Mamilov N.Sh.¹, Amirbekova F.T.¹, Khabibullin F.Kh.¹, Adilbaev Zh.A.², Bekkozhaeva D.K.¹, Kozhabaeva E.B.¹

¹Al-Farabi Kazakh National University, Scientific Research Institute of Biology and Biotechnology problems, Kazakhstan, Almaty, e-mail: mamilov@gmail.com
²Karatau Biosphere Reserve, Kazakhstan, Kentau, e-mail: karatau_oop@mail.ru

NEW DATA ON MORPHOMETRY AND BIOLOGY OF ALIEN SNAKEHEAD CHANNA ARGUS IN THE SYRDARYA RIVER

The Amur (or northern) snakehead, Channa argus (Cantor, 1842), was unintentionally introduced in the Aral basin in 1961-1963. This fish species now distributed worldwide and is considered as a dangerous invader. Furthermore number and abundance of alien fish species is considered as an index of unfavorable state of water ecosystems. Therefore, the investigation of morphological and biological variability in space and time should reveal ecological plasticity of the population of Amur snakehead in the Syrdarya River. Fishes for the examination were caught using standard fishing tackles. Physical and chemical water characteristics were assessed by the most common methods. Turbidity of the water, salinity, temperature and pH, color and odor of the water were determined. The population of snakehead was presented by adult and young fishes. Growth rate was slowly than in the first time of naturalization. Comparative analysis of morphological features did reveal neither significant shifts nor reduction of variability of the population in the Syrdarya River. Adult fishes cared their young fishes longer that it was supposed before. Grow rate of the fishes was slowly than in the first time after introduction. Minimal body length of mature fishes was about 280 mm. Amur snakehead is trophic competitor with indigenous piscivorous fish species. Now the Amur snakehead is a regular member of fish community in the Syrdarya River.

Key words: Channa argus, Amur snakehead, Syrdarya River, morphology, biology
Амурский змееголов Channa argus (Cantor, 1842) был ненамеренно вселен в бассейн Аральского моря в начале 1960-х годов. Этот вид считается одним из наиболее опасных вселенцев. Кроме того, обилие и состояние чужеродных видов могут служить индикатором состояния водоемов и их неблагополучия. Целью проведенной работы являлось изучение морфологической изменчивости и биологических характеристик змееголова в сравнении с ранним периодом натурализации в этом бассейне. Для отлова рыб применялись стандартные орудия лова. Показано, что крючковая снасть обладает большой селективностью в отношении данного вида. Также изучались основные характеристики среды обитания – температура, мутность, рН, содержание растворенного в воде кислорода. Изменение этих параметров зависит от режима попусков воды в р. Сырдарье и влияет на состояние сообщества рыб. В сравнении с данными предыдущих авторов не выявлено существенных изменений морфометрических показателей. Биологической особенностью является более продолжительный, чем это предполагалось ранее, период заботы взрослой особи о потомстве. Скорость линейного роста оказалась меньше, чем в ранних источниках. Нерест порционный, в р. Сырдарье проходит 2–3 раза в течение лета. Минимальный размер тела при достижении половой зрелости составляет около 280 мм. На изученном участке р. Сырдарьи змееголов является конкурентом в питании местных хищных видов рыб. В настоящее время змееголов стал одним из постоянных членов сообщества рыб реки Сырдарья.

Ключевые слова: Channa argus, амурский змееголов, Сырдарья, морфология, биология.

Introduction

Non-indigenous species have become a widespread and significant component of human-induced global environmental change, and are having a major impact on the Earth’s ecosystems (Biological invasions..., 2004:1-436; Simberloff et al., 2013:58-66). Alien species do significant impact to aquatic and terrestrial ecosystems. The chief factors affecting fish in watersheds around the world are habitat loss and species introductions, followed by chemical pollution, hybridization, and overharvesting (Allan, Flecker, 1993: 32-43; Saunders et al., 2002: 30-41; Closs et al., 2016: 37-75). Exotic fishes are widely recognized as a major disturbance agent for native fish. Evaluating the ecological effects of invaders presents many challenges and the problem is greatly augmented in parts of the world where the native fauna is poorly known and where exotic species are commonplace (Pascual et al., 2002:101–113).

