A more accurate analysis of maternal effect genes by siRNA electroporation into mouse oocytes

Takuto YAMAMOTO¹*, Shinnosuke HONDA¹*, Issei IDEGUCHI¹, Motoki SUEMATSU¹, Shuntaro IKEDA³ and Naojiro MINAMI¹

¹Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan

Abstract. Maternal RNA and proteins accumulate in mouse oocytes and regulate initial developmental stages. Sperm DNA combines with protamine, which is exchanged after fertilization with maternal histones, including H3.3; however, the effect of H3.3 on development post-fertilization remains unclear. Herein, we established an electroporation method to introduce H3.3 siRNA into germinal vesicle (GV)-stage oocytes without removing cumulus cells. Oocyte-attached cumulus cells need to be removed during the traditional microinjection method; however, we confirmed that artificially removing cumulus cells from oocytes reduced fertilization rates, and oocytes originally free of cumulus cells had reduced developmental competence. On introducing H3.3 siRNA at the GV stage, H3.3 was maintained in the maternal pronucleus and second polar body but not in the paternal pronucleus, resulting in embryonic lethality after fertilization. These findings indicate that H3.3 protein was not incorporated into the paternal pronucleus, as it was repeatedly translated and degraded over a relatively short period. Conversely, H3.3 protein incorporated into the maternal genome in the GV stage escaped degradation and remained in the maternal pronucleus after fertilization. This new method of electroporation into GV-stage oocytes without cumulus cell removal is not skill-intensive and is essential for the accurate analysis of maternal effect genes.

Key words: Electroporation, Germinal vesicle (GV)-stage oocytes, H3.3, Mouse, siRNA

Received: November 10, 2022
Accepted: January 31, 2023
Advanced Epub: March 2, 2023
©2023 by the Society for Reproduction and Development
Correspondence: N Minami (e-mail: minami.naojirou.6r@kyoto-u.ac.jp)
* T Yamamoto and S Honda contributed equally to this work.

This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/)

©2023 by the Society for Reproduction and Development

Abstract. Maternal RNA and proteins accumulate in mouse oocytes and regulate initial developmental stages. Sperm DNA combines with protamine, which is exchanged after fertilization with maternal histones, including H3.3; however, the effect of H3.3 on development post-fertilization remains unclear. Herein, we established an electroporation method to introduce H3.3 siRNA into germinal vesicle (GV)-stage oocytes without removing cumulus cells. Oocyte-attached cumulus cells need to be removed during the traditional microinjection method; however, we confirmed that artificially removing cumulus cells from oocytes reduced fertilization rates, and oocytes originally free of cumulus cells had reduced developmental competence. On introducing H3.3 siRNA at the GV stage, H3.3 was maintained in the maternal pronucleus and second polar body but not in the paternal pronucleus, resulting in embryonic lethality after fertilization. These findings indicate that H3.3 protein was not incorporated into the paternal pronucleus, as it was repeatedly translated and degraded over a relatively short period. Conversely, H3.3 protein incorporated into the maternal genome in the GV stage escaped degradation and remained in the maternal pronucleus after fertilization. This new method of electroporation into GV-stage oocytes without cumulus cell removal is not skill-intensive and is essential for the accurate analysis of maternal effect genes.

Key words: Electroporation, Germinal vesicle (GV)-stage oocytes, H3.3, Mouse, siRNA

