Targeted point mutations of the m^6A modification in miR675 using RNA-guided base editing

induce cell apoptosis

Jindong Hao^a,1, Chengshun Li^a,1, Chao Lin^c,1, Yang Hao^a,1, Xianfeng Yu^a, Yidan Xia^b, Fei Gao^a,

Ziping Jiang^b, *, Dongxu Wang^a, *

a, Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
b, Department of hand surgery, The First Hospital of Jilin University, Changchun, China
c, Department of Animal Science, Jilin Business and Technology College, Changchun, China

* To whom correspondence should be addressed: College of Animal Science, Jilin University, 5333#, Xi’an Road, Changchun 130062, China, Tel.: (86) 431-87836175; Fax: (86) 431-87980131; E-mail: waterjzp@jlu.edu.cn (Ziping Jiang), wang_dong_xu@jlu.edu.cn (Dongxu Wang)

These authors contributed equally to this work

Abstract

Methylation of the adenosine base at the nitrogen-6 position (m^6A) is the most common post-transcriptional epigenetic modification of RNA, and it plays a very important role in regulating gene expression. To investigate the role of m^6A methylation in the expression of non-coding RNA and miRNA, we used a system of adenine base editors (ABEs). Here, we mutated regions up- and downstream of miRNA 675 m^6A modification sites in the H19 locus using HEK293T, L02, MHCC97L, MHCC97H, A549, and SGC-7901 cells. Our results showed that a T - A base transversion had occurred in all cell lines. Moreover, mutation of the regions upstream of the miRNA 675 m^6A modification site led to reduced expression of H19 and the induction of cell apoptosis in HEK293T cells. To further confirm our results, L02 and MHCC97L cells were detected using an ABEs system. The results indicated increased cell apoptosis and reduced expression of miR675 as well as H19. To confirm the relationship between H19 and miR675 expression, overexpression and knock down studies were performed. The results showed that reduced H19 expression induced cell apoptosis through miR675.

Taken together, these results indicate that m^6A modification can regulate the expression of H19 and miR675 which induce cell apoptosis.

Keywords: m^6A modification; H19; miR675; cell apoptosis; gene expression
1. Introduction

The long noncoding RNA (IncRNA) H19 plays a crucial role in the development of cancer [1]. miR675, derived from exon 1 of H19, has been shown to have an oncogenic role in liver cancers [2, 3]. Our previous data suggest that reduced expression of H19 could induce cell apoptosis in A549, a lung cancer cell line [4]. Moreover, previous studies have shown that the H19/miR675 axis can regulate cell apoptosis [5]. These results demonstrate that altered expression of H19 or miR675 can influence tumor cell behavior.

Recent reports have suggested that m^6^A methylation plays an important role in the post-transcriptional modification of RNA [6], and it is known that this modification is regulated by adenosine methyltransferases and demethylases [7, 8]. As “writers,” the m^6^A methyltransferases METTL3, METTL14, and WTAP methylate the N6 position of adenosine [9, 10]. As “erasers,” the m^6^A demethylases FTO and ALKBH5 reverse the RNA methylation process [11, 12]. Finally, YTHDF2, as an m^6^A “reader,” recognizes m^6^A sites on target mRNAs and regulates the mRNAs’ fate [13-15]. Indeed, there is evidence that m^6^A modification in microRNA and long noncoding RNA affects cell development and fate [16]. These data indicate that m^6^A modification might have a role in noncoding RNA as well as miRNA.

Currently, the CRISPR/Cas9 system is the most widely used gene-editing tool. It uses an RNA-guide Cas9 protein combined with a short RNA (sgRNA) to induce double-strand breaks in target genomic DNA [17]. The adenine base editors (ABEs) system, which is based on the CRISPR/Cas9 platform, efficiently converts targeted A•T base pairs to G•C [18]. In the present study, the ABE7.10 system was used to analyze m^6^A modification of miRNA 675 in the H19 locus. Moreover, cell apoptosis and m^6^A expression levels were evaluated in HEK293T, L02, and MHCC97L cells. The role of m^6^A modification in the expression patterns of miRNA and IncRNA was analyzed using the ABEs system.

2. Materials and methods

2.1 Cell culture

HEK293T, L02, MHCC97L, MHCC97H, SGC-7901, and A549 cells were cultured in Dulbecco’s Modified Eagle’s Medium, high glucose (Gibco, USA), supplemented with 10% fetal bovine serum...
(Gibco, USA). The cells were maintained at 37°C in 5% CO₂.

