Conserved structure of the NPR1 gene distal promoter isolated from a chili pepper (Capsicum annuum L.) in West Sumatera [version 2; peer review: 3 approved with reservations]

Jamsari Jamsari¹, Maythesya Oktavioni¹, Bastian Nova², Ifan Aulia Candra³, Alfi Asben⁴, Lily Syukriani¹

¹Department of Agrotechnology, Universitas Andalas, Padang, West Sumatera, 25136, Indonesia
²Department of Crop Science, Universitas Taman Siswa, Padang, West Sumatera, 25138, Indonesia
³Postgraduate Biotechnology Program, Universitas Andalas, Padang, West Sumatera, 25136, Indonesia
⁴Department of Agricultural Product Technology, Universitas Andalas, Padang, West Sumatera, 25136, Indonesia

Abstract

Background: The non-expressor of pathogenesis related gene 1 (NPR1) protein is one of the key regulators in the systemic acquired resistance plant defense system. The cis-acting elements of its distal promoter gene are characterized by salicylic acid inducing elements such as the W-box, RAV1AAT and ASF1, accompanied by enhancer and silencer elements. This study was aimed to isolate and characterize the distal promoter sequence of the NPR1 gene (PD_CbNPR1) from the chili pepper (Capsicum annuum L.) genotype Berangkai, a local genotype known to produce large yields, but is susceptible to viral infection. Elucidating its sequence structure will open a broad range of possibilities to engineer the NPR1 gene expression which is important to improve chili pepper resistant.

Methods: PCR-based cloning combined with a primer walking strategy was applied in this study. The BioEdit tool was used to edit the sequence and verify sequence integrity, while homology analysis was conducted with BLASTn searching. Identification of a cis-acting element was detected by PLACE, PlantCare, and PlantPAN.

Results: Isolation of the complete distal promoter sequence of PD_CbNPR1 produced a fragment 5,950 bp in size. BLASTn search analysis indicated that PD_CbNPR1 sequence is highly conserved (99% identity) showing only a single nucleotide polymorphism (SNP) (base substitution) compared with its reference sequence. Analysis using PLACE tools successfully identified nine cis-acting elements containing a W-box, WLE1, RAV1AAT, TATA-box, CAAT-box, GARE and GT1 with multi repeats and diverse motives, as well as enhancer and silencer
elements, which is characterized by a CCAAT-box and GAGAAATT pattern, respectively.

Conclusion: The distal promoter of the *NPR1* gene is highly conserved, showing only one SNP caused by one base substitution event.

Keywords
CCAAT-box, distal promoter, NPR1 gene, RAV1AAT, W-box

Corresponding author: Jamsari Jamsari (ajamsari@yahoo.com)

Author roles: Jamsari J: Conceptualization, Funding Acquisition, Methodology, Resources, Supervision, Validation, Writing – Review & Editing; Oktavioni M: Formal Analysis, Investigation, Software, Writing – Original Draft Preparation; Nova B: Methodology, Supervision; Candra IA: Supervision; Asben A: Funding Acquisition; Syukriani L: Data Curation, Project Administration

Competing interests: No competing interests were disclosed.

Grant information: This study was funded by Universitas Andalas–Padang, West Sumatera, Indonesia, via Professorship Cluster Research Grants. The fiscal year 2018, Contract No.: 18/UN.16.17/PP.RGB/LPPM 2018. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2019 Jamsari J et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Jamsari J, Oktavioni M, Nova B et al. Conserved structure of the *NPR1* gene distal promoter isolated from a chili pepper (*Capsicum annuum* L.) in West Sumatera [version 2; peer review: 3 approved with reservations] F1000Research 2019, 8:52 https://doi.org/10.12688/f1000research.17374.2

First published: 14 Jan 2019, 8:52 https://doi.org/10.12688/f1000research.17374.1
REVISED Amendments from Version 1

Some changes in our 2nd version dealt with the comments and suggestions addressed by the two reviewers Minghui Lu, and Santy Peraza-Echeverria.
In the Abstract, two bioinformatic tools: PlantCare and PlantPAN are added. The term “homology” has been changed to “identity”.
In the Methods, the “Genomic DNA isolation” subsection has been expanded. PlantCARE (Lescot et al., 2002) and PlantPAN are mentioned in the “Bioinformatic tools and sequence analysis” subsection.
In the Results and Discussion, Figure 1 has been replaced and now shows the transcription start site and the length of core promoter.
In the “Characteristics of the NPR1 distal promoter” subsection, we add a paragraph explaining that PCR based cloning strategy in combination with primer walking was applied to isolate the complete full length of putative distal promoter NPR1 gene region (5,950 bp). The terminology “99% homology” was changed to “99% identity”. We add that the BLAST analysis didn’t show any significant homology with another promoter sequence available in the NCBI database, indicating a limitation of promoter sequence availability. We further expand on this and add a reference to Lee et al., 2006.
We expand on our validation process and add a new reference (Nova et al., 2019). We have updated Figure 3 with 1 TCA motif and 3 CGTA motifs in the cis-acting diagram and the word “nine” is changed to “eleven”.
We added a new paragraph explaining the findings following analysis with PlantCare and PlantPAN 3.0.
In the Conclusion, we add TCA and CGTA to the list of cis-acting elements and mention that the role of cis-acting elements in gene expressions needs to be confirmed.
Any further responses from the reviewers can be found at the end of the article.

