NudC-like protein 2 restraints centriole amplification by stabilizing HERC2

Min Li, Xiaoyang Xu, Jun Zhang, Min Liu, Wei Wang, Ya Gao, Qiang Sun, Jiayu Zhang, Yunjun Lu, Fangwei Wang, Wei Liu, Tianhua Zhou, Yuehong Yang

Abstract
Centriole duplication is tightly controlled to occur once per cell cycle, and disruption of this synchrony causes centriole amplification, which is frequently observed in many cancers. Our previous work showed that nuclear distribution gene C (NudC)-like protein 2 (NudCL2) localizes to centrosomes; however, little is known about the role of NudCL2 in the regulation of centrosome function. Here, we find that NudCL2 is required for accurate centriole duplication by stabilizing the E3 ligase HECT domain and RCC1-like domain-containing protein 2 (HERC2). Knockout (KO) of NudCL2 using CRISPR/Cas9-based genome editing or depletion of NudCL2 using small interfering RNA causes significant centriole amplification. Overexpression of NudCL2 significantly suppresses hydroxyurea-induced centriole overduplication. Quantitative proteomic analysis reveals that HERC2 is downregulated in NudCL2 KO cells. NudCL2 is shown to interact with and stabilize HERC2. Depletion of HERC2 leads to the similar defects to that in NudCL2 downregulated cells, and ectopic expression of HERC2 effectively rescues the centriole amplification caused by the loss of NudCL2, whereas the defects induced by HERC2 depletion cannot be reversed by exogenous expression of NudCL2. Either loss of NudCL2 or depletion of HERC2 leads to the accumulation of ubiquitin-specific peptidase 33 (USP33), a centrosomal protein that positively regulates centriole duplication. Moreover, knockdown of USP33 reverses centriole amplification in both NudCL2 KO and HERC2-depleted cells. Taken together, our data suggest that NudCL2 plays an important role in maintaining the fidelity of centriole duplication by stabilizing HERC2 to control USP33 protein levels, providing a previously undescribed mechanism restraining centriole amplification.

Introduction
Centrioles are cylindrical, microtubule-based structures that are essential for the formation of centrosomes, cilia, and flagella. In general, a pair of centrioles recruits and organizes the pericentriolar material (PCM) to form a mature centrosome, which plays important roles in regulating cell shape, polarity, motility, mitosis, and cytokinesis. In mammalian cells, centriole duplication occurs once per cell cycle, and is highly coordinated with DNA replication. Centriole duplication consists of sequential steps that occur in a semiconservative and cell cycle-dependent manner. First, a pair of centrioles disengages during mitotic exit and early G1 phase. Then, a single new centriole, termed procentriole, begins to assemble adjacent to each pre-existing parental centriole in the G1/S transition, elongates through S and G2 phases, and finally becomes fully mature in the early phase of mitosis. Dysregulation of this process may cause centriole amplification, which leads to extranumerary centrosomes and results in genome instability.

Nuclear distribution gene C (NudC)-like protein 2 (NudCL2) was cloned and characterized as a new protein that is required for accurate centriole duplication by stabilizing HERC2.
homolog of NudC in mammalian cells. In the filamentous fungus Aspergillus nidulans, NudC was first identified as an upstream regulator of NudF (a homolog of the human lissencephaly 1 gene product, LIS1) in the control of nuclear movement. Mammalian NudC plays crucial roles in diverse cellular processes including cell division, neuronal migration, and ciliogenesis. Our previous study has reported that NudCL2 plays an important role in regulating the LIS1/dynein pathway by enhancing the interaction between LIS1 and heat-shock protein 90 (Hsp90) to stabilize LIS1. Additional data demonstrated the interaction between LIS1 and heat-shock protein 90 (Hsp90) to stabilize LIS1. The interaction between LIS1 and heat-shock protein 90 mediates sister chromatid cohesion. Interestingly, NudCL2 has been shown to be associated with centrosomes in human cells; however, little is known about the potential role of NudCL2 in centrosomes.

In this study, we provide evidence that NudCL2 is crucial for accurate centriole duplication. NudCL2 interacts with and stabilizes the E3 ligase HECT domain and RCC1-like domain-containing protein 2 (HERC2). Either down-regulation of NudCL2 or depletion of HERC2 causes centriole amplification. Ectopic expression of HERC2 reverses the centriole defects induced by NudCL2 deletion, but not vice versa. Thus, these data suggest that NudCL2 suppresses centriole amplification by stabilizing HERC2.

