Mobile Phone Companies Increasing Market Share through Innovations, R&D Spending and Patents

Sanjeev Singh
MIT ADT University, India | e-mail: sanjeevraiput@aim.com

Rahul More
MIT ADT University, India | e-mail: rahul.more@mituniversity.edu.in

Abstract
This study aims to analyze the market share of four leading mobile phone companies in the context of their spending on R&D and the number of filed patents. The study aims to identify whether the companies that invest the most in R&D and file more patents have a competitive edge and increased market share compared to others. The adoption and advancement of technologies throughout the documented history of humankind have revealed how employing specific devices has cultivated the power for people and society to communicate. Moreover, innovations in travelling have increased prospects for real-time communication, and innovations in virtual real-time communication like mobile phones and the internet have become a part of everyday life. Following innovations, many companies emerged from nowhere with unique mobile phone devices and continued the business. But, few of them were wiped out from the market because their mobile phone offering was inferior to other competitors. This paper explores the innovation journey of mobile phone companies. In addition, it focuses on four leading brand names and corresponding success failures as well as the role of R&D expense and patents regarding innovations. Usually, innovation is considered as the engine of economic growth that serves customers better products and services and stays relevant in the market. Measuring innovation is not easy, but focusing on R&D and the quantifiable patent indicates that individual companies consistently serve customers with newer and better products.

Keywords: Innovations, R&D Spending, Patents, Market Share, Mobile Phone

New articles in this journal are licensed under a Creative Commons Attribution 3.0 United States License.

This journal is published by the University Library System of the University of Pittsburgh as part of its D-Scribe Digital Publishing Program, and is cosponsored by the University of Pittsburgh Press.
Mobile Phone Companies Increasing Market Share through Innovations, R&D Spending and Patents

Sanjeev Singh
Rahul More

I. Introduction

The mobile phone marketplace is incredibly competitive, and the market has numerous mobile phone brands with lucrative offerings. According to Gadgets 360, there are 170 mobile phone manufacturing companies (Gadget360, 2022). The Droid.com website lists 237 mobile manufacturing companies and suggests 7576 different models from different companies (Droidchart.com, 2022). According to the GSMArena website, there are 117 Mobile companies and 11197 models globally (Gsmarena, 2021). Not necessarily all mobile companies, and the mobile phone model still exists. At the same time, many companies are still present and producing various mobile phone models. The mobile phone market is perhaps the most volatile, challenging, and constantly in the race of competition among brands. Nevertheless, mobile companies deal with continuous technological change, and product innovation is astonishing. Since 1973, mobile phones have emerged from a luxury to a mass consumer market with many value-added services.

Figure 1 has a list of a few mobile phones since 1973 that indicates consistent innovations by various mobile companies (Križanović, 2020; Mobikyo, 2014; Uswitch, 2021).

II. R&D, Patents and Innovations

In general, an innovation endeavor is a complex process and is commonly described as the generation, implementation, and acceptance of new ideas, products, services, or techniques (Ferreira et al., 2020). Innovation capability can be stated as the experience and ability to enrich present products and technologies as well as creating something new by translating expertise into products and processes (Romijn & Albaladejo, 2002). Innovation capability signifies a company’s capability to build innovative tools & products to accomplish exceptional financial performance (Rangone, 1999). In addition, It encompasses the continuous enhancement of the resources and capabilities that a company holds and utilizes to exploit opportunities for developing new innovative outputs (Darroch & McNaughton, 2002; Keiningham et al., 2020).

In the connected global ecosystem, the market is highly competitive and unpredictable. Innovation is the means to meet such market demand, hence innovation...
capabilities are the key factor for the competitive advantage (Rajapathirana & Hui, 2018). Innovation capability requires significant spending on R&D, and it signifies an organization’s capability to build innovative tools & products to accomplish exceptional financial performance (Rangone, 1999). In addition, it encompasses the continuous enhancement of the resources and capabilities that a company holds and utilizes to exploit opportunities for developing new innovative outputs (Koc, 2007). The organization’s intangible property is the essential factor in making such development. Using this property is also an integral component of innovation capability (Saunila & Ukko, 2012). Innovation aids companies in dealing with the troubles triggered by external factors, hence it is an essential element contributing to the overall business success, primarily in a volatile market (Darroch & Mcnaughton, 2002; Keiningham et. al., 2020).

