Relationship between the wave function of a magnet and its static structure factor

Jorge Quintanilla

Physics and Astronomy, Division of Natural Sciences, University of Kent, Canterbury, CT1 7NH, United Kingdom

(Dated: 19 July 2022)

We state and prove two theorems about the ground state of magnetic systems described by very general Heisenberg-type models and discuss their implications for magnetic neutron scattering. The first theorem states that two models cannot have the same correlator without sharing the corresponding ground states. According to the second theorem, an N-qubit wave function cannot reproduce the correlators of a given system unless it represents a true ground state of that system. We discuss the implications for neutron scattering inverse problems. We argue that the first theorem provides a framework to understand neutron-based Hamiltonian learning. Furthermore, we propose a variational approach to quantum magnets based on the second theorem where a representation of the wave function (held, for instance, in a neural network or in the qubit register of a quantum processor) is optimised to fit experimental neutron-scattering data directly, without the involvement of a model Hamiltonian.

The Rayleigh-Ritz variational principle states that the ground state wave function of a quantum system is an absolute minimum of the energy. It provides the theoretical underpinning of many successful approaches to the quantum many-body problem including Density Functional Theory (DFT) [1], Variational Monte Carlo methods [2], the BCS theory of superconductors [3] and the Laughlin theory of the fractional quantum Hall effect [4] to name a few cases. More recently it has been used to find optimal representations of wave functions using quantum computers [5, 6] and neural networks [7]. Such theories start with a model Hamiltonian \hat{H} and proceed by minimizing the energy $\langle \Psi | \hat{H} | \Psi \rangle$ to obtain the wave function Ψ. The Rayleigh-Ritz variational principle ensures that no wave function can yield a lower value of the energy than the system’s true ground state. Once the wave function is known, it is straightforward to predict expectation values of observables. Very often, however, \hat{H} is not known \textit{a priori}. In such instances \hat{H} has to be found from experimental data. That involves a laborious and ill-posed inverse problem: multiple candidate Hamiltonians must be studied until one is found that predicts the experimentally-determined value of a set of observables. In general there is no guarantee of uniqueness of \hat{H} or Ψ for a given data set. Here we consider the inverse problem for the magnetic structure factor of a magnetic insulator (in particular, one described by an anisotropic Heisenberg model, which covers a vast range of real materials). We show that, for systems that have non-degenerate, distinct ground states, there is a one-to-one correspondence between the structure factors, the model Hamiltonian and the ground state wave function. We then address the implications of degeneracy, Hamiltonians with the same ground state, and excitations, and discuss the implications for neutron scattering.

Our results have several direct implications for the study of magnetic insulators using neutron scattering, specifically for the neutron scattering inverse problems described schematically in Fig. 1. Firstly, as we argue below, Theorem 1 puts the Hamiltonian-learning problem (Fig. 1a) on a firmer footing and will help the design of efficient solutions, for instance ones exploiting machine learning [8]. Secondly, Theorem 2 suggests, and supports, new variational methods where the wave function is optimized to describe the experimental data, obviating the need to minimize the energy of a model Hamiltonian (Fig. 1b). This provides an alternative to existing methods used to obtain the ground state of a Heisenberg-type magnet, for instance those based on neural-network [7] or quantum-processor [5] representations. Many such

Figure 1. Two versions of the diffuse magnetic neutron scattering inverse problem: given the scattering function $S(q)$ of a real material, in Hamiltonian learning (a) the aim is to determine a model Hamiltonian \hat{H} whose wave function Ψ will describe $S(q)$ satisfactorily. In quantum tomography (b) one tries to determine the wave function Ψ directly.
methods are based on minimizing the energy for a given model. The new methods will be appropriate when the model is not yet known but experimental structure factor information is available. In those circumstances, working with the wave function directly has the advantage of involving a single optimization loop rather than two nested ones (compare Fig. 1a to 1b). In analogy with the Rayleigh-Ritz variational principle, our second theorem guarantees that no wave function other than a true ground-state wave function of the system under investigation can yield a better fit to the data. Finally, our results suggest that every ground-state property of the system is contained in the structure factors. This has important implications for efforts to quantify quantum entanglement from experimental neutron scattering data and justifies the reduction of measures of entanglement to functions of correlators [12, 13].

The work presented here has to be seen in the context of recently-developed methods for the determination of model Hamiltonians from local measurements [14–18]. Interestingly, a main thrust of such works, which are usually concerned with systems where qubits need to be addressed individually, is the optimisation of the scaling of the number and type of measurements required with the size of the system and the range of interactions. In contrast, our approach relies on the static magnetic structure factor \(S_{\alpha,\beta}(q) \) which contains information about all two-point correlators and can be determined experimentally with the same effort irrespective of system size or range of interactions.

