Review Article

Coupled-cluster computations of atomic nuclei

G Hagen1,2, T Papenbrock1,2, M Hjorth-Jensen3,4 and D J Dean1

1Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
2Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA
3National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA
4Department of Physics and Center of Mathematics for Applications, University of Oslo, N-0316 Oslo, Norway

E-mail: hageng@ornl.gov, tpapenbr@utk.edu, morten.hjorth-jensen@fys.uio.no and deandj@ornl.gov

Received 3 January 2014, revised 4 June 2014
Accepted for publication 2 July 2014
Published 15 September 2014

Invited by Paul Henri Heenen

Abstract

In the past decade, coupled-cluster theory has seen a renaissance in nuclear physics, with computations of neutron-rich and medium-mass nuclei. The method is efficient for nuclei with product-state references, and it describes many aspects of weakly bound and unbound nuclei. This report reviews the technical and conceptual developments of this method in nuclear physics, and the results of coupled-cluster calculations for nucleonic matter, and for exotic isotopes of helium, oxygen, calcium, and some of their neighbors.

Keywords: atomic nuclei, coupled-cluster theory, exotic isotopes, helium, oxygen, calcium

(Some figures may appear in colour only in the online journal)

1. Introduction

First-principles computations play an important role in nuclear physics. These calculations start from a given Hamiltonian and aim at solving the nuclear A-body problem without any uncontrolled approximations. This ambitious task has been carried out only for selected (and small) regions of the nuclear chart. The recent review by Leidemann and Orlandini (2013) summarizes the accomplishments and challenges in few-nucleon systems. Here, virtually exact methods exist that compute bound states of few-nucleon systems, and precision tests of nuclear interactions are possible. The Green’s function Monte Carlo (GFMC) computations (Carlson 1987, Pudliner \textit{et al} 1997, Pieper and Wiringa 2001) and no-core shell model (NCSM) computations (Navrát\v{i}l \textit{et al} 2000, 2009, Barrett \textit{et al} 2013) convincingly demonstrated that p-shell nuclei can be computed from scratch.

First-principles calculations of relevant nuclear properties continue to play an important role. As examples we mention the calculation of the Hoyle state in ^{12}C (Epelbaum \textit{et al} 2011), the understanding of the origin of the anomalous long lifetime of ^{14}C (Maris \textit{et al} 2011), photoabsorption on ^{4}He (Gazit \textit{et al} 2006), the description of light-ion scattering (Nollett \textit{et al} 2007, Quaglioni and Navrát\v{i}l 2008), and the computation of halo states (Hagen \textit{et al} 2010b). The calculation of such finely tuned states probes interactions and challenges computational methods. First-principles calculations also guide and interpret experiments. Examples are the structure of ^{9}Li (Wuosmaa \textit{et al} 2005), the determination of the mass radius ^{23}O (Kanungo \textit{et al} 2011), and electromagnetic transitions in neutron-rich carbon (Voss \textit{et al} 2012). Finally, first-principles calculations make predictions where no data is yet available. Examples are the prediction of the charge radius of ^{3}He (Caurier and Navrát\v{i}l 2006), the spectrum of the neutron-deficient nucleus ^{14}F (Maris \textit{et al} 2010), and the structure of the exotic nucleus ^{54}Ca (Hagen \textit{et al} 2012b).

The results of first-principles computations are expected to have errors of the order of less than a few percent for binding energies. While this is impressive, it is nowhere close to the agreement with data that more phenomenological approaches such as shell-model calculations with interactions adjusted to...
In this work, we review the developments of coupled-cluster theory in nuclear physics that happened since the last reviews by Kümmel et al. (1978) and Bishop (1991). By necessity, we also have to describe some of the recent advances in the fields of nuclear interactions or the treatment of weakly bound and unbound systems. On such topics, we do not present a review. Instead, we have limited ourselves to citing some of the original work and often refer to the pertinent reviews. We apologize to those readers who feel that their work has been misinterpreted, overlooked or omitted.

This review is organized as follows. Section 2 describes the technical aspects of the coupled-cluster method including model spaces, interactions and the treatment of the center of mass. In section 3 we describe the main results of coupled-cluster computations of atomic nuclei. Other related developments are presented in section 4. Finally, we present a summary and discuss open problems in section 5. The appendices present some technical details.

2. Conceptual and technical details

In this section, we present some of the technical aspects that arise when applying coupled-cluster theory to atomic nuclei. Section 2.1 is dedicated to the main ideas and formal developments of coupled-cluster theory itself. Model spaces, including the Berggren basis for the description of weakly bound and unbound nuclei, are presented in section 2.2. In section 2.3 we discuss the employed interactions and approximation schemes for including three-nucleon forces. The treatment of the center-of-mass problem within coupled-cluster theory is presented in section 2.4.

2.1. Nuclear coupled-cluster theory

In this subsection, we review the essentials of coupled-cluster theory. We follow the standard approach from quantum chemistry (Bartlett and Musial 2007, Crawford and Schaefer 2007, Shavitt and Bartlett 2009) that Dean and Hjorth-Jensen (2004) adapted for nuclear physics. This is not to say that the implementation of coupled-cluster theory in nuclear theory does not differ from quantum chemistry. In atomic nuclei, considerable computational efficiency is gained from a spherical \(j \)-coupled implementation of the method (Hagen et al. 2008), and the challenges of three-nucleon forces, pairing, deformation, weak binding, and the treatment of the center of mass are unique to this field, too. There are also formulations of coupled-cluster theory that are particularly suited for hard-core potentials (Kümmel et al. 1978; Bishop et al. 1992, Heisenberg and Mihaila 1999). However, \(G \)-matrices (Hjorth-Jensen et al. 1995), ‘bare’ potentials from chiral effective field theory (EFT) (Entem and Machleidt 2003, Epelbaum et al. 2009, Machleidt...
and Entem 2011), low-momentum interactions (Bogner et al. 2003) and SRG transformations (Bogner et al. 2010) are sufficiently soft and can be used directly within the approach we describe.

Coupled-cluster theory is formulated in second quantization. Let \(a_i^+ \) and \(a_i \) create and annihilate a fermion in state \(|p\rangle \), respectively. Here, \(p \) denotes a set of quantum numbers such as \(p = (n, l, j, \tau_z) \) in the angular-momentum-coupled \(j \)-scheme, or \(p = (n, l, j, j_z, \tau_z) \) in the \(m \)-scheme. As usual, \(n, l, j, j_z \) and \(\tau_z \) label the radial quantum number, the orbital angular momentum, the total angular momentum, its \(z \)-projection, and the projection of the isospin, respectively.

2.1.1. Computation of the ground state

Coupled-cluster theory is based on an \(A \)-body product state

\[
|\phi\rangle = \prod_{i=1}^{A} a_i^+ |0\rangle,
\]

that serves as a reference. The reference can result from a Hartree–Fock calculation, or from a naive filling of the orbitals of the harmonic oscillator. Throughout this review we use the convention that \(i, j, k, \ldots \) refer to states occupied in the reference state \(|\phi\rangle \), while \(a, b, c, \ldots \) refer to the valence space. Labels \(p, q, r, s \) refer to any orbital. It is useful to normal order the Hamiltonian with respect to the reference state (1). In the case of a two-body Hamiltonian

\[
H = \sum_{pq} \varepsilon_{pq} a_p^+ a_q + \frac{1}{4} \sum_{pqr} \langle pq|rs \rangle a_p^+ a_q^+ a_r^+ a_s,
\]

the normal ordered Hamiltonian \(H_N \) is defined by

\[
H = H_N + E_0
\]

being the vacuum expectation value (or Hartree–Fock energy if the Hartree–Fock basis is employed), and

\[
H_N = \sum_{pq} f_{pq} |a_p^+ a_q\rangle + \frac{1}{4} \sum_{pqr} \langle pq|rs \rangle (a_p^+ a_q^+ a_r^+ a_s).
\]

Here, the brackets denote normal ordering, and the Fock matrix is

\[
f_{pq} \equiv \varepsilon_{pq} + \frac{1}{2} \sum_{i} \langle ip|i q\rangle.
\]

For a three-body interaction, the corresponding expression is presented below in equation (26). Note that \(\langle \phi|H_N|\phi\rangle = 0 \) by construction.

The similarity-transformed normal-ordered Hamiltonian

\[
\overline{H} \equiv e^{-T} H_N e^{T}
\]

is at the heart of coupled-cluster theory. The cluster operator

\[
T = T_1 + T_2 + \cdots + T_A
\]

is defined with respect to the reference. Here

\[
T_1 = \sum_{ia} t_{ia} a_i^+ a_a,
\]

\[
T_2 = \frac{1}{4} \sum_{ijab} t_{ijab} a_i^+ a_j^+ a_a a_b
\]

generate \(1p–1h \) and \(2p–2h \) excitations of the reference state, respectively, and the cluster operator \(T_n \) generates \(np–nh \) excitations. We note that the cluster amplitudes \(t_{ia} \) are antisymmetric under exchange of particles, and under exchange of holes.

Note that the similarity-transformed Hamiltonian (4) is not Hermitian because \(e^T \) is not unitary. Coupled-cluster theory can be viewed from two perspectives—based on a bi-variational principle or as an eigenvalue problem of the similarity-transformed Hamiltonian. In the bi-variational perspective one minimizes the energy functional (Arponen 1983)

\[
E(T, l) \equiv \langle \phi|L e^{-T} H e^{T} |\phi\rangle = \langle \phi|L \overline{H} |\phi\rangle
\]

with respect to \(T \) and \(L \). Here, \(L \) is a de-excitation operator

\[
L = L_0 + L_1 + L_2 + \cdots + L_A,
\]

and similar definitions for the \(n \)-body de-excitation operator \(L_n \). Again, the amplitudes \(l_{ij} \) are antisymmetric under exchange of particles, and under exchange of holes. The variation of the functional (7) can be viewed as an independent variation of the bra state \(\langle \phi|L e^{-T} \rangle \) and the ket state \(e^T |\phi\rangle \). Note that the states entering the functional (7) are normalized

\[
\langle \phi|L e^{-T} e^T |\phi\rangle = \langle \phi|L \overline{H} |\phi\rangle = 1
\]

for \(l_0 = 1 \), because \(L_n |\phi\rangle = 0 \) for \(n = 1, 2, \ldots \).

In practice, one truncates the expansions (5) and (8). In the coupled cluster with singles and doubles (CCSD) approximation on truncates \(T_3 = T_4 = \cdots = T_A = 0 = L_3 = L_4 = \cdots = L_A \). The variation of the functional (7) with respect to \(L \) yields the CCSD equations

\[
\langle \phi^a_i | \overline{H} | \phi \rangle = 0,
\]

\[
\langle \phi^a_{ij} | \overline{H} | \phi \rangle = 0.
\]

Here, \(\phi^a_i \) and \(\phi^a_{ij} \) are antisymmetric under exchange of particles, and are eigenstates of the similarity-transformed Hamiltonian in the space of \(1p–1h \) and \(2p–2h \) excited states. In other words, in the CCSD approximation, the similarity-transformed Hamiltonian generates no \(1p–1h \) and no \(2p–2h \) excitations of the reference state. Thus, \(\langle \phi|L e^{-T} \overline{H} |\phi\rangle = 0 \), and the energy functional (7) yields the energy

\[
E = \langle \phi| \overline{H} |\phi\rangle.
\]
The variation of the functional (7) with respect to the cluster amplitudes yields
\[\langle \phi | \mathcal{L} \left(\frac{H}{\bar{H}} \right) e^T | \phi \rangle = 0, \]
\[\langle \phi | \mathcal{L} \left(\frac{H}{\bar{H}} \right) e^T | \phi \rangle = 0 \]
and the solution of these equations determines \(l^a_i \) and \(l^{ij}_{ab} \). These equations can be simplified to
\[\langle \phi | \mathcal{L} \left(\frac{H}{\bar{H}} \right) e^T | \phi \rangle = o \langle \phi | L | \phi \rangle, \]
\[\langle \phi | \mathcal{L} \left(\frac{H}{\bar{H}} \right) e^T | \phi \rangle = o \langle \phi | L | \phi \rangle. \] (12)

Clearly \(\langle \phi | L \) is the left eigenstate of the similarity-transformed Hamiltonian in the space of \(1p-1h \) and \(2p-2h \) excited states, and the excitation energy is \(\omega \)
\[\langle \phi | \mathcal{L} \left(\frac{H}{\bar{H}} \right) e^T | \phi \rangle = \omega \langle \phi | L | \phi \rangle. \] (13)

Note that the solution of the equation (12) is only necessary when one is interested in excited states or in computing expectation values other than the energy (see below).

An alternative approach to the above derivation would be to insert the ket state \(e^T | \phi \rangle \) into the time-independent Schrödinger equation \(H e^T | \phi \rangle = E e^T | \phi \rangle \), left-multiply with \(e^{-T} \) and project onto the bra states \(\langle \phi \rangle, \langle \phi \rangle \). This yields equation (11) and the CCSD equations (10), respectively.

The computation of the similarity-transformed Hamiltonian (4) is based on the Baker–Campbell–Hausdorff expansion
\[\mathcal{H} = H_N + [H_N, T] + \frac{1}{2} \{ [H_N, T], T \} \]
\[+ \frac{1}{3!} \{ [H_N, T], T], T \} + \cdots. \] (14)

Because the individual terms of the \(T \) operator commute among themselves, the commutators in equation (14) ensure that each \(T \) connects to the Hamiltonian \(H_N \). For two-body (three-body) Hamiltonians, the expansion (14) thus terminates at four-fold (six-fold) nested commutators, and the similarity transformation can be evaluated exactly. In contrast, similarity-transformations of the form \(e^T H_N e^T \) would remain Hermitian but would lead to the evaluation of an infinite number of nested commutators, see e.g. Szalay et al (1995). When solving the CCSD equations (10), one only needs to compute those terms of \(\mathcal{H} \) that are of two-body nature. For instance, terms such as \(\{ [H_N, T_1], T_1, T_1 \} \) contribute but \(\{ [H_N, T_2], T_2, T_2 \} \) are of three-body rank or higher, and vanish exactly in the space of \(1p-1h \) and \(2p-2h \) excitations. The actual computation of the similarity-transformed Hamiltonian (14) requires the user to perform Wick contractions. This is best done with diagrammatic methods, see, e.g. Crawford and Schaefer (2007), Shavitt and Bartlett (2009). Some details are presented in appendix A. For an efficient numerical implementation of the method, one computes and re-uses matrix elements of the similarity-transformed Hamiltonian and appropriately defined intermediates (Kucharski and Bartlett 1991).

Size extensivity, i.e. the proper scaling of the energy with the size of the system, is a key property of coupled-cluster theory (Bartlett and Purvis 1978, Bartlett 1981). It implies that the particle separation energy tends to a constant in the limit of infinite system size, i.e. the total energy must be proportional to the number of particles. This concept goes back to computations of nuclear matter, for which Goldstone (1957) showed that only linked clusters enter the computation of the energy in many-body theory. Coupled-cluster theory is size-extensive because only linked diagrams enter in the similarity transformed Hamiltonian (14). Size extensivity is a relevant concept also for finite nuclei because nuclei along the valley of \(\beta \) stability exhibit a constant energy per particle. A related concept is size consistency, i.e. the energy for a system of two well separated, non-interacting subsystems is the sum of the energies of the two subsystems. Because of the short-ranged strong force, size consistency obviously also is a valid concept for nuclei. We refer the reader to the very readable review by Nooijen et al (2005) for more details on these two topics.

The CCSD approximation with its inherent truncation to two-body terms of the similarity-transformed Hamiltonian is computationally very attractive. In this approximation, the solution of an \(A \)-body Hamiltonian only requires two-body technology, and this explains the efficiency of the coupled-cluster method. In nuclear structure, three-body forces play an important role. Within the CCSD approximation it is thus advantageous to treat their main contributions as medium-dependent two-body forces, or as normal-ordered two-body forces. Details are presented in section 2.3 when dealing with finite nuclei. For nucleonic matter, the full inclusion of three-nucleon forces is simpler, see section 4.3.

2.1.2. Computation of excited states. In this subsection, the equation-of-motion (EOM) approach (Stanton and Bartlett 1993) is used for the computation of ground and excited states in and around nuclei with closed sub-shells. States in neighbors of closed-shell nuclei can be viewed as generalized excitations of the closed-shell reference. In this approach one assumes that the CCSD equations (10) have been solved, and that all matrix elements of the similarity-transformed Hamiltonian (4) are available.

For the right eigenstates of the similarity-transformed Hamiltonian, one makes the following ansatz:
\[| \psi \rangle = R | \phi \rangle. \] (15)

Here, \(R \) is an excitation operator and assumes a variety of forms. One uses
\[R = r_0 + \sum_{ia} r_i a_i a_i a_i + \frac{1}{4} \sum_{ijab} r_{ij} a_i a_j a_i a_j a_i a_j a_i a_j + \cdots \] (16)
for excitations in the \(A \)-body nucleus,
\[R = \sum_{ia} r_i a_i a_i a_i + \frac{1}{2} \sum_{iab} r_{ij} a_i a_j a_i a_j + \cdots \] (17)
for states of the nucleus with mass number \(A + 1 \),
\[R = \sum_{ia} r_i a_i a_i a_i + \frac{1}{2} \sum_{iab} r_{ij} a_i a_j a_i a_j a_i a_j + \cdots \] (18)
for the computation of states in the nucleus $A - 1$, and
\[
R = \frac{1}{2} \sum_{ab} r_{ab} a^\dagger_a a^\dagger_b + \frac{1}{6} \sum_{abc} r_{abc} a^\dagger_a a^\dagger_b a^\dagger_c + \cdots \tag{19}
\]
for states in the nucleus $A + 2$.

The wave function ansatz (15) yields the following eigenvalue problem for the similarity-transformed Hamiltonian:
\[
\overline{H} R_\mu |\phi\rangle = E_\mu R_\mu |\phi\rangle. \tag{20}
\]
In order to avoid disconnected terms one can subtract $R_\mu \overline{H} |\phi\rangle = E_\mu R_\mu |\phi\rangle$ from equation (20) and obtains
\[
[\overline{H}, R_\mu] |\phi\rangle = \omega_\mu R_\mu |\phi\rangle. \tag{21}
\]
Here $\omega_\mu = E_\mu - E_0$ is the μth excited energy with respect to the ground-state energy E_0 of the closed shell nucleus A.

