Research Article

A Simulation Study: Population Distribution Function Estimation Using Dual Auxiliary Information under Stratified Sampling Scheme

Sohaib Ahmad,1 Sardar Hussain,1,2 Erum Zahid,3 Anum Iftikhar,4 Saddam Hussain,5 Javid Shabbir,2 and Muhammad Aamir1

1Department of Statistics, Abdul Wali Khan University, Mardan, Pakistan
2Department of Statistics, Quaid-i-azam University, Islamabad, Pakistan
3Institute of Space Technology, Islamabad, Pakistan
4School of Statistics, Shanxi University of Finance and Economics, Taiyuan, China
5Department of Mathematics and Statistics, Institute of Southern Punjab, Multan, Pakistan

Correspondence should be addressed to Saddam Hussain; saddamhussain.stat885@gmail.com

Received 30 March 2022; Accepted 26 May 2022; Published 5 October 2022

1. Introduction

In the literature of survey sampling, in certain situations, the use of the auxiliary variable may increase the precision of estimates in estimating the population parameters of interest. Researchers have already found out how to obtain estimates for unknown population parameters such as mean, median, variance, and standard deviation that possess maximum statistical properties. For that purpose, a representative part of population is needed. (i) When population is homogeneous, then preferably one can utilize the idea of simple random sampling (SRS). (ii) On the other hand, when population is heterogeneous, then stratified random sampling is useful.

When the study and the auxiliary variables are correlated, then the rank of the auxiliary variable, distribution function, median, etc. are also correlated with the study variable. When there exists a positive or negative correlation between the study and the auxiliary variables, ratio and product estimators can improve the precision of estimates. By making use of the auxiliary information the researcher can explore these research findings by looking in, Ahmad and Shabbir [1]; Kadilar and Cingi [2]; Grover and Kaur [3]; Haq et al. [4]; and Al-Marzouki et al. [5].

The dual use of the auxiliary information to estimate finite population distribution function is rarely used. The issue of estimating the finite population distribution function arises when our interest lies in finding out the
proportion of the values of the study variable which is less than or equal to some threshold. In certain situations, the need of cumulative distribution function is much more important. Many authors have estimated the distribution function by using information on single or more auxiliary variables. First of all, Chamber and Dunstan [6] suggested a procedure for estimating the finite population distribution function. Kuk [7] presented a classical as well as a prediction approach in estimating the distribution function from a survey data. Researchers can investigate articles related to distribution function (DF) such as research studies conducted by Chamber et al. [8]; Dorfman [9]; Diana [10]; Rao [11]; Diana and Perri [12]; Ahmad and Abu-Dayeh [13]; Rueda and Arcos [14]; Singh and Kumar [15]; Dorfman [16]; Diana and perri [12]; Husaain et al. [17]. They proposed two new estimators for estimating the finite population distribution function based on simple and stratified random sampling schemes using supplementary information.

Taking motivation from \(\hat{F}_{\text{BT}}(\mathcal{Y}) \), \(\hat{F}_{\text{ST}}(\mathcal{Y}) \), and average of \(\hat{F}_{\text{RS}, D}(\mathcal{Y}) \) and \(\hat{F}_{\text{RS}, P}(\mathcal{Y}) \), we proposed new family of estimators for estimating finite population distribution function under stratified sampling scheme.

The rest of the article is organized as follows. Section 2 presents the notation and symbols of stratified random sampling. In Section 3, the existing estimators were studied. We proposed a new family of estimators for estimating finite population distribution function under stratified random sampling in Section 4. Empirical study is conducted in Section 5. We also conduct a simulation study for the support of our proposed family of estimators under stratified random sampling in Section 6. Finally, conclusion of this paper is drawn in Section 7.

2. Notations in Stratified Random Sampling

Let \(\Omega = \{1, 2, \ldots, N\} \) be a finite population of \(N \) units, which is divided into \(L \) homogeneous strata, where the size of \(h \)th stratum is \(N_h \), for \(h = 1, 2, \ldots, L \), in such a manner that \(\sum_{h=1}^{L} N_h = N \). Let \(Y_{ih} \) and \(X_{ih} \) be the characteristics of the study variable (Y) and the auxiliary variable (X), respectively; where \(i = 1, 2, \ldots, N_h \) and \(h = 1, 2, \ldots, L \). A sample of size \(n_h \) is drawn from variable such that \(\sum_{h=1}^{L} n_h = n \), where \(n \) is the sample size.

Let \(\hat{F}_h(y) = F(y) = \sum_{i=1}^{n_h} (W_h \hat{F}_h(y)) \) and \(\hat{F}_h(x) = \sum_{i=1}^{n_h} (W_h \hat{F}_h(x)) \), \(\hat{F}_h(y) = \sum_{i=1}^{n_h} (W_h \hat{F}_h(y)) \) and \(\hat{F}_h(x) = \sum_{i=1}^{n_h} (W_h \hat{F}_h(x)) \) be the population and sample distribution function, respectively, of \(Y \) and \(X \) under stratified random sampling, where \(W_h = N_h / N \).

Let \(\hat{F}_h(\mathcal{Y}) = \sum_{i=1}^{n_h} I(Y_{ih} \leq \mathcal{Y}) / N_h \), \(\hat{F}_h(\mathcal{X}) = \sum_{i=1}^{n_h} I(X_{ih} \leq \mathcal{X}) / N_h \), \(\hat{F}_h(x) = \sum_{i=1}^{n_h} I(X_{ih} \leq x) / n_h \), and \(\hat{F}_h(y) = \sum_{i=1}^{n_h} I(Y_{ih} \leq y) / n_h \). Let \(\hat{F}_h = \sum_{h=1}^{L} W_h \hat{F}_h \). \(\hat{F}_h = \sum_{i=1}^{n_h} Z_{ih} / n_h \), \(\hat{F}_h = \sum_{i=1}^{n_h} Z_{ih} / n_h \).

