Polymorphisms of CHAT but not TFAM or VR22 are Associated with Alzheimer Disease Risk

ABC 1 Lili Gao
CDE 2 Yan Zhang
BCF 3 Jinghua Deng
BCD 4 Wenbing Yu
AEG 5 Yunxia Yu

Background: Alzheimer disease (AD) is a chronic neurodegenerative disease that is one of the most prevalent health problems among seniors. The cause of AD has not yet been elucidated, but many risk factors have been identified that might contribute to the pathogenesis and prognosis of AD. We conducted a meta-analysis of studies involving CHAT, TFAM, and VR22 polymorphisms and AD susceptibility to further understand the pathogenesis of AD.

Material/Methods: PubMed/Medline, Embase, Web of Science, the Cochrane Library, and Google Scholar were searched for relevant articles. Rs1880676, rs2177369, rs3810950, and rs868750 of CHAT; rs1937 and rs2306604 of TFAM; and rs10997691 and rs7070570 of VR22 are studied in this meta-analysis.

Results: A total of 51 case-control studies with 16,446 cases and 16,057 controls were enrolled. For CHAT, rs2177369 (G>A) in whites and rs3810950 (G>A) in Asians were found to be associated with AD susceptibility. No association was detected between rs1880676 and rs868750 and AD risk. For TFAM and VR22, no significant association was detected in studied single-nucleotide polymorphisms (SNPs).

Conclusions: Rs2177369 and rs3810950 of CHAT are associated with AD susceptibility, but rs1880676 and rs868750 are not. Rs1937 and rs2306604 of TFAM, and rs10997691 and rs7070570 of VR22 are not significantly associated with AD risk.

MeSH Keywords: 1-Acylglycerophosphocholine O-Acyltransferase • Alzheimer Disease • Meta-Analysis as Topic • Polymorphism, Single Nucleotide • Genes, Mitochondrial

Full-text PDF: http://www.medscimonit.com/abstract/index/idArt/895984
Background

Alzheimer disease (AD) is one of the most prevalent health problems among seniors. It is a chronic neurodegenerative disease characterized by progressive cognition impairment and short-term memory loss, which usually deteriorates with aging. Amyloid plaques and neurofibrillary tangles are identified as 2 hallmarks in the AD process [1].

The amyloid cascade hypothesis is one of the most influential hypotheses regarding AD pathogenesis. It suggests that the initial pathological event in AD is triggered by deposition of amyloid β (Aβ) in the brain, which further leads to the formation of tau-immunoreactive neurofibrillary tangles (NFT), extracellular senile plaques (SP), neuron dysfunction, and neuronal loss [2]. Aβ peptides are cut from amyloid precursor protein (APP) by secretases and aggregate to form oligomers. The malfunction of oligomers or the dysfunction of oligomers further break down enzymes, leading to amyloid plaques and neurofibrillary tangles and triggering the process of AD. Tau as a microtubules-associated protein is also suspected to play an important part in the progression of AD, and was found to be the major constituent of neurofibrillary tangles. According to the amyloid cascade hypothesis, formation of the insoluble aggregates of tau is triggered by increased Aβ level via the induced hyperphosphorylation of tau [3]. In contrast, in the tau hypothesis it is the tau protein abnormality that is thought to trigger the disease [4]. Another important hypothesis regarding the pathogenesis of AD is the acetylcholine hypothesis; it is also the basis of most currently available AD drugs. According to this theory, AD is caused by reduced synthesis of the neurotransmitter acetylcholine (ACh) [5], and, by external supplementation of ACh, the symptoms of AD can be reduced.

Aside from cells, the mitochondrial cascade hypothesis indicates that critical changes in mitochondrial function initiate other pathologies characteristic of AD. Accumulation of amyloid-β (Aβ) causes mitochondrial dysfunction in AD, leading to decreased ATP levels and increased ROS generation. It can also enhance mitochondrial dysfunction and apoptosis, and inhibit protein import inside the mitochondria. Mitochondrial DNA mutations and mitochondrial DNA damage are also involved in the pathogenesis of AD. Phosphorylated tau and Aβ can lead to increased mitochondrial fission and neurodegeneration. Aβ and APP impair mitochondrial fusion/fission processes, mitophagy, and mitochondrial movement, and cause abnormal morphology [6].

