Some computations of stable twisted homology for mapping class groups.
Arthur Soulié

To cite this version:
Arthur Soulié. Some computations of stable twisted homology for mapping class groups.. 2018.
hal-01700031v2

HAL Id: hal-01700031
https://hal.archives-ouvertes.fr/hal-01700031v2
Preprint submitted on 6 Nov 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Some Computations of Stable Twisted Homology for Mapping Class Groups

Arthur Soulié

November 6, 2018

Abstract

In this paper, we deal with stable homology computations with twisted coefficients for mapping class groups of surfaces and of 3-manifolds, automorphism groups of free groups with boundaries and automorphism groups of certain right-angled Artin groups. On the one hand, the computations are led using semidirect product structures arising naturally from these groups. On the other hand, we compute the stable homology with twisted coefficients by FI-modules. This notably uses a decomposition result of the stable homology with twisted coefficients due to Djament and Vespa for symmetric monoidal categories, and we take this opportunity to extend this result to pre-braided monoidal categories.

Introduction

Computing the homology of a group is a fundamental question and can be a very difficult task. For example, a complete understanding of all the homology groups of mapping class groups of surfaces and 3-manifolds remains out of reach at present time: this is an active research topic (see [26, 22] for constant coefficients and [19, 24] for twisted coefficients).

In [27], Randal-Williams and Wahl prove homological stability with twisted coefficients for some families of groups, including mapping class groups of surfaces and 3-manifolds. They consider a set of groups \(\{G_n\}_{n \in \mathbb{N}} \) such that there exist a canonical injections \(G_n \hookrightarrow G_{n+1} \). Let \(\mathcal{G} \) be the groupoid with objects indexed by natural numbers and with the groups \(\{G_n\}_{n \in \mathbb{N}} \) as automorphism groups. We consider Quillen’s bracket construction on \(\mathcal{G} \) (see [18, p.219]), denoted by \(\mathcal{U}\mathcal{G} \), and \(\mathbb{A}\mathbb{b} \) the category of abelian groups. Randal-Williams and Wahl show that for particular kinds of functors \(F : \mathcal{U}\mathcal{G} \rightarrow \mathbb{A}\mathbb{b} \) (namely coefficients systems of finite degree, see [27, Section 4]), then the canonical induced maps

\[
H_* (G_n, F(n)) \rightarrow H_* (G_{n+1}, F(n+1))
\]

are isomorphisms for \((*,d) \leq n \) with some \((*,d) \in \mathbb{N} \) depending on \(* \) and \(d \). The value of the homology for \(n \geq N(*,d) \) is called the stable homology of the family of groups \(\{G_n\}_{n \in \mathbb{N}} \) and denoted by \(H_* (G_\infty, F_\infty) \).

In this paper, we are interested in explicit computations of the stable homology with twisted coefficients for mapping class groups. On the one hand, using semidirect product structures naturally arising from mapping class groups and on the strength of Lyndon-Hochschild-Serre spectral sequence, we prove:

Theorem A (Theorems 2.16 and 2.22). We have:

1. We denote by \(\Gamma_{g,1} \) the isotopy classes of diffeomorphisms restricting to the identity on the boundary component of a compact connected orientable surface with one boundary component and genus \(g \geq 0 \). Then, from the stability results of [5, 9], for \(m, n \) and \(q \) natural numbers such that \(2n \geq 3q + m \), there is an isomorphism:

\[
H_q \left(\Gamma_{n,1}, H_1 (\Sigma_{n,1}, \mathbb{Z})^\otimes m \right) \cong \bigoplus_{|k| \geq 0} H_{q-(2k+1)} \left(\Gamma_{n,1}, H_1 (\Sigma_{n,1}, \mathbb{Z})^\otimes m-1 \right).
\]

Hence, we recover inter alia the results of [19] and [24].

This work was partially supported by the ANR Project ChroK, ANR-16-CE40-0003 and by a JSPS Postdoctoral Fellowship Short Term.
2. We denote by $A_{n,k}^s$ the group of path-components of the space of homotopy equivalences of the space $\mathcal{G}_{n,k}^s$ with $n \in \mathbb{N}$ circles, $k \in \mathbb{N}$ distinguished circles and $s \in \mathbb{N}$ basepoints (we refer the reader to Section 2.3.2 for an introduction to these groups). Let $s \geq 2$ and $q \geq 1$ be natural numbers and $F : \mathcal{G} \to \text{Ab}$ a reduced polynomial functor where \mathcal{G} denotes the category of finitely generated free groups. Then, from the stability results of [22], we deduce that:

$$H_q \left(A_{n,k}^s, F_\infty \right) = 0.$$

Moreover, $H_q \left(A_{n,k}^s, \mathbb{Q} \right) = 0$ for all natural numbers $n \geq 3q + 3$ and $k \geq 0$. We thus recover the results of [23] for holomorphs of free groups.

On the other hand, we deal with stable homology computations for mapping class groups with twisted coefficients factoring through some finite groups. Let $(\Sigma, \sqcup, \mathcal{O})$ be the symmetric monoidal groupoid with objects the finite sets and automorphism groups the symmetric groups, the monoidal structure is given by the disjoint union \sqcup. Quillen’s bracket construction Σ is equivalent to the category FI of finite sets and injections used in [8]. For R a commutative ring, $R\text{-Mod}$ denotes the category of R-modules. We prove the following results.

Theorem B (Proposition 3.8, Proposition 3.9, Corollary 3.12). Let \mathbb{K} be a field of characteristic zero and d be a natural number. Considering functors $F : FI \to \mathbb{K}\text{-Mod}$ and $G : \Sigma(\mathbb{W}\Sigma) \to \mathbb{K}\text{-Mod}$, we have:

1. For n a natural number, we denote by B_n (respectively PB_n) the braid (respectively pure braid) group on n strands. Then, $H_d \left(B_n, F_\infty \right) \cong \operatorname{Colim}_{n \in FI} \left(H_d \left(PB_n, \mathbb{K} \right) \otimes F(n) \right)$.

