Microbacterium helvum sp. nov., a novel actinobacterium isolated from cow dung

Xiao Li · Lida Zhang · Fuyan Huang · Junwei Zhao · Han Wang · Yanjie Jiao · Lulu Qian · Xiangjing Wang · Wensheng Xiang

Received: 23 December 2020 / Revised: 26 March 2021 / Accepted: 29 March 2021 / Published online: 16 April 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract

A Gram-positive, aerobic, non-motile, non-spore-forming, short rod-shaped strain, NEAU-LLC\(^{\mathrm{T}}\), was isolated from cow dung in Shangzhi City, Heilongjiang Province, Northeast China and identified by a polyphasic taxonomic study. Colonies were light yellow, round, with entire margin. Strain NEAU-LLC\(^{\mathrm{T}}\) was grown at 15–45 °C and pH 6.0–10.0. NaCl concentration ranged from 0 to 5% (W/V). The 16S rRNA gene sequence of NEAU-LLC\(^{\mathrm{T}}\) showed the high similarities with *Microbacterium kyungheense* JCM 18735\(^{\mathrm{T}}\) (98.5%), *Microbacterium trichothecenolyticum* JCM 1358\(^{\mathrm{T}}\) (98.3%) and *Microbacterium jejuense* JCM 18734\(^{\mathrm{T}}\) (98.2%). The whole-cell sugars were glucose, rhamnose and ribose. The menaquinones contained MK-12 and MK-13. Ornithine, glutamic acid, lysine and a small amount of alanine and glycine were the amino acids in the hydrolyzed products of the cell wall. The major fatty acids were iso-C\(_{16:0}\), iso-C\(_{18:0}\), anteiso-C\(_{15:0}\) and anteiso-C\(_{17:0}\). The main polar lipids were diphosphatidylglycerol, phosphatidylglycerol and an unidentified glycolipid. The genome of NEAU-LLC\(^{\mathrm{T}}\) was 4,369,375 bp and G+C content is 70.28 mol%. A combination of DNA–DNA hybridization result and some phenotypic characteristics demonstrated that strain NEAU-LLC\(^{\mathrm{T}}\) could be distinguished from its closely related strains. Therefore, the strain NEAU-LLC\(^{\mathrm{T}}\) was considered to represent a novel species, which was named *Microbacterium helvum* sp. (Type strain NEAU-LLC\(^{\mathrm{T}}\) = CCTCC AA 2018026\(^{\mathrm{T}}\) = JCM 32661\(^{\mathrm{T}}\)).

Keywords Genome · *Microbacterium helvum* sp. nov. · Polyphasic taxonomy · 16S rRNA gene

Abbreviations

- ANI: Average nucleotide identity
- CCTCC: China center for type culture collection
- dDDH: Digital DNA:DNA hybridization
- DPG: Diphosphatidylglycerol
- GC–MS: Gas chromatography–mass spectrometer
- GY: Glucose yeast extract
- ISCC-NBS: Inter-society color council-national bureau of standards
- ISP: International streptomyces project
- JCM: Japan collection of microorganisms
- MEGA: Molecular evolutionary genetics analysis
- PG: Phosphatidylglycerol
- SSA: Sodium succinate–asparagine agar
- SSC: Saline-sodium citrate
- UGL: Unidentified glycolipid

Communicated by Erko Stackebrandt.

* Xiangjing Wang
 wangneau2013@163.com

* Wensheng Xiang
 xiangwensheng@neau.edu.cn

Han Wang
507555536@qq.com

1 Key Laboratory of Agricultural Microbiology
of Heilongjiang Province, Northeast Agricultural University,
No. 59 Mucai Street, Xiangfang District, Harbin 150030,
People’s Republic of China

2 State Key Laboratory for Biology of Plant Diseases
and Insect Pests, Institute of Plant Protection,
Chinese Academy of Agricultural Sciences, Beijing,
People’s Republic of China

