Magnetic Flux Trapping and Flux Jumps in Pulsed Field Magnetizing Processes in REBCO and Mg-B Bulk Magnets

T Oka 1, A Takeda 2, H Oki 2, K Yamanaka 1, L Dadiel 1, K Yokoyama 3, W Häßler 4, J Scheiter 4, N Sakai 1 and M Murakami 1

1 Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-Ward, Tokyo 135-8548, Japan
2 Niigata University, 8050 Ikarashi-Ninocho, Nishi-Ward, Niigata 950-8151, Japan,
3 Ashikaga University, 268-1 Omame-cho, Ashikaga 326-8558, Japan
4 IFW Dresden, 20 Helmholtzstr., Dresden 01069, Germany

E-mail: okat@sic.shibaura-it.ac.jp

Abstract. Pulsed-field magnetization technique (PFM) is expected as a cheap and an easy way for HTS bulk materials for utilizing as intense magnets. As the generation of heat due to magnetic flux motion in bulk magnets causes serious degradation of captured fields, it is important to investigate the flux motions during PFM in various field applications. The authors precisely measured the magnetic flux motion in the cryocooled MgB 2 bulk magnets containing various amount of Ti. We classified the motions to “no flux flow (NFF)”, “fast flux flow (FFF)”, and “flux jump (FJ)” regions. The results showed that addition of Ti shifts the field invasion area to high field areas, and expands the NFF regions. The highest field-trapping appears at the upper end of the NFF region. Since the heat generation and its propagation should attribute to the dissipation of magnetic flux, FFF leads to FJ. Compared with MgB2, we referred to GdBCO as for the flux motion. A flux jump was observed at 30 K when the pulse field of 7 T was applied to the preactivated sample, showing its stability against FJ.

1. Introduction
The largely-grown high temperature superconducting bulk materials (hereafter abbreviated as HTS bulk magnet or bulk magnet) are capable of acting as quasi permanent magnets under their superconducting state. We call them as HTS bulk magnets or the trapped field magnets (TFM) [1], [2]. Since the principle of field trapping is different from that of conventional permanent magnets like Nd-Fe-B or ferrite magnets, we can obtain extraordinary intense magnets when they are activated by superconducting solenoid magnets [3], [4] or the pulsed-field magnetizing (PFM) technique [5], [6]. The captured field is very stable when it is cooled far beneath the critical temperature [7]. Since the field-trapping ability linearly increases with lowering temperature, it is important to cool the bulk magnets under 77 K by adopting cryocoolers [8] [9]. Then, the enhancement of mechanical toughness is necessary to endure the strong hoop stress caused by capturing the magnetic flux inside the materials [10].

The practical application candidates for TFM such as NMR magnets or other small-sized field generators require the extremely-uniform magnetic field distribution [11], [12]. MgB 2 is surely one of the promising candidates capable of generating uniform magnetic field distribution due to its homogeneus microstructure in spite of lower T_c than RE-Ba-Cu-O (or REBCO, RE: rare earth elements) compounds [13]. As far as we adopt the TFMs made of MgB 2, we need to prepare two-stage
GM-cycle cryocoolers and magnetizing tools such as superconducting solenoid magnets or pulsed field coils [14].

As pointed in the past papers, the thermal property such as low specific heat and high thermal propagation coefficient originated from “metallic” MgB$_2$ compound might cause serious flux-jump phenomena in PFM processes. Due to the narrow temperature margin between the operating temperature and $T_c = 39$ K [15], [16], the PFM process has a problem which would degrade the J_c value by heat generation caused by the flux motion. The lower T_c than that of REBCO pushes the operation temperature down, which leads to the low heat capacity and crucial temperature rises. In the study, the authors analyze various flux jump behavior and clarify its mechanism. We aim to improve the thermal stability to prevent the flux jumps by examining Ti addition, and estimate the realms of flux jump kingdom.

