Genetic relationship and species identification of *Dioscorea polystachya* Turcz. in Yams determined by ISSR, ISAP, SRAP and SCAR markers

Wang Yue · Gu Zixia · Chen Min · Zhang Yanmei · Sun Xiaoqin · Zhou Yifeng · Bin Peng

Received: 11 August 2021 / Accepted: 6 February 2022 / Published online: 3 March 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract *Dioscorea polystachya* Turcz. is the authentic herb Yam in Chinese traditional medicine. In the medicinal marketplace, some related *Dioscorea* species are mislabeled as “Yams”, such as *D. alata* L., *D. exalata* C.T. Ting & M.C. Chang, *D. persimilis* Prain et Burkill, *D. fordii* Prain et Burkill and *D. japonica* Thunb. To determine the genetic relationships among these species and develop a rapid and accurate method for *D. polystachya* identification, Inter Simple Sequence Repeat (ISSR), Intron Sequence Amplified Polymorphism (ISAP), Sequence-Related Amplified Polymorphism (SRAP) and Sequence Characterized Amplified Region (SCAR) markers were used in this study. By combining ISSR, ISAP and SRAP markers, a high degree of variation among the *Dioscorea* species was detected. Moreover, a relatively high gene flow (*N_m* = 0.3293) among the species was observed. This may result from gene pool exchanges of wild materials. The phylogenetic tree and genetic similarity analysis showed that *D. japonica* had the closest genetic relationship with *D. polystachya*. Considering the lowest inter-species variation observed in *D. polystachya* and the highest genetic divergence within *D. japonica*, we suggest a taxonomy of a one-species complex, *D. polystachya*–*D. japonica*, for breeding and conservation purposes. The phylogenetic data in this study indicated that *D. alata* and *D. persimilis* are independent species, not cultigens. Furthermore, a SCAR marker was developed that could be used to discriminate the authentic herb *D. polystachya* from other *Dioscorea* species. Overall, these results are useful as guidelines for breeding programs and conservation actions.

Keywords *Dioscorea polystachya* · Authentic herb · Yams · Relative species · Genetic relationship · Molecular markers

Introduction

Yam (*Dioscorea* spp.) is not only an important tuber crop, but also an important pharmaceutical plant used in traditional Chinese medicine (Karnick 1969; Hodeba et al. 2008; Peng et al. 2017; Hang and Sun 2020). As a traditional herb, the pharmaceutical uses
of yam involve treating diabetes, strengthening stomach functions and alleviating anorexia (Hang 1995; Hang and Sun 2020). In addition, it is used as a health food (Shin et al. 2006). In the Chinese Pharmacopoeia, the authentic herb “Yam” exclusively refers to *Dioscorea polystachya* Turcz. in Dioscoreaceae (Pharmacopoeia of China 2020). In China, owing to its high market demand, other species in the genus *Dioscorea*, including *D. alata* L., *D. exalata* C. T. Ting & M. C. Chang, *D. persimili* Prain et Burkill, *D. fordii* Prain et Burkill and *D. japonica* Thunb. are commonly treated as “Yams” to be used in medicines (Lay et al. 2001; Hang et al. 2006; Li Mimi et al. 2012; Hang and Sun 2020). Because the nutrient and bioactive compositions quantitatively and qualitatively vary among many *Dioscorea* species (Wu et al. 2016), the confusion and misuse of non-authentic yams has had a great impact on the medicinal market, medicinal efficacy and herb growers. Furthermore, there are still controversies regarding the taxonomy of some edible *Dioscorea*. For example, a study reported that *D. persimili* is a cultivar of *D. polystachya* on the basis of an 18S sequence analysis (Liu et al. 2000). Additionally, the status of *D. alata* as a true species or a putative cultigen remains unresolved (Lebot et al. 1998; Wilkin et al. 2005; Mengesha et al. 2013a).

To date, species identification in *Dioscorea* has predominantly depended on morphological and micromorphological descriptors. For example, leaf morphology, stem twining direction, tuber anatomy and leaf epidermal cell micromorphology have been used for the identification of *Dioscorea* species (Hang et al. 2006; Li Mimi et al. 2012; Adeniran and Sonibare 2016; Hang and Sun 2020). However, morphological identification requires conditionality, including a suitable plant developmental stage or sophisticated assessment tools.

