THE ASTROPHYSICAL JOURNAL, 787:50 (7pp), 2014 May 20
© 2014. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

THE HARD X-RAY CONTINUUM OF CEN A OBSERVED WITH INTEGRAL SPI

Mark J. Burke1, Elisabeth Jourdain1, Jean-Pierre Roques1, and Daniel A. Evans2

1 CNRS, IRAP, 9 Avenue Colonel Roche, BP 44346, F-31028 Toulouse cedex 4, France; mburke@irap.omp.eu
2 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA

Received 2014 February 12; accepted 2014 April 3; published 2014 May 2

ABSTRACT

We revisit the average hard X-ray spectrum from the active galactic nucleus (AGN) of Centaurus A (Cen A) using 10 yr worth of observations with INTEGRAL SPI. This source has the highest flux observed from any AGNs in the SPI bandpass (23 keV–8 MeV). The 10 year light curve of Cen A is presented, and hardness ratios confirm that the spectral shape changes very little despite the luminosity varying by a factor of a few. Primarily, we establish the presence of a reflection component in the average spectrum by demonstrating an excess between 20 and 60 keV, from extending the spectral shape observed at low energy to the SPI regime. The excess in Chandra HETGS and INTEGRAL SPI data is well described by reflection of the dominant power-law spectrum from a neutral, optically thick atmosphere. We find that the reprocessed emission contributes 20%–25% of the 23–100 keV flux. The existence of a cutoff at tens to hundreds of kiloelectron volts remains controversial. Using simulated spectra, we demonstrate that a high energy cutoff reproduces the observed spectral properties of Cen A more readily than a simple power law. However, we also show that such a cutoff is probably underestimated when neglecting (even modest) reflection, and for Cen A would be at energies ≳700 keV, with a confidence of >95%. This is atypically high for thermal Comptonizing plasmas observed in AGNs, and we propose that we are in fact modeling the more gradual change in spectral shape expected of synchrotron self-Compton spectra.

Key words: BL Lacertae objects: individual (NGC 5128) – galaxies: active – galaxies: elliptical and lenticular, cD – gamma rays: galaxies – X-rays: galaxies

Online-only material: color figures

1. INTRODUCTION

The radio galaxy Centaurus A (Cen A, NGC 5128), at a distance of 3.8 Mpc (Harris et al. 2010), is our nearest large early-type galaxy and one of the most studied active galactic nuclei (AGNs). Despite this, we are still able to say comparatively little about the spectral properties of AGNs in the hard X-ray to γ-ray regime. Outstanding questions relate to the presence of reprocessed emission in the 20–100 keV spectrum and the existence of a high energy downturn in the spectral shape at a few hundred keV.

In the soft X-ray, Chandra and XMM-Newton grating observations have been used to demonstrate that a moderately absorbed (N_{H} ≈ 10^{23} cm^{-2}) power-law component dominates the 0.1–10.0 keV spectrum. However, inspection of the fit residuals indicated the need for extra components, the most prominent of which was a narrow (EW ≈ 10–50 eV) emission line consistent with neutral Fe Kα (Evans et al. 2004). It is feasible that the excess emission above the power law arises from reflection of the central X-ray source from surrounding material (George & Fabian 1991). Indeed, the absence of more highly ionized iron (i.e., Fe XXV, Fe XXVI) and the narrowness of the Fe Kα line profile are indicative that reflection is occurring far from the innermost portions of the accretion disk (Evans et al. 2004). The presence of reflection in the spectrum should lead to an apparent excess \geq20 keV (the so-called Compton hump; George & Fabian 1991).

