Short Report

Identification of Heparin-binding Proteins on the Cell Surface of Cryptococcus neoformans

Reiko Ikeda, Tomoe Ichikawa, Yu-ki Tsukiji, Kohei Kawamura, Ayano Kikuchi, Yo-ichi Ishida and Yuki Ogasawara

Department of Microbial Science and Host Defense, Meiji Pharmaceutical University

ABSTRACT

Interactions between virulence factors of pathogens and host responses play an important role in the establishment of infection by microbes. We focused on interactions between Cryptococcus neoformans proteins and heparin, which is abundant on host epithelial cells. Surface proteins were extracted and analyzed. Fractions from anion-exchange column chromatography interacted with heparin in surface plasmon resonance analyses. Heparin-binding proteins were purified and then separated by gel electrophoresis; and were identified as transaldolase, glutathione-disulfide reductase, and glyoxal oxidase. These results imply that multifunctional molecules on C. neoformans cells, such as those involved in heparin binding, may play roles in adhesion that trigger responses in the host.

Key words: Cryptococcus neoformans, heparin, transaldolase

Introduction

Host–microbe interactions at the molecular level play a key role in pathogenicity, particularly in opportunistic infections. In the case of Cryptococcus neoformans, inhalation of fungal cells leads to an initial pulmonary infection. This species exhibits several virulence factors, including a capsule primarily composed of acidic heteropolysaccharides, melanin synthesized by the enzyme laccase, growth capacity at 37°C, the calcineurin pathway, and suppression of host immunity. Although the mechanism by which C. neoformans invades the central nervous system is not fully understood, adherence to epithelial cells, including respiratory and alveolar cells, might be an important initiating event. Together with use of biomolecules in their host, these events might result in pathogenesis in this fungus. Cell surface glycosaminoglycans, such as heparan sulfate, play roles in the adhesion of several viruses, bacteria, and fungi. For example, the adsorption process of herpes simplex virus (HSV) requires binding of heparan sulfate to target cells. A mutation of glycosaminoglycan synthesis in Chinese hamster ovary cells increases host resistance to the virus. The trans-activator of transcription (Tat) associated with human immunodeficiency virus (HIV) is a heparin receptor. During poxvirus infection, heparan sulfate acts as a receptor, which implies a potent target for antiviral agents. In bacteria, heparin-binding hemagglutinin (HBHA) in Mycobacterium, the Fin2 subunit of fimbriae in Bordetella pertussis, and many proteins including metabolic enzymes from Mycoplasma and Staphylococcus aureus have been identified. Among eukaryotic pathogens, heparin-binding motifs in proteins from Candida have been described, as have a Blastomyces adhesin-1 called BAD-1 and other heparin-interacting proteins, including an elongation factor of Cryptosporidium. Many of these proteins may have roles in adherence, biofilm formation, invasion, or stress responses. Previously, we identified heparinase as a plasminogen-binding protein on the cell surface of Trichosporon asahii, a yeast pathogen. In this study, molecules on the surface of C. neoformans that could bind heparin were analyzed to elucidate how this pathogen utilizes biochemical pathways in its infection process.
Materials and methods

Preparation of extracts from the cell surface of C. neoformans

C. neoformans B-3501 was cultured at 37°C for 2 days in yeast nitrogen base broth supplemented with 2% glucose and 1% casamino acids and subjected to shaking (total volume, 5.4 l). After centrifugation (9,000 rpm, 20 min), the cells were washed once with phosphate-buffered saline and suspended in 3 M LiCl to obtain cell surface proteins. After mixing gently on ice for 15 min, the cell-free extract was dialyzed against water and the surface proteins were collected

The fractions found to bind with heparin were identified via sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and mass spectrometry. Proteins were separated using SDS-PAGE (10%, Multigel Mini10; Cosmo Bio, Tokyo, Japan) and visualized with silver staining (Silver Stain MS Kit; Wako). The molecular mass of each protein was determined based on a set of protein markers (ColourPlus Prestained Protein Marker, Broad-range; New England BioLabs, Ipswich, MA, USA).

