Review Article

Exploring Antimalarial Herbal Plants across Communities in Uganda Based on Electronic Data

Denis Okello and Youngmin Kang

1 Korean Convergence Medicine Major, University of Science and Technology (UST), Daejeon, Republic of Korea
2 Gombe Secondary School, P. O. Box 192, Butambala, Mpigi, Uganda
3 Herbal Medicine Research Division, Korea Institute of Oriental Medicine (KIOm), Yuseongdae-ro, Yuseong-gu, Daejeon 34054, Republic of Korea

Correspondence should be addressed to Youngmin Kang; ymkang@kiom.re.kr

Received 5 June 2019; Accepted 14 August 2019; Published 15 September 2019

Guest Editor: Vivitri D. Prasasty

Malaria is one of the most rampant diseases today not only in Uganda but also throughout Africa. Hence, it needs very close attention as it can be severe, causing many deaths, especially due to the rising prevalence of pathogenic resistance to current antimalarial drugs. The majority of the Ugandan population relies on traditional herbal medicines for various health issues. Thus, herein, we review various plant resources used to treat malaria across communities in Uganda so as to provide comprehensive and valuable ethnobotanical data about these plants. Approximately 182 plant species from 63 different plant families are used for malaria treatment across several communities in Uganda, of which 112 plant species have been investigated for antimalarial activities and 96% of the plant species showing positive results. Some plants showed very strong antimalarial activities and could be investigated further for the identification and validation of potentially therapeutic antimalarial compounds. There is no record of an investigation of antimalarial activity for approximately 39% of the plant species used for malaria treatment, yet these plants could be potential sources for potent antimalarial remedies. Thus, the review provides guidance for areas of further research on potential plant resources that could be sources of compounds with therapeutic properties for the treatment of malaria. Some of the plants were investigated for antimalarial activities, and their efficacy, toxicity, and safety aspects still need to be studied.

1. Introduction

Malaria, a dangerous and life-threatening disease caused by Plasmodium parasites is spread to humans through bites of infected female Anopheles mosquitoes [1]. It is one of the most widespread diseases today not only in Uganda but also throughout Africa. Hence, careful monitoring of malaria is required as the disease can be severe and can cause many deaths, especially due to the increasing prevalence of resistance to current antimalarial drugs. Among the five parasitic species that cause malaria to humans, Plasmodium falciparum and Plasmodium vivax are the deadliest [2, 3]. P. falciparum and P. vivax being the most prevalent malaria parasites in sub-Saharan Africa and regions of the Americas, respectively, were responsible for about 99.7% and 74.1% of malaria cases in 2017 [4]. In Southeast Asia, Plasmodium knowlesi is the most common cause of malaria, accounting for up to 70% of malaria cases, although it has been known to infect Old-World monkeys more [5]. Two other species of Plasmodium, Plasmodium malariae and Plasmodium ovale, generally cause mild fevers. Approximately 216 million malaria cases were registered in 2016, with a death toll of up to 445,000 [1]. According to the World Health Organization [6], the incidence of malaria in Uganda, at 47.8%, was the highest worldwide in 2005. According to Njoroge and Bussman [7], malaria is responsible for one to two million deaths annually in Africa. Typical symptoms of malaria include high fever, fatigue, headache, muscle ache, nausea, abdominal discomfort, and profuse sweating. However, in extreme cases and cases of prolonged illness without
treatment, brain tissue injury, pulmonary edema, kidney failure, severe anemia, yellow discoloration of the skin, and low blood sugar may be noted (Figure 1) [1, 2]. In Uganda, malaria is one of the major causes of illness and death [7]. Statistically, it accounts for 46% of children’s sicknesses, almost 40% of outpatient visits to hospitals and clinics, 25% of hospital admissions, 14% of inpatient deaths, and approximately 23% of infant mortalities [7].

In different parts of the world, the use of herbs and herbal extracts in the management and treatment of malaria is very common since herbs are cheap and readily available besides being effective. In fact, the use of herbal medicine for treatment worldwide is on the rise. Over 80% of the Ugandan population relies directly on herbal plants for their health care primarily [8]. A great majority of the population uses traditional herbal medicines because of their confirmed therapeutic value [8]. The increase in preference for herbal remedies coupled with resistance exhibited by pathogenic strains, including *Plasmodium* species, to the modern drugs available is the driving force behind researchers’ interest in herbal plants for possible alternatives for more effective antimalarial drugs [9, 10].

This review was aimed at providing comprehensive ethnobotanical information about various plant resources with antimalarial properties that are primarily used to manage and treat malaria across communities in Uganda, based on which further evaluation of these plants such as those of their efficacy and safety for the treatment of malaria may be based.

2. Methods and Materials

In the review, the data search processes employed by Komakech et al. [11] were modified to gather information on herbal plants for malaria treatment in Uganda from peer-reviewed articles in English published in scientific journals and other verifiable databases, with a focus on plant species and families, plant parts used, antimalarial activities of the extracts from herbal plants, and mechanisms of action of novel antimalarial phytochemicals and derivatives. Electronic literature databases such as PubMed, Medline, Scopus, SciFinder, Google Scholar, and Science Direct were carefully searched for suitable information. The following words were used as key search terms: (“Herbal medicine in Uganda” OR “Herbs in Uganda” OR “Traditional remedies in Uganda” OR “Antimalarial herbs in Uganda” OR “Antimalarial plants in Uganda” OR “Ugandan herbs” OR “Ugandan ethnomedicine” OR “Ugandan phytomedicine”), AND (“antiplasmodial activities” OR “anti-malarial activities” OR “anti-plasmodial effects” OR “anti-malarial effects” OR “malaria treatment” OR “malaria management”) OR (“Malaria in Uganda” AND “prevalence” OR “occurrence” OR “distribution” OR “herbal treatment” OR “herbal remedies” OR “phyto-medicine” OR “phyto remedy” OR “plant parts used for treatment”) OR (Phytochemicals for malaria treatment OR Artemisinins OR Quinine OR Noble anti-malarial compounds OR Plant derived anti-malarial compounds AND mechanisms of action OR modes of action) OR (“Malaria herbal medicine in Uganda” OR “Herbal medicine in Uganda” OR “Herbal malaria remedy in Uganda” OR “Natural malaria medicine in Uganda” OR “Traditional malaria herbal medicine” OR “Malaria herbal recipe” AND “dosage” OR “dose” OR “dose given” OR “mode of administration” OR “means of traditional extraction” OR “traditional extraction” OR “Toxicity” OR “Safety and toxicity” OR “Policy framework” OR “other ethno-pharmacological uses” OR “other ethno-pharmacological utilizations” OR “other ethno-medicinal uses”). The information gathered was verified separately for its reliability; any discrepancies discovered were resolved by discussions between the authors. Thereafter, these data were summarized and analyzed, and comparisons were made to draw conclusions.

3. Prevalence of Malaria

Malaria in Uganda is highly endemic because the climate is favorable for its consistently stable and year-round transmission in about 99% of the country, with the country’s entire population being at risk for contraction [12]. The most vulnerable groups of people at great risk for malaria are expectant mothers and young children under the age of 5 years [12]. The malarial parasite, *P. falciparum*, is most commonly the cause of malaria throughout Uganda, accounting for over 90% of malaria cases. However, Betson et al. [13] have warned of the potential for the emergence of infections due to *P. malariae* and *P. ovale* spp. as well, since there is much focus on countering *P. falciparum* infections. In 2016, Larocca et al. [14] indicated that Uganda was one of the leading countries in the world with malaria incidence rate as high as 478 cases per 1,000 population per year. Specifically, overall registered death cases caused by malaria in children were between 70,000 and 100,000 annually in Uganda [14]. Tremendous effort has been made to control malaria in Uganda by the government-headed Uganda Malaria Reduction Strategic Plan and Mass Action Against Malaria. These efforts have greatly reduced the malaria burden and incidence from 272 cases per 1000 population in 2016/17 to 191 cases per 1000 population in 2017/18 [12]. Although there has been a general reduction in the incidence of malaria, studies indicate that malaria prevalence along lakes, for example, Lake Victoria, and in remote areas of the country (villages) as well as areas closer to forests are much higher, with over 450 malaria cases per 1000 population (Figure 2) [12, 13, 15]. Communities around lakeshores in Uganda have always had high prevalence of malaria among children and especially the young ones despite routine treatments [12, 16]. Through the government initiative to control malaria, the prevalence in some districts remained as low as 4.3% in 2018 [12]. Malaria control strategies including indoor residual spraying along with house to house distribution of mosquito nets treated with insecticides resulted in a remarkable reduction in malaria burdens in many parts of the country [17]. Raouf et al. [18] observed that significant reductions in the levels of malaria in Uganda cannot be sustained if the current control measures are terminated.
4. Mechanisms of Actions of Novel Phytochemicals in Malaria Treatment

Herbal plants are extremely rich in phytochemicals that are highly efficacious in the treatment of malaria, such as sesquiterpenes and sesquiterpene lactones, fluoroquinolones, chalcones, flavanones, phenolics, quinones, coumarins, and alkaloids (Table 1) [35,36]. The herbal plants that are used as prophylactic measures to prevent malaria as well contain some of these compounds (Table 2). From these groups of compounds, active metabolites including quinine and artemisinin have been derived and the most successful antimalarial drugs to date have been obtained. Artemisinins from *Artemisia annua* a plant belonging to the family Asteraceae have actually been an integral part of the fight against malaria, with artemisinin-based combination therapy contributing enormously to modern day treatments [36]. They have been effective against all strains of *P. falciparum* including multi-drug-resistant ones [36,37].

The mechanism of action of artemisinin is widely debated but the most accepted theory is that of activation of the molecule by heme, which enables it to produce free radicals that then destroy the proteins needed for parasite survival [36]. The presence of an uncommon chemical peroxide linkage bridge in artemisinin, a sesquiterpene lactone, is the most probable reason for its antimalarial effects. Cleavage of the peroxide linkage bridge in the presence of iron (II) ions (from heme) forms very reactive free radicals that undergo rapid rearrangement to form more stable carbon-centered radicals, which chemically modify the parasite and inhibit various processes within the parasite molecules, resulting in its death [36]. Artemisinin acts on primarily the trophozoite parasitic phase and prevents disease progression. It kills circulating ring-stage parasites, thus increasing the therapeutic response [37]. Mok et al. [38] suggested that artemisinin is linked to the upregulation of unfolded protein response pathways, which leads to decreased parasitic growth and development. Shandilya et al. [39] suggested that artemisinin is activated by iron, which then functionally inhibits PfATP6, a calcium pump, by terminating phosphorylation, nucleotide binding, and actuator domains, eventually leading to a functional loss of PfATP6 of the *Plasmodium* parasite and its death. A study by Mbengue et al. [40] indicated that artemisinin strongly inhibits phosphoinositide-3-kinase (PfPI3K), an enzyme important in cellular activities including growth, multiplication, differentiation, and survival in *P. falciparum*.

Cinchona tree bark, from which quinine was isolated, has been used to treat malaria since 1632 [41]. The World Health Organization listed quinine as one of the important medicines needed in a health system [42]. It is however only used to treat malaria caused by chloroquine-resistant strain of *P. falciparum* in the absence of artemisinins [43]. A popular hypothesis about the mechanism of action of quinine is based on chloroquine, another quinoline drug which is closely linked to quinine and has been comprehensively
Quinine inhibits the pathway of biocrystallization of hemozoin, resulting in the accumulation of the free cytotoxic heme which eventually kills the parasite [44].

Most of the plants used in the treatment of malaria in Uganda contain alkaloids greatly implicated in antiplasmodial activity (Table 3). A number of alkaloids target apicoplast, an organelle in the *Plasmodium* parasite, while others such as benzylisoquinoline alkaloids in *Cissampelos mucronata*, a plant belonging to the family Menispermaceae inhibits protein synthesis in the parasite [99].

Flavonoids in a vast number of plants used for malaria treatment in Uganda are common to plants in the family Asteraceae such as *B. longipes*, *A. conyzoides*, and *A. africana* although other herbal plants from different families including *C. roseus* in Apocynaceae and *A. zygia* and *A. nilotica* in Mimosaceae also have them as active antiplasmodial constituents (Table 3). Flavonoids exhibit great antiplasmodial activity against different strains of the malaria parasite although the mechanism of antimalarial action is not clear [99]. Some studies suggest that flavonoids impede the influx of myoinositol and L-glutamine in erythrocytes that are infected [99]. Some flavonoids increase the level of oxidation of erythrocytes and inhibit protein synthesis in malaria parasites [99]. Furthermore, flavonoids are believed to inhibit fatty acid biosynthesis (FAS II) in *Plasmodium* [102].

Artemisinin resistance in *P. falciparum* has been reported in Vietnam, Cambodia, Muang Lao, and Thailand. A report published in 2018 showed over 30 separate cases in Southeast Asia of artemisinin resistance [36]. In case of resistance, parasitic clearance is slowed down and gametocytemia increases, resulting in greater selective pressure on other partner drugs to which resistance increases, thereby posing a great health threat. Thus, it is very important that the discovery of other drugs with novel mechanisms of action be prioritized by extensive exploration of the huge medicinal plant resources in Africa, which have been used by locals for effective malaria treatment yet have never been scientifically investigated for their antimalarial potential.