The existence of a high energy cutoff at $E_{\text{cut off}}$ would have profound implications for the accretion mechanism of the Cen A AGNs, and is the subject of controversy. Fundamentally, it would inform on the origin of the primary emission component, whether it is produced in the jet (Maraschi et al. 1992; Bloom & Marscher 1996) by synchrotron self-Compton (SSC; Ginzburg & Syrovatskii 1969) or near the accretion disk from thermal comptonization (Dermer & Schlickeiser 1993; Sikora et al. 1994). For the case of thermal comptonization, a high energy cutoff $E_{\text{cut off}}$ in the spectrum will exist at 2–3 times the temperature of the plasma kT_{e} (Petrucci et al. 2001; Molina et al. 2009), whereas for SSC the narrowband spectral shape changes more gradually between the keV and GeV regimes. Molina et al. (2013) show that a reasonable upper limit to the average kT_{e} for all AGNs corresponds to $E_{\text{cut off}}$ ≳200 keV, based on cosmic diffuse background measurements (Gilli et al. 2007). The SSC scenario is not new in the context of Cen A (Chiaberge et al. 2001), and describes the spectral energy distribution (SED) well at soft X-rays (observed by SWIFT) and the GeV γ-rays (Abdo et al. 2010). Cen A is an FR I radio galaxy (Fanaroff & Riley 1974), which are believed to be misaligned BL Lac objects, i.e., the jet is not aligned with the line of sight. However, FR I galaxies are more luminous in γ-rays than expected for blazars viewed off-axis, suggesting emission from a slower moving region of the jet (either at a greater distance from the nucleus; Georganopoulos & Kazanas 2003, or in a so-called “sheath” around a faster-moving inner jet; Chiaberge et al. 2000), as the beaming angle is inversely proportional to the bulk Lorentz factor. The SEDs of some other FR I galaxies are also well described by SSC emission (Abdo et al. 2009a, 2009b).

The Compton hump from reflection was first detected in Seyfert galaxies using the Ginga satellite (Nandra & Pounds 1994), but its discovery in the Cen A spectrum remains tentative. Markowitz et al. (2007) used Suzaku observations to claim a nondetection, while Fukazawa et al. (2011) demonstrated a residual excess in the continuum between 10–20 keV but were not able to compensate for this in their reflection modeling (their Figure 5), nor do they adequately model the emission above 20 keV. Beckmann et al. (2011) used INTEGRAL IBIS and...
SPI data to claim a 1.9σ detection of the reflection component. However, their approach merely assessed the consistency of the flux from a best-fit reflection component with zero, which is not a valid method to test for the presence of a spectral component (see the discussion in Protassov et al. 2002). Moreover, the Compton hump must be consistent with the inferred reflection properties observed in the soft X-ray bandpass and with the input spectrum being from the central source.

Observations of Cen A with Fermi-LAT have shown that the GeV spectrum follows a much steeper power law (Γ ∼ 2.5 Abdo et al. 2010) than is measured in the X-ray regime (Γ ∼ 1.6–1.9, Evans et al. 2004; Beckmann et al. 2011; Rothschild et al. 2011; Fukazawa et al. 2011). This difference in spectral shape between the keV and GeV regime might indicate the presence of a high energy cutoff, as would be expected for the thermal Compton scenario, or it could be the case that the spectrum evolves gradually between low and high energy, as is expected for SSC spectra. Previous work by Kinzer et al. (1995) used OSSE data to claim a high energy cutoff with Е_{cutoff} inversely proportional to intensity over the 120–700 keV band. Rothschild et al. (2011) used the highest quality data sets from 12 yr of RXTE HETE data to constrain Е_{cutoff} > 2 MeV during the brightest epochs, while Beckmann et al. (2011) used INTEGRAL JEM-X/IBIS/_SPI/PICsIT data to fit an absorbed cutoff power law with a best-fit Е_{cutoff} = 434_{-173}^{+106} keV, and subsequently re-fit the spectrum with a thermal comptonization model (compPS), finding kT_{e} = 206 ± 62 keV.