The integrity of aquatic ecosystems was disturbed worldwide after intentional and unintentional introductions and invasions (Moyle, Light, 1996: 149-161; Riccardi, Maelisaac, 2011: 211-224). Biological invasions have become numerous in freshwaters around the world. As a result, many bodies of fresh water now contain dozens of alien species. Alien fishes disrupt the food web from its apex or centre. Alien species create “no-analogue” ecosystems that will be difficult to manage in the future. Interactions between alien species and other contemporary stressors of fresh water ecosystems are strong and varied. Because disturbance is generally thought to favour invasions, stressed ecosystems may be especially susceptible to invasions, as are highly artificial ecosystems. In turn, alien species can strongly alter the hydrology, biogeochemical cycling, and biotic composition of invaded ecosystems, and thus modulate the effects of other stressors (Strayer, 2010: 152-174; Riccardi, MacIsaac, 2011: 211-224). Matsuzaki et al. (2013: 1071–1082) demonstrated that both exotic and translocated species may change functional diversity and functional group composition, which
might have dramatic consequences for ecosystem processes.

Native fish fauna of the basin of the Aral Sea was drastically changed during second part of the XX-th century after unreasonable water management and introduction of alien fishes (Ermakhanov et al., 2012:3-9). The Amur (or northern) snakehead, *Channa argus* (Cantor, 1842), was unintentionally introduced in the Aral basin in 1961-1963 (Doukravets, Mitrofanov, 1992: 6-44). This fish species now distributed worldwide and considered as a dangerous invader (Courtenay, Williams, 2004: 1-143; Gascho Landis et al., 2011:123-131).

Biological and phenotypic plasticity, namely the ability of an organism to express different phenotypes from a single genotype in response to its environment, can help to understand how well is state of fish populations (Willis et al., 2005: 284–295; Pérez-Rodríguez et al., 2013: 62-70). Therefore we conducted this investigation of Amur snakehead in the Syrdarya River.

Materials and methods

The investigation was carried out in the Kargaly State Wildlife Sanctuary located on the Syrdarya River southward of the Shili town (the cordon situated at 43°57’52.2” N, 66°48’52.5” E). Fishes for the examination were caught using hook fishing tackles and gill nets 25 length and mesh sizes from 30 to 60 mm.

Data were collected in summer time 2014-2017. Physical and chemical water characteristics were assessed by the most common methods (Unified…, 1973: 1-346; Handbook…, 1977:1-541). Turbidity of the water was determined using a turbidimeter HI 93703 «Hanna Instruments», salinity, temperature and pH – using joint device of the same manufacturer HI 98129. The color and odor of the water were determined organoleptic.

Morphological analysis of fishes was performed using materials fixed in 4% neutral formalin as it was described by I.F.Prawdin (Prawdin, 1966:1-376). Common scheme of morphometric analysis is presented on figure 1. The following clearly distinguishable countable characters were examined as the number of gill rakers on the first arch (Sp.br.); total number of vertebrae (Vert.); scales in the lateral line (l.l.); scales above lateral line and scales below lateral line; sharpen and branched rays in the dorsal fin (D total); sharpen and branched rays in the anal (A total), pectoral (P) and pelvic (V) fins. All vertebrae were counted including the last one bearing the hypural bone. The last branched ray in the second dorsal and anal fins, which in some fishes looks like two separate rays, was counted as one if its main branches grew from the same base. The last ray in the pectoral and pelvic fins was always included in the number of branched rays even if it was not branched.

Total length (L, in mm), body length without caudal fin (l, in mm), total weight (Q, in g), and body weight without inner organs (q, in g) was measured. Fulton’s condition factor was calculated by I.F.Prawdin (Prawdin, 1966:1-376).

![Diagram of morphometric measurements](image)

Figure 1 – Scheme of morphometric measurements:
Results and discussion

Snakeheads were one of the regular fish species in a big meander situated in the Kargaly State Wildlife Sanctuary. The length of the meander was about 7 km with maximal width about 300 m and depth about 4 m. The meander kept connection with the river and so there was running water there. Volume of water in the Syrdarya River is regulated with several irrigation dams situated over Kargaly State Wildlife Sanctuary and depended on precipitation and cropland area. Some water characteristics are given in table 1.

