Cosmic Rays during BBN as Origin of Lithium Problem

Ming-ming Kang ¹, Yang Hu ², Hong-bo Hu ¹ and Shou-hua Zhu ²,³

February 3, 2013

¹ Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
² Institute of Theoretical Physics & State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, P.R. China
³ Center for High Energy Physics, Peking University, Beijing 100871, P.R. China

Abstract

There may be non-thermal cosmic rays during big-bang nucleosynthesis (BBN) epoch (dubbed as BBNCRs). This paper investigated whether such BBNCRs can be the origin of Lithium problem or not. It can be expected that BBNCRs flux will be small in order to keep the success of standard BBN (SBBN). With favorable assumptions on the BBNCR spectrum between 0.09 – 4 MeV, our numerical calculation showed that extra contributions from BBNCRs can account for the 7Li abundance successfully. However 6Li abundance is only lifted an order of magnitude, which is still much lower than the observed value. As the deuteron abundance is very sensitive to the spectrum choice of BBNCRs, the allowed parameter space for the spectrum is strictly constrained. We should emphasize that the acceleration mechanism for BBNCRs in the early universe is still an open question. For example, strong turbulent magnetic field is probably the solution to the problem. Whether such a mechanism can provide the required spectrum deserves further studies.

*Corresponding author: younger@pku.edu.cn

arXiv:1110.0163v5 [astro-ph.CO] 15 May 2012
Contents

1 Introduction .. 3

2 BBNCRs and Reactions ... 5

3 Element abundances after including BBNCRs contributions 9

4 Conclusions and discussions 19

A Classification of Exothermic Reactions 26

B Cross Sections and Details of Computation Scheme 28
1 Introduction

Big Bang cosmology is an excellent model to describe our Universe [1]. Al-beit its success there is still puzzling “Lithium problem” [2, 3] in its building block – big bang nucleosynthesis (BBN). Namely the theoretical predicted primordial 7Li abundance is higher than observation while the 6Li abundance is lower. Primordial 7Li abundance from measurements of metal-poor halo stars is 7Li/H = $(1 \sim 2) \times 10^{-10}$ [2]-[9], while prediction by the standard BBN (SBBN) model is three to five times higher: 7Li/H = $(5.24^{+0.71}_{-0.67}) \times 10^{-10}$ [10]. Meanwhile 6Li abundance from observation is 6Li/H $\approx 6 \times 10^{-12}$ [3], a factor of about 1000 higher than the SBBN model prediction [11].

Extensive investigations have focused on Lithium problem. The discrepancy could be due to astrophysical origin [12, 13, 14]. While it is also possible that the discrepancy is arising from Physics beyond the SBBN model. Investigations showed that Lithium abundance would change by varying the nucleon effective couplings as well as the mass parameters, namely the neutron lifetime, the neutron-proton mass difference and the deuteron binding energy etc. [15, 16, 17]. These parameters can be modified due to virtual effects of Physics beyond the Standard Model of particle physics. Another possibility of Physics beyond the SBBN could contain new particles/resonances. Such new particles/resonances participate in thermal nuclear reactions during BBN [18]-[28], as such Lithium abundance will depend on the detail assumptions about the new particles/resonances. Besides these two approaches, non-thermal electromagnetic [29] and hadronic [30]-[35] energy injection was also investigated. Non-thermal particles originate from the nuclear reactions before the final state particles are thermalized. The preliminary studies showed that the mono-energetic injection is hardly the origin of Lithium problem. In this paper we will extend, in some sense, such idea to include the non-thermal energy injection from cosmic rays during and/or shortly after the epoch of BBN.

In this paper, we propose a possible solution to the Lithium problem by not going far from the SBBN model, neither due to the astrophysical factors nor by introduction of new particles. In order to destroy 7Li 1, we include new contributions from non-thermal particles, namely the accelerated SBBN particles. As is known that the non-thermal particles accelerated in

1 Actually we need to destroy 7Be. The relic primordial 7Li mainly (about 90%) comes from the decay of 7Be.
astrophysical environment today are called cosmic rays, it is expected there is such cosmic rays even in the early stage of BBN. We expect that some kind of plasma wave or other mechanisms can feed energy to thermal ions [36], provided that there is strong enough turbulence before/during BBN epoch. As a consequence the particle energy spectrum deviates from thermal distribution. Exploring detailed mechanism on how to induce non-thermal component is beyond the scope of this paper and which will be the focus of the further work. However we propose a toy model to support our basic hypothesis in this paper.

