Disseminated nocardiosis due to *Nocardia otitidiscaviarum*: A case report and literature review

Shu-Wei Zheng

Department of Infectious Diseases, Singapore General Hospital, Singapore

ABSTRACT

Rationale: Disseminated nocardiosis due to *Nocardia otitidiscaviarum* is rarely reported in immunocompetent hosts.

Patient concerns: A 59 year old male patient complained of painful soft tissue swellings and fever for two days.

Diagnosis: Disseminated nocardiosis due to *Nocardia otitidiscaviarum*.

Interventions: Initial antimicrobial therapy with imipenem and trimethoprim/sulfamethoxazole was switched to 6 weeks of trimethoprim/sulfamethoxazole, linezolid and tigecycline after sensitivity test results were available. Thereafter, the patient was switched to maintenance trimethoprim/sulfamethoxazole and moxifloxacin. Prednisolone was gradually tapered.

Outcomes: Soft tissue swelling and pain disappeared and the patient was discharged uneventfully.

Lessons: Disseminated nocardiosis due to *Nocardia otitidiscaviarum* should be suspected in immunocompetent hosts with risk factors such as medication with prednisolone. Early identification of the causative species and susceptibility results is crucial given the diverse resistance patterns amongst various *Nocardia* species.

1. Introduction

Nocardia spp. is a Gram-positive, weakly acid-fast microorganism that is ubiquitous in the environment with a worldwide distribution. Common factors include long term corticosteroid use, malignancy, human immunodeficiency virus infection and chronic obstructive pulmonary predisposing to *Nocardia* infections disease[1]. Various *Nocardia* species differ in their pathogenicity, geographical distribution and antimicrobial susceptibility. Historically, before the advent of molecular techniques and mass spectrometry, biochemical methods were used in the identification of *Nocardia* species, resulting in only a few known *Nocardia* species[2]. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has emerged as a useful tool for the accurate identification of *Nocardia* species[2-4].

First recognized in 1924 from a guinea pig with ear disease, *Nocardia otitidiscaviarum* (*N. otitidiscaviarum*) has been described as an opportunistic pathogen causing local and disseminated infection in both immunocompetent and immunocompromised hosts[1]. Herein, we describe a case of disseminated *N. otitidiscaviarum* predisposed by corticosteroid use and a literature review of published case reports and case series of *N. otitidiscaviarum* infections.

2. Case report

This case report was approved by the local ethics committee of...
A 59-year-old man presented with an acute history of painful soft tissue swellings and fever. Upon further questioning, he denied any history of trauma and had been perfectly well 2 d before. He had no cough, hemoptysis, or chest pain. He had a history of hypertension, dyslipidemia, and stage IV chronic kidney disease (baseline serum creatinine ranging 284-313 μmol/L, reference range, 54-101 μmol/L), secondary to presumptive glomerulonephritis. Two months ago, he had been started on a prednisolone dose of 60 mg daily by his nephrologist for suspected immune-mediated glomerulonephritis. Clinical examination revealed a febrile middle-aged man with discreet tender, warm, and erythematous swellings over his left elbow (Figure 1), right thigh, and right buttock, consistent with cutaneous abscesses. There was no palpable lymphadenopathy. Cardiorespiratory and abdominal examination was unremarkable. He had no focal neurological deficit.

Laboratory findings included the following: serum sodium 140 mmol/L (reference range, 136-146 mmol/L), serum potassium 4.5 mmol/L (reference range, 3.6-5.0 mmol/L), serum bicarbonate 24.6 mmol/L (reference range, 19.0-29.0 mmol/L), serum creatinine 332 μmol/L, haemoglobin 12.5 g/dL (reference range, 14.0-18.0 g/dL), white blood cell count 15.02 × 10^9/L (reference range, 4.0-10.0 × 10^9/L), C-reactive protein 86.6 mg/L (reference range, 0.2-9.1 mg/L), serum albumin 31 g/L (reference range, 40-51 g/L), bilirubin 5 μmol/L (reference range, 7-32 μmol/L), alkaline phosphatase 51 U/L (reference range, 39-99 U/L), alanine aminotransferase 6 U/L (reference range, 6-66 U/L), and aspartate aminotransferase 17 U/L (reference range, 12-42 U/L). Blood cultures were non-yielding.

A chest radiograph showed a left upper lobe opacity, which was new compared to a previous radiograph taken three months before (Figure 2A-2B). A computed tomography scan of his thorax revealed a spiculated left upper lobe mass (Figure 2C) corresponding to the opacity detected on the chest radiograph.

He initially declined surgical drainage. Magnetic resonance imaging (MRI) to delineate the soft tissue abscesses and revealed subcutaneous collections over the left elbow joint, right gluteus maximus, and right sartorius and iliacus muscle, together with an intramuscular abscess within the right gracilis muscle (Figure 3A-3H).

He did subsequently undergo a diagnostic transthoracic needle aspiration of the lung lesion as well as an incision and drainage of the multiple subcutaneous abscesses. Histology of the lung specimen showed acute-on-chronic pneumonitis with microabscess formation. No granulomas or infective organisms were identified and there was no evidence of malignancy. Gram stain, fungal microscopy, acid-fast bacilli stain, and nucleic acid amplification test for Mycobacterium tuberculosis complex were negative.

