American Journal of Perinatology Reports

Complete molar pregnancies with a coexisting fetus: Pregnancy outcomes and review of literature

Roxanna A Irani, Kerry Holliman, Michelle Debbink, Lori Day, Krista M Mehlhaff, Lisa Gill, Cara C Heuser, Alisa Kachikis, Kristine Strickland, Justin Tureson, Jessica Shank, Rachel A. Pilliod, Chitra Iyer, Christina S-c Han.

Affiliations below.

DOI: 10.1055/a-1678-3563

Please cite this article as: Irani R A, Holliman K, Debbink M et al. Complete molar pregnancies with a coexisting fetus: Pregnancy outcomes and review of literature. American Journal of Perinatology Reports 2021. doi: 10.1055/a-1678-3563

Conflict of Interest: The authors declare that they have no conflict of interest.

Abstract:
To review obstetric outcomes of complete hydatidiform molar pregnancies with a coexisting fetus (CHMCF), a rare clinical entity, we performed a retrospective case series of pathology-confirmed HMCF. The cases were collected via a private Maternal-Fetal Medicine physician group on social media. Each contributing institution from across the United States obtained informed consent and institutional data transfer agreements as required, then transmitted the data using a HIPAA-compliant modality. Data collected included maternal, fetal/genetic, placental and delivery characteristics. Nine institutions contributed 14 cases. We found that the median gestational age at diagnosis was 12 weeks 2 days (9w0d - 19w4d), and over half were diagnosed in the first trimester. Sixty-four percent of CHMCF cases were a product of assisted reproductive technology. Placental mass size universally enlarged over the surveillance period. When invasive testing was performed, insufficient sample or no growth was noted in 40% of the sampled cases. Antenatal complications occurred in all delivered patients. Four patients developed gestational trophoblastic neoplasia. This is the largest reported series of obstetric outcomes for CHMCF, and highlights the need to counsel patients about the severe maternal and fetal complications in continuing pregnancies, including progression to gestational trophoblastic neoplastic disease.

Corresponding Author:
Roxanna A Irani, University of California San Francisco, Department of Obstetrics, Gynecology & Reproductive Sciences, San Francisco, United States, roxannairani@gmail.com

Affiliations:
Roxanna A Irani, University of California San Francisco, Department of Obstetrics, Gynecology & Reproductive Sciences, San Francisco, United States
Kerry Holliman, Austin Maternal-Fetal Medicine, Austin Maternal-Fetal Medicine, Austin, United States
Michelle Debbink, University of Utah Health, Department of Obstetrics and Gynecology, Salt Lake City, United States
...[
Christina S-c Han, University of California Los Angeles, Department of Obstetrics and Gynecology & Reproductive Sciences, Los Angeles, United States

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
1Division of Maternal Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, California
2Austin Maternal-Fetal Medicine, Austin, Texas
3Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, Utah
4Division of Maternal Fetal Medicine, Obstetrix Medical Group, Beacon Memorial Hospital, South Bend, Indiana
5Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Walter Reed National Military Medical Center, Bethesda, Maryland
6Division of Maternal Fetal Medicine, Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, Minnesota
7Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Intermountain Healthcare and University of Utah, Salt Lake City, Utah
8Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington
9Prevea Health, Maternal Fetal Medicine, Green Bay, Wisconsin
10Department of Obstetrics and Gynecology, Naval Readiness and Training Command, Twentynine Palms, California
11Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Tulane University School of Medicine, New Orleans, Louisiana
12Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon
13Obstetrix Medical Group of Texas, Fort Worth, Texas
Address for correspondence: Roxanna A. Irani, MD, PhD, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, 550 16th Street, 7th Floor, Box 0132, San Francisco, CA, 94143 (e-mail: roxanna.irani@ucsf.edu).

Complete Molar Pregnancies with a Coexisting Fetus: Pregnancy Outcomes and Review of Literature

Roxanna A. Irani, MD, PhD,1 Kerry Holliman, MD,2 Michelle Debbink, MD, PhD,3 Lori Day, MD,4 Krista Mehlhaff, DO,5 Lisa Gill, MD,6 Cara Heuser, MD, MSCI,7 Alisa Kachikis, MD, MSc,8 Kristine Strickland, MD,9 Justin Tureson, DO,10 Jessica Shank, MD,11 Rachel Pilliod, MD,12 Chitra Iyer, MD,13 Christina S. Han, MD2

Abstract

Objective To review the obstetric outcomes of complete hydatidiform molar pregnancies with a coexisting fetus (CHMCF), a rare clinical entity that is not well described.

Study Design We performed a retrospective case series with pathology-confirmed HMCF. The cases were collected via solicitation through a private Maternal-Fetal Medicine physician group on social media. Each contributing institution from across the United States (n=9) obtained written informed consent from the patients directly, obtained institutional data transfer agreements as required, and transmitted the data using a HIPAA-compliant modality. Data collected included maternal, fetal/genetic, placental and delivery characteristics. For descriptive analysis, continuous variables were reported as median with standard deviation and range.
Results Nine institutions contributed to the 14 cases collected. Nine (64%) cases of CHMCF were a product of assisted reproductive technology and one case was trizygotic. The median gestational age at diagnosis was 12 weeks 2 days (9w0d - 19w4d), and over half were diagnosed in the first trimester. The median hCG at diagnosis was 355,494 mIU/mL (49,770 - 700,486 mIU/mL). Placental mass size universally enlarged over the surveillance period. When invasive testing was performed, insufficient sample or no growth was noted in 40% of the sampled cases. Antenatal complications occurred in all delivered patients, with postpartum hemorrhage (71%) and hypertensive disorders of pregnancy (29%) being the most frequent outcomes. Delivery outcomes were variable. Four patients developed gestational trophoblastic neoplasia.

