Sequence Analysis of the Cytochrome C Oxidase Subunit I Gene of Pseudagrion pilidorsum (Odonata: Coenagrionidae)

Trina Ekawati Tallei
Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sam Ratulangi, Manado 95115, Indonesia, trina_tallei@unsrat.ac.id

Roni Koneri
Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sam Ratulangi, Manado 95115, Indonesia

Beivy Jonathan Kolondam
Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sam Ratulangi, Manado 95115, Indonesia

Follow this and additional works at: https://scholarhub.ui.ac.id/science

Recommended Citation

Tallei, Trina Ekawati; Koneri, Roni; and Kolondam, Beivy Jonathan (2017) "Sequence Analysis of the Cytochrome C Oxidase Subunit I Gene of Pseudagrion pilidorsum (Odonata: Coenagrionidae)," *Makara Journal of Science*: Vol. 21 : Iss. 1 , Article 7.
DOI: 10.7454/mss.v21i1.7536
Available at: https://scholarhub.ui.ac.id/science/vol21/iss1/7

This Article is brought to you for free and open access by the Universitas Indonesia at UI Scholars Hub. It has been accepted for inclusion in Makara Journal of Science by an authorized editor of UI Scholars Hub.
Sequence Analysis of the Cytochrome C Oxidase Subunit I Gene of *Pseudagrion pilidorsum* (Odonata: Coenagrionidae)

Trina Ekawati Tallei*, Roni Koneri, and Beivy Jonathan Kolondam

Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sam Ratulangi, Manado 95115, Indonesia

*E-mail: trina_tallei@unsrat.ac.id

Received December 27, 2015 | Accepted August 16, 2016

Abstract

Pseudagrion pilidorsum is 1 of over 140 species of *Pseudagrion* (in the family Coenagrionidae), the largest genus of damselfly. This species exhibits dimorphism due to the different body colorations of males and females, making them difficult to distinguish from other congeneric species. This study analyzed the cytochrome C oxidase subunit I (COI) gene sequence of *P. pilidorsum* found in Bogani Nani Wartabone National Park (North Sulawesi) and compared it with other sequences of *P. pilidorsum* from distinct geographical locations in Asia. The COI gene for the Sulawesi specimen was amplified using the universal primer pair LCO1490 and HCO2198. A sequence homology search was conducted through BLAST. Multiple sequence alignment was executed using CLUSTAL O (1.2.1). A phylogenetic tree was constructed using the Neighbor-Joining method, and genetic distance was calculated using the Kimura 2-parameter. The COI gene sequence of the Sulawesi specimen lies in the range of 83.99-89.10% with other *P. pilidorsum* deposited at GenBank, namely KF369526 (Sarawak specimen), AB708543, AB708544, and AB708545 (Japan specimens). The genetic distance falls in the range of 0.146-0.149 between the Sarawak specimen and the Japan specimen; 0.122-0.125 between the Sulawesi and Japan specimens; and 0.185 between the Sulawesi specimen and the Sarawak specimen. It can thus be inferred that the Sarawak and Japan specimens may not belong to the same species; the Sulawesi and Japan specimens may not belong to the same species; and the Sarawak specimen and Sulawesi specimens might be placed in different genera.

Analisis Sequence Gen Cytochrome C Oxidase Subunit I *Pseudagrion pilidorsum* (Odonata: Coenagrionidae). *Pseudagrion pilidorsum* merupakan anggota salah satu dari lebih dari 140 spesies *Pseudagrion* (dalam famili: Coenagrionidae) yang merupakan genus terbesar dari capung jarum. Spesies ini memperlihatkan dimorfisme karena memiliki warna yang berbeda antara jantan dan betina sehingga sulit membedakannya dengan capung jarum dari genus yang sama. Penelitian ini bertujuan untuk menganalisis *sequence* gen cytochrome C oxidase subunit I (COI) dari *P. pilidorsum* yang ditemukan di Taman Nasional Bogani Nani Wartabone (Sulawesi Utara) dan membandingkannya dengan *sequence* COI *P. pilidorsum* dari lokasi geografis yang berbeda di Asia. Gen COI dari spesimen Sulawesi diamplifikasi menggunakan pasangan primer universal LCO1490 dan HCO2198. Pencarian homologi *sequence* dilakukan dengan program BLAST. Penjajaran *sequence* gen COI dilakukan dengan program CLUSTAL O (1.2.1). Pohon filogenetik dikonstruksi menggunakan metode Neighbor-Joining (NJ) dan jarak genetik dihitung menggunakan metode Kimura 2-parameter. *Sequence* gen COI *P. pilidorsum* spesimen Sulawesi memiliki nilai identitas berkisar antara 83,99-89,10% dengan *P. pilidorsum* lainnya yang terdapat di GenBank, yaitu KF369526 (spesimen Sarawak), AB708543, AB708544, dan AB708545 (spesimen Jepang). Jarak genetik berkisar 0,146-0,149 antara spesimen Sarawak dengan spesimen Jepang; 0,122-0,125 antara spesimen Sulawesi dengan spesimen Jepang; dan 0,185 antara spesimen Sulawesi dengan spesimen Sarawak. Berdasarkan hasil studi ini kami menyimpulkan bahwa spesimen Sarawak dengan spesimen Jepang dan spesimen Jepang dengan spesimen Sulawesi kemungkinan merupakan spesies yang berbeda, dan spesimen Sarawak dengan spesimen Sulawesi kemungkinan merupakan genus yang berbeda. Analisis spesimen tambahan dari Sulawesi diperlukan untuk menguatkan dugaan tersebut.