Results

NudCL2 is associated with centrosomes

Our previous work indicated that NudCL2 is localized to centrosomes in HeLa cells. To confirm the centrosome localization of NudCL2 during cell cycle progression, we performed immunofluorescence staining with anti-NudCL2 and anti-γ-tubulin (a centrosomal marker) antibodies in U2OS and HeLa cells and found that NudCL2 was colocalized with γ-tubulin throughout the cell cycle. Subsequent results revealed that NudCL2 was also associated with green-fluorescent protein (GFP)-centrin (a centriolar marker) that was stably expressed in HeLa cells. Moreover, sucrose density gradient centrifugation experiments showed that NudCL2 was co-distributed with γ-tubulin and centrosomal protein of 110 kDa (CP110) in U2OS cells. These data indicate that NudCL2 is a centrosome-associated protein.

Downregulation of NudCL2 causes centriole amplification

To explore the role of NudCL2 in centrosome function, we employed CRISPR/Cas9-mediated genome editing to knock out NudCL2 in mammalian cells. A CRISPR/Cas9 plasmid with a short guide RNA (sgRNA) that recognizes the first exon of NudCL2 was constructed and transfected into U2OS cells. PCR amplification of genomic DNA followed by Sanger sequencing revealed indels that are predicted to cause frameshift mutations at the NudCL2 DNA locus. Immunoblotting confirmed that NudCL2 protein disappeared in the mutant cells. In NudCL2 knockout (KO) cells at interphase, the number of cells with more than four centrin, four CP110, or two γ-tubulin dots increased approximately three-fold compared to the wild-type (WT) cells, suggesting that loss of NudCL2 causes centriole amplification. The similar results were observed in NudCL2 KO DLD1 cells and NudCL2-depleted CAL51 cells (Supplementary Figs. 1 and 2). Moreover, the increase in centriole number observed in NudCL2 KO cells was significantly reversed by ectopic expression of NudCL2. Given that cell cycle arrest may induce centriole amplification, we determined whether centriole amplification induced by NudCL2 deletion resulted from a change in cell cycle progression in NudCL2 KO cells. Fluorescence-activated cell sorting (FACS) analysis showed that there was no significant difference between the WT and NudCL2 KO cells. Together, these data indicate that NudCL2 plays an important role in restraining centriole amplification.

Centrosomes are essential for bipolar spindle assembly and accurate chromosome segregation in mammalian cells. Centriole amplification leads to supernumerary centrosomes in the subsequent cell cycle, which cluster to generate pseudobipolar spindles after transient spindle multipolarity, promoting chromosome missegregation. To investigate the effects of NudCL2 deletion on mitotic spindle formation, we performed immunostaining analysis with anti-α-tubulin and anti-CP110 antibodies. The data showed that the frequency of cells exhibiting pseudobipolar spindles was significantly increased in NudCL2 KO cells compared with that in WT cells, implying that loss of NudCL2 influences the formation of bipolar spindles.

Overexpression of NudCL2 suppresses centriole overduplication

Treatment with hydroxyurea (HU, a DNA synthesis inhibitor) uncouples centriole duplication from DNA replication and induces multiple rounds of centriole duplication in a prolonged S phase in U2OS cells, resulting in centriole amplification. To confirm the role of NudCL2 in restraining centriole amplification, U2OS cells were transfected with Myc-NudCL2 followed by HU treatment. We found that NudCL2 overexpression did not obviously affect cell cycle progression as determined by FACS analysis. Immunostaining analyses with anti-centrin and anti-CP110 antibodies revealed that, upon HU treatment, the percentage of cells with more than four centrioles was significantly lower in Myc-NudCL2-expressing cells than in control cells, indicating...
that overexpression of NudCL2 suppresses centriole overduplication induced by HU treatment.

Downregulation of NudCL2 induces HERC2 degradation

Previous work in our lab indicated that NudCL2 plays an important role in the regulation of protein stability. To determine the mechanism of NudCL2 in centriole duplication, we performed isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomic analysis using NudCL2 KO cells, and found that 61 proteins were differentially expressed (KO-1/WT fold change >1.2 or <0.83, \(p < 0.05 \)) (Fig. 4a, b). A range of centrosomal proteins have been reported to regulate centriole duplication. To identify the potential centrosomal proteins that may be involved in the function of NudCL2 in suppressing centriole amplification, we compared our quantitative proteomics data with centrosome-associated proteins from centrosome database (http://centrosome.dacya.ucm.es). We found that five centrosomal proteins overlapped in the two datasets, including HERC2, heat-shock cognate B, heat-shock protein family A member 2, mitogen-activated protein kinase kinase 1, and regulator of microtubule dynamics 1 (Fig. 4c, d). Among these proteins, only HERC2 was downregulated in NudCL2 KO cells, suggesting that HERC2 may be stabilized by NudCL2.

