Effect of reinforced concrete beam confinement under cyclic loading on ultimate drift ratio

L S B Wibowo and M S D Cahyono

1Department of Civil Engineering, Widya Kartika University, Surabaya, Indonesia

*Corresponding author’s e-mail: leonarduswibowo@widyakartika.ac.id

Abstract. The purpose of this paper is to evaluate the effect confinement on ultimate drift ratio of reinforced concrete beam specimens using normal concrete. All beam specimens were tested under cyclic loading. The measured compressive strength of the concrete is in the range of 25 – 41.8 MPa, longitudinal reinforcement yield strength is in the range 350 – 570 MPa and transverse reinforcement yield strength is in the range 275 – 570 MPa. Test parameters include s/d_b ratio, \(\rho_t \), and \(V_s/a/M_n \) ratio. The results showed that \(V_s/a/M_n \) ratio have a significant effect on the ultimate drift ratio. Increase the nominal shear strength by confinement leads to an increase of ultimate drift ratio. In other hands, spacing of transverse reinforcement not exceeding 8d_b can achieve minimum 3.00% ultimate drift ratio.

1. Introduction

In the previous research, the amount of transverse reinforcement has an influence on the performance of reinforced concrete beams under cyclic loading and has an effect on shear strength and ultimate drift ratio. One of ACI318-14 [1] requirement for spacing of hoops is eight times the diameter of the smallest longitudinal bar enclosed. Based on ASCE 41-13 [2], drift limit for reinforced concrete beams to achieve life safety condition are between 2.0% to 2.5%. Test results by Panagiotou et al. [3] shows beam with reduced transverse reinforcement spacing was capable of more displacement cycles and larger displacement amplitude than beam with wider transverse reinforcement spacing. Ultimate drift ratio is defined as the ratio of maximum lateral displacement to the total of shear span. The analysis presented seeks to establish a direct relationship between, s/d_b ratio, transverse reinforcement ratio, and \(V_s \times a/M_n \) ratio on ultimate drift ratio. This study focused on reinforced concrete beams under cyclic loading.

2. Experimental Database

The beams were subjected to cyclic loading and single curvature. 15 specimens were tested in a vertical position and 11 specimens were tested in a horizontal position. The test setup is presented in Fig. 1. The shear span, measured from the center of load application to the top of the concrete base block. Data of 26 beam specimens were collected from various sources (Kinugasa and Nomura [4], Fang et al. [5], Ou et al. [6], Vu [7], Cheng and Giduquio [8], Panagiotou et al. [3], Marefaat et al. [9], Walker and Dhakal [10], Ou and Chen [11], Tanarslan [12], and Jin et al. [13]). Details of the beam data including dimensions, material properties, and ultimate drift ratios. The ultimate drift capacity ratio of the beams is defined as the displacement corresponding to the maximum shear strength \((V_{max}) \) or 20% drop of the maximum shear strength \((V_{max}) \).
The parameters considered in the study included concrete compressive strength (f'_c), yield strength of the longitudinal reinforcement (f_y), longitudinal and transverse reinforcement ratio, and aspect ratio. The following criteria were considered in establishing database are 1) Only cantilever beams subjected to standard cyclic testing procedure as in figure 1 and figure 2) Only beams which has the ratio of top reinforcement is the same as the ratio of bottom reinforcement ($\rho = \rho'$), 3) Only beams for which the complete data are known were used. Table 1 presents the range of properties of the beams included in the database. A summary of beam specimen and material properties is provided in table 2.

![Test setup](image)

Figure 1. Test setup

Variable	Units	Minimum	Maximum
f'_c	MPa	25	41.8
f_y	MPa	350	570
$\rho = \rho'$	%	0.42	2.16
f_{yt}	MPa	275	570.2
ρ_t	%	0.19	1.43
a/d	-	2.6	5.0
s/db	-	2.62	25
Table 2. Summary of beam specimen and material properties.

