Energy of colliders is plotted in terms of the laboratory energy of particles colliding with a proton at rest to reach the same center of mass energy.
Advanced Accelerator Concepts
Massimo.Ferrario@lnf.infn.it

![Graph showing the development of accelerator concepts over time, focusing on beam-driven and laser-driven e+ plasma acceleration. The graph includes milestones such as p storage rings and e+ and/or e- accelerators, with future goals indicating the discovery of Higgs and precision measurements.]
Options towards higher energies

Hadron (p) circular collider

\[p = e \cdot R \cdot B_y \]

- Increase bending field
- SC bend magnet work (FCC-hh)
- Increase radius = size (FCC-hh)

Lepton (e-,e+) circular collider

\[p \propto E_0 \cdot \sqrt{\rho \cdot U_0} \]

- Increase supplied RF vol (FCC-ee)
- Increase radius = size (FCC-ee)
- Increase mass of acc. particle (muon)

Lepton (e-,e+) linear collider

\[p = L \cdot G_{acc} \]

- Increase length (ILC, CLIC)

Compact and Cost Effective....
Future accelerators will require also high quality beams:

- High Luminosity & High Brightness,
- High Energy & Low Energy Spread

\[L = \frac{N_e + N_{e-f}}{4\pi\sigma_x\sigma_y} \]

\[B_n \approx \frac{2I}{\varepsilon_n^2} \]

- N of particles per pulse $\Rightarrow 10^9$
- High rep. rate $f_r \Rightarrow$ bunch trains
- Small spot size \Rightarrow low emittance
- Short pulse ($ps \Rightarrow fs$)
- Little spread in transverse momentum and angle \Rightarrow low emittance
High Gradient Options

Metallic accelerating structures =>
100 MV/m < E_{acc} < 1 GV/m

Dielectric structures, laser or particle driven =>
E_{acc} < 10 GV/m

Plasma accelerator, laser or particle driven =>
E_{acc} < 100 GV/m

Related Issues: Power Sources and Efficiency, Stability, Reliability, Staging, Synchronization, Rep. Rate and short (fs) bunches with small (µm) spot to match high gradients
Lawson-Woodward Theorem

(J.D. Lawson, IEEE Trans. Nucl. Sci. NS-26, 4217, 1979)

The net energy gain of a relativistic electron interacting with an electromagnetic field in vacuum is zero.

The theorem assumes that
(i) the laser field is in vacuum with no walls or boundaries present,
(ii) the electron is highly relativistic ($v \approx c$) along the acceleration path,
(iii) no static electric or magnetic fields are present,
(iv) the region of interaction is infinite,

\[F_{\perp} \approx \frac{eE_x}{\gamma^2} \cos \left(\frac{\omega t}{2\gamma^2} \right) \]
Reflection of plane waves
Reflection of plane waves

Plane wave reflected by a perfectly conducting plane

\[\mathcal{O} = \infty \]

In the plane \(xz\) the field is given by the superposition of the incident and reflected wave:

\[
E(x,z,t) = E_+(x_o,z_o,t_o)e^{i\omega t - ik\zeta} + E_-(x_o,z_o,t_o)e^{i\omega t - ik\zeta'}
\]

\[\zeta = z \cos \theta - x \sin \theta \quad \zeta' = z \cos \theta' + x \sin \theta' \]

And it has to fulfill the boundary conditions: (no tangential \(E\)-field on the surface of the conducting plane)
Reflection of plane waves (a first boundary value problem)

Taking into account the boundary conditions the longitudinal component of the field becomes:

\[E_z(x, z, t) = (E_+ \sin \theta) e^{i\omega t - ik(z \cos \theta - x \sin \theta)} - (E_+ \sin \theta) e^{i\omega t - ik(z \cos \theta + x \sin \theta)} \]

\[= 2iE_+ \sin \theta \sin(kx \sin \theta) e^{i\omega t - ikz \cos \theta} \]
Put a metallic boundary where the field is zero at a given distance from the wall.

Between the two walls there must be an integer number of half wavelengths (at least one).