Keywords: COI, damselfly, DNA barcode, interspecific, intraspecific
Introduction

There are more than 5,875 species of dragonflies worldwide; 2,739 are from the suborder Zygoptera (damselfly), and 2,941 are from suborder Anisoptera (dragonfly) [1]. Eight hundred and seventy species are in the Australasian region that includes Sulawesi, Moluccas, Papua, and Australia. Approximately 175-250 species in these regions have not been described [2]. An estimated 1,500 species of dragonflies still await description around the world, so the number of dragonfly species that exists today could approach 7,000 [2]. One damselfly species found in North Sulawesi is *Pseudagrion pilidorsum* (Brauer 1868) from the family Coenagrionidae. This type of damselfly is difficult to distinguish from others among the same genera due to the variety of color and also the similarity of morphological characteristics. The existing methods for identifying unknown insects rely on morphological characteristics, which presents a problem if organisms alter themselves physiologically and morphologically due to unfavorable environmental conditions. This situation often may lead to the incorrect identification of species. A tool that enables both fast and accurate identification based on DNA sequence is regarded as one taxonomic method to analyze species diversity [3]. Therefore, the DNA barcode was developed for easy identification [4].

Some studies have used DNA barcodes to calculate the genetic distance threshold e.g., for butterflies [5], crustaceans [6], corals [7], and fishes [8], but this distance cannot be generally applied to the identification of the species because there are some inconsistencies of intra- and interspecific species diversity, which are highly dependent on the organism observed [9]. The latest advances in the fields of statistics and geographical genetics have enabled investigation into how environmental factors affect the geographical organization and population structure of molecular genetic diversity within species [10]. The DNA barcode recommended for animal species identification is the cytochrome C oxidase subunit I (COI) gene, the most important protein-coding gene in mitochondrial DNA (mtDNA). This gene has been widely used in molecular evolution research and for evaluating inter- and intraspecific diversity in ciliates [11] and insects [12]. It may also be used in conjunction with traditional morphology-based identification to more accurately identify and classify species.

Factors that influence the distribution of the diversity of dragonflies are either historical (geological) or ecological factors. Both define the current species diversity, but the compositions of the family and genus level are mainly determined by geological factors [13]. Local biodiversity is strongly influenced by speciation and extinction caused by ecological and non-ecological factors. Many studies have shown that climate patterns also have an impact on radiation and the diversification of species [14]. Some studies have investigated the habitat, distribution, abundance, and morphology of the damselfly in Bogani Nani Wartabone National Park (BNWB-NP)[15], but there has been no research on their genetic aspects to date, especially in *P. pilidorsum*.

In this study, we used the COI gene sequence data of the damselfly *P. pilidorsum* obtained from Bogani Nani Wartabone National Park. The data were compared with other available COI gene data of other *P. pilidorsum* obtained from GenBank. This study aimed to analyze variation in the COI gene sequences of *P. pilidorsum* from various places in Asia to provide information on the intraspecific variation of COI sequences based on different geographic locations.

Materials and Methods

Study Area. *P. pilidorsum* specimens were obtained in March 2014 on river banks in the primary forest of Bogani Nani Wartabone National Park in North Sulawesi at the coordinates 00°34'33.87''N and 123°53'58.02''E. The study area is situated at an altitude of about 241-289 meters above sea level with a temperature between 26-30 °C, 65-74% humidity, and 60-85% vegetation cover.

Procedure. The damselflies were captured using swing nets. Identification of their morphological characteristics was carried out by observing wing venation, color patterns, and genitalia using identification keys [13]. The coxae were removed carefully from the body of the male damselfly along with the flesh. The coxae and flesh were kept in 90% ethanol until their use. Extraction of DNA from the flesh was performed using a universal innuPrep DNA Micro Kit (Analytik Jena) according to the protocol provided by the manufacturer. Amplification of the DNA was done using 5x Firepol PCR Master Mix Ready-to-Load (Solis BioDyne) with the universal primer set LCO1490 (5'-GCTTCAACA-AATCATAAAGATATGG-3') dan HCO2198 (5'-TAAACTTCAAGGGTGAACCAAAAAATCA-3') [38]. Amplification of the DNA was carried out according to the method used by Kairupan et al. [5] as follows: 5 minutes initial denaturation at 94 °C followed by 35 cycles of denaturation at 94 °C for 30 seconds, annealing at 54 °C for 45 seconds, elongation at 72 °C for 1 minute and 30 seconds, and final extension for 5 minutes at 72 °C. The amplicons were sent to 1st BASE Malaysia for sequencing using the primer set LCO1490 and HCO2198.