In addition to the various AD hypotheses, many genes involved in the pathway are suspected to be risk factors of AD, including APP, APOE, CASS4, and CELF1 [7]. Although the association of AD with some genes has been verified by many studies, the contradictions between different studies make it difficult to form firm conclusions about such associations. Therefore, we performed a meta-analysis of published studies to investigate the correlation between suspected genes and AD susceptibility.

CHAT (choline O-acetyltransferase) gene encodes an enzyme that catalyzes the biosynthesis of ACh. The enzyme is also characteristic of cholinergic neurons, and changes in these neurons may contribute to some AD symptoms. The A allele of CHAT c.2384G>A polymorphism was also associated with earlier onset and possibly accelerated progression of AD [8]. CHAT was considered as a suspected gene in this meta-analysis.

TFAM (transcription factor A, mitochondrial) gene encodes a key mitochondrial transcription factor that functions in mitochondrial DNA replication and repair. Impaired expression of TFAM may influence the function of mitochondria and thus lead to AD.

Supplementary Table 1. Research terms.

AD	Alzheimer Disease[Mesh] OR Alzheimer Disease[tiab] OR Alzheimer Sclerosis[tiab] OR Alzheimer Syndrome[tiab] OR Alzheimer Type Senile Dementia[tiab] OR Alzheimer-Type Dementia[tiab] OR Alzheimer Type Dementia[tiab] OR Alzheimer Type Dementia[tiab] OR Primary Senile Degenerative Dementia[tiab] OR Alzheimer Dementia[tiab] OR Alzheimer’s Disease[tiab] OR Acute Confusional Senile Dementia[tiab] OR Presenile Dementia[tiab] OR Late Onset Alzheimer Disease[tiab] OR Focal Onset Alzheimer’s Disease[tiab] OR Familial Alzheimer Disease[tiab] OR Presenile Alzheimer Dementia[tiab] OR Early Onset Alzheimer Disease[tiab] OR AD
SNP	Polymorphism, Genetic[Mesh] OR Polymorphisms, Genetic[tiab] OR Genetic Polymorphism[tiab] OR Polymorphism[tiab] OR Genetic Polymorphisms[tiab] OR Polymorphism, Single Nucleotide[Mesh] OR Nucleotide Polymorphism, Single[tiab] OR Nucleotide Polymorphisms, Single[tiab] OR Single Nucleotide Polymorphisms[tiab] OR SNPs[tiab] OR Single Nucleotide Polymorphisms[tiab] OR Polymorphisms, Single Nucleotide[tiab]
CHAT	CHAT[Mesh] OR CHAT[tiab] OR CHOACTASE[tiab] OR Choline O-Acetyltransferase[tiab] OR Choline Acetylatase[tiab] OR Choline Acetyltransferase[tiab] OR rs868750[tiab] OR rs3810950[tiab] OR rs2177369[tiab] OR rs1880676[tiab]
TFAM	TFAM[Mesh] OR TFAM[tiab] OR TCF6[tiab] OR MTF1[tiab] OR MTF[tiab] OR MTF[tiab] OR transcription factor A, mitochondrial[tiab] OR rs1937[tiab] OR rs2306604[tiab]
VR22	CTNNA3[Mesh] OR CTNNA3[tiab] OR VR22[tiab] OR ARV013[tiab] OR rs10997691[tiab] OR rs7070570[tiab]
Supplementary Table 2. Main characteristics of studies selected in the meta-analysis.

