Summary: p53 tumour-suppressor gene is involved in cell growth control, arrest and apoptosis. Nevertheless cell cycle arrest and apoptosis induction can be observed in p53-defective cells after exposure to DNA-damaging agents such as 5-fluorouracil (5-FU) suggesting the importance of alternative pathways via p53-independent mechanisms. In order to establish relationship between p53 status, cell cycle arrest, Bcl-2-Bax regulation and 5-FU sensitivity, we examined p53 mRNA and protein expression and p53 protein functionality in wild-type (wt) and mutant (mt) p53 cell lines. p53 mRNA and p53 protein expression were determined before and after exposure to equitoxic 5-FU concentration in six human carcinoma cell lines differing in p53 status and displaying marked differences in 5-FU sensitivity, with IC_{50} values ranging from 0.2–22.6 mM. 5-FU induced a rise in p53 mRNA expression in mt p53 cell lines and in human papilloma virus positive wt p53 cell line, whereas significant decrease in p53 mRNA expression was found in wt p53 cell line. Whatever p53 status, 5-FU altered p53 transcriptional and translational regulation leading to up-regulation of p53 protein. In relation with p53 functionality, but independently of p53 mutational status, after exposure to 5-FU equitoxic concentration, all cell lines were able to arrest in G1. No relationship was evidenced between G1 accumulation ability and 5-FU sensitivity. Moreover, after 5-FU exposure, Bax and Bcl-2 proteins regulation was under p53 protein control and a statistically significant relationship (r = 0.880, P = 0.0097) was observed between Bcl-2/Bax ratio and 5-FU sensitivity. In conclusion, whatever p53 status, Bcl-2 or Bax induction and Bcl-2/Bax protein ratio were correlated to 5-FU sensitivity. © 2000 Cancer Research Campaign

Keywords: 5-FU sensitivity; p53 status; mdm2; G1/S arrest; Bcl-2/Bax ratio
containing mutant-type p53. In the present study, we investigated the difference in 5-FU sensitivity observed in six human cancer cell lines with different p53 status and tried to evidence the basis of this difference by following Bcl-2/Bax ratio and its correlation with p53 status and mRNA or protein expression induction after exposure to 5-FU equitoxic concentration. Whether the 5-FU sensitivity differences are a result of different p53 functionality causing differences in Bcl-2 and Bax regulation, the implication of p53 protein expression induction in G1 arrest ability will be discussed and reconsidered.

MATERIALS AND METHODS

Materials and chemicals

Cell culture materials were purchased from Costar (Dutscher, Brumath, France), culture media and additives from Life Technologies (Gibco BRL, Cergy-Pontoise, France), except for fetal calf serum, which was obtained from Costar. Taq-polymerase, RNase H, random primers, SuperScript II® DNA polymerase, deoxynucleotide triphosphates were purchased from Life Technologies. Anti-bromodeoxyuridin monoclonal antibodies, p53 monoclonal antibodies (DO-7) and peroxidase-conjugated antibodies were provided by Dako (Trappes, France). Bax (N-20) polyclonal antibodies were purchased from Tebu (Le Perray-en-Yvelines, France). All other chemicals were purchased from Sigma (St Quentin Fallavier, France) and were of molecular biology grade.

Cell culture

CAL51 human breast adenocarcinoma, Panc-3 head carcinoma, Cal27 and Cal33 human head and neck carcinoma cell lines were kindly provided by Dr J.L. Fischel (Centre Antoine Lacassagne, Nice, France). FaDu and KB, head and neck carcinoma cell lines, were obtained from Professor A Hanauke (Munich University, Germany) as part of the EORTC Preclinical Therapeutic Models Group exchange program. All cell lines were grown in 75 cm² plastic tissue culture flasks in RPMI 1640 medium supplemented with 10% heat inactivated fetal calf serum, penicillin (100 iu ml⁻¹), streptomycin (100 μg ml⁻¹) in a 37°C, 5% CO₂ atmosphere. The cells were exposed at day 4 after seeding to equitoxic 5-FU concentrations (IC₅₀) for 24 h, then analysed immediately.