Developed molecular tools, such as Random Amplified Polymorphic DNA, Amplified Fragment Length Polymorphism, Inter Simple Sequence Repeat (ISSR), Microsatellites, Simple Sequence Repeat (SSR) and Restriction Fragment Length Polymorphism markers, have become important means of identifying *Dioscorea* species (Lay et al. 2001; Tostain et al. 2006; Mengesha et al. 2013b; Mukherjee and Bhat 2013). Using a combined SSR and ISSR analysis, many edible yam species in West have been identified, including cultivated species of *D. prahensilis*, *D. abyssinica* and wild species of *D. sagittifolia* in Nigeria (Nascimento et al. 2013). However, these molecular techniques may be ambiguous, pose time constraints and are costly because PCR amplification requires multiple reactions (Wu et al. 2009; Sun et al. 2012). To overcome these drawbacks, traditional molecular markers may be converted into stable and reliable markers, such as Sequence Characterized Amplified Region (SCAR) markers (Devaiah et al. 2011; Al-Qurainy et al. 2018). This approach has been demonstrated to work in species identification, including those of *Satureja montana* L., *Cucumis sativus* L. and *Casuarina equisetifolia* L (Ghosh et al. 2010; Marieschi et al. 2011; Saengprajak 2012). Furthermore, we have developed a SCAR marker to distinguish the landrace *D. polysstachya* ‘Tiegun’ from the other *D. polystachya* varieties (Peng et al. 2017).

In this study, ISSR, Intron Sequence Amplified Polymorphism (ISAP) and Sequence-Related Amplified Polymorphism (SRAP) markers were used to evaluate the genetic relationships among yam species. Moreover, a species diagnostic SCAR marker was developed to identify the authentic herb “Yam” *D. polystachya*.

Materials and methods

Plant materials

Here, we collected not only cultivated *Dioscorea* materials, but also many wild *Dioscorea* materials in China (Table 1). Healthy young leaves from *Dioscorea* species were collected for genomic DNA extraction. The wild *D. zingiberensis* C. H. Wright was selected as the outgroup. An additional six to 10 individuals per species were assayed to validate the reliability of the SCAR marker using a double-blind test. When the validation was finished, the identities of the experimental materials were disclosed (Table 2). All the samples in this study were identified by Professor Yueyu Hang (Jiangsu Institute of Botany, Chinese Academy of Sciences).
Plant materials used to determine the genetic relationships among *Dioscorea* species	Species	Code	Habit/cultivated name	Locality
D. polystachya	SY1	Wild	Jiangsu jurong	
	SYHZ	Cultivate/ ‘Huazi’	Jiangsu Xuzhou	
	SYWJSB	Cultivate/ ‘Wujiahuangbao’	Jiangsu Xuzhou	
	SYMI	Cultivate/ ‘Mishanyao’	Jiangsu Xuzhou	
	SYXCM	Cultivate/ ‘Xichangmao’	Henan Wenxian	
	SUHY	Cultivate/ ‘Huaying’	Sichuan Guangan	
	SYCSY	Cultivate/ ‘Cao’	Shandong Heze	
	SYMA	Cultivate/ ‘Ma’	Henan Wenxian	
	SYAS	Cultivate/ ‘Anshun’	Guizhou Guiyang	
	SYXBJZ	Cultivate/ ‘Xiaobaizui’	Henan Wenxian	
	SYCNGT	Cultivate/ ‘Cuniutui’	Henan Wenxian	
	SYJJH	Cultivate/ ‘Jiujinghuang’	Henan Wenxian	
	SYBY	Cultivate/ ‘Baiyu’	Shandong Heze	
	SYTG	Cultivate/ ‘Tiegun’	Shanxi Taiyuan	
	SYTG-2	Cultivate/ ‘Tiegun’	Jiangsu Xuzhou	
	SYTG-1	Cultivate/ ‘Tiegun’	Henan wenxian	
	SYTG-5	Cultivate/ ‘Tiegun’	Shandong Jingning	
	SYTG-6	Cultivate/ ‘Tiegun’	Hebei Cangzhou	
	SYTG-7	Cultivate/ ‘Tiegun’	Hunan Liuyang	
	SYTG-3	Cultivate/ ‘Tiegun’	Sichuan Nanchong	
	SYTG-4	Cultivate/ ‘Tiegun’	Guangdong Dongguan	
D. persimilis	HB-1	Cultivate	Fujian mingi	
	HB-2	Wild	Guangdong shaoguan	
	HB-3	Wild	Yunnan lijiang	
	HB-4	Wild	Fujian wuyishan	
	HB-5	Wild	Jiangxi lushan	
	HB-6	Wild	Guangxi nanning	
D. alata	SS-1	Cultivate	Guangdong shaoguan	
	SS-2	Cultivate	Hainan lingshui	
	SS-3	Cultivate	Hunan hengshan	
	SS-4	Cultivate	Yunnan lijiang	
	SS-5	Unknown	Jiangxi lushan	
	SS-6	Unknown	Yunnan jinghong	
D. exalata	WC-1	Cultivate	Guangxi guilin	
	WC-2	Cultivate	Yunnan lijiang	
	WC-3	Wild	Guangxi,guilin	
	WC-4	Wild	Yunnan jinghong	
	WC-5	Wild	Yunnan,linchang	
	WC-6	Wild	Guangxi,longzhou	
D. fordii	SHANS-1	Cultivate	Fujian,shanming	
	SHANS-2	Wild	Guangxi guilin	
	SHANS-3	Wild	Yunnan jinghong	
	SHANS-4	Wild	Hainan,limushan	
	SHANS-5	Wild	Guangdong,dinghushan	
	SHANS-6	Wild	Yunnan, kunming	
DNA extraction

