On the densities of rational multiples

Vilius Stakenas
Faculty of Mathematics and Informatics
Vilnius University
email: vilius.stakenas@mif.vu.lt

Abstract

For two subsets of natural numbers $A, B \subset \mathbb{N}$ define the set of rational numbers $M(A, B)$ with the elements represented by m/n, where m, n are coprime, m is divisible by some $a \in A$ and n by some $b \in B$, respectively. Let I be some interval of positive real numbers and F^I_x denotes the set of rational numbers m/n, such that m, n are coprime and $n \leq x$. The analogue to the Erdős-Davenport theorem about multiples is proved: under some constraints on I the limits $\sum \{1/mn : m/n \in F^I_x \cap M(A, B)\} / \sum \{1/mn : m/n \in F^I_x\}$ exist for all subsets $A, B \subset \mathbb{N}$.

1 INTRODUCTION

For a subset A of natural numbers \mathbb{N} and $x > 1$ denote

$$\nu^0_x(A) = \frac{1}{x} \sum_{n \in A \cap [1; x]} 1, \quad \nu^1_x(A) = \frac{1}{\log x} \sum_{n \in A \cap [1; x]} \frac{1}{n}.$$

The lower and upper limits as $x \to \infty$ will be denoted by $\nu^r(A)$, $\nu^r_1(A)$ ($r = 0, 1$); the value of the limit if it exists by $\nu^r(A)$, respectively.

It follows from the chain of inequalities

$$\nu^0(A) \leq \nu^1(A) \leq \nu^0_1(A) \leq \nu^1_1(A)$$

that the existence of $\nu^0(A)$ implies the existence of $\nu^1(A)$. If $\nu^0(A)$ exists, we say that A possesses asymptotic density, and if $\nu^1(A)$ exists, A possesses logarithmic density. Even the subsets A of apparently simple structure may not possess asymptotic density.

Let $A \subset \mathbb{N}$. The set of natural numbers divisible by some $a \in A$ will be denoted by $M(A)$, i.e. $M(A)$ is the set of multiples of A.

A.S. Besicovitch gave an example of A such that $M(A)$ does not possess asymptotic density, see [1]. In 1937 H. Davenport and P. Erdős proved that every set of multiples have logarithmic density. Their original proof in [2] is based on Tauberian theorems, see also [6], Theorem 02. The direct and elementary proof of this theorem was provided by the authors in [3], it can be found also in the monograph of H. Halberstam and K.F. Roth, [5]. We formulate the Erdős-Davenport theorem in the form, which results from the arguments in [5].

Theorem 1. Let $A \subset \mathbb{N}$ and $A_N = A \cap [1; N]$ for $N \in \mathbb{N}$. Then $\nu^1(M(A_N)), \nu^1(M(A))$ exist, and

$$\nu^1(M(A)) = \lim_{N \to \infty} \nu^1(M(A_N)).$$

The main aim of this paper is to investigate the density questions related to the sets of multiples of rational numbers.
Let \mathbb{Q}^+ be the set of positive rational numbers. For the natural numbers m, n we denote as usually by (m, n) their greatest common divisor. If $(m, n) = 1$, i.e. the numbers are coprime, we write $m \perp n$ (suggestion of R.L. Graham, D.E. Knuth and O. Potashnik, see [11], p.115). For the rational numbers $r \in \mathbb{Q}^+$ we shall always use the unique representation $r = m/n$, $m, n \in \mathbb{N}, m \perp n$.

For two subsets $A, B \subset \mathbb{N}$ and $q \in \mathbb{N}$ we define the set of multiples in \mathbb{Q}^+ by

$$\mathcal{M}(A, B|q) = \left\{ \frac{m}{n} : m \in \mathcal{M}(A), n \in \mathcal{M}(B), mn \perp q \right\}.$$

If $q = 1$ we write $\mathcal{M}(A, B)$ instead of $\mathcal{M}(A, B|1)$.

Let $I_x = (\lambda_1(x), \lambda_2(x))$ be some system of intervals, $I_x \subset (0; +\infty), x \geq 1$. We shall write in the following briefly $I = (\lambda_1, \lambda_2)$ and introduce the sets of rational numbers

$$F^I_x = \left\{ \frac{m}{n} : m \in \mathbb{Q}^+, n \leq x \right\} \cap I.$$

Let $R \subset \mathbb{Q}^+$ and $r_1, r_2 \in \{0, 1\}$. Then if $F^I_x \neq \emptyset$, we denote

$$S_{x,I}^{r_1 r_2}(R) = \sum_{m/n \in F^I_x \cap R} m^{-r_1} n^{-r_2}, \quad \nu_{x,I}^{r_1 r_2}(R) = \frac{S_{x,I}^{r_1 r_2}(R)}{S_{x,I}^{r_1 r_2}(F^I_x)}.$$

If the limit of $\nu_{x,I}^{r_1 r_2}(R)$ exists for $R \subset \mathbb{Q}^+$ as $x \to \infty$, it will be denoted by $\nu^{r_1 r_2}(R)$, and the lower and upper limits by $\nu_{\leq}^{r_1 r_2}(R), \nu_{\geq}^{r_1 r_2}(R)$, respectively.

We investigate the limit behaviour of $\nu^{r_1 r_2}(\mathcal{M}(A, B|q))$ as $x \to \infty$ under some conditions imposed on λ_i. In the case of unit interval $I = (0, 1)$ related problems were considered in authors paper [9].

2 OVERVIEW OF RESULTS

If interval $I = (\lambda_1, \lambda_2)$ does not depend on x, the inequalities of type (1) can be proved.

Theorem 2. Let the interval $I = (\lambda_1, \lambda_2)$ be fixed. Then for an arbitrary $A \subset \mathbb{N}$

$$\nu_{i,0}^{00}(A) \leq \nu_{i,0}^{01}(A) \leq \nu_{i,0}^{11}(A),$$

$$\nu_{i,0}^{10}(A) \leq \nu_{i,1}^{11}(A) \leq \nu_{i,1}^{10}(A).$$

If A, B are finite subsets of \mathbb{N} the following statement holds.

Theorem 3. Let $\lambda_1 < \lambda_2$ satisfy the following conditions:

if $\lambda_1 = 0$, then $\lambda_2 > x^{-c}$ for some $0 < c < 1$;

if $\lambda_1 > 0$, then $\lambda_1 \log(\lambda_2/\lambda_1) \log x \to \infty$ as $x \to \infty$.

Then for finite sets $A, B \subset \mathbb{N}$ and $q \in \mathbb{N}$ all densities $\nu^{r_1 r_2}(\mathcal{M}(A, B|q))$ exist and are equal.

