The q–fractional analogue for Gronwall–type inequality

Thabet Abdeljawada,b, Jehad O. Alzabutb

aDepartment of Mathematics and Computer Science, Çankaya University
Öğretmenler Cad. 14, 06530, Balgat– Ankara, Turkey
thabet@cankaya.edu.tr

bDepartment of Mathematics and Physical Sciences, Prince Sultan University
P.O.Box 66833, Riyadh 11586, Saudi Arabia
jalzabut@psu.edu.sa

Abstract. In this article, we utilize q–fractional Caputo initial value problems of order $0 < \alpha \leq 1$ to derive a q–analogue for Gronwall–type inequality. Some particular cases are derived where q–Mittag–Leffler functions and q–exponential type functions are used. An example is given to illustrate the validity of the derived inequality.

Keywords. Caputo q–fractional derivative; q–Mittag–Leffler function; Gronwall’s inequality.

1 Introduction

The fractional differential equations have conspicuously received considerable attention in the last two decades. Many researchers have investigated these equations due to their significant applications in various fields of science and engineering such as in viscoelasticity, capacitor theory, electrical circuits, electro–analytical chemistry, neurology, diffusion, control theory and statistics; see for instance the monographs [1, 2, 3]. The study of q–difference equations, on the other hand, has gained intensive interest in the last years. It has been shown that these types of equations have numerous applications in diverse fields and thus have evolved into multidisciplinary subjects [4, 5, 6, 7, 8, 9, 10]. For more details on q–calculus, we refer the reader to the references [11, 12]. The corresponding fractional difference equations, however, have been comparably less considered. Indeed, the notions of fractional calculus and q–calculus are tracked back to the works of Euler and Jackson [13], respectively. However, the idea of fractional difference equations is considered to be very recent; we suggest the new papers [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28] whose authors have taken the lead to promote the theory of fractional difference equations.

The q–fractional difference equations which serve as a bridge between fractional difference equations and q–difference equations have become a main object of research in the last years. Recently, there have appeared many papers which study the qualitative properties of solutions for q–fractional differential equations [29, 30, 31, 32, 33] whereas few results exist for q–fractional difference equations [34, 35, 36]. The integral inequalities which are considered as an effective tools for studying solutions properties have been also under consideration. In particular, we are interested with Gronwall’s inequality which has been a main target for many researchers. There are several versions for Gronwall’s inequality in the literature; we list here those results which concern with fractional order equations [37, 38, 39, 40, 41].

*2000 Mathematics Subject Classification: 34A08; 39A13.
To the best of authors’ observation, however, the q–fractional analogue for Gronwall–type inequality has not been investigated yet.

A primary purpose of this paper is to utilize the q–fractional Caputo initial value problems of order $0 < \alpha \leq 1$ to derive a q–analogue for Gronwall–type inequality. Some particular cases are derived where q–Mittag–Leffler functions and q–exponential type functions are used. An example is given to illustrate the validity of the derived inequality.

2 Preliminary assertions

Before stating and proving our main results, we introduce some definitions and notations that will be used throughout the paper. For $0 < q < 1$, we define the time scale T_q as follows

\[T_q = \{ q^n : n \in \mathbb{Z} \} \cup \{ 0 \}, \]

where \mathbb{Z} is the set of integers. In general, if α is a nonnegative real number then we define the time scale

\[T^\alpha_q = \{ q^n + \alpha : n \in \mathbb{Z} \} \cup \{ 0 \} \]

and thus we may write $T^0_q = T_q$. For a function $f : T_q \to \mathbb{R}$, the nabla q–derivative of f is given by

\[\nabla_q f(t) = \frac{f(t) - f(qt)}{(1-q)t}, \quad t \in T_q - \{ 0 \}. \quad (1) \]

The nabla q–integral of f is given by

\[\int_0^t f(s) \nabla_q s = (1-q)t \sum_{i=0}^{\infty} q^i f(tq^i) \quad (2) \]

and

\[\int_a^t f(s) \nabla_q s = \int_0^t f(s) \nabla_q s - \int_0^a f(s) \nabla_q s, \quad \text{for } 0 \leq a \in T_q. \quad (3) \]

The q–factorial function for $n \in \mathbb{N}$ is defined by

\[(t-s)_q^n = \prod_{i=0}^{n-1} (t - q^i s). \quad (4) \]

In case α is a non positive integer, the q–factorial function is defined by

\[(t-s)_q^\alpha = t^\alpha \prod_{i=0}^{\infty} \frac{1 - q^i}{1 - q^i q^{\alpha+1}}. \quad (5) \]

In the following lemma, we present some properties of q–factorial functions.

