The Weihai Observatory Search for Close-in Planets Orbiting Giant Stars

ROBERT A. WITTENMYER,1 DONGYANG GAO,2 SHAO MING HU,2 EVA VILLAVER,3 MICHAEL ENDL,4 AND DUNCAN WRIGHT1

ABSTRACT. Planets are known to orbit giant stars, yet there is a shortage of planets orbiting within ∼0.5 AU (P ≤ 100 days). First-ascent giants have not expanded enough to engulf such planets, but tidal forces can bring planets to the surface of the star far beyond the stellar radius. So the question remains: Are tidal forces strong enough in these stars to engulf all the missing planets? We describe a high-cadence observational program to obtain precise radial velocities of bright giants from Weihai Observatory of Shandong University. We present data on the planet host Beta Gem (HD 62509), confirming our ability to derive accurate and precise velocities; our data achieve an rms of 7.3 m s⁻¹ about the Keplerian orbit fit. This planet-search program currently receives ~100 nights per year, allowing us to aggressively pursue short-period planets to determine whether they are truly absent.

Online material: color figures

1. INTRODUCTION

Searches for planets orbiting evolved stars have been underway for more than a decade. A major science goal of these campaigns has been to explore the dependence of planetary system properties on host star mass—precise radial velocities can be obtained for these “retired A stars” whereas A-type dwarfs present few absorption lines from which Doppler information can be extracted. However, of the 94 planets known to orbit giant stars (log g < 3.5), only seven have semimajor axes a < 0.5 AU. This is in spite of a strong bias favoring the detection of short-period planets. About 2000 evolved high-mass stars are currently being monitored worldwide by various teams (e.g., Hatzes & Cochran 1993; Frink et al. 2002; Sato et al. 2003; Setiawan et al. 2003; Hatzes et al. 2005; Johnson et al. 2006; Niedzielski & Wolszczan 2008; Lee et al. 2011; Wittenmyer et al. 2011b). Given that short-period planets are common around solar-mass stars, there is an open question: Where are the short-period planets around high-mass stars?

Villaver & Livio (2009) proposed that planetary orbits are affected by the evolution of the stars, showing how tidal interaction can lead to the engulfment of close-in planets. This process is strongly influenced by stellar evolution details such as the stellar mass, mass-loss, and metallicity. Engulfment appears to be much more efficient for more-massive planets and less-massive stars (Kunitomo et al. 2011; Villaver et al. 2014).

Giant and subgiant stars sample planet hosts that, in principle, are more massive than their main sequence counterparts (e.g., Johnson et al. 2010; Sato et al. 2008; Bowler et al. 2010; Gettel et al. 2012). This supposition (taken alone) has been used to suggest a relation between planet formation and stellar mass (Currie 2009). We note that the masses of these evolved stars have been the subject of some controversy (e.g., Lloyd 2011, 2013; Johnson et al. 2013). In brief, Lloyd (2011) argues that due to the stellar initial mass function and the rapid evolution of more massive stars, a given evolved star is more likely to be a “retired” Sun-like star than a “retired A star” as put forward by Johnson et al. (2006) and Johnson et al. (2013). While this relation might still hold, there is, however, an increasing number of close-in planets being detected in the main-sequence stage orbiting A-F stars (e.g., HAT-P-49, Bieryla et al. 2014; WTS-1b, Cappetta et al. 2012; Kepler-14b, Buchhave et al. 2011; WASP-33b, Collier Cameron et al. 2010; KELT-3b, Pepper et al. 2013; OGLE2-TR-L9b, Snellen et al. 2009). These close-in planets are not found in radial velocity searches around evolved stars, suggesting that it is the evolution of the star, and not its mass, that plays a major role in removing planets from close orbits. Thus, the discovery of a population of short-period planets around evolved stars can offer fundamental insights into the strength of the tidal forces. Understanding these tidal forces is critical for producing accurate models of planetary orbits as stars evolve off the main sequence. Furthermore, they can help to shed some light on the dependency of the planet formation process on the stellar mass, with important implications for gas giant planet formation and migration.