Cytotoxicity assay

MTT assays were carried out according to a procedure previously reported (Barberi-Heyob et al., 1993). Briefly, cells were seeded at the initial density of 2.10⁴ cells ml⁻¹ in 96-well micro titration plates. 72 h after plating, cells were exposed for 72 h to 5-FU concentrations ranging from 0.08–4.10⁴ μM, each concentration being tested in sextuplicate. 50 μl of 0.5% MTT solution were then added in each well and incubated for 3 h at 37°C to allow MTT metabolism. The formazan crystals were dissolved by adding 50 μl per well of 25% sodium dodecylsulfate solution and vigorous pipetting. Absorbance was measured at 540 nm using a Multiskan MCC/340 plate reader (Labsystem, Cergy-Pontoise, France). Results were expressed as relative absorbance to untreated controls. 5-FU concentrations yielding 50% growth inhibition (IC₅₀) were calculated using medium effect algorithm (Chou and Talalay, 1987) and expressed as mean values of five independent experiments.

Analysis of p53 mutations

To identify p53 genomic mutation, direct DNA automated fluorescent sequencing analyses were conducted. Both DNA strands were sequenced. Briefly, PCR was performed using four pairs of primers covering exons 2–9 and including flanking intronic splicing sites (one pair for exons 2–4, one for exons 5 and 6, one for exon 7 and finally one pair for exons 8 and 9), in a 20 μl volume containing 10 mmol l⁻¹ Tris-HCl, 50 mmol l⁻¹ KCl, 1.5 mmol l⁻¹ MgCl₂, 0.2 mmol l⁻¹ deoxynucleotide triphosphates, 0.5 μmol l⁻¹ of each primer, and 1 μg of genomic DNA. The reactions were carried out using a Perkin Elmer/Cetus thermal cycler model 9600. The PCR products were then purified using Sephacryl S400HR (Amersham-Pharmacia Biotech, Les Ulis, France). 5 μl of purified fragments were used for sequencing with a Thermo Sequenase™ Dye Terminator Cycle Sequencing kit (Amersham-Pharmacia Biotech), using the same PCR primers. After purification with Biogel P10 (Bio Rad), the products were sequenced using ABI 373 automated DNA sequencing system (Applied Biosystem).

Isolation of total RNA and RT-PCR analysis

Isolation of total RNA was performed using TRIzol® according to the manufacturer’s specifications (Life Technologies). cDNA synthesis was performed with 1 μg total RNA in a reaction volume of 20 μl containing 100 ng of random primers, 50 mM Tris-HCl, pH 8.3, 75 mM KCl, 3 mM MgCl₂, 0.5 mM deoxynucleotide triphosphate, 10 mM dithiothreitol and 200 units SuperScript II® reverse transcriptase and incubated for 10 min at room temperature, 50 min at 42°C, followed by 15 min at 70°C. RNAse-H (2.5 units) was added into each sample, then incubated for 20 min at 37°C. cDNA samples were stored at −20°C until analysed.

p53 and p21

p53 and p21 semi-quantitative PCR analyses were then performed using β2-microglobulin (β₂m) as reference gene. 0.5 μl or 1 μl of cDNA samples were mixed, respectively for p53 or p21 amplification, in a volume of 20 μl containing 16 mM (NH₄)₂SO₄, 67 mM Tris-HCl, pH 8.8, 0.01% Tween 20, 2 or 1.5 mM MgCl₂ respectively for p53 or p21 amplification, 0.2 mM dNTP, 5 μM of each 5’- and 3’-primers, and 0.5 unit of Taq polymerase. The primers sequences were 5’-TCTGTTGACTGCACTGATC-3’ (sense) and 5’-CACGGATCTGAGGTTGAAA-3’ (antisense) for p53 (Aguilar Santelises et al., 1996), 5’-CCCACTGAGACGCAGACGCAGACGACGAC-3’ (sense) and 5’-ACTGCGAGCTTCTGTTGGCGG-3’ (antisense) for p21, 5’-ACCCCCACTGAAAAAGATGAGA-3’ (sense) and 5’-ATCTTTAAACCTTCCATGAGT-3’ (antisense) for β₂m-microglobulin (β₂m) (Gussow et al., 1987). The PCR tubes were incubated for p53 and β₂m amplification, as follows: the first cycle was 5 min at 95°C, 1 min at 57°C and 1 min at 72°C. The 33 or 36 following cycles, respectively for p53 or p21 amplification, 0.2 mM dNTP, 5 μM of each 5’- 3’-primers, and 0.5 unit of Taq polymerase. A total of 10 cycles were performed to ensure that all templates were amplified equally. To amplify β₂m expression, one 5’- and three 3’- forward primer were used.