2. $H_d \left(\Gamma_{\infty,1}, F_\infty \right) \cong \operatorname{Colim}_{n \in FI} \left[\bigoplus_{k+l=d} \left(H_k \left(\Gamma_{n,1}, \mathbb{K} \right) \otimes H_l \left(\left(\mathbb{C}P^{\infty} \right)^{\times k}, \mathbb{K} \right) \right) \otimes F(n) \right]$, where $\Gamma_{\infty,1}^s$ denotes the isotopy classes of diffeomorphisms permuting the marked points and restricting to the identity on the boundary component of a compact connected orientable surface with one boundary component, genus $g \geq 0$ and $s \geq 0$ marked points. In particular, $H_{2k+1} \left(\Gamma_{\infty,1}^s, F_\infty \right) = 0$ for all natural numbers k.

3. $H_d \left(\text{Aut} \left(\left(\mathbb{Z}^* \right)^{\times \infty} \right), F_\infty \right) = 0$ for a fixed natural number $k \geq 2d + 1$ (where $*$ denotes the free product of groups).

The proof of Theorem B requires a splitting result for the twisted stable homology for some families of groups: this decomposition consists in the graded direct sum of tensor products of the homology of an associated category with the stable homology with constant coefficients. Namely, we assume that a category $(\mathcal{G}, \mathcal{O}, 0)$ is pre-braided homogeneous (we refer the reader to Section 1 for an introduction to these notions) such that the unit 0 is an initial object. For a functor $F : \mathcal{G} \to \text{Ab}$, we denote by $H_* \left(\mathcal{G}, F \right)$ the homology of the category \mathcal{G} with coefficient in F (we refer the reader to the papers [13, Section 2] and [10, Appendix A] for an introduction to this last notion). We prove the following statement.

Theorem C (Proposition 3.2). Let \mathbb{K} be a field. For all functors $F : \mathcal{G}_{(A,X)} \to \mathbb{K}\text{-Mod}$, we have a natural isomorphism of \mathbb{K}-modules:

$$H_* \left(G_\infty, F_\infty \right) \cong \bigoplus_{k+l=s} \left(H_k \left(G_\infty, \mathbb{K} \right) \otimes H_l \left(\mathcal{G}_{(A,X)}, F \right) \right).$$

If the groupoid \mathcal{G} is symmetric monoidal, then Theorem C recovers the previous analogous results [10, Propositions 2.22, 2.26].

The paper is organized as follows. In Section 1, we recall necessary notions on Quillen’s bracket construction, pre-braided monoidal categories and homogeneous categories. In Section 2, after setting up the general framework for the families of groups we will deal with and applying Lyndon-Hochschild-Serre spectral sequence, we prove the various results of Theorem A. In Section 3, the first part is devoted to the proof of the decomposition result Theorem C. Then we deal with the twisted stable homology for mapping class groups with non-trivial finite quotient groups and prove Theorem B.
General notations. We fix \(R \) a commutative ring and \(\mathbb{K} \) a field throughout this work. We denote by \(R\text{-Mod} \) the categories of \(R \)-modules.

Let \(\text{Cat} \) denote the category of small categories. Let \(\mathcal{C} \) be an object of \(\text{Cat} \). We use the abbreviation \(\text{Obj} (\mathcal{C}) \) to denote the objects of \(\mathcal{C} \). For \(\mathcal{D} \) a category, we denote by \(\text{Fct} (\mathcal{C}, \mathcal{D}) \) the category of functors from \(\mathcal{C} \) to \(\mathcal{D} \). If \(0 \) is initial object in the category \(\mathcal{C} \), then we denote by \(\iota_A : 0 \to A \) the unique morphism from \(0 \) to \(A \). The maximal subgroupoid \(\text{Gr} (\mathcal{C}) \) is the subcategory of \(\mathcal{C} \) which has the same objects as \(\mathcal{C} \) and of which the morphisms are the isomorphisms of \(\mathcal{C} \). We denote by \(\text{Gr} : \text{Cat} \to \text{Cat} \) the functor which associates to a category its maximal subgroupoid.

We denote by \((\mathbb{N}, \leq) \) the category of natural numbers (natural means non-negative) considered as a directed set. For all natural numbers \(n \), we denote by \(\gamma_n \) the unique element of \(\text{Hom}_{(\mathbb{N}, \leq)} (n, n + 1) \). For all natural numbers \(n \) and \(n' \) such that \(n' \geq n \), we denote by \(\gamma_{n,n'} : n \to n' \) the unique element of \(\text{Hom}_{(\mathbb{N}, \leq)} (n, n') \), composition of the morphisms \(\gamma_{n',n'} \circ \gamma_{n'-2} \circ \cdots \circ \gamma_{n+1} \circ \gamma_n \). The addition defines a strict monoidal structure on \((\mathbb{N}, \leq) \), denoted by \(((\mathbb{N}, \leq), + , 0) \).

We denote by \(\text{Gr} \) the category of groups, by \(\times \) the coproduct in this category, by \(\text{Ab} \) the full subcategory of \(\text{Gr} \) of abelian groups and by \(\text{gr} \) the full subcategory of \(\text{Gr} \) of finitely generated free groups. Recall that the free product of groups \(* \) defines a monoidal structure over \(\text{gr} \), with the trivial group \(0_{\text{gr}} \), the unit, denoted by \((\text{gr}, *, 0_{\text{gr}}) \). We denote by \(\times \) the direct product of groups and by \(\text{Aut} (G) \) the automorphism group of a group \(G \).

Contents

1 Categorical framework .. 3

2 Twisted stable homologies of semidirect products 5
 2.1 A general result for the homology of semidirect products 6
 2.2 Properties of the twisted coefficients 7
 2.3 Applications ... 9
 2.3.1 Mapping class groups of orientable surfaces 9
 2.3.2 Automorphisms of free groups with boundaries 12

3 Twisted stable homologies for \(FL \)-modules 13
 3.1 General decomposition for the twisted stable homology using functor homology 13
 3.2 Framework and first equivalence for stable homology 14
 3.3 Applications ... 16
 3.3.1 Braid groups .. 17
 3.3.2 Mapping class group of orientable surfaces 17
 3.3.3 Particular right-angled Artin groups 18

1 Categorical framework

This section recollects the notions of Quillen’s bracket construction, pre-braided monoidal categories and homogeneous categories for the convenience of the reader. It takes up the framework of [27, Section 1]. For an introduction to braided monoidal categories, we refer to [25, Section XII]. Standardly, a strict monoidal category will be denoted by \((\mathcal{C}, \otimes, 0) \), where \(\otimes : \mathcal{C} \times \mathcal{C} \to \mathcal{C} \) is the monoidal structure and \(0 \) is the monoidal unit. If the category is braided, we denote by \(b_{\mathcal{C}} \) its braiding. We fix a strict monoidal groupoid \((\mathfrak{G}, \sharp, 0) \) throughout this section.