Eventually, chalky colonies were seen on the blood agar plate several days later (Figure 4A) from both the lung and subcutaneous tissue specimens. On microscopy, beaded Gram-positive rods were seen (Figure 4B), suspicious for nocardiosis. Antimicrobial therapy was empirically switched to a combination of imipenem and trimethoprim/sulfamethoxazole. The causative microorganism was identified to be N. otitidiscaviarum by the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
Figure 3. Skin and soft tissue abscesses at the right thigh, groin, buttock and the left elbow demonstrated on MRI on the febrile middle-aged man with disseminated nocardiosis. A/B: An 4 intramuscular abscess collection within the right gracilis muscle with surrounding edema. C/D: Small collection is noted within the subcutaneous fat overlying the right sartorius and iliacus muscle at the right groin region. E/F: A small collection within the subcutaneous fat overlying the postero-lateral aspect of the right gluteus maximus. G/H: Extensive area of subcutaneous hyperintense theta signal seen in the posterior aspect of the elbow joint; focal thick wall fluid collection with layering noted in the subcutaneous layers.

Figure 4. Culture morphology and microscopic (magnified at 40×) images of the *Nocardia* spp. isolates cultured from the patient. A: Chalky white colonies on blood agar plate. B: Microscopy slides of beaded Gram positive bacilli of *Nocardia* spp.
An MRI of his brain showed a solitary lesion in the right frontal lobe, consistent with a cerebral abscess (Figure 5A-5B). Hence, this patient has disseminated nocardiosis resulting in subcutaneous, intramuscular, lung and brain abscesses, predisposed by corticosteroids.

Susceptibility testing using the broth microdilution method suggested that this isolate was susceptible to amikacin \(\text{MIC} \leq 8 \mu g/mL\), tobramycin \(\text{MIC} \leq 4 \mu g/mL\), trimethoprim/sulfamethoxazole \(\text{MIC} \leq 2/38 \mu g/mL\), and linezolid \(\text{MIC} \leq 8 \mu g/mL\), intermediate to moxifloxacin \(\text{MIC} = 2 \mu g/mL\), doxycycline \(\text{MIC} = 2 \mu g/mL\), and minocycline \(\text{MIC} = 2 \mu g/mL\), and resistant to amoxicillin/clavulanic acid \(\text{MIC} \geq 32/16 \mu g/mL\), ceftriaxone \(\text{MIC} \geq 64 \mu g/mL\), cefepime \(\text{MIC} \geq 32 \mu g/mL\), imipenem \(\text{MIC} \geq 16 \mu g/mL\), ciprofloxacin \(\text{MIC} \geq 4 \mu g/mL\), and clarithromycin \(\text{MIC} \geq 8 \mu g/mL\). Tigecycline MIC was tested to be 0.5 \(\mu g/mL\) but without interpretive criteria from the Clinical&Laboratory Standards Institute. Antimicrobial therapy was further switched to trimethoprim/sulfamethoxazole, linezolid and tigecycline. Aminoglycosides were not used in view of his underlying renal disease. He completed 6 weeks of this combination therapy before switching to maintenance trimethoprim/sulfamethoxazole and moxifloxacin. His prednisolone was gradually tapered and ceased and all his cutaneous lesions were drained surgically. A summary of his clinical progress is shown in Figure 6.
3. Discussion

A computerized search for publications on *N. otitidiscaviarum* in the Medline database of the National Library of Medicine was conducted for the literature review. Only reports available in English, published in the last 25 years, were included. Articles were identified through screening of titles and their abstracts to determine final eligibility. Key words used include “*Noecardia otitidiscaviarum*”.

The search terms yielded a total of 106 articles, in which 49 articles were included[5-53]. One article was excluded in view of inconsistently reported results. One article[43] was reviewed from its abstract only, as the full manuscript was not available.

A total of 141 cases of *N. otitidiscaviarum* infections, including our case, were collated. Their clinical features and antimicrobial susceptibilities were shown in Table 1. The median age was 57 years, and 69.2% were males. The commonest risk factors reported included corticosteroids use (n=11), chronic lung disease (n=12), solid organ transplant (n=8), underlying human immunodeficiency virus (n=4) and solid organ malignancy (n=3). Seventeen patients did not appear to have any underlying medical conditions. Mortality occurred in 8 out of 49 cases reported (16.3%). Seventy-two cases had their sites of infection stated. The commonest clinical infective syndrome included pneumonia (n=35, 48.6%),

Table 1. Clinical and microbiological characteristics of patients with reported *Noecardia otitidiscaviarum*.

