NKX2-5 variants screening in patients with atrial septal defect in Indonesia

Royhan Rozqie
Universitas Gadjah Mada

Muhammad Gahan Satwiko
Universitas Gadjah Mada

Dyah Wulan Anggrahini
Universitas Gadjah Mada

Ahmad Hamim Sadewa
Universitas Gadjah Mada

Gunadi
Universitas Gadjah Mada/Dr. Sardjito Hospital

Anggoro Budi Hartopo
Universitas Gadjah Mada

Lucia Kris Dinarti
Universitas Gadjah Mada

Research Article

Keywords: NKX2-5, familial ASD, variant, heterozygous variant, arrhythmia, pulmonary hypertension

Posted Date: January 17th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1099585/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Version of Record: A version of this preprint was published at BMC Medical Genomics on April 22nd, 2022. See the published version at https://doi.org/10.1186/s12920-022-01242-8.
Abstract

Background

NKX2-5 variant in atrial septal defect patients has been reported. However, it is not yet been described in the Southeast Asian population. Here, we screened the NKX2-5 variants in patients with atrial septal defect (ASD) in the Indonesian population.

Method

We recruited 97 patients with ASD for genetic screening of the NKX2-5 variant. NKX2-5 variant was screened using Sanger sequencing.

Results

We identified three variants of NKX2-5: NM_004387.4:c.63A>G at exon 1, NM_004387.4:c.413G>A, and NM_004387.4:c.561G>C at exon 2. The first variant is commonly found (85.6%) and benign. The last two variants are heterozygous at the same locus. These variants are rare (3.1%) and novel variants. Interestingly, these variants were discovered in familial atrial septal defects with a spectrum of arrhythmia and severe pulmonary hypertension.

Conclusion

Our study is the first report of the NKX2-5 variants in ASD patients in the Southeast Asian population, including a novel heterozygous variant: NM_004387.4:c.413G>A and NM_004387.4:c.561G>C. These variants might contribute to familial ASD risk with arrhythmia and severe pulmonary hypertension. Functional studies are necessary to prove our findings.

Introduction

Congenital heart disease diagnosis and treatment capabilities have dramatically increased over the previous years, but equivalent success rates have yet to be established in developing countries like Indonesia. Since congenital heart disease accounts for almost a third of all congenital birth defects, focusing on it is critical to preventing unnecessary deaths, such as pulmonary hypertension. However, the majority of patients with congenital heart disease in developing countries seek medical attention lately, as symptoms and signs of complications begin to manifest.

According to Indonesia’s first hospital-based registry of individuals with congenital heart disorders and CHD-related PH, atrial septal defects (ASD) account for most congenital heart diseases. For decades, these patients remained asymptomatic. Currently, there is no screening or early identification of
asymptomatic CHD in Indonesia. Later symptoms will prompt individuals to contact a doctor and seek treatment at a hospital. Unfortunately, the patients’ primary complaints were associated with the development of pulmonary artery hypertension and resulted in a poor clinical outcome.²

Genetic testing plays a significant role in medical evaluation. It detects possible genetic abnormalities in CHD and can enhance prognosis by providing vital information on individualized medical treatment and clinical diagnostic assurance.³ Since 1950, genetic investigations on family congenital heart disease have been studied. Various studies since then have shown that genetic information has a role in structural heart abnormalities. Numerous genes, including NNX2-5, GATA4, TBX5, NOTCH1, and TBX20, have been identified to be related to congenital heart disease.⁴

In recent decades, the transcription factor NNX2-5 has been reported to have an essential role in embryonic cardiogenesis and postnatal cardiac adaptation.⁵ Previous studies have reported a genetic variant of NNX2-5 linked to the development of atrial septal defect (ASD).⁶,⁷ The frequency of gene variant of NNX2-5 in ASD patients with familial history could reach up to 8% and only 1–4% in sporadic cases.⁸ Familial genetic variants can be detected earlier, so the management is carried out before complications appear. In addition, gene variants are different among races. Therefore, more study is needed to identify the gene variant of NNX2-5 in several different ethnicities. Here, we screened the NNX2-5 variants in patients with an atrial septal defect in Indonesia.

