Evidence for unidimensional low-energy excitations as the origin of persistent spin dynamics in geometrically frustrated magnets

A. Yaouanc, 1,2,3 P. Dalmas de Réotier, 1,2 A. Bertin, 1,2 C. Marin, 1,2 E. Lhotel, 4 A. Amato, 3 and C. Baines 3

1 Université Grenoble Alpes, INAC-SPSMS, F-38000 Grenoble, France
2 CEA, INAC-SPSMS, F-38000 Grenoble, France
3 Laboratory for Muon-Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen-PSI, Switzerland
4 Institut Néel, CNRS and Université Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9, France

(Dated: October 5, 2015)

We report specific heat, magnetic, and muon spin relaxation measurements performed on a polycrystalline sample of the normal spinel CdHo2S4. The rare-earth ions sit on a lattice of corner-sharing regular tetrahedra as in pyrochlore compounds. Magnetic ordering is detected at \(T_c \approx 0.87 \) K. From spin-lattice relaxation rate measurements on both sides of \(T_c \) we uncover similar magnetic excitation modes driving the so-called persistent spin dynamics at \(T < T_c \). Unidimensional excitations are argued to be at its origin. Often observed spin loop structures are suggested to support these excitations. The possibility of a generic mechanism for their existence is discussed.

PACS numbers: 75.40.-s, 75.40.Gb, 76.75.+i

Magnetic materials with coupled spins located on corner-sharing tetrahedra are expected to exhibit geometrical magnetic frustration because their spatial arrangements are such that they prevent the simultaneous minimization of all the interaction energies. Typical examples are given by the pyrochlore insulator compounds of generic chemical formula \(R_2M_2O_7 \), where \(R \) is a rare earth ion and \(M \) a non magnetic element. For instance Ho2Ti2O7 for which the net interaction between the spins is ferromagnetic, has been the first recognized spin-ice system and an analogy has been drawn between the proton positions in common ice \(I_h \) and the spin configuration. Its properties seem mostly described by classical physics. On the other hand, Yb2Ti2O7 is an example of a three-dimensional quantum spin liquid at least for the best available sample characterized by a clear specific heat peak at its first order transition. While this transition is reminiscent of that observed between the gas and liquid states of conventional matter, it is characterized by a strong quantum entanglement. As a last example, we cite Yb2Sn2O7 which is a splayed ferromagnet, i.e. essentially a ferromagnetic compound with an emergent gauge field.

Although this physics is exotic, an interpretation at the mean-field level is within reach. However, the most exotic property of these compounds lies in their dynamics. The origin of the ubiquitous persistent spin dynamics observed in geometrically frustrated magnetic materials is still elusive. Its most famous signature is a finite and approximately temperature independent spin-lattice relaxation rate \(\lambda_Z \) observed in these compounds below \(\approx 1 \) K irrespective of the presence of a magnetic order or not. Conventionally, at temperatures well below \(T_{CW} \) where \(T_{CW} \) is the Curie-Weiss temperature, a magnetic system should order and \(\lambda_Z \) should vanish when the temperature approaches zero. Still, a finite and temperature independent \(\lambda_Z \) is found in the ordered state of magnetic compounds such as Cu2Cl(OH)2, Gd2Sn2O7, and Gd2Ti2O7 to cite few reported cases. Also surprising is the absence of muon spin spontaneous precession in muon spin relaxation (\(\mu \)SR) measurements below the magnetic critical temperature \(T_c \) for Tb2Sn2O7, Er2Ti2O7 and Yb2Sn2O7. This lack of spontaneous precession stems from unexpected excitation modes below \(T_c \), as first shown for Tb2Sn2O7. A physical mechanism accounting for them is still missing.

Recently normal spinels of chemical formula \(CdR_2X_4 \) (\(X = S, Se \)) have attracted some attention. In this crystal structure, the \(R \) ions form the same lattice of corner-sharing regular tetrahedra as in the pyrochlore compounds; see Fig. 1a. A spin-ice behavior has been discovered for \(CdEr_2Se_4 \) highlighting the interest of extending the number of compounds with geometrical frustration on a three-dimensional lattice.

