Topical Review

Ion transport and structural design of lithium-ion conductive solid polymer electrolytes: a perspective

Bo Tong, Ziyu Song, Hao Wu, Xingxing Wang, Wenfang Feng, Zhibin Zhou and Heng Zhang

Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074 Hubei, People’s Republic of China

E-mail: hengzhang2020@hust.edu.cn

Received 30 September 2022, revised 24 October 2022
Accepted for publication 27 October 2022
Published 17 November 2022

Abstract
Solid polymer electrolytes (SPEs) possess several merits including no leakage, ease in process, and suppressing lithium dendrites growth. These features are beneficial for improving the cycle life and safety performance of rechargeable lithium metal batteries (LMBs), as compared to conventional non-aqueous liquid electrolytes. Particularly, the superior elasticity of polymeric material enables the employment of SPEs in building ultra-thin and flexible batteries, which could further expand the application scenarios of high-energy rechargeable LMBs. In this perspective, recent progresses on ion transport mechanism of SPEs and structural designs of electrolyte components (e.g. conductive lithium salts, polymer matrices) are scrutinized. In addition, key achievements in the field of single lithium-ion conductive SPEs are also outlined, aiming to provide the status quo in those SPEs with high selectivity in cationic transport. Finally, possible strategies for improving the performance of SPEs and their rechargeable LMBs are also discussed.

Keywords: solid-state lithium metal batteries, solid polymer electrolytes, single lithium-ion conductor, conductive lithium salts, polymer matrices
Future Perspectives
Solid-state lithium metal batteries (SSLMBs) utilizing solid polymer electrolytes (SPEs) are possible solutions to meet the stringent demands in inherent safety and energy densities for next-generation battery technologies. Structural design of lithium salts, polymer matrices, and polyanions are of essential importance in regulating the fundamental properties of SPEs, and thereby enhancing the overall performances of SPE-based SSLMBs.

1. Introduction

Lithium-ion batteries (LIBs) are able to carry electric energy in chemical forms by virtue of the reversible (de)intercalation of Li⁺-ions (Li⁺) into hosting materials, which are known as ‘rocking-chair batteries’ [1]. Amongst existing rechargeable battery technologies, LIBs have achieved widespread applications spanning from portable electronic devices (i.e. computer, communication, and consumer electronics) to electric vehicles, due to their high operating voltage (ca. 4.0 V vs. Li/Li⁺) and energy density (ca. 300 Wh kg⁻¹), relatively long cycle life (>300 cycles), and negligible memory effect [2].

The prevailing LIBs are built with nonaqueous liquid electrolytes comprising lithium hexafluorophosphate (LiPF₆) as conductive salt and organic carbonates (e.g. ethylene carbonate (EC), and methyl ethyl carbonate, etc) as solvents, with the addition of small amounts of functional electrolyte additives (i.e. vinylene carbonate, and fluoroethylene carbonate, etc) [3, 4]. Generally, the as-formulated non-aqueous liquid electrolytes present sufficient ionic conductivities (ca. 10⁻² S cm⁻¹) at room temperature and excellent chemical and electrochemical stabilities (>4.2 V vs. Li/Li⁺) [3], enabling the operation of LIBs with decent power capability. However, the LiPF₆-based nonaqueous liquid electrolytes show poor chemical stability, exacerbating the cycling performance of LIBs during long-term operation, particularly at elevated temperatures (>40 °C) [5]. Effectively, at the industrial level, LiPF₆ is produced via the reaction of lithium fluoride (LiF) and phosphorus pentfluoride (PF₅) in anhydrous hydrogen fluoride solvent [6], in which trace amounts (ppm level) of protic impurities (e.g. hydrogen fluoride) are inevitably inherited from the preparative procedures. It is reported that these protic impurities are responsible for triggering the chemical decompositions of LiPF₆-based electrolyte solutions, generating highly toxic substances, such as phosphorus trifluoride (O=PF₃), and organophosphorus compounds (O=PF₂OR, R=alkyl) (figure 1(a)) [5].

In addition to the chemical instability of LiPF₆, low flash points (e.g. T_flash = 18 °C for DMC [7]) and potential leakage of organic carbonates also impose critical concerns on the inherent safety of electrolyte materials and their rechargeable batteries [7], particularly with the implementation of high-energy electrode materials such as lithium metal and its alloy [8]. Therefore, traditional LIB technologies are unlikely to meet the requirements of the emerging fields with increasing energy density (>400 Wh kg⁻¹) and safety demands, such as power and energy storage and smart grids [9]. Thus, there is an urgent need to develop next-generation battery technologies with low-cost, high-energy density, long cycle lifespan, and high intrinsic safety [10].

With the replacement of organic liquid electrolytes with solid-state electrolytes, solid-state lithium metal batteries (SSLMBs) have been deemed as a feasible solution to enhance the inherent safety and energy density of the contemporary LIBs, due to the elimination of volatile components and the possible utilization of high-capacity electrode materials (e.g. lithium metal electrode: 3860 mAh g⁻¹; figure 1(b)) [11]. Presently, research activities related to SSLMBs have become increasingly important [12].

In 1973, Wright and co-workers [13] reported that the mixtures of poly(ethylene oxide) (PEO) and several alkali metal salts (such as potassium thiocyanate (KSCN) and sodium thiocyanate (NaSCN)) afford ionically conductive plastic materials at higher temperatures (>60 °C) [13]. Later, Armand et al [14] realized the profound significance and potential application of these ionically conductive polymers for developing SSLMB technologies, thus proposing their utilization as solid electrolytes for SSLMBs. Briefly, lithium-ion conductive SPEs possess several intriguing merits, including greatly enhanced safety, ease of processing, simplicity of cell construction and assembly, and so on [15]. Therefore, the research on SPE-based SSLMBs has attracted extensive attention from the academic and industrial sectors (figure 1(c)).

Polymer electrolytes (PEs) are a kind of ionic conductive material utilizing high molecular weight polymer as a matrix. Generally, according to the chemical compositions, PEs can be sorted into four different families, including solid polymer electrolytes (SPEs), composite solid polymer electrolytes (CSPEs), plasticized polymer electrolytes (PPEs, liquid plasticizer content <50 wt%), and gel polymer electrolytes (GPEs, liquid plasticizer content >50 wt%) (figure 1(d)) [16]. Generally, the chemical compositions of SPEs are relatively simple, containing only lithium salts and polymer matrices. For CSPEs, a certain amount of inorganic solid fillers is introduced to improve the transport properties of lithium ions and the mechanical strength of electrolyte membranes [17]. The latest research progresses in this domain have been scrutinized in relevant literature [18, 19]. For PPEs and GPEs, liquid plasticizers are added to promote the segmental motions of polymers and better carry ionic species. Effectively, these two kinds of PEs behave mostly like conventional liquid electrolytes depending on the contents of liquid components [16]. Note that the introduction of small molecule compounds accelerates chemical and electrochemical parasitic reactions at the interphases/interfaces between electrolyte and electrode materials, decreasing the cycle life of corresponding SSLMBs, despite their capability in improving ionic conductivities [20].

In this perspective, recent advances in lithium-ion conductive SPEs are briefly discussed, with main attention paid to the ion transport in SPEs, emerging conductive lithium salts, and polymer matrices utilized. In addition, the status quo of a special type of SPE with lithium-ion transference number (T_Li⁺)
close to unity, single lithium-ion conductive SPEs (SLIC-SPEs), is also reviewed. Design strategies and future directions for developing robust SPEs and their SSLMBs are provided.

2. Ion transport in SPEs

A comprehensive understanding of the transport phenomena of ion species is of supreme importance for designing high-performant SPEs. Figure 2(a) outlines several key findings in elucidating the ion transport in SPEs at the microscopic level over the past 40 years. As early as the 1970s, Armand et al [14] anticipated that the segmental motion of polymeric backbones is related to the transport of ion species, particularly for Li$^+$ cations, as shown in figure 2(b). In the 1980s, with solid-state nuclear magnetic resonance techniques, Berthier et al [21] demonstrated that ion transport of a PEO-based SPE system (typically ‘salt in polymer’) occurs primarily in the amorphous region therein. These early studies provide implicit microscopic images of the ion conduction processes in SPEs [22, 23].

From another perspective, Stoeva et al [24] proposed that the crystalline phases of PEO-based SPEs are ionically conductive with well-defined microstructures (figure 2(b)). For the crystalline LiAsF$_6$/PEO electrolytes, relatively rapid diffusion of Li$^+$ ions is realized via the hopping of ionic species without involving the segmental motion of PEO chains (diffusion paths indicated by a pink circle in figure 2(b)), the PEO matrix remains ‘immobilized’ during the ionic conduction processes. In sharp contrast, the ionic conductivities of crystalline LiAsF$_6$/PEO electrolytes are nearly one order of magnitude higher than those of amorphous LiAsF$_6$/PEO electrolytes [24]. Yet, these crystalline SPEs are likely to achieve high ionic conductivities with low molecular weight PEO (< 5000 g mol$^{-1}$), which could hardly afford self-standing films and thereby hinder their practical applications in lithium batteries [24–26].

Since the 1990s, Angell et al [27] systematically studied the ion transport behaviors of the PEO-based electrolyte systems and revealed that the Li$^+$ transport is highly coupled with the movement of polymer chain segments. To quantify the relational degree between the ion transport behavior and the movement of polymer chain segments, the concept of decoupling indices (R_{τ}) was proposed, as mathematically described by equation (1):

$$R_{\tau} = \frac{\tau_s}{\tau_{\sigma}}$$

where R_{τ} is the decouple indices, τ_s is the macroscopic structural relaxation time of the matrix glass (in seconds), and τ_{σ} is the conductivity relaxation time (in seconds) [27, 28].

Traditional SPEs comprising polyether-type matrices (e.g. PEO) and common lithium salts (e.g. lithium perchlorate
(LiClO$_4$) are classical ‘coupling’ systems (generally, $R_τ < 1$) [28, 29]. In this scenario, ionic transport is highly correlated with the segmental movement of the polymer chains within the amorphous region (figure 3(c)) [30], and ion mobility is closely related to temperature change, e.g. the ion conductivity decreases rapidly to about 10^{-14} S cm$^{-1}$ when lowering the temperature close to glass transition temperature (T_g) [28]. In 1993, Angell et al [31] proposed the concept of ‘polymer in salt’ electrolytes, in which a large amount (>50 wt%) of lithium salt with low melting point and high dissociation characteristics is utilized to form ‘decoupled’ SPEs systems. In this scenario, the Li$^{+}$ transportation does not depend on the segmental motions of polymer chains [31].