Our starting assumption is that the physical system under experimental investigation can be described by an anisotropic Heisenberg model:

\[
\hat{H} = \sum_{i,j} \sum_{\alpha,\beta} J_{i,j}^{\alpha,\beta} \hat{S}_i^\alpha \hat{S}_j^\beta.
\]

Here \(i, j = 1, 2, \ldots, N \) represent atomic sites, whose positions \(\mathbf{R}_i, \mathbf{R}_j \) we assume to be known. \(\hat{S}_i^\alpha \) represents the \(\alpha \)th component of the spin operator for the magnetic moment at the \(\alpha \)th atomic site \((\alpha = x, y, z; \) we assume each spin component is defined with reference to some local axes defined on each site). We assume the spin quantum number at each site is \(S = 1/2 \) in what follows but the results can be generalised to arbitrary \(S \) straight-forwardly. \(J_{i,j}^{\alpha,\beta} \) is an exchange constant describing the interaction between the \(\alpha \)th component of the spin at the \(\beta \)th site of a given lattice and the \(\beta \)th component of the spin in the \(\alpha \)th site. The terms with \(i = j \) describe site anisotropy (e.g. easy planes or easy axes). The dependence of \(J_{i,j}^{\alpha,\beta} \) on \(i, j, \alpha, \) and \(\beta \) is entirely arbitrary. The model of Eq. (1) can thus describe a very broad range of magnetic models in arbitrary dimensions with and without translational invariance, including among others the Ising model [19], XY model [20], and Kitaev model to name but a few [21]. Models of this type are believed to describe well the physics of many materials from single-molecule magnets [22] through infinite-chain compounds [11] to three-dimensional quantum spin ices [23] and other spin liquids.

The observable quantity of interest is the two-point magnetic correlator

\[
\rho_{i,j}^{\alpha,\beta} \equiv \langle \Psi | \hat{S}_i^\alpha \hat{S}_j^\beta | \Psi \rangle.
\]

The correlator is obviously a single-valued functional of the wave function \(\Psi \). As shown in Appendix A, this quantity is readily obtainable in condensed matter systems through neutron scattering measurements of the static structure factor \(S_{\alpha,\beta}(q) \).

The situation we have in mind is one where the ground-state correlator \(\rho_{i,j}^{\alpha,\beta} | \Psi_0 \rangle \) has been obtained experimentally but neither the Hamiltonian \(\hat{H} \) nor the wave function \(\Psi_0 \) are known. We wish to prove two closely related theorems that impose constraints on \(\hat{H} \) and \(\Psi_0 \):

Theorem 1: Two Hamiltonians \(\hat{H}, \hat{H}' \) cannot have the same ground-state correlator without sharing the corresponding ground states.

Theorem 2: Any \(N \)-qubit wave function \(\Psi \) that can reproduce the ground-state correlator of \(\hat{H} \) represents a ground state of \(\hat{H} \).

The implications of these two theorems for the relationship between correlators, wave functions, and Hamiltoni-
ans are illustrated in Fig. 2. For non-degenerate Hamiltonians, Theorem 1 is a particular case of a more general theorem proven by Ng [25]. Here we extend it to the important case of Hamiltonians with degenerate ground states and discuss the implications of Hamiltonians sharing a ground state for Hamiltonian learning using neutron-scattering data (Fig. 1b). The latter discussion will be supported by a generalisation of Theorem 1 to excited states (Appendix B). Theorem 2, on the other hand, is a consequence of the fact that the ground state maximises the reconstruction entropy given a set of local measurements [26]. The theorems are also closely related to the convexity of the set of all 2-point correlators of N-qubit states [27,28]. Note that our second theorem does not require all correlators to be representable by N-qubit wave functions (exemplified by ρg Fig. 2) nor is it restricted to trial wave functions (ground states of Heisenberg-type Hamiltonians (ρt in the Figure). We will discuss the implications of this second theorem for neutron-based quantum tomography (Fig. 1b). Finally we note that Theorem 1 can be deduced from Theorem 2 however for clarity we will prove both theorems independently.

Our approach to proving Theorems 1 and 2 is inspired by the DFT formalism for Heisenberg models developed by Libero and Capelle [29]. Our aims, however, are quite different. The latter work (like other DFT formalisms for lattice models [29,31]) is an energy-minimization variational theory closely modeled on the original DFT for electrons in solids [1]. In Density Functional Theories generally, the aim is to show that the energy is a functional of a density-like quantity (in the case of Ref. [29], the local magnetisation). One then splits the energy into two parts, one that is “universal” and another that depends on local fields. In order for this to be useful, it is necessary to have exact results for the universal function and motivated approximations for the field-dependent contribution. Here our primary quantity is not a density but a correlator, and we are not interested in splitting the energy into one contribution that is known and another that is to be approximated. Instead we treat the energy as a single unit and are interested in proving that only one “universal” Hamiltonian is compatible with a given set of correlators. In practice, applications of our approach involve the optimization of the match to experimental data, rather than the minimization of the energy. Moreover, we will work in the absence of a known model Hamiltonian, rather than using knowledge of one model (e.g. a translationally-invariant Heisenberg model) to approximately solve another (e.g. the same model but with an impurity potential).

