Our work in the area of synthesis of polynuclear manganese complexes and their magnetic properties led to the synthesis and crystalization of the title compound, \([\text{Mn}_7(\text{C}_8\text{H}_9\text{NO}_3)_4(\text{C}_8\text{H}_{10}\text{NO}_3)_4(\text{C}_2\text{H}_5\text{O})_2(\text{C}_7\text{H}_5\text{O}_2)_2\text{O}_2]/\text{C}_8\text{C}_2\text{H}_5\text{OH}\). Herein, we report the molecular and crystal structure of the title compound, which was synthesized by the reaction of \(\text{Mn}(\text{C}_6\text{H}_5\text{COO})_2\) with \(\text{pyridoxine} (\text{PNH}_2, \text{C}_8\text{H}_{11}\text{NO}_3)\) followed by the addition of tetramethylammonium hydroxide (TMAOH). The core of this centrosymmetric complex is a cage-like structure consisting of six \(\text{Mn}^{II}\) ions and one \(\text{Mn}^{III}\) ion bound together through \(\text{Mn—O}\) bonds. The compound crystallizes in hydrogen-bonded layers formed by \(\text{O—H} \cdots \text{N}\) hydrogen bonds involving the aromatic amine group of the ligand PN\(^2\) with the neighboring O atoms from the PNH\(^-\) ligand. The crystal structure has large voids present in which highly disordered solvent molecules (ethanol) sit. A solvent mask was calculated and 181 electrons were found in a volume of 843 Å\(^3\) in one void per triclinic unit cell. This is consistent with the presence of seven ethanol molecules per formula unit, which accounts for 182 electrons per unit cell. Additionally, one ethanol molecule was found to be ordered in the crystal.

Chemical scheme

3D view
The heptanuclear title compound is \([\text{Mn}_7(\text{PN})_4(\text{PNH})_4(\text{EtO})_2] \cdot 8(\text{C}_2\text{H}_6\text{O})\), where \(\text{PN}_2\) refers to the doubly deprotonated ligand pyridoxine (PNH2, IUPAC name: 5-hydroxy-6-methyl-3,4-pyridinedimethanol), a water-soluble, naturally occurring vitamer of Vitamin B6 involved in the metabolism of all three macronutrients, namely proteins, lipids, and carbohydrates. This ligand plays the pivotal role as a linker (Stouder et al., 2017).

The \(\text{PNH}_2\) ligand is comprised of aliphatic and aromatic alkoxide groups, and those in principle can adopt both bridging and chelating modes while binding with metals. The partially labeled molecular structure of the title compound is shown in Fig. 1. The core of the centrosymmetric complex (Fig. 2), is comprised of three triangular \(\text{Mn}_3\) units connected via the \(\text{Mn}3\) atom at the center of this cage-like structure. The core consists of six \(\text{Mn}^{III}\) (\(\text{Mn}1, \text{Mn}2, \text{Mn}4\)) ions and one \(\text{Mn}^{II}\) (\(\text{Mn}3\)) ion. The central \(\text{Mn}3\) ion is connected to \(\text{Mn}1\) and \(\text{Mn}2\) via a \(\mu_3\)-O oxido ion (O2) and to \(\text{Mn}4\) via \(\mu_3\)-O atoms (O1, O4) coming from the alkoxide arm of a \(\text{PN}^{2-}\) group that is chelating to \(\text{Mn}4\). Apart from that, \(\text{Mn}1\) and \(\text{Mn}2\) are connected via a bridging \(\mu\)-O atom from the ethoxide group (O3) and a carboxylate group (O11, O12). \(\text{Mn}1\) is further connected to \(\text{Mn}4\) via a bridging \(\mu\)-O (O3) from the alkoxide arm of \(\text{PN}^{2-}\) group and a \(\mu_3\)-O atom (O1) from the alkoxide arm of a \(\text{PN}^{2-}\) group. Similarly, \(\text{Mn}2\) is connected to \(\text{Mn}4\) via a bridging \(\mu\)-O (O10) from the alkoxide arms of the \(\text{PN}^{2-}\) group and a \(\mu_3\)-O atom (O4) from the alkoxide arm of a \(\text{PN}^{2-}\) group. The neutral complex is thus comprised of six \(\text{Mn}^{III}\) ions, one \(\text{Mn}^{II}\) ion, two oxide ions, two ethoxide ions, two carboxylate ions, four doubly deprotonated, and four singly deprotonated ligands. All \(\text{Mn}\) ions possess octahedral environments. Bond-valence sum (BVS) calculations (Brese & O’Keefe, 1991) show that one of the alkoxide arms of all eight \(\text{PNH}_2\) ligands is deprotonated; however, four of the ligands, namely \(\text{PN}^{2-}\), exist in the zwitterionic form where the aromatic amine functionality is protonated. BVS calculations also confirmed that \(\text{Mn}1, \text{Mn}2,\) and \(\text{Mn}4\) are \(\text{Mn}^{III}\) ions.

Inspection of the crystal packing of the complex shows that the \(\text{Mn}_7\) unit relates to its four neighboring units by \(\text{O} - \text{H} \cdots \text{N}\) hydrogen bonds involving the aromatic amine (N1, N3) group of the ligand \(\text{PN}^{2-}\) with the neighboring O atoms (O15, O14). Often such polymetallic complexes exhibit magnetic properties (Saha et al., 2011a), catalytic properties (Yamada et al., 2015), optical properties (Aboshyan-Sorgho et al., 2012) and biological activities (Kuczer et al., 2013). In order to support the network of three-dimensional polymetallic units, alkoxide-based ligands play an important role since this functionality is an excellent bridging group that fosters higher nuclearity products formation (Saha et al., 2011b). Herein, we explore the coordination chemistry of pyridoxine (\(\text{PNH}_2\), IUPAC name: 5-hydroxy-6-methyl-3,4-pyridinedimethanol), a water-soluble, naturally occurring vitamer of Vitamin B6 involved in the metabolism of all three macronutrients, namely proteins, lipids, and carbohydrates.

Table 1
Hydrogen-bond geometry (Å, °).

D—H···A	D—H	H···A	D···A	D—H···A	
O14—H14—N3	0.84	1.80	2.619	4	163
O15—H15—N1''	0.84	1.84	2.675	4	175
O17—H17—O13''	0.84	1.89	2.684	5	158

Symmetry codes: (i) \(-x+1, -y, -z+2\); (ii) \(x, y, z-1\); (iii) \(-x+1, -y+1, -z+1\).
from the PNH⁻ ligand (Fig. 3). In addition to the hydrogen bonds between neighboring molecules, there is also an O—H···O hydrogen bond between two OH groups on adjacent ligands (O17, O13). Table 1 gives details of these hydrogen-bonding interactions. The solid-state structural analysis of such complexes can give us valuable insights on potential uses of such materials for catalytic, magnetic and/or biological activity.

The crystal structure has large voids present in which highly disordered solvent molecules (ethanol) sit. A solvent mask was calculated and 181 electrons were found in a volume of 843 Å³ in one void per triclinic unit cell. This is consistent with the presence of seven ethanol molecules per formula unit, which accounts for 182 electrons per unit cell. Additionally, one ethanol molecule O16/C42/C43 was found to be ordered in the crystal.

