Development of a Formula to Correct Particle-Enhanced Turbidimetric Inhibition Immunoassay Values so That it More PreciselyReflects High-Performance LiquidChromatography Values for Mycophenolic Acid

Keiichi Nakano, MS,1 Daiki Iwami, MD, PhD,2 Takehiro Yamada, PhD,3 Ken Morita, MD, PhD,4 Keiko Yasuda,1 Hitoshi Shibuya,1 Kaoru Kahata, MD, PhD,1 Nobuo Shinohara, MD, PhD,2 and Chikara Shimizu, MD, PhD1

Background. Mycophenolic acid (MPA) concentration measured by homogeneous particle-enhanced turbidimetric inhibition immunoassay (PETINA) may be overestimated due to its cross-reactivity with pharmacologically inactive MPA glucuronide (MPAG), as well as other minor metabolites, accumulated with renal function impairment or co-administered cyclosporine A. In contrast, high-performance liquid chromatography (HPLC) is precise because it can exclude the cross-reactivity. In this study, we assumed HPLC values for MPA (HPLC-MPA) as a reference and aimed to develop a formula correcting PETINA values for MPA (PETINA-MPA) to more precisely reflect HPLC-MPA.

Methods. MPA trough concentrations were measured both by HPLC-UV and PETINA in 39 samples issued from 39 solid-organ transplant recipients. MPAG concentrations were also measured using HPLC UV assay. We determined the impacts of renal function and coadministered calcineurin inhibitor on concentrations of MPA and MPAG measured by HPLC. Then, we evaluated the difference between PETINA-MPA and HPLC-MPA. Finally, we develop a formula to reflect HPLC-MPA by using multilinear regression analysis.

Results. MPAG concentration was negatively correlated with estimated glomerular filtration rate (eGFR) ($R^2 = 0.376, P < 0.001$), although MPA was not correlated with eGFR. There were no significant differences in MPA or MPAG concentrations per dose between the patients who were co-administered tacrolimus versus cyclosporine A. Finally, we developed the formulas to reflect HPLC-MPA: Formula 1: Estimated MPA concentration = $0.048 + 0.798 \frac{1}{C_{2\text{PETINA-MPA}}}$ Formula 2: Estimated MPA concentration = $-0.059 + 0.800 \frac{1}{C_{2\text{PETINA-MPA}}} + 0.002 \frac{1}{C_{2\text{eGFR}}}$ However, there was no significant improvement in the coefficient of determination with addition of eGFR in the formula, suggesting that HPLC-MPA can be well predicted by only 1 variable, PETINA-MPA. Conclusions. This study developed a formula so that PETINA-MPA can be corrected to more precisely reflect HPLC-MPA.

(Transplantation Direct 2017;4: e337; doi: 10.1097/TXD.0000000000000754. Published online 11 December, 2017.)
MPA as well as MPAG bind to albumin, with intracellular MPA, which is only 3\% of total MPA and responsible for the immunosuppressive effect.2-6 Pharmacokinetics of MPA is affected by a number of variables, including sex, renal and hepatic function, time after organ transplantation, and coadministered medication.7,8 The complex pharmacokinetics of MPA has been reported to be responsible for the intrapatient and interpatient variabilities of the concentrations that are noted for MPA. Thus, to obtain optimal immunosuppressive effects in solid organ transplantation, stem cell transplantation and autoimmune disorders, precise therapeutic drug monitoring of MPA concentration is required. High-performance liquid chromatography (HPLC) methods are routinely used to determine plasma MPA.9,10 Moreover, immunological methods, such as the enzyme-multiplied immunoassay technique and homogeneous particle-enhanced turbidimetric inhibition immunoassay (PETINA), have been widely used because of their simplicity of use.11-14 These assays are automatized to be responsible for the intrapatient and interpatient variabilities of the concentrations that are noted for MPA. Thus, to obtain optimal immunosuppressive effects in solid organ transplantation, stem cell transplantation and autoimmune disorders, precise therapeutic drug monitoring of MPA concentration is required. High-performance liquid chromatography (HPLC) methods are routinely used to determine plasma MPA.9,10 Moreover, immunological methods, such as the enzyme-multiplied immunoassay technique and homogeneous particle-enhanced turbidimetric inhibition immunoassay (PETINA), have been widely used because of their simplicity of use.11-14 These assays are automatized to measure MPA concentrations based on an immunoassay. However, there is a concern about cross-reactions with MPA metabolites, such as MPAG, this can lead to an overestimation of the true MPA value.