Reference	Beam name	$f_{c'}$ (MPa)	b (mm)	d (mm)	$f_{t'}$ (MPa)	ρ	f_{ut} (MPa)	ρ	sidα	a/d	Type*
Kinugasa and Nomura (2006)	A1	28.2	200	170.0	352; 361	0.95%	366	0.75%	3.93	2.94	Va
	A2	26.9	200	170.0	352; 361	0.95%	366	0.75%	3.93	2.94	V
	B	33.3	200	170.0	402	1.75%	366	0.19%	9.43	2.94	V
Fang et al. (1993)	B1-6	33.1	200	332.0	489	2.16%	310	1.43%	2.62	2.56	Hb
Ou et al. (2011)	B-0	25	300	426.2	448	0.78%	448	0.48%	6.29	3.52	H
Vu (2013)	A1-0	30.36	300	433.0	524	1.49%	570.16	0.84%	3.48	2.77	H
	B1-0	39	300	433.0	524	1.49%	431.88	0.84%	3.48	2.77	H
Cheng and Giduquio (2011)	SP1	37	250	540.0	485; 421	0.72%	420	0.46%	7.86	3.89	V
Panagiotou et al. (2013)	BEAM 1	36.8	762	1115.8	503; 455	0.65%	455	0.28%	22.00	3.42	H
	BEAM 2	36.8	762	1115.8	503; 455	0.65%	455	0.51%	12.00	3.42	H
Marefat et al. (2009)	PN-CS4	27.8	150	265.0	356	0.51%	310.27	0.19%	25.00	3.02	V
Walker and Dhakal (2009)	A1 (rev)	41.8	250	349.9	350	1.71%	445	0.36%	6.94	4.00	H
	A2 (rev)	41.8	250	349.9	350	1.71%	445	0.63%	3.97	4.00	H
	D1 (rev)	25.6	410	354.5	570	0.42%	560	0.22%	10.94	3.95	H
Ou and Chen (2014)	B1-0	38	300	432.5	444	1.53%	432	0.88%	3.45	2.77	H
Tanarslan (2011)	Beam 1	25.2	200	320.0	414	1.47%	275	0.38%	3.75	5.00	H
	CB-1-i	35.5	80	170.0	405.97	1.66%	297.89	0.94%	8.33	4.00	V
	CB-1-ii	35.5	80	170.0	405.97	1.66%	297.89	0.94%	8.33	4.00	V
	CB-2-i	35.5	160	345.0	392.1	1.14%	405.97	0.66%	8.00	4.00	V
	CB-2-ii	35.5	160	345.0	392.1	1.14%	405.97	0.66%	8.00	4.00	V
	CB-3-i	35.5	240	540.0	399.13	1.24%	392.1	0.63%	6.25	4.00	V
	CB-3-ii	35.5	240	540.0	399.13	1.24%	392.1	0.63%	6.25	4.00	V
	CB-4-i	35.5	320	735.0	402	1.16%	392.1	0.63%	8.33	4.00	V
	CB-4-ii	35.5	320	735.0	402	1.16%	392.1	0.63%	8.33	4.00	V
	CB-5-i	35.5	400	930.0	374.84	0.65%	392.1	0.50%	8.33	4.00	V
	CB-5-ii	35.5	400	930.0	374.84	0.65%	392.1	0.50%	8.33	4.00	V

avertical position
bhorizontal position
3. Result and Analysis
The experimental-to-nominal flexural strength ratio \(\frac{M_{\text{exp}}}{M_n} \) is between 0.71 and 1.61 for all test specimens as shown in Table 3, where \(M_{\text{exp}} \) is the average peak flexural strength from the two loading directions and \(M_n \) is determined per ACI318-14[1] with test material properties. Ultimate drift ratio \((d_u) \) is defined at the point when one of the following two criteria is first met: 1) the load dropped 20% from the peak on the envelope curve; or 2) the load dropped more than 20% in the repeated cycles at the same target drift level. Ultimate drift ratio \((d_u) \) is the average from the two loadings direction. As shown in Figure 2, most of the specimen can achieve an ultimate drift ratio more than 2.0% and only one specimen has ultimate drift ratio below 2.0%.

