Evaluation of crystallographic ordering degree of magnetically active ions in Sr$_2$FeMoO$_{6-\delta}$ by means of the (101) X-ray peak intensity

Evgenij Artsiukh1, Gunnar Suchaneck2

1 SSPA «Scientific-Practical Materials Research Centre of NAS of Belarus», 19 P. Brovki Str., Minsk 220072, Belarus
2 TU Dresden, Solid State Electronics Laboratory, Dresden 01062, Germany

Corresponding author: Evgenij Artsiukh (sirfranzferdinand@yandex.ru)

Received 30 September 2019 • Accepted 3 December 2019 • Published 31 December 2019

Citation: Artsiukh E, Suchaneck G (2019) Evaluation of crystallographic ordering degree of magnetically active ions in Sr$_2$FeMoO$_{6-\delta}$ by means of the (101) X-ray peak intensity. Modern Electronic Materials 5(4): 151–157. https://doi.org/10.3897/j.moem.5.4.52810

Abstract

Strontium ferromolybdate double perovskite is a promising candidate for room-temperature spintronic applications. Nevertheless, SFMO has not yet found wide application in spintronics. This is attributed to the low reproducibility of its magnetic properties which partially originates from their strong dependence on the ordering degree of Fe and Mo ions in the B' and B'' sublattices of double perovskite $A_2B'B''O_6$.

In this work, we have considered an express method of determining the degree of disorder in strontium ferromolybdate. The sublattice occupation with Fe and Mo ions has been estimated for stoichiometric and nonstoichiometric Sr$_2$FeMoO$_{6-\delta}$ with a 5% Fe and Mo excess, respectively. We have calculated the intensity ratio between the superstructure (101) XRD peak and the most intense (112 + 200) peak. The calculated curves have been fitted to an analytical expression of a similar case known from literature. The calculation results obtained using the proposed method are within a ± 25% agreement with Rietveld analysis of experimental data. Thus, this method can be used as an alternative to Rietveld analysis if the exposure time during X-ray diffraction experiment was insufficient. We have discussed the dependence of the $I(101)/I(112 + 200)$ peak intensity ratio on various factors including instrumental broadening of diffraction peaks, peak twinning due to grain size reduction, thin film lattice parameter variation due to substrate lattice mismatch and lattice parameter variation due to oxygen vacancies.

The relevance of the method is the evaluation of the degree of superstructure ordering in Sr$_2$FeMoO$_{6-\delta}$ without large time consumption for X-ray diffraction pattern recording and Rietveld data processing which may be essential when dealing with large amounts of experimental data.

Keywords

strontium ferromolybdate, atomic ordering degree, X-ray structural analysis

1. Introduction

Strontium ferromolybdate (Sr$_2$FeMoO$_{6-\delta}$, SFMO) double perovskite is a promising candidate for room-temperature spintronic applications since it possesses a half-metallic character with theoretically 100% spin polarization [1] and a high Curie temperature of about 415 K enabling its application at room temperature (ferrimagnets should
be operated in their ordered magnetic state below the Curie point). Additionally, SFMO exhibits a sufficient low-field magnetoresistance (LFMR) [2]. The LFMR is almost absent in single crystals [3] and reaches 6.5% in highly-ordered ceramics at room temperature when applying a magnetic flux density of 0.3 T [4]. Nevertheless, SFMO has not yet found wide application in spintronics. This is attributed to the low reproducibility of its magnetic properties which partially originates from their strong dependence on the ordering degree of Fe and Mo ions in the \(B' \) and \(B'' \) sublattices of double perovskite \(A_2B'B''O_{6+2} \) [5].

SFMO possesses a tetragonal structure with the \(P4/m \) space symmetry group. However, some authors favor a space group \(P4/mmm \) with a lowered symmetry [6–9]. The perfect \(\text{Sr}_2\text{FeMoO}_6 \) lattice structure can be considered as a modified perovskite structure in which corner-connected \(\text{FeO}_6 \) and \(\text{MoO}_6 \) octahedra with cubic or tetragonal symmetry alternate along the three cubic axes. Cations \(A \) are in the cubic octahedral voids formed by the \(\text{FeO}_6 \) and \(\text{MoO}_6 \) octahedra (Fig. 1). The ordering degree \(S \) of stoichiometric SFMO is determined by the fraction of ions in the “wrong” sublattice, i.e., the so-called antisite disorder [10]

\[
S = 1 - 2\text{ASD}. \quad (1)
\]

