Soil C:N stoichiometry controls carbon sink partitioning between above-ground tree biomass and soil organic matter in high fertility forests

Giorgio Alberti (1-7), Sara Vicca (2), Ilaria Inglima (3), Luca Belelli-Marchesini (4-9), Lorenzo Genesio (10), Franco Miglietta (6-7), Hrvoje Marjanovic (8), Cristina Martinez (6-9), Giorgio Matteucci (10-11), Ettore D’Andrea (11), Alessandro Peressotti (3), Fabio Petrella (12), Mirco Rodeghiero (13), Maria Francesca Cotrufo (14)

The release of organic compounds from roots is a key process influencing soil carbon (C) dynamics and nutrient availability in terrestrial ecosystems. Through this process, plants stimulate microbial activity and soil organic matter (SOM) mineralization thus releasing nitrogen (N) that sustains gross and net primary production (GPP and NPP, respectively). Root inputs also contribute to SOM formation. In this study, we quantified the annual net root-derived C input to soil (Net-Croot) across six high fertility forests using an in-growth core isotope technique. On the basis of Net-Croot, wood and coarse root biomass changes, and eddy covariance data, we quantified net belowground C sequestration. Belowground C accumulation and GPP were inversely related to soil C:N, but not to climatic or stand age. Soil C content and C:N were also related to soil texture. At these high fertility sites, biomass growth did not change with soil C:N; however, biomass growth-to-GPP ratio significantly increased with increasing soil C:N. This was true for both our six forests sites and for another 23 high fertility sites selected at a global scale. We suggest that, at high fertility sites, plant N demand interacts with soil C:N stoichiometry and microbial activity, resulting in higher allocation of C to above ground tree biomass with increasing soil C:N ratio. When C:N is high, microbes have a low C use efficiency, respire more of the fresh C inputs by roots and prime SOM decomposition, thereby increasing N availability for tree uptake. Soil C sequestration would therefore decrease, whereas the extra N released during SOM decomposition can promote tree growth and ecosystem C sink allocation in aboveground biomass. Conversely, C is sequestered in soil when low soil C:N promotes microbial C use efficiency and new SOM formation and stabilization on clay particles.

Keywords: Net Root-derived Carbon, Ingrowth Cores, Soil C:N, Carbon Sequestration, Carbon Partitioning, Isotopes

Introduction

Forest ecosystems worldwide are currently acting as carbon (C) sinks (Pan et al. 2011). Several factors may, however, influence the magnitude and direction of the net C balance, including recovery from historical land use (e.g., abandoned agricultural land reverting to forested land), increases in atmospheric CO₂ concentration and nitrogen (N) deposition, and climate change (Schimel et al. 2001, Thomas et al. 2010). Nonetheless, while much research has been done to understand the controls on net ecosystem C balance (Valentini et al. 2000, Rustad et al. 2001, Reichstein et al. 2007a), we know little about the controls on C sink partitioning between plant biomass and soil organic matter (SOM) pools. Soils may store C for long periods of time (Lal 2005), accumulating on average three times the C in terrestrial vegetation (Post et al. 1982). On the other hand, more N is required per unit of C stored in soil as compared to plant biomass (Yang & Luo 2011). Hence, while an allocation to SOM may increase C sequestration in the long term, a preferential allocation to plant biomass is a more nutrient-efficient C sequestration process in the shorter term. Studying ecosystem C sink partitioning is challenging due to the difficulties associated with quantifying the different ecosystem fluxes. Especially complex is the assessment of rapid and small changes in SOM which are linked to the balance between microbial respiration and plant inputs, including both litter and root-derived C (Schwitz et al., 2011). Thus, belowground C allocation and subsequent C dynamics are still far from being accurately quantified and understood (Phillips et al. 2011, Vicca et al. 2012). Root C inputs have been shown to influence soil
C sequestration, but both the magnitude and direction of this root effect are variable (Karlen & Cambardella 1996, Parton et al. 1996, Cardon et al. 2001, Rasse et al. 2005, Dykstra & Cheng 2007). A robust definition of net ecosystem production (NEP) should be based on a full ecosystem mass balance (Randerson et al. 2002), which accounts for both plant and soil sinks. When it is flux-based, NEP is defined as the difference between ecosystem-level gross photosynthetic gain of C (gross primary production, GPP) and ecosystem respiratory losses (ER). Alternatively, NEP (g C m$^{-2}$ y$^{-1}$) can be expressed as (Campbell et al. 2004 - eqn. 1): \[
\text{NEP} = \Delta C_{\text{biomass}} + \Delta C_{\text{soil}}
\]

In deciduous forest ecosystems, $\Delta C_{\text{biomass}}$ is the annual change in plant biomass (wood, branches, coarse roots), and ΔC_{soil} is the annual net change in soil organic C (SOC) stock. In this equation, litterfall and fine root turnover are considered as soil C input and therefore contributing to the ΔC_{soil} (see eqn. 2).

Net ecosystem productivity can be directly determined using eddy covariance techniques starting from net ecosystem exchange (NEE = $-$NEP - Baldocchi 2003, Aubinet et al. 2012). Plant biomass changes are usually estimated via a combination of repeated inventories and allometric relationships (Clark et al. 2001). On the other hand, direct SOC determination methods are generally unable to quantify ΔC_{soil} in the short term (Schrumpf et al. 2011), and, at annual timescales, alternative methods are required to estimate soil C changes.

Considering that the dissolved organic C (DOC) is typically negligible, representing around 1% of forest NPP (Luyssaert et al. 2010), ΔC_{soil} can also be written as (eqn. 2):
\[
\Delta C_{\text{soil}} = \text{Input}_{\text{soil}} - \text{Output}_{\text{soil}} = \text{Input}_{\text{root}} - R_{\text{C, rhizosphere}} - Rh
\]

where ΔC_{soil} is the aboveground litterfall (i.e., leaves, branches, wood, etc.), $\text{Input}_{\text{root}}$ is the root-derived C input (i.e., exudates, root slashing and turnover), $R_{\text{C, rhizosphere}}$ is the rhizosphere respiration of root-derived C, and Rh is the heterotrophic respiration. Litter input is conventionally measured by litter traps, while wood input is measured using repeated sampling (Harmon & Sexton 1996), and rhizosphere and heterotrophic respiration can be estimated by a variety of methods (e.g., trenching, girdling, isotopes), as reviewed by Subke et al. (2006) and Kuzyakov (2006). The largest challenge is estimating gross root inputs. However, methods exist to estimate net annual root-derived C input ($Net-C_{\text{root}}$), which is the difference between $\text{Input}_{\text{root}}$ and $R_{\text{C, rhizosphere}}$ (eqn. 3):
\[
Net-C_{\text{root}} = \text{Input}_{\text{root}} - R_{\text{C, rhizosphere}}
\]

Different tracer methods have been used to date to estimate $Net-C_{\text{root}}$, such as pulse labeling, continuous labeling, and 13C natural abundance (Kuyzakov & Domanski 2000). The latter uses the difference in the stable C isotope composition of native SOM and new plant-derived organic matter to quantify $Net-C_{\text{root}}$. When natural isotope abundances do not allow the use of this approach, distinct C isotope signatures in the soil organic C (SOC) pool and plant-derived organic matter can be obtained in manipulation experiments, by growing C plants (13C of approximately -27‰) in soil with organic matter derived from C$_2$ plants (13C of approximately -12‰) or vice versa. This approach has been successfully applied in pot (Ineson et al. 1995, Vicca et al. 2010) and field studies (Hoosbeek et al. 2004, Cotrufo et al. 2011) and was used in this investigation.