Quillen’s bracket construction. The following definition is a particular case of a more general construction of [18].

Definition 1.1. [27, Section 1.1] Quillen’s bracket construction on the groupoid \(\mathfrak{G} \), denoted by \(\mathfrak{G} \) is the category defined by:

- Objects: \(\text{Obj} (\mathfrak{G}) = \text{Obj} (\mathfrak{G}) \);
Proposition 1.3. Let \([X,f] : A \to B\) and \([Y,g] : B \to C\) be morphisms in the category \(\mathcal{U} \mathcal{G}\). Then, the composition in the category \(\mathcal{U} \mathcal{G}\) is defined by \([Y,g] \circ [X,f] = [Y \flat X, g \circ (id_Y f)]\).

It is clear that the unit 0 of the monoidal structure of the groupoid \((\mathcal{G}, \sharp, 0)\) is an initial object in the category \(\mathcal{U} \mathcal{G}\) (see [27, Proposition 1.8 (ii)]).

Definition 1.2. The strict monoidal category \((\mathcal{G}, \sharp, 0)\) is said to have no zero divisors if for all objects \(A\) and \(B\) of \(\mathcal{G}\), \(A \sharp B \simeq 0\) if and only if \(A \simeq B \simeq 0\).

Proposition 1.3. [27, Proposition 1.7] Assume that the strict monoidal groupoid \((\mathcal{G}, \sharp, 0)\) has no zero divisors and that \(\text{Aut}_{\mathcal{G}}(0) = \{id_0\}\).

Henceforth, we assume that the groupoid \((\mathcal{G}, \sharp, 0)\) has no zero divisors and that \(\text{Aut}_{\mathcal{G}}(0) = \{id_0\}\).

Remark 1.4. Let \(X\) be an object of \(\mathcal{G}\). Let \(\phi \in \text{Aut}_{\mathcal{G}}(X)\). Then, as an element of \(\text{Hom}_{\mathcal{U} \mathcal{G}}(X, X)\), we will abuse the notation and write \(\phi\) for \([0, \phi]\).

Finally, we recall the following lemma.

Lemma 1.5. [27, Proposition 2.4][29, Lemma 1.8] Let \(\mathcal{C}\) be a category and \(F\) an object of \(\text{Fct}(\mathcal{G}, \mathcal{C})\). Assume that for \(A, X, Y \in \text{Obj}(\mathcal{G})\), there exist assignments \(F([X, id_{X/A}]) : F(A) \to F(X/A)\) such that:

\[
F([X, id_{X/A}]) \circ F([X, id_{X/A}]) = F([Y \flat X, id_{Y \flat X/A}]).
\]

Then, the assignment \(F([X, g]) = F(g) \circ F([X, id_{X/A}])\) for \([X, g] \in \text{Hom}_{\mathcal{U} \mathcal{G}}(A, id_{X/A})\) defines a functor \(F : \mathcal{U} \mathcal{G} \to \mathcal{C}\) if and only if for all \(A, X \in \text{Obj}(\mathcal{G})\),\(g\) \(\in \text{Aut}_{\mathcal{G}}(A)\) and all \(g''\) \(\in \text{Aut}_{\mathcal{G}}(X)\):

\[
F([X, id_{X/A}]) \circ F(g'') = F(g'') \circ F([X, id_{X/A}]).
\]

Pre-braided monoidal categories. Assuming that the strict monoidal groupoid \((\mathcal{G}, \sharp, 0)\) is braided, Quillen’s bracket construction \(\mathcal{U} \mathcal{G}\) also inherits a strict monoidal structure (see Proposition 1.7). Beforehand, we recall the notion of pre-braided category, introduced by Randal-Williams and Wahl in [27, Section 1].

Definition 1.6. [27, Definition 1.5] Let \((\mathcal{C}, \sharp, 0)\) be a strict monoidal category such that the unit 0 is initial. We say that the monoidal category \((\mathcal{C}, \sharp, 0)\) is pre-braided if:

- The maximal subgroupoid \(\mathcal{G}\) \((\mathcal{C}, \sharp, 0)\) is a braided monoidal category, where the monoidal structure is induced by that of \((\mathcal{C}, \sharp, 0)\).
- For all objects \(A\) and \(B\) of \(\mathcal{C}\), the braiding associated with the maximal subgroupoid \(b^{\mathcal{C}}_{A,B} : A \sharp B \to B \sharp A\) satisfies:

\[
b^{\mathcal{C}}_{A,B} \circ (id_A \sharp id_B) = id_B \sharp id_A : A \to B \sharp A.
\]

Finally, we give the effect of Quillen’s bracket construction over the strict braided monoidal groupoid \((\mathcal{G}, \sharp, 0)\).

Proposition 1.7. [27, Proposition 1.8] Suppose that the strict monoidal groupoid \((\mathcal{G}, \sharp, 0)\) has no zero divisors and that \(\text{Aut}_{\mathcal{G}}(0) = \{id_0\}\). If the groupoid \((\mathcal{G}, \sharp, 0)\) is braided, then the category \((\mathcal{U} \mathcal{G}, \sharp, 0)\) is pre-braided monoidal. If the groupoid \((\mathcal{G}, \sharp, 0)\) is symmetric, then the category \((\mathcal{U} \mathcal{G}, \sharp, 0)\) is symmetric monoidal.

