A Brief Review on Atmospheric Air Plasma

N Z A Zabidi1*, S K Zaaba2, K D Eh Sut3, C W S R Mohamad2, and R I Masiman4

1Department of Mathematics Science and Computer (JMSK), Politeknik Tuanku Syed Sirajuddin (PTSS) Pauh Putra, 02600, Arau, Perlis, Malaysia
2Faculty of Electronic Engineering Technology (FTKEN), Universiti Malaysia Perlis(UniMAP) Kampus Alam Pauh Putra, 02600, Arau, Perlis, Malaysia
3Department of Electrical Engineering (JKE), Politeknik Tuanku Syed Sirajuddin (PTSS) PauhPutra, 02600, Arau, Perlis, Malaysia
4Bahagian Sumber Manusia. Kementerian Pengajian Tinggi, Aras 15, No. 2 Menara 2, Persint5, 62200 Putrajaya, Malaysia.

*nurzahira@ptss.edu.my

Abstract. Atmospheric pressure air plasma is an attractive technology because it is easy to set up and handle, cheap, and safe. In this paper, a brief review on air plasma configuration and the results of air plasma is presented. One of the important properties of any plasma treatment is the generation of reactive atom species such as oxygen(O), nitrogen(N) also known as RONS, and other ions molecules particles. Air plasma has been found to have the same effect when treating surfaces. Surface modification, hydrophilicity, and decontamination effect were observed when materials are exposed to air plasma. The advancement of air plasma technology will improve the surface processing technology by reducing its operating cost.

1. Introduction

Generally, plasma is known as the fourth state of matter in a form of ionized gas [1]. Plasma is ignited by the interaction of gas, heat, and a strong electromagnetic field. Typically, reactive oxygen and nitrogen species play a major role in atmospheric pressure plasma formation (RONS) [2]. As the main components of air are nitrogen and oxygen, reactive oxygen species (ROS) include ozone and hydroxide radicals, while reactive nitrogen species (RNS) include nitrogen oxides [3].

The interaction of plasma produces free electron, neutral reactive species atom such as oxygen (O) and nitrogen oxide (NO), molecules, and radicals [4-6]. The plasma effect is very selective and different. It is could be oxygen (O) as plasma killing and nitrogen oxide (NO) as plasma healing [5]. Some examples of applications of plasma are: sterilization [6], surface modification [7], food safety [8], water purification [9], textiles [10], medical [11] and others. Compared with the conventional sterilization method, plasma technology is advantageous to decontaminate surfaces such as lower cost, easy to build and operate [12]. In addition, the process is conducted is at a low temperature, has no toxic residue, and harmless to people [13]. For exposures to polymers, reports showed that plasma causes minimal damage to polymer surfaces [14]. In comparison with chemical processes, utilization of atmospheric plasma is cheaper, more convenient, and eco-friendly. However, there are some disadvantages to the use of plasma due to the consumption of expensive discharge gasses, costly maintenance for vacuum bulky equipment.
2. Air Plasma

Air plasma attracted researchers due to its advantages for example; its high-end performance in sterilization, low cost, and eco-friendly. Thus, the interest in the production of air plasma has increased [15-17]. Air plasma has been shown effective in tissue engineering and drug delivery [18-19]. Meanwhile traditional low-pressure plasma device has costly and assimilation problems because of difficulty resulting from the need for vacuum [20-22].

Voltage, frequency, and electrode are parameters that play an important role to generate the plasma. Burt reported that air plasma was generated using two planar, 120 V, and 60Hz effective in disinfection methicillin-resistant *Staphylococcus aureus* (S.aureus)[23]. M Kuchenbecker used dielectric barrier discharge (DBD) configuration in ambient air, high voltage pulses approximately 13 kV, 100 kHz to prepare the application of the DBD device in dermatology [24]. Figure 1 and Figure 2 show an example of DBD air plasma and jet plasma respectively.

![Figure 1. An example of DBD air plasma](image1.png) ![Figure 2. An example of air plasma jet](image2.png)

3. Chemical Interaction in Air Plasma

An air plasma process produces other molecule atoms including oxygen and nitrogen or also known as RONS. Anatoly B Shekhter describes that air plasma produced nitric oxide (NO) proved to induce effects during wound remedial and tissue reproduction [27]. Other studies have also shown that NO may affect the immune system and promote the proliferation of cells, angiogenesis, and synthesis of collagen, then resulting in damaged skin being healed [28-33].

