}^{-1}) \| = \max \{ 1, ||\Sigma_{\rho}^{-1}|| \} = \frac{1}{\sigma_{\rho}(A)}.
\]
The latter equation follows because \(\sigma_{\rho}(A) \leq ||A|| \) and because \(||A|| = 1 \) by assumption.
Substitute the bounds \(||U_{00}|| \leq \nu_{\rho,m-\rho} \) and \(||\bar{U}^+|| \leq \nu_{\rho,q}^+ \).
Combine the above relationships with the bound \(||K^+|| \leq ||\hat{K}^-|| \) and obtain (4.2). \(\square \)

Next combine Theorems 4.1, B.2, and B.3 and obtain the following bounds on the expected values of the norms \(||K|| \) and \(||K^+|| \) (excluding the case where \(q + \rho = m \) and the auxiliary random variable \(\nu_{\rho,q}^+ \) of (6.5) has no expected value).

Corollary 4.1. Under the assumptions of Theorem 4.1, it holds that
\[
\mathbb{E}(||K||) \leq 1 + \sqrt{m} + \sqrt{q},
\]
and if \(q + \rho > l = \min \{ m, n \} \), then
\[
\mathbb{E}(||K^+||) \leq \frac{1 + \sqrt{\rho} + \sqrt{m - \rho}}{\sigma_{\rho}(A)} \max \left\{ 1, \frac{e \sqrt{m - \rho}}{m - \rho - q} \right\}, \quad \text{for } e = 2.71828 \ldots \quad (4.3)
\]

Remark 4.1. Theorem 4.1 and the corollary show that the western augmentation is likely to output a well-conditioned matrix \(K \), particularly if the ratio \(\frac{e \sqrt{m - \rho}}{m - \rho - q} \) is small. We can partly control this ratio by choosing the integer parameter \(q \). If we decrease the ratio below 1, then it would hold that \(\mathbb{E}(||K^+||) \leq \frac{1 + \sqrt{\rho} + \sqrt{m - \rho}}{\sigma_{\rho}(A)} \), where the value \(\sigma_{\rho}(A) \) is not small by assumption.

By applying Theorem 4.1 and the corollary to the matrix \(A^T \), we can extend them to northern augmentation, that is, to appending a Gaussian block of \(s \geq n - \rho \) rows on the top of the matrix \(A \).

4.2 Analysis of northern augmentation

Theorem 4.2. Assume that an \(m \times n \) matrix \(A \) is normalized and has numerical rank \(\rho \). Define its randomized northern augmentation by the map
\[
A \rightarrow K = \begin{pmatrix} W & V^T \\ U & A \end{pmatrix}
\]
where $W \in \mathcal{G}^{s \times q}$, $U \in \mathcal{G}^{n \times m}$, $V \in \mathcal{G}^{m \times q}$, and the matrices U, V, and W are filled with i.i.d. Gaussian variables. Then

$$||K|| \leq ||A|| + \min \left\{ ||U||, ||(W \mid V^T)||, ||V|| + \left\| \begin{pmatrix} W \\ U \end{pmatrix} \right\| \right\} = 1 + \min \{ \nu_{m,q} + \nu_{s,n+q}, \nu_s, \nu_m + \nu_{m+s,q} \}.$$ (4.5)

Furthermore

(i) the matrix K is rank deficient or ill-conditioned if $q + \rho < m$ and if $s + \rho < n$.

(ii) Otherwise it has full rank and

(iii) satisfies the following bounds,

$$||K^+|| \leq n_{n,s,p,A}^+, \text{ for } s + \rho \geq n, \text{ and}$$

$$||K^+|| \leq n_{m,q,p,A}^+, \text{ for } q + \rho \geq m,$$

where the random variables $n_{n,s,p,A}^+$ and $n_{m,q,p,A}^+$ are defined by equation (4.2).

Proof. Readily verify (4.1) and part (i). Deduce part (ii) from Theorem B.1.

It remains to prove bounds (4.7) and (4.6). First assume that $s + \rho \geq n$, write

$$\bar{U} = \begin{pmatrix} W \\ U \end{pmatrix} \text{ and } \bar{A} = \begin{pmatrix} V^T \\ A \end{pmatrix},$$

and define western augmentation

$$\bar{A} \to (\bar{U} \mid \bar{A})$$

where $(\bar{U} \mid \bar{A}) = K$ for K of (4.4). In order to deduce (4.6), extend bound (4.2) to the case where we replace the matrix A by \bar{A} and the integers m, n, l, q, and ρ by $\bar{m} = m + s$, $\bar{n} = n$, $\bar{l} = \min\{l, m + s\}$, $\bar{q} = q$, and $\bar{\rho} = \min\{\rho + s, n\}$, respectively. Notice that $m + s \geq q + \rho \geq n$, and so $\bar{l} = n$ and $\bar{\rho} + \bar{s} = \bar{\rho} + q \geq \bar{l} = n$. Now obtain (4.6) by observing that $\sigma_\rho(\bar{A}) = ||\bar{A}^+|| = n_{l,s,p,A}^+$.

Likewise if $q + \rho \geq m$, then write

$$\bar{U} = \begin{pmatrix} W^T \\ V \end{pmatrix} \text{ and } \bar{A} = \begin{pmatrix} U^T \\ A^T \end{pmatrix},$$

and define western augmentation

$$\bar{A} \to (\bar{U} \mid \bar{A})$$

where $(\bar{U} \mid \bar{A}) = K^T$ for K of (4.4). In order to deduce (4.7), extend bound (4.2) to the case where we replace the matrix A by \bar{A} and the integers m, n, l, q, and ρ by $\bar{m} = n + q$, $\bar{n} = m$, $\bar{l} = \min\{n + q, m\}$, $\bar{q} = s$, and $\bar{\rho} = m$, respectively. Notice that $n + q \geq q + \rho \geq m$, and so $\bar{l} = m$ and $\bar{\rho} + \bar{s} = m + s \geq \bar{l} = m$. Now obtain (4.7) by observing that $\sigma_\rho(\bar{A}) = ||\bar{A}^+|| = n_{m,q,p,A}^+$.

The theorem indicates that appending Gaussian rows in addition to Gaussian columns as well as appending Gaussian columns in addition to Gaussian rows is not likely to increase the norm of the Moore–Penrose generalized inverse of a normalized matrix.

By combining Theorems 4.2, B.2, and B.3, we obtain the following bounds.

Corollary 4.2. Keep the assumptions of Theorem 4.2; in particular keep the definitions of the integers l, \bar{l}, and $\bar{\rho}$. Then

$$\mathbb{E}(||K||) \leq 2 + \sqrt{q} + \sqrt{s} + \min\{\sqrt{\bar{m}} + \sqrt{n + q}, \sqrt{n} + \sqrt{m + s}\}$$

and $\mathbb{E}(||K^+||)$ satisfies either bound (4.3) if $q + \rho > m$ or the same bound but with the integer parameter s replacing q if $s + \rho > n$.

13
4.3 Analysis of weakly randomized northwestern augmentation

In the next section we analyze randomized additive preprocessing by linking it to northwestern augmentation (4.4), for \(m = n \) and \(r = q = s = n - \rho \), which we modify by choosing \(W = I_r \) rather than \(W \in \mathcal{G}^{m \times n} \) and where we allow the Gaussian matrices \(U \) and \(V \) to depend on one another and even to share all their entries. We call such northwestern augmentation weakly randomized. Next we extend to it Theorem 4.2.

Theorem 4.3. Suppose that an \(n \times n \) matrix \(A \) is normalized and has numerical rank \(\rho \), \(K \) is the matrix of (4.4), \(W = I_r \), and \(U, V \in \mathcal{G}^{n \times r} \) where \(r = n - \rho \). Then

\[
||K|| \leq ||A|| + ||U|| + ||V|| + ||W|| = 2 + 2\nu_{r,n},
\]

the matrix \(K \) is nonsingular, and

\[
||K^{-1}|| \leq 1.5\bar{n}, \quad \text{for } \bar{n} = \left(2 + \max \left\{ 1, \frac{\nu_{p,r}}{\sigma_p(A)} \right\} \right) \max \left\{ \nu_{r,r}^+, \frac{1}{\sigma_p(A)} \right\} \max \{1, \nu_{r,r}^+\}. \tag{4.8}
\]

Proof. We only estimate the norm \(||K^{-1}|| \). At first let \(\text{nrk}(A) = \text{rank}(A) = \rho \) and then reduce our study to the case where \(A = \Sigma_A = \text{diag}(\Sigma_{p,A}, O_{r,r}) \) by applying Gaussian diagonalization \(K \rightarrow \text{diag}(I_r, S_A^T)K\text{diag}(I_r, T_A) \) and Theorem B.5. Write

\[
K = \begin{pmatrix}
I_r & V_0^T \\
U_0 & \Sigma_{\rho} & O_{\rho,r} \\
U_1 & O_{r,\rho} & O_{r,r}
\end{pmatrix}
\]

where the matrix \(K \) is nonsingular (cf. Theorem B.1 and Assumption 1), \(U_0, V_0 \in \mathcal{G}_{\rho,n,r}, U_1, V_1 \in \mathcal{G}_{r,n,r} \), and so by virtue of part (ii) of Theorem B.5 \(U_0, V_0 \in \mathcal{G}_{\rho \times r} \) and \(U_1, V_1 \in \mathcal{G}_{r \times r} \).

Express the inverse \(K^{-1} \) as follows,

\[
K^{-1} = \begin{pmatrix}
O_{r,r} & O_{r,\rho} & -U_1^{-1} \\
O_{\rho,r} & \Sigma_{\rho}^{-1} & -\Sigma_{\rho}^{-1}U_0U_1^{-1} \\
V_1^{-T} & V_1^{-T}V_0^T\Sigma_{\rho}^{-1} & V_1^{-T}(I_r - V_0^T\Sigma_{\rho}^{-1}U_0)U_1^{-1}
\end{pmatrix}
\]

\[
\text{diag}(I_r, \Sigma_{\rho}^{-1}, V_1^{-T}) \left(I_{n+r} + \text{diag}(O_{n,n}, I_r) - \text{diag}(O_{r,r}, F_\rho) \right) \text{diag}(I_n, U_1^{-1})
\]

where \(||\Sigma_{\rho}^{-1}|| = 1/\sigma_p(A) \),

\[
F_\rho = \begin{pmatrix}
O_{\rho,\rho} & U_0 \\
V_0^T\Sigma_{\rho} & V_0^T\Sigma_{\rho}^{-1}U_0
\end{pmatrix} = \text{diag}(I_\rho, V_0^T\Sigma_{\rho}^{-1}) \text{diag}(O_{\rho,\rho}, I_r) \text{diag}(I_\rho, U_0).
\]

Combine the above expressions with Theorem B.5 and deduce that \(||K^{-1}|| \leq \bar{n} \), for \(\bar{n} \) of equation (4.8).

This is the upper bound of Theorem 4.3 decreased by a factor of 1.5.

By sacrificing this factor, we relax the assumption that \(\text{nrk}(A) = \text{rank}(A) \).

Namely, without this assumption, our previous argument implies that

\[
K = \begin{pmatrix}
I_r & V_0^T \\
U_0 & \Sigma_{\rho} & O_{\rho,r} \\
U_1 & O_{r,\rho} & O_{r,r}
\end{pmatrix}
\]

where the value \(||\Sigma_{r,r}|| = \sigma_{p+1}(A) \) is small since \(\text{nrk}(A) = \rho \). Apply Theorem A.2 for \(\theta < 1/3 \) and obtain that \(||K^{-1}|| < 1.5\bar{n} \).

Remark 4.2. Our upper bound on the norm \(||K^+|| \) involves the factor \((\nu_{r,r}^+)^2\). For larger integers \(r \), this makes the bound inferior to those of the previous two subsections: the random variable \(\nu_{r,r}^+ \) has no expected value; its upper bound Theorem B.4, although meaningful, is inferior to the bounds on the random variables \(\nu_{r,s}^+ \) unless the integer \(|s - r|\) is close to 0.
5 Analysis of Randomized Additive Preprocessing

In this section we analyze randomized additive preprocessing

\[A \rightarrow C = A + UV^T \text{ for } A, C \in \mathbb{R}^{n \times n} \text{ and } U, V \in \mathbb{R}^{n \times r}, \]

(5.1)

where the entries of the matrices \(U \) and \(V \) may depend on each other, and we even allow \(U = V \).

We immediately observe the following properties.

Theorem 5.1. Suppose that \(A, C, U, \) and \(V \) are four matrices of (5.1). Then

\[||C|| \leq ||A|| + ||U|| \quad ||V|| \leq ||A|| + \nu_{n,r}^2, \]

(5.2)

the matrix \(C \) is nonsingular if and only if \(\rho + \nu_{n,r} \geq n \) (cf. Assumption 1 and Theorem B.1 or [PQ10]), and in this case the matrix \(C \) is ill-conditioned if \(\rho + \nu_{n,r} < n \).

Next we estimate the norm \(||C^{-1}|| \) provided that \(\rho + \nu_{n,r} \geq n \). We do this at first by linking additive preprocessing to augmentation, then directly.

5.1 Estimation of the norm \(||C^{-1}|| \) via a link to augmentation

The following theorem links augmentation (4.4), for \(W = I_r \), to additive preprocessing of (5.1).

Theorem 5.2. Suppose that \(A \in \mathbb{R}^{n \times n}, U, V \in \mathbb{R}^{n \times r}, K = \begin{pmatrix} I_r & V^T \\ U & A \end{pmatrix} \), and \(C = A + UV^T \).

Write \(\hat{U} = \begin{pmatrix} O_{r,n} & I_r \\ I_n & U \end{pmatrix}, \quad \hat{V} = \begin{pmatrix} O_{r,n} & I_n \\ I_r & V^T \end{pmatrix}, \quad \hat{U}^{-1} = \begin{pmatrix} -U & I_n \\ I_r & O_{r,n} \end{pmatrix}, \quad \hat{V}^{-1} = \begin{pmatrix} -V^T & I_r \\ I_n & O_{n,r} \end{pmatrix}, \) and \(D_{n,r} = \text{diag}(I_n, O_{n,r}). \) Then

\[K = \hat{U} \text{diag}(C, I_r) \hat{V}, \quad C = D_{n,r} \hat{U}^{-1} K \hat{V}^{-1} D_{n,r}, \]

(5.3)

Furthermore both matrices \(C \) and \(K \) are singular or nonsingular simultaneously, and so they are nonsingular if and only if \(r + \text{rank}(A) \geq n \), in which case equations (5.3) imply that

\[||C^{-1}|| \leq (1 + ||U||)(1 + ||V||)||K^{-1}||, \quad \text{and} \quad ||K^{-1}|| \leq (1 + ||U||)(1 + ||V||) \max(1, ||C^{-1}||). \]

By combining Theorems 4.3 and 5.2 we extend our results for weakly randomized northwestern augmentation of (4.4) to randomized additive preprocessing.