For a given distance, there is a maximum wavelength, i.e. there is cut-off frequency.

\[\nu \phi_z = \frac{\omega}{k_z} = \frac{\omega}{k \cos \theta} = \frac{c}{\cos \theta} > c \]

It can not be used as it is for particle acceleration.
$v_f \equiv c$
Conventional RF accelerating structures
Max accelerating field: $\tau_{\text{rf}}^{-1/6}$
Stored energy: f^{-3}

A limit on the acceptable Break Down Rate has been set at $< 3 \times 10^{-7}$ per pulse

- Kilpatrick, W. D., Rev. Sci. Inst. 28, 824 (1957).
- A. Grudiev et al., PRST-AB 12, 102001 (2009)
- S. V. Dolgashev, et al. Appl. Phys. Lett. 97, 171501 2010.
- M. D. Forno, et al. PRAB. 19, 011301 (2016).
The E.M. Spectrum of Accelerating Structures
Dielectric Structures

Attoseconds X-ray Science Imaging and Spectroscopy

F.X. Kärtner et al., NIM A 829, 24 (2016)

All laser driven => intrinsic attosecond synchr.,
1 Joule, 1 kHz Cryogenic Yb:YAG Laser
Laser-based THz generation
THz Linac, Optical undulator
Copper Inner Diameter = 940 μm
Fused Silica Inner Diameter = 400 μm

E. Nanni et al., Nat. Comm. 6, 8486 (2015)
Dielectric Wakefield Acceleration

DWA
Dielectric Wakefield Accelerator
GV/m fields in DWA

- High-fields with small ID structures
 - Compressed beam (<25μm)
 - High charge (3nC)
- Beam centroid data
 - Measured Energy loss of 200 MeV
 - 1.3 GeV/m deceleration
 - 2.6 GeV/m peak field
 - Strong agreement with PIC simulations
- Continuous operation of >28hours (>100k shots at 10 Hz rep)
- No signs of damage or performance deterioration

DWA structure:
- $a/b = 150/200 \mu m$
- $L = 15cm$
- Cylindrical, SiO$_2$
Dielectric Laser Acceleration

DLA
Laser based dielectric accelerator
Nature 503, 91-94 (2013).

(c)

Laser pulse energy (mJ)

Maximum energy shift (keV)

Acceleration gradient, G (MeV m⁻¹)

Peak incident electric field, E_0 (GV m⁻¹)

Data
Fit
Simulation: best
Simulation: worst
Noise level

300 MV/m
A combination of DLA modules and optical undulator allows dreaming for a compact table top FEL.

DLA module can be built onto the end of a fiber-optic catheter and attached to an endoscope, allowing to deliver controlled, high energy radiation directly to organs, tumors, or blood vessels within the body.

Electrons with 1–3MeV have a range of about a centimeter, allowing for irradiation volumes to be tightly controlled.
Dielectric Photonic Structure

- Why photonic structures?
 - Natural in dielectric
 - Advantages of burgeoning field
 - design possibilities
 - Fabrication

- Dynamics concerns

- External coupling schemes

Schematic of GALAXIE monolithic photonic DLA
Laser-Structure Coupling: TW

GALAXIE Dual laser drive structure, large reservoir of power recycles

Laser pulses (180 degrees out of phase)
e-beam
Particle acceleration by stimulated emission of radiation: Theory and experiment

Samer Banna,* Valery Berezovsky, and Levi Schachter
Department of Electrical Engineering, Technion, Israel Institute of Technology, Haifa 32000, Israel
(Received 28 June 2006; published 23 October 2006)
Experimental Observation of Direct Particle Acceleration by Stimulated Emission of Radiation

Samer Banna,* Valery Berezovsky, and Levi Schächter

Department of Electrical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
(Received 4 June 2006; published 28 September 2006)

FIG. 3 (color). Raw video images from the electron energy spectrometer. Energy dispersion is in the horizontal direction. (a) Discharge is off in the PASER cell. (b) Discharge is on in the PASER cell. In both cases, \(~1.5\%\) peak-to-peak energy modulation was imparted.
Plasma Wakefield Acceleration
Laser Electron Accelerator

T. Tajima and J. M. Dawson

Department of Physics, University of California, Los Angeles, California 90024

(Received 9 March 1979)

An intense electromagnetic pulse can create a weak of plasma oscillations through the action of the nonlinear ponderomotive force. Electrons trapped in the wake can be accelerated to high energy. Existing glass lasers of power density 10^{16} W/cm2 shine on plasmas of densities 10^{18} cm$^{-3}$ can yield gigaelectronvolts of electron energy per centimeter of acceleration distance. This acceleration mechanism is demonstrated through computer simulation. Applications to accelerators and pulasers are examined.

