Using Edge-induced and Vertex-induced Subhypergraph Polynomials

Yohannes Tadesse

March 19, 2013

Abstract

For a hypergraph H, we consider the edge-induced and vertex-induced subhypergraph polynomials and study their relation. We use this relation to prove that both polynomials are reconstructible, and to prove a theorem relating the Hilbert series of the Stanley-Reisner ring of the independent complex of H and the edge-induced subhypergraph polynomial. We also consider reconstruction of some algebraic invariants of H.

Key words and phrases: edge-induced subhypergraph polynomial, vertex-induced subhypergraph polynomial, Stanley-Reisner ring, Hilbert Series, Reconstruction conjecture.

MSC2010 Subject Classification: 05C30, 05C60, 05C65, 13F55, 13D40

1 Introduction

To every hypergraph H one can associate several subhypergraph enumerating polynomials. In this note we consider two of these polynomials: the vertex-induced subhypergraph polynomial $P_H(x, y)$ enumerating vertex-induced subhypergraphs of H, and the edge-induced subhypergraph polynomial $S_H(x, y)$. Precise definitions will be given in §2. These and several other polynomials were extensively studied for graphs, see [1, 4, 5, 8] and their citations. The notion has been naturally generalized to hypergraphs, see White [14].

L. Borzacchini, et al. [5] studied the relation between these and other subgraph enumerating polynomials. He earlier proved that both are reconstructible, i.e. they can be derived from the subgraph enumerating polynomials of vertex-deleted subgraphs, see [3,4]. A. Goodarzi [9] used $S_H(x, y)$ to compute the Hilbert series of the Stanley-Reisner ring of the independent complex of H. More precisely, if R is such a ring, then its Hilbert series $H_R(t)$ is given by

\begin{equation}
H_R(t) = \frac{S_H(t, -1)}{(1 - t)^n}
\end{equation}

where n is the number of vertices in H.

In section 2, we define the polynomials, and then prove that

$S_H(x, y) = (1 - x)^n P_H\left(\frac{x}{1 - x}, 1 + y\right)$.
In section 3, we use this relation to give a short and elementary proof of (1.1). One may compare our proof with the technical proof in [9]. In section 4, generalizing Borzacchini’s results [3, 4], we prove that both polynomials are reconstructible for hypergraphs. We also prove the reconstruction problems of some algebraic invariants of the independent complex of \(\mathcal{H} \), where their graph counterpart is proven by Dalili, Faridi and Traves in [6]. That is, we consider reconstructibility of the Hilbert series, the \(f \)-vector, the (multi-)graded Betti numbers and some graded Betti tables of the independent complex of \(\mathcal{H} \).

2 Preliminaries

A hypergraph is a pair \(\mathcal{H} = (V, E) \) where \(V \) is a set of elements called vertices and \(E \subset 2^V \) is a set of distinct subsets of \(V \) called edges such that for any two edges \(\varepsilon_1, \varepsilon_2 \in E \), we have \(\varepsilon_1 \subset \varepsilon_2 \Rightarrow \varepsilon_1 = \varepsilon_2 \). A hypergraph \(\mathcal{H} \) is called finite if the vertex set \(V \) is finite. We say \(\mathcal{H} \) is a \(d \)-hypergraph if \(|\varepsilon| = d \) for each \(\varepsilon \in E \), where \(|\varepsilon| \) is the cardinality of \(\varepsilon \). A graph is a 2-hypergraph. In this note we always consider finite hypergraphs.

Let \(\mathcal{H} = (V, E) \) be hypergraph, \(W \subset V \) and \(L \subset E \). We say that \(L = (W, L) \) is an edge-induced subhypergraph of \(\mathcal{H} \) if \(W = \bigcup \varepsilon \in L \varepsilon \). We say that \(\mathcal{H}_W = (W, L) \) is a vertex-induced subhypergraph if \(L \) is the largest subset of \(E \) such that \(L \subset 2^W \).

