On Some Properties of K- type Block Matrices in the context of Complementarity Problem

A. Duttaa,1, A. K. Dasb

aJadavpur University, Kolkata, 700 032, India.

bIndian Statistical Institute, 203 B. T. Road, Kolkata, 700 108, India.

1 Email: aritradutta001@gmail.com

Abstract

In this article we introduce K-type block matrices which include two new classes of block matrices namely block triangular K-matrices and hidden block triangular K-matrices. We show that the solution of linear complementarity problem with K-type block matrices can be obtained by solving a linear programming problem. We show that block triangular K-matrices satisfy least element property. We prove that hidden block triangular K-matrices are Q_0 and processable by Lemke's algorithm. The purpose of this article is to study properties of K-type block matrices in the context of the solution of linear complementarity problem.

Keywords: Z-matrix, Hidden Z-matrix, linear programming problem, linear complementary problem, semi-sublattice, P-matrix, Q_0-matrix.

AMS subject classifications: 90C33, 90C51, 15A39, 15B99.

1 Introduction

The linear complementarity problem is a combination of linear and nonlinear system of inequalities and equations. The problem may be stated as follows: Given $M \in R^{n \times n}$ and a vector $q \in R^n$, the linear complementarity problem, LCP(M, q) is the problem of finding a solution $w \in R^n$ and $z \in R^n$ to the following system of linear equations and inequalities:

\begin{align*}
 w - Mz &= q, \quad w \geq 0, \quad z \geq 0 \quad (1.1) \\
 w^Tz &= 0. \quad (1.2)
\end{align*}

In complementarity theory several matrix classes are considered due to the study of theoretical properties, applications and its solution methods. For details see [17], [20], [15], [19], [3]. The complementarity problem plays an important role in the formulation of structured stochastic game problems. For details see [12], [18], [22], [13], [14]. The complementarity problem establishes an important connections with
multiobjective programming problem for KKT point and the solution point \[11\]. The complementarity problems are considered with respect to principal pivot transforms and pivotal method to its solution point of view. For details see \[21\], \[2\], \[16\]. It is well known that the linear complementarity problem can be solved by a linear program if \(M\) or its inverse is a \(Z\)-matrix, i.e. a real square matrix with non-positive off diagonal elements. A number of authors have considered the special case of the linear complementarity problem under the restriction that \(M\) is a \(Z\)-matrix. Chandrasekharan \[24\] considered \(Z\)-matrix solving a sequence of linear inequalities. Lemke’s algorithm is a well known technique for solving linear complementarity problem \[1\]. Mangasarian \[9\] showed that the following linear program

\[
\begin{align*}
\text{minimize} & \quad p^T u \\
\text{subject to} & \quad q + Mu \geq 0, \\
& \quad u \geq 0
\end{align*}
\]

for an easily determined \(p \in \mathbb{R}^n\) solves the linear complementarity problem for a number of special cases specially when \(M\) is a \(Z\)-matrix. Mangasarian \[9\] proved that least element of the polyhedral set \(\{u : q + Mu \geq 0, u \geq 0\}\) in the sense of Cottle-Veinott can be obtained by a single linear program. It is well known that the quadratic programming problem

\[
\begin{align*}
\text{minimize} & \quad q^T u + \frac{1}{2} u^T Mu \\
\text{subject to} & \quad u \geq 0
\end{align*}
\]

can be formulated as a linear complementarity problem when \(M\) is symmetric positive semidefinite. Mangasarian showed that this problem can be solved using single linear program if \(M\) is a \(Z\)-matrix. Hidden \(Z\)-matrices are the extension of \(Z\)-matrices. A matrix \(M\) is said to be a hidden \(Z\)-matrix if \(\exists\) two \(Z\)-matrices \(X\) and \(Y\) such that

(i) \(MX = Y\)

(ii) \(r^TX + s^TY > 0\), for some \(r, s \geq 0\).

For details, see \[6\], \[7\]. In this paper we introduce block triangular \(K\)-matrix and hidden block triangular \(K\)-matrix. We call these two classes collectively as \(K\)-type block matrix. We discuss the class of \(K\)-type block matrices in solution aspects for linear complementarity problem.

The paper is organized as follows. Section 2 presents some basic notations, definitions and results. In section 3, we establish some results of these two matrix classes. We show that a linear complementarity problem with block triangular \(K\)-matrix and hidden block triangular \(K\)-matrix can be solved using linear programming problem.