The primordial magnetic fields might be created at some early stage of the evolution of the Universe, for example inflation, the electro-weak phase transition, quark-hadron phase transition and so on. As investigated by authors in ref. [37], after electro-weak phase transition the magnetic field build up and evolve with the expanding Universe. We can estimate the strength of induced electric field through \(E \approx \Delta B / \Delta t \times L \approx B H L \), where \(B \propto R^{-2} \) is the characteristic magnetic field, \(H \) is the expansion rate as inverse of the characteristic time, and \(L \) is the characteristic length of turbulence which is given by equations (47) and (49) of [37] (here \(L = l_0(R/R_0) \) which includes the effect of cosmic expansion). Using the same initial parameters as in ref. [37] and extrapolating to 0.01MeV, we get the induced electric field \(E \approx 30 \) V/m in plasma with temperature 0.01MeV. A charged particle like proton undergoing such electric field will gain energy \(\Delta E \approx \tau_{\text{ther}} v_\parallel q E \), where \(v_\parallel \) is the particle velocity parallel to the electric field, \(q \) is the electric charge of the particle, and \(\tau_{\text{ther}}(T) \) is the thermalization time of a high energy (of order MeV) nuclear in plasma of temperature \(T \). For O(MeV) protons in plasma of temperature 0.01MeV, \(\tau_{\text{ther}}(0.01) \approx 10^{-2} \) s [38], the possible energy gain of an accelerated thermal proton is of order 0.1 MeV. During one free time, a proton can travel a distance of \(L_{\text{free}} \approx 10^{-3} c \times 10^{-2} s \approx 3 \times 10^5 \) cm (\(c \) is the light velocity) which is just several percent of the characteristic length scale. Protons have the opportunity to be accelerated several times and thus to gain a couple of MeV energy, though the probability is low. Thus we can expect the energy spectrum of high energy particles will not be too hard.

This proposed toy model needs hydro-magnetic turbulence as the premise. We don’t know exactly how hydro-magnetic turbulence develops during the BBN. However according to ref. [39], helical hydromagnetic turbulence survives until 100 eV. We found that the correlation length and magnetic field will be larger if we adopt model in ref. [39] instead. Therefore there should be a considerable parameter space to support our hypothesis.
In this paper we will examine phenomenologically whether such scenario can account for Lithium problem. These non-thermal particles are dubbed as BBN cosmic rays (BBNCRs). In the SBBN conventional abundance calculation, the exothermic reactions are included. BBNCRs contributions to the exothermic SBBN reactions will be investigated. Most importantly, we have to include the endothermic reactions in order to destroy ^7Be by BBNCRs. In the SBBN, the endothermic reactions are thought not important.

This paper proceeds as following. In section 2 we describe the required characteristics of BBNCRs, namely the particle species, the energy range and energy spectrum and so on. There are many reactions involving BBNCRs so we need to select which reactions may be important, and detailed discussions on these are contained in this section. The necessary formulae for the abundance computation by including BBNCRs contributions are depicted in section 3. The numerical results are given in this section. Section 4 contains our conclusions and discussions. Some calculation details are given in Appendix A and B.

2 BBNCRs and Reactions

In order to estimate the effects of BBNCRs, we need to know the flux, the energy range and the energy spectrum of BBNCRs. They are maybe in evolution during its work time with the Universe expanding, so the following characters can be seen as an average. Obviously we don’t have any knowledge on BBNCRs, therefore we examine some constraints on BBNCRs.

Candidate for BBNCRs may be protons, neutrons, nuclei and electrons. Neutrons are hard to accelerate for electric neutrality, and electrons are out of consideration in SBBN computation, so we focus on nuclei. Because Helium loses energy more quickly through Coulomb scattering [38, 41, 42] due to the higher nuclear electric charge [43], we exclude ^3He and ^4He as the components of BBNCRs. We assume that BBNCRs consist of energetic hydrogens, namely protons, deuterons and tritones. In order not to violate the success of SBBN, the intensity of each kind of BBNCRs must be much lower than that of the corresponding SBBN particles. For simplicity we assume that the fraction of BBNCRs is fixed as one single free parameter ϵ.

Next we examine the energy range of BBNCRs. In order not to change deuterium abundance significantly, we must avoid BBNCRs contributions from reaction $D(p,n)2H$. Note that the threshold energy and cross section
of this reaction are 3.337 MeV and $\approx 10^{-2}$ barn respectively. We examined the endothermic reactions with threshold energy [44] below 3.337 MeV. In order to destroy 7Be by proton, the most effective one is 7Be$(p, p\alpha)^3$He with threshold energy $E_{th} = 1.814$ MeV. Other endothermic reactions besides 7Be$(p, p\alpha)^3$He are summarized in table 1.

Table 1: Endothermic reactions by energetic hydrogen with threshold energy below 3.337 MeV.

Process	Threshold/MeV	Effect
7Be$(d, ^3$He)6Li	0.144	destroy 7Be indeed, but less important than 7Be$(p, p\alpha)^3$He, for D is much less than p; produce 6Li
7Li$(d, p)^8$Li	0.247	destroy 7Li, not important, for we need to destroy 7Be
7Be$(d, 2p)^7$Li	0.747	transformation between 7Li and 7Be, but less important than 7Li$(p, n)^7$Be
T$(p, n)^3$He	1.019	transformation between T and 3He, and T and 3He abundances are assumed to change little
7Li$(d, t)^6$Li	1.278	destroy 7Li; produce 6Li
6Li$(p, p\alpha)$D	1.721	destroy 6Li, negative, for we need to produce 6Li
7Be$(p, p\alpha)^3$He	1.814	the most important process to destroy 7Be
6Li$(n, p)^7$Li	1.850	destroy 6Li
7Li$(p, n)^7$Be	1.880	transformation between 7Li and 7Be, important
6Li(d, α)D	1.967	destroy 6Li
7Be$(d, \alpha)^3$He	2.041	destroy 7Be, but less important
6Li(t, α)T	2.213	destroy 6Li
7Be$(t, \alpha)^3$He	2.268	destroy 7Be, but less important
3He$(d, 2p)$T	2.436	transformation between T and 3He
7Be$(d, n)^5$B	2.688	destroy 7Be, but less important
7Li$(p, p\alpha)$T	2.821	destroy 7Li
7Li(d, α)T	3.175	destroy 7Li