Conclusion This series is the largest report of obstetric outcomes for CHMCF to date, and highlights the need to counsel patients about the severe maternal and fetal complications in continuing pregnancies, including progression to gestational trophoblastic neoplastic disease.

Key Points

1) CHMCF is a rare obstetric complication and may be associated with the use of assisted reproductive technology.

2) Universally, patients with CHMCF who elected to manage expectantly developed antenatal complications.

3) The risk of developing gestational trophoblastic neoplasia after CHMCF is high, and termination of the pregnancy did not decrease this risk.

Ultrasonographic evidence of an enlarged multi-cystic placenta with a normal appearing fetus is an uncommon finding during routine surveillance of pregnancy. The differential diagnoses of
these features include partial or complete hydatidiform molar pregnancy with a co-existing fetus (HMCF), placentomal mesenchymal dysplasia (PMD), placental infarcts, chorioangioma, subchorionic hematoma, placental cysts, and placenta accreta spectrum (PAS) disorders. In the context of an otherwise normal-appearing fetus, the obstetrical course and postpartum follow-up of these conditions are vastly different (Table 1).

In the case of a complete HMCF (CHMCF), it is especially important to have an accurate diagnosis. This rare condition, affecting 20,000 to 100,000 pregnancies1,2 is fraught with potential maternal complications, such as hemorrhage, preeclampsia, and preterm delivery of the viable co-existing fetus. Persistent gestational trophoblastic neoplasia (GTN) is also seen more frequently in CHMCF, when compared to a single complete mole, and termination of the pregnancy has not been shown to decrease this risk.1,3,4

While there have been large case series reported on CHMCF, they have focused mainly on outcomes as they relate to the GTN associated with this condition.1,3,4 In these reports, the use of artificial reproductive technology (ART) was either not reported, or when reported, did not account for a majority of cases (13%). An increased use of ART over the past several decades may affect the prevalence of CHMCF and so obstetricians should be cognizant of this condition and its associated ante-, intra- and postpartum risks. When an isolated complete molar pregnancy is noted, evacuation of the pre-malignant molar tissue is recommended. However, in the case of a CHMCF, a woman may elect to be managed expectantly to prolong the pregnancy. Here, we provide the first multi-center series of CHMCF reporting detailed accounts of the diagnosis, pregnancy outcomes, and postpartum follow-up, as well as a review of existing literature, in order to aid in the counseling of this at-risk cohort of pregnant women.
Materials and Methods

A retrospective analysis of women with CHMCF pregnancies was performed. The cases were collected via solicitation through a private Maternal-Fetal Medicine physician group on social media. Each contributing institution from across the United States (n=9) obtained written informed consent from the patient(s) directly, obtained institutional data transfer agreements as requested, and transmitted the data using a HIPAA-compliant modality.

Electronic records were reviewed and the following data were identified: maternal characteristics (age, gravidity, parity, pre-pregnancy body mass index, race and prior maternal co-morbidities), mode of conception, gestational age at diagnosis, human chorionic gonadotropin (hCG) at diagnosis, zygosity of the pregnancy, screening assessments (including laboratory and imaging), antenatal genetics (procedure type, results and timing), and size of placental mass as measured by prenatal ultrasonography. Maternal complications including vaginal bleeding, hyperthyroidism, and hypertensive disorders of pregnancy were noted. The timing, mode and indication for delivery, as well as the estimated blood loss or complications of delivery or procedure were recorded. Postnatal confirmation of genetics and pathology, postpartum follow-up, including hCG trend and time to nadir, diagnosis of GTN and subsequent treatments were identified.

Fetal and neonatal outcomes recorded included any structural anomalies noted prenatally, intrauterine fetal growth restriction, intrauterine or neonatal fetal demise, and neonatal birthweight.

Statistical Analysis

For descriptive analysis, continuous variables were reported as median with standard deviation and range. Categorical variables were reported as proportions.
Results

After solicitation via social media, nine institutions were able to obtain patient consent and contributed 14 cases in total. Clinical characteristics of the patients are delineated in Table 2.

Of the cases presented here, 64% were the product of ART: 29% ovulation induction alone, 21% ovulation induction with intrauterine insemination, and 14% in-vitro fertilization. Only five cases (36%) were due to spontaneous conception. The median gestational age at diagnosis was 12w2d (9w0d-19w4d), with 64% (n=9) diagnosed in the first trimester and the remaining diagnosed by 20 weeks gestation. Upon either diagnosis or suspicion of diagnosis, all patients were referred to a Maternal-Fetal Medicine specialist, who was involved in the remainder of the pregnancy. The median hCG at diagnosis was 355,494 mIU/mL (49,770-700,486 mIU/mL). The largest dimension of the placental mass at time of diagnosis varied, ranging from 3.5-12 cm. The size of the placental mass universally enlarged over the antenatal surveillance period. Antenatal genetic analysis was performed in ten of the fourteen cases. Insufficient sample or no growth of the sample from either amniocentesis (n=5) or chorionic villous sampling (CVS) (n=5) was a common finding, occurring in 40% of cases sampled (n=4).