To confirm the downregulation of HERC2 induced by NudCL2 deletion, we performed western blot and reverse
Fig. 2 (See legend on next page.)
transcription PCR (RT-PCR) experiments. The results showed that the protein level of HERC2, but not its messenger RNA (mRNA) level, was substantially reduced in NudCL2 KO U2OS cells compared to WT cells (Fig. 4e, f). In addition, KO of NudCL2 in DLD1 cells or depletion of NudCL2 in CAL51 cells also resulted in an obvious decrease in HERC2 protein levels (Supplementary Fig. 3). The reduction in HERC2 protein levels was rescued by ectopic expression of NudCL2 in NudCL2 KO cells (Fig. 4g). In addition, cycloheximide (CHX) chase analysis revealed that...
Fig. 4 (See legend on next page.)
HERC2 and centriole duplication

HERC2 has been reported to participate in many fundamental cellular processes, including DNA repair, DNA replication, and PCM morphology maintenance. Nevertheless, whether HERC2 plays a role in centriole duplication is still unknown. To examine the role of HERC2 in centriole duplication, we employed two small interfering RNAs (siRNAs) targeting different HERC2 mRNA regions (siHERC2-1 and -2). Western blot analysis showed that HERC2 proteins were efficiently downregulated at 72 h post-transfection (Fig. 5a). Importantly, immunostaining with anti-centrin and anti-CIP110 antibodies revealed an approximately three-fold increase in the number of cells with more than four centrioles in HERC2-depleted cells compared to the control (Fig. 5b–d). Flow cytometry data showed that knockdown of HERC2 had no significant effect on cell cycle progression (Fig. 5e, f). Furthermore, downregulation of HERC2 resulted in a significant increase in mitotic cells with pseudobipolar spindles (Fig. 5g, h). Thus, these results strongly suggest that HERC2 plays an important role in restraining centriole amplification.

Since our data show that NudCL2 interacts with and stabilizes HERC2 and that both NudCL2 downregulation and HERC2 depletion lead to centriole amplification (Figs. 2, 4, and 5), we next asked whether NudCL2 negatively regulates centriole duplication through HERC2. Exogenous expression of HERC2 efficiently reversed centriole amplification in NudCL2 KO cells (Fig. 5i–k). By contrast, ectopic expression of NudCL2 failed to rescue the defects induced by HERC2 depletion (Fig. 5l–n). Collectively, these data suggest that HERC2 functions as a downstream effector of the NudCL2/HERC2 axis to restrain centriole over-amplification.

Discussion

Centriole duplication is tightly controlled during cell cycle progression. Accumulating studies have revealed...
Fig. 5 (See legend on next page.)
that a number of proteins are involved in restraining centriole amplification, such as Krüppel-like factor 14, RNA-binding motif protein 14, cell division cycle 6, and so on. However, the molecular mechanism of suppressing centriole amplification is still a mystery. In this report, we provide evidence that NudCL2 plays an essential role in restraining centriole amplification in mammalian cells. Downregulation of NudCL2 results in extranumerary centrioles (Fig. 2, Supplementary Figs. 1 and 2), and overexpression of NudCL2 inhibits HU-induced centriole overduplication (Fig. 3). NudCL2 is found to interact with and stabilize HERC2 (Fig. 4).

Ectopic expression of HERC2 reverses centriole amplification induced by NudCL2 deletion (Fig. 5i–k). Either loss of NudCL2 or depletion of HERC2 increases USP33 protein levels (Fig. 6a, e, f). Moreover, downregulation of USP33 reverses centriole amplification induced by NudCL2 KO or HERC2 knockdown (Figs. 6b–d, g–i). Thus, these data indicate a hitherto undescribed mechanism in which NudCL2 functions as an important checkpoint protein to restrain centriole amplification by stabilizing HERC2 to decrease USP33 (Fig. 6k).