Material And Methods

Patient samples

This study was an analytic observational study involving ASD patients examined at RSUP Dr. Sardjito Yogyakarta and included in the COHARD-PH Registry in Yogyakarta.² It was sampled using the convenience sampling method. Informed consent was obtained from patients for diagnostic tests and research studies. The ethics committee approved the study of Universitas Gadjah Mada’s Faculty of Medicine, Public Health, and Nursing under the reference number KE/1116/11/2020. Storage and processing of DNA extraction from blood samples and the polymerase chain reaction were carried out at the Integrated Research Laboratory of the Faculty of Medicine, Public Health and Nursing Universitas Gadjah Mada.

DNA extraction and Sanger sequencing

Genomic DNA was isolated from whole blood using a DNA extraction kit (Geneaid). DNA was extracted and kept at -20°C until it was analyzed. A polymerase chain reaction (PCR) was performed using a Promega PCR kit. The primers used in this study are described in the supplement.

Subsequently, the Sanger sequencing was performed for the screening of NNX2-5 variants. The variants of NNX2-5 were obtained after being compared with the sequences in the NCBI database using SerialCloner and Sequence Scanner software.
Results

Baseline characteristics

We included 97 ASD patients in this study. Subjects consisted of 25 familial ASD patients and 72 sporadic ASD patients. The participants in this study ranged from 13 to 79 years old, with an average of 36.04 years. The mean age in the familial and sporadic groups was 37.64 (± 13.06) years and 35.49 (± 13.88) years, respectively. There were more female patients than males in both groups, 21 patients (84.0%) in familial and 62 patients (86.1%) sporadic (Table 1).

Characteristics	Familial (mean ± SD; n, %)	Sporadic (mean ± SD; n, %)	p-value
Age (years)	37.64 ± 13.06	35.49 ± 13.88	0.433
Sex			
♣ Male	4 (16)	10 (13.9)	0.751
♣ Female	21 (84)	62 (86.1)	
ASD type			
♣ Secundum	24 (96)	67 (93.1)	0.621
♣ Primum	0	3 (4.2)	
♣ Sinus venosus	1 (4)	2 (2.8)	
Avg. defect diameter (mm)	26.3 ± 9.4	23.2 ± 7.12	0.141
Right atrium diameter (mm)	46.2 ± 5.82	46 ± 8.05	0.963
Mean pulmonary artery pressure (mmHg)	35.13 ± 17.27	40.39 ± 20	0.351
Eisenmenger syndrome	1 (4)	6 (8.3)	0.673
Arrhythmia	3 (12)	8 (11.1)	1.0

This study includes three types of defects: secundum defects, primum defects, and sinus venosus defects. The type of secundum defect was the most common in each group, 24 patients (96%) in the familial group and 67 patients (93.1%) in the sporadic group. Primum defect type was only found in the sporadic group, three patients (4.2%). Patients with sinus venosus defect type found one patient (4%) in the familial group and two (2.8%) in the non-familial group. The diameter of the ASD defect in the familial group was 26.3 (± 9.40) mm, while the diameter in the sporadic group was 23.2 (± 7.12) mm. Right atrial dilatation was 46.20 (±5.72) mm in the familial group and 46.00 (±8.05) mm in the sporadic group. Patients with ASD with severe pulmonary hypertension may develop Eisenmenger syndrome.
Eisenmenger syndrome was diagnosed in one patient (4%) in the familial group and six in the non-familial group (8.3%) (Table 1).

NKX2-5 variants in ASD patients

During this study, 97 patients were subjected to *NKX2-5* screening using Sanger sequencing. From this study, three different variants were identified, which are NM_004387.4:c.63A>G at exon 1, NM_004387.4:c.413G>A, and NM_004387.4:c.561G>C at exon 2 (Fig. 1).