Here we report bulk and \(\mu \)SR measurements for the normal thiospinel \(CdHo_2S_4 \). We find evidence for a magnetic phase transition with similar magnetic excitation

![FIG. 1. (Color online) (a) Rare-earth ions lattice in the pyrochlore \(R_2M_2O_7 \) and normal spinel \(CdR_2X_4 \) compounds. The thicker light blue (thinner dark blue) bold line represents a 6 (10)-site loop. (b) Low temperature heat capacity of \(CdHo_2S_4 \).](image-url)
modes on both sides of T_c. We show that these modes are at the origin of the observed persistent spin dynamics as fingerprinted by λ_2.

The synthesis of CdHo$_2$S$_4$ powder has followed a two step route. First, Ho$_2$S$_3$ has been prepared starting withholmium metal (4N) and sulfur (5N) properly mixed and heat treated in a vacuum sealed quartz tube up to 720°C over 2 weeks, the temperature being increased step by step to avoid excessive pressure due to sulfur vapor. The phase has been checked by x-ray powder diffraction. Secondly, Ho$_2$S$_3$ has been mixed with commercial CdS powder (5N) and pressed under 4 tons into 13 mm diameter pellets to improve solid state reaction. A heat treatment of the resulting product has been achieved up to 900°C for two weeks in a sealed quartz tube under vacuum. The final yellow/brown ceramic has been found to be the CdHo$_2$S$_4$ phase perfectly crystallized without any x-ray detected foreign phases. Finally sintered pellets were obtained from this ceramic after grinding and compaction with the same press, followed by a heat treatment at 600°C over 6 hours under vacuum.

The investigation of the macroscopic properties has consisted of measurements of the heat capacity using a Physical Property Measurement System (Quantum Design Inc.), and of the magnetization and ac susceptibility. These magnetization experiments have been performed by the extraction method using a Magnetic Property Measurement System (Quantum Design Inc.) for measurements down to 2 K and a superconducting quantum interference device magnetometer developed at the Institut Néel for measurements down to 0.07 K and up to an external magnetic field $B_{\text{ext}} = 8$ T.

The μSR experiments were carried out at the Swiss Muon Source (SμS, Paul Scherrer Institute, Switzerland) either at the Low Temperature Facility (LTF) or the General Purpose Surface-muon instrument (GPS) depending of the temperature range. Measurements were performed with the transverse (longitudinal) geometry in which the external field defining the Z axis of a referential frame, is applied perpendicular (parallel) to the initial muon spin polarization. The measured physical quantity is the so-called μSR asymmetry time spectrum which describes the evolution of the projection of the muon polarization perpendicular to (along) the direction of the initial polarization. The spectrum is denoted as $a_0 P_X^\text{exp}(t)$ ($a_0 P_Z^\text{exp}(t)$) for the transverse (longitudinal) geometry. Zero applied field measurements were also performed in the longitudinal geometry.

The heat capacity C_p depicted in Fig. 1b, displays a fairly narrow peak at $T_c \approx 0.86$ K, signalling a thermodynamic phase transition, and a broad hump centered at about 3 K. This latter feature, attributed to the onset of short-range magnetic correlations and not described by the Landau free energy, is commonly observed in frustrated magnets.

We now consider the bulk magnetic measurements. Figure 2 depicts the inverse of the susceptibility, i.e. $1/\chi$, versus temperature in a broad temperature range. The Curie-Weiss law provides a good description of χ above 150 K with $\theta_{\text{CW}} = -3.6 (5)$ K and the so-called paramagnetic moment $m_{\text{pm}} = 10.8 (7) \mu_B$. This latter number compares favorably with the isolated Ho$^{3+}$ value, $m_{\text{eff}} = 10.6 \mu_B$. From measurements with $B_{\text{ext}} = 0.1$ T, Lau et al. have reported a similar value for m_{pm}, but a larger θ_{CW} absolute value ($\theta_{\text{CW}} = -7.6 (2)$ K). Because θ_{CW} is negative, the dominant exchange interactions are antiferromagnetic. A slight deviation from the Curie-Weiss law is observed below 150 K.