Corollary 5.1. Suppose that \(A, C, U, \) and \(V \) are matrices of (5.1), \(||A|| = 1 \), and \(\rho + \nu_{n,r} \geq n \), and so the matrix \(C \) is nonsingular (with probability 1) (cf. Theorem 5.1). Define \(\bar{n} \) by (4.8). Then

\[||C^{-1}|| \leq 1.5 (1 + \nu_{n,r})^2 \bar{n}. \]

5.2 Direct estimation of the norm \(||C^{-1}|| \)

At first we bound the ratio \(\frac{\text{rank}(C)}{\text{rank}(A)} \) in the case where \(\text{rank}(A) + r = n \), then extend the bound to the case where \(\text{rank}(A) + r = n \) and in the next subsection to the case where \(\text{rank}(A) + r \geq n \).

Theorem 5.3. Suppose that \(A, S, T \in \mathbb{R}^{n \times n} \) and \(U, V \in \mathbb{R}^{n \times r} \) for two positive integers \(r \) and \(n \), \(n \leq r \leq n \), \(A = S \Sigma T^T \) is SVD of the matrix \(A \) (cf. (2.1)), \(S \) and \(T \) are square orthogonal matrices, \(\Sigma = \text{diag}(\sigma_j)_{j=1}^n \), \(\rho = \text{rank}(A) = n - r \), \(\sigma_\rho > 0 \), and the matrix \(C = A + UV^T \) is nonsingular. Towards Gaussian diagonalization of the matrix \(C \), introduce the matrices

\[S^T U = \begin{pmatrix} \hat{U} \\ U_r \end{pmatrix}, \quad T^T V = \begin{pmatrix} \hat{V} \\ V_r \end{pmatrix}, \quad R_U = \begin{pmatrix} I_\rho & \hat{U} \\ O_{r,\rho} & U_r \end{pmatrix}, \quad R_V = \begin{pmatrix} I_\rho & \hat{V} \\ O_{r,\rho} & V_r \end{pmatrix}, \]

(5.4)
where U_r and V_r are $r \times r$ matrices. Then
(a) $R_U \Sigma R_V^T = \Sigma$, $R_U \text{diag}(O_{\rho, \rho}, I_r) R_V^T = S^T U V^T T$, and so
\[C = S R_U D R_V^T T^T, \quad D = \Sigma + \text{diag}(O_{\rho, \rho}, I_r) = \text{diag}(d_j)_{j=1}^n \]
where $d_j = \sigma_j$ for $j = 1, \ldots, \rho$, $d_j = 1$ for $j = \rho + 1, \ldots, n$.
Furthermore suppose that $||A|| = 1$ and the $r \times r$ matrices U_r and V_r are nonsingular. Write
\[p = ||R_U^{-1}|| ||R_V^{-1}|| \text{ and } f_r = \max\{1, ||U_r^{-1}||\} \max\{1, ||V_r^{-1}||\}. \]

Then
(b) $1 \leq \frac{\sigma_n(A)}{\sigma_n(C)} \leq p$ and
(c) $p \leq (1 + ||U||)(1 + ||V||) f_r$.

Proof. Part (a) is readily verified. Let us prove part (b). Combine the equations $S^{-1} = S^T$, $T^{-1} = T^T$ and (5.5) and obtain
\[C^{-1} = T R_V^{-T} D^{-1} R_U^{-1} S^T T^T. \]
Apply bound (A.1), substitute $||S^T|| = ||T|| = 1$, and obtain $||C^{-1}|| \leq ||R_V^{-T}|| ||D^{-1}|| ||R_U^{-1}||$. Substitute equations (5.6), $||D^{-1}|| = \frac{1}{\sigma_n(A)}$ (implied by the equations $||A|| = 1$ and (5.5)), and
\[||C^{-1}|| = \frac{1}{\sigma_n(C)} \text{ and obtain that } \frac{\sigma_n(A)}{\sigma_n(C)} \leq p. \]
Next deduce from (5.4) and (5.5) that
\[R_V^{-T} = \begin{pmatrix} I_\rho & O_{\rho, r} \\ -V_r^T U_r^{-1} & V_r^{-T} \end{pmatrix}, D^{-1} = \Sigma^{-1} + \text{diag}(O_{\rho, \rho}, I_r), \quad R_U^{-1} = \begin{pmatrix} I_\rho & -U_U^{-1} \\ O_{\rho, r} & U_r^{-1} \end{pmatrix}. \]
Substitute these expressions into the matrix product $R_V^{-T} D^{-1} R_U^{-1}$ and obtain that $R_V^{-T} D^{-1} R_U^{-1} = \begin{pmatrix} \Sigma^{-1} & X \\ Y & Z \end{pmatrix}$. Consequently $\frac{1}{\sigma_n(C)} = ||C^{-1}|| = ||R_V^{-T} D^{-1} R_U^{-1}|| \geq ||\Sigma^{-1}|| = \frac{1}{\sigma_n(A)}$.

This completes the proof of part (b).
(c) Observe that $R_U^{-1} = \begin{pmatrix} I_\rho \\ O \end{pmatrix} \begin{pmatrix} I_r & -U \\ O & U_r^{-1} \end{pmatrix}, \quad R_V^{-1} = \begin{pmatrix} I_\rho \\ O \end{pmatrix} \begin{pmatrix} I_r \\ O \end{pmatrix} \begin{pmatrix} I_r & O \\ U_r^{-1} & V_r^{-1} \end{pmatrix}$, $||\tilde{U}|| \leq ||U||$ and $||\tilde{V}|| \leq ||V||$. Then combine these relationships with (5.6). \[\square \]

Corollary 5.2. Suppose that $A \in \mathbb{R}^{n \times n}$ and $U, V \in \mathbb{R}^{n \times r}$ for two positive integers n and r such that $\rho = \text{rank}(A) = n - r$, and $C = A + UV^T$. Then
\[||C^+|| \leq (1 + ||U||)(1 + ||V||) \max\{1, ||U_r^{-1}||\} \max\{1, \frac{||V_r^{-1}||}{\sigma_n(A)}\}. \]

Proof. Equation (5.6) and parts (b) and (c) of Theorem 5.3 together imply (5.7). \[\square \]

Corollary 5.3. Keep the assumptions of Corollary 5.2, except that now assume that $\rho = \text{nrank}(A) \leq \text{rank}(A)$ and $U, V \in G^{n \times r}$. Then
(i) the matrix C is nonsingular with probability 1 and
(ii) $||C^{-1}|| \leq 1.5(1 + \nu^2_{n, r}) \max\{1, \nu_{n, r}^+\} \max\{1, \frac{\nu_{r, r}^+}{\sigma_\rho(A)}\}$.

Proof. Part (i) follows from Theorem B.1.
Let us prove part (ii). Notice that U_r and V_r are $r \times r$ Gaussian matrices, namely $U, V \in \mathbb{G}_{n,n,r}$, and so $U, V \in G^{n \times r}$ by virtue of part (ii) of Theorem B.5.
At first let the matrix A be rank deficient and well-conditioned, such that $\text{nrank}(A) = \text{rank}(A)$.
Then $||C^+|| \leq (1 + \nu^2_{n, r}) \max\{1, \nu_{n, r}^+\} \max\{1, \frac{\nu_{r, r}^+}{\sigma_\rho(A)}\}$ by virtue of Corollary 5.2, and part (ii) of Corollary 5.3 follows from Theorems B.2 and B.3.
Finally, as at the end of our proof of Theorem 4.3, apply a small norm perturbation of this matrix and extend this estimate to the general case where $\rho = \text{nrank}(A) \leq \text{rank}(A)$. \[\square \]
Remark 5.1. The upper bound of the corollary on the norm $\|C^{-1}\|$ is quite reasonable. It is proportional to ν^+_n, which makes it superior to the bound of Corollary 5.1, proportional to $(\nu^+_n)^2$ (cf. Remark 4.2), and in our extensive tests the norm $\|C^{-1}\|$ consistently stayed at the level of the norms $\|K^+\|$ of the matrices generated from the same input matrices A by means of northwestern augmentation.

5.3 Extension to additive preprocessing of rectangular matrices with multipliers of larger sizes

We have bounded the condition number $\kappa(C)$ of the matrix $C = A + UV^T$ in two ways – by linking additive preprocessing to augmentation and directly – in both cases, under the assumptions that $m = n$ and $\rho = \text{nr}ank(A) > n - r$. Next we remove both assumptions, at the price of increasing our upper bound on the norm $\|C^+\|$ well above the square of the bounds of Corollaries 5.1 and 5.3. Such an increase (particularly strong in (5.10)) may be partly due to some techniques of our proof, such as application of the Sherman–Morrison–Woodbury formula\(^6\) (cf. [GL13, page 65])

$$C^{-1} = (\Sigma_{C_+} + \bar{U}\bar{V}^T)^{-1} = \Sigma_{C_+}^{-1} - \Sigma_{C_+}^{-1} U(I_{r-r_-} + \bar{V}^T\Sigma_{C_+}^{-1}\bar{U})^{-1}\bar{V}^T\Sigma_{C_+}^{-1}, \quad (5.8)$$

and this poses a research challenge of improving our estimates.

Theorem 5.4. Keep the assumptions of Corollary 5.3, but allow that $\rho = \text{nr}ank(A) > n - r$. Then

$$\|C^{-1}\| \leq \nu^+_{n,r}\nu^+_n \text{ if } r \geq 2n - \rho$$

(5.9)

where ν^+_n and $\nu^+_{n,r}$ are bounded in Theorem B.5.

If $n - \rho < r < 2n - \rho$, then

$$\|C^{-1}\| \leq (1 + \gamma\nu^2_{n,r-r_-}|C^{-1}_{-1}|)|C^{-1}_{-1}|, \text{ for } \gamma \leq (1 + \sqrt{(r-r_-)(n-r-r_-)})|C^{-1}_{-1}|\nu^+_{n,r-r_-}\nu^+_{r-r_-}, \quad (5.10)$$

for an auxiliary matrix C_- such that the bounds of Corollaries 5.1 and 5.3 on the norm $\|C^{-1}\|$ apply to the norm $\|C^{-1}_{-1}\|$ as well, except that the random variables $\nu^+_{n,r}$ and $\nu^+_{n,r-r_-}$ are now replaced by ν^+_n and $\nu^+_{r-r_-}$, respectively.

Proof. In the proof we encounter matrices that are nonsingular with probability 1, by virtue of Theorem B.1. By keeping Assumption 1, we consider them nonsingular.

At first write $r_- = n - \rho$, fix $r_+ \geq r_-$, let

$$r = r_+ + n \geq 2n - \rho,$$

and partition the matrices U and V as follows,

$$U = (U_+ \mid U_n) \text{ and } V = (V_+ \mid V_n)$$

where

$$U_+, V_+ \in \mathcal{G}^{n \times r_+} \text{ and } U_n, V_n \in \mathcal{G}^{n \times n}.$$

Notice that

$$C = C_+ + U_nV_n^T = U_n(U_n^{-1}C_+ + V_n^T) \text{ for } C_+ = A + U_+V_+^T.$$

Hence

$$C^{-1} = (U_n^{-1}C_+ + V_n^T)^{-1}U_n^{-1} \text{ and } \|C^{-1}\| \leq \|(U_n^{-1}C_+ + V_n^T)^{-1}\| \|U_n^{-1}\|.$$

Recall that $||(U_n^{-1}C_+ + V_n^T)^{-1}|| = \nu^+_n$ and $\|U_n^{-1}\| = \nu^+_{n,n}$, and obtain bound (5.9).

Next we prove bound (5.10). Assume that

$$r_- \leq r < r_+ + n = 2n - \rho$$

\(^6\)Hereafter we use the acronym SMW.
and partition the matrices \(U \) and \(V \) as follows,

\[
U = (U_- | \bar{U}) \quad \text{and} \quad V = (V_- | \bar{V})
\]

where

\[
U_- , V_- \in \mathcal{G}^{n \times r} \quad \text{and} \quad \bar{U}, \bar{V} \in \mathcal{G}^{n \times (r-r_-)}.
\]

Furthermore, write \(C_- = A + U_- V_T \) and \(C = C_- + \bar{U} \bar{V}^T \).

Represent the matrix \(C^{-1} \) by applying the SMW formula (5.8), write

\[
S_{r-r_-} = I_{r-r_-} + \bar{V}^T W, \quad W = C_-^{-1} \bar{U} \quad \text{and} \quad \gamma = \| S_{r-r_-}^{-1} \|,
\]

recalling that \(\| U \| = \nu_{n,r-r_-} \) and \(\| V \| = \nu_{n,r-r_-} \), and obtain

\[
\| C^{-1} \| \leq (1 + \| U \| \gamma \| V \| \| C_{r-r_-}^{-1} \|) \| C_{r-r_-}^{-1} \| = (1 + \gamma \nu_{n,r-r_-}^2 \| C_{r-r_-}^{-1} \|) \| C_{r-r_-}^{-1} \|
\]

where the upper bounds of Corollaries 5.1 and 5.3 hold for \(\| C^{-1} \| \) replaced by \(\| C_{r-r_-}^{-1} \| \).

It remains to estimate \(\gamma \).

Write \(S_{r-r_-} = I_{r-r_-} + \bar{V}^T W, \) where \(W = C_-^{-1} \bar{U} \), and so \(\| W^+ \| \leq \| C_-^{-1} \| \nu_{n,r-r_-}^+ \).