The monoidal structure on the category \((\mathcal{U} \mathcal{G}, \sharp, 0)\) is defined on objects as for \((\mathcal{G}, \sharp, 0)\) and defined on morphisms by letting, for \([X, f] \in \text{Hom}_{\mathcal{U} \mathcal{G}}(A, B)\) and \([Y, g] \in \text{Hom}_{\mathcal{U} \mathcal{G}}(C, D)\):

\[
[X, f] \sharp [Y, g] = [X \sharp Y, (f \sharp g) \circ (id_X \sharp (b^{\mathcal{G}}_{A,Y})^{-1} \sharp id_C)].
\]

In particular, the canonical functor \(\mathcal{G} \to \mathcal{U} \mathcal{G}\) (see Remark 1.4) is monoidal.
Homogeneous categories. The notion of homogeneous category is introduced by Randal-Williams and Wahl in [27, Section 1], inspired by the set-up of Djamet and Vespa in [10, Section 1.2]. With two additional assumptions, Quillen’s bracket construction $\mathfrak{U}\mathfrak{S}$ from a strict monoidal groupoid $(\mathfrak{G}, \mathfrak{z}, 0)$ is endowed with an homogeneous category structure. This type of category are very useful to deal with homological stability with twisted coefficients questions (see [27]) or to work on the stable homology with twisted coefficients (see [10], [11] and Section 3.1).

Let $(\mathfrak{C}, \mathfrak{z}, 0)$ be a small strict monoidal category in which the unit 0 is also initial. For all objects A and B of \mathfrak{C}, we consider the morphism $i_A \mathfrak{z} \text{id}_B : 0 \mathfrak{z} B \to A \mathfrak{z} B$ and a set of morphisms:

$$\text{Fix}_A (B) = \{ \phi \in \text{Aut} (A \mathfrak{z} B) \mid \phi \circ (i_A \mathfrak{z} \text{id}_B) = i_A \mathfrak{z} \text{id}_B \} .$$

Since $(\mathfrak{C}, \mathfrak{z}, 0)$ is assumed to be small, $\text{Hom}_\mathfrak{C} (A, B)$ is a set and $\text{Aut}_\mathfrak{C} (B)$ defines a group (with composition of morphisms as the group product). The group $\text{Aut}_\mathfrak{C} (B)$ acts by post-composition on $\text{Hom}_\mathfrak{C} (A, B)$:

$$\text{Aut}_\mathfrak{C} (B) \times \text{Hom}_\mathfrak{C} (A, B) \to \text{Hom}_\mathfrak{C} (A, B), \quad (\phi, f) \mapsto \phi \circ f$$

Definition 1.8. Let $(\mathfrak{C}, \mathfrak{z}, 0)$ be a small strict monoidal category where the unit 0 is initial. We consider the following axioms:

- (H1): for all objects A and B of the category \mathfrak{C}, the action by post-composition of $\text{Aut}_\mathfrak{C} (B)$ on $\text{Hom}_\mathfrak{C} (A, B)$ is transitive.
- (H2): for all objects A and B of the category \mathfrak{C}, the map $\text{Aut}_\mathfrak{C} (A) \to \text{Aut}_\mathfrak{C} (A \mathfrak{z} B)$ sending $f \in \text{Aut}_\mathfrak{C} (A)$ to $f \mathfrak{z} \text{id}_B$ is injective with image $\text{Fix}_A (B)$.

The category $(\mathfrak{C}, \mathfrak{z}, 0)$ is homogeneous if it satisfies the axioms the axioms (H1) and (H2).

As a consequence of the axioms (H1) and (H2), we deduce that:

Lemma 1.9. If $(\mathfrak{C}, \mathfrak{z}, 0)$ is a homogeneous category, then $\text{Hom}_\mathfrak{C} (B, A \mathfrak{z} B) \cong \text{Aut}_\mathfrak{C} (A \mathfrak{z} B) / \text{Aut}_\mathfrak{C} (A)$ for all objects A and B and where $\text{Aut}_\mathfrak{C} (A)$ acts on $\text{Aut}_\mathfrak{C} (A \mathfrak{z} B)$ by precomposition.

We now give the two additional properties so that if a strict monoidal groupoid $(\mathfrak{G}, \mathfrak{z}, 0)$ satisfy them, then Quillen’s bracket construction $\mathfrak{U}\mathfrak{S}$ is homogeneous.

Definition 1.10. Let $(\mathfrak{C}, \mathfrak{z}, 0)$ be a strict monoidal category. We define two assumptions.

- (C): for all objects A, B and C of \mathfrak{C}, if $A \mathfrak{z} C \cong B \mathfrak{z} C$ then $A \cong B$.
- (I): for all objects A, B of \mathfrak{C}, the morphism $\text{Aut}_\mathfrak{C} (A) \to \text{Aut}_\mathfrak{C} (A \mathfrak{z} B)$ sending $f \in \text{Aut}_\mathfrak{C} (A)$ to $f \mathfrak{z} \text{id}_B$ is injective.

Theorem 1.11. [27, Theorem 1.10] Let $(\mathfrak{G}, \mathfrak{z}, 0)$ be a braided monoidal groupoid with no zero divisors. If the groupoid \mathfrak{G} satisfies (C) and (I), then $\mathfrak{U}\mathfrak{G}$ is homogeneous.

2 Twisted stable homologies of semidirect products

This section introduces a general method to compute the stable homology with twisted coefficients using semidirect product structures arising naturally from the families of mapping class groups. We first establish the general result of Corollary 2.3 for the homology of semidirect products with twisted coefficients. These results are finally applied in Section 2.3 to compute explicitly some homology groups with twisted coefficients for mapping class groups of orientable surfaces and automorphisms of free groups with boundaries. Beforehand, we take this opportunity to introduce the following terminology:

Definition 2.1. A family of groups is a functor $G_{\rightarrow} : (\mathbb{N}, \leq) \to \mathfrak{G}\mathfrak{C}$ such that for all natural numbers n, $G_{\rightarrow} (\gamma_n) : G_n \hookrightarrow G_{n+1}$ is an injective group morphism.
2.1 A general result for the homology of semidirect products

First, we present some properties for the homology with twisted coefficients for a semidirect product and prove the general statement of Corollary 2.3.