In Fig. 3 the variation of χ at low temperature is displayed: it exhibits a weak maximum at $T_L \approx 0.88$ K. This maximum is somewhat stronger in ac susceptibility data (not shown) recorded in the 5-100 Hz frequency range. Together with the aforementioned C_p peak these results point to a magnetic transition at T_L. An uprise in $\chi(T)$ is detected well below T_L. An origin for it could be the presence of residual free spins in our sample. Modellizing this upturn as explained in the caption of Fig. 3, a very good fit is obtained for a 1.7% fraction of Ho$^{3+}$ ions being in a paramagnetic state with a moment m_{eff}; see full line in Fig. 3. The Curie-Weiss temperature associated with this fraction of the spins is negligible: $\theta_{\text{CW,fs}} = -37 (1)$ mK.

In order to check the hypothesis that the χ upturn arises from a small fraction of the Ho$^{3+}$ spins, we have used the μSR technique in the transverse-field geometry. Here, a field B_{ext} transverse to the initial polarization of the muon beam is applied to the sample. The muon Larmor precession is then monitored (Fig. 4), yielding the mean field magnitude (B_m) at the muon site which uniformly probes the sample volume. The quantity of interest here is $K_{\text{exp}} = (\langle B_m \rangle - B_{\text{ext}})/B_{\text{ext}}$. Once corrected for the demagnetization and Lorentz fields, this quantity is proportional to a microscopic susceptibility which can be compared to the macroscopic susceptibility discussed above. The proportionality coefficient depends on
FIG. 3. (Color online) Magnetic measurements for a CdHo$_2$S$_4$ powder sample. The data for the magnetic susceptibility χ versus temperature were recorded with external fields B_{ext} ranging from 0.5 to 50 mT and were found to match one another. The field was applied in the plane of the sample so that the demagnetization field is small. The solid line at low temperature together with the dotted line extension represents a fit of the function $C_\chi/(T - \theta) + a + bT$ to the data recorded below T_c. The former term represents the contribution of weakly interacting Ho$^{3+}$ spins, while the remaining terms describe the majority spin state; see main text. The quantity K_{exp} defined in the main text and measured for different B_{ext} as indicated in the figure, is shown for comparison.

The measurements of the magnetic moment per holmium ion as a function of field at 4.2 K and down to 0.07 K are presented in Fig. 3. The moment tends to saturation with $m_{\text{sat}} \simeq 8.2 \mu_B/Ho^{3+}$ under 8 T, fairly consistent with $m_{\text{sat}} \simeq 7.5 \mu_B/Ho^{3+}$ at 5 T previously reported. The value for m_{sat} is much larger in CdHo$_2$S$_4$ than in Ho$_2$Ti$_2$O$_7$, suggesting a different type of anisotropy in the two compounds. With the presently available experimental data the electronic configuration of the Ho$^{3+}$ spins, in particular their crystal electric field energy levels and wave functions cannot be discussed further. In Fig. 4 we display the derivative of the magnetic moment value with respect to the external field. At 4.2 and 2 K it monotonically decays as the external field is increased. At lower temperatures the derivative passes through a maximum at a field of approximately half a tesla. This maximum is the signature of a metamagnetically like behavior, as usually observed in antiferromagnets. The sharp decrease of the derivative for fields up to $\simeq 0.2$ T at 0.07 K is more surprising. While we have no definitive explanation for it at the moment, it could be associated with the fraction of free spins detected in the susceptibility measurements.