According to the different transport behaviors of ionic species, SPEs could be generally categorized into ‘coupled’ and ‘decoupled’ systems [32]. For the ‘coupled’ systems, Li$^{+}$ transport is highly correlated with the motion of the polymer chain segments (figure 3(c)). For the ‘decoupled’ systems, the numbers of cation/anion clusters increase with increasing salt concentration, and the aggregated cation/anion clusters are interconnected with each other, favoring the formation of an ionic conductive network which could provide a fast conduction channel for Li$^{+}$ transport [28, 33] (figure 3(c)). In general, the decoupled indices of the ‘decoupled’ system could be as high as 10^{13} [27]. Unfortunately, most available lithium salts are unlikely to meet the stringent requirement imposed by ‘decoupled’ SPEs including low melting point and extremely high dissociation. Besides, increasing salt concentration also sacrifices the mechanical properties of the as-formed SPEs [34–36]. Therefore, the development of the ‘coupled’ SPEs systems tend to be more rapid than that of the ‘decoupled’ SPEs ones.

To date, the ‘coupled’ SPEs are the most widely studied attributed to their easy processing and good compatibility with high-energy electrode materials. Among them, PEO and its derivatives are the most thoroughly studied matrices [37–43], which is ascribed to the features below:

(a) the oxygen atom on the repeat unit of ethylene oxide (–CH$_2$CH$_2$O–, EO) owns strong donicity, which can form complexes with metal ions, thus promoting the dissolution of alkali metal salts, and realizing Li$^{+}$ transport via coupling and decoupling of polymer chain segments [30];
(b) traditional PEO-based SPEs own several advantages, including low density (ca. 1.2 g cm$^{-3}$), good chemical stability, and low cost, and can better inhibit lithium dendrites growth in SSLMBs [44, 45].

The neat PEO is a semi-crystalline helical polymer, possessing a certain degree of crystallinity (> 60%), due to
its regular and highly ordered structure [46, 47]. As mentioned above, the ion transport of SPEs relies heavily on the segmental motion and local relaxation of polymeric chains, and Li\(^+\) transport mainly occurs in the amorphous region of SPEs [48–51]. Consequently, the ionic conductivity of PEO-based SPEs is generally lower than 10\(^{-3}\) S cm\(^{-1}\) at room temperature [52], which hinders its large-scale application in SSLMBs. Reducing the crystallinity of traditional PEO-based SPEs has become a hot research topic in the field of SPE-based SSLMBs, and various approaches have been assessed, including structural modifications of PEO, and doping with inorganic materials [44, 53], and so on (see section 4.1 for detailed discussion).

3. Developing robust conductive lithium salts

Generally, the conductive lithium salt not only acts as the source of charge carriers for SPEs, but also participates in the construction of electrode-electrolyte interphases/interfaces via chemical and/or electrochemical reactions [54]. Therefore, the composition and chemical structure of conductive lithium salts have a critical impact on the fundamental properties of SPEs. Generally, ideal conductive lithium salt should contain several traits (figure 3(a)), including solubility, interfacial compatibility, chemical stability, aluminum corrosion, etc.

To form ionic conductors, the breakdown of ionic bonds between Li\(^+\) cation and anions in the presence of electron-donating polymer matrices tend to be of higher priority. Indeed, the dissociation process is determined by the lattice energy of salt, the cohesive energy of polymer, and the solvation energy thereof (figure 3(b)). For polymers, the cohesive energy density (CED) is mathematically expressed as [55]:

\[
CED = \frac{H_{\text{vap}} - RT}{V} = \delta^2
\]

where \(H_{\text{vap}}\) stands for the heat of vaporization, \(R\) and \(T\) represent the respective ideal gas constant and the absolute temperature, \(V\) is the molar volume, and \(\delta\) stands for the solubility parameter, a semi-quantitative measure of the polarity of the repeat units.

In addition, the microscopic viscosity of the SPEs system plays an important role in dictating the transport properties of ionic species therein [56]. And the viscosity of SPEs is highly correlated with the free volume provided by anions. Therefore, anions with high structural flexibility are necessary for building high-performance SPEs [52]. Presently, various kinds of anions have been introduced into Li-ion conductive SPEs, including halide, carboxylate, sulfonate, and imide anions (figure 3(c) and table 1) [57].

3.1. Sulfonimide-based lithium salts

Sulfonimides, particularly perfluorinated sulfonimide anions, \([(\text{CF}_3\text{SO}_2)\text{N}]^-\text{X}^+\), are one of the most noticeable anions for Li-ion conductive SPEs, attributed to their low affinity toward Li\(^+\) and high structural flexibility [75, 76]. Among which, bis(trifluoromethanesulfonyl)imide anion (\([(\text{CF}_3\text{SO}_2)\text{N}]^-\text{TFSI}^+,\) figure 4(a)) firstly prepared by Meussdorffer and co-workers [77] in the acid form in 1972, appears to be the most investigated candidate representative anions. In the case of TFSI\(^-\) anion, the sulfonimide anion center owns several resonance structures, allowing the delocalization of negative charges on the nitrogen atom to the four oxygen atoms. Additionally, the strong electron-withdrawing ability of CF\(_3\) groups could further lower the Lewis basicity of the anion (Gutmann donor number = 5.4 [75]), affording low dissociation energy of the Li\(^+\) cations. The interconversion between different conformations of TFSI\(^-\) anion occurs with extremely low energy barriers (< 5 kJ mol\(^{-1}\) [78]), which endows its large free volume. These key properties facilitate its dissolution and dissociation in polymer matrices, promoting the rapid transport of ionic species ionic conductivities (e.g. 1 \times 10\(^{-4}\) S cm\(^{-1}\), 80 °C). Presently, LiTFSI has been deemed as a benchmark salt for screening the new anions for Li-ion conductive SPEs [45].

In recent years, other kinds of lithium sulfonimide salts have been employed as conducting salts for SPEs. Lithium fluorosulfonylimide salts containing fluorosulfonyl (FSO\(_2\)−) group have become an interesting family, owing to their unique capability in building stable solid electrolyte interphase/interface (SEI) layer on various kinds of...
Table 1. Ionic conductivities and Li$^+$ transference numbers (T_{Li^+}) of some typical PEO-based electrolytes.

Lithium saltsa	σ_{bulk} S cm$^{-1}$ (30 °C)	σ_{total} S cm$^{-1}$ (80 °C)	T_{Li^+} c	Reference
LiBF$_4$	6×10^{-7}	6×10^{-4}	0.29	[58, 59]
LiPF$_6$	—	1×10^{-5}	0.19	[59]
LiTFSI	1×10^{-5}	1×10^{-3}	0.18	[52]
LiBETI	1×10^{-5}	9×10^{-4}	0.33	[60]
LiNFSI	3×10^{-7}	3×10^{-4}	0.25	[61]
LiTFNFSI	1×10^{-6}	3×10^{-4}	0.16	[62]
LiFSI	8×10^{-7}	2×10^{-3}	0.14	[52]
LiFTFSI	2×10^{-6}	1×10^{-3}	0.17	[57]
LiFFPSI	3×10^{-6}	9×10^{-4}	0.19	[57]
LiFNFSI	3×10^{-6}	6×10^{-4}	0.27	[57]
LiHPSI	2×10^{-6}	3×10^{-4}	0.47	[63]
LiDFTFSI	1×10^{-5}	9×10^{-4}	0.35	[64]
LiDFSI	2×10^{-6}	5×10^{-4}	0.39	[65]
LiEFA	3×10^{-6}	4×10^{-4}	0.42	[66]
LiTFTPSI	3×10^{-7}	3×10^{-3}	0.69	[67]
LiTFEMSISI	ca. 10^{-5}	5×10^{-4}	0.64	[68]
LiTFSI	6×10^{-6}	9×10^{-4}	0.29	[69]
LiDOF	2×10^{-6}	ca. 10^{-5}	—	[70]
LiBOB	1×10^{-6}	1×10^{-3}	0.13	[71]
LiTCM	1×10^{-6}	6×10^{-4}	0.31	[72]
LiDCTA	—	6×10^{-4}	0.25	[73]
LiTDI	2×10^{-3}	1×10^{-3}	0.15	[74]

a The abbreviations are listed as below: lithium bis(pentafluoroethanesulfonyl)imide (LiBETI), lithium bis(oxalato)borate (LiBOB), lithium (benzenesulfonyl)(trifluoromethanesulfonyl)imide (LiBTFSI), lithium difluoro(oxalo)borate (LiDOFB), lithium bis(oxalato)borate (LiDOFB), lithium (difluoromethanesulfonyl)(trifluoromethanesulfonyl)imide (LiDFTFSI), lithium salt with ether-functionalized anion (LiEFA), lithium (fluorosulfonyl) (nonafluorobutanesulfonyl)imide (LiFNFSI), lithium (fluorosulfonyl) (pentafluoroethanesulfonyl)imide (LiFTPSI), lithium bis(fluorosulfonyl)imide (LiFSI), lithium (fluorosulfonyl)(trifluoromethanesulfonyl)imide (LiFTFSI), lithium bis([1,1,3,3,6-hexafluoro-2-propoxy]sulfonyl)imide (LiHPSI), lithium bis(nonafluorobutanesulfonyl)imide (LiNFSI), lithium tricyanomethanide (LiTCM), lithium trifluoromethanesulfonate (LiTFI), lithium bis(trifluoromethanesulfonyl)imide (LiTFPSI), lithium (trifluoromethanesulfonyl)(trifluoromethanesulfonyl)imide (LiTNFSI), lithium (trifluoromethanesulfonyl)iminium (sulfonimide) (LiTNFSI), lithium bis(trifluoromethanesulfonyl)(trifluoromethanesulfonyl)imide (LiTFPSI), lithium bis(trifluoromethanesulfonyl)(trifluoromethanesulfonyl)imide (LiTNFSI), lithium (trifluoromethanesulfonyl)iminium (sulfonimide) (LiTNFSI).

b Ionic conductivity.

c Li$^+$ transference number.

The anode materials (Li$^+$ anode and graphite electrode). Lithium bis(fluorosulfonyl)imide ([(FSO$_2$)$_2$N$^-$], FSI$^-$, figure 4(a)), one representative example of lithium fluorosulfonimide salts, was synthesized in acid form by Appel in the early 1960s [79]. The anion was proposed as a candidate for battery application by Armand in the 1990s [80]. In the past years, our group has systematically investigated the properties of various kinds of LiFSE-based SPEs, including a wide array of polymeric matrices (e.g. PEO [52] and poly(ionic liquids) (PILs) [81]), which show much higher ionic conductivities and better chemical and electrochemical stabilities on electrode materials than those of the LiTFPSI-based ones [69].

