A DICHOTOMY FOR SIMPLE SELF-SIMILAR GRAPH C^*-ALGEBRAS

HOSSEIN LARKI

Abstract. We investigate the pure infiniteness and stable finiteness of the Exel-Pardo C^*-algebras $O_{G,E}$ for countable self-similar graphs (G,E,φ). In particular, we associate a specific ordinary graph \tilde{E} to (G,E,φ) such that some properties such as simpleness, stable finiteness or pure infiniteness of the graph C^*-algebra $C^*(\tilde{E})$ imply that of $O_{G,E}$. Among others, this follows a dichotomy for simple $O_{G,E}$: if (G,E,φ) contains no G-circuits, then $O_{G,E}$ is stably finite; otherwise, $O_{G,E}$ is purely infinite.

Furthermore, Li and Yang recently introduced self-similar k-graph C^*-algebras $O_{G,\Lambda}$. We also show that when $|\Lambda^0| < \infty$ and $O_{G,\Lambda}$ is simple, then it is purely infinite.

1. Introduction

In [7], Exel and Pardo introduced self-similar graph C^*-algebras $O_{G,E}$ to give a unified framework like graph C^*-algebras for the Katsura’s [10] and Nekrashevych’s algebras [18, 19]. These C^*-algebras were initially considered in [7] only for countable discrete groups G acting on finite graphs E with no sources, and then generalized in [2, 8] for larger classes. Roughly speaking, Exel and Pardo attached an inverse semigroup $S_{G,E}$ and the tight groupoid $G_{\text{tight}}(S_{G,E})$ to (G,E,φ) such that $O_{G,E} \cong C^*(G_{\text{tight}}(S_{G,E}))$, and then describe amenability [7, Corollary 10.18], minimality [7, Theorem 13.6], and effectivity (or topological principality) [7, Corollary 14.15] of $G_{\text{tight}}(S_{G,E})$, and thus simplicity and pure infiniteness of $O_{G,E}$ [7, Section 16], among others. Although only finite graphs are considered in [7], but many arguments and proofs work for countable row-finite graphs with no sources (see [8]).

The initial aim of this note comes from a dichotomy for simple groupoid C^*-algebras [21, 3]. According to [21, Theorem 4.7] and [3, Corollary 5.13], a simple reduced C^*-algebra $C^*_r(\mathcal{G})$ of ample groupoid \mathcal{G} with an almost unperforated type semigroup is either purely infinite or stable finite. We explicitly describe this dichotomy for self-similar graph C^*-algebras $O_{G,E}$
by the underlying graphical properties. Here, we consider countable row-finite source-free graphs E over an amenable (countable) group G [2, 8]. However, our results may be generalized to any countable graph E by the desingularization of [8].

We begin in Section 2 by reviewing necessary background on groupoid and self-similar graph C^*-algebras. Then, in Section 3, we generalize the Exel-Pardo’s characterization of purely infinite $O_{G,E}$ to countable self-similar graphs by the groupoid approach (for not necessarily simple cases). Moreover, for certain self-similar graphs (G, E, φ), we show that the C^*-algebra $O_{G,E}$ is purely infinite and simple if and only if the additive monoid of nonzero Murray-von Neumann equivalent projections in $M_\infty(O_{G,E})$ is a group.

In Section 4, we focus on the stable finiteness of $O_{G,E}$. We attach a spacial graph \tilde{E} to (G, E, φ) such that some properties of $O_{G,E}$- such as simplicity, pure infiniteness, and stable infiniteness- can be derived from those of the graph C^*-algebra $C^*(\tilde{E})$. Then using known results about the graph C^*-algebras, we show that a simple C^*-algebra $O_{G,E}$ is stable infinite if and only if the underlying (G, E, φ) contains no G-circuits. In particular, we deduce a dichotomy: A simple $O_{G,E}$ is purely infinite if (G, E, φ) has a G-circuit; otherwise, it is stable finite.

As the k-graph version of Exel-Pardo C^*-algebras, Li and Yang introduced self-similar k-graphs (G, Λ) and associated C^*-algebras $O_{G,\Lambda}$. Briefly, by a groupoid approach, they investigated their properties such as nuclearity [17, Theorem 6.6(i)], amenability [17, Theorem 5.9], and simplicity [17, Theorem 6.6(ii)]. In Section 5, We investigate the pure infiniteness of $O_{G,\Lambda}$ for the nonsimple cases. In particular, we modify and extend [17, Theorem 6.13].

Acknowledgement. The author appreciates Enrique Pardo for reviewing the initial version of the article and his helpful comments; in particular, for noting a gap in the proof of Theorem 3.8.

2. Preliminaries

2.1. Groupoid C^*-algebras. We give here a brief introduction to ample groupoids and associated C^*-algebras; for more details see [23, 1] for example. A groupoid is a small category \mathcal{G} with inverses. The unit space of \mathcal{G} is the set of identity morphisms, that is $\mathcal{G}^{(0)} := \{\alpha^{-1} \alpha : \alpha \in \mathcal{G}\}$. For each $\alpha \in \mathcal{G}$, we may define the range $r(\alpha) := \alpha \alpha^{-1}$ and the source $s(\alpha) := \alpha^{-1} \alpha$, which satisfy $r(\alpha) \alpha = \alpha = \alpha s(\alpha)$. Hence, for $\alpha, \beta \in \mathcal{G}$, the composition $\alpha \beta$ is well-defined in \mathcal{G} if and only if $s(\alpha) = r(\beta)$. The isotropy subgroupoid of \mathcal{G} is defined by

\[\text{Iso}(\mathcal{G}) := \{ \alpha \in \mathcal{G} : s(\alpha) = r(\alpha) \}. \]

We work usually with groupoids \mathcal{G} endowed with a topology such that the maps $r, s : \mathcal{G} \to \mathcal{G}^{(0)}$ are continuous (in this case, \mathcal{G} is called a topological groupoid). A subset $B \subseteq \mathcal{G}$ is called a bisection if both restrictions $r|_B$ and
s|B are homeomorphisms. We say that \(\mathcal{G} \) is ample in case \(\mathcal{G} \) has a basis of compact and open bisections.

Definition 2.1. Let \(\mathcal{G} \) be a topological groupoid. We say that \(\mathcal{G} \) is effective if the interior of \(\text{Iso}(\mathcal{G}) \) is just \(\mathcal{G}^{(0)} \). Moreover, \(\mathcal{G} \) is called topologically principal if \(\{ u \in \mathcal{G}^{(0)} : s^{-1}(u) \cap r^{-1}(u) = \{ u \} \} \) is dense in \(\mathcal{G}^{(0)} \).

Note that, when \(\mathcal{G} \) is second-countable, [22, Proposition 3.3] implies that \(\mathcal{G} \) is effective if and only if it is topologically principal. In this paper, we will work frequently with second-countable effective ample groupoids.

We now recall the definition of reduced \(C^\ast \)-algebra \(C^\ast_r(\mathcal{G}) \). Let \(\mathcal{G} \) be an ample groupoid. We write \(C_c(\mathcal{G}) \) for the complex vector space consisting of compactly supported continuous functions on \(\mathcal{G} \), which is an \(\ast \)-algebra with the convolution multiplication and the involution \(f^\ast(\alpha) := f(\alpha^{-1}) \). For each unit \(u \in \mathcal{G}^{(0)} \) and \(\mathcal{G}_u := s^{-1}(\{ u \}) \), let \(\pi_u : C_c(\mathcal{G}) \to B(\ell^2(\mathcal{G}_u)) \) be the left regular \(\ast \)-representation defined by

\[
\pi_u(f)\delta_\alpha := \sum_{s(\beta) = r(\alpha)} f(\beta)\delta_{\beta\alpha} \quad (f \in C_c(\mathcal{G}), \ \alpha \in \mathcal{G}_u).
\]

Then the reduced \(C^\ast \)-algebra \(C^\ast_r(\mathcal{G}) \) is the completion of \(C_c(\mathcal{G}) \) under the reduced \(C^\ast \)-norm

\[
\| f \|_r := \sup_{u \in \mathcal{G}^{(0)}} \| \pi_u(f) \|.
\]

Moreover, there is a full \(C^\ast \)-algebra \(C^\ast(\mathcal{G}) \) associated to \(\mathcal{G} \), which is the completion of \(C_c(\mathcal{G}) \) taken over all \(\| . \|_{C_c(\mathcal{G})} \)-decreasing representations of \(\mathcal{G} \). Hence, \(C^\ast_r(\mathcal{G}) \) is a quotient of \(C^\ast(\mathcal{G}) \), and [1, Proposition 6.1.8] shows that they are equal if the underlying groupoid \(\mathcal{G} \) is amenable.

