Multiplicative order compact operators between vector lattices and l-algebras

March 8, 2022

Abdullah Aydn1\textdagger, Svetlana Gorokhova2
1 Department of Mathematics, Muş Alparslan University, Muş, 49250, Turkey, a.aydin@alparslan.edu.tr
2 Southern Mathematical Institute of the Russian Academy of Sciences, Vladikavkaz, Russia, lanagor71@gmail.com
\textdagger Corresponding Author

Abstract: In the present paper, we introduce and investigate the multiplicative order compact operators from vector lattices to l-algebras. A linear operator T from a vector lattice X to an l-algebra E is said to be omo-compact if every order bounded net x_α in X possesses a subnet x_{α_β} such that $T x_{\alpha_\beta} \xrightarrow{\text{omo}} y$ for some $y \in E$. We also introduce and study omo-M- and omo-L-weakly compact operators from vector lattices to l-algebras.

Keywords: vector lattice, l-algebra, omo-convergence, omo-continuous, omo-compact, omo-M-, and omo-L-weakly compact operator.

MSC2020: 46A40, 46B42, 46J40, 47B65

1 Introduction

Compact operators play significant role in the operator theory and its applications. Various kinds of classical convergences, like order and relatively
uniform convergences, in vector lattices are not topological [14, Thm.2], [12, Thm.5], [13, Thm.2.2]. Fortunately, even without any topology, several natural types of compact operators can be investigated (see, e.g. [10]). In the present paper, we introduce and investigate \(\omega \)-weak-compact operators from vector lattices to \(l \)-algebras. Throughout the paper, all vector lattices are assumed to be real and Archimedean, and all operators to be linear. We denote by letters \(X \) and \(Y \) vector lattices, and by \(E \) and \(F \) \(l \)-algebras.

A net \(x_\alpha \) in \(X \):

- \(\omega \)-converges to \(x \in X \) (shortly, \(x_\alpha \xrightarrow{\omega} x \)), if there exists a net \(y_\beta \downarrow 0 \) such that, for any \(\beta \), there exists \(\alpha_\beta \) satisfying \(|x_\alpha - x| \leq y_\beta \) for all \(\alpha \geq \alpha_\beta \);
- \(r \)-converges to \(x \in X \) (shortly, \(x_\alpha \xrightarrow{r} x \)) if, for some \(u \in X_+ \), there exists a sequence \(\alpha_n \) of indexes such that \(|x_\alpha - x| \leq \frac{1}{n} u \) for all \(\alpha \geq \alpha_n \) (see, e.g. [16, 1.3.4, p.20]).

An operator \(T : X \to Y \) is called:

- \(\omega \)-bounded, if \(T \) takes order bounded sets to order bounded ones.
- \(r \)-regular, if \(T = T_1 - T_2 \) with \(T_1, T_2 \geq 0 \);
- \(\omega \)-continuous, if \(T x_\alpha \xrightarrow{\omega} 0 \) whenever \(x_\alpha \xrightarrow{\omega} 0 \);
- \(r \)-continuous, if \(T x_\alpha \xrightarrow{r} 0 \) whenever \(x_\alpha \xrightarrow{r} 0 \);

The set \(\mathcal{L}_b(X, Y) \) of \(\omega \)-bounded operators from \(X \) to \(Y \) is a vector space. Every regular operator is \(\omega \)-bounded. The set \(\mathcal{L}_r(X, Y) \) of all regular operators from \(X \) to \(Y \) is an ordered vector space with respect to the order: \(T \geq 0 \) if \(T x \geq 0 \) for all \(x \in X_+ \), we write \(\mathcal{L}_r(X) := \mathcal{L}_r(X, X), \mathcal{L}_b(X) = \mathcal{L}_b(X, X) \) etc. If \(Y \) is Dedekind complete then \(\mathcal{L}_b(X, Y) \) coincides with \(\mathcal{L}_r(X, Y) \) and is a Dedekind complete vector lattice [1 Thm.1.67] containing the set \(\mathcal{L}_n(X, Y) \) of all \(\omega \)-continuous operators from \(X \) to \(Y \) as a band [1 Thm.1.73]. It is clear that each positive and hence each regular operator is \(r \)-continuous.

Assume that vector lattices \(X \) and \(Y \) are equipped with linear convergences \(c_1 \) and \(c_2 \) respectively. An operator \(T : X \to Y \) is called
- \(c_1 c_2 \)-continuous (cf. [7 Def.1.4]), whenever \(x_\alpha \xrightarrow{c_1} 0 \) in \(X \) implies \(T x_\alpha \xrightarrow{c_2} 0 \) in \(Y \).

In the case when \(c_1 = c_2 \), we say that \(T \) is \(c_1 \)-continuous. The collection of all \(c_1 c_2 \)-continuous operators from \(X \) to \(Y \) is denoted by \(\mathcal{L}_{c_1 c_2}(X, Y) \), and if \(c_1 = c_2 \), we denote \(\mathcal{L}_{c_1}(X, Y) \) by \(\mathcal{L}_{c_1}(X, X) \).

A vector lattice \(X \) is called:

- \(l \)-algebra, if \(X \) is an associative algebra such that \(x \cdot y \in X_+ \) whenever \(x, y \in X_+ \).

An \(l \)-algebra \(E \) is called:

- \(d \)-algebra if \(u \cdot (x \land y) = (u \cdot x) \land (u \cdot y) \) and \((x \land y) \cdot u = (x \cdot u) \land (y \cdot u) \) for all \(x, y \in E \) and \(u \in E_+ \);
- \(f \)-algebra if \(x \land y = 0 \) implies \((u \cdot x) \land y = (x \cdot u) \land y = 0 \) for all \(u \in E_+ \);
- semiprime whenever the only nilpotent element in \(E \) is 0;
- unital if \(E \) has a positive multiplicative unit.

