A NOTE ON FEEBLY COMPACT SEMITOPOLOGICAL SYMMETRIC INVERSE SEMIGROUPS OF A BOUNDED FINITE RANK

OLEG GUTIK

Abstract. We study feebly compact shift-continuous T_1-topologies on the symmetric inverse semigroup \mathcal{S}_λ^n of finite transformations of the rank $\leq n$. It is proved that such T_1-topology is sequentially precompact if and only if it is feebly compact. Also, we show that every shift-continuous feebly ω-bounded T_1-topology on \mathcal{S}_λ^n is compact.

1. Introduction and preliminaries

We follow the terminology of the monographs [4,6,10,29,32,33]. If X is a topological space and $A \subseteq X$, then by $\text{cl}_X(A)$ and $\text{int}_X(A)$ we denote the topological closure and interior of A in X, respectively. By $|A|$ we denote the cardinality of a set A, by $A \Delta B$ the symmetric difference of sets A and B, by \mathbb{N} the set of positive integers, and by ω the first infinite cardinal. By $\mathcal{D}(\omega)$ and \mathbb{R} we denote an infinite countable discrete space and the real numbers with the usual topology, respectively.

A semigroup S is called inverse if every a in S possesses an unique inverse a^{-1}, i.e. if there exists an unique element a^{-1} in S such that

$$aa^{-1}a = a \quad \text{and} \quad a^{-1}aa^{-1} = a^{-1}.$$

A map which associates to any element of an inverse semigroup its inverse is called the inversion.

If S is a semigroup, then by $E(S)$ we denote the subset of all idempotents of S. On the set of idempotents $E(S)$ there exists a natural partial order: $e \leq f$ if and only if $ef = fe = e$. A semilattice is a commutative semigroup of idempotents. We observe that the set of idempotents of an inverse semigroup is a semilattice [34].

Every inverse semigroup S admits a partial order:

$$a \preceq b \quad \text{if and only if there exists} \quad e \in E(S) \quad \text{such that} \quad a = eb.$$

We shall say that \preceq is the natural partial order on S (see [4,34]).

Let λ be an arbitrary nonzero cardinal. A map α from a subset D of λ into λ is called a partial transformation of λ. In this case the set D is called the domain of α and is denoted by $\text{dom} \alpha$. The image of an element $x \in \text{dom} \alpha$ under α is denoted by $x \alpha$. Also, the set $\{x \in \lambda: y \alpha = x \text{ for some } y \in Y\}$ is called the range of α and is denoted by $\text{ran} \alpha$. For convenience we denote by \emptyset the empty transformation, a partial mapping with $\text{dom} \emptyset = \text{ran} \emptyset = \emptyset$.

Let \mathcal{I}_λ denote the set of all partial one-to-one transformations of λ together with the following semigroup operation:

$$x(\alpha \beta) = (x \alpha) \beta \quad \text{if} \quad x \in \text{dom}(\alpha \beta) = \{y \in \text{dom} \alpha: y \alpha \in \text{dom} \beta\}, \quad \text{for} \quad \alpha, \beta \in \mathcal{I}_\lambda.$$

The semigroup \mathcal{I}_λ is called the symmetric inverse semigroup over the cardinal λ (see [6]). For any $\alpha \in \mathcal{I}_\lambda$ the cardinality of $\text{dom} \alpha$ is called the rank of α and it is denoted by $\text{rank} \alpha$. The symmetric inverse semigroup was introduced by V. V. Wagner [34] and it plays a major role in the theory of semigroups.

Date: February 18, 2022.

2020 Mathematics Subject Classification. Primary 22A15, 54D45, 54H10; Secondary 54A10, 54D30, 54D40.

Key words and phrases. Semigroup, inverse semigroup, semitopological semigroup, compact, sequentially precompact, totally countably pracompact, ω-bounded-pracompact, feebly ω-bounded, feebly compact, Δ-system, the Sunflower Lemma, product, Σ-product.
Put $\mathcal{I}_\lambda^n = \{\alpha \in \mathcal{I}_\lambda : \text{rank} \alpha \leq n\},$ for $n = 1, 2, 3, \ldots$. Obviously, \mathcal{I}_λ^n ($n = 1, 2, 3, \ldots$) are inverse semigroups, \mathcal{I}_λ^n is an ideal of \mathcal{I}_λ, for each $n = 1, 2, 3, \ldots$. The semigroup \mathcal{I}_λ^n is called the symmetric inverse semigroup of finite transformations of the rank $\leq n$ [21]. By

$$\left(\begin{array}{cccc} x_1 & x_2 & \cdots & x_n \\ y_1 & y_2 & \cdots & y_n \end{array} \right)$$

we denote a partial one-to-one transformation which maps x_1 onto y_1, x_2 onto y_2, \ldots, and x_n onto y_n. Obviously, in such case we have $x_i \neq x_j$ and $y_i \neq y_j$ for $i \neq j$ ($i, j = 1, 2, 3, \ldots, n$). The empty partial map $\varnothing : \lambda \rightarrow \lambda$ is denoted by $\mathbf{0}$. It is obvious that $\mathbf{0}$ is zero of the semigroup \mathcal{I}_λ^n.

Let λ be a nonzero cardinal. On the set $B_\lambda = (\lambda \times \lambda) \cup \{0\}$, where $0 \notin \lambda \times \lambda$, we define the semigroup operation “·” as follows

$$(a, b) \cdot (c, d) = \begin{cases} (a, d), & \text{if } b = c; \\ 0, & \text{if } b \neq c, \end{cases}$$

and $(a, b) \cdot 0 = 0 \cdot (a, b) = 0 \cdot 0 = 0$ for $a, b, c, d \in \lambda$. The semigroup B_λ is called the semigroup of $\lambda \times \lambda$-matrix units (see [6]). Obviously, for any cardinal $\lambda > 0$, the semigroup of $\lambda \times \lambda$-matrix units B_λ is isomorphic to \mathcal{I}_λ^1.

A subset A of a topological space X is called regular open if $\text{int}_X(\text{cl}_X(A)) = A$.