2. Experimental procedure

2.1. Preparation of MgB$_2$ bulk samples

The samples with various Ti contents were prepared by the hot-pressing process in IFW Dresden in attendance with the students from Japan. As it was clarified that the total sample thickness influences on the shielding effect against the invading flux [16], [17], the thin plates were unified to around 6.5 mm in thickness by stacking them. Table 1 shows their specifications, including the illustrations of sample setups on the cold stage. The detailed conditions were shown elsewhere [16], [17]. The Ti contents were chosen as 0wt% (pristine), 2.5wt%, and 5.0wt%. After ball-milling for 10h, the precursors were sintered by hot-pressing with applying pressure of 480 and 640 MPa for pristine and Ti-doped samples, respectively. Then, they were heat-treated at 700 °C for 10 min.

2.2 Pulsed field magnetization and magnetic flux motions

Figure 1 shows the illustration and photo of the experimental setup for the PFM, employing the two-stage GM cooler. The bulk samples were cooled to operating temperature of 14.6-14.8 K for the pristine and 13 K for Ti-doped samples, respectively. The magnetic field data were measured at the center of the bulk surface by a Hall sensor.
The authors introduced the definitions of parameters of field penetration ratio B_P/B_A and field trapping ratio B_T/B_P, as indicated in Figure 2, to prepare for the following discussion (ref. [18]). The values of B_A and B_P correspond to the highest peaks of applied fields and flux penetrations, respectively. B_T means the final trapped field at the end of PFM profiles.

The ratio of B_P/B_A indicates the shielding effect which estimates the flux motion to invade into the sample. The ratio of B_T/B_P, indicating the flux-trapping ability, strongly reflects the heat generation and its propagation in the sample. The pulse-fields of 0.6 - 2.4 T with a rise time of 10 ms were applied by feeding current from 60 mF condenser to the cryoooled bulk MgB$_2$ samples with use of 112-turn copper coil. The coil is cooled in the liquid nitrogen vessel to reduce its resistance. The coil constant is 1.26 mT/A.

2.3 GdBCO sample and its magnetic flux motion
A melt-processed GdBCO sample was prepared to compare the flux-jump phenomena. The size of which was 30 mm in diameter and 10 mm in thickness. The T_c value is 90 K. The single stage GM cooler cooled the sample to 30 K. The successive magnetic fields around 5-7 T were applied to the bulk magnets as a same manner as Mg-B bulk sample [19]. The time dependence of the magnetic flux density was measured at the surface center by a Hall sensor during PFM operations.

3. Results and Discussion
3.1 Penetration fields
Figure 3 shows the applied field dependence of the penetration fields B_P as a function of Ti contents. All the lines deviated beneath the line of $B_P/B_A=1$, which suggest strong shielding effects on this stacked thick samples. The data points of the pristine sample were a bit different from others in the range less than 1.4 T. This may imply the effect of Ti-addition to the shielding against the flux invasion.

3.2 Trapped field and field trapping ratio
Figure 4 and 5 show the data of trapped field B_T and the field trapping ratio B_T/B_P for the samples with various Ti contents. We see the magnetic flux started invading at 0.7 T for the pristine and at 1.0 T for
Ti-added samples. This implies that Ti addition enhanced the shielding effect, as well as shown in Figure 3. The highest trappings were observed at 0.78 T at 1.5 T application for Ti 2.5% sample. When we inspect Figure 5, the field trapping ratios B_T/B_P kept their values around 80% in the range from 1.0-1.5 T, exhibiting NFF. This suggests that the NFF region shifted to the high field region with increasing Ti addition. Although Ti-2.5wt% addition was apparently effective to shift the flux-invasion to the high field area, the B_T elevation was limited up to 0.78 T. Ti-5.0wt% addition has shown no advantages to improve B_T. However, Ti addition might have improved the thermal propagation, because we see no flux jumps even in the high field region less than 2.1 T. We must note that the Ti-addition shifts the NFF and FJ regions to high field region. If the thermal properties of the materials must have shifted by adding Ti, we should start the microstructural analysis in near future.

