Reading Time and Vocabulary Rating in the Japanese Language: Large-Scale Reading Time Data Collection Using Crowdsourcing

Masayuki Asahara
National Institute for Japanese Language and Linguistics, Japan
Tokyo University of Foreign Studies
masayu-a@ninjal.ac.jp

Abstract
This study examined the effect of the differences in human vocabulary on reading time. This study conducted a word familiarity survey and applied a generalised linear mixed model to the participant ratings, assuming vocabulary to be a random effect of the participants. Following this, the participants took part in a self-paced reading task, and their reading times were recorded. The results clarified the effect of vocabulary differences on reading time.

Keywords: Japanese, Reading Time, Vocabulary Rating

1. Introduction
This study collected large-scale reading time data for the Japanese language using crowdsourcing. The English language, Natural Story Corpus (NSC) (Futrell et al., 2018) was built by recruiting people to participate in Amazon Mechanical Turk to collect reading times. In a similar experiment, this study recruited participants through Yahoo! Japan’s crowdsourcing and utilised ibexfarm to collect large-scale reading time data using a self-paced reading method via a web browser. In addition, this study conducted a word familiarity rating experiment (Asahara, 2019) to evaluate word familiarity and the subject’s vocabulary rating. The correlation between reading time and subject vocabulary size was estimated based on the collected reading time and vocabulary rating data. This study demonstrated a method for collecting reading times and presented the results of statistical analyses. The result shows that the vocabulary size are inversely correlated to the reading time.

2. Literature Review
This study surveyed datasets of reading time data from the corpus using eye-tracking and self-paced reading methods. The Potsdam Sentence Corpus (Kliegl et al., 2004) (Kliegl et al., 2006) is a reading time corpus of 144 German sentences (1138 words) read by 222 participants. The Dundee Eye-Tracking Corpus (Kennedy and Pynte, 2005) (Kennedy, 2003) contains reading times for English and French newspaper editorials from 10 native speakers for each language, recorded using eye-tracking equipment. The English version of the Dundee Eye-Tracking Corpus is composed of 20 editorial articles with 51,501 words. The Dutch DEMONIC database (Kuperman et al., 2010) consists of 224 Dutch sentences with reading times of 55 participants. The UCL Corpus (Frank et al., 2013) consists of 361 English sentences drawn from amateur novels with self-paced reading and eye-tracking data. The sentences are presented without contexts. The Potsdam-Allahabad Hindi Eyetracking Corpus (Husain et al., 2015) consists of 153 Hindi-Urdu treebank sentences with eye-tracking data from 30 participants. The Ghent Eye-Tracking corpus corpus (Cop et al., 2017) (Cop et al., 2007) contains monolingual and bilingual (L1 and L2) corporuses with eye-tracking data of participants reading a complete novel The Mysterious Affair at Styles by Agatha Christie. The Natural Stories corpus (Futrell et al., 2018) (Futrell et al., 2021) (Futrell et al., 2021) consists of 10 stories of approximately 1,000 words each (10,245 lexical word tokens) with self-paced reading data from 181 English speakers recruited through Amazon Mechanical Turks. The Provo Corpus (Luke and Christianson, 2018) (Luke, 2017) is an eye-tracking corpus of 84 American English speakers, which consists of 2,689 words. The Russian Sentence Corpus (Laurinavichyute et al., 2019) contains 144 naturally occurring sentences extracted from the Russian National Corpus. Full sentences were presented on the screen to monolingual Russian speakers. The Potsdam Textbook Corpus (Jäger et al., 2021) contains 12 short passages of 158 words on average from college-level biology and physics textbooks, which are read by German native speakers, including experts and laypersons. The Beijing Sentence Corpus (Pan et al., 2021) includes eye-tracking data from 60 Chinese participants. Although large-scale reading time databases have been compiled in various languages, Japanese reading time data are limited to BCCWJ-EyeTrack (Asahara et al., 2016). BCCWJ-EyeTrack consists of 20 newspaper articles in the Balanced Corpus of Contemporary Written Japanese (BCCWJ) (Maekawa et al., 2014) with reading data of 24 participants based on eye-tracking and self-paced reading. BCCWJ contains rich annotation data, such as syntactic dependency structures (Asahara and Matsumoto, 2016), information struc-
features (Miyauchi et al., 2017), syntactic and semantic categories (Kato et al., 2018), and co-reference information, including exophora and clause boundaries (Matsumoto et al., 2018). Annotation labels and reading time were compared (Asahara, 2017; Asahara and Kato, 2017; Asahara, 2018b; Asahara, 2018a). However, the text amount and number of participants were limited. This study aimed to increase the reliability of the results by increasing the amount of data. Eyetracking experiments could not be performed in the laboratory due to the COVID-19 pandemic; therefore, large-scale self-paced reading time data were collected via crowdsourcing to precede the Natural Stories Corpus (Futrell et al., 2018).