Renal function impairment may lead to an increased MPAG concentration because MPAG is primarily eliminated by renal excretion.15-18 A previous study reported that increases in MPAG were followed by decreases in total MPA in patients and increases in total MPAG who were coadministered with cyclosporine A (CsA).14 Because PETINA can cross-react with MPA metabolites, such as MPAG, this can lead to an overestimation of the true MPA value.

Based on these previous results, the aim of our current study were (i) to evaluate the influence of estimated glomerular filtration rate (eGFR) and calcineurin inhibitor (CNI) coadministration on MPA values as measured by HPLC (HPLC-MPA) and (ii) from these observations, to develop a formula to correct PETINA values for MPA (PETINA-MPA) to reflect more precisely the concentrations of HPLC-MPA.

MATERIALS AND METHODS

Patients

This retrospective study enrolled 39 adult kidney or liver transplant patients receiving MMF in combination with tacrolimus (TAC) or CsA between December 2012 and May 2014. MMF dosage was adjusted according to the targeted MPA concentration in the immunosuppression protocol after each organ transplant, the target trough were 1 to 3 \(\mu\)g/mL in both organ transplant. Blood samples were collected from the recipients 12 hours after dosing MMF (ie, just before next dosing) as a trough level monthly. All determinations of MPA or MPAG concentrations and all of the biochemical examinations were performed at the same points. The study was conducted with 39 blood samples for measurement of MPA and MPAG, one from each patient. All patient information and laboratory data, such as aspartate aminotransferase and alanine aminotransferase, eGFR (calculated using the equation established for the Japanese population15), and serum creatinine (SCr), were retrospectively obtained from the medical records. All patients had stable graft function and no allograft rejection confirmed by graft biopsy. The present study was carried out in accordance with the guidelines for the care of humans in experimental studies, with the study protocol approved by the Ethics Committee of the Hokkaido University Hospital (study protocol no. 014-0175). Informed consent was obtained from all subjects.

Measurement of Plasma MPA and MPAG

MPA and MPAG concentrations in the patient plasma samples were measured by HPLC UV assay as previously described with modifications.20,21 HPLC separations of MPA and MPAG were performed independently. Briefly, the separation was achieved using an ERC ODS-1161 column (6 x 100 mm; Yokohamarika Co., Yokohama Japan). The mobile phase consisted of a 40:60 ratio of acetonitrile and phosphoric acid (60 mM) for MPA assay and a 23:77 ratio for MPAG assay. The internal standard used for MPA assay was naproxen, whereas \(\beta\)-naphthol was used for MPAG assay. The column was maintained at 55°C. HPLC analysis was performed using a Shimadzu LC-10ADLP system (Shimadzu, Kyoto, Japan). The compounds were quantified based on the peak-area ratio, with MPA assay using an absorbance of 215 nm and MPAG assay using an absorbance of 256 nm. Calibrations were performed through the use of standards during each run.

In addition to HPLC assay, MPA concentrations in the same samples were also measured by PETINA. PETINA assay was performed using the Flex reagent cartridge MPAT, which is based on the immunoassay of the Dimension Xpand Plus system (Siemens Healthcare Diagnostics, Tarrytown, NY). All analyses were performed in accordance with the manufacturer’s instructions.

Analysis Strategies

Using the above measured values, the following evaluations were performed.

1. The influences of interval between transplantation and blood collection on the concentrations of MPA and MPAG measured by HPLC were analyzed.

2. The correlation between the MMF dosage or renal function (eGFR) and the plasma trough concentration of MPA or MPAG was analyzed.

3. The effect of coadministered CNI (TAC or CsA) on MPA and MPAG trough concentrations in the plasma was determined.

4. HPLC-MPA and PETINA-MPA were compared.

5. Finally, multilinear regression was used to predict HPLC-MPA. To see whether there is a consistent pattern to the direction of bias, Bland-Altman analyses were performed between PETINA-MPA or estimated MPA and HPLC-MPA. Corrected concentration values obtained with the formula will be referred to as “estimated values” in the article.

