KZ-Calogero correspondence revisited

A Zabrodin\(^1,2\) and A Zotov\(^{3,4,5}\)

\(^1\) National Research University Higher School of Economics, Russia
\(^2\) Institute of Biochemical Physics of Russian Academy of Sciences, Kosygina str. 4, 119334, Moscow, Russia
\(^3\) Steklov Mathematical Institute of Russian Academy of Sciences, Gubkina str. 8, 119991, Moscow, Russia
\(^4\) ITEP, 25 B.Cheremushkinskaya, Moscow 117218, Russia
\(^5\) Moscow Institute of Physics and Technology, Institute of Physics and Technology, Institutskii per. 9, Dolgoprudny, Moscow region, 141700, Russia

E-mail: zabrodin@itep.ru and zotov@mi.ras.ru

Received 4 February 2017, revised 25 March 2017
Accepted for publication 31 March 2017
Published 24 April 2017

Abstract

We discuss the correspondence between the Knizhnik–Zamolodchikov equations associated with \(GL(N)\) and the \(n\)-particle quantum Calogero model in the case when \(n\) is not necessarily equal to \(N\). This can be viewed as a natural ‘quantization’ of the quantum-classical correspondence between quantum Gaudin and classical Calogero models.

Keywords: integrable systems, Knizhnik–Zamolodchikov equations, quantum-classical correspondence

1. Introduction

The rational Knizhnik–Zamolodchikov (KZ) equations \([10]\) have the form

\[
\hbar \partial_k \Phi^{(i)} = \left(g^{(i)} + \kappa \sum_{j \neq i} P_{ij} \frac{x_i - x_j}{x_i - x_j} \right) \phi
\]

where \(\Phi^{(i)} = \Phi(x_1, \ldots, x_n)\) belongs to the tensor product \(V = V \otimes V \otimes \ldots \otimes V = V^\otimes n\) of the vector spaces \(V = \mathbb{C}^N\), \(P_{ij}\) is the permutation of the \(i\)th and \(j\)th factors, \(g = \text{diag } (g_1, \ldots, g_N)\) is a diagonal \(N \times N\) matrix and \(g^{(i)}\) is the operator in \(V\) acting as \(g\) on the \(i\)th factor (and identically on all other factors).

The remarkable correspondence of the KZ equations with the quantum Calogero model \([5]\) defined by the Hamiltonian

\[
\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\frac{1}{x_i - x_j} \right)^2 + \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \left(\frac{1}{g_i - g_j} \right)^2
\]
\[\hat{\mathcal{H}} = \hbar^2 \sum_{i=1}^{n} \partial_{x_i}^2 - \sum_{i \neq j}^{n} \frac{\kappa (\kappa - \hbar)}{(x_i - x_j)^2} \]

(2)

was established by Matsuo and Cherednik in [6, 11] (see also [7, 17]) in the case \(N = n \). In this case one can find solutions to (1) in the form

\[|\Phi\rangle = \sum_{\sigma \in S_n} \Phi_{\sigma} |\epsilon_{\sigma}\rangle, \quad |\epsilon_{\sigma}\rangle = e_{\sigma(1)} \otimes e_{\sigma(2)} \otimes \ldots \otimes e_{\sigma(n)}, \]

where \(e_a \) are standard basis vectors in \(V = \mathbb{C}^n \) and \(S_n \) is the symmetric group. If such \(|\Phi\rangle \) solves the KZ equations, then the function

\[\Psi = \sum_{\sigma \in S_n} \Phi_{\sigma} \]

(3)

is an eigenfunction of the Calogero Hamiltonian:

\[\hat{\mathcal{H}} \Psi = E \Psi, \quad E = g_1^2 + g_2^2 + \ldots + g_N^2. \]

(4)

This correspondence can be extended to the trigonometric versions of the both models.

We will show that a similar correspondence exists also in the case when the number of marked points \(n \) is not necessarily equal to \(N = \dim V \). In this form it looks like a quantum deformation of the quantum-classical correspondence [1, 2, 9, 13, 18] between the quantum Gaudin and classical Calogero models (see [4] for a discussion of the Matsuo–Cherednik map in this context).

The system of KZ equations is a non-stationary version of the quantum Gaudin model, with \(\hbar \) being the parameter of non-stationarity. We denote it as \(\hbar \) because it becomes the true Planck constant in the corresponding quantum Calogero model. The spectral problem for the Gaudin model is a ’quasiclassical’ limit of KZ as \(\hbar \to 0 \). Indeed, as \(\hbar \to 0 \) the KZ solutions have the asymptotic form [14]

\[|\Phi\rangle = \left(|\phi_0\rangle + \hbar |\phi_1\rangle + \ldots \right) e^{\delta / \hbar} \]

which, upon substitution to the KZ equations (1), leads, in the leading order, to the joint eigenvalue problems

\[H_i |\phi_0\rangle = p_i |\phi_0\rangle, \quad p_i = \frac{\delta S}{\partial x_i}, \quad i = 1, \ldots, n, \]

for the commuting Gaudin Hamiltonians \(H_i = g_i^{(i)} + \kappa \sum_{j \neq i}^{n} \frac{P_{ij}}{x_i - x_j} \) with the Planck constant \(\kappa \). In the quantum-classical correspondence, the eigenvalues \(p_i \) are identified with momenta of the Calogero–Moser particles with coordinates \(x_i \).