Introduction

Microbacterium genus was first proposed by Orla-Jensen (1919). Subsequently, the genus was reclassified by Collins et al. (1983) and then Takeuchi and Hatano (1998) revised the description of the genus and transferred *Aureobacterium* into *Microbacterium*. The authors suggested that although the amino acids in the peptidoglycan of the two genera are
different (lysine in members of the genus *Microbacterium* and ornithine in members of *Aureobacterium*), the intermixed phenotype of the two genera had similar physiological and biochemical properties. Krishnamurthi et al. (2012), Alves et al. (2014) and Fidalgo et al. (2016) emended the description of the genus *Microbacterium*. *Microbacterium* are typically Gram-positive, non-spore-forming and rod-shaped (Collins et al. 1983, Takeuchi and Hatano 1998). *Microbacterium* have been isolated from a variety of environmental sources, including soil (Kageyama et al. 2006), water (Torkko et al. 2000), human blood (Clermont et al. 2009), marine environments (Kageyama et al. 2007), biofilms (Kim et al. 2005), plants (Li et al. 2015), faeces (Chen et al. 2016), sediment (Mawlankar et al. 2015) and other environments. Some strains of *Microbacterium* genus have the ability to degrade crude oil (Schippers et al. 2005) and are halotolerant (Yang et al. 2018) and UV radiation-resistant (Zhang et al. 2010). At the time of writing, the genus containing 122 species effectively released (LPSN, http://www.bacterio.cict.fr/index.html). In this paper, the phenotype and genotype characteristics of a novel were analyzed and its taxonomic place determined by polyphase taxonomic analysis.

Materials and methods

Isolation and maintenance of the organism

Strain NEAU-LLCT\(^T\) was isolated from cow dung collected from Shangzhi, Heilongjiang Province, Northeast China (45°12′E, 127°57′N). The cow dung samples were ground into powder and then suspended in sterile distilled water followed by a standard serial dilution technique. The diluted cow dung suspension was spread on a plate of sodium succinate–asparagine agar medium (SSA, which contained g

\[\begin{align*}
\text{K}_{2} \text{HPO}_{4} & : 0.6, \text{MgSO}_{4} \cdot 7 \text{H}_{2} \text{O} & : 0.1, \text{CaCl}_{2} \cdot 2 \text{H}_{2} \text{O} & : 0.2, \text{KCl} \cdot 0.3, \text{FeSO}_{4} \cdot 7 \text{H}_{2} \text{O} & : 0.001, \text{agar} & : 20)\end{align*}\]

supplemented with cycloheximide (50 mg l\(^{-1}\)) and nalidixic acid (20 mg l\(^{-1}\)). After 14 days of aerobic incubation at 28 °C, colonies were transferred and purified on International *Streptomyces* Project (ISP) 3 medium (Shirling and Gottlieb 1966) and maintained as glycerol suspensions (20%, v/v) at – 80 °C.

Phenotypic characteristics

Morphological characteristics were observed by light microscopy (Nikon ECLIPSE E200) and transmission electron microscope (model JEM1010; JEOL) using cultures grown on ISP 2 medium at 28 °C for 3 days. Color determination was done with ISCC-NBS colour charts Standard Samples No 2106 (Kelly 1964). Hydrolysis of Tweens (20, 40 and 80) and production of urease were tested as described by Smibert and Krieg (1994). Other physiological and biochemical properties were tested with API 20NE and API ZYM strips (bioMérieux) and acid production was tested using the API 50 CH system (bioMérieux) according to the manufacturers’ instructions, using cells grown on ISP 2 medium for 3 days at 28 °C. The utilization of sole carbon and nitrogen sources, decomposition of cellulose, hydrolysis of starch and aesculin, reduction of nitrate, coagulation and peptonization of milk, liquefaction of gelatin and production of H\(_2\)S were examined as described previously (Gordon et al. 1974; Williams et al. 1989; Yokota et al. 1993a, b). Growth at different temperatures (10, 15, 18, 20, 25, 28, 32, 35, 38, 40, 42 and 45 °C) was determined on glucose–yeast extract (GY) medium (Jia et al. 2013) after incubation for 14 days. The pH range for growth (pH 4–12, at intervals of 1 pH units) was tested in GY broth. The buffer systems were: pH 4.0–5.0, 0.1 M citric acid/0.1 M sodium citrate; pH 6.0–8.0, 0.1 M KH\(_2\)PO\(_4\)/0.1 M NaOH; pH 9.0–10.0, 0.1 M NaHCO\(_3\)/0.1 M Na\(_2\)CO\(_3\); pH 11.0–12.0, 0.2 M KH\(_2\)PO\(_4\)/0.1 M NaOH (Cao et al. 2020; Zhao et al. 2019). NaCl tolerance was determined in GY broth supplemented with 0–10% NaCl (w/v, with an interval of 1% w/v) at 28 °C for 14 days on a rotary shaker. Growth under anaerobic conditions was tested in ISP2 in Hungate tubes filled with oxygen-free N\(_2\) at 28 °C (Ruan et al. 2014).

