EULAR recommendations for the management of primary small and medium vessel vasculitis

C Mukhtyar,1 L Guillevin,2 M C Cid,3 B Dasgupta,4 K de Groot,5 W Gross,6 T Hauser,7 B Hellmich,8 D Jayne,9 C G M Kallenberg,10 P A Merkel,11 H Raspe,6 C Salvarani,12 D G I Scott,13 C Stegeman,10 R Watts,14 K Westman,15 J Witter,16 H Yazici,17 R Luqmani,1 for the European Vasculitis Study Group

ABSTRACT

Objective: To develop European League Against Rheumatism (EULAR) recommendations for the management of small and medium vessel vasculitis.

Methods: An expert group (consisting of 10 rheumatologists, 3 nephrologists, 2 immunologists, 2 internists representing 8 European countries and the USA, a clinical epidemiologist and a representative from a drug regulatory agency) identified 10 topics for a systematic literature search using a modified Delphi technique. In accordance with standardised EULAR operating procedures, recommendations were derived for the management of small and medium vessel vasculitis. In the absence of evidence, recommendations were formulated on the basis of a consensus opinion.

Results: In all, 15 recommendations were made for the management of small and medium vessel vasculitis. The strength of recommendations was restricted by low quality of evidence and by EULAR standardised operating procedures.

Conclusions: On the basis of evidence and expert consensus, recommendations have been made for the evaluation, investigation, treatment and monitoring of patients with small and medium vessel vasculitis for use in everyday clinical practice.

The primary systemic vasculitides produce inflammation of blood vessels resulting in occlusive, stenotic or aneurysmal change leading to ischaemic or haemorrhagic events. They are classified as small, medium or large vessel vasculitis depending on the calibre of the vessels involved.1 This paper addresses the management of the adult spectrum of medium and small vessel vasculitis, which includes Wegener granulomatosis (WG), microscopic polyangiitis (MPA), Churg–Strauss syndrome (CSS), essential cryoglobulinemic vasculitis and polyarteritis nodosa (PAN). We present 15 recommendations from expert clinicians experienced in the management of these uncommon and difficult-to-treat conditions.

METHODS

These recommendations have been developed according to standardised operating procedures, as developed by the European League Against Rheumatism (EULAR) standing committees.7

This guidance is termed “recommendations” as opposed to “guidelines” or “points to consider” as it can provide guidance but needs to be tailored to meet individual requirements. It is intended for use by healthcare professionals, medical students and specialist trainees, and pharmaceutical industries and drug regulatory organisations.

The committee was convened by RL (rheumatologist) and LG (internist) and consisted of nine rheumatologists (BD, KdG, WG, BH, PM, CaS, DS, RW, HY), three renal doctors (CoS, DJ, KW), two immunologists (CK, TH), one internist (MC), one clinical epidemiologist (HR) and one US Food and Drug Administration (FDA) representative (JW). CM was appointed as the clinical fellow in charge of the literature search.

A modified Delphi was carried out to identify the scope of the recommendations. The Delphi process identified 10 points to focus the literature search. Following the Delphi exercise, the committee agreed on the search string to identify the publications in PubMed: for example, “Wegener Granulomatosis”[Mesh] AND (“Epidemiologic Study Characteristics”[Mesh] OR “Evaluation Studies”[Mesh] OR “Study Characteristics”[Publication Type]) NOT “Case Reports”[Publication Type]. For the other conditions, the name of each specific disease was inserted in place of “Wegener Granulomatosis” to generate a list of citations. Microscopic polyangiitis is not a medical subject heading in PubMed and was inserted as free text in “all fields”. To identify papers that may have been indexed as ANCA-associated vasculitis, an additional search using the terms “Antibodies, Antineutrophil Cytoplasmic”[Mesh] AND “Vasculitis”[Mesh] was performed. All identified papers were limited to manuscripts indexed for adult patients and those having abstracts. The search was not limited to a time frame or by language. The Cochrane library was searched using the disease specific keywords. A manual search of abstracts presented at the annual meetings of the British Society for Rheumatology and the European League Against Rheumatism for the year 2007, and the American College of Rheumatology (ACR) for the year 2006, was performed.

