On the imbalance lattice of path-length sequences of binary trees

S. Foldes* and S. Radeleczki**
*Tampere University of Technology, Finland
**University of Miskolc, Hungary

Abstract

The existence of greatest lower bounds in the imbalance order of path-length sequences of binary trees is seen to be a consequence of a joint monotonicity property of the greater and lower expansion operations. Path length sequences that are join-irreducible in the imbalance lattice are characterized.

1 Introduction, terminology, notation

Generally the framework and terminology of Stott Parker and Prasad Ram [SPPR] is followed in what follows.

For any sequence $x = (x_1, ..., x_n)$ of real numbers, $n \geq 1$, we write $\exp x$ for the sequence $(2^{-x_1}, ..., 2^{-x_n})$, we write Σx for the sum $x_1 + ... + x_n$, and last x (resp first x) for x_n (resp. x_1). We also write Sx for the sequence of partial sums $(x_1, x_1 + x_2, ..., x_1 + ... + x_n)$. The suffix length $\text{suf } x$ of x is the largest integer $k \leq n$ such that the last k components of x are equal. A sequence x of non-negative integers is a path-length sequence if $x_1 \leq ... \leq x_n$ and $\Sigma \exp = 1$. By Kraft’s Theorem, this means that there is binary tree whose root-to-leaf paths are in order of increasing lengths from left to right, the lengths being $x_1, ..., x_n$ in that order [K]. Path-length sequences have even suffix length. Between path-length sequences l and h with the same number of components, l is said to be more balanced than h, in symbols $l \leq h$, if $S \exp l \leq S \exp$ in the componentwise order of vectors. This defines a partial order relation on the set of path-length sequences with a given number n of components.

For a path-length sequence $l = (l_1, ..., l_n)$, the expansion in position i is defined as the path-length sequence $(l_1, ..., l_{i-1}, l_i + 1, l_i + 1, l_{i+1}, ..., l_n)$, for any $1 \leq i \leq n$, the upper expansion l^+ is the expansion in position n, while the
lower expansion l_+ is the expansion in position $\max(1, n - \text{suf } l)$. Thus lower expansion is defined even for constant sequences, and a sequence is constant if and only if its lower and upper expansion coincide. Also $l \leq h$ implies $l_+ \leq h_+$ in all cases, just as it implies $l^+ \leq h^+$.

For path-length sequences with $n \geq 2$ components and suffix length k, the contraction $\hat{l} = (l_1, \ldots, l_{n-k}, l_{n-k+1} - 1, l_n, \ldots, l_n)$ is defined, it has $n - 1$ components, and it is also a path-length sequence, satisfying $\hat{l}_+ \leq l \leq \hat{l}^+$.

2 Uniqueness of the lattice meet

Stott Parker and Prasad Ram [SPPR] state the fact that the imbalance order on the set of path-length sequences with a given number of components is a lattice. We show that this is can be verified as a consequence of the Lemma below. It is of course enough to prove that the imbalance order on path-length sequences (l_1, \ldots, l_n) with n components is a meet semilattice.

Observe first that for any path-length sequences if $l \leq h$ then last $l \leq$ last h, and if last $l = $ last h then $\text{suf } l \leq \text{suf } h$.

Lemma. For path-length sequences $l \leq h$, if last $l <$ last h then $l^+ \leq h_+$.

Proof. Let $l = (l_1, \ldots, l_n)$ and $h = (h_1, \ldots, h_n)$. If the suffix length of h is $2k$, then for $i = n - 2k$ we have $h_1 \leq \ldots \leq h_i < h_{i+1} = \ldots = h_n > l_n \geq \ldots \geq l_{i+1}$.

Recall that $l^+ = (l_1, \ldots, l_{n-k}, l_{n-k+1}, l_{n-1+1})$ and $h_+ = (h_1, \ldots, h_{i-1}, h_i + 1, h_i + 1, h_{i+1}, \ldots, h_n)$.