In mammals, maternal transcripts and proteins (maternal factors), known to support early embryonic development, accumulate during oogenesis. Given the minimal transcriptional activity that occurs during the development of fully grown oocytes to early one-cell embryos in mice [1–3], these transcripts and proteins are involved in regulating the developmental program and after this period. Some of these factors have already been shown to be involved in meiotic progression, maternal RNA degradation, and chromatin remodeling [4–6]. Typically, maternal transcripts undergo degradation around the two- to eight-cell stages in mice, coinciding with zygotic genome activation [7]. Knockout and transgenic mice are frequently employed to analyze the function of maternal factors [8–11]. However, these genetically modified techniques can be time-consuming and require the management of large numbers of animals. Subsequently, a method involving the direct microinjection of siRNA into germinal vesicle (GV)-stage oocytes or metaphase II (MII) oocytes was developed, facilitating the analysis of maternal factors in a single generation [12, 13]. Oocyte-attached cumulus cells need to be removed by pipetting before microinjection; however, the impact of this procedure on oocytes remains unclear. Electroporation was developed as an alternative gene delivery method and does not require skilled techniques such as microinjection [14]. Electroporation is frequently used to introduce Cas9-gRNA complexes, morpholino oligonucleotides, and plasmid DNAs into zygotes [14, 15]. In addition, an electroporation method to introduce siRNA into GV-stage oocytes has been established; however, this technique is markedly complicated, as it requires the removal of cumulus cells, thinning of the zona pellucida, and use of polyamine-based transfection reagents [16]. Two types of GV-stage oocytes can be artificially harvested from mouse ovaries: those surrounded by cumulus cells (cumulus-enclosed oocytes: CEOs) and those without associated cumulus cells (denuded oocytes: DOs) [3]. DOs exhibit a lower maturation rate and higher transcriptional activity than CEOs [17, 18]; however, the differences in subsequent fertilization and development rates between DOs, CEOs, and artistically denuded CEOs (dCEOs) remain poorly explored. Low numbers of cumulus cells surrounding oocytes have been associated with follicle atresia in humans, cynomolgus monkeys, cattle, and horses [19–22], which may explain the poor quality of DOs.

In mammals, three non-centromeric histone H3 variants (H3.1, H3.2, and H3.3) have been identified, and H3.3 is a known maternal factor. H3.3 is incorporated into the paternal pronucleus immediately after fertilization and promotes chromatin decondensation [13, 23–26]. H3.3 accumulates in active chromatin after the two-cell stage in mouse embryos and is considered to regulate embryo-specific gene expression patterns [27, 28]. Although several H3.3 knockdown experiments in MII- and GV-stage oocytes have been reported [13, 26, 29, 30], the post-fertilization developmental competence of H3.3-depleted GV-stage oocytes has not been examined.

In the present study, we investigated the differences in fertilization and development rates between DOs, CEOs, and dCEOs. CEOs exhibited higher fertility and developmental competence than DOs. Moreover, we observed that cumulus cells were essential for CEO fertility; hence, we developed a method that employed electroporation to introduce maternal transcript-targeting siRNAs into oocytes without cumulus cell removal. Using this electroporation method, we examined the function of H3.3 more precisely during embryonic...
In vitro fertilization (IVF) and embryo culture

Electroporation of siRNA into GV oocytes

Introduction of siRNA into GV-stage oocytes by electroporation

To perform the electroporation of oocytes, we employed the NEPA21 electroporator system (NEPA GENE, Chiba, Japan) with a glass slide and two metal electrodes separated by a 1-mm gap (CUY501P1-1.5; NEPA GENE). The electroporation parameters consisted of four poring pulses (40 V; pulse length, 1.0, 2.0, 3.0 or 4.0; interval, 50 msec; decay rate, 10%; polarity, +) and five transfer pulses (5 V; pulse length, 50 msec; interval, 50 msec; decay rate, 40%; polarity, +/−). Opti-MEM (Thermo Fisher Scientific, Waltham, MA, USA) containing siH3.3 (4 siRNAs at 5 µM each; RNAi Inc., Tokyo, Japan) or 4 µM red fluorescent non-targeting control siRNA (BLOCK-iT™ Alexa Fluor® Red Fluorescent Control; Thermofisher Scientific) was prepared as the siRNA solution. The prepared siRNA solution (5 µl) was applied between the two electrodes on a glass slide. Oocytes were aligned between the electrodes, followed by the application of electrical discharge. The siRNA solution was exchanged every two operations to avoid electrode fatigue.

Materials and Methods

Collection of GV-stage oocytes

GV-stage oocytes were obtained from 8–12-week-old ICR mice (Japan SLC, Shizuoka, Japan) 48 h after injection with 7.5 IU equine chorionic gonadotropin (eCG). The ovaries were removed and transferred to M2 medium containing 0.2 mM 3-isobutyl-1-methylxanthine (IBMX; Nacalai Tesque, Kyoto, Japan). Ovarian follicles were punctured with a 26-G needle, and oocytes with homogenous cytoplasm were collected. The collected oocytes were grouped as follows: those with more than three layers of unexpanded cumulus cells (i.e., CEOs), those in which approximately half the cumulus layers were intact (partially denuded oocytes: PDOs), and those without cumulus cells (i.e., DOs). CEOs and denuded PDOs (dPDOs) were prepared by mechanically removing cumulus cells from CEOs and PDOs and transferred into a 100-μl droplet of human tubal fluid (HTF) medium supplemented with 4 mg/ml bovine serum albumin (BSA; Sigma-Aldrich, St. Louis, MO, USA) [31]. Spermatozoa were collected from the cauda epididymis of 12–18-week-old ICR male mice. After 1-h preincubation in HTF medium, the sperm suspension was added to the fertilization droplets at a final concentration of 1 × 10⁶ cells/ml. Six hours post-insemination (hpi), fertilized embryos were washed in potassium simplex optimized medium (KSOM) supplemented with amino acids [32] and 1 mg/ml BSA and then cultured in the same medium under paraffin oil (Nacalai Tesque). All incubations were performed at 37°C under 5% CO₂.