Any vector lattice \(X \) is a commutative \(f \)-algebra with respect to the trivial algebra multiplication \(x \ast y = 0 \) for all \(x, y \in X \).

Let \(\varepsilon \) be a linear convergence on \(E \) (see, [7 Def.1.6]). The algebra multiplication in \(E \) is called

- right \(\varepsilon \)-continuous (resp., left \(\varepsilon \)-continuous) if \(x_\alpha \xrightarrow{\varepsilon} x \) implies \(x_\alpha \cdot y \xrightarrow{\varepsilon} x \cdot y \) (resp., \(y \cdot x_\alpha \xrightarrow{\varepsilon} y \cdot x \)) every \(y \in E \) (cf. [7 Def.5.3]).

- The right \(\varepsilon \)-continuous algebra multiplication will be referred to as \(\varepsilon \)-continuous multiplication.

Example 1.1. Consider \(T, T_k \in \mathcal{L}_r(\ell^\infty) \) defined as follows: \(T x := l(x) \cdot 1_N \) and \(T_k x = x \cdot 1_{\{m \in \mathbb{N} : m \geq k\}} \) for all \(x \in \ell^\infty \) and all \(k \in \mathbb{N} \), where \(l \) is a positive extension to \(\ell^\infty \) of the functional \(l(x) = \lim_{n \to \infty} x_n \) on the space \(c \) of all
convergent real sequences. Clearly, $T_k \downarrow \geq 0$. If $T_k \geq S \geq 0$ in $\mathcal{L}_r(\ell^\infty)$ for all $k \in \mathbb{N}$ then, for every $p \in \mathbb{N}$

$$T_k e_p \geq S e_p \geq 0 \quad (\forall k \in \mathbb{N}),$$

where $e_p = \mathds{1}_{\{p\}} \in \ell^\infty$. Since $T_k e_p = 0$ for all $k > p$ then $S e_p = 0$ for all $p \in \mathbb{N}$. As $\ell^\infty = \ker(l) \oplus \mathbb{R} \cdot \mathds{1}_\mathbb{N}$, $S = s \cdot T$ for some $s \in \mathbb{R}_+$, and hence

$$T_2 \mathds{1}_\mathbb{N} = \mathds{1}_{\{m \in \mathbb{N} : m \geq 2\}} \geq s \cdot T \mathds{1}_\mathbb{N} = s \cdot \mathds{1}_\mathbb{N},$$

which implies $s = 0$, and hence $S = 0$. Thus, $T_k \downarrow 0$. However, the sequence $T \circ T_k = T$ does not σ-converge to 0, showing that the algebra multiplication in $\mathcal{L}_r(\ell^\infty)$ is not left σ-continuous. This also shows that, in unital l-algebras, σ-convergence can be properly weaker than $m\sigma$-convergence.

A net x_α in E $m\sigma$-converges ($m\ell$-converges) to x whenever

$$|x_\alpha - x| \cdot u \xrightarrow{\ell} 0 \quad (\text{respectively } u \cdot |x_\alpha - x| \xrightarrow{\ell} 0) \quad (\forall u \in E_+),$$

briefly $x_\alpha \xrightarrow{m\sigma} x$ and $x_\alpha \xrightarrow{m\ell} x$. In commutative algebras $m\sigma \equiv m\ell$. Since $m\ell$-convergence turns to $m\sigma$-convergence and vice versa, if we replace the algebra multiplication in E by “\cdot”, defined as follows: $x \cdot y := y \cdot x$, we restrict ourselves to $m\sigma$-convergence, denoting it by $m\sigma$-convergence (cf. [4, 5, 7]).

Let X be a Dedekind complete vector lattice. Then $\mathcal{L}_r(X)$ is an unital Dedekind complete l-algebra under the operator multiplication, containing $\mathcal{L}_n(X)$ as an l-subalgebra. The algebra multiplication is: right $m\sigma$-continuous in $\mathcal{L}_r(X)$; and is both left and right $m\sigma$-continuous in $\mathcal{L}_n(X)$ [6 Thm.2.1].

Example 1.2. (cf. [3 Ex.3.1]) Let E be an f-algebra of all bounded real functions on $[0, 1]$ which differ from a constant on at most countable set of $[0, 1]$. Let $T : E \to E$ be an operator that assigns to each $f \in E$ the constant function Tf on $[0, 1]$ such that the set $\{x \in [0, 1] : f(x) \neq (Tf)(x)\}$ is at most countable. Then T is a rank one continuous in $\|\cdot\|_\infty$-norm positive operator. Consider the following net indexed by finite subsets of $[0, 1]$:

$$f_\alpha(x) = \begin{cases} 1 & \text{if } x \notin \alpha \\ 0 & \text{if } x \in \alpha \end{cases}$$

4
Then $f_\alpha \downarrow 0$ in E, yet $\|f_\alpha\|_\infty = 1$ for all α. Thus, T is neither omo- nor mo-continuous. However, T is τ-continuous and since E is unital, T is mr-continuous.

The structure of the paper is as follows. In Section 2, we introduce omc-compact operators from a vector lattice to an l-algebra and investigate their general properties with an emphasis on omo- and omr-cases. In Section 3, we investigate the domination problem for omc-compact operators; we define and study omo-M- and omo-L-weakly compact operators. For further unexplained terminology and notations, we refer to [1, 2, 6, 7, 9, 10, 15, 16, 17, 18, 19].

2 The properties of omc-compact operators

We begin with the following definition (cf. [6 Def.2.12]).

Definition 2.1. A subset A of an l-algebra E is called mr_\circ-bounded (resp., ml_\circ-bounded) if the set $A \cdot u$ (resp., $u \cdot A$) is order bounded for every $u \in E_+$. An operator T from a vector lattice X to an l-algebra E is called mr_\circ-bounded (resp., ml_\circ-bounded) if T maps order bounded subsets of X into mr_\circ-bounded (resp., ml_\circ-bounded) subsets of E.

