Inkjet Printed Circuits with 2D Semiconductor Inks for High-Performance Electronics

Tian Carey,* Adrees Arbab, Luca Anzi, Helen Bristow, Fei Hui, Sivasambu Bohm, Gwenhivir Wyatt-Moon, Andrew Flewitt, Andrew Wadsworth, Nicola Gasparini, Jong M. Kim, Mario Lanza, Iain McCulloch, Roman Sordan,* and Felice Torrisi*

Air-stable semiconducting inks suitable for complementary logic are key to create low-power printed integrated circuits (ICs). High-performance printable electronic inks with 2D materials have the potential to enable the next generation of high performance low-cost printed digital electronics. Here, the authors demonstrate air-stable, low voltage (<5 V) operation of inkjet-printed n-type molybdenum disulfide (MoS₂), and p-type indacenodithiophene-co-benzothiadiazole (IDT-BT) field-effect transistors (FETs), estimating an average switching time of τ_{MoS₂} = 4.1 μs for the MoS₂ FETs. They achieve this by engineering high-quality MoS₂ and air-stable IDT-BT inks suitable for inkjet-printing complementary pairs of n-type MoS₂ and p-type IDT-BT FETs. They then integrate MoS₂ and IDT-BT FETs to realize inkjet-printed complementary logic inverters with a voltage gain |Aᵥ| ≈ 4 when in resistive load configuration and |Aᵥ| ≈ 1.4 in complementary configuration. These results represent a key enabling step towards ubiquitous low-cost, high-performance printed digital ICs.

1. Introduction

Digital integrated circuits (ICs) mainly rely on a metal-oxide-semiconductor (MOS) technology that uses p-type (PMOS logic) or n-type (NMOS logic) field-effect transistors (FETs) to implement mixed signal ICs[1] and logic gates.[2] A complementary MOS (CMOS) logic uses both p-type and n-type FETs and enables ICs with drastically smaller power dissipation than that of PMOS and NMOS logic.[3] Roughly 95% of all modern ICs use CMOS logic,[4] making it a fundamental technology towards low-power, scalable circuits.[5] Figures of merit such as field effect mobility (μ), on/off current ratio (I_on/I_off), switching time (τ), and inverter voltage gain (|Aᵥ|), defined as the slope of the inverter voltage transfer characteristic (dV_OUT/dV_IN, where V_IN...
is the input and V_{OUT} the output voltage), have been used to assess and benchmark the performance of the FETs and ICs, respectively. Ultra-large-scale integration circuits such as memories, microcontrollers and large-area flexible active-matrix displays rely on CMOS and resistive load (i.e., PMOS and NMOS) logic circuits requiring $|\Delta V| > 1$, which are achievable in ambient conditions without the use of high-vacuum ($< 10^{-6}$ mbar) technologies.[5]

Printing electronic circuits have the potential to enable low-cost ubiquitous IC systems on arbitrary substrates for flexible[6] and wearable electronics.[7] The key for creating high-performance printed FETs is to ideally obtain a highly crystalline semiconductor channel,[8,9] improve printing uniformity (i.e., decrease the active channel roughness),[9] and remove residual surfactants and solvents from the printed films.[10] Furthermore, optimal printed CMOS logic circuits with $|\Delta V| > 1$ require reducing the FET threshold voltage, $V_{th} < 1 \text{ V}$ to reduce the power supply voltage and the same drain current I_D levels for both p-type and n-type FETs.[11] Printable electronic inks achieving such performances with conducting, semiconducting, and insulating or dielectric properties is key to satisfy the diverse nature of IC components, such as interconnects, resistors, diodes, capacitors, and transistors.[12,13] Inkjet printing is a prime technique for large-area fabrication of printed electronics, combining advantages such as versatility to print on wide range of substrates (e.g., textile, polymers and silicon), mask-less and non-contact fabrication with a high resolution ($\sim 50 \text{ nm}$), manufacturing scalability ($\text{m}^2 \text{ min}^{-1}$) and low material losses ($< 1 \text{ ml}$).[7] which make it a well-established technique to print ICs based on PMOS, NMOS, and CMOS technologies.[14]

The majority of scientific efforts towards inkjet printed FETs and CMOS logic is focused on the development of organic polymers, metal oxides, and sorted single walled carbon nanotubes (SWCNTs) as the channel material.[15–17] For example, poly(3-hexylthiophene) (P3HT) has been used as a p-type channel material with an n-type material poly[N,N-bis(2-octyldodecyl)-naphththalene-1,4,5,8-bis(dicarboximide)-2,6-diy]-alt-5,5,9-(2,29-bithiophene)] (PNDI2OD-T2]) to enable an organic polymer inkjet printed CMOS inverter on polyethylene terphthalate (PET). The FET had $|\mu| < 1 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$, $I_{on}/I_{off} \approx 10^5$, and $|\Delta V| = 25$.[15] However, organic polymers frequently suffer from long-term (>100 h) stability issues in an ambient condition[18] and n-type organic polymers have struggled to exceed $|\mu| > 1 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$ after decades of research.[19] Doped SWCNTs have been used to achieve inkjet printed FETs with $|\mu| > 2 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$, $I_{on}/I_{off} \approx 10^5$, and CMOS inverters with $|\Delta V| = 85$ on a Si/SiO$_2$ substrate.[16] Inkjet printed doped metal oxides have also been investigated. Inkjet printed zinc oxide was used as an n-type material ($|\mu| = 4 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$, $I_{on}/I_{off} \approx 10^5$) with inkjet printed p-type SWCNT ($\mu = 2 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$, $I_{on}/I_{off} \approx 10^5$) to enable a CMOS inverter with $|\Delta V| = 17.1$.[17] Unfortunately, SWCNTs require semiconducting versus metallic sorting before deposition, limiting manufacturability.[16]