$Net-C_{\text{root}}$ combined with aboveground inputs to the soil (litter and dead wood), also provides interesting information about soil C dynamics. For soils at steady-state (ΔC_{soil}=0), the sum of $Net-C_{\text{root}}$ and aboveground inputs is the amount of C that replaces SOC decomposition, thus becoming a measure for SOC turnover. For soils which are net C sinks ($\Delta C_{\text{soil}}>0$), this sum exceeds SOC mineralization and a fraction of it enlarges the SOC pool, thus leading to soil C sequestration. In this context, for soils which are net C sinks, the ratio between $Net-C_{\text{root}}$ and $Net-C_{\text{root}}$ + aboveground inputs indicates the fate of C input: the higher the ratio, the larger the contribution of fresh C to soil C sequestration. The opposite is true for soils that are net C sources ($Net-C_{\text{root}}$>0).

Root C input rates vary considerably depending on tree species, mychorrhizal associations and environmental factors (Lynch & Whippes 1990), with values of up to 40% of net assimilated C being reported (Van Veen et al. 1991). According to the microbial efficiency-mineral stabilization (MEMS) framework (Cotrufo et al. 2013), the fraction of $Net-C_{\text{root}}$ inputs sequestered in the soil depends on the efficiency of decomposers to convert C into bio-products as compared to the amount of C lost as CO$_2$ (Six et al. 2006) and on soil matrix interactions (Sollins et al. 1996, Kleber et al. 2007). Soil organic matter mineralization is driven by both substrate stoichiometry and microbial demand for resources (Melillo et al. 1982, Hessen et al. 2004): when N is limiting, microbes use labile substrate to mineralize recalcitrant SOM (Moorhead & Simsabaugh 2006, Craine et al. 2007). Root exudates can thus prime SOM decomposition (Lohnis 1926, Bingeman et al. 1953, Fontaine et al. 2004). Clearly, root-derived soil C inputs can either stimulate soil C sequestration or, conversely, induce primary processes with consequent losses of stabilized SOM but likely enhancements in N availability, which in turn can stimulate plant growth. The key factors determining the direction (and magnitude) of this effect are, however, not yet clear. Understanding the fate of root-derived C, and its effects on N dynamics and ecosystem C sequestration, is relevant from an ecological perspective and is also an urgent challenge to address, particularly in the context of global changes such as atmospheric CO$_2$ increase and N deposition.

The aims of the present study were: (1) to obtain an estimate of $Net-C_{\text{root}}$ in six different forest ecosystems; (2) to partition NEP into aboveground tree biomass production and soil C sinks; and (3) to investigate the controls of this partitioning. Specifically, we tested the hypothesis that soil C:N stoichiometry controls ecosystem C uptake (GPP) and sink partitioning (ANPP vs. soil C) across forest ecosystems. To verify if our hypothesis could be generalized to other forests, we tested it on several world forest sites for which ANPP, GPP and soil C:N data were available in the literature.

Materials and methods

Study sites

Six forests were considered in the present study. Three sites were in central Italy, two sites in northern Italy; and one in Croatia. All sites were equipped with an eddy covariance tower for mass, momentum and energy ecosystem exchange measurements and can be classified as high fertility sites, according to key soil properties (Vicca et al. 2012 - see also Appendix 1). Site characteristics and flux data are reported in Tab. 1, while a brief description for each site is given below.

Quercus rossica (42° 24’ N, 11° 55’ E - Claus & George 2005, Tedeschi et al. 2006) is a Turkey oak (Quercus cerris L) coppice forest about at 235 m a.s.l. in central Italy. Mean annual temperature is 14 °C and mean annual rainfall is 755 mm. Soil is sandy clay Luvisol (which is typically nutrient rich), derived from sedimentary material of volcanic origin and marine deposits, and is moderately acid (pH=5.7), with a total depth > 100 cm (Rey et al. 2002). Cation exchange capacity (CEC) is high, ranging between 19 and 42 meq 100g$^{-1}$ in the different soil layers (Tedeschi et al. 2006). The forest has been managed as a “coppice with standards” over the last 200 years, with a rotation cycle varying between 15 and 20 years. Two stands were selected: a 6-year-old coppice (RO1) and a 15-year-old coppice (RO2).

Lecceto (LE - 43° 18’ N, 11° 16’ E) is a Holm oak (Quercus ilex L.) coppice with a rotation period of 18-20 years at about 300 m a.s.l. in central Italy. Holm oak represents
Table 1 - General characteristics for the six forest sites used in this study. \((\Delta C_{\text{wood}})\): change in aboveground wood biomass; \((\Delta C_{\text{root}})\): change in coarse root biomass; \((\text{NEP})\): net ecosystem production; \((\text{NEE})\): net ecosystem exchange; \((\text{GPP})\): gross primary production; \((R_{\text{eco}})\): ecosystem respiration; (RO1): Roccarsampampani site 1; (RO2): Roccarsampampani site 2; (LE): Lecceto; (JA): Jastrebarsko; (LM): La Mandria; (CO): = Collelongo. (a): N wet deposition in 1990 were derived for all sites using published gridded maps with 0.5° × 0.5° resolution derived from interpolated (kried) ground data (available at http://www.daac.ornl.gov). Total wet depositions (kg N ha\(^{-1}\) y\(^{-1}\)) were then computed as the sum of aqueous NO\(_3^+\) and NH\(_4^+\) fields, which were available. (b): For Collelongo, the reported number refers to direct measurements available for the period 2002-2009 (Piechulla et al. 2011).