As usual, we restrict to mr_\circ-bounded subsets and operators, and refer to them as mo-bounded. In any l-algebra E with trivial multiplication, $x * y = 0$ for all $x, y \in E$, each subset A of E is mo-bounded and as result, every operator from a vector lattice X to such an l-algebra E is mo-bounded. For elementary properties of mo-bounded operators in l-algebras, we refer the reader to the paper [6].

Example 2.2. (cf. [7 Ex.6]). Take a free ultrafilter \mathcal{U} on natural numbers \mathbb{N}. Then a sequence λ_n of reals converges along \mathcal{U} to λ whenever $\{k \in \mathbb{N} : |\lambda_k - \lambda| \leq \varepsilon\} \in \mathcal{U}$ for every $\varepsilon > 0$. Hence, for any element $x := (x_n)_{n=1}^\infty \in \ell^\infty$, the sequence x_n converges along \mathcal{U} to $x_\mathcal{U} := \lim_\mathcal{U} x_n$. In that case, one can define an l-algebra multiplication $*$ in ℓ^∞ by $x * y := (\lim_\mathcal{U} x_n) \cdot (\lim_\mathcal{U} y_n) \cdot 1$, where 1 is a sequence of reals identically equal to 1. It is easy to see that $(\ell^\infty, *)$ is a d-algebra. Then the set $A = \{k e_k : k \in \mathbb{N}\}$ is mo-bounded yet not σ-bounded.
Remark 2.3. Let T be an operator from a vector lattice X to an l-algebra E. Then

(i) If T is \circ-bounded (in particular if T is regular) then T is \mathfrak{m}_\circ- and $\mathfrak{m}_r\circ$-bounded.

(ii) If T is \mathfrak{m}_\circ- or $\mathfrak{m}_r\circ$-bounded operator and E is unital l-algebra then T is order bounded.

(iii) By [6, Thm.2.6], every r-continuous operator T from an Archimedean vector lattice to an Archimedean l-algebra is $\mathfrak{r}_\circ\mathfrak{m}$-continuous and then, by [6, Thm.2.15], T is \mathfrak{m}_\circ-bounded.

(iv) It follows from [1, Lem.1.4] that every order continuous operator is order bounded and hence \mathfrak{m}_\circ- and $\mathfrak{m}_r\circ$-bounded.

(v) Every \mathfrak{m}_\circ, \mathfrak{om}_\circ, or \mathfrak{rm}_\circ-continuous is $\mathfrak{m}_\circ\circ$-bounded and $\mathfrak{m}_r\circ$-bounded.

Moreover, every $\mathfrak{m}_\circ\circ$, $\mathfrak{om}_\circ\circ$, or $\mathfrak{rm}_\circ\circ$-continuous (resp., $\mathfrak{m}_r\circ$, $\mathfrak{om}_r\circ$, or $\mathfrak{rm}_r\circ$-continuous) is $\mathfrak{m}_\circ\circ$-bounded (resp., $\mathfrak{m}_r\circ$-bounded) [6, Thm.2.14].

The converse of Remark 2.3 (i) need not to be true in general. Indeed, in any l-algebra with trivial multiplication, every operator is \mathfrak{m}_\circ- and $\mathfrak{m}_r\circ$-bounded. A more interesting example is given below.

Example 2.4. Consider an operator T from the vector lattice $X := c$ the set of all convergent real sequences to the f-algebra $E := c_0$ of real sequence converging to zero, defined by

$$T(x_1, x_2, x_3, \cdots) = (x, x - x_1, x - x_2, x - x_3, \cdots),$$

where $x = \lim_{n \to \infty} x_n$. Then T is an \mathfrak{m}_\circ- and $\mathfrak{m}_r\circ$-bounded operator. However, it follows from $T(0, \cdots, 0, 1, 1, \cdots) = (1, \cdots, 1, 0, 0, \cdots)$ that $T([0, 1])$ is not order bounded in E, and so, T is not order bounded.

The converse of Remark 2.3 (iv) need not to be true in general. To see this, we include the following example.
Example 2.5. (cf. [6, Ex.2.8]). Let \((\ell^\infty, \ast)\) be as in Example 2.2. Now, the identity operator \(I : (\ell^\infty, \ast) \to (\ell^\infty, \ast)\) is order bounded, but not \(\omega_0\)-continuous. Indeed, take the characteristic functions \(h_n = 1_{\{k \in \mathbb{N} : k \geq n\}} \in \ell^\infty\). Then \(h_n \omega_0 \to 0\) in \(\ell^\infty\) yet the sequence \(|I(h_n) - I(0)| \ast 1 = h_n \ast 1 = 1\) does not \(\omega\)-converge to 0. Thus, the sequence \(I(h_n)\) does not \(\omega_0\)-converge to 0 and hence \(I\) is not \(\omega_0\)-continuous.

Remind that an operator between normed spaces is called \textit{compact} if it maps the closed unit ball to a relatively compact set. Equivalently, the operator is compact if, for each norm bounded sequence, there exists a subsequence such that the image of it is convergent. Motivated by this, we introduce the following notions.