2.2 Construction and transfection of the plasmids

ABE7.10 plasmids were obtained from Addgene (102919). The m^6^A modification of miR675 in the H19 locus (upstream of position: chr11:2018320 and downstream of position: chr11:2017630) was analyzed using the online software tool m6AVar (http://m6avar.renlab.org).

Protocols for sgRNA design and the procedures required for in vitro transcription have been described previously [17]. The sgRNA-oligo sequences used in this study are listed in Table S1.

For cell transfection, HEK293T, L02, MHCC97L, MHCC97H, SGC-7901, and A549 cells were seeded into 48-well poly-d-lysine-coated plates (Corning) in the absence of any antibiotic. Twelve to fifteen hours after plating, cells were transfected with 750 ng of base-editor plasmid and 250 ng of guide RNA plasmid in the presence of 1 µL of Lipofectamine 2000 (ThermoFisher Scientific).

2.3 Knockdown and overexpression of H19 and miR675

Synthetic RNA oligonucleotides targeting H19 were obtained from RiboBio (Guangzhou, China). The siRNA target sequence was GCGGGTCTGTTTCTTTACT. pcDNA3.1-H19 was purchased from GenePharma (Shanghai, China). miR675-3p-mimics and miR675-3p–inhibitor were obtained from RiboBio (Guangzhou, China). HEK293T cells were transfected with si-H19, pcDNA3.1-H19, miR675-3p-mimics and miR675-3p-inhibitor for 48 h, respectively. Control cells were transfected with nonspecific, scrambled siRNA.

2.4 Gene expression analysis

Total RNA was extracted from cells using the AllPrep DNA/RNA Micro Kit (QIAGEN, Germany) according to the manufacturer’s instructions. cDNA was synthesized using the First-Strand cDNA Synthesis kit (Promega, USA). Quantitative real-time PCR (qRT-PCR) was performed to determine H19, miR675, and m^6^A-related gene expression using the BioEasy SYBR Green I Real-Time PCR Kit on BIO-RAD iQ5 Multicolor Real-Time PCR Detection System (Bioer Technology, China). The miR675 3p and 5p sequences are listed in Table S2, and the miRNA primer sequences are listed in Table S3. The primer sequences of m^6^A-related genes and H19 are listed in Table S4. For PCR, the initial denaturation was conducted at 95°C for 3 min, followed by 40 cycles of denaturation at 95°C for 10 s, annealing at 60°C for 15 s, and extension at 72°C for 30 s. The 2^–ΔΔCT^ method was used to determine relative gene expression. The experiments were performed at least in triplicates.

2.5 Cell apoptosis analysis
The procedure for cell apoptosis detection has been previously described [19]. Briefly, HEK293T, L02, and MHCC97L cells were used for Annexin V-FITC/PI staining after treatment with ABE7.10 plasmids, si-H19, pcDNA3.1-H19 and miR675-3p-mimics and inhibitor for 48 h. Following incubation, the cells were washed twice with PBS and pooled at a concentration of 1 × 10^6 cells/ml. For each treated cell sample, Annexin V-FITC and PI were added according to the manufacturer’s instructions. These cells were incubated for 30 min and then analyzed with an AccuriTM C6 flow cytometer (BD Biosciences, Franklin Lakes, NJ, USA).

2.6 Immunofluorescence (IF) staining

Briefly, the cells were washed three times in PBS and then fixed with 4% paraformaldehyde for 30 min at room temperature. After fixation, the cells were washed again with PBS containing 0.2% Triton X-100 for 30 min. The cells were then incubated in PBS containing 1% bovine serum albumin (BSA) for 1 h. Next, the cells were probed with m^6^A (1:500, Abcam) antibodies and incubated at 4 °C overnight. Following this, the cells were washed three times with PBS for 10 minutes each followed by incubation with Alexa Fluor 488 conjugated secondary (anti-rabbit) antibodies for 1 h at room temperature. DNA was stained with 10 ng/ml Hoechst 33342 (Thermo Scientific) for 15 - 20 min. The cells were then washed thrice with PBS for 10 minutes each, air dried, and mounted on a coverslip and a glass slide using an antifade mounting medium (BOSTER, China). A confocal laser scanning microscope was used for imaging.