The protein bands of interest were excised and subjected to in-gel digestion for mass spectrometric analysis as described previously

The gel pieces were then destained, reduced with dithiothreitol, alkylated with iodoacetamide, and incubated in digestion buffer [50 mM NH4HCO3, 2 μM trypsin (Trypsin Gold; Promega, Madison, WI, USA) and 0.01% ProteaseMax (Promega)] at 42°C for 3 h. The resulting extracted peptides were desalted and concentrated using StageTips that were made in-house using the solid phase extraction disk, Empore

The peptides were analyzed using a liquid chromatography-tandem mass spectrometry (LC-MS/MS) system (Orbitrap Q-Exactive plus MS connected with Easy nLC 1000; Thermo Fisher Scientific, Rockford, IL, USA), as described previously

After the samples were loaded onto the pre-column, Acclaim PepMap 100 (75 μm × 2 cm, C18, 3 μm, 100 Å; Thermo Fisher Scientific), at a flow rate of 300 nl/min, the peptides were isolated by the gradient program using mobile phases A (water containing 0.1% formic acid) and B (acetonitrile containing 0.1% formic acid), in the following sequence: 0% B (0 min) – 30% B (30 min) – 100% B (31 min) – 100% B (40 min). LC-MS/MS data were processed with Proteome Discoverer (ver. 1.4.1.14; Thermo Fisher Scientific). Database searching was done using the embedded Sequest HT server and was performed against C. neoformans sequences in the NCBI database (version 04/2017 with 58,568 sequences).

Results

Fractionation of heparin-binding proteins

To search for heparin-binding proteins on the surface of C. neoformans, DEAE anion-exchange column chromatography was applied to the extract in 3 M LiCl. Binding assays based on SPR demonstrated that the fractions eluted with 0.1 M and 0.2 M NaCl interacted with heparin, as shown in Fig. 1. Of these two fractions, 0.1 M NaCl appeared to have higher binding affinity.

Furthermore, the 0.1 M and 0.2 M NaCl fractions were applied to a heparin agarose column. The eluents from 0.1 M NaCl in Tris-HCl buffer were analyzed using SDS-PAGE followed by silver staining. The fractions were observed to contain several proteins, as shown in Fig. 2. The broad band labeled C was present in both fractions, but B was hardly detected in lane 2 (0.2 M, DEAE) and A was undetectable in lane 2. The protein bands A, B, and C from lane 1 (0.1 M, DEAE) were applied to LC-MS/MS analysis to identify the proteins.
Identification of heparin-binding proteins

To identify the proteins derived from bands A, B, and C, peptides obtained by in-gel digestion were subjected to LC-MS/MS analysis followed by database searching against *C. neoformans* sequences (58,568 sequences). Table 1 shows the identified proteins. Band A was identified as hypothetical protein CNBK0310 (Accession; XP 772657.1), with sequence coverage of 74.30%, a score of 115.73, and 73 peptide spectrum matches (PSMs); and transaldolase (Accession; XP 012052888.1), with sequence coverage of 41.49%, a score of 72.00, and 46 PSMs. The identity between CNBK0310 and transaldolase was 96%. This implies the possibility that there are transaldolase paralogues with very high identity. However, it is also possible that the uniformity of the microbial population might have been lost after repeated passages. Transaldolase is an enzyme involved in the pentose phosphate pathway. Band B was identified as two glutathione-disulfide reductases with very high identity (97%) (Accession; AAW43464.1 and XP 012050124.1). Glutathione-disulfide reductase catalyzes the reduction of glutathione disulfide to glutathione (GSH). Band C was identified as glyoxal oxidase, putative (AAW43726.1) and hypothetical protein CNBA3760 (XP 777907.1). The identity was 52.3%; thus, band C may contain several proteins.

Discussion

Adherence of microbes to the epithelial cells of their host using biopolymers may be an important process in the initial phase of infection. We analyzed the role of heparin in the interaction of *C. neoformans* with respiratory organs, as it is an abundant glycosaminoglycan on the surface of human epithelial cells. Transaldolase and glutathione reductase were identified as heparin-binding proteins. These are known proteins; the former is an enzyme in the pentose phosphate pathway, and the latter catalyzes the reduction of glutathione disulfide (GSSG) to the sulfhydryl form glutathione (GSH). They may play alternative roles as heparin receptors on the surface of cells. Previously, Missall et al. detected transaldolase and glutathione reductase proteins that were regulated by...
nitric oxide stress in C. neoformans23, as well as nitrosative-stress-activated transcription of transaldolase. It is unclear whether the environmental conditions we used for cultivation led to oxidative stress. In addition, Missall et al. prepared a glt1Δ mutant of C. neoformans deficient in glutathione reductase, which was less virulent than the wild type in a mouse model. In the pentose phosphate pathway, where transaldolase plays a role, nicotinamide adenine dinucleotide phosphate (NADPH) is generated and then used in the reduction of GSSG to GSH by glutathione reductase. Notably, both transaldolase and glutathione reductase were detected as heparin-binding proteins on the cells of C. neoformans in our experiments. To investigate the localization of glutathione reductase on the cell surface, we tested its enzymatic activity in whole cells of C. neoformans using a glutathione reductase assay kit (Japan Institute for the Control of Aging, Nikken Sell, Co. Ltd., Kyoto, Japan). Glutathione reductase activity was detected, although the results are not direct evidence of protein localization. In another important fungal pathogen, Candida albicans, glutathione reductase activity was inhibited by sulfated polysaccharides including heparin24. In the medically important Candida species C. parapsilosis and C. tropicalis, transaldolase was identified as a fibronectin- and laminin-binding protein25. In bacteria, a role of extracellular transaldolase in adhesion to mucin and aggregation of cells has been demonstrated in Bifidobacterium bifidum, which implies that transaldolase is an important colonization factor in the gut26. These results imply that multifunctional molecules, the so-called moonlighting proteins27, of C. neoformans could exert an adhesive effect that triggers interactions with the host.