\textbf{Definition 2.6.} An operator \(T\) from a vector lattice \(X\) to an \(l\)-algebra \(E\) is called

\begin{enumerate}[(a)]
\item \(\omega_0\)-\textit{compact} (resp., \(\omega_1\)-\textit{compact}) if every order bounded net \(x_\alpha\) in \(X\) possesses a subnet \(x_{\alpha_\beta}\) such that \(Tx_{\alpha_\beta} \omega_0 \to y\) (resp., \(Tx_{\alpha_\beta} \omega_1 \to y\)) for some \(y \in E\);
\item \(\omega_0\)-\textit{compact} if \(T\) is both \(\omega_0\)- and \(\omega_1\)-compact;
\item \textit{sequentially} \(\omega_0\)-\textit{compact} (resp., \(\omega_1\)-\textit{compact}) if every order bounded sequence \(x_n\) in \(X\) possesses a subsequence \(x_{n_k}\) such that \(Tx_{n_k} \omega_0 \to y\) (resp., \(Tx_{n_k} \omega_1 \to y\)) for some \(y \in E\);
\item \textit{sequentially} \(\omega_0\)-\textit{compact} if \(T\) is both sequentially \(\omega_0\)- and \(\omega_1\)-compact.
\end{enumerate}

\textbf{Example 2.7.} Define an operator \(T : c_0 \to c_0\) by

\[T \left(\sum_{k=1}^\infty a_k e_k \right) = \sum_{k=1}^\infty \frac{a_k}{k} e_k, \]

where \(e_k = 1_{\{n\}}\) and \(a_k\) is a real sequence converging to zero. Then \(T\) is compact on the \(f\)-algebra \((c_0, \| \cdot \|_\infty)\), and is \(\omega_0\)-compact.

In the next example, we show that there is an operator that is neither \(\omega_0\)-compact nor sequentially \(\omega_0\)-compact.
Example 2.8. The identity operator on the l-algebra $L_\infty[0,1]$ with pointwise multiplication is neither $\omega\omega$-compact nor sequentially $\omega\omega$-compact. Indeed, take the sequence of Rademacher function $r_n(t) = \text{sgn}(\sin(2^n\pi t))$ on $[0,1]$. Clearly, r_n is order bounded. Now, assume that r_n has a ω-convergent subnet $r_{n\alpha}$, say $r_{n\alpha} \omega \rightarrow f$ for some $f \in L_\infty[0,1]$. Then $r_n \omega \rightarrow f$ and hence $r_n(t) \rightarrow f(t)$ almost everywhere violating that $r_n(t)$ diverges on $[0,1]$ except countably many points of form $\frac{k}{m}$ for $k, m \in \mathbb{N}$.

An $\omega\omega$-compact operator need not be sequentially $\omega\omega$-compact. To see this, we consider [11] Ex.7 for the next example.

Example 2.9. Consider the set $E := \mathbb{R}^X$ of all real-valued functions on X equipped with the product topology, where X is the set of all strictly increasing maps from \mathbb{N} to \mathbb{N}. It follows from [17] Ex.3.10(i) that E is a unital Dedekind complete f-algebra with respect to the pointwise operations and ordering.

(i) The identity map I on E is an $\omega\omega\omega$-compact operator. Indeed, assume that f_α is an order bounded net in E. It follows from [11] Ex.7(1)] that there exists a subnet $f_{\alpha\beta}$ such that $f_{\alpha\beta} \omega \rightarrow f$ for some $f \in E$. Since every f-algebra has ω-continuity algebra multiplication, it follows from [7] Lm.5.5] that $f_{\alpha\beta} \omega \rightarrow f$. Therefore, I is $\omega\omega\omega$-compact.

(ii) The identity map I on E is not sequentially $\omega\omega\omega$-compact. Consider a sequence f_n in $\{-1,1\}^X$. Then f_n is order bounded in E and f_n has no ω-convergent subsequence [11] Ex.7(2)]. Thus, every subsequence does not $\omega\omega\omega$-converge because the f-algebra E has a unit element.

Remark 2.10. It is known that any compact operator is norm continuous, but in general we may have a $\omega\omega\omega$-compact operator which is not $\omega\omega\omega$-continuous. Indeed, denote by \mathcal{B} the Boolean algebra of the Borel subsets of $[0,1]$ equals up to measure null sets. Let \mathcal{U} be any ultrafilter on \mathcal{B}. Then it can be shown that the linear operator $\varphi_\mathcal{U} : L_\infty[0,1] \rightarrow \mathbb{R}$ defined by

$$\varphi_\mathcal{U}(f) := \lim_{A \in \mathcal{U}} \frac{1}{\mu(A)} \int_A f \, d\mu$$

8
is $\omega^\mathfrak{m}$-compact (see [7, Lem. 5.5]) because the algebra multiplication in \mathbb{R} is order continuous (cf. [15, 17]). However, it is not $\omega^\mathfrak{m}$-continuous.

In any l-algebra E, $x \geq y$ implies $x \cdot u \geq y \cdot u$ for all $u \in E_+$. But, in general, the inequality $x \cdot u \geq 0$ for all $u \in E_+$ does not imply $x \geq 0$.

Definition 2.11. An l-algebra E is called right straight l-algebra (resp., left straight l-algebra) if $x \in E_+$ whenever $x \cdot u \in E_+$ (resp., $x \cdot u \in E_+$) for all $u \in E_+$. If an l-algebra E is both left and right straight l-algebra, we say that E is a straight l-algebra.

Clearly every unital l-algebra is straight. An algebra in [6, Ex. 2.8]) gives an example of a d-algebra which is not a straight l-algebra. The following theorem is an $\omega^\mathfrak{m}$-version of [11, Thm. 2].

Theorem 2.12. Let T be an operator from a vector lattice X to an l-algebra E. Then

(i) if E is right straight l-algebra (resp., left straight l-algebra) and T is $\omega^\mathfrak{m}$-compact (resp., $\omega^\mathfrak{m}$-compact) operator then it is order bounded;

(ii) if T is $\omega^\mathfrak{m}$-compact (resp., $\omega^\mathfrak{m}$-compact) operator then it is \mathfrak{m}-bounded (resp., \mathfrak{m}-bounded) operator.

Proof. (i) Suppose that T is an $\omega^\mathfrak{m}$-compact operator, but not order bounded. So, there is an order bounded subset B of X such that $T(B)$ is not order bounded in E. Hence, for every $y \in E_+$, there exists some $x_y \in B$ such that $|T(x_y)| \nless y$.