Group	Parameters	VEGETATION CHARACTERISTICS	RO1	RO2	LE	JA	LM	CO
Management	Turkey oak	coppice with standards	6 (approx. 70 standards ha\(^{-1}\) of 20-40 years-old present)	15 (approx. 70 standards ha\(^{-1}\) of 20-40 years-old present)	15	35	80	110
Mean stand age in 2006-2007 (years)	Turkey oak	coppice with standards	20-40 years-old present		15	35	80	110
Aboveground biomass (kg C m\(^{-2}\))	Holm oak	coppice with standards	1.9	4.5	5.0	6.3	7.8	13.7
Wet N deposition\(^{\text{a}}\) (kg N ha\(^{-1}\) y\(^{-1}\))	Pedunculate oak	high forest	10.0	10.0	8.6	11.2	9.4	10.8 \(^{\text{b}}\)
Soil type	Pedunculate oak - Hornbeam	high forest converted to high forest since 1950	8.6	7.4	27.4	7.7	7.4	14.7
Soil C stock 0-30 cm (kg C m\(^{-2}\))	Beech		0.8	0.5	1.3	0.7	0.3	0.9
Soil N stock 0-30 cm (kg N m\(^{-2}\))			10	14	22	11	24	16
C:N			52	52	40	18	6	6
Sand (%)			12	12	35	28	80	50
Silt (%)			35	35	25	54	14	44
Clay (%)			1577	1356	901	1633	754	1258
Soil water repellency (mm s\(^{-1}\))			1060	810	368	1049	183	722
Root:shoot ratio			161	315	334	325	360	363
GPP (g C m\(^{-2}\) yr\(^{-1}\))			0.30	0.30	0.30	0.30	0.30	0.28
Reco (g C m\(^{-2}\) yr\(^{-1}\))			(Mokany et al. 2006)	(assessed at the site)				
NEE (g C m\(^{-2}\) yr\(^{-1}\))			48	95	100	98	108	102
NEC = NEC + NEC + NEC + NEC + NEC + NEC (g C m\(^{-2}\) yr\(^{-1}\))			209	410	435	423	468	464
Litterfall (g C m\(^{-2}\) yr\(^{-1}\))			47	123	107	203	223	245
NEE = NEC (g C m\(^{-2}\) yr\(^{-1}\))			517	545	533	584	571	535

81% of the total tree canopy; others species include Arbatus uso L., Juniperus communis L., Quercus pubescens L., Phillyrea latifolia L., Fraxinus ornus L. Mean annual temperature is 13.5 °C and annual average rainfall is 780 mm. Jastrebarsko (JA = 45° 37' N, 15° 41' E; Marjanovic et al. 2010, 2011) is a 35-year-old forest in Croatia dominated by pedunculate oak (Quercus robur L.) with 19% of black alder (Alnus glutinosa Haer.), 14% hornbeam (Carpinus betulus L.) and 9% of narrow-leaved ash (Fraxinus angustifolia L.). Mean annual temperature is 10.4 °C with mean monthly temperatures of -0.2 °C and 20.7 °C in January and July, respectively. Average annual precipitation is 900 mm year\(^{-1}\), of which around 500 mm falls during the active vegetation period (April-September). Soil is a Luvic Stagnosol with a upper mineral layer (0-20 cm) that linearly increases to neutral pH at depths > 100 cm. At the beginning of the growing season, the soil drains and water content soon drops below water holding capacity (46% v/v) allowing enough oxygen supply for root growth and substantially increasing nutrient availability in these soils, where nutrient availability can be constrained by high water levels. La Mandria (LM = 45° 09' N, 7° 34' E) is an 80-year-old pedunculate oak-hornbeam forest (Quercus robur L. and Carpinus betulus L.) in northern Italy. Mean annual temperature at the site is 11.6 °C and annual precipitation is 1030 mm. Soil is Typic Fragiudalf with adequate moisture content throughout the year, neutral pH and good CEC (ranging from 17 to 11 meq 100 g\(^{-1}\) at soil surface and Bb horizons, respectively). Collelongo (CO = 41° 52' N, 13° 38' E; Valentini et al. 1996, Scarzetta et al. 2004)
is an 110-years-old pure beech (Fagus sylvatica L.) forest in northern Italy that has been part of the network of Long Term Ecological Research sites (LTER) Italy since 2006. Mean annual temperature at the site is 7.1 °C and mean annual rainfall is 1188 mm. The soil is a Humic Alisol with volcanic ash also present. Both CEC and N content are high in the different soil layers, ranging from 14.8 to 23.3 meq 100 g⁻¹ and from 4 to 7.3 mg N g⁻¹, respectively (Persson et al. 2000). Wet N de-

position rates in the period 2002-2009 averaged 10.8 kg N ha⁻¹ yr⁻¹ (Flechard et al. 2011)

Net root-derived C input to soil

Cotrufo et al. (2011) quantified using the in-growth core isotope technique, following Cotrufo et al. (2011). A soil depleted in 13C (δ13C = -17.22‰) was collected from the USDA-ARS Central Plains Experimental Range located in NE Colorado, USA (40° 49' W). The soil is classified as a Zigweid gr. Wet N de-

position for brevity we call henceforth this soil as “C-13 soil”. Soil was air-dried prior to being sealed and boxed for shipment to Italy. Upon ar-

ival, the C-13 soil was ground and sieved to 2 mm and well mixed to make a homogeneous soil pool, before using it for in-growth cores and chemical (C% and δ13C) analyses as de-

scribed below.

At each forest site, six cores, made of a 2 mm mesh net (thus allowing the penetration of fine roots) with a diameter of 4 cm and a height of 30 cm, were placed randomly within the eddy covariance tower footprint in Oc-

tober 2006 (2008 for Jastrebarsko) and filled with the C-13 soil to a bulk density similar to the average bulk density for the site. At the top of each core the net was closed to avoid above-ground litter input. Cores were sam-

pled a year later, and the soil from each core was separated into 0-15 cm and 15-30 cm depth layers, except for Jastrebarsko, where the entire 0-30 cm core was considered.

All soil samples were sieved to 2 mm, and root samples carefully removed and washed with deionized water. Root samples were placed by site and depth, and each samples analyzed in triplicates. Both soil and root samples were oven-dried at 70 °C, pulvéri-

zed and analyzed for %C and δ13C by an ele-

mental analyzer (Flash EA 1112 NC, CE In-

strument, Wigan, UK) connected to an Isoto-

one Ratio Mass Spectrometer (IRMS, Delta Plus, Thermo-Finnigan, Bremen, Germany). Prior to C analyses, soil samples were treated with HCl to eliminate carbonates (Harris et al. 2001). The measured δ13C values were used to calculate the proportion of new C (fnew, i.e., the Net-Croot), by using a mass ba-

lance equation (Del Gado et al. 2003, Co-

truf et al. 2011 - eqn. 4):

\[
f_{\text{new}} = \frac{\delta_{\text{new}} - \delta_{\text{old}}}{\delta_{\text{vg}} - \delta_{\text{old}}}
\]

where δnew is δ13C of the organic matter of the C-13 soil collected from each core after one year of field incubation, δold is the δ13C of the organic matter of the C-13 soil measured before incubation, and δvg is the δ13C of the roots averaged by site and depth. The average δold value across all our sites was -28.11±0.29‰, while variation (standard deviation) within a site was between 0.15 and 0.577‰ at RO1 and RO2, respectively. Knowing the fvalues for the new C, the soil organic C concentra-

tions (%C), soil depth (D, m), and soil bulk density (σ, kg m⁻³), Net-Croot amounts (g m⁻²) were computed for all soil samples as fol-

ows (eqn. 5):

\[C = f \cdot \%C \cdot \sigma \cdot D\]

Estimates of Net-Croot using this method (Cotrufo et al. 2011) rely on the assumptions that: (1) root inputs are the same inside and

outside the in-growth bags and are independent of the C-13 soil properties; and (2) that there is no isotopic fractionation during the decomposi-
tion of the native SOM or forma-
tion of the new SOM from the root tissues. New studies applying this method should test these assumptions, since some fractiona-
tion could occur (Hobbie et al. 2004).