No.	Age	Gender	Significant medical history/ risk factor(s)	Site(s) of involvement	Death	Country	Modality of identification	Antimicrobial susceptibility testing	Resistance	Modality of testing	Treatment regimen	Ref	
1	59	Male	Chronic kidney disease	Skin and soft tissue abscess; Muscle abscess; Brain abscess	No	Singapore	MALDI-TOF MS	AMK, TOB, SXT, MOX, DOX, MIN	AMC, CRO, FEP, IMI, CIP; CLR	Broth microdilution	SXT + LZD + NA	[5]	
2	51	Male	Asthma; Corticosteroids	Pneumonia; Yes; India	Yes	India	MALDI-TOF MS	CRO, IMI, AMK, CIP, LZD	AMC, SXT	NM	IMI + SXT	[5]	
3	65	Male	Nil	Pneumonia; No; India	No	India	MALDI-TOF MS	CRO, IMI, GEN, AMK, SXT, LZD	AMC	NM	SXT	[6]	
4	58	Male	Nil	Pneumonia; Yes; China	Yes	China	MALDI-TOF MS	IMI, LJ, LZD	AMC	NA	SXT + IMI	[7]	
5	72	Female	Asthma; Bronchiectasis	Pneumonia; Yes; Japan	No	Japan	*16S rRNA*	IMI, LEV, SXT, MIN	CRO	NM	SXT + MIN	[8]	
6	41	Female	Asthma	Pneumonia; No; Sudan	No	Sudan	*16S rRNA*	MEP, AMK, STR, CIP	Disk diffusion	SXT + AZI + CYC	CRO + CIP	[9]	
7	37	Male	Nil	Pneumonia; Parapneumonic effusion; Skin and soft tissue abscess	No	China	Not mentioned	NM	NM	Disk diffusion	MIN + TMP + SMX	[10]	
8	14	Female	Rheumatic heart disease	Pneumonia; Yes; India	Yes	India	Molecular methods	IML, GEN, AMK, CIP, SXT	AMC, CRO, CTX	Disk diffusion	Nil	[11]	
9	69	Female	Nil	Brain abscess; No; Turkey	No	Turkey	DNA sequence analysis	IMI, LJ, LZD	AMC, CTX	NM	Surgery + MEP + AMK + SXT	[12]	
10	79	Female	Nil	Brain abscess; No; Japan	Yes	Japan	*16S rRNA*	GEN, AMK, SXT, LZD, MIN, TOR, CIP; DOX	AMC, CRO, CTX, FEP, IMI, CLR	NM	Disk diffusion	SXT + SXT	[13]
11	42	Male	Liver cirrhosis; Corticosteroids	Emphyema; No; Taiwan	No	Taiwan	*16S rRNA*	NM	NM	Disk diffusion	SXT + SXT	[14]	
12	60	Male	COPD	Skin ulcers; Lymphadenopathy; No; India	No	India	*16S rRNA*	AMK, LZD, MIN	AMC	NM	SXT + LZD	[15]	
13	45	Male	Nil	Cornea abscess; No; India	Yes	India	*16S rRNA*	AMK, MOX, SXT, LZD	CRO, IMI	Etest	SXT + CLR + MOX	[16]	
14	17	Female	Cystic fibrosis	Pneumonia; No; Qatar	Yes	Qatar	*16S rRNA*	AMK, MOX, SXT, LZD	CRO, IMI	Etest	SXT + CLR + MOX	[18]	
15	36	Female	Nil	Pneumonia; No; India	Not	India	Not mentioned	NM	NM	Disk diffusion	SXT + SXT	[17]	
16	57	Male	Corticosteroids DM	Emphyema; NM; Spain	No	Spain	*16S rRNA*	GEN, AMK, SXT	AMC, CTX, FEP, IMI, TOR, CIP	NM	Disk diffusion	[18]	
17	51	Male	Nil	Pneumonia; No; Taiwan	No	Taiwan	*16S rRNA*	NM	NM	Disk diffusion	SXT + SXT	[19]	
18	89	Male	Lung cancer; COPD	Pneumonia; Yes; China	Yes	China	*16S rRNA*	NM	NM	Disk diffusion	SXT + SXT	[19]	
19	70	Male	Nil	Cutaneous infection; NM	No	NM	Not mentioned	NM	NM	Disk diffusion	SXT + SXT	[19]	
20	NM	NM	Nil	Ocular infection; No; India	No	India	*16S rRNA*	AMK, TOR, CLR	GAT, AZI	Etest	NM	[20]	
21	63	Male	Heart transplant Corticosteroids	Soft tissue infection; No; Spain	No	Spain	*16S rRNA*	AMK, SXT, LZD, MIN	Broth microdilution	SXT + SXT	[21]		
No.	Age	Gender	Significant medical history/ risk factor(s)	Site(s) of involvement	Death	Country	Modality of identification	Antimicrobial susceptibility testing	Treatment regimen	Ref			
-----	-----	--------	---	-----------------------	-------	---------	---------------------------	---------------------------------	-----------------	-----			
22	57	Male	Heart transplant Corticosteroids	Pneumonia	No			AMK, SXT, LZD, MIN	MEF + AMK + SXT				
23	45	Male	HIV	Pneumonia	Yes			AMK, SXT, LZD, MIN	AMK, SXT + SXT				
24	78	Male	Pulmonary fibrosis	Pneumonia	Yes	Spain	SXT RVA	AMK, SXT, LZD, MIN	SXT				
25	23	Male	Renal transplant	Pneumonia	No	India	Biochemical tests	NM	FEP + SXT	[22]			