Lemma 2.1. For $\alpha, \gamma, \beta \in \mathbb{R}$, we have

I. $(t-s)_q^{\alpha+\gamma} = (t-s)_q^\alpha (t-q^\gamma s)_q^\gamma$.

II. $(at-as)_q^\beta = a^\beta (t-s)_q^\beta$.

III. The nabla q–derivative of the q–factorial function with respect to t is

\[\nabla_q (t-s)_q^\alpha = \frac{1 - q^\alpha}{1-q} (t-s)_q^{\alpha-1}. \]

IV. The nabla q–derivative of the q–factorial function with respect to s is

\[\nabla_q (t-s)_q^\alpha = -\frac{1 - q^\alpha}{1-q} (t-qs)_q^{\alpha-1}. \]
For a function \(f : \mathbb{T}_q^0 \to \mathbb{R} \), the left \(q \)-fractional integral \(_q \nabla_a^{-\alpha} \) of order \(\alpha \neq 0, -1, -2, \ldots \) and starting at \(0 < a \in \mathbb{T}_q \) is defined by

\[
_q \nabla_a^{-\alpha} f(t) = \frac{1}{\Gamma_q(\alpha)} \int_a^t (t - qs)^{\alpha-1} q f(s) \, ds,
\]

where

\[
\Gamma_q(\alpha + 1) = \frac{1 - q^\alpha}{1 - q}, \quad \Gamma_q(1) = 1, \quad \alpha > 0.
\]

One should note that the left \(q \)-fractional integral \(_q \nabla_a^{-\alpha} \) maps functions defined on \(\mathbb{T}_q \) to functions defined on \(\mathbb{T}_q \).

Definition 2.1. \(^{[14]}\) If \(0 < \alpha \notin \mathbb{N} \). Then the Caputo left \(q \)-fractional derivative of order \(\alpha \) of a function \(f \) is defined by

\[
_q C^\alpha_a f(t) := _q \nabla_a^{-(n-\alpha)} \nabla_q^a f(t) = \frac{1}{\Gamma_q(n-\alpha)} \int_a^t (t - qs)^{n-\alpha-1} q \nabla_q^a f(s) \, ds,
\]

where \(n = [\alpha] + 1 \). In case \(\alpha \in \mathbb{N} \), we may write \(_q C^\alpha_a f(t) := \nabla_q^a f(t) \).

Lemma 2.2. \(^{[14]}\) Assume that \(\alpha > 0 \) and \(f \) is defined in a suitable domain. Then

\[
_q \nabla_a^{-\alpha} _q C^\alpha_a f(t) = f(t) - \sum_{k=0}^{n-1} \frac{(t - a)^k}{\Gamma_q(k+1)} q \nabla_q^a f(a)
\]

and if \(0 < \alpha \leq 1 \) then

\[
_q \nabla_a^{-\alpha} _q C^\alpha_a f(t) = f(t) - f(a).
\]

For solving linear \(q \)-fractional equations, the following identity is essential

\[
_q \nabla_a^{-\alpha} (x - a)_q^\alpha = \frac{\Gamma_q(\mu + 1)}{\Gamma_q(\alpha + \mu + 1)} (x - a)^{\mu + \alpha}, \quad 0 < a < x < b,
\]

where \(\alpha \in \mathbb{R}^+ \) and \(\mu \in (-1, \infty) \). See for instance the recent paper \(^{[?]}\) for more information.

The \(q \)-analogue of Mittag–Leffler function with double index \((\alpha, \beta) \) is first introduced in \(^{[?]}.\) Indeed, it was defined as follows:

Definition 2.2. \(^{[14]}\) For \(z, \lambda \in \mathbb{C} \) and \(\Re(\alpha) > 0 \), the \(q \)-Mittag–Leffler function is defined by

\[
q E{\alpha, \beta}(\lambda, z - z_0) = \sum_{k=0}^{\infty} \lambda^k (z - z_0)^{\alpha k} \frac{\Gamma_q(\alpha k + \beta)}{\Gamma_q(k+1)}.
\]

In case \(\beta = 1 \), we may use \(_q E_{\alpha}(\lambda, z - z_0) := _q E_{\alpha, 1}(\lambda, z - z_0) \).