Deduce from Theorem A.4 that there exists an \(n \times n \) permutation matrix \(P \) such that \(W = P \begin{pmatrix} X \\ Y \end{pmatrix} \) and \(X \) is a \((r-r_-) \times (r-r_-)\) submatrix of \(W \) such that

\[
\| X^+ \| \leq (1 + \sqrt{(r-r_-)(n-r+r_-)}) \| W^+ \|.
\]

Represent the matrix \(S_{r-r_-} \) as \(S + V'_{r-r_-} X \) where \(V'_{r-r_-} \) is the top (northern) \((r-r_-) \times (r-r_-)\) submatrix of the matrix \(\bar{V}^T P \) and hence is a Gaussian matrix.

Deduce that \(S_{r-r_-}^+ = X^+ (XS + V'_{r-r_-})^+, \) and hence \(\gamma = \| S_{r-r_-}^+ \| \leq \| X^+ \| \| (XS + V'_{r-r_-})^+ \| \).

Therefore

\[
\| X^+ \| \leq (1 + \sqrt{(r-r_-)(n-r+r_-)}) \| W^+ \| \leq (1 + \sqrt{(r-r_-)(n-r+r_-)}) \| C_{r-r_-}^{-1} \| \nu_{n,r-r_-}^+.
\]

This completes our proof of (5.10).

Next extend Theorem 5.4 to the case where \(m \neq n \). With no loss of generality let \(m \geq n \).

Theorem 5.5. Assume that \(A \) is an \(m \times n \) matrix such that \(\| A \| = 1 \), \(\text{rank}(A) = \rho \geq n-r \), \(m \geq n > \rho \), \(U \in \mathcal{G}^{m \times r} \), \(V \in \mathcal{G}^{n \times r} \), and \(C = A + UV^T \). Then

\[
\| C \| \leq \| A \| + \| U \| \| V \| \leq \| A \| + \nu_{m,n} \nu_{n,r},
\]

(5.11)

the matrix \(C \) has full rank (with probability 1), and bounds of Theorem 5.4 apply to the norm \(\| C^+ \| \) replacing the norm \(\| C^{-1} \| \).

Proof. We only estimate the norm \(\| C^+ \| \).

By applying Gaussian diagonalization reduce the problem to the case where the matrix \(A \) is replaced by the diagonal matrix \(\Sigma_A \) of its singular values.

Pre-multiply the equation \(C = A + UV^T \) by the matrix \(I_{n,m} = (I_n | O_{n,m-n}) \), write \(C_n = I_{n,m} C \), \(\Sigma_{A,n} = I_{n,m} \Sigma_A \), and \(U_n = I_{n,m} U \), and obtain that \(C_n = \Sigma_{A,n} + U_n V^T \), \(\sigma_j(C) \geq \sigma_j(C_n) \) for all \(j \), and so \(\| C^+ \| \leq \| C_n^+ \| \). Apply Theorem 5.4 to the matrices \(\Sigma_{A,n}, U_n, \) and \(C_n \) replacing the matrices \(A, U, \) and \(C \), respectively, notice that Gaussian diagonalization transforms the matrix \(U \) into a \(r/r \) Gaussian matrix of the class \(\mathcal{G}_{m,m,r} \) and estimate the norms \(\| W^+ \| \) for its submatrices \(W \) by applying Theorem B.5.

\(\Box \)
6 Can We Weaken Randomness?

6.1 Structured and sparse randomization: missing formal support for its empirical power

Would the results of the previous two sections still hold if we weaken randomness of the matrices U, V and W by choosing them sparse, structured, or defined under other probability distributions rather than Gaussian? For the goal of producing matrices of full rank (with probability 1), the answer is well-known to be “yes” (cf. [BP94, Section 2.13], [PZ15], [PZa], and [PZh]), but would the pre-processed matrices be also well-conditioned?

The affirmative answer is known for low-rank approximation by means of random oversampling, but only for a narrow class of structured preprocessing, and such results have only been proven at the price of greater oversampling and probability of failure versus Gaussian preprocessing. These results can be readily extended to augmentation and additive preprocessing (see the next subsection).

In our tests we have observed consistently that replacing Gaussian preprocessors by sparse and structured preprocessors of a much wider class neither weakens the efficiency of our preprocessing nor increases the frequency of its failure. In Sections 6.3–6.5 we formally support these observations, by applying our techniques of duality and derandomization.

6.2 Structured randomization with SRFT and subcirculant matrices

Preprocessing with complex SRFT or real SRHT structured matrices is efficient for low-rank approximation of a matrix by means of random oversampling (cf. [HMT11, Section 11] and [T11]). By using Theorem C.1 and Remark C.1, we readily extend these properties by proving efficiency of randomized augmentation and additive preprocessing with SRFT rather than Gaussian matrices.

(We choose to cover application of SRFT matrices because of their link to subcirculant matrices of Appendix C, which we use in our tests, but all estimates for preprocessing with SRFT matrices are literally applied to the case of SRHT matrices (cf. [T11]).)

Namely, as in the case of low-rank approximation, SRFT preprocessing still works efficiently for the worst case input with a probability close to 1, although this is proven only for SRFT matrices of larger sizes (due to using the oversampling parameter $\rho - \rho$ in Theorem C.1 and Remark C.1) and at the price of accepting a greater probability of failure compared to the case of Gaussian preprocessing (see Remark C.2). [HMT11, Section 4.6] lists a few other classes of structured matrices as alternatives that have power similar to the SRFT matrices.

In the case of western augmentation with SRFT, our analysis boils down to bounding the norms $||U_{00}||$ and $||U^U||$ where the matrices U_{00} and U of Section 4.1 are the blocks of the matrix $S_f U = \begin{pmatrix} U_0 \\ U_1 \end{pmatrix}$, S_A is the orthogonal matrix of the left singular vectors of the $m \times n$ input matrix A, and U is an $n \times q$ SRFT matrix, for q satisfying

$$4 \left(\sqrt{m - \rho} + \sqrt{8(m - \rho)m} \right)^2 \log_2(m - \rho) \leq q \leq m.$$

It remains to analyze randomized western augmentation based on Theorem C.1, which implies that the probability of failure is $O\left(\frac{1}{m - \rho}\right)$ in our case. If $m - \rho \gg \log_2(m)$, then we can obtain a little more favorable lower estimates for q, based on Remark C.1.

The result is readily extended to the case of northern and then northwestern augmentation with SRFT. Similarly we can extend our analysis of additive preprocessing based on Theorem C.1 and Remark C.1. We omit the details.

Fact D.1 implies that Theorem C.1 and Remark C.1 still hold if we replace an $n \times \rho_+$ SRFT matrix by the matrix $\frac{1}{\rho} CR$, that is, by the scaled product of an $n \times n$ random circulant matrix $Z = (\bar{z}_i - j \mod n)_{i,j=0}^{n-1}$ and an $n \times \rho_+$ random matrix R of Theorem C.1. If we further substitute the matrices $(I_{\rho_+} | O_{n,\rho})^T$ or $(| O_{n,\rho} | I_{\rho_+})^T$ for the factor R of the SRFT, then instead of SRFT matrices we arrive at subcirculant matrices (defined in Appendix D). If the input matrix A is subcirculant or, more generally, has structure of Toeplitz type (cf. [P01] on these matrices), then using subcirculant
preprocessing is attractive because this preserves matrix structure. We cannot extend the proofs of Theorem C.1 and Remark C.1 from SRFT matrices to such blocks, but in our extensive tests the impact of our preprocessing on the condition numbers of the input matrices remained about the same when we properly scaled these blocks and used them instead of SRFT or Gaussian matrices. In the next subsections we provide some formal support for these empirical observations.

6.3 Dual additive preprocessing

According to our study, Gaussian, SRFT and SRHT augmentation and additive preprocessing are universal, that is, produce well-conditioned matrices of full rank with a probability close to 1 for any \(m \times n \) input matrix having numerical rank \(\rho < \min\{m,n\} \).

Next we observe that additive preprocessing with any well-conditioned matrix of full rank applied to the average input matrix defined under the Gaussian probability distribution is as efficient as Gaussian preprocessing. It follows that preprocessing with a sparse and structured well-conditioned matrix of full rank is efficient when it is applied to a statistically typical input matrix, that is, to almost any matrix with a narrow class of exceptions.

Let us specify our duality argument. Assume that we are given three positive integers \(m, n \) and \(r \), where \(m \geq n \geq r \), a pair of \(n \times r \) matrices \(U \in \mathbb{R}^{m \times r} \) and \(V \in \mathbb{R}^{n \times r} \), and another pair of matrices \(\tilde{U} \in \mathbb{R}^{m \times \rho} \) and \(\tilde{V} \in \mathbb{R}^{n \times \rho} \), for \(\rho = n - r \). Then write \(A = \tilde{U} \tilde{V}^T \) and consider additive preprocessing

\[
A = \tilde{U} \tilde{V}^T \rightarrow C = A + UV^T.
\]

So far we assumed that \(U \) and \(V \) were Gaussian matrices, and the matrices \(\tilde{U} \) and \(\tilde{V} \) were fixed, and then we proved that the matrix \(C \) has full rank with probability 1 and is well-conditioned with a probability close to 1. In the dual case we assume that \(U \) and \(V \) is any pair of well-conditioned matrices of full rank \(r \) and that the matrices \(\tilde{U} \) and \(\tilde{V} \) are Gaussian; then we call the matrix \(A = \tilde{U} \tilde{V}^T \) factor Gaussian of rank \(\rho \). Furthermore we call a matrix \(\bar{A} = A + E \) a small-norm perturbation of a factor Gaussian matrix of rank \(\rho \) if the norm \(\|E\| \) is small in context.

Clearly, our analysis in the previous section can be immediately extended to the case where additive preprocessing is applied to a small-norm perturbation \(\bar{A} \) of average factor Gaussian matrix \(\tilde{U} \tilde{V}^T \) having rank \(\rho \),

\[
\bar{A} = \tilde{U} \tilde{V}^T + E \rightarrow \bar{C} = \bar{A} + UV^T, \tag{6.1}
\]

for matrices \(\bar{U}, \bar{V}^T \), and \(E \) specified above and for any fixed pair of \(n \times r \) well-conditioned normalized matrices \(U \) and \(V \) of full rank \(r \). Here we assume that average matrix \(\bar{A} \) is defined over all pairs of Gaussian matrices \(\bar{U} \) and \(\bar{V} \), which may depend on one another and may even coincide with one another. This result promises significant simplification of additive preprocessing by means of enforcing appropriate patterns of sparseness and structure onto the matrices \(U \) and \(V \).

6.4 Dual western augmentation

Next we extend our duality results to western augmentation \(A \rightarrow K = (U \mid A) \). So far we studied the case where \(A \) was a fixed \(m \times n \) matrix having numerical rank \(\rho \) and \(U \in \mathcal{G}^{m \times q} \), but our next theorem (cf. also Remark 6.1) enables us to extend our analysis to the map

\[
\bar{A} = \tilde{U} \tilde{V}^T + E \rightarrow \bar{K} = (U \mid \bar{A}) \tag{6.2}
\]

where \(\bar{A} \) is the same matrix of (6.1), that is, a small-norm perturbation of a factor Gaussian matrix, and \(U \) is any normalized well-conditioned matrix of full rank.

Theorem 6.1. Assume that an \(m \times q \) matrix \(U \) is normalized and has full numerical rank \(l = \min\{m,q\} \). Define its randomized western augmentation by the map \(A \mapsto K = (U \mid A) \) for \(A = UV^T, \bar{U} \in \mathcal{G}^{m \times r}, \) and \(\bar{V} \in \mathcal{G}^{n \times r} \). Then

\[
\|K\| \leq \|A\| + \|U\| = 1 + \nu_{m,\rho}^{\rho} \nu_{\rho,n}, \tag{6.3}
\]

for the random variables \(\nu_{m,\rho} \) and \(\nu_{\rho,n} \) of Definition 2.1. Furthermore
(i) the matrix K is rank deficient or ill-conditioned if $q + \rho < m$.
(ii) Otherwise it has full rank and
(iii) satisfies the following bounds,

\[||K^+|| \leq ||U^+|| \] if $q \geq m$, \hspace{1cm} (6.4)
\[||K^+|| \leq ||U^+|| \max\{1, \nu_{m-q,\rho}^{m\rightarrow q} \nu_{\rho,n}^{m\rightarrow q}\} (1 + \nu_{q,\rho} \nu_{q,n}) \] if $m - \rho \leq q < m$. \hspace{1cm} (6.5)

Remark 6.1. By using Theorem A.2 one can extend Theorem 6.1 (and similarly Theorem 6.2) to the case where $A = \bar{U} \bar{V}^T + E$ for a perturbation matrix E of small norm replaces matrix $A = U \bar{V}^T$.

Proof. Readily verify bounds (6.3) and (6.4) and part (i). Deduce part (ii) from Theorem B.1.

It remains to prove bound (6.5) (provided that $m \leq q + \rho$).

By applying Gaussian diagonalization, reduce this task to the case where the matrix U is the diagonal matrix Σ_U of its singular values, that is, replace $K = (U \mid A)$ by

\[
\bar{K} = \begin{pmatrix}
\Sigma_U & G_{q,\rho}G_{\rho,n} \\
O_{m-q,q} & G_{m-q,\rho}G_{\rho,n}
\end{pmatrix}
\]

where $G_{\rho,n} \in G^{\rho \times n}$, $G_{q,\rho} \in G_{q,m,\rho}$, $G_{m-q,\rho} \in G_{m-q,m,\rho}$, and so $G_{q,\rho} \in G^{q \times \rho}$ and $G_{m-q,\rho} \in G^{m-q \times \rho}$ by virtue of part (ii) of Theorem B.5.

Write $F = G_{m-q,q}G_{\rho,n}$ and let $F = S_F \Sigma_F T_F^T$ be compact SVD.

Here S_F and Σ_F are $(m-q) \times (m-q)$ matrices (cf. Theorem B.1 and Assumption 1) because $\rho \geq m - q$ by assumption, and $T_F^T \in \mathbb{R}^{(m-q) \times n}$.

Define the map $\bar{K} \to \bar{K} = \text{diag}(I_q, S_F^T) \bar{K} \text{diag}(I_q, T_F)$ as \(\begin{pmatrix} \Sigma_U & G_{q,\rho}G_{\rho,n} \\ O_{m-q,q} & G_{m-q,\rho}G_{\rho,n} \end{pmatrix} \) and notice that the matrix \bar{K} is nonsingular and that

\[||K^+|| \leq ||\bar{K}^{-1}|| \]

because the matrices $\text{diag}(I_q, S_F^T)$ and $\text{diag}(I_q, T_F)$ are orthogonal and because $n \geq \rho \geq m - q$.