A few comments are in order. The right eigenvalue problem (21) is analogous to the left eigenvalue problem (12). It can be derived formally within linear response theory from the two-particle-attached EOM in equation (19) (Jansen 2011). The expansions (16) to (19) need to be truncated in practice, and this truncation determines what kind of states can be computed successfully. For example, a truncation of equation (16) at the $2p-2h$ level is expected to be useful in the computation of states that are $1p-1h$ excitations of the ground state. As a rule of thumb, the appropriate truncation level of the cluster operator should exceed the dominant level of particle–hole excitation in the targeted state by at least one unit. For example, low-lying $J^\pi = 0^+$ states in even–even nuclei that correspond to alpha-particle excitations are out of reach at a truncation of the excitation operator below the $4p-4h$ level (Brown and Green 1966, Haxton and Johnson 1990). Because \overline{H} is not Hermitian, the left eigenvector $\langle \phi | L_\alpha$ and the right eigenvector $R_\mu | \phi\rangle$ corresponding to the eigenvalues ω_α and ω_μ, respectively, form a bi-orthonormal set, i.e. $\langle \phi | L_\alpha R_\mu | \phi\rangle = \delta_{\alpha \mu}$. Thus, for the ground state we have $r_0 = 1$, and $r_{ij} = 0 = r_{ij}^\dagger$.

We also want to comment on the number-changing EOMs. To avoid problems with the center of mass, it is useful to employ the intrinsic Hamiltonian (30), see subsection 2.4 for details. The intrinsic Hamiltonian depends on the mass number A, and a choice has to be made. In the particle-removed EOM, one computes the similarity-transformed intrinsic Hamiltonian with the mass number $A - 1$ when computing \overline{H} for the reference with mass A in the first step. Thus, \overline{H} will not fully capture the intrinsic physics of the A-body problem. However, when solving the eigenvalue problem of the particle-removed EOM, the resulting solution approximately displays the factorization of the intrinsic and center-of-mass wave function as discussed in subsection 2.4. Similar comments apply to the computation of the excited states of the $A + 1$ nucleus within particle attached EOM. Here, the first step consists of computing the similarity-transformed intrinsic Hamiltonian for the A-body reference, and $(A + 1)$ is the mass number in the kinetic energy of the center of mass.

2.1.3. Observables other than the energy. The computation of expectation values and transition matrix elements can be based on the similarity-transformed one-body density matrix
\[
\overline{\rho}_\mu^T = e^{-T} \rho_\mu^T e^T = e^{-T} a^\dagger_\mu a_\mu e^T
\]
and the two-body matrix
\[
\overline{\rho}^T_{\mu\sigma} = e^{-T} \rho^T_{\mu\sigma} e^T = e^{-T} a^\dagger_\mu a^\dagger_\sigma a_\sigma a_\mu e^T
\]
once the T-amplitudes are known. Their computation follows the same diagrammatic rules as the computation of \overline{H}, see Shavitt and Bartlett (2009) for details.

Let $\langle \phi | L_\alpha$ and $R_\mu | \phi\rangle$ be the left and right eigenvector corresponding to the energies ω_α and ω_μ, respectively. Then the transition matrix elements are
\[
\langle \phi | L_\alpha \overline{\rho}^T_{\mu\sigma} R_\beta | \phi\rangle \quad \text{and} \quad \langle \phi | L_\alpha \overline{\rho}^T_{\mu\sigma} R_\beta | \phi\rangle,
\]
and any one-body or two-body matrix element of interest can be computed this way.

An alternative approach for the computation of expectation values consists of using the Hellmann–Feynman theorem. In this approach one computes the expectation of the operator \hat{O} from the energy expectation $E(\lambda)$ for the Hamiltonian $H + \lambda \hat{O}$ and evaluates
\[
\langle \hat{O} \rangle \approx \frac{\partial E(\lambda)}{\partial \lambda} \bigg|_{\lambda = 0}
\]
numerically. Here, we have used the approximate sign instead of the equality sign because the coupled-cluster method is not variational but rather bi-variational. Strictly speaking, it does not fulfill the Hellmann–Feynman theorem. This is less of a concern in practical applications (Noga and Urban 1988). For a detailed discussion of this aspect, and for an extension of the method that fulfills the Hellmann–Feynman theorem, we refer the reader to the review by Bishop (1991).

2.1.4. Beyond the CCSD approximation. The full inclusion of $3p-3h$ or triples (T) excitations (i.e. T_1 amplitudes), in coupled-cluster theory is numerically expensive and scales as $A^3 n^6$ per iteration in the solution of the CCSDT equations. It is $A n^2$ times more expensive than the solution of the CCSD equations. This high computational cost (and the fact that non-iterative triples approximations often yield results that are closer to exact solutions than CCSDT (Kutzelnigg 1991)) made approximative triples the standard in quantum chemistry. Approximative triples are motivated by arguments from perturbation theory, and there are several implementations that differ in complexity and computational cost, see Bartlett and Musial (2007). Generally speaking, the computationally more expensive iterative triples corrections are more accurate and also useful in non-perturbative nuclear physics applications (Kowalski et al. 2004, Hagen et al. 2007b).

The non-iterative CCSD(T) approximation (Raghavachari et al. 1989, Bartlett et al. 1990) has become ‘the gold standard’ in quantum chemistry and presents a very good compromise between affordability and accuracy. The more
recent Λ-triples approximation (denoted as Λ-CCSD(T) in Kucharski and Bartlett (1998), Taube and Bartlett (2008)) is similar in spirit to the CCSD(T) approximation but employs the nonperturbative (and computationally somewhat more expensive) left eigenvector solution of the similarity-transformed Hamiltonian (4). The energy correction in the Hartree–Fock basis is

$$\Delta E_\lambda = \frac{1}{(3\pi)^2} \sum_{ijk\alpha\beta\gamma} \langle \phi | L V_N | \phi_{ijk}^{\alpha\beta\gamma} \rangle \langle \phi_{ijk}^{\alpha\beta\gamma} | (V_N T_2)_C | \phi \rangle.$$

Here V_N is the normal-ordered interaction, $\phi_{ijk}^{\alpha\beta\gamma}$ is a 3p–3h excitation of the reference $|\phi\rangle$, and

$$\epsilon_{ijk}^{\alpha\beta\gamma} = f_{ii} + f_{jj} + f_{kk} - f_{aa} - f_{bb} - f_{cc}$$

is computed from the diagonal elements of the Fock matrix. For ‘soft’ interactions there is very little difference between the accuracy of both approximations, but the nonperturbative Λ-CCSD(T) approximation is more accurate for ‘harder’ interactions.

The ‘completely renormalized’ non-iterative triples corrections (Kowalski and Piecuch 2000, Piecuch et al 2002) are more sophisticated than the Λ-CCSD(T) approximation (but also computationally somewhat more expensive). They also perform very well in nuclear structure calculations (Kowalski et al 2004, Włoch et al 2005, Roth et al 2009b, Binder et al 2013).

2.1.5. Time-dependent coupled-cluster method. Hoodbhoy and Negele (1978, Hoodbhoy and Negele 1979) and Schönhammer and Gunnarsson (1978) developed time-dependent coupled-cluster theory. For time-dependent phenomena with small amplitudes, this approach leads to coupled non-linear equations with 20–30 iterations. However, large-amplitude time-dependent phenomena were not well understood until very recently. If one attempts to base time-dependent phenomena on the similarity-transformed Hamiltonian (4), one does not obtain a real energy, and the energy is not time independent for conservative systems (Huber and Klamroth 2011). Instead Kvaal (2012) showed that time-dependent coupled-cluster theory must be based on the energy functional (7), and that this formulation yields a real energy, which is constant for the time evolution of conservative systems. Here, the similarity-transformed Hamiltonian and the de-excitation operator L in equation (7) both evolve in time. In this formulation, observables that commute with the Hamiltonian are also conserved quantities under time evolution (Pigg et al 2012).

Pigg et al (2012) studied the formulation of Kvaal (2012) for time-dependent CCSD in simple nuclear Hamiltonians. They found that the imaginary time evolution of the similarity-transformed Hamiltonian (4) drives \overline{H} into a decoupled form such that the coupled-cluster equations (10) are fulfilled.

2.1.6. Computational aspects of the nuclear coupled-cluster method. Let us briefly discuss some computational aspects regarding the nuclear coupled-cluster method. The solution of the CCSD equations (10) yields the amplitudes t_{ij}^a and t_{ij}^{ab}. These enter the CCSD energy (11), and they are used to construct the similarity-transformed Hamiltonian (14). In order to arrive at equations that are suitable for numerical implementation, one can use Wicks’ theorem or a diagrammatic approach (see for example Kucharski and Bartlett (1986), Crawford and Schaefer (2007) and Bartlett and Musial (2007) for details) to arrive at a set of coupled non-linear equations in the T amplitudes. The number of coupled non-linear equations depends on the cluster truncation level. For example, in the CCSD approximation there are $An + A^2n^2$ number of coupled equations. In the m-scheme CCSD calculation of 40Ca in 9 major oscillator shells one deals with 40 occupied orbitals and 660 unoccupied orbitals, resulting in 10^9 non-linear coupled equations. While this is a very large number of non-linear equations, one can only use soft interactions to obtain reasonably converged ground-state energies for medium mass nuclei in model spaces of such a size (Hagen et al 2007b). In order to obtain the solution for such a large number of non-linear equations, one needs to implement the coupled-cluster equations in a numerical efficient scheme that aims at minimizing the number of computational cycles and the memory in terms of storage. For a given nucleus one can rewrite the non-linear CCSD equations in a quasi-linearized form by defining appropriate intermediates (see for example Gour et al (2006) and Hagen et al (2007c) for Hamiltonians with three-nucleon forces). There are many ways to define these intermediates, and in order to obtain the most efficient numerical scheme, one needs to take into account the memory requirements in storing the various intermediates and the number of computational cycles involved (Hagen et al 2007c). When rewriting the CCSD equations in the quasi-linear form, it is easy to see that $\sum_{cd} \epsilon_{cd}^{ab} t_{ij}^{cd}$ is the most expensive term with a cost of A^2n^4 computational cycles. However, this term can be efficiently computed as a matrix–matrix product.

The vast number of coupled-cluster equations does not allow for direct inversion techniques. Rather, one uses iterative procedures to obtain the solution. In nuclear physics, Dean et al (2008) and Baran et al (2008) explored different Krylov subspace methods to increase the convergence rate of iterative methods. They found that the Brodyen method (Broyden 1965) or DIIS (direct inversion in the iterative subspace) (Pulay 1980) achieve convergence of the CCSD equations already with 20–30 iterations.

In order to use ‘bare’ chiral interactions (Entem and Machleidt 2003) in coupled-cluster calculations of medium-mass nuclei like 40,48Ca, one needs to handle model-space sizes of about 14–18 major oscillator shells to obtain converged results (see for example (Hagen et al 2010a)). Such model-space sizes are too large for the m-scheme representation. For example, the computation of 40Ca in 15 major oscillator shells in the m-scheme uses 2720 single-particle orbitals, and would require the solution of 10^{10} non-linear equations. The memory requirements for the t_{ij}^{ab} amplitudes alone would amount to about 100 GBytes. Hagen et al (2008) derived and implemented the CCSD equations in an angular-momentum-coupled scheme. The Hamiltonian is a scalar under rotation.
and so are the similarity-transformed Hamiltonian and the T amplitudes. From this property, and the fact that the degeneracy of single-particle levels nlj near and above the Fermi surface in medium mass nuclei becomes rapidly very large, there are huge computational savings in going from the uncoupled m-scheme to the angular-momentum-coupled (j-coupled) scheme. For example, 15 major oscillator shells only consist of 240 single-particle orbitals in the j-coupled scheme. Further the number of non-linear equations to be solved in the CCSD approximation would be reduced from 10^{10} in the m-scheme to about 10^6 in the j-coupled scheme. To estimate the computational savings of the j-coupled scheme, we note that there are about $n^{2/3}$ single j-shells in an oscillator space with n orbitals in the m-scheme.

The numerical implementation of the j-scheme coupled-cluster equations utilizes MPI and OpenMP environments. Special care has to be taken regarding load-balancing and memory distribution of the interaction matrix elements, see Hagen and Nam (2012a) for details. In the j-coupled representation the interaction matrix is sparse and block diagonal in the quantum numbers (J^π, T_z). In order to utilize optimized linear algebra libraries such as BLAS and LAPACK, Hagen et al (2009b) developed a load balancing scheme with an optimal balance between memory distribution and computational cycles as depicted in figure 1. In this scheme one adds successive rows of the j-coupled matrix to a given processor until the optimal load-balancing criterion is reached. In this way one can utilize BLAS and LAPACK routines to compute contractions between the interaction matrix with the T-amplitudes. One needs to construct an optimal distribution for each separate part of the full interaction matrix that enters in the various diagrams and contractions with the T-amplitudes (see appendix A). This makes it a challenge to obtain a numerical implementation that scales to large number of processors, and examples are presented in Hagen and Nam (2012a).

Implementing CCSD in the j-coupled scheme, allowed for the first ab initio calculations of medium mass nuclei starting from ‘bare’ chiral interactions (Hagen et al 2008). In appendices A and B we give the diagrammatic, uncoupled m-scheme, and angular-momentum-coupled expressions for the CCSD approximation and various equations of motion techniques used for ground and excited states in and around closed (sub)-shell nuclei.

2.2. Model spaces

2.2.1. Harmonic-oscillator basis. The coupled-cluster method is a wave-function-based approach, and it is thus convenient to take the three-dimensional spherical harmonic oscillator as a basis for atomic nuclei. The matrix elements of the nuclear interaction are computed numerically and transformed from the center-of-mass system to the laboratory system. The single-particle model space consists of $N+1$ oscillator shells with frequency ω and oscillator length $b = \sqrt{\hbar/(m\omega)}$. Thus, the maximum oscillator energy is $(N+3/2)\hbar\omega$. The parameters N and $\hbar\omega$ have to be chosen such that the radial extent $\sqrt{2(N+3/2)}b$ of the basis is large enough to accommodate the nucleus in position space, while the ultraviolet momentum $\sqrt{2(N+3/2)/b}$ of the basis has to be larger than the momentum cutoff of the employed interaction to accommodate the nucleus in momentum space (Stetcu et al 2007, Hagen et al 2010a, Jurgenson et al 2011).

Phenomenological extrapolation schemes have long been used in nuclear structure calculations (Hagen et al 2007b, Bogner et al 2008, Forssén et al 2008, Maris et al 2009). Very recently, Furnstahl et al (2012) built on Coon et al (2012) and proposed a theoretical basis for the convergence properties of nuclear energies and radii in the oscillator basis. The main idea is that the finite spatial extent of the oscillator basis essentially forces the wave function to fulfill Dirichlet boundary conditions at $L_{2i} = \sqrt{2(N+3/2+2)}b$ (More et al 2013, Furnstahl et al 2014), and this allows one to derive expressions similar to those that Lüscher (1986) derived for finite lattices. For quantum dots, i.e. electrons with Coulomb interactions confined by a harmonic oscillator potential, Kvaal (2009) gave closed-form mathematical relations for the error in the energy due to truncation in the harmonic oscillator basis. These relations are expected to apply for screened Coulomb interactions as well, and could provide useful insights to truncations made in nuclear many-body calculations.

In coupled-cluster calculations it is often convenient to start from a Hartree–Fock basis. In this basis the coefficients i_{ij} of the singles amplitude become very small (Kowalski et al 2004). One also finds that this approach reduces the $\hbar\omega$-dependence of the computed energies. In practical computations one aims at increasing the number $N+1$ of employed oscillator shells until the results become virtually independent on the model-space parameters. Another advantage of the Hartree–Fock basis is that the Fock matrix is diagonal. Thus, one can compute several triples approximations such as CCSD(T) and A-CCSD(T) (see section 2.1 for more details) in a single non-iterative step.
Due to the Gaussian falloff of the harmonic oscillator functions, this basis is not able to capture the physics of unbound nuclei, or excited resonant states above the particle threshold. Similar comments apply to the description of extended objects such as halo nuclei. Nuclei and nuclear states near and above the particle emission thresholds are open quantum systems, and the coupling to open decay channels and the particle continuum is essential. We note that the coupling to the continuum is relevant for the understanding of shell structure at the drip lines (Dobaczewski et al 1994, Hagen et al 2012b), and the parity inversion of the ground state in 11Be (Forssén et al 2005, Quaglioni and Navrátil 2008).

For open systems it is of advantage to employ the Berggren basis (Berggren 1968, Berggren 1971, Lind 1993). This basis is a generalization of the standard completeness relation from the real energy axis to the complex energy plane. Completeness is given by a finite set of bound- and resonant states together with a non-resonant continuum. A finite-range potential that supports a finite set of bound and resonant states is always accompanied by a scattering continuum. Thus, such potentials have a much richer spectrum than the standard harmonic oscillator potential which only supports bound states.

Figure 2 shows an example of a finite-range potential and its spectrum. The bound and resonant states are poles of the scattering matrix in the complex momentum plane. This is shown to the right half of figure 2. Here the non-resonant continuum is shown as the red colored contour. In practice one can choose any contour for the non-resonant continuum as long as the potential has an analytic continuation in the complex plane, see for example (Hagen et al 2004).

Over the last decade the Berggren basis has seen many applications in calculations of weakly bound and unbound nuclei. Michel et al (2002) and Id Betan et al (2002) employed the Berggren basis in shell model computations of nuclei and introduced the Gamow shell model (Michel et al 2009). Very recently, Papadimitriou et al (2013) combined the NCSM with a Berggren basis and applied it to computations of the unbound nucleus 3He. The coupled-cluster method is well suited to describe unbound nuclei with the Gamow basis because it can handle the increased size of the model space and it is size extensive. Hagen et al (2007a) generalized the coupled-cluster method to the complex and bi-orthogonal Berggren basis, and computed the ground-state energies and decay widths of the $^{3-10}$He isotopes, see section 3.1 for details.

In coupled-cluster calculations with Berggren bases, we find it convenient to compute the Berggren basis from the analytically continued Schrödinger equation in momentum space

$$\frac{\hbar^2}{2\mu} k^2 \psi_{nl}(k) + \int_{L^*} dq q^2 V_l(k, q) \psi_{nl}(q) = E_{nl} \psi_{nl}(k). \tag{22}$$

see Hagen et al (2004) for details. Here both k and q are defined on an inversion symmetric contour L^* in the lower half complex k-plane (see figure 2), resulting in a closed integral equation. The eigenfunctions constitute a complete bi-orthogonal set, normalized according to the Berggren completeness relation (Berggren 1968, 1971, Lind 1993)

$$1 = \sum_{n \in C} |\psi_{nl}(k)|^2 + \int_{L^*} dk k^2 |\psi_l(k)|^2. \tag{23}$$

In figure 2 the contour L^* is given by a rotation followed by a translation in the lower half complex k-plane. The term $V_l(k, q)$ is the Fourier–Bessel transformation of a suitable finite range potential (e.g. Woods–Saxon). An advantage of solving the Schrödinger equation in momentum space is that we do not need to impose boundary conditions for the bound-, resonant- and scattering states. The momentum-space Schrödinger equation is solved as a matrix equation by discretizing the contour L^* by some suitable quadrature rule (e.g. Gauss–Legendre quadrature). For non-singular, finite-range potentials that fall off faster than $1/r$, one typically finds convergence for both narrow and wide resonant states with $n_{\text{max}} \approx 40$ integration points and with the integration limits $k \in [0, 4-5]$fm$^{-1}$, see e.g. Hagen and Vaagen (2006). The maximal radial extent of the wave function in position space can then be estimated by the formula $R_{\text{max}} \approx \pi / \Delta k$, where Δk is the step length of the k-space integration. For the typical example above this corresponds to a maximal radial extent of $R_{\text{max}} \approx 30$ fm for the wave function in position space.