Let \(\rho_{1h}^2 = \sum_{i=1}^{N_h} (I(Y_{ih} \leq Y) - \hat{F}(Y))^2 / (N - 1) \), \(\rho_{2h}^2 = \sum_{i=1}^{N_h} (I(X_{ih} \leq X) - \hat{F}(X))^2 / (N - 1) \), \(\rho_{3h}^2 = \sum_{i=1}^{N_h} (Z_{ih} - \hat{F}(Z))^2 / (N - 1) \), \(C_{F_y} = \rho_{1h} \hat{F}(y) \), \(C_{F_x} = \rho_{2h} \hat{F}(x) \), \(C_{F_z} = \rho_{3h} \hat{F}(z) \), \(\rho_{12h} = \sigma_{12h} / \sigma_{1h} \), \(\rho_{13h} = \sigma_{13h} / \sigma_{1h} \), \(\rho_{23h} = \sigma_{23h} / \sigma_{2h} \), \(\rho_{12h} = \sum_{i=1}^{N_h} (I(Y_{ih} \leq Y) - \hat{F}(y)) (I(X_{ih} \leq X) - \hat{F}(x)) / (N - 1) \), \(\rho_{13h} = \sum_{i=1}^{N_h} (I(Y_{ih} \leq Y) - \hat{F}(y)) (Z_{ih} - \hat{F}(z)) / (N - 1) \), and \(\rho_{23h} = \sum_{i=1}^{N_h} (I(X_{ih} \leq x) - \hat{F}(x)) (Z_{ih} - \hat{F}(z)) / (N - 1) \). Similarly, let \(\rho_{123h} = \rho_{12h}^2 + \rho_{13h}^2 - 2\rho_{12h} \rho_{13h} \rho_{23h} \). Let \(e_1 = \hat{F}(y) - \hat{F}(y) / \hat{F}(y) \), \(e_2 = \hat{F}(x) - \hat{F}(x) / \hat{F}(x) \), and \(e_3 = \hat{F}(z) - \hat{F}(z) / \hat{F}(z) \).

To find the properties of the existing and proposed estimators of \(\hat{F}(y) \), we consider the following relative error terms under stratified random sampling.

Let \(e_1 = \hat{F}(y) - \hat{F}(y) / \hat{F}(y) \), \(e_2 = \hat{F}(x) - \hat{F}(x) / \hat{F}(x) \), and \(e_3 = \hat{F}(z) - \hat{F}(z) / \hat{F}(z) \), such that \(E(e_i) = 0 \) for \(i = 1, 2, 3 \), where \(E(\cdot) \) is the mathematical expectation of \(\cdot \).

Let \(\nu_{eff} = \sum_i (c_i e_i^2) / \sum_i (c_i e_i^2) \), where \(r, s, t = 1, 2, 3 \). Here, \(E(e_1 e_2) = \sum_{h=1}^{L} \sum_{i=1}^{n_h} W_h^2 \lambda_{1h}^2 \rho_{12h} C_{F_y} C_{F_x} = \varphi_{110} \).

\(E(e_2 e_3) = \sum_{h=1}^{L} \sum_{i=1}^{n_h} W_h^2 \rho_{23h} \rho_{13h} C_{F_x} C_{F_y} = \varphi_{101} \).

\(E(e_2 e_3) = \sum_{h=1}^{L} \sum_{i=1}^{n_h} W_h^2 \lambda_{2h} \rho_{23h} C_{F_y} = \varphi_{011} \).

where \(\lambda_{2h} = (1/n_h - 1/N_h) \).

3. Existing Estimators

In this section, some estimators of finite population mean are adapted for estimating the finite CDF under stratified random sampling.

(1) The traditional unbiased estimator of \(\hat{F}(y) \) is \(\hat{F}_u(y) = \frac{1}{n} \sum_{i=1}^{n} I(Y_{ih} \leq Y) \).

(2) The variance of \(\hat{F}(y) \) is \(\text{Var}(\hat{F}_u(y)) = \varphi_{200} \).

(3) Cochran [18] ratio estimator of \(\hat{F}(y) \) is given by

\(\hat{F}_r(y) = \frac{1}{n} \sum_{i=1}^{n} I(Y_{ih} \leq Y) \).
\[\hat{\mathcal{F}}_{st}^* (Y) = \hat{\mathcal{F}}_{st} (y) \left(\frac{\mathcal{F} (x)}{\hat{\mathcal{F}}_{st} (x)} \right) \]
(4)

The bias and MSE of \(\hat{\mathcal{F}}_{st}^* (Y) \) are given by
\[B \left(\hat{\mathcal{F}}_{st}^* (Y) \right) = \mathcal{F} (Y) (\varphi_{200} - \varphi_{110}), \]
MSE \(\left(\hat{\mathcal{F}}_{st}^* (Y) \right) = \mathcal{F}^2 (Y) (\varphi_{200} + \varphi_{020} - 2\varphi_{110}). \]
(5)

(3) The usual product estimator of \(\mathcal{F} (y) \) is
\[\hat{\mathcal{F}}_{st}^* (Y) = \hat{\mathcal{F}}_{st} (y) \left(\frac{\mathcal{F} (x)}{\mathcal{F} (x)} \right). \]
(6)

The bias and MSE of \(\hat{\mathcal{F}}_{st}^* (Y) \) are given by
\[B \left(\hat{\mathcal{F}}_{st}^* (Y) \right) = \mathcal{F} (y) \varphi_{110}, \]
MSE \(\left(\hat{\mathcal{F}}_{st}^* (Y) \right) = \mathcal{F}^2 (y) (\varphi_{200} + \varphi_{020} + \varphi_{110}). \]
(7)

(4) Following Bahl and Tuteja [19], exponential estimators of \(\mathcal{F} (y) \), respectively, are
\[\hat{\mathcal{F}}_{st1,R}^* (Y) = \hat{\mathcal{F}}_{st} (y) \exp \left(\mathcal{F} (x) - \hat{\mathcal{F}}_{st} (x) \right) \left(\frac{\mathcal{F} (x)}{\hat{\mathcal{F}}_{st} (x)} + \mathcal{F} (x) \right), \]
\[\hat{\mathcal{F}}_{st1,P}^* (Y) = \hat{\mathcal{F}}_{st} (y) \exp \left(\frac{\mathcal{F} (x) - \hat{\mathcal{F}}_{st} (x)}{\hat{\mathcal{F}}_{st} (x) + \mathcal{F} (x)} \right). \]
(8)