RNA extraction and reverse transcription-quantitative PCR (RT-qPCR)

Total RNA extraction and cDNA synthesis from oocytes or cumulus cells were performed using the superPrep™ Cell Lysis & RT Kit for qPCR (TOYOBO, Osaka, Japan). Synthesized cDNA was mixed with specific primers and KOD SYBR qPCR Mix (TOYOBO), followed by RT-qPCR amplification. The protocols for RT-qPCR and establishment of transcript levels were performed as previously described [33], and Gapdh was used as an internal control. The relative gene expression was calculated using the 2^−ΔΔCt method [34]. Primer sequences used for RT-qPCR were as follows: Gapdh, 5´-GTGTTCCTACCCCCAATGTTG-3´ (forward) and 5´-TGTCATCACTTTGGCAGGTTT-3´ (reverse); H3f3a, 5´-ACAAAAGCCGCTCGCAAGAG-3´ (forward) and 5´-ATTTCTCGCACTCAAGCAGCTG-3´ (reverse); H3f3b, 5´-ATTTCTCGCACTCAAGCAGCTG-3´ (reverse); H3f3b, 5´-GGATGTCTTTGGGCATGATGGTGAC-3´ (reverse).

Immunocytochemistry and fluorescence analysis

To detect the nuclear localization of H3.3, oocytes and embryos were fixed with 3.2% paraformaldehyde and 0.2% Triton X-100 (Sigma-Aldrich) in phosphate-buffered saline (PBS) for 20 min at 28°C. Oocytes and embryos were blocked in PBS containing 1.5% BSA, 0.2% sodium azide, and 0.02% Tween20 (antibody dilution buffer) for 1 h at 28°C, followed by overnight incubation at 4°C.
with rat anti-H3.3 (1:100) (CE-040B; Cosmo Bio, Tokyo, Japan) antibody in antibody dilution buffer. Subsequently, the samples were washed in antibody dilution buffer and incubated with Alexa Fluor 555 donkey anti-rat IgG secondary antibody (1:500; Thermo Fisher Scientific) for 1 h at 28°C. After washing in antibody dilution buffer, nuclei were stained with antibody dilution buffer containing 10 μg/ml Hoechst 33342 (Sigma-Aldrich) for 20 min at 28°C. Stained samples were mounted on glass slides, and signals were observed using a fluorescence microscope (IX73; Olympus, Tokyo, Japan). Hoechst staining revealed that the larger pronucleus located farther from the polar body was a male pronucleus. Similarly, GV-stage oocytes were mounted on glass slides, and fluorescence signals of BLOCK-iT™ Alexa Fluor® Red Fluorescent Control (Thermo Fisher Scientific) were observed using a fluorescence microscope (BX50; Olympus).

Statistical analyses

Developmental rates were analyzed using the chi-squared test with Holm’s adjustment. For gene expression analysis, RT-qPCR data were analyzed using Student’s t-test for pairwise comparisons or one-way analysis of variance (ANOVA) followed by the Tukey-Kramer test for multiple comparisons. P values < 0.05 were considered statistically significant.

Ethical approval for the use of animals

All experimental procedures were approved by the Animal Research Committee of Kyoto University (Permit no. R3-17) and performed in accordance with the committee’s guidelines.

