Molecular Epidemiology of Dengue Viruses Co-circulating in Upper Myanmar in 2006

Kyaw Zin Thant1,3, Mya Myat Ngwe Tun2,8, Maria del Carmen Parquet2,8, Shingo Inoue2,8, Yee Yee Lwin1, Sanda Lin3, Kay Thi Aye3, Pe Thet Khin4, Tin Myint5, Khin Htwe7, Takeshi Nabeshima2,8 and Kouichi Morita2,8*

Received 29 September, 2014 Accepted 29 October, 2014 Published online 15 November, 2014

Abstract: To understand the molecular epidemiology of circulating dengue viruses (DENV) in Upper Myanmar, DENV isolation was attempted by inoculating the sera of a panel of 110 serum samples onto a C6/36 mosquito cell line. The samples were collected from dengue (DEN) patients admitted at Mandalay Children’s Hospital in 2006. Infected culture fluids were subjected to a RT-PCR to detect the DENV genome. Three DENV strains were isolated. This was the first DENV isolation performed either in Mandalay or in Upper Myanmar. One strain belonged to DENV serotype-3 (DENV-3), and two other strains belonged to DENV serotype-4 (DEN-4). The sequence data for the envelope gene of these strains were used in a phylogenetic comparison of DENV-3 and DENV-4 from various countries. Phylogenetic analyses revealed that this DENV-3 strain was clustered within genotype II, and the two DENV-4 strains were clustered within genotype I in each serotype. The Myanmar strains were closely related to strains from the neighboring countries of Thailand and Bangladesh. These results are important for elucidating the trends of recent and future DEN outbreaks in Myanmar.

Key words: Dengue virus, Molecular epidemiology, Upper Myanmar

INTRODUCTION

The dengue virus (DENV) belongs to the genus Flavivirus of the family Flaviviridae, which exists as four serotypes (DENV-1,-2,-3, and -4) [1]. DENV infection is the most important of the mosquito-borne viral diseases, and it affects mainly tropical and subtropical countries [2]. It is well documented that all four serotypes of DENV co-circulate in Asian countries including Myanmar [3, 4]. The first major epidemic of dengue hemorrhagic fever (DHF) occurred in Myanmar in 1970 [5]. Currently, DHF occurs throughout the country, with the notable exception of the Chin State. Almost 80% of cases are reported from three divisions (Yangon, Bago and Mandalay) and one state (Mon), with more than 50% of cases recorded exclusively from the Yangon Division [5]. DEN outbreaks have been recorded in Upper Myanmar, especially in Mandalay, the largest city in the region. However, an extensive study has never been accomplished due to insufficient laboratory facilities. The present study focused on highlighting current DENV infections in Upper Myanmar with a special emphasis on molecular epidemiology.

METHODS

Patients

In total, 110 serum samples were obtained from 110 patients (≤ 12 years old) who were clinically suspected for DEN according to World Health Organization [6] criteria and who were admitted to the 550-bed Mandalay Children’s Hospital (MCH), Mandalay City, Upper Myanmar in 2006 with the informed consent of parents or legal guardians.

1 Department of Molecular Epidemiology, Institute of Tropical Medicine, Nagasaki University, Japan
2 Department of Virology, Institute of Tropical Medicine, Nagasaki University, Japan
3 Virology Research Division, Department of Medical Research (Upper Myanmar), Pyin Oo Lwin, Myanmar
4 Virology Research Division, Department of Medical Research (Lower Myanmar), Yangon, Myanmar
5 Department of Child Health, University of Medicine, Mandalay, Myanmar
6 University of Medicine (II), Yangon, Myanmar
7 Department of Child Health, University of Medicine (I), Yangon, Myanmar
8 Global COE Program, 21st Century COE Program, MEXT, Tokyo, Japan

*Corresponding author:
Department of Virology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
Tel: +81-95-819-7829
Fax: +81-95-819-7830
E-mail: moritak@nagasaki-u.ac.jp
guardians. The study protocol was reviewed and approved by the Ethical Committee on Medical Research Involving Human Subjects, Department of Medical Research (Upper Myanmar), Pyin Oo Lwin, Myanmar. The sera were stored at −70°C until further use.