Chemotaxonomic characterization

Biomass for chemotaxonomic studies was prepared by growing the strain in GY broth in shake flasks at 28 °C for 7 days. Cells were harvested by centrifugation, washed with distilled water twice and then freeze-dried. The preparation of cell wall peptidoglycan in the cell wall was performed in accordance with the work by Komagata and Suzuki (1987). Cell wall amino acids were identified by TLC (Hasegawa et al. 1983) and High-Speed Amino Acid Analyzer (Hitachi LA8080, Japan). The whole-cell sugars were tested according to the procedures developed by Lechevalier and Lechevalier (1980). The phospholipids in cell were examined by two-dimensional TLC and identified using the method of Minnikin et al. (1984). Menaquinones were extracted from freeze-dried biomass and purified according to Collins (1985) and analyzed by a HPLC–UV method (Wu et al. 1989) using an Agilent Extend-C18 Column (150 × 4.6 mm, i.d. 5 µm), monitored at 270 nm. The mobile phase was acetonitrile/propyl alcohol (60:40, v/v). The strain NEAU-LLCT\(^T\) was incubated in ISP2 broth at 28 °C in shaking flasks for 7 days to determine the fatty acid composition of cells. Fatty acid methyl esters were extracted from the biomass.
as described by Gao et al. (2014) and analyzed by GC–MS using the method of Xiang et al. (2011).

DNA preparation, amplification and determination of 16S rRNA gene sequence

Extraction of chromosomal DNA and PCR amplification of the 16S rRNA gene sequence were carried out according to the procedure developed by Kim et al. (2000). The PCR product was purified and cloned into the vector pMD19-T (Takara) and sequenced using an Applied Biosystems DNA sequencer (model 3730XL). The almost full-length 16S rRNA gene sequence of strain NEAU-LLCT (1514 bp) was obtained and aligned with multiple sequences obtained from the GenBank/EMBL/DDBJ databases using Clustal W algorithm. Phylogenetic trees were generated with the neighbour-joining (Saitou and Nei 1987) and maximum-likelihood (Felsenstein 1981) algorithms using Molecular Evolutionary Genetic Analysis (MEGA) software version MEGA7.0 (Kumar et al. 2016). The stability of the topology of the phylogenetic tree was assessed using the bootstrap method with 1000 replicates (Felsenstein 1985). The distance matrix was generated using Kimura’s two-parameter model (Kimura 1980). All positions containing gaps and missing data were eliminated from the dataset (complete deletion option). Pairwise alignment analysis of 16S rRNA gene sequence similarities between strains were calculated on the EzBioCloud server (Yoon et al. 2017a).

DNA base composition and DNA–DNA hybridization

Digital DNA–DNA hybridization (dDDH) and average nucleotide identity (ANI) values were employed to further genomically distinguish strain NEAU-LLCT from *M. kyungheense* JCM 18735T and *M. trichothecenolyticum* JCM 1358T (Meier-Kolthoff et al. 2013; Yoon et al. 2017b). In the present study, ANI and dDDH values were determined from the genomes of these three strains using the orthoANIu algorithm from EzBioCloud (Yoon et al. 2017a, 2017b) and the genome-to-genome distance calculator (GGDC 2.0) at http://ggdc.dsmz.de. Because of the lack of the genome sequence of strain *M. jejuense* JCM 18734T, DNA–DNA relatedness test between strain NEAU-LLCT and *M. jejuense* JCM 18734T was carried out by the thermal renaturation method described by De Ley et al. (1970) under consideration of the modifications described by Huss et al. (1983), using a model Cary 100 Bio UV/VIS spectrophotometer equipped with a Peltier-thermostated 6×6 multiecell changer and a temperature controller with in situ temperature probe (Varian). The concentration and purity of DNA samples were determined by measuring the optical density at 260, 280 and 230 nm. The DNA samples used for hybridization were diluted to OD260 around 1.0 using 0.1×SSC (saline sodium citrate buffer (Thomas et al. 2000), then sheared using a JY92-II ultrasonic cell disruptor (ultrasonic time 3 s, interval time 4 s, 90 times). The DNA renaturation rates were detected in 2×SSC at 70 °C. The experiments were performed with three replications and the DNA–DNA relatedness value was expressed as mean of the three values.