Amoa Onguéné et al. [35] emphasized that it was indeed Africa’s turn to offer a new antimalarial drug to humanity since artemisinin was discovered in Asia and quinine in Latin America.
Plant family	Scientific name	Local name	Part used	Growth form	Mode of preparation	Dose and mode of administration for malaria	Status of antimalarial/antiplasmodial activity investigation	Other ailments treated	Reference(s)
Acanthaceae	Justicia betonica L.	Nalongo/quinine	Leaves/whole plant	Herb	Decoction	About 120ml every 8 hours for a week	Investigated	Diabetes, yellow fever, diarrhea	[10, 19]
	Justicia amelliana (Nees) T. Anderson	Kwinini omuganda	Leaves/beig	Herb	Decoction	Orally taken, dose not specified	No record		
	Monocha subassassie C. B. Clarke	Erazzi	Leaves	Herb	Decoction	Orally taken, dose not specified	No record	Abdominal pain	[19]
	Thunbergia alata Sim	Kasamunsi/meddle budo	Leaves/whole plant	Climber	Decoction	About 120ml every 8 hours for a week	No record	False teeth	[8, 10]
Alliaceae	Allium cepa L.	Katungulu	Bulb	Herb	No record				
Aloeaceae	Aloe dawei (wild/cultivated)	Kigagi	Leaves	Herb	Decoction	A glassful once a day for 7 days	Investigated		
	Aloe kedongensis (wild)	Kigagi	Leaves	Herb	Decoction	Orally taken, dose not specified	No record		
	Aloe volkensii (cultivated)	Kigagi	Leaves	Herb	Decoction	Orally taken, dose not specified	No record		
	Aloe ferox Mill	Kigagi	Leaves	Herb	Decoction	Orally taken, dose not specified	Investigated		
	Aloe lateritica (wild)	Kigagi	Leaves/root	Herb	Decoction	Half glass every 24 hours for 7 days	No record		[19]
Amaranthaceae	Amananthus hybridus L.	Bbwaga	Leaves	Herb	Decoction	About 120ml every 8 hours for a week	Investigated	False teeth	[8, 19]
Anacardiaceae	Mangifera indica L.	Muyembe gwakona	Leaves/bark	Tree	Decoction	4 and 3 teaspoons after every 8 hours for adults and children, respectively, for a week	Investigated	Diarrhea, dysentery, body pain, venereal diseases, cough, syphilis	[10, 23]
	Rhus natalensis Brenh. Ex Krauss	Omenoshite	Leaves	Shrub	Decoction	Orally taken, dose not specified	Investigated		
	Rhus vincana Meidler	Kalosobwosobwa/tebadda	Leaves	Shrub	Decoction	Half a glass every 8 hours for 7 days	No record	Skin rash, erectile dysfunction	[10]
Apioaceae	Cenella asatica (L) Urb.	Kabo Kabakya/mbutumku	Leaves/whole plant	Herb	Decoction	3 teaspoons thrice a day for 4 days	Investigated		
	Santania brevis De Wild.	Mubajjagabke	Bark	Tree	Decoction	Orally taken, dose not specified	No record		
	Carissa edulis (Forssk.) Vahl	Muyunza, ekamuriei	Roots	Herb	Decoction	Orally taken, dose not specified	Investigated	Epilepsy, fever, cough, syphilis, measles, dysentery	[21, 23]
	Carissa spinarum Lodd. ex A. DC.	Omugulua	Roots	Herb	Decoction	About 120ml every 8 hours for a week	Investigated		
	Catharanthus roseus G. Don	Sikaigya	Leaves	Herb	Decoction	About 120ml once a day for a week	No record		
Araceae	Calatius ssp. Engl.	Ntangawuzi	Roots	Herb	Decoction	About 120ml once a day for a week	No record		
Aristolochiaceae	Aristolochia elegans Mast.	Musu wa kila/ kakareso	Seeds/sap	Vine	Steeped in water and drunk	A glassful once a day	Investigated	Abdominal pain, East coast fever	[8, 19]
	Aristolochia tomentosa Sims.	Kanikuku	Stem	Climber	Infusion	Oral, dose not specified	No record	Wounds, skin diseases, snake bites	[23]
Asclepiadaceae	Gomphocarpus physocarpus E. Mey.	Kalambo	Leaves	Herb	Decoction	Half a glass daily for a week	No record		[10]
Asphodelaceae	Aloe vera (L.) Burm. f.	Kigagi/alovera	Leaves	Herb	Decoction	1 teaspoon and 1 tablespoon 3 times a day for children and adults, respectively, for a week	Investigated	Stomach ache	[8, 25]
Plant family	Scientific name	Local name	Part used	Growth form	Mode of preparation	Dose and mode of administration for malaria	Status of antimalarial/antiplasmodial activity investigation	Other ailments treated	Reference(s)
--------------	-----------------	------------	-----------	-------------	---------------------	---	---	------------------------	-------------
Asteraceae									
	Ageratum conyzoides L.	Namirembe	Whole plant/leaves	Herb	Decoction	A glassful thrice a day for 7 days	Investigated	Worms, weakness in pregnancy	[8, 10]
	Artemisia annua L.	Sweet anne	Leaves	Herb	Decoction	Oral, dose not specified	Investigated	Fever	[19]
	Artemisia afra Jacq. ex Willd	Pasile	Leaves	Herb	Infusion	Oral, dose not specified	Investigated	Fever	[10]
	Aspilia africana (Pers.) C. D. Adams	Maakayi, ekarwe	Whole plant/leaves/roots	Herb	Decoction	8 teaspoons 3 times a day for week	Investigated	Abdominal aches, measles, diarrhea, wounds, induction of appetite	[10, 19]
	Baccharis raddoniensis (Sch. Bip. ex Walp.) H. Rob.	Okellokello	Leaves	Shrub	Decoction	Half a glass thrice a day for week	Investigated	Flu, skin rash, ear infections	[25, 26]
	Bidens grantii Sherff	Ebongwa	Leaves, flower	Herb	Decoction	Oral, dose not specified	No record	Pregnancy disorders, prehepatic jaundice	[19]
	Bidens pilosa L.	Sere/labika	Whole plant/leaves	Herb	Decoction	About 120 ml once a day for a week	No record	Headache	[10]
	Conyza bonariensis (L.) Ndasha	Ekstromana	Leaves	Herb	Decoction	Oral, dose not specified	No record	Headache	[10]
	Conyza floribunda H. B. K. Walker	Makalume	Leaves	Herb	Decoction	About 120 ml once a day for a week	No record	Headache	[10]
	Conyza sumatrensis (Retz.) E. H. Walker	Kati kati	Leaves	Herb	Decoction	Oral, dose not specified	No record	Headache	[10]
	Crasepappus vitellinum Kitonto	Kafugankande	Whole plant/leaves/roots	Herb	Decoction	2 teaspoons thrice a day for 7 days	Investigated	Cough, abdominal disorders, chest pain	[10, 19, 28]
	Emilia javanica (Burm. F.) C. B. Rob.	Nakate	Whole plant	Herb	Decoction	Half a glass once a day for a week	No record	Cough, abdominal disorders, chest pain	[10]
	Guzotia saxosa Chaov	Ekstromana	Leaves	Herb	Decoction	Oral, dose not specified	Investigated	Stomach ache, HIV/AIDS opportunistic infections	[19]
	Gynura scandens O. Hoffm.	Ekiyogayama	Leaves	Herb	Decoction	Oral, dose not specified	No record	Febrile convulsions	[19]
	Miconia scandens (Schumach. & Thonn.) Roberty	Maakayi	Leaves	Herb	Decoction	Oral, dose not specified	No record	Stomach ache, body odour, yellow fever	[8]
	Neomarica pyrifolia (Lam.) O. Ktze	Kafugankande	Whole plant/leaves/roots	Herb	Decoction	Half a glass thrice a day for a week	Investigated	Cough, abdominal disorders, chest pain	[10, 19, 28]
	Schkuhria pinnata (Lam.)	Apunait	Leaves	Herb	Infusion	1 teaspoon and 1 tablespoon 3 times a day for children and adults, respectively, for a week	Investigated	Wounds, skin diseases, diabetes, ear infections, wounds	[23, 25]
	Sigebeckia orientalis L.	Kyariabo	Roots	Herb	Decoction	Oral, dose not specified	Investigated	Wounds, stomach ache	[19]
	Solanaceae	Omasunamwe	Leaves	Herb	Decoction	Oral, dose not specified	Investigated	Fever, indigestion	[19]
	Tygges minuta L.	Kinsigha	Whole plant/leaves	Herb	Decoction	Half a glass thrice a day for a week	Investigated	Stomach ache, scars, anemia, diabetes	[8, 19]
	Tithonia diversifolia A. Gray	Kyansiga	Leaves	Herb	Decoction	Half a glass thrice a day for a week	Investigated	Flu, headache, convulsions	[10]
	Vernonia adonis Sch. Bip. ex Walp.	Nyakumama	Leaves/flowers	Herb	Decoction	Oral, dose not specified	Investigated	Diabetes, abdominal pain	[10, 19, 25]
	Vernonia amygdalina Delile	Muluhaka/ibwori	Whole plant/roots	Shrub	Decoction	Half a glass 2 times a day for 5 days	Investigated	Diarrhea, dizziness	[19]
	Vernonia cinerea (L.) Less.	Kayayana	Bark	Tree	Decoction	Half a glass thrice a day for a week	Investigated	Diarrhea, dizziness	[19]
	Vernonia lasiopus O. Hoffm.	Kafugankande	Roots/leaves	Shrub	Fresh leaf extract/root decoction	2 teaspoons thrice a day for 7 days	Investigated	Headache, stomach ache, burns, blisters	[8, 10, 19, 20]
	Markhamia lutea (Benth.) K. Schum.	Musambwa/munanganda	Roots	Tree	Decoction	A glassful once a day for 7 days	Investigated	Cough, headache, convulsions	[8, 10, 19]
	Spathodea campanulata Buch.-Harm. ex DC.	Kifabakazi	Bark	Tree	Decoction	Half a glass 3 times a day for 5 days	Investigated	Increased vaginal fluid, skin infection, infertility, herna	[8, 10]
Plant family	Scientific name	Local name	Part used	Growth form	Mode of preparation	Dose and mode of administration for malaria	Status of antimalarial/antiplasmodial activity investigation	Other ailments treated	Reference(s)
----------------------	--	-------------------	-----------------	-------------	--------------------	---	---	--	--------------
Caesalpinaceae	Cassia didymobotrya Fres.	Mukyula	Leaves	Shrub	Decoction	About 120 ml every 8 hours for a week	Investigated	Labour induction, hypertension, retained placenta	[10]
Caesalpinaceae	Chamaecrista nigricans Greene	Epoduru lo didi	Leaves	Herb	Infusion	Oral, dose not specified	No record	Labour induction, hypertension	[23]
Caesalpinaceae	Erythrophleum pyrifolia	Omurama	Leaves/roots	Herb	Infusion	Oral, dose not specified	Investigated	Labour induction	[24]
Caesalpinaceae	Senecio spectabilis (DC.) H. Irwin & Barneby	Gacinya	Leaves	Tree	Decoction	Half a glass twice a day for 5 days	Investigated	Labour induction	[10]
Gaesaliaceae	Cassia hirsuta	Kasagakansansi	Roots	Herb	Infusion	Oral, dose not specified	Investigated	Labour induction, hypertension	[10]
Canelliaceae	Warbugia ugandensis Sprague	Omukunanume	Bark/leaves	Tree	Decoction/powder	Half a glass once a day for a week	Investigated	Toothache, flu, skin diseases, asthma, stomach ache, body and	[10, 20, 27]
Ceratopogonaceae	Ceratopogononella	Kasagalansansi	Roots	Tree	Decoction	Half a glass once a day for 3 days	Investigated	Toothache, skin diseases, chest pain, wound, fever, Headache,	[23]
Combretaceae	Combretum molle G. Don	Ndagii	Bark	Tree	Decoction	Half a glass once a day for 3 days	Investigated	Toothache, skin diseases, chest pain, wound, fever, Headache,	[23]
Combretaceae	Combretum molle G. Don	Kisisasana	Leaves	Herb	Decoction	Half a glass once a day for 7 days	Investigated	Toothache, skin diseases, chest pain, wound, fever, Headache,	[21]
Cucurbitaceae	Cucurbita maxima Lam.	Kasuunsu	Leaves	Herb	Decoction	Oral, dose not specified	Investigated	Toothache, skin diseases, chest pain, wound, fever, Headache,	[21]
Cucurbitaceae	Cucurbita maxima Lam.	Kasuunsu	Leaves	Herb	Decoction	Oral, dose not specified	Investigated	Toothache, skin diseases, chest pain, wound, fever, Headache,	[21]
Dendrocalceae	Dendrocalceae hirsuta Eng.	Kajyenyoyou	Leaves	Herb	Decoction	Half a glass thrice a day for a week	Investigated	Toothache, skin diseases, chest pain, wound, fever, Headache,	[21]
Ebenaceae	Eucalyptus laticeae Staff	Emusi	Roots	Shrub	Decoction	Oral, dose not specified	Investigated	Toothache, skin diseases, chest pain, wound, fever, Headache,	[21]
Ebenaceae	Alchornea cordifolia (Shumach.) Malv. Arg.	Lunabuba	Leaves	Herb	Decoction	Half a glass once a day for 7 days	Investigated	Toothache, skin diseases, chest pain, wound, fever, Headache,	[23]
Ebenaceae	Bridelia micrantha Bail.	Kataramiti	Bark	Tree	Decoction	Half a glass thrice a day for a week	Investigated	Toothache, skin diseases, chest pain, wound, fever, Headache,	[19]
Ebenaceae	Chatala abyssinica Lodd. & Spach	Omubarama	Leaves	Herb	Decoction	Oral, dose not specified	Investigated	Toothache, skin diseases, chest pain, wound, fever, Headache,	[23]
Ebenaceae	Oribone macrostachyus Ovile.	Olkota	Roots/bark	Tree	Decoction	Oral, dose not specified	Investigated	Toothache, skin diseases, chest pain, wound, fever, Headache,	[23]
Ebenaceae	Plaguea strobilis (Robb. ExWillds.) Vogt	Lukandwa/muktundla	Leaves	Shrub	Decoction	Half a glass 3 times a day for a week	Investigated	Toothache, skin diseases, chest pain, wound, fever, Headache,	[8, 10, 21, 23]
Euphorbiaceae	Isotropa curcas L.	Kirowa	Leaves	Shrub	Decoction	Oral, dose not specified	Investigated	Toothache, weakness in pregnancy	[21]
Euphorbiaceae	Macaranga schweinfurthii Pax	Kyegama	Bark	Tree	Decoction	Half a glass 3 times a day for 5 days	No record	Toothache, weakness in pregnancy	[10]
Euphorbiaceae	Phyllanthus pseudoruijirui Malv. Arg.	Nakitembe	Leaves	Shrub	Decoction	Half a glass 3 times a day for a 7 days	Investigated	Toothache, weakness in pregnancy	[10]
Euphorbiaceae	Shiraquisupus dillipus (Hochst.) H.-J. Esser	Musasa	Bark	Tree	Decoction	Oral, dose not specified	No record	Toothache, weakness in pregnancy	[20]
Euphorbiaceae	Tetrochordum dalymostenon (Ball.) Pax & K. Hoffm.	Ekiziranfu	Bark	Decoction	Used as enema	No record	Jaundice, measles, gastrointestinal disorders, enema	[8, 19]	
Table 1: Continued.

