Data Article

Data on distribution, demographic structure and grazing of the dominant mesozooplankton species in the Yenisei estuary and adjacent shelf in early summer

A.V. Drits*, A.F. Pasternak, E.G. Arashkevich, S.G. Poyarkov, M.V. Flint

Shirshov institute of Oceanology, Russian Academy of Sciences, 36 Nakhimovskii pr., Moscow 117997, Russia

A R T I C L E I N F O

Article history:
Received 29 April 2020
Revised 23 May 2020
Accepted 3 June 2020
Available online 12 June 2020

Keywords:
Kara sea
Yenisei estuary
Zooplankton
Distribution
Herbivorous feeding
Grazing impact

A B S T R A C T

The data article refers to the paper “Distribution and grazing of the dominant mesozooplankton species in the Yenisei estuary and adjacent shelf in early summer (July 2016)” (Drits et al., 2020). The data were collected along quasi-longitudinal transect “Yenisei estuary – Kara Sea shelf” on 24–28 July 2016. Here we present data on the spatial and vertical distribution, demographic structure and gut pigment content of the dominant zooplankton species as well as the grazing impact on autotrophic phytoplankton in the three distinguished zones: freshwater zone, frontal zone of the Yenisei plume and marine shelf zone. The related article (Drits et al., 2020) considers the structure and functioning of zooplankton community in relation to environmental characteristics such as temperature, salinity, phytoplankton abundance, timing of ice retreat. Information presented in this article can be used by marine biologists for studies of structure and functioning of estuarine pelagic communities, ecology of zooplankton in the Siberian seas. Besides the data could provide a baseline for the assessment of the ecological role played by climate change events (e.g., increased precipitation, permafrost thawing, elevated river discharge) on the Arctic ecosystems.

* Corresponding author.
E-mail address: adrits@mail.ru (A.V. Drits).

https://doi.org/10.1016/j.dib.2020.105856
2352-3409/© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)
Specifications table

Subject	Biology
Specific subject area	Zooplankton ecology
Type of data	Tables Figures
How data were acquired	CTD probe (Seabird Electronics SBE-32), Juday closing plankton net (0.1 m² mouth area, 180 μm mesh size), stereomicroscope Leica MZ6, Trilogy Laboratory Fluorometer Turner Designs
Data format	Raw Analyzed
Parameters for data collection	Samples of zooplankton were collected considering data on hydrographic (salinity, temperature) and biological (chlorophyll fluorescence) distribution patterns. Live samples were treated for gut fluorescence analysis immediately after collection. Preserved samples were analyzed for determination of zooplankton abundance and biomass within a few months.
Description of data collection	Mesozooplankton was sampled by vertical tows using a Juday closing plankton net. Zooplankton were identified, staged, measured and counted in the laboratory under a stereomicroscope. Gut pigment content of zooplankters was measured by a fluorometric procedure.
Data source location	Data were collected along a quasi- longitudinal transect “Yenisei estuary – Kara Sea shelf” 24 stations between 75° 55’ and 71° 50’ N.
Data accessibility	With the article
Related research article	A.V. Drits, A.F. Pasternak, E.G. Arashkevich, S.G. Poyarkov, M.V. Flint. Distribution and grazing of the dominant mesozooplankton species in the Yenisei estuary and adjacent shelf in early summer (July 2016). Continental Shelf Research, 2020, 201, 104-133.

Value of the data

- There is virtually no data on distribution and demographic structure of zooplankton in the Yenisei estuary and adjacent shelf in the early summer (soon after the Yenisei discharge maximum). Our data fill this gap.
- The data are among the few that describe zooplankton feeding and grazing impact on autotrophic phytoplankton in the Yenisei estuary and adjacent Kara sea shelf.
- The data can be used to study the impact of seasonal changes and river run-off in the Arctic shelf seas on the structure and grazing of zooplankton as well as when studying other estuarine pelagic communities.
- The data form a necessary step to assess the effects of climate change in the area of Yenisei influence.

1. Data

The data were obtained at 24 sampling stations investigating the distribution and grazing of dominant mesozooplankton species in the Yenisei estuary and adjacent Kara sea shelf in early summer (July 2016). The environmental characteristics of the stations are given in Table 1. The freshwater zone (sts. 5345, 5344, 5343, 5342), frontal zone of the Yenisei plume (sts. 5340, 5339, 5337, 5335, 5333, 5350, 5351) and marine shelf zone outside the plume (5352 and 5353) were distinguished according to salinity and temperature characteristics.

