Rhodococcus equi’s Extreme Resistance to Hydrogen Peroxide Is Mainly Conferred by One of Its Four Catalase Genes

Pauline Bidaud1,†, Laurent Hébert1, Corinne Barbey1, Anne-Cécile Appourchaux1,‡, Riccardo Torelli2, Maurizio Sanguinetti2, Claire Laugier1, Sandrine Petry1*

1 Dozulé Laboratory for Equine Diseases, Unit Bacteriology and Parasitology, ANSES, Goustranville, France, 2 Institute of Microbiology, Catholic University of Sacred Heart, Rome, Italy

Abstract

Rhodococcus equi is one of the most widespread causes of disease in foals aged from 1 to 6 months. R. equi possesses antioxidant defense mechanisms to protect it from reactive oxygen metabolites such as hydrogen peroxide (H₂O₂) generated during the respiratory burst of phagocytic cells. These defense mechanisms include enzymes such as catalase, which detoxify hydrogen peroxide. Recently, an analysis of the R. equi 103 genome sequence revealed the presence of four potential catalase genes. We first constructed ΔkatA, ΔkatB, ΔkatC, and ΔkatD-deficient mutants to study the ability of R. equi to survive exposure to H₂O₂ in vitro and within mouse peritoneal macrophages. Results showed that ΔkatA and, to a lesser extent ΔkatC, were affected by 80 mM H₂O₂. Moreover, katA deletion seems to significantly affect the ability of R. equi to survive within murine macrophages. We finally investigated the expression of the four catalases in response to H₂O₂ assays with a real time PCR technique. Results showed that katA is overexpressed 367.9 times (± 122.6) in response to exposure to 50 mM of H₂O₂ added in the stationary phase, and 3.11 times (± 0.59) when treatment was administered in the exponential phase. In untreated bacteria, katB, katC, and katD were overexpressed from 4.3 to 17.5 times in the stationary compared to the exponential phase. Taken together, our results show that KatA is the major catalase involved in the extreme H₂O₂ resistance capability of R. equi.

Introduction

Rhodococcus equi is a Gram-positive, facultative intracellular pathogen affecting foals up to six months of age. The major manifestation of R. equi infection is chronic suppurrative bronchopneumonia, but 50% of contaminated foals also show clinical signs of intestinal disease and occasionally septic arthritis or osteomyelitis [1]. It is now well known that, in addition to being a veterinary concern, R. equi is an important opportunistic zoonotic pathogen mainly identified in immunocompromised people, and particularly AIDS patients [2,3]. Interestingly, different cases of infection by R. equi have also been reported in immunocompetent patients [4,5].

R. equi pathogenicity is closely linked to the bacterium’s ability to survive and replicate in the lung macrophages of infected foals [6], where bacteria are generally killed by the combined action of a low pH (4.0–5.0), hydrolytic enzymes (including proteases, lipases, DNAses and RNAses) and the production of reactive oxygen metabolites such as hydrogen peroxide, H₂O₂ [7]. R. equi has been characterized as being able to survive and multiply within a membrane-bound vacuole inside macrophages. This capability is conferred by the presence of a 80–90 kb virulence plasmid which inhibits i) the maturation of phagosomes, leading to the absence of phagosome acidification and prevents ii) the fusion of phagosomes with the lysosomes containing many hydrolytic enzymes [7]. In addition, R. equi must be able to mount an antioxidant defense system to ensure its persistence and multiplication within the highly oxidative environment of host macrophages generated notably by the reactive oxygen species (ROS) producing phagocyte oxidase Nox2 [8]. It has already been shown that R. equi is highly resistant to the action of H₂O₂ [9], though plasmid-encoded proteins do not play a role in R. equi’s resistance to H₂O₂ [9]. An analysis of the R. equi 103 genome revealed the presence of numerous genes involved in oxidative stress resistance. Four genes in particular display homology with catalases [10], which are enzymes responsible for detoxifying H₂O₂ [11].
This was the background for our investigation into the causes of the extreme resistance of *R. equi* to oxidative stress. Our study therefore focused on an analysis of the four potential catalase genes *katA*, *katB*, *katC* and *katD*. We studied the role of these proteins in H$_2$O$_2$ resistance and in the ability of *R. equi* to survive within mouse peritoneal macrophages. These results were confirmed with the expression analysis of the catalase genes in response to H$_2$O$_2$ exposure.