Electronic few-layer 2D material inks (E2D inks) offer properties suitable to inkjet print ICs.[20] Dispersions of 2D materials can be mass-produced by liquid-phase exfoliation (LPE) and formulated into electronic few-layer E2D inks,[20] with conducting (e.g., MXenes), semiconducting (e.g., transition metal dichalcogenides), and insulating properties (e.g., hexagonal boron nitride, h-BN, or silicates) suitable for printed and conformable electronics on-demand and in scale.[21] For example, semiconducting molybdenum disulfide (MoS$_2$) or tungsten diselenide (WSe$_2$) inks can be used as the active layer of transistors[22] or photodetectors.[23] E2D inks report excellent chemical stability in ambient conditions,[24] tunable p-type and n-type semiconductors,[25] and scalable production methods[26] paving the way to the next generation of solution processed electronics. Inkjet printed graphene FETs reached μ of up to 95 cm2 V$^{-1}$ s$^{-1}$ and $I_{on}/I_{off} = 10$, on a surface-modified Si/SiO$_2$ substrate.[21] Fully inkjet-printed dielectrically-gated flexible graphene/h-BN FETs reported μ of up to 204 cm2 V$^{-1}$ s$^{-1}$ on polyethylene terephthalate (PET) with $I_{on}/I_{off} = 2.5$ at low operating voltage ($< 5 \text{ V}$) in ambient conditions.[10] These graphene/h-BN FETs enabled inkjet-printed ICs such as memories, logic gates, and CMOS with a gain of only $|\Delta V| = 0.1$.[28] Current modulation in printed thin films of LPE MoS$_2$, tungsten disulfide (WS$_2$), molybdenum diselenide (MoSe$_2$), and WSe$_2$ on PET has been attempted via electrochemical gating by a liquid electrolyte (LE), achieving $I_{on}/I_{off} = 600$ and $\mu = 0.1 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$ for MoSe$_2$ and WS$_2$ films in vacuum.[22] However, the absence of printable highly crystalline semiconducting E2D inks able to exhibit field-effect modulation in ambient conditions has impeded the implementation of inkjet printed 2D material FETs suitable for digital ICs.[20,22]

Recently, improved solution-processing resulted in the production of high-quality semiconducting 2D materials by electrochemical intercalation of bulk MoS$_2$ layered crystals via quaternary ammonium molecules in acetonitrile.[28] Spin coated thin-films of the MoS$_2$ achieved μ of up to 10 cm2 V$^{-1}$ s$^{-1}$ and $I_{on}/I_{off} = 10^6$ in vacuum with NMOS circuits with $|\Delta V| = 20$. However, the low concentration ($< 0.2 \text{ mg ml}^{-1}$) MoS$_2$ ink in dimethylformamide (DMF) makes them unsuitable for any scalable printing (such as inkjet). Inkjet printed CMOS logic has not yet been achieved with semiconducting E2D inks. In this work, we demonstrate circuits of CMOS and NMOS logic using inkjet printed n-type MoS$_2$ and p-type IDT-BT FETs achieving a mobility of up to 0.1 cm2 V$^{-1}$ s$^{-1}$ at low voltage ($< 5 \text{ V}$) and fast switching times (as small as $\tau_{on\text{MoS}_2} = 3.5 \mu\text{s}$). The printed logics achieved $|\Delta V| \approx 4$ and $|\Delta V| \approx 1.4$ in NMOS and CMOS configurations, respectively.

2. Results and Discussion

2.1. Inks Formulation

We use inkjet printing as a versatile method to manufacture logic circuits. Ink properties such as surface tension γ, viscosity η, boiling point b_p, and concentration c must be engineered to ensure satellite droplet free ejection, high throughput, and morphologically uniform (i.e., roughness minimization) printed films.[7,10] The jetting of ink from an inkjet printer is determined by η, γ, density ρ, and the nozzle diameter, a.[29] The inverse of the Ohnesorge number (Oh) has been traditionally used as a figure of merit $Z = Oh^{-1} = (\eta a^2/\rho b_p)^{1/2}/\eta$ to characterize the quality of droplet formation from the nozzle of an inkjet printer.[7] An optimal Z range to minimize the formation of satellite droplets (i.e., secondary droplets that are produced
in addition to the first droplet ejected from the inkjet nozzle[29] from an inkjet nozzle has been identified as $2 < Z < 24$. Therefore, we will engineer our ink to be within the optimal Z range to avoid any jetting issues. Inks with $c = 1 \, \text{mg ml}^{-1}$ are required to maximize throughput while $\gamma = 30 \, \text{mN m}^{-1}$ is optimal to coalesce the droplets after deposition. $B_p < 100 \, ^\circ \text{C}$ ensures a quick evaporation of the solvent minimizing both the transport of particulates (which causes "coffee rings") and the re-dispersion of material after multiple passes, thus improving the morphological uniformity of the printed film.\[10,30\]

We intercalate the MoS$_2$ crystal with tetraheptylammonium (TA) cations to separate single and few-layer MoS$_2$ from the bulk crystal in acetonitrile/quaternary ammonium bromide electrolyte (Figure 1a).[28] The few-layer MoS$_2$ is then ultrasonicated in DMF with polyvinylpyrrolidone (PVP) (see Experimental Section). The MoS$_2$ is then solvent exchanged into isopropanol/PVP (IPA/PVP) by decanting the DMF and pipetting IPA/PVP into the sedimented MoS$_2$. We do this to engineer the inkjet printable n-type MoS$_2$ ink with $\eta_{\text{MoS}_2} = 1.8 \, \text{mPa s}$, $\gamma_{\text{MoS}_2} = 28 \, \text{mN m}^{-1}$, and $\rho_{\text{MoS}_2} = 0.7 \, \text{g cm}^{-3}$ (Figure S1, Supporting Information), consistent with our previous reports.\[10,21\] We select as a p-type ink the copolymer IDT-BT, synthesized according to the previously reported results\[31,33\] to use as a p-type material. We choose IDT-BT as it has previously demonstrated stability in air ambient for up to 100 h.\[36,37\] For printing the IDT-BT, we optimize the ink by dispersing at $c_{\text{IDT-BT}} = 6 \, \text{mg ml}^{-1}$ in 1,2-dichlorobenzene (DCB) with $\eta_{\text{IDT-BT}} = 16 \, \text{mPa s}$, $\gamma_{\text{IDT-BT}} = 20.6 \, \text{mN m}^{-1}$, and $\rho_{\text{IDT-BT}} = 1.3 \, \text{g cm}^{-3}$ (Figure S1, Supporting Information). We find $Z = 11$ and $Z = 2$ for the MoS$_2$ and IDT-BT inks, respectively, which fall within the optimal printing range (Figure S2, Supporting Information).\[10,21\]