Emerging studies have identified a number of centrosomal proteins such as polo-like kinase 1 (Plk1), polo-like kinase 4 (Plk4), spindle assembly abnormal protein 6 (SA66), separase, and SCL/TAL1-interrupting locus (STIL) that play crucial roles in the centriole duplication cycle. During centriole biogenesis, Plk4 is recruited to the base of centrosomes by centrosomal protein of 152 kDa and centrosomal protein of 192 kDa. Then, Plk4 phosphorylates STIL and triggers the recruitment of SA66 to centrosomes, which initiates centriole assembly. Additionally, Plk1 and separase participate in centriole disengagement, a critical licensing step for centriole duplication in the next cell cycle. Overexpression of these proteins induces centriole amplification.

Here, we found that the NudCL2/HERC2/USP33 axis is essential for the precision regulation of centriole duplication. Intriguingly, our data reveal that NudCL2 deletion has no obvious effect on the protein levels of the above regulators, including Plk1, Plk4, SAS6, separase, and STIL. (Supplementary Fig. 6), suggesting an unknown mechanism underlying the role of NudCL2 in centriole duplication.

Accumulating data implicate that HERC2 plays important roles in many cellular processes. HERC2 is required for the proper maturation of double-strand break responses by promoting the retention of DNA repair factors on damaged chromosomes. HERC2 promotes DNA replication by facilitating minichromosome maintenance complex component 2 phosphorylation. In addition, HERC2 has been found to participate in cell cycle regulation by inhibiting G2–M checkpoint activity via destabilizing breast cancer type 1 susceptibility protein. Recently, HERC2 has been reported to localize to centrosomes and maintain PCM morphology by interacting with and ubiquitinating neuralized E3 ubiquitin protein ligase 4; however, whether HERC2 plays a role in centriole duplication remains unknown. Here, our data show that downregulation of HERC2 leads to centriole amplification and pseudobipolar spindle formation in mammalian cells, suggesting a role of HERC2 in the accurate control of centriole duplication (Fig. 5). USP33 is a HERC2 target protein and participates in positively regulating centriole duplication. In this study, we find that USP33 is accumulated in HERC2-depleted cells. Downregulation of USP33 is able to effectively reverse centriole amplification induced by HERC2 knockdown. These data suggest a previously uncharacterized function of HERC2 in restraining centriole amplification by destabilizing USP33.

In this study, we found that downregulation of NudCL2 causes HERC2 degradation (Fig. 4); however, the mechanism underlying the stabilization of HERC2 regulated by NudCL2 is still unknown. NudCL2 contains a core structure of p23 (p23 domain), which acts as an Hsp90 chaperone to regulate the folding and maturation of client proteins. Our recent work showed that...
Fig. 6 (See legend on next page.)
NudCL2 functions as an Hsp90 co-chaperone to stabilize cohesin subunits by modulating Hsp90 ATPase activity. Based on these scenarios, further studies are clearly needed to determine whether Hsp90 is involved in the regulation of HERC2 stability.

Vertebrate NudC has three homologs: NudC, NudCL, and NudCL2, all of which have been reported to localize at centrosomes, an important organelle for cell cycle and ciliogenesis. Depletion of NudC leads to multiple mitotic defects including the multipolar spindle and the lagging chromosomes, and causes ciliary defects in mammalian cells and zebrafish. Downregulation of NudCL results in the similar phenotypes to that of NudC depletion during mitosis. NudCL2 depletion also influences cilia assembly in interphase. Here, our data indicate that NudCL2 acts as a centrosome duplication checkpoint protein to restrain centriole amplification by destabilizing HERC2. Taken together, these studies suggest that members of the NudC family function as important regulators of centrosome function.

Materials and methods
Plasmids, primers, and oligonucleotides
The GFP-NudCL2 and Myc-NudCL2 plasmids were constructed as described previously. Plasmids expressing Flag-tagged full-length HERC2 were obtained from Addgene (55613), and the sequence of HERC2 was confirmed by DNA sequencing. All siRNAs were designed or synthesized by GenePharma (Shanghai, China). The sense sequences of the siRNA duplexes are as follows:

- siHERC2-1: 5′-GGAAAGCGACUCGGAUCUUTT-3′;
- siHERC2-2: 5′-GAAUGGUCGUUCACUCATT-3′;
- siUSP33: 5′-GUAUGUGCGGAACAUATT-3′;
- siNudCL2-1: 5′-ACCUUGAGAAUAACTGCUTT-3′;
- siNudCL2-2: 5′-GACUUCUCUACUAGAAUCUTT-3′.

