PODOCYTE PATHOLOGY AND NEPHROPATHY – SPHINGOLIPIDS IN GLOMERULAR DISEASES

Sandra Merscher¹, Alessia Fornoni¹

¹Peggy and Harold Katz Family Drug Discovery Center and Division of Nephrology, Department of Medicine, University of Miami, Miami, FL, USA

ABSTRACT

Sphingolipids are components of the lipid rafts in plasma membranes, which are important for proper function of podocytes, a key element of the glomerular filtration barrier. Research revealed an essential role of sphingolipids and sphingolipid metabolites in glomerular disorders of genetic and non-genetic origin. The discovery that glucocerebrosides accumulate in Gaucher disease in glomerular cells and are associated with clinical proteinuria initiated intensive research into the function of other sphingolipids in glomerular disorders. The accumulation of sphingolipids in other genetic diseases including Tay–Sachs, Sandhoff, Fabry, hereditary inclusion body myopathy 2, Niemann–Pick, and nephrotic syndrome of the Finnish type and its implications with respect to glomerular pathology will be discussed. Similarly, sphingolipid accumulation occurs in glomerular diseases of non-genetic origin including diabetic kidney disease (DKD), HIV-associated nephropathy, focal segmental glomerulosclerosis (FSGS), and lupus nephritis. Sphingomyelin metabolites, such as ceramide, sphingosine, and sphingosine-1-phosphate have also gained tremendous interest. We recently described that sphingomyelin phosphodiesterase acid-like 3b (SMPDL3b) is expressed in podocytes where it modulates acid sphingomyelinase activity and acts as a master modulator of danger signaling. Decreased SMPDL3b expression in post-reperfusion kidney biopsies from transplant recipients with idiopathic FSGS correlates with the recurrence of proteinuria in patients and in experimental models of xenotransplantation. Increased SMPDL3b expression is associated with DKD. The consequences of differential SMPDL3b expression in podocytes in these diseases with respect to their pathogenesis will be discussed. Finally, the role of sphingolipids in the formation of lipid rafts in podocytes and their contribution to the maintenance of a functional slit diaphragm in the glomerulus will be discussed.

Key words: sphingolipid, podocyte, kidney disease, glomerular disease, S1P, ASMase, SMPDL3b, ceramide.
Сфинголипиды, вернее сфингомиелин, сереброзид и серебросульфатид, впервые описал в 1884 году Johann L.W. Thudichum, который назвал их так из-за загадочных («сфинксо-подобных») свойств [1]. Они являются важными компонентами липидного слоя плазматических мембран клеток млекопитающих и, таким образом, вносят свой вклад в должное функционирование клеток. В почках функционирование и жизнедеятельность основных клеточных компонентов гломерулярного фильтрационного барьера, т.е. подоцитов, в значительной степени зависят от целостности липидного слоя. Подоциты являются дифференцированными клетками почечных клубочков, состоящих из тела клетки, больших отростков и ножковых отростков (НО). Ножковые отростки подоцитов связаны с клубочковой базальной мембраной через их актиновый цитоскелет. Отростки соседних подоцитов образуют характерную переплетающуюся структуру с фильтрационной щелью между ними. Последняя перекрывается щелевой диафрагмой (ЩД), которая вместе с базальной мембраной клубочков и фенестрированным эндотелием играет важную роль в избирательной проницаемости фильтрующего барьера клубочков [2–4]. Целостность этого фильтрационного барьера необходима для предотвращения потери белка с мочой (протеинурии), а мутации генов, кодирующих белки ЩД, вызывают нефропатии, ассоциированные с протеинурией [5–9]. Исследования последних двух десятилетий показали важную роль сфинголипидов при патологии клубочков с участием подоцитов.

Этот обзор будет посвящен различным видам сфинголипидов и их метаболитов, которые вовлечены в патогенез сфинголипидоза генетического и негенетического происхождения с участием подоцитов. Мы также обсудим сигналлинг сфинголипидов в подоцитах и их влияние на цитоскелет.

Биология сфинголипидов

Сфинголипиды представляют собой различные классы липидов с разной степенью гидрофобных и гидрофильных свойств. Гидрофобная часть сфинголипидов состоит из длинной цепи сфингозинового основания, обычно с 18 атомами углерода, как сфингозин, который связан с жирной кислотой с помощью амидной связи. Гидрофильные отростки в самом простом варианте, в случае сереброзида, представлен гидроксиловой группой. Состав жирных кислот может варьировать, но пальмитиновая (C16:0) и стеариновая (C18:0) чаще всего преобладают. Более сложные сфинголипиды имеют в своем составе остатки сахаров (гликосфинголипиды) и в виде боковых цепей фосфаты (фосфосфинголипиды) (рис. 1).

Гликосфинголипиды, такие как GM1 и фосфосфинголипиды, такие как сфингомиелин, обычно встречаются у зукариотов, некоторых прокарийотов и вирусов в качестве компонентов плазматических мембран и мембран органелл, таких как лизосомы, эндосомы, эндоцитозматический ретикулум (ЭР) и др. Пластичность плазматической мембраны строго регулируется упорядоченным расположением холестерина между молекулами сфинголипидов, главным образом, сфингомиелина (СМ), и, таким образом, сфинголипиды выполняют важную структурную функцию. Сфинголипиды локализованы в наружном слое плазматической мембраны, где они расположены асимметрично. Липидные слои или связанные со слоями кавеолы – это богатые сфингомиелином микродомены мембраны, которые также богаты холестерином и мембраноассоциированными белками. Формирование липидных слоев имеет решающее значение для функции клеток, протеин-протеин взаимодействий и передачи сигнала. Например, локальная на плазменной мембране конверсия СМ в церамид с помощью сфингомиелиназы (СМаза) будет оказывать непосредственное влияние на биофизические свойства мембраны и функцию клетки. Так, наложение церамида приведет к перемещению холестерина из плазматической мембраны и, таким образом, к изменению липидного слоя и передачи сигналов [10–12]. Кроме того, снижение клеточного содержания холестерина при применении истощающих холестерин средств, таких как бета-циклодекстрин, метил-бета-циклодекстрин или 2-гидрокси-пропилбета-циклодекстрин, может приводить к прерыванию передачи клеточных сигналов, зависимых от липидного слоя, и даже к гибели клеток.

В последние годы стало ясно, что, помимо того, что метаболиты сфинголипидов, таких как керамиды, сфингозин, сфингозин-1-фосфат (С1Ф) и другие, являются составной частью мембран и выполняют структурную функцию, они играют также важную роль как вторичные посредники во многих биологических процессах, включая рост клеток [13], дифференцировку, миграцию и апоптоз [14]. Показано, что комплексы сфинголипидов могут взаимодействовать с рецепторами факторов роста, внеклеточным матриксом и соседними клетками [15]. Кроме того, исследования на мутантах дрожжей показали, что сфинголипиды играют важную роль в клеточных стрессовых реакциях, например, дрожжи с мутантными сфинголипидами росли нормально в обычных условиях культивирования,
Рис. 1. Структура сфинголипидов. Гидрофобный участок сфинголипидов представлен длинным сфингозиновым основанием, состоящим обычно из 18 атомов углерода, как у сфингозина, который связан с ацильной группой жирной кислоты посредством амидной связи (R2). В простейшем варианте гидрофильная область (R1) представлена гидроксильной группой как в случае церамида.

Рис. 2. Метаболизм сфинголипидов. Церамид — центральное звено метаболического пути сфинголипидов и может быть синтезирован de novo из L-серина и пальмитоил-КоА (зеленый цвет) через гидролиз сфингомиелина (желтый цвет) или посредством гидролиза гликосфинголипидов и сульфатитов (сиреневый). Церамид также может быть синтезирован из сфингомиелина с помощью сфингомиелиназы или из церамид-1-фосфата посредством церамид-1-фосфатфосфатазы. И наконец, церамид далее может быть катаболизирован (голубой цвет) до сфингозина и сфингозин-1-фосфата, биологически активного метаболита, и окончательно до этаноламин-1-фосфата и С16-альдегида жирных кислот. SPT — серинпальмитолтрансфераза; 3-KSR — 3-кетосфинганин редуктаза; CS — церамид синтетаза; DES — дигидроцерамид десатураза; SMase — сфингомиелиназа; SMS — сфингомиелинсинтетаза; PC — фосфатидилхолин; DAG — диацилглицерол; C1PPase — церамид-1-фосфатфосфатаза; CK — церамид киназа; CDase — церамидаза; SK — сфингозин киназа; S1PP — сфингозин-1-фосфатфосфатаза; GCS — гликозилцерамид синтаза; GCase — гликозилцерамидаза; GalCS — галактозилцерамид синтаза; GaIC — галактозилцерамидаза; GaIC — галактозилцерамидаза.
но были неспособны выжить при стрессовых воз действиях [16].

