Analysis of the association between the LUM rs3759223 variant and high myopia in a Japanese population

Shintaro Okui1
Akira Meguro1
Masaki Takeuchi1,2
Takahiro Yamane1
Eiichi Okada3
Yasuhito Iijima4
Nobuhisa Mizuki1

1Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan; 2Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; 3Okada Eye Clinic, Yokohama, Kanagawa, Japan; 4Aoto Eye Clinic, Yokohama, Kanagawa, Japan

Purpose: Many studies have investigated the relationship of the lumican gene (LUM) rs3759223 variant with the risk of high myopia, but the results have been inconsistent and inconclusive. In this study, we investigated whether LUM rs3759223 is associated with high myopia in a Japanese population.

Methods: We recruited 1,585 Japanese patients with high myopia (spherical equivalent [SE], -9.00 diopters [D]) and 1,011 Japanese healthy controls (SE \leq -1.00 D). The rs3759223 variant was genotyped using the TaqMan assay, and the allelic and genotypic diversity among cases and controls was analyzed according to the SE level.

Results: In the allelic tests, the odds ratio (OR) for the T allele of rs3759223 tended to increase with the progression of SE, and the highest OR (1.56) was found in patients with SE, -15 D in both eyes. The OR of the T allele tended to increase with the progression of SE in the additive, dominant, and recessive inheritance models. However, we found no significant associations for any of the alleles or genotype models.

Conclusion: These data support the possibility that the LUM rs3759223 T allele accelerates the progression of SE in the Japanese population, although no significant associations were observed in this study. Additional genetic studies with larger samples that take into account the degree of SE are needed to clarify the contribution of rs3759223 to the risk of high myopia.

Keywords: high myopia, lumican, association study, polymorphism

Introduction

Myopia is a type of refractive error and is one of the most common eye disorders in the modern world. High myopia, which is generally defined by a spherical equivalent (SE) refractive error $<$ -6 diopters (D) or an axial length (AL) $>$ 26 mm, is associated with an increased risk of various ocular diseases, including retinal detachment, glaucoma, and cataracts.1 The prevalence of myopia in East Asian and Southeast Asian countries is higher than the global average.2 Therefore, myopia, especially high myopia, is considered an important public health problem in Asian countries.

The etiology of myopia remains uncertain, but it is thought that certain environmental factors, such as near work (reading, studying, and computer use), can trigger the symptoms of myopia in individuals with a particular genetic background.3–6 Familial linkage studies have reported 19 genetic loci for myopia to date (MYP1–MYP19),7,8 and recent genome-wide association studies have identified many important candidate loci/genes that are implicated in myopia, refractive error, and/or AL elongation in several ethnic populations.9–12
The lumican (LUM) gene is located on chromosome 12q21.33 within the MYP3 locus (12q21–q23). LUM is a member of the small leucine-rich proteoglycan family, which regulates collagen fibril assembly and contributes to the maintenance of tissue-structural homeostasis and the regulation of cell proliferation, migration, and adhesion. An animal study found that the eyes of lumican–fibromodulin double-deficient (Lum−/− Fmod−/−) mice show some of the key features of high myopia, such as increased AL, scleral thinning, and retinal detachment. In 2006, Wang et al showed that the LUM promoter variant rs3759223 was significantly associated with high myopia in a Taiwanese population of Han Chinese origin. Subsequently, many studies in Taiwanese, Chinese, or Korean populations have investigated the association of LUM variants, especially rs3759223, with the risk of high myopia, but the results have been inconsistent and inconclusive. Accordingly, the aim of the present study was to investigate whether LUM rs3759223 is associated with high myopia in Japanese patients.