Cell culture, transfection, and drug treatment
U2OS, HeLa, and HEK-293 cells were maintained in Dulbecco’s modified Eagle’s medium (Corning, Shanghai, China) supplemented with 10% fetal bovine serum (PAA Laboratories, Northbrook, IL, USA). The human colorectal adenocarcinoma cell line CAL51 were cultured in RPMI-1640 (Corning) supplemented with 10% fetal bovine serum (PAA Laboratories). Cells were cultured in humidified incubators at 37 °C with 5% CO2. Transfections of plasmids and siRNAs were carried out using polyjet (SignaGen Laboratories, Rockville, MD, USA) and Lipofectamine RNAiMAX (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions, respectively. In the centriole-overduplication assay, 4 mM HU (Sigma-Aldrich, St. Louis, MO, USA) was used to treat U2OS cells for 48 h. For CHX (Sigma-Aldrich, St. Louis, MO, USA) chase analysis, 100 µg/ml CHX was used for the indicated times as described in the text. To block the proteasome-dependent degradation pathway, 1 µM MG132 (Millipore, Billerica, MA, USA) was added to U2OS cells for 2 h.

Generation of NudCL2 KO cell lines by CRISPR/Cas9-mediated genome editing
The sgRNA, 5′-GAAGTTTCAAGGTCGCCGCC-3′, targeting the first exon of the NudCL2 gene was designed and synthesized by Nanjing YSY Biotech Ltd (Nanjing, China). Then, the CRISPR/Cas9 plasmid was constructed by cloning the sgRNA into its backbone. U2OS, HEK-293, and DLD1 cells were transfected with this plasmid for 48 h followed by treatment with 1 µM puromycin for 48 h. After selection, the cells were counted and diluted to a density of 1 cell per 200 µl of medium and seeded into 96-well plates to obtain single colonies. NudCL2 KO colonies were identified by western blot and genomic DNA sequencing analyses. The primers used to amplify the target region are as follows:

- forward: 5′-AGGCGTGACTAAGGGTGATGATT-3′;
- reverse: 5′-ACCCAAACAGCTGCTAGGGAAAAC-3′.

Antibodies
An anti-NudCL2 antibody was generated as described previously. Antibodies against centrin 1 (Millipore, Billerica, MA, USA), CP110 (Proteintech, Wuhan, China),
γ-tubulin (Sigma-Aldrich, St. Louis, MO, USA), α-tubulin (Sigma-Aldrich, St. Louis, MO, USA), β-actin (Sigma-Aldrich, St. Louis, MO, USA), Plk1 (Sigma-Aldrich, St. Louis, MO, USA), Flag (Beyotime Biotechnology, Shanghai, China), c-Myc (Santa Cruz Biotechnology, CA, USA), SAS6 (Santa Cruz Biotechnology, CA, USA), separase (Santa Cruz Biotechnology, CA, USA), Cdk2 (Santa Cruz Biotechnology, CA, USA), cyclin A (Santa Cruz Biotechnology, CA, USA), cyclin E (Santa Cruz Biotechnology, CA, USA), cdk2 (Proteintech, Wuhan, China), and USP33 (Proteintech, Wuhan, China) were acquired commercially.

Immunoprecipitation and western blot

Immunoprecipitation was performed as previously described51. Briefly, cells were lysed in TBSN buffer (20 mM Tris [pH 8.0], 150 mM NaCl, 0.5% Nonidet P-40, 5 mM EGTA, 1.5 mM EDTA, 0.5 mM Na3VO4, 20 mM p-nitrophenyl phosphate) containing a cocktail of protease inhibitors (Roche, Basel, Switzerland) and then subjected to immunoprecipitation with the indicated antibodies or anti-Flag antibody-coupled beads (Sigma-Aldrich, St. Louis, MO, USA). The proteins were separated in a sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis gel (Millipore, Billerica, MA, USA). The proteins were separated in a sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis gel and transferred to a polyvinylidene fluoride membrane (Millipore, Billerica, MA, USA). The membranes were blocked with 5% skim milk at room temperature for 1 h, then incubated with the indicated primary antibodies and corresponding horse radish peroxidase-conjugated secondary antibodies (Cell Signaling Technology, Beverly, MA, USA), and, finally, detected by enhanced chemiluminescence (Fude biological technology, Hangzhou, China) according to the manufacturer’s instructions.

