Assessing visually guided reaching in people with multiple sclerosis with and without self-reported upper limb impairment

Darrin O. Wijeyaratnam1, Thomas Edwards1, Lara A. Pilutti2,3, Erin K. Cressman1,3*

1 School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada,
2 Interdisciplinary School of Health Science, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada,
3 Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada

* erin.cressman@uottawa.ca

Abstract

The ability to accurately complete goal-directed actions, such as reaching for a glass of water, requires coordination between sensory, cognitive and motor systems. When these systems are impaired, like in people with multiple sclerosis (PwMS), deficits in movement arise. To date, the characterization of upper limb performance in PwMS has typically been limited to results attained from self-reported questionnaires or clinical tools. Our aim was to characterize visually guided reaching performance in PwMS. Thirty-six participants (12 PwMS who reported upper limb impairment (MS-R), 12 PwMS who reported not experiencing upper limb impairment (MS-NR), and 12 age- and sex-matched control participants without MS (CTL)) reached to 8 targets in a virtual environment while seeing a visual representation of their hand in the form of a cursor on the screen. Reaches were completed with both the dominant and non-dominant hands. All participants were able to complete the visually guided reaching task, such that their hand landed on the target. However, PwMS showed noticeably more atypical reaching profiles when compared to control participants. In accordance with these observations, analyses of reaching performance revealed that the MS-R group was more variable with respect to the time it took to initiate and complete their movements compared to the CTL group. While performance of the MS-NR group did not differ significantly from either the CTL or MS-R groups, individuals in the MS-NR group were less consistent in their performance compared to the CTL group. Together these findings suggest that PwMS with and without self-reported upper limb impairment have deficits in the planning and/or control of their movements. We further argue that deficits observed during movement in PwMS who report upper limb impairment may arise due to participants compensating for impaired movement planning processes.

Introduction

In order to interact with objects in our everyday environment, our central nervous system (CNS) must transform incoming sensory information (e.g., visual, haptic and proprioceptive
input) into appropriate motor commands so that the action can be completed as desired (e.g., one is able to reach for a pen or a cup of coffee). Extensive work has been conducted to establish how visually guided reaching movements are planned and controlled in healthy individuals under various constraints \[1–7\]. These experiments have revealed that movement errors can be corrected in subsequent trials by engaging in offline planning, where offline planning processes occur before movement initiation and are presumed to be responsible for getting the hand in the vicinity of the target \[4, 8–10\]. As well, movement errors can be corrected during movement execution in order to reduce the error between one’s hand and target, thus demonstrating online control processes \[11–15\].

The contribution of offline planning and online control processes, and hence how movements are corrected, is determined by evaluating movement outcome, as well as kinematic variables related to reach performance. For example, measures such as the time it takes to initiate one’s movement (i.e., reaction time (RT)) and initial reach direction error (IDE) provide an indication of the engagement of offline planning processes \[5, 6\]. Movements with longer RT and lower IDE suggest that participants are taking longer to plan their movements to minimize early errors and to maximize endpoint accuracy. On the other hand, accuracy measures (i.e., resultant error) and the time required to execute a movement (i.e., movement time (MT)) provide an indication of the engagement of online control processes, such that small endpoint errors paired with movements long in duration (i.e., longer MT) suggest that participants may be making corrective movements during the reach to improve movement accuracy \[9, 16\]. Variability of the above measures provides further insight into an individual’s ability to incorporate sensory information during movement (i.e., online) and/or on subsequent trials (i.e., offline) to achieve task demands, such that increased variability is presumed to reflect a greater contribution of offline planning processes \[6, 7, 17–19\].

While we have gained much insight into the processes underlying goal-directed reaches in healthy individuals, less work has been done to establish patterns of upper limb performance in neurological pathologies, including people with multiple sclerosis (PwMS) \[20, 21\]. Multiple sclerosis (MS) is characterized by the presence of inflammatory demyelinated lesions distributed throughout the CNS \[22, 23\]. These lesions create structural and functional brain damage that affects sensory, cognitive and motor functions \[24–26\]. Today, imaging studies have improved our ability to detect structural and/or functional changes in the brain; however, our understanding of the impact of these neural changes on motor performance in PwMS remains limited, specifically with respect to visually guided reaching \[27–29\]. Previous investigations into upper limb function in PwMS have focused primarily on the detection and management of upper limb impairment using clinical tools, such as questionnaires (e.g., ABILHAND questionnaire) and tests of manual dexterity (e.g., 9-Hole Peg Test (9-HPT)) \[30–35\]. Additionally, previous work has prioritized the use of clinical disability scales (e.g., Expanded Disability Status Scale (EDSS)) that may not effectively capture upper limb impairment \[30\]. There is currently a need for more sensitive methods of evaluating the extent of upper limb impairment and functional loss in PwMS, as well as establishing where underlying deficits may arise (i.e., deficits in offline planning and/or online control processes). Furthermore, there is a need to determine how these deficits relate to subjective experiences of upper limb impairment, as consideration of self-reports of impairment have been implicated in upper limb assessment and been shown to benefit treatment for individuals with neurological pathologies (e.g., stroke; \[36–38\]).

Over the last two decades, robotic technology has become recognized as a promising tool to help characterize upper limb impairment, particularly in individuals with neurological pathologies, as it allows one to objectively evaluate motor behavior and identify underlying deficits \[5, 39\]. To date, robotic technology has been used extensively with individuals post-stroke,
enabling researchers to assess and develop targeted treatment for deficits linked to offline planning and online control [39–49]. More recently, robotic technology has been incorporated into upper limb assessments and therapies in PwMS [50–58]. This volume of work in PwMS has used a variety of reaching tasks, which range from simple point-to-point movements [50] to reaching in different mechanical environments [52, 59]. Overall, results indicate that PwMS move more slowly [60], have more curved and less smooth movements [52, 53, 59, 61, 62], and reach with greater initial errors [51, 59, 61] compared to control participants without MS. These results have been observed in PwMS who fall at either end of the disability spectrum, experiencing either mild to no disability (i.e., EDSS < 1.0) or severe disability (i.e., EDSS > 6) based on EDSS scores.

The current experiment compared movement planning and control in PwMS during a visually guided reaching task to control participants without MS. We further evaluated whether offline planning and online control processes engaged during visually guided reaching differ between PwMS who self-report (i.e., MS-R) and who do not report (i.e., MS-NR) experiencing upper limb impairment, ensuring a range in participants’ subjective impairment experience. We hypothesized that PwMS who report upper limb impairment (MS-R) would show distinctive deficits in the processes underlying reaching (i.e., planning and control) compared to both people without MS (CTL) and PwMS who do not report upper limb impairment (MS-NR). Specifically, deficits in movement planning would be reflected by longer and less-consistent movement initiation times, as well as larger errors early in the trajectory in the MS-R group compared to both the MS-NR and CTL groups. Deficits in movement control would be reflected by longer and less-consistent movement durations in the MS-R group compared to both the MS-NR and CTL groups. We further hypothesized to observe deficits in movement planning and control in the MS-NR group compared to the CTL group, as previous studies investigating movements of the lower limb have reported reduced stability, decreased movement speed, and increased movement variability even in PwMS with mild disability levels [63–68].