2.7 Statistical analysis

All data were analyzed using GraphPad Prism 5.0 (GraphPad Software, Inc., San Diego, CA). A t-test (Unpaired t-test) was used to analyze the data. A p-value <0.05 was considered statistically significant.

3. Results

3.1 Targeted point mutations of m^6^A modification sites induce cell apoptosis

To investigate the role of m^6^A modification in the expression of H19, the ABE7.10 system was used. The m^6^A modification site 129 bp upstream of miR675 in the H19 locus was mutated in HEK293T cells (Fig 1A). Results of sanger sequencing suggested T - A base transversion (Fig 1B). To confirm these results, similar tests were carried out with MHCC97H, SGC-7901, and A549 cells. The results confirmed T - A base transversion (Fig S1). qPCR results showed decreased expression of H19
in the m^6A-Mut group compared to that in the Con group (Fig 1C). To decipher the biological impact of m^6A modification, we examined cell apoptosis. Our results indicated an increased apoptosis rate in the m^6A-Mut group (Fig 1D-E). To further confirm the importance of m^6A modification to H19 as well as to miR675, we mutated the m^6A modification site 414 bp downstream of miR675 (Fig 2A). Results of sanger sequencing suggested G - C base transversion (Fig 2B). qPCR results showed no difference in H19 expression between the Con and m^6A-mut groups (Fig 2C). Moreover, the cell apoptosis rate did not increase after point mutations of the m^6A modification sites (Fig 2D-E).

3.2 Targeted point mutations of m^6A modification sites in liver cancer cells

To further confirm that point mutations of m^6A modification sites 129 bp upstream of miR675 induce cell apoptosis, we used L02 and MHCC97L cells. Results of sanger sequencing showed identical point mutation patterns in both HEK293T and L02 cells (Fig 4A). qPCR results showed declined H19 expression in the m^6A-Mut group (Fig 4B). To investigate the effects of m^6A modification on the expression patterns of miRNA, the expression of miR675 was analyzed. The results showed decreased expression of both miR675-3p and miR675-5p (Fig 4C). In addition, an increased cell apoptosis rate was observed in the m^6A-Mut group (Fig 4D-E). To confirm that point mutations do induce cell apoptosis, the MHCC97L cell line (liver cancer cells) was used. As observed with HEK293T and L02 cells, a T - A base transversion was observed in MHCC97L cells (Fig 5A). Moreover, decreased expression of H19, miR675-3p, and miR675-5p was noted in MHCC97L cells in the m^6A-Mut group (Fig 5B-C). An increased cell apoptosis rate was observed in MHCC97L cells after the introduction of point mutations as observed in HEK293T and L02 cells (Fig 5D-E). To further analyze miR675 expression patterns in apoptotic cells, HEK293T cells were treated with a mimic or inhibitor of miR675-3p. The results showed that reduced miR675-3p expression induced cell apoptosis (Fig 6). These results suggest that targeted point mutations of m^6A modification sites 129 bp upstream
of miR675 induced cell apoptosis through reduced expression of H19.

3.3 m^6A related genes expression analysis by targeted point mutation

We further explored the expression patterns of m^6A-related genes after introducing point mutations in L02 and MHCC97L cells. qPCR results showed increased expression of ALKBH5 and decreased expression of METTL3, METTL14, WTAP, FTO, and YTHDF2 in MHCC97L cells compared to L02 cells (Fig 7A). This result suggested that compared to L02, there is abnormal expression of m6A genes in MHCC97L cells. However, the expression of m^6A related genes was not changed by point mutations in L02 and MHCC97L cells (Fig 7B-C). m^6A expression level was analyzed using IF. The results showed that m^6A expression was not altered in either L02 and MHCC97L cells (Fig 7D-E). Also, the statistical analysis confirmed the IF data (Fig 7F-G). These results indicated that targeted point mutations of miR675 did not change the global m^6A expression levels in L02 and MHCC97L cells.