Methods

Both IgM- and IgG-capture ELISAs were performed using Dengue Duo IgM-capture and IgG-capture ELISA Kits (PANBIO, Brisbane, Australia) to determine primary and secondary DENV infections. All the commercial kits in the present study were used following the manufacturer’s instructions.

The frozen sera were transferred to Japan, and the virus culture was conducted in the Department of Virology, Institute of Tropical Medicine, Nagasaki University, Japan. Each serum sample was inoculated onto *Aedes albopictus* clone C6/36 mosquito cells and incubated at 28°C for 7 days [7]. The presence of DENV in the infected culture fluid (ICF) was verified by in-house Flavivirus antigen detection ELISA (Ag-ELISA) [8] and RT-PCR. RNA extraction from ICF was performed using a viral RNA Mini Kit (QIAGEN, Hilden, Germany). DENV serotyping was done using 4 sets of serotype-specific primers [9–11] employing the PrimeScript™ One Step RT-PCR Kit (Takara Bio Inc., Shiga, Japan).

The desired DNA bands were excised from the agarose gel, and were extracted and purified using QIAEX® II Gel Extraction Kit (QIAGEN, Hilden, Germany). The primer extension dideoxy chain termination method was used for direct sequencing of the PCR product. DNA sequencing analysis was performed with BigDye® Terminator version 3.1 Cycle Sequencing Ready Reaction Mixture (Applied Biosystems, Foster City, USA) following the thermal cycle sequencing parameters described previously [12]. The reaction mixture was then purified using an AGENCOURT® CLEANSEQ® Sequencing Reaction Clean-up system (Agencourt Bioscience Corp., Massachusetts, USA). The final product was loaded on an ABI Prism™ Capillary Sequencer 3100-Avant Genetic Analyzer (Applied Biosystems, Foster City, USA). Nucleotide sequences were edited and homology searches and comparisons of the sequences done using DNASIS (Mac version 3.6 Software system; Hitachi, Tokyo, Japan). Nucleotide sequence alignments were carried out using CLUSTAL X, version 2.0 [13], and the phylogenetic analysis was performed using either the heuristic or the branch and bound algorithm of PAUP version 4.0b10 (Altivec) software [14]. The neighbor-joining method was used to construct the phylogenetic tree with a bootstrap analysis of 1,000 replicates [15].

The Genbank accession numbers, EU478408, EU478409 and EU478410, for the three Myanmar isolates used in the present study, and the accession numbers of all the other strains used for the phylogenetic analysis, are listed in Tables 1 and 2 with the geographic origin and the year of isolation.

RESULTS

Among 110 clinically diagnosed DEN patients, 70 (64%) were positive for both IgM and IgG by DEN IgM capture and DEN IgG capture ELISA and were confirmed as secondary DENV infections. Primary DENV infection was confirmed in 26 (24%) patients who were positive only for IgM. The remaining 14 (13%) patients were not confirmed to have DENV infections. Among the 96 dengue-confirmed patients, dengue virus strains were successfully

Parameters	Confirmed dengue cases* (%)	Non dengue cases* (%)
number of cases	96 (87)	14 (13)
Mean age in years (± SD)	5.5 (± 3.2)	5.6 (± 4.0)
Male/Female	49/47	6/8
DHF I	26 (27)	5 (36)
DHF II	32 (33)	5 (36)
DHF III	21 (22)	2 (14)
DHF IV	1 (1)	0 (0)
DSS	16 (17)	2 (14)

Confirmed dengue cases were positive for dengue IgM capture ELISA. Non-dengue cases were negative for dengue IgM capture ELISA.