Proof of Theorem 1.- Inspired by the original proof of the Hohenberg-Kohn theorem of DFT, we will proceed by reductio ad absurdum. Suppose there are two distinct Hamiltonians ̃H and ̃H′, with different exchange interaction functions ̃Ji,jα,β and ̃J′i,jα,β and different ground states |Ψ0⟩, |Ψ′0⟩, respectively, that give the same correlator ρi,jα,β:

\[\rho_{i,j}^{α,β} [Ψ_0] = ρ_{i,j}^{α,β} [Ψ'_0] \text{ for all } i,j,α,β. \] (3)

We will first consider the case when the two ground states are non-degenerate. In this case the ground-state energy obtained from the first Hamiltonian is

\[E_0 = \langle Ψ_0 | ̃H | Ψ_0 \rangle < \langle Ψ_0 | ̃H | Ψ_0 \rangle \]

\[= \langle Ψ_0 | ̃H - ̃H | Ψ_0 \rangle + \langle Ψ_0 | ̃H | Ψ_0 \rangle \]

\[= \sum_{i,j} \sum_{α,β} (J_{i,j}^{α,β} - J'_{i,j}^{α,β}) ρ_{i,j}^{α,β} [Ψ_0] + E'_0 \]

where the inequality is due to the Rayleigh-Ritz variational principle. Similarly the ground state energy obtained from the second Hamiltonian is

\[E'_0 = \langle Ψ'_0 | ̃H' | Ψ'_0 \rangle < \langle Ψ'_0 | ̃H' | Ψ'_0 \rangle \]

\[= \langle Ψ'_0 | ̃H' - ̃H | Ψ'_0 \rangle + \langle Ψ'_0 | ̃H | Ψ'_0 \rangle \]

\[= \sum_{i,j} \sum_{α,β} (J_{i,j}^{α,β} - J'_{i,j}^{α,β}) ρ_{i,j}^{α,β} [Ψ'_0] + E_0 \]

Adding the two inequalities we obtain

\[E'_0 + E_0 < \sum_{i,j} \sum_{α,β} (J_{i,j}^{α,β} - J'_{i,j}^{α,β}) \]

\[× \left\{ ρ_{i,j}^{α,β} [Ψ_0] - ρ_{i,j}^{α,β} [Ψ'_0] \right\} + E_0 + E'_0. \]

Using now our assumption (3) this reduces to

\[E'_0 + E_0 < E_0 + E'_0 \] (10)

which is absurd. Thus our initial assumption must be incorrect: two Heisenberg-type Hamiltonians with different exchange interaction constants and distinct, non-degenerate ground states can never give the same correlator. In other words, for non-degenerate Hamiltonians that do not share ground states the exchange interaction function is a single-valued functional J_{i,j}^{α,β} [ρ] of the correlator ρ_{i,j}^{α,β}. This is illustrated by the one-to-one correspondence between \{H_0, H'_0\} and \{ρ_0, ρ'_0\} in Fig. 2.

We note that our proof relies on the assumption that |Ψ_0⟩ ≠ |Ψ'_0⟩ since otherwise the strict inequalities (4,7) become equalities. In other words, if ̃H and ̃H′ share their unique ground state the theorem does not apply. This is illustrated by the one-to-many correspondence between ρ_0 and \{H_0, H'_0, H''_0\} in Fig. 2. Although this might appear to be a serious limitation for Hamiltonian learning using neutron scattering it may not be as important in practice, as we discuss below.
In the above paragraphs we explicitly assumed that the ground states of H and H' are non-degenerate. In order to prove Theorem 1 we need to relax that assumption. Let us first consider the case when the ground state of one of the Hamiltonians (which we take to be H without loss of generality) is degenerate, while that of the other Hamiltonian remains non-degenerate. Then there is a new possibility, namely that $\hat{\Psi}_0$ happens to be a ground state of \hat{H} as well as being the unique ground state of H'. In that case, Theorem 1 would be violated, because $|\Psi_0\rangle$ would not be a ground state of H' but we still arrive at the same contradiction as before, (10).

When we add the equality (11) to this inequality (12) we cannot discard non-trivial cases. On the other hand, for ground states leading to degenerate Hamiltonians with the same correlators it would be tempting to venture that this limitation of Theorem 1 may indeed be well-defined, as long as we know that the material under investigation is described by a model of the form in Eq. [1]. That could provide a natural explanation for the success of a recent machine learning based approach to this problem [3]. In that reference an auto-encoder was trained using simulations of the neutron scattering function $S_{\alpha,\beta}(q)$ obtained for a family of candidate Hamiltonians [for completeness, we have offered a proof of the equivalence between knowledge of $S_{\alpha,\beta}(q)$ and of $\rho_{\alpha,\beta}$ in Appendix A]. The auto-encoder thus trained can be used to generate a low-dimensional latent space on which experimental data can be projected, effectively finding an optimal model Hamiltonian. Though in principle that inverse problem is “ill-defined” [3], our formal results about the ground and excited states of Heisenberg-type Hamiltonians strongly suggest that there may only be one solution. We note that the work in Ref. [3] dealt with classical models however similar dimensionality-reduction has been shown for quantum models using closely-related Principal Component Analysis [34].