Following this, datasets of word familiarity ratings were surveyed. The NTT Database Series: Lexical Properties of Japanese (Nihongo-no Goitokusei) (NTT Communication Science Laboratories, 1999–2008) is the world’s largest database that examines lexical features from a variety of perspectives, aiming to clarify Japanese language functions. In addition, it contains subjective data, such as word familiarity, orthography-type appropriateness, word accent appropriateness, kanji familiarity, complexity, reading appropriateness, and word mental image, and objective data based on the frequency of vocabulary as it appears in newspapers. The Word Familiarity Database (Heisei Era Version) (Amano and Kondo, 1998; Amano and Kondo, 2008) is an advanced lexical database on the familiarity of vocabulary. The Word Familiarity Database (Reiwa Era Version) (NTT Communication Science Laboratories, 2021) was created, as it was noted that people’s perceptions of vocabulary changed since the first survey. The word mental image characteristic database collected information on the ‘ease of sensory imagery of semantic content’ for written and spoken stimuli (Sakuma et al., 2008). In addition, NINJAL has been continuously working on the estimation of word familiarity for the WLSP (Asahara, 2019) and has published several lexical tables.

3. Collecting Reading Time Data

3.1. Methods for Collecting Reading Time Data

3.1.1. Stimulus Sentences

registers	samples	sentences	phrases
OW White paper	1	36	462
OT Textbooks	38	9,521	50,606
PB Books	83	10,075	84,736

This study used white paper (OW), textbooks (OT), and book (PB) samples from the BCCWJ (Maekawa et al., 2014) for stimulus sentences. OW is one copyright-free sample in BCCWJ. For OT, 38 samples (17 elementary, 9 middle, and 12 high school) of Japanese language classes (contemporary writing) were used. Reading time data on these stimulus texts were collected, assuming that anyone who had received Japanese language education in Japan had read them in the past. This study assumed that it would be used as contrast data for readability evaluation in Japanese language education after obtaining data on people who received Japanese language education overseas or learners of the Japanese language. For PB, 83 samples of BC-CWJ core data were used. The study was conducted based on various annotations, such as dependency on these data. It was assumed that the data would be used for commercial purposes, limited by the reading time data of PN. Table 1 shows the number of samples, sentences, and phrases in the stimulus sentences (for the number of recruited participants, see the next section). For comparison, the Natural Stories Corpus sampled approximately 1,000 words. The present data averaged over 1,000 characters as OW, OT, and PB samples in BCCWJ. For each stimulus sentence, two questions with ‘yes’ or ‘no’ answers were established to check whether the participants read the content correctly.

3.1.2. Self-Paced Reading Method

The self-paced reading method used moving windows to set up an environment that moves the line of sight to measure reading times based on the display time of partially presented words and phrases. Figure 1 shows an example. The phrase was displayed sequentially each time the space key was pressed, and the reading time was measured by recording the time interval in which the space key was pressed in milliseconds. Comprehension questions that required the participants to answer ‘yes’ or ‘no’ were presented at the end of each passage. Ibexfarm was used to conduct the experiment using a self-paced reading test on a browser.