We now discuss the zero-field μSR spectra. Examples
FIG. 7. (Color online) Four μSR spectra recorded for a CdHo$_2$S$_4$ powder sample, two zero-field spectra taken on both sides of the magnetic phase transition temperature T_c, and two longitudinal field spectra recorded at $T = 0.12$ K i.e. $T \ll T_c$. The early time details are shown in the insert. The solid lines result from fits as explained in the main text.

of spectra recorded on both sides of T_c are displayed in Fig. 7. Contrary to expectation for an ordered magnet, no spontaneous oscillation is detected below T_c. There is also no missing asymmetry which would result from an unresolved oscillation. We simply find an exponential-like relaxation on each side of T_c. This is a signature of a strong dynamical spin component below T_c.

The function $a_0 P_Z^{00} (t) = a_0 P_Z(t) + a_{0bg}$, where the second time-independent component accounts for the muons missing the sample, has been fitted to the spectra. A good description of $P_Z(t)$ in zero field is obtained with a stretched exponential relaxation, i.e. $P_Z(t) = \exp[-(\lambda_Z t)^\beta]$. The exponent β has been found constant with $\beta = 0.8$ up to 0.6 K, and then it increases steadily with temperature, reaching $\beta = 1$ above 10 K. As seen in the insert of Fig. 7, critical temperature corresponds to a faint anomaly in $\lambda_Z (T)$.

The rate λ_Z is finite and becomes almost temperature independent below T_c, a signature of the so-called persistent spin dynamics.

The results for CdHo$_2$S$_4$ are consistent with the previous observation for the ordered spin ice Tb$_2$Sn$_2$O$_7$. While a spontaneous oscillation is also absent in the order-by-disorder antiferromagnet Er$_2$Ti$_2$O$_7$ (Refs. 13 and 16) and the splayed ferromagnet Yb$_2$Sn$_2$O$_7$ their relaxation below T_c is not exponential-like. For Tb$_2$Sn$_2$O$_7$ and CdHo$_2$S$_4$ we are in fact in the fast fluctuation regime for which $\gamma_\mu \Delta_{\text{rms}} \tau_e \ll 1$, where Δ_{rms} and τ_e are the standard deviation of the field distribution at the muon site and the correlation time of the field-correlation function, respectively. This key feature will enable us to investigate the relaxation in terms of spin-correlation functions. Before leaving this qualitative discussion, we note that an inflection point in $\lambda_Z (T)$ is present around 20 K. It may correspond to a crossover from a crystal-electric-field excitation dominated regime to a strongly correlated low-temperature paramagnetic regime. We also note that Tb$_2$Sn$_2$O$_7$ has been discussed in terms of a partially ordered magnet owing to the coexistence of static and dynamical magnetic modes in its ordered phase. Such a situation may apply for CdHo$_2$S$_4$.

FIG. 8. (Color online) Spin-lattice relaxation rate λ_Z versus longitudinal field intensity B_{ext} and temperature T for a CdHo$_2$S$_4$ powder. In the main frame is displayed $\lambda_Z (B_{\text{ext}})$ for two temperatures below and above T_c. The $\lambda_Z (T = 0.12$ K) maximum occurs at 20 mT. The solid lines are explained in the main text. The dashed line at small B_{ext} and $T = 0.12$ K is a guide to the eyes. In the insert is displayed $\lambda_Z (T)$ measured from 0.019 to 55 K under zero field or $B_{\text{ext}} = 5$ mT. The temperature T_c at which the compound exhibits a magnetic phase transition is specified by an arrow.