Several recent works have discussed the determination of model Hamiltonians using local measurements [14, 18]. While such methods are well suited to artificial systems such as quantum simulators they are not readily applicable to experimental data on condensed matter systems. Specifically in most cases [14, 17] they require the covariance matrix which in turn relies on 4-point correlators of the form $\rho_{\alpha,\beta,\alpha',\beta'}[\Psi_0] \equiv \langle \Psi_0 | S_{\alpha} S_{\alpha'} S_{\beta} S_{\beta'} | \Psi_0 \rangle$ where i and i' are sites that interact with j and j' respectively. Such higher-order correlators are not readily accessible through neutron scattering. In contrast, for periodic systems all the 2-point correlators $\rho_{\alpha,\beta}^i[\Psi_0]$
can be determined in a neutron scattering experiment (see Appendix A). As an added benefit, such approach yields all the required information using a “single shot” global measurement irrespective of the size of the system or the range of spin-spin interactions. Thus in the case of condensed matter systems it is not necessary to devise more sophisticated observables in order to improve sampling efficiency, as was proposed recently [18]. Effectively, neutron scattering integrates a large number of local measurements into a single function \(S(\mathbf{q}) \) that needs to be fitted (see Appendix A) - a sort of analogue parallel computation.

Proof of Theorem 2. In the preceeding paragraphs we proved that, for any set of Heisenberg-type Hamiltonians that do not share ground states, the exchange constants \(J_{i,j}^{\alpha,\beta} \) are single-valued functionals of the correlators \(\rho_{i,j}^{\alpha,\beta} \) (sets labelled “2” in Fig. 2). With the additional constraint that the Hamiltonians have non-degenerate ground states (sets labelled “1”) the ground state \(|\Psi_0\rangle \) is in turn fixed by the choice of \(J_{i,j}^{\alpha,\beta} \). Thus, in this case \(|\Psi_0\rangle \) is also uniquely determined by \(\rho_{i,j}^{\alpha,\beta} \). More generally, Theorem 1 implies that the only ground states of Heisenberg-type Hamiltonians (including Hamiltonians with degenerate and/or shared ground states) that are compatible with the ground-state correlator of a given model are also ground states of that same model. The various possibilities are shown in Fig. 2: each correlator in the shaded area (sets labelled “3” in the figure) uniquely identifies a non-degenerate ground state \((\rho_a \rightarrow \Psi_a, \rho_b \rightarrow \Psi_b, \rho_c \rightarrow \Psi_c, \rho_d \rightarrow \Psi_d) \) or a set of degenerate ground states of either one Hamiltonian \((\rho_a \rightarrow \{\Psi_a, \Psi_a\}) \) or of a set of Hamiltonians that share all those states \((\rho_c \rightarrow \{\Psi_c, \Psi_c\}) \) [23].

This is essentially the same as Theorem 2 except for the constraint that the trial wave functions must be ground states of Heisenberg-type Hamiltonians. To prove Theorem 2 we need to show that the result holds even without that constraint. In other words, we need to prove that in Fig. 2 there can be no lines linking correlators in the shaded area (set labelled “3” on the left side of the figure) to wave functions in the unshaded area (set labelled “4” in the middle). Again, we proceed by *reductio ad absurdum*. Let us assume that there is a state \(|\tilde{\Psi}\rangle \) that gives the same correlator as \(|\Psi_0\rangle \):

\[
\rho_{i,j}^{\alpha,\beta} [\tilde{\Psi}] = \rho_{i,j}^{\alpha,\beta} [\Psi_0] \quad \text{for all } i,j,\alpha,\beta. \tag{13}
\]

Let us further assume that \(|\tilde{\Psi}\rangle \) is not the ground state of \(\hat{H} \). There are two possibilities: either it is the ground state of some other Heisenberg-type Hamiltonian or it is not the ground state of a Heisenberg Hamiltonian at all. Below we will not assume either case, so our proof will cover both instances. By the Rayleigh-Ritz variational principle, we know that \(|\Psi_0\rangle \) gives the absolute minimum of the energy, which implies

\[
E_0 \equiv \langle \Psi_0 | \hat{H} | \Psi_0 \rangle \leq \langle \tilde{\Psi} | \hat{H} | \tilde{\Psi} \rangle. \tag{14}
\]

Using Eqs. (1) and (2) we can write this as

\[
E_0 \equiv \sum_{i,j} \sum_{\alpha,\beta} J_{i,j}^{\alpha,\beta} \rho_{i,j}^{\alpha,\beta} [\Psi_0] \leq \sum_{i,j} \sum_{\alpha,\beta} J_{i,j}^{\alpha,\beta} \rho_{i,j}^{\alpha,\beta} [\tilde{\Psi}] .
\]

Let us now consider separately the two cases when the two expectation values of \(\hat{H} \) in Eq. (14) are different and when they are equal. Let us first consider the case when they are different:

\[
E_0 \equiv \langle \Psi_0 | \hat{H} | \Psi_0 \rangle < \langle \tilde{\Psi} | \hat{H} | \tilde{\Psi} \rangle .
\]

