The sparse representation related with fractional heat equations

Pengtao Lia, Tao Qianb, Ieng Tak Leongc, Wei Qu1d

aSchool of Mathematics and Statistics, Qingdao University, China. Email: ptli@qdu.edu.cn.
bMacau center for mathematical science, Macau University of Science and Technology, Macau. Email: tqian@must.edu.mo.
cDepartment of Mathematics, Faculty of Science and Technology, University of Macau, Macau. Email:itleong@um.edu.mo.
dLaboratory of Mathematics and Complex Systems (Ministry of Education), School of Mathematical Sciences, Beijing Normal University, China. Email: quwei2math@qq.com.

Abstract

This study introduces pre-orthogonal adaptive Fourier decomposition (POAFD) to obtain approximations and numerical solutions to the fractional Laplacian initial value problem and the extension problem of Caffarelli and Silvestre (generalized Poisson equation). The method, as the first step, expands the initial data function into a sparse series of the fundamental solutions with fast convergence, and, as the second step, makes use the semigroup or the reproducing kernel property of each of the expanding entries. Experiments show effectiveness and efficiency of the proposed series solutions.

Keywords: reproducing kernel Hilbert space; dictionary; sparse representation; approximation to the identity; fractional heat equations

2020 MSC: 65M80; 41A30; 65N80; 35K08; 35K05

1. Introduction

For $0 < \alpha < 1$, the fractional Laplacian of order α, denoted by $(-\Delta)^\alpha$, can be defined on functions $f: \mathbb{R}^n \to \mathbb{R}$ via the Fourier multiplier given by the formula

$$(-\Delta)^\alpha f(\xi) = |\xi|^{2\alpha} \hat{f}(\xi),$$

where the Fourier transform \hat{f} of $f: \mathbb{R}^n \to \mathbb{R}$ is given by

$$\hat{f}(\xi) = \int_{\mathbb{R}^n} f(x)e^{-ix\cdot\xi}dx.$$

The fractional Laplacian can be alternatively written as the singular integral operator defined by

$$(-\Delta)^\alpha f(x) = c_{n,\alpha} \int_{\mathbb{R}^n} \frac{f(x) - f(y)}{|x - y|^{n+2\alpha}}dy,$$
where the prefactor $c_{n, \alpha}$ is the constant
\[
\frac{4^\alpha \Gamma(n/2 + \alpha)}{\pi^{n/2} |\Gamma(-\alpha)|}
\]
involving the Gamma function and serving as a normalizing factor. We refer the reader to [10] for other equivalent definitions of the fractional Laplacian.

The fractional Laplacian $(-\Delta)\alpha$ plays a significant role in many areas of mathematics, such as harmonic analysis and PDEs, and is often applied to describe many complicated phenomena via partial differential equations. Anomalous diffusion processes with non-locality in complex media can be well characterized by using fractional-order diffusion equation models, e.g. the following fractional heat equation:

\[
\begin{aligned}
\frac{\partial u}{\partial t}(t + x) &= (-\Delta)^\alpha u(t + x), \quad (x, t) \in \mathbb{R}_+^{n+1}; \\
\partial^\alpha_t u(0 + x) &= f(x), \quad x \in \mathbb{R}^n.
\end{aligned}
\]

In addition, the fractional Laplacian has been applied to study a wide class of physical systems and engineering problems, including Lévy flights, stochastic interfaces and anomalous diffusion problems. By the following extension problem for generalized Poisson equation:

\[
\begin{aligned}
\text{div}(t^\alpha \nabla u)(x) &= 0, \quad (x, t) \in \mathbb{R}_+^{n+1}; \\
\partial^\alpha_t u &= f, \quad x \in \mathbb{R}^n,
\end{aligned}
\]

L. Caffarelli and L. Silvestre showed in [4] that any fractional power of the Laplacian can be determined as an operator that maps a Dirichlet boundary condition to a Neumann type condition via an extension problem. In the study on the obstacle problem for the fractional Laplace operators, this characterization of $(-\Delta)\alpha$ via the above local (degenerate) PDE was firstly used in [5] to get related estimates of regularities. We also refer the reader to [6, 7, 9, 16] for further information on applications of the fractional Laplacian in PDEs.

The aim of this article is to develop sparse decompositions of the solutions to the initial problems given in (1.1) and (1.2) by using the POAFD (pre-orthogonal adaptive Fourier decomposition) method under the $\mathcal{H} – H_K$ formulation of T. Qian [12] and more precisely the convolution-type sparse representation of the identity which was further developed by W. Qu et al. in [13]. We also refer the reader to [14, 15] for the closely related AFD adaptive Fourier decompositions methods. In [13] the POAFD methodology is used to give fast approximation to the identity, and hence to expand the initial (boundary) data by using the dictionaries elements the parameterized fractional heat and the Poisson kernels. Then by the “lifting up” method based on semigroup properties in the two cases we obtain sparse representation of the original Dirichlet boundary and Cauchy initial value problems.

It should be pointed out that the sparse representations of the solutions to the equation (1.1) and (1.2) are not simple analogues of those related with the classical heat kernel and Poisson kernels. In [13], an important mechanism together with the sparse representation of the Dirac-δ generalized function is the following superimposed effect of the classical heat kernel
and Poisson kernels. Precisely, for any \((x, t), (y, s) \in \mathbb{R}^n,\)

\[
\left\{
\begin{array}{c}
\int_{\mathbb{R}^n} \frac{t}{(t^2 + |x - z|)^{(n+1)/2}} \left(\frac{s}{(s^2 + |y - z|)^{(n+1)/2}}\right) dz = \frac{t + s}{(t + s)^{(n+1)/2}}; \\
\frac{1}{(4\pi)^{n/2}} \int_{\mathbb{R}^n} e^{-|x-z|^2/4t} e^{-|y-z|^2/4s} dz = \frac{1}{(4\pi(t + s))^{n/2}} e^{-|x-y|^2/4(t+s)},
\end{array}
\right.
\]

(1.3)

which can be deduced from the uniqueness of the solutions of the heat equation and the Poisson equation. Like the heat kernel and the Poisson kernel cases, the integral kernel of the fractional heat equation (1.1), denoted as \(K_{\alpha,t+s}(\cdot)\), although without an explicit formula, can also adopt the same argument based on the uniqueness of the solution to (1.1) together with the linearity of the \(t\)-differentiation. There holds

\[
\langle K_{\alpha,t+x}(\cdot), K_{\alpha,s+y}(\cdot) \rangle_{L^2} = K_{\alpha,t+s}(x - y).
\]

In Section 3, we, alternatively, apply the Fourier multipliers and the Plancherel formula to establish the above semigroup identities for the fractional heat equation (1.1): For the special cases \(\alpha = 1/2, 1\), the identities become those in (1.3) in the given order, respectively.

For the case of equation (1.2), the solutions \(\{P^f_t\}_{t>0}\) do not satisfy the semigroup property, or in other words, the analogous relations like those in (1.3) are invalid.