The bias and MSE of \(\hat{\mathcal{F}}_{st1,R}^* (Y) \) and \(\hat{\mathcal{F}}_{st1,P}^* (Y) \) are given by
\[B \left(\hat{\mathcal{F}}_{st1,R}^* (Y) \right) = \mathcal{F} (y) \left(\frac{3}{8} \varphi_{020} - \frac{1}{2} \varphi_{110} \right), \]
MSE \(\left(\hat{\mathcal{F}}_{st1,R}^* (Y) \right) = \frac{\mathcal{F}^2 (y)}{4} \left(4\varphi_{200} + \varphi_{020} - 4\varphi_{110} \right), \]
\[B \left(\hat{\mathcal{F}}_{st1,P}^* (Y) \right) = \mathcal{F} (y) \left(\frac{1}{2} \varphi_{110} - \frac{1}{8} \varphi_{020} \right), \]
MSE \(\left(\hat{\mathcal{F}}_{st1,P}^* (Y) \right) = \frac{\mathcal{F}^2 (y)}{4} \left(4\varphi_{200} + \varphi_{020} + 4\varphi_{110} \right). \]
(9)

(5) The regression type estimator of \(\mathcal{F} (y) \) is given by
\[\hat{\mathcal{F}}_{st,R}^* (Y) = \hat{\mathcal{F}}_{st} (y) + w \left(\mathcal{F} (x) - \hat{\mathcal{F}}_{st} (x) \right), \]
(10)

where \(w \) is constant. Here, \(\hat{\mathcal{F}}_{st,R}^* (Y) \) is an unbiased estimator of \(\hat{\mathcal{F}}_{st} (y) \). The minimum variance of \(\hat{\mathcal{F}}_{st,R}^* (Y) \) at the optimum value is
\[w_{opt} = \left(\mathcal{F} (y) \varphi_{110} \right) / \left(\mathcal{F} (x) \varphi_{020} \right): \]
\[\text{Var}_{min} \left(\hat{\mathcal{F}}_{st,R}^* (Y) \right) = \frac{\mathcal{F}^2 (y) (\varphi_{200} \varphi_{020} - \varphi_{110})^2}{\varphi_{020}}. \]
(11)

We can also write (11) as
\[\text{Var}_{min} \left(\hat{\mathcal{F}}_{st,R}^* (Y) \right) = \mathcal{F}^2 (y) \varphi_{200} (1 - \rho_{12}^2). \]
(12)

(6) The usual difference estimator of \(\mathcal{F} (y) \) is
\[\hat{\mathcal{F}}_{st,D}^* (Y) = \varphi_{110} \mathcal{F} (y) + w_2 \left(\mathcal{F} (x) - \hat{\mathcal{F}}_{st} (x) \right), \]
where \(\varphi_{110} \) and \(w_2 \) are unknown constants. The bias and MSE of \(\hat{\mathcal{F}}_{st,D}^* (Y) \) are given as
\[B \left(\hat{\mathcal{F}}_{st,D}^* (Y) \right) = \mathcal{F} (y) \left(w_1 - 1 \right), \]
MSE \(\left(\hat{\mathcal{F}}_{st,D}^* (Y) \right) = \mathcal{F}^2 (y) - 2w_1 \mathcal{F}^2 (y) + w_1^2 \mathcal{F}^2 (y) \varphi_{200}, \]
\[\quad - 2w_1 w_2 \mathcal{F} (y) \mathcal{F} (x) \varphi_{110} \]
\[\quad + w_2^2 \mathcal{F}^2 (x) \varphi_{020}. \]
(13)

The optimum values of \(w_1 \) and \(w_2 \), determined by minimizing (14), are
\[w_{1(opt)} = \frac{\varphi_{020}}{\varphi_{020} \varphi_{200} - \varphi_{110}^2 + \varphi_{020}}, \]
\[w_{2(opt)} = \frac{\mathcal{F} (y) \varphi_{110}}{\mathcal{F} (y) \varphi_{020} - \varphi_{110}^2 + \varphi_{020}}. \]
(15)

The minimum MSE of \(\hat{\mathcal{F}}_{st} (Y) \) at the optimum values of \(w_1 \) and \(w_2 \) is
\[\text{MSE}_{min} \left(\hat{\mathcal{F}}_{st,D}^* (Y) \right) = \frac{\mathcal{F}^2 (y) (\varphi_{200} \varphi_{020} - \varphi_{110}^2)}{(\varphi_{020} \varphi_{200} - \varphi_{110}^2 + \varphi_{020})}. \]
(16)

Equation (16) may also be written as
\[\text{MSE}_{min} \left(\hat{\mathcal{F}}_{st,D}^* (Y) \right) = \frac{\mathcal{F}^2 (y) \varphi_{200} (1 - \rho_{12}^2)}{1 + \varphi_{200} (1 - \rho_{12}^2)}. \]
(17)

(7) Singh et al. [20] generalized ratio type exponential estimator of \(\mathcal{F} (y) \) as
\[\hat{\mathcal{F}}_{st1}^* (Y) = \hat{\mathcal{F}}_{st} (y) \exp \left(\frac{a \left(\mathcal{F} (x) - \hat{\mathcal{F}}_{st} (x) \right)}{a (\mathcal{F} (x) + \hat{\mathcal{F}}_{st} (x)) + 2b} \right), \]
where \(a \) and \(b \) are known constants. The properties of \(\hat{\mathcal{F}}_{st1}^* (Y) \) are given as
\[B \left(\hat{\mathcal{F}}_{st1}^* (Y) \right) = \mathcal{F} (y) \left(\frac{3}{8} \varphi_{200} + \frac{1}{2} \Theta \varphi_{110} \right), \]
MSE \(\left(\hat{\mathcal{F}}_{st1}^* (Y) \right) = \frac{\mathcal{F}^2 (y)}{4} \left(4\varphi_{200} + \Theta^2 \varphi_{020} - 4\Theta \varphi_{110} \right), \]
(19)

