Codegree threshold for tiling balanced complete 3-partite 3-graphs and generalized 4-cycles

Boyuan Liua Xinmin Houa,b,* Yue Maa
aSchool of Mathematical Sciences
University of Science and Technology of China
Hefei, Anhui, 230026, PR China
\{lby1055,mymy\}@mail.ustc.edu.cn

bCAS Wu Wen-Tsun Key Laboratory of Mathematics
University of Science and Technology of China
Hefei, Anhui, 230026, PR China
xmhou@ustc.edu.cn

Submitted: Oct 16, 2019; Accepted: Jul 2, 2020; Published: Sep 4, 2020
© The authors. Released under the CC BY-ND license (International 4.0).

Abstract

Given two k-graphs F and H, a perfect F-tiling (also called an F-factor) in H is a set of vertex-disjoint copies of F that together cover the vertex set of H. Let $t_{k-1}(n,F)$ be the smallest integer t such that every k-graph H on n vertices with minimum codegree at least t contains a perfect F-tiling. Mycroft (JCTA, 2016) determined the asymptotic values of $t_{k-1}(n,F)$ for k-partite k-graphs F and conjectured that the error terms $o(n)$ in $t_{k-1}(n,F)$ can be replaced by a constant that depends only on F. In this paper, we determine the exact value of $t_2(n,K_{m,m}^3)$, where $K_{m,m}^3$ (defined by Mubayi and Verstraëte, JCTA, 2004) is the 3-graph obtained from the complete bipartite graph $K_{m,m}$ by replacing each vertex in one part by a 2-elements set. Note that $K_{2,2}^3$ is the well known generalized 4-cycle C_4^3 (the 3-graph on six vertices and four distinct edges A,B,C,D with $A \cup B = C \cup D$ and $A \cap B = C \cap D = \emptyset$). The result confirms Mycroft’s conjecture for $K_{m,m}^3$. Moreover, we improve the error term $o(n)$ to a sub-linear term when $F = K_{m,m}^3$ and show that the sub-linear term is tight for $K_{3}(2)$, where $K_{3}(m)$ is the complete 3-partite 3-graph with each part of size m.

Mathematics Subject Classifications: 05C35, 05C65,05C70

*Supported by National Nature Science Foundation of China (No. 11671376) and Anhui Initiative in Quantum Information Technologies (AHY150200).
1 Introduction

A k-graph H is a pair $H = (V, E)$ where V is a set of elements called vertices, and E is a collection of subsets of V with uniform size k called edges. We call $|V|$ the order of H and $|E|$ the size of H, also denoted by $|H|$ or $e(H)$. We write graph for 2-graph for short. Given two k-graphs F and H, an F-tiling of H is a collection of vertex-disjoint copies of F in H. An F-tiling is perfect if it covers every vertex of H, also known as an F-factor. If F is a single edge then an F-factor in H is a perfect matching in H. As for matchings, a natural question for tiling is to determine the minimum degree threshold for finding a perfect F-tiling. Given two k-graphs F and H and that the error term $o(n)$ satisfies $\chi(H) - 1 \leq \chi^*(H) \leq \chi(H)$. See [18] for a survey on graph tiling.

For hypergraphs, we know much less and tiling problems become much harder. There are a number of research results on perfect matching problem, see [26, 28] for surveys.

For complete k-graphs and related, the research focus on the case $k = 3$. Let K^3_4 be the complete 3-graph on four vertices, and $K^3_4 - \ell e$ be the 3-graphs obtained from K^3_4 by deleting ℓ edges. Kühn and Osthus [17] showed that $t_2(n, K^3_4 - 2e) = (1/4 + o(1))n$, and Czygrinow, DeBiasio and Nagle [3] determined its exact value for large n. Lo and Markström [20] proved that $t_2(n, K^3_4 - e) = (1/2 + o(1))n$ and the exact value was determined for large n by Han, Lo, Treglown and Zhao [10] recently. Lo and Markström [21] also proved that $t_2(n, K^3_4) = (3/4 + o(1))n$, and the exact value was determined for large n by Keevash and Mycroft [14].

A (k, ℓ)-cycle $C^{(k, \ell)}_s$ is a k-graph on s vertices so that whose vertices can be ordered cyclically in such a way that the edges are sets of consecutive k vertices and every two consecutive edges share exactly ℓ vertices. Gao and Han [6] and Czygrinow [2] determined the exact value of $t_2(n, C^{(3, 1)}_s)$ and $t_2(n, C^{(3, 1)}_s)(s \geq 6)$, respectively, and Gao, Han and Zhao [7] determined $t_{k-1}(n, C^{(k, 1)}_s)$ for $k \geq 4$. Han, Lo, and Sanhueza-Matamala [11] proved $t_{k-1}(n, C^{(k, k-1)}_s) \leq (1/2 + 1/(2s) + o(1))n$ where $k \geq 3$ and $s \geq 5k^2$ and this bound is asymptotically best possible for infinitely many pairs of s and k.

In the study of tiling problems, another family of hypergraphs which was well studied are k-partite k-graphs. A k-graph F on vertex set V is said to be k-partite if V can be partitioned into vertex classes V_1, \ldots, V_k so that for any $e \in F$ and $1 \leq j \leq k$ we have

\[EF \subseteq V_j \cap V_k \]

\[E \subseteq V_j \cap V_k \]

\[E \cap (V_j \cup V_k) = \emptyset \]

\[E \cap (V_j \cup V_k) = \emptyset \]

\[E \cap (V_j \cup V_k) = \emptyset \]

\[E \cap (V_j \cup V_k) = \emptyset \]
$|e \cap V_j| = 1$. The partition V_1, \ldots, V_k of V is called a \textit{k-partite realisation} of V. Define

$$S(F) := \bigcup_{\chi} \{|V_1|, \ldots, |V_k|\} \text{ and } D(F) := \bigcup_{\chi} \{|V_i| - |V_j| : i, j \in [k]\},$$

where in each case the union is taken over all \textit{k-partite realisations} $\chi = \{V_1, \ldots, V_k\}$ of V. The \textit{greatest common divisor} of F, denoted by $\gcd(F)$, is then defined to be the greatest common divisor of the set $D(F)$ (if $D(F) = \{0\}$ then $\gcd(F)$ is undefined). The \textit{smallest class ratio} of F, denoted by $\sigma(F)$, is defined by

$$\sigma(F) := \min_{S \in S(F)} \frac{S}{|V(F)|}.$$

Note in particular that $\sigma(F) \leq 1/k$, with equality if and only if $|V_1| = |V_2| = \ldots = |V_k|$ for any \textit{k-partite realisation} $\chi = \{V_1, V_2, \ldots, V_k\}$. A \textit{complete k-partite k-graph} with vertex classes V_1, \ldots, V_k is a k-graph on $V = V_1 \cup \ldots \cup V_k$ and edge set $E = \{e : |e \cap V_i| = 1 \text{ for each } i \in [k]\}$. Observe that a complete \textit{k-partite graph has only one \textit{k-partite realisation} up to permutations of the vertex classes V_1, \ldots, V_k. Hence, we write $K^k(V_1, \ldots, V_k)$ for a complete \textit{k-partite graph} with vertex classes V_1, \ldots, V_k and if the sizes of V_i are emphasized, we write $K^k(|V_1|, \ldots, |V_k|)$ for $K^k(V_1, \ldots, V_k)$, if $|V_1| = \ldots = |V_k| = m$ we write $K^k(m)$ for $K^k(V_1, \ldots, V_k)$ and call $K^k(m)$ the \textit{balanced complete k-partite k-graph}. Mycroft [23] proved a general result on tiling \textit{k-partite} k-graphs.

Theorem 1.1 (Theorem 1.1, 1.2, 1.3 in [23]). Let F be a \textit{k-partite k-graph}. Then for any $\alpha > 0$ there exists n_0 such that if H is a k-graph on $n \geq n_0$ vertices for which $|V(F)|$ divides n and

$$\delta_k(H) \geq \begin{cases}
n/2 + \alpha n & \text{if } S(F) = \{1\} \text{ or } \gcd(S(F)) > 1; \\
\sigma(F)n + \alpha n & \text{if } \gcd(F) = 1; \\
\max\{\sigma(F)n, \frac{n}{p}\} + \alpha n & \text{if } \gcd(S(F)) = 1 \text{ and } \gcd(F) > 1,
\end{cases}$$

then H contains a perfect F-tiling, where p is the smallest prime factor of $\gcd(F)$. Moreover, (1) is asymptotically best possible for a large class of \textit{k-partite k-graphs} including complete \textit{k-partite} k-graphs.

Furthermore, Mycroft also conjectured that the error terms in (1) can be replaced by a (sufficiently large) constant that depends only on F.

Conjecture 1.2 ([23]). Let F be a \textit{k-partite k-graph}. Then there exists a constant $C = C(F)$ such that the error terms in (1) can be replaced by C.

Gao, Han and Zhao [7] improved the error term for complete \textit{k-partite k-graphs} $F = K^k(a_1, \ldots, a_{k-1}, a_k)$ with $\gcd(F) = 1$ and disproved Conjecture 1.2 for all complete \textit{k-partite k-graphs} F with $\gcd(F) = 1$ and $a_{k-1} \geq 2$ (remark: in the updated version of [7], the authors constructed more counterexamples for the conjecture of Mycroft). Han, Zang, and Zhao [13] determined $t_1(n, K)$ asymptotically for all complete 3-partite 3-graphs K. In this paper, we focus on balanced complete 3-partite 3-graphs. One of our main results is the following.

THE ELECTRONIC JOURNAL OF COMBINATORICS 27(3) (2020), #P3.47
Theorem 1.3. Let \(m \geq 2 \) be an integer. There exists an integer \(n_0 \in \mathbb{N} \) such that the following holds. Suppose that \(H \) is a 3-graph on \(n \geq n_0 \) vertices with \(n \in 3m\mathbb{N} \). If \(\delta_2(H) \geq n/2 + \frac{m}{3n - m} \) then \(H \) contains a \(K^3(m) \)-factor.

For \(K^3(2) \), we show that the lower bound of \(\delta_2(H) \) is tight up to a factor.

Proposition 1. There exists an integer \(n_1 \in \mathbb{N} \). For every \(n \geq n_1 \), there exists a 3-graph \(H \) on \(n \) vertices with \(\delta_2(H) \geq n/2 + \sqrt{2n}/5 - 3 \) containing no \(K^3(2) \)-factor.

Clearly, Theorem 1.3 improves the error term \(an \) in (1) to \(Cn^{1-1/m} \) when \(F = K^3(m) \), and Proposition 1 shows that the error term \(C\sqrt{n} \) can not be replaced by a constant for \(F = K^3(2) \) and henceforth for \(F = K^3(2m) \), which gives a new family of counterexamples for Conjecture 1.2 (As mentioned in the end of [7], \(K^3(2) \) is not included in the family of counterexamples given by Gao, Han and Zhao).