In the reported dizygotic CHMCF pregnancies, no malformations were identified. The one case of trizygotic CHMCF pregnancy had a complete mole, a co-existing structurally normal fetus, and a partial molar pregnancy with cystic hygroma and complex congenital heart defect.

Antenatal management and complications are described in Table 3. Universally, patients with CHMCF experienced some form of antenatal complication, including vaginal bleeding (10; 71%), hypertensive disorder of pregnancy (4; 28.9%), pulmonary edema (1; 0.7%) and hyperthyroidism (1; 0.7%). Of the patients with vaginal bleeding, 4 out of 10 (40%) required
admission and/or transfusion. The case of hyperthyroidism required medical treatment with antithyroid medications and ultimately resulted in termination of pregnancy.

The majority of patients opted for expectant management (64.3%, n=9), and the average GA at delivery was 28w3d (16w6d to 34w5d). One patient developed an early-onset HELLP-like syndrome at 16w6d which prompted treatment with D&E. Another patient experienced persistent vaginal bleeding throughout the pregnancy, resulting in preterm labor and vaginal delivery at 20w2d. A third patient developed hemorrhage and chorioamnionitis and was delivered at 17w5d. Two patients who opted for expectant management also had postpartum hemorrhage, with one of these requiring a hysterectomy due to bleeding after emergent delivery at 24w5d. She subsequently required treatment for metastatic GTN. (Table 3)

None of the patients who opted for termination of pregnancy had complications from the procedure, including hemorrhage (Table 3). One of the patients who underwent termination of pregnancy developed pulmonary edema at 20w0d at time of diagnosis.

GTN was diagnosed in 28.6% of patients (n=4), with two (2/8; 25%) from the expectant management group and two (2/5; 40%) from the termination group. The two cases of GTN from the termination group were FIGO Stage 1 and 3, while the two cases from the expectant management were FIGO Stage 3 and 4. All were treated with IV methotrexate. One patient also received leucovorin, and the patient with FIGO stage 4 disease also received IV dactinomycin. Two of these patients also were noted to have a nadir in their hCG levels by Day 56 post-delivery evacuation.

Discussion
In this series we analyzed the patient characteristics, diagnosis, pregnancy complications and resultant obstetric outcomes of 14 pregnancies complicated by CHMCF. Complete hydatidiform moles (CHM) are generally homozygous 46, XX and result from duplication of the haploid genome of a single sperm following fertilization of an ovum in which the maternal chromosomes are lost during meiosis, or due to postzygotic diploidization in a triploid conception. A multizygotic pregnancy consisting of a partial or complete HMCF is a rare complication of pregnancy, and the available cases series to date focus on GTN risk, instead of obstetrical risk. A multi-cystic placental mass on ultrasound imaging is typically seen in the first trimester (Figures 1-4 and Supplementary video) and should trigger a referral to a Maternal-Fetal Medicine specialist for further imaging and potential diagnostic testing. With improved ultrasound technology and rising rates of ART, HMCF diagnoses may be made earlier and more frequently, highlighting the importance of data accrual on the course and outcome of these pregnancies.

The differential diagnosis of a multi-cystic placenta with a co-existing fetus can be broad, as a multi-cystic placenta can represent a hydropic abortus, chromosomal abnormalities, digynic triploid conceptions, placental mesenchymal dysplasia or a molar pregnancy. These distinct diagnoses have varying complications, potential outcomes and management strategies. The ability to differentiate between these diagnoses is key for optimal counseling and management. Pregnancies with these sonographic findings should be evaluated by and co-managed with a Maternal-Fetal Medicine subspecialist. Maternal serum alpha-fetoprotein (AFP) measurements and beta hCG measurements are helpful in confirming the diagnosis. The levels in our case series are comparable to previous case series with beta hCG levels greater than 150,000 mIU/mL. Previous cases series have suggested a plateau of beta hCG levels in the second trimester and
that a failure to reach a plateau was associated with increased risk of adverse pregnancy outcomes.7

Ultrasound, beta hCG and MSAFP may not provide sufficient data to differentiate between possible diagnoses; thus, invasive diagnostic testing may be necessary for genetic analysis. Amniocentesis can be utilized to evaluate for a triploidy in the co-existent fetus or the placenta as this would be suggestive of a partial hydatidiform mole. Previous literature has suggested CVS of the suspected molar tissue as an alternative via molecular genotyping and segregation analysis of paternal and placental alleles, as absence of maternal alleles can confirm a diandrogenic complete mole.9-11 Our series is the first to report common use of invasive testing in CHMCF, and to show that 40\% of invasive procedures may yield no growth or insufficient sample in these cases. Pre-procedural counseling regarding invasive testing should include this potential outcome of testing.

