Supersolid phases in the extended boson hubbard model

Kwai-Kong Ng and Y. C. Chen
Department of Physics, Tunghai University, Taichung, Taiwan
(Dated: February 2, 2008)

We present a comprehensive numerical study on the ground state phase diagram of the two-dimensional hardcore boson extended Hubbard model with nearest (V_1) and next nearest neighbor (V_2) repulsions. In addition to the quantum solid and superfluid phases, we report the existence of striped supersolid and three-quarter (quarter) filled supersolid at commensurate density $\rho = 0.75$ (0.25) due to the interplay of V_1 and V_2 interactions. The nature of three-quarter filled supersolid and the associated quantum solid will be discussed. Quantum phase transition between the two supersolids of different symmetries is observed and is clearly of first order.

PACS numbers: 75.10.Jm, 05.30.Jp, 75.40.Mg

Supersolid (SS) state \([1, 2]\), on which both diagonal and off-diagonal long-range order are broken, has been intensively discussed recently on various models \([3, 4, 5, 6, 7, 8]\). This is partially due to the experimental advance of optical lattice that one day may investigate those hardcore boson models and the exotic supersolid phase experimentally. Furthermore, supersolid phase of spin models is also of great interests as these quantum spin systems has been suggested could be realized in real materials \([3, 4, 8]\).

The simplest hardcore boson model that includes only the nearest neighbor (nn) interaction, however, does not stabilize the supersolid phase on square lattice \([4, 9]\). To induce the supersolid phase, one may relax the hardcore constraint to softcore \([4]\) or to include the next nearest neighbor (nnn) interactions \([3]\). For the latter case, a striped supersolid (SS1) phase is found associated with the half-filled striped solid (QS1) phase, where bosons form stripes that break the $x-y$ symmetry. This stripe structure allows the superfluid component to easily flow through the channels between stripes and therefore coexistence of both solid and superfluid ordering is possible. Unlike striped solid, the hardcore checkerboard solid provides no pathway for superfluid component and no checkerboard SS of hardcore boson has been found so far, unless nnn hopping is included \([10]\). In this work, we present a comprehensive study on the phase diagram of hardcore boson hubbard model with nn and nnn interactions. A three-quarter filled supersolid that, like the checkerboard SS, preserves the $x-y$ symmetry is found stabilized in a large parameter regime of V_1 and V_2. Associated to the supersolid is a three-quarter filled quantum solid, which share the same star-like occupation pattern (see inset of Fig.1). For clarify, we call this solid and supersolid as the star solid (QS2) and star supersolid (SS2) hereafter. Interestingly, the supersolids, SS1 and SS2, that possess different underlying symmetries compete in some parameter regimes in which, as we will show, first order phase transition occurs, in contrast to recent work on a similar model \([10]\). We tackle the problem with both quantum Monte Carlo (QMC) and variational Monte Carlo (VMC) methods which give consistent result. A generic Jastrow wave function in VMC is able to generate qualitative features of all phases in QMC calculations.

We study the extended boson Hubbard model on a 2D square lattice with the Hamiltonian

$$H = -t \sum_{i,j}(b_i^\dagger b_j + b_j b_i^\dagger) + V_1 \sum_{i,j} n_i n_j + V_2 \sum_{i,j} n_i n_j - \mu \sum_i n_i$$

(1)

where $b(b^\dagger)$ is the boson destruction (creation) operator and $\sum_{nn}(\sum_{nnn})$ sums over the (next) nearest neighboring sites. To set the energy scale of the problem, we let $t = 1$ throughout the paper. At half filling, the ground state can be a checkerboard solid (with wave vector (π, π)) for strong nn coupling V_1, or a striped solid (with wave vector $(\pi, 0)$ or $(0, \pi)$) for strong nnn coupling V_2. For competing values of V_1 and V_2, however, quantum frustration disfavors both solid structure and leads to the condensation of bosons instead, i.e. a superfluid ground state. Upon doping for large V_2, as mentioned above, striped solid structure provides channels of superflow so that extra bosons can form superfluid on top of the striped structure and leads to a striped supersolid. Note that quantum effect eventually drives all bosons to participate the superflow, although the superfluidity transverses to the stripes is much smaller \([3]\). For dominating V_1, on the other hand, addition bosons forms no condensate on the checkerboard solid because domain formation is energetically more favorable. As a result, no supersolid of checkerboard solid ordering is found. The phase diagram of half filling and result of doping close to half filling have been discussed in detail in reference \([3]\).