Each paper was reviewed and included if a management outcome as identified in the modified Delphi exercise was studied. Duplicate datasets were discarded. The identified papers were then categorised and given a level of evidence according to internationally accepted criteria (table 1).2 The evidence was assimilated to form 15 statements. Each statement was then voted on by the members of the steering committee according to internationally agreed criteria, (table 2)2 and we present the median vote for each statement.

1 University of Oxford, Oxford, UK; 2 University of Paris Descartes, Paris, France; 3 Hospital Clinic, Barcelona, Spain; 4 Southend University Hospital NHS Foundation Trust, Westcliff-on-Sea, UK; 5 Klinikum Offenbach, Offenbach, Germany; 6 University Hospital of Schleswig-Holstein, Lübeck, Germany; 7 University Hospital, Zurich, Switzerland; 8 Kreiskrankenhaus Plochingen, Plochingen, Germany; 9 Addenbrooke’s Hospital, Cambridge, UK; 10 University Medical Centre Groningen, Groningen, The Netherlands; 11 Boston University School of Medicine, Boston, Massachusetts, USA; 12 Arcispedale S Maria Nuova, Reggio Emilia, Italy; 13 Norfolk and Norwich University Hospital Trust, Norwich, UK; 14 Ipswich Hospital NHS Trust, Ipswich, UK; 15 Malmo University Hospital, Malmo, Sweden; 16 US Food and Drug Administration, Rockville, Maryland, USA; 17 University of Istanbul, Istanbul, Turkey

Correspondence to: R Luqmani, Nuffield Orthopaedic Centre, University of Oxford, Windmill Road, Oxford OX3 7LD, UK; raashid.luqmani@noc.nhs.uk

Accepted 7 April 2008
Published Online First 15 April 2008
Vasculitis may relapse years after remission is achieved, even requiring consideration of enrolment into a clinical trial. Sometimes, in patients with refractory disease, the best option may be specialist services.

Patients with vasculitis and patients should have rapid access to specialist services. Long-term follow-up is necessary for all developing complications from the treatment after many years of disconnection.14

Literature search

The results of the literature search are as in table 4. A Cochrane review added three further studies. The manual search of the abstract of meetings in 2006–2007 did not add any studies.

Statements

1. We recommend that patients with primary small and medium vessel vasculitis be managed in collaboration with, or at centres of expertise (level of evidence 3, grade of recommendation D)

 The rarity of primary systemic vasculitis makes it difficult to maintain expertise in their management.3–6. Assessment of these patients requires expert guidance to differentiate activity from damage and to consider differential diagnoses. Patients with vasculitis may require interventions by specialists with an expertise in vasculitis, such as injection of subglottic stenosis,7 7 specialised radiography8 10 or renal transplantation.13 For patients with refractory disease, sometimes the best option may be consideration of enrolment into a clinical trial. Vasculitis may relapse years after remission is achieved, even in previously unaffected organ systems.12 13 Patients may develop complications from the treatment after many years of discontinuation.14 Long-term follow-up is necessary for all patients with vasculitis and patients should have rapid access to specialist services.

2. We recommend that anti-neutrophil cytoplasmic antibody (ANCA) testing (including indirect immunofluorescence and ELISA) should be performed in the appropriate clinical context (level of evidence 1A, grade of recommendation A)

 ANCA testing should be performed by indirect immunofluorescence to detect the labelling characteristic (cytoplasmic or perinuclear). The international consensus statement on testing for ANCA recommends testing all serum samples positive for ANCA by immunofluorescence for proteinase 3 (PR3) and myeloperoxidase (MPO).17 A positive test for cytoplasmic (C) ANCA targeted to PR3, or perinuclear (P) ANCA against MPO has a high sensitivity and specificity for the diagnosis of ANCA-associated vasculitis.16 17 We stress that the absence of a positive test does not rule out a diagnosis; and patients with less severe disease, especially those with isolated granulomatous disease of the upper or lower respiratory tract, may not have a positive ANCA.18 19 ANCA testing should be performed in accredited laboratories that participate in external quality control programmes and undergo regular review of laboratory management and staff performing the assays.20

3. A positive biopsy is strongly supportive of vasculitis and we recommend the procedure to assist diagnosis and further evaluation for patients suspected of having vasculitis (level of evidence 3, grade of recommendation C)