4 Discussion

Previous reports have indicated that targeted point mutations result in C-to-T (BE3) or A-to-G (ABE7.10) conversions [18, 20]. In this study, our results showed that a T-A base transversion occurred upstream of miR675 in HEK293T, L02, and MHCC97L cells. While the expected result was an A•T to G•C conversion, our data showed that an A•T to A•A conversion had occurred. These results indicate the partial effectiveness of the ABE7.10 system, which might have induced cell apoptosis. To confirm this data, we transfected the ABE7.10 system into A549 (lung cancer cells), SGC7901 (gastric cancer cells), and MHCC97H (liver cancer cells) cells. The result was in accordance with our previous data. In addition, a G-to-A conversion was observed which might have indicated incomplete mutation downstream of miR675. These results suggested the presence of the T-A base conversion pattern, which might have a role in cell apoptosis.

To further investigate the role of m^6A modification in apoptosis, the expression patterns of H19 and miR675 were analyzed. A previous study suggested that m^6A modification was important for the expression of IncRNA and miRNA [21]. In our study, regions upstream and downstream of the m^6A modification site of miR675 in the H19 locus were evaluated. The results demonstrated that mutations in the regions upstream of the m^6A modification site could suppress the expression of H19 and miR675, whereas mutations in the regions downstream of the m^6A modification site have no effect on the expression of H19 and miR675. To confirm the expression patterns of H19 and miR675 in apoptotic
cells, overexpression and knock down of \textit{H19} and miR675 were examined. Previous reports showed that the expression of \textit{H19} and miR675 was associated with cell apoptosis in cancer cells \cite{22, 23}. Our data suggest that reduced \textit{H19} expression induced cell apoptosis through miR675, which was confirmed in human colorectal cancer cells \cite{24}. These results indicate that regions upstream of the m6A modification site play a role in regulating the expression of \textit{H19} and miR675 which can induce cell apoptosis.

There is evidence that reduced \textit{H19} and miR675 expression led to increased p53 protein expression, which regulates cell apoptosis \cite{25}. Our data showed that mutation of the regions upstream of the m6A modification site inhibited miR675 and \textit{H19} expression, inducing cell apoptosis, possibly through the p53 protein. Moreover, an abnormal expression pattern of m6A-related genes was observed in liver cancer cells, which was in accordance with previous data \cite{26}. A previous report suggested that \textit{ALKBH5} overexpression promotes invasion and metastasis in gastric cancer cells \cite{27}. Indeed, metastasis is the major factor for HCC. This indicates that \textit{ALKBH5} expression may regulate the demethylated process and play a role in HCC metastasis. In addition, the global m6A expression was maintained after mutations of the regions upstream of the m6A modification site in L02 and MHCC97L cells. These results suggested that miR675 was regulated by m6A modification and has a role in \textit{H19} expression, which in turn influences the fate of the cell.

Conclusion

In summary, the ABE7.10 system resulted in efficient T - A base conversion of the m6A site upstream of miR675 in the \textit{H19} locus. The expression of \textit{H19} and miR675 was reduced by targeted point mutations. These mutations also induced cell apoptosis. Overall, our data suggest that m6A modification plays a role in gene expression and cell apoptosis.

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant 31601003, the China Postdoctoral Science Foundation under Grant 2018T110250 and 2016M601384, the Fundamental Research Funds for the Central Universities under Grant 2019JCKT-70, the Natural Science Foundation under Grant 2018SCZWSZX-045, the Jilin Education Department Program under Grant JJKH20200950KJ, and the Jilin Scientific and Technological Development Program under Grant...
Disclosure Statement

No potential conflict of interest was reported by the authors.

Author Contribution

Dongxu Wang designed the experiments and wrote the manuscript. Jindong Hao, Chengshun Li, Yang Hao and Yidan Xia performed cell experiment and gene expression analysis. Xianfeng Yu and Ziping Jiang contributed reagents and materials. Fei Gao and Chao Lin analyzed the data and prepared figures. All authors reviewed the manuscript.

References

[1] Schwarzenbach H. Biological and Clinical Relevance of H19 in Colorectal Cancer Patients. EBioMedicine. 2016;13:9-10.

[2] Hao Y, Crenshaw T, Moulton T, Newcomb E and Tycko B. Tumour-suppressor activity of H19 RNA. Nature. 1993;365(6448):764-7.

[3] Li H, Li J, Jia S, Wu M, An J, Zheng Q, Zhang W and Lu D. miR675 upregulates long noncoding RNA H19 through activating EGR1 in human liver cancer. Oncotarget. 2015;6(31):31958-84.