It has been demonstrated that the rotation barriers of fluorosulfonimide anions are lower than the symmetric perfluorinated sulfonimide anions (e.g. 0.9 kJ mol$^{-1}$ for (fluorosulfonyl)(pentafluoroethanesulfonyl)imide ((FSO$_2$)$_2$N$^-$), FNSI$^-$) vs. 6.3 kJ mol$^{-1}$ for bis(perfluoroethanesulfonyl)imide ((C$_2$F$_5$SO$_2$)$_2$N$^-$), BETI$^-$) [82], endowing the formers with better structural flexibility and stronger plasticizing ability [82]. Besides, the S–F bond in the fluorosulfonimide anions tends to be more electrochemically active compared to the C–F bonds in the symmetric perfluorinated sulfonimide anions, which may undergo electrochemical degradations prior to the reductions of polymer matrices (ca. 1.0 V vs. Li/Li$^+$, figure 4(b)) [54]. The as-formed decomposition products (especially LiF) of the fluorosulfonimide anions favor the formation of dense and electronic insulating SEI layers, thus preventing continuous depositions of electrolyte components [54, 83].

With the extension of the perfluorocarbon side chain, lithium fluorosulfonimide salts show enhanced compatibility with Li$^+$ anode significantly improved stability toward (electro-)chemical oxidation, which is related to the decomposed products of the longer perfluoroalkyl chains which may improve the stability of electrode–electrolyte interfaces [57]. As a result, a prototype Li$^+$-lithium iron phosphate (LiFePO$_4$, LFP) cell with LiFNFSI/PEO at a molar ratio of EO unit to Li$^+$ (hereafter abbreviated as [EO]/[Li$^+$]), by mole) of 20 showed excellent cyclability (capacity retention: > 80% at cycle 500) [57]. However, the SPEs based on lithium perfluorinated sulfonimide salts suffer from rapid anionic migrations due to the negligible interactions between anion and polymer matrices (compared with the Li$^+$ dipole interactions). Typical T_{Li^+} values for these electrolytes are close to 0.2. The rapid transport of anionic species induces concentration gradients, which causes undesired concentration polarizations and leads to inferior utilization of active materials of composite electrodes [84, 85].

Through the attachment of anionic moieties onto the polymer matrices (or inorganic macromolecules), the transport of anionic species could be nearly eliminated, as extensively discussed in section 4. Alternatively, enhancing the interactions between anions and polymer matrices via non-covalent bonds could also slow down the migration of anions. Researchers also focus on other ingenious and effective approaches to capture anion by introducing hydrogen-bond in conductive lithium salt structure. Oteo et al [86] reported the utilization of a non-perfluorinated sulfonimide anion, lithium (difluoromethanesulfonyl)(trifluoromethanesulfonyl)imide ([HC$_2$F$_2$SO$_2$](CF$_3$SO$_2$)N)Li, LiDFTFSI) for Li-ion conductive SPEs. LiDFTFSI/PEO shows a high T_{Li^+} value compared with the LiTFISI-based one (e.g. 0.35 (LiDFTFSI/PEO) vs. 0.20 (LiTFISI/PEO), 70 °C). It is anticipated that the suppressed anion transport is highly related to the enhanced interaction between the H atom with positive charge in DFTFSI$^-$ anion and dipole in PEO (i.e. hydrogen bonds). Afterwards, this hypothetical structure (i.e. [EO···H–)] was captured by molecular dynamics simulations of similar systems carried out by Qiao et al [65]. Besides, one could also count on other interactions between anion and polymer matrices, e.g. dipole–dipole interaction, dipole–dipole interaction [68], π–π stacking [67], etc (see the schematic diagram in figure 4(c))
By replacing an oxygen atom in TFSI\(^{-}\) anion with strong electron-withdrawing group CF\(_3\)SO\(_2\)N=, the interactions between Li\(^{+}\) cations and sulfonimide anions could be further reduced. The as-obtained anion, (trifluoromethane(S-trifluoromethanesulfonylimino)sulfonyl) (trifluoromethanesulfonyl) imide ([CF\(_3\)SO(=NSO\(_2\)CF\(_3\))]\(^{-}\), figure 4(a)), shows extremely low affinity toward Li\(^{+}\) cations, and high ionic conductivity for its PEO-based SPEs compared to the LiBETI-based ones \[^{69}\]. This result clearly suggests the important role of negative charge delocalization in achieving highly Li\(^{+}\)-ion conductive SPEs \[^{69}\].

3.2. Other emerging conductive lithium salts

In addition to the sulfonimide-based conductive lithium salts, several other kinds of conductive lithium salts have also received extensive attention in the domain of SPE-based SSLMBs. For example, lithium bis(oxalate)borate (LiBOB) and lithium difluoro(oxalate)borate (LiDFOB) have been investigated by several research groups (figure 5(a)), owing to their ability in forming robust SEI layers on Li\(^{0}\) anode to suppress the continuous reductive decompositions of polymer matrices \[^{87}\].

In another example, Zhang et al systematically characterized the effect of lithium tricyanomethanide (LiC(CN\(_3\)), LiTCM, figure 5(b)), as a fluorine-free conductive salt, on the properties of PEO-based electrolytes \[^{72}\]. LiTCM/PEO provides lower polarizations for Li\(^{0}\)||Li\(^{0}\) symmetrical cell as compared to the LiTFSI/PEO reference system, despite its slightly lower ionic conductivities resulting from higher glass transitions \((T\(_{g}\): –27 °C (LiTCM/PEO) vs. –30 °C (LiTFSI/PEO)). The improved interfacial compatibility would be attributed to the reductive polymerizations of the TCM\(^{-}\) anion, generating a highly Li\(^{+}\)-conductive graphene-contained SEI layer therein \[^{72}\].

In addition, Hückel-type salts are another emerging candidate for SPEs attributed to highly delocalized negative charges by conjugated \(\pi\) bonds \[^{45}\]. Egashira et al reported the physicochemical properties of SPEs with a Hückel-type salt, lithium dicyanotriazolate (LiDCTA, figure 5(c)) \[^{73}\]. LiDCTA/PEO exhibits a decent ionic conductivity value of \(4 \times 10^{-4} \text{ S cm}^{-1}\) at 80 °C. Besides, another Hückel-type salt,
lithium 2-trifluoromethyl-4, 5-dicyanoimidazolate (LiTDI, figure 5(c)), could form a low-melting phase in PEO, thereby inhibiting the crystallization of the electrolyte and improving the ionic conductivities of SPEs [74].

Overall, since the initial utilization of SPEs for SSLMBs, the sulfonimide-based lithium salts have become a research hotspot due to their unique properties such as highly flexible structure, low charge density, ease in structural modifications, etc. Remarkable achievements have been made in terms of the design of innovative lithium salts for SPEs; yet, mechanistic understandings of the role of certain functional groups in SSLMBs, especially the interphases formed between electrode and SPEs with different kinds of anions, are still needed.

4. Developing advanced polymer matrices

The characteristics of polymer matrices have a profound influence on the performances of SPEs [88–90], and the fundamental physical properties of some popular polymer matrices are summarized in table 2. As a reference polymer, the \(T_g \) of PEO is relatively low (\(T_g = -64 ^\circ C \)), a sign of rapid segmental motion of EO units above room temperature [89]. By replacing the C–O linkage with Si–O bond, one may further decrease the \(T_g \) value. For example, poly(dimethylsiloxane) (–(Si(CH\(_3\))\(_2\))O–, PDMS) shows an extremely low glass transition behavior at \(-127 ^\circ C \); yet, the practical application of PDMS-based SPEs is hindered by its high cost, difficulty in process, and adverse side effects (i.e. the hydrolysis of Si–O–Si to silanol, and the spontaneous condensation at room temperature) [90, 91]. Through the incorporation of polar groups (e.g. nitrile, carbonyl), one may promote the dissolution of metal salts; however, the strong van der Waals interactions between these groups drastically increase the CED of the neat polymer and the \(T_g \) values. In a typical example, high-molecular-weight poly(acrylonitrile) (PAN) shows a high glass transition at 125 °C (table 2) and CED (620–900 J cm\(^{-3}\) mol\(^{-1}\)), which could barely solvate common lithium salts in the absence of small molecular solvents [92, 93]. Therefore, with commercially available polymers, it is rather difficult to obtain highly conductive and self-standing SPEs membranes.

The design of the molecular structures of polymer matrices is one of the most effective methods to boost the ionic conductivity at room temperature and anti-oxidation properties of PEO-based SPEs [53, 87, 94–97]. Here, the research progress related to some emerging polymer matrices is discussed in the following section, including (a) Jeffamine-based amorphous polymers, and (b) polycarbonate and its derivatives. Note that, except for neutral polymers without any ionic groups, there has been a growing interest in utilizing polymerized ionic liquids as matrices for SPEs [81, 98–101]. The progress in this domain has been scrutinized in recent review articles [101] and will not be discussed in the present work.

4.1. Amorphous polyethers

Jeffamine® is a kind of commercial polyether amines, terminated with primary amino groups and containing ethylene oxide (EO), propylene oxide (–CH(CH\(_2\))CH\(_2\)O–, PO), or a mixture of EO/PO [102]. Utilizing Jeffamine moiety in building SPEs delivers several advantages, including (a) the repeat unit of EO/PO could effectively dissolve and dissociate lithium salt due to the strong donicity of EO/PO units, (b) the structural disorder of EO/PO could efficiently inhibit the crystallization processes; and (c) the primary amino group at the end could undergo condensation polymerizations with anhydride, thus allowing facile regulation on the topological structure of the polymer matrices. Consequently, Jeffamine® compounds provide a simple and effective approach for the efficient preparation of novel polymer matrices (figure 6(a)) [102]. The basic physical properties of some Jeffamine-based SPEs are collected in table 3.
and Jeffamine M-2070, table
ine compounds (i.e. Jeffamine M-600, Jeffamine M-1000,
and scalable. Combining the high degree of configurational
noteworthy that the synthesis route of the matrices is simple
poly(ethylene propylene maleic anhydride) backbone. It is
amine oligomer side chains (i.e. Jeffamine compounds) and
class of comb-like polymer matrices comprising polyether
points of PEO [109].

In 1992, Benrabah et al [103] synthesized a series of
polyamide compounds through the polycondensation reaction
between Jeffamine (e.g. Jeffamine ED-600, ED-900, terep-
thaloyl chloride (TAT), etc) and acyl chloride, aiming to lower
the crystallinity of polyether-based SPEs (figure 4). It is
reported that the PO units in Jeffamine-type polymers could
effectively restrain the crystallization of SPEs, allowing the
LiTFSI-based SPEs to achieve improved ionic conductivities
(ca. 10^{-6} S cm^{-1} at 30 ^\circ C) at temperatures below the melting
points of PEO [103].

