Mutational heterogeneity between different regional tumour grades of clear cell renal cell carcinoma
Ferronika, Paranita; Kats-Ugurlu, Gursah; Haryana, Sofia M; Utoro, Totok; Rinonce, Hanggoro Tri; Danarto, Raden; de Lange, Kim; Terpstra, Martijn M; Sijmons, Rolf H; Westers, Helga

Published in: Experimental and molecular pathology

DOI: 10.1016/j.yexmp.2020.104431

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date: 2020

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Ferronika, P., Kats-Ugurlu, G., Haryana, S. M., Utoro, T., Rinonce, H. T., Danarto, R., de Lange, K., Terpstra, M. M., Sijmons, R. H., Westers, H., & Kok, K. (2020). Mutational heterogeneity between different regional tumour grades of clear cell renal cell carcinoma. Experimental and molecular pathology, 115, [104431]. https://doi.org/10.1016/j.yexmp.2020.104431

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Mutational heterogeneity between different regional tumour grades of clear cell renal cell carcinoma

Paranita Ferronika,a,b, Gursah Kats-Ugurluc, Sofia M. Haryana,b, Totok Utoro,b, Hanggoro Tri Rinonceb, Raden Danarto,e, Kim de Langea, Martijn M. Terpstra,b, Rolf H. Sijmons,a, Helga Westersa, Klaas Kok⁎

a Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
b Department of Anatomical Pathology, Universitas Gadjah Mada, Faculty of Medicine, Public Health, and Nursing / Dr. Sardjito Hospital, Yogyakarta, Indonesia
c, d Department of Histology and Cell Biology, Universitas Gadjah Mada, Faculty of Medicine, Public Health, and Nursing, Yogyakarta, Indonesia
b, e Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
f Department of Histology and Cell Biology, Universitas Gadjah Mada, Faculty of Medicine, Public Health, and Nursing, Yogyakarta, Indonesia
a, d Department of Urology, Universitas Gadjah Mada, Faculty of Medicine, Public Health, and Nursing / Dr. Sardjito Hospital, Yogyakarta, Indonesia

ARTICLE INFO

Keywords:
Tumour heterogeneity
Tumour grade
Clear cell renal cell carcinoma
Gene variants
Copy number variation

ABSTRACT

Only a limited number of studies have explored the possible associations between tumour grade and mutated genes in clear cell renal cell carcinoma (ccRCC), and we set out to investigate this further using a multiple sampling and next generation sequencing (NGS) approach in a series of ccRCCs. Multiple regions were sampled from formalin-fixed paraffin-embedded ccRCC tumour blocks from seven patients. In 27 samples from six patients, we performed targeted NGS using a custom 42-gene panel based on the most frequently mutated genes in ccRCC reported in public databases. In four samples from the seventh patient, we performed whole exome sequencing (WES) and array comparative genomic hybridisation for detection of copy number variants (CNVs). Mutated genes and the tumour grades of the samples in which they had been identified were compared both within and between all individual tumours. CNVs were compared across all samples from patient 7. We identified clear genetic heterogeneity within and across tumours, but VHL mutations were seen in all patients. Looking across all samples, we identified eleven genes that were only mutated in samples with one particular tumour grade. However, these genes were never mutated in all samples with that tumour grade. Increasing chromosomal instability corresponded with increasing tumour grade, but we observed minimal association between tumour grade and total mutational load in the WES data. Our study confirms the genetic heterogeneity and tumour grading heterogeneity of ccRCC. Although a relatively small number of samples was analysed, genes were identified that could potentially be specific, though insensitive, markers of higher ccRCC tumour grades.

1. Introduction

Kidney cancer is the 14th most common cancer worldwide, with clear cell renal cell carcinoma (ccRCC) accounting for 70% of total cases in adult patients (Bray et al., 2018; Moch et al., 2016). The global incidence of ccRCC was over 403,262 in 2018 with a mortality rate of 1.8 per population of 100,000 (Bray et al., 2018). Conventionally, tumour grading is used to guide clinical decisions on ccRCC patient management and is based on the highest differentiated morphological features in the tumour (Dagher et al., 2017; Delahunt et al., 2014). Due to the rapid developments in molecular diagnostics, mutational profiling is being introduced clinically for a range of tumour types. Although tumour morphology has been shown to correlate with both tumour progression and prognosis (Dagher et al., 2017), the prognostic value of mutational profiling in ccRCC is less clear.