We recall that a topological space X is said to be

- semiregular if X has a base consisting of regular open subsets;
- compact if each open cover of X has a finite subcover;
- sequentially compact if each sequence $\{x_i\}_{i \in \mathbb{N}}$ of X has a convergent subsequence in X;
- countably compact if each open countable cover of X has a finite subcover;
- H-closed if X is a closed subspace of every Hausdorff topological space in which it is contained;
- ω-bounded-pracompact if X contains a dense subset D such that each countable subset of D has the compact closure in X [20];
- infra H-closed provided that any continuous image of X into any first countable Hausdorff space is closed (see [27]);
- totally countably pracompact if there exists a dense subset D of the space X such that each sequence of points of the set D has a subsequence with the compact closure in X [20];
- sequentially pracompact if there exists a dense subset D of the space X such that each sequence of points of the set D has a convergent subsequence [20];
- countably compact at a subset $A \subseteq X$ if every infinite subset $B \subseteq A$ has an accumulation point x in X [1];
- countably pracompact if there exists a dense subset A in X such that X is countably compact at A [1];
- feebly ω-bounded if for each sequence $\{U_n\}_{n \in \mathbb{N}}$ of nonempty open subsets of X there is a compact subset K of X such that $K \cap U_n \neq \emptyset$ for each n [20];
- selectively sequentially feebly compact if for every family $\{U_n : n \in \mathbb{N}\}$ of nonempty open subsets of X, one can choose a point $x_n \in U_n$ for every $n \in \mathbb{N}$ in such a way that the sequence $\{x_n : n \in \mathbb{N}\}$ has a convergent subsequence ([8]);
- sequentially feebly compact if for every family $\{U_n : n \in \mathbb{N}\}$ of nonempty open subsets of X, there exists an infinite set $J \subseteq \mathbb{N}$ and a point $x \in X$ such that the set $\{n \in J : W \cap U_n = \emptyset\}$ is finite for every open neighborhood W of x (see [9]);
- selectively feebly compact for each sequence $\{U_n : n \in \mathbb{N}\}$ of nonempty open subsets of X, one can choose a point $x \in X$ and a point $x_n \in U_n$ for each $n \in \mathbb{N}$ such that the set $\{n \in \mathbb{N} : x_n \in W\}$ is finite for every open neighborhood W of x ([8]);
- feebly compact (or lightly compact) if each locally finite open cover of X is finite [3];
- d-feebly compact (or DFCC) if every discrete family of open subsets in X is finite (see [31]);
- pseudocompact if X is Tychonoff and each continuous real-valued function on X is bounded;
- Y-compact for some topological space Y, if $f(X)$ is compact, for any continuous map $f : X \rightarrow Y$.

According to Theorem 3.10.22 of [10], a Tychonoff topological space X is feebly compact if and only if X is pseudocompact. Also, a Hausdorff topological space X is feebly compact if and only if every locally finite family of nonempty open subsets of X is finite. Every compact space and every sequentially compact space are countably compact, every countably compact space is countably pracompact, every countably pracompact space is feebly compact (see [1]), every H-closed space is feebly compact too (see [19]). Also, every space feebly compact is infra H-closed by Proposition 2 and Theorem 3 of [27]. Using results of other authors we get that the following diagram which describes relations between the above defined classes of topological spaces.

A topological (semitopological) semigroup is a topological space together with a continuous (separately continuous) semigroup operation. If S is a semigroup and τ is a topology on S such that (S, τ) is a semitopological semigroup, then we shall call τ a shift-continuous topology on S. An inverse topological semigroup with the continuous inversion is called a topological inverse semigroup.

Topological properties of an infinite (semi)topological semigroup $\lambda \times \lambda$-matrix units were studied in [15, 17]. In [15] it was shown that on the infinite semitopological semigroup of $\lambda \times \lambda$-matrix units B_λ there exists a unique compact shift-continuous Hausdorff topology τ_e and also it is shown that every pseudocompact Hausdorff shift-continuous topology τ on B_λ is compact. Also, in [15] it is proved that
every nonzero element of a Hausdorff semitopological semigroup of \(\lambda \times \lambda \)-matrix units \(B_\lambda \) is an isolated point in the topological space \(B_\lambda \). In [15] it is shown that the infinite semigroup of \(\lambda \times \lambda \)-matrix units \(B_\lambda \) cannot be embedded into a compact Hausdorff topological semigroup, every Hausdorff topological inverse semigroup \(S \) that contains \(B_\lambda \) as a subsemigroup, contains \(B_\lambda \) as a closed subsemigroup, i.e., \(B_\lambda \) is algebraically complete in the class of Hausdorff topological inverse semigroups. This result in [14] is extended onto so called inverse semigroups with tight ideal series and, as a corollary, onto the semigroup \(\mathcal{S}_\lambda^s \). Also, in [21] it was proved that for every positive integer \(n \) the semigroup \(\mathcal{S}_\lambda^n \) is algebraically h-complete in the class of Hausdorff topological inverse semigroups, i.e., every homomorphic image of \(\mathcal{S}_\lambda^n \) is algebraically complete in the class of Hausdorff topological inverse semigroups. In the paper [22] this result is extended onto the class of Hausdorff semitopological inverse semigroups and it is shown therein that for an infinite cardinal \(\lambda \) the semigroup \(\mathcal{S}_\lambda^n \) admits a unique Hausdorff topology \(\tau_c \) such that \((\mathcal{S}_\lambda^n, \tau_c)\) is a compact semitopological semigroup. Also, it was proved in [22] that every countably compact Hausdorff shift-continuous topology \(\tau \) on \(B_\lambda \) is compact. In [17] it was shown that a topological semigroup of finite partial bijections \(\mathcal{S}_\lambda^n \) with a compact subsemigroup of idempotents is absolutely H-closed (i.e., every homomorphic image of \(\mathcal{S}_\lambda^n \) is algebraically complete in the class of Hausdorff topological semigroups) and any Hausdorff countably compact topological semigroup does not contain \(\mathcal{S}_\lambda^n \) as a subsemigroup for an arbitrary infinite cardinal \(\lambda \) and any positive integer \(n \). In [17] there were given sufficient conditions onto a topological semigroup \(\mathcal{S}_\lambda^n \) to be non-H-closed. Also in [11] it is proved that an infinite semitopological semigroup of \(\lambda \times \lambda \)-matrix units \(B_\lambda \) is H-closed in the class of semitopological semigroups if and only if the space \(B_\lambda \) is compact. In the paper [12] we studied feebly compact shift-continuous \(T_1 \)-topologies on the semigroup \(\mathcal{S}_\lambda^n \). For any positive integer \(n \geq 2 \) and any infinite cardinal \(\lambda \) a Hausdorff countably pracoompact non-compact shift-continuous topology on \(\mathcal{S}_\lambda^n \) is constructed there. In [12] it is shown that for an arbitrary positive integer \(n \) and an arbitrary infinite cardinal \(\lambda \) for a shift–continuous \(T_1 \)-topology \(\tau \) on \(\mathcal{S}_\lambda^n \) the following conditions are equivalent:

(i) \(\tau \) is countably pracoompact;
(ii) \(\tau \) is feebly compact;
(iii) \(\tau \) is d-feebly compact;
(iv) \((\mathcal{S}_\lambda^n, \tau)\) is H-closed;
(v) \((\mathcal{S}_\lambda^n, \tau)\) is \(\mathcal{D}(\omega) \)-compact;
(vi) \((\mathcal{S}_\lambda^n, \tau)\) is \(\mathbb{R} \)-compact;
(vii) \((\mathcal{S}_\lambda^n, \tau)\) is infra H-closed.