Given integer \(k \), let \(C^k \) be the family of \(k \)-graphs which contains four distinct edges \(A, B, C, D \) with \(A \cup B = C \cup D \) and \(A \cap B = C \cap D = \emptyset \), which was first introduced by Erdős [4], and is also called the generalized 4-cycles. For \(k = 2 \) or 3, we write \(C^k \) for \(C^k \) instead because there is only one graph, up to isomorphism, in \(C^k \) in these cases. Note that \(C^3 \) is a supported subgraph of \(K^3(2) \).

Let \(X_1, X_2, \ldots, X_t \) be \(t \) pairwise disjoint sets of size \(k - 1 \) and let \(Y \) be a set of \(s \) elements disjoint from \(\bigcup_{i \in [t]} X_i \). Define \(K^3_{s,t} \) be the \(k \)-graph with vertex set \(\bigcup_{i \in [t]} X_i \cup Y \) and edge set \(\{X_i \cup \{y\} : i \in [t], y \in Y \} \). In [25], Mubayi and Verstraëte investigated the Turán number of \(K^3_{s,t} \). We show that Conjecture 1.2 is valid for \(K^3_{m,m} \), in particular for generalized 4-cycle since \(K^3_{2,2} = C^3 \). More precisely, we prove the following theorem.

Theorem 1.4. For any integer \(m \), there exists an integer \(N \) such that for all \(n \in 3m\mathbb{N} \) and \(n \geq N \),

\[
t_2(n, K^3_{m,m}) = \begin{cases} \left\lceil \frac{n}{2} \right\rceil - 1, & \text{if } n \equiv 1 \pmod{4} \\ \left\lfloor \frac{n}{2} \right\rfloor - 1, & \text{otherwise} \end{cases}
\]

(2)

To show the lower bound of \(t_2(n, K^3_{m,m}) \) in Theorem 1.4 is tight, we give a construction of extremal 3-graph for \(K^3_{m,m} \).

Construction 1. Given two disjoint sets \(A, B \), let \(B[A, B] \) be the 3-graph with vertex set \(A \cup B \) and edge set \(E = \{e : |e| = 3 \text{ and } |e \cap A| = 1 \text{ or } 3 \} \).

Clearly, \(\delta_2(B[A, B]) = \min\{|A| - 2, |B| - 1\} \), and each copy of \(K^3_{m,m} \) intersects \(B \) with an even number of vertices and hence \(B[A, B] \) does not contain a \(K^3_{m,m} \)-factor provided that \(|B| \) is odd. Now, suppose that \(n \in 3m\mathbb{N} \). Choose \(|A| = n/2 + 1, |B| = n/2 - 1 \) if \(n \equiv 0 \pmod{4} \); \(|A| = \lfloor n/2 \rfloor, |B| = \lceil n/2 \rceil \) if \(n \equiv 1 \pmod{4} \); \(|A| = |B| = n/2 \) if \(n \equiv 2 \pmod{4} \); and \(|A| = \lfloor n/2 \rfloor, |B| = \lceil n/2 \rceil \) if \(n \equiv 3 \pmod{4} \). We have \(\delta_2(B[A, B]) = \lfloor n/2 \rfloor - 2 \) if \(n \equiv 1 \pmod{4} \), and \(\delta_2(B[A, B]) = \lceil n/2 \rceil - 2 \) otherwise. But \(B[A, B] \) does not contain a \(K^3_{m,m} \)-factor. The extremal 3-graph constructed here implies that (2) is tight.

In the following we give some notation used in this paper. For a \(k \)-graph \(H = (V, E) \) and a vertex set \(U \subseteq V \), write \(H[U] \) for the subgraph of \(H \) induced by \(U \) and \((U) \) for the set of all subsets of size \(r \) of \(U \). For an \(S \subseteq V \), the neighbourhood of \(S \), denoted by \(N_H(S) \) or \(N(S) \) if there is no confusion from the context, is the set of subsets \(T \subseteq V \) such that \(S \cup T \in E(H) \), the link graph of \(S \), denoted by \(H_S \), is the \((k - |S|)\)-graph with vertex set
To show Proposition 1, we first revisit a construction of main results and proofs of main results.

For convenience, we use ordered triple \((a, b, c)\) where \(a, b, c\) are two constants \(\alpha \) and \(\beta\). By the constructions of Remark, Fact 1.

Fact 1. \(G\) contains some edges of the form \((v, v, v)\) or \((v, v, w)\) for each \(v \in V\). We show that \(G\) contains an edge \((v, v, v)\) or \((v, v, w)\) for each \(v \in V\).

Proof. Let \(G\) be a graph with vertex set \(V(G) = (F_q \setminus \{0\}) \times (F_q \setminus \{0\})\), a 3-sets set \(\{(a_i, a'_i) : i \in [3]\}\) forms an edge in \(G\) if and only if

\[\prod_{i \in [3]} a_i + \prod_{i \in [3]} a'_i = 1_F. \]

As shown in [24], \(G\) is \(K^3(1, 2, 2)\)-free and \(d_G(q) \geq q - 3\).

Construction 2 ([24]). Let \(G_q\) be a 3-graph with vertex set \(V(G_q) = (F_q \setminus \{0\}) \times (F_q \setminus \{0\})\), a 3-sets set \(\{(a_i, a'_i) : i \in [3]\}\) forms an edge in \(G_q\) if and only if

\[\prod_{i \in [3]} a_i + \prod_{i \in [3]} a'_i = 1_F. \]

For convenience, we use ordered triple \((a, b, c)\) denote an edge of \(H_q\) with \(a, b \in V(G_q)\) and \(c \in V(G_q)\).

Remark. By the constructions of \(G_q\) and \(H_q\), we know that an edge \(e = abc \in E(G_q)\) corresponds to three edges \(e_1 = (a, b, c), e_2 = (a, c, b), e_3 = (b, c, a)\) in \(H_q\), and \(H_q\) possibly contains some edges of the form \((a, b, a)\) or \((a, b, b)\). The following fact shows that \(H_q\) inherits some properties from \(G_q\).

Fact 1. \(H_q\) is \(K^3(1, 2, 2)\)-free and \(d_{H_q}(ab) \geq q - 3\) for all \(a \in V(G_q), b \in V(G'_q)\).

Proof. We show that \(H_q\) is also \(K^3(1, 2, 2)\)-free. As shown in [24], for \((p_1, q_1), (p_2, q_2) \in F_q \setminus \{0\} \times F_q \setminus \{0\}\), the equation system

\[\begin{cases} p_1 x + p'_1 y = 1_F \\ p_2 x + p'_2 y = 1_F \end{cases} \] \hspace{1cm} (3)

has at most one solution \((x, y)\) if \((p_1, p'_1) \neq (p_2, p'_2)\). Suppose that \(H_q\) contains a copy of \(K^3(1, 2, 2)\), say \(K^3(\{a\}, \{b_1, b_2\}, \{c_1, c_2\})\). Let \(a = (u, u'), b_1 = (v_1, v'_1)\) and \(b_2 = (v_2, v'_2)\).
(v_2, v'_2). Without loss of generality, we may assume \(a, b_1, b_2 \in V(G_q) \). Now let \(p_1 = uv_1, p'_1 = u'v'_1, p_2 = uv_2, \) and \(p'_2 = u'v'_2 \). Since \((v_1, v'_1) \neq (v_2, v'_2) \), we have \((p_1, p'_1) \neq (p_2, p'_2) \). So the equation system (3) has at most one solution, this is a contradiction to \(K^3(\{a\}, \{b_1, b_2\}, \{c_1, c_2\}) \subseteq H_q \).

For \(a \in V(G_q), b \in V(G'_q), d_{H_q}(ab) \geq q - 3 \) is clearly true since the determinate equation \(ax + by = 1 \) has exactly \(q \) solutions in \(F_q \) for any non-zero pair \((a, b) \in (F_q \setminus \{0\}) \times (F_q \setminus \{0\}) \).

Proof of Proposition 1: For sufficiently large \(n \), without loss of generality, we may assume \(n \in 6\mathbb{N} \), choose an odd prime power \(q \) and \(n_0 = (q - 1)^2 \) such that \(n/2 + 2\sqrt{n/2} \leq n_0 \leq n/2 + \frac{1}{2}\sqrt{n/2} \). Let \(F_q \) be the \(q \)-element finite field and let \(A \) and \(B \) be the sets obtained by deleting any one element and \(2n_0 - n - 1 \) elements from \((F_q \setminus \{0\}) \times (F_q \setminus \{0\}) \), respectively. Then \(|A| = n_0 - 1 \) and \(|B| = n - n_0 + 1 \), both of them are odd. Let \(H' \) be the subgraph of \(H_q \) induced by \(A \cup B \) with \(A \subset V(G_q) \) and \(B \subset V(G'_q) \). By Fact 1, \(H' \) is \(K^3(1, 2, 2) \)-free and \(d_{H_q}(ab) \geq q - 4 \) for all \(a \in A, b \in B \). Let \(H = (A, B) \cup H' \). Then \(\delta_2(H) \geq \min(|A| - 2, |B| - 1 + \sqrt{n_0} - 3) \geq n/2 + 2 \sqrt{n/2} - 3 \). We claim that \(H \) does not contain a \(K^3(2) \)-factor. Suppose to the contrary that \(H \) contains a \(K^3(2) \)-factor. Since \(|A| \) is odd, \(H \) must contain a copy of \(K^3(2) \) such that \(|V(K^3(2)) \cap A| \) is odd. Such a copy of \(K^3(2) \) must be of type \((5, 1)\) or \((3, 3)\). Note that copies of \(K^3(2) \) in \(B[A, B] \) must intersect \(A \) in an even number of vertices. It is an easy task to check that a copy of \(K^3(2) \) of type \((5, 1)\) or \((3, 3)\) forces a copy of \(K^3(1, 2, 2) \) in \(H' \), a contradiction. \(\square \)

The proof of Theorems 1.3 and 1.4 are separated into non-extremal case and extremal case. For the non-extremal case, we use the standard absorbing method, which has been introduced by Rödl, Ruciński and Szemerédi in [27] and widely used in different research papers for example in [3, 13, 21].

Roughly speaking, our proof follows two steps: first, we use an “absorbing lemma” to find a small absorbing set \(W \subset V(H) \) with the property that given any “sufficiently small” set \(U \subset V(H) \setminus W \), both \(H[W] \) and \(H[W \cup U] \) contain \(K^3(m) \)-factors; second, we use an “almost tiling lemma” to find a \(K^3(m) \)-tiling in \(H \setminus W \) that covers all but at most \(o(n) \) vertices. The first step will be completed in Lemma 2.1 and the second step has been done by an almost tiling lemma given by Mycroft in [23], we restate it in Lemma 2.2.