Acceleration of Electrons by the Interaction of a Bunched Electron Beam with a Plasma

Pisin Chen(a)

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305

and

J. M. Dawson, Robert W. Huff, and T. Katsouleas

Department of Physics, University of California, Los Angeles, California 90024

(Received 20 December 1984)

A new scheme for accelerating electrons, employing a bunched relativistic electron beam in a cold plasma, is analyzed. We show that energy gradients can exceed 1 GeV/m and that the driven electrons can be accelerated from $\gamma_0 mc^2$ to $3\gamma_0 mc^2$ before the driving beam slows down enough to degrade the plasma wave. If the driving electrons are removed before they cause the collapse of the plasma wave, energies up to $4\gamma_0 mc^2$ are possible. A noncollinear injection scheme is suggested in order that the driving electrons can be removed.
Surface charge density

\[\sigma = e n \delta x \]

Surface electric field

\[E_x = -\sigma / \varepsilon_0 = -e n \delta x / \varepsilon_0 \]

Restoring force

\[m \frac{d^2 \delta x}{dt^2} = e E_x = -m \omega_p^2 \delta x \]

Plasma frequency

\[\omega_p^2 = \frac{n e^2}{\varepsilon_0 m} \]

Plasma oscillations

\[\delta x = (\delta x)_0 \cos (\omega_p t) \]
Looking for a plasma target
Principle of plasma acceleration

Laser Wakefield Accelerator (LWFA):
- Drive beam = laser beam

Plasma Wakefield Accelerator (PWFA):
- Drive beam = high energy electron or proton beam

Break-Down Limit? ⇒ Wave-Breaking field:

\[E_{wb} \approx 100 \left[\frac{GeV}{m} \right] \sqrt{n_o \left[cm^{-3} \right]} \]
Principle of plasma acceleration

From Maxwell’s equations, the electric field in a (positively) charged sphere with uniform density n_i at location r is

$$\vec{E}(r) = \frac{q_i n_i}{3 \epsilon_0} r$$

The field is increasing inside the sphere.

Let’s put some numbers

$n_i = 10^{16} \text{ cm}^{-3}$

$R = 0.5$

$E \approx 10 \frac{GV}{m}$
Laser Pulse (200 TW, ~30 fs, \(E_{\text{transv}} \sim \text{TV/m}\))

Plasma electrons
(plasma cell, \(\sim 10^{19} \text{ cm}^{-3}\))
Plasma Wake-Acceleration

Bubble

Laser Pulse \((E_{\text{transv}} \sim TV/m) \)

Plasma electrons
(plasma cell, \(\sim 10^{19} \text{ cm}^{-3} \))
Plasma Wake-Acceleration

Bubble ($E_{long} \sim 100 \text{ GV/m}$)

Laser Pulse ($E_{transv} \sim \text{TV/m}$)

Plasma electrons
(plasma cell, $\sim 10^{19} \text{ cm}^{-3}$)
This accelerator fits into a human hair!
Principle of plasma acceleration

Driven by Radiation Pressure

\[
\left(\frac{\partial^2}{\partial t^2} + \omega_p^2 \right) \frac{n}{n_o} = \frac{c^2}{\lambda} \nabla^2 \frac{a^2}{2}
\]

\[a = \frac{eA}{mc^2} \propto \lambda J^{1/2} \]

Driven by Space Charge

\[
\left(\frac{\partial^2}{\partial t^2} + \omega_p^2 \right) \frac{n}{n_o} = -\omega_p^2 \frac{n_{beam}}{n_o}
\]

\[n_{beam} = \frac{N}{\sqrt{(2\pi)^3 \sigma_r^2 \sigma_z}} \]

LWFA limitations: Diffraction, Dephasing, Depletion
PWFA limitations: Head Erosion, Hose Instability
Linear Wakefields
(R. Ruth / P. Chen 1986)

Accelerating field
Depends on radial position r
Changes between accelerating and decelerating as function of longitudinal position z

Transverse field
Depends on radial position r
Changes between focusing and defocusing as function of longitudinal position z

\[
\mathcal{E}_z \approx -A \left(1 - \frac{r^2}{a^2}\right) \cos(k_p z - \omega_p t)
\]

\[
\mathcal{E}_r \approx 2A \frac{r}{k_p a^2} \sin(k_p z - \omega_p t)
\]

$\pi/2$ out of phase
This works, but the bunch sits on the slope of acceleration → head gets lower energy than tail → energy spread
Regimes: Linear & Non-Linear

FIG. 8. Time-averaged density variation $\delta n/n_0$ (dashed curve) and axial electric field E_z/E_0 (solid curve) in an LWFA driven by a Gaussian laser pulse (pulse is moving to the right, centered at $k_p\xi=0$ with rms intensity length L_{rms}=k_p^-1) for (a) a_0 =0.5 and (b) a_0=2.0.

