A BERNSTEIN TYPE INEQUALITY

VILMOS KOMORNÍK AND PAOLA LORETI

Abstract. We formulate and discuss a conjecture which would extend a classical inequality of Bernstein.

1. A Bernstein type inequality

A classical theorem due to Bernstein [2] states that every even trigonometric polynomial T of order M satisfies the inequality

$$\|T'\|_{L^\infty} \leq M\|T\|_{L^\infty}.$$

His result was extended to all trigonometric polynomials by Fejér [3]. Another proof was given by M. Riesz [4], [5]; this also shows that

$$(1.1) \quad \|T'\|_{L^p(I)} \leq M\|T\|_{L^p(I)}$$

for every interval I of length $|I| = 2\pi$ and for every exponent $1 \leq p \leq \infty$.

For $p = 2$ this inequality follows easily by applying Parseval’s formula. Indeed, writing

$$T(x) = \sum_{k=-M}^{M} a_k e^{ikx}$$

and using the orthogonality of the functions e^{ikx} we have

$$\int_I |T'(x)|^2 \, dx - M^2 \int_I |T(x)|^2 \, dx$$

$$= \int_I \left| \sum_{k=-M}^{M} ika_k e^{ikx} \right|^2 \, dx - M^2 \int_I \left| \sum_{k=-M}^{M} a_k e^{ikx} \right|^2 \, dx$$

$$= 2\pi \sum_{k=-M}^{M} |ika_k|^2 - 2\pi M^2 \sum_{k=-M}^{M} |a_k|^2$$

$$= 2\pi \sum_{k=-M}^{M} (k^2 - M^2)|a_k|^2$$

$$\leq 0.$$
2. A conjecture

Let us introduce the function

$$H(x) := \begin{cases} \cos x & \text{if } |x| \leq \pi/2, \\ 0 & \text{if } |x| \geq \pi/2. \end{cases}$$

For any positive integer M, the following inequality holds:

$$\int_{-\infty}^{\infty} |(H^M)'(x)|^2 \, dx \leq M^2 \int_{-\infty}^{\infty} |H^M(x)|^2 \, dx. \tag{2.1}$$

Indeed, since

$$\int_{-\infty}^{\infty} |(H^M)'(x)|^2 \, dx = \int_{-\pi/2}^{\pi/2} |(\cos^M)'(x)|^2 \, dx = \frac{1}{2} \int_{-\pi}^{\pi} |(\sin^M)'(x)|^2 \, dx$$

and

$$\int_{-\infty}^{\infty} |H^M(x)|^2 \, dx = \int_{-\pi/2}^{\pi/2} |\cos^M x|^2 \, dx = \int_{0}^{\pi} |\sin^M x|^2 \, dx = \frac{1}{2} \int_{-\pi}^{\pi} |\sin^M x|^2 \, dx,$$

the inequality follows by applying (1.1) with $T(x) := \sin^M x$ on the interval $I = (-\pi, \pi)$.

The following conjecture is a generalization of the inequality (2.1).

Conjecture 2.1. Let $(\lambda_n)_{n=-\infty}^{\infty}$ be a strictly increasing sequence of real numbers, satisfying for some positive integer M the gap condition

$$\lambda_{n+M} - \lambda_n \geq \pi \tag{2.2}$$

for all n. Then for every finite sequence (a_n) of real numbers, the function

$$G(x) := \sum a_n H^M(x + \lambda_n)$$

satisfies the inequality

$$\int_{-\infty}^{\infty} |G'(x)|^2 \, dx \leq M^2 \int_{-\infty}^{\infty} |G(x)|^2 \, dx. \tag{2.3}$$

In the next sections we prove the conjecture for $M = 1$ and $M = 2$.