Since the net $(x_y)_{y \in E_+}$ is order bounded, there exists a subnet $(y_v)_{v \in \mathcal{V} \subseteq E_+} = (x_{\phi(v)})_{v \in \mathcal{V} \subseteq E_+}$ of $(x_y)_{y \in E_+}$ such that $T(y_v)$ is \mathfrak{m}-converges to some $z \in E$, i.e., for each positive element $w \in E_+$, $|T(y_v) - z| \cdot w \xrightarrow{\omega} 0$ because T is $\omega^\mathfrak{m}$-compact operator. So, $|T(y_v) - z| \cdot w$ has an order bounded tail, which means that for an arbitrary positive element $w \in E_+$ there exist some indexes $v_0 \in \mathcal{V}$ and elements $e \in E_+$ such that

$$|T(y_v) - z| \cdot w \leq e$$
for each $v \geq v_0$. It follows from the inequality $|T(y_v)| \leq |T(y_v) - z| + |z|$ that we have $|T(y_v)| \cdot w \leq |T(y_v) - z| \cdot w + |z| \cdot w \leq e + |z| \cdot w$ for every $v \geq v_0$. Now, fix $t := e + |z| \cdot w \in E_+$. Then we have

$$|T(x_{\phi(v)})| \cdot w \leq t$$

for all $v \geq v_0$. Now, take an index $v_1 \in V \subset E_+$ so that $\phi(v) \cdot w \geq t$ holds for all $v \geq v_1$. Then, for any $v \geq v_0 \lor v_1$, we have $|T(x_{\phi(v)})| \nleq \phi(v)$, and so, $|T(x_{\phi(v)})| \cdot w \nleq \phi(v) \cdot w$ because E is right straight l-algebra. Therefore, we have

$$|T(x_{\phi(v)})| \cdot w \nleq t,$$

which is a contradiction with (1). Therefore, we obtain the desired result.

(ii) The proof is a modification of the proof (i).

The idea in Theorem 2.12 need not to be true in the case of sequentially $\omega\sigma$-compactness. To see this, we consider [11, Lm.4 and Ex.6] for the following example.

Example 2.13. Let F be the l-algebra of all bounded real-valued functions defined on the real line with countable support, and E be the directed sum $\mathbb{R}1 \oplus F$, where 1 denotes the constant function taking the value 1. Define an operator T from E to F as a projection such that the range is F and the kernel is $\mathbb{R}1$. Then T is a sequentially $\omega\sigma$-compact, but not order bounded. Indeed, take an order bounded sequence (f_n) in E. Then there exist some scalars $\lambda > 0$ such that $|f_n| \leq \lambda$ for all n. On the other hand, we can write $f_n = \beta_n + g_n$ with real numbers β_n and functions g_n in F. It follows from [11, Ex.6] that (g_n) is order convergent in F. Then it is clear from [13, Thm.VIII.2.3] that (g_n) is also $\omega\sigma$-convergent in F. On the other hand, it is clear that the image of the net $(1_x)_{x \in [0,1]}$ is not order bounded in F. Therefore, the operator T is not order bounded.

Proposition 2.14. Let E be an l-algebra and R, T, S are operators on E.

(i) If T is (sequentially) $\omega\sigma$-compact (resp., $\omega\sigma\omega$-compact) and S is (sequentially) $\omega\sigma$-continuous (resp., $\omega\sigma\omega$-continuous) then the operator $S \circ T$ is (sequentially) $\omega\sigma$-compact (resp., $\omega\sigma\omega$-compact).
(ii) If T is (sequentially) ω_m, o-compact (resp., $\omega_m o$-compact) and R is order bounded, then $T \circ R$ is (sequentially) ω_m, o-compact (resp., $\omega_m o$-compact).

(iii) If T is a positive, order continuous and ω_m, o-compact (resp., $\omega_m o$-compact) operator, F is right straight l-algebra (resp., left straight l-algebra), and $S_\alpha \downarrow 0$ is a decreasing net of order bounded operators then $T \circ S_\alpha \downarrow 0$ is a decreasing net of ω_m, o-compact (resp., $\omega_m o$-compact) operators.

Proof. (i) Let x_α be an order bounded net in E. Since T is ω_m, o-compact, there are a subnet $x_{\alpha \beta}$ and $x \in E$ such that $T x_{\alpha \beta} \overset{m.o.}{\longrightarrow} x$. It follows from the $m.o.$-continuity of S that $S(T x_{\alpha \beta}) \overset{m.o.}{\longrightarrow} S(x)$. Therefore, $S \circ T$ is ω_m, o-compact.

(ii) Assume x_α to be an order bounded net in E. Since R is order bounded, the net $R x_\alpha$ is order bounded. Now, the ω_m, o-compactness of T implies that there are a subnet $x_{\alpha \beta}$ and $z \in E$ such that $T R x_{\alpha \beta} \overset{m.o.}{\longrightarrow} z$. Therefore, $T \circ R$ is ω_m, o-compact.

(iii) Let $S_\alpha \downarrow 0$ be a net of order bounded operators. Then it follows from Theorem 2.12 that $T \circ S_\alpha$ is an order bounded operator, and also, ω_m, o-compact operator for each index α by (ii). Moreover, since $T \geq 0$, we have $T \circ S_\alpha \downarrow$. On the other hand, by [18, Thm.VIII.2.3], $T \circ S_\alpha \downarrow 0$ if and only if $T \circ S_\alpha x \downarrow 0$ for each $x \in E_+$. The result follows from $S_\alpha \downarrow 0$.

The sequential and $\omega_m o$-compact cases are analogous. □

Proposition 2.15. Every order continuous finite rank operator on an l-algebra E with o-continuous multiplication is ω_o-compact.

Proof. Let $T : E \rightarrow E$ be order continuous and $\dim(TE) < \infty$. Then

$$T = \sum_{k=1}^{m} x_k \otimes f_k$$

for $x_1, \ldots, x_m \in E$ and $f_1, \ldots, f_m \in E'_n$.