The concept of innovation capability (IC) has been approached from multiple perspectives and can be considered as a multi-faceted construct (Saunila, 2016). Broadly, the IC is classified as radical innovation and incremental innovation (Pascual-Fernández et. al., 2021; Quintane et. al., 2011). Radical innovation refers to developing entirely new expertise and building something that doesn’t exist; or introducing disruption to an existing technical path that enables current products/services to become obsolete (Damanpour, 1991; Mendoza-Silva, 2020).

On the other hand, incremental innovation refers to enhancing the effectiveness of present products by utilizing the insights from the end-users and creating better and more attractive solutions full of novelty, leading to significant profits (Acemoglu et. al., 2020; Lee, 2011; Mendoza-Silva, 2020). The dual-core innovation theory lists innovation into two components, i.e., management innovation and technical innovation (Kalay, 2016). Technological innovation pertains to innovation in organizations’ products, services, or processes corresponding to production, whereas administrative innovation relates to business processes beyond production (Kalay, 2016; Lee, 2011).

Administrative innovations indirectly boost technical innovations; hence, both management and technological innovation are essential and complement each other (Damanpour, 1991). A study suggests five components of IC: Product innovation (create or enhance existing products through modification), market innovation (approaches for advertisement and promotion of products through identification of new market opportunities), service innovation (usability of service processes), process innovation (expansion or enhancement of a production or delivery technique) and organizational innovation (creation of a new organizational technique related to everyday tasks, work environment, or possible external relations) (Mendoza-Silva, 2021).

The creation of patents by companies indicates that such companies are somewhat profoundly investing in innovations. Also, such companies are spending some money on research and development. According to Gautam & Curba, innovation refers to the commercialization of solutions (Ahuja & Lampert, 2001). Therefore, in general, R&D expenses and patents are considered innovation indicators (Kleinknecht et. al., 2002). The reason is that, through R&D activities, one reaches the stage of applying for a patent. The patent documents contain factual information about the innovation process evaluated by a patent office of a government organization (Kang & Motohashi, 2014). Of course, patents could not be the absolute indicator of innovation. But companies spending on research and development as well as the number of patent filings signify somewhat the overall innovation. According to John Adams, former executive vice president of Honda America Manufacturing, few companies delay filing patents about new ideas or solutions, so the world does not know what the company is doing (Heller, 2022).

Table 1 signifies various companies’ rapid launch of the new mobile handset from 1973 until 2020. These companies spend time and money on research & development (R&D) activities as well as filing patents. As a result, each company launched one of the best mobile phones in the past and continued its innovation journey. In this innovation journey, many products created a wow moment for customers and significant business growth in the overall business. Unfortunately, when the product was not welcomed by customers, then losing the market share was observed.

II. Literature Review regarding R&D, Patents and Potential Impacts on Innovation

Table 1: Literature Review Summary

Authors	Journal	Year	Title	Table 1	Abstract	Conclusion
Mendoza & Silva (2021)	Mobile Phone Companies Increasing Market Share through Innovations, R&D Spending and Patents	2022				

Table 1 signifies various companies’ rapid launch of the new mobile handset from 1973 until 2020. These companies spend time and money on research & development (R&D) activities as well as filing patents. As a result, each company launched one of the best mobile phones in the past and continued its innovation journey. In this innovation journey, many products created a wow moment for customers and significant business growth in the overall business. Unfortunately, when the product was not welcomed by customers, then losing the market share was observed.
IV. Research Hypothesis

The paper assumes that the innovative activities corresponding to R&D expenses and patents of mobile companies have a positive effect on the market share. Hence, the following research hypotheses and variables are proposed:

Research Hypotheses	Variables
H1: There exists a positive correlation between R&D expenses and increased patent filings with the market share of mobile companies.	% Market Share, Number of Patents, and R&D Expenses
H0: There is no positive correlation between R&D expenses and increased patent filings with the market share of mobile companies.	% Market Share, Number of Patents, and R&D Expenses