Deducing readily that

\[||\bar{K}^{-1}|| \leq (1 + ||G_{q,\rho}G_{\rho,m-q}||) \max\{1, ||\Sigma_U^{-1}||\} \max\{1, ||\Sigma_F^{-1}||\}. \]

Recall that $||U^+|| = ||\Sigma_U^{-1}|| \geq 1$ because $||U|| = 1$ and that $||G_{q,\rho}G_{\rho,m-q}|| \leq \nu_{q,\rho} \nu_{\rho,m-q}$ due to Theorems B.2 and B.5. Hence

\[||K^+|| \leq ||\bar{K}^{-1}|| \leq (1 + \nu_{q,\rho} \nu_{\rho,m-q}) ||U^+|| \max\{1, ||\Sigma_F^{-1}||\}. \]

Obtain bound (6.5) by combining this inequality with the estimate $||\Sigma_F^{-1}|| \leq \nu_{m-q,\rho}^{m\rightarrow q} \nu_{m-q,\rho}^{m\rightarrow q}$.

In order to prove the latter estimate, write SVDs $G_{m-q,\rho} = \Sigma \Sigma T_T$ and $G_{\rho,n} = \Sigma \Sigma T_T$ and observe that $S, \Sigma, \bar{S}, \bar{\Sigma} \in \mathbb{R}^{(m-q) \times (m-q)}$ because $\rho \geq m - q$.

Write $F_\perp = \Sigma \Sigma T_T \bar{\Sigma}$ and let $F_\perp = S_{F_\perp} \Sigma_{F_\perp} T_{F_\perp}^T$ be SVD. Then $S_{F_\perp}, \Sigma_{F_\perp}, T_{F_\perp} \in \mathbb{R}^{(m-q) \times (m-q)}$, and so SS_{F_\perp} and $T_{F_\perp} T_{F_\perp}^T$ are orthogonal matrices.

Hence we can write $S_F = SS_{F_\perp}, \Sigma_F = \Sigma_{F_\perp}$, and $T_F T_F^T = T_{F_\perp} T_{F_\perp}^T$, defining SVD $F = S_F \Sigma_F T_F^T$.

Therefore $\Sigma_F = \Sigma_{F_\perp}$, $\Sigma_F^{-1} = \Sigma_{F_\perp}^{-1}$, and so $||\Sigma_F^{-1}|| = ||\Sigma_{F_\perp}^{-1}|| \leq ||G_{m-q,\rho}^{m\rightarrow q}|| ||\Sigma_F^+||$.

Substitute the expressions $||G_{m-q,\rho}^{m\rightarrow q}|| = \nu_{m-q,\rho}^{m\rightarrow q}$ and $||G_{\rho,n}^{m\rightarrow q}|| = \nu_{\rho,n}^{m\rightarrow q}$, implied by Theorem B.3 and obtain the claimed estimate for Σ_F^{-1}. This completes the proof of bound (6.5) and of the theorem.

Next we combine Theorems 6.1, B.2, and B.3 and obtain the following upper bounds on the expected values of the norms $||K||$ and $||K^+||$ (excluding the case where $q + \rho = m$ and the auxiliary random variable $\nu_{m-q,\rho}$ has no expected value).
Corollary 6.1. Under the assumptions of Theorem 6.1, it holds that

\[\mathbb{E}(|K|) \leq 2 + (\sqrt{m} + \sqrt{p})(\sqrt{n} + \sqrt{q}), \]

\[\mathbb{E}(|K^+|) \leq \mathbb{E}(|U^+|) \text{ if } q \geq m, \]

and

\[\mathbb{E}(|K^+|) \leq (1 + (\sqrt{p} + \sqrt{q})(\sqrt{n} + \sqrt{q}) \max\left\{ 1, \frac{(m - q) \rho e^2}{(\rho + q - m)(n - \rho)} \right\} \text{ if } m - \rho < q < m, \]

for \(e = 2.71828 \ldots \)

Remark 6.2. Theorem 6.1 shows that dual western augmentation is likely to produce a well-conditioned matrix \(K \), particularly where the matrix \(U \) is well-conditioned, the integers \(m \) and \(n \) are not large, and the ratio \(\frac{(m - q) \rho e^2}{(\rho + q - m)(n - \rho)} \) is small. We can partly control this ratio by choosing the integer parameter \(q \), and we can readily choose a well-conditioned or even orthogonal matrix \(U \).

By applying the theorem to the matrix \(A^T \), we can extend it to northern augmentation, that is, to appending a Gaussian block of \(s \geq n - \rho \) rows on the top of the matrix \(A \).

6.5 Dual northwestern augmentation

Our next subject is northwestern augmentation given by the map

\[A \rightarrow K = \begin{pmatrix} O_{s,q} & V^T \\ U & A \end{pmatrix}, \]

(6.6)

which is the map (6.6) for \(W = O_{s,q} \).

Theorem 6.2. (Cf. Remarks 6.1 and 6.3.) Assume that \(U \in \mathbb{R}^{m \times q}, V \in \mathbb{R}^{n \times s}, ||U|| = ||V|| = 1, \) the matrices \(U \) and \(V \) have full rank, \(A = U^T, \) \(U \in \mathbb{G}^{m \times p}, \) \(V \in \mathbb{G}^{n \times p}, \) and \(K \) is a matrix of (6.6).

(i) Then \(||K|| \leq ||U|| + ||V|| + \nu_{m,p} \nu_{p,n}. \)

(ii) If \(q + \rho < m \) and \(s + \rho < n \), then the matrix \(K \) is rank deficient. Otherwise it has full rank.

(iii) If \(q \geq m \) or \(s \geq n \), then \(||K^+|| \leq ||U^+|| ||V^+|| (1 + \nu_{m,p} \nu_{p,n}). \)

(iv) If \(m - \rho \leq q \leq m \) or \(n - \rho \leq s \leq n \), then there is an auxiliary nonsingular \((\rho + q + s) \times (\rho + q + s)\) matrix \(K \) such that

\[\mathbb{E}(|K^+|) \leq ||U^+|| \max\{||V^+||, \nu_{m-q,p} \nu_{p,n-s}^+ \} ||K^{-1}|| \]

and

\[||K^{-1}|| \leq 1 + \nu_{i,p} \max\{\nu_{q,p}, \nu_{m-q,p} \nu_{p,n-s}^+ \nu_{p,s}, \nu_{q,p} \nu_{p,s} + (1 + \nu_{q,p}^2) \nu_{m-q,p} \nu_{p,n-s}^+ \}, \]

(6.7)

(6.8)

for \(l = \min\{m - q, n - s\} \).

Proof. We will only prove part (iv). By applying Gaussian diagonalization, reduce the task to the case where the matrices \(U \) and \(V \) are replaced by the diagonal matrices of their singular values.

Consequently we arrive at the matrix

\[\begin{pmatrix} O_{s,q} & \Sigma_{VT} \\ \Sigma_U & G_{q,p} G_{p,s} & G_{q,p} G_{p,n-s} \\ O_{m-q,q} & G_{m-q,p} G_{p,s} & G_{m-q,p} G_{p,n-s} \end{pmatrix} \]

where \(G_{i,j} \in G_{i,k,j} \) for \(i = q, p, m - q, j = s, p, n - s, \) and \(k = k(i, j) \) equal to \(m \) or \(n \).

By performing row and column interchange we successively arrive at the matrices

\[\begin{pmatrix} \Sigma_{VT} & O_{s,q} & O_{s,n-s} \\ G_{q,p} G_{p,s} & \Sigma_U & G_{q,p} G_{p,n-s} \\ G_{m-q,p} G_{p,s} & O_{m-q,q} & G_{m-q,p} G_{p,n-s} \end{pmatrix}, \]

\[\begin{pmatrix} \Sigma_{VT} & O_{s,n-s} & O_{s,q} \\ G_{q,p} G_{p,s} & \Sigma_U & G_{q,p} G_{p,n-s} \\ G_{m-q,p} G_{p,s} & O_{m-q,q} & G_{m-q,p} G_{p,n-s} \end{pmatrix}. \]
and
\[
\tilde{K} = \begin{pmatrix}
\sum_{V} T & O_{s,n-s} & O_{s,q} \\
G_{m-q,p} G_{\rho,s} & G_{m-q,p} G_{\rho,s-n-s} & O_{m-q,q} \\
G_{q,p} G_{\rho,s} & G_{q,p} G_{\rho,s-n-s} & \Sigma_{U}
\end{pmatrix}.
\]

Notice that \(\sigma_j(\tilde{K}) = \sigma_j(K)\), for all \(j\), and thus \(||K^+|| = ||\tilde{K}^+||\).

Write \(F = G_{m-q,p} G_{\rho,n-s}\) and let \(F = S_{F} \Sigma_{F} T_{F}^T\) be SVD.

For \(l = \min\{m-q,n-s\}\), write \(\Sigma_{l,F} = \text{diag}(\sigma_j(F))_{j=1}^l\) and either \(\Sigma_{F} = (\Sigma_{l,F} \mid O_{(n-s-l)}\})\) if \(m-q \leq n-s\) or \(\Sigma_{F} = (\Sigma_{l,F} \mid O_{(n-s-l)})\) if \(m-q \geq n-s\).

By deleting \(n-s-m+q\) columns of the matrices \(F\) and \(\tilde{K}\) if \(m-q \leq n-s\) or their \(m-q+n+s\) rows if \(m-q \geq n-s\), we obtain nonsingular matrices \(\tilde{F}\) and
\[
K' = \begin{pmatrix}
\sum_{V} T & O_{s,l} & O_{s,q} \\
G_{l,p} G_{\rho,s} & I & O_{l,q} \\
G_{q,p} G_{\rho,l} & G_{q,p} G_{\rho,l} & \Sigma_{U}
\end{pmatrix},
\]
with SVD \(\tilde{F} = S_{F} \Sigma_{F} T_{F}^T\), where \(S_{F}, \Sigma_{F}, T_{F} \in \mathbb{R}^{l \times l}\) and \(||K^+|| = ||\tilde{K}^+|| \leq ||(K')^{-1}||\) by virtue of Lemma A.3.

Notice that
\[
K' = \text{diag}(\Sigma_{V}, \tilde{F}, I_{q}) \tilde{K} \text{diag}(I_{l+s}, \Sigma_{U}),
\]
for
\[
\tilde{K} = \begin{pmatrix}
I_s & O_{s,l} & O_{s,q} \\
G_{l,p} G_{\rho,s} & I & O_{l,q} \\
G_{q,p} G_{\rho,l} & G_{q,p} G_{\rho,l} & \Sigma_{U}
\end{pmatrix} = I_{l+s+q} + \begin{pmatrix}
O_{s,s} & O_{s,l} & O_{s,q} \\
G_{l,p} G_{\rho,s} & O_{l,l} & O_{l,q} \\
G_{q,p} G_{\rho,l} & G_{q,p} G_{\rho,l} & O_{q,q}
\end{pmatrix}.
\]

Hence \((K')^{-1} = \text{diag}(I_{l+s}, \Sigma_{U})^{-1} \tilde{K}^{-1} \text{diag}(\Sigma_{V}, \tilde{F}, I_{q})\) where
\[
\tilde{K}^{-1} = \begin{pmatrix}
I_s & O_{s,l} & O_{s,q} \\
G_{l,p} G_{\rho,s} & I & O_{l,q} \\
H & -G_{q,p} G_{\rho,l} & I_{q}
\end{pmatrix} = I_{l+s+q} - \begin{pmatrix}
O_{s,s} & O_{s,l} & O_{s,q} \\
G_{l,p} G_{\rho,s} & O_{l,l} & O_{l,q} \\
H & G_{q,p} G_{\rho,l} & O_{q,q}
\end{pmatrix}
\]
and
\[
H = G_{q,p} G_{\rho,l} F^{-1} G_{l,p} G_{\rho,s} - G_{q,p} G_{\rho,s}.
\]
Therefore
\[
||K^+|| \leq \max\{1, ||\Sigma_{V}^{-1}||\} \cdot ||\tilde{K}^{-1}|| \cdot \max\{1, ||\Sigma_{V}^{-1}||, ||\tilde{F}^{-1}||\},
\]
and so
\[
||K^+|| \leq ||U^+|| \cdot ||\tilde{K}^{-1}|| \cdot \max\{||V^+||, ||\tilde{F}^{-1}||\}
\]
because \(||\Sigma_{V}^{-1}|| = ||U^+|| \geq 1\) and \(||\Sigma_{V}^{-1}|| = ||V^+|| \geq 1\) since \(||U|| = ||V|| = 1\).

Substitute
\[
||\tilde{K}^{-1}|| \leq 1 + ||G_{l,p}|| \max\{||F^{-1}||, ||G_{p,s}||, ||G_{q,p}||\} + ||H|| = 1 + \nu_{l,p} \max\{||F^{-1}||, ||G_{p,s}||, ||G_{q,p}||, ||H||\},
\]
and
\[
||H|| \leq ||G_{q,p}|| \cdot ||G_{p,s}|| (1 + ||G_{p,l}||^2 \cdot ||\tilde{F}^{-1}||) \leq \nu_{q,p} \nu_{p,s} (1 + \nu_{p,l}^2 \cdot ||\tilde{F}^{-1}||),
\]
and by virtue of Theorem B.5,
\[
||\tilde{F}^{-1}|| \leq ||F^+|| \leq ||G_{m-q,p}|| \cdot ||G_{p,n-s}|| = \nu_{m-q,p} \nu_{p,n-s}.
\]

By combining the above bounds obtain part (iv) of Theorem 6.1. \(\square\)
Combine Theorems 6.2, B.2, and B.3, exclude the case where \(q + \rho = m \) or \(s + \rho = n \), in which the auxiliary random variable \(\nu_{m,q}^{\alpha} \) or \(\nu_{n,s}^{\beta} \) has no expected value, and obtain the following bounds.