Linear

Non-Linear
Energy spread compensation with beam loading

Fig. 5: Linear beam loading example: (a) drive bunch density profile (red line) and longitudinal wakefield E_z (green line), (b) same for the witness bunch, (c) same for the drive and witness bunches together. The field of the drive bunch only is shown as the blue line in panel (c). A zoom around the witness bunch is shown in panel (d). The bunches move to the left.
Laser Driven
LWFA
Direct production of e-beam

Electron beam
Chirped Pulse Amplification
Diffraction - Self injection - Dephasing – Depletion
Colliding Laser Pulses Scheme

The first laser creates the accelerating structure, a second laser beam is used to heat electrons.

Theory: E. Esarey et al., PRL 79, 2682 (1997), H. Kotaki et al., PoP 11 (2004)
Experiments: J. Faure et al., Nature 444, 737 (2006)
Colliding Laser Pulses Scheme

The first laser creates the accelerating structure, a second laser beam is used to heat electrons

Theory: E. Esarey et al., PRL 79, 2682 (1997), H. Kotaki et al., PoP 11 (2004)
Experiments: J. Faure et al., Nature 444, 737 (2006)

1st European Advanced Accelerator Concepts Workshop, La Biodola, Isola d'Elba - Italy, June 2-7 (2013)
Colliding Laser Pulses Scheme

The first laser creates the accelerating structure, a second laser beam is used to heat electrons

Trapped electrons

[Image of a laser pulse and electron acceleration]

Acceleration phase

Theory: E. Esarey et al., PRL 79, 2682 (1997), H. Kotaki et al., PoP 11 (2004)
Experiments: J. Faure et al., Nature 444, 737 (2006)

1st European Advanced Accelerator Concepts Workshop, La Biodola, Isola d’Elba - Italy, June 2-7 (2013)

http://loa.ensta.fr/
Inverse Compton Scattering: New scheme

- A single laser pulse
- A plasma mirror reflects the laser beam
- The back reflected laser collides with the accelerated electrons
- No alignment: the laser and the electron beams naturally overlap
- Save the laser energy!
Betatron Radiation Source

Photon energy > 25 keV, investigating dense material, biological materials
Small source size (~ μm), intrinsically high resolution, exhibits spatial resolution
Small divergence (~10 mRad)
Short pulse (~10s fs), suitable for ultrafast dynamics
Bright (>10^9 photons per shot), suitable for single shot imaging
BELLA: BErkeley Lab Laser Accelerator

BELLA Facility: state-of-the-art 1.3 PW-laser for laser accelerator science: >42 J in <40 fs (> 1PW) at 1 Hz laser and supporting infrastructure at LBNL

Critical HEP experiments:
- 10 GeV electron beam from <1 m LPA
- Staging LPAs
- Positron acceleration
Experiments at LBNL use the BELLA laser focused by a 14 m focal length off-axis paraboloid onto gas jet or capillary discharge targets.

Single shot spectra 30 MeV - 11 GeV

Gas jet

Big Laser In

Capillary discharge
4.25 GeV beams have been obtained from 9 cm plasma channel powered by 310 TW laser pulses (15 J)

* C. Benedetti et al., proceedings of AAC2010, proceedings of ICAP2012

Electron beam spectrum

INF&RNO simulation

- **Laser** (E=15 J):
 - Measured longitudinal profile (T₀ = 40 fs)
 - Measured far field mode (w₀ = 53 μm)
- **Plasma**: parabolic plasma channel (length 9 cm, n₀~6-7x10¹⁷ cm⁻³)

W.P. Leemans et al., PRL 2014

	Exp.	Sim.
Energy	4.25 GeV	4.5 GeV
ΔE/E	5%	3.2%
Charge	~20 pC	23 pC
Divergence	0.3 mrad	0.6 mrad
Multistage coupling of independent laser–plasma accelerators