Results

Identification of Four Genes Potentially Involved in H$_2$O$_2$ Resistance

The *in silico* analysis of the genome sequence of the *R. equi* 103 strain [10] revealed the presence of four potential catalase genes, designated *katA*, *katB*, *katC* and *katD*. These four genes are at separate locations on the chromosome and do not seem to share genetic links. Sequence analysis of these proteins shows that *KatA*, *KatB* and *KatC* share the conserved catalytic residues and metal ligand amino acids of members of monofunctional heme catalases [12]. *KatD* shares the conserved catalytic residues and metal ligand amino acids of members of the nonheme catalases. These nonheme catalases utilize manganese ions instead of ferric heme in their active site and are therefore also known as manganese catalases [13]. No catalase of the bifunctional catalase-peroxidase family was identified. Phylogenetic relationships between the four catalases are represented in Figure 1, which shows that the three heme and manganese catalases constitute a distinct group, and that *KatA* and *KatB* are closely related. No signal sequence and/or transmembrane domain were identified for these four catalases by TMHMM [14] or SignalP [15] analysis.

In order to estimate the involvement of each catalase in *R. equi*’s oxidative stress resistance, we constructed corresponding mutants. To define the physiological roles of the four catalases, we studied the growth characteristics of the four deficient mutants. The characteristics were the same as those of the wild type (WT) strain under aerobic growth in BHI medium (data not shown). This similarity demonstrates that the catalases are not essential to cell viability under aerobic conditions.

ΔkatA and ΔkatC are the most Sensitive to H$_2$O$_2$ Treatment

To evaluate the effect of exogenous H$_2$O$_2$ stress on the survival of each mutant, cells were challenged with 80 mM of H$_2$O$_2$ under agitation, and CFUs determined 30 min after treatment (Figure 2). ΔkatA was the most sensitive mutant to H$_2$O$_2$ since it did not survive when treated in the stationary phase, and its survival decreased by two orders of magnitude compared to the WT strain when treated in the exponential phase. ΔkatC survived as well as the WT strain in the stationary phase, but in contrast, when the cells were in the exponential phase, ΔkatC was the most susceptible to H$_2$O$_2$ exposure with a decrease in survival of over three magnitudes compared to the WT strain. Both ΔkatB and ΔkatD had the same resistance capability as the WT strain, whether in exponential or stationary phases. The drop in survival rates for ΔkatA and ΔkatC after exposure to H$_2$O$_2$ demonstrate that, in these experimental conditions, only *KatA* and *KatC* primarily contribute to the oxidative defense system of *R. equi*.

ΔkatA is the most Susceptible to Elimination by Macrophages

During phagocytosis, phagocytic cells generate superoxide and other ROS involved in antibacterial activity [16]. This study compared the intracellular survival of the WT and ΔkatA, ΔkatB, ΔkatC and ΔkatD strains inside infected mouse peritoneal macrophages (Figure 3). No significant difference was observed in the levels of *R. equi* strains recovered 8 h post infection, suggesting that the different strains possessed similar abilities to infect macrophages (Figure 3). ΔkatA was shown to be the most susceptible mutant, completely eliminated by macrophages 72 h post infection (P<0.05). ΔkatB, ΔkatC and ΔkatD were shown to be more susceptible than the WT strain to macrophage killing at 48- and 72-h time points (P<0.05) but were not completely eliminated from macrophages 72 h post infection. The survival rate of each strain was similar by 24 h post infection but the WT strain’s ability to survive intracellularly was greater than that of ΔkatB, ΔkatC and ΔkatD at 48- and 72-h time points (P<0.05). The inability of ΔkatA to survive in macrophages beyond 72 h reveals KatA’s involvement in the intramacrophage resistance of *R. equi* to H$_2$O$_2$.