Another difference between our results and those obtained in [13] is the technology used in proving the boundary vanishing condition (BVC) of the reproducing kernels. In [13], the authors use (1.3) to verify the BVC properties of the heat and the Poisson type kernels, see [13, Theorems 3.1 & 3.2]. Since the semigroup property does not hold for the fundamental solutions of (1.2), we utilize the fractional Poisson kernel

\[
P^\sigma_t(x) = \frac{t^\sigma}{(t^2 + |x-y|^2)^{(n+2)/2}}.
\]

Through providing a decay estimate of the integral

\[
\frac{t^{n/2}}{(c_{n,\sigma})^{1/2}} \int_{\mathbb{R}^n} \frac{t^\sigma}{(t^2 + |x-z|^2)^{(n+\sigma)/2}} \frac{s^\sigma}{(s^2 + |y-z|^2)^{(n+\sigma)/2}} dz,
\]

we show the BVC property, see Theorem 4.1.

Moreover, Theorem 4.1 partly improves the results of the sparse approximation for the general convolution cases as given in [13, Theorem 3.3]. In the latter the authors consider the sparse approximation for following convolution kernel \(\phi_t(x) := t^{-n/2}\phi(x/t)\), where

\[
\left\{
\begin{array}{c}
\int_{\mathbb{R}^n} \phi(x) dx = 1; \\
\sup_{|y| \geq |x|} |\phi(y)| \leq \frac{C}{(1 + |x|^2)^{(n+\delta)/2}}, \quad \delta > 0.
\end{array}
\right.
\]

For \(\delta \geq 1\), the functions \(\phi(\cdot)\) are dominated by the Poisson kernel. Then, as a consequence of [13, Theorem 3.1], the sparse representation in \(\{\phi_t(\cdot)\}_{t>0}\) can be established. Our treatment in Theorem 4.1 however, can guarantee the sparse representation for all \(\delta > 0\).
Some notations: Throughout this paper, we use the symbol $U \simeq V$ to denote there is a constant $c > 0$ such that $c^{-1}V \leq U \leq cV$. The symbol $U \lesssim V$ means that $U \leq cV$. Similarly, we use $V \gtrsim U$ to denote there exists a constant c such that $V \geq cU$.

2. Preliminary

Firstly, we state some preliminaries on the $H-H_K$ formulation, which was introduced by Qian in [12] based on the theory of reproducing Hilbert spaces. Let H be a Hilbert space whose inner product is denoted by $\langle \cdot, \cdot \rangle_H$. Correspondingly, for any $f \in H$, the norm $\|f\|_H^2 = \langle f, f \rangle_H$.

Let \mathcal{E} be an open set in the underline topological space, where, in this article, the elements are real or complex numbers, or vectors. In the $H-H_K$ formulation, each $p \in E$ is treated as as a parameter. Precisely, for $p \in \mathcal{E}$, there exists an element $h_p \in H$ corresponding to p. Denote by C^E the set of all functions from \mathcal{E} to the complex number field \mathbb{C}. For $f \in H$, we can define a linear operator from H to C^E, denoted by \mathcal{L} via the inner product $\langle \cdot, \cdot \rangle_H$, i.e.,

$$\mathcal{L}(f)(p) = \langle f, h_p \rangle_H, \quad p \in \mathcal{E}. \quad (2.4)$$

We use $N(\mathcal{L})$ to denote the null space of \mathcal{L}, i.e., the set of all elements $f \in H$ such that $\mathcal{L}(f) = 0$. Take a sequence of functions $\{f_n\}_{n \in \mathbb{N}}$ in $N(\mathcal{L}) \subset H$ satisfying

$$\lim_{n \to \infty} \|f - f_n\|_H = 0.$$

Since

$$|\mathcal{L}(f)(p)| = |\mathcal{L}(f - f_n)(p)| = \|f - f_n, h_p\|_H \leq \|f - f_n\|_H \|h_p\|_H,$$

letting $n \to \infty$ reaches to $|\mathcal{L}(f)(p)| = 0$, which implies that $f \in N(\mathcal{L})$ and hence, we can see that $N(\mathcal{L}) \subset H$ is closed. Denote by $N(\mathcal{L})^\perp$ denote the trivial or non-trivial orthogonal complement of $N(\mathcal{L})$ in H. Then

$$H = N(\mathcal{L}) \oplus N(\mathcal{L})^\perp.$$

For any $f \in H$, there exist unique $f_- \in N(\mathcal{L})$ and unique $f_+ \in N(\mathcal{L})^\perp$ such that

$$f = f_- + f_+.$$

Let $F(p) = \mathcal{L}(f)(p)$ and denote by $R(\mathcal{L})$ the rang of \mathcal{L}:

$$R(\mathcal{L}) := \left\{ F \in \mathbb{C}^\mathcal{E} : \text{ there exists} \ f \in H \text{ such that } F = \mathcal{L}(f) \right\}.$$

Obviously, for any $f \in H$, it holds

$$\mathcal{L}(f) = \mathcal{L}(f_-) + \mathcal{L}(f_+) = \mathcal{L}(f_+),$$
which implies that \(\mathcal{L}(N(\mathcal{L})^\perp) = R(\mathcal{L}) \). Define the space \(H_K \) as the set of all \(F \in R(\mathcal{L}) \) satisfying \(\|F\|_{H_K} < \infty \), where
\[
\|F\|_{H_K} := \|f_+\|_H, \quad F = \mathcal{L}(f) & f \in \mathcal{H}, \tag{2.5}
\]
and denote by \((\cdot, \cdot)_{H_K} \) the inner product generated by \(\|\cdot\|_{H_K} \) via the polarization identity. In [12], Qian proved the following result.

Proposition 1. ([12, page 3])

(i) The space \(H_K \) is a Hilbert space with the inner product \((\cdot, \cdot)_{H_K} \).

(ii) Via the mapping \(\mathcal{L} \), the space \(H_K \) is isometric with \(N(\mathcal{L})^\perp \).

(iii) Define
\[
K(q, p) := \langle h_q, h_p \rangle_H.
\]
The function \(K(q, p) \) is the reproducing kernel of \(H_K \).