Synthesis and crystallization

The reaction was carried out in presence of air. To a stirred solution of Mn(C₆H₅COO)₂ (0.17 g, 1.0 mmol) in 12 ml of ethanol, pyridoxine (PNH₂, 0.10 g, 1.0 mmol) was added at 343 K. The solution turned from pink to light brown after the addition of PNH₂, which is an indication of oxidation of MnII to MnIII by the atmospheric O₂. After 30 min, TMAOH (0.09 g, 1.0 mmol) was added to the stirred solution. Heating was ceased and the reaction was set to stir for 3 h, after which the dark-brown solution was filtered and set for slow diffusion with Et₂O. X-ray quality crystals grew after two weeks with a yield of 23%. The crystals were stored in the mother solvent until X-ray study.

Table 2: Experimental details.

Crystal data	Chemical formula
	[Mn₇(C₆H₅NO₃)₄(C₈H₁₀NO₃)₄(C₂H₅O)₂(C₇H₅O₂)₂O₂]-8C₂H₆O
M₀	2449.71
Crystal system, space group	Triclinic, P
Temperature (K)	100
a, b, c (Å)	12.9774 (5), 14.6762 (7), 16.7750 (6)
V (Å³)	2859.0 (2)
Z	1
Radiation type	Mo Kα
μ (mm⁻¹)	0.83
Crystal size (mm)	0.09 × 0.08 × 0.06

Data collection	Diffractometer
	Rigaku XtaLAB Synergy, Dual-flex, HyPix

Absorption correction	Multi-scan (CrysAlis PRO; Rigaku OD: 2020)
Tₘᵢₓ, Tₘᵢₜ	0.966, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections	34399, 10190, 7884
Rₘᵢₓ	0.037
(sin θ/λ)ₘᵢₓ (Å⁻¹)	0.597

Refinement	R(F² > 2σ(F²)), wR(F²), S
No. of reflections	10190
No. of parameters	621
No. of restraints	9
H-atom treatment	H-atom parameters constrained
Δρₘᵢₓ, Δρₘᵢₜ (e Å⁻³)	0.98, −0.28

Computer programs: CrysAlis PRO (Rigaku OD: 2020), SHELXT (Sheldrick, 2015a), SHELXL2018/5 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).
Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Disordered molecules of ethanol were tentatively added to the model. Only one ethanol molecule, with 50% occupancy, refined well without breaking up when anisotropic temperature factors were included, and was kept. The contribution from the other seven disordered ethanol solvent molecules to the structure factors was calculated using the solvent mask tool in OLEX2 (Dolomanov et al., 2009).

Funding information

Funding for this research was provided by: National Science Foundation (grant No. 1359229).

References

Aboshyan-Sorgho, L., Nozary, H., Aebischer, A., Bünzli, J.-C. G., Morgantini, P.-Y., Kittilstved, K. R., Hauser, A., Eliseeva, S. V., Petoud, S. & Piguet, C. (2012). J. Am. Chem. Soc. 134, 12675–12684.

Brese, N. E. & O’Keeffe, M. (1991). Acta Cryst. B47, 192–197.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

Fielden, J. & Cronin, L. (2005). In Encyclopedia of Supramolecular Chemistry. London: Taylor & Francis.

Hu, Y.-Q., Zeng, M.-H., Zhang, K., Hu, S., Zhou, F.-F. & Kurmoo, M. (2013). J. Am. Chem. Soc. 135, 7901–7908.

Kuczer, M., Blaszak, M., Czarniewska, E., Rosiński, G. & Kowalik-Jankowska, T. (2013). Inorg. Chem. 52, 5951–5961.

Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.

Saha, A., Abboud, K. A. & Christou, G. (2011b). Inorg. Chem. 50, 12774–12784.

Saha, A., Thompson, M., Abboud, K. A., Wernsdorfer, W. & Christou, G. (2011a). Inorg. Chem. 50, 10476–10485.

Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.

Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.

Stoudor, C. E., Warren, K. J., Perdue, O. F., Stewart, A. L., Padgett, C. W., Amonette, A. J. & Saha, A. (2017). Inorg. Chim. Acta, 464, 172–181.

Tasiopoulos, A. J., Vinslava, A., Wernsdorfer, W., Abboud, K. A. & Christou, G. (2004). Angew. Chem. Int. Ed. 43, 2117–2121.

Yamada, Y., Oyama, K., Gates, R. & Fukuzumi, S. (2015). Angew. Chem. Int. Ed. 54, 5613–5617.
full crystallographic data

Di-µ-benzoato-di-µ-ethanolato-tetrakis[µ3-5-(hydroxymethyl)-2-methyl-4-(oxidomethyl)pyridin-1-iium-3-olato]tetrakis[µ3-5-(hydroxymethyl)-2-methyl-4-(oxidomethyl)pyridin-3-olato]di-µ3-oxido-heptamanganese(II,III) ethanol octasolvate

Arpita Saha, Clifford W. Padgett, Pierre LeMagueres, Kiana Moncur and Glory Onajobi

Di-µ-benzoato-di-µ-ethanolato-tetrakis[µ3-5-(hydroxymethyl)-2-methyl-4-(oxidomethyl)pyridin-1-iium-3-olato]tetrakis[µ3-5-(hydroxymethyl)-2-methyl-4-(oxidomethyl)pyridin-3-olato]di-µ3-oxido-heptamanganese(II,III) ethanol octasolvate

Crystal data

\[\text{[Mn}_7\text{(C}_8\text{H}_9\text{NO}_3)_4\text{Cl}_2\text{(C}_8\text{H}_10\text{NO}_3)_4\text{(C}_2\text{H}_5\text{O})_2\text{(C}_7\text{H}_5\text{O}_2)_2\text{O}_2\text{]}·8\text{C}_2\text{H}_6\text{O} F(000) = 1274}\]

\[M_r = 2449.71\]

Triclinic, P\(\bar{1}\)

\(a = 12.9774 (5) \text{ Å}\)

\(b = 14.6762 (7) \text{ Å}\)

\(c = 16.7750 (6) \text{ Å}\)

\(\alpha = 66.578 (4)^\circ\)

\(\beta = 77.956 (3)^\circ\)

\(\gamma = 81.343 (4)^\circ\)

\(V = 2859.0 (2) \text{ Å}^3\)

\(Z = 1\)

Data collection

Rigaku XtaLAB Synergy, Dualflex, HyPix diffractometer

Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source

Mirror monochromator

Detector resolution: 10.0000 pixels mm\(^{-1}\)

\(\omega\) scans

Absorption correction: multi-scan

(CrysAlisPro; Rigaku OD, 2020)

Refinement

Refinement on \(F^2\)

Least-squares matrix: full

\(R[F^2 > 2\sigma(F^2)] = 0.048\)

\(wR(F^2) = 0.141\)

\(S = 1.07\)

10190 reflections

621 parameters

9 restraints

\(\text{Primary atom site location: dual}\)

\(\text{Secondary atom site location: difference Fourier map}\)

\(\text{Hydrogen site location: inferred from neighbouring sites}\)

\(\text{H-atom parameters constrained}\)