2 Preliminaries

We denote the \(n\) dimensional real space by \(\mathbb{R}^n\). \(\mathbb{R}_+^n\) denotes the nonnegative orthant of \(\mathbb{R}^n\). We consider vectors and matrices with real entries. Any vector \(x \in \mathbb{R}^n\) is a
column vector and x^T denotes the row transpose of x. e denotes the vector of all 1. A matrix is said to be nonnegative or $M \geq 0$ if $m_{ij} \geq 0 \ \forall \ i,j$. A matrix is said to be positive if $m_{ij} > 0 \ \forall \ i,j$. Let M and N be two matrices with $M \geq N$, then $M - N \geq 0$. If M is a matrix of order n, $\alpha \subseteq \{1,2,\cdots,n\}$ and $\bar{\alpha} \subseteq \{1,2,\cdots,n\} \setminus \alpha$ then $M_{\alpha\bar{\alpha}}$ denotes the submatrix of M consisting of only the rows and columns of M whose indices are in α and $\bar{\alpha}$ respectively. $M_{\alpha\alpha}$ is called a principal submatrix of M and $\det(M_{\alpha\alpha})$ is called a principal minor of M. Given a matrix $M \in R^{n \times n}$ and a vector $q \in R^n$, we define the feasible set $\text{FEA}(M,q) = \{z \in R^n : z \geq 0, q + Mz \geq 0\}$ and the solution set of $\text{LCP}(M,q)$ by $\text{SOL}(M,q) = \{z \in \text{FEA}(M,q) : z^T(q + Mz) = 0\}$.

We state the results of two person matrix games in linear system with complementary conditions due to von Neumann [25] and Kaplansky [8]. The results say that there exist $\bar{x} \in R^m, \bar{y} \in R^m$ and $v \in R$ such that

$$
\sum_{i=1}^m \bar{x}_i a_{ij} \leq v, \ \forall \ j = 1, 2, \cdots, n,
$$

$$
\sum_{j=1}^n \bar{y}_j a_{ij} \geq v, \ \forall \ i = 1, 2, \cdots, m.
$$

The strategies (\bar{x}, \bar{y}) are said to be optimal strategies for player I and player II and v is said to be minimax value of game. We write $v(A)$ to denote the value of the game corresponding to the payoff matrix A. The value of the game, $v(A)$ is positive(nonnegative) if there exists a $0 \neq x \geq 0$ such that $Ax > 0 (Ax \geq 0)$. Similarly, $v(A)$ is negative(nonpositive) if there exists a $0 \neq y \geq 0$ such that $y^T A < 0 (y^T A \leq 0)$.

A matrix $M \in R^{n \times n}$ is said to be

- PSD-matrix if $x^T M x \geq 0 \ \forall \ 0 \neq x \in R^n$.
- $P(P_0)$-matrix if all its principal minors are positive (nonnegative).
- S-matrix [23] if there exists a vector $x > 0$ such that $Mx > 0$ and \bar{S}-matrix if all its principal submatrices are S-matrix.
- Z-matrix if off-diagonal elements are all non-positive and $K(K_0)$-matrix if it is a Z-matrix as well as $P(P_0)$-matrix.
- Q-matrix if for every q, $\text{LCP}(M,q)$ has at least one solution.
- Q_0-matrix if for $\text{FEA}(q,A) \neq \emptyset \implies \text{SOL}(q,A) \neq \emptyset$.

Now we give some definitions, lemmas, theorems which will be required for discussion in the next section.

Lemma 2.1. [1] If A is a P-matrix, then A^T is also P-matrix.

Lemma 2.2. Let A be a P-matrix. Then $v(A) > 0$.

Definition 2.1. [1] A subset S of R^n is called a meet semi-sublattice(under the componentwise ordering of R^n) if for any two vectors x and y in S, their meet, the vector $z = \min(x,y)$ belongs to S.

Definition 2.2. [5] The spectral radius $\sigma(M)$ of M is defined as the maximum of the moduli $|\lambda|$ of all proper values λ of M.

Lemma 2.3. [5] Let M be a nonnegative matrix. Then there exists a proper value $p(M)$ of M, the Perron root of M, such that $p(M) \geq 0 \ \text{and} \ |\lambda| \leq p(M)$ for every proper value λ of M. If $0 \leq M \leq N$ then $p(M) \leq p(N)$. Moreover, if M is
irreducible, the Perron-Frobenius root \(p(M) \) is positive, simple and the corresponding proper value may be chosen positive. According to the Perron-Frobenius theorem, we have \(\sigma(M) = p(M) \) for nonnegative matrices.

Definition 2.3. A matrix \(W \) is said to have dominant principal diagonal if \(|w_{ii}| > \sum_{k \neq i} |w_{ik}| \) for each \(i \).

Lemma 2.4. [5] If \(W \) is a matrix with dominant principal diagonal, then \(\sigma(I - H^{-1}W) < 1 \), where \(H \) is the diagonal of \(W \).

Theorem 2.1. [5] The following four properties of a matrix are equivalent:
(i) All principal minors of \(M \) are positive.
(ii) To every vector \(x \neq 0 \) there exists an index \(k \) such that \(x_k y_k > 0 \) where \(y = Mx \).
(iii) To every vector \(x \neq 0 \) there exists a diagonal matrix \(D_x \) with positive diagonal elements such that the inner product \((Mx, D_x x) > 0 \).
(iv) To every vector \(x \neq 0 \) there exists a diagonal matrix \(H_x \geq 0 \) such that the inner product \((Mx, H_x x) > 0 \).
(v) Every real proper value of \(M \) as well as of each principal minor of \(M \) is positive.