S. Steinke¹, J. van Tilborg¹, C. Benedetti¹, C. G. R. Geddes¹, C. B. Schroeder¹, J. Daniels¹,³, K. K. Swanson¹,², A. J. Gonsalves¹, K. Nakamura¹, N. H. Matlis¹, B. H. Shaw¹,², E. Esarey¹ & W. P. Leemans¹,²
Active Plasma Lens

Magnetic Field (\mathbf{B}_ϕ) vs Force on electrons (\mathbf{F})

e- bunch

Current

HV
Active plasma lens

- Focusing field produced by electric discharge in a plasma-filled capillary
 - Focusing field produced, according to Ampere's law, by the discharge current
 \[B_\phi(r) = \frac{1}{2} \int_0^r \mu_0 J(r') \, dr' \]

- Radial focusing
 - X/Y planes are not dependent as in quads

- Weak chromaticity
 - Focusing force scales linearly with energy

- Compactness
 - Higher integrated field than quad triplets

- Independent from beam distribution
 - Not sensitive to longitudinal/transverse charge profile as in passive plasma lenses

Van Tilborg, J., et al. "Active plasma lensing for relativistic laser-plasma-accelerated electron beams." Physical review letters 115.18 (2015): 184802.
Beam Manipulation
Laser-Plasma-Accelerator LC

Leemans & Esarev. Physics Today (March 2009)
Parameter Set for LPWA LC

Case: CoM Energy (Plasma density)	1 TeV $(10^{17}$ cm$^{-3}$)	1 TeV $(2\times10^{15}$ cm$^{-3}$)	10 TeV $(10^{17}$ cm$^{-3}$)	10 TeV $(2\times10^{15}$ cm$^{-3}$)
Energy per beam (TeV)	0.5	0.5	5	5
Luminosity $(10^{34}$ cm$^{-2}$s$^{-1}$)	2	2	200	200
Electrons per bunch ($\times10^{10}$)	0.4	2.8	0.4	2.8
Bunch repetition rate (kHz)	15	0.3	15	0.3
Horizontal emittance $\gamma\epsilon_x$ (nm-rad)	100	100	50	50
Vertical emittance $\gamma\epsilon_y$ (nm-rad)	100	100	50	50
β^* (mm)	1	1	0.2	0.2
Horizontal beam size at IP σ_x (nm)	10	10	1	1
Vertical beam size at IP σ_y (nm)	10	10	1	1
Disruption parameter	0.12	5.6	1.2	56
Bunch length σ_z (\mu m)	1	7	1	7
Beamstrahlung parameter Υ	180	180	18,000	18,000
Beamstrahlung photons per e, n_γ	1.4	10	3.2	22
Beamstrahlung energy loss δ_E (%)	42	100	95	100
Accelerating gradient (GV/m)	10	1.4	10	1.4
Average beam power (MW)	5	0.7	50	7
Wall plug to beam efficiency (%)	6	6	10	10
One linac length (km)	0.1	0.5	1.0	5
ICAN (European Project)

CAN Coherent Amplification Network

G. Mourou, W. Brocklesby, J. Limpert, T. Tajima, Nature Photonics April 2013
« The future of Accelerator is Fiber »
Beam Driven
PWFA
Blumenfeld, I. et al. *Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator*. *Nature* 445, 741–744 (2007).

Litos, M. et al. *High-efficiency acceleration of an electron beam in a plasma wakefield accelerator*. *Nature* 515, 92–95 (2014).
CONCEPTUAL DESIGN OF THE DRIVE BEAM FOR A PWFA-LC*

S. Pei*, M. J. Hogan, T. O. Raubenheimer, A. Seryi, SLAC, CA 94025, U.S.A.
H. H. Braun, R. Corsini, J. P. Delahaye, CERN, Geneva

Fig. 1: Concept for a multi-stage PWFA Linear Collider.
Table 1: Key Parameters of the Conceptual Multi-Stage PWFA-based Linear Collider