3.3 Flux jump in bulk MgB$_2$

The time dependent profiles in Figure 6 exhibit the clear classification to NFF, FFF, and FJ regions. NFF region gives us the most ideal flux trapping with less heat generation. FFF region suggests that the fast flux motion accompanied with heat generation slowly degrades the trapped fields. After FFF region, flux jumps suddenly happen with high speed and cause crucial heating in FJ regions.
When we carefully inspect the data, it is found that the PFM operation at the upper end of NFF region would decide the flux trapping performance. Since the FFF leads to FJ, it is important to keep and expand NFF region to high field areas. The experimental results clarified the secrets of Ti-doping as:

- No effects to enhance shielding against flux invasion
- Shifting the flux invasion to high field region
- Shifting the FJ area to high field region

When we inspect the FFF region we should anticipate the sudden FJ phenomena to happen.

In the future, we should try to develop the heat draining system and to improve the thermal properties like specific heat or heat propagation properties of material itself in order to suppress the temperature raise, and to expand the NFF region to the higher field.

3.4 Flux jump in bulk REBCO
The behavior of flux jumps is different between GdBCO and MgB$_2$ magnets. In Figure 7, when single 7 T was applied, the trapped field B_T kept 3.2 T, showing a value of $B_T/B_P = 64\%$. In the case of multipulse application, the B_T of 1.2 T was trapped after the first field application of 5 T, showing a M-shape field distribution [19]. When a following 7 T was applied, the B_T jumped up to 6 T. This flux motion caused substantial heat at the surface center of the sample. This brought a sudden flux jump at an early time of 40 ms even at 30 K.

In general, REBCO bulk is as far stable against flux jumps to occur. Inhomogeneous microstructure of GdBCO would make the flux motion complex in comparison with homogeneous MgB$_2$. Since high specific heat and low heat propagation of GdBCO suppress the heat transfer from the heating point to the surface center where Hall sensor is attached, we can detect the flux jump which happens near the center. Then, we observe it at the time just after the peak of B_P. This means that the heat propagation must attributed to the detection of flux jump. In MgB$_2$, magnetic flux jumps happen quite late from the beginning of field application. Local heat generation and rapid heat propagation of bulk MgB$_2$ are attributed to the flux jump behavior.

4. Conclusion
Through the PFM procedure conducted at 30 K, the authors have estimated the magnetic flux-trapping property of MgB$_2$ samples bearing various Ti-contents made by hot pressing in IFW Dresden. Time dependence of the flux motion revealed the effect of Ti addition. The parameter of field trapping ratios B_T/B_P led us to the understanding of the flux motion during PFM, which showed us three classification as NFF, FFF, and FJ regions. Since the highest field trapping appears at the end point of NFF region, we should attempt to expand the NFF region as far as high field area before FFF region come out, which brings the FJ region. We compared the flux motion and flux jump in GdBCO bulk sample. We observed a flux jump due to substantial heat generation when the pulsed field of 7 T changed the trapped field distribution from the preactivated M-shaped to conical distribution, showing its superior stability than bulk MgB$_2$.

Acknowledgments
This work has been partially supported by the project named as Strategic Young Researcher Overseas Visits Program for Accelerating Brain Circulation of JSPS.
References

[1] Weinstein R, Chen In-Gan, Liu J and Lau K 1991 Permanent magnets composed of high temperature superconductors J. Appl. Phys. 70 6501

[2] Murakami M 2007 Processing and Applications of Bulk RE–Ba–Cu–O Superconductors Int. J. Appl. Ceram. Technol. 4 225

[3] Durrell J, Dennis A, Jaroszynski J, Ainslie M, Palmer K, Shi Y-H, Campbell A, Hull J, Strasik M, Hellstrom E and Cardwell D 2014 A trapped field of 17.6 T in melt-processed bulk Gd-Ba-Cu-O reinforced with shrink-fit steel Supercond. Sci. Technol. 27 082001

[4] Fuchs G, Häßler W, Nenkov K, Scheiter J, Perner O, Handstein A, Kanai T, Schults L and Holzapfel B 2013 High trapped fields in bulk MgB₂ prepared by hot-pressing of ball-milled precursor powder Supercond. Sci. Technol. 26 122002