 Histopathological evidence of vasculitis, for example fibrinoid necrosis, or pauci-immune glomerulonephritis, remains the gold standard for the diagnosis of vasculitis. The diagnostic yield of biopsies demonstrating either granuloma or vasculitis (or glomerulonephritis in a kidney sample) is over 70%.21 22 but the yield of the biopsy will vary according to the organ sampled, the skill of the operator and the method of sampling.19 21–25 Renal biopsy in patients with Wegener granulomatosis and active renal disease shows segmental necrosis in more than 85% of cases and extracapillary proliferation in more than 90%.25 A biopsy is especially helpful in patients with a negative ANCA test.21 The optimal biopsy site must be determined on individual assessment. In certain situations, for example renal involvement, repeated biopsies may be necessary to ascertain treatment response, disease relapse and chronic damage. Biopsies also help to rule out other differential diagnoses.

4. We recommend the use of a structured clinical assessment, urine analysis and other basic laboratory tests at each clinical visit for patients with vasculitis (level of evidence 3, grade of recommendation C)

 Multiorgan involvement is common in primary systemic vasculitis. It is therefore important that a structured clinical assessment is conducted in all patients with a suspicion of vasculitis. This examination may be facilitated by the use of clinical tools that form a checklist of common items affecting various systems in vasculitis.26–28 Such a structured examination should be carried out at each clinic visit to detect new organ involvement, which may develop at any time in the disease course.15 Urine analysis should be performed on each patient at each visit to screen for infection, renal relapse or response, as well as bladder complications in patients treated with cyclophosphamide.14 29 30 Inflammatory markers and renal functions should be performed periodically (every 1–3 months) to monitor disease evaluation and response. A full blood count and liver functions should be performed at similar intervals to screen for...
drug toxicity.31–32 An acute fall in white cell count or a progressive leucopenia may require reduction or discontinuation of immunosuppressive drugs. Similarly a declining renal function may necessitate dose adjustment or alteration of immunosuppressive agent. Patients should have periodic assessment of their blood sugar while on glucocorticoid therapy.

5. We recommend that patients with ANCA-associated vasculitis be categorised according to different levels of severity to assist treatment decisions (level of evidence 2B, grade of recommendation B)

The collaborative clinical trials conducted by the European Vasculitis Study (EUVAS) group have demonstrated that patients with different levels of disease severity respond to different treatment protocols.33–35 The categories are shown in table 6. Treating doctors need to be aware that patients may change their disease category and treatment decisions will need to be modified accordingly. For example, it is appropriate to treat a patient with early systemic ANCA-associated vasculitis (AAV) with methotrexate, but this patient will need cyclophosphamide if he or she develops an organ or life-threatening disease manifestation.33–35

6. We recommend a combination of cyclophosphamide (intravenous or oral) and glucocorticoids for remission induction of generalised primary small and medium vessel vasculitis (level of evidence 1A for WG and MPA, grade of recommendation A; level of evidence 1B for PAN and CSS, grade of recommendation A)

Combination therapy with oral cyclophosphamide 2 mg/kg/day (max 200 mg/day) and prednisolone 1 mg/kg/day (max 60 mg/day) has been used for remission induction of ANCA-associated vasculitis since the 1970s.33 A meta-analysis34 of three randomised controlled trials36–38 concluded that pulsed cyclophosphamide was more likely to result in remission than continuous oral therapy, and with a lower risk of side effects. However, pulsed therapy may be associated with a higher risk of relapse.39 In the meta-analysis, the trials were not readily comparable because they had different therapeutic regimens. The EUVAS group have designed and tested a regimen of intravenous cyclophosphamide at a dose of 15 mg/kg (max 1.2 g) every 2 weeks for the first 3 pulses, followed by infusions every 3 weeks for the next 3–6 pulses.40–42 The results of a larger randomised controlled trial are awaited.41–42

Dose adjustments have been made for renal function and age in clinical trials.43–45 For continuous oral low-dose cyclophosphamide, the dose has been reduced by 25% for >60 years of age and by 50% for >75 years of age.46 For pulsed high-dose cyclophosphamide dose adjustment has been as in table 6.

