Research status and development trend of available exhaust energy management for diesel engine at different altitudes

Zhongjie Zhang1,3, Ruilin Liu1, Guangmeng Zhou1, Chunhao Yang2, Dachuan Liu1 and Nanlong Xia1

1Army Military Transportation University, Tianjin 300161, China.; 2Naval University of Engineering, Wuhan, 430033, China.
3Email: jjxyzzj@163.com

Abstract. In order to improve the boosting pressure, intake flow rate and matching characteristics of a diesel engine and turbocharging system at varying altitudes, it is very important to utilize and manage available exhaust flow energy. The advanced air management system can effectively utilize exhaust flow energy and improve the intake pressure of the diesel engine at high altitudes. In this paper, the key thermodynamic parameters of air management systems, management of exhaust flow energy and control of air path at different altitudes are reviewed. At last, two aspects containing control strategy, control algorithm of the air management system were put forward.

1. Introduction

Usually the performance of diesel engines used in highland regions deteriorates because of high altitude and low atmospheric pressure. The engine power and fuel economy decrease, and soot emission and exhaust temperature increase due to the decrease of air-fuel ratio and deterioration of combustion caused by the reduction of air density and later combustion. With the decrease of Reynolds number at high altitudes, the matching characteristics of the turbocharger and the diesel engine change, the flow range of the compressor gradually narrowed, the slope of the surge line increased, and the range of high efficiency area became smaller [1].

In order to improve the matching characteristics of turbocharger and diesel engine plateau and restore the power of diesel engine in plateau, the general method is to match the high flow turbocharger [2] for a diesel engine at fixed operation condition and altitude, but it is impossible to achieve good matching characteristics at high and low speed on plateau, which lead to the torque decreasing seriously in the low speed zone, turbo lag, compressor surge and efficiency declining [3]. Therefore, advanced air management systems such as variable geometry turbocharger (VGT), compound turbocharging and regulated two-stage turbocharger are gradually applied to diesel engines at altitudes. Table 1. shows the performance comparison of the advanced air management systems at high altitudes [4]. It includes the VGT system, the ordinary two-stage turbocharging (TST) system, the mechanical compound turbocharging (MC2T) system, the electric auxiliary turbocharging (EC2T) system and regulated two-stage turbocharging system based on VGT (RTST).
Table 1. Comparison of advanced air management system at high altitudes and containing notesa.

Diesel engine performance	Advanced air management system				
	VGT	TST	MC2T	EC2T	RTST
Pressure ratio	<3.5	>5	>4	>5	>5
Area flow range at high efficiency	++	++	+++	+++	+++
Torque at partial load and low speed	++	+	+++	+++	+++
BSFC at low speed	++	+	+++	++	+++
Transient acceleration characteristics	++	++	+++	++	+++
Solving ability of compressor surge and	+	++	++	+	+++
turbine overspeed					
lifetime and reliability	++	+++	+++	+	++
Application potential of plateau	+	++	++	+++	+++

a Note: The number of "++" indicates the extent of improvement or deterioration.

EC2T and RTST have the highest application potential for plateau by comparing the technical parameters of different advanced air management systems. EC2T can accurately control the boost pressure and eliminate turbo lag, but there exist problems, such as the lack of motor speed, the intense vibration of the turbocharger bearing and the poor reliability of the motor under high exhaust temperature. RTST can achieve step utilization of exhaust energy and reasonably allocate exhaust energy according to the changes of altitudes and operating conditions.

The turbocharging process of diesel engine contains gas state variations and energy transfer transformation. The gas has undergone compression expansion, entropy increasing and enthalpy drop process, and the energy has undergone conversion and transfer process of internal energy and mechanical energy. It is very important to utilize and manage exhaust gas energy flow in order to accurately control the pressure of the turbocharging system. This paper mainly aimed at the current situation of the regulated two-stage turbocharging system (TST, RTST) at different altitudes and the relationship of thermal parameters and diesel exhaust energy flow and air management path control are reviewed.

