Van der Waals Heteroepitaxial Growth of Monolayer Sb in a Puckered Honeycomb Structure

Zhi-Qiang Shi, Huiping Li, Qian-Qian Yuan, Ye-Heng Song, Yang-Yang Lv, Wei Shi, Zhen-Yu Jia, Libo Gao, Yan-Bin Chen, Wenguang Zhu,* and Shao-Chun Li*

Atomic thin 2D crystals have been predicted and realized, such as Si,[21–23] Ge,[24,25] Sn,[26] B,[27,28] Hf,[29] and Te,[30] but few of them share the same crystal structure as BP. It is believed that BP-structured monolayer (α-allotrope) can be formed in other group V elements, such as Bi (bismuthene), Sb (antimonene), or As (arsenene), and many theoretical efforts have been made to predict their structures and properties.[31–37] Comparing to their β-allotrope of hexagonal honeycomb structure that has been widely studied experimentally,[38–44] it still remains challenging to fabricate the large-scale and high-quality monolayer α-allotrope of these group V monoelements,[36] even though small patches of the α-allotrope has been observed in some mixed structures.[45]

In this study, we successfully synthesize the large-scale and high-quality α-antimonene with puckered BP structure on the Td-WTe2 substrate, by using molecular beam epitaxy (MBE). In our experiment, the thickness of BP-structured antimonene can be well controlled in a layer-by-layer fashion. Owing to the high quality and large scale of the Sb monolayer, it becomes possible to map the electronic band structure via quasiparticle interference (QPI) with scanning tunneling microscopy (STM). The α-antimonene exhibits a hole-doped nature with a linearly dispersed band crossing the Fermi level and a high electrical conductivity.

Spurred by their prospect in electronic technologies, 2D crystals have been attracting increasing attentions. As the thickness is decreased down to the single-layer limit, 2D crystals usually exhibit different electronic properties from their bulk counterparts.[1] Exotic phenomena are also expected in single-layered materials, such as the quantum spin Hall effect.[2–6] 2D superconductivity,[7,8] charge density wave,[9–12] or magnetism.[13,14]

Following the discovery of graphene,[15,16] black phosphorus (BP) has been revived as a potential candidate for optoelectronics and field-effect transistor (FET) applications,[17–20] which, however, is suffering from chemical instability. Many monoelement single-layered materials have been predicted and realized, such as Si,[21–23] Ge,[24,25] Sn,[26] B,[27,28] Hf,[29] and Te,[30] but few of them share the same crystal structure as BP.

It is believed that BP-structured monolayer (α-allotrope) can be formed in other group V elements, such as Bi (bismuthene), Sb (antimonene), or As (arsenene), and many theoretical efforts have been made to predict their structures and properties.[31–37] Comparing to their β-allotrope of hexagonal honeycomb structure that has been widely studied experimentally,[38–44] it still remains challenging to fabricate the large-scale and high-quality monolayer α-allotrope of these group V monoelements,[36] even though small patches of the α-allotrope has been observed in some mixed structures.[45]

In this study, we successfully synthesize the large-scale and high-quality α-antimonene with puckered BP structure on the Td-WTe2 substrate, by using molecular beam epitaxy (MBE). In our experiment, the thickness of BP-structured antimonene can be well controlled in a layer-by-layer fashion. Owing to the high quality and large scale of the Sb monolayer, it becomes possible to map the electronic band structure via quasiparticle interference (QPI) with scanning tunneling microscopy (STM). The α-antimonene exhibits a hole-doped nature with a linearly dispersed band crossing the Fermi level and a high electrical conductivity.
conductivity. Moreover, the α-antimonene is ultrastable upon exposure to air, thus making it a good complementary to the family of 2D materials, and should be of potential to many applications.

Freestanding α-antimonene takes a distorted BP structure, consisting of two subatomic layers, as illustrated in Figure 1a. The antimonene layers are stacked along the vertical direction by van der Waals interaction to form the bulk antimony. To achieve the nearly freestanding epitaxial α-antimonene monolayer, the substrate is required to be chemically inert and weakly bonded to suppress the hybridization to the epitaxial layer. Td-WTe2 is a suitable substrate to grow α-antimonene because 1) the surface is relatively inert and 2) the rectangular unit cell of Td-WTe2 surface is compatible to that of α-antimonene, as shown in Figure 1a.