Antisite disorder (ASD) takes place if a Fe ion from the Fe sublattice occupies a Mo ion site in the Mo sublattice (\(\text{Fe}_{\text{Mo}} \)) and vice versa (\(\text{Mo}_{\text{Fe}} \)). Thus, ASD is distinguished by the formation of \(\text{Fe}_{\text{Mo}} \) and \(\text{Mo}_{\text{Fe}} \) defect pairs. The ASD value may vary from 0 (complete order) to 0.5 (random distribution of Fe and Mo ions in the sublattices). Additionally, single antisite defects may occur if, e.g., excess Fe ions occupy sites in the Mo sublattice to form \(\text{Fe}_{\text{Mo}} \) [11].

In the perfect SFMO lattice, the (101) crystallographic planes are the ones of either Fe or Mo. Correspondingly, a (101) superstructure peak appears in the X-ray diffraction pattern. The intensity of the (101) superstructure peak decreases with the development of ASD. It disappears completely in disordered structures where Fe and Mo ions are distributed randomly between the sublattices. Another superstructure reflection is the (103) peak. However, its intensity is far lower than that of the (101) peak even in a completely ordered material [12].

On the other hand, the SFMO lattice contains planes whose diffraction peak intensities do not depend on the degree of cation ordering in the B-site sublattices. Therefore, they can be used for comparison with the (101) superstructure peak intensity in order to determine the degree of antisite disorder. In literature, the double (112) + (200) peak [6] or the (404) peak [14] are used for such calibration. The (112) diffraction peak is the most intense one in SFMO and hence its intensity can be determined with the least errors. On the other hand, it partially overlaps with the (200) peak. This should be taken into account in the analysis.

For the first time, the \(\frac{I(101)}{I(112) + I(200)} \) X-ray peak intensity ratio was used for ASD evaluation in the Fe and Mo sublattices in [6]. Later, this ratio was considered in [7, 15]. Thereby, it was assumed that the \(\frac{I(101)}{I(112) + I(200)} \) peak intensity ratio decreases linearly with increasing disorder [7]. Afterwards, the \(\frac{I(101)}{I(112) + I(200)} \) peak intensity ratio was widely used as a measure of disorder in SFMO ceramic specimens [17–20].

Antisite disorder was evaluated also by 2D mapping of reciprocal space for the (101) and (404) peaks [14]. The \(\frac{I(101)}{I(404)} \) peak integral intensity ratio was taken as a measure of disorder in the sublattices using the following expression:

\[
\text{ASD} = b - \frac{I(101)}{aI(404)} \quad (2)
\]

where \(a = 0.5583 \pm 0.0005 \) and \(b = 0.5225 \pm 0.0002 \) are constants obtained by X-ray pattern simulation [14].

In our case of the \(\frac{I(101)}{I(112) + I(200)} \) peak intensity ratio, there is no theoretical formula which could be used for evaluating disorder degree avoiding preliminary X-ray pattern treatment by means of the Rietveld method. This gap is closed in this work.

2. Theory

In the following, we consider the intensity \(I \) of a X-ray reflection estimated as the height of the corresponding peak since this parameter can be reliably measured even if the X-ray exposure time is short. For example, the exposure
time required for a reliable full-profile analysis of X-ray diffraction patterns is one order of magnitude larger than that required for phase analysis [21]. This makes Rietveld analysis of X-ray pattern quite time-consuming.

The calculations were carried out using the VESTA [13] and RIETAN-FP·VENUS Package [22] software. The initial data for SFMO X-ray diffraction pattern simulation (Table 1) were taken from an earlier work [8]. A SFMO cell with $I4/m$ space group was considered as the main structure. The assumed lattice parameters were $a = 0.557$ nm and $c = 0.790$ nm. The radiation was CuK$_\alpha$ (wavelength 0.154059 nm).

The main point defects in SFMO synthesized under oxygen deficiency are Sr vacancies and antisite defects [23]. Therefore, for simplicity, we will consider in the following Fe and Mo sublattices completely occupied by Fe or Mo ions.