Note that if $\lambda_1 > 0$ and $(\lambda_2 - \lambda_1)/\lambda_1$ remains bounded, the constraints on λ_i are equivalent to requirement $(\lambda_2 - \lambda_1) \cdot \log x \to \infty$ as $x \to \infty$.

It is possible to prove under appropriate conditions on λ_i this statement for the sets satisfying

$$\sum_{d \in A \cup B} \frac{1}{d^2} < \infty,$$

but we shall not pursue this question.

The inequality for densities in the following theorem should be compared to Heilbronn-Rohrbach inequality proved in [7], [8]; see also [9].
Theorem 4. Let the sets $A, B \subset \mathbb{N}$ be finite and satisfy the following conditions: $a \perp b$ for all $a \in A, b \in B$ if $a_1, a_2 \in A, b_1, b_2 \in B$, then $a_1 \perp a_2/(a_1, a_2), b_1 \perp b_2/(b_1, b_2)$. Let $\nu(M(A, B|q))$ denote the common value of densities from Theorem 3. Then the following inequality holds:

$$1 - \nu(M(A, B|q)) \geq \prod_{p|q} \left(1 - \frac{2}{p+1}\right) \cdot \prod_{c \in A \cup B} \left(1 - \frac{1}{c} \prod_{p|c} \left(1 - \frac{1}{p+1}\right)\right).$$

The sets satisfying conditions of Theorem 4 can be constructed as follows. Let $a_j = \prod_{k \in I_j} r_k$, where I_j is some finite subset of naturals then, obviously, $a_i \perp a_j/(a_j, a_i)$ for all pairs i, j.

The main result of the paper is an analogue or Erdős-Davenport theorem for the sets of rational multiples.

Theorem 5. Let for the intervals $I = (\lambda_1, \lambda_2)$ the following conditions be satisfied:

- if $\lambda_1 = 0$ then $\lambda_2 x \to \infty$ and $\log x / \log(\lambda_2 x) < c_1$ as $x \to \infty$ with some $c_1 > 0$;
- if $\lambda_1 > 0$ then with some positive constants c_2, c_3

$$\frac{c_2}{\log(\lambda_2 + 2)} < \lambda_1 < \lambda_2 < x^{c_3}, \quad \frac{1}{\log(\lambda_2 + 2)} \cdot \log \left(\frac{\lambda_2}{\lambda_1}\right) \cdot \log x \to \infty, \quad x \to \infty.$$

Then for arbitrary $A, B \subset \mathbb{N}$ and $q \in \mathbb{N}$ the limit

$$\nu^{11}(M(A, B|q)) = \lim_{x \to \infty} \nu_x^{11}(M(A, B|q))$$

exists.

Let $\lambda_1 > c(c > 0)$ and λ_2 be bounded. Then the conditions of Theorem 5 for λ_i can be reduced to requirement

$$x \to \infty.$$

3 PROOFS

Let q_0, q_1, q_2 be some coprime natural numbers and

$$\mathbb{Q}_{q_0, q_1, q_2} = \left\{ \frac{m}{n} \in \mathbb{Q}^+, mn \perp q_0, mq_1 \perp q_2 \right\}.$$ (2)

We investigate the asymptotical behaviour of the sums $S_{x, I}^{q_0, q_1}(\mathbb{Q}_{q_0, q_1, q_2})$ as $x \to \infty$. Methods being used are elementary, the remainder terms in the asymptotics depend on q_i.

Lemma. Let for the coprime integers q_0, q_1, q_2

$$\Pi(q_0, q_1, q_2) = \prod_{p|q_0} \left(1 - \frac{2}{p+1}\right) \prod_{p|q_1q_2} \left(1 - \frac{1}{p+1}\right).$$

Then the following asymptotics hold

$$\frac{S_{x, I}^{q_0, q_1}(\mathbb{Q}_{q_0, q_1, q_2})}{\Pi(q_0, q_1, q_2)} = \frac{3}{\pi^2}(\lambda_2 - \lambda_1)x^2 \left\{1 + O\left(\frac{\log x}{x} + \frac{\log x}{(\lambda_2 - \lambda_1)x}\right)\right\},$$

$$\frac{S_{x, I}^{q_1, q_2}(\mathbb{Q}_{q_0, q_1, q_2})}{\Pi(q_0, q_1, q_2)} = \frac{6}{\pi^2}(\lambda_2 - \lambda_1)x \left\{1 + O\left(\frac{\log x}{x} + \frac{\log^2 x}{(\lambda_2 - \lambda_1)x}\right)\right\}. $$

3
If \(\lambda_1 > 0 \) then

\[
\frac{S^1_{x,I}(q_0,q_1,q_2)}{\Pi(q_0,q_1,q_2)} = \frac{6}{\pi^2} \log \left(\frac{\lambda_2}{\lambda_1} \right) x \left\{ 1 + O \left(\frac{\log x}{x} + \frac{\log^2 x}{\lambda_1 \log \left(\frac{\lambda_2}{\lambda_1} \right) x} \right) \right\},
\]

\[
\frac{S^1_{x,I}(q_0,q_1,q_2)}{\Pi(q_0,q_1,q_2)} = \frac{6}{\pi^2} \log \left(\frac{\lambda_2}{\lambda_1} \right) x \left\{ 1 + O \left(\frac{1}{\log x} + \frac{1}{\lambda_1 \log \left(\frac{\lambda_2}{\lambda_1} \right) \log x} \right) \right\}.
\]

In the case \(\lambda_1 = 0 \) we have

\[
\frac{S^1_{x,I}(q_0,q_1,q_2)}{\Pi(q_0,q_1,q_2)} = \frac{6}{\pi^2} x \log(\lambda_2 x) \left\{ 1 + O \left(\frac{1}{\log(\lambda_2 x)} + \frac{x}{\log x} \right) \right\},
\]

\[
\frac{S^1_{x,I}(q_0,q_1,q_2)}{\Pi(q_0,q_1,q_2)} = \left\{ \begin{array}{ll}
\frac{3}{\pi^2} \log^2(\lambda_2 x) \left\{ 1 + O \left(\frac{\log x}{\log(\lambda_2 x)} \right) \right\}, & \text{if } \frac{1}{2} < \lambda_2 \leq 1,
\frac{3}{\pi^2} \log x \cdot \log(\lambda_2^2 x) \left\{ 1 + O \left(\frac{\log(\lambda_2 x)}{\log x \log(\lambda_2^2 x)} \right) \right\}, & \text{if } \lambda_2 > 1.
\end{array} \right.
\]

The functions in O-signs of the Lemma are different. It is easily seen, that if \(\lambda_1 = 0 \), then the condition \(x^{-c} < \lambda_2 \) with some \(0 < c < 1 \) is sufficient for all functions in O-signs related to the case \(\lambda_1 = 0 \) to be vanishing.