Given \(\gamma > 0 \), \(H \) and \(G \) are two 3-graphs on the same vertex set \(V \). We say that \(H \) \(\gamma \)-contains \(G \) if \(|E(G) \setminus E(H)| \leq \gamma |V|^3 \), and \(H \) is called \(\gamma \)-extremal if there is a partition of \(V = A \cup B \) such that \(|A| \leq |B| \leq |A| + 1 \) and \(H \) \(\gamma \)-contains \(B[A, B] \).

Lemma 2.1 (Absorption lemma). Let \(0 < \epsilon_2 < \epsilon_1 \ll \epsilon < 1 \) and \(m \) be an positive integer. Suppose that \(H \) is a 3-graph of order \(n \) with \(\delta_2(H) \geq (1/2 - \gamma)n \). If \(H \) is not \(3\gamma \)-extremal, then there exists a set \(W \subset V(H) \) with \(|W| \leq \epsilon_1 n \) and \(|W| \in 3m\mathbb{N}, \) so that for any \(U \subset V(H) \setminus W \) with \(|U| \leq \epsilon_2 n \) and \(|U| \in 3m\mathbb{N}, \) both \(H[W] \) and \(H[W \cup U] \) contain \(K^3(m) \)-factors.

Lemma 2.2 (Almost tiling lemma, Lemma 1.5 in [23]). Let \(K \) be a \(k \)-partite \(k \)-graph. Then there exists a constant \(C = C(K) \) such that for any \(\alpha > 0 \) there exists an integer
$n_0 = n_0(K, \alpha)$ with the property that every k-graph H on $n \geq n_0$ vertices with $\delta_{k-1}(H) \geq (\sigma(K) + \alpha)n$ admits a K-tiling covering all but at most C vertices of H.

Lemmas 2.3 and 2.4 deal with the extremal case for $K^3(m)$ and $K^3_{m,m}$, respectively.

Lemma 2.3. Let $m \geq 2$ be an integer. There exist $\gamma > 0$ and $n_0 \in \mathbb{N}$ such that the following holds. Suppose that H is a 3-graph on $n \geq n_0$ vertices with $\delta_2(H) \geq n/2 + m \frac{1}{n_0} n^{1-\frac{1}{n}}$, $n \in 3m\mathbb{N}$. If H is γ-extremal, then H contains a $K^3(m)$-factor.

Lemma 2.4. There exist $\gamma > 0$ and $n_0 \in \mathbb{N}$ such that the following holds. Suppose that H is a 3-graph on $n \geq n_0$ vertices with $\delta_2(H)$ satisfying (2), where $n \in 3m\mathbb{N}$. If H is γ-extremal, then H contains a $K^3_{m,m}$-factor.

Proof of Theorems 1.3 and 1.4: Let $0 < \alpha \ll 1$ and $1/n \ll \epsilon_2 \ll \epsilon_1 \ll \gamma \ll 1$ with $n \in 3m\mathbb{N}$. Let H be a 3-graph of order n with $\delta_2(H) \geq n/2 + m \frac{1}{n_0} n^{1-\frac{1}{n}}$ (resp. $\delta_2(H)$ satisfying (2)).

I. H is 3γ-extremal. Then, by Lemma 2.3, H contains a $K^3(m)$-factor (resp. $K^3_{m,m}$ factor by Lemma 2.4).

II. H is not 3γ-extremal. From the definition of $K^3_{m,m}$, one can easily have that $K^3_{m,m}$ is a spanning subgraph of $K^3(m)$. If H has a $K^3(m)$-factor then it also contains a $K^3_{m,m}$-factor. By Lemma 2.1, we can choose an absorbing set $W \subset V(H)$ with $|W| \leq \epsilon_1n$ and $|W| \in 3m\mathbb{N}$ so that for any $U \subset V(H) \setminus W$ with $|U| \leq \epsilon_2n$ and $|U| \in 3m\mathbb{N}$, both $H[W]$ and $H[U \cup W]$ contain $K^3(m)$-factors. Let H' be the 3-graph obtained from H by deleting the vertices of W. Then $|V(H')| = n' \geq (1-\epsilon_1)n$ and $\delta_2(H') \geq n/2 - 1 - \epsilon_1n \geq (1/3 + \alpha)n'$. Note that $\sigma(K^3(m)) = 1/3$. The codegree condition in Lemma 2.2 for H' and $K^3(m)$ is satisfied. By Lemma 2.2, H' contains a $K^3(m)$-tiling M_1 covering all but at most C vertices. Let $U = V(H') \setminus V(M_1)$. Then $|U| = n - |W| - |V(M_1)| \in 3m\mathbb{N}$ and $|U| \leq C \leq \epsilon_2n$. Hence $H[U \cup W]$ contains a $K^3(m)$-factor M_2. Then $M_1 \cup M_2$ is a $K^3(m)$-factor in H. We are done.

The rest of the paper is organized as follows. In Section 3, we give the proof of the absorption lemma used in the paper, i.e. Lemma 2.1, and in Section 4, we deal with the extremal case, i.e. we prove Lemmas 2.3 and 2.4.

3 Absorption lemma

To prove the absorption lemma, we need some preliminaries. Let $H = (V, E)$ be a k-graph of order n, and F be a k-graph of order t. Given an integer $i \geq 1$, a constant $\eta > 0$, and two vertices $x, y \in V$, a vertex set $S \subset V$ is called an (x, y)-connector of length i with respect to F if $S \cap \{x, y\} = \emptyset$, $|S| = ti - 1$ and both $H[S \cup \{x\}]$ and $H[S \cup \{y\}]$ contain F-factors. Two vertices x and y are called (i, η)-close with respect to F if there exist at least ηn^{ti-1} (x, y)-connectors of length i with respect to F in H. Let $\tilde{N}_{i, \eta}(x) = \{y : x$ and y are (i, η)-close with respect to $F\}$.

A subset $U \subset V$ is said to be (F, i, η)-closed in H if every pair of vertices in U are (i, η)-close with respect to F. If V is (F, i, η)-closed in H then we simply say that H is (F, i, η)-closed.

The following lemma given by Lo and Markström [21] referred to as absorption lemma provides an absorbing set for any sufficiently small vertex set if H is (F, i, η)-closed.

Lemma 3.1 ([Lemma 1.1 in [21]]) Let t and i be positive integers and $\eta > 0$. Then there exist η_1, η_2 such that $0 < \eta_2 \leq \eta_1 \leq \eta$ and an integer $n_0 = n_0(i, \eta)$ satisfying the following: Suppose that F is a k-graph of order t and H is an (F, i, η)-closed k-graph of order $n \geq n_0$. Then there exists a vertex subset $U \subset V(H)$ of size at most $\eta_1 n$ with $|U| \in t\mathbb{Z}$ such that, for every vertex set $W \subset V \setminus U$ of size at most $\eta_2 n$ with $|W| \in t\mathbb{Z}$, both $H[U]$ and $H[U \cup W]$ contain F-factors.

Lemma 3.2 also given in [21] allows us to find close pairs with respect to a k-partite k-graph F.

Lemma 3.2 ([Lemma 4.2 in [21]]) Let $k \geq 2$ be an integer and $\alpha > 0$. Given a k-partite k-graph F, there exist a constant $\eta_0 = \eta_0(k, F, \alpha) > 0$ and an integer $n_0 = n_0(k, F, \alpha)$ such that the following holds: Let H be a k-graph of order $n \geq n_0$ and $x, y \in V(H)$. If

$$|\{S \mid S \in N(x) \cap N(y) \text{ with } |N(S)| \geq \alpha n\}| \geq \alpha \left(\frac{n}{k-1}\right),$$

then x and y are $(F, 1, \eta)$-close for all $0 < \eta \leq \eta_0$.

The following lemma in [12] gives us a partition of $V(H)$ with bounded number of parts such that each of them is closed with respect to F.

Lemma 3.3 ([Lemma 6.3 in [12]]) Given $\delta > 0$, integers $c, k, t \geq 2$ and $0 < \eta \leq 1/c, \delta, 1/t$, there exists a constant $\eta' > 0$ such that the following holds for all sufficiently large n: Let F be a k-graph on t vertices. Assume a k-graph H on n vertices satisfies that $|\hat{N}_{F,1,\eta}(v)| \geq \delta n$ for any $v \in V(H)$ and every set of $c + 1$ vertices in $V(H)$ contains two vertices that are $(F, 1, \eta)$-close. Then we can find a partition of $V(H)$ into V_1, \ldots, V_r with $r \leq \min\{c, 1/\delta\}$ such that for any $j \in [r]$, $|V_j| \geq (\delta - \eta)n$ and V_j is $(F, 2^{c-1}, \eta')$-closed in H.

Actually here we use a variant absorbing method which is so-called lattice-based absorption developed by Han [9], the notation used were first given by Keevash and Mycroft [14]. Given a k-graph $H = (V, E)$ and a partition $\mathcal{P} = \{V_1, \ldots, V_r\}$ of V, the *index vector* $i_{\mathcal{P}}(S)$ of a subset $S \subset V$ with respect to \mathcal{P} is the vector whose j-th coordinate is the size of the intersection of S and V_j. A vector $v \in \mathbb{Z}^r$ is called an *s-vector* if all its coordinates are nonnegative and their sum equals to s. Given a k-graph F of order t and $\mu > 0$, a t-vector v is called a *μ-robust F-vector* if there are at least μt^t copies F' of F in H satisfying $i_{\mathcal{P}}(V(F')) = v$. Let $L_{\mathcal{P}, F}^\mu(H)$ be the set of all μ-robust F-vectors and $L_{\mathcal{P}, F}^\mu(H)$ be the lattice (i.e. the additive subgroup) generated by $L_{\mathcal{P}, F}^\mu(H)$. For $j \in [r]$, let $u_j \in Z^r$ be the j-th unit vector, namely, u_j has 1 on the j-th coordinate and 0 on other coordinates. A transferral is a vector of the form $u_j - u_i$ for some distinct $j, \ell \in [r]$.

The following lemma in [13] states that if $L_{\mathcal{P}, F}^\mu(H)$ contains all transferrals then H is closed.
Lemma 3.4 (Lemma 3.9 in [13]). Let \(i_0, k, r_0 > 0 \) be integers and let \(F \) be a \(k \)-graph on \(t \) vertices. Given constants \(\epsilon, \eta, \mu > 0 \), there exist \(\eta' > 0 \) and an integer \(\nu_0 \geq 0 \) such that the following holds for sufficiently large \(n \): Let \(H \) be a \(k \)-graph on \(n \) vertices with a partition \(\mathcal{P} = \{ V_1, \ldots, V_r \} \) such that \(r \leq r_0 \) and for each \(j \in [r] \), \(|V_j| \geq \epsilon n \) and \(V_j \) is \((F,i_0,\eta')\)-closed in \(H \). If \(u_i - u_{i'} \in L_{\nu_0}^{F}(H) \) for all \(1 \leq i < i' \leq r \), then \(H \) is \((F,i_0,\eta')\)-closed.

The following lemma helps us to count the number of copies of \(K^3(m) \).