Церамид представляет собой центральное звено метаболического пути сфинголипидов [17]. Церамид может быть синтезирован de novo начиная с конденсации L-серина и пальмитоил-КоА по средством серин-пальмитоил трансферазы (СПТ) с образованием 3-кетодигидросфинганина. Послед ний далее восстанавливается 3-кетосфинганинредуктазой до сфинганина, который, в свою оче редь, N-ацилируется церамидом синтетазой (ЦС) с образованием дигидроцерамида. В конечном итоге, дигидроцерамид преобразуется в церамид с помо щью фермента дигидроцерамид десатуразы. Цера мид также может быть получен путем гидролиза из сфингомиеллина (СМ) СМазой с образованием церамида и фосфохолина. Для биосинтеза сфинголипи дов керамиды могут быть преобразованы в сфингомиelin. Эта реакция катализируется сфинго миелин синтетазой (СМС), ферментом, который переносит концевую группу фосфохолина из фос фатидилхолина (ФХ) на церамид, одновременно образуя диацилглицерол (ДАГ). Наконец, церамид может быть получен путем распада гликосфинго липидов и галактозцерамида до дигидроцерами да и последующей гидролизацией (рис. 2).

После образования церамида он может накапли ваться в клетке или может быть метаболизирован далее. Фосфорилирование церамида киназой приведет к образованию церамид-1-фосфата, тогда как деацилирование нейтральной или кислой це рамидазами приведет к образованию сфингозина, который может быть фосфорилирован с помощью сфингозин киназы до С1Ф. Конечным продук том кatabолического пути церамида является этаноламин-1-фосфат, который генерируется из С1Ф-лиазой из С1Ф.

Сфинголипиды при гломерулярных болезнях

В последние десятилетие стало очевидно, что существует связь между накоплением сфинголипидов в почках и патологией клубочков. Накопление сфинголипидов в форме гликосфинголипидов и сфингомиеллина в клетках клубочков, таких как подоциты, наблюдается также при отсутствии генетических мутаций и ассоциируется с развитием и прогрессированием болезней почек, предполагает существование "приобретенных" дефектов накопления сфинголипидов.

Большинство ГСЛ мlekопитающих синтезируются из глюкозилцерамида (см. рис. 2) и, прежде всего, присутствуют в наружном слое плазматической мембраны, где они выполняют важные функции в опосредовании межклеточных взаимодействий и модулировании активности близлежащих белков. Они, как правило, неравномерно распределены в плазматической мембране, но находятся в кластере липидного слоя [18, 19]. Ганглиозиды представляют собой кислотосодержащие гликосфинголипиды кислой кислоты, в которой одна или более N-ацильнейраминовая кислота (N-АНК) связана с сахаридной группой и являются необходимыми компонентами плазматических мембран [20]. Ганглиозиды с одной N-АНК включают GM1, GM2, GM3, англиозидами с двумя N-АНК являются GD1a, GD1b, GD2, GD3, и англиозиды GT1b и GQ1 характеризуются тремя и четырьмя N-АНК соответственно. Ганглиозиды впервые были обнаружены в нервной ткани, но также присутствуют в большом количестве в почках [21]. GM1, GM2, GM3, GD1a, GD1b, GD2, GD3, GT1a и GT1b являются англиозидами, присутствующими в нормальных клубочках крыс [22–24]. GM3, GD3 и дисиалосиллактосилцерамид/О-ацител GD3) являются наиболее распространенными англиозидами, присутствующими в почках и 9-O-ацител GD3 является подоцет специфическим англиозидом [25, 26].

Накопление сфинголипидов и генетически обусловленные гломерулярные болезни

Сфинголипидозы представляют собой наследственные дефекты метаболизма сфинголипидов, приводящие к аккумуляции избыточных гликосфинголипидов и сфосфосфинголипидов. Важно отметить, что различные метаболиты преимущественно накапливаются в клетках различных типов, таким образом приводя к крайне вариабельной клинико-патологической картине.

Болезнь Гоше тип 1 (OMIM # 230800) является наиболее распространенной болезнью накопления ГСЛ и характеризуется накоплением глюкозибражида в пораженных тканях и клетках (главным образом в эритроцитах, печени и селезенке) Болезнь Гоше имеет аутосомно-рецессивный тип наследования и у подавляющего большинства пациентов вызвана мутациями гена кислой бета глюкозидазы 1 (GBA1) хромосомы 1q22 (таблица). Этот ген кодирует фермент, который расщепляет бета-глюкозидные связи глюкокерамида, и мутации в этом гене приводят к накоплению. Тем не
направленная инактивация генов обнаружено в почках [34, 35]. В отличие от людей, ном в головном мозге и печени, но также было от друга. Накопление GM2 происходит в основ- тканях и являются клинически неотличимыми друг
накоплением ганглиозидов GM2 в пораженных (см. таблицу). Оба расстройства характеризуются (сапонин, PSAP). Сапонины стимулируют де-
градацию глюкофосфинголипидов лизосомальными ферментами. Дефекты сапонинов ассоциированы с накоплением, в то время как выключение
модели болезни Фабри, показано уменьшение уров-
я глюкоцерамида и церамидов в плазме, печени,
ном в головном мозге и мембранных цитоплазматических
тельцах в нейронах при отсутствии неврологи-
циях в пути деградации ганглиозидов у человека и мышей [36].

Болезнь Фабри (OMIM # 301500) вызывается мутациями в гене, кодирующим альфа-галактозидазу A (GLA) на хромосоме Xq22, что приводит к си-
стемному накоплению глоботриаослицерамида (GB3) (см. таблицу) и связанных с ним глюкофосфинголипидов в жидкостях организма и пораженных

болезнь Фабри и, как показано, уменьшает тяжесть
почечных осложнений, замедляет прогрессирова-
ние патологии почек и предотвращает развитие
почечной недостаточности у пациентов с болезнью
Фабри [44, 46]. Исследования, проведенные у мы-
шей с инактивированным геном α-GaLA, мышиной
модели болезни Фабри, показали уменьшение уров-
на глюкоцерамида и церамидов в плазме, печени,
селезенке, почках и сердце, возможно, вследствие
накопления GB3. Тот факт, что ферментная за-
местительная терапия в этой модели нормализует
уровень глукокерамида, возможно, посредством
увеличения деградации Gb3, также подтверждает
гипотезу, что накопление Gb3 способствует фе-
нотип, наблюдаемый у этих мышей [46]. Таким
образом, направленность рекомбинантного человеческого α-GaLA является основным средством для лечения пациентов с бо-
лезнью Фабри и, как показано, уменьшает тяжесть
почечных осложнений, замедляет прогрессирова-
ние патологии почек и предотвращает развитие
почечной недостаточности у пациентов с болезнью
Фабри [44, 46]. Исследования, проведенные у мы-
шей с инактивированным геном α-GaLA, мышиной
модели болезни Фабри, показали уменьшение уров-
на глюкоцерамида и церамидов в плазме, печени,
селезенке, почках и сердце, возможно, вследствие
накопления GB3. Тот факт, что ферментная за-
местительная терапия в этой модели нормализует
уровень глукокерамида, возможно, посредством
увеличения деградации Gb3, также подтверждает
гипотезу, что накопление Gb3 способствует фе-
нотип, наблюдаемый у этих мышей [46]. Таким
образом, направленность рекомбинантного α-GaLA
требует экспрессии внутриклеточных рецепторов,
метагана, сортилина, манноза-6-фосфат-рецептора
(M6PR), которые экспрессируются в подоцитах
клубочков человека [47]. Интересно, что ленти-
virусный нокдаун α-GaLA в подоцитах человека
привел к внутриклеточному накоплению Gb3, что
было ассоциировано с потерей активности mTOR-
киназы и нарушением регуляции аутофагии, пред-
полагая связь между аутофагией и клубочковым повреждением при болезни Фабри [48].

HIBM2) (OMIM # 600737) является генетическим заболеванием с аутосомно-рецессивным типом наследования, которое вызвано мутациями в гене, кодирующем UDP-ацетилглюкозамиzin 2-эпимеразы / N-ацетилманиназиназы киназы (GNE) на хромосоме 8p13 (см. таблицу). GNE является ключевым ферментом биосинтеза синовальной кислоты, который катализирует первые два этапа в биосинтезе NANA, которые являются основными компонентами ганглиозидов [49]. Болезнь является прогрессирующим нервно-мышечным расстройством, но патология почек у пациентов с HIBM2 зарегистрированы не были. Интересно, что мыши, имеющие гомозиготную мутацию M712T Gne/Mnk, умерли в перинальном периоде без признаков миопатии, но характеризовались почечной дисфункцией, которая сопровождалась массивной или моторных дисфункций, но имеется почечная нейролизис. Болезнь была связана с гломерулосклерозом и аномальной морфологией с депозицией мезангиального матрикса, что приводило к увеличению клубочков албуминурии. Гистологически в почках мутант-дисфункция, которая сопровождалась массивной миопатией не отмечались очевидных миопатий [50]. Точно так же у мышей с точечной мутацией V572L в области домена активности GNE-эпимеразы [50]. Точно так же у мышей с точечной мутацией V572L в области домена активности GNE-эпимеразы [50].