Results and discussion

Phylogenetic analysis

Identification using the EzBioCloud server revealed that strain NEAU-LLCT belongs to the genus *Microbacterium* and shared high sequence similarities with *M. kyungheense* JCM 18735T (98.5%), *M. trichothecenolyticum* JCM 1358T (98.3%) and *M. jejuense* JCM 18734T (98.2%). The phylogenetic tree based on the 16S rRNA gene sequences indicated that strain NEAU-LLCT formed a cluster with *M. trichothecenolyticum* JCM 1358T (98.3%) and *M. jejuense* JCM 18734T (98.2%) in the neighbor-joining tree (Fig. 1), this relationship also recovered by the maximum likelihood (Fig. S3). Thus, based on the phylogenetic relationship, 16S rRNA sequences similarities, the isolate was mostly related to *M. kyungheense* JCM 18735T, *M. trichothecenolyticum* JCM 1358T and *M. jejuense* JCM 18734T (Fig. 2).

Phenotypic characteristics

Morphological observation of NEAU-LLCT strain cultured on ISP 2 medium revealed that the strain has typical characteristics of members of the genus *Microbacterium*. Strain NEAU-LLCT had characteristics shared by all members of the genus *Microbacterium* (Fidalgo et al. 2016). Detailed physiological and biochemical properties, enzyme activity (API 20NE, API ZYM) and the production of acid (API 50CH) are presented in the species description and the differential characteristics of strain NEAU-LLCT and three closely related species of the genus *Microbacterium* are summarized in Table 1. For example, the NEAU-LLCT strain could grow at pH 6.0, while the closely related strain could not. The tolerance of NEAU-LLCT to NaCl was up to 5%, lower than that of *M. kyungheense* JCM 18735T and *M. jejuense* JCM 18734T, but higher than *M. trichothecenolyticum* JCM 1358T. Other phenotypic differences include the hydrolysis of urea and Tweens (20, 40 and 80) and patterns of carbon and nitrogen utilization. The negative characteristics of nitrogen assimilation tests, the enzyme activities (API 20 NE, API ZYM) and the production of acid (API 50CH) for NEAU-LLCT are summarized in Table S3.
Chemotaxonomic characterization

Whole-cell sugars contained glucose, rhamnose and ribose. The peptidoglycan hydrolysates of strain NEAU-LLCT contained glutamic acid, lysine, ornithine, a small amount of alanine and glycine. Through a partial hydrolysis and determination of the amino acid linkage of the fragmented products, the peptidoglycan type was deduced to be most likely B2β type. This must be clearly stated in the manuscript.

The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol and unidentified glycolipids (Fig. S2). The menaquinones were MK-12 (17.9%) and MK-13 (82.1%). The cellular fatty acids of strain NEAU-LLCT were anteiso-C_{15:0} (26.3%), anteiso-C_{17:0} (25.6%), C_{16:0} (4.3%), iso-C_{14:0} (1.6%), iso-C_{16:0} (28.3%), iso-C_{17:0} (1.5%), iso-C_{18:0} (12.1%) and iso-C_{19:0} (0.3%) (Table S1). Detailed fatty acid profiles of strain NEAU-LLCT and the closely related type strains are given in Table S1. All these chemotaxonomic data showed that strain NEAU-LLCT should be assigned to the genus Microbacterium. In addition to the above the phenotypic characteristics and chemotaxonomic characteristics, genotype characteristics of the strain NEAU-LLCT and its closely related strains were also different (Table 1).