katA is Overexpressed in Response to H$_2$O$_2$ Treatment

We evaluated the effect of a sublethal H$_2$O$_2$ concentration (50 mM) defined previously (data not shown) on the expression of *katA*, *katB*, *katC* and *katD* transcripts during exponential (Figure 4A) and stationary phases (Figure 4B). The expression of catalases was measured at several timepoints: 5, 10 and 20 minutes after treatment in the exponential phase and 5, 10, 20, 30 and 60 minutes after treatment in the stationary phase. Results showed that only the *katA* gene was overexpressed in response to H$_2$O$_2$ treatment. For example, when H$_2$O$_2$ was added in the exponential phase, *katA* was overexpressed 3.11 (±0.59) times in bacteria treated for 5 min compared to untreated bacteria (Figure 4A). However, when H$_2$O$_2$ was added in the stationary phase, *katA* was overexpressed 367.90 (±122.63) times in bacteria treated for 10 min compared to untreated bacteria (Figure 4B). We did not observe any modifications in the rate of transcripts for *katB*, *katC* or *katD* (Figures 4A and 4B).

katB, katC and katD are Overexpressed in the Stationary Growth Phase Compared to the Exponential Phase

In untreated bacteria, we observed overexpressions of *katB*, *katC* and *katD* in the stationary phase compared to the exponential phase. Irrespective of exposure to oxidative stress, *katB* was overexpressed 17.55 (±3.22) times in the stationary phase compared to the exponential phase (Figure 5). *katC* and *katD* were overexpressed 4.51 (±0.59) and 4.31 (±0.50) times in the stationary phase compared to the exponential phase, respectively (Figure 5).

Discussion

Resistance to oxidative stress is one of the key processes that allow pathogens to survive within macrophages, which is why pathogenic bacteria have developed different antioxidative defenses to eliminate ROS or repair their damage [17]. *In silico* analysis shows that *R. equi* 103 contains three monofunctional heme catalases (KatA, KatB and KatC) and a monofunctional...
manganese catalase (KatD). The present study addressed the issue of the involvement of these potential H$_2$O$_2$-degrading catalase enzymes in R. equi virulence and demonstrates that survival following exposure to exogenous H$_2$O$_2$ and the efficient proliferation of this bacterium in macrophages mainly rely on the activities of KatA, one of its four catalases.

Benoit et al. showed that the extreme resistance of R. equi to exposure to a high H$_2$O$_2$ concentration (100 mM) did not depend on plasmid-encoded proteins [9]. This was confirmed by the analysis of virulence plasmid-chromosome regulatory crosstalk by Letek et al. [10] which shows that the presence of the virulence plasmid did not interfere with the expression of catalase genes. These results suggest that chromosomal genes are key to this function, and genomic analysis of the R. equi chromosome identified an unusually high number of catalases: three monofunctional heme catalases (katA, katB and katC) and one manganese catalase (katD). Surprisingly, no bifunctional catalase-peroxidase was identified although for numerous pathogens, these enzymes have already been shown to be involved in the infection of macrophages [18–20].

An analysis of the physiological functions of the four catalases following exposure to exogenously-provided H$_2$O$_2$ showed that only KatA and KatC are part of the peroxide defense system of R. equi. KatA seemed to be more important than KatC under these stress conditions. The fact that katB and katD mutations did not affect survival following H$_2$O$_2$ exposure suggests that either i) these catalases are non functional, ii) they function as a surrogate in the absence of the primary antioxidant, but their role can only be detected in a double or triple catalase mutant [21] or iii) they have specialized roles for protecting cells against oxidative stress perhaps due to different cellular locations. Although no secretion peptide signal was identified for R. equi catalases, it has already been shown that a catalase from B. subtilis could be secreted independently of the Sec-secretion apparatus [22,23].