3.1.3. Participants

Participants were recruited through Yahoo! crowdsourcing. In October 2020, a word familiarity rating
3.2. Organising the Reading Time Data

3.2.1. Eliminating the Reading Data

The experiment was conducted [Asahara, 2019] in section 4.1. This study recruited 2,092 people with a large variance in word-familiarity responses. This research was conducted as a preliminary experiment, as eligible participants could be selected in advance, and the vocabulary of each participant could be estimated when estimating word familiarity. For OW, this study recruited 500 people on a trial basis, and 427 people participated. For OTs and PBs, this study recruited 200 people. This study recruited 100 participants who answered ‘yes’ to content-checking questions and 100 participants who answered ‘no’. The number of participants are presented in Table 2.

Table 2: The statistics of the participants

Description	OW	OT	PB
registers	425	200	200
participants per sample	475	7,453	16,553

As the data in this study were collected online, it was assumed that data quality was worse than data collected in person. Therefore, inappropriate data were eliminated, including (1) data of respondents who did not agree with the method of handling the experimental data and the reward payment method at the start of the experiment, (2) repeated submissions by the same participant, with only the first submission retained, (3) responses with an average reading time per sample below 150 ms or above 2,000 ms, and (4) data of respondents who answers the ‘yes’ or ‘no’ question incorrectly.

Table 3: Elimination of inappropriate samples

Description	OW	OT	PB
All samples	425	7,453	16,553
(1) disagree	54	278	199
(2) multiple time	0	46	64
(3) <150ms or 2,000ms	15	1,439	2,875
(4) incorrect answer	48	825	2,090
Appropriate samples	308	4,865	11,325

Inappropriate data for each data point were eliminated. The ‘Appropriate samples’ row in Table 4 shows the number of data points contained in the appropriate sample. An additional five points that were below 100 ms or over 3,000 ms were eliminated. Consequently, the number of cases shown in ‘Objects of analysis’ in the table was considered appropriate data points.

Table 4: Elimination of inappropriate data points

Description	OW	OT	PB
Appropriate samples	140,449	6,114,814	11,309,783
(5) <100 or 3,000<	3,653	409,916	540,403
Objects of analysis	136,797	5,704,898	10,769,380

Inappropriate data for each data point were eliminated. The ‘Appropriate samples’ row in Table 4 shows the number of data point contained in the appropriate sample. An additional five points that were below 100 ms or over 3,000 ms were eliminated. Consequently, the number of cases shown in ‘Objects of analysis’ in the table was considered appropriate data points.

3.2.2. Format of the Reading Time Data

Table 5 shows the format of the experimental data. The data are in the TSV form. BCCWJ_SAMPLE_ID and BCCWJ_START are the location information in BCCWJ. This information enabled the comparison of morphological information and various annotation data in BCCWJ. SPR_sentence_ID and SPR_bunsetsu_ID are the sentence ID and phrase ID in the experiment, which indicated the order of presentation in the experiment. SPR_surface is a surface form. OT and PB are masked so that only the number of characters (SPR_word_length) can be seen. SPR_reading_time is the reading time to be analysed. In addition, a logarithmic reading time (SPR_log_reading_time) was generated during the analysis. SPR_instruction_time is the time when the first instruction was given. Reading instructions were skipped in the second and subsequent experiments. SPR_qa_question is a ‘yes’ or ‘no’ question for checking during the experiment, and SPR_qa_answer is the correct answer. SPR_qa_correct is a flag indicating whether the participant answered the ‘yes’ or ‘no’ question correctly. The published data comprised only correct answers. SPR_qa_time is the time required for the participant to answer the ‘yes’ or ‘no’ question. SPR_subj_ID is the participant ID. SPR_average_RT is the average reading time per sample during the experiment. SPR_timestamp indicates the time when the experiment was performed. SPR_trial indicates the number of times the reading time of the genre was measured. SPR_control is the method of presenting information during the experiment (whether there was a space between phrases). To examine the impact of dependency on reading time, the information of BCCWJ-DepPara [Asahara and Matsumoto, 2016] was added to the core data OW/PB. As BCCWJ-DepPara defines a sentence boundary different from BCCWJ, there was a discrepancy with the phrase ID when presented (DepPara_bid, DepPara_depid). The number of dependencies (DepPara_depnum) was based on the BCCWJ-DepPara standard. For OT, textbooks of school type (BCCWJ_OT_school_type, OT01: elementary, OT02: middle, OT03: high school) were set as the object of analysis.