Table 1 – Abiotic characteristics of water in the meander, 2014-2017

Year	Color	°C (14-16 p.m.)	Turbidity, FTU	pH	Dissolved oxygen, mg per dm³	Dissolved matter, mg per dm³
2014	brown-green	26.5-27.3	13.00	6.8-7.2	7.9-8.0	691
2015	green	25.1-29.0	9.12	6.5-7.2	6.7-8.0	563
2016	green	27.8-28.2	12.61	6.9-7.2	7.2-7.7	691
2017	blue-green	25.1-27.2	8.31	7.4-7.5	No data	603

Snakeheads lived there together with various native and alien fish species. Pike *Esox lucius* Linnaeus, 1758; roach *Rutilus rutilus* (Linnaeus, 1758); Syrdarya dace *Squalius squaliusculus* (Kessler, 1874); redeye *Scardinius erythrophthalmus* (Linnaeus, 1758); Aral shemaya *Alburnus (Chalcalburnus) chalcoides aralensis* (Berg, 1923); stripped bystryanka *Alburnoides taenatus* (Kessler, 1872); asp *Aspius aspius* (Linnaeus, 1758); eastern bream *Abramis brama orientalis* Berg, 1949; Aral white-eye *Abramis sapa aralensis* Tiapkin, 1939; sabrefish *Pelecus cultratus* (Linnaeus, 1758); goldfish *Carassius gibelio* (Bloch, 1782); carp *Cyprinus carpio* Linnaeus, 1758; perch *Perca fluviatilis* Linnaeus, 1758 and sander (pike-perch) *Sander lucioperca* (Linnaeus, 1758) are the indigenous for the Syrdarya River. Alien fish species were grass carp *Ctenopharyngodon idella* (Valenciennes, 1844), silver carp *Hypophthalmichthys molitrix* (Valenciennes, 1844), false gudgeon *Abbottina rivularis* (Basilewsky, 1855), topmouth gudgeon (seudorasbora) *Pseudorasbora parva* (Temminck et Schlegel, 1846), sawbelly *Hemiculter leucisculus* (Basilewsky, 1855), rosy bitterling *Rhodeus ocellatus* (Girard, 1859), Chinese medaka (or ricefish) *Oryzias sinensis* Chen, Uwa et Chu, 1989; beautiful sleeper *Micropercops cinctus* (Dabry de Thiersant, 1872); Chinese goby *Rhinogobius cheni* (Nichols, 1931). All revealed fish species were presented by adults as well as young fishes that indicated their satisfactory survival rate in the present conditions.

Snakehead is single predatory among alien fish species. Pike is an omnivorous fish. Examination of the feeding revealed prevalence of the indigenous fish species like roach, goldfish and carp. In contrast with indigenous piscivorous fishes, snakehead prefers hunting close to shoreline and willingly eats died fishes. This particularity allows selective angling of snakehead using bits of fishes for lure. 16 specimens were snakeheads from 18 fishes that were caught using this lure. Native piscivorous fishes like pike-perch and pike were caught too. In contrast with native piscivorous high water temperature (about 28 °C) did not diminish engorgement of snakeheads. These fishes did not stop hunter in any time of summer days. Snakeheads took the baits, and we observed hunting fishes in many shallow sites.

Structure of the population of snakehead consisted from fishes of the different ages and included adult fishes as well as young ones. That indicated suitable environment for snakehead reproduction. In the Amur River basin the fishes become mature in the 2 years old and more than 300 mm of body length (Nikol’sky, 1956: 1-551). The same happened in the Syr Darya. There snakeheads were able to spawn up to five times per year (Nikol’sky, 1956: 1-551). We can suggest that snakeheads can spawn about three times per year that correspond to the early data (Doukravets, 1992:286-316). Maximal body length of the fishes from our catches was 600 mm that less that is known for the native area (maximal total length = 100 cm by Novikov et al., 2002: 1-552). Therefore living conditions did not forward to long life span of snakeheads in the Syrdarya River.
In the Syr Darya basin the grow rate was less than those for fish from its native range in the Amur River basin for the first ages of life, but after reaching sexual maturity it begin to match the growth rates of fish in the native range as was shown previously by Dukravets and Machulin (Dukravets, Machulin, 1978:222-228). Our data show that now Amur snakeheads grew slowly (Table 2, figure 2).

