The Impact of Microrelief Forms on Mobility of Terrain Vehicles

M Rybansky, F Dohnal, J Rada
Faculty of Military Technology, University of Defence in Brno, Kounicova 65, 612 00 Brno, Czech Republic

E-mail: marian.rybansky@unob.cz

Abstract. When deploying off-road vehicles in military and rescue operations, it is necessary to analyse the characteristics of the terrain, its segmentation and obstacles, that can significantly eliminate the movement of this technique. The mobility of off-road vehicles depends on many factors such as terrain relief, soil, vegetation, water, road network, settlement unit structure, meteorological conditions, etc. The goal of this paper is to identify the critical micro-relief forms in the selected test area, which can be important for the transportation analyses and cartographic visualization, especially for the military and rescue operations management during the crisis situations and natural disasters such as floods, fires, storms, military operations, etc. Both of the relief parameters and technical vehicles parameters were considered for the cross-country movement analysis to predict the GO, SLOW GO and NO GO areas as a part of crisis management support.

1. Introduction
Geographical support and cartographic visualization is very important and indispensable element in solution of prediction system and resolution of elimination of a crisis situation impact. In the case when we are not able to use some segments on the roads (damaged or destroyed objects, traffic jam, etc.) we must to provide the complete cross-country mobility analyses to solve the transportation problems.

The main terrain elements, which determine the cross-country movement, are relief slopes and microrelief forms. Both of the relief parameters and technical vehicles parameters are important for the cross-country pass ability analyses. These analyses are often concentrated on predicting the obstacles to support the safe movement of terrain vehicles. There is a large body of literature describing the general methodologies of the cross-country movement evaluation using terrain data [1-23].

Microrelief forms are very important for the movement of off-road vehicles. Often, they cannot be detected from digital terrain models if the density of elevation points is 10 m or more.

The essential forms and parameters to the assessment of microrelief forms impact to cross-country mobility are as follows (see table 1): slope gradient of microrelief form; height of terrain stair; width of microrelief form, e.g. of scarp, trench, watercourse; selected technical parameters of vehicle.
Table 1. Parameters of evaluation of the essential microrelief forms.

N.	Name	Form design	Evaluating parameters
1	embankment	![embankment diagram]	- slope gradients (α_1, α_2)
- embankment height (h)
- embankment width (s) |
| 2 | Excavation, delve, crater | ![excavation diagram] | - slope gradients (α_1, α_2)
- excavation depth (h)
- excavation width (s) |
| 3 | Terrain stair (climbing) | ![stair diagram] | - stair height (h) |
| 4 | Terrain stair (descent) | ![stair diagram] | - stair height (h) |
| 5 | trench, scarp (passing) | ![trench diagram] | - trench width (s) |

Figure 1. This figure shows one of the basic terrain profile – bank (causeway).

Figure 2. This figure shows a watercourse trench.

Figure 3 shows the basic terrain profile parameters of a microrelief form expressed by the length elements l_i, height segments h_i and longitudinal slope α_i.
We can describe terrain segments using the relief profiles, which may be continuously, randomly rough, may consist solely of a single discrete obstacle, uniformly spaced obstacles of a specific height or may be anything in between.

The other possibility is to divide a terrain area into partial areas and to describe each of them by an assignment of value characterizing it (longitudinal and transversal gradient α, β, coefficient of rolling resistance – f and coefficient of static friction – ϕ). The less these areas will be, the more accurate calculations from the point of view of vehicle movement can be made, see figure 4.

At these elementary areas we can calculate their longitudinal gradient (α) in the direction of vehicle route and also their transversal (side) inclination (β), see figure 5.
Figure 5. Calculation of longitudinal and transversal gradient in vehicle route direction.