Beam name	\(d_u \) (%)	\(\frac{M_{\text{exp}}}{M_n} \)	\(V_s \times a/M_n \)	
Kinugasa and Nomura (2006)	A1	5.42	1.15	2.573
	A2	5.03	1.11	2.586
	B	2.39	0.90	0.325
Fang et al. (1993)	B1-6	5.96	0.96	1.242
Ou et al. (2011)	B-0	4.66	1.19	2.309
Vu (2013)	At-0	4.68	0.99	1.828
	Bt-0	4.99	1.06	1.378
Cheng and Giduqiao (2011)	SP1	4.53	1.18	2.321
Panagiotou et al. (2013)	BEAM 1	3.70	1.00	1.492
	BEAM 2	5.46	1.08	2.735
Marefat et al. (2009)	PN-CS4	1.74	0.71	1.006
Walker and Dhakal (2009)	A1 (rev)	3.04	0.98	1.165
	A2 (rev)	4.29	1.01	2.038
	D1 (rev)	3.57	0.99	2.164
Ou and Chen (2014)	Bt-0	4.99	1.27	1.734
Tanarslan (2011)	Beam 1	3.84	1.36	0.925
	CB-1-i	5.42	1.61	1.813
	CB-1-ii	4.72	1.59	1.813
	CB-2-i	5.66	1.41	2.561
	CB-2-ii	6.96	1.45	2.561
	CB-3-i	7.71	1.17	2.131
	CB-3-ii	8.53	1.13	2.131
	CB-4-i	5.57	1.18	2.234
	CB-4-ii	6.33	1.18	2.234
	CB-5-i	4.01	1.06	1.933
	CB-5-ii	4.35	1.07	1.933

\(\rho_t \) is ratio of area of distributed transverse reinforcement to gross concrete area perpendicular to that reinforcement. To calculate transverse reinforcement ratio is presented in eq. (1)

\[
\rho_t = \frac{A_{st}}{b \cdot s}
\]

Eq. (1)

where, \(A_{st} \) is total area of transverse reinforcement, \(b \) is width of beam, \(s \) is spacing of transverse reinforcement.
V_s is nominal shear strength provided by transverse reinforcement. To calculate nominal shear strength is presented in eq. (2)

$$V_s = \frac{A_{st} \times f_{yt} \times d}{s}$$

Eq. (2)

where, A_{st} is total area of transverse reinforcement, f_{yt} is yield strength of transverse reinforcement, d is effective depth of beam, and s is spacing of transverse reinforcement.

![Figure 2. Relationship between M_{exp}/M_n and d_u](image)

Confinement parameter	s/d_b	ρ_t	$V_s \times a/M_n$
Correlation coefficient, R	0.437	0.535	0.584

A series of linear regression analyses were performed to identify the most influential parameters, on beam ultimate drift ratio. Correlation coefficients R, for the complete database of 26 specimen test for various parameters are presented in table 4. Parameters $V_s \times a/M_n$ produce the highest correlation coefficients with beam ultimate drift ratio, with R being 0.584.

3.1 Effect of s/d_b ratio

In the database, there are two specimens that have s/d_b larger than $20d_b$. Ultimate drift ratio (d_u) of specimen BEAM 1 (Panagiotou et al., 2013) and PN-CS4 (Marefat et al., 2009) is 3.70% and 1.74%, respectively. Results s/d_b presented in figure 3 show that the ultimate drift ratio between that two specimens are different, even though their s/d_b almost the same. The other specimens that have s/d_b less than $15d_b$ can achieve ultimate drift ratio more than 2.0%. Based on figure 3, the relationship between s/d_b and ultimate drift ratio is not clear. Most of the specimen that have s/d_b less or equal than $8d_b$ can achieve 3.00% ultimate drift ratio or larger.
3.2 Effect of transverse reinforcement ratio (ρ_t)

Figure 4 and table 3 indicate that ultimate drift ratio is correlated with ρ_t, with ultimate drift ratio varying between 1.74% and 8.53% as ρ_t increase from 0.19% to 1.43%. Specimen B (Kinugasa and Nomura, 2006), specimen PN-CS4 (Marefat et al., 2009), and specimen D1 (Walker and Dhakal, 2009) which have a transverse reinforcement ratio below than 0.25%. As shown in figure 4, only specimen D1 can achieve ultimate drift ratio larger than 3.00% compare to other two specimens.