Plant family	Scientific name	Local name	Part used	Growth form	Mode of preparation	Dose and mode of administration for malaria	Status of antimalarial/antiplasmodial activity investigation	Other ailments treated	Reference(s)
Fabaceae	*Arachis hypogea* (NC)	Ebunya bwa	Leaves	Shrub	Fresh extract	Oral, dose not specified	No record	Diarrhea, body pain	[19]
	Cajanus cajan (L.) Drax	Entonga nga	Leaves	Shrub	Fresh extract	Oral, dose not specified	No record	High blood pressure	[10]
	Crotalaria agatiflora Schweinf.	Kijje bebe	Whole shoot	Shrub	Fresh extract	1 teaspoon and 1 tablespoon 3 times a day	No record	Stomach ache	[28]
	Crotalaria ochroochra G. Don	Aleyo	Leaves	Herb	Fresh extract	3 times a day for children and adults, respectively, for a week	No record	Oral wounds, body weakness, wounds, skin infections	[8, 20, 26]
	Entada abyssinica Steud. ex A. Rich	Mswolola	Leaves	Tree	Decoction	4 and 3 teaspoons after every 8 hours for adults and children, respectively, for a week	Investigated	Fever, leprosy, burns, tuberculosis, toothache, syphilis	[10, 23]
								Wounds, candida	[10]
								Abdominal pain	[19]
								Oral wounds, body weakness, wounds, skin infections	[8, 20, 26]
								Fever	[19]
								Impotence, dizziness	[19]
								Fever	[19, 20, 25, 29]
								Labour induction	[19]
								Prolonged embryo in uterus	[8]
								Change of sex of child	[8, 19, 20, 29]
								Abdominal pain	[19]
								Yellow fever	[8, 10]
								Yellow fever	[20, 29]

Note: Mode of preparation includes oral, decoction, and infusion. Status of antimalarial/antiplasmodial activity investigation indicates whether the activity has been investigated or not. Other ailments treated include a variety of health issues, and references are provided for further reading.
Plant family	Scientific name	Local name	Part used	Growth form	Mode of preparation	Dose and mode of administration for malaria	Status of antimalarial/antiplasmodial activity investigation	Other ailments treated	Reference(s)
Lamiaceae	Aeolanthus repens Oliv.	Ntulagi	Leaves	Herb	Decoction	Half a glass 3 times a day for 3 days	No record	[10]	
	Ajuga remotia Benth.	Kaimwa	Leaves	Herb	Decoction	Half a glass once a day for a week	Investigated	Stomach ache	[10]
	Clerodendrum myricoides R. Br.	Kikonge	Leaves	Shrub	Decoction	Half a glass daily for a week	Investigated	Syphilis, intestinal problems, induction of a labour	[10, 28]
	Clerodendrum rotundifolium Oliv.	Kinsemeko	Roots/leaves	Shrub	Fresh leaf extract/root decoction	Half a glass daily for 5 days	Investigated	Diabetes	[10]
	Hoslundia opposita Vahl.	Kamunye	Leaves	Herb	Decoction	Half a glass 3 times a day for a week; bath	Investigated	Ulcers	[8, 10, 25]
	Leonotis nepetifolia Schimp. exBenth	Kifumufumu	Whole plant	Herb	Decoction	A glassful thrice a day for 3 days	Investigated	Stomach ache	[10, 21]
	Ocimum basilicum	Emoprim	Leaves	Herb	Infusion	Half a glass 3 times a day for a week	Investigated	Fever, eye cataract	[23, 27]
	Ocimum gratissimum Willd.	Muyaga	Leaves	Herb	Decoction	Half a glass 3 times a day for 5 days	Investigated	Syphilis, intestinal problems, induction of a labour	[10, 28]
	Ocimum lamiifolium Hochst.	Omungya	Leaves	Herb	Decoction	Half a glass 3 times a day for a week	Investigated	Diabetes	[10]
	Plectranthus barbatus	Bwirir omutano	Whole plant/leaves, roots/stem	Herb	Infusion	Oral, dose not specified	Investigated	Stomach ache, intestinal problems, induction of a labour	[10, 28]
	Plectranthus caninus Roth	Kwakwakula	Leaves	Herb	Decoction	4 and 2 teaspoons thrice a day for adults and children, respectively, for a week	No record	Fungal and bacterial infection, high blood pressure, intestinal worms and parasites	[23]
	Plectranthus cf. forskohlii Ekizera	Rosemary	Leaves	Herb	Decoction	Half a glass twice a day for 5 days	Investigated	Chest pain	[10]
	Tetradenia riparia (Hochst.) Codd	Kyewamala	Leaves	Herb	Decoction	One teaspoon twice a day for a week	Investigated	Other ailments treated	[10]
Lauraceae	Persea americana Mill.	Ovakedo	Leaves	Tree	Decoction	About 120 ml once a day for 7 days	Investigated	Other ailments treated	[10]
Loranthaceae	Tapinanthus constrictiflorus (Engl.) Danser	Entrugate	Leaves	Herb	Decoction	A glass daily for 7 days	No record	Other ailments treated	[10]
Malvaceae	Hibiscus sabdariffa L.	Nantyuko	Leaves	Shrub	Decoction	Half a glass thrice a day for 7 days	No record	Other ailments treated	[10]
	Azadirachta indica A. Juss.	Neem	Leaves	Tree	Decoction	About 120 ml once a day for 7 days	Investigated	Other ailments treated	[10]
Meliaceae	Carapa grandiflora Sprague	Omukutee	Leaves/bark	Tree	Decoction	Half a glass twice a day for 5 days	No record	Other ailments treated	[10]
	Melia azedarach	Elina	Leaves	Tree	Decoction	Oral, dose not specified	Investigated	Other ailments treated	[10]
Menispermaceae	Cissampelos macrotanta A. Rich.	Kawawa	Leaves/whole plant	Herb	Decoction	Half a glass twice a day for 5 days	Investigated	Other ailments treated	[10]
	Acacia hockii De wildl	Eksim	Roots	Tree	Decoction	Oral, dose not specified	No record	Other ailments treated	[23, 30]
	Acacia nilotica	Kivumbi	Leaves	Herb	Decoction	Oral, dose not specified	No record	Other ailments treated	[23]
	Albizia coriaria Wal.	Luguru	Bark	Tree	Decoction	Half a glass once a day for a week	Investigated	Other ailments treated	[10]
Mimosaceae	Albizia grandibracteata Taube	Nongo	Bark	Tree	Decoction	Half a glass once a day for a week	Investigated	Other ailments treated	[8, 10, 32]
	Albizia zygia (DC.) Madar.	Mafingo	Bark	Tree	Decoction	Half a glass once a day for a week	Investigated	Other ailments treated	[21]
	Newtonia Buchananii (Baker) Gilb. & Per.	Mpesere	Bark	Tree	Dried, powdered, added to boiling water	Half a glass once a day for a week	No record	Other ailments treated	[10]
Moraceae	Ficus natalensis Hochst.	Kirundi	Bark	Tree	Decoction	Half a glass once a day for a week	Investigated	Other ailments treated	[8, 10]
	Ficus saururus DC.	Muvno	Bark	Tree	Decoction	Half a glass once a day for a week	Investigated	Other ailments treated	[8, 33]
	Ficus按规定	Mivule	Bark	Tree	Decoction	Half a glass once a day for a week	Investigated	Other ailments treated	[8, 10]
Table 1: Continued.

Plant family	Scientific name	Local name	Part used	Growth form	Mode of preparation	Dose and mode of administration for malaria	Status of antimalarial/antiplasmodial activity investigation	Other ailments treated	Reference(s)
Moringaceae	*Moringa oleifera* Lam.	Moringa	Leaves/roots	Tree	Decoction/chewed raw	A glassful thrice a day for 7 days; a handful of fresh leaves chewed 3 times for 4 days	Investigated	Joint pains	[21, 25]
Musaceae	*Musa paradisiaca* (NG)	Kahalagala	Leaves	Herb	Decoction	Oral, dose not specified	Investigated	Jaundice, prolonged embryo in uterus	[19]
Myrtaceae	*Myrtus communis* L.	Omujujeje	Leaves	Tree	Decoction	Oral, dose not specified	Investigated	Vomiting, diarrhoea	[19]
Myristicaceae	*Pauromaceae*	Lumaba	Leaves	Tree	Decoction	Half a glass a day	No record		[10]
Myristicaceae	*Musa lantana* Forsk.	Kivonwondo	Leaves	Shrub	Decoction	Half a glass thrice a day for 7 days	Investigated	Febrile convulsions	[10, 19, 24]
Myrtaceae	*Syzygium cordatum* Hochst.	Mugege	Bark	Tree	Decoction	Oral, dose specified	Investigated	Bloody diarrhoea, typhoid, wounds, cough	[10, 23]
Musaceae	*Syzygium jambos* L.	Jambula	Leaves	Tree	Decoction	Oral, dose specified	Investigated	Dry cough, skin rash, wounds, cough	[8, 10, 20, 29]
Myrtaceae	*Syzygium guineense* (Willd.) DC.	Kahunguri	Roots	Shrub	Decoction	Oral, dose specified	No record	Pneumonia, snake bite	[23]
Papilionaceae	*Pittosporum brachyandra*	Akuatanda	Leaves	Tree	Decoction	Oral, dose specified	No record	Diarrhoea, cough	[19]
Papilionaceae	*Pittosporum munroi* Hook. f.	Mubajjunion	Leaves	Shrub	Infusion/decoction	Half a glass a day for a week	No record	Dental caries, influenza, cough, cancer, indigestion, fever	[10, 19, 23]
Papilionaceae	* Digitaria scalarum* Chiov.	Kisuvi	Leaves	Grass	Decoction	120ml every after 8hours for a week	Investigated		
Poeaceae	*Imperata cylindrica* (L.) Beauv. var. africana (Anderss.) C. E. Hubbard	Lusenike	Roots	Grass	Dried, powdered, added boiling water/decoction	120ml once a day for a week	No record	Abdominal pain	[10]
Poeaceae	*Zea mays* L.	Ntuvabasi	Flowers/husk	Cereal	Decoction	120ml every after 8hours for a week	Investigated	Boosts immunity	[10]
Polygaleaceae	*Mucuna aemissi* Engil.	Muzini	Bark	Tree	Decoction	Half a glass thrice a day for a week	No record		
Portulacaceae	*Talinum parviflorum* (Forssk.) Asch. ex Schweinf.	Mopina	Leaves	Herb	Decoction	Oral, dose specified	No record		
Pouzaceae	*Prunus africana* (Hook. f.) Kalkman	Ntuvabasi	Bark	Tree	Decoction	2 and 3 teaspoons thrice a day for children and adults respectively, for a week	Investigated	Painting, cancer	[8, 10]
Pouzaceae	*Rubus steudleri* Schweinf.	Nkemene	Leaves	Herb	Decoction	Half a glass once a day for a week	No record		
Rutaceae	*Hallea rubrostipulata*	Nsiru	Bark	Tree	Decoction	Oral, dose specified	No record		
Rutaceae	*Vangueria aconitifolia* K. Schum.	Matugorda	Bark	Shrub	Decoction	2 and 3 teaspoons thrice a day for children and adults respectively, for a week	No record		
Rutaceae	*Citrus reticulata*	Omusikwa	Roots	Herb	Decoction	Oral, dose specified	Investigated	Weight loss induction, cancer, skin diseases	[23]
Rutaceae	*Citrus sinensis*	Omukuza	Aerial parts	Climber	Decoction	Oral, dose specified	Investigated	Body cleanser	[32]
Rutaceae	*Calamondin*	Otsa	Roots	Tree	Decoction	Oral, dose specified	Investigated	Cough	[10, 23, 28]
Rutaceae	*Zanthoxylum chalybeum* Engl.	Nsungu	Bark	Tree	Decoction	Half a glass thrice a day for a week	No record		
Rutaceae	*Zanthoxylum leprieurii*	Mubagga	Bark	Tree	Decoction	Half a glass thrice a day for a week	No record		
Rutaceae	*Zanthoxylum chalybeum* Engl.	Nsungu	Bark	Tree	Decoction	Half a glass thrice a day for a week	No record		
Plant family	Scientific name	Local name	Part used	Growth form	Mode of preparation	Dose and mode of administration for malaria	Status of antimalarial/antiplasmodial activity investigation	Other ailments treated	Reference(s)
--------------	----------------	------------	-----------	-------------	---------------------	--	--	----------------------	--------------
Salicaceae	*Trimeria grandifolia* ssp. *tropica* (Hochst.) Warb.	Omwatanshare	Leaves	Decoction	Oral, dose not specified	Investigated		Wounds, vomiting, skin diseases, fibroids, cervical cancer	[19]
Sapindaceae	*Blighia unijuga* Baker	Nkuzanyana	Bark	Tree	Decoction drunk	Half a glass twice a day for a week	Investigated		
Sapotaceae	*Manilkara obovata* (Sabine & G. Don)	Nkunya	Bark	Tree	Decoction	Oral, dose not specified	No record		[20]
Scrophulariaceae	*Sopubia ramosa* (Hochst.) Hochst.	Kakulunkanyi	Whole plant	Herb	Decoction	Oral, dose not specified	No record		[20]
Simaroubaceae	*Harrisonia abyssinica* Oliv.	Ekeru	Roots/leaves	Shrub	Decoction	Oral, dose not specified	Investigated		
Sapindaceae	*Datura stramonium* L.	Amadada	Leaves	Herb	Decoction drunk	Half a glass thrice a day for a week	No record		[10]
Solanaceae	*Physalis peruviana* L.	Ntununa	Leaves	Herb	Decoction drunk	Half a glass 3 times a day for a week	No record		[8, 10, 19]
Solanaceae	*Solanum nigra* L.	Nsugga	Leaves	Herb	Decoction drunk	Half a glass 3 times a day for a week	Investigated		[8, 10]
Tiliaceae	*Trumfetta rhomboidea* Jacq.	Musombanioko	Roots	Shrub	Decoction drunk	Half a glass once a day for a week	No record		[10]
Umbelliferae	*Steganotania araliae* Hoehn.	Akassa	Leaves	Tree	Decoction drunk	Half a glass a day for a week	No record		[10]
Verbenaceae	*Lantana trifolia* L.	Omuhuluye	Leaves	Decoction	Oral, dose not specified	Investigated			
Zingiberaceae	*Curcuma longa* L.	Binjali	Rhizome	Herb	Fresh extract	30 ml thrice a day for 3 days	Investigated		[28]
5. Herbs and Plant Parts Used to Manage and Treat Malaria across Communities in Uganda