This article makes use of 10 yr worth of data obtained with the primary spectrometer, SPI (Védrenne et al. 2003; Roques et al. 2003), on board the International Gamma Ray Astrophysics Laboratory (INTEGRAL; Winkler et al. 2003). At present, SPI is the optimal instrument for studying both AGN reflection and cutoff components simultaneously, as it is sensitive over the 20 keV–8 MeV range with an excellent spectral resolution (2.5 keV at 1.3 MeV). In this paper, we study the average Cen A spectra, and present evidence of the reflection component in the SPI data based on extending the best-fit continuum of Chandra grating observations to higher energies. Subsequently, we use simulated spectra to carry out a robust statistical test for the existence of a high energy cutoff. Finally, we investigate the extent to which we can accurately recover Е_{cutoff} with simple models when reflection is also present in the spectra of AGNs.

2. PREPARATION AND ANALYSIS

2.1. Data Reduction

We select only SPI observations where the Cen A nucleus is inside the ±10° field of view. These data are further reduced by excluding science windows with high background activity due to passage of the observatory through Earth’s radiation belts or increased solar activity. The source flux extraction for each energy band is performed through a model fitting procedure which compares the source and background fluxes convolved with the instrument transfer matrix with the count rates recorded in the detector plane (as outlined by Jourdain & Roques 2009). We model the sky based on a point source at the location of Cen A, and assume the flux to be constant over one revolution (~3 days, or less, if multiple targets were observed during that revolution) of the spacecraft. Each revolution is comprised of numerous “science windows,” lasting 2–4 ks, which commence as the observatory is re-pointed as part of the dithering strategy. We model the background as an empty field that is variable on a timescale of five science windows for a given revolution. This reduction was carried out using the SPI Data Analysis Interface (SPIDAF).

After data reduction, the average SPI spectrum of Cen A has an effective exposure time of 1.355 Ms.

Observations between 0.5 and 10 keV using the Chandra ACIS instrument have shown that the inner 5’ of Cen A boasts a wealth of X-ray features besides the bright nucleus, such as the extended jet (Worrall et al. 2008), hot gas (Kraft et al. 2008), shock lobes (Croston et al. 2009), and a large population of X-ray binaries (Voss et al. 2009; Burke et al. 2013). These other features are potentially problematic for studying the high energy emission of the nucleus with SPI, which has an angular resolution of 2.5. However, Suzaku observations of Cen A have shown that the contribution to the 2–10 keV flux of Cen A from X-ray binaries is <8 × 10^{39} erg s^{-1} (Fukazawa et al. 2011), less than 1% of the AGN emission, while the bright extended (~3’) jet (Worrall et al. 2008) only contributes ≈10^{39} erg s^{-1}. As we expect the contribution of other X-ray features to diminish at higher energy, we are confident that the emission detected by SPI comes overwhelmingly from the nucleus. In this article we make use of reduced and processed Chandra spectra presented by Evans et al. (2004).

2.2. Analysis

2.2.1. Intensity and Hardness

Rothschild et al. (2011) established that the shape of the high energy spectrum of Cen A does not change with time over the RXTE bandpass, despite the flux varying by a factor of a few. We tested this over the wider bandpass of the SPI data by calculating hardness ratios and judging their consistency with a constant value. The 23–300 keV light curve of the Cen A nucleus is presented in the top panel of Figure 1, beneath which we show the residuals of two hardness ratios subtracted from their weighted means. These support the conclusion of Rothschild et al. (2011), i.e., that in the hard X-rays the spectral shape is unchanged despite significant variation in flux. This consistency of spectral shape allows us to examine the average spectrum of Cen A over all observations.

2.2.2. Spectral Fitting

Using XSPEC 12.7 we find that the average INTEGRAL spectrum of Cen A fitted with an absorbed power law with absorption fixed at N_{H} = 10^{23} cm^{-2} is adequately described (X^2 = 46/48) by a power law of photon index Γ = 1.81 ± 0.03. All spectral fitting uncertainties in this paper are quoted at the 90% level.