If we will ponder the general orientation of plane in fixed grid system, then the longitudinal gradient in direction of vehicle route determined from the nearest utmost points of matrix model will be according to figure 5.

\[\alpha = \arctan\left(\frac{z_C - z_B}{x_C - x_B} \right) \]

(1)

or

\[\alpha = \arcsin\left(\frac{z_C - z_B}{BC} \right) \]

(2)

at the calculation of transversal inclination by use of the slant range of vehicle route in terrain and the truncation of terrain relief roughness between points \(B \) and \(C \).

The transversal inclination will be according to figure 4:

\[\beta = \arctan\left(\frac{z_B - z_A}{y_B - y_A} \right) \]

(3)

or

\[\beta = \arcsin\left(\frac{z_B - z_A}{AB} \right) \]

(4)

at the calculation of transversal inclination by use of slant range between points \(A \) and \(B \).

2. Data and Methods

Different geographical data sources can be used to carry out terrain analyses and identify the terrain obstacles and microrelief forms as well. One method, which can be used during operation for terrain
analyses, is using a topographic map. This type of maps is intended for assessment of landscape in relation to planning, commanding and controlling the military or rescue operations, for orientation and navigation in the terrain or for study of military-geographical characteristics of territory in generally.

Members of the Army of the Czech Republic (ACR) can use the most detailed map product - the Topographic Map in a scale 1:25000 (TM 25), see figure 6, for the purpose of terrain analyses on the tactical level. The terrain relief is represented on this map by contour lines, elevation points and other objects that represent microrelief forms. The content of the map is subject of the cartographic generalization and this data source is not suitable for a detailed terrain analysis such as the identification of microrelief objects. Nowadays, it is more efficient to use modern information technologies for a terrain analysis, process digital geographic data and creating the thematic map products. The source digital database for creating the topographic maps in ACR is Digital Landscape Model 25 (DMU 25), see figure 7. This data creates a cartographic model at a scale of 1:25000. For this reason, this data is already generalized – the position of microrelief objects on the map may differ in the actual position or some microrelief objects are not displayed in the map.

Information about relief and local elevation conditions can be obtained from the digital elevation models. In the Czech Republic, there is an elevation model - Digital Terrain Model of the Czech Republic of the 5th generation (DMR 5), which by its declared total mean height error 0.18 meters can capture effectively the detailed diversity of terrain relief.

To evaluate the terrain relief features and identify microrelief objects can be used DMR 5 because this model cover whole territory of the Czech Republic and it is the most accurate from available elevation models. Based on the previous study [24], the DMR 5 was converted from the heights of discrete points format to a raster format of pixel size 0.5 meter. SW ArcGIS and its tools for spatial analyses Arc Toolbox Spatial Analysis were used to identify microrelief terrain obstacles. The Slope tool calculates the first derivative value of the input surface on a cell-by-cell basis (see figure 8 and figure 9). The Curvature tool calculates the second derivative value of the input surface on a cell-by-cell basis. For the microrelief objects identification was used profile curvature (horizontal curvature), see figure 10 and figure 11. For the verification of above-mentioned method, the part of military training area was chosen (1.46 square kilometre), where natural and artificial microrelief objects occur.

![Figure 6. Cut-out of TM 25.](image1)

![Figure 7. Cut-out of TM 25 with microrelief forms from DMU 25 (embankment – green line and terrain stair – violet line).](image2)
In the figure 8, it is possible to identify the terrain forms in places of rapid change of slope value. Figure 9 shows that not all microrelief object are included in DMU 25.

In the figure 10, it is possible to identify the terrain forms in places, where profile curvature reaches the local minima (convex curvature) and maxima (concave curvature). Figure 11 shows that not all microrelief objects are included in DMU 25 as well as in figure 9.

Another task of the analysis is to express influence of microrelief objects on their overcoming by military vehicles. The parameters of terrain shapes were compared with technical parameters of two selected wheeled vehicle types (table 2) – rate of climbing ability versus terrain inclination value and wheelbase and ground clearance versus profile curvature, see [5].