The following example clarifies how \(q \)-Mittag–Leffler functions can be used to express the solutions of Caputo \(q \)-fractional linear initial value problems.

Example 2.3. \(^{[14]}\) Let \(0 < \alpha \leq 1 \) and consider the left Caputo \(q \)-fractional difference equation

\[
_q C^\alpha_a y(t) = \lambda y(t) + f(t), \quad y(a) = a_0, \quad t \in \mathbb{T}_q.
\]

Applying \(_q \nabla_a^{-\alpha} \) to equation \(^{[13]}\) and using \(^{[17]}\), we end up with

\[
y(t) = a_0 + \alpha \sum_{k=0}^{\infty} \lambda^k y_{-a}\nabla_q \nabla_q \nabla_q^{-\alpha} + \nabla_q^{-\alpha} f(t).
\]

To obtain an explicit form for the solution, we apply the method of successive approximation. Set \(y_0(t) = a_0 \) and

\[
y_m(t) = a_0 + \sum_{k=0}^{\infty} \lambda^k y_{m-1}(t) + \nabla_q^{-\alpha} f(t), \quad m = 1, 2, 3, \ldots
\]
For $m = 1$, we have by the power formula (13)

$$y_1(t) = a_0 [1 + \frac{\lambda(t-a)^{\alpha}}{\Gamma_q(\alpha + 1)} + q \nabla^{-\alpha} f(t)].$$

For $m = 2$, we also see that

$$y_2(t) = a_0 + \lambda a_0 q \nabla^{-\alpha} \left[1 + \frac{(t-a)^{\alpha}}{\Gamma_q(\alpha + 1)}\right] + q \nabla^{-\alpha} f(t) + \lambda q \nabla^{-2\alpha} f(t)$$

$$= a_0 \left[1 + \frac{\lambda(t-a)^{\alpha}}{\Gamma_q(\alpha + 1)} + \frac{\lambda^2(t-a)^{2\alpha}}{\Gamma_q(2\alpha + 1)}\right] + q \nabla^{-\alpha} f(t) + \lambda q \nabla^{-2\alpha} f(t).$$

If we proceed inductively and let $m \to \infty$, we obtain the solution

$$y(t) = a_0 \quad E_{\alpha,\beta}(\lambda, t-a) + \int_a^t (t-q)^{\alpha-1} q E_{\alpha,\alpha}(\lambda, t-q^\alpha) f(s) d_{\alpha,q} s.$$

Remark 2.1. If instead we use the modified q-Mittag-Leffler function

$$q e_{\alpha,\beta}(\lambda, z - z_0) = \sum_{k=0}^{\infty} \lambda^k (z - z_0)^{\alpha k + (\beta - 1)} \frac{1}{\Gamma_q(\alpha k + \beta)}$$

then, the solution representation (13) becomes

$$y(t) = a_0 \quad q e_{\alpha,\alpha}(\lambda, t-a) + \int_a^t q e_{\alpha,\alpha}(\lambda, t-q^\alpha) f(s) d_{\alpha,q} s.$$

Remark 2.2. If we set $\alpha = 1$, $\lambda = 1$, $a = 0$ and $f(t) = 0$, we reach to the q-exponential formula $e_q(t) = \sum_{k=0}^{\infty} \frac{t^k}{\Gamma_q(k+1)}$ on the time scale \mathbb{T}_q, where $\Gamma_q(k+1) = [k]_q! = [1]_q [2]_q \ldots [k]_q$ with $[r]_q = \frac{1-q^r}{1-q}$. It is known that $e_q(t) = E_q((1-q)t)$, where $E_q(t)$ is a special case of the basic hypergeometric series, given by

$$E_q(t) = \sum_{n=0}^{\infty} \frac{t^n}{(q)_n} (1-q)^{-n} = \sum_{n=0}^{\infty} \frac{t^n}{(q)_n},$$

where $(q)_n = (1-q)(1-q^2)\ldots(1-q^n)$ is the q-Pochhammer symbol.