As a further test of spectral consistency, and to demonstrate the validity of using the average Cen A spectrum, we extracted spectra from high and low intensity regimes, defined as being above or below 10^{-2} counts s^{-1} (see Figure 1). We found nearly identical power-law fits, barring a change in normalization, with Γ_{high} = 1.83, Γ_{low} = 1.81, within the uncertainty of ±0.07 associated with each measurement.

To evaluate the existence of other model components, we assess the consistency of the spectral shape between low and high energy, particularly because low energy data is comparatively good quality. We revisit the Chandra METGS and HETGS spectra of the Cen A core (ObsID 1600) presented in Evans et al. (2004) with the same spectral grouping (>100 counts per bin). They found the continuum to be dominated by a Γ ∼ 1.65 power

3 http://sigma-2.cesr.fr/integral/spidai
law. We fitted an absorbed power law (phabs × powerlaw in XSPEC) to the Chandra spectrum with $\Gamma = 1.65$, with the normalization free to vary. We then introduced the SPI spectrum to gauge how well the spectral shape extended to high energies. To account for calibration and nonsimultaneity between the Chandra and INTEGRAL observations, we allow a multiplicative factor C to the INTEGRAL portion of the model. To determine a reasonable value for C, we first fit the Chandra data with an absorbed power law, with a Gaussian to account for the narrow emission in the vicinity of the Fe K complex. Freezing all key parameters except normalization prior to adding the SPI data, i.e., such that only the normalization and C may vary, we find $C = 0.78$. Subsequently, we free the photon index to vary as well, recovering $C = 0.9$ (with $\Gamma = 1.71 \pm 0.02$). In Figure 2, we present the χ^2 residuals after fitting the simple power-law model with C fixed at 0.78 and $\Gamma = 1.65$ (the main
power-law component found by Evans et al. 2004). In the right-hand panel—the INTEGRAL SPI residuals—we also present residuals for $C = 0.9$.

In the Chandra panel of Figure 2, the known (unmodeled) reflection component can clearly be seen as an excess in the spectrum at ~ 6.4 keV. The systematic shape of the residuals in the right-hand panel, from the SPI data, shows that the $\Gamma = 1.65$ power law alone is an inadequate representation of the spectrum at high energy, and we suggest that the apparent excess of the data in the 20–50 keV range and excess of the model at higher energies is the result of the unmodeled reflection component, consistent with the excess at 6.4 keV.

The reflionx model (Ross & Fabian 2005) describes the reflection of a power-law spectrum from an optically thick atmosphere. The key parameters of reflionx are the photon index Γ of the ionizing continuum (thus, should be tied to the Γ of a separate power-law component during fitting), ionization parameter ξ, and the abundance of iron A_{Fe} in the reprocessing medium. Neutral reflection in a distant absorber is a nearly ubiquitous feature of AGN spectra, and Walton et al. (2013) successfully modeled this using reflionx for a sample of high-quality Suzaku observations of AGNs (with ξ fixed to the minimal value, as required of neutral material). They found that their reflection treatment had the required flexibility to reproduce all of the broadband spectra consistently over their sample. Therefore we chose to use reflionx in the current work as our preferred model of reflection from AGNs.

In Figure 3, we present our best-fit model and residuals for the Chandra panel of Figure 2, the known (unmodeled) reflection component can clearly be seen as an excess in the spectrum at ~ 6.4 keV. The systematic shape of the residuals in the right-hand panel, from the SPI data, shows that the $\Gamma = 1.65$ power law to be consistent between input and reflected spectrum. In the first instance, we left ξ free to vary, with A_{Fe} and z frozen at the default values (solar and zero, respectively) and found that it tended toward low values between 10 (the lowest ionization state) and an upper limit of 55, as expected for reflection from a distant surface. We subsequently followed the treatment of Walton et al. (2013) and fixed $\xi = 10$.