Distribution of the biomass of the dominant zooplankton at the sampled stations is presented in Table 2. Cladocera and mysids dominated zooplankton biomass in the freshwater zone. In the Yenisei plume zone, Limnocalanus macrurus dominated zooplankton biomass while C. glacialis dominated in the marine shelf zone (Table 2).
Table 1
Stations coordinates, depth (m), surface and bottom salinity (S_{surf}, S_{bot}), surface and bottom temperature (T_{surf} °C, T_{bot} °C).

Station	Latitude, N	Longitude, E	Depth	S_{surf}	S_{bot}	T_{surf}	T_{bot}
533	74°15.0'	79°10.0'	30	8.3	30.3	11.2	-1.2
533_2	74°15.1'	79°09.8'	30	7.3	31.0	11.1	-1.4
534	74°00.4'	79°23.0'	30	6.4	31.1	10.2	-1.4
535	73°45.7'	79°36.6'	30	5.6	31.9	11.4	-1.4
535_2	73°45.9'	79°36.1'	30	7.4	31.7	11.5	-1.4
536	73°33.5'	79°47.4'	38	7.4	32.7	11.3	-1.4
537	73°18.4'	79°50.9'	32	7.1	31.4	11.8	-1.4
537_2	73°18.5'	79°50.8'	32	7.7	32.0	11.2	-1.5
538	73°03.3'	79°55.2'	25	6.8	31.0	11.9	-1.4
539	72°49.0'	80°00.0'	23	4.9	29.0	12.9	-1.2
539_2	72°49.0'	79°59.9'	23	5.4	31.1	12.7	-1.4
540	72°35.9'	80°25.0'	15	5.3	27.6	12.5	-0.3
540_2	72°35.8'	80°25.4'	15	6.0	28.0	12.6	-0.4
542	72°12.4'	80°50.3'	12	1.4	26.1	15.6	-0.2
542_2	72°12.4'	80°50.0'	12	0.9	27.9	15.6	-0.2
543	72°05.6'	81°28.9'	10	1.6	20.9	15.2	6
544	71°52.0'	82°11.9'	10	0.5	1.3	17.1	16.1
544_2	71°52.0'	82°12.0'	10	0.6	1.4	16.6	15.9
545	71°50.4'	082°54.0'	21	0.4	21.4	17.5	6.3
550	74°52.0'	078°26.9'	22	9.9	29.4	11.6	-1.4
551	75°12.2'	078°21.1'	43	14.2	32.5	11.1	-1.5
552	75°16.9'	078°18.5'	40	29.6	33.1	6.5	-1.4
553	75°55.0'	078°34.0'	63	31.4	33.7	3.7	-0.9

Table 2
Biomass (mg dry weight m⁻³) of the dominant components of zooplankton along the transect “Yenisei estuary – Kara Sea shelf”.

Station	Species	Calanus glacialis	Pseudocalanus spp.	Limnocalanus macrurus	Mysis oculata	Bosmina sp.	Daphnia spp.	Okopleura vanhoeffeni	Others
533	12.6	8.5	6.4	3.0	0.0	0.0	1.4	4.7	
533_2	51.9	5.3	7.9	0.0	0.0	0.0	16.0	5.2	
534	13.5	9.6	24.9	0.0	0.0	0.0	25.0	4.6	
535	38.9	8.6	7.7	2.5	0.0	0.0	15.8	6.7	
535_2	5.6	17.5	31.4	0.0	0.0	0.0	15.0	1.6	
536	3.8	10.2	33.1	0.0	0.0	0.0	16.8	3.7	
537	2.6	10.7	17.7	3.2	0.0	0.0	6.8	3.4	
537_2	8.5	18.7	12.7	3.2	0.0	0.0	17.0	6.8	
538	8.6	8.2	1.1	12.6	0.0	0.0	4.5	2.7	
539	1.3	14.7	43.1	0.0	0.0	0.0	0.0	5.3	
539_2	0.0	17.5	9.9	21.8	0.0	0.0	0.0	5.4	
540	0.0	18.5	79.3	0.0	0.0	0.0	0.0	2.2	
540_2	0.0	5.1	38.9	0.0	0.0	0.0	0.0	2.2	
542	0.0	3.6	6.0	0.0	0.0	0.0	0.0	3.4	
542_2	3.4	5.5	11.9	17.0	2.3	2.2	0.0	8.3	
543	0.0	0.0	1.2	0.0	0.0	0.0	10.4	12.6	
544	0.0	0.0	0.0	0.0	0.0	2.8	3.0	0.0	
544_2	0.0	0.0	0.0	0.0	0.0	1.1	2.8	3.0	
545	0.0	0.0	0.0	0.0	0.0	1.2	0.0	2.2	
550	3.2	3.7	4.7	0.0	0.0	0.0	0.0	0.4	
551	17.3	5.0	0.0	0.0	0.0	0.0	0.0	6.0	
552	3.4	5.3	0.0	0.0	0.0	0.0	0.0	3.8	
553	17.6	1.9	0.0	0.0	0.0	0.0	0.0	2.0	
Data on the vertical distribution of the dominant zooplankton are presented in Table 3. In the freshwater zone, the dominant zooplankton group, Cladocera, concentrated in the upper water layer. In the Yenisei plume, mesozooplankton avoided the upper freshened layer with *Calanus glacialis* and *L. macrurus* concentrating in the pycnocline layer. *Oikopleura vanhoeffeni* was observed only in the deeper layer, while in the marine shelf zone, they inhabited the upper mixed layer (Table 3). Horizontal and vertical distribution of the dominant zooplankton species was analyzed in relation to temperature, salinity, and Chl a concentration using Canonical correspondence analysis (CCA) [1].