Болезнь Ниманна–Пика является генетическим заболеванием с аутосомно-рецессивным наследованием, что вызвано мутациями в гене NPC1 на хромосоме 14q24 (OMIM # 256300) и в результате мутации в гене сфингомиелинифосфодиэстеразы-1 (SMPD1) на хромосоме 11p15 и 14q24 (OMIM # 607616) и в результате мутаций в гене сфингомиелинифосфодиэстеразы-1 (SMPD1) на хромосоме 11p15 и 14q24 (OMIM # 607616). Мутации в этих генах приводят к накоплению липидов в виде холестерина (NPC1- и NPC2-мутации) и сфингомиелина (мутации SMPD1) (см. таблицу). Дефицит кислой сфингомиелинизы (ACMazy) при болезни Ниманна–Пика вследствие мутаций в гене SMPD1 приводит к накоплению сфингомиелина в пораженных тканях, включая почки. В костном мозге, печени и почках пациентов с болезнью Ниманна–Пика и у мышей с выключенным геном SMPD1 описано присутствие нагруженных липидами макрофагов, напоминающих пенистые клетки [53, 54]. Ферментная заместительная терапия с использованием рекомбинантного человеческого ASM у мышей с выключенным геном SMPD1 приводила к значительному улучшению в органах ретикулоэндотелиальной системы, однако неврологический дефicit сохранялся [55].

Нефротический синдром финского типа (OMIM # 256300) является генетическим заболеванием, вызванным гомозиготной или компаунд-гетерозиготной мутациями в гене NPHS1, кодирующим белок нефрин ЦД (см. таблицу). Нефротический синдром финского типа встречается в сочетании с отложениями дисиалоганглиозида О-ацил ГД3 [56]. Накопление галактосильноцерамидов, в основном, сульфатидов, было также описано при нефротическом синдроме негенетически обусловленный, идиопатического происхождения [57]. Тем не менее, остаётся неясным, что же вызывает накопление О-ацил ГД3 при нефротическом синдроме. Представляется, что сапозины не играют важной роли в экспрессии мРНК в поврежденных органах, но важной роль в экспрессии мРНК в поврежденных органах [58]. Тем не менее, остаётся неясным, что же вызывает накопление О-ацил ГД3 при нефротическом синдроме. Представляется, что сапозины не играют важной роли в экспрессии мРНК в поврежденных органах, но важной роль в экспрессии мРНК в поврежденных органах [58].

Болезнь Фабра, или липопанефроэозис Фабра (OMIM # 228000), является генетическим заболеванием с аутосомно-рецессивным наследованием, вызванным мутациями в гене, кодирующим церамидазу (ASAH1) на хромосоме 8p22, фермент, который отвечает за деградацию церамида до сфингозина и свободных жирных кислот (см. таблицу). Накопление липидов наблюдался в основном в суставах, тканях и центральной нервной системе, но так же и в печени, сердце и почках. Был описан особый фенотип липопанефроэозиса с накоплением церамида в почках [52].
Накопление сфинголипидов при патологии клубочков негенетического происхождения

Диабетическая болезнь почек (ДБП) является наиболее частой причиной терминальной дисфункции почек в США, при этом важной особенностью диабетической болезни почек у пациентов с сахарным диабетом типа 1 и типа 2 является повреждение подоцитов с последующей их потерей (подоцитопении) [65–69]. В плазме пациентов с сахарным диабетом типа 1 и типа 2 также было выявлено повышенное содержание сфинголипидов, таких как гликосфинголипиды [70], сфингозин [73] и сфинганин [72, 73]. В последнее время стало ясно, что внутриклеточное отложение сфинголипидов в подоцитах и других клетках клубочков может участвовать в патогенезе и прогрессировании болезни (см. таблицу).

В ряде исследований проводили изучение влияния стеропозотоции (СТЗ)-индукционного диабета у крыс на внутриклеточное накопление сфинголипидов и его связи с пролиферацией гломе- рулярных клеток и гипертрофии клубочков. После 4 дней индукции диабета в клубочках крыс наблюдалось накопление С1Ф, что ассоциировалось с увеличением церамида и сфингозинкиназы, двух ферментов, участвующих в превращении церамида в С1Ф [74]. В другом исследовании накопление GlcCer и GM3 произошло в почках крыс через 16 дней после СТЗ-индукционного диабета [75], тогда как сниженное содержание GM3 и сиаловой кислоты было обнаружено в клубочках крыс через 15 дней после СТЗ-индукционного диабета [76]. Увеличение образования церамида ведет к снижению экспорсии С1Ф, ключевого ферmenta в пути синтеза церамида (см. рис. 2), что указывает на важную функцию Akt/MTOR-пути в СТЗ-индукционной дебетической болезни почек [77].

Недавно нами было показано, что в клубочках у пациентов с ДБП, в подоцитах человека при воздействии сыворотки от пациента с ДБП и в клубочках мышей с диабетом (db/db) отмечалось увеличение экспорсии SMPDL3b. Так как SMPDL3b представляет собой белок, гомологичный ACMAзы, мы предположили, что SMPDL3b может активировать метаболические пути SM, ведущие к накоплению сфинголипидов, отличных от сфингомиеллина. По- вышенная экспрессия SMPDL3b была ассоциирована с повышенной активностью RhoA и апоптозом, но была предотвращена активацией αVβ3-интегрена посредством его взаимодействия с растворимым рецептором активатора плазминогена урокиназного типа (suPAR) подоцитов человека, культивированных в присутствии сыворотки от пациентов с ДБП и у db/db мышей [78]. Так как известно, что метаболиты сфинголипидов — церамиды, сфингозин и С1Ф аккумулируются в апоптозных клетках, мы определили содержание церамида в корковом веществе почек мышей db/db и обнаружили снижение уровня церамида. Мы сделали вывод, что повышенные уровни SMPDL3b могут привести к увеличению клеточного содержания сфингозина или С1Ф в почках мышей db/db, как это происходит в мезангиальных и тубулярных клетках db/db мышей [79, 80], и адипоцитах ob/ob мышей [81]. Взятые вместе, эти исследования указывают на возможную связь между накоплением сфинголипидов и их метаболитов, которые могут способствовать развитию подоцитопении, наблюдаемой при ДБП. Таким образом, терапия, ориентированная на сфинголипиды и их метаболиты, может представлять собой новую стратегию для лечения пациентов с ДБП.
ПАН у крыс произошло значительное снижение содержания GD3 и GD3 O-ацетил в почках, зависящее от дозы и времени, что предшествовало развитию протеинурии, и указывало на возможную причинную связь [82]. Так как сиалогликопротеины вносят существенный вклад в развитие отрицательного заряда клубочкового фильтрационного барьера, кажется вероятным, что уменьшение GD3 и О-ацетил GD3 способствует уменьшению отрицательного заряда фильтрационного барьера и изменению клубочковой проницаемости, наблюдаемых при ПАН-индуцированной нефропатии [83]. Точно также было показано, что обработка человеческих подоцитов ПАН привела к потере сиаловой кислоты, что сопровождалось увеличением образования анионов супероксида, и этот фенотип был предотвращен добавлением сиаловой кислоты [84].

ВИЧ-ассоциированная нефропатия (ВИЧ-АН) является классической болезнью почек, ассоциированной с ВИЧ инфекцией. ВИЧ-1 инфекция почечных канальцев и подоцитов клубочка приводит к дедифференцировке и пролиферации подоцитов [85, 86]. Поскольку подоциты не экспрессируют ВИЧ-1 рецепторы, было высказано предположение, что проникновение вируса может облегчаться посредством эндоцитоза, осуществляемого с участием липидного слоя [87], что подчеркивает важную роль сфинголипидов в проникновение вируса в клетку-хозяина. Большая часть нашего понимания патогенеза ВИЧ-АН пришла из Tg26 модели трансгенных мышей, в которой экспрессируется gag/Pol-deleted HIV-1 провirus. У трансгенных мышей обнаруживают дедифференциацию и пролиферацию клубочковых эпителиальных клеток клубочков, ассоциированных с протеинурией и почечной недостаточностью. Гистологически в почке обнаруживают фокально-сегментарный гломерулосклероз (ФСГС), напоминающий человеческий вариант ВИЧ-АН [85, 88]. Исследования подоцитов человека в культуре и у трансгенных мышей показали, что стабильная экспрессия Nef было достаточно, чтобы вызвать повышенную пролиферацию и потерю контактного торможения [89—92]. Кроме того, недавние исследования показали тесную связь между ВИЧ-АН и геном APOLI на хромосоме 22 [93] и значительное накопление GB3 в клетках почечного тубулярного эпителия, хотя оно не было найдено в клубочках у