Let \(\mathcal{Q} \) be a groupoid with objects indexed by the natural numbers. An object of \(\mathcal{Q} \) is thus denoted by \(\mathcal{Q}_n \) where \(n \) is its corresponding indexing natural number. We denote by \(\text{Aut}_\mathcal{Q}(\mathcal{Q}_n) = \mathcal{Q}_n \) the automorphism groups. We assume that there exists a family of free groups \(K_\cdot : (\mathbb{N}, \leq) \to \mathfrak{Gr} \) and a functor \(A_{\mathcal{Q}} : \mathcal{Q} \to \mathfrak{Gr} \) such that \(A_{\mathcal{Q}}(\mathcal{Q}_n) = K_n \) for all natural numbers \(n \).

For a natural number \(n \), we denote by \(\mathcal{A}_{\mathcal{Q},n} : \mathcal{Q}_n \to \text{Aut}_{\mathfrak{Gr}}(K_n) \) the group morphism induced by the functor \(A_{\mathcal{Q}} \). Hence, we form the split short exact sequence:

\[
1 \longrightarrow K_n \xrightarrow{k_n} K_n \rtimes_{A_{\mathcal{Q},n}} \mathcal{Q}_n \xrightarrow{q_n} \mathcal{Q}_n \longrightarrow 1 \tag{4}
\]

and we denote by \(s_n : \mathcal{Q}_n \to K_n \rtimes_{A_{\mathcal{Q},n}} \mathcal{Q}_n \) the splitting of \(q_n \). For all natural numbers \(n \), we fix \(M_n \) a \(R \left[K_n \rtimes_{A_{\mathcal{Q},n}} \mathcal{Q}_n \right] \)-module. We abuse the notation and write \(M_n \) for the restriction of \(M_n \) from \(K_n \rtimes_{A_{\mathcal{Q},n}} \mathcal{Q}_n \) to \(K_n \).

Proposition 2.2. For \(M_n \) an \(R \left[K_n \rtimes_{A_{\mathcal{Q},n}} \mathcal{Q}_n \right] \)-module, the short exact sequence (4) induces a long exact sequence:

\[
\cdots \longrightarrow H_{s+1}(\mathcal{Q}_n, H_0(K_n, M_n)) \xrightarrow{d_{s+1,0}^2} H_{s+1}(\mathcal{Q}_n, H_1(K_n, M_n)) \xrightarrow{\psi_*} H_s(K_n \rtimes_{A_{\mathcal{Q},n}} \mathcal{Q}_n, M_n) \xrightarrow{\phi_*} H_s(\mathcal{Q}_n, H_0(K_n, M_n)) \xrightarrow{d_s^2} H_{s-1}(\mathcal{Q}_n, H_1(K_n, M_n)) \longrightarrow \cdots \tag{5}
\]

where \(\{d_{p,q}^2\}_{p,q \in \mathbb{N}} \) denote the differentials of the second page of the Lyndon-Hochschild-Serre spectral sequence associated with the short exact sequence (4).

Proof. Applying the Lyndon-Hochschild-Serre spectral sequence to the short exact sequence (4), we obtain the following convergent first quadrant spectral sequence:

\[
E_{p,q}^2 : H_p(\mathcal{Q}_n, H_q(K_n, M_n)) \Rightarrow H_{p+q}(\mathcal{Q}_n, H_r(K_n, M_n)) \tag{6}
\]

Since \(K_n \) is a free group, \(H_q(K_n, M_n) = 0 \) for \(q \geq 2 \). The result is a classical consequence of the fact that the spectral sequence (6) has only two rows. In particular, the map \(\phi_* \) is defined by the composition:

\[
H_{s+1}(\mathcal{Q}_n, H_1(K_n, M_n)) \to H_{s+1}(\mathcal{Q}_n, H_1(K_n, M_n)) / \text{Im} \left(d_{s+1,0}^2 \right) \to H_s(\mathcal{Q}_n, H_1(K_n, M_n)) \; ;
\]

the map \(\psi_* \) is the coinflation map \(\text{Coinfl}_{K_n \rtimes_{A_{\mathcal{Q},n}} \mathcal{Q}_n}(M_n) \), induced by the composition:

\[
H_s(\mathcal{Q}_n, H_1(K_n, M_n)) \to \text{Ker} \left(d_{s,0}^2 \right) \hookrightarrow H_s(\mathcal{Q}_n, H_0(K_n, M_n)) .
\]

\(\square \)
Corollary 2.3. Let \(n \) be a natural number. Assume that the free group \(K_n \) acts trivially on the \(R \)-module \(M_n \). Then, for all natural numbers \(q \geq 1 \):

\[
H_{q-1} \left(Q_n, H_1 (K_n, R) \otimes_R M_n \right) \oplus H_q (Q_n, M_n) \cong H_q \left(K_n \rtimes_{A_{Q_n}} Q_n, M_n \right) .
\]

Proof. As \(M_n \) is a trivial \(K_n \)-module:

\[
H_1 (K_n, M_n) \cong H_1 (K_n, R) \otimes_R M_n \quad \text{and} \quad H_0 (K_n, M_n) \cong M_n ,
\]

and the coinflation map \(\psi_* = \text{Coinf}^{Q_n}_{K_n} (M_n) \) is equal to the corestriction map \(\text{Cores}^{Q_n}_{A_{Q_n}} (M_n) \). Hence, denoting by \(H_* (q_n, M_n) \) the map induced in homology by \(q_n : K_n \rtimes Q_n \to Q_n \), we deduce that \(\psi_* = H_* (q_n, M_n) \).