Data on the demographic structure/size structure of the dominant zooplankters are given in Table 4. Dominance of the younger copepodites of *Calanus glacialis* and *Pseudocalanus* spp, as well as small size *Oikopleura vanhoeffeni* was noted at the marine shelf stations. The population of *Limnocalanus macrurus* consisted of adult specimens with almost equal numbers of females and males.

Gut pigment content of copepods depended on chlorophyll concentration in the layer of in-habitance (Fig. 1). A significant correlation between gut pigment content and Chl a concentration was found for all copepods but the correlation coefficient was very low for *L. macrurus*.

In *Oikopleura vanhoeffeni*, gut pigment content depended significantly of the weight of the animals (Fig. 2).

Zooplankton grazing on phytoplankton was calculated on the basis of measured gut pigment content of the dominant species and abundance of zooplankters in the sampled water layers (Table 5). The most important grazers were cladocerans (in the freshwater zone) and *Calanus glacialis* (in the Yenisei plume zone).

Table 3
Vertical distribution of abundance (ind m$^{-3}$) of dominant zooplankton species. The layers below, within and above the pycnocline determined according to the CTD profiles were sampled.

Station	Layer, m	Cladocera	*Calanus glacialis*	*Pseudocalanus* spp.	*Limnocalanus macrurus*	*Oikopleura vanhoeffeni*
5333_2	0–5	0	0	102	0	0
	5–10	0	1914	1524	276	6
	10–28	0	52	1344	4	32
5335_2	0–5	0	4	124	0	0
	5–10	0	234	1188	2	2
	10–28	0	13	3431	294	16
5337_2	0–6	0	0	211	0	0
	6–12	0	208	5514	215	2
	12–29	0	24	2055	47	29
5339_2	0–5	0	0	540	12	0
	5–19	0	11	2253	237	0
5340_2	5–0	0	0	58	16	0
	5–12	0	0	930	400	0
5342_2	0–6	7320	0	0	0	0
	6–11	550	0	1670	47	0
5345	0–10	12,980	0	0	0	0
	10–18	350	0	0	0	0
5350	0–5	0	6	452	2	0
	5–10	0	124	1508	82	2
	10–18	0	20	538	8	13
5351	0–10	0	302	320	0	49
	10–38	0	384	1417	0	4
5352	0–10	0	4	7	0	662
	10–37	0	116	1648	0	2
5353	0–20	0	185	1054	0	155
	20–58	720	417	0	4	4

A.V. Drits, A.F. Pasternak and E.G. Arashkevich et al./Data in Brief 168 (2020) 105856
Table 4
Demographic structure of the dominant zooplankton species. Abundance (ind m\(^{-3}\)) of distinguished copepod age stages and larvacean size groups (trunk length, mm) are given.