1 School of Physics and Australian Centre for Astrobiology, Faculty of Science, The University of New South Wales, Sydney 2052, Australia.
2 Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University, Weihai 264209, China.
3 Departamento Física Teórica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
4 McDonald Observatory, University of Texas at Austin, 1 University Station C1400, Austin, TX 78712.
In fact, close-in planets are expected to be entered the stellar envelope as the star leaves the main sequence and evolves onto the red giant branch (Villaver & Livio 2009; Villaver et al. 2014). As the star evolves, it removes planets from a region that extends far beyond the stellar radius to the entire region of tidal influence (a/R ∼ 2–3 for a Jupiter-mass planet). During the subgiant phase, the star first clears out the very close-in planets present during the main-sequence evolution, and then proceeds to clear out a larger region as the stellar radius increases when it ascends the red-giant branch. However, the vast majority of the evolved stars targeted by radial-velocity surveys have not completed their ascent up the red-giant branch, and so are not at their maximum radius. The evolved stars currently known to host planets have typical radii smaller than about 6 R⊙ (Sato et al. 2010). Stellar evolution models by Villaver & Livio (2009) show that for a 2 M⊙ star, the radius exceeds 0.1 AU (i.e., a 10-day orbital period) for only the 40 million years immediately preceding the helium flash. For these reasons, we only expect planets orbiting closer than a ∼ 0.15 AU to be lost to their expanding host star, and this only excludes planets with P ≤ 15 days (Johnson et al. 2007). Our survey will search for the planets with 15 < P < 100 days which are common around main-sequence stars, but missing around evolved stars.
This paper is organized as follows: § 2 describes the Weihai Echelle Spectrograph (WES) and the target selection criteria. § 3 demonstrates the ability of the WES to deliver precise radial velocities by presenting new data and orbital fits for the known planet-hosting giant Beta Gem (HD 62509). Finally, we give our conclusions in § 4.

2. OBSERVATIONAL PROGRAM

2.1. The Weihai Observatory Echelle Spectrograph

The Weihai Echelle Spectrograph (WES) is a bench-mounted, stabilized, fiber-fed spectrograph attached to the 1-m telescope located at the Weihai Observatory of Shandong University in Weihai, China. The spectrograph is thermally stabilized to ± 0.10 K. Light is fed from the telescope into the spectrograph by ~ 10 m of circular fiber with diameter 70 μm via a 160-μm pinhole. It can achieve a maximum resolution of 57,000 with 2.2-pixel sampling. The WES is the first fiber-fed echelle spectrograph in China and has the primary function of radial-velocity planet search. Further details about the spectrograph and the Weihai Observatory site can be found in Gao & Ren (2014), Hu et al. (2014), and Guo et al. (2014).

The observing and data analysis procedures are typical of precise radial-velocity planet searches. Doppler velocity observations are performed at a resolving power of $R \sim 45,000$. Calibration of the spectrograph point-spread function is achieved using an iodine absorption cell temperature-controlled at 65.0 \pm 0.1°C. The iodine cell imprints a dense forest of narrow absorption lines on the stellar spectrum, from 5000 to 6200 Å, permitting the contemporaneous calibration of the spectrograph point-spread function (Valenti et al. 1995; Butler et al. 1996). Velocities are obtained using the Austra code (Endl et al. 2000), which has been successfully used by several planet-search programs for more than 10 years (Endl et al. 2004; Wittenmyer et al. 2011b; Robertson et al. 2012a). The iodine region is broken into ~ 380 100-pixel chunks, corresponding to about 4.3 Å per chunk. The chunks are weighted by their Doppler content (defined as the sum of all pixel to pixel gradients), and each chunk produces a radial velocity relative to the iodine-free template spectrum. The final velocity is computed as the mean value of the chunks after an iterative 3σ clipping to reject outliers. The uncertainty is the standard error of the mean, i.e., the rms scatter divided by the square root of the number of accepted chunks.