Without lost of generality, we may assume that $T = x_1 \otimes f_1$. Since E'_n is Dedekind complete, f_1 is regular, and T is also regular. Without lost of generality, suppose $x_1 \geq 0$ and $f_1 \geq 0$. Let z_α be an order bounded net in E. Then $T z_\alpha = (x_1 \otimes f_1)(z_\alpha) = f_1(z_\alpha) x_1$ is order bounded since every order
continuous functional is order bounded. Since \(\dim(TE) = 1 \), there exists a subnet \(z_{\alpha, \beta} \) such that \(Tz_{\alpha, \beta} \xrightarrow{m} y \in T(E) \). Using \(\dim(TE) = 1 \) again, we obtain \(Tz_{\alpha, \beta} \xrightarrow{m} y \). Therefore \(T \) is \(\omega \)-compact.

The following result is an extension of Example 2.7.

Proposition 2.16. Let \(E \) be an \(l \)-algebra with \(\phi \)-continuous algebra multiplication. Then the algebra \(\mathcal{L}_{rc}(E) \) of regular order compact operators is a subspace of \(\mathcal{L}_{romo}(E) \), which is itself an right algebraic ideal of \(\mathcal{L}_r(E) \).

Proof. Suppose that \(T \) is a regular order compact operator on a right \(\phi \)-continuous \(l \)-algebra \(E \), and \(x_\alpha \) is an order bounded net in \(E \). Then there exist a subnet \(x_{\alpha, \beta} \) and some \(y \in E \) such that \(Tx_{\alpha, \beta} \xrightarrow{m} y \). It follows from [7, Lm.5.5] that \(Tx_{\alpha, \beta} \xrightarrow{m} y \). Thus, we obtain that \(T \) is \(\omega \)-compact. As the proof of \(\omega \)-compactness is analogous, \(\mathcal{L}_{rc}(E) \) is subspace of \(\mathcal{L}_{romo}(E) \). On the other hand, it is well known that \(\mathcal{L}_r(E) \) is a subspace of \(\mathcal{L}_r(E) \). It follows from Theorem 2.14 (ii) that \(\mathcal{L}_{romo}(E) \) is an right algebraic ideal of \(\mathcal{L}_r(E) \).

3 Domination problem for compact operators

In this section, we study the domination problem for \(\omega \)-compact operators, and we introduce the \(\omega \)-\(M \) and \(\omega \)-\(L \)-weakly compact operators. Now, we consider the domination problem for positive \(\omega \)-\((\omega \omega) \)-continuous and \(\omega \)-\(\bowtie \omega \)-compact operators. We have a positive answer for \(\omega \)-\((\omega \omega) \)-continuous operators in the next lemma.

Lemma 3.1. Let \(T \) and \(S \) be positive operators between \(l \)-algebras \(E \) and \(F \) satisfying \(0 \leq S \leq T \). If \(T \) is an \(\omega \)-\(\phi \)-continuous (resp., \(\omega \)-\(\bowtie \), \(\omega \)-\(\phi \)- and \(\omega \)-\(\bowtie \)\(\phi \)-continuous) operator imply then \(S \) has the same property.

Proof. Suppose that \(T \) is an \(\omega \)-\(\phi \)-continuous operator and \(x_\alpha \) is \(\omega \)-\(\phi \)-convergent to \(x \in E \). Then we have \(Tx_\alpha \xrightarrow{m} T x \) in \(F \). It follows from [2, Lem.1.6] that

\[
0 \leq |Sx_\alpha - Sx| \leq S(|x_\alpha - x|) \leq T(|x_\alpha - x|)
\]
holds for all α because S is a positive operator. Hence, we get

$$|Sx_\alpha - Sx| \cdot u \leq T(|x_\alpha - x|) \cdot u$$

(2)

for all $u \in F_+$. On the other hand, it follows from [4 Prop.2.4] that $x_\alpha \overset{\text{m}_\alpha}\rightarrow x$ implies $|x_\alpha - x| \overset{\text{m}_\alpha}\rightarrow 0$, and so, we obtain $T(|x_\alpha - x|) \overset{\text{m}_\alpha}\rightarrow 0$ by the m_α-continuity of T, i.e., $T(|x_\alpha - x|) \cdot u \overset{\delta}\rightarrow 0$ for all $u \in F_+$. Hence, the desired result raises from the inequality (2), $Sx_\alpha \overset{\text{m}_\alpha}\rightarrow Sx$ in F. The proof for the cases of m_α-, om_α-, and om_α-continuity are similar.

Recall that a net $(x_\alpha)_{\alpha \in A}$ in an l-algebra is called om_α-Cauchy if the net $(x_\alpha - x_{\alpha'})_{(\alpha, \alpha') \in A \times A}$ is om_α-convergent to 0. Moreover, an l-algebra is called om_α-complete if every om_α-Cauchy net is om_α-convergent; see [4 Def.2.11].

Theorem 3.2. Let X be a vector lattice and E be a Dedekind and sequentially om_α-complete l-algebra with α-continuous algebra multiplication. If $T_m : X \rightarrow E$ is a sequence of sequential om_α-compact operators and $T_m \overset{\delta}_o \rightarrow T$ in $\mathcal{L}_b(X, E)$ then T is sequentially om_α-compact.