Source: Authors’ own compilation

V. Analysis Method

The study applies the correlation technique to analyze the data, highlighting the nature of the relationship between the market share and innovation through R&D expense and the number of patents. The correlation between two variables is +ve when both variables change in the same direction. For example, when one variable increases, the other also increases, and the further declines when one declines. The correlation between two variables is -ve when both variables change in the opposite direction. For example, when one variable increases, the other decreases, and vice versa. The correlation measures the strength and direction of the linear relationship between continuous variables, i.e. market share, patents, R&D expenses for distinct brands such as Apple, Samsung, Nokia, and Blackberry). After conducting correlation analyses between the two variables using the below formula, this paper shows the matrix for distinct brands:

\[
 r_{xy} = \frac{\sum(x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum(x_i - \bar{x})^2} \sqrt{\sum(y_i - \bar{y})^2}}
\]

Where:
- \(r_{xy} \) - Correlation coefficient of linear relationship between variables \(x \) and \(y \)
- \(x_i \) - Values of the \(x \)-variable in the sample
- \(\bar{x} \) - Mean of values of \(x \)-variable
- \(y_i \) - Values of \(y \)-variable in the sample
- \(\bar{y} \) - Mean of values of \(y \)-variable
VI. Analysis of Four Significant Mobile Companies

This paper considers four well-known phone brands to understand their competitiveness with ten years of data sets regarding market share, patents and R&D expenses (Federica Laricchia, 2022b, 2022a; GreyB, 2022c, 2022a, 2022b; Justina Alexandra Sava, 2022; Nils-Gerrit Wunsch, 2021; Statcounter GlobalStats, 2022; Thomas Alsop, 2022).

Nokia

Nokia is a Finnish company founded by Fredrik Idestam in 1865. The name Nokia originates from a town called Nokia and the Nokianvirta river in Finland (Borhanuddin et al., 2016). Traditionally, Nokia business units were paper, cables, rubber, televisions, telecom networks, phones, etc., that have transitioned and transformed into mobile telecommunication infrastructure and mobile handsets (Aspara et al., 2011). However, after numerous years of spectacular success and rising market share in the mobile phone market space, Nokia failed for the transition stage in terms of new era of phones to satisfy customers and keep them loyal to the brand (Doz & Kosonen, 2008).

Table 3: Nokia Ten Years Data (2010-2019)

Year	% Market Share	R&D Spending (in million US dollars)	No. of Patents
2010	37.02	75	6.250
2011	38.23	71	6.470
2012	29.91	61	7.471
2013	21.43	33	6.794
2014	13.70	20	5.988
2015	9.24	24	4.497
2016	5.54	53	3.745
2017	2.53	60	3.913
2018	1.47	52	3.883
2019	1.08	50	3.078

Source: Authors’ own compilation

**Nokia % Market Share Month-Wise Data is transformed to annually

Table 4: Nokia Descriptive Statistics

	% Market Share	R&D Spending (in million US dollars)	No. of Patents
mean	16.01	49.90	5.208
std	14.66	18.75	1.547
min	1.08	20.00	3.078
max	38.23	75.00	7.471

Source: SPSS Software Output

Table 5: Nokia Correlations of Variables

	% Market Share	R&D Spending (in million US dollars)	No. of Patents
% Market Share	1.00		1.00
R&D Spending (in million US dollars)	0.45	1.00	
No. of Patents	0.87	0.10	1.00

Source: SPSS Software Output

Samsung

Lee Byung-Chul started a grocery trading store named Samsung Trading Co. in Taegu, Korea, in 1938, primarily involved in trading noodles and other items produced in the city and neighborhoods and exporting them to China regions (Peter Bondarenko, 2021). Samsung marked a footprint in the electronics industry in the 1960s. Later, the telecommunications hardware industry in 1980 and the phone market in 1998 with a phone SPH-1300 (Matthew Burris, 2020; Samsung Newsroom, 2013) reflected Samsung’s dominance in the market. Samsung remains one of the largest microprocessor manufacturers globally in the late 20th and early 21st centuries, which signifies that it is a significant player in the mobile phone domain (Bondarenko, 2021).

