Can SARS-CoV-2 be found in the effluent from peritoneal dialysis patients?

Alexandre Candellier¹,², Eric Goffin¹

¹. Division of Nephrology, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
². Division of Nephrology, Centre Hospitalier Universitaire Amiens-Picardie, Amiens, France

Correspondence to: Eric Goffin; E-mail: eric.goffin@uclouvain.be
Twitter handle: @er_goffin

© The Author(s) 2021. Published by Oxford University Press on behalf of ERA-EDTA.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Peritoneal dialysis (PD) patients represent a vulnerable population for coronavirus disease 2019 (COVID-19). Approximately 300,000 patients are currently treated by PD worldwide, which produces large amounts of care-related waste including peritoneal effluent. PD drained fluid has previously been identified as a potential source of contamination with hepatitis B virus (HBV), hepatitis C virus (HCV) or human immunodeficiency virus (HIV). The question regarding the contagiousness of spent peritoneal dialysate by SARS-CoV-2 during the current COVID-19 pandemic is still debated. In order to investigate this concern, we performed a systematic review of currently available literature.

Since the start of the pandemic, 7 studies (3 cases series and 4 cases reports) reported peritoneal dialysate testing (n=52 in 28 patients) for the presence of SARS-CoV-2 using reverse transcriptase–polymerase chain reaction (RT-PCR) (Table 1). Only one report analyzed the presence of viable viral particles with cytopathic studies. The effluent was tested throughout the clinical course from 0 to 41 days after diagnosis. Most reports interested mild to moderate COVID-19 in chronic PD patients but 2 studies were performed during acute PD in critical ill patients.

None of the PD effluent from the ten patients in whom cytopathic studies were performed was found positive. Identification of SARS-CoV-2 RNA was reported in only one (3.6%) of the 28 patients. In this single case, PCR assay was positive one month after COVID-19 diagnosis; unfortunately, viral culture or cytopathic analysis was not performed, and the cycle threshold for the PCR was not mentioned.

Peritoneal dialysate effluent from PD patients might theoretically become infective for some viruses either via the catheter, by intra-luminal or peri-luminal routes after touch contamination, or via hematogenous diffusion or viral translocation across injured intestinal loops. Dialysate contamination had indeed been described in PD patients infected by small viruses such as HBV, HCV or HIV who had systemic infection and high viral load, but not...
during the SARS pandemic in 2003 \cite{13} nor during the Middle East Respiratory Syndrome (MERS) outbreak in 2012. Similarly, the lack of SARS-CoV-2 documentation within spent dialysates, has reviewed here, might thus be accounted for, on one hand, by the scarcity of intact virus circulation in blood (even though SARS-CoV-2 RNA has been detected in serum or plasma from infected patients \cite{14}), and on the other hand, by a virion size larger than the peritoneum pores diameter. It’s also unlikely that RT-PCR assays have missed identifying viral RNA in peritoneal effluent as fluid centrifugation is commonly performed to enhance their sensibility \cite{6}.

A word of caution should however be mentioned. As a prolonged presence of SARS-CoV-2 RNA has been described in fecal samples \cite{15}, viral RNA might be found within the dialysate effluent in PD patients with severe enteric peritonitis, because of transmural translocation. In this context, viral RNA was found on peritoneal fluid from three COVID-19 patients, not on PD, but in whom an open abdominal surgical procedure was performed.

Coccolini et al. first reported positive RT-PCR (RdRP, N and E sequences) on intraperitoneal swabs from a 78-year-old male during surgically treated ileal volvulus \cite{16} and from a 71-year-old female who underwent subtotal colectomy for severe colitis with ulceration and bleeding, respectively \cite{17}. Intraoperative fluid sampling was also found positive in a 73-year-old female with small bowel resection due to an incarcerated umbilical hernia and concomitant loop necrosis \cite{18}. In these studies, viral isolation was not performed.

To date, strong evidence of intraperitoneal contamination of PD patients by SARS-CoV-2 is lacking as no direct viral culture is available and as viral RNA was found in the PD effluent of only one patient. Still, presence of RNA does not imply infectivity \cite{19}. The risk of viral transmission by PD effluent remains thus, at most, very low. Imposing special disposal procedures, such as the instillation of hypochlorite in the drainage bags, is probably not
necessary. Nevertheless, it still seems prudent to drain spent PD effluent into a toilet that
needs to be disinfected thereafter.