Parameter	Value
Main beam: bunch population, bunches per train, rate	1×10^{10}, 125, 100 Hz
Total power of two main beams	20 MW
Drive beam: energy, peak current and active pulse length	25 GeV, 2.3 A, 10 μs
Average power of the drive beam	58 MW
Plasma density, accelerating gradient and plasma cell length	1×10^{17} cm$^{-3}$, 25 GV/m, 1 m
Power transfer efficiency drive beam \rightarrow plasma \rightarrow main beam	35%
Efficiency: Wall plug \rightarrow RF \rightarrow drive beam	$50\% \times 90\% = 45\%$
Overall efficiency and wall plug power for acceleration	15.7%, 127 MW
Site power estimate (with 40MW for other subsystems)	170 MW
Main beam emittances, x, y	2, 0.05 mm-mrad
Main beam sizes at Interaction Point, x, y, z	0.14, 0.0032, 10 μm
Luminosity	3.5×10^{34} cm$^{-2}$s$^{-1}$
Luminosity in 1% of energy	1.3×10^{34} cm$^{-2}$s$^{-1}$

Fig. 1: Concept for a multi-stage PWFA Linear Collider.
Emittance blow-up is an issue! Use hollow-channel, so no plasma on-axis, no complicated forces from plasma electrons streaming through the plasma but then strong transverse wakefields when beams are misaligned.

Positron Acceleration, FACET

Positrons for high energy linear colliders: high energy, high charge, low emittance.

First demonstration of positron acceleration in plasma (FFTB)

B.E. Blue et al., Phys. Rev. Lett. 90, 214801 (2003)
M. J. Hogan et al. Phys. Rev. Lett. 90 205002 (2003).

Energy gain of 5 GeV. Energy spread can be as low as 1.8%

S. Corde et al., Nature 524, 442 (2015)

![Graph showing energy gain and spread](image)

High-density, compressed positron beam for non-linear PWFA experiments. Energy transfer from the front to the back part of the bunch.

Two-bunch positron beam: First demonstration of controlled beam in positron-driven wake

S. Doche et al., Nat. Sci. Rep. 7, 14180 (2017)

Hollow plasma channel: positron propagation, wake excitation, acceleration in 30 cm channel.

S. Gessner et al. Nat. Comm. 7, 11785 (2016)

![Graph showing energy gain and spread](image)

Measurement of transverse wakefields in a hollow plasma channel due to off-axis drive bunch propagation.

C. A. Lindstrøm et al. Phys. Rev. Lett. 120 124802 (2018).
FLASHForward>>>, DESY

→ unique FLASH facility features for PWFA
- FEL-quality drive and witness beams
- up to 1 MHz repetition rate
- 3rd harmonic cavity for phase-space linearization
 → tailoring of beam current profile
- differentially pumped, windowless plasma sources
- 2019: X-band deflector of 1 fs resolution post-plasma
 (collaboration with FALSH 2, SINBAD, CERN & PSI)
- Future: up to 800 bunches (~MHz spacing) at 10 Hz
 macro-pulse rate, few 10 kW average power.

→ (12.3 ± 1.7) GV/m wakefield generated in 30 mm plasma cell
→ 12.7% total energy loss to plasma wakefield

→ A. Aschikhin et al., NIM A 806, 175 (2016)
SPARC_LAB, Frascati, Italy

Main challenges addressed in this facility: beam quality, beam transport

- 150 MeV drive/witness beam
- FEL experiments
- Resonant LWFA with 200 TW laser
- PWFA

Active Plasma Lens Experiments:

- BELLA, LBNL: J. van Tilborg et al., PRL 115 (2015), 184802
- CLEAR, CERN: C.A. Lindstrom et al., PRL 121 (2018), 194801

Plasma dechirper:

Longitudinal phase-space manipulation with the wakefield induced in plasma by the beam itself.

From 0.6% to 0.1% energy spread

V. Shpakov et al., PRL 122 (2019), 114801

FLASHForward, DESY: R. D’Arcy et al., PRL 122 (2019), 034801
Proton-driven Plasma Wakefield Acceleration Collaboration: Accelerating e⁻ on the wake of a p⁺ bunch
Reasons for proton bunch driver

Available proton bunches carry large amounts of energy:
- CERN SPS proton bunch: $3 \cdot 10^{11}$ ppb at 400 GeV/c \rightarrow 19.2 kJ
- CERN LHC proton bunch: $1 \cdot 10^{11}$ ppb at 7 TeV/c \rightarrow 112 kJ

\Rightarrow Overcome the need of staging!

