Application of spiral computed tomography for determination of the minimal bone density variability of the maxillary sinus walls in chronic odontogenic and rhinogenic sinusitis

Nechyporenko A.S.¹, ⁴, ORCID: 0000-0002-4501-7426, e-mail: alinanechyporenko@gmail.com
Nazaryan R.S.², ORCID: 0000-0002-9465-224X, e-mail: rosnazaryan@gmail.com
Semko G.O.², ORCID: 0000-0002-9896-163X, e-mail: lupyr_ent@ukr.net
Lupyr A.V.², ORCID: 0000-0001-7340-2850, e-mail: urevichi@ukr.net
Fomenko Yu.V.², ORCID: 0000-0002-2652-860X, e-mail: diacom1900@yahoo.com
Kostiukov E.O.², ORCID: 0000-0003-0763-7859, e-mail: dr.kostiukov@gmail.com
Alekseeva V.V.¹, ³, ORCID: 0000-0001-5272-8704, e-mail: vik13052130@gmail.com

¹Technical University of Applied Sciences, University Technische Hochschule, Hochschulring, Germany
²Kharkiv National Medical University of the Ministry of Health of Ukraine, Kharkiv, Ukraine
³Private higher education institution «Kharkiv International Medical University»
⁴Kharkiv National University of Radio Electronics of the Ministry of Education and Science of Ukraine, Kharkiv, Ukraine
ABSTRACT

Background. There are many questions regarding the peculiarities of the course of odontogenic maxillary sinusitis, the likelihood of complications and the correct dosage of load during dental implantation.

Purpose – to identify changes in minimal bone density in chronic odontogenic maxillary sinusitis and to compare it with chronic rhinogenic catarrhal maxillary sinusitis and physiological state of maxillary sinus.

Materials and Methods. Our study involved 10 patients with chronic odontogenic maxillary sinusitis, 10 patients with chronic maxillary non-polyposis sinusitis of rhinogenic etiology, combined with hyperplasia of the sinus mucosa up to 1 cm. The control group comprised 10 patients with physiological condition of maxillary sinuses. In all subjects minimal bone density of superior, medial and inferior walls of maxillary sinus was analyzed.

Results. The study showed that the maximum in physiological conditions is the minimal density of the upper wall of the maxillary sinus, the minimum is the lower wall. The minimal density of the lower wall was shown to undergo a statistically significant reduction in chronic catarrhal maxillary sinusitis only by 2%, the upper by 5%, the medial by 4% compared with the intact sinus, but with the odontogenic nature of maxillary sinusitis, this figure was 31% in the lower wall, 27% in the medial region. Only the density of the upper wall of the maxillary sinus remained quite stable, it decreased relative to the physiological one by 6%.

Conclusions. Minimal physiological densitometric parameters of lower, medial and upper walls were calculated. The reduction of minimal density of bone tissue in the cases of rhinogenic chronic catarrhal maxillary sinusitis. In the cases of chronic odontogenic maxillary sinusitis, maximum significant decrease of minimal density of both lower and medial walls is determined.

For citation:
Nechyporenko AS, Nazaryan RS, Semko GO, Lupyr AV, Yurevych NO, Fomenko YuV, Kostiukov EO, Alekseeva VV. Application of spiral computed tomography for determination of the minimal bone density variability of the maxillary sinus walls in chronic odontogenic and rhinogenic sinusitis. Ukrainian journal of radiology and oncology. 2021;29(4):65–75. DOI: https://doi.org/10.46879/ukroj.4.2021.65-75

For correspondence:
Alekseeva Viktoriya Viktorivna
Khar'kov National Medical University of the Ministry of Health of Ukraine, Department of Otorhinorlaryngology;
4, 61022;
Private higher education institution «Kharkiv International Medical University», Department of Professionally-oriented Disciplines;
8, Molochna Str., Kharkiv, Ukraine, 61001;
e-mail: vik13052130@gmail.com

© Nechyporenko A.S., Nazaryan R.S., Semko G.O., Lupyr A.V., Yurevych N.O., Fomenko Yu.V., Kostiukov E.O., Alekseeva V.V., 2021

Key words:
computed tomography, maxillary sinus, bone density, odontogenic maxillary sinusitits.
МАТЕРИАЛИ ТА МЕТОДИ ДОСЛІДЖЕННЯ

Стан верхньощелепних пазух оцінювався за даними спіральної комп'ютерної томографії (СКТ), як одного з найбільш простих, інформативних, неінвазивних, призначених методів вивчення навколососових синусів [9].