[4] Hao Y, Wang G, Lin C, Li D, Ji Z, Gao F, Li Z, Liu D and Wang D. Valproic Acid Induces Decreased Expression of H19 Promoting Cell Apoptosis in A549 Cells. DNA and cell biology. 2017;36(6):428-35.

[5] Li X, Wang H, Yao B, Xu W, Chen J and Zhou X. IncRNA H19/miR-675 axis regulates cardiomyocyte apoptosis by targeting VDAC1 in diabetic cardiomyopathy. Scientific reports.
[6] Zhao BS, Wang X, Beadell AV, Lu Z, Shi H, Kuuspalu A, Ho RK and He C. m(6)A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition. Nature. 2017;542(7642):475-8.

[7] Geula S, Moshitch-Moshkovitz S, Dominissini D, Mansour AA, Kol N, Salmon-Divon M, Hershkovitz V, Peer E, Mor N, Manor YS, Ben-Haim MS, Eyal E, Yunger S, Pinto Y, Jaitin DA, Viukov S, Rais Y, Krupalnik V, Chomsky E, Zerbib M, Maza I, Rechavi Y, Massarwa R, Hanna S, Amit I, Levanon EY, Amariglio N, Stern-Ginossar N, Novershtern N, Rechavi G and Hanna JH. Stem cells. m6A mRNA methylation facilitates resolution of naive pluripotency toward differentiation. Science. 2015;347(6225):1002-6.

[8] Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, Sorek R and Rechavi G. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012;485(7397):201-6.

[9] Ping XL, Sun BF, Wang L, Xiao W, Yang X, Wang WJ, Adhikari S, Shi Y, Lv Y, Chen YS, Zhao X, Li A, Yang Y, Dahal U, Lou XM, Liu X, Huang J, Yuan WP, Zhu XF, Cheng T, Zhao YL, Wang XQ, Danielsen JMR, Liu F and Yang YG. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell research. 2014;24(2):177-89.

[10] Li HB, Tong J, Zhu S, Batista PJ, Duffy EE, Zhao J, Bailis W, Cao G, Kroehling L, Chen Y, Wang G, Broughton JP, Chen YG, Kluger Y, Simon MD, Chang HY, Yin Z and Flavell RA. m(6)A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways. Nature. 2017;548(7667):338-42.
[11] Feng C, Liu Y, Wang G, Deng Z, Zhang Q, Wu W, Tong Y, Cheng C and Chen Z. Crystal structures of the human RNA demethylase Alkbh5 reveal basis for substrate recognition. The Journal of biological chemistry. 2014;289(17):11571-83.

[12] Zheng Q, Hou J, Zhou Y, Li Z and Cao X. The RNA helicase DDX46 inhibits innate immunity by entrapping m(6)A-demethylated antiviral transcripts in the nucleus. Nature immunology. 2017;18(10):1094-103.

[13] Nguyen LH, Robinton DA, Seligson MT, Wu LW, Li L, Rakheja D, Comerford SA, Ramezani S, Sun XK, Parikh MS, Yang EH, Powers JT, Shinoda G, Shah SP, Hammer RE, Daley GQ and Zhu H. Lin28b Is Sufficient to Drive Liver Cancer and Necessary for Its Maintenance in Murine Models. Cancer cell. 2014;26(2):248-61.

[14] Huang H, Weng H, Sun W, Qin X, Shi H, Wu H, Zhao BS, Mesquita A, Liu C, Yuan CL, Hu YC, Huttelmaier S, Skibbe JR, Su R, Deng X, Dong L, Sun M, Li C, Nachtergaele S, Wang Y, Hu C, Ferchen K, Greis KD, Jiang X, Wei M, Qu L, Guan JL, He C, Yang J and Chen J. Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nature cell biology. 2018;20(3):285-95.

[15] Wang X and He C. Reading RNA methylation codes through methyl-specific binding proteins. Rna Biol. 2014;11(6):669-72.

[16] Fazi F and Fatica A. Interplay Between N-6-Methyladenosine (m(6)A) and Non-coding RNAs in Cell Development and Cancer. Front Cell Dev Biol. 2019;7.

[17] Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA and Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819-23.
[18] Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI and Liu DR. Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature. 2017;551(7681):464-71.