Definition 2.2 ([25]). We say that a \(C^\ast \)-algebra \(A \) is purely infinite if every nonzero hereditary \(C^\ast \)-subalgebra of \(A \) contains an infinite projection.

The following is analogous to [4, Theorem 4.1] without the minimality assumption.

Proposition 2.3. Let \(\mathcal{G} \) be a second-countable Hausdorff ample groupoid and let \(\mathcal{B} \) be a basis of compact open sets for \(\mathcal{G}^{(0)} \). Suppose also that \(\mathcal{G} \) is effective. Then \(C^\ast_r(\mathcal{G}) \) is purely infinite if and only if \(1_V \) is infinite in \(C^\ast_r(\mathcal{G}) \) for every \(V \in \mathcal{B} \) (\(1_V \) is the characteristic function of \(V \)).

Proof. The “only if” implication is immediate. For the converse, suppose that every \(1_V \) in \(C^\ast_r(\mathcal{G}) \) is infinite for \(V \in \mathcal{B} \). Let \(A \) be a nonzero hereditary \(C^\ast \)-subalgebra of \(C^\ast_r(\mathcal{G}) \) and take some positive element \(0 \neq a \in A \). Using the hereditary property, we may follow the proof of [15, Proposition 5.2] to find a projection \(p \in A \) and some \(V \in \mathcal{B} \) such that \(p \sim 1_V \) in the Murray-von Neumann sense. Since the infiniteness is preserved under \(\sim \), then \(p \) is an infinite projection, concluding the result. \(\square \)
2.2. Graph \(C^\ast \)-algebras. Let \(E = (E^0, E^1, r, d) \) be a directed graph with the vertex set \(E^0 \), the edge set \(E^1 \), and the range and domain maps \(r, d : E^1 \to E^0 \). We say that \(E \) is row-finite if each vertex receives at most finitely many edges. A source in \(E \) is a vertex \(v \in E^0 \) which receives no edges, i.e. \(d^{-1}(v) = \emptyset \). We will write by \(E^* \) the set of finite paths in \(E \), that is

\[
E^* := \bigcup_{n \geq 0} E^n = \bigcup_{n \geq 0} \{ \alpha = e_1 \ldots e_n : e_i \in E^1, d(e_i) = r(e_{i+1}) \}.
\]

Then one may extend \(r, d : E^* \to E^0 \) by defining \(r(\alpha) = r(e_1) \) and \(d(\alpha) = d(e_n) \) for every path \(\alpha = e_1 \ldots e_n \in E^n \). Throughout the paper, we will consider only countable directed graphs.

Given a directed graph \(E \), a Cuntz-Krieger \(E \)-family is a collection \(\{ p_v, s_e : v \in E^0, e \in E^1 \} \) of pairwise orthogonal projections \(p_v \) and partial isometries \(s_e \) with the following relations

1. \(s^*_e s_e = p_{d(e)} \) for every \(e \in E^1 \),
2. \(s_e s^*_e \leq p_{r(e)} \) for every \(e \in E^1 \), and
3. \(p_v = \sum_{d(e)=v} s_e s^*_e \) for all vertices \(v \) with \(0 < |d^{-1}(v)| < \infty \).

The graph \(C^\ast \)-algebra \(C^\ast(E) \) is the universal \(C^\ast \)-algebra generated by a Cuntz-Krieger \(E \)-family \(\{ p_v, s_e \} \) [20]. By the above relations, for \(e_1, \ldots, e_n \in E^1 \), \(s_{e_1} \ldots s_{e_n} \) is nonzero if and only if \(\alpha := e_1 \ldots e_n \) is a path in \(E \); in this case, we write \(s_\alpha := s_{e_1} \ldots s_{e_n} \).

2.3. Self-similar graphs and their \(C^\ast \)-algebras. Let \(G \) be a countable discrete group. An action \(G \curvearrowright E \) is a map \(G \times (E^0 \cup E^1) \to E^0 \cup E^1 \), denoted by \((g, a) \mapsto ga \), such that the action of each \(g \in G \) on \(E \) gives a graph automorphism.

A self-similar graph is a triple \((G, E, \varphi) \) such that

1. \(E \) is a directed graph,
2. \(G \) acts on \(E \) by automorphisms, and
3. \(\varphi : G \times E^1 \to G \) is a 1-cocycle for \(G \curvearrowright E \) satisfying \(\varphi(g,e)v = gv \) for every \(g \in G, e \in E^1 \), and \(v \in E^0 \).

Remark 2.4. According to [7, Proposition 2.4], we may extend inductively the action \(G \curvearrowright E \) and the cocycle \(\varphi \) on the finite path space \(E^* \) satisfying the desired relations [7, Equation 2.6]. Indeed, if \(\alpha = \alpha_1 \alpha_2 \in E^* \), then we define

\[
 ga = (g\alpha_1)(\varphi(g,\alpha_1)\alpha_2) \quad \text{and} \quad \varphi(g,\alpha) = \varphi(\varphi(g,\alpha_1),\alpha_2).
\]

Definition 2.5 ([7, 8]). Let \((G, E, \varphi) \) be a (countable) self-similar graph. Then \(\mathcal{O}_{G,E} \) is the universal \(C^\ast \)-algebra generated by

\[
\{ p_v, s_e : v \in E^0, e \in E^1 \} \cup \{ u_g p_v : g \in G, v \in E^0 \}
\]

satisfying the following properties:

1. \(\{ p_v, s_e : v \in E^0, e \in E^1 \} \) is a Cuntz-Krieger \(E \)-family.
(2) \(u : G \to \mathcal{M}(\mathcal{O}_{G,E}), \ g \mapsto u_g \), is a unitary \(\ast \)-representation of \(G \) on the multiplier algebra \(\mathcal{M}(\mathcal{O}_{G,E}) \).

(3) \(u_g p_v = p_{v g} u_g \) for every \(g \in G \) and \(v \in E^0 \).

(4) \(u_g s_e = s_{g e} u_{\varphi(g,e)} \) for every \(g \in G \) and \(e \in E^1 \).

We usually use the notation \(\mathcal{O}_{G,E} \) instead of \(\mathcal{O}_{(G,E,\varphi)} \) for convenience. Also, we will write each \(u_g p_v \) by \(u_{g e} \). Then one may easily verify relations (b)-(e) of \([8, \text{Definition 2.2}]\).

Standing assumption. All self-similar graphs \((G, E, \varphi)\) considered in this paper will be countable, row-finite and source-free.

2.4. The groupoid associated to \((G, E, \varphi)\).

In \([7, \text{Section 4}]\), Exel and Pardo associated an inverse semigroup \(S_{G,E} \) to a self-similar graph \((G, E, \varphi)\) with finite graph \(E \). They then showed that \(\mathcal{O}_{G,E} \cong C^*_\text{tight}(S_{G,E}) \cong C^*(\mathcal{G}_{G,E}) \) where \(\mathcal{G}_{G,E} \) is the groupoid of germs for the action of \(S_{G,E} \) on \(E^\infty \) \([7, \text{Corollary 6.4 and Proposition 8.4}]\). Note that the constructions of \(S_{G,E} \) and \(\mathcal{G}_{G,E} \) in \([7]\) may be extended for countable row-finite, source-free self-similar graphs \((G, E, \varphi)\) with small modifications. We give a brief review of it here for convenience. So, fix a row-finite self-similar graph \((G, E, \varphi)\) without sources. Define the \(\ast \)-inverse semigroup \(S_{G,E} \) as

\[
S_{G,E} = \{ (\alpha, g, \beta) : \alpha, \beta \in E^*, g \in G, d(\alpha) = gd(\beta) \} \cup \{0\}
\]

with the operations

\[
(\alpha, g, \beta)(\gamma, h, \delta) := \begin{cases}
(\alpha, g \varphi(h, \varepsilon), \delta h \varepsilon) & \text{if } \beta = \gamma \varepsilon \\
(\alpha \varepsilon, g \varphi(\varepsilon, h), \delta) & \text{if } \gamma = \beta \varepsilon \\
0 & \text{otherwise}
\end{cases}
\]

and \((\alpha, g, \beta)^* := (\beta, g^{-1}, \alpha) \).