Solving equation (22) for protons with the Coulomb potential in momentum space is not trivial due to the singular
behavior of the Legendre function of the second kind, $Q_\ell(k, q)$, on the diagonal $k = q$. There are various methods that deal with this problem such as the Landé subtraction method or by introducing a cut in the r-space integration. However, neither of these methods works for resonances as the integration kernel is no longer analytical in the complex k-plane. Michel (2011) developed an off-diagonal method that works very well for both resonances and scattering states. To illustrate the method we follow (Hagen and Michel 2012) and write the Coulomb potential in momentum space as

$$U_{\text{Coul}}(k, q) = \langle k | U_{\text{Coul}}(r) | q \rangle = \frac{(Z-1)e^2}{r} |q\rangle + \frac{(Z-1)e^2}{\pi} Q_\ell (\frac{k^2 + q^2}{2kq}).$$

The first term of equation (24) decreases very quickly for $r \to +\infty$ and can be calculated by numerical integration. However, the second term has a logarithmic singularity at $k = q$. The off-diagonal method consists of replacing the infinite value $Q_\ell (1)$ in equation (24) occurring at $k = q$ by a finite value depending on the discretization used.

Table 1 shows results for the $s_{1/2}$, $d_{3/2}$, $d_{5/2}$ resonant states from a Woods–Saxon plus Coulomb potential for an increasing number of integration points. We used a rotated and translated contour as shown in figure 2 with N_R (N_T) Gauss–Legendre quadrature points along the rotated (translated) line. We see that $N_R + N_T \approx 40$ is sufficient to reach a convergence at the level of a few keV, proving the accuracy and efficiency of the off-diagonal method applied to the solution of equation (22).

Let us briefly discuss the computation of the NN interaction V_{NN} in the Berggren basis. Hagen et al (2006) expressed V_{NN} in a Berggren basis by introducing an intermediate expansion over a finite number of harmonic oscillator states,

$$\langle ab|V_{NN}|cd\rangle = \sum_{a\beta c\delta} \langle ab|\chi_\alpha\beta \rangle \langle \chi_\alpha\beta|V_{NN}|\chi_\gamma\delta \rangle \langle \chi_\gamma\delta|cd\rangle.$$

Here n_{max} is the maximum number of radial harmonic oscillator functions for a given partial wave lj. The two-particle overlap integrals $\langle ab|\chi_\alpha\beta \rangle$ are given in terms of the single-particle overlaps $\langle a|\alpha \rangle \langle b|\beta \rangle$. Here Roman letters label the Berggren states and Greek letters label the harmonic oscillator states. Because of the Gaussian falloff of the harmonic oscillator functions the single-particle overlap integrals are always finite. Hagen et al (2006) showed that a good convergence of both narrow and wide resonances can be obtained already with $n_{\text{max}} = 4$. Having represented the Hamiltonian in the Berggren basis, one can then perform Gamow–Hartree–Fock calculations which gives the input to coupled-cluster calculations. Recently, this approach was used by Caprio et al (2012) in the context of the NCSM and using a Coulomb Sturmian basis. We finally note that Mihaila (2003) proposed a continuum coupled-cluster expansion based on real momentum states, and reported first applications for a single-particle problem.

2.3. Interactions

The coupled-cluster method can employ a variety of interactions. In this subsection, we briefly describe some of the interactions that found applications within coupled-cluster theory.

2.3.1. Interactions from chiral EFT

The spontaneous breaking of chiral symmetry at low energies is one of the hallmarks of quantum chromodynamics, the theory of the strong interaction. The pion is the Nambu–Goldstone boson of the broken symmetry (with corrections to this picture due to an explicit breaking of chiral symmetry), and the long-ranged part of NN interactions is therefore due to pion exchange. The short-ranged contributions of the NN interaction are treated either using one-boson-exchange inspired models, or in a model-independent approach via chiral EFT. Popular examples for the former are the Argonne interaction (Wiringa et al 1995) and the CD-Bonn interaction (Machleidt 2001), and examples for the latter are interactions from chiral EFT (Weinberg 1990, Weinberg 1991, Ordoñez and van Kolck 1992, Ordoñez et al 1994, Ordoñez et al 1996, Kolck 1999, da Rocha and Robilotta 1994, da Rocha and Robilotta 1995, Kaiser et al 1997, Epelbaum et al 1998, Epelbaum et al 2000, Entem and Machleidt 2003, Machleidt and Entem 2011, Epelbaum et al 2009, Ekström et al 2013). We note that high-precision interaction models depend on several parameters that are adjusted to NN scattering data; the optimization yields a $\chi^2 \approx 1$ per degree of freedom.

Interactions derived from EFT have theoretical advantages over optimized interaction models. First, their currents are...
consistently formulated with the Lagrangian (or Hamiltonian), and this is important for the correct description of observables other than the energy. Second, a power counting (in the ratio of the probed momentum scale Q over the cutoff scale Λ) exists for systematic improvements of the interaction and observables. Third, the hierarchy of NN forces, three-nucleon forces, and forces of even higher rank is explained by the power counting. Three-nucleon forces enter at next-to-next-to-leading order (N^2LO) order (van Kolck 1994, Epelbaum et al. 2002, Navrátil 2007), and four-nucleon forces at N^3LO.

Pion-based three-nucleon interactions were first derived by Fujita and Miyazawa (1957), and they have been known to improve the agreement between empirical data and nuclear structure calculations for a long time (see, e.g., (Küm Mercury 1978)). More recently, the ab initio GFMC calculations demonstrated convincingly that a realistic computation of light nuclei requires three-nucleon forces (Pudliner et al. 1997, Pieper and Wiringa 2001). On physical grounds, the appearance of three-nucleon forces is not surprising: nucleons are not point particles and their substructure must lead to effective three-nucleon forces when three nucleons are sufficiently close to each other. We note, however, that three-nucleon forces can only consistently be formulated for a given NN interaction. Polyzou and Glöckle (1990) showed that a two-body Hamiltonian alone might be equivalent to a different two-body Hamiltonian plus three-body forces. A nice illustration of this finding in the context of renormalization scheme dependence was given by Jurgenson et al. (2009). It is thus not surprising, that the character of three-nucleon forces depend on the NN interaction they accompany. Three-nucleon forces employed with the Argonne NN interactions are mainly attractive in light nuclei (Pieper and Wiringa 2001), while three-nucleon forces for low-momentum interactions effectively act repulsively in shell-model calculations (Otsuka et al. 2010).

In recent years, the important role of chiral three-nucleon forces has been explored and confirmed in the lightest nuclei, p-shell nuclei, and neutron and nuclear matter. We note that these calculations often combine NN forces at N^3LO with three-nucleon forces at N^2LO, see Hammer et al. (2013) for a recent review. Here, we briefly summarize some important results. In few-nucleon systems, Kalantar-Nayestanaki et al. (2012) reviewed the present status of the field. In light nuclei, chiral three-nucleon forces affect the binding energy, radii and transitions (Navrátil et al. 2009, Maris et al. 2013). They are responsible for the correct level ordering in 10B (Navrátil et al. 2007), and the anomalous long half-life of 13C (Holt et al. 2008, Holt et al. 2009, Maris et al. 2011). In oxygen isotopes, chiral three-nucleon forces determine the position of the neutron drip line and the structure of neutron-rich isotopes (Otsuka et al. 2010, Hagen et al. 2012a, Cipollone et al. 2013, Hergert et al. 2013a). In calcium isotopes, chiral three-nucleon forces are pivotal for our understanding of shell evolution and (sub)shell closures (Holt et al. 2012, Hagen et al. 2012b, Wienholdt et al. 2013, Holt et al. 2013b). Three-nucleon forces also play an important role in neutron matter (Heberer and Schwenk 2010) and the saturation of nuclear matter (Holt et al. 2010, Heberer et al. 2011).

Very recently, this picture about the decisive role of three-nucleon forces in chiral effective field has been questioned to some extent. Ekström et al. (2013) optimized the chiral NN interactions at NNLO with the optimization tool POUNDerS (Kortelainen et al. 2010). The resulting NN interaction NN_{opt} exhibits $\chi^2 \approx 1$ per degree of freedom for laboratory energies below 125 MeV and is thus a high-precision potential. For NN_{opt} the adopted value for the pion–nucleon constant ϵ_π falls outside the range expected from pion–nucleon scattering (but is similar in size as for the chiral N^3LO interaction by Entem and Machleidt (2003)); its spin–orbit force exhibits deficiencies above laboratory energies of about 80 MeV, as is evident in the p-wave phase shifts. Remarkably, the chiral NN interaction NN_{opt} alone is able to reproduce the experimental binding energies and the drip line in neutron-rich oxygen isotopes. In isotopes of calcium, NN_{opt} overbinds but energy differences and shell closures are well reproduced—again hinting at a possibly less complex role of the omitted three-nucleon forces. This matter is still very much fluid, and it is too early to draw conclusions. In particular, the role of three-nucleon forces corresponding to NN_{opt}, and the effects of higher orders of the power counting are subjects of ongoing studies.

Let us turn to how three-nucleon forces are used in practical computations. Hagen et al. (2007c) derived the coupled-cluster equations for three-body Hamiltonians in the CCSD approximation. This approach adds 68 diagrams to the coupled-cluster equations, and significantly increases the computational cost compared to NN forces alone. Binder et al. (2013) computed Λ-CCSD(T) corrections in the presence of three-nucleon forces. The inclusion of three-nucleon forces in nuclear structure calculations is also challenging due to the sheer number of three-body matrix elements that are input to such calculations (Vary et al. 2009).

To deal with these challenges, nuclear theorists have employed approximations that essentially reduce three-nucleon forces to in-medium two-body forces by averaging the effect of the third particle over the density. The coupled-cluster (Coon et al. 1977, Emrich et al. 1977) and shell-model calculations (Coon et al. 1978) of light nuclei, for instance, used the effective two-body force by Blatt and Mckellar (1975) that resulted from averaging a two-pion exchange over the third particle in nuclear matter. Similar approaches are employed today (Mihaila and Heisenberg 2000a, Hagen et al. 2007c, Holt et al. 2009, Heberer and Schwenk 2010, Otsuka et al. 2010, Roth et al. 2012, Hagen et al. 2012a, Carbone et al. 2013a). These approximations assume that the most important contributions of three-nucleon forces can be written as density-dependent two-nucleon forces (Zuker 2003). Let us describe this idea here in the coupled-cluster framework (Hagen et al. 2007c). In its normal-ordered form, the three-body Hamiltonian is

$$
\hat{H}_3 = \frac{1}{6} \sum_{ijk} \langle ijk | ijk \rangle + \frac{1}{2} \sum_{ijpq} \langle ipq | ijq \rangle \{ \hat{a}_p^\dagger \hat{a}_q \} \\
+ \frac{1}{4} \sum_{ipqrs} \langle ipq | irs \rangle \{ \hat{a}_p^\dagger \hat{a}_q^\dagger \hat{a}_r \} + \hat{h}_3. \tag{26}
$$

Thus, the contributions of the three-body forces consist of an energy shift, of normal-ordered one-body and two-body terms,
and of a ‘residual’ three-body Hamiltonian

\[
\hat{h}_3 = \frac{1}{36} \sum_{pqrstu} \langle pqr|stu|\hat{a}_p^\dagger \hat{a}_q^\dagger \hat{a}_r^\dagger \hat{a}_s \hat{a}_t \hat{a}_u \rangle.
\] (27)

In these expressions, the brackets \([\ldots]\) denote normal ordering with respect to the coupled-cluster reference state. Note that the normal-ordered Hamiltonian \(\hat{H}_3 - \hat{h}_3\) already contains important contributions of three-nucleon forces though it is of two-body form. This is a tremendous technical simplification. Hagen et al (2007c) found that the omission of the three-body terms (27) is a very good approximation for \(^4\text{He}\) and low-momentum \(NN\) interactions. The comparison between coupled-cluster and NCSM results showed that this approximation improves with increasing mass of the nucleus (Roth et al 2012, Binder et al 2013). In nuclear matter, the quality of the normal-ordered approximation can be understood through arguments from Fermi-liquid theory (Friman and Schwenk 2011).

In large model spaces, the normal-ordered three-body contribution to the two-body part of the Hamiltonian of equation (26), is still expensive since it requires a significant number of three-body matrix elements to be computed only to be summed over subsequently (see equation (26)). A further simplification has been proposed recently in the computation of neutron-rich isotopes of oxygen (Hagen et al 2012a), see section 3.3 for results. In this approach, one directly employs the two-body force that results from normal-ordering of the three-nucleon force in symmetric nuclear matter as a schematic correction to the chiral \(NN\) interaction. This correction depends on the Fermi momentum and the low-energy constants of the short-ranged contribution of the chiral three-nucleon force, which are treated as adjustable parameters. This approximation is a poor-man’s solution to a challenging problem and useful in practical calculations.

2.3.2. Low-momentum and RG interactions

Often, it is not convenient to employ very large model spaces. In such a case one has to properly renormalize the ‘bare’ interaction. Popular examples for renormalization procedures are low-momentum potentials \(V_{\text{low}}\) (Bogner et al 2003), SRG transformations (Bogner et al 2007, Furnstahl and Hebeler 2013), or the \(G\)-matrix (Hjorth-Jensen et al 1995). In what follows, we briefly summarize these procedures because they entered in coupled-cluster computations (Kowalski et al 2004, Hagen et al 2007b, Roth et al 2012, Binder et al 2013).

The low-momentum potentials \(V_{\text{low}}\) result from ‘bare’ \(NN\) potentials by integrating out high-momentum modes above a cutoff \(\lambda\) in a RG procedure. This method works by ‘decimation’ of degrees of freedom in the sense of the Kadanoff–Wilson RG, and it removes high-momentum modes from the interaction. Up to the cutoff, phase shifts of the \(NN\) interaction are unchanged. Note that the corresponding renormalization flow of three-nucleon forces has not yet been worked out. Instead, three-nucleon forces are taken in the form of chiral three-nucleon forces. The corresponding low-energy constants \(c_D\) and \(c_E\) of the short-ranged parts of the three-nucleon force are fit to data in the \(A = 3, 4\) nuclei and are available for different cutoffs (Nogga et al 2004).

The SRG transformation (Bogner et al 2007) does not remove any modes from the interaction but instead decouples low-momentum modes from high-momentum modes via a similarity transformation (Glazek and Wilson 1993, Wegner 1994), see Furnstahl and Hebeler (2013) for a recent review. The transformation is governed by a generator and implemented as a flow equation, i.e. as a first-order differential equation in the space of matrix elements or coupling constants. The flow parameter \(\lambda\) has dimensions of a momentum cutoff. The generator determines which modes are decoupled, and the flow parameter determines the degree of the decoupling. In this approach, \(NN\) and three-nucleon forces are consistently transformed, and the transformations have been worked out in the oscillator basis (Jurgenson et al 2009) and in momentum space (Hebeler 2012). In contrast to the \(V_{\text{low}}\) potentials which are phase-shift equivalent only up to the cutoff \(\lambda\), the SRG potentials are unitary transformations and thus phase-shift equivalent.

It is important to note that the SRG transformation is only a similarity transformation in the \(A\)-body system if one generates and follows the flow of up to \(A\)-body operators. A nice illustration of this concept by Jurgenson et al (2009) is shown in figure 3. The figure shows the ground-state energy of \(^4\text{He}\) as a function of the flow parameter \(\lambda\) computed in three different ways. The red line starts (at large values of the flow parameter \(\lambda\)) from a ‘bare’ \(NN\) interaction from chiral EFT and shows how the ground-state energy varies under the evolution when only \(NN\) forces are kept and evolved. The gray line again shows the results if one starts (at high values of \(\lambda\)) from a ‘bare’ interaction but evolves \(NN\) and three-nucleon operators simultaneously. The resulting ground-state energy is almost independent of the evolution parameter, and at \(\lambda \approx 2\) fm\(^{-1}\) one sees a variation that is presumably due to missing four-body operators. The blue line starts (at high values of \(\lambda\)) from ‘bare’ \(NN\) and three-nucleon interactions from chiral EFT, and in the SRG transformation one evolves two-body and three-body operators. Again, the results are almost independent of \(\lambda\), and a small variation develops for \(\lambda \approx 2\) fm\(^{-1}\). Note also that the variation of the red curve gives an estimate for the contribution of the omitted three-nucleon forces, and the variation of the blue curve gives an estimate for the missing contributions of four-nucleon forces. Thus, any variation of the results with the cutoff or flow parameter measure contributions from omitted short-ranged forces that are of higher rank. This turns the study of cutoff dependencies into a useful tool. For more details on low-momentum interactions, we refer the reader to the review by Bogner et al (2010).

The following simple argument might be useful for understanding why the RG transformation induces forces of higher rank, and at which scale \(\lambda\) the RG-induced \(a\)-body forces might become relevant. We note that the cutoff \(\lambda\) induces the shortest length scale \(2\pi/\lambda\), and \(a\)-body forces become relevant once the \(a\)th particle ‘sees’ about \(a - 1\) particles in the volume of a sphere with diameter \(2\pi/\lambda\). Let \(\rho\) denote the nuclear saturation density. Thus, \(a\)-body forces become relevant for cutoffs

\[
\lambda \approx \left(\frac{4\pi^4}{3\rho} a^{-1} - 1\right)^{1/3}.
\] (28)
Inserting $a \approx 2.5$ ($a \approx 3.5$) into equation (28), one would thus expect that three-nucleon forces (four-nucleon forces) become relevant below a cutoff of $\lambda \approx 2.4$ fm$^{-1}$ ($\lambda \approx 2.0$ fm$^{-1}$). These estimates are in reasonable agreement with actual calculations, see e.g. figure 3.

The reduction of the size of the model space via SRG appears particularly attractive for computations of matrix elements of three-nucleon forces. Roth et al (2011) employed SRG evolved interactions from chiral EFT and computed matrix elements of NN and three-nucleon forces in oscillator spaces up to energies of 12 oscillator spacings for two and three nucleons, respectively. (The maximum average energy per nucleon is smaller for the three-nucleon forces than for two-nucleon forces). Roth et al (2011) found that the binding energies exhibit a dependence on the SRG cutoff λ that increases with increasing mass number. We recall that a renormalization-scale dependence of observables indicates that the SRG is not unitary in the many-nucleon system. The origin of this behavior is subject of ongoing research (Hebeler 2012, Jurgenson et al 2013). A practical solution to this problem is to start the SRG with a three-nucleon force that exhibits a lower chiral cutoff than the corresponding two-nucleon force (Roth et al 2011, Roth et al 2012).