Genomic DNA extraction was performed as described previously (Peng et al. 2017). The extracted DNA was subjected to agarose gel electrophoresis to confirm that it was intact and then stored at −20 °C for later use.

Table 1 (continued)

Species	Code	Habit/cultivated name	Locality
D. japonica			
RB-1	Wild		Zhejiang, linan
RB-2	Wild		Jiangxi, lushan
RB-3	Wild		Hunan, yongshun
RB-4	Wild		Fujian wuyishan
RB-5	Wild		Guangdong lianshan
RB-6	Wild		Anhui guniiuijiang

“Unknown” indicates that the material was collected from the wild and that there was no cultivation in this area.

Table 2 Plant materials for the validation of the developed SCAR marker

Species	Individuals	Habit	Location
D. polystanchya	2	Cultivate	Henan Wenxian
	2	Cultivate	Jiangsu Xuzhou
	2	Cultivate	Shanxi Taiyuan
	2	Cultivate	Henan Wenxian
	2	Wild	Jiangsu Nanjing
D. persimilis	10	Cultivate	Jiangsu Yixing
D. alata	10	Cultivate	Jiangsu Yixing
D. fordii	10	Cultivate	Jiangsu Yixing
D. exalata	1	Cultivate	Guangxi guilin
	1	Cultivate	Yunnan lijiang
	1	Wild	Guangxi guilin
	1	Wild	Yunnan jinghong
	1	Wild	Yunnan, lijiang
	1	Wild	Guangxi, longzhou
D. japonica	1	Wild	Zhejiang, linan
	1	Wild	Jiangxi, lushan
	1	Wild	Hunan, yongshun
	1	Wild	Fujian wuyishan
	1	Wild	Guangdong lianshan
	1	Wild	Anhui guniiuijiang

ISSR, ISAP and SRAP reaction system

Preliminary assays were conducted to determine the optimum primers for the Dioscorea genetic relationship analysis. Finally, 10 highly polymorphic ISSR primers were chosen for the PCR reactions (Supplemental Table S1). PCR amplifications were performed in a 20-µL reaction volume containing 1 µL DNA (20 ng·µL⁻¹), 2 µL 10× Buffer (Mg²⁺), 1.6 µL dNTP (2.5 mM), 0.8 µL (10 mM) primer, 0.2 µL Taq DNA polymerase (5 U·µL⁻¹) and ddH₂O up to 20 µL. PCR amplifications were carried out in a T1 Thermocycler (Biometra, Germany) using the following program: 1 min at 94 °C; 5 cycles of 94 °C for 45 s; 36 °C for 3 s and 72 °C for 60 s; 35 cycles of 94 °C for 45 s, 50 °C for 30 s and 72 °C for 75 s, followed by a final extension at 72 °C for 5 min. Then, 11 ISAP primer pairs were chosen for the PCR reactions on the basis of high polymorphism rates and good reproducibility (Supplemental Table S2). The ISAP analysis was performed in accordance with those described previously (Peng et al. 2017). Furthermore, 21 highly polymorphic primer pairs were selected for the SRAP analysis (Supplemental Table S3). PCR was carried out in a 20-µL reaction mixture containing 25 ng DNA as template, 0.7 mM primer, 0.2 mM Mg²⁺, 0.3 mM dNTPs and 1 U Taq DNA polymerase. The PCR reaction program was as follows: 94 °C for 1 min; 5 cycles of 94 °C for 45 s; 36 °C for 3 s and 72 °C for 60 s; 35 cycles of 94 °C for 45 s, 50 °C for 30 s and 72 °C for 75 s, followed by a final extension at 72 °C for 5 min. All the primers used in this study were synthesized by Invitrogen Trading (Shanghai) Co., Ltd.
Genetic relationship analysis

All the clearly detectable polymorphic and monomorphic bands were scored as present (1) or absent (0) in each sample during the analysis. POPGENE software was used to analyze the genetic relationships of species, as well as to calculate the indices of number of alleles \((N_a) \), the number of effective alleles \((N_e) \), Nei’s gene diversity index \((H) \), the Shannon Index \((I) \), gene differentiation coefficient \((G_{st}) \) and gene flow \((N_m) \) (Yeh et al. 1999). The observed total heterozygosity \((H_t) \) and the average heterozygosity within the species \((H_s) \) were calculated using GenAlEx v. 6.5 (Peakall and Smouse 2012). A Principal coordinate analysis (PCoA), genetic similarity coefficients and genetic distances were obtained using the NTSYS 2.10e software (Rohlf 2000). The intra-specific similarity coefficient \((F_{is}) \) and inter-specific variation coefficient \((F_{st}) \) were calculated using the Artificial Bee Colony (ABC) algorithm (Foll et al. 2008).