Таблица

Болезнь	OMIM	Мутировавший ген	Хромосомная локализация	Накапливаемый сфинголипид
Болезнь Гоше олиго-ациетилглюкозидаза 1 (GBA1)	1q22	GlcCer		
Болезнь Тей–Сакса Гексозаминадиаза A (HEXA)	15q23	GM2		
Болезнь Сандхоффа Гексозаминадиаза B (HEXB)	5q13	GM2		
Болезнь Фабри Aльфа галактозидаза A (GLA)	Xq22	Gb3, Lyso-Gb3		
Наследственная миопатия с включениями 2	9p13	Гипосиалилирование гликопротеинов		
Болезнь Ниманна–Пика NPC1, NPC2, SMPD1	18q11	Сфингомиелин		
Нефротический синдром финского типа	19q13	O-acetyl-GD3		

Таблица

Таблица накопления сфинголипида в гломерулярных заболеваниях генетического и негенетического происхождения

Болезнь	OMIM	Мутировавший ген	Хромосомная локализация	Накапливаемый сфинголипид
Накопление сфинголипида в гломерулярных заболеваниях генетического происхождения				
Болезнь Гоше олиго-ациетилглюкозидаза 1 (GBA1)	1q22	GlcCer		
Болезнь Тей–Сакса Гексозаминадиаза A (HEXA)	15q23	GM2		
Болезнь Сандхоффа Гексозаминадиаза B (HEXB)	5q13	GM2		
Болезнь Фабри Aльфа галактозидаза A (GLA)	Xq22	Gb3, Lyso-Gb3		
Наследственная миопатия с включениями 2	9p13	Гипосиалилирование гликопротеинов		
Болезнь Ниманна–Пика NPC1, NPC2, SMPD1	18q11	Сфингомиелин		
Нефротический синдром финского типа	19q13	O-acetyl-GD3		

Таблица

Болезнь	OMIM	Мутировавший ген	Хромосомная локализация	Накапливаемый сфинголипид
Накопление сфинголипида в гломерулярных заболеваниях негенетического происхождения				
Диабетическая болезнь почек GlcCer, GM3, S1P, сфингозин?				
Пуринимин-аминоуксусил (ПАН) индуцированная нефропатия				
ВИЧ-ассоциированная нефропатия (ВИЧ-АН)				
Фокально-сегментарный гломерулосклероз (ФСГС) Gb3				
Острое ишемическое реперфузное повреждение?				

Болезнь	OMIM	Мутировавший ген	Хромосомная локализация	Накапливаемый сфинголипид
Болезнь Гоше олиго-ациетилглюкозидаза 1 (GBA1)	1q22	GlcCer		
Болезнь Тей–Сакса Гексозаминадиаза A (HEXA)	15q23	GM2		
Болезнь Сандхоффа Гексозаминадиаза B (HEXB)	5q13	GM2		
Болезнь Фабри Aльфа галактозидаза A (GLA)	Xq22	Gb3, Lyso-Gb3		
Наследственная миопатия с включениями 2	9p13	Гипосиалилирование гликопротеинов		
Болезнь Ниманна–Пика NPC1, NPC2, SMPD1	18q11	Сфингомиелин		
Нефротический синдром финского типа	19q13	O-acetyl-GD3		
ВИЧ трансгенных мышей [94] (см. таблицу), что указывает на возможную роль (сфинго-)липидного метаболизма при ВИЧ-АН.

ФСГС является болезнью клубочков, которая характеризуется протеинурией и прогрессированием до терминальной стадии дисфункции почек. ФСГС является самой частой причиной нефротического синдрома и наиболее частой причиной первичных глюмерулопатий у взрослых [95]. Было показано, что некоторые мутации генов, кодирующих белки, экспрессируемые подоцитами, вызывают ФСГС. В этом параграфе мы сосредоточимся на негенетических формах ФСГС, главным образом, на рецидивировании ФСГС после трансплантации, которое встречается примерно у одной трети пациентов [96–98], и на первичных (идиопатических) формах ФСГС. Недавно нами было сделано сообщение о важной роли гена сфингомиелин-подобной фосфо-диэстеразы (SMPDL3b) при ФСГС. При изучении 41 пациента с высоким риском рецидивирующего ФСГС мы показали, что количество SMPDL3b-положительных подоцитов в постреперфузионной биопсии было снижено у пациентов, у которых впоследствии развился рефрикат ФСГС. Как уже упоминалось выше, SMPDL3b представляет собой белок, гомологичный АСМазе, и нами было сделано предположение, что снижение экспрессии SMPDL3b может вести к снижению активности АСМазы и накоплению сфингомиелина, вовлеченного в патогенез ФСГС (см. таблицу). В самом деле мы смогли показать, что в подоцитах человека, обработанных сывороткой больных с ФСГС, отмечалось уменьшение экспрессии SMPDL3b в подоцитах в ассоциации с сохранением жизнеспособности клеток [100]. Наконец, было показано, что секвестрация липидов плазменных мембран циклодекстрином предотвращает suPAR-opосредованную активацию αVβ3-интегрина в подоцитах [101], что может быть причиной прогрессирования при ФСГС. Основываясь на данных, что циркулирующий уровень suPAR повышен у пациентов с ФСГС, а также имеется ассоциация с пониженной экспрессией SMPDL3b и suPAR-зависимой активацией αVβ3-интегрина в подоцитах [78, 99, 101, 102], в то время как циклодекстрин защищает подоциты от повреждения при ДБП, при которой экспрессия SMPDL3b в подоцитах увеличена [78, 103], мы исследовали, зависит ли фенотип повреждения подоцитов при этих двух заболеваниях почек от экспрессии SMPDL3b. Нами было продемонстрировано, что вопреки тому, что наблюдается при ФСГС, повышенная экспрессия SMPDL3b при ДБП предотвращает активацию αVβ3-интегрина через взаимодействие с suPAR и приводит к повышению активности RhoA, что делает подоциты более подверженными апоптозу [78]. Эти наблюдения позволяют предположить, что SMPDL3b и таким образом сфингомиелин или его катаболиты являются важными модуляторами функции подоцитов при этих двух заболеваниях почек.

Особые аспекты. Фокус на С1Ф и С1Ф рецепторы при заболеваниях почек

Сфингозин-1-фосфат (С1Ф) образуется при фосфорилировании сфингозина с помощью сфингозиновых киназ (SPHK1, SPHK2) в ответ на различные стимулы, включая факторы роста, цитокины, антигены сопряженного с G-белком рецептора, антитела и другие (см. рис. 2). Примерами факторов, которые могут временно увеличить уровни С1Ф, являются ФНОα и другие факторы, как ангиогенный фактор роста, тромбоцитарный фактор роста (PDGF) и
фактор роста эндотелия сосудов (VEGF), которые все вовлечены в патогенез заболеваний клубочков. Сигнальные пути С1Ф управляют важными клеточными процессами, определяющими судьбу клеток. Таким образом, внеклеточные сигнальные пути С1Ф опосредуются через связывание С1Ф с G-белком рецепторов (GPCRs). К настоящему времени идентифицирована семья из пяти GPCRs, называемые С1Ф1 – С1Ф5 [104, 105]. В зависимости от подтипа рецептора, экзогенный С1Ф может связываться и регулировать различные важные клеточные функции, включая выживаемость клеток, реорганизацию цитоскелета, митогенез, дифференцировку клеток, миграцию и апоптоз. В почках рецепторы С1Ф1 (EDG1), С1Ф2 (EDG5), С1Ф3 (EDG3) и С1Ф4 (EDG8) экспрессируются на мезангиальных клетках клубочков [106, 107], тогда как С1Ф1, С1Ф2, С1Ф3, и С1Ф4, но не С1Ф5, как было показано, экспрессируются в клеточной линии иммортализованных мышиных подоцитов [108]. Увеличение синтеза С1Ф, опосредованное сфингозинкиназой, использование С1Ф1-агонистов, таких как FTY720 (неизбирательный агонист С1Ф-рецептора) и SEW2871 (селективные агонисты С1Ф1-рецептора), либо трансгеноз SPHK1, как было показано, оказывают защиту от ишемического-реперфузионного повреждения почек [109–112], которое ассоциируется с повышенной экспрессией церамида [113–115] при ДБП [108] и при различных формах глюмерулонефрита [116–118] (см. таблицу). Кроме того, FTY720 и KRP-203, еще один агонист рецептора С1Ф1, оказались весьма эффективными в предотвращении отторжения трансплантата в до-клинических моделях трансплантации почек [119, 120]. В то время как активация пути С1Ф/С1Ф1-рецептора представляется полезной в контексте болезней почек, предполагается, что чрезмерная активация пути С1Ф/С1Ф2-рецептора в клетках почечных каналцев при ДБП может играть важную роль в активации киназ Rho и фиброза почек [80]. Такой механизм может также объяснить активацию RhoA и повышенный апоптоз в подоцитах при ДБП, как было описано ранее [78]. У больных с волчаночным нефритом (ВН), воспалением почек, вызванном системной красной волчанкой (СКВ), болезнью иммунной системы циркулирующие уровни С1Ф увеличены [121]. Точно также уровни С1Ф и диgidро-С1Ф в сыворотке крови и ткани почек в мышиной модели ВН были повышены, и лечение этих мышей с применением специфического ингибитора SPHK2, ABC294640 уменьшало повреждение почек [122]. Предполагается, что в случае почечных воспалительных заболеваний внеклеточный С1Ф индуцирует экспрессию COX-2 через активацию С1Ф2, затем приводит к активации Gi и p42 / p44 МАРК-зависимых сигнальных путей в мезангиальных клетках почек. Хотя исследования последних двух десятилетий значительно расширили наше понимание роли С1Ф и сигнальных путей рецепторов С1Ф/С1Ф в патогенезе и при лечении болезней почек, необходимо дальнейшее исследования, чтобы получить лучшее и более глубокое понимание их физиологического и патофизиологического значения in vivo. Конечно, ориентирование на С1Ф/С1Ф-рецепторном сигнальном пути может представлять собой новую стратегию для лечения почечных заболеваний.