Initially, Sb on the Td-WTe2 surface prefers a monolayer growth mode. Figure 1b shows the topographic image taken on a surface with ≈0.3 ML Sb on Td-WTe2, where Sb forms the atomically flat islands with no detectable defects. The step height of the Sb island, as plotted in Figure 1c, is ≈0.78 nm, slightly larger than the calculated thickness of 0.61 nm for the single-layer antimonene film. A moiré pattern, can be identified in Figure 1b as the ridge-like feature with a period of ≈2.5 nm, which is ascribed to the interference between the subtly different lattice periodicity of antimonene and Td-WTe2. Through optimizing the growth parameters, the single-layered film of antimonene can be grown as large as a micrometer, (see Figure S1, Supporting Information). The single-layered island is usually composed of two domains, with the orientation of the moiré pattern rotated by ≈80° with respect to each other, (as shown in Figure S2, Supporting Information). The atomic-resolution STM images (Figure 1d,e), as well as the fast Fourier transform (FFT) of the large-scale STM topology image, the blue, red, and green circles mark the Bravais vectors of 1 × 1, R2 reconstruction, and moiré pattern, respectively. The red curve shows the experimental STS of single layer α-Sb from −2.5 to +2.5 V. The blue curve is the enlarged part from −2.0 to +1.0 V.
antimonene on WTe₂ is proposed (as shown in Figure S2, Supporting Information). The characteristic peaks in the unoccupied states, as marked by the black triangles in each spectrum, are taken on the terrace of the single-layer antimonene, confirming the BP-like puckered structure, and no structural transition is observed. In our STM measurement, the limit of thickness explored is six layers. Raman characterization indicates that the antimonene film keeps the BP-puckered structure at least up to 20 layers (Figure 2g).

The DFT-calculated band structure of the antimonene-WTe₂ heterostructure (Figure S6, Supporting Information) reveals that the epitaxial antimonene is hole doped, due to the electron transfer from the antimonene to the underlying WTe₂ substrate and as the thickness of Sb increases, the Fermi level gradually shifts upward. Such effects can be confirmed in the following QPI analysis. Regardless of downward shift of the Fermi level, the calculated band structure of the epitaxial antimonene is overall similar with that of the freestanding antimonene, (as shown in Figure S7, Supporting Information), due to the weak interlayer coupling between the antimonene and WTe₂ substrate. Therefore, we will use the band structures of freestanding antimonene in the following discussions for simplicity.

(see Figure S3, Supporting Information). Based on these measurements, a structural model of a $\sqrt{2} \times \sqrt{2}$ reconstructed antimonene on WTe₂ is proposed (as shown in Figure S2, Supporting Information).

The dI/dV spectra, which represent the local density of state, are taken on the terrace of the single-layer antimonene, and shown in Figure 1g. The finite density at the Fermi energy indicates a metallic nature. In fact, the dI/dV spectra are rather uniform along the surface (see Figure S4, Supporting Information), suggesting the high film quality and homogeneous electronic band structure. Furthermore, the dI/dV spectra taken on different domains show subtle difference as well, (as shown in Figure S4, Supporting Information).

By increasing the amount of Sb, multilayered antimonene of large scale can be grown, as shown in Figure 2a. Figure 2b–d shows the atomic resolution images taken on the different layers of antimonene, confirming the BP-like puckered structure for all the thickness. The step heights measured on the antimonene films from 1st to 6th layer are plotted in Figure 2e (see also Figure S5, Supporting Information). The step heights from the 2nd to the 6th layer are kept nearly constant varying from ±0.63 to ±0.63 nm, but smaller than the height of the 1st layer, indicating again the weak coupling between antimonene and the Td-WTe₂ substrate. dI/dV spectra are also measured on these multiple layers, as plotted together in Figure 2f. All the dI/dV spectra exhibit the same metallic nature. The characteristic peaks in the unoccupied states, as marked by the black triangles in Figure 2f, gradually shift toward the Fermi energy as the thickness increases.