Дослідження проводилось на базі Мереф'янської стоматології дитячого віку та імплантології Харківського національного медичного університету Міністерства охорони здоров’я України Р.С. Назаряна.

INTRODUCTION

The condition of the maxillary sinuses was assessed according to spiral computed tomography (CT), as one of the simplest, most informative, non-invasive, lifelong methods of studying the paranasal sinuses [9].

The study was performed on the base of Merefian Region Hospital. Our study involved observation of 30 individuals in 2020: 10 patients with chronic odontogen-
з хронічним одонтогенним верхньощелепним синуситом, 10 пацієнтів з хронічним верхньощелепним неполіпосним синуситом риногенної етіології, який поєднується з гіперплазією слизової оболонки синуса до 1 см. Для контрольної групи були відбрані 10 пацієнтів з фізіологічним станом верхньощелепних синусів, СКТ яким було рекомендовано провести за іншою, не пов'язаною із захворюваннями ЛОР-органів, причиною.

Слід зазначити, що до групи одонтогенних гайморитів були включні пацієнти з порушенням цілісності шнейдерової мембрани і з наявністю гінійного процесу із грануломатозними перетвореннями і критичне значення W(α) дорівнювало в першій дослідній групі 0.98 та 0.67, в другій групі – 0.94 та 0.07, в третій – 0.94 та 0.13, що дало змогу не відхиляти гіпотезу про нормальне розподілення.

Дослідження проводилось на комп'ютерному томографі Toshiba Aquilion, це мультизрізовий КТ-сканер з можливістю одночасного збору даних 4 зрізів товщиною 0.5 мм і відірванням високогірною діапазону мікродеталей іздивами 0.98 та 0.67, у другій групі – 0.94 та 0.07, в третій – 0.94 та 0.13, що дало змогу не відхиляти гіпотезу про нормальне розподілення.

Для розрахунку мінімальних денситометричних показників використовували максимально поверхневі до порожнини пазухи точки: для медіальної стінки – в ділянці природного сполучення, для верхньої – на межі з латеральною, для нижньої – на межі з медіальною.

Статистична обробка виконана на персональному комп'ютері Microsoft Office Excel 2010 року (CШA) з використанням методів варіаційної статистики. Відповідь розподілу нормальному визначали за критерієм Shapiro – Wilk’s test, який показував, що вибірки близькі до нормального розподілу.

Перевірка виконувалась за допомогою програми Attest 12.0.5.

Так, за ходом перевірки відповідності розподілу до нормального виявлено, що значення статистики W і критичне значення W(δ) дорівнювали в першій до-
Під час проведеного дослідження була підрахована мінімальна щільність верхньої, нижньої і медіальної стінок верхньошлепного синусу в усіх зазначених точках — орієнтах у фізіологічних умовах, при хронічному катаральному верхньошлепному синусіті, при хронічному одонтогенному верхньошлепному синусіті. Результати подані в таблицях 1–3.

In the course of the study, the minimal density of the upper, lower and medial walls of the maxillary sinus was calculated at all the above mentioned points — landmarks in physiological conditions, in the cases of chronic catarhal maxillary sinusitis, in the cases of chronic odontogenic maxillary sinusitis. The results are presented in tables 1–3.

Таблиця 1. Мінімальна щільність нижньої стінки верхньошлепної пазухи, HU

Нозологічна група	Номер дослідження / Number of study	M	σ
Хронічний одонтогенній верхньошлепний синусит	101 115 80 96 51 89 89 94 90 79	88,4	13,5
Хронічний неполіпозний верхньошлепний синусит	127 109 105 168 111 165 110 114 128 132	126,9	13,4
Фізіологічний стан верхньошлепної пазухи	122 111 138 113 123 121 158 144 130 127	128,7	21,6

Таблиця 2. Мінімальна щільність медіальної стінки верхньошлепної пазухи, HU

Нозологічна група	Номер дослідження / Number of study	M	σ
Хронічний одонтогенній верхньошлепний синусит	69 115 137 82 98 95 113 82 69 115	96,2	19,5
Хронічний неполіпозний верхньошлепний синусит	97 145 110 130 109 116 136 145 144 122	125,4	16,3
Фізіологічний стан верхньошлепної пазухи	93 138 145 107 118 137 154 89 93 138	127,4	23,2