M. Ito et al studied the complex process for transporting the RONS from gas form to liquid form in ambient air, which can be a cause to restrict enhancement in the treatment time [34]. Concurrently, a study by S. Kuo et al stated that reactive atomic oxygen (O) can kill a wide range of microbes for sterilization by chemical reactions by creating H2O2 and oxidant hydroxyl radicals (OH) in blood [35]. This is because of interactions between platelets or red blood cells (RBC) and white blood cells (WBC) by oxidants formed during blood and abundant reactive atomic oxygen (RAO) interactions. The contribution of O2, NO, OH, O3, and other reactive molecules are very important and their presence is important to the application.

4. The Effect of Air Plasma Applications

The progress in using air reduced the need for noble gases to be used as working gas to generate plasma without compromising the plasma treatment effect. The effect of its air plasma treatment can be seen in its application on hydrophilic purposes [36], hydrophobic surface [37] and modify physical properties [38]. Report describes that air plasma processing is an advance and successful method to improve the biocompatibility of Ti alloys. For bactericidal effect, air plasma treatment were efficient and time exposure dependant for inactivating bacteria such *Pseudomonas aeruginosa* (*P.aeruginosa*), *Staphylococcus aureus* (*S.aureus*), and methicillin-resistant *S. aureus* (MRSA)[39]. Table 1 shows the atmospheric air plasma device configuration and its application.
Table 1. Atmospheric air plasma device configuration and application

Device Type	Device Configuration	Properties	Effect	Application
Jet [26]	copper electrode, DC pulse, 2.52kV, 2 kHz.	Bactericidal	• inactivate S. aureus, P. aeruginosa, and MRSA • reduction of water contact angle	Chronic wound bacteria inactivation
DBDa [40]	aluminum electrodes, DC 3kV, 50 kHz.	Surface modification	• improving the antimicrobial property of the banana fabric	Banana fabric treatment
DBDa [41]	aluminium and metal electrodes, DC pulse, 9 kV, 500 Hz	Wettability, Surface modification	• enhance water contact angle • inactivate bacteria	Bacteria inactivation
DCSBDb [42]	parallel strapline electrodes, AC, voltage up to 20 kV, 14 kHz to 18 kHz	Bactericidal	• decrease in the carbon surface concentration • no significant effect of plasma on ITO morphology	ITO surface cleansing
DBDa [43]	aluminium electrodes AC, 15kV,	Wettability, Morphology change	• increased roughness and wettability	Clean cotton fibre
Jet[44]	aluminium electrode, coaxial DC pulse- adjustable kHz	Bactericidal	• effective in eliminate bacteria • no morphology changes	Bacteria inactivation
DBDa [45]	100W, 13.65MHz	Biocompatibility	• enhanced both the biocompatibility and osteogenic	Orthopaedic biomaterial development

aDBD Dielectric Barrier Discharge
bDCSBD Diffuse Coplanar Surface Barrier Discharge

5. Conclusion
Generating plasma using air as its working gas has shown a comparable effect with plasma generated using gasses such as helium, argon, and others. Due to the simplicity of the design and gas usage, the air plasma device will benefit in reducing operational costs. This brief review has discussed examples of air plasma device configuration, the comparison of chemical processes, and the treatment effect of air plasma. On the other hand, this paper also describes the results of air plasma application through its latest studies, for example, in textile, biomedical, and material. In conclusion, air plasma is an effective and safe tool to use for treatment. The effect of air plasma treatments is at par with other types of atmospheric plasma. The future aspect of air plasma device is that it could be industrial recommendation for setting plasma process. Current atmospheric plasma technologies have higher operational cost because of the working gas used to generate plasma. Air plasma offers lower operational cost and produces similar outcomes to traditional atmospheric plasma treatment. However, some areas such as the device size and plasma stability still need to be investigated to ensure air plasma could be adapted in an industrial setting.