Results

The presence of cumulus cells affects the developmental competence of mouse GV-stage oocytes

The method used for introducing siRNA into mouse GV-stage oocytes was first investigated by examining differences in the developmental competence of each GV oocyte depending on the cumulus cell status. Three types of GV-stage oocytes were harvested from mouse ovaries: CEOs, PDOs, and DOs. In the first experiment, the three cell types were subjected to IVM and subsequent IVF to determine differences in fertilization and developmental rates. At 6 hpi, embryos with two pronuclei were defined as fertilized. Although there were no differences between fertilization rates, development to the blastocyst stage occurred at a significantly lower rate in DOs than that in CEOs (Table 1), which is consistent with previous reports [17, 18, 35]. In the next experiment, we compared the differences in the fertilization and developmental rates of CEOs, PDOs, and DOs with those of dCEOs and dPDOs. Denudation was performed using a pipette. Pseudo-denuded DOs were assessed to confirm the effects of the pipetting procedure on cumulus cell denudation; there was no difference in fertilization or developmental rate between DOs and pseudo-denuded DOs (data not shown). To further determine the effects of denudation and absence of cumulus cells on fertilization and subsequent development, the removed cumulus cells were co-cultured with dCEOs and DOs during IVM and IVF. The fertilization rates of dCEOs and dPDOs were dramatically reduced; this rate partially recovered when dCEOs were co-cultured with cumulus cells and developed into blastocysts (Table 1). Co-culture with cumulus cells did not impact the fertilization or developmental rates of DOs.

Assessing the electroporation of GV-stage oocytes using red fluorescent non-targeting siRNA

CEOs and DOs were subjected to electroporation to introduce siRNA into GV-stage oocytes without removing cumulus cells. To visualize the incorporation of siRNA into GV-stage oocytes, a red fluorescent non-targeting siRNA (BLOCK-iT™ Alexa Fluor® Red Fluorescent Control; Thermo Fisher Scientific) was introduced into CEOs and DOs by electroporation under various pulse conditions (pulse length: 0, 1.0, 2.0, 3.0, and 4.0 msec). Under the longer pulse length, we confirmed that siRNA was more efficiently incorporated into GV-stage oocytes (Fig. 2).

The electroporation of siH3.3 effectively reduces the mRNA level of MII oocytes

To determine the efficacy of electroporation for suppressing specific genes, siRNAs targeting H3f3a and H3f3b, which encode histone H3.3, were introduced into GV-stage oocytes by electroporation (two siRNAs per gene, a total of four). Given that electroporation facilitated the more efficient incorporation of siRNA into GV-stage oocytes under longer pulse lengths, we further investigated whether the knockdown efficiency varied at pulse lengths of 1.0 or 4.0 msec. Immediately after electroporation, IVM was performed for 15 h, and the efficacy of suppressing gene expression was examined by RT-qPCR using oocytes that reached the MII stage. The expression of both H3f3a and H3f3b was suppressed by >70% when compared with that of control cells electroporated with siControl, a non–gene targeting siRNA (Fig. 3A). The 1.0 and 4.0-msec pulse lengths resulted in comparable knockdown efficacy. Given that electroporation in zygotes under longer pulse length causes greater damage to zygotes [36] and that pulse length (1.0 and 4.0 msec) did not alter KD efficiency, a 1.0-msec pulse length was selected as the optimal condition. Gene expression was also suppressed in cumulus cells attached to CEOs,

Oocyte	No. of GV-stage oocytes	No. (%) of embryos with two pronuclei	No. (%) of 2-cell embryos	No. (%) of blastocysts	% of blastocysts per fertilized embryo
CEO	103	67 (65.0) a	66 (64.1) a	56 (54.4) a	83.6 a
dCEO	102	3 (2.9) c	3 (2.9) d	0 (0.0) d	0.0 b
dCEO + cumulus cells	59	12 (20.3) b	13 (22.0) c	10 (16.9) c	83.3 b
PDO	98	70 (71.4) a	68 (69.4) a	42 (42.9) ab	60.0 b
dPDO	117	44 (37.6) b	38 (32.5) b	19 (16.2) c	43.2 b
DO	117	69 (59.0) a	58 (49.6) ab	36 (30.8) bc	52.2 b
DO + cumulus cells	104	70 (67.3) a	62 (59.6) a	49 (47.1) ab	70.0 b

CEOs, cumulus-enclosed oocytes; DOs, denuded oocytes; dCEOs, demuced CEOs; dPDOs, denuded PDOs; GV, germinal vesicle; PDOs, partially denuded oocytes. Different letters in the same column (a, b, c, and d) represent significant differences (P-value < 0.05).
suggesting that siRNA was introduced into cumulus cells (Fig. 3B).