Consider now the case \(\lambda_1 > 0 \). The function

\[
f(u) = u - c \log \left(1 + \frac{u}{c} \right), \quad u \geq 0, \quad c > 0,
\]

is not decreasing, hence

\[
\lambda_1 \log \left(\frac{\lambda_2}{\lambda_1} \right) = \lambda_2 \log \left(1 + \frac{\lambda_2 - \lambda_1}{\lambda_1} \right) \leq \lambda_2 - \lambda_1.
\]

It follows from this, that under condition

\[
\lambda_1 \log \left(\frac{\lambda_2}{\lambda_1} \right) x \log x \rightarrow \infty, \quad x \rightarrow \infty,
\]

all functions in O-signs of \(S^{r_1r_2}_{x,I}(q_0,q_1,q_2) \), with \(r_1 + r_2 < 2 \), are vanishing. We include \(S^{11}_{x,I} \) if we use the stronger requirement

\[
\lambda_1 \log \left(\frac{\lambda_2}{\lambda_1} \right) \log x \rightarrow \infty, \quad x \rightarrow \infty.
\]

If \(q_0 = q_1 = q_2 = 1 \), then

\[
S^{r_1r_2}_{x,I}(Q_1,q_1,q_2) = S^{r_1r_2}_{x,I}(Q^+) = \sum \left\{ m^{-r_1}n^{-r_2} : \frac{m}{n} \in F^I \right\}.
\]

The following Corollary follows easily from the Lemma.

Corollary. Let \(\lambda_i \) fulfill the following conditions

- if \(\lambda_1 = 0 \) then \(x^{-c} < \lambda_2 \) with some \(0 < c < 1 \);
- if \(\lambda_1 > 0 \) then \(\lambda_1 \log \left(\frac{\lambda_2}{\lambda_1} \right) x \log x \rightarrow \infty, \quad x \rightarrow \infty.
\]

Then for all \(r_1, r_2 \) and fixed coprime numbers \(q_0, q_1, q_2 \)

\[
\frac{S^{r_1r_2}_{x,I}(q_0,q_1,q_2)}{S^{r_1r_2}_{x,I}(Q^+)} \rightarrow \Pi(q_0,q_1,q_2) \quad \text{as} \quad x \rightarrow \infty.
\]
Proof. We abbreviate the notation as \(S^{r_1 r_2} = S^{r_1 r_2}_n(q_0, q_1, q_2) \) and start with the expression

\[
S^{r_1 r_2} = \sum_{n \leq x} n^{-r_2} \sum_{\lambda_1 n < \lambda_2 n} m^{-r_1}.
\]

With the Möbius function \(\mu(n) \) we proceed as follows

\[
S^{r_1 r_2} = \sum_{\lambda_1 n < \lambda_2 n} \sum_{d \mid (m, n q_0 q_1)} \mu(d) \sum_{\lambda_1 n < \lambda_2 n} m^{-r_1} = \sum_{\lambda_1 n < \lambda_2 n} \sum_{d \mid (m, n q_0 q_1)} \mu(d) m^{-r_1} = \sum_{\lambda_1 n < \lambda_2 n} \sum_{d \mid (m, n q_0 q_1)} m^{-r_1}. \tag{3}
\]

For the last sum over \(m \) we shall use the following equalities

\[
\sum_{\lambda_1 n < \lambda_2 n} m^{-r_1} = \begin{cases}
(\lambda_2 - \lambda_1) \frac{\theta}{x} + \theta_{n,d}, & \text{if } r_1 = 0, \\
\log \left(\frac{\lambda_2}{\lambda_1} \right) + \theta_{n,d} \frac{d}{X^{r_1}}, & \text{if } \lambda_1 > 0, r_1 = 1, \\
\log \left(\frac{\lambda_2}{\lambda_1} \right) + \theta_{n,d}, & \text{if } \lambda_1 = 0, r_1 = 1, \text{ and } \frac{\lambda_2}{\lambda_1} > 1,
\end{cases}
\]

where \(\theta_{n,d} \) are bounded by some absolute constant.

Consider the case \(r_1 = r_2 = 0 \) first. Then

\[
S^{00} = (\lambda_2 - \lambda_1) \sum_{d \mid (d, q_0 q_1)} \frac{\mu(d)}{d} \sum_{n \leq x} n + O\left(\sum_{d \mid x q_0 q_1} \mu^2(d) \sum_{n \leq x} 1 \right). \tag{4}
\]

Let \(S^{00}_1 \) stands for the main term in \(S^{00} \). Using the divisibility property \(d \mid (d, q_0 q_2) \) and the asymptotics

\[
\sum_{n \leq u} n = \frac{1}{2} u^2 \prod_{p \mid q} \left(1 - \frac{1}{p} \right) + O(u),
\]

we rewrite the main term of \(S^{00} \) as

\[
S^{00}_1 = \frac{1}{2} (\lambda_2 - \lambda_1)x^2 \prod_{p \mid q_1} \left(1 - \frac{1}{p} \right) \sum_{d \mid (d, q_0 q_2)} \frac{\mu(d)}{d^2} + O((\lambda_2 - \lambda_1)x \log x). \tag{5}
\]

Note that \(d \mid (d, q_0 q_2) \perp q_0 q_1 \) is equivalent to \(d \perp q_1 \), hence

\[
\sum_{d \mid (d, q_0 q_2)} \frac{\mu(d)}{d^2} = \sum_{d \mid q_1} \frac{\mu(d)}{d^2} + O\left(q_0 q_2 \sum_{d > x q_0 q_1} \frac{1}{d^2} \right)
= \prod_{p} \left(1 - \frac{1}{p^2} \right) \prod_{p \mid q_1} \left(1 - \frac{1}{p} \right)^{-1} \prod_{p \mid q_0 q_2} \left(1 + \frac{1}{p} \right)^{-1} + O\left(\frac{1}{x} \right).
\]

Setting this in \(S^{00}_1 \) one gets

\[
S^{00}_1 = \frac{3}{\pi^2} (\lambda_2 - \lambda_1)x^2 \Pi(q_0, q_1, q_2) + O((\lambda_2 - \lambda_1)x \log x).
\]
For the remainder term in (6) we use the bound
\[
\sum_{d \leq xq_0q_1} \mu^2(d) \sum_{n \leq xq_0q_1 \atop n \equiv r \pmod{d/\phi(d,q_0q_2)}} 1 \leq \sum_{d \leq xq_0q_1} \mu^2(d) \sum_{n \leq x(d,q_0q_2)/d} 1 = O\left(x \log x\right).
\]