Data analysis. The chromatograms were processed using Geneious v5.6 according to the method described by Tallei and Kolondam [16]. Briefly, the sequences were pairwise aligned using global alignment with free end gaps to identify regions of 93% similarity. Approximately 30 nucleotides at the beginning of the DNA sequences were trimmed, and erroneous nucleotide readings were corrected. Other COI gene sequences of
P. pilidorsum and other members of Coenagrionidae were obtained from GenBank. All sequences were subsequently trimmed accordingly to avoid ambiguous alignment and to reach the core area. The sequences were aligned using Clustal O (1.2.1) multiple sequence alignment (www.ebi.ac.uk/Tools/msa/clustalo). The phylogenetic tree was inferred using the Neighbor-Joining (NJ) method [41]. The evolutionary distances were computed using the Kimura 2-parameter approach [40]. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) is shown next to the branches [43]. Evolutionary analyses were conducted in MEGA 6.0 [42].

Results and Discussion

Damsel fly specimens P. pilidorsum that were obtained from TN-BNWB are displayed in Figures 1A and 1B. Table 1 shows all specimens used in this study. The identity percentage matrix that was created using Clustal O (1.2.1) is shown in Table 2, while the genetic distance of COI based on the Kimura 2-parameter is presented in Table 3. The COI gene of P. pilidorsum has been deposited in GenBank with accession number KX447495 (Sulawesi specimen). It has an identity in the range of 83.99–89.10% with other P. pilidorsum obtained from GenBank, namely KF369526, AB708543, AB708544, and AB708545. KF369526 is a specimen from Sarawak, Malaysia (voucher RMNH.INS.228961), while AB708543, AB708544, and AB708545 are specimens from Japan.

Based on its identity, the Sulawesi specimen is closer to the Japan specimens (88.86–89.10%) than to the Sarawak specimen (83.99%) (Table 2). This conclusion was supported by the genetic distance between the Sulawesi and Japan specimens, which ranged from 0.122–0.124 (Table 3). The identity of all P. pilidorsum ranged from 84.92–100.0%. The genetic distances of all P. pilidorsum specimens varied from 0–0.185. There was no genetic distance between AB708543 and AB708544.

![Figure 1. Pseudagrion pilidorsum (A) male, (B) female](image)

Table 1. List of Specimens (Famil Coenagrionidae) Used in This Study

Nucleotide Accession No.	Protein Accession No.	Species	Location
KX447495	ANT96818	P. pilidorsum	North Sulawesi, Indonesia
KF369526	AGY95255	P. pilidorsum	Sarawak, Malaysia
AB708543	BAM21814	P. pilidorsum	Japan
AB708544	BAM21815	P. pilidorsum	Japan
AB708545	BAM21816	P. pilidorsum	Japan
FJ812818	ADG65303	P. ignifer	-
AB708537	BAM21808	P. microcephalum	Japan
KU220870	AMB62087	Ceriagrion fallax	Bhutan
which are both Japan specimens. This similarity is in contrast with the high genetic distance between the Sulawesi specimen and the Sarawak specimen, which was 0.185. In contrast, the genetic distance between the Sarawak specimen and the Japan specimens is 0.145–0.148. The Sarawak and Sulawesi specimens have a distance (0.185) that is greater than that between P. pilidorsum (FJ812818) and all P. Pilidorsum (0.151–0.173) specimens. The distance between Pseudagrion and Ceriagrion (KU220870) is 0.187–0.222. However, the distance between P. microcephalum and other Pseudagrion is 0.205–0.235. This shows that the intergeneric distance between Pseudagrion and Ceriagrion overlaps with the interspecific distance among Pseudagrion.

The number of base substitutions per site from between sequences is shown in Table 3. Standard error estimate(s) are displayed above the diagonal. The sequence alignment reveals a high intraspecific variation within P. pilidorsum (Figure 2), although only a single amino acid substitution is produced, where Ser becomes Ala (Figure 3). With a length of 431 bp, the COI sequences of these specimens reveal a GC content of 42.9% for KX447495, 39.7% for KF369526, 38.5% for AB708543 and AB708544, and 38.7% for AB708545. Figure 4 shows the evolutionary history inferred using the NJ method [41]. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The bar at the bottom represents the amount of genetic change of 0.02 nucleotide substitution per site calculated using the Kimura two-parameter model. This is the number of substitutions or changes divided by the length of the sequence. The tree supports the result that the Sulawesi specimen is more closely related to the Japan specimen.

P. pilidorsum has a total body length of 4.7 cm with a wingspan of 1.8 cm. The difference between males and females is largely based on the body color of the head and thorax. The male is generally dark red and orange (Figure 1A), while the female is a dull orange to yellow color (Figure 1B). The abdomens of both males and females are yellowish. This species is found along riverbanks in primary and secondary forests as well as on farmland with a moderate to light intensity [15].