Methods

Participants

This project is part of a larger study characterizing upper limb performance in PwMS across a variety of tasks differing in engagement of sensory, cognitive, and motor processes. In the current experiment, 36 participants completed a visually guided reaching task. The MS sample was recruited from MS-specific community outlets (e.g., the MS Society of Canada outlets and MS support groups). MS diagnosis was determined by self-report during the screening process. PwMS were asked to report whether they experienced difficulty performing daily tasks with either their dominant or non-dominant upper limbs. Those who stated that they had difficulty using their upper limbs were placed in Group 1 (i.e., MS-R; n = 12), whereas those who did not report difficulty using their upper limbs were placed in Group 2 (i.e., MS-NR; n = 12). The third group of participants consisted of age- and sex-matched controls (CTL; n = 12). In order to be eligible for inclusion, participants must have been: (1) between the ages of 18 and 65; and (2) willing to visit the research lab for two testing sessions. Additionally, PwMS must have: (1) a self-reported diagnosis of MS; (2) been relapse free for 30 days; and (3) experienced no changes to disease-modifying therapies in the past 6 months to be eligible to participate. This experiment was approved by the University of Ottawa Health Sciences and Science Research Ethics Board. All participants provided written informed consent and were informed that they could withdraw from the experiment at any time.
Demographic and clinical characteristics

Demographic and clinical characteristics were collected during an initial testing session using a battery of self-reported questionnaires and/or clinical scales and tests. Height and weight were measured in the laboratory to the nearest 0.1 cm and 0.1 kg, respectively, using a scale with a stadiometer (Sartorius AG, Göttingen, Germany). Disability status was determined by the Expanded Disability Status Scale (EDSS), administered by a Neurostatus-certified assessor (TE, Level C). Upper limb performance was assessed using the 9-HPT (Patterson Medical, Warrenville, IL). The 9HPT involves participants picking up nine pegs, placing them in a peg board one at a time, and then removing the pegs from the holes one at a time [31]. Participants completed the 9-HPT on two consecutive trials with their dominant hand followed by two consecutive trials with their non-dominant hand. On all trials, participants were asked to complete the task as quickly as possible. The total time required to complete each trial in seconds was recorded and then averaged across trials completed with the same hand.

Experimental apparatus: Visually guided reaching task

Testing took place in a secluded testing room with a two-joint robot manipulandum (Kinarm End-Point Lab, Kinarm, Kingston, ON, Canada). The Kinarm End-Point Lab consists of a downward facing monitor (EzSign model 47LD452B, LG. Seoul, South Korea; refresh rate = 60 Hz, workspace = 70 cm x 36 cm), which is located 20.5 cm above a reflective surface and 41.0 cm above two robotic handles (see Fig 1A). Thus, visual stimuli presented on the monitor are reflected by the surface and appear to lie in the same horizontal plane as the robot handles. Prior to each testing session, calibration of the Kinarm was carried out according to the manufacturer’s instructions.

During testing, participants were seated in a height-adjustable chair. Once participants were comfortably seated, the chair was locked in place and the lights were turned off. Participants then grasped a single handle of the two-joint robot with their dominant or non-dominant hand. Participants’ view of their limbs was obstructed by the reflective surface, as well as a black cloth placed between their shoulders and the experimental apparatus. The location of the robotic handle (and hence participants’ hands) was tracked at 1000 Hz, with a spatial accuracy of 0.1 mm.

![Experimental apparatus, dimensions and reaching environment.](https://doi.org/10.1371/journal.pone.0262480.g001)
Procedure
Participants completed a visually guided reaching task with both their dominant and non-dominant hands in one experimental session (see Fig 1B). In general, participants were asked to comfortably reach with the robot handle from a central start position (white circle, 2 cm in diameter) to one of eight peripheral targets (yellow circle, 2 cm in diameter). The targets were 10 cm away from the start position and separated by 45° around the circumference of a circle. A trial started with the robot passively moving the participant’s hand to the start position. Following a 500 ms delay, one of the eight peripheral targets appeared and served as the “go signal” for participants to perform their action. Participants then reached out with either their dominant or non-dominant hand. The position of the handle (and hence their hand) was represented by a cursor on the reflective surface (magenta circle, 1 cm in diameter). A trial ended once the middle of the cursor (i.e., participant’s hand) was within 0.5 cm of the center of the target. Therefore, in order for a trial to be completed, participants were required to land the cursor on the target. This ensured that all participants received visual and proprioceptive (i.e., felt hand position) feedback associated with a successful reach.

Once the target was attained, the target and cursor disappeared, and the robot passively moved the participant’s hand back to the start position along a linear path within a movement time of 1000 ms. If participants attempted to move out from the linear path, a proportional resistance force was generated to maintain the linearity of the movement. Once the hand was positioned in the home position, the home position and cursor became visible again, signaling the start of the next trial (Fig 1C). Participants began with three practice trials. These trials were not included in our analyses. Following the practice trials, participants completed 8 blocks of 8 trials per hand for a total of 128 trials (i.e., 64 trials per hand). Within each block of trials, each target was presented once. Total task duration was approximately 15 minutes. The order with respect to which hand completed the task first (i.e., dominant versus non-dominant) was counterbalanced across participants.

Data analysis
Reaching performance on all trials was analyzed post-experiment using custom written MATLAB scripts (Matlab R2013b (8.2.0.701), The MathWorks, Inc.). As indicated above, during the experiment, participants were required to get the cursor to the target. However, during post-experiment processing of reaching performance, the start and end of each movement were selected based on a velocity criterion, similarly to previous work [46]. In the current experiment, we use a velocity threshold whereby movement start was the time at which velocity first increased above 0.01 m/s and remained above 0.01 m/s for the subsequent 100 ms, while movement end was the time at which velocity first fell below 0.01 m/s. This post-experiment processing ensured that only participants’ initial reach was included in the analysis, rather than multiple corrective movements (i.e., participants stopping and then re-starting their movement). Endpoint position data were then used to screen for outliers. In particular, if a participant’s endpoint position in the horizontal or vertical direction was greater than 3 standard deviations above their respective mean endpoint position in the same dimension, the trial was removed from further analyses [69]. This screening resulted in the removal of 44 trials (0.95% of all trials).

We looked to quantitatively compare reaching performance with respect to offline planning and online control across PwMS (MS-NR and MS-R) and control participants when reaching with the dominant and non-dominant hands. We started by evaluating overall accuracy at movement endpoint by examining resultant error (RE) and absolute angular error (|EPAE|). RE was defined as the absolute distance of the cursor from the target at movement end.
EPAE was defined as the difference between a movement vector joining the midpoint of the home position to the midpoint of the cursor position at the end of the movement and a reference vector joining the midpoint of the home position to the midpoint of the target location.

We further looked to determine the engagement of offline planning processes using reaction time (RT), peak velocity (PV), proportional time to peak velocity (pTTPV) and absolute initial reach direction errors (|IDE|). RT was defined as the time required to initiate a response from target presentation until the start of the movement. PV was defined as the greatest resultant velocity achieved during the movement, while pTTPV was expressed as the time PV was achieved as a percentage of overall MT (the time from movement initiation until movement end). |IDE| was defined as the difference between a movement vector (from the home position to the position of the cursor at peak velocity) and a reference vector joining the home position to the target location. We also looked to examine the engagement of online control processes using movement time (MT), path length (PL) and absolute change in angular error (|ΔAE|). MT was defined as the time required to execute the movement. PL was defined as the length of the reaching trajectory. |ΔAE| was defined as the difference between errors later in the movement compared to early in the movement (i.e., |ΔAE| = |EPAE—IDE|). Mean performance and variability (i.e., SD) were determined for each of the above measures. Absolute values are reported for EPAE, IDE and ΔAE, in order to examine changes in the magnitude of errors experienced early vs. late in reaching. All measures described above have previously been used to characterize upper limb performance in populations with neurological disorders (e.g., stroke research; [46]) and in healthy controls (for reviews see [5, 6]; c.f. [70]).