Furthermore, CHM is well recognized to have the potential for local invasion and distant spread. It has also been suggested that persistent trophoblastic disease and metastatic GTN are more pervasive with a multifetal gestation with concurrent mole, up to 30\% increased risk.12 Beta hCG and molar volumes have been used to predict malignant potential, although this is an area where more research is needed.12

The presence of a CHMCF creates complications for both the mother and the fetus with the clinical course frequently complicated by vaginal bleeding, preeclampsia, hyperemesis gravidarum, hyperthyroidism and gestational trophoblastic disease.10 Our case series describes the complications rates in a modern cohort, particularly highlighting the significance of morbid vaginal bleeding and hypertensive disorders of pregnancy in these women. A recent systemic review reported similar findings of a high rate of perinatal morbidities.13
Including the cases reported in this series, sixteen reports of trizygotic pregnancy with two co-existing fetuses and a complete mole have been reported (Table 4). Of the 16 cases, 87.5% have been pregnancies conceived with ovulation induction medications. The clinical course of these pregnancies shows that vaginal bleeding is very common, presenting in 59% of the cases reported to date.

The risk of GTN is higher in the presence of a complete mole compared to a partial mole (14-20% compared to 1-5%). GTN can include invasive mole, choriocarcinoma, placental site trophoblastic tumor and epithelioid trophoblastic tumor. The series reported here suggests that the incidence of GTN may be higher in CHMCF than in other molar pregnancies, with 28.6% of patients in this series having GTN. Although the group who opted for termination had a high percentage of GTN, the FIGO stages appeared to be lower. This highlights the importance of counseling regarding the risk of distant metastatic disease with expectant management and need for close patient follow-up post-delivery of patients with CHMCF.

A recent meta-analysis by Albright et al. states that the risk of GTN in patients with normalization of beta HCG by day 56, or after 8 weeks, is 0.35% for complete mole and 0.03% for partial mole. This is in contrast to our series, where 50% of CHMCF patients who developed GTN had a nadir of beta hCG by day 56. More studies and collaborative efforts are warranted to further evaluate the possibility of additional risk of GTN. It is well known that CHMCF carries a much greater risk of pregnancy complication if expectant management is carried out, with increased risk of vaginal bleeding, preeclampsia and preterm labor, but the increased risk of CHMCF may also carry a significantly increased risk of GTN, and this may indicate a longer period of serial beta hCG measurements and surveillance and should prompt extensive patient counseling.
One of the greatest strengths of our study is that it is the largest series to date for obstetric data in CHMCF and includes a wide geographic region. Additionally, the use of social media to engage physicians from across the country is a novel approach to transmural collaborations, instead of individual reports of complex cases. Once connected, the physicians were able to use a standardized collection of data across institutions, giving more uniformity to the data for comparison. While our study has many strengths, it is limited by the potential of selection bias, and given its retrospective recall of cases, the worst cases with the poorest outcomes could have been collected and reviewed. Furthermore, the observational nature of the study cannot truly compare the management protocols, as is often the case with rare disorders.

Overall, our findings demonstrate that it is possible to manage CHMCF expectantly but requires shared decision-making while factoring in maternal antepartum and peripartum risks, as well as increased risk of subsequent metastatic GTN. This case series can serve as a tool for engaging in full counseling of patients about the varied and potentially significant outcomes of CHMCF gestations which are likely to be on the rise with the increasing use of ART.

Additionally, it is also important to consider innovative methods of extramural collaboration to amplify data accrual for rare disorders, such as CHMCF. This case series demonstrates a novel collaboration, as the idea was initiated in a private social media group of physicians and resulted in a wide collaborative effort from institutions across the United States. These same methods can be used with other rare complications to expand our knowledge base and lead to more meaningful observations from which to draw conclusions.
Table 1: Comparison of the clinical findings of placental mesenchymal dysplasia (PMD), complete hydatidiform mole (CHM) and partial hydatidiform mole (PHM)

	PMD	CHM	PHM
Ultrasound findings	Enlarged multi-cystic placenta with anechoic regions ("moth-eaten" appearance)	Findings widely distributed, large edematous villi	
Fetus\(^{18}\)	• Can be unremarkable	• Co-existing fetus can be unremarkable	• May be structurally abnormal triploid fetus\(^{19}\)
	• FGR (50%)		
	• IUFD or neonatal death (43%)		
	• Consider BWS findings: macroglossia, omphalocele, genitourinary abnormalities, overgrowth, polyhydramnios		
Pathology	• Enlarged stem villi with loose	• Hydropic swelling of villi	• Focal trophoblastic hyperplasia

\(^{18}\) FGR: Fetal growth restriction; IUFD: Intrauterine fetal death; BWS: Beckwith-Wiedemann syndrome.
Connective Tissue and Cistern-like Formations	Diffuse Trophoblastic Hyperplasia	Marked Variability in the Size and Degree of Swelling, and Cavitation of the Villi
• Absent Trophoblastic Changes	• Diffuse and Marked Trophoblastic Atypia at the Molar Implantation Site	• Marked Scalloping and Prominent Stromal Trophoblastic Inclusion in the Villi
	• Focal and Mild Trophoblastic Atypia at Molar Implantation Site	• Focal and Mild Trophoblastic Atypia at Molar Implantation Site

Associated Maternal Morbidities

None Identified	GTN	1. GTN
	Preeclampsia	2. Preeclampsia
	Choriocarcinoma	3. Choriocarcinoma

Cytogenetics

Normal Karyotype (89%)	46 XX: Haploid 23 X Sperm Duplicates Its Own Chromosomes	Triploidy: Extra Haploid Sperm
46 XX (78%), 46 XY (22%)	• 46 XY: Ova Penetrated by 2 Sperm (Dispermy), 46 XY	
BWS- Confirmed or Suspected (23%)		