Hence putting all together we obtain
\[
S^{00} = \frac{3}{\pi^2} (\lambda_2 - \lambda_1) x^2 \Pi(q_0,q_1,q_2) \left\{ 1 + O\left(\frac{\log x}{x} + \frac{\log x}{(\lambda_2 - \lambda_1)x}\right) \right\}.
\]

Consider now the case \(r_1 = 0, r_2 = 1\). Then instead of (4) we have
\[
S^{01} = (\lambda_2 - \lambda_1) x \prod_{p \nmid q_0q_1} \left(1 - \frac{1}{p} \right) \sum_{d \leq xq_0q_1 \atop d/\phi(d,q_0q_2) = 1} (d,q_0q_2) \frac{\mu(d)}{d^2} + O\left((\lambda_2 - \lambda_1) \log x\right)
\]
\[
= \frac{6}{\pi^2} (\lambda_2 - \lambda_1)x \Pi(q_0,q_1,q_2) + O\left((\lambda_2 - \lambda_1) \log x\right).
\]

For the remainder term in (6) use the obvious bound
\[
\sum_{d \leq xq_0q_2} \mu^2(d) \sum_{n \leq xq_0q_1 \atop n \equiv r \pmod{d/\phi(d,q_0q_2)}} 1 \leq \sum_{d \leq xq_0q_1} \mu^2(d) \sum_{n \leq xq_0q_1} \frac{1}{n} = O\left(\log^2 x\right).
\]

Hence the asymptotics
\[
S^{01} = \frac{6}{\pi^2} (\lambda_2 - \lambda_1)x \Pi(q_0,q_1,q_2) \left\{ 1 + O\left(\frac{\log x}{x} + \frac{\log^2 x}{(\lambda_2 - \lambda_1)x}\right) \right\}.
\]
is established.

Suppose now that \(r_1 = 1, r_2 = 0\). From (3) one gets
\[
S^{10} = \sum_{d \leq xq_0q_1 \atop d/\phi(d,q_0q_2) = 1} \frac{\mu(d)}{d} \sum_{n \leq xq_0q_1 \atop n \equiv r \pmod{d/\phi(d,q_0q_2)}} \frac{1}{m}.
\]

Let first \(\lambda_1 > 0\). Then
\[
S^{10} = \log \left(\frac{\lambda_2}{\lambda_1}\right) \sum_{d \leq xq_0q_1 \atop d/\phi(d,q_0q_2) = 1} \frac{\mu(d)}{d} \sum_{n \leq xq_0q_1 \atop n \equiv r \pmod{d/\phi(d,q_0q_2)}} \frac{1}{m} + O\left(\frac{1}{\lambda_1} \sum_{d \leq xq_0q_1} \mu^2(d) \sum_{n \leq xq_0q_1} \frac{1}{n}\right).
\]
Expression for S^{10} differs from that one in (6) in term involving λ_i only. Hence, in the same way as above we get

$$S^{10} = \frac{6}{\pi^2} \log \left(\frac{\lambda_2}{\lambda_1} \right) x \Pi(q_0, q_1, q_2) \left\{ 1 + O \left(\frac{\log x}{x} + \frac{\log^2 x}{\lambda_1 \log \left(\frac{\pi}{\lambda_1} x \right)} \right) \right\}.$$

Let now $\lambda_1 = 0$. Then

$$S^{10} = \sum_{d \mid (d, q_0q_1)^2} \frac{\mu(d)}{d} \sum_{n \leq x \mid (d, q_0q_2)} \log \left(\frac{\lambda_2 n}{d} \right) + O \left(\sum_{d \mid (d, q_0q_1)^2} \frac{\mu^2(d)}{d} \sum_{n \leq x \mid (d, q_0q_2)} 1 \right).$$

The remainder term does not exceed

$$x \sum_{d \mid (d, q_0q_2)} \frac{\mu^2(d)}{d^2} = O(x).$$

Using the divisibility condition $d \mid (d, q_0q_2)$, we proceed as follows

$$S^{10} = \sum_{d \mid (d, q_0q_1)^2} \frac{\mu(d)}{d} \sum_{n \leq x \mid (d, q_0q_2)} \log \left(\frac{\lambda_2 n}{d} \right) + O(x) = \sum_{d \mid (d, q_0q_1)^2} \frac{\mu(d)}{d} \sum_{n \leq x \mid (d, q_0q_2)} \log(\lambda_2 n)$$

$$- \sum_{d \mid (d, q_0q_1)^2} \frac{\mu(d)}{d} \log(d, q_0q_2) \sum_{n \leq x \mid (d, q_0q_2)} 1 + O(x).$$

The second minus term is $O(x)$, hence

$$S^{10} = \sum_{d \mid (d, q_0q_1)^2} \frac{\mu(d)}{d} \sum_{n \leq x \mid (d, q_0q_2)} \log(\lambda_2 n) + O(x). \quad (7)$$

Using

$$\sum_{n \leq x \mid (d, q_0q_2)} 1 = u \prod_{p \mid q} \left(1 - \frac{1}{p} \right) + O(1)$$

and integrating by parts one derives for $c > 0$ easily

$$\sum_{n \leq x \mid (d, q_0q_2)} \log(cn) = u \log(cu) \prod_{p \mid q} \left(1 - \frac{1}{p} \right) + O(u + |\log(cu)|), \text{ as } u \to \infty.$$

Using this in (7) we get

$$S^{10} = \prod_{p \mid q_0q_2} \left(1 - \frac{1}{p} \right) x \sum_{d \mid (d, q_0q_1)^2} \frac{\mu(d)}{d^2} (d, q_0q_2) \log \left(\frac{\lambda_2 x (d, q_0q_2)}{d} \right)$$

$$+ O \left(x + x \sum_{d \mid (d, q_0q_2)^2} \frac{\mu^2(d)}{d^2} (d, q_0q_2) + \sum_{d \mid (d, q_0q_1)^2} \frac{\mu^2(d)}{d^2} \log \left(\frac{\lambda_2 x (d, q_0q_2)}{d} \right) \right).$$