Acknowledgments
The author would like to acknowledge the support from the TVET Applied Research Grant Scheme 2021 (TARGETS) under a grant number of 1005/21 from the Ministry of Higher Education Malaysia.
References

[1] Laroussi M and Lu X 2005 Room-temperature atmospheric pressure plasma plume for biomedical applications Appl. Phys. Lett. 87.

[2] Janda M, Martišovič V, Hensel K and Machala Z 2016 Generation of antimicrobial NOx by atmospheric air transient spark discharge Plasma Chem. Plasma Process 36 767–781.

[3] Klämpfl TG et al. 2012 Cold atmospheric air plasma sterilization against spores and other microorganisms of clinical interest Appl. Environ. Microbiol 78 5077–5082.

[4] Sands BL, Ganguly BN and Tachibana K 2008 A streamer-like atmospheric pressure plasma jet Appl. Phys. Lett 92.

[5] Keidar M et al. 2013 Cold atmospheric plasma in cancer therapy Phys. Plasmas 20.

[6] Laroussi M 2009 Low-temperature plasmas for medicine? IEEE Trans. plasma Sci 37 714–725.

[7] Kong MG et al. 2016 Plasma medicine: an introductory review New J. Phys 11 35.

[8] Morrison KA et al. 2016 Rapid sterilization of cell phones using a novel portable non-thermal plasma device Plasma Med 5 57–70.

[9] Mansouri J, Harrisson S, and Chen V 2010 Strategies for controlling biofouling in membrane filtration systems: Challenges and opportunities J. Mater. Chem 20 4567–4586.

[10] Qi K, Daoud WA, Xin JH, Mak CL, Tang W and Cheung WP 2006 Self-cleaning cotton J. Mater. Chem 16 4567–4574.

[11] Tanaka H et al. 2017 State of the art in medical applications using non-thermal atmospheric pressure plasma Rev. Mod. Plasma Phys 1.

[12] Mohd. ND, Abu Bakar S, Zaaba SK, and Wan Ahmad WK 2012 Study on bovine bone surface after atmospheric plasma treatment 2012 IEEE-EMBS Conf. Biomed. Eng. Sci. IECBES 2012 70–75.

[13] Saad NA et al. 2015 Preliminary investigations of optical emission spectroscopy atmospheric plasma for microbial inactivation 2015 2nd International Conference on Biomedical Engineering (ICoBE) 30–31.

[14] Ragni L et al. 2010 Non-thermal atmospheric gas plasma device for surface decontamination of shell eggs J. Food Eng 100 125–132.

[15] Xiao D et al. 2016 Effects of Atmospheric-pressure nonthermal nitrogen and air plasma on bacteria inactivation IEEE Trans. Plasma Sci 44 2699–2707.

[16] Dong XY and Yang YL 2019 A novel approach to enhance blueberry quality during storage using cold plasma at atmospheric air pressure Food Bioprocess Technol 12 1409–1421.

[17] Sandanuwan T, Hendeniya N, Amarasinghe D A S, Attygalle D and Weragoda S 2021 The effect of atmospheric pressure plasma treatment on wetting and absorbance properties of cotton fabric Mater. Today Proc 45 5065–5068.

[18] Chen Z et al. 2019 Plasma deposited polyoxazoline nanotextured surfaces dictate osteoimmuno modulation towards ameliorative osteogenesis Acta Biomater 96 568–581.

[19] Lai W, Lai H, Kuo S P, Tarasenko O and Levon K, 2005 Decontamination of biological warfare agents by a microwave plasma torch Phys. Plasmas 12 023501.

[20] Li X, Tao X and Yin Y 2009 An atmospheric-pressure glow-discharge plasma jet and its application IEEE Trans. Plasma Sci 37 759–763.

[21] Ahmed KM, Allam TM, El-sayed HA, Soliman HM, Ward SA and Saied EM 2014 Design, construction and characterization of AC atmospheric pressure air non-thermal plasma jet J. Fusion Energy 33 627–633.

[22] Hovish MQ, Hilt F, Rolston N, Xiao Q and Dauskardt RH 2019 Open air plasma deposition of superhydrophilic titania coatings Adv. Funct Mater 29 1–9.

[23] Burts ML, Alexeff I, Meek ET and McCullers JA, 2009 Use of atmospheric non-thermal plasma as a disinfectant for objects contaminated with methicillin-resistant Staphylococcus aureus American journal of infection control 37 729–733.