Introduction
The non-expressor of pathogenesis related gene 1 (NPR1) protein is the main regulator in the systemic acquired resistance response of many plants. Overexpression by modifying the distal promoter in the W-box element of the OsNPR1 gene in rice could increase its resistance against Xanthomonas oryzae pv. Oryzae up to 4.3 times (Hwang & Hwang, 2010). Similar results were reported by Zhong et al. (2015), who modified the RAV1 element on the GhNPR1 which increased Gladiolus hybridus resistance against Curvularia gladioli by up to 18.6 times compared to control. Based on those studies, we expect more prospects of the NPR1 gene promoter in the improvement of plant resistance against many pathogens.

Methods
Genomic DNA isolation
Healthy young leaves collected from chili pepper genotype Berangkai, a local genotype potentially produces more yields compared to other genotypes cultivated in West Sumatera.

Fragment isolation and PCR conditions
PCR-based cloning combined with a primer walking approach was applied for the isolation complete segment of distal promoter of the NPR1 gene. All PCR reactions in this study were performed using the KOD-Plus-Neo kit provided by Toyobo-Japan. Chromosome 7 of Capsicum annuum cv. Zunla-1 (Qin et al., 2014), accession number: NC_029983.1, was used as the reference sequence. Primer combinations were designed to cover the interval segment spanning from base 112,600,897 to 112,606,847 on the reference sequence (Table 1). All primers used in this study are listed in Table 1. First-step isolation was started from both termini and continued with successive isolation until both termini formed a complete contig of the target segment. The initial PCR condition was started with 95°C for 3 minutes for pre-denaturation and amplified in two different loops using 14 and 24 cycles. The first 14 cycles were performed using a touch down steps started by denaturation at 95°C for 30 seconds. Annealing was initiated with 70°C for 30 seconds and gradually decreased 1°C for every cycle before finally elongated in 72°C for 2 minutes. The next 24 cycles started with denaturation at 95°C for 30 seconds and annealing at 55°C for 30 seconds and elongation of at 70°C for 2 minutes and elongated for 72°C for 2 minutes. The final extension was maintained at 72°C for 5 minutes. PCR reaction was performed in 50 µl of final volume. PCR composition was set according to manufacturer’s recommendation, containing 5 µl 10X Buffer KOD-Plus-Neo, 5 µl of 2 mM dNTPs, 3 µl of 25 mM MgSO4, 1.5 µl of 10 ng/µl of each primer, 1 µl of KOD-Plus-Neo (Toyobo, Japan) and 1 µl of 10 ng/µl of DNA template. The volume was filled with 32 µl of nuclease-free water.

Bioinformatic tools and sequence analysis
The PCR product generated from each walking step was processed to sequencing reaction using its both forward and reverse primers. All sequencing processes were performed by 1st BASE-Singapore. A number of bioinformatic tools were applied during analysis of the sequence. Trimming, editing and building of the sequence contig were performed using BioEdit v7.2.5 (Hall, 1999). Homology search of the sequence with all available sequences deposited in the NCBI database was run using the BLASTn tool (Altschul et al., 1990). The cis-acting elements were identified using PLACE, developed by Higo et al. (1999), PlantCARE (Lescot et al., 2002) and PlantPAN.

Results and discussion
Characteristics of the NPR1 distal promoter
We successfully isolated the distal promoter of the NPR1 gene from our local chili pepper genotype Berangkai, exhibiting 5,950 bp in size and designated PD_CbNPR1. The fragment was
isolated from two steps round of walking via PCR-based cloning. In the first step, the whole distal promoter region was expected to be covered using two primer combinations (F1 F/R and F2 F/R). However, after verification of the sequence data using BioEdit, the upstream primer combination (F1 F/R) successfully produced a contig spanning only 1,963 bp, while the downstream primer combination (F2 F/R) was skipped for the sequencing process. In the second round of primer walking, four new primer combinations (F1.1-F/R, F1.2-F/R, F2.1-F/R, and F2.2-F/R) (Table 1) were designed in order to extend sequence coverage. Combining all verified sequences obtained from the first and the second round of primer walking successfully produced a contig with a size of 5,950 bp (Figure 1).