Parameters:
- single proton bunch
- $\sigma_z = 100$ μm,
- $E = 1$ TeV,
- population: $1 \cdot 10^{11}$ ppb

Witness bunch energy along the plasma

A. Caldwell et al., Nature Phys. 5, 363–367 (2009)
Discharge configuration II

preliminary tests with the AWAKE 3 meter test tube at IC - 2016

very promising results
... reliable, low jitter plasma formation

scalability of electric circuit for plasmas > 10 m seem achievable...
Self-modulation in plasma

CERN SPS Proton bunch

\[\sigma_r \approx 200 \mu m \rightarrow n_{pe} \approx 7 \cdot 10^{14} cm^{-3} \]

\[\sigma_z \approx 7 \text{ cm} \gg \lambda_{pe} \]

max. \(\sim 20 \text{ MV/m} \)

Growth mechanism

- Initial transverse wakefields
- Periodic focusing/defocusing fields
- Radial bunch and plasma density modulation
- Stronger wakefields
- Full modulation

Self-Modulation instability (SMI)

- Resonant wakefield excitation
- Phase of the micro-bunch train and of the wakefields VARIRES from event to event

N. Kumar et al., Phys. Rev. Lett. 104 (25), 255003 (2010)
A. Pukhov et al., Phys. Rev. Lett. 107 (14), 145003 (2011)
AWAKE Run 1 (2016-2018)

M. Turner et al., Phys. Rev. Lett. 122, 054801 (2019)

Time-resolved imaging:
- The proton bunch self-modulates in plasma
- Focusing phase → micro-bunches
- Frequency of the modulation = ω_{pe}

Time-integrated, transverse imaging:
- Defocusing phase → large halo
- Wakefields grow along the plasma

19 MeV electrons can be injected into the wakefields and accelerated to GeV-energies

PROOF OF PRINCIPLE!
AWAKE Run 2 (2021→) setup & final goal

Acceleration of externally injected electron bunch to GeV-energies while preserving the initial quality

Aiming for HEP application!

P. Muggli, J. Phys.: Conf. Ser. 1596 012008 (2020)
Figure 1: Schematic layout of a 2 TeV CoM electron-positron linear collider based on a modulated proton-driven plasma wakefield acceleration.
The near future
Quality: Example Energy Spread

\[\sigma_\gamma = \frac{\sqrt{3}}{2} k_p \sigma_z^2 \]

\[\sin \phi_w \propto \frac{q_w}{Q_d} \]

\[\varepsilon_{n,rms} = \sqrt{\left(\gamma^2 \right) \left(\sigma_\gamma^2 \sigma_x^2 \sigma_x' + \varepsilon_{rms}^2 \right) } \]

M. Migliorati et al, Physical Review Special Topics, Accelerators and Beams 16, 011302 (2013)
K. Floettmann, PRSTAB, 6, 034202 (2003)
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 653782.
PRESENT EXPERIMENTS

Demonstrating 100 GV/m routinely

Demonstrating GeV electron beams

Demonstrating basic quality

EuPRAXIA INFRASTRUCTURE

Engineering a high quality, compact plasma accelerator

5 GeV electron beam for the 2020’s

Demonstrating user readiness

Pilot users from FEL, HEP, medicine, ...

PRODUCTION FACILITIES

Plasma-based linear collider in 2040’s

Plasma-based FEL in 2030’s

Medical, industrial applications soon
The EuPRAXIA Project

- First ever international design of a plasma accelerator facility.

- Challenges addressed by EuPRAXIA since 2015:
 - How can plasma accelerators produce usable electron beams?
 - For what can we use those beams while we increase the beam energy towards HEP and collider usages?

- CDR for a distributed research infrastructure funded by EU Horizon2020 program. Completed by 16+25 institutes.

- Next phase consortium with 40 partners, 10 observers.

- Applied to ESFRI roadmap update 2021 with government support in Sep 2020.

- Successful and and placed on ESFRI roadma.

653 page CDR, 240 scientists contributed
Great News 30.6.2021
Building the first plasma accelerator facility

ESFRI announces new RIs for Roadmap 2021

30.06.2021 PRESS RELEASE

ESFRI announces the 11 new Research Infrastructures to be included in its Roadmap 2021

€4.1 billion investment in excellent science contributing to address European challenges

After two years of hard work, following a thorough evaluation and selection procedure, ESFRI proudly announces the 11 proposals that have been scored high for their science case and maturity for implementation and will be included as new Projects in the ESFRI 2021 Roadmap Update.