By the functoriality of group homology, the splitting \(s_n : Q_n \to K_n \rtimes Q_n \) of \(q_n \) induces a splitting in homology \(H_* (s_n, M_n) \) of \(H_* (q_n, M_n) \). Hence, \(H_* (p_n, M_n) \) is an epimorphism and a fortiori \(\text{Ker} (d_{s,0}^2) \cong H_* (Q_n, M_n) \). Therefore, \(d_{s,0}^2 = 0 \) and the exact sequence \((5) \) gives a split short exact sequence of abelian groups for every \(q \geq 1 \):

\[
1 \longrightarrow H_{q-1} \left(Q_n, H_1 (K_n, R) \otimes_R M_n \right) \xrightarrow{\psi_q} H_q \left(K_n \rtimes_{A_{Q_n}} Q_n, M_n \right) \xrightarrow{H_q (q_n, M_n)} H_q (Q_n, M_n) \longrightarrow 1 .
\]

\[\square\]

2.2 Properties of the twisted coefficients

Our aim here is to study the twisted coefficients \(H_1 (K_n, R) \otimes_R M_n \) appearing in Corollary 2.3 so as to prove Lemma 2.9. This last result will be useful to prove Theorem 2.22.

First, we assume that the groupoid \(Q \) is a braided strict monoidal category (we denote by \((Q, z, 0) \) the monoidal structure) and that there exists a free group \(K \) such that \(K_n \cong K^\otimes n \) for all natural numbers \(n \). Moreover, we assume that \(K_- (\gamma_n) = e_K \rtimes id_{K_n} \) for all natural numbers \(n \). We recall that \(\gamma_n \) is the unique element of \(\text{Aut}_\otimes (\mathbb{N}, \leq) \), \((n, n+1) \) and that the functor \(A_Q \) defines a strict monoidal functor \((Q, z, 0) \to (\text{gr}, \ast, 0) \). This allows to define the functor \(K_- \) on the category \(\mathcal{U}Q \):

Lemma 2.4. Assigning \(\mathcal{A}_Q \left(\bigoplus_{n} \text{id}_{n+1} \right) = K_- (\gamma_n) \) for all natural numbers \(n \), we define a functor \(\mathcal{A}_Q : \mathcal{U}Q \to \text{gr} \).

Proof. We use Lemma 1.5 to prove this result: namely, we show that relations (1) and (2) of this lemma are satisfied. It follows from the fact that \(K_- \) is a functor on \((\mathbb{N}, \leq) \), that the relation (1) of Lemma 1.5 is satisfied by \(\mathcal{A}_Q \). Let \(n \) and \(n' \) be natural numbers such that \(n' \geq n \), let \(q \in Q_n \) and \(q' \in Q_{n'} \). We denote by \(e_{K_{n'}} \) the neutral element of \(K_{n'} \). Since \(\mathcal{A}_Q \) is monoidal, we compute for all \(k \in K_n \):

\[
\left(\mathcal{A}_Q (q' \ast q) \circ \mathcal{A}_Q \left(\bigoplus_{n} \text{id}_{n+1} \right) \right) (k) = (\mathcal{A}_Q (q') \ast \mathcal{A}_Q (q)) \left(e_{K_{n'}} \ast k \right)
\]

\[
= e_{K_{n'}} \ast \mathcal{A}_Q (q) (k)
\]

\[
= \left(\mathcal{A}_Q \left(\bigoplus_{n} \text{id}_{n+1} \right) \circ \mathcal{A}_Q (q) \right) (k) .
\]

Hence, the relation (2) of Lemma (1.5) is satisfied by \(\mathcal{A}_Q \).

\[\square\]

Recollections on strong polynomial functors. We deal here with the concept of strong and very strong polynomial functors, which will be useful to prove Theorems 2.16 and 2.22. We refer the reader to [28, Section 3] for a complete introduction to these notions for pre-braided monoidal categories as source category, extending the previous framework due to Djament and Vespa in [12] for symmetric monoidal categories. They also are particular case of coefficient systems of finite degree introduced by Randal-Williams and Wahl in [27], thus providing a natural setting to study homological stability.
We restrict this recollection to the case of objects of the functor category $\text{Fct}(\mathcal{U}Q, R\text{-Mod})$. The monoidal structure $(\mathcal{U}Q, \varepsilon, 0)$ defines the endofunctor $\mathcal{U}Q \to \mathcal{U}Q$, which sends the object n to the object $1 + n$. We define the translation functor $\tau_1 : \text{Fct}(\mathcal{U}Q, R\text{-Mod}) \to \text{Fct}(\mathcal{U}Q, R\text{-Mod})$ to be the endofunctor obtained by precomposition by $\mathcal{U}Q$.

For all objects F of $\text{Fct}(\mathcal{U}Q, R\text{-Mod})$, we denote by $i_1 (F) : F \to \tau_1 (F)$ the natural transformation induced by the unique morphism $[1, \text{id}_1] : 0 \to 1$ of $\mathcal{U}Q$. This induces $i_1 : \text{Id}_{\text{Fct}(\mathcal{U}Q, R\text{-Mod})} \to \tau_1$ a natural transformation of $\text{Fct}(\mathcal{U}Q, R\text{-Mod})$. Since the category $\text{Fct}(\mathcal{U}Q, R\text{-Mod})$ is abelian (since the target category $R\text{-Mod}$ is abelian), the kernel and cokernel of the natural transformation i_1 exist. We define the functors $\kappa_1 = \ker (i_1)$ and $\delta_1 = \text{coker} (i_1)$. Then:

Definition 2.5. We recursively define on $d \in \mathbb{N}$ the categories $\mathcal{P}\text{ol}^\text{strong} (\mathcal{U}Q, R\text{-Mod})$ and $\mathcal{V}\mathcal{P}\mathcal{O}l^d (\mathcal{U}Q, R\text{-Mod})$ of strong and very strong polynomial functors of degree less than or equal to d to be the full subcategories of $\text{Fct}(\mathcal{U}Q, R\text{-Mod})$ as follows:

1. If $d < 0$, $\mathcal{P}\text{ol}^\text{strong} (\mathcal{U}Q, R\text{-Mod}) = \mathcal{V}\mathcal{P}\mathcal{O}l^0 (\mathcal{U}Q, R\text{-Mod}) = \{0\}$;

2. if $d \geq 0$, the objects of $\mathcal{P}\text{ol}^\text{strong} (\mathcal{U}Q, R\text{-Mod})$ are the functors F such that the functor $\delta_1 (F)$ is an object of $\mathcal{P}\text{ol}_{d-1}^\text{strong} (\mathcal{U}Q, R\text{-Mod})$; the objects of $\mathcal{V}\mathcal{P}\mathcal{O}l^d (\mathcal{U}Q, R\text{-Mod})$ are the objects F of $\mathcal{P}\text{ol}_d (\mathcal{U}Q, R\text{-Mod})$ such that $\kappa_1 (F) = 0$ and the functor $\delta_1 (F)$ is an object of $\mathcal{V}\mathcal{P}\mathcal{O}l_{d-1} (\mathcal{U}Q, R\text{-Mod})$.