Methods

Subjects

We recruited 1,585 unrelated Japanese patients with high myopia (SE < −9.00 D in at least one eye) and 1,011 unrelated healthy Japanese controls (SE ≥ −1.00 D in both eyes) at Yokohama City University, Okada Eye Clinic, and Aoto Eye Clinic in Japan. The participants were the same as in our previous study, and they had similar social backgrounds and resided in the same urban area. All participants were diagnosed by comprehensive ophthalmologic tests, including AL measurement, fundus examination, SE determination, and corneal curvature determination (autorefractor; NIDEK, Gamagori, Japan; ARK-730A, ARK-700A; TOPCON, Tokyo, Japan; KP-8100P, Biometer/Pachymeter AL-2000; Tomey Corporation, Nagoya, Japan). We excluded individuals in the patient cohort who had any genetic diseases that were known to be associated with myopia and/or high myopia, including glaucoma, keratoconus, or Marfan syndrome. We recruited individuals aged 20 years and older for the control cohort to exclude potential myopia patients. Written informed consent was obtained from all participants. The study methodology adhered to the tenets of the Declaration of Helsinki and was approved by the relevant ethics committees at Yokohama City University, the Okada Eye Clinic, and the Aoto Eye Clinic.

DNA extraction and LUM rs3759223 genotyping

Genomic DNA was extracted from peripheral blood samples using the QIAMP DNA Blood Mini Kit (Qiagen, Hilden, Germany). Procedures were performed using standardized protocols to ensure uniform DNA quality. LUM rs3759223 genotyping was performed using the TaqMan 5′ exonuclease assay and a predesigned primer–probe set supplied by Applied Biosystems (Foster City, CA, USA). Polymerase chain reaction (PCR) was performed using a reaction mixture with a total volume of 10 μL containing 1× TaqMan Universal PCR Master Mix (Applied Biosystems), 24 nM of each primer–probe set, and 3 ng of genomic DNA. The PCR conditions were as follows: 95°C for 10 minutes, followed by 40 cycles of denaturation at 92°C for 15 seconds, and annealing/extension at 60°C for 1 minute. The probe fluorescence signal was detected using the StepOnePlus Real-Time PCR System (Applied Biosystems) following the manufacturer’s instructions.

Statistical analysis

The SNP & Variation Suite 8.4.0 software (Golden Helix, Inc., Bozeman, MT, USA, http://www.goldenhelix.com) was used to test for Hardy–Weinberg equilibrium (HWE) and to perform allelic and genotypic association analyses. Multiple inheritance models were used in the analysis of genotype data to assess each risk allele. Specifically, assuming that R is the risk allele and nR is the nonrisk allele, we assessed additive (R/R versus R/nR versus nR/nR), dominant (R/R versus R/nR versus nR/nR), and recessive (R/R versus R/nR plus nR/nR) models. P-values and odds ratios (ORs) in genotypic models were adjusted for age and sex (Padj and ORadj, respectively). The P- and P adj-values were determined using the chi-square test and logistic regression, respectively. The meta-analyses of various populations in previous studies were performed using the Mantel–Haenszel method. The possibility of publication bias was assessed by Egger’s regression test using the CMA v3 software (Biostat, Englewood, NJ, USA, https://www.meta-analysis.com/index.php).

Results

The clinical characteristics of the study populations are shown in Table 1. A total of 44.2% of patients and 41.6% of controls were male, and the mean ages of the patients and controls were 38.8±12.2 years (range: 12–78) and 58.2±12.3 years (range: 20–87), respectively. The average SEs of the patients were −10.94±2.06 D (range: −4.50 to −22.75 D) in the right eye and −10.82±2.07 D (range: −4.50 to −24.50 D) in the left eye. The average ALs of the patients were 27.55±1.22 mm (range: 23.92–33.85 mm) for the right eye and 27.51±1.24 mm (range: 23.99–34.74 mm) for the left eye. For the controls, the average SEs were 0.64 D (range: −1.00 to 3.50 D) in the right eye and 0.48±0.63 D...
Table 1: Clinical characteristics of the study population

Parameters	High myopia cases, a	Control subjects, b
	n=1,585	n=1,011
Sex, male, %	44.2	41.6
Mean age, years	38.8±12.2 (12.78)	58.2±12.3 (20.87)
Mean SE, diopeter (D)		
Right eyes	–10.94±2.06 [-4.50, -22.75]	0.48±0.64 [-1.00, 3.50]
Left eyes	–10.82±2.07 [-4.50, -24.50]	0.48±0.63 [-1.00, 3.00]
Mean AL, mm	27.55±1.22 [23.92, 33.85]	23.22±0.80 [18.76, 25.96]

Notes: High myopia cases were defined as SE < -9.0 D in at least one eye. Controls were defined as SE ≥ -1.0 D in both eyes. Data are presented as means ± standard deviations [minimum value, maximum value].

