Leaf Morphological Variation of *Acanthus* in Some Estuarine Areas of Cilacap

W Herawati, P Widodo, Sukarsa, and D Palupi

Faculty of Biology, Universitas Jenderal Soedirman, Jl. Dr. Soeparno 63 Purwokerto 53122, Indonesia

E-mail: wiwik28@gmail.com

Abstract. *Acanthus* is the only genus of family Acanthaceae which occupies mangroves habitat. Despite the importance of *Acanthus*, collection, characterization and improvement of its germplasm is limited. Hence, this will hinder its effective conservation and utilization. Therefore, the objective of this research was to identify morphological variation of *Acanthus* in some estuarine areas of Cilacap Central java in relation to habitat. The method used in this study was survey with stratified sampling. The variables measured included, leaf shape, size, apex, base, margin, color and spine. The results of this study indicated that the different location affect some morphological characteristics. Most of the *Acanthus* population observed in this study have direction of stem axial spines facing upwards, green, inflorescences spika, petals large, light violet. Similar to characters *Acanthus* ilicifolius has variations in leaf margin, leaf shape and size.

Key word: *Acanthus*, estuarine, leaf, morphology, variation, Cilacap

1. Introduction

Acanthus is included in the family Acanthaceae under subfamily Acanthoideae, commonly known as jeruju. This species is naturally found in wetland areas (wetland) at the mouth of river, as true mangrove vegetation and is classified as emergent aquatic plants. Where this type of habitat, A gregarious plant that is very common along the banks of estuaries and lagoons, and in marshy land and mangroves close to the seashore. It is rarely found inland.. *Acanthus*” is derived from Greek word “Acantha” which means thorn or thistle, referring to spiny leaves of some species [1]. With regarding this aspect, due to the dominance of sea holly in mangrove area, it can be used an indicator of the extent of environmental pollution and damage in the mangrove ecosystem [2]. In Malaysia, the seeds of *Acanthus ebracteatus* were used to expel intestinal worms, the root part is used to treats shingles while a decoction of 150 g of roots of *Acanthus ilicifolius* also useful to treat cancer, asthma and to relieves cough [3]. According to Polidoro in[4], the genus *Acanthus* consists of Four species viz., *A. ebracteatus* Vahl, *A. ilicifolius* L., *A. volubilis* Wall. and *A. xiamenensis* are known from mangrove communities and are classified as true mangrove species. *A. ilicifolius* and *A. ebracteatus* have similar vegetative characteristics and the difference between them is the presence or absence of bracteoles which are often lost at anthesis, and many people have been wary when making identifications. Among the two species of *Acanthus* the taxonomical distinction between *A. ilicifolius* and *A. ebracteatus* still not clear in India[5]. There are some problems such as the confusion between *A. ilicifolius* and *A. ebracteatus* both spesies show some confusing characteristics some leaves of *A. ilicifolius* a lot showed of variations [4]. Leaf is one of the plant organs that change shape according to the condition environment where the plant lives. The common changes of the leaves are
the size, and the shape. Morphological characterization of a species is very useful in the separation of populations into different morphotypes and proper utilization of genetic resources in plant breeding programmes[6]. Based on this This study was aimed at determining leaf morphological variations Acanthus in relation to habitat

2. Methods
This research was conducted in Cilacap Regency by using survey method with purposive sampling technique. The samples were taken from Tritih mangroves forest, River Tipar, Kamulyan village, River Bengawan, Logending Beach which are locate in Cilacap Regency. Plant collections were made of all Acanthus taxa encountered from the range of sites visited. For each Acanthus species both numeric and multistate attributes of a wide range of vegetative and reproductive morphological characters. The sample identification was done at Laboratory of plant taxonomy Fakultas Biologi Unsoed. Fourteen quantitative characters were measured including leaf length, leaf width, leaf base, leaf apex leaf margin, petiole length, spines, petal width, were observed from individuals at each site. The data were analyzed descriptively based on the morphological characteristics.

