The Role of Management Practices in Closing the Productivity Gap

IDEAS Factory Project
Uwe Aickelin, Giuliana Battisti, Helen Celia, Chris Clegg, Xiaolan Fu, Alfonsina Iona, Alina Petrescu, and Peer-Olaf Siebers
University of Aston, Leeds, Nottingham, and Oxford

A Multi-Agent Simulation of Retail Management Practices
Peer-Olaf Siebers, Uwe Aickelin
Nottingham University - School of Computer Science, UK
Helen Celia, Chris Clegg
Leeds University - Business School, UK
Prepared for: AIM Retail Day 2008 (12/02/2008)
Content

- Introduction
- Project Aim & Method
- Agent-Based Simulation
- Conceptual Model Design
- Empirical Data
- The Simulator
- Experiments
- Conclusions

Introduction

- The retail sector is one of the biggest contributors to the productivity gap between UK, EUROPE and USA

- There is a link between management practices and company’s productivity

- Current OR studies most often ignore HR management practices and do not consider the development of the system over time
Project Aim & Method

Project Aim:
- Develop a simulator that help to understand (and predict) the impact of different HR management practices on retail store productivity

Method:
- Case study approach
- Individual departments within department store
- Using agent-based modelling and simulation
- Incorporating variables from different levels of analysis

Agent-Based Simulation (1/2)

Agent-Based Simulation
- Bottom-up approach

Agents
- A discrete entity with its own goals and behaviours
- Autonomous with the capability to adapt and modify its behaviour
- Examples: People, Organisations, Social Insects, Swarms, Robots

Agent-Based Simulation is used to study how micro level processes affect macro level outcome; macro behaviour is not modelled, it emerges from the micro decisions of the individual agents [Pourdehnad et al., 2002].
Agent-Based Simulation (2/2)

- Example of an Interactive Organisational Agent-Based Simulation: The Sims™

Conceptual Model Design (Simulator)

- Customer Agent
 - Shopping need, attitudes, demographics etc.

- Sales Staff Agent
 - Attitudes, length of service, competencies, training etc.

- Manager Agent
 - Leadership quality, length of service, competencies, training etc.

- Global Parameters
 - Number of customers, sales staff, managers etc.

Visual Dynamic Stochastic Simulation Model

- Interface for User Interaction during Runtime

- Performance Measures
 - Staff utilisation, average response time, customer satisfaction etc.

- Emergent behaviour on macro level

- Understanding about interactions of entities within the system

- Identification of bottlenecks
Conceptual Model Design (Customer)

Example of a state chart:

Empirical Data

Sources (case study in 2 x 2 departments over 2 weeks)
- Informal participant observations
- Staff interviews
- Informational sources internal to the case study organization

Implementation:
- Frequency distributions for state change delays
 - Example: Leave browse state after … triangular (1,7,15)
- Probability distributions for supporting decision making
 - Example: Likelihood that someone requires help … 0.38
The Simulator
ManPraSim v1

Features:
- Implemented in AnyLogic v5.5 (using state charts)
- Based on case study data
- Staff types: cashiers, 2 x selling staff, section managers
- Customer types: general customer

Management practices:
- Training: staff at different training levels
- Empowerment: refund decisions; staff learning on the job

Drawbacks:
- Homogeneous customers; no study of long term effects possible

The Simulator
ManPraSim v2

Main additions:
- Realistic footfall & opening hours
- Customer types
- Finite population

Management practices:
- Effect of previously studied ones on different customer types
The Simulator
ManPraSim v3

- Main additions:
 - Staff pool
 - Customer evolution through external & internal stimulation

- Management practices:
 - Effect of previously studied once on customer evolution
Experiment 1

Till availability
- **H1:** number of tills linked to increase in performance until a peak level is reached
- **H2:** peaks earlier in A&TV

Till Queue Lengths

Till queue length means:	4.15	max: 15.0				
- satisfied (≥ 0):	95.80	41.1%	25953	2053	37%	16252
- don’t know (≥ 0):	5310	23%	6915	36%		
- not satisfied (≥ 0):	8479	36%	-22418	6410	27%	-14966