SRG transformations of nuclear interactions can also be performed in the presence of a non-trivial vacuum state. The resulting in-medium SRG (Tsukiyama et al 2011) is a means to directly compute the ground-state energy of an A-body nucleus and also yields the nuclear interaction with respect to the non-trivial vacuum state. Here, three-nucleon forces and forces of higher rank are included in the normal-ordered approximation. Recently, this approach was extended to open-shell nuclei (Hergert et al 2013a, 2013b).

The in-medium SRG and the coupled-cluster method have much in common. Both are built on similarity-transformed Hamiltonians with respect to a reference state. The former employs a unitary similarity transformation that keeps a Hermitian Hamiltonian, while the latter yields a non-Hermitian Hamiltonian. In the in-medium SRG, the similarity transform results from the solution of a differential equation while the coupled-cluster method seeks an iterative solution of the coupled-cluster equations. The imaginary-time evolution of the coupled-cluster equations also yields a continuous similarity transformation of the Hamiltonian that converges towards the solution of the coupled-cluster equations (Pigg et al 2012). It is clear that both methods can be used in the derivation of effective interactions with respect to a non-trivial vacuum state. This aspect of coupled-cluster theory has been emphasized in several recent works (Suzuki 1992, Suzuki et al 1994, Kohno and Okamoto 2012).

Hergert and Roth (2007) pointed out that the earlier developed unitary correlation operator method (UCOM) (Feldmeier et al 1998, Roth et al 2010) can also be viewed as an SRG transformation. However, in ab initio calculations, the UCOM potential exhibits a slower convergence than other SRG interactions (Roth et al 2009b, Hagen et al 2010a).

2.3.3. G matrix

The Brueckner G matrix was developed to employ NN potentials with a strong short-range repulsion in the description of nuclear matter (Brueckner et al 1954, Brueckner 1955, Day 1967). This method is also the basis for the derivation of effective shell-model interactions (Kuo and Brown 1968), see the review by Hjorth-Jensen et al (1995). It is illuminating to study the convergence properties of the G matrix, and we briefly summarize the results from Hagen et al (2010a). The $G(\bar{w})$ matrix depends on the ‘starting energy’ \bar{w}, and in the limit of an infinite model space (i) becomes independent of \bar{w} and (ii) becomes identical to the interaction used in its construction. For increasing number of oscillator shells ($N + 1$), the ground-state energy approaches the value obtained for the ‘bare’ chiral NN interaction, and the dependence on \bar{w} weakens. The G matrix converges slowly (and from below) to the ‘bare’ Hamiltonian, and this makes it less ideal for ab initio computations. In the practical construction of effective interactions for the nuclear shell model, however, the G matrix is a most useful tool (Poves and Zuker 1981, Homma et al 2002).

2.4. Center-of-mass problem

In this subsection we discuss the treatment of the center of mass. The nuclear interaction is invariant under translations, and as a result, the A-body wave function ψ of the atomic nucleus is a product of an intrinsic wave function ψ_in that depends on $3(A − 1)$ coordinates and the wave function ψ_cm of the center of mass

$$\psi = \psi_\text{in} \psi_\text{cm}. \quad (29)$$
The factorization (29) is manifestly expressed in the A-body basis states if one chooses a single-particle basis of plane wave states or a single-particle basis of harmonic-oscillator states. In the latter case (and denoting the oscillating sphere by $h\omega$), the A-body Hilbert space must be a complete $N h\omega$ space, i.e., the space that consists of all Slater determinants with excitation energies up to and including $N h\omega$. The NCSM (Navrátil et al. 2009) employs such a model space, and the factorization (29) is thus guaranteed through the choice of the basis. The coupled-cluster method, however, does not employ a complete $N h\omega$ space, and one has to seek alternatives. We discuss three alternative approaches.

The first approach consists of solving the two-body-cluster equations in the center-of-mass system (Bishop et al. 1990a). In this approach, no reference is made to the center of mass, and one finds empirically that the coupled-cluster equations are solved in the intrinsic space, i.e., the factorization (29) is manifestly expressed in the oscillator space, and the coupled-cluster equations are solved in the intrinsic oscillator space. Variances of this approach with translationally invariant cluster functions in position space were developed in a series of papers (Guardiola et al. 1996, Bishop et al. 1998, Guardiola et al. 1998). The recent calculations (Moliner et al. 2002) of He, Be, C and O isotopes with this approach exhibits a much-improved convergence with respect to the model space.

The second approach, consists of application of the ‘Lawson method’ (Gloeckner and Lawson 1974), i.e., one employs an oscillator basis of frequency ω and adds a harmonic-oscillator Hamiltonian of the center of mass coordinate (with the same frequency ω) to the Hamiltonian and varies the corresponding Lagrange multiplier. Within the NCSM and a full $N h\omega$ model space, the Lawson method indeed pushes up all spurious states. Within the traditional shell-model (which does not employ a full $N h\omega$ space), the Lawson method was criticized by McGrory and Wildenthal (1975) because the Lagrangian constraint distorts relevant correlations in the intrinsic wave function. In coupled-cluster theory, the Lawson method was applied in several works (Heisenberg and Mihaila 1999, Mihaila and Heisenberg 2000b, Dean and Hjorth-Jensen 2004, Kowalski et al. 2004, Wlocz et al. 2005, Gour et al. 2006), and the computed observables depend mildly on the Lagrange multiplier (Mihaila and Heisenberg 2000a, Roth et al. 2009a). We believe that this approach, which is tailored to a complete $N h\omega$ oscillator space, is not the most suitable for other model spaces.

The third approach (Fink 1974, Zabolitzky 1974, Kümmel et al. 1978, Hagen et al. 2007a) employs the intrinsic Hamiltonian

$$H_{\text{in}} \equiv H - T_{\text{cm}} = T - T_{\text{cm}} + V,$$

and appears to be most attractive. Here, T_{cm} denotes the kinetic energy of the center of mass, and the interaction V is invariant under translations. The Hamiltonian (30) clearly does not reference the center of mass, and one finds empirically that its ground-state wave function factorizes in sufficiently large model spaces (Hagen et al. 2009a). To quantify this statement, one expands the ground-state wave function of the A-body problem

$$\psi = \sum_i s_i \psi_{\text{in}}^{(i)} \psi_{\text{cm}}^{(i)}$$

(31)

into sums of products of intrinsic and center-of-mass wave functions. Such an expansion can always be achieved and amounts to a singular value decomposition of ψ. Here, the singular values are ordered and non-negative, i.e., $1 \geq s_1 \geq s_2 \geq s_3 \geq 0$, and the intrinsic and center-of-mass wave functions $\psi_{\text{in}}^{(i)}$ and $\psi_{\text{cm}}^{(i)}$, respectively, are orthonormalized, and thus $\sum_i s_i^2 = 1$ for proper normalization of ψ. Note that the expansion (31) corresponds to the factorization (29) for $s_1 = 1$ (and all other singular values vanish), and s_1^2 thus is a good measure of the factorization achieved in practice. For a toy model of two interacting particles in one dimension, Hagen et al. (2010a) showed that s_1 quickly approaches $s_1 = 1$ in sufficiently large oscillator spaces (containing about 10 oscillator shells), the difference $1 - s_1^2$ assuming tiny values, with $1 - s_1^2 < 10^{-7}$ or smaller.

In coupled-cluster calculations, it is impractical to verify the factorization via the singular value decomposition (31) as one avoids expanding the cluster wave function in terms of Slater determinants. Instead one can demonstrate that the coupled-cluster ground-state $|\psi\rangle$ fulfills to a good approximation $\langle\psi|H_{\text{cm}}(\tilde{\omega})|\psi\rangle \approx 0$ (Hagen et al. 2009a, 2010a). Here

$$H_{\text{cm}}(\tilde{\omega}) \equiv T_{\text{cm}} + \frac{1}{2} A m \tilde{\omega}^2 \vec{R}^2 \quad -\frac{3}{2} h \tilde{\omega}$$

(32)

is the oscillator Hamiltonian of the center-of-mass coordinate \vec{R}, and $\tilde{\omega}$ a suitably chosen frequency that usually differs from the frequency ω of the underlying oscillator basis. Note that the Hamiltonian (32) is non-negative, and has a vanishing ground-state energy. Thus, a vanishing expectation value of this operator indicates that one deals with its ground state. The computation of $\tilde{\omega}$ is described in Hagen et al. (2009a). In sufficiently large model spaces, $\tilde{\omega}$ exhibits only a weak dependence on the parameter ω. The exact vanishing of the expectation value $\langle\psi|H_{\text{cm}}(\tilde{\omega})|\psi\rangle$ indicates that the wave function ψ factorizes as in equation (29), and that ψ_{cm} is the Gaussian ground-state wave function of the center-of-mass oscillator Hamiltonian (32). In practice, one finds that the expectation value $\langle\psi|H_{\text{cm}}(\tilde{\omega})|\psi\rangle$ is small compared to the scale $h \tilde{\omega}$ of spurious center-of-mass excitations, and the smallness of the ratio $\langle\psi|H_{\text{cm}}(\tilde{\omega})|\psi\rangle/(h \tilde{\omega})$ is thus a measure of the quality of the factorization.

This approach has been extended to neighbors of closed shell nuclei (Hagen et al. 2010a, Jansen 2013), and one can also identify and remove spurious states that exhibit excitations of the center-of-mass coordinate. Jansen (2013) computed states in 6He and 6Li using the two-particle attached coupled-cluster method. The left panel of figure 4 shows the expectation value of equation (32) evaluated for $\tilde{\omega} = \omega$ as a function of the oscillator spacing of the model space. For the 0^+ state in 6He and 3^+ state in 6Li these expectation values are small for $\omega \sim 10 - 14 \text{ MeV}$. However, the 1^- state in 6He exhibits a large expectation value because the center of mass wave function is in an excited state. Subtracting another unit
of $\hbar \omega$ for this state in equation (32) yields the expectation values shown in the middle panel of figure 4. The fact that the expectation values are still non-negligible demonstrates that the Lawson method should not be applied, particularly at higher frequency ω. The center of mass wave functions are approximately oscillator wave functions, but with a frequency $\tilde{\omega}$ that is in general different from the frequency ω of the model space. Applying the appropriate formula to compute $\tilde{\omega}$, and computing the expectation values (32), shows that the center of mass wave function approximately factorizes as depicted in the right panel of figure 4. The expectation values are not zero, but much smaller than $\hbar \omega \approx 10$ MeV. This is a measure of the quality of the factorization.

Note that the factorization argument based on the Hamiltonian (32) is not limited to coupled-cluster computations. Recently, the usefulness of this approach was reported in medium SRG computations (Tsukiyama et al. 2012), and studied for the NCSM with a Sturmian basis (Caprio et al. 2012). It seems that the use of the intrinsic Hamiltonian (30) in sufficiently large model spaces indeed yields approximately factorized wave functions, and this solves the center-of-mass problem in practical computations. Unfortunately, however, we are still lacking a theoretical understanding of the Gaussian nature of the factorized center-of-mass wave function.

For a Gaussian center-of-mass wave function it is straightforward to compute the intrinsic density (i.e. the density in the coordinate of the A^{th} particle with respect to the center of mass of the remaining $A - 1$ particles) from the density in the laboratory system (Elliott and Skyrme 1955, Gartenhaus and Schwartz 1957, Navrátil 2004, Giraud 2008). The density in the laboratory system is a convolution of the Gaussian center-of-mass wave function with the intrinsic density, and the de-convolution can easily be performed in Fourier space. This procedure has been employed within the coupled-cluster method for extracting the intrinsic density of 23O (Kanungo et al. 2011), see section 3.3.

An alternative approach was followed by Mihaila and Heisenberg (2000b) in their computation of the structure function for electron scattering off 16O. Mihaila and Heisenberg (1999) expand the form factor (a one-body operator when written with respect to the center of mass) in terms on one-body, two-body, ..., A-body density matrices in the laboratory system. After a truncation at the two-body density, an impressive agreement between theory and electron scattering data was obtained, see section 3.2.

3. Results for finite nuclei

In this section, we review coupled-cluster results for finite nuclei and focus our attention on isotopes of helium, oxygen, calcium, and some of their neighbors. At this point, a few comments regarding the accuracy and precision of such calculations might be useful. As the reader will see below, accurate coupled-cluster results beyond light nuclei (heavier than isotopes of oxygen or so), require some tuning of the employed interactions. The parameters of three-nucleon forces, and the evolution parameter of similarity-transformed interactions have been used and abused for this purpose. Furthermore, there are several sources of theoretical errors, and they concern the interactions, the model spaces, and the coupled-cluster method itself. In what follows, we discuss them briefly.

The ‘bare’ interactions from chiral EFT are at a given order in a power counting, and error estimates for the omitted higher-order contributions can possibly be based on arguments from EFT. In practice, variations of the cutoff of chiral interactions, and variation of coupling constants probe corresponding error estimates. However, the reliable propagation of errors from interactions to observables in the many-body system is in its infancy and subject of future research. Some calculations employ RG transformations of the ‘bare’ interactions. Such transformations induce additional errors, and the variation of the evolution parameter (cutoff) can be employed for error estimates. Very recent estimates quantify these errors to about 2% for medium-mass and heavy nuclei (Binder et al. 2014).

Finite model spaces impose low-momentum (infrared) and high momentum (ultraviolet) cutoffs. The corresponding error is less than 1% for binding energies (Hagen et al. 2010a). It can be probed by increasing the size of the model space, and mitigated by extrapolation techniques (Furnstahl et al. 2012).

The coupled-cluster method is computationally most efficient in its CCSD approximation, possibly with non-iterated triples corrections. Experience from benchmark calculations suggest that CCSD accounts for 90%, and triples corrections for about 99% of the correlation energy for nuclear interactions (Hagen et al. 2010a, Binder et al. 2013). Another error concerns the treatment of 3NFs in the normal-ordered

![Figure 4](image-url)
approximation, which seems to be smaller than the other errors we discussed (Roth et al 2012).

Thus, present nuclear coupled-cluster calculations can aim at a total error budget of a couple per cent for the binding energy. However, realistic error estimates that quantify all sources of theoretical uncertainties are very demanding and have not been performed to date.

3.1. Helium isotopes

Bound isotopes of helium display the most extreme ratios of proton-to-neutron numbers: ^8He is the isotope with the maximum binding energy, and ^{10}He is bound with respect to one-neutron emission but unbound with respect to two-neutron emission (see Tanihata et al (2013) for a recent review on neutron rich halo nuclei). As few-nucleon systems, these isotopes are an excellent testing ground for precision comparisons between experiment and theory. For such light nuclei close to the drip line, the role of the continuum is particularly important and affects the entire nucleus.

Hagen et al (2007a) developed the complex coupled-cluster method to describe the structure of loosely bound and unbound neutron-rich isotopes of helium ranging from 3–^{10}He. These calculations were performed in the m-scheme and employed a low-momentum NN interaction V_{lowk} generated from the N3LO interaction of Entem and Machleidt (2003). The cutoff of the interaction was $\lambda=1.9\text{ fm}^{-1}$, a value that for this particular interaction minimizes the expectation value of three-nucleon forces to the binding energy of ^3H and ^4He (Nogga et al 2004). Nevertheless, the heavier isotopes of helium are underbound for this value of the cutoff. By utilizing a low-momentum interaction and a truncation in partial waves, well converged results were obtained in the largest employed model-space consisting of 850 active single-particle orbitals.

The paper Hagen et al (2007a) also benchmarked coupled-cluster results with various triples excitations by comparing them to results from exact diagonalizations. In particular it was found that CCSDT is needed to restore spherical symmetry of the open-shell nucleus ^6He starting from a deformed reference state within the m-scheme coupled-cluster approach. The computation of particle decay widths in the complex coupled-cluster framework using a Gamow–Hartree–Fock basis made predictions for the entire isotopic chain that are in semi-quantitative agreement with data, see figure 5. For ^5He (i.e. the unbound $a+n$ system) in particular, the computed resonance energy and width are in reasonable agreement with the results from the combination of the resonating group method and the NCSM (Quaglioni and Navrátíl 2008) and the recent no-core Gamow-shell model (Papadimitriou et al 2013). The $ab\text{ initio}$ GFMC calculation (Nollett et al 2007) and the recent NCSM with continuum (Hupin et al 2013) with two-nucleon and three-nucleon forces yield a quantitative description of this nucleus. Recently Baroni et al (2013a), Baroni et al (2013b) developed the $ab\text{ initio}$ NCSM with continuum to compute the lifetimes of the resonance spin–orbit partners $1/2^-$ and $3/2^-$ in the unbound nucleus ^7He. These calculations addressed a long standing controversy regarding the lifetime of the excited $1/2^-$ resonance state and showed that theory favors experiments giving a broad $1/2^-$ state.

Figure 5. Binding energies of helium isotopes computed with a V_{lowk} NN interaction, and compared to data. The inset shows the decay widths due to neutron emission. Adapted from Dean et al (2008). © 2008 IOP Publishing Ltd.

Bacca et al (2009) studied the cutoff-dependence for low-momentum NN interactions based on chiral EFT potentials in neutron-rich isotopes of helium and performed benchmarks between the hyperspherical harmonics method and the coupled-cluster method in the CCSD and Λ–CCSD(T) approximations for ^4He. They found that low-momentum NN interactions alone bind ^6He with respect to ^6He at sufficiently low cutoffs, and estimated omitted contributions of three-nucleon forces by variation of the cutoff. There are still open questions regarding the structure of very neutron rich helium isotopes. For example, the spin and parity of the unbound ^9He is neither settled experimentally nor theoretically, and it could be that one deals with a parity inversion of the ground state as is the case for ^{11}Be (Tanihata et al 2013). An inversion between the levels $1/2^-$ and $1/2^+$ in ^9He would also impact the structure of the unbound nucleus ^{10}He.

3.2. Oxygen-16 and its neighbors

Coupled-cluster calculations of ^{16}O date back decades ago (Kümmel et al 1978), but only more recent calculations are based on high precision NN interactions. In this subsection we describe the results of coupled-cluster calculations for nuclei around ^{16}O.

In a series of papers, Mihaila and Heisenberg developed the coupled-cluster method for their computation of the elastic scattering form factor in ^{16}O. They followed the Bochum approach to deal with the hard core of the Argonne interactions, and obtained a binding energy of about 5.9 MeV and 7.0 MeV per nucleon in ^{16}O for the Argonne v_{18} and the v_8 interaction, respectively (Heisenberg and Mihaila 1999). Three-nucleon forces were included by using a two-body force that resulted from summation over the third particle (Mihaila and Heisenberg 2000a). To mitigate the center-of-mass problem, they used an intrinsic Hamiltonian and the Lawson method; the calculation of the intrinsic scattering form
factor itself included the necessary two-body corrections in the laboratory system (Mihaila and Heisenberg 1999). The results of these calculations are in impressive agreement with data (Mihaila and Heisenberg 2000b), see figure 6.