Clinical

No Definitive Clinical	Vaginal Bleeding	Commonly
presentation characteristics, but may be associated with preterm labor, secondary to amniotic fluid abnormalities

- Size greater than dates
- Theca lutein cysts
- Hyperemesis
- Preeclampsia
- Hyperthyroidism
- Pulmonary edema
- Respiratory distress

diagnosed after missed or incomplete abortion, based on pathology

BWS Beckwith-Wiedemann syndrome; CHM complete hydatidiform mole; FGR fetal growth restriction; IUFD intrauterine fetal demise; PHM partial hydatidiform mole; PMD placental mesenchymal dysplasia; GTN gestational trophoblastic neoplasia

Table 2. Patient characteristics and comorbidities

Case #	Age	G/P	Conception	BMI	Race/Ethnicity	Co-Morbidities		
1	30	2/1001	OI/GnTP/IUI	20.8	Caucasian	None		
2	27	1/0	OI/CC	26.7	Caucasian	PCOS, Seizure disorder on Lamictal		
3	36	1/0	OI/CC/IUI	30.6	Caucasian	Lupus on Plaquenil		
4	32	2/1001	Spontaneous	23.0	Caucasian	None		
5	26	2/0010	Spontaneous	34.0	Caucasian/Asian	Anxiety, Depression		
6	29	2/1001	OI/GnTP	22.6	Caucasian	Chronic Hypertension		
7	27	1/0	OI/CC	36.0	Caucasian	None		
Case#	Planned Management	Complications	GA at Delivery	Delivery Type	EBL (mL)	Genetics Prenatal	hCG Trend	Subsequent Dx
-------	--------------------	---------------	----------------	---------------	----------	-------------------	-----------	----------------
1	Expectant (initially declined termination)	Serial growth	SAB of Twin B at 14w, HELLP at 16w	D&E	16w6d	1000	70 XXXY	Plateau at 8w PP, Metastatic GTN (FIGO Stage 3), Lung Nodules
2	Spontaneous	31.6	White	h/o Roux-en-Y, Anemia, h/o gestational HTN				
3	Spontaneous	28.2	White	Migraine, PCOS with infertility				
4	Spontaneous	19.4	Arab-American	h/o 2nd trimester IUFD (19w)				
5	Spontaneous	21.0	White	h/o bilateral PE, h/o 2nd trimester IUFD (16w)				
6	IVF	22.9	Asian	seizures on levetiracetam and lamotrigine				
7	COH/IUI	24.0	Caucasian	None				
8	IVF	21.0	Asian	Asthma				

BMI body mass index; CC clomiphene citrate; COH controlled ovarian hyperstimulation; GnTP gonadotropin; h/o history of; HTN hypertension; IUI intrauterine insemination; IUFD intrauterine fetal demise; IVF in-vitro fertilization; OI ovulation induction; PCOS polycystic ovarian syndrome; PE pulmonary embolism

Table 3. Antenatal Management and Pregnancy Outcomes
Ultrasounds Termination when HELLP	2	Expectant (declined termination)	VB (admission)	20w2d	SVD	300	None	Nadir by 12w PP	None							
Serial growth Ultrasounds	3	Expectant VB	13w3d	D&E	200	T22	Nadir by 13w PP	None								
	4	Expectant (declined termination)	VB Hyperthyroidism (admission)	24w5d	Emergent Classical CD	2500	None	Nadir by 8w PP then increased	Metastatic GTN FIGO Stage 4							
		Anemia														
		Tachycardia														
		Palpitations														
		Preterm labor														
		Anemia/transfusion (2U pRBC)														
		PEC with severe features														
		Hemorrhage with passage of molar tissue														
		Intraoperative transfusion (3U														
Case	Action	Indication	Week	Procedure	Blood Loss	Outcome	Notes									
------	--------	------------	------	-----------	------------	---------	-------									
5	Desired termination	Pulmonary edema due to Postpartum hemorrhage	21w1d	D&E	125	None	Nadir by 7w PP									
6	Expectant	SAB of Twin A VB	34w5d	SVD	250	None	Nadir by 4w PP									
7	Expectant	VB GHTN	34w2d	Classical CD	1000	None	Not available									
8	Expectant	VB and anemia PTL Postpartum hemorrhage	32w2d	Urgent classical CD due to funic presentation	1500	None	Nadir by 7w PP									
9	Expectant	VB	28w3d	SVD	350	None	Nadir by 10w									
	Serial labs	PTL	HTN	Fever and tachycardia (unclear diagnosis)		PTL	HTN	Fever and tachycardia (unclear diagnosis)		PTL	HTN	Fever and tachycardia (unclear diagnosis)		PTL	HTN	Fever and tachycardia (unclear diagnosis)
---	-------------	-----	-----	--	---	-----	-----	--	---	-----	-----	--	---	-----	-----	--
10	Desired termination	Abnormal TFTs with palpitations (started Methimazole) Bilateral ovarian masses (largest 10x9x8 cm)	15w0d	D&E	250	None	Nadir by 4w PP then elevated Metastatic GTN FIGO Stage 3									
11	Expectant termination	VB	PTL	34w2d	SVD	300	None	Nadir by 6w PP None								
12	Desired termination	VB	16w6d	D&E	250	None	Nadir by 12w PP None									
13	Desired termination	None	15w0d	D&C	50	None	Plateau at 2w PP GTN FIGO Stage 1									
14	Expectant	Chorioamnionitis	17w5d	SVD	500	46 XX	Nadir by 12w None									
GA gestational age; CD cesarean delivery; D&C dilation and curettage; D&E dilation and evacuation; FIGO International Federation of Gynecology and Obstetrics; GTD gestational trophoblastic disease; GTN gestational hypertension; HELLP hemolysis, elevated liver enzymes, low platelets; HTN hypertension; IV intravenous; MTX methotrexate; PTL preterm labor; PP postpartum; SAB spontaneous abortion; SVD spontaneous vaginal delivery; VB vaginal bleeding; PRBCs packed red blood cells