It is easily seen that the remainder term can be reduced to $O(x + \log x \cdot \log(\lambda_2 x) + \log^2 x) = O(x + \log x \log(\lambda_2 x^2))$. Using additivity property for the logarithm in the first sum we split the
Using the asymptotics

\[S^{10} = \prod_{p | q_0 q_2} \left(1 - \frac{1}{p} \right) x \log(\lambda_2 x) \sum_{d / (d, q_0 q_2) \perp q_0 q_1} \frac{\mu(d)}{d^2} (d, q_0 q_2) + O(x + \log x \cdot \log(\lambda_2 x^2)). \]

The remaining sum was calculated above, then simplifying the remainder terms one gets

\[S^{10} = \frac{6}{\pi^2} \Pi(q_0, q_1, q_2) x \log(\lambda_2 x) \left\{ 1 + O\left(\frac{1}{\log(\lambda_2 x)} + \frac{\log x}{x} \right) \right\}. \]

With \(r_1 = r_2 = 1 \) we have

\[S^{11} = \sum_{d \leq \epsilon q_0 q_1 \atop d / (d, q_0 q_2) \perp q_0 q_1} \frac{\mu(d)}{d} \sum_{n \leq x \atop n \perp (d, q_0 q_2) / n} \frac{1}{n} + \frac{1}{n} \log \left(\frac{\lambda_2}{\lambda_1} \right) \sum_{d \leq \epsilon q_0 q_1 \atop d / (d, q_0 q_2) \perp q_0 q_1} \frac{\mu(d)}{d^2} (d, q_0 q_1) \sum_{n \leq x \atop n \perp (d, q_0 q_2) / n} \frac{1}{n} + O(\lambda^{-1}). \]

The sum over \(n \) in the remainder term is \(O(d^{-2}) \), hence

\[S^{11} = \log \left(\frac{\lambda_2}{\lambda_1} \right) \prod_{p | q_0 q_1} \left(1 - \frac{1}{p} \right) \log x + O(1), \]

using the asymptotics

\[\sum_{n \leq x} \frac{1}{n} = \prod_{p | q} \left(1 - \frac{1}{p} \right) \log u + O(1), \]

we derive

\[S^{11} = \log \left(\frac{\lambda_2}{\lambda_1} \right) \prod_{p | q_0 q_1} \left(1 - \frac{1}{p} \right) \sum_{d \leq \epsilon q_0 q_1 \atop d / (d, q_0 q_2) \perp q_0 q_1} \frac{\mu(d)}{d^2} (d, q_0 q_2) \log \left(\frac{d, q_0 q_2}{d} \right) + O\left(\frac{1}{\lambda_1} + \log \left(\frac{\lambda_2}{\lambda_1} \right) \right) \]

\[= \log \left(\frac{\lambda_2}{\lambda_1} \right) \prod_{p | q_0 q_1} \left(1 - \frac{1}{p} \right) \log x \sum_{d \leq \epsilon q_0 q_1 \atop d / (d, q_0 q_2) \perp q_0 q_1} \frac{\mu(d)}{d^2} (d, q_0 q_2) + O\left(\frac{1}{\lambda_1} + \log \left(\frac{\lambda_2}{\lambda_1} \right) \right). \]

Simplifying the sum over \(d \) as above we arrive finally to

\[S^{11} = \frac{6}{\pi^2} \log \left(\frac{\lambda_2}{\lambda_1} \right) \Pi(q_0, q_1, q_2) \log x \left\{ 1 + O\left(\frac{1}{\log x} + \frac{1}{\lambda_1} \log \left(\frac{\lambda_2}{\lambda_1} \right) \log x \right) \right\}. \]

Consider now the case \(\lambda_1 = 0 \):

\[S^{11} = \sum_{d \leq \epsilon q_0 q_1 \atop d / (d, q_0 q_2) \perp q_0 q_1} \frac{\mu(d)}{d} \sum_{n \leq \lambda_2 \perp n \atop n / (d, q_0 q_2) \perp n} \frac{1}{n} \sum_{d / \lambda_2 < n} \frac{1}{n} \log \left(\frac{\lambda_2 n}{d} \right) + O\left(\sum_{d \leq \epsilon q_0 q_1 \atop d / (d, q_0 q_2) \perp q_0 q_1} \frac{\mu(d)}{d^2} \sum_{n \leq \lambda_2 \perp n} \frac{1}{n} \right). \]

8
Using the divisibility condition \(d/(d, q_0 q_2)|n \) we reduce the term in O-sign to \(O(\log x) \) and simplify the expression as follows

\[
S^{11} = \sum_{d \leq x \in q_0 q_1 \atop d/(d, q_0 q_2) \perp q_0 q_1} \frac{\mu(d)}{d^2} (d, q_0 q_2) \sum_{\lambda_2 n \in x/(d, q_0 q_2)/d \atop \lambda_2 \in \mathbb{Q} \setminus (d, q_0 q_2)/d} \frac{1}{n} \log \left(\frac{\lambda_2 n}{(d, q_0 q_2)} \right) + O(\log x)
\]

\[
= \sum_{d \leq x \in q_0 q_1 \atop d/(d, q_0 q_2) \perp q_0 q_1} \frac{\mu(d)}{d^2} (d, q_0 q_2) \sum_{\lambda_2 n \in x/(d, q_0 q_2)/d \atop \lambda_2 \in \mathbb{Q} \setminus (d, q_0 q_2)/d} \frac{\log(\lambda_2 n)}{n} + O(\log x).
\]

Extending the sum over \(n \) to the range \(1/\lambda_2 < n \leq x \) we introduce the error term \(O(\log x + \log(\lambda_2 x)) \). Hence

\[
S^{11} = \sum_{d \leq x \in q_0 q_1 \atop d/(d, q_0 q_2) \perp q_0 q_1} \frac{\mu(d)}{d^2} (d, q_0 q_2) \sum_{\lambda_2 n \in x/(d, q_0 q_2)/d \atop \lambda_2 \in \mathbb{Q} \setminus (d, q_0 q_2)/d} \frac{\log(\lambda_2 n)}{n} + O(\log x + \log(\lambda_2 x)).
\]

The main term is expressed as the product of two sums, the first one equals to

\[
\frac{6}{\pi^2} \Pi(q_0, q_1, q_2) \prod_{p \neq q_0, q_1} \left(1 - \frac{1}{p} \right)^{-1} + O(x^{-1}).
\]

The second sum of the main term can be calculated by partial integration, the final result would be

\[
\sum_{1/\lambda_2 < n \leq x \atop \lambda_2 \neq q_0 q_1} \frac{\log(\lambda_2 n)}{n} = \begin{cases} \frac{1}{2} \prod_{p \neq q_0, q_1} \left(1 - \frac{1}{p} \right) (\log x + \log \lambda_2)^2 + O(1), & \text{as } \lambda_2 < 1, \\ \frac{1}{2} \prod_{p \neq q_0, q_1} \left(1 - \frac{1}{p} \right) (\log^2 x + 2 \log \lambda_2 \log x) + O(\log(\lambda_2 + 1)), & \text{as } \lambda_2 \geq 1. \end{cases}
\]