Table 2 – Body length growth of snakeheads (mm)

Statistics	Age, years	Authors, water body			
	0	1	2	3	4
Minimum	102	147	226	314	435
Maximum	120	191	276	399	440
M, average	114	173	255	349	438
±m, mean deviation	4.7	10.6	10.7	20.3	2.4
±s, standard deviation	6.6	13.8	14.4	27.6	2.7
number of fishes	6	9	9	8	5

Minimum	138	236	318	385	440
Maximum	229	435	520	605	685
Minimum	225	340	435	519	583
Maximum	245	366	461	554	615

Our data 2012-2017, running-water meander on Syr Darya River

Ereschenko, 1970:1-292; Khalmatov, 1972:264-266; Doukravets, Machulin, 1978:203-208

Dukravets, 1992: 286-316; Syr Darya watershed

Nikol’sky, 1956: 1-551 the Amur watershed

Snakeheads care about their baby fishes (Berg, 1949; Gouseva, Zholdasova, 1986:98-134; Popova, 2003:141-144; Gascho Landis et al., 2011: 123-131). However participation of parents is disputable. Some authors (Nikol’sky, 1956:1-551; Doukravets, 1992:286-316) wrote that only male care about eggs and babies. Other authors (Soin, 1960:127-137; Gouseva, Zholdasova, 1986:98-134) suggested both parents care about young fishes. We observed how two big snakeheads take care about their young fishes when those fed in shallow waters. When observer tried to come closer to shoreline all fishes quickly run to brush of *Vallisneria* at the depth about 1.5 m. The big fishes came to the surface after about 3-5 minutes. If any peril was not observed, the young fishes started to feed again. In incomprehensible situation adult fishes carried young ones from the shoreline and hang up on the border of visibility near to the water surface. After that young fishes periodically came to the water surface to swallow air and quickly went back to the deep (Figure 3). Therefore, it was revealed that adult fishes protect their babies much longer that was known previous (Popova, 2003: 141-144).

Comparative analysis of morphological features of the snakehead did not reveal neither significant shifts nor reduction of variability in time and space of population in the Syr Darya river (table 3).
Table 3 – Features of snakehead from different samples

Features	Our data	Aral watershed (Doukravets, 1992)	Amur (Nikol’sky, 1956)									
	min	max	Mean	±m	±s	CV	min	max	min	max	min	max
L, mm	182.5	600	401.7	94.63	120.17	29.92	8	9	10	11		
lst, mm	153	515	339.2	82.05	103.91	30.63	770	745				
Q, g	57.45	1300	602.2	291.82	371.55	61.70	6600					
q, g	53.53	1200	627.9	336.56	403.44	64.25						
Fulton	0.90	1.67	1.23	0.214	0.253	20.63	No data					
Clark	0.88	1.47	1.17	0.192	0.220	18.86	No data					
Counted												
l.l.	62	70	66.3	1.58	1.98	2.989	60	72	60	75		
l.l.ca	3	7	5.4	0.92	1.16	21.33						
l.l. s	8	10	9.0	0.53	0.76	8.399	8	12	no data			
l.l.in	15	22	18.5	2.36	2.64	14.26	16	26	no data			
D total	43	54	50.1	2.53	3.28	6.547	47	54.5	49	54		
A total	28	35	33.4	1.23	1.78	5.327	30	38	32	38		
P	17	22	18.3	0.89	1.28	7.007	16	19	no data			
V	6	8	6.1	0.25	0.52	8.42	no data	no data				
sp.br	8	13	9.7	0.92	1.28	13.15	no data	10	12			
Vert	45	60	54.4	3.35	4.14	7.616	50	60	no data			

in % from lst:

aD	32.9	39.2	34.9	1.31	1.74	4.98	26.3	38.1	34.4	41.7
pD	3.2	5.9	4.5	0.48	0.67	15.04	3.2	10.6	no data	
aA	50.8	60.4	54.1	2.20	2.79	5.17	49.8	60.9	no data	
aV	37.0	47.4	40.2	1.96	2.69	6.69	35.0	42.6	no data	

Figure 3 – Care of adult snakeheads on their baby fishes (original picture)
Continuation of Table 3