(8) Grover and Kaur [21] generalized class of ratio type exponential estimator of \(\mathcal{F} (y) \) as
Here, \((23) \) may be written as

\[
\text{MSE}\left(\hat{\mathcal{F}}_{st,\alpha}^{*}(\mathcal{Y}) \right) = \frac{\mathcal{F}^{2}(y) \left(\Theta^{2} \varphi_{020}^{2} - 8 \right)}{64 \left(64 - 16 \Theta^{2} \varphi_{020}^{2} \right)^{2}} \left(\frac{\varphi_{020} - \varphi_{110}^{2}}{\varphi_{020} \left(1 + \varphi_{200} \right) - \varphi_{110}^{2}} \right)
\]

(23)

Here, (23) may be written as

\[
\text{MSE}_{\text{min}}\left(\hat{\mathcal{F}}_{st,\alpha}^{*}(\mathcal{Y}) \right) = \text{Var}_{\text{min}}\left(\hat{\mathcal{F}}_{st,\alpha}^{*}(\mathcal{Y}) \right) - \frac{\mathcal{F}^{2}(y) \left(\Theta^{2} \varphi_{020}^{2} - 8 \varphi_{110}^{2} + 8 \varphi_{020} \varphi_{200} \varphi_{110}^{2} \right)}{64 \varphi_{020}^{2} \left(1 + \varphi_{200} \left(1 - \rho_{12}^{2} \right) \right)}.
\]

(24)

which shows that \(\hat{\mathcal{F}}_{st,\alpha}^{*}(\mathcal{Y}) \) is more precise than \(\hat{\mathcal{F}}_{st,\alpha}^{*}(\mathcal{Y}) \).
Table 2: Summary statistics for population I.

h	N_h	n_h	W_h	λ_h	\mathfrak{F}_h
1	127	31	0.1375	0.02441	64.00
2	117	21	0.1268	0.03907	59.00
3	103	29	0.1116	0.02477	52.00
4	170	38	0.1842	0.02043	85.50
5	205	22	0.2221	0.04058	101.00
6	201	39	0.2178	0.02067	101.00

4. Proposed Family of Estimators

The use of auxiliary variables may enhance the accuracy of an estimator either at the design stage or at the estimation stage. When a correlation exists between the study variable and the auxiliary variable, the order of the auxiliary variable is also correlated to the study variable. Thus, the rank of the auxiliary variable can be treated as a new auxiliary variable, and it is helpful in increasing the efficiency of an estimator. On the lines of $\mathfrak{F}_{R,D}(y)$, $\mathfrak{F}_{S}(y)$, and average of $\mathfrak{F}_{BTR}(y)$ and $\mathfrak{F}_{BTP}(y)$, we proposed a new family of estimator say $\mathfrak{F}(y)$:

$$
\mathfrak{F}^*_M(y) = \frac{1}{2}\mathfrak{F}_M(y) \left\{ \exp \left(\frac{\mathfrak{F}(x) - \mathfrak{F}_M(x)}{\mathfrak{F}_M(x) - \mathfrak{F}(x)} \right) + \exp \left(\frac{\mathfrak{F}_M(x) - \mathfrak{F}(x)}{\mathfrak{F}_M(x) + \mathfrak{F}(x)} \right) \right\} \exp \left(\frac{\alpha(\mathfrak{F}(x) - \mathfrak{F}_M(x))}{\alpha(\mathfrak{F}(x) + \mathfrak{F}_M(x)) + 2\beta} \right),
$$

(25)
Expressing (26) up to first order of approximation,

\[
\tilde{\mathbf{F}}_{st_{prop}}(\mathcal{Y}) = \left(\mathbf{F}(\mathcal{Y})(1 + \mathbf{e}_0)(1 + \mathbf{w}_6) - \mathbf{w}_5 \mathbf{e}_1 - \mathbf{w}_7 \mathbf{e}_2 + \frac{1}{8} \mathbf{\Theta}^2 \mathbf{F}(\mathcal{Y}) \mathbf{e}_1^2 \right) \left(1 - \frac{1}{2} \mathbf{\Theta} \mathbf{e}_1 + \frac{3}{8} \mathbf{\Theta}^2 \mathbf{e}_1^2 + \cdots \right).
\]

(26)
Table 4: Summary statistics for population III.

h	N_h	n_h	W_h	λ_h	\bar{X}_h
1	106	9	0.12412	0.0168	51.50
2	106	17	0.12412	0.04939	51.50
3	94	38	0.11007	0.01568	47.50
4	171	67	0.20023	0.00908	86.00
5	204	7	0.23888	0.13796	102.50
6	173	2	0.20258	0.49422	87.00

\[
Y_h, Q_{1h}(y), \bar{F}(y_h), Q_{3h}(y), X_h, \bar{X}_h
\]

h	$Q_{1h}(y)$	Y_h	$Q_{3h}(y)$	\bar{X}_h	\bar{X}_h
0.58491	0.90566	0.1981	0.72562	0.54177	0.18868
0.51887	0.89623	0.29245	0.66083	0.56604	0.30189
0.32979	0.69149	0.15957	0.45754	0.34043	0.19149
0.36842	0.85380	0.18129	0.49708	0.38012	0.18129
0.46569	0.94608	0.13235	0.64216	0.43137	0.13235
0.70520	0.97110	0.50867	0.80925	0.72254	0.49133