We also probed the sensitivity of the fit to A_{Fe} and z. Letting these parameters vary yielded best-fit values of $A_{Fe} = 0.69^{+0.24}_{-0.21}$ and $z = 2.39^{+1.95}_{-1.41} \times 10^{-3}$. This value of redshift is fully consistent with that found in the 2M + + catalog ($1.826^{+0.017}_{-0.017} \times 10^{-3}$; Lavaux & Hudson 2011), and henceforth we fixed z to the catalog value during fitting. As an inset to Figure 3, we include residuals of the 6–7 keV for both $z = 0$ and z at the best-fit value. For $z = 0$, the model is excessive over the measured flux in one channel between 6.4–6.5 keV, and only allowing z to take positive values has the effect of slightly skewing the Fe emission in the model to more closely match the measured spectrum.

The parameters of the power law are constant, with $\Gamma \sim 1.67$ consistent with the dominant power law found from fitting the Chandra data. Finally, we obtained a best fit with z,
\(\xi\), and the cross-calibration constant fixed, which we show with residuals in Figure 3 and present the corresponding parameters in Table 1. The model describes the SPI data well, with \(\chi^2_x = 46.17/48\). Over the range 20–100 keV, the flux of the power-law component \(F_{PL} = 9.48^{+0.71}_{-0.71} \times 10^{-10}\) erg cm\(^{-2}\) s\(^{-1}\), while the reprocessed emission contributes a flux \(F_R = 3.15^{+0.68}_{-0.68} \times 10^{-10}\) erg cm\(^{-2}\) s\(^{-1}\), i.e., \(\approx 25\%\) of the total emission. An important caveat to this is that there is degeneracy between \(\xi\) and the normalization \(N_R\), and refitting with \(\xi = 55\) showed that the flux fraction is consistently between 20\% and 25\% of the total emission over 20–100 keV.

To translate this result to a form consistent with the literature, we fit the SPI spectra using the model pexrav (Magdziarz & Zdziarski 1995), which describes the reflection of a seed cutoff power-law spectra from a neutral accretion disk. This has the key parameter \(R\), which is an expression of the solid angle of the reflecting material illuminated by the central source (0 \(\rightarrow\) 2\(\pi\), normalized to 1). We fix the \(N_H\) and \(\Gamma\) parameters to the dominant power law of the Chandra spectra and also fix the inclination parameter to 0.82 (corresponding to the cosine of \(\sim 34^\circ\); Neumayer et al. 2007). We also varied \(E_{cutoff}\) between values 500–1000 keV (see Section 2.2.4), finding that \(R\) has negligible sensitivity to this parameter when \(E_{cutoff}\) is above a few hundred keV. We recover a value of \(R = 0.18^{+0.13}_{-0.11}\), which is consistent with previous attempts to measure the extent of reflection in Cen A with INTEGRAL (\(R = 0.12 \pm 0.1\); Beckmann et al. 2011).

2.2.3. Testing for a High Energy Cutoff in SPI Data

To test for the presence of a high energy cutoff, we first defined a test statistic \(\Delta \Gamma = \Gamma_{23–60} - \Gamma_{120–500}\), the difference in photon indices found from fitting an absorbed power law to the 23–60 keV and 120–500 keV ranges (\(N_H\) always fixed at \(10^{23}\) cm\(^{-2}\)). The motivation for this is to detect a change in spectral shape between low and high energy, as we would expect if there is a cutoff at a few hundred keV. For the average Cen A spectrum, we calculate \(\Delta \Gamma = -0.29\). We then judge the unusualness of our test statistic based on simulated spectra produced using the XSPEC command `fakeit`.

In the first instance, we simulate 1000 spectra based on the absorbed power law fit to the Cen A spectrum (\(\Gamma = 1.81\)) and calculated \(\Delta \Gamma\) for each of the spectra. Only 3.2% of spectra had a more negative \(\Delta \Gamma\) than observed. The 1\% Poisson uncertainty associated with a bin containing 32 counts is \(\sim 5.6\), and so we can confidently state that the Cen A spectrum lies outside 95\% of the distribution. This is statistical evidence that the power law alone is not the correct description of the spectral shape.