Особые аспекты. Фокус на актиновый цитоскелет при болезнях почек

Клубочек почки является узкоспециализированной структурой, обеспечивающей селективную ультрафильтрацию плазмы таким образом, что необходиимые белки сохраняются в крови [3]. Подоциты являются эпителиальными клетками клубочка, состоящими из тела клетки, основных отростков и ножковых отростков. Ножковые отростки соседних клеток соединены с помощью 40-мкм широкой внеклеточной структуры, известной как щелевая диафрагма (ЩД) [123, 124]. Повреждение подоцита является важной чертой некоторых болезней почек, в том числе ФСГС и ДБП, при которых, независимо от основного заболевания, происходят перестройка структуры ножковых отростков и сближение фильтрационных щелей и апикального смещения ЩД [3, 125, 126]. ЩД необходима также для контроля динамики актина, ответа на повреждение, эндоцитоза и жизнеспособности клеток. Эти наблюдения позволяют рассматривать актин как общий знаменатель в функции и дисфункции подоцитов [127, 128]. Регуляция актинового цитоскелета подоцита, таким образом, имеет решающее значение для устойчивой функции клубочкового фильтра [129, 130]. Взаимосвязь актинового цитоскелета с ЩД опосредуется несколькими белками подоцитов, таких как CD2AP, нефрин, ZO-1 и подоцин [131–134]. Липидный слой подоцита имеет решающее значение для динамической функциональной организации ЩД. Нефрин частично связан с липидным слоем подоцитов и образует ко-иммунопреципитаты со специфичным для подоцитов 9-О-ацетилированным ганглиозидом. Инъекция антител к 9-О-ацетилированному ганглиозиду вызывает морфологические изменения фильтрационных щелей, напоминающие слияние ножковых отростков подоцитов [135],
дополнительно подчеркивает важность интактности липидных слоев и сфинголипидов в организации ЩД. Другие сфинголипиды, такие как С1Ф, также вовлечены в ремоделирование цитоскелета. Было показано, что С1Ф приводит к быстрой реорганизации цитоскелета, приводящего к формированию стресс-волокон в ЗТЗ фибробластах, что сопровождалось транзиторным фосфорилированием тирозинкиназы фокусной адгезии (КФА) и цитоскелета-ассоциированного белка паксилина в ассоциации с активацией RhoA в ЗТЗ-фибробластах [136]. В мезангиальных почечных клетках был идентифицирован серин/треонин-протеинкиназа LIM-киназа-1 (LIMK-1), которая участвует в регуляции организации цитоскелета в качестве церамид-индукцированного белка [137]. Шигатоксин является бактериальным токсином, который индуцирует внутриклеточные сигналы, что зависит от гликополид-обогащенных мембранных доменов или липидного слоя. Показано, что Шигатоксин – опосредованные внутриклеточные сигналы индуцируют ремоделирование цитоскелета в почечных канальцах эпителиальных клеток карицины [138]. VEGF и его рецепторы, FLK1/KDR и FLT1 являются ключевыми регуляторами ангиогенеза. Тем не менее, в последнее время новая роль FLT1, т.е. растворимой формы FLT, sFLT, была описана в подоцитах, где он связывается с гликосфинголипидами GM3 в липидном слое, способствуя адгезии и быстрой реорганизации актина [139]. Все вместе, эти исследования подчеркивают важную функцию сфинголипидов в формировании липидного слоя в подоцитах, способствуя поддержанию функции ЩД в физиологических условиях.

Заключительные комментарии

Сфинголипиды играют важную роль в модуляции функции подоцита при гломерулярной патологии генетического и негенетического происхождения. Некоторые генетические болезни характеризуются генетическими мутациями в генах, которые кодируют ферменты, участвующие в метаболизме сфинголипидов и характеризуются накоплением сфинголипидов и их метаболитов в клетках клубочков, приводя к патологии клубочков. Таким образом, направленность на метаболизм сфинголипидов при гломерулярных болезнях может оказаться полезным в лечении болезней почек с протеинурией с вовлечением клубочков. Доказано, что ферментная заместительная терапия может замедлять прогрессирование сфинголипид-ассоциированных нарушений генетического происхождения, таких как болезнь Гоше и Фабри. Тем не менее, меньше известно о сфинголипид-ассоциированных нарушениях негенетического происхождения. В то время как ManNAc и ритуксимаб являются перспективными доступными терапевтическими стратегиями для сфинголипид-связанных расстройств негенетического происхождения, еще предстоит разработать дополнительные терапевтические стратегии в отношении специфических белков, таких как SMPDL3b. Так как сфинголипидозы негенетического происхождения представляются более сложными, необходимо завершить дополнительные исследования для того, чтобы выяснить точные механизмы воздействия клеток почек сфинголипидами и их вклад в гломерулярную патологию.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. McIlwain H. The second thudichum lecture. Cerebral isolates and neurochemical discovery. Biochim Soc Trans 1975; (3): 579–590
2. Ravenstadt H, Kriz W, Kretzler M. Cell biology of the glomerular podocyte. Physiol Rev 2003; (83): 253–307
3. Somlo S, Mundel P. Getting a foothold in nephrotic syndrome. Nat Genet 2000; (24): 333–335
4. Paul C, Asanuma K, Yanagida-Asanuma E, Kim K, Mundel P. Actin up: regulation of podocyte structure and function by components of the actin cytoskeleton. Trends Cell Biol 2007; (17): 428–437
5. Kestilä M, Lenkkieri U, Männikkö M, Lamerdín J, McCready P, Puttaala H, et al. Positionally cloned gene for a novel glomerular protein – nephrin – is mutated in congenital nephrotic syndrome. Mol Cell 1998; (1): 575–582
6. Boute N, Gribouval O, Roselli S et al. NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nat Genet 2000; (24): 349–354
7. Li C, Ruotsalainen V, Tryggvason K et al. CD2AP is expressed with nephrin in developing podocytes and is found widely in mature kidney and elsewhere. Am J Physiol Renal Physiol 2000; (279): 785–792
8. Winn MP, Conlon PJ, Lynn K et al. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 2005; (308): 1801–1804
9. Kaplan JM, Kim SH, North KN et al. Mutations in ACTN4, encoding alpha-actinin-4, cause familial focal segmental glomerulosclerosis. Am J Hum Genet 2009; (84): 155–160
10. Goni FM, Alonso A. Effects of ceramide and other simple sphingolipids on membrane lateral structure. Biochim Biophys Acta 2009; (1788): 169–177
11. van Blitterswijk WJ, van der Luit AH, Veldman RJ et al. Ceramide: a new lipid «second messenger»? Biochim Biophys Acta 2009; (1788): 178–193
12. Zhang Y, Li X, Becker KA, Gulbins E. Ceramide-enriched membrane domains – structure and function. Biochim Biophys Acta 2009; (1788): 194–201
13. Olivera A, Spiegel S. Sphingosine-1-phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature 1992; (50): 78–80
14. Kaipia A, Chun SY, Eisenhauer K, Hsueh AJ. Tumor necrosis factor-alpha and its second messenger, ceramide, stimulate apoptosis in cultured ovarian follicles. J Cell Physiol 1996; (165): 215–222
15. Merrill AH Jr. De novo sphingolipid biosynthesis: a
necessary, but dangerous, pathway. *J Biol Chem* 2002; (277): 25843–25846.

18. Mondal S, Mukhopadhyay C. Molecular level investigation of organization in ternary lipid bilayer: a computational approach. *Langmuir* 2008; (24): 10298–10305.

19. Hall A, Rog T, Karttunen M, Vattulainen I. Role of glycolipids in lipid rafts: a view through atomistic molecular dynamics simulations with galactosylceramide. *J Phys Chem B* 2010; (114): 7757–7767.