The PCR products were sequenced on an automated DNA sequencer (Applied Biosystems) following the manufacturer’s recommendations. The fragments were electrophoresed on a 1% agarose gel containing 0.1 μg ml⁻¹ of ethidium bromide. Quantification was performed by UV transillumination using a Gel Doc 1000 system (Bio Rad, Hercules, CA, USA).

© 2000 Cancer Research Campaign

British Journal of Cancer (2000) 83(10), 1380–1386
Ivry-sur-Seine, France). Finally, for each cDNA sample, p53: βm relative expression ratio (RER) was calculated as the ratio of the fluorescence intensities of p53 and β2m PCR products bands.

Mdm2
Mdm2 gene contains two different promoter regions. The upstream promoter region (P1) is known to be active in absence of p53 and the second promoter region (P2) is located within the first intron and contains a p53-responsive element (mdm2-p53RE).

The multiPCR of these different transcripts was performed using the forward mdm2 exon1-specific and mdm2 exon2-specific primers (5′-GAAAAAGATGGAGCAAGAAGCC-3′ and 5′-CAG-TGGCG-GATTGGAGGGTAG-3′), respectively with a unique reverse primer (5′-GTAATACAGACATGTTGGTA-3′) located in exon3 of the mdm2 gene. Amplification of βm was performed concomitantly using the forward (5′-AGCAGAGAATGGAA-GTGGAC-3′) and reverse (5′-TGGTATGTTGGATAAGA-GAT-3′) primers. The reaction volume was 50 μl and comprised 1X reaction buffer, 1.5 mM MgCl2, 0.2 μM of each mdm2 forward primers, 0.4 μM of mdm2 reverse primer and 0.05 μM of β2m primers, 0.25 mM of deoxynucleotides and 1 unit of HotStarTaq DNA polymerase (Qiagen, Courtaboeuf, France). Amplification was carried out for 30 cycles of 94°C for 1 min, 55°C for 30 s and 72°C for 30 s using a thermal cycler (Perkin Elmer 480). The cycles were followed by incubation of the mixtures for 15 min at 95°C to ensure full denaturation of the target DNA and activation of HotStarTaq DNA polymerase. The PCR products, P1 (405 pb), P2 (210 pb) and β2m (620 pb) were separated on an agarose gel in presence of ethidium bromide and quantified by image analysis.

Cell cycle distribution analysis
Cell cycle distribution was measured before and after 5-FU exposure. Cell samples for flow cytometry were washed with PBS, resuspended in 0.1% sodium citrate, 0.1% Triton X100 and 50 μg ml⁻¹ propidium iodide (PI), and then stored for 24 h at 4°C. After centrifugation at 1500 rpm for 5 min, the samples were resuspended in PBS containing 250 μg ml⁻¹ RNase. Bivariate distributions of cells number vs DNA content (PI) were analysed, using an Orthocyte flow cytometer (Ortho Diagnostic Systems, Roissy, France) equipped with xenon lamp and filter set for excitation at 488 nm. PI fluorescence intensity was recorded through 575 nm high pass filters. At least 20 000 events were collected in each final gated histogram. The data were analysed using Multicycle software (Phoenix Flow Systems, San Diego, CA, USA).