Subsequently, Aldalur et al [104] reported a novel
class of comb-like polymer matrices comprising polyether
amine oligomer side chains (i.e. Jeffamine compounds) and
poly(ethylene propylene maleic anhydride) backbone. It is
noteworthy that the synthesis route of the matrices is simple
and scalable. Combining the high degree of configurational
freedom and flexibility of the PO/OE units in Jeffa-
mire compounds (i.e. Jeffamine M-600, Jeffamine M-1000,
and Jeffamine M-2070, table 3), a series of new polymer
matrices with good elastic and amorphous properties have
been obtained [104]. Differing from linear PEO-based ones,
the comb-like SPEs containing Jeffamine show high ionic
cconductivity (LiTFSI/Jeffamine, 4.5 \times 10^{-5} S cm^{-1} at
room temperature) and excellent electrochemical stability
(figure 6(b)). Furthermore, the cycling stabilities of Li^{\text{II}}/LiF
and Li^{\text{II}}/LiS cells are remarkably enhanced, proving the feas-
ibility of utilizing Jeffamine compounds as a building block for
high-performance SPEs [104].

Based on the previous synthesis and screening of
Jeffamine-type polymers, Aldalur et al [105] combined
LiFSI with the amorphous PMA-Jeffamine polymer matrices,
attempting to improve ionic conductivities under room
temperature and the interfacial stability between electro-
yte and lithium metal anode. The electrolyte comprising
of LiFSI/Jeffamine-poly(ethylene-alt-maleic anhydride),
(PeMA) shows high ionic conductivities at ambient tem-
perature (e.g. 1.8 \times 10^{-5} S cm^{-1} at 30 ^\circ C, table 3, entry 7), and
enabled long-term cycling of Li symmetric cells (exceeding

Entry	Electrolytes	Jeffamine-type	[EO]/[Li^{+}]	T_{g}/^\circ C	T_{m}/^\circ C	σ/S cm^{-1}	Reference
1	LiTFSI/TAT/Jeffamine/NMAA	J-600	8	-63	3.0 \times 10^{-7} (30 ^\circ C)	[103]	
2	LiTFSI/TAT/Jeffamine/NMAA	J-900	8	-52	8.0 \times 10^{-6} (30 ^\circ C)	[103]	
3	LiTFSI/Jeffamine/PeMA	M-600	20	-47	3.5 \times 10^{-5} (25 ^\circ C)	[104]	
4	LiTFSI/Jeffamine/PeMA	M-1000	20	-44	3.2 \times 10^{-5} (25 ^\circ C)	[104]	
5	LiTFSI/Jeffamine/PeMA	M-2070	20	-49	4.0 \times 10^{-5} (25 ^\circ C)	[104]	
6	LiFSI/Jeffamine/PeMA	M-2070	20	-50	7.9 \times 10^{-5} (25 ^\circ C)	[105]	
7	LiFSI/Jeffamine/PeMA	M-2070	20	-57	1.8 \times 10^{-4} (30 ^\circ C)	[106]	
8	LiTFSI/Jeffamine-co-PS/PeMA	M-2070	8	-51	1.6 \times 10^{-5} (30 ^\circ C)	[107]	
9	LiTFSI/Jeffamine/PPGDA	T-3000	20	-68	7.7 \times 10^{-6} (RT)	[108]	
10	LiTFSI/Jeffamine/PPD-OA	T-3000	20	-51	5.7 \times 10^{-5} (60 ^\circ C)	[109]	

The abbreviations are listed as below: trimesic acid trichloride (TAT), N-methylallylamine (NMAA), lithium bis(trifluoromethanesulfonylimide (LiTFSI), methacrylic anhydride (MAA), poly(propylene oxide)diacrylate (PPO-DA), poly(propylene glycol)diacrylate (PPGDA), poly(ethylene-alt-maleic anhydride) (PeMA), lithium bis(fluorosulfonylimide (LiFSI), polystyrene (PS).

The Jeffamine type being used to synthesize SPEs.
Molar ratio of EO unit to lithium ion.
Glass transition temperature.
Decomposition temperature.
Ionic conductivity.
Figure 6. Jeffamine-based polymer matrices for solid polymer electrolytes (SPEs). (a), (b) Ionic conductivities of Jeffamine-based SPEs (a) and cycling performance of Li$^+$ symmetrical cells using Jeffamine-based SPEs. (a), (b) Reprinted from [105], Copyright (2018), with permission from Elsevier. (c) Schematic illustration of the chain ordering in solid and flowable Jeffamine-based polymer matrices. (d), (e) Charge/discharge profiles (d) and (e) cycling performance of Li$^+$/LiFePO$_4$ (LFP) cells using Jeffamine-based SPEs. (c), (d), (e) Reprinted from [106], Copyright (2019), with permission from Elsevier.

800 h, figure 6(c)). As a result, the corresponding Li$^+$/LFP battery can operate with decent cycling stability under ambient temperatures.

In addition, the synthesis procedures have a remarkable effect on the properties of Jeffamine-type polymers [106]. Usually, for the solvents with low dielectric constants (e.g. trifluorotoluene), the as-obtained Jeffamine-type polymers are highly entangled, behaving like rubber. However, for the solvents with a high dielectric constant (e.g. N,N-dimethylformamide), the starting material PEAaMA could be well dissolved and the as-obtained polymers are somehow flowable, as shown in figure 6. The flowable polymer electrolytes (FPEs) own several advantages: (a) high ionic conductivities at room temperatures (e.g. 1.4×10^{-4} S cm$^{-1}$ under 30 °C) owing to the low T_g and highly amorphous characteristics, and (b) improved chemical and electrochemical compatibility towards lithium anode due to the better adhesion properties (figure 6(b)). It has been demonstrated that, with Jeffamine
Figure 7. Proposed ionic transport mechanism in polyether and polyester blended electrolytes. Reprinted with permission from [114]. Copyright (2020) American Chemical Society.

FPEs as an artificial layer, the cycle life of the Li$^{+}$|LiFePO$_4$ cell is extended in comparison with its counterparts containing PEO (figure 6(e)) [106].

Besides high ionic conductivity, the high-strength property is also essential for the processing of SPEs in SSLMBs. Grafting PS onto a Jeffamine backbone to prepare copolymers (Jeffamine-PS) [107], or blending the PEMa-Jeffamine matrices with PVDF nanofibers [110], can effectively improve film-forming ability with little expense at ionic conductivities, e.g. 7.9 x 10$^{-5}$ S cm$^{-1}$ for Jeffamine-PS copolymers under 40 °C, and ca. 10$^{-4}$ S cm$^{-1}$ for the PEMa-Jeffamine/PVDF blended electrolyte under 30 °C [110]. Compared with semi-crystalline PEO-based ones, Jeffamine-based self-standing SPEs display relatively high ionic conductivities even under room temperature and enhance chemical and electrochemical properties, which are promising alternatives to PEO-based SPEs for SSLMBs.

Additionally, the Jeffamine-based compounds can be used as other components of batteries, such as polymer adhesives, oxidized active materials, and interface coatings, thus improving the mobility of Li$^{+}$ ions, electrochemical performance, and chemical and electrochemical compatibility toward lithium electrodes [102].

4.2. Polycarbonate and its derivatives

Compared to polyether matrices, polycarbonates have attracted extensive attention from the battery community, due to their stronger oxidation resistances than polyether-type polymer matrices [111]. Commonly, polycarbonate-type polymers utilized for SPEs include poly(ethylene carbonate) (PEC), poly(propylene carbonate) (PPC), and poly(trimethylene carbonate) (PTMC). Interestingly to note that the values of T_g for these three kinds of polycarbonate matrices are much higher than that of PEO, i.e. $T_g = 18$ °C (PEC) vs. $T_g = 25$ °C–45 °C (PPC) vs. $T_g = -9.6$ °C (PTMC) vs. $T_g = -64$ °C (PEO) (table 2), indicating that the segmental motions in these polymers are rather difficult [111–113]. Meabe et al [114] comparatively investigated the ion transport mechanism of SPEs based on polyether and polyesters comprising LiTFSI as the lithium salt and the blend of poly(ε-caprolactone) (PCL) and PEO as the polymer matrices. It is reported that LiTFSI is inclined to coordinate with the carbonyl group (–OC=O–) in PCL backbone in the case of PCL content >50 mol%, and there are plenty of compact ion pairs. Lithium salt can be effectively dissolved, and Li$^{+}$ cation is preferentially coordinated with oxyethylene units in the PEO structure, in case of PCL content <50 mol%. Based on these understandings of coordination and phase separation, the ionic conduction mechanism of polyether/polyester hybrid systems is elucidated (figure 7) [114].

In addition, the polycarbonate-based SPEs show high ionic conductivity compared with polyether-based ones even at room temperature [111, 115, 116], for example, 3.0 x 10$^{-4}$ S cm$^{-1}$ under 20 °C for cellulose nonwoven/PPC reported by Cui and co-workers [115], and 10$^{-4}$ S cm$^{-1}$ for LiFSI/PEC under 30 °C reported by Tominaga et al [117]. Further investigations suggest that low molecular weight components (e.g. PC and EC), originating from the chemical decompositions of PPC and PEC, are responsible for the unexpectedly high ionic conductivities observed for the polycarbonate-based SPEs (figure 8) [118, 119].

Note that the high interfacial reactivity occurred between polycarbonate and lithium electrode, which affects their chemical and electrochemical stability to some extent. Wang et al [120] revealed that significant side reactions between PPC electrolyte and lithium electrode at the elevated temperature
(80 °C) generate liquid components such as PC (as shown in figure 8), which brings great safety risks. Therefore, to date, polycarbonate-based SPEs are still under basic research in the laboratory, which cannot meet the application requirements of SSLMBs at current stage.

5. Single lithium-ion conductive SPEs

Typically, the classic SPEs obtained with discrete anions are typical dual-ion conductors \((T_{Li}^+ < 0.4)\), in which both negative and positive charges could migrate under the electric field \([84, 121]\). During charge/discharge cycles, the migration of anionic species (in opposite directions vs. cationic species) gradually causes concentration gradient and internal polarizations of redox reactions, which finally accelerates dendrite growth and parasitic reactions at electrode-electrolyte interphases/interfaces \([122, 123]\). Therefore, the selectivity of cation transport is of vital importance for the stable operation of SSLMBs \([124]\).