Features	Our data	Aral watershed (Doukravets, 1992)	Amur (Nikol’sky, 1956)							
	min	max	Mean ±m	±s	CV	min	max	min	max	
1	2	3	4	5	6	7	8	9	10	11
aP	31.1	87.6	36.8	7.01	14.21	38.61	no data	no data		
PV	10.0	14.9	12.2	0.86	1.29	10.65	9.3	16.1	12.4	13.4
VA	12.5	15.8	14.2	0.79	0.98	6.89	11.1	20.0	no data	
lca	4.2	7.8	6.1	0.61	1.04	14.12	4.5	11.4	8.2	9.6
lc	30.1	36.9	32.3	1.57	2.01	6.20	24.7	34.9	29.4	36.6
ao	4.9	7.2	5.5	0.34	0.53	9.52	4.0	8.1	5.9	9.3
oh	2.3	4.6	3.1	0.53	0.69	21.89	1.5	3.9	2.3	7.1
op	23.2	26.1	24.5	0.79	1.00	4.09	17.4	24.1	22.1	22.9
l mx	11.7	14.1	12.8	0.48	0.61	4.74	11.0	14.2	no data	
l md	14.2	18.5	16.5	1.13	1.38	8.37	no data	no data		
h co	5.3	10.5	7.6	0.76	1.17	15.33	no data	no data		
h c	12.2	18.8	14.5	1.44	1.80	12.37	12.3	17.4	no data	
io	5.3	7.5	6.0	0.46	0.60	9.94	4.5	7.2	6.1	9.0
H	15.2	22.1	17.9	1.86	2.21	12.35	15.5	25.1	18.2	19.8
h	8.0	9.9	9.0	0.35	0.48	5.29	8.1	11.0	9.4	10.1
l D	57.3	62.5	59.8	1.16	1.51	2.52	48.1	64.8	53.7	60.8
h D	6.4	14.9	8.6	1.67	2.31	26.71	4.8	10.5	8.2	10.3
l A	36.7	42.5	39.4	1.01	1.43	3.63	31.8	43.7	34.1	40.1
h A	6.3	13.1	8.6	1.32	1.85	21.50	5.0	12.7	8.6	11.1
l P	12.6	18.1	15.3	1.03	1.43	9.37	11.3	17.2	14.5	16.6
l V	8.3	11.4	9.4	0.66	0.89	9.39	6.9	11.0	8.0	10.0
l Cm	15.9	19.7	18.2	0.91	1.14	6.27	13.0	14.8		

Conclusion

The population of snakehead was presented by adult and young fishes. Growth rate was slowly than in the first time of naturalization. Comparative analysis of morphological features did not reveal neither significant shifts nor reduction of variability of population in the Syr Darya river.

Acknowledgments

We greatly appreciate the contribution in the field investigation of B.P. Annenkov. These investigations were funded by the grant №1380/SF 4 given by Committee of Science of Ministry of Education and Sciences of the Republic of Kazakhstan.