RESULTS

p53 status of cell lines displaying different 5-FU sensitivity

The six carcinoma cell lines displayed a marked difference in 5-FU sensitivity with IC₅₀ values ranging from 0.16 ± 0.01 to 22.62 ± 3.09 mM for CAL51 and PANC3 lines, respectively (Table 1). The cell lines were first checked for p53 mutations by direct DNA sequencing. These data are summarized in Table 1. The cell lines were first checked for p53 mutations by direct DNA sequencing. These data are summarized in Table 1. The cell lines were first checked for p53 mutations by direct DNA sequencing. These data are summarized in Table 1.
observed in three cell lines. A to T transversion at codon 193 in exon 6 was found in CAL27, resulting in histidine to leucine substitution. Point mutation was detected in CAL33 line (G to A transition) at codon 175 in exon 5, inducing arginine to histidine amino-acid substitution. Point mutation (G to T transversion) at codon 248 in exon 7, resulting in arginine to leucine substitution, was detected in FaDu cells. Internal sequence deletion corresponding to exons 2–4 was evidenced in PANC3 cells. Wild-type p53 status was found in CAL51 and KB cells.

p53 mRNA and protein expression after 5-FU treatment

p53 mRNA and protein expression were determined after cellular stress induced by equitoxic concentrations of 5-FU (Table 2). Figures 1 and 2 show that p53 mRNA RER as well as protein expression were significantly altered after 24-h 5-FU exposure. Mutant p53 cell lines displayed either no modification or an increase of p53 mRNA RER (Figure 1) and p53 protein was slightly up-regulated (Figure 2). p53 mRNA RER was significantly decreased in wild-type p53 CAL51 cell line (Figure 1) and p53 protein was found to be highly overexpressed (Figure 2). Despite p53 wild-type status in KB line, p53 mRNA expression was also found to be up-regulated (Figure 1) and p53 protein was not detected (Figure 2).

p53 protein functionality as transcription factor: mdm2 and p21 mRNA expression

mdm2 mRNA expression before and after 5-FU exposure was reported in Table 3. In the wild-type-p53 CAL51 and KB a significant increase in mdm2 transcription at p53 responsive element (mdm2-p53RE) was observed. No overexpression was detected when p53 was mutated or deleted, except in FaDu cell line which displayed a 1.5-fold increase in mdm2-p53RE (Table 3).

p21 mRNA basal expression was higher in CAL51 and KB wt cells. Up-regulation of p21 mRNA was detected in all cell lines, except in PANC3 cell line. Overexpression, however, was higher in CAL51 wt cell lines.

Cell cycle distribution after 5-FU exposure: p53 status consequences

After 5-FU exposure, all cell lines were able to arrest in G1 phase (Table 4). Nevertheless, only CAL51, KB and FaDu cell lines displayed statistically significant accumulation in G1 phase. S phase was unchanged or slightly decreased and G2/M phase was more markedly reduced (Table 4).
Bax and Bcl-2 proteins expression after 5-FU exposure: relationship with 5-FU sensitivity and p53 status

As Bax and Bcl-2 proteins are under p53 protein control, changes associated with equitoxic concentration of 5-FU were investigated. After 5-FU exposure, Bcl-2 protein expression decreased in the wild-type p53 cell lines (even in HPV-positive KB cells) whereas in the mutant p53 cell lines no variation (CAL33 and FaDu) or a significant increase (CAL27 and PANC3) was detected. Bcl-2 induction was significantly correlated with 5-FU sensitivity \((r = 0.47, P = 0.0323, \text{Figure 5A}) \). Bax was found to be relatively overexpressed in the wild-type p53 CAL51 cell line, but neither in the mutant p53, nor in the HPV-positive cell lines (Figure 3). Moreover, Bax basal levels were related to 5-FU sensitivity, since the most sensitive cell line (CAL51) displayed the highest Bax level as opposed to data achieved in the most resistant cell line (PANC3, Figure 3). Bax induction was significantly correlated with 5-FU sensitivity \((r = 0.65, P = 0.0054, \text{Figure 5B}) \). Bcl-2/Bax proteins ratio was also correlated with 5-FU sensitivity \((r = 0.88, P = 0.0097, \text{Figure 5C}) \).