3.3. Preliminary Analysis of the Reading Time Data

3.3.1. Analytical Method

This section presents the preliminary analysis results of a frequency-based analytical method [Baayen, 2008; Vasishth et al., 2021]. Reading times were examined.
Table 5: Data format

column name	description	OW	OT	PB
BCCWJ_Sample_ID	sample ID in BCCWJ	✓	✓	✓
BCCWJ_start	position in BCCWJ	✓	✓	✓
SPR_sentence_ID	sentence ID	✓	✓	✓
SPR_bunsetsu_ID	phrase ID	✓	✓	✓
SPR_surface	surface form	✓	✓	✓
SPR_word_length	number of characters	✓	✓	✓
SPR_sentence	sentence	✓	✓	✓
SPR_reading_time	reading time	✓	✓	✓
SPR_log_reading_time	logarithm of reading time	✓	✓	✓
SPR_instruction_time	instruction time	✓	✓	✓
SPR_QA_question	YES/NO question	✓	✓	✓
SPR_QA_answer	correct answer of YES/NO question	✓	✓	✓
SPR_QA_correct	correct or not in YES/NO question	✓	✓	✓
SPR_QA_qa_time	time of YES/NO question	✓	✓	✓
SPR subj_ID	participant ID	✓	✓	✓
SPR_averageRT	average reading time in a sample	✓	✓	✓
SPR_timestamp	timestamp of experiment	✓	✓	✓
SPR_trial	trial number per subject	N/A	✓	✓
SPR_control	presentation method	✓	✓	✓
DepPara_bid	phrase id in treebank	✓	N/A	✓
DepPara_depid	dependent id in treebank	✓	N/A	✓
DepPara_deppnum	the number of dependents	✓	N/A	✓
BCCWJ_OT_school_type	school types for textbooks	N/A	✓	N/A

ied using a generalised linear mixed model (R [R Core Team, 2020], lme4 [Bates et al., 2015], and stargazer [Hlavac, 2018]). SPR_sentence_ID (experimental sentence ID) and SPR_bunsetsu_ID (experimental phrase ID), which present information of the presentation order, and SPR_word_length, which is the number of words of surface form, were used as fixed effects. For OW and PB, the number of dependencies of the phrase, DepPara_deppnum, were considered. For OT, school type, SPR_OT_school_type, was considered. For OT and PB, the number of trials in reading times increased; however, for PB, the reading times increased as the number of trials increased. For OT, school type, SPR_OT_school_type, was considered. Participants tended to spend less time reading high school textbooks than elementary school textbooks. For OT, it was easy to proceed in the order of elementary school → middle school → high school on selection screens. There was a correlation between SPR_trial and the elementary, middle, and high school types. This may have led to discrepancies between the registers in the effect of the number of trials in reading times. The participants tried OW, OT, and PB in a specified order. In the first experiment, the reading times tended to be longer than those of the other registers. OT includes textbooks likely to be encountered during Japanese language education in Japan. However, due to the influence of the presentation order, the reading times tended to be longer than that of PB. For books, comparisons were made between genres using the Nippon Decimal Class-
4. Reading Time with Vocabulary Rating