PCR-based cloning strategy in combination with primer walking was applied to isolate the complete full length of putative distal promoter NPR1 gene region (5,950 bp). This approach is considered to be the most appropriate since the sequencing read capacity used in this study is limited for about 500 bp on average. Even though the KOD-Plus-Neo could amplify up to 24 kb according to manufacturer’s claim, but the full-length fragment (5,950 bp) still can not be sequenced in one step read due to limited reading capacity of the sequencing machine. Validation of every single nucleotide data was confirmed by at least two overlapping validated segment.

Homology analysis between PD_CbNPR1 and its reference sequence via BLAST search showed 99% identity. The data was verified by only one single nucleotide polymorphism (SNP) shown as a substitution event at the position -6,335 from the ATG start codon (Figure 2). Furthermore, BLAST analysis showed no significant homology with another promoter sequence available in the NCBI database, indicating a limitation of promoter sequence availability. The only promoter sequence showed homology is the promoter region of Capsicum annuum pathogenesis related protein-1 (PR-1) gene (DQ201633.1) published by Lee et al. (2006). However, the comparable nucleotide of both sequences spanned only 180 bp.

In order to validate our claim, we constructed a contiguous segment with our isolated core promoter (MK310185.1) and the NPR1 gene sequence isolated from a similar genotype Berangkai (Nova et al., 2019). BLAST analysis using the NPR1-Berangkai cDNA sequence exhibited 43 significant identity hits with other cDNA sequences of NPR1 gene for instance, Capsicum annuum (NM_001325099.1), Capsicum chinense (AM900559.1), Solanum lycopersicum (KK198701.1, NM_001247629.2), Nicotiana sp. (DQ837218.1, AF480488.1) Carica papaya (XM_022041103.1, AY550242.1) and some others. Tree analysis showed that our NPR1-Berangkai cDNA sequence clustered to similar clade with AM900559.1 and NM_001325099.1 and other three solanaceae (S. lycopersicum; S. pennellii; S. tuberosum; S. carica). All those data obviously indicated that our segment landed in the right chromosome segment.

Cis-acting regulatory elements

PLACE analysis successfully indicated 9 cis-acting elements with multi repetition (Figure 3). All 9 cis-acting elements contained the W-box (15), WLE1 (W-box like elements) (8), RAVIAAT (20), TATA-box (22), CAAT-box (26), GARE (1), GT1 (20), Enhancer (4) and Silencer (1). The PlantCare analysis successfully showed 2 other cis-acting element motifs namely 1 TCA motif and 3 CGTA motifs which could not be shown by PLACE (Figure 3).

The W-Box element binds the WRKY protein, acting as a transcription factor during expression of NPR1 (Yu et al., 2010). Mutation in this element in Arabidopsis thaliana delayed the NPR1 expression induced by salicylic acid (SA). PLACE analysis

Primer ID	Sequence 5’ to 3’	Expected PCR product (bp)	Verified sequence (bp)
F1-F	TGA TCG CAC TCA TCA CCG AAC	3,597	970
F1-R	CCG TAC CTT GTT AAC CCC ATC	3,351	993
F2-F	CAT GGG GTT AAC AGG GTA CC	3,597	Skipped for sequencing
F2-R	CCC AAG GCG TAA CTA TTG AAC	970	871
F1.1-F	CCG ACC CAC ACC AGG TTA TAT	1,204	1,115
F1.1-R	CCC CCT CCT TAG CTT CTC TTC	1,915	1,801
F1.2-R	CCC TTG GTC CTT AGT CAG TGA	1,811	1,724
F2-R	CCC AAG GCG TAA CTA TTG AAC	1,915	1,801

Figure 1 shows the complete full length of NPR1 gene region from Capsicum annuum with a size of 5,950 bp. The sequence was confirmed by at least two overlapping validated segment. The promoter region of NPR1 gene contained a limitation of sequence availability due to limited reading capacity of the sequencing machine. The PLACE analysis successfully showed 9 cis-acting elements with multi repetition. The W-Box element binds the WRKY protein, acting as a transcription factor during expression of NPR1. Mutation in this element in Arabidopsis thaliana delayed the NPR1 expression induced by salicylic acid (SA). PLACE analysis
indicated that PD-CbNPR1 is characterized by three consensus sequences: TTGAC, TGACY, and TGACT. The TGACY pattern could also be found in the promoter of ERF3 isolated from tobacco (Nishuchi et al., 2004), while TGACT could be found in the promoter of the Iso1 barley gene (Sun et al., 2003). The WLE1 (W-box like elements) with TGACA pattern has an analog function with the W-box identified in the promoter of OsNPR1 (Hwang & Hwang, 2010).