In patients with PAN and CSS, the combination of cyclophosphamide and glucocorticoid achieves better control of disease as compared to glucocorticoid alone but the long-term survival remains unchanged.47 This combination therapy also produces sustained remission of greater than 18 months.48 Pulsed intravenous cyclophosphamide has been used in PAN and CSS49 with equal efficacy and a lower incidence of adverse events compared to daily oral low-dose cyclophosphamide.50 These data are not easy to interpret because the trial comparing the two modes of administration48 included patients who would currently be classified as having MPA.1

Antiemetic therapy should be routinely administered with intravenous cyclophosphamide. Cyclophosphamide metabolites are toxic to the urothelium and can cause haemorrhagic cystitis in the short term and malignancy in the long term.51–53 Patients should be encouraged to drink plenty of fluids, or given intravenous fluids on the day of the infusion to dilute the

Table 3 Results of the modified Delphi: 10 topics that the committee agreed to address

No.	Topic	Coverage
1	Diseases to be addressed	WG, MPA, CSS, PAN, cryoglobulinemic vasculitis, GCA, Takayasu arteritis
2	Initial assessment	Involvement of expert centres, structured clinical examination, role of ANCA, staging of disease, biopsy
3	Remission induction	Cyclophosphamide, methotrexate, high-dose glucocorticoids, doses, route of administration, regimen of intravenous use, prophylaxis against Pneumocystis jiroveci and osteoporosis, tapering of glucocorticoids, bladder protection, antineutemtic therapy, monitoring for drug toxicity, plasmapheresis
4	Remission maintenance	Choice of immunomodulator, length of treatment, co-trimoxazole
5	Relapsing disease	Choice of immunomodulator, referral to expert centre
6	Refractory disease	Choice of immunomodulator, experimental therapies
7	Cryoglobulinemic vasculitis	Choice of therapy, antiviral therapy
8	Polyarteritis nodosa	Choice of therapy, antiviral therapy
9	Monitoring and follow-up	Structured clinical examination, blood test monitoring, urine analysis, vaccination, fertility and contraception
10	Complications of disease	Anaemia, hypertension, thromboprophylaxis, reconstructive surgery, renal protection

Table 4 Results of the literature search: number of papers identified in PubMed

Keyword used in search string	No. of identified citations	Restricted to “adult” and “abstract”	Unique citations
Wegener granulomatosis	560	332	332
Microscopic polyangiitis	152	106	63
Churg–Strauss syndrome	131	84	53
Polyarteritis nodosa	284	133	75
Cryoglobulinemia	304	201	197
Antibodies, antineutrophil cytoplastic AND vasculitis	420	247	89
Total no of identified citations	809		
9. We recommend plasma exchange for selected patients with rapidly progressive severe renal disease in order to improve renal survival (level of evidence 1B, grade of recommendation A)

Plasma exchange improves renal survival in patients with severe renal disease (serum creatinine >500 μmol/litre or 5.65 mg/dl) when used as an adjunct to daily oral cyclophosphamide and prednisolone. It has not been shown to improve overall survival and it is not known whether or not it benefits patients with less severe disease. The effect of plasma exchange on extra-renal manifestations has not been well studied.

10. We recommend remission-maintenance therapy with a combination of low-dose glucocorticoid therapy and, either azathioprine, lefunomide or methotrexate (level of evidence 1B for azathioprine, grade of recommendation A; level of evidence 1B for lefunomide, grade of recommendation B; level of evidence 2B for methotrexate, grade of recommendation B)

Long-term cyclophosphamide therapy has been used to maintain remission in patients with AAV. The toxicity of long-term cyclophosphamide makes it an unattractive option. Azathioprine (2 mg/kg/day) is safer than oral cyclophosphamide, but as effective at 18 months in preventing relapse. Methotrexate (20–25 mg/kg/week) has been effectively used for maintenance therapy after induction of remission with cyclophosphamide (if the serum creatinine is <150 μmol/litre or 1.5 mg/dl). Lefunomide (20–30 mg/day) may be more effective than methotrexate in remission maintenance, but is associated with more adverse effects.

Remission maintenance therapy should be continued for at least 18 months (especially in WG). Recently published guidelines by the British Society for Rheumatology recommend therapy for at least 24 months. Early cessation of therapy is associated with an increased risk of relapse. The role of serial ANCA testing to guide therapy is controversial. Some studies have shown that patients in whom the ANCA titres persist, rise fourfold or become positive have a higher incidence of relapse, while other studies have not shown this association.

