Introduction

The current world scenario is characterized by a rapid and considerable increase in the elderly population [1]. This is critical information since the aging process is characterized by the progressive decline of physiological function that contributes to cognitive retardation and may increase the incidence of neurodegenerative diseases [2,3]. Thus, it is essential to elucidate the mechanisms involved during the aging process and investigate new approaches that can improve brain function. Recent evidences pointed out that both normal aging process and the physiopathology of neurodegenerative disease incidence and progression are linked to epigenetic pathways imbalance [4-6]. Epigenetic mechanisms modulate gene expression patterns without affecting the primary deoxyribonucleic acid (DNA) sequence in response to external factors and environmental cues such as diet and exercise [4,7,8].

Histone acetylation is an important epigenetic marker linked to enhanced transcriptional activity [9,10], catalyzed by histone acetyltransferases (HAT) [11]. Inversely, histone deacetylation, induced by histone deacetylases (HDAC) activity, is typically associated with transcriptional repression [12]. Interestingly, the HAT/HDAC imbalance appears to be pivotal in triggering the neurodegenerative cascade of events [6]. In this sense, increased levels of HDAC activity was detected in the hippocampi from aged rats [7]. Congruently, lower levels of global histone H4 acetylation in hippocampi from aged rats [7]. These findings could be related to the decreased levels and/or expression of genes that exert pivotal role on memory and synaptic plasticity during the aging process, including the Brain Derived Neurotrophic Factor (BDNF) [13]. In fact, lower levels of peripheral BDNF are associated to the cognitive deficits in elderly people [14].

It is also reported that the aging process is accompanied by remodeling changes in the immune system which altered cytokine profile represents one of the most dramatic disturbances [15]. The imbalance between pro- and anti-inflammatory cytokines were observed, including an elevation of pro inflammatory cytokins such as tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6) and interferon-gamma (INF-γ) [16,17]. This status seems to be responsible for a chronic pro inflammatory profile, named inflammaging [18], recently described an interaction between the imbalance on immune system and cognitive deficits in humans. Furthermore, experimental data also reported that the aging-related memory decline is linked to histone H4 hypoacetylation levels and the modulation of inflammatory parameters [5].

Dietary components may be able to control cytokine deregulation in many diseases, in particular, natural bioactive compounds contribute to reduce the inflammation [19,20]. In this context, polyphenol compounds found in grape juice have been associated with multiple health benefits including improvement in cognition and neuronal function with aging [21-23]. Experimental studies conducted by our research group demonstrated the neuroprotective effects of chronic purple grape juice consumption in several brain areas from rats submitted to different damage models [24-26].
However, the molecular mechanisms through which purple grape juice consumption improves cognitive outcomes during the aging process are not yet elucidated. Therefore, our aim was to evaluate the effect of chronic purple grape juice consumption according to the age on cognitive performance, peripheral levels of global histone H4 acetylation of BDNF, inflammatory profile and anthropometric parameters in healthy elderly women.

Methods

Grape juice

Grape juice used was the integral grape juice provided by Suvalan® brand, packaged at 200ml, all from the same batch (1771-13). Throughout the tests, we observed the expiration dates of the juice, phenolic compounds and chemical analysis. Table 1 shows the principal characteristics of the grape juice used. The content of total polyphenols was 53.6±0.18 mg catechin/mL. The epicatechin and naringin appeared in higher concentrations. The physical and chemical parameters of the grape juice used attend to the Brazilian legislation.

Subjects

Sample size was set according to other studies performed in humans and with the aid of Winpepi program, considering 30% coefficient of variation, 90% power and a 0.05 significance level [27-30]. The authors invited the elderly women through posters in hospitals and social networks. Women under sixty years old, carriers of neurodegenerative disease, diabetes (both types), and smokers were excluded from the study. Thirty-seven elderly women over sixty years old were interested in participating in the research, but there were two withdrawals and thirty-five completed the study (n = 35). The desistance occurred in the first week of research. The first abandoned for experiencing accented epigastric pain and linked this to grape juice consumption; the second needed to undergo a surgery.

