A GENERALIZATION OF SCHUR’S THEOREM AND ITS APPLICATION TO CONSECUTIVE POWER RESIDUES

CARSTEN DIETZEL

Abstract. This article provides a proof of a generalization of Schur’s theorem on the partition regularity of the equation \(x + y = z \), which involves a divisibility condition. This generalization will be utilized to prove the existence of ‘small’ consecutive power residues modulo \(p \), where \(p \) is a sufficiently large prime.

1. A theorem of Brauer

In [LLM], a theorem of Brauer is discussed. It says that, given positive integers \(k, m \), for each sufficiently large prime \(p \) there exist consecutive integers \(r, r+1, ..., r+m-1 \), each of which is a \(k \)th power residue modulo \(p \), i.e. a \(k \)th power in \(\mathbb{Z}_p := \mathbb{Z}/p\mathbb{Z} \). I will require a power residue \(r \) to fulfill the condition \(0 < r < p \), avoiding the trivial cases \(r = 0, p \) for \(k = 2 \).

Thus, for all but finitely many exceptional primes there exists a minimal integer \(r > 0 \) such that the condition of \(r, r+1, ..., r+m-1 \) all being \(k \)th power residues holds. Define \(r(k, m, p) \) to be that integer.

Furthermore, define the function \(\Lambda(k, m) \) to be the maximum of \(r(k, m, p) \) over all non-exceptional primes and set \(\Lambda(k, m) = \infty \) if there is no such integer.

The authors of [LLM] then ask if \(\Lambda(k, 2) \) is finite for all \(k \).

For \(k = 1 \), this is a quite boring triviality and for \(k = 2 \), an easy exercise in elementary number theory.

Moreover, explicit values for \(\Lambda(k, 2) \), where \(k = 3, ..., 6 \), are given in [LLM].

The question was answered by Hildebrand in [H1, H2] in the affirmative:

Theorem 1. \(\Lambda(k, 2) \) is finite for each \(k \).

But the original proof is quite complicated and depends on non-trivial estimates of Dirichlet series.

The aim of this article is to provide a short combinatorial proof of Theorem 1, offering a more elementary approach than the original proof does.

Before proving Theorem 1, I’ll prove Brauer’s theorem for the special case \(m = 2 \), relying on a famous theorem of Schur on the partition regularity of the equation \(x + y = z \):

Theorem 2. Let \(\mathbb{Z}^+ = C_1 \uplus C_2 \uplus ... \uplus C_l \) be a finite partition of the set of positive integers, then there exists an \(i \in \{1, 2, ..., l\} \) and \(x, y, z \in C_i \) such that \(x + y = z \).
Moreover, there is a number $S(l)$ such that x, y, z can be chosen to be $\leq S(l)$.

Proof. See [GRS], p. 69. □

This already suffices to give a proof of Brauer’s theorem for $m = 2$. This proof is nearly identical to Schur’s original application of Theorem 2 which he used to prove the solvability of the Fermat equation in \mathbb{Z}_p for large p. A proof can be found in [GRS], pp. 69-70 and will serve as a guideline for the proof of the following theorem.

Theorem 3. Let k be fixed. Then, for each sufficiently large prime p there exist two consecutive k-th power residues modulo p.

Proof. Let $H \subseteq \mathbb{Z}_p^*$ be the multiplicative subgroup of k-th powers (except 0) in \mathbb{Z}_p^*. It’s clear that $|\mathbb{Z}_p^* : H| \leq k$.

Now assume that $p > S(k)$ and let $H_1, H_2, ..., H_l$ be the cosets of H in \mathbb{Z}_p^*. The previous statement says that $l \leq k$. The coset partition induces a partition of the residue classes $\{1, 2, ..., S(k)\}$, so, by Theorem 2, there is a class H_i in which the equation $x + y = z$ can be solved.

Dividing the equation by x leads to $yx^{-1} + 1 = zx^{-1}$. $y' = yx^{-1}$ and $z' := zx^{-1}$ must then be in H, and thus are consecutive k-th powers in \mathbb{Z}_p fulfilling $y' + 1 = z'$.