Figure 1b shows the UV–visible optical absorption spectra of the MoS$_2$ and IDT-BT inks. We use the Beer–Lambert law to correlate the absorbance (red line) to the c of MoS$_2$ flakes (see Experimental Section). We find $c = 2.65 \, \text{mg ml}^{-1}$ for the MoS$_2$ ink (using an absorption coefficient $\alpha_{\text{MoS}_2} = 3400 \, \text{L g}^{-1} \text{m}^{-1}$).\[25\] The spectra of the MoS$_2$ flakes displays two characteristic peaks at ~ 640 and $\sim 672 \, \text{nm}$ attributed to the A exciton and B exciton, respectively, confirming the presence of MoS$_2$ flakes and consistent with the previous reports.\[13\] UV–vis spectroscopy also confirms the presence of IDT-BT, Figure 1b (black line) shows the characteristic peaks which are associated with the IDT-BT copolymer. The most prominent peak appears at $\sim 672 \, \text{nm}$ and is attributed the backbone of the C$_{16}$-IDT-BT polymer.\[31,33\]

The lateral size (L_{perp}) and thickness (t) of the MoS$_2$ flakes is estimated using atomic force microscopy (AFM) statistics. An AFM micrograph of several MoS$_2$ flakes deposited on Si/SiO$_2$ substrate is shown in Figure 1c (also Figure S3, Supporting Information). The cross section of one of the MoS$_2$ flakes (red dashed line) is shown in the inset of Figure 1c with a thickness of 1.5 nm and lateral size of $\sim 550 \, \text{nm}$. Figure 1d,e shows the log-normal distribution\[34\] of L_{perp} and t over 40 MoS$_2$ flakes. The t peaks at 1.8 nm (corresponding to an average number of layers, $N \approx 3$)\[35\] and L_{perp} peaks at 0.58 μm. A typical transmission electron microscopy (TEM) is shown in Figure 1f and a selected area electron diffraction image shown in the inset. The TEM agrees with the AFM data showing a lateral size of $\sim 1 \, \mu$ m while the diffraction pattern indicates the sixfold symmetry that is expected from MoS$_2$ flakes.\[16,17\] The MoS$_2$ crystals determined from both TEM and AFM is about 2% the size of the nozzle diameter (21 μm), hence matching with the requirements of drop-on-demand (DOD) the inkjet printing.\[21\]

2.2. Inkjet Printed MoS$_2$ FETs

Before printing, we use electron-beam (e-beam) lithography to pattern $1 \, \text{mm}$ wide source, drain and gate electrodes on a Si/SiO$_2$ substrate (see Experimental Section). We use Ti/Au

Figure 1. a) Electrochemical setup used to exfoliate a MoS$_2$ crystal. b) UV–Vis spectra of the MoS$_2$ and IDT-BT. c) AFM micrograph of MoS$_2$ flakes with the scale indicating the maximum height being no more than 5 nm for the majority of flakes. The cross section of one of the MoS$_2$ flakes (red dashed line) is shown in the inset having a height of $\approx 1.5 \, \text{nm}$. Lateral (d) and height (e) distribution of the MoS$_2$ flakes dispersed in IPA with the black curve showing the lognormal distribution of each dimension. f) TEM image of a MoS$_2$ flake along with the selective area diffraction pattern on the top right hand corner with the inset scale bar representing 10 nm. The diffraction pattern shows the (100) plane (red circles) and the (110) plane (green circle) which highlights the six-fold-symmetry.
(5/35 nm) for the source and drain and Al (40 nm) for gate electrodes of the FETs. A thin native AlO\textsubscript{x} layer (oxide thickness \(t_{\text{ox}} \approx 4 \) nm) is formed at the top surface of Al by air exposure, creating an Al/AlO\textsubscript{x} gate stack.\[38\] The gate length \(L \approx 500 \) nm, with the source-to-drain distance \(\approx 100 \) nm longer.

We use a DOD inkjet printer to print the semiconductor channel and define the MoS\textsubscript{2} and IDT-BT FETs (Figure 2a) as follows. The MoS\textsubscript{2} ink is printed for 30 printing passes (i.e., where one pass is defined as an area with ink droplets deposited 30 \(\mu \)m from each other) over the source, drain, and gate electrodes to create the MoS\textsubscript{2} channel of the FET. We use an interdrop spacing (i.e., the center-to-center distance between two adjacent deposited droplets) of 30 \(\mu \)m with a platen temperature of 20 °C. We print with a channel width \(W = 400 \) \(\mu \)m.

Profilometry measurements (see Experimental Section), reveal a channel thickness (\(t_{\text{c}} \)) as \(\approx 20 \) nm, which matches the percolation threshold of inkjet printed E2D inks.\[21\] We use scanning electron microscopy (SEM) and AFM to confirm the MoS\textsubscript{2} channel of the FET. We use an interdrop spacing (i.e., the center-to-center distance between two adjacent deposited droplets) of 30 \(\mu \)m with a platen temperature of 20 °C. We print with a channel width \(W = 400 \) \(\mu \)m.

Optical microscopy is used to examine the inkjet printed MoS\textsubscript{2} (Figure 2b) and IDT-BT (Figure 2c) FETs. We observe that the films are printed over the source, drain, and gate electrodes as expected (Figure S6, Supporting Information).

We use a DOD inkjet printer to print the semiconductor channel and define the MoS\textsubscript{2} and IDT-BT FETs (Figure 2a) as follows. The MoS\textsubscript{2} ink is printed for 30 printing passes (i.e., where one pass is defined as an area with ink droplets deposited 30 \(\mu \)m from each other) over the source, drain, and gate electrodes to create the MoS\textsubscript{2} channel of the FET. We use an interdrop spacing (i.e., the center-to-center distance between two adjacent deposited droplets) of 30 \(\mu \)m with a platen temperature of 20 °C. We print with a channel width \(W = 400 \) \(\mu \)m.