To suppress or even eliminate the migration of the negative charges in SPEs, a new type of SPEs has been suggested, which is known as single-ion conductive SPEs (SLIC-SPEs). Generally, SLIC-SPEs with the values of \(T_{Li}^+\) close to unity are majorly obtained by three approaches (figure 9) \([17, 122, 124, 125]\): (a) chemically grafting the anions on polymeric backbones (figure 9(a)); (b) covalently bonding the anions of lithium salts on the inorganic backbone (figure 9(b)), and (c) incorporating anion acceptors to cage the anions in dual-ion conductive SPEs (figure 9(c)). Currently, several excellent reviews have systemically discussed the SLIC-SPEs built from the latter two approaches (utilizing inorganic backbones and anion acceptors \([126, 127]\)), and we will mainly focus on the SLIC-SPEs made from the first method, i.e. attaching anions to polymeric backbones in chemical means (figure 9(a)).

For typical dual-ion SPEs, lithium salt and polymer matrices are indispensable. Inheriting the same concept, the research activities in the polymer backbone-based SLIC-SPEs could be briefly presented in two aspects: (a) rational design of the anionic center, aiming to improve the dissociation of lithium ions and thereby provide higher concentrations of active ions; and (b) regulating the topological structures of polymer backbones, with the objective of facilitating rapid ion transport through ionic sites \([124]\). Some representative SLIC-SPEs and their basic properties are also summarized in table 4. The key achievements in both aspects are presented in the following sections.

5.1. Rational design of anionic center

Since the 1980s, the effect of anionic structures on \(Li^+\) conductivities of SLIC-SPEs has been continuously investigated by various research groups \([124]\). Early attempts carried out by Tsuchida et al \([128]\) focused on a polymeric lithium salt based on carboxylate anions \((-CO_2^-)\). These carboxylate-based SLIC-SPEs presented extremely low ionic conductivities even at high temperatures (ca. \(10^{-8}\) S cm\(^{-1}\) under 60 °C), owing to the strong affinity of carboxylate anions towards \(Li^+\) cations \([124]\). Afterward, Bannister et al \([129]\) suggested the incorporation of perfluoroalkyl chains, and the as-obtained SLIC-SPEs showed nearly two orders of magnitudes improvement in ionic conductivities \((10^{-6}\) S cm\(^{-1}\) under 60 °C), as compared to those based simple alkyl carboxylate groups. This suggests that replacing hydrocarbon alkyl groups with perfluoroalkyl groups can facilitate lithium-ion dissociation of carboxylate anions, thus improving the ionic conductivities of SLIC-SPEs.

To further improve the dissociation of \(Li^+\) cations, sulfonate anions \((-SO_3^-)\) with better negative charge delocalization as compared to carboxylate anions have been studied in the 1990s. Zhang and co-workers \([132]\) reported several kinds of sulfonate-based SLIC-SPEs, which effectively show slightly higher ionic conductivities than those of carboxylate-based ones, e.g. \(1.8 \times 10^{-7}\) S cm\(^{-1}\) for poly(lithium sulfaoalkyl methacrylate) (LiPSAM/PEO ([EO]/[Li\(^+\)] = 18, by mole)) vs. \(4.3 \times 10^{-10}\) S cm\(^{-1}\) for poly(lithium(\(\omega\)-carboxy)oligo(oxyethylene) methacrylate) (LiPCME7) at room temperature. Inspired by the great success of LiTFSI in SPEs, the delocalized sulfonimide structure was also suggested to construct highly \(Li^+\)-conductive SLIC-SPEs. In 2011, Meziane et al \([138]\) reported the first example of sulfonimide-based polysalt, lithium poly ((4-styrenesulfonyl)(trifluoromethanesulfonyl)imide) (LiPSTFSI), for building highly conductive SLIC-SPEs.
Effectively, the LiPSTFSI/PEO exhibited much higher ionic conductivities in comparison with poly(lithium 4-styrenesulfonyl) (LiPSTFSI/PEO) at the same temperatures, e.g., 9.5 × 10^{-6} S cm^{-1} (LiPSTFSI/PEO) vs. 7.2 × 10^{-7} S cm^{-1} (LiPSS/PEO) at [EO]/[Li^{+}] = 20 (by mole) and 70 °C. The remarkable improvement in ionic conductivities evidences the determining role of negative charge delocalization on the transport properties of SLIC-SPEs.

Stemming from our continuous effort on the design of robust anions for battery use and the previous results related to the sulfonimide-based SLIC-SPEs, we proposed a new family of ‘super-delocalized polyanions’ [69, 122, 123, 137, 139], in which the anionic center was obtained by substituting an =O group of typical sulfonimides (i.e., –SO_{2}–N^{(−)}–SO_{2}–CF_{3}) with a strong electro-withdrawing group, –N–SO_{2}CF_{3}. The SLIC-SPEs containing the super polysalt, poly[(4-styrenesulfonyl) (trifluoromethyl)S-trifluoromethylsulfonylimino) sulfonylimide], LiPSsTFSI, showed surprisingly high Li-only ionic conductivities (ca. 10^{-4} S cm^{-1} at 70 °C). These results suggest that

![Figure 9. Three strategies for building SLIC-SPEs based on (a) organic and (b) inorganic backbones, (c) and anion acceptor.](image)

Table 4. Physicochemical properties of some representative single Li-ion conductive solid polymer electrolytes (SLIC-SPEs).

Entry	Polyanionic lithium salts⁶	Method	\(T_{p}^{°C} \)	\(\sigma_{total} / S \ cm^{-1} \)	\(T_{Li^{+}} \)	Reference
1	LiPCME₂	Homopolymerization	-23	4.3 × 10^{-10} (30 °C)	—	[128]
2	LiPCHFEM/PEO	Homopolymerization	—	3.0 × 10^{-6} (25 °C)	—	[129]
3	P (MEO-co-MALi)	Copolymerization	-62	1.6 × 10^{-5} (25 °C)	—	[130]
4	P (MEO-co-AALi)	Copolymerization	-42	1.5 × 10^{-5} (25 °C)	—	[131]
5	LiPSAM/PEO	Homopolymerization	—	1.8 × 10^{-5} (25 °C)	—	[132]
6	LiPSS/PEO	Homopolymerization	-66	7.0 × 10^{-5} (25 °C)	—	[133]
7	LiPNS/PNE	Homopolymerization	9	4.0 × 10^{-5} (30 °C)	—	[134]
8	P (AE₁₋₋₋_-…					

⁶ The abbreviations are listed as below: LiPCME₂ (poly(lithium(ω-carboxy) oligo(oxyethylene)methacrylate)), LiPCHFEM (poly(lithium 2-(4-carboxyhexafluoro-butanol)-oxy) ethyl methacrylate)), PEO (poly(ethylene oxide)), P(MEO-co-MALi) (poly(lithium methacrylate-co-oligo(oxyethylene) methacrylate)), P(MEO-co-AALi) (poly(lithium oligo-oxyethylene methacrylate-co-acyrlamidocaproate)), LiPSAM (poly(lithium sulfoalkyl methacrylate)), LiPSS (poly(lithium 4-styrenesulfonate)), LiPNS (poly(lithium N-propylsulfonate ethylenimine)), PNE (poly(4-oligo-oxyethylene ethylenimine)), P(AE₁₋₋₋_-…

*b Glass transition temperature.

*² Ionic conductivity of electrolytes.

*² Li-ion transference number.
introducing a stronger electro-withdrawing group in sulfonimide anions can efficiently promote the Li-ion transport in SLIC-SPEs (figure 10).

5.2. Regulating the topological structure of polymer backbones

For polymer backbone-based SLIC-SPEs, PEO is utilized as a polymer matrix to facilitate Li\(^+\) transportation for those polysalts without solvating units for lithium ions; yet, the high degree of crystallinity of PEO greatly slows down the migrations of ionic species under ambient temperatures (<60 °C) [123]. Therefore, the topological structures of polymer backbones are also key factors determining the ionic conductivities of SLIC-SPEs [122, 123]. Polymerizing salt monomers with soft monomers is an effective pathway to decrease the degree of crystallinity and \(T_g\), and accelerate Li\(^+\) transport [122, 135, 136]. Besides, copolymerization could also circumvent the possible phase separation of the blended SLIC-SPEs, and improve not only the long-term durability of electrolyte membranes but also interphase contact between electrodes and electrolytes [122, 137].

The common copolymerization methods are random copolymerization, block copolymerization, and homopolymerization and so on (figure 11) [124]. Random copolymerization can decrease the degree of crystallinity of SLIC-SPEs and \(T_g\), thus, promoting Li\(^+\) transport among chain segments. In addition, the performance of polyanion conductors, the SLIC-SPEs are the typical single-ion conductors, and show several traits: (a) relatively high ionic conductivity reaches up to ca. 10\(^{-7}\) S cm\(^{-1}\). That is, for the sulfonate anion based SLIC-SPEs, the ionic conductivity could also be elevated by copolymerizing with the oligomeric EO segments. Actually, two orders of magnitude higher conductivities can be obtained in case fluorinated polymer monomers are applied [135, 136].

Our group [120] reported several kinds of amorphous SLIC-SPEs (Li[PSTFSI-co-MPEGA]) via copolymerizing with different LiTFSI with methoxy polyethylene glycol acrylate (MPEGA) ratios. The ionic conductivity of the Li[PSTFSI-co-MPEGA] copolymer electrolytes are higher by 1–3 orders of magnitude than these of LiPSTFSI/PEO blended electrolytes (7.6 × 10\(^{-6}\) S cm\(^{-1}\) for Li[PSTFSI-co-MPEGA] ([EO]/[Li\(^+\)] = 20.5, by mole) and 2.2 × 10\(^{-10}\) S cm\(^{-1}\) for LiPSTFSI/PEO ([EO]/[Li\(^+\)] = 20, by mole) at room temperature). In addition, Bouchet et al [137] reported ABA triblock copolymer SLIC-SPEs, LiPSTFSI-b-PEO-b-LiPSTFSI (figures 11(d) and (e)), which exhibited decent ionic conductivities (e.g. 1.3 × 10\(^{-5}\) S cm\(^{-1}\) under 60 °C, [EO]/[Li\(^+\)] = 12.1, by mole) and sufficient mechanical strength, allowing the Li/LiFePO\(_4\) cells to be operated with good rate capabilities (138 mAh g\(^{-1}\) at 2 C operated under 80 °C).