The volunteers were instructed to keep the same routine regarding diet, exercise, and medication during the thirty days of research to prevent possible confounders. During the intervention period, one month, the researchers each week certified that the volunteers consumed 400 ml/day of grape juice. All the experimental procedure was performed at the same period.

Experimental design

This was a quasi-experimental study, aimed to evaluate interventions but that do not use randomization. Similar to randomized trials, quasi-experiments aim to demonstrate causality between an intervention and an outcome [31,32]. Considering the difficulty of obtaining a placebo group or a control group (without any grape derivative consumption) we justify our choice in doing a quasi-experimental design without control groups. This difficulty could be explained because our state is one of the most important regions in grape cultivation, and for this reason we have a high consumption of these products.

The survey was conducted in three meetings. At the first one the search mechanism and the criteria for blood collection were explained; the other two meetings were divided into before and after supplementation, following according to Figure 1. In these two meetings, anthropometric measurements were collected and Mini Mental State Examination (MMSE) was applied to evaluate the cognitive performance. Blood samples (10ml) were collected for the measurement of global histone H4 and BDNF levels as well inflammatory parameters.

The volunteers received all the required amount of juice for the thirty days of research in the before meeting, consuming 400ml daily. E-mails, text messages, and phone calls were made in order to remind volunteers about the consumption requirements.

Evaluation of anthropometric parameters

These parameters were analyzed before and after supplementation. Semi-analytical Balance Welmy with coupled stadiometer (Santa Barbara D’Oeste, São Paulo, Brazil) was used to evaluate the height (m) and weight (kg). Waist circumference (cm) and hip circumference (cm) were measured with a flexible tape. Body mass index (BMI= kg/m²) was obtained using the formula weight/height². The investigators responsible for these measures were the same, before and after the intervention.

Cognitive performance assessment

Cognitive performance was measured using the Portuguese version of the Mini Mental State Examination (MMSE) [33]. The test provides a brief evaluation of the cognitive domains including orientation, registration, attention, recall, language, and constructional praxis. Patients’ scores range from 0 to 30, with low scores indicating greater cognitive impairment. Cutoffs were used to grade severity of change as mild, moderate, or severe. Namely, mild cognitive impairment was considered when the patient was rated 20–24 points, moderate cognitive impairment with 16–19 points, and severe cognitive impairment with

| Table 1. Grape Juice Characteristics. |
|--------------------------------------|-----------------|-----------------|
| Analysis | Result | Method |
| Total Phenolic Compound (mg catechin/mL) | 53.6 ± 0.18 | Ribéreau-Gayon, 2003 |
| trans-Resveratrol (mg/L) | 0.79 ± 0.01 | MCMurtry et al., 1994 |
| Catechin (mg/L) | 1.03 ± 0.03 | HPLC |
| Epicatechin (mg/L) | 5.38 ± 0.06 | HPLC |
| Naringin (mg/L) | 6.96 ± 0.21 | HPLC |
| Quercetin (mg/L) | 0.59 ± 0.06 | HPLC |
| Total Acidity (g % tartaricacid) | 0.54 ± 0.00 | IN nº24 08/09/2005 (In, 2005) |
| Volatile acidity (g/100g) | 0.00 | IN nº24 08/09/2005 (In, 2005) |
| ° Brix | 14.28 ± 0.00 | IN nº24 08/09/2005 (In, 2005) |
| Relative density on 20°C | 1.058 ± 0.00 | IN nº24 08/09/2005 (In, 2005) |
| Organoleptic Characteristics | Normal | IN nº24 08/09/2005 (In, 2005) |
| pH | 3.33 ± 0.01 | IN nº24 08/09/2005 (In, 2005) |
| Alcoholic grade (%v/v) | 0.00 | IN nº24 08/09/2005 (In, 2005) |
| Relative “Brix/Total acidity (g % tartaric acid) | 26.44 ± 0.00 | IN nº24 08/09/2005 (In, 2005) |