4.1. Building Vocabulary Rating Data

This study quantified the bias of the participants obtained during the collection of word familiarity data (Asahara, 2019) and used it for vocabulary data. Specifically, data on the extent to which participants knew, wrote, read, spoke, and heard the target word were collected. The list included 96,557 target words taken from the WLSP. Voice data (oral pronunciations) for the lexical entries were not included; however, speech and hearing were considered as two of the following five perspectives:

KNOW: How much do you know about the target word?

WRITE: How often do you write the target word?

READ: How often do you read the target word?

SPEAK: How often do you speak the target word?

LISTEN: How often do you hear the target word?

In this design, the judgments were split between character-based (WRITE and READ) and voice-based (SPEAK and LISTEN) judgments, and between production (WRITE and SPEAK) and reception (READ and LISTEN) judgments. The participants gave five ratings for each factor, ranging from 5 (well-known/often used) to 1 (little known/rarely used).

The collected data were modelled in the following ways: word familiarity as a random effect of 84,114 surface forms and vocabulary as a random effect of 6,732 participants using a Bayesian linear mixed model. The graphical model used to estimate the rating of KNOW, WRITE, READ, SPEAK, LISTEN, and vocabulary was generated by a normal distribution with μ and σ, as follows:

\[y^{(i,j)} \sim \text{Normal}(\mu^{(i,j)}, \sigma). \]

σ is a hyper-parameter of the standard deviation and

Table 6: Preliminary analysis results of reading time by GLMM

Dependent variable:	OW (white paper)	SPR_reading_time	PB (book)
SPR_sentence_ID	-0.125*** (0.004)	-0.143*** (0.001)	
SPR_bunsetsu_ID	-2.047*** (0.011)	-0.856*** (0.006)	
SPR_word_length	5.113*** (0.021)	6.705*** (0.014)	
DepPara_depnum	-5.225*** (0.033)		
SPR_trial	-0.760*** (0.005)	0.379*** (0.006)	
BCCWJ_OT_school_typeOT02	-7.721 (8.898)		
BCCWJ_OT_school_typeOT03	-25.228*** (8.352)		
Constant	361.566*** (7.155)	306.887*** (5.321)	

Table 7: Preliminary analysis results of logarithm reading time by GLMM

Dependent variable:	OW (white paper)	SPR_log_reading_time	PB (book)
SPR_sentence_ID	-0.004*** (0.000)	-0.0004*** (0.00000)	
SPR_bunsetsu_ID	-0.006*** (0.0003)	-0.003*** (0.0002)	
SPR_word_length	0.010*** (0.0001)	0.014*** (0.0004)	
DepPara_depnum	-0.012*** (0.001)		
SPR_trial	-0.002*** (0.0001)	0.001*** (0.0002)	
BCCWJ_OT_school_typeOT02	-0.025 (0.024)		
BCCWJ_OT_school_typeOT03	-0.078* (0.022)		
Constant	5.826*** (0.020)	5.664*** (0.016)	

Note: ***p<0.01; **p<0.05; *p<0.1
KNOW, WRITE, READ, SPEAK, and LISTEN are the original estimates. WRITE+SPEAK, READ+LISTEN, and WRITE+READ+READ+LISTEN are for production or reception. WRITE+READ, SPEAK+LISTEN, and WRITE+READ+SPEAK+LISTEN are for text or speech.

\[\mu^{(i)(j)} = \alpha + \gamma^{(i)}_{\text{word}} + \gamma^{(j)}_{\text{subj}}, \]

The slopes were modelled by a normal distribution with the hyper-parameters of \(\mu_{\text{word}}, \sigma_{\text{word}}, \mu_{\text{subj}}, \) and \(\sigma_{\text{subj}} \) (means and standard deviations):

\[\gamma^{(i)}_{\text{word}} \sim \text{Normal}(\mu_{\text{word}}, \sigma_{\text{word}}), \]

\[\gamma^{(j)}_{\text{subj}} \sim \text{Normal}(\mu_{\text{subj}}, \sigma_{\text{subj}}). \]

The word familiarity rates were composed by \(\gamma^{(i)}_{\text{word}} \). The biases of subject participants were modelled by \(\gamma^{(j)}_{\text{subj}} \). This study used a normal distribution with a standard deviation of 1.0 for words and 0.5 for the participants.