[19] William-Faltaos S, Rouillard D, Lechat P and Bastian G. Cell cycle arrest and apoptosis induced by oxaliplatin (L-OHP) on four human cancer cell lines. Anticancer research. 2006;26(3A):2093-9.

[20] Komor AC, Kim YB, Packer MS, Zuris JA and Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533(7603):420-4.

[21] Coker H, Wei G and Brockdorff N. m6A modification of non-coding RNA and the control of mammalian gene expression. Biochimica et biophysica acta Gene regulatory mechanisms. 2019;1862(3):310-8.

[22] Zhu M, Chen Q, Liu X, Sun Q, Zhao X, Deng R, Wang Y, Huang J, Xu M, Yan J and Yu J. IncRNA H19/miR-675 axis represses prostate cancer metastasis by targeting TGFBI. The FEBS journal. 2014;281(16):3766-75.

[23] Zhuang M, Gao W, Xu J, Wang P and Shu Y. The long non-coding RNA H19-derived miR-675 modulates human gastric cancer cell proliferation by targeting tumor suppressor RUNX1. Biochem Biophys Res Commun. 2014;448(3):315-22.

[24] Tsang WP, Ng EK, Ng SS, Jin H, Yu J, Sung JJ and Kwok TT. Oncofetal H19-derived miR-675 regulates tumor suppressor RB in human colorectal cancer. Carcinogenesis. 2010;31(3):350-8.

[25] Zheng ZH, Wu DM, Fan SH, Zhang ZF, Chen GQ and Lu J. Upregulation of miR-675-5p induced by IncRNA H19 was associated with tumor progression and development by targeting
302 tumor suppressor p53 in non-small cell lung cancer. Journal of cellular biochemistry.

303 2019;120(11):18724-35.

304 [26] Ma JZ, Yang F, Zhou CC, Liu F, Yuan JH, Wang F, Wang TT, Xu QG, Zhou WP and Sun

305 SH. METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating

306 N(6) -methyladenosine-dependent primary MicroRNA processing. Hepatology.

307 2017;65(2):529-43.

308 [27] Zhang J, Guo S, Piao HY, Wang Y, Wu Y, Meng XY, Yang D, Zheng ZC and Zhao Y.

309 ALKBH5 promotes invasion and metastasis of gastric cancer by decreasing methylation of the

310 IncRNA NEAT1. Journal of physiology and biochemistry. 2019;75(3):379-89.

311

312 Figure legends

313

314 Fig.1. The role of m^6A modification upstream of miR675. A, the schematic of m^6A modification. B,

315 sequencing analysis of the m^6A modification site. C, H19 expression analyzed by qPCR. D, cell

316 apoptosis was analyzed after mutation of the m^6A modification site. E, statistical analysis of apoptotic

317 cell percentage. The data are presented as the mean ± SD. * (p < 0.05) and *** (p < 0.005) indicate

318 statistically significant differences.

319

320 Fig.2. The role of m^6A modification downstream of miR675. A, the schematic of m^6A modification. B,

321 sequencing analysis of the m^6A modification site. C, H19 expression analyzed by qPCR. D, cell

322 apoptosis was analyzed after mutation of the m^6A modification site. E, statistical analysis of apoptotic

323 cell percentage. The data are presented as the mean ± SD.
Fig. 3. The expression pattern of *H19* in apoptosis. Expression of *H19* (A) and miR675-3p (B) was analyzed by qPCR. C, cell apoptosis was analyzed after mutation of the m^6^A modification site. D, statistical analysis of apoptotic cell percentage. The data are presented as the mean ± SD. *** (*p* < 0.005) indicates a statistically significant difference.

Fig. 4. Mutated m^6^A modification of miR675 expression in L02 cells. A, sequencing analysis of m^6^A modification site. The expression of *H19* (B) and miR675 (C) was analyzed by qPCR. D, cell apoptosis was analyzed after mutation of the m^6^A modification site. E, statistical analysis of apoptotic cell percentage. The data are presented as the mean ± SD. * (*p* < 0.05), ** (*p* < 0.01) and *** (*p* < 0.005) indicate statistically significant differences.

Fig. 5. Mutated m^6^A modification of miR675 in MHCC97L cells. A, sequencing analysis of the m^6^A modification site. The expression of *H19* (B) and miR675 (C) was analyzed by qPCR. D, cell apoptosis was analyzed after mutation of the m^6^A modification site. E, statistical analysis of apoptotic cell percentage. The data are presented as the mean ± SD. * (*p* < 0.05) and *** (*p* < 0.005) indicate statistically significant differences.