In the next generation sequencing era, the most frequently mutated genes in ccRCC have been described in several large studies such as The Cancer Genome Atlas project (Network, 2013). Subsequently, the mutation rank system was introduced, in which mutations were scored and ranked by their functional impact based on in silico analysis using gene variant predictor tools (Gonzalez-Perez et al., 2013). Using this ranking, some genes were found to harbour more frequent mutations with higher predicted functional impact compared to other genes, and were referred to as cancer driver genes. For ccRCC, several cancer driver genes were identified by these studies, including VHL, PBRM1, SETD2, BAP1, and MTOR. However, knowledge on the associations between
these driver genes and the prognosis for ccRCC patients is still very incomplete. So far, in a few studies, inactivating mutations in TP53, and the ccRCC driver genes \(\text{BAP1}, \text{SEDT2} \) have been shown to be correlated with the prognosis of ccRCC patients (Hakimi et al., 2013; Manley et al., 2017).

One of the challenges in studying the relationship between tumour characteristics, including the somatic driver gene variants, and clinical outcome, is intratumour heterogeneity. This heterogeneity exists both at the level of histomorphological tumour grading and at the level of the mutational profile (Singh et al., 2015). In the last decade, several studies have shown intratumour heterogeneity in ccRCC at the genomic level (Gerlinger et al., 2014; Gerlinger et al., 2012; Mitchell et al., 2018; Turaljic et al., 2018). However, these studies did not examine this mutational heterogeneity in the context of regional tumour grading. A limited number of studies have reported on the association of the mutational profile with the specific morphological features; e.g. rhabdoid and sarcomatoid differentiation (Bi et al., 2016; Singh et al., 2015). As it is of interest to know if regional tumour grading, which plays an important role in current tumour classification and ccRCC prognosis, matches certain regional mutational profiles, we set out to study this in a series of six ccRCC patients using targeted sequencing and in one patient using whole exome sequencing (WES). Our objective was to investigate whether mutational profiles would be distinct between regions with distinct grades within individual tumours and if, in the total series of tumours, specific genes would uniquely be mutated in higher tumour grades.

2. Materials and methods

2.1. Patient materials and tumour grading

Formalin-fixed paraffin-embedded (FFPE) tissues were collected from nephrectomy specimens of seven patients with ccRCC. Hematoxylin and Eosin (H&E) stained tissue sections were examined by two pathologists (P.F. and G.K-U.). Each section within those tumours with a homogenous histomorphology was assigned a regional tumour grade using the 4-grade system of the World Health Organization/International Society of Urological Pathology (WHO/ISUP grading) (Dagher et al., 2017; Moch et al., 2016). For each grade in a patient, homogenous tissue sections were collected using macrodissection from all available blocks without degraded tissue. In total, DNA was isolated from 31 tumour regions and seven matched normal kidney FFPE samples from seven patients (Table 1, Fig. 1). From each patient, the healthy part of the kidney, as indicated by the absence of tumour cells in the selected FFPE block, was taken as a source of normal DNA. The use of human material and clinical data from patients in this study has been approved by the Board Medical and Health Research Ethics Committee in Asia and the Western Pacific (FRECAP). Approval was given by the committee on September 4, 2013 (Reference: KE/FK/795/EC). The study was carried out in accordance with the University Medical Centre Groningen Medical Ethical Review board guidelines (project number 20190251, filed January 4, 2016) and Dutch ethical guidelines and laws, and complied with the regulations stated in the Declaration of Helsinki.