Figure 2 shows the estimated word familiarities. Figure 3 shows the distribution of the vocabulary of those who participated in the collection of reading time data. The frequentist model for the word familiarity rate estimation could not be constructed due to the number of parameters in the environment.

The data is available at https://github.com/masayu-a/WLSP-familiarity.

4.2. Reading Time with Vocabulary Rating

Data of the participants who participated in the word familiarity survey, including over 200 answers, and over five samples of the reading time experiment were analysed. Table 8 shows the statistics of the participants, and Table 9 shows the data with vocabulary ratings.
Table 8: The statistics of the participants (more than 200 answers in the word familiarity survey and more than five samples of reading time experiment)

register	participants (number of individuals)
OW white paper	277
OT textbooks	422
PB books	388

Table 9: The data with vocabulary rating results

samples × subj.	OW	OT	PB
Data in section 3	308	4,865	11,325
w/ vocab. rating	277	4,685	10,932
Data points			
Data in section 3	136,797	5,704,898	10,769,380
w/ vocab. rating	124,502	5,490,977	10,484,300

4.3. Statistical Analyses with Vocabulary Rating

Statistical analyses were performed based on whether significant differences in each fixed effect could be identified in a linear mixed model for reading time and logarithmic reading times, as in Section 3.3. Presentation order, word length, trial order, dependency, and vocabulary rating of the participants were used as fixed effects, with participants and sample ID as random effects. Table 10 shows the results of the model estimation, with re-estimation after excluding data points outside three SDs. Table 11 shows the analysis of the frequency-based reading times using a frequency-based linear mixed model, and Table 12 in the Appendix shows the analysis of a similar model using the Bayesian linear mixed model (lognormal model). First, for the order of presentation within the same sample, reading times to obtain context were shorter as the experiment progressed. Longer word length took longer to be recognised. The order of trials tended to be shorter in the textbooks as the participants became more familiar with it. The order of trials tended to be longer during the book task. The reason for this may be the fatigue caused by repeated implementation. A greater number of dependencies was associated with shorter reading times due to predictability. These results were similar to the preliminary analysis presented in Section 3.3.

The results showed that reading times tended to be shorter in the group with a larger vocabulary. The impact of vocabulary in terms of significant differences was $p < 0.1$ for OT (textbooks), $p < 0.05$ for PB (books), and $p < 0.01$ for OW (white papers). The textbooks were samples from elementary, middle, and high school Japanese textbooks, which the participants likely read at least once. Participants may generally be more familiar with books than white papers. This degree of familiarity with registers may have been reflected in the significant difference in the effect of vocabulary. In other words, it is possible that the difference in the influence of vocabulary was small, as the textbooks were familiar to the participants, and that the difference in the influence of vocabulary was large, as the white paper was unfamiliar.