Let \(E^\infty \) be the space one-sided infinite paths of the form

\[
x = e_1 e_2 \ldots \text{ such that } d(e_i) = r(e_{i+1}) \text{ for } i \geq 1.
\]

By \([7, \text{Proposition 8.1}]\), there is a unique action \(G \curvearrowright E^\infty \) as follows: for each \(g \in G \) and \(x = e_1 e_2 \ldots \in E^\infty \), there is a unique infinite path \(gx = f_1 f_2 \ldots \) such that

\[
f_1 f_2 \ldots f_n = g(e_1 e_2 \ldots e_n) \text{ (for all } n \geq 1).\]

Moreover, we may consider the action of each \((\alpha, g, \beta) \in S_{G,E} \) on \(x = \beta \hat{x} \in E^\infty \) by \((\alpha, g, \beta) \cdot x = \alpha(g \hat{x}) \). Then \(\mathcal{G}_{G,E} \) is the groupoid of germs of the action of \(S_{G,E} \) on \(E^\infty \), that is

\[
\mathcal{G}_{G,E} = \{ (\alpha, g, \beta; x) : x = \beta \hat{x} \}.
\]

Recall that two germs \([s; x], [t; y]\) in \(\mathcal{G}_{G,E} \) are equal if and only if \(x = y \) and there exists an idempotent \(0 \neq e \in S_{G,E} \) such that \(e \cdot x = x \) and \(se = te \).

The unit space of \(\mathcal{G}_{G,E} \) is

\[
\mathcal{G}_{G,E}^{(0)} = \{ (\alpha, 1_G, \alpha; x) : x = \alpha \hat{x} \},
\]
which is identified with E^∞ by $[\alpha, 1_G, \alpha; x] \mapsto x$. Then, the range and source maps are defined by

$$r([\alpha, g, \beta; \beta \hat{x}]) = \alpha(g \hat{x}) \quad \text{and} \quad s([\alpha, g, \beta; \beta \hat{x}]) = \beta \hat{x}.$$

Following [7, Section 10], we endow $G_{G,E}$ with the topology generated by compact open bisections of the form

$$\Theta(\alpha, g, \beta; Z(\gamma)) := \{[\alpha, g, \beta; y] \in G_{G,E} : y \in Z(\gamma)\}$$

where $\gamma \in E^*$ and $Z(\gamma) := \{\gamma x : x \in s(\gamma)E^\infty\}$. Hence, $G_{G,E}$ is an ample groupoid.

Definition 2.6. We say that (G, E, φ) is pseudo free if for every $g \in G$ and $e \in E^1$,

$$ge = e \quad \text{and} \quad \varphi(g, e) = 1_G \implies g = 1_G.$$

In the end of this section, we recall briefly the following results from [7] for convenience. Although they are proved there for finite self-similar graphs with no sources, but we can obtain them for countable cases by a same way (see also [8]).

Proposition 2.7. Let (G, E, φ) be a pseudo free self-similar graph without sources and let $G_{G,E}$ be the associated groupoid as above. Then

1. $G_{G,E} \cong G_{\text{tight}}(S_{G,E})$ [7, Theorem 8.19], $G_{G,E}$ is Hausdorff [7, Proposition 12.1], and $O_{G,E} \cong C^*(G_{G,E})$ [7, Theorem 9.6].

2. If moreover G is an amenable group, then $G_{G,E}$ is an amenable groupoid in the sense of [1]. In particular, we have $O_{G,E} \cong C^*(G_{G,E}) \cong C_r^*(G_{G,E})$ by [1, Proposition 6.1.8].

Proposition 2.8 ([7, Corollary 14.13] and [8, Theorem 4.4]). Let (G, E, φ) be a pseudo free self-similar graph with no sources. Then $G_{G,E}$ is effective\(^1\) if and only if the following properties hold:

1. Every G-circuit in E has an entry, and
2. for every $v \in E^0$ and $1_G \neq g \in G$, the action of g on $Z(v)$ is nontrivial (i.e., there is $x \in Z(v)$ such that $g.x \neq x$).

3. Purely infinite self-similar graph C^*-algebras

In [7, Corollary 16.3] and [8, Corollary 4.7], it is shown that when $O_{G,E}$ is simple and (G, E, φ) contains a G-circuit, then $O_{G,E}$ is purely infinite. In this section, we study purely infinite C^*-algebras $O_{G,E}$ of countable self-similar graphs in the sense of [25] without the simplicity assumption. Our main result here is a generalization of [7, Theorem 16.2] to countable self-similar graphs. Note that there is another well-known notion of pure infiniteness from [11] which is equivalent to that of [25] for the simple cases. Moreover, our results in this section may be generalized for the Kirchberg-Rørdam’s notion using [11, Corollary 3.15] and the ideal structure [14, Corollary 6.15].

\(^1\)Note that the ‘effective’ property of groupoids is called essentially principal in [7, 8].
Theorem 3.1. Let \((G, E, \varphi)\) be a pseudo free self-similar graph over an amenable group \(G\). Suppose also that \((G, E, \varphi)\) satisfies conditions (1) and (2) of Proposition 2.8 (i.e., the groupoid \(G_{G,E}\) is effective). Then \(O_{G,E}\) is purely infinite if and only if every vertex projection \(s_v\) is infinite in \(O_{G,E}\).

Proof. We must prove the “if” implication only. So suppose that for every \(v \in E^0\), \(s_v\) is infinite in \(O_{G,E}\). Let \(\mathcal{G} = G_{G,E}\) be the groupoid associated to \((G, E, \varphi)\). By Proposition 2.7(2), \(\mathcal{G}\) is amenable, so \(C^*_r(\mathcal{G}) = C^*(\mathcal{G}) = O_{G,E}\).

We know that the cylinders \(\{Z(\alpha) : \alpha \in E^*\}\) is a basis of compact open sets for the topology induced on \(E^\infty = G^{(0)}\). Moreover, Proposition 2.8 says that \(\mathcal{G}\) is effective. Hence, Proposition 2.3 implies that \(O_{G,E} = C^*_r(\mathcal{G})\) is purely infinite if and only if \(\{1_{Z(\alpha)} = s_\alpha s_\alpha^* : \alpha \in E^*\}\) are all infinite projections in \(O_{G,E}\). Now since \(s_\alpha s_\alpha^* \sim s_\alpha s_\alpha = s_{d(\alpha)}\) and the infiniteness passes through Murray-von Neumann equivalence, we conclude the result. \(\square\)

Definition 3.2. Let \(v, w \in E^0\). We say that \(v\) receives a \(G\)-path from \(w\) or \(w\) connects to \(v\) by a \(G\)-path, say \(v \triangleright w\), if there exist \(\alpha \in E^*\) and \(g \in G\) such that \(r(\alpha) = v\) and \(d(\alpha) = gw\). By [7, Proposition 13.2], this is equivalent to

\[\exists \alpha \in E^*, \exists g \in G \text{ such that } r(\alpha) = gw\text{ and } d(\alpha) = w.\]

Lemma 3.3. Let \((G, E, \varphi)\) be a self-similar graph. For \(v, w \in E^0\) and \(\alpha, \beta \in E^*\), we have

1. If \(v = gw\) for some \(g \in G\), then \(s_v \sim s_w\) in the Murray-von Neumann sense.
2. If \(v\) receives a \(G\)-path from \(w\), then \(s_v \triangleright s_w\).
3. If \(\beta = g\alpha\) for some \(g \in G\), then \(s_\beta s_\beta^* \sim s_\alpha s_\alpha^*\).

Proof. (1). If \(v = gw\), then we have \(s_v = (u_g s_v)^*(u_g s_v)\) and

\[(u_g s_v)(u_g s_v)^* = (s_{gw} u_g)(s_{gw} u_g)^* = s_{gw} u_g u_g^* s_{gw} = s_w,
\]

concluding \(s_v \sim s_w\).