Now we switch to examine the energy spectrum of BBNCRs. In principle the BBNCR energy spectrum will be determined by acceleration mechanism
and we are lack of knowledge on this. In the realistic case, the energy of BBNCRs should exceed 1.8 MeV but the amount is required to decrease quickly, especially above 3.337 MeV, namely the energy threshold of \(D(p, n)\)\(^2\)H. Motivated by the power law of cosmic rays today, we assume the spectrum of BBNCRs obeys a power law with index 4 from 2 MeV to 4 MeV \(^2\). Below 2 MeV \(^3\), we choose the power index to be 2 or even in uniform distribution like white noise. Our choice of energy spectrum of BBNCRs is depicted in figure 1.

\[\alpha \text{ is the power index (see eq. (5) for detail).}\]

\(^2\) The energy range is so narrow that small variation of the power index will not change the results too much. It is obvious that the larger the power index is, the less important the higher energy particles are.

\(^3\) Exactly it is the energy range between 0.09 MeV and 2 MeV. In fact, BBNCRs come from SBBN particles, and the lower limit of the energy range of BBNCRs is near or a little above the temperature of SBBN particles. In the SBBN, \(^7\)Be is produced mainly during the epoch when the temperature is between 0.08 MeV and 0.04 MeV, so it seems reasonable that we take 0.09 MeV as the lower limit. Note that \(^7\)Be abundance is not sensitive to the change of the lower limit.
BBNCRs can affect element abundance via endothermic processes. Besides these BBNCRs will also involve into exothermic SBBN reactions. The exothermic processes are thought much less important than endothermic ones in the SBBN relatively. However via exothermic processes the non-thermal BBNCRs may have important influence upon the element abundances, especially through which D abundance may be decreased. Complete classification of exothermic processes is summarized in Appendix A. Reactions added in our numerical computation are as following:

1. Endothermic reactions, including the most important process to destroy $^7\text{Be} - ^7\text{Be}(p, p\alpha)^3\text{He}$ and a weighty origin of $^7\text{Be} - ^7\text{Li}(p, n)^7\text{Be}$;

2. Exothermic reactions, including the collisions between isotopes of hydrogen, especially destroying $D - D(p, \gamma)^3\text{He}$, $D(d, p)^3\text{T}$, $D(d, n)^3\text{He}$, and $T(d, n)^4\text{He}$, and the ones producing or destroying ^7Li by energetic hydrogen among the most relevant reactions for BBN [45] – $^4\text{He}(t, \gamma)^7\text{Li}$, and $^7\text{Li}(p, \alpha)^4\text{He}$;

3. The ones to produce and destroy ^6Li, including exothermic reactions $^4\text{He}(d, \gamma)^6\text{Li}$ and $^6\text{Li}(p, \alpha)^3\text{He}$ and endothermic reactions $^7\text{Be}(d, ^3\text{He})^6\text{Li}$ and $^7\text{Li}(d, t)^6\text{Li}$. Note that the computation for ^6Li abundance is neither complete nor accurate and we will come back to this point in section 4.

The above reactions are listed in table 2:
Table 2: Additional reactions added in our element abundance computation.

Process	Threshold/MeV	Cross Section
$D(p, \gamma)^3He$	0	[46]
$D(d, p)^4T$	0	[47]
$D(d, n)^3He$	0	[48]
$T(d, n)^4He$	0	[49]
$^4He(d, \gamma)^6Li$	0	[50]
$^4He(t, \gamma)^7Li$	0	[51]
$^6Li(p, \alpha)^3He$	0	[52, 53]
$^7Li(p, \alpha)^4He$	0	[53, 54]
$^7Li(p, n)^7Be$	1.880	[55]
$^7Be(p, p\alpha)^3He$	1.814	[56]
$^7Li(d, t)^6Li$	1.278	[57]
$^7Be(d, ^3He)^6Li$	0.144	[58]

3 Element abundances after including BBN-CRs contributions

Now we turn to element abundance computation after including BBN-CRs contributions. Besides the standard contributions in SBBN, extra contributions come from the processes where the thermal particles collide with non-thermal BBN-CRs particles. According to the Boltzmann equation, variation of the abundance of nuclide i is described as

$$\frac{dY_i}{dt} = -\sum_j Y_i Y_j [ij] + \sum_{k,l} Y_k Y_l [kl],$$

where $[ij]$ is the rate for destroying nuclide i and $[kl]$ is the rate for creating i, $Y_i = X_i/A_i$ is the abundance of nuclide i with X_i the mass fraction and A_i the mass number of nuclide i. The sum over j goes through all reactions to destroy nuclide i and the sum over k, l goes through all reactions to produce nuclide i. The rate $[ij]$ is defined by

$$[ij] \equiv N_A \rho \langle ij \rangle,$$

where N_A is the Avogadro’s number, ρ is the baryon energy density, and $\langle ij \rangle \equiv \langle \sigma v \rangle_{ij}$. Here σ is the cross section of the reaction $(ij \rightarrow kl)$, and v is
the relative velocity between these two particles i and j. The $\langle \rangle$ stands for the mean over different relative velocities [59]. In the SBBN, $\langle \rangle$ means the thermal average, while in the case with BBNCRs it can be computed as

$$
\langle \sigma v \rangle_{12}(T, \alpha) = \frac{1}{K_3} \int_{-1}^{1} d \cos \theta \frac{1}{K_1} \times \int_{-\infty}^{+\infty} f_1(E_1, T) dE_1 \times \frac{1}{K_2} \int_{0.09}^{4} f_2(E_2, \alpha) dE_2 \sigma(E_i) v(E_1, E_2, \cos \theta).
$$