Ecosystem fluxes and primary production

Eddy covariance flux data from all five Ita-
lían sites were analyzed for the years 2006-

2007 (Tab. 1). Data of net ecosystem ex-

change (NEE), gross primary production (GPP) and ecosystem respiration (Rveg) at monthly time steps were downloaded from the central Fluxnet database (http://gaia.agra-

ria.unitus.it/database/). Specifically, we used the NEE gap-filled data using the Artificial Neural Network method (NEE ANN from level 4 dataset - Papale et al. 2006). Rveg was computed according to the short-term tempera-
ture response of night-time fluxes (Reich-

stein et al. 2005) and GPP values were de-

rived as sum of the absolute values of NEE files and Rveg. At sites where data for

the years 2006 or 2007 were incomplete even after gap-filling because of missing weather data, data for 2008 were also inclu-
ded in the analysis for the calculation of an-

nual means. As for the Jastrebarsko site, 2009 eddy flux data were derived from Ma-

janovic et al. (2010).

Mean annual temperature (MAT), mean annual precipitation (MAP), and soil C stocks (0-30 cm), as well as changes in wood biomass (stem and branches - ΔCwood), were derived from ancillary data files available at

the central database, updated to 2006-2007 when necessary, or using specific yield ta-

bles available at the site (e.g., Jastrebarsko). All data were checked, if necessary updated and completed by site Principal Investiga-
tors, who are co-authors of the present study. Changes in root biomass (ΔCroot) were derived from ΔCwood using root-to-shoot ratios reported by Mokany et al. (2006) or using site-specific relationships as in the case of Collelongo and do not include fine root pro-
ductivity.

ANPP was calculated as the sum between ΔCbiomass and NPPbiom (foliar net primary production). The latter corresponds to litter-
fall in the case of broadleaved forests, and was directly measured at the site (i.e., Rocca, Jastrebarsko, Collelongo) or assessed from NPPbiom using biomass expansion factors de-

rived at nearby sites with similar species composition and structure (i.e., La Mandria). In the case of Lecceto, where the dominant species is evergreen (Holm oak), we assumed that the system was at steady state and thus litterfall = NPPbiom. Then the ANPP: GPP ratio was calculated.

World forest sites data

In order to test if the relationship between ANPP:GPP and soil C:N, observed across our study sites, was generalizable across fo-

rest ecosystems, we searched published data-

sets (Litton et al. 2007, Luyssaert et al. 2007, Vicca et al. 2012) for forest sites that pro-
vided the data suitable to our analyses. Twenty-three additional sites were found in-

cluding ANPP and GPP data, as well as soil C:N (determined for a depth up to 45 cm) were found (Tab. 2). Fertility classification followed Vicca et al. (2012). More details are given in Appendix 1.

Data analysis

To test if the site the annual change in net soil C (ΔCroot - g C m⁻² y⁻¹) was calculated starting from eddy covariance NEE data and measu-

red changes in aboveground wood biomass (ΔCwood) and coarse roots (ΔCroot) by re-ar-

ranging eqn. 1 (eqn. 6):

\[ΔC_{\text{root}} = \text{NEE} - ΔC_{\text{wood}} - ΔC_{\text{roots}}\]

\[\text{NEP} = ΔC_{\text{biomass}}\]

Statistical analyses were performed using the package SISVAR PLOT® 11.0 (Systat® Software, San José, CA, USA). Data were tested for normal distributions, using the Shapiro-Wilk’s test, and homogeneity of var-

iance, and log transformed when necessary. To assess differences in Net-Croot among si-
tes, a one way analysis of variance (one-way ANOVA) was used. Significant treatment (site) effects (P<0.05) were further explored via a treatment (site) comparison using the Least-Squares means test with Tukey’s ad-
justment for multiple comparisons. For sites
where data for 0-15 and 15-30 cm depths were available, a two-way ANOVA with site and depth as fixed factors was also performed.

A correlation analysis between all available variables was performed using the Spearman’s rank method through a correlation matrix in Stata10® (StataCorp®, College Station, TX, USA). For variables that were correlated with p<0.10, linear models were fitted to measured data.

Results

Net root-derived C input to soil

Total Net-C_{root} in the top 30 cm soil layer ranged between 420 g C m⁻² year⁻¹ at Collelongo and 818 g C m⁻² year⁻¹ at Jastrebarsko (Fig. 1). Mean annual Net-C_{root} across sites was 606 ± 164 g C m⁻² year⁻¹ (mean ± standard deviation). A significant difference in total Net-C_{root} (0-30 cm) was detected among sites (ANOVA, p = 0.007). In particular, post-hoc Tukey’s tests showed a significant difference between Jastrebarsko and Collelongo (p = 0.013) and Lecceto and Collelongo (p = 0.041 - Fig. 1). For sites where data for 0-15 and 15-30 cm depths were available (i.e., all sites except Jastrebarsko), the two-way ANOVA applied showed significant differences among sites (p = 0.004), between depths (p = 0.024) and for site × depth interaction (p = 0.035). No differences among sites were detected at 0-15 cm depth (Tukey’s test: p > 0.05), while Net-C_{root} at 15-30 cm in Lecceto was significantly different from Rocca1 (p = 0.002), Collelongo (p = 0.003) and Rocca2 (p = 0.021). Climate (i.e., MAT, MAP, soil water content) did not explain significant variability in Net-C_{root} among the different sites (see Tab. S1 in Appendix 1). Moreover, total Net-C_{root} was not significantly correlated to soil C:N.

Ecosystem C sink partitioning

All six sites were net C sinks with similar NEP values (average NEP was 547 ± 25 g C m⁻² year⁻¹) but with large differences in annual GPP (Tab. 1). They actively sequestered C both aboveground and in the soil: A_C was between 10 and 48% of annual GPP (RO1 and LM, respectively). A_C was positive for all sites representing between 6 and 20% of annual GPP (CO and RO1, respectively). In accordance with our hypothesis, GPP and A_C were correlated to soil C:N (p = 0.0048 and p = 0.07, respectively - Tab. S1) and soil C:N across gradients of forest stands and environmental conditions. Nutrient availability was assessed according to Vicca et al. (2012), when possible. (n.a.): not available. (1): Ryan et al. (2004), Binkley et al. (2004); (2) Ghosh et al. (1986), Gholz & Fisher (1982), Gholz et al. (1985); (3) Gower et al. (1997), Ryan et al. (1997), Online BOREAS dataset. Site: “NSA-OJP-90JP1”; (4): Malhi et al. (1999), Marland et al. (2004); (5) Malhi et al. (1999), Liu et al. (2004); (6): Chambers et al. (2004), Li et al. (2004); (7) Harris et al. (1975), Marland et al. (2004); (8): Kinerson et al. (1977); (9): Woodwell & Botkin (1970); ANPP = NPP/1.3; Marland et al. (2004); (10): Kutsch et al. (2001); (11) Dilly et al. (2002); (12): Sun et al. (2004); (13): Malhi et al. (2009); (14) Kellihier et al. (2004); (15) Kellihier et al. (2004); (16): Malhi et al. (2009); (17): Present study, ANPP = A_C + litterfall.