Glyoxal oxidase has been described as a glycosylphosphatidylinositol (GPI)-anchored protein in C. neoformans28. This enzyme is produced by the fungus Phanerochaete chrysosporium, which uses it in lignin degradation pathways29. The degradation products of this process contain polyphenols, which are the substrate for cryptococcal laccase and are related to the virulence factor of melanin formation.

Glycosaminoglycans play a role in infection as adhesion molecules for a number of pathogens, including viruses, bacteria, eukaryotic parasites, and fungi. Heparin binding and infectivity have been investigated in viruses, including HSV30, HIV31, and mouse adenovirus type 1 (MAV-1)32, and these studies showed that the viruses utilized cell-surface glycosaminoglycans such as heparan sulfate, which implies that cell-surface heparan sulfate glycosaminoglycans are important in the process of infection. In the case of HSV, binding depends on the sulfate content and requires at least 10 oligosaccharides31.

In mycobacterial culture supernatant and cell extracts of Mycobacterium bovis and M. tuberculosis, a 28-kDa HBHA was found to contribute to adherence on epithelial cells; HBHA differed from fibronectin-binding proteins33. Furthermore, HBHA is required for dissemination of M. tuberculosis34. In Staphylococcus aureus, heparin enhances biofilm formation in conjunction with secreted and cell-wall proteins35. Mycoplasma pneumoniae possesses heparin-binding proteins36, and fimbriae of Bordetella pertussis bind heparin37.

Among fungi, 34 proteins from Candida albicans are heparin-binding proteins38. A surface protein of Blastomyces dermatitidis named BAD-1 binds heparin and is related to pathogenicity in a mouse model39. Here, we identified three cryptococcal proteins that possibly bind heparin; other proteins remain to be identified. Going forward, we will conduct further studies using different culture conditions and preparation methods, and analyze other related species. Plasmodium falciparum, the protozoon that causes malaria, binds heparin only at the apical tip of the merozoite surface and blocks interactions with the erythrocyte membrane, implying the potential of heparin as a new therapy against malaria30,31. Heparin also interacts with elongation factor lα of Cryptosporidium40.

Heparin binds to many microorganisms with a large variety of proteins as receptors. This binding could be instrumental to their colonization and dissemination processes. There are two possible binding mechanisms for enabling heparin to bind with so many proteins. Heparin and heparin sulfate are negatively charged polymers, and heparin columns are available for cation exchange chromatography. On the other hand, several reports have described heparin-binding motifs on receptor proteins. In HBHA (198 amino acid residues), a heparin-binding protein of M. tuberculosis, a cationic lysine-rich region (160 to 198) that comprises one of its four domains is essential for heparin binding. This domain contains two types of lysine-rich repeats, R1 and R2. R1 contains a sequence (KKAAPA) three times, whereas R2 contains a sequence (KKAAPKK) repeated twice32. The Fim2 subunit of fimbriae expressed by B. pertussis Lys-186 and Lys-187 is important in binding32. Lysine residues have also been suggested to be essential for C. albicans heparin-binding protein (Int1p)33, such as the K805/K806 of motif 1 in Int1p. BAD-1 of Blastomyces has a tandem repeat loop that may represent a putative heparin-binding motif34. The mechanisms of heparin/protein binding remain unknown.

Interactions between microbes and airway epithelial cells involving heparin may induce host responses. HBHA of Mycobacterium increases broad cytokine and chemokine responses, including those of IFN-γ, TNF-α, IL-5, IL-10, IL-13, IL-17, MIP-1 α, and MIP-1 β following BCG vaccination35,36. Our findings were obtained using a strain of C. neoformans. In addition to C. neoformans, C. gattii is an emerging pathogen responsible for cryptococcosis37,38. The identification of molecules involved in adherence could provide insights into the mechanisms that these pathogenic
yeasts use to establish infection and colonization.