Table 6 Dose modification of pulsed cyclophosphamide as used in a randomised controlled trial comparing the efficacy of daily oral versus pulsed cyclophosphamide for renal vasculitis (http://www.vasculitis.org/protocols/CYCLOPS.pdf)

Pulsed CYC dose reductions for renal function and age	Creatinine (μmol/litre)	
Age, years	<300	300–500
<60	15 mg/kg/pulse	12.5 mg/kg/pulse
60–70	12.5 mg/kg/pulse	10 mg/kg/pulse
>70	10 mg/kg/pulse	7.5 mg/kg/pulse

The trial did not include a separate regimen for patients with a creatinine of <150 μmol/litre. CYC, cyclophosphamide.
The addition of trimethoprim/sulphamethoxazole (800/160 mg twice daily) to standard remission maintenance can reduce the risk of relapse in WG.71 Although trimethoprim/sulphamethoxazole has been used as the sole remission maintenance agent in half the patients of one randomised controlled trial,73 trimethoprim/sulphamethoxazole monotherapy may not be effective for maintenance of remission.72 In patients with nasal disease, treatment with topical antibiotics such as mupirocin may be considered in the presence of chronic carriage of nasal *Staphylococcus aureus*.75

The glucocorticoid dose should be tapered to a maintenance dose of 10 mg/day (or less) prednisolone during remission.73 This can be reduced gradually after 6–18 months depending on patient response with the aim of discontinuing therapy.

Mycophenolate mofetil has been used in open label studies for remission maintenance.74–76

11. Alternative immunomodulatory therapy choices should be considered for patients who do not achieve remission or relapse on maximal doses of standard therapy; these patients should be referred to an expert centre for further management and enrolment in clinical trials (level of evidence 3, grade of recommendation C)

For patients who fail to achieve remission and have persistent low activity, intravenous immunoglobulin can be used to achieve remission.77 78 Prior to therapy, serum immunoglobulin levels must be measured because patients with selective IgA deficiency may develop an anaphylactic reaction on receiving intravenous immunoglobulin (IVIG) or a pre-existing hyper-IgG globulinemia may become aggravated leading to a hyperviscosity state. For patients with progressive disease in spite of optimal therapy, alternative options include conventional immunosuppressants such as mycophenolate mofetil and 15-deoxyspergualin, and biological agents such as anti-thymocyte globulin, infliximab and rituximab (table 7).73 74 79–96 In 5 open label trials of rituximab in refractory or relapsing AAV, 42/46 (91%) patients achieved remission within 6 months.82–86 The use of rituximab in AAV is currently being tested in four separate label trials of rituximab in refractory or relapsing AAV, 42/46 (91%) patients achieved remission within 6 months.82–86 The use of different preparations of interferon (IFN)α to induce remission in hepatitis C-associated cryoglobulinemia is well documented.88–92 Combination therapy with ribavirin and IFNα may be more beneficial than IFNα monotherapy.93 94 However, relapse is common following the stopping of IFNα and these patients will need long-term therapy. They should be managed in conjunction with a hepatologist.

12. We recommend immunosuppressive therapy for patients with mixed essential cryoglobulinemic vasculitis (non-viral) (level of evidence 4, grade of recommendation D)

There are no clinical trials conducted for the treatment of essential (hepatitis C negative) cryoglobulinemic vasculitis. The consensus of the committee is that this disease should be treated in the same way as the other small vessel diseases discussed in these recommendations (WG, MPA and CSS), with immunomodulatory agents and glucocorticoids. Rituximab has been used in patients with hepatitis C-associated cryoglobulinemic vasculitis, and may also be of benefit in non-viral-associated essential cryoglobulinemic vasculitis.87

13. We recommend the use of antiviral therapy for the treatment of hepatitis C-associated cryoglobulinemic vasculitis (level of evidence 1B, grade of recommendation B)

The use of different preparations of interferon (IFN)α to induce remission in hepatitis C-associated cryoglobulinemia is well documented.88–92 Combination therapy with ribavirin and IFNα may be more beneficial than IFNα monotherapy.93 94 However, relapse is common following the stopping of IFNα and these patients will need long-term therapy. They should be managed in conjunction with a hepatologist.