3 The Main Results

Throughout the remaining part of the paper, we assume that $0 < \alpha \leq 1$. Consider the following q-fractional initial value problem

$$\begin{cases} q C^\alpha_a y(t) = f(t, y(t)), \quad a \in \mathbb{T}_q, \\ y(a) = y_0. \end{cases}$$ (15)
Applying $q_{\alpha}^{\nabla_a}$ to both sides of (15), we obtain
\begin{equation}
 y(t) = y_0 + q_{\alpha}^{\nabla_a} f(t, y(t)).
\end{equation}

Set
\begin{equation}
 f(t, y(t)) = x(t)y(t),
\end{equation}
where
\begin{equation}
 0 \leq x(t) \leq \frac{1}{t^{\alpha(1-q)\alpha}}.
\end{equation}

In the following, we present a comparison result for the fractional summation operator.

Theorem 3.1. Let w and v satisfy
\begin{equation}
 w(t) \geq w(a) + q_{\alpha}^{\nabla_a} x(t) w(t)
\end{equation}
and
\begin{equation}
 v(t) \leq v(a) + q_{\alpha}^{\nabla_a} x(t) v(t)
\end{equation}
respectively. If $w(a) \geq v(a)$, then $w(t) \geq v(t)$ for $t \in \Lambda_a = \{a = q^n, q^{n-1}, \ldots\}$.

Proof. Set $u(t) = v(t) - w(t)$. We claim that $u(t) \leq 0$ for $t \in \Lambda_a$. Let us assume that $u(s) \leq 0$ is valid for $s = q^n, q^{n-1}, \ldots, q^{n-1}$, where $n < n_0$. Then, for $t = q^n$ we have
\begin{equation}
 u(t) = v(t) - w(t) \leq [v(a) - w(a)] + q_{\alpha}^{\nabla_a} x(t) [v(t) - w(t)]
\end{equation}
or
\begin{equation}
 v(t) - w(t) \leq [v(a) - w(a)] + \frac{1}{\Gamma_q(\alpha)} \int_a^t (t - qs)^{\alpha-1} x(s) (v(s) - w(s)) \nabla_q s.
\end{equation}

It follows that
\begin{equation}
 v(t) - w(t) \leq [v(a) - w(a)] + \frac{1}{\Gamma_q(\alpha)} \int_a^t (t - qs)^{\alpha-1} x(s) (v(s) - w(s)) \nabla_q s + \frac{1}{\Gamma_q(\alpha)} \int_a^t (t - qs)^{\alpha-1} x(s) (v(s) - w(s)) \nabla_q s.
\end{equation}

Since $v(t) - w(t) \leq 0$ and $\int_a^t f(s) \nabla s = (t - p(t)) f(t)$, (21) can be written in the form
\begin{equation}
 v(t) - w(t) \leq \frac{1}{\Gamma_q(\alpha)} (t - qt) (t - qt)^{\alpha-1} x(t) (v(t) - w(t)) = (1 - q)^{\alpha} t^{\alpha} x(t) (v(t) - w(t)),
\end{equation}
where $\Gamma_q(\alpha) = \frac{(1-q)^{\alpha-1}}{(1-q)^{\alpha}}$ is used. It follows that
\begin{equation}
 (1 - x(t)(1 - q)^{\alpha}) (v(t) - w(t)) \leq 0.
\end{equation}

By (18), we conclude that $v(t) - w(t) \leq 0$.

Define the following operator
\begin{equation}
 q_{\alpha}^{\Omega_a} \phi = q_{\alpha}^{\nabla_a} x(t) \phi(t).
\end{equation}

The following lemmas are essential in the proof of the main theorem. We only state these statements as their proofs are straightforward.

Lemma 3.2. For any constant λ, we have
\begin{equation}
 \left| q_{\alpha}^{\Omega_a} \frac{1}{\lambda} \right| \leq q_{\alpha}^{\Omega_{|\lambda|}} \frac{1}{\lambda}.
\end{equation}
Lemma 3.3. For any constant λ, we have
\[q\Omega_n^\lambda = \frac{\lambda^n(a - t)^n}{\Gamma(n\alpha + 1)}, \quad n \in \mathbb{N}. \]

Lemma 3.4. Let $\lambda > 0$ be such that $|y(t)| \leq \lambda$ for $t \in \Lambda_a$. Then
\[q\Omega_n^{\lambda 1} \leq q\Omega_n^\lambda, \quad n \in \mathbb{N}. \]

The next result together with Theorem 3.1 will give us the desired q-fractional Gronwall-type inequality.