When studying linear operators in Hilbert spaces, the \(H-H_K \) formulation provides a greatly facilitates. Especially, in practice, this formulation is applied to offer fast converging numerical solutions, see [12, 13]. In each of our two contexts, \(\mathcal{E} \) is \(\mathbb{R}^{n+1}_+ \), \(\mathcal{H} \) is \(L^2(\mathbb{R}^n) \). The kernel functions \(h_p \) are the respective integral kernels giving rise to the solutions, the latter being in the image Hilbert spaces which are the reproducing kernel spaces \(H_K \). Since the dictionary generated by the parameterized kernels \(h_p \) is dense, \(H_K \) is isometric with \(L^2(\mathbb{R}^n) \) in each of our two cases. In the case there holds, for \(u = \mathcal{L}f \), noting that the reproducing kernel of \(H_K \) is \(K_p \), then
\[
\langle u, K_p \rangle_{H_K} = u(p) = \mathcal{L}(f)(p) = \langle f, h_p \rangle_{L^2(\mathbb{R}^n)}.
\]

Now we state briefly our algorithm, the pre-orthogonal adaptive Fourier decomposition (POAFD), used in the article. Fundamentally, the POAFD can be seen as a modified greed algorithm of sparse representations. The main idea of the POAFD algorithm combines the features and advantages of both the greedy algorithm and the adaptive Fourier decomposition (AFD). On the one hand, like the greedy principle, the POAFD algorithm makes the locally optimal choice at each step to seek finding a global optimum. On the other hand, similar to the AFD decomposition which induces the rational approximation via Blaschke products with multiple zeros, in order to construct the approximation, the POAFD algorithm selects multiple kernels with the same parameters in the process of Gram-Schmidt orthogonalization.

Definition 1. Let \(H_K \) be a reproducing kernel Hilbert space with the reproducing kernel \(K_q, \ q \in \mathcal{E} \). In the \(H-H_K \) formulation, a dictionary can be constituted by the normalization of \(\{K_q\}_{q \in \mathcal{E}} \), denoted by \(\{E_q\}_{q \in \mathcal{E}} \), which is defined as
\[
E_q := \frac{K_q}{\|K_q\|_{H_K}}.
\]
The so called POAFD method is to find, consecutively, a sequence \(q_1, \ldots, q_k, \ldots \) in \(\mathcal{E} \) so that
\[
q_k = s_k + y_k = \arg \sup_{q \in \mathcal{E}} \left\{ \langle f, E_q^k \rangle \right\},
\]
where \((E_1, \ldots, E_{k-1}, E^q_k)\) is the Gram-Schmidt process of the kernels \((\tilde{K}_{q_1}, \ldots, \tilde{K}_{q_{k-1}}, \tilde{K}_q)\), in which the Gram-Schmidt orthogonalization of \((\tilde{K}_{q_1}, \ldots, \tilde{K}_{q_{k-1}})\) is denoted by \((E_1, \ldots, E_{k-1})\).

The POAFD type sparse representation of the initial or boundary data \(f\) is, with a sequence of suitable constants \(\{c_n\}\),
\[
f = \sum_{k=1}^{\infty} \langle f, E_k \rangle E_k = \sum_{k=1}^{\infty} c_k \tilde{K}_{q_k}.
\]
Both the solutions for the problems \((1.1)\) and \((1.2)\) are of the same form
\[
u(p) = \langle f, K_p \rangle = \sum_{k=1}^{\infty} c_k \langle \tilde{K}_{q_k}, K_p \rangle = \sum_{k=1}^{\infty} c_k \tilde{K}_{q_k}(p), \quad p = t + x.
\]
In the \((1.1)\) case, owing to the semigroup property the solution may be rewritten as
\[
u(t + x) = \sum_{k=1}^{\infty} c_k \tilde{K}_{\alpha,t+s}(x - y_k)
\]
(See §3). In the \((1.2)\) case there is no semigroup property and one has to compute
\[
\tilde{K}_{q_k}(p) = \langle \tilde{K}_{q_n}, K_p \rangle
\]
according to \((4.11)\). We finally note that both the solutions have the same convergence rate: The error for the \(N\)-partial sum in the norm sense is
\[
O\left(\frac{1}{\sqrt{N}}\right) \quad ([14]).
\]

3. Sparse representation of fractional heat equations

In this section, we study sparse representation of approximation to the identity via the fractional heat equations \((1.1)\). Throughout the rest of this paper, we take the Hilbert space \(\mathcal{H} = L^2(\mathbb{R}^n)\), defined as the set of all complex-valued measurable functions \(f\) over \(\mathbb{R}^n\) satisfying
\[
\int_{\mathbb{R}^n} |f(x)|^2 \, dx < \infty.
\]
The inner product on \(L^2(\mathbb{R}^n)\) is defined via the Lebesgue integral as
\[
\langle f, g \rangle := \int_{\mathbb{R}^n} f(x) \overline{g(x)} \, dx, \quad \forall f, g \in L^2(\mathbb{R}^n).
\]
The corresponding norm of \(L^2(\mathbb{R}^n)\) is
\[
\|f\|_{L^2(\mathbb{R}^n)}^2 = \langle f, f \rangle := \int_{\mathbb{R}^n} |f(x)|^2 \, dx.
\]
For the initial value problem \((1.1)\), the unique solution \(u(t + x)\) can be represented by the fractional integral transform
\[
u(t + x) = \mathcal{L}(f)(t + x) := \int_{\mathbb{R}^n} K_{\alpha,t}(x - y) f(y) dy.
\]
We note that the notation \(t + x \) has the meaning \((t, (x_1, \ldots, x_n)) \) with \(x = (x_1, \ldots, x_n) \in \mathbb{R}^n \). By the Fourier transform, the fractional Laplacian \((-\Delta)^\alpha \) can be equivalently represented as, for \(\xi = (\xi_1, \xi_2, \ldots, \xi_n) \),
\[
(-\Delta)^\alpha f(\xi) = |\xi|^{2\alpha} \hat{f}(\xi).
\]
The fractional heat semigroup can be represented as
\[
(e^{-t(-\Delta)^\alpha}) \hat{f}(\xi) = |\xi|^{2\alpha} \hat{f}(\xi).
\]
Denote by \(K_{\alpha,t}(\cdot) \) the integral kernel related with \(e^{-t(-\Delta)^\alpha} \), i.e.,
\[
e^{-t(-\Delta)^\alpha} f(x) = \int_{\mathbb{R}^n} K_{\alpha,t}(x - y) f(y) dy.
\]
By the inverse Fourier transform, the fractional heat kernel can be represented as
\[
K_{\alpha,t}(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{-t|\xi|^{2\alpha}} e^{ix\xi} d\xi. \quad (3.6)
\]
One has the following basic estimate:

Proposition 2. ([1, 8, 17]) Under \(\alpha \in (0, 1) \), the fractional heat kernel satisfies the following estimates
\[
K_{\alpha,t}(x) \simeq \frac{t}{(t^{1/(2\alpha)} + |x|)^{n+2\alpha}}, \quad \forall (x, t) \in \mathbb{R}^{n+1}.
\]