If we write \(\log x + \log \lambda_2)^2 = \log^2(\lambda_2 x) \) and \(\log^2 x + 2 \log \lambda_2 \log x = \log x \cdot \log(\lambda_2 x) \), then after manipulating with the remainder terms we arrive to the following expressions

\[
S^{11} = \begin{cases} \frac{3}{2} \log^2(\lambda_2 x) \left(1 + O \left(\frac{\log x}{\log(\lambda_2 x)} \right) \right), & \text{if } \frac{1}{2} < \lambda_2 \leq 1, \\ \frac{3}{2} \log x \cdot \log(\lambda_2 x) \left(1 + O \left(\frac{\log x}{\log(\lambda_2 x)} \right) \right), & \text{if } \lambda_2 > 1. \end{cases}
\]

Note that the remainder term for \(\lambda_2 > x^{-c} \), where \(0 < c < 1 \), is \(O(\log^{-1} x) \). The Lemma is proved.

Proof of Theorem 2. Let us start with the first chain of inequalities. Because of the interval \(I \) is fixed

\[
S_{x, t}^{01}(Q^+) \sim \frac{3}{\pi^2} \beta I \rightarrow \infty, \quad S_{x, t}^{01}(Q^+) \sim \frac{6}{\pi^2} \beta I, \quad \beta x \rightarrow \infty,
\]

where \(|I| = \lambda_2 - \lambda_1 \). For an arbitrary subset \(A \subset \mathbb{Q}^+ \) we have

\[
S_{x, t}^{01}(A) = \int_{t-1}^{t+1} \frac{1}{t^2} dS_{x, t}^{01}(A) = \frac{S_{x, t}^{01}(A)}{x} + \int_{t-1}^{t+1} \frac{S_{x, t}^{01}(A)}{t^2} dt.
\] (8)

For an arbitrary fixed \(\epsilon > 0 \) we shall have

\[
S_{x, t}^{01}(A) \leq (\pi^0(A) + \epsilon) \frac{3}{\pi^2} |I| t^2
\]

as \(t \geq t_0 \). From this observation and \(\square \) we derive

\[
S_{x, t}^{01}(A) \leq (\pi^0(A) + \epsilon) \frac{6}{\pi^2} I x + C,
\]

\[9\]
with some $C > 0$. Then, consequently, $\mathcal{M}^{11}(A) \leq \mathcal{M}^{10}(A)$. The inequality for lower limits follows from the inequality for complement set $\mathcal{M}^{11}(A^c) \leq \mathcal{M}^{10}(A^c)$.

The second chain of inequalities can be derived in an analogous manner from the equality $$S^{11}_{x,t}(A) = \int_{x}^{\infty} \frac{1}{t} d\mathcal{S}^{10}_{x,t}(A).$$

Theorem 2 is proved.

Proof of Theorem 3. Consider now the sets of multiples $\mathcal{M}(A,B|q)$. If $A = \{a\}, B = \{b\}$ we shall write $\mathcal{M}(A,B|q) = \mathcal{M}(a,b|q)$. For natural numbers a, b with $(a, b) > 1$ or $(ab, q) > 1$ we have $\mathcal{M}(a,b|q) = \emptyset$. Let $a \perp b$ and $ab \perp q$. Then using the notation $\mathcal{S}^{r,s}_{x,t}(\mathcal{M}(a,b|q)) = a^{-r} b^{-s} s_{b-a^{-r}}^{s}(\mathbb{Q},a,b)$.

After examining the asymptotics of Lemma we conclude that under conditions of Theorem 3 for λ_1

$$S^{r,s}_{x,t}(\mathcal{M}(a,b|q)) \sim a^{-r_1} b^{-s_2} s_{b-a^{-r_1}}^{s_2}(\mathbb{Q},a,b), \quad x \to \infty.$$

From the Corollary we obtain

$$\nu^{r,s}_{x}(\mathcal{M}(a,b|q)) \to \frac{1}{ab} \prod_{p|q} \left(1 - \frac{2}{p+1}\right) \prod_{p|ab} \left(1 - \frac{1}{p+1}\right), \quad x \to \infty.$$ (9)

Let now A, B be two finite sets. By the sieve arguments we have

$$\nu^{r,s}_{x}(\mathcal{M}(A,B|q)) = \sum_{C \subseteq A \times B} (-1)^{|C|+1} \nu^{r,s}_{x}(\bigcap_{(a,b) \in C} \mathcal{M}(a,b|q)).$$ (10)

For $C = \{(a_1,b_1), (a_2,b_2), \ldots, (a_{|C|},b_{|C|})\} \subset A \times B$ let us introduce the notations

$$[C]_A = [a_1,a_2,\ldots,a_{|C|}], \quad [C]_B = [b_1,b_2,\ldots,b_{|C|}],$$

here $[\cdot]$ stands for the least common multiples of numbers in the brackets. Then clearly

$$\bigcap_{(a,b) \in C} \mathcal{M}(a,b|q) = \mathcal{M}([C]_A,[C]_B|q).$$

Due to (9) all the summands in (10) tend to their limits as $x \to \infty$. Hence the statement of Theorem 3 follows.

Proof of Theorem 4. The inequality follows by induction over the number of elements $|A| + |B|$. If $A = \{a\}, B = \{b\}$, then either $\nu(\mathcal{M}(a,b|q)) = 0$ or

$$\nu(\mathcal{M}(a,b|q)) = \prod_{p|q} \left(1 - \frac{2}{p+1}\right) \prod_{p|ab} \left(1 - \frac{1}{p+1}\right).$$ (11)

In the first case the inequality is trivial, and in the second one we have

$$1 - \nu(\mathcal{M}(a,b|q)) = 1 - \prod_{p|q} \left(1 - \frac{2}{p+1}\right) \prod_{p|ab} \left(1 - \frac{1}{p+1}\right) \geq \prod_{p|q} \left(1 - \frac{2}{p+1}\right) \prod_{p|ab} \left(1 - \frac{1}{p+1}\right).$$