Gene	SNP	First Author	Year	Country	Ethnicity	Case	Control	Case	Control			
ChAT rs1880676	G>A	Ahn Jo 2006	Korea	Asian	316	264	211	99	6	193	69	2
	Giedraitis 2009	Sweden	Caucasians	84	384	54	29	1	222	144	18	
	Harold 2003	UK	Caucasians	68	85	34	25	9	49	33	3	
	Harold 2003	UK	Caucasians	135	135	71	56	8	64	62	9	
	Harold 2003	UK	Caucasians	194	209	105	77	12	127	79	3	
	Li 2008	Canada	Caucasians	690	681	386	256	48	364	275	42	
	Ozturk 2005	USA	Caucasians	1001	705	563	376	62	369	292	44	
	Reiman 2007	USA	Caucasians	853	550	478	329	46	303	206	41	
rs2177369	G>A	Cook 2014	UK	Caucasians	381	370	158	207	105	162	164	55
	Cook 2005	UK	Caucasians	202	295	95	124	76	88	85	29	
	Cook 2005	UK	Caucasians	202	295	29	85	88	76	124	95	
	Cook 2005	UK	Caucasians	179	175	26	79	74	29	83	63	
	Piccardi 2007	Italy	Caucasians	158	118	44	75	39	40	57	21	
	Scacchi 2008	Italy	Caucasians	442	218	167	200	75	61	117	40	
rs3810950	G>A	Ahn Jo 2006	Korea	Asian	316	264	211	99	6	192	70	2
	Cook 2005	UK	Caucasians	210	315	112	76	22	161	128	26	
	Gruenblatt 2008	Austria	Caucasians	120	456	63	45	12	268	164	24	
	Harold 2003	UK	Caucasians	131	118	69	51	11	65	47	6	
	Kim 2004	Korea	Asian	246	561	171	61	14	419	133	9	
	Lee 2012	Korea	Asian	736	1386	505	205	26	1023	342	21	
	Mubumbila 2002	Germany & French	Caucasians	122	112	48	32	42	64	34	14	
	Ozturk 2005	USA	Caucasians	999	708	562	377	60	363	296	49	
	Schwarz 2003	Germany	Caucasians	242	143	139	94	9	83	52	8	
	Tang 2008	China	Asian	273	271	190	75	8	179	83	9	
rs868750	G>A	Harold 2003	UK	Caucasians	119	116	72	39	8	83	31	2
	Harold 2003	UK	Caucasians	135	131	88	42	5	95	33	3	
	Harold 2003	UK	Caucasians	209	222	129	75	5	130	84	8	
	Ozturk 2005	USA	Caucasians	989	706	628	322	39	476	217	13	
Another suspected gene in this study is VR22 (also known as CTNNA3, catenin [cadherin-associated protein], alpha 3). The encoded protein plays a role in cell-cell adhesion. The association between VR22 and AD was first reported in several linkage studies [9–12]. Further studies also provided evidence of significant interaction between APOE-4 and VR22 SNPs [13], indicating that VR22 or a nearby gene may influence susceptibility to AD.

We conducted a meta-analysis of studies concerning CHAT, TFAM, and VR22 polymorphisms and AD susceptibility to further understand the pathogenesis of AD.
META-ANALYSIS

Material and Methods

Search strategy

In the current study, PubMed/Medline, Embase, Web of Science, the Cochrane Library, and Google Scholar were searched with related terms (details shown in Supplementary Table 1). Articles published prior to August 2015 were searched for potential SNP targets. References of retrieved articles were manually checked for other relevant publications.

Study selection and data extraction

The following criteria had to be satisfied by eligible studies: (a) case-control studies covering the association between SNPs on CHAT, TFAM, or VR22 genes and susceptibility to AD; (b) sufficient requirements for estimating odds ratios (ORs) and their 95% confidence interval (CIs) must have been satisfied; (c) the diagnosis of AD was confirmed by the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR) criteria [14] published by the American Psychiatric Association, or the National Institute of Neurological and Communicative Disorders and Stroke (NINCDS) – the Alzheimer’s Disease and Related Disorders Association (ADRDA) Alzheimer’s Criteria [15]. Studies were excluded if they were: (a) not a case-control study; (b) had insufficient data provided; (c) were excluded if they were: (a) not a case-control study; (b) their 95% confidence interval (CIs) must have been satisfied; (c) the diagnosis of AD was confirmed by the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR) criteria [14] published by the American Psychiatric Association, or the National Institute of Neurological and Communicative Disorders and Stroke (NINCDS) – the Alzheimer’s Disease and Related Disorders Association (ADRDA) Alzheimer’s Criteria [15]. Studies were excluded if they were: (a) not a case-control study; (b) had insufficient data provided; (c) were cited by a previous meta-analysis of same subject. The name of first author, publication year, country of origin, ethnicities of subjects, studied SNPs and genes, number of subjects, frequencies of allele and genotype, and indication of Hardy-Weinberg equilibrium (HWE) in the controls were documented for each study. Ethnicity was categorized as white or Asian. No study was conducted in African populations. Four SNPs for CHAT gene (rs1880676, rs2177369, rs3810950, and rs868750); 2 SNPs for TFAM gene (rs1937 and rs2306604); and 2 SNPs for VR22 gene (rs10997691 and rs7070570) were included in this meta-analysis. Data from retrieved studies were independently extracted by 2 reviewers. In cases of conflicting evaluations, 2 of the authors discussed the issues to reach a consensus; if no agreement could be reached, a third author would decide.