In our population study, the c.63A>G variant consists of 3 kinds of genotypes: homozygous AA (14, 14.4%), heterozygous AG (41, 42.3%), and homozygous GG (42, 43.3%) (Table 2). This variant was frequently observed in patients with ASD. According to ExAC, the frequency of variant is 40.52% in the control population.\(^9\)

Variant	Genotype	Frequency (n, %)
NM_004387.4:c.63A>G	AA	14 (14.4)
	AG	41 (42.3)
	GG	42 (43.3)
NM_004387.4:c.413G>A	GG	94 (96.9)
	GA	3 (3.1)
	AA	-
NM_004387.4:c.561G>C	GG	94 (96.9)
	GC	3 (3.1)
	CC	-

The variant of c.413G>A has two types of genotypes, homozygous GG and heterozygous GA, and the variant of c.561G>C has two genotypes: homozygous GG and heterozygous GC. Notably, both heterozygous variants have been identified at the same locus. These double heterozygous variants may significantly impact the amino acid missense arrangement, which is very likely to change the structure and function of the NKX2-5 protein. These variants are remarkable because they occurred in three subjects (3.1%) of ASD patients from 1 family (Fig. 2). In the control population, the frequency of c.413G>A is 0.0009% in the GnomAD_exome database, and there is no data for c.561G>C.\(^9\)

Discussion

Our study found several *NKX2-5* variants in ASD patients in Indonesia: NM_004387.4:c.63A>G at exon 1, NM_004387.4:c.413G>A, and NM_004387.4:c.561G>C at exon 2. The variant of c.63A>G is considered
benign according to the ClinVar database. However, it is associated with a 20% decrease in transactivation activity.10 In this study, it was frequently found that as much as 85.6% of research subjects. This result is the most significant number after research in the population in China, 80.18%, but it was found lower in Germany (59.4%) and Morocco (56.2%).7,8,11,12

For c.413G>A variant, replacement of guanine to adenine is a non-synonym in the form of missense which changes the arginine (Arg) to glutamine (Gln). Whereas, for c.561G>C variant, guanine substitution to cytosine changes the amino acid glutamine (Gln) to histidine (His). These variants change the amino acid sequence and consequently modify the protein structure, which can interfere with the function of the NKX2-5 protein as a transcription factor.

The variants of c.413G>A and c.561G>C lie in amino acids at 138 and 187, respectively, part of the protein homeodomain. Variants change the amino acid arrangement in the homeodomain, which is a critical domain because it binds directly to specific DNA. Several previous studies reported that missense mutations in the homeodomain could cause secundum type ASD and familial conduction disorders.13–17

In this study, we found these last two variants to occur together. It was found in 3 subjects with a family relationship (Figure 2 and supplementary data). Subjects 48 and 72 have sibling relationships, while subjects 72 and 97 are father and daughter. In subjects 48 and 72, it turned out that they had not only double heterozygote variants of c.413G>A and c.561G>C but also had c.63A>G heterozygous variant. It may be related to the more severe phenotype in subject 48, which developed rapid pulmonary hypertension aggravation and led to her death. In addition, these double variants cause a phenotype in the form of ASD accompanied by arrhythmia disorders. Subject 72 had sinus node dysfunction at a young age, while subject 97 had atrial tachycardia during childhood and ablated. The previous study support that mutations in NKX2-5 cause atrial septal formation disorders and are also associated with arrhythmia disorders.18 Therefore, it is necessary to do early genetic screening in the ASD patient family to see the role of the genetic variant of NKX2-5 on the familial ASD phenotype, especially in Indonesia.

Our study did not perform a functional study to determine the pathogenicity of the novel variant on ASD development. Therefore, further functional studies are necessary.