Profilometry measurements (see Experimental Section), reveal a channel thickness (\(t_{\text{c}} \)) as \(\approx 20 \) nm, which matches the percolation threshold of inkjet printed E2D inks.\[21\] We use scanning electron microscopy (SEM) and AFM to confirm the MoS\textsubscript{2} channel of the FET. We use an interdrop spacing (i.e., the center-to-center distance between two adjacent deposited droplets) of 30 \(\mu \)m with a platen temperature of 20 °C. We print with a channel width \(W = 400 \) \(\mu \)m.

Optical microscopy is used to examine the inkjet printed MoS\textsubscript{2} (Figure 2b) and IDT-BT (Figure 2c) FETs. We observe that the films are printed over the source, drain, and gate electrodes as expected (Figure S6, Supporting Information).
Raman spectroscopy is used to monitor the quality of the inkjet printed MoS$_2$ channel following the individual or combined effect of TFSI and annealing treatment. Figure 2d plots the spectra of the MoS$_2$ film as-deposited (red curve), after annealing and no TFSI treatment (black curve), after TFSI treatment and no annealing (blue curve) and after TFSI treatment followed by annealing (green curve). All spectra show the typical MoS$_2$ A$_{1g}$ and E$_{2g}$ peaks at 406 and 383 cm$^{-1}$, respectively. The frequency difference (23 cm$^{-1}$) between A$_{1g}$ and E$_{2g}$ confirms an average thickness of few layers (3–4 layers). The position of the E$_{2g}$ peak, $\text{Pos}(E_{2g}) \approx 383$ cm$^{-1}$, indicates the absence of a large number of defects at every step of our post-processing treatment.

X-ray photoelectron spectroscopy (XPS) is also used to determine the effect that TFSI treatment and annealing have on the MoS$_2$ inkjet printed films (Figure S8, Supporting Information). Figure 2e shows the XPS spectra of the MoS$_2$ ink in the energy region of 393 – 405 eV when TFSI treated (blue curve), annealed (cyan curve), and combined TFSI treatment followed by annealing (green curve). All spectra show the typical MoS$_2$ A$_{3g}$ and E$_{3g}$ peaks at 406 and 383 cm$^{-1}$, respectively. The frequency difference (23 cm$^{-1}$) between A$_{3g}$ and E$_{3g}$ confirms an average thickness of few layers (3–4 layers). The position of the E$_{3g}$ peak, $\text{Pos}(E_{3g}) \approx 383$ cm$^{-1}$, indicates the absence of a large number of defects at every step of our post-processing treatment.

X-ray photoelectron spectroscopy (XPS) is also used to determine the effect that TFSI treatment and annealing have on the MoS$_2$ inkjet printed films (Figure S8, Supporting Information). Figure 2e shows the XPS spectra of the MoS$_2$ ink in the energy region of 393 – 405 eV when TFSI treated (blue curve), annealed (cyan curve), and combined TFSI treatment followed by annealing (green curve). All spectra show the typical MoS$_2$ A$_{3g}$ and E$_{3g}$ peaks at 406 and 383 cm$^{-1}$, respectively. The frequency difference (23 cm$^{-1}$) between A$_{3g}$ and E$_{3g}$ confirms an average thickness of few layers (3–4 layers). The position of the E$_{3g}$ peak, $\text{Pos}(E_{3g}) \approx 383$ cm$^{-1}$, indicates the absence of a large number of defects at every step of our post-processing treatment.

X-ray photoelectron spectroscopy (XPS) is also used to determine the effect that TFSI treatment and annealing have on the MoS$_2$ inkjet printed films (Figure S8, Supporting Information). Figure 2e shows the XPS spectra of the MoS$_2$ ink in the energy region of 393 – 405 eV when TFSI treated (blue curve), annealed (cyan curve), and combined TFSI treatment followed by annealing (green curve). All spectra show the typical MoS$_2$ A$_{3g}$ and E$_{3g}$ peaks at 406 and 383 cm$^{-1}$, respectively. The frequency difference (23 cm$^{-1}$) between A$_{3g}$ and E$_{3g}$ confirms an average thickness of few layers (3–4 layers). The position of the E$_{3g}$ peak, $\text{Pos}(E_{3g}) \approx 383$ cm$^{-1}$, indicates the absence of a large number of defects at every step of our post-processing treatment.

We characterize the electrical properties of the inkjet printed MoS$_2$ FETs and IDT-BT FETs using a probe station in air (see Experimental Section). For both FETs, the transfer characteristics (the drain current, I_D as a function of the gate-source voltage, V_{GS}) are measured. The output characteristics (the drain current, I_D as a function of the drain-source voltage, V_{DS}) are also measured for different gate-source voltages (V_{SG}).

Figure 3. The transfer curve of the a) MoS$_2$ and b) IDT-BT FET which plots I_D as a function of V_{GS} with $|V_{DS}| = 1$ V. The gate current I_G is simultaneously measured (red curve). c) The output curves of the MoS$_2$ FET where the drain current I_D is measured as a function of V_{DS} (at V_{GS} ranging from -1.3 to 1 V with a step change of 0.1 V). d) The output curves of the IDT-BT FET with I_D measured as a function of V_{SD} (at V_{SG} ranging from 2.5 to 3.5 V with a step change of 0.25 V).
The ambient field-effect mobility for MoS₂ and IDT-BT FETs was derived from equation (1) operating under high vacuum and lower than that of spin coated IDT-BT ($\mu = 1 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$) which we attribute to the higher roughness ($R_{pp} = 80 \text{ nm}$) of the IDT-BT channel. We estimate the yield of working MoS₂ devices to be $\approx 50\%$ for 24 devices and 100% for 26 IDT-BT devices.