The plan of the paper is as follows. In section 2, we describe the rational Gaudin model with a formal Planck constant \(\kappa \) and the associated KZ equations. In section 3 the KZ-Calogero correspondence is established. Section 4 is devoted to the trigonometric version of the correspondence. Finally, in section 5 we discuss the interpretation of the results as a ’quantum’ deformation of the quantum-classical correspondence. Section 6 is the conclusion. In the appendix we show that the wave function from section 3 is also an eigenfunction of the higher Calogero Hamiltonian \(\hat{\mathcal{H}}_3 \).

2. The Gaudin Hamiltonians and KZ equations

Let \(e_{ab}^{\kappa} \) be generators of the ’\(\kappa \)-dependent version’ of the universal enveloping algebra \(U(gl(N)) \) with the commutation relations \([e_{ab}^{\kappa}, e_{cd}^{\kappa'}] = \kappa (\delta_{a,c} e_{b}^{\kappa} \delta_{d}^{\kappa'} - \delta_{a}^{\kappa} e_{c}^{\kappa'} \delta_{d}^{\kappa}). \) Since at \(\kappa = 0 \) the operators \(e_{ab}^{\kappa} \) commute, the parameter \(\kappa \) plays the role of the formal Planck’s constant. Let \(\pi \) be the
N-dimensional vector representation of $U^\kappa(g\mathfrak{sl}(N))$. We have $\pi(e_{ab}^\kappa) = \kappa e_{ab}$, where e_{ab} is the standard basis in the space of $N \times N$ matrices: the matrix e_{ab} has only one non-zero element (equal to 1) at the place ab; $(e_{ab})_{a'b'} = \delta_{aa'}\delta_{bb'}$. Note that $I = \sum_a e_{aa}$ is the unity operator and $P = \sum_{ab} e_{ab} \otimes e_{ba}$ is the permutation operator acting in the space $\mathbb{C}^N \otimes \mathbb{C}^N$.

In the tensor product $U^\kappa(g\mathfrak{sl}(N))^\otimes n$ the generators e_{ab} can be realized as $e_{ab}^{\kappa(i)} := 1^{\otimes (i-1)} \otimes e_{ab} \otimes 1^{\otimes (n-i)}$. It is clear that they commute for any $i \neq j$ and any a,b because they act non-trivially in different spaces. Similarly, for any matrix $g \in \text{End} (\mathbb{C}^N)$ we define $g^{(i)}$ acting in the tensor product $V = (\mathbb{C}^N)^\otimes n$: $g^{(i)} = 1^{\otimes (i-1)} \otimes g \otimes 1^{\otimes (n-i)} \in \text{End} (V)$. In this notation, $P_j := \sum_{a,b} e_{ab}^{\kappa(i)} e_{ba}^{\kappa(j)}$ is the permutation operator of the ith and jth tensor factors in $V = \mathbb{C}^N \otimes \ldots \otimes \mathbb{C}^N$. Clearly, $P_j = P_j$ and $P_j^2 = I$.

Fix n distinct numbers $x_i \in \mathbb{C}$ and a diagonal $N \times N$ matrix $g = \text{diag} (g_1, \ldots, g_N)$. (We assume that $n \geq N$ and that the g_i’s are all distinct and non-zero.) We will call g the twist matrix. The commuting Gaudin Hamiltonians are

$$H_i = \frac{1}{\kappa} \left(\sum_{a=1}^N g_a e_{aa}^{\kappa(i)} + \sum_{j \neq i} \sum_{a,b=1}^N e_{ab}^{\kappa(i)} e_{ba}^{\kappa(j)} \frac{x_i - x_j}{x_i - x_j} \right), \quad i = 1, \ldots, n.$$ \hspace{1cm} (5)

The Hamiltonians of the quantum Gaudin model [8] with the Hilbert space $V = (\mathbb{C}^N)^\otimes n$ are restrictions of the operators (5) to the N-dimensional vector representation π:

$$H_i = \sum_{a=1}^N g_a e_{aa}^{(i)} + \kappa \sum_{j \neq i} \sum_{a,b=1}^N e_{ab}^{(i)} e_{ba}^{(j)} \frac{x_i - x_j}{x_i - x_j} = g^{(i)} + \kappa \sum_{j \neq i} \frac{P_j}{x_i - x_j}, \quad i = 1, \ldots, n$$ \hspace{1cm} (6)

(for brevity we denote $\pi^\otimes n(H_i)$ by the same letter H_i). It is known that the Gaudin Hamiltonians form a commutative family: $[H_i, H_j] = 0$ for all $i, j = 1, \ldots, n$.

The operators

$$M_a = \sum_{i=1}^n e_{aa}^{(i)}$$ \hspace{1cm} (7)

commute among themselves and with the Gaudin Hamiltonians: $[H_i, M_a] = 0$. Clearly, $\sum_a M_a = n I$, and $\sum_{i=1}^n H_i = \sum_{a=1}^N g_a M_a$. The joint spectral problem is

$$\begin{cases}
H_i | \phi \rangle = H_i | \phi \rangle \\
M_a | \phi \rangle = M_a | \phi \rangle
\end{cases}$$

The common eigenstates of the Hamiltonians can be classified according to eigenvalues of the operators M_a.

Let

$$\mathcal{V} = \mathcal{V}^\otimes n = \bigoplus_{M_1, \ldots, M_n} \mathcal{V}(\{M_a\})$$ \hspace{1cm} (8)

be the weight decomposition of the Hilbert space \mathcal{V} of the Gaudin model into the direct sum of eigenspaces for the operators M_a with the eigenvalues $M_a \in \mathbb{Z}_{\geq 0}$, $a = 1, \ldots, N$ (recall that $M_1 + \ldots + M_N = n$). Then the eigenstates of H_i’s are in the spaces $\mathcal{V}(\{M_a\})$,

$$\dim \mathcal{V}(\{M_a\}) = \frac{n!}{M_1! \ldots M_N!}.$$
The basis vectors in $\mathcal{V}(\{M_a\})$ are $J = e_{i_1} \otimes e_{i_2} \otimes \cdots \otimes e_{i_n}$, where the number of indices j_k such that $j_k = a$ is equal to M_a for all $a = 1, \ldots, N$. We also introduce dual vectors $J = e_{i_1}^\dagger \otimes e_{i_2}^\dagger \otimes \cdots \otimes e_{i_n}^\dagger$ such that $\langle J | J' \rangle = \delta_{J,J'}$.