DHF I, dengue hemorrhagic fever grade I; DHF II, dengue hemorrhagic fever grade II; DHF III, dengue hemorrhagic fever grade III; DHF IV, dengue hemorrhagic fever grade IV; DSS, dengue shock syndrome. DHF grading were classified according to WHO criteria (WHO, 1997).
Table 2. DENV-3 strains used for phylogenetic analysis

Strain	Geographic origin	Year of isolation	Accession number
BDH 02-01	Bangladesh	2002	AY 496871
BDH 02-07	Bangladesh	2002	AY 496871
114	Bangladesh	2000	AY656669
165	Bangladesh	2000	AY656671
058	Bangladesh	2000	AY656674
Jacob	Bangladesh	2001	AY656673
68784	Brazil	2000	AY038805
80-2	China	1980	AF317645
Cuba-21/02	Cuba	2002	AY702031
29472	Fiji	1992	L11422
1416	India	1984	L11424
228761	Indonesia	1973	L11425
1280	Indonesia	1978	L11426
85-159	Indonesia	1985	L11428
1306	Malaysia	1974	L11429
29586	Malaysia	1981	L11427
LN 5547	Malaysia	1992	AF147457
LN 1746	Malaysia	1993	AF147458
LN 6083	Malaysia	1994	AF147460
D3/H/HTMSSA-MART/2001/2012	Martinique	2001	AY099930
MEX0697	Mexico	1995	AY146763
1559	Mozambique	1985	L11430
31985 KLA	Myanmar	1998	AY145712
DV3/Myanmar/0508aTw/2005	Myanmar	2005	DQ518666
DV3/Mandalay.MYA/H58/2006*	Malaysia	2006	EU478409
24/94	Nicaragua	1994	AY702033
D3 PY/A59/03	Paraguay	2003	DQ 118885
H 87	Philippines	1956	L 11423
168/AP-2	Philippines	1983	L11432
PMH-I1-97	Philippines	1997	AY496879
PR6	Puerto Rico	1963	L11433
1340	Puerto Rico	1977	L11434
1696	Samoa	1986	L11435
1326	Sri Lanka	1981	L11431
1594	Sri Lanka	1985	L11436
260698	Sri Lanka	1989	L11437
27833	Sri Lanka	1991	L11438
D3/Sri Lanka 9912aTw/1999	Sri Lanka	1999	DQ 518679
2167	Tahiti	1989	L11619
D3/Taiwan/813KH9408a/1994	Taiwan	1994	DQ 518667
D3/Taiwan/701TN9811a/1998	Taiwan	1998	DQ 518662
D3/Taiwan/807KH0509a/2005	Taiwan	2005	DQ 518659
5987	Thailand	1962	L11440
CH3489D73-1	Thailand	1973	L11620
D86-007	Thailand	1986	L11441
MK315	Thailand	1987	L11442
D88-303	Thailand	1988	AY145714
D89-273	Thailand	1989	AY145715
D91-393	Thailand	1991	AY145716
D92-431	Thailand	1992	AY145719
D93-044	Thailand	1992	AY145718
D94-283	Thailand	1993	AY145720
D95-0400	Thailand	1994	AY145723
D 96-313	Thailand	1995	AY145725
D 97-0291	Thailand	1997	AY145730
00-27-1 Hu NIID	NIID	2000	AB111080
LARD 5990	Venezuela	2000	AY46764
LARD 6668	Venezuela	2001	AY46774
D3/Vietnam/9609aTw/1996	Vietnam	1996	DQ518655
D3/Vietnam/0409aTw/2004	Vietnam	2004	DQ518656
D3/Vietnam/0507aTw/2005	Vietnam	2005	DQ518658

* New strain from Myanmar presented in this study
isolated from three patients whose sera were collected within 7 days from the onset of fever. One isolate was DENV-3 from a patient having a primary DENV infection with DHF grade (I), and two isolates were DENV-4 from a patient having primary DENV infection with DSS. The other patient had secondary DENV infection with DHF grade (I). The clinical information of the 110 patients is shown in Table 1.

The nucleotide sequence of the E gene of the newly isolated DENV-3 strain from Upper Myanmar, designated as the DV3/Mandalay.MYA/H58/2006 strain (Myan 06, code in tree), was compared with other published sequences of 61 DENV-3 strains originating from various geographic regions (Table 2). The phylogenetic tree constructed for the 62 DENV-3 strains, employing the DENV-2 New Guinea C strain as an out-group strain, is shown in Fig. 1. The tree reveals that the newly isolated DENV-3 strain from Upper Myanmar was grouped together with previously published strains from Lower Myanmar, as well as the strains from Thailand, Bangladesh, Malaysia, Vietnam and Taiwan in a well-defined genotype II.