3. Proof of the conjecture for $M = 1$

For $M = 1$ we have even an equality. Indeed, since for $m \neq n$ the product functions

$$H(x + \lambda_m)H(x + \lambda_n) \quad \text{and} \quad H'(x + \lambda_m)H'(x + \lambda_n)$$

vanish identically by (2.2), we have

$$\int_{-\infty}^{\infty} |G(x)|^2 \, dx = \int_{-\infty}^{\infty} \left| \sum a_n H(x + \lambda_n) \right|^2 \, dx = \sum |a_n|^2 \int_{-\infty}^{\infty} |H(x + \lambda_n)|^2 \, dx$$

and

$$\int_{-\infty}^{\infty} |G'(x)|^2 \, dx = \int_{-\infty}^{\infty} \left| \sum a_n H'(x + \lambda_n) \right|^2 \, dx = \sum |a_n|^2 \int_{-\infty}^{\infty} |H'(x + \lambda_n)|^2 \, dx.$$
We conclude by observing that
\[
\int_{-\infty}^{\infty} |H(x + \lambda_n)|^2 \, dx = \int_{-\pi/2}^{\pi/2} \cos^2 x \, dx = \frac{\pi}{2}
\]
and
\[
\int_{-\infty}^{\infty} |H'(x + \lambda_n)|^2 \, dx = \int_{-\pi/2}^{\pi/2} \sin^2 x \, dx = \frac{\pi}{2}.
\]

4. Discussion of the case \(M \geq 2 \)

We begin with some discussion concerning the general case. Our first lemma allows us to reformulate the conjecture.

Lemma 4.1. Introducing the function
\[
g(\lambda) = g_M(\lambda) := \int_{-\infty}^{\infty} H^M(x + \lambda)H^{M-2}(x) \, dx,
\]
we have
\[
M^2 \int_{-\infty}^{\infty} |G(x)|^2 \, dx - \int_{-\infty}^{\infty} |G'(x)|^2 \, dx = \sum_{m,n=-\infty}^{\infty} g(\lambda_m - \lambda_n)a_m\bar{a}_n.
\]

Proof. We recall from [1] that
\[
(H^M)'(x) = -M^2H^M(x) + M(M-1)H^{M-2}(x)
\]
for all \(x \). Integrating by parts and then using this relation, we have
\[
M^2 \int_{-\infty}^{\infty} |G(x)|^2 \, dx - \int_{-\infty}^{\infty} |G'(x)|^2 \, dx = \sum_{m,n=-\infty}^{\infty} g(\lambda_m - \lambda_n)a_m\bar{a}_n.
\]

In view of this lemma it suffices to show that
\[
(4.1) \quad \sum_{m,n=-\infty}^{\infty} g(\lambda_m - \lambda_n)a_m\bar{a}_n \geq 0
\]
for all finite sequences \((a_n)\) of complex numbers.

Remark. It follows easily from the definition that \(g_M \) is a nonnegative, even function, vanishing outside the interval \((-\pi, \pi)\). It can be computed explicitly for any
given \(M \). For example, if \(0 \leq x \leq \pi \), then we have
\[
4g_2(x) = 2(\pi - x) + \sin 2x,
\]
\[
32g_3(x) = 12(\pi - x) \cos x + 9 \sin x + \sin 3x,
\]
\[
192g_4(x) = 36(\pi - x) + 24(\pi - x) \cos 2x + 28 \sin 2x + \sin 4x.
\]

Indeed, for \(M = 2 \) we have
\[
4g_2(x) = \int_{\pi/2}^{\pi/2} 4 \cos^2 t \, dt = \int_{-\pi/2}^{\pi/2} 2 + 2 \cos 2t \, dt = 2(\pi - x) + \sin 2x.
\]

For \(M = 3, 4 \) the computation is similar but longer.