The system of KZ equations is a non-stationary version of the Gaudin model:

$$\hbar \partial_{J_i} \Phi_i = H_i \Phi_i, \quad i = 1, \ldots, n.$$

(9)

It respects the weight decomposition (8), hence the solutions belong to the weight subspaces $\mathcal{V}(\{M_a\})$. Equations (9) are compatible due to the flatness conditions

$$[\hbar \partial_{J_i} - H_i, \hbar \partial_{J_j} - H_j] = 0 \quad \text{for all} \quad i,j = 1, \ldots, n.$$

(10)

3. The KZ-Calogero correspondence

We claim that for any solution of the KZ equations belonging to the space $\mathcal{V}(\{M_a\})$, $\Phi = \sum_{J} \Phi_J |J\rangle$, the function

$$\Psi = \sum_{J} \Phi_J$$

(11)

is an eigenfunction of the Calogero Hamiltonian with the eigenvalue $E = \sum_{a=1}^{N} M_a g_a^2$:

$$\left(\hbar^2 \sum_{i=1}^{n} \partial_i^2 - \sum_{i \neq j}^{n} \frac{\kappa (\kappa - 1)}{(x_i - x_j)^2}\right) \Psi = E \Psi.$$

(12)

In particular, at $n = N$ and $M_1 = M_2 = \ldots = M_N = 1$ we get the result of [6, 7, 11, 17].

For the proof consider the covector equal to the sum of all basis (dual) vectors from the space $\mathcal{V}(\{M_a\})^*$:

$$\langle \Omega | = \sum_{J} \langle J |.$$

then $\Psi = \langle \Omega | \Phi \rangle$. Applying the operator $\hbar \partial_{J_i}$ to the KZ equation (1), we get:

$$\hbar^2 \partial_i^2 \Phi = -\hbar \kappa \sum_{j \neq i} \frac{P_{ij}}{(x_i - x_j)^2} \Phi + \left(g^{(i)} + \kappa \sum_{j \neq i} \frac{P_{ij}}{x_i - x_j} \right) \hbar \partial_{J_i} \Phi$$

$$= -\hbar \kappa \sum_{j \neq i} \frac{P_{ij}}{(x_i - x_j)^2} \Phi + \left(g^{(i)} + \kappa \sum_{j \neq i} \frac{P_{ij}}{x_i - x_j} \right) \left(g^{(i)} + \kappa \sum_{j \neq i} \frac{P_{ij}}{x_i - x_j} \right) \Phi$$

$$= -\hbar \kappa \sum_{j \neq i} \frac{P_{ij}}{(x_i - x_j)^2} \Phi + \kappa^2 \sum_{j \neq i} \frac{1}{(x_i - x_j)^2} \Phi + \left(g^{(i)} \right)^2 \Phi + \kappa \sum_{j \neq i} \frac{P_{ij}}{x_i - x_j} \Phi$$

$$+ \kappa^2 \sum_{j \neq i} \frac{P_{ij} P_{ij}}{(x_i - x_j)(x_i - x_l)} \Phi + \kappa \sum_{j \neq i} \frac{P_{ij}}{x_i - x_j} g^{(i)} \Phi + \kappa \sum_{j \neq i} \frac{P_{ij}}{x_i - x_j} g^{(i)} \Phi.$$

In the last lines we took into account that $P_{ij}^2 = I$ and $g^{(i)} P_{ij} = P_{ij} g^{(i)}$. Since $\langle \Omega | P_{ij} | J \rangle = 1$ for all basis vectors $|J\rangle$, we have $\langle \Omega | P_{ij} | J \rangle = 1$. Therefore, the permutation operators...
disappear after applying Ω from the left. Summing $\hbar^2 \left\langle \Omega \right| \partial_i^2 \Phi \rangle = \hbar^2 \partial_i^2 \Psi$ over i and using the identities

$$\sum_{j \neq i} \frac{1}{(x_i - x_j)(x_i - x_l)} = 0,$$

$$\sum_{i \neq j} g^{(i)} + g^{(j)} = 0,$$

$$\sum_i \left\langle \Omega \right| (g^{(i)})^2 \Phi \rangle = \left(\sum_{a=1}^{N} M_{ab} g_{a}^2 \right) \Psi$$

we get (12).

Note that $\Psi = \left\langle \Omega \right| \Phi \rangle$ is an eigenfunction of the total momentum operator $\hat{P} = \hbar \sum_i \partial_i$ with the eigenvalue $\sum_a M_{ab} g_{a}^2$. In the appendix it is shown that Ψ is also an eigenfunction of the cubic Calogero Hamiltonian \hat{H}_3. We conjecture that Ψ is the common eigenfunction for all higher Calogero Hamiltonians \hat{H}_k with the eigenvalues $E_k = \sum_a M_{ab} g_{a}^4$. The first four Hamiltonians are explicitly written in [16].