For (2), suppose that there exist \(\alpha \in E^*\) and \(g \in G\) such that \(r(\alpha) = v\) and \(d(\alpha) = gw\). Then, by the Cuntz-Krieger relations,

\[s_v \geq s_\alpha s_\alpha^* \sim s_\alpha^* s_\alpha = s_{d(\alpha)} = s_{gw} \sim s_w,
\]

and consequently \(s_v \triangleright s_w\).

For (3), if \(\beta = g\alpha\), then by part (1) we have

\[s_\beta s_\beta^* \sim s_\alpha^* s_{d(\beta)} = s_{gw, d(\alpha)} \sim s_{d(\alpha)} = s_\alpha^* s_\alpha \sim s_\alpha s_\alpha^*,\]

giving \(s_\beta s_\beta^* \sim s_\alpha s_\alpha^*\). \(\square\)

Proposition 3.4. Let \((G, E, \varphi)\) be a pseudo free self-similar graph over an amenable group \(G\). Suppose that conditions (1) and (2) of Proposition 2.8 hold. Then

1. If every \(v \in E^0\) receives a \(G\)-path from a \(G\)-circuit, then \(O_{G,E}\) is purely infinite.
2. If the graph \(C^*-\text{algebra}\) \(C^*(E)\) is purely infinite, then so is \(O_{G,E}\).
Proof. (1). In view of Theorem 3.1, it suffices to prove that each s_v is infinite in $\mathcal{O}_{G,E}$. So, fix some $v \in E^0$. By hypothesis, there is a G-circuit α connecting to v by a G-path.

We first show that $s_{r(\alpha)}$ is infinite. For, let γ be an entry for α by assumption. Since each of α nor γ is not a subpath of the other, one may compute that $s_\alpha s_\alpha^*$ and $s_\gamma s_\gamma^*$ are orthogonal. Hence, the Cuntz-Krieger relations imply that

$$s_{r(\alpha)} \geq s_\alpha s_\alpha^* + s_\gamma s_\gamma^* > s_\alpha s_\alpha^* \sim s_\alpha s_\alpha^* = s_{d(\alpha)}.$$

If $d(\alpha) = gr(\alpha)$, then $s_{d(\alpha)} \sim s_{r(\alpha)}$ by Lemma 3.3(1), and whence $s_{r(\alpha)}$ is infinite in $\mathcal{O}_{G,E}$ as claimed.

Now, because there is a G-path from $r(\alpha)$ to v, we have $s_v \succeq s_{r(\alpha)}$ by Lemma 3.3(2), and therefore s_v is infinite as well. As $v \in E^0$ was arbitrary, Theorem 3.1 follows the result.

(2). If $C^*(E)$ is purely infinite, then each s_v is infinite in $C^*(E)$, and so is in $\mathcal{O}_{G,E}$ as well. Now apply Theorem 3.1.

Remark 3.5. If $v \in E^0$ receives a G-path from a G-circuit with an entry but not a path from a circuit, then s_v is infinite in $\mathcal{O}_{G,E}$ while not in $C^*(E)$. Therefore, the converse of Proposition 3.4(2) does not necessarily hold.

In the simple case we conclude the following.

Corollary 3.6. Let (G, E, φ) be a pseudo free self-similar graph over an amenable group G. Suppose that $\mathcal{O}_{G,E}$ is simple. If E contains a G-circuit, then $\mathcal{O}_{G,E}$ is purely infinite.

Proof. Note that the simplicity of $\mathcal{O}_{G,E}$ gives conditions (1) and (2) in Proposition 2.8 [8, Theorem 4.5]. So, by Theorem 3.1, it suffices to show that s_v is infinite for each $v \in E^0$.

Let (g, α) be a G-circuit in E. By [7, Theorem 16.1], (g, α) has an entry, hence $s_{r(\alpha)}$ is infinite as seen in the proof of Proposition 3.4(1).

Fix an arbitrary $v \in E^0$. We may form the infinite path $\alpha^\infty = \alpha(g\alpha)(g^2\alpha) \cdots$, which is well-defined because

$$d(g^n\alpha) = g^n d(\alpha) = g^n gr(\alpha) = r(g^{n+1}\alpha).$$

Since E is also weakly G-transitive by [8, Theorem 4.5], there is a G-path from $r(g^n\alpha)$ to v for sufficiently large n. Note that as $r(g^n\alpha) = g^n r(\alpha)$, $s_{r(g^n\alpha)} = s_{g^n r(\alpha)}$ is infinite by Lemma 3.3(1). Also, Lemma 3.3(2) implies that $s_v \succeq s_{r(g^n\alpha)} \sim s_{r(\alpha)}$, and consequently s_v is infinite too. As $v \in E^0$ was arbitrary, Theorem 3.1 concludes that $\mathcal{O}_{G,E}$ is purely infinite. \square

Remark 3.7. The converse of above corollary will be proved in Theorem 4.9 (1) \iff (6).

The following result gives necessary and sufficient criteria for the purely infinite simple C^*-algebras by the monoid of equivalent projections. It is new even for the ordinary graph C^*-algebras. Before that we recall the definition of K_0-group of a unital C^*-algebra and establish some notations. Let
A be a unital C^*-algebra and write by $\mathcal{P}(A)$ the collection of all projections in $M_\infty(A) = \bigcup_{n \geq 1} M_n(A)$. We say that two projections $p \in M_n(A)$ and $q \in M_n(A)$ are equivalent, denoted by $p \sim q$, if

$$\exists v \in M_{m,n}(A) \text{ such that } p = v^*v \text{ and } q = v^*v.$$

Note that, if $m \leq n$, then $p \sim q$ if and only if $p \oplus 0_{n-m}$ is Murray-von Neumann equivalent to q in $M_n(A)$, where $x \oplus y := \text{diag}(x,y)$. Define $\mathcal{D}(A) := \mathcal{P}(A)/\sim = \{[p] : p \in \mathcal{P}(A)\}$, which is an abelian monoid with the operation $[p] + [q] := [p \oplus q]$. Then $K\mathcal{O}(A)$ is the Grothendieck group of $\mathcal{D}(A)$ endowed with a universal Grothendieck map $\phi : \mathcal{D}(A) \to K\mathcal{O}(A)$. The image of $\mathcal{D}(A)$ under ϕ is denoted by $K\mathcal{O}(A)^+$. It is known that when $\mathcal{D}(A) \setminus \{0\}$ is a group, then $K\mathcal{O}(A) = \mathcal{D}(A) \setminus \{0\}$.

Theorem 3.8.
(1) Let E be an arbitrary directed graph (non necessarily row-finite, source-free, or even countable) with $|E^0| < \infty$. Then $C^*(E)$ is purely infinite and simple if and only if $\mathcal{D}(C^*(E)) \setminus \{0\}$ is a group (or equivalently, $\mathcal{D}(C^*(E)) \setminus \{0\} = K\mathcal{O}(C^*(E))$).

(2) Let (G,E,φ) be a pseudo free self-similar graph over an amenable group G. Suppose also that $|E^0| < \infty$ and conditions (1) and (2) of Proposition 2.8 hold. Then $\mathcal{O}_{G,E}$ is purely infinite simple if and only if $\mathcal{D}(\mathcal{O}_{G,E})$ is a group.

Proof. Note that the “only if” implications hold for every unital purely infinite simple C^*-algebra. Indeed, if A is a purely infinite simple C^*-algebra, then nonzero projections of A are all infinite. Thus, combining Proposition 1.5 and Theorem 1.4 of [5] implies that $\mathcal{D}(A) \setminus \{0\}$ is a group ($= K\mathcal{O}(A)$).

So it is enough to prove the “if” part. We first show that every projection p in A is infinite for any unital C^*-algebra A with $\mathcal{D}(A) \setminus \{0\}$ a group. Indeed, if $[f]$ is the identity of $\mathcal{D}(A) \setminus \{0\}$, then

$$[p] = [p] + [f] = [p \oplus f],$$

thus we have

$$p \sim p \oplus 0 < p \oplus f \sim p,$$

where 0 is a zero matrix in $M_\infty(A)$. Therefore, p is an infinite projection in A, as claimed.