We have

$$2^{-h_i} \leq \Sigma \exp(h_{i+1}, \ldots, h_n) \leq \frac{1}{2} \Sigma \exp(l_{i+1}, \ldots, l_n) \leq \Sigma \exp(l_{i+1}, \ldots, l_{n-k})$$

It can be deduced that $\Sigma \exp(h_1, \ldots, h_{i-1}, h_i + 1) > \Sigma \exp(h_1, \ldots, h_{i-1}) \geq \Sigma \exp(l_1, \ldots, l_{i-1}, l_i)$.

Also, for every $2 \leq j \leq 2k - 1$, we have $\Sigma \exp(h_{n-j+1}, \ldots, h_n) \leq \Sigma \exp(l_{n-j+1}, \ldots, l_n) = \Sigma \exp(l_{n-j+2}, \ldots, l_n + 1, l_{n} + 1)$.

It follows that $l^+ \leq h_+$.

□
Then let us prove by induction on n the following:

Proposition 1 Path-length sequences with the same number of components that is at most n always have a greatest lower bound (meet) in the imbalance order, for which last $(s \land t) = \min(\text{last } s, \text{last } t)$. For any such sequences s and t with at least two components we have $s \land t = (\widehat{s} \land \widehat{t})^+$ if $(\widehat{s} \land \widehat{t})^+ \leq s, t$, otherwise $s \land t = (\widehat{s} \land \widehat{t})_+$.

Proof. The statement is obvious for $n = 1$. The inductive step from $n - 1$ to n is as follows.

Case 1: $(\widehat{s} \land \widehat{t})^+ \leq s, t$.

To show that $(\widehat{s} \land \widehat{t})^+$ is the greatest lower bound of s, t, let $l \leq s, t$. Then $l \leq s, t$ and thus $\widehat{l} \leq \widehat{s} \land \widehat{t}$. From this $l \leq (\widehat{l})^+ \leq (\widehat{s} \land \widehat{t})^+$.

From $(\widehat{s} \land \widehat{t})^+ \leq s, t$ we get

$$\min(\text{last } \widehat{s}, \text{last } \widehat{t}) + 1 \leq \min(\text{last } s, \text{last } t)$$

If last $s = \text{last } t$ then suf s or suf t is 2, because if both were larger, then last $\widehat{s} = \text{last } s$ and last $\widehat{t} = \text{last } t$, contradicting the above inequality.

But then last $\widehat{s} + 1 = \text{last } s$ or last $\widehat{t} + 1 = \text{last } t$, and by the inductive hypothesis last $(\widehat{s} \land \widehat{t}) = (\text{last } s) - 1 = (\text{last } t) - 1$ and last $(\widehat{s} \land \widehat{t})^+ = \text{last } s = \text{last } t = \min(\text{last } s, \text{last } t)$.

If last $s < \text{last } t$ then suf s is 2 because otherwise last $\widehat{s} = \text{last } s \leq \text{last } \widehat{t}$ and (last $s) + 1 = (\text{last } \widehat{s}) + 1 = \text{last } (\widehat{s} \land \widehat{t})^+ \leq \text{last } s$, which is impossible. Also last $\widehat{s} < \text{last } \widehat{t}$.

And also (last $\widehat{s}) + 1 = \text{last } s$ implying last $(\widehat{s} \land \widehat{t})^+ = \text{last } (\widehat{s} \land \widehat{t}) + 1 = \min(\text{last } \widehat{s}, \text{last } \widehat{t}) + 1 = (\text{last } \widehat{s}) + 1 = \text{last } s = \min(\text{last } s, \text{last } t)$.

Case 2: $(\widehat{s} \land \widehat{t})^+ \not\leq s$ or $(\widehat{s} \land \widehat{t})^+ \not\leq t$.

Certainly still $(\widehat{s} \land \widehat{t})_+ \leq s, t$. Note that in this case $(\widehat{s} \land \widehat{t})$ cannot be constant.