Another cis-acting element found in PD_CbNPR1 is RAV1AAT, which acts as binding site for protein RAV1 (Hwang & Hwang, 2010). The RAV1 protein is a transcription factor associated with some pathogenesis-related genes (Sohn et al., 2006). Two consensus patterns of RAV1AAT elements found in PD_CbNPR1 are CAACA and TGTTG. The CAACA pattern was also found by Kagaya et al. (1999) in Arabidopsis thaliana, while the TGTTG pattern is similar to the OsNPR1 promoter.
(Hwang & Hwang, 2010). Notably, the ASF1 element is absent in the \textit{PD}\textsubscript{Ch}NPRI. The ASF1 element has been previously reported by Hwang & Hwang (2010) and Zhong \textit{et al.} (2015) as a \textit{cis}-acting for common promoter associated with pathogen infection and SA induction.

PLACE analysis identified 22 putative TATA-boxes in our \textit{PD}\textsubscript{Ch}NPRI, which could be classified into TATA box 3, TATA box 4, TATA box 5 and TATA box Ospl. During transcription, the TATA-box binds with RNA polymerase II and many transcription factors like TFIIID, TFIIA, TFIIF, TFIIE, and TFIIF to build the TATA-box complex.

Another interesting element found in \textit{PD}\textsubscript{Ch}NPRI is the CAAT-box (26 repeats) which is associated with the regulation of many genes involved in pathogen infection (Imran \textit{et al.}, 2016). The CAAT-box consensus sequence found in \textit{PD}\textsubscript{Ch}NPRI is characterized with CAAT which is similar that have been found in promoter of the legA gene from \textit{Pisum sativum} (Shirsat \textit{et al.}, 1989).

We also found a gibberellin-responsive element (GARE) motif, which has been previously reported by Ogawa \textit{et al.} (2003) as the binding site with some transcription factors induced by gibberellin acid. The consensus sequence of those motifs is TAACAAR. Another \textit{cis}-acting element induced by abiotic factors such as salt, light and pathogenesis is GT1 motif (Bilas \textit{et al.}, 2016; Park \textit{et al.}, 2004). The identified GT1 element in \textit{PD}\textsubscript{Ch}NPRI is characterized by a consensus GRWAAW motif and present in 20 repeats. They could be classified into two forms, GT1CONSENSUS and GT1GMSCAM4, as described previously by Terzaghi & Cashmore (1995). The last GT1 class, GT1GMSCAM4, is initially identified by Park \textit{et al.} (2004) with consensus pattern GAAAAA.

PLACE analysis also successfully identified four CCAAT-box motifs, which is commonly reported as an enhancer of transcription (Thonpho \textit{et al.}, 2013). This element is able to up-regulate the transcription and replication rate of eukaryotic genes by binding many types of transcription factors (Bilas \textit{et al.}, 2016). da Silva \textit{et al.} (2013) previously reported that a greater number of CCAAT-boxes could improve promoter capability in increasing of replication rate by binding efficiently with transcription factors. In contrast with the enhancer, we found only one motif of GAGAAAT which is also known as silencer (Lai \textit{et al.} (2009). This element is reported to be able to down-regulate the kinesin-like protein 1 (\textit{AtKPI1}) gene in \textit{Arabidopsis thaliana} by up to 80.9%.

Analysis with PlantCare (Lescot \textit{et al.}, 2002) resulting 2 new additional elements, which are designated TCA element and CGTA-motif (Figure 3), while analysis with PlantPAN 3.0 did not show any new different element compared to PLACE analysis. The TCA element has a function as a \textit{cis}-acting element which is involved in salicylic acid responsiveness. Moreover we also found the CGTA motif playing a role in regulating me-IA responsiveness. In our sequence only 1 single TCA element and 3 CGTA motifs could be detected.

\textbf{Conclusion}

We successfully isolated the distal promoter of the \textit{NPRI} gene from chili pepper genotype Berangkai (designated \textit{PD}\textsubscript{Ch}NPRI) spanning 5,950 bp. The \textit{PD}\textsubscript{Ch}NPRI contain 11 \textit{cis}-acting elements: W-box, WLE1, RAV1AAT, TATA-box, CAAT-box, GARE, GT1, TCA, CGTA, enhancer and silencer elements. Engineering of the \textit{cis}-acting elements may have future prospects, particularly in improving chili pepper resistance against biotic and abiotic stresses by up- and down-regulating \textit{NPRI} gene expression. However, their role in the gene expression has to be confirmed empirically. For that reason, we are currently using the \textit{cis}-acting elements found in this study for replicase (\textit{Rep}) gene expression in the bacterial system.