Data presented as mean±standard deviation. HPLC - High Performance Liquid Chromatography.
histone extraction. The extraction was carried out with trichloroacetic acid, chloridric acid and acetone; the formed pellet was used for the H4 acetylation detection. The samples were incubated with the capture antibody followed by incubation with detection antibody. After, the samples were incubated with developing solution followed by the addition of the Stop Solution. The absorbance was measured on a spectrophotometer at a wavelength of 450nm. The global histone H4 acetylation levels were expressed as ng/mg protein. Protein content was performed using the Biuret method. For this, we used the commercial kit of Total Protein (Lambtest Diagnostics S/A, Lagoa Santa, MG, Brazil), following the manufacturer’s methodology.

Determination of cytokine levels

The systemic levels of INF-y and IL-4 were determined by ELISA with specific kits (Mini ELISA Development Kit, 900-M21, PeproTech Inc., NJ) and following the manufacturer’s recommendations. To avoid errors due to intra-assay sensitivity, all cytokine’s analyses were performed on the same plate on the same day. Plates of 96 wells were incubated overnight with capture antibody, anti-INF-y or IL-4 and serum samples were placed. The cytokines were detected by horseradish peroxidase-labeled monoclonal antibody to each target after the addition of 100 μl anti-human INF-y or IL-4 biotinylated antibodies, they were placed in each well and incubated for 2 h at room temperature. The microplate was washed to remove unbound enzyme-labeled antibodies. The amount of horseradish peroxidase bound to each well was determined by the addition of 100 μl of 1M sulfuric acid, and the plates read at 450 nm (ThermoPlate, São Paulo, Brazil). The concentrations of cytokines were determined by interpolation from standard curve and presented as pg/ml.

Ethical procedures

All participants read and signed the Informed Consent (IC), according to Resolution 466/12 of the Brazilian National Health Council. The Research Ethics Committee of the Centro Universitário Metodista - IPA approved the study under protocol 1.174.858.

Statistical analysis

Data were checked for normality by Shapiro-Wilk test. Parametric data presented as mean ± standard deviation and compared pre-post supplementation through paired t-test. For the variables that deviated from normality, we used the nonparametric Wilcoxon test (median and interquartile range). Comparison between groups was performed
Results

Thirty five elderly women participated in the present study, 16 of them were in the <70 years old group and 19 were in the >70 years old group (Table 2).

Firstly, we evaluated the effect of chronic grape juice consumption on cognitive performance, anthropometric and biochemical parameters. Table 2 shows a significant reduction on body mass and BMI as well improved the cognitive performance (p=0.001) after supplementation in both groups (>70 and <70 years old).

When the sample was separated in >70 and <70 years old groups, it was observed a clear impact of age in all these responses, as highlighted in Table 3. Specifically, the grape juice consumption did not alter body mass and BMI in the <70 years women, while diminished significantly both parameters in the oldest group. Regarding the cognitive performance, the improvement after the grape juice consumption appears in the <70 and >70 years old groups. Interestingly, Δ value in the >70 group was higher when compared to <70 women (p=0.04), as demonstrated in Figure 2. Finally, the >70 group showed a tendency towards increased BDNF levels (p=0.069) after the supplementation (Table 3).

However, neither age nor grape juice supplementation altered significantly the systemic cytokine and global histone H4 levels (p>0.05; Table 3).

Discussion

In the current study, we provide the first evidence reporting the beneficial effects of grape juice consumption on antropometric parameters and cognitive performance in elderly women. A novel and important finding that emerged from our study is that response and seem to vary in an age-dependent manner.

The improvement on cognition after supplementation was evaluated through the MMSE. This is a validated and effective instrument that asess five domains of cognition in elderly taken as orientation with regard to time and place, registration of words, attention and calculation, recall, and language [33,34].