Theorem 3.5. Let $|x(t)| \leq \frac{1}{(1-q)^{\alpha}}$ for $t \in \Lambda_a \cap [a, b]$. Then, the q-fractional integral equation
\[y(t) = y(a) + q\nabla^{-\alpha}_a x(t)y(t) \quad (23) \]
for $t \in \Lambda_a \cap [a, b]$ where $b \in \mathbb{R}$, has a solution
\[y(t) = y(a) \sum_{k=0}^{\infty} q\Omega_k^a 1. \quad (24) \]

Proof. The proof is achieved by utilizing the successive approximation method. Set
\[y_0(t) = y(a), \]
and
\[y_n(t) = y(a) + q\nabla^{-\alpha}_a x(t)y_{n-1}(t), \quad n \geq 1. \]

We observe that
\[y_1(t) = y(a) + q\nabla^{-\alpha}_a x(t)y_0(t) = y(a) + q\Omega_a y(a) \]
and
\[y_2(t) = y(a) + q\Omega_a (y(a) + q\Omega_a y(a)) = y(a) + q\Omega_a y(a) + q\Omega_a^2 y(a). \]

Inductively, we end up with
\[y_n(t) = y(a) \sum_{k=0}^{n} q\Omega_k^a 1, \quad n \geq 0. \]

Taking the limit as $n \to \infty$, we have
\[y(t) = y(a) \sum_{k=0}^{\infty} q\Omega_k^a 1. \quad (25) \]

It remains to prove the convergence of the series in (25). The subsequent analysis are carried out for $a = 0$.

In virtue of (15), we obtain
\[\sum_{k=0}^{\infty} q\Omega_k^a 1 \leq \sum_{k=0}^{\infty} q\nabla^{-\alpha}_a x(t)^k 1 \leq \sum_{k=0}^{\infty} \left(q\nabla^{-\alpha}_a t^{-\alpha} \right)^k \frac{1}{(1-q)^{\alpha}} \leq \frac{1}{(1-q)^{\alpha}} \sum_{k=0}^{\infty} \left(q\nabla^{-\alpha}_a t^{-\alpha} \right)^k (1-q)^{\alpha}. \quad (26) \]

However, for $k = 1$ we observe that
\[q\nabla^{-\alpha}_a t^{-\alpha} = \frac{\Gamma(1 - \alpha)}{\Gamma(0 + 1)} t^\alpha = q(1 - \alpha). \]
For $k = 2$, it follows that
\[q \nabla_0^{-\alpha} (\Gamma_q(1 - \alpha)) = \frac{\Gamma_q(1 - \alpha)}{\Gamma_q(1 - \alpha)} = \frac{\Gamma_q(1 - \alpha)}{\Gamma_q(1 + \alpha)}. \]

For $k = 3$, we have
\[q \nabla_0^{-\alpha} \left(\frac{\Gamma_q(1 - \alpha)}{\Gamma_q(\alpha + 1)} \right) = \frac{\Gamma_q(1 - \alpha)}{\Gamma_q(\alpha + 1)} \frac{\Gamma_q(\alpha + 1)}{\Gamma_q(\alpha + 1)} = \frac{\Gamma_q(1 - \alpha)}{\Gamma_q(2\alpha + 1)} \cdot 2^\alpha. \]

For $k = 4$, we get
\[q \nabla_0^{-\alpha} \left(\frac{\Gamma_q(1 - \alpha)}{\Gamma_q(2\alpha + 1)} \right) = \frac{\Gamma_q(1 - \alpha)}{\Gamma_q(3\alpha + 1)} \cdot 4^\alpha. \]

Therefore, (26) becomes
\[\sum_{k=0}^\infty q^k \Omega_k \leq \frac{1}{(1 - q)^\alpha} \left[1 + \sum_{k=1}^\infty \frac{t^\alpha}{\Gamma_q(k\alpha + 1)} \right]. \]