Abbreviations: AL, axial length; SE, spherical equivalent.

Discussion

The aim of this study was to assess whether the LUM promoter rs3759223 variant is associated with the risk of high myopia in a Japanese population. To address this question, we genotyped rs3759223 and assessed the allelic and genotypic diversity in cases and controls according to the level of SE. Because a higher degree of myopia suggests that genetic factors may be involved, this study only included patients with SE < -9.00 D in at least one eye. Here, we report that the OR for the T allele of rs3759223 tended to increase with the progression of SE in both allelic and genotypic association tests, although the results did not reach statistical significance. Our findings suggest the possibility that LUM rs3759223 contributes to the risk of very high myopia.

Table 4 summarizes previous studies that investigated the association between LUM rs3759223 and high myopia. In 2006, Wang et al. reported that there was a statistically significant difference in the genotypic distribution between cases (SE < -10.0 D in both eyes) and controls in Taiwanese subjects of Han Chinese origin. Subsequently, Zhang et al. reported significant associations with high myopia (SE < -6.0 D in both eyes) for rs3759223 in a Northern Han Chinese population in both genotypic and allelic tests. However,
other studies have reported a lack of association between rs3759223 and high myopia in Taiwanese, Chinese, and Korean populations.18–22

Recent meta-analyses of the genotype results for rs3759223 that were reported in previous studies suggest that rs3759223 is associated with an increased risk of high myopia in a recessive model of the T allele.26–28 Table 4 shows the results of genotypic association tests that used the genotype results reported by each study; the T allele was associated with an increased risk of high myopia in a recessive model in all of the studies. Our meta-analysis of the results of previous studies also suggested a significant association between rs3759223 and high myopia in a recessive model of the T allele (meta-\(P = 1.0 \times 10^{-9}\), meta-OR = 1.47; Table 4). Egger’s regression test showed that there was no significant publication bias in this meta-analysis (\(P = 0.184\)). On the other hand, in our Japanese population, the genotype tests showed that the T allele had a stronger association with high myopia in a dominant model than in a recessive model, regardless of the SE level of the patients (Table 3). This finding is not in line with previous studies.26–28

Previous studies that investigated the association of rs3759223 with high myopia have three limitations. The first is the relatively small sample size: all of the studies involved fewer than 300 cases and fewer than 300 controls (Table 4), making them underpowered to detect susceptibility variants, especially modest or small effect variants. This can lead to false-positive or false-negative results in an association study. To overcome this issue, larger sample sizes are required.

The second weakness is that some of the previous studies showed deviations from HWE in controls, and these deviations may be the result of genotyping errors (Table 4). Significant deviations from HWE in controls were found in the two studies by Lin et al19,20 that reported that the rs3759223 T allele is associated with a 1.53-fold or a 1.95-fold increased risk of high myopia, respectively, in a recessive model. In addition, there was a marginal deviation from HWE in the controls in the study by Zhang et al,17 who found strong associations in all of the allele and genotype models that they tested. All three of these studies of individuals of Chinese origin used very small sample sizes for the controls (<100 subjects), and the frequency of the T allele was ~30% in controls (Table 4). However, the 1000 Genomes Project East Asian database shows that the frequency is between 65% and 75% in populations of Chinese origin, and 79.8% and 71.7% in Japanese and Vietnamese Kinh populations (Table 5). This disparity may result from complex factors in the three studies, including small sample size and possible genotyping errors. Further analyses need to be performed in these populations.

Accordingly, we performed a new meta-analysis of previous studies that excluded these three studies. This analysis still showed that there was only a significant association between rs3759223 and high myopia in a recessive model of the T allele (meta-\(P = 2.0 \times 10^{-4}\), meta-OR = 1.27; Table 4), although the association level was lower than that in the meta-analysis that included all previous studies.

The third weakness of previous studies was that they did not assess associations between rs3759223 and high myopia according to the progression of SE. The present study found that the OR for the T allele tended to increase with the progression of SE in the Japanese population and suggested that the T allele has the potential to contribute to the risk of very high myopia. Therefore, an association between rs3759223 and very high myopia should be assessed in other populations.