Tab. 2 - Studies used to validate the relationship between ANPP-GPP and soil C:N across gradients of forest stands and environmental conditions

Forest type and location	Management or treatment	Nutrient availability	ANPP	GPP	ANPP : GPP	Depth (cm)	Soil C:N
Eucalyptus saligna, Pepekeo, HI¹	2 yr, 1x1 m	high	1427	5057	0.28	0-45	16
2 yr, 1x1 m	high	480	2369	0.20	0-45	15	
2 yr, 3x3 m	high	1456	4413	0.33	0-45	16	
6 yr, 3x3 m	high	828	2930	0.28	0-45	15	
Pinus radiata, Pepekeo, FL²	20 yr C	medium	599	2415	0.25	0-30	19
Pinus elliotii, Pepekeo, FL²	7-9 yr	low	199	1407	0.14	0-15	12
Picea mariana, N-BOREAS³	150 yr	low	132	563	0.23	n.a.	13
Pinus banksiana, N-BOREAS⁴	63 yr	low	115	677	0.17	n.a.	15
Oak-Hickory, Oak Ridge, TN⁵	55 yr	low	510	1329	0.38	0-20	16
Tropical forest, Manaus Brazil⁶	Old growth	low	870	2620	0.33	0-10	14
Tropical forest, Manaus Brazil⁶	Old growth terra firme	low	650	2860	0.23	0-10	12
Liriiodendron, Oak Ridge, TN⁷	50 yr	n.a.	352	2162	0.16	0-20	14
Pinus taeda, Oak Ridge, TN⁹	16 yr	medium	1490	4124	0.36	0-20	15
Pinus-Quercus, Oak Ridge, TN⁹	43 yr	medium	462	1280	0.36	0-20	14
Bornhoved Alder¹⁰	Temperate Humid-Broadleaved	low	589	2420	0.24	0-30	18
Bornhoved Beech¹⁰	Temperate Humid-Broadleaved	medium	601	1324	0.45	0-5	15
Cascade Head (1)¹¹	Temperate Humid-Needle-leaved	high	569	1400	0.41	0-30	21
Cascade Head (1A)¹¹	Temperate Humid-Broadleaved	high	640	1558	0.41	0-30	20
Caxium¹²	Tropical Humid-Broadleaved	low	869	3630	0.24	0-30	13
Jacaranda/K.34¹³	Tropical Humid-Broadleaved	low	796	3040	0.26	0-30	17
Metolius¹⁴	Temperate Semi-arid-Needle-leaved	medium	183	1143	0.16	0-30	20
Metolius young¹⁵	Temperate Semi-arid-Needle-leaved	medium	104	724	0.14	0-30	21
Tapajos 67¹⁶	Tropical Humid-Broadleaved	low	1400	3141	0.45	0-30	15
Roeca 1¹⁷	Mediterranean Turkey oak	high	208	1577	0.13	0-30	10
Roeca 2¹⁷	Mediterranean Turkey oak	high	438	1356	0.32	0-30	14
Lecceto¹⁷	Mediterranean Horn oak	high	441	901	0.49	0-30	22
Jastrebarsko¹⁷	Mediterranean Pedunculate oak	high	528	1633	0.32	0-30	11
La Mandria¹⁷	Mediterranean Pedunculate oak - Hornbeam	high	583	754	0.77	0-30	24
Collelongo¹⁷	Mediterranean mountain beech	high	608	1258	0.48	0-30	16
in Appendix 1) and decreased linearly as soil C:N increased (Fig. 2). Moreover, GPP was linearly and inversely related to soil clay content (p = 0.05) but, similarly to \(\Delta C_{\text{soil}} \), it was not correlated with either MAT, MAP or stand age. \(\Delta C_{\text{soil}} \) was weakly related with soil C:N (p = 0.07), while \(\Delta C_{\text{soil}} \)-to-GPP ratio (Fig. 3.a) and ANPP-to-GPP ratio significantly increased with soil C:N (p < 0.0001 and p = 0.005, respectively - Tab. S1 in Appendix 1). In contrast to GPP, Spearman’s correlation analysis revealed a significant relationship between \(\Delta C_{\text{soil}} \) and both MAT and MAP (p = 0.05 and p = 0.008, respectively - Tab. S1 in Appendix 1). Similarly, ANPP was significantly correlated with MAT and MAP (p = 0.001 and p = 0.0003, respectively). Finally, the fate of root C input appeared to depend on soil C:N stoichiometry, with proportionally more Net-C\(_{\text{root}}\) being allocated to C sequestration with decreasing soil C:N (\(\Delta C_{\text{soil}} \) vs. Net-C\(_{\text{root}}\) p = 0.07) and soil C:N was able to explain 40% of the variation in the ratio of \(\Delta C_{\text{soil}} \) to Net-C\(_{\text{root}}\) + litterfall (Fig. 3.b).

World forest sites

The positive relationship between ANPP-to-GPP ratio and soil C:N found across our six study sites was confirmed also when iForest (early view): e1-e12
it is difficult to determine whether soil texture rates (shown to significantly influence rhizodeposition). Moreover, soil texture has also been associated with the in-growth core isotope technique. The six sites considered in the present study are labeled as reported in Tab. 1. Eucalyptus saligna plantations (Tab. 2) have been averaged by stand age and vertical bars indicate standard deviation. The reported R² is the adjusted R².

Discussion and conclusions

To our knowledge, this study is the first to quantify Net-C Newtown in a range of forest ecosystems. The measurement of Net-C Newtown in situ is difficult, thus measured values are lacking and modeled estimates cannot be validated. However, the in-growth core isotope technique has already been shown to allow detection of changes in Net-C Newtown in CO₂ and climate manipulation experiments (Hoosbeek et al. 2004, Cotrufo et al. 2011), even though it does suffer from several caveats related to the use of an exogenous soil and high spatial variability. Steingrobe et al. (2000) reviewed the in-growth core method for measuring gross root growth: a first shortcoming associated with this method is achieving the soil conditions inside the bag similar to the bulk soil. Moreover, soil texture has also been shown to significantly influence rhizodeposition rates (Scandellari et al. 2010), although it is difficult to determine whether soil texture influences rhizodeposition rates in our study.