5. Proof of the conjecture for \(M = 2 \)

The proof of (4.1) for \(M = 2 \) is based on the following identity:

Lemma 5.1. The following identity holds:
\[
\sum_{m,n=-\infty}^{\infty} g(\lambda_m - \lambda_n) a_m a_n = \sum_{n=-\infty}^{\infty} g(\lambda_n+1 - \lambda_n)|a_n + a_{n+1}|^2
\]
\[
+ \sum_{n=-\infty}^{\infty} (g(0) - g(\lambda_n - \lambda_n) - g(\lambda_n+1 - \lambda_n))|a_n|^2.
\]

Proof. Writing \(h_{m,n} := g(\lambda_m - \lambda_n) \) for brevity, and using the evenness of \(g \), the following computation leads to the required identity:
\[
\sum_{m,n=-\infty}^{\infty} h_{m,n} a_m a_n
\]
\[
= \sum_{n=-\infty}^{\infty} h_{n,n} |a_n|^2 + h_{n,n+1}(a_n a_{n+1} + a_{n+1} a_n)
\]
\[
= \sum_{n=-\infty}^{\infty} h_{n,n} |a_n|^2 + h_{n,n+1}(|a_n + a_{n+1}|^2 - |a_n|^2 - |a_{n+1}|^2)
\]
\[
= \sum_{n=-\infty}^{\infty} h_{n,n+1}|a_n + a_{n+1}|^2 + (h_{n,n} - h_{n,n+1} - h_{n-1,n})|a_n|^2. \]

Since \(g \) is nonnegative, the first sum on the right side of the above identity is \(\geq 0 \). Since
\[
\lambda_{n+1} - \lambda_n \geq 0, \quad \lambda_n - \lambda_{n-1} \geq 0 \quad \text{and} \quad (\lambda_{n+1} - \lambda_n) + (\lambda_n - \lambda_{n-1}) = \lambda_{n+1} - \lambda_{n-1} \geq \pi
\]
by the gap condition (2.2), the nonnegativity of the second sum follows from the next lemma which completes the proof of (4.1).

Lemma 5.2. If
\[
a \geq 0, \quad b \geq 0 \quad \text{and} \quad a + b \geq \pi,
\]
then
\[
\text{then} \quad g(a) + g(b) \leq g(0).
\]
Proof. Since the functions H^2, H^0 are nonnegative and since the intervals
\[
\left(-\frac{\pi}{2}, \frac{\pi}{2} - a \right) \quad \text{and} \quad \left(-\frac{\pi}{2} + b, \frac{\pi}{2} \right)
\]
are disjoint, we have
\[
g(a) + g(b) = \int_{-\infty}^{\infty} H^2(x)H^0(x + a) \, dx + \int_{-\infty}^{\infty} H^2(x)H^0(x - b) \, dx
\]
\[
= \int_{-\infty}^{\frac{\pi}{2} - a} H^2(x) \, dx + \int_{-\infty}^{\frac{\pi}{2} + b} H^2(x) \, dx
\]
\[
\leq \int_{-\infty}^{\infty} H^2(x) \, dx
\]
\[
= g(0).
\]
\[\square\]

Remark. The above proof also shows that for $a + b = \pi$ we have $g(a) + g(b) = g(0)$, i.e.,
\[
g(x) + g(\pi - x) = g(0)
\]
for all $x \in [0, \pi]$. This can also be seen from the explicit formula of g.

References

[1] C. Baiocchi, V. Komornik and P. Loreti, Ingham type theorems and applications to control theory, Boll. Un. Mat. Ital. B (8), II - B, n. 1 Febbraio 1999, 33-63.
[2] S. Bernstein, Sur l’ordre de la meilleure approximation des fonctions continues par des polynômes de degré donné, Communications de la Société mathématique de Kharkov (1912) et Classe des Sciences de l’Académie de Belgique, 4 (1912).
[3] L. Fejér, Über konjugierte trigonometrische Reihen, J. Reine Angew. Math. 138 (1914), 22–53.
[4] M. Riesz, Formule d’interpolation pour la dérivée d’un polynôme trigonométrique, C. R. Acad. Sci. Paris 158 (1914), 1152–1154.
[5] M. Riesz, Eine trigonometrische Interpolationsformel und einige Ungleichungen für Polynome, Jahresber. Deutsch. Math. Ver. 23 (1914), 354–368.