Fig. 6. The expression pattern of miR675-3p in apoptosis. The expression of miR675-3p (A) and *H19* (B) was analyzed by qPCR. C, apoptosis was analyzed after mutation of the m^6^A modification site. D, statistical analysis of apoptotic cell percentage. The data are presented as the mean ± SD. * (*p* < 0.05) and *** (*p* < 0.005) indicate statistically significant differences.
Fig. 7. Expression pattern of m\(^6\)A related genes. The expression of m\(^6\)A related genes was analyzed in L02 and MHCC97L cells (A). The expression of m\(^6\)A related genes analyzed by point mutations in L02 (B) and MHCC97L (C) cells. Immunofluorescence localization of m\(^6\)A in L02 (D) and MHCC97L (E) cells. The fluorescence intensities of m\(^6\)A were measured in L02 (F) and MHCC97L (G) cells.

Fig. S1. Sequencing analysis of the m\(^6\)A modification site. Mutated m\(^6\)A modification site in MHCC97H (A), SGC-7901 (B), and A549 (C) cells.
The relative expression of miR675 3p

Con

Nc

miR675-3p mimics

miR675-3p inhibitor

B

The relative expression of H19

Con

Nc

miR675-3p mimics

miR675-3p inhibitor

D

Apoptosis analysis (%)

Con

Nc

miR675-3p mimics

miR675-3p inhibitor
Table S1 Sequence of sgRNA

SgRNAs	Sequences (5’→3’)	PAM
SgRNA1	F: AGGGACATGGCAGGGGACAC	AGG
	R: GTGTCCCCTGCCATGTCCCT	
SgRNA2	F: GGACACAAAAACCCTCTAGCT	TGG
	R: AGCTAGAGGGTTTGTGTCC	
Genes	Annealing	Sequences (5’→3’)
------------	-----------	--
MIR675-5P	60	CTCAACTGAGTGTCGGAGTCGGCAATTCAGTTGAGC
		ACTGTGG
MIR675-3P	60	CTCAACTGAGTGTCGGAGTCGGCAATTCAGTTGAGT
		GAGCGGT
U6	60	CGCTTCACGAATTGCGTGCAT
Table S3 Primers of miRNA for qRT-PCR analysis

Genes	Annealing (°C)	Primer sequences (5’→3’)
MIR675-5P	60	F: ACACTCCAGCTGGGTGGTGCGGAGGGCCC
		R: CAGTGCGTGTCGTGGAGT
MIR675-3P	60	F: ACACTCCAGCTGGGTGGTGCGGAGGGCCC
		R: CAGTGCGTGTCGTGGAGT
U6	60	F: GCTTCGGCAGCACATATACTAAAAT
		R: CGCTTCAGCAGATTTGCGTGTCAT
Table S4 Primers of m6A related genes for qRT-PCR analysis

Genes	Annealing	Primer sequences (5’→3’)	Reference
METTL3	60	F: GAGGAGTGCAATGAAAGCCAG	(Feng et al. 2018)
		R: GGCTCAGAATCCATGGAAG	
METTL4	60	F: GACGAGACTCTACTATGC	(Feng et al. 2018)
		R: CCAGCCTGTGAAATTGTAC	
ALKBH5	60	F: ACCCCATCCACATCTTCGAG	(Feng et al. 2018)
		R: CTTGATGTCTGAGGCGTA	
FTO	60	F: AGACACCTTGGTGAGCGAATA	(Feng et al. 2018)
		R: CCAAGGTTCTGTTGAGCAC	
YTHDF2	60	F: GAACCTTACTTGAGTCACAG	(Melissa et al. 2018)
		R: GTAGGGCATGGCTTGTCAC	
WTAP	60	F: TGCGACTAGCAACAAAGGAA	(Melissa et al. 2018)
		R: ATCTCAAGTGGGCAACGCTC	
H19	60	F: AAAGACACCACCGAACAGC	(Hao et al. 2017)
		R: AGAGTCGTGGAGGGCTTGA	
GAPDH	60	F: TCTCCTGACTTCAACAGCGA	(Feng et al. 2018)
		R: CCCTGTTGTGAGCCAAATTGT	