Our estimates of Net-C Newtown using the in-growth core isotope technique were on average 606 g C m⁻² y⁻¹, which is higher than values reported by Cotrufo et al. (2011) for an Arbutus unedo L. coppice in dry Mediterranean conditions, but lower than values reported by Hoosbeek et al. (2004) for an irrigated and fertilized poplar plantation in central Italy. A possible overestimation of Net-C Newtown can be also related to the fact that a certain amount of fine root fragments could have passed through the 2 mm sieve. Such an amount is a function of root integrity as affected by plant age and sample processing. Being aware of this possible overestimation and of the above-mentioned limitations associated with the in-growth core isotope technique, in this study we used Net-C Newtown estimates solely as an indicator of differences in the effect of root-derived C on SOC sequestration through the calculation of the ratio ΔC Newtown (Net root-derived C + litterfall C).

Many factors have been suggested to affect soil C sequestration, including the characteristics of input material, soil texture and mineralogy, climatic factors, and soil nutrient status (Galantini et al. 1992, Andrén & Kätterer 1997, Janssens et al. 2010). We found that the proportion of root C input resulting in C sequestration at these high fertility sites was related to soil C:N ratio, and soil C sequestration was greater at low C:N (Fig. 2b) therefore confirming our hypothesis. Recently, Manzoni et al. (2012) suggested a C-to-nutrient stoichiometric control on microbial C use efficiency (CUE), which would increase with increasing nutrient availability. The importance of CUE as a determinant of the fate of plant inputs to soils has also been recognized by other recent studies (Schimel & Schaeffer 2012, Cotrufo et al. 2013) and some models have suggested that low nutrient availability, particularly N, might limit soil C storage through mechanisms that are still not completely understood (Rastetter et al. 1997, Hungate et al. 2003). Recently, Kirkby et al. (2013) hypothesized that the sequestration of C-rich crop residue material into SOM could be improved only by adding supplementary nutrients, as the more stable SOM fraction has more N, P and S per unit of C than the plant material input due to microbial reprocessing. Thus, the increase in soil C sequestration at lower soil C:N values observed in this study may be explained by a higher microbial CUE of root C inputs.

Soil C Newtown exerted a strong control on GPP across our six forests and GPP increased with decreasing soil C:N (Fig. 2a). This relationship is based on six forest sites and we cannot exclude the possibility that other factors influenced this relation. At the ecosystem scale, variation in global plant productivity across ecosystems has often been related to environmental factors (Field et al. 1995, Reichstein et al. 2007b), but also to...
nutrient availability (Vicca et al. 2012). In this context, Zha et al. (2013) reported a strong positive relationship between GPP or NPP and total soil N. Across our sites, ΔC and ANPP increased slightly, but not at sites with increasing soil C:N, and showed significant correlations with MAT, MAP and stand age, thus confirming previous studies (Curtis et al. 2002, Hsu et al. 2012, Robinson et al. 2012, He et al. 2012). How such different behavior between ΔC and ANPP with respect to soil C:N could be explained? We suggest that this result is due to the lower demand for N by woody tissues (which comprise the largest fraction of the tree and are characterized by very high C:N) as compared to green leaves (which control GPP, and have much lower C:N than woody tissues). As a result of these variations in both GPP and ANPP, the ratio between ANPP and GPP varied substantially among our six forest sites.

Following the distinct patterns of ANPP and GPP versus soil C:N, the ANPP-to-GPP ratio significantly increased with increasing soil C:N (Fig. 2a). At first sight, this seems to contradict the current understanding that partitioning of photosynthates into above-ground biomass increases with increasing nutrient availability across a wide range of forests (Vicca et al. 2012). However, all six forest sites had high nutrient availability, but, at those sites, where soil C:N presumably exceeded tree demand for wood growth (i.e., sites with low C:N), root C inputs were probably responsible for the higher net soil C sequestration. We speculate that the link between soil C:N stoichiometry and microbial activity controls C sequestration belowground, as well as for the increase in ANPP-to-GPP ratio with increasing soil C:N across the high fertility forests in our dataset. At site C:N below 15, CUE is expected to be high, and more of the fresh C input is used for microbial products, resulting in the net formation of new SOM. Conversely, when C:N is high, microbes have a low C use efficiency and therefore they respire more of the fresh C inputs and prime SOM decomposition (Fontaine et al. 2004), which increases N availability and supports a higher allocation of fixed C (GPP) to ANPP. Our observations of increasing ANPP-to-GPP ratio, and the tendency for a decrease in soil C sequestration with increasing soil C:N (Fig. 2b), support this hypothesis.

In order to further test this hypothesis, we analyzed a larger dataset. Also in this case, ANPP-to-GPP ratios were quite variable (average ANPP-GPP = 0.28 with SD = 0.10; Tab. 2) and our analysis confirmed the relationship between ANPP-to-GPP ratio and soil C:N at sites with high fertility (Fig. 4). At sites where overall nutrient availability was low, this relationship did not hold. Variation in partitioning of GPP to ANPP at these sites is probably driven by the need for plants to invest in the nutrient acquiring system (i.e., roots and root symbionts - Vicca et al. 2012). When nutrient availability is limited, belowground input by plants may be the dominant control of microbial activity and SOM mineralization (Hamilton & Frank 2001, Wardle et al. 2004, De Deyn et al. 2008, De Graaff et al. 2010), thereby influencing mineral nutrient availability for plant uptake. Our speculation is also consistent with other recent findings. At the Duke Free Air CO₂ Enrichment (FACE) experiment, the increase in the belowground C flux stimulated microbial activity, accelerated SOM decomposition, and stimulated tree uptake of N bound to this SOM, sustaining ANPP (Drake et al. 2011, 2013, Phillips et al. 2012). Yin et al. (2013) found that an increase in the release of root exudates into the soil was an important physiological mechanism to sustain growth responses of plants to experimental warming.

At our study sites, soil C:N stoichiometry appeared to be weakly controlled by the soil clay content (r = 0.15 - Tab. S1 in Appendix 1), decreasing with increasing %clay in soil. This is consistent with our knowledge of soil primary organo-mineral particles, which describes clay-associated SOM as the fraction with the highest microbial contribution and lowest C:N ratio (Christensen 1992, Grandy & Neff 2008).

In conclusion, our results suggest that a specific site property, such as soil texture, could drive soil C:N stoichiometry in which it would control ecosystem C uptake and partitioning within forests of high nutrient availability. While GPP strongly and linearly increased with increasing soil N, above-ground tree biomass demand for N appeared to saturate, possibly because of the higher C:N of wood vs. green leaves, and, at high nutrient availability, NPP became limited by other environmental factors. When this occurs, more C is sequestered by soil (Fig. 5), where the high N availability promotes CUE efficiency and new SOM formation.