14. We recommend a combination of antiviral therapy, plasma exchange and glucocorticoids for hepatitis B-associated PAN (level of evidence 3, grade of recommendation C)

We suggest the use of high-dose glucocorticoid therapy tapered over 2 weeks followed by antiviral agents; this treatment combination accompanied by plasma exchange has been shown to have a high rate of remission induction.95 96 There is limited data on the use of rituximab in refractory cases.97 The treatment of this condition should be in conjunction with a hepatologist.

Drug	Dose	Reference
Intravenous immunoglobulin	2 g/kg over 5 days	Muso et al, Jayne et al74 75
15-Deoxyspergualin	0.5 mg/kg/day until white cell count nadir of 3000/μl, then wait until the white cell count returns to > 4000/μl and repeat the dose for six cycles	Burke et al98
Anti-thymocyte globulin	2.5 mg/kg/day for 10 days adjusted according to lymphocyte count: no anti-thymocyte globulin if <150/μl, 1.5 mg/kg/day if 150–300/μl, full dose if >300/μl	Schmitt et al99
Infliximab	3–5 mg/kg/infusion every 1 to 2 months	Booth et al95
Mycophenolate mofetil	2 g/day	Koukoulaki et al, Stassen et al91
Rituximab	375 mg/m² body surface area weekly for 4 weeks	Keogh et al, Keogh et al, Stasi et al, Bhayre et al, Eriksson et al92–96

Box 1 Research agenda

- Diagnostic criteria for primary systemic vasculitides.
- Identification of a biomarker for diagnosis and monitoring of primary systemic vasculitides.
- Adequately powered randomised controlled trials with disease specific subanalysis for alternatives to cyclophosphamide for remission induction.
- Biological agents in refractory and relapsing patients.
- Adequately powered randomised controlled trials for testing conventional agents in mixed essential cryoglobulinemic vasculitis.
- Long-term outcomes in treated vasculitis: for example cardiovascular, neoplastic, cerebrovascular, renal and metabolic abnormalities and strategies to prevent adverse outcomes.
The use of cyclophosphamide is strongly associated with the risk of bladder cancer. The use of Mesna as an uroprotective agent lowers the risk but may not always protect against haematuria in patients with prior exposure to cyclophosphamide.

DISCUSSION

Implementation of these recommendations

The recommendations (table 8) have been based on an extensive literature search. In the opinion of evidence, the statements have been based on the opinion and practice of experts from nine countries (France, Germany, Italy, Spain, Sweden, Switzerland, The Netherlands, Turkey, the UK and USA). The application of internationally accepted grading criteria prevents us from supporting some of the statements with stronger grades. The project has also led to the committee to propose a research agenda for small and medium vessel vasculitis (box 1). These recommendations provide a framework of practice that should apply to the majority of patients with small and medium vessel vasculitis. Each statement should be an opportunity for auditing clinical practice. Recommendations for clinical management need continuous updating and this group recommends that based on the many advances and on-going research in this field, an update of these recommendations should be conducted in 5 years.

Competing interests: None declared.

REFERENCES

1. Jennette JC, Falk RJ, Andrassy K, Bacon PA, Churg J, Gross WL, et al. Nomenclature of systemic vasculitides. Proposal of an international consensus conference. *Arthritis Rheum* 1994;37:310–92.

2. Dougados M, Betteide NF, Burmester GR, Euller-Ziegler L, Guillen F, Hirvonen J, et al. EUAR standardised operating procedures for the elaboration, evaluation, dissemination, and implementation of recommendations endorsed by the EUAR standing committees. *Ann Rheum Dis* 2004;63:1172–6.

3. Koldingsnes W, Nossent H. Epidemiology of Wegener’s granulomatosis in northern Norway. *Arthritis Rheum* 2000;43:2481–7.
Recommendation

58. Metzler C, Hellmich B, Gause A, Gross WL, de Groot K. Churg-Strauss syndrome – successful induction of remission with methotrexate and unexpected high cardiac and pulmonary 6/32-reaction during maintenance treatment. Clin Exp Rheumatol 2004;22(Suppl 36):S52–61.

59. Koldingnes W, Nossent JC. Baseline features and initial treatment as predictors of remission and relapse in Wegener’s granulomatosis. J Rheumatol 2003;30:80–8.