Lemma 2.5. [1] If \(F \) is a nonempty meet semi-sublattice that is closed and bounded below, then \(F \) has a least element.

Lemma 2.6. [10] If \(z \) solves the linear program \(\min p^T z \) subject to \(Mz + q \geq 0, z \geq 0 \) and if the corresponding optimal dual variable \(y \) satisfies \((I - M^T)y + p > 0 \), then \(z \) solves the linear complementarity problem LCP\((M, q)\).

3 Main Results

In this paper we introduce block triangular \(K \)-matrix and hidden block triangular \(K \)-matrix, which are defined as follows: A matrix \(M \in \mathbb{R}^{mn \times mn} \) is said to be a block triangular \(K \)-matrix if it is formed with block of \(K \)-matrices \(M_{ij} \in \mathbb{R}^{m \times m} \), either in upper triangular forms or in lower triangular forms. Here \(i \) and \(j \) vary from 1 to \(n \).

For block upper triangular form of \(M \), the blocks \(M_{ij} = 0 \) for \(i < j \) and for block lower triangular form of \(M \), the blocks \(M_{ij} = 0 \) for \(i > j \).

Consider

\[
M = \begin{bmatrix}
1 & -1 & 0 & 0 & 0 & 0 \\
-1.5 & 2 & 0 & 0 & 0 & 0 \\
3 & -1 & 1 & -1 & 0 & 0 \\
-1 & 4 & -0.75 & 1 & 0 & 0 \\
1 & -1 & 1 & -0.5 & 5 & -1 \\
-0.5 & 1 & -0.5 & 1 & -10 & 6
\end{bmatrix},
\]

which is a block triangular \(K \)-matrix.

The matrix \(N \in \mathbb{R}^{mn \times mn} \) is said to be hidden block triangular \(K \)-matrix if there
exist two block triangular K-matrices X and Y such that $NX = Y$. N is formed with block matrices either in upper triangular forms or in lower triangular forms. For block upper triangular form of N, the blocks $N_{ij} = 0$ for $i < j$ and X, Y are formed with K matrices in upper triangular form. Similarly for block lower triangular form of N, the blocks $N_{ij} = 0$ for $i > j$ and X, Y are formed with K matrices in lower triangular form.

Consider $N = \begin{bmatrix} -1 & -1 & 0 & 0 \\ 5 & 4 & 0 & 0 \\ -4.5 & -3 & 1 & 0.5 \\ 4 & 3.875 & -0.25 & 0.3125 \end{bmatrix}$,

$$X = \begin{bmatrix} 2 & -1 & 0 & 0 \\ -3 & 2 & 0 & 0 \\ 3 & 0 & 4 & -1 \\ -2 & 1 & 0 & 4 \end{bmatrix}$$ and $Y = \begin{bmatrix} 1 & -1 & 0 & 0 \\ -2 & 3 & 0 & 0 \\ 2 & -1 & 4 & 0 \\ 0 & 1 & -1 & 1 \end{bmatrix}$,

such that $NX = Y$. Then N is a hidden block triangular K-matrix.

Theorem 3.1. Let M be a block triangular K-matrix. Then $LCP(M, q)$ is processable by Lemke’s algorithm.

Proof. Let M be a block triangular K-matrix. Then $\exists z \in R^n$ such that $z_i(Mz)_i \leq 0 \quad \forall i \iff (z_1)_i(M_{11}z_1)_i \leq 0 \quad \forall i \iff z_1 = 0$, as $M_{11} \in K$; $(z_2)_i(M_{21}z_1 + M_{22}z_2)_i \leq 0 \quad \forall i \iff (z_2)_i(M_{22}z_2)_i \leq 0 \quad \forall i \iff z_2 = 0$, as $M_{22} \in K$. In similar way $(z_n)_i(M_{n1}z_1 + M_{n2}z_2 + \cdots + M_{nn}z_n)_i \leq 0 \quad \forall i \iff (z_n)_i(M_{nn}z_n)_i \leq 0 \quad \forall i \iff z_n = 0$, as $M_{nn} \in K$ and $z_1 = z_2 = \cdots = z_{n-1} = 0$. Hence $z = 0$. So M is a P-matrix. Therefore $LCP(M, q)$ is processable by Lemke’s algorithm.

Remark 3.1. [4] Let M be a block triangular K-matrix. Then $LCP(M, q)$ is solvable by criss-cross method.

Theorem 3.2. If M is a block triangular K-matrix and q is an arbitrary vector, then the feasible region of $LCP(M, q)$ is a meet semi-sublattice.

Proof. Let $F = \text{FEA}(M, q)$. Let $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix}$, $y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_n \end{bmatrix} \in F$ are two feasible vectors. So $x \geq 0, y \geq 0, Mx + q \geq 0, My + q \geq 0$.

