Supplementary Information

Optical simulation of ultimate performance enhancement in ultrathin Si solar cells by semiconductor nanocrystal energy transfer sensitization

Brandon Yalin, a Andreas C. Liapis,*b Matthew D. Eisaman, c Dmytro Nykypanchuk, b and Chang-Yong Nam* b

aDepartment of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, USA
bCenter for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
cDepartment of Electrical and Computer Engineering, Stony Brook University, Stony Brook, New York 11794, USA

*Corresponding authors: andreas.liapis@gmail.com (A.C.L.), cynam@bnl.gov (C.-Y.N.)

Fig. S1. Calculated contour plots of J_{SC} and contributions of $J_{Optical}$ and J_{ET} for NC-sensitized ultrathin Si with metallic back contact with 100% reflectivity for Si thicknesses of: (b-c) 10 nm; (d-f) 100 nm, and (g-i) 500 nm, under AM1.5G 1 Sun solar irradiation.