2.2. Target Selection and Observing Strategy

We chose a small sample of bright giants, starting with Northern hemisphere Hipparcos stars with $V < 5.0$ and luminosity classes III and IV (van Leeuwen 2007). After removing all stars flagged for variability, double/multiple stars, and suspected composite spectra, we imposed a color cut $0.5 < (B - V) < 1.2$ to match the selection criteria of many evolved-star planet-search surveys (e.g., Sato et al. 2005; Johnson et al. 2006; Niedzielski & Wolszczan 2008; Jones et al. 2011). We then required $M_V > 0.0$ to exclude the most-evolved stars which would be subject to large-scale pulsations that confound radial-velocity searches for planets (Hekker et al. 2008). To reduce the impact of pulsations on the detectability of planets, we also required that the Hipparcos photometric scatter be smaller than 0.005 mag. From the scaling relations of Kjeldsen & Bedding (1995), this threshold corresponds to velocity amplitudes smaller than 5–10 m s$^{-1}$, a level comparable to our photon noise and small compared to the expected amplitudes of giant planets in short-period orbits. The 42 remaining targets are enumerated in Table 1.

Our knowledge of short-period planets orbiting these evolved stars remains limited by the observing strategies employed by the major programs. Radial-velocity surveys are usually subject to the exigencies of telescope scheduling, such that they are typically allocated time in a single short run each month (during the bright lunation). The “Rocky Planet Search” campaigns conducted by the Anglo-Australian Planet Search addressed this problem by observing a subset of ~ 30 stars every night for 48 consecutive nights. Those campaigns have demonstrated dramatically increased sensitivity to short-period planets (O’Toole et al. 2009; Vogt et al. 2010; Wittenmyer et al. 2011a). Clearly, high cadence is the way forward (Swift et al. 2015). For example, Jones et al. (2015) were able to conclusively detect the 89-day planet orbiting the K giant HD 121056 by densely sampling its orbit using CHIRON, a spectrograph dedicated to precise radial-velocity planet search (Tokovinin et al. 2013). To achieve the best-possible cadence,

Planet	Period (days)	$M \sin i$ (M_{Jup})	a (AU)	Reference
α Ari (HD 12929)	380.0 ± 0.3	1.72 ± 0.19	1.130 ± 0.062	Lee et al. (2011)
ϵ Tau (HD 28305)	595 ± 5	7.7 ± 0.3	1.936 ± 0.034	Sato et al. (2007)
β Gem (HD 62509)	589.6 ± 0.8	2.76 ± 0.14	1.757 ± 0.029	Hatzes & Cochran (1993)
4 UMa (HD 73108)	269 ± 2	7.1 ± 0.6	0.877 ± 0.036	Dollinger et al. (2007)
υ Dra (HD 137759)	511,098 ± 0.089	9.3 ± 0.9	1.31 ± 0.06	Frink et al. (2002)
α CrB (HD 142091)	1300 ± 15	1.97 ± 0.12	2.72 ± 0.05	Johnson et al. (2008)
our survey has been allocated ~100 nights per year on the Weihai Observatory 1 m telescope.

3. PRELIMINARY RESULTS: BETA GEM’S PLANETARY COMPANION

Six of our 42 targets are known planet hosts (Table 2). They are useful members of the sample because (1) further monitoring can often reveal additional planets (Wright et al. 2009; Wittenmyer et al. 2013), and (2) the repository of data on these systems can serve as a check on the new data being obtained by this survey.

Beta Gem (HD 62509, HIP 37826) is an extremely bright K0 giant ($V = 1.14$) known to host a planet with $P = 590$ days and $m \sin i = 2.76$ M_{Jup} (Hatzes & Cochran 1993; Hatzes et al. 2006). We have 38 observations of HD 62509 over a 500-day baseline, with a mean internal velocity uncertainty of 8.6 m s$^{-1}$. Exposure times ranged from 300 to 900 s, with typical signal-to-noise ratios (S/N) ~ 200–300 per pixel. An iodine-free template spectrum was obtained on March 7, 2014, and all velocities given in Table 3 are computed relative to that template.