\bar{Y}_h	$Q_{1h}(y)$	\bar{Y}_h	$Q_{3h}(y)$	\bar{X}_h	\bar{X}_h
0.77217	0.65052	0.60724	0.75509	0.76652	0.54922
.83309	0.62655	0.75179	0.70235	0.82847	0.73476
.78539	0.85040	0.89537	0.66305	0.75098	0.63060
.77554	0.65484	0.72419	0.64776	0.75350	0.60626
.67502	0.58646	0.65851	0.62953	0.72183	0.50394
.73192	0.66500	0.78088	0.63464	0.72909	0.82252

\[
\bar{Y}_h, Q_{1h}(y), \bar{Y}_h, Q_{3h}(y), \bar{X}_h, \bar{X}_h
\]

h	$Q_{1h}(y)$	\bar{Y}_h	$Q_{3h}(y)$	\bar{X}_h	\bar{X}_h
0.45227	- 0.63562	- 0.67771	- 0.71397	X_h	\bar{X}_h
0.48161	- 0.67774	- 0.79523	- 0.74530	0.19120	0.09560
0.30868	- 0.80006	- 0.68157	- 0.83739	0.20827	0.15849
0.19359	- 0.76273	- 0.66730	- 0.82340	0.17685	0.13040
0.41292	- 0.60487	- 0.58696	- 0.76863	0.18266	0.10812
0.61019	- 0.34130	- 0.86593	- 0.48742	0.16758	0.07599

\[
\bar{Y}_h, Q_{1h}(y), \bar{Y}_h, Q_{3h}(y), \bar{X}_h, \bar{X}_h
\]

\[
\begin{align*}
\left(\bar{F}^*_{st \ prep}(Y) - \bar{F}(y) \right) & \equiv w_0 \bar{F}(y) + \bar{F}(y)e_0 + w_0 \bar{F}(y)e_0 - \frac{1}{2} \Theta \bar{F}(y)e_1 + \frac{1}{2} \Theta^2 \bar{F}(y)e_1^2 \\
& - \frac{1}{2} \Theta^2 \bar{F}(y)e_1 + w_0 \bar{F}(y)e_1 - w_0 \bar{F}(y)e_1 - \frac{1}{2} \Theta w_0 \bar{F}(y)e_1 - \frac{3}{8} \Theta^2 w_0 \bar{F}(y)e_1 - \frac{1}{2} \Theta w_0 \bar{F}(y)e_1 - \frac{1}{2} \Theta w_0 \bar{F}(y)e_2 + \frac{1}{2} \Theta w_0 \bar{F}(y)e_2.
\end{align*}
\]

The properties of $\bar{F}^*_{st \ prep}(Y)$ are given as
Table 5: Efficiency result under populations I, II, and III when \(\{ x, y = \mathcal{F}, \mathcal{Y} \} \).

Estimators	Population I	Population II	Population III
\(\hat{R}^*_G (Y) \)	\(\hat{R}^*_R (Y) \)	\(\hat{R}^*_G (Y) \)	\(\hat{R}^*_G (Y) \)
\(\hat{R}^*_R (Y) \)			
\(\hat{R}^*_G (Y) \)	\(\hat{R}^*_R (Y) \)	\(\hat{R}^*_R (Y) \)	\(\hat{R}^*_R (Y) \)
\(\hat{R}^*_R (Y) \)			
\(\hat{R}^*_G (Y) \)	\(\hat{R}^*_R (Y) \)	\(\hat{R}^*_R (Y) \)	\(\hat{R}^*_R (Y) \)
\(\hat{R}^*_R (Y) \)			
\(\hat{R}^*_G (Y) \)	\(\hat{R}^*_R (Y) \)	\(\hat{R}^*_R (Y) \)	\(\hat{R}^*_R (Y) \)
\(\hat{R}^*_R (Y) \)			
\(\hat{R}^*_G (Y) \)	\(\hat{R}^*_R (Y) \)	\(\hat{R}^*_R (Y) \)	\(\hat{R}^*_R (Y) \)
\(\hat{R}^*_R (Y) \)			

Table 6: Efficiency result using populations I, II, and III when \(\{ x, y = Q_1(x), Q_1(y) \} \).

Estimators	Population I	Population II	Population III
\(\hat{R}^*_G (Y) \)	\(\hat{R}^*_R (Y) \)	\(\hat{R}^*_G (Y) \)	\(\hat{R}^*_G (Y) \)
\(\hat{R}^*_R (Y) \)			
\(\hat{R}^*_G (Y) \)	\(\hat{R}^*_R (Y) \)	\(\hat{R}^*_R (Y) \)	\(\hat{R}^*_R (Y) \)
\(\hat{R}^*_R (Y) \)			
\(\hat{R}^*_G (Y) \)	\(\hat{R}^*_R (Y) \)	\(\hat{R}^*_R (Y) \)	\(\hat{R}^*_R (Y) \)
\(\hat{R}^*_R (Y) \)			
\(\hat{R}^*_G (Y) \)	\(\hat{R}^*_R (Y) \)	\(\hat{R}^*_R (Y) \)	\(\hat{R}^*_R (Y) \)
\(\hat{R}^*_R (Y) \)			
\(\hat{R}^*_G (Y) \)	\(\hat{R}^*_R (Y) \)	\(\hat{R}^*_R (Y) \)	\(\hat{R}^*_R (Y) \)
\(\hat{R}^*_R (Y) \)			
Table 7: Efficiency result using populations I, II, and III when \(\{x, y = \bar{F}, \bar{Y}\} \).

Estimators \(\bar{F}_{stG,K}^* (Y) \)	Population I	Population II	Population III			
\(\bar{F}_{stG,K}^* (Y) \)	454.79	502.91	364.28	428.83	211.54	241.14
\(\bar{F}_{stG,K}^* (Y) \)	454.78	502.90	364.27	428.82	211.49	241.09
\(\bar{F}_{stG,K}^* (Y) \)	454.80	502.92	364.29	428.85	211.61	241.22
\(\bar{F}_{stG,K}^* (Y) \)	454.78	502.90	364.27	428.82	211.50	241.10
\(\bar{F}_{stG,K}^* (Y) \)	454.80	502.90	364.29	428.82	211.62	241.10
\(\bar{F}_{stG,K}^* (Y) \)	454.81	502.92	364.29	428.85	211.63	241.24
\(\bar{F}_{stG,K}^* (Y) \)	454.78	502.90	364.27	428.82	211.49	241.08
\(\bar{F}_{stG,K}^* (Y) \)	454.82	502.93	364.31	428.87	211.71	241.34
\(\bar{F}_{stG,K}^* (Y) \)	454.77	502.89	364.26	428.81	211.46	241.05
\(\bar{F}_{stG,K}^* (Y) \)	454.73	502.84	364.23	428.78	211.39	240.97

