Oxidative damage, pro-inflammatory cytokines, TGF-α and c-myc in chronic HCV-related hepatitis and cirrhosis

Fabio Farinati, Romilda Cardin, Marina Bortolami, Maria Guido, Massimo Rugge

AIM: To assess whether a correlation exists between oxidative DNA damage occurring in chronic HCV-related hepatitis and expression levels of pro-inflammatory cytokines, TGF-α and c-myc.

METHODS: The series included 37 patients with chronic active HCV-related hepatitis and 11 with HCV-related compensated cirrhosis. Eight-hydroxydeoxyguanosine in liver biopsies was quantified using an electrochemical detector. The mRNA expression of TNF-α, IL-1β, TGF-α and c-myc in liver specimens was detected by semi-quantitative comparative RT-PCR.

RESULTS: TNF-α levels were significantly higher in hepatitis patients than in cirrhosis patients (P=0.05). IL-1β was higher in cirrhosis patients (P=0.05). A significant correlation was found between TNF-α and staging (P=0.05) and between 1L-1β levels and grading (P=0.04). c-myc showed a significantly higher expression in cirrhosis patients (P=0.001). Eight-hydroxydeoxyguanosine levels were significantly higher in cirrhosis patients (P=0.05) and in HCV genotype 1 (P=0.03). Considering all patients, 8-hydroxydeoxyguanosine levels were found to be correlated with genotype (P=0.04) and grading (P=0.007). Also multiple logistic regression analysis demonstrated a significant correlation among the number of DNA adducts, TNF-α expression and HCV genotype (P=0.02).

CONCLUSION: In chronic HCV-related liver damage, oxidative DNA damage correlates with HCV genotype, grading and TNF-α levels. As HCV-related liver damage progresses, TNF-α levels drop while IL-1β and c-myc levels increase, which may be relevant to liver carcinogenesis.
the inflammatory response and recent reports have shown that its levels are higher in HCV-related liver diseases than in other forms of liver damage[26]. Its polymorphisms behind are related to the risk of progression to HCC[16-17].

Our hypothesis is that oxidative DNA damage prompted by pro-inflammatory cytokines and/or by a specific effect of HCV core protein[16-19], and associated with an imbalance between apoptosis and cytoproliferation[20], is a fundamental event in HCV-related liver carcinogenesis.

Since a number of additional mediators are involved in liver carcinogenesis, including oncogenes such as c-myc that controls hepatocyte proliferation[21] and growth factors such as TGF-α involved in controlling liver regeneration and tumoral progression[22], particularly when they are co-expressed[23], the present study was to seek any correlations between oxidative DNA damage and the levels of pro-inflammatory cytokines like TGF-α and of c-myc in chronic HCV-related liver damage.

MATERIALS AND METHODS

Patients
Forty-eight patients consecutively recruited (34 M / 14 F, mean age 42 ± 12 years) with liver disease characterized by abnormal serum transaminase levels for more than 6 months, were admitted to the Division of Gastroenterology for diagnostic liver biopsy. Informed consent was obtained from all patients. Patients taking medication or vitamins capable of interfering with oxidative balance or liver damage were excluded from the study. The study was approved by the Human Research Committee of the University of Padova. Thirty-seven patients (24 M / 13 F, mean age 40.5 ± 11 years) were assigned to chronic active hepatitis (CAH) group and 11 patients (7 M / 4 F, mean age 50.5 ± 14 years) were assigned to chronic HCV-related compensated (Child class A) cirrhosis (CIRR) group. Before biopsy, each patient was tested to measure HCV antibodies using a second-generation ELISA and all positive sera were confirmed by RIBA II assay. In all patients, anti-HCV seropositivity was confirmed by positive HCV-RNA levels using the Amplicor HCV test (Amplicor PCR Diagnostic, Hoffman-La Roche, Basel Switzerland). A standardized genotyping assay (Inno-Lipa HCV III, Inno-Genetics, Gent, Belgium) was used. HCV genotypes were classified as genotype 1, subtypes 1a and 1b, genotypes 2, 3 and 4 and their subtypes. All the following studies were performed prior to any treatment.

Morphological evaluation
Biopsies (one per patient) were taken using a 16-17 gauge modified Menghini needle under ultrasound guidance and local anesthesia. Only patients whose biopsy material was adequate (i.e. about 4 cm long) were included in the study to avoid taking a second biopsy. At least 2 cm of biopsy material was cut, fixed in 10% buffered formaldehyde and handed over to the pathologists. The tissue was embedded in paraffin, cut and routinely stained with H&E and PAS for routine evaluation. Together with the overall diagnosis, the pathologist (who was unaware of the clinical diagnosis) also gave a semi-quantitative score (0 – 3) for the presence and extent of macro- and micro-vesicular steatosis and the Knodell index[24], as modified by Ishak et al[25], including both a grading and a staging of hepatic disease.