Inactivation of catalase-encoding genes had little if any effect on pathogenicity-associated traits of numerous bacteria including Salmonella typhimurium [24], Yersinia pestis [25], Staphylococcus aureus [26], and Neisseria gonorrhoeae [27]. This research demonstrates that significantly lower quantities of viable intracellular bacteria were found in the infected murine macrophages of ΔkatA-deficient mutants during the 72-h infection period than in the WT strain. This suggests that the katA gene is linked to R. equi virulence mechanisms. This observation could be linked to the oxidative microenvironment present within phagosomes, where ROS and reactive nitrogen species are synthesized in huge quantities following macrophage phagocytosis [17,28].

Studies of physiological functions are complex when multiple catalases are present in a single bacterial cell and differences in regulation are a critical factor in understanding the in vivo roles of these enzymes. Our results show that only katA expression is induced in response to exogenous H$_2$O$_2$. This fast and transitory overexpression is induced mainly in the stationary phase (overexpression factor of 367.9±122.6), which is in accordance with the critical role of katA in stationary-phase survival. In
contrast, despite its role in the exponential phase, katC is not induced in the stationary phase. This phenomenon, already observed for a catalase-peroxidase of Legionella pneumophila [11], is not yet fully understood. In untreated bacteria, katB, katC and katD expressions increase in the stationary growth phase. These overexpressions could prepare the cells for subsequent stresses [29]. In this context, we could hypothesize that the lack of effect of the mutation of these genes in the stationary phase is due to a compensatory catalase mechanism between them or that these catalases play a role in protecting against the oxidative stress generated by growth in a minimal medium as already described [30]. Our results therefore suggest that katA is regulated by a specific stress response transcriptional regulator able to sense the presence of H2O2, whereas the other three catalases are under the control of a RpoS-like central regulator of gene expression in the stationary phase [31]. Moreover, other unidentified conditions could induce katB, katC and katD expression. We could suggest, for example, that the expression of manganese catalase katD is induced by iron starvation as previously described for the manganese catalase of Pseudomonas aeruginosa [32].

Conclusions

This study addressed two fundamental questions: how are the four R. equi catalases involved in survival i) following external exposure to H2O2 and ii) in mouse peritoneal macrophages? Taken together, our results show that KatA is the major determinant of resistance to exogenous H2O2 exposure in the

Figure 4. katA is overexpressed after H2O2 treatment (50 mM). R. equi WT was treated with 50 mM H2O2 in (A) the exponential phase (OD600 = 0.4) or (B) the stationary phase. cDNAs derived from total RNA were used for real time PCR. The overexpression factor in treated bacteria vs untreated bacteria, was calculated using the \(2^{-\Delta\Delta Ct}\) method [36]. The data are the mean of overexpression factor ± standard deviation (error bars) of triplicate measurements from four reverse transcriptions of two independent experiments. To evaluate overexpressions in the exponential phase (A), we only considered time points 5, 10 and 20 min post exposure to avoid any effects of bacterial transition in the stationary growth phase. doi:10.1371/journal.pone.0042396.g004

Figure 5. In untreated bacteria, katB, katC and katD are overexpressed in the stationary growth phase. R. equi WT was grown in BHI broth without any H2O2 treatment and cells were collected at the exponential (OD of 0.4) and stationary (OD of 1) growth phases for total RNA extraction. cDNAs derived from total RNA, were used for real time PCR. The overexpression factor was calculated using the \(2^{-\Delta\Delta Ct}\) method [36]. The data are the mean of overexpression factor in stationary phase collected bacteria compared to exponential phase collected bacteria ± standard deviation of triplicate measurements from four reverse transcriptions of two independent experiments. doi:10.1371/journal.pone.0042396.g005
stationary phase and, to a lesser extent, in the exponential phase. KatA is also crucial to \textit{R. equi}'s survival in mouse peritoneal macrophages. Of the other three \textit{R. equi} catalases, only KatC plays a role in resistance to external H$_2$O$_2$ exposure, but only in the exponential phase.