5. Conclusion

This study presented a large-scale reading time data set constructed using crowdsourcing. A large-scale reading time dataset was constructed in a short period and at a low cost using ibexfarm, an experimental environment based on the self-paced reading method running in a browser to recruit participants through Yahoo! crowdsourcing. The registers of the stimuli texts were white papers, textbooks, and books. Due to the COVID-19 pandemic, eye-tracking experiments could not be conducted. While it was not possible to conduct the experiment face-to-face, a method of conducting a large-scale online survey to record reading times
Table 10: Analysis results of reading time with vocabulary rating by GLMM

Dependent variable	OW (white paper)	OT (textbooks)	PB (books)
SPR_sentence_ID	-6.087***	-0.127***	-0.142***
SPR_bunsetsu_ID	-1.501***	-2.046***	-0.856***
SPR_word_length	24.820***	5.170***	6.798***
SPR_trial	-0.757***	-0.382***	0.328***
DepPara_depnum	-15.310***	-16.169**	-18.405**
WFR_subj_rate (Vocab)	-81.239***	-5.258***	3.066***
Constant	558.984***	353.723***	306.631***

Note: ∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1

Table 11: Analysis results of logarithm reading time with vocabulary rating by GLMM

Dependent variable	OW (white paper)	OT (textbooks)	PB (books)
SPR_sentence_ID	-0.012***	-0.0004***	-0.0004***
SPR_bunsetsu_ID	-0.003***	-0.006***	-0.003***
SPR_word_length	0.036***	0.011***	0.014***
SPR_trial	-0.002***	-0.001***	0.001***
DepPara_depnum	-0.022***	-0.012***	-0.012***
WFR_subj_rate (Vocab)	-0.180***	-0.052**	-0.052**
Constant	6.255***	5.826***	5.664***

Note: ∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1

6. Acknowledgments
We thank the anonymous reviewers for their valuable feedback. This work has been partially supported by JSPS KAKENHI (Grant Number JP18H05521 and JP22H00663) and is NINJAL project ‘Evidence-based Computational Psycholinguistics Using Annotation Data’.

7. Appendix: Results of Bayesian Linear Mixed Model

Table 12: Analysis results of reading time with vocabulary rating by BLMM of lognormal

OW (white paper)	mean	se	mean	sd
α_intercept	6.217	0.064	0.123	
β_sentence	-0.012	0.000	0.002	
β_bid	-0.003	0.000	0.001	
β_length	0.037	0.000	0.006	
β_dependency	-0.024	0.001	0.009	
β_subj_rate	-0.118	0.094	0.116	
σ	0.988	0.075	0.097	
σ_subj	2.603	1.020	1.254	

A Bayesian linear mixed model evaluation (Sorensen et al., 2016) by rstan was conducted. The following lognormal model was used:

```r
model { 
  real mu;
```
The results of OW (white paper) are presented in Table12. The results were same as the frequentist model results. In addition, the blmm evaluation was performed on OT and PB. The models of OT and PB did not converge. Further studies will investigate more sophisticated statistical models with the blmm.

8. Bibliographical References

Amano, S. and Kondo, T. (1998). Estimation of Mental Lexicon Size with Word Familiarity Database. In Proceedings of International Conference on Spoken Language Processing, volume 5, pages 2119–2122.

Asahara, M. and Kato, S. (2017). Between Reading Time and Syntactic / Semantic Categories. In Proceedings of IJCNLP, pages 404–412.

Asahara, M. and Matsumoto, Y. (2016). BCOWJ-DepPara: A syntactic annotation treebank on the ‘Balanced Corpus of Contemporary Written Japanese’. In Proceedings of the 12th Workshop on Asian Language Resources (ALR12), pages 49–58, Osaka, Japan, December. The COLING 2016 Organizing Committee.

Asahara, M., Ono, H., and Miyamoto, E. T. (2016). Reading-Time Annotations for “Balanced Corpus of Contemporary Written Japanese”. In Proceedings of COLING, pages 684–694.

Asahara, M. (2017). Between reading time and information structure. In Proceedings of PACLIC, pages 15–24.

Asahara, M. (2018a). Between reading time and clause boundaries in Japanese - wrap-up effect in a head-final language. In Proceedings of PACLIC, pages 19–27.

Asahara, M. (2018b). Between Reading Time and Zero Exophora in Japanese. In Proceedings of READ2018, pages 34–36.