SCAR identification system

To screen the species-specific bands conveniently, all the individual DNAs of each species (Table 1) were mixed into one gene pool. The presence of a specific fragment in \(D. \) polystachya that is absent in all the other species was designated as an identification marker. A specific fragment of \(D. \) polystachya was obtained using an Agarose Gel Extraction Kit (TaKaRa, Dalian, China) and sequenced by Majorbio Co. (Shanghai, China). On the basis of the DNA sequence analysis results, a pair of specific primers were designed for the SCAR reaction using Primer Premier 5.0 (Lalitha 2000). PCR was carried out in a 20-μL reaction mixture containing 1 μL (10–25 ng) DNA as template, 13.3 μL double-distilled water, 2 μL Mg\(^{2+}\), 0.3 μL (10 mmol/L) dNTPs, 2 μL PCR buffer, 0.6 μL (10 pmol/L) each primer and 0.2 μL (1 U) Taq DNA polymerase. The PCR reaction program was as follows: 94 °C for 1 min; 30 cycles of 94 °C for 50 s, 60 °C for 45 s and 72 °C for 60 s, followed by an extension at 72 °C for 5 min. The PCR products were electrophoresed on a 1 % agarose gels, stained with ethidium bromide, observed and photographed with a gel imaging system. A 2,000-bp DNA ladder was used as a molecular weight marker.

Results

Genetic relationship between \(D. \) polystachya and its related species

Using the combination of ISSR, ISAP and SRAP markers, 523 bands were obtained. The number of polymorphic bands for these markers was 507, representing 96.94%. The \(N_a \) of Dioscorea species was 1.9963, whereas the \(N_e \) was 1.7724. The \(H \) value was 0.4950, and the \(I \) value was 0.6762. An analysis of the coefficient of genetic differentiation revealed that the \(H_t \) of the six species was 0.4821, and the \(H_s \) was 0.1769. The \(G_{st} \) among species was 0.6029, whereas the \(N_m \) among species was 0.3293.

The genetic similarity coefficient among Dioscorea species were 0.7126–0.9258, whereas the genetic distances were 0.0770–0.2825 (Table 3). The closest and farthest genetic relationships associated with \(D. \) polystachya were those of \(D. \) japonica (genetic similarity coefficient = 0.8430) and \(D. \) fordii (genetic similarity coefficient = 0.7126), respectively. In addition, among the six species, \(D. \) exalata and \(D. \) persimilis were the closest, with a genetic distance and a genetic similarity coefficient of 0.0770 and 0.9258, respectively.

The \(F_{is} \) ranged from 0.2096 to 0.4339, with the \(F_{is} \) of \(D. \) persimilis being the highest, and the \(F_{is} \) of \(D. \) japonica being the lowest. The \(F_{st} \) varied from 0.0497 to 0.1862. Compared with other species, \(D. \) fordii

Species	\(D. \) polystachya	\(D. \) alata	\(D. \) japonica	\(D. \) persimilis	\(D. \) exalata	\(D. \) fordii
\(D. \) polystachya	****	0.8282	0.8430	0.8085	0.7954	0.7126
\(D. \) alata	0.1885	****	0.8255	0.7539	0.7753	0.8059
\(D. \) japonica	0.1708	0.1918	****	0.8738	0.8679	0.8567
\(D. \) persimilis	0.2126	0.2825	0.1349	****	0.9258	0.9111
\(D. \) exalata	0.2289	0.2545	0.1416	0.0770	****	0.8770
\(D. \) fordii	0.3388	0.2158	0.1546	0.0930	0.1312	****
had the greatest variability, and *D. polystachya* had the lowest. The *P*-values of all results were less than 0.05, indicating high confidence levels (Table 4).

The phylogenetic tree revealed that individuals of each species clustered together. All the samples of *D. polystachya* were clustered in one branch, and they gathered with all the *D. japonica* individuals into a large branch. *Dioscorea alata*, *D. persimilis*, *D. exalata* and *D. fordii* clustered together into another large branch, which was located at the base of the phylogenetic tree (Fig. 1).

Interestingly, the PCoA using Euclidean similarity indices separated all the samples, except *D. exalata* and *D. persimilis* (Fig. 2).