Then we have

\[
\sum_{i,j} \sum_{\alpha,\beta} J_{i,j}^{\alpha,\beta} \rho_{i,j}^{\alpha,\beta} [\Psi_0] < \sum_{i,j} \sum_{\alpha,\beta} J_{i,j}^{\alpha,\beta} \rho_{i,j}^{\alpha,\beta} [\tilde{\Psi}] . \tag{15}
\]

and from our assumption (13) this reduces to

\[
\sum_{i,j} \sum_{\alpha,\beta} J_{i,j}^{\alpha,\beta} \rho_{i,j}^{\alpha,\beta} [\Psi_0] < \sum_{i,j} \sum_{\alpha,\beta} J_{i,j}^{\alpha,\beta} \rho_{i,j}^{\alpha,\beta} [\Psi_0] \tag{16}
\]

which is a contradiction. Therefore, the only possibility is that the two expectation values are equal:

\[
E_0 \equiv \langle \Psi_0 | \hat{H} | \Psi_0 \rangle = \langle \tilde{\Psi} | \hat{H} | \tilde{\Psi} \rangle .
\]

However in that case \(\langle \tilde{\Psi} | \hat{H} | \tilde{\Psi} \rangle \) is the absolute minimum \(E_0 \) and therefore \(|\tilde{\Psi}\rangle \) is a ground state of \(\hat{H} \), which contradicts our starting assumption. Thus we conclude that the only state that reproduces the ground-state correlator of \(\hat{H} \) is the actual ground state of \(\hat{H} \) (or one of its ground states, if the ground state of \(\hat{H} \) happens to be degenerate), *quod erat demonstrandum*.

We note that our proof of Theorem 2 does not rely on having proved Theorem 1. Theorem 2 is a simple consequence of the fact that the expectation value of any Hamiltonian of the form (1) is a sum of two-point correlators. Thus, if two states \(|\Psi_0\rangle, |\tilde{\Psi}\rangle \) give the same correlators they must give the same expectation value. Therefore, if \(|\Psi_0\rangle \) minimizes the energy \(|\Psi\rangle \) does too. We also stress that Theorem 2 is true even when we include candidate wave functions such as \(|\Psi\rangle \) in Fig. 2 that are not derived from any Hamiltonian of the form (1) (which makes Theorem 2 stronger than Theorem 1). This means that unconstrained searches in wave function space are guaranteed to be able to find the true ground state.

Our last result offers the possibility to study systems for which experimental magnetic neutron scattering data are available by working directly with the wave function, without the need for a model Hamiltonian (Fig. 4 b). The same efficient encodings of wave functions that have been developed to obtain the ground state of a given model Hamiltonian could be used to find the wave function that matches the experimental data. For instance, one could encode the wave function in a neural network [24], trained once to reproduce the experimental data (instead of minimizing the energy as done in Ref. [7]). Alternatively, a quantum circuit could be optimized to place
the qubits in a quantum processor in a state that reproduces the measurements. In this respect, we note that the simulation of inelastic neutron scattering functions of single-molecule magnets using a quantum processor (for known Hamiltonian) has already been successfully demonstrated \[35\]. The approach we propose would dispense with the model Hamiltonian and instead optimise the scattering function directly. It would be similar to an evolutionary variational eigensolver \[36\] except that, again, we would not be minimizing the energy of a model Hamiltonian but would be instead optimising the wave function to describe the experimental data. Both neural networks (or, more generally, tensor networks \[37\]) and quantum circuits can, in principle, generate any wave function. Our theorem implies that any general-purpose optimization algorithm will converge towards the right ground state (or another ground state of the same model with the same correlators). Specifically, it guarantees that convergence towards an unphysical wave function that reproduces the data is not possible as there are no wave functions that can describe the data and are not valid solutions to the problem at hand. This is akin to the guarantee offered by the Rayleigh-Ritz variational principle that no wave function can give an energy lower than the true ground-state wave function. Once optimized, our neural network or quantum circuit contain all the obtainable information about the system’s ground state and can straight-forwardly be used to predict any other ground-state property.

To conclude we note some limitations of Theorem 2. Firstly, it relies on the assumption that the physical system under investigation is described by a Hamiltonian of the form in Eq. (1). Systems with itinerant electrons or with interaction terms involving three or more spins at a time are therefore excluded. The generalization of our results to such systems is left for subsequent work \[38\]. Secondly, Theorem 2 establishes the existence of a fitness peak at \(\Psi_0 \) but says nothing about its steepness. The peak could be almost a plateau in some cases, which would complicate practical applications. Investigating this for different models provides another focus for future research. Finally, our theorems refer only to the ground state (apart from the generalisation of Theorem 1 to excited states in Appendix B). Further generalizations to states of thermodynamic equilibrium and to excited states are left for future work. Note added. – the generalisation of Theorem 1 to finite temperatures has been discussed recently by Murta and Fernández-Rossier \[39\].

ACKNOWLEDGMENTS

The author wishes to thank Silvia Ramos for asking the question that motivated this work; Vivaldo Campo and Klaus Capelle for a stimulating discussion of DFT for Heisenberg models; Gunnar Möller and Tymoteusz Tula for further useful discussions that informed the preparation of this manuscript; and all of the above for further useful comments on a draft.