H3.3 is incorporated into the nucleus of GV-stage oocytes, and its incorporation into the paternal pronucleus can be blocked after fertilization

To monitor the expression of H3.3 (before and after fertilization) and confirm reduced H3.3 protein expression induced by siRNA treatment, we performed immunofluorescence staining for H3.3 from the GV stage to the one-cell stage. H3.3 was previously incorporated into the nuclei of GV-stage oocytes (Fig. 4A). In MII oocytes, H3.3 was incorporated into the nucleosomes of both control and H3.3 knockdown oocytes (Fig. 4B). At 6 hpi, H3.3 was incorporated into maternal and paternal pronuclei and nuclei of two polar bodies in control embryos. In contrast, H3.3 was not incorporated into the paternal pronuclei of H3.3 knockdown embryos (Fig. 4B). At 6 hpi, H3.3 was incorporated into maternal and paternal pronuclei and nuclei of two polar bodies in control embryos. In contrast, H3.3 was not incorporated into the paternal pronuclei of H3.3 knockdown embryos (Fig. 4B). At 6 hpi, H3.3 was incorporated into maternal and paternal pronuclei and nuclei of two polar bodies in control embryos. In contrast, H3.3 was not incorporated into the paternal pronuclei of H3.3 knockdown embryos (Fig. 4B). H3.3 is present in the oocyte as a maternal factor and undergoes incorporation into the paternal pronucleus immediately after fertilization. However, it remains unclear how maternal H3.3 removal from GV-stage oocytes affects post-fertilization development [23, 24, 37]. CEOs and DOs electroporated with siH3.3 or siControl with a 1.0-msec pulse length were subjected to IVM for 15 h to examine maturation rates and the differences in fertilization and developmental rates after IVF (Table 2). Herein, we observed that siH3.3 did not impact maturation or fertilization rates, although the rate of development to the two-cell stage was markedly reduced (Fig. 4C and Table 2). Compared with oocytes that did not undergo electroporation, oocytes electroporated with siControl exhibited no decrease in maturation, fertilization, or developmental rates.

Discussion

The findings of the present study revealed the reduced developmental competence of DOs after fertilization, consistent with those reported previously [17, 18, 35]. DOs exhibit a higher proportion of oocytes with non-surrounded nuclear (NSN)-type chromatin configurations than CEOs [3, 17]. NSN-type oocytes are often unable...
Fig. 4. Effects of siH3.3 treatment on H3.3 incorporation into germinal vesicle (GV)-stage oocytes before and after fertilization. Oocytes and embryos were stained with anti-H3.3 antibody. (A) Localization of H3.3 in cumulus-enclosed oocytes (CEO) (n = 27) and denuded oocytes (DO) (n = 18). The cumulus cells of CEOS were removed for immunostaining. H3.3 is present in the nuclei of GV-stage oocytes and cumulus cells. Scale bar, 20 μm. (B) Localization of H3.3 in metaphase II (MII) oocytes (CEO siControl, n = 11; CEO siH3.3, n = 16; DO siControl, n = 7; and DO siH3.3, n = 7) and one-cell embryos (CEO siControl, n = 11; CEO siH3.3, n = 15; DO siControl, n = 9; and DO siH3.3, n = 16). H3.3 is localized in the nuclei of MII oocytes treated with or without siH3.3. However, H3.3 is not localized in the paternal pronuclei of embryos at 6 h post-insemination (hpi) produced after treatment with siH3.3 at the GV stage. Scale bar, 20 μm. (C) Developmental competence of embryos electroporated with siH3.3 at the germinal vesicle (GV) stage. Representative images of embryos electroporated with either siH3.3 or siControl at the GV stage. Embryos were photographed at 96 hpi. Scale bar, 100 μm.
In addition, siH3.3 electroporation into GV-stage oocytes inhibited H3.3 incorporation into the maternal pronucleus after fertilization, indicating that maternal H3.3 protein is repeatedly translated and degraded in the oocyte and that siH3.3-mediated depletion of H3.3 mRNA causes a gradual decrease in H3.3 protein during oocyte maturation. Furthermore, electroporating GV-stage oocytes with siH3.3 reduced developmental competence after fertilization, revealing that incorporating H3.3 into the paternal pronucleus is required for subsequent embryonic development.