Raman characterization is performed on the α-antimonene films, as shown in Figure 2g. According to the density functional theory (DFT) calculation,[34] the characteristic peak at \approx147 cm⁻¹ is related to the out-of-plane mode A_1^1 (147 cm⁻¹ for 1st layer α-Sb), and the one at 131 cm⁻¹ to the in-plane mode A_2^1 (132 cm⁻¹ for 1st layer α-Sb), respectively. As the thickness increases, the A_2^1 mode at 131 cm⁻¹ prominently shifts to 118 cm⁻¹ (red shift), while the A_1^1 mode at 147 cm⁻¹ shifts to 150 cm⁻¹ (blue shift). Such Raman shifts can be ascribed to the stacking induced structural change or the anisotropy of the BP-like lattice, similar to what has been observed in black phosphorene and MoS₂.[18,46–48] In contrast to the BP-type Bi(110)/HOPG islands which undergo a structural transition at 4 MLs,[36] the multilayered antimonene always preserves the BP-like structure, and no structural transition is observed. In our STM measurement, the limit of thickness explored is six layers. Raman characterization indicates that the antimonene film keeps the BP-puckered structure at least up to ≈20 layers (Figure 2g).
To further explore the band structure of antimonene, QPI is applied to map the dispersive band structure. Figure 3a,b shows the fast Fourier transform of two QPI patterns measured on the single layer antimonene at $U = -20$ and $U = +120$ mV, respectively (more QPI data can be found in Figures S8 and S9, Supporting Information). Besides the static vectors that originated from the R2 reconstruction/moiré pattern, the QPI-associated pattern can be identified as the square centered at the Γ point. Along the Γ–S direction (the green line in Figure 3a) is located two replicas of the centered square. The diameter of the square becomes gradually smaller with increasing bias energy, (as shown in Figure S9, Supporting Information), indicating that it is originated from the hole pocket of Sb valence band. The contribution from the WTe$_2$ substrate, identified as the two arcs symmetrically located along Γ–X, is rather weak. Therefore, we believe the QPIs are dominated by the contribution from the Sb layer. Figure 3c,d shows the calculated constant energy contour (CEC) at -480 and -340 meV below the valence band maximum for the monolayer α-antimonene in R2 reconstruction. The most dominating pattern is two square-shaped pockets located along the Γ–S direction. Taking into account the hole doping effect, the simulated QPI patterns as shown in Figure 3e,f are qualitatively consistent with the experimental results of Figure 3a,b. Figure 3g,h shows the E–q dispersion taken along the yellow (Γ–X) and green (Γ–S) lines in (a). The error bars and linear fitting are included in the right side.

Figure 3. Comparison of experimental and DFT simulated QPI patterns and E–q dispersion of single-layered α-antimonene. a,b) FFT of experimentally obtained dI/dV maps taken at $U = -20$ and $U = +120$ mV. The red dotted squares mark the 1st Brillouin Zone of R2 reconstruction. c,d) DFT calculated CEC for -480 and -340 mV. The high symmetric directions are labeled according to energy band of R2 reconstruction. e,f) The corresponding simulated QPI of (c) and (d). The red square is used to compare with (a) and (b). g,h) E–q dispersion taken along the yellow (Γ–X) and green (Γ–S) lines in (a). The error bars and linear fitting are included in the right side.
after exposure to pure oxygen gas for 20 min. Other than some small clusters, which may be caused by the surface adsorption.

In summary, the high-quality and large-scale α-antimonene with puckered BP structure has been experimentally realized, thus confirming that it is energetically stable. The linearly dispersed metallic band leads to the high electrical conductivity. Such advanced properties, together with its chemical inertness under ambient condition and the structural similarity to BP, make it potential in 2D-material-based applications. It is also expected that this study will stimulate further investigation regarding its topological properties or thermal electric applications.