In agreement to our findings, other studies conducted with elderly people also showed that the consumption of beverages rich in polyphenol such as blueberry juice improved the cognitive abilities [21]. The beneficial effect of grape juice on brain function was also highlighted in experimental models. Some authors demonstrated that treatment with grape polyphenol preparation prevented peripheral metabolic abnormality as well improved brain synaptic plasticity in a mouse, which is pivotal for the learning and the memory process [35]. In addition, other study with animal model for Alzheimer's disease suggests that grape juice consumption for 21 days is able to improve the learning and memory functions evaluated through the passive avoidance learning test [36]. Taken together, these findings support the idea that chronic purple grape juice consumption is a potential tool able to improve the cognitive function in elderly women.

Table 2. Pre-post Comparison.

Parameter	Pre supplementation	After supplementation	Δ%	p
Age (years)				
<70	69.49 ± 6.97	69.60 (16,325)	-	-
>70	65.11 (17,775)	65.11 (17,775)	-0.37 ± 0.89	0.011
Body mass (kg)	66.00 (16,325)	65.11 (17,775)	-0.37 ± 0.89	0.011
BMI (kg/m²)	26.35 (6.42)	26.29 (5.977)	-0.11 ± 0.40	0.03
INF-γ (pg/mL)	6.23 ± 1.43	6.26 ± 1.02	0.11 ± 1.35	0.69
IL-4 (pg/mL)	4.09 ± 1.67	4.58 ± 1.45	0.24 ± 1.46	0.66
Ratio IL-4/INF-γ	1.80 ± 0.98	1.49 ± 0.51	-0.17 ± 0.77	0.45
BDNF (pg/mL)	721.37 (310.88)	808.26 (308.09)	304.71 ± 932.48	0.12
Histone H4 acetylation levels (ng/mg of protein)	756.22 (498.40)	564.73 (477.54)	62.19 ± 3107.90	0.35

Note: Data presented as mean ± SD (parametric values) or median with interquartile range (nonparametric values). Pre-after comparison through paired Student t-test or Wilcoxon test. BMI, Body mass index; INF-γ, Interferon-gamma; IL-4, interleukin-4; BDNF, Brain-derived neurotrophic factor.

Table 3. Pre-post comparison with age.

Parameter	Pre	After	P	Δ%	p≠	
Body Mass (Kg)	<70	66.92 ± 12.71	66.66 ± 12.56	0.254	-0.30 ± 0.77	0.912
	>70	66.40 (15.99)	65.60 (17.325)	0.015	-0.35 ± 1.01	
BMI (Kg/m2)	<70	27.69 ± 5.971	27.62 ± 5.909	0.553	-0.13 ± 0.35	0.816
	>70	26.35 (6.154)	25.712 (6.139)	0.035	-0.09 ± 0.45	0.45
INF-γ (pg/mL)	<70	6.13 ± 1.43	6.01 ± 1.53	0.164	-0.35 ± 0.77	0.117
	>70	5.61 ± 1.5	6.16 ± 0.94	0.280	0.54 ± 1.64	
IL-4 (pg/mL)	<70	4.06 ± 1.47	4.14 ± 1.43	0.860	0.27 ± 1.54	0.928
	>70	4.26 ± 1.54	4.30 ± 1.56	0.667	0.21 ± 1.46	
Ratio IL-4/INF-γ	<70	1.72 (0.94)	1.41 (0.95)	0.286	-0.07 (1.69)	0.519
	>70	1.18 (0.8)	1.25 (0.42)	0.859	0.02 (0.93)	
BDNF Levels (pg/ml)	<70	817.23 (459.46)	883.42 (300.81)	0.717	119.7 (703.52)	0.196
	>70	600.26 (275.26)	741.63 (446.31)	0.069	215.40 (412.29)	
Histone H4 Acetylation levels (ng/mg of protein)	<70	634.12 (849.92)	709.52 (716.36)	0.717	119.7 (703.52)	0.196
	>70	600.26 (275.26)	741.63 (446.31)	0.069	215.40 (412.29)	