(3)

Here distribution of SBBN particles $f_1(E_1, T)$ is the normalized Boltzmann distribution,

$$
f_1(E_1, T) = 2 \sqrt{\frac{E_1}{\pi kT}} e^{-E_1/kT},
$$

(4)

where k is the Boltzmann’s constant, T is the Universe temperature, and E_1 is the energy of the SBBN particle. Thus the normalization constant $K_1 = 1$ and the energy range is $(-\infty, +\infty)$. Distribution of BBNCRs is power law with index α (see figure 1),

$$
f_2(E_2, \alpha) \propto E_2^{-\alpha},
$$

(5)

$$
\alpha = \begin{cases}
2 \text{ or } 0 & \text{for } 0.09 \text{ MeV} < E_2 < 2 \text{ MeV} \\
4 & \text{for } 2 \text{ MeV} < E_2 < 4 \text{ MeV}
\end{cases},
$$

(6)

where E_2 is the energy of the BBNCR particle, with $\alpha = 2$ for power law case and $\alpha = 0$ for uniform distribution case. We normalize the function f_2 from 2 MeV to 4 MeV,

$$
K_2 = \int_{2}^{4} f_2(E_2, \alpha) dE_2,
$$

(7)

and make f_2 continuous at 2 MeV point. When the mass of the SBBN particle is noted as m_1 and that of the BBNCR as m_2, we can compute the relative velocity with the angle of incidence θ,

$$
v = |\vec{v}_1 - \vec{v}_2| = \sqrt{\frac{2E_1}{m_1} + \frac{2E_2}{m_2} - 4 \sqrt{\frac{E_1E_2}{m_1m_2}} \cos \theta},
$$

(8)
and incident energy E_i

$$E_i = \frac{1}{2} m_i v^2,$$

(9)

where m_i is the mass of the incident particle. The normalization constant over θ is $K_3 = \int_{-1}^{1} \cos \theta \, d\cos \theta = 2$. The cross sections in eq. (3) are taken from experimental data source DataBase EXFOR [60] and ENDF[61]. As a result, the incident particle is not simply the energetic particle, but on the criterion from nuclear experiments. Taking $^4\text{He}(t,\gamma)^7\text{Li}$ for example, data of cross sections are obtained under the situation where ^4He is taken as the incident particle.

We calculate abundances utilizing the updated version [62, 63] of the Wagoner code [64] from [65] with appropriate modification in order to include new contributions from BBNCRs. The baryon-to-photon ratio is updated to 6.23×10^{-10} [66]. The rates of endothermal and exothermic processes in table 2 where BBNCRs particles involve are multiplied by ϵ. The new contributions are added to the code as new channels. Details of the cross sections we adopted can be found in Appendix B.

As the cross section of $^7\text{Be}(p,pa)^9\text{He}$ is unknown from experiments, we take D$(p,n)2\text{H}$ with a shift of the threshold energy as a substitute. If the difference is considerable, e.g., the D$(p,n)2\text{H}$ cross section is x times the $^7\text{Be}(p,pa)^9\text{He}$ cross section, we need to replace ϵ as $x\epsilon$.

Now we turn to show our numerical results for element abundance after including new contributions from BBNCRs. Figure 2 and 3 show processing rates, which is defined as $\epsilon Y_i Y_j [ij]/H$ [67] (H is the expansion rate), of producing and destroying $^7\text{Li}/^7\text{Be}$. From the figures we can clearly see contributions from non-thermal processes, especially in the low temperature regime.

^7Be abundances under $\alpha = 2$ for $0.09 \text{ MeV} < E_2 < 2 \text{ MeV}$ and different values of ϵ are shown in figure 4, among which the red solid line stands for SBBN result ($\epsilon = 0$). We can see that $\epsilon = 7 \times 10^{-5}$ can destroy 70% ^7Be. As a price, 5% D is destroyed (as a comparison, the number shifts to 1% for uniform distribution). From the figure we can see clearly that new contributions from BBNCRs can account for ^7Li abundance quite satisfactory. Note that for the processes whose reactants are both hydrogen, the effect on D abundance need to be doubled according to the symmetry.

In figure 5 and 6 shows abundances of $^7\text{Li}/^7\text{Be}$ and ^6Li, as well as all elements as a function of temperature respectively. Here the solid lines stand for the SBBN results, and the dashed lines for results with BBNCRs under
\(\alpha = 2 \) for \(0.09 \text{ MeV} < E_2 < 2 \text{ MeV} \) and \(\epsilon = 7 \times 10^{-5} \). While the BBNCRs can account for \(^7\text{Li} \) abundance, for the \(^6\text{Li} \) abundance, energetic BBNCRs can enhance \(^6\text{Li} \) one order of magnitude, but not enough compared to observations. From the curves we can also see that the shifts of other element abundances after including BBNCRs contributions are usually tiny.

