Agronomic traits performance of some promising lines of local upland rice (*Oryza sativa* L.) from SE Sulawesi grown under shading conditions

G R Sadimantara*, R Adawiah, S Leomo, E Febrianti and Muhidin

Department of Agrotechnology, Faculty of Agriculture, Halu Oleo University Kendari, Southeast Sulawesi, Indonesia.

E-mail: *gusti5@yahoo.com

Abstract. Rice is primarily eaten by countries like Indonesia in Asia. The demanding rice rise every year and the Indonesian government is trying to satisfy the need for rice. The development rice tolerant to shade is one of the promising choices. The aim is to characterize the performance of upland a new rice cultivar. The study was conducted at the Experiment Farm, Department of Agronomy, University of Halu Oleo. Arrange in a split-plot design and repeated four times. The different shade levels as main plot and rice lines different as subplot. The shade level consists of four levels (*N*0=0%, *N*1=25-50%, *N*2=50-75% and *N*3 > 75%). The upland rice lines were *G*1=*GS*11-1, *G*2=*GS*11-2, *G*3=*GS*12-1, *G*4=*GS*12-2 and *G*5=Lipigo as a control variety. The results indicated that shade significantly increased the plant height, leaf area and unfilled grains number. However, the shade level affected productive tiller and grain weight to decrease.

1. Introduction
Rice is still a main source of carbohydrate intake [1,2]. It consumes 90% in Asia and mostly in Southeast Asia, including Indonesia. The population of Indonesia's increase continue and rice demand continuously growing every year [3-6], and it needs to be self-sufficient [7,8]. The government of Indonesia have many policies to increase rice production while reducing the level rice consumption [9-12].

Several programs were taken to ensure rice sustainability and maintain the level of rice stock by increasing production, decreasing level consumption, and developing local food sources [13]. Efforts to increase rice, among others, improve the quality of seeds to grow well [14,15], develop new rice cultivars through cross-breeding [16,17], or radiation techniques, and develop upland rice as an alternative to increasing production. Development of upland rice can also be done to plant upland rice as intercrops so that it can be planted under plant stands [18-20]. The development of rice under plant stands will result in a lack of light to hampered the plant growth and production [21-23]. Therefore, rice cultivars that are tolerant to low light conditions are very important, and the potential land under plant stands can be utilized for rice cultivation.

2. Materials and methods
The study was conducted at the Experiment Farm, Department of Agronomy, University of Halu Oleo. Materials used were seed of rice promising lines: GS11-1, GS11-2, GS12-1, GS12-2, check variety
(Lipigo), Nitrogen phosphorus and potassium fertilizers, polybag, paranet, label, and plastic sample. The rice lines used were obtained from the crossing between local upland rice and superior lowland rice variety. Research is arranged in a split-plot design with four replications. Shade treatments arranged as main plots while upland rice lines were arranged as subplots. The plot size was 2x3 m² with 25 cm x 25 plant distance. Fourteen-day old seedlings were transplanted by maintaining only one seedling per hill. Standard agronomic practices were done to get a good rice crop. Five plants per replication per entry were selected randomly to collect the vegetative data on the plant height, leaf number, numbers of tillers per plant, leaf area. On the generative data were collected of flowering date, harvesting date, grain number, percentage filled grains and unfilled grains, and also grain weight.

3. Results and discussion

3.1. Results

3.1.1. Plant height and leaf area. The result was that shade treatment had a significant effect on plant growth, especially on plant height and leaf area parameters (table 1). In plant height parameters, shade treatment resulted in increased plant height. The rise in plant height is in line with the rise in the level of shade. With higher levels of shade, the increase was greater. The difference in plant height increases with increasing age of the plant. For leaf area parameters, shade treatment also has significantly effect on the leaf area.