Table 5: Samsung Ten Years Data (2010-2019)

Year	% Market Share	R&D Spending (in million US dollars)	No. of Patents
2010	4.31	8.460	7.646
2011	10.64	9.260	7.100
2012	18.42	11.060	8.706
2013	25.26	13.750	11.151
2014	32.07	14.260	10.884
2015	31.94	13.810	10.096
2016	32.33	13.750	8.498
2017	32.97	15.620	7.202
2018	30.68	17.340	8.348
2019	31.60	17.500	2.840

Source: Authors’ own compilation

**Samsung % Market Share Month-Wise Data is transformed to annually
Table 7: Samsung Descriptive Statistics

% Market Share	R&D Spending (in million US dollars)	No. of Patents
mean	25.02	13.481
std	10.37	3.079
min	4.31	8.460
max	32.97	17.500

Source: SPSS Software Output

Table 8: Samsung Correlations of Variables

% Market Share	R&D Spending (in million US dollars)	No. of Patents
% Market Share	1.00	1.00
R&D Spending (in million US dollars)	0.89	1.00
Patents	0.07	-0.20

Source: SPSS Software Output

RIM (Blackberry)

Mike Lazaridis and Douglas Fregin started a company, Research in Motion (RIM), widely known as Blackberry, a Canadian-based multinational company, in 1984 (McGrath, 2013). Blackberry predominantly provides software and hardware platforms as well as solutions to instant messaging, e-mails, browsing, Internet, intranet-based applications, etc. (Youssef, 2013). Before Apple's phone entered the phone business in 2007, it was a time when almost the entire corporate working people wanted Blackberry because of its unique e-mail features, ease of use, and excellent security (Trivedi, 2017). However, later 2007 onwards, Blackberry could not catch up with the leading innovation appearing in the market, primarily Apple, followed by Google Android (Sarno, 2010). Blackberry tried to tantalize the market in January 2013 with new smartphone models, Z10 and Q10, but it seems it was not enough compared to competitors like Apple and Android phones (Timmer, 2021; Hill, 2013). As a result, Blackberry's phone business collapsed significantly, and the company decided to sell patent assets (Amadeo, 2022).

Table 9: Blackberry Ten Years Data (2010-2019)

Year	% Market Share	R&D Spending (in million US dollars)	No. of Patents
2010	19.40	965	4.337
2011	14.72	1.351	4.916
2012	5.48	1.556	4.633
2013	3.63	1.509	2.565
2014	1.97	1.286	1.002
2015	1.25	711	725
2016	0.81	469	725
2017	0.32	306	624
2018	0.11	239	603
2019	0.04	219	545

Source: Authors’ own compilation

**Blackberry % Market Share Month-Wise Data is transformed to annually.

Table 10: Blackberry Descriptive Statistics

% Market Share	R&D Spending (in million US dollars)	No. of Patents
mean	4.77	861
std	6.79	539
min	0.04	219
max	19.40	1.556

Source: SPSS Software Output

Table 11: Blackberry Correlations of Variables

% Market Share	R&D Spending	No. of Patents
% Market Share	1.00	
R&D Spending	0.47	1.00
No. of Patents	0.84	0.74

Source: SPSS Software Output

Apple

The Apple Computer Company was founded by Steve Jobs and Steven Wozniak in 1976. Their first computer circuit board was ready with sales orders for 200 units in two months of working in their garage (Oldcomputers, 2022). Apple was an established brand long before making smartphones. The company started with computers and followed up with iPods, and in the first quarter of 2007 company sold over 21 million iPods, corresponding to 48% of its revenues (Apple Newsroom, 2007). Steve Jobs presented the first iPhone in January 2007, which proved a revolutionary product because it combined the functionalities of the iPod into a small
mobile phone with a touch screen, and it was able to access the internet like a computer (Merchant, 2017). The company launched the iPhone in 2007 as the most advanced "smartphone," featuring many features and capabilities that were many years ahead of its competitors, creating excitement among customers, and becoming a formidable force among competitors (Rarick, 2011).