The ordering degree in stoichiometric SFMO is given by

$$S = \text{Fe}_\text{Fe} - \text{Fe}_\text{Mo} = \text{Mo}_\text{Mo} - \text{Mo}_\text{Fe}. \quad (3)$$

In this case, the degree of sublattice occupation with Fe and Mo cations is determined by the following formulae:

$$\text{Fe}_\text{Fe} = 1 - \left(\frac{100 - \text{ASD}}{100\%} \right) \text{Fe}_\text{Mo} = 1 - \text{Fe}_\text{Fe} \quad (4)$$

$$\text{Mo}_\text{Mo} = 1 - \left(\frac{100 - \text{ASD}}{100\%} \right) \text{Mo}_\text{Fe} = 1 - \text{Mo}_\text{Mo} \quad (5)$$

In nonstoichiometric Sr$_{1-x}$Fe$_{x}$Mo$_{1+y}$O$_{6-\delta}$, the degrees of sublattice occupation with Fe and Mo cations are determined as follows [24]

$$\text{Fe}_\text{Fe} = (1-x) \left(\frac{100 - \text{ASD}}{100\%} \right) \text{Fe}_\text{Mo} = (1-x) - \text{Fe}_\text{Fe} \quad (6)$$

$$\text{Mo}_\text{Mo} = x + (1-x) \left(\frac{100 - \text{ASD}}{100\%} \right) \text{Mo}_\text{Fe} = 1 + x - \text{Mo}_\text{Mo} \quad (7)$$

and correspondingly in Sr$_{1-x}$Fe$_{x}$Mo$_{1+y}$O$_{6-\delta}$.

$$\text{Fe}_\text{Fe} = x + (1-x) \left(\frac{100 - \text{ASD}}{100\%} \right) \text{Fe}_\text{Mo} = x + (1-x) \quad (8)$$

$$\text{Mo}_\text{Mo} = (1-x) \left(\frac{100 - \text{ASD}}{100\%} \right) \text{Mo}_\text{Fe} = (1-x) - \text{Mo}_\text{Mo} \quad (9)$$

In order to determine ASD as a function of the $I(101)/[I(112) + I(200)]$ peak intensity ratio, we have used the sublattice occupation data compiled in Tables 2–4.

3. Results and discussion

The comparison of the calculated ASD as a function of the $I(101)/[I(112) + I(200)]$ peak intensity ratio with experimental data is shown in Fig. 2. Along with data for high-temperature sintered ceramics, i.e., coarse-grained ones [6, 16, 18], sparse data [9, 25–32] were also taken into account.

For the simulated SFMO crystal with the described above parameters ($I4/m$, $a = 0.557$ nm and $c = 0.790$ nm), the (101) peak for CuK$_\alpha$ radiation is located at 19.484°, the (112) peak at 32.066° and the (200) peak is shifted to a higher angle beyond the (112) peak by 0.047°. Accounting only the (112) peak, overestimates the ASD in comparison with the literature data. With regard to the very small difference in the (112) and (200) peak positions, the sum of the (112) + (200) peak intensities may be considered as 149.8% of the (112) peak intensity.

The total peak intensity depends on a number of factors:

- instrumental broadening of diffraction peaks;
- peak broadening due to grain size reduction;
- thin film lattice parameter variation due to substrate lattice mismatch;
- lattice parameter variation due to oxygen vacancies etc.

We will now consider these factors more in detail.

Instrumental broadening of diffraction peaks can be evaluated experimentally using the NIST-Si-standard 640d [33]. For example, for a Bruker D8 Discover X-ray spectrometer in Bragg–Brentano setup, the instrumental broadening of diffraction peaks at low diffraction angles is approx. 0.17°. Consequently, the total intensity of the (112) + (200) peaks increases to 146.5% of the (112) peak intensity. The peak broadening due to grain size reduction

Ion	X	Y	Z
Sr	0.5	0	0.5
Fe$_{Fe}$	0	0	0
Fe$_{Mo}$	0	0	0
Mo$_{Mo}$	0	0	0
Mo$_{Fe}$	0	0	0
O1	0	0	0.5
O2	0.25	0.5	0

Notations: Fe$_{Fe}$ and Fe$_{Mo}$ are the Fe ion positions in the Fe and Mo sublattices, and Mo$_{Mo}$ and Mo$_{Fe}$ the molybdenum ion positions in the Mo and Fe sublattices, respectively.
Table 2. Ion occupation in the SFMO sublattices.