Specific identification of *D. polystachya* based on a SRAP-SCAR analysis

In this study, a specific band of *D. polystachya* was found by SRAP amplification (Fig. 3).

The sequencing results revealed that specific band in *D. polystachya* was 1228 bp (Fig. 4). The sequence was compared against the GenBank database, and no homologous sequences were found. A pair of SCAR primers (F: 5′-TTGCCCTCAAATGATTGC CC-3′/R: 5′-AGGTGATGGATATGGCCCCAAAT-3′) were designed in accordance with the primer design principle. Then, 46 *Dioscorea* individuals were prepared for a double-blind test. The specific band was observed in 10 individuals (Fig. 5). When the experimental materials were disclosed, all 10 of these individuals belonged to *D. polystachya*. In addition, the specific band was not amplified in individuals of the

Species	*F*-data	Mean	*P*-value
D. polystachya	*F*_{is}	0.2611	0.000744
D. persimilis	*F*_{is}	0.4339	0.002997
D. japonica	*F*_{is}	0.2096	0.000246
D. exalata	*F*_{is}	0.3054	0.000255
D. fordii	*F*_{is}	0.3248	0.000679
D. alata	*F*_{is}	0.4173	0.000587
D. polystachya	*F*_{st}	0.0497	0.000889
D. fordii	*F*_{st}	0.1862	0.004133
D. japonica	*F*_{st}	0.0756	0.000392
D. exalata	*F*_{st}	0.0698	0.000487
D. persimilis	*F*_{st}	0.1088	0.000355
D. alata	*F*_{st}	0.1255	0.000873

Fig. 1 Phylogenetic tree of *D. polystachya* and its five relatives. Each terminal node is described by a corresponding code provided in Table 1.
Discussion

For nearly two decades, combinations of multiple molecular markers have been used to analyze genetic relationships. For example, Random Amplified Polymorphic DNA, ISSR, Inter-retrotransposon Amplified Polymorphism and Retrotransposon Microsatellite Amplified Polymorphism markers were used to reveal the genetic diversity and relationships among Citrus species (Biswas et al. 2010). Genetic relationships and modes of Robinsonia species were illustrated using Amplified Fragment Length Polymorphism and SSR markers (Takayama et al. 2015). Combining SSR and ISSR markers better reflected the genetic relationship of D. trifida than single markers (Nascimento et al. 2013). At the molecular level, the percentage of polymorphic bands, H, N_e, I, H_t, and H_s are essential for evaluating the genetic diversity of germplasm (Mignouna et al. 2005; Narzary et al. 2009). In this study, ISSR, ISAP and SRAP molecular markers were used to analyze the genetic relationship between D. polystachya and its related species, and high levels of genetic diversity among Dioscorea species were observed with the above parameters. Our results also
indicated that the combined three markers detected a higher degree of variation among Dioscorea species compared with single markers, as reported previously (Shiwachi et al. 2000; Malapa et al. 2005; Zhou et al. 2008).

There was a relatively high N_m (0.3293) among the six species used in this study, which is much higher than in previous studies ($N_m=0.1081$) that used four species, D. opposita, D. alata, D. persimilis and D. fordii, from 21 cultivar accessions (Wu et al., 2014). In addition, the G_d of 0.6029 among species was lower than the previously reported G_d value of 0.8222 (Wu et al. 2014). This might be because the experimental materials used in this study included more species and many wild individuals. In previous studies, the Dioscorea species were almost all cultivated crops. In fact, the main reproductive mode of cultivated Dioscorea crops is asexual reproduction, which limits the gene pool exchange between species (Mengesha et al. 2013a, 2013b; Takayama et al. 2015). This might be why there were N_m values in some Dioscorea genetic diversity studies. Furthermore, we conducted a genetic structural analysis, which is typically assessed using F-statistics (Foll et al. 2008). The lowest F_{st} was observed in D. japonica, which indicates that this species had the highest degrees of intraspecific differentiation and variation. The F_{is} value of D. persimilis was the highest, indicating that the gene purity in the species was high, and the species may rarely undergo sexual reproduction. In contrast, the lowest F_{st} was observed in D. polyschachya. This indicated that there was less reproductive isolation between D. polyschachya and the other Dioscorea species, which means it is a good parental Dioscorea material. The highest F_{st} value was obtained in D. fordii, which indicated the highest differentiation between D. fordii and other five species.