\(w = 1/[\sigma^2(F^2) + (0.0847P)^2 + 0.6047P]\)

where \(P = (F^2 + 2F^2) / 3\)
Special details

Refinement. Hydrogen atoms were attached via the riding model at calculated positions using suitable HFIX commands.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

	x	y	z	U(eq)/Å²	Occ. (<1)
Mn1	0.72295 (3)	0.42295 (3)	0.56146 (3)	0.03246 (13)	
Mn2	0.72328 (3)	0.52363 (3)	0.37463 (3)	0.03223 (13)	
Mn3	0.500000	0.500000	0.500000	0.02829 (15)	
Mn4	0.49800 (4)	0.39857 (3)	0.70324 (3)	0.03243 (13)	
O1	0.55540 (16)	0.51184 (14)	0.60120 (12)	0.0335 (5)	0.035 (5)
O2	0.63608 (16)	0.43484 (15)	0.47679 (12)	0.0346 (5)	0.0346 (5)
O3	0.64800 (16)	0.32378 (15)	0.65648 (13)	0.0377 (5)	0.0377 (5)
O4	0.43587 (16)	0.37094 (14)	0.62110 (12)	0.0317 (4)	0.0317 (4)
O5	0.77496 (16)	0.54310 (15)	0.46695 (12)	0.0340 (5)	0.0340 (5)
O6	0.54308 (18)	0.43981 (16)	0.78180 (13)	0.0427 (5)	0.0427 (5)
O7	0.80492 (17)	0.43486 (16)	0.63726 (13)	0.0399 (5)	0.0399 (5)
O8	0.45964 (18)	0.27999 (16)	0.79730 (13)	0.0429 (5)	0.0429 (5)
O9	0.80638 (17)	0.62354 (16)	0.28792 (12)	0.0401 (5)	0.0401 (5)
O10	0.65480 (16)	0.51228 (16)	0.29100 (12)	0.0365 (5)	0.0365 (5)
O11	0.84197 (18)	0.40553 (17)	0.37249 (14)	0.0450 (5)	0.0450 (5)
O12	0.64048 (18)	0.32916 (16)	0.51759 (14)	0.0446 (5)	0.0446 (5)
O13	0.5745 (3)	0.8308 (2)	0.5748 (2)	0.0938 (11)	0.0938 (11)
H13	0.563029	0.867061	0.604331	0.141*	0.141*
O14	0.7656 (3)	0.0844 (3)	0.9805 (2)	0.1267 (17)	0.1267 (17)
H14	0.722079	0.044696	1.017122	0.190*	0.190*
O15	0.7882 (3)	0.6430 (4)	-0.07481 (18)	0.1081 (14)	0.1081 (14)
H15	0.752050	0.628887	-0.103888	0.162*	0.162*
O17	0.4330 (3)	0.0810 (3)	0.5982 (2)	0.0919 (11)	0.0919 (11)
H17	0.432053	0.094953	0.546618	0.138*	0.138*
N1	0.6795 (3)	0.6054 (2)	0.82394 (19)	0.0565 (8)	0.0565 (8)
N2	0.8660 (2)	0.3582 (3)	0.85144 (18)	0.0572 (8)	0.0572 (8)
H2	0.898645	0.380528	0.880277	0.069*	0.069*
N3	0.3404 (3)	0.0499 (2)	0.8848 (2)	0.0625 (9)	0.0625 (9)
N4	0.8846 (3)	0.7742 (2)	0.06429 (17)	0.0541 (8)	0.0541 (8)
H4	0.919064	0.827978	0.033777	0.065*	0.065*
C1	0.5477 (3)	0.6057 (2)	0.6102 (2)	0.0437 (8)	0.0437 (8)
H1A	0.472136	0.628671	0.620333	0.052*	0.052*
H1B	0.581389	0.655189	0.554310	0.052*	0.052*
C2	0.5985 (3)	0.6023 (2)	0.68398 (19)	0.0398 (7)	0.0398 (7)
C3	0.5897 (2)	0.5214 (2)	0.7651 (2)	0.0383 (7)	0.0383 (7)
C4	0.6299 (3)	0.5275 (3)	0.8349 (2)	0.0453 (8)	0.0453 (8)
C5	0.6900 (4)	0.6800 (3)	0.7461 (3)	0.0668 (12)	0.0668 (12)
H5	0.726298	0.734859	0.739336	0.080*	0.080*
C6	0.6519 (3)	0.6829 (3)	0.6746 (2)	0.0541 (9)	0.0541 (9)

IUCrData (2021). 6, x201643
	x	y	z	u		
C7	0.6150 (3)	0.4451 (3)	0.9227 (2)	0.0521 (9)		
H7A	0.657552	0.453886	0.960656	0.078*		
H7B	0.637445	0.381370	0.915995	0.078*		
H7C	0.540275	0.445717	0.949300	0.078*		
C8	0.6669 (4)	0.7730 (3)	0.5903 (3)	0.0711 (13)		
H8A	0.719651	0.813228	0.593372	0.085*		
H8B	0.694921	0.751164	0.540623	0.085*		
C9	0.7070 (3)	0.2479 (2)	0.7162 (2)	0.0480 (8)		
H9A	0.759715	0.213800	0.683475	0.058*		
H9B	0.658742	0.198088	0.759588	0.058*		
C10	0.7632 (3)	0.2870 (2)	0.7647 (2)	0.0438 (8)		
C11	0.7743 (3)	0.2318 (3)	0.8526 (2)	0.0579 (10)		
C12	0.8258 (3)	0.2700 (3)	0.8944 (2)	0.0657 (12)		
H12	0.832882	0.233481	0.954365	0.079*		
C13	0.8599 (3)	0.4152 (3)	0.7668 (2)	0.0445 (8)		
C14	0.8080 (2)	0.3788 (2)	0.72120 (19)	0.0401 (7)		
C15	0.7288 (3)	0.1302 (4)	0.9029 (3)	0.0804 (15)		
H15A	0.650705	0.138997	0.914161	0.096*		
H15B	0.749629	0.088584	0.867154	0.096*		
C16	0.9105 (3)	0.5112 (3)	0.7254 (2)	0.0543 (9)		
H16A	0.900561	0.543147	0.768119	0.082*		
H16B	0.878194	0.554992	0.674076	0.082*		
H16C	0.986260	0.498703	0.706714	0.082*		
C17	0.4377 (3)	0.2715 (2)	0.62780 (19)	0.0396 (7)		
H17A	0.510846	0.250131	0.607072	0.048*		
H17B	0.392631	0.270284	0.587405	0.048*		
C18	0.4011 (3)	0.1963 (2)	0.7189 (2)	0.0404 (7)		
C19	0.4165 (2)	0.2055 (2)	0.7954 (2)	0.0385 (7)		
C20	0.3851 (3)	0.1288 (2)	0.8786 (2)	0.0470 (8)		
C21	0.3266 (4)	0.0416 (3)	0.8115 (3)	0.0703 (12)		
H21	0.295627	−0.015756	0.817061	0.084*		
C22	0.3544 (3)	0.1115 (3)	0.7281 (2)	0.0552 (10)		
C23	0.4023 (3)	0.1353 (3)	0.9612 (2)	0.0558 (10)		
H23A	0.474186	0.108487	0.971879	0.084*		
H23B	0.351217	0.096644	1.010739	0.084*		
H23C	0.392797	0.205080	0.955318	0.084*		
C24	0.3357 (4)	0.0933 (3)	0.6510 (3)	0.0709 (13)		
H24A	0.296834	0.032815	0.672004	0.085*		
H24B	0.291910	0.150337	0.615491	0.085*		
C25	0.8829 (2)	0.5660 (3)	0.4548 (2)	0.0438 (8)		
H25A	0.922119	0.560551	0.399362	0.053*		
H25B	0.917118	0.516849	0.503944	0.053*		
C26	0.8890 (3)	0.6662 (3)	0.4515 (3)	0.0716 (12)		
H26A	0.849209	0.714489	0.406701	0.107*		
H26B	0.962998	0.682037	0.436342	0.107*		
H26C	0.858678	0.669216	0.509054	0.107*		
C27	0.8156 (2)	0.6543 (2)	0.20096 (18)	0.0347 (7)		
C28	0.8713 (3)	0.7392 (2)	0.1522 (2)	0.0422 (8)		
Atomic displacement parameters (Å²)	U₁₁	U₂₂	U₃₃	U₁₂	U₁₃	U₂₃
-------------------------------------	------	------	------	------	------	------
Mn1	0.0324 (3)	0.0366 (3)	0.0289 (2)	-0.0128 (2)	-0.00724 (18)	-0.00816 (18)
Mn2	0.0324 (3)	0.0407 (3)	0.0269 (2)	-0.0137 (2)	-0.00393 (18)	-0.01295 (19)
Mn3	0.0290 (3)	0.0337 (3)	0.0242 (3)	-0.0124 (3)	-0.0051 (2)	-0.0093 (2)
Mn4	0.0368 (3)	0.0378 (3)	0.0241 (2)	-0.0140 (2)	-0.00685 (18)	-0.00830 (18)
O1	0.0416 (12)	0.0341 (11)	0.0270 (10)	-0.0156 (9)	-0.0040 (8)	-0.0099 (8)
O2	0.0350 (12)	0.0402 (11)	0.0317 (10)	-0.0157 (9)	-0.0073 (8)	-0.0114 (9)
O3	0.0363 (12)	0.0360 (11)	0.0363 (11)	-0.0132 (9)	-0.0077 (9)	-0.0043 (9)
O4	0.0361 (11)	0.0345 (11)	0.0254 (9)	-0.0145 (9)	-0.0056 (8)	-0.0078 (8)
O5	0.0333 (11)	0.0419 (11)	0.0284 (10)	-0.0166 (9)	-0.0042 (8)	-0.0107 (8)