For an object F of $\text{Fct}(\mathcal{U}Q, R\text{-Mod})$ which is strong polynomial of degree less than or equal to $n \in \mathbb{N}$, the smallest $d \in \mathbb{N}$ ($d \leq n$) for which F is an object of $\mathcal{P}\text{ol}^\text{strong} (\mathcal{U}Q, R\text{-Mod})$ is called the strong degree of F.

Finally, we recall the following property which will be useful for Section 2.3.

Proposition 2.6. [28, Proposition 3.8] Let \mathcal{M} be a pre-braided strict monoidal category and $\alpha : \mathcal{U}Q \to \mathcal{M}$ be a strong monoidal functor. Then, the precomposition by α provides a functor $\mathcal{P}\text{ol}^\text{strong} (\mathcal{U}Q, R\text{-Mod}) \to \mathcal{P}\text{ol}^\text{strong} (\mathcal{M}, R\text{-Mod})$.

First homology functor. Recall that the homology group $H_1 (\cdot , R)$ defines a functor from the category Gr to the category $R\text{-Mod}$ (see for example [6, Section 8]). Hence, we introduce the following functor:

Definition 2.7. The homology groups $\{H_1 (K_n, R)\}_{n \in \mathbb{N}}$ assemble to define a functor $H_1 (A_Q, R) : \mathcal{U}Q \to R\text{-Mod}$ by the composite $H_1 (\cdot , R) \circ A_Q$. It is called the first homology functor of A_Q.

If $R = \mathbb{Z}$ and K_n is finitely generated for all natural numbers n, the target category of $H_1 (A_Q, R)$ is the full subcategory of Ab of finitely generated abelian groups, denoted by ab. Let m be a natural number. We then define a functor $H_1 (A_Q, \mathbb{Z}) \otimes m : \mathcal{U}Q \to \text{ab}$ by the composite $- \otimes m \circ H_1 (A_Q, \mathbb{Z})$ where $- \otimes m : \text{ab} \to \text{ab}$ sends an object G to $G^\otimes m$.

Lemma 2.8. If the groups K_n are finitely generated free for all n, then the functor $H_1 (A_Q, \mathbb{Z}) \otimes m$ is very strong polynomial of degree m.

Proof. Recall that the free product gives a symmetric monoidal structure $(\mathfrak{G}r, *, 0)$, that the direct sum defines a symmetric monoidal structure $(\text{ab}, \oplus, 0)$ and that symmetric monoidal categories are particular cases of pre-braided monoidal ones. By the result of the homology of a free group (see for example [31, Corollary 6.2.7]), the restriction of first homology group to $\mathfrak{G}r$ is a strong monoidal functor $H_1 (\cdot , R) : (\mathfrak{G}r, *, 0) \to (\text{ab}, \otimes, 0)$. As A_Q is a strict monoidal functor, we deduce from Proposition 2.6 that $H_1 (A_Q, \mathbb{Z})$ is a strong monoidal functor (and a fortiori a very strong polynomial functor of degree 1). This is a well-known fact that the m-th tensor power functor $- \otimes m : \text{ab} \to \text{ab}$ is very strong polynomial of degree m (see [10, Appendix A] for example). Then the result follows from Proposition 2.6.

Furthermore, the pointwise tensor product of two objects of $\text{Fct}(\mathcal{U}Q, R\text{-Mod})$ defines an object of $\text{Fct}(\mathcal{U}Q, R\text{-Mod})$, assigning $\left(M \otimes R M' \right) (n) = M (n) \otimes R M' (n)$ for $M, M' \in \text{Fct}(\mathcal{U}Q, R\text{-Mod})$ and for all objects n of $\mathcal{U}Q$. We finally recall the following result, used to prove Theorem 2.22:
Lemma 2.9. If M and M' are strong polynomial functors, then $M \otimes_R M'$ is a strong polynomial functor.

Proof. Since the translation functor τ_1 commutes with all limits, and as a colimit of a natural transformation between Id and τ_1, the functor δ_1 commutes with the (pointwise) product \times. Let d be the largest of the two strong polynomial degrees. Hence, $\delta_1 \cdots \delta_1 (M \times M') = 0$ and therefore $M \otimes_R M'$ is a strong polynomial functor of degree less than or equal to $d + 1$.

\section{Applications}

Many families of mapping class groups fall within the framework of Section 2.1. Corollary 2.3 is the key result to compute the homology with twisted coefficients for these families of groups.

\subsection{Mapping class groups of orientable surfaces}

Let $\Sigma_{g,i}$ denote a smooth compact connected orientable surface with (orientable) genus $g \in \mathbb{N}$, $s \in \mathbb{N}$ marked points and $i \in \{1, 2\}$ boundary components, with $I : [-1, 1] \to \partial \Sigma_{g,i}$ a parametrized interval in the boundary if $i = 1$ and $p = 0 \in I$ a basepoint. We denote by $\Gamma_{g,i}^s$ (resp. $\Gamma_{g,i}^s$) the isotopy classes of diffeomorphisms of $\Sigma_{g,i}^s$ preserving the orientation, restricting to the identity on a neighbourhood of the parametrized interval I and permuting (resp. fixing) the marked points (if $s = 0$, we omit it from the notation). Recall that fixing the interval I is the same as fixing the whole boundary component pointwise. When there is no ambiguity, we omit the parametrized interval I from the notation.