To check the consistency of the Weihai data, we include all published velocities spanning more than 25 years to fit a Keplerian orbit to the planetary signal. Our analysis uses eight data

Table 3

BJD-2400000	Velocity (m s$^{-1}$)	Uncertainty (m s$^{-1}$)
56293.24524	−9.0	7.7
56293.25392	−6.1	7.9
56293.26226	−0.3	7.9
56293.27088	−7.5	7.4
56316.09065	−11.9	8.4
56316.10066	−2.0	7.9
56316.11256	−13.7	8.2
56316.12067	−2.4	8.6
56316.12989	−12.9	8.2
56317.12107	−6.8	7.2
56317.13220	−3.0	7.8
56320.13640	−16.6	8.0
56320.14513	−12.8	8.4
56320.15348	−11.7	8.1
56320.16399	−11.6	8.5
56617.27237	2.6	8.7
56617.27815	73.8	9.2
56617.28955	72.2	8.9
56617.29755	74.0	9.1
56617.30750	83.4	9.1
56617.31588	84.1	9.9
56617.32360	81.1	8.7
56617.33160	82.5	8.9
56617.34040	79.5	9.4
56617.34844	79.0	9.4
56724.03493	43.2	10.2
56749.01689	46.8	8.1
56749.04009	48.4	8.7
56749.07138	43.2	8.1
56763.99622	40.0	7.8
56764.02025	46.0	8.3
56781.98304	27.1	8.6
56781.99446	31.3	8.6
56782.03382	2.5	8.4
56786.99866	32.3	8.2
56792.98785	13.2	9.5
56792.99932	37.6	10.8

Table 4

Parameter	Value
Period	591.2 ± 0.76 days
Eccentricity	0.071 ± 0.028
ω	263 ± 19 degrees
K (m s$^{-1}$)	44.1 ± 1.2 m s$^{-1}$
T_0	2444036.3 ± 32.5 JD
$m \sin i$	2.80 ± 0.08 M_{Jup}
a	1.7113 ± 0.0015 AU

FIG. 1.—WES data for Beta Gem: 38 observations from December 31, 2013 to May 15, 2014. Our results are in excellent agreement with the published data, now spanning 33.5 years and confirming the consistency of the planet’s orbital parameters. See the electronic edition of the PASP for a color version of this figure.
sets, seven of which have already been published. Larson et al. (1993) presented velocities from the CFHT \((N = 39) \) and DAO \((N = 27) \), calibrated using an HF gas cell (Campbell & Walker 1979), a precursor to the currently used iodine cell technique. The Beta Gem planet discovery paper (Hatzes & Cochran 1993) gave 38 radial-velocity measurements from the McDonald Observatory 2.1 m telescope. Hatzes et al. (2006) reported a further 22 epochs from the ongoing McDonald Observatory 2.7 m “Phase 3” planet-search (e.g., Robertson et al. 2012a, 2012b) and 11 epochs using a high-resolution, limited wavelength setting on the same telescope (“cs21” as described in Hatzes et al. [2006] and Wittenmyer et al. [2006]). The Tautenburg Observatory Planet Search (TOPS) also yielded 22 radial velocities as presented in Hatzes et al. (2006). Finally, 80 velocities from Lick Observatory given in Reffert et al. (2006) were included in our fit.

We used the GaussFit nonlinear least-squares code (Jefferys et al. 1987) to obtain a Keplerian model fit for all eight data sets simultaneously. The velocity data now span 33.5 years. Uncertainties were estimated using the bootstrap routine within Systemic 2 (Meschiari et al. 2009) on 10,000 synthetic data set realizations. The results are given in Table 4, and the most recent cycles including the Weihai data are plotted in Figure 1. The rms about the fit for the Weihai velocities is 7.3 m s\(^{-1}\), comparable to the previously published data, and consistent with the stellar oscillation amplitude of 5–6 m s\(^{-1}\) found by Hatzes et al. (2012). This result demonstrates that the Weihai data acquisition and Doppler velocity extraction techniques are robust.