Let the inequality holds for some finite sets A, B and we add a new number a^* to A. We shall show that the inequality will be satisfied for $\mathcal{M}(A^*,B|q)$ with $A^* = A \cup \{a^*\}$, too. Let us introduce the
following notations: \([a^*, A] = \{ [a^*, a] : a \in A \}, [a^*, A] = \{ a/(a, a^*) : a \in A \} \), where \([a^*, a]\) denotes the least common multiple of numbers in brackets; if \(C \) is some finite set of numbers, then \([C]\) stands for the least common multiple of all elements of \(C \). We start with

\[
\mathcal{M}(A^*, B|q) = \mathcal{M}(A, B|q) \cup (\mathcal{M}(A^*, B|q) \setminus \mathcal{M}(A, B|q)).
\]

Denote briefly \(\mathcal{M}(A, B|q) = \mathcal{M}(A^*, B|q) \setminus \mathcal{M}(A, B|q) \). Then

\[
\nu(\mathcal{M}(A^*, B|q)) = \nu(\mathcal{M}(A, B|q)) + \nu(\mathcal{M}(A, B|q) \setminus \mathcal{M}(A, B|q)),
\]

\[
\nu(\mathcal{M}(A, B|q)) = \nu(\mathcal{M}(A^*, B|q)) - \nu(\mathcal{M}(A^*, A, B|q)).
\]

Using the sieve arguments and the properties of \(A \) one derives

\[
\nu(\mathcal{M}(a^*, B|q)) = \sum_{a < p \leq b} (-1)^{1+|C|} \nu(\mathcal{M}(a^*, [C]|q)) = \frac{1}{a^*} \prod_{p|a^*} \left(1 - \frac{1}{p+1} \right) \nu(\mathcal{M}(1, B|q)),
\]

\[
\nu(\mathcal{M}([a^*, A], B|q)) = \sum_{c < a < a^*} (-1)^{1+|C|} \nu(\mathcal{M}([C], A|, [C]|B|q)) = \frac{1}{a^*} \prod_{p|a^*} \left(1 - \frac{1}{p+1} \right) \nu(\mathcal{M}(a^*, A, B|q)).
\]

It follows now from this that

\[
\nu(\mathcal{M}(A^*, B|q)) = \nu(\mathcal{M}(A, B|q)) + \frac{1}{a^*} \prod_{p|a^*} \left(1 - \frac{1}{p+1} \right) \left(\nu(\mathcal{M}(1, B|q)) - \nu(\mathcal{M}(a^*, A, B|q)) \right).
\]

Because of \(\nu(\mathcal{M}(1, B|q)) \leq 1 \) and \(\nu(\mathcal{M}(a^*, A, B|q)) \geq \nu(\mathcal{M}(A, B|q)) \) we obtain

\[
1 - \nu(\mathcal{M}(A^*, B|q)) \geq 1 - \nu(\mathcal{M}(A, B|q)) - \frac{1}{a^*} \prod_{p|a^*} \left(1 - \frac{1}{p+1} \right) (1 - \nu(\mathcal{M}(A, B|q))),
\]

and the inequality for the sets \(A^*, B \) follows. If instead of \(A \) we add a new element to \(B \), the arguments proving the inequality would be essentially the same. The Theorem is proved.

Proof of Theorem 5. Recall that for \(A \subset \mathbb{N} \) we denote by \(\mathcal{M}(A) \) the set of multiples of elements \(a \in A \). If \(N > 1 \) let \(A_N = A \cap [1; N] \).

We start with the equality

\[
\nu_x^{\epsilon, \tau}(\mathcal{M}(A, B|q)) = \nu_x^{\epsilon, \tau}(\mathcal{M}(A_N, B_N|q)) + \nu_x^{\epsilon, \tau}(\mathcal{M}(A, B|q) \setminus \mathcal{M}(A_N, B_N|q)). \tag{12}
\]

It suffices to show that for any \(\epsilon > 0 \) the upper limit of the second term in (12) is less than \(\epsilon \) as \(x \to \infty \), supposed that \(N \) is large enough. Define two subsets of rational numbers

\[
\mathcal{M}_N^1 = \left\{ \frac{m}{n} : m \in \mathcal{M}(A) \setminus \mathcal{M}(A_N) \right\}, \quad \mathcal{M}_N^2 = \left\{ \frac{m}{n} : n \in \mathcal{M}(B) \setminus \mathcal{M}(B_N) \right\}.
\]

Then

\[
\mathcal{M}(A, B|q) \setminus \mathcal{M}(A_N, B_N|q) \subset \mathcal{M}_N^1 \cup \mathcal{M}_N^2.
\]

We are going to prove that for fixed \(\delta > 0 \) and \(N \) sufficiently large we shall have \(S^{i, \epsilon}_x(\mathcal{M}_N^i) \leq \delta \) for \(i = 1, 2 \). Denote for the sake of brevity \(\mathcal{M}(A)_N = \mathcal{M}(A) \setminus \mathcal{M}(A_N), \mathcal{M}(B)_N = \mathcal{M}(B) \setminus \mathcal{M}(B_N) \). Then

\[
S^{i, \epsilon}_x(\mathcal{M}_N^i) \leq \sum_{\lambda_1 < \lambda_2 \leq x} \frac{1}{\lambda_2} \sum_{n_i \in \mathcal{M}(\lambda_i)} \frac{1}{\lambda_2}.
\]

11
Let $\lambda_1 = 0$ first. With some constant $c > 0$ we have

$$S_{x,I}^1(\mathcal{M}_N^2) \leq (\log(\lambda_2 x) + c) \sum_{n \in \mathcal{M}(B)_{N}} \frac{1}{n}.$$

The Erdős-Davenport statement as formulated in the Theorem 1 implies that there exists some vanishing sequence δ_N such that $\varphi^1(\mathcal{M}(B)_N) < \delta_N$. It follows then that for x a sufficiently large we shall have

$$S_{x,I}^1(\mathcal{M}_N^2) \leq \delta_N \log x (\log(\lambda_2 x) + c).$$

Compare now the functions on the right-side of this inequality to that ones in the asymptotics of $S_{x,I}^1(\mathbb{Q}^+)$ (see Lemma):

$$S_{x,I}^1(\mathcal{M}_N^2) \leq \left\{ \log^2(\lambda_2 x) \left\{ \frac{\delta_N}{\log(\lambda_2 x)} + \frac{\delta_N}{\log(\lambda_2 x)} \right\}, \log x \cdot \log(\lambda_2 x) \left\{ \frac{\delta_N}{\log(\lambda_2 x)} + \frac{\delta_N}{\log(\lambda_2 x)} \right\} \right\}.$$

Having in mind the conditions on λ_i we conclude that $\varphi^1(\mathcal{M}_N^2) \leq \delta$ for N large enough.