Note: Data presented as mean ± SD (parametric values) or median with interquartile range (nonparametric values). Pre-after comparison through paired Student t-test or Wilcoxon test. BMI, Body mass index; INF-γ, Interferon-gamma; IL-4, interleukin-4; BDNF, Brain-derived neurotrophic factor.
Although substantial evidences have been supporting the pivotal role of epigenetic regulation on polyphenol compounds mechanisms of action [44–46], the chronic grape juice consumption was not able to do it. Importantly, the cited studies are focused in the context of the polyphenol diet use on the management and therapeutic targets of age-related diseases, differently from our sample, consisted of healthy elderly women. Then, we might hypothesize that polyphenol compounds could act as the source of epigenetic modifications preferentially in pathological condition during the aging process.

Finally, it is important to consider that the intervention used in our study was chronic. On the other hand, experimental and clinical studies already reported that the impact of external stimuli such as exercise on acetylation levels status could be dynamic and with short-lived and acute outcomes, without any delayed effect [4,47,48]. This response may be act as a protective mechanism to maintain the homeostasis of the transcriptional machinery. Further studies should investigate the acute effect of grape juice consumption to elucidate this question.

Conclusion

Summarizing, our data indicate that chronic grape juice consumption is able to contribute in cognitive performance ameliorate in elderly women, which seems to be related, at least in part, to BMI and body mass reduction. This beneficial response might vary through lifespan, been more evident in the oldest group, and did not engage the modulation of inflammatory and epigenetic signals. This pioneer study opens new avenues for further investigations in order to elucidate the molecular mechanism involved behind this phenomenon.

Acknowledgements

This work was supported by IBRAVIN, Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)/Brazil and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS)/Brazil.

Declaration of conflicting interests

The Authors declare that there is no conflict of interest.

References

1. Park DC, Reuter-Lorenz P (2009) The adaptive brain: aging and neurocognitive scaffolding. Annual Review of Psychology 60: 173-196. [Crossref]
2. Buckner RL (2004) Memory and executive function in aging and AD: multiple factors that cause decline and reserve factors that compensate. Neuron 44: 195-208. [Crossref]
3. Henderson VW (2014) Three midlife strategies to prevent cognitive impairment due to Alzheimer’s disease. Climacteric 2: 38-46. [Crossref]
4. Elsner VR, Lovatel GA, Bertoldi K, Vanzella C, Santos FM, et al. (2011) Effect of different exercise protocols on histone acetyltransferases and histone deacetylases activities in rat hippocampus. Neuroscience 192: 580-587. [Crossref]
5. Lovatel GA, Bertoldi K, Elsner VR, Piazza FV, Basso CG, et al. (2014) Long-term effects of pre and post-ischemic exercise following global cerebral ischemia on astrocyte and microglia functions in hippocampus from Wistar rats. Brain Research 1587: 119-126. [Crossref]
6. Saha RN, Pahan K (2006) HATs and HDACs in neurodegeneration: a tale of disconcerted acetylation homeostasis. Cell Death Differ 13: 539-550. [Crossref]
7. Dos Santos Sant’ Anna G, Rositrolo Elsner V, Moyses F, Reck Cechinel L, Agustini G, et al. (2013) Histone deacetylase activity is altered in brain areas from aged rats. Neuroscience Letters 556: 152-154. [Crossref]
8. Milenkovic D, Vandem Bergh B, Bobj C, Leroux C, Declerck K, et al. (2014) Dietary flavonoids modulate the transcription of genes associated with cardiovascular pathology without changes in their DNA methylation state. PLoS One 9: e95527. [Crossref]
9. Choi JK, Howe LJ (2009) Histone acetylation: truth of consequences? Biochem Cell