In the case of statement (1), this follows that E satisfies Condition (L). In fact if there exists a circuit in E with no entries, then $C^*(E)$ contains an ideal Morita equivalent to $C(T)$, hence it has a finite projection. Recall that by Condition (L) every ideal of $C^*(E)$ has a (vertex) projection. Now take a nonzero ideal I of $C^*(E)$ and some projection $0 \neq p \in I$. As $|E^0| < \infty$, write $1 := \sum_{v \in E^0} s_v$ the unit of $C^*(E)$. Then $[p] + [1 - p] = [1]$ and we have

$$[p] = [1] + [q] = [1 \oplus q],$$

where $[q]$ is the inverse of $[1-p]$ in $\mathcal{D}(C^*(E)) \setminus \{0\}$. Therefore, $p \sim 1 \oplus q$ which says that there is $x = [x_1 \ldots x_n] \in M_1(\mathcal{O}_{G,E})$ such that $x^*px = 1 \oplus q$. In particular, $1 = x_1^*px_1 \in I$, concluding $I = C^*(E)$. Therefore $C^*(E)$ is simple.
For the pure infiniteness, let B be a nonzero hereditary C^*-subalgebra of $C^*(E)$. Again, Condition (L) gives a nonzero projection p in B. If $[f]$ is the identity of $D(C^*(E)) \setminus \{0\}$, then
\[
[p] = [p] + [f] = [p \oplus f],
\]
and we have
\[
p \sim p \oplus 0 < p \oplus f \sim p
\]
where 0 is a zero matrix in $M_\infty(O_G,E)$, and consequently p is infinite. Therefore, $C^*(E)$ is purely infinite.

For statement (2), note that $G_{G,E}$ is effective by Proposition 2.8, and $O_{G,E} \cong C^*_r(G_{G,E})$ by Proposition 2.7. This implies that every ideal of $O_{G,E}$ contains a projection (see [6, Theorem 4.4] for example). Now we may follow the proof of statement (1) to obtain the result. □

4. Stable finiteness and a dichotomy

In this section, we associate a special graph \tilde{E} to any self-similar graph (G, E, φ). We show that if the graph C^*-algebra $C^*(\tilde{E})$ is either simple, purely infinite, or stable finite then so is $O_{G,E}$ respectively. Then we will conclude a dichotomy for simple self-similar graph C^*-algebras.

Definition 4.1. Let \mathbb{K} denote the C^*-algebra of compact operators on a separable, infinite dimensional Hilbert space. A (simple) C^*-algebra A is called stably finite if $A \otimes \mathbb{K}$ contains no infinite projections.

Fix a self-similar graph (G, E, φ). In the following we define a graph \tilde{E} associated to (G, E, φ). Define \approx on $E^* = \bigsqcup_{n=0}^{\infty} E^n$ by
\[
\alpha \approx \beta \iff \exists g \in G \text{ such that } \beta = g\alpha,
\]
which is an equivalent relation on each E^n (and so on E^*). The vertex set of \tilde{E} is $\tilde{E}^0 := E^0/\approx \simeq$ the collection of vertex classes. In each class $[v] \in \tilde{E}^0$ pick exactly one vertex up and collect them in the set Ω. Hence, $\tilde{E}^0 = \{[v] : v \in \Omega\}$, and we have $[v] \neq [w]$ for $v \neq w \in \Omega$. For every $v \in \Omega$ and $e \in r^{-1}(v)$ draw an edge \tilde{e} from $[d(e)]$ to $[v]$. Hence we obtain the graph \tilde{E} so that
\[
\tilde{E}^0 := \{[v] : v \in \Omega\}, \quad \text{and}
\tilde{E}^1 := \bigcup_{v \in \Omega} r^{-1}(v) = \bigcup_{v \in \Omega} \{\tilde{e} : r(\tilde{e}) = v\},
\]
with the range $\tilde{r}(\tilde{e}) = [r(e)]$ and domain $\tilde{d}(\tilde{e}) = [d(e)]$ for every $\tilde{e} \in \tilde{E}^1$.

Example 4.2. For $n \geq 1$, let \mathbb{Z}_{modn} be the additive group $\{1, 2, \ldots, n\}$. Let $(\mathbb{Z}_{modn}, E, \varphi)$ be a triple with the cyclic graph E.
Proof. Statement (1) is clear by the definition of α and the action $\mathbb{Z}/n \mathbb{Z} \curvearrowright E$ defined by

$$kv := v \quad \text{and} \quad k\alpha_i := \alpha_{k+i} \quad (1 \leq k, i \leq n),$$

for every $\alpha_i \in \{w_i, e_i, f_i, g_i\}$. Since $w_i \approx w_j$, for any $1 \leq i, j \leq n$, we may select w_1 of the class $[w_1] = \{w_1, \ldots, w_n\}$. As $r^{-1}(v) = \{e_1, \ldots, e_n\}$ and $r^{-1}(w_1) = \{f_1, g_n\}$, then the graph \tilde{E} would be

and the action $\mathbb{Z}/n \mathbb{Z} \curvearrowright E$ defined by

$$kv := v \quad \text{and} \quad k\alpha_i := \alpha_{k+i} \quad (1 \leq k, i \leq n),$$

for every $\alpha_i \in \{w_i, e_i, f_i, g_i\}$. Since $w_i \approx w_j$, for any $1 \leq i, j \leq n$, we may select w_1 of the class $[w_1] = \{w_1, \ldots, w_n\}$. As $r^{-1}(v) = \{e_1, \ldots, e_n\}$ and $r^{-1}(w_1) = \{f_1, g_n\}$, then the graph \tilde{E} would be

$$\tilde{g}_n \quad \ldots \quad \tilde{f}_1 \quad \ldots \quad \tilde{e}_n \quad \tilde{e}_1 \quad \tilde{e}_2 \quad [v]$$

Lemma 4.3. Let (G, E, φ) be a self-similar graph, and consider an associated graph \tilde{E} as above. Then

1. If E is row-finite, then so is \tilde{E}.
2. For each finite path $\tilde{\alpha} = \tilde{\alpha}_1 \ldots \tilde{\alpha}_n \in \tilde{E}^n$, there is a path $\gamma = \gamma_1 \ldots \gamma_n$ in E^n such that $\gamma \approx \alpha_i$ for $1 \leq i \leq n$. Conversely, if $\gamma = \gamma_1 \ldots \gamma_n \in E^n$, then there exists $\tilde{\alpha} = \tilde{\alpha}_1 \ldots \tilde{\alpha}_n \in \tilde{E}^n$ such that $\gamma \approx \alpha_i$ for $1 \leq i \leq n$.
3. If $\tilde{\alpha} \in \tilde{E}^n$ and $\gamma \in E^n$ are two paths as in statement (2), then $\tilde{\alpha}$ is a circuit in \tilde{E} if and only if γ is a G-circuit in E. Moreover, $\tilde{\alpha}$ has an entry if and only if γ does.

Proof. Statement (1) is clear by the definition of \tilde{E}. For (2), let first $\tilde{\alpha} = \tilde{\alpha}_1 \ldots \tilde{\alpha}_n \in \tilde{E}^n$ be a path in \tilde{E}. Then, for each $1 \leq i < n$, we have

$$[d(\alpha_i)] = \tilde{d}(\tilde{\alpha}_i) = \tilde{r}(\tilde{\alpha}_{i+1}) = [r(\alpha_{i+1})],$$

and so there exists $g_i \in G$ such that $d(\alpha_i) = g_i r(\alpha_{i+1})$. Now set $\gamma_1 := \alpha_1$ and $\gamma_i := g_1 \ldots g_{i-1} \alpha_i$ for every $2 \leq i \leq n$. Then

$$d(\gamma_i) = d(g_1 \ldots g_{i-1} \alpha_i) = g_1 \ldots g_{i-1} d(\alpha_i) = g_1 \ldots g_{i-1} g_i r(\alpha_{i+1}) = r(\gamma_{i+1}),$$

and hence $\gamma = \gamma_1 \ldots \gamma_n$ is a desired path in E.