Because \(\{e^{-t(-\Delta)^\alpha}\}_{t \geq 0} \) is a strongly continuous semigroup in \(L^2(\mathbb{R}^n) \). Then
\[
\lim_{t \to 0^+} u(t + x) = f(x)
\]
in both the sense of \(L^2(\mathbb{R}^n) \) and the pointwise sense almost everywhere. Based on this fact, we denote \(f(x) = u(0 + x) \). Due to the isometric relation there hold
\[
\|u\|_{H_K}^2 = \|f\|^2_{L^2(\mathbb{R}^n)} = \|u(0 + x)\|^2_{L^2(\mathbb{R}^n)}. \quad (3.7)
\]
To construct the approximation, we apply the Plancherel theorem to deduce the following semigroup property: for \(q = t + x \) and \(p = s + y \),
\[
K(q, p) = \langle h_q, h_p \rangle_{L^2} = \langle K_{\alpha,t+x}(\cdot), K_{\alpha,s+y}(\cdot) \rangle_{L^2} = \int_{\mathbb{R}^n} e^{-(t+s)|\xi|^{2\alpha}} e^{i(x-y)\xi} d\xi = K_{\alpha,t+s}(x - y).
\]
Denote \(h_q(y) = K_{\alpha,t}(x - y) \), where \(q = t + x \). For \(t + s > 0 \), let \(q_1 = t + s + x \) and \(q_2 = t + s + y \). Then \(h_{q_1}(y) = K_{\alpha,s+t}(x - y) \) and \(h_{q_2}(x) = K_{\alpha,s+t}(y - x) \). Hence
\[
K(q, p) = h_{t+s+y}(x) = h_{t+s+x}(y) = h_{t+s+x-y}(0).
\]
On the other hand, it follows from the Fourier transform and the change of variable: $\xi = -\eta$ that

$$K_{\alpha,s+t}(x - y) = \int_{\mathbb{R}^n} e^{-(t+s)|\xi|^{2\alpha}} e^{i(x-y)\xi} d\xi$$

$$= \int_{\mathbb{R}^n} e^{-(t+s)|\eta|^{2\alpha}} e^{i(x-y)\eta} d\eta$$

$$= K_{\alpha,s+t}(y - x).$$

Now we give the sparse representation theorem related to the fractional Laplace equations.

Theorem 3.1. The dictionary of the fractional heat kernels satisfies BVC. As a consequence, POAFD algorithm can be performed in the context to obtain sparse representation of functions in $H = L^2(\mathbb{R}^n)$.

Proof. For $q = t + x$, we can compute the norm $\|K_q\|_{H_K}$ as follows.

$$\|K_q\|^2_{H_K} = \langle K_q, K_q \rangle_{H_K} = h_{2t+x-x}(0) = h_{2t+0}(0).$$

By the Fourier transform,

$$h_{2t+0}(0) = K_{\alpha,2t}(0)$$

$$= \int_{\mathbb{R}^n} e^{-2t|\xi|^{2\alpha}} e^{i\cdot\xi} d\xi$$

$$= C_n \int_{0}^{\infty} e^{-2t|\xi|^{2\alpha}} |\xi|^{n-1} d|\xi|$$

$$= \frac{C_n}{(2t)^{n/2\alpha}} \int_{0}^{\infty} e^{-u^{2\alpha}} u^{n-1} du$$

$$= C_{n,\alpha}(2t)^{-n/(2\alpha)}.$$

Hence, for $q = t + x$ & $p = s + y$, the normalization of the reproducing kernel K_q can be expressed as

$$\|K_q\|^2_{H_K} = \langle K_q, K_q \rangle_{L^2} = \frac{C_{n,\alpha}}{(2t)^{n/(2\alpha)}}.$$

Set

$$E_q = \frac{K_q}{\|K_q\|_{H_K}} = \left(\frac{(2t)^{n/(2\alpha)}}{C_{n,\alpha}} \right)^{1/2} K_q$$

such that $\|E_q\|_{H_K} = 1$. Then

$$E_q(p) = \frac{(2t)^{n/(4\alpha)}}{\sqrt{C_{n,\alpha}}} h_{t+s+x}(y) = \frac{(2t)^{n/(4\alpha)}}{\sqrt{C_{n,\alpha}}} K_{\alpha,t+s}(y - x).$$

Below we begin to prove BVC, i.e., for $u \in H_K$,

$$\lim_{\mathbb{R}^{n+1} \ni q \to \partial^* \mathbb{R}^{n+1}} \langle u, E_q \rangle_{H_K} = 0.$$
Here we use the one point compactification topology in which \(\partial^* \mathbb{R}^{n+1}_+ \) stands for the boundary of \(\mathbb{R}^{n+1}_+ \) in the topology. Since the span of \(\{ K_p \}_{p \in \mathbb{R}^{n+1}_+} \) is dense in \(L^2(\mathbb{R}^n) \), it suffices to verify that for any fixed \(p = s + y \),

\[
\lim_{q \to \partial^* \mathbb{R}^{n+1}_+} |\langle K_p, E_q \rangle_{H_K} | = 0. \tag{3.8}
\]

Applying Proposition 2,

\[
\langle K_p, E_q \rangle_{H_K} = E_{p,q} = \frac{(2t)^{\frac{n}{4\alpha}}}{\sqrt{C_{n,\alpha}}} K_{\alpha,s+t+x}(y),
\]

we can see that there exist two constants \(c_1 < c_2 \) which are independent of \((x, t) \in \mathbb{R}^{n+1}_+\) such that

\[
\frac{c_1(t + s)}{((t + s)^{1/(2\alpha)} + |x - y|)^{n+2\alpha}} \leq K_{\alpha,s+t+x}(y) \leq \frac{c_2(t + s)}{((t + s)^{1/(2\alpha)} + |x - y|)^{n+2\alpha}}.
\]

Hence the statement (3.8) is equivalent to the following:

\[
\lim_{q=t+x \to \partial^* \mathbb{R}^{n+1}_+} \frac{(2t)^{\frac{n}{4\alpha}}}{\sqrt{C_{n,\alpha}}} \frac{(t + s)}{((t + s)^{1/(2\alpha)} + |x - y|)^{n+2\alpha}} = 0. \tag{3.9}
\]

Now we begin to prove (3.9). We can obtain

\[
\frac{(2t)^{\frac{n}{4\alpha}}}{\sqrt{C_{n,\alpha}}} \frac{t + s}{((t + s)^{1/(2\alpha)} + |x - y|)^{n+2\alpha}} \leq \frac{(2t)^{\frac{n}{4\alpha}}}{\sqrt{C_{n,\alpha}}} \frac{t + s}{((t + s)^{(n+2\alpha)/(2\alpha)} + |x - y|)^{n+2\alpha}} \leq \left(\frac{t}{t + s} \right)^{\frac{n}{4\alpha}},
\]

which implies that

\[
\lim_{t \to 0^+} |\langle K_p, E_q \rangle_{H_K} | = 0.
\]

Now we analyze the process \(R \to \infty \), where \(R = \sqrt{\frac{t}{\alpha} + |x|^2} \). We split the rest of the proof into two cases.

Case 1: \(t^{1/(2\alpha)} < \frac{1}{2} \sqrt{\frac{t}{\alpha} + |x|^2} = R/2 \). For this case, \(|x| > \sqrt{3}t^{1/(2\alpha)} \) and \(\sqrt{3}R < |x| \).