Таблиця 3. Мінімальна щільність верхньої стінки верхньошлепної пазухи, HU

Нозологічна група	Номер дослідження / Number of study	M	σ
Хронічний одонтогенній верхньошлепний синусит	170 144 122 151 188 184 124 189 174 204	165	26,9
Хронічний неполіпозний верхньошлепний синусит	134 181 162 165 172 167 181 150 196 161	166,9	16,4
Фізіологічний стан верхньошлепної пазухи	190 130 210 165 168 196 178 167 152 200	175,6	23
Визначено мінімальну щільність нижньої стінки верхньошлепної пазухи, яка дорівнювала: в фізіологічних умовах — 128.7 ± 21.6HU, при одонтогенному верхньошлепному синуситі — 88.4 ± 13.5HU, при хронічному катаральному верхньошлепному синуситі — 126.9 ± 13.4HU (табл. 1). Також обчислена мінімальна щільність верхньої стінки, яка склала: 175.6 ± 23HU, 166.9 ± 16.4HU, 165.9 ± 26.9HU (табл. 3) і мінімальна щільність медіальної стінки: 131.8 ± 23HU, 127.4 ± 23.2HU, 96.2 ± 19.5HU відповідно до наведеного вище порядку (табл. 2).

Виявилося, що при хронічному катаральному верхньошлепному синуситі мінімальна щільність нижньої стінки всього лише на 2%, верхньої — на 5%, медіальної — на 4% достовірно знижується у порівнянні з незміненою пазухою, а при одонтогенній природі верхньошлепного синуситу цей показник склав 31% у нижньої стінки, 27% у ділянці медіальної. Досить стабільно залишалася тільки мінімальна щільність верхньої стінки верхньошлепного синусу, вона вижилася по відношенню до фізіологічної лише на 6%.

На сьогодні визначення щільності кісткової тканини стінок верхньошлепної пазухи може стати ключовим для діагностики різних форм верхньошлепного синуситу. Відомими є результати дослідження будови верхньошлепної пазухи при одонтогенному синуситі [14, 15] та навіть визначення щільності при розвитку міцетоми в пазухі [16, 17] за даними конусно-променевої комп’ютерної томографії. Дане дослідження відрізняється тим, що є пріоритетним, але без пояснення денситометрічних показників [23] і фізіологічних [26] або несприятливих факторів розвитку одонтогенного ураження пазухи.

The minimal density of the lower wall of the maxillary sinus was determined, which was equal to 128.7 ± 21.6HU in physiological conditions, 88.4 ± 13.5HU in odonto-
genic maxillary sinusitis, 126.9 ± 13.4HU in chronic catarrhal maxillary sinusitis (Table 1). The minimal density of the upper wall was also calculated — 175.6 ± 23HU, 166.9 ± 16.4HU, 165.9 ± 26.9HU (Table 3), as well as the minimal density of the medial wall — 131.8 ± 23HU, 127.4 ± 23.2HU, 96.2 ± 19.5HU according to the order above (Table 2).

The study showed that the maximum in physiological conditions is the minimal density of the upper wall of the maxillary sinus, the minimum density of the lower wall. The minimal density of the lower wall was shown to undergo a statistically significant reduction in chronic catarrhal maxillary sinusitis only by 2%, the upper by 5%, the medial by 4% compared with the normal sinus, but with the odontogenic nature of maxillary sinusitis, this figure was 31% in the lower wall, 27% in the medial region.

Only the density of the upper wall of the maxillary sinus remained quite stable, it decreased relative to the physiological one only by 6%.

To date, determining the bone density of the walls of the maxillary sinus can be key for diagnosing various forms of maxillary sinusitis. There are studies of the structure of the maxillary sinus in odontogenic sinusitis [14, 15] and even determining the density during the development of mycetoma in the sinus [16, 17] according to cone-beam computed tomography. This study differs in the fact that it is devoted to the analysis and comparison of densitometric structure in maxillary sinusitis of both rhinogenic and odontogenic etiology. It is based on the results of spiral computed tomography of the lower wall, in detail and accurately the values of bone density.