[5] Tateiwa T, Suzaku Y, Fujishiro H, Hayashi H, Nagafuchi T and Oka T 2007 Trapped field and temperature rise in rectangular-shaped HTSC bulk magnetized by pulse fields Physica C 463-465, 398

[6] Fujishiro H, Mochizuki H, Ainslie M D and Naito T 2016 Trapped field of 1.1 T without flux jumps in an MgB₂ bulk during pulsed field magnetization using a split coil with a soft iron yoke Supercond. Sci. Technol. 29 084001

[7] Mizutani U, Mase A, Ikuta H, Yanagi Y, Yoshikawa M, Itoh Y and Oka T 1999 Synthesis of c-axis oriented single-domain Sm123 superconductors capable of trapping 9 Tesla at 25 K and its application to a strong magnetic field generator Mat. Sci. Eng. B65 66

[8] Ikuta H, Yanagi Y, Yoshikawa M, Ito Y, Oka T and Mizutani U 2001 Melt processing and the performances as a superconducting permanent magnet of RE-Ba-Cu-O/Ag (RE=Sm, Nd) Physica C 357-360 837

[9] Oka T 2007 Processing and Applications of Bulk HTSC Physica C 463-465 7

[10] Murakami A, Teshima H, Naito T, Fujishiro H and Kudo T 2014 Mechanical Properties of MgB₂ Bulks Phys. Procedia 58 98

[11] Nakamura T, Itoh Y, Yoshikawa M, Oka T and Uzawa J 2007 Development of a Superconducting Magnet for Nuclear Magnetic Resonance Using Bulk High-Temperature Superconducting Materials Concepts in Mag. Res. Part B (Mag. Res. Eng) 31 65

[12] Ogawa K, Nakamura T, Terada Y, Kose K and Haishi T 2011 Development of a magnetic resonance microscope using a high Tc bulk superconducting magnet Appl. Phys. Lett. 98 234101

[13] Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y and Akimitsu J 2001 Superconductivity at 39/uni202FK in magnesium diboride Nature 410 63

[14] Yokoyama K, Katsuki A, Miura A and Oka T 2018 Comparison of trapped field characteristic of bulk magnet system using various type refrigerators J. Phy. Conf. Ser. 1054 012072

[15] Ainslie M, Zhou D, Fujishiro H, Takahashi H, Shi Y-H and Durrell J 2016 Flux jump-assisted pulsed field magnetisation of high-J, bulk high-temperature superconductors Supercond. Sci. Tech. 29 124004

[16] Miyazaki T, Fukui S, Ogawa J, Sato T, Oka T, Scheiter J, Häßler W, Kulawansha E, Zhao Y and Yokoyama K 2017 Pulse field magnetization for disc-shaped MgB₂ Bulk Magnets IEEE Trans. Appl. Supercond. 27 6805004

[17] Oka T, Takeda A, Sasaki S, Ogawa J, Fukui S, Sato T, Scheiter J, Häßler W, Katsuki J, Miura A and Yokoyama K 2018 Magnetic Flux Invasion and Field-Capturing in Pulsed-Field Magnetization for Layered MgB₂ Bulk Magnets IEEE Trans. Appl. Supercond. 28 6805004

[18] Oka T, Takeda A, Oki H, Ogawa J, Fukui S, Sato T, Scheiter J, Häßler W, Katsuki J, Miura A and Yokoyama K 2019 Study on Magnetic Flux Dissipation and Field-Trapping Performance of HTS Bulk-Shaped Magnesium Diboride in Pulse-Field Magnetizing Processes IEEE Trans. Appl. Supercond. 29 6802606

[19] Oka T, Hara K, Takeda A, Ogawa J, Fukui S, Sato T, Yokoyama K and Murakami A 2017 Magnetic flux invasion in REBCO bulk magnets with varying pre-magnetized flux distributions in multiple-PFM processes J. Phy. Conf. Ser. 871 012049