Let \natural be the boundary connected sum along half of each interval I. For two decorated surfaces $\Sigma_{g,1}^{s_1}$ and $\Sigma_{g,1}^{s_2}$, the boundary connected sum $\Sigma_{g,1}^{s_1} \natural \Sigma_{g,2}^{s_2}$ is defined as the surface obtained from gluing $\Sigma_{g,1}^{s_1}$ and $\Sigma_{g,2}^{s_2}$ along the half-interval I_1^+ and the half-interval I_2^+, and $I_1 \natural I_2 = I_1^+ \cup I_2^+$. The homeomorphisms being the identity on a neighbourhood of the parametrised intervals I_1 and I_2, we can canonically extend the diffeomorphisms of $\Sigma_{g,1}^{s_1}$ and $\Sigma_{g,2}^{s_2}$ to $\Sigma_{g,1}^{s_1} \natural \Sigma_{g,2}^{s_2}$. For completeness, we refer to [27, Section 5.6.1], for technical details.

We denote by $\Gamma_{g,2}$ the isotopy classes of diffeomorphisms of $\Sigma_{g,1}^0$ preserving the orientation and restricting to the identity on a neighbourhood of the parametrized interval I and fixing the other boundary component pointwise. Recall that R is a commutative ring and we assume that the various mapping class groups act trivially on it.

The following result is an essential tool for our work:

Theorem 2.10. [2] Let $g \geq 1$, $s \geq 0$ be natural numbers and x be a marked point in the interior of $\Sigma_{g,1}^s$. Deleting x induces a map $\Gamma_{g,1}^{s+1} \to \Gamma_{g,1}^s$ which defines the following short exact sequence:

$$1 \to \pi_1 \left(\Sigma_{g,1}^s, x \right) \to \Gamma_{g,1}^{s+1} \to \omega_x \to \Gamma_{g,1}^s \to 1.$$ \hspace{1cm} (9)

Gluing a disc with a marked point disc $\Sigma_{0,1}^1$ on the boundary component without the interval I induces the following short exact sequence:

$$1 \to \mathbb{Z} \to \Gamma_{g,2} \to \Gamma_{g,1}^1 \to 1.$$ \hspace{1cm} (10)

For all natural numbers g and s, we denote by $\mathcal{D}_{g,1}^s$ the action of the mapping class group $\Gamma_{g,1}^s$ on the fundamental group $\pi_1 \left(\Sigma_{g,1}^s, x \right)$.

Lemma 2.11. The short exact sequence (9) splits.

Proof. We denote by $Diff_{g,0,\text{points}} \left(\Sigma_{g,1}^s \right)$ the space of diffeomorphisms of the surface $\Sigma_{g,1}^s$ which fix the boundary and the marked points. We consider $Emb \left(\Sigma_{0,1}^1 \times \Sigma_{0,1}^s, \Sigma_{g,1}^s \right)$ the space of embeddings taking $I_{-1}^{-} \Sigma_{0,1}^1$ to $I_{-1}^{-} \Sigma_{0,1}^s$, and
such that the complement of $\Sigma^1_{g,1}$ in $\Sigma^1_{g,1} \cup \Sigma^w_{s,1}$ is diffeomorphic to $\Sigma^w_{s,1}$. Hence, we have the following fibration sequence (see [7, II 2.2.2 Corollaire 2])

$$
\begin{array}{ccc}
\text{Diff}^{\partial \text{points}} \left(\Sigma^w_{g,1} \right) & \longrightarrow & \text{Diff}^{\partial \text{points}} \left(\Sigma^1_{g,1} \cup \Sigma^w_{g,1} \right) \\
\downarrow & & \downarrow \\
\text{Emb} \left(\left(\Sigma^1_{0,1} \right), \left(\Sigma^1_{0,1} \cup \Sigma^w_{0,1} \right) \right) & .
\end{array}
$$

(11)

Using the associated long exact sequence of homotopy groups, we deduce from the contractibility results of [17, Théorème 5] that the embedding of $\Sigma^w_{g,1}$ into $\Sigma^{s+1}_{g,1}$ as the complement of the disc $\Sigma^1_{0,1}$ with the marked point x induces an injective morphism $\Gamma^{[s]}_{g,1} \rightarrow \Gamma^{[s+1]}_{g,1}$. This provides a splitting of the exact sequence (9) and we have an isomorphism $\Gamma^{[s+1]}_{g,1} \cong \pi_1 \left(\Sigma^{s+1}_{g,1}, x \right) \rtimes \Gamma^{[s]}_{g,1}$.

Hence, applying Corollary 2.3 to this situation, we obtain:

Proposition 2.12. Let n, s and $q \geq 1$ be natural numbers. Let M_n be a $R \left[\Gamma^{[s+1]}_{n,1} \right]$-module on which $\pi_1 \left(\Sigma^{s+1}_{n,1}, x \right)$ acts trivially. Then:

$$
H_q \left(\Gamma^{[s+1]}_{n,1}, M_n \right) \cong H_{q-1} \left(\Gamma^{[s]}_{n,1}, H_1 \left(\Sigma^{s}_{n,1}, R \right) \otimes M_n \right) \oplus H_q \left(\Gamma^{[s]}_{n,1}, M_n \right).
$$

(12)

Computation of $H_d \left(\Gamma_{\infty,1}, H_1 \left(\Sigma_{\infty,1}, \mathbb{Z} \right) \otimes m \right)$. An application of Proposition 2.12 is to compute the stable homology groups $H_d \left(\Gamma_{\infty,1}, H_1 \left(\Sigma_{\infty,1}, \mathbb{Z} \right) \otimes m \right)$ for all natural numbers m and d. First, let us introduce a suitable groupoid for our work, inspired by [27, Section 5.6]. We fix a unit disc with one marked point denoted by $\Sigma^0_{g,1}$ and a torus with one boundary component denoted by $\Sigma^0_{1,1}$. Recall that by the classification of surfaces, for all $g, s \in \mathbb{N}$, there is a unique homeomorphism $\Sigma^s_{g,1} \simeq \left(\Sigma^1_{1,1} \right)^s \left(\Sigma^0_{1,1} \right)$.

Definition 2.13. Let \mathcal{M}_2 be the skeleton of the groupoid defined by:

- Objects: the surfaces $\Sigma^s_{g,1}$ for all natural numbers g and s, with $I : [-1, 1] \rightarrow \partial \Sigma^s_{g,1}$ a parametrized interval