Similarly, the nucleotide sequences of the E gene of two newly isolated DENV-4 strains from Upper Myanmar, designated as the DV4/Sagaing.MYA/H27/2006 strain (Myan 06 Sgg, code in tree) and the DV4/Mandalay.MYA/H64/2006 strain (Myan 06 Mdy, code in tree), were compared with other published sequences of 59 DENV-4 strains originating from various geographic regions (Table 3). The phylogenetic tree constructed for a total of 61 DENV-4 strains is shown in Fig. 2. The tree reveals that the two new strains from Upper Myanmar were grouped together with those from Thailand, Cambodia, Malaysia, India, Sri Lanka, China and the Philippines in the Asian genotype I.

Fig. 1. Phylogenetic tree of DENV-3 strains (n = 62). The tree is rooted by the DENV-2-NGC (New Guinea C, Accession No. M29095) strain (Table 2). All horizontal branch lengths are drawn to a scale of nucleotide substitutions per site. Bootstrap support values are shown and the genotypes of DENV-3 are indicated. For simplicity, each strain name was replaced by a code that consists of the country and the year of isolation. The DENV-3 isolate presented in the present study is indicated by an asterisk (*).
Strain	Code in tree	Geographic origin	Year of isolation	Accession number
Bahamas A/98	Bahamas A	Bahamas	1998	AY 152364
Barbados B/93	Barbados B/93	Barbados	1993	AY 152376
Barbados/99	Barbados	Barbados	1999	AY 152368
1385/82	Brazil	Brazil	1982	U 18425
02-21-1 Hu NIID	Cambodia 02	Cambodia	2002	AB 111089
China.GuangzhBoB5	China B	China	NA	AF 289029
814669/81	Dominica	Dominica	1981	AF 326573
M 44/81	Dominica M44	Dominica	1981	AY 152360
1411/83	El Salva	El Salvador	1983	U 18426
BC 6494/94	El Salvador	El Salvador	1994	U 18427
Hondurars/91	Honduras	Honduras	1991	AY 152379
96-33-1 Hu NIID	India	India	1996	AB 111086
30153/73	Indonesia	Indonesia	1973	U 18428
1036/76	Indonesia	Indonesia	1976	U 18429
1122/77	Indonesia	Indonesia	1977	U 18430
02-12-1 Hu NIID	Indonesia	Indonesia	2002	AB 111088
Jamaica/81	Jamaica	Jamaica	1981	AY 152389
Jamaica/83	Jamaica	Jamaica	1983	AY 152384
P7-1006	Malaysia	Malaysia	1969	AF 231722
P73-1120	Malaysia	Malaysia	1973	AF 231724
P75-514	Malaysia	Malaysia	1975	AF 231723
MY 01-23096	Malaya	Malaya	2001	AJ 428557
1492/84	Mexico	Mexico	1984	U 18431
Mexico/91	Mexico	Mexico	1991	AY 152378
Montserrat-A/94	Montserrat	Montserrat	1994	AY 152369
DV4/Sagai/MYA/H27/2006*	Myan 06 Sgg	Myanmar	2006	EU 478410
DV4/Mandalay/MYA/H64/2006*	Myan 06 Mdy	Myanmar	2006	EU 478408
5489/84	New Caledonia	New Caledonia	1984	U 18432
H241/56	Philip	Philipines	1956	U 18433
12123/84	Philip	Philipines	1964	U 18434
M5/82	Puerto Rico	Puerto Rico	1982	AY 152336
M32/85	Puerto Rico	Puerto Rico	1985	AY 152856
M33/85	Puerto Rico	Puerto Rico	1985	AY 152857
1650/86	Puerto Rico	Puerto Rico	1986	U 18436
69/87	Puerto Rico	Puerto Rico	1987	AY 152252
96/90	Puerto Rico	Puerto Rico	1990	AY 152855
28/92	Puerto Rico	Puerto Rico	1992	AY 152196
84/94	Puerto Rico	Puerto Rico	1994	AY 152084
17/98	Puerto Rico	Puerto Rico	1998	AY 152056
S-44750/78	Sri Lanka	Sri Lanka	1978	U 18437
B/82	Surinam	Surinam	1982	AY 152386
A-94	Surinam	Surinam	1994	AY 152372
S-44754/79	Tahiti	Tahiti	1979	U 18438
114-094-85/85	Tahiti	Tahiti	1985	U 18439
TC 2443/63	Thai	Thailand	1963	U 18440
Thai D4-0087/77	Thailand	Thailand	1977	AY 618999
Thai D4-0348/91	Thailand	Thailand	1991	AY 618990
Thai D4-0439/94	Thailand	Thailand	1994	AF 231726
Thai D4-0476/97	Thailand	Thailand	1997	AY 618978
Thai D4-0734/00	Thailand	Thailand	1999	AY 618979
Thai D4-0759/00	Thailand	Thailand	2000	AY 618993
Thai D4-0459/01	Thailand	Thailand	2001	AY 618938
Thai D4-0485/01	Thailand	Thailand	2001	AY 618940
Thai D4-0352/02	Thailand	Thailand	2002	AY 618985
Trinidad A/82	Trinidad	Trinidad	1982	AY 152382
Trinidad A/84	Trinidad	Trinidad	1984	AY 152380
Trinidad/94	Trinidad	Trinidad	1994	AY 152377