Overall Satisfaction

Overall satisfaction level
0
1
2
3
4
5
6
7

Important parameters:
- **Empowerment level of cashier for refunds:** 0.7
- **Probability that refund is granted by cashier:** 0.8
- **Probability that refund is granted by authorized:** 0.7
- **Probability that staff stay with customers:** 0.0
- **Points required to become an expert:** 100000
- **Word of mouth adoption fraction:** 0

Overall decisions by cashier:
- 0

Overall decisions by authorized person:
- 0

1 = number of people queueing for this service

2 = % of those leaving the queue

3 = considering accumulated history [number]

4 = considering accumulated history [satisfaction growth]

5 = experience per visit [number]

6 = experience per visit [satisfaction growth]
Experiment 2 (1/2)

Word Of Mouth

- **H3:** Word of mouth impact different for different departments

A&TV

adoption fraction	0	0.5	1	difference\(^1\)	difference\(^2\)
overall number of customers	40755	41886	42698	1943	4.55%
number of customers that leave buying something	12010	12065	12085	75	0.62%
number of customers that leave not waiting for normal help	1050	1283	1682	632	37.57%
number of customers that leave not waiting for expert help	459	446	486	7	1.50%
number of customers that leave not waiting to pay	7161	7508	7603	442	5.81%
number of customers that leave without finding anything	20075	20584	20862	787	3.77%

adoption fraction	0	0.5	1	difference\(^1\)	difference\(^2\)
overall number of customers	63957	76643	85837	21880	25.49%
number of customers that leave buying something	29634	30063	30225	591	1.96%
number of customers that leave not waiting for normal help	2	44	91	89	97.80%
number of customers that leave not waiting for expert help	63	129	185	122	65.95%
number of customers that leave not waiting to pay	6450	13363	17955	11505	64.08%
number of customers that leave without finding anything	27808	33044	37381	9573	25.61%

\(^1\): ((adoption fraction = 1) - (adoption fraction = 0))

\(^2\): ((adoption fraction = 1) - (adoption fraction = 0)) / (adoption fraction = 1)

WW

adoption fraction	0	0.5	1	difference\(^1\)	difference\(^2\)
overall number of customers	40755	41886	42698	1943	4.55%
number of customers that leave buying something	12010	12065	12085	75	0.62%
number of customers that leave not waiting for normal help	1050	1283	1682	632	37.57%
number of customers that leave not waiting for expert help	459	446	486	7	1.50%
number of customers that leave not waiting to pay	7161	7508	7603	442	5.81%
number of customers that leave without finding anything	20075	20584	20862	787	3.77%

adoption fraction	0	0.5	1	difference\(^1\)	difference\(^2\)
overall number of customers	63957	76643	85837	21880	25.49%
number of customers that leave buying something	29634	30063	30225	591	1.96%
number of customers that leave not waiting for normal help	2	44	91	89	97.80%
number of customers that leave not waiting for expert help	63	129	185	122	65.95%
number of customers that leave not waiting to pay	6450	13363	17955	11505	64.08%
number of customers that leave without finding anything	27808	33044	37381	9573	25.61%

\(^1\): ((adoption fraction = 1) - (adoption fraction = 0))

\(^2\): ((adoption fraction = 1) - (adoption fraction = 0)) / (adoption fraction = 1)
Conclusions

- We have presented the design, implementation and operation of a management practices simulator

- We have found Agent-Based Simulation to be a useful tool for these kind of investigations

- Future Outlook:
 - Continue our investigations into customer evolution
 - Empower staff to respond to customer demand
 - Study the impact of team work related management practices
Questions?

Reference:

- Pourdehnad, J., Maani, K., and Sedehi, H. (2002). “System Dynamics and Intelligent Agent-Based Simulation: Where is the Synergy?” Proceedings of the 20th International Conference of the System Dynamics Society, 28 July - 1 August 2002, Palermo, Italy.