5
Let $z = \begin{bmatrix} z_1 \\ z_2 \\ z_3 \\ \vdots \\ z_n \end{bmatrix} = \min(x, y)$. Then

$$Mx + q = \begin{bmatrix} M_{11}x_1 + q_1 \\ M_{21}x_1 + M_{22}x_2 + q_2 \\ M_{31}x_1 + M_{32}x_2 + M_{33}x_3 + q_3 \\ \vdots \\ M_{n1}x_1 + M_{n2}x_2 + M_{n3}x_3 + \cdots + M_{nn}x_n + q_n \end{bmatrix} \geq 0.$$}

$$\implies x_1 \in \text{FEA}(M_{11}, q_1), x_2 \in \text{FEA}(M_{22}, M_{21}x_1 + q_1), \ldots, x_n \in \text{FEA}(M_{nn}, M_{n1}x_1 + M_{n2}x_2 + \cdots + M_{n(n-1)}x_{n-1} + q_n).$$

In similar way $y_1 \in \text{FEA}(M_{11}, q_1), y_2 \in \text{FEA}(M_{22}, M_{21}y_1 + q_1), \ldots, y_n \in \text{FEA}(M_{nn}, M_{n1}y_1 + M_{n2}y_2 + \cdots + M_{n(n-1)}y_{n-1} + q_n).$ Suppose $z = \min(x, y) \implies z_1 = \min(x_1, y_1), z_2 = \min(x_2, y_2), \ldots, z_n = \min(x_n, y_n).$ $M_{ij} \in K \implies z_1 \in \text{FEA}(M_{11}, q_1) \implies M_{11}z_1 + q_1 \geq 0, z_2 \in \text{FEA}(M_{22}, M_{21}z_1 + q_2) \implies M_{22}z_2 + M_{21}z_1 + q_2 \geq 0, \ldots, z_n \in \text{FEA}(M_{nn}, M_{n1}z_1 + M_{n2}z_2 + \cdots + M_{n(n-1)}z_{n-1} + q_n) \implies M_{n1}z_1 + M_{n2}z_2 + \cdots + M_{n(n-1)}z_{n-1} + M_{nn}z_n + q_n \geq 0.$ So $z = \min(x, y) \in \text{FEA}(M, q).$ Hence the feasible region is a meet semi-sublattice.

Cottle et al.\cite{1} showed that if F is a nonempty meet semi-sublattice, that is closed and bounded below, then F has a least element by lemma 2.5. Now we show that if the LCP(M, q) is feasible, where M is a block triangular K-matrix, then FEA(M, q) contains a least element $u.$

Theorem 3.3. Let M be a block triangular K-matrix and q be an arbitrary vector. If the LCP(M, q) is feasible, then FEA(M, q) contains a least element $u,$ where u solves the LCP(M, q).

Proof. Let $F = \text{FEA}(M, q).$ By theorem 3.2, F is a meet semi-sublattice. Let LCP(M, q) be feasible. Then the set F is obviously nonempty and bounded below by zero. Then the existence of the least element $l = \begin{bmatrix} l_1 \\ l_2 \\ l_3 \\ \vdots \\ l_n \end{bmatrix}$ follows from lemma
\[2.5 \] That is \(l = \begin{bmatrix} l_1 \\ l_2 \\ \vdots \\ l_n \end{bmatrix} \preceq \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x \ \forall \ x \in F \text{ and } l \in F. \]

Let \(F_i = \text{FEA}(M_{ii}, M_{i(i-1)}z_{i-1} + M_{i(i-2)}z_{i-2} + \cdots + M_{i2}z_2 + M_{i1}z_1 + q_i). \) Now it is clear that \(y_1 \in F_1, y_2 \in F_2, \cdots, y_n \in F_n, \) where \(y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \in F. \) As \(M_{ii} \) are \(Z- \) matrices, \(l_i \) is the least element of \(F_i \ \forall \ i \in \{1, 2, \cdots, n\} \) and \(l_i \) solves \(\text{LCP}(M_{ii}, M_{i(i-1)}z_{i-1} + M_{i(i-2)}z_{i-2} + \cdots + M_{i2}z_2 + M_{i1}z_1 + q_i). \) So \(l = \begin{bmatrix} l_1 \\ l_2 \\ \vdots \\ l_n \end{bmatrix} \) solves \(\text{LCP}(M, q). \)

Mangasarian \[10\] showed that if \(z \) solves the linear program, \(\min p^Tz \) subject to \(Mz + q \geq 0, \ z \geq 0 \) and if the corresponding optimal dual variable \(y \) satisfies \((I - M^T)y + p > 0, \) then \(z \) solves the linear complementarity problem \(\text{LCP}(M, q) \) by lemma \[2.6\]. Here we show that if \(\text{LCP}(M, q) \) with \(M, \) a block triangular \(K \)-matrix, has a solution which can be obtained by solving the linear program \(\min p^T x \) subject to \(Mx + q \geq 0, \ x \geq 0. \)