Let \(\mathcal{H} \) be a hypergraph. The edge-induced subhypergraph polynomial \(S_{\mathcal{H}}(x, y) \) is defined by

\[
S_{\mathcal{H}}(x, y) = \sum_{i,j} \theta_{ij} x^i y^j,
\]

where \(\theta_{00} = 1 \) and for \(i, j \geq 0 \), \(\theta_{ij} \) is the number of edge induced subhypergraphs of \(\mathcal{H} \) with \(i \) vertices and \(j \) edges. Similarly, the vertex-induced subhypergraph polynomial \(P_{\mathcal{H}}(x, y) \) of \(\mathcal{H} \) is defined by

\[
P_{\mathcal{H}}(x, y) = \sum_{i,j} \beta_{ij} x^i y^j,
\]

where \(\beta_{00} = 1 \) and for \(i, j \geq 0 \), \(\beta_{ij} \) is the number of vertex induced subhypergraphs of \(\mathcal{H} \) with \(i \) vertices and \(j \) edges.

We recall some simple properties of these polynomials. In what follows, \(F_{\mathcal{H}}(x, y) \) refers to any one of the two polynomials.

1. If the hypergraph has connected components \(\mathcal{H}_1, \ldots, \mathcal{H}_m \), we have \(F_{\mathcal{H}}(x, y) = F_{\mathcal{H}_1}(x, y) \cdots F_{\mathcal{H}_m}(x, y) \). We also have \(F(0, y) = 1 \). If \(E = \emptyset \), then \(F_{\mathcal{H}}(x, y) = (1 + x)^m \).

2. \(\sum_i \beta_{ij} = \binom{n}{j} \) and \(\sum_i \theta_{ij} = \binom{m}{j} \) where \(m \) is the number of edges in \(\mathcal{H} \).

3. \(S_{\mathcal{H}}(x, 0) \) is a subgraph polynomial of the 0-subhypergraphs, i.e. isolated vertices. \(P_{\mathcal{H}}(x, 0) \) the polynomial of the independent subsets, i.e. sets of vertices having no edges in common.

4. If \(\mathcal{H} = K_n \) is the complete graph, then \(P_{\mathcal{H}}(x, y) = \sum_{i=0}^n \binom{n}{i} x^i y^{(i)} \) and if \(\mathcal{H} \) is a star with \(m \) edges, then \(S_{\mathcal{H}}(x, y) = \sum_{j=0}^m \binom{m}{j} x^{j+1} y^j \).
The following Proposition is a generalization of Borzacchini [3]. Even though he considered graphs, the proofs can easily be generalized to hypergraphs.

Proposition 2.1. Let \(H \) be a hypergraph on \(n \) vertices. Then

\[
S_H(x, y) = (1 - x)^n P_H(\frac{x}{1 - x}, 1 + y)
\]

Proof. To every vertex induced subhypergraph with \(i \) vertices and \(l \) edges there are \(\binom{i}{j} \) hypergraphs with \(j \) vertices and \(j \) edges. Moreover, those obtained from different vertex induced subhypergraphs are different since they contain different vertex sets. On the other hand, to every edge induced subhypergraph with \(l \) vertices and \(j \) edges we can construct \(\binom{n-l}{i-j} \) hypergraphs with \(i \) vertices and \(j \) edges. So

\[
(2.3) \quad \sum_{l=0}^{j} \beta_{i,j+l}(\binom{j+l}{j}) = \sum_{l=0}^{i} \theta_{i-l,j}(\binom{n-l}{l})
\]

Setting \(r = j+l \) and \(s = i-l \), substituting this in (2.3) and multiplying it by \(x^i y^j \), we obtain:

\[
\sum_{i,j} x^i y^j \left[\sum_{l=0}^{j} \beta_{i,j+l}(\binom{j+l}{j}) \right] = \sum_{i,j} x^i y^j \left[\sum_{l=0}^{i} \theta_{i-l,j}(\binom{n-l}{l}) \right].
\]

By change of variable, we obtain \(S_H(x, y) = (1 - x)^n P_H(\frac{x}{1 - x}, 1 + y) \). \(\square \)

Corollary 2.2. Let \(H \) be a hypergraph on \(n \) vertices. Then

\[
P_H(x, y) = (1 + x)^n S_H(\frac{x}{1 + x}, y - 1).
\]