2. Analysis of key thermal parameters of air management system at different altitudes

2.1. Plain

The regulated two-stage turbocharging systems (TST, RTST) manage exhaust energy between the high and low turbine by changing flow area regulated by turbine bypass valve and the VGT vanes. The reasonable utilization of the exhaust energy can achieve continuous adjustable pressure under whole operating conditions. The higher boost pressure overcomes the disadvantages of poor torque performance at low speed, poor EGR introduction capability and poor transient response [5-7].

At present, the analysis of the key thermal parameters of the regulated two-stage turbocharging system includes:

1) Regulation characteristics of turbine bypass valve and VGT vanes of regulated two-stage turbocharging system

2) Relationship between key thermodynamic parameters of regulated two-stage turbocharging system.

The research of the key thermodynamic parameters of the regulated two-stage turbocharging system in plain environment were presented in the Table 2. At present, the mainstream view [8-10] thinks that the pressure ratio of high / low pressure varies from 6:4 to 4:6 with the increase of compressor intake flow.

2
Table 2. Current research of key thermodynamic parameters of regulated two-stage turbocharging system.

Researchers	Altitudes	Turbocharging system	Adjustment parameters	Thermal parameters
Hashimoto et al [11]	0m	WGT+FGT	HP-valve	fuel economy, emission
Niklas et al [12]	0m	VGT+WGT	VGT vanes	exhaust temperature
Ma et al [13]	0m	WGT+FGT	HP-valve	expansion ratio distribution
Liu et al [14]	0m	WGT+FGT	HP-valve	boost pressure, airflow ratio, engine efficiency
GALINDO et al [15]	0m	WGT+FGT	expansion ratio distribution	effective thermal efficiency
He et al [16]	0m	WGT+FGT	efficiency of the intercooler	total pressure ratio, total efficiency
Feng et al [17]	0m	WGT+FGT	expansion ratio, intercooling efficiency	pump gas loss pressure

Feng et al [17] analyzed the influence of pressure ratio distribution, inter-stage cooler, isentropic efficiency and exhaust gas temperature on the pumping losses by establishing a thermodynamic model of regulated two-stage turbocharging system. Ma et al [18-19] and Liu et al [20] studied the influence of the opening of the HP-valve on the expansion ratio distribution, the turbine flow range and the turbine adiabatic efficiency of the TST system. The results show that the adjustment range of the turbine flow can be above 30% when the HP turbine expansion ratio is between 1.2 and 2, and the operating points of two compressors can run in high efficiency region. Wang et al [21] calculated the influence of the different distributions of exhaust energy on the performance of two-stage turbocharged diesel engine by combination of experiment and simulation, and the proportion of the optimum exhaust energy of the two-stage turbocharging system was obtained under certain operating conditions.

2.2. Plateau

Intake characteristics and combustion process of diesel engine were influenced by atmospheric pressure and air temperature at varying altitude. The utilization of exhaust energy is also quite different from that of the plains. The altitude at abroad is generally low, and there is little research on the thermodynamics of regulated two-stage turbocharging system at high altitudes. GALINDO J et al [22] studied the switching strategy of the control valve of turbocharging system under transient operating conditions at high altitudes. However, there are some problems in the parallel sequential turbocharging system, such as lack of pressure ratio (<4), pressure and torque drop in the process of valve switching.

Shi et al [23] studied the influence of the bypass flow rate of high pressure turbine on the flow area and the power ability of the turbine at high altitudes. The HP-valve control strategy of TST system was designed for the two operating conditions, and power recovery of the diesel engine at high altitudes are affected by the total efficiency change of the turbocharging system and the increase of pump gas loss. Li et al [24] points out that TST regulation ability at high altitudes is related to altitude height, combustion margin, gas system efficiency and strengthening degree. A turbine equivalent matching model was established to study the control strategy of HP bypass valve by adjusting the exhaust energy distribution relationship between high and low-pressure turbine at altitudes of 0m to 4500m. Zhang et al [25] pointed out thermal efficiency and pump loss were affected by opening of HP bypass valve of TST system. Yang et al [26] studied the influence of altitude (0m—4500m) on the total energy and energy distribution (high and low-pressure turbine) of TST from the angle of exhaust energy by means of theoretical analysis and test. Di et al [27] matched RTST for a diesel engine at
high altitudes and studied the influence of VGT vanes opening on the matching characteristic of turbocharger, intake parameters, residual loss (heat loss, friction loss and pump gas loss), combustion process and emission characteristics by using numerical simulation.