Also in [12] we proved that for an arbitrary positive integer \(n \) and an arbitrary infinite cardinal \(\lambda \) every shift-continuous semiregular feebly compact \(T_1 \)-topology \(\tau \) on \(\mathcal{S}_\lambda^n \) is compact. Similar results were obtained for a semitopological semilattice \((\exp_\lambda \lambda, \cap)\) in [23–25]. Also, in [26, 30] it is proved that feeble compactness implies compactness for semitopological bicyclic extensions.

In this paper we study feebly compact shift-continuous \(T_1 \)-topologies on the symmetric inverse semigroup \(\mathcal{S}_\lambda^n \) of finite transformations of the rank \(\leq n \). It is proved that such \(T_1 \)-topology is sequentially pracoompact if and only if it is feebly compact. Also, we show that every shift-continuous feebly \(\omega \)-bounded \(T_1 \)-topology on \(\mathcal{S}_\lambda^n \) is compact. The results of this paper is announced in [13].

2. ON FEEBLY COMPACT SHIFT CONTINUOUS TOPOLOGIES ON THE SEMIGROUP \(\mathcal{S}_\lambda^n \)

Later we shall assume that \(n \) is an arbitrary positive integer.

For every element \(\alpha \) of the semigroup \(\mathcal{S}_\lambda^n \) we put

\[\uparrow_\alpha = \{ \beta \in \mathcal{S}_\lambda^n : \alpha^{-1} \beta = \alpha \} \quad \text{and} \quad \uparrow^\alpha = \{ \beta \in \mathcal{S}_\lambda^n : \beta \alpha^{-1} \alpha = \alpha \}. \]

Then Proposition 5 of [22] implies that \(\uparrow_\alpha = \uparrow^\alpha \) and by Lemma 6 of [29, Section 1.4] we have that \(\alpha \leq \beta \) if and only if \(\beta \in \uparrow_\alpha \) for \(\alpha, \beta \in \mathcal{S}_\lambda^n \). Hence we put \(\uparrow_\alpha = \uparrow_\alpha = \uparrow^\alpha \) for any \(\alpha \in \mathcal{S}_\lambda^n \).

Remark 1. Later we identify every element \(\alpha \) of the semigroup \(\mathcal{S}_\lambda^n \) with the graph \(\text{graph}(\alpha) \) of the partial map \(\alpha : \lambda \rightarrow \lambda \) (see [29]). Then according to this identification we have that \(\alpha \leq \beta \) if and only if \(\alpha \subseteq \beta \).

Lemma 2. Let \(n \) be an arbitrary positive integer and \(\lambda \) be any infinite cardinal. Let \(\alpha \) be any nonzero element of the semigroup \(\mathcal{S}_\lambda^n \) with rank \(\alpha = m \leq n \). Then the poset \((\uparrow_\alpha, \leq)\) is order isomorphic to the poset \((\mathcal{S}_\lambda^{n-m}, \leq)\).
Proof. Suppose that
\[
\alpha = \begin{pmatrix}
 x_1 & \cdots & x_m \\
 y_1 & \cdots & y_m
\end{pmatrix}
\]
for some \(x_1, \ldots, x_m, y_1, \ldots, y_m \in \lambda \). If \(m = n \) then the inequality \(\alpha \preceq \beta \) in \((\mathcal{N}_\lambda^n, \preceq)\) implies \(\alpha = \beta \), and hence later we assume that \(m < n \). Then for any \(\beta \in \mathcal{N}_\lambda^n \) such that \(\alpha \preceq \beta \) by Remark 1 we have that
\[
\beta = \begin{pmatrix}
 x_1 & \cdots & x_m & x_{m+1} & \cdots & x_n \\
 y_1 & \cdots & y_m & y_{m+1} & \cdots & y_n
\end{pmatrix}
\]
for some \(x_{m+1}, \ldots, x_n, y_{m+1}, \ldots, y_n \in \lambda \). Since \(\lambda \) is infinite, \(|\lambda| = |\lambda \setminus \{x_1, \ldots, x_m\}| = |\lambda \setminus \{y_1, \ldots, y_m\}| \), and hence there exist bijective maps \(u: \lambda \setminus \{x_1, \ldots, x_m\} \to \lambda \) and \(v: \lambda \setminus \{y_1, \ldots, y_m\} \to \lambda \). Simple verifications show that the map \(\mathcal{J}: (\uparrow_{<,\alpha}, \preceq) \to (\mathcal{N}_\lambda^{n-m}, \preceq) \) defined in the following way \(\alpha \mapsto 0 \) and
\[
\begin{pmatrix}
 x_1 & \cdots & x_m & x_{m+1} & \cdots & x_n \\
 y_1 & \cdots & y_m & y_{m+1} & \cdots & y_n
\end{pmatrix}
\]
is an order isomorphism. \(\square \)

Later we need the following technical lemma from [12].

Lemma 3 ([12, Lemma 3]). Let \(n \) be an arbitrary positive integer and \(\lambda \) be an arbitrary infinite cardinal. Let \(\tau \) be a feebly compact shift-continuous \(T_1 \)-topology on the semigroup \(\mathcal{N}_\lambda^n \). Then for every \(\alpha \in \mathcal{N}_\lambda^n \) and any open neighbourhood \(U(\alpha) \) of \(\alpha \) in \((\mathcal{N}_\lambda^n, \tau)\) there exist finitely many \(\alpha_1, \ldots, \alpha_k \in \uparrow_{<,\alpha} \{\alpha\} \) such that
\[
\mathcal{N}_\lambda^n \setminus \mathcal{N}_\lambda^{n-1} \cap \uparrow_{<,\alpha} \subseteq U(\alpha) \cup \uparrow_{<,\alpha_1} \cup \cdots \cup \uparrow_{<,\alpha_k}.
\]

Lemma 4. Let \(\tau \) be a feebly compact topology on \(\mathcal{N}_\lambda^1 \) such that \(\uparrow_{<,\alpha} \) is closed-and-open for any \(\alpha \in \mathcal{N}_\lambda^1 \). Then \(\tau \) is compact.

The statement of Lemma 4 follows from the fact that all nonzero elements of the semigroup \(\mathcal{N}_\lambda^1 \) are closed-and-open in \((\mathcal{N}_\lambda^1, \tau)\).

A family of non-empty sets \{\(A_i : i \in \mathcal{I} \)\} is called a \(\Delta \)-system (a sunflower or a \(\Delta \)-family) if the pairwise intersections of the members are the same, i.e., \(A_i \cap A_j = S \) for some set \(S \) (for \(i \neq j \) in \(\mathcal{I} \)) [28]. The following statement is well known as the Sunflower Lemma or the Lemma about a \(\Delta \)-system (see [28, p. 107]).

Lemma 5. Every infinite family of \(n \)-element sets \((n < \omega) \) contains an infinite \(\Delta \)-subfamily.