60. Boomsma MM, Stegeman CA, Kramer AB, Karsijns M, Piens DA, Tervaert JW. Prevalence of atrophic 6/32-reaction in patients with anti-neutrophil cytoplasmic antibody associated vasculitis and the role of immunosuppressive therapy: a cross-sectional study. Osteoporos Int 2002;13:74–82.

61. Allen A, Fyfe C, Gaskin G. Outcome of renal replacement therapy in antineutrophil cytoplasmic antibody-associated systemic vasculitis. J Am Soc Nephrol 1998;9:1256–63.

62. Guillemin L, Fan O, Uotte F, Jarrousse B, Le Thi Huong D, Bussel A, et al. Lack of superiority of steroids plus plasma exchange to steroids alone in the treatment of polyarteritis nodosa and Churg-Strauss syndrome. A prospective, randomized trial in 76 patients. Arthritis Rheum 1992;35:95–105.

63. Slot MC, Tervaert JW, Boomsma MM, Stegeman CA. Positive classic antineutrophil cytoplasmic antibody (c-ANCA) titer at switch to azathioprine therapy associated with relapse in 3/3-related vasculitis. Arthritis Rheum 2004;51:269–73.

64. Langford CA, Talar-Williams C, Barron KS, Smoller MC. Use of a cyclophosphamide-induction methotrexate-maintenance regimen for the treatment of Wegener’s granulomatosis: extended follow-up and rate of relapse. Am J Med 2003;114:463–9.

65. Reinhold-Keller E, Fink CO, Herlyn K, Gross WL, De Groot K. High rate of renal relapse in 71 patients with Wegener’s granulomatosis under maintenance of remission with low-dose methotrexate. Arthritis Rheum 2002;47:326–32.

66. Mazzaro C, Marchionni N, Mager K, Ilk-Konert C, de Groot K, Hellmich B, et al. Elevated relapse rate under oral methotrexate versus leflunomide for maintenance of remission in Wegener’s granulomatosis. Rheumatology (Oxford) 2007;46:1087–91.

67. Lapraik C, Watts R, Bacon P, Carruthers D, Chakravary K, D’Cruz D, et al. BSR and BHPR guidelines for the management of adults with ANCA associated vasculitis. Rheumatology (Oxford) 2004;43:1615–6.

68. Boomsma MM, Stegeman CA, van der Meij MJ, Oost W, Hermans J, Kallenberg CG, et al. Prediction of relapses in Wegener’s granulomatosis by measurement of antineutrophil cytoplasmic antibody levels: a prospective study. Arthritis Rheum 2003;48:3025–33.

69. Birck R, Schmitt VH, Kaelisch IA, van der Woude FJ. Seial ANCA determinations for monitoring disease activity in patients with ANCA-associated vasculitis: a systematic review. Am J Kidney Dis 2006;47:15–23.

70. Finkielman JD, Stegeman CA, van der Leij MJ, Oost W, Hermans J, Kallenberg CG, et al. Association of chronic nasal carriage of Staphylococcus aureus and higher relapse rates in Wegener’s granulomatosis. Ann Intern Med 1994;120:12–7.

71. Koukoulaki M, Jayne DR. Mycophenolate mofetil in anti-neutrophil cytoplasmic antibodies-associated systemic vasculitis. Nephron Clin Pract 2006;102:c100–7.

72. Langford CA, Talar-Williams C, Smoller MC. Mycophenolate mofetil for remission maintenance in the treatment of Wegener’s granulomatosis. Arthritis Rheum 2004;51:278–83.

73. Nowack R, Gobel U, Klocker P, Hergesell O, Andrassy K, van der Woude FJ. Mycophenolate mofetil for maintenance therapy of Wegener’s granulomatosis and microscopic polyangiitis: a pilot study in 11 patients with renal involvement. J Am Soc Nephrol 1999;10:1965–71.

74. Obeso E, Pato T, Oettl T, Imai E, Yamagata K, Akamatsu A, et al. Intravenous immunoglobulin (IVIg) therapy in MPD-ANCA related polyangiitis with rapidly progressive glomerulonephritis in Japan. Jpn J Infect Dis 2004;57:S17–8.