Molecular characteristics

To determine whether strain NEAU-LLCT could be considered to represent a new species, DNA–DNA hybridization by the thermal renaturation was carried out with M. jejuense JCM 18734^T (M23411) was used as an outgroup. Asterisks indicate branches also recovered in the maximum-likelihood tree; Bar, 0.0100 substitutions are shown at branch points. Arthrobacter globiformis DSM 20124^T (M23411) was used as an outgroup. Asterisks indicate branches also recovered in the maximum-likelihood tree; Bar, 0.0100 substitutions

![Diagram](https://example.com/diagram.png)
The digital DNA–DNA hybridization levels between NEAU-LLC^T and *M. kyunghee* JCM 18735^T, *M. trichothecenolyticum* JCM 1358^T were 37.1 ± 2.5% and 25.7 ± 2.5%, respectively. These values are below the 70% threshold recommended by Wayne et al. (1987) for assigning strains to the same genomic species. Similarly, the ANI values of NEAU-LLC^T and the two reference strains were 86.36% and 82.41%, respectively, which were lower than the 95%-96% threshold defined by prokaryotic species (Richter and Rossello-Mora 2009; Chun and Rainey 2014). Detailed genomic information and other general features of genome sequences are shown in Table S2.

In conclusion, it is evident from phenotype and genotype data that NEAU-LLC^T strain represents a novel species in the genus *Microbacterium*, for which the name *Microbacterium helvum* is proposed.

Description of *Microbacterium helvum* sp. nov.

Microbacterium helvum (hel’vum. L. neut. adj. helvum, honey-yellow)

Short rods, about 0.4–1.3 μm in length and 0.4–0.8 μm width. Gram-stain positive, showing aerobic respiratory metabolism. Spores are not observed. Colonies are smooth, circular and light yellow after 3 days at 28 °C on ISP 2 agar. Growth at 15 °C to 45 °C (optimum 28 °C) and in the range of pH 6 to 10 (optimum pH 7.0). Tolerate up to 5% (w/v) NaCl in the culture medium. Positive for hydrolysis of aesculin and starch, production of urease, but negative for coagulation and peptonization of milk, decomposition of cellulose, hydrolysis of Tween 20, 40 and 80, liquefaction of gelatin, production of H₂S and reduction of nitrate. Utilizes d-fructose, d-galactose, d-glucose, d-maltose, d-mannitol, d-mannose, d-ribose, d-sorbitol, dulcitol, d-xylene, inositol, l-arabinose, lactose, l-rhamnose and sucrose as sole carbon sources, creatine, l-asparagine, l-aspartic acid, l-glutamine, l-serine and l-tyrosine as sole nitrogen sources. In API 20NE test strips, positive for hydrolysis adipic acid, aesculin, β-galactosidase, d-glucose, d-maltose, d-mannitol, d-mannose, d-ribose, N-acetyl-glucosamine and urease. In API ZYM tests, positive result in tests for acid phosphatase. Cystine arylamidase, esterase (C4), esterase lipase (C8), α-galactosidase, β-galactosidase, α-glucosidase, β-glucosidase, leucine arylamidase, lipase (C14), naphthol-AS-BI-phosphohydrolase and valine arylamidase. The phospholipid profile contains diphosphatidylglycerol, phosphatidylglycerol and unidentified glycolipids. Whole-cell sugars are galactose, glucose and ribose. The peptidoglycan of strain NEAU-LLC^T contained glutamic acid, lysine, ornithine, a small amount of alanine and glycine. The menaquinones are MK-12 and MK-13 and the major cellular fatty acids are anteiso-C₁₅:₀, anteiso-C₁₇:₀, iso-C₁₆:₀ and iso-C₁₈:₀. The DNA G+C content of the type strain is 70.28 mol %.

The type strain is NEAU-LLC^T (= CCTCC AA 2018026^T = JCM 32661^T), isolated from cow dung.
Table 1 Differential phenotypic properties between strain NEAU-LLCT and the type strain of the most closely related species of the genus Microbacterium