Lemma 3.5 (Corollary 2 in [5]). Let \(F \) be a \(k\)-partite \(k \)-graph of order \(t \). For every \(\epsilon > 0 \), there exists a constant \(\mu > 0 \) and an integer \(n_0 \) such that every \(k \)-graph \(H \) of order \(n \geq n_0 \) with \(e(H) > \epsilon n^k \) contains at least \(\mu n^k \) copies of \(F \).

We also need the following lemma from [10].

Lemma 3.6 (Lemma 3.3 in [10]). Let \(0 < 1/n \leq \gamma < 1/100 \). Suppose that \(H \) is a 3-graph of order \(n \) with \(\delta_2(H) \geq (1/2 - \gamma)n \). Let \(X, Y \) be any bipartition of \(V(H) \) with \(|X|, |Y| \geq n/5 \). If \(H \) is not \(3\gamma \)-extremal, then \(H \) contains at least \(\gamma^2 n^3 \) XXY-edges and at least \(\gamma^2 n^3 \) XYY-edges.

Now it is ready to give the proof of our absorption lemma, we restate it here.

Lemma 3.7. Let \(0 < \epsilon_2 \ll \epsilon_1 \ll \gamma \ll 1 \) and \(m \) be an positive integer. Suppose that \(H \) is a 3-graph of order \(n \) with \(\delta_2(H) \geq (1/2 - \gamma)n \). If \(H \) is not \(3\gamma \)-extremal, then there exists a set \(W \subset V(H) \) with \(|W| \leq \epsilon_1 n \) and \(|W| \in 3m\mathbb{N} \) so that for any \(U \subset V(H) \setminus W \) with \(|U| \leq \epsilon_2 n \) and \(|U| \in 3m\mathbb{N} \), both \(H[W] \) and \(H[U \cup W] \) contain \(K^3(m) \)-factors.

Proof. Assume \(\gamma \) is sufficiently small and let \(\alpha = \gamma / 3 \). Let \(F = K^3(m) \). If we prove that \(H \) is \((F,i,\eta)\)-closed for some \(i > 0 \) and \(0 < \eta \ll \gamma \), then by Lemma 3.1 with \(t = 3m \) we obtain the desired absorbing set. So in the following it is sufficient to show that \(H \) is \((F,i,\eta)\)-closed for some parameters \(i > 0 \) and \(0 < \eta \ll \gamma \). The outline of the proof is as follows. The first step is, by applying Lemma 3.3 on \(H \), to obtain a partition \(\mathcal{P} \) of \(V(H) \) with \(|\mathcal{P}| \leq 2 \) such that each part is \((F,2,\eta')\)-closed and has large enough size. To show that all conditions of Lemma 3.3 are satisfied, we need to verify that for every vertex \(v \in V(H) \), \(\tilde{N}_{F,1,\eta}(v) \) is large enough (this can be done in Claim 2) and any three vertices contain at least one \((F,1,\eta)\)-close pair (this can be done by using Lemma 3.2). If \(|\mathcal{P}| = 1\), then we are done. Otherwise, we show \(H \) is closed by applying Lemma 3.4 on \(H \) and \(\mathcal{P} \), i.e. we prove that \(L^{\nu_0}_{\nu_0}^{F}(H) \) contains all transferrals (this can be done in Claims 3 and 4).

Claim 2. For each \(v \in V(H) \) and some \(0 < \eta \ll \gamma \), \(\tilde{N}_{F,1,\eta}(v) \geq (1/2 - 2\gamma)n \).

Proof of Claim 2: Fix \(v \in V(H) \), we have

\[
|N(v)| \geq \frac{(1/2 - \gamma)n(n - 1)}{2} = (1/2 - \gamma)\binom{n}{2}.
\]

(4)

Note that \(|S| \geq (1/2 - \gamma)n \geq \alpha n \) for any 2-elements set \(S \subset V(H) \). By Lemma 3.2, we have \(u \in \tilde{N}_{F,1,\eta}(v) \) if \(|N(v) \cap N(u)| \geq \alpha \binom{n}{2} \) for any \(0 < \eta \leq \eta_0 = \eta_0(k,F,\alpha) \). Let \(G \) be a bipartite graph with partitions \(N(v) \) and \(V(H) \setminus \{v\} \), and a 2-elements set \(S \in N(v) \)

THE ELECTRONIC JOURNAL OF COMBINATORICS 27(3) (2020), \#P3.47
and a vertex \(w \in V(H) \setminus \{v\} \) are adjacent in \(G \) if and only if \(S \cup \{w\} \in E(H) \). Then we have
\[
e(G) = \sum_{S \in \mathcal{N}(v)} d_G(S) = \sum_{S \in \mathcal{N}(v)} (|N(S)| - 1) < |\tilde{N}_{F,\eta}(v)| \cdot |N(v)| + n \cdot \alpha\left(\frac{n}{2}\right).
\]
Together with \(|N(S)| \geq (1/2 - \gamma)n \), we have
\[
|\tilde{N}_{F,\eta}(v)| \geq (1/2 - \gamma)n - 1 - \frac{n \cdot \alpha\left(\frac{n}{2}\right)}{(1/2 - \gamma)(\frac{n}{2})} \geq (1/2 - 2\gamma)n.
\]

Given any three vertices \(x_1, x_2, x_3 \in V(H) \), by (4) and the inclusion-exclusion principle, we have
\[
\sum_{1 \leq i < j < k \leq 3} |N(x_i) \cap N(x_j) - \sum_{i=1}^{3} |N(x_i)| + |\cap_{i=1}^{3} N(x_i)|
\geq 3(1/2 - \gamma)\left(\frac{n}{2}\right) - |\cup_{i=1}^{3} N(x_i)| + |\cap_{i=1}^{3} N(x_i)|
\geq 3\alpha\left(\frac{n}{2}\right) + \left(\frac{n}{2}\right) - |\cup_{i=1}^{3} N(x_i)| + |\cap_{i=1}^{3} N(x_i)|
\geq 3\alpha\left(\frac{n}{2}\right).
\]
By the pigeonhole principle, there exists at least one pair \(x_i, x_j \) so that \(|N(x_i) \cap N(x_j)| \geq \alpha\left(\frac{n}{2}\right) \), by Lemma 3.2, such a pair \(x_i, x_j \) is \((F, 1, \eta)\)-close.

Now apply Lemma 3.3 to \(F \) and \(H \) with \(\delta = (1/2 - 2\gamma) \), \(c = 2 \) and \(\eta \ll \gamma \), we have that there exist a constant \(\eta' > 0 \) and a partition \(\mathcal{P} \) of \(V \) with at most 2 parts such that each part has size at least \((1/2 - 3\gamma)n\) and is \((F, 2, \eta')\)-closed in \(H \). If \(|\mathcal{P}| = 1 \), then \(H \) is \((F, 2, \eta')\)-closed, as desired. So, we assume \(|\mathcal{P}| = 2 \) and \(\mathcal{P} = \{X, Y\} \). Since \(H \) is not \(3\gamma\)-extremal, by Lemma 3.6, both \(e(XXY) \) and \(e(XYY) \) are at least \(\gamma^2 n^3 \).

Define
\[
E_0 = \{xy : x \in X, y \in Y, d_X(xy) \geq \gamma^2 n, d_Y(xy) \geq \gamma^2 n\},
E_1 = \{xy : x \in X, y \in Y, d_X(xy) \geq \gamma^2 n, d_Y(xy) < \gamma^2 n\},
\]
and
\[
E_2 = \{xy : x \in X, y \in Y, d_X(xy) < \gamma^2 n, d_Y(xy) \geq \gamma^2 n\}.
\]
Then \(E(K^2(X, Y)) = E_0 \cup E_1 \cup E_2 \). So \(|E_i| \leq e(K^2(X, Y)) \leq \frac{n^2}{4} \) for any \(i \in \{0, 1, 2\} \). Let \(V_1 = X, V_2 = Y \). By Lemma 3.4, to show that \(H \) is closed it suffices to show \(u_1 - u_2 \in L^\mu_{\mathcal{P}, F}(H) \) for some \(\mu \). Or equivalently, we need to show that there exists an \(\ell \) such that \(H \) contains at least \(\mu n^{3m} \) copies of \(K^2(m) \) of types \((\ell, 3m - \ell) \) and \((\ell + 1, 3m - \ell - 1) \), respectively. We split the following proof into two cases according to the size of \(E_0 \).

Claim 3. There exists \(\mu_1 > 0 \) for any given integers \(0 \leq s, t \leq m \) with \(s + t = m \) such that the following holds: If \(|E_0| \geq \gamma^4 n^2 \), then \(H \) contains at least \(\mu_1 n^{3m} \) copies of \(K^2(m) \) of type \((m + s, m + t) \).
Proof of Claim 3: Choose $0 < \gamma_1 \ll \gamma$. Construct an auxiliary 4-partite 4-graph G_1 as follows. Let $V(G_1) = X' \cup X \cup Y \cup Y'$, where X' and Y' are copies of X' and Y', respectively; for $a \in X'$, $x \in X$, $y \in Y$, $b \in Y'$, $axyb \in E(G_1)$ if and only if $axy, xyb \in H$. Then $|V(G_1)| = 2n$, and

$$|G_1| \geq \sum_{xy \in E_0} d_X(xy) d_Y(xy) \geq 4^2 n^2 \cdot \gamma^2 n \cdot \gamma^2 n = \gamma^8 / 16 |V(G_1)|^4.$$

Hence, by Lemma 3.5, there exists a positive constant μ_1 such that G_1 contains at least $\mu_1 n^3 m$ copies of $K^4(m)$. Fix a pair (s, t), a copy of $K^4(s, m, m, t)$ is contained in at most \binom{|X'|}{t} (|Y'|)^s \leq n^s t = n^m$ copies of $K^4(m, m, m, m)$. Therefore, G_1 contains at least $\mu_1 n^3 m$ copies of $K^4(s, m, m, t)$ for some $\mu_1' > 0$. Observe that a copy of $K^4(s, m, m, t)$ in G_1 gives us a copy of $K^3(m)$ of type $(m + s, m + t)$. Then H contains at least $\mu_1 n^3 m$ copies of $K^3(m)$ of type $(m + s, m + t)$.

Claim 4. Given integers $0 \leq s, t \leq m$ with $s + t = m$, there exists $\mu'_1 > 0$ such that the following holds: If $|E_0| < \gamma^3 n^2$, then H contains at least $\mu'_1 n^3 m$ copies of $K^3(m)$ of the same type either $(2m + s, t)$ or $(t, 2m + s)$.