Table 4: Cases of trizygotic pregnancies consisting of complete mole and two co-existing twins

Reference	Age (y)	Conceptio n	GA at deliver y (weeks)	Maternal Complication s	Pregnancy Outcome	GTD	Postpartum Therapy	Confirmation of diagnosis
Sauerbrei 1990¹⁴	23	Clomiphe ne 22	VB, PEC with severe features at 22 weeks	Spontaneous abortion	No	MTX, ActD (5 cycles)	Postpartum pathology	
Ohmichi 1986¹⁵	34	hMG-hCG 17	VB	Spontaneous abortion	PTT	N/A	Postpartum pathology	
Azuma 24	hMG-hCG 19	VB	Spontaneous	No	N/A	Postpartum pathology		
Year	Case	Methodology	Age	Type	Results	Treatment	Notes	
--------	-------	-------------	-----	--------	--------------------------------	----------------------------	--------------------------------	
1992	24	VB		Abortion	Pathology	Antepartum US findings and elevated hCG confirmed		
1992	24	GIFT	31	Abortion	Pathology	Antepartum US findings and elevated hCG confirmed		
1997	17	Hyperthyroidism, hyperemesis		Induced abortion due to hyperemesis	Choriocarcinoma, pulmonary metastasis	MTX (2 cycles)		
1998	15	VB	31	Induced abortion due to VB	Invasive mole	MTX, ActD (6 cycles)		
1999	22	Hyperthyroidism, PEC with severe features, pulmonary		Induced abortion due to maternal status	Invasive mole	MTX (7 cycles), Etoposide (2 cycles)		
	Age	Treatment	GA	Edema	Induction	Diagnosis	Follow-Up	Outcome
----------------	-----	-----------	----	--------	-----------	---	-----------	----------------------------------
Gray-Henry 1999	31	Metrodin, hCG	16	Massive VB	Induced abortion due to life-threatening hemorrhage	No	N/A	Antepartum US findings and elevated hCG, Confirmed postpartum
Amr 2000	31	Clomiphenene, hCG	30	None	PTL, SVD, neonatal death of 1 twin	No	N/A	Postpartum placental pathology
Rajesh 2000	29	Spontaneous	24	VB	PTL, SVD, neonatal death of both twins	No	N/A	Antepartum US findings and elevated hCG, Confirmed postpartum
Malhotra 2001	29	Spontaneous	21	VB	Spontaneous abortion	No	N/A	Antepartum placental pathology, Confirmed postpartum
Takagi 2003	37	hMG, hCG	28	Cerclage placed	PTL, CD for malpresentation, survival of both twins	Invasive mole, pulmonary metastases	MTX (6 cycles)	Antepartum placental pathology, Confirmed postpartum
Bovicelli	32	ICSI	31	VB	Emergency	No	N/A	Antepartum US findings and elevated hCG, Confirmed postpartum
Year	Case Description	Causes of Death	Antepartum US Findings	Elevation of hCG	Postpartum Findings			
------	------------------	------------------	------------------------	-----------------	-------------------			
2004	CD for non-reassuring fetal testing, IUFD of one twin (fetomaternal hemorrhage)	elevated hCG, CVS c/w all paternal genotype			Confirmed postpartum			
2004	Steigrad 40	IVF	VB	34	CD due to VB, survival of both twins, Metastatic GTN, pulmonary metastases	MTX, FA (3 cycles)	Antepartum elevated hCG, Confirmed postpartum	
2007	Ko 36	IVF-ET, donor embryo	PEC with severe features	33	CD due to PEC, survival of both twins	No	Antepartum elevated hCG, Confirmed postpartum	
Present report	30	GnTp, IUI	16	HELLP	SAB of Twin B, then induced abortion of Twin A due to maternal status	Metastatic GTN, pulmonary metastases	MTX	Antepartum elevated hCG, Confirmed unremarkable mole
----------------	----	-----------	----	--------	---------------------------------	----------------------------------	-----	---

ActD actinomycin D; CD cesarean delivery; EMA-CO etoposide, methotrexate, actinomycin D, cyclophosphamide, vincristine; ET embryo transfer; FA folinic acid; GA gestational age; GIFT gamete intrafallopian transfer; GTD gestational trophoblastic disease; GTN gestational trophoblastic neoplasia; hCG human chorionic gonadotropin; HELLP hemolysis elevated liver enzymes low platelets syndrome; hFSH human follicle stimulating hormone; hMG human menopausal gonadotropin; ICSI intracytoplasmic spermatic injection; IUFD intrauterine fetal demise; IUI intrauterine injection; IVF in vitro fertilization; MTX methotrexate; PEC preeclampsia; PT preterm PTL preterm labor; SVD spontaneous vaginal delivery; VB vaginal bleeding

Figure 1 Dizygotic pregnancy with large complete hydatidiform molar tissue and normal placenta.