The genetic relationships of some edible species of the genus Dioscorea have always been controversial. For example, on the basis of an18S sequence analysis, it was speculated that D. persimilis might be a cultivar of D. polystachya and thus should not be classified as an independent species (Liu et al. 2000). However, our results showed that all the individuals of D. persimilis had a distant relationship with D. polystachya. In addition, the phylogenetic tree showed that all the individuals of the two species were located on different branches. The evidence indicated that D. persimilis is an independent species. Another taxonomic issue in Dioscorea is whether D. alata is a true species or a putative cultigen. Some studies have indicated that D. alata might be a cultigen of D. persimilis (D. hamiltonii synon.) owing to the narrow genetic base (Hahn...
In fact, *D. alata* originates in North and East of the Bay of Bengal, and it is naturalized in China (Hang and Sun 2020). Our results showed that all the individuals of *D. alata* clustered together in the phylogenetic tree. This indicated that *D. alata* is a true species and not a putative cultigen. This phenomenon was also found in a previous study using an isozyme analysis (Lebot et al. 1998). Here, another interesting phenomenon was the close genetic relationship between *D. exalata* and *D. persimilis*. Furthermore, the PCoA analysis could not separate the individuals of the two species. Therefore, further work is required to establish the genetic relationship between the two species.

In this study, the phylogenetic tree and genetic similarity results showed that the genetic relationship between *D. japonica* and *D. polystachya* was the closest. Since the Song Dynasty, *D. japonica* has been called ‘Wild Yam’ (Hang and Sun 2020). The morphological characteristics of *D. japonica* are very similar to those of *D. polystachya*, and there is no reproductive isolation between them (Araki et al. 1983; Mizuki et al. 2010). Moreover, in pharmacological experiments, unlike other *Dioscorea* species, *D. japonica* and *D. polystachya* have the same efficacy level (Hang 1995). As mentioned previously, the highest degrees of intraspecific differentiation and variation were observed in *D. japonica*, indicating that it might be a suitable potential *Dioscorea*
breeding material. For subsequent breeding programs or conservation actions, we suggest that these species be referred to as the D. polystachya–D. japonica complex in accordance with the classification of Guinea yam (D. cayenensis–D. rotundata complex) (Martin and Rhodes 1978; Mengesha et al. 2013a, 2013b; Loko et al. 2015;)

Identification with SCAR makers

At present, the species identification of yam having medicinal properties is still obscure. Therefore, there is an urgent need for the development of a fast and robust identification method to distinguish D. polystachya from its related species. In this study, a species-specific band was obtained using SRAP and developed into a SCAR marker. To examine its accuracy and sensitivity, the species-specific SCAR marker was used in a double-blind test. All the individuals of D. polystachya amplified the species-specific band that was absent in the other species, confirming the specificity of the SCAR marker for species-specific identification. In short, a converted-SCAR technique proved to be a helpful tool in identifying Dioscorea species. The results of this study indicated that PCR products can be used to form SCAR markers, which may then be used in DNA barcoding for low-cost species identification.

Acknowledgements We thank the College of Horticulture, Nanjing Agricultural University for assistance with molecular markers profiling and double-blind tests. We thank Dr. Mingming Bai, Dr. Baiqing Ren, Dr. Ke Wang, Dr. Yanglian Wei and Dr. Haisong Guo for supplying Dioscorea materials. We thank the Xuzhou Academy of Agricultural Sciences and the Wenxian Institute of Agricultural Sciences for supplying Dioscorea materials. In memory of our mentors Prof. Ting Chihtsun (Ding Zhizun) and Deng Maobin, who were the most prestigious experts in taxonomic research of Dioscoreaceae and Hamamelidaceae.

Funding This work was supported by grants from the Science Fund of Jiangsu Vocational College of Agriculture and Forestry (2021kj[23]), the Natural Science Founding of Jiangsu Province (BK20180316) to MC, the Ability Improvement Project of Jiangsu Social Scientific Research Institutions (BM2018021-2) to XQS and the Independent Research Project of Jiangsu Provincial Public Welfare Research Institute (BM2018021-2).

Declarations

Conflicts of Interest The authors declare that there is no conflict of interests regarding the publication of this paper.

References

Adeniran AA, Sonibare MA (2016) Exploitation of petiole, nodal segment, bulbil and tuber anatomy for species identification in Dioscorea species from Oyo and Ekiti states southwestern Nigeria. Nigerian J Natural Prod Med. 20:43

Al-Qurainy F, Al-Ameri AA, Khan S, Nadeem M, Gaafer ARZ, Tarroum M (2018) SCAR marker for gender identification in date palm (Phoenix dactylifera L.) at the seedling stage. Int J Genom. 2018:3035406

Araki H, Harada T, Yakuwa T (1983) Some characteristics of interspecific hybrids between Dioscorea japonica Thunb. and Dioscorea opposita Thunb. J Japanese Soc Hortic Sci. 52:153–158

Biswa MK, Xu Q, Deng X (2010) Utility of RAPD, ISSR, IRAP and REMAP markers for the genetic analysis of Citrus spp. Sci Hortic 124:254–261