Statistical analysis

The strength of associations between the studied SNPs and susceptibility to AD were assessed by OR corresponding to 95% CI. Four genetic models (the allele, the dominant, the recessive, and the homozygous) were examined. A 2-sided test was considered as statistically significant. Subgroup analysis was conducted in African populations. Four SNPs for CHAT gene (rs1880676, rs2177369, rs3810950, and rs868750); 2 SNPs for TFAM gene (rs1937 and rs2306604); and 2 SNPs for VR22 gene (rs10997691 and rs7070570) were included in this meta-analysis. Data from retrieved studies were independently extracted by 2 reviewers. In cases of conflicting evaluations, 2 of the authors discussed the issues to reach a consensus; if no agreement could be reached, a third author would decide.

Figure 1. Forest plots showed the relationship of the 4 SNPs – rs1880676, rs2177369, rs3810950, and rs868750 – in CHAT gene and the risk of AD. The odds ratio from each study is represented by a square and the confidence interval is indicated by error bars. The subtotal and overall odds ratio is signified by a rhombus.
10 articles and 11 studies were enrolled. For rs3810950, and rs868750. For Scholar, with 28 studies related to rs1880676, rs2177369, Embase, Web of Science, the Cochrane Library, and Google Scholar, we retrieved 26 articles [8,20–44] from PubMed/Medline, In the search for Study characteristics

Results

Study characteristics

In the search for CHAT gene polymorphisms and AD association, we retrieved 26 articles [8,20–44] from PubMed/Medline, Embase, Web of Science, the Cochrane Library, and Google Scholar, with 28 studies related to rs1880676, rs2177369, rs3810950, and rs868750. For TFAM gene polymorphisms, 10 articles and 11 studies were enrolled. For VR22, 4 articles and 12 studies were enrolled. A total of 51 case-control studies were included in our meta-analysis, with 16 446 cases and 16 057 controls. The details of methodological and characteristics qualities of the eligible studies are compiled in Supplementary Table 2.

CHAT gene polymorphisms correlated with AD risk

Among the studied SNPs, rs2177369 (G>A) and rs3810950 (G>A) were found to be associated with AD susceptibility, but no association was detected between rs1880676 and rs868750 and AD risk (Figures 1, 2A). As shown in Table 1, rs2177369 (G>A) was a risk factor for AD onset (OR=1.61, 95% CI=1.07–2.43, P=0.022). For rs3810950 (G>A), a mutation is a risk factor for AD (OR=1.79, 95% CI=1.12–2.86, P=0.016, Figure 1). In subgroup analysis by ethnicity, the association was confirmed in Asians (Figure 2B), but not in whites (allele model: OR=1.23, 95% CI=1.01–1.48; homozygous model: OR=2.19, 95% CI=1.17–4.09; recessive model: OR=2.14, 95% CI=1.20–3.84, Table 1).
Table 1. Meta-analysis of four polymorphisms in ChAT gene and AD susceptibility.

Gene	SNP	Genetic model	OR (95% CI)	\(P_{\text{odds ratio}} \)	\(\text{Tau}^2 \)	\(I^2 \)	\(P_{\text{heterogeneity}} \)	Ethnicity	Publication bias
								Caucasians	Asians
								\(0.97 \)	\(1.33 \)
								\(0.86–1.11 \)	\(0.96–1.83 \)
ChAT	rs1880676	A vs. G	1.01	0.896	0.017	51.6%	0.044	0.386	0.165
		AA+GA vs. GG	0.97	0.687	0.010	30.4%	0.185	0.536	0.239
		A vs. GG	1.14	0.551	0.170	57.0%	0.023	0.536	0.095
		AA vs. GG+GA	1.16	0.474	0.151	55.1%	0.029	0.536	0.104
	rs2177369	A vs. G	1.13	0.439	0.133	88.6%	\(<0.0001\)	0.348	0.178
		AA+GA vs. GG	1.14	0.531	0.198	82.6%	\(<0.0001\)	0.452	0.220
		A vs. GG	1.61	0.022	0.185	72.6%	0.003	1.000	0.831
		AA vs. GG+GA	1.53	0.002	0.063	57.0%	0.040	0.707	0.659
	rs3810950	A vs. G	1.23	0.033	0.060	77.2%	\(<0.0001\)	0.592	0.214
		AA+GA vs. GG	1.16	0.105	0.042	61.5%	0.008	0.592	0.292
		A vs. GG	1.79	0.016	0.346	72.5%	\(<0.0001\)	0.858	0.325
		AA vs. GG+GA	1.76	0.010	0.273	68.5%	0.001	1.000	0.355
	rs868750	A vs. G	1.21	0.113	0.027	49.3%	0.116	0.308	0.689
		AA+GA vs. GG	1.19	0.125	0.014	27.5%	0.247	0.308	0.628
		A vs. GG	1.78	0.123	0.229	41.1%	0.165	0.734	0.858
		AA vs. GG+GA	1.72	0.117	0.161	33.1%	0.213	0.734	0.919