Appendix A: Equivalence between correlators and the spin structure factor

Here we show that, for systems with translational symmetry, the correlators \(\rho_{ij}^{\alpha,\beta} \) are unique functionals of the diffuse magnetic neutron scattering function, or static spin structure factor, \(S_{\alpha,\beta}(q) \), which can be determined experimentally \[20 \[21\] and is given by

\[
S_{\alpha,\beta}(q) = \frac{1}{N\hbar} \sum_{i,j} e^{i \mathbf{q} \cdot (\mathbf{R}_i - \mathbf{R}_j)} \left< \hat{S}_{i\alpha} \hat{S}_{j\beta} \right>, \quad (A1)
\]

This is not quite the same as a Fourier transform, in which case we could say straightaway there is a one-to-one correspondence between \(S_{\alpha,\beta}(q) \) and \(\left< \hat{S}_{i\alpha} \hat{S}_{j\beta} \right> \), but almost. Again, let us proceed by reductio ad absurdum. First, assume that there are two different correlation functions that give the same scattering function. Let us designate these two correlation functions as \(\rho_{ij}^{\alpha,\beta} \) and \(\tilde{\rho}_{ij}^{\alpha,\beta} \), respectively. Our assumption is that the difference \(\Delta_{ij}^{\alpha,\beta} \equiv \rho_{ij}^{\alpha,\beta} - \tilde{\rho}_{ij}^{\alpha,\beta} \neq 0 \). Since they give the same scattering function we have

\[
S_{\alpha,\beta}(q) = \frac{1}{N\hbar} \sum_{i,j} e^{i \mathbf{q} \cdot (\mathbf{R}_i - \mathbf{R}_j)} \rho_{ij}^{\alpha,\beta} = \frac{1}{N\hbar} \sum_{i,j} e^{i \mathbf{q} \cdot (\mathbf{R}_i - \mathbf{R}_j)} \tilde{\rho}_{ij}^{\alpha,\beta}
\]

for all \(q, \alpha, \beta \). The last equality implies that

\[
\sum_{i,j} e^{i \mathbf{q} \cdot (\mathbf{R}_i - \mathbf{R}_j)} \Delta_{ij}^{\alpha,\beta} = 0 \text{ for all } q, \alpha, \beta. \quad (A2)
\]

Suppose that all magnetic sites are equivalent. Then the function \(\Delta_{ij}^{\alpha,\beta} = \Delta^{\alpha,\beta}(\mathbf{R}_i - \mathbf{R}_j) \) and \((A2) \) becomes

\[
\sum_{\mathbf{R}} e^{i \mathbf{q} \cdot \mathbf{R}} \Delta^{\alpha,\beta}(\mathbf{R}) = 0 \text{ for all } q, \alpha, \beta
\]

which evidently implies \(\Delta^{\alpha,\beta}(\mathbf{R}) = 0 \) for all \(\mathbf{R} \) as the Fourier transform of a null function is a null function that contradicts our original assumption, concluding our argument.

Suppose now that the magnetic sites are not equivalent. Nevertheless, as long as we are dealing with a state with translational symmetry, the function \(\rho_{ij}^{\alpha,\beta} \) will have to be periodic. This periodicity can be established experimentally (for instance, by magnetic neutron crystallography) and it is also straight-forward to impose it on the wave function therefore we can restrict ourselves to the assumption that \(\tilde{\rho}_{ij}^{\alpha,\beta} \) (and therefore, also \(\Delta_{ij}^{\alpha,\beta} \))
has the same periodicity [22]. In practice this means that we can write the LHS of Eq. (A2) in the following form:

$$\sum_{i,j} e^{i\mathbf{Q} \cdot (\mathbf{R}_i - \mathbf{R}_j)} \Delta_{\alpha,\beta} = \mathcal{N} \sum_{i=1}^{M} \sum_{j=1}^{N} e^{i\mathbf{Q} \cdot (\mathbf{R}_i - \mathbf{R}_j)} \Delta_{\alpha,\beta} (\mathbf{R}_i)$$

$$= \mathcal{N} \sum_{j=1}^{M} e^{-i\mathbf{Q} \cdot f_j (\mathbf{q})}$$

with

$$f_j (\mathbf{q}) = \sum_{i=1}^{M \times \mathcal{N}} e^{i\mathbf{q} \cdot \mathbf{R}_i} \Delta_{\alpha,\beta} (\mathbf{R}_i).$$

Here \mathcal{N} is the number of magnetic unit cells (repeating units) and M is the number of sites within a unit cell. Thus the sum over j runs over all the sites in the first unit cell while the sum over i runs over all the sites in the lattice. For the expression $\sum_{j=1}^{M} e^{-i\mathbf{Q} \cdot f_j (\mathbf{q})}$ to vanish for all \mathbf{q} we must have each of the $f_j (\mathbf{q})$ for $j = 1, 2, \ldots, M$ vanish independently. But $f_j (\mathbf{q})$ is the Fourier transform of $\Delta_{\alpha,\beta} (\mathbf{R}_i)$ therefore $\Delta_{\alpha,\beta} (\mathbf{R}_i)$ must vanish too for each $j = 1, 2, \ldots, M$. This means $\Delta_{\alpha,\beta}$ is identically zero, contradicting again our starting assumption.