Characteristics	1	2	3	4	
Growth pH	6–10	7–11	7–10	7–10	
Tolerance of NaCl (% w/v)	5	6	2	7	
Hydrolysis of:					
Urea	+	–	–	–	
Tweens 20	–	–	+	–	
Tweens 40	–	–	+	+	
Tweens 80	–	–	–	+	
Production of urease	+	+	–	–	
Production of H2S	–	–	+	+	
Utilize as sole carbon source:					
Lactose	+	–	–	+	
α-Fructose	+	+	+	+	
Inositol	+	–	+	–	
Sucrose	+	–	+	–	
Raffinose	+	–	+	–	
Utilize as sole nitrogen source:					
Glycine	–	+	–	+	
L-Proline	+	+	–	+	
L-Threonine	w	+	–	–	
L-Arginine	–	+	–	+	
Enzyme activity (API20NE):					
Arginine dihydrolase	–	+	–	+	
Urease	+	+	–	–	
Malate	+	–	+	–	
Adipic acid	+	–	–	–	
Glucose fermentation	–	+	+	+	
Malic acid	–	+	+	+	
Potassium gluconate	+	–	–	–	
Enzyme activity (API ZYM):					
Alkaline phosphatase	–	+	–	+	
α-Chymotrypsin	–	+	+	+	
Cystine arylamidase	+	+	–	+	
Esterase (C4)	+	+	–	+	
Esterase lipase (C8)	+	–	–	–	
α-Galactosidase	+	–	–	+	
β-Galactosidase	–	–	+	w	
α-Glucosidase	+	–	w	w	
β-Glucosidase	–	–	w	w	
Valine arylamidase	+	–	–	–	
Acid production from (API 50 CH):					
L-Arabinose	+	–	–	+	
Inositol	–	–	+	–	
N-Acetylglucosamine	+	–	–	+	
Amygdalin	–	–	–	+	
Lactose	–	+	–	–	
D-Melibiose	+	–	–	+	
Sucrose	+	–	+	–	
Trehalose	+	–	–	–	
Melezitose	+	–	–	–	
Raffinose	+	–	+	–	
Glycogen	–	+	+	+	
Gentiose	–	–	–	–	
Whole-cell sugars					
Rha, Glu, Rib	Rha, Rib, Glu				
collected from Shangzhi, Heilongjiang Province, northeast China.

The GenBank accession number for the 16S rRNA gene sequence and the draft genome sequence of the type strain are MW009703 and JACXZS000000000, respectively.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00203-021-02311-9.

Acknowledgements This work was supported in part by grants from the National Natural Science Foundation of China (No. 31872037). We thank Prof. Aharon Oren (The Hebrew University of Jerusalem) for helping to derive the name helvum for the strain.

Author contributions XL performed the laboratory experiments, analyzed the data and drafted the manuscript. LZ contributed to the polyphasic taxonomy. JZ participated to the discussions of each section of experiments. WX and XW designed the experiments and revised the manuscript.

Declarations
Conflict of interest The authors declare that they have no conflict of interest.

Ethical standards This article does not contain any studies with human participants and/or animals performed by any of the authors. The formal consent is not required in this study.