26	17	Male	Renal transplant	Pneumonia	No			NM	FEP + SXT				
27	62	Female	Bronchiectasis	Pneumonia	No			NM	SXT				
28	36	Male	Nil	Pneumonia	No	Spain	SXT RVA	IML, GEN, AMK, CIP, SXT, LZD	AMK + SXT + IMI + SXT + LZD + SXT				
29	85	Female	COPD	Brain abscess	Yes	Spain	SXT RVA	GEN (4), AMK (4), TOB (4), SXT (2), MIN (4), TIG (4)	Etest				
30	65	Female	Breast cancer Immunosuppressants	Cutaneous	No	Greece	SXT RVA	GEN (4), AMK (4), TOB (4), CIP (2), SXT (2), LZD (2), MIN (2)	SXT	[23]			
31	47	Male	Renal transplant	Cutaneous	No			MIN	SXT				
32	82	Male	Nil	Cutaneous	No			CIP + LZD	SXT	[24]			
33	77	Male	Lung cancer Immunosuppressants	Pneumonia	No			CIP + LZD	SXT				
34	55	Male	Nil	Cutaneous abscess	No	Turkey	SXT RVA	GEN (2), AMK (2), TOB (1), CIP (2), SXT (2), LZD (2), MIN (2)	SXT + AMK + IMI + SXT + LZD + SXT				
35	67	Female	Polycythemia nodosa Corticosteroids	Pneumonia	No	Spain	SXT RVA	GEN (2), AMK (2), TOB (1), CIP (2), SXT (2), LZD (2), MIN (2)	SXT	[25]			
36	72	Male	COPD	Pneumonia	No	Spain	Biochemical tests	GEN, LEV, SXT, ERY	IMI + MIN + SXT + LZD + SXT + LZD + SXT				
37	52	NM	NM	Bone, viscera	No	Mexico	Biochemical tests	GEN, LEV, SXT, ERY	SXT	[26]			
38	70	Male	Rheumatoid arthritis Infliximab Methotrexate Corticosteroids	Skin	No	France	Biochemical tests	GEN, LEV, SXT, ERY	SXT + AMK + SXT + LZD + SXT + LZD + SXT				
39	69	Male	Rheumatoid arthritis Corticosteroids	Epistaxis	No	Japan	Biochemical tests	GEN, LEV, SXT, ERY	SXT + AMK + SXT + LZD + SXT + LZD + SXT				
40	44	Male	Renal transplant DM Corticosteroids Cyclosporine	Brain abscess Myositis	Yes	Spain	Biochemical tests	GEN, LEV, SXT, ERY	SXT + AMK + SXT + LZD + SXT + LZD + SXT				
41	54	NM	NM	Pneumonia (6); Skin (6); Others (2)	NM	Japan	Biochemical tests	GEN, LEV, SXT, ERY	SXT + AMK + SXT + LZD + SXT + LZD + SXT				
55	36	Female	Sickle cell anaemia Dilated cardiomyopathy End stage renal failure	Pneumonia Bacteremia	No	United States	Biochemical tests	GEN, AMK, TOB, CIP, GAT, SXT, CLR, LZD	SXT + AMK + SXT + LZD + SXT + LZD + SXT				
56	42	Female	Renal transplant	Subcutaneous abscess	No	India	Biochemical tests	AMC, CTX, IMI, GEN, AMK, CIP, SXT	SXT	[27]			
57	65	Male	Nil	Pneumonia Parapneumonic effusion	No	Turkey	Biochemical tests	AMK, TOB, SXT, MIN	SXT + AMK + SXT + LZD + SXT + LZD + SXT				
58	60	Female	Nil	Cutaneous nodules Lymphangitis	No	Japan	Biochemical tests	NM	SXT				
59	46	Male	HIV	Pneumonia	No	Spain	Biochemical tests	NM	SXT	[28]			
60	50	Male	Skin Rheumatoid arthritis Parapneumonic effusion	Pneumonia	No	United Arab Emirates	Biochemical tests	NM	SXT	[29]			
61	21	Male	Intravenous drug abuser	Brain abscess	No	France	Biochemical tests	CIP, SXT, IMI, MIN	ERY	[30]			
62	50	Female	Renal transplant	Brain abscess	No	Norway	SXT RVA	MEP, RIF, TOB, SXT, MIN	SXT	[31]			
63	76	Male	Nil	Pneumonia	No	Japan	SXT RVA	MEP, RIF, TOB, SXT, MIN	SXT	[32]			
64	59	Male	HIV	Pneumonia	No	Canada	Biochemical tests	AMK, SXT	SXT	[33]			
65	50	Male	Nil	Pneumonia	No	Japan	Biochemical tests	AMK, SXT	SXT	[34]			
66	52	Male	Rheumatoid arthritis	Pneumonia	No	United States	Biochemical tests	AMK, SXT	SXT	[35]			
67	42	Male	Nil	Pneumonia	No	Japan	Biochemical tests	AMK, SXT	SXT	[36]			
68	50	Male	HIV	Pneumonia	No	Japan	Biochemical tests	AMK, SXT	SXT	[37]			
69	21	Male	Intravenous drug abuser	Brain abscess	No	France	Biochemical tests	CIP, SXT, IMI, MIN	ERY	[38]			
70	50	Male	Renal transplant	Brain abscess	No	Norway	SXT RVA	MEP, RIF, TOB, SXT, MIN	SXT	[39]			
71	76	Male	Nil	Pneumonia	No	Japan	SXT RVA	MEP, RIF, TOB, SXT, MIN	SXT	[40]			
72	59	Male	HIV	Pneumonia	No	Canada	Biochemical tests	AMK, SXT	SXT	[41]			