Automatic processing of medical images is increasingly becoming key in their interpretation to obtain objective data for patient management [18, 19], predicting the course of the pathological process [20, 21], including in NS [22].

Pathological processes of the oral cavity have a variety of etiologies, often with impaired microcirculation [23], the development of bacterial complications [24], especially in the presence of harmful habits [24, 25] and the influence of physiological [26] or adverse factors [27]. As can be seen from the study, the odontogenic nature of the development of pathological conditions in the sinus significantly reduces densitometric parameters, with the maximum in the area of the lower wall.

Therefore, the question of pathogenic mechanisms resulting in changes with the development of odontogenic maxillary sinusitis is quite debatable. Thus, it is impossible to exclude a decrease in density as an etiological factor in the development of odontogenic lesions of the sinuses. This assumption can be confirmed by a detailed study of the SCT of patients in the control group, that had the tips of the tooth roots identified in the sinus and this did not lead to significant pathological changes in the maxillary sinus and was a variant of the physiological condition. Attention is drawn to the fact that in such individuals, even under physiological conditions, the bone density of the lower wall is slightly lower. Perhaps this explains the more rapid decrease in density with the development of odontogenic pathological processes.

Thus, people with low bone density and the location of the teeth roots in the maxillary sinus need maximum attention in terms of the development of odontogenic maxillary sinusitis and its complications. It is possible that this cohort of individuals should be recommended additional

Original research
одонтогенных патологічних процесів. Отже, саме люди із низькою щільністю кісток й розташуванням коренів зубів у верхньощелепній пазуці потребують максимальної уваги щодо розвитку одонтогенного верхньощелепного синуситу та його ускладнень. Можливо, саме цій когорті осіб слід було б рекомендувати додаткові методи дослідження та проведення СКТ перед будь-якими лікувально-діагностичними процедурами [28, 29].

Цікавим є і зміни денситометричних показників при хронічному верхньощелепному синуситі риногенної і одонтогенної етіології. Найстабільнішими є показники мінімальної щільності верхньої стінки верхньощелепної пазуки. Вона змінюється з 166.9 ± 16.4 HU до 165.9 ± 26.9 HU, що становить лише 1 %. Щільність же нижньої стінки достовірно (р < 0,05) є найбільш мінливую і знижується на 30 % при одонтогенній природі захворювання в порівнянні з риногенною. Щільність медіальної стінки достовірно (р < 0,05) знижується на 24,5 %.

Дана методика вимірювання щільності кісткової тканини може бути доповнена іншими, [29–31] та досліджена при багатьох інших патологічних станах та під впливом деяких речовин [32–34], при наявності особливостей індивідуального розвитку в дитячому або підлітковому віці [25, 35, 36] коли відбувається формування скелета або в особи похилого віку під впливом гормональних порушень [26]. Результати проведеного досягнення підтверджуються і попередніми роботами, у яких щільність визначалась за допомогою методу підранжку невизначеності [37].

Таким чином, стабільність щільності верхньої стінки верхньощелепної пазуки дозволяє припустити, що ризик розвитку внутрішньоорганічних ускладнень є приблизно однаковим як у випадках риногенної, так і у випадках одонтогенного хронічного верхньощелепного синуситу. Мінімівсть щільності нижньої стінки дає можливість припустити легкість розповсюдження інфекційних процесів із порожнини рота до верхньощелепної пазуки із розвитком подальших ускладнень як у людей без супутніх захворювань [38], так і при наявності факторів ризику [39, 40].

Особливо значення має виявлення мінливість щільності нижньої стінки верхньощелепної пазуки, що слід брати до уваги у стоматології при дозуванні доз досліджуваних груп хворих. Вона знижується у 5 % при хронічному катаральному верхньощелепному синуситі риногенної природи, і на 6 % при одонтогенній формі, порівняно з незміненою пазукою.

ВИСНОВКИ

1. Підраховані фізіологічні мінімальні денситометричні показники нижньої, медіальної, верхньої стінок верхньощелепної пазуки, які склали: 128,7 ± 21,6 HU для нижньої стінки, 175,6 ± 23 HU для медіальної стінки і 166,9 ± 16,4 HU для верхньої стінки.