The versatility of inkjet-printed n-type and p-type FETs allows us to easily design printed electronic circuits. Printed circuits with semiconducting E2D inks have been a long-sought milestone on the way towards the next generation of printed electronics. To verify the suitability of our technology to print circuits with 2D materials and the versatility to mutually operate with organic electronics, we demonstrate inkjet-printed NMOS and CMOS logic implementing the MoS₂ FETs in n-type MoS₂ depletion-load inverters (Figure 4a) and MoS₂/IDT-BT CMOS inverters (Figure 4b) shown in the schematic.

Figure 5a shows the static voltage transfer characteristic (the output voltage V_{OUT} as a function of the input voltage V_{IN}, blue line) and the corresponding low-frequency voltage gain $A_{v,NMOS}$ (red line, the scale on the right) of the NMOS inverter at the power supply voltage $V_{DD} = 1.5 \text{ V}$. The device correctly operates as an inverter with a highest voltage gain $A_{v,NMOS} \approx 4$. Figure 5b shows the digital waveforms measured in the NMOS inverter. The input voltage swing is equal to V_{DD} (as in conventional logic gates) while the output voltage swing is $\approx 73\%$ V_{DD}. The mismatch between V_{IN} and V_{OUT} logic voltage levels is attributed to the negative threshold voltage of the MoS₂ FETs.

The switching time (τ_{NMOS}), defined as the RC time constant of the output voltage in Figure 5b, is $\tau_{NMOS} \approx 400 \text{ ms}$ which is dominated by the large channel resistance ($\approx 200 \text{ M}\Omega$) and capacitive load of the BNC cables used to connect the FETs to the probe station. In contrast to FETs with liquid-electrolyte gates,[22] the fabricated gates are capable of operating at
Figure 5. a) The static voltage transfer characteristic and the corresponding low-frequency frequency voltage gain (A) of an NMOS inverter. The circuit diagram shows the NMOS inverter made of a driver MoS₂ FET (bottom) and a load MoS₂ FET top. b) The digital V\textsubscript{IN} (red) and V\textsubscript{OUT} (blue) waveforms measured in the NMOS inverter as a function of time at V\textsubscript{DD} = 1.5 V. c) The V\textsubscript{DS} waveforms measured in the circuit comprising a single MoS₂ FET (see Figure S11, Supporting Information). V\textsubscript{CS} is a square wave at 20 kHz. The spikes of V\textsubscript{CS} are a consequence of the capacitive currents in the circuit. d) The same measurement in high temporal resolution reveals τ\textsubscript{MoS₂} ≈ 3.3 μs from the exponential decay fit. The plot shows both the drain current I\textsubscript{D} and the resistive component of the drain current I\textsubscript{R} (which is proportional to the drain potential). The difference between I\textsubscript{D} and I\textsubscript{R} is the capacitive component of the drain current I\textsubscript{C} (Figure S11, Supporting Information) which approaches to zero in the steady state. e) The waveforms measured in the NMOS inverter operating as a small-signal voltage amplifier. The offsets are removed for clarity. f) The transfer characteristic of the fabricated CMOS inverter and the corresponding voltage gain at V\textsubscript{DD} = 2 V.

high-frequency and therefore do not significantly contribute to the time constant of the MoS₂ FETs. Figure 5c shows V\textsubscript{DS} of an individual MoS₂ FET driven by a square wave V\textsubscript{CS} at a frequency of 20 kHz (Figure S11, Supporting Information). The time constant of a single FET is mostly dominated by the drain time constant, that is, by the parasitic drain capacitances of the FET and drain load. This leads to an average time constant τ\textsubscript{MoS₂} ≈ 4.1 ± 0.4 μs (Figure S12, Supporting Information) the much smaller compared to the NMOS inverter (due to the off-chip connections used to connect the FETs in the circuit) with the smallest τ\textsubscript{MoS₂} down to ≈ 3.3 μs (Figure 5d). The τ\textsubscript{MoS₂} here is smaller than that of the only printed MoS₂ transistors (τ ≈ 68 ms) reported on literature. However, this is expected given the latter is an electrochemical transistor where the switching time is limited by the mass transfer of ions, unlike our FETs.

We also operate the inverter as a small-signal voltage amplifier as shown by the analogue waveforms measured in Figure 5e. The inverter is biased at the operating point where it exhibits the highest voltage gain (i.e., at V\textsubscript{IN} = −0.9 V). The amplitude of the output voltage (blue curve) is ≈4 times larger than the amplitude of the input sine wave voltage (red curve), that is, A\textsubscript{NMOS} ≈ 4. We also realized CMOS inverters made of the inkjet printed IDT-BT p-type FETs and MoS₂ n-type FETs with a power supply voltage V\textsubscript{DD} = 2 V. Figure 5f shows the transfer characteristics of the CMOS inverter and the corresponding low-frequency voltage gain A\textsubscript{CMOS} of the CMOS inverter at the power supply voltages V\textsubscript{DD} of 2 V. Also in this case the device correctly operates as an inverter, giving rise to |A\textsubscript{CMOS}| > 1 at V\textsubscript{DD} = 2 V. We find a maximum A\textsubscript{CMOS} ≈ −1.4 at V\textsubscript{DD} = 2 V, which is higher than inkjet printed logic circuits previously reported with graphene inks, as expected. However, the A\textsubscript{CMOS} is lower than our A\textsubscript{NMOS}, which we attribute to a slight mismatch of V\textsubscript{TH} and of I\textsubscript{D} in the p-type and n-type FETs.