Biochemical findings
Serum levels of ferritin, transaminases and γ-glutamyl transpeptidase (γ-GT) were determined as part of the routine clinical procedure. The tissue for biochemical determination was around 15 mg wet weight. Samples were processed immediately and stored at -80°C.

Quantification of 8OHdG from hepatic biopsies
Liver biopsy specimens obtained at endoscopy were stored at -80°C for no longer than 3 wk. Preliminary experiments indicated that storage under these conditions could not affect the results of the assessment obtainable with unfrozen samples and the samples might remain stable for as long as 1 month (data not shown).

After thawing, the specimens were homogenized in separation buffer (75 mM NaCl, 10 mM Tris/Cl pH 7.5, 5 mM EDTA pH 6, 0.5% sodium dodecyl sulfate) and proteinase K at 55°C overnight. After treatment with ribonuclease A, the DNA was purified according to Fraga et al[26]. Following nuclease P1 and alkaline phosphatase hydrolysis, samples were filtered through 0.22 µm nylon filter units (Scientific Resources, Inc., Alfatech, Genova - Italy), and approximately 20 µg of DNA per sample was injected into the HPLC (Shimadzu, Kyoto, Japan). 8OHdG and normal deoxynucleosides were separated in a 3 µm Supelcosil LC-18-DB analytical column (7.5 cm × 4.6 mm, Supelco, Bellefonte, PA) equipped with a 5 µm SupelpguardTM LC-18-DB guard column cartridge. The solvent system consisted of an isocratic mixture of 90% 50 mmol/L potassium phosphate (pH 5.5) and 10% methanol at the 1 mL/min flow rate. 8OHdG was detected using an electro-chemical detector (ECD; ESA Coulochem II 5200A, Bedford, MA) equipped with a high-sensitivity analytical cell model 5011 with the oxidation potentials of electrodes 1 and 2 adjusted to 0.15 V and 0.35 V, respectively. 8OHdG levels were referred to the amount of deoxyguanosine (dG) detected in the same sample by UV absorbency at 254 nm. The amount of DNA was determined according to a calibration curve versus known amounts of calf thymus DNA. 8OHdG levels were expressed as the number of 8OHdG adducts per 10^7 dG bases. An 8OHdG standard (Sigma) prepared immediately before determination, was injected before any set of samples. The coefficient of variation was <10% and the amount of DNA required for the assay (expressed in µg of DNA) was 100 µg. Samples with lower amounts of DNA were rejected, since the risk of methodological error was only acceptable above this cut-off.

TNF-α, IL-1β, TGF-α and c-myc determination
The mRNA expression of TNF-α, IL-1β, TGF-α and c-myc in liver specimens was detected by semi-quantitative comparative RT-PCR. Total RNA extracted from frozen liver tissue (stored at -80°C) by acid guanidium thiocyanate-phenol-chloroform according to the Chomczynski and Sacchi method[27], was quantified spectrophotometrically. Integrity of the RNA sample was assessed by electrophoresis on 2% agarose gel (FMC Bio Product, Rockland,
MC, USA). One µg of RNA was reverse transcribed in cDNA in the presence of 1× PCR buffer, 1 mM each of dNTPs, 1 U RNase inhibitor, 2.5 µM random exomers and 2.5 U of murine leukemia virus. cDNA was amplified in a final volume of 50 µL of PCR buffer, 2 U Amplitag DNA polymerase, 0.056 µmol/L of Taq Start antibody, 0.2 mM of each of the dNTPs, 0.4 µmol/L of each primers for TNF-α, IL-1β, TGF-α, c-myc and β-actin. PCR products underwent a vertical electrophoresis on polyacrilamide gel. Electrophoretic bands were stained with silver nitrate and scanned on a densitometer image analyzer system (Quantity-one Biorad, Hercules, CA, USA). The results were expressed as the optical density ratio of TNF-α, IL-1β, TGF-α and c-myc to control β-actin.

Statistical analysis

The data were examined statistically by one-way ANOVA and Student’s t-test, Kruskal-Wallis and linear regression. Multiple logistic regression analysis was also used by including the following variables: 8OHdG levels, diagnosis, age, expression of TNF-α, IL-1β, TGF-α and c-myc, genotype.

