The Stability, Structural, Electronic, and Optical Properties of Hydrogenated Silicene Under Hydrostatic Pressures: A First-principle Study

V Kumar (vkumar52@hotmail.com)
Indian School of Mines

R Santosh
Indian School of Mines: Indian Institute of Technology

Research Article

Keywords: First-principles, hydrogenated silicene, C-structure, B-structure, hydrostatic pressures

DOI: https://doi.org/10.21203/rs.3.rs-567484/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

The structural, electronic, and optical properties of hydrogenated silicene have been studied under different hydrostatic pressures using first-principle calculations. The binding energy and band structure have been calculated for Chair (C-) and Boat (B-) structures, which are having good stability at 0 GPa, 3 GPa, 6 GPa, 9 GPa, 12 GPa, 15 GPa, and 18 GPa hydrostatic pressures. Stability has been verified using binding energy and phonon calculations. The C- and B- structures have become metallic and unstable at 21 GPa. The optical properties of B-configuration have been studied in the energy range of 0-20 eV. Five optical parameters such as conductivity threshold (σ_{th}), dielectric constant $\varepsilon(0)$, refractive index $n(0)$, birefringence $\Delta n(0)$ and plasmon energy ($\hbar\omega_p$) have been calculated for the first time under different hydrostatic pressures. The calculated values are in good agreement with the reported values at 0 GPa.

Full Text

Due to technical limitations, full-text HTML conversion of this manuscript could not be completed. However, the manuscript can be downloaded and accessed as a PDF.

Tables

Table 1. Lattice constants (a, b and c), Si-Si bond length (d_{Si-Si}), Si-H bond length (d_{Si-H}), Si-Si-Si bond angle ($\theta_{Si-Si-Si}$), Si-Si-H bond angle ($\theta_{Si-Si-H}$), total energy (E_T), unit cell volume (V), band gap energy (E_g), and binding energy (E_b) of B- configuration of hydrogenated silicene under different pressures.
Parameters	0	3	6	9	12	15	18	21	
This work	Rep. [33]	This work							
a (Å)	6.40	6.32	6.29	6.10	5.91	5.82	5.65	5.68	5.74
b (Å)	3.85	3.82	3.78	3.79	3.71	3.59	3.61	3.50	3.611
c (Å)	6.20	5.75	4.95	4.93	4.90	4.07	4.01	3.98	
d_{Si-Si}	2.36	2.36	2.34, 2.35, 2.33, 2.32	2.30, 2.29, 2.30	2.27, 2.30, 2.24, 2.32	2.28, 2.32, 2.29			
d_{Si-H}	1.51	1.5	1.52	1.496	1.49	1.48	1.45	1.44	1.41
θ_{Si-Si-Si} (degree)	110.80, 109.68	110.22, 108.47	109.37, 107.60	106.60, 107.29	105.40, 104.49	104.71, 103.27	103.20, 99.94	102.36, 98.19	
θ_{Si-Si-H} (degree)	107.66	108.18	109.07	110.26	112.70	113.12	114.81	115.54	
E_T (eV)	-744.33	-741.74	-739.81	-737.75	-735.67	-734.30	-732.56	-731.18	
V (Å³)	152.97	136.89	114.46	107.92	102.45	83.10	83.05	78.98	
E_g (eV)	1.663	1.6	1.557	1.01	0.60	0.13	0.04	0.01	0.00
E_b (eV)	2.992	2.345	1.86	1.346	0.827	0.46	0.05	-0.29	

Table 2. The structural parameters of C- configuration of hydrogenated silicene under different pressures.
Parameter	Pressure (GPa)								
	0	3	6	9	12	15	18	21	
This work	Rep. [33]	This work							
a = b (Å)	3.83	3.82	3.81	3.77	3.75	3.72	3.70	3.64	3.61
c (Å)	4.96	4.32	4.097	3.942	3.836	3.75	3.23	3.20	
d_{Si-Si} (Å)	2.32	2.16	2.31	2.289	2.274	2.26	2.25	2.22	2.18
d_{Si-H} (Å)	1.50	1.50	1.49	1.491	1.486	1.483	1.48	1.47	1.47
Θ_{Si-Si-Si} (degree)	111.15	112.00	112.10	113.09	114.97	115.82	116.73	118	119.99
Θ_{Si-Si-H} (degree)	107.72	106.75	105.79	107.92	108.07	108.18	89.99	89.84	
E_⊥ (eV)	-247.30	-247.30	-247.20	-247.1	-246.9	-246.8	-246.5	-245.90	
V (Å³)	69.40	54.26	50.42	47.95	46.025	44.4	41.29	40.11	
E_g (eV)	1.96	2.00	1.54	1.38	0.94	0.59	0.29	0.02	0.00
E_b (eV)	3.036	2.332	1.854	1.390	0.921	0.479	0.094	-0.29	

Table 3 The conductivity threshold (E_{th}), static dielectric constant $\varepsilon(0)$, static refractive index $n(0)$, birefringence $\Delta n(0)$ and plasmon energy ($\hbar\omega_p$) of B-configuration of hydrogenated silicene under 0 GPa, 6 GPa and 12 GPa external pressures.

Figures
Figure 1

The pictorial representation of (a) C-configuration (b) B-configuration hydrogenated silicene in which white circles are indicated by hydrogen atoms and yellow circles by silicon atoms.
Figure 2

The phonon dispersion of C-configuration at (a) 0 GPa (b) 21 GPa hydrostatic pressures.

Figure 3

(a) The band structure of C-configuration (b) B-configuration of hydrogenated silicene.
Figure 4

The total density of states (TDOS) and partial density of states (PDOS) for (a) B- and (b) C- configurations of hydrogenated silicene.

Figure 5

Behavior of (a) binding energy (b) energy band gap under different pressures.
Figure 6

The calculated imaginary part of dielectric function $\varepsilon_2(\omega)$ under different pressures (a) parallel polarization (b) perpendicular polarization of electric field for B- configuration of hydrogenated silicene.

Figure 7

The real part of dielectric function $\varepsilon_1(\omega)$ under different pressures: (a) parallel polarization and (b) perpendicular polarization of electric field for B- configuration of hydrogenated silicene.
Figure 8

The refractive index $n(\omega)$ under different pressures: (a) parallel polarization (b) perpendicular polarization of electric field for B- configuration of hydrogenated silicene.
Figure 9

The birefringence for B- configuration of hydrogenated silicene under different pressures.
Figure 10

The electron energy loss function $L(\omega)$ of hydrogenated silicene under different pressures: (a) parallel polarization (b) perpendicular polarization of the electric field for B-configuration.