IUCrData (2021). 6, x201643
Atom	U1	U2	U3	U4	U5	U6
O6	0.0535	0.0479	0.0298	-0.0168	-0.0139	-0.0098
O7	0.0442	0.0449	0.0305	-0.0199	-0.0099	-0.0065
O8	0.0528	0.0455	0.0274	-0.0202	-0.0076	-0.0044
O9	0.0459	0.0528	0.0274	-0.0247	-0.0002	-0.0169
O10	0.0391	0.0462	0.0308	-0.0153	-0.0038	-0.0189
O11	0.0438	0.0499	0.0467	-0.0056	-0.0058	-0.0241
O12	0.0411	0.0443	0.0506	-0.0055	-0.0090	-0.0187
O13	0.140	0.0525	0.074	0.000	0.001	-0.0191
O14	0.099	0.139	0.078	-0.053	-0.034	0.050
O15	0.113	0.189	0.0413	-0.080	-0.050	-0.044
O16	0.133	0.082	0.083	0.008	-0.040	-0.050
N1	0.067	0.069	0.051	-0.0224	-0.0145	-0.0322
N2	0.0421	0.093	0.0352	-0.0091	-0.0118	-0.0189
N3	0.082	0.0445	0.0467	-0.0233	-0.0100	0.0036
N4	0.070	0.0525	0.0327	-0.0244	-0.0011	-0.0058
C1	0.062	0.0350	0.0387	-0.0155	-0.0122	-0.0127
C2	0.0406	0.0474	0.0366	-0.0100	-0.0038	-0.0200
C3	0.0354	0.0479	0.0403	-0.0094	-0.0082	-0.0227
C4	0.048	0.060	0.0373	-0.0073	-0.0081	-0.0261
C5	0.093	0.064	0.057	-0.037	-0.017	-0.025
C6	0.065	0.062	0.0480	-0.0258	-0.0099	-0.0268
C7	0.061	0.065	0.0404	-0.0041	-0.0170	-0.0265
C8	0.103	0.062	0.059	-0.045	-0.015	-0.021
C9	0.047	0.0394	0.0468	-0.0080	-0.0133	-0.0004
C10	0.0345	0.0463	0.0381	-0.0076	-0.0100	0.0005
C11	0.037	0.072	0.0436	-0.0102	-0.0120	0.0050
C12	0.043	0.100	0.0308	-0.007	-0.0095	0.0026
C13	0.0352	0.065	0.0342	-0.0054	-0.0066	-0.0187
C14	0.0334	0.0497	0.0327	-0.0053	-0.0083	-0.0088
C15	0.056	0.098	0.052	-0.020	-0.0154	0.017
C16	0.057	0.068	0.054	-0.0170	-0.0147	-0.0313
C17	0.0459	0.0403	0.0372	-0.0132	-0.0083	-0.0152
C18	0.0438	0.0339	0.0405	-0.0100	-0.0091	-0.0074
C19	0.0384	0.0336	0.0374	-0.0080	-0.0057	-0.0056
C20	0.051	0.0399	0.0365	-0.0065	-0.0060	-0.0043
C21	0.101	0.042	0.063	-0.035	-0.021	0.0003
C22	0.076	0.0410	0.049	-0.0205	-0.0168	-0.0080
C23	0.071	0.0472	0.0344	-0.0994	-0.0035	-0.0002
C24	0.105	0.047	0.065	-0.034	-0.021	-0.0123
C25	0.0346	0.062	0.0352	-0.0206	-0.0073	-0.0121
C26	0.058	0.090	0.090	-0.035	-0.002	-0.052
C27	0.0361	0.0407	0.0291	-0.0071	-0.0024	-0.0150
C28	0.046	0.0444	0.0360	-0.0111	-0.0003	-0.0156
C29	0.068	0.074	0.0275	-0.019	-0.0058	-0.0087
C30	0.052	0.068	0.0324	-0.0186	-0.0068	-0.0208
C31	0.0332	0.0505	0.0324	-0.0076	-0.0028	-0.0202
C32	0.048	0.053	0.0351	-0.0161	-0.0026	-0.0251
C33	0.064	0.052	0.0493	-0.0304	0.0074	-0.0244
-----	---	---	---	---	---	
C34	0.067 (3)	0.116 (4)	0.0329 (18)	−0.039 (3)	−0.0045 (17)	−0.023 (2)
C35	0.0377 (18)	0.0455 (19)	0.052 (2)	−0.0145 (15)	−0.0017 (15)	−0.0246 (16)
C36	0.041 (2)	0.0444 (19)	0.073 (2)	−0.0172 (16)	−0.0055 (17)	−0.0277 (18)
C37	0.050 (2)	0.060 (2)	0.082 (3)	−0.0166 (19)	0.0028 (19)	−0.041 (2)
C38	0.068 (3)	0.071 (3)	0.098 (3)	−0.010 (2)	0.003 (2)	−0.054 (3)
C39	0.066 (3)	0.070 (3)	0.128 (4)	−0.003 (2)	−0.006 (3)	−0.062 (3)
C40	0.060 (3)	0.049 (2)	0.124 (4)	−0.003 (2)	−0.028 (3)	−0.038 (3)
C41	0.047 (2)	0.052 (2)	0.083 (3)	−0.0119 (18)	−0.031 (19)	−0.036 (2)
O16	0.061 (4)	0.071 (3)	0.103 (4)	−0.008 (3)	−0.034 (3)	−0.032 (3)
C42	0.026 (3)	0.066 (3)	0.096 (5)	−0.013 (3)	−0.005 (3)	−0.031 (3)
C43	0.054 (5)	0.077 (4)	0.123 (7)	0.017 (4)	−0.031 (5)	−0.050 (5)