In Fig. 8 we present $\lambda_Z (B_{\text{ext}})$. While at 1.2 K it drops monotonically as B_{ext} is increased, it exhibits a maximum at ≈ 20 mT for $T = 0.12$ K before decreasing at larger B_{ext}. We also note a slight upturn in λ_Z above 1.5 K which could be associated with a crystal-electric-field effect. A low-field λ_Z maximum has already been reported in Refs. 22,26–28. An avoided level-crossing resonance might be at play. A quantitative analysis should provide further information. Neglecting this maximum, we find $\lambda_Z (B_{\text{ext}})$ to be well described by a conventional Lorentzian behavior (full lines in Fig. 8). $\lambda_Z (B_{\text{ext}}) = \frac{2 \mu_0^2 \Delta_{\text{rms}} \gamma_\mu}{(1 + \gamma_\mu^2 B_{\text{ext}}^2 \tau_e^2)}$. At 0.12 K a fit to the data gives $\tau_e = 3.8 (3)$ ns and $\Delta_{\text{rms}} = 49 (4)$ mT, and at 1.2 K, the parameters are $\tau_e = 3.08 (8)$ ns and $\Delta_{\text{rms}} = 40 (1)$ mT. An additional small constant $\lambda_{Z,0} = 0.4 \mu$s$^{-1}$ needs to be added to the Lorentzian at 1.2 K. Surprisingly, the two parameters of the Lorentzian function have approximately the same values at 0.12 and 1.2 K. This suggests the same type of excitations to be involved in the relaxation of the muon spin in the ordered and paramagnetic states. We also note that the paramagnetic fluctuation time scale of a few nanoseconds is anomalously long: from the energy scale given by the value of $|\Omega_{\text{CW}}|$ one would expect a fluctuation time at least two orders of magnitude shorter.

Before discussing our experimental result in terms of
intrinsic properties of the magnetic fluctuation modes that have been uncovered, we note that an alternative explanation has been proposed for the finite and temperature independent relaxation rate measured at low temperature.\footnote{39} The model put forward by Quémerais and coworkers is based on the coherent diffusion of polaronic muons rather than magnetic fluctuations. However this interpretation of the Dy$_2$Ti$_2$O$_7$ data\footnote{39,40} leads to a muon hopping rate nearly three orders of magnitude larger than that measured on the isostructural non-magnetic material Y$_2$Ti$_2$O$_7$.\footnote{40} Moreover spin dynamics has been detected in Dy$_2$Ti$_2$O$_7$ down to 0.1 K.\footnote{40} Although no data is available concerning muon diffusion in CdHo$_2$S$_4$, here we will not consider this possibility. Indeed, the similarity of the data in this material, in the pyrochlore systems listed at the beginning of this text, and in Cu$_2$Cl(OH)$_4$ strongly suggests that an explanation generic to three dimensional networks of corner sharing tetrahedral spins must pertain.

To explain the low-temperature finite and approximately temperature independent zero-field λZ value, a Raman relaxation process involving two magnetic excitations has been put forward.\footnote{42} Generalizing this picture, we write

$$\lambda Z = C \int_{-\Delta}^{\infty} f(v/(kT)) g_m^2(e)de.$$ \hspace{2cm} (1)

Here C is a temperature independent constant and $f(x) = n(x)[1 \pm n(x)]$, with $n(x)$ the Bose-Einstein or Fermi-Dirac distribution function and the plus or minus signs are for bosonic or fermionic excitations, respectively. We have introduced the magnetic density of states responsible for the relaxation $g_m(e)$ and an energy gap Δ. To get λZ temperature independent, we need $g_m(e) \propto b_p e^{-1/2}$ and $(\Delta - E_F) (\Delta - \mu)$ proportional to temperature i.e. equal to $a_p k_B T$, where a_p and b_p are finite constants. We have denoted E_F the Fermi energy and μ the chemical potential (needed if the boson number is not fixed). The inverse square root form for $g_m(e)$ needs to be verified only at low energy.42

Expressing $g_m(e)$ in terms of the spin correlation function $\langle J_q(t)J_{-q}(0) \rangle$, we obtain

$$g_m(e) = \sum_q \int_{-\infty}^{\infty} \frac{\langle J_q(t)J_{-q}(0) \rangle}{\langle J_q(0)J_{-q}(0) \rangle} \exp \left(\frac{i e t}{\hbar} \right) \frac{dt}{2\pi\hbar}.$$ \hspace{2cm} (2)