Table 12: Apple Ten Years Data (2010-2019)

Year	% Market Share	R&D Spending (in million US dollars)	No. of Patents
2010	29.32	1.780	4,171
2011	27.75	2.430	4,519
2012	24.71	3.380	6,424
2013	24.39	4.480	6,095
2014	23.86	6.040	5,562
2015	20.30	8.070	6,080
2016	19.32	10.050	5,812
2017	19.66	11.580	4,814
2018	20.58	14.240	5,233
2019	22.70	16.220	4,727

Source: Authors’ own compilation

**App% Market Share Month-Wise Data is transformed to annually.

Table 13: Apple Descriptive Statistics

% Market Share	R&D Spending (in million US dollars)	No. of Patents	
mean	23.26	7.827	5,343
std	3.42	5.060	765
min	19.32	1.780	4,171
max	29.32	16.220	6,424

Source: SPSS Software Output

Table 14: Apple Correlations of Variables

% Market Share	R&D Spending (in million US dollars)	No. of Patents	
% Market Share	1.00		
R&D Spending	-0.75	1.00	
No. of Patents	-0.41	-0.08	1.00

Source: SPSS Software Output

VII. Conclusion and Recommendations

The correlation matrix for the companies Nokia, Samsung, and RIM (Blackberry) indicates that R&D spending and patents are correlated positively with the % market share. At the same time, the correlation matrix for the company Apple shows that R&D spending and patents are correlated negatively with the % market share. Out of all four companies, three have a positive correlation, hence both hypotheses tend to be valid.

Mobile phones have transformed considerably from simple to smart for becoming information and communication pivots essential to modern-day life (TigerMobiles, 2019). In the last 30 years, almost all mobile phone companies have launched phones with unique features to entice the end-users and gain market share. As a result, companies have a race to compete and increase their market share by servicing customers with the best phone features, and the race continues (Križanović, 2020; Zaman, 2020).

Moreover, spending money on research, development and patents signifies that companies are working towards innovations to build new products and services. Also, such companies have the potential to stay ahead of their competitors and maintain a competitive edge. Further research considering more than ten years of data and more than four mobile brands shall show a more precise correlation of market share with R&D spending and patents.

References

Acemoglu, D., Akcigit U., Celik, M. A. (2020). Radical and Incremental Innovation: The Roles of Firms, Managers, and Innovators. American Economic Journal: Macroeconomics, 14(3), 199-249.

Ahuja, G., & Lampert, C. M. (2001). Entrepreneurship in the large corporation: A longitudinal study of how established firms create breakthrough inventions. Strategic Management Journal, 22(6–7), 521-543. https://doi.org/10.1002/smj.176

Alsop, T. (2022). Nokia R&D spending 1999-2020 | Statista. https://www.statista.com/statistics/267821/nokia-as-expenditure-on-research-and-development-since-1999/

Amadeo, R. (2022). BlackBerry sells mobile and messaging patents for $600 million | Ars Technica.ArsTECHNICA. https://arstechnica.com/gadgets/2022/01/blackberry-sells-mobile-and-messaging-patents-for-600-million/

Apple Newsroom. (2007). Apple Reports First Quarter Results - Apple. Apple Newsroom. https://www.apple.com/newsroom/2007/01/17_Apple-Reports-First-Quarter-Results/

Aspara, J., Lamberg, J. A., Laukia, A., & Tikkanen, H. (2011). Strategic management of business model transformation: Lessons from Nokia. Management Decision, 49(4), 622–647. https://doi.org/10.1108/00251741111126521

Bondarenko, P. (2021). Samsung | History & Facts | Britannica | Encyclopedia Britannica. https://www.britannica.com/topic/Samsung-Electronics

Mobile Phone Companies Increasing Market Share through Innovations, R&D Spending and Patents