Geometric parameters (Å, °)

Bond/Angle	Distance/°	Bond/Angle	Distance/°
Mn1—Mn2	2.8844 (6)	C8—H8B	0.9900
Mn1—Mn3	3.1695 (5)	C9—H9A	0.9900
Mn1—O1	2.471 (2)	C9—H9B	0.9900
Mn1—O2	1.9315 (19)	C9—C10	1.506 (5)
Mn1—O3	1.8815 (19)	C10—C11	1.398 (4)
Mn1—O5	1.9410 (19)	C10—C14	1.400 (5)
Mn1—O7	1.891 (2)	C11—C12	1.369 (6)
Mn1—O12	2.154 (2)	C11—C15	1.529 (6)
Mn2—Mn3	3.1810 (4)	C12—H12	0.9500
Mn2—O2	1.9428 (19)	C13—C14	1.405 (5)
Mn2—O4\[^4\]	2.394 (2)	C13—C16	1.486 (5)
Mn2—O5	1.9422 (19)	C15—H15A	0.9900
Mn2—O9	1.8853 (19)	C15—H15B	0.9900
Mn2—O10	1.881 (2)	C16—H16A	0.9800
Mn2—O11	2.145 (2)	C16—H16B	0.9800
Mn3—Mn4\[^4\]	3.1274 (4)	C16—H16C	0.9800
Mn3—O1	2.0519 (19)	C17—H17A	0.9900
Mn3—O1\[^4\]	2.0518 (19)	C17—C18	1.515 (4)
Mn3—O2	1.920 (2)	C18—C19	1.400 (4)
Mn3—O2\[^4\]	1.920 (2)	C18—C22	1.404 (5)
Mn3—O4\[^4\]	2.2620 (18)	C19—C20	1.426 (4)
Mn3—O4	2.2620 (18)	C20—C23	1.490 (5)
Mn4—O1	1.9563 (18)	C21—H21	0.9500
Mn4—O3	2.239 (2)	C21—C22	1.379 (5)
Mn4—O4	1.9286 (19)	C22—C24	1.492 (5)
Mn4—O6	1.873 (2)	C23—H23A	0.9800
Mn4—O8	1.875 (2)	C23—H23B	0.9800
Mn4—O10\[^4\]	2.212 (2)	C23—H23C	0.9800
O1—C1	1.432 (4)	C24—H24A	0.9900
O3—C9	1.417 (4)	C24—H24B	0.9900
O4—C17	1.415 (4)	C25—H25A	0.9900
O5—C25	1.445 (3)	C25—H25B	0.9900
O6—C3	1.327 (4)	C25—C26	1.462 (5)
O7—C14 1.324 (3) C26—H26A 0.9800
O8—C19 1.315 (4) C26—H26B 0.9800
O9—C27 1.329 (3) C26—H26C 0.9800
O10—C32 1.420 (3) C27—C28 1.400 (4)
O11—C35 1.252 (4) C27—C31 1.396 (4)
O12—C35 1.274 (4) C28—C33 1.493 (5)
O13—H13 0.8400 C29—H29 0.9500
O13—C8 1.368 (6) C29—C30 1.370 (5)
O14—H14 0.8400 C30—C31 1.400 (4)
O14—C15 1.356 (5) C30—C34 1.520 (5)
O15—H15 0.8400 C31—C32 1.511 (4)
O15—C34 1.402 (4) C32—H32A 0.9900
O17—H17 0.8400 C32—H32B 0.9900
O17—C24 1.415 (6) C33—H33A 0.9800
N1—C4 1.327 (4) C33—H33B 0.9800
N1—C5 1.325 (5) C33—H33C 0.9800
N2—H2 0.8800 C34—H34A 0.9900
N2—C12 1.330 (5) C34—H34B 0.9900
N2—C13 1.343 (4) C35—C36 1.493 (5)
N3—C20 1.330 (5) C36—C37 1.379 (5)
N3—C21 1.333 (5) C36—C41 1.379 (5)
N4—H4 0.8800 C37—H37 0.9500
N4—C28 1.337 (4) C37—C38 1.375 (6)
N4—C29 1.347 (5) C38—H38 0.9500
C1—H1A 0.9900 C38—C39 1.359 (7)
C1—H1B 0.9900 C39—H39 0.9500
C1—C2 1.500 (4) C39—C40 1.377 (7)
C2—C3 1.402 (4) C40—H40 0.9500
C2—C6 1.400 (5) C40—C41 1.396 (6)
C3—C4 1.416 (4) C41—H41 0.9500
C4—C7 1.484 (5) O16—H16 0.8400
C5—H5 0.9500 O16—C42 1.380 (9)
C5—C6 1.373 (5) C42—H42A 0.9900
C6—C8 1.504 (5) C42—H42B 0.9900
C7—H7A 0.9800 C42—C43 1.384 (12)
C7—H7B 0.9800 C43—H43A 0.9800
C7—H7C 0.9800 C43—H43B 0.9800
C8—H8A 0.9900 C43—H43C 0.9800