20. Hakomori S. Bifunctional role of glycosphingolipids. Modulators for transmembrane signaling and mediators for cellular interactions. *J Biol Chem* 1990; (265): 18713–18716.

21. Shayman JA, Radin NS. Structure and function of renal glycosphingolipids. *Am J Physiol* 1991; (260): 291–302.

22. Iwamori M, Shimomura J, Tsuyuhara S, Nagai Y. Gangliosides of various rat tissues: distribution of ganglio-N-tetraose-containing gangliosides and tissue-characteristic composition of gangliosides. *J Biochem* 1984; (95): 761–770.

23. Saito M, Sugiyama K. Gangliosides in rat kidney: composition, distribution, and developmental changes. *Arch Biochem Biophys* 2001; (386): 11–16.

24. Hoon DS, Okun E, Neuwhirt H et al. Aberrant expression of gangliosides in human renal cell carcinomas. *J Urol* 1993; (150): 2031–2038.

25. Revininen J, Holthofer H, Miettinen A. A cell-type specific ganglioside of glomerular podocytes in rat kidney: an O-acetylated GD3. *Kidney Int* 1992; (42): 624–631.

26. Holthofer H, Revininen J, Miettinen A. Nephrorn segment and cell-type specific expression of gangliosides in the developing and adult kidney. *Kidney Int* 1994; (45): 123–130.

27. Barton NW, Brady RO, Dambrosia JM et al. Replacement therapy for inherited enzyme deficiency — macrophage-targeted glucocerebrosidase for Gaucher’s disease. *N Engl J Med* 1991; (324): 1464–1470.

28. Barton NW, Furbish FS, Murray GJ et al. Therapeutic response to intravenous infusions of glucocerebrosidase in a patient with Gaucher disease. *Proc Natl Acad Sci U S A* 1990; (87): 1913–1916.

29. Weinreb NJ, Charrow J, Antersessor HC et al. Effectiveness of enzyme replacement therapy in 1028 patients with type 1 Gaucher disease after 2 to 5 years of treatment: a report from the Gaucher registry. *Am J Med* 2002; (113): 112–119.

30. Lukina E, Watman N, Arreguin EA et al. A phase 2 study of eliglustat tartrate (Genz-12638), an oral substrate reduction therapy for Gaucher disease type 1. *Blood* 2010; (116): 893–899.

31. Qvist SN, Nurse HM, Pirani CL. Renal involvement in adult Gaucher’s disease after splenectomy. *Arch Pathol Lab Med* 1979; (103): 440–445.

32. Vaccaro AM, Motta M, Tatt M et al. Saposin C mutations in Gaucher disease patients resulting in lysosomal lipid accumulation and Gaucher disease deficiency, but normal prosaposin processing and sorting. *Hum Mol Genet* 2010; (19): 2987–2997.

33. Sun Y, Witte DP, Zamzow M et al. Combined saposin C and D deficiencies in mice lead to visceral, but not neurological, correction of the neuronopathic phenotype, additional storage of kidney globoside in visceral organs and bone marrow in an acid sphingomyelinase deficient knock-out mouse line, mimicking human Niemann-Pick disease type A. *Blood* 2000; (14): 1988–1995.

34. Sandhoff K, Andreade U, Jatzkewitz H. Deficient hexosaminidase activity in an exceptional case of Tay-Sachs disease with saposin C deficiency, but normal prosaposin processing and degradation, distribution, and developmental changes. *J Biol Chem* 1991; (266): 291–302.

35. Tatematsu M, Imaida K, Ito N et al. Sandhoff disease. *Hum Mol Genet* 2001 (62): 1933–1946.

36. Young E, Morris P et al. Is globotriaosylceramide a useful biomarker in Fabry disease? *Acta Paediatr Suppl* 2005; (94): 51–54; discussion 37–58.

37. Gold H, Mirzaian M, Dekker N et al. Quantification of globotriaosylsphingosine in plasma and urine of Fabry patients by stable isotope ultraperformance liquid chromatography-tandem mass spectrometry. *Clin Chem* 2012; (59): 547–556.

38. Truijens AJM, ten Berge A, Thijssen JDW et al. How well does urinary lysy-Gb3 function as a biomarker in Fabry disease? *Clin Chim Acta* 2010; (411): 1906–1914.

39. Askari H, Kaneski CR, Semino-Mora C, et al. Cellular and tissue localization of globotriaosylceramide in Fabry disease. *Virchows Arch* 2007; (451): 823–834.

40. Alroy J, Sabnis S, Kopp JB. Renal pathology in Fabry disease. *J Am Soc Nephrol* 2002; (13[Suppl 2]): 134–138.

41. Thurberg BL, Rennke H, Colvin RB et al. Globotriaosylceramide accumulation in the Fabry kidney is cleared from multiple cell types after enzyme replacement therapy. *Kidney Int* 2002; (62): 1933–1946.

42. Najafian B, Svarstad E, Bostad L et al. Progressive podocyte injury and globotriaosylceramide (GL-3) accumulation in young patients with Fabry disease. *Kidney Int* 2011; (79): 663–670.

43. Quinta R, Rodrigues D, Assuncao M, et al. Reduced glucocerebrosidase in the mouse model of Fabry disease: correction by successful enzyme replacement therapy. *Gene* 2014; (536): 97–104.

44. Prabakaran T, Nielsen R, Larsen JV, et al. Receptor-mediated endocytosis of alpha-galactosylceramide A in human podocytes in Fabry disease. *PLoS One* 2011 (6): 25–65.

45. Liebau MC, Braun F, Hopker K, et al. Dysregulated autophagy contributes to podocyte damage in Fabry’s disease. *PLoS One* 2013 (8): 635–636.

46. Keppler OT, Hindrichs S, Langner J, et al. UDP-GalCerAc 2-epimerase: a regulator of cell surface sialylation. *Science* 1996; (284): 1372–1376.

47. Galeano B, Klotovvich R, Manoli I et al. Mutation in the key enzyme of sialic acid biosynthesis causes severe glomerular proteinuria and is rescued by N-acetylmannosamine. *J Clin Invest* 2007; (117): 1585–1594.

48. Ito M, Sugihara K, Asaka T et al. Glycoprotein hyposialylation gives rise to a nephrotic-like syndrome that is prevented by sialic acid administration in GNE V572L point-mutant mice. *PLoS One* 2012; (7): 29873.

49. Samuelsson K, Zetterstrom R. Ceramides in a patient with lipogranulomatosis (Farber’s disease) with chronic course. *Scand J Clin Lab Invest* 1971; (27): 393–405.

50. Briere J, Calman F, Lageron A et al. Adult Niemann-Pick disease: a 26 years follow-up. Report of a case with isolated visceral involvement, excess of tissue sphingomyelin, and deficient sphingomyelinase activity (author’s transl). *Nouv Rev Fr Hematol* 2013; (8): 165–202.

51. Kuemmel TA, Thiele J, Schroeder R, Stoffel W. Pathology of visceral organs and bone marrow in an acid sphingomyelinase deficient knock-out mouse line, mimicking human Niemann-Pick disease type A. A light and electron microscopic study. *Pathol Res Pract* 1997; (193): 663–671.

52. Miranda SR, He X, Simonaro CM, et al. Infusion of recombinant human acid sphingomyelinase into Niemann-pick disease mice leads to visceral, but not neurological, correction of the pathophysiology. *FASEB J* 2000; (14): 1985–1995.

53. Haltia A, Solin ML, Jalanko H et al. Sphingolipid activator protein 1 in a human hereditary renal disease with deposition of disialogangliosides. *Histochem J* 1996; (28): 681–687.

54. Tamaoki A, Kikkawa Y. The role of sulfatides in autoimmunity in children with various glomerular disease. *Nihon Jinzo Gakkai Shi* 1991; (33): 1045–1054.

55. Twfeeck DM, Zaki SM. Role of tumour necrosis factor alpha and CD95 as markers of apoptosis in pathogenesis of pediatric renal diseases. *Egypt J Immunol* 2005; (12): 155–165.

56. De Maria R, Lent L, Malsan F et al. Requirement for GD3 ganglioside in CD95- and ceramide-induced apoptosis. *Science* 1997; (277): 1652–1655.

57. De Maria R, Rippo MR, Schuchman EH, Testi R. Acidic sphingomyelinase (ASM) is necessary for fas-induced GD3 ganglioside accumulation and efficient apoptosis of lymphoid cells. *J Exp Med* 1998; (187): 897–909.

58. Cifone MG, De Maria R, Roncadori P et al. Apoptotic signalizing through CD95 (Fas/Apo-1) activates an acidic sphingomyelinase. *J Exp Med* 1994; (180): 1547–1552.
62. Omran OM, Saqir HE, Yates AJ. Molecular mechanisms of GD3-induced apoptosis in U-1242 MG glioma cells. Neurochem Res 2006; (31): 117–1180

63. Wiegmann K, Schwandner R, Kruit O et al. Requirement of FADD for tumor necrosis factor-induced activation of acid sphingomyelinase. J Biol Chem 1999; (274): 5267–5270.