To determine if any of the within-trial measures differed across groups when reaching with either the dominant or non-dominant hands, the above variables were analyzed using a 3 Group (i.e., CTL, MS-NR, MS-R) x 2 Hand (i.e., non-dominant hand versus dominant hand) mixed analysis of variance (ANOVA) with repeated measures on the last factor in SPSS (IBM SPSS Statistics for Windows, Version 26, Armonk, NY). If the Mauchly’s test of sphericity was significant (p < 0.05), then the Greenhouse-Geisser correction factor was applied, and the adjusted p-values reported. Differences with a probability of 0.05 were considered statistically significant. Following a significant interaction, a simple effect analysis was conducted using a Bonferroni correction. The mean and variability of all dependent measures across Groups and with respect to both Hands are reported in the S1 File.

Results

Participants

A summary of the sample demographics and clinical characteristics are presented in Table 1. For MS participants, mean disease duration was 12.3 years ± 7.9 years for MS-NR participants and 16.4 years ± 9.2 years for MS-R participants. The distribution of MS types differed between the MS-NR and MS-R groups, such that majority of participants in the MS-NR group had relapsing remitting MS (83.4%), while more participants in the MS-R group had progressive MS (58.3%). There were no significant differences in age, height, or weight across the groups (all p > 0.05), and all groups had the same distribution of females (66.7%) and males (33.3%). The median EDSS score differed significantly between the MS-NR (x̄ = 3.3, IQR = 2.0) and MS-R groups (x̄ = 5.8, IQR = 2.5, p = 0.009), such that MS-NR participant’s scores corresponded to moderate disability while MS-R participant scores corresponded to severe disability. Moreover, the MS-R group took longer to complete the 9-HPT with their dominant hand compared to both the MS-NR and CTL groups (both p < 0.012). However, when completing the 9-HPT with their non-dominant hand, MS-R participants took significantly more time compared to CTL participants (p = 0.008), but not compared to MS-NR participants (p = 0.289).
Sample reaching characteristics

Reaching movements from exemplar participants are displayed in Fig 2. While performance differed across participants, all participants were able to get the cursor onto the target as required (i.e., complete the task). This indicates that PwMS, whether they reported upper limb impairment or not, were able to complete a simple reaching task to a visual target. To illustrate how reaches varied across participants, we present data for “Good” versus “Poor” participant performance for each of the 3 groups (see Fig 2). We defined Good and Poor performance based on PL, such that Good performance was represented by reaches by a participant within the group with the shortest average PL, and Poor performance was represented by reaches by a participant within the group with the longest average PL. While there was no difference in average PL across groups (MS-R = 9.7 cm ± 0.2 cm; MS-NR = 10.0 cm ± 0.2 cm; CTL = 9.4 cm ± 0.2 cm; Group: F(2,33) = 1.572, p = 0.223, η² = 0.087), or PL variability (x̄ = 1.3 cm ± 0.2 cm; Group: F(2,33) = 1.572, p = 0.223, η² = 0.087), from Fig 2 we do see differences in the reaching trajectories across and within groups of participants, as reported below.

General movement outcomes

Given that participants were required to land on the target, it is not surprising that accuracy was similar across groups. Analysis of RE indicated that endpoint errors were on average 1.4 cm across all participants when reaching with the dominant and non-dominant hands (Group: F(2,33) = 1.000, p = 0.379, η² = 0.057; Hand: F(1,33) = 0.739, p = 0.396, η² = 0.022). Similarly, variability of RE was comparable across groups, regardless of which hand participants reached with (Group: F(2,33) = 0.750, p = 0.480, η² = 0.043; Hand: F(1,33) = 0.604, p = 0.443, η² = 0.018). Analysis of |EPAE| revealed a significant main effect of Hand (F(1,33) = 9.127, p = 0.005, η² = 0.217), such that angular errors were slightly greater at the end of the
Fig 2. Sample reaching trajectories. Reaches completed to the 8 visual targets with the non-dominant (shaded area) and dominant hands. Each colour represents a reach trajectory to one of the 8 targets. Performance were classified as “Good” versus “Poor” based on their average path length (i.e., Good performance was represented as shorter path lengths versus Poor performance was represented as longer path lengths).

https://doi.org/10.1371/journal.pone.0262480.g002
movement when participants reached with their non-dominant hand ($\bar{x} = 3.1^\circ \pm 0.3^\circ$) compared to their dominant hand ($\bar{x} = 2.5^\circ \pm 0.1^\circ$); however, there was no significant difference between groups ($F(2,33) = 2.321, p = 0.114, \eta^2 = 0.123$). Variability of $|EPAE|$ also differed between reaches with the dominant hand versus non-dominant hand ($F(1,33) = 6.869, p = 0.013, \eta^2 = 0.172$), such that $|EPAE|$ variability was higher when participants reached with their non-dominant hand ($\bar{x} = 2.8^\circ \pm 0.3^\circ$) compared to their dominant hand ($\bar{x} = 2.1^\circ \pm 0.2^\circ$). Again, performance did not differ across groups ($F(2,33) = 1.668, p = 0.204, \eta^2 = 0.1092$).

Offline movement planning

In Fig 3, mean and variability of performance measures related to offline movement planning are presented. Fig 3A and 3B display mean and variability of RT. Analysis of mean RT revealed no significant main effects (both $p > 0.068$) or interactions ($p = 0.871$), which suggests that participants were spending a similar amount of time planning their movements. Analysis of RT variability revealed a significant main effect of Group ($F(2,33) = 4.243, p = 0.023, \eta^2 =$...
such that participants in the MS-R group were more variable in the time they took to initiate their movements compared to participants in the CTL group, regardless of hand used. RT variability in the MS-NR group did not differ significantly from either the MS-R ($p = 0.132$) or CTL groups ($p = 1.000$).

Analysis of PV indicated that PV achieved was comparable across groups, regardless of hand used ($\overline{x} = 0.23 \text{ m/s} \pm 0.01 \text{ m/s}$; Group $F(2,33) = 0.556, p = 0.579, \eta^2 = 0.033$; Hand $F(1,33) = 1.000$). Analysis of PV variability also indicated that performance was comparable across Groups ($\overline{x} = 0.046 \text{ m/s} \pm 0.004 \text{ m/s}$; Group $F(2,33) = 0.314, p = 0.733, \eta^2 = 0.019$). Furthermore, participants spent a similar proportion of their movement achieving PV (i.e., pTTPV) when reaching with either the dominant or non-dominant hands ($\overline{x} = 53.0\% \pm 1.3\%$; Group: $F(2,33) = 0.268, p = 0.767, \eta^2 = 0.016$; Hand: $F(1,33) = 1.625, p = 0.211, \eta^2 = 0.047$). Participants were also comparable in the consistency regarding the time PV that was achieved (i.e., SD pTTPV) when reaching with either the dominant or non-dominant hands ($\overline{x} = 14.5\% \pm 0.5\%$; Group: $F(2,33) = 0.336, p = 0.717, \eta^2 = 0.020$; Hand: $F(1,33) = 2.773, p = 0.105, \eta^2 = 0.078$).