Acknowledgements

This work was financially supported by the Italian government through the FIRB project “Carbolytto”. We thank all site investigators, their funding agencies, the various regional flux networks (Afriflux, AmeriFlux, AsiaFlux, CarboAfrica, CarboEurope-IP, CarboExtreme, ChinaFlux, Fluxnet-Canada, KoFlux, LBA, NECC, OzFlux, TCONS-Siberia, USCCS), development of measurement and data submission protocols (funded by Office of Science (BER), US Department of Energy), and the Fluxnet project, whose work and support was essential for obtaining the measurements without which the type of integrated analyses conducted in this study would have been possible. SV is a post-doctoral research associate of the Fund for Scientific Research - Flanders. Collelongo is a research site of the Italian network of Long Term Ecological Research (LTER-Italy).

References

Andrén O, Kätterer T (1997). ICBM: the introductory carbon balance model for exploration of soil carbon balances. Ecological Applications 7: 1226-1236. - doi: 10.1890/1051-0761(1997)007[1226:ITITCBM]2.0.CO;2

Aubinet M, Vesala T, Papale D (2012). Eddy covariance. A practical guide to measurement and data analysis. Springer, Berlin, Germany, pp. 458. [online] URL: http://books.google.it/books?id=8u2B/rjJ6ZwC

Baldocchi D (2003). Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems’ past, present and future. Global Change Biology 9: 479-492. - doi: 10.1046/j.1365-2486.2003.00629.x

Binkley D, Kaye J, Barry M, Ryan MG (2004). First-rotation changes in soil carbon and nitrogen in a eucalyptus plantation in Hawaii. Soil Science Society of America Journal 68: 1713-1719. - doi: 10.2136/saj2004.1713

Bingeman CW, Varner JE, Martin WP (1953). The effect of the addition of organic materials on the decomposition of an organic soil. Soil Science Society of America Journal 29: 692-696. - doi: 10.2136/sssaj1953.03615995001700010008x

Campbell JL, Sun OJ, Law BE (2004). Disturbance and net ecosystem production across three climatically distinct forest landscapes. Global Biogeochemical Cycles 18: 1-11. - doi: 10.1029/2004GB002236

Cardon ZG, Hungate BA, Cambardella CA, Chapin FS, Field CB, Holland EA, Mooney HA (2001). Contrasting effects of elevated CO₂ on old and new soil carbo pools. Soil Biology and Biochemistry 33: 365-373. - doi: 10.1016/S0038-0717(00)00151-6

Chambers JQ, Tribuzy ES, Toledo LC, Crispim BF, Higuchi N, Santos JD, Aráujo AC, Kreuit J, Nobre AD, Trumbore SE (2004). Respiration from a tropical ecosystem: partitioning of sources and low carbon use efficiency.Ecological Applications 14 (sp4): 72-88. - doi: 10.1890/01-6012

Christensen BT (1992). Physical fractionation of soil and organic matter in primary particles and density separates. Advances in Soil Science 20: 137-190. - doi: 10.1007/978-1-4612-9390-8_1

Clark DA, Brown A, Kicklighter DW, Chambers JQ, Gower ST, Thomlinson J, Ni J (2001). Measuring net primary production in forests: a synthesis of current concepts and field methods. Ecological Applications 11: 356-370. - doi: 10.1890/1051-0761(2001)011[0356:MNPPF2]0.0.CO;2

Claus A, George E (2005). Effect of stand age on fine-root biomass and biomass distribution in three European forest chronosequences. Canadian Journal of Forest Research 35: 1617-1625. - doi: 10.1139/x05-079
...
Soil C:N stoichiometry and carbon sink partitioning in high fertility forests

changes in total foliage mass. Forest Ecology and Management 52: 159-178. - doi: 10.1016/0378-1127(92)90500-9

Raison CW (1973). Annual primary productivity in a loblolly pine plantation. IUFRO biomass study, College of Life Sciences and Agriculture, University of Maine, Orono, ME, USA, pp. 107-118.

Randerson JT, Chapin FS, Harden JW, Neff JC, Harmon ME (2002). Net ecosystem productivity: A comprehensive measure of net carbon accumulation by ecosystems. Ecological Applications 12: 937-947. - doi: 10.1890/1051-0761(2002)012[937:NEPAEM]2.0.CO;2

Rasse DP, Rumpel C, Dignac MF (2005). Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant and Soil 269: 341-356. - doi: 10.1007/s11104-004-0907-y

Rastetter EB, Agren GI, Shaver GR (1997). Reallocating C:N stoichiometry and carbon sink partitioning in high fertility forests. Oikos 122 (5): 727-738. - doi: 10.1111/j.1600-0706.2012.20655.x

Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, Cornelissen HC, Gurevitch J (2001). A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126: 543-562. - doi: 10.1007/s004420000544

Ryan MG, Hubbard RM, Pongracic S, Raison RJ, McMurtrie RE (1996). Foliage, fine-root, woody-tissue and stand respiration of Pinus radiata in relation to nutrient status. Tree Physiology 16: 333-343. - doi: 10.1010/3treephys/16.3.333

Ryan MG, Lavigne MB, Gower ST (1997). Annual carbon cost of autotrophic respiration in boreal forest ecosystems in relation to species and climate. Journal of Geophysical Research 102: 28871-28883. - doi: 10.1029/97JD01236

Sanchez PA (1989). Soils. In: “Tropical Rain Forest Ecosystems: Biogeographical and Ecological Studies” (Lieth H, Weger MJA eds). Elsevier, New York, USA, pp. 132-161.

Scandellari F, Ventura M, Gioacchini P, Antisari LV, Tagliavini M (2010). Seasonal pattern of net nitrogen rhizodeposition from peach (Prunus persica (L.) Batsch) trees in soils with different textures. Agriculture Ecosystems and Environment 136: 162-168. - doi: 10.1016/j.agee.2009.12.017

Scarciazzo A, Mata C, Matteucci G, Yakir D, Moscatello S, Brugnoli E (2004). Comparisons of δ13C of photosynthetic products and ecosystem respiratory CO2 and their responses to seasonal climate variability. Oecologia 140: 340-351. - doi: 10.1007/s00442-004-1588-1

Schimel DS, House JI, Hibbard KA, Bousquet P, Ciais P, Peylin P, Apps MJ, Baker J, Bondeau A, Canadell J, Churkina G, Cramer W, Saatchi S, Skidmore A, Sitch S, Matthews J, Field CB, Friedlingstein P, Hurtt GC, Le Quéré C, Myneni RB, Nakaegawa T, Oleson KO, Prentice IC, Riai F, Sitch S, Stocker TF, Viovy N, Zeng G, Zaehle S, Zeng X (2001). Recent patterns and mechanisms of forest growth decline with stand age. Global Change Biology 7: 937-947. - doi: 10.1017/S136524860000065-6

Sottas ED, Medr M, Malhi Y, Nobre AD, Hodnett M, Grace J (2004). Soil CO2 efflux in a tropical forest in the central Amazon. Global Change Biology 10: 601-617. - doi: 10.1111/j.1365-2486.2003.00761.x

Stace HCT, Hubble GD, Brewer R, Northcot HE, Sleeman JR, Mulcahy MJ, Hallsworth EG (1968). A handbook of Australian soils. Refflim, Adelaide, Australia, pp. 435.