Materials and Methods

Ethics Statement

The animal experiments (Survival assays in mouse peritoneal macrophages) were performed under a protocol approved by the Institutional Animal Use and Care Committee at Universitá Cattolica del S. Cuore, Rome, Italy (Permit number: N21, 12/05/2010) and authorized by the Italian Ministry of Health, according to Legislative Decree 116/92, which implemented the European Directive 86/609/EEC on laboratory animal protection in Italy. Animal welfare was routinely checked by veterinarians of the Service for Animal Welfare.

Bacterial Strains, Plasmids and Culture Conditions

Table 1 lists the bacterial strains and plasmids used in this study. The \textit{R. equi} 103 strain used is devoid of its virulence plasmid. Wild type (WT) or mutant \textit{R. equi} strains and the \textit{Escherichia coli} strain used to construct mutants were routinely grown at 37°C in Brain Heart Infusion (BHI) broth and Luria-Bertani media respectively, with vigorous shaking (200 rpm). When required, antibiotics were added to culture media at the following concentrations: apramycin (30 μg/ml); ampicillin (100 μg/ml) [33]. Dilutions were performed in physiological solution (0.9% NaCl).

Construction of Four Catalase Mutants

A double crossover homologous recombination strategy based on suicide vectors derived from pUC19 containing a cassette consisting of the upstream homologous region, the apramycin resistance gene \textit{(aacC4)} and the downstream homologous region as previously described [33] was used to inactivate the four catalase genes identified in \textit{R. equi}: \textit{katA}, \textit{katB}, \textit{katC} and \textit{katD}. Briefly, for \textit{katA} construction, a DNA fragment consisting of the \textit{katA} gene and \textit{大约}600 bp up-and downstream of the start and stop codons was amplified with primers L39 and L79 containing respectively EcoRI and XhoI restriction sites (Table S1). Then, the product was inserted into pUC19 using EcoRI and XhoI restriction sites. To delete the \textit{katA} gene’s internal region, an inverse PCR was performed on the resulting pUC19-\textit{katA} plasmid using divergent primers L162 and L163 with XbaI restriction site sequence in order to obtain a linear pUC19-\textit{katA} plasmid containing a 70% deleted version of \textit{katA}. Separately, the \textit{aacC4} gene was amplified using primers L118 and L119 each containing an NsiI restriction site sequence. The plasmid containing a 70% deleted \textit{aacC4} gene was amplified using primers L118 and L119 each containing an NsiI restriction site. Both pUC19-\textit{katA} and \textit{aacC4} amplicons were digested by XbaI and ligated to obtain a pUC19-\textit{katA: \textit{aacC4} / plasmid}. This plasmid was introduced into \textit{R. equi} by electroporation, and transformants were selected on BHI agar supplemented with 80 μg/ml apramycin. Allelic exchange double recombinants were selected as previously described [33]. The same procedure was applied for the construction of \textit{katB}, \textit{katC} and \textit{katD}. Construction was verified by Southern blot (data not shown). The primers used are listed in Table S1.

Hydrogen Peroxide Challenge Assays

Ten ml of exponentially growing cultures of \textit{R. equi} WT, \textit{katA}, \textit{katB}, \textit{katC} or \textit{katD} (Optical Density at 600 nm (OD$_{600}$) of 0.2) were harvested by centrifugation and pellets were resuspended in 10 ml of 0.9% (w/v) NaCl. OD$_{600}$ of stationary growing cultures were measured and the volume necessary for obtaining an OD$_{600}$ of 0.2 in a volume of 10 ml was harvested by centrifugation and resuspended in 10 ml of 0.9% (w/v) NaCl. Both cell suspensions were treated with 80 mM H$_2$O$_2$ (Riedel de Haen) and bacterium

Table 1. Bacterial strains and plasmids.