2.2. Targeted sequencing and whole exome sequencing

The targeted sequencing protocol is based on the Single Primed Enrichment Technique as implemented in the Ovation™ Target Enrichment System (NuGEN, San Carlos, CA, USA). Our in-house designed set of landing probe areas covers the entire consensus coding region of the 42 gene-panel which include the most frequently mutated genes in ccRCC (Forbes et al., 2011; Network, 2013) (https://cancer.sanger.ac.uk/cosmic, database accessed 23 June 2014) and genes associated with the VHL/HIF pathway and the (PI3K)-AKT-MTOR pathway in ccRCC with a frequency ≥ 1% (Sato et al., 2013) (see Supplementary materials and methods, Supplementary Table S1). This set includes 12 ccRCC cancer driver genes in a total of 31 acknowledged cancer driver genes (https://www.intogen.org/search, release 2014.12) (Gonzalez-Perez et al., 2013). Library preparation was done according to the manufacturer’s protocol, starting from 500 ng of DNA. Enriched libraries were sequenced with the Illumina HISEQ 2500™ (Illumina, San Diego, CA, USA) using single-end sequencing with 100 bp reads.

WES was performed using the ThruPLEX™-Fd Prep Kit (Rubicon, Ann Arbor, MI, USA) followed by exome capturing using SureSelectAll exon V2™ (Agilent, Santa Clara, CA, USA), starting from 100 ng DNA sheared into 200-bp fragments. DNA integrity was measured using CaliperLabChip™ GX (Perkin Elmer, Waltham, MA, USA). Paired-end sequencing with 100-bp reads was done on the Illumina HISEQ 2500™ (Illumina, San Diego, CA, USA).

2.3. Sequence data analysis and somatic mutation identification

Data analysis was done using a pipeline based on the Genome Analysis Toolkit (GATK) best practice recommendation (McKenna et al., 2010). For both targeted sequencing and WES, two different variant calling algorithms have been used: HaplotypeCaller from GATK and FreeBayes (Garrison and Gabriel, 2012; McKenna et al., 2010). Called variants were annotated and filtered to identify true somatic mutations (see Supplementary materials and methods).

For each patient, the mutations present in each tumour region were classified into major clonal, minor clonal, absent, or inconclusive using the following approach. For each sample, we first determined the somatic variant with the highest mutant read frequency (MRF). Variants with a total number of mutant reads ≥ 5 and an MRF ≥ 50% of the highest MRF seen for that sample, were considered to be major clonal variants likely to be present in the majority of the tumour cells. Mutations with a total number of mutant reads equal to 3 or 4, or with a total number of mutant reads ≥ 5 and an MRF < 50% of the highest MRF, were defined as minor clonal variants likely to be present in a minority of the tumour cells. If none of the above criteria were met and the total read count was ≥ 10, the mutation was defined as absent. If none of the above criteria were met and the total read count was < 10, the mutation was considered inconclusive. Only variants with a major clone in at least one sample from a patient were included in the final analysis. Matched normal kidney samples were included to remove personal variants in the targeted sequencing and WES data. The Integrative Genomic Viewer was used to confirm the authenticity of the identified somatic mutations (Robinson et al., 2011). Sequencing data are available in the European Nucleotide Archive repository (accession number PRJEB37556).

2.4. Copy number variation analysis

ArrayCGH was carried out using 500 ng genomic DNA from four tumour samples from Patient 7 using the Complete Genomic SureTag DNA Enzymatic Labelling Kit protocol and an OligoCGH/ChIP-on-Chip Hybridization kit (Agilent, Santa Clara, CA, USA). Details of the protocol have been reported previously (Ferronika et al., 2019).

2.5. Data interpretation

First, we analysed the distribution of mutations between different tumour regions per patient. We then grouped all 31 samples based on their regional tumour grade and analysed the distribution of mutations between the four different tumour grade groups. A Venn diagram was made to visualize the association of the mutated genes with specific tumour grades.
Table 1
Patient and sample characteristics.

Age (y)	Sex	TNM	Tumour size (max. diameter)	Tumour region	WHO/ ISUP grade	
Patient 1	53	F	pT3aN0M0	10 cm	P1T1	G2
					P1T2	G2
					P1T3	G2
					P1T4	G3
					P1T5	G2
Patient 2	62	F	pT3bN1M1	11.5 cm	P3T1	G4 (rhabdoid)
					P3T2	G3
					P3T3	G2
					P3T4	G4 (sarcomatoid)
					P3T5	G4 (sarcomatoid)
					P3T6	G2
					P3T7	G4 (rhabdoid)
Patient 3	57	M	pT3bN0M1	8 cm	P7T1	G3
					P7T2	G3
					P7T3	G3
Patient 4	46	F	pT1bN0M1	7 cm	P4T1	G4
					P4T2	G3
					P4T3	G4
					P4T4	G3
Patient 5	59	M	pT1N0M1	3.8 cm	P5T1	G2
					P5T2	G2
					P5T3	G3
Patient 6	69	F	pT3N0M1	4.2 cm	P6T1	G2
					P6T2	G2
					P6T3	G2
Patient 7	55	M	pT2bN0M1b	12 cm	P7T1	G2
					P7T2	G4
					P7T3	G1
					P7T4	G4