We shall show now that $\varphi^1(\mathcal{M}_N^1) \leq \delta$ as well. If $m/n < \lambda_2$ and $n \leq x$, then $m \leq \lambda_2 x$ and $n > m/\lambda_2$. We start with

$$S_{x,I}^1(\mathcal{M}_N^1) \leq \sum_{m \in \mathcal{M}(A)_N} \frac{1}{m} \sum_{m/\lambda_2 < n \leq x} \frac{1}{n} + \sum_{m \in \mathcal{M}(A)_N} \frac{1}{m} \sum_{m/\lambda_2 < n \leq x} \frac{1}{n}.$$

Consider the first summand. Using the Erdős-Davenport theorem as above we obtain that for x large enough

$$\sum_{m \in \mathcal{M}(A)_N} \frac{1}{m} \sum_{m/\lambda_2 < n \leq x} \frac{1}{n} \leq (\log x + c) \sum_{m \in \mathcal{M}(A)_N} \frac{1}{m} \leq \delta_N (\log x + c) \log \lambda_2,$$

where $\delta_N \to 0$ as $N \to \infty$. Using similar arguments for the second sum we get

$$S_{x,I}^1(\mathcal{M}_N^1) \leq \delta_N (\log x + c) \log \lambda_2 + \sum_{m \in \mathcal{M}(A)_N} \frac{1}{m} \log \left(\frac{\lambda_2 x}{m} \right) + \frac{\lambda_2}{m} \leq \delta_N (\log x + c) \log(\lambda_2 x) + c_1, \quad c_1 > 0,$$

and $\varphi(\mathcal{M}_N^1) \leq \delta$. This completes the proof in the case $\lambda_1 = 0$.

Let now $\lambda_1 > 0$. Then using the Erdős-Davenport theorem again we have

$$S_{x,I}^1(\mathcal{M}_N^2) \leq \sum_{m \in \mathcal{M}(A)_N} \frac{1}{m} \sum_{m/\lambda_1 n < m/\lambda_2 n} \frac{1}{n} \leq \sum_{m \in \mathcal{M}(A)_N} \frac{1}{m} \left\{ \log \left(\frac{\lambda_2}{\lambda_1} \right) + \frac{1}{\lambda_1 n} \right\} \leq \log \left(\frac{\lambda_2}{\lambda_1} \right) \log x \left(\delta_N + \frac{1}{\lambda_1 \log(\lambda_2/\lambda_1)} \log x \right).$$

Note that under conditions on λ_1, λ_2

$$\lambda_1 \log(\lambda_2/\lambda_1) \log x = \lambda_1 \log(\lambda_2 + 2) \left(\log \left(\frac{\lambda_2}{\lambda_1} \right) \log x \right) \to \infty,$$
as }x \to \infty{. Consequently }S_{x,I}^{11}(\mathcal{M}_N^1) \leq \delta.

For }S_{x,I}^{11}(\mathcal{M}_N^1)\text{ we proceed as follows:

\[
S_{x,I}^{11}(\mathcal{M}_N^1) \leq \sum_{m \in \mathcal{M}(A)} \frac{1}{m} \sum_{n \in \mathcal{M}(A)} \frac{1}{n} + \sum_{\lambda_2 \leq \lambda_1} \sum_{m \leq \lambda_2 \leq n} \frac{1}{n}. \tag{13}
\]

If }\lambda_2\text{ remains bounded, then the first sum in (13) is zero for }N\text{ sufficiently large. Otherwise we have

\[
\sum_{m \in \mathcal{M}(A)} \frac{1}{m} \sum_{n \in \mathcal{M}(A)} \frac{1}{n} \leq \sum_{m \in \mathcal{M}(A)} \frac{1}{m} \left(\log \left(\frac{\lambda_2}{\lambda_1} \right) + c \right) \leq \log \left(\frac{\lambda_2}{\lambda_1} \right) \log x \left\{ \delta_N \frac{\log \lambda_2}{\log x} + \delta_N \frac{c \log \lambda_2}{\log \left(\lambda_2/\lambda_1 \right) \log x} \right\}.
\]

For the second sum in (13) we obtain

\[
\sum_{\lambda_2 \leq \lambda_1 \leq n} \frac{1}{n} \leq \sum_{\lambda_2 \leq \lambda_1 \leq n} \frac{1}{m} \left(\log \left(\frac{\lambda_2}{\lambda_1} \right) + \frac{c \lambda_2}{m} \right) \leq \delta_N \log \left(\frac{\lambda_2}{\lambda_1} \right) \log \lambda_2 + c
\]

\[
\leq \log \left(\frac{\lambda_2}{\lambda_1} \right) \log x \left\{ \delta_N \frac{\log \lambda_2}{\log x} + \delta_N \frac{c \log \lambda_2}{\log \left(\lambda_2/\lambda_1 \right) \log x} \right\}.
\]

It follows from both estimates that for given }\delta > 0\text{ under conditions on }\lambda_i\text{ we shall have }S_{x,I}^{11}(\mathcal{M}_N^1) \leq \delta S_{x,I}^{11}(\mathcal{Q}^+), \text{ supposed }x,N\text{ are large enough. Hence }\mathfrak{v}^{11}(\mathcal{M}_N^1) \leq \delta, \text{ and the proof of theorem is completed.}

References

[1] A.S. Besicovitch, On the density of certain sequences of integers, Mathematische Annalen, 110, 336–341, 1934.
[2] H. Davenport and P. Erdős, On sequences of positive integers, Acta Arithmetica, 2:147–151, 1937.
[3] H. Davenport and P. Erdős, On sequences of positive integers, J. Indian Math. Soc.(2), 15:19–24, 1951.
[4] R.L. Graham and D.E. Knuth and O. Potashnik, Concrete mathematics, Addison-Wesley Publishing Company, 1994.
[5] H. Halberstam and K.F. Roth, Sequences, Oxford University Press, 1966.
[6] R.R. Hall, Sets of multiples, Cambridge University Press, 1996.
[7] H. Heilbronn, On the inequality in the elementary theory of numbers, Proc. Camb. Phil. Soc., 33:207–209, 1937.
[8] H. Rohrbach, Beweis einer zahlentheoretischer Ungleichung, J. Reine. Angew. Math., 177:193–196, 1937.
[9] V. Stakėnas, On the Multiples, A. Laurinčikas and E. Manstavičius, Analytic and Probabilistic Methods in Number Theory. Proc. of the 4th Intern. Conference in Honour of J. Kubilius, Palanga, Lithuania, 25-29 September, 2006,TEV, Vilnius, 2007, pp. 213–224.