3. Exhaust flow energy and air path management of diesel engine at different altitudes

3.1. Plain
Control strategies of air management systems should be designed in order to effectively utilize available exhaust flow energy at whole operating conditions and altitudes. At present, control strategies of air management systems are mainly aimed at plain environment. According to different control objectives, the air management systems control strategy can be divided into as following [28-30]:

1. Regulation law with limitation of maximum boost pressure
2. Regulation law with the goal of economy
3. Regulation law with the goal of power
4. Other regulation laws (target of intake and exhaust negative pressure, air-fuel ratio).

The VGT+WGT system [31] was developed by BWM and BorgWarner (As shown in Figure 1), and five control strategies of air management systems were designed under the different operating conditions (As shown in Figure 2.).

Canova et al [32-33] analyzed the influence of the opening of the VGT vanes and the turbine bypass valve of VGT+WGT system on intake and exhaust pressure. The operation range of the engine is divided into three adjustment regions based on the targets of maximum boost pressure and the maximum intake flow. Closed loop PID control strategies is designed to realize collaborative control between VGT vanes, HP bypass valve, and EGR valve.

As shown in Table 3, Control strategies for air management system were studied by many research institutes. Shanghai Jiao Tong University has carried out a systematic research on boost pressure control strategies of the regulated two-stage turbocharging system (As shown in Figure 3).
Table 3. Different control strategies for air management systems.

Researcher	altitude	Turbocharging system	Control target	Control strategy
P. Kotman et al [34]	0m	WGT+FGT	Boost pressure	Feedforward control based on flatness
A. Plianos et al [35]	0m	WGT+FGT	Boost pressure	Local linear two Gauss method (LQG)
Dieter et al [36]	0m	WGT+FGT	Boost pressure	Endocardial control (IMC) nonlinear method
THOMASSON A et al [37]	0m	WGT+WG	Efficiency of turbocharger, pump gas loss	PID closed loop feedback + feedforward; the surface conditions are divided into four regions.
PHILIPPE et al [38]	0m	WGT+WG	BSFC, Emission performance	Two control strategies of closed loop and open loop
MOHAMED et al [39]	0m	WGT+WG	Trade-off BSFC and NOx/smoke	Divide the operating condition into five regulating areas
Albin et al [40]	0m	WGT+WG	Trade-off pump gas loss and transient response time	Model predictive control (MPC) based boost pressure
SCHMITT F et al [41]	0m	Double VGT+WGT	Trade-off dynamic response at low speed and power output at high speed	Divide the operating condition into five regulating areas

Liu et al [42] divided the whole operating conditions into four adjustment regions based on the principle of maximum pressure and designed the power control strategies of regulated two-stage turbocharging system (As shown in Figure 4). The results showed that the stability of the controller is reduced by 4.6s compared with that of the single stage turbocharger when the boost pressure is increased by 22kPa.

![Figure 3. WGT+WGT system.](image-url)
In order to improve the pressure and power output of the diesel engine and reduce the emission of NOx, the two input and two output VGT/EGR nonlinear controller (MIMO) was designed by Wang et al [43] based on the quantitative feedback theory. The classical PID gain and phase margin were extended to MIMO system design. In order to reduce NOx emission and increase fuel consumption, Alexandros et al [44] matched a RTST with the diesel engine and designed a LQG controller achieve synergistic control of the VGT vanes and EGR valve. Guo et al [45] studied the application of fuzzy control technology in VGT control.