\[
B\left(\bar{F}_{stprop}^* (Y) \right) = \frac{1}{2} \Theta^2 \bar{F} (y) \varphi_{020} - \frac{1}{2} \Theta \bar{F} (y) \varphi_{110} + \frac{1}{2} w_5 \Theta \varphi_{200} + w_6 \bar{F} (y) \\
+ \frac{3}{8} w_6 \Theta^2 \bar{F} (y) \varphi_{020} - \frac{1}{2} w_6 \Theta \bar{F} (y) \varphi_{110} + \frac{1}{2} w_6 \Theta \varphi_{011},
\]

\[
\text{MSE}\left(\bar{F}_{stprop}^* (Y) \right) = -\Theta \bar{F}^2 (y) \varphi_{110} + \frac{3}{2} w_1 \Theta^2 \bar{F}^2 (y) \varphi_{020} + w_6 \Theta^2 \bar{F}^2 (y) \varphi_{020} + w_5 \Theta \bar{F} (y) \varphi_{200} + w_5 \varphi_{020} \\
- 2 w_6 w_7 \bar{F} (y) \varphi_{020} + \frac{1}{4} \Theta^2 \bar{F}^2 (y) \varphi_{020} + 2 w_6 \bar{F}^2 (y) \varphi_{020} + w_5 \varphi_{020} \\
- 2 w_6 \Theta \bar{F}^2 (y) \varphi_{110} + \bar{F}^2 (y) \varphi_{200} + w_5^2 \bar{F}^2 (y) + w_6 \Theta \bar{F} (y) \varphi_{011} \\
+ 2 w_5 w_6 \Theta \bar{F} (y) \varphi_{020} - 2 w_5 w_6 \bar{F} (y) \varphi_{110} + 2 w_5 w_6 \varphi_{011} \\
- 3 w_6 \Theta \bar{F}^2 (y) \varphi_{110} - 2 w_5 \bar{F} (y) \varphi_{110} - 2 w_7 \bar{F} (y) \varphi_{101} \\
+ w_6^2 \bar{F}^2 (y) \varphi_{020} + m_7^2 \varphi_{020} + 2 w_5 w_7 \Theta \bar{F} (y) \varphi_{011}. \tag{28}
\]

The optimal values of \(w_5, w_6, \) and \(w_7 \) are given by
Table 8: Efficiency results using populations I, II, and III when \(x, y = Q_3(x), Q_3(y) \).

Estimators	Population I	Population II	Population III			
\(\hat{F}_{stprop}^* (Y) \)	292.77	340.09	495.49	517.85	170.13	220.22
\(\hat{F}_{stG,K}^* (Y) \)	292.74	340.06	495.43	517.79	170.05	220.11
\(\hat{F}_{stG,K}^* (Y) \)	292.81	340.14	495.56	517.93	170.24	220.36
\(\hat{F}_{stG,K}^* (Y) \)	292.74	340.05	495.42	517.78	170.05	220.11
\(\hat{F}_{stG,K}^* (Y) \)	292.76	340.05	495.46	517.78	170.12	220.11
\(\hat{F}_{stG,K}^* (Y) \)	292.75	340.07	495.44	517.80	170.09	220.16
\(\hat{F}_{stG,K}^* (Y) \)	292.77	340.09	495.48	517.84	170.10	220.18
\(\hat{F}_{stG,K}^* (Y) \)	292.80	340.12	495.53	517.89	170.23	220.18
\(\hat{F}_{stG,K}^* (Y) \)	292.74	340.055	495.43	517.79	170.05	220.11
\(\hat{F}_{stprop}^* (Y) \)	292.74	340.05	495.42	517.78	170.04	220.10
\(\hat{F}_{stprop}^* (Y) \)	100.00	100.00	100.00	100.00	100.00	100.00
\(\hat{F}_{stprop}^* (Y) \)	267.68	471.26	37.09	12.34	16.26	17.89
\(\hat{F}_{stprop}^* (Y) \)	27.89	26.67	12.46	12.67	12.67	12.67
\(\hat{F}_{stprop}^* (Y) \)	202.60	277.40	226.27	226.27	226.27	226.27
\(\hat{F}_{stprop}^* (Y) \)	49.84	46.95	48.83	48.83	48.83	48.83
\(\hat{F}_{stprop}^* (Y) \)	292.58	495.27	168.67	168.67	168.67	168.67
\(\hat{F}_{stprop}^* (Y) \)	292.74	495.42	170.04	170.04	170.04	170.04

Table 9: MSEs of finite population distribution function estimators using simulation.

Estimator	Population I	Population II	Population III
\(\hat{F} (y) \)	0.0010016	0.0010006	0.0010013
\(\hat{F}_{st}^* (y) \)	0.002900	0.0012174	0.0005337
\(\hat{F}_{st}^* (y) \)	0.0011452	0.0029163	0.0034462
\(\hat{F}_{st}^* (y) \)	0.0016955	0.0008424	0.000520
\(\hat{F}_{st}^* (y) \)	0.0016955	0.0008424	0.000520
\(\hat{F}_{st}^* (y) \)	0.0008131	0.0008314	0.000465
\(\hat{F}_{st}^* (y) \)	0.0008105	0.0008288	0.0004641
\(\hat{F}_{st}^* (y) \)	0.0008105	0.0008288	0.0004641
\(\hat{F}_{st}^* (y) \)	0.0007678	0.0007583	0.0004156

Table 10: PREs of finite population distribution function using simulation.