Statistics

The Wilcoxon signed rank test was performed to compare the difference between HPLC-MPA and PETINA-MPA. The Mann-Whitney U test was performed to compare the means for discrete covariates. Linear correlation analysis was used to assess correlations between each numeric variable. A univariate and simultaneous multivariate linear regression analyses were performed to develop the formula. Values of \(P\) less
RESULTS

Correlation Between MMF Dosage or eGFR and MPA or MPAG Trough Concentrations Based on HPLC

Table 1 summarizes the clinical characteristics of the patients. Thirteen patients received kidney transplants and 26 received liver transplants, respectively. Median age at evaluation and at transplantation was 51 and 49 years, respectively. Median Scr and eGFR was 1.04 mg/dL and 52.5 mL/min per 1.73 m², respectively. Median MPA and MPAG per MMF dose was 0.09 and 2.27 μg/mL per mg/kg, respectively. In this study cohort, the period of sample collection after transplantation varied from 0.1 to 182.0 months. The linear correlation test demonstrated that the time after transplantation was not significantly correlated with MPA (P = 0.07) or MPAG (P = 0.81) concentration (Figure 1).

As shown in Figure 2A, there was no significant correlation between MPA plasma concentrations and MMF dosage per body weight (BW) (mg/kg per day) (R² = 0.066, P = 0.76). In contrast, MPAG plasma concentrations were positively correlated with MMF dosage per BW (mg/kg per day) (R² = 0.248, P = 0.001). Moreover, although MPAG concentration was negatively correlated with eGFR (R² = 0.376, P < 0.001), there was no correlation between MPA concentrations and eGFR (R² = 0.081, P = 0.10) (Figure 2B).

Comparison of the Impact of Coadministered CNI on Plasma Trough Concentrations of MPA and MPAG Based on HPLC

Table 2 shows comparison of characteristics between the patients coadministered with TAC and CsA. There were more patients who received kidney in the CsA group (kidney recipients were 87.5% in CsA group and 19.3% in TAC group, P = 0.002), the time of blood collection after organ transplant was significantly longer in TAC group (41.2 months in TAC group vs 1.73 months in CsA group, P = 0.010). The other characteristics were comparable between TAC and CsA groups. There were also no significant differences for the concentration of MPA per MMF dose (TAC; 0.09 μg/mL per mg/kg per day vs CsA; 0.08 μg/mL per mg/kg per day, P = 0.825) and MPAG per MMF dose (TAC; 2.20 μg/mL per mg/kg per day vs CSA; 2.84 μg/mL per mg/kg per day, P = 0.184) between the 2 groups. Although there was a trend for the patients coadministered CsA to have higher MPAG concentrations than those who were coadministered TAC, this difference did not reach significance.

TABLE 1. Clinical characteristics

Characteristic	All, N = 39*
Coadministered CNI (TAC:CsA)	31:8
Transplantation (kidney: liver)	13:26
Age at evaluation, y	51 (20-70)
Age at transplantation, y	49 (5-70)
Time after transplantation, mo	25.6 (0.1-182.0)
Sex (male:female)	19:20
BW, kg	54.8 (38.1-89.0)
MMF dose, mg/d	1000 (500-3500)
MMF dose per BW, mg/kg per day	18.0 (8.1-70.7)
Scr, mg/dL	1.04 (0.40-2.59)
eGFR, ml/min per 1.73 m²	52.5 (16.3-126.4)
ALT, U/L	18 (5-81)
ASAT/ALT, U/L	1.00 (0.57-2.50)
MPA per MMF dose, μg/mL per mg/kg per day	0.09 (0.01-0.33)
MPAG per MMF dose, μg/mL per mg/kg per day	2.27 (0.53-7.69)

* Data are expressed as number or median (range).

ALT, alanine aminotransferase; ASAT, aspartate aminotransferase.

FIGURE 1. MPA or MPA trough concentrations are not affected by the time after transplantation. Correlation between the time after transplantation and MPAG or MPA. Results are expressed as μg/mL per mg/kg per day. Open circles represent MPAG and solid triangles represent MPA.

was significantly higher in TAC group (55.3 kg in TAC group and 49.0 kg in CsA group, P = 0.010). The other characteristics were comparable between TAC and CsA groups. There were also no significant differences for the concentration of MPA per MMF dose (TAC; 0.09 μg/mL per mg/kg per day vs CsA; 0.08 μg/mL per mg/kg per day, P = 0.825) and MPAG per MMF dose (TAC; 2.20 μg/mL per mg/kg per day vs CSA; 2.84 μg/mL per mg/kg per day, P = 0.184) between the 2 groups. Although there was a trend for the patients coadministered CsA to have higher MPAG concentrations than those who were coadministered TAC, this difference did not reach significance.