The next stage was to simulate thousands of cutoff power-law spectra with a range of \(E_{cutoff}\) covering several plausible values for thermal Compton spectra, 200–500 keV in steps of 100 keV. We found that \(\Delta \Gamma\) is sensitive to our choice of \(E_{cutoff}\). For \(E_{cutoff} = 200\) keV, we find that only 3.7\% of simulated spectra have \(\Delta \Gamma\) as negative as observed, and this increases to 7\%, 16\%, 25\% for \(E_{cutoff} = 300–500\) keV. This suggests that a change in the spectral shape at high energy is a reasonable explanation for our observed \(\Delta \Gamma\).

Finally, we checked the sensitivity of \(\Delta \Gamma\) to the presence of reflection in the spectrum by simulating spectra as above, but with a reflionx component contributing 30\% of the 23–60 keV flux. Our testing showed that distribution of \(\Delta \Gamma\) varied very little with increased reflection flux, and even at 30\% contribution
To estimate a lower limit to the energy of a possible cutoff in the Cen A spectrum, we compare the measured $\Gamma - E_{\text{cutoff}}$ from fitting with an absorbed cutoff power law to the spectra simulated with $E_{\text{cutoff}} = 700$ keV. By computing the 95% confidence region in the $\Gamma - E_{\text{cutoff}}$ plane (Figure 5), we find that the measured Γ, E_{cutoff} excludes a cutoff energy of 700 keV with >95% confidence.

3. DISCUSSION

We analyzed the average hard X-ray to soft γ-ray spectrum of Cen A observed with INTEGRAL SPI, with an aim of saying more about the contribution of reprocessed emission to the spectrum and the existence of a high energy cutoff. These features have important implications for the geometry and accretion physics of the source. This study makes use of 10 yr of observations, and we present the light curve of this period in Figure 1. The most striking feature of the light curve is the systematic increase in intensity between MJD 54000 and MJD 55000. Contemporaneous RXTE observations also recorded such an increase (Rothschild et al. 2011). Based on the SPI light curve, the hard X-ray emission from the Cen A nucleus can vary in intensity by as much as a factor of four on timescales of years, and by a factor of two over a period of a few months, while the spectral shape remains constant, consistent with the RXTE results.

We revisit the earlier Chandra grating spectra from Cen A. This was motivated by the need to model the Fe Kα complex consistently with the energy range of the Compton hump. We examine the consistency between these low and high energy data sets by fitting the normalizations of the dominant power law reported by Evans et al. (2004), and show that this inadequately models the high energy spectrum (Figure 3); the shape of the residuals indicates an excess between 20–50 keV. We propose that this excess is physical evidence of the so-called Compton hump, resulting from a reprocessing of the central X-ray emission. To model the excess at 20–50 keV and 6–7 keV in a consistent way as reflection from a neutral, distant absorber, we employed the model reflionx, first to demonstrate the low ionization state of the reflecting medium, as expected for neutral material before fixing the ionization parameter to the minimal value in subsequent fitting. In this way, we obtain a good description of the low and high energy spectra (Figure 3). The best-fit model parameters (Table 1) suggest that reflection may account for as much as 20%–25% of the 20–100 keV flux, and that the reflecting may have subsolar abundances ($A_{\text{Fe}} = 0.69_{-0.24}^{+0.21}$). The photon index dominant power-law component is consistent with $\Gamma = 1.67$, as was found by Evans et al. (2004), and so fitting the reflection component directly describes the excess in spectral shape demonstrated in Figure 2.