Legend:
- **Susceptible:** Antimicrobial susceptibility testing result indicating full susceptibility.
- **Intermediate susceptibility:** Antimicrobial susceptibility testing result indicating intermediate susceptibility.
- **Resistant:** Antimicrobial susceptibility testing result indicating resistance.
- **Modality of testing:** Method used for susceptibility testing.
- **Treatment regimen:** Treatment regimen used for the infection.

References:
1. [22]
2. [23]
3. [24]
4. [25]
5. [26]
6. [27]
7. [28]
8. [29]
9. [30]
10. [31]
11. [32]
12. [33]
13. [34]
14. [35]
15. [36]
16. [37]
17. [38]
18. [39]
19. [40]
20. [41]
skin and soft tissue infection (n=25, 34.7%), brain abscess (n=8, 11.1%), parapneumonic effusion/empyema (n=7, 9.72%), lymph nodal involvement (n=3, 4.17%), septic arthritis (n=3, 4.17%), ocular infection (n=3, 4.17%), osteomyelitis (n=1, 1.39%), extraperitoneal mass (n=1, 1.39%) and bacteremia (n=1, 1.39%). 7 patients (9.72%) presented with disseminated disease.

Table 2 shows the commonest antimicrobial agents tested. We included agents with at least 20 isolates tested, where susceptibilities were reported specifically to be sensitive, intermediate or resistant only. The most susceptible agents included linezolid (n=47, 100.0%), amikacin (n=55, 96.5%), trimethoprim/sulfamethoxazole (n=53, 82.8%), gentamicin (n=21, 72.4%) and tobramycin (n=26, 72.2%). Beta-lactam antimicrobial agents exhibited high rates of resistance against this species, with

Table 2. Antimicrobial susceptibility of Nocardia otitidiscaviarum reported in the literature.

Drug	AMC	CRO	CTX	IMI	GEN	AMK	TOB	SXT	LZD	MOX	CIP	DOX	MIN	CLR	ERY
Susceptible	1	2	3	7	21	55	26	53	47	10	10	7	17	6	0
Intermediate	71	31	55	65	8	1	9	9	0	6	33	10	40	14	40
Resistant	72	36	59	73	29	57	36	64	47	20	50	20	60	21	41

AMC: amoxicillin clavulanic acid; AMS: ampicillin/sulbactam; CRO: ceftriaxone; CTX: cefotaxime; FEP: ceftipime; IMI: imipenem; MEP: meropenem; GEN: gentamicin; AMK: amikacin; TOB: tobramycin; STR: streptomycin; SXT: trimethoprim/sulfamethoxazole; GAT: gatifloxacin; MOX: moxifloxacin; LEV: levofloxacin; CIP: ciprofloxacin; CLR: clarithromycin; AZI: azithromycin; ERY: erythromycin; LZD: linezolid; DOX: doxycycline; MIN: minocycline, RIF: rifampin; TIG: tigecycline; COPD: chronic obstructive pulmonary disease; DM: diabetes mellitus; HIV: human immunodeficiency virus; NM: not mentioned.
98.6% for amoxicillin clavulanic acid, 93.2% for cefotaxime, 89.0% for imipenem and 86.1% for ceftazidime.

In one of the largest retrospective study of nocardiosis with 113 patients proven with Nocardial infections, the commonest implicated species included *Nocardia brasiliensis* (n=54, 47.8%), *Nocardia asteroides* (n=36, 31.8%), *Nocardia farcinica* (n=7, 6.2%), *Nocardia flavorosea* (n=4, 3.5%), and *N. otitidiscaviarum* (n=3, 2.7%). Cutaneous infection was the commonest presentation in 64 patients (56.6%), followed by pulmonary infection in 38 (33.6%) and brain abscesses in 7 patients (6.2%). Eight patients (7.1%) presented with disseminated infection, with 5 secondary to *Nocardia asteroides* and 3 secondary to *Nocardia farcinica*. Mortality in this series was 8.0%[19]. We report the largest series of cases of *N. otitidiscaviarum* infection reported over the course of 25 years, in which pulmonary involvement appear the commonest. The case fatality rate in our series appears much higher at 16.3%, likely due to more cases of pneumonia and brain abscesses reported. Indeed, amongst the eight cases of mortality in our series, six patients had pulmonary involvement only and two had brain abscesses.