Proposition 6. Let \(n \) be an arbitrary positive integer and \(\lambda \) be an arbitrary infinite cardinal. Then every feebly compact shift-continuous \(T_1 \)-topology \(\tau \) on \(\mathcal{N}_\lambda^n \) is sequentially praco m pact.

Proof. Suppose to the contrary that there exists a feebly compact shift-continuous \(T_1 \)-topology \(\tau \) on \(\mathcal{N}_\lambda^n \) which is not sequentially countably praco m pact. Then every dense subset \(D \) of \((\mathcal{N}_\lambda^n, \tau)\) contains a sequence of points from \(D \) which has no a convergent subsequence.

By Proposition 2 of [12] the subset \(\mathcal{N}_\lambda^n \setminus \mathcal{N}_\lambda^{n-1} \) is dense in \((\mathcal{N}_\lambda^n, \tau)\) and by Lemma 2 from [12] every point of the set \(\mathcal{N}_\lambda^n \setminus \mathcal{N}_\lambda^{n-1} \) is isolated in \((\mathcal{N}_\lambda^n, \tau)\). Then the set \(\mathcal{N}_\lambda^n \setminus \mathcal{N}_\lambda^{n-1} \) contains an infinite sequence of points \(\{\chi_p : p \in \mathbb{N}\} \) which has not a convergent subsequence. If we identify elements of the semigroups with their graphs then by Lemma 3 the sequence \(\{\chi_p : p \in \mathbb{N}\} \) contains an infinite \(\Delta \)-subfamily, that is an infinite subsequence \(\{\chi_{i,j} : i, j \in \mathbb{N}\} \) such that there exists \(\chi \in \mathcal{N}_\lambda^n \) such that \(\chi_{i,j} \cap \chi_{j,i} = \chi \) for any distinct \(i, j \in \mathbb{N} \).

Suppose that \(\chi = 0 \) is the zero of the semigroup \(\mathcal{N}_\lambda^n \). Since the sequence \(\{\chi_{i,j} : i \in \mathbb{N}\} \) is an infinite \(\Delta \)-subfamily, the intersection \(\{\chi_{i,j} : i \in \mathbb{N}\} \cap \uparrow_{<,\gamma} \gamma \) contains at most one set for every non-zero element \(\gamma \in \mathcal{N}_\lambda^n \). Thus \((\mathcal{N}_\lambda^n, \tau)\) contains an infinite locally finite family of open non-empty subsets which contradicts the feebly compactness of \((\mathcal{N}_\lambda^n, \tau)\).

If \(\chi \) is a non-zero element of the semigroup \(\mathcal{N}_\lambda^n \) then by Lemma 2 from [12], \(\uparrow_{<,\chi} \) is an open-and-closed subspace of \((\mathcal{N}_\lambda^n, \tau)\), and hence by Theorem 14 from [3] the space \(\uparrow_{<,\chi} \) is feebly compact. We observe
that the element χ is the minimum of the poset $\uparrow_\preceq \chi$. Since the sequence $\{\chi_p: p \in \mathbb{N}\}$ is an infinite Δ-subfamily, the intersection $\{\chi_p: i \in \mathbb{N}\} \cap \uparrow_\preceq \gamma$ contains at most one set for every element $\gamma \in \uparrow_\preceq \chi \setminus \{\chi\}$. Thus the subspace $\uparrow_\preceq \chi$ of $(\mathcal{I}_\lambda^\mathcal{A}, \tau)$ contains an infinite locally finite family of open non-empty subsets which contradicts the feebly compactness of $(\mathcal{I}_\lambda^\mathcal{A}, \tau)$. \qed

Proposition 7. Let n be an arbitrary positive integer and λ be an arbitrary infinite cardinal. Then every feebly compact shift-continuous T_1-topology τ on \mathcal{I}_λ^n is totally countably pracoapact.

Proof. By Proposition 2 of [12] the subset $\mathcal{I}_\lambda^n \setminus \mathcal{I}_\lambda^{n-1}$ is dense in $(\mathcal{I}_\lambda^n, \tau)$ and by Lemma 2 from [12] every point of the set $\mathcal{I}_\lambda^n \setminus \mathcal{I}_\lambda^{n-1}$ is isolated in $(\mathcal{I}_\lambda^n, \tau)$. We put $D = \mathcal{I}_\lambda^n \setminus \mathcal{I}_\lambda^{n-1}$. Fix an arbitrary sequence $\{\chi_p: p \in \mathbb{N}\}$ of points of D.

It is obvious that at least one of the following conditions holds:

1. for any $\eta \in \mathcal{I}_\lambda^n \setminus \{0\}$ the set $\uparrow_\preceq \eta \cap \{\chi_p: p \in \mathbb{N}\}$ is finite;
2. there exists $\eta \in \mathcal{I}_\lambda^n \setminus \{0\}$ such that the set $\uparrow_\preceq \eta \cap \{\chi_p: p \in \mathbb{N}\}$ is infinite.

Suppose case (1) holds. By Lemma 2 of [12] for every point $\alpha \in \mathcal{I}_\lambda^n \setminus \{0\}$ there exists an open neighbourhood $U(\alpha)$ of α in $(\mathcal{I}_\lambda^n, \tau)$ such that $U(\alpha) \subseteq \uparrow_\preceq \alpha$ and hence our assumption implies that zero 0 is a unique accumulation point of the sequence $\{\chi_p: p \in \mathbb{N}\}$. By Lemma 3 for an arbitrary open neighbourhood $W(0)$ of zero 0 in $(\mathcal{I}_\lambda^n, \tau)$ there exist finitely many nonzero elements $\eta_1, \ldots, \eta_k \in \mathcal{I}_\lambda^n$ such that

$$(\mathcal{I}_\lambda^n \setminus \mathcal{I}_\lambda^{n-1}) \subseteq W(0) \cup \uparrow_\preceq \eta_1 \cup \cdots \cup \uparrow_\preceq \eta_k,$$

and hence we get that $\{0\} \cup \{\chi_p: p \in \mathbb{N}\}$ is a compact subset of $(\mathcal{I}_\lambda^n, \tau)$.

Suppose case (2) holds: there exists $\eta_1 \in \mathcal{I}_\lambda^n \setminus \{0\}$ such that the set $\uparrow_\preceq \eta_1 \cap \{\chi_p: p \in \mathbb{N}\}$ is infinite. Then by Lemma 2 of [12], $\uparrow_\preceq \eta_1$ is an open-and-closed subset of $(\mathcal{I}_\lambda^n, \tau)$ and hence by Theorem 14 from [3] the subspace $\uparrow_\preceq \eta_1$ of $(\mathcal{I}_\lambda^n, \tau)$ is feebly compact. By Lemma 2 the poset $(\uparrow_\preceq \eta_1, \preceq)$ is order isomorphic to the poset $(\mathcal{I}_\lambda^{m_1}, \preceq)$ for some positive integer $m_1 = 2, \ldots, n - 1$.