OR – odds ratio; CI – confidence intervals; In genetic model, the bold one means mutation allele.

No association observed between SNPs of TFAM and VR22 and AD

A total of 3353 cases and 3089 controls from 11 studies were involved in the meta-analysis concerning rs1937 and rs2306604 of TFAM. No significant association was detected between the 2 SNPs and the risk of AD by the allele, the dominant, the recessive, or the homozygous model (Figure 3, Table 2). In subgroup analysis, 9 of the studies were in whites and only 2 were in Asians. No clear correlation could be identified in the stratification by ethnicity (Figure 4A, 4B).

The association of rs10997691 and rs7070570 polymorphism of VR22 and AD risk was investigated in 12 studies. No statistically significant correlation with AD was observed in the 4 models (Figure 5, Table 3). Nevertheless, increased or decreased AD susceptibility was not observed in subgroup analysis by ethnicity in the studies of rs7070570 polymorphism (Figure 4C).

Publication bias

Publication biases of the articles were assessed by Begg’s funnel plot and Egger’s linear regression test on the metadata. The distribution of different studies on the funnel plot of each
SNP appeared to be symmetrical, and no statistically significant asymmetry was detected by Egger’s test. Hence, no evidence of publication bias for the correlation between the SNPs and AD susceptibility was found (Tables 1–3).

Discussion

We performed a systematic meta-analysis of case-control association studies for susceptibility to AD. We screened 3 candidate genes – CHAT, TFAM, and VR22 – and their major polymorphisms. In the end, 51 studies of 16 446 cases and 16 057 controls were involved in the analysis. Our results showed that 2 SNPs of CHAT (rs2177369 and rs3810950) were significantly associated with AD susceptibility. We also observed ethnic
META-ANALYSIS

in the course of AD, with altered expression of brain cholinergic neuron abnormalities are present very early in AD [45,46]. Previous studies indicated that basal forebrain cholinergic cells and dementia severity are related to AD and its treatment [49]. In agreement with previous results, we identified 2 SNPs of CHAT that contribute to the onset of AD.

CHAT encodes the enzyme responsible for the biosynthesis of ACh. CHAT protein is a marker used in evaluating the function of basal forebrain cholinergic cells and dementia severity in AD [45,46]. Previous studies indicated that basal forebrain cholinergic neuron abnormalities are present very early in the course of AD, with altered expression of CHAT [47,48].

Figure 4. The forest plots of (A) TFAM rs1937, (B) TFAM rs2306604, and (C) VR22 rs7070570 by ethnicity. The odds ratio from each study is represented by a square and the confidence interval is indicated by error bars. The subtotal and overall odds ratio is signified by a rhombus.
between TFAM rs1937 and APOE4 status have been reported to influence AD risk [50], and rs2306604 A allele of TFAM was also found to be a moderate risk factor for AD [22]. However, in the present study, we failed to confirm the results of Belin et al. and Zhang et al. [22,44].

VR22, also known as CTNNA3, plays a role in cell-cell adhesion. VR22 can bind directly to b-catenin, whereas b-catenin forms a complex with presenilin 1 (PSEN1) [51], mutations of which cause familial cases of early-onset AD [52]. Nonetheless, the 2 SNPs we enrolled in this meta-analysis failed to show significant associations with AD.

The principal results of the present study suggest that TFAM and VR22 gene polymorphisms are not associated with risk of AD. All eligible case-control studies were included in this meta-analysis to investigate whether rs10997691 and rs7070570 in VR22 gene with the risk of AD. The odds ratio from each study is represented by a square and the confidence interval is indicated by error bars. The subtotal and overall odds ratio is signified by a rhombus.

Table 3. Meta-analysis of two polymorphisms in VR22 gene and AD susceptibility.