3 \(P_H(x, y) \) and \(S_H(x, y) \) in Algebra

A simplicial complex \(\Delta \) on a vertex set \(V = \{v_1, \ldots, v_n\} \) is a set of subsets of \(V \), called faces or simplices such that \(\{v_i\} \in \Delta \) for each \(i \) and every subset of a face is itself a face. If \(B \subset V \), the restriction of \(\Delta \) to \(B \) is a simplicial complex defined by \(\Delta(B) = \{\delta \in \Delta \mid \delta \subset B\} \). The dimension of a face \(\delta \in \Delta \) is \(|\delta| - 1 \). Let \(f_i = f_i(\Delta) \) denote the number of faces of \(\Delta \) of dimension \(i \). Setting \(f_{-1} = 1 \), the sequence \(f(\Delta) = (f_{-1}, f_0, f_1, \ldots, f_{d-1}) \) is called the \(f \)-vector of \(\Delta \).
Let $A = \mathbb{K}[x_1, \ldots, x_n]$ be a polynomial ring over a field \mathbb{K} and Δ be a simplicial complex over n vertices $V = \{v_1, \ldots, v_n\}$. The Stanley-Reisner ideal of Δ is the ideal $I(\Delta) \subset A$ generated by those square free monomials $x_{i_1} \cdots x_{i_m}$ where $\{v_{i_1}, \ldots, v_{i_m}\} \notin \Delta$.

Let $\mathcal{H} = (V, E)$ be a hypergraph with n vertices $V = \{v_1, \ldots, v_n\}$. An independent set of \mathcal{H} is a subset $W \subset V$ such that $\varepsilon \notin W$ for all $\varepsilon \in E$. The collection of Δ_H of independent sets forms a simplicial complex, called the independent complex. Thus the Stanley-Reisner ideal of Δ_H is the edge ideal of \mathcal{H}. More precisely, $I(\Delta_H) = I(\mathcal{H}) \subset A$ is the ideal generated by the squarefree monomials $\prod_{\varepsilon \in \varepsilon} x$ where $\varepsilon \in E$. Conversely, every squarefree monomial ideal $I \subset A$ can be associated with a hypergraph $\mathcal{H}_I = (V, E)$ where $V = \{v_1, \ldots, v_n\}$ and $\varepsilon \in E$ if $\prod_{\varepsilon \in \varepsilon} x$ is in the minimal generating set of I. So one has $I(\Delta_{\mathcal{H}_I}) = I$. We have the following lemma.

Lemma 3.1. Let (f_0, f_1, \ldots, f_d) be the f-vector of the independent complex of a hypergraph \mathcal{H}. Then $P_{\mathcal{H}}(t, 0) = \sum_{i=0}^d f_i t^i$.

Let $R = \oplus_{i \in \mathbb{N}} R_i$ be a finitely generated graded \mathbb{K}-algebra, where $R_0 = \mathbb{K}$ is a field. The Hilbert series of R is the generating function defined by $H_R(t) = \sum_{i \in \mathbb{N}} \dim_{\mathbb{K}}(R_i) t^i$. If $I \subset A$ is a monomial ideal, the Hilbert series of the monomial ring $R = A/I$ is the rational function $H_R(t) = \frac{K(R, t)}{1-\sum_{i=0}^d f_i t^i}$, where $K(R, t) \in \mathbb{Z}[t]$. P. Renteln [13], and also D. Ferrarello and R. Fröberg [7] used the subgraph induced polynomial $S_G(x, y)$ of a graph G to compute the Hilbert series of the Stanley-Reisner ring R of the independent complex of G, namely:

$$H_R(t) = \frac{S_G(t, -1)}{(1-t)^n}.$$

Recently A. Goodarzi [9] generalized it for any squarefree monomial ideal by using the combinatorial Alexander duality and Hochster’s formula. Below is a very short and direct proof of this result.

Theorem 3.2. Let \mathcal{H} be a hypergraph on n vertices, $I_{\mathcal{H}} \subset A = \mathbb{K}[x_1, \ldots, x_n]$ be its associated squarefree monomial ideal, and $R = A/I_{\mathcal{H}}$. Then

$$H_R(t) = \frac{S_{\mathcal{H}}(t, -1)}{(1-t)^n}.$$

Proof. We know by Lemma 3.1 that $P_{\mathcal{H}}(t, 0) = \sum_{i=0}^d f_i t^i$ is the polynomial of the f-vectors of the independent complex of \mathcal{H}. It follows that by [12] Proposition 51.3 that $H_R(t) = P_{\mathcal{H}}(\frac{t}{1-t}, 0)$ and by Theorem 2.1 we have

$$S_{\mathcal{H}}(t, -1) = (1-t)^n P_{\mathcal{H}}(\frac{t}{1-t}, 0) = H_R(t)(1-t)^n.$$

Remark 3.3. Let \mathcal{H} be a hypergraph and $R = A/I_{\mathcal{H}}$. It then follows by Lemma 3.1 and [12] Proposition 51.2 that $P_{\mathcal{H}}(t, 0)$ is the Hilbert polynomial of the exterior algebra $R/(x_1^2, \ldots, x_n^2)$.