The method of electroporating siRNA into GV-stage oocytes, as described in the present study, is a powerful tool to analyze the function of maternal factors and establish the involvement of these factors in embryonic development after fertilization. This method may also apply to genome editing involving the introduction of guide RNA and Cas9 protein, potentially allowing the generation of maternal allele-specific knockout mice. In summary, we comprehensively analyzed the fertility and developmental competence of CEOs, DOs, and dCEOs. Moreover, we established an electroporation method for introducing siRNA into CEOs to genetically analyze fully grown oocytes without compromising their developmental potential.

Conflict of interests: The authors declare that there are no conflicts of interest that might be perceived as prejudicing the impartiality of the reported research.

Acknowledgments

This work was supported by Grant-in-Aid for Scientific Research (no. 19H03136 to NM) and Grant-in-Aid for JSPS Fellows (no. 21J21840 to TY) from the Japan Society for the Promotion of Science.

References

1. Bachvarova R. Gene expression during oogenesis and oocyte development in mammals. Dev Biol (NY 1958) 1995; 181: 453–524. [Medline] [CrossRef]
2. Aoki F, Worrall DS, Schultz RM. Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo. Dev Biol 1997; 181: 296–307. [Medline] [CrossRef]
3. De La Fuente R, Eppig JJ. Transcriptional activity of the mouse oocyte genome: comparison with sperm. Dev Biol 2001; 224: 224-226. [Medline] [CrossRef]
4. Minami N, Suzuki T, Tsuchimoto S. Zygotic gene activation and maternal factors in mammals. J Reprod Dev 2007; 53: 707–715. [Medline] [CrossRef]
5. Miyamoto K. Maternal factors involved in nuclear reprogramming by eggs and oocytes. J Mammm Ova Res 2013; 56: 68–78. [CrossRef]
6. Zhang K, Smith G. Maternal control of early embryogenesis in mammals. Reprod Fertil Dev 2015; 27: 880–896.
7. Tadros W, Lipshitz HD. The maternal-to-zygotic transition: a play in two acts. Development 2009; 136: 3033–3042. [Medline] [CrossRef]
19. in vitro maturation of mouse oocytes. J Mamm Ova Res 2016; 38–49. [Medline] [CrossRef]

20. tid separation is increased by poor cumulus cell layers and inappropriate culture media for mouse GV oocytes. Zygote 2002; 10: 2004; 50: 54–62. [Medline] [CrossRef]

21. of engineered endonucleases into intact rat embryos. Sci Rep 2014; 4: 6382. [Medline] [CrossRef]

22. in vitro. Clin Exp Reprod Med 2014; 41: 73–80. [Medline] [CrossRef]

23. Nuclear pore complex assembly requires histone H3.3. Nat Cell Biol 2012; 14: 1640–1649. [Medline] [CrossRef]

24. Transcriptional activity associated with meiotic competence in fully grown mouse. Zhang Y. Peng H, Chang B, Lu C, Su J, Wu Y, Lv P, Wang Y, Liu J, Zhang B, Quan F, Guo Z, Akiyama T, Suzuki O, Matsuda J, Aoki F.

25. Histone variant H3.3 is an essential maternal factor for oocyte reprogramming. Proc Natl Acad Sci USA 2011; 108: 6369–6374. [Medline] [CrossRef]

26. Histone variant H3.3-mediated chromatin remodeling is essential for paternal genome activation in mouse preimplantation embryos. J Biol Chem 2018; 293: 3829–3838. [Medline] [CrossRef]

27. Analysis of relative gene expression data using real-time quantitative PCR and the 2-A CT (ΔΔCT) method. Methods 2001; 25: 402–408. [Medline] [CrossRef]

28. NOBOX deficiency: Genet 2000; 30: 489–496. [Medline] [CrossRef]

29. Transcriptional activation of transposable elements in oocytes. J Reprod Dev 2015; 60: 59–74. [Medline] [CrossRef]

30. The developmental capacity of mouse oocytes that matured spontaneously in vitro is normal. Dev Biol 1984; 102: 493–497. [Medline] [CrossRef]

31. Developmental incompetency of denuded mouse oocytes undergoing maturation in vitro is ooplasmic in nature and is associated with aberrant Oct-4 expression. Hum Reprod 2005; 20: 1958–1966. [Medline] [CrossRef]

32. transcription factor. Hum Reprod 2015; 30: 299–302. [Medline] [CrossRef]

33. Cleavage capability of bovine follicular oocytes classified by cumulus cells and matured in vitro. Theriogenology 2001; 56: 291–302. [Medline] [CrossRef]