A complete understanding of the diversity of morphology, ecology, behavior, and distribution of dragonflies/damselflies must involve their evolutionary historical factors; future study of the evolution of these traits must be based on a phylogenetic framework [17]. Monitoring the biodiversity in an area that is ecologically significant for conservation will depend on reliable species identification. Molecular methods, such as DNA barcodes, provide consistent results that can be used in conjunction with traditional morphological identification as a taxonomic tool for evaluating species identification and diversity [18,19]. Mitochondrial DNA is also a reasonably accurate genetic marker because it is maternally derived [20].

The sequence alignment of the COI gene of P. pilidorsum has significantly high intraspecific nucleotide variation (Figure 2) despite its single intra-specific amino acid substitution from Ser to Ala in the Sarawak specimen. There are also several inter-specific/intra-generic amino acid variations within Pseudagrion and

KX447495	KF369526	AB708543	AB708544	AB708545	FJ812818	AB708537	KU220870
KX447495	100.00						
KF369526	83.99	100.00					
AB708543	89.10	87.01	100.00				
AB708544	89.10	87.01	100.00	100.00			
AB708545	88.86	86.77	99.77	99.77	100.00		
FJ812818	84.92	86.08	86.31	86.31	86.54	100.00	
AB708537	80.28	81.90	82.13	82.13	82.37	81.21	100.00
KU220870	80.97	81.67	82.60	82.60	82.37	83.53	81.67

| Tabel 3. Estimation of Evolutionary Divergence between Sequences using Kimura 2-parameter Model |
|---|---|
| KX447495 | KF369526 | AB708543 | AB708544 | AB708545 | FJ812818 | AB708537 | KU220870 |
| KX447495 | 0.185 | [0.023] | [0.017] | [0.017] | [0.018] | [0.021] | [0.026] |
| KF369526 | 0.122 | 0.145 | [0.020] | [0.020] | [0.020] | [0.021] | [0.025] |
| AB708544 | 0.122 | 0.145 | 0.000 | [0.000] | [0.002] | [0.020] | [0.024] |
| AB708545 | 0.124 | 0.148 | 0.002 | 0.002 | 0.002 | [0.019] | [0.024] |
| FJ812818 | 0.173 | 0.157 | 0.154 | 0.154 | 0.151 | [0.025] | [0.023] |
| AB708537 | 0.235 | 0.211 | 0.208 | 0.208 | 0.205 | 0.219 | [0.024] |
| KU220870 | 0.222 | 0.212 | 0.199 | 0.199 | 0.203 | 0.187 | 0.213 |
Figure 2. The COI Nucleotide Sequence Alignment using CLUSTAL O(1.2.1) Multiple Sequence Alignment

Accession	Sequence
AB708537	ATTAGTTCCCTAATAATTAGGGGCCCCAGCAGATGCTCCCTCAGGCTTTAATAATATAAG
KU220870	ATTAGTTCCCTAATAATTAGGGGCCCCAGCAGATGCTCCCTCAGGCTTTAATAATATAAG
FJ812818	ATTAGTTCCCTAATAATTAGGGGCCCCAGCAGATGCTCCCTCAGGCTTTAATAATATAAG
KF369526	GCTAGTTCCCTAATAATTAGGGGCCCCAGCAGATGCTCCCTCAGGCTTTAATAATATAAG
KX447945	ATTAGTTCCCTAATAATTAGGGGCCCCAGCAGATGCTCCCTCAGGCTTTAATAATATAAG
AB708544	TCCAGCAGGAG
AB708543	TCCAGCAGGAG
AB708545	TCCAGCAGGAG
AB708537	TCCAGCAGGAG
KU220870	TCCAGCAGGAG
FJ812818	TCCAGCAGGAG
KF369526	TCCAGCAGGAG
KX447945	TCCAGCAGGAG
AB708544	TCCAGCAGGAG
AB708543	TCCAGCAGGAG
AB708545	TCCAGCAGGAG

Figure 2. The COI Nucleotide Sequence Alignment using CLUSTAL O(1.2.1) Multiple Sequence Alignment

Makara J. Sci. March 2017 | Vol. 21 | No. 1
also between *Pseudagrion* and *Ceriagrion* (Figure 3). If the amino acid substitution is at an active site and causes a structural change of the protein, then the protein will have a functional alteration [21]. Serine differs from alanine in that one of its methyl hydrogens has been replaced by a hydroxyl group. Most molecular variations both among and between species are essentially neutral and do not result from selection [22]. Neutral mutations are also the basis for the use of a molecular clock to identify evolutionary events, such as speciation and adaptive or evolutionary radiations. An error in inserting nucleotides during replication or transcription in a coding region may impact amino acid sequences. There is still a need for further research to determine whether a change from serine to alanine occurs at the active site of COI in the Sarawak specimen and if it would impact the function of the protein.