Theorem 3.4. The linear complementarity problem \(\text{LCP}(M, q), \) where \(M \) is a block triangular \(K \)-matrix, has a solution which can be obtained by solving the linear program \(\min p^T x \) subject to \(Mx + q \geq 0, \ x \geq 0, \) where \(p = r \geq 0 \) and \(Z_1 \) is a block triangular \(K \)-matrix with \(r^TZ_1 > 0. \)

Proof. Let \(M \) be a block triangular \(K \)-matrix. The linear program, \(\min p^T x \) subject to \(Mx + q \geq 0, \ x \geq 0 \) and the dual linear program, \(\max -q^Ty \) subject to \(-M^Ty + p \geq 0, \ y \geq 0 \) have solutions \(x \) and \(y \) respectively. \(M \) can be written as \(D - U, \) where

\[D = \begin{bmatrix} D_{11} & 0 & 0 & \cdots & 0 \\ D_{21} & D_{22} & 0 & \cdots & 0 \\ D_{31} & D_{32} & D_{33} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ D_{n1} & D_{n2} & D_{n3} & \cdots & D_{nn} \end{bmatrix}, \]

\(D_{ij} \)'s are diagonal matrices with positive entries and
Thus the series \(I + Q + Q^2 + \cdots \) converges to the matrix \((I - Q)^{-1} = (tM)^{-1} \geq 0\), since \(Q^k \geq 0 \) for \(k = 1, 2, \ldots \). Therefore \(M^{-1} \) exists and \(M^{-1} \geq 0 \).

Proof. Assume that \(Q = I - tM \geq 0, t > 0 \). Let \(p(Q) \) be the Perron-root of \(Q \). Then we have \(\det[(1 - p(Q))I - tM] = \det[Q - p(Q)I] = 0 \). By theorem 2.1, \(0 < p(Q) < 1 \). Thus the series \(I + Q + Q^2 + \cdots \) converges to the matrix \((I - Q)^{-1} = (tM)^{-1} \geq 0\), since \(Q^k \geq 0 \) for \(k = 1, 2, \ldots \). Therefore \(M^{-1} \) exists and \(M^{-1} \geq 0 \).
Theorem 3.6. Let N be a block triangular K-matrix and M be a Z-matrix such that $M \leq N$. Then both M^{-1} and N^{-1} exist and $M^{-1} \geq N^{-1} \geq 0$.

Proof. Let N be a block triangular K-matrix and M be a Z-matrix such that $M \leq N$. Assume that $R = I - \alpha N \geq 0, \alpha > 0$. Let $p(R)$ be a Perron root of R. Then we have $\det[(1 - p(R))I - \alpha N] = \det[R - p(R)I] = 0$. By theorem 2.1, $0 < p(R) < 1$. Thus the series $I + R + R^2 + \cdots$ converges to the matrix $(I - R)^{-1} = (\alpha N)^{-1}$. Since $S^k \geq R^k \geq 0$, for $k = 1, 2, \cdots$, the series $I + S^2 + \cdots$ converges to the matrix $(I - S)^{-1} = (\alpha M)^{-1}$. Therefore M^{-1} and N^{-1} exist and $M^{-1} \geq N^{-1} \geq 0$.

Corollary 3.2. Assume that M, N are block triangular K-matrices such that $M \leq N$. Then both M^{-1} and N^{-1} exist and $M^{-1} \geq N^{-1} \geq 0$.

Theorem 3.7. Let N be a hidden block triangular K-matrix. Then every diagonal block of N is a hidden Z-matrix.

Proof. Let N be a hidden block triangular K-matrix with $NX = Y$, where X and Y are block triangular K-matrices. Let

$$
N =
\begin{bmatrix}
N_{11} & 0 & 0 & \cdots & 0 \\
N_{21} & N_{22} & 0 & \cdots & 0 \\
N_{31} & N_{32} & N_{33} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
N_{n1} & N_{n2} & N_{n3} & \cdots & N_{nn}
\end{bmatrix},
$$

$$
X =
\begin{bmatrix}
X_{11} & 0 & 0 & \cdots & 0 \\
X_{21} & X_{22} & 0 & \cdots & 0 \\
X_{31} & X_{32} & X_{33} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
X_{n1} & X_{n2} & X_{n3} & \cdots & X_{nn}
\end{bmatrix}
$$

and

$$
Y =
\begin{bmatrix}
Y_{11} & 0 & 0 & \cdots & 0 \\
Y_{21} & Y_{22} & 0 & \cdots & 0 \\
Y_{31} & Y_{32} & Y_{33} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
Y_{n1} & Y_{n2} & Y_{n3} & \cdots & Y_{nn}
\end{bmatrix}.
$$
The block diagonal of \(NX \) are \(N_{ii}X_{ii} \) for \(i \in \{1, 2, \ldots, n\} \). So \(N_{ii}X_{ii} = Y_{ii} \) for \(i \in \{1, 2, \ldots, n\} \). \(X_{ii}, Y_{ii} \) are \(K \)-matrices. Then \(X_{ii}^T, Y_{ii}^T \) are also \(K \)-matrices. So \(v(X_{ii}^T) > 0, v(Y_{ii}^T) > 0 \). Let \(r_i, s_i \in R^{m_+} \) such that \(X_{ii}^Tr_i + Y_{ii}^Ts_i > 0 \implies r_i^TX_{ii} + s_i^TY_{ii} > 0 \). Hence the block diagonals of \(N \) are hidden \(Z \)-matrices.