Abbreviations: M, male; F, female; G, grade; TNM, tumour-node-metastasis classification of malignant tumours; FFPE, formalin fixed paraffin-embedded; WHO/ ISUP, World Health Organization/ International Society of Urological Pathology.

3. Results

3.1. Mutations identified by targeted sequencing

The 42 genes of our targeted panel were selected based on their high mutational frequency in ccRCC, as described in several studies and in The Cancer Genome Atlas Network database (Duglisle et al., 2010; Duns et al., 2012; Forbes et al., 2011; Network, 2013; Pena-Llopis et al., 2012; Sato et al., 2013), and from genes associated with the VHL/HIF pathway and the (PI3K)-AKT-MTOR pathway in ccRCC (Sato et al., 2013). The landing probes designed for the 42 genes are given in Supplementary Table S1. The average distance between different landing probes was optimized for FFPE based on preliminary data obtained with a catalogue assay from NuGEN (data not shown).

With the targeted sequencing assay, we analysed 27 tumour regions and six matched normal kidney tissues from six patients. The average tumour cell percentage within the samples was 70% in Patient 1, 85% (range 80–90%) in Patient 2, 85% (range 80–85%) in Patient 3, 78% (range 75–80%) in Patient 4, 83% (range 70–90%) in Patient 5, 70% in Patient 6, and 75% (range 70–80%) in Patient 7. Sequencing resulted in a mean target coverage of 45× (Supplementary Table S2). An overview of the detected mutations is given in Fig. 2 and Supplementary Table S3. A mean target coverage of 45× (Supplementary Table S2). An overview of the detected mutations is given in Fig. 2 and Supplementary Table S3.

For each patient, we focused on the variants that were identified as a major mutation in at least one of the sections from that patient.

We analysed the distribution of mutations among different tumour regions in each patient. For Patient 1, four grade 2 regions and one grade 3 region were analysed from the primary tumour (Table 1). Although the samples were from five different locations within the primary tumour, we observed little variation in their mutational spectrum for our selection of 42 genes (Fig. 2A, Supplementary Table S3). All five regions shared identical mutations in two cancer driver genes: VHL and ERBB3. The VHL mutation was present as a major clone in all regions, whereas the ERBB3 mutation was present as a major clone in one grade 2 region and as a minor clone in all other regions.

In Patient 2, we assessed two grade 2 regions, one grade 3 region, and four grade 4 regions from the available FFPE blocks. We identified rhabdoid and sarcomatoid dedifferentiation in the grade 4 regions. Mutations in VHL, BAP1, and ROS1 were shared by all regions, and were major clonal in the majority of them (Fig. 2B, Supplementary Table S3). The VHL and ROS1 mutations were each identified as a minor clone in a single region. Mutations in TSC1 and KDMSC were present in some of the regions, but were never unique for one grade.

For Patient 3, all three FFPE blocks were of tumour grade 3. Three cancer driver genes, ARID1A, VHL, and PBRM1, were mutated in all tumour regions, with ARID1A and VHL being major clonal. The PBRM1 mutation was major clonal in two samples and appeared to be a minor clone in the third sample. Six additional genes, including the cancer driver genes MTOR, KMT2C, and ZFHX3, were mutated in only a single region (Fig. 2C, Supplementary Table S3).

From Patient 4, two grade 3 regions and three grade 4 regions were analysed. Surprisingly no single mutation was shared between all regions, even though the sequence depth appeared sufficient in all instances where we did not detect a mutation. Interestingly, a VHL mutation was shared between only one of the two grade 3 regions and all grade 4 regions (Fig. 2D, Supplementary Table S3). A PBRM1 mutation was shared by one grade 3 and two grade 4 regions.