About 182 plant species from about 63 different plant families are used to treat malaria across several communities in Uganda (Table 1). Of the 63 plant families, species within the family Asteraceae are most widely used in the country to treat malaria, constituting up to 15% of all plant species used (Figure 3(a)). This is followed by species from Fabaceae (9%), Lamiaceae (8%), Euphorbiaceae (6%), and Mimosaceae (4%).

Table 2: Some herbs used in malaria prevention amongst communities in Uganda.

Plant family	Plant species	Local name	Plant form	Mode of use to prevent malaria	Reference(s)
Cleomaceae	Cleome gynandra L.	Akeyo	Herb	Leaves are cooked and eaten as a prophylactic measure	[25]
Cucurbitaceae	Cucurbita maxima Duchesne	Acuga	Scrambler	Leaves cooked and pasted with groundnut then eaten	[25]
Euphorbiaceae	Manihot esculenta Crantz	Gwana	Herb	Tuber peelings are dried then burnt in house so that smoke repels mosquitoes	[25]
Fabaceae	Crotalaria ochroleuca G. Don	Alayo	Herb	Leaves are cooked and eaten as a prophylactic measure	[25]
	Ocimum forsskaalii Benth.	Yat cola	Herb	Leaves dried and burnt so that smoke chases away mosquitoes; bath infusion to repel mosquito	[25]
Lamiaceae	Rosmarinus officinalis L.	Rosemary	Herb	Leaves are cooked and eaten as a prophylactic measure; planted around the house to repel mosquitoes	[10]
Malvaceae	Gossypium hirsutum L.	Pama	Shrub	Cotton lint is dried and burnt so that smoke keeps away mosquitoes	[25]
Musaceae	Musa sp.	Labolo kwon	Shrub	Fruit peeling are dried and burnt in the house to produce smoke that keeps away mosquitoes	[25]
Myrtaceae	Eucalptus grandis Maiden.	Kalitunsi	Tree	Leave and branches are burnt to repel mosquitoes	[25]
Poaceae	Cymbopogon citratus Stapf.	Kisubi	Grass	Planted around the house to repel mosquitoes; taken in tea as a prophylactic measure	[19, 23]
Solanaceae	Solanum americanum Mill.	Ocuga	Herb	Leaves are cooked and eaten as a prophylactic measure	[25]

![Figure 3(a)](image1.png)
![Figure 3(b)](image2.png)