Without loss of generality, we assume \(R > 4|x| \), then

\[
|x - y| \geq |x| - |y| \geq \sqrt{3}R - R/4.
\]

Now we can get

\[
\frac{(2t)^{\frac{n}{4\alpha}}}{\sqrt{C_{n,\alpha}}} K_{\alpha,t+s+x}(y) \leq \left(\frac{2t}{\sqrt{C_{n,\alpha}}} \right)^{\frac{n}{4\alpha}} \frac{t + s}{((t + s)^{1/(2\alpha)} + |x - y|)^{n+2\alpha}} \leq \frac{(R/2)^{n/2}}{(t + s)|x - y|^n} \leq \frac{1}{R^{n/2}},
\]

\[
\frac{c_1(t + s)}{((t + s)^{1/(2\alpha)} + |x - y|)^{n+2\alpha}} \leq K_{\alpha,s+t+x}(y) \leq \frac{c_2(t + s)}{((t + s)^{1/(2\alpha)} + |x - y|)^{n+2\alpha}}.
\]

Hence the statement (3.8) is equivalent to the following:

\[
\lim_{q=t+x \to \partial^* \mathbb{R}^{n+1}_+} \frac{(2t)^{\frac{n}{4\alpha}}}{\sqrt{C_{n,\alpha}}} \frac{(t + s)}{((t + s)^{1/(2\alpha)} + |x - y|)^{n+2\alpha}} = 0. \tag{3.9}
\]

Now we begin to prove (3.9). We can obtain

\[
\frac{(2t)^{\frac{n}{4\alpha}}}{\sqrt{C_{n,\alpha}}} \frac{t + s}{((t + s)^{1/(2\alpha)} + |x - y|)^{n+2\alpha}} \leq \frac{(2t)^{\frac{n}{4\alpha}}}{\sqrt{C_{n,\alpha}}} \frac{(t + s)}{((t + s)^{(n+2\alpha)/(2\alpha)} + |x - y|)^{n+2\alpha}} \leq \left(\frac{t}{t + s} \right)^{\frac{n}{4\alpha}},
\]

which implies that

\[
\lim_{t \to 0^+} |\langle K_p, E_q \rangle_{H_K} | = 0.
\]
which gives

$$\lim_{R \to \infty} |\langle K_p, E_q \rangle_{H_K}| = 0.$$

Case 2: \(t^{1/(2\alpha)} \geq R/2\). For \(s > 0\), we can also get

\[
\frac{(2t)^{n/(4\alpha)}}{\sqrt{C_{n,\alpha}}} K_{\alpha, t+s+x}(y) \lesssim \frac{(2t)^{n/(4\alpha)}}{\sqrt{C_{n,\alpha}}} \frac{t + s}{((t + s)^{1/(2\alpha)} + |x - y|)^{n+2\alpha}} \\
\lesssim \frac{(2t)^{n/(4\alpha)}}{\sqrt{C_{n,\alpha}}} \frac{t + s}{(t + s)^{(n+2\alpha)/(2\alpha)}} \\
\lesssim \frac{1}{(t + s)^{n/(4\alpha)}} \\
\lesssim \frac{1}{R^{n/(4\alpha)}}.
\]

We can also get

$$\lim_{R \to \infty} |\langle K_p, E_q \rangle_{H_K}| = 0.$$

By the above theorem, the initial data \(f\) of (1.1) has a POAFD sparse representation.

Theorem 3.2. Let, under the POAFD scheme, \(f\) possess a sparse representation

$$f(x) = \sum_{k=1}^{\infty} \langle f, E_k \rangle E_k,$$

where for each \(N\), the \(N\)-orthonormal system \((E_1, \ldots, E_N)\) corresponds to the POAFD maximally selected \((q_1, \ldots, q_n)\), \(q_k = s_k + y_k, k = 1, \ldots, N\). Then there exist constants \(c_1, \ldots, c_N, \ldots\), such that

$$f(x) = \sum_{k=1}^{\infty} c_k \tilde{K}_{\alpha, s_k}(y_k - x),$$

and

$$u_f(t + x) = \sum_{k=1}^{\infty} c_k \tilde{K}_{\alpha, t+s_k}(y_k - x)$$

is the solution of (1.1).

4. Sparse representation of fractional Poisson equations

Given a regular function \(f\) on \(\mathbb{R}^n\), if \(u\) is a solution to (1.2) with the initial data \(f\), \(u(x, t) = P_{\alpha}f(x, t)\) is said to be the Caffarelli-Silvestre extension of \(f\) to the upper half-space \(\mathbb{R}^{n+1}_+\). For a smooth function \(f\), the Caffarelli-Silvestre extension of \(f\) can be expressed as the convolution of \(f\) and the generalized (fractional) Poisson kernel defined as

$$p_{t}^{\alpha}(x) := \frac{c(n, \alpha) t^{\alpha}}{(|x|^2 + t^2)^{(n+\alpha)/2}}.$$
Precisely, \[P_\alpha f(x,t) = p_\alpha^t \ast f(x,t) = c(n,\alpha) \int_{\mathbb{R}^n} \frac{t^\alpha}{(|x-y|^2 + t^2)^{(n+\alpha)/2}} f(y) dy. \]

Here \(f \ast g \) means the convolution of \(f \) and \(g \), and the constant \(c(n,\alpha) = \frac{\Gamma((n+\alpha)/2)}{\pi^{n/2} \Gamma(\alpha/2)} \)

is chosen such that \(\int_{\mathbb{R}^n} p_\alpha^t(x) dx = 1 \).

Now we investigate the sparse representation via the generalized Poisson equations. The fractional Poisson kernel satisfies the following estimates.

Proposition 3. (\cite{11}, Proposition 2.1)

(i) There holds

\[\hat{p}_\sigma^t(\xi) = \frac{c(n,\sigma)}{\Gamma((n+\sigma)/2)} \int_0^\infty \lambda^{\sigma/2} e^{-\lambda - |\xi|^2/(4\lambda)} \frac{d\lambda}{\lambda} := c(n,s)G_\sigma(t|\xi|), \]

where

\[G_\sigma(\xi) = \int_{\mathbb{R}^n} e^{-2\pi i \xi \cdot x} \frac{dx}{(1+|x|^2)^{(n+\sigma)/2}}. \]

(ii) For some positive constant \(c \),

\[G_\sigma(\xi) = \begin{cases} 1 + |\xi|^\sigma, & \xi \text{ near the origin;} \\ O(e^{-c\xi}), & |\xi| \to \infty. \end{cases} \]

By the change of variable, it is easy to verify that

\[\int_{\mathbb{R}^n} p_\sigma^t(x) dx = c(n,\sigma) \int_{\mathbb{R}^n} \frac{t^\sigma}{(t^2 + |x|^2)^{(n+\sigma)/2}} dx \\
= c(n,\sigma) \int_0^\infty \frac{1}{(1+u^2)^{(n+\sigma)/2}} u^{n-1} du \\
= 1. \]

Let \(\mathcal{H} = L^2(\mathbb{R}^n) \) and \(E = \mathbb{R}^{n+1} \). For \(t, s > 0 \) and \(x, y \in \mathbb{R}^n \), set \(q = t + x \) and \(p = s + y \). Define \(h_p(y) \) as

\[h_p(y) = \frac{c(n,\sigma)t^\sigma}{(t^2 + |x-y|^2)^{(n+\sigma)/2}}. \]

The space \(H_K \) is defined as

\[H_K := \left\{ u : \mathbb{R}^{n+1}_+ \to \mathbb{R}, \ u(p) = \langle f, h_p \rangle_{L^2(\mathbb{R}^n)} \right\}. \]
The reproducing kernel is computed
\[K_q(p) = K(q, p) = \langle h_q, h_p \rangle_{L^2(\mathbb{R}^n)} = \int_{\mathbb{R}^n} t^\sigma \left(\frac{t^2 + |x - z|^2}{(n + \sigma)/2} \right)^{s\sigma} \frac{s\sigma}{(n + \sigma)/2} dz. \] (4.11)

Once we prove the following theorem, then the solution of (1.2) will follow from the scheme set in the end of §2.