CONCLUSIONS

1. Calculation of minimal physiological densitometric parameters of the lower, medial, upper walls of the maxillary sinus showed the following results: 128.7 ± 21.6 HU for the lower wall, 175.6 ± 23 HU for the medial wall, and 166.9 ± 16.4 HU for the upper wall, respectively. Thus, the lower wall has the lowest density, and the upper one has the highest.

2. Chronic odontogenic maxillary sinusitis is associated with the maximum significant decrease in minimal density of the lower (31 % compared to the normal sinus and 30 % compared to chronic sinusitis of rhinogenic nature), as well as the medial wall by 27 % and 24.5 %, respectively.

3. The minimal density of the upper wall is relatively stable in all study groups of patients. It is reduced by only 5 % in chronic catarrhal maxillary sinusitis of rhinogenic nature and by 6 % in odontogenic form compared with the unchanged sinus.
REFERENCES

1. Kim AS, Willis AL, Laubitz D, Sharma S, Song BH, Chiu AG et al. The effect of maxillary sinus antrostomy on the maxillary sinus microbiome. International forum of allergy & rhinology. 2019;9(1):30–38. DOI: https://doi.org/10.1002/air.22224
2. Fokkens W, Lund V, Hopkins C, Hellings P, Kern R, Reitsma S et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2020. Rhinology. 2020; 58(2): 1–464. DOI: https://doi.org/10.4193/ Rhino.2020.60
3. Drumond J, Allegra B, Novo N, de Miranda S, Sendyk W. Evaluation of the Significance of Rhinosinusitis in the Adult Population: Analysis of Cases Presented to a Respiratory Medicine Clinic. International archives of otorhino-laryngology. 2017; 21(02): 126–133. DOI: https://doi.org/10.1055/s-0036-1593834
4. Butler L, Wadie M, Gascon J. Anatomical Variation in Maxillary Sinus Osteum Positioning: Implications for Nasal Sinus Disease. Anatomical record. 2019; 302(6): 917–930. DOI: https://doi.org/10.1002/ar.24039
5. Lee IH, Kim DH, Kim SW, Park J, Kim SW. An Anatomic Study on the Maxillary Sinus Mucosal Thickness and the Distance between the Maxillary Sinus Osteum and Sinus Floor for the Maxillary Sinus Augmentation. Medicina. 2020; 56(9): 470. DOI: https://doi.org/10.3390/medicina56090470
6. Little R, Long CM, Loerhi T, Poetker DM. Odontogenic sinusitis: A study of the current literature. Laryngoscope Investigative Otolaryngology. 2018; 3(2). 110–114. DOI: https:// doi.org/10.1002/loto.142
7. Carr TF. Complications of Sinusitis. American journal of rhino & allergy. 2016; 30(4): 241–245. DOI: https://doi.org/10.2500/ arijna.2016.30.4322
8. Eggmann F, Connert T, Böhler J, Daganass-Bernt C, Weiger R, Walter C. Do periapical and periodontal pathologies affect Schneiderian membrane appearance? Systematic review of studies using cone-beam computed tomography. Clinical oral investigations. 2017; 21(5): 1611–1630. DOI: https://doi.org/10.1007/s00784-016-1447-7
9. Pirimoglu B, Sade R, Sakat MS, Ogul H, Levent A, Kantarci M. Low-Dose Noncontrasted Examination of the Pananasal Sinuses Using Volumetric Computed Tomography. Journal of computer assisted tomography. 2018; 42(3). 482–486. DOI: https://doi.org/10.1097/RCT. 0000000000000899
10. DenOtter T, Schubert J. Housfields Unit. Treasure Island (FL). StatPapers Publishing. 2021.
11. El Mograbi A, Ritter A, Najer E, Soudry E. Orbital Complications of Rhinosinusitis in the Adult Population: Analysis of Cases Presenting to a Tertiary Medical Center Over a 13-Year Period. The Annals of otorhinology, rhinology, and laryngology. 2019; 128(6). 563–568. DOI: https:// doi.org/10.1177/0300067719832624
12. Yang SJ, Ryu D M. Recognition of large oroantral defects using a pedicled buccal fat pad. Maxillofacial plastic and reconstructive surgery. 2018; 40(1), 7. DOI: https://doi.org/10.1159/0004902-018-1414-6
13. Grewal SS, Kurbanov A, Anazi A, Keller JT, Theodosopoulos P V, Zimmer LA. Endoscopic endonasal approach to the maxillary strut: anatomical review and case series. The Laryngoscope. 2014; 124(8). 1739–1743. DOI: https:// doi.org/10.1002/lary.24528
14. Whyte A, Boeddinghaus R. Imaging of odontogenic sinusitis. Clinical radiology. 2019; 74(7). 503–516. DOI: https:// doi.org/10.1016/j.crad.2019.02.012
15. Nascimento E H, Pontual M L, Pontual A A, Freitas D Q, Perez DE, Ramos-Perez FM. Association between Odontogenic Conditions and Maxillary Sinus Disease: A Study Using Cone-beam Computed Tomography. Journal of endodontics. 2016; 42(10). 1509–1515. DOI: https://doi.org/10.1016/j.joen.2016.07.003
16. Huang Z, Xu H, Xiao N, Li Y, Du Y, Song Y, Zhou B. Predictive Significance of Radiographic Density of Sinus Opacity and Bone Thickness in Unilateral Maxillary Sinus Mycetoma. ORL; journal for otorhinolaryngology and its related specialties. 2019; 81(2–3). P. 111–120. DOI: https://doi.org/10.1159/0004948829
17. Lee JH, Lee BD. Characteristic features of fungus ball in the maxillary sinus and the location of intrasessional calcifications on computed tomographic images: A report of 2 cases. Imaging science in dentistry. 2020. Vol. 50(4). 377–384. DOI: https:// doi.org/10.5624/isd.2020.50.4.377
18. Gargin V, Radnutz R, Titova G, Bibik D, Kirichenko A, Bazhenov O. Application of the computer vision system for evaluation of pathomorphological images. Paper presented at the 2020 IEEE 40th International Conference on Electronics and Nanotechnology. 469–473. DOI: https://doi.org/10.1109/ELNANO50318.2020.9088989
19. Krivonen S, Lukin V, Krylova O, Knives O, Kryvenko L, Egiazarian K. A fast method of visually lossless compression of dental images. Applied science. 2021. Vol. 11(1). P. 1–14. DOI: https://doi.org/10.3390/app11010135
Дані дослідження може бути використане в повсякденній \(\text{области гастроenterології.} \) Автори рукопису свідомо засвідчують відсутність фактичного \(\text{або потенційного конфлікту інтересів щодо результатів цього} \) \(\text{дослідження.} \) Неофіційне підтримку \(\text{обладання досліджених пристроїв, іншими організаціями, \(\text{чіт продукти, послуги, фінансова підтримка можуть бути пов'язані з предметом надання матеріалів або які спонсорували проведені дослідження.} \) } \)