Bacterial species and plasmids	Bacterial strains and plasmid names	Relevant characteristics	Source or reference
\textit{R. equi}	103$^+$	plasmid-less wild-type strain	[38]
\textit{R. equi}	\textit{ΔkatA}	103$^+$ isogenic derivative \textit{REQ4750} deletion mutant	This study
\textit{R. equi}	\textit{ΔkatB}	103$^+$ isogenic derivative \textit{REQ44520} deletion mutant	This study
\textit{R. equi}	\textit{ΔkatC}	103$^+$ isogenic derivative \textit{REQ26670} deletion mutant	This study
\textit{R. equi}	\textit{ΔkatD}	103$^+$ isogenic derivative \textit{REQ26290} deletion mutant	This study
\textit{E.coli}	Top10 F- mcrA \textit{(mrr-hsdRMS-mcrBC)} 11800arZAM15 lacX74 recA1 araD139 galU galK Xmr-levi7979 rpsL (Strr) endA1 mupG	Invitrogen	
Plasmids	pRHE2	pUC19 inserted with \textit{aacC4}	[33]
Plasmids	pUC19-\textit{katA}	pUC19 inserted with \textit{katA}	This study
Plasmids	pUC19-\textit{katB}	pUC19 inserted with \textit{katB}	This study
Plasmids	pUC19-\textit{katC}	pUC19 inserted with \textit{katC}	This study
Plasmids	pUC19-\textit{katD}	pUC19 inserted with \textit{katD}	This study
Plasmids	pUC19-\textit{katA: \textit{aacC4}}	pUC19 with \textit{katA: \textit{aacC4}} mutant allele (suicide vector for \textit{katA} mutagenesis by gene replacement)	This study
Plasmids	pUC19-\textit{katB: \textit{aacC4}}	pUC19 with \textit{katB: \textit{aacC4}} mutant allele (suicide vector for \textit{katB} mutagenesis by gene replacement)	This study
Plasmids	pUC19-\textit{katC: \textit{aacC4}}	pUC19 with \textit{katC: \textit{aacC4}} mutant allele (suicide vector for \textit{katC} mutagenesis by gene replacement)	This study
Plasmids	pUC19-\textit{katD: \textit{aacC4}}	pUC19 with \textit{katD: \textit{aacC4}} mutant allele (suicide vector for \textit{katD} mutagenesis by gene replacement)	This study

[33]
viability was determined immediately before treatment and after 30 min of incubation at 37°C, 200 rpm, by viable counts of bacteria made by serially diluting samples and plating onto BHI agar. Colony-Forming Units (CFU) were enumerated after 48 h of incubation at 37°C by counting two plates at two different dilutions. All experiments were performed in triplicate.

Survival Assays in Mouse Peritoneal Macrophages

The survival of *R. equi* WT, ΔkatD, ΔkatB, ΔkatC and ΔkatD in mouse peritoneal macrophages was tested by using an in vivo/in vitro infection model as described previously [34,35]. Briefly, after 16 h of growth, bacterial cells were pelleted and resuspended in an adequate volume of phosphate-buffered saline (PBS) for injection. Male BALB/c mice (10 weeks old) were infected with 107 to 108 cells of each strain by intraperitoneal injection. After an 8 h infection period, peritoneal macrophages were collected by a peritoneal wash, centrifuged then suspended in Dulbecco’s modified Eagle’s medium containing 10 mM HEPES, 2 mM glutamine, 10% bovine fetal serum, and 1X nonessential amino acids supplemented with vancomycin (10 μg/ml) and gentamicin (150 μg/ml). The cell suspension was dispensed into 24-well tissue culture plates and incubated at 37°C under 5% CO2 for 2 h. Duplicate wells of infected macrophages were lysed with detergent at 24, 48, and 72 h post infection, and lysates were plated on BHI agar to monitor bacterial survival. All experiments were performed in triplicate, and the results were subjected to statistical analysis using one-way analysis of variance with Bonferroni’s correction post test using GraphPad Prism version 5.00 for Windows (GraphPad Software, San Diego, CA).

Catalase Overexpression Assays

R. equi WT in mid-exponential (OD600 of 0.4) and stationary (OD600 of 1) growth phases was treated with 50 mM H2O2. Previous results have shown that 50 mM H2O2 is a sublethal concentration (data not shown). A control for each growth phase was performed without H2O2 treatment. Bacterial cells were incubated (37°C, 200 rpm) for 5, 10, 20, 30 or 60 min after treatment and total bacterial RNA was isolated: cells were harvested by centrifugation, rinsed in PBS 1X and harvested again by centrifugation. Cells were resuspended in 50 mg/ml lysozyme (Sigma) prepared with Tris/HCl-Ethylenediaminetetraacetic acid (EDTA) buffer, and lysed with a Ribolyser (Hybaid). Samples were incubated for 90 min at 37°C.