In short, compared to the traditional double-ion conductors, the SLIC-SPEs are the typical single-ion conductors, and show several traits: (a) relatively high \(T_L\); (c) impressing parasitic reactions b/w electrolytes and electrodes, particularly with lithium electrode, thereof, reducing the accumulation of SEI film products (i.e. produces a thin, dense and stable SEI interphase) and (d) robust chemical and electrochemical stability under high voltage region as well as the improved capacity of SSLMBs.
6. Conclusion

Compared to the commercialized liquid electrolyte, SPEs have several advantages, including ease of process, and intrinsic safety. Although the SSLMBs have been exemplarily applied, continuous efforts are still needed to further improve intrinsic safety and compatibility with electrode materials, as detailed below:

(a) For current LiTFSI/PEO systems, conductive lithium salt structure, $R_1^+SO_2^−N^−SO_2^−R_2^2$ (R_1^+, R_2^2; R_1^+ = n-C$_{1-x}$F$_{2x+1}$, R_2^2 = n-C$_{1-x}$F$_{2x+1}$), could be further modified to extend the degree of negative charge delocalization, in the hope of lowering the crystallinity degree of PEO and promoting the transport of Li$^+$ ions [141].

(b) Compared with the linear PEO matrix, the comb polymers with multi-branch chain structure show lower T_g and degree of crystallinity, which is contributed to amorphous SPEs at ambient temperature. Note that overcoming polymer crystallization can not only improve the conductivity of SPEs under ambient temperature but also enhance the stability of the electrode and electrolyte interface.

(c) For SLIC-SPEs systems, improving the dielectric constant of the polymer matrices seems to be an effective strategy to promote the dissociation of Li$^+$, and thereby improve the Li$^+$ transport capability therein. In addition, one may also attain high T_{Li^+} values by grafting anions to polymer nanoparticles via semi-batch emulsion polymerization [142].

In short, by the structure design of conductive lithium salt and polymer matrices, the ion transport characteristics and physical and electrochemical properties of SPEs could be significantly enhanced. Bridging the research activities between academia and industrial sectors could certainly promote the pragmatic development of SPEs.

Acknowledgments

The authors gratefully acknowledge the financial support provided by the Fundamental Research Funds for Central Universities, HUST (2020kfYXJS095).

ORCID ID

Heng Zhang https://orcid.org/0000-0002-8811-6336

References

[1] Armand M 1980 Materials for advanced batteries NATO Conf. Series vol 2 (Boston, MA) p 145
[2] Armand M et al. 2020 Lithium-ion batteries–current state of the art and anticipated developments. J. Power Sources 479 228708

[3] Xu K. 2004 Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104 4303–18

[4] Xu K. 2014 Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114 11503–618

[5] Zheng L P, Zhang H, Cheng P F, Ma Q, Liu J J, Nie J, Feng W F and Zou Z B. 2016 Li[(FSO₂)ₓ×₃₋ₓCₓFₓSO₄N] versus LiPF₆ for graphite/LiCoO₂ lithium-ion cells at both room and elevated temperatures: a comprehensive understanding with chemical, electrochemical and XPS analysis. Electrochim. Acta 196 169–88

[6] Song Z Y et al. 2022 Taming the chemical instability of lithium hexafluorophosphate-based electrolyte with lithium fluorosulfonimide salts. J. Power Sources 526 231105

[7] Manuel Stephan A. 2006 Review on gel polymer electrolytes for lithium batteries. Eur. Polym. J. 42 21–42

[8] Billaud D, McRae E and Hérod A. 1979 Synthesis and electrical resistivity of lithium-pyrophosphate intercalation compounds (stages I, II and III). Mater. Res. Bull. 14 857–64

[9] Judez X, Esthetu G G, Li C M, Rodriguez-Martinez L M, Zhang H and Armand M. 2018 Opportunities for rechargeable solid-state batteries based on Li-intercalation cathodes. Joule 2 2208–24

[10] Tian Y et al. 2021 Promises and challenges of next-generation “beyond Li-ion” batteries for electric vehicles and grid decarbonization. Chem. Rev. 121 1623–69

[11] Janek J and Zeier W G. 2010 A solid future for battery development. Nat. Energy 1 16141

[12] Bresser D, Hosoi K, Howell D, Li H, Zeisel H, Amine K and Passerini S. 2018 Perspectives of automotive battery R&D in China, Germany, Japan, and the USA. J. Power Sources 382 176–8

[13] Fenton D E, Parker J M and Wright P V. 1973 Complexes of alkali metal ions with poly(ethylene oxide). Polymer 14 589

[14] Armand M, Chabagno J M and Duclot M J. 1978 2th Int. Meeting on Solid Electrolyte in Fast Ion Transport in Solids St (Andovers, Scotland) pp 651

[15] Hallinan D T and Balsara N P. 2013 Polymer electrolytes. Annu. Rev. Mater. Res. 43 503–25

[16] Qiao L X, Judez X, Rojo T, Armand M and Zhang H. 2020 Review—polymer electrolytes for sodium batteries. J. Electrochem. Soc. 167 070534

[17] Lago N, Garcia-Calvo O, Lopez Del Amo J M, Rojo T and Armand M. 2015 All-solid-state lithium-ion batteries with grafted ceramic nanoparticles dispersed in solid polymer electrolytes. ChemSusChem 8 3039–43

[18] Fan P, Liu H, Marosz V, Samuels N T, Suib S L, Sun L and Liao L. 2021 High performance composite polymer electrolytes for lithium-ion batteries. Adv. Funct. Mater. 31 2101380

[19] Yao P H, Yu H B, Ding Z Y, Liu Y C, Lu J, Lavorgna M, Wu J W and Liu X J. 2019 Review on polymer-based composite electrolytes for lithium-ion batteries. Front. Chem. 7 522

[20] Zhu M, Wu J, Wang Y, Song M, Long L, Sialy S H, Yang X and Sui G. 2019 Recent advances in gel polymer electrolyte for high-performance lithium batteries. J. Energy Chem. 37 126–42

[21] Berthier C, Gorecki W, Minier M, Armand M, Chabagno J M and Rigaud P. 1983 Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts. Solid State Ion. 11 91–95

[22] Gorecki W, Donoso P, Berthier C, Mali M, Roos J, Brinkmann D and Armand M. 1988 NMR, DSC and conductivity study of the polymer solid electrolytes P(EO) (LiPₓFₓ+SO₃), Solid State Ion. 28–30 1018–22

[23] Wintersgill M C, Fontanella J J, Pak Y S, Greenbaum S G, Al-Mudaris A and Chadwick A V. 1989 Electrical conductivity, differential scanning calorimetry and nuclear magnetic resonance studies of amorphous poly(ethylene oxide) complexed with sodium salts. Polymer 30 1123–26

[24] Stoeva Z, Martin-Litas I, Staunton E, Andreev Y G and Bruce P G. 2003 Ionic conductivity in the crystalline polymer electrolytes PEOₓ·LiₓFₓ. X = P, As, Sb. J. Am. Chem. Soc. 125 4619–26

[25] Zhang C, Andreev Y G and Bruce P G. 2007 Crystalline small-molecule electrolytes. Angew. Chem. Int. Ed. 46 2848–50

[26] Zhang C, Gamble S, Ainsworth D, Slawin A M, Andreev Y G and Bruce P G. 2009 Alkali metal crystalline polymer electrolytes. Nat. Mater. 8 580–4

[27] Angell C A, Fan J, Liu C, Lu Q, Sanchez E and Xu K. 1994 Li-conducting ionic rubbers for lithium battery and other applications. Solid State Ion. 69 343–53

[28] Forsyth M, Sun J, Macfarlane D R and Hill A J. 2000 Compositional dependence of free volume in PAN/LiCFₓSOᵧ polymer-in-salt electrolytes and the effect on ionic conductivity. J. Polym. Sci. B 38 341–50

[29] McLin M G and Angell C A. 1992 Frequency-dependent conductivity, relaxation times, and the conductivity/viscosity coupling problem in polymer-electrolyte solutions: LiClOₓ and NaCFₓSOᵧ in PPO 4000. Solid State Ion. 53–56 1027–36

[30] Ratner M A and Shriver D F. 1988 Ion transport in solvent-free polymers. Chem. Rev. 88 109–24

[31] Angell C A, Liu C and Sanchez E. 1993 Rubbery solid electrolytes with dominant cationic transport and high ambient conductivity. Nature 362 137–9

[32] Wright P V. 2002 Developments in polymer electrolytes for lithium batteries. MRS Bull. 27 597–602

[33] Gao H, Grundish N S, Zhao Y, Zhou A and Goodenough J B. 2021 Formation of stable interphase of polymer-in-salt electrolyte in all-solid-state lithium batteries. Energy Mater. Adv. 2021 1–10

[34] Feng L and Cui H. 1996 A new solid-state electrolyte: rubbery ‘polymer-in-salt’ containing Li(N(CFₓSOᵧ)ₓ. J. Power Sources 63 145–8

[35] Li Y, Ding F, Xu Z, Sang L, Ren L, Ni W and Liu X. 2018 Ambient temperature solid-state Li-battery based on high-salt-concentrated solid polymer electrolyte. J. Power Sources 397 95–101

[36] Zhao Y, Bai Y, Bai Y, An M, Chen G, Li W, Li C and Zhou Y. 2018 A rational design of solid polymer electrolyte with high salt concentration for lithium battery. J. Power Sources 407 23–30

[37] Wright P V. 1976 An anomalous transition to a lower activation energy for dc electrical conduction above the glass-transition temperature. J. Polym. Sci. B Polym. Phys. 14 955–7

[38] Abraham K M, Jiang Z and Carroll B. 1997 Highly conductive PEO-like polymer electrolytes. Chem. Mater. 9 1978–88

[39] Jacob M, Prabahar S and Radhakrishna S. 1997 Effect of PEO addition on the electrolytic and thermal properties of PVPD/LiClOₓ polymer electrolytes. Solid State Ion. 104 267–76

[40] Bandura I, R A K, Dissanayake M A K and Mellander B-E. 1998 Ionic conductivity of plasticized(PEO)–LiCFₓSOᵧ electrolytes. Electrochim. Acta 43 1447–51

[41] Frech R, Chintapalli S, Bruce P G and Vincent C A. 1999 Crystalline and amorphous phases in the poly(ethylene oxide)–LiCFₓSOᵧ System. Macromolecules 32 808–13
[42] Jayathilaka P A R D, Dissanayake M A K L, Albansson I and Mellander B E 2002 Effect of nano-porous Al2O3 on thermal, dielectric and transport properties of the (PEO)6LiTFSI polymer electrolyte system Electrochim. Acta 18 101–103

[43] Appetecchi G B, Shin J H, Alessandrini F and Passerini S 2008 0.6Li2V2O5 battery prototypes based on solvent-free PEO—Li(N(SO2CF2CF3))2 polymer electrolytes J. Power Sources 143 236–42

[44] Boaretto N, Meabe L, Martinez-Ibañez M, Armand M and Zhang H 2020 Review—polymer electrolytes for rechargeable batteries: from nanocomposite to nanohybrid J. Electrochem. Soc. 167 070524