75. Jayne DR, Chapel H, Adu D, Misbah S, D’Oromhgue D, Scott D, et al. Intravenous immunoglobulin for ANCA-associated systemic vasculitis with persistent disease activity. QJM 2005;98:140–7.

76. Booth A, Harper L, Hammad T, Bacon P, Griffith M, Levy J, et al. Prospective study of TNFa blockade in infliximab in anti-neutrophil cytoplasmic antibody-associated systemic vasculitis. J Am Soc Nephrol 2004;15:S71–21.

77. Stassen PM, Cohen Tervaert JW, Stegeman CA. Induction of remission in active systemic neutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheum 2007;56:788–802.

78. Keogh KA, Wylame MH, Stone JH, Specks U. Induction of remission by B lymphocyte depletion in eleven patients with refractory antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheum 2005;52:262–9.

79. Keogh KA, Ytterberg SR, Fervenza FC, Carlson KA, Schreuder DR, Specks U. Rituximab for refractory Wegener’s granulomatosis: report of a prospective, open-label pilot trial. Am J Respir Crit Care Med 2006;173:180–7.

80. Stasi R, Stipa E, Del Poeta G, Amadon S, Newlard AC, Frovan D. Long-term observation of patients with anti-neutrophil cytoplasmic antibody-associated vasculitis treated with rituximab. Rheumatology (Oxford) 2006;45:1432–6.

81. Brhiaye B, Aouba A, Pagnoux C, Cohen P, Lacassini F, Guillevin L. Adjunction of rituximab to steroids and immunosuppressants for refractory/relapsing Wegener’s granulomatosis: a study on 8 patients. Clin Exp Rheumatol 2007;25(Suppl 44):S233–7.

82. Eriksson P. Nine patients with anti-neutrophil cytoplasmic antibody-positive vasculitis successfully treated with rituximab. J Intern Med 2005;257:540–8.

83. Zaja F, De Vita S, Mazzaro C, Sacco S, Damiani D, De Marchi G, et al. Efficacy and safety of rituximab in type II mixed cryoglobulinemia. Blood 2003;101:3827–34.

84. Misiani R, Bellavita P, Ferrini D, Viciani D, Marchesi D, Sironi PL, et al. Interferon-a-2a therapy in cryoglobulinemia associated with hepatitis C virus. N Engl J Med 1994;330:751–6.

85. Mazzaro C, Colle R, Baracetti S, Nasimbeni F, Zorat F, Pizzacco G. Effectiveness of leukocyte interferon in patients affected by HCV-positive mixed cryoglobulinemia resistant to recombinant a-interferon. Clin Exp Rheumatol 2002;20:27–34.

86. Adinolfi LE, Uitli R, Zampino R, Ragone E, Mormone G, Ruggiero G. Effects of long-term course of a-interferon in patients with chronic hepatitis C associated to mixed cryoglobulinemia. Eur J Gastroenterol Hepatol 1997;9:1067–72.

87. Mazzaro C, Danielli GS, Colle R, Boretti D, Mazzi G, Crovatto M, et al. Interferon therapy in HCV-positive mixed cryoglobulinemia: viral and host factors contributing to efficacy of the therapy. Ital J Gastroenterol Hepatol 1999;29:343–50.

88. Cohen P, Nguyen OT, Deny P, Ferriere F, Roulot D, Lortholary O, et al. Treatment of mixed cryoglobulinemia with recombinant interferon a and adjuvant therapies: a prospective study on 20 patients. Am J Med Intere (Paris) 1996;147:81–6.

89. Saadoun D, Hercbe-Rigon M, Thibault V, Pierre JC, Cacoub P. Articular therapy for hepatitis C virus-associated mixed cryoglobulinemia vasculitis: a long-term followup study. Arthritis Rheum 2005;54:709–80.

90. Mazzaro C, Zorat F, Comar C, Nasimbeni F, Bichanini D, Baracetti S, et al. Interferon plus ribavirin in patients with hepatitis C virus positive mixed cryoglobulinemia resistant to interferon. J Rheumatol 2003;30:1775–81.

91. Guillevin L, Mahr A, Callard P, Godmer P, Pagnoux C, Leray E, et al. Hepatitis B virus-associated polyarteritis nodosa: clinical characteristics, outcome, and impact of treatment in 115 patients. Medicine (Baltimore) 2005;84:313–22.