Immunofluorescence

Cells grown on coverslips were fixed with cold methanol at −20 °C for 5 min, permeabilized in 0.1% Triton X-100/phosphate-buffered saline (PBS) for 15 min, blocked with 3% bovine serum albumin/PBS for 30 min, and then incubated with the primary antibodies indicated in the text for 2 h at room temperature. After washing with 0.1% Triton X-100/PBS for 15 min, cells were incubated with secondary antibodies (Alexa Fluor 488- or 568-conjugated anti-rabbit or mouse IgG, Invitrogen) for 1 h at room temperature. DNA was stained with 4′,6-diamidino-2-phenylindole (DAPI) (Beyotime Technology, Shanghai, China). Finally, the mounted coverslips were analyzed by confocal fluorescence microscopy (IX81-FV1000, Olympus, Japan).

Fluorescence-activated cell sorting

For cell cycle analysis, cells were collected and washed with PBS and fixed in cold 70% ethanol. The samples were washed twice with PBS and incubated with a staining solution containing 20 μg/ml propidium iodide (Beyotime Technology, Shanghai, China) and 20 μg/ml RNase A (Beyotime Technology, Shanghai, China) at 37 °C for 30 min. The samples were analyzed using a flow cytometer (Cytomic FC 500 MCL, Beckman Coulter, Brea, CA, USA).

Quantitative RT-PCR

Total RNA was extracted with Trizol (Invitrogen) and reverse transcribed to obtain complementary DNA with HiScript Q RT SuperMix (Vazyme, Nanjing, China). Quantitative RT-PCR analysis for HERC2 mRNA was performed using a Bio-Rad CFX-Toch System (Bio-Rad Laboratories, Hercules, CA, USA). Primers used to amplify the target region are as follows:

forward: 5′-TGAAGAAGAAACTCCGTGCACCT-3′;
reverse: 5′-GGTGGTGCTGGACTGGAC-3′.

Centrosome isolation

Centrosome purification was performed as previously described with some modifications21. U2OS cells that had been treated with a solution containing 10 μg/ml nocodazole (Santa Cruz Biotechnology, CA, USA) and 5 μg/ml cytochalasin B (Sigma-Aldrich, St. Louis, MO, USA) for 1.5 h were lysed with lysis buffer (1 mM HEPES [pH 7.2], 0.5% NP-40, 0.5 mM MgCl2, 0.1% β-mercaptoethanol and protease inhibitors) on ice for 20 min. Swollen nuclei and chromatin aggregates were removed by centrifugation (2500 × g, 10 min). The supernatant was supplemented with HEPES buffer to a final concentration of 10 mM and incubated with 2 Units/ml of DNase I (Sigma-Aldrich, St. Louis, MO, USA) on ice for 30 min. The lysate was underlaid with 1 ml of 60% sucrose solution and centrifuged at 25,000 × g for 30 min at 4 °C. The crude centrosome preparation was diluted with lysis buffer and layered onto a discontinuous sucrose gradient (from bottom to top, containing 0.5, 0.3, and 0.3 ml of 70%, 50%, and 40% sucrose solutions, respectively) in a 5 ml tube, followed by centrifugation at 97,000 × g for 1.5 h at 4 °C. Subsequently, fractions were collected, diluted with 10 mM PIPES (pH 7.2), and centrifuged at 14,000 rpm for 10 min to pellet the centrosomes. The centrosome pellets were resuspended in 40 μl of SDS sample buffer.

Statistical analysis

All experiments were repeated at least three times. Two-tailed Student’s t tests were used for comparisons between two groups (GraphPad Prism 5).

Acknowledgements

We are grateful to Wei Zhuo and Dante Neculai for providing the good suggestions about manuscript writing and to Guifeng Xiao and Wei Yin for help with the confocal imaging. We thank all the members of Zhou’s lab for the helpful comments and suggestions during the work. This work was...
supported by the National Natural Scientific Foundation of China (31671394, 31471259, 91740205, 3162010391, and 31571446) and the National Key Research and Development Program of China (2016YFA0100301).

Author details
1Department of Cell Biology and the Cancer Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China. 2Hangzhou Xinhua Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, Zhejiang 310004, China. 3Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China. 4Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China. 5Department of Molecular Genetics, University of Toronto, Toronto, Canada

Authors’ contributions
T.Z., M.L., and Y.G. designed the experiments. Q.S., Y.L., and J.Z. discussed the results and commented on the manuscript. M.L. and Y.G. wrote the original draft. Y.Y., W.W., and T.Z. edited the manuscripts. T.Z. supervised the project.