Based on a Spanish series of 35 strains of *N. otitidiscaviarum*, beta-lactam resistance rates appeared to be high, which is consistent with our series. Among three beta-lactams tested, including amoxicillin/clavulanate, cefotaxime, and imipenem, resistance ranged from 82.9% to 100.0%. This contrasts with other commoner Nocardial species that are relatively more beta-lactam susceptible. For example, *Nocardia cyriaceogena*, which is the commonest Nocardial isolate in this series, exhibits resistance to cefotaxime and imipenem in only 2.8% of the cases[53]. Given the significant associated morbidity and mortality, and that susceptibility results take time to return, early identification of the causative Nocardial species plays a huge role in targeting an appropriate initial empiric therapy. In general, the treatment of disseminated nocardiosis entails a combination systemic antimicrobial therapy for a protracted duration. Currently, no prospective trials are available to guide effective therapy. For severe infections secondary to *N. otitidiscaviarum*, we suggest initial combination therapy with linezolid, amikacin and trimethoprim/sulphamethoxazole until susceptibility results return.

There are current no interpretative breakpoints from the Clinical & Laboratory Standards Institute for the use of tigecycline. We declare that we have no conflict of interest.

Conflict of interest statement

References

[1] Brown-Elliott BA, Brown JM, Conville PS, Wallace RJ Jr. Clinical and laboratory features of the *Nocardia* spp. based on current molecular taxonomy. *Clin Microbiol Rev* 2006; 19(2): 259-282.

[2] Conville PS, Brown-Elliott BA, Smith T, Zelazny AM. The complexities of *Nocardia* taxonomy and identification. *J Clin Microbiol* 2017; 56(1): e01419-17.

[3] Marin M, Ruiz A, Iglesias C, Quiroga L, Cercenado E, Martin-Rababan P, et al. Identification of *Nocardia* species from clinical isolates using MALDI-TOF mass spectrometry. *Clin Microbiol Infect* 2018; 24(12): 1342.e5-1342.e8.

[4] Xiao M, Pang L, Chen SC, Fan X, Zhang L, Li HX, et al. Accurate identification of common pathogenic *Nocardia* species: Evaluation of a multilocus sequence analysis platform and matrix-assisted laser desorption ionicization-time of flight mass spectrometry. *PLoS One* 2016; 11(1): e0147487.

[5] Princess I, Ebenezer R, Ramakrishnan N, Nandini S. Pulmonary nocardiosis and scrub typhus in an immunocompromised host. *J Glob Infect Dis* 2018; 10(2): 108-111.

[6] Thiouvengadane S, Muthusamy S, Balaji VK, Easow JM. Unfolding of a clinically suspected case of pulmonary tuberculosis. *J Clin Diagn Res* 2017; 11(8): 1-3.

[7] Liu C, Feng M, Zhu J, Tao Y, Kang M, Chen L. Severe pneumonia due to *Nocardia brasiliensis* and *Nocardia farcinica*, with MIC values of ≤8 μg/mL against all of the tested isolates[51]. Our patient received tigecycline together with linezolid and trimethoprim/sulfamethoxazole as part of a combination therapy for disseminated nocardiosis with clinico-radiological improvement. These emerging data potentially suggests tigecycline as a possible option in the treatment of nocardiosis.

We present an interesting case of disseminated nocardiosis secondary to a rare species of *Nocardia*, treated with combination tigecycline, linezolid and trimethoprim/sulfamethoxazole. Awareness of the possible risk factors for this infection is crucial to suspecting this disease, which can present in a widely diverse manner, virtually involving any organ. Early identification of the causative species and susceptibility results is crucial given the diverse resistance patterns amongst various *Nocardia* species.
to Nocardia otitidiscaviarum identified by mass spectrometry in a cotton farmer. A case report and literature review. *Medicine (Baltimore)* 2017; 96(13): e6526.

[8] Sadamatsu H, Takahashi K, Tashiro H, Komiya K, Nakamura T, Sueoka-Aragane N. Successful treatment of pulmonary nocardiosis with fluoroquinolone in bronchial asthma and bronchiectasis. *Respirol Case Rep* 2017; 5(3): e00229.

[9] Mahgoub A, Gumaa SA, Joseph MR, Saleh MS, Elsheikh AH, Elkhalifa MJ, et al. Pulmonary nocardiosis caused by Nocardia otitidiscaviarum in an adult asthmatic female patient: The presence of acid-fast branching filaments is always significant. *S Afr Med J* 2016; 107(1): 43-45.

[10] Jiang Y, Huang A, Fang Q. Disseminated nocardiosis caused by Nocardia otitidiscaviarum in an immunocompetent host: A case report and literature review. *Exp Ther Med* 2016; 12(5): 3339-3346.

[11] Deepa R, Banu ST, Jayalakshmi G, Parveen JD. Pleuropulmonary nocardiosis due to Nocardia otitidiscaviarum in a debilitated host. *Indian J Pathol Microbiol* 2016; 59(2): 240-242.

[12] Eren E, Ulku-Kilic A, Atalay A, DemiraslanH, Parkan O, Koc N. Report of an immunocompetent case with disseminated infection due to Nocardia otitidiscaviarum: Identification by 16S rRNA gene sequencing. *Infecz Med* 2016; 24(1): 71-76.

[13] Ishihara M, Takada D, Sugimoto K, Oguro H, Gono T, Akiyama Y, et al. Primary brain abscess caused by Nocardia otitidiscaviarum. *Intern Med* 2014; 53(17): 2007-2012.

[14] Huang CH, Hsueh PR, Chen YH. Empyema thoracis due to Nocardia otitidiscaviarum. *J Microbiol Immunol Infect* 2015; 48(5): 580-581.