Conversely, let \(\gamma = \gamma_1 \ldots \gamma_n \) be a finite path in \(E^n \). For each \(1 \leq i \leq n \), there is \(v_i \in \Omega \) such that \(v_i = g_i r(\gamma_i) \) for some \(g_i \in G \). Hence, we have \(\bar{\alpha} = (\bar{g_1} \gamma_1) \ldots (\bar{g_n} \gamma_n) \in \bar{E} \) with \(\alpha \approx \gamma \).

For statement (3), given \(\bar{\alpha} \) and \(\gamma \) as in part (2), we have
\[
\bar{\alpha} \text{ is a circuit in } E \iff [d(\alpha_n)] = [r(\alpha_1)] \\
\iff d(\alpha_n) \approx r(\alpha_1) \\
\iff d(\gamma_n) \approx d(\alpha_n) \approx r(\alpha_1) \approx r(\gamma_1) \\
\iff \gamma \text{ is a } G-\text{circuit.}
\]

Moreover, since \(|r^{-1}(r(\gamma_i))| = |\bar{r}^{-1}(\bar{r}(\alpha_i))| \) for each \(1 \leq i \leq n \), we have
\[
\gamma \text{ has an entry } \iff |r^{-1}(r(\gamma_i))| > 1 \text{ for some } 1 \leq i \leq n \\
\iff |\bar{r}^{-1}(\bar{r}(\alpha_i))| > 1 \text{ for some } 1 \leq i \leq n \\
\iff \bar{\alpha} \text{ has an entry in } \bar{E}.
\]

\(\square \)

Definition 4.4. Let \((G, E, \varphi)\) be a self-similar graph. Following [7, Definition 3.4], we say that \(E \) is weakly \(G \)-transitive if for every \(v \in E^0 \) and \(x \in E^\infty \), there exists a path \(\alpha \) such that \(d(\alpha) = x(n, n) \) for some \(n \geq 0 \) and \(r(\alpha) = gv \) for some \(g \in G \). If we have an ordinary graph \(E \) (with the trivial group action), we say simply that \(E \) is weakly transitive. Note that the weakly transitive is called cofinal in [20].

Lemma 4.5. Let \((G, E, \varphi)\) be a self-similar graph, and associate a graph \(\bar{E} \) as above. Then

1. Every \(G \)-circuit in \(E \) has an entry if and only if every circuit in \(\bar{E} \) does.
2. \(E \) is weakly \(G \)-transitive if and only if \(\bar{E} \) is weakly transitive.

Proof. Statement (1) follows from items (2) and (3) of Lemma 4.3. For (2), let \(\bar{E} \) be transitive. Take an arbitrary infinite path \(x \in E^\infty \) and some \(v \in E^0 \). By item (2) in Lemma 4.3, there is \(\bar{y} \in \bar{E}^\infty \) such that \(y(0, n) \approx x(0, n) \) for every \(n \geq 0 \). By transitivity, there exists \(\bar{\gamma} \in \bar{E}^* \) such that \(\bar{r}(\bar{\gamma}) = [v] \) and \(\bar{d}(\bar{\gamma}) = [y(n, n)] \) for some \(n \). Hence, \(v \approx r(\gamma) \) and \(d(\gamma) \approx y(n, n) \approx x(n, n) \). This follows that \(E \) is \(G \)-transitive. The converse is analogous. \(\square \)

Proposition 4.6. Let \((G, E, \varphi)\) be a self-similar graph over an amenable group \(G \), and let \(\bar{E} \) be an associated graph.

1. In case the groupoid \(G_{G,E} \) is Hausdorff (see [8, Theorem 4.2]), then \(\mathcal{O}_{G,E} \) is simple if and only if
 a. the graph \(C^* \)-algebra \(C^*(\bar{E}) \) is simple, and
 b. for \(v \in E^0 \) and \(g \in G \), if the action of \(g \) on the cylinder \(Z(v) \) is trivial (i.e., \(gx = x \) for every \(x \in Z(v) \)), then \(g \) is slack at \(v \).
(2) Suppose that \((G, E, \varphi)\) is pseudo free and for any \(v \in E^0\) and \(1_G \neq g \in G\), the action of \(g\) on \(Z(v)\) is nontrivial. If \(C^*(\tilde{E})\) is purely infinite, then so is \(\mathcal{O}_{G,E}\).

Proof. Statement (1) follows from Lemma 4.5 and [8, Theorem 4.5]. For (2), if the graph \(C^*\)-algebra \(C^*(\tilde{E})\) is purely infinite, then every circuit in \(\tilde{E}\) has an entry and every vertex \([v] \in \tilde{E}^0\) can be reached from a circuit. By Lemma 4.5, every \(G\)-circuit has an entry and every \(v \in E^0\) receives a \(G\)-path from a \(G\)-circuit. Now, Proposition 3.4(1) concludes that \(\mathcal{O}_{G,E}\) is purely infinite. \(\square\)

Example 4.7. The graph \(\tilde{E}\) in Example 4.2 is weakly transitive and every circuit in \(\tilde{E}\) has an entry. Then \(C^*(\tilde{E})\) is simple and purely infinite, and so is the \(C^*\)-algebra \(\mathcal{O}_{G,E}\) by Proposition 4.6.

Definition 4.8 ([9]). Let \((G, E, \varphi)\) be a self-similar graph. A **graph trace** on \(E\) is map \(T : E^0 \rightarrow \mathbb{R}^+\) such that

1. \(T(\tau(e)) \geq T(d(e))\) for every \(e \in E^1\), and
2. \(T(v) = \sum_{e \in v} T(d(e))\) for every \(v \in E^0\).

A **graph \(G\)-trace** in \(E\) is a graph trace \(T : E^0 \rightarrow \mathbb{R}^+\) such that \(T(v) = T(w)\) for every \(v \approx w\) in \(E^0\).

Theorem 4.9. Let \((G, E, \varphi)\) be a pseudo free self-similar graph over an amenable group \(G\). Suppose that \(\mathcal{O}_{G,E}\) is simple. Then the following are equivalent.

1. \(\mathcal{O}_{G,E}\) is stably finite.
2. \(\mathcal{O}_{G,E}\) is quasi diagonal.
3. \((G, E, \varphi)\) has a nonzero graph \(G\)-trace.
4. \(\tilde{E}\) has a nonzero graph trace.
5. \(\tilde{E}\) contains no circuits.
6. \(E\) contains no \(G\)-circuits.

Proof. Statements (1) and (2) are equivalent by [21, Corollary 6.6].

(1) \(\Rightarrow\) (6). If \(E\) has a \(G\)-circuit, then \(\mathcal{O}_{G,E}\) is purely infinite by Corollary 3.6. In particular, \(\mathcal{O}_{G,E}\) is not stably finite, a contradiction.

(6) \(\Rightarrow\) (5). Suppose that \(\tilde{E}\) has no circuits. Arrange \(\tilde{E}^0 = \{[v_1], [v_2], \ldots\}\).

For each \(n \geq 1\), let \(F_n\) be the full subgraph of \(\tilde{E}\) containing all \(\bigcup_{i=1}^{n-1} \tilde{F}^{-1}([v_i])\). Since \(F_n\)’s have no circuits, [13, Corollary 2.3] implies that \(C^*(F_1) \subseteq C^*(F_2) \subseteq \ldots\) is a sequence of finite dimensional \(C^*\)-subalgebras of \(C^*(\tilde{E})\) such that \(C^*(\tilde{E}) = \lim C^*(F_n)\) (i.e., \(C^*(\tilde{E})\) is AF). Thus there exist bounded traces \(\tau_n : C^*(F_n) \rightarrow \mathbb{C}\) such that \(\tau_n|_{C^*(F_i)} = \tau_i\) for \(i \leq n\). This induces a semifinite trace \(\tau = \lim \tau_n\) on \(C^*(\tilde{E})\). Therefore, if \(C^*(\tilde{E}) = C^*(t_e, q_{[v]}\rangle\), we obtain the nonzero graph trace \(T : E^0 \rightarrow \mathbb{R}^+\), by \(T([v]) = \tau(q_{[v]}\rangle\), on \(\tilde{E}\).