Conflict of interest
The authors declare that they have no conflict of interest.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information
accompanies this paper at (https://doi.org/10.1038/s41419-019-1843-3).

Received: 28 January 2019 Revised: 27 June 2019 Accepted: 26 July 2019 Published online: 19 August 2019

References
1. Nigg, E. A. & Holland, A. J. Once and only once: mechanisms of centriole duplication and their deregulation in disease. Nat. Rev. Mol. Cell. Biol. 19, 297–312 (2018).
2. Nigg, E. A. & Raff, J. W. Centrioles, centrosomes, and clia in health and disease. Cell 139, 663–678 (2009).
3. Azmaadeh, J. & Marshall, W. F. Building the centrosome. Curr. Biol. 20, 816–825 (2010).
4. Holland, A. J., Lan, W. & Cleveland, D. W. Centriole duplication: a lesson in self-reproduction. Cell Cycle 9, 2371–2376 (2010).
5. Nigg, E. A. & Stearns, T. The centrosome cycle: centrosome biogenesis, duplication and inherent asymmetries. Nat. Cell Biol. 13, 1154–1160 (2011).
6. Yang, Y. et al. NudC4-like protein 2 regulates the L51/dynein pathway by stabilizing L51 with Hsp90. Proc. Natl. Acad. Sci. USA 107, 3499–3504 (2010).
7. Osmani, A. H., Osmani, S. A. & Morris, N. R. The molecular cloning and identification of a gene product specifically required for movement in Aspergillus nidulans. J. Cell Biol. 111, 543–551 (1990).
8. Xiang, X., Osmani, A.-H., Osmani, S. A., Xin, M. & Morris, N. R. NudF, a nuclear migration gene in Aspergillus nidulans, is similar to the human L5-1 gene required for neuronal migration. Mol. Biol. Cell 6, 297–310 (1995).
9. Fu, Q., Wang, W., Zhou, T. & Yang, Y. Emerging roles of NudC family: from molecular regulation to clinical implications. Sci. China Life Sci. 59, 455–462 (2016).
10. Yang, Y. et al. NudCL2 is an Hsp90 cochaperone to regulate sister chromatid cohesion by stabilizing cohesin subunits. Cell Mol. Life Sci. 76, 381–395 (2019).
11. Andrianov, S. J., Kramer, A. & Maerz, B. Centrosome amplification in tumorigenesis. Cancer Lett. 322, 8–17 (2012).
12. Kwon, M. et al. Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev. 22, 2189–2203 (2008).
13. Leber, B. et al. Proteins required for centrosome clustering in cancer cells. Sci. Transl. Med. 2, 33ra38 (2010).
14. Ganem, N. J., Godinho, S. A. & Pellman, D. A mechanism linking extra centrosomes to chromosomal instability. Nature 460, 278–282 (2009).
15. Cosenza, M. R. et al. Asymmetric centriole numbers at spindle poles cause chromosome missegregation in cancer. Cell Rep. 20, 1906–1920 (2017).
16. Wanne, S. et al. Polo-like kinase-2 is required for centriole duplication in mammalian cells. Curr. Biol. 14, 1200–1207 (2004).
17. Xu, X. et al. DNA replication licensing factor Cdc6 and Plk4 kinase antagonistically regulate centrosome duplication via Sas-6. Nat. Commun. 8, 15164 (2017).
18. Guérin, G., Westendorf, J., Uldschmid, A. & Nigg, E. A. Plk4 trans-autophosphorylation regulates centriole number by controlling β-TrCP-mediated degradation. J. Cell Sci. 123, 2163–2169 (2010).
19. Pulkowski, A. et al. The SCF-FBXW5 E3-ubiquitin ligase is regulated by Plk4 and targets HsSAS-6 to control centrosome duplication. Nat. Cell Biol. 13, 1004–1009 (2011).
20. D’Angiölella, V. et al. SCF (CyclinF) controls centrosome homeostasis and mitotic fidelity through CP110 degradation. Nature 466, 138–142 (2010).
21. Sonnen, K. F., Gabrijelcic, A. M., Ansell, E., Sterkol, Y. D. & Nigg, E. A. Human Cep192 and Cep152 cooperate in Plk4 recruitment and centrosome duplication. J. Cell Biol. 126, 3223–3233 (2013).
22. Kim, T. S. et al. Hierarchical recruitment of Plk4 and regulation of centrosome biogenesis by two centrosomal scaffolds, Cep192 and Cep152. Proc. Natl. Acad. Sci. USA 110, 4849–4857 (2013).
23. Moyer, T. C., Ciutato, K. M., Lambros, B. G., Daggubati, V. & Holland, A. J. Binding of STIL to Plk4 activates kinase activity to promote centriole assembly. J. Cell Biol. 209, 863–876 (2013).
24. Zhidhnev, N. S. et al. Two-step phosphorylation of Ana2 by Plk4 is required for the sequential loading of Ana2 and Sas6 to initiate procentriole formation. Open Biol. 7, 170247 (2017).
25. Orta, M. et al. Direct interaction of Plk4 with STIL ensures formation of a single procentriole per parental centriole. Nat. Commun. 5, 5267 (2014).
26. Tocu, M. F. et al. Polo kinase and separate regulate the mitotic licensing of centriole duplication in human cells. Dev. Cell 17, 344–354 (2009).
27. Kleylein-Sohn, J. et al. Plk4-induced centrosome biogenesis in human cells. Dev. Cell 13, 190–202 (2007).
28. Tang, C. J. et al. The human microcephaly protein STIL interacts with CPAP and is required for procentriole formation. EMBO J. 30, 4790–4804 (2011).
29. Pestalozzi, S., Stevens, N. R., Basto, R. & Raff, J. W. Overexpressing centrosome-replication proteins in vivo induces centrosome overduplication and de novo formation. Curr. Biol. 17, 834–843 (2007).
30. Kuroi, H. et al. BubR1 localizes to centrosomes and suppresses centrosome amplification via regulating Plk1 activity in interphase cells. Oncogene 28, 2806–2810 (2009).
31. Haasl, W. et al. Measurement of separate proteolytic activity in single living cells by a fluorogenic flow cytometry assay. PLoS ONE 10, e0133786 (2015).
32. Bekker-Jensen, S. et al. HER2 coordinates ubiquitin-dependent assembly of DNA repair factors on damaged chromosomes. Nat. Cell Biol. 12, 80–e0133786 (2010).
33. Iwata, N. et al. HER2 interacts with Caspin and regulates DNA origin firing and replication fork progression. Cancer Res. 71, 5621–5625 (2011).
34. Wu, W. et al. HER2 is an E3 ligase that targets BPA1 for degradation. Cancer Res. 70, 6384–6392 (2010).
42. Al-Hakim, A. K., Bashkurov, M., Gingras, A. C., Durocher, D. & Pelletier, L. Interaction proteomics identify NEURL4 and the HECT E3 ligase HERC2 as novel modulators of centrosome architecture. Mol. Cell Proteom. **11**, M111.014233 (2012).