4. Trigonometric case

The trigonometric (hyperbolic) version of the system of KZ equations reads [7]

$$\hbar \partial_i \Phi = \left(g^{(i)} + \kappa \gamma \sum_{j \neq i} \left(\coth(\gamma(x_i - x_j)) P_{ij} + T_{ij} \right) \right) \Phi,$$

where we use the same notation as in (1) and

$$T = \sum_{a > b} (e_{ab} \otimes e_{ba} - e_{ba} \otimes e_{ab}).$$

This operator acts on basis vectors as follows:

$$Te_a \otimes e_b = \begin{cases} e_b \otimes e_a & \text{if } a < b \\ -e_b \otimes e_a & \text{if } a > b \\ 0 & \text{otherwise} \end{cases}$$

Note that $T_{ij} = -T_{ji}$. In the limit $\gamma \to 0$ we recover the rational KZ equations (1).

A calculation similar to the one given above in the rational setting leads to the following statement. For any solution of the KZ equations (16) belonging to the space $V(\{M_a\})$, $\Phi = \sum_j \Phi_j / J$, the function $\Psi = \sum_j \Phi_j$ solves the spectral problem for the Calogero–Sutherland Hamiltonian

$$\left(\hbar^2 \sum_{i=1}^{n} \partial_i^2 - \sum_{i \neq j} \frac{\kappa(\kappa - \hbar)^2}{\sinh^2(\gamma(x_i - x_j))} \right) \Psi = E \Psi$$

Identity (13) follows from

$$\frac{1}{(x_i - x_j)(x_i - x_l)} + \frac{1}{(x_i - x_j)(x_i - x_l)} + \frac{1}{(x_i - x_l)(x_l - x_j)} = 0$$

applied to the sum symmetrized with respect to i, j, l.

6 Identity (13) follows from

$$\sum_{i \neq j} \frac{1}{(x_i - x_j)(x_i - x_l)} + \frac{1}{(x_i - x_j)(x_i - x_l)} + \frac{1}{(x_i - x_l)(x_l - x_j)} = 0$$

applied to the sum symmetrized with respect to i, j, l.

J. Phys. A: Math. Theor. 50 (2017) 205202

A Zabrodin and A Zotov
with the eigenvalue
\[
E = \sum_{a=1}^{N} M_a g_a^2 + \frac{\kappa^2}{3} \sum_{a=1}^{N} M_a (M_a^2 - 1). \tag{19}
\]

Here are some details of the calculation which is actually more involved than in the rational case. Applying the operator \(h\partial_x\) to the KZ equation (16), we get:

\[
h^2 \partial_x^2 |\Phi\rangle = -\hbar \kappa \gamma^2 \sum_{j \neq i} \frac{P_{ij}}{\sinh^2 \gamma (x_i - x_j)} |\Phi\rangle + \left(g(i) + \kappa \gamma \sum_{j \neq i} (\coth \gamma (x_i - x_j) P_{ij} + T_{ij}) \right) \left(g(j) + \kappa \gamma \sum_{l \neq i} (\coth \gamma (x_j - x_i) P_{il} + T_{il}) \right) |\Phi\rangle.
\]

Again, in order to obtain an equation for \(\Psi = \langle \Omega | \Phi \rangle\) we apply \(\langle \Omega | \sum_j J_i \rangle\) from the left and sum over \(i\). After opening brackets in the right hand side several different terms appear, ‘wanted’ and ‘unwanted’ ones. The ‘wanted’ terms are

\[
-\hbar \kappa \gamma^2 \sum_{j \neq i} \frac{1}{\sinh^2 \gamma (x_i - x_j)} \Psi + \kappa^2 \gamma^2 \sum_{i \neq j} \coth^2 \gamma (x_i - x_j) \Psi
\]

\[
= \sum_{i \neq j} \frac{\kappa (\kappa - \hbar) \gamma^2}{\sinh^2 \gamma (x_i - x_j)} \Psi + n(n - 1) \kappa^2 \gamma^2 \Psi.
\]

It appears that the ‘unwanted’ terms either cancel or contribute to the eigenvalue. To see this, we need some identities. First of all, the trigonometric analog of identity (13) is\(^7\)

\[
\sum_{i \neq j \neq l} \coth \gamma (x_i - x_j) \coth \gamma (x_j - x_l) = \frac{1}{3} n(n - 1)(n - 2). \tag{20}
\]

An obvious trigonometric analog of (14) is

\[
\sum_{i \neq j} \coth \gamma (x_i - x_j)(g(i) + g(j)) = 0. \tag{21}
\]

Using (17), one can prove the identity

\[
(g(i) - g(j)) T_{ij} + T_{ij} (g(i) - g(j)) = 0. \tag{22}
\]

The most non-trivial identities are

\[
\sum_{i \neq j} \langle \Omega | T_{ij}^2 |\Phi\rangle = - \left(n(n - 1) - \sum_a M_a (M_a - 1) \right) \Psi, \tag{23}
\]

\[
\sum_{i \neq j \neq l} \langle \Omega | T_{ij} T_{il} |\Phi\rangle = - \frac{1}{3} \left(n(n - 1)(n - 2) - \sum_a M_a (M_a - 1) (M_a - 2) \right) \Psi. \tag{24}
\]

\(^7\) Similarly to (13) identity (20) follows from the summation formula for \(\coth\) function: \(\coth \gamma (x_i - x_j) \coth \gamma (x_j - x_l) + \coth \gamma (x_i - x_j) \coth \gamma (x_l - x_j) + \coth \gamma (x_i - x_l) \coth \gamma (x_l - x_i) = 1\) and \(\sum_{i \neq j \neq l} 1 = n(n - 1)(n - 2)\).
They are derived from the definition (17). Consider first (23). The operator T_{ij}^2 acts on arbitrary $e_a^{(i)} e_b^{(j)}$ entering $|\Phi\rangle \in \mathcal{V}(\{M_a\})$ as follows:

$$T_{ij}^2 e_a^{(i)} e_b^{(j)} = \begin{cases} -e_a^{(i)} e_b^{(j)} & \text{if } a \neq b \\ 0 & \text{otherwise.} \end{cases}$$ \hfill (25)