Page [82] Emerging Markets Journal
Borhanuddin, B., Iqbal, A., Borhanuddin, B., & Iqbal, A. (2016). Nokia: An Historical Case Study Switch-Side Chain-Chess Mobile Game (PRGS Grant) View project An Investigation into the Perceptual Differences Between Men and Women to Encourage Equal Participation in Intellectual Sports: A Chess Case Study View project Nokia: An Historical Case Study. In Journal of Computer Science and Information Technology (eJCSIT) (Vol. 6, Issue1). https://www.researchgate.net/publication/311493358

Brian Merchant. (2017). The secret origin story of the iPhone - The Verge. The Verge. https://www.theverge.com/2017/6/13/15782200/one-device-secret-history-iphone-brian-merchant-book-excerpt

Burris, M. (2020). The History of Samsung (1938-Present). Lifewire. https://www.lifewire.com/history-of-samsung-818809

Damanpour, F. (1991). Organizational Innovation: A Meta-Analysis of Effects of Determinants and Moderators Author(s): Fariborz Damanpour Reviewed work. The Academy of Management Journal. https://doi.org/https://doi.org/10.2307/2564062

Dang, J., & Motohashi, K. (2015a). Patent statistics: A good indicator for Innovation in China? Patent subsidy program impacts on patent quality. China Economic Review, 35, 137-155. https://doi.org/10.1016/j.chieco.2015.03.012

Dang, J., & Motohashi, K. (2015b). Patent statistics: A good indicator for Innovation in China? Patent subsidy program impacts on patent quality. China Economic Review, 35, 137-155. https://doi.org/10.1016/j.chieco.2015.03.012

Darroch, J., & Mcnaughton, R. (2002). Examining the link between knowledge management practices and types of Innovation. Journal of Intellectual Capital,3(3),210–222. https://doi.org/10.1108/146919302010435570

Doz, Y., & Kosonen, M. (2008). The Dynamics of Strategic Agility: Nokia's Rollercoaster Experience. In Source: California Management Review. 50(3), 95-118.

Droidchart.com. (2022). Home News Brands Comparisons.Droidchart.Com. https://droidchart.com/en/brands

Ferreira, J., Coelho, A., & Moutinho, L. (2020). Dynamic capabilities, creativity and innovation capability and their impact on competitive advantage and firm performance: The moderating role of entrepreneurial orientation. Technovation.92-93. https://doi.org/10.1016/j.technovation.2018.11.004

Gadget360. (2022). Gadget 360 - 170 Mobile phone companies.Gadget360. https://gadgets.ndtv.com/mobiles/10-or-phones

GreyB. (2022a). Apple Patents - Key Insights and Stats - Insights;Gate.GreyB. https://insights.greyb.com/apple-patents/

GreyB. (2022b). BlackBerry Patents - Key Insights and Stats - Insights;Gate.GreyB. https://insights.greyb.com/blackberry-patents/

GreyB. (2022c). Nokia Patents Key Insights & Stats - Insights;Gate.GreyB. https://insights.greyb.com/nokia-patents/

Gsmarena. (2021). List of all mobile phone brands - GSMArena.com 117 companies. Gsmarena. https://www.gsmarena.com/makers.php3

Hagedoorn, J., & Cloodt, M. (2003). Measuring innovative performance: is there an advantage in using multiple indicators? In Research Policy (Vol. 32).

Heller, S. (2022). Innovations needed — but patents decline: Auto industry's number of awards ...: EBSCOHost.Ebscohost. https://web.s.ebscohost.com/ehost/detail?vid=0&sid=ceco44ed-1ad5-4ff7-b024-d964d1d94a81%40redis&bdata=JnNpdGU9ZWhvc3QtZGl2ZQ%3d%3d#AN=154925788&bft=1

Hill, S. (2013). The 11 moments that defined BlackBerry's rise and fall | TechRadar. Techradar. https://www.techradar.com/in/news/phone-and-communications/mobile-phones/the-10-moments-that-defined-blackberry-s-rise-and-fall-1175428

Kalay, F. (2016). The impact of organizational structure on management innovation: an empirical research in Turkey. Pressacademia, 5(1), 125-125. https://doi.org/10.17261/pressacademia.2016116656