There is a second possibility, namely the system may not be periodic. This applies, for example, when there is quenched disorder. In that case the scattering function $S_{\alpha,\beta} (\mathbf{q})$ is averaged over the disorder and is therefore insufficient to determine the real-space correlator. The extent to which $S_{\alpha,\beta} (\mathbf{q})$ constrains the system's ground state in that case should be an interesting subject for future investigations.

Appendix B: Extension of Theorem 1 to Excited States

Here we extend Theorem 1 to excited states. Consider two Hamiltonians \hat{H}, \hat{H}' of the Heisenberg type [Eq. (1)] but with different sets of coupling constants given by $J_{i,j}^{\alpha,\beta}$ and $J_{i,j}^{\alpha',\beta}$, respectively. Let us assume that the ground-state correlator $\rho_{i,j}^{\alpha,\beta} [\Psi_0]$ is the same. In that case $\langle \Psi_0 |$ is a ground state of both Hamiltonians due to Theorem 1. Let $\langle \Psi_1 |$ and $\langle \Psi_1' |$ the first excited states of \hat{H} and \hat{H}', respectively. We wish to prove that if these two states are different the corresponding correlators are also different, $\rho_{i,j}^{\alpha,\beta} [\Psi_1] \neq \rho_{i,j}^{\alpha,\beta} [\Psi_1']$. As with all the other proofs in this paper, we proceed by reductio ad absurdum. Let us assume that the opposite is true, in other words $\rho_{i,j}^{\alpha,\beta} [\Psi_1] = \rho_{i,j}^{\alpha,\beta} [\Psi_1']$. Then

$$E_1 = \braket{\Psi_1 | \hat{H} | \Psi_1'} < \braket{\Psi_1' | \hat{H} | \Psi_1'}$$

(B1)

$$= \braket{\Psi_1 | \hat{H} - \hat{H}' | \Psi_1'} + \braket{\Psi_1 | \hat{H}' | \Psi_1'}$$

(B2)

$$= \sum_{i,j} \sum_{\alpha,\beta} \left(J_{i,j}^{\alpha,\beta} - J_{i,j}^{\alpha',\beta} \right) \rho_{i,j}^{\alpha,\beta} [\Psi_1] + E_1'$$

(B3)

where in writing the inequality we have made use of our assumption that $\langle \Psi_1 | \neq \langle \Psi_1' |$. We have also used that both $\langle \Psi_1 |$ and $\langle \Psi_1' |$ are orthogonal to the shared ground state $\langle \Psi_0 |$. Similarly

$$E_1' = \braket{\Psi_1' | \hat{H}' | \Psi_1'}$$

(B4)

$$= \braket{\Psi_1 | \hat{H}' - \hat{H} | \Psi_1} + \braket{\Psi_1 | \hat{H} | \Psi_1}$$

(B5)

$$= \sum_{i,j} \sum_{\alpha,\beta} \left(J_{i,j}^{\alpha',\beta} - J_{i,j}^{\alpha,\beta} \right) \rho_{i,j}^{\alpha,\beta} [\Psi_1] + E_1 + E_1'$$

(B6)

with the same assumptions made above. Adding the two inequalities we obtain

$$E_1 + E_1' < \sum_{i,j} \sum_{\alpha,\beta} \left(J_{i,j}^{\alpha,\beta} - J_{i,j}^{\alpha',\beta} \right) \left(\rho_{i,j}^{\alpha,\beta} [\Psi_1] - \rho_{i,j}^{\alpha,\beta} [\Psi_1'] \right) + E_1' + E_1$$

Our assumption that $\rho_{i,j}^{\alpha,\beta} [\Psi_1] = \rho_{i,j}^{\alpha,\beta} [\Psi_1']$ then leads to

$$E_1 + E_1' < E_1' + E_1$$

which is absurd, quod erat demonstrandum. The argument can be trivially extended to successive excited states. We can also extend it in the same way as Theorem 1 to cover the case where the excited state is degenerate (in other words, to show that if $\langle \Psi_1 |$ and $\langle \Psi_1' |$ are degenerate excited states of \hat{H} then both of them must also be degenerate states of \hat{H}'). □

[1] K. Capelle, Brazilian journal of physics 36, 1318 (2006).
[2] P. O. Scherer, *Computational Physics (Graduate Texts in Physics)* (Springer International Publishing, 2017).
[3] G. Rickayzen, “Superconductivity: Volume 1,” (Routledge, 1969) Chap. The Theory of Bardeen, Cooper, and Schrieffer.
[4] R. B. Laughlin, Physical Review Letters 50, 1395 (1983).
[5] J. Tilly, H. Chen, S. Cao, D. Picozzi, K. Setia, Y. Li, E. Grant, L. Wossnig, I. Rungger, G. H. Booth, and J. Tennyson, arXiv:2111.05176 [quant-ph] (2021) arXiv: 2111.05176.
[6] A. G. Rattew, S. Hu, M. Pistoia, R. Chen, and S. Wood, arXiv:1910.09694 [quant-ph] (2020) arXiv: 1910.09694.
[7] G. Carleo and M. Troyer, Science 355, 602 (2017).
[8] A. M. Samarakoon, K. Barros, Y. W. Li, M. Eisenbach, Q. Zhang, F. Ye, V. Sharma, Z. L. Dun, H. Zhou, S. A. Grigera, C. D. Batista, and D. A. Tennant, Nature Communications 11, 892 (2020).