Let $a_k = \frac{t^{(k-1)\alpha}}{\Gamma_q((k-1)\alpha + 1)}$. Then
\[\frac{a_k}{a_{k-1}} = \frac{\Gamma_q((k-1)\alpha + 1)}{\Gamma_q(k\alpha + 1)} \cdot \frac{t^{(k-1)\alpha}}{t^{(k-1)\alpha}} = \frac{\Gamma_q((k-1)\alpha + 1)}{\Gamma_q(k\alpha + 1)}. \]

We observe that
\[\frac{\Gamma_q((k-1)\alpha + 1)}{\Gamma_q(k\alpha + 1)} = \frac{(1 - q)^{(k-1)\alpha}(1 - q)^{(1-k)\alpha}}{(1 - q)^{k\alpha}(1 - q)^{(1-k)\alpha}} = \frac{(1 - q)^{(k-1)\alpha}}{(1 - q)^{k\alpha}}. \]

Setting
\[\frac{(1 - q)^{(k-1)\alpha}}{(1 - q)^{k\alpha}} := (1 - q)^\alpha \prod_{i=0}^\infty \frac{1 - q^{i+1}}{1 - q^{(i+1)(k\alpha + 1)}} \]

we deduce that
\[\lim_{k \to \infty} (1 - q)^\alpha \prod_{i=0}^\infty \frac{1 - q^{i+1}}{1 - q^{(i+1)(k\alpha + 1)}} = (1 - q)^\alpha \prod_{i=0}^\infty (1 - q^{i+1}) = (1 - q)^\alpha < 1. \]

Hence, convergence is guaranteed. In case $a > 0$, we can proceed in a similar way taking into account that
\[\frac{t^{(k-1)\alpha}}{t^{k\alpha}} = (t - q^\alpha a^\alpha) \to t^\alpha \text{ as } k \to \infty. \]

Theorem 3.6 (q-Fractional Gronwall’s Lemma). Let v and μ be nonnegative real valued functions such that $0 \leq \mu(t) < \frac{1}{q^{1/(1-q)}}$ for all $t \in \Lambda_\alpha$ (in particular if $0 \leq \mu(t) < \frac{1}{(1-q)^{1/(1-q)}}$ and
\[v(t) \leq v(a) + q \nabla_a^{-\alpha} v(t) \mu(t). \]

Then
\[v(t) \leq v(a) \sum_{k=0}^\infty \Omega_k. \]
The proof of the above statement is a straightforward implementation of Theorem 3.1 and Theorem 3.5 by setting \(v(t) = v(a) \sum_{k=0}^\infty (t^\alpha k^k)(t) \).

In case \(\alpha = 1 \), we deduce the following immediate consequence of Theorem 3.6 which can be considered as the well known \(q \)-Gronwall’s Lemma; consult for instance the paper [42].

Corollary 3.7. Let \(0 \leq \delta(t) < \frac{1}{(1-q)} \) for all \(t \in \Lambda_a \). If

\[
v(t) \leq v(a) + \int_a^t \delta(s)v(s)\nabla q s.
\]

Then

\[
v(t) \leq v(a)e_q(t,a),
\]

where \(e_q(t,a) = q\Omega_t(1, t - a) \) is the nabla \(q \)-exponential function on the time scale \(\mathbb{T}_q \).

4 Applications

In this section we show, by the help of the \(q \)-fractional Gronwall inequality proved in the previous section, that small changes in the initial conditions of Caputo \(q \)-fractional initial value problems lead to small changes in the solution.

Let \(f(t,y) \) satisfy a Lipschitz condition with constant \(0 \leq L < 1 \) for all \(t \) and \(y \).

Example 4.1. Consider the following \(q \)-fractional initial value problems

\[
\begin{align*}
q\nabla_a^\alpha \varphi(t) &= f(t, \varphi(t)), \quad 0 < \alpha \leq 1, \ a \in \mathbb{T}_q, \ t \in \Lambda_a, \\
\varphi(a) &= \gamma,
\end{align*}
\]

and

\[
\begin{align*}
q\nabla_a^\alpha \psi(t) &= f(t, \psi(t)), \quad 0 < \alpha \leq 1, \ a \in \mathbb{T}_q, \ t \in \Lambda_a, \\
\psi(a) &= \beta.
\end{align*}
\]

It follows that

\[
\varphi(t) - \psi(t) = (\gamma - \beta) + q\nabla_a^{-\alpha} \left[f(t, \varphi(t)) - f(t, \psi(t)) \right].
\]