Conclusion

Our study is the first report of the NKX2-5 variants in ASD patients in the Southeast Asian population, including a novel heterozygous variant: NM_004387.4:c.413G>A and NM_004387.4:c.561G>C. These variants might contribute to familial ASD risk with arrhythmia and severe pulmonary hypertension. Functional studies are necessary to prove our findings.

Abbreviations

ASD, atrial septal defect ;
Declarations

Ethics approval and consent to participate

The Ethical Committee approved the study of the Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada (Ref #KE/1116/11/2020). The research has been performed in accordance with the Declaration of Helsinki. Written informed consent was obtained from all study participants or legally authorized representatives for a deceased patient and a patient under the age of 18.

Consent to publish

The patients and legally authorized representatives for a dead patient and a patient under the age of 18 gave written informed consent for publication.

Availability of data and material

The genomic DNA sequences generated and/or analyzed during the current study are available in the GenBank repository, under the accession number OM066666-OM066670.

Competing interests

The authors declare no conflict of interest.

Funding

This study was funded by the Universitas Gadjah Mada (Rekognisi Tugas Akhir [RTA] 2021 to LKD).

Authors’ contributions

The study was conceived by RR, AHS, and LKD. RR prepared the manuscript, & G provided critical revisions for significant intellectual content. All project-related tasks were facilitated by RR, MGS, DWA, ABH, and LKD. Each author has reviewed and approved the text and agreed to be responsible for all parts of the work, including ensuring that any concerns about the accuracy or integrity of any portion of the work are thoroughly investigated and resolved.

Acknowledgement

We are very grateful to the patients and their families for participation in this research study. We acknowledge Dr. Sardjito Hospital for patient registration support.

References

1. Zimmerman MS, Smith AGC, Sable CA, et al. Global, regional, and national burden of congenital heart disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet Child & Adolescent Health. 2020;4(3):185–200. doi:10.1016/s2352-4642(19)30402-x
2. Dinarti LK, Hartopo AB, Kusuma AD, et al. The COngenital HeARt Disease in adult and Pulmonary Hypertension (COHARD-PH) registry: a descriptive study from single-center hospital registry of adult congenital heart disease and pulmonary hypertension in Indonesia. *BMC Cardiovasc Disord.* Apr 7 2020;20(1):163. doi:10.1186/s12872-020-01434-z

3. Chaix MA, Andelfinger G, Khairy P. Genetic testing in congenital heart disease: A clinical approach. *World J Cardiol.* Feb 26 2016;8(2):180–91. doi:10.4330/wjc.v8.i2.180

4. Blue GM, Kirk EP, Giannoulatou E, et al. Advances in the Genetics of Congenital Heart Disease: A Clinician's Guide. *J Am Coll Cardiol.* Feb 21 2017;69(7):859–870. doi:10.1016/j.jacc.2016.11.060

5. Akazawa H, Komuro I. Cardiac transcription factor Csx/Nkx2-5: Its role in cardiac development and diseases. *Pharmacol Ther.* Aug 2005;107(2):252–68. doi:10.1016/j.pharmthera.2005.03.005

6. Behiry EG, Al-Azzouny MA, Sabry D, Behairy OG, Salem NE. Association of NKX2-5, GATA4, and TBX5 polymorphisms with congenital heart disease in Egyptian children. *Mol Genet Genomic Med.* May 2019;7(5):e612. doi:10.1002/mgg3.612

7. Wang H, Liu Y, Li Y, et al. Analysis of NKX2-5 in 439 Chinese Patients with Sporadic Atrial Septal Defect. *Med Sci Monit.* Apr 15 2019;25:2756–2763. doi:10.12659/MSM.916052

8. El Bouchikhi I, Bouguenouch L, Zohra Moufid F, et al. NKX2-5 molecular screening and assessment of variant rate and risk factors of secundum atrial septal defect in a Moroccan population. *Anatol J Cardiol.* Mar 2017;17(3):217–223. doi:10.14744/AnatolJCardiol.2016.7222

9. Sherry ST, Ward M, Sirotkin K. dbSNP-database for single nucleotide polymorphisms and other classes of minor genetic variation. *Genome Res.* Aug 1999;9(8):677–9.