Gene	SNP	Genetic model	OR (95% CI)	P_{odds ratio}	Tau²	I²	P_{heterogeneity}	Ethnicity	Publication bias
								Caucasians	
VR22	rs10997691	C vs. T	1.22	0.106	0.000	0.0%	0.436		0.308
									0.211
		CC vs. TT	1.18	0.212	0.000	0.0%	0.579		0.308
									0.098
		CC vs. TT	1.87	0.200	0.1895	19.1%	0.295		0.308
									0.183
		CC vs. TT+TC	1.82	0.229	0.2212	21.8%	0.280		0.308
									0.203
rs7070570	C vs. T	0.99	0.903	0.0000	0.0%	0.959	1.00		0.902
									0.930
		CC vs. TT+TC	1.07	0.802	0.0000	0.0%	0.740		0.386
									0.269
		CC vs. TT+TC	0.94	0.617	0.0000	0.0%	0.828		0.536
									0.710

OR – odds ratio; CI – confidence intervals; In genetic model, the bold one means mutation allele.
meta-analysis, including the most recent ones. However, there remain certain issues that need to be addressed in interpreting our results. Firstly, most of the subjects covered in our study were white (81.6% in cases and 76.0% in controls), which limits the general application of the results. As we have already observed, the association of AD with some SNPs can only be observed in certain ethnic groups. Further studies with more Asian and African subjects are recommended. Secondly, although it is statistically sufficient, the overall sample size for each SNP is still relatively small. Furthermore, individual genetic factors, the biological characteristics of tumors, and their interaction with the environment may influence cancer susceptibility and carcinogenesis. Because the diagnosis of most of the AD cases enrolled in the studies were based on diagnostic criteria rather than pathological examination, we cannot exclude that some cases might have been misdiagnosed, which further influences the results of this meta-analysis, and further work is required to minimize this effect.

Conclusions

Rs2177369 and rs3810950 of CHAT are associated with AD susceptibility, but rs1880676 and rs866750 are not. Rs1937 and rs2306604 of TFAM and rs10097691 and rs7070570 of VR22 are not significantly associated with AD risk.

References:

1. Ballard C, Gauthier S, Corbett A et al: Alzheimer’s disease. Lancet, 2011; 377: 1019–31
2. Armstrong RA: A critical analysis of the ‘amyloid cascade hypothesis’. Folia Neuropathol, 2014; 52: 211–25
3. Small SA, Duff K: Linking Abeta and tau in late-onset Alzheimer’s disease: A dual pathway hypothesis. Neuuron, 2008; 60: 534–42
4. Mudher A, Lovestone S: Alzheimer’s disease: tauists and baptists finally shake hands? Trends Neurosci, 2002; 25: 22–26
5. Francis PT, Palmer AM, Snape M, Wilcock GK: The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatry,1999; 66: 137–47
6. Swerdlow RH, Burns JM, Khan SM; The Alzheimer’s disease mitochondrial cascade hypothesis: progress and perspectives. Biochim Biophys Acta, 2014; 1842: 1219–31
7. Lambert JC, Ibrahim-Verbaas CA, Harold D et al: Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet, 2013; 45: 1452–58
8. Lee JJ, Jo SA, Park JH et al: Choline acetyltransferase 2384G>a polymorphism and the risk of Alzheimer disease. Alzheimer Dis Assoc Disord, 2012; 26: 81–87
9. Ertekin-Taner N, Graff-Rudoff N, Younkin LH et al: Linkage of plasma Abeta42 to a quantitative trait locus on chromosome 10 in late-onset Alzheimer’s disease pedigrees. Science, 2000; 290: 2303–4
10. Kehoe P, Warrant-De Vrieze F, Crook R et al: A full genome scan for late onset Alzheimer’s disease. Hum Mol Genet, 2006; 8: 237–45
11. Myers A, Holmes P, Marshall H et al: Susceptibility locus for Alzheimer’s disease on chromosome 10. Science, 2000; 290: 2304–5
12. Morgan AR, Hamilton G, Turic D et al: Association analysis of 528 intragenic SNPs in a region of chromosome 10 linked to late onset Alzheimer’s disease. Am J Med Genet B Neuropsychiatr Genet, 2005; 147B: 727–31
13. Martin ER, Bronson PG, Li Y et al: Interaction between the alpha-T catenin gene (VR22) and APOE in Alzheimer’s disease. J Med Genet, 2005; 42: 787–92
14. American Psychiatric A, American Psychiatric A: Diagnostic and statistical manual-text revision (DSM-IV-TRim, 2000). American Psychiatric Association, 2000
15. McKhann G, Drachman D, Folstein M et al: Clinical diagnosis of Alzheimer’s disease Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology, 1984; 34: 939–44
16. Zintzaras E, Ioannidis J: Heterogeneity testing in meta-analysis of genome susceptibilities and carcinogenesis. Because the diagnosis of most
36. Li H, Wetten S, Li L et al: Candidate single-nucleotide polymorphisms from a genomewide association study of Alzheimer disease. Arch Neurol, 2008; 65: 45–53
37. Mubumbila V, Sutter A, Ptok U et al: Identification of a single nucleotide polymorphism in the choline acetyltransferase gene associated with Alzheimer’s disease. Neurosci Lett, 2002; 333: 9–12
38. Ozturk A, DeKosky ST, Kamboh MI: Genetic variation in the choline acetyltransferase (CHAT) gene may be associated with the risk of Alzheimer’s disease. Neurobiol Aging, 2006; 27: 1440–44
39. Piccardi M, Congiu D, Squassina A et al: Alzheimer’s disease: case-control association study of polymorphisms in ACHE, CHAT, and BCHE genes in a Sardinian sample. Am J Med Genet B Neuropsychiatr Genet, 2007; 144b: 895–99
40. Reiman EM, Webster JA, Myers AJ et al: GAB2 alleles modify Alzheimer’s risk in APOE epsilon4 carriers. Neuron, 2007; 54: 713–20
41. Scacchi R, Gambina G, Moretto G, Corbo RM: Variability of AChE, BChE, and ChAT genes in the late-onset form of Alzheimer’s disease and relationships with response to treatment with Donepezil and Rivastigmine. Am J Med Genet B Neuropsychiatr Genet, 2009; 150B: 502–7
42. Schwarz S, Eisehl J et al: Lack of association between a single nucleotide polymorphism within the choline acetyltransferase gene and patients with Alzheimer’s disease. Neurosci Lett, 2003; 343: 167–70
43. Tang M, Rao D, Ma C et al: Evaluation of choline acetyltransferase gene polymorphism (2384 G/A) in Alzheimer’s disease and mild cognitive impairment. Dement Geriatr Cogn Disord, 2008; 26: 9–14
44. Zhang Q, Yu JT, Wang P et al: Mitochondrial transcription factor A (TFAM) polymorphisms and risk of late-onset Alzheimer’s disease in Han Chinese. Brain Res, 2011; 1368: 355–60
45. Nunes-Tavares N, Santos LE, Stutz B et al: Inhibition of choline acetyltransferase as a mechanism for cholinergic dysfunction induced by amyloid-beta peptide oligomers. J Biol Chem, 2012; 287: 19377–85
46. Gil-Bea FJ, Garcia-Alloza M, Dominguez J et al: Evaluation of cholinergic markers in Alzheimer’s disease and in a model of cholinergic deficit. Neurosci Lett, 2005; 375: 37–41
47. Geula C, Nagykery N, Nicholas A, Wu CK: Cholinergic neuronal and axonal abnormalities are present early in aging and in Alzheimer disease. J Neuropathol Exp Neurol, 2008; 67: 309–18
48. Counts SE, He B, Che S et al: Galanin hyperinnervation upregulates choline acetyltransferase expression in cholinergic basal forebrain neurons in Alzheimer’s disease. Neurodegener Dis, 2008; 5: 228–31
49. Lee KU, Lee JH, Lee DY et al: The effect of choline acetyltransferase genotype on donepezil treatment response in patients with Alzheimer’s disease. Clin Psychopharmacol Neurosci, 2015; 13: 168–73
50. Maruszak A, Safranow K, Branicki W et al: The impact of mitochondrial and nuclear DNA variants on late-onset Alzheimer’s disease risk. J Alzheimers Dis, 2011; 27: 197–210
51. Zhang Z, Hartmann H, Do VM et al: Destabilization of beta-catenin by mutations in presenillin-1 potentiates neuronal apoptosis. Nature, 1998; 395: 698–702
52. Cai Y, An SS, Kim S: Mutations in presenillin 2 and its implications in Alzheimer’s disease and other dementia-associated disorders. Clin Interv Aging, 2015; 10: 1163–72