Theorem 4.1. The fractional Poisson kernel \(\mathcal{H} \)-\(\mathcal{H} \) structure satisfies the BVC. As a consequence, POAFD algorithm can be performed in the context to obtain sparse representation of functions in \(\mathcal{H} = L^2(\mathbb{R}^n) \).

Proof. We first compute the norm \(\|K_q\|_{\mathcal{H}K} \). In fact,
\[
\|K_q\|_{\mathcal{H}K}^2 = \langle K_q, K_q \rangle_{\mathcal{H}K} = \langle \mathcal{P}_t^\sigma(\cdot), \mathcal{P}_t^\sigma(\cdot) \rangle \\
= \int_{\mathbb{R}^n} t^{2\sigma} \left(\frac{t^2 + |x - z|^2}{(n + \sigma)/2} \right)^{s\sigma} \frac{s\sigma}{(n + \sigma)/2} dz \\
= \frac{1}{t^n} \int_0^\infty \frac{u^{n-1}}{(1 + u^2)^{n+\sigma}} du \\
= \left(\frac{c_{n,\sigma}}{2t^n} \right)^{1/2}.
\]

Then we define
\[
E_q = \frac{K_q}{\|K_q\|_{\mathcal{H}K}} = \left(\frac{2t^n}{c_{n,\sigma}} \right)^{1/2} K_q
\]
so that \(\|E_q\|_{\mathcal{H}K} = 1 \). Now we verify that the BVC property holds, i.e.,
\[
\lim_{q \to \partial E} |\langle u, E_q \rangle_{\mathcal{H}K}| = 0.
\]

Due to the density of the span of the kernels \(K_p \) it is equivalent to show that, for any but fixed \(p = s + y \), under the process \(q = t + x \to \partial \mathbb{R}^{n+1}_+ \),
\[
\lim_{q \to \partial E} |\langle K_p, E_q \rangle_{\mathcal{H}K}| = 0.
\]

By the Plancherel formula,
\[
\langle K_p, E_q \rangle_{\mathcal{H}K} = \frac{t^{n/2}}{(c_{n,\sigma})^{1/2}} \langle K_p, K_q \rangle \\
= \frac{t^{n/2}}{(c_{n,\sigma})^{1/2}} \int_{\mathbb{R}^n} t^{\sigma} \left(\frac{t^2 + |x - z|^2}{(n + \sigma)/2} \right)^{s\sigma} \frac{s\sigma}{(n + \sigma)/2} dz \\
= \frac{t^{n/2}}{(c_{n,\sigma})^{1/2}} \int_{\mathbb{R}^n} G_\sigma(t|\xi|)G_\sigma(s|\xi|) e^{i(x-y)\cdot \xi} d\xi \\
= M_1 + M_2,
\]
where
\[
M_1 := \frac{t^{n/2}}{(c_{n,\sigma})^{1/2}} \int_{|\xi| \leq 1} G_\sigma(t|\xi|) G_\sigma(s|\xi|) e^{i(x-y) \cdot \xi} d\xi;
\]
\[
M_2 := \frac{t^{n/2}}{(c_{n,\sigma})^{1/2}} \int_{|\xi| > 1} G_\sigma(t|\xi|) G_\sigma(s|\xi|) e^{i(x-y) \cdot \xi} d\xi.
\]

By (ii) of Proposition 3, we can get
\[
|M_1| \lesssim t^{n/2} \int_{|\xi| \leq 1} (1 + t^\sigma |\xi|^n) e^{i(x-y) \cdot \xi} d\xi
\]
\[
\lesssim t^{n/2} (1 + t^\sigma) \int_{|\xi| \leq 1} 1 d\xi
\]
\[
\lesssim t^{n/2} (1 + t^\sigma).
\]

For \(M_2\), we deduce from (ii) of Proposition 3 that
\[
|M_2| \lesssim t^{n/2} \int_{|\xi| \geq 1} e^{-(t+s)|\xi|} d\xi
\]
\[
\lesssim t^{n/2} \int_{|\xi| \geq 1} \frac{1}{(1 + (t+s)|\xi|)^{n+1}} d\xi
\]
\[
\lesssim t^{n/2} \int_{|\xi| \geq 1} \frac{|\xi|^{n-1}}{|\xi|^{n+1}} d|\xi|
\]
\[
\lesssim \frac{t^{n/2}}{(t+s)^{n+1}}.
\]

The estimates for \(M_1\) and \(M_2\) imply that
\[
|\langle K_p, E_q \rangle_{H_K} | \lesssim t^{n/2} (1 + t^\sigma) + \frac{t^{n/2}}{(t+s)^{n+1}},
\]
which indicates that
\[
\lim_{t \to 0^+} |\langle K_p, E_q \rangle_{H_K} | = 0.
\]

Next we deal with the limit as \(R = \sqrt{t^2 + |x|^2} \to \infty\). Without loss of generality, assume that \(R \geq 4|y| + 2s + 1\).