Mean and variability of $|\text{IDE}|$ are shown in Fig 3C and 3D. Analysis of $|\text{IDE}|$ revealed a significant main effect for Group ($F(2,33) = 3.821, p = 0.032, \eta^2 = 0.188$), such that the MS-R group had larger $|\text{IDE}|$ ($\overline{x} = 6.4^\circ \pm 0.5^\circ$) compared to the CTL group ($\overline{x} = 4.5^\circ \pm 0.5^\circ$). Again, initial errors observed for the MS-NR group ($\overline{x} = 5.6^\circ \pm 0.5^\circ$) did not differ from those observed in the MS-R and CTL groups ($p > 0.377$). Analysis of the variability of the $|\text{IDE}|$ revealed a significant interaction between Group x Hand ($F(2,33) = 0.448, p = 0.019, \eta^2 = 0.212$), with post hoc analysis revealing that the MS-R group demonstrated greater variability in $|\text{IDE}|$ when reaching with the dominant hand compared to the CTL group ($p = 0.013$). Variability of $|\text{IDE}|$ observed in the MS-NR group did not differ from either the MS-R or CTL groups ($p > 0.081$), but MS-NR participants did demonstrate greater variability in $|\text{IDE}|$ when reaching with their non-dominant hand ($\overline{x} = 6.1^\circ \pm 0.7^\circ$) compared to their dominant hand ($\overline{x} = 4.1^\circ \pm 0.5^\circ$; $p < 0.001$).

Online movement control

In Fig 4, mean and variability of performance measures related to online movement control are presented. Fig 4A and 4B display mean and variability of MT. Average MT was 726.7 ms \pm 26.4 ms, which did not differ across Groups ($F(2,33) = 2.295, p = 0.107, \eta^2 = 0.127$), or between Hands ($F(1,33) = 2.037, p = 0.163, \eta^2 = 0.058$), indicating that all participants reached with similar MT. Analysis of MT variability revealed a main effect of Group ($F(2,33) = 4.211, p = 0.024, \eta^2 = 0.203$), such that participants in the MS-R group demonstrated more variable MT compared to participants in the CTL group. MT for the MS-NR group did not differ from the MS-R and CTL groups ($p > 0.207$).

Mean and variability of $|\Delta \text{AE}|$ from PV to EP are shown in Fig 4C and 4D. Participants slightly changed their reaching trajectories ($\overline{x} = 4.0^\circ \pm 0.2^\circ$) throughout the movement. ANOVA revealed a main effect of Group ($F(2,33) = 3.173, p = 0.055, \eta^2 = 0.161$), and post hoc analysis approached statistical significance such that slightly greater changes were observed in the MS-R group ($\overline{x} = 4.8^\circ \pm 0.4^\circ$) compared to the CTL group ($\overline{x} = 3.4^\circ \pm 0.4^\circ$, $p = 0.058$). We also observed a main effect of Hand ($F(1,33) = 4.626, p = 0.039, \eta^2 = 0.123$), such that participants’ $|\Delta \text{AE}|$ when reaching with their non-dominant hand ($\overline{x} = 4.2^\circ \pm 0.2^\circ$) was greater than when reaching with their dominant hand ($\overline{x} = 3.8^\circ \pm 0.3^\circ$). Analysis of $|\Delta \text{AE}|$ variability revealed a Group x Hand interaction ($F(2,33) = 7.007, p = 0.003, \eta^2 = 0.298$), and post hoc analysis indicated that the variability of changes in reaches for the MS-R group ($\overline{x} = 4.6^\circ \pm 0.4^\circ$) was greater than the MS-NR ($\overline{x} = 3.2^\circ \pm 0.4^\circ$; $p = 0.028$) and CTL ($\overline{x} = 3.1^\circ \pm 0.4^\circ$; $p = 0.016$) groups when reaching with their dominant hand. Furthermore, variability of $|\Delta \text{AE}|$
was greater in the MS-NR group when reaching with their non-dominant hand ($\bar{x} = 3.1^\circ \pm 0.3^\circ$) compared to their dominant hand ($\bar{x} = 1.9^\circ \pm 0.3^\circ$, $p < 0.001$).

Individual performance: Offline movement planning and online movement control

In the S2 File we provide an overview of the percentage of participants (S3 and S4 Tables in S2 File), as well as the percentage of trials (S5 Table in S2 File), that fall outside a 95% bandwidth established based on performance of the CTL group. We see that more participants in the MS-R group had difficulty in both the offline planning and online control of their movements compared to participants in the CTL group. Mainly, a greater number of participants in the MS-R group had difficulty consistently initiating their movements (Dominant hand SD RT = 41.7% of participants, (i.e., $n = 5$); Non-dominant hand SD RT = 25.0%, $n = 3$), took
longer to complete their movements and were more variable with respect to MT (Dominant hand MT = 33.3%, n = 4; Non-dominant hand MT = 25.0%, n = 3; Dominant hand SD MT = 50.0%, n = 6; Non-dominant hand SD MT = 16.7%, n = 2), and demonstrated greater and inconsistent direction errors early on in the trajectory (Dominant hand |IDE| = 58.3%, n = 7; Non-dominant hand |IDE| = 33.3%, n = 4; Dominant hand |SD IDE| = 41.7%, n = 5; Non-dominant hand |SD IDE| = 16.7%, n = 2), as well as late in the reach (Dominant hand |EPAE| = 58.3%, n = 7; Non-dominant hand |EPAE| = 16.7%, n = 2; Dominant hand |SD EPAE| = 50.0%, n = 6; Non-dominant hand |SD EPAE| = 16.7%, n = 2) compared to participants in the CTL group (8.3% of participants (i.e., n = 1)).

We also see that more participants in the MS-NR group had difficulty controlling their movements online compared to participants in the CTL group. In general, a greater number of participants in the MS-NR group reached with a greater peak velocity (Dominant hand PV = 33.3%, n = 4; Non-dominant hand PV = 16.7%, n = 2), had longer and less consistent trajectories (Dominant hand PL = 25.0%, n = 3; Non-dominant hand PL = 41.7%, n = 5; Dominant hand SD PL = 16.7%, n = 2; Non-dominant hand SD PL = 41.7%, n = 5) and demonstrated more inaccurate end positions (Dominant hand SD RE = 33.3%, n = 4; Non-dominant hand SD RE = 25.0%, n = 3) compared to participants in the CTL group.

Discussion

In this experiment, we sought to characterize visually guided reaching performance in PwMS who report or do not report experiencing upper limb impairment in order to identify potential differences in offline movement planning and online movement control processes across disability and compared to people without MS. Self-reports of impairment by PwMS further reflected disability levels based on EDSS scores and objective upper limb performance based on the 9-HPT, such that participants in the MS-R group experienced greater neurological disability and performed worse on the 9-HPT compared to participants in the MS-NR group. We found that all participants were able to perform the visually guided reaching task with their dominant and non-dominant hands, such that the cursor representing their hand position landed on the target and endpoint errors were comparable across groups. Our analysis of offline movement planning and online movement control measures indicated that participants in the MS-R group were less accurate and more inconsistent in their initial reach direction errors compared to participants in the CTL group. As well, participants in the MS-R group were less consistent with respect to the time it took them to initiate and execute their movements compared to participants in the CTL group, as determined by variability in their reaction time and movement time, respectively. Together, these results indicate that PwMS who self-report upper limb impairment experience deficits in both offline planning and online control.

Reaching performance by participants in the MS-NR group also displayed deficits in online control, such that more participants in the MS-NR group were more variable in their performance measures related to online movement control compared to participants in the CTL group (i.e., there was a number of MS-NR participants outside the 95th bandwidth observed in the CTL group). The differences in performance variability between PwMS compared to the CTL group suggests that MS results in more inconsistent movements, requiring PwMS to have to correct for movement errors more often (i.e., engage online control processes) than the CTL group. Thus, PwMS may be more dependent on sensory feedback in order to accurately navigate and interact with objects in their everyday environment.