Estimator	Population I	Population II	Population III
\(\hat{F} (y) \)	100	100	100
\(\hat{F}_{st}^* (y) \)	34.53869	82.19431	187.60983
\(\hat{F}_{st}^* (y) \)	87.46025	34.31139	29.05563
\(\hat{F}_{st}^* (y) \)	59.07314	118.77536	192.42847
\(\hat{F}_{st}^* (y) \)	59.07314	118.77536	192.42847
\(\hat{F}_{st}^* (y) \)	123.1813	120.3492	215.3049
\(\hat{F}_{st}^* (y) \)	123.5772	120.7309	215.7119
\(\hat{F}_{st}^* (y) \)	123.5772	120.7450	215.7371
\(\hat{F}_{st}^* (y) \)	130.4431	131.9435	240.9002
further noticed that the proposed family of estimators with
covers the existing estimators, we conduct a numerical study to in-
vestigate the performances of the existing and proposed
CDF estimators. For this purpose, three populations are

\[w_{5(\text{opt})} = \frac{\varphi_{020}(\rho_{23} - 1) + \varphi_{200}(\rho_{23} - 1)}{2 \rho_{23} - 1}, \]

\[w_{6(\text{opt})} = \frac{4 \varphi_{020}(-2 \rho_{112} \rho_{223} + \rho_{111} + \rho_{223} - 1) + \varphi_{022}(\rho_{223} - 1)}{-4(\rho_{223} - 1)}, \]

\[w_{7(\text{opt})} = \frac{\varphi_{022}(\rho_{223} - 1) + 4(\rho_{223} - 1)}{-4 \varphi_{022}(\rho_{223} - 1)}, \]

The minimum MSE of \(\hat{F}^*_{\text{st prop}}(y) \) at the optimum
to find the percentage relative effi-
cient (PRE).

\[
\text{MSE}_{\text{min}}(\hat{F}^*_{\text{st prop}}(y)) = \frac{\varphi_{020}(1 - R_{1,23}^2) - \Theta^2 \varphi_{020} - 8 \Theta^2 \varphi_{020} \varphi_{200}(1 - R_{1,23}^2)}{16 \varphi_{200}(1 - R_{1,23}^2)}.
\]

where \(R_{1,23}^2 = (\varphi_{110} \varphi_{002} + \varphi_{101} \varphi_{020} - 2 \varphi_{101} \varphi_{110} \varphi_{011} \varphi_{200}) \)

Table 18 shows some members of the proposed family of
estimators for different choices of \(\alpha \) and \(\beta \) (Table 1).

5. Empirical Study

To show the dominance of the proposed estimators over the
existing estimators, we conduct a numerical study to inv-
estigate the performances of the existing and proposed
CDF estimators. For this purpose, three populations are
considered. The datasets are given in Tables 2–4. We use the
following expression to find the percentage relative effi-
cency (PRE).

\[
\text{PRE}(\hat{F}_i(y), \hat{F}_u(y)) = \frac{\text{Var}(\hat{F}_u(y))}{\text{MSE}_{\text{min}}(\hat{F}_i(y))} \times 100, \quad (31)
\]

where \(i = \text{st}_R, \text{st}_P, \text{st}_{BT,R}, \text{st}_{BT,P}, \text{st}_{Reg}, \text{st}_{RD}, \text{st}_{G,K} \)
(Tables 2–4).

Population I (source: Koyuncu and Kadilar [22]):
\(Y \): number of teachers.
\(X \): number of teachers in 2007 for 923 districts.

Population II (source: Koyuncu and Kadilar [22]):
\(Y \): number of teachers.
\(X \): number of classes in 2007 for 923 districts.

Population III (source: Kadilar and Cingi [23]):
\(Y \): apple production in 1999.
\(X \): number of apples in 1999.

From the numerical outcomes, given in Tables 5–8, it is
further noticed that the proposed family of estimators with
different values of \(\alpha \) and \(\beta \) performs more efficiently than existing estimators.

6. Simulation Study

We have generated three populations of size 1,000 from multivariate normal distribution with different covariance matrices. All the populations have different correlations. Population I is negatively correlated, population II is positively correlated, and population III has strong positive correlation between \(X \) and \(Y \) variables. The population means and covariance matrices are given below:

Population I:
\[
\mu_1 = \begin{bmatrix} 5 \\ 5 \end{bmatrix}, \quad (32)
\]
\[
\sum_1 = \begin{bmatrix} 4 & -9.0 \\ -9.0 & 64 \end{bmatrix}.
\]

\(N_1 = 500 \) and \(N_2 = 500. \)
\(\rho_{XY} = -0.590220, \rho_{1XY} = -0.597259, \rho_{2XY} = -0.538706. \)

Population II:
\[
\mu_2 = \begin{bmatrix} 5 \\ 5 \end{bmatrix}, \quad (33)
\]
\[
\sum_2 = \begin{bmatrix} 4 & 9.5 \\ 9.5 & 63 \end{bmatrix},
\]

\(N_1 = 500, N_2 = 500. \)
\(\rho_{XY} = 0.612254, \rho_{1XY} = 0.638109, \rho_{2XY} = 0.633022. \)

Population III:
\[\mu_5 = \begin{bmatrix} 5 \\ 5 \end{bmatrix}, \]
\[\sum_3 = \begin{bmatrix} 2 & 4 \\ 6 & 10 \end{bmatrix}. \]

(34)

\[N_1 = 500 \text{ and } N_2 = 500. \]

\[\rho_{XY} = 0.902645, \]
\[\rho_{1XY} = 0.910705, \]
\[\rho_{2XY} = 0.901442. \]

(35)

Relative efficiency (PRE) is calculated as

\[\text{PRE} \left(\tilde{F}_i (y), \tilde{F} (y) \right) = \frac{\text{Var} \left(\tilde{F} (y) \right)}{\text{MSE} \left(\tilde{F}_i (y) \right)} \times 100, \]

(36)

where \(i = \text{stR}, \text{stP}, \text{stBT}, \text{R}, \text{stBT}, \text{P}, \text{stReg}, \text{stR}, \text{D}, \text{stGK}. \)

The results of MSE and PRE are given in Table 26 and 27. Here we can only point out the best results of MSEs and PREs in these tables when \(\Theta = (1/2) \alpha \tilde{F} (x) + \beta \) if \(\alpha = 1, \beta = C_{F_{1w}} \) (Tables 9 and 10).

7. Conclusion

In this paper, we have proposed a new family of estimators to estimate the finite population distribution function (DF). Using simulation studies and actual datasets, it is observed that the proposed class of estimators gives better results than the existing estimates. Therefore, we recommend the use of the proposed estimators for future study. Based on the real datasets and simulation results, it can be seen that the proposed estimators perform better than all existing estimators. The percentage relative efficiency shows that the proposed family of estimators in stratified random sampling gives the best result when \(X \) and \(Y \) variables have strong positive correlation [24–29].