Dean and Hjorth-Jensen (2004) followed the standard approach from quantum chemistry. In contrast to the Bochum approach where the coupled-cluster method itself tames the hard-core interaction, they employed a G-matrix (Hjorth-Jensen et al 1995). The initial studies computed the nuclei 4He and 16O and focused on conceptual questions such as convergence in finite model spaces, inclusion of three-body cluster excitations, treatment of the center of mass, and the computation of excited states (Kowalski et al 2004). These papers demonstrated that the standard coupled-cluster techniques from quantum chemistry can indeed be used for the description of atomic nuclei. The computation of ground and excited states in 16O (Wloch et al 2005) extended ab initio nuclear structure computation to 16O. Of particular interest was the computation of the excited $J^\pi = 3^-$ state. This state is thought to be a low-lying $1p-1h$ excitation and should thus be captured well by the coupled-cluster method. However, the coupled-cluster calculation gave this state at almost twice its expected energy and this pointed to deficiencies in the coupled-cluster calculation. They employed Hamiltonian and missing many-body correlations.

Gour et al (2006) computed excited states in the mass $A = 15, 17$ neighbors of 16O by considering them as generalized excited states of the 16O closed-shell reference. This again showed that techniques from quantum chemistry could be transferred to nuclear structure. They employed G-matrices based on the CD-Bonn interaction, the Argonne v_{18} interaction and the chiral EFT interaction (Entem and Machleidt 2003). The relative binding energies were reproduced well, but the spin–orbit splittings exhibited larger deviations from data.

The nucleus 17F is a particularly interesting because it exhibits a proton halo as an excited state. The $J^\pi = 1/2^+$ halo state is bound by merely 105 keV, and the computation of such a fragile state is a challenge. Hagen et al (2010b) employed NN interactions from chiral EFT, a Gamow basis and the spherical implementation of the coupled-cluster method in their computation of the proton halo state. In lieu of three-nucleon forces, they varied the cutoff of the NN interaction with a SRG transformation (Bogner et al 2007) and thereby gauged the dependence of the results on short-ranged three-nucleon forces. They found a very weakly bound halo state that is insensitive to variation of the cutoff and a reduced $(3/2^+ - 5/2^+)$ spin–orbit splitting that exhibits considerable dependence on the cutoff. The computed $J^\pi = 3^+$ states in 17O and 17F are resonances, and the corresponding widths were in reasonable agreement with data.

The binding energy of 16O has also been computed with interactions from chiral EFT. Coupled-cluster calculations (Hagen et al 2010a) based on ‘bare’ NN interactions alone yielded a binding energy of about 7.6 MeV per nucleon when approximate triples clusters are included, compared to 6.7 MeV per nucleon in the CCSD approximation (Hagen et al 2008). The coupled-cluster energies were confirmed by the unitary model operator approach (Fujii et al 2009) and the NCSM (Roth et al 2011).

3.3. Neutron-rich isotopes of oxygen

Neutron-rich isotopes of oxygen are very interesting nuclei for several reasons. First, 20O and 22O are closed-shell nuclei (Thirolf et al 2000, Ozawa et al 2000, Hoffman et al 2009, Kanungo et al 2009), making $N = 14$ and $N = 16$ magic numbers for neutrons in these isotopes. Second, the doubly magic nucleus 24O is the heaviest bound isotope of oxygen. This nucleus has been discovered a long time ago (Artukh et al 1970), but only recently did Hoffman et al (2008) and Lunderberg et al (2012) and Caesar et al (2013) establish that 25O and 26O are unbound resonances in their ground states. Thus, the drip line in oxygen extends only to neutron number $N = 16$. For the fluorine isotopes, adding one proton shifts the drip line by six neutrons to 17F (Sakurai et al 1999). For shell-model calculations in this region of the nuclear chart we refer the reader to Caurier et al (1998).

The structure of 23O has not been without controversy. Early indications that 23O could be a halo nucleus (Ozawa et al 2001) were difficult to reconcile with the sub-shell closures of its neighbors. Recently, Kanungo et al (2011) remeasured the interaction cross section of 23O upon scattering off 12C. In the framework of the Glauber model, the interaction cross section is related to the density of the nucleus. Coupled-cluster computations, based on SRG NN interactions from chiral EFT, were used to compute the intrinsic densities and radii of isotopes $^{21-24}$O. The results are shown in figure 7 for different values of the SRG cutoff λ and compared to the measurements. Overall, the theoretical calculations very well reproduce the staggering. The cutoff dependence probes contributions from omitted short-ranged three-nucleon forces. The re-measurements of the radii and interaction cross sections (filled circles with errorbars in figure 7 compared to the open squares with errorbars from Ozawa et al (2001)) suggest that 23O does not exhibit a halo. This picture is consistent with the sub-shell closures of 22,24O.

Jensen et al (2011) computed spectroscopic factors for proton removal of neutron-rich isotopes of oxygen based on...
NN interactions from chiral EFT. These authors found that the neutron continuum yields a quenching of the spectroscopic factors. Computations in a Berggren basis yield reduced spectroscopic factors compared with corresponding results obtained with a harmonic oscillator basis. Figure 8 shows that the differences are small close to the valley of \(\beta \) stability but significant close to the neutron drip line. This demonstrates the importance of coupling to the continuum, and correlations in very neutron-rich nuclei.

Let us turn to the drip line in oxygen. The location of the neutron drip line is a challenging scientific problem, and one needs a very good understanding of the nuclear interaction, an inclusion of continuum effects, and an accurate many-body solver to address the problem. Thus, it is not surprising that several theoretical calculations predicted \(^{26}\text{O} \) to be bound, see, e.g., references cited in the work by Lunderberg et al. (2012).

Volya and Zelevinsky (2005) performed a shell-model calculation of neutron-rich oxygen isotopes. They considered a model space with \(^{16}\text{O} \) as a closed core and included the scattering continuum. The empirical two-body interaction was adjusted to data of sd-shell nuclei. Among the key results are the predictions of unbound nuclei \(^{25,26}\text{O} \), and the predicted \(Q \) values are in good agreement with the recent data by Hoffman et al. (2008) and Lunderberg et al. (2012).

The role of short-ranged three-nucleon forces in the location of the neutron-drip line was studied by Hagen et al. (2009b). Their coupled-cluster calculations of the closed-shell isotopes \(^{22,24,28}\text{O} \) are based on \(NN \) interactions from chiral EFT (Entem and Machleidt 2003). The \(NN \) interactions derived with a momentum cutoff of \(\Lambda = 500 \text{MeV}c^{-1} \) resulted in \(^{28}\text{O} \) being bound with respect to \(^{24}\text{O} \), while a ‘harder’ \(NN \) interaction with a momentum cutoff of \(\Lambda = 600 \text{MeV}c^{-1} \) yielded \(^{28}\text{O} \) to be unbound. In a RG picture, the removal of (integrating out) high momentum modes of the \(NN \) interaction generates short-ranged three-nucleon forces. Thus, short-ranged three-nucleon forces are already relevant for the location of the drip line in oxygen. Long-ranged three-nucleon forces were also expected to be most relevant, as both employed \(NN \) forces lacked overall binding of the computed oxygen isotopes.

Otsuka et al. (2010) first studied the role of three-nucleon forces in the neutron-rich isotopes of oxygen. These authors kept \(^{16}\text{O} \) as a closed core, employed the sd-shell with an appropriate oscillator frequency as a model space, and employed non-empirical low-momentum \(NN \) forces and three-nucleon forces from chiral EFT (figure 9). Core polarization effects were included employing many-body perturbation theory, see for example Hjorth-Jensen et al. (1995). They found that three-nucleon forces act repulsively in the employed framework, making \(^{24}\text{O} \) the drip line nucleus. This picture was confirmed in an enlarged model space that also contains the \(f_{7/2} \) and \(p_{3/2} \) orbitals (Holt et al. 2013).

Hagen et al. (2012a) performed a technically more sophisticated computation of neutron-rich oxygen isotopes. They used the coupled-cluster method and addressed...
The interaction (Hagen et al. 2012a) that includes three-nucleon forces as in-medium corrections to NN interactions was also employed in the theoretical description of neutron-rich isotopes of fluorine (Lepailleur et al. 2013, Vajta et al. 2014). The parameter-free results for 25F (26F), described as one (two) neutrons attached to 24O, agreed very well with the experimental data.

We also note that an accurate description of the drip line in oxygen can be achieved with chiral NN forces alone (Ekström et al. 2013). By optimizing the chiral NN interaction at

next-to-next-to leading order (NNLO) to NN phase shifts, a $\chi^2 \sim 1$ per degree of freedom was obtained for laboratory energies below ~ 125 MeV. With NNLOopt some aspects of nuclei could be understood without invoking 3NFs explicitly. Examples are the drip line in oxygen, and the magicity of 48Ca. As seen in figure 12, there is an overall good agreement between both coupled-cluster and shell-model calculations with experimental binding energies of oxygen isotopes using the NNLOopt NN interaction.

It will be interesting to study the role three-nucleon forces in combination with this newly optimized chiral NN interaction at NNLO. Furthermore, it has been recently pointed out by Baardsen et al. (2013) that the main difference between the N^3LO NN interaction of Entem and Machleidt (2003) and NNLOopt is a poorer reproduction of the p-wave phase shifts at energies above ~ 100 MeV with NNLOopt. Only at N^3LO can a good fit to phase shifts be obtained for higher energies, and it remains to be seen how this will impact the results.

Figure 9. Shell-model calculations of oxygen isotopes using 16O as closed-shell core and the sd-shell as model space. Both phenomenological (SDPF-M and USD-B (Usuno et al. 2004, Brown and Richter 2006)) and microscopic effective interactions were employed, with the latter including two different three-body forces as well. Taken from Otsuka et al. (2010) with permission. © 2010 The American Physical Society.

Figure 10. Ground-state energy of the oxygen isotope 4O as a function of the mass number A. Black circles: experimental data; blue diamonds: results from NN interactions; red squares: results including the effects of three-nucleon forces. Taken from Hagen et al. (2012a) with permission. © 2010 The American Physical Society.
3.4. Neutron-rich isotopes of calcium

Neutron-rich isotopes of calcium are of particular interest for experiment and theory. Recent advances in \textit{ab initio} many-body methods allow for a systematic investigation of structure and reaction properties of calcium isotopes starting from modern chiral interactions (Hagen et al. 2012b, Hagen and Michel 2012, Somà et al. 2013, Hergert et al. 2013a). Important questions concern magic neutron numbers beyond the well established $N = 20$ and $N = 28$, and the evolution of shell structure in heavy isotopes of calcium. ^{58}Ca is the heaviest isotope of calcium produced so far (Tarasov et al. 2009), but precise masses are only known up to ^{54}Ca (Wienholtz et al. 2013). Mean-field calculations predict that the neutron drip line is around ^{70}Ca (Nazarewicz et al. 1996, Fayans et al. 2000, Meng et al. 2002, Erler et al. 2012). These calculations report a near-degeneracy of the orbitals $g_{9/2}$, $d_{5/2}$, and $s_{1/2}$ and that these orbitals are very close to the continuum. Of course, shell structure is expected to be modified at the drip lines (Dobaczewski et al. 1994). Hamamoto (2012) recently discussed the near-degeneracy of the gds shell at the neutron drip line due to weak binding and deformation effects.

In atomic nuclei, a robust indication of shell closures is based on the combined signatures of several observables, such as enhanced nucleon separation energies, enhanced α-particle separation energies, high excitation energy of low-lying $J^\pi = 2^+$ states, and small quadrupole transition strengths $B(E2; 2^+ \rightarrow 0^+)$. In practice, one often has to infer information from just a few available observables. The $N = 32$ sub-shell closure is well established experimentally for isotopes of Cr (Priscianardaro et al. 2001), Ti (Janssens et al. 2002), and Ca (Huck et al. 1985, Gade et al. 2006). These nuclei exhibit—compared to their neighbors—an increase in the first excited $J^\pi = 2^+$ state. This state is at about 2.5 MeV of excitation energy in ^{52}Ca, compared to 3.8 MeV in ^{48}Ca. For the $N = 34$ neutron number, no sub-shell closure is found experimentally in isotopes of chromium (Marginean et al. 2006) and titanium (Liddick et al. 2004, Dinca et al. 2005), and doubts have been raised regarding a possible shell closure in calcium (Rejmund et al. 2007, Rodríguez and Egido 2007, Coraggio et al. 2009, Hagen et al. 2012b). The theoretical results exhibit a considerable scatter. Honma et al. (2002) predicted a strong shell gap in ^{54}Ca based on the empirical GXRFI interaction in the $0\,f_{15/2}$ model space. This result is in contrast to the monopole corrected KB3 interaction (Poves and Zuker 1981) which yields no shell gap (Caurier et al. 2005). In the same model space, Coraggio et al. (2009) employed a low-momentum interaction (with a fixed cutoff) and adjusted single-particle energies to reproduce the binding of ^{46}Ca relative to the ^{40}Ca core. These authors then find a soft sub-shell closure in ^{54}Ca, with the $J^\pi = 2^+$ state at an excitation of about 2 MeV.

Holt et al. (2012) investigated the role of three-nucleon forces in isotopes of calcium. Their calculations are based on low-momentum interactions with contributions from three-nucleon forces in the normal ordered approximation. The model space consisted of the $0\,f_{15/2}$ shell, and an enhanced model space including the $g_{9/2}$ orbital was also considered. These authors found that ^{48}Ca is magic due to three-nucleon forces, and they predict a shell gap for ^{54}Ca that is larger than...
for 52Ca. In the enhanced model space, the shell closure is reduced, and the drip line is predicted to be around 46Ca. Very recently Somá et al. (2013) computed the masses of isotopic chains around the calcium region with SRG evolved chiral NN and three-nucleon forces. They find good systematics of separation energies, and an overbinding for all isotopes.

The theoretical calculations clearly show that the prediction of the shell evolution in isotopes of calcium is a challenging task. Small changes in the effective interaction (or the model space) impact the calculated shell evolution of isotopes of calcium. The effects of three-nucleon forces have to be included in the description. Based on the mean-field calculations (Fayans et al. 2000, Meng et al. 2002), the full $10g$ $d2\pi$ shell plays a role in the location of the drip line, and it thus seems that model spaces with a considerable size have to be considered in computing the drip line. This challenge is compounded by the center-of-mass problem in model spaces consisting of a few oscillator shells, and by the need to include the continuum.

Hagen et al. (2012b) aimed at addressing several of the above challenges in their calculation of the shell evolution in neutron-rich isotopes of calcium. Their coupled-cluster calculation has all nucleons as active degrees of freedom, the employed Gamow basis is suitable for the description of weakly bound nuclei, and effects of chiral three-nucleon forces were included as schematic corrections to two-nucleon forces. The employed parameters are $k_f = 0.95$ fm$^{-1}$, $c_D = -0.2$, and $c_E = 0.735$, and they are determined by adjustment to the binding energies around 40,48Ca. The resulting binding energies are shown in figure 13. As in the oxygen isotopes (compare with figure 10), the inclusion of the effects of three-nucleon forces as in-medium corrections to NN forces significantly improves the overall binding. Very recently the mass of 53,54Ca was measured (Wienholtz et al. 2013), and the predicted binding energies and separation energies from the coupled-cluster calculations are in good agreement with these data.

Figure 14 shows the energies of the excited $J^\pi = 2^+$ states in 48,50,52,54Ca from coupled-cluster calculations and compared with experimental values. Again, it is seen that with the N^3LO NN interaction alone, results deviate strongly from experimental values and fail to reproduce the magicity of 54Ca. Inclusion of effective 3NFs improves the picture considerably, and an overall good agreement with experiment is achieved. In 54Ca, the coupled-cluster calculation yields $E_{2^+} \approx 2$ MeV, and this suggests that 54Ca exhibits only a soft subshell closure. This picture is confirmed by the computation of neutron-separation energies (see table 1 in Hagen et al. (2012b)) and the $4^+/2^+$ ratio (see figure 15). The separation energy of the magic nucleus 52Ca is an interesting example. Extrapolations based on atomic mass table evaluations yield $S_{4^+} \approx 4.7$ MeV for this nucleus, while the recent measurement by Gallant et al. (2012) is $S_{4^+} \approx 6$ MeV. Calculations by Hagen...
et al. (2012b) show that three-nucleon forces play an important role in determining this separation energy. The measured value of S_0 is close to the coupled-cluster prediction $S_0 \approx 6.6$ MeV. The coupled-cluster prediction for the excitation energy of the $J^\pi = 2^+$ state in ^{54}Ca was recently confirmed experimentally by Steppenbeck et al. (2013a), see Steppenbeck et al. (2013b) for details.

The evolution of shell structure is very interesting in neutron-rich nuclei. In the naive shell model, the gds orbitals (in this order) are getting filled beyond ^{66}Ca. However, the large-scale shell model calculations by Sieja and Nowacki (2012) suggest that in ^{60}Ca the $d_{5/2}$ orbital is lower in energy than the $g_{9/2}$ orbital. This result is supported by coupled-cluster calculations (Hagen et al. 2012b). States in the odd isotopes $^{53,55}\text{Ca}$ are computed via one-particle attached/removed from its ‘closed-shell’ neighbors. Figure 15 shows the computed and known experimental energies of excited states in $^{52,53,54,55,56}\text{Ca}$. The recent experimental data on excitation levels in $^{53,54}\text{Ca}$ from Steppenbeck et al. (2013b) are shown as blue lines in the figure. As can be seen the coupled-cluster predictions for levels in ^{53}Ca are in good agreement with measured levels, and they assign the spins and parities $5/2^-$ and $3/2^-$. The calculations also show that the excited $J^\pi = 5/2^+$ and $J^\pi = 9/2^+$ states are dominated by single-particle excitations, and that the former is lower in energy than the latter. Furthermore, it was found that the ground state of ^{61}Ca is very close to threshold, with spin and parity $1/2^+$ and dominated by s-waves. The $5/2^-$ and $9/2^+$ states were found to be resonances at ~ 1 MeV and ~ 2 MeV above threshold. Using a harmonic oscillator basis the order of states are inverted, giving $9/2^+$ as the ground state in accordance with the naive shell model filling. This demonstrates the importance of coupling to the continuum near the particle threshold.

The very large value of the s-wave scattering length in the $^{60}\text{Ca}+n$ system led Hagen et al. (2013) to discuss the possibility of Efimov physics in ^{62}Ca. This work was the first to use input from ab initio coupled-cluster calculations to determine the low-energy constants of halo effective field theory (Halo-EFT) (Bertulani et al. 2002, Bedaque et al. 2003). Starting from the same Hamiltonian as used in Hagen et al. (2012b) and using tools developed by Hagen and Michel (2012), the separation energy and scattering length was computed very accurately for ^{61}Ca. These observables was then used as input in solving for ^{62}Ca as a three-body cluster using tools of Halo-EFT. The authors then explored correlations between the scattering length of the $^{61}\text{Ca}+n$ system, the radius of ^{62}Ca and its two-neutron separation energy. Given the uncertainties of the method and input Hamiltonian, the authors concluded that ^{62}Ca could be bound and have a second excited Efimov state close to threshold. This would imply that ^{62}Ca could potentially be the largest halo nucleus in the chart of nuclei so far.