It is well established that the spectral shape of Cen A changes between the X-ray and hard γ-ray regime (Abdo et al. 2010), with some authors proposing that this takes the form of a cutoff defined by the characteristic temperature of a thermal Comptonizing plasma (e.g., Beckmann et al. 2011) or more gradual spectral curvature as would be expected for SSC emission, as evidenced from the broader SED (Chiaberge et al. 2001; Abdo et al. 2010). The lack of ionized or broadened emission lines indicates that there is not a significant emission component arising from the disk (Marconi et al. 2000; Evans et al. 2004), which is in agreement with our conclusion that the jet is the principal emitter.

The $\Delta \Gamma$ statistic, which we defined as the difference in spectral slope between low (23–60 keV) and high (120–600 keV) energy, is very sensitive to the presence of a cutoff. Based on $\Delta \Gamma$, we show that a simple power law is an unlikely description of the spectrum at high energy (despite an acceptable χ^2_{ν}, Section 2.2.2), and the measured value of $\Delta \Gamma$ can be reproduced from a cutoff at a few hundred keV. Absorbed cutoff power law fits to the average spectrum recovered $E_{\text{cutoff}} \approx 700$ keV. Simulating spectra dominated by a $\Gamma \sim 1.67$ cutoff power law with a comparatively small reflection component over a range of E_{cutoff} and then fitting a simple cutoff power law recovers parameters that lie outside the 95% confidence region for $E_{\text{cutoff}} = 700$ (Figure 5), all the more so for smaller E_{cutoff} (Figure 4). Recalling that for a thermal Comptonizing plasma $E_{\text{cutoff}} \approx 2–3 \times kT_e$ (Sunyaev & Titarchuk 1980), this suggests $kT_e > 230$ keV, and even a conservative $E_{\text{cutoff}} \approx 500$ keV leads to $kT_e \sim 160–250$ keV. Molina et al. (2013) suggest a reasonable upper limit of $kT_e < 65–100$ keV for average thermal Compton emission from all AGNs, based on cosmic diffuse background measurements (Gilli et al. 2007), and we suggest that this argues against this being the primary source of hard X-rays in Cen A. Our results support a picture of Cen A where the broad SED can be described by SSC emission (Chiaberge et al. 2001; Abdo et al. 2010), consistent with other FR I galaxies that are considered to be BL Lac objects observed along a line of sight that is not aligned to the jet axis (Abdo et al. 2009a, 2009b).

Finally, our results from fitting a solitary absorbed cutoff power law to spectra that are dominated by a cutoff power law but also contain a modest amount of reflection show that E_{cutoff} is systematically underestimated. This effect increases with increased reflection. As it is often the case that studying AGNs with INTEGRAL requires fitting an absorbed cutoff power law to the data to try to obtain a general picture of the thermal plasma in AGNs, we believe that the inferred kT_e will have been...
overestimated for many sources where reflection has not been taken into account.

We thank the anonymous referee for their careful reading of the manuscript and for many helpful comments that greatly improved the readability of this paper.

The INTEGRAL SPI project is supported under the responsibility and leadership of CNES. We are grateful to ASI, CEA, CNES, DLR, ESA, INTA, NASA, and OSTC for support.

REFERENCES

Abdo, A. A., Ackermann, M., Ajello, M., et al. 2009a, ApJ, 699, 31
Abdo, A. A., Ackermann, M., Ajello, M., et al. 2009b, ApJ, 707, 55
Abdo, A. A., Ackermann, M., Ajello, M., et al. 2010, ApJ, 719, 1433
Beckmann, V., Jean, P., Lubinski, P., Soldi, S., & Terrier, R. 2011, A&A, 531, A70
Beckmann, V., Soldi, S., Ricci, C., et al. 2009, A&A, 505, 417
Bloom, S. D., & Marscher, A. P. 1996, ApJ, 461, 657
Burke, M. J., Raychaudhury, S., Kraft, R. P., et al. 2013, ApJ, 766, 88
Chiaberge, M., Capetti, A., & Celotti, A. 2001, MNRAS, 324, L33
Chiaberge, M., Celotti, A., Capetti, A., & Ghisellini, G. 2000, A&A, 358, 104
Croston, J. H., Kraft, R. P., Hardcastle, M. J., et al. 2009, MNRAS, 395, 1999
Dermer, C. D., & Schlickeiser, R. 1993, ApJ, 416, 458
Evans, D. A., Kraft, R. P., Worrall, D. M., et al. 2004, ApJ, 612, 786
Fanaroff, B. L., & Riley, J. M. 1974, MNRAS, 167, 31P
Fukazawa, Y., Hiragi, K., Yamazaki, S., et al. 2011, ApJ, 743, 124
Georganopoulos, M., & Kazanas, D. 2003, ApJL, 594, L27
George, I. M., & Fabian, A. C. 1991, MNRAS, 249, 352