Shade level	Plant height (cm) 42 DAP	Plant height (cm) 84 DAP	Leaf area (cm²) 42 DAP	Leaf area (cm²) 84 DAP
N₀	57.59 c	85.13 c	19.13 b	46.49 b
N₁	57.76 c	93.69 b	20.46 b	50.02 b
N₂	60.43 b	108.86 a	21.21 b	52.53 b
N₃	64.60 a	112.98 a	25.30 a	66.63 a

Note: Number follow the same superscript was no significant difference in DMRT 0.05

Plants always try to make adjustments to the ever-changing environmental conditions, either by avoiding them or by developing tolerance. The increase in plant length and leaf area is a mechanism that occurs when plants are shaded and facing stress due to lack of light. This situation also occurs in cocoa, coffee or banana. Different plant cultivars also respond differently to shade. In tolerant cultivars, generally there were no significant differences in plant height and leaf area in shaded conditions or not. Meanwhile, in sensitive cultivars, the presence of shade caused a significant difference between the two parameters.

3.1.2. Productive tillers. The findings have also shown that the shade has effect on tillers number is greatly. The higher the level of shade, the smaller the number of tillers become. However, various varieties responded differ to the decrease in the number of tillers (table 2). There was an interaction effect between shade and cultivar differences on the number of tillers. The most drastic decrease in the number of tillers due to increased shade occurred in G1 and G5 cultivars. Meanwhile the decrease occurred in other cultures. This indicated that the G2-4 culture was more tolerant so that there was no drastic decrease in the number of tillers. The pattern of productive tiller follows the pattern of tiller
number that reported in the previous study.

Table 2. The shade and cultivar interaction on productive tillers number.

Lines/Cultivar (G)	Shade level (N)	Mean (N)			
	N₀	N₁	N₂	N₃	
G₁	5.25 a	5.17 a	3.33 b	2.72 b	4.12
	r	q	q	p	
G₂	6.9 q	5.33 b	3.75 c	2.42 d	4.60
	s	q	q	p	
G₃	2.97 b	4.17 a	2.40 b	2.42 b	2.99
	s	q	qr	p	
G₄	3.75 a	3.92 a	3.00 ab	2.58 b	3.31
	s	qr	q	p	
G₅	10.67	8.67 b	5.28 c	3.60 d	7.06
	p	p	p	p	
Mean (G)	5.91	5.45	3.55	2.75	

Note: Number follow the same superscript was no significant difference in DMRT 0.05

3.1.3. Unfilled grains and grain yield per hill

Based on ANOVA, the shade treatment significantly affected upland rice lines to produce unfilled grain and grain yield per hill. The percentage of unfilled grains tend to increase with increasing of shade level. While grains yield per hill tend to decrease with increasing of shade level (figure 1 and figure 2).

![Figure 1. Number of unfilled grains per panicle.](image1)

![Figure 2. Upland rice grain yield per hill.](image2)

The production parameters show that increasing shade intensity can increase the percentage of unfilled grain. The higher the level of shade, the bigger the unfilled grain percentage. It is directly or indirectly affects production. Crop production decreased with higher levels of shade. It was because shade reduces the tiller number and filled grain percentage, thereby simultaneously reducing the production capacity. Each cultivar showed a different response due to shade. Each cultivar's different responses to this shade can be used as a genetic source for selection and obtaining shade-tolerant plants.

3.2. Discussion

The shade levels generally have affected the vegetative growth and productivity of four types of lines tested. The results of this study correlated with other research on soybean [24-26], maize [27,28], banana [29,30], and also finding by Viji on rice [31]. On the other research report, grain yield was
significantly reduced by 41 and 80 per cent at 20 and 40 per cent shade levels [32]. Similar decreases in low light intensity productivity were recorded earlier [32-34]. Both grow with the rise of the shade in the height of the plant and the area of the leaf. With the rise in shade level, there was a decrease in the active tiller. The unfilled percentage of grain in the unfilled grain parameter was higher at a higher degree of shade.

4. Conclusions
From the result it can be concluded that the shade level would increase the plant's height and leaf area. But, conversely, the increase in the amount of shade would decrease. The shade treatment can lower productive tiller, and grain weight. Although the treatment of shade greatly affects the rise in unfilled grains.