* New strains from Myanmar presented in this study
The DENV-3 isolate from Upper Myanmar in the present study belonged to genotype II, like two previously published Lower Myanmar strains: the 31985 KLA strain (Myan 98, code in tree) and the DV3/Myanmar/0508aTw/2005 strain (Myan 05, code in tree). It clustered together with strains from Bangladesh in a well-defined sub-cluster. Further support came from the fact that three unique aminoacid (aa) changes, I140T, S447G and A489T, were found in this strain and were shared by Myan 05 and the Bangladesh strains. To examine the introduction of the DENV-3 genotype II to the country (although DENV-3 isolates from Myanmar are very few), we compared an older strain, Myan 98, to the two most recent ones: Myan 05 and Myan 06 [16]. In the phylogenetic tree, Myan 98 was clustered in a separate sub-cluster of genotype II together with earlier Thai strains. This clustering is supported by four aa changes, I140T, S447G, A489T and A479V, which are present in the two most recent Myanmar isolates, Myan 05 and Myan 06, but are not present in either the Myan 98 strain or in the Thai isolates that were clustered together with the latter strain. These results indicate that the genotype II of DENV-3 reached Myanmar most likely through independent entries from Thailand, a supposition supported by the appearance of the more recent lineage including the isolates from 2005 and 2006 (Fig. 1). The fact that the Bangladesh strains isolated from 2000 to 2002 showed little evidence of independent evolution suggests that genotype II was also introduced recently from neighboring countries. Our results support Podder et al.’s (2006) suggestion that recent DEN outbreaks in Indonesia in 2002 may have entered from neighboring countries [12]. Recently, it was reported that seven DENV-3 strains isolated from Yangon (Lower Myanmar) in 2007 belonged to genotype III [18]. Therefore, it ap-
pears that more than one DENV-3 genotype is circulating in the country. It would be interesting to analyze the time and route of introduction.

The two newly isolated DENV-4 strains from Upper Myanmar in the present study were clustered together with other Asian strains in genotype I being the closest related strains from Thailand and Cambodia [9], but V238M and L489P aa changes were unique to Myan 06 Mdy and Myan 06 Sgg strains, respectively. Although the existence of DENV-1 and DENV-2 among the circulating viruses in Upper Myanmar could not be ruled out, the present study demonstrated that DENV-3 and DENV-4 were co-circulating in the area in 2006. This is the first report on the molecular analysis of DENV-4 strains in Myanmar, particularly those circulating in the upper part of the country. Therefore, if DENV-3 is currently regarded as the prevailing serotype for recent outbreaks, then DENV-4 might be in the pipeline to take the lead in future outbreaks in Myanmar.