DISCUSSION

Among the six human cancer cell lines selected and exhibiting a wide range of sensitivity to 5-FU, CAL51 and KB cell lines displayed wild-type p53 profile: wild-type gene and undetectable basal protein expression, three out of six cell lines showed point mutations of p53 gene and constitutive p53 protein expression. PANC3 cell line displayed internal gene deletion resulting in complete lack of p53 mRNA and protein expression. Wt p53 cell lines were more sensitive to 5-FU than mutated lines. Our results support the concept that cells carrying wt gene tend to be sensitive to 5-FU and that deletion of p53 function results in resistance. In the present experiments, 5-FU induced an increase in p53 mRNA expression in mutant-type cell lines and in HPV-positive wild-type cell lines, whereas in CAL51 wild-type p53 cell line, a significant decrease in p53 gene expression was observed (0.7-fold, \(P = 0.02 \)). These results are in agreement with those reported by Palmer et al (1997). Cellular mechanisms able to regulate wt p53 function include post-translational stabilization (Kastan et al, 1991), nuclear exclusion or cytoplasmic sequestration (Moll et al, 1996), negative feedback inhibition of p53 mRNA translation by p53 protein itself (Mosner et al, 1995), binding of p53 by proteins such as mdm2 (Momand et al, 1992) or HPV E6 (Crook et al, 1991). Moreover, regulation of p53 protein could also implicate the changes in the p53 gene transcription such as p53 mRNA half-life modification or CpG nucleotides methylation (Kren et al, 1996). Conversely, regulation of mutated p53 levels after drug treatment consisted in an increase in translation process (Nabeya et al, 1995). In the present study, 5-FU exposure was found to induce an increase in p53 mRNA and protein expression in mutated cell lines. As currently accepted, biosynthesis of wild-type p53 can be controlled by both transcriptional (Deffie et al, 1993; Hudson et al, 1995) and translational (Mosner et al, 1995; Ewen and Miller, 1996; Fu et al, 1996) regulation processes. Our results are consistent with Nabeya et al (1995), demonstrating that an increase in wild-type p53 protein levels was mainly due to post-translational stabilization. Nevertheless, despite p53 wild-type status in KB line, p53 protein was not up-regulated and remained undetectable after exposure to 5-FU. In fact, KB cell line was described as containing HPV-18 sequences (Boshart et al, 1984). HPV E6 protein was shown to actively stimulate the degradation of bound p53 through ubiquitin-dependent proteolysis (Scheffner et al, 1990; Crook et al, 1991; Huibregtse et al, 1993) and HPV E7 protein could also inhibit p53 transcriptional activity by binding p53 in presence of TATA box-binding protein (Massimi and Banks, 1997). Consequently, cell lines containing HPV-16 and HPV-18 oncogenic human papilloma virus should not display any up-regulation of p53 protein despite a wild-type status.

Whether p53 protein up-regulation observed could correspond to p53 transcriptional ability was tested through the induction of mdm2 and p21 transactivation. Mdm2 gene possesses a p53-responsive element (mdm2-p53RE) (Barak et al, 1994; Zauberman et al, 1995) between Bcl-2/Bax protein ratio \((r = 0.88, P = 0.0097) \), after exposure to 5-FU.

Figure 5 Relationship between 5-FU sensitivity and (A) Bcl-2 protein induction \((r = 0.47, P = 0.0323) \), (B) bax protein induction \((r = 0.65, P = 0.0054) \) and (C) between Bcl-2/Bax protein ratio \((r = 0.88, P = 0.0097) \), after exposure to 5-FU.