References
[1] Priyanka K and Jaiswal HK 2017 Genetic analysis of yield and yield contributing traits in boro rice (Oryza sativa L.) Over environments Bangladesh J. Agric. Res. 42 pp 457–66
[2] Sadimantara G R and Cahyono E 2014 Genetic Analysis on Some Agro-morphological Characters of Hybrid Progenies from Cultivated Paddy Rice and Local Upland Rice Adv. Stud. Biol. 6 pp 7–18
[3] Sutariati GAK, Arif N, Muhidin, Rakian TC, Mudi L and Nuralam 2017 Persistence and seed breaking dormancy on local upland rice of Southeast Sulawesi, Indonesia Pakistan J. Biol. Sci. 20 pp 563–70
[4] Muhidin, Kamaruzaman J, Elwakib S, Yunus M, Kaimuddin, Meisanti A, Sadimantara G R and La Rianda B 2013 The development of upland red rice under shade trees World Appl. Sci. J. 24 pp 23–30
[5] Muhidin, Syam’un E, Kaimuddin, Musa Y, Sadimantara GR, Usman, Leomo S and Rakian TC 2018 Shading effect on generative characters of upland red rice of Southeast Sulawesi, Indonesia IOP Conference Series: Earth and Environmental Science 157 p 012017
[6] Muhidin, Syam’un E, Kaimuddin, Musa Y, Sadimantara GR, Usman, Leomo S and Rakian TC 2018 The effect of shade on chlorophyll and anthocyanin content of upland red rice IOP Conf. Ser. Earth Environ. Sci. 122 012030
[7] Sutariati GAK, Khaeruni A and Pasolon YB 2016 The effect of seed bio-invigoration using indigenous rhizobacteria to improve viability and vigor of upland rice (oryza sativa L.) Seeds Int. J. PharmTech Res. 9 pp 565–73
[8] Kadidaa B, Sadimantara GR, Suaib, Safuan LO and Muhidin 2017 Genetic diversity of local upland rice (Oryza sativa L.) genotypes based on agronomic traits and yield potential in North Buton, Indonesia Asian J. Crop Sci. 9 4 pp 109-17
[9] Sadimantara GR, Kadidaa B, Suaib, Safuan LO and Muhidin 2018 Growth performance and yield stability of selected local upland rice genotypes in Buton Utara of Southeast Sulawesi IOP Conference Series: Earth and Environmental Science 122
[10] Suliantini NWS, Wijayanto T, Madiki A, Boer D, Muhidin and Tufaila M 2018 Yield potential improvement of upland red rice using gamma irradiation on local upland rice from southeast sulawesi Indonesia Biosci. Res. 15 pp 1673–8
[11] Sadimantara GR, Muhidin, Sri Suliantini NW, Nuraida W, Sadimantara MS, Leomo S and Ginting S 2018 Agronomic and yield characteristics of new superior lines of amphibious rice derived from paddy rice and local upland rice crossingbreeding in konawe of Indonesia Biosci. Res. 15 pp 893–9
[12] Sadimantara G R, Nuraida W, Suliantini N W S and Muhidin 2018 Evaluation of some new plant type of upland rice (Oryza sativa L.) lines derived from cross breeding for the growth and yield characteristics IOP Conf. Ser. Earth Environ. Sci. 157
[13] Sutariati GAK, Bande LOS, Khaeruni A, Muhidin, Mudi L and Savitri RM 2018 The effectiveness of preplant seed bio-invigoration techniques using Bacillus sp. CKD061 to
improving seed viability and vigor of several local upland rice cultivars of Southeast Sulawesi IOP Conf. Ser. Earth Environ. Sci. 122

[14] Sutariat GAK, Muhidin, Rakian TC, Afia LO, Made Widanta I, Mudi L, Sadimantara GR and Leomo S 2018 The effect of integrated application of pre-plant seed bio-invigoration, organic and inorganic fertilizer on the growth and yield of local upland rice BioSci. Res. 15 pp 160–5

[15] Kadidaa B, Sadimantara GR, Suaib, Safuan LO and Muhidin 2017 The Effect of Organic Fertilizer in the Increasing of Local Upland Rice Production on Marginal Land in North Buton Indonesia BioSci. Biotechnol. Res. Asia 14 3 pp 1051-4

[16] Sadimantara G R, Muhidin, Ginting S and Suliartini N W S 2016 The potential yield of some superior breeding lines of upland rice of Southeast Sulawesi Indonesia BioSci. Biotechnol. Res. Asia 13 pp 1867–70

[17] Muhidin, Leomo S, Alam S and Wijayanto T 2016 Comparative studies on different agroecosystem base on soil physicochemical properties to development of Sago Palm on Dryland Int. J. ChemTech Res. 9 pp 511–8