Figure 3: (a) Composition of plant species in each family used to treat malaria. (b) Percentage use of plant parts for treatment of malaria.
Plant family	Scientific name	Part used	Exaining solvent	Means of traditional extraction	Report on antiplasmodial, IC50 (μg/ml)/antimalarial activity (Plasmodium strain)	Active chemical constituents	Reference(s)	
Acanthaceae	Justicia betonica L.	Shoot	Methanol	Hot water	69.6 (chloroquine sensitive, K39)	Justetinol (indole(3,2-b)quinoline alkaloid glycoside)	[20]	
	Aloe dawei A. Berger (wild/	Leaves	Ether	Cold water, mashing, hot water	Extract had anti-P. falciparum activity value of 7.97 (95% CI: 3.56 to 17.85) μg/ml with 50% schizonts suppression per 200 WBC (EC50)	Anthraquinones, aloin, lectins, Anthrone, C-glucoside homonaloin, anthraquinones, aloin, lectins, anthrones	[19, 45]	
	cultivated)							
Aloeaceae	Aloe kedongensis (wild)	Leaves	Methanol	Hot water	87.7 (chloroquine sensitive, D6); 67.8 (chloroquine resistant, W2)	Anthraquinones, aloin, lectins, Anthrone, C-glucoside homonaloin, anthraquinones, aloin, lectins, anthrones	[19, 46]	
	Aloe ferox Mill	Leaves	Dichloromethane	Water	21 (chloroquine sensitive, D10)	Anthraquinones, aloin, lectins, Anthrone, C-glucoside homonaloin, anthraquinones, aloin, lectins, anthrones	[19, 31, 47]	
			Chloroform:Methanol	Hot water	>100 (chloroquine sensitive, D10)	Anthraquinones, aloin, lectins, Anthrone, C-glucoside homonaloin, anthraquinones, aloin, lectins, anthrones	[19, 31, 47]	
Anacardiaceae	Mangifera indica L.	Leaves	Ethanol	Hot water	>50 (chloroquine resistant, F-B1)	Phenolics	[48, 49]	
	Rhus natalensis Bernh. Ex Krauss	Stem bark	Ethanol	Hot water	58.6 (chloroquine sensitive, D6); not detected	Triterpenoids	[54]	
			Ethanol	Hot water	6.6 (P. falciparum)	Triterpenoids	[54]	
Apocynaceae	Alstonia boonei De Wild.	Stem bark	Water	Hot water	80.97% suppressive activity at 200 mg/kg (P. berghoi) in combination with other two local herbs	Alkaloids, triterpenoids	[51]	
	Carissa edulis (Forssk.) Vahl	Stem bark	Water	Hot water	14.5 (chloroquine sensitive, D6)	Lignan, nortrehlenalin	[52]	
	Carissa spinarum Lodd. ex A. DC.	Root bark	Dichloromethane	Mashing, hot water	4.6 (chloroquine sensitive, D6); 5.3 (chloroquine resistant, W2)	Saponins, sesquiterpenes	[53]	
	Catharanthus roseus G. Don.	Leaves	Methanol	Hot water	>50 (chloroquine sensitive, D7); undetectable	Sesquiterpenoids, diterpenoids, monoterpenoids, Alkaloids	[19, 55]	
	Aristotlea elegans Mast.	Seeds	Methanol	Cold water, mashing, hot water	Antiplasmodial activity in terms of EC50 values 0.289 to 1.056 μg/ml (chloroquine sensitive)	Alon, anthraquinones, alo-emoindin	[56]	
Asphodelaceae	Aloe vera (L.) Burm. f.	Leaves	Water	Hot water	67.8 (chloroquine sensitive, K39)	Justetinol (indole(3,2-b)quinoline alkaloid glycoside)	[20]	
Plant family	Scientific name	Part used	Extracting solvent	Means of traditional extraction	Report on antimalarial, IC50 (μg/ml)	Active chemical constituents	Reference(s)	
-------------	-----------------	-----------	--------------------	---------------------------------	--------------------------------------	-----------------------------	--------------	
Asteraceae	Ageratum conyzoides L.	Whole plant	Methanol	Hot water	11.5 (chloroquine sensitive, D6); 12.1 (chloroquine resistant, W2)	Flavonoids	[54]	
	Artemisia annua L.	Leaves	Water	Hot water	11.1 (chloroquine sensitive, D10); 0.9 (chloroquine resistant, W2)	Sesquiterpenes and sesquiterpene lactones including artemisinin, flavonoids such as chrysopelone-D, euparoton, chrysopelone	[19, 57]	
	Artemisia afra Jacq. Ex Wäld	Leaves	Methanol	Hot water	9.1 (chloroquine sensitive, D6); 3.9 (chloroquine resistant, W2)	Acacetin, genkwanin, 7-methoxyacacetin	[54]	
	Aspilia africana (Pers.) C. D. Adams	Leaves	Ethanol	Hot water	Significant chemo suppressive effect of 92.23% (400mg/kg) on *P. berghei*	Saponins, terpenoids, alkaloids, resins, tannins, flavonoids, sterols	[19, 58]	
	Baccharis aden neur (Sch. Bip. ex Walp.) H. Rob.	Leaves	Petroleum ether	Hot water	4.6 (chloroquine resistant, K1)	Flavonoids	[26]	
	Aspilia africana L.	Leaves	Dichloromethane	Hot water; mashing	8.5 (chloroquine sensitive, D10)	Flavonoids including quercetin 3,3′-dimethyl ether 7-O-a-L-rhamnopyranosyl-1′-α-ether 7-O-D-β-gluopyranose and quercetin 3,3′-dimethyl ether 5-alkylcoumarin	[52]	
	Bothriochline longipes N. E. Br.	Leaves	Ethanol	Hot water	3.7 (P. falciparum); 50 (P. falciparum)	Flavonoids	[19, 24]	
	Crassocephalum crepidioides	Leaves	Ethyl acetate	Hot water	40.6% inhibition of *P. falciparum* at 10μg/ml	Flavonoids	[32]	
	Guazatia acabra Chiov.	Whole plant	Crude ethanol	Hot water	49.09% growth inhibition at 100 (both chloroquine sensitive, NF54 and chloroquine resistant, FCR3)	Lactones, eudesmanolone	[59]	
	Melanthera scandens (Schumach. & Thonn.) Roberty	Leaves	Chloroform	Hot water	68.83% chemo suppression activity (*P. berghei*)	Triterpenoid saponins	[60]	
	Microllosa pyrifolia (Lam.)/O. Rzé	Leaves	Chloroform	Hot water	5 (both chloroquine sensitive, NF54 and resistant, FCR3)	E-phytol; 6-geranylgeraniol-19-oic acid	[2, 28]	
	Schkuhria pinnata (lam.)	Whole plant	Water	Hot water	22.5 (chloroquine sensitive, D6); 51.8 (chloroquine resistant, W2)	Schikhirin I and schikhirin II	[54]	
	Solanum muninii (Hook. f.) C. Jeffrey	Leaves	Methanol	Hot water	1.3 (chloroquine sensitive, D6); 6.8 (chloroquine resistant, W2)	Phytosterols, n-alkanes and N-hexacosanol	[19, 55]	
	Tagetes minuta L.	Leaves	Ethyl acetate	Water	21.6 (chloroquine sensitive, D7); 26.2 (chloroquine resistant, W2)	Flavonoids	[32]	
	Tithonia diversifolia A. Gray	Leaves	Methanol	Water	6.0% inhibition of *P. falciparum* at 10μg/ml	Tagitinin C, sesquiterpene lactones	[55]	
	Vernonia adenzos Sch. Bip. ex Walp.	Leaves	Methanol	Hot water	83.4% inhibition of parasitaemia, at 600mg/kg (*P. berghei*)	Glycosides, glycosides	[32]	
	Vernonia amygdalina Delile	Leaves	Methanol/ dichloromethane	Hot water, cold water	2.7 (chloroquine resistant, K1)	Coumarin, sesquiterpene lactones including vernolepin, vernolin, vernoldin and hydroxyvernoldin, sterol glucosides	[19, 61]	
	Vernonia cinerea (L.) Less.	Whole plant	Water	Hot water	>50 (chloroquine sensitive, D7); 37.2 (chloroquine resistant, W2)	Sesquiterpene lactone	[62]	
	Vernonia lasiopus O. Hoffm.	Leaves	Methanol	Mashing; hot water	44.3 (chloroquine sensitive, D6); 52.4 (chloroquine resistant, W2)	Sesquiterpene lactones, polyaccaresides	[19, 54]	
Bignoniaceae	Markhamia lutea (Benth.) K. Schum.	Leaves	Ethyl acetate	Hot water	71% inhibition of *P. falciparum* at 10μg/ml	Phenylpropanoid glycosides, cycloartane triterpenoids	[32]	
	Spathodea campanulata Buch.- Ham. ex DC.	Stem bark	Ethyl acetate	Water	28.9% inhibition of *P. falciparum* at 10μg/ml	Quinone (lapachol)	[32]	
	Cassia didymobotrya Fres.	Leaves	Methanol	Hot water	23.4 (chloroquine sensitive, D6; undetectable (chloroquine resistant, W2)	Alkaloids	[54]	
Caesalpinaceae	Erythrophleum pyriforma	Leaves	Ethanol	Hot water	>50 (P. falciparum)	Piperidine alkaloids	[63]	
	Senecio spectabilis (DC) H. S. Irwin & Barneby	Leaves	Ethanol	Water	59.29% growth inhibition at 100mg/kg body weight dose (*P. berghei*)	Piperidine alkaloids	[64]	
	Caesalpinioideae	Cassia hirsuta	Root back	Methanol	32.0 (chloroquine sensitive D7)	Sesquiterpenes e.g. mungadiolide	[27, 54]	
	Warbugia ugandensis Sprague	Stem back	Methanol	Hot water	6.4 (chloroquine sensitive, D6); 6.9 (chloroquine resistant, W2)	Sesquiterpene lactones	[27, 54]	
Plant Family	Scientific name	Part used	Extracting solvent	Mass of traditional extraction	Means of traditional extraction	Active chemical constituents	Reference(s)	
-------------	-----------------	-----------	-------------------	------------------------------	-------------------------------	---------------------------	--------------	
Caricaceae	Carica papaya L.	Leaves	Ethyl acetate	Hot water	Alkaloids, saponins, tannins, glycosides	2.96 (chloroquine sensitive, D10); 3.98 (chloroquine resistant, D2).	[65]	
Celastraceae	Maytenus senegalensis	Roots	Hot water	1.9 (chloroquine sensitive, D6); 2.4 (chloroquine resistant, W2)	Terpenoids, pentacyclic triterpenoids, e.g., pristimerin.	10.8 (chloroquine sensitive, D10)	[66]	
Chenopodiaceae	Chenopodium ambrosioides L.	Leaves	Crude hydroalcoholic extract	Hot water	Inhibited the P. falciparum growth, exhibiting an IC₅₀ of 25.4 μg/ml.	Sesquiterpenes, monoterpenes	[67]	
Combretaceae	Combretum molle G. Don	Stem back	Acetone	Water	Phenolics, punicalagin	8.2 (chloroquine sensitive, D10); 38.9 (chloroquine resistant, Dd2)	[68]	
Cucurbitaceae	Cucurbita maxima L.	Seeds	Crude ethanol	Hot water	Phenols, terpenoids, alkaloids, tannins	50% reduction of parasitaemia levels in P. berghei infected mice at 500mg/kg.	[69]	
	Momordica foetida Schumach.	Shoots	Water	Hot water	Saponins, alkaloid, cardiac glycosides	6.16 (chloroquine sensitive, NF54); 0.35 (chloroquine resistant, FCR3)	[28]	
Ebenaceae	Euclea latideus Staff	Roots	Hexane	Water	Triterpenoids lupeol, betulin, 3β-(5-hydroxyferuloyl)lup-20(30)-ene	38.2 (chloroquine sensitive, 3D7); 38.9 (chloroquine resistant, Dd2)	[23]	
Euphorbiaceae	Alchornea cordifolia (Schumach.) Mull. Arg.	Leaves	Water	Hot water	Phenolics including ellagic acid	4.8 (chloroquine resistant, K1)	[70]	
	Bridelia micrantha Baill.	Stem bark	Methanol	Hot water	Flavonoids, terpenoids	19.4 (chloroquine sensitive, D6); 14.2 (chloroquine resistant, W2)	[50]	
	Clutia abyssinica Jaub. & Spach	Leaves	Methanol	Water	Diterpenes	7.8 (chloroquine sensitive, D6); 11.3 (chloroquine resistant, W2)	[54]	
	Croton macrostachyus Olive.	Leaves	Chloroform	Hot water	Triterpenoids including lupeol	83.6% inhibition of P. falciparum at 10 μg/ml.	[71]	
	Fluega virosa (Roxb. ExWillb.) Voigt	Leaves	Water/methanol	Hot water	bergenin	2 (chloroquine resistant, W2)	[72]	
	Jatropha curcas L.	Leaves	Ethyl acetate	Hot water	Alkaloids, saponins, glycosides, tannins	5.1 (chloroquine sensitive, NF54); 2.4 (chloroquine resistant, K1)	[73]	
	Phyllanthus (pseudo) niruri Mull. Arg.	Water	Hot water	Ranged from 2.9 to 4.1 (both chloroquine sensitive, 3D7 and resistant, Dd2)	Coumarins including 1-O-galloyl-6-O-luteoyl-a-D-glucose		[74]	
	Tamarindus indica L.	Stem bark	Water	Hot water	Saponins (leaves), tannins	25.1% chemosuppressive activity at 10μg/ml (P. berghei).	[78]	
Flacourtiaceae	Trimeria bakeri Gilg.	Leaves	Petroleum ether	Hot water	Flavonoids, terpenoids	>100 (chloroquine sensitive, K39)	[29]	
	Hypericaceae	Harungana madagascariensis Lam.	Stem bark	Water	Hot water	Phenolic derivatives, chrysophanol a, a-hydroxycarbazole	26.4 (chloroquine sensitive, HB1); 28.9 (chloroquine resistant, HB2)	[79]
Plant family	Scientific name	Part used	Means of traditional extraction	Extracting solvent	IC50 (μg/ml)/Report on antiplasmodial activity (strain)	Active chemical constituents	Reference(s)	
--------------	----------------	-----------	---------------------------------	-------------------	---	-----------------------------	--------------	
Lauraceae	Hoslundia opposita Vahl.	Leaves	Ethanol	Water	66% inhibition of P. berghei at 10 μg/ml ; 55% inhibition of P. falciparum (chloroquine sensitive, FCA/GHA); 57% inhibition (chloroquine resistant, W2)	Quinones, saponins, abietane diterpenes (3-O-benzoylhosloppone)	[32]	
Lamiaceae	Ocimum gratissimum Willd.	Leaves	Ethanol	Water	8.6 (chloroquine resistant, W2)	Flavonoids	[50, 80]	
Lamiaceae	Ocimum lamiifolium Hochst.	Leaves	Water	Water	No activity			
Lamiaceae	Plectranthus barbatus	Leaves/stem	Dichloromethane	Water	No activity		[23, 47]	
Lamiaceae	Rosmarinus officinalis L.	Leaves	Ethyl acetate	Water	Essential oil at a concentration 1.8% (v/v) had no inhibitory effect against P. falciparum		[82]	
Lauraceae	Tetradenia riparia (Hochst.) Codd	Root	Hot water	No activity			[83]	
Lauraceae	Milicia excels (Welw.) C. C. Berg.	Leaves	Methanol	Hot water	76.7% chemo suppressive activity at 250mg/kg/day (P. berghei)		[89]	
Moringaceae	Moringa oleifera	Leaves	Ethyl acetate	Water	7.5 (chloroquine sensitive, Dd2); 100 (chloroquine resistant, Dd2)	Flavonoids	[49, 80]	
Mimosaceae	Albizia coriaria Welw.	Leaves	Ethanol	Water	1.0% inhibition of parasitemia at 0.075mg/ml (P. berghei)	Tannins, flavonoids, terpenes	[86]	
Mimosaceae	Albizia grandibracteata Taube	Leaves	Ethyl acetate	Water	22.0% inhibition of P. falciparum at 10 μg/ml		[32]	
Myrtaceae	Syzygium guineense (Willd.) DC.	Leaves	Crude ethanol	Water	49.09% chemo suppression at 400mg/kg (P. berghei)	Tannins, flavonoids, terpenoids	[94]	
Myrtaceae	Syzygium cumini (L.) Skeels	Leaves	Crude ethanol	Water	0.25 to 27.1 (chloroquine-resistant strains)		[93]	
Myrtaceae	Myrtus communis	Leaves	Ethyl acetate	Water	14.7 (chloroquine sensitive, D10)		[55]	
Myrtaceae	Cymbopogon citratus Stapf.	Leaves	Ethanol	Water	99.89% suppression of parasitaemia at 1600mg/kg	Flavonoids	[20, 49, 95]	
Myrtaceae	Syzygium microphyllum (Welw.) Welw.	Leaves	Ethanol	Water	9.0% inhibition of parasitemia at 100mg/kg (P. berghei)	Tannins, flavonoids, terpenoids	[92]	
Poaceae	Zea mays L.	Husks	Ethyl acetate	Water	9.3 (chloroquine sensitive, 3D7); 3.7 (chloroquine resistant, INDO)	Alkaloids, flavonoids and triterpenoids	[96]	
Myrtaceae	Syzygium guineense (Willd.) DC.	Leaves	Ethanol	Water	0.25 to 27.1 (chloroquine-resistant strains)		[93]	
Polygalaceae	Securidaca longipedunculata Fresen.	Leaves	Dichloromethane	Water	6.9 (chloroquine sensitive, D10)	Saponins, flavonoids, alkaloids, terpenoids	[92]	
Rosaceae	Prunus africana	Stem bark	Hot water	Water	0.25 to 27.1 (chloroquine-resistant strains)	Terpenoids	[54]	
Table 3: Continued.

Plant family	Scientific name	Part used	Extracting solvent	Means of traditional extraction	Report on antiplasmodial, IC50 (μg/ml)/antimalarial activity (Plasmodium strain)	Active chemical constituents	Reference(s)
Rubiaceae	Hallea rubrostipulata (K. Schum.) J.-F. Leroy	Root	Ethanol	Water	100 μg/ml extract had 65.54% growth inhibition (chloroquine resistant, Dd2)	Alkaloids	[59]
	Pentas longiflora Oliv.	Root	Methanol	Hot water	0.99 (chloroquine sensitive, D6); 0.93 (chloroquine resistant, W2)	Pyranonaphthoquinones, pentalongo (1) and psychorubrin (2), naphthalene derivative mollugin (3)	[97]
	Citrus reticulata	Seeds (isolimonexic acid methyl ether)	Methanol	Hot water	<4.76 (both chloroquine sensitive, D6 and resistant, W2)	Limonin, isoolimonexic acid methyl ether, dicherythrine, deacetylnomilin, obacunone	[98]
	Citrus sinensis	Root	70% ethanol	Hot water	53.27% suppression of parasitaemia at 700 mg/kg	Tannins, alkaloids, saponins, flavonoids	[20, 24, 99]
Rutaceae	Tectea nobilis D. Delé	Bark	Ethyl acetate	Water	54.7% inhibition of P. falciparum at 10 μg/ml	Limonoids, isoolimonexic acid methyl ether, dicherythrine, deacetylnomilin, obacunone	[20, 24, 99]
	Toddalia asiatica Baxi.	Root bark	Methanol	Water	6.8 (chloroquine sensitive, D6); 13.9 (chloroquine resistant, W2)	Quinoline alkaloids	[32]
	Zanthoxylum chalybeum Engl.	Stem bark	Water	Hot water	4.3 (chloroquine sensitive, NF54); 25.1 (chloroquine resistant, FCR3)	Furoquinolines (nitidine, 5,6-dihydrofuroline), coumarins	[80]
Salicaceae	Salix griffithii ssp. tropica (Hochst.) Warb	Leaves	Methanol	Hot water	>50 (chloroquine sensitive, 3D7)	Chelerythrine, nitidine, methyl canadine	[28]
Sapindaceae	Blighia sisyrinnum Baker	Leaves	Ethyl acetate	Hot water	2.3% inhibition of P. falciparum at 10 μg/ml	Limonoids, steroids	[66]
Simaroubaceae	Harrisonia abyssinica Olive	Roots	Ethyl acetate	Hot water	4.4 (chloroquine sensitive, D6); 10.25 (chloroquine resistant, W2)	Steroidal alkaloids, flavonoids	[100]
Solanaceae	Solanum nigrum L.	Fruit	Methanol	Hot water	10.3 (chloroquine sensitive, 3D7); 18.7 (chloroquine resistant, K1)	Sesquiterpenes, triterpenes, flavonoids	[30]
Ulmaceae	Celtis africana L.	Stem bark	Ethyl acetate	Hot water	37.5% inhibition of P. falciparum at 10 μg/ml	Steroids, terpenoids, alkaloids, saponins	[24]
Verbenaceae	Lantana camara	Leaves	Dichloromethane	Hot water	8.7 (chloroquine sensitive, 3D7); 5.7 (chloroquine resistant, W2)	Sesquiterpenes, triterpenes, flavonoids	[30]
	Lantana trifolia L.	Aerial parts	Petroleum ether	Hot water	13.2 (P. falciparum) >50 (P. falciparum)	Steroids, terpenoids, alkaloids, saponins	[24]
Zingiberaceae	Curcuma longa L.	Hot water, mashing	Ethanol	Water	5 mg/kg had a significantly high chemo suppressive activity of 56.8% (P. berghei)	Polyphenolic curcumin	[100]
Table 4: Top 17 herbal plants used locally in Uganda for malaria treatment with highest antimalarial/antiplasmodial activities (arranged alphabetically).