64. Aguilar RP, Genta S, Sanchez S. Renal gangliosides are involved in lead intoxication. J Appl Toxicol 2008; (28): 122–131

65. Meyer J, Bennett PH, Nelson RG. Podocyte number predicts long-term urinary albumin excretion in Pima Indians with type II diabetes and microalbuminuria. Diabetologia 1999; (42): 1341–1344

66. Steffes MW, Schmidt D, McCrery R, Basgen JM. Glomerular cell number in normal subjects and in type 1 diabetic patients. Kidney Int 2001; (59): 2104–2113

67. Verzola D, Gandolfo MT, Ferrario F et al. Apoptosis in the kidneys of patients with type II diabetic nephropathy. Kidney Int 2007; (10): 1262–1272

68. White KE, Bilous RW, Marshall SM et al. Podocyte number in normotensive type I diabetic patients with albuminuria. Diabetes 2002; (51): 3085–3089

69. Pagatalunan ME, Miller PL, Jumping-Eagle S et al. Podocyte loss and progressive glomerular injury in type II diabetes. J Clin Invest 1997; (95): 542–548

70. Krenger GJ, Atzpodien W, Schnellbacher E. Plasma glycosphingolipids in diabetics and normals. Klin Wochenschr 1975; (53): 637–638

71. Haas JM, Kashyap SR, Kasumov T et al. Plasma ceramides are elevated in obese subjects with type II diabetes and correlate with the severity of insulin resistance. Diabetes 2009; (58): 337–343

72. Blachnio-Zabielska AU, Pulkka M, Baranowski M et al. Ceramide metabolism is affected by obesity and diabetes in human adipose tissue. J Cell Physiol 2011; (227): 550–557

73. Gorska M, Dobrzyn A, Baranowski M. Concentrations of sphingosine and sphinganine in plasma of patients with type 2 diabetes. Med Sci Monit 2005; (11): 35–38.

74. Gefroyr K, Troncy L, Wiernsperger N et al. Glomerular proliferation during early stages of diabetic nephropathy is associated with local increase of sphingosine-1-phosphate levels. FEBS Lett 2005; (579): 1249–1254

75. Zador IZ, Deshmukh GD, Kunkel R et al. A role for glycosphingolipid accumulation in the renal hypertrophy of streptozotocin-induced diabetes mellitus. J Clin Invest 1993; (91): 797–803

76. Kwak DH, Rho Y, Kwon OD et al. Decreases of ganglioside GM3 in streptozotocin-induced diabetic glomeruli of rats. Life Sci 2003; (72): 1997–2006

77. Liu G, Han F, Yang Y et al. Evaluation of sphingolipid metabolism in renal cortex of rats with streptozotocin-induced diabetes and the effects of ramipril. Nephrol Dial Transplant 2011; (26): 1493–1502

78. Yoo TH, Pedigo CE, Guzman J et al. SMPD3b expression levels determine podocyte injury phenotypes in glomerular disease. J Am Soc Nephrol 2014; 25(4): 737–744

79. Brunskill EW, Potter SS. Changes in the gene expression programs of renal mesangial cells during diabetic nephropathy. BMC Nephrol 2012; (13):70

80. Ishizawa S, Takahashi-Fujigasaki J, Kanazawa Y et al. Sphingosine-1-phosphate induces differentiation of cultured renal tubular epithelial cells under Rho kinase activation via the S1P2 receptor. Clin Exp Nephrol 2014

81. Samad F, Hester KD, Yang G et al. Adipose tissue and plasma sphingolipid metabolism in obesity: a potential mechanism for cardiovascular and metabolic risk. Diabetes 2006; (55): 2579–2587

82. Wehthoff H, Reivinen J, Solin ML et al. Decrease of glomerular diisialogangliosides in puromycin nephrosis of the rat. Am J Pathol 1996; (149): 1009–15

83. Andrews PM. Glomerular epithelial alterations resulting from sialic acid surface coat removal. Kidney Int 1979; (15): 576–585

84. Pawluczuk ZH, Ghaderi Najafabadi M, Patel S et al. Sialic acid attenuates puromycin aminonucleoside-induced desialylation and oxidative stress in human podocytes. Exp Cell Res 2013; (320): 258–268

85. Barisoni L, Bruggeman LA, Mundel P et al. HIV-1 induces renal epithelial dedifferentiation in a transgenic model of HIV-associated nephropathy. Kidney Int 2000; (58): 173–181

86. Bruggeman LA, Dikman S, Meng C et al. Nephropathy in human immunodeficiency virus-1 transgenic mice is due to renal transgene expression. J Clin Invest 1997; (100): 84–92

87. Mikulaj J, Sinhal PC. HIV-1 entry into human podocytes is mediated through lipid rafts. Kidney Int 2010; (77): 72–83; author reply 73–74

88. Kopp JB, Klotman ME, Adler SH et al. Progressive glomerulosclerosis and enhanced renal accumulation of basement membrane components in mice transgenic for human immunodeficiency virus type 1 genes. Proc Natl Acad Sci U S A 1992; (89): 1577–1581

89. Husain M, Gusella GL, Klotman MEE et al. HIV-1 Nef induces proliferation and anchorage-independent growth in podocytes. J Am Soc Nephrol 2002; (13): 1806–1815

90. Kajiyama W, Kopp JB, Marinos NJ et al. Glomerulosclerosis and viral gene expression in HIV-transgenic mice: role of nef. Kidney Int 2000; (58): 1148–1159

91. Sunamoto M, Husain M, He JC et al. Critical role for Nef in HIV-1-induced podocyte dedifferentiation. Kidney Int 2003; (69): 1659–1701

92. Hanna Z, Preisepu E, Hu C et al. HIV-1 Nef mutations abrogating downregulation of CD4 affect other Nef functions and show reduced pathogenicity in transgenic mice. Virology 2006; (346): 40–52

93. Kopp JB, Nelson GW, Sampath K et al. APOL1 genetic variants in focal segmental glomerulosclerosis and HIV-associated nephropathy. J Am Soc Nephrol 2011; (22): 2129–2137

94. Liu YH, Lingwood CA, Ray PE. Recruitment of renal tubular epithelial cells expressing verotoxin-1 (Stx1) receptors in HIV-1 transgenic mice with renal disease. Kidney Int 1999; (55): 554–561

95. Kityakara C, Eggers P, Kopp JB. Twenty-one-year trend of ESRD due to focal segmental glomerulosclerosis in the United States. Am J Kidney Dis 2004; (44): 815–825

96. Baum MA. Outcomes after renal transplantation for FSGS in children. Pediatr Transplant 2004; (8): 329–333

97. Hubsh C, Montani B, Abitbol C et al. Recurrent focal glomerulosclerosis in pediatric renal allografts: the Miami experience. Pediatr Nephrol 2005; (20): 210–216

98. Sengutuvan P, Cameron JS, Hartley RB et al. Recurrence of focal segmental glomerulosclerosis in transplanted kidneys: analysis of incidence and risk factors in 59 allografts. Pediatr Nephrol 1990; (4): 21–28

99. Foroni A, Sageshima J, Wei C et al. Rituximab targets podocytes in recurrent focal segmental glomerulosclerosis. Sci Transl Med 2011; (3): 8546

100. Tasaki M, Shimizu A, Haneikkamp I et al. Rituximab treatment prevents the early development of proteinuria following pig-to-baboon xeno-kidney transplantation. J Am Soc Nephrol 2014; (25): 737–744

101. Wei C, Moller CC, Altintas MM et al. Modification of kidney barrier function by the urokinase receptor. Nat Med 2008; (14): 55–63

102. Wei C, Trachtman H, Li J et al. Circulating sPAR in two cohorts of primary FSGS. J Am Soc Nephrol 2012; (23): 2051–2059

103. Merscher-Gomez S, Guzman J, Pedigo CE et al. Cyclosporin protects podocytes in diabetic kidney disease. Diabetes 2013; 62(1): 3817–3827

104. Pyne NJ, Long JS, Lee SC et al. New aspects of sphingosine 1-phosphate signaling in malignant cells. Adv Enzyme Regul 2009; (49): 214–221

105. Rosen H, Goetzl EJ. Sphingosine 1-phosphate and its receptors: an autoinocrine and paracrine network. Nat Rev Immunol 2005; (5): 560–570

106. Imai T, Kitauma H, Ohkawa R et al. Unbalanced expression of sphingosine 1-phosphate receptors in diabetic nephropathy. Exp Toxicol Pathol 2010; (62): 53–60

107. Koch A, Völzka A, Puff B et al. PPARGamma agonists upregulate sphingosine 1-phosphate (S1P) receptor 1 expression, which in turn reduces S1P-induced [Ca2+]i increases in renal mesangial cells. Biochim Biophys Acta 2013; (1831): 1634–1643