Asahara, M. (2019). Word familiarity rate estimation using a Bayesian linear mixed model. In Proceedings of the First Workshop on Aggregating and Analysing Crowdsourced Annotations for NLP, pages 6–14, Hong Kong, November. Association for Computational Linguistics.

Baayen, R. H. (2008). Analyzing Linguistic Data: A practical Introduction to Statistics using R. Cambridge University Press.
movements in reading in Russian. *Behavior Research Methods*, 51(3):1161–1178.

Luke, S. G. and Christianson, K. (2018). The provo corpus: A large eye-tracking corpus with predictability norms. *Behavior Research Methods*, 50:826–833.

Maekawa, K., Yamazaki, M., Ogiso, T., Maruyama, T., Ogura, H., Kashino, W., Koiso, H., Yamaguchi, M., Tanaka, M., and Den, Y. (2014). Balanced Corpus of Contemporary Written Japanese. *Language Resources and Evaluation*, 48:345–371.

Matsumoto, S., Asahara, M., and Arita, S. (2018). Japanese clause classification annotation on the balanced corpus of contemporary written Japanese. In *Proceedings of the 13th Workshop on Asian Language Resources (ALR13)*, pages 1–8.

Miyachi, T., Asahara, M., Nakagawa, N., and Kato, S. (2017). Annotation of information structure on the balanced corpus of contemporary written Japanese. In *Proceedings of 2017 Conference of the Pacific Association for Computational Linguistics*.

NTT Communication Science Laboratories. (1999-2008). NTT Database Series [Nihongo-no Goitokusei]: Lexical Properties of Japanese.

Pan, J., Yan, M., Richter, E. M., Shu, H., and Kliegl, R. (2021). The beijing sentence corpus: A chinese sentence corpus with eye movement data and predictability norms. *Behavior Research Methods*.

R Core Team. (2020). R: A language and environment for statistical computing.

Sorensen, T., Hohenstein, S., and Vasishth, S. (2016). Bayesian linear mixed models using Stan: A tutorial for psychologists, linguists, and cognitive scientists. *Quantitative Methods for Psychology*, 12:175–200.

Vasishth, S., Schad, D., Bürki, A., and Kliegl, R. (2021). *Linear Mixed Models in Linguistics and Psychology: A Comprehensive Introduction*.

9. Language Resource References

Shigeaki Amano and Kimihisa Kondo. (1999). *Tangoshinmitsudo: NTT Database Series: Nihongo-no Goitokusei Volume 1*. Sanseido.

Shigeaki Amano and Kimihisa Kondo. (2008). *Tangoshinmitsudo Zouho: NTT Database Series: Nihongo-no Goitokusei Volume 9*. Sanseido.

Uschi Cop and Nicolas Dirix and Denis Driegphe and Wouter Duyck. (2007). *Ghent Eye-Tracking Corpus*. Ghent University.

Richard Futrell and Edward Gibson and Harry J. Tily and Idan Blank and Anastasia Vishnevetsky and Steven T. Piantadosi and Evelina Fedorenko. (2021). *Natural Stories Corpus*. github.

Lena Jäger and Thomas Kern and Patrick Haller. (2021). *Potsdam Textbook Corpus (PoTeC): Eye tracking data from experts and non-experts reading scientific texts*. University of Potsdam.

Alan Kennedy. (2003). *The Dundee Corpus [CD-ROM]*. University of Dundee, Psychology Department.

Steven Luke. (2017). *The Provo Corpus: A Large Eye-Tracking Corpus with Predictability Norms*. OSF.

NTT Communication Science Laboratories. (2021). *NTT Goi Database*.

Naoko Sakuma and Mutsuo Ijuin and Takao Fushimi and Masayuki Tanaka and Shigeaki Amano and Kimihisa Kondo. (2008). *Tangoshinzousei: NTT Database Series: Nihongo-no Goitokusei Volume 8*. Sanseido.