[45] Zhang H and Armand M 2021 History of solid polymer electrolyte-based solid-state lithium metal batteries: a personal account J. Power Sources 492 1–16

[46] Takahashi Y and Tadokoro H 1973 Structural studies of polyethers, (—(CH2)n—O—h., X. crystal structure of poly(ethylene oxide) Macromolecules 6 672–5

[47] Johansson P 2001 First principles modelling of amorphous polymer electrolytes: Li+-PEO, Li+-PEI, and Li+-PES complexes Polymer 42 4267–73

[48] Robaillie C and Fauthé D 1986 Phase diagrams and conductivity characterization of some PEO-LiX electrolytes J. Electrochem. Soc. 133 315–25

[49] Ballard D G H, Cheshire P, Mann T S and Przeworski J E 1990 Ionic conductivity in organic solids derived from amorphous macromolecules Macromolecules 23 1256–64

[50] Orad G, Edman L and Ferry A 2002 Diffusion: a comparison between liquid and solid polymer LiTFSI electrolytes Solid State Ion. 152–153 131–6

[51] Zardalidis G, Ioannou E, Psapalis and Floudas G 2013 Relating structure, viscoelasticity, and local mobility to conductivity in PEO/LiTf electrolytes Macromolecules 46 2705–14

[52] Zhang H, Liu C, Zheng L, Xu F, Feng W, Li H, Huang X, Armand M, Nie J and Zhou Z 2014 Lithium bisfluorosulfonylimide/poly(ethylene oxide) polymer electrolyte Electrochim. Acta 133 529–38

[53] Xue Z, He D and Xie X 2015 Poly(ethylene oxide)-based electrolytes for lithium-ion batteries J. Mater. Chem. A 3 19218–53

[54] Esheu G G, Judez X, Li C, Martinez-Ibáñez M, Gracia I, Bondarchuk O, Carrasco J, Rodríguez-Martínez L M, Zhang H and Armand M 2018 Ultrahigh performance all-solid-state lithium sulfur batteries: salt anion’s chemistry-induced anomalous synergistic effect J. Am. Chem. Soc. 140 9921–33

[55] Armand M 1986 Polymer electrolytes Annu. Rev. Mater. Sci. 16 245–61

[56] Han H et al 2011 Lithium bis(fluorosulfonylimide)imide (LiTFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: physicochemical and electrochemical properties J. Power Sources 196 3623–32

[57] Tong B, Wang P, Ma Q, Wan H, Zhang H, Huang X, Armand M, Feng W, Nie J and Zhou Z 2020 Lithium fluorinated sulfonimide-based solid polymer electrolytes for Li|LiFePO4 cell: the impact of anionic structure Solid State Ion. 358 115519

[58] Chiodelli G, Ferloni P, Magistris A and Sanesi M 1988 Ionic conductivity in organic solids derived from amorphous macromolecules Macromolecules 21 89–96

[59] Sun H Y, Takeda Y, Imanishi N, Yamamoto O and Sohn H J 2000 Ferroelectric ceramics as a ceramic filler in solid composite polyethylene oxide-based electrolytes J. Electrochem. Soc. 147 2462–7

[60] Appetecchi G B, Henderson W, Villano P, Berrettoni M and Passerini S 2001 PEO-LiN(SO2CF2CF3)2 polymer electrolytes: i. XRD, DSC, and ionic conductivity characterization J. Electrochem. Soc. 148 A1171–8

[61] Karuppasamy K, Kim D, Kang Y H, Prasanna K and Rhee H W 2017 Improved electrochemical, mechanical and transport properties of novel lithium bisnonafluoro-1-butanesulfonimide (LiNBFs1) based solid polymer electrolytes for rechargeable lithium ion batteries J. Ind. Eng. Chem. 52 224–34

[62] Ma Q et al 2016 Novel Li[(CF3SO2)n-C4F9-SO2]N]-based polymer electrolytes for solid-state lithium batteries with superior electrochemical performance ACS Appl. Mater. Interfaces 8 29705–12

[63] Liu D F, Nie J, Guan W C, Duan H Q and Zhuo L M 2004 Characterizations of a branched ester-type lithium imide in poly(ethylene oxide)-based polymer electrolytes Solid State Ion. 167 131–6

[64] Zhang H et al 2019 Enhanced lithium-ion conductivity of polymer electrolytes by selective introduction of hydrogen into the anion Angew. Chem., Int. Ed. Engl. 58 7829–34

[65] Qiao L et al 2020 Trifluoromethyl-free anion for highly stable lithium metal polymer batteries Energy Storage Mater. 32 225–33

[66] Zhang H, Chen F, Lakuntha O, Oteo U, Qiao L, Martinez-Ibáñez M, Zhu H, Carrasco J, Forsyth M and Armand M 2019 Suppressed mobility of negative charges in polymer electrolytes with an ether-functionalized anion Angew. Chem. Int. Ed. 58 12070–5

[67] Qiao L et al 2022 Anion p–p stacking for improved lithium transport in polymer electrolytes J. Am. Chem. Soc. 144 9806–16

[68] Martinez-Ibáñez M, Sanchez-Diez E, Oteo U, Gracia I, Aldalur I, Eshetu G G and Prasanna K 2020 Trifluoromethyl-free anion for highly stable lithium metal polymer batteries J. Mater. Chem. A 8 1322–8

[69] Polu A R, Kim D K and Rhee H-W 2015 Poly(ethylene oxide)-lithium difluorooxalato)borate new solid polymer electrolytes: ion–polymer interaction, structural, thermal, and ionic conductivity studies Ionics 21 2771–80

[70] Wu X, Xin S, Seo H-H, Kim J, Guo Y-G and Lee J-S 2011 Enhanced Li+ conductivity in PEO-LiBOB polymer electrolytes by using succinimimile as a plasticizer Solid State Ion. 186 1–6

[71] Zhang H, Judez X, Santiago A, Martinez-Ibáñez M, Muñoz-Márquez M A, Carrasco J, Li C, Esheu G G and Armand M 2019 Fluorine-free noble salt anion for high-performance all-solid-state lithium–sulfur batteries Adv. Energy Mater. 9 1900763

[72] Egashira M, Scrosati B, Armand M, Béanger S and Michot C 2003 Lithium dicyanotriazolate as a lithium salt for poly(ethylene oxide) based polymer electrolytes Electrochem. Solid-State Lett. 6 A71–3

[73] Jankowski P, Zukowska G Z, Dranka M, Marczewski M J, Ostrowski A, Korczak J, Niedzicki L, Zalewska A and Wieczorek W 2016 Understanding of lithium transport in polymer electrolytes: i. XRD, DSC, and ionic conductivity characterization J. Power Sources 306 73–80

[74] Linert W, Camard A, Armand M and Michot C 2002 Anions of low Lewis basicity for ionic solid state electrolytes Coord. Chem. Rev. 226 137–41

[75] Johansson P 2007 Electronic structure calculations on lithium battery electrolyte salts Phys. Chem. Chem. Phys. 9 1493–8
Mater. Futures 1 (2022) 042103
Topical Review

[77] Meusdoerffer J N N 1972 Bisperfluorokansulfonylimide (RISO)2NH Chem. Ztg. 96 582–3

[78] Lopes J N C, Shimizu K, Padua A A H, Umebayashi Y, Fukuda S, Fuji K and Ishiguro S-I 2008 A tale of two ions: the conformational landscapes of bis(trifluoromethanesulfonyl)amide and N,N-dialkylpyrrolidinium J. Phys. Chem. B 112 1465–72

[79] Appel R and Eisenhauer G 1962 Die synthese des imidobisschwefeläurefluorids, HN(SO2F)2 Chem. Ber. 95 246–8

[80] Christophe M et al 1995 Ionic conducting material having good anticorrosive properties WO9526056A1

[81] Zhang H, Feng W F, Zhou Z B and Nie J 2014 Composite electrolytes of lithium salt/polymeric ionic liquid with bis(fluorosulfonyl)imide Solid State Ion. 256 61–67

[82] Zhang H, Arcelus O and Carrasco J 2018 Role of asymmetry in the physicochemical and electrochemical behaviors of perfluorinated sulfonamide anions for lithium batteries: a DFT study Electrochim. Acta 280 290–9

[83] Zhang L and Chen Y H 2021 Electrolyte solvation structure as a stabilization mechanism for electrodes Energy Mater. 1 100004

[84] Doyle M, Fuller T F and Newman J 1994 The importance of the lithium ion transference number in lithium/polymer cells Electrochim. Acta. 39 2073–81

[85] Brissot C, Rosso M, Chazalvie J-N, Baudryb P and Lascaud S 1998 In situ study of dendritic growth in lithium/PEO-salt/lithium cells Electrochim. Acta 43 1569–74

[86] Otoe U, Martinez-Itaínez M, Aldalur I, Sanchez-Diez E, Carrasco J, Armand M and Zhang H 2019 Improvement of the cationic transport in polymer electrolytes with [difluoromethanesulfonyl][trifluoromethanesulfonyl]imide salts ChemElectroChem 6 1019–22

[87] Zhang X, Daigle J C and Zaghib K 2020 Comprehensive review of polymer architecture for all-solid-state lithium rechargeable batteries Materials 13 2488

[88] Qu J, Yang L, Sun G, Yu X, Li H and Chen L 2020 A stabilized PEO-based solid electrolyte via a facile interfacial engineering method for a high voltage solid-state lithium metal battery Chem. Commun. 56 5633–6

[89] Gray F M 1997 Polymer Electrolytes (London: Royal Society of Chemistry) p 175

[90] Cui M, Li Z, Zhang J and Feng S 2008 Siloxane-based polymer electrolytes Prog. Chem. 20 1988–96

[91] Tu Q, Zhang Q, Wang Y, Jiao Y, Xiao J, Feng T and Wang J 2019 Antibacterial properties of poly(dimethylsiloxane) surfaces modified with graphene oxide-catechol composite Prog. Org. Coat. 129 247–53

[92] Gupta A K, Paliwal D K and Bajaj P 1998 Melting behavior of acrylonitrile polymers J. Appl. Polym. Sci. 70 2703–9

[93] Brito C A R, Fleming R R, Pardini L C and Alves N P 2013 Policarilonitrila: processos de fiação empregados na indústria Polímeros 23 764–70

[94] Zhang H, Armand M and Rojo T 2019 Editors’ choice—review—innovative polymeric materials for better rechargeable batteries: strategies from CIC energigune J. Electrochem. Soc. 166 A679–86