\textbf{Data availability}

The sequence of the distal promoter of the \textit{NPRI} gene sequenced in this study has been deposited in GenBank under accession number MK281381; https://identifiers.org/ena.embl:MK281381.

\textbf{References}

Autschul SF, Gish W, Miller W, \textit{et al.}: Basic local alignment search tool. \textit{J Mol Biol.} 1990; 215(3): 403–410. \textit{PubMed Abstract} \textit{Publisher Full Text}

Bilas R, Szaran K, Hnatuszko-Konka K, \textit{et al.}: \textit{Cis}-regulatory elements used to control gene expression in plants. \textit{Plant Cell Tiss Organ Cult.} 2016; 127(2): 269–287. \textit{PubMed Abstract} \textit{Publisher Full Text}

da Silva JS, Slowik R, Bicalho Mda G: Considerations on regulatory sequences of the distal promoter region of the HLA-G gene. \textit{Hum Immunol.} 2013; 74(4): 473–477. \textit{PubMed Abstract} \textit{Publisher Full Text}

Hall TA: BioEdit a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. \textit{Nucleic Acids Symp Ser.} 1999; 41: 95–98. \textit{Reference Source}

Higo K, Ugaue Y, Iwamoto M, \textit{et al.}: Plant \textit{cis}-acting regulatory DNA elements (PLACE) database: 1999. \textit{Nucleic Acids Res.} 1999; 27(1): 297–300. \textit{PubMed Abstract} \textit{Publisher Full Text}

Hwang SH, Hwang DJ: Isolation and characterization of the rice \textit{NPRI} promoter. \textit{Plant Biotechnol.} Rep. 2010; 4(1): 29–35. \textit{Publisher Full Text}

Imran OM, Falak N, Hussain A, \textit{et al.}: Nitric Oxide Responsive Heavy Metal-Associated Gene \textit{AHMAD1} Contributes to Development and Disease Resistance in \textit{Arabidopsis thaliana}. \textit{Front Plant Sci.} 2016; 7: 1712. \textit{PubMed Abstract} \textit{Publisher Full Text} \textit{Free Full Text}

Jamsari J, Pedri J: Complete nucleotide sequence of DNA A-like genome and DNA-β of monopartite pepper yellow leaf curl virus, a dominant \textit{Begomovirus} infecting \textit{Capsicum annuum} in West Sumatera Indonesia. \textit{Asian J Plant Pathol.} 2013; 7(1): 1–14. \textit{Publisher Full Text}

Kagaya Y, Ohmiya K, Hatton T: RAV1, a novel DNA-binding protein, binds to...
bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants. Nucleic Acids Res. 1999; 27(2): 470–478. PubMed Abstract | Publisher Full Text | Free Full Text

Lai C, Xiong J, Li X, et al.: A 43-bp A/T-rich element upstream of the kinesin gene AKIP1 promoter functions as a silencer in Arabidopsis. Plant Cell Rep. 2009; 28(5): 851–860. PubMed Abstract | Publisher Full Text

Lee BJ, Park CJ, Kim SK, et al.: In vivo binding of hot pepper bZIP transcription factor CabZIP1 to the G-box region of pathogenesis-related protein 1 promoter. Biochem Biophys Res Commun. 2006; 344(1): 55–62. PubMed Abstract | Publisher Full Text | Free Full Text

Lescot M, Déhais P, Thijs G, et al.: PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002; 30(1): 325–327. PubMed Abstract | Publisher Full Text | Free Full Text

Nishiuchi T, Shinshi H, Suzuki K: Rapid and transient activation of transcription of the ERF3 gene by wounding in tobacco leaves: possible involvement of MWRKYS and autorepression. J Biol Chem. 2004; 279(53): 55355–55361. PubMed Abstract | Publisher Full Text

Nova B, Hidayati R, Fichri M, et al.: Isolation and characterization of the NPR1 gene from highly susceptible pepper cv. Berangkai. Biosci Res. 2019; 16(2): 1317–1322. Reference Source

Ogawa M, Hanada A, Yamauchi Y, et al.: Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell. 2003; 15(7): 1591–1604. PubMed Abstract | Publisher Full Text | Free Full Text

Park HC, Kim ML, Kang YH, et al.: Pathogen- and NaCl-induced expression of the SCAm-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiol. 2004; 135(4): 2150–2161. PubMed Abstract | Publisher Full Text | Free Full Text