Cell lines	G1 (%)	S (%)	G2/M (%)
CAL51 (wt)	130 ± 15	89 ± 14	27 ± 20
KB (wt)	120 ± 16	102 ± 19	26 ± 38
FaDu (mt)	126 ± 10	77 ± 8	50 ± 47
CAL33 (mt)	135 ± 20	76 ± 1	39 ± 46
CAL27 (mt)	111 ± 32	104 ± 35	65 ± 49
PANC3 (del)	108 ± 8	100 ± 12	66 ± 33

Table 4 Cell cycle distribution after 5-FU exposure (percentage vs untreated controls)
family proteins were implicated in chemotherapy-induced cell death (Simonian et al, 1997) and previous results suggest that some members of the Bcl-2 family of proteins, in human colon cancer cell lines, are modulated by 5-FU, and that the ratio of Bcl-X(L) to Bax may be related to chemosensitivity to 5-FU (Nita et al, 1998a).

In conclusion, for cell cycle control, p53 functionality appeared to be more essential than mutational status. Moreover, whatever p53 status or functionality, 5-FU sensitivity was related to Bcl-2 family proteins expression and Bcl-2/Bax ratio could be a relevant marker to predict 5-FU treatment response.

ACKNOWLEDGEMENTS

This work was performed within the framework of the ‘Pôle Européen de Santé Région Lorraine Communauté Urbaine du Grand Nancy’ and was supported by the French ‘Ligue contre le Cancer’.

REFERENCES

Aguilar Santelises M, Rottenberg ME, Lewin N, Mollstedt H and Jondal M (1996) Bcl-2, Bax and p53 expression in B-CLL in relation to in vitro survival and clinical progression. Int J Cancer 69: 114–119

Ara S, Lee PS, Hansen MF and Saya H (1990) Codon 72 polymorphism of the TP53 gene. Nucleic Acids Res 18: 4961

Arrowsmith CH and Morin P (1996) New insights into p53 function from structural studies. Oncogene 12: 1379–1385

Barak Y, Juvén T, Haffner R and Oren M (1993) mdm2 expression is induced by wild type p53 activity. EMBO J 12: 461–468

Barak Y, Gottleib E, Juvén Gershon T and Oren M (1994) Regulation of mdm2 expression by p53: alternative promoters produce transcripts with nonidentical translation potential. Genes Dev 8: 1739–1749

Barberi-Heyob M, Griffen G, Merlin JL and Weber B (1993) Sequence-dependent growth-inhibitory effects of the in vitro combination of fluorouracil, cisplatin and dipyridamole. Cancer Chemother Pharmacol 33: 163–170

Beck A, Etienne MC, Cheraudame S, Fischel JL, Formento P, Renee N and Milano G (1994) A role for dihydroxyrimidine dehydrogenase and thymidylate synthase in tumour sensitivity to fluorouracil. Eur J Cancer 30a: 1517–1522

Boshart M, Gissmann L, Ikenberg H, Kleinheinz A, Scheurlen W and zur Hausen H (1984) A new type of papillomavirus DNA, its presence in genital cancer biopsies and in cell lines derived from cervical cancer. EMBO J 3: 1151–1157

Cho Y, Gorina S, Jeffrey PD and Pavletich NP (1994) Crystal structure of a p53 tumor suppressor – DNA complex: understanding tumorigenic mutations [see comments]. Science 265: 346–355

Chou TC and Talalay P (1987) Application of the median-effect principle for the assessment of low dose risk of carcinogens and for the quantitation of synergism and antagonism of chemotherapeutic agents. In New Avenues in Developmental Cancer Chemotherapy, Harrap KR and Connors TA (eds) pp. 37–64. Academic Press: New York

Crook T, Tidy JA and Vousden KH (1991) Degradation of p53 can be targeted by HPV E6 sequences distinct from those required for p53 binding and transactivation. Cell 67: 547–556

Deffier A, Wu H, Renke V and Lozano G (1993) The tumor suppressor p53 regulates its own transcription. Mol Cell Biol 13: 3415–3423

DouQP, An B and Will PL (1995) Induction of a retinoblastoma phosphatase activity by anticancer drugs accompanies p53-independent G1 arrest and apoptosis. Proc Natl Acad Sci USA 92: 9019–9023