3. Results
Based on field observation obtained Acanthus, leaves morphological identification result shows kualitatif diversity with morphological variations on the leaves as described below (figure 1).

Table 1. Morphological characters of Acanthus in Cilacap regency

No	Characteristics	Tritih mangrove	River Tipar	Kamulyan Village	River Bengawan	Logending Beach
1	Leaves	Simple	Simple	Simple	Simple	Simple
2	Leaf base	Cuneate	Acuminat	Acuminat	Acute	Cuneate
3	Leaf apex	Acuminat	Acuminat	Acuminat	Acuminat	Acuminat
4	Leaf shape	Oblong	Oblong	Lancsaeolate	Lancsaeolate	Lancsaeolate
5	Leaf margin	Pinatilobe	Integer,	Pinatilobe	Pinatilobe	Pinatilobe
6	Leaf length	±17,5 cm	±19,8 cm	±14,6 cm	±16,6 cm	±18,6 cm
7	Leaf width	±5,7 cm	±5,4 cm	±3,2 cm	±3,7 cm	±4,2 cm
8	Petiole length	±0,4 cm	±0,5 cm	±0,4 cm	±0,6 cm	±0,5 cm
9	Spines	Present, absent	Present	Present	Present	Absent
10	Stem	Cylindrical	Cylindrical	Cylindrical	Cylindrical	Cylindrical
11	Stem color	Light green	Green	Ligt green	Ligt green	Green
12	Stem texture	Smooth	Smooth	Smooth	Smooth	Smooth
13	Inflorescence	Racemos	Racemos	Racemos	Racemos	Racemos
14	Flower location	Terminal	Terminal	Terminal	Terminal	Terminal
15	Petal color	Pale purple	Purple	Pale purple	Purple	Violet

A total of 15 vegetive characters were observed in Acanthus. Based on the overall characters observed, 10 characters are varied, while 5 characters are not. All sample have the same vertical stems, Cylindrical, stem tekture smooth, simple leaf, leaf apex acuminatus, flower terminal and Inflorescentia racemosa. spines at the base of the petiole always present and facing upward (Table 1).
Figure 1. Characteristic of *Acanthus* leaves from various location: A. Tritih mangrove forest, B. River Tipar, C. Kamulyan village, D. River Bengawan, E. Logending Beach

Acanthus ilicifolius grows in groups, generally grows on river banks, tidal areas, low wetlands and mangrove forests. True mangrove plants, but also found along fresh water [2].

4. Discussion

Observation and identification of the morphological characteristics of *Acanthus* from different habitats have different leaf morphological characters (Table 1). Showed a diversity of qualitative characters, leaf base acute, acuminate, cuneate, leaf shape oblong and lanceolate, leaf margin entire and pinnately lobbed with sharp spines at each lobe's tip. Diversity also exists in quantitative traits including leaf length 14.6-19.8 cm, leaf width 3.2-5.7 cm. At the location of the Tipar River, *Acanthus* has anisofili leaves (one branch there are two leaf shape) that is integer and pinnatifid. There is morphological variation if environmental factors are more dominant than genetic factors. Plants will not show significant genetic variation if genetic factors predominantly affect these plants [7]. According to [8] the level of genetic diversity is an indication of the plant's adaptability to its growing environment. Plant genetic diversity is caused by several factors, i.e., environmental variations, gene flow, and gene mutations. Environmental variety caused not only species diversity but also diversity within
species[9]. Types of plants that have a wide distribution of nature will have high genetic diversity. The variation between access can be related to genetic history, eco-geographical origin, etc.[10].