References

1. Gigueres S, Cohen ND, Keith Chaffin M, Hines SA, Hondalus MK, et al. (2011) *Rhodococcus equi* clinical manifestations, virulence, and immunity. Journal of Veterinary Internal Medicine 25: 1221–1230.
2. Hondalus MK (1997) Pathogenesis and virulence of *Rhodococcus equi*. Vet Microbiol 56: 257–268.
3. Topino S, Galati V, Grilli E, Petrosillo N (2010) *Rhodococcus equi* infection in HIV-infected individuals: case reports and review of the literature. AIDS Patient Care STDS 24: 211–222.
4. Devi P, Mallostra S, Chadha A (2011) Bacteremia due to *Rhodococcus equi* in an immunocompetent infant. Indian J Med Microbiol 29: 65–68.
5. Kedlaya I, Ing MB, Wong SS (2001) *Rhodococcus equi* infections in immunocompetent hosts: case report and review. Clin Infect Dis 32: E39–46.
6. Hondalus MK, Mosser DM (1994) Survival and replication of *Rhodococcus equi* in macrophages. Infect Immun 62: 4167–4175.
7. von Bargen K, Haas A (2009) Molecular and infection biology of the horse pathogen *Rhodococcus equi*. FEBS Microbiol Rev 33: 870–891.
8. Ehr T, Schnappinger D (2009) Mycobacterial survival strategies in the phagozone: defence against host stresses. Cell Microbiol 11: 1170–1178.
9. Benoit S, Benachour A, Tawo S, Auffray Y, Artie A (2002) H2O2, which causes macrophage-related stress, triggers induction of expression of virulence-associated plasmid determinants in *Rhodococcus equi*. Infect Immun 70: 3768–3776.
10. Lebeck M, González P, MacArthur I, Rodríguez H, Freeman TC, et al. (2010) The genome of a pathogenic *Rhodococcus* cooptive virulence underpinned by key gene acquisitions. PLoS Genet 6: e1001145.
11. Bandypadhyay P, Steinman HM (2000) Catalase-peroxidases of *Legionella pneumophila* cleaning of the *katD* gene and studies of *KatA* function. J Bacteriol 182: 6679–6686.
12. Loewen PC, Kloz MG, Hassett DJ (2000) *Rhodococcus* as a “cold” enzyme that continues to surprise us. ASM News 66: 76–82.
13. Anno T, Asomi H, Inamaka T (2002) Unique presence of a manganese catalase in a hyperthermophilic archaeon, *Pyrobaculum calidifontis*. VAI J Bacteriol 184: 3305–3312.
14. Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305: 567–580.
15. Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignaLP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8: 785–786.
16. Hassett DJ, Cohen MS (1989) Bacterial adaptation to oxidative stress: implications for pathogenesis and interaction with phagocytic cells. FASEB J 3: 2574–2582.
17. Janssen R, van der Straaten T, van Diepen A, van Driel JT (2003) Responses to reactive oxygen intermediates and virulence of Salmonella typhimurium. Microbes Infect 5: 527–534.

18. Bandypadhyay P, Steinman HM (1998) Legionella pneumophila catalase-peroxidases: cloning of the katB gene and studies of KatB function. J Bacteriol 180: 5369–5374.

19. Manca C, Paul S, Barry CE, 3rd, Freedman VH, Kaplan G (1999) Mycobacterium tuberculosis catalase and peroxidase activities and resistance to oxidative killing in human monocytes in vitro. Infect Immun 67: 74–79.

20. Srinivasarao PS, Yamada Y, Leung KY (2003) A major catalase (KatB) that is required for resistance to H2O2 and phagocyte-mediated killing in Edwardsiella tarda. Microbiology 149: 2633–2644.