Data Availability

The data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The first author wishes to thank Mr Sardar Hussain for the contributions.

References

[1] S. Ahmad and J. Shabbir, "Use of extreme values to estimate finite population mean under pps sampling scheme," Journal of Reliability and Statistical Studies, vol. 11, pp. 99–112, 2018.

[2] C. Kadilar and H. Cingi, "A new ratio estimator in stratified random sampling," Communications in Statistics - Theory and Methods, vol. 34, no. 3, pp. 597–602, 2005.

[3] L. K. G. rover and P. Kaur, "Ratio type exponential estimators of population mean under linear transformation of auxiliary variable: theory and methods," South African Statistical Journal, vol. 45, no. 2, pp. 205–230, 2011.

[4] A. Haq, M. Khan, and Z. Hussain, "A new estimator of finite population mean based on the dual use of the auxiliary information," Communications in Statistics - Theory and Methods, vol. 46, no. 9, pp. 4425–4436, 2017.

[5] S. Al-Marzouki, C. Chesneau, C. Chesneau et al., "Estimation of finite population mean under pps in presence of maximum and minimum values," AIMS Mathematics, vol. 6, no. 5, pp. 5397–5409, 2021.

[6] R. L. Chambers and R. Dunstan, "Estimating distribution functions from survey data," Biometrika, vol. 73, no. 3, pp. 597–604, 1986.

[7] A. Y. C. Kuk, "A kernel method for estimating finite population distribution functions using auxiliary information," Biometrika, vol. 80, no. 2, pp. 385–392, 1993.

[8] R. L. Chambers, A. H Dorfman, and P. Hall, "Properties of estimators of the finite population distribution function," Biometrika, vol. 79, no. 3, pp. 577–582, 1992.

[9] A. H Dorfman, "A comparison of design-based and model-based estimators of the finite population distribution function," Australian & New Zealand Journal of Statistics, vol. 35, no. 1, pp. 29–41, 1993.

[10] G. Diana, "A class of estimators of the population mean in stratified random sampling," Statistica, vol. 53, no. 1, pp. 59–66, 1993.

[11] J. Rao, "Estimating totals and distribution functions using auxiliary information at the estimation stage," Journal of Official Statistics, vol. 10, no. 2, p. 153, 1994.

[12] G. Diana and P. F. Perri, "A class of estimators in two-phase sampling with subsampling the non-respondents," Applied Mathematics and Computation, vol. 219, no. 19, pp. 10033–10043, 2013.

[13] M. S. Ahmed and W. Abu-Dayyeh, "Estimation of finite-population distribution function using multivariate auxiliary information," Statistics in Transition, vol. 5, no. 3, pp. 501–507, 2001.

[14] M. Rueda and A. Arcos, "Improving ratio-type quantile estimates in a finite population," Statistical Papers, vol. 45, no. 2, pp. 231–248, 2004.

[15] H. P. Singh and S. Kumar, "A general procedure of estimating the population mean in the presence of non-response under double sampling using auxiliary information," Statistics and Operations Research Transactions, vol. 33, no. 1, pp. 71–84, 2009.

[16] A. H Dorfman, "Inference on distribution functions and quantiles," in Handbook of Statistics, vol. 29, pp. 371–395, Elsevier, 2009.

[17] S. Hussain, S. Ahmad, S. Akhtar, J. Amara, and U. Yasmeen, "Estimation of finite population distribution function with dual use of auxiliary information under non-response," PLoS One, vol. 15, no. 12, Article ID e0243584, 2020.

[18] W. G. Cochran, "The estimation of the yields of cereal experiments by sampling for the ratio of grain to total produce," The Journal of Agricultural Science, vol. 30, no. 2, pp. 262–275, 1940.

[19] S. Bahl and R. K. Tuteja, "Ratio and product type exponential estimators," Journal of Information and Optimization Sciences, vol. 12, no. 1, pp. 159–164, 1991.

[20] R. Singh, N. S. P Chauhan, and F. Smarandache, "Improvement in estimating the population mean using exponential
estimator in simple random sampling,” *International Journal of Statistics & Economics*, vol. 3, no. A09, pp. 13–18, 2009.

[21] L. K. Grover and P. Kaur, “A generalized class of ratio type exponential estimators of population mean under linear transformation of auxiliary variable,” *Communications in Statistics - Simulation and Computation*, vol. 43, no. 7, pp. 1552–1574, 2014.

[22] N. Koyuncu and C. Kadilar, ”Ratio and product estimators in stratified random sampling,” *Journal of Statistical Planning and Inference*, vol. 139, no. 8, pp. 2552–2558, 2009.

[23] C. Kadilar and H. Cingi, ”Ratio estimators in stratified random sampling,” *Biometrical Journal*, vol. 45, no. 2, pp. 218–225, 2003.

[24] M. H. Hansen and W. N. Hurwitz, ”The problem of non-response in sample surveys,” *Journal of the American Statistical Association*, vol. 41, no. 236, pp. 517–529, 1946.

[25] M. N. Murthy, ”Product method of estimation,” *Sankhya: The Indian Journal of Statistics, Series A*, vol. 26, no. 1, pp. 69–74, 1964.

[26] M. Narasinha Murthy, *Sampling Theory and Methods*, Statistical Pub. Society, Calcutta, 1967.

[27] T. J. Rao, ”On certain methods of improving ration and regression estimators,” *Communications in Statistics - Theory and Methods*, vol. 20, no. 10, pp. 3325–3340, 1991.

[28] K. M. Tak and K. Anthony, ”A new method for estimating finite-population quantiles using auxiliary information,” *Canadian Journal of Statistics*, vol. 21, no. 1, pp. 29–38, 1993.

[29] S. Hussain, S. Ahmad, M. Saleem, and S. Akhtar, ”Finite population distribution function estimation with dual use of auxiliary information under simple and stratified random sampling,” *PLoS One*, vol. 15, no. 9, Article ID e0239098, 2020b.