Conclusion

In summary, we found that it is possible that the *LUM* rs3759223 T allele accelerates the progression of SE in the Japanese population, although no significant associations were
Table 4 Summary of previous studies investigating the association between LUM rs3759223 and high myopia

Study	Population	Criteriaa of SE (diopter)	n	Genotype distribution, n (frequency, %)	Allele frequency, %	Genetic modelsb	2×3 table	Dominant model	Recessive model					
				TT	CT	CC	HT	T	C					
				HWE	P	T	C	OR (95% CI)	P-value	P-value (95% CI)	P-value (95% CI)			
Wang et al16	Taiwanese (Han)	Cases: −10.0	120	61 (50.8)	32 (26.7)	27 (22.5)	4.2E-06	64.2	35.8	2.8E-04	0.0073	0.39 (0.19–0.79)	0.086	1.54 (0.94–2.53)
	Chinese origin	Controls: −1.5 to 0.5	137	55 (40.1)	68 (49.6)	14 (10.2)	0.290	65.0	35.0					
Zhang et al17	Northern Han	Cases: −6.0	94	57 (60.6)	31 (33.0)	6 (6.4)	0.527	77.1	22.9	3.4E-13	3.9E-11	14.67 (5.82–36.97)	1.1E–10	9.12 (4.45–18.72)
	Chinese	Controls: −0.25 to 0.25	90	13 (14.4)	32 (35.6)	45 (50.0)	0.078	32.2	67.8					
Wang et al18	Southeastern	Cases: ≤−6.0	288	155 (53.8)	112 (38.9)	21 (7.3)	0.901	73.3	26.7	0.048c	0.034d	1.90 (1.04–3.46)	0.058	1.41 (0.99–2.02)
	Chinese	Controls: −0.5 to 1.0	208	94 (45.2)	87 (41.8)	27 (13.0)	0.337	66.1	33.9					
Lin et al19,e	Taiwanese (Han)	Cases: ≤−6.0	201	14 (7.0)	83 (41.3)	104 (51.7)	0.640	27.6	72.4	0.213	0.176	0.70 (0.42–1.17)	0.459	1.53 (0.49–4.80)
(Chinese origin)		Controls: −0.5 to 0.5	86	4 (4.7)	45 (52.3)	37 (43.0)	0.035	30.8	69.2					
Lin et al20,e	Taiwanese (Han)	Cases: ≤−6.5	182	13 (7.1)	74 (40.7)	95 (52.2)	0.784	27.5	72.5	0.195	0.241	0.73 (0.43–2.33)	0.301	1.95 (0.54–7.04)
(Chinese origin)		Controls: −0.5 to 1.0	78	3 (3.8)	41 (52.6)	35 (44.9)	0.032	29.7	69.9					
Dai et al21	Northeastern	Cases: ≤−10.0	220	125 (56.8)	74 (33.6)	21 (9.5)	0.047	73.6	26.4	0.746	0.637	0.82 (0.35–1.91)	0.692	1.10 (0.69–1.77)
Han Chinese	Controls: −0.75 to 0.75	101	55 (54.5)	38 (37.6)	8 (7.9)	0.691	73.3	26.7						
Park et al22	Korean	Cases: ≤−9.25f	128	86 (67.2)	34 (26.6)	8 (6.3)	0.080	80.5	19.5	0.625	0.521	0.74 (0.29–1.88)	0.631	1.12 (0.71–1.76)
	Controls: ≥−1.5		235	152 (64.7)	72 (30.6)	11 (4.7)	0.514	80.0	20.0					

Notes: aWe confirmed that the SE criteria were applied to both eyes in all studies except for the study by Zhang et al.,17 which did not have this information. bWe calculated the P-values and ORs using the genotype results reported in each study. The P-values of 2×3 contingency table, dominant (TT + CT versus CC) and recessive (TT versus CT + CC) models in each study were determined using the chi-square test. The meta-analyses were performed using the Mantel–Haenszel method. cThe 94 cases include 12 familial and 82 sporadic cases. dStatistical difference did not exist after Bonferroni correction. eBased on their methods' descriptions, most of the cases and controls overlap in the two studies. fThe myopia cases also had an AL of ≥26.55 mm in both eyes.