Station	Calanus glacialis	Pseudocalanus spp.	Limnocalanus macrurus	Oikopleura vanhoeffeni															
	Cl I	Cl II	Cl III	Cl IV	CV	Cl-CIV	CV	Fem	Cl I	Cl II	Cl III	Cl IV	CV	Cl-CIV	CV	Fem	Male	<1 mm	1–6 mm
5333	1	2	30	62	9	1712	76	15	24	14	1	1	1						
5333_2	5	0	46	280	67	975	112	21	144	132	1	1	25						
5334	1	2	36	52	0	962	151	60	91	56	1	1	23						
5335	1	0	42	218	21	874	152	64	26	19	0	1	18						
5335_2	5	3	14	26	5	1997	458	104	165	129	1	1	17						
5336	0	0	9	7	5	990	234	38	119	76	0	1	14						
5337	1	1	6	8	3	911	268	57	53	54	0	1	7						
5337_2	0	0	6	46	4	1294	595	36	44	27	0	1	27						
5338	1	1	15	45	6	1087	196	21	4	3	0	1	10						
5339	0	0	0	0	0	1462	514	22	134	124	0	1	0						
5339_2	0	0	0	0	0	872	994	20	52	27	0	1	0						
5340	0	0	0	0	0	705	1069	3	244	233	0	1	0						
5340_2	0	0	0	0	0	300	239	0	275	125	0	1	0						
5342	0	0	0	0	0	361	107	0	18	17	0	1	0						
5342_2	0	0	0	0	0	552	187	30	70	68	0	1	0						
5350	5	21	13	3	5	733	41	8	0	0	0	1	13						
5351	119	127	80	35	9	970	110	30	0	0	42	7							
5352	29	34	12	4	2	983	152	18	0	0	196	0							
5353	223	169	82	43	4	582	37	0	0	0	154	2							
2. Experimental design, materials and methods

2.1. Collection and processing of samples

The material was collected during cruise #66 of the RV “Akademik Mstislav Keldysh” to the Kara Sea in July 2016. A quasi-longitudinal transect was sampled in the Yenisei estuary and adjacent shelf (Fig. 3). At first, the transect was sampled from 74°15′ N to 71° 50′ N on 24–25 July. Based on the obtained salinity and temperature data, several stations were selected and repeated along the reversed transect from 71° 50′ N to 76° N on 26–28 July. The coordinates of the sampling stations are in Tables 1. Data on temperature and salinity were obtained with a CTD.
Fig. 2. Dependence of Oikopleura vanhoeffeni gut pigment content (G, ng pigment ind⁻¹) on dry weight (DW, mg ind⁻¹).

Table 5
Grazing impact on autotrophic phytoplankton (mg Chl a m⁻² day⁻¹) by the populations of the dominant zooplankton species.

Station	Layer, m	Cladocera	Calanus glacialis	Pseudocalanus spp.	Limnocalanus macrurus	Oikopleura vanhoeffeni
5333	0–28	0	0.57	0.08	0.004	0
5333_2	0–5	0	0	0.004	0	0
	5–10	0	2.92	0.11	0.02	0
	10–28	0	0.01	0.01	0.1	0.26
5334	0–27	0	0.51	0.09	0.03	0
5335	0–28	0	3.54	0.65	0.04	0
5335_2	0–5	0	0	0.003	0	0
	5–10	0	0.04	0.04	0.008	0.002
	10–28	0	0.006	0.08	0.03	0.22
5336	0–35	0	0.04	0.16	0.08	0
5337	0–29	0	0.03	0.08	0.03	0
5337_2	0–6	0	0	0.007	0	0
	6–12	0	0.05	0.22	0.008	0
	12–29	0	0.014	0.18	0.006	0.18
5338	0–22	0	0.61	0.18	0	0
5339	0–20	0	0	0.92	0.13	0
5339_2	0–5	0	0	0	0	0
	5–19	0	0	0.03	0.012	0
5340	0–12	0	0	0.38	0.42	0
5340_2	0–12	0	0	0.06	0.8	0
5342_2	0–6	0.93	0	0	0.01	0
5344	0–7	3.8	0	0	0	0
5345	0–10	3.03	0	0	0	0
5351	0–10	0	0.03	0.14	0	0.04
	10–38	0	0.05	0.14	0	0.05
5353	0–20	0	0.017	0.03	0	0.004
	20–58	0	0.42	0.015	0	0.02