4
4 \(P_\mathcal{H}(x, y) \) and \(S_\mathcal{H}(x, y) \) in reconstruction conjecture

For a graph \(G = (V, E) \) on a vertex set \(V = \{v_1, \ldots, v_n\} \), the deck of \(G \) is the collection \(\mathcal{D}(G) = \{G_1, \ldots, G_n\} \) where \(G_l = G - v_l, v_l \in V \) is the vertex deleted subgraph of \(G \). An element of \(\mathcal{D}(G) \) is called a card. The long standing graph reconstruction conjecture posed by Kelly and Ulam says that every simple graph on \(n \geq 3 \) vertices is uniquely determined, up to isomorphism, by its deck. Numerous unsuccessful attempts have been made to prove the conjecture, nevertheless, a significant amount of work has been made. The reader may see Bondy [2] for a survey on the subject. Reconstruction of hypergraphs is defined similarly to graphs. Kocay [10] and Kocay and Lui [11] have constructed a family of non-reconstructible 3-hypergraphs.

Remark 4.1. Another obvious example of non-constructible hypergraphs are the 0-hypergraph containing no edges, and the \(n \)-hypergraph containing one edge with \(n \)-elements. So all the hypergraphs under consideration in this section are neither of these two.

In recent years questions has been asked if a graph invariant is reconstructible, that is, if it can be obtained from the its deck. Borzachini in [3][4] proved that both \(S_G(x, y) \) and \(P_G(x, y) \) are reconstructible. In fact, he proved that if \(F_G(x, y) \) is any one of the subgraph polynomials and \(F_{G_l}(x, y) \) is a subgraph polynomial of the card \(G_l \), then

\[
(4.1) \quad \quad nF_G(x, y) = x \frac{\partial F_G(x, y)}{\partial x} + \sum_{l=1}^{n} F_{G_l}(x, y).
\]

It is natural to extend this reconstructibility question to hypergraphs. Below we obtain a similar result.

Proposition 4.2. Let \(\mathcal{H} \) be a hypergraph on \(n \geq 3 \) vertices. Then both \(S_\mathcal{H}(x, y) \) and \(P_\mathcal{H}(x, y) \) are reconstructible.

Proof. We prove the proposition for \(S_\mathcal{H}(x, y) \) since the other will follow by Proposition 2.1. Let \(S_\mathcal{H}(x, y) = \sum_{ij} \theta_{ij} x^i y^j \) and \(S_{\mathcal{H}_l}(x, y) = \sum_{ij} \theta_{ij}^{(l)} x^i y^j \) for \(l = 1, \ldots, n \). By direct calculation we have

\[
\quad \quad nS_\mathcal{H}(x, y) - x \frac{\partial (S_\mathcal{H}(x, y))}{\partial x} = n + \sum_{l=1}^{n} \sum_{ij} (n - j)\theta_{ij} x^i y^j.
\]

Now if \(j < n \), then any edge induced subhypergraph with \(i \) vertices and \(j \) edges is an edge induced subhypergraph for \(n - j \) cards. It follows that \(\sum_{l=1}^{n} \theta_{ij}^{(l)} = (n - j)\theta_{ij} \). Putting this in the equation and recalling that \(n = \sum_{l=1}^{n} \theta_{00}^{(l)} \) we obtain

\[
(4.2) \quad \quad nS_\mathcal{H}(x, y) = x \frac{\partial S_\mathcal{H}(x, y)}{\partial x} + \sum_{i=1}^{n} S_{\mathcal{H}_i}(x, y).
\]

\[\square \]
4.1 Hilbert series and \(f \)-vector

The authors in [6] studied reconstructibility of some algebraic invariants of the edge ideal of a graph \(G \) such as the Krull dimension, the Hilbert series, and the graded Betti numbers \(b_{i,j} \), where \(j < n \). We extend these results to hypergraphs.