Devaiah K, Balasubramani SP, Venkatasubramanian P (2011) Development of randomly amplified polymorphic DNA based SCAR marker for identification of Ipomoea mauritiana (Convolvulaceae). Evid-Based Complement Altern Med. 2011:868–720

Foll M, Beaumont MA, Gaggiotti O (2008) An approximate Bayesian computation approach to overcome biases that arise when using amplified fragment length polymorphism markers to study population structure. Genetics 179:927–939

Ghosh M, Chezhian P, Sumathi R, Yasodha R (2010) Development of SCAR marker in Casuarina equisetifolia for species authentication. Trees 25:465–472

Hahn SK (1991) Yams. In: Simmonds, N.W. (Ed) Evolution of crop plants., Longman, London.

Hang YY (1995) Determination of the content of main constituents and pharmacologic experiments on Dioscorea japonica in China. J Plant Res Environ. 5:5–8

Hang YY, Xu LS, Shi DR, Qin HZ, Zhou YF (2007) Morphological features and its taxonomic significance of starch grain in subterranean organ of Dioscorea L. in China. J Plant Res Environ. 15:1–8

Hang YY, Sun XQ (2020) Dioscoreaceae in China, Phoenix Science Press, Nanjing

Hodeba M, Abang M, Robert A (2008) Genomics of Yams, a Common Source of Food and Medicine in the Tropics. In: Moore PH, Ming R(eds.), Genomics of Tropical Crop Plants. 1rd edn.Springer, New York, pp. 549–570

In Board of pharmacopoeia of PR China (2020) Pharmacopoeia of the People’s Republic of China, part I. Board of pharmacopoeia of PR China, Beijing, pp 30

Karnick CR (1969) Dioscorea (YAMS) - the food of the slaves, with potentials for newer drugs: a review. Quart J Crude Drug Res 9:1372–1391

Lalitha S (2000) Primer premier 5. biotech software & internet report. The Comp Softw J for Scient 1:270–272

Lay HL, Liu HI, Liao MH, Chen CC, Liu S, Sheu BW (2001) Genetic identification of Chinese drug materials in Yams (Dioscorea spp.) by RAPD analysis. J Food Drug Anal 9:132–138
Lebot V, Trilles B, Noyer JL, Modesto J (1998) Genetic relationships between *Dioscorea alata* L. cultivars. Genet Resour Crop Evol 45:499–509

Li MM, Zhou YF, Guo JL, Sun XQ, Hang YY (2012) Micro-morphological characteristics of leaf epidermis and its taxonomic significance in *Dioscorea* from China. Acta Botanica Boreali-Occidentalis Sin 11:2232–2242

Liu Y, He B, Cao H (2000) Application of gene technology in quality control of Chinese materia medica II. Identification of Chinese Rhizoma *Dioscoreae* by DNA sequencing. Chinese Traditional and Herbal Drugs 32:1026–1030

Loko YL, Adjatin A, Dansi A, Vodouhè R, Sanni A (2015) Participatory evaluation of Guinea yam (*Dioscorea cayenensis* Lam.—*D. rotundata* Poir. complex) landraces from Benin and agro-morphological characterization of cultivars tolerant to drought, high soil moisture and chips storage insects. Genet Resour Crop Evol 62:1181–1192

Malapa R, Arnau G, Noyer JL, Lebot V (2005) Genetic diversity of the greater Yam (*Dioscorea alata* L.) and relatedness to *D. nummularia* Lam. and *D. transversa* Br. as revealed with AFLP Markers. Genet Resour Crop Evol 52:919–929

Marieschi M, Torelli A, Bianch A, Bruni R (2011) Detecting *Satureja montana* L. and *Origanum majorana* L. by means of SCAR–PCR in commercial samples of Mediterranean oregano. Food Control 22:542–548

Martin FW, Rhodes AM (1978) The relationship of *Dioscorea cayenensis* and *D. rotundata*. Trop Agric 55:193–206

Mengesha WA, Demissew SF, Smith R, Nordal I, Wilkin P (2013a) Genetic diversity and population structure of Guinea yams and their wild relatives in South and South West Ethiopia as revealed by microsatellite markers. Genet Resour Crop Evol 60:529–541

Mengesha WA, Demissew S, Fay M, Smith R, Nordal I, Wilkin P (2013b) Genetic diversity and species delimitation in the cultivated and wild Guinea yams (*Dioscorea* spp.) from Southwest Ethiopia as determined by AFLP (amplified fragment length polymorphism) markers. Genet Resour Crop Evol 60:1365–1375

Mignouna HD, Abang MM, Wanyera NW, Chikaleke VA, Asiedu R, Thottappilly G (2005) PCR marker-based analysis of wild and cultivated Yams (*Dioscorea* spp.) in Nigeria: genetic relationships and implications for ex situ conservation. Genet Resour Crop Evol 52:755–763