Zhao et al [46] designs a global explicit predictive controller (EMPC) based on minimizing the fuel consumption of 7.1L heavy duty diesel engines. The parameters of EMPC contains input manifold pressure, exhaust manifold pressure and intake mass flow as input, VGT vanes opening, EGR valve position and turbine power as output. The results show that the EMPC control process is more stable and rapid compared with PID. Dickinson P. et al [47] applied the MPC control strategy to the VGT+VGT system, and evaluated the control quality of the MPC controller for the response time of boost pressure, and the pump gas loss and the low speed torque under the transient condition. Ordinary linear MPC control has limited control range, and the nonlinear characteristics of diesel intake and exhaust lead to poor control accuracy. Albin, T. et al [48] proposed nonlinear model predictive control (NMPC) for two-stage turbocharging system, and compared three models of linear invariant MPC (LTIMPC), linear time-varying MPC (LTVMPC) and NMPC, and NMPC in both control quality and response time is better.

3.2. Plateau
Liu et al [49] matched multi-valves of TST system with a diesel engine, and control strategy of turbine bypass valves of TST is formulated to optimize total energy of exhaust gas based on the combustion characteristics of the diesel engine at high altitudes. The transient response simulation model of regulated two-stage turbocharged diesel engine was established by Li et al [50], and the influence of altitude on the transient response characteristics of boost pressure was calculated and analyzed. Comparing the open loop control with closed loop control on the improvement of the transient characteristics of the diesel engine at variable altitudes.

The results show that the closed loop control strategy using the boost pressure is reduced from 3.20s to 2.32s compared with the open loop control strategy at 3 000m. In the process of transient
response, the combined operation of engine compressor and compressor can meet the requirements of optimizing the performance of diesel engine with the two-stage adjustable turbocharging system at variable altitudes. Liu et al [51-52] aimed to design a boost pressure control strategies for the VGT+WGT system at altitude of 0m–5500m (as shown in Table 4).

Altitude(m)	Working region	Engine speed (r/min)	RTST Working condition	VGT vanes	HT by-pass valve	LT by-pass valve	LT compressor by-pass valve
0~2500		1 800~1400	HT Working	regulated	closed	opened	opened
		2 1400~2100	LT & Joint Working	fixed	regulated	regulated	closed
2500~5500		1 800~1400	HT & LT Joint Working	regulated	closed	closed	closed
		2 1400~2100	Fixed	regulated	closed	closed	closed

Lin et al [53] studied a VGT based on regulated two-stage turbocharging system (VGT+FGT) under transient process at high altitudes. The influence of three VGT vanes adjustment schemes on the performance of diesel engine is compared and analyzed under constant speed loading. (as shown in Figure 5). The results show that the advantage of the scheme one (at the initial stage of loading to keep the VGT vanes opening constant to the middle of the load, and then increase linearly to the corresponding opening after loading) is more obvious in improving the transient loading performance of the diesel engine (as shown in Figure 6).

Figure 5. Schematic diagram of three adjustment paths for VGT blades.

Figure 6. Boost pressure response under at constant load acceleration condition.

4. Summary and prospect

4.1. Summary
(1) The research status of the regulation characteristics and key thermodynamic parameters of the turbine bypass valve and VGT vanes for air management system at different altitudes is summarized. The turbine bypass valve and VGT vanes of the air management system can influence of pump gas loss and effective combustion heat efficiency by changing the turbine flow area, adjusting the key
thermodynamic parameters of the turbocharging ratio, the total efficiency of turbocharger and the vortex front temperature.

(2) The air management system control strategy is relatively mature under the plain environment. According to the different control objectives, the air management system control strategy is divided into four types of regulation. Among them, the research institutes mainly aim at plain surface conditions and design different adjustment areas for air management system. Under the plateau environment, the corresponding air management system control strategy is designed according to the diesel engine's external characteristics.

(3) At present, there are mainly five types of control algorithms for diesel engine air management system, which include PID closed loop feedback and feedforward control, intimal control (IMC), fuzzy control, local linear Gauss control (LQG), model predictive control (MPC).