Very recently, Binder et al. (2014) computed binding energies of closed-shell nuclei from ^{16}O to ^{132}Sn and employed SRG evolved chiral NN interactions with consistent 3NFs. The resulting ground-state energies qualitatively follow the pattern exhibited by the data. For elements heavier than oxygen, they find an overbinding of about 1 MeV per nucleon and too small charge radii. They carefully estimate the error due to the SRG evolution to be of about 2%, with a total error budget including model-space truncations of about 2–4%. These results convincingly demonstrate that coupled-cluster calculations of heavy nuclei are technically feasible. At present the main challenge consists in developing nuclear interactions with an acceptable saturation point that yields meaningful predictions of nuclear properties for isotopes heavier than oxygen.

4. Other developments

4.1. Shell model studies

One strength of the coupled cluster method is its ability to treat the A body system fully microscopically. There are, however, also applications of the method to the traditional shell-model problem with a closed core. Horie et al. (2007) and Gour et al. (2008) compared coupled-cluster results to large-scale shell-model computations of fp-shell nuclei around ^{56}Ni. In these calculations, ^{40}Ca is a closed core, the fp shell model space consist of only 40 single-particle states, but wave functions can be very correlated. In such situations, the accuracy of the coupled-cluster method depends on a sufficient shell gap between the $f_{7/2}$ orbital and the remaining orbitals of the fp shell. This is an interesting study in model spaces that are solvable by exact diagonalization (Caurier et al. 1999).

Very recently Jansen et al. (2014) employed the coupled-cluster method and constructed effective interactions for the shell-model. The approach followed the constructing of non-perturbative shell model interactions using the NCSM (Lisetskiy et al. 2008, Navrátil et al. 1997). In essence one obtains the coupled-cluster effective interaction (CCEI) by projecting the coupled-cluster wavefunctions for the $A, A+1$ and $A+2$ nuclei onto a suitable chosen valence-space via the Okubo-Lee-Suzuki (Okubo 1954, Suzuki 1982) similarity transformation technique. This approach yields an effective one- and two-body Hamiltonian, which one can diagonalize for a given number of valence nucleons using standard shell-model codes. The first application of CCEI started from chiral NN and three-nucleon forces and computed spectra and binding energies of neutron-rich isotopes of carbon and oxygen, taking ^{14}C and ^{16}O as cores. A good agreement with experiment was obtained for the spectra with up to 8 valence neutrons. Independently, Bogner et al. (2014) used the in-medium SRG approach to obtain a non-perturbative shell model interaction for the oxygen chain starting from the same Hamiltonian. For the oxygen isotopes, this method and the CCEI yield spectra that are in very good agreement.

For the exactly solvable pairing model, Dukelsky et al. (2003) compared the CCSD approximation to the BCS method and the self-consistent random phase approximation (RPA). The CCSD approximation performs very well below a critical value of the pairing strengths which indicates the onset of a phase transition (and a new reference state). In a very recent study Jemaï et al. (2013) showed that the CCSD ground state is annihilated by a generalized RPA operator \hat{Q}, that also includes
the computation of the one-proton overlap functions of 41Sc in combination with the formalism of Jensen and Michel (2012) this real energy continuum basis was used with correct asymptotic behavior can be obtained. In Hagen calculations, it was shown that one-nucleon overlap functions method for the description of nuclear reactions. Jensen First steps have been made to employ the coupled-cluster theory. From one-nucleon overlap functions (2010) developed the formalism for computing spectroscopic factors and one-nucleon overlap functions from Hagen and Michel (2012) with permission. © 2012 The American Physical Society.

a two-body component. The generalized RPA is successfully tested with various solvable models. This is an interesting finding because the adjoint \hat{Q}^\dagger creates collective excitations that are by construction orthogonal to the CCSD ground state. (Recall that excited states in the coupled-cluster method fulfill bi-orthogonality relations.) Very recently Henderson et al (2014) extended the coupled-cluster doubles approach to super-fluid systems, see also Bishop and Lahoz (1987), Lahoz and Bishop (1988). Starting from a BCS reference state and a simple pairing Hamiltonian they showed that a quasi-particle coupled-cluster approach can provide accurate solutions to paired super-fluid systems.

4.2. Nuclear reactions

First steps have been made to employ the coupled-cluster method for the description of nuclear reactions. Jensen et al (2010) developed the formalism for computing spectroscopic factors and one-nucleon overlap functions from $ab\ initio$ coupled-cluster theory. From one-nucleon overlap functions one can in principle compute cross sections for transfer and knockout reactions, as well as elastic and inelastic nucleon–nucleus scattering. Hagen and Michel (2012) showed that accurate solutions for both resonances and scattering states with a Coulomb interaction can be obtained in momentum space by utilizing the off-diagonal method developed in Michel (2011). By utilizing a single-particle basis defined along the real energy axis in $ab\ initio$ coupled-cluster calculations, it was shown that one-nucleon overlap functions with correct asymptotic behavior can be obtained. In Hagen and Michel (2012) this real energy continuum basis was used in combination with the formalism of Jensen et al (2010) for the computation of the one-proton overlap functions of 41Sc with 40Ca. Elastic scattering phase shifts was obtained by matching the radial one-proton overlap functions to the known regular and irregular Coulomb functions. Figure 16 shows the computed phase shifts for elastic proton scattering on 40Ca.

From the computed elastic scattering phase shifts the differential cross sections were computed at energies 9.6 MeV and 12.44 MeV, respectively. The proof-of-principle calculation are in fair agreement with data. The computed cross section minima were in good agreement with data, while the calculations overestimated the cross sections at large angles.

Very recently, Bacca et al (2013) combined the Lorentz integral transform (Efros et al 1994, Efros et al 2007)—a method for the computation of continuum response functions—with the coupled-cluster method for the computation of the giant dipole resonance in 16O. Of course this giant dipole resonance has been described in many works, see e.g. (Shlomo and Bertsch 1975, Nakatsukasa 2012, Lyutorovich et al 2012) and references therein. The dipole response function of the ground state $|\psi\rangle$ with spin J_0 is

$$S(\omega) = \frac{1}{2J_0 + 1} \sum_f |\langle \psi | \hat{D}_O | \psi_f \rangle|^2 \delta(E_f - E_0 - \omega).$$

(33)

Here, \hat{D}_O is the component of the (translationally invariant) dipole operator in the direction of the photon emission. The sum is over all final states, most of which are in the continuum. This makes the direct evaluation of equation (33) very difficult, and instead one considers its Lorentz integral transform (LIT)

$$\mathcal{L}(\omega_0, \Gamma) = \int_{\omega_0}^{\infty} d\omega \frac{S(\omega)}{(\omega - \omega_0)^2 + \Gamma^2},$$

(34)

which can be computed directly. In equation (34) ω_0 is the threshold energy and $\Gamma > 0$. The closure relation yields

$$\mathcal{L}(z) = \langle \psi | \hat{D}_O \frac{1}{H - z^*} \frac{1}{H - z} \hat{D}_O | \psi \rangle = \langle \tilde{\psi} \tilde{\psi} \rangle.$$

(35)

with the complex energy $z = E_0 + \omega_0 + i\Gamma$. In coupled-cluster theory the LIT of the dipole response function is obtained by employing similarity-transformed operators, i.e. equation (35) becomes

$$\mathcal{L}(z) = \langle 0_L | \hat{D}_O \frac{1}{H - z^*} \frac{1}{H - z} \hat{D}_O | 0_R \rangle = \langle \tilde{\psi}_R \tilde{\psi}_L \rangle.$$

(36)

Here, $\langle 0_L \rangle = \langle \tilde{\psi} | L$ and $| 0_R \rangle = \langle R | \psi \rangle$ are the left and right ground states of \hat{H}, see subsection 2.1 for details. The states $\langle \tilde{\psi}_R \rangle$ and $\langle \tilde{\psi}_L \rangle$ are the solutions of a right and left Schrödinger-like equation

$$\left(\hat{H} - z^*\right) \tilde{\psi}_R(z) = \hat{D}_O | 0_R \rangle,$$

$$\left(\hat{H} - z\right) \tilde{\psi}_L(z) = \langle 0_L | \hat{D}_O \rangle,$$

(37)

whose right-hand side is known. The inversion of the LIT yields the response function itself. In principle, the response function is independent of the employed width Γ. In practice, however, the inversion of the LIT is an ill-posed problem (i.e. the LIT kernel has zero modes), and a nonzero width is necessary for obtaining results that are stable under the inversion.

Figure 17 shows the response function (the relation between cross section and response is $\sigma = 4\pi^2\sigma_0 S$ with fine structure constant α) for 16O computed from the chiral NN interaction by Entem and Machleidt (2003) and compare to data, see Bacca et al (2013) for details. The position of the giant dipole resonance is well reproduced by theory.

This method in computing giant dipole resonances can also be applied to heavier nuclei. Orlandini et al (2014) very recently reported corresponding calculations for 40Ca.
4.3. Neutron matter and nuclear matter

Calculations of neutron matter and nuclear matter connect the atomic nucleus with astrophysical objects such as neutron stars. Of particular interest is the equation of state and its isospin dependence. This subject is too vast to be reviewed here, and we refer the reader to the recent reviews (Heiselberg and Hjorth-Jensen 2000, Dickhoff and Barbieri 2004, Sammarruca 2010, van Dalen and M"uther 2010, Tsang et al 2012, Hebeler et al 2013).

Coupled-cluster calculations of nuclear matter were reported by K"ummel et al (1978). More recently, the method was employed in calculations of neutron matter and nuclear matter with chiral interactions (Ekstr"om et al 2013, Baardsen et al 2013, Hagen et al 2014). The calculations (Ekstr"om et al 2013, Baardsen et al 2013) employ a spherical implementation of the coupled-cluster method and work in the relative and center-of-mass frame employing a partial wave basis. This approach is similar to Brueckner–Hartree–Fock calculations (1981, Haftel and Tabakin 1970, Suzuki 1996, Lin et al 2001). We also note that the computation of matrix elements in the laboratory system is much simpler in momentum space than in a basis that exhibits good angular momentum, and this is particularly relevant for three-nucleon forces.

Very recently, Hagen et al (2014) presented momentum-space coupled-cluster results of nucleonic matter based on the chiral NN interaction NNLO$_{opt}$ and three-nucleon forces with local and non-local regulators. The LECs that entered the three-nucleon force was adjusted to the triton binding energy and half-life. The main results can be summarized as follows. Neutron matter is perturbative. The coupled-cluster CCD results are close to results from second-order many-body perturbation theory, and triples corrections are small. Likewise, the role of three-nucleon forces is small, and they act repulsively in neutron matter. The normal ordered two-body approximation for the three-nucleon force works very well in pure neutron matter. The results for pure neutron matter is summarized in figure 18. Note that the band obtained for different regulators in the three-nucleon force are within the band for neutron matter obtained by Kr"uger et al (2013).

In contrast to neutron matter, symmetric nuclear matter is not perturbative and therefore technically more challenging. Here, the inclusion of all excitations in CCD (opposed to just $p-p$ ladders and $h-h$ ladders) yields relevant corrections to the correlation energy. Somewhat surprisingly, local three-nucleon forces yield considerable corrections to NN forces, particularly at densities beyond saturation density. Three-nucleon forces with a reduced cutoff or with a non-local regulator do not exhibit this unexpected behavior. It seems difficult to adjust the low-energy coefficients c_D and c_E of the

Figure 17. Comparison of the 16O dipole response calculated in the CCSD scheme against experimental data by Ahrens et al (1975) (triangles with error bars), Ishkanov et al (2002) (red circles). Figure taken from Bacca et al (2013) with permission. © 2013 The American Physical Society.

Figure 18. Energy per particle in pure neutron matter with NNLO$_{opt}$ and three-nucleon forces. For the three-nucleon force we used a local regulator with cutoffs $\Lambda = 400$ and $\Lambda = 500$ MeV. The LECs of the three-nucleon force are given by $c_E = -0.39$ and $c_D = -0.39$ for the $\Lambda = 500$ MeV local regulator, while for the $\Lambda = 400$ MeV local regulator we used $c_E = -0.27$ and $c_D = -0.39$ with c_E adjusted to the 3He binding energy. For the non-local regulator with $\Lambda = 500$ MeV cutoff we used $c_E = -0.791$ and $c_D = -2$, adjusted to the triton and 4He binding energies. The calculations used 66 neutrons, $n_{max} = 4$, and periodic boundary conditions. Taken from Hagen et al (2014) with permission. © 2014 The American Physical Society.
short-ranged contributions to the three-nucleon force, such that the binding energies of both light nuclei and nuclear matter are acceptable. Thus, one might consider to include the saturation point of symmetric nuclear matter in the optimization of the chiral nuclear force.

4.4. Quantum dots

Quantum dots, artificial two-dimensional atoms made by confining electrons in semiconductor heterostructures, are of considerable interest in condensed matter physics, see for example the review of Reimann and Manninen (2002). The confining potential of these objects is often modeled by a harmonic oscillator. These objects can be interesting for nuclear physicists due to the prominent role of the oscillator basis, commonalities in the treatment of the Coulomb interaction, and as a test bed for various many-body methods. We note that the correlation energy (i.e. the difference between the exact energy and Hartree–Fock energy) is usually a small fraction of the Hartree–Fock energy in electronic systems, and this is very different for atomic nuclei. Of course, the accurate and precise computation of the correlation energy is similarly challenging for electronic and nuclear systems. Recent applications of coupled-cluster theory to quantum dot systems can be found in Henderson et al (2003), Heidari et al (2007), Pedersen Lohne et al (2011), Waltersson et al (2013).

Henderson et al (2003) computed ground and excited states quantum dots and found that the usual EOM techniques work well also here. This picture was confirmed by Heidari et al (2007) who also employed multi-reference coupled-cluster methods. Pedersen Lohne et al (2011) compared results from coupled-cluster calculations and diffusion Monte Carlo for closed-shell systems with 2, 6, 12 and 20 electrons, and some of their odd-numbered neighbors. The calculations were performed for several oscillator frequencies in the CCSD, the non-iterative triples CCSD(T) and the \(\Lambda \)-CCSD(T) approximation. To mitigate the slow convergence of the Coulomb interaction as a function of the number of harmonic oscillator shells, a similarity-transformed (or effective) Coulomb interaction defined for a specific model space was employed. The effective Coulomb interaction yielded essentially converged results for the ground-state energies in 20 major oscillator shells. The \(\Lambda \)-CCSD(T) calculations with an effective two-body interaction resulted in an excellent agreement with diffusion Monte Carlo calculations, with relative errors between \(10^{-5} \) and \(10^{-4} \). Table 2 shows the contribution to the total correlation energy for various coupled-cluster approaches.

Here, the correlation energy is the difference between the Monte Carlo results and the Hartree–Fock reference energy. We see that at the CCSD level (\(\Delta E_2 \) in the table) of approximation to equation (5), we obtain approximately 90\% or more of the correlation energy. At the \(\Lambda \)-CCSD(T) level (\(\Delta E_3 \)), we are close to 100\% of the correlation energy. We note that the CCSD approximation becomes less accurate for smaller oscillator frequencies (in atomic units here). This behavior can be understood from the following observation: the electron density decreases with decreasing oscillator frequencies, and correlations become increasingly important as the regime of a Wigner crystal is approached. As a consequence, the contributions from \(\Lambda \)-CCSD(T) become more important as the frequency is reduced. It is however rewarding to see that the \(\Lambda \)-CCSD(T) approximation recovers almost the benchmark result of the diffusion Monte Carlo. For frequencies below 0.05 atomic units, however, correlations tend to become more important and the discrepancy between CCSD and diffusion Monte Carlo calculations tend to become larger, as demonstrated in Reimann et al (2014).

5. Summary

We have reviewed the recent advances of the coupled-cluster method in nuclear physics. Over the last decade, coupled-cluster theory has been exploring ‘bare’ chiral interactions in medium-mass nuclei. Relevant steps for these calculations were (i) the formulation in an angular-momentum coupled scheme that permits calculations with ‘bare’ interactions from chiral effective field theory without the need for secondary renormalizations, (ii) the practical solution of the center-of-mass problem, (iii) the use of a Gamow basis for the computation of weakly bound and unbound nuclei, (iv) the development of nucleon attached/removed methods for the description of neighbors of nuclei with closed subshells and (v) a computational implementation of the numerical methods that is suited for super computers. A culmination of these developments was the prediction of the structure of the exotic nucleus \(^{54}\)Ca. Many challenges remain. In what follows we present a few open problems.

The coupled-cluster method is computationally most efficient for the description of closed-shell nuclei and their neighbors. While this is a limitation, the properties of the doubly-magic isotopes of oxygen, calcium, nickel and tin are relevant for entire regions of the nuclear chart. Interesting future applications concern predictions for very neutron-rich isotopes of calcium, the isotopes around \(^{78}\)Ni, the neighborhood of proton-deficient \(^{108}\)Sn (Darby et al 2010) and nuclei around neutron-rich \(^{132}\)Sn (Jones et al 2010). Apart from necessary computational advances, the main challenge consists of the availability of nuclear interactions that reasonably accurately describe such heavy nuclei (Binder et al 2014).

There are now several methods that aim at the \textit{ab initio} description of medium-mass nuclei, and some of these have

\(\omega \)	\(\omega = 0.28 \)	\(\omega = 0.5 \)	\(\omega = 1.0 \)					
\(N \)	\(\Delta E_2 \)	\(\Delta E_3 \)	\(\Delta E_2 \)	\(\Delta E_3 \)	\(\Delta E_2 \)	\(\Delta E_3 \)	\(\Delta E_2 \)	\(\Delta E_3 \)
6	94\%	99\%	96\%	100\%	97\%	100\%		
12	91\%	99\%	94\%	100\%	96\%	100\%		
20	90\%	99\%	93\%	100\%	95\%	100\%		
been extended to open-shell nuclei (Somà et al. 2013, Hergert et al. 2013b). It would be interesting to see whether some of these ideas can also be used for coupled-cluster calculations of superfluid or deformed nuclei.

First steps have been undertaken to describe elastic and inelastic reactions with the coupled-cluster method. Of particular interest are nucleon knockout and transfer reactions, and it would be interesting to extend bound-state methods such as coupled-cluster for the description of these experimentally relevant reactions in medium-mass nuclei (Carbonell et al. 2014).