S, %	ASD, %	Fe_{as}	Fe_{ss}	Mo_{as}	Mo_{ss}
100	0	1	0	1	0
90	5	0.95	0.05	0.95	0.05
80	10	0.9	0.1	0.9	0.1
70	15	0.85	0.15	0.85	0.15
60	20	0.8	0.2	0.8	0.2
50	25	0.75	0.25	0.75	0.25
40	30	0.7	0.3	0.7	0.3
30	35	0.65	0.35	0.65	0.35
20	40	0.6	0.4	0.6	0.4
10	45	0.55	0.45	0.55	0.45
0	50	0.5	0.5	0.5	0.5

Table 3. Ion occupation in the Sr_{2}Fe_{0.95}Mo_{1.05}O_{6-δ} sublattices.

S, %	ASD, %	Fe_{as}	Fe_{ss}	Mo_{as}	Mo_{ss}
100	0	0.9025	0.0475	0.9525	0.0975
90	5	0.85	0.095	0.905	0.145
80	10	0.8075	0.1425	0.8575	0.1925
70	15	0.76	0.19	0.81w	0.24
60	20	0.7125	0.2375	0.7625	0.2875
50	25	0.665	0.285	0.715	0.335
40	30	0.6175	0.3225	0.6675	0.3825
30	35	0.57	0.38	0.62	0.43
20	40	0.5225	0.4275	0.5725	0.4775
10	45	0.475	0.475	0.525	0.525
0	50	0.475	0.475	0.525	0.525

Table 4. Ion occupation in the Sr_{2}Fe_{1.05}Mo_{0.95}O_{6-δ} sublattices.

S, %	ASD, %	Fe_{as}	Fe_{ss}	Mo_{as}	Mo_{ss}
100	0	1	0.05	0.95	0
90	5	0.9525	0.0975	0.9025	0.0475
80	10	0.905	0.145	0.855	0.095
70	15	0.8575	0.1925	0.8075	0.1425
60	20	0.81	0.24	0.76	0.19
50	25	0.7625	0.2875	0.7125	0.2375
40	30	0.715	0.335	0.6675	0.285
30	35	0.6675	0.3825	0.6175	0.3325
20	40	0.62	0.43	0.57	0.38
10	45	0.5725	0.4775	0.5225	0.4275
0	50	0.525	0.475	0.475	0.475
is treated using the Scherrer formula for full width at half maximum (FWHM) of the diffraction peak:

\[\text{FWHM} = \frac{K\lambda}{d \cos \theta}, \tag{10} \]

where \(d \) is the average grain size, \(k \) a dimensionless coefficient of approximately 0.5 (for spherical particles), \(\lambda \) is the X-ray wavelength and \(\theta \) is the diffraction angle. The calculated broadening of (112) and (200) peaks for 100 nm diameter spherical particles is 0.083°. This broadening further increases the total peak intensity (112) + (200) to 147.9% of the (112) peak intensity. The small lattice mismatch between SFMO and substrate only slightly changes the SFMO superstructure peak intensities. This was proved by additionally considering the lattice parameter combinations \(a = 0.557 \text{ nm} \) with \(c = 0.804 \text{ nm} \), \(a = 0.562 \text{ nm} \) with \(c = 0.792 \text{ nm} \) and \(a = 0.795 \text{ nm} \) with \(c = 0.560 \text{ nm} \) simulating SrTiO\(_3\), MgO and LaAlO\(_3\) substrates, respectively [34]. The resulting curves slightly differ from the initial ones calculated for the lattice parameters \(a = 0.557 \text{ nm} \) and \(c = 0.790 \text{ nm} \). The change in the lattice parameter due to oxygen vacancies [15, 35, 36] does not exceed the ones caused by SFMO/substrate lattice mismatch already considered above.

Nevertheless, the method of the degree of superstructure order was taken into account in the X-ray experiment and provides reliable results for near-stoichiometric SFMO specimens with Fe ≈ Mo.

\[S = \frac{I_{\text{max}} - S}{2}, \tag{14} \]

where \(S \) is the order parameter determined by Eq. (3) and \(S_{\text{max}} \) the maximum degree of superstructure order which, e.g. for SFMO with excess Mo, is determined by the formula:

\[S_{\text{max}} = Fe_{\text{Fe}} - Fe_{\text{Mo}} = 2 - (Mo_{\text{Mo}} + Mo_{\text{Fe}}) < 1. \tag{15} \]

The intensities of the (112) and (200) peaks depend on instrumental error, grain size and degree of crystallinity. They are also affected by incorrect specimen preparation (specimen crushing, specimen holder preparation etc.). Nevertheless, the method of the degree of superstructure ordering from the ratio of the \(I(101)/I(112) + I(200) \) peak intensities can be considered as a fairly simple evaluation method for SFMO compositions with the Fe/Mo ratio close to 1 since a peak intensity ratio is compared and the impact of the abovementioned factors was taken into account to a large extent.