3. Conclusion

We demonstrated air-stable and low voltage (< 5 V) inkjet printed n-type MoS₂ with a fast switching time of τ\textsubscript{MoS₂} = 4.1 ± 0.4 μs, which is four orders of magnitude faster than state-of-the-art solution processed MoS₂ transistors. We integrated the MoS₂ FETs in NMOS logic and, with p-type IDT-BT FETs, in CMOS logic circuit architectures. The CMOS and NMOS inverters demonstrated a voltage gain of |A\textsubscript{CMOS}| = 1.4 and |A\textsubscript{NMOS}| = 4, respectively, which is 40 times greater than that of inkjet printed inverters with graphene inks. The assembly of stable printed complementary logic combining 2D materials with organic polymers is a fundamental building block towards ubiquitous, low-cost, and high-performance digital electronics, which is manufacturable in a large scale.
4. Experimental Section

Electrochemical Exfoliation of MoS\textsubscript{2} and Ink Formulation: An electrochemical cell with two electrodes WAS used to intercalate a MoS\textsubscript{2} crystal (H\textsubscript{2} graphite). Copper crocodile clips were used to mount the anode and cathode electrode. A thin piece of MoS\textsubscript{2} crystal was used as the cathode while a graphite rod (Qingdao Tenny Carbon Co.) was used as the anode. Tetraethylammonium bromide (Sigma-Aldrich, CAS number: 4368-51-8, SKU: 87301) 5 mg ml-1 added to acetonitrile (≈ 50 ml) which acted as the electrolyte. The MoS\textsubscript{2} crystal and graphite rod were both submerged in the electrolyte. The authors applied a voltage of 8 V and allowed the MoS\textsubscript{2} to be intercalated for 1 h. Further details on the reaction mechanism can be found in Lin et al.[28]

After the reaction, the MoS\textsubscript{2} was intercalated with tetaethylammonium cations and expanded increasing the volume of material on the crocodile clip. The MoS\textsubscript{2} was then washed with ethanol and manually broken into smaller pieces. The MoS\textsubscript{2} was then sonicated in DMF with PVP (Sigma-Aldrich, CAS Number 9003-39-8, SKU: PVP40) 22 mg ml-1 (Molecular weight = 40000) for 30 min. To further assist the break-up of material, a shear mixer (IKA-T10) was then used for 10 min at 10000 rpm. The dispersion was then centrifuged at 3000 rpm for 20 min (g = 1254, r-max = 15.25 cm) to remove large chunks (>10 layers) of MoS\textsubscript{2} material and then a further 5000 rpm for 10 min (g = 4193, r-max = 15.25 cm). Both centrifuge steps made use of a ProteomeLab MAX Ultracentrifuge to sediment the MoS\textsubscript{2}. The MoS\textsubscript{2} sediment was then dispersed in IPA with PVP (22 mg ml-1 (Molecular weight =40000) to create the MoS\textsubscript{2} ink.

Formulation and Coating of IDT-BT: The hexadecyl alkyl side chain substituted IDT-BT was synthesized according to previously reported literature.[29] The IDT-BT polymer was dissolved in 1,2 dichlorobenzene at a c = 6 mg ml-1 for inkjet printing.

Fabrication of Electrodes and Dielectric on a Silicon Wafer: Highly doped Si chips with a thermally grown 90-nm-thick SiO\textsubscript{2} top layer were used in the fabrication of the MoS\textsubscript{2} FETs. The chips were initially cleaned by ultrasonication in acetone/isopropanol. The organic contamination from the surface of the chips was removed by O\textsubscript{2} plasma in a Tepla 300 AL PC plasma asher. The silicon chips with a thermally grown 90-nm-thick SiO\textsubscript{2} top layer were used as the anode. Tetraheptylammonium bromide (Sigma-Aldrich, CAS Number 9003-39-8, SKU: PVP40) 22 mg ml-1 (Molecular weight = 40000) to create the MoS\textsubscript{2} ink.

Film Treatment: The MoS\textsubscript{2} transistors were treated with 10 mg ml-1 of TFSI (Sigma-Aldrich, CAS Number: 82113-65-3, SKU: 15220) in 1,2-dichloroethane (Acros Organics) at 100 °C for 1 h.[30] This was done in a nitrogen glovebox to minimize the exposure of TFSI to air. The film was then heated on a hot plate (in N\textsubscript{2} atmosphere) for 1 h at 400 °C.

Atomic Force Microscopy: A Bruker Dimension Icon working was used to analyze the area and thickness of the MoS\textsubscript{2} flakes contained in the E2D ink. The MoS\textsubscript{2} ink was drop cast onto a SiO\textsubscript{2} substrate after dilution by a factor of 1:100. The samples were scanned in peakforce mode, and 40 MoS\textsubscript{2} flakes were counted to determine the statistics for the lateral size and thickness. The lateral size was calculated as the square root of the flake length times the flake width. A NX-HighVac AFM working in tapping-contact mode (provided with a NCHR tip from NanoWorld) was used to analyze the surface roughness of the MoS\textsubscript{2} channel. The same apparatus was dotted with a solid Pt tip from Rocky Mountain (RMN-25PT300B) to collect current maps of the devices in contact mode, by applying a positive voltage to the AFM tip and keeping the drain electrode grounded.

Scanning Electron Microscopy: The SEM imaging was performed in Raith eLine at 10 kV.

Probe Station Measurement: All electrical measurements were performed in air ambient in FormFactor probe stations EP6 and Summit 11000. The electrical characterizations of the FETs and inverters were performed by Keithley 2600 series source-measure units at a typical sweep rate of 145 mV s-1. The time constant was measured using a Tektronix AFC 3022B arbitrary function generator, Keysight DSO9404A digital storage oscilloscope (bandwidth 4 GHz), and Keysight N2795A active probe (bandwidth 1 GHz).

Raman Spectroscopy: Films of MoS\textsubscript{2} were 200 nm thick were deposited onto Si/SiO\textsubscript{2} substrate, and a Raman spectrum was obtained using a Renishaw 1000 InVia micro-Raman spectrometer at 514.5 nm using a ×50 objective and incident power 1 mW.

Optical Absorption Spectroscopy: The flake concentration of the MoS\textsubscript{2} ink was found using the Beer–Lambert law which correlated the absorbance A = αcL, to the flake concentration c, the absorption coefficient α, and the path length L. The MoS\textsubscript{2} ink was diluted at a 1:200 ratio with DMF/PVP. An absorption coefficient of α\textsubscript{MoS\textsubscript{2}} = 3400 L g-1 m-1 for the MoS\textsubscript{2} ink at 660 nm was used.[25]

Surface Tension: The pendant drop method (First Ten Angstroms FTA1000B) was used to measure the MoS\textsubscript{2} surface tension. Drop shape analysis was used to fit a shadow image of a droplet suspended from a needle and the surface tension was calculated using the Young–Laplace equation.[50]

Rheometry: A parallel plate rotational rheometer (DHR rheometer TA instruments) was used to calculate the infinite-rate viscosity of the MoS\textsubscript{2} ink. The measurement was taken at 25 °C.