4.2. Prospects
(1) The analysis of the thermodynamic parameters of air management systems mainly aims to plain environment. The intake characteristics and combustion characteristics of the diesel engine changed with the altitudes, which directly affected the key thermodynamic parameters such as the exhaust temperature, the expansion ratio, the inlet pressure, the inlet temperature of the compressor, the pressure ratio distribution and so on. The next step is to analyze the influence of control parameters and key thermodynamic parameters on pump air loss and combustion heat efficiency of the air management system at variable altitudes.

(2) The design of control strategy of air management system is mainly aimed at the plain environment. The control strategy of air management system will be more complex with changing of altitudes and working conditions. Future research should focus on the control area of air management system under the altitude, speed and load.

(3) The above control technologies of regulated two-stage turbocharging at high altitudes are mainly based on the PID controller. At present, the research of multi-system control algorithm for diesel engine mainly includes PID control, local linear two type Gauss distribution control (LQG), fuzzy control, neural network predictive control, model predictive control (MPC) and so on (Table 5.). Advanced control strategies such as synovial control and MPC control will be ideal algorithms to solve the multi parameter cooperative control of diesel engine at variable altitudes.

Table 5. Comparison and analysis of advanced control algorithms and containing notes a.

Evaluation index	Control theory	PID control	adaptive control	fuzzy control	sliding mode control	Neural network predictive control	MPC control	\(H_\infty \) Control
Robustness	+++	+++	++	+++	+++	+++	+++	+++
Control accuracy	+	+++	++	++	++	++	+++	++
Convergence speed	+	+	++	+++	+	++	+	++
Multi-objective Control Capability	+	+	+	+++	+++	+++	+++	+++
Nonlinear control capability	+	+	+++	+++	+++	+++	+++	+++

Notes: The number of "+" indicates the extent of improvement or deterioration.
References

[1] Ruilin LIU 2013 Research on environmental adaptability of diesel engine Plateau[M]. Beijing: Beijing Institute of Technology press

[2] Szedlmayer M, Kweon C 2016 Effect of Altitude Conditions on Combustion and Performance of a Multi-Cylinder Turbocharged Direct-Injection Diesel Engine[J] Sae World Congress & Exhibition 31(3) 23-40

[3] Daxin Zhu 1992 Turbocharging and turbocharger[M] Beijing: Machinery Industry Press

[4] Zhongjie Zhang, Ruilin Liu, Zhifeng Liang, et al 2017 Research status and development trend of adaptive altitude control technology for diesel engine turbocharging system[J] Equipment environment engineering 10 1–7

[5] Zelinder G, Meier E, Baden 1977 Exhaust-gas turbochargers and systems for high-pressure charging Brown Boveri Review 64

[6] Schmitt F, Engels B 2004 Regulated 2-Stage Charging System for High Specific Power Engines[C] Proceedings of SIA Congress

[7] Gautier P, Albrectt A, Chasse A, et al 2009 A Simulation Study of the Impact of LP EGR on a Two-Stage Turbocharged Diesel Engine [J] Oil Gas Science and Technology 64(3) 361-379

[8] Yituan He 2007 Research on adjustable two stage turbocharging system for vehicle diesel engine [D] Beijing: Beijing Institute of Technology

[9] Lei Shi, Hualei Li, Huiyan Zhang, et al 1987 The Effect of Bypass Valve Control on the Steady-State and Transient Performance of Diesel Engines with Regulated Two-Stage Turbocharging System[C] SAE Paper 01 1987

[10] Yun Xu, Shenglin Qi, Zhongchang Liu, et al 2015 Optimization strategy for compressor efficiency of two stage turbocharging system [J] vehicle engine 04 60 - 66

[11] Hashimoto M, Aoyagi Y, Kobayashi M, et al 2012 BSFC Improvement and NOx Reduction by Sequential Turbo System in a Heavy Duty Diesel Engine[C] SAE Paper 01 0712

[12] Winkler N, Angstrom H E 2008 Simulations and Measurements of a Two-Stage Turbocharged Heavy-Duty Diesel Engine including EGR in Transient Operation[C] SAE Paper 01 0539