The idea of this proof will reappear when proving the finiteness of $\Lambda(k, 2)$. But in its ’classical’ form, Theorem 2 doesn’t allow us to control the range of the residue classes of y' and z' which we got by dividing y and z by x modulo p.

This disadvantage will be overcome by using a strengthening of Schur’s theorem which might be interesting on its own.

2. A generalization of Schur’s theorem

By $R_3(k)$ we will mean the Ramsey number $R(\underbrace{3, 3, ..., 3}_{k \text{times}})$, i.e. the minimal number R such that each edge partition of the complete graph K_R into k parts has a triangle, all of whose edges belong to the same partition class. $R_3(k)$, of course, is finite, by Ramsey’s theorem (see, for example, [GRS]).

The proof of Theorem 4 will involve Ramsey’s theorem in nearly the same way as in the ’classical’ proof of Schur’s theorem. The construction of the exactly right set of vertices will be crucial hereafter.

Theorem 4. Let $\mathbb{Z}^+ = C_1 \uplus C_2 \uplus ... \uplus C_l$ be a finite partition of the set of positive integers, then there exists an $i \in \{1, 2, ..., l\}$ and $x, y, z \in C_i$ such that $x + y = z$ and x divides y.

Moreover, there is a number $S'(l)$ such that x, y, z can be chosen to be $\leq S'(l)$.

Proof. Firstly, construct an increasing sequence of positive integers recursively as follows:

\[a_1 = 1 \]
\[a_{n+1} = \left(\sum_{i=1}^{n} a_i \right)! \]

I know claim that for each triple \(1 \leq i < j < k\) there holds the following divisibility relation:

\[\left(\sum_{m=1}^{j-1} a_m \right) | \left(\sum_{n=j}^{k-1} a_n \right) \]

Obviously, it’s enough to prove that

\[\left(\sum_{m=1}^{j-1} a_m \right) | a_n \]

for \(n \geq j\).

Because of \(\sum_{m=1}^{j-1} a_m \leq \sum_{m=1}^{n-1} a_m\) and \(a_n = \left(\sum_{m=1}^{n-1} a_m \right)!\), the element \(\sum_{m=1}^{j-1} a_m\) must be a factor in the product expansion of \(\left(\sum_{m=1}^{n-1} a_m \right)!\), so the divisibility relation is proved.

Now let \(R := R_3(k)\) and label the vertices of the complete graph \(K_R\) by the numbers \(1, 2, \ldots, R\).

Define an edge partition of this \(K_R\) into classes \(D_1, D_2, \ldots, D_l\) as follows:

For \(i < j\), let the edge \((i, j)\) belong to the class \(D_m\) iff \(\left(\sum_{n=i}^{j-1} a_n \right) \in C_m\).

By Ramsey’s theorem, a triangle \(\{i, j, k\}\) must exist, all of whose edges belonging to the same class, say, \(D_M\). Without loss of generality, assume \(i < j < k\) and set:

\[x = \sum_{n=i}^{j-1} a_n \]
\[y = \sum_{n=j}^{k-1} a_n \]
\[z = \sum_{n=i}^{k-1} a_n \]

Clearly, \(x + y = z\) and \(x | y\), as we have just proved. \(\square\)
If we tried to estimate the corresponding Schur numbers, the proof of this theorem would give us quite astronomical upper bounds on $S'(l)$.

If one is a little more careful one might construct a sequence b_n by setting $b_1 = 1$ and defining the following b_n recursively by

$$b_{n+1} = \prod_{1 \leq i < j \leq n} \left(\sum_{k=i}^{j-1} b_m \right)$$

and using these like the a_n in the proof of Theorem 4. This leads to better upper bounds, which are nevertheless certainly far beyond the actual range of the numbers $S'(l)$.