Taking the absolute value, we obtain

\[
|\varphi(t) - \psi(t)| \leq |\gamma - \beta| + q\nabla_a^{-\alpha} \left| f(t, \varphi(t)) - f(t, \psi(t)) \right|.
\]

or

\[
|\varphi(t) - \psi(t)| \leq |\gamma - \beta| + L q\nabla_a^{-\alpha} |\varphi(t) - \psi(t)|.
\]

By using Theorem 3.6 we get

\[
|\varphi(t) - \psi(t)| \leq |\gamma - \beta| \sum_{i=0}^\infty q\Omega_i 1 = |\gamma - \beta| \ q\Omega_\alpha(L, t - a).
\]

Consider the following \(q \)-fractional initial value problem

\[
\begin{align*}
q\nabla_a^\alpha \phi(t) &= f(t, \phi(t)), \quad 0 < \alpha \leq 1, \ a \in \mathbb{T}_q, \ t \in \Lambda_a \\
\phi(a) &= \gamma_n,
\end{align*}
\]

where \(\gamma_n \to \gamma \). If the solution of (30) is denoted by \(\phi_n \), then for all \(t \in \Lambda_a \) we have

\[
|\varphi(t) - \phi_n(t)| \leq |\gamma - \gamma_n| \sum_{i=0}^\infty q\Omega_i 1 = |\gamma - \gamma_n| \ q\Omega_\alpha(L, t - a).
\]

Hence \(|\varphi(t) - \phi_n(t)| \to 0 \) as \(\gamma_n \to \gamma \). This clearly verifies the dependence of solutions on the initial conditions.
References