Experimental Section

Sample Growth and STM Characterization: The high quality antimonene films were grown in a combined STM–MBE system (Unisoku USM1500) with a base pressure of 1×10^{-11} Torr. The single crystal Ta_2WTe_2 substrate was firstly in situ cleaved in ultrahigh vacuum. The atomic quality of cleaved surface was checked by STM prior to antimonene growth. High purity antimony (alfa Aesar 99.9999%) was evaporated from a standard Knudsen cell. The Sb flux was kept at 0.3 ± 0.1 monolayers per minute. During the growth, the substrate was kept at ≈ 400 K. After growth, the antimonene film was transferred to low-temperature STM stage for characterization. All the STM experiments were performed at 4 K with a PtIr tip unless particularly stated. The scanning tunneling spectroscopy were acquired with a lock-in amplifier technique. The data were processed with the WSXM software.[51] Oxygen gas was introduced into UHV through a leak valve. The oxygen pressure was kept at 1×10^{-5} Torr during dosing.

DFT Calculations: First-principles calculations were based on DFT by using the Vienna Ab Initio Simulation Package (VASP).[32] The projector-augmented wave (PAW) method[53,54] with a plane wave basis set was used to describe the ion–electron interactions. The exchange-correction potentials were approximated by the generalized gradient approximation (GGA) parameterized by the Perdew–Burke–Ernzerhof (PBE)[55] method. The 2D crystals were modeled by supercells repeated periodically in the 2D plane, while a vacuum region of more than 15 Å was applied to avoid the interactions between the periodic images. Calculations were performed with an energy cutoff of 300 eV on a $12 \times 12 \times 1$ Γ-centered Monkhorst–Pack[56] k-point mesh. During structural optimization, the force convergence criterion was set to 0.01 eV Å$^{-1}$. The van der Waals

![Figure 4](image-url) Figure 4. Transport measurement of α-antimonene film. Temperature dependence of longitudinal resistance normalized at 300 K for bare Ta_2WTe_2 and α-antimonene films with different thickness. The inset shows the schematic of the four-probe resistance measurement.

![Figure 5](image-url) Figure 5. Chemical stability of α-antimonene films upon exposure to O_2 and air. a) The surface morphology (150×150 nm2) of multilayered antimonene after exposure to pure oxygen gas for ≈ 12 000 Langmuir (≈ 20 min). Other than some adsorbates adsorbed at the surface defective sites, as marked by the arrows in Figure 5b, the surface looks almost the same as before oxygen dosing (Figure 2a). The α-antimonene films are also stable after exposed in air. Figure 5c shows the atomic force microscopy (AFM) image taken after the sample is exposed in air for ≈ 12 h. The antimonene islands are still kept flat and clean. In contrast, the exposed WTe$_2$ substrate are covered by small clusters, which may be caused by the surface adsorption.

Stability is another essential concern considering its practical applications.[46] We investigate the chemical stability of the antimonene film upon exposure to oxygen and air. Figure 5a,b shows the multilayered antimonene surface after exposure to oxygen gas of ≈ 12 000 Langmuir (≈ 20 min). Other than some adsorbates adsorbed at the surface defective sites, as marked by the arrows in Figure 5b, the surface looks almost the same as...
corrections were treated by the semiempirical DFT-D3 method[57] in the bilayer and trilayer calculations.

To investigate the electronic structure information from the QPI patterns, the Fourier transform scanning tunneling spectroscopy (FT-STS) images were simulated using the joint density of states (JDOS) approximation, based on the self-correlation function of the 2D CECs of the surface states at a given energy.[58,59] The factors of the scattering approximation, based on the self-correlation function of the 2D CECs of (FT–STS) images were simulated using the joint density of states (JDOS).

532 nm laser at ambient conditions, and AFM images were taken from the author.

To investigate the electronic structure information from the QPI patterns, the Fourier transform scanning tunneling spectroscopy (FT-STS) images were simulated using the joint density of states (JDOS) approximation, based on the self-correlation function of the 2D CECs of the surface states at a given energy.[58,59] The factors of the scattering approximation, based on the self-correlation function of the 2D CECs of (FT–STS) images were simulated using the joint density of states (JDOS).
[37] Y. Lu, D. Zhou, G. Chang, S. Guan, Y. Jiang, J. Jiang, Y.-S. Wang, S. A. Yang, Y. P. Feng, Y. Kawazoe, H. Lin, npj Comput. Mater. 2016, 2, 16011.

[38] P. Ares, F. Aguilar-Galindo, D. Rodríguez-San-Miguel, D. A. Aldave, S. Díaz-Tendero, M. Alcamí, F. Martín, J. Gómez-Herrero, F. Zamora, Adv. Mater. 2016, 28, 6332.