All experience with the coupled-cluster method shows that there is a quickly converging hierarchy of approximations (singles and doubles, triples, quadruplets, etc), but there is only little theoretical work on error estimates (Kutzelnigg 1991). It would be desirable to better quantify this hierarchy, and to give reliable error estimates of the truncation scheme. The underlying question is about a power counting for closed-shell nuclei. We note that the empirical hierarchy of the coupled-cluster method is a good match for interactions from shell nuclei. We note that the empirical hierarchy of the coupled-cluster method is a good match for interactions from shell nuclei.

In this section we present the equations for the T_1 and T_2 amplitudes in the CCSD approximation using an angular momentum coupled scheme. Recall that the CCSD equations can be written in compact form as

$$\langle \phi^e | \mathcal{H} | \phi \rangle = 0,$$

$$\langle \phi^e | \mathcal{H}^\dagger | \phi \rangle = 0.$$ \hfill (A.1)

Here, $| \phi^e \rangle$ is the normal-ordered similarity-transformed Hamiltonian. The diagrams representing the T_1 and T_2 amplitudes, together with the uncoupled and coupled algebraic expressions are given in table A.1. Here, t^m and t^j denote the cluster amplitudes in m-scheme and j-scheme, respectively. Clebsch–Gordan coefficients are given by $C^{JM}_{j_1 m_1 j_2 m_2}$ with the coupling order $| jj \rangle \rightarrow | j J \rangle$.

The last row in table A.1 give the so-called cross-coupled representation of the T_2 amplitude. Note that in the cross-coupled reduced matrix element $\langle ai^{-1} | \hat{t}^j | jb^{-1} \rangle$, the coupling order is $| ja \rangle \rightarrow | j_i \rangle | I_{ai} \rangle$ and $| j_j \rangle \rightarrow | j_i \rangle | I_{ai} \rangle$, and that we define reduced matrix elements by the coupling order $\langle p | T^{\mu\nu} | q \rangle = C_{i j m n} \langle p | T^{\mu\nu} | q \rangle$. We can express the angular momentum coupled matrix element of T_2 in terms of cross-coupled matrix elements of T_2 where the coupling order goes across T_2 by the following recoupling (Pandya 1956, Baranger 1960, Kuo and Brown 1968).

$$\langle ab | t^j | ij \rangle = - \sum_{Ja} (-1)^{j+J_{ai}+J_{ab}} \langle j_a | j_b | j_{ab} | J_{ai} \rangle \times \langle ai^{-1} | \hat{t}^j | jb^{-1} \rangle.$$ \hfill (A.2)

Similarly we can express the cross coupled matrix elements in terms of the normal coupled matrix elements by the recoupling.

$$\langle ai^{-1} | \hat{t}^j | jb^{-1} \rangle = - \sum_{Ja} (-1)^{j+J_{ai}+J_{ab}} \langle j_a | j_b | j_{ab} | J_{ai} \rangle \times \langle ab | t^j | ij \rangle.$$ \hfill (A.3)

As will be seen below, some of the diagrams that involve intermediate summations over particles and holes can be much more efficiently computed using the cross-coupled representation. This avoids the computation of complicated recoupling coefficients (e.g. 9 and 12) symbols, and permits us to use Matrix–matrix and matrix–vector multiplication routines.

Table A.1. The diagrams representing the T_1 and T_2 amplitudes, together with their uncoupled (m-scheme) and coupled (j-scheme) algebraic expressions. Both T_1 and T_2 are scalar under rotations.

Diagram	Uncoupled expression	Coupled expression				
![Diagram](image)	$\langle a	t^0	i \rangle$	$\langle a	t^0	i \rangle \delta_{ji, j_i}$
![Diagram](image)	$(ab	t^0	ij)$	$C^{j_i M_{j_i}}_{j_{a m_j} j_{b m_j}} C^{j_{i j} M_{j_{i j}}} \langle ab	t^0	ij \rangle$
![Diagram](image)	$(ab	t^0	ij)$	$-(-1)^{j_{i m_j} j_{i m_j}} \times C^{j_i M_{j_i}}_{j_{a m_j} j_{b m_j}} C^{j_{i j} M_{j_{i j}}} \langle ai^{-1}	t^0	jb^{-1} \rangle$

Acknowledgments

We thank G Baardsen, J Gour, G R Jansen, Ø Jensen, S Kvaal, K Kowalski, H Nam, P Piecuch, D Pigg, B Velamur Asokan, and M Włoch for their collaboration on the nuclear coupled-cluster project. This work was supported in part by the U S Department of Energy under Grants Nos DE-FG02-96ER40963 (University of Tennessee), DE-FC02-07ER41457 (SciDAC-2 Collaboration UNEDF), DE-SC0008499 (SciDAC-3 Collaboration NUCLEI), DEAC05-00OR22725 (Oak Ridge National Laboratory), and the Research Council of Norway.

Appendix A. CCSD in angular momentum coupled representation

The two appendices present details about the coupled-cluster method in its angular-momentum coupled form. We hope that these equations, not published in detail before, might turn out to be useful for practitioners.
Table A.2. Coupled and uncoupled algebraic expressions for the diagrams of the quasi-linearized \(T_1 \) equation given in equation (A.4). Repeated indices are summed over. The matrix elements \((p|f^0|q) \) and \((pq|V^0|rs) \) represent the Fock-matrix and the \(NN \) interaction, respectively.

Diagram	Uncoupled expression	Coupled expression												
\(\sqrt{} \)	\(\langle a	f^0	i \rangle \)	\(\langle a		f^0		i \rangle \delta_{i,j} \)						
\(\sqrt{} \)	\(\langle ac	e^0	ik \rangle \langle k	\chi^0	c \rangle \)	\(\frac{J^2_{e}}{j^2_{e}} \langle ac		e^0		ik \rangle \langle k		\chi^0		c \rangle \)
\(\sqrt{} \)	\(\langle c	e^0	i \rangle \langle a	\chi^0	c \rangle \)	\(\langle c		e^0		i \rangle \langle a		\chi^0		c \rangle \)
\(\sqrt{} \)	\(\langle a	e^0	k \rangle \langle k	\chi^0	i \rangle \)	\(\langle a		e^0		k \rangle \langle k		\chi^0		i \rangle \)
\(\sqrt{} \)	\(\frac{1}{2} \langle ak	e^0	cd \rangle \langle cd	e^0	ik \rangle \)	\(\frac{1}{2} \frac{J^2_{e}}{j^2_{e}} \langle ak		e^0		cd \rangle \langle cd		e^0		ik \rangle \)
\(\sqrt{} \)	\(-\frac{1}{2} \langle ac	e^0	kl \rangle \langle kl	\chi^0	ic \rangle \)	\(-\frac{1}{2} \frac{J^2_{e}}{j^2_{e}} \langle ac		e^0		kl \rangle \langle kl		\chi^0		ic \rangle \)
\(\sqrt{} \)	\(\langle ka	e^0	ci \rangle \langle c	e^0	k \rangle \)	\(\frac{J^2_{e}}{j^2_{e}} \langle ka		e^0		ci \rangle \langle c		e^0		k \rangle \)

The \(T_1 \) and \(T_2 \) amplitude equations can be written in quasi-linear form by the use of intermediates (see e.g. (Gour et al 2006, Bartlett and Musiał 2007)). In terms of diagrams the \(T_1 \) amplitude equations can be written as

\[
0 = \sqrt{} + \sqrt{}
\]

(A.4)

Similarly the \(T_2 \) amplitude equations can be written as

\[
0 = \sqrt{} + \sqrt{}
\]

(A.5)
Table A.3. Coupled and uncoupled algebraic expressions for the diagrams of the quasi-linearized T_2 equation given in equation (A.5). Repeated indices are summed over. $\langle p | f^{00} | q \rangle$ and $\langle pq | v^{00} | rs \rangle$ are matrix elements of the Fock-matrix and the NN interaction, respectively. Note the coupled expressions are divided by $\sum C_{Jab,Mab}C_{jim,Mij}^{00}$ to give the equation for the reduced amplitudes $\langle ab || t^0 || ij \rangle$.

Diagram	Uncoupled expression	Coupled expression											
$\langle ab	v^{00}	ij \rangle$	$\langle ab		t^0		ij \rangle$						
$P(ab) \langle c	x^{00}	b \rangle \langle ac	t^{00}	ij \rangle$	$P(ab) \langle c		x^{00}		ac		t^{00}		ij \rangle$
$-P(ij) \langle k	x^{00}	j \rangle \langle ab	t^{00}	ik \rangle$	$-P(ij) \langle k		x^{00}		ab		t^{00}		ik \rangle$
$\frac{1}{2} \langle ab	x^{00}	cd \rangle \langle cd	t^{00}	ij \rangle$	$\frac{1}{2} \langle ab		x^{00}		cd		t^{00}		ij \rangle$
$\frac{1}{2} \langle kl	x^{00}	ij \rangle \langle ab	t^{00}	kl \rangle$	$\frac{1}{2} \langle kl		x^{00}		ab		t^{00}		kl \rangle$
$P(ij) \langle ab	x^{00}	cj \rangle \langle c	t^{00}	i \rangle$	$P(ij) \langle ab		x^{00}		cj		t^{00}		i \rangle$
$-P(ab) \langle kb	x^{00}	ij \rangle \langle a	t^{00}	k \rangle$	$-P(ab) \langle kb		x^{00}		a		t^{00}		k \rangle$

\begin{align}
1 \frac{j_2^2}{j_2} \langle kl || v^{00} || i \rangle \langle c || t^{00} || j \rangle \langle k || x^{00} || c \rangle.
\end{align} (A.7)
Appendix B. Angular-momentum-coupled equations of motion

In this section we present the equations and diagrams for excited states EOM, particle-attached EOM, and particle-removed EOM coupled-cluster theory in the CCSD approximation using an angular momentum coupled scheme. The EOM solutions results from diagonalizing the similarity-transformed Hamiltonian, \(\hat{H} = e^{-\gamma} \hat{H}_N e^{\gamma} \), in sub-space of \(n \)-particle-\(m \)-hole excited reference states,

\[
\left[\hat{H}, R_\mu \right] |\phi\rangle = \omega_\mu R_\mu |\phi\rangle. \tag{B.1}
\]

Here, \(R_\mu \) is the excitation operator acting on the reference state \(|\phi\rangle\), and \(\omega_\mu \) is the excitation energy with respect to the CCSD ground-state energy. The diagrammatic representation of the various excitation amplitudes \(R \), and their uncoupled and coupled representations are given in table B.1.

In table B.1 we have given both the normal-coupled and cross-coupled representations of the excitation amplitude \(R_2 \). Note that the coupling order in the reduced matrix elements of the two-particle–one-hole and one-particle–two-hole amplitudes follow a different coupling order than for the two-particle–two-hole amplitude.

In equations (B.2), (B.3), (B.4), (B.5), (B.6) and (B.6) we give the recouplings of the two-particle–two-hole, two-particle–one-hole and one-particle–two-hole amplitudes in terms of normal-coupled and cross-coupled matrix elements. Note that the coupling order in the bra and ket is always from left to right,

\[
\langle ab | R^j | ij \rangle = - \sum_{J_{a,i},J_{b,j}} \left[\langle ab | R^j | ij \rangle \right] \times \left[\begin{array}{ccc} J_{a,i} & J_{b,j} & J_{ab} \\ J_{a,i} & J_{a,b} & J_{ab} \\ J_{a,b} & J_{b,j} & J_{ab} \end{array} \right] \times \left(\omega_\mu R_\mu \right) |\phi\rangle. \tag{B.2}
\]

\[
\langle a^{+1} | R^j | j b^{-1} \rangle = - \sum_{J_{a,i},J_{b,j}} \left(-1 \right)^{J_{a,i}+J_{b,j}+J_{a,b}} \langle a^{+1} | R^j | j b^{-1} \rangle \times \left[\begin{array}{ccc} J_{a,i} & J_{b,j} & J_{ab} \\ J_{a,b} & J_{b,j} & J_{ab} \end{array} \right] \times \left(\omega_\mu R_\mu \right) |\phi\rangle. \tag{B.3}
\]

\[
\langle a | r^j | j b^{-1} \rangle = - \sum_{J_{a,b}} \left(-1 \right)^{J_{a,i}+J_{a,b}} \langle a | r^j | j b^{-1} \rangle \times \left[\begin{array}{ccc} J_{a,b} & J_{a,b} & J_{ab} \\ J_{a,b} & J_{b,j} & J_{ab} \end{array} \right] \times \left(\omega_\mu R_\mu \right) |\phi\rangle. \tag{B.4}
\]

\[
\langle b | r^j | i j \rangle = - \sum_{J_{a,b}} \left(-1 \right)^{J_{a,i}+J_{a,b}} \langle b | r^j | i j \rangle \times \left[\begin{array}{ccc} J_{a,b} & J_{a,b} & J_{ab} \\ J_{a,b} & J_{b,j} & J_{ab} \end{array} \right] \times \left(\omega_\mu R_\mu \right) |\phi\rangle. \tag{B.5}
\]

\[
\langle a | r^j | j b^{-1} \rangle = - \sum_{J_{a,b}} \left(-1 \right)^{J_{a,i}+J_{a,b}} \langle a | r^j | j b^{-1} \rangle \times \left[\begin{array}{ccc} J_{a,b} & J_{a,b} & J_{ab} \\ J_{a,b} & J_{b,j} & J_{ab} \end{array} \right] \times \left(\omega_\mu R_\mu \right) |\phi\rangle. \tag{B.6}
\]
Table B.1. The diagrams representing the one-particle–one-hole $R(1p–1h)$, the two-particle–two-hole $R(2p–2h)$, the one-particle $R(1p)$, the two-particle–one-hole $R(2p–1h)$, the one-hole $R(1h)$, and finally the one-particle–two-hole $R(1h–2p)$ excitation amplitudes, together with their uncoupled (m-scheme) and coupled (j-scheme) algebraic expressions. Note, that the coupling order of the one-hole excitation operator is $\langle |rJ^M| i \rangle = C_{00}^0 M J M \langle |rJ^M| i \rangle$. Repeated indices are summed over.

Diagram	Uncoupled expression	Coupled expression				
![Diagram 1](image1)	$\langle a	rJ^M	i \rangle$	$C_{j,m,j,M}^{j,m,j,M} \langle a	rJ^M	i \rangle$
![Diagram 2](image2)	$(ab	rJ^M	i,j \rangle$	$C_{j,m,j,m}^{j,m,j,m} C_{j,m,j,M}^{j,M,j,M} \times \langle ab	rJ^M	i,j \rangle$
![Diagram 3](image3)	$-(-1)^{j-m} C_{j,m,j-m}^{j,m,j-m} \times C_{j,m,j-M}^{j,M,j-M} \times \langle ab	rJ^M	i,j \rangle$	$\langle a	rJ^M	i \rangle \delta_{j,j}$
![Diagram 4](image4)	$(ab	rJ^M	i,j \rangle$	$C_{j,m,j,m}^{j,m,j,m} C_{j,m,j,M}^{j,M,j,M} \times \langle ab	rJ^M	i,j \rangle$
![Diagram 5](image5)	$\langle b	rJ^M	i,j \rangle$	$C_{j,m,j,m}^{j,m,j,m} C_{j,m,j,M}^{j,M,j,M} \langle b	rJ^M	i,j \rangle$
![Diagram 6](image6)	$-(-1)^{j-m} C_{j,m,j-M}^{j,M,j-M} \times C_{j,m,j-m}^{j,m,j-m} \times \langle ab	rJ^M	i,j \rangle$	$\langle b	rJ^M	i,j \rangle \delta_{j,j}$

B.1. Excited states EOM

Below we give the diagrammatic representation and algebraic expressions in an angular momentum coupled scheme for the coupled-cluster EOM method in the singles-and-doubles approximation. The EOM-CCSD method results from diagonalizing the similarity-transformed Hamiltonian in a sub-space of one-particle–one-hole and two-particle–two-hole excitations. This approximation has been shown to work particularly well for low-lying states that are dominated by one-particle–one-hole excitations. The diagrammatic representation of the left-hand side of equation (B.1) gives the one-particle–one-hole excitation amplitude

![Diagram 7](image7)

Here the wavy lines represent the vertices of the similarity-transformed Hamiltonian. The corresponding diagrammatic representation of the two-particle–two-hole excitation amplitudes are

![Diagram 8](image8)

The three last diagrams that enter in equation (B.8) involve three-body terms of the similarity-transformed Hamiltonian. These terms can be very memory expensive in numerical implementations, and it is therefore more convenient (from a computational point of view) to rewrite these terms using intermediates that involves only one- and two-body terms. By
Table B.2. Coupled and uncoupled algebraic expressions for the diagrams of the one-particle–one-hole excitation amplitude R_i given in equation (B.7). Repeated indices are summed over.

Diagram	Uncoupled expression	Coupled expression											
![Diagram 1](image1.png)	$\langle c	r^{JM}_{ij}\langle a	\tilde{R}^{00}\rangle_c$	$\langle c		r^J		i\rangle\langle a		\tilde{R}^{0}\rangle		c\rangle$	
![Diagram 2](image2.png)	$\langle a	r^{JM}_{	k\rangle\langle k	\tilde{R}^{00}\rangle_i\rangle$	$\langle a		r^J		k\rangle\langle k		\tilde{R}^{0}\rangle		i\rangle$
![Diagram 3](image3.png)	$\langle ac	r^{JM}_{ik}\langle k	\tilde{R}^{00}\rangle_c\rangle$	$\frac{j_{ac}^2}{j_{ai}}\sum_{J,J_{i}}\left\{ \begin{array}{ccc} J & J_{ic} & J_{ik} \\									
 & j_{ai} & j_{ak} \\
 & j_{ci} & j_{ck} & j_{ck} \end{array} \right\} \times$

$\langle k||\tilde{R}^{0}\rangle||c\rangle\langle ac||r^J||i\rangle\langle k||\tilde{R}^{0}\rangle||ik\rangle$ |
| ![Diagram 4](image4.png) | $\frac{1}{2}\langle ak||\tilde{R}^{00}\rangle||cd\rangle\langle cd|r^{JM}_{ik}\rangle$ | $\frac{1}{2}\frac{j_{cd}^2}{j_{ai}}\sum_{|J,J_{i}}\left\{ \begin{array}{ccc} J & J_{ia} & J_{ia} \\
 & j_{ai} & j_{ak} \\
 & j_{ci} & j_{ck} & j_{ck} \end{array} \right\} \times$

$\langle ak||\tilde{R}^{0}\rangle||cd\rangle\langle |c||r^J||i\rangle\langle k||\tilde{R}^{0}\rangle||ik\rangle$ |
| ![Diagram 5](image5.png) | $-\frac{1}{2}\langle ac|r^{JM}_{kl}\langle kl|\tilde{R}^{00}\rangle|ic\rangle$ | $-\frac{1}{2}\frac{j_{ic}^2}{j_{ai}}\sum_{|J,J_{i}}\left\{ \begin{array}{ccc} J & J_{ia} & J_{ia} \\
 & j_{ai} & j_{ak} \\
 & j_{ci} & j_{ck} & j_{ck} \end{array} \right\} \times$

$\langle kl||\tilde{R}^{0}\rangle|||ic\rangle\langle ac||r^J||k\rangle$ |
| ![Diagram 6](image6.png) | $\langle ka||\tilde{R}^{00}\rangle||ca\rangle\langle c|r^{JM}_{|k\rangle\rangle$ | $\langle ka||\tilde{R}^{00}\rangle||c\rangle\langle c||r^J||k\rangle$ |

defining the following intermediates,

\[=\quad=\quad+\quad+\quad\] (B.9)

\[\quad=\quad+\quad\] (B.10)

we can rewrite the last three diagrams in equation (B.8) in the following way:

\[=\quad+\quad\] (B.11)

which only involves one- and two-body terms. In table B.2 we give the diagrams for the one-particle–one-hole excitation amplitudes, and their corresponding algebraic expression in both uncoupled (m-scheme) and angular momentum coupled representations. In table B.3 we give the diagrams for the two-particle–two-hole excitation amplitudes, and their corresponding algebraic expression in both uncoupled (m-scheme) and angular momentum coupled representations, The diagrammatic representation and algebraic expressions for the various matrix elements of the similarity-transformed Hamiltonian that enter in tables B.2 and B.3 can be found in e.g. (Gour et al 2006, Bartlett and Musiał 2007).