Other studies that have quantified upper limb performance in PwMS lend support to our proposal that PwMS perform additional online reach corrections compared to control.
participants without MS [50–52, 59, 61, 62]. In these previous experiments, participants reached to targets in a virtual reality environment such that a participant’s hand was represented by a cursor on the screen and participants were instructed to perform center-out reaching movements to one of eight targets arranged in a circle, as in our task. Results from experiments by Solaro et al. [62] and Pellegrino et al. [59] indicated that PwMS performed less smooth movements and spent a greater proportion of their time navigating to the target compared to control participants. Further analysis by Pellegrino and colleagues revealed that PwMS took longer to complete their movements and had poorer accuracy both early (i.e., 100 ms into the movement) and late in the movement (i.e., at movement end) compared to control participants. Our findings are consistent with these previous results, which suggest that PwMS generally spend additional time navigating to the target, demonstrating impaired online movement control, compared to control participants without MS. Furthermore, the current experiment adds to this literature by identifying deficits in these online control processes in PwMS who report and who do not report upper limb impairment, as well as differ with respect to disability levels as established by the EDSS and objective upper limb performance on the 9-HPT.

Compensatory strategies

The necessity to make corrective actions in our MS-R group could be attributed to deficits in movement planning from trial-to-trial. Specifically, some of the observed deficits in online movement control in our MS-R group may arise due to impaired offline planning. As previously mentioned, the MS-R group demonstrated greater errors early in the trajectory that would need to be corrected in order for participants to land on the target. These corrections required participants to engage in compensatory strategies (i.e., online movement corrections) in order to complete the task. This notion of MS participants having to engage in compensatory strategies due to poor movement planning is consistent with previous reaching experiments in which PwMS had to complete a Hand to Mouth (HTM) task. In particular, participants were asked to raise their hand to touch their mouth with their fingertips and then return it to the starting position, mimicking eating movements [60, 71–73]. In general, results across these experiments indicated that PwMS experience difficulties in effectively performing the HTM task, as characterized by reduced velocities in the initial movement phase and more time spent in the adjustment phase (i.e., online control) compared to people without MS. The researchers suggest that this combination of impairment in the initial movement and adjustment phase can be considered strategic in PwMS, as reduced velocities enable individuals to use available visual or proprioceptive information to correct their ongoing movements, ensuring accurate localization of the mouth [61, 72]. Collectively, these studies and our current work, suggest that the need to make online corrections by the end of the movement may stem from poorly planned movements.

In contrast to our MS-R group, we did not observe significant deficits in movement planning in our MS-NR group compared to the CTL group. Instead, participants in the MS-NR group tended to achieve higher peak velocities which enabled them to get their hand to the target area more quickly. Despite this reaching strategy, MS-NR participants were faced with difficulties in performing efficient corrections to get their hand on the target. This resulted in longer trajectories and less consistent endpoints with respect to the centre of the target compared to the CTL group. The lack of significant mean performance differences between participants in the MS-NR group compared to the CTL group may be reflective of the variability in performance, and hence reaching strategies engaged within the MS-NR group. Trends for select measures of online movement control generally reflected a number of MS-NR participants falling outside the 95% bandwidth established by performance by age-matched controls.
In fact, a greater number of participants in the MS-NR group were more variable in movement duration, had more variable path lengths and more inaccurate and inconsistent end positions compared to individuals in the MS-R and CTL groups. These results suggest that even though participants in the MS-NR group do not report experiencing upper limb impairment, and indeed their performance on the 9-HPT does not differ from CTL, impairment is still present as captured via robotic assessment.

The differences in reaching strategies adopted between PwMS and control participants without MS, may reflect differences in underlying neural activation. Previous literature in people without MS has linked specific premotor and association areas of the cortex to strategic decision making (i.e., offline planning; [74, 75]), while other work has shown that the superior parietal cortex is implicated in movement corrections during execution (i.e., online control; [76–78]). It is assumed that PwMS activate a larger cortical area when carrying out simple and complex upper limb movements compared to control participants, possibly due to widespread tissue damage and inefficient neural activation [79–82]. Thus, it has been suggested that tissue damage in any of the motor areas discussed would require the nervous system to compensate with additional neural activation in order for participants to maintain movement accuracy [61, 83, 84].

Hand differences

Due to the heterogeneity of MS pathology, impairment often differs in a contralateral manner [20, 85–88]. Thus, our participants completed the visually guided reaching task with both the dominant and non-dominant hands in order to tease out potential differences between limbs. Our findings are in stark contrast with previous experiments [73, 89, 90] that report participants with moderate disability (EDSS < 3.5) demonstrate limited differences in performance between their hands, whereas participants with more severe disability (EDSS > 5.0) exhibit significant differences in performance between their hands. We only observed significant performance differences between the dominant and non-dominant hands in our MS-NR group, who would be classified as experiencing mild to moderate disability based on EDSS scores (EDSS range of 2.5–3.5). Specifically, reaches with the dominant hand were more accurate and were more consistent early on compared to reaches with the non-dominant hand, as demonstrated by lower endpoint angular errors and lower initial reach direction error variability, respectively. These deficits in the non-dominant hand may not be recognized by participants in the MS-R group, as they may be compensating with the dominant hand when completing everyday tasks [85].

Limitations

In the current experiment, we recruited PwMS who self-report or who do not self-report experiencing upper limb impairment to assess impairment across a range of perceived disability levels. Our MS grouping based on self-reported upper limb impairment corresponded to performance on clinical and objective performance tests, such that we observed significant group differences with respect to EDSS scores (MS-R vs. MS-NR) and performance on the 9-HPT (MS-R vs. MS-NR and CTL). Like the work by Coderre et al. [46] and Simmatis et al. [50], we conducted individual analyses to identify subtle upper limb impairments, before analyzing performance at a group level. The number of participants within each of our groups (i.e., $n = 12$) is similar to previous literature employing a visually-guided reaching task [52, 59, 61]. That said, more recent literature, which has looked to have participants complete a battery of robotic tasks, has recruited additional participants (e.g., $n_{PwMS} = 43$ [50]), and thus we refrain from making claims with respect to implications for the design of rehabilitation
protocols across disability status. Future research should further consider the inclusion of neuroimaging to explore the complex relationship between neurological damage and compensatory strategies in MS, as identified by measures of offline planning and online control.

Conclusion
To our knowledge, this is the first experiment to characterize and explore upper limb visually guided reaching performance in PwMS who report or do not report experiencing upper limb impairment. We found that PwMS who report upper limb impairment are less consistent in initiating and executing their movements, as well as possess greater and more variable initial directional errors than people without MS, when reaching with both their dominant and non-dominant hands. Nevertheless, such errors and variability did not prevent participants from completing the visually guided reaching task, and accurately landing their hand on the target. This is likely because PwMS who report upper limb impairment compensated for deficits in offline movement planning and possess an intact ability to make online corrective movements throughout the reach. Overall, performance by PwMS who do not report upper limb impairment did not significantly differ from both PwMS who report upper limb impairment as well as people without MS, at a group level of analyses. However, several PwMS who do not report upper limb impairment showed deficits in online movement control, highlighting the variability in performance within this group. Thus, through the exploration of visually guided reaches performed by PwMS, we were able to detect clear deficits in movement control processes in PwMS compared to control participants regardless of self-reports of upper limb impairment. Moving forward, an understanding of how PwMS, who report and do not report upper limb impairment, perform visually guided reaches can be used to prevent the adoption of maladaptive reaching strategies [50, 91].