Therefore, we compute $\sum_{i \neq j} 1 = n(n-1)$ for all $|J\rangle$ and subtract the terms corresponding to the second line of (25). To prove (24), it is convenient to symmetrize T_{ij} with respect to permutations of i, j, l (keeping in mind that $T_{ij} = -T_{ji}$):

$$\sum_{i \neq j \neq l} \Omega |T_{ij} T_{il}| \Phi \rangle = \frac{1}{3} \sum_{i \neq j \neq l} \Omega |T_{ij} T_{il} + T_{jl} T_{ij} + T_{lj} T_{ij}| \Phi \rangle$$

It can be verified directly that the operator $T_{ij} T_{il} + T_{lj} T_{ij} + T_{il} T_{jl}$ acts on arbitrary $e_a^{(i)} e_b^{(j)} e_c^{(l)}$ entering $|\Phi\rangle \in \mathcal{V}(\{M_a\})$ as follows:

$$(T_{ij} T_{il} + T_{lj} T_{ij} + T_{il} T_{jl}) e_a^{(i)} e_b^{(j)} e_c^{(l)} = \begin{cases} 0 & \text{if } a = b = c \\ -e_a^{(i)} e_b^{(j)} & \text{otherwise.} \end{cases}$$ \hfill (26)

Therefore, we again compute $\sum_{i \neq j \neq l} 1 = n(n-1)(n-2)$, then subtract the cases corresponding to the first line of (26) and put the common minus sign.

5. Relation to the quantum-classical correspondence

We have established the correspondence between solutions to the KZ equations in different weight subspaces of $V^\otimes n$ and solutions to the spectral problem for the n-body Calogero model. It extends the previously known Matsuo–Cherednik map to the case when $\dim V$ is not necessarily equal to n. In this more general form, the correspondence can be understood as a natural ‘quantization’ of the quantum-classical correspondence [2, 9, 13, 15] between the quantum Gaudin model and the classical Calogero–Moser system of particles.

The Hamiltonian of the latter has the form

$$H = \sum_{i=1}^{n} \rho_i^2 - \sum_{i \neq j} \kappa^2 \frac{(x_i - x_j)^2}{(x_i - x_j)}$$

with the usual Poisson brackets $\{\rho_i, x_j\} = \delta_{ij}$ (for simplicity we consider the rational case). The model is known to be integrable [12], with the Lax matrix

$$L_{ij} = \rho_i \delta_{ij} + \kappa(1 - \delta_{ij}) \frac{x_i - x_j}{x_i - x_j}.$$

The higher Hamiltonians in involution are given by traces of powers of the Lax matrix: $H_k = \text{tr} L^k, H_2 = H$. The correspondence with the quantum Gaudin model goes as follows. Consider the level set of all classical Hamiltonians,

$$H_k = \sum_{a=1}^{n} M_a^k, \quad M_a \in \mathbb{Z}_{\geq 0},$$

with fixed coordinates x_i. (This means that eigenvalues of the $n \times n$ Lax matrix are g_a with multiplicities M_a.) Then the admissible values of momenta, p_a, coincide with eigenvalues of
the Gaudin Hamiltonians \mathbf{H}_i in the weight subspace $\mathcal{V}(\{M_a\})$ for the model with the marked points x_i and the twist matrix $g = \text{diag}(g_1, \ldots, g_N)$. In fact the admissible values of p_i’s obey a system of algebraic equations. Different solutions of this system correspond to different eigenstates of the Gaudin Hamiltonians. The coupling constant κ plays the role of the formal Planck constant in the Gaudin model.

In the trigonometric case eigenvalues of the Lax matrix

$$L^{\text{trig}}_{ij} = p_i \delta_{ij} + \frac{\kappa \gamma (1 - \delta_{ij})}{\sinh \gamma (x_i - x_j)}$$

should form ‘strings’ of lengths M_a centered at g_a (see [3]):

$$g^{(\alpha)}_a = g_a - (M_a - 1 - 2\alpha) \kappa \gamma, \quad \alpha = 0, 1, \ldots, M_a - 1.$$

Then p_i are eigenvalues of the trigonometric Gaudin Hamiltonians. The formula (19) for the eigenvalue E of the Calogero–Sutherland Hamiltonian agrees with this since it is actually equal to the sum of squares of all n eigenvalues of the trigonometric Lax matrix:

$$E = \sum_{a=1}^{N} \sum_{\alpha=0}^{M_a-1} (g^{(\alpha)}_a)^2,$$

as one can easily check. Again, we conjecture that the function Ψ is a common eigenfunction for all higher Calogero–Sutherland Hamiltonians with eigenvalues $\sum_{a=1}^{N} \sum_{\alpha=0}^{M_a-1} (g^{(\alpha)}_a)^k$.

We see that the quantization of the classical Calogero system of particles with the Planck constant $\hbar (p_i \rightarrow \hbar \partial_i)$ corresponds to the non-autonomous deformation of the Gaudin model which is the system of KZ equations with the twist matrix.