RESULTS

Patient characteristics

No difference in the patients’ age or gender distribution was observed between the CAH and CIRR groups. ALT levels were significantly higher in patients with chronic hepatitis than in patients with cirrhosis (87.9 ± 49 vs 50.5 ± 14, P = 0.002 by t), while AST levels were significantly higher in CIRR group than in CAH group (178 ± 95 vs 52 ± 23, P = 0.002 by t). Serum ferritin and γGT levels underwent a vertical electrophoresis on polyacrilamide gel. Electrophoretic bands were stained with silver nitrate and scanned on a densitometer image analyzer system (Quantity-one Biorad, Hercules, CA, USA). The results were expressed as the optical density ratio of TNF-α, IL-1β, TGF-α and c-myc to control β-actin.

Oxidative DNA damage, TNF-α, IL-1β, TGF-α and c-myc expression

8OHdG levels were significantly higher in CIRR patients (P = 0.05 by t) and when oxidative damage was correlated with different HCV genotypes, 8OHdG levels were higher in HCV genotype 1 hepatitis than in the other genotypes (P = 0.03 by t). The results of 8OHdG are shown in Table 1. Considering all patients, 8OHdG levels correlated significantly with genotypes (P = 0.04 Spearman’s rank correlation) and grading (P = 0.007 Spearman’s rank correlation). The results for pro-inflammatory cytokines, TGF-α and c-myc are shown in Table 2. TNF-α expression was significantly higher in CIRR group than in CAH group (0.7 ± 0.2 vs 0.5 ± 0.2, P = 0.05 by t), whereas IL-1β expression was significantly higher in CIRR group than in CAH group (1.4 ± 0.6 vs 1.1 ± 0.3, P = 0.05 by t). The previously mentioned higher oxidative DNA levels in genotype 1 HCV infection correlated with TNF-α (P = 0.04). A significant correlation was also found between IL-1β levels and grading (P = 0.04), and between TNF-α and staging (P = 0.05). No significant correlations were found between pro-inflammatory cytokine levels, steatosis score or genotype. TGF-α levels were similar in the two groups of patients (0.41 ± 0.18 vs 0.43 ± 0.21, P = NS by t), while c-myc expression was significantly higher in patients with cirrhosis (0.46 ± 0.2 vs 0.09 ± 0.05, P = 0.001 by t). No significant correlations were found between c-myc, steatosis score or genotype. Finally, multiple logistic regression analysis confirmed the previously reported significant correlation among the number of DNA adducts, TNF-α expression and genotype (P = 0.02).

DISCUSSION

We have previously reported that oxidative DNA damage in the liver is, at least to some degree, a specific feature of HCV infection, in which it reaches its maximal levels[7]. Even though it occurs in the early stages too, 8OHdG accumulation parallels the progression of the disease and is more striking in subjects with HCV genotype 1b infection[28].

This paper provides data on patients with HCV-related liver damage, partly describing the complex network of relationships between DNA oxidative damage, cytokine synthesis and release, c-myc and TGF-α expression that may both be strongly involved in liver carcinogenesis[29-31]. Numerous data link oxidative damage (and the parameters considered here) with the progression of liver disease and the onset of liver cancer. In primary murine hepatocyte cultures, TNF-α expression causes 8OHdG formation and an increase in cell cycle progression indicates a possible role of TNF-α in early malignant transformation of hepatocytes[32].

The first set of our results was related to TNF-α and IL-1β which plays a direct role in causing growth arrest and a chronic role in inducing TNF-α expression[10-11]. This effect was not confirmed in our series, since a correlation between IL-1β and TNF-α was not detected. On the other hand, IL-1β expression was higher in the later stages of HCV-related liver disease, as previously dem-

Table 1 Eight-hydroxydeoxyguanosine levels in chronic HCV-mediated liver damage (mean ± SD)

	n° 8OHdG/10^6 dG	n° 8OHdG/10^7 dG
CAH	42 ± 25.3	74 ± 36
CIRR	73 ± 28.2	46.9 ± 23
P	0.05	0.03

Table 2 TNF-α, IL-1β, TGF-α and c-myc expression in chronic HCV-mediated liver damage (mean ± SD)

	TNF-α/β-actin	IL-1β/β-actin	TGF-α/β-actin	c-myc/β-actin
CAH	0.7 ± 0.2	1.1 ± 0.3	0.41 ± 0.1	0.09 ± 0.05
CIRR	0.5 ± 0.2	1.4 ± 0.6	0.43 ± 0.2	0.46 ± 0.2
P	0.05	0.05	N.S.	0.001
onstrated by Gramantieri et al[3], while the opposite was true of TFN-α, whose levels of expression were higher in CAH patients. We have previously reported that the balance between cytoproliferation and apoptosis is disrupted in HCV infection[20]. It is worth stressing that both TNF-α and IL-1β are involved in controlling the above described balance, thus taking part in determining the liver cell’s fate and progression to liver cancer. In fact, the binding of TNF-α and IL-1β to their receptors leads to the activation of transcriptional factors, such as NFkB and AP-1, again involved in controlling cell proliferation[10]. What role does persistent oxidative stress play in this scenario? The over-production of inflammatory cytokines (as shown by the positive correlation between TNF-α and 8OHdG levels in the liver), might be responsible for inhibiting the apoptotic process, most likely by activating the NFkB-dependent pathway[19].