Supporting information
S1 File. Performance measures. Mean and standard error of the mean for offline planning (S1 Table in S1 File) and online control (S2 Table in S1 File) measures. (DOCX)

S2 File. Performance compared to control participants. Percentage of participants (S3 and S4 Tables in S2 File) and trials (S5 Table in S2 File) beyond the 95th percentile in the CTL group for offline planning and online control measures. (DOCX)

Acknowledgments
The authors thank all the participants, especially those with multiple sclerosis, for participating in this experiment.

Author Contributions
Conceptualization: Lara A. Pilutti, Erin K. Cressman.
Data curation: Darrin O. Wijeyaratnam, Thomas Edwards.
Formal analysis: Darrin O. Wijeyaratnam, Erin K. Cressman.
Funding acquisition: Lara A. Pilutti, Erin K. Cressman.
Investigation: Darrin O. Wijeyaratnam, Thomas Edwards, Lara A. Pilutti, Erin K. Cressman.
Methodology: Darrin O. Wijeyaratnam, Thomas Edwards, Lara A. Pilutti, Erin K. Cressman.

Project administration: Darrin O. Wijeyaratnam, Thomas Edwards.

Resources: Lara A. Pilutti, Erin K. Cressman.

Software: Erin K. Cressman.

Supervision: Lara A. Pilutti, Erin K. Cressman.

Validation: Darrin O. Wijeyaratnam, Thomas Edwards, Lara A. Pilutti, Erin K. Cressman.

Visualization: Darrin O. Wijeyaratnam, Erin K. Cressman.

Writing – original draft: Darrin O. Wijeyaratnam.

Writing – review & editing: Thomas Edwards, Lara A. Pilutti, Erin K. Cressman.

References
1. Woodworth RS. Accuracy of voluntary movement. Psychol Rev Monogr Suppl 1899; 3: i–114.
2. Schmidt RA. Control processes in motor skills. Exerc Sport Sci Rev 1976; 4: 229–61. PMID: 828577
3. Meyer DE, Abrams RA, Kornblum S, et al. Optimality in human motor performance: Ideal control of rapid aimed movements. Psychol Rev 1988; 95: 340–370. https://doi.org/10.1037/0033-295x.95.3.340 PMID: 3406245
4. Zelaznik HN, Hawkins B, Kisselburgh L. Rapid Visual Feedback Processing in Single-Aiming Movements. J Mot Behav 1983; 15: 217–236. https://doi.org/10.1080/00222895.1983.10735298 PMID: 15151871
5. Elliott D, Helsen WF, Chua R. A century later: Woodworth’s (1899) two-component model of goal-directed aiming. Psychol Bull 2001; 127: 342–57. https://doi.org/10.1037/0033-2909.127.3.342 PMID: 11393300
6. Elliott D, Hansen S, Grierson LEM, et al. Goal-directed aiming: Two components but multiple processes. Psychol Bull 2010; 136: 1023–1044. https://doi.org/10.1037/a0020958 PMID: 20822209
7. Elliott D, Lyons J, Hayes SJ, et al. The multiple process model of goal-directed reaching revisited. Neurosci Biobehav Rev 2017; 72: 95–110. https://doi.org/10.1016/j.neubiorev.2016.11.016 PMID: 27894830
8. Elliott D, Dutoy C, Andrew M, et al. The Influence of Visual Feedback and Prior Knowledge About Feedback on Vertical Aiming Strategies. J Mot Behav 2014; 46: 433–443. https://doi.org/10.1080/00222895.2014.933767 PMID: 25204201
9. Elliott D, Hansen S, Mendoza J, et al. Learning to Optimize Speed, Accuracy, and Energy Expenditure: A Framework for Understanding Speed-Accuracy Relations in Goal-Directed Aiming. J Mot Behav 2004; 36: 339–351. https://doi.org/10.3200/JMBR.36.3.339-351 PMID: 15262629
10. Cheng DT, Luis M, Tremblay L. Randomizing visual feedback in manual aiming: reminiscence of the previous trial condition and prior knowledge of feedback availability. Exp Brain Res 2008; 189: 403–410. https://doi.org/10.1007/s00221-008-1436-3 PMID: 18560814
11. Lyons J, Hansen S, Hurding S, et al. Optimizing rapid aiming behaviour: movement kinematics depend on the cost of corrective modifications. Exp Brain Res 2006; 174: 95–100. https://doi.org/10.1007/s00221-006-0426-6 PMID: 16575577
12. Bennett SJ, Elliott D, Rodacki A. Movement strategies in vertical aiming of older adults. Exp Brain Res 2012; 216: 445–456. https://doi.org/10.1007/s00221-011-2947-x PMID: 22116400
13. Elliott D, Allard F. The Utilization of Visual Feedback Information during Rapid Pointing Movements. Q J Exp Psychol Sect A 1985; 37: 407–425. https://doi.org/10.1080/14640748508400942 PMID: 4048546
14. Hansen S, Glazebrook CM, Anson JG, et al. The influence of advance information about target location and visual feedback on movement planning and execution. Can J Exp Psychol Can Psychol expé rimentale 2006; 60: 200–208. https://doi.org/10.1037/cjep2006019 PMID: 17076435
15. Khan MA, Elliott D, Coull J, et al. Optimal Control Strategies Under Different Feedback Schedules: Kinaesthetic Evidence. J Mot Behav 2002; 34: 45–57. https://doi.org/10.1080/00222890209601930 PMID: 11880249
16. Zelaznik HN, Mone S, McCabe GP, et al. Role of temporal and spatial precision in determining the nature of the speed-accuracy trade-off in aimed-hand movements. J Exp Psychol Hum Percept Perform 1988; 14: 221–230.
Chaves AR, Wallack EM, Kelly LP, et al. Asymmetry of Brain Excitability: A New Biomarker that Predicts 24.

Tomassini V, Palace J. Multiple sclerosis lesions: insights from imaging techniques .

Love S. Demyelinating diseases.

Lamers I, Feys P. Assessing upper limb function in multiple sclerosis.

Benedict RHB, Holtzer R, Motl RW, et al. Upper and Lower Extremity Motor Function and Cognitive 26.

Kister I, Bacon TE, Chamot E, et al. Natural History of Multiple Sclerosis Symptom s.

Khan MA, FRANKS I, ELLIOTT D, et al. Inferring online and offline processing of visual feedback in target-directed movements from kinematic data. Neurosci Biobehav Rev 2006; 30: 1106–1121. https://doi.org/10.1016/j.neubiorev.2006.05.002 PMID: 16839604

Messier J, Kalaska JF. Comparison of variability of initial kinematics and endpoints of reaching movements. Exp Brain Res 1999; 125: 139–152. https://doi.org/10.1007/s002210050669 PMID: 10204767

Khan MA, Lawrence G, Fourkas A, et al. Online versus offline processing of visual feedback in the control of movement amplitude. Acta Psychol (Amst) 2003; 113: 83–97. https://doi.org/10.1016/s0001-6918(02)00156-7 PMID: 12679045

Kraft GH, Amtmann D, Bennett SE, et al. Assessment of Upper Extremity Function in Multiple Sclerosis: Review and Opinion. Postgrad Med 2014; 126: 102–108. https://doi.org/10.3810/pgm.2014.09.2803 PMID: 25295653

Lamers I, Feys P. Assessing upper limb function in multiple sclerosis. Mult Scler J 2014; 20: 775–784.

Tomassini V, Palace J. Multiple sclerosis lesions: insights from imaging techniques .