[13] Yituan He, Chaochen Ma, Mingshan Wei, et al 2007 Experimental study on compressor performance of two stage supercharging system [J] Journal of Beijing Institute of Technology 27(6) 496-500

[14] Zhongchang Liu 2017 Regulation characteristic of two stage turbocharged diesel engine [J] Journal of Jilin University (Engineering Edition) 03 796 - 803

[15] Galindo J, Serrano J R, Climent H, et al 2010 Impact of two-stage turbocharging architectures on pumping losses of automotive engines based on an analytical model[J] Energy Conversion and Management 51(10) 1958–1969

[16] Yituan He, Chaochen Ma, Zhifu Zhu, et al 2007 matching method and Simulation of vehicle two stage turbocharging system [J] vehicle engine 169(3) 83-85

[17] Hao Feng, Zunqing Zheng, Bin Mao, et al 2016 Thermodynamic analysis of the influence of two stage supercharging system parameters on pump air loss [J] Internal Combustion Engine Engineering 05 221 - 228

[18] Mingshan Wei, Zhi Zhang, Jinli Fang, et al 2009 Design and test of two stage turbocharging system with vent valve [J] Journal of Internal Combustion Engine 02 166 - 170

[19] Mingshan Wei, Yongling He, Chaochen Ma 2008 Thermodynamic analysis of turbine stage for adjustable two stage turbocharging system [J] Internal Combustion Engine Engineering 01 43 - 47

[20] Bo Liu, Yuehua Qian, Kangyao Deng, et al 2011 Study on the regulating characteristics of butterfly valves in an adjustable two stage turbocharged diesel engine [J] Internal Combustion Engine Engineering 02 17 – 22