Proof. Let x_n be an order bounded sequence in X, T_m be a sequence of sequential om_α-compact operators and E be sequentially om_α-complete. Then there is $w \in X_+$ such that $|x_n| \leq w$ for all $n \in N$. Also, by a standard diagonal argument, there exists a subsequence x_{n_k} such that for any $m \in N$, $T_m x_{n_k} \overset{\text{m}_\alpha}\rightarrow y_m$ for some $y_m \in E$. Let’s show that y_m is a om_α-Cauchy sequence in E. Fix an arbitrary $u \in E_+$. Then we have

$$|y_m - y_j| \cdot u \leq |y_m - T_m x_{n_k}| \cdot u + |T_m x_{n_k} - T_j x_{n_k}| \cdot u + |T_j x_{n_k} - y_j| \cdot u.$$

Then the first and third terms in the last inequality both order converge to zero as $m \rightarrow \infty$ and $j \rightarrow \infty$, respectively. Since $T_m \overset{\delta}_o \rightarrow T$ in vector lattice $\mathcal{L}_b(X, E)$, we have $|T_m - T_j| \overset{\delta}_o \rightarrow 0$, and so, it follows from [18 Thm.VIII.2.3] that $|T_m - T_j|(x) \overset{\delta}_o \rightarrow 0$ for all $x \in X$. Then, by using [1 Thm.1.67(a)], we obtain the inequality

$$|T_m x_{n_k} - T_j x_{n_k}| \cdot u \leq |T_m - T_j|(x_{n_k}) \cdot u \leq |T_m - T_j|(w) \cdot u.$$

Since E has α-continuous algebra multiplication, it follows from [7 Lem.5.5] that $|T_m - T_j|(x) \overset{\delta}_o \rightarrow 0$ implies $|T_m - T_j|(w) \cdot u \overset{\delta}_o \rightarrow 0$. Hence, we obtain that
\[|T_m x_{n_k} - T_j x_{n_k}| \cdot u \xrightarrow{\mathfrak{o}} 0. \] Therefore, \(y_m \) is an \(\mathfrak{o} \)-Cauchy. Now, by sequentially \(\mathfrak{o} \)-completeness of \(E \), there is \(y \in E \) such that \(y_m \xrightarrow{\mathfrak{o}} y \) in \(E \) as \(m \to \infty \).

Hence,
\[
|T x_{n_k} - y| \cdot u \leq |T x_{n_k} - T_m x_{n_k}| \cdot u + |T_m x_{n_k} - y_m| \cdot u + |y_m - y| \cdot u \\
\leq |T_m - T|(|x_{n_k}|) \cdot u + |T_m x_{n_k} - y_m| \cdot u + |y_m - y| \cdot u \\
\leq |T_m - T|(|w|) \cdot u + |T_m x_{n_k} - y_m| \cdot u + |y_m - y| \cdot u.
\]

Now, for fixed \(m \in \mathbb{N} \), and as \(k \to \infty \), we have
\[
\limsup_{k \to \infty} |T x_{n_k} - y| \cdot u \leq |T_m - T|(|w|) \cdot u + |y_m - y| \cdot u.
\]

But \(m \in \mathbb{N} \) is arbitrary, so \(\limsup_{k \to \infty} |T x_{n_k} - y| \cdot u = 0 \). Thus, \(|T x_{n_k} - y| \cdot u \xrightarrow{\mathfrak{o}} 0 \), i.e., \(T x_{n_k} \xrightarrow{\mathfrak{o}} y \). Therefore, \(T \) is sequentially \(\mathfrak{o} \)-compact.

The sequentially \(\mathfrak{o} \)-compact case is analogous. \(\square \)

In the rest of the section, we discuss \(\mathfrak{o} \)-\(M \)- and \(\mathfrak{o} \)-\(L \)-weakly compact operators. Remind that a norm bounded operator \(T \) from a normed lattice \(X \) into a normed space \(Y \) is called \(M \)-weakly compact if \(T x_n \xrightarrow{\|\|} 0 \) holds for every norm bounded disjoint sequence \(x_n \) in \(X \). Also, a norm bounded operator \(T \) from a normed space \(Y \) into a normed lattice \(X \) is called \(L \)-weakly compact whenever \(\lim ||x_n|| = 0 \) holds for every disjoint sequence \(x_n \) in the solid hull \(\text{sol}(T(B_Y)) := \{ x \in X : \exists y \in T(B_Y) \text{ with } |x| \leq |y| \} \) of \(T(B_Y) \), where \(B_Y \) is the closed unit ball of \(Y \). Similarly we have the following notions.

Definition 3.3. Let \(T : X \to E \) be a sequentially \(\mathfrak{o} \)-continuous operator.

1. If \(T x_n \xrightarrow{\mathfrak{o}} 0 \) for every order bounded disjoint sequence \(x_n \) in \(X \) then \(T \) is said to be \(\mathfrak{o} \)-\(M \)-weakly compact.

2. If \(y_n \xrightarrow{\mathfrak{o}} 0 \) for every disjoint sequence \(y_n \) in \(\text{sol}(T(A)) \), where \(A \) is any order bounded subset of \(X \), then \(T \) is said to be \(\mathfrak{o} \)-\(L \)-weakly compact.

Proposition 3.4. Let \(T \) be an order bounded \(\sigma \)-order continuous operator from a normed lattice \(X \) to an \(l \)-algebra \(E \) with \(\sigma \)-continuous algebra multiplication. Then \(T \) is \(\mathfrak{o} \)-\(M \)- and \(\mathfrak{o} \)-\(L \)-weakly compact.
Proof. Clearly, T is sequentially $\omega\sigma$-continuous operator because E has ω-continuous algebra multiplication; see [6, Lem.5.5]. Let x_n be an order bounded disjoint sequence in X. Then it follows from [9, Rem.10] that we get $x_n \overset{o}{\to} 0$. Thus, we have $Tx_n \overset{\omega o}{\to} 0$. Therefore, T is $\omega\sigma\omega$-M-weakly compact.

Now, we show that T is $\omega\sigma\omega$-L-weakly compact. Let A be an order bounded set in X. Thus, $T(A)$ is order bounded, and so, $\text{sol}(T(A))$ is an order bounded set in E. Take an arbitrary disjoint sequence y_n in $\text{sol}(T(A))$. Then, using [9, Rem.10], we have $y_n \overset{o}{\to} 0$, and so, $y_n \overset{\omega o}{\to} 0$ since E has ω-continuous algebra multiplication; see [6, Lem.5.5]. Thus, T is $\omega\sigma\omega$-L-weakly compact.

Similarly to [3, Cor.2.3], we obtain the following result.