[1] S. G. Samko, A. A. Kilbas, O. I. Marichev: Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, 1993.
[2] I. Podlubny: Fractional Differential Equations, Academic Press, 1999.
[3] A. A. Kilbas, M. H. Srivastava, J. J. Trujillo: Theory and Application of Fractional Differential Equations, North Holland Mathematics Studies 204, 2006.
[4] R. Finkelstein, E. Marcus: Transformation theory of the q-oscillator, J. Math. Phys. 36 (1995), 2652-2672.
[5] R. Finkelstein: The q-Coulomb problem, J. Math. Phys. 37 (1996), 2628-2636.
[6] R. Floreanini, L. Vinet: Automorphisms of the q-oscillator algebra and basic orthogonal polynomials, Phys. Lett. A. 180 (1993), 393-401.
[7] R. Floreanini, L. Vinet: Symmetries of the q-difference heat equation, Lett. Math. Phys. 32 (1974), 37-44.
[8] R. Floreanini, L. Vinet: Quantum symmetries of q-difference equations, J. Math. Phys. 36 (1995), 3134-3156.
[9] P. G. O. Freund, A. V. Zabrodin: The spectral problem for the q-Knizhnik–Zamolodchikov equation and continuous q-Jacobi polynomials, Comm. Math. Phys. 173 (1995), 17-42.
[10] G. N. Han, J. Zeng: On a q-sequence that generalizes the median Genocchi numbers, Ann. Sci. Math. Quebec. 23 (1999), 63-72.
[11] V. Kac, P. Cheung: Quantum Calculus, Springer, New York (2002).
[12] T. Ernst: The history of q-calculus and new method (Licentiate Thesis), U.U.D.M. Report 2000: http://math.uu.se/thomas/Lics.pdf
[13] F. H. Jackson: On q-difference equations, American. J. Math. 32 (1910), 305-314.
[14] T. Abdeljawad, D. Baleanu: Caputo q-fractional initial value problems and a q-analogue Mittag–Leffler function, Commun. Nonlinear Sci. Numer. Simul. 16 (12) (2011), 4682-4688.
[15] T. Abdeljawad, D. Baleanu: Fractional differences and integration by parts, J. Comput. Anal. Appl. 13 (3) (2011), 574–582.
[16] T. Abdeljawad, B. Benlil, D. Baleanu: A generalized q–Mittag–Leffler function by Caputo fractional linear equations, Abstr. Appl. Anal. 2012, 11 pages, Article ID 546062 (2012).
[17] F. Jarad, T. Abdeljawad, D. Baleanu: Stability of q-fractional non–autonomous systems, Nonlinear Anal. Real World Appl. Real World Appl. 14 (1) (2013), 780–784.
[18] T. Abdeljawad, F. Jarad, D. Baleanu: A semigroup–like property for discrete Mittag–Leffler functions, Adv. Difference Equ. 2012/1/72.
[19] N. R. O. Bastos, R. A. C. Ferreira, D. F. M. Torres, Necessary optimality conditions for fractional difference problems of the calculus of variations, Discrete Contin. Dyn. Syst. 29 (2) (2011), 417–437.
[20] N. R. O. Bastos, R. A. C. Ferreira, D. F. M. Torres: Discrete–time variational problems, Signal Process. 91 (3), March, 2011.
[21] F. M. Atici, S. Sengl: Modeling with fractional difference equations, J. Math. Anal. Appl. 369 (1) (2010), 1–9.
[22] F. M. Atici, P.W. Eloe: A Transform method in discrete fractional calculus, Int. J. Difference Equ. 2 (2) (2007), 165–176.
[23] F. M. Atıcı, P. W. Eloe: Initial value problems in discrete fractional calculus, Proc. Amer. Math. Soc. 137 (2009), 981–989.
[24] C. S. Goodrich: Continuity of solutions to discrete fractional initial value problems, Comput. Math. Appl. 59 (11) (2010), 3489–3499.
[25] C. S. Goodrich: Solutions to a discrete right–focal fractional boundary value problem, Int. J. Difference Equ. 5 (2) (2010), 195–216.
[26] G. A. Anastassiou: Nabla discrete fractional calculus and nabla inequalities, Math. Comput. Modelling 51 (5–6) (2010), 562–571.
[27] J. Cheng, Y. Chu, Fractional difference equations with real variable, Abstr. Appl. Anal. Volume 2012, 2012, Article number 918529.
[28] J. Cheng, G. Wu, The solution of fractional difference equations of order \((2, q)\), Acta Math. Sinica (Chin. Ser.) 55 (3) (2012), 469–480.
[29] W. A. Al–Salam: Some fractional \(q\)-integrals and \(q\)-derivatives, Proc. Edin. Math. Soc. 15 (1969), 135–140.
[30] R. P. Agrawal: Certain fractional \(q\)-integrals and \(q\)-derivatives, Proc. Camb. Phil. Soc. 66 (1969), 365–370.
[31] W. A. Al–Salam, A. Verma: A fractional Leibniz \(q\)-formula, Pacific J. Math. 60 (1975), 1–9.
[32] F. M. Atıcı, P. W. Eloe: Fractional \(q\)-calculus on a time scale, J. Nonlinear Math. Phys. 14 (3) (2007), 333–344.
[33] M. R. Predrag, D. M. Sladana, S. S. Miomir: Fractional integrals and derivatives in \(q\)-calculus, Appl. Anal. Discrete Math. 1 (2007), 311–323.
[34] Z. S. Mansour, Linear sequential \(q\)-difference equations of fractional order, Fract. Calc. Appl. Anal. 12 (2) (2009), 159–178.
[35] Y. Zhao, H. Chen, Q. Zhang: Existence results for fractional \(q\)-difference equations with nonlocal \(q\)-integral boundary conditions, Adv. Difference Equ. 2013, 2013:48.
[36] M. H. Annaby, Z. S. Mansour: \(q\)-Fractional Calculus and Equations, Springer–Verlag, Berlin Heidelberg, 2012.
[37] H. Ye, J. Gao, Y. Ding: A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl. 328 (2) (2007), 1075–1081.
[38] Q. H. Ma, J. Pecaric: Some new explicit bounds for weakly singular integral inequalities with applications to fractional differential and integral equations, J. Math. Anal. Appl. 341 (2008), 894–905.
[39] K. M. Furati, N.-e. Tatar: Inequalities for fractional differential equations, Math. Ineq. Appl. 12 (2) (2009), 279–293.
[40] Q.-X Kong, X.-L Ding: A new fractional integral inequality with singularity and its application, Abstr. Appl. Anal. Volume 2012, Article ID 937908, 12 pages.
[41] F. M. Atıcı, P. W. Eloe: Gronwalls inequality on discrete fractional calculus, Comput. Math. Appl. 64 (10) (2012), 3193-3200.
[42] W. N. Li, W. Sheng: Some Gronwall type inequalities, J. Math. Inequalities 4 (1) (2010), 67–76.