References

1. Allan J.D., Flecker A.S. «Biodiversity conservation in running waters». BioScience. 43 (1993):32–43.
2. Berg L.S. «Ryby presnikh v SSSR I sopredelnikh stran» [Fishes of freshwaters of USSR and adjacent countries] (Moscow: Publishing house of Academy of Sciences of USSR) 3 (1949):928-1382. (In Russian)
3. «Biologicheskie invazi v vodnikh I nazamnikh ecosystemakh» [Biological invasions in aquatic and terrestrial ecosystems. Eds. Alimov A.F., Bogutskaya N.G.] (Moscow – Saint Petersburg: KMK Scientific press) (2004): 1-436. (In Russian)
4. Closs G.P., Angermeier P.L., Darwall W.R.T., Balcombe S.R. «Why are freshwater fish so threatened?» Conservation of freshwater Fishes. Eds. Closs G.P., Krkosek M., Olden J.D. – Cambridge: Cambridge University Press, 2016. – P.37-75.
5 Courtenay W.R., Williams J.D. «Snakeheads (Pisces, Channidae) – a biological synopsis and risk assessment». (U.S. Department of the Interior: U.S. Geological Survey Circular) (2004):1–143.
6 Dukravets G.M. «Подотряд Анабантони (Poecilotoidei) – Ползуновидные» [Suborder Anabantoidei – Anabantids. In Fishes of Kazakhstan] (Alma-Ata: Gylum) 5 (1992): 286-316. (In Russian)
7 Dukravets G.M., Machulin A.I. «The morphology and ecology of the Amur snakehead, Ophiocephalus argus warpachowskii, acclimatized in the Syr Dar’ya Basin». Journal of Ichthyology. 16 (1978):203–208.
8 Doukavets G.M., Mitrofanov V.P. «Historiya akklimatizatsii ryb v Kazakhstane» [History of fish acclimatization in Kazakhstan. In Fishes of Kazakhstan.] (Alma-Ata: Gylum) 5 (1992): 6-44. (In Russian)
9 Ereschenko V.I. «Раздел Чардаринсское водохранилище» [Part Chardarinskoe water reservoir. In final scientific report #3/19. Elaboration of biological basis of fisheries in Chardarinskoe, Karatormarkoe, Sergeevskoe, Vyacheslavskogo water reservoirs] (Balkhash – Ust’-Kamenogorsk: KazNIIKh) #SR70055685 (1970):1-292. (In Russian)
10 Ermatkhanov Z. K., Plotnikov I. S., Aladin N. V., Micklin P. «Changes in the Aral Sea Ichthyofauna and Fishery During the Period of Ecological Crisis». Lakes & Reservoirs: Research and Management. 17 (2012):3–9. DOI: 10.1111/j.1440-1770.2012.02380.x
11 Gascho Landis A.M., Lapointe N.W.R., Angermeier P.L. «Individual growth and reproductive behavior in a newly established population of northern snakehead (Channa argus), Potomac River, USA». Hydrobiologia. 661 (2011):123–131. DOI 10.1007/s10750-010-0509-z.
12 Gouseva L.N., Zholdasova I.M. «Морфоэкологические особенности акклиматизированного Channa argus warpachowskii (Berg) – акклиматизанта водоемов нижней трети амурских руслов» [Morphoecological characteristics of snakehead (Ophiocephalus argus warpachowskii Berg) acclimatized in river bodies of the lower reach of delta of the AmuDarya. In Biological resources of Priaralii] (Tashkent: FAN) (1986):98-134. (In Russian)
13 Khalmatov N.M. «Материалы к биологии и зоогеографии водных и наземных экосистем» [Materials on biology of Amur snakehead in the Ar纳斯ay Lakes system. In Biological basis of fisheries in republics of the Middle Asia and Kazakhstan] (Tashkent: FAN) (1986):264-266. (In Russian)
14 Matsuzaki S.S., Sasaki T., Akasaka M. «Консеквентны идентификации экзотических и транслокированных видов и их экологического вклада в динамику биоразнообразия» [Consequences of the introduction of exotic and translocated species and future extirpations on the functional diversity of freshwater fish assemblages]. Global Ecology and Biogeography. 22 (2013):1071–1082. DOI:10.1111/geb.12067.
15 Moyle P.B., Light T. «Биологические инвазии в пресных водах и наземных экосистемах» [Biological invasions of fresh water: empirical rules and assembly theory]. Biological Conservation. 78 (1996):149-161.
16 Nikol’skii G.V. Рыбы бассейна Амура [Fishes of the Amur basin]. (Moscow: Academy of Science of USSR Press) (1956):1-551. (In Russian)
17 Novikov N.P., Sokolovsky A.S., Sokolovskaya T.G., Yakovlev Y.M. «The fishes of Primorye». (Vladivostok, Far Eastern Tech.Fish.Univer). (2002):1-552.
18 Pascual M., Macchi P., Urbanski J., Marcos F., Rossi C.R., Novara M., Dell’Arciprete P. «Evaluating potential effects of exotic freshwater fish from incomplete species presence–absence data». Biological Invasions. 4(2002):101–113.
19 Pérez-Rodriguez A., Morgan J., Koen-Alonso M., Saborido-Rey F. «Disentangling genetic change from phenotypic response in reproductive parameters of Flemish Cap cod Gadus morhua» Fisheries Research 138 (2013):62–70.
20 Popova O.A. «Channa argus (Cantor, 1842) – змееголов» [Channa argus (Cantor, 1842). In Atlas of freshwater fishes of Russia. Ed. Reshetnikov Yu.S.] (Moscow: Nauka) 2 (2003):141-144. (In Russian)
21 Pravdin I.F. «Руководство по изучению рыб» [Manuals on fish investigations]. (Moscow: Pischevaya promyshlennost). (1966):1-376. (In Russian)
22 Riccardi A., MacIsaac H.J. «Impacts of biological invasions on freshwater ecosystems» In: Fifty Years of Invasions Ecology: The Legacy of Charles Elton. Ed. Richardson D.M. –Blackwell Publishing Ltd. (2011):211-224.
23 «Руководство по химическому анализу поверхностных вод» [Handbook on chemical analysis of freshwaters. Ed. Louriye U.U.] (Leningrad: Hydrometeoizdat) (1977):1-541. (In Russian)
24 Saunders D.L., Meeuwig J.J., Vincent C.J. «Freshwater protected areas: strategies for conservation». Conservation Biology. 16 (2002):30-41.
25 Simberloff D et al. «Impacts of biological invasions: what’s what and the way forward» Trends Ecol Evol 28 (2013):58–66.
26 Soin S.G. «Репродуктивный цикл Channa argus warpachowskii Berg» [Reproduction and development of snakehead Ophiocephalus argus warpachowskii Berg]. Journal of Ichthyology. 15 (1960):127-137. (In Russian)
27 Strayer D.L. «Alien species in freshwater ecosystems: ecological effects, interactions with other stressors, and prospects for the future». Freshwater Biology 55 (Suppl.1) (2010):152–174. DOI:10.1111/j.1365-2427.2009.02380.x
28 «Унифицированная методика анализа вод» [Unified methods of water analysis]. Ed. Louriye U.U.] (Moscow: Chemistry) (1973):1-376. (In Russian)
29 Willis S. C., Winemiller K. O., Lopez-Fernandez H. «Habitat structural complexity and morphological diversity of fish assemblages in a Neotropical floodplain river». Oecologia. 142 (2005):284–295.