By the induction hypothesis last $(\widehat{s} \land \widehat{t})_+ = \text{last } (\widehat{s} \land \widehat{t}) = \min(\text{last } \widehat{s}, \text{last } \widehat{t})$.

3
Subcase 2.1: $last s \neq last t$
Without loss of generality, we may suppose that $last s < last t$.

We claim that $suf s > 2$. For if $suf s = 2$ then $s = (\hat{s})^+$ and $(\hat{s} \wedge \hat{t})^+ \not\leq s$ but $(\hat{s} \wedge \hat{t})^+ \not\geq t$. Also $last \hat{s} < last \hat{t}$, and thus $last (\hat{s} \wedge \hat{t}) = last \hat{s}$ is less then $last \hat{t}$,

implying $(\hat{s} \wedge \hat{t})^+ \not\leq (\hat{t})_+$ by the Lemma, a contradiction proving that $suf s > 2$.

Clearly then $last (\hat{s} \wedge \hat{t}) = \min(last \hat{s}, last \hat{t}) = last \hat{s} = last s$.

Subcase 2.2: $last s = last t$

Now the suffixes of both s and t cannot be 2, because in that case $(\hat{s} \wedge \hat{t})^+ \not\leq s, t$.

If one of the suffix lengths, say $suf s$ were 2, then $last (\hat{s} \wedge \hat{t}) = \min(last \hat{s}, last \hat{t}) = last \hat{s} < last \hat{t}$. Then $(\hat{s} \wedge \hat{t})^+ \not\leq (\hat{s})^+ = s$ and by the Lemma

$(\hat{s} \wedge \hat{t})^+ \not\leq (\hat{t})_+ = t$,
a contradiction.

Thus both suffix lengths are greater than 2, we have $(\hat{s})_+ = s$ and $(\hat{t})_+ = t$ and $last (\hat{s} \wedge \hat{t}) = \min(last \hat{s}, last \hat{t}) = last \hat{s} = last t = last \hat{t} = last t$.

In conclusion, in both subcases, if $last s \leq last t$ then $last (\hat{s} \wedge \hat{t}) = \min(last \hat{s}, last \hat{t}) = last \hat{s} = last s$.

We now return to the general conditions of Case 2. Again, without loss of generality, we may suppose that $last s \leq last t$.

Let $l \not\leq s,t$. Obviously $\hat{l} \not\leq \hat{s} \wedge \hat{t}$ and $last \hat{l} \leq last (\hat{s} \wedge \hat{t})$.

If $last \hat{l} < last (\hat{s} \wedge \hat{t})$ then by the Lemma $l \not\leq (\hat{l})_+ \leq (\hat{s} \wedge \hat{t})_+ .$

If $last \hat{l} = last (\hat{s} \wedge \hat{t})$ then $last l \geq last \hat{l} = last (\hat{s} \wedge \hat{t}) = last \hat{s} = last s$ and, since $l \not\leq s$ implies $last l \leq last s$, we have $last l = last s = last \hat{l}$. This means that the suffix length of l is also greater than 2 and $l = (\hat{l})_+ \leq (\hat{s} \wedge \hat{t})_+$.

\[\Box\]

3 Join-irreducible path-length sequences

Stott Parker and Prasad Ram have shown [SPPR] that for path-length sequences the imbalance order relation $\not\leq$ is the transitive-reflexive closure the minimal balancing relation which can be defined as follows. For any path length sequence $l = (l_1, ..., l_n)$ call an index $1 < j < n$ an excess index if
\[l_{j-1} < l_j = l_{j+1} \] and there is an index \(i \) such that \(l_i \leq l_j - 2 \). For every excess index \(j \) of \(l \) consider the last index \(i \) such that \(l_i \leq l_j - 2 \), and let \(bal[l, j] \) be the path-length sequence obtained from \(l \) by replacing the last occurrence of \(l_i \) with two consecutive entries equal to \(l_i + 1 \) and replacing the first two occurrences of \(l_j \) by a single entry equal to \(l_j - 1 \). The minimal imbalance relation, on the set of path-length sequences \(l \) with \(n \) components, is

\[\{ (bal[l, j], l) : j \text{ is an excess index of } l \} \]

The minimal imbalance relation contains (generally properly) the covering relation of the partial order \(\leq \).