4. SUMMARY AND CONCLUSIONS

Close-in planets \((a < 0.5 \text{ AU}, \ P \lesssim 100 \text{ days}) \) are rare around giant-branch stars. We have begun an observational program at the 1-m telescope located at Weihai Observatory of Shandong University, using its stabilized echelle spectrograph to obtain precise Doppler velocity measurements of a sample of bright giant stars. We aim to observe these stars with as high a cadence as possible to search for these “missing” planets. Preliminary results from this program give excellent results for the known planet-host Beta Gem (HD 62509), and confirm our ability to obtain precise velocities with this new instrument.

The Weihai iodine cell is provided by Bun’ei Sato and the Okayama Astrophysical Observatory. RW acknowledges support from UNSW Faculty Research Grants. S. M. Hu would like to thank the support by the National Natural Science Foundation of China and Chinese Academy of Sciences joint fund on astronomy under grant No. U1331102, by the National Natural Science Foundation of China under grant No. 11333002 and by Sino-German Science foundation under project No. GZ788. M. E. is supported by the National Science Foundation through grant AST-1313075.

REFERENCES

Bieryla, A., Hartman, J. D., Bakos, G. Á., et al. 2014, AJ, 147, 84
Bowler, B. P., Johnson, J. A., Marcy, G. W., et al. 2010, ApJ, 709, 396
Buchhave, L. A., Latham, D. W., Carter, J. A., et al. 2011, ApJS, 197, 3
Butler, R. P., Marcy, G. W., Williams, E., McCarthy, C., & Vogt, S. S. 1996, PASP, 108, 500
Campbell, B., & Walker, G. A. H. 1979, PASP, 91, 540
Cappetta, M., Saglia, R. P., Birkby, J. L., et al. 2012, MNRAS, 427, 1877
Collier Cameron, A., Guenther, E., Smalley, B., et al. 2010, MNRAS, 407, 507
Currie, T. 2009, ApJ, 694, L 171
Döllinger, M. P., Hatzes, A. P., Pasquini, L., et al. 2007, A&A, 472, 649
Endl, M., Kürster, M., & Els, S. 2000, A&A, 362, 585
Endl, M., Hatzes, A. P., Cochran, W. D., et al. 2004, ApJ, 611, 1121
Fink, S., Mitchell, D. S., Quirrenbach, A., et al. 2002, ApJ, 576, 478
Gao, D., & Ren, D. 2014, in IAU Symp. 293, Formation, Detection, and Characterization of Extrasolar Habitable Planets, ed. N. Haghighipour (Cambridge: Cambridge University Press), 400
Gettel, S., Wolszczan, A., Niedzielski, A., et al. 2012, ApJ, 745, 28
Guo, D.-F., Hu, S.-M., Chen, X., Gao, D.-Y., & Du, J.-J. 2014, PASP, 126, 496
Hatzes, A. P., & Cochran, W. D. 1993, ApJ, 413, 339
Hatzes, A. P., Cochran, W. D., Endl, M., et al. 2006, A&A, 457, 335
Hatzes, A. P., Guenther, E. W., Endl, M., et al. 2005, A&A, 437, 743
Hatzes, A. P., Zechmeister, M., Matthews, J., et al. 2012, A&A, 543, A 98
Hekker, S., Snellen, I. A. G., Aerts, C., et al. 2008, A&A, 480, 215
Hu, S.-M., Han, S.-H., Guo, D.-F., & Du, J.-J. 2014, Res. Astron. Astrophys., 14, 719