4. Conclusion

In this work, an express method of ASD evaluation from the \(I(101)/I(112) + I(200) \) peak intensity ratio by means of Eq. (11) was proposed. The method allows saving exposure time of the X-ray experiment and provides reliable results for near-stoichiometric SFMO specimens with Fe ≈ Mo.

Acknowledgements

The work was financially supported by the European Union within the Horizon 2020, H2020-MSCA-RISE-2017 Program (Grant No. 778308 SPINMULTIFILM).

References

1. Serrate D., De Teresa J.M., Ibarra M.R. Double perovskites with ferromagnetism above room temperature. J. Phys.: Condens. Matter, 2006; 19(2): 023201 (86pp). https://doi.org/10.1088/0953-8984/19/2/023201
2. Kobayashi K.-I., Kimura T., Sawada H., Terakura K., Tokura Y. Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure. Nature, 1998; 395: 677–680. https://doi.org/10.1038/27167
3. Tomioka Y., Okuda T., Okimoto Y., Kumai R., Kobayashi K.-I., Tokura Y. Magnetic and electronic properties of a single crystal of ordered double perovskite Sr\(_2\)FeMoO\(_4\). Phys. Rev. B, 2000; 61(1): 422–427. https://doi.org/10.1103/PhysRevB.61.422
4. Retuerto M., Alonso J.A., Martínez-Lope M.J., Martínez J.L., García-Hernández M. Record saturation magnetization, Curie temperature, and magnetoresistance in double perovskite synthesized by wet-chemistry techniques. Appl. Phys. Lett., 2004; 85(2): 266–268. https://doi.org/10.1063/1.1772857
5. Suchanek G., Kalandra N., Artsiukh E., Gerlach G. Challenges in Sr$_x$FeMoO$_{6-δ}$ thin film deposition. *Phys. Status Solidi (b)*, 2019; 257(3): 1900312. https://doi.org/10.1002/pssb.201900312

6. Balcells L., Naravjo J., Bibes M., Roig A., Martínez B., Fontcuberta J. Cationic ordering control of magnetization in SrFeMoO$_x$ double perovskite. *Appl. Phys. Lett.*, 2001; 78: 781–783. https://doi.org/10.1063/1.1346624

7. Harnagea L., Berthet P. The effect of strontium non-stoichiometry on the physical properties of double perovskite SrFeMoO$_x$. *J. Solid State Chem.*, 2015; 222: 115–122. https://doi.org/10.1016/j.jssc.2014.11.017

8. Fix T. Couches minces de SrFeMoO$_x$ élaborées par ablation laser pour des jonctions tunnel magnétiques. Diss. Dr. Sci. (Phys.-Math.), Strasbourg, 2006.

9. Park B.J., Han H., Kim J., Kim Y.J., Kim C.S., Lee B.W. Correlation between anti-site disorder and magnetic properties in ordered perovskite SrFeMoO$_x$. *J. Magnetism and Magnetic Materials*, 2004; 272(1): 1851–1852. https://doi.org/10.1016/j.jmmm.2003.12.429

10. Moritomo Y., Shimamoto N., Xu S., Machida A., Nishibori E., Takata M., Sakata M., Nakamura A. Effects of B-site disorder in Sr$_x$FeMoO$_y$ with double perovskite structure. *Jpn. J. Appl. Phys.*, 2001; 40(7A): L672–L674. https://doi.org/10.1143/JJAP.40.L672

11. Mishra R., Restrepo O.D., Woodward P.M., Windl W. First-principles study of defective and nonstoichiometric SrFeMoO$_x$. *Chemistry of Materials*, 2010; 22(22): 6092–6102. https://doi.org/10.1021/cm101587e

12. Kalanda M., Suchanek G., Saad A., Demyanov S., Gerlach G. Influence of oxygen stoichiometry and cation ordering on magnetoresistive properties of SrFeMoO$_{6-δ}$. *Materials Science Forum*, 2010; 636–637: 338–343. https://doi.org/10.4028/www.scientific.net/MSF.636-637.338

13. Momma K., Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. *J. Appl. Crytal.*, 2011; 44: 1272–1276. https://doi.org/10.1107/S0021889811038970