Recall that an element of a finite lattice is \textit{join-irreducible} if it covers a unique element of the lattice (its \textit{unique lower cover}). The following is not difficult to verify:

Proposition 2 Let \(j \) be the first excess index of a path-length sequence \(l \). Then \(l \) is join-irreducible if and only if for all excess indices \(k \) of \(l \) we have \(bal[l, j] \sqsupseteq bal[l, k] \).

We call a sequence of integers \textit{near-constant} if it contains at most two distinct values, and the difference between these is 1.

Proposition 3 A path-length sequence \(l = (l_1, ..., l_n) \) is join-irreducible if and only if it is the concatenation of 3 sequences, \(l = uvw \) such that

(i) both \(u \) and \(w \) are near-constant, and \(v \) is strictly increasing,

(ii) \(w \) is not the empty sequence.

(iii) if \(w \) is not constant but its first two components are equal, than the value of these components is at least \((\text{last } uv) + 2 \).

Proof The conditions are easily seen to be sufficient for irreducibility.

Suppose on the other hand that \(l \) is irreducible. It is useful to keep in mind that there is a topological tree whose path-length sequence is \(l \). Obviously \(l \) is not near-constant. Let \(u \) be the longest near-constant prefix of \(l \), and \(z \) its complement, \(l = uz \). Let \(w \) be the longest near-constant post-fix of \(z \) and \(v \) its complement, \(z = vw \). Clearly \(w \) cannot be empty and, because \(l = uvw \) is a path-length sequence, \(w \) ends with an even number of equal components, and the index of the first one of these is an excess index \(k \). Also \(uv \) cannot be empty, as required by condition (ii).
If \(v \) had any repeated components, the index \(j \) of the first of the first two repeated components would be the first excess index of \(l \). Then, by Proposition 2, \(l \triangleright \text{bal}[l, j] \triangleright \text{bal}[l, k] \) would have to hold. In the tree corresponding to a given path-length sequence, consider the number of nodes that are on some root-to-leaf path of length at most \(l \). This parameter is monotone, it can never decrease as we go down in the imbalance lattice, but for \(\text{bal}[l, k] \) it is the same as for \(l \) itself. However, for \(\text{bal}[l, j] \) the parameter is actually higher than for \(l \). This shows that \(v \) is strictly increasing, thus condition (i) also holds.

Finally, if condition (iii) failed, the first indices of the two constant runs of components in \(w \), say \(i \) and \(k \) in that order, would both be excess indices, and we would have \(l_i = (\text{last } uv) + 1 \). For the first excess index \(j \) we would have to have \(j \leq i < k \) and thus \(l \triangleright \text{bal}[l, j] \triangleright \text{bal}[l, k] \). Consider now the sum of components of a path-length sequence. This parameter, of integer value, is strictly monotone in the imbalance lattice, it always decreases as we go down [SPPR]. But from \(l \) to \(\text{bal}[l, k] \) it decreases only by 1. This shows that (iii) must also hold.

\[\square \]

Acknowledgements.

This work has been co-funded by Marie Curie Actions and supported by the National Development Agency (NDA) of Hungary and the Hungarian Scientific Research Fund (OTKA, contract number 84593), within a project hosted by the University of Miskolc, Department of Analysis.

References

[K] L.G. Kraft, *A Device for Quantizing, Grouping, and Coding Amplitude Modulated Pulses*, Q.S. Thesis, MIT 1949

[SPPR] D. Stott Parker, Prasad Ram, The Construction of Huffman Codes is a Submodular ("Convex") Optimization Problem Over a Lattice of Binary Trees. *SIAM J. Comput.* 28(5) 1875-1905 (1999)