(4) \(\Rightarrow\) (3). Suppose that \(T\) is a nonzero graph trace on \(\tilde{E}\). Note that, since the action of \(G\) on \(E^1\) gives automorphisms respecting to the range
and domain, for any \(v \neq w \in E^0 \) with \(w = gv \), the map \(e \mapsto ge \) is a bijection from \(r^{-1}(v) \) onto \(r^{-1}(w) \). In particular, \(|r^{-1}(w)| = |r^{-1}(v)| \). Being this fact in mind, one may easily see that the map \(T : E^0 \to \mathbb{R}^+ \), defined by \(T'(v) := T([v]) \), is a nonzero graph \(G \)-trace on \(E \), as desired.

(3) \(\Rightarrow \) (1). By [23, Proposition II.4.8], there exists a faithful conditional expectation \(\pi : C^*(G,G,E) \to C_0(G,G,E) \) such that \(\pi(f) = f|_{G,G,E} \) for all \(f \in C_c(G,G,E) \). Note that the isomorphism \(\psi : O_{G,E} \to C^*(G,G,E) \) in Proposition 2.7(1) maps the core \(O_{G,E}^0 \) onto \(C_0(G,G,E) \). Hence \(\varphi := \psi^{-1} \circ \pi \circ \psi \) is a faithful conditional expectation from \(O_{G,E} \) onto \(O_{G,E}^0 \) such that

\[
\phi(s_\alpha u_g s_\beta^*) = \begin{cases}
 s_\alpha s_\beta^* & \beta = \alpha, \ g = 1_G \\
 0 & \text{otherwise}
\end{cases}
\]

for every \(\alpha, \beta \in E^* \) and \(g \in G \).

Now suppose that \(T \) is a nonzero graph \(G \)-trace on \(E \). Define \(t : O_{G,E}^0 \to \mathbb{C} \) by \(t(s_\alpha s_\beta^*) = T(d(\alpha)) \), which is a linear functional on \(O_{G,E}^0 \). So, we may easily verify that \(\tau := t \circ \phi \) is a semifinite trace on \(O_{G,E} \) such that \(0 < \tau(s_v) < \infty \) for all \(v \in E^0 \). Moreover, \(\tau \) is faithful because \(O_{G,E} \) is simple. Thus [21, Corollary 6.6] yields that \(O_{G,E} \) is stably finite. \(\square \)

Recall from [7, Corollary 10.16] that if \(G \) is amenable, then \(O_{G,E} \) is a nuclear \(C^* \)-algebra. So, combining Corollary 3.6 and Theorem 4.9 implies the following dichotomy for simple \(O_{G,E} \).

Corollary 4.10. Let \((G,E,\varphi)\) be a pseudo free self-similar graph over an amenable group \(G \). Suppose that \(O_{G,E} \) is simple. Then

1. If \(E \) has a \(G \)-circuit, then \(O_{G,E} \) is purely infinite. In this case, \(O_{G,E} \) is a Kirchberg algebra, and we have \(K_0(O_{G,E}) = D(O_{G,E}) \setminus \{0\} \) whenever \(|E^0| < \infty \).
2. Otherwise, \(O_{G,E} \) is stably finite. In this case, \((K_0(O_{G,E}), K_0(O_{G,E})^+)\) is an ordered abelian group (see [24, Proposition 5.1.5(iv)])

Remark 4.11. Note that in case \(O_{G,E} \) is stably finite, the embedding \(\iota : C^*(E) \hookrightarrow O_{G,E} \) of [7, Section 11] induces an embedding \(K_0(\iota) : K_0(C^*(E)) \hookrightarrow K_0(O_{G,E}) \) defined by \(K_0(\iota)([p]) = [\iota(p)]_0 \), where the map \(\iota \) is naturally extended on \(M_\infty(C^*(E)) \) into \(M_\infty(O_{G,E}) \). Indeed, if \(p \in M_\infty(C^*(E)) \) is a projection with \([\iota(p)]_0 = 0 \), then we must have \(\iota(p) = 0 \) because \(M_\infty(O_{G,E}) \) has no infinite projection, and hence \(p = 0 \).

5. **Pure infiniteness of self-similar \(k \)-graph \(C^* \)-algebras**

In this section, we consider the pure infiniteness of self-similar \(k \)-graph \(C^* \)-algebras. Let us first recall the definitions of self-similar \(k \)-graphs and their \(C^* \)-algebras from [17]. Fix \(k \in \mathbb{N} \cup \{\infty\} \) and let \(\Lambda = (\Lambda^0, \Lambda, r, s) \) be a row-finite \(k \)-graph with no sources (we refer the reader to [20] for basic definitions and concepts about \(k \)-graphs and associated \(C^* \)-algebras).
Consider \mathbb{N}^k as a category with a single object 0 and the coordinatewise partial order \leq. Let $\Omega_k := \{(p,q) : p, q \in \mathbb{N}^k, p \leq q\}$. An infinite path in Λ is a morphism $x : \Omega_k \to \Lambda$ with the range $r(x) := x(0,0)$. We write by Λ^∞ the set of infinite paths in Λ.

Let G be a (discrete and countable) group. An action $G \actson \Lambda$ is a map $G \times \Lambda \to \Lambda$, $(g, \lambda) \mapsto g\lambda$, which gives a graph automorphism preserving the degree map for every $g \in G$.

Definition 5.1 ([17]). A self-similar k-graph is a triple (G, Λ, φ), where Λ is a k-graph, G is a group acting on Λ, and $\varphi : G \times \Lambda \to \Lambda$ is a cocycle for $G \actson \Lambda$ with the property

$$\varphi(g, \lambda) \cdot v = gv \quad (g \in G, v \in \Lambda^0, \lambda \in \Lambda).$$

Following [17], we consider only self-similar k-graphs (G, Λ, φ) for row-finite and source-free k-graphs with $|\Lambda^0| < \infty$. We will write (G, Λ, φ) by (G, Λ) for simplicity. Note that φ was called the restriction map in [17] and each $\varphi(g, \lambda)$ was denoted by $g|_\lambda$ there.

Definition 5.2. Let (G, Λ) be a self-similar k-graph. We say that

1. (G, Λ) is pseudo free, if $g\lambda = \lambda$ and $\varphi(g, \lambda) = 1_G$ imply $g = 1_G$.
2. (G, Λ) is G-aperiodic if for any $v \in \Lambda^0$, there exists $x \in v\Lambda^\infty$ such that $x(p, \infty) = gx(q, \infty)$ implies $g = 1_G$ and $p = q$ for $p, q \in \mathbb{N}^k$ and $g \in G$.
3. (G, Λ) is G-cofinal if for every $x \in \Lambda^\infty$ and $v \in \Lambda^0$, there exist $p \in \mathbb{N}^k$, $\mu \in \Lambda$, and $g \in G$ such that $s(\mu) = x(p, p')$ and $r(\mu) = gv$.

Definition 5.3. Let (G, Λ) be a self-similar k-graph as in Definition 5.1 with $|\Lambda^0| < \infty$. The C^*-algebra $O_{G,\Lambda}$ associated to (G, Λ) is the universal C^*-algebra generated by $\{s_\lambda : \lambda \in \Lambda\}$ and $\{u_g : g \in G\}$ such that

1. $\{s_\lambda : \lambda \in \Lambda\}$ is a Cuntz-Krieger Λ-family in the sense of [12].
2. $u : G \to O_{G,\Lambda}$, given by $g \mapsto u_g$, is a unitary $*$-representation of G.
3. $u_gs_\lambda = s_\lambda u_{\varphi(g, \lambda)}$ for every $g \in G$ and $\lambda \in \Lambda$.

Similar to the construction of $G_{G,E}$ in Section 2.4, Li and Yang associated an ample groupoid $G_{G,\Lambda}$ in [17, Section 5.1] such that $O_{G,\Lambda} \cong C^*(G_{G,\Lambda}) \cong C_r^*(G_{G,\Lambda})$ when G is amenable and (G, Λ) is pseudo free [17, Theorem 5.9]. In particular, the unit space $G_{G,\Lambda}^{(0)}$ is homeomorphic to Λ^∞ endowed with the topology generated by cylinders $Z(\lambda) := \{\lambda x : x \in \Lambda^\infty\}$.