We put $\{\chi^1_p: p \in \mathbb{N}\}$ is a subsequence of $\{\chi_p: p \in \mathbb{N}\}$ such that $\{\chi^1_p: p \in \mathbb{N}\} = \uparrow_\preceq \eta_1 \cap \{\chi_p: p \in \mathbb{N}\}$. Then for the feebly compact poset $(\uparrow_\preceq \eta_1, \preceq)$ and the sequence $\{\chi^1_p: p \in \mathbb{N}\}$ at least one of the following conditions holds:

1. for any $\eta \in \uparrow_\preceq \eta_1 \setminus \{\eta_1\}$ the set $\uparrow_\preceq \eta \cap \{\chi^1_p: p \in \mathbb{N}\}$ is finite;
2. there exists $\eta \in \uparrow_\preceq \eta_1 \setminus \{\eta_1\}$ such that the set $\uparrow_\preceq \eta \cap \{\chi^1_p: p \in \mathbb{N}\}$ is infinite.

Since every chain in the poset $(\uparrow_\preceq \eta_1, \preceq)$ is finite, repeating finitely many times our above procedure we obtain two chains of the length $s \leq n$:

(i) the chain $0 \preceq \eta_1 \preceq \cdots \preceq \eta^s$ of distinct elements of the poset $(\uparrow_\preceq \eta_1, \preceq)$; and
(ii) the chain $\{\chi_p: p \in \mathbb{N}\} \supseteq \{\chi^1_p: p \in \mathbb{N}\} \supseteq \cdots \supseteq \{\chi^s_p: p \in \mathbb{N}\}$ of infinite subsequences of the sequence $\{\chi_p: p \in \mathbb{N}\}$, such that the following conditions hold:

(a) $\{\chi^j_p: p \in \mathbb{N}\} \subseteq \uparrow_\preceq \eta^j$ for every $j = 1, \ldots, s$;
(b) either $\{\chi^j_p: p \in \mathbb{N}\} \cup \{\eta^j\}$ is a compact subset of the poset $(\uparrow_\preceq \eta^1, \preceq)$ or the poset $(\uparrow_\preceq \eta^s, \preceq)$ is order isomorphic to the poset $(\mathcal{I}_\lambda^1, \preceq)$.

If $\{\chi^s_p: p \in \mathbb{N}\} \cup \{\eta^s\}$ is a compact subset of $(\mathcal{I}_\lambda^n, \tau)$ then our above part of the proof implies that the sequence $\{\chi_p: p \in \mathbb{N}\}$ has the subshece $\{\chi^s_p: p \in \mathbb{N}\}$ with the compact closure.

If the poset $(\uparrow_\preceq \eta^s, \preceq)$ is order isomorphic to the poset $(\mathcal{I}_\lambda^1, \preceq)$, then by Lemma 2 of [12] the subspace $\uparrow_\preceq \eta^s$ of $(\mathcal{I}_\lambda^n, \tau)$ is open-and-closed and hence by Lemmas 2 and 4 the poset $(\uparrow_\preceq \eta^s, \preceq)$ is compact. Then the inclusion $\{\chi^s_p: p \in \mathbb{N}\} \subseteq \uparrow_\preceq \eta^s$ implies that the sequence $\{\chi_p: p \in \mathbb{N}\}$ has the subshece $\{\chi^s_p: p \in \mathbb{N}\}$ with the compact closure. This completed the proof of the proposition. \qed

We summarise our results in the following theorem.

Theorem 8. Let n be any positive integer and λ be any infinite cardinal. Then for any T_1-semitopological semigroup \mathcal{I}_λ^n the following conditions are equivalent:

(i) \mathcal{I}_λ^n is sequentially pracoapact;
(ii) \mathcal{I}_h^n is totally countably pracompact;
(iii) \mathcal{I}_h^n is feebly compact.

Proof. Implications (i) ⇒ (iii) and (ii) ⇒ (iii) are trivial. The corresponding their converse implica-
tions (iii) ⇒ (i) and (iii) ⇒ (ii) follow from Propositions 6 and 7, respectively.

It is well known that the (Tychonoff) product of pseudocompact spaces is not necessarily pseudocom-
 pact (see [10, Section 3.10]). On the other hand Comfort and Ross in [7] proved that a Tychonoff product
of an arbitrary family of pseudocompact topological groups is a pseudocompact topological group. The
Comfort–Ross Theorem is generalized in [2] and it is proved that a Tychonoff product of an arbitrary
non-empty family of feebly compact paratopological groups is feebly compact. Also, a counterpart of
the Comfort–Ross Theorem for pseudocompact primitive topological inverse semigroups and primitive
inverse semiregular feebly compact semitopological semigroups with closed maximal subgroups were
proved in [16] and [18], respectively.

Since a Tychonoff product of H-closed spaces is H-closed (see [5, Theorem 3] or [10, 3.12.5 (d)])
Theorem 8 implies a counterpart of the Comfort–Ross Theorem for feebly compact semitopological
semigroups \mathcal{I}_h^n:

Corollary 9. Let $\{\mathcal{I}_{n_i}: i \in \mathcal{I}\}$ be a family of non-empty feebly compact T_1-semitopological
semigroups and $n_i \in \mathbb{N}$ for all $i \in \mathcal{I}$. Then the Tychonoff product $\prod \{\mathcal{I}_{n_i}: i \in \mathcal{I}\}$ is feebly compact.

Definition 10. If $\{X_i: i \in \mathcal{I}\}$ is an uncountable family of sets, $X = \prod \{X_i: i \in \mathcal{I}\}$ is their Cartesian
product and p is a point in X, then the subset
$$\Sigma(p, X) = \{x \in X: |\{i \in \mathcal{I}: x(i) \neq p(i)\}| \leq \omega\}$$
of X is called the Σ-product of $\{X_i: i \in \mathcal{I}\}$ with the basis point $p \in X$. In the case when $\{X_i: i \in \mathcal{I}\}$
is a family of topological spaces we assume that $\Sigma(p, X)$ is a subspace of the Tychonoff product $X = \prod \{X_i: i \in \mathcal{I}\}$.

It is obvious that if $\{X_i: i \in \mathcal{I}\}$ is a family of semigroups then $X = \prod \{X_i: i \in \mathcal{I}\}$ is a semigroup
as well. Moreover $\Sigma(p, X)$ is a subspace of X for arbitrary idempotent $p \in X$. Theorem 8 and
Proposition 2.2 of [20] imply the following corollary.

Corollary 11. Let $\{\mathcal{I}_{n_i}: i \in \mathcal{I}\}$ be a family of non-empty feebly compact T_1-semitopological
semigroups and $n_i \in \mathbb{N}$ for all $i \in \mathcal{I}$. Then for every idempotent p of the product $X = \prod \{\mathcal{I}_{n_i}: i \in \mathcal{I}\}$
the Σ-product $\Sigma(p, X)$ is feebly compact.