B.2. Particle-attached EOM

Below we give the diagrammatic representation and algebraic expressions in an angular momentum coupled scheme for particle-attached equation-of-motion method in the singles-and-doubles approximation (PA-EOM-CCSD). The PA-EOM-CCSD results from diagonalizing the similarity-transformed Hamiltonian in a sub-space of one-particle and two-particle–one-hole excitations. This approximation has been shown to work particularly well for low-lying states that are dominated by one-particle excitations (Gour et al 2006, Bartlett and Musiał 2007).
Table B.3. Coupled and uncoupled algebraic expressions for the diagrams of the two-particle–two-hole excitation amplitudes R_2 given in equation (B.8). Repeated indices are summed over.

Diagram	Uncoupled expression	Coupled expression								
![Diagram](image1)	$P(ab)\langle c	R_0^{ij}	k \rangle \langle d	r^{JM}	i \rangle$	$P(ab)\langle c	R_0	k \rangle \langle d	r^{JM}	i \rangle$
![Diagram](image2)	$-P(ij)\langle k	R_0^{ij}	j \rangle \langle ab	r^{JM}	ik \rangle$	$-P(ij)\langle k	R_0^{ij}	j \rangle \langle ab	r^{JM}	ik \rangle$
![Diagram](image3)	$\frac{1}{2}\langle ab	R_0	ij \rangle \langle cd	r^{JM}	ij \rangle$	$\frac{1}{2}\langle ab	R_0	ij \rangle \langle cd	r^{JM}	ij \rangle$
![Diagram](image4)	$\frac{1}{2}\langle kl	R_0	ij \rangle \langle ab	r^{JM}	kl \rangle$	$\frac{1}{2}\langle kl	R_0	ij \rangle \langle ab	r^{JM}	kl \rangle$
![Diagram](image5)	$P(ij)\langle ab	R_0^{ij}	cz \rangle	r^{JM}	i \rangle$	$P(ij)\langle ab	R_0^{ij}	cz \rangle	r^{JM}	i \rangle$
![Diagram](image6)	$-P(ab)\langle k	R_0^{ij}	j \rangle \langle a	r^{JM}	k \rangle$	$-P(ab)\langle k	R_0^{ij}	j \rangle \langle a	r^{JM}	k \rangle$
![Diagram](image7)	$P(ab)\langle cb	\chi_0^{ij}	\chi^{JM}	c \rangle$	$P(ab)\langle cb	\chi_0^{ij}	\chi^{JM}	c \rangle$		
![Diagram](image8)	$-P(ij)\langle ab	\chi_0^{ij}	k \rangle \langle k	\chi^{JM}	i \rangle$	$-P(ij)\langle ab	\chi_0^{ij}	k \rangle \langle k	\chi^{JM}	i \rangle$

One-particle excitation amplitude equations are given by,

\[
\begin{align*}
\begin{array}{c}
\begin{array}{c}
\begin{align*}
\end{align*}
\end{array}
\end{array}
\end{align*}
\]

\[
= + \quad +
\]

And the diagrammatic representation of the two-particle-one-hole excitation amplitude equations are given by,

\[
\begin{align*}
\begin{array}{c}
\begin{array}{c}
\begin{align*}
\end{align*}
\end{array}
\end{array}
\end{align*}
\]

\[
= + \quad +
\]

(B.12) (B.13)
Table B.4. Coupled and uncoupled algebraic expressions for the diagrams of the one-particle R_1, and two-particle–one-hole amplitude R_2 given in equations (B.12) and (B.14). Repeated indices are summed over.

Diagram	Uncoupled expression	Coupled expression												
![Diagram](image1)	$\langle a	\chi^{00}	c\rangle \langle c	r^{JM}	b\rangle$	$\langle a		\tilde{R}^0		c\rangle \langle c		r^{JM}\rangle$		
![Diagram](image2)	$-\langle k	\chi^{00}	c\rangle \langle ac	r^{JM}	k\rangle$	$-(\frac{\hbar^2}{\hbar^2}) \langle k		\tilde{R}^0		c\rangle \langle ac		r^{JM}\rangle \langle k		r^{JM}\rangle\langle k\rangle$
![Diagram](image3)	$-\langle ka	\chi^{00}	cd\rangle \langle cd	r^{JM}	k\rangle$	$\langle ka		\tilde{R}^0		cd\rangle \langle cd		r^{JM}\rangle	k\rangle$	
![Diagram](image4)	$P(ab)\langle kb	\chi^{00}	c\rangle \langle ac	r^{JM}	k\rangle$	$P(ab)\langle a		r^{JM}	k\rangle \langle k\rangle$					
![Diagram](image5)	$P(ab)\langle ac	r^{JM}	j\rangle \langle b	\chi^{00}	c\rangle$	$P(ab)\langle a		r^{JM}	j\rangle \langle b		\tilde{R}^0		c\rangle$	
![Diagram](image6)	$-\langle k	\chi^{00}	j\rangle \langle ab	r^{JM}	k\rangle$	$-\langle k		\tilde{R}^0		j\rangle \langle ab		r^{JM}\rangle	k\rangle$	
![Diagram](image7)	$\frac{1}{2} \langle ab	\chi^{00}	cd\rangle \langle cd	r^{JM}	j\rangle$	$\frac{1}{2} \langle ab		\tilde{R}^0		cd\rangle \langle cd		r^{JM}\rangle	j\rangle$	
![Diagram](image8)	$\langle ab	\chi^{00}	c\rangle \langle c	r^{JM}	\rangle$	$\langle ab		\tilde{R}^0		c\rangle \langle c		r^{JM}\rangle$		
![Diagram](image9)	$-\langle k		\chi^{JM}\rangle \langle ab	\chi^{00}	k\rangle$	$-\langle k		\chi^{JM}\rangle \langle ab		\tilde{R}^0		k\rangle$		

The last diagram in equation (B.14) involves a three-body term of the similarity-transformed Hamiltonian, and it is therefore convenient to define the following intermediate,

\[
\begin{align*}
\text{(B.15)} & \quad \begin{array}{c}
\includegraphics[width=0.2\textwidth]{diagram1} \\
\text{=} & \\
\includegraphics[width=0.25\textwidth]{diagram2} + \includegraphics[width=0.25\textwidth]{diagram3}
\end{array}
\end{align*}
\]

we can then rewrite the last diagram in equation (B.14) in the following way:

\[
\begin{align*}
\text{(B.16)} & \quad \begin{array}{c}
\includegraphics[width=0.3\textwidth]{diagram4} \\
\text{=} & \\
\includegraphics[width=0.2\textwidth]{diagram5} \quad \text{+} \\
\includegraphics[width=0.2\textwidth]{diagram6}
\end{array}
\end{align*}
\]

In table B.4 the algebraic expressions for the one-particle and two-particle–one-hole excitation amplitudes in an uncoupled and coupled angular momentum scheme are given. The diagrammatic representation and algebraic expressions for the various matrix elements of the similarity-transformed Hamiltonian that enter in table B.4 can be found in e.g. (Bartlett and Musiał 2007, Gour et al 2006).

B.3. Particle-removed EOM

Below we give the diagrammatic representation and algebraic expressions in an angular momentum coupled scheme for
Table B.5. Coupled and uncoupled algebraic expressions for the diagrams of the one-particle R_1, and one-particle–two-hole amplitude R_2 given in equations (B.17), and (B.19). Repeated indices are summed over.

Diagram	Uncoupled expression	Coupled expression												
![Diagram](image1)	$\langle	r^{JM}	k\rangle \langle k	\tilde{R}^{00}	i\rangle$	$\langle		r^{ JM}		k\rangle \langle k	\tilde{R}^{00}	i\rangle$		
![Diagram](image2)	$\langle c	r^{JM}	ik\rangle \langle k	\tilde{R}^{00}	c\rangle$	$c \frac{j_0^2}{j_0^2} \langle c		r^{ JM}		ik\rangle \langle k	\tilde{R}^{00}	c\rangle$		
![Diagram](image3)	$-\frac{1}{2} \langle c	r^{JM}	kl\rangle \langle kl	\tilde{R}^{00}	ic\rangle$	$-\frac{1}{2} \frac{j_0^2}{j_0^2} \langle c		r^{ JM}		kl\rangle \langle kl	\tilde{R}^{00}	ic\rangle$		
![Diagram](image4)	$P(ij)\langle kb	\tilde{R}^{00}	ej\rangle \langle c	r^{JM}	ik\rangle$	$P(ij)\langle i^{-1}		r^{ JM}		k e^{-1}\rangle \langle k e^{-1}	\tilde{R}^{00}	j b^{-1}\rangle$		
![Diagram](image5)	$\langle b		\tilde{R}^{00}	c\rangle \langle c	r^{JM}	ij\rangle$	$\langle b		\tilde{R}^{00}	c\rangle \langle c		r^{ JM}		ij\rangle$
![Diagram](image6)	$-P(ij)\langle k	\tilde{R}^{00}	j\rangle \langle b	r^{JM}	ik\rangle$	$-P(ij)\langle k		\tilde{R}^{00}	j\rangle \langle b		r^{ JM}		ik\rangle$	
![Diagram](image7)	$\frac{1}{2} \langle kl	\tilde{R}^{00}	ij\rangle \langle b	r^{JM}	kl\rangle$	$\frac{1}{2} \langle kl		\tilde{R}^{00}	ij\rangle \langle b		r^{ JM}		kl\rangle$	
![Diagram](image8)	$-\langle kb	\tilde{R}^{00}	ij\rangle \langle	r^{JM}	k\rangle$	$-\langle kb		\tilde{R}^{00}	ij\rangle \langle		r^{ JM}		k\rangle$	
![Diagram](image9)	$-\langle \chi^{JM}	c\rangle \langle c	\tilde{R}^{00}	ij\rangle$	$-\langle		\chi^{ JM}		c\rangle \langle c	\tilde{R}^{00}	ij\rangle$			

The particle-removed equation-of-motion method in the singlesand-doubles approximation (PR-EOM-CCSD). The PR-EOM-CCSD results from diagonalizing the similarity-transformed Hamiltonian in a sub-space of one-hole and one-particle–two-hole excitations. This approximation has been shown to work particularly well for low-lying states that are dominated by one-hole excitations (Bartlett and Musiał 2007, Gour et al. 2006). The diagrammatic representation of the one-hole excitation amplitude equations are given by,

$$
= + +
$$

and the diagrammatic representation of the one-particle–two-hole excitation amplitude equations are given by,

$$
= + +
$$

Again, the last diagram involves a three-body term of the Similarity-transformed Hamiltonian, and it is therefore
convenient to define the following intermediate:

\[
\begin{array}{c}
1 \Rightarrow \\
\end{array}
\]

(B.20)

we can then rewrite the last diagram in equation (B.19) in the following way:

\[
\begin{array}{c}
1 \Rightarrow \\
\end{array}
\]

(B.21)

In table B.5 we give the algebraic expressions for the one-hole and one-particle–two-hole excitation amplitudes in an uncoupled and coupled angular momentum scheme. The diagrammatic representation and algebraic expressions for the various matrix elements of the similarity-transformed Hamiltonian that enter in table B.5 can be found in e.g. (Bartlett and Musial 2007, Gour et al 2006).

References

Ahrens J et al 1975 Nucl. Phys. A 251 479
Arponen J 1983 Ann. Phys. 151 311
Artukh A G, Avdeichikov V V, Chelnokov L P, Gridnev G F, Mikhchev V L, Vakatov V I, Volkov V V and Wilczynski J 1970 Phys. Lett. B 32 43
Baardsen G, Ekstrom A, Hagen G and Hjorth-Jensen M 2013 Phys. Rev. C 88 054312
Bacca S, Barnea N, Hagen G, Orlandini G and Papenbrock T 2013 Phys. Rev. Lett. 111 122502
Bacca S, Schwenk A, Hagen G and Papenbrock T 2009 Eur. Phys. J. A 42 553
Baran A, Bulgac A, Forbes M M, Hagen G, Nazarewicz W, Schunck N and Stoitsov M V 2008 Phys. Rev. C 78 014318
Baranger M 1960 Phys. Rev. 120 957
Barbieri C and Hjorth-Jensen M 2009 Phys. Rev. C 79 064313
Baroni S, Navrátil P and Quaglioni S 2013 Phys. Rev. Lett. 110 020505
Baroni S, Navrátil P and Quaglioni S 2013b Phys. Rev. C 87 034326
Barrett B R, Navrátil P and Vary J P 2013 Prog. Part. Nucl. Phys. 69 131
Bartlett R J 1981 Annu. Rev. Phys. Chem. 32 359
Bartlett R J and Musial M 2007 Rev. Mod. Phys. 79 291
Bartlett R J and Purvis G D 1978 Int. J. Quantum Chem. 14 561
Bartlett R J, Watts J, Kucharski S and Noga J 1990 Chem. Phys. Lett. 165 513
Bedaque P, Hammer H-W and van Kolck U 2003 Phys. Lett. B 569 159
Bender M, Heenen P-H and Reinhard P-G 2003 Rev. Mod. Phys. 75 121
Berggren T 1968 Nucl. Phys. A 109 265
Berggren T 1971 Nucl. Phys. A 169 353
Bertulani C, Hammer H-W and van Kolck U 2002 Nucl. Phys. A 712 37
Binder S, Langhammer J, Calci A and Roth R 2014 Phys. Lett. B 119–23
Binder S, Piecuch P, Calci A, Langhammer J, Navrátil P and Roth R 2013 Phys. Rev. C 88 054319
Bishop R, Guardiola R, Moliner I, Navarro J, Portesi M, Puente A and Walet N 1998 Nucl. Phys. A 643 243
Bishop R F 1991 Theor. Chem. Acc.: Theory Comput. Model. (Theor. Chim. Acta) 80 95
Bishop R F, Buenédia E, Flynn M F and Guardiola R 1992 J. Phys. G: Nucl. Part. Phys. 18 1157
Bishop R F, Flynn M F, Boscá M C, Buenédia E and Guardiola R 1990a J. Phys. G: Nucl. Part. Phys. 16 161
Bishop R F, Flynn M F, Boscá M C, Buenédia E and Guardiola R 1990b Phys. Rev. C 42 1341
Bishop R F and Lahoz W A 1987 J. Phys. A: Math. Gen. 20 4203
Bishop R F and Lührmann K H 1978 Phys. Rev. B 17 3757
Blatt D W E and McKellar B H J 1975 Phys. Rev. C 11 614
Bogner S et al 2013 Comput. Phys. Commun. 184 2235
Bogner S, Furnstahl R, Maris P, Perry R, Schwenk A and Vary J 2008 Nucl. Phys. A 801 21
Bogner S, Furnstahl R and Schwenk A 2010 Prog. Part. Nucl. Phys. 65 94
Bogner S K, Furnstahl R J and Perry R J 2007 Phys. Rev. C 75 061001
Bogner S K, Hergert H, Holt J D, Schwenk A, Binder S, Calci A, Langhammer J and Roth R 2014 arXiv:1402.1407 [nucl-th]
Bogner S K, Kuo T T S and Schwenk A 2003 Phys. Rep. 386 1
Brown B A and Richter W A 2006 Phys. Rev. C 74 034315
Brown G and Green A 1966 Nucl. Phys. 75 401
Bryden C G 1965 Math. Comput. 19 577
Brueckner K A 1955 Phys. Rev. 100 36
Brueckner K A, Levinson C A and Mahmoud H M 1954 Phys. Rev. 95 217
Caspian et al 2013 K Zuber (R3B collaboration) 2013 Phys. Rev. C 88 034313
Cipolaine A, Barbieri C, Rios A and Polls A 2013a Phys. Rev. C 88 054326
Cipolaine A, Barbieri C, Rios A and Polls A 2013b Phys. Rev. C 88 044302
Carbonell J, Deltuva A, Fonseca A and Lazauskas R 2014 Prog. Part. Nucl. Phys. 74 55
Carlson J 1987 Phys. Rev. C 36 2026
Caurier E, Martinez-Pinedo G, Nowacki F, Poves A, Retamosa J and Zuker A P 1999 Phys. Rev. C 59 2033
Caurier E, Martinez-Pinedo G, Nowacki F, Poves A and Zuker A P 2005 Rev. Mod. Phys. 77 427
Caurier E and Navrátil P 2006 Phys. Rev. C 73 021302
Caurier E, Nowacki F, Poves A and Retamosa J 1998 Phys. Rev. C 58 2033
Cipolaine A, Barbieri C and Navrátil P 2013 Phys. Rev. Lett. 111 062501
Čížek J 1966 J. Chem. Phys. 45 4256
Čížek J and Paldus J 1971 Int. J. Quantum Chem. 5 359
Coester F 1958 Nucl. Phys. 7 421
Coester F and Kümmel H 1960 Nucl. Phys. 17 477
Coon S, Dobaczewski J and Hjorth-Jensen M 2010 Int. J. Mod. Phys. E 19 2077
Dalgaard E and Monkhorst H J 1983 Phys. Rev. A 28 1217
Darby J G et al 2010 Phys. Rev. Lett. 105 162502
Day B D 1967 Rev. Mod. Phys. 39 719
Day B D 1981 Phys. Rev. C 24 1203
Dean D J, Hagen G, Hjorth-Jensen M and Papenbrock T 2008 Comput. Sci. Discovery 1 015008
Dean D J and Hjorth-Jensen M 2004 Phys. Rev. C 69 054320
Dickhoff W and Barbieri C 2004 Prog. Part. Nucl. Phys. 52 377
Dinca D-C et al 2005 Phys. Rev. C 71 041302
Dobaczewski J, Hamamoto I, Nazarewicz W and Sheikh J A 1994 Phys. Rev. Lett. 72 981