Optical Microscope: An optical microscope (Nikon Optiphot 300 attached to Schott ACE 1 light source) was used to image deposited droplets in dark field mode. The images were acquired at a ×20 magnification.

Transmission Electron Microscopy: The TEM was performed with a FEI Philips Tecnai F-20 operated at 200 kV (Tungsten, LB6) with a line resolution of 0.10 and point resolution of 0.24 nm. Spherical aberration Cs (objective): 1.2 mm. The IPA/PVP-MoS\textsubscript{2} ink was diluted by a factor of 100 and drop cast on holey carbon film 400 mesh copper (Cu) grid (Agar scientific product code AGS147-4) and allowed to dry naturally overnight.

X-Ray Photoelectron Spectroscopy: K-Alpha+ surface analysis by Thermo scientific was used to obtain the XPS data of the MoS\textsubscript{2} films. The spectra were obtained under 8 × 10-7 mbar (ultra-vacuum) which employed micro-focused Al Kα X-ray source (1486 eV) and a 2D detector attached to a 180 double-focusing hemispherical analyzer. The data obtained were further analyzed using Avantage software by Thermo scientific.
Thermogravimetric Analysis: TGA measurements of the PVP were performed with a TA Instruments Q50 under nitrogen with a ramping temperature of 10 °C min⁻¹ from 25 up to 1000 °C.

Supporting Information
Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgements
T.C., A.A., and L.A. have contributed equally to this work. The authors acknowledge funding from EPSRC grants EP/P02534X/2, EP/RS1547/1, EP/1005106/1, Imperial College Collaboration Kick- Starter grant and Trinity College, Cambridge, the EU H2020 Graphene Flagship Core 3 Grant No. 881603, Ministry of Science and Technology of China (grants no. 2018YFE0100800, 2019YFE0124200) and the National Natural Science Foundation of China (grants no. 61874075), and a Technion-Guangdong Fellowship. The corresponding email for Tian Carey was corrected on July 5, 2021, after initial publication online.

Conflict of Interest
The authors declare no conflict of interest.

Data Availability Statement
The data supporting this paper are available at https://data.hpc.imperial.ac.uk/.

Keywords
2D materials, CMOS, molybdenum disulfide, printed electronics, printed logic

Received: February 3, 2021
Revised: April 9, 2021
Published online: May 13, 2021

[1] S. Voinigescu, High-Frequency Integrated Circuits, Cambridge University Press, Cambridge 2013.
[2] J. P. Ueyemura, CMOS Logic Circuit Design, Springer, Boston 2002.
[3] J. P. Ueyemura, Circuit Design for CMOS VLSI, Springer, Boston, MA 1992.
[4] R. J. Baker, CMOS: Circuit Design, Layout, and Simulation: Third Edition, 2011.
[5] X. Cao, C. Lau, Y. Liu, F. Wu, H. Gui, Q. Liu, Y. Ma, H. Wan, M. R. Amer, C. Zhou, ACS Nano 2016, 11, 9816.
[6] A. Nathan, A. Ahnood, M. T. Cole, S. Lee, Y. Suzuki, P. Hirata, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, A. Dyadyusha, S. Haque, P. Andrew, S. Hofmann, J. Moultrie, D. Chu, A. J. Flewitt, A. C. Ferrari, M. J. Kelly, J. Robertson, G. A. J. Amaranthu, W. I. Milne, Proc. IEEE 2012, 100, 1486.
[7] F. Torrisi, T. Carey, Nano Today 2018, 23, 73.
[8] C. Liu, H. Chen, S. Wang, Q. Liu, Y. G. Jiang, D. W. Zhang, M. Liu, P. Zhou, Nat. Nanotechnol. 2020, 15, 545.
[9] T. Shimoda, Y. Matsuki, M. Furusawa, T. Aoki, I. Yudasaka, H. Tanaka, H. Iwasawa, D. Wang, M. Miyasaka, Y. Takeuchi, Nature 2006, 440, 783.
[10] T. Carey, S. Cavovich, G. Divitini, J. Ren, A. Mansouri, J. M. Kim, C. Wang, C. Ducati, R. Sordan, F. Torrisi, Nat. Commun. 2017, 8, 1202.
[11] A. J. Cho, K. C. Park, J. Y. Kwon, Nanoscale Res. Lett. 2015, 10, 115.
[12] G. E. Moore, Proc. IEEE 1998, 86, 82.
[13] D. Akinwande, C. Huyugehebaert, C. H. Wang, M. I. Serna, S. Goossens, L. J. Li, H. S. P. Wong, F. H. L. Koppens, Nature 2019, 573, 507.
[14] M. Singh, H. M. Haverinen, P. Dhagat, G. E. Jabbour, Adv. Mater. 2010, 22, 673.
[15] H. Yan, Z. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dötz, M. Kastler, A. Facchetti, Nature 2009, 457, 679.
[16] H. Wang, P. Wei, Y. Li, J. Han, H. R. Lee, B. D. Naab, N. Liu, C. Wang, E. Adjibon, B. C. K. Teo, S. Morishita, Q. Li, Y. Gao, Y. Cui, Z. Bao, Proc. Natl. Acad. Sci. USA 2014, 111, 4776.
[17] B. Kim, S. Jang, M. L. Geier, P. L. Prabhunirishi, M. C. Hersam, A. Dodabalapur, Nano Lett. 2014, 14, 3683.
[18] T. Hodsden, K. J. Thorley, J. Panidi, A. Basu, A. V. Marsh, H. Dai, A. J. P. White, C. Wang, W. Mitchell, F. Glokloher, T. D. Anthopoulos, M. Heeney, Adv. Funct. Mater. 2020, 30, 2000325.
[19] A. F. Paterson, S. Singh, K. J. Fallon, T. Hodsden, Y. Han, B. C. Schroeder, H. Bronstein, M. Heeney, I. McCulloch, T. D. Anthopoulos, Adv. Mater. 2018, 30, 1801079.
[20] F. Torrisi, J. N. Coleman, Nat. Nanotechnol. 2019, 4, 738.
[21] F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T. S. Kulmala, G. W. Hsieh, S. Jung, F. Bonaccorso, P. J. Paul, D. Chu, A. C. Ferrari, ACS Nano 2012, 6, 2992.
[22] A. G. Kelly, T. Hallam, C. Backes, A. Harvey, A. S. Esmaeily, I. Godwin, J. Coelho, V. Nicolosi, J. Lauth, A. Kulkarni, S. Kinge, L. D. A. Siebbeles, G. S. Duesberg, J. N. Coleman, Science 2017, 356, 69.
[23] D. J. Finn, M. Lotya, G. Cunningham, R. J. Smith, D. McCloskey, J. F. Donegan, J. N. Coleman, J. Mater. Chem. C 2014, 2, 925.
[24] X. Wang, Y. Sun, K. Liu, 2D Mater. 2019, 6, 042001.
[25] J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvetsov, S. K. Arora, G. Stanton, H. Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Greaveson, K. Theuwissen, D. W. McComb, P. D. Nellist, V. Nicolosi, Science 2011, 331, 568.
[26] K. R. Paton, E. Varrla, C. Backes, R. J. Smith, U. Khan, A. O’Neill, C. Boland, M. Lotya, O. M. Istrate, P. King, T. Higgins, S. Barwich, P. May, P. Puczkarski, I. Ahmed, M. Moebius, H. Pettersson, E. Long, J. Coelho, S. E. O’Brien, E. K. McGuire, B. M. Sanchez, G. S. Duesberg, N. McEvoy, T. J. Pennycook, C. Downing, A. Crossley, V. Nicolosi, J. N. Coleman, Nat. Mater. 2014, 13, 624.
[27] D. Akinwande, Nat. Nanotechnol. 2017, 12, 287.
[28] Z. Lin, Y. Liu, U. Halim, M. Ding, Y. Liu, Y. Wang, C. Jia, P. Chen, X. Duan, C. Wang, F. Song, M. Li, C. Wan, Y. Huang, X. Duan, Nature 2018, 562, 254.
[29] J. E. Fromm, IBM J. Res. Dev. 1984, 28, 322.
[30] T. Carey, J. Jones, F. L. Moal, D. Deganello, F. Torrisi, ACS Appl. Mater. Interfaces 2018, 10, 19948.
[31] W. Zhang, J. Smith, S. E. Watkins, R. Gysel, M. McCahe, A. Salles, J. Kirkpatrick, S. Ashraf, T. Anthopoulos, M. Heeney, I. McCulloch, J. Am. Chem. Soc. 2010, 132, 11437.
[32] J. Li, M. M. Naimi, S. Vaziri, M. C. Lemme, M. Ostling, Adv. Funct. Mater. 2014, 24, 6524.
[33] C. R. Snyder, D. M. DeLongchamp, Curr. Opin. Solid State Mater. Sci. 2018, 22, 41.
[34] K. Kouropalis-Agalaou, A. Liscio, E. Treossi, L. Ortolani, V. Morandi, N. M. Pugno, V. Palermo, Nanoscale 2014, 6, 5926.
[35] K. D. Rasamani, F. Alimohammadi, Y. Sun, Mater. Today 2017, 20, 83.
[36] Z. Guo, W. Cui, X. Zheng, W. Liu, X. Tong, Q. Xu, *Surf. Interaces* 2018, 12, 41.