Plant family	Plant species	Plant part	Extracting solvent	Report on antiplasmodial, IC50 (μg/ml)/antimalarial activity (Plasmodium strain)	Active chemical constituents	Toxicity/safety information	Reference(s)
Asteraceae	Artemisia afra Jaq. Ex Willd	Leaves	Methanol	3.9 (chloroquine resistant, W2)	Acacetin, genkwanin, 7-methoxyacacetin	Cytotoxicity was observed in Vero cells Generally safe and effective; nausea may occur on drinking herbal extract; artemisinin, an active compound in the extract is safe for pregnant women at least during second and third trimesters	[54, 103]
	Artemisia annua L.	Leaves	Water	0.9 (chloroquine resistant, W2); 1.1 (chloroquine sensitive, D10)	Sesquiterpenes and sesquiterpene lactones including artemisinin		[19, 57, 104]
	Aspilia africana (Pers.) C. D. Adams	Leaves	Ethanol	Significant chemo suppressive effect of 92.23% (400 mg/kg) on P. berghei	Saponins, terpenoids, alkaloids, resins, tannins, flavonoids, sterols	No signs of toxicity in mice even at a dose as high as 5000 mg/kg Moderate toxicity on thrombocyte line and a protective effect on cardiovascular system; no signs of toxicity in mice following oral administration of 5000 mg/kg body weight (bw) dose	[19, 58]
	Jatropha curcas L.	Leaves	Ethyl acetate	2.4 (chloroquine resistant, K1)	Alkaloids, saponnins, glycosides, tannins		[73, 105]
	Microglossa pyrifolia (Lam.)O. Ktze	Leaves	Dichloromethane	1.5 (chloroquine sensitive, 3D7; 2.4 chloroquin resistant, W2)	E-phytol; 6e-geranylgeraniol-19-oic acid		[2, 28, 55]
	Schkuhria pinnata (lam.)	Whole plant	Methanol	1.3 (chloroquine sensitive, D6)	Schkuhrin I and schkuhrin II		[32, 54]
	Tithonia diversifolia A. Gray	Leaves	Methanol	1.2 (chloroquine sensitive, 3D7); 1.5 (chloroquine resistant, W2)	Tagitin C, sesquiterpene lactones	Aerial parts are cytotoxic against cells from the human foetal lung fibroblast cell line	[55]
	Vernonia amygdalina delile	Leaves	Methanol/dichloromethane	2.7 (chloroquine resistant, K1)	Coumarin, sesquiterpene lactones including vernolepin, vernolin, vernolide, vernodalin and hydroxyvernodalin, steroid glucosides	Petroleum ether extract shows strong cytotoxicity	[19, 26, 32]
Plant family	Plant species	Plant part	Extracting solvent	Report on antiplasmodial, IC₅₀ (μg/ml)/antimalarial activity (Plasmodium strain)	Active chemical constituents	Toxicity/safety information	Reference(s)
--------------	---------------	------------	--------------------	---	-----------------------------	-----------------------------	---------------------------
Caricaceae	*Carica papaya L.*	Leaves	Ethyl acetate	2.96 (chloroquine sensitive, D10); 3.98 (chloroquine resistant, DD2)	Alkaloids, saponins, tannins, glycosides	No serious toxicity reported, carpaine, an active compound against *P. falciparum* had high selectivity and was nontoxic to normal RBCs	[65, 106]
Celastraceae	*Maytenus senegalensis*	Roots		1.9 (chloroquine sensitive, D6); 2.4 (chloroquine resistant, W2)	Terpenoids, pentacyclic triterpenes, e.g., pristimerin	No toxicity observed in ethanol extract	[66, 107]
Cucurbitaceae	*Momordica foetida* Schumach.	Shoot/Leaves	Water/Water/methanol	0.35 (chloroquine resistant, FCR3); 6.16 (chloroquine sensitive, NF54)	Saponins, alkaloid, phenolic glycosides including 5,7,4′-Trihydroxyflavanone and kaempferol	No pronounced toxicity against human hepatocellular (HepG2) and human urinary bladder carcinoma (ECV-304, derivative of T-24) cells	[26, 28, 108]
Euphorbiaceae	*Alchornea cordifolia* (Schumach.) Mull. Arg.	Leaves	Water	4.8 (chloroquine resistant, K1)	Phenolics including ellagic acid	No mortality in mice in acute toxicity test	[70, 109]
	Fluega virosa (Roxb. ExWillb.)Voigt	Leaves	Water/methanol	2 (chloroquine resistant, W2)	Bergenin	Nontoxic, extracts exposed to murine macrophages did not slow or inhibit growth of cells	[72, 110]
Lamiaceae	*Clerodendrum rotundifolium* Oliv.	Leaves	Methanol	0.02 (chloroquine sensitive, CQ²); 1.56 (chloroquine resistant, CQ³)	Iridoid glycosides such as serratoside A, serratoside B and monomelittoside, diterpenoids including uncinatone, derodin, and sugiol	No toxicity was observed; thus, LD₅₀ of the aqueous extract is >5000 mg/kg. b.w.	[74, 111]
Mimosaceae	*Albizia zygia* (DC.) Macbr.	Stem bark	Methanol	1.0 (chloroquine resistant, K1)	Flavonoids, mainly 3′,4′,7-trihydroxyflavone	The aqueous extract is relatively safe on subacute exposure	[87, 112]
Rubiaceae	*Pentas longiflora* Oliv.	Root	Methanol	0.99 (chloroquine sensitive, D6); 0.93 (chloroquine resistant, W2)	Pyranonaphthoquinones, pentalongin (1) and psychorubrin (2), naphthalene derivative mollugin (3)	Low cytotoxicity	[97]
Plant family	Plant species	Plant part	Extracting solvent	Report on antiplasmodial, IC₅₀ (µg/ml)/antimalarial activity (Plasmodium strain)	Active chemical constituents	Toxicity/safety information	Reference(s)
--------------	---------------	------------	--------------------	---	----------------------------	-----------------------------	---------------
Rutaceae	Citrus reticulata	Seeds (isolimonexic acid methyl ether)	<4.76 (both chloroquine sensitive, D6 and resistant, W2)	Limonin, isolimonexic acid methyl ether, ichangin, deacetylnomilin, obacunone	Dermal 50% lethal dose (LD₅₀) of undiluted leaf oil is >2g/kg in rabbits; seed extract causes respiratory distress and strong spleen contraction	[34, 113]	
families, with Myrtaceae, Aloeaceae, and Rutaceae families each contributing approximately 3% to the total number of species used for malaria treatment in Uganda (Figure 3(a)). The remaining families contribute only 49% of the total plant species used for malaria treatment (Figure 3(a)).

The plant parts greatly used to treat malaria are leaves (54.4%) followed by roots (17.4%) and bark (16%); whole plants and other plant parts are used less commonly (Figure 3(b)). A particular herbal plant is commonly used singly though some times in combination with other herbs. The most common way of use is by boiling the medicinal plant part in water and then drinking the decoction; ingestion of fresh extracts and powdered forms of the herbs is also practiced (Table 1).

Different herbal remedies are used in different communities in different parts of the country depending on the geographical distribution of the medicinal plant species, for example, Warburgia ugandensis is particularly used in the eastern part of Uganda. However, herbal plant species such as Bidens pilosa L. are spread throughout the country and thus well known for malaria treatment across the country. In a study conducted by Ssegawa and Kasenene [20], no tree species in the forests of southern Uganda were more useful than Hallea rubrostipulata and Warburgia ugandensis in the treatment of malaria. These medicinal plants are known by different local names in different parts of the country as Uganda has diverse ethnic groups, including the Luo, Baganda, Itesots, and Banyankole/Bakiga.

Among all communities in Uganda, some measures are taken to control malaria, including draining of stagnant water, clearing and burning bushes, sleeping under insecticide-treated mosquito nets, and house spraying with insecticides.

6. Mode of Preparation and Use of Herbs in Treatment of Malaria in Uganda

The mode of preparation and use of herbs among different communities vary depending on the nature of the herb and plant parts used for malaria treatment [10]. Most commonly, the herbal medicines are prepared as water extracts in the form of decoction and infusion or as steam baths (Table 1) [19, 23]. The herbal plant water extract is made mostly by boiling a handful of the medicinal plant parts such as leaves in a litre of water and then given to the patient to take orally (Table 1) [23]. The dose of the extract given is dependent on the age of the patient and the “strength” of the herbal medicine although occasionally the weight of the patient [19, 23]. The quantity of extract given ranges from 100 to 500 ml, 100 to 250 ml, and 1 to 3 tea or tablespoons for adults, older children, and young children below 5 years of age, respectively, between 1 and 3 times a day for about a week or until when patient has recovered [19, 25]. The extracts are mostly prepared from single herbal plants or from combination of two herbal plants, for example, a decoction of Tamarindus indica and Mangifera indica is common [25].

In some cases, the medicinal plant parts are dried then pulverized to powder and 2–5 tablespoons of the powder added to water and boiled to make a decoction. Some medicinal plant parts such as bark of M. indica stem and roots of V. lasiopus and their powders are boiled for long until the water is half the initial amount [25]. The herbal plant powder can also be added to cold or hot water and stirred and then drunk as recommended [10].

Medicine for malaria treatment from a herb such as B. pilosa can be made by squeezing a handful of its freshly picked leaves and drinking 1–3 teaspoons of the extract a day (Table 1) [23]. Occasionally, malaria herbal medicines can be obtained by preparing different plant parts in combination, for example, an infusion can be made from fresh leaves and pounded fresh roots of V. amygdalina [25]. This is then taken orally in a recommended dose. A handful of medicinal plant parts such as leaves can be squeezed and mixed with cold or warm water for bath, for example, leaves of B. adoensis [25]. Some common herbs are also eaten as vegetables as a prophylactic measure against malaria while others are planted in pots around houses or burnt to drive away mosquitoes (Table 2).

7. Antimalarial Activities and Toxicity of Herbs Used in Uganda for Malaria Treatment

Some studies have been performed on antimalarial activities of some of the herbal plants used in Uganda to treat malaria by using various strains of malarial parasites to confirm effectiveness as malaria treatment [26, 28]. Furthermore, a broad range of phytochemicals responsible for biological activities in some of the antimalarial herbs have been isolated and identified [23]. Of the 182 plant species used in Uganda for the treatment of malaria, 112 plant species (64%) have been investigated for antimalarial activities, of which 108 plants showed positive results and only four plant species did not give positive results when tested for antimalarial activities (Table 1). For about 70 plant species (39%) that are used among different communities in Uganda for the treatment of malaria, there was no record of investigation for antimalarial activities (Table 1).

The antimalarial activity of herbal plants is due to the presence of a number of metabolically active compounds [23]. These compounds may occur in the form of alkaloids, sesquiterpenes, quinones, triterpenoids, flavonoids, quassions, limonoids, terpenes, chalcones, coumarins, or other miscellaneous forms [85]. The solvent of extraction largely determines the concentrations of the active metabolites in the extract. For example, methanolic extracts of the herbal plants are in general more active in vitro than water extracts probably due to the presence of higher amounts of more active lipophilic compounds (Table 3) [54].

The levels of activity of the antimalarial plant extracts depend on the concentration of the active antimalarial secondary metabolites [54]. For example, gedunin, a very active compound against Plasmodium present in leaves of A. indica had an IC_{50} of 0.02 μg/ml against P. falciparum, but its concentration in the plant is in very low and thus moderate activity of its extract (Table 3) [23, 54].
The synergistic effect of the interaction of the different active secondary metabolites is a main contributing factor to the high levels of antimalarial activity of some of the herbal plant extracts, for example, in A. afr, none of the isolated flavonoids and sesquiterpenes had a high activity, yet the plant extract had an IC\textsubscript{50} of 3.9 µg/ml against P. falciparum suggesting a synergistic effect of the compounds in the extract [54]. The presence of particular active compounds in the herbal plant extracts is key in enhancing its antimalarial property. The compound 6E-geranylgeraniol-19-oic-acid a diterpene isolated from M. pyrifolia aqueous extract was considered responsible for its antimalarial activity; nitidine isolated from Z. chalybeum had an IC\textsubscript{50} as low as 0.17 µg/ml against P. falciparum 3D7 [10]; and pristimerin with an IC\textsubscript{50} 0.5 mg/ml against P. falciparum was the main active ingredient in M. senegalensis extract, making it have a very high antiplasmodial activity [54]. The presence of a moderate amount of a minimum of two secondary metabolites in the extract could explain the efficacy of the herbal extracts for malaria treatment [10]. The pathogenic strains used may be different for different in vitro studies; thus, resistance of the parasite to the active metabolites could cause a variation in the level of antimalarial activity of the extracts [10]. Herbal plants with no antimalarial activity suggest the absence of the metabolically active compounds against the Plasmodium parasites in their extracts [23]. Table 4 indicates a list of herbal plants used for malaria treatment in Uganda with high antimalarial activities (IC\textsubscript{50} < 5 µg/ml in one of its solvent extracts or high percentage inhibition of plasmodia) that could be potentially investigated further.

Although herbs are generally considered safer when used for treatment compared to conventional drugs, some of the herbs used traditionally to treat malaria in Uganda may be efficacious, but there is a need to have them used with caution as some may be toxic (Table 4). There is a variation in degree of toxicity depending on the sensitivity of animals, tissue or cells used, type of extract, nature of the test substance, dose, and mode of administration [114]. According to Lacroix et al. [32] one third of the herbs for malaria treatment in Uganda they investigated had significant antimalarial activity with low toxicity. Some of the plants parts with good antimalarial/antimalarial activities with no or low toxicity include leaves of A. annua, leaves of A. africana, S. pinnata whole plant, leaves of C. papaya, and leaves of F. virosa amongst others (Table 4). There are however extracts of some plants used for malaria treatment with very good activity against Plasmodium but with high toxicity; such plant extracts include petroleum ether leaf extract of V. amygdalina and dichloromethane leaf extract of M. pyrifolia (Table 4) [32, 55]. Clerodendrum rotundifolium is on those plants that have very good antimalarial/antiplasmodial activities but have not been investigated for their toxicity (Table 4) [33].