CONFLICT OF INTEREST STATEMENT

None declared.
Table 1. Prevalence of SARS-CoV-2 RNA in the peritoneal effluent of PD patients

Authors [ref]	Study design	No. of patients	Sample collected	COVID-19 status at time of procedure	Time from diagnosis to specimen collection	Test performed - Target	Limit of detection - Amplification	Outcome of the test
Candellier A et al. [6]	Case series	3	11	Positive on NP swabs and compatible finding at CT-chest	0, 3, 4 and 7 days for each patient	RT-PCR - E and RdRp sequences	6.6 copies per reaction - 40 CT	All negative
El Shamy O et al. [7]	Case series	10*	10	Positive on NP swabs	NA	RT-PCR Cytopathic studies with cell fractions and supernatants recovered from PD effluent	5 copies per reaction	All negative
Gelaian A et al. [8]	Case report	1	1	Positive on NP swabs	1 day	RT-PCR - N2 sequences	NA	Negative
Nagatomo M et al. [9]	Case report	1*	1	Positive on NP swabs	14 days	RT-PCR	NA	Negative
Sadioglu RE et al. [10]	Case report	1	2	Positive on NP swabs	3 and 4 days	RT-PCR	NA	All negative
Vischini G et al. [11]	Case report	1	1	Compatible finding at CT-chest. Initial NP swab was negative, second NP swab was positive one month after diagnosis	1 month	RT-PCR - NA	NA	Positive
Wang X et al. [12]	Case series	11	26	3 patients still positive on NP swabs 8 patients were no longer positive on NP swabs	Mean: 15±11 days (median 14; range 1 to 41)	RT-PCR - N, ORF1ab and S sequences	10 copies per reaction - 40 CT	All negative

RT-PCR: reverse transcriptase–polymerase chain reaction; CT: Cycle Threshold; NP: Nasopharyngeal; No: Number of; NA: Not available

*Patients with acute kidney injury treated by acute peritoneal dialysis.
REFERENCES

[1] Gansevoort RT, Hilbrands LB. CKD is a key risk factor for COVID-19 mortality. Nat Rev Nephrol 2020. Dec;12:705-706. doi: 10.1038/s41581-020-00349-4.

[2] Noordzij M, Duivenvoorden R, Pena MJ, de Vries H, Kieneker LM, for the collaborative ERACODA authors, et al. ERACODA: the European database collecting clinical information of patients on kidney replacement therapy with COVID-19. Nephrol Dial Transplant 2020;35:2023–5. doi: 10.1093/ndt/gfaa179.

[3] Salo RJ, Salo AA, Fahlberg WJ, Ellzyee JT. Hepatitis b surface antigen (hbsag) in peritoneal fluid of hbsag carriers undergoing peritoneal dialysis. J Med Virol 1980;6:29–35. doi: 10.1002/jmv.1890060105.

[4] Castelnovo C, Sampietro M, Vecchi AD, Corbetta N, Cantu M, Orlandi A, et al. Diffusion of HCV through peritoneal membrane in HCV positive patients treated with continuous ambulatory peritoneal dialysis 1997;12:978–80. doi: 10.1093/ndt/12.5.978.

[5] Goffin E, Vandercam B, Burtonboy, G. Detection of HIV antigen in peritoneal dialysis fluid. Perit Dial Int 1994:889.

[6] Candellier A, Scohy A, Gillet N, Muylkens B, Morelle J, Belkhir L, et al. Absence of SARS-CoV-2 in the effluent of peritoneal dialysis patients. Perit Dial Int 2020;40:499–503. doi: 10.1177/0896860820953061.

[7] El Shamy O, Vassalotti JA, Sharma S, Aydillo-Gomez T, Marjanovic N, Ramos I, et al. Coronavirus disease 2019 (COVID-19) hospitalized patients with acute kidney injury treated with continuous ambulatory peritoneal dialysis do not have infectious peritoneal dialysis effluent. Kidney Int 2020;98:782. doi: 10.1016/j.kint.2020.06.012.

[8] Gelaidan A, Waggoner J, Lea J, Cobb J, Genena K, Tran L. SARS-CoV-2 Not Detected in Peritoneal Effluent in COVID-19 End-Stage Kidney Disease (ESKD) Peritoneal Dialysis Patient. Am J Kidney Dis 2021;77:595. doi: 10.1053/j.ajkd.2021.02.095.

[9] Nagatomo M, Yamada H, Shinozuka K, Shimoto M, Yunoki T, Ohtsuru S. Peritoneal dialysis for COVID-19-associated acute kidney injury. Crit Care 2020;24:309. doi: 10.1186/s13054-020-03024-z.

[10] Sadioglu RE, Aktar M, Gulten E, Eyupoglu S, Karahan ZC, Azap A, et al. Does SARS-CoV-2 reach peritoneal effluents? Perit Dial Int 2020;40:520–1. doi: 10.1177/0896860820947331.

[11] Vischini G, D’Alonzo S, Grandaliano G, D’Ascenzo FM. SARS-CoV-2 in the peritoneal waste in a patient treated with peritoneal dialysis. Kidney Int 2020;98:237–8. doi: 10.1016/j.kint.2020.05.005.

[12] Wang X, Patel A, Tisdale L, Haq Z, Ye X, Lasky R, et al. SARS-CoV-2 in spent dialysate from chronic peritoneal dialysis patients with COVID-19 2021;1:86-89; doi: 10.34067/KID.0006102020.

[13] Wölfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Müller MA, et al. Virological assessment of hospitalized patients with COVID-19. Nature 2020;581:465–9. doi: 10.1038/s41586-020-2196-x.