Theorem 3.8. Let \(N \) be a hidden block triangular \(K \)-matrix. Then every determinant of block diagonal matrices of \(N \) are positive.

Proof. Let \(N \) be a hidden block triangular \(K \)-matrix with \(NX = Y \), where \(X \) and \(Y \) are block triangular \(K \)-matrices. Let

\[
N = \begin{bmatrix}
N_{11} & 0 & 0 & \cdots & 0 \\
N_{21} & N_{22} & 0 & \cdots & 0 \\
N_{31} & N_{32} & N_{33} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
N_{n1} & N_{n2} & N_{n3} & \cdots & N_{nn}
\end{bmatrix},
\]

\[
X = \begin{bmatrix}
X_{11} & 0 & 0 & \cdots & 0 \\
X_{21} & X_{22} & 0 & \cdots & 0 \\
X_{31} & X_{32} & X_{33} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
X_{n1} & X_{n2} & X_{n3} & \cdots & X_{nn}
\end{bmatrix}
\text{ and } Y = \begin{bmatrix}
Y_{11} & 0 & 0 & \cdots & 0 \\
Y_{21} & Y_{22} & 0 & \cdots & 0 \\
Y_{31} & Y_{32} & Y_{33} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
Y_{n1} & Y_{n2} & Y_{n3} & \cdots & Y_{nn}
\end{bmatrix}.
\]

The block diagonal of \(NX \) are \(N_{ii}X_{ii} \) for \(i \in \{1, 2, \ldots, n\} \). So \(N_{ii}X_{ii} = Y_{ii} \) for \(i \in \{1, 2, \ldots, n\} \). \(X_{ii}, Y_{ii} \) are \(K \)-matrices. Then \(\det(X_{ii}), \det(Y_{ii}) > 0 \forall i \). Hence \(\det(N_{ii}) > 0 \forall i \).

Corollary 3.3. Every block triangular \(K \)-matrix is a hidden block triangular \(K \)-matrix.

Proof. Let \(M \) be a block triangular \(K \)-matrix. Taking \(X = I \), the identity matrix, it is clear that \(M \) is a hidden block triangular \(K \)-matrices.

Theorem 3.9. The linear complementarity problem \(LCP(N, q) \), where \(N \) is a hidden block triangular \(K \)-matrix with \(NX = Y \), \(X \) and \(Y \) are block triangular \(K \)-matrices, has a solution which can be obtained by solving the linear program \(\min \ p^T x \) subject to \(Nx + q \geq 0, x \geq 0 \), where \(p = r + NTs \geq 0 \) and \(r, s \geq 0 \) such that \(X^Tr > 0 \) and \(Y^Ts > 0 \).

Proof. Let \(N \) be a hidden block triangular \(K \)-matrix with \(NX = Y \), where \(X \) and \(Y \) are block triangular \(K \)-matrices. The linear program, \(\min \ p^T x \) subject to \(Nx + q \geq 0, x \geq 0 \) and the dual linear program, \(\max -q^T y \) subject to \(-N^Ty + p \geq 0, y \geq 0 \) have solutions \(x \) and \(y \) respectively. \(X \) can be written as \(D - U \), where
Let \(D \) be a hidden block triangular \(K \)-matrix. Consider the \(\text{LCP}(\mathcal{N}, \bar{q}) \), where

\[
\mathcal{N} = \begin{bmatrix}
0 & -N^T \\
N & 0
\end{bmatrix}, \quad \bar{q} = \begin{bmatrix}
r + N^T s \\
q
\end{bmatrix}
\]

and \(r, s \) as mentioned in theorem 3.3. If

\[
\begin{bmatrix}
x \\
y
\end{bmatrix} \in \text{FEA}(\mathcal{N}, \bar{q}),
\]

then \((I - N^T)y + p > 0\), where \(p = r + N^T s \).
Proof. Suppose $\begin{bmatrix} x \\ y \end{bmatrix} \in \text{FEA}(\mathcal{N}, \bar{q})$. Since N is a hidden block triangular K-matrix, there exist two block triangular K-matrices X and Y such that $NX = Y$ and $r, s \geq 0$, $r^T X + s^T Y > 0$. Let $X = D - U$ and $Y = D - V$, where U and V are two square matrices with all nonnegative entries and D is a block triangular diagonal matrix with positive entries as mentioned in theorem 3.9. Then $0 < r^T X + s^T Y = r^T X + s^T N X = p^T (D - U) = p^T (D - U) + y^T (Y - N X) = p^T (D - U) + y^T (D - V - N (D - U)) = (-y^T N + p^T) (D - U) + y^T (D - V) \leq (y^T (I - N) + p^T) D$ since $\begin{bmatrix} x \\ y \end{bmatrix} \in \text{FEA}(\mathcal{N}, \bar{q})$, $U \geq 0, V \geq 0$. Since D is a positive block triangular diagonal matrix, $(I - N^T) y + p > 0$.