Case 1: \(t \geq R/2\). We can get
\[
\langle K_p, E_q \rangle_{H_K} = \frac{t^{n/2}}{(c_{n,\sigma})^{1/2}} \int_{\mathbb{R}^n} \frac{t^\sigma}{(t^2 + |x-z|^2)^{(n+\sigma)/2}} \frac{s^\sigma}{(s^2 + |y-z|^2)^{(n+\sigma)/2}} dz
\]
\[
\lesssim \frac{t^\sigma}{t^{n+\sigma}} \int_{\mathbb{R}^n} \frac{s^\sigma}{(s^2 + |y-z|^2)^{(n+\sigma)/2}} dz
\]
\[
\lesssim \frac{1}{t^{n/2}} \int_0^\infty u^{n-1} \frac{1}{(1 + u^2)^{(n+\sigma)/2}} du
\]
\[
\lesssim \frac{1}{R^{n/2}}.
\]
which gives
\[
\lim_{R \to \infty} |\langle K_p, E_q \rangle_{H_K} | = 0.
\]

Case 2: \(0 < t < R/2\). We split
\[
\langle K_p, E_q \rangle_{H_K} = \frac{t^{n/2}}{(\sigma_{n,\sigma})^{1/2}} \int_{\mathbb{R}^n} \frac{t^\sigma}{(t^2 + |x-z|^2)^{(n+\sigma)/2}} \frac{s^\sigma}{(s^2 + |y-z|^2)^{(n+\sigma)/2}} dz
\]
\[
\simeq L_1 + L_2,
\]
where
\[
\begin{align*}
L_1 & := \frac{t^{n/2}}{(\sigma_{n,\sigma})^{1/2}} \int_{|x-z| \leq |x|/2} \frac{t^\sigma}{(t^2 + |x-z|^2)^{(n+\sigma)/2}} \frac{s^\sigma}{(s^2 + |y-z|^2)^{(n+\sigma)/2}} dz; \\
L_2 & := \frac{t^{n/2}}{(\sigma_{n,\sigma})^{1/2}} \int_{|x-z| \geq |x|/2} \frac{t^\sigma}{(t^2 + |x-z|^2)^{(n+\sigma)/2}} \frac{s^\sigma}{(s^2 + |y-z|^2)^{(n+\sigma)/2}} dz.
\end{align*}
\]
Notice that \(0 < t < \frac{1}{2} \sqrt{t^2 + |x|^2}\). We can see that \(|x| > \sqrt{3}t\), i.e., \(|x| > \sqrt{3}R/2\). For \(L_1\), since \(|x-z| > |x|/2 > \sqrt{3}R/4\), we obtain
\[
L_1 \lesssim \frac{t^{n/2+\sigma}}{R^{n+\sigma}} \int_{|x-z| \leq |x|/2} \frac{s^\sigma}{(s^2 + |y-z|^2)^{(n+\sigma)/2}} dz
\]
\[
\lesssim \frac{R^{n/2+\sigma}}{R^{n+\sigma}} \int_{\mathbb{R}^n} \frac{s^\sigma}{(s^2 + |y-z|^2)^{(n+\sigma)/2}} dz
\]
\[
\lesssim \frac{1}{R^{n/2}}.
\]
For \(L_2\), since \(|x-z| < |x|/2\) and \(R > 4|y|\), then by the triangle inequality, we have
\[
|y-z| \geq |z| - |y| \geq |x| - |x-z| - |y|
\]
\[
\geq |x| - |x|/2 - |y|
\]
\[
\geq (\sqrt{3} - 1)R/4.
\]
Then
\[
L_2 \lesssim \int_{|x-z| \leq |x|/2} \frac{t^{\sigma+n/2}}{(t^2 + |x-z|^2)^{(n+\sigma)/2}} \frac{s^\sigma}{(s^2 + |y-z|^2)^{(n+\sigma)/2}} dz
\]
\[
\lesssim \int_{|x-z| \leq |x|/2} \frac{1}{t^{\sigma+n/2}} \frac{t^{\sigma}}{y-z|^n (t^2 + |x-z|^2)^{(n+\sigma)/2}} dz
\]
\[
\lesssim \frac{t^{n/2}}{((\sqrt{3} - 1)R/4)^n} \int_{\mathbb{R}^n} \frac{t^\sigma}{(t^2 + |x-z|^2)^{(n+\sigma)/2}} dz
\]
\[
\lesssim \frac{1}{R^{n/2}}.
\]

The estimates for \(I_1\) and \(I_2\) indicate that
\[
\lim_{R \to \infty} |\langle K_p, E_q \rangle_{H_K} | = 0.
\]
This completes the proof of Theorem 4.1. \(\square\)
5. Experiments

In this section, we present two examples to illustrate the effectiveness and validity of POAFD method. The decomposition results are shown in figure 5.1 and 5.3. In figures 5.2 and 5.4, we give the corresponding parameters and relative error.

Example 1. This example is for the problem (1.1) with the initial value

\[
f(t) = \frac{0.5}{0.25 + (0.5 - x)^2} + \frac{2\pi}{1 + (0.5 + x)^2} + \frac{0.8}{0.64 + (1 + x)^2}.
\]

For a fixed \(\alpha\) we use the dictionary \(K_q(\cdot) = K_{\alpha,t}(x - \cdot), q = t + x \in \mathbb{R}_t^{n+1}\), where \(K_{\alpha,t}(x)\) is referred to (3.6).

Let \(K^\top = (K_{q_1}, \ldots, K_{q_{13}})\) and \(E^\top = (E_1, \ldots, E_{13})\). We have \(K = A^\top E\), where

\[
A = \begin{pmatrix}
1 & 0.37 & 0.99 & 0.49 & 0.75 & 0.79 & 0.30 & 0.91 & 0.42 & 0.66 & 0.65 & 0.23 & 0.42 & 0.91 \\
0.93 & -0.06 & 0.84 & 0.31 & 0.00 & 0.50 & 0.14 & 0.18 & -0.04 & 0.22 & 0.86 & 0.59 & 0.03 \\
0 & 0.14 & -0.11 & -0.34 & -0.34 & -0.12 & -0.24 & -0.35 & -0.32 & -0.34 & 0.08 & -0.16 & -0.26 \\
0 & 0 & 0.20 & 0.16 & -0.12 & 0.49 & 0.03 & 0.19 & -0.16 & 0.12 & -0.14 & 0.46 & -0.07 \\
0 & 0 & 0 & 0 & 0.45 & -0.26 & -0.18 & 0.19 & -0.18 & -0.29 & 0.62 & 0.00 & -0.16 & -0.19 \\
0 & 0 & 0 & 0 & 0 & 0 & 0.42 & -0.03 & -0.14 & -0.11 & 0.56 & 0.02 & 0.01 & -0.03 & 0.22 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.61 & 0.02 & -0.08 & 0.01 & 0.03 & -0.10 & 0.44 & 0.00 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.17 & -0.16 & 0.08 & -0.02 & 0.01 & -0.01 & -0.09 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.74 & -0.02 & -0.01 & -0.01 & 0.05 & -0.01 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.16 & 0.01 & 0.00 & -0.01 & -0.01 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.12 & 0.03 & 0.02 & 0.01 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.42 & -0.04 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.10 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 10 & 0 \\
\end{pmatrix}_{14 \times 14}
\]

\[
\left\| f - \sum_{k=1}^{13} c_k \tilde{K}_{q_k} \right\| \leq 1.1668 \times 10^{-4}.
\]

The isometric relation then gives

\[
\left\| u_f - \sum_{k=1}^{13} c_k \tilde{K}_{q_k} \right\|_{H_K} \leq 1.1668 \times 10^{-4},
\]

where the coefficient \(c_k\) and \(\langle f, E_k \rangle\) are given in table 5.1