Kang, B. (2015). The innovation process of Huawei and ZTE: Patent data analysis. China Economic Review,36,378-393. https://doi.org/10.1016/j.chieco.2014.12.003
Kang, B., & Motohashi, K. (2014). The role of essential patents as knowledge input for future R&D. World Patent Information, 38, 33–41. https://doi.org/10.1016/j.wpi.2014.05.001

Keinnamon, T., Aksoy, L., Bruce, H. L., Cadet, F., Clennell, N., Hodgkinson, I. R., & Kearney, T. (2020). Customer experience driven business model innovation. Journal of Business Research, 116, 431–440. https://doi.org/10.1016/j.jbusres.2019.08.003

Kessler, J., & Sperling, D. (2016). Tracking U.S. biofuel expenditure 2007–2013/10/10/blackberry considering Buyout Bid. Forbes. https://www.statista.com/statistics/1034067/worldwide/expenditure-2007-2013/

Koc, T. (2007). Organizational determinants of innovation capacity in software companies. Computers and Industrial Engineering, 53(3), 373–385. https://doi.org/10.1016/j.cie.2007.05.003

Križanović, I. (2020). Cell phone history: From the first phone to today’s smartphone wonders Join us as we take a journey through cell phone history and learn all about the evolution of the mobile phone! https://versus.com/en/news/cell-phone-history

Lambert, T. E. (2020). Monopoly capital and innovation: an exploratory assessment of R&D effectiveness. International Review of Applied Economics, 34(1), 36–49. https://doi.org/10.1080/02692171.2019.1620703

Laricchia, F. (2022a). Apple's research and development expenditure 2007-2021 | Statista. Statista. https://www.statista.com/statistics/273006/apple-expenses-for-research-and-development/

Laricchia, F. (2022b). Samsung Electronics: research & development expenditure 2021 | Statista. https://www.statista.com/statistics/236924/samsung-electronics-research-and-development-expenditure/

Lee, J. Y. (2011). Incremental Innovation and Radical Innovation: The Impacts of Human, Structural, Social and Relational Capital Elements. University of Michigan Operations and Sourcing Management Ph.D. Thesis.

McGrath, M. (2013). BlackBerry Cofounder Lazaridis Considering Buyout Bid. Forbes. https://www.forbes.com/sites/maggiemccragh/2013/10/10/blackberry-co-founder-lazaridis-considering-buyout-bid/?sh=1f1c81f331618

Mendoza-Silva, A. (2020). Innovation capability: a systematic literature review. In European Journal of Innovation Management. 24(3), 707-734. Emerald Group Holdings Ltd. https://doi.org/10.1108/EJIM-09-2019-0263

Mendoza-Silva, A. (2021). Innovation capability: A sociometric approach. Social Networks, 64, 72–82. https://doi.org/10.1016/j.socnet.2020.08.004

Mobikyo, K.K. (2014). World First Camera Phone The KyoceraVP-210. http://wirelesswatch.jp/2014/07/09/world-first-camera-phone-the-kyocera-vp-210/

Nils-Gerrit Wunsch. (2021). Global: number of Samsung patent filings by legal status 1999-2019 | Statista. https://www.statista.com/statistics/1034067/number-of-samsung-patents-by-filing-year-and-status-worldwide/

Oldcomputers. (2022). Apple I Computer. Oldcomputers.NetWebsite. http://www.oldcomputers.net/apple.html

Park, J. H., Lee, B., Moon, Y. H., Kim, G. S., & Kwon, L. N. (2018), Relation of R & D expense to turnover and number of listed companies in all industrial fields. Springer Open, 4(1). https://doi.org/10.1186/s40852-018-0093-4

Pascual-Fernández, P., Santos-Vijande, M. L., López-Sánchez, J. Á., & Molina, A. (2021). Key drivers of innovation capability in hotels: implications on performance. International Journal of Hospitality Management, 94. https://doi.org/10.1016/j.ijhm.2020.102825

PennState. (n.d.). 5.2 - Correlation & Significance | STAT 100. PennState - Eberly College of Science. Retrieved May 2, 2022, from https://online.stat.psu.edu/stat100/lesson/5/5.2