For Patient 5, we analysed two grade 2 regions and two grade 3 regions. Mutations were detected for two ccRCC driver genes from our panel: VHL and KDMSC. The mutations were shared by all samples as a major or minor clone (Fig. 2E, Supplementary Table S3).

For Patient 6, all available FFPE blocks were of grade 2, and we analysed three tumour regions. A VHL mutation was detected in all samples. A PBRM1 mutation was detected in two samples but was inconclusive in the third due to low coverage. Three additional genes
were mutated in only a subset of the samples (Fig. 2F, Supplementary Table S3).

The VHL gene was mutated in all the patients' tumours as a major clone and was thus clearly a trunk mutation in all cases. For patients 3 and 6, PBRM1 appeared to be a second trunk mutation. BAP1, ARID1A, and KDM5C were second trunk mutations in one case each.

3.2. Mutational profiles identified by whole exome sequencing

To look beyond the 42 panel genes, we carried out WES on tumour material of one additional patient. For this patient, we analysed four tumour regions and matched normal kidney cortex of this patient as control. We analysed one grade 1 region, one grade 2 region, and two grade 4 regions. Sequencing resulted in a mean target coverage of 41× in which 93% of the target region had > 10× coverage (Supplementary Table S2).

We identified 12 nonsynonymous somatic mutations that were shared by all regions, including two as a major mutation. In addition to that, 27 nonsynonymous somatic mutations located in 26 genes were variously distributed among tumour regions and responsible for intratumour heterogeneity (Fig. 3 and Supplementary Table S4). For the four regions, we observed 14 (grade 1), 11 (grade 2), 15 (grade 4) and 19 (grade 4) major clonal mutations, respectively. Thus the mutational load of the grade 4 samples is slightly higher compared to the low-grade samples. This also holds true when the minor clonal mutations are taken into consideration; 19 (grade 1), 23 (grade 2), 23 (grade 4) and 28 (grade 4). Eight of the 38 mutated genes are known cancer driver genes, of which five are included in our custom panel for targeted sequencing. Three of these cancer driver genes (VHL, PBRM1, and ARID1A) are related to ccRCC development. Whereas all regions harboured a VHL mutation, a PBRM1 mutation was only observed in one grade 2 region. The two grade 4 tumour regions shared the highest
number of mutations including major clonal mutations in MYO7B, ARID1A, and FMN1. The two grade 4 regions also uniquely share mutations in the cancer driver genes TP53, and PIK3CA.

Intratumour heterogeneity was also observed for the pattern of copy number variations (CNVs) of patient 7 (Fig. 4). All samples shared loss of the short arm of chromosome 3 (3p), which is characteristic for ccRCC. The grade 1 and grade 2 tumour samples, P7T3 and P7T1, are near diploid and differ from each other at five genomic segments. P7T3 has gain of 9q, and appears to be mosaic for del18. For P7T1, we observed loss of 9p, 10q, and 16q. A small fraction of the cells of P7T1 appear to have a gain of 9q and a loss of chr20. The two grade 4 tumour samples, P7T2 and P7T4, had virtually identical and complex copy number profiles that showed much more CNVs than the lower grade tumour samples. Chromosomal alterations which clearly distinguished these two grade-4 tumour samples from the lower grade include the amplification of 3q, chr5, and chr8, and loss of chromosomes 4, 13, and 14.

Fig. 2. The mutated genes identified by targeted sequencing in Patient 1 (A), Patient 2 (B), Patient 3 (C), Patient 4 (D), Patient 5 (E), and Patient 6 (F). The samples are arranged in order from left to right based on tumour grade (G1-G4). Well-known cancer driver genes in ccRCC and other cancer(s) are highlighted in colors. The classification of the mutations is indicated by colors as shown in the legend at the bottom of the Figure. Mutations are included only if they represent a major mutation in at least one of the subregions of a patient’s tumour, and if the read depth at their location was sufficient in at least all but one samples of the patient. Read counts and minor allele frequencies for the mutations are listed in Supplementary Table S3.
14. The copy number profile in these two samples suggests an aneuploidic nature and includes a characteristic chromotripsis-like structure for chromosome 5.