References
Alves A, Correia A, Igual JM, Trujillo ME (2014) Microbacterium endophyticum sp. nov. And Microbacterium halimionae sp. nov., endophytes isolated from the salt-marsh plant Halimione portulacoides and emended description of the genus Microbacterium. Syst Appl Microbiol 37:474–479
Cao P, Li CX, Tan KF, Liu CZ, Xu X, Zhang SY, Wang XJ, Zhao JW, Xiang WS (2020) Characterization, phylogenetic analyses and pathogenicity of Enterobacter cloacae on rice seedlings in Heilongjiang Province. China Plant Disease 104(6):1601–1609
Chen X, Li GD, Li QY, Xu FJ, Jiang CL, Han L, Huang XS, Jiang Y (2016) Microbacterium faecales sp. nov., isolated from the faeces of Columba livia. Int J Syst Evol Microbiol 66:4445–4450
Chun J, Rainey FA (2014) Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. Int J Syst Evol Microbiol 64:316–324
Clermont D, Diard S, Bouchier C, Vivier C, Binet F, Motreff L, Welker M, Kallow W, Bizet C (2009) Microbacterium binotii sp. nov., isolated from human blood. Int J Syst Evol Microbiol 59:1016–1022
Collins MD (1985) Isoprenoid quinone analyses in bacterial classification and identification. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic Press, London, pp 267–287
Collins MD, Jones D, Kroppenstedt RM (1983) Reclassification of Brevibacterium intermedium (Steinhaus) and “Corynebacterium laevaniformans” (Dias and Bhat) in a redefined genus Microbacterium (Orla-Jensen), as Microbacterium intermedium comb. nov. and Microbacterium laevaniformans nom. rev; comb. nov. Syst Appl Microbiol 4:63–78
De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142
Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376
Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791
Fidalgo C, Riesco R, Henriques I, Trujillo ME, Alves A (2016) Microbacterium dietomobutyricum sp. nov., isolated from Halimione portulacoides, which contains dietomobutyric acid in its cell wall, and emended description of the genus Microbacterium. Int J Syst Evol Microbiol 66:4492–4500
Gao RX, Liu CX, Zhao JW, Jia FY, Yu C, Yang LY, Wang XJ, Xiang WS (2014) Micromonasospora jonlengensis sp. nov., isolated from muddy soil in China and emended description of the genus Micromonasospora. Antonie Van Leeuwenhoek 105:307–315
Gordon RE, Barnett DA, Handerhan JE, Pang C (1974) Gordonia amicalis sp. nov., a novel dibenzothio-phene-desulfurizing actinomycete. Int J Syst Evol Microbiol 24:54–63
Hasegawa T, Takizawa M, Tanida S (1983) A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29:319–322
Huss VAR, Festi H, Schleifer KH (1983) Studies on the spectrometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192
Jia FY, Liu CX, Zhao JW, Liu QF, Zhang J, Gao RX, Xiang WS (2013) Wangella harbinensis gen. nov., sp. nov., a new member of the family Micromonosporaceae. Antonie Van Leeuwenhoek 103:399–408
Kageyama A, Takahashi Y, Omura S (2006) Microbacterium deniunum sp. nov., Microbacterium piumulium sp. nov. and Microbacterium aoyamense sp. nov. Int J Syst Evol Microbiol 56:2113–2117
Kageyama A, Takahashi Y, Matsu Y, Kasai H, Shirai Y, Omura S (2007) Microbacterium sedimincola sp. nov. and Microbacterium marinilacus sp. nov., isolated from marine environments. Int J Syst Evol Microbiol 57:2355–2359
Kelly KL (1964) Inter-society color council-national bureau of standards color-name charts illustrated with centroid colors published in US
Kim SB, Brown R, Oldfield C, Gilbert SC, Hiarionov S, Goodfel-low, (2000) Gordonia amicalis sp. nov., a novel dibenzo-thiopheno-desulfurizing actinomycete. Int J Syst Evol Microbiol 50:2031–2036
Kim KK, Park HY, Park W, Kim IS, Lee ST (2005) Microbacterium xylanilyticum sp. nov., a xylan-degrading bacterium isolated from a biofilm. Int J Syst Evol Microbiol 55:2075–2079
Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120
Komagata K, Suzuki K (1987) Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207