Remarkably, when further increasing doping to $\rho = 0.75$, our numerical calculations show a rich phase diagram that contains a superfluid (SF) phase, a star solid phase which have finite structure factor $S(Q)/N = \sum_i (n_i n_j e^{iQR_{ij}})/N^2$ at $Q_0 = (\pi, \pi), = (\pi, 0), \text{and } = (0, \pi), \text{and supersolid phases of either star ordering or striped ordering.}$ The result obtained from QMC calculation with the stochastic series expansion (SSE) algorithm \([11]\) on
The order parameters as a function of \(V \) compare to those of striped solid QS1. In Fig. 2, we show that, although the last sublattice has occupation \(0.99, 0.37, 0.37 \) and \(0.27 \) respectively. It is not surprising and \(V \sim \) last sublattice has occupation \(\rho = 0.75 \) where the order parameters are plotted in Fig. 2. Lattice size of \(36 \times 36 \) and \(28 \times 28 \) are used with temperature \(\beta = 1/2L \).

A typical structure of the QS2 state and appears on both increasing or reducing \(\mu \) and is finite, it is rather small. At \(\rho = 0.75 \) for \(\mu \sim 2V_1 - 2V_2 \). \(V_1 = 2.0, V_2 = 6.0 \) and lattice size is \(28 \times 28 \).

A clear plateau appeared in the density curve signals the existence of a solid phase, in which the superfluid density \(\rho_{x(y)} \) vanishes but \(S(Q_\parallel)/N \) (Fig. 2) is finite and remains flat throughout the QS2 phase. Structure factor of all other wavevectors are essentially zero but \(S(Q_0)/N \) remains finite under finite size analysis. It is note that the striped solid at half filling has \(S(\pi,0)/N \sim 0.2 \) (not shown). The small value of \(S(Q_0)/N \) in the QS2, therefore, indicates the solid QS2 is rather soft.

Away from the density \(\rho = 0.75 \) there are supersolid phases (SS2), as shown in Fig. 2 which is characterized by the same star solid ordering (wavevector \(Q_0 \)) as the QS2 state and appears on both increasing or reducing \(\mu \) away from the QS2 phase. In this phase \(x-y \) symmetry is preserved such that \(S(\pi,0)/N = S(\pi,\pi)/N \) and is about twice of \(S(\pi,\pi) \). All these peaks reduces simultaneously away from the QS2 and vanish at the same critical point where SF emerges at larger \(\mu \). This implies that this SS2 is a unique phase characterized by these wavevectors but not a mixture of striped phase. Remarkably, like the QS2 state, SS2 has one of the sublattices is almost fully occupied and does not participate on the superflow. Therefore the superfluid flows only on the other three sublattices. This self-pinning effect of one sublattice is rather rare and may worth further investigation [12]. Transition from QS2 to SS2 is of second order as both \(\rho_{x(y)} \) and \(S(Q_0)/N \) changes continuously across phase boundaries and no abrupt change in order parameters is observed.

On the other hand, there is clearly a first order phase transition from SS2 to SS1 as shown in Fig. 2 where all parameters exhibit a sudden jump at the \(\mu - 2V_1 - 2V_2 \approx 12.72 \). This discontinuous transition arises from the distinct broken crystal symmetry of the two supersolids. Our VMC calculation, presented later, also supports the

Fig. 1: (color online) Ground state phase diagram of \(V_2 \) as a function of \(V_1 \) for density \(\rho = 0.75 \). First (second) order phase transition is denoted by dotted (solid) lines. The inset shows the boson occupation profile (the star pattern) of the QS2 and SS2 phase. The cross shows a representative point of QS2 phase at \(\rho = 0.75 \) where the order parameters are plotted in Fig. 2. Lattice size of \(36 \times 36 \) and \(28 \times 28 \) are used with temperature \(\beta = 1/2L \).

Fig. 2: (color online) QMC result of (a) boson density \(\rho \), (b) superfluidity \(\rho_s \) and \(\rho_y \), and (c) structure factor of wavevectors \((\pi, \pi), (0, \pi) \) and \((\pi, 0) \) as functions of chemical potential \(\mu - 2V_1 - 2V_2 \). \(V_1 = 2.0, V_2 = 6.0 \) and lattice size is \(28 \times 28 \).
discontinuous phase transition. It is worthy noting that a recent study on the same model but with nnn hoping t' included also observes the QS2 and SS2 phases by Chen et al.\cite{10}. Our result indicates that t' plays no significant role on the stabilization of both QS2 and SS2 phases which, indeed is a direct consequence of competition between V_1 and V_2 interactions. Furthermore, contrary to our findings, Chen et al. observe a crossover from SS2 to QS2. Whether it arises from t' is still unclear yet.