For completeness we also show processing rates of producing and destroying \(^6\text{Li} \) in figure 7 and 8. It is not hard to see that non-thermal contributions are quite similar to the \(^7\text{Li} \) case. BBNCRs play important role mainly when the Universe temperature falls below 0.04 MeV.
Figure 3: Processing rate of destroying 7Li/7Be as a function of temperature.
Figure 4: 7Be abundance as a function of temperature. Here ϵ is taken as 0, 5×10^{-5}, 7×10^{-5} and 1×10^{-4} respectively.
Figure 5: Abundances of $^7\text{Li}/^7\text{Be}$ and ^6Li as a function of temperature with $\epsilon = 7 \times 10^{-5}$.
Figure 6: Abundances of all elements as a function of temperature with $\epsilon = 7 \times 10^{-5}$.
Figure 7: Processing rate of producing 6Li as a function of temperature.
Figure 8: Processing rate of destroying 6Li as a function of temperature.
4 Conclusions and discussions

In this paper, we investigated whether cosmic rays in the BBN epoch (BBNCRs) can account for Lithium problem or not. In order to keep the success of SBBN, the flux, energy range and spectrum of BBNCRs are severely constrained. In the allowed parameter space, extra contributions from BBNCRs to 7Li abundance can fill the discrepancy between SBBN prediction and observations. However BBNCRs can lift 6Li abundance in the SBBN an order of magnitude, but still less than that of observations.

We need to point out some factors beyond investigations in the paper. First, measurements of cross sections of nuclear reactions, especially 7Be(p, $p\alpha$)3He is critical. Lack of knowledge on T(t, γ)6He (6He will decay to 6Li in 0.8s) and 3He(t, γ)6Li cross sections brings uncertainty on 6Li results, too. If their cross section between 2 MeV and 4 MeV is about O(mb), the contributions to 6Li abundance is comparable to that of 4He(d, γ)6Li.

Second, we consider hydrogen as the only component of BBNCRs in this paper, however the possible 3He or 4He as BBNCRs particles will change our results. We can imagine that 3He and 4He are accelerated to the same energy and spectrum (in fact their energy should be lower and the spectrum be softer than hydrogen). In this case, effects of some reactions (e.g. 4He(d, γ)6Li and 4He(t, γ)7Li) will be doubled. At the same time, new reactions are triggered by energetic 3He and 4He (see table 3). The reaction 7Be(α, p)10B will destroy 7Be and produce 10B.

In our analysis, it is important that the amount of BBNCRs should be very low above 3.337 MeV, namely the D(p, n)2H threshold. In order to test the effect of the spectrum choice on the deuteron abundance, we tried different spectrums, and show some representative ones in figure 9. For each spectrum, we give the necessary fraction of BBNCRs, namely ϵ, to destroy 70% 7Be, and the corresponding percentage of destructed deuterium. The results are shown in table 4. The upper limit of BBNCRs spectrum is taken to be 10 MeV. We find that BBNCRs above 3.337 MeV would destroy deuterium inevitably. Therefore, the main part of the realistic spectrum should lie between 1.814 MeV and 3.337 MeV, and a rapid drop below 1.814 MeV and above 3.337 MeV is favorable.

At last but not least, the critic issue for the BBNCRs is about acceleration mechanism during BBN and whether the required flux and energy range as

4 We ignore endothermic reactions whose threshold is higher
Figure 9: Energy spectrum test.
Table 3: List of new reactions triggered by energetic 3He and 4He.

Process	Threshold/MeV
6Li(3He, 2p)7Li	0.703
7Li(3He, t)7Be	1.259
7Be(α, p)10B	1.800
6Li(3He, $d\alpha$)3He	2.213
7Be(3He, α)2He	2.268
6Li(α, d)4He	2.455
7Be($\alpha, 2\alpha$)3He	2.491
6Li(α, d)8Be	2.608
7Be($\alpha, ^3$He)8Be	2.635
6Li(3He, d)8B	2.965
6Li(3He, np)7Be	3.171

Table 4: The effect of the spectrum choice on the deuteron abundance.

Description of spectrum	Curves in figure 9	ϵ fraction	D destroyed
uniform distribution between 2 MeV and 4 MeV	black, solid	2×10^{-5}	1.9%
uniform distribution between 0.09 MeV and 2 MeV, E^{-4} between 2 MeV and 10 MeV	black, dashed	3×10^{-5}	10.6%
$E^2e^{-E^2}$ between 0.09 MeV and 10 MeV	red, solid	3×10^{-4}	15%
$E^7e^{-E^2}$ between 0.09 MeV and 10 MeV	orange, solid	1.5×10^{-4}	1.8%
$E^4e^{-(E/1.814)^3}$ between 0.09 MeV and 10 MeV	blue, dashed	1×10^{-4}	1.2%

well as spectrum can be induced. Anyhow the energetic particles are thought to be easily thermalized by photons and nuclei around before they collide with other nuclei [41, 42].