Recall that a circuit in Λ is a path $\alpha \in \Lambda$ with $r(\alpha) = s(\alpha)$. $\tau \in \Lambda$ is called an entry for α if $r(\tau) = r(\alpha)$ and there are no common extensions for α and τ (i.e., $\alpha \mu \neq \tau \nu$ for all $\mu, \nu \in \Lambda$).

Theorem 5.4. Let (G, Λ) be a pseudo free self-similar k-graph with $|\Lambda^0| < \infty$ over an amenable group G. If Λ is G-aperiodic, then $O_{G,\Lambda}$ is purely infinite. In particular, if Λ is also G-cofinal, then $O_{G,\Lambda}$ is a Kirchberg algebra.
Proof. Let $\mathcal{G}_{G,A}$ be the groupoid associated to (G, Λ). Then $\mathcal{G}_{G,A}$ is amenable and effective [17, Proposition 6.5], and we thus have $C^*(\mathcal{G}_{G,A}) = C^*_r(\mathcal{G}_{G,A}) = \mathcal{O}_{G,A}$ by [17, Theorem 5.9]. We know that the cylinders $\{Z(\lambda) : \lambda \in \Lambda\}$ form a basis of compact open sets for the topology on $\Lambda^\infty = G^{(0)}_{G,A}$. So, in light of Proposition 2.3, it suffices to prove that each $1_{Z(\lambda)}$ is an infinite projection for $\lambda \in \Lambda$. For this, since

$$1_{Z(\lambda)} = s_\Lambda s_\lambda^* s_\lambda = s_\lambda(\lambda),$$

we show all s_v's are infinite in $\mathcal{O}_{G,A}$ for $v \in \Lambda^0$.

So fix an arbitrary $v \in \Lambda^0$. We claim that v reaches from a circuit with an entry. To see this, take some $x \in v\Lambda^\infty$. For any $t \in \mathbb{N}$, write $t := (t_0, t_1, \ldots) \in \mathbb{N}^k$. Since $\{x(t, t) : t \geq 1\} \subseteq \Lambda^0$ is finite, there are $t_1 < t_2$ such that $x(t_1, t_1) = x(t_2, t_2)$. Hence $x(t_1, t_2)$ is a circuit in Λ, which connects to v by $x(0, t_1) \in \Lambda$. Note that the G-aperiodicity yields clearly the periodicity of Λ. Hence, one may follow [16, Lemma 6.1] to find an (initial) circuit α with an entry τ connecting to v, as claimed.

Since α and τ have no common extensions, one may compute that $s_\alpha s_\alpha^*$ and $s_\tau s_\tau^*$ are orthogonal (by applying [20, Lemma 9.4]). Thus, by the Cuntz-Krieger relations we have

$$s_{\tau(\alpha)} \geq s_\alpha s_\alpha^* + s_\tau s_\tau^* > s_\alpha s_\alpha^* \sim s_\alpha^* s_\alpha = s_\alpha = s_{\tau(\alpha)};$$

so $s_{\tau(\alpha)}$ is infinite. Moreover, if λ connects $r(\alpha)$ to v, then

$$s_v \geq s_\lambda s_\lambda^* \sim s_\lambda^* s_\lambda = s_\lambda = s_{\tau(\alpha)},$$

which says that s_v is an infinite projection in $\mathcal{O}_{G,A}$ as well. Since $v \in \Lambda^0$ was arbitrary, this deduces that $\mathcal{O}_{G,A}$ is purely infinite by Proposition 2.3.

For the last statement, if moreover Λ is G-cofinal, then [17, Theorem 6.6] implies that $\mathcal{O}_{G,A}$ is nuclear and simple, which satisfies UCT. Hence, $\mathcal{O}_{G,A}$ is a Kirchberg algebra. \hfill \Box

Corollary 5.5 (See [17, Theorem 6.13]). Let (G, Λ) be a pseudo free self-similar k-graph with $|\Lambda^0| < \infty$ over an amenable group G. Whenever $\mathcal{O}_{G,A}$ is simple, then it is purely infinite too.

References

[1] C. Anantharaman-Delaroche and J. Renault. *Amenable groupoids*, volume 36 of Monographs of L’Enseignement Mathmatique, Geneva, 2000.

[2] E. Bédos, S. Kaliszewski, J. Quigg, *On Exel-Pardo algebras*, J. Operator Theory **78**(2) (2017), 309-345.

[3] C. Bónicke and K. Li, *Ideal structure and pure infiniteness of ample groupoid C^*-algebras*, Ergodic Theory Dynam. Systems (2018), 1-30. doi:10.1017/etds.2018.39

[4] J.H. Brown, L.O. Clark and A. Sierakowski, *Purely infinite C^*-algebras associated to étale groupoids*, Ergodic Theory Dynam. Systems **35** (2015), 2397-2411.

[5] J. Cuntz. *K-theory for certain C^*-algebras*, Ann. Math. **113** (1981), 181-197.

[6] R. Exel, *Non-Hausdorff étale groupoids*, Proc. Amer. Math. Soc. **139** (2011), 897-907.

[7] R. Exel, E. Pardo, *Self-similar graphs, a unified treatment of Katsura and Nekrashevych C^*-algebras*, Adv. Math. **306** (2017), 1046-1129.
[8] R. Exel, E. Pardo and C. Starling, C*-algebras of self-similar graphs over arbitrary graphs, preprint, arXiv:1807.01686 (2018).
[9] J. Hjelmborg, Purely infinite and stable C*-algebras of graphs and dynamical systems, Ergodic Theory Dynam. Systems 21 (2001), 1789-1808.
[10] T. Katsura, A construction of actions on Kirchberg algebras which induce given actions on their K-groups, J. Reine Angew. Math. 617 (2008), 27-65.
[11] E. Kirchberg and M. Rørdam, Non-simple purely infinite C*-algebras, Amer. J. Math. 122 (2000), 637-666.
[12] A. Kumjian and D. Pask, Higher rank graph C*-algebras, New York J. Math. 6 (2000), 1-20.
[13] A. Kumjian, D. Pask and I. Raeburn, Cuntz-Krieger algebras of directed graphs, Pacific J. Math. 184 (1998), 161-174.
[14] S.M. LaLonde, D. Milan, and J. Scott, Condition (K) for inverse semigroups and the ideal structure of their C*-algebras, J. Algebra 523 (2019), 119-153.
[15] H. Larki, Non-simple purely infinite Steinberg Algebras with applications to Kumjian-Pask algebras, preprint, arXiv:1901.07094 (2019)
[16] H. Larki, Purely infinite simple Kumjian-Pask algebras, Forum Math. 30(1) (2018), 253-268.
[17] H. Li and D. Yang, Self-similar k-graph C*-algebras, preprint, arXiv:1710.08194 (2018).
[18] V. Nekrashevych, Cuntz-Pimsner algebras of group actions, J. Operator Theory 52 (2004), 223-249.
[19] V. Nekrashevych, Self-Similar Groups, Mathematical Surveys and Monographs, vol.117, Amer. Math. Soc., Providence RI 2005.
[20] I. Raeburn, Graph Algebras, CBMS Regional Conf. Ser. in Math., vol. 103, Amer. Math. Soc., Providence RI 2005.
[21] T. Rainone and A. Sims, A dichotomy for groupoid C*-algebras, Ergod. Th. Dynam. Sys. (2018), 1-43, doi:10.1017/etds.2018.52.
[22] J. Renault, Cartan subalgebras in C*-algebras, Irish Math. Soc. Bulletin 61 (2008), 2963.
[23] J. Renault, A groupoid approach to C*-algebras, Lecture Notes in Mathematics, vol. 793, Springer, Berlin, 1980.
[24] M. Rørdam, F. Larsen and N. Laustsen, An introduction to K-theory for C*-algebras, London Mathematical Society Student Texts 49, Cambridge University Press, Cambridge, 2000.
[25] M. Rørdam and E. Størmer, Classification of nuclear C*-algebras Entropy in operator algebras, Operator Algebras and Non-commutative Geometry, Springer-Verlag, Berlin, 2002.

Department of Mathematics, Faculty of Mathematical Sciences and Computer, Shahid Chamran University of Ahvaz, P.O. Box: 83151-61357, Ahvaz, Iran

E-mail address: h.larki@scu.ac.ir