Abbreviations: AL, axial length; CI, confidence interval; HWE, Hardy–Weinberg equilibrium; OR, odds ratio; SE, spherical equivalent.
Table 5 Genotype and allele frequencies of the LUM rs3759223 variant in East Asian populations (Phase 3) of the 1000 Genomes Project

Population	Genotype frequency, n (%)	Allele frequency, %			
	TT	CT	CC	T	C
Chinese Dai in Xishuangbanna, People’s Republic of China (CDX), n=93	41 (44.1)	42 (45.2)	10 (10.8)	66.7	33.3
Han Chinese in Beijing, People’s Republic of China (CHB), n=103	57 (55.3)	39 (37.9)	7 (6.8)	74.3	25.7
Southern Han Chinese, People’s Republic of China (CHS), n=105	50 (47.6)	45 (42.9)	10 (9.5)	69.0	31.0
Japanese in Tokyo, Japan (JPT), n=104	68 (65.4)	30 (28.8)	6 (5.8)	79.8	20.2
Kinh in Ho Chi Minh City, Vietnam (KHV), n=99	48 (48.5)	46 (46.5)	5 (5.1)	71.7	28.3

Note: Data reprinted with permission from Macmillan Publishers Ltd: Nature. Copyright 2015. Available from: http://www.1000genomes.org/

observed in this study. This was probably due to small sample sizes after stratification by SE. To clarify the contribution of rs3759223 to the risk of high myopia, additional larger genetic studies are needed that take into account the degree of SE.

Acknowledgments

The authors thank all the subjects for their participation in this study and all the medical staff who helped with sample collection and diagnosis.

Disclosure

The authors report no conflicts of interest in this work.