Qin C, Yu C, Shen Y, et al.: Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proc Natl Acad Sci USA. 2014; 111(14): 5135–5140. PubMed Abstract | Publisher Full Text | Free Full Text

Shirsat A, Wilford N, Croy R, et al.: Sequences responsible for the tissue specific promoter activity of a pea legumin gene in tobacco. Mol Gen Genet. 1989; 215(2): 326–331. PubMed Abstract | Publisher Full Text

Thonpho A, Rojvirat P, Jitrapakdee S, et al.: Characterization of the distal promoter of the human pyruvate carboxylase gene in pancreatic beta cells. PLoS One. 2013; 8(1): e55139. PubMed Abstract | Publisher Full Text | Free Full Text

Yu J, Wang XY, Wei Q, et al.: Identification of regulatory cis-elements upstream of AINPR1 that are responsive to probenazole treatment in transgenic tobacco plants. J Plant Biol. 2010; 53(4): 282–290. Publisher Full Text

Zhong X, Xi L, Lian Q, et al.: The NPR1 homolog GHNPR1 plays an important role in the defense response of Gladiolus hybridus. Plant Cell Rep. 2015; 34(6): 1063–1074. PubMed Abstract | Publisher Full Text
Open Peer Review

Current Peer Review Status: ? ? ?

William Bryan Terzaghi
Department of Biology, Wilkes University, Wilkes-Barre, PA, USA

The authors cloned and sequenced the distal promoter region of the PD_CbNPR1 gene of chili pepper Berangkai, a genotype from West Sumatera that produces large yields but is prone to gemini virus infections. The sequence data was analyzed using several bioinformatics tools, and a number of cis-acting elements were identified.

My biggest concern with this study is why focus on NPR1 to improve resistance to geminivirus infections? The examples they cited involve resistance to bacterial pathogens. The authors should cite examples of geminivirus resistance mechanisms that have been identified in other plants in their introduction and explain why NPR1 is a good target to enhance geminivirus resistance.

Another concern with this study is why did it focus on the distal promoter, and how was the distal promoter defined? In Figure 1 the authors define the core promoter as extending from -4050 to the Transcription Start Site. How was this defined? Has the Transcription Start Site been experimentally verified, and has the core promoter been analyzed elsewhere? I would expect to find most of the critical control elements within the core promoter, and these would be the most promising elements to engineer to enhance NPR1 expression.

A third concern is that it only compares this genotype with the source of the reference sequence. In order to use this sequence to provide insight into resistance to geminivirus infection they must compare it with resistant cultivars. In their Nova et al. (2019) paper they state that there are various chili pepper genotypes used in Indonesia. Are any of these more resistant to PepYLCV than Berangkai? Their statement that Berangkai produces large yields but is prone to geminivirus infection implies that other varieties are more resistant but produce lower yields.

In order to be useful for improving geminivirus resistance in chili pepper this study must identify sequences that vary between resistant and susceptible varieties which can then be tested experimentally.

References
1. Nova B, Hidayati R, Fichri M, Syukriani L, et al.: Isolation and characterization of the NPR1 gene from highly susceptible pepper cv. Berangkai. *Bioscience Research*. 2019; 16 (2): 1317-1322

Reference Source

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Partly

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Not applicable

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Plant molecular biology and plant physiology

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Reviewer Report 08 October 2019

https://doi.org/10.5256/f1000research.22642.r54273

© 2019 Lu M. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Minghui Lu
College of Horticulture, Northwest A&F University, Yangling, China

For author response 1, the authors can perform the segmental sequencing using several primers inside the full-sequence.

For author response 2, the authors can find the homologous genes of NPR1 from other plant species, whose genomes were well-sequenced, like tomato, tobacco, even arabidopsis, and then
get their distal promoter sequences based on the genome sequence.

For author response 3, only the sequence from a susceptible variety is not enough to explain its biological functions. I suggest the authors to compare the sequences from several varieties with different disease resistance (even a little difference).

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Partly

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
Partly

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: plant tolerance to abiotic stresses especially high temperature

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Version 1

Reviewer Report 02 May 2019

https://doi.org/10.5256/f1000research.18999.r47197

© 2019 Peraza-Echeverria S. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Santy Peraza-Echeverria
Biotechnology Unit, Yucatan Center for Scientific Research (CICY), Mérida, Mexico
This study reports the cloning and bioinformatic analysis of the putative promoter region of \textit{PD_CbNPR1} from chili pepper. This putative promoter region was isolated from a local chili pepper genotype (Berangkai) known to produce large yields but susceptible to viral infections. The putative promoter sequence of \textit{PD_CbNPR1} could be useful for enhancing the immune system of the Berangkai genotype.