Kierkegaard M, Einarsson U, Gottberg K, et al. The relationship between walking, manual dexterity, 39.

Prigatano GP. The Importance of the Patient’s Subjective Experience in Stroke Rehabilitation. Top Stroke Rehabil 2011; 18: 30–34. https://doi.org/10.1310/tsr1801-30 PMID: 21371977

Mochizuki G, Centen A, Resnick M, et al. Movement kinematics and proprioception in post-stroke spasticity: assessment using the Kinarm robotic exoskeleton. J Neuroeng Rehabil 2019; 16: 146. https://doi.org/10.1186/s12984-019-0618-5 PMID: 31753011
40. Prange GB, Jannink MJA, Groothuis-Oudshoorn CGM, et al. Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. *J Rehabil Res Dev* 2006; 43: 171. https://doi.org/10.1682/jrrd.2005.04.0076 PMID: 16847784

41. Peters S, Handy TC, Lakhani B, et al. Motor and Visuospatial Attention and Motor Planning After Stroke: Considerations for the Rehabilitation of Standing Balance and Gait. *Phys Ther* 2015; 95: 1423–1432. https://doi.org/10.2522/ptj.20140492 PMID: 25929533

42. Patton JL, Stoykov ME, Kovic M, et al. Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors. *Exp Brain Res* 2006; 168: 368–383. https://doi.org/10.1007/s00221-005-0097-8 PMID: 16249912

43. Patton JL, Mark K, Musa-Ivaldi FA. Custom-designed haptic training for restoring reaching ability. *J Rehabil Res Dev* 2006; 43: 643. https://doi.org/10.1682/jrrd.2005.05.0088 PMID: 17123205

44. Mostafavi SM, Scott S, Dukelow SP, et al. Reduction of Assessment Time for Stroke-Related Impairments Using Robotic Evaluation. *IEEE Trans Neural Syst Rehabil Eng* 2017; 25: 945–955. https://doi.org/10.1109/TNSRE.2017.2669986 PMID: 28221998

45. Mostafavi SM, Mousavi P, Dukelow SP, et al. Robot-based assessment of motor and proprioceptive function identifies biomarkers for prediction of functional independence measures. *J Neuroeng Rehabil* 2015; 12: 105. https://doi.org/10.1186/s12984-015-0104-7 PMID: 26611144

46. Coderre AM, Zeid Amr Abou, Dukelow SP, et al. Assessment of Upper-Limb Sensorimotor Function of Subacute Stroke Patients Using Visually Guided Reaching. *Neuromodulation* 2010; 24: 528–541. https://doi.org/10.1117/154968309356091 PMID: 20233965

47. Liu LY, Li Y, Lamontagne A. The effects of error-augmentation versus error-reduction paradigms in robotic therapy to enhance upper extremity performance and recovery post-stroke: a systematic review. *J Neuroeng Rehabil* 2018; 15: 65. https://doi.org/10.1186/s12984-018-0408-5 PMID: 29973250

48. Balasubramanian S, Colombo R, Sterpi I, et al. Robotic Assessment of Upper Limb Motor Function After Stroke. *Am J Phys Med Rehabil* 2012; 91: S255–S269. https://doi.org/10.1097/PHM.0b013e31826bdc61 PMID: 23080041

49. Rizzo J-R, Hudson TE, Abdou A, et al. Motor planning poststroke: impairment in vector-coded reach plans. *Physiol Rep* 2015; 3: e12650. https://doi.org/10.14814/phy2.12650 PMID: 26660558

50. Simmatis LE, Jin AY, Taylor SW, et al. The feasibility of assessing cognitive and motor function in multiple sclerosis patients using robotics. *Mult Scler—Exp Transl Clin* 2020; 6: 2055217320964949. https://doi.org/10.1177/2055217320964949 PMID: 33149931

51. Casadio M, Sanguineti V, Solaro C, et al. A Haptic Robot Reveals the Adaptation Capability of Individuals with Multiple Sclerosis. *Int J Rob Res* 2007; 26: 1225–1233.

52. Vergaro E, Squeri V, Brichetto G, et al. Adaptive robot training for the treatment of incoordination in Multiple Sclerosis. *J Neuroeng Rehabil* 2010; 7: 37. https://doi.org/10.1186/1743-0003-7-37 PMID: 20670420

53. Carpinella I, Cattaneo D, Abuarqub S, et al. Robot-based rehabilitation of the upper limbs in multiple sclerosis: Feasibility and preliminary results. *J Rehabil Med* 2009; 41: 966–970. https://doi.org/10.2340/16501977-0401 PMID: 19841825

54. Yozbatiran N, Baskurt F, Baskurt Z, et al. Motor assessment of upper extremity function and its relation with fatigue, cognitive function and quality of life in multiple sclerosis patients. *J Neurol Sci* 2006; 246: 117–122. https://doi.org/10.1016/j.jns.2006.02.018 PMID: 16678208

55. Reinkensmeyer DJ, Boninger ML. Technologies and combination therapies for enhancing movement training for people with a disability. *J Neuroeng Rehabil* 2012; 9: 17. https://doi.org/10.1186/1743-0003-9-17 PMID: 22463132

56. Lamers I, Maris A, Severijns D, et al. Upper Limb Rehabilitation in People With Multiple Sclerosis. *Neuromodulation* 2016; 30: 773–793. https://doi.org/10.1177/154968315624785 PMID: 26747125

57. Feys P, Corinx K, Kerkhofs L, et al. Robot-supported upper limb training in a virtual learning environment: a pilot randomized controlled trial in persons with MS. *J Neuroeng Rehabil* 2015; 12: 60. https://doi.org/10.1186/s12984-015-0043-3 PMID: 26202325

58. Feys P, Straudi S. Beyond therapists: Technology-aided physical MS rehabilitation delivery. *Mult Scler J* 2019; 25: 1387–1393. https://doi.org/10.1177/1352458519844898 PMID: 31493352

59. Pellegriino L, Coscia M, Muller M, et al. Evaluating upper limb impairments in multiple sclerosis by exposure to different mechanical environments. *Sci Rep* 2018; 8: 2110. https://doi.org/10.1038/s41598-018-20343-y PMID: 29391520

60. Quirnten J, Immisch I, Albrecht H, et al. Influence of visual and proprioceptive afferences on upper limb ataxia in patients with multiple sclerosis. *J Neurol Sci* 1999; 163: 61–69. https://doi.org/10.1016/s0022-510x(99)00006-4 PMID: 10223413
61. Casadio M, Sanguineti V, Morasso P, et al. Abnormal sensorimotor control, but intact force field adaptation, in multiple sclerosis subjects with no clinical disability. *Mult Scler* 2008; 14: 330–342. https://doi.org/10.1177/135245807085068 PMID: 18208874

62. Solaro C, Brichetto G, Casadio M, et al. Subtle upper limb impairment in asymptomatic multiple sclerosis subjects. *Mult Scler* 2007; 13: 428–432. https://doi.org/10.1177/1352458506069926 PMID: 17439914

63. Benedetti MG, Piperno R, Simioncini L, et al. Gait abnormalities in minimally impaired multiple sclerosis patients. *Mult Scler* 1999; 5: 363–368. https://doi.org/10.1177/135245859900500510 PMID: 10516781

64. Kelleher KJ, Spence W, Solomonidis S, et al. The characterisation of gait patterns of people with multiple sclerosis. *Disabil Rehabil* 2010; 32: 1242–1250. https://doi.org/10.3109/09638280903464497 PMID: 20156050