Gilli, R., Comastri, A., & Hasinger, G. 2007, A&A, 463, 79
Ginzburg, V. L., & Syrovatskii, S. I. 1969, ARA&A, 7, 375
Harris, G. L. H., Rejkuba, M., & Harris, W. E. 2010, PASA, 27, 457
Jourdain, E., & Roques, J. P. 2009, ApJ, 704, 17
Kinzer, R. L., Johnson, W. N., Dermer, C. D., et al. 1995, ApJ, 449, 105
Kraft, R. P., Hardcastle, M. J., Sivakoff, G. R., et al. 2008, ApJL, 677, L97
Lavaux, G., & Hudson, M. J. 2011, MNRAS, 416, 2840
Magdziarz, P., & Zdziarski, A. A. 1995, MNRAS, 273, 837
Malizia, A., Bassani, L., Bird, A. J., et al. 2008, MNRAS, 389, 1360
Maraschi, L., Ghisellini, G., & Celotti, A. 1992, ApJL, 397, L5
Marcon, A., Schreier, E. J., Koekemoer, A., et al. 2000, ApJ, 528, 276
Markowitz, A., Takahashi, T., Watanabe, S., et al. 2007, ApJ, 665, 209
Molina, M., Bassani, L., Malizia, A., et al. 2013, MNRAS, 433, 1687
Molina, M., Bassani, L., Malizia, A., et al. 2009, MNRAS, 399, 1293
Nandra, K., & Pounds, K. A. 1994, MNRAS, 268, 405
Neumayer, N., Cappellari, M., Reunanen, J., et al. 2007, ApJ, 671, 1329
Petrucci, P. O., Merloni, A., Fabian, A., Haardt, F., & Gallo, E. 2001, MNRAS, 328, 501
Protassov, R., van Dyk, D. A., Connors, A., Kashyap, V. L., & Siemiginowska, A. 2002, ApJ, 571, 545
Roques, J. P., Schanne, S., von Kienlin, A., et al. 2003, A&A, 411, L91
Ross, R. R., & Fabian, A. C. 2005, MNRAS, 358, 211
Rothschild, R. E., Markowitz, A., Rivers, E., et al. 2013, ApJ, 733, 23
Sikora, M., Begelman, M. C., & Rees, M. J. 1994, ApJ, 421, 153
Soldi, S., Beckmann, V., Bassani, G., et al. 2005, A&A, 444, 431
Sunyaev, R. A., & Titarchuk, L. G. 1980, A&A, 86, 121
Vedrenne, G., Roques, J.-P., Schönfelder, V., et al. 2003, A&A, 411, L63
Voss, R., Gilfanov, M., Sivakoff, G. R., et al. 2009, ApJ, 704, 471
Walton, D. J., Nardini, E., Fabian, A. C., Gallo, L. C., & Reis, R. C. 2013, MNRAS, 428, 2901
Winkler, C., Courvoisier, T. J.-L., Di Cocco, G., et al. 2003, A&A, 411, L1
Worrall, D. R., Birkinshaw, M., Kraft, R. P., et al. 2008, ApJL, 673, L135