ВІДОМОСТІ ПРО АВТОРІВ

Нечипоренко Аліна Сергiївна – доктор наук, професор кафедри системотехніки Харківського національного медичного університету, вчений секретар Харківського національного медичного університету. Нейрохірург, головний хірург Київської області. Автори рукопису свідомо засвідчують відсутність фактичного \(\text{або потенційного конфлікту інтересів щодо результатів цього} \) \(\text{дослідження.} \) Неофіційне підтримку \(\text{обладання досліджених пристроїв, іншими організаціями, \(\text{чіт продукти, послуги, фінансова підтримка можуть бути пов'язані з предметом надання матеріалів або які спонсорували проведені дослідження.} \) } \)

INFOMATION ABOUT AUTHORS

Nechyporenko Alina Sergiyivna – Doctor of Sciences, Professor of Systems Engineering Department of Kharkiv National University of Radio Electronics of the Ministry of Education and Science of Ukraine; 14, Nauky Ave, Kharkiv, Ukraine, 61166; Professor of Technical University of Applied Sciences; Hochschulring 1, Wildau, Germany, 15745; e-mail: alinanechyporenko@gmail.com, tel.: +38 (050) 872-81-00.

Author's contribution: adjustment of the performed work, analysis of the obtained results.

Nazaryan Rosana Stepanivna – Doctor of Medical Sciences, Professor, Head of Department of Pediatric Dentistry and Implantology of Kharkiv National Medical University of the Ministry of Health of Ukraine; 4, Nauky Ave, Kharkiv, Ukraine, 61202; e-mail: rosnazaryan@gmail.com, tel.: +38 (050) 597-58-29.

Author's contribution: statistical data processing, data interpretation.