Elbendary AA, Cirisano FD, Evans AC, Jr, Davis PL, Iglehart JD, Marks JR and Berchuck A (1996) Relationship between p21 expression and mutation of the p53 tumor suppressor gene in normal and malignant ovarian epithelial cells. Clin Cancer Res 2: 1571–1575

el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW and Vogelstein B (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75: 817–825

el-Deiry WS, Harper JW, O’Connor PM, Velculescu VE, Camnan CE, Jackman J, Pietersen JA, Burrell M, Hill DE and Wang Y (1994) WAF1/CIP1 is induced in p53–mediated G1 arrest and apoptosis. Cancer Res 54: 1169–1174.
Etienne MC, Pivot X, Formento RJ, Bensadoun RJ, Formento P, Dassonville O, Franconi M, Poissonnet G, Fontana X, Schneider M, Demard F and Milano G (1999) A multifactorial approach including tumoral epithelial growth factor receptor, p53, thymidylate synthase and dihydropteridinreductase to predict treatment outcome in head and neck cancer patients receiving 5-fluorouracil. Br J Cancer 79: 1864–1869

Ewen ME and Miller SJ (1996) p53 and translational control. Biochim Biophys Acta 1242: 181–184

Fisher TC, Milner AE, Gregory CD, Jackman AL, Aherne GW, Hartley JA, Dive C, Gorgoulis VG, Zacharatos PV, Manolis E, Ikonomopoulos JA, Damalas A, Fu L, Minden MD and Benchimol S (1996) Translational regulation of human p53. Br J Cancer 77: 374–384

Guillouf C, Grana X, Selvakumaran M, De Luca A, Giordano A, Hoffman B and Gussow D, Rein R, Ginjaar I, Hochstenbach F, Seemann G, Kottman A and Ploegh (1995) Wild-type p53 regulates its own expression. Cancer Res 55: 551–556

Huibregtse JM, Scheffner M and Howley PM (1993) Cloning and expression of the human papillomavirus E6 oncoprotein with p53. Proc Natl Acad Sci USA 90: 376–381

Koshiji M, Adachi Y, Taketani S, Takeuchi K, Hioki K and Ikehara S (1997) Regulation of p53 stability by Mdm2. Mol Cell Biol 17: 775–784

Kubbutat MH, Jones SN and Vousden KH (1997) Regulation of p53 stability by Mdm2. Mol Cell Biol 17: 961–963

Lowe SW, Ruley HE, Jacks T and Housman DE (1993) p53-dependent apoptosis. Cancer Res 53: 1126–1137

Loignon M, Fetni R, Gordon AJ and Drobetsky EA (1997) A p53-independent pathway for induction of p21 waf1/cip1 and concomitant G1 arrest in UV-irradiated human skin fibroblasts. Cancer Res 57: 3390–3394

Lowe SW, Ruley HE, Jacks T and Housman DE (1993) p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74: 957–967

Maccom KD, Sherry N, Hannon G, Beach D, Tokino T, Kinzler K, Vogelstein B and Jacks T (1995) p53-dependent and independent expression of p21 during cell growth, differentiation, and DNA damage. Genes Dev 9: 935–944

Massimi P and Banks L (1997) Repression of p53 transcriptional activity by the HPV E7 proteins. Virology 237: 255–259

Matlashewski GJ, Tuck S, Pin D, Lamb P, Schneider J and Crawford LV (1987) Primary structure polymorphism at amino acid residue 72 of human p53. Mol Cell Biol 7: 961–963

Moll UM, Ostermeyer AG, Haladay R, Winkfield B, Frazier M and Vousden KH (1998) Normal status of p53 in gastric and esophageal adenocarcinoma cell lines predicts sensitivity to chemotherapeutic agents. Int J Cancer 76: 37–46

Nita ME, Nagawa H, Tominaga O, Tsuruo T and Muto T (1995a) 5-Fluorouracil induces apoptosis in human colon cancer cell lines with modulation of Bcl-2 family proteins. Br J Cancer 78: 986–992