Proof of Claim 4: Without loss of generality, assume that $|E_1| \leq |E_2|$. First, we show $3\gamma^2 n^2 \leq |E_1| \leq \frac{1}{8} n^2$. The upper bound is trivial by the assumption that $|E_1| \leq |E_2|$. Now suppose that $|E_1| < 3\gamma^2 n^2$. Then, we have

$$e(XXY) = \frac{1}{2} \sum_{x \in X, y \in Y} d_X(xy)$$

$$< \frac{1}{2} (|E_0| \cdot |X| + |E_1| \cdot |X| + |E_2| \cdot \gamma^2 n)$$

$$< \frac{1}{2} \left(\gamma^4 + 2 \gamma^2 \right) n^2 \cdot \left(\frac{1}{2} + 3 \gamma \right) n + \frac{n^2}{4} \cdot \gamma^2 n$$

$$< \gamma^2 n^3,$$

a contradiction to $e(XXY) \geq \gamma^2 n^3$. Thus, we have $|E_1| \geq 3\gamma^2 n^2$. Note that for $xy \in E_1$, we have $d_X(xy) \geq (1/2 - \gamma - \gamma^2) n$ and hence $(1/2 - \gamma - \gamma^2) n \leq |X|$, $|Y| \leq (1/2 + \gamma + \gamma^2) n$.

Let $Y' = \{ y \in Y : d_{E_0}(y) \leq \gamma^2 n \}$. Since $|E_0| \leq \gamma^4 n^2$, there are at most $\gamma^2 n$ vertices y in Y such that $d_{E_0}(y) > \gamma^2 n$. Thus we have $|Y'| \geq |Y| - \gamma^2 n$.

We claim that either $d_{E_1}(y) \leq 3\gamma^2 n$ or $d_{E_1}(y) \geq |X| - 3\gamma n$ for all $y \in Y'$. Fix $y \in Y'$. Let e_{xy} be the number of edges x_1x_2y of the form XXY such that exactly one of $\{x_1y, x_2y\}$ belongs to E_1. On one hand, we have

$$e_y \geq (\frac{1}{2} - \gamma - \gamma^2) n \cdot d_{E_1}(y) \cdot d_{E_1}(y) \geq (|X| - 2\gamma n - 2\gamma^2 n - d_{E_1}(y)) \cdot d_{E_1}(y),$$

since for each $x \in N_{E_1}(y)$, there are at least $(1/2 - \gamma - \gamma^2) n - d_{E_1}(y)$ edges $xx'y$ of the form XXY with $x' \in N_{E_0}(y) \cup N_{E_2}(y)$ and $|X| \leq (1/2 + \gamma + \gamma^2) n$. On the other hand, we have

$$e_y \leq |X| \cdot d_{E_0}(y) + \gamma^2 n \cdot d_{E_2}(y) \leq 2\gamma^2 n |X|,$$

\[\text{THE ELECTRONIC JOURNAL OF COMBINATORICS 27(3) (2020), #P3.47}\]
since \(d_X(x'y) < \gamma n^2\) for \(x'y \in E_2\), and the last inequality holds since \(d_{E_0}(y) \leq \gamma n^2\) and \(d_{E_2}(y) \leq |X|\). Therefore, we have
\[
(|X| - 2\gamma n - 2\gamma^2 n - d_{E_1}(y)) \cdot d_{E_1}(y) \leq 2\gamma^2 n |X|.
\]
Solve the inequality we have either \(d_{E_1}(y) \leq 3\gamma^2 n\) or \(d_{E_1}(y) \geq |X| - 3\gamma n\) for all \(y \in Y'\).

Let \(Y_0 = \{y : d_{E_1}(y) \geq |X| - 3\gamma n, y \in Y'\}\). Clearly,
\[
|Y_0| \geq \frac{|E_1| - (|Y| - |Y'|)|X| - |Y| \cdot 3\gamma^2 n}{|X|} \geq 3\gamma^2 n^2 - \gamma^2 n |X| - |Y| \cdot 3\gamma^2 n \geq \gamma^2 n.
\]

Now we claim that there are at least \((1 - 14\gamma)(|X|)\) pairs \(x_1x_2 \in \binom{X}{2}\) such that \(d_{Y_0}(x_1x_2) \geq \frac{1}{10} \gamma^2 n\). Clearly,
\[
e(XXY_0) = \frac{1}{2} \sum_{x \in X, y \in Y_0} d_X(xy) \geq \frac{|Y_0|(1/2 - \gamma - \gamma^2)n(|X| - 3\gamma n)}{2} \geq \frac{|Y_0||X|(1 - 5\gamma)|X|(1 - 7\gamma)}{2} \geq (1 - 12\gamma)\left(\frac{|X|}{2}\right)|Y_0|.
\]

On the other hand, if the number of pairs \(x_1x_2 \in \binom{X}{2}\) with \(d_{Y_0}(x_1x_2) \geq \frac{1}{10} \gamma^2 n\) is less than \((1 - 14\gamma)(|X|)\), we have
\[
e(XXY_0) = \sum_{x_1x_2 \in \binom{X}{2}} d_{Y_0}(x_1x_2)
\leq (1 - 12\gamma)\left(\frac{|X|}{2}\right)|Y_0| - 3\gamma\left(\frac{|X|}{2}\right)|Y_0| + 14\gamma\left(\frac{|X|}{2}\right)\frac{1}{10}|Y_0|
\leq (1 - 12\gamma)\left(\frac{|X|}{2}\right)|Y_0| - 3\gamma\left(\frac{|X|}{2}\right)|Y_0|
\leq (1 - 12\gamma)\left(\frac{|X|}{2}\right)|Y_0|,
\]
a contradiction.

Next, we claim that there are at least \((\frac{1}{2} - 11\gamma)(|X|)\) pairs \(x_1x_2 \in \binom{X}{2}\) such that
\[d_X(x_1x_2) \geq \gamma n. \] In fact,}

\[
\sum_{x_1x_2 \in (\frac{X}{2})} d_X(x_1x_2) = \sum_{x_1x_2 \in (\frac{X}{2})} d_H(x_1x_2) - \sum_{x_1x_2 \in (\frac{X}{2})} d_Y(x_1x_2)
\geq \left(\frac{1}{2} - \gamma \right) n \cdot \left(\frac{|X|}{2} \right) - \frac{1}{2} \sum_{x \in X, y \in Y} d_X(xy)
\geq \left(\frac{1}{2} - \gamma \right) n \cdot \left(\frac{|X|}{2} \right) - \frac{1}{2} \left(\frac{\gamma^4 n^2}{8} \cdot |X| + \frac{n^2}{4} \cdot \gamma^2 n \right)
\geq \left(\frac{1}{2} - \gamma \right) n \cdot \left(\frac{|X|}{2} \right) - \frac{n}{2} \left(\frac{\gamma^4 n \cdot |X| + \frac{n^2}{8} \cdot |X| + \frac{n^2}{4} \cdot \gamma^2 n} \right)
\geq \left(\frac{1}{4} - 3\gamma \right) n \cdot \left(\frac{|X|}{2} \right),
\]

the third inequality holds since \(d_X(xy) \leq |X| \) for any \(xy \in E_0 \cup E_1 \), \(d_H(xy) < \gamma^2 n \) for \(xy \in E_2 \) and \(|E_0| < \gamma^2 n^2 \), \(|E_1| \leq \frac{n^2}{8} \) and \(|E_2| \leq \frac{n^2}{4} \); the last inequality holds since \((1/2 - 3\gamma)n \leq |X| \leq (1/2 + 3\gamma)n \).

Since

\[\left(\frac{1}{4} - 3\gamma \right)n \left(\frac{|X|}{2} \right) - \gamma n \left(\frac{|X|}{2} \right) \geq \frac{1}{4} - 4\gamma \left(\frac{|X|}{2} \right) \geq \left(\frac{1}{2} - 11\gamma \right) \left(\frac{|X|}{2} \right), \]

there are at least \(\left(\frac{1}{2} - 11\gamma \right) \left(\frac{|X|}{2} \right) \) pairs \(x_1x_2 \in \left(\frac{X}{2} \right) \) such that \(d_X(x_1x_2) \geq \gamma n \).

Therefore, there are at least \((1 - 14\gamma + \frac{1}{2} - 11\gamma - 1)\left(\frac{|X|}{2} \right) \geq \frac{n^2}{100} \) pairs \(x_1x_2 \in \left(\frac{X}{2} \right) \) such that \(d_X(x_1x_2) \geq \gamma n \) and \(d_Y(x_1x_2) \geq \frac{1}{10}\gamma^2 n \). As what we have done in the proof of Claim 3, define an auxiliary 4-graph \(G_2 \) as follows. Let \(V(G_2) = X' \cup X \cup Y \), where \(X' \) is a copy of \(X \); for \(x' \in X', x_1, x_2 \in X, y \in Y, x'x_1x_2y \in E(G_2) \) if and only if \(x'x_1x_2 \in H \). Hence, \(n < |V(G_2)| = n + |X| < 2n \), and

\[|G_2| \geq \gamma n \cdot \frac{\gamma^2}{10} n \cdot \frac{n^2}{100} > \gamma' |V(G_2)|^4. \]

By Lemma 3.5, there exists a positive constant \(\mu_2 \) such that \(G_2 \) contains at least \(\mu_2 n^{4m} \) copies of \(K^4(m) \). As the same argument shown in the proof of Claim 3, \(H \) contains at least \(\mu'_2 n^{3m} \) copies of \(K^3(m) \) of type \((2m + s, t)\) for some positive \(\mu'_2 \).

This completes the proof of Lemma 2.1. \(\square \)

4 Extremal case

In this section, we prove Lemmas 2.3 and 2.4. Let \(G \) and \(H \) be two \(k \)-graphs on the same vertex set \(V \) and let \(G \setminus H \) be the graph \((V, E(G) \setminus E(H))\). Suppose that \(|V| = n \) and \(0 \leq \alpha \leq 1 \), we say a vertex \(v \in H \) \(\alpha \)-good with respect to \(G \) if \(d_{G \setminus H}(v) \leq \alpha n^{k-1} \), otherwise call it \(\alpha \)-bad. We call \(H \) \(\alpha \)-good with respect to \(G \) if all of vertices in \(H \) are \(\alpha \)-good with respect to \(G \). First we deal with a special case when \(H \) is \(\alpha \)-good with respect to the
extremal graph. We need a lemma from [13] which follow with some extra work from a perfect packing theorem of Lu and Székely [22]. Given \(V = A \cup B \), let \(D[A, B] \) be the \(k \)-graph on \(V \) consisting of all edges of type \(AB^{k-1} \).

Lemma 4.1 (Lemma 6.1 in [13]). Let \(K \) be a complete \(k \)-partite \(k \)-graph of order \(t \) with the first part of size \(a_1 \). Given \(0 < \rho < 1/m \) and a sufficiently large integer \(n \), suppose \(H \) is a \(k \)-graph on \(n \in t\mathbb{Z} \) vertices with a partition of \(V(H) = X \cup Y \) such that \(a_1|Y| = (t-a_1)|X| \). Furthermore, assume that \(H \) is \(\rho \)-good with respect to \(D[X, Y] \). Then \(H \) contains a \(K \)-factor.