Semko Galina Oleksandrivna – Candidate of Biological Sciences, Assistant of Department of Clinical Laboratory Diagnostics of Kharkiv National Medical University of the Ministry of Health of Ukraine; 4, Nauky Ave, Kharkiv, Ukraine, 61202; e-mail: ho.semko@knmu.edu.ua, tel.: +38 (066) 460-12-03.

Author's contribution: collection of materials.

Lupyr Andrii Viktorovych – Doctor of Medical Sciences, Associate Professor, Head of Department of Otorhinolaryngology of Kharkiv National Medical University of the Ministry of Health of Ukraine; 4, Nauky Ave, Kharkiv, Ukraine, 61202; e-mail: lupyr_ent@ukr.net, tel.: +38 (066) 783-13-23.

Author's contribution: analysis of the obtained results.
Юреvич Надія Олександрівна – кандидат медичних наук, доцент кафедри оториноларингології Харківського національного медичного університету Міністерства охорони здоров’я України, пр. Науки, буд. 4, м. Харків, Україна, 61022; e-mail: urevichi@ukr.net
моб.: +38 (097) 713-53-15
Внесок автора: статистична обробка даних, збір матеріалу.

Фоменко Юлія Володимировна – кандидат медичних наук, доцент кафедри стоматології дитячого віку та імплантології Харківського національного медичного університету Міністерства охорони здоров’я України, пр. Науки, буд. 4, м. Харків, Україна, 61022; e-mail: diacom1900@yahoo.com
моб.: +38 (050) 304-61-94
Внесок автора: оцінка СКТ, інтерпретація результатів.

Костюков Едуард Олександрович – асистент кафедри стоматології дитячого віку та імплантології Харківського національного медичного університету Міністерства охорони здоров’я України, пр. Науки, буд. 4, м. Харків, Україна, 61022; e-mail: dr.kostukov@gmail.com
моб.: +38 (093) 771-00-50
Внесок автора: збір інформації, оцінка СКТ.

Алєксєєва Вікторія Вікторівна – асистент кафедри оториноларингології Харківського національного медичного університету Міністерства охорони здоров’я України, пр. Науки, буд. 4, м. Харків, Україна, 61022, асистент кафедри професійно-орієнтованих дисциплін Приватного вищого навчального закладу «Харківський міжнародний медичний університет»; вул. Молочна, буд. 38, м. Харків, Україна, 61001; e-mail: vik13052130@gmail.com
моб.: +38 (099) 966-89-76
Внесок автора: бібліографічний пошук, дизайн роботи.

Yurevych Nadia Oleksandrina – Candidate of Medical Sciences, Associate Professor of Department of Otorhinolaryngology of Kharkiv National Medical University of the Ministry of Health of Ukraine; 4, Nauky Ave, Kharkiv, Ukraine, 61022; e-mail: urevichi@ukr.net
tel.: +38 (097) 713-53-15
Author’s contribution: statistical data processing, material collection.

Fomenko Yuliya Volodymyrivna – Candidate of Medical Sciences, Associate Professor of Department of Pediatric Dentistry and Implantology of Kharkiv National Medical University of the Ministry of Health of Ukraine; 4, Nauky Ave, Kharkiv, Ukraine, 61022; e-mail: diacom1900@yahoo.com
mob.: +38 (050) 304-61-94
Author’s contribution: assessment of SCT, interpretation of the results.

Kostiukov Eduard Oleksandrovich – Assistant of Department of Pediatric Dentistry and Implantology of Kharkiv National Medical University of the Ministry of Health of Ukraine; 4, Nauky Ave, Kharkiv, Ukraine, 61022; e-mail: dr.kostukov@gmail.com
mob.: +38 (093) 771-00-50
Author’s contribution: analysis of information, assessment of SCT.

Alekseeva Victoria Viktorivna – Assistant of Department of Otorhinolaryngology of Kharkiv National Medical University of the Ministry of Health of Ukraine, 4, Nauky Ave, Kharkiv, Ukraine, 61022; Assistant of Department of Professional-oriented Private higher education institution «Kharkiv International Medical University»; 38, Molochna Str., Kharkiv, Ukraine, 61001; e-mail: vik13052130@gmail.com
mob.: +38 (099) 966-89-76
Author’s contribution: bibliographic search, design of the study.