Figure 2 Dizygotic pregnancy at 11 weeks 4 days with complete hydatidiform molar tissue and viable fetus.
Figure 3 Dizygotic pregnancy with complete hydatidiform molar tissue and abutting normal placenta from a viable fetus.

Figure 4 Trizygotic pregnancy at (a) 11 weeks 5 days with complete hydatidiform molar tissue, (b) 24 weeks with head of Twin B and complete hydatidiform molar tissue.

Supplementary video

Dizygotic pregnancy with complete hydatidiform molar tissue and a viable fetus with normal placental tissue.

References

1. Sebire NJ, Foskett M, Paradinas FJ, et al. Outcome of twin pregnancies with complete hydatidiform mole and healthy co-twin. *Lancet*. Jun 2002;359(9324):2165-6. doi:10.1016/S0140-6736(02)09085-2

2. Steller MA, Genest DR, Bernstein MR, Lage JM, Goldstein DP, Berkowitz RS. Natural history of twin pregnancy with complete hydatidiform mole and coexisting fetus. *Obstet Gynecol*. Jan 1994;83(1):35-42.

3. Lin LH, Maestá I, Braga A, et al. Multiple pregnancies with complete mole and coexisting normal fetus in North and South America: A retrospective multicenter cohort and literature review. *Gynecol Oncol*. Apr 2017;145(1):88-95. doi:10.1016/j.ygyno.2017.01.021

4. Matsui H, Sekiya S, Hando T, Wake N, Tomoda Y. Hydatidiform mole coexistent with a twin live fetus: a national collaborative study in Japan. *Hum Reprod*. Mar 2000;15(3):608-11. doi:10.1093/humrep/15.3.608
5. Vassilakos P, Riotton G, Kajii T. Hydatidiform mole: two entities. A morphologic and cytogenetic study with some clinical consideration. *Am J Obstet Gynecol*. Jan 1977;127(2):167-70. doi:10.1016/s0002-9378(16)33244-6

6. Fishman DA, Padilla LA, Keh P, Cohen L, Frederiksen M, Lurain JR. Management of twin pregnancies consisting of a complete hydatidiform mole and normal fetus. *Obstet Gynecol*. Apr 1998;91(4):546-50. doi:10.1016/s0029-7844(97)00720-5

7. Lee SW, Kim MY, Chung JH, Yang JH, Lee YH, Chun YK. Clinical findings of multiple pregnancy with a complete hydatidiform mole and coexisting fetus. *J Ultrasound Med*. Feb 2010;29(2):271-80. doi:10.7863/jum.2010.29.2.271

8. Bovicelli L, Ghi T, Pilu G, et al. Prenatal diagnosis of a complete mole coexisting with a dichorionic twin pregnancy: case report. *Hum Reprod*. May 2004;19(5):1231-4. doi:10.1093/humrep/deh211

9. Wax JR, Pinette MG, Chard R, Blackstone J, Do, Cartin A. Prenatal diagnosis by DNA polymorphism analysis of complete mole with coexisting twin. *Am J Obstet Gynecol*. Apr 2003;188(4):1105-6. doi:10.1067/mob.2003.151

10. Vejerslev LO. Clinical management and diagnostic possibilities in hydatidiform mole with coexistent fetus. *Obstet Gynecol Surv*. Sep 1991;46(9):577-88. doi:10.1097/00006254-199109000-00001

11. Rajesh U, Cohn MR, Foskett MA, Fisher RA, el Zaki D. Triplet pregnancy with a coexisting complete hydatidiform mole of monospermic origin in a spontaneous conception. *BJOG*. Nov 2000;107(11):1439-42. doi:10.1111/j.1471-0528.2000.tb11663.x
12. Malhotra N, Deka D, Takkar D, Kochar S, Goel S, Sharma MC. Hydatiform mole with coexisting live fetus in dichorionic twin gestation. *Eur J Obstet Gynecol Reprod Biol*. Feb 2001;94(2):301-3. doi:10.1016/s0301-2115(00)00338-9

13. Zilberman Sharon N, Maymon R, Melcer Y, Jauniaux E. Obstetric outcomes of twin pregnancies presenting with a complete hydatidiform mole and coexistent normal fetus: a systematic review and meta-analysis. *BJOG*. 11 2020;127(12):1450-1457. doi:10.1111/1471-0528.16283

14. Sauerbrei EE, Salem S, Fayle B. Coexistent hydatidiform mole and live fetus in the second trimester: an ultrasound study. *Radiology*. May 1980;135(2):415-7. doi:10.1148/radiology.135.2.7367637

15. Ohmichi M, Tasaka K, Suehara N, Miyake A, Tanizawa O. Hydatidiform mole in a triplet pregnancy following gonadotropin therapy. *Acta Obstet Gynecol Scand*. 1986;65(5):523-4. doi:10.3109/00016348609157401