6. Conclusion

In this paper we have discussed the Matsuo–Cherednik type correspondence between solutions to the rational or trigonometric KZ equations in $(\mathbb{C}^N)^{\otimes n}$ and solutions to the spectral problem for the n-body Calogero model (respectively, rational or trigonometric). The previously known construction [6, 11] is extended to the case when n is not necessarily equal to N. The wave function of the Calogero model is simply a sum of all components of a solution to the KZ equation in a given weight subspace. We also conjecture that this wave function is a common eigenfunction for all higher commuting Calogero Hamiltonians. This is checked by a direct calculation for the third (cubic) Calogero Hamiltonian.

It is important to note that this result sheds some new light on the quantum-classical correspondence between the quantum Gaudin model and the classical Calogero system of particles [2, 9, 13, 15]. Namely, it suggests what happens with the other side of the correspondence when the Calogero system gets quantized: the Gaudin spectral problem should be substituted by its non-stationary version which is just the system of KZ equations.

Acknowledgments

The work of A Zabrodin has been funded by the Russian Academic Excellence Project ‘5-100’. It was also supported in part by RFBR grant 15-01-05990 and by joint RFBR grant 15-52-50041 YaF. The work of A Zotov was supported by RFBR grant 15-31-20484 mol_a-_ved and by joint RFBR project 15-51-52031 HHC.
Appendix. The cubic Hamiltonian

In this appendix we show that the wave function Ψ (11) is an eigenfunction of the third (cubic) Calogero Hamiltonian

$$\mathcal{H}_3 = \sum_i \hbar^3 \partial^3_i - 3\hbar \kappa - \hbar \sum_{i \neq j} \frac{1}{(x_i - x_j)^2} \partial_{x_i}.$$

It is convenient to introduce the KZ connection

$$\nabla_i = \hbar \partial_i - \mathbf{g}^{(i)} - \kappa \sum_{j \neq i} \frac{\mathbf{P}_j}{x_i - x_j}. \quad (A.1)$$

Then the KZ equations (1) are of the form:

$$\nabla_i \Psi = 0, \quad i = 1, \ldots, n. \quad (A.2)$$

Below we will omit the subscript $j \neq i$ implying that all summation indices do not equal to i. Direct calculations yield

$$\nabla_i^2 = \hbar^2 \partial^2_i - 2\hbar \left(\mathbf{g}^{(i)} + \kappa \sum_j \frac{\mathbf{P}_j}{x_i - x_j} \right) \partial_{x_i} + \left(\mathbf{g}^{(i)} \right)^2 + \kappa \sum_j \frac{\mathbf{g}^{(i)} \mathbf{P}_j + \mathbf{P}_j \mathbf{g}^{(i)}}{x_i - x_j}, \quad (A.3)$$

$$\nabla_i^3 = \hbar^3 \partial^3_i - 3\hbar^2 \left(\mathbf{g}^{(i)} + \kappa \sum_j \frac{\mathbf{P}_j}{x_i - x_j} \right) \partial^2_{x_i} + 3\hbar \kappa \sum_j \frac{\mathbf{P}_j}{x_i - x_j} \partial_{x_i} - \left(\mathbf{g}^{(i)} \right)^3$$

$$+ 3\hbar \kappa \sum_{j,k} \frac{\mathbf{P}_j \mathbf{P}_k}{(x_i - x_j)(x_i - x_k)} \partial_{x_i} + 3\hbar \left(\mathbf{g}^{(i)} \right)^2 \partial_{x_i} + 3\hbar \kappa \sum_j \frac{\mathbf{g}^{(i)} \mathbf{P}_j + \mathbf{P}_j \mathbf{g}^{(i)}}{x_i - x_j} \partial_{x_i}$$

$$- 2\hbar^2 \kappa \sum_j \frac{\mathbf{P}_j}{(x_i - x_j)^2} - \hbar \kappa \sum_j \frac{2\mathbf{g}^{(i)} \mathbf{P}_j + \mathbf{P}_j \mathbf{g}^{(i)}}{(x_i - x_j)^2} - 3\hbar \kappa \sum_{j,k} \frac{\mathbf{P}_j \mathbf{P}_k}{(x_i - x_j)(x_i - x_k)}$$

$$- \kappa \sum_j \frac{\mathbf{g}^{(i)} \mathbf{P}_j + \mathbf{P}_j \mathbf{g}^{(i)} + \mathbf{P}_j \mathbf{g}^{(i)}}{(x_i - x_j)(x_i - x_k)}$$

$$- \kappa^2 \sum_{j,k} \frac{\mathbf{g}^{(i)} \mathbf{P}_j + \mathbf{P}_j \mathbf{g}^{(i)} + \mathbf{P}_j \mathbf{g}^{(i)}}{(x_i - x_j)(x_i - x_k)(x_i - x_l)}. \quad (A.4)$$

Now let us use (A.2). Substitute $\partial^2_{x_i}$ from equation $\nabla_i^2 \Psi = 0$ with ∇_i^3 written as in (A.3):
\[\nabla^3_j = \hbar^3 \partial^3_{k_j} + 3\hbar^2 \kappa \sum_j \frac{p^j}{(x_j - x^j)^3} \partial_{k_j} + 2\kappa^3 \sum_{j,k,l} \frac{p^j p^k p^l}{(x_j - x^j)(x_k - x^k)(x_l - x^l)} \]

\[-3\hbar \kappa^2 \sum_{j,k} \frac{p^j p^k p^l}{(x_j - x^j)(x_k - x^k)} \partial_{k_j} - 3\hbar (g^{(i)})^2 \partial_{k_i} - 3\hbar \kappa \sum_j \frac{g^{(i)} p^j p^k + p^j g^{(i)} p^k + p^j p^k g^{(i)}}{(x_j - x^j)} \partial_{k_i} \]

\[+ \hbar \kappa \sum_j \frac{g^{(i)} p^j p^k p^l + p^j g^{(i)} p^k + p^j p^k g^{(i)}}{(x_j - x^j)^2} + 2\kappa^2 \sum_{j,k} \frac{g^{(i)} p^j p^k + p^j g^{(i)} p^k + p^j p^k g^{(i)}}{(x_j - x^j)} \]

\[+ 2\kappa \sum_j \frac{(g^{(i)})^2 p^j p^k + g^{(i)} p^j g^{(i)} p^k + p^j (g^{(i)})^2}{(x_j - x^j)^2} - 2\hbar^2 \kappa \sum_j \frac{p^j}{(x_j - x^j)} + 2 (g^{(i)})^3. \]