Table 2. Technical parameters of selected wheeled military vehicles.
Rate of climbing (°)

Land Rover Defender 110
Tatra 815 8x8

Based on the previous research, knowledge of the DMR 5 accuracy and on vehicle field tests, a possible error corresponding to 10% of the output value has to be included in the calculation. The calculated values of rate of climbing (RC) are classified as follows:

- impassable microrelief forms \(S \geq RC + 0.1RC \)
probably impassable microrelief forms \((RC + 0.1RC < S > RC - 0.1RC) \)

- passable microrelief forms \((S \leq RC - 0.1RC) \)

where \(S \) is a slope value, see figures 12, 13.

The research and field tests show the dependence of the terrain profile curvature value on the angle defined by the wheelbase and the ground clearance. The limit values of terrain profile curvature (LC) for both vehicles were calculated with reliability of 0.992. Limit values of profile curvature cannot be public due to confidentiality. The calculated values of profile curvature (PC) are classified as follows:

- impassable microrelief forms \((PC \geq LC + 0.1LC) \)
- probably impassable microrelief forms \((LC + 0.1LC < PC > LC - 0.1LC) \)
- passable microrelief forms \((PC \leq LC - 0.1LC) \)

The follows figures 14 and 15 show classified terrain profile curvature.

3. Results
Using the above-mentioned methodology, ARC GIS SW and digital relief model DMR 5, we created the relief slope coverage of the cross-country mobility map 1:25 000 – CCM 25, see figure 16.
In the next phase of the research, we searched for such microrelief objects, which can cause by their profile curvature and slope characteristics the vehicle to get stuck, see figure 17 and figure 18.

We found that DMR 5 captures microlief shapes more accurately than topographic maps, see figure 19 and figure 20.
4. Conclusion

The cross-country mobility research as a part of the terrain analyses is very important, especially during natural disasters and crises situations, when some road segments and objects can be damaged, destroyed or crowded. In these cases, we must use the special rescue vehicles and know which terrain areas are passable and which not to ensure the rescue personnel, vehicles and optimize the rescue procedure. The cross-country mobility methodology is possible to exploit for terrain rescue vehicle navigation adapting the procedure for each type of vehicle knowing its technical parameters. For the future research approach it will be necessary to create more accurate databases, especially elevation databases with the precision corresponding with the dimensions and other vehicle technical parameters – see also [23]. Another problem is effectively to link up the cross-country movement digital map with the GPS navigation vehicle system and to train the vehicle crews to effectively use these systems.

Acknowledgements

This paper is a particular result of the defence research intentions DZRO K-210 NATURENVIR, DZRO K-202 MOBAUT, DZRO K-110 PASVŘ II, NATO-STO and Support Project (CZE-AVT-2019), Specific research project 2019-2020 at the department K-210 managed by the University of Defence in Brno; and FY20 FTAS Project: Evaluation of Czech Republic Tree Data as a Basis for a New US Forest Maneuverability Model managed by the CRREL, USA.