Mn2—Mn1—Mn3 63.190 (13) C28—N4—H4 118.9
O1—Mn1—Mn2 93.74 (5) C28—N4—C29 122.1 (3)
O1—Mn1—Mn3 40.33 (4) C29—N4—H4 118.9
O2—Mn1—Mn2 42.04 (6) O1—C1—H1A 108.9
O2—Mn1—Mn3 34.50 (6) O1—C1—H1B 108.9
O2—Mn1—O1 74.81 (8) O1—C1—C2 113.5 (3)
O2—Mn1—O5 81.03 (8) H1A—C1—H1B 107.7
O2—Mn1—O12 92.21 (9) C2—C1—H1A 108.9
O3—Mn1—Mn2 137.18 (6) C2—C1—H1B 108.9
Bond	Distance (Å)	Bond	Distance (Å)
O3—Mn1—Mn3	84.67 (6)	C3—C2—C1	121.5 (3)
O3—Mn1—O1	75.72 (8)	C6—C2—C1	120.2 (3)
O3—Mn1—O2	95.59 (8)	C6—C2—C3	118.2 (3)
O3—Mn1—O5	168.24 (9)	O6—C3—C2	124.1 (3)
O3—Mn1—O7	90.81 (9)	O6—C3—C4	117.3 (3)
O3—Mn1—O12	97.35 (9)	O6—C2—C4	118.6 (3)
O5—Mn1—Mn2	42.05 (6)	N1—C4—C3	121.6 (3)
O5—Mn1—Mn3	86.28 (6)	N1—C4—C7	119.3 (3)
O5—Mn1—O1	92.52 (8)	C3—C4—C7	119.1 (3)
O5—Mn1—O12	94.05 (9)	N1—C5—H5	117.9
O7—Mn1—Mn2	132.02 (6)	N1—C5—C6	124.2 (3)
O7—Mn1—Mn3	139.87 (7)	C6—C5—H5	117.9
O7—Mn1—O1	99.97 (8)	C2—C6—C8	122.7 (3)
O7—Mn1—O2	170.40 (9)	C5—C6—C2	118.3 (3)
O7—Mn1—O5	91.27 (8)	C5—C6—C8	119.0 (3)
O7—Mn1—O12	94.07 (9)	C4—C7—H7A	109.5
O12—Mn1—Mn3	86.28 (6)	C4—C7—H7B	109.5
O12—Mn1—O1	164.36 (8)	C4—C7—H7C	109.5
Mn1—Mn2—Mn3	62.784 (12)	H7A—C7—H7B	109.5
O2—Mn2—Mn1	41.74 (6)	H7A—C7—H7C	109.5
O2—Mn2—Mn3	34.32 (6)	C6—C8—H8A	109.2
O2—Mn2—O4	79.51 (8)	C6—C8—H8B	109.2
O2—Mn2—O11	92.14 (9)	O13—C8—H8B	109.2
O4—Mn2—Mn1	98.83 (5)	O13—C8—C6	112.0 (4)
O4—Mn2—Mn3	45.19 (4)	O13—C8—H8A	109.2
O5—Mn2—Mn1	42.02 (6)	C10—C9—H9A	109.0
O5—Mn2—Mn3	85.93 (6)	O3—C9—H9A	109.0
O5—Mn2—O2	80.72 (8)	O3—C9—H9B	109.0
O5—Mn2—O4	95.70 (8)	O3—C9—C10	112.9 (3)
O5—Mn2—O11	92.82 (9)	H9A—C9—H9B	107.8
O9—Mn2—Mn1	131.22 (6)	C10—C9—H9A	109.0
O9—Mn2—Mn3	140.22 (7)	C10—C9—H9B	109.0
O9—Mn2—O2	169.68 (9)	C11—C10—C9	121.0 (3)
O9—Mn2—O4	96.07 (8)	C11—C10—C14	118.9 (3)
O9—Mn2—O5	90.53 (8)	C14—C10—C9	120.1 (3)
O9—Mn2—O11	93.74 (9)	C10—C11—C15	121.1 (4)
O10—Mn2—Mn1	136.16 (6)	C12—C11—C10	119.2 (3)
O10—Mn2—Mn3	86.99 (6)	C12—C11—C15	119.7 (3)
O10—Mn2—O2	95.53 (8)	N2—C12—C11	120.3 (3)
O10—Mn2—O4	76.56 (8)	N2—C12—H12	119.8
O10—Mn2—O5	171.95 (9)	C11—C12—H12	119.8
O10—Mn2—O9	92.46 (8)	N2—C13—C14	117.5 (3)
O10—Mn2—O11	94.43 (9)	N2—C13—C16	119.1 (3)
O11—Mn2—Mn1	80.99 (6)	C14—C13—C16	123.4 (3)
O11—Mn2—Mn3	125.98 (6)	O7—C14—C10	123.4 (3)
O11—Mn2—O4	166.93 (8)	O7—C14—C13	116.7 (3)
Mn1i—Mn3—Mn1	180.0	C10—C14—C13	119.9 (3)
Bond	Angle (deg)	Torsion (deg)	Bond Length (Å)
----------------------	-------------	---------------	-----------------
Mn1—Mn3—Mn2	125.975 (11)	O14—C15—C11	109.7 (4)
Mn1—Mn3—Mn2	54.026 (11)	O14—C15—H15A	109.7
Mn1—Mn3—Mn2	125.973 (11)	O14—C15—H15B	109.7
Mn1—Mn3—Mn2	54.026 (11)	C11—C15—H15A	109.7
Mn2—Mn3—Mn2	180.0	C11—C15—H15B	109.7
Mn4—Mn3—Mn1	116.284 (12)	H15A—C15—H15B	108.2
Mn4—Mn3—Mn1	116.285 (12)	C13—C16—H16A	109.5
Mn4—Mn3—Mn1	63.716 (12)	C13—C16—H16B	109.5
Mn4—Mn3—Mn1	63.715 (12)	C13—C16—H16C	109.5
Mn4—Mn3—Mn2	62.297 (12)	H16A—C16—H16B	109.5
Mn4—Mn3—Mn2	62.298 (12)	H16A—C16—H16C	109.5
Mn4—Mn3—Mn2	117.702 (12)	H16B—C16—H16C	109.5
Mn4—Mn3—Mn2	117.703 (12)	O4—C17—H17A	108.3
Mn4—Mn3—Mn4	180.0	O4—C17—H17B	108.3
O1—Mn3—Mn2i	51.20 (6)	O4—C17—C18	115.8 (3)
O1—Mn3—Mn2i	128.80 (6)	H17A—C17—H17B	107.4
O1—Mn3—Mn2i	128.80 (6)	C18—C17—H17A	108.3
O1—Mn3—Mn2i	51.20 (6)	C18—C17—H17B	108.3
O1—Mn3—Mn2i	94.51 (6)	C19—C18—C17	122.2 (3)
O1—Mn3—Mn2i	94.51 (6)	C19—C18—C22	118.0 (3)
O1—Mn3—Mn2i	85.49 (6)	C22—C18—C17	119.8 (3)
O1—Mn3—Mn2i	85.49 (6)	O8—C19—C18	125.0 (3)
O1—Mn3—Mn2i	142.37 (5)	O8—C19—C20	116.1 (3)
O1—Mn3—Mn4i	37.63 (5)	C18—C19—C20	118.9 (3)
O1—Mn3—Mn4i	37.64 (5)	N3—C20—C19	121.4 (3)
O1—Mn3—Mn4i	142.37 (5)	N3—C20—C23	118.3 (3)
O1—Mn3—Mn1i	180.0	C19—C20—C23	120.3 (3)
O1—Mn3—O1i	104.56 (7)	N3—C21—H21	118.1
O1—Mn3—O1i	75.44 (7)	N3—C21—C22	123.8 (4)
O1—Mn3—O4i	104.56 (7)	C22—C21—H21	118.1
O1—Mn3—O4i	75.44 (7)	C22—C21—C24	122.5 (3)
O2—Mn3—Mn1i	34.74 (6)	C21—C22—C18	118.7 (3)
O2—Mn3—Mn1i	145.26 (6)	C21—C22—C24	118.8 (3)