8. Traditional Health Care Practice and Policy Framework in Uganda

The health care system of Uganda consists of the public, private-profit oriented, and private-nonprofit oriented sectors. There is quite a large sector of informal health care including traditional medicine practitioners, drug shops, medicine vendors, and complementary and alternative practitioners. The contribution of traditional health practitioners to Uganda’s health care system was not valued until lately [115]. The negative perspective could be traced back to the colonial times when culture including use of traditional medicine such as herbs for treatment was considered primitive and so discouraged [115]. Efforts are now being made to promote the use of traditional medicine since the government has realized that traditional health practitioners are key contributors to its primary health care system [115]. The Ministry of Health created a public-private partnership with the traditional health practitioners following a recommendation that they be brought into the mainstream health system [115, 116].

A policy on Traditional and Complementary Medicine was created to regulate traditional medicine practice focusing on research and development while emphasizing the propagation, protection, and sustainable use of medicinal plant resources [115, 116]. For collaboration between the mainstream health care sector and traditional health practitioners, the Ministry of Health submitted a bill for the creation of the National Council of Indigenous and Complementary Medicine Practitioners, a semiautonomous body that shall as well protect their intellectual property rights [115, 116].

The National Drug Authority (NDA) is a body that ensures quality control of all medical products including herbal medicines in Uganda under the government statute and policy of 1993 [117]. In Uganda, there is no special regulatory measure for herbal medicines in that the same laws and policies for conventional pharmaceuticals also apply to the herbal medicinal products. A policy was introduced in 2002 to have herbal medicines registered, but so far, no registration of any herbal medicine has been made [117].

Herbal medicines though vastly used in Uganda are not sufficiently regulated. A system to license and track traditional health practitioners or their products is still lacking in the country, and the efforts to have the TCM integrated in the mainstream health care system is still a long way from being realized.

9. Conclusion

Uganda is rich in indigenous plant resources that are used by its people to treat malaria. Communities in different regions of the country use different herbs within their geographical range, though a few common herbs are used by different communities across the country. Many herbs used for
malaria treatment among several communities have not been investigated for their efficacy, and yet they could be potential sources for antimalarial remedies including drugs. Few studies have been conducted to document herbs for malaria treatment in the country, especially in the northern region. Some of the plants investigated for antimalarial/antiplasmodial activities have been found to lack efficacy, toxicity, and safety study aspects. Some plants used in the local communities had very strong antimalarial activities and could be investigated further for the identification and validation of the potential therapeutic antimalarial compounds. This review is critical in that it clearly highlights herbal plants documented in Uganda for malaria treatment but have never been investigated for their antimalarial potential, thus providing guidance for further research on potential natural plant resources that could be sources of novel compounds with therapeutic properties for the treatment of malaria.

Conflicts of Interest
The authors declare that they have no conflicts of interest.

Authors’ Contributions
Denis Okello carried out the data search and was the main contributor in writing the manuscript. Youngmin Kang technically designed and helped in writing the manuscript. Both authors read and approved the final manuscript.

Acknowledgments
This study was supported under the framework of International Cooperation Program (Korea-South Africa Cooperative Research Project for Excavation of Candidate Resources of Complementary and Alternative Medicine) managed by National Research Foundation of Korea (grant nos. 2017093655 and KIOM:D17470). Additionally, this study was equally supported by grants from Development of nos. 2017093655 and KIOM:D17470). Additionally, this study was supported under the framework of In-

References
[1] World Health Organisation, World Malaria Report 2017, World Health Organisation, Geneva, Switzerland, 2017.
[2] W. H. Pan, X. Y. Xu, N. Shi, S. W. Tsang, and H. J. Zhang, “Antimalarial activity of plant metabolites,” International Journal of Molecular Sciences, vol. 19, no. 5, p. 1382, 2018.
[3] V. Asua, L. Mugenyi, P. J. Rosenthal et al., “Plasmodium species infecting children presenting with malaria in Uganda,” The American Journal of Tropical Medicine and Hygiene, vol. 97, no. 3, pp. 753–757, 2017.
[4] World Health Organisation, World Malaria Report 2018, World Health Organisation, Geneva, Switzerland, 2018.
[5] B. E. Barber, M. J. Grigg, T. William, T. W. Yeo, and N. M. Anstey, “The treatment of plasmodium knowlesi malaria,” Trends in Parasitology, vol. 33, no. 3, pp. 242–253, 2017.
[6] World Health Organisation, World Malaria Report 2005, World Health Organisation, Geneva, Switzerland, 2005.
[7] G. Njoroge and R. Bussmann, “Diversity and utilization of antimalarial ethnophytotherapeutic remedies among Kikuyus (Central Kenya),” Journal of Ethnobiology and Ethnobotany, vol. 2, no. 1, p. 8, 2006.
[8] P. Tugume, E. K. Kakudidi, M. Buyinza et al., “Ethnobotanical survey of medicinal plant species used by communities around Mabira Central forest reserve, Uganda,” Journal of Ethnobiology and Ethnobotany, vol. 12, no. 1, p. 5, 2016.
[9] S. Sharafzadeh and O. Alizadeti, “Some medicinal plants cultivated in Iran,” Journal of Applied Pharmaceutical Science, vol. 2, no. 1, pp. 134–137, 2012.
[10] M. M. Adia, G. Anywar, R. Byamukama et al., “Medicinal plants used in malaria treatment by prometra herbalists in Uganda,” Journal of Ethnopharmacology, vol. 155, no. 1, pp. 580–588, 2014.
[11] R. Komakech, Y. Kang, J.-H. Lee, and F. Omujal, “A review of the potential of phytochemicals from prunus africana (hook f.) kalkman stalk bark for chemoprevention and chemotherapy of prostate cancer,” Evidence-Based Complementary and Alternative Medicine, vol. 2017, Article ID 304409, 10 pages, 2017.
[12] Uganda Ministry of Health, National Malaria Annual Report 2017-2018, National Malaria Control Division, Surveillance Monitoring and Evaluation Unit, Uganda Ministry of Health, Kampala, Uganda, 2019.
[13] M. Betson, S. Cliffrd, M. Stanton, N. B. Kabaterine, and J. R. Stothard, “Emergence of nonfalciparum plasmodium infection despite regular artemisinin combination therapy in an 18-month longitudinal study of Ugandan children and their mothers,” The Journal of Infectious Diseases, vol. 217, no. 7, pp. 1099–1109, 2018.
[14] A. Larocca, R. Moro Visconti, and M. Marconi, “Malaria diagnosis and mapping with M-health and geographic information systems (GIS): evidence from Uganda,” Malaria Journal, vol. 15, no. 1, p. 520, 2016.
[15] B. Donnelly, L. Berrang-Ford, J. Labbe et al., “Plasmodium falciparum malaria parasites among indigenous batwa and non-indigenous communities of Kanungu district, Uganda,” Malaria Journal, vol. 15, no. 1, p. 254, 2016.
[16] M. Betson, J. C. Sousa-Figueiredo, A. Atuahere et al., “Detection of persistent plasmodium spp. infections in Ugandan children after artemether-lumefantrine treatment,” Parasitology, vol. 141, no. 14, pp. 1880–1890, 2014.
[17] D. W. Oguttu, J. K. B. Matovu, D. C. Okumu et al., “Rapid reduction of malaria following introduction of vector control interventions in Tororo district, Uganda: a descriptive study,” Malaria Journal, vol. 16, no. 1, p. 227, 2017.
[18] S. Raouf, A. Mpimbaza, R. Kigozi et al., “Resurgence of malaria following discontinuation of indoor residual spraying of insecticide in an area of Uganda with previously high-transmission intensity,” Clinical Infectious Diseases, vol. 65, no. 3, pp. 453–460, 2017.
[19] T. Strangeland, P. E. Alele, E. Katuura, and K. A. Lye, “Plants used to treat malaria in Nyakayojo sub-county, Western Uganda,” Journal of Ethnopharmacology, vol. 137, no. 1, pp. 154–166, 2011.
[20] P. Ssegawa and J. M. Kasene, “Plants for malaria treatment in Southern Uganda: traditional use, preference and
ecological viability,” *Journal of Ethnobiology*, vol. 27, no. 1, pp. 110–131, 2007.

[21] J. R. Tabuti, “Herbal medicines used in the treatment of malaria in budiope county, Uganda,” *Journal of Ethnopharmacology*, vol. 116, no. 1, pp. 33–42, 2008.

[22] I. E. Cock, “The genus aloe: phytochemistry and therapeutic uses including treatments for gastrointestinal conditions and chronic inflammation,” *Progress in Drug Research, Arthritis and Gastro-Intestinal Diseases*, vol. 70, pp. 179–235, 2015.

[23] K. Philip, M. Elizabeth, P. Cheplogoi, and K. Samuel, “Ethnobotanical survey of antimalarial medicinal plants used in Butebe county, Eastern Uganda,” *European Journal of Medicinal Plants*, vol. 21, no. 4, pp. 1–22, 2017.

[24] E. Katuura, P. Waako, J. Ogwal-Okeng, and R. Bukenya-Kitende, “A review on the botanical aspects, phytochemical contents and pharmacological activities of Warburgia ugandensis,” *Journal of Medicinal Plants Research*, vol. 12, no. 27, pp. 448–455, 2018.

[25] D. Okello, R. Komakech, M. G. Matsabisa, and Y.-M. Kang, “In vitro antiplasmodial activity of selected medicinal plants from Ugandan flora: refocusing into multi-component potentials,” *Journal of Ethnopharmacology*, vol. 229, pp. 127–136, 2019.

[26] M. M. Adia, S. N. Emami, R. Byamukama, I. Faye, and A.-K. Borg-Karlson, “Antiplasmodial activity and phytochemical analysis of extracts from selected Ugandan medicinal plants,” *Journal of Ethnopharmacology*, vol. 186, pp. 14–19, 2016.

[27] F. W. Muregi, S. C. Chhabra, E. N. Njagi et al., “In vitro antiplasmodial activity of some plants used in Kisii, Kenya against malaria and their chloroquine potentiation effects,” *Journal of Ethnopharmacology*, vol. 84, no. 2-3, pp. 235–239, 2003.

[28] M. K. Philip, M. Elizabeth, P. Cheplogoi, and K. Samuel, “Antiplasmodial activity and cytotoxic activities of medicinal plants traditionally used in the village of Kiohima, Uganda,” *Journal of Ethnopharmacology*, vol. 133, no. 2, pp. 850–855, 2011.

[29] H. Kaur, H. M. Mukhtar, A. Singh, and A. Mahajan, “Antiplasmodial medicinal plants: a literature review on efficacy, selectivity and phytochemistry of crude plant extracts,” *Journal of Biologically Active Products from Nature*, vol. 8, no. 5, pp. 272–294, 2018.

[30] R. K. Nanyunja, *Indigenous Knowledge of the Abundance of Medicinal and Food Plants in Mount Moroto Forest Reserve*, Institute of Environmental & Natural Resources, Makerere University, Kampala, Uganda, 2003.
Evidence-Based Complementary and Alternative Medicine

with chloroquine-sensitive *Plasmodium berghei*, African Health Sciences, vol. 15, no. 4, pp. 1262–1270, 2015.

[52] C. Clarkson, V. J. Maharaj, N. R. Crouch et al., “In vitro antiplasmodial activity of medicinal plants native to or naturalised in South Africa,” Journal of Ethnopharmacology, vol. 92, no. 2-3, pp. 177–191, 2004.

[53] A. Fatima, P. P. Singh, P. Agarwal, R. Irchhaiya, S. Alok, and A. Verma, “Treatment of various diseases by *Carissa spinarum* L.—a promising shrub,” IJFSR, vol. 4, no. 7, pp. 2489–2495, 2013.

[54] C. N. Muthaura, J. M. Keriko, C. Mutai et al., “Antiplasmodial potential of traditional phytotherapy of some remedies used in treatment of malaria in Meru-Tharaka Nithi County of Kenya,” Journal of Ethnopharmacology, vol. 175, pp. 315–323, 2015.

[55] R. Muganga, L. Angenot, M. Tits, and M. Frédérich, “Antiplasmodial and cytotoxic activities of Rwandan medicinal plants used in the treatment of malaria,” Journal of Ethnopharmacology, vol. 128, no. 1, pp. 52–57, 2010.

[56] R. Kumar, S. Duffy, V. M. Avery, and R. A. Davis, “Synthesis of antimalarial amide analogues based on the plant serrulatane diterpenoid 3,7,8-trihydroxyserurlat-14-en-19-oic acid,” Bioorganic & Medicinal Chemistry Letters, vol. 27, no. 17, pp. 4091–4095, 2017.

[57] M. T. Lemma, A. M. Ahmed, M. T. Elhady et al., “Medicinal plants for in vitro antiplasmodial activities: a systematic review of literature,” Parasitology International, vol. 66, no. 6, pp. 713–720, 2017.

[58] A. G. Christian, A. G. Mfon, E. A. Dick, E. David-Oku, A. J. Linus, and E. B. Chukwunna, “Antimalarial potency of the leaf extract of *Aspilia africana* (Pers.) C.D. Adams,” Asian Pacific Journal of Tropical Medicine, vol. 5, no. 2, pp. 126–129, 2012.

[59] R. Nondo, M. Moshi, P. Erasto et al., “Evaluation of the cytotoxic activity of extracts from medicinal plants used for the treatment of malaria in Kagera and Lindi regions, Tanzania,” Journal of Applied Pharmaceutical Science, vol. 5, no. 4, pp. 007–012, 2015.

[60] J. E. Okokon, B. S. Antia, D. Mohanakrishnan, and D. Sahal, “Antimalarial and antiplasmodial activity of husk extract and fractions of zea mays,” Pharmaceutical Biology, vol. 55, no. 1, pp. 1394–1400, 2017.