About the ESFRI Roadmap

ESFRI has established a European Roadmap for Research Infrastructures (new and major upgrades, pan-European interest) for the next 10-20 years, stimulates the implementation of these facilities, and updates the roadmap as needed. The ESFRI Roadmap arguably contains the best European science facilities based on a thorough evaluation and selection procedure. It combines ESFRI Projects, which are new Research Infrastructures in progress towards implementation, and ESFRI Landmarks successfully implemented Research Infrastructures enabling excellent science.
The Consortium Members for the Next Phase
(from 16 to 40)

40 Member institutions in:

- **Italy** (INFN, CNR, Elettra, ENEA, Sapienza Università di Roma, Università degli Studi di Roma “Tor Vergata”)
- **France** (CEA, SOLEIL, CNRS)
- **Switzerland** (EMPA, Ecole Polytechnique Fédérale de Lausanne)
- **Germany** (DESY, Ferdinand-Braun-Institut, Fraunhofer Institute for Laser Technology, Forschungszentrum Jülich, HZDR, KIT, LMU München)
- **United Kingdom** (Imperial College London, Queen’s University of Belfast, STFC, University of Liverpool, University of Manchester, University of Oxford, University of Strathclyde, University of York)
- **Poland** (Institute of Plasma Physics and Laser Microfusion, Lodz University of Technology, Military University of Technology, NCBJ, Warsaw University of Technology)
- **Portugal** (IST)
- **Hungary** (Wigner Research Centre for Physics)
- **Sweden** (Lund University)
- **Israel** (Hebrew University of Jerusalem)
- **Russia** (Institute of Applied Physics, Joint Institute for High Temperatures)
- **United States** (UCLA)
- **CERN
- **ELI Beamlines**
The Consortium Observers for the Next Phase
(from 25 to 10, Consortium Agreement signed)

10 Observer institutions in:
- **France** (Amplitude Technologies, Thales LAS France SAS)
- **Germany** (Helmholtz-Institut Jena)
- **Poland** (University of Warsaw)
- **United States** (LBNL)
 - **China** (Shanghai Jiao Tong University)
 - **Japan** (Institute for Molecular Science, Osaka University, Kansai Photon Science Institute, RIKEN SPing-8 Center)
EuPRAXIA site studies:
• Design study is site independent
• Five possible sites have been discussed so far
• We invite the suggestions of additional sites
A Free Electron Laser is a device that converts a fraction of the electron kinetic energy into coherent radiation via a collective instability in a long undulator.

\[\lambda_{rad} \approx \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{K^2}{2} + \gamma^2 \vartheta^2 \right) \]

(Tunability - Harmonics)
FEL is a well established technology.
(But a widespread use of FEL is partially limited by its size and costs)

New facilities are expected to begin operation in the next 5 years in the USA and China, and the UK is considering the scientific case for an XFEL.

Julia Georgescu
In the Energy region between Oxygen and Carbon K-edge 2.34 nm – 4.4 nm (530 eV -280 eV) water is almost transparent to radiation while nitrogen and carbon are absorbing (and scattering).

Coherent Imaging of biological samples, VIRUSES and cells living in their native state
Possibility to study dynamics
~10^{11} photons/pulse needed

Courtesy F. Stellato, UniToV
First Lasing with LWFA at SIOM

Wang, Wentao, et al. "Free-electron lasing at 27 nanometres based on a laser wakefield accelerator." Nature 595.7868 (2021): 516-520.

Observation of FEL radiation @ 27 nm using LWFA

Electron beam generated from a 200 TW (I~4×10^{18} W/cm²) laser focused on a gas-jet

Peak energy ~ 490 MeV, 0.5% spread (measured), emittance 0.5 um (estimated)

Radiation energy from 0.5 to 150 nJ
First Beam Driven SASE-FEL Lasing at SPARC_LAB (May 2021)

Submitted to Nature
Conclusions

• Accelerator-based High Energy Physics will at some point become practically limited by the size and cost of the proposed e^+e^- colliders for the energy frontier.

• **Novel Acceleration Techniques and Plasma-based, high gradient accelerators open the realistic vision of very compact accelerators for scientific, commercial and medical applications.**

• The R&D now concentrates on **beam quality, stability, staging and continuous operation.** These are necessary steps towards various technological applications.

• The progress in advanced accelerators benefits from strong synergy with general advances in technology, for example in the laser and/or high gradient RF structures industry.

• **A major milestone is an operational, 1 GeV compact accelerator. Challenges in repetition rate and stability must be addressed. This unit could become a stage in a high-energy accelerator.**

• ➔ **PILOT USER FACILITIES Under Construction**