O2—Mn3—Mn1i	34.74 (6)	C20—C23—H23A	109.5
O2—Mn3—Mn1i	145.26 (6)	C20—C23—H23B	109.5
O2—Mn3—Mn1i	145.20 (6)	C20—C23—H23C	109.5
O2—Mn3—Mn2i	34.80 (6)	H23A—C23—H23B	109.5
O2—Mn3—Mn2i	34.80 (6)	H23A—C23—H23C	109.5
O2—Mn3—Mn4i	145.21 (6)	H23B—C23—H23C	109.5
O2—Mn3—Mn4i	88.58 (6)	O17—C24—C22	110.3 (4)
O2—Mn3—Mn4i	91.42 (6)	O17—C24—H24A	109.6
O2—Mn3—Mn4i	91.42 (6)	O17—C24—H24B	109.6
O2—Mn3—Mn4i	88.58 (6)	C22—C24—H24A	109.6
O2—Mn3—Mn4i	85.92 (8)	C22—C24—H24B	109.6
O2—Mn3—O1i	94.08 (8)	H24A—C24—H24B	108.1
O2—Mn3—O1i	85.92 (8)	O5—C25—H25A	109.3
O2—Mn3—O1i	94.08 (8)	O5—C25—H25B	109.3
O2—Mn3—O1i	180.00 (12)	O5—C25—C26	111.8 (3)
Bond	Distance (Å)	Angle (°)	
----------------------	--------------	-------------	
O2—Mn3—O4	96.56 (8)	H25A—C25—H25B 107.9	
O2—Mn3—O4i	83.44 (8)	C26—C25—H25A 109.3	
O2—Mn3—O4	83.45 (8)	C26—C25—H25B 109.3	
O2—Mn3—O4i	96.55 (8)	C25—C26—H26A 109.5	
O4—Mn3—Mn1	94.02 (5)	C25—C26—H26B 109.5	
O4—Mn3—Mn1i	94.02 (5)	C25—C26—H26C 109.5	
O4—Mn3—Mn1i	85.98 (5)	H26A—C26—H26B 109.5	
O4—Mn3—Mn1i	85.97 (5)	H26A—C26—H26C 109.5	
O4—Mn3—Mn2i	48.66 (5)	H26B—C26—H26C 109.5	
O4—Mn3—Mn2	131.34 (5)	O9—C27—C28 115.6 (3)	
O4—Mn3—Mn2	48.66 (5)	O9—C27—C31 124.3 (3)	
O4—Mn3—Mn2i	131.34 (5)	C31—C27—C28 120.1 (3)	
O4—Mn3—Mn2i	37.81 (5)	N4—C28—C27 119.1 (3)	
O4—Mn3—Mn4i	142.19 (5)	N4—C28—C33 118.8 (3)	
O4—Mn3—Mn4	142.19 (5)	C27—C28—C33 122.1 (3)	
O4—Mn3—Mn4	37.81 (5)	N4—C29—H29 119.5	
O4—Mn3—Mn4i	180.0	N4—C29—C30 120.9 (3)	
O1—Mn4—Mn3	39.83 (6)	C30—C29—H29 119.5	
O1—Mn4—O3	80.23 (8)	C29—C30—C31 119.4 (3)	
O1—Mn4—O10	88.94 (8)	C29—C30—C34 119.9 (3)	
O3—Mn4—Mn3	80.49 (5)	C31—C30—C34 120.7 (3)	
O4—Mn4—Mn3	45.98 (5)	C27—C31—C30 118.3 (3)	
O4—Mn4—O1	85.80 (8)	C27—C31—C32 121.1 (3)	
O4—Mn4—O3	86.40 (8)	C30—C31—C32 120.6 (3)	
O4—Mn4—O10	80.29 (8)	O10—C32—C31 114.1 (2)	
O6—Mn4—Mn3	131.65 (6)	O10—C32—H32A 108.7	
O6—Mn4—O1	92.27 (9)	O10—C32—H32B 108.7	
O6—Mn4—O3	101.04 (9)	C31—C32—H32A 108.7	
O6—Mn4—O4	171.90 (10)	C31—C32—H32B 108.7	
O6—Mn4—O8	89.03 (9)	H32A—C32—H32B 107.6	
O6—Mn4—O10	91.82 (9)	C28—C33—H33A 109.5	
O8—Mn4—Mn3	139.31 (7)	C28—C33—H33B 109.5	
O8—Mn4—O1	172.24 (10)	C28—C33—H33C 109.5	
O8—Mn4—O3	92.02 (9)	H33A—C33—H33B 109.5	
O8—Mn4—O4	93.95 (9)	H33A—C33—H33C 109.5	
O8—Mn4—O10	98.67 (9)	H33B—C33—H33C 109.5	
O10—Mn4—Mn3	83.17 (5)	O15—C34—C30 109.8 (3)	
O10—Mn4—O3	163.43 (7)	O15—C34—H34A 109.7	
Mn3—O1—Mn1	88.47 (7)	O15—C34—H34B 109.7	
Mn4—O1—Mn1	96.62 (8)	C30—C34—H34A 109.7	
Mn4—O1—Mn3	102.54 (8)	C30—C34—H34B 109.7	
C1—O1—Mn1	124.55 (19)	H34A—C34—H34B 108.2	
C1—O1—Mn3	120.65 (17)	O11—C35—O12 125.0 (3)	
C1—O1—Mn4	117.86 (17)	O11—C35—C36 117.6 (3)	
Mn1—O2—Mn2	96.23 (8)	O12—C35—C36 117.5 (3)	
Mn3—O2—Mn1	110.77 (10)	C37—C36—C35 120.2 (3)	
Mn3—O2—Mn2	110.88 (10)	C41—C36—C35 120.9 (3)	
Mn1—O3—Mn4	107.22 (9)	C41—C36—C37 118.9 (4)	
C9—O3—Mn1 117.61 (19) C36—C37—H37 119.6
C9—O3—Mn4 121.6 (2) C38—C37—C36 120.7 (4)
Mn3—O4—Mn2i 86.15 (7) C38—C37—H37 119.6
Mn4—O4—Mn2i 97.47 (8) C37—C38—H37 119.8
Mn4—O4—Mn3 96.21 (8) C39—C38—C37 120.5 (5)
C17—O4—Mn2 123.30 (17) C39—C38—H37 119.8
C17—O4—Mn3 125.88 (16) C38—C39—C37 120.1
C17—O4—Mn4 119.61 (17) C38—C39—H37 119.8 (5)
Mn1—O5—Mn2 95.94 (8) C40—C39—C40 120.1
C25—O5—Mn1 120.45 (18) C36—C41—C40 119.6 (4)
C25—O5—Mn2 120.49 (17) C36—C41—H41 120.2
C3—O6—Mn4 128.97 (18) C36—C41—C40 119.6 (4)
Mn1—O1—C1—C2 −64.4 (3) O12—Mn1—O3—Mn4 −169.09 (9)
Mn1—O3—C9—C10 63.5 (3) O12—Mn1—O3—C9 49.5 (2)
Mn1—O5—C25—C26 −127.1 (3) O12—Mn1—O7—C14 −89.6 (3)
Mn1—O7—C14—C10 12.5 (5) O12—C35—C36—C41 −2.5 (5)
Mn1—O7—C14—C13 −167.8 (2) N1—C5—C6—C8 178.7 (4)
Mn1—O7—C14—C13 3.5 (4) N2—C13—C14—O7 −178.4 (3)
Mn1—O12—C35—O11 −134.58 (19) N2—C13—C14—C10 1.3 (5)
Mn1—O1—C1—C2 −64.4 (3) N3—C21—C22—C18 0.6 (7)
Mn1—C9—O4—Mn4 97.47 (8) N3—C21—C22—C24 179.5 (4)
Mn2—Mn1—O3—Mn4 −83.27 (12) N4—C29—C30—C31 −1.5 (6)