Conflict of Interest

None declared.

References

1) Kwon-Chung KJ, Fraser JA, Doering TL, Wang Z, Janbon G, Idnurm A, Bahn YS: Cryptococcus neoformans and Cryptococcus gattii, the etiologic agents of cryptococcosis. Cold Spring Harb Perspect Med 4: a019760, 2014.

2) Coelho C, Casadevall A: Cryptococcal therapies and drug targets: the old, the new and the promising. Cell Microbiol 18: 792-799, 2016.

3) Lycke E, Johansson S, Svennerholm B, Lindahl U: Binding of herpes simplex virus to cellular heparan sulphate, an initial step in the adsorption process. J Gen Virol 72: 1131-1137, 1991.

4) Shieh MT, Wu Dunn D, Montgomery RI, Esko JD, Spear PG: Cell surface receptors for herpes simplex virus are heparan sulfate proteoglycans. J Cell Biol 116: 1273-1281, 1992.

5) Ai J, Xin X, Zheng M, Wang S, Peng S, Li J, Wang L, Jiang H, Geng M: A triad of lys12, lys41, arg78 spatial domain, a novel identified heparin binding site on tat protein, facilitates tat-driven cell adhesion. PLoS One 3: e2662, 2008.

6) Khanna M, Ranasinghe C, Jackson R, Parish CR: Heparin sulfate as a receptor for poxvirus infections and as a target for antiviral agents. J Gen Virol 98: 2556-2568, 2017.

7) Menozzi FD, Rouse JH, Alavi M, Laude-Sharp M, Muller J, Bischoff R, Brennan MJ, Locht C: Identification of a heparin-binding hemagglutinin present in mycobacteria. J Exp Med 184: 993-1001, 1996.

8) Peth K, Alonso S, Biet F, Delougu G, Brennan MJ, Locht C, Menozzi FD: The heparin-binding haemagglutinin of M. tuberculosis is required for extrapulmonary dissemination. Nature 412: 190-194, 2001.

9) Lebrun P, Raze D, Fritzinger B, Wieruszeski JM, Biet F, Dose A, Carpenter M, Schwarzer D, Allain F, Lippens G, Locht C: Differential contribution of the repeats to heparin binding of HBHA, a major adhesin of Mycobacterium tuberculosis. PLoS One 7: e32421, 2012.

10) Geuwe CA, Willems RJ, Hoogerhout P, Puip JWC, Meloen RH, Moos FR: Identification and characterization of heparin binding regions of the Fim2 subunit of Bordetella pertussis. Infect Immun 66: 2256-2263, 1998.

11) Ueberle B, Frank R, Herrmann R: The proteome of the bacterium Mycoplasma pneumoniae: comparing predicted open reading frames to identified gene products. Proteomics 2: 754-764, 2002.

12) Mishra S, Horwill AR: Heparin mimics extracellular DNA in binding to cell surface-localized proteins and promoting Staphylococcus aureus biofilm formation. mSphere 2: e00135-17, 2017.

13) Green JV, Orsborn KI, Zhang M, Tan QK, Greis KD, Porollo A, Andes DR, Long L, Hostetter MK: Heparin-binding motifs and biofilm formation by Candida albicans. J Infect Dis 208: 1695-1704, 2013.

14) Brandhorst TT, Roy R, Wüthrich M, Nanjappa S, Filutowicz H, Galles K, Tonelli M, McCastin DR, Satyshur K, Klein B: Structure and function of a fungal adhesin that binds heparin and mimics thrombospondin-1 by blocking T cell activation and effector function. PLoS Pathog 9: e1003464, 2013.

15) Inomata A, Murakoshi F, Ishiwa A, Takano R, Takekawa H, Sugi T, Cagayat Recuenco F, Horimoto T, Kato K: Heparin interacts with elongation factor 1 α of Cryptosporidium parvum and inhibits invasion. Sci Rep 5: 11599, 2015.

16) Ikeda R, Ichikawa T, Miyazaki Y, Shimizu N, Ryuke T, Haru K, Sugita T, Takashima M: Detection and characterization of plasminogen receptors on clinical isolates of Trichosporon asahii. FEMS Yeast Res 14: 1186-1195, 2014.

17) Ikeda R, Ichikawa T: Interaction of surface molecules on Cryptococcus neoformans with plasminogen. FEMS Yeast Res 14: 445-450, 2014.