Based on the analysis of the description, it turns out that the Acanthus in Cilacap Regency is *Acanthus ilicifolius*, in accordance with research [4] there is Stem: thick, green, light green or purple, sparsely branched and stem axial spine either present or absent, if present always facing upward Leaves: simple, opposite, lanceolate to broadly lanceolate, margin either entire or spiny and dentate, leaf base attenuate, leaf tip acute and narrowly pointed with or without spiny edge, presence of spines with greater sunlight and exposure, size variable, 6-30 x1.5-6 cm, ratio of length to width is greater than 2; petiole short, green,0.5-2 cm long. Inflorescences: both terminal. The species status of *A. ebracteatus* is often doubted by the botanists since the two species viz., *A. ilicifolius* and *A. ebracteatus* have similar vegetative characteristics and the difference between them is the presence or absence of bracteoles which are often lost at anthesis, and many people have been wary when making identifications (Barker 1986 in[4].

Cilacap mangrove forest in an open area is dominated by *Acanthus ilicifolius* species. The dominance occurs due to the tree-type stands that have been reduced so that sunlight reaches the surface of the soil causing these liana plants to flourish because they are exposed to considerable amount of sunlight. The existence of the dominance of these species indicates the decrease in biodiversity of the mangrove forest, however *A. ilicifolius* in addition to being an indicator plant (phytoindicator) can also be used in quantitative quality monitoring of an environment [2].

5. Conclusion
The *Acanthus* population observed in this study have direction of Stem axial spines facing upwards, with sharp spines at each lobe's tip, racemosa inflorescentia, petals light violet Similar to characters *Acanthus ilicifolius*. Based on observations from several locations *Acanthus ilicifolius* has variations in margin folii, leaf shape, leaf size, and spines

References
[1] Surya and Hari 2018 Anatomical, Morphological, Palynological, Phytochemical and Molekuler Profiling of Medicinal Mangrove *Acanthus ilicifolius* Star International Journal 6 41-48
[2] Irawanto R, Ariyanti E E and Hendrian R 2015 Jeruju (*Acanthus ilicifolius*): Biji, perkecambahan dan potensinya Pros Sem Nas Masy Biodiv Indo 1 1011-1018
[3] Nurul-Aini C A C, Noraini T, Latiff A, Amirul-Aiman A J, Ruzi A R and Idris S 2014 Taxonomic significance of leaf micromorphology in some selected taxa of Acanthaceae (Peninsular Malaysia) AIP Conference Proceeding 1614 727-733
[4] Ragavan P, Saxena A, Mohan P M, Jayaraj R S C, Ravichandran K 2015 Taxonomy and distribution of species of the genus *Acanthus* (Acanthaceae) in mangroves of the Andaman and Nicobar Islands, India Biodiversitas 16 225-237
[5] Kathiresan K 2010 Importance of mangrove forest of India J Coas Environ 1 11-26
[6] Piyasundara J H N, Gunasekare M T K and Wickramasinghe I P 2009 Characterization of tea (*Camellia sinensis* L.) germplasm in Sri Lanka using morphological descriptors Sri Lanka Journal of Tea Science 74 31-39
[7] Setiono D, Parjanto, Djati W D 2013 The Morphological Identification of Accession Sugar-Apple (*Annona squamosa*) in Gedangsari Gunungkidul Agrosains 15 32-35
[8] Aharizad S, Rahimi M H, Moghadam M, Mohebalipour N 2012 Study of genetic diversity in lemon balm (*Melissa officinalis* L.) populations based on morphological traits and essential oils content Annals Biol Res 12 5748-5753
[9] Muraya M M, de Villiers S, Parzies H E, Sagnard F, Kanyenji B M, Kiambi D and Geiger H H 2013 Genetic structure and diversity of wild sorghum populations (*Sorghum spp.*) from different eco-geographical regions of Kenya Theor. Appl. Genet. 123 571-583
[10] Padmini S P M C, Pushpakumara D K N G, and Samarasekera R 2013 Morphological characterization of soursop (*Annona Muricata* L.) germplasm in Sri Lanka. Tropic Agri Res 24 362-374