Lemma 4.2. Let \(\alpha, \epsilon \) be any given constants with \(0 < \epsilon \ll \alpha \) and \(m \) be an integer. Suppose that \(H \) is a 3-graph with large enough order \(n \) and \(V(H) \) has a partition \(A \cup B \) with \(|A| - |B| < \epsilon n \) such that \(H \) is \(\alpha \)-good with respect to \(B[A, B] \). Then \(H \) contains a \(K^3(m) \)-tiling covering all but at most \(2\epsilon n \) vertices. Furthermore, if \(n \in 12m\mathbb{Z} \) and \(|A| = |B| \). Then \(H \) contains a \(K^3(m) \)-factor.

Proof. Without loss of generality, assume \(|A| \leq |B| \). Let \(|A| = 6mn' + s \) and \(|B| = 6mn' + t \), where \(0 \leq s < 6m \) and \(t = |B| - |A| + s < \epsilon n + s \). Let \(A_0 \) and \(B_0 \) be the sets obtained from \(A \) and \(B \) by deleting \(s \) and \(t \) vertices from \(A \) and \(B \), respectively. Then \(|A_0 \cup B_0| = 12mn' \in 12m\mathbb{N} \). Let \(H_0 = H[A_0 \cup B_0] \) and \(n_0 := V(H_0) \). Then \(H_0 \) must be \(\alpha' \)-good with respect to \(B[A_0, B_0] \) for some constant \(\alpha' > 0 \). Partition \(A_0 \) into three subsets \(A_1, A_2, A_2' \) with \(|A_1| = 3mn', |A_2| = mn' \) and \(|A_2'| = 2mn' \). Let \(H_1 = H_0[A_1 \cup B_0] \) and \(H_2 = H_0[A_2 \cup A_2'] \). Then we have \(|V(H_1)| = \frac{3}{4}n_0 \) and \(|V(H_2)| = \frac{1}{4}n_0 \). One can examine that \(H_1 \) is \(\frac{16}{9}\alpha' \)-good with respect to \(D[A_1, B_0] \) and \(H_2 \) is \(16\alpha' \)-good with respect to \(D[A_2, A_2'] \). Set \(K = K^3(m) \). Applying Lemma 4.1 to \(H_1 \) and \(H_2 \) with parameters \(\frac{16}{9}\alpha' \) and \(16\alpha' \), we obtain \(K^3(m) \)-factors \(M_1 \) in \(H_1 \) and \(M_2 \) in \(H_2 \), respectively. Therefore, \(M_1 \cup M_2 \) is a desired \(K^3(m) \)-factor of \(H_0 \).

If \(n \in 12m\mathbb{Z} \) and \(|A| = |B| \) then \(H_0 = H \). Hence \(M_1 \cup M_2 \) is a \(K^3(m) \)-factor of \(H \). \(\square

Remark: Note that, in the above proof, the \(K^3(m) \)-factors \(M_1 \) and \(M_2 \) have the following property:

(1) Each member in \(M_1 \) (resp. \(M_2 \)) has type \((m, 2m) \) (resp. \((3m, 0) \)) with respect to the partition \(A \cup B \), and

(2) both \(|M_1| (\sim \frac{n}{2}) \) and \(|M_2| (\sim \frac{n}{12}) \) are large enough.

The following classical result [16] also will be used.

Lemma 4.3 (Kővári-Sós-Turán, 1954). For all \(t \geq s \geq 2 \), the Turán function of the complete bipartite graph \(K^2(s, t) \) is

\[
\text{ex}_2(n, K^2(s, t)) \leq \frac{1}{2}((t-1)^{1/s}n^{2-1/s} + (s+1)n).
\]

4.1 Proofs of Lemmas 2.3 and 2.4

Since \(H \) is \(\gamma \)-extremal, there is a partition \(V = A \cup B \) such that \(|A| \leq |B| \leq \lfloor n/2 \rfloor \) and \(H \) is \(\gamma \)-extremal with respect to \(B[A, B] \). Set \(\gamma_1 = \sqrt[3]{7} \). By the definition of \(\gamma \)-extremal, all but at most \(\gamma_1 n \) vertices in \(V \) are \(\gamma_1 \)-good with respect to \(B[A, B] \). Let \(A_0 \) and \(B_0 \) be
the sets of γ_1-bad vertices in A and B, respectively. Then $|A_0 \cup B_0| \leq \gamma_1n$. For a vertex $x \in A_0 \cup B_0$, we call it B-acceptable if $|E(H_x) \cap E(K^2(A, B))| \geq \frac{m}{2}$; otherwise we call it A-acceptable. Note that $|E(H_x)| \geq \delta_1(H) \geq (n-1)(\lceil n/2 \rceil - 1)/2$. If x is A-acceptable then $|E(H_x) \cap (\gamma_2 2)| \geq \frac{2}{3}(\gamma_2 2)$ and $|E(H_x) \cap (\gamma_3 2)| \geq \frac{2}{3}(\gamma_3 2)$. Now move all A-acceptable vertices into A and B-acceptable vertices into B, we get a new partition $V = A' \cup B'$ with the property that

1) $n/2 - \gamma_1n \leq |A'|, |B'| \leq n/2 + \gamma_1n$ (since $|A_0 \cup B_0| \leq \gamma_1n$);
2) H γ_2-contains $B[A', B']$ for some constant $\gamma_2 \gg \gamma_1$.

Moreover, we can partition A' into A_1, A_2 so that:

A1) Every vertex in A_1 is γ_2-good with respect to $B[A', B']$;
A2) $|A_2| \leq \gamma_1n$;
A3) for every $x \in A_2$, $E(H_x) \cap (\gamma_2 A') \geq \frac{2}{3}(\gamma_2 A')$ and $|E(H_x) \cap (\gamma_3 B')| \geq \frac{2}{3}(\gamma_3 B')$.

Similarly, there is a partition B_1, B_2 of B' so that:
B1) Every vertex in B_1 is γ_2-good with respect to $B[A', B']$;
B2) $|B_2| \leq \gamma_1n$;
B3) for every $x \in B_2$, $E(H_x) \cap E(K^2(A', B')) \geq \frac{n^2}{50}$.

Our strategy is to find vertex-disjoint $K^3(m)$-tiling K_1, K_2, K_3, K_4 in H so that the union of them is a $K^3(m)$-factor of H, in which K_1 is so-called 'parity breaking' copies dealing with the case $|B'| \not\equiv 0 \pmod{2m}$, K_2 covers all vertices in $A_2 \cup B_2$, and K_3 is used to guarantee the divisibility condition required by Lemma 4.2 after removing the vertices covered by K_1 and K_2. Furthermore, K_1, K_2, K_3 are all small enough such that the graph obtained by deleting K_1, K_2, K_3 is γ_3-good for some constant γ_3. Finally, we apply Lemma 4.2 to obtain K_4.

In Claims 5 and 6, we show that such 'parity breaking' copies of $K^3(m)$ (resp. $K^3_{m,m}$) do exist.

Claim 5. If $\delta_2(H) \geq n/2 + m^{1/m} n^{1-1/m}$, then H contains either $2m - 1$ disjoint copies of $K^3(m)$ of type $(m + 1, 2m - 1)$ or $2m - 1$ disjoint copies of $K^3(m)$ of type $(3m - 1, 1)$.

Proof of Claim 5: If we can find a copy of $K^3(m)$ of type $(m + 1, 2m - 1)$ or $(3m - 1, 1)$ avoiding any given vertex set $W \subset V$ with $|W| \leq C$ for some constant $C \geq 6m^2$, then we can greedily find $2m - 1$ disjoint copies of $K^3(m)$ of desired type because we always can find a new copy of $K^3(m)$ avoiding the vertices of copies of $K^3(m)$ we have found (since $C \geq 6m^2$). So the rest of the proof is to show the statement is true. Choose any vertex set $W \subset V$ with $|W| \leq C$ for some constant $C \geq 6m^2$. We split the proof into two cases according to the size of B'.

First assume that $|B'| \leq n/2$. For any $a \in A', b \in B'$, we have $|N_H(ab) \cap A'| \geq m^{1/m} n^{1-1/m}$ since $\delta_2(H) \geq n/2 + m^{1/m} n^{1-1/m}$. Construct an auxiliary bipartite graph G as follows: set $V(G) = A' \cup B'$ and $E(G)$ consists of all pairs ab with $a \in A', b \in B'$ and $|N_H(ab) \cap B'| \geq (1 - \sqrt{\gamma_2})|B'|$. Since $H \gamma_2$-contains $B[A', B']$, there are at most $\gamma_2 n^3 A'B'B'$-edges missing in H. Clearly, we have that at most $2\gamma_2 n^3/\sqrt{\gamma_2} \leq 4\sqrt{\gamma_2} n^2$ pairs ab missing in G. By double-counting the number of ordered pairs (v, e) with $v \in
$A' \setminus W$ and $e \in N_H(v) \cap E(G - W)$, we have
\[
\sum_{v \in A' \setminus W} |N_H(v) \cap E(G - W)| \geq (|G| - Cn) \cdot (m^{1/m}n^{1-1/m} - |A' \cap W|).
\]
Note that $(|G| - Cn)(m^{1/m}n^{1-1/m} - |A' \cap W|)/|A' \setminus W| \geq \frac{1}{2}(m - \frac{1}{2})^{1/m}n^{2-1/m}$. We can choose a vertex $v \in A' \setminus W$ such that $|N_H(v) \cap E(G - W)| \geq \frac{1}{2}(m - \frac{1}{2})^{1/m}n^{2-1/m}$. Lemma 4.3 implies that there exists a copy of $K^2(m)$, denoted by M, in $N_H(v) \cap E(G - W)$. By the definition of $E(G)$,
\[
\left| \left(\bigcap_{e \in M} N_H(e) \right) \cap (B' \setminus W) \right| \geq |B'| - m^2\sqrt{\gamma_2}|B'| - C \geq m - 1
\]
for sufficiently large n and small γ_2. Pick such any $m - 1$ vertices together with v and $V(M)$, we obtain a copy of $K^3(m)$ of type $(m + 1, 2m - 1)$ avoiding W.