(A.5)

Here and below we imply that the operators act to a solution \(|\Phi\rangle\) of the KZ equation (we do not write the vector \(|\Phi\rangle\) for brevity). In the same way make the following substitutions into the r.h.s. of (A.5) (using \(\nabla^3_i |\Phi\rangle = 0\)):

\[-3\hbar (g^{(i)})^2 \partial_{k_i} = -3\hbar (g^{(i)})^3 - 3\kappa \sum_j \frac{(g^{(i)})^2 p^j}{(x_j - x^j)}, \]

\[-3\hbar \kappa \sum_j \frac{g^{(i)} p^j + p^j g^{(i)}}{x_j - x^j} \partial_{k_i} \]

\[= -3\kappa^2 \sum_{j,k} \frac{g^{(i)} p^j p^k + p^j g^{(i)} p^k + p^j p^k g^{(i)}}{(x_j - x^j)(x_k - x^k)} - 3\kappa \sum_j \frac{g^{(i)} p^j g^{(i)} + p^j (g^{(i)})^2}{(x_j - x^j)}. \]

Then we get

\[\nabla^3_j = \hbar^3 \partial^3_{k_j} + 3\hbar^2 \kappa \sum_j \frac{p^j}{(x_j - x^j)^3} \partial_{k_j} + 2\kappa^3 \sum_{j,k,l} \frac{p^j p^k p^l}{(x_j - x^j)(x_k - x^k)(x_l - x^l)} \]

\[+ \hbar \kappa \sum_j \frac{g^{(i)} p^j p^k p^l + p^j g^{(i)} p^k + p^j p^k g^{(i)}}{(x_j - x^j)^2} + 2\kappa^2 \sum_{j,k} \frac{g^{(i)} p^j p^k + p^j g^{(i)} p^k + p^j p^k g^{(i)}}{(x_j - x^j)} \]

\[+ 2\kappa \sum_j \frac{(g^{(i)})^2 p^j p^k + g^{(i)} p^j g^{(i)} p^k + p^j (g^{(i)})^2}{(x_j - x^j)^2} - 2\hbar^2 \kappa \sum_j \frac{p^j}{(x_j - x^j)} - (g^{(i)})^3. \]

(A.6)

The two sums over \(j, k\) in (A.6) should be subdivided into two parts each—with \(j = k\) and \(j \neq k\). Then the last sum in (A.6) with \(j \neq k\) should be transformed via \(\nabla_i |\Phi\rangle = 0\). This yields

10
\[\nabla_i^3 = \hbar^3 \partial_i^3 - 3\hbar \kappa \sum_j \frac{\kappa - \hbar \mathbf{P}_i}{(x_i - x_j)^3} \partial_i \nabla_j^3 + 2\kappa^3 \sum_{j,k,l} \mathbf{P}_i \mathbf{P}_j \mathbf{P}_k \frac{\mathbf{P}_j \mathbf{P}_k \mathbf{P}_l}{(x_i - x_j)(x_i - x_k)(x_i - x_l)} \]

\[+ \hbar \kappa \sum_j \left(\mathbf{g}^{(i)} \mathbf{P}_i - \mathbf{g}^{(i)} \mathbf{P}_j + \mathbf{P}_i \mathbf{g}^{(i)} \mathbf{P}_j + \mathbf{P}_i \mathbf{g}^{(i)} \right) \frac{(x_i - x_j)}{(x_i - x_j)^2} \]

\[+ 2\kappa^2 \sum_j \left(\mathbf{g}^{(i)} \mathbf{g}^{(j)} \mathbf{g}^{(j)} \right) + \mathbf{P}_i \mathbf{g}^{(i)} \mathbf{g}^{(i)} \frac{(x_i - x_j)}{(x_i - x_j)^2} \]

\[+ \kappa^2 \sum_j \left(\mathbf{g}^{(i)} \mathbf{g}^{(i)} \mathbf{g}^{(i)} \right) - 3\kappa^3 \sum_{j,k,l} \mathbf{P}_i \mathbf{P}_j \mathbf{P}_k \frac{\mathbf{P}_j \mathbf{P}_k \mathbf{P}_l}{(x_i - x_j)(x_i - x_k)(x_i - x_l)} , \quad (A.7) \]