Quintane, E., Casselman, R. M., Reiche, B. S., & Nylund, P. A. (2011). Innovation as a knowledge-based outcome. In Journal of Knowledge Management. 15(6), 928-947. https://doi.org/10.1108/13673271111179299

Rajapathirana, R. P. J., & Hui, Y. (2018). Relationship between innovation capability, innovation type, and firm performance. Journal of Innovation and Knowledge, 72(1), 44–55. https://doi.org/10.1016/j.jik.2017.06.002

Rangone, A. (1999). A Resource-Based Approach to Strategy Analysis in Small-Medium Sized Enterprises. Kluwer Academic Publishers. https://doi.org/https://doi.org/10.1023/A:1008046917465

Rarick, C. (2011). Apple II Case. Journal of the International Academy for Case Studies. International Academy for Case Studies, 17(7).
Rijanto, A. (2018). Innovation Driven Enterprise, Sustainable Business and Firm Financial Performance. The Asian Journal of Technology Management, 11(1), 10-25. https://doi.org/10.12695/ajtm.2018.11.1.2

Romijn, H., & Albaladejo, M. (2002). Determinants of innovation capability in small electronics and software firms in southeast England. In Research Policy (Vol. 31).

Samsung Newsroom. (2013). [Infographic] History of Samsung Mobile Phones: Evolution of Display – Samsung Global Newsroom. Samsung Newsroom, https://news.samsung.com/global/infographic-history-of-samsung-mobile-phones-evolution-of-display

Sarno, D. (2010). Sales of Google's Android beating iPhone in 2010, Nielsen says. Los Angeles Times. https://articles.latimes.com/2010/oct/08/technology/la-fi-google-android-iphone-sales-mobile-att-verizon-20101008

Saunila, M. (2016). Performance measurement approach for innovation capability in SMEs. International Journal of Productivity and Performance Management, 65(2), 162-176. https://doi.org/10.1108/IJPPM-08-2014-0123

Saunila, M., & Ukko, J. (2012). A conceptual framework for the measurement of innovation capability and its effects. Baltic Journal of Management, 7(4), 355-375. https://doi.org/10.1108/17465261211272139

Sava, J. A. (2022). BlackBerry R&D spending 2021 | Statista. https://www.statista.com/statistics/221671/research-and-development-expenses-of-rim-since-2009/

Sayantika, B. (2022). Correlation: Significance, Types and Measures | Statistics. Micro Economics Notes. https://www.microeconomicsnotes.com/statistics/correlation/correlation-significance-types-and-measures-statistics/15249

Statcounter GlobalStats. (2022). Mobile Vendor Market Share Worldwide | Statcounter Global Stats. Statcounter. GlobalStats. https://gs.statcounter.com/vendor-market-share/mobile/worldwide/#yearly-2010-2022-bar

TigerMobiles. (2019). Evolution of the Mobile Phone - TigerMobiles.com. TigerMobiles. https://www.tigermobiles.com/evolution/#footert

Timmer, J. (2021). End of the line finally coming for BlackBerry devices | Ars Technica. https://arstechnica.com/information-technology/2021/12/end-of-the-line-finally-coming-for-blackberry-devices/

Traore, M. (2020). Assessing the Status of Autonomous Vehicles Innovation Using Assessing the Status of Autonomous Vehicles Innovation Using Patent Data Patent Data [Rochester InstituteofTechnology]. https://scholarworks.rit.edu/theses

Trivedi, P. D. (2017). Consumer dictates the market: Lesson from BlackBerry. Journal of Management Research and Analysis, 4(4), 183. https://doi.org/10.18231/2394-2770.2017.0026

Uswitch. (2021). Uswitch Mobiles History of mobile phones and the first mobile phone. https://www.uswitch.com/mobiles/guides/history-of-mobile-phones/

Youssef, M. H. (2013). WestminsterResearch Strategic tensions within the smartphones industry: the case of BlackBerry. WestminsterResearch. http://www.westminster.ac.uk/research/westminsterresearch

Zaman, R. (2020). Evolution of Smartphone - THE WAVES. The Waves. https://www.the-waves.org/2020/09/22/evolution-of-smartphone-as-disruptive-innovation/