With its 431-bp length, the COI sequence has a GC content in each *P. pilidorsum* specimen as follows: 42.9% KX447495, 39.7% KF369526, 38.5% AB708543, 38.5% AB708544, and 38.7% AB708545. This indicates that the COI gene sequences used in this research are from mtDNA and not nuclear mitochondrial pseudogenes (numts), such as those found in bird tyrant flycatchers (family Tyrannidae) in North America. Numts are
nonfunctional copies of mitochondrial genes that have been translocated into the nuclear genome [23]. In animals, the GC content for all mtDNA ranges between 13–54%, while the sequences used for the DNA barcode range from 22–53% [24]. Nuntls have higher GC contents compared to orthologous mtDNA [25]. DNA with a high GC content is assumed to have a heat-resistant helix structure, thus providing a selective advantage for animals with high metabolic regulation induced by the environment (e.g., light, temperature, salinity, oxygen, and pH) [26].

Sequence divergences are also present in the mitochondrial COI gene of insects. In the four-spotted skimmer Libellula quadrimaculata, the sequence divergence is <1% (0.01) in Europe, 0.002–0.023 in North America, and >0.008 in Japan. It is estimated that the substitution rate for insect mtDNA sequences, including the COI region, ranges between 0.015–0.013 per million years [27]. For COI, the intraspecific p-distance for the dragonfly Orthetrum melania varies between 0.00–0.03999, while the interspecific p-distance is from 0.033–0.1729 [28]. The inter-subspecific (intraspecific) Kimura 2-parameter genetic distance based on COI genes amongst broad-winged damselflies Psalodesmus mandarinus kuroiwaie, P. m. mandarinus, and P. m. dorothea ranged from 0–0.076. The genetic divergence between Psalodesmus mandarinus kuroiwaie and P. m. mandarinus (0.067–0.076) is far higher than that within P. m. kuroiwaie (0–0.011) or P. m. mandarinus (0–0.022). Based on this evidence, P. m. kuroiwaie was proposed to be classified as a distinct species [39].

Avise (2000 in Herbert et al. [44]) stated that intraspecific divergences of COI genes are rarely greater than 2%; in fact, most are less than 1%. The average percentage of the sequence divergence of congeneric organisms in arthropoda is 10.1% ± 4.9 [44]. Intraspecific Kimura 2-parameter distances range from between 0.122–0.124 (12.2–12.4%) for Sulawesi (KX447495) and Japan specimens, 0.185 (18.5%) for Sulawesi and Sarawak specimens, between 0.145–0.148 (14.5–14.8%) in Sarawak and Japan specimens, and 0–0.002 (0–0.2%) amongst Japan specimens themselves. This distance represents the proportion (p) of nucleotide sites where the two sequences being compared are different. This value is obtained by dividing the number of nucleotide differences by the total number of nucleotides being compared [29]. According to Yong et al. [28], this result indicates that the Sarawak and Japan specimens (0.145–0.148), as well as the Japan and Sulawesi specimens (0.122–0.124), are different species or even possibly different genera because the Kimura 2-parameter distance ranges are very high. The distance between the Sarawak and Sulawesi specimens is 0.185, which is greater than the distance between P. ignifer (FJ812818) and the rest of P. pilidorum. Therefore, the Sarawak specimen needs to be revisited. The Sarawak and Sulawesi specimens can be considered for reclassification as different genera with a distance greater than 17.29% if referring to Yong et al. [28] and Avise [45]. Interestingly, the distance between P. ignifer and all P. pilidorum (0.151–0.173) was lower than that found between the Sulawesi and Sarawak specimens (0.185). The distance between all Pseudagrion and Ceragrion (KU220870) is 0.187–0.222, and this distance has some overlap with the distance between P. microcephalum and other Pseudagrion (0.205–0.235).

The highest intra-specific distance for the damselfly according to Lin et al. [39] is 0.076 (7.6%). As a comparison, the Asian Pseudagrion species studied using the COI gene is more closely related to Asian Archibasis compared to two African Pseudagrion, so the damselfly taxa in Asia need to be reclassified [30]. Our findings show overlapping intra- and interspecific variations in Pseudagrion. For Diptera, for example, there is an overlapping intra- and interspecific variation in COI gene sequences, namely between 0–15.5%, so this result could represent an error in identifying the species [31]. Freshwater crayfish Cherax preissii showed the highest divergence value with a maximum genetic distance of 4.45% (patristic distance: 0.5) between the two main populations in North and South Australia [26]. Using the COI gene, Lin et al. [39] showed that the genetic divergence between Psalodesmus mandarinus kuroiwaie and P. m. mandarinus is 7.0–7.6%, which was higher than that for P. m. kuroiwaie (0–1.1%) or P. m. mandarinus (0–2.2%). Based on this evidence, P. m. kuroiwaie should be classified as a distinct species. The greater the genetic distance between populations or individuals, the more isolated they are from one another due to the less interbreeding that takes place between them. The degree of isolation and demographic history of populations are key factors that affect the population’s or individual’s potential to adapt to different environmental conditions. Changes in the biogeography may have an impact on genetic variation both within and between populations [32]. The COI gene is widely used as a tool in the study of phylogeography and history at the intra- and interspecific levels because of its low or absence of recombination, uniparental (maternal) mode of inheritance, conserved structure, and relatively high rate of evolution; this gene has been used extensively to study the evolution of insects [12, 20, 32].