43. Aumais, J. P. et al. NudC associates with Lis1 and the dynein motor at the leading pole of neurons. J. Neurosci. **21**, RC187 (2001).

44. Aumais, J. P. et al. Role for NudC, a dynein-associated nuclear movement protein, in mitosis and cytokinesis. J. Cell Sci. **116**, 1991–2003 (2003).

45. Cai, Y., Yang, Y., Shen, M. & Zhou, T. Inhibition of cytokinesis by overexpression of NudC, that is localized to the centrosome and midbody. Cell Res. **19**, 1305–1308 (2009).

46. Zhou, T., Aumais, J. P., Liu, X., Yu-Lee, L. Y. & Erikson, R. L. A role for Pkl1 phosphorylation of NudC in cytokinesis. Dev. Cell **5**, 127–138 (2003).

47. Zhang, C. et al. NudC regulates actin dynamics and ciliogenesis by stabilizing coflin 1. Cell Res. **26**, 239–253 (2015).

48. Zhou, T., Zimmerman, W., Liu, X. & Erikson, R. L. A mammalian NudC-like protein essential for dynein stability and cell viability. Proc. Natl. Acad. Sci. USA **103**, 9039–9044 (2006).

49. Asante, D., Stevenson, N. L. & Stephens, D. J. Subunit composition of the human cytoplasmic dynein-2 complex. J. Cell Sci. **127**, 4774–4787 (2014).

50. Lu, Y. et al. Twa1/Gid8 is a β-catenin nuclear retention factor in Wnt signaling and colorectal tumorigenesis. Cell Res. **27**, 1422–1440 (2017).

51. Shen, M. et al. Centrosomal protein FOR20 is essential for S-phase progression by recruiting Pkl1 to centrosomes. Cell Res. **23**, 1284–1295 (2013).