Experimental Investigation of Minimum Quantity Lubrication in Meso-scale Milling with Varying Tool Diameter

Yusof, M.Q.M., Harun, H.N.S.B., Bahar, R.

Department of Manufacturing and Materials Engineering, International Islamic University Malaysia (IIUM), Jalan Gombak, Kuala Lumpur, Malaysia

Abstract

Minimum quantity lubrication (MQL) is a method that uses a very small amount of liquid to reduce friction between cutting tool and work piece during machining. The implementation of MQL machining has become a viable alternative to flood cooling machining and dry machining. The overall performance has been evaluated during meso-scale milling of mild steel using different diameter milling cutters. Experiments have been conducted under two different lubrication condition: dry and MQL with variable cutting parameters. The tool wear and its surface roughness, machined surfaces microstructure and surface roughness were observed for both conditions. It was found from the results that MQL produced better results compared to dry machining. The 0.5 mm tool has been selected as the most optimum tool diameter to be used with the lowest surface roughness as well as the least flank wear generation. For the workpiece, it was observed that the cutting temperature possesses crucial effect on the microstructure and the surface roughness of the machined surface and bigger diameter tool actually resulted in higher surface roughness. The poor conductivity of the cutting tool may be one of reasons behind. © Published under licence by IOP Publishing Ltd.
References (10)

1. Walker, T. (2013) *The HANDBOOK A Guide to Machining with Minimum Quantity Lubrication*. Cited 5 times.
 (Unist, Inc)

2. Braga, D.U., Diniz, A.E., Miranda, G.W.A, Coppini, N.L. (2002) *Journal of Materials Processing Technology*, 122 (1), pp. 127-138. Cited 173 times.
 doi: 10.1016/S0924-0136(01)01249-3

3. Bahar, M.N. (2016) *Int. J. Eng. Mater. Manuf.*, 1, pp. 65-70.

4. Syahmi, A., Bin, A., Bahar, R., Ariff, T.F. (2016) *Proceedings of 6th International Conference on Industrial Engineering and Operations Management*, pp. 1782-1787.

5. Kajaria, S., Chittipolu, S., Adera, S., Hung, W.N. (2012) *Machining Science and Technology*, 16 (4), pp. 524-546. Cited 15 times.
 doi: 10.1080/10910344.2012.730848

6. Gaitonde, V.N., Karnik, S.R., Davim, J.P. (2012) *Machining Science and Technology*, 16 (2), pp. 304-320. Cited 16 times.
 doi: 10.1080/10910344.2012.673976

7. Hadad, M., Sadeghi, B. (2013) *Journal of Cleaner Production*, 54, pp. 332-343. Cited 68 times.
 doi: 10.1016/j.jclepro.2013.05.011

8. Hadad, M., Sadeghi, B. (2012) *International Journal of Machine Tools and Manufacture*, 63, pp. 1-15. Cited 54 times.
 doi: 10.1016/j.ijmachtools.2012.07.003
Shaikh, V., Boubekri, N., Scharf, T.W. (2014) *Int. J. Manuf. Eng.*, 2014, pp. 1-13. Cited 3 times.

Lee, P.-H., Nam, T.-S., Li, C., Lee, S.W. (2010) *Proceedings of the 2010 International Conference on Mechanical, Industrial, and Manufacturing Technologies, MIMT 2010*, pp. 457-462. Cited 10 times.

ISBN: 978-079185954-4

Cited 3 times

Experimental study on meso-scale milling process using nanofluid minimum quantity lubrication and compressed chilly air

(C2010) *Proceedings of the 2010 International Conference on Mechanical, Industrial, and Manufacturing Technologies, MIMT 2010*, pp. 457-462. Cited 10 times.

ISBN: 978-079185954-4

View at Publisher