[15] Shahapur PR, Peerapur BV, Honnutagi RM, Biradar MS. Lymphocutaneous nocardiosis caused by Nocardia otitidiscaviarum: A case report and review of literature. *J Nat Sci Biol Med* 2014; 5(1): 197-201.

[16] Taj-Aldeen SJ, Deshmukh A, Doiphode S, Wahab AA, Allangawi M, Almuzrkhchi A, et al. Molecular identification and susceptibility pattern of clinical Nocardia species: Emergence of Nocardia crassostreae as an agent of invasive nocardiosis. *Can J Infect Dis Med Microbiol* 2013; 24(2): e33-e38.

[17] Ramamoorthi K, Pruthvi BC, Rao NR, Belle J, Chawla K. Pulmonary nocardiosis due to Nocardia otitidiscaviarum in an immunocompetent host- A rare case report. *Asian Pac J Trop Med* 2011; 4(5): 414-416.

[18] Betran A, Villuendas MC, Rezusta A, Moles B, Rubio MC, Revillo MJ, et al. Cavitory pneumonia caused by Nocardia otitidiscaviarum. *Br J Microbiol* 2010; 41(2): 329-332.

[19] Tan CK, Lai CC, Lin SH, Liao CH, Chou CH, Hsu HL, et al. Clinical and microbiological characteristics of Nocardiosis including those caused by emerging Nocardia species in Taiwan, 1998-2008. *Clin Microbiol Infect* 2010; 16(7): 966-972.

[20] Reddy AK, Garg P, Kaur I. Speciation and susceptibility of Nocardia isolated from ocular infections. *Clin Microbiol Infect* 2010; 16(8): 1168-1171.

[21] Minero MV, Marin M, Cercenado E, Rabadan PM, Bouza E, Munoz P. Nocardiosis at the turn of the century. *Medicine (Baltimore)* 2009; 88(4): 250-261.

[22] Chawla K, Mukhopadhyay C, Payyanur P, Bairy I. Pulmonary nocardiosis from a tertiary care hospital in Southern India. *Trop Doct* 2009; 39(3): 163-165.

[23] Pelaez AI, Garcia-Suarez MDM, Manteca A, Melon O, Aranaz C, Cimadevilla R, et al. A fatal case of Nocardia otitidiscaviarum pulmonary infection and brain abscess: Taxonomic characterization by molecular techniques. *Ann Clin Microbiol Antimicrob* 2009; 8: 11.

[24] Maraki S, Scoullica E, Nioti E, Tselentis Y. Nocardial infection in Crete, Greece: Review of fifteen cases from 2003 to 2007. *Scan J Infect Dis* 2009; 41(2): 122-127.

[25] Thoms KM, Zimmermann O, Schupp P, Thoms S, Emmert S. Nocardia otitidiscaviarum: Cause of long-term cutaneous abscesses on the leg of an immunocompetent man. *Arch Dermatol* 2007; 143(8): 1086-1087.

[26] Munoz J, Mirelis B, Aragon LM, Gutierrez N, Sanchez F, Espanol M, et al. Clinical and microbiological features of nocardiosis 1997-2003. *J Med Microbiol* 2007; 56(Pt 4): 545-550.

[27] Bonifaz A, Flores P, Saul A, Carrasco-Gerard E, Ponce RM. Treatment of actinomycetoma due to Nocardia spp. with amoxicillin-clavulanate. *Br J Dermatol* 2007; 156(2): 308-311.

[28] Fabre S, Gibert C, Lechiche C, Jorgensen C, Sany J. Primary cutaneous Nocardia otitidiscaviarum infection in a patient with rheumatoid arthritis treated with infliximab. *J Rheumatol* 2005; 32(12): 2432-2433.

[29] Yoshida K, Bandoh S, Fujita J, Tokuda M, Negayama K, Ishida T. Pyothorax caused by Nocardia otitidiscaviarum in a patient with rheumatoid vasculitis. *Intern Med* 2004; 43(7): 615-619.

[30] Hemmersbach-Miller M, Martel AC, Benítez AB, Sosa AO. Brain abscess due to Nocardia otitidiscaviarum: Report of a case and review. *Scan J Infect Dis* 2004; 36(5): 381-384.

[31] Kageyama A, Yazawa K, Ishikawa J, Hotta K, Nishimura K, Mikami Y. Nocardial infections in Japan from 1992 to 2001, including the first report of infection by Nocardia transvalensis. *Eur J Epidemiol* 2004; 19(4): 383-389.

[32] Sharma M, Gilbert BC, Benz RL, Santoro J. Disseminated Nocardia otitidiscaviarum infection in a woman with sickle cell anemia and end-stage renal disease. *Am J Med Sci* 2007; 333(6): 372-375.

[33] Shivaprakash MR, Rao P, Mandal J, Biswal M, Gupta S, Ray P, et al. Nocardiosis in a tertiary care hospital in North India and review of patients reported from India. *Myкопатология* 2007; 163(5): 267-274.

[34] Dikensoy O, Filiz A, Bayram N, Balci I, Zer Y, Celik G, et al.
First report of pulmonary *Nocardia otitidiscaviarum* infection in an immunocompetent patient from Turkey. *Int J Clin Pract* 2004; **58**(2): 210-213.