Литература
1 Берг Л.С. Рыбы пресных вод СССР и сопредельных стран. – М.: Изд-во АН СССР, 1949. – Ч.3. – С.928-1382.
2 Биологические инвазии в водных и наземных экосистемах / ред. Алимов А.Ф., Богуцкая Н.Г. – М.: СПб.: КМК, 2004: 1-436 с.
New data on morphometry and biology of alien snakehead *Channa argus* in the Syrdarya River

3 Guseva L.N., Zhodasova I.M. Morpho-ecological characteristics of the snakehead (Ophiocephalus argus warpedowskii Berg) -- morphometric data on the fish in the lower Syrdarya River. Biological resources of the Aral Sea basin -- Tashkent: Fan, 1986. - C.98-134.

4 Dukravets G.M. Podgotovka Anabantoides -- Polzunov-style. Fish of Kazakhstan. - Alma-Ata: Fyzylm, 1992. - T.5. - C.286-316.

5 Dukravets G.M., Mitofoanov V.P. 1992. History of the introduction of fish in Kazakhstan. In Fishes of Kazakhstan. - Alma-Ata: Fyzylm. T.5:6-44.

6 Breshchenko V.I. Razdel: Chardarnskoe vodozhranie// Razrabotka biologicheskikh osnov ryboizoljivogo osvoeniya Chardarnskogo, Karatoparosko, Seregesko, Vychelavskogo vodozhranie. Otech ot NIP po teme 3/19 (zaklyuchit.). - Balhak, Usty-Kamenogorsk: KazNIIP, 1970. - 292 c. - №Г70055685

7 Nikolovskii G.V. Raby basses'na Aymura -- M.: Izd-vo AN СССР, 1956. -- 551 c.

8 Popova O.A. Channa argus (Cantar, 1842) -- zmeegolov // V kn.: Atlas presnovodnykh rby Rossi / pod red. Ю.С. Решетникова. -- M.: Nauka, 2003. -- T.2. -- C. 141-144.

9 Prawdin I.F. Rukovodstvo po izuchenio rby. - M.: Pishevy promyshlennost', 1966. -- 376 c.

10 Rukovodstvo po khimicheskuiu analizu poveshenichih vod suzhhi. Pod red. Ю.Ю. Лурые. -- L.: Gidrometeoinzdat, 1977. -- 541 c.

11 Soni S.G. Razmynoje i razvitie zmeegolova Ophiocephalus argus warpedowskii Berg // Voprosy ihitologi. -- 1960. -- Vyp. 15. -- C.127-137.