Proposition 4.3. Let \(H \) be a hypergraph on \(n \geq 3 \) vertices. The Hilbert function of \(R = A/I_H \) is reconstructible.

Proof. By Proposition 3.2 and (4.2) we have

\[
nH_R(t) = \frac{nS_H(t, -1)}{(1-t)^n} = \frac{t dS_H(t, -1)}{(1-t)^n} + \sum_{i=1}^{n} S_H(t, -1)
\]

Since \(\frac{dH_R(t)}{dt} = \frac{d}{dt}\left(\frac{S_H(t, -1)}{(1-t)^n} \right) = \frac{1}{1-t} \frac{t dS_H(t, -1)}{dt} + \frac{n}{1-t} H_R(t) \), substituting this into the above, we obtain a first order ordinary linear differential equation

\[
\frac{n}{1-t} H_R(t) = t \frac{dH_R(t)}{dt} - \frac{1}{1-t} \sum_{i=1}^{n} H_R(t).
\]

Proposition 4.4. Let \(H \) be a hypergraph on \(n \geq 3 \) vertices. The \(f \)-vector of \(\Delta_H \) is reconstructible.

Proof. This, in fact, follows from Proposition 4.3 but we give an independent proof. Let \(f(\Delta_H) = (f_0, \ldots, f_{d-1}) \). If \(d < n \), by (4.2) when \(F = P_H \) and Lemma 3.1 we have \(nf_{i-1} = if_{i-1} + \sum_{i=1}^{n} f_{i-1} \) for all \(i \leq d \). If \(d = n \), then \(H \) has no edges so \(f_{d-1} = 1 \).

Let \(\Delta_H \) be the independent complex of a hypergraph \(H \). We can compute other invariants of \(\Delta_H \) from its \(f \)-vector \(f(\Delta_H) = (f_0, \ldots, f_{d-1}) \). Recall, for example, that the \(h \)-vector \(h(\Delta_H) = (h_0, \ldots, h_d) \) is defined by the formula \(\sum_{i=0}^{d} f_{i-1}(1-t)^{d-i} = \sum_{i=0}^{d} h_i t^i \). We can also obtain the multiplicity of the \(R = A/I_H \), namely \(e(R) = f_{d-1} \). The following are consequences of Propositions 4.3 and 4.4.

Corollary 4.5. Let \(H \) be a hypergraph on \(n \geq 3 \) vertices. The \(h \)-vector of \(\Delta_H \) is reconstructible.

Corollary 4.6. Let \(H \) be a hypergraph on \(n \geq 3 \) vertices. Then the Krull dimension and the multiplicity of \(R = A/I_H \) are reconstructible.

4.2 Multi-graded Betti numbers

In this subsection we assume that \(\text{char}\ K = 0 \). Let \(I \subset A = \mathbb{K}[x_1, \ldots, x_n] \) be a monomial ideal and consider the \(\mathbb{Z}^n \)-graded minimal free resolution of the \(A \)-module \(R = A/I \):

\[
\cdots \rightarrow \oplus_j A(-b_j)_{b_j}^{b_j} \rightarrow \cdots \rightarrow \oplus_j A(-b_j)_{b_j}^{b_j} \rightarrow \oplus_j A(-b_j)_{b_j}^{b_j} \rightarrow A \rightarrow A/I \rightarrow 0
\]
where \(b \in \mathbb{Z}^n \) and the modules \(A(-b) \) are the shifts of \(A \) to make the multi-graded differentials degree zero maps. The numbers \(b_{i,b} \) are multi-graded Betti numbers and \(b_{ij} = \sum_{b_i = j} b_{i,b} \), where \(|b| = b_1 + \cdots + b_n \), are the graded Betti numbers of \(R \). In particular, the \(b_{in} \)'s are the extremal graded Betti numbers. The importance of the assumption that char \(K = 0 \) is that these numbers depend on the characteristic of the ground field, see eg. [12, Example 12.4]. If \(I = I_{K} \) is the edge ideal of a hypergraph \(\mathcal{H} \), then each \(b \in \{0,1\}^n \), see for example [12, Corollary 26.10]. One can use graded Betti numbers to compute the Hilbert series of \(R = A/I_{K} \). So by Theorem 3.2 we have

\[
(4.3) \quad S_{\mathcal{H}}(t, -1) = \sum_{i=0}^{n} \sum_{j} (-1)^{i} b_{ij} t^j.
\]

We generalize [6, Theorem 5.1] with a similar proof.