Proposition 3.5. Let $T, S : X \to E$ be two linear operators from a normed lattice X to an l-algebra E such that $0 \leq S \leq T$. If T is $\omega\sigma\omega$-M- or $\omega\sigma\omega$-L-weakly compact then S has the same property.

Proof. Suppose that T is an $\omega\sigma\omega$-M-weakly compact operator. Thus, it follows from Lemma 3.1 that S is an $\omega\sigma$-continuous operator. Let x_α be an order bounded disjoint net in X. So, $|x_n|$ is also order bounded and disjoint. Since T is $\omega\sigma\omega$-M-weakly compact, $T(|x_n|) \overset{\omega o}{\to} 0$ in E. Following from the inequality

$$0 \leq |Sx_n| \cdot u \leq S(|x_n|) \cdot u \leq T(|x_n|) \cdot u$$

for all $n \in \mathbb{N}$ and for every $u \in E_+$ (cf. [2, Lem.1.6]), we get $Sx_n \overset{\omega o}{\to} 0$ in E. Thus, S is $\omega\sigma\omega$-M-weakly compact.

Next, we show that S is $\omega\sigma\omega$-L-weakly compact. Let A be an order bounded subset of X. Put $|A| = \{|a| : a \in A\}$. Clearly, $\text{sol}(S(A)) \subseteq \text{sol}(S(|A|))$ and since $0 \leq S \leq T$, we have $\text{sol}(S(|A|)) \subseteq \text{sol}(T(|A|))$. Let y_n be a disjoint sequence in $\text{sol}(S(|A|))$ then y_n is in $\text{sol}(T(|A|))$ and, since T is $\omega\sigma\omega$-L-weakly compact then $T(|x_n|) \overset{\omega o}{\to} 0$ in E. Therefore, by inequality (3), S is $\omega\sigma\omega$-L-weakly compact. □

Proposition 3.6. If $T : X \to E$ is an $\omega\sigma\omega$-L-weakly compact lattice homomorphism then T is $\omega\sigma\omega$-M-weakly compact.
Proof. Take an order bounded disjoint sequence x_n in X. Since T is lattice homomorphism, we have that Tx_n is disjoint in E. Clearly $Tx_n \in \text{sol}(\{Tx_n : n \in \mathbb{N}\})$. By $\omega\omega-L$-weakly compactness of T, we have $Tx_n \overset{\text{me}}{\to} 0$ in E. Therefore, T is $\omega\omega-M$-weakly compact.

References

[1] C. D. Aliprantis, O. Burkinshaw, Locally Solid Riesz Spaces with Applications to Economics, Mathematical Surveys and Monographs Centrum, vol. 105, 2nd ed., 2003.

[2] C. D. Aliprantis, O. Burkinshaw, Positive Operators, Springer, Dordrecht, 2006.

[3] S. Alpay, E. Emelyanov, S. Gorokhova, The $\omega\tau$-continuous, Lebesgue, KB, and Levi operators between vector lattices and topological vector spaces, arxiv.org/abs/2105.01810v1

[4] A. Aydin, The multiplicative norm convergence in normed Riesz algebras. Hacettepe J. Math. Stat. 50 (2021), no. 1, 24-32.

[5] A. Aydin, Multiplicative order convergence in f-algebras, Hacet. J. Math. Stat. 49 (2020), no. 3, 998-1005.

[6] A. Aydin, E. Emelyanov, S. G. Gorokhova, Multiplicative order continuous operators on Riesz algebras, (submitted)

[7] A. Aydin, E. Emelyanov, S. G. Gorokhova, Full lattice convergence on Riesz spaces, Indag. Math. 32 (2021) 658-690.

[8] A. Aydin, H. Gul, S. Gorokhova, Nonstandard hulls of lattice-normed ordered vector spaces, Turkish J. Math. 42 (2018) 155-163.

[9] A. Aydin, E. Y. Emelyanov, N. Erkurşun-Özcan, M. A. A. Marabeh, Unbounded $\omega\tau$-Convergence in Lattice-Normed Vector Lattices. Siberian Adv. Math. 29, 164-182 (2019).

[10] A. Aydin, E. Y. Emelyanov, N. Erkurşun-Özcan, M. A. A. Marabeh, Compact-like operators in lattice-normed spaces, Indag. Math. 29 (2018) 633-650.

[11] Y. Azouzi, M. A. B. Amor, On Compact Operators Between Lattice Normed Spaces. In: Kikianty E., Mabula M., Messerschmidt M., van der Walt J.H., Wortel M. (eds) Positivity and its Applications. Trends in Mathematics, 2021.

[12] Y. A. Dabboorasad, E. Y. Emelyanov, M. A. A. Marabeh, $\omega\tau$-Convergence in locally solid vector lattices. Positivity 22, 1065-1089 (2018).

[13] Y. A. Dabboorasad, E. Y. Emelyanov, M. A. A. Marabeh, Order convergence is not topological in infinite-dimensional vector lattices. Uzbek Mat. Zh. 1, 159-166 (2020).

[14] S. G. Gorokhova, Intrinsic characterization of the space $c_0(A)$ in the class of Banach lattices, Math. Notes, 60 (1996) 330-333.

[15] C. B. Huijsmans, Lattice-ordered algebras and f-algebras: a survey, Positive operators, Riesz spaces, and economics (Pasadena, CA, 1990) 151-169, Springer, Berlin, 1991.

[16] A. G. Kusraev, Dominated Operators, Kluwer Academic Publishers, Dordrecht, 2000.

[17] B. de Pagter, f-Algebras and Orthomorphisms, Ph. D. Dissertation, Leiden, 1981.

[18] B. Z. Vulikh, Introduction to the Theory of Partially Ordered Spaces, Wolters-Noordhoff Ltd, Groningen, 1967.

[19] A. C. Zaanen, Riesz spaces II, Amsterdam, The Netherlands: North-Holland Publishing, 1983.