Theorem 3.10. LCP(\mathcal{N}, \bar{q}) has a solution iff LCP(N, q) has a solution.

Proof. Suppose LCP(\mathcal{N}, \bar{q}) has a solution. Let $\bar{z} = \begin{bmatrix} x \\ y \end{bmatrix} \in \text{SOL}(\mathcal{N}, \bar{q})$. From the complementarity condition it follows that $x^T (p - N^T y) + y^T (N x + q) = 0$. Since $p - N^T y, N x + q, x, y \geq 0$, and $x^T (p - N^T y) = 0, y^T (N x + q) = 0$. By lemma 3.1, it follows that $y + (p - N^T y) > 0$. This implies for all i either $(p - N^T y)_i > 0$ or $y_i > 0$. Now if $(p - N^T y)_i > 0$, then $x_i = 0$. If $y_i > 0$ then $(q + N x)_i = 0$. This implies $x_i (q + N x)_i = 0 \forall i$. Therefore x solves LCP(N, q).

Conversely, x solves LCP(N, q). Let $y = s$, where s as mentioned in theorem 3.9. Here $p - N^T y = r + N^T s - N^T y = r + N^T s - N^T s = r \geq 0$. So $\bar{z} = \begin{bmatrix} x \\ s \end{bmatrix} \in \text{FEA}(\mathcal{N}, \bar{q})$. Further \mathcal{N} is PSD-matrix, which implies that $\mathcal{N} \in Q_0$. Therefore \bar{z} solves the LCP(\mathcal{N}, \bar{q}).

Theorem 3.11. All hidden block triangular K-matrices are Q_0.

Proof. Let N be a hidden block triangular K-matrix. It is clear that feasibility of LCP(N, q) implies the feasibility of LCP(\mathcal{N}, \bar{q}). Note that $\mathcal{N} \in Q_0$. This implies that the feasible point of LCP(\mathcal{N}, \bar{q}) is also a solution of LCP(\mathcal{N}, \bar{q}). Hence by theorem 3.10 feasibility of LCP(N, q) ensures the solvability of LCP(N, q). Therefore N is a Q_0-matrix.

Remark 3.2. Let $M = \begin{bmatrix} M_{11} & 0 & 0 & \cdots & 0 \\
M_{21} & M_{22} & 0 & \cdots & 0 \\
M_{31} & M_{32} & M_{33} & \cdots & 0 \\
& \vdots & \vdots & \vdots & \vdots \\
M_{n1} & M_{n2} & M_{n3} & \cdots & M_{nn} \end{bmatrix}$, where $M_{ij} \in \mathbb{R}^{m \times m}$ are K-matrices.
Let $z = \begin{bmatrix} z_1 \\ z_2 \\ z_3 \\ \vdots \\ z_n \end{bmatrix}$ and $q = \begin{bmatrix} q_1 \\ q_2 \\ q_3 \\ \vdots \\ q_n \end{bmatrix}$, where $z_i, q_i \in R^m$.

Then $Mz + q = \begin{bmatrix} M_{11}z_1 + q_1 \\ M_{21}z_1 + M_{22}z_2 + q_2 \\ M_{31}z_1 + M_{32}z_2 + M_{33}z_3 + q_3 \\ \vdots \\ M_{n1}z_1 + M_{n2}z_2 + M_{n3}z_3 + \cdots + M_{nn}z_n + q_n \end{bmatrix}$.

First we solve $LCP(M_{11}, q_1)$ and get the solution $w_1 = M_{11}z_1 + q_1, w_1^Tz_1 = 0$. Then we solve $LCP(M_{22}, M_{21}z_1 + q_2)$ and get the solution $w_2 = M_{22}z_2 + M_{21}z_1 + q_2, w_2^Tz_2 = 0$. Finally we solve $LCP(M_{nn}, M_{nn}z_n + \cdots + M_{n(n-1)}z_{n-1} + q_n)$ and get the solution $w_n = M_{nn}z_n + M_{n1}z_1 + M_{n2}z_2 + M_{n3}z_3 + \cdots + M_{n(n-1)}z_{n-1} + q_n, w_n^Tz_n = 0$.

So $w = \begin{bmatrix} w_1 \\ w_2 \\ w_3 \\ \vdots \\ w_n \end{bmatrix}$ and $z = \begin{bmatrix} z_1 \\ z_2 \\ z_3 \\ \vdots \\ z_n \end{bmatrix}$ solve $LCP(M, q)$.