Proposition 4.7. Let \(\mathcal{H} \) be a hypergraph on with a vertex set \(V = \{v_1, \ldots, v_n\} \) and \(n \geq 3 \). Then the multi-graded Betti numbers \(b_{ij} \) of the Stanley Reisner ring \(R = A/I_{\mathcal{H}} \) are reconstructible for all \(j < n \).

Proof. Let \(\Delta = \Delta_{\mathcal{H}}, \Delta^{(i)} = \Delta_{\mathcal{H}_i} \), \(b \in \mathbb{Z}^n \), \(b_{i,b} \) be the multi-graded Betti numbers of \(\Delta \), and \(b^{(i)}_{ij} \) be the multi-graded Betti numbers of \(\Delta^{(i)} \). By Hochester’s formula, we have

\[
b_{i,b} = b_{i,B} = \bar{h}_{j-i-1}(\Delta(B)),
\]

where \(B = \{v_i \in V \mid b_i \neq 0\} \) and \(\bar{h}_{j-i-1}(\Delta(B)) = \dim_{K}(\bar{H}_{j-i-1}(\Delta(B); K)) \) is the reduced simplicial homology of the subcomplex \(\Delta(B) \). Since \(\Delta(B) = \Delta^{(i)}(B) \) whenever \(v_i \notin B \), it follows by Hochester’s formula that \(b_{i,b} = \bar{h}_{j-i-1}(\Delta^{(i)}(B)) = \tilde{h}^{(i)}_{i,b} \). So the result holds.

Corollary 4.8. Let \(\mathcal{H} \) be a hypergraph with a vertex set \(V = \{v_1, \ldots, v_n\} \) and \(n \geq 3 \). Then the graded Betti numbers \(b_{ij} \) of the Stanley Reisner ring \(R = A/I_{\mathcal{H}} \) are reconstructible for all \(j < n \).

Proof. \(b_{ij} = \sum_{|b| = j} b_{i,b} \) and multi-graded Betti numbers are reconstructible.

Reconstruction of the extremal graded Betti numbers seems a bit hard to determine. We know that the coefficient of \(t^n \) in \(S_{\mathcal{H}}(t, -1) \) is the alternating sum \(\sum_{i} (-1)^{i} b_{in} \). It follows that \(b_{in} \) is reconstructible if there is only one \(i \) such that \(b_{in} \neq 0 \). Fortunately, we have a good class of ideals with this property: for example, edge ideals of complements of chordal graphs, metroidal ideals, ideals with linear quotients and Cohen-Macaulay ideals. However, there are also edge ideals with more than one non-zero extremal graded Betti numbers [6, Example 5.3]. On the other hand, it is a useful invariant since it gives us information on many other invariants of \(I_{\mathcal{H}} \). The following extends [6, Proposition 5.4] to hypergraphs.

Proposition 4.9. Let \(\mathcal{H} \) be a hypergraph on \(n \geq 3 \) vertices. If the graded top degree Betti numbers \(b_{in} \) of \(I_{\mathcal{H}} \) are reconstructible, then the depth, projective dimension and regularity of \(I_{\mathcal{H}} \) are reconstructible.
We investigate if the Betti table of I_H is reconstructible. Let $B = (b_{ij})$ be the Betti table of I_H and $B_l = (b_{ij}^{(l)})$ be the Betti table of I_{H_l}. Then combining (4.2) and (4.3) and comparing the coefficients of t^j we obtain

$$(n-j) \sum_i (-1)^i b_{ij} = \sum_i (-1)^i \sum_{l=1}^n b_{ij}^{(l)} \quad \text{for } j < n.$$

This equation shows it is difficult to determine each b_{ij} only from the data $\{B_l\}_{l=1}^n$ since anti-diagonals of B might contain more than one non-zero entry. We thus have the following which gives a partial answer to Question 5.6.

Proposition 4.10. Let H be a hypergraph on $n \geq 3$ vertices. If each anti-diagonal of the Betti table of I_H contains at most one non-zero entry, then the Betti table of I_H is reconstructible.