Mn2—Mn1—O3—Mn4 135.3 (2) N4—C29—C30—C34 179.7 (4)
Mn2—Mn1—O7—C14 −172.2 (2) N4—C29—C30—C31 −1.5 (6)
Mn2—C9—O4—Mn4 −74.6 (3) N4—C29—C30—C34 179.7 (4)
Mn2—O5—C25—C26 113.8 (3) C1—C2—C3—O6 4.7 (5)
Mn2—O9—C27—C28 171.4 (2) C1—C2—C3—C4 −173.4 (3)
Mn2—O9—C27—C31 −8.0 (5) C1—C2—C6—C5 174.9 (4)
Mn2—O10—C32—C31 −57.1 (3) C1—C2—C6—C8 −3.8 (6)
Mn2—O11—C35—O12 −5.1 (5) C2—C3—C4—N1 −3.1 (5)
Mn2—O11—C35—C36 174.4 (2) C2—C3—C4—C7 176.2 (3)
Mn3—Mn1—O3—Mn4 −43.35 (7) C2—C6—C8—O13 71.6 (5)
Mn3—Mn1—O3—C9 175.2 (2) C3—C2—C6—C5 179.4 (4)
Mn3—Mn1—O7—C14 90.5 (3) C3—C2—C6—C8 −1.9 (6)
Mn3—Mn2—O9—C27 −97.2 (2) C4—N1—C5—C6 0.5 (7)
Mn3—Mn2—O10—Mn4i 41.38 (7) C5—N1—C4—C3 1.1 (6)
Mn3—Mn2—O10—C32 −178.9 (2) C5—N1—C4—C7 −178.2 (4)
Mn3—Mn4—O6—C3 −2.7 (3) C5—C6—C8—O13 −107.1 (5)
Mn3—Mn4—O8—C19 −2.2 (3) C6—C2—C3—O6 −178.5 (3)
Mn3—O1—C1—C2 −176.10 (19) C6—C2—C3—C4 3.4 (5)
Mn4—O1—C1—C2 57.1 (3) C6—C2—C3—C7 176.2 (3)
Mn4—O3—C9—C10 175.2 (2) C9—C10—C11—C12 −179.9 (4)
Mn4—O3—C9—C11 175.2 (2) C9—C10—C11—C15 −0.6 (6)
Mn4—O4—C17—C18 −176.10 (19) C9—C10—C11—C15 −0.6 (6)
Mn4—O4—C17—C19 173.3 (2) C9—C10—C11—C15 −0.6 (6)
Mn4—O6—C3—C2 176.2 (3) C10—C11—C12—N2 −178.4 (4)
Mn4—O6—C3—C4 176.2 (3) C10—C11—C12—N2 −178.4 (4)
Mn4—O8—C19—C20 −173.6 (2) C10—C11—C12—N2 −178.4 (4)
Mn4i—O10—C32—C31 −176.10 (19) C10—C11—C12—N2 −178.4 (4)
O1—Mn1—O3—Mn4 −3.38 (7) C12—N2—C13—C14 −0.3 (5)
O1—Mn1—O3—C9 178.7 (3) C12—N2—C13—C14 −0.3 (5)
O1—Mn1—O7—C14 −144.8 (2) C12—C11—C15—O14 −11.5 (6)
O1—Mn1—O7—C14 83.5 (3) C12—C11—C15—O14 −11.5 (6)
O1—Mn4—O6—C3 3.8 (3) C13—N2—C12—C11 0.0 (6)
O1—Mn4—O6—C3 3.8 (3) C13—N2—C12—C11 0.0 (6)
O1—C1—C2—C3 −40.1 (4) C14—C10—C11—C15 −178.8 (4)
O1—C1—C2—C6 143.2 (3) C14—C10—C11—C15 −178.8 (4)
O2—Mn1—O3—C9 142.4 (2) C15—C11—C12—N2 179.8 (4)
O2—Mn1—O3—C9 −76.12 (10) C15—C11—C12—N2 179.8 (4)
O2—Mn1—O7—C14 142.4 (2) C16—C13—C14—O7 −0.4 (5)
O2—Mn1—O7—C14 −76.12 (10) C16—C13—C14—O7 −0.4 (5)
O2—Mn2—O9—C27 −149.7 (5) C16—C13—C14—O7 −0.4 (5)
O2—Mn2—O9—C27 −149.7 (5) C16—C13—C14—O7 −0.4 (5)
O2—Mn2—O10—Mn4i 74.66 (10) C17—C18—C22—C21 −176.8 (4)
O2—Mn2—O10—C32 −145.6 (2) C17—C18—C22—C21 −176.8 (4)
O3—Mn1—O7—C14 7.8 (3) C18—C19—C20—N3 2.5 (5)
O3—Mn4—O6—C3 84.3 (3) C18—C19—C20—N3 2.5 (5)
O3—Mn4—O6—C3 84.3 (3) C18—C19—C20—N3 2.5 (5)
O3—Mn4—O8—C19 −80.0 (3) C18—C19—C20—C23 178.8 (3)
O3—C9—C10—C11 144.1 (3) C18—C22—C24—O17 64.0 (5)
O3—C9—C10—C14 −37.7 (5) C19—C18—C22—C24 −0.2 (6)
O4—Mn2—O9—C27 −85.7 (3) C19—C18—C22—C24 −0.2 (6)
O4—Mn2—O9—C27 −85.7 (3) C19—C18—C22—C24 −0.2 (6)
O4—Mn2—O10—Mn4i −3.14 (7) C20—N3—C21—C22 −1.1 (7)
O4—Mn2—O10—Mn4i −3.14 (7) C20—N3—C21—C22 −1.1 (7)
O4—Mn2—O10—C32 136.6 (2) C21—N3—C20—C19 1.2 (6)
O4—Mn2—O10—C32 136.6 (2) C21—N3—C20—C19 1.2 (6)
O4—Mn4—O8—C19 6.6 (3) C21—N3—C20—C19 −178.5 (4)
O4—Mn4—O8—C19 6.6 (3) C21—N3—C20—C19 −178.5 (4)
O4—C17—C18—C19 −32.1 (5) C21—C22—C24—O17 −114.8 (4)
O4—C17—C18—C22 151.0 (3) C22—C18—C19—O8 179.5 (3)
O5—Mn1—O3—Mn4 −3.5 (5) C22—C18—C19—O8 179.5 (3)
O5—Mn1—O3—Mn4 −3.5 (5) C22—C18—C19—O8 179.5 (3)
O5—Mn1—O3—C9 −144.9 (4) C27—C31—C32—O10 35.1 (4)
O5—Mn1—O7—C14 176.2 (3) C28—N4—C29—C30 1.9 (6)
O5—Mn2—O9—C27 178.5 (3) C28—C27—C31—C30 1.4 (5)
O6—Mn4—O8—C19 179.0 (3) C28—C27—C31—C30 1.4 (5)
O6—C3—C4—N1 178.7 (3) C29—N4—C28—C27 −0.6 (5)
O6—C3—C4—C7
O7—Mn1—O3—Mn4
O7—Mn1—O3—C9
O8—Mn4—O6—C3
O8—C19—C20—N3
O8—C19—C20—C23
O9—Mn2—O10—Mn4'
O9—Mn2—O10—C32
O9—C27—C28—N4
O9—C27—C28—C33
O9—C27—C31—C30
O9—C27—C31—C32
O10—Mn2—O9—C27
O10'Mn4—O6—C3
O10'Mn4—O8—C19
O11—Mn2—O9—C27
O11—Mn2—O10—Mn4'
O11—Mn2—O10—C32
O11—C35—C36—C37
O14—H14···N3''
O15—H15···N1'''
O17—H17···O13'''

Symmetry code: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
O14—H14···N3''	0.84	1.80	2.619 (4)	163
O15—H15···N1'''	0.84	1.84	2.675 (4)	175
O17—H17···O13''''	0.84	1.89	2.684 (5)	158

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y, −z+2; (iii) x, y, z−1.