3.3 Effect of $V_s \times a/M_n$

As noted earlier, $V_s \times a/M_n$ has a significant impact on ultimate drift ratio, where V_s is nominal shear strength, a is shear span and M_n is nominal moment capacity. As shown in figure 5, specimen B (Kinugasa and Nomura, 2006) and specimen PN-CS4 (Marefat et al., 2009) cannot achieve 2.50% drift, even though specimen PN-CS4 (Marefat et al., 2009) has $V_s \times a/M_n$ equal to 1.00. Most of the specimens have $V_s \times a/M_n$ larger than 1.00 can achieve ultimate drift ratio larger than 3.00%.
4. Conclusions
Based on the findings of this study, the following conclusions with regards to ultimate drift ratio of cyclic beams can be drawn:
1. The experimental-to-nominal flexural strength ratio (M_{exp}/M_n) larger or equal to 1.00 can achieve 3.00% ultimate drift ratio.
2. A maximum transverse reinforcement spacing not exceeding $8d_b$ can achieve minimum 3.00% ultimate drift ratio.
3. The study showed that $V_s \times a/M_n$ increased followed by the ultimate drift ratio.

Acknowledgments
The authors thank to the Ministry of Research, Technology, and Higher Education of the Republic of Indonesia for funding this research through Hibah Penelitian Dosen Pemula (PDP) and Universitas Widya Kartika.

References
[1] ACI Committee 318-14 2014 Building Code Requirement for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14) (Farmington Hills, MI: American Concrete Institute)
[2] ASCE/SEI 41-13 2013 Seismic Evaluation and Retrofit of Existing Buildings (ASCE 41-13) (Reston, Virginia: American Society of Civil Engineers)
[3] Panagiotou M et al 2013 Effect of hoop reinforcement spacing on the cyclic response of large reinforced concrete special moment frame beams (Berkeley: Department of Civil and Enviromental Engineering, University of California)
[4] Kinugasa H and Nomura S 2006 Deterioration mechanism of shear-resisting system in RC beam subjected to reversed cyclic loading after flexural yielding ACI Special Publication 237 1 1-14
[5] Fang I K, Yen S T Wang C S and Hong K L 1993 Cyclic behavior of moderately deep HSC beams J. Struct. Eng. 119 9 2573-92
[6] Ou Y C, Tsai L L and Chen H H 2012 Cyclic performance of large-scale corroded reinforced concrete beams Earthq. Eng. Struct. Dyn. 41 593-604
[7] Vu N N 2013 Residual shear strength and ductility evaluation of corroded RC beams (Taiwan: National Taiwan University of Science and Technology)
[8] Cheng M Y and Giduquio M B 2014 Cyclic behavior of reinforced concrete flexural members

Figure 5. Relationship between $V_s \times a/M_n$ and d_u
using high-strength flexural reinforcement ACI Struct. J. 111 1 1-10
[9] Marefat M S and Shirazi S M H 2009 Cyclic Response of Concrete Beams Reinforced by Plain Bars J. Earthq. Eng. 13 4 463-81
[10] Walker A F and Dhakal R P 2009 Assesment of material strain limits for defining plastic regions in concrete structures Bull. NZ. Soc. Earthq. Eng. 42 2 86-95
[11] Ou Y C and Chen H H 2014 Cyclic behavior of reinforced concrete beams with corroded transverse steel reinforcement J. Struct. Eng. 140 9 1-10
[12] Tanarslan H M 2011 The effects of NSM CFRP reinforcements for improving the shear capacity of RC beams Constr. Build. Mat. 25 2663-73
[13] Jin L, Yu W Xiao S Zhang S Du X Han J and Li D 2018 Effect of cross-section size on the flexural failure behavior of RC cantilever beams under low cyclic and monotonic lateral loadings Eng. Struct. 156 567-86