Comparison of Concentrations Between HPLC-MPA and PETINA-MPA

The median and ranges of HPLC-MPA and PETINA-MPA was 0.09 (0.01-0.33) μg/mL per mg/kg per day and 0.11 (0.01-0.42) μg/mL per mg/kg per day, respectively. PETINA-MPA was significantly higher than HPLC-MPA (P < 0.001).

Development of a Formula to Correct the PETINA-MPA Using the Clinical Factor So That the Values More Precisely Reflect the HPLC-MPA

The results of the univariate and multivariate linear regression analyses are listed in Tables 3 and 4. Formulas used PETINA-MPA with or without eGFR as the independent predictors. The multiple regression equations for the formulae are as follow:

Formula 1: Estimated MPA concentration = 0.048 + 0.798 MPA + 0.002 eGFR

Formula 2: Estimated MPA concentration = −0.059 + 0.800 PETINA-MPA + 0.002 × eGFR

Both estimated MPA with formulae 1 (Figure 3A) and 2 (Figure 3B) demonstrated a good correlation with HPLC-MPA. There was very small improvement in coefficient of determination in formula 2 (R² = 0.984) compared with...
formulas 1 ($R^2 = 0.981$). Moreover, in Bland-Altman analysis, there was no significant pattern to the direction of bias between the estimated with formula 1 (Figure 3C) or formula 2 (Figure 3D) and HPLC values.

DISCUSSION

We first analyzed the relationship between the time after transplantation and their concentrations. There was no correlation between the time after transplantation and MPA or MPAG concentration (Figure 1). In this study, we enrolled patients whose time from transplantation to sample collection were highly different from one another. This study demonstrated that there was no correlation between MPA concentrations and eGFR, while MPAG concentration was negatively correlated with eGFR (Figure 2B).

These findings indicate that MPAG accumulated in conjunction with the worsening of the renal function, although MPA concentration was not affected by renal function. Thus, it is difficult to predict MPA concentration based on the MMF dosage or renal function, which highlights the importance of the precise monitoring of MPA concentrations.

MPAG concentrations can be affected by a variety of clinical factors. Because a portion of MPAG can be detected as MPA due to a cross-reaction in PETINA, this makes it more difficult to monitor MPA values when using PETINA versus HPLC. This overestimation has been well documented in previous studies. The current study attempted to evaluate how the renal function and the coadministration of CNI affected PETINA-MPA as compared with HPLC-MPA. The primary aim of our study was to develop a formula that can correct PETINA-MPA to more precisely reflect HPLC-MPA.

The linear correlation test suggested that eGFR was not significantly correlated with HPLC-MPA, whereas PETINA-MPA was correlated with HPLC-MPA in univariate analysis. The fact that the improvement in coefficient of determination from formula 2 ($R^2 = 0.984$) to formula 1 ($R^2 = 0.981$) was very small indicated that eGFR in the formula have no clinical influence on PETINA-MPA prediction. These results might suggest that MPA accumulated along with MPAG dependent on the decrease of eGFR. In other words, MPA might accumulate according to the impairment of renal function, although

TABLE 2. Comparison of characteristics between the patient groups receiving co-administration of TAC and CsA

	TAC n = 31a	CsA n = 8a	P
Transplantation (kidney: liver)	6:25	7:1	0.002
Age at evaluation, y	52 (20-70)	40 (23-64)	0.328
Age at transplantation, y	49 (5-70)	40 (23-64)	0.621
Time after transplantation, mo	41.2 (0.1-182.0)	4.8 (0.2-29.1)	0.044
Sex (male:female)	16:15	3:5	0.550
BW, kg	55.3 (41.8-89.0)	49.0 (38.1-66.1)	0.010
MMF dose, mg/d	1000 (500-3500)	1000 (500-2500)	0.597
MMF dose per BW, mg/kg per day	17.0 (8.1-70.7)	24.2 (10.0-41.5)	0.142
SCR, mg/dL	1.05 (0.40-2.59)	0.95 (0.77-2.21)	0.798
eGFR, ml/min per 1.73 m²	52.3 (16.3-126.4)	56.8 (25.5-66.8)	0.986
ALT, U/L	19 (6-81)	15 (5-32)	0.184
AST/ALT, U/L	1.00 (0.57-2.50)	1.10 (0.79-2.20)	0.670
MPA per MMF dose, μg/mL per mg/kg per day	0.09 (0.01-0.33)	0.08 (0.01-0.28)	0.825
MPAG per MMF dose, μg/mL per mg/kg per day	2.20 (0.53-4.64)	2.84 (1.70-7.69)	0.184

a Data are expressed as number or median (range).