Corollary 6.2. It holds that

\[
\mathbb{E}(|\|K|||) \leq 2 + (\sqrt{m} + \sqrt{\rho})(\sqrt{m} + \sqrt{\rho})
\]

under the assumptions of part (i) of Theorem 6.1,

\[
\mathbb{E}(\|K^+\|) \leq \mathbb{E}(\|U^+\|) \mathbb{E}(\|V^+\|)(1 + (\sqrt{\rho} + \sqrt{m})(\sqrt{\rho} + \sqrt{n}))
\]

under the assumptions of its part (iii), and

\[
\mathbb{E}(\|K^+\|) \leq \max\{\mathbb{E}(\|V^+\|), \mathbb{E}(\|F^+\|)\} \mathbb{E}(\|\tilde{K}^{-1}\|)
\]

under the assumptions of part (iv) of Theorem 6.1 provided that

\[
\mathbb{E}(\|F^+\|) \leq \frac{e^2 \sqrt{(m-q)\rho}}{|q + \rho - m| |s + \rho - n|}, \quad e = 2.71828 \ldots,
\]

\[
\mathbb{E}(\|\tilde{K}^{-1}\|) \leq 1 + (\sqrt{1} + \sqrt{\rho}) \max\{(\sqrt{\rho} + \sqrt{q}), (\sqrt{\rho} + \sqrt{s})\mathbb{E}(\|F^+\|)\} + (\sqrt{\rho} + \sqrt{q})(\sqrt{\rho} + \sqrt{s})(1 + (\sqrt{\rho} + \sqrt{1})^2)\mathbb{E}(\|F^+\|),
\]

\(q + \rho > m \) or \(s + \rho > n \), while \((q + \rho - m)(s + \rho - n) \neq 0 \).

Remark 6.3. The upper estimates of Theorem 6.2 and Corollary 6.2 are a little greater than those of Theorem 6.1 and Corollary 6.1, but still show that the dual northwestern augmentation is likely to produce a well-conditioned matrix \(K \), particularly where the matrices \(U \) and \(V \) (of our choice) are well-conditioned, the integers \(m \) and \(n \) are not large, and the ratio \(\frac{e^2 \sqrt{(m-q)\rho}}{|q + \rho - m| |s + \rho - n|} \) is small, which we can partly control by choosing the integer parameters \(q \) and \(s \).

6.6 Some policies of derandomization

The main advantage of dual augmentation and additive preprocessing is a chance for simplifying the computations by means of choosing sparse and structured auxiliary matrices \(U \) and \(V \). The matrices \(U \) and \(V \) of Section 7.2 can be examples: they are extremely sparse, very much structured, orthogonal up to scaling, and have supported efficient preprocessing in our extensive tests. Further examples of simple but empirically highly efficient preprocessors can be found in [PZa] and [PZb].

Here is a caveat, however. Consider western augmentation (6.2) with a fixed sparse and structured preprocessor \(U \) having full numerical rank \(\rho_+ \). Although its application is proven to be efficient for average \(m \times n \) matrix \(\tilde{A} \) having numerical rank \(\rho \leq \rho_+ \), it may fail for most or all such matrices \(\tilde{A} \) from a selected input class. Similar problems can occur for northwestern augmentation and additive preprocessing.

We are likely to exclude running into such bad inputs if we choose universal preprocessing, e.g., with Gaussian, SRFT or SRHT matrices. The user and the algorithm designer, however, should weight this benefit versus simplification of the computations with non-universal sparse and structured preprocessors.

The following two sample policies keep preprocessing less restricted than universal preprocessing: they do not exclude but just narrow the chances for running into bad inputs.

(i) To any fixed input matrix, apply augmentation or additive preprocessing successively or concurrently, for a small number of distinct preprocessors, pairs of preprocessors, or policies of preprocessing, assuming that the user accepts the output of even a single successful application.

(ii) Alternatively choose a preprocessor or a pair of preprocessors at random from a fixed class of sparse or structured matrices. Empirically this approach consistently produces desired outputs for a variety of inputs (see Table 7.4). This should encourage choosing preprocessors at random from the classes of matrices defined by a small number of real or complex random parameters, or even just by the signs ± of some integer parameters, as in the tests reported in Table 7.4.

PART III: Numerical Tests, Summary, and Extensions
7 Numerical Experiments

Our numerical experiments have been performed in the Graduate Center of the City University of New York on a Dell server with a dual core 1.86 GHz Xeon processor and 2G memory running Windows Server 2003 R2. The test of the next subsection have been performed by using Fortran code compiled with the GNU gfortran compiler within the Cygwin environment, and all random numbers have been generated with the random number intrinsic Fortran function, assuming the standard Gaussian probability distribution. The tests have been performed with MATLAB, using its built-in Gaussian random number generating function "randn()", except for the random choice of signs $-$ and $+$ specified at the end of Section 7.2. We applied no iterative refinement in the tests. Their results are in rather good accordance with the results of our formal analysis.

7.1 Approximation of the leading and trailing singular subspaces, computation of numerical ranks, and low-rank approximation of a matrix

Tables 7.1–7.3 show the results of our tests where we approximated the bases for the leading and trailing singular subspaces $\mathcal{T}_{\rho,A}$ and $\mathcal{T}_{A,\rho}$ of an $n \times n$ matrix A, respectively. The matrix had numerical rank ρ and the condition number $\kappa(A) = 10^{10}$.

We performed our tests for various pairs of n and ρ and observed reasonably close approximations, having error norms in the range from 10^{-6} to 10^{-9}. The results were similar for Gaussian multipliers and Gaussian subcirculant multipliers. The latter multiplier is a leftmost block of an $n \times n$ circulant matrix that contains the entire first column of a circulant matrix filled with n i.i.d. standard Gaussian variables (cf. Appendix D).

Next we describe the tests in some detail.

GENERATION OF THE INPUTS.

We generated every $n \times n$ input matrix A for our tests of this subsection as follows (cf. [H02, Section 28.3]). At first we fixed n nonnegative values $\sigma_1, \ldots, \sigma_n$ and the matrix $\Sigma_A = \text{diag}(\sigma_j)_{j=1}^n$, then generated $n \times n$ random orthogonal matrices S_A and T_A (as the Q-factors of Gaussian matrices), and finally multiplied the three matrices together with infinite precision to output the matrix $A = S_A \Sigma_A T_A$. We performed all the other computations of this subsection with double precision, and also rounded all Gaussian values to double precision.

Our $n \times n$ matrices A have numerical rank $\rho = n - r$ and numerical nullity $r = n - \rho$ (cf. Appendix A) for $n = 64, 128, 256, \rho = 1, 8, 32$. We have chosen $\sigma_j = 1/j$, for $j = 1, \ldots, \rho$, and $\sigma_j = 10^{-10}$, for $j = \rho + 1, \ldots, n$, which implied that $||A|| = 1$ and $\kappa(A) = 10^{10}$.

APPROXIMATION OF A BASIS FOR THE TRAILING SINGULAR SUBSPACE DIRECTLY.

At first we applied Algorithms 4.1.1–4.1.3 and then computed the matrix $B_{A,\rho}Y_{A,\rho}$ being a least-squares approximation to the matrix $T_{A,\rho}$. Table 7.1 displays the data from these tests, namely, the average (mean) values of the error norms $r_n = ||B_{A,\rho}Y_{A,\rho} - T_{A,\rho}||$ and of the standard deviations observed in 1000 runs of our tests for every pair of n and r. The tests show superior accuracy of the approximations computed based on randomized northern augmentation. This is in good accordance with the estimates of Theorems 4.1 and B.3. In particular the latter theorem implies that an $m \times n$ Gaussian matrix is likely to become better conditioned as the value $|m - n|$ increases from 1.

In our tests the accuracy of the outputs has not varied much when we replaced Gaussian matrices by Gaussian subcirculant ones of Appendix D.

APPROXIMATION OF A BASIS FOR THE LEADING SINGULAR SUBSPACE AND LOW-RANK APPROXIMATION OF A MATRIX.

We have also performed similar tests for the approximation of the leading singular subspaces $\mathcal{T}_{\rho,A}$ of the same $n \times n$ matrices A, which had numerical rank ρ, and for the approximation of such a matrix A with a matrix of rank ρ. At first we generated $n \times \rho$ Gaussian matrices U and Gaussian subcirculant $n \times \rho$ matrices \bar{U} (in both cases for $\rho = 8$ and $\rho = 32$) and then successively computed the matrices $B_{\rho,A} = A^T \bar{U}$ and $B_{\rho,A} = A^T U$ in order to obtain approximate matrix bases for the leading singular subspace $\mathcal{T}_{\rho,A}$. $B_{\rho,A}Y_{\rho,A}$ as a least-squares approximation to $T_{\rho,A}Q_{\rho,A} = Q(B_{\rho,A})$, and $A - AQ_{\rho,A}(Q_{\rho,A})^T$, which is the error matrix of the approximation of the matrix A based on
Table 7.1: Error norms of the approximation of the trailing singular subspace directly

		Gaussian Multipliers		Gaussian Subcirculant Multipliers			
	Alg. 3.1.1	Alg. 3.1.2	Alg. 3.1.3	Alg 3.1.1	Alg 3.1.2	Alg 3.1.3	
64	2	7.91e-07	7.91e-07	2.77e-14	1.35e-07	1.35e-07	3.03e-14
64	4	2.46e-07	2.46e-07	4.18e-14	3.26e-07	3.26e-07	4.76e-14
64	8	2.70e-07	2.70e-07	6.48e-14	4.90e-07	4.90e-07	8.93e-14
128	2	4.64e-07	4.64e-07	6.03e-14	8.41e-07	8.41e-07	6.29e-14
128	4	5.33e-07	5.33e-07	1.27e-13	1.01e-06	1.01e-06	1.12e-13
128	8	2.88e-06	2.88e-06	1.79e-13	8.82e-07	8.82e-07	8.18e-13
256	2	2.16e-06	2.16e-06	7.29e-13	1.34e-06	1.34e-06	6.10e-13
256	4	2.07e-06	2.07e-06	2.97e-13	3.38e-06	3.38e-06	4.60e-13
256	8	3.66e-06	3.66e-06	5.86e-13	3.80e-06	3.80e-06	5.06e-13

Table 7.2: Error norms of the approximation of the leading singular subspaces and of low-rank approximation of a matrix

		Gaussian Multipliers		Subcirculant Multipliers		
	n	mean	std	mean	std	
8	n_1	64	4.26e-07	8.83e-07	1.43e-07	9.17e-07
8	n_1	128	4.30e-08	1.45e-07	4.87e-07	4.39e-06
8	n_1	256	3.40e-08	5.11e-08	6.65e-08	3.12e-07
8	n_2	64	5.77e-09	1.06e-08	6.37e-08	4.11e-07
8	n_2	128	1.86e-08	5.97e-08	1.90e-07	1.67e-06
8	n_2	256	1.59e-08	2.47e-08	2.92e-08	1.28e-07
32	n_1	64	1.01e-07	3.73e-07	4.06e-08	6.04e-08
32	n_1	128	1.28e-07	6.76e-07	2.57e-07	8.16e-07
32	n_1	256	1.02e-07	1.54e-07	1.18e-07	2.03e-07
32	n_2	64	2.30e-08	8.28e-08	9.66e-09	1.48e-08
32	n_2	128	2.87e-08	1.45e-07	5.50e-08	1.68e-07
32	n_2	256	2.37e-08	3.34e-08	2.74e-08	4.48e-08

EXTENSION FROM THE LEADING TO THE TRAILING SINGULAR SUBSPACES.

Finally we approximated the trailing singular subspaces $T_{A,\rho}$ for the same input matrices A as for Table 7.1, where $\rho = n - r$ and $r = 1, 2, 4$, but applied Algorithm 3.1t. At first we applied Algorithm 2.1, which outputs an approximate matrix basis $B_{\rho,A}$ for the leading singular subspace $T_{\rho,A}$. Then we applied [PQ12, Algorithm 4.1] in order to compute the matrix $B_{A,\rho} = \text{nmb}(B_{\rho,A})$, being an approximate matrix basis for the trailing singular subspace $T_{A,\rho}$. Table 7.3 displays the least-squares error norms $r_n = ||B_{A,\rho}Y_{A,\rho} - T_{A,\rho}||$. They slightly exceed those of Table 7.1.

7.2 Preconditioning tests

Table 7.4 covers our tests for the preconditioning by means of randomized additive preprocessing and augmentation. The tests show great power of both additive preprocessing and augmentation, even though we limited randomization to choosing the signs $+$ and $-$ for the nonzero entries of some
Table 7.3: Error norms of approximate bases of the trailing singular subspaces computed as the norms of the bases for the leading singular subspaces

r	n	mean	std
1	64	2.13e-07	6.87e-07
1	128	3.12e-07	7.20e-07
1	256	9.41e-07	1.49e-06
2	64	1.74e-07	3.02e-07
2	128	4.79e-07	1.12e-06
2	256	1.33e-07	3.04e-06
4	64	7.49e-07	3.90e-06
4	128	7.18e-07	2.63e-06
4	256	3.37e-06	9.27e-06

very sparse and highly structured matrices U, V, and W. Namely, both our additive preprocessing and augmentation consistently decreased the condition numbers of the input matrices from about 10^{16} to the values in the range from 10^2 to 5×10^5.

GENERATION OF THE INPUTS.

We have tested the input matrices of the following classes.

1. **Nonsymmetric matrices A of type I with numerical nullity $r = n - \text{null}(A)$.** $A = S \Sigma_r T^T$ are $n \times n$ matrices where S and T are $n \times n$ random orthogonal matrices, that is, the factors Q in the QR factorizations of random real matrices; $\Sigma_r = \text{diag}(\sigma_j)_{j=1}^n$ is the diagonal matrix such that $\sigma_{j+1} \leq \sigma_j$ for $j = 1, \ldots, n - 1$, $\sigma_1 = 1$, the values $\sigma_2, \ldots, \sigma_{n-r-1}$ are randomly sampled in the semi-open interval $[0,1)$, $\sigma_{n-r} = 0.1$, $\sigma_j = 10^{-16}$ for $j = n - r + 1, \ldots, n$, and therefore $\kappa(A) = 10^{16}$ [H02, Section 28.3].

2. **Symmetric matrices of type I with numerical nullity r.** The same as in part 1n, but for $S = T$.

The matrices of the six other classes have been constructed in the form of $\frac{A}{||A||} + \beta I$, with the recipes for defining the matrices A and scalars β specified below.

2. **Nonsymmetric matrices of type II with numerical nullity r.** $A = (W | WZ)$ where W and Z are random orthogonal matrices of sizes $n \times (n - r)$ and $(n - r) \times r$, respectively.