The sum is over the first Brillouin zone vectors. We recall $\langle J_q(t)J_{-q}(0) \rangle = \sum_i \exp(-i q \cdot r_i) \langle J_i(t)J_i(0) \rangle$, where J and J_0 are the spins at the lattice point i and at the origin of the lattice, respectively. Since muons probe the very low energy spin excitations it is justified to consider the correlation function at long times. In this limit it is governed by a diffusion equation for a Heisenberg Hamiltonian system\footnote{39,41} i.e. $\langle J_q(t)J_{-q}(0) \rangle \propto 1/(D|q|)^d/2$ where d is the dimensionality of the spin system and D a diffusion coefficient. Since the Fourier transform of $\sqrt{1/|t|}$ is $2\pi/|\omega| = \sqrt{2\pi \hbar/|e|}$, one-dimensional spin structures, i.e. $d = 1$, are inferred to explain the low-temperature λZ plateau found for geometrically frustrated magnetic materials, at least when the relaxation is exponential-like. Although the algebraic decay was originally derived from a phenomenological high-temperature theory for a Heisenberg system\footnote{42} a microscopic analysis leads to the same form for the correlations at low temperature in one-dimensional quantum spin systems with anisotropic exchange.\footnote{42}

We tentatively associate the low energy unidimensional excitations inferred from the temperature independent spin-lattice relaxation rate observed in numerous frustrated magnets to loop spin structures that have been considered theoretically (see e.g. Refs. \footnote{43–45} for three dimensional systems) and suggested from neutron scattering experiments. An hexamer pattern was reported in the paramagnetic phase of the spinel chromite ACr$_2$O$_4$ with $A = Zn$;\footnote{46} then for $A = Cd$;\footnote{47} and later on for $A = Mg$ in the paramagnetic and ordered magnetic states.\footnote{48,49} Results for the itinerant system Y$_{0.97}$Sc$_{0.03}$Mn$_2$ display a broadly similar feature.\footnote{46} Hexamer correlations seem also present in the spin-ice system Dy$_2$Ti$_2$O$_7$.\footnote{40} An illustration for an hexamer structure is presented in Fig. 1, as well as another putative structure.

The similarity of $\lambda Z (B_{sat})$ measured for CdHo$_2$S$_4$ on both sites of the transition shows unidimensional excitations to be present in both phases. The unusual long time scale observed for the spin dynamics is then consistent with the relatively large number of spins involved in the process. A possible origin for the drop of λZ above ≈ 1 K might be excitation interactions which would break the spin-correlation power-law decay.

The ubiquitous low-temperature excitations that we infer suggest a generic mechanism. Emergent monopoles are the low-temperature magnetic excitations of spin-ice systems, i.e. of ferromagnetically interacting spins on a lattice of corner-sharing tetrahedra.\footnote{52,53} An all-in all-out spin arrangement for the same lattice can be viewed as a lattice of magnetic octupoles.\footnote{54} Although still not proven, the same picture implying multipoles may apply to other antiferromagnetic structures. These poles interact through an effective, possibly screened, Coulomb interaction. We suggest to investigate whether this interaction could explain the excitations we have uncovered.

In summary, the thiospinel CdHo$_2$S$_4$ in which the rare earth spins form a lattice of corner sharing regular tetrahedra undergoes a magnetic transition at $T_c \approx 0.87$ K. A signature of anomalously slow fluctuation modes is found in the paramagnetic state. Similar modes are present in the ordered phase. Spin dynamics is observed down to at least $T_c/50$ through a finite and roughly temperature independent muon spin-lattice relaxation rate λZ. This is shown to be the signature of emergent unidimensional spin excitations. Since the λZ plateau has been found in virtually all the frustrated compounds including the pyrochlore, kagome and triangular systems,\footnote{55} we conjecture the unidimensional spin excitations to be a generic feature of geometrically frustrated magnets, should the system order or not.
We thank C. Paulsen for the use of his SQUID dilution magnetometer. PDR gratefully acknowledges partial support from Prof. H. Keller from the University of Zurich. This research project has been partially supported by the European Commission under the 7th Framework Programme through the ‘Research Infrastructures’ action of the ‘Capacities’ Programme, Contract No: CP-CSA-INFRA-2008-1.1.1 Number 226507-NM13. Part of this work was performed at the Swiss Muon Source, Paul Scherrer Institute, Villigen, Switzerland.