References

1. Saw SM, Gazzard G, Shih-Yen EC, Chua WH. Myopia and associated pathological complications. *Ophthal Physiol Opt*. 2005;25(5):381–391.
2. Foster PJ, Jiang Y. Epidemiology of myopia. *Eye (Lond)*. 2014;28(2):202–208.
3. Lyhne N, Sjolie AK, Kyvik KO, Green A. The importance of genes and environment for ocular refraction and its determiners: a population based study among 20–45 year old twins. *Br J Ophthalmol*. 2001;85(12):1470–1476.
4. Fan Q, Wojcieszowski R, Kamran Ikram M, et al. Education influences the association between genetic variants and refractive error: a meta-analysis of five Singapore studies. *Hum Mol Genet*. 2014;23(2):546–554.
5. Verhoeven VJ, Buitendijk GH; Consortium for Refractive Error and Myopia (CREAM), et al. Education influences the role of genetics in myopia. *Eur J Epidemiol*. 2013;28(12):973–980.
6. Goldschmidt E, Jacobsen N. Genetic and environmental effects on myopia development and progression. *Eye (Lond)*. 2014;28(2):126–133.
7. Yu L, Li ZK, Gao JR, Liu JR, Xu CT. Epidemiology, genetics and treatments for myopia. *Int J Epidemiol*. 2011;40(6):658–669.
8. Ma JH, Shen SH, Zhang GW, et al. Identification of a locus for autosomal dominant high myopia on chromosome 5p13.3-p15.1 in a Chinese family. *Mol Vis*. 2010;16:2043–2054.
9. Hysi PG, Wojcieszowski R, Rahi JS, Hammond CJ. Genome-wide association studies of refractive error and myopia, lessons learned, and implications for the future. *Invest Ophthalmol Vis Sci*. 2014;55(5):3344–3351.
10. Fan Q, Barathi YA, Cheng CY, et al. Genetic variants on chromosome 1q41 influence ocular axial length and high myopia. *PLoS Genet*. 2012;8(6):e1002753.
11. Cheng CY, Schache M, Ikram MK, et al. Nine loci for ocular axial length identified through genome-wide association studies, including shared loci with refractive error. *Am J Hum Genet*. 2013;93(2):264–277.
12. Miyake M, Yamashiro K, Tabara Y, et al. Identification of myopia-associated WNT7B polymorphisms provides insights into the mechanism underlying the development of myopia. *Nat Commun*. 2015;6:6689.
13. Chakravarti S, Magnuson T, Lass JH, Jepsen KJ, LaMantia C, Carroll H. Lumican regulates collagen fibril assembly: skin fragility and corneal opacity in the absence of lumican. *J Cell Biol*. 1998;141(5):1277–1286.
14. Nikitovic D, Katonis P, Tsatsakis A, Karamanos NK, Tzanakakis GN. Lumican, a small leucine-rich proteoglycan. *IUBMB Life*. 2008;60(12):818–823.
15. Chakravarti S, Paul J, Roberts L, Chervoneva I, Oldberg A, Birk DE. Ocular and scleral alterations in gene-targeted lumican-fibromodulin double-null mice. *Invest Ophthalmol Vis Sci*. 2003;44(6):2422–2432.
16. Wang IJ, Chiang TH, Shih YF, et al. The association of single nucleotide polymorphisms in the 5′ regulatory region of the lumican gene with susceptibility to high myopia in Taiwan. *Mol Vis*. 2006;12:852–857.
17. Zhang F, Zhu T, Zhou Z, Wu Y, Li Y. Association of lumican gene with susceptibility to pathological myopia in the Northern Han ethnic Chinese. *J Ophthalmol*. 2009;2009:514306.
18. Wang P, Li S, Xiao X, et al. High myopia is not associated with the SNPs in the TGIF, lumican, TGFBI, and HGF genes. *Invest Ophthalmol Vis Sci*. 2009;50(4):1546–1551.
19. Lin HJ, Kung YJ, Lin YJ, et al. Association of the lumican gene functional 3′-UTR polymorphism with high myopia. *Invest Ophthalmol Vis Sci*. 2010;51(1):96–102.
20. Lin HJ, Wan L, Tsai Y, Chen WC, Tsai SW, Tsai FJ. The association between lumican gene polymorphisms and high myopia. *Eye (Lond)*. 2010;24(6):1093–1101.
21. Dai L, Li Y, Du CY, et al. Ten SNPs of PAX6, Lumican, and MYOC genes are not associated with high myopia in Han Chinese. *Ophthalmic Genet*. 2012;33(3):171–178.
22. Park SH, Mok J, Joo CK. Absence of an association between lumican promoter variants and high myopia in the Korean population. *Ophthalmic Genet*. 2013;34(1–2):43–47.
23. Kanemaki N, Meguro A, Yamane T, et al. Study of association of lumican gene promoter variants and high myopia in the Japanese population. *Clin Ophthalmol*. 2015;9:2005–2011.
24. Plackett RL. The continuity correction in 2×2 tables. *Biometrika*. 1964;51(3–4):327–337.
25. Cox DR. The continuity correction. *Biometrika*. 1970;57(1):217–219.
26. Liao X, Yang XB, Liao M, Lan CJ, Liu LQ. Association between lumican gene -1554 T/C polymorphism and high myopia in Asian population. *Clin Ophthalmol*. 2013;7:202–208.
27. Park SH, Mok J, Joo CK. Absence of an association between lumican gene promoter variants and high myopia in the Japanese population. *Clin Ophthalmol*. 2015;9:2005–2011.
28. Plackett RL. The continuity correction in 2×2 tables. *Biometrika*. 1964;51(3–4):327–337.
29. Cox DR. The continuity correction. *Biometrika*. 1970;57(1):217–219.
30. Liao X, Yang XB, Liao M, Lan CJ, Liu LQ. Association between lumican gene -1554 T/C polymorphism and high myopia in Asian population: a meta-analysis. *Int J Ophthalmol*. 2013;6(5):696–701.
31. Feng YF, Zhang YL, Zha Y, Huang JH, Cui JQ. Association of Lumican gene polymorphism with high myopia: a meta-analysis. *Optom Vis Sci*. 2013;90(11):1321–1326.
32. He M, Wang W, Ragoonzundun D, Huang W. Meta-analysis of the association between lumican gene polymorphisms and susceptibility to high myopia. *PLoS One*. 2014;9(6):e98748.
33. 1000 Genomes Project Consortium, Auton A, Brooks LD, et al. A global reference for human genetic variation. *Nature*. 2015;526(7571):68–74. Available from: http://www.1000genomes.org/. Accessed September 16, 2016.
LUM rs3759223 and high myopia