Table 1 (continued) Strains: 1, NEAU-LLC T; 2, M. kyungheese JCM 18735T; 3, M. trichotheconolyticum JCM 1358T and 4, M. jejuense JCM 18734T. +, positive, –, negative, w weakly positive. All tests were performed under similar conditions except Whole-cell sugars, data for which was taken from Kook et al. (2014) and Yokota et al. (1993a, b).
Kook M, Son HM, Yi TH (2014) Microbacterium kyungheense sp. nov. and Microbacterium jejuense sp. nov., isolated from salty soil. Int J Syst Evol Microbiol 64:2267–2273
Krishnamurthi S, Bhattacharya A, Schumann P, Dastager SG, Tang SK, Li WJ, Chakrabarti T (2012) Microbacterium immunditarius sp. nov., an actinobacterium isolated from landfill surface soil, and emended description of the genus Microbacterium. Int J Syst Evol Microbiol 62:2187–2193
Kumar S, Stecher G, Tamura K (2016) Mega7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874
Lechevalier MP, Lechevalier HA (1980) The chemotaxonomy of actinomycetes. In: Dietz A, Thayer DW (editors) Actinomycete taxonomy special publication, vol 6. Society of Industrial Microbiology: Atlanta.
Li Y, Wang T, Fang W, Xue H, Piao CG, Guo MW, Zhu TH (2015) Microbacterium populi sp. nov., isolated from Populus×euramericana bark. Int J Syst Evol Microbiol 65:1444–1449
Mawlankar RR, Mual P, Sonalkar VV, Thorat MN, Verma A, Srini-vasan K, Dastager SG (2015) Microbacterium enclense sp. nov., isolated from sediment sample. Int J Syst Evol Microbiol 65:2064–2070
Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14:60–60
Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241
Orla-Jensen S (1919) The Lactic Acid Bacteria. Høst and Son, Copenhagen
Piao CY, Zheng WW, Li Y, Liu CX, Jin LY, Song W, Yan K, Wang XJ, Xiang WS (2017) Two new species of the genus Streptomyces: Streptomyces camponoti sp. nov. and Streptomyces cuticulae sp. nov., isolated from the cuticle of Camponotus japonicus Mayr. Arch Microbiol 199:963–970
Richter M, Rossello-Mora R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131
Ruan ZY, Wang YW, Song JL, Jiang SH, Wang HM, Li YT, Zhao BQ, Jiang RB, Zhao B (2014) Kurthia haakului sp. nov., isolated from biogas slurry, and emended description of the genus Kurthia. Int J Syst Evol Microbiol 64:518–521
Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
Schippers A, Bosecker K, Sproer C, Schumann P (2005) Microbacterium oleivorans sp. nov. and Microbacterium hydrocarbonoxydans sp. nov., novel crude-oil-degrading Gram-positive bacteria. Int J Syst Evol Microbiol 55:655–660
Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340
Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RG, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, pp 607–654
Takeuchi M, Hatano K (1998) Union of the genera Microbacterium and Aureobacterium Collins et al. in a redefined genus Microbacterium. Int J Syst Bacteriol 48:739–747
Thomas EA, Alvarez CE, Sutcliffe JG (2000) Evolutionarily distinct classes of S27 ribosomal proteins with differential mRNA expression in rat hypothalamus. J Neurochem 74:2259–2267
Torkko P, Suomalainen S, Iivanainen E, Suutari M, Tortoli E, Paulin L, Kallio ML (2000) Mycobacterium xenopi and related organisms isolated from stream waters in Finland and description of Mycobacterium botniense sp. nov. Int J Syst Evol Microbiol 50 Pt 1:283–289
Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Stal P, Trüper HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 46:463–464
Williams ST, Goodfellow M, Alderson G (1989) Genus Streptomyces Waksman and Henrici 1943, 339AL. In Bergey’s Manual of Systematic Bacteriology, vol. 4, pp 2452–2492. Edited by Williams ST, Sharpe ME and Holt JG. Baltimore: Williams and Wilkins
Wu C, Lu X, Qin M, Wang Y, Ruan J (1989) Analysis of menaquinone compound in microbial cells by HPLC. Microbiology 16:176–178
Xiang WS, Liu CX, Wang XJ, Du J, Xi LJ, Huang Y (2011) Actinocoloteichus nanhanensis sp. nov., isolated from the rhizosphere of a fig tree (Ficus religiosa). Int J Syst Evol Microbiol 61:1165–1169
Yang ZW, Salam N, Mohany M, Chinnathanambi A, Alharbi SA, Xiao M, Hozzein WN, Li WJ (2018) Microbacterium album sp. nov. and Microbacterium deserti sp. nov., two halotolerant actinobacteria isolated from desert soil. Int J Syst Evol Microbiol 68:217–222
Yokota A, Takeuchi M, Sakane T, Weiss N (1993a) Proposal of six new species in the genus Aureobacterium and transfer of Flavobacterium esteraromaticum Omelianski to the genus Aureobacterium as Aureobacterium esteraromaticum comb. nov. Int J Syst Bacteriol 43:555–564
Yokota A, Tamura T, Hasegawa T, Huang LH (1993b) Catenuloplanes japonicas gen. nov., sp. nov., nom. rev., a new genus of the order Actinomycetales. Int J Syst Bacteriol 43:805–812
Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017a) Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67:1613–1617
Yoon SH, Ha SM, Lim J, Kwon S, Chun J (2017b) A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110:1281–1286
Zhang W, Zhu HH, Yuan M, Yao Q, Tang R, Lin M, Yang SZ, Li ZK, Chen M (2010) Microbacterium radiodurans sp. nov., a UV radiation-resistant bacterium isolated from soil. Int J Syst Evol Microbiol 60:2665–2670
Zhao JW, Han LY, Yu MY, Cao P, Li DM, Guo XW, Liu YQ, Wang XJ, Xiang WS (2011) Characterization of Streptomyces sporangiforms sp. nov., a novel Soil Actinomycete with Antibacterial Activity against Ralstonia solanacearum. Microorganisms 17:7:360

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.