4 Conclusion

In this article, we introduce the class of block triangular K-matrix and the class of hidden block triangular K-matrix in the context of solution of linear complementarity problem. We call these two classes jointly as K-type block matrices. We show that the linear complementarity problem with K-type block matrix is solvable by linear program. The linear complementarity problem with block triangular K-matrix is also processable by Lemke’s algorithm as well as criss-cross method. We show that the hidden block triangular K-matrix is a Q_0-matrix.

Acknowledgement

The author A. Dutta is thankful to the Department of Science and Technology, Govt. of India, INSPIRE Fellowship Scheme for financial support.
References

[1] RW Cottle, JS Pang, and RE Stone. The linear complementarity problem. 1992. *AP, New York*.

[2] AK Das. Properties of some matrix classes based on principal pivot transform. *Annals of Operations Research*, 243(1):375–382, 2016.

[3] AK Das and R Jana. Finiteness of criss-cross method in complementarity problem. In *International Conference on Mathematics and Computing*, pages 170–180. Springer, 2017.

[4] AK Das, R Jana, and Deepmala. Finiteness of criss-cross method in complementarity problem. In *Mathematics and Computing*, eds: Debasis Giri, Ram N. Mohapatra, Heinrich Begehr, Mohammad S. Obaidat, pages 170–180. Springer, 2017.

[5] Miroslav Fiedler and Vlastimil Pták. On matrices with non-positive off-diagonal elements and positive principal minors. *Czechoslovak Mathematical Journal*, 12(3):382–400, 1962.

[6] R Jana, AK Das, and A Dutta. On hidden Z-matrix and interior point algorithm. *Opsearch*, 56(4):1108–1116, 2019.

[7] R Jana, A Dutta, and AK Das. More on hidden Z-matrices and linear complementarity problem. *Linear and Multilinear Algebra*, 69(6):1151–1160, 2021.

[8] Irving Kaplansky. A contribution to von neumann’s theory of games. *Annals of Mathematics*, pages 474–479, 1945.

[9] Olvi L Mangasarian. Linear complementarity problems solvable by a single linear program. *Mathematical Programming*, 10(1):263–270, 1976.

[10] Olvi L Mangasarian. Linear complementarity problems solvable by a single linear program. *Mathematical Programming*, 10(1):263–270, 1976.

[11] SR Mohan, SK Neogy, and AK Das. A note on linear complementarity problems and multiple objective programming. *Mathematical programming*, 100(2):339–344, 2004.

[12] Prasenjit Mondal, S Sinha, SK Neogy, and AK Das. On discounted ar–at semi-markov games and its complementarity formulations. *International Journal of Game Theory*, 45(3):567–583, 2016.

[13] SK Neogy, R B Bapat, AK Das, and Biswabrata Pradhan. Optimization models with economic and game theoretic applications. *Annals of Operations Research*, 243(1):1–3, 2016.
[14] SK Neogy and AK Das. Linear complementarity and two classes of structured stochastic games. *Operations Research with Economic and Industrial Applications: Emerging Trends, eds: SR Mohan and SK Neogy, Anamaya Publishers, New Delhi, India*, pages 156–180, 2005.

[15] SK Neogy and AK Das. On almost type classes of matrices with Q-property. *Linear and Multilinear Algebra*, 53(4):243–257, 2005.

[16] SK Neogy and AK Das. Principal pivot transforms of some classes of matrices. *Linear algebra and its applications*, 400:243–252, 2005.

[17] SK Neogy and AK Das. Some properties of generalized positive subdefinite matrices. *SIAM journal on matrix analysis and applications*, 27(4):988–995, 2006.

[18] SK Neogy and AK Das. *Mathematical programming and game theory for decision making*, volume 1. World Scientific, 2008.

[19] SK Neogy and AK Das. On singular N_0-matrices and the class Q. *Linear algebra and its applications*, 434(3):813–819, 2011.

[20] SK Neogy and AK Das. On weak generalized positive subdefinite matrices and the linear complementarity problem. *Linear and Multilinear Algebra*, 61(7):945–953, 2013.

[21] SK Neogy, AK Das, and Abhijit Gupta. Generalized principal pivot transforms, complementarity theory and their applications in stochastic games. *Optimization Letters*, 6(2):339–356, 2012.

[22] SK Neogy, AK Das, S Sinha, and A Gupta. On a mixture class of stochastic game with ordered field property. In *Mathematical programming and game theory for decision making*, pages 451–477. World Scientific, 2008.

[23] Jong-Shi Pang. Hidden Z-matrices with positive principal minors. Technical report, WISCONSIN UNIV MADISON MATHEMATICS RESEARCH CENTER, 1977.

[24] Jong-Shi Pang and Ramaswamy Chandrasekaran. Linear complementarity problems solvable by a polynomially bounded pivoting algorithm. In *Mathematical Programming Essays in Honor of George B. Dantzig Part II*, pages 13–27. Springer, 1985.

[25] John Von Neumann. A certain zero-sum two-person game equivalent to the optimal assignment problem. *Contributions to the Theory of Games*, 2:5–12, 1953.