10. Ouyang P, Saarel E, Bai Y, et al. A de novo mutation in NKX2.5 associated with atrial septal defects, ventricular noncompaction, syncope and sudden death. *Clin Chim Acta.* Jan 14 2011;412(1-2):170–5. doi:10.1016/j.cca.2010.09.035

11. Posch MG, Perrot A, Schmitt K, et al. Mutations in GATA4, NKX2.5, CRELD1, and BMP4 are infrequently found in patients with congenital cardiac septal defects. *Am J Med Genet A.* Jan 15 2008;146A(2):251–3. doi:10.1002/ajmg.a.32042

12. Juan W, Xingyuan L, Yiqing Y. Novel NKX2-5 mutations responsible for congenital heart disease. *Heart.* 2011;97:A205-A205.

13. Abou Hassan OK, Fahed AC, Batrawi M, et al. NKX2-5 mutations in an inbred consanguineous population: genetic and phenotypic diversity. *Sci Rep.* Mar 6 2015;5:8848. doi:10.1038/srep08848

14. Benson DW, Silberbach GM, Kavanaugh-McHugh A, et al. Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. *J Clin Invest.* Dec 1999;104(11):1567–73. doi:10.1172/JCI8154

15. Hosoda T, Komuro I, Shiojima I, et al. Familial atrial septal defect and atrioventricular conduction disturbance associated with a point mutation in the cardiac homeobox gene CSX/NKX2-5 in a Japanese patient. *Jpn Circ J.* May 1999;63(5):425–6. doi:10.1253/jcj.63.425

16. Kasahara H, Benson DW. Biochemical analyses of eight NKX2.5 homeodomain missense mutations causing atrioventricular block and cardiac anomalies. *Cardiovasc Res.* Oct 1 2004;64(1):40–51.
17. Schott JJ, Benson DW, Basson CT, et al. Congenital heart disease caused by mutations in the transcription factor NKX2-5. *Science*. Jul 3 1998;281(5373):108-11. doi:10.1126/science.281.5373.108

18. Ellesoe SG, Johansen MM, Bjerre JV, Hjortdal VE, Brunak S, Larsen LA. Familial Atrial Septal Defect and Sudden Cardiac Death: Identification of a Novel NKX2-5 Mutation and a Review of the Literature. *Congenit Heart Dis*. May 2016;11(3):283–90. doi:10.1111/chd.12317

Figures

Figure 1

The results of NKX2-5 sequencing show three variants at the codons 63, 413, and 561. The first variant is NM_004387.4:c.63A>G at exon 1 consist of heterozygous AG and homozygous GG. The second variant is a heterozygous GA (NM_004387.4:c.413G>A), and the last variant is a heterozygous GC (NM_004387.4:c.561G>C). The first variant is a synonymous variant. However, variants at codons 413 and 561 are non-synonymous (arginine replaced with glutamine at 138 and glutamine substituted with histidine at 187). Glu (glutamic acid), Arg (arginine), Gln (glutamine), His (histidine), NH2 (amino-end), TN (transcriptional activation domain), HD (homeodomain), NK (NK2 specific domain), COOH (carboxyl end).
A. Variant NM_004387.4:c.63A>G

B. Variant NM_004387.4:c.413G>A and c.561G>C

Figure 2

Patient's family tree no. 48, 72, and 97. Figure A describes the findings of the NM_004387.4:c.63A>G variant, while Figure B depicts the dual variants of NM_004387.4:c.413G>A and NM_004387.4:c.561G>C. The square symbol denotes the male, and the circle denotes the female. Patient no. 72 as the index is marked with an arrow. Black shading describes ASD patients. The + (positive) sign indicates a mutation,
the – (negative) sign is no mutation. Subjects without a + or – sign indicate that genetics was not tested. The / (slash) sign indicates that the patient has died.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Supplementary.docx