\(c_k\)	-33.8652	0.7736	-6.1651	0.0093	-0.2163	-0.2053	-0.1342	0.1869	-0.0153	-0.0916	-0.0595	0.0238	0.0642	0.0551
\(\langle f, E_k \rangle\)	0.5183	-0.2303	-0.1278	-0.0515	0.0462	0.0254	0.0249	0.0187	-0.0128	-0.0139	-0.0102	0.0072	0.0066	0.0056

Table 5.1: The coefficients of \(K_{q_k}\) and \(E_k\)
Example 2. The next example is for the problem (1.2) with the initial value

\[f = \sum_{j=1}^{5} a_j e^{-\frac{(b_j - x)^2}{a_j}} \cos x, \]

where \(a_j = 0.5, 3.1, 2.4, 0.2, 1.6 \) and \(b_j = 1, 0.6, -0.04, 2.3, -2 \). Let now the dictionary consists of \(K_p(y) = h_p(y) \) given by (1.10).
Let \(K^\top = (K_{q_1}, \ldots, K_{q_{13}}) \) and \(E^\top = (E_1, \ldots, E_{13}) \). We have \(K = A^\top E \), where

\[
A = \begin{pmatrix}
1 & 0.24 & 0.26 & 0.99 & 0.34 & 0.21 & 0.92 & 0.33 & 0.65 & 0.44 & 0.24 & 0.83 & 0.14 & 0.50 & 0.08 \\
0 & 0.97 & 0.05 & -0.04 & 0.07 & 0.57 & 0.16 & 0.92 & 0.13 & 0.52 & 0.04 & -0.01 & 0.52 & 0.02 & 0.03 \\
0 & 0 & 0.97 & -0.04 & 0.92 & -0.01 & 0.20 & 0.03 & 0.06 & 0.02 & 0.91 & -0.07 & 0.02 & 0.30 & 0.25 \\
0 & 0 & 0 & 0.12 & -0.07 & -0.11 & -0.25 & -0.07 & -0.26 & -0.28 & -0.02 & -0.11 & -0.02 & -0.38 & -0.04 \\
0 & 0 & 0 & 0 & 0.17 & -0.03 & 0.09 & 0.00 & 0.32 & -0.07 & 0.13 & -0.14 & 0.02 & 0.38 & 0.28 \\
0 & 0 & 0 & 0 & 0 & 0.79 & 0.03 & 0.12 & 0.00 & 0.45 & 0.00 & -0.02 & -0.13 & -0.05 & 0.00 \\
0 & 0 & 0 & 0 & 0 & 0 & 0.10 & 0.06 & 0.12 & 0.23 & -0.06 & -0.25 & 0.18 & 0.32 & 0.00 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.12 & -0.06 & 0.18 & 0.02 & 0.13 & 0.62 & -0.27 & 0.06 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.10 & -0.26 & -0.05 & -0.06 & 0.24 & 0.36 & -0.07 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -0.02 & -0.02 & -0.38 & -0.04 & -0.01 & -0.05 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.31 & 0.00 & 0.08 & -0.24 & -0.05 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.29 & -0.04 & 0.03 & 0.09 & -0.35 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.42 & -0.03 & 0.07 & 0.02 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.40 & -0.01 & -0.05 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.22 & -0.29 & 0.79
\end{pmatrix}_{15 \times 15}
\]

\[
\left\| f - \sum_{k=1}^{13} c_k \tilde{K}_{q_k} \right\| \leq 1.3486 \times 10^{-4}.
\]
We also conclude
\[\left\| u_f - \sum_{k=1}^{13} c_k \tilde{K}_{q_k} \right\|_{H_K} \leq 1.3486 \times 10^{-4}, \]
where the coefficient \(c_k \) and \(\langle f, E_k \rangle \) are given in table 5.2.

\((f, E_k)\)	1.85	-0.6	-0.5	-0.51	-0.15	0.16	-0.09	-0.08	-0.07	0.03	0.03	0.02	0.01	0.01
\(c_k\)	18.3	-1.29	1.11	-0.49	-0.04	-3.03	0.26	0.12	-0.39	0.09	0.04	0.06	0.07	0.04

Table 5.2: The coefficients of \(K_{q_k} \) and \(E_k \)

Figure 5.3: Approximate \(f \) by POAFD with Poisson kernel on the upper half plane

Figure 5.4: parameters and relative error

Acknowledgements. Tao Qian is supported by the Science and Technology Development Fund, Macau SAR (File no. 0123/2018/A3). Pengtao Li is supported by the National Natural Science Foundation of China (Grant Nos. 12071272, 11871293) and the Shandong Natural Science Foundation of China (Grant No. ZR2020MA004). Ieng Tak Leong is supported by MYRG 2018-00168-FST.
References

[1] R. Blumenthal, R. Getoor, Some theorems on stable processes, Trans. Amer. Math. Soc. 95 (1960) 263-273.

[2] M. Allen, L. Caffarelli, A. Vasseur, A parabolic problem with a fractional time derivative. Arch. Ration. Mech. Anal. 221 (2016) 603-630.

[3] A. Bernardis, F. Martin-Reyes, P. Stinga, J. Torrea, Maximum principles, extension problem and inversion for nonlocal one-sided equations, J. Differ. Equ. 260 (2016) 6333-6362.

[4] L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differ. Equ. 32 (2007) 1245-1260.

[5] L. Caffarelli, S. Salsa, L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math. 171 (2008) 425-461.

[6] L. Caffarelli, P. Stinga, Fractional elliptic equations, Caccioppoli estimates and regularity, Ann. Inst. H. Poincare Anal. Non Lin. 33 (2016) 767-807.

[7] L. Caffarelli, A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. Math. 171 (2010) 1903-1930.

[8] Z. Chen, R. Song, Estimates on Green functions and Poisson kernels for symmetric stable processes, Math. Ann. 312 (1998) 465-501.

[9] R. Herrmann, Fractional Calculus-An Introduction for Physicists. World Scientific, 2014.

[10] M. Kwasnicki, Ten equivalent definitions of the fractional Laplace operator, Fractional Calculus and Applied Analysis 20 (2017) 7-51.

[11] P. Li, R. Hu, Z. Zhai, Fractional Besov Trace/Extension Type Inequalities via the Caffarelli-Silvestre extension, arXiv preprint arXiv:2201.00765, 2022.

[12] T. Qian, Reproducing Kernel Sparse Representations in Relation to Operator Equations, Complex Anal. Oper. Theory 14 (2020) 1-15.

[13] Q. Wei, Charles K. Chui, D. Deng and T. Qian, Sparse representation of approximation to identity, preprint, 2021.

[14] T. Qian, Two-dimensional adaptive Fourier decomposition, Math. Meth. Appl. Sci. 39 (2016) 2431-2448.

[15] T. Qian, Algorithm of adaptive Fourier decomposition, IEEE Trans. Signal Proc. 59 (2016) 5899-5906.

[16] X. Ros-Oton, J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. Math. Pure Appl. 101 (2014) 275-302.
[17] L. Xie, X. Zhang, Heat kernel estimates for critical fractional diffusion operator, Studia Math. 224 (2014) 221-263.