[9] C. Brukner, V. Vedral, and A. Zeilinger, Physical Review A 73, 012110 (2006), arXiv: quant-ph/0410138.

[10] O. Marty, M. Epping, H. Kampermann, D. Bruß, M. B. Plenio, and M. Cramer, Physical Review B 89, 125117 (2014).

[11] P. Laurell, A. Scheie, C. J. Mukherjee, M. M. Koza, M. Enderle, Z. Tylczynski, S. Okamoto, R. Coldea, D. A. Tennant, and G. Alvarez, Physical Review Letters 127, 037201 (2021).

[12] L. Amico, A. Osterloh, F. Plastina, R. Fazio, and G. M. Palma, Physical Review A 69, 022304 (2004).

[13] F. Baroni, A. Fubini, V. Tognetti, and P. Verrucchi, Journal of Physics A: Mathematical and Theoretical 40, 9845 (2007).

[14] E. Chertkov and B. K. Clark, Physical Review X 8, 031029 (2018).

[15] M. Greiter, V. Schnells, and R. Thomale, Physical Review B 98, 081113(R) (2018).

[16] E. Bairey, I. Arad, and N. H. Lindner, Physical Review Letters 122, 020504 (2019).

[17] X.-L. Qi and D. Ranard, Quantum 3, 159 (2019).

[18] A. Anshu, S. Arunachalam, T. Kuwahara, and M. Soleimanifar, Nature Physics 17, 931 (2021).

[19] E. Ising, Zeitschrift fÃŒr Physik 31, 253 (1925).

[20] X. Wang, Physical Review A 64, 012313 (2001).

[21] A. Kitaev, Annals of Physics 321, 2 (2006).

[22] G. Christou, D. Gatteschi, D. N. Hendrickson, and R. Sessoli, MRS Bulletin 25, 66 (2000).

[23] M. J. Gingras and P. A. McClarty, Reports on Progress in Physics 77, 056501 (2014).

[24] C. Broholm, R. J. Cava, S. A. Kivelson, D. G. Nocek, M. R. Norman, and T. Senthil, Science (2020), 10.1126/science.aay0668.

[25] T. K. Ng, Physical Review B 44, 2407 (1991).

[26] B. Swingle and I. H. Kim, Physical Review Letters 113, 260501 (2014).

[27] C. A. Schwerdtfeger and D. A. Mazzotti, The Journal of Chemical Physics 130, 224102 (2009).

[28] V. Zauner, D. Draxler, L. Vanderstraeten, J. Haegeman, and F. Verstraete, New Journal of Physics 18, 113033 (2016).

[29] V. L. Libero and K. Capelle, Physical Review B 68, 024423 (2003).

[30] L.-A. Wu, M. S. Sarandy, D. A. Lidar, and L. J. Sham, Physical Review A 74, 052335 (2006).

[31] J. P. Coe, I. D’Amico, and V. V. Franca, EPL (Europhysics Letters) 110, 63001 (2015).

[32] We also note that this limitation of Theorem 1 does not affect Theorem 2, below.

[33] Murta and Fernández-Rossier have recently generalised Theorem 1 to finite temperatures [39].

[34] R. Twyman, S. J. Gibson, J. Molony, and J. Quintanilla, Journal of Physics: Condensed Matter 33, 324002 (2021).

[35] We note that as a direct consequence of Theorem 1 the relationship between two ground states of Heisenberg-type models that exists by virtue of them sharing the correlator defines a partition of that set and can, therefore, be used to define equivalence classes for ground states. The same is not true of the Hamiltonians themselves as some degenerate Hamiltonians will have ground states with different correlators - the latter point is illustrated by H' in Fig. 2.

[36] A. Chiesa, F. Tacchino, M. Grossi, P. Santini, I. Tavener, D. Gerace, and S. Carretta, Nature Physics 15, 455 (2019).

[37] R. Orús, Nature Reviews Physics 1, 538 (2019).

[38] We note however that some notable Heisenberg-type models with higher-order interaction terms emerge as perturbative approximations to models that only feature 2-spin interactions e.g. the cyclic-exchange model of quantum spin ice [23]. Such systems are covered by our theorems.

[39] B. Murta and J. Fernández-Rossier, Phys. Rev. E 105, L062101 (2022).

[40] S. Lovesey, Theory of Neutron Scattering from Condensed Matter, Vol. 2: Polarization Effects and Magnetic Scattering (Oxford University Press, 1987).

[41] I. A. Zaliznyak and S.-H. Lee, Spin 5, 1 (2004).

[42] This is the basis for expressing the neutron scattering cross-section in terms of the static structure factor $S(q)$ in the case of crystals with lowered periodicity (e.g. through an anti-ferromagnetic transitions), see [41] [see in particular the discussion in Section 3.5].