[39] C. Gibaja, D. Rodríguez-San-Miguel, P. Ares, J. Gómez-Herrero, M. Varela, R. Gillen, J. D. Martzsch, F. Hauke, A. Hirsch, G. Abellán, F. Zamora, Angew. Chem. 2016, 128, 14557; Angew. Chem., Int. Ed. 2016, 55, 14345.

[40] J. Ji, X. Song, J. Liu, Z. Yan, C. Huo, S. Zhang, M. Su, L. Liao, W. Wang, Z. Ni, Y. Hao, H. Zeng, Nat. Commun. 2016, 7, 13352.

[41] M. Fortin-Deschênes, O. Waller, T. O. Menteš, A. Locatelli, S. Mukherjee, F. Genuzio, P. L. Levesque, A. Hébert, R. Martel, O. Moutanabbir, Nano Lett. 2017, 17, 4970.

[42] X. Wu, Y. Shao, H. Liu, Z. Feng, Y.-L. Wang, J.-T. Sun, C. Liu, J.-O. Wang, Z.-L. Liu, S.-Y. Zhu, Y.-Q. Wang, S.-X. Du, Y.-G. Shi, K. Ibrahim, H.-J. Gao, Adv. Mater. 2017, 29, 1605407.

[43] Y.-H. Mao, L.-F. Zhang, H.-L. Wang, H. Shan, X.-F. Zhai, Z.-P. Hu, A.-D. Zhao, B. Wang, Front. Phys. 2018, 13, 138106.

[44] Y. Shao, Z.-L. Liu, C. Cheng, X. Wu, H. Liu, C. Liu, J. O. Wang, S.-Y. Zhu, Y.-Q. Wang, D.-X. Shi, K. Ibrahim, J. T. Sun, Y. L. Wang, H.-J. Gao, Nano Lett. 2018, 18, 2133.

[45] T. Märkl, P. J. Kowalczyk, M. Le Ster, I. V. Mahajan, H. Pirie, Z. Ahmed, G. Bian, X. Wang, T.-C. Chiang, S. A. Brown, 2D Mater. 2017, 5, 011002.

[46] A. Favron, E. Gaufrès, F. Fossard, A.-L. Phaneuf-L'heureux, N. Y.-W. Tang, P. L. Lévesque, A. Loiseau, R. Leonelli, S. Francoeur, R. Martel, Nat. Mater. 2015, 14, 826.

[47] W. Lu, H. Nan, J. Hong, Y. Chen, C. Zhu, Z. Liang, X. Ma, Z. Ni, C. Jin, Z. Zhang, Nano Res. 2014, 7, 853.

[48] C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, S. Ryu, ACS Nano 2010, 4, 2695.

[49] H. Zheng, G. Bian, G. Chang, H. Lu, S. Y. Xu, G. Wang, T. R. Chang, S. Zhang, I. Belopolski, N. Alidoust, D. S. Sanchez, F. Song, H. T. Jeng, N. Yao, A. Bansil, S. Jia, H. Lin, M. Z. Hasan, Phys. Rev. Lett. 2016, 117, 266804.

[50] S. Zhang, M. Xie, F. Li, Z. Yan, Y. Li, E. Kan, W. Liu, Z. Chen, H. Zeng, Angew. Chem. 2016, 128, 1698; Angew., Chem. Int. Ed. 2016, 55, 1666.

[51] I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, A. M. Baro, Rev. Sci. Instrum. 2007, 78, 013705.

[52] G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.

[53] P. E. Blöchl, Phys. Rev. B 1994, 50, 17953.

[54] G. Kresse, J. Furthmüller, Phys. Rev. B 1999, 59, 1758.

[55] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.

[56] M. Methfessel, A. T. Paxton, Phys. Rev. B 1989, 40, 3616.

[57] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.

[58] J. E. Hoffman, K. McElroy, D.-H. Lee, K. M. Lang, H. Eisaki, S. Uchida, J. C. Davis, Science 2002, 297, 1148.

[59] L. Simon, C. Bena, F. von Voss, M. Franchini, D. Aubel, J. Phys. D: Appl. Phys. 2011, 44, 464010.