In fact, in this case, we can compute the non-zero entries from the coefficients of $S_H(x, y)$.

Proposition 4.11. Let H be a hypergraph on $n \geq 3$ vertices and $S_H(x, y) = \sum_{ij} \theta_{ij} x^i y^j$. Assume that each anti-diagonal of the Betti table contains at most one non-zero entry b_0, b_1, \ldots, b_d. Then $b_i = \sum_j \theta_{ij}$.

Proof. Since $S_H(t, -1) = \sum_{ij} \theta_{ij} (-1)^i t^j = \sum_{j=0}^n (-1)^j b_j t^j$, b_i is the coefficient of t^i in $S_H(t, -1)$.

References

[1] I. Averbouch, B. Godlin, and J. A. Makowsky, *An extension of the bivariate chromatic polynomial*, European J. Combin. **31** (2010), no. 1, 1–17, DOI 10.1016/j.ejc.2009.05.006. MR2552585 (2011c:05162)

[2] J. A. Bondy, *A graph reconstructor’s manual*, Surveys in combinatorics, 1991 (Guildford, 1991), London Math. Soc. Lecture Note Ser., vol. 166, Cambridge Univ. Press, Cambridge, 1991, pp. 221–252. MR1161466 (93e:05071)

[3] L. Borzacchini, *Reconstruction theorems for graph enumerating polynomials*, Calcolo **18** (1981), no. 1, 97–101, DOI 10.1007/BF02576167. MR631596 (82j:05084)

[4] L. Borzacchini, *Subgraph enumerating polynomial and reconstruction conjecture*, Rend. Accad. Sci. Fis. Mat. Napoli (4) **43** (1976), 411–416 (1977) (English, with Italian summary). MR0472601 (57 #12297)

[5] L. Borzacchini and C. Pulito, *On subgraph enumerating polynomials and Tutte polynomials*, Boll. Un. Mat. Ital. B (6) **6** (1982), no. 2, 589–597 (English, with Italian summary). MR666589 (83i:05038)

[6] K. Dalili, S. Faridi, and W. Traves, *The reconstruction conjecture and edge ideals*, Discrete Math. **308** (2008), no. 10, 2002–2010, DOI 10.1016/j.disc.2007.04.044. MR2394468 (2009b:05137)

[7] D. Ferrarello and R. Fröberg, *The Hilbert series of the clique complex*, Graphs Combin. **21** (2005), no. 4, 401–405, DOI 10.1007/s00373-005-0634-2. MR2290910 (2006m:05135)

[8] C. Godsil and G. Royle, *Algebraic graph theory*, Graduate Texts in Mathematics, vol. 207, Springer-Verlag, New York, 2001. MR1829620 (2002f:05002)

[9] A. Goodarzi, *On the Hilbert series of monomial ideals*, J. Combin. Theory Ser. A **120** (2013), no. 2, 315–317, DOI 10.1016/j.jcta.2012.09.001. MR2995043

[10] W. L. Kocay, *A family of nonreconstructible hypergraphs*, J. Combin. Theory Ser. B **42** (1987), no. 1, 46–63, DOI 10.1016/0095-8956(87)90082-1. MR872407 (87m:05139)
[11] W. L. Kocay and Z. M. Lui, More nonreconstructible hypergraphs, Proceedings of the First Japan Conference on Graph Theory and Applications (Hakone, 1986), 1988, pp. 213–224, DOI 10.1016/0012-365X(88)90211-7. MR975541 (90a:05140)

[12] I. Peeva, Graded syzygies, Algebra and Applications, vol. 14, Springer-Verlag London Ltd., London, 2011. MR2560561 (2011j:13015)

[13] P. Renteln, The Hilbert series of the face ring of a flag complex, Graphs Combin. 18 (2002), no. 3, 605–619, DOI 10.1007/s003730200045. MR1939079 (2003i:13025)

[14] J. A. White, On multivariate chromatic polynomials of hypergraphs and hyperedge elimination, Electron. J. Combin. 18 (2011), no. 1, Paper 160, 17. MR2831096

Yohannes Tadesse
Department of Mathematics
Uppsala University
Box: 480
SE 75206 Uppsala, Sweden
email: yohannes.tadesse@math.uu.se