TABLE 3. Univariate analysis between HPLC-MPA and PETINA-MPA or eGFR

Independent variables	Standardized regression coefficient	95% confidence intervals	P
PETINA-MPA	0.992	0.764-0.831	<0.001a
eGFR	-0.182	-0.054-0.016	0.443a

a Linear correlation tests were performed.
our data did not show significant correlation between eGFR and HPLC-MPA, which is similar to previously published data.17 A small sample size in the study may have resulted in no correlation between eGFR and HPLC-MPA. These results indicate that HPLC-MPA can be well predicted from PETINA-MPA, without taking into account eGFR. To best of our knowledge, this is the first time a formula has been able to correct and change the PETINA-MPA to more precisely reflect the HPLC-MPA.

Kamińska et al17 examined the differences between patients with renal impairment (creatinine clearance, < 60 mL/min) and patients with a normal renal function (creatinine clearance, > 60 mL/min) and reported finding a significantly increased area under the curve and predose MPAG for the renal impaired group. However, they divided their patients into 2 groups with a single cutoff value of renal function. Therefore, an aim of our current study was to more precisely evaluate the relationship between the renal function and MPAG concentration. In contrast to this previous study, we used eGFR to precisely evaluate the relationship between MPAG concentration and the renal function. In line with the previous report, we did find that MPAG concentration was negatively correlated with eGFR ($R^2 = 0.376$, $P < 0.001$). In contrast, we also found that MPA concentration was not correlated with eGFR. These results indicate that while the renal function affects MPAG concentration, it does not have an effect on MPA. Other studies have shown a negative association between MPA and the renal function due to an accumulation of both MPA and MPAG.22,23 Although the association between the accumulation of MPA and changes in the renal function remains controversial, it was obvious in our current study that MPAG accumulated in conjunction with a worsening of the renal function.

A previous study reported that MPAG was increased in patients who were coadministered CsA versus TAC.16 This can be explained by the fact that CsA inhibits the activity of the organic anion transporting polypeptides OATP1B1 and OATP1B3, which then reduces the uptake of MPA reabsorption.24-26 In contrast to the previous report, the differences for MPAG concentrations between the 2 groups did not reach significance. The reason why patients administered with CsA do not have higher MPAG compared with those

Independent variable	Standardized regression coefficient	P	95% confidence intervals	Residual variance	Multiple correlation coefficient	P
PETINA-MPA	0.995	<0.001	0.766-0.835	0.077	0.992	<0.001
eGFR	0.017	0.443	−0.003 to 0.006			

TABLE 4. Simultaneous multivariate linear regression model of variables associated with HPLC values for MPA
REFERENCES