18) Takeshita M, Ishida Y, Akamatsu E, Ohmori Y, Sudo M, Uto H, Tsubouchi H, Kataoka H: Proanthocyanidin from blueberry leaves suppresses expression of subgenomic hepatitis C virus RNA. J Biol Chem 284: 21165-21176, 2009.

19) Ishida YI, Aki M, Fujiwara S, Nagahama M, Ogasawara Y: Peroxidatic cysteine residue of peroxiredoxin 2 separated from human red blood cells treated by tert-butyl hydroperoxide is hyperoxidized into sulfinic and sulfonic acids. Hum Cell 30: 279-289, 2017.

20) Rappisiber J, Mann M, Ishihama Y: Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2: 1896-1906, 2007.

21) Ishida YI, Kayama T, Kubane H, Nishimoto S, Koike S, Suzuki T, Horiuchi Y, Miyashita M, Itokawa M, Ariai M, Ogasawara Y: Identification of an argpyrimidine-modified protein in human red blood cells from schizophrenic patients: a possible biomarker for diseases involving carbonyl stress. Biochem Biophys Res Commun 493: 573-577, 2017.

22) Ikeda R, Ichikawa T: Triosephosphate isomerase from Staphylococcus aureus and plasminogen receptors on microbial pathogens. In Moonlighting proteins: Novel virulence factors in bacterial infections (Henderson B ed), pp.311-320, Wiley-Blackwell, New Jersey, 2017.

23) Missall TA, Pusateri ME, Donlin MJ, Chambers KT, Corbett JA, Lodge JK: Posttranslational, translational, and transcriptional responses to nitric oxide stress in Cryptococcus neoformans: Implications for virulence. Eur J Cell Biol 5: 518-529, 2006.

24) Pauliková H, Petříčková I, Antalík M, Podhradský D: Effect of heparin and dextran sulfate on the activity of glutathione reductase from yeast. Biochem Mol Biol Int 38: 1117-1126, 1996.

25) Kozik A, Karkowska-Kuleta J, Zajac D, Bochenska O, Kozik A, Karkowska-Kuleta J, Zajac D, Bochenska O, Karkowska-Kuleta J, Zajac D, Bochenska O: Immunogenicity of Candida tropicalis and Trichosporon asahii. FEMS Yeast Res 5: 2116-2117, 2013.

26) Gonzalez-Rodriguez I, Sánchez B, Ruiz L, Turroni F, Ventura M, Ruas-Madiedo P, Gueimonde M, Margolles A: Role of extracellular transaldolase from Bifidobacterium bifidum in mucin adhesion and aggregation. Appl Environ Microbiol 78: 3992-3998, 2012.

27) Levitz SM, Specht CA: The molecular basis for the immunogenicity of Cryptococcus neoformans mannanproteins. FEMS Yeast Res 6: 513-524, 2006.
28) Kersten PJ, Kirk TK: Involvement of a new enzyme, glyoxal oxidase, in extracellular H$_2$O$_2$ production by *Phanerochaete chrysosporium*. *J Bacteriol* **169**: 2195-2201, 1987.

29) Opie SR, Warrington KHI Jr, Agbandje-McKenna M, Zolotukhin S, Muzyczka N: Identification of amino acid residues in the capsid proteins of adeno-associated virus type 2 that contribute to heparan sulfate proteoglycan binding. *J Virol* **77**: 6995-7006, 2003.

30) Kobayashi K, Kato K, Sugi T, Takemae H, Pandey K, Gong H, Tohya Y, Akashi H: *Plasmodium falciparum* BAEBL binds to heparan sulfate proteoglycans on the human erythrocyte surface. *J Biol Chem* **285**: 1716-1725, 2010.

31) Kobayashi K, Takano R, Takemae H, Sugi T, Ishiwa A, Gong H, Recuenco FC, Iwanaga T, Horimoto T, Akashi H, Kato K: Analyses of interactions between heparin and the apical surface proteins of *Plasmodium falciparum*. *Sci Rep* **3**: 3178, 2013. Erratum in: *Sci Rep* **4**: 4349, 2014.

32) Smith SG, Lecher S, Blitz R, Locht C, Dockrell HM: Broad heparin-binding haemagglutinin-specific cytokine and chemokine response in infants following *Mycobacterium bovis* BCG vaccination. *Eur J Immunol* **42**: 2511-2522, 2012.

33) Ichikawa T, Cho O, Sugita T, Ishibashi Y, Ikeda R: Comparative analysis of extracellular polymeric substances from *Cryptococcus gattii* VGIIa strain isolated for the first time in Japan. *Med Mycol* **57**: E1-7, 2016.