probe (Seabird Electronics SBE-32). Mesozooplankton was sampled using a Juday closing net (0.1 m² mouth area, 180μm mesh size). Two layers were sampled at most of the stations along the SN transect, below and above the pycnocline, which was determined according to the CTD profiles. Additionally, we sampled the pycnocline layer at four of the reversed transect stations. For determination of zooplankton abundance and biomass, samples were immediately preserved in 4% borax-buffered formalin. Zooplankton were identified, staged, measured and counted in the laboratory under a stereomicroscope. For determination of zooplankton abundance and biomass, samples were immediately preserved in 4% borax-buffered formalin. Zooplankton were identified, staged, measured and counted in the laboratory under a stereomicroscope. Not numerous
large specimens (the older stages of *Calanus* spp., *Limnocalanus macrur-us*, *Oikopleura vanhoeffeni* and Chaetognatha) were counted in the whole samples, while more numerous forms were counted in subsamples so as not less than 50 specimens were recorded. Most taxonomic groups including Copepoda, Cladocera, Pteropoda, Chaetognatha, Larvacea, Mysidacaea were identified to the species/genus level. Prosome length was used to distinguish the closely related copepod species *Calanus finnarchicus* and *C. glacialis* according to [2]. For *Calanus* and *Limnocalanus*, all copepodite stages were distinguished. For *Pseudocalanus* spp. copepodites CI to CIV were pooled. The wet weight (WW) of each species was calculated using nomograms [3]. These tables ([www.twirpx.com/file/1588162/](http://www.twirpx.com/file/1588162)) allow the calculation of biovolume/wet weight of aquatic organisms based on their body shape and length. Dry weight (DW) of crustacean plankton was estimated as 0.16 WW [4], DW of chaetognaths was calculated according to [5], larvaceans – to [6].

2.2. Feeding of zooplankton

Feeding rates of the dominant species (*Calanus glacialis*, *Limnocalanus macrurus*, *Pseudocalanus* spp., *Bosmina* sp., *Daphnia* spp., *Oikopleura vanhoeffeni*) were assessed with the gut fluorescence method [7]. To measure gut pigment content, 1 to 40 animals per replicate, depending on size/stage, were picked with forceps and placed in test tubes with 3 ml of 90% acetone. Two to five replicates for each species/stage were analyzed. Pigments were extracted for 24 h at 5 °C in the dark. Chl a and phaeopigment were measured by a standard fluorometric procedure [8] with a Trilogy Laboratory Fluorometer (Turner Designs).

2.3. Zooplankton grazing impact

Grazing impact of each of the dominant species (mg Chl a m$^{-2}$ day$^{-1}$) was estimated using the mean individual daily ingestion rates (ng Chl a ind$^{-1}$ d$^{-1}$) and the abundance of the given species (ind m$^{-2}$).
Declaration of Competing Interest

None.

Acknowledgements

This work was performed in the framework of the state assignment of Ministry of Science and Higher Education of the Russian Federation (theme № 0149–2019–0008, field work, processing and identification of zooplankton) and supported by the Russian Foundation for Basic Research (grants 18–05–60069, processing and analysis of environmental data, preparation of the manuscript, analysis of zooplankton distribution; 19–04–00322, analysis of zooplankton feeding; 19–05–00022, analysis of zooplankton grazing pressure).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.dib.2020.105856.

References

[1] A.V. Drits, A.F. Pasternak, E.G. Arashkevich, S.G. Poyarkov, M.V. Flint, Distribution and Grazing of the Dominant Mesozooplankton Species in the Yenisei Estuary and Adjacent Shelf in Early Summer (July 2016), Cont. Shelf Res. 201 (2020) 104–133.
[2] K.H. Unstad, K.S. Tande, Depth distribution of Calanus finmarchicus and Calanus glacialis in relation to environmental conditions in the Barents Sea, Polar Res. 10 (1991) 409–420.
[3] L.L. Chislenko, Nomograms For Determination of Weight of Aquatic Organisms By Size and Body Shape, Nauka, Leningrad, 1968.
[4] M.E. Vinogradov, E.A. Shushkina, Functioning of the Plankton Communities in Ocean Pelagic, Nauka, Moscow, 1987.
[5] J.B.L. Matthews, L. Hestad, Ecological studies on the deep-water pelagic community of Korsfjorden, Western Norway: Length/weight relationships for some macroplanktonic organisms, Sarsia 63 (1977) 57–63.
[6] R.R. Hopcroft, J.C. Roff, H.A. Bouman, Zooplankton growth rates: the larvaceans Appendicularia, Fritillaria and Oikopleura in tropical waters, J. Plankton Res. 20 (1998) 539–555.
[7] D.L. Mackas, R.N. Bohrer, Fluorescence analysis of zooplankton gut contents and investigation of diel feeding patterns, J. Exp. Mar. Biol. Ecol. 25 (1976) 77–85.
[8] O. Holm-Hansen, C.J. Lorenzen, R.W. Holmes, J.D.H. Strickland, Fluorometric determination of chlorophyll, J. du Conseil, Conseil Perm. Int. Pour l'exploration de la la Mér 30 (1965) 3–15.