1. Bullingham RE, Nicholls AJ, Kamm BR. Clinical pharmacokinetics of mycophenolate mofetil. Clin Pharmacokinet. 1998;34:429–455.
2. Nowak I, Shaw LM. Effect of mycophenolic acid glucuronide on inosine monophosphate dehydrogenase activity. Ther Drug Monit. 1997;19:358–360.
3. Shipkova M, Armstrong VW, Wietand E, et al. Identification of glucoside and carboxyl-linked glucuronide conjugates of mycophenolic acid in plasma of transplant recipients treated with mycophenolate mofetil. Br J Pharmacol. 1999;126:1075–1082.
4. Fulton B, Markham A. Mycophenolate mofetil. A review of its pharmaco-dynamic and pharmacokinetic properties and clinical efficacy in renal transplantation. Drugs. 1996;51:278–298.
5. Staatz CE, Tett SE. Clinical pharmacokinetics and pharmacodynamics of mycophenolate in solid organ transplant recipients. Clin Pharmacokinet. 2007;46:13–58.
6. Smits TA, Cox S, Fukuda T, et al. Effects of unbound mycophenolic acid on inosine monophosphate dehydrogenase inhibition in pediatric kidney transplant patients. Ther Drug Monit. 2014;36:716–723.
7. de Winter BC, Mathot RA, van Hest RM, et al. Therapeutic drug monitoring of mycophenolic acid: does it improve patient outcome? Expert Opin Drug Metab Toxicol. 2007;3:251–261.
8. Morissette P, Albert C, Busque S, et al. In vivo higher glucuronidation of mycophenolic acid in male than in female recipients of a cadaveric kidney allograft and under immunosuppressive therapy with mycophenolate mofetil. Ther Drug Monit. 2001;23:520–525.
9. Bolon M, Jeanpierre L, El Barki M, et al. HPLC determination of mycophenolic acid and mycophenolic acid glucuronide in human plasma with hybrid material. J Pharm Biomed Anal. 2004;36:649–651.
10. Seebacher G, Weigel G, Wolfer E, et al. A simple HPLC method for monitoring mycophenolic acid and its glucuronidated metabolite in transplant recipients. Clin Chem Lab Med. 1996;37:400–415.
11. Kunicki PK, Pawinski T, Boczek A, et al. A comparison of the immuno-chemical methods, PETINIA and EMIT, with that of HPLC-UV for the routine monitoring of mycophenolic acid in heart transplant patients. Ther Drug Monit. 2015;37:311–318.
12. Schutz E, Shipkova M, Armstrong VW, et al. Therapeutic drug monitoring of mycophenolic acid: comparison of HPLC and immunoassay reveals new MPA metabolites. Transplant Proc. 1998;30:1185–1187.
13. Shipkova M, Schutz E, Armstrong VW, et al. Overestimation of mycophenolic acid by EMIT correlates with MPA metabolite. Transplant Proc. 1999;31:1135–1137.
14. Vargha Chozas JM, Saesz-Benito Godino A, Zopeque Garcia N, et al. Analytical validation of a homogeneous immunomassay for determination of mycophenolic acid in human plasma. Transplant Proc. 2012;44:2669–2672.
15. Blanchet B, Taleb F, Confi F, et al. Comparison of a new enzymatic assay with a high-performance liquid chromatography/ultraviolet detection method for therapeutic drug monitoring of mycophenolic acid in adult liver transplant recipients. Liver Transpl. 2008;14:1745–1751.
16. de Winter BC, van Gelder T, Sombogaard F, et al. Pharmacokinetic role of protein binding of mycophenolic acid and its glucuronide metabolite in renal transplant recipients. J Pharmacokin Pharmaceut Dyn. 2009;36:541–564.
17. Kamińska J, Gyda M, Sobiak J, et al. Pharmacokinetics of mycophenolic acid and its phenyl glucuronide metabolite in kidney transplant recipients with renal impairment. Arch Med Sci. 2012;8:98–96.
18. Shav LM, Mick R, Nowak I, et al. Pharmacokinetics of mycophenolic acid in renal transplant patients with delayed graft function. J Clin Pharmacol. 1998;38:268–275.
19. Matsuo S, Imai E, Horio M, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis. 2009;53:982–992.
20. Sugitaka N, Odani H, Ohta T, et al. Determination of a new immunosuppressant, mycophenolate mofetil, and its active metabolite, mycophenolic acid, in rat and human body fluids by high-performance liquid chromatography. J Chromatogr B Biomed Appl. 1994;654:249–256.
21. Tsina I, Chu F, Hama K, et al. Manual and automated (robotic) high-performance liquid chromatography methods for the determination of mycophenolic acid and its glucuronide conjugate in human plasma. J Chromatogr B Biomed Appl. 1996;675:119–129.
22. Naessens M, de Loo R, Varenntreghem Y, et al. The impact of renal allo- graft function on exposure and elimination of mycophenolic acid (MPA) and its metabolite MPA 7-O-glucuronide. Transplantation. 2007;84:362–373.
23. van Hest RM, Mathot RA, Pescevitz MD, et al. Explaining variability in mycophenolic acid exposure to optimize mycophenolate mofetil dosing: a population pharmacokinetic meta-analysis of mycophenolic acid in renal transplant recipients. J Am Soc Nephrol. 2006;17:871–880.
24. Naio T, Shinno K, Maeda T, et al. Effects of calcineurin inhibitors on phar- macokinetics of mycophenolic acid and its glucuronide metabolite during the maintenance period following renal transplantation. Biol Pharm Bull. 2006;29:275–280.
25. Picard N, Prémaud R, Rousseau A, et al. A comparison of the effect of ciclosporin and sirolimus on the pharmacokinetics of mycophenolate in renal transplant patients. Br J Clin Pharmacol. 2006;62:477–484.
26. Picard N, Yee SW, Wollard JB, et al. The role of organic anion-transporting polypeptides and their common genetic variants in mycophenolic acid pharmacokinetics. Clin Pharmacol Ther. 2010;87:100–108.