Wada A, Matsuda S, Kubota H, Miura H, Iwamoto Y. Primary lymphocutaneous nocardiosis caused by *Nocardia otitidiscaviarum*. *Hand Surg* 2002; **7**(2): 285-287.

Mari B, Monton C, Mariscal D, Lajan M, Sala M, Domingo C. Pulmonary nocardiosis: Clinical experience in ten cases. *Respiration* 2001; **68**(4): 382-388.

Saarinen KA, Lestringant GG, Czechowski J, Frossard PM. Cutaneous *Nocardia otitidiscaviarum* infection of the chest wall and pleura-10-year consequences of a hand actinomycetoma. *Dermatology* 2001; **202**(2): 131-133.

Duran E, Lopez L, Martinez A, Comunas F, Boiron P, Rubio MC. Primary brain abscess with *Nocardia otitidiscaviarum* in an intravenous drug abuser. *J Med Microbiol* 2001; **50**(1): 101-103.

Hartmann A, Halvorsen CE, Jenssen T, Bjorneklett A, Brekke IB, Bakke SJ, et al. Intracerebral abscess caused by *Nocardia otitidiscaviarum* in a renal transplant patient-cured by evacuation plus antibiotic therapy. *Nephron* 2000; **86**(1): 79-83.

Taniguchi H, Mukae H, Ashitani J, Ihi T, Sakamoto A, Kohno S, et al. Pulmonary *Nocardia otitidiscaviarum* infection in a patient with chronic respiratory infection. *Intern Med* 1998; **37**(10): 872-876.

Sandre RM, Summerbell RC. Disseminated *Nocardia otitidiscaviarum* in a patient with AIDS. *Can J Infect Dis* 1997; **8**(6): 347-350.

Mereghetti L, van der Mee-Marquet N, Dubost AF, Boiron P. *Nocardia otitidiscaviarum* infection of a traumatic skin wound. *Eur J Clin Microbiol Infect Dis* 1997; **16**(5): 383-384.

Freeland C, Fur JL, Nemirovsky-Trebuq C, Leong P, Boiron P. Primary cutaneous nocardiosis caused by *Nocardia otitidiscaviarum*: two cases and a review of the literature. *J Trop Med Hyg* 1995; **98**(6): 395-403.

Poonwan N, Kusum M, Mikami Y, Yazawa K, Tanaka Y, Gono T, et al. Pathogenic *Nocardia* isolated from clinical specimens including those of AIDS patients in Thailand. *Ear J Epidemiol* 1995; **11**(5): 507-512.

Suzuki Y, Toyama K, Utsumi K, Yazawa K, Mikami Y, Fujita M, et al. Primary lymphocutaneous nocardiosis due to *Nocardia otitidiscaviarum*: the first case report from Japan. *J Dermatol* 1995; **22**(5): 344-347.

Clark NM, Braun DK, Pasternak A, Chenoweth CE. Primary cutaneous *Nocardia otitidiscaviarum* infection: Case report and review. *Clin Infect Dis* 1995; **20**(5): 1266-1270.

Castelli L, Zlotnik H, Ponti R, Vidotto V. First reported *Nocardia otitidiscaviarum* infection in an AIDS patient in Italy. *Myecopathologia* 1994; **126**(3): 131-136.

Wei M, Wang P, Qu J, Li R, Liu Y, Gu L, et al. Identification and antimicrobial susceptibility of clinical *Nocardia* species in a tertiary hospital in China. *J Glob Antimicrob Resist* 2017; **11**: 183-187.

Hakawi AM, Al Rabiah FA. Clinical pattern of nocardiosis in Saudi Arabia: A case series. *East Mediterr Health J* 2018; **14**(4): 966-971.

McTaggart LR, Doucet J, Witkowska M, Richardson SE. Antimicrobial susceptibility among clinical *Nocardia* species identified by multilocus sequence analysis. *Antimicrob Agents Chemother* 2015; **59**(1): 269-275.

Lai CC, Liu WL, Ko WC, Chen YH, Tan HR, Huang YT, et al. Multicenter study in Taiwan of the *in vitro* activities of nemonoxacin, tigecycline, doripenem, and other antimicrobial agents against clinical isolates of various *Nocardia* species. *Antimicrob Agents Chemother* 2011; **55**(5): 2084-2091.

Hashemi-Shahraki A, Heidarieh P, Bostanabad SZ, Hashemzadeh M, Feizabadi MM, Schraufnagel D, et al. Genetic diversity and antimicrobial susceptibility of *Nocardia* species among patients with nocardiosis. *Sci Rep* 2015; **5**: 17862.

Valdezate S, Garrido N, Carrasco G, Medina-Pascual MJ, Villalon P, Navarro AM, et al. Epidemiology and susceptibility to antimicrobial agents of the main *Nocardia* species in Spain. *J Antimicrob Chemother* 2017; **72**: 754-761.

Lalitha P, Tiwari M, Prajna M, Gilpin C, Prakash K, Srinivasan M. *Nocardia* keratitis: Species, drug sensitivities, and clinical correlation. *Cornea* 2007; **26**(3): 255-259.