Moving down from the cross along the dotted line in Fig. \ref{fig:fig1} the width of the QS2 plateau shrinks as V_2 is reduced. When $V_2 \approx 5.2$ the QS2 phase disappears and the ground state changes continuously to the SS2. Order parameters as functions of V_2 are shown in the Fig. \ref{fig:fig2} with $V_1 = 2$ (dotted line in Fig\ref{fig:fig1}). By reducing the nnn repulsion, the system gains kinetic energy that favors superfluidity and soften the solid structure at the same time. Consequently, QS2 continuously changes to SS2 and to SF eventually at $V_2 = 4.0$ where all peaks of $S(Q_0)/N$ vanish simultaneously. Note that there is a large parameter range where SS2 is stabilized at this commensurate density $\rho = 0.75$.

More complicated situation arises for $V_1 < 1$ where the nn repulsion is too weak to support the star-like structure against the striped one. Fig. \ref{fig:fig1} shows the emergence of SS1 at small $V_1 < 1$ within the SS2 regime. The phase transition between SS1 and SS2 is again of first order because of the different broken translational symmetries (inset of Fig\ref{fig:fig2}). For vanishing V_1, neither SS2 and QS2 stabilized so that only ground states of striped ordering is found for all fillings, consistent to the previous findings\cite{12}. In other words, the necessary condition for the appearance of the star-like quantum solid and supersolid is the competition between nn and nnn interactions.

To further investigate the effect of finite V_1, we plot in Fig. \ref{fig:fig3} the phase diagram of fixed $V_1 = 2$ with varying μ. The phase diagram is similar to the case of vanishing V_1 (see ref.\cite{3}) except there are two new phases, SS2 and QS2, emerges within the phase of SS1. Within this phase, increasing μ (e.g. along the dashed line) such that ρ approaches 3/4, the star-like ordering becomes energetically more favorable than the striped ordering as discussed before and SS2 or QS2 is stabilized. Note that this happens only when $V_2 > 4$, otherwise the SS1 phase simply dissolves into SF phase upon increasing ρ. The emergence of SS2, and QS2 in the phase diagram reflects the interplay of nn and nnn interaction in the system.

Now let us present our results by VMC in support of the star solid QS2 and SS2 found in QMC calculation. The wave function we used is the standard Jastrow wave function which is defined as:

$$\Psi = e^{-\sum_{i,j} v_{i,j} n_i n_j} |\Phi_0\rangle,$$

where $|\Phi_0\rangle = (b_{k=0}^\dagger)^N |0\rangle$ is the non-interacting superfluid wave function and N is the total number of bosons. In order to incorporate all kinds of phases in the same wave function, the pair-wise potential $v_{i,j}$’s are independently optimized by the algorithm proposed by Sorella\cite{13}. To determine the phase diagram, we calculate the number of bosons in the zero momentum mode, the condensate, $N_{k=0} = b_{k=0}^\dagger b_{k=0}$, $S(\pi,0)$ and $S(\pi,\pi)$ for the optimized wave function. In Fig.\ref{fig:fig4}(a) three order parameters are shown as a function of density for given $V_1=4$ and $V_2=6$. As density increases, the phase changes from SF to SS2 around the QS2 at $\rho=0.25$. With $\rho > 0.28$ $S(\pi,0)$ vanishes and the system becomes in SS1 phase and QS1 at $\rho=0.5$. This is consistent with the phase diagram (Fig. \ref{fig:fig4}) obtained by QMC. In order to verify if the new SS2 is thermodynamically stable, we show the boson density as a function of the μ which is calculated from the energy of adding add a particle to the system.

FIG. 3: (color online) Ground state order parameters of a 28x28 lattice at $\rho = 0.75$ for different V_2. Inset shows the first order phase transition at $V_2 = 6.0$.

FIG. 4: (color online) Phase diagram of μ vs t for fixed $V_1 = 2.0$. The lines are guide to the eyes with dashed line (solid line) stands for first (second) order phase transitions. The change of order parameters along the black dotted line at $V_2 = 6.0$ is plotted in Fig. \ref{fig:fig3} while those along the red dotted at fixed $\rho = 0.75$ is displayed in Fig. \ref{fig:fig4}.
respectively. Positive slope around the plateau at density $\rho = 0.25$ manifests that the SS2 found is stable against phase separation. Although there are discrepancies on the position of the phase boundaries, the Jastrow wave function alone is adequate to generate all the observed phases in QMC. The authors thank M.F. Yang for fruitful discussions and acknowledge the support of the National Center for High Performance Calculation(Taiwan).
71, 241103 (2005).