[37] Y. Li, Y. Rao, K. F. Mak, Y. You, S. Wang, C. R. Dean, T. F. Heinz, *Nano Lett.* 2013, 13, 3329.

[38] E. Guerriero, L. Polloni, M. Bianchi, A. Behnam, E. Carrion, L. G. Rizzi, E. Pop, R. Sordan, *ACS Nano* 2013, 7, 5588.

[39] M. Vilkman, A. Lankinen, N. Volk, P. Kostamo, O. Ikkala, *Polymer* 2010, 51, 4095.

[40] H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, D. Baillargeat, *Adv. Funct. Mater.* 2012, 22, 1385.

[41] C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, S. Ryu, *ACS Nano* 2010, 4, 2695.

[42] W. M. Parkin, A. Balan, L. Liang, P. M. Das, M. Lamparski, C. H. Naylor, J. A. Rodriguez-Manzo, A. T. C. Johnson, V. Meunier, M. Drndić, *ACS Nano* 2016, 10, 4134.

[43] Y. Wu, P. Jiang, M. Jiang, T. W. Wang, C. F. Guo, S. S. Xie, Z. L. Wang, *Nanotechnology* 2009, 20, 305602.

[44] J. F. Watts, J. Wolstenholme, *An Introduction to Surface Analysis by XPS and AES*, Wiley & Sons, Chichester 2003.

[45] S. Caporali, U. Bardi, A. Lavacchi, *J. Electron Spectrosc. Relat. Phenom.* 2006, 151, 4.

[46] S. Tardio, P. J. Cumpson, *Surf. Interface Anal.* 2018, 50, 5.

[47] G. Greczynski, L. Hultman, *J. Electron Spectrosc. Relat. Phenom.* 2006, 151, 4.

[48] E. Guerriero, P. Pedrinazzi, A. Mansouri, O. Habibpour, M. Winters, N. Rorsman, A. Behnam, E. A. Carrion, A. Pesquera, A. Centeno, A. Zurutuza, E. Pop, H. Zirath, R. Sordan, *Sci. Rep.* 2017, 7, 2419.

[49] M. Amani, D. H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S. R. Madhvapathy, R. Addou, K. C. Santosh, M. Dubey, K. Cho, R. M. Wallace, S. C. Lee, J. H. He, J. W. Ager, X. Zhang, E. Yablonovitch, A. Javey, *Science* 2015, 350, 1065.

[50] Y. Yuan, T. R. Lee, in *Surface Science Techniques*. Springer Series in Surface Sciences (Eds: G. Bracco, B. Holst), Vol. 51, Springer, Berlin, Heidelberg 2013.