Last but not the least, oxidative damage may be related to the expression of proto-oncogenes, such as c-myc[31]. In our study, c-myc transcript levels were significantly higher in cirrhotic than in non-cirrhotic tissues, indicating that tissue damage progression from hepatitis to cirrhosis, with the related cell growth changes, may be mediated to some degree by c-myc, which indeed is considered one of the activators of cell proliferation[56]. In this series, we could detect no relationship between 8OHdG and c-myc, suggesting that they have different and independent proto-oncogene activation mechanisms.

It was reported that TGF-α/c-myc double transgenic mice exhibit enhanced cell proliferation and build up extensive oxidative DNA damage which possibly accounts for massive DNA damage and accelerated neoplastic development in the liver[13]. In the present study, all liver samples with or without cirrhosis, expressed low levels of TGF-α mRNA and revealed no correlation with any of the other parameters investigated. This may not be totally surprising, since a strong and prominent localization of TGF-α in ground-glass hepatocytes of HBV-related liver disease in association with HBV pre-S1 antigen has been reported and this may mean that TGF-α is more involved in HBV than in HCV liver disease[30].

In our study DNA oxidative damage correlated with TNF-α over-expression in chronic HCV-mediated liver damage. Evolution to cirrhosis was characterized by an increased oxidative DNA damage, c-myc expression and IL-1β release. When disease activity was severe, it was paralleled by an increased expression of IL-1β and c-myc associated with genotype 1b infection and accumulation of 8OHdG. The above findings suggest that chronic HCV-mediated oxidative DNA damage in the liver may have an impact not only on hepatocyte proliferation rate through c-myc activation but also on cell proliferation and apoptosis through TNF-α activation.

In conclusion, HCV infection is associated with increasing cell proliferation unaccompanied with any substantial increase in apoptosis[24], while TNF-α activation in this scenario has more to do with cell proliferation rather than with cell apoptosis.