I have the following observations and comments:

1. Indicate the Genbank accession number of the \textit{NPR1} sequence used to BLAST the chili pepper genome. Also, perform a phylogenetic analysis to determine whether the chili \textit{NPR1} sequence used to isolate \textit{PD_CbNPR1} belongs to the NPR1 clade (e.g., \textit{Arabidopsis} has five \textit{NPR1} homologs: NPR2, NPR3, NPR4, NPR5 and NPR6. NPR1 and NPR2 form a single clade).

2. Check the concept of homology. It is wrong to say "99\% homology".

3. The KOD-Plus-Neo kit is designed for long range PCR (up to 24 kb from human genomic DNA), so it is not clear why the amplification of the full-length putative promoter region (5950 bp single amplicon) was not possible.

4. The search for putative cis-acting regulatory elements in the putative promoter of \textit{PD_CbNPR1} should also include other databases such as:
 a. \textit{PlantCare} (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/)
 b. \textit{PlantPAN 3.0} (http://plantpan.itps.ncku.edu.tw)

5. Figure 1: the length of the core promoter should be indicated along with the 5'UTR.

6. The transcription start site should be provided as part of the characterization of the promoter region.

7. A transient expression analysis using GUS as reporter gene would be useful to determine whether this putative promoter is functional.

\textbf{Is the work clearly and accurately presented and does it cite the current literature?}
Partly

\textbf{Is the study design appropriate and is the work technically sound?}
Partly

\textbf{Are sufficient details of methods and analysis provided to allow replication by others?}
Partly

\textbf{If applicable, is the statistical analysis and its interpretation appropriate?}
Not applicable

\textbf{Are all the source data underlying the results available to ensure full reproducibility?}
Partly

\textbf{Are the conclusions drawn adequately supported by the results?}
Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Molecular Plant-Pathogen Interaction and Plant Biotechnology

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Author Response 13 Sep 2019

Jamsari Jamsari, Universitas Andalas, Padang, Indonesia

Reviewer's Comment (RC): Indicate the Genbank accession number of the NPR1 sequence used to BLAST the chili pepper genome. Also, perform a phylogenetic analysis to determine whether the chili NPR1 sequence used to isolate PD_CbNPR1 belongs to the NPR1 clade (e.g., Arabidopsis has five NPR1 homologs: NPR2, NPR3, NPR4, NPR5 and NPR6. NPR1 and NPR2 form a single clade).

Author's Response (AR): We analyzed already with some additional cDNA sequences of the NPR1 and found interesting new insight. However, our NPR1 cDNA sequence showed no significant similarity with the NPR1 cDNA sequence isolated from Arabidopsis, including its family (homologs) i.e.: NPR2, NPR3, NPR4, NPR5 and NPR6. Thus, clustering analysis separated our NPR1 from Arabidopsis clade. Interestingly, we found 43 significant identity with our NPR1 cDNA sequence from many different solanaceae, i.e.: Capsicum annuum (NM_001325099.1), Capsicum chinense (AM900559.1), Solanum lycopersicum (KX198701.1, NM_001247629.2), Nicotiana sp. (DQ837218.1, AF480488.1) Carica papaya (XM_022041103.1, AY550242.1) and some others. Tree analysis showed that our NPR1-Berangkai cDNA sequence clustered to similar clade with AM900559.1 and NM_001325099.1 and other three solanaceae (S. lycopersicum-KX198701.1, NM_001247629.2; S. tuberosum-XM_006357647.2; S. pennellii-XM_015227358.2 and S. torvum-KJ995663.1). We put this data in the 2nd version as suggested.

RC: Check the concept of homology. It is wrong to say "99% homology".

AR: Thank you for the correction, and we already changed this concept in the 2nd version.

RC: The KOD-Plus-Neo kit is designed for long range PCR (up to 24 kb from human genomic DNA), so it is not clear why the amplification of the full-length putative promoter region (5,950 bp single amplicon) was not possible.

AR: You are right, and this is also our consideration in the beginning of the project. However, due to the sequencer read capacity used by the company handling for sequencing process which is limited for about only 500 bp on average, one step read is not possible to be applied. Even though the KOD-Plus-Neo could amplify up to 24 kb according to the manufacturer's claim, the full-length fragment (5,950 bp) still cannot be sequenced in one step read due to limited reading capacity of the sequencing machine. Confirmation of data
validity from every single nucleotide was confirmed by at least two overlapping validated segments. We put this argument in the results and discussion.