One might also try to generalize Theorem 4 further in the style of Theorem 3.1.2 in [GRS], in the following sense:

Problem 5. Is the following true:

Let m be a positive integer and $\mathbb{Z}^+ = C_1 \uplus C_2 \uplus ... \uplus C_l$ be a finite partition of the set of positive integers, then there exists an $i \in \{1, 2, ..., l\}$ and integers x, y such that $x, y, y + x, ..., y + (m - 1)x \in C_i$ and $x | y$.

Without the divisibility condition, this is just Theorem 3.1.2. in [GRS] and imitating the proof of Theorem 3 immediately leads to a full proof of Brauer’s theorem mentioned at the beginning of this article.

Why such a generalization cannot be true, though, will be explained after the proof of Theorem 1 in the next section.

3. Finiteness of $\Lambda(k, 2)$

Now we have all we need for proving Theorem 1:

Proof. Define $H \subseteq \mathbb{Z}_p^*$ as in the proof of Theorem 3, but now take $p > S'(k)$ whose existence is given by Theorem 4.

The cosets $H_1, H_2, ..., H_l$ now partition the set of residue classes $\{1, 2, ..., S'(k)\}$. Again, we find a class H_i and $x, y, z \in H_i$ such that $x + y = z$ and $x | y$ respectively $x | z$. This implies that $yx^{-1}, zx^{-1} \in \{1, 2, ..., S'(k)\}$, so, if we set $y' = yx^{-1}$, $z' = zx^{-1}$, we again get a pair y', z' of consecutive kth power residues with the extra property that y', z' are bounded from above by $S'(k)$.

We have just proved that $\Lambda(k, 2) \leq S'(k)$ and especially that $\Lambda(k, 2)$ is finite.

This proof also shows why Problem 5 has to answered in the negative. Else, even for $m = 3$, the statement would imply in the same way as in the proof of Theorem 1 the existence of a bound for the first three consecutive kth power residues modulo p, which is independent of p. But if $k = 2$ is set, $\Lambda(2, 3)$ would be finite which contradicts the results in [LL] where $\Lambda(2, 3) = \infty$ is shown.

At last, I will show that Theorem 4 also implies the following theorem proved in [H2].
Theorem 6. For every k there is a number $c_0 = c_0(k)$, such that for every multiplicative function $f : \mathbb{Z}^+ \to \mathbb{C}$ (i.e. $f(mn) = f(m)f(n)$) whose image is contained in the k'th roots of unity, there is an $a \leq c_0$ with $f(a) = f(a+1) = 1$.

Proof. Let f be any such function. The preimages of the roots of unity then give a partition of \mathbb{Z}^+ into at most k parts. So, there are $x, y, z \leq S'(k)$ with $f(x) = f(y) = f(z)$, fulfilling $x + y = z$ and $x|y$.

Set $a = \frac{y}{x} \in \mathbb{Z}^+$. Then, dividing by x gives $a + 1 = \frac{z}{x}$.

The multiplicativity of f shows that $f(a) = \frac{f(y)}{f(x)} = 1$ and $f(a + 1) = \frac{f(z)}{f(x)} = 1$, as we wished.

Of course, $a \leq S'(k) =: c_0(k)$. \qed

References

[GRS] Ronald L. Graham, Bruce L. Rothschild, Joel H. Spencer. Ramsey Theory. John Wiley & Sons. 1990. Second Edition.

[H1] Adolf Hildebrand. On consecutive k'th power residues. Monatshefte fuer Mathematik. v. 102. 1986. pp. 103-114.

[H2] Adolf Hildebrand. On consecutive k'th power residues II. Michigan Math. J. v. 38. 1991. pp. 241-253.

[LL] D. H. Lehmer, E. Lehmer. On runs of residues. Proc. Amer. Math. Soc.. v. 13. 1962. pp. 102-106.

[LLM] D. H. Lehmer, E. Lehmer, W. H. Mills. Pairs of consecutive power residues. Canad. J. Math.. v. 15. 1963. pp. 172-177.

E-mail address: mat72129@stud.uni-stuttgart.de