Nucleotide diversity is the average number of nucleotide differences per nucleotide sites being compared between DNA sequences [34]. High nucleotide variations in the data presented indicate geographical isolation, which suggests that gene flow between populations is limited in these three locations. Thus, the populations can be regarded as different conservation units because they have substantial differences in the level of DNA [33]. Therefore, these three groups of the population have evolved independently over a given period, so they may
have unique adaptations that ought to be preserved, although the types of adaptations are not yet clear. A population with a low level of genetic diversity is less able to adapt to new selection pressures because the limited set of genes (gene pool) in a particular group will decrease the tendency for the presence of adaptive alleles in a group or population [33]. A population or group will not only differ in adaptive loci as a direct result of natural selection but also will contain variations at neutral loci due to genetic drift, which indirectly results from selection through a reproductive barrier. This pattern was identified in a semi-natural experiment that produced the population or group Anthoxanthum odoratum, which was previously thought to be different as a result of adaptation due to the addition of different nutrients to the diet. This is an example that illustrates how local adaptation can shape the genetic diversity and differences between populations [33].

The NJ phylogenetic tree (Figure 4) indicates that P. pilidorsum and P. ignifer formed a monophyletic group. The position of the Sulawesi specimen is close to the Japan specimens, and this trend is supported by the Kimura 2-parameter genetic distance calculation. The phylogenetic relationship represents kinship among the study groups. The horizontal dimension is the number of genetic changes indicating the evolutionary lineage that changes over time. The longer the branches in the horizontal dimension, the greater the number of changes that have occurred. By assuming one generation per year, the value of pairwise sequence divergence is 2.3% per year for COI so that the neutral mutation rate per nucleotide site per generation (α) is 1.15 × 10−8 [20].

The combination of fragments of COI and ND1 is better compared to only one fragment alone [35]. Several studies that have used more than one fragment for the DNA barcode have provided information on the level of difference and variation patterns for phylogenetic studies by examining the divergence in DNA sequences [36, 37]. A character-based approach provides a higher resolution than the distance-based method in Odonata, especially on a closely related taxonomic entity. Character-based DNA barcodes can be used to characterize species through a unique combination of diagnostic characteristics that are not genetic distance-based. In this way, the species barriers may be determined using a series of diagnostic evaluations about the characters that can be improved at any stage of resolution using multiple genes [18].

Conclusions

Our results indicate that the identity of the COI gene in the Sulawesi specimen and in other P. pilidorsum from GenBank (Sarawak and Japan specimens) is low, ranging from 83.99–89.10%. Moreover, the genetic distances are high enough to suggest that the Sulawesi specimen differs from the Japan specimen and the Sarawak specimen also differs from the Japan specimen. This finding also indicates that the Sarawak and Sulawesi specimens are of different genera. However, more specimens from Sulawesi are needed for analysis to clarify their taxonomic identity. Although this finding suggests the need to reclassify P. pilidorsum, in-depth study involving more than one marker for the DNA barcode as well as a character-based DNA barcode must first be undertaken.

References

[1] Cayasan, R.D., Limitares, D.E., Gomid, J.V.S., Nuñeza, O.M., Villanueva, R.J.T. 2013. Species richness of Odonata in selected freshwater systems in Zamboanga del Sur, Philippines. ACL Bioflux. 6(4):378–393.
[2] Kalkman, V.J., Clausnitzer, V., Dijkstra, K-DB., Orr, A.G., Paulson, D.R., van Tol, J. 2008. Global diversity of dragonflies (Odonata) in freshwater. Hydrobiologia 595:351–363, http://dx.doi.org/10.1007/s10750-007-9029-x.
[3] Pfenniger, M., Nowak, C., Kley, C., Steinke, D., Streit, B. 2007. Utility of DNA taxonomy and barcoding for the inference of larval community structure in morphologically cryptic Chironomus (Diptera) species. Mol. Ecol. 16:1957–1968, http://dx.doi.org/10.1111/j.1365-294X.2006.03136.x.
[4] Porter, T.M.; Gibson, J.F., Shokralla, S., Baird, D.J., Golding, G.B., Hajibabae, M. 2014. Rapid and accurate taxonomic classification of insect (class Insecta) cytochrome c oxidase subunit 1 (COI) DNA barcode sequences using a naive Bayesian classifier. Mol. Ecol. Resour. 14:929–942, http://dx.doi.org/10.1111/j.1755-0998.2012.02420.
[5] Kairupan, C.F., Koneri, R., Tallei, E.T. 2015. Variasi genetik Troides helena (Lepidoptera: Papilionidae) berdasarkan gen COI (Cytochrome c oxidase I). J. MIPA UNSRAT Online 4(2):141-147.
[6] Radulovici, A.E., Sainte-Marie, B., Dufresne, F. 2009. DNA barcoding of marine crustaceans from the estuary and gulf of St Lawrence: a regional-scale approach. Mol. Ecol. Resour. 9:181-187, http://dx.doi.org/10.1111/j.1755-0998.2009.02643.x.
[7] Shearer, T.L., Coffroth, M.A. 2008. Barcoding corals: limited by interspecific divergence, not intraspecific variation. Mol. Ecol. Resour. 8:247-255, http://dx.doi.org/10.1111/j.1471-8286.2007.01996.x.
[8] Ward, R.D., Zemlak, T.S., Innes, B.H., Last, P.R., Hebert, P.D.N. 2005. DNA barcoding Australia’s fish species. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 360:1847-1857, http://dx.doi.org/10.1098/rstb.2005.1716.
[9] Bergmann, T., Hadrys, H., Breves, G., Schierwater, B. 2009. Character-based DNA barcoding: a superior tool for species classification. Berl.
Sequence Analysis of the Cytochrome C Oxidase Subunit I Gene