3. ON COMPACT SHIFT CONTINUOUS TOPOLOGIES ON THE SEMIGROUP \mathcal{I}_h^n

The following example implies that there exists a countable feebly compact Hausdorff semitopological
semigroup $(\mathcal{I}_h^\omega, \tau_e)$ which is not ω-bounded-pracompact.

Example 12. The following family
$$\mathcal{B}_e = \{U_\alpha(\alpha_1, \ldots, \alpha_k) = \uparrow_\omega \alpha \setminus (\uparrow_\omega \alpha_1 \cup \cdots \cup \uparrow_\omega \alpha_k):$$
$$\alpha_i \in \uparrow_\omega \alpha \setminus \{\alpha\}, \alpha, \alpha_i \in \mathcal{I}_h^\omega, i = 1, \ldots, k\}$$
determines a base of the topology τ_e on \mathcal{I}_h^ω. By Proposition 10 from [22], $(\mathcal{I}_h^\omega, \tau_e)$ is a Hausdorff
compact semitopological semigroup with continuous inversion.

We construct a stronger topology τ_{e_2} on \mathcal{I}_h^ω in the following way. For every nonzero element $x \in \mathcal{I}_h^\omega$
we assume that the base $\mathcal{B}_{e_2}(x)$ of the topology τ_{e_2} at the point x coincides with the base of the topology τ_e^2 at x, and
$$\mathcal{B}_{e_2}(0) = \{U_0(0) = U(0) \setminus (\mathcal{I}_h^\omega \setminus \{0\}): U(0) \in \mathcal{B}_{e_2}(0)\}$$
form a base of the topology τ_{e_2} at zero 0 of the semigroup \mathcal{I}_h^ω. Since $(\mathcal{I}_h^\omega, \tau_{e_2})$ is a variant of the
semitopological semigroup defined in Example 3 of [12], τ_{e_2} is a Hausdorff topology on \mathcal{I}_h^ω. Moreover,
by Proposition 1 of [12], $(\mathcal{I}_h^\omega, \tau_{e_2}^2)$ is a countably pracompact semitopological semigroup with continuous
inversion.
Proposition 13. The space \((\mathcal{I}_n^2, \tau_{2c})\) is not \(\omega\)-bounded-pracompact.

Proof. Since the space \((\mathcal{I}_n^2, \tau_{2c})\) is feebly compact and Hausdorff, by Proposition 2 of [12] the subset \(\mathcal{I}_n^2 \setminus \mathcal{I}_n^1\) is dense in \((\mathcal{I}_n^2, \tau_{2c})\), and by Lemma 2 from [12] every point of the set \(\mathcal{I}_n^2 \setminus \mathcal{I}_n^1\) is isolated in \((\mathcal{I}_n^2, \tau_{2c})\). This implies that every dense subset \(D\) of \((\mathcal{I}_n^2, \tau_{2c})\) contains the set \(\mathcal{I}_n^2 \setminus \mathcal{I}_n^{n-1}\). Then
\[
\text{cl}(\mathcal{I}_n^2 \setminus \mathcal{I}_n^1)(D) = \text{cl}(\mathcal{I}_n^2 \setminus \mathcal{I}_n^1)(\mathcal{I}_n^2 \setminus \mathcal{I}_n^{n-1}) = \mathcal{I}_n^2
\]
for every dense subset \(D\) of \((\mathcal{I}_n^2, \tau_{2c})\). Since \(\mathcal{I}_n^2\) is countable, so is \(D\), and hence the space \((\mathcal{I}_n^2, \tau_{2c})\) is not \(\omega\)-bounded-pracompact, because \((\mathcal{I}_n^2, \tau_{2c})\) is not compact. \(\Box\)

Proposition 14. Let \(n\) be any positive integer and \(\lambda\) be any infinite cardinal. If \(\mathcal{I}_\lambda^A\) is a \(T_1\)-semitopological semigroup then the following statements hold:

1. \(\mathcal{I}_\lambda^A\) is a compact subsemigroup of \(\mathcal{I}_\lambda^n\) for any subset \(A \subseteq \lambda\);
2. the band \(E(\mathcal{I}_\lambda^A)\) is a closed subset of \(\mathcal{I}_\lambda^A\).

Proof. (1) Fix an arbitrary \(\gamma \in \mathcal{I}_\lambda^n \setminus \mathcal{I}_\lambda^A\). Then \(\text{dom} \gamma \notin A\) or \(\text{ran} \gamma \notin A\). Since \(\eta \trianglelefteq \delta\) if and only if \(\text{graph}\(\eta\) \subseteq \text{graph}\(\delta\)\) for \(\eta, \delta \in \mathcal{I}_\lambda^n\), the above arguments imply that \(\uparrow_{\trianglelefteq} \gamma \cap \mathcal{I}_\lambda^A = \emptyset\). By Lemma 2 of [12] the set \(\uparrow_{\trianglelefteq} \gamma\) is open in \(\mathcal{I}_\lambda^n\), which implies statement (1).

(2) Fix an arbitrary \(\gamma \in \mathcal{I}_\lambda^n \setminus E(\mathcal{I}_\lambda^A)\). Since \(\mathcal{I}_\lambda^A\) is an inverse subsemigroup of the symmetric inverse monoid \(\mathcal{I}_\lambda\), all idempotents of \(\mathcal{I}_\lambda^n\) are partial identity maps of rank \(r \leq n\). Then similar arguments as in statement (1) imply that \(E(\mathcal{I}_\lambda^A)\) is a closed subset of \(\mathcal{I}_\lambda^n\).

Proposition 14 implies the following corollary.

Corollary 15. Let \(n\) be any positive integer, \(\lambda\) be any infinite cardinal and \(A\) be an arbitrary infinite subset of \(\lambda\). If \(\mathcal{I}_\lambda^n\) is a compact \(T_1\)-semitopological semigroup then \(\mathcal{I}_\lambda^A\) is a compact \(\omega\)-bounded-pracompact space.

Lemma 16. Let \(n\) be any positive integer, \(\lambda\) be any infinite cardinal and \(A\) be an arbitrary infinite countable subset of \(\lambda\). If \(\mathcal{I}_\lambda^n\) is a \(\omega\)-bounded-pracompact \(T_1\)-semitopological semigroup then \(\mathcal{I}_\lambda^n \setminus \mathcal{I}_\lambda^{n-1}\) is a dense subset of \(\mathcal{I}_\lambda^A\), and hence \(\mathcal{I}_\lambda^A\) is compact.

Proof. For any \(\alpha \in \mathcal{I}_\lambda^A\) we denote \(\uparrow_{\trianglelefteq} \alpha = \uparrow_{\trianglelefteq} \alpha \cap \mathcal{I}_\lambda^n\).