At last notice that in two sums over three indices \(j, k, l \) the terms corresponding to coinciding indices cancel out. Finally, we have

\[\nabla_i^3 = \hbar^3 \partial_i^3 - 3\hbar \kappa \sum_j \frac{\kappa - \hbar \mathbf{P}_i}{(x_i - x_j)^3} \partial_i \nabla_j^3 - \kappa^3 \sum_{j,k,l} \mathbf{P}_i \mathbf{P}_j \mathbf{P}_k \frac{\mathbf{P}_j \mathbf{P}_k \mathbf{P}_l}{(x_i - x_j)(x_i - x_k)(x_i - x_l)} \]

\[- \kappa \sum_j \left(\mathbf{g}^{(i)} \mathbf{g}^{(i)} \mathbf{g}^{(j)} \right) \frac{(x_i - x_j)}{(x_i - x_j)^3} - \kappa^2 \sum_{j,k,l} \mathbf{P}_i \mathbf{P}_j \mathbf{g}^{(i)} \mathbf{g}^{(j)} \frac{(x_i - x_j)(x_i - x_k)}{(x_i - x_j)(x_i - x_k)} \]

\[+ 2\kappa^2 \sum_j \left(\mathbf{g}^{(i)} \mathbf{g}^{(j)} \mathbf{g}^{(j)} \right) + \mathbf{P}_i \mathbf{g}^{(i)} \mathbf{g}^{(i)} \frac{(x_i - x_j)}{(x_i - x_j)^3} - 2\hbar^2 \kappa \sum_j \mathbf{P}_i \mathbf{P}_j \mathbf{P}_k \frac{\mathbf{P}_j \mathbf{P}_k \mathbf{P}_l}{(x_i - x_j)(x_i - x_k)(x_i - x_l)} , \quad (A.8) \]

where \(\sum_{j,k,l} \) denotes summation over all distinct indices. Now we can write:

\[\sum_j \left[\nabla_j^3 | \Phi \right] = 0 \]

\[= \sum_i \hbar^3 \partial_i \Psi - 3\hbar \kappa (\kappa - \hbar) \sum_{i \neq j} \frac{1}{(x_i - x_j)^3} \partial_i \Psi - \sum_i \left[\Omega \left(\mathbf{g}^{(i)} \right)^3 \right] | \Phi \right] \quad (A.9) \]

or

\[\mathcal{H}_3 \Psi = E \Psi, \quad \mathcal{H}_3 = \sum_i \hbar^3 \partial_i^3 - 3\hbar \kappa (\kappa - \hbar) \sum_{i \neq j} \frac{1}{(x_i - x_j)^3} \partial_i \Psi \quad (A.10) \]

where

\[E = \sum_{a=1}^{N} \mathcal{M}_a \delta_{a3} . \quad (A.11) \]

In transition from (A.8) to (A.9) we have used \(\left[\Omega \right] | \mathbf{g}^{(i)} = \langle \Omega \rangle \) and the identities

\[\sum_{i,j,k} \mathbf{g}^{(i)} \mathbf{g}^{(j)} \mathbf{g}^{(j)} \frac{(x_i - x_j)}{(x_i - x_j)^2} = 0 . \quad (A.12) \]

\[\sum_{i,j,k} \frac{1}{(x_i - x_j)(x_i - x_k)(x_i - x_l)} = 0 . \quad (A.13) \]

The other terms cancel due to skew-symmetry with respect to \(i, j \).
References

[1] Alexandrov A, Kazakov V, Leurent S, Tsuboi Z and Zabrodin A 2013 Classical tau-function for quantum spin chains J. High Energy Phys. JHEP09(2013)064
[2] Alexandrov A, Leurent S, Tsuboi Z and Zabrodin A 2014 The master T-operator for the Gaudin model and the KP hierarchy Nucl. Phys. B 883 173–223
[3] Beketov M, Liashyk A, Zabrodin A and Zotov A 2016 Trigonometric version of quantum-classical duality in integrable systems Nucl. Phys. B 903 150–63
[4] Bulycheva K and Gorsky A 2014 BPS states in the omega-background and torus knots J. High Energy Phys. JHEP04(2014)164
[5] Calogero F 1971 Solution of the one-dimensional n-body problems with quadratic and/or inversely quadratic pair potentials J. Math. Phys. 12 419–36
[6] Cherednik I 1994 Integration of quantum many-body problems by affine Knizhnik–Zamolodchikov equations Adv. Math. 106 65–95
[7] Felder G and Veselov A 1994 Shift operators for the quantum Calogero–Sutherland problems via Knizhnik–Zamolodchikov equation Commun. Math. Phys. 160 259–73
[8] Gaudin M 1976 Diagonalisation d’une classe d’hamiltoniens de spin J. Phys. 37 1087–98
[9] Gorsky A, Zabrodin A and Zotov A 2014 Spectrum of quantum transfer matrices via classical many-body systems J. High Energy Phys. JHEP01(2014)070
[10] Knizhnik V and Zamolodchikov A 1984 Current algebra and Wess–Zumino models in two dimensions Nucl. Phys. B 247 83–103
[11] Matsuo A 1992 Integrable connections related to zonal spherical function Inventiones Math. 110 95–121
[12] Moser J 1975 Three integrable Hamiltonian systems connected with isospectral deformations Adv. Math. 16 197–220
[13] Mukhin E, Tarasov V and Varchenko A 2012 KZ characteristic variety as the zero set of classical Calogero–Moser Hamiltonians SIGMA 8 072
[14] Reshetikhin N and Varchenko A 1995 Quasiclassical asymptotics of solutions to the KZ equations Conf. Proc. and Lecture Notes in Geometry and Topology IV (Cambridge, MA: International Press) pp 293–322
[15] Tsuboi Z, Zabrodin A and Zotov A 2015 Supersymmetric quantum spin chains and classical integrable systems J. High Energy Phys. JHEP05(2015)086
[16] Ujino H, Wadati M and Hikami K 1993 The quantum Calogero–Moser model: algebraic structures J. Phys. Soc. Japan 62 3035–43
[17] Veselov A 1994 Calogero quantum problem, Knizhnik–Zamolodchikov equation and Huygens principle Teor. Mat. Fys. 98 524–35
[18] Zabrodin A 2015 Quantum spin chains and integrable many-body systems of classical mechanics Nonlinear Mathematical Physics and Natural Hazards (Springer Proc. Physics) 163 29–48