Munch. Tierarzt. Wochenschr. 122: 446-450, http://dx.doi.org/10.2376/0005-9366-122-446.

[10] Wellenreuther, M., Sánchez-Guillén, R.A., Cordero-Rivera, A., Svensson, E.I., Hansson, B. 2011. Environmental and climatic determinants of molecular diversity and genetic population structure in a Coenagrionid Damselfly. PLoS ONE 6(6): e20440, http://dx.doi.org/10.1371/journal.pone.0020440.

[11] Zhao, Y., Gentekaki, E., Yi, Z., Lin, X. 2013. Genetic Differentiation of the mitochondrial cytochrome oxidase C subunit I gene in genus Paramecium (Protista, Ciliophora). PLoS ONE 8(10): e77044, http://dx.doi.org/10.1371/journal.pone.0077044.

[12] Caterino, M.S., Cho, S., Sperling, F.A.H. 2000. The current state of insect molecular systematics: A thriving tower of babel. Ann. Rev. Entomol. 45: 1-54, http://dx.doi.org/10.1146/annurev.ento.45.1.51.

[13] Kalkman, V., Orr, A.G. 2013. Field guide to the damselflies of New Guinea. Brachytron 15:3-120.

[14] Turgeon, J., Stoks, R., Thum, R.A., Brown, J.M., McPeek, M.A. 2005. Simultaneous quaternity radiations of three damselfly clades across the Holarctic. Am. Nat. 165(4): pp. E78-E107, http://dx.doi.org/10.1086/428682.

[15] Wakhid, Koneri, R., Tallei, T., Maubuat, P.V. 2014. Kelimpahan populasi capung jarum (Zygoptera) di kawan kasan Nasional Bogani Nani Wartabone, Sulawesi Utara. J. Biosilos 4(2):41-47.

[16] Tallei Kolondam BJ. 2015. DNA barcoding of Sangihe nutmeg (Myristica fragans) using matK gene. HAYATI J. Bios. 22(1):41-47, http://dx.doi.org/10.4308/hjb.22.1.41.

[17] Artiss T, Shultz TR, Polhemus DA, Simon C. 2001. Molecular phylogenetic analysis of the dragonfly genera Libellula, Ladona, and Plathemis (Odonata: Libullulidae) based on mitochondrial cytochrome oxidase I and 16S rRNA sequence data. Mol. Phylogen. Evo. 18(3):348-361, http://dx.doi.org/10.1006/mpev.2000.0886.

[18] Rach, J., DeSalle, R., Sarkar, I.N., Schierwater, B., Hadrys, H. 2008. Character-based DNA barcoding allows discrimination of genera, species and populations in Odonata. Proc. Biol. Sci. 275(1632): 237–247, http://dx.doi.org/10.1098/rspb.2007.1290.

[19] Pilgrim, E.M., Roush, S.A., Krane, D.E. 2002. Combining DNA sequences and morphology in systematics: testing the validity of the dragonfly species Cordulegaster bilineata. Heredity 89:184-190, http://dx.doi.org/10.1038/sj.hdy.6800112.

[20] Pfeifer, E., Flores-López, C.A., Mada-Vélez, G.M., Escalante-Verdugo, J., Markow, T.A. 2013. Genetic diversity and population genetics of mosquitoes (Diptera: Culicidae: Culex spp.) from the Sonoran Desert of North America. Scient. World J. 1-11, http://dx.doi.org/10.1155/2013/724609.

[21] Poyner, R.R., Larsen, T.M., Wong, S.W., Reed, G.H. 2002. Functional and structural changes due to a serine to alanine mutation in the active-site flap of enolase. Arch. Biochem. Biophys. 401(2):155-63, http://dx.doi.org/10.1016/S0003-9861(02)00024-3.

[22] Fay, J.C., Wu, C-I. 2001. The neutral theory in the genomic era. Curr. Opin. Genet. Dev. 11:642–646, http://dx.doi.org/10.1016/S0959-437X(00)00247-1.

[23] Kerr, K.C. 2010. A cryptic, intergeneric cytochrome c oxidase I pseudogene in tyrant flycatchers (family: Tyrannidae). Genome 53(12):1103-9, http://dx.doi.org/10.1139/G10-085.