By induction we shall show that the set \(\uparrow_{\trianglelefteq} \alpha \cap (\mathcal{I}_\lambda^n \setminus \mathcal{I}_\lambda^{n-1})\) is dense in \(\uparrow_{\trianglelefteq} \alpha\) for any \(\alpha \in \mathcal{I}_\lambda^A\). In the case when \(\text{rank} \alpha = n - 1\) by Lemmas 2 and 4 we have that the set \(\uparrow_{\trianglelefteq} \alpha\) is compact, and hence by Proposition 14(1), \(\uparrow_{\trianglelefteq} \alpha\) is compact as well. Since all points of \(\mathcal{I}_\lambda^n \setminus \mathcal{I}_\lambda^{n-1}\) are isolated in \(\mathcal{I}_\lambda^n\), the set \(\uparrow_{\trianglelefteq} \alpha \cap (\mathcal{I}_\lambda^n \setminus \mathcal{I}_\lambda^{n-1})\) is dense in \(\uparrow_{\trianglelefteq} \alpha\).

Next we show that the statement \(\uparrow_{\trianglelefteq} \alpha \cap (\mathcal{I}_\lambda^n \setminus \mathcal{I}_\lambda^{n-1})\) is dense in \(\uparrow_{\trianglelefteq} \alpha\) for any \(\alpha \in \mathcal{I}_\lambda^n\) with \(\text{rank} \alpha = n - k\), for all \(k < m\) implies that the same is true for any \(\beta \in \mathcal{I}_\lambda^n\) with \(\text{rank} \beta = m - n\), where \(m \leq n\). Fix an arbitrary \(\beta \in \mathcal{I}_\lambda^n\) with \(\text{rank} \beta = n - m\). Suppose to the contrary that the set \(\uparrow_{\trianglelefteq} \beta \cap (\mathcal{I}_\lambda^n \setminus \mathcal{I}_\lambda^{n-1})\) is not dense in \(\uparrow_{\trianglelefteq} \beta\). The assumption of induction implies that \(\gamma \in \text{cl}_{\mathcal{I}_\lambda^n}(\uparrow_{\trianglelefteq} \beta \cap (\mathcal{I}_\lambda^n \setminus \mathcal{I}_\lambda^{n-1}))\) for any \(\gamma \in \uparrow_{\trianglelefteq} \beta \setminus \{\beta\}\), and hence \(\beta \notin \text{cl}_{\mathcal{I}_\lambda^n}(\uparrow_{\trianglelefteq} \beta \cap (\mathcal{I}_\lambda^n \setminus \mathcal{I}_\lambda^{n-1}))\). Then there exists an open neighbourhood \(U(\beta)\) of \(\beta\) in \(\mathcal{I}_\lambda^n\) such that \(U(\beta) \cap (\uparrow_{\trianglelefteq} \beta \cap (\mathcal{I}_\lambda^n \setminus \mathcal{I}_\lambda^{n-1})) = \emptyset\). By Lemma 2 from [12] for any \(\delta \in \mathcal{I}_\lambda^n\) the set \(\uparrow_{\trianglelefteq} \delta\) is open-and-closed in \(\mathcal{I}_\lambda^n, \tau\), and hence \(\uparrow_{\trianglelefteq} \delta\) is open-and-closed in \(\mathcal{I}_\lambda^n\) as well. Hence we get that
\[
\text{cl}_{\mathcal{I}_\lambda^n}(\uparrow_{\trianglelefteq} \beta \cap (\mathcal{I}_\lambda^n \setminus \mathcal{I}_\lambda^{n-1})) = \uparrow_{\trianglelefteq} \beta \setminus \{\beta\}
\]
but the family \(\mathcal{U} = \{\uparrow_{\trianglelefteq} \delta: \delta \in \uparrow_{\trianglelefteq} \beta \setminus \{\beta\}\}\) is an open cover of \(\uparrow_{\trianglelefteq} \beta\) which hasn’t a finite subcover. This contradicts the condition that \(\mathcal{I}_\lambda^n\) is a \(\omega\)-bounded-pracompact space, which completes the proof of the first statement of the lemma. The last statement immediately follows from the first statement and the definition of the \(\omega\)-bounded-pracompact space. \(\Box\)

Theorem 17 describes feebly \(\omega\)-bounded shift-continuous \(T_1\)-topologies on the semigroup \(\mathcal{I}_\lambda^n\).

Theorem 17. Let \(n\) be any positive integer and \(\lambda\) be any infinite cardinal. Then for any \(T_1\)-semitopological semigroup \(\mathcal{I}_\lambda^n\), the following conditions are equivalent:
(i) \mathcal{I}_n^λ compact;
(ii) \mathcal{I}_n^λ is ω-bounded-pracompact;
(iii) \mathcal{I}_n^λ is feebly ω-bounded.

Proof. Implications (i) \Rightarrow (iii) and (ii) \Rightarrow (iii) are trivial.

(iii) \Rightarrow (ii) Let \mathcal{I}_n^λ be a feebly ω-bounded T_1-semitopological semigroup. By Proposition 2 of [12] the set $\mathcal{I}_n^\lambda \setminus \mathcal{I}_n^{\lambda-1}$ is dense in \mathcal{I}_n^λ. Fix an arbitrary infinite countable subset $D = \{\alpha_i : i \in \mathbb{N}\}$ in $\mathcal{I}_n^\lambda \setminus \mathcal{I}_n^{\lambda-1}$. By Lemma 2 from [12] every point of D is isolated in \mathcal{I}_n^λ, and hence by feebly ω-boundedness of \mathcal{I}_n^λ we get that there exists a compact subset $K \subseteq \mathcal{I}_n^\lambda$ such that $D \subseteq K$. Since the closure of a subset in compact space is compact, so is the closure of D. Hence the space \mathcal{I}_n^λ is ω-bounded-pracompact.