3. **Symmetric matrices of type II with numerical nullity r.** $A = WW^T$ where W are random orthogonal matrices of size $n \times (n - r)$.

4. **Nonsymmetric Toeplitz-like matrices with numerical nullity r.** $A = c(T | TS)$ for random Toeplitz matrices T of size $n \times (n - r)$ and S of size $(n - r) \times r$ and for a positive scalar c such that $||A|| \approx 1$.

5. **Symmetric Toeplitz-like matrices with numerical nullity r.** $A = cTT^T$ for random Toeplitz matrices T of size $n \times (n - r)$ and a positive scalar c such that $||A|| \approx 1$.

6. **Nonsymmetric Toeplitz matrices with numerical nullity 1.** $A = (a_{i,j})_{i,j=1}^n$ is a Toeplitz $n \times n$ matrix. Its entries $a_{i,j} = a_{i-j}$ are random for $i-j < n-1$, and so the matrix $A_{n-1} = (a_{i,j})_{i,j=1}^{n-1}$ is nonsingular (with probability 1) and was indeed nonsingular in all our tests. The entry $a_{n,1}$ is selected to annihilate or nearly annihilate det A, that is, to fulfill

$$\det A = 0 \text{ or } \det A \approx 0,$$

in which case the matrix A is singular or ill-conditioned.

7. **Symmetric Toeplitz matrices with numerical nullity 1.** $A = (a_{i,j})_{i,j=1}^n$ is a Toeplitz $n \times n$ matrix. Its entries $a_{i,j} = a_{i-j}$ are random for $|i-j| < n-1$, while the entry $a_{1,n} = a_{n,1}$ was selected to satisfy equation (7.1), which is the quadratic equation in this entry. Occasionally it had no real roots, but then we repeatedly generated the matrix A.

\[27 \]
We set $\beta = 10^{-16}$ for symmetric matrices A in the classes 2s, 3s, and 4s, so that $\kappa(A) = 10^{16} + 1$ in these cases. For nonsymmetric matrices A we defined the scalar β by an iterative process such that $\|A\| \approx 1$ and $10^{-18}\|A\| \leq \kappa(A) \leq 10^{-16}\|A\|$ [PIMR10, Section 8.2].

RANDOMIZED PREPROCESSING AND TEST RESULTS.

Table 7.4 displays the average values of the condition numbers $\kappa(C)$ and $\kappa(K)$ of the matrices $C = A + UV^T$ and $K = \begin{pmatrix} W & V^T \\ U & A \end{pmatrix}$ over 1000 tests for the inputs in the above classes, $r = 1, 2, 4, 8$ and $n = 128$. Here

$$U = \frac{\bar{U}}{||\bar{U}||}, \quad \bar{U}^T = (\pm I_r \mid O_{r,r} \mid \pm I_r \mid O_{r,r} \mid \ldots \mid O_{r,r} \mid \pm I_r \mid O_{r,s}),$$

s is such that $\bar{U} \in \mathbb{R}^{n \times r}$,

$$V = \frac{\bar{V}}{||\bar{V}||}, \quad \bar{V}^T = (2I_r \mid O_{r,r} \mid 2I_r \mid O_{r,r} \mid \ldots \mid O_{r,r} \mid 2I_r \mid O_{r,s}) - U^T,$$

$W = \frac{\bar{W}}{||\bar{W}||} \in \mathbb{R}^{r \times r}, \ W$ are circulant matrices, each defined by its first column, filled with ± 1, and here as well as in the expression for \bar{U}, all signs \pm turn into $+$ and $-$ with the same probability 0.5, independently of each other.

In our further tests the condition numbers of the matrices $C = A + 10^p UV^T$ for $p = -10, -5, 5, 10$ were steadily growing within a factor $10^{|p|}$ as the value $|p|$ was growing. This showed the importance of proper scaling of the additive preprocessor UV^T.

Table 7.4 also displays the results of the similar tests with Gaussian matrices U, V, and W. The results show similar power of Gaussian preprocessors and our random sparse and structured preprocessors.
Table 7.4: Preconditioning tests

Type	r	$\kappa(C)$, Gaussian	$\kappa(K)$, Gaussian	$\kappa(C)$, structured	$\kappa(K)$, structured
1n	1	1.38e+04	1.80e+04	1.80e+04	2.47e+04
1n	2	9.07e+03	9.66e+03	8.60e+03	2.17e+04
1n	4	6.91e+04	7.14e+04	4.94e+04	2.15e+05
1s	1	2.03e+04	2.20e+04	2.81e+04	1.72e+05
1s	2	2.32e+04	1.95e+04	1.43e+04	8.19e+04
1s	4	2.38e+04	1.89e+04	5.67e+03	7.85e+04
1s	8	7.49e+04	3.32e+04	1.26e+04	1.62e+05
2n	1	6.75e+03	7.38e+03	3.79e+03	4.27e+03
2n	2	1.78e+04	1.75e+04	1.74e+04	3.92e+04
2n	4	3.91e+04	4.44e+04	1.63e+05	1.78e+06
2n	8	4.57e+04	3.00e+04	4.72e+04	4.56e+05
2s	1	1.35e+04	1.72e+04	6.17e+03	1.04e+04
2s	2	1.07e+04	8.81e+03	8.27e+03	3.68e+04
2s	4	2.01e+04	1.23e+04	2.93e+04	1.74e+05
2s	8	2.99e+04	1.77e+04	1.65e+04	2.26e+05
3n	1	4.62e+04	6.49e+04	1.26e+04	2.02e+04
3n	2	2.68e+06	2.98e+06	2.61e+04	5.96e+04
3n	4	4.29e+04	6.28e+04	3.75e+05	1.15e+06
3n	8	1.22e+05	1.79e+05	1.04e+05	4.00e+05
3s	1	5.34e+05	7.67e+05	8.43e+05	1.32e+06
3s	2	2.88e+06	4.07e+06	1.52e+06	3.06e+06
3s	4	1.44e+06	1.99e+06	3.97e+05	1.30e+06
3s	8	9.63e+05	1.32e+06	5.95e+05	2.88e+06
4n	1	4.26e+03	3.67e+03	3.51e+03	3.49e+03
4n	2	6.51e+03	9.84e+03	7.06e+03	5.58e+04
4n	4	4.22e+03	1.45e+04	4.03e+03	1.78e+05
4n	8	4.39e+03	3.40e+04	4.72e+03	3.97e+04
4s	1	4.06e+05	4.14e+05	2.61e+06	2.50e+06
4s	2	1.34e+06	3.79e+04	1.09e+05	3.24e+04
4s	4	1.30e+05	1.51e+04	1.49e+04	4.69e+04
4s	8	2.85e+04	1.17e+04	1.04e+04	6.95e+04
8 Conclusions

We studied randomized preprocessing for the acceleration of computations with singular and ill-conditioned matrices. We assumed that an $n \times n$ input matrix $A - E$ of rank ρ has been represented by its approximation A, with a small perturbation norm $\|E\|$, so that the matrix A had rank r and numerical rank ρ. Then we approximated some bases for the null space of the matrix $A - E$, that is, for trailing singular subspace $\mathbb{T}_{A,\rho}$ of the matrix A, associated with its $\rho - r$ smallest positive singular values.

The customary numerical algorithms compute such bases by using pivoting, orthogonalization, or SVD, but by extending our earlier study in [PQ10], [PQ12], an [PZC] we applied randomization instead of these more expensive techniques and obtain accurate solution at a significantly lower computational cost. Our null space algorithms reduce the solution of homogeneous rank deficient and ill-conditioned linear systems of equations to the similar tasks for well-conditioned linear systems of full rank, which significantly improves the known algorithms for this computational problem.

Our work continued the study in a stream of our earlier papers, which empirically demonstrated the preconditioning power of randomized augmentation and additive preprocessing. Now we supplied detailed formal analysis supporting these empirical observations.

In particular our study has shown that, for the same number of Gaussian parameters involved, western as well as northern augmentation (that is, appending a block of random rows or columns to the given matrix) is more efficient than northwestern augmentation (that is, appending two blocks of random rows and columns simultaneously) and additive preprocessing. This can properly direct randomized preprocessing.

Our formal results have been in good accordance with our previous and present numerical tests, which have consistently shown that great variety of random sparse and structured preprocessors (even where randomization was very limited) usually are as efficient preconditioners as Gaussian ones. Similar observations have been made by ourselves and by many other researchers about the power of random sparse and structured multipliers versus Gaussian multipliers in their applications to low-rank approximation of a matrix and to GENP.

For a long while formal support for these empirical observations has been missing, but our novel duality techniques has provided formal support for these empirical observations.

Our results motivate derandomization of our preprocessing and bolder application of sparse and structured preprocessing for the computational problems studied in this paper as well as for some other important problems of matrix computations. This promises significant acceleration of the known algorithms.

Promising and in some cases surprising findings of this kind have been presented also in [PZa] and [PZb], and it is a major challenge to find new classes of efficient preprocessors and new areas where our techniques can increase substantially the efficiency of the known algorithms.

In the rest of this section, we outline our novel application of randomized augmentation and additive preprocessing to supporting GENP. The papers [PQZ13], [PQY15], and [PZ15] cover alternative randomized multiplicative support of GENP, its motivation and history.

Suppose that we are given an $n \times n$ matrix A and we try to apply to it GENP and to avoid limitations of multiplicative preprocessing (cf. [PQZ13], [PQY15], and [PZ15]). Fix a positive integer $h < n$ and a pair of $n \times h$ matrices U and V and consider northwestern augmentation and additive preprocessing given by the maps

$$A \rightarrow K = \begin{pmatrix} I_h & V^T \end{pmatrix} \quad \text{and} \quad C = A - U V^T,$$

respectively. Gaussian augmentation and additive preprocessing generate $2hn$ Gaussian parameters each; additive preprocessing requires in addition $(2h - 1)n^2$ flops. By choosing structured (e.g., Toeplitz) matrices U and V, we can decrease these bounds to $O(n)$ random parameters and $O(n \log(n))$ flops.

Theorem 8.1. Let h and n be two positive integers. Let A be an $n \times n$ matrix normalized so that $\|A\| \approx 1$ and let η denote the maximum numerical nullity of its leading square blocks. Let U and V
be the pair of \(n \times h \) Gaussian matrices such that either \(U = V \) or these two matrices \(U \) and \(V \) are independent of one another. Suppose that equation (8.1) defines primal or dual northwestern augmentation and additive preprocessing of the matrix \(A \), producing the matrices \(K \) and \(C \), respectively. Then, under both primal and dual randomization, these matrices are nonsingular with probability 1, and our probabilistic estimates of Sections 4 and 5 bound their condition numbers.

The claimed results are readily verified for augmentation with Gaussian matrices producing matrices \(K \). We extend them to matrices \(C \), produced with additive preprocessing, by applying GENP to the matrix \(K \). Indeed we arrive at the same task for the matrix \(C \) in \(h \) elimination steps.

In Theorem 8.1 we can set \(h = \eta \) if we know the bound \(\eta \), but otherwise we can try to guess such a bound by actions. Namely, assume at first that \(\eta \leq 1 \), set \(h = 1 \), apply GENP to the matrix \(K \) or \(C \), and in the case of failure, increase (e.g., double) \(h \) recursively.

Let us motivate this policy. Define the \(\eta \)-family of matrices as the set of all matrices with the maximal numerical nullity at least \(\eta \) for its leading square blocks. Then already the 1-family makes up a small fraction of all matrices, and the size of the \(\eta \)-family decreases very fast as \(\eta \) grows.

This randomized preprocessing is universal and allows us to use SRFT and SRHT structure, but supports the application of GENP to the matrices \(K \) and \(C \), rather than to the original matrix \(A \). Our next goal is the inversion of the matrix \(A \) or the solution of a linear system \(Ax = b \) simplified by using the output of the above applications.

A potential tool is the SMW formula (5.8), which we can extend by expressing the inverse \(A^{-1} \) through the inverse \(K^{-1} \) rather than \(C^{-1} \).

If the assumptions of Theorem 8.1 have been satisfied, then the matrix \(C \) is likely to be well-conditioned, but using the SMW formula may still cause numerical problems at the stages of computing and inverting the matrix \(I_h + V^T C^{-1} U \).

For a natural antidote, we can perform the computations at these stages with extended precision. They involve \(O(hn^2) \) flops, versus the order of \(n^3 \) flops involved at the other stages and performed with double precision. This can be attractive when \(h \ll n \).

For a large class of well-conditioned matrices \(A \), we can try to avoid numerical problems by scaling the matrices \(U \) and \(V \). This is a research challenge, and next we outline some recipes and obstacles.

If the ratio \(\frac{\|A\|}{\|U^TV^T\|} \) is sufficiently large, then \(\|VC^{-1}U\| \leq \theta < 1 \) for a constant \(\theta \) not close to 1, and the diagonally dominant matrix \(I_h + V^T C^{-1} U \) can be computed and inverted with no numerical problems. The power of that recipe is limited, however, because our randomized preprocessing does not work if the ratio \(\frac{\|A\|}{\|U^TV^T\|} \) is too large.

Application of the homotopy continuation techniques (cf. [P01, Section 6.9], [PKRK06], [P10]) may help to extend the power of this recipe.

For two other policies pointed out below, we must also scale the matrices \(U \) and \(V \) in order to have a sufficiently large ratio \(\frac{\|A\|}{\|U^TV^T\|} \), and then again this scaling can be in conflict with obtaining our randomized support for GENP for the matrices \(K \), \(K' \), and/or \(C \).

(i) If we achieve scaling such that \(\|I - C^{-1} A\| \leq \theta < 1 \) for a constant \(\theta \) not close to 1, then Newton’s iteration \(X_{i+1} = 2X_i - X_iAX_i \), \(i = 0, 1, \ldots \), initialized at \(X_0 = C^{-1} \), converges quadratically right from the start to the inverse \(A^{-1} \) (cf. [P01, Chapter 6]).

(ii) Suppose that we seek the solution of a linear system \(Ax = b \) and that GENP, applied to the matrix \(C = A + UV^T \), has output its LU factorization being close to the LU factorization of the matrix \(A \). Then we can solve the linear system \(Ax = b \) accurately by applying iterative refinement.

Appendix
\section{Some Basic Definitions and Properties of Matrix Computations}

A real matrix Q is orthogonal if $Q^T Q = I$ or $QQ^T = I$.