[24] Kuchenbecker M et al. 2009 Characterization of DBD plasma source for biomedical applications Physics D: Applied Physics 42.
[25] El-Amawy A, El-Aragi G, El-Zein A and Talaat M 2020 Electrical characterization of dielectric-barrier International Journal of New Technology and Research (IJNTR) 8 34-37.
[26] Laroussi M and Leipold F 2004 Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure Int. J. Mass Spectrom 233 81–86.
[27] Shekhter AB, Serezhennov VA, Rudenko TG, Pekshev AV and Vanin AF 2005 Beneficial effect of gaseous nitric oxide on the healing of skin wounds Nitric Oxide - Biol. Chem 12 210–219.
[28] Bruggeman PJ et al. 2016 Plasma-liquid interactions: A review and roadmap Plasma Sources Sci. Technol 25.
[29] Dobrynin D, Fridman G, Friedman G and Fridman A 2009 Physical and biological mechanisms of direct plasma interaction with living tissue New J. Phys 11.
[30] Weltmann KD and Woedtke TV 2017 Plasma medicine - Current state of research and medical application Plasma Phys. Control. Fusion, 59.
[31] Schmidt A, Bekeschus S, Wende K and Vollmar B 2016 A cold plasma jet accelerates wound healing in a murine model of full-thickness skin wounds Exp Dermatol 26 156-162.
[32] Haertel B, Woedtke TV, Weltmann KD and Lindequist U 2104 Non-thermal atmospheric-pressure plasma possible application in wound healing Biomol. Ther 22 477–490.
[33] Suschek CV and Opländer C 2016 The application of cold atmospheric plasma in medicine: The potential role of nitric oxide in plasma-induced effects Clin. Plasma Med 4 1–8.
[34] Ito M, Oh JS, Ohta T, Shiratani M and Hori M 2018 Current status and future prospects of agricultural applications using atmospheric-pressure plasma technologies Plasma Process. Polym 15.
[35] Kuo SP et al. 2009 Contribution of a portable air plasma torch to rapid blood coagulation as a method of preventing bleeding New J. Phys 11.
[36] Karahan HA and Özdogan E 2008 Improvements of surface functionality of cotton fibers by atmospheric plasma treatment Fibers Polym 9 21–26.
[37] Khalifa IB and Ladhari N 2020 Hydrophobic behavior of cotton fabric activated with air atmospheric-pressure plasma J. Text. Inst 111 1191–1197.
[38] Jebastin RA and Prakash C 2009 Effect of modified yarn path ring spinning on thermal comfort properties of cotton fabrics after plasma treatment, J. Nat. Fibers 0 1–11.
[39] Kang SK, Kim HY, Yun GS and Lee JK 2015 Portable microwave air plasma device for wound healing Plasma Sources Sci. Technol 24 35020.
[40] Vajpayee M, Singh M, Ledwani L, Prakash R and Nema SK 2020 Investigation of antimicrobial activity of DBD air plasma-treated banana fabric coated with natural leaf extracts ACS Omega 5 19034–49.
[41] Lee ES, Choi JH and Baik HK 2007 Surface cleaning of indium tin oxide by atmospheric air plasma treatment with the steady-state airflow for organic light emitting diodes Surf. Coatings Technol 201 9-11.
[42] Homola T et al. 2012 Atmospheric pressure diffuse plasma in ambient air for ITO surface cleaning Appl. Surf. Sci 258 7135–39.
[43] Kramar AD, Obradović BM, Vesel A, Kuraica MM and Kostić MM 2018 Surface cleaning of raw cotton fibers with atmospheric pressure air plasma, Cellulose 25 4199–4209.
[44] Thana P, Kuensan C, Poramapijitwat P, Sarapiro S, Yu L and Boonyawan D 2020 A compact pulse-modulation air plasma jet for the inactivation of chronic wound bacteria: Bactericidal effects & host safety Surf. Coatings Technol 400 126229.
[45] Xing H et al 2020 Improved osteogenesis of selective-laser-melted titanium alloy by coating strontium-doped phosphate with high-efficiency air-plasma treatment Front Bioeng Biotechnol 8.