Nita ME, Tominaga O, Nagawa H, Tsuruo T and Muto T (1995b) Dihydropteridinreductase but not thymidylate synthase expression is associated with resistance to 5-fluorouracil in colorectal cancer. Hepatogastroenterology 45: 2117–2122

O'Connor PM, Jackman J, Jondle D, Bhatia K, Magrath I and Kohn KW (1993) Role of the p53 tumor suppressor gene in cell cycle arrest and radiosensitivity of Burkitt’s lymphoma cell lines. Cancer Res 53: 4776–4780

Palmer DN, Millman CL and Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74: 609–619

Oren M (1994) Relationship of p53 to the control of apoptotic cell death. Semin Cancer Biol 5: 221–227

Ory K, Legros Y, Auguin C and Soussi T (1994) Analysis of the most representative tumour-derived p53 mutants reveals that changes in protein conformation are not correlated with loss of transactivation or inhibition of cell proliferation. EMBO J 13: 3496–3504

Palmer DG, Paraskeva C and Williams AC (1997) Modulation of p53 expression in cultured colon adenoma cell lines by the naturally occurring lumenal factors butyrate and deoxycyclol. Int J Cancer 73: 702–706

Peters GI, van der Wilt CL, van Triest B, Codacci-Pisanelli G, Johnston PG, van Groeningen CJ and Pinedo HM (1995) Thymidylate synthase and drug resistance. Eur J Cancer 31A: 1299–1305

Pinedo HM and Peters GF (1988) Fluorouracil: biochemistry and pharmacology. J Clin Oncol 6: 1653–1664

Reed JC (1994) Bcl-2 and the regulation of programmed cell death. J Cell Biol 124: 6–6

Scheffner M, Werness BA, Huibregtse JM, Levine AJ and Howley PM (1990) The E6 oncogene encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63: 1129–1136

Selvakumaran M, Lin HK, Miyashita T, Wang HG, Krajewski S, Reed JC, Hoffman B and Lieberman D (1994) Immediate early up-regulation of bax expression by p53 but not TGF beta 1: a paradigm for distinct apoptotic pathways. Oncogene 9: 1791–1798

Simonian PL, Grillot DA and Nunez G (1997) Bcl-2 and Bcl-2 can differentially block chemotherapy-induced cell death. Blood 90: 1208–1216

Spears CP, Gustavsson BG, Berme F, Friising R, Bernstein L and Hayes AA (1988) Mechanisms of innate resistance to thymidylate synthase inhibition after 5-fluorouracil. Cancer Res 48: 5894–5900

Stewart N, Hicks GG, Paraskevas F and Mowat M (1995) Evidence for a second cell cycle block at G2/M by p53. Oncogene 10: 109–115

Strobil T, Swanson L, Korsmeyer S and Cannistra SA (1996). BAX enhances paclitaxel-induced apoptosis through a p53-independent pathway. Proc Natl Acad Sci USA 93: 14094–14099

Vogelstein B and Kinzler KW (1992) p53 function and dysfunction. Cell 70: 523–526

Wouters BG, Denko NC, Giaccia AJ and Brown MM (1999). A p53 and apoptotic-inhibiting independent role for p21 waf1 in tumour response to radiation therapy. Oncogene 18: 6540–6545

Zauberman A, Flusberg D, Haupt Y, Barak Y and Oren M (1995). A functional p53-responsive intrinsic promoter is contained within the human mdm2 gene. Nucleic Acids Res 23: 2584–2592

Zhan Q, Fan S, Bae I, Guillouf C, Liebermann DA, O’Connor PM and Fornace AJ, Jr. (1994). Induction of bax by genotoxic stress in human cells correlates with normal p53 status and apoptosis (published erratum appears in Oncogene 1995; 10(6): 1259). Oncogene 9: 3743–3751

Zheng ZG, Harstrick A and Rustum YM (1992) Mechanisms of resistance to fluoropyrimidines. Semin Oncol 19: 4–9