Now assume $|B'| > n/2$. For any pair $aa' \in \binom{A'}{2}$, we have $|N_H(aa') \cap B'| \geq m^{1/m}n^{1-1/m}$. Construct another auxiliary graph G' as follows: set $V(G') = A'$ and $E(G')$ consists of all pairs $aa' \in \binom{A'}{2}$ with $|N_H(aa') \cap A'| \geq \frac{1}{2}(m - \frac{1}{2})^{1/m}n^{2-1/m}$. Similarly, since there are at most $\gamma_2 n^3 A'A'A'$-edges missing in H, there are at most $3\gamma_2 n^3/(\sqrt{\gamma_2}|A'|) \leq 8\sqrt{\gamma_2} n^2$ edges aa' missing in G'. By double-counting the number of ordered pairs (v, e) with $v \in B' \setminus W$ and $e \in E(G' - W)$, we have
\[
\sum_{v \in B' \setminus W} |N_H(v) \cap E(G' - W)| \geq (|G'| - C|A'|) \cdot (m^{1/m}n^{1-1/m} - |B' \cap W|).
\]
Note that $(|G'| - C|A'|)(m^{1/m}n^{1-1/m} - |B' \cap W|)/|B' \setminus W| \geq \frac{1}{2}m^{1/m}|A'|^{2-1/m}$. We can choose a vertex $v \in B' \setminus W$ such that $|N_H(v) \cap E(G' - W)| \geq \frac{1}{2}m^{1/m}|A'|^{2-1/m}$. Lemma 4.3 implies that there is a copy of $K^2(m)$, denoted by M', in $N(v) \cap E(G' - W)$. By the definition of $E(G')$,
\[
\left| \bigcap_{e \in M'} N(e) \cap (A' \setminus W) \right| \geq |A'| - m^2\sqrt{\gamma_2}|A'| - C \geq m - 1.
\]
Pick any such $m - 1$ vertices together with v and $V(M')$, we obtain a copy of $K^3(m)$ of type $(3m - 1, 1)$ avoiding W. This completes the proof of claim 5. \hfill \Box

Claim 6. If $\delta_2(H)$ satisfies (2) in Theorem 1.4, then H contains a copy K of $K^3_{m,m}$ of type $(m + 1, 2m - 1)$ or $(3m - 1, 1)$, unless $|B'| = \lfloor n/2 \rfloor$ when $n \equiv 1 \pmod{4}$. Furthermore, for any $0 \leq t \leq m$, H contains a copy K' of $K^3_{t,t}$ of type $(m + 2t, 2m - 2t)$ disjoint from K.

Proof of Claim 6: If there exists a pair $a_1a_1' \in \binom{A'}{2}$ such that $|N_H(a_1a_1') \cap B'| \geq 2\gamma_1 n$, then we can choose m distinct vertices $b_1, \ldots, b_m \in N_H(a_1a_1') \cap B_1$ since $2\gamma_1 n - |B_2| > m$. Note that for a γ_2-good vertex $b \in B'$,
\[
|E(H_b) \cap E(K^2(A', B'))| \geq |A'||B'| - \gamma_2 n^2 > \frac{m}{m + 1}|A'||B'|,
\]

\[\text{THE ELECTRONIC JOURNAL OF COMBINATORICS 27(3) (2020), #P3.47} \]
we have
\[\left| \bigcap_{i=1}^{m} E(H_{a_i}) \cap E(K^2(A', B')) \right| \geq \frac{1}{m+1}|A'||B'|. \]

Thus \(\bigcap_{i=1}^{m} E(H_{a_i}) \cap E(K^2(A', B')) \) contains a matching of order \(m - 1 \), choose such a matching \(a_2 b_2', \ldots, a_m b_m' \). So the subgraph induced by \(\{a_1', a_1, a_2, \ldots, a_m\} \cup \{b_1, \ldots, b_m\} \cup \{b_2', \ldots, b_m'\} \) of \(H \) contains a copy of \(K_{3, m} \), of type \((m + 1, 2m - 1) \).

Now assume \(|N_H(a_1 a_2) \cap B'| < 2\gamma_1 n \) for any \(a_1 a_2 \in (\frac{3}{2}) \). Then \(|N_H(a_1 a_2) \cap A'| > n/2 - 2 - 2\gamma_1 n \). Let \(F \) be the spanning subgraph consisting of all the edges of type \(A' A' B' \) of \(H \). We claim that if there is some \(b \in B' \) such that \(|F_b| > 2m\gamma_1 n \), then \(H \) contains a copy of \(K_{3, m, m} \), of type \((3m - 1, 1) \). In fact, assume that there is some \(b \in B' \) with \(|F_b| > 2m\gamma_1 n \). First, suppose that \(F_b \) contains a matching of size \(m \). Let \(a_1 a_1', \ldots, a_m a_m' \) be a matching of \(F_b \). Since
\[\left| \bigcap_{i=1}^{m} N_H(a_i a_i') \cap A' \right| > m(n/2 - 2 - 2\gamma_1 n) - (m - 1)|A'| > |A'|/2, \]
one can choose \(m - 1 \) distinct vertices \(a'_1, \ldots, a'_{m-1} \in \bigcap_{i=1}^{m} N_H(a_i a_i') \cap A' \). And then the edges \(a_i a_i', a_i b \in E(H) \) \((i \in [m], j \in [m - 1]) \) form a copy of \(K_{3, m, m} \) of type \((3m - 1, 1) \).

Now suppose that \(M \) is a maximum matching in \(F_b \) of size at most \(m - 1 \). Clearly, \(V(M) \) is a vertex cover of \(F_b \) and thus there exists a vertex \(a \) in \(V(M) \) of degree at least \(\frac{2m\gamma_1 n}{2(m-1)} \geq |A_a| + m \). That is to say, there are \(m \) distinct \(\gamma_2 \)-good vertices \(a'_1, \ldots, a'_m \) in \(N_{A'}(ab) \). Note that for a \(\gamma_2 \)-good vertex \(a'_i \in A' \), \(|E(H_{a_i'}) \cap (\frac{A'}{2})| \geq (\frac{1}{2}) - \gamma_2 n^2 > \frac{m}{m+1}(\frac{1}{2}) \), we have
\[\left| \bigcap_{i=1}^{m} E(H_{a_i'}) \cap (\frac{A'}{2}) \right| \geq \frac{1}{m+1}(\frac{A'|}{2}).\]

Thus \(\bigcap_{i=1}^{m} E(H_{a_i'}) \cap (\frac{A'}{2}) \) contains a matching of order \(m - 1 \), choose such a matching \(a_2 a_2', \ldots, a_m a_m' \). Therefore, the subgraph of \(H \) induced by \(\{a'_1, \ldots, a_m\} \cup \{a_2, a_2', \ldots, a_m, a_m'\} \cup \{a, b\} \) contains a copy of \(K_{3, m, m} \), of type \((3m - 1, 1) \), as desired. So the rest of the case is to show that such a vertex \(b \in B' \) with \(|F_b| \geq 2m\gamma_1 n \) does exist.

If \(n \equiv 1 \pmod{4} \) and \(|B'| \leq \lfloor n/2 \rfloor - 1 \) or \(n \equiv 1 \pmod{4} \) and \(|B'| \leq \lfloor n/2 \rfloor - 1 \), then for every pair \(\{a, b \} \in A' \), \(b \in B' \), we have \(|N_H(ab) \cap A'| \geq 1 \). Hence for any \(b \in B' \), we have \(\delta(F_b[A']) \geq 1 \) and so \(|F_b| \geq |A'|/2 \geq 2m\gamma_1 n \), we are done. Now assume \(|B'| \geq \lfloor n/2 \rfloor \). Then for any pair \(aa' \in (\frac{3}{2}) \), we have \(|N_H(aa') \cap B'| \geq 1 \). Since
\[\left(\frac{|A'|}{2}\right) / |B'| \geq \left(\frac{n/2 - \gamma_1 n}{2}\right) / (n/2 + \gamma_1 n) > 2m\gamma_1 n, \]
there exist at least one vertex \(b \in B' \) such that \(|F_b| > 2m\gamma_1 n \).

Next, we show that \(H \) contains a copy \(K' \) of \(K_{3, m, m} \), of type \((m + 2t, 2m - 2t) \) disjoint from \(K \), \(0 \leq t \leq m \). Choose any \(m \) distinct \(\gamma_2 \)-good vertices \(a_1, \ldots, a_t \in A' \setminus V(K) \) and \(b_{t+1}, \ldots, b_m \in B' \setminus V(K) \). Since \(|E(H_{a_i}) \cap (\frac{A'}{2})| \geq (\frac{1}{2}) - \gamma_2 n^2 \), there exists at least \(6m + 1 \) vertices \(a' \in A' \) with \(|N_{H_{a_i}}(a') \cap A'| \gg |A'| - \sqrt{2}n \), that is we can choose \(t \) distinct
vertices $a'_1, \ldots, a'_t \in A' \setminus V(K)$ such that $|N_{A'}(a_i)| \geq |A'| - \sqrt{2n}$ for $1 \leq i \leq t$. Similarly, since $|E(H_b) \cap E(K^2(A', B'))| \geq |A'|-\gamma^2n^2$, we can choose $m - t$ distinct vertices $b'_1, \ldots, b'_m \in B' \setminus V(K)$ such that $|N_{A'}(b_i)| \geq |A'|-\sqrt{2n}$ for $t + 1 \leq i \leq n$. Therefore, we have $|\cap_{i=1}^{m} N_{A'}(a_i)| \cap \cap_{i=t+1}^{m} N_{A'}(b_i)| \geq |A'|/2$. So we can pick m vertices $a''_1, \ldots, a''_m \in \cap_{i=1}^{m} N_{A'}(a_i) \cap \cap_{i=t+1}^{m} N_{A'}(b_i)$ different from $a_i, b_i, a'_i, b'_i, i \in [m]$. Clearly, the subgraph of H induced by $\{a_i, a'_i : i \in [t]\} \cup \{b_i, b'_i : t + 1 \leq i \leq m\} \cup \{a''_i : i \in [m]\}$ contains a copy of $K_{3,m,m}^3$ of type $(m + 2t, 2m - 2t)$. This completes the proof.

The next claim shows that we can find a small $K^3(m)$-tiling to cover the vertices in $A_2 \cup B_2$.

Claim 7. Suppose that $\delta_2(H) \geq \left\lceil \frac{n}{2} \right\rceil - 1$. Let $W \subset V(H)$ with $|W| \leq \gamma n$. Every vertex $x \in (A_2 \cup B_2) \setminus W$ can be covered by a copy of $K^3(m)$ of type $(m, 2m)$ avoiding W.

Proof of Claim 7: Recall that every vertex in $A_1 \cup B_1$ is γ_2-good with respect to $B[A, B]$. Let G be the graph on vertex set V and edge set consisting of all pairs $xy \in (V_2)$ satisfying $d_{B[A]}(xy) \leq \sqrt{\gamma_2n}$. By the definition of γ_2-good, for each vertex $x \in A_1 \cup B_1$, we have $d_G(x) \geq n - \sqrt{\gamma_2n}$.

If $x \in A_2 \setminus W$, by A3), we have $|H_x[B_1 \setminus W]| \geq \frac{2}{3}|B_2| - \gamma_1 n^2 - 2\gamma_2^2 \geq \frac{1}{3}|B_2|$. Hence $|E(H_x[B_1 \setminus W]) \cap E(G)| \geq \frac{1}{3}|B_2|$. Thus, by Lemma 4.3, $H_x[B_1 \setminus W] \cap G$ contains a copy of $K^3(m)$, denoted by M. Since $d_{H}(e) \geq |A'| - \sqrt{\gamma_2n}$ for any $e \in M$, we have $|\cap_{e \in M} N_{H}(e) \cap A'| \geq |A'|-m^2\sqrt{\gamma_2n}$. Hence we can choose $\{a_1, \ldots, a_{m-1}\} \subset \cap_{e \in M} N_{H}(e) \cap A' \setminus W$. Therefore, the subgraph of H induced by $\{x, a_1, \ldots, a_{m-1}\} \cup V(M)$ contains a copy of $K^3(m)$ of type $(m, 2m)$ covering x.