ACKNOWLEDGMENTS

The authors are grateful to Dr. Myint-Myint Thein, Medical Superintendent of Mandalay Children’s Hospital, for the collection of samples from the hospitalized patients, and to the WHO Country Office in Myanmar for providing the bennium budget for the years 2006/2007 and for conducting the ELISA experiments. The molecular epidemiological study was supported by a Grant-in-Aid for Scientific Research (No. 18406017 and 21256004) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan and the Program of Founding Research Centers for Emerging and Re-emerging Infectious Diseases MEXT Japan, the Global COE Program, the 21st century COE Program MEXT Japan, and the JSPS Core University Program.

The authors also appreciate the valuable scientific suggestions of Corazon Cerilla Buerano and the support of the members of the Department of Molecular Epidemiology and the Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki City, Japan.

POTENTIAL CONFLICT OF INTEREST

We declare no conflicts of interest.

REFERENCES
1. Henchal EA, Putnak JR. The dengue viruses. Clin Microbiol Rev 1990; 3: 376–396.
2. Monath TP. Dengue: the risk to developed and developing countries. Proc Natl Acad Sci U S A 1994; 91: 2395–2400.
3. Guzman MG, Halstead SB, Artsob H, et al. Dengue: a continuing global threat. Nat Rev Microbiol 2010; 8: S7–16.
4. Thu HM, Lowry K, Myint TT, et al. Myanmar dengue outbreak associated with displacement of serotypes 2, 3, and 4 by dengue 1. Emerg Infect Dis 2004; 10: 593–597.
5. Thein S. Dengue haemorrhagic fever in Myanmar. DMR Bull 1991; 5: 1–14.
6. World Health Organization. Dengue Haemorrhagic Fever. Diagnosis, Treatment, Prevention and Control. 2nd ed. Geneva: WHO; 1997.
7. Igarashi A. Isolation of a Singh’s Aedes albopictus cell clone sensitive to Dengue and Chikungunya viruses. J Gen Virol 1978; 40: 531–544.
8. Igarashi A, Mohamed H, Yusof A, et al. Production of type 2 dengue (D2) monoclonal antibody and cell culture derived D2 antigen for use in dengue IgM capture ELISA. Trop Med 1995; 37: 165–173.
9. Klungthong C, Zhang C, Mammen MP Jr, et al. The molecular epidemiology of dengue virus serotype 4 in Bang- kok, Thailand. Virology 2004; 329: 168–179.
10. Lanciotti RS, Calisher CH, Gubler DJ, et al. Rapid detection and typing of dengue viruses from clinical samples by using reverse transcriptase-polymerase chain reaction. J Clin Microbiol 1992; 30: 545–551.
11. Morita K, Tanaka M, Igarashi A. Rapid identification of dengue virus serotypes by using polymerase chain reaction. J Clin Microbiol 1991; 29: 2107–2110.
12. Islam MA, Ahmed MU, Begum N, et al. Molecular characterization and clinical evaluation of dengue outbreak in 2002 in Bangladesh. Jpn J Infect Dis 2006; 59: 85–91.
13. Thompson JD, Gibson TJ, Plewniak F, et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25: 4876–4882.
14. Swofford DL. PAUP*. Phylogenetic Analysis Using Parsimony (* and other methods). Version 4.0b. Sunderland, Massachusetts: Sinauer Associates, 1998.
15. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406–425.
16. Wittke V, Robb TE, Thu HM, et al. Extinction and rapid emergence of strains of dengue 3 virus during an interepi- demic period. Virology 2002; 301: 148–156.
17. Podder G, Breiman RF, Azim T, et al. Origin of dengue type 3 viruses associated with the dengue outbreak in Dhaka, Bangladesh, in 2000 and 2001. Am J Trop Med Hyg 2006; 74: 263–265.
18. Thu HM JA, Han AM, Aye KM, et al. Molecular epi- demiology of dengue 3 viruses in Myanmar (abstract). In: Myanmar Health Research Congress. Yangon, 2008.