21. Hebrard M, Viala JPM, Meresse S, Barras F, Aussel L (2009) Redundant Hydrogen Peroxide Scavengers Contribute to Salmonella Virulence and Oxidative Stress Resistance. J Bacteriol 191: 4605–4614.

22. Hirose I, Sano K, Shioda I, Kumano M, Nakamura K, et al. (2000) Proteome analysis of Bacillus subtilis extracellular proteins: a two-dimensional protein electrophoretic study. Microbiology 146 (Pt 1): 65–75.

23. Sha Z, Stabel TJ, Mayfield JE (1994) Brucella abortus catalase is a periplasmic protein lacking a standard signal sequence. J Bacteriol 176: 7375–7377.

24. Buchmeier NA, Libby SJ, Xu Y, Loewen PC, Scindia J, et al. (1995) DNA repair is more important than catalase for Salmonella virulence in mice. J Clin Invest 95: 1047–1053.

25. Han Y, Geng J, Qiu Y, Guo Z, Zhou D, et al. (2008) Physiological and regulatory characterization of KatA and KatY in Verrucomicrobium domestica. DNA Cell Biol 27: 453–462.

26. Cosgrove K, Coutts G, Jonsson IM, Tarkowski A, Kokai-Kun JF, et al. (2007) Catalase (KatA) and alkyl hydroperoxide reductase (AhpC) have compensatory roles in peroxide stress resistance and are required for survival, resistance, and nasal colonization in Staphylococcus aureus. J Bacteriol 189: 1025–1035.

27. Soler-Garcia AA, Jerse AE (2007) Neisseria gonorrhoeae catalase is not required for experimental genital tract infection despite the induction of a localized neutrophil response. Infect Immun 75: 2225–2233.

28. Vazquez-Torres A, Jones-Carson J, Mastroeni P, Ischiropoulos H, Fang FC (2000) Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. I. Effects on microbial killing by activated peritoneal macrophages in vivo. J Exp Med 192: 227–236.

29. Demple B, Halbrook J, Lin S (1983) Escherichia coli thx mutants are hypersensitive to hydrogen peroxide. J Bacteriol 153: 1079–1082.

30. Steele KH, Baumgartner JE, Valderras MW, Roop RM, 2nd (2010) Comparative study of the roles of AhpC and KatE as respiratory antioxidants in Brucella abortus. J Bacteriol 192: 4912–4922.

31. Tanaka K, Takayagami Y, Fujita N, Ishihama A, Takahashi H (1993) Heterogeneity of the principal sigma factor in Escherichia coli, the rpoD gene product, sigma 38, is a second principal sigma factor of RNA polymerase in stationary-phase Escherichia coli. Proc Natl Acad Sci U S A 90: 8303.

32. Frederick JR, Elkins JG, Bellinger N, Haslett DJ, McDermott TR (2001) Factors affecting catalase expression in Pseudomonas aeruginosa biofilms and planktonic cells. Appl Environ Microbiol 67: 1373–1379.

33. Navas J, Gonzalez-Zorn B, Ladron N, Garrido P, Vazquez-Boland JA (2001) Identification and mutagenesis by allelic exchange of choE, encoding a cholesterol oxidase from the intracellular pathogen Rhodococcus equi. J Bacteriol 183: 4796–4805.

34. Gentry-Weeks CR, Karkhoff-Schweizer R, Pikes A, Estay M, Keith JM (1999) Survival of Enterococcus faecalis in mouse peritoneal macrophages. Infect Immun 67: 2160–2163.

35. Vermeul N, Mazze A, Sanguinetti M, Laplace JM, Benachour A, et al. (2006) Implication of Manganese superoxide dismutase of Enterococcus faecalis in oxidative stress responses and survival inside macrophages. Microbiology 152: 2579–2589.

36. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402–408.

37. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, et al. (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Research 36: W465–W469.

38. De La Paz-Moctezuma A, Prescott JF, Goodfellow M (1996) Attempts to find phenotypic markers of the virulence plasmid of Rhodococcus equi. Can J Vet Res 60: 29–33.