Now suppose $x \in B_2 \setminus W$. B3) together with A2), B2) imply that

$$|E(H_x) \cap E(G[A_1 \setminus W, B_1 \setminus W])| \geq \frac{n^2}{50} - 2\gamma_1 n^2 - \gamma_2 n^2 - \sqrt{\gamma_2n} \geq \frac{1}{100}|A'||B'|.$$

By Lemma 4.3, $H_x \cap G[A_1 \setminus W, B_1 \setminus W]$ contains a copy of $K^3(m)$ avoiding W, denoted by M'. Since $d_{H}(e) \geq |B'| - \sqrt{\gamma_2n}$ for any $e \in M'$, we have $|\cap_{e \in M} N_{H}(e) \cap B'| \geq |B'|-m^2\sqrt{\gamma_2n}$. Hence we can choose $m-1$ distinct vertices $b_1, \ldots, b_{m-1} \in \cap_{e \in M} N_{H}(e) \cap B' \setminus W$. Therefore, the subgraph of H induced by $\{x, b_1, \ldots, b_{m-1}\} \cup V(M)$ contains a copy of $K^3(m)$ of type $(m, 2m)$ covering x, as desired.

Proof of Lemma 2.3: Let $t \equiv |B'| \pmod{2m}$ such that $0 \leq t \leq 2m - 1$. Let K_i be $2m - t$ disjoint copies of $K^{3}(m)$ of type $(m + 1, 2m - 1)$ or t disjoint copies of $K^{3}(m)$ of type $(3m - 1, 1)$ in H guaranteed by Claim 5. Note that $|V(K_i)| \leq 6m^2$ is small enough. We can apply Claim 7 recursively to H to obtain a $K^3(m)$-tiling K_2 covering all vertices of $(A_2 \cup B_2) \setminus V(K_1)$. Moreover, every copy of $K^{3}(m)$ in K_2 is of type $(m, 2m)$. Let $A'' := A' \setminus V(K_1 \cup K_2)$ and $B'' := B' \setminus V(K_1 \cup K_2)$. Clearly, $|B''| \equiv 0 \pmod{2m}$. Since $n \in 3mN$, we have $|A'' \cup B''| \equiv 0 \pmod{3m}$ and $|A''| \equiv 0 \pmod{2m}$.

So we can set $|A''| = (6a + s)m$ and $|B''| = (6b + 2s)m$ for some $0 \leq s \leq 5$. Now, each vertex in $A'' \cup B''$
is γ_2'-good with respect to $B(A'',B'')$ for some constant $\gamma_2' \gg \gamma_2$. By Lemma 4.2, we can find $6(b-a)+s$ disjoint copies of $K^3(m)$ of type $(m,2m)$ if $b-a \geq 0$, or $2(a-b)$ disjoint copies of $K^3(m)$ of type $(3m,0)$ and s disjoint copies of $K^3(m)$ of type $(m,2m)$ if $b-a < 0$. Let K_3 be these copies of $K^3(m)$. Thus, $|K_3| \leq 6|b-a| + s \leq 6\gamma_1 n$. Let $A^* = A'' \setminus V(K_3)$ and $B^* = B'' \setminus V(K_3)$. Then we have $|A^*| = |B^*| \equiv 0 \pmod{6m}$ and $|A^*| = |B^*| \geq n/2 - 100\gamma_1 mn$. Clearly, $A^* \subset A_1$ and $B^* \subset B_1$. Let $H^* = H[A^* \cup B^*]$. Since both $|A_2|$ and $|B_2|$ are small, it can be checked that there is some constant $\gamma_3 \gg \gamma_2'$ such that every vertex in H^* is γ_3-good with respect to $B[A^*,B^*]$. By Lemma 4.2, H^* contains a $K^3(m)$-factor, say K_4. Therefore, $K_1 \cup K_2 \cup K_3 \cup K_4$ is a $K^3(m)$-factor of H.

Proof of Lemma 2.4: The proof is similar to the one of Lemma 2.3. Note that $n \equiv 3mN$ and $\delta_2(H)$ satisfies condition (2). Let $t \equiv |B'| \pmod{2m}$ with $0 \leq t \leq 2m-1$. If t is even (note that $|B'| = \lfloor n/2 \rfloor$ and $n \equiv 1 \pmod{4}$ belongs to this case), by Claim 6 for $m-t/2$, we can find a copy K' of $K^3_{3,m}$ of type $(3m-t,t)$ in H. Set $K_3 = \{K'\}$. Now assume t is odd. Then we can find two disjoint copies K, K' of $K^3_{m,m}$ of types $(m+1,2m-1)$ and $(3m-t-1,t+1)$ (by Claim 6 for $m-(t+1)/2$), respectively, or of types $(3m-1,1)$ and $(3m-t+1,t-1)$ (by Claim 6 for $m-(t-1)/2$), respectively. In this case, set $K_1 = \{K, K'\}$. For each case, we have $|B' \setminus V(K_3)| \equiv 0 \pmod{2m}$ and $|A' \setminus V(K_3)| \equiv 0 \pmod{m}$. Since $K^3_{m,m}$ is a spanning subgraph of $K^3(m)$, the existence of $K^3_{m,m}$-tiling K_2, K_3, K_4 follows from the existence of $K^3(m)$-tilings K_2, K_3, K_4 in H with the same argument as in Lemma 2.3. Finally we have $K_1 \cup K_2 \cup K_3 \cup K_4$ is a $K^3_{m,m}$-factor of H.

Acknowledgements

The authors would give many thanks to the anonymous referees for their careful work on the article.

References

[1] N. Alon and R. Yuster. H-factors in dense graphs. *J. Combin. Theory Ser. B*, 66(2): 269–282, 1996.

[2] A. Czygrinow. Tight co-degree condition for packing of loose cycles in 3-graphs. *J. graph theory*, 83(4): 317–333, 2016.

[3] A. Czygrinow, L. DeBiasio, and B. Nagle. Tiling 3-uniform hypergraphs with $K^3_3 - 2e$. *J. Graph Theory*, 75 (2):124–136, 2014.

[4] P. Erdős. Problems and results in combinatorial analysis. *Congr. Numer.* 19: 3–12, 1977.

[5] P. Erdős and M. Simonovits. Supersaturated graphs and hypergraphs. *Combinatorica* 3(2): 181–192, 1983.

[6] W. Gao and J. Han. Minimum codegree threshold for C^3_6 -factors in 3-uniform hypergraphs. *Combin. Probab. Comput.* 26(4): 536–559, 2017.
[7] W. Gao, J. Han, and Y. Zhao. Codegree conditions for tiling complete k-partite k-graphs and loose cycles. *Combin. Probab. Comput.*, 28 (6): 840–870, 2019.

[8] A. Hajnal and E. Szemerédi. Proof of a conjecture of P. Erdős. In *Combinatorial theory and its applications, II* (Proc. Colloq., Balatonfüred, 1969), pages 601–623. North-Holland, Amsterdam, 1970.

[9] J. Han. Decision problem for perfect matchings in dense k-uniform hypergraphs. *Trans. Amer. Math. Soc.* 369 (7): 5197–5218, 2017.

[10] J. Han, A. Lo, A. Treglown and Y. Zhao. Exact minimum codegree threshold for K_4^*-factors. *Combin. Probab. Comput.* 26 (6): 856–885, 2017.

[11] J. Han, A. Lo, and N. Sanhueza-Matamala. Covering and tiling hypergraphs with tight cycles. *Electron. Notes Discrete Math.*, 61:561–567, 2017.

[12] J. Han and A. Treglown. The complexity of perfect matchings and packings in dense hypergraphs. *J. Combin. Theory, Ser. B* 141:72–104, 2020.

[13] J. Han, C. Zang, and Y. Zhao. Minimum vertex degree thresholds for tiling complete 3-partite 3-graphs. *J. Combin. Theory Ser. A* 149:115–147, 2017.

[14] P. Keevash and R. Mycroft. A geometric theory for hypergraph matching. *Mem. Amer. Math. Soc.* 233 (1098), 2015.

[15] J. Komlós, G. Sárközy, and E. Szemerédi. Proof of the Alon-Yuster conjecture. *Discrete Math.* 235 (1-3): 255–269, 2001.

[16] T. Kövári, V. T. Sós, and P. Turán. On a problem of K. Zarankiewicz. *Colloq. Math.* 3:50–57, 1954.

[17] D. Kühn and D. Osthus. Loose Hamilton cycles in 3-uniform hypergraphs of high minimum degree. *J. Combin. Theory Ser. B* 96 (6):767–821, 2006.

[18] D. Kühn and D. Osthus. Embedding large subgraphs into dense graphs. In *Surveys in Combinatorics* (S. Huczynska, J.D. Mitchell and C.M. Roney-Dougal eds.), London Math. Soc. Lecture Notes 365: 137–167, Cambridge University Press, 2009.

[19] D. Kühn and D. Osthus. The minimum degree threshold for perfect graph packings. *Combinatorica* 29(1):65–107, 2009.

[20] A. Lo and K. Markström. Minimum codegree threshold for (K_4^3-e)-factors. *J. Combin. Theory Ser. A*, 120(3): 708-721, 2013.

[21] A. Lo and K. Markström. F-factors in hypergraphs via absorption. *Graphs and Combin.* 31 (3):679–712, 2015.

[22] L. Lu and L. Székely. Using Lovász local lemma in the space of random injections. *Electron. J. Combin.* 14 (1): #R63, 2007.

[23] R. Mycroft. Packing k-partite k-uniform hypergraphs. *J. Combin. Theory Ser. A* 138: 60–132, 2016.

[24] D. Mubayi. Some exact results and new asymptotics for hypergraph Turán numbers. *Combin. Probab. Comput.* 11 (3):299–309, 2001.
[25] D. Mubayi and J. Verstraëte. A hypergraph extension of the bipartite Turán problem. *J. Combin. Theory Ser. A* 106: 237–253, 2004.

[26] V. Rödl, A. Ruciński. Dirac-type questions for hypergraphs—a survey (or more problems for Endre to solve). in: *An Irregular Mind (Szemerédi Is 70)*, in: *Bolyai Soc. Math. Stud.*, vol. 21, 2010.

[27] V. Rödl, A. Ruciński, E. Szemerédi. Perfect matchings in large uniform hypergraphs with large minimum collective degree. *J. Combin. Theory Ser. A*, 116 (3):613–636, 2009.

[28] Y. Zhao. Recent advances on Dirac-type problems for hypergraphs, In: A. Beveridge, J. Griggs, L. Hogben, G. Musiker, P. Tetali (eds) *Recent Trends in Combinatorics, The IMA Volumes in Mathematics and its Applications* 159. Springer, New York, 2016.