\|M\|_F is the Frobenius norm of a matrix M.

$A^+ = T_A \text{diag}(\sum_{i=1}^{m} O_{n-r_i,m-r_i}) S_A^{-1}$ is the Moore–Penrose pseudo-inverse of the matrix A of (2.1).

$\kappa(A) = \frac{\sigma_1(A)}{\sigma_n(A)} = \|A\| \|A^+\|$ is the condition number of an $m \times n$ matrix A of rank ρ. Such matrix is \textit{ill-conditioned} if the ratio $\frac{\sigma_1(A)}{\sigma_n(A)} = \|A\| \|A^+\|$ is large and otherwise is \textit{well-conditioned}.

The \textit{numerical rank} of an $m \times n$ matrix A, denoted $\text{nrank}(A)$, is the minimal rank of its nearby matrices, and $\text{nnul}(A) = n - \text{nrank}(A)$ is the numerical nullity of A.

Recall the following basic properties.

\begin{align*}
\|A^T\| = \|A\| \leq \|A\|_F = \|A^T\|_F \leq \sqrt{n} \|A\|, \quad \|AB\| \leq \|A\| \|B\|, \quad \|AB\|_F \leq \|A\|_F \|B\|_F, \tag{A.1}
\end{align*}

\begin{align*}
\|\text{diag}(M_j)\| = \max_j \|M_j\| \quad \text{for any set of matrices } M_j. \tag{A.2}
\end{align*}

\begin{align*}
\|A^+\| = \frac{1}{\sigma_\rho(A)}. \tag{A.3}
\end{align*}

\begin{lemma}
Suppose $\Sigma = \text{diag}(\sigma_j)_{j=1}^n$, $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n$, $F \in \mathbb{R}^{r \times n}$, and $H \in \mathbb{R}^{n \times r}$. Then

- $\sigma_j(F\Sigma) \geq \sigma_j(F)\sigma_j$, $\sigma_j(\Sigma H) \geq \sigma_j(H)\sigma_j$ for all j.
- If also $\sigma_\rho > 0$, then $\text{rank}(F\Sigma) = \text{rank}(F)$ and $\text{rank}(\Sigma H) = \text{rank}(H)$.
\end{lemma}

\begin{lemma}
$\sigma_j(SM) = \sigma_j(MT) = \sigma_j(M)$ for all j if S and T are square orthogonal matrices.
\end{lemma}

\begin{lemma}
For a matrix A, its submatrix A_{00}, and a subscript j, it holds that $\sigma_j(A) \geq \sigma_j(A_{00})$.
\end{lemma}

\begin{theorem}
We have $|\sigma_j(C) - \sigma_j(C + E)| \leq \|E\|$ for all $m \times n$ matrices C and E and all j.
\end{theorem}

\begin{proof}
See [GL13, Corollary 8.6.2] or [S98, Corollary 4.3.2].
\end{proof}

\begin{theorem}
Suppose C and $C+E$ are two nonsingular matrices of the same size and $\|C^{-1}E\| = \theta < 1$. Then

- $\|I - (C + E)^{-1}C\| \leq \frac{\theta}{1 - \theta}$ and $\|(C + E)^{-1} - C^{-1}\| \leq \frac{\theta}{1 - \theta} \|C^{-1}\|$.
- In particular, $\|(C + E)^{-1} - C^{-1}\| \leq 0.5 \|C^{-1}\|$ if $\theta \leq 1/3$.
\end{theorem}

\begin{proof}
See [S98, Corollary 1.4.19] for $P = -C^{-1}E$.
\end{proof}

\begin{theorem}
[S95, Theorem 5.1]. Assume a pair of $m \times n$ matrices A and $A+E$, and let the norm $\|E\|$ be small. Then $\|Q(A+E) - Q(A)\|_F \leq \sqrt{2} \|A^+\| \|E\|_F + O(\|E\|_F^2)$.
\end{theorem}

\begin{theorem}
(see [CI94], [GTZ97], [GE96], [P00, Lemma 3.5]). Every an $m \times n$ matrix W of full rank n has an $n \times n$ nonsingular submatrix V such that $(\sqrt{(m-n)n+1}). \sigma_n(V) \geq \sigma_n(W)$.
\end{theorem}
A Gaussian Matrix. Estimates for Its Rank, Norm and Condition Number

Definition B.1. A matrix is said to be standard Gaussian random (hereafter referred to just as Gaussian) if it is filled with i.i.d. Gaussian random variables having mean 0 and variance 1. \(\mathcal{G}^{m \times n} \) denotes the class of \(m \times n \) Gaussian matrices.

Theorem B.1. A Gaussian matrix has full rank with probability 1.

Proof. At first recall that an algebraic variety of a dimension \(d \leq N \) in the space \(\mathbb{R}^N \) is defined by \(N - d \) polynomial equations and cannot be defined by fewer equations. (Fact E.1 specifies the dimension of the algebraic variety of \(m \times n \) matrices of rank \(\rho \).) Now assume a rank deficient \(m \times n \) matrix where \(m \geq n \), say. Then the determinants of all its \(n \times n \) submatrices vanish. This implies \(\left(\begin{array}{c} m \\ n \end{array} \right) \) polynomial equations on the entries, that is, rank deficient matrices form an algebraic variety of a lower dimension in the linear space \(\mathbb{R}^{m \times n} \). Clearly, such a variety has Lebesgue (uniform) and Gaussian measures 0, both being absolutely continuous with respect to one another. \(\Box \)

Theorem B.2. (See our Definition 2.1.)

Suppose that \(t \geq 0 \). Then

(i) \(\Pr\{\nu_{m,n} > t + \sqrt{m + \sqrt{n}}\} \leq \exp(-t^2/2) \) (see [DS01, Theorem II.7]),

(ii) \(\mathbb{E}(\nu_{m,n}) \leq \sqrt{m + \sqrt{n}} \) (see [HMT11, Proposition 10.2]).

Theorem B.3. Suppose that

\[m \geq n, \; x > 0, \; \Gamma(x) = \int_0^\infty \exp(-t)x^{-1}dt, \; \text{and} \]

\[\zeta(t) = t^{m-1}m^{m/2}2^{(2-m)/2}\exp(-mt^2/2)/\Gamma(m/2) \]

denotes the Gamma function. Then

1. Probability \(\{\nu_{m,n}^+ \geq m/x^2\} < \frac{x^{m-n+1}}{\Gamma(m-n+2)} \) for \(n \geq 2 \),

2. Probability \(\{\nu_{m,1}^+ \geq x\} \leq (m/2)^{(m-2)/2}/(\Gamma(m/2)x^m) \) for \(m \geq 2 \), and

3. \(\mathbb{E}(\nu_{m,n}^+)^2 = m/|m-n-1| \) provided that \(n > 1 \) and \(m-n > 1 \), while

\[\mathbb{E}(\nu_{m,n}^-) \leq ce\sqrt{h}/|m-n| \; \text{for} \; c = 2.71828 \ldots, \; h = \max\{m,n\}, \; \text{and} \; m \not= n. \]

Proof. See [CD05, Proof of Lemma 4.1] for part 1 and [HMT11, Proposition 10.2] for part 3.

Let us deduce part 2, where \(G \in \mathbb{R}^{m \times 1} \) is a vector of length \(m \).

Hence, with probability 1 it holds that \(G \neq 0 \), rank(\(G \)) = 1, \(\|G^+\| = 1/\|G\| \).

Consequently

\[\Pr\{\|G^+\| \geq x\} = \Pr\{\|G\| \leq 1/x\} \leq \int_0^{1/x} \zeta(t)dt \; \text{for} \; x > 0. \]

Notice that \(\exp(-mt^2/2) \leq 1 \). Therefore

\[\int_0^{1/x} \zeta(t)dt < cm \int_0^{1/x} t^{m-1}dt = cm/(mx^m) \]

where

\[\zeta(t) = t^{m-1}m^{m/2}2^{(2-m)/2}\exp(-mt^2/2)/\Gamma(m/2) \]

is the Zeta function and

\[cm = m^{m/2}2^{(2-m)/2}/\Gamma(m/2). \]

\(\Box \)
Theorem B.4. Let $A = G + B$ where $G \in \mathbb{G}^{n \times n}$ and $B \in \mathbb{R}^{n \times n}$ and $n \geq 2$. Write $\nu_n^+ = ||A^+||$.

Then

(i) the matrix A is nonsingular with probability 1, and

(ii) Probability $\{\nu_n^+ \geq x\} \leq 2.35\sqrt{n}/x$.

Proof. Deduce part (i) from Theorem B.1 and obtain part (ii) from [SST06, Theorem 3.3]. □

Remark B.1. The random variable ν_n^+ has no expected value, but by virtue of Theorems B.2 and B.4 combined, we can expect that a matrix A of Theorem B.4 is reasonably well-conditioned depending on context (unless n is very large). The bounds of Theorem B.3 on the random variables $\nu_{m,n}^+$ for $|m - n| > 1$ are stronger than the bound of Theorem B.4 on the random variables ν_n^+ and are strengthened fast as the integer $|m - n|$ increases from 1.

Definition B.2. Suppose we are given three positive integers k, m, and n and two matrices $U \in \mathbb{R}^{m \times k}$ is orthogonal and $V \in \mathbb{G}^{n \times k}$. Then the $m \times n$ matrix UV^T and its transpose are said to be a rotated/reflect Gaussian matrix\(^7\) of a class $\mathcal{G}^{m,k,n}$.

Remark B.2. Orthogonal invariance of Gaussian matrices (cf., e.g., [ER05, Section 4]) implies the following equations (not used this paper) $\mathcal{G}^{m,k,n} = \mathcal{G}^{m \times n}$, for $k \geq m$. For $k < m$, however, the entries of every matrix in $\mathcal{G}^{m,k,n}$ are still i.i.d. Gaussian variables, but generally are not independent. For example\(^8\), this is clear if $m = 1$ and the $1 \times k$ unitary matrix U (that is, unit vector) is filled with the values $1/\sqrt{k}$.

Theorem B.5. Let $M \in \mathcal{G}_{m,k,n}$. Then

(i) $\|M\| \leq \nu_{n,k}$,

(ii) $M \in \mathcal{G}^{m \times n}$ and $\|M^+\| \leq \nu_{m,n}^+$ if $k \geq m$, and

(iii) $\|M^+\| \leq \nu_{k,n}^+$ if $k \leq m$.

Proof. With no loss of generality let $M = UV^T$ for an $m \times k$ orthogonal matrix U and $V \in \mathcal{G}^{n \times k}$.

Part (i) is readily verified.

Part (ii) follows from orthogonal invariance of a Gaussian matrix V^T (cf. Remark B.2).

To prove part (iii), assume that $k \leq m$, let $\lambda_j(W)$ denote the jth largest eigenvalue of a symmetric matrix W, and then notice that

$$\sigma_j(M) = \lambda_j(M^T M) = \lambda_j^2(VU^T U^T V^T) = \lambda_j^2(VV^T) = \sigma_j(V)$$

for all j.

In particular,

$$\|M^+\| = 1/\sigma_k(M) = 1/\sigma_k(V) = \|V^+\|.$$ □

C SRFT Matrices

In this section we recall the definition and some basic properties of SRFT matrices, by following [HMT11, Section 11.1]. An SRFT is an $n \times \rho_+$ complex matrix of the form $H = \sqrt{n/\rho_+} \ D \ \Omega \ \bar{R}$ where

- $D = \text{diag}(d_i)_{i=1}^{n-1}$ is the $n \times n$ is a diagonal matrix, whose diagonal entries d_i are independent and uniformly distributed on the complex unit circle $\{z : |z| = 1\}$;

- Ω is the $n \times n$ unitary matrix of discrete Fourier transform, $\Omega = \frac{1}{\sqrt{n}} (\omega_{i,j})_{i,j=0}^{n-1}$ for a primitive root of unity $\omega = \exp(2\pi \sqrt{-1}/n)$, and

\(^7\)Hereafter we use acronym r/r.

\(^8\)provided by a reviewer
• R^T is a random $\rho_+ \times n$ matrix that restricts an n-dimensional vector to ρ_+ coordinates, chosen uniformly at random, for $\rho_+ \geq \rho$.

Up to scaling, an SRFT is just a section of a unitary matrix; it satisfies the norm identity $||H|| = \sqrt{n}/\rho_+$. The critical fact is that an appropriately designed SRFT approximately preserves the geometry of an entire space of vectors.

Theorem C.1. The SRFT multiplier is likely to preserve the rank and the condition number.

Fix a $\rho \times n$ orthogonal matrix U and generate an $n \times \rho_+$ SRFT matrix H, where the parameter $\rho_+ = \rho_+(\rho, n) \geq \rho$ satisfies

$$4\left(\sqrt{\rho} + \sqrt{8\log(\rho)}\right)^2 \log(\rho) \leq \rho_+ \leq n.$$

Then

$$0.40 \leq \sigma_\rho(UH) \quad \text{and} \quad \sigma_1(UH) \leq 1.48$$

with the failure probability at most $O(1/\rho)$.

In words, the null space of an $n \times \rho_+$ SRFT matrix with ρ_+ of order $(\rho + \log(n) \log(\rho))$ is unlikely to intersect a fixed ρ-dimensional space.

Remark C.1. The logarithmic factor $\log(\rho)$ in the lower bound on ρ_+ can be decreased for larger n (see below), but in contrast with the Gaussian case, cannot generally be removed, that is, with SRFT matrices we involve a positive oversampling integer parameter $\rho_+ - \rho$. For large problems, one can reduce the numerical constants of Theorem C.1. If $\rho \gg \log(n)$ and δ is a small positive number, then sampling $\rho_+ \geq (1 + \delta)\log(\rho)$ coordinates is sufficient in order to ensure that $\sigma_\rho(UH) \geq \delta$ with failure probability $O(\rho^{-\delta c})$ for a positive constant c. Moreover, according to [HMT11, Section 11.2], the choice of $\rho_+ = \rho + 20$ is adequate for almost all applications.

Remark C.2. In the case of using SRFT multipliers, Theorem C.1 bounds the failure probability by $O(1/\rho)$. For comparison, in the case of using Gaussian multipliers, the upper bound on the failure probability has order $1/2^{\alpha^2-\rho}$ by virtue of Theorem B.3.