Acknowledgment

We would like to thank Xiao-jun Bi and Jie Meng for the stimulating discussions. This work was supported in part by the Natural Science Foundation of China (Nos. 10725524, 11075003, 11135003 and 1135010) and Chinese Academy of Sciences (No. KJCX2-YW-N13).
References

[1] C. E. Rolfs and W. S. Rodney, *Cauldrons in the Cosmos: Nuclear Astrophysics*, University of Chicago Press, Chicago U.S.A. (1988)

[2] J. Melendez and I. Ramirez, Astrophys. J. **615**, L33 (2004), arXiv: astro-ph/0409383

[3] M. Asplund *et al.*, Astrophys. J. **644**, 229 (2006), arXiv: astro-ph/0510636

[4] F. Spite and M. Spite, Astron. Astrophys. **115**, 357 (1982)

[5] S. G. Ryan *et al.*, Astrophys. J. **530**, L57 (2000), arXiv: astro-ph/9905211

[6] P. Bonifacio *et al.*, Astron. Astrophys. **462**, 851 (2007), arXiv: astro-ph/0610245

[7] J. R. Shi *et al.*, Astron. Astrophys. **465**, 587 (2007)

[8] W. Aoki *et al.*, Astrophys. J. **698**, 1803 (2009), arXiv: 0904.1448

[9] A. Coc *et al.*, Astrophys. J. **744**, 158 (2012), arXiv: 1107.1117

[10] R. H. Cyburt, B. D. Fields and K. A. Olive, JCAP **11**, 012 (2008), arXiv: 0808.2818

[11] F. Hammache *et al.*, Phys. Rev. C **82**, 065803 (2010), arXiv: 1011.6179

[12] O. Richard, G. Michaud and J. Richer, Astrophys. J. **619**, 538 (2005), arXiv: astro-ph/0409672

[13] A. J. Korn *et al.*, Nature **442**, 657 (2006), arXiv: astro-ph/0608201

[14] M. Spite and F. Spite, in *Light elements in the Universe*, Proceedings of the *IAU Symposium* **268**, 201 (2010), arXiv: 1002.1004

[15] V. F. Dmitriev, V. V. Flambaum and J. K. Webb, Phys. Rev. D **69**, 063506 (2004), arXiv: astro-ph/0310892

[16] A. Coc *et al.*, Phys. Rev. D **76**, 023511 (2007), arXiv: astro-ph/0610733
[17] T. Dent, S. Stern and C. Wetterich, Phys. Rev. D 76, 063513 (2007), arXiv: 0705.0696
[18] K. Kohri and F. Takayama, Phys. Rev. D 76, 063507 (2007), arXiv: hep-ph/0605243
[19] K. Hamaguchi et al., Phys. Lett. B 650, 268 (2007), arXiv: hep-ph/0702274
[20] C. Bird, K. Koopmans and M. Pospelov, Phys. Rev. D 78, 083010 (2008), arXiv: hep-ph/0703096
[21] T. Jittoh et al., Phys. Rev. D 76, 125023 (2007), arXiv: 0704.2914
[22] K. Jedamzik, Phys. Rev. D 77, 063524 (2008), arXiv: 0707.2070
[23] J. Pradler and F. D. Steffen, Phys. Lett. B 666, 181 (2008), arXiv: 0710.2213
[24] K. Jedamzik, JCAP 03, 008(2008), arXiv: 0710.5153
[25] M. Kusakabe et al., arXiv: 0711.3858
[26] M. Pospelov, J. Pradler and F. D. Steffen, JCAP 11, 020 (2008), arXiv: 0807.4287
[27] M. Kamimura, Y. Kino and E. Hiyama, Prog. Theor. Phys. 121, 1059 (2009), arXiv: 0809.4772
[28] M. Kawasaki and M. Kusakabe, Phys. Rev. D 83, 055011 (2011), arXiv: 1012.0435
[29] J. R. Ellis, K. A. Olive and E. Vangioni, Phys. Lett. B 619, 30 (2005), arXiv: astro-ph/0503023
[30] K. Jedamzik, Phys. Rev. D 70, 063524 (2004), arXiv: astro-ph/0402344
[31] M. Kawasaki, K. Kohri and T. Moroi, Phys. Lett. B 625, 7 (2005), arXiv: astro-ph/0402490
[32] M. Kawasaki, K. Kohri and T. Moroi, Phys. Rev. D 71, 083502 (2005), arXiv: astro-ph/0408426
[33] K. Jedamzik, Phys. Rev. D 74, 103509 (2006), arXiv: hep-ph/0604251
[34] R. H. Cyburt et al., JCAP 11, 014 (2006), arXiv: astro-ph/0608562
[35] R. H. Cyburt et al., JCAP 10, 021 (2009), arXiv: astro-ph/0907.5003
[36] V. N. Tsytovich, Theory of Turbulent Plasma, Consultants Bureau, New York and London (1977)
[37] A. Brandenburg, K. Enqvist and P. Olesen, Phys. Rev. D 54, 1291 (1996), arXiv: astro-ph/9602031
[38] V. T. Voronchev, Y. Nakao and M. Nakamura, Astrophys. J. 725, 242 (2010)
[39] D. T. Son, Phys. Rev. D 59, 063008 (1999), arXiv: hep-ph/9803412
[40] V. T. Voronchev, Y. Nakao and M. Nakamura, JCAP 05, 010 (2008)
[41] M. Kusakabe, T. Kajino and G. J. Mathews, Phys. Rev. D 74, 023526 (2006), arXiv: astro-ph/0605255
[42] M. Kusakabe et al., Phys. Rev. D 79, 123513 (2009), arXiv: 0806.4040
[43] K. Mannheim and R. Schlickeiser, Astron. Astrophys. 286, 983 (1994), arXiv: astro-ph/9402042; A. W. Strong and I. V. Moskalenko, Astrophy. J. 509, 212 (1998), arXiv: astro-ph/9807150
[44] http://www.nndc.bnl.gov/qcalc/
[45] F. Iocco et al., DSF-20/2008, FERMILAB-PUB-08-216-A, IFIC/08-37, Phys. Rept. 472, 1 (2009), arXiv: 0809.0631
[46] LUNA collaboration, C. Casella et al., Nucl. Phys. A 706, 203, (2002); G. M. Griffiths, M. Lal and C. D. Scarfe, Can. J. Phys. 41, 724, (1963); G. M. Griffiths, E.A. Larson and L. P. Robertson, Can. J. Phys. 40, 402, (1962)
[47] A. Krauss et al., Nucl. Phys. A 465, 150, (1987); W. Gruebler et al., Nucl. Phys. A 369, 381, (1981); N. Ying et al., Nucl. Phys. A 206, 481, (1973)
[48] D. S. Leonard et al., Phys. Rev. C 73, 045801, (2006);
A. S. Belov, V. E. Kusik and Y. V. Ryabov, Nuovo Cimento A 103, 1647, (1990);
FIRST RESEARCH GROUP, FIRST RESEARCH DIVISION, High Energ. Phys. Nuc. 9, 723, (1985) (in Chinese)
R. L. Schulte et al., Nucl. Phys. A 192, 609, (1972);
M. D. Goldberg and J. M. Le Blanc, Phys. Rev. 119, 1992, (1960)