3.3. Tumour-grade specificity of mutated genes

To obtain more insight into possible grade-related mutation profiles, we pooled the observed mutated genes of all six patients per tumour grade (WHO/ISUP G1–4). The identified somatic mutations involved 38 genes, including 8 cancer driver genes, as highlighted by colors. Read counts and minor allele frequencies of the mutations are listed in Supplementary Table 4.

Fig. 3. Mutated genes identified in Patient 7 by whole exome sequencing. The mutations are classified as major or minor clonal. The classification of identified mutations is indicated by colors as shown in the legend at the bottom of the figure. The samples are arranged from left to right based on increasing tumour grade (WHO/ISUP G1–4). The identified somatic mutations involved 38 genes, including 8 cancer driver genes, as highlighted by colors. Read counts and minor allele frequencies of the mutations are listed in Supplementary Table 4.
in multiple tumour grades, except tumour grade 1, were BAP1, ROS1, KDM5C, and PBRM1 (Fig. 5B). PBRM1 was present in multiple tumour grade regions from four patients, whereas BAP1 and ROS1 were present in multiple tumour regions of only one patient (Fig. 2). A number of genes were mutated in regions with only one specific tumour grade (Fig. 5B), namely ERBB3, LRRK and DROSHA in grade 2; six genes including MTOR in grade 3; and TP53 and PIK3CA in grade 4. It is important to recognise that mutations in these genes were not identified in all samples with a particular tumour grade, so, for example, not all samples with grade 2 showed mutations in ERBB3.

4. Discussion

For the six patients subjected to targeted sequencing, most mutations were indeed observed in the two most frequently mutated genes in ccRCC, e.g. VHL and PBRM1 (Forbes et al., 2017; Network, 2013). Six
of the mutated genes encode proteins involved in transcription regulation (Huang da da Huang et al., 2009): PBRM1, ARID1A, KDM5C, BAP1, ZFHX3, and HUWE1. The first four genes have been recognized as chromatin modifiers, regulators of genomic architecture and DNA accessibility which are crucial for various cellular processes including gene expression programmes and DNA damage repair (de Cubas and Rathmell, 2018).

If tumour phenotypes in ccRCC were consistently driven by mutations in specific genes, these genes would very likely have ended up high in the ranks of the mutation databases and thus be captured by our panel, which is based on published gene mutation frequencies and cancer driver-gene rankings. Indeed, we observed genomic
higher number of mutations, as a subset of the mutations were present in ccRCC. Through multi-region sampling we were able to detect a range of mutations from local mutations, which could help in selecting the optimal targeted therapy. Thus, either way, multiregion sampling may guide selection of the treatment that can most effectively target all, or the most threatening, tumour populations.

Authors' contributions
PF contributed in conceptualization, investigation, methodology, formal analysis, visualization, and writing the original draft. GK-U participated in the investigation, provision of sample resources, and editing the manuscript. SMH, TU, HTR, and RD provided the study and sample resources, and reviewing the manuscript. KdL and MMT participated in the formal analysis, software, and reviewing the manuscript. KK, RHS, and HW participated conceptualization, methodology, supervision, and writing the original draft. PF and SMH contributed in funding acquisition. All authors read and approved the final manuscript.

Declaration of Competing Interest
None of the authors have conflicts of interest to declare.

Acknowledgements
This work was supported by a Netherlands Fellowship Program Grant, Netherlands Organization for International Cooperation in Higher Education, NUFFIC [NFP-PhD.13/119 to PF] and International Research Collaboration Grant, Kementerian Pendidikan dan Kebudayaan, Direktorat Jenderal Pendidikan Tinggi, Indonesia [0094/ES.51/PE/2015 to SMH]. We thank Kate McIntyre for editorial advice.

Appendix A. Supplementary data
Supplementary data to this article can be found online at https://doi.org/10.1016/j.yexmp.2020.104431.