108. Awad AS, Rouse MD, Khutishivili K et al. Chronic sphingosine 1-phosphate 1 receptor activation attenuates early-stage
diabetic nephropathy independent of lymphocytes. *Kidney Int* 2011; (79): 1090–1098
109. Park SW, Kim M, Chen SW et al. Sphinogaine-1-phosphate protects kidney and liver after hepatic ischemia and reperfusion in mice through S1P1 receptor activation. *Lab Invest* 2010; (90): 1209–1224
110. Kim M, Park SW, Pitson SM, Lee HT. Isoflurane protects human kidney proximal tubule cells against necrosis via sphingosine kinase and sphingosine-1-phosphate generation. *Am J Nephrol* 2010; (31): 353–362
111. Awad AS, Ye H, Huang L, et al. Selective sphingosine 1-phosphate receptor activation reduces ischemia-reperfusion injury in mouse kidney. *Am J Physiol Renal Physiol* 2006; (290): 1516–1524
112. Park SW, Kim M, D’Agati VD, Lee HT. Sphingosine kinase 1 protects against renal ischemia-reperfusion injury in mice by sphingosine-1-phosphate 1 receptor activation. *Kidney Int* 2011; (80):1315–1327
113. Zagorska RA, Conrad S, Lochhead K et al. Altered sphingomyelinase and ceramide expression in the setting of ischemic and nephrotic acute renal failure. *Kidney Int* 1998; (53): 573–582
114. Kalhorn T, Zagorska RA. Renal cortical ceramide patterns during ischemic and toxic injury: assessments by HPLC-mass spectrometry. *Am J Physiol 1998*; (277): 723–733.
115. Zagorska RA, Iwata M, Conrad DS et al. Altered ceramide and sphingosine expression during the induction phase of ischemic acute renal failure. *Kidney Int* 1997; (52): 60–70
116. Peters H, Martini S, Wang Y et al. Selective lymphocyte inhibition by FTY720 slows the progressive course of chronic anti-thy 1 glomerulosclerosis. *Kidney Int* 2004; (66): 1434–1443
117. Martini S, Krämer S, Loof T, et al. S1P modulator FTY720 limits matrix expansion in acute anti-thy1 mesangio proliferative glo merulonephritis. *Am J Physiol Renal Physiol* 2007; (292): 1761–1770
118. Schwalm S, Pfeilschifter J, Huwiler A. Targeting the sphingosine kinase/sphingosine 1-phosphate pathway to treat chronic inflammatory kidney diseases. *Basic Clin Pharmacol Toxicol* 2014; (114): 44–49
119. Ferguson R. FTY720 immunomodulation: optimism for improved transplant regimens. *Transplant Proc* 2004; (36): 549–553
120. Fujishiro J, Kudou S, Iwai S et al. Use of sphingosine-1-phosphate 1 receptor agonist, KRP-203, in combination with a subtherapeutic dose of cyclosporine A for rat renal transplantation. *Transplantation 2006*; (82): 804–812
121. Watson L, Tullus K, Marks SD et al. Increased serum concentration of sphingosine-1-phosphate in juvenile-onset systemic lupus erythematosus. *J Clin Immunol* 2012; (32): 1019–1025
122. Snider AJ, Ruiz P, Obeid LM, Oates JC. Inhibition of the LIM kinase-1 as a ceramide-regulated gene in renal derived cells. *FASEB J* 2001; (159): 1069–1077
123. Wang F, Nobeis CD, Hall A, Spiegel S. Sphingosine 1-phosphate stimulates rho-mediated tyrosine phosphorylation of focal adhesion kinase and paxillin in Swiss 3T3 fibroblasts. *Biochem J* 1997; 324[Pt 2]: 481–488
124. Fanning AS, Ma TY, Anderson JM. Interaction with podocin facilitates nephrin signaling. *J Biol Chem* 2001; (276): 41543–41546
125. Saleem MA, O’Hare MJ, Reiser J et al. A conditionally immortalized human podocyte cell line facilitating study of podocyte function. *J Am Soc Nephrol* 2003; (14): 2440–2445
126. Smedley WE, Mondel P. Regulation of podocyte structure during the development of nephrotic syndrome. *J Mol Med (Berl)* 1998; (76): 172–183
127. Kerjaschki D. Caught flat-footed: podocyte damage and the molecular basis of focal glomerulosclerosis. *J Clin Invest* 2001; (108): 1583–1587
128. Asamoto M, Mondel P. The role of podocytes in glomerular pathobiology. *Clin Exp Nephrol* 2003; (7): 255–259
129. Ichimura K, Kurihara H, Sakai T. Actin filament organization of foot processes in rat podocytes. *J Histochem Cytochem* 2003; (51): 1589–1600
130. Ichimura K, Kurihara H, Sakai T. Actin filament organization of foot processes in vertebrate glomerular podocytes. *Cell Tissue Res* 2007; (329): 541–557
131. Yuan H, Takeuchi E, Salant DJ. Podocyte slit-diaphragm protein nephrin is linked to the actin cytoskeleton. *Am J Physiol Renal Physiol* 2002; (282): 585–591
132. Huber TB, Simons M, Hartleben B et al. Molecular basis of the functional podocin-nephrin complex: mutations in the NPHS2 gene disrupt nephrin targeting to lipid raft microdomains. *Hum Mol Genet* 2003; (12): 3397–3405
133. Huber TB, Kottgen M, Schilling B et al. Interaction with podocin facilitates nephrin signaling. *J Biol Chem* 2001; (276): 41543–41546
134. Takenouchi H, Kiyokawa N, Taguchi T et al. Shiga toxin binding to globotriaosyl ceramide induces intracellular signals that mediate cytoskeleton remodeling in human renal carcinoma-derived cells. *J Cell Sci* 2004; (117): 3911–3922
135. Ichimura K, Kurihara H, Sakai T. Actin filament organization of the actin binding region in the tight junction protein ZO-1. *FASEB J* 2002; (16): 1385–1387
136. Simons M, Schwarz K, Kriz W et al. Involvement of lipid rafts in nephrin phosphorylation and organization of the glomerular slit diaphragm. *Am J Pathol* 2001; (159): 1069–1077
137. Shabahang S, Liu YH, Huwiler A, Pfeilschifter J. Identification of the LIM kinase-1 as a ceramide-regulated gene in renal mesangial cells. *Biochem Biophys Res Commun* 2002; (298): 408–413
138. Fanning AS, Ma TY, Anderson JM. Interaction with podocin facilitates nephrin signaling. *J Biol Chem* 2001; (276): 41543–41546
139. Fujishiro J, Kudou S, Iwai S et al. Use of sphingosine-1-phosphate 1-phosphate stimulates rho-mediated tyrosine phosphorylation of focal adhesion kinase and paxillin in Swiss 3T3 fibroblasts. *Biochem J* 1997; 324[Pt 2]: 481–488
140. Shabahang S, Liu YH, Huwiler A, Pfeilschifter J. Identification of the LIM kinase-1 as a ceramide-regulated gene in renal mesangial cells. *Biochem Biophys Res Commun* 2002; (298): 408–413
141. Takenouchi H, Kiyokawa N, Taguchi T et al. Shiga toxin binding to globotriaosyl ceramide induces intracellular signals that mediate cytoskeleton remodeling in human renal carcinoma-derived cells. *J Cell Sci* 2004; (117): 3911–3922
142. Jin J, Sisson K, Li C et al. Soluble FLT1 binds lipid microdomains in podocytes to control cell morphology and glomerular barrier function. *Cell 2012*; (151): 384–399

Сведения об авторах:

Sandra Merscher, Peggy and Harold Katz Family Drug Discovery Center and Division of Nephrology, Department of Medicine, University of Miami, 1580 NW 10th Avenue, Batchelor Building, Room 628, Miami, FL 33136, USA e-mail: smerscher@med.miami.edu;

Alessia Fornoni, Peggy and Harold Katz Family Drug Discovery Center and Division of Nephrology, Department of Medicine, University of Miami, 1580 NW 10th Avenue, Batchelor Building, Room 633, Miami, FL 33136, USA e-mail: afornoni@med.miami.edu;

Конфликты интересов: Сандра Мерчер и Алексия Формони являются авторами изобретений, находящихся на рассмотрении на выдачу патентов по диагностике и лечению протеинурических болезней почек. Они намерены получить гонорар за будущую их коммерческую реализацию. Алексия Формони является консультантом Hoffman-La Roche, Alexion и Mesoblast по предметам изучения, не имеющим отношения к данной публикации.

Статья переведена на русский язык и публикуется из журнала *Frontiers in Endocrinology*, 2014 Jul 30;5:127. doi: 10.3389/fendo.2014.00127 с разрешения авторов в соответствии с условиями лицензионного соглашения Creative Commons Attribution License (CC BY).

Перевод: М. Люкина
Корректировка перевода: И.И. Трофименко

Поступила в редакцию: 10.07.2015 г.
Принята в печать: 07.12.2015 г.