1. J. S. Gardner, M. J. P. Gingras, and J. E. Greedan, Rev. Mod. Phys. 82, 53 (2010)
2. M. J. Harris, S. T. Bramwell, D. F. McMorrow, T. Zeiske, and K. W. Godfrey, Phys. Rev. Lett. 79, 2554 (1997)
3. J. A. Hodges, P. Bonvillle, A. Forget, A. Yaouanc, P. Dalmas de Rétéotier, G. André, M. Rams, K. Królas, C. Rit- ter, P. C. M. Gubbens, C. T. Kaiser, P. J. C. King, and C. Baines, Phys. Rev. Lett. 88, 077204 (2002)
4. A. Yaouanc, P. Dalmas de Rétéotier, C. Marin, and V. Glazkov, Phys. Rev. B 84, 172408 (2011)
5. K. A. Ross, R. L. Yasarkavitch, M. Laver, J. S. Gard- ner, J. A. Quilliam, S. H. Curnoe, B. Grenier, E. Ressouche, and J. Schweizer (Servicio de Publicaciones de la Universidad de Zaragoza, Zaragoza, 2001).
6. A. Yaouanc and P. Dalmas de Rétéotier, Muon Spin Ro- tation, Relaxation, and Resonance: Applications to Con- densed Matter (Oxford University Press, Oxford, 2011).
7. A. Yaouanc, P. Dalmas de Rétéotier, P. C. M. Gubbens, C. T. Kaiser, C. Baines, and P. J. C. King, Phys. Rev. Lett. 91, 167201 (2003)
8. According to Eq. 5.6 of Ref. [22] the local susceptibility χ_L is related to χ_{K_p} through the relation $K_p = K_{K_p} = (1/3 - N^2)\chi_L$, which can be applied since the thin pellet shaped sample can be approximated to a strongly oblate ellipsoid of revolution. The relevant demagnetization coefficient N^2 being definitely larger than 1/3, the demagnetization and Lorentz field corrections for K_{K_p} will result in a downward shift in Fig. 3 proportional to χ_L, which rules out any low temperature uprise.
9. O. A. Petrenko, M. R. Lees, and G. Balakrishnan, Phys. Rev. B 68, 012406 (2003)
10. C. P. Lindsay and G. D. Patterson, J. Chem. Phys. 73, 3348 (1980).
11. M. N. Berderan-Santos, E. N. Bodunov, and B. Valeur, Chem. Phys. 315, 171 (2005).
12. D. C. Johnston, Phys. Rev. B 74, 184430 (2006).
13. A. Zorko, F. Bert, P. Mendels, P. Bordet, P. Lejay, and J. Robert, Phys. Rev. Lett. 100, 147201 (2008)
14. A. Yaouanc, P. Dalmas de Rétéotier, Y. Chapuis, C. Marin, S. Vanishi, D. Aoki, B. Fák, L. R. Yaraskavitch, M. Laver, J. S. Gardner, M. J. P. Gingras, and G. M. Luke, Phys. Rev. Lett. 106, 207207 (2011)
15. A. Yaouanc, P. Dalmas de Rétéotier, S. Pouyet, P. Fouquet, A. Cervellino, and A. Forget, J. Phys.: Condens. Matter 19, 446206 (2007)
16. K. C. Rule, G. Ehlers, J. S. Gardiner, Y. Qiu, E. Moskvina, K. Kiefer, and S. Gerischer, J. Phys.: Condens. Matter 21, 486005 (2009)
17. G. C. Lau, R. S. Freitas, B. G. Ueland, P. Schiffer, and R. J. Cava, Phys. Rev. B 72, 054411 (2005)
18. J. Lago, I. Zivković, B. Z. Malkin, J. Rodriguez Fernandez, P. Ghigna, P. Dalmas de Rétéotier, A. Yaouanc, and T. Rojo, Phys. Rev. Lett. 104, 247203 (2010)
19. C. Paulsen, in Introduction to Physical Techniques in Molecular Magnetism: Structural and Macroscopic Tech- niques – Yesa 1999, edited by F. Palacio, E. Ressouche, and J. Schweizer (Servicio de Publicaciones de la Universidad de Zaragoza, Zaragoza, 2001).
J. A. Rodriguez, A. Yaouanc, B. Barbara, E. Pomjakushina, P. Quémerais, and Z. Salman, Phys. Rev. B 87, 184427 (2013).