References
Arai, E., et al., 2008. Genetic clustering of clear cell renal cell carcinoma based on array-comparative genomic hybridization: its association with DNA methylation alteration and patient outcome. Clin. Cancer Res. 14, 5531–5539.
Ball, M.W., et al., 2017. The landscape of whole-genome alterations and pathologic features in genitourinary malignancies: an analysis of the cancer genome atlas. Eur Urol Focus 3, 584–589.
Bi, M., et al., 2016. Genomic characterization of sarcomatoid transformation in clear cell renal cell carcinoma. Proc. Natl. Acad. Sci. U. S. A. 113, 2170–2175.
Bray, F., et al., 2018. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424.
da Hu, W., et al., 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57.
Daghe, J., et al., 2017. Clear cell renal cell carcinoma: validation of World Health Organization/International Society of Urological Pathology grading. Histopathology 71, 918–925.
Dalgleish, G.L., et al., 2010. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 463, 360–363.
de Carlos, A.A., Rathmell, W.K., 2018. Epigenetic modifiers: activities in renal cell carcinoma. Nat Rev Urol. 15, 599–614.
Delahunt, B., et al., 2014. International Society of Urological Pathology grading and other prognostic factors for renal neoplasia. Eur. Urol. 66, 795–798.
Duns, G., et al., 2012. Targeted exome sequencing in clear cell renal cell carcinoma: an analysis of 25 patients. N. Engl. J. Med. 366, 1553–1562.
Ferronika, P., et al., 2019. Comprehensive profiling of primary and metastatic ccRCC reveals a high homology of the metastases to a subregion of the primary tumour. Cancers (Basel) 11.
Forbes, S.A., et al., 2011. COSMIC: mining complete cancer genomes in the catalogue of somatic mutations in Cancer. Nucleic Acids Res. 39, D945–D950.
Forbes, S.A., et al., 2017. COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Res. 45, D777–D783.
Garriston, E., Gabor, M., 2012. Haplotype-based variant detection from short-read sequencing. arXiv preprint arXiv:1207.3907.
Gerlinger, M., et al., 2012. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 863–872.
Gerlinger, M., et al., 2014. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat. Genet. 46, 225–233.

Gonzalez-Perez, A., et al., 2013. IntOGen-mutations identifies cancer drivers across tumor types. Nat. Methods 10, 1081–1082.

Hakimi, A.A., et al., 2013. Clinical and pathologic impact of select chromatin-modulating tumor suppressors in clear cell renal cell carcinoma. Eur. Urol. 63, 848–854.

Kluzek, K., et al., 2017. Genetic characterization of polish ccRCC patients: somatic mutation analysis of PBRM1, BAP1 and KDM5C, genomic SNP array analysis in tumor biopsy and preliminary results of chromosome alterations analysis in plasma cell free DNA. Oncotarget 8, 28558–28574.

Manley, B.J., et al., 2017. Integration of recurrent somatic mutations with clinical outcomes: a pooled analysis of 1049 patients with clear cell renal cell carcinoma. Eur Urol Focus. 3, 421–427.

McKenna, A., et al., 2010. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303.

Mitchell, T.J., et al., 2018. Timing the landmark events in the evolution of clear cell renal cell cancer: TRACERx renal. Cell. 173, 611–623 e17.

Moch, H., et al., 2016. The 2016 WHO classification of tumours of the urinary system and male genital organs-part α: renal, penile, and testicular tumours. Eur. Urol. 70, 93–105.

Moore, L.E., et al., 2012. Genomic copy number alterations in clear cell renal carcinoma: associations with case characteristics and mechanisms of VHL gene inactivation. Oncogenesis 1, e14.

Network, C.G.A.R., 2013. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499, 43–49.

Pena-Llopis, S., et al., 2012. BAP1 loss defines a new class of renal cell carcinoma. Nat. Genet. 44, 751–759.

Rausch, T., et al., 2012. Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 148, 59–71.

Robinson, J.T., et al., 2011. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26.

Sato, Y., et al., 2013. Integrated molecular analysis of clear-cell renal cell carcinoma. Nat. Genet. 45, 860–867.

Singh, R.R., et al., 2015. Intratumoral morphologic and molecular heterogeneity of rhabdoid renal cell carcinoma: challenges for personalized therapy. Mod. Pathol. 28, 1225–1235.

Thiesen, H.J., et al., 2017. Stratification of clear cell renal cell carcinoma (ccRCC) genomes by gene-directed copy number alteration (CNA) analysis. PLoS One 12, e0176659.

Turalic, S., et al., 2018. Deterministic evolutionary trajectories influence primary tumor growth: TRACERx renal. Cell 173, 595–610 e11.