65. Stolt M, Laitinen A-M, Ruutinainen J, et al. Research on lower extremity health in patients with multiple sclerosis. *Mult Scler* 2017; 23: 17–22. https://doi.org/10.1177/1352458516686178

66. Albrecht H, Wötzell C, Erasmus LP, et al. Day-to-day variability of maximum walking distance in MS patients can mislead to relevant changes in the Expanded Disability Status Scale (EDSS): average walking speed is a more constant parameter. *Mult Scler* 2001; 7: 105–109. https://doi.org/10.1177/135245850100700206 PMID: 11424630

67. Fili L, Sutter T, Easthope CS, et al. Profiling walking dysfunction in multiple sclerosis: characterisation, classification and progression over time. *Sci Rep* 2018; 8: 4984. https://doi.org/10.1038/s41598-018-22676-0 PMID: 29563533

68. Albrecht H, Wötzell C, Erasmus LP, et al. Day-to-day variability of maximum walking distance in MS patients can mislead to relevant changes in the Expanded Disability Status Scale (EDSS): average walking speed is a more constant parameter. *Mult Scler* 2001; 7: 105–109. https://doi.org/10.1177/135245850100700206 PMID: 11424630

69. Rousseseew PJ, Hubert M. Robust statistics for outlier detection. *WIREs Data Min Knowl Discov* 2011; 1: 73–79.

70. Wijeyaratnam DO, Chua R, Cressman EKEK. Going offline: differences in the contributions of movement control processes when reaching in a typical versus novel environment. *Exp Brain Res* 2019; 237: 1431–1444. https://doi.org/10.1007/s0022 1-019-05515-0 PMID: 30893542

71. Coghe G, Corona F, Pilloni G, et al. Is There Any Relationship between Upper and Lower Limb Impairments in People with Multiple Sclerosis? A Kinematic Quantitative Analysis. *Mult Scler Int* 2019; 2019: 1–6. https://doi.org/10.1155/2019/9149201 PMID: 31687212

72. Corona F, Gervasoni E, Coghe G, et al. Validation of the Arm Profile Score in assessing upper limb functional impairments in people with multiple sclerosis. *Clin Biomech* 2018; 51: 45–50. https://doi.org/10.1016/j.clinbiomech.2017.11.010 PMID: 29179033

73. Daunoraviciene K, Ziziene J, Griskevicius J, et al. Quantitative assessment of upper extremities motor function in multiple sclerosis. *Technol Heal Care* 2018; 26: 647–653. https://doi.org/10.3233/THC-182511 PMID: 29843287

74. Churchland MM. Neural Variability in Premotor Cortex Provides a Signature of Motor Preparation. *J Neurosci* 2006; 26: 3697–3712. https://doi.org/10.1523/JNEUROSCI.3762-05.2006 PMID: 16597724

75. Glover S. Separate visual representations in the planning and control of action. *Behav Brain Sci* 27, Epub ahead of print 1 February 2004. https://doi.org/10.1017/s0140525x04000020 PMID: 15481943

76. Bogacz R, Wagenmakers E-J, Forstmann BU, et al. The neural basis of the speed–accuracy tradeoff. *Trends Neurosci* 2010; 33: 10–16. https://doi.org/10.1016/j.tins.2009.09.002 PMID: 19819033

77. Desmurget M, Epstein CM, Turner RS, et al. Role of the posterior parietal cortex in updating reaching movements to a visual target. *Nat Neurosci* 1999; 2: 563–7. https://doi.org/10.1038/9219 PMID: 10448222

78. Renart A, Machens CK. Variability in neural activity and behavior. *Curr Opin Neurobiol* 2014; 24: 211–220. https://doi.org/10.1016/j.conb.2014.02.013 PMID: 24633334

79. Brex PA, Ciccarelli O, O’Riordan JI, et al. A Longitudinal Study of Abnormalities on MRI and Disability from Multiple Sclerosis. *N Engl J Med* 2002; 346: 158–164. https://doi.org/10.1056/NEJMoa011341 PMID: 11796849

80. De Stefano N, Narayanan S, Francis GS, et al. Evidence of Axonal Damage in the Early Stages of Multiple Sclerosis and Its Relevance to Disability. *Arch Neurol* 58. Epub ahead of print 1 January 2001. https://doi.org/10.1001/archneur.58.1.65 PMID: 11176938

81. Filippi M, Rocca MA, Mezzapesa DM, et al. Simple and complex movement-associated functional MRI changes in patients with clinically isolated syndromes suggestive of multiple sclerosis. *Hum Brain Mapp* 2004; 21: 108–117. https://doi.org/10.1002/hbm.10160 PMID: 14755598
82. Rocca MA, Meani A, Fumagalli S, et al. Functional and structural plasticity following action observation training in multiple sclerosis. *Mult Scler J* 2019; 25: 1472–1487. https://doi.org/10.1177/1352458518792771 PMID: 30084706

83. Giorgio A, Portaccio E, Stromillo ML, et al. Cortical functional reorganization and its relationship with brain structural damage in patients with benign multiple sclerosis. *Mult Scler J* 2010; 16: 1326–1334. https://doi.org/10.1177/1352458510377333 PMID: 20670979

84. Veldkamp R, Goetschalckx M, Hulst HE, et al. Cognitive–motor Interference in Individuals With a Neurologic Disorder: A Systematic Review of Neural Correlates. *Cogn Behav Neurol* 2021; 34: 79–95. https://doi.org/10.1097/WNN.0000000000000269 PMID: 34074863

85. Lamers I, Kerkhofs L, Raats J, et al. Perceived and actual arm performance in multiple sclerosis: relationship with clinical tests according to hand dominance. *Mult Scler J* 2013; 19: 1341–1348. https://doi.org/10.1177/1352458513475832 PMID: 23407701

86. Guclu-Gunduz A, Citaker S, Naziliel B, et al. Upper extremity function and its relation with hand sensation and upper extremity strength in patients with multiple sclerosis. *NeuroRehabilitation* 2012; 30: 369–374. https://doi.org/10.3233/NRE-2012-0768 PMID: 22672953

87. Valè N, Gandolfi M, Mazzoleni S, et al. Characterization of Upper Limb Impairments at Body Function, Activity, and Participation in Persons With Multiple Sclerosis by Behavioral and EMG Assessment: A Cross-Sectional Study. *Front Neurol* 10. Epub ahead of print 14 February 2020. https://doi.org/10.3389/fneur.2019.01395 PMID: 32116983

88. Chen CC, Kasven N, Karpatkin Hl, et al. Hand Strength and Perceived Manual Ability Among Patients With Multiple Sclerosis. *Arch Phys Med Rehabil* 2007; 88: 794–797. https://doi.org/10.1016/j.apmr.2007.03.010 PMID: 17532905

89. Farrell JW, Motl RW, Learmonth YC, et al. Persons with Multiple Sclerosis Exhibit Strength Asymmetries in both Upper and Lower Extremities. *Physiotherapy*. Epub ahead of print July 2020. https://doi.org/10.1016/j.physio.2020.07.006 PMID: 32888729

90. Solaro C, Grange E, Di Giovanni R, et al. Nine Hole Peg Test asymmetry in refining upper limb assessment in multiple sclerosis. *Mult Scier Relat Disord* 2020; 45: 102422. https://doi.org/10.1016/j.msard.2020.102422 PMID: 32731199

91. Ternes A-MS, Fielding J, Corben LA, et al. Movement Planning and Online Control in Multiple Sclerosis. *Cogn Behav Neurol* 2014; 27: 139–147. https://doi.org/10.1097/WNN.0000000000000036 PMID: 25237744