[24] Clare, E.L, Kerr, K.C,R, von Königsröw, T.E., Wilson, J.J, Hebert, P.D.N. 2008. Diagnosing mitochondrial DNA diversity: Applications of a sentinel gene approach. J. Mol. Evol. 66:362–367, http://dx.doi.org/10.1007/s00239-008-9088-2.

[25] Song, H., Buhay, J.E., Whiting, M.F., Crandall, K.A. 2008. Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are amplified. Proc. Natl. Acad. Sci. U.S.A. 105:13486–13491, http://dx.doi.org/10.1073/pnas.0803706105.

[26] Matzen da Silva, J., Creer, S., dos Santos, A., Costa, A.C., Cunha, M.R., Costa, F.O., Carvalho, G.R. 2011. Systematic and evolutionary insights derived from mtDNA COI barcode diversity in the Decapoda (Crustacea: Malacostraca). PLoS ONE 6(5): e19449, http://dx.doi.org/10.1371/journal.pone.0019449.

[27] Kiyoshi, T., Sota, T. 2006. Differentiation of the dragonfly genus Davidius (Odonata: Gomphidae) in Japan inferred from mitochondrial and nuclear gene genealogies. Zool. Sci. 23(1): 1-8, http://dx.doi.org/10.2108/zsj.23.1.

[28] Yong, H.S., Lim, P-E., Tan, J., Ng, Y.F., Eamsobhana, P., Suana, I.W. 2014. Molecular phylogeny of Orthetrum dragonflies reveals cryptic species of Orthetrum prinusinus. Sci. Rep. 4:5553, http://dx.doi.org/10.1038/srep05553.

[29] Nei, M., Kumar, S. 2000. Molecular Evolution and Phylogenetics. Oxford University Press. New York. p. 352.

[30] Dijkstra, K-DB, Kalkman, V.J., Dow, R.A., Stokvis, F.R., van Tol, J. 2013. Redefining the damselfly families: a comprehensive molecular phylogeny of Zygoptera (Odonata). Syst. Entomol. 39(1):68-96, http://dx.doi.org/10.1111/syen.12035.

[31] Meier, R., Shiyang, K., Vaidya, G., Ng, P.K. 2006. DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success. Syst. Biol. 55(5):715–728, http://dx.doi.org/10.1080/10635150600969864.

[32] de Jong, M.A., Wahlberg, N., van Eijk, M., Brakefield, P.M., Zwaan, B.J. 2011. Mitochondrial DNA signature for range-wide populations of Bicyclus anynana suggests a rapid expansion from recent refugia. PLoS ONE 6(6): e21385, http://dx.doi.org/10.1371/journal.pone.0021385.
[33] Kirk, H, Freeland, J.R. 2011. Applications and implications of neutral versus non-neutral markers in molecular ecology. Int. J. Mol. Sci. 12(6):3966–3988, http://dx.doi.org/10.3390/ijms12063966
[34] Nei, M. 1987. Molecular Evolutionary Genetics. Columbia University Press. New York. p. 512.
[35] Bergmann, T., Rach, J., Damm, S., DeSalle, R., Schierwater, B., Hadrys, H. 2013. The potential of distance-based thresholds and character-based DNA barcoding for defining problematic taxonomic entities by CO1 and ND1. Mol. Ecol. Res. 13(6):1069–1081, http://dx.doi.org/10.1111/1755-0998.12125.
[36] Chippindale, P.T., Dave, V.K., Whitmore, D.H., Robinson, J.V. 1999. Phylogenetic relationships of North American damselflies of the genus Ischnura (Odonata: Zygoptera: Coenagrionidae) based on sequences of three mitochondrial genes. Mol. Phylog. Evol. 11(1):110-121, http://dx.doi.org/10.1006/mpev.1998.0559.
[37] Brown, J.M., McPeek, M.A., May, M.L. 2000. A phylogenetic perspective on habitat shifts and diversity in the North American Enallagama damselflies. Syst. Biol. 49(4):679-712, http://dx.doi.org/10.1080/10635150750049789.
[38] Folmer, O., Black, M., Hoeh, W., Lutz, R., Vrijenhoek, R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrate. Mol. Mar. Biol. Biotechnol. 3:294–299.
[39] Lin, S-C., Chen, Y-f, Shieh, S-h, Yang, P-s. 2014. A revision of the status of Psolodesmus mandarinus based on molecular and morphological evidence (Odonata: Calopterygidae). Odonatologica 43(1/2): 51-66.
[40] Kimura, M. 1981. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16:111-120, http://dx.doi.org/10.1007/BF01731581.
[41] Saitou, N., Nei. M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.
[42] Tamura K., Stecher G., Peterson D., Filipski A., Kumar, S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30:2725-2729, http://dx.doi.org/10.1093/molbev/msr197.
[43] Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4):783-791, http://dx.doi.org/10.2307/2408678.
[44] Hebert, P.D.N., Ratnasingham, S., deWaard, J.R. 2003. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society B: Biological Sciences, 270 (Suppl 1), S96–S99. http://doi.org/10.1098/rspb.2003.0025.