[18] Sasmita P, Purwoko B S, Sujiprihati S, Hanarida I, Dewi I S and Chozin M A 2006 Growth and production evaluation of shade tolerant doubled haploid lines of upland rice in an intercropping system Bul Agron 34 pp 79–86

[19] Kisman K, Khumaida N, Trikoesoemaningtyas T, Sobir S and Sopandie D 2007 Leaf morphophysiological, markers for adaptation of soybean to low light intensity Indones. J. Agron. 35 7868

[20] Ginting J, Damanik B S J, Sitanggang J M and Muluk C 2015 Effect of shade, organic materials and varieties on growth and production of upland rice Int. J. Technol. Enhanc. Emerg. Eng. Res. 4 pp 68–74

[21] Sopandie D, Chozin M A, Sastrosumarjo S, Juaheti T and Sahardi 2003 Shading Tolerance in Upland Rice Hayati 10 pp 71–5

[22] Las I 1982 Efisiensi Radiasi Surya dan Pengaruh Naungan Fisik terhadap Padi Gogo [Solar Radiation Efficiency and Effect of Physical Shade on Upland Rice] (Bogor: Institut Pertanian Bogor)

[23] Marler TE, Schaffer B and Crane JH 1994 Developmental light level affects growth, morphology, and leaf physiology of young carambola trees J. Am. Soc. Hortic. Sci. 119 pp 711–8

[24] Cruz P 1997 Effect of shade on the growth and mineral nutrition of a C4 perennial grass under field conditions Plant Soil 188 pp 227–37

[25] Fan Y, Chen J, Cheng Y, Raza MA, Wu X, Wang Z, Liu Q, Wang R, Wang X and Yong T 2018 Effect of shading and light recovery on the growth, leaf structure, and photosynthetic performance of soybean in a maize-soybean relay-strip intercropping system PLoS One 13 5 e019815 pp 1-15

[26] Yang C, Hu B, Iqbal N, Yang F, Liu W, Wang X, Yong T, Zhang J, Yang W and Liu J 2018 Effect of shading on accumulation of soybean isoflavonoid under maize-soybean strip intercropping systems Plant Prod. Sci. 21 pp 193–202

[27] Jia S F, Li C F, Dong S T and Zhang J W 2011 Effects of shading at different stages after anthesis on maize grain weight and quality at cytology level Agric. Sci. China 10 pp 58–69

[28] Yang Y, Xu W, Hou P, Liu G, Liu W, Wang Y, Zhao R, Ming B, Xie R and Wang K 2019 Improving maize grain yield by matching maize growth and solar radiation Sci. Rep. 9 pp 1–11

[29] Muhidin, Sadimantara G R, Leomo S, Rakian T C, Arma M J and Suliartini N W S 2016 The Response of Dwarf Banana Cavendish Growth and Production under Natural Shade Int. J. ChemTech Res. 9 pp 541–8

[30] Muhidin, Sadimantara G R, Leomo S, Yusuf D N and Rakian T C 2019 Characterizing the vegetative and fruit of local dwarf banana cavendish from SE Sulawesi IOP Conference Series: Earth and Environmental Science vol 260 (IOP Publishing) p 12175

[31] Viji MM, Thangaraj M and Jayapragasam M 1997 Low irradiance stress tolerance in rice (Oryza sativa L.) Biol. Plant. 39 pp 251–6

[32] Sunilkumar B and Geethakumari V L 2006 Shade response of upland rice cultivars (Oryza sativa
L.) as influenced by silica application J. Trop. Agric. 40 pp 67–70

[33] Vijayalakshmi C, Radhakrishnan R, Nagarajan M and Rajendran C 1991 Effect of solar radiation deficit on rice productivity J. Agron. Crop Sci. 167 pp 184–7

[34] Thangaraj M and Sivasubramanian V 1990 Effect of low light intensity on growth and productivity of irrigated rice (Oryza sativa L.) grown in Cauvery delta region Madras Agric. J. 77 pp 220–4

Acknowledgements
The authors extend their appreciation to the Ministry of Education and Culture and to the Rector of Halu Oleo University for financing the 2020 financial assistance under the Penelitian Terapan Unggulan Perguruan Tinggi Scheme.