D Circulant, subcirculant, and Toeplitz matrices

An $n \times n$ **circulant** matrix $Z = (z_{i-j \mod n})_{i,j=0}^{n-1} = \Omega^{-1}D\Omega$ is defined by its first column $z = (z_i)_{i=0}^{n-1}$ or by the diagonal matrix $D = \text{diag}(d_i)_{i=0}^{n-1}$ where $(d_i)_{i=0}^{n-1} = \sqrt{n} \Omega z$ and $\Omega^{-1} = \Omega^H$ is the Hermitian transpose of Ω. The following fact links circulant and SRFT matrices.

Fact D.1. $\sqrt{n}/\rho_+\Omega Z R$ is a SRFT matrix for $Z = \Omega^{-1}D\Omega$ provided that the diagonal entries d_0, \ldots, d_{n-1} of the matrix D are independent and uniformly distributed on the complex unit circle $\{x: \ |x| = 1\}$ and R is the random $n \times \rho$ matrix defined in the beginning of the previous section.

A circulant matrix $Z = Z(z)$ is real if and only if its first column z is real.

$k \times l$ **Toeplitz** matrices $T = (t_{i,j})_{i,j=0}^{n-1}$ extend the class of circulant matrices and can be defined as block submatrices of $(k+l) \times (k+l)$ circulant matrices. Such a matrix is defined by the $k+l-1$ entries of its first row and its first column.

An $n \times n$ random circulant matrix $Z = Z(z)$ tends to be well-conditioned [PSZ15], and hence so do its $n \times k$ and $k \times n$ Toeplitz blocks B (we call them **subcirculant**), defined by the n entries of their first row or column. Indeed, $\kappa(B) \leq \kappa(Z(z))$ for such blocks B.

The known upper bounds on the condition number of a random $n \times k$ Toeplitz matrix, defined by $n + k - 1$ random entries of the first row and the first column, are much greater (cf. [PSZ15]).

We only need $O(n \log(n))$ flops in order to multiply by a vector the $n \times n$ matrix Ω, and therefore $n \times n$ SRFT, circulant, subcirculant, and Toeplitz matrices as well. Similar properties hold for f-circulant matrices for a complex scalar f such that $|f| = 1$ (cf. [P01, Section 2.6]), which turn into circulant matrices for $f = 1$. Using such matrices (for a fixed or random value f), instead of circulant ones, allows further variations of our algorithms.
E Matrices Having Small Rank or Small Numerical Rank

Fact E.1. (Cf. [BV88, Proposition 1].) The set \(A \) of \(m \times n \) matrices of rank \(\rho \) is an algebraic variety of dimension \((m + n - \rho)\rho\) in the space \(\mathbb{R}^{m \times n} \). (Clearly, \((m + n - \rho)\rho < mn\) for \(\rho < \min\{m, n\}\).

Proof. Let \(A \) be an \(m \times n \) matrix of a rank \(\rho \) with a nonsingular leading \(\rho \times \rho \) block \(B \) and write \(A = \begin{pmatrix} B & C \\ D & E \end{pmatrix} \). Then the \((m - \rho) \times (n - \rho)\) Schur complement \(E - DB^{-1}C \) must vanish, which imposes \((m - \rho)(n - \rho)\) algebraic equations on the entries of the matrix \(A \). Similar argument can be applied in the case where any \(\rho \times \rho \) submatrix of the matrix \(A \) (among \(\binom{m}{\rho}, \binom{n}{\rho} \) such submatrices) is nonsingular. Therefore \(\dim A = mn - (m - \rho)(n - \rho) = (m + n - \rho)\rho \).

Remark E.1. How large is the class of \(m \times n \) matrices having numerical rank \(\rho \)? We characterize it indirectly, by noting that by virtue of Fact E.1 the nearby matrices of rank \(\rho \) form a variety of dimension \((m + n - \rho)\rho\), which increases as \(\rho \) increases.

Acknowledgements: Our work has been supported by NSF Grant CCF–1116736 and PSC CUNY Awards 4512–0042 and 65792–0043. We are also grateful to a reviewer for thoughtful and helpful comments.

References

[BP94] D. Bini, V. Y. Pan, Polynomial and Matrix Computations, Volume 1: Fundamental Algorithms, Birkhäuser, Boston. 1994.
[BV88] W. Bruns, U. Vetter, Determinantal Rings, Lecture Notes in Math., 1327, Springer, Heidelberg, 1988.
[CD05] Z. Chen, J. J. Dongarra, Condition Numbers of Gaussian Random Matrices, SIAM. J. on Matrix Analysis and Applications, 27, 603–620, 2005.
[CI94] S. Chandrasekaran, I. Ipsen, On rank revealing QR factorizations, SIAM J. Matrix Anal. Appl., 15, 592–622, 1994.
[D88] J. Demmel, The Probability That a Numerical Analysis Problem Is Difficult, Math. of Computation, 50, 449–480, 1988.
[DS01] K. R. Davidson, S. J. Szarek, Local Operator Theory, Random Matrices, and Banach Spaces, in Handbook on the Geometry of Banach Spaces (W. B. Johnson and J. Lindenstrauss editors), pages 317–368, North Holland, Amsterdam, 2001.
[E88] A. Edelman, Eigenvalues and Condition Numbers of Random Matrices, SIAM J. on Matrix Analysis and Applications, 9, 4, 543–560, 1988.
[E89] A. Edelman, Eigenvalues and condition numbers of random matrices, Ph.D. thesis, Massachusetts Institute of Technology, 1989.
[ER05] A. Edelman, N. Raj Rao, Random matrix theory, Acta Numerica, 14, 233–297, 2005.
[ES05] A. Edelman, B. D. Sutton, Tails of Condition Number Distributions, SIAM J. on Matrix Analysis and Applications, 27, 2, 547–560, 2005.
[F77] R. Freivalds, Probabilistic Machines Can Use Less Running Time, IFIP Congress 1977, 839–842, 1977.
[GE96] M. Gu, S. C. Eisenstat, Efficient algorithms for computing a strong rank-revealing QR factorization, SIAM Journal on Scientific Computing, 17, 848–869, 1996.
[GL13] G. H. Golub, C. F. Van Loan, *Matrix Computations*, Johns Hopkins University Press, Baltimore, Maryland, 2013 (4th addition).

[GOSTZ10] S. Goreinov, I. Oseledets, D. Savostyanov, E. Tyrtyshnikov, and N. Zamarashkin, How to find a good submatrix, in *Matrix Methods: Theory, Algorithms, Applications*, (dedicated to the Memory of Gene Golub, edited by V. Olshevsky and E. Tyrtyshnikov), pages 247–256, World Scientific Publishing, New Jersey, ISBN-13 978-981-283-601-4, ISBN-10-981-283-601-2 2010.

[GT01] S. A. Goreinov and E. E. Tyrtyshnikov, The maximal-volume concept in approximation by low-rank matrices, *Contemporary Mathematics*, **208**, 47–51, 2001.

[GTZ97] S. A. Goreinov, E. E. Tyrtyshnikov, N. L. Zamarashkin, A Theory of Pseudo-skeleton Approximations, *Linear Algebra and Its Applications*, **261**, 1–21, 1997.

[H02] N. J. Higham, *Accuracy and Stability in Numerical Analysis*, SIAM, Philadelphia, 2002 (second edition).

[HMT11] N. Halko, P. G. Martinsson, J. A. Tropp, Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions, *SIAM Review*, **53**, 2, 217–288, 2011.

[M11] M. W. Mahoney, Randomized Algorithms for Matrices and Data, *Foundations and Trends in Machine Learning*, NOW Publishers, **3**, 2, 2011. Preprint: arXiv:1104.5557 (2011) (Abridged version in: *Advances in Machine Learning and Data Mining for Astronomy*, edited by M. J. Way et al., pp. 647–672, 2012.)

[MR96] R. Motwani, P. Raghavan, Randomized algorithms, *ACM Computing Surveys (CSUR)*, **28**, 1, 33–37, ACM Press, New York, 1996, doi:10.1145/234313.234327.

[P00] C.-T. Pan, On the existence and computation of rank-revealing LU factorizations, *Linear Algebra and its Applications*, **316**, 199–222, 2000.

[P01] V. Y. Pan, *Structured Matrices and Polynomials: Unified Superfast Algorithms*, Birkhäuser/Springer, Boston/New York, 2001.

[P10] V. Y. Pan, Newton’s Iteration for Matrix Inversion, Advances and Extensions, pp. 364–381, in *Matrix Methods: Theory, Algorithms and Applications* (dedicated to the Memory of Gene Golub, edited by V. Olshevsky and E. Tyrtyshnikov), pages 364–381, World Scientific Publishing, New Jersey, ISBN-13 978-981-283-601-4, ISBN-10-981-283-601-2 (2010).

[P15] V. Y. Pan, Transformations of matrix structures work again, *Linear Algebra and Its Applications*, **465**, 1–32, 2015.

[PGMQ08] V. Y. Pan, D. Grady, B. Murphy, G. Qian, R. E. Rosholt, A. Ruslanov, Schur Aggregation for Linear Systems and Determinants, *Theoretical Computer Science, Special Issue on Symbolic–Numerical Algorithms* (D. A. Bini, V. Y. Pan, and J. Verschelde editors), **409**, 2, 255–268, 2008.

[PIMR08a] V. Y. Pan, D. Ivolgin, B. Murphy, R. E. Rosholt, I. Taj-Eddin, Y. Tang, X. Yan, Additive Preconditioning and Aggregation in Matrix Computations, *Computers and Mathematics with Applications*, **55**, 8, 1870–1886, 2008.

[PIMR08b] V. Y. Pan, D. Ivolgin, B. Murphy, R. E. Rosholt, Y. Tang, X. Yan, Additive Preconditioning for Matrix Computations, in *Proc. of the Third International Computer Science Symposium in Russia (CSR’2008)*, *Lecture Notes in Computer Science (LNCS)*, **5010**, 372–383, 2008.
[PIMR10] V. Y. Pan, D. Ivolgin, B. Murphy, R. E. Rosholt, Y. Tang, X. Yan, Additive Preconditioning for Matrix Computations, Linear Algebra and Its Applications, 432, 1070–1089, 2010.

[PKRK06] V. Y. Pan, M. Kunin, R. Rosholt, H. Kodal, Homotopic Residual Correction Algorithms for General and Structures Matrices, Math. of Computation, 75, 345–368, 2006.

[PMRT07] V. Y. Pan, B. Murphy, R. E. Rosholt, M. Tabanjeh, Null Space and Eigenspace Computation with Additive Preconditioning, Proceedings of the Third International Workshop on Symbolic–Numeric Computation (SNC’2007), July 2007, London, Ontario, Canada (Jan Verschelde and Stephen Watt, editors), 170–179, ACM Press, New York. 2007.

[PQ10] V. Y. Pan, G. Qian, Randomized Preprocessing of Homogeneous Linear Systems of Equations, Linear Algebra and Its Applications, 432, 3272–3318, 2010.

[PQ12] V. Y. Pan, G. Qian, Solving Linear Systems of Equations with Randomization, Augmentation and Aggregation, Linear Algebra and Its Applications, 437, 2851–1876, 2012.

[PQY15] V. Y. Pan, G. Qian, X. Yan, Random Multipliers Numerically Stabilize Gaussian and Block Gaussian Elimination: Proofs and an Extension to Low-rank Approximation, Linear Algebra and Its Applications, 481, 202–234, 2015.

[PQZ13] V. Y. Pan, G. Qian, A. Zheng, Randomized Preprocessing versus Pivoting, Linear Algebra and Its Applications, 438, 4, 1883–1899, 2013.

[PQZC] V. Y. Pan, G. Qian, A. Zheng, Z. Chen, Matrix Computations and Polynomial Root-finding with Preprocessing, Linear Algebra and Its Applications, 434, 854–879, 2011.

[PSZ15] V. Y. Pan, J. Svadlenka, L. Zhao, Estimating the Norms of Circulant and Toeplitz Random Matrices and Their Inverses, Linear Algebra and Its Applications, 468, 197–210, 2015.

[PY07] Null Space and Eigenspace Computation with Additive Preconditioning, Proceedings of the Third International Workshop on Symbolic–Numeric Computation (SNC’2007), July 2007, London, Ontario, Canada (Jan Verschelde and Stephen Watt, editors), 170–179, ACM Press, New York, 2007.

[PY09] V. Y. Pan, X. Yan, Additive Preconditioning, Eigenspaces, and the Inverse Iteration, Linear Algebra and Its Applications, 430, 186–203, 2009.

[PZ15] V. Y. Pan, L. Zhao, Randomized Circulant and Gaussian Preprocessing, Proceedings of the 17th International Workshop on Computer Algebra in Scientific Computing (CASC’2015), (V. P. Gerdt, V. Koepf, and E. V. Vorozhtsov, editors), Lecture Notes in Computer Science, Springer, Heidelberg (2015), accepted.

[PZa] V. Y. Pan, L. Zhao, How Much Randomness Do We Need for Supporting Gaussian Elimination, Block Gaussian Elimination, and Low-rank Approximation? arxiv 1501.05385 CS (36 pages, 12 figures), submitted on January 22, 2015, revised on October 21, 2015.

[PZb] V. Y. Pan, L. Zhao, Low-rank Approximation of a Matrix: Novel Insights, New Progress, and Extensions” by V. Y. Pan, L. Zhao, arXiv:1510.06142 [math.NA] (16 pages, 3 tables), submitted on 21 Oct 2015, revised on 14 March 2016.

[S95] J.-G. Sun, On Perturbation Bounds for QR Factorization, Linear Algebra and Its Applications, 215, 95–111, 1995.
[S98] G. W. Stewart, *Matrix Algorithms, Vol I: Basic Decompositions*, SIAM, Philadelphia, 1998.

[SST06] A. Sankar, D. Spielman, S.-H. Teng, Smoothed Analysis of the Condition Numbers and Growth Factors of Matrices, *SIAM J. on Matrix Analysis*, 28, 2, 446–476, 2006.

[T11] J. A. Tropp, Improved Analysis of the Subsampled Randomized Hadamard Transform, *Adv. Adapt. Data Anal.*, 3, 1–2, Special Issue, ”Sparse Representation of Data and Images,” 115-126, 2011.

[W07] X. Wang, Affect of Small Rank Modification on the Condition Number of a Matrix, *Computer and Math. (with Applications)*, 54, 819–825, 2007.