[21] Qifeng Wang 2007 Research on two stage variable pressurization system of 4100QBZL [D] Yunnan: Kunming University of Science and Technology
[22] Galindo J, Lujan J M, Climent H, et al 2007 Turbocharging System Design of a Sequentially Turbocharged Diesel Engine by Means of a Wave Action Model[J] SAE Paper 01 1564
[23] Li H, Shi L, Deng K 2016 Development of turbocharging system for diesel engines of power generation application at different altitudes [J] Journal of the Energy Institute 89(4) 755–765
[24] Li H, Zhang G, Zhang H, et al 2015 Equivalent matching model of a regulated two-stage turbocharging system for the plateau adaptability [J] Journal of Automobile Engineering 230 1–16
[25] Laitao Zhang, Yan Xu, Sheng Liu, et al 2015 Study on steady state regulation characteristics of diesel engine adjustable two stage turbocharging system at variable altitude [J] vehicle engine 05 31 - 36
[26] Yang M, Gu Y, Deng K, et al 2017 Influence of Altitude on Two-stage Turbocharging System in a Heavy-duty Diesel Engine based on Analysis of Available Flow Energy Applied Thermal Engineering
[27] Lei Di 2017 Optimization and performance improvement of two stage turbocharging system for diesel engine in plateau environment [D] Kumming University of Science and Technology
[28] Bao R, Stobart R 2015 Evaluating the Performance Improvement of Different Pneumatic Hybrid Boost Systems and Their Ability to Reduce Turbo-Lag[C] SAE Paper 01 1159
[29] Mattarelli E, Rinaldini C A, Agostinelli E 2016 Comparison of Turbocharging Concepts for SI Engine Downsizing[C] SAE Paper 01 1032
[30] Backhouse R J,Franklin P C,Winterbone D E 1989 Stability of feedback control of boost in variable geometry turbocharged automotive diesels, Proceedings of the Institution of Mechanical Engineers Part A Power and process engineering 203(3) 163-170
[31] Langen P, Hall W, Nefischer P, et al 2010 The new two-stage turbocharged six-cylinder diesel engine of the BMW 740d[J] MTZ worldwide 71(4) 4–11
[32] Canova M, Chiara F, Rizzoni G, et al 2009 Design and Validation of a Control-Oriented Model of a Diesel Engine with Two-Stage Turbocharger[C] SAE Paper 24 0122
[33] Canova M, Chiara F, Rizzoni G, et al 2010 Model-Based Characterization and Analysis of Diesel Engines with Two-Stage Turbochargers[C] SAE Paper 01 1220
[34] Kotman P, Bitzer M, Kugi A 1995 Flatness-based feedforward control of a two-stage turbocharged diesel air system with EGR Automatica 31(12) 1835–1851
[35] Moulin P, Grondin O, Fontvieille L 2009 Control of a two stages turbocharger on a diesel engine in Proc IEEE Conf Decision Control 5200–5206
[36] Schwarzmann D, Nitsche R, Lunze J, et al 2006 Pressure Control of a Two-Stage Turbocharged Diesel Engine using a Novel Nonlinear IMC Approach[C] Proceedings of the IEEE International Conference on Control Applications Munich Germany: IEEE 2399-2404
[37] Thomasson A 2014 Model-Based Control of Two-Stage Turbochargers for Heavy-Duty Diesel Engines[D] Linkoping University
[38] Moulin P, Grondin O 2013 Control Design for a Second Order Dynamic System: Two-Stage Turbocharger[C] ResearchGate Japan: 2013
[39] Khalef M S, Soba A, Korsgren J 2016 Study of EGR and Turbocharger Combinations and Their Influence on Diesel Engine’s Efficiency and Emissions[C] SAE Paper 01 0676
[40] Albin T, Ritter D, Liberda N, et al. Boost Pressure Control Strategy to Account for Transient Behavior and Pumping Losses in a Two-Stage Turbocharged Air Path Concept[J] Energies, 530(9) 1–16
[41] Schmitt F 2014 Powerful Turbocharging System for Passenger Car Diesel Engines[J] MTZ worldwide 75(3) 12–19
[42] Bo Liu 2011 Research on adjustable two stage turbocharging system of diesel engine [D], Shanghai: Shanghai Jiao Tong University
[43] Wang Y Y, Haskara I, Yaniv O 2011 Quantitative feedback design of air and boost pressure control system for turbocharged diesel engines Control Engineering Practice 19 626–637
[44] Plianos A, Stobart R 008 Modeling and Control of Diesel Engines Equipped with a Two-Stage
Turbo-System SAE Paper 01 1018

[45] Linfu Guo 2003 Development of VGT electronic controlled turbocharging system and its matching with diesel engine [D] Beijing: Beijing Institute of Technology

[46] Dezong Zhao, Stobart R 2015 Systematic Control on Energy Recovery of Electrified Turbocharged Diesel Engines [C]// Osaka, Japan: 2015.

[47] Dickinson P, Glover K, Collings N Yamashita, Y et al 2015 Transient Evaluation of Two-Stage Turbocharger Configurations using Model Predictive Control SAE Paper 01 1980

[48] Albin T, Ritter D, Abel D, et al 2015 Nonlinear MPC for a Two-Stage Turbocharged Gasoline Engine Airpath [C]//2015: 849-856.

[49] Xihao Liu, Mingshan Wei, Chaochen Ma, et al 2010 Simulation of single stage and two stage turbocharged diesel engines at different altitudes [J] Acta combustion engine 5 447-452

[50] Hualei Li, Qi Li, Lei Shi, et al 2015 Adaptive control strategy for two stage turbocharging system of diesel engine [J] Journal of agricultural machinery 09 335 - 342

[51] Liu R, Zhang Z, Dong S, et al 2017 High-Altitude Matching Characteristic of Regulated Two-Stage Turbocharger with Diesel Engine[J] Journal of Engineering for Gas Turbines and Power 139(9) 094501-094501–9

[52] Ruilin Liu, Surong Dong, Jun Meng, et al Two stage adjustable pressurized control system and its control method: China, 2013101176463[P]

[53] Chuncheng Lin 2015 Calibration of two stage adjustable turbocharging system for common rail diesel engine at high altitude [D] Tianjin: military traffic college