14. Saloaro M., Deniz H., Huhtinen H., Palonen H., Majumdar S., Patuiri P. The predominance of substrate induced defects in magnetic properties of Sr$_x$FeMoO$_{6-δ}$ thin films. *J. Phys.: Condens. Matter*, 2015; 27: 386601 (11pp). https://doi.org/10.1088/0953-8984/27/38/386601

15. Kirchensen R., Töpfer J. Nonstoichiometry: Point defects and magnetic properties in SrFeMoO$_x$. *J. Solid State Chem.*, 2015; 185: 76–81. https://doi.org/10.1016/j.jssc.2014.11.017

16. Wang J.-F., Li Z., Xu X.-J., Gu Z.-B., Yuan G.-L., Zhang S.-T. The predominance of substrate induced defects in magnetic properties driven by oxygen vacancy in Sr$_x$FeMoO$_{6-δ}$ double perovskite. *J. Phys.: Condens. Matter*, 2003; 15(12): 2053–2060. https://doi.org/10.1088/0953-8984/15/12/322

17. Sánchez D., Alonso J.A., García-Hernández M., Martínez-Lope M.J., Martínez J.L., Mellergård A. Origin of neutron magnetic scattering in antitise-disordered Sr$_x$FeMoO$_x$ double perovskites. *Phys. Rev. B*, 2002; 65(10): 104426 (8pp). https://doi.org/10.1103/PhysRevB.65.104426

18. Naravjo J., Frontera C., Rubi D., Mestres N., Fontcuberta J. Aging of Sr$_x$FeMoO$_{6-δ}$ and related oxides. *Materials Research Bulletin*, 2003; 38(9–10): 1477–1486. https://doi.org/10.1016/S0025-5408(03)00171-5

19. Huang Y.H., Karppinen M., Yamauchi H., Goodenough J.B. Systematic studies on effects of cationic ordering on structural and magnetic properties in Sr$_x$FeMoO$_{6-δ}$. *Phys. Rev. B*, 2006; 73(10): 104408 (5pp). https://doi.org/10.1103/PhysRevB.73.104408

20. Hu Y.C., Ge J.J., Ji Q., Lv B., Wu X.S., Cheng G.F. Synthesis and crystal structure of double-perovskite compound Sr$_x$FeMoO$_{6-δ}$ Powder Diffraction, 2010; 25: S17–S21. https://doi.org/10.1154/1.3478711

21. Zhang Q., Xu Z.F., Wang L.F., Gao S.H., Yuan S.J. Structural and electromagnetic properties driven by oxygen vacancy in Sr$_x$FeMoO$_{6-δ}$ double perovskite. *J. Alloys and Compounds*, 2015; 649: 1151–1155. https://doi.org/10.1016/j.jallcom.2015.07.211

22. Liu M., Li J., Hao X., Yang Z., Zhou D., Meng J. Hole doping double perovskites Sr$_x$Fe$_{1-x}$MoO$_{6-δ}$ (0 < δ < 0.10) compound. *J. Phys. D: Appl. Phys.*, 2014; 47(44): 445003 (9pp). https://doi.org/10.1088/0022-3773/47/44/445003

23. Black D.R., Windover D., Henins A., Gil D., Filliben J., Cline J.P. Certification of NIST standard reference material 640d. *Power Diffraction*, 2010; 25(2): 187–190. https://doi.org/10.1154/1.3409482
34. Jalili H., Heinig N.F., Leung K.T. Growth evolution of laser-ablated Sr₂FeMoO₆ nanostructured films: Effects of substrate-induced strain on the surface morphology and film quality. *J. Chem. Phys.*, 2010; 132: 204701 (7pp). https://doi.org/10.1063/1.3407453

35. Agata S., Moritomo Y., Machida A., Kato K., Nakamura A. Oxidation control of transport properties of Sr₂FeMoO₆₊δ film. *Jpn. J. Appl. Phys.*, 2002; 41: L688–L690. https://doi.org/10.1143/JJAP.41.L688

36. Kalanda N., Turchenko V., Karpinsky D., Demyanov S., Yarmolich M., Balasoiu M., Lupu N., Tyutyunnikov S., Sobolev N. A. The role of the Fe/Mo cations ordering degree and oxygen non-stoichiometry on the formation of the crystalline and magnetic structure of Sr₂FeMoO₆₋δ. *Phys. Status Solidi B*, 2018; 256: 1800278 (7pp). https://doi.org/10.1002/pssb.201800278