[61] G. Zemicheal and Y. Mekonnen, “Antiplasmodial activity of *Vernonia adenos* aqueous, methanol and chloroform leaf extracts against chloroquine sensitive strain of *Plasmodium berghei* in vivo,” BMC Research Notes, vol. 11, no. 1, p. 736, 2018.

[62] A. Soma, S. Sanon, A. Gansane et al., “Antiplasmodial activity of *Vernonia cinerea* Less (Asteraceae), a plant used in traditional medicine in Burkina Faso to treat malaria,” African Journal of Pharmacy and Pharmacology, vol. 11, no. 5, pp. 87–93, 2017.

[63] W. Ekasari, T. S. Wahyuni, H. Arwaty, and N. T. Putri, “Determination of effective dose of antimalarial from cassia spectabilis leaf ethanol extract in plasmodium berghei-infected mice,” African Journal of Infectious Diseases, vol. 12, no. 1S, pp. 111–115, 2018.

[64] G. K. Mesia, G. L. Tona, T. H. Nanga et al., “Antiprotozoal and cytotoxic screening of 45 plant extracts from Democratic Republic of Congo,” Journal of Ethnopharmacology, vol. 115, no. 3, pp. 409–415, 2008.

[65] P. Melariri, W. Campbell, P. Etusim, and P. Smith, “Antiplasmodial properties and bioassay-guided fractionation of ethyl acetate extracts from carica papaya leaves,” Journal of Parasitology Research, vol. 2011, Article ID 104954, 7 pages, 2011.

[66] M. O. Nanyingi, K. B. Kipsengeret, C. G. Wagate, B. K. Langat, L. L. Asava, and J. O. Midwo, “In vitro and in vivo antiplasmodial activity of Kenyan medicinal plants,” in Aspects of African Biodiversity: Proceedings of the Pan-Africa Chemistry Network, J. O. Midwo and J. Clough, Eds., pp. 20–28, RCS Publishing, Cambridge, UK, 2010.

[67] D. N. Cyse, T. S. Fortes, A. S. Reis et al., “Antimalarial potential of leaves of *Chenopodium ambrosioides* L.,” Parasitology Research, vol. 115, no. 11, pp. 4327–4334, 2016.

[68] K. Asres, F. Bucar, E. Knauder, V. Yardley, H. Kendrick, and S. L. Croft, “In vitro antiprotozoal activity of extract and compounds from the stem bark of Combretum molle,” Phytotherapy Research, vol. 15, no. 7, pp. 613–617, 2001.

[69] C. Z. Amorim, A. D. Marques, and R. S. B. Cordeiro, “Screening of the antimalarial activity of plants of the cucurbitaceae family,” Memórias Do Instituto Oswaldo Cruz, vol. 86, no. suppl 2, pp. 177–180, 1991.

[70] P. B. Memvanga, G. L. Tona, G. K. Mesia, M. M. Lasikabanza, and R. K. Chimanga, “Antimalarial activity of medicinal plants from the Democratic Republic of Congo: a review,” Journal of Ethnopharmacology, vol. 169, pp. 76–98, 2015.

[71] L. Bantie, S. Assefa, T. Teklehaimanot, and E. Engidawork, “In vivo antimalarial activity of the crude leaf extract and solvent fractions of croton macrostachyus hoehst. (euphorbiaeaceae) against plasmodium berghei in mice,” BMC Complementary and Alternative Medicine, vol. 14, no. 1, p. 79, 2014.

[72] A. M. Kaou, V. Mahiou-Leddet, S. Hutter et al., “Antimalarial activity of crude extracts from nine african medicinal plants,” Journal of Ethnopharmacology, vol. 116, no. 1, pp. 74–83, 2008.

[73] O. Abiodun, J. L. Gbotohso, A. Ajayieoba et al., “In vitro antimalarial activity and toxicity assessment of some plants from Nigeran ethnomedicine,” Pharmaceutical Biology, vol. 49, no. 1, pp. 9–14, 2011.

[74] M. Mustofa, E. N. Sholikah, and S. Wahyono, “In vitro and in vivo antiplasmodial activity and cytotoxicity of extracts of *Phyllanthus niruri* L. herbs traditionally used to treat malaria in Indonesia,” Southeast Asian Journal of Tropical Medicine and Public Health, vol. 38, no. 4, pp. 609–615, 2007.

[75] G. Duker-Eshun, J. W. Jaroszewski, W. A. Asomaning, F. Oppong-Boachie, and S. Brogger Christensen, “Antiplasmodial constituents of *Cajanus cajan*,” Phytotherapy Research, vol. 18, no. 2, pp. 128–130, 2004.

[76] I. C. Ezenyi, L. Ranarivelo, S. A. Oluwakanyinsola, and M. Emeje, “Analgesic, anti-inflammatory, and heme bio-mineralization inhibitor properties of entada africana ethanol leaf extract with antiplasmodial activity against *Plasmodium falciparum*,” Journal of Basic and Clinical Physiology and Pharmacology, vol. 25, no. 2, pp. 217–223, 2014.

[77] G. Komlaga, C. Agyare, R. A. Dickson et al., “Medicinal plants and finished marketed herbal products used in the treatment of malaria in the Ashanti region, Ghana,” Journal of Ethnopharmacology, vol. 172, pp. 333–346, 2015.

[78] J. M. Nguta and J. M. Mbaria, “Brine shrimp toxicity and antimalarial activity of some plants traditionally used in treatment of malaria in Msambweni district of Kenya,” Journal of Ethnopharmacology, vol. 148, no. 3, pp. 988–992, 2013.

[79] K. A. M. Kuria, S. De Coster, G. Muriuki et al., “Antimalarial activity of *Ajuga remota* benth (labiatae) and *Caesalpinia
26 Evidence-Based Complementary and Alternative Medicine

volkensii harms (Caesalpiniaeae): in vitro confirmation of ethnopharmacological use," *Journal of Ethnopharmacology*, vol. 74, no. 2, pp. 141–148, 2001.

[80] C. N. Muthaura, J. M. Keriko, C. Mutai et al., "Antiplasmodial potential of traditional antimalarial phytotherapy remedies used by the kwale community of the Kenyan Coast," *Journal of Ethnopharmacology*, vol. 170, pp. 148–157, 2015.

[81] A. Kefe, M. Giday, H. Mamo, and B. Erko, "Antimalarial properties of crude extracts of seeds of *brucea antidysenterica* and leaves of *Ocimum lamifolium*," *BMC Complementary and Alternative Medicine*, vol. 16, p. 118, 2016.

[82] V. D. Zheljazkov, T. Astatkie, I. Zhalnov, and T. D. Georgieva, "*C. A. Simões-Pires, S. Vargas, A. Marston et al., "Ellagic acid composition from dried or fresh material,"* *Journal of Ethnopharmacology*, vol. 4, no. 10, pp. 1371–1395, 2009.

[83] J. E. Okokon, E. O. Etubong, J. A. Udobang, and J. Obot, "Antiplasmodial and antiulcer activities of *Melanthera scadens*," *Asian Pacific Journal of Tropical Biomedicine*, vol. 2, no. 1, pp. 16–20, 2012.

[84] M. Endale, J. P. Alao, H. M. Akala et al., "Antiplasmodial quinones from *Pentas longiflora* and *Pentas lanceolata*," *Planta Medica*, vol. 78, no. 1, pp. 31–35, 2012.

[85] A. T. Khalil, G. T. Maatooq, and K. A. El Sayed, "Limonoids from *Citrus reticulata*," *Zeitschrift Für Naturforschung C*, vol. 58, no. 3–4, pp. 165–170, 2003.

[86] P. Chinwuba, P. A. Akah, and E. E. Iiodigwe, "In vivo antiplasmodial activity of the ethanol stem extract and fractions of *Citrus sinensis* in mice," *Merit Research Journal of Medical Sciences*, vol. 3, no. 4, pp. 140–146, 2015.

[87] M. H. F. Haddad, H. Mahboodfar, Z. Zamani, and A. Ramazani, "Antimalarial evaluation of selected medicinal plant extracts used in Iranian traditional medicine," *Iranian Journal of Basic Medical Sciences*, vol. 20, no. 4, pp. 415–422, 2017.

[88] Z. A. Busari, K. A. Dauda, O. A. Morenikeji et al., "Antiplasmodial activity and toxicological assessment of curcumin PLGA-encapsulated nanoparticles," *Frontiers in Pharmacology*, vol. 8, p. 622, 2017.

[89] J. S. Freundlich, J. W. Anderson, D. Sarantakis et al., "Synthesis, biological activity, and X-ray crystal structural analysis of diaryl ether inhibitors of malarial enoyl acyl carrier protein reductase. Part 1: 4'-substituted triclosan derivatives," *Bioorganic & Medicinal Chemistry Letters*, vol. 15, no. 23, pp. 5247–5252, 2005.

[90] N. Q. Liu, F. Van Der Kooy, and R. Verpoorte, "Artemisia afra: a potential flagship for African medicinal plants?," *South African Journal of Botany*, vol. 75, no. 2, pp. 185–195, 2009.

[91] E. Yarnell, "*Artemisia annua* (sweet annie), other artemisia species, artemisinin, artemisinin derivatives, and malaria," *Journal of Restorative Medicine*, vol. 3, no. 1, pp. 69–84, 2014.

[92] S. Sawadogo, S. D. Sanou, A. P. Dabiré et al., "In vivo evaluation of *Jatropha curcas* (euphorbiaceae) leaves acute and subacute toxicity in mice," *Journal of Scientific Research*, vol. 10, no. 2, pp. 187–193, 2018.

[93] W.-C. Teng, W. Chan, R. Suwanarusk et al., "In vitro antimalarial evaluations and cytotoxicity investigations of carica papaya leaves and carpaine," *Natural Product Communications*, vol. 14, no. 1, pp. 33–36, 2019.

[94] H. M. Malebo, V. Wiketey, S. J. Katani et al., "In vivo antiplasmodial and toxicological effect of *Maytenus senegalensis* traditionally used in the treatment of malaria in Tanzania," *Malaria Journal*, vol. 14, no. 1, p. 79, 2015.

[95] S. Froelich, B. Ongei, A. Kakooko, K. Siems, C. Schubert, and K. Jenett-Siem, "Plants traditionally used against malaria: phytochemical and pharmacological investigation of *Momordica foetida*," *Revista Brasileira de Farmacognosia*, vol. 17, no. 1, pp. 1–17, 2007.

[96] J.-T. Banzouzi, R. Prado, H. Menan et al., "In vitro antimalarial activity of extracts of *Alchornea cordifolia* and *H. M. Tadesse and Z. B. Wubneh, “Antimalarial activity of *Syzygium guineense* during early and established plasmodium infection in rodent models," *BMC Complementary and Alternative Medicine*, vol. 17, no. 1, p. 21, 2017.

[97] B. Ndjakou Lenta, C. Vonthron-Senecheau, R. Fongang Soh et al., "In vitro antituberculosis activities and cytotoxicity of some selected cameroonian medicinal plants," *Journal of Ethnopharmacology*, vol. 111, no. 1, pp. 8–12, 2007.

[98] A. G. Bwalya, "Evaluation of the in vitro biological activities and phytochemical profiling of eight fucus species collected in Zambia," Doctoral Thesis, University College London (UCL), School of Pharmacy, London, UK, 2014.

[99] J. O. Areola, N. O. Omisore, and O. O. Babalola, "Antiplasmodial activity of stem-bark extract of *Milicia excelsa* (welw.) c.c.berg against rodent malaria parasites (*Plasmodium berghei*) in mice," *Ife Journal of Science*, vol. 18, no. 4, pp. 168–173, 2016.

[100] J. E. Okokon, E. O. Etebong, J. A. Udobang, and J. Obot, "Antiplasmodial and antiulcer activities of *Melia azedarach* leaf fractions of *Citrus reticulata* in mice," *Zeitschrift F¨ur Naturforschung C*, vol. 2, pp. 148–157, 1997.
identification of an active constituent: ellagic acid," Journal of Ethnopharmacology, vol. 81, no. 3, pp. 399–401, 2002.

[110] S. V. Singh, A. Manhas, Y. Kumar et al., "Antimalarial activity and safety assessment of Flueggea virosa leaves and its major constituent with special emphasis on their mode of action," Biomedicine & Pharmacotherapy, vol. 89, pp. 761–771, 2017.

[111] G. Asare, P. Addo, K. Bugyei et al., "Acute toxicity studies of aqueous leaf extract of Phyllanthus niruri," Interdisciplinary Toxicology, vol. 4, no. 4, pp. 206–210, 2011.

[112] S. O. Okpo, C. O. Igwealor, and G. I. Eze, "Sub-acute toxicity study on the aqueous extract of Albizia zygia stem bark," Journal of Pharmacy & Bioresources, vol. 13, no. 1, pp. 32–41, 2016.

[113] S. Mandal and M. Mandal, “Tangerine (Citrus reticulata L. var.) oils,” in Essential Oils in Food Preservation, Flavor and Safety, pp. 803–811, Elsevier, Amsterdam, Netherlands, 2016.

[114] H. A. Abdelgadir and J. Van Staden, “Ethnobotany, ethnopharmacology and toxicity of Jatropha curcas L. (Euphorbiaceae): a review," South African Journal of Botany, vol. 88, pp. 204–218, 2013.

[115] E. Falk, Traditional Medicine; Sharing Experiences from the Field, ICHCAP, Jeonju, Republic of Korea, 2017.

[116] The republic of Uganda, National Medicines Policy, Ministry of Health, Kampala, Uganda, 2015.

[117] R. P. Giri, A. K. Gangawane, and S. G. Giri, “Regulation on herbal product used as medicine around the world: a review,” IRJET, vol. 5, no. 10, 2018.