References

[1] Ahlvin R B and Haley P V 1992 NRMM II Users Guide vol 1, 2, ed Army corps of engineers
[2] STANAG 3992 - AGeoP-1 Terrain Analyses (Field Manual No. 5-33) 1990 (Washington, DC: Headquarters Department of the Army)
[3] Cibulova K 2017 Mobility during Crisis Situations Key Engineering Materials 2017 755 pp 236–241
[4] Cibulova K 2017 The Mobility during Crisis Situations Structural and Mechanical Engineering for Security and Prevention ICSMESP 2017 (Switzerland: Trans Tech Publications) pp 236–241
[5] Dohnal F Hubacek M and Simkova K 2019 Detection of Microrelief Objects to Impede the Movement of Vehicles in Terrain ISPRS International Journal of Geo-Information 8 p 16
[6] Hoskova-Mayerova S Talhofer V Hofmann A and Kubicek P 2013 Spatial database quality and the potential uncertainty sources Studies in Computational Intelligence: Advanced Dynamic Modeling of Economic and Social Systems (Berlin Hedelberg: Springer-Verlag) pp 127–142
[7] Talhofer V and Hoskova-Mayerova S 2019 Method of Selecting a Decontamination Site Deployment for Chemical Accident Consequences Elimination: Application of Multi-Criterial Analysis ISPRS International Journal of Geo-Information 8 p 21
[8] Hubacek M Kovarik V Talhofer V Rybansky M Hofmann A Brenova M and Ceplova L 2016 Modelling of geographic and meteorological effects on vehicle movement in the open terrain Central Europe Area in View of Current Geography (Brno: Masarykova univerzita) pp 149–159
[9] Nohel J Stodola P and Flasar Z 2019 Model of the Optimal Maneuver Route Path Planning for Autonomous Vehicles (London: IntechOpen) pp 79–100
[10] Pokonieczny K 2017 Automatic military passability map generation system 2017 International Conference on Military Technologies (ICMT) (IEEE) pp 285-292
[11] Pokonieczny K 2018 Methods of Using Self-organising Maps for Terrain Classification, Using an Example of Developing a Military Passability Map Dynamics in Gisscience Lecture Notes in Geoinformation and Cartography I Ivan, J Horák and T Inspektor (Cham: Springer International Publishing) pp 359-371
[12] Rybansky M 2007 Effect of the geographic factors on the cross country movement during military operations and the natural disasters *Int. Conf. on Military Technologies* (Brno: University of Defence) pp 590–596

[13] Rybansky M 2009 *The cross–country movement – The impact and evaluation of geographic factors* (Brno: Akademickie nakladatelstvi CERM) p 113

[14] Rybansky M 2010 *The cross–country movement – Modeling* (Brno: Akademickie nakladatelstvi CERM) p 100

[15] Rybansky M 2014 Modelling of the optimal vehicle route in terrain in emergency situations using GIS data *8th International Symposium of the Digital Earth (ISDE8)* (Kuching, Sarawak: Institute of Physics Publishing) p 6

[16] Rybansky M and Vala M 2009 Relief Impact on Transport *Int. Conf. on Military Technologies 2009* (Brno: University of Defence) p 9

[17] Rybansky M and Vala M 2009 Analysis of relief impact on transport during crisis situations *Moravian geographical reports* 17 pp 19–26

[18] Rybansky M and Vala M 2009 Geographic Conditions of Military Transport Using Roads and Terrain *Int. Conf. on Military Technologies 2009* (Brno: University of Defence) p 9

[19] Stodola P and Mazal J 2010 Optimal Location and Motion of Autonomous Unmanned Ground Vehicles *WSEAS Transactions on signal processing* 6 pp 68–77

[20] Stodola P and Mazal J 2010 Autonomous Motion of Unmanned Ground Vehicles in General Environment *9th WSEAS International Conference Recent Advances in Signal Processing, Robotics and Automation (ISPRA 2010)* (Cambridge: University of Cambridge) pp 226–231

[21] Shoop S A Richmond P W and Lacombe J 2006 Overview of cold regions mobility modeling at CRREL *Journal of Terramechanics* 43 p 26

[22] Mason G L Gates B Q and Moore V D 2012 Determining forces required to override obstacles for ground vehicles *Journal of Terramechanics* 49 pp 191–196

[23] Taheri S Sandu C Taheri E P Pinto E and Gorsich D 2015 A technical survey on Terramechanics models for tire–terrain interaction used in modeling and simulation of wheeled vehicles *Journal of Terramechanics* 57 p 22

[24] Hubacek M Kratochvil V Zerzan P Ceplova L and Brenova M 2015 Accuracy of the new generation elevation models *2015 International Conference on Military Technology (ICMT)* (Brno: University of Defence) pp 289–294