[95] Wang X, Song Z, Wu H, Nie J, Feng W, Wu H, Huang X, Armand M, Zhou Z and Zhang H 2022 Unprecedented impact of main chain on comb polymer electrolytes performances ChemElectroChem 9 e202101590

[96] Chen J X, Wang G, Wang Q X, Zhou D and Fan L Z 2022 An interpenetrating network poly carbonate-based composite electrolyte for high-voltage all-solid-state lithium-metal batteries Energy Mater. 2 200023

[97] Zhang H, Chen Y H, Li C M and Armand M 2021 Electrolyte and anode-electrolyte interphase in solid-state lithium metal polymer batteries: a perspective SusMat 1 24–37

[98] Zhang H, Zhou Z B and Nie J 2013 Recent advances of polymeric ionic liquids Prog. Chem. 25 762–74

[99] Zhang H, Li L, Feng W F, Zhou Z B and Nie J 2014 Polymeric ionic liquids based on ether functionalized ammoniums and perfluorinated sulfonimidides Polymer 55 3339–48

[100] Zhang H, Liu C Y, Zheng L P F, Feng W F, Zhou Z B and Nie J 2015 Solid polymer electrolyte comprised of lithium salt/ether functionalized ammonium-based polymeric ionic liquid with bis(fluorosulfonyl)imide Electrochim. Acta 159 93–101

[101] Eshetu G G, Mecerreyes D, Forsyth M, Zhang H and Armand M 2019 Polymeric ionic liquids for lithium-based rechargeable batteries Mol. Syst. Des. Eng. 4 294–309

[102] Aldalur I, Armand M and Zhang H 2020 Jeffamine-based polymers for rechargeable batteries Batteries Supercaps 3 30–46

[103] Benrabah D, Sanchez J Y and Armand M 1992 New polylamide-ether electrolytes Electrochim. Acta 37 1737–41

[104] Aldalur I, Zhang H, Piszcz M, Oteo U, Rodriguez-Martinez L M, Shanmukaraj D, Rojo T and Armand M 2017 Jeffamine® based polymers as highly conductive polymer electrolytes and cathode binder materials for battery application J. Power Sources 347 37–46

[105] Aldalur I, Martinez-Itaínez M, Piszcz M, Rodriguez-Martinez L M, Zhang H and Armand M 2018 Lowering the operational temperature of all-solid-state lithium polymer cell with highly conductive and interfacially robust solid polymer electrolytes J. Power Sources 383 144–9

[106] Aldalur I, Martinez-Itaínez M, Krzton-Maziopa A, Piszcz M, Armand M and Zhang H 2019 Flowable polymer electrolytes for lithium metal batteries J. Power Sources 423 218–26

[107] Aldalur I, Martinez-Itaínez M, Piszcz M, Zhang H and Armand M 2018 Self-standing highly conductive solid electrolytes based on block copolymers for rechargeable all-solid-state lithium-metal batteries Batteries Supercaps 1 149–59

[108] Tan S, Perre E, Gustafsson T and Brandell D 2012 A solid state 3D microbattery based on Cu2Sb nanopillar anodes Solid State Ion. 225 510–2

[109] Tan S, Walus S, Gustafsson T and Brandell D 2011 3D microbattery electrolyte by self-assembly of oligomers Solid State Ion. 198 26–31

[110] Aldalur I et al 2020 Nano fiber-reinforced polymer electrolytes toward room temperature solid-state lithium batteries J. Power Sources 448 227424

[111] Xu H, Xie J, Liu Z, Wang J and Deng Y 2020 Carboxyl-coordinating polymers for high-voltage solid-state lithium batteries: solid polymer electrolytes MRS Energy Sustain. 7 1

[112] Dukhanin G P, Dümler S A, Sablin A N and Novakov I A 2009 Solid polymeric electrolyte based on poly(ethylene carbonate)-lithium perchlorate system Russ. J. Appl. Chem. 82 243–6

[113] Ebadi M, Eriksson T, Mandal P, Costa L T, Araujo C M, Mindemark J and Brandell D 2020 Restricted ion transport by plasticizing side chains in polycarbonate-based solid polymer electrolytes Macromolecules 53 764–74

[114] Meabe L, Peña S R, Martinez-Itaínez M, Zhang Y, Lobato E, Manzano H, Armand M, Carrasco J and Zhang H 2020 Insight into the iconic transport of solid polymer
electrolytes in polymer and polyester blends J. Phys. Chem. C 124 17981–91
[115] Zhang J et al 2015 Safety-reinforced poly(propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries Adv. Energy Mater. 5 1501082
[116] Kimura K, Yajima M and Tominaga Y 2016 A highly-concentrated poly(ethylene carbonate)-based electrolyte for all-solid-state Li battery working at room temperature Electrochem. Commun. 66 46–48
[117] Tominaga Y 2017 Ion-conductive polymer electrolytes based on poly(ethylene carbonate) and its derivatives Polym. J. 49 291–5
[118] Comnartee B, Paolella A, Collin-Martin S, Gagnon C, Vigh A, Guerri A and Zaghib K 2019 Solid-to-liquid transition of polycarbonate solid electrolytes in Li-metal batteries J. Power Sources 436 226852
[119] Buchheit A, Grünebaum M, Teßmer B, Winter M and Wiemhöfer H-D 2021 Polycarbonate-based lithium salt-containing electrolytes: new insights into thermal stability J. Phys. Chem. C 125 4371–87
[120] Wang C, Zhang H, Li J, Chai J, Dong S and Cui G 2018 The interfacial evolution between polycarbonate-based polymer electrolyte and Li-metal anode J. Power Sources 397 157–61
[121] Thomas K E, Sloop S E, Kerr J B and Newman J 2000 Comparison of lithium-polymer cell performance with unity and nonunity transference numbers J. Power Sources 89 132–8
[122] Feng S W, Shi D Y, Liu F, Zheng L P, Nie J, Feng W F, Huang X J, Armand M and Zhou Z B 2013 Single lithium-ion conducting polymer electrolytes based on poly[(4- styrenesulfonyl)trifluoromethanesulfonyl]imide anions Electrochim. Acta 93 254–63
[123] Ma Q et al 2016 Single lithium-ion conducting polymer electrolytes based on a super-delocalized polyanion Angew. Chem. Int. Ed. 55 2521–5
[124] Zhang H, Li C M, Piszcz M, Coya E, Rojo T, Rodriguez-Martinez I M, Armand M and Zhou Z B 2017 Single lithium-ion conducting solid polymer electrolytes: advances and perspectives Chem. Soc. Rev. 46 797–815
[125] Stephan A M, Prem Kumar T, Angulakshmi N, Salini P S, Sabarimuthun R, Srinivasan A and Thomas S 2011 Influence of calix[2]-p-benzoylpyrrole on the electrochemical properties of poly(ethylene oxide)-based electrolytes for lithium batteries J. Appl. Polym. Sci. 120 2215–21
[126] Li S, Zhang S Q, Shen L, Liu Q, Ma J B, Lv W, He Y B and Yang Q H 2020 Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries Adv. Sci. 7 1903088
[127] Zhang D, Xu X, Qin Y, Ji S, Huo Y, Wang Z, Liu Z, Shen J and Liu J 2020 Recent progress in organic–inorganic composite solid electrolytes for all-solid-state lithium batteries Chemistry 26 1720–36
[128] Tsuchida E, Ohno H and Kobayashi N 1988 Single-ion conduction in poly[(oligo(oxymethylene) methacrylate)-co-(alkali-metal methacrylates)] Macromolecules 21 96–100
[129] Bannister D J, Davies G R, Ward I M and McIntyre J E 1984 Ionic conductivities for poly(ethylene oxide) complexes with lithium salts of monobasic and dibasic acids and blends of poly(ethylene oxide) with lithium salts of anionic polymers Polymer 25 1291–6
[130] Kobayashi N, Uchiuma M and Tsuchida E 1985 Poly[lithium methacrylate-co-oligo(oxymethylene) methacrylate] as a solid electrolyte with high ionic conductivity Solid State Ion. 17 307–11
[131] Kim H-T and Park J-K 1997 Effects of cations on ionic states of poly(oligo-oxymethylene methacrylate-co-alkali metal acrylamidocaprate) single-ion conductor Solid State Ion. 98 237–44
[132] Zhang S, Deng Z and Wang G 1991 Cationic conductivity of blend complexes composed of poly[oligo(oxymethylene) methacrylate] and the alkali metal salts of poly(sulfonatalkyl methacrylate) Polym. J. 23 73–78
[133] Park C H, Sun Y-K and Kim D-W 2004 Blended polymer electrolytes based on poly(lithium 4-styrene sulfonate) for the rechargeable lithium polymer batteries Electrochim. Acta 50 375–8
[134] Doyle R P, Chen X R, Macrae M, Srungavarapu A, Smith L J, Gopinadhan M, Osui C O and Granados-Focil S 2014 Poly(ethyleneime)-based polymer blends as single-ion lithium conductors Macromolecules 47 3401–8
[135] Sun X G, Hou J and Kerr J B 2005 Comb-shaped ion conductors based on polycrystalline ethiers and lithium alkyl sulfonate Electrochim. Acta 50 1139–47
[136] Cowie J and Spence G 1999 Novel single ion, comb-branched polymer electrolytes Solid State Ion. 123 233–42
[137] Bouchet R et al 2013 Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries Nat. Mater. 12 452–7
[138] Meziane R, Bonnet J P, Courty M, Djellab K and Armand M 2011 Single-ion polymer electrolytes based on a delocalized polyanion for lithium batteries Electrochim. Acta 57 14–19
[139] Ma Q, Xia Y, Feng W, Nie J, Hu Y-S, Li H, Huang X, Chen L, Armand M and Zhou Z 2016 Impact of the functional group in the polyanion of single-lithium-conducting polymer electrolyte on the stability of lithium metal electrodes RSC Adv. 6 32454–61
[140] Tsuchida E, Ohno H, Kobayashi N and Ishizaka H 1989 Poly[(4-carboxy)oligo(oxymethylene) methacrylate] as a new type of polymeric solid electrolyte for alkali-metal ion transport Macromolecules 22 1771–5
[141] Kong B, Wang J W, Liu Z J, Ma L P, Zhou Z B and Peng Z Q 2018 Identifying compatibility of lithium salts with LiFePO4 cathode using a symmetric cell J. Power Sources 384 80–85
[142] Porcarelli L, Sutton P, Bocharova V, Aguirresarobe R H, Zhu H, Goujon N, Leiza J R, Sokolov A, Forsyth M and Mecerreyes D 2021 Single-ion conducting polymer nanoparticles as functional fillers for solid electrolytes in lithium metal batteries ACS Appl. Mater. Interfaces 13 54354–62