Steingrobe B, Schmid H, Claassen N (2000). The use of the ingrowth core method for measuring root production of arable crops - influence of soil conditions inside the ingrowth core on root growth. Journal of Plant Nutrition and Soil Science 163: 617-622. - doi: 10.1002/(ISSN)1522-2624

Subke JA, Inglina C, Cotrufo MF (2006). Trends and methodological impacts in soil CO2 efflux partitioning: A meta-analytical review. Global Change Biology 12: 921-943. - doi: 10.1111/j.1365-2486.2006.01117.x

Sun OJ, Campbell J, Law BE, Wolf V (2004). Dynamics of carbon stocks in soils and detritus across chronosequences of different forest types in the Pacific Northwest, USA. Global Change Biology 10 (9): 1470-1481. - doi: 10.1111/j.1365-2486.2004.00829.x

Tavares F, Fränzle O, Müller F, Schimmm C-G (2010). Long-term ecosystem research in a beech forest of northern Germany. In: “Long-Term Ecolcal Research: Between Theory and Application” (Müller F, Baessler C, Schubert H, Klotz S eds). Springer Science + Business Media BV, The Netherlands, pp. 253-261. - doi: 10.1007/978-90-481-8782-9_18

Tedeschi V, Rey A, Manca G, Valentini R, Jarvis PG, Borghetti M (2006). Soil respiration in a Mediterranean oak forest at different developmental stages after coppicing. Global Change Biology 12: 110-121. - doi: 10.1111/j.1365-2486.2006.01117.x

Thomas RQ, Canham CD, Weathers KC, Goodale CL (2010). Increased tree carbon storage in response to nitrogen deposition in the US. Nature Geoscience 3 (1): 13-17. - doi: 10.1038/ngeo271 USDA Soil Conservation Service Soil Survey Staff (1975). Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys. USDA Handbook 436, US Government Printing Office, Washington, DC, USA, pp. 754.

Valentini R, De Angelis P, Matteucci G, Monaco R, Dore S, Scarascia Mugnozza GE (1996). Seasonal net carbon dioxide exchange of a Beech forest with the atmosphere. Global Change Biology 2: 199-207. - doi: 10.1111/j.1365-2486.1996.00047.x

Sottas ED, Medr M, Malhi Y, Nobre AD, Hodnett M, Grace J (2004). Soil CO2 efflux in a tropical forest in the central Amazon. Global Change Biology 10: 601-617. - doi: 10.1111/j.1365-2486.2003.00761.x

Steingrobe B, Schmid H, Claassen N (2000). The use of the ingrowth core method for measuring root production of arable crops - influence of soil conditions inside the ingrowth core on root growth. Journal of Plant Nutrition and Soil Science 163: 617-622. - doi: 10.1002/(ISSN)1522-2624

Subke JA, Inglina C, Cotrufo MF (2006). Trends and methodological impacts in soil CO2 efflux partitioning: A meta-analytical review. Global Change Biology 12: 921-943. - doi: 10.1111/j.1365-2486.2006.01117.x

Sun OJ, Campbell J, Law BE, Wolf V (2004). Dynamics of carbon stocks in soils and detritus across chronosequences of different forest types in the Pacific Northwest, USA. Global Change Biology 10 (9): 1470-1481. - doi: 10.1111/j.1365-2486.2004.00829.x

Tavares F, Fränzle O, Müller F, Schimmm C-G (2010). Long-term ecosystem research in a beech forest of northern Germany. In: “Long-Term Ecolcal Research: Between Theory and Application” (Müller F, Baessler C, Schubert H, Klotz S eds). Springer Science + Business Media BV, The Netherlands, pp. 253-261. - doi: 10.1007/978-90-481-8782-9_18
Van Veen JA, Liljeroth E, Lekkerkerk LJA, Van De Geijn SC (1991). Carbon fluxes in plant-soil systems at elevated atmospheric CO₂ levels. Ecological Applications 1: 175-181. - doi: 10.2307/1941810

Vicca S, Janssens IA, Wong SC, Cernusak LA, Farquhar GD (2010). Zea mays rhizosphere respiration, but not soil organic matter decomposition was stable across a temperature gradient. Soil Biology and Biochemistry 42: 2030-2033. - doi: 10.1016/j.soilbio.2010.07.023

Vicca S, Luyssaert S, Peñuelas J, Campioli M, Chapin FS, Ciais P, Heinemeyer A, Högbom P, Kutsch WL, Law BE, Malhi Y, Papale D, Piao SL, Reichstein M, Schulze ED, Janssens IA (2012). Fertile forests produce biomass more efficiently. Ecology Letters 15 (6): 520-526. - doi: 10.1111/j.1461-0248.2012.01775.x

Vogel CS, Curtis PS, Thomas RB (1997). Growth and nitrogen accretion of dinitrogen-fixing Alnus glutinosa (L) Gaertn under elevated carbon dio-

xide. Plant Ecology 130: 63-70. - doi: 10.1023/A:1009783625188

Wardle DA, Bardgett RD, Klironomos JN, Setala H, Van Der Putten WH, Wall DH (2004). Ecological linkages between aboveground and belowground biota. Science 304: 1629-1633. - doi: 10.1126/science.1094875

Woodwell GM, Botkin DB (1970). Metabolism of terrestrial ecosystems by gas exchange techniques: the Vrookhaven approach. In: “Analysis of temperate forest ecosystems” (Reichle DE eds). Springer-Verlag, New York, USA, pp. 73-85.

Yang Y, Luo Y (2011). Carbon: nitrogen stoichiometry in forest ecosystems during stand development. Global ecology and Biogeography 20: 354-361. - doi: 10.1111/j.1466-8238.2010.00602.x

Yin H, Yufei L, Xiao J, Xu Z, Cheng X, Liu Q (2013). Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming. Global Change Biology 19 (7): 2158-2167. - doi: 10.1111/gcb.12161

Zha TS, Barr AG, Bernier PY, Lavigne MB, Trenfnow JA, Amiro BD, Arain MA, Bhatti JS, Black TA, Margolis HA, McCaughey JH, Xing ZS, Van Rees KCJ, Coursolle C (2013). Gross and aboveground net primary production at Canadian forest carbon flux sites. Agricultural and Forest Meteorology 174-175: 54-64. - doi: 10.1016/j.agrformet.2013.02.004

Supplementary Material

Appendix 1

Box S1 - Nutrient classification.
Tab. S1 - Spearman correlation matrix for the six Mediterranean forests considered in the study.

Link: Alberti_1196@suppl001.pdf