12 Unifikiriraneiye metodi analiza voda / pod red. Ю.Ю. Лурые. - M.: Khimija, 1973. -- 376 c.

13 Khallagov N.M. Materialy k biologii amurskogo zmeegolova iz Arnasayskoj systemy vodozhrani// Biol. osnovy rybnoho khozyaistva respublik Srednej Azii i Kazakhstana. -- Tashkent, Fergana: NIIIP AN UzSSR, 1972. -- C. 264-266.

14 Allan J.D., Flecker A.S. «Biodiversity conservation in running waters». BioScience. 43 (1993):32-43

15 Closs G.P., Angermeier P.L., Darwall W.R.T., Balcombe S.R. «Why are freshwater fish so threatened?» Conservation of freshwater Fishes. Eds. Closs G.P., Krkosek M., Olden J.D. -- Cambridge: Cambridge University Press, 2016. -- P.37-75.

16 Courtenay W.R., Williams J.D. «Snakeheads (Pisces, Channidae) -- a biological synopsis and risk assessment». (U.S. Department of the Interior: U.S. Geological Survey Circular) (2004):1 -- 143.

17 Dukravets G.M., Machulin A.I. «The morphology and ecology of the Amur snakehead, Ophiocephalus argus warpedowskii, acclimatized in the Syr Dar'ya Basin». Journal of Ichthyology. 16 (1978):203-208.

18 Ermakhanov Z.K., Plotnikov I.S., Aladin N.V., Micklin P. «Changes in the Aral Sea Ichthyofauna and Fishery During the Period of Ecological Crisis». Lakes & Reservoirs: Research and Management. 17 (2012):3–9. DOI: 10.1111/j.1440-1770.2012.00492.x

19 Gascho Landis A.M., Lapointe N.W.R., Angermeier P.L. «Individual growth and reproductive behavior in a newly established population of northern snakehead (Channa argus), Potomac River, USA». Hydrobiologia. 661 (2011):123–131. DOI 10.1007/s10750-010-0509-z

20 Matsuzaki S.S., Sasaki T., Akasama M. «Consequences of the introduction of exotic and translocated species and future extirpations on the functional diversity of freshwater fish assemblages». Global Ecology and Biogeography. 22 (2013):1071–1082. DOI:10.1111/geb.12067

21 Moyle P.B., Light T. «Biological invasions of fresh water: empirical rules and assembly theory». Biological Conservation. 78 (1996):149-161.

22 Novikov N.P., Sokolovskiy A.S., Sokolovskaya T.G., Yakovlev Y.M. «The fishes of Primorye». (Vladivostok, Far Eastern Tech.Fish.Univer). (2002):1-552.

23 Pascual M., Macchi P., Urbanski J., Marcos F., Rossi C.R., Novara M., Dell’Arciprete P. «Evaluating potential effects of exotic freshwater fish from incomplete species presence-absence data». Biological Invasions. 4(2002):101–113

24 Pérez-Rodriguez A., Morgan J., Koen-Alonso M., Saborido-Rey F. «Disentangling genetic change from phenotypic response in reproductive parameters of Flemish Cap cod Gadus morhua» Fisheries Research 138 (2013):62–70.

25 Riccardi A., Maclsaac H.J. «Impacts of biological invasions on freshwater ecosystems» In: Fifty Years of Invasions Ecology: The Legacy of Charles Elton. Ed. Richardson D.M. --Blackwell Publishing Ltd. (2011):211-224.

26 Saunders D.L., Meeuwis J.J., Vincent C.J. «Freshwater protected areas: strategies for conservation». Conservation Biology. 16 (2002):30-41.

27 Simberloff D et al. «Impacts of biological invasions: what's what and the way forward» Trends Ecol Evol 28 (2013):58–66.

28 Strayer D.L. «Alien species in freshwaters: ecological effects, interactions with other stressors, and prospects for the future». Freshwater Biology 55 (Suppl.1) (2010):152–174. DOI:10.1111/j.1365-2427.2009.02380.x2010.

29 Willis S. C., Winemiller K. O., Lopez-Fernandez H. «Habitat structural complexity and morphological diversity of fish assemblages in a Neotropical floodplain river». Oecologia. 142 (2005):284–295.