[49] E. Magiera et al., Nucl. Phys. A 246, 413, (1975);
S. J. Bame and J. E. Perry, Phys. Rev. 107, 1616, (1957);
W. B. Arnold et al., Phys. Rev. 93, 483, (1954)

[50] P. Mohr et al., Phys. Rev. C 50, 1543, (1994);
R. G. H. Robertson et al., Phys. Rev. Lett. 47, 1867, (1981)

[51] H. D. Holmgren and R. Johnston, Phys. Rev. 113, 1556, (1959)

[52] J. Szabó et al., in Proceedings of the International Conference on Nuclear Data for Science and Technology, Antwerp Belgium (1982), pg. 956;
A. J. Elwyn et al., Phys. Rev. C 20, 1984, (1979);
C. R. Gould et al., Nucl. Sci. Eng. 55, 267, (1974);
W. Gemeinhardt D. Kamke and C. von Rhôneck, Z. Phys. 197, 58, (1966)

[53] O. Fiedler and P. Kunze, Nucl. Phys. A 96, 513, (1967);

[54] M. Spraker et al., Phys. Rev. C 61, 015802, (2000);
C. Rolfs and R. W. Kavanagh, Nucl. Phys. A 455, 179, (1986);
G. S. Mani et al., Nucl. Phys. 60, 588, (1964)

[55] S. N. Abramovich et al., Vop. At. Nauki i Tekhn., Ser. Yadernye Konstanty, textbf1984, 17, (1984);
K. K. Sekharan, in Proceedings of the International Specialists Symposium on Neutron Standards and Applications, Gaithersburg U.S.A. (1997), pg. 234;
S. D. Schery et al., Nucl. Instrum. Methods 147, 399, (1977)

[56] J. H. Gibbons and R. Macklin, Phys. Rev. 114, 571, (1959)

[57] R. L. Macklin and H. E. Banta, Phys. Rev. 97, 753, (1955)
A Classification of Exothermic Reactions

Exothermic reactions where BBNCRs involve are listed in two tables. Table 5 shows SBBN reactions which are included in the Wagoner code and table 6 shows reactions besides those.
Table 5: Exothermic reactions – Part I

Process	Effect
H(n,γ)D	produce D, but not important, for n is too little
D(n,γ)T	destroy D, but not important, for n is too little
D(p,γ)^3He	destroy D, see table 2
D(d,n)^3He	destroy D, see table 2
D(d,p)^3T	destroy D, see table 2
T(p,γ)^4He	destroy T^5
T(d,n)^4He	destroy D, see table 2; destroy T, see the footnote
^3He(d,p)^4He	destroy D, but less important than D(p,γ)^3He;
	destroy ^3He, see the footnote
^4He(d,γ)^6Li	produce ^6Li, see table 2
^4He(t,γ)^7Li	produce ^7Li, see table 2
^6Li(p,γ)^7Be	destroy ^6Li, but less important than ^6Li(p,α)^3He, for the electromagnetic cross section is smaller than the strong one
^6Li(p,α)^3He	destroy ^6Li, see table 2
^7Li(p,α)^4He	destroy ^7Li, see table 2
^7Li(d,n)^2^4He	destroy ^7Li, but less important than ^7Li(p,α)^4He
^7Be(d,p)^2^4He	destroy ^7Be, but less important
^7Be(p,γ)^8^B	destroy ^7Be, but less important, for the electromagnetic cross section