RC: The search for putative cis-acting regulatory elements in the putative promoter of PD_CbNPR1 should also include other databases such as:
 a. PlantCare (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/)
 b. PlantPAN 3.0 (http://plantpan.itps.ncku.edu.tw)

AR: Thank you for your constructive suggestions. We did additional analysis using PlantCARE and PlantPAN, and found two additional cis-acting motifs: 1 TCA motif and 3 CGTA motifs which could not be shown by PLACE. We put already these additional motifs in Figure 3 and included in the 2nd version.

RC: Figure 1: the length of the core promoter should be indicated along with the 5'UTR.

AR: We made a modification indicating length and the position of the core promoter and included this modification in Figure 1.

RC: The transcription start site should be provided as part of the characterization of the promoter region.

AR: We already put the position of the transcription start site (TSS) located upstream of the NPR1 gene position. Thanks a lot for the suggestion.

RC: Transient expression analysis using GUS as reporter gene would be useful to determine whether this putative promoter is functional.

AR: That's really a good idea, however we are performing the functionality with a different approach. Instead of GUS reporter platform, we are using it in bacterial system. Currently we are working to use some of the *cis*-acting elements found in this research as a promoter for expression of the C1 (Replicase) gene isolated from geminivirus in a bacterial system. However, we need more time until we get the validated data as suggested. Thanks again for your critical and inspiring comments and suggestions.

Competing Interests: No competing interests are disclosed

Reviewer Report 28 January 2019

https://doi.org/10.5256/f1000research.18999.r43017

© 2019 Lu M. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
In the manuscript “Conserved structure of the NPR1 gene distal promoter isolated from a chili pepper (Capsicum annuum L.) in West Sumatera”, Dr. Jamsari Jamsari and co-authors offer us the structure of the distal promoter of the NPR1 gene, which will lay a foundation for the understanding of the mechanisms of pepper resistance to viral infection. But there are some issues that need to be explained:

1. The PD_CbNPR1 is cloned by gene walking approach, which needs to be confirmed by PCR amplification with a full-length primer pair.

2. The authors suggest that the structure of PD_CbNPR1 is conservative based on the comparison with the reference gene (Figure 2) and on the cis-element distribution (Figure 3). I think that this is not enough. The comparison of nucleotide sequences among distal promoters from several different plant species should be performed.

3. The PD_CbNPR1 is amplified from a pepper variety with viral susceptibility. I suggest the authors compare the PD sequences between virus susceptible and resistant varieties, which is beneficial to understanding the mechanisms of pepper resistance to viral infection.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Partly

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Not applicable

Are all the source data underlying the results available to ensure full reproducibility?
Partly

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: plant tolerance to abiotic stresses especially high temperature

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.
Reviewer's Comment (RC): The PD_CbNPR1 is cloned by gene walking approach, which needs to be confirmed by PCR amplification with a full-length primer pair.

Author's Response (AR): Thank you for your comments. The gene walking approach we applied was based on the reason, that the length of the putative distal promoter NPR1 gene region (5,950 bp) could not be sequenced in one step, due to sequencer machine capacity, which is normally in average about 500 bp. That's why we have chosen this strategy and considered it to be the most appropriate to obtain the full length of the putative sequence. Producing a PCR fragment of 5,950 bp in size is indeed possible by using a specific DNA Polymerase i.e.: the KOD-Plus-Neo that could amplify up to 24 kb (according to the manufacturer's claim), but the full-length fragment (5,950 bp) still cannot be sequenced in one step read due to limited reading capacity of the sequencing machine. To confirm the validity of every single nucleotide data, we confirmed by at least two overlapping validated segment each other. This argument will be added in the 2nd version.

Reviewer's Comment (RC): Comment 2: The comparison of nucleotide sequences among distal promoters from several different plant species should be performed.

Author's Response (AR): We tried already to BLAST our nucleotide sequence in order to get more sequence data with significant identity. Unfortunately the result exhibited no significant homology with another promoter sequence available in the NCBI database, indicating a limitation of promoter sequence availability in the public database. The only promoter sequence which showed homology is the promoter region of Capsicum annuum pathogenesis related protein-1 (PR-1) gene (DQ201633.1) published by Lee et al., (2006). However, the comparable nucleotide of both sequences spanned only 180 bp. We put this discussion in the 2nd version.

Reviewer's Comment (RC): Compare the PD sequences between virus susceptible and resistant varieties, which is beneficial to understanding the mechanisms of pepper resistance to viral infection.

Author's Response (AR): Indeed your suggestion is true and we agree 100%. Unfortunately the resistant genotype, is not available in our collection so far, so comparison of both two genotypes is not possible to be performed. We put an additional sentence regarding this issue in the first paragraph of the methods.

Competing Interests: no competing interest is available
The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com