Jefferys, W. H., Fitzpatrick, M. J., & McArthur, B. E. 1987, Celest. Mech., 41, 39
Johnson, J. A., Aller, K. M., Howard, A. W., & Crepp, J. R. 2010, PASP, 122, 905
Johnson, J. A., Fischer, D. A., Marcy, G. W., et al. 2007, ApJ, 665, 785
Johnson, J. A., Marcy, G. W., Fischer, D. A., et al. 2006, ApJ, 652, 1724
———. 2008, ApJ, 675, 784
Johnson, J. A., Morton, T. D., & Wright, J. T. 2013, ApJ, 763, 53
Jones, M. I., Jenkins, J. S., Rojo, P., & Melo, C. H. F. 2011, A&A, 536, AA 71
Jones, M. I., Jenkins, J. S., Rojo, P., Melo, C. H. F., & Bluhm, P. 2015, A&A, 573, AA 3
Kjeldsen, H., & Bedding, T. R. 1995, A&A, 293, 87
Kunitomo, M., Ikoma, M., Sato, B., Katsuta, Y., & Ida, S. 2011, ApJ, 737, 66
Larson, A. M., Irwin, A. W., Yang, S. L. S. 1993, PASP, 105, 1026
Lee, B.-C., Mkrtichian, D. E., Han, I., Kim, K.-M., & Park, M.-G. 2011, A&A, 529, AA 134
Lloyd, J. P. 2011, ApJ, 739, LL 49
———. 2013, ApJ, 774, LL 2
Luck, R. E., & Heiter, U. 2007, AJ, 133, 2464
Massarotti, A., Latham, D. W., Stefanik, R. P., & Fogel, J. 2008, AJ, 135, 209
McWilliam, A. 1990, ApJS, 74, 1075
Meschiari, S., Wolf, A. S., Rivera, E., et al. 2009, PASP, 121, 1016
Niedzielski, A., & Wolszczan, A. 2008, Extreme Solar Systems, 398, 71
O’Toole, S., Tinney, C. G., Butler, R. P., et al. 2009, ApJ, 697, 1263
Pepper, J., Siverd, R. J., Beatty, T. G., et al. 2013, ApJ, 773, 64
Reffert, S., Quirrenbach, A., Mitchell, D. S., et al. 2006, ApJ, 652, 661
Robertson, P., Endl, M., Cochran, W. D., et al. 2012a, ApJ, 749, 39
Robertson, P., Horner, J., Wittenmyer, R. A., et al. 2012b, ApJ, 754, 50
Sato, B., Ando, H., Kambe, E., et al. 2003, ApJ, 597, L 157
Sato, B., Izumiura, H., Toyota, E., et al. 2007, ApJ, 661, 527
———. 2008, PASJ, 60, 539
Sato, B., Kambe, E., Takeda, Y., et al. 2005, PASJ, 57, 97
Sato, B., Omiya, M., Liu, Y., et al. 2010, PASJ, 62, 1063
Setiawan, J., Pasquini, L., da Silva, L., von der Lühe, O., & Hatzes, A. 2003, A&A, 397, 1151
Snellen, I. A. G., Koppenhoefer, J., van der Burg, R. F. J., et al. 2009, A&A, 497, 545
Swift, J. J., Bottom, M., Johnson, J. A., et al. 2015, J. Astron. Telesc. Instrum. Syst., 1, 027002
Tokovinin, A., Fischer, D. A., Bonati, M., et al. 2013, PASP, 125, 1336
Valenti, J. A., Butler, R. P., & Marcy, G. W. 1995, PASP, 107, 966
van Leeuwen, F. 2007, A&A, 474, 653
Villaver, E., & Livio, M. 2009, ApJ, 705, L 81
Villaver, E., Livio, M., Mustill, A. J., & Siess, L. 2014, ApJ, 794, 3
Vogt, S. S., Wittenmyer, R. A., Butler, R. P., et al. 2010, ApJ, 708, 1366
Wittenmyer, R. A., Endl, M., Cochran, W. D., et al. 2006, AJ, 132, 177
Wittenmyer, R. A., Endl, M., Wang, L., et al. 2011a, ApJ, 743, 184
Wittenmyer, R. A., Tinney, C. G., Butler, R. P., et al. 2011b, ApJ, 738, 81
Wittenmyer, R. A., Wang, S., Horner, J., et al. 2013, ApJS, 208, 2
Wright, J. T., Upadhyay, S., Marcy, G. W., et al. 2009, ApJ, 693, 1084

2015 PASP, 127:1021–1026