Table 6: Exothermic reactions – Part II

Process	Effect
D(d,γ)^4He	destroy D, but less important than D(d,p)^3T or
	D(d,n)^3He, for the electromagnetic cross section
T(t,2n)^4He	destroy T, but change little compared to the SBBN situation
T(t,γ)^6He	produce ^6Li, see Section 4
^3He(t,γ)^6Li	produce ^6Li, see Section 4
^3He(t,d)^4He	produce D, but change little compared to the SBBN situation
^3He(t,np)^4He	destroy T and ^3He, but change little compared to the SBBN situation

To be continued...
Process	Effect
$^6\text{Li}(d,\alpha)^4\text{He}$	destroy ^6Li, but less important
$^6\text{Li}(d,p)^7\text{Li}$	destroy ^6Li, but less important
$^6\text{Li}(d,n)^7\text{Be}$	destroy ^6Li, but less important
$^6\text{Li}(d,pt)^4\text{He}$	destroy ^6Li, but less important
$^6\text{Li}(d,n^3\text{He})^4\text{He}$	destroy ^6Li, but less important
$^6\text{Li}(t,\gamma)^9\text{Be}$	destroy ^6Li, but less important; produce ^9Be, but less important than $^7\text{Li}(t,n)^9\text{Be}$, for the electromagnetic cross section
$^6\text{Li}(t,n)^2^4\text{He}$	destroy ^6Li, but less important
$^6\text{Li}(t,d)^7\text{Li}$	destroy ^6Li, but less important
$^6\text{Li}(t,p)^8\text{Li}$	destroy ^6Li, but less important
$^7\text{Li}(d,\gamma)^9\text{Be}$	produce ^9Be, but less important than $^7\text{Li}(t,n)^9\text{Be}$, for the electromagnetic cross section
$^7\text{Li}(t,\gamma)^{10}\text{Be}$	produce ^{10}B, (^{10}Be decays to ^{10}B) but less important than $^7\text{Be}(\alpha,p)^{10}\text{B}$
$^7\text{Li}(t,n)^9\text{Be}$	produce ^9Be, maybe important, constraints from observations$[69]$
$^7\text{Li}(t,\alpha)^6\text{He}$	produce ^6Li, but less important than $^6\text{T}(t,\gamma)^6\text{He}$ or $^3\text{He}(t,\gamma)^6\text{Li}$
$^7\text{Li}(t,2n)^2^4\text{He}$	destroy ^7Li, but less important
$^7\text{Be}(t,\gamma)^{10}\text{B}$	produce ^{10}B, but less important than $^7\text{Be}(\alpha,p)^{10}\text{B}$
$^7\text{Be}(t,\alpha)^6\text{Li}$	produce ^6Li, but less important than $^6\text{T}(t,\gamma)^6\text{He}$ or $^3\text{He}(t,\gamma)^6\text{Li}$
$^7\text{Be}(t,d)^2^4\text{He}$	destroy ^7Be, but less important
$^7\text{Be}(t,p)^9\text{Be}$	produce ^9Be, maybe important, constraints from observations$[69]$
$^7\text{Be}(t,np)^2^4\text{He}$	destroy ^7Be, but less important
$^7\text{Be}(t,^3\text{He})^7\text{Li}$	transformation between ^7Li and ^7Be, but less important than $^7\text{Li}(p,n)^7\text{Be}$

B Cross Sections and Details of Computation Scheme

Cross sections of the reactions included in our computation are shown in figure 10-21. The possible errors here can be accommodated by changing the amount of BBNCRs, namely varying the free parameter ϵ.

Cross sections below the first available point from the experiment is set to zero, and above the last available point the cross sections are set to be...
Among the experimental points, cross sections are interpolated simply linearly. However for \(D(p, \gamma)^3\text{He} \), \(^7\text{Li}(p, \alpha)^4\text{He} \), \(^6\text{Li}(p, \alpha)^3\text{He} \) and \(T(d, n)^4\text{He} \), the cross sections are interpolated double-logarithmic linearly, in order to make them more smooth.

The integral limit over thermal spectrum is not infinite. Instead we use \(0.001T \) as the lower limit and \(8T \) as the upper limit, where \(T \) is the Universe temperature. Integration is carried out in six-point Gaussian scheme.
Figure 10: Cross sections of D(p, γ)³He

Figure 11: Cross sections of D(d, p)T
Figure 12: Cross sections of D(d, n)^3He

Figure 13: Cross sections of T(d, n)^4He
Figure 14: Cross sections of $^4\text{He}(d, \gamma)^6\text{Li}$

Figure 15: Cross sections of $^4\text{He}(t, \gamma)^7\text{Li}$
Figure 16: Cross sections of $^6\text{Li}(p,\alpha)^3\text{He}$

Figure 17: Cross sections of $^7\text{Li}(p,\alpha)^4\text{He}$
Figure 18: Cross sections of $^7\text{Li}(p, n)^7\text{Be}$

Figure 19: Cross sections of D(p, n)2H
Figure 20: Cross sections of $^7\text{Li}(d,t)^6\text{Li}$

Figure 21: Cross sections of $^7\text{Be}(d,^3\text{He})^6\text{Li}$