REFERENCES

1 Basaga HS. Biochemical aspects of free radicals. Biochem Cell Biol 1990; 68: 989-998
2 Adelman R, Saul RL, Ames BN. Oxidative damage to DNA: relation to species metabolic rate and life span. Proc Natl Acad Sci USA 1988; 85: 2796-2797
3 Kuchino Y, Mori F, Kasai H, Inoue H, Iwai S, Miura K, Ohtsuka E, Nishimura S. Misreading of DNA templates containing 8-hydroxydeoxyguanosine at the modified base and at adjacent residues. Nature 1987; 327: 77-79
4 Olimski R, Gackowski D, Rozalski R, Foksinski M, Bialkowski K. Oxidative DNA damage in cancer patients: a cause or a consequence of the disease development? Mutat Res 2003; 531: 177-190
5 de Groot H. Reactive oxygen species in tissue injury. Hepatogastroenterology 1994; 41: 326-332
6 Floyd RA. The role of 8-hydroxyguanine in carcinogenesis. Carcinogenesis 1990; 11: 1447-1450
7 Farinati F, Cardin R, Degan P, De Maria N, Floyd RA, Van Thiel DH, Naccarato R. Oxidative DNA damage in circulating leukocytes occurs as an early event in chronic HCV infection. Free Radic Biol Med 1999; 27: 1294-1291
8 Jain SK, Pemberton FW, Smith A, McMahon RF, Burrows PG, Aboutwerdet A, Warnes TW. Oxidative stress in chronic hepatitis C: not just a feature of late stage disease. J Hepatology 2002; 36: 805-811
9 Parola M, Robino G. Oxidative stress-related molecules and liver fibrosis. J Hepatology 2003; 35: 297-306
10 Ramadori G, Armbrust T. Cytokines in the liver. Eur J Gastroenterol Hepatology 2001; 13: 777-784
11 Roberts RA, Kimber I. Cytokines in non-genotoxic hepatocarcinogenesis. Carcinogenesis 1999; 20: 1397-1401
12 Zhu N, Koshansh A, Schneider R, Matsumoto M, Dennert G, Ware C, Lai MM. Hepatitis C virus core protein binds to the cytoplasmic domain of tumor necrosis factor (TNF) receptor 1 and enhances TNF-induced apoptosis. J Virol 1998; 72: 2369-2369
13 Gochea PA, Jonsson JR, Clouston AD, Pandeya N, Purdie DM, Powell EE. Steatosis in chronic hepatitis C: association with increased messenger RNA expression of collagen I, tumor necrosis factor-alpha and cytochrome P450 2E1. J Gastroenterol Hepatology 2003; 18: 386-392
14 Nelson DR, Lim HL, Marousis CG, Fang JW, Davis GL, Shen L, Urdea MS, Kolberg JA, Lau JY. Activation of tumor necrosis factor-alpha system in chronic hepatitis C virus infection. J Virol 1992; 67: 2487-2494
15 Lapiński TW. The levels of IL-1beta, IL-4 and IL-6 in the serum and the liver tissue of chronic HCV-infected patients. Arch Immunol Ther Exp (Warsz) 2001; 49: 311-316
16 Tanaka Y, Furuta T, Suzuki S, Orito E, Yeo AE, Hirashima N, Sugachui F, Ueda R, Mizokami M. Impact of interleukin-1beta genetic polymorphisms on the development of hepatitis C virus-related hepatocellular carcinoma in Japan. J Infect Dis 2003; 187: 1822-1825
17 Bahr MJ, el Menuawy M, Boeker KH, Musholt PB, Manns MP, Lichtinghagen R. Cytokine gene polymorphisms and the susceptibility to liver cirrhosis in patients with chronic hepatitis C. Liver Int 2003; 23: 420-425
18 Hoek JB, Pastorino JG. Ethanol, oxidative stress, and cytokine-induced liver cell injury. Alcohol 2002; 27: 63-68
19 Moriya K, Nakagawa K, Santa T, Shintani Y, Fujie H, Miyoshi H, Tsutsui T, Miyaizawa T, Ishishishi K, Horie T, Imai K, Todoroki T, Kimura S, Koike K. Oxidative stress in the absence of inflammation in a mouse model for hepatitis C virus-associated hepatocarcinogenesis. Cancer Res 2001; 61: 4365-4370
20 Farinati F, Cardin R, Fiorentino M, De’errico A, Grigioni W, Cecchetto A, Naccarato R. Imbalance between cytoproliferation and apoptosis in hepatitis C virus related chronic liver disease. J Viral Hepat 2001; 8: 34-40
21 Ikeguchi M, Hirooka Y. Expression of c-myc mRNA in hepatocellular carcinomas, noncancerous livers, and normal livers. Pathobiology 2004; 71: 281-286
22 Chung YH, Kim JA, Song BC, Lee GC, Koh MS, Lee YS, Lee SG, Suh DJ. Expression of transforming growth factor-alpha mRNA in livers of patients with chronic viral hepatitis and...
hepatocellular carcinoma. *Cancer* 2000; 89: 977-982

23 Santoni-Rugiu E, Jensen MR, Factor VM, Thorgeirsson SS. Acceleration of c-myc-induced hepatocarcinogenesis by Co-expression of transforming growth factor (TGF)-alpha in transgenic mice is associated with TGF-beta1 signaling disruption. *Am J Pathol* 1999; 154: 1693-1700

24 Knodell RG, Ishak KG, Black WC, Chen TS, Craig R, Kaplowitz N, Kiernan TW, Wollman J. Formulation and application of a numerical scoring system for assessing histological activity in asymptomatic chronic active hepatitis. *Hepatology* 1981; 1: 431-435

25 Ishak K, Baptista A, Bianchi L, Callea F, De Groote J, Gudat F, Denk H, Desmet V, Korb G, MacSween RN. Histological grading and staging of chronic hepatitis. *J Hepatol* 1995; 22: 696-699

26 Fraga CG, Shigenaga MK, Park JW, Degan P, Ames BN. Oxidative damage to DNA during aging: 8-hydroxy-2'-deoxyguanosine in rat organ DNA and urine. *Proc Natl Acad Sci USA* 1990; 87: 4533-4537

27 Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. *Anal Biochem* 1987; 162: 156-159

28 Cardin R, Saccoccio G, Masutti F, Bellentani S, Farinati F, Tiribelli C. DNA oxidative damage in leukocytes correlates with the severity of HCV-related liver disease: validation in an open population study. *J Hepatol* 2001; 34: 587-592

29 Toyokuni S, Okamoto K, Yodoi J, Hiai H. Persistent oxidative stress in cancer. *FEBS Lett* 1995; 358: 1-3

30 Allen RG, Tresimi N. Oxidative stress and gene regulation.