J. S. Gardner, G. Ehlers, B. Farago, and J. R. Stewart, J. Phys.: Condens. Matter 23, 364220 (2011).

N. Bloembergen, Physica 15, 386 (1949).

L. Van Hove, Phys. Rev. 95, 1374 (1954).

H. Benner and J. P. Boucher, in Magnetic properties of layered transition metal compounds, edited by L. J. de Jongh (Kluwer Academic Publishers, 1990) pp. 323–378.

J. Sirker, R. G. Pereira, and I. Affleck, Phys. Rev. B 83, 035115 (2011).

J. Villain, Z. Phys. B 33, 31 (1979).

M. Hermele, M. P. A. Fisher, and L. Balents, Phys. Rev. B 69, 064404 (2004).

R. G. Melko and M. J. P. Gingras, Journal of Physics: Condens. Matter 16, R1277 (2004).

S.-H. Lee, C. Broholm, W. Ratcliff, G. Gasparovic, Q. Huang, T. H. Kim, and S.-W. Cheong, Nature 418, 856 (2002).

J.-H. Chung, M. Matsuda, S.-H. Lee, K. Kakurai, H. Ueda, T. J. Sato, H. Takagi, K.-P. Hong, and S. Park, Phys. Rev. Lett. 95, 247204 (2005).

K. Tomiyasu, H. Suzuki, M. Toki, S. Itoh, M. Matsuura, N. Aso, and K. Yamada, Phys. Rev. Lett. 101, 177401 (2008).

K. Tomiyasu, T. Yokobori, Y. Kousaka, R. I. Bewley, T. Guidi, T. Watanabe, J. Akimitsu, and K. Yamada, Phys. Rev. Lett. 110, 077205 (2013).

R. Ballou, E. LeLièvre-Berna, and B. Fák, Phys. Rev. Lett. 76, 2125 (1996).

T. Yavors’kii, T. Fennell, M. J. P. Gingras, and S. T. Bramwell, Phys. Rev. Lett. 101, 037204 (2008).

I. A. Ryzhkin, JETP 101, 481 (2005).

C. Castelnovo, R. Moessner, and S. L. Sondhi, Nature 451, 42 (2008).

T.-H. Arima, J. Phys. Soc. Jpn. 82, 013705 (2013).

See, e.g. Refs. 9 and 12 for the lattice of corner sharing tetrahedra, Ref. 36 for the kagome lattice and Ref. 57 for the triangular lattice.

P. Mendels, F. Bert, M. A. de Vries, A. Olariu, A. Harrison, F. Duc, J. C. Trombe, J. S. Lord, A. Amato, and C. Baines, Phys. Rev. Lett. 98, 077204 (2007).

P. Dalmas de Réotier, A. Yaouanc, D. E. MacLaughlin, S. Zhao, T. Higo, S. Nakatsuji, Y. Nambu, C. Marin, G. Lapertot, A. Amato, and C. Baines, Phys. Rev. B 85, 140407 (2012).