(ii) \Rightarrow (i) Suppose the contrary: there exists a noncompact ω-bounded-pracompact T_1-semitopological semigroup \mathcal{I}_n^λ. By Theorem 1 of [12] the space \mathcal{I}_n^λ is not countably compact. Then by Theorem 3.10.3 of [10] the space \mathcal{I}_n^λ has an infinite countable closed discrete subspace D. We put

$$A = \{x \in \lambda : x \in \text{dom} \alpha \cup \text{ran} \alpha \text{ for some } \alpha \in D\}.$$

Since the set D is countable, $\bigcup_{\alpha \in D} (\text{dom} \alpha \cup \text{ran} \alpha)$ is countable, and hence A is countable, too. Then \mathcal{I}_n^λ contains D. By Proposition 14(1), \mathcal{I}_n^λ is a closed subspace of \mathcal{I}_n^λ, which implies that D is an infinite countable closed discrete subspace of \mathcal{I}_n^λ. This contradicts Lemma 16, and hence \mathcal{I}_n^λ is compact. □

References

[1] A. V. Arkhangel’skii, Topological function spaces, Kluwer Publ., Dordrecht, 1992. 1
[2] T. Banakh and A. Ravsky, On feebly compact paratopological groups, Topology Appl. 284 (2020), 107363. 2
[3] R. W. Bagley, E. H. Connell, and J. D. McKnight, Jr., On properties characterizing pseudo-compact spaces, Proc. Amer. Math. Soc. 9 (1958), no. 3, 500–506. 1, 2, 2
[4] J. H. Carruth, J. A. Hildebrant, and R. J. Koch, The theory of topological semigroups, Vol. I, Marcell Dekker, Inc., New York and Basel, 1983. 1
[5] C. Chevalley and O. Frink, Jr., Bicompleteness of cartesian products, Bull. Amer. Math. Soc. 47 (1941), 612–614. 2
[6] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vols. I, Amer. Math. Soc. Surveys 7, Providence, R.I., 1961 and 1967. 1
[7] W. W. Comfort and K. A. Ross, Pseudocompactness and uniform continuity in topological groups, Pacif. J. Math. 16:3 (1966), 483–496. 2
[8] A. Dorantes-Aldama and D. Shakhmatov, Selective sequential pseudocompactness, Topology Appl. 222 (2017), 53–69. 1
[9] A. Dow, J. R. Porter, R. M. Stephenson, and R. G. Woods, Spaces whose pseudocompact subspaces are closed subsets, Appl. Gen. Topol. 5 (2004), 243–264. 1
[10] R. Engelking, General topology, 2nd ed., Heldermann, Berlin, 1989. 1, 2, 3
[11] O. Gutik, On closures in semitopological inverse semigroups with continuous inversion, Algebra Discrete Math. 18 (2014), no. 1, 59–85. 1
[12] O. Gutik, On feebly compact semitopological symmetric inverse semigroups of a bounded finite rank, Visn. L’viv. Univ., Ser. Mkh.-Mat. 83 (2017), 42–57. 1, 2, 3, 2, 2, 12, 3, 3, 3, 3
[13] O. Gutik, Feebly compact semitopological symmetric inverse semigroups of a bounded finite rank, Conference “Dynamical methods in Algebra, Geometry and Topology”, 4–6 July, 2018, Udine, Italy. P. 4. 1
[14] O. Gutik, J. Lawson, and D. Repovš, Semigroup closures of finite rank symmetric inverse semigroups, Semigroup Forum 79 (2009), no. 2, 326–336. 1
[15] O. V. Gutik and K. P. Pavlyk, Topological semigroups of matrix units, Algebra Discrete Math. (2005), no. 3, 1–17. 1
[16] O. V. Gutik and K. P. Pavlyk, Pseudocompact primitive topological inverse semigroups, Mat. Metody Phys.-Mech. Polya. 56:2 (2013), 7–19; reprinted version: J. Math. Sc. 203 (2014), no. 1, 1–15. 2
[17] O. Gutik, K. Pavlyk, and A. Reiter, Topological semigroups of matrix units and countably compact Brandt λ^0-extensions, Mat. Stud. 32 (2009), no. 2, 115–131. 1
[18] O. Gutik and O. Ravsky, On feebly compact inverse (semi)topological semigroups, Mat. Stud. 44 (2015), no. 1, 3–26. 2
[19] O. V. Gutik and O. V. Ravsky, Pseudocompactness, products and topological Brandt λ^0–extensions of semitopological monoids, Math. Methods and Phys.-Mech. Fields 58 (2015), no. 2, 20–37; reprinted version: J. Math. Sc. 223 (2017), no. 1, 18–38. 1

A NOTE ON FEEBLY COMPACT SEMITOPOLOGICAL SYMMETRIC INVERSE SEMIGROUPS OF ... 9
[20] O. Gutik and A. Ravsky, *On old and new classes of feebly compact spaces*, Visn. L’viv. Univ., Ser. Mekh.-Mat. **85** (2018), 48–59.

[21] O. V. Gutik and A. R. Reiter, *Symmetric inverse topological semigroups of finite rank \(\leq n \)*, Math. Methods and Phys.-Mech. Fields **52** (2009), no. 3, 7–14; reprinted version: J. Math. Sc. **171** (2010), no. 4, 425–432.

[22] O. Gutik and A. Reiter, *On semitopological symmetric inverse semigroups of a bounded finite rank*, Visnyk L’viv Univ. Ser. Mech. Math. **72** (2010), 94–106 (in Ukrainian).

[23] O. Gutik and O. Sobol, *On feebly compact shift-continuous topologies on the semilattice \(\exp_n \lambda \)*, Visn. L’viv. Univ., Ser. Mekh.-Mat. **82** (2016), 128–136.

[24] O. Gutik and O. Sobol, *On feebly compact topologies on the semilattice \(\exp_n \lambda \)*, Mat. Stud. **46** (2016), no. 1, 29–43.

[25] O. V. Gutik and O. Yu. Sobol, *On feebly compact semitopological semilattice \(\exp_n \lambda \)*, Mat. Metody Fiz.-Mekh. Polya **61** (2018), no. 3, 16–23; reprinted version: J. Math. Sc. **254** (2021), no. 1, 13–20.

[26] O. Gutik and O. Sobol, *On the semigroup \(\mathbb{B}_{\mathcal{F}} \) which is generated by the family \(\mathcal{F} \) of atomic subsets of \(\omega \)*, Preprint (arXiv: 2108.11354).

[27] D. W. Hajek and A. R. Todd, *Compact spaces and infra H-closed spaces*, Proc. Amer. Math. Soc. **48** (1975), no. 2, 479–482.

[28] P. Komjáth and V. Totik, *Problems and theorems in classical set theory*, Probl Books in Math, Springer, 2006.

[29] M. V. Lawson, *Inverse semigroups. The theory of partial symmetries*, World Scientific, Singapore, 1998.

[30] O. Lysetska, *On feebly compact topologies on the semigroup \(\mathbb{B}_{\mathcal{F}} \)*, Visn. L’viv. Univ., Ser. Mekh.-Mat. **90** (2020), 48–56.

[31] M. Matveev, *A survey of star covering properties*, Topology Atlas preprint, April 15, 1998.

[32] M. Petrich, *Inverse semigroups*, John Wiley & Sons, New York, 1984.

[33] W. Ruppert, *Compact semitopological semigroups: an intrinsic theory*, Lect. Notes Math., **1079**, Springer, Berlin, 1984.

[34] V. V. Wagner, *Generalized groups*, Dokl. Akad. Nauk SSSR **84** (1952), 1119–1122 (in Russian).

Faculty of Mathematics, National University of Lviv, Universytetska 1, Lviv, 79000, Ukraine
Email address: oleg.gutik@lnu.edu.ua