16. Azuma C, Saji F, Takemura M, et al. Triplet pregnancy involving complete hydatidiform mole and two fetuses: genetic analysis by deoxyribonucleic acid fingerprint. *Am J Obstet Gynecol*. Feb 1992;166(2):664-7. doi:10.1016/0002-9378(92)91694-6

17. Albright BB, Shorter JM, Mastroymannis SA, Ko EM, Schreiber CA, Sonalkar S. Gestational Trophoblastic Neoplasia After Human Chorionic Gonadotropin Normalization Following Molar Pregnancy: A Systematic Review and Meta-analysis. *Obstet Gynecol*. 01 2020;135(1):12-23. doi:10.1097/AOG.0000000000003566

18. Nayeri UA, West AB, Grossetta Nardini HK, Copel JA, Sfakianaki AK. Systematic review of sonographic findings of placental mesenchymal dysplasia and subsequent pregnancy outcome. *Ultrasound Obstet Gynecol*. Apr 2013;41(4):366-74. doi:10.1002/uog.12359
19. Jauniaux E, Brown R, Snijders RJ, Noble P, Nicolaides KH. Early prenatal diagnosis of triploidy. *Am J Obstet Gynecol.* Mar 1997;176(3):550-4. doi:10.1016/s0002-9378(97)70546-5

20. Cohen MC, Roper EC, Sebire NJ, Stanek J, Anumba DO. Placental mesenchymal dysplasia associated with fetal aneuploidy. *Prenat Diagn.* Mar 2005;25(3):187-92. doi:10.1002/pd.1103

21. Szulman AE, Surti U. The syndromes of hydatidiform mole. I. Cytogenetic and morphologic correlations. *Am J Obstet Gynecol.* Jul 1978;131(6):665-71. doi:10.1016/0002-9378(78)90829-3

22. Kajii T, Ohama K. Androgenetic origin of hydatidiform mole. *Nature.* Aug 1977;268(5621):633-4. doi:10.1038/268633a0

23. Ohama K, Kajii T, Okamoto E, et al. Dispermic origin of XY hydatidiform moles. *Nature.* Aug 1981;292(5823):551-2. doi:10.1038/292551a0

24. van de Geijn EJ, Yedema CA, Hemrika DJ, Schutte MF, ten Velden JJ. Hydatidiform mole with coexisting twin pregnancy after gamete intra-fallopian transfer. *Hum Reprod.* Apr 1992;7(4):568-72. doi:10.1093/oxfordjournals.humrep.a137692

25. Shahabi S, Naome G, Cobin L, et al. Complete hydatidiform mole and coexisting normal fetuses. A report of two cases with contrasting outcomes. *J Reprod Med.* Nov 1997;42(11):756-60.

26. Shozu M, Akimoto K, Kasai T, Inoue M, Michikura Y. Hydatidiform moles associated with multiple gestations after assisted reproduction: diagnosis by analysis of DNA fingerprint. *Mol Hum Reprod.* Sep 1998;4(9):877-80. doi:10.1093/molehr/4.9.877

27. Higashino M, Harada N, Hataya I, Nishimura N, Kato M, Niikawa N. Trizygotic pregnancy consisting of two fetuses and a complete hydatidiform mole with dispermic
androgenesis. *Am J Med Genet.* Jan 1999;82(1):67-9. doi:10.1002/(sici)1096-8628(19990101)82:1<67::aid-ajmg13>3.0.co;2-h

28. Gray-Henry DM, Ravindranath NT, Adeghe JH. Triplet pregnancy with complete hydatidiform mole coexisting with two fetuses. *J Obstet Gynaecol.* Jan 1999;19(1):80-1. doi:10.1080/01443619966074

29. Amr MF, Fisher RA, Foskett MA, Paradinas FJ. Triplet pregnancy with hydatidiform mole. *Int J Gynecol Cancer.* Jan 2000;10(1):76-81. doi:10.1046/j.1525-1438.2000.99064.x

30. Takagi K, Unno N, Hyodo HE, et al. Complete hydatidiform mole in a triplet pregnancy coexisting two viable fetuses: case report and review of the literature. *J Obstet Gynaecol Res.* Oct 2003;29(5):330-8. doi:10.1046/j.1341-8076.2003.00124.x

31. Steigrad SJ, Robertson G, Kaye AL. Serial hCG and ultrasound measurements for predicting malignant potential in multiple pregnancies associated with complete hydatidiform mole: a report of 2 cases. *J Reprod Med.* Jul 2004;49(7):554-8.

32. Ko PC, Peng HH, Soong YK, Chang SD. Triplet pregnancy complicated with one hydatidiform mole and preeclampsia in a 46,XY female with gonadal dysgenesis. *Taiwan J Obstet Gynecol.* Sep 2007;46(3):276-80. doi:10.1016/S1028-4559(08)60034-0
Figure 1 Dizygotic pregnancy with large complete hydatidiform molar tissue and normal placenta.
Figure 2 Dizygotic pregnancy at 11 weeks 4 days with complete hydatidiform molar tissue and viable fetus.
Figure 3: Dizygotic pregnancy with complete hydatidiform molar tissue and abutting normal placenta from a viable fetus.
Figure 4 Trizygotic pregnancy at (a) 11 weeks 5 days with complete hydatidiform molar tissue (b) 24 weeks with head of Twin B and complete hydatidiform molar tissue.