Mizuki I, Ishida K, Tani N, Tsumura Y (2010) Fine-scale spatial structure of genets and sexes in the dioecious plant *Dioscorea japonica*, which disperses by both bulbils and seeds. Evol Ecol 24:1399–1415

Mukherjee P, Bhat KV (2013) Phylogenetic relationship of wild and cultivated yam species (*Dioscorea* spp.) of India inferred from PCR–RFLP analysis of two cpDNA loci. Plant Syst Evol 299:1587–1597

Narzary D, Mahar KS, Rana T, Ranade S (2009) Analysis of genetic diversity among wild pomegranates in Western Himalayas, using PCR methods. Sci Horic 121:237–242

Nascimento WF, Rodrigues JF, Koehler S, Gepts P, Veasey EA (2013) Spatially structured genetic diversity of the Amerindian yam (*Dioscorea trifida* L.) assessed by SSR and ISSR markers in Southern Brazil. Genet Resour Crop Evol 60:2405–2420

Peakall R, Smouse PE (2012) GenAIEx 6.5: genetic analysis in excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539

Peng B, Zhang Y, Sun X, Li M, Xue J, Hang YY (2017) Genetic relationship and identification of *Dioscorea poly-stachya* cultivars accessed by ISAP and SCAR markers. Arch Biol Sci. 69:277–284

Rohlf F (2000) NTSYS-PC, numerical taxonomy system for the PC ExeterSoftware, Version 2.1. Applied Biostatistics Inc Setauket, USA

Saengprajak J (2012) Genetic diversity and species identification of cultivar species in subtribe cucurbitineae (Cucurbitaceae) using RAPD and SCAR markers. Am J Plant Sci 03:1092–1097

Shin KO, Jeon JR, Ji SL, Kim JY, Chu HL, Kim SD, Yu YS, Nam DH (2006) Lactic acid fermentation of Chinese yam (*Dioscorea batatas* Decne) flour and its pharmacological effect on gastrointestinal function in rat model. Biotechnol Bioprocess Eng 11:240

Shiwachi H, Onjo M, Hayashi M (2000) Classification of yams (*Dioscorea* spp.) based on morphological characters and RAPD method. Jpn J Tropic Agric 44:229–237

Sun X, Guo J, Ge Y, Xia B, Hang YY (2012) Study of specific random amplification of polymorphic DNA-sequence characterized amplified region (RAPD-SCAR) marker for the endangered Chinese endemic herb *Atractylodes lancea*. J Med Plants Res. 6:3774–3780

Takayama K, López-Sepúlveda P, Greimler J, Crawford DJ, Peñailillo P, Baeza M, Ruiz E, Kohl G, Tremetsberger K, Gatica A, Letelier L, Nvoa P, Novak J, Stuessy TF (2015) Relationships and genetic consequences of contrasting modes of speciation among endemic species of *Robinsonia* (Asteraceae, Senecionae) of the Juan Fernández Archipelago, Chile, based on AFLPs and SSRs. New Phytol 205:415–428

Tostain S, Scarcelli N, Brottier P, Marchand JL, Pham JL, Noyer JL (2006) Development of DNA microsatellite markers in tropical yam (*Dioscorea* sp.). Mol Ecol Notes 6:173–175

Wilkin P, Schols P, Chase MW, Chayamarit K, Furness CA, Huysmans S, Rakotonasolo F, Smetts E, Thaypi C, Mee row AW (2005) A plastid gene phylogeny of the Yam genus, *Dioscorea*: roots, fruits and Madagascar. Syst Bot 30:736–749

Wilkin P, Thaypi C, Chayamarit K (2007) Lectotypification of *Dioscorea* L. (*Dioscoreaceae*) names from Thailand. Kew Bull 62:251–257

Wu Y, Zhang Z, Chen Y, Wang B, Yang G, Yang W (2009) Authentication of Thailand jasmine rice using RAPD and SCAR methods. Eur Food Res Technol 229:515–521

Wu ZG, Jiang W, Nitin M, Bao XQ, Chen SL, Tao ZM (2016) Effect of *Dioscorea opposita* Thunb. on the lipid metabolism in *Dioscorea opposita* Thunb. Proc Natl Acad Sci U S A 113:2734–2739

Yeh FC, Yang RC, Boyle T (1999) POPGENE software package version 1.31 for population genetic analysis. University of Alberta, Edmonton.
Zhou Y, Zhou C, Yao H, Liu Y, Tu R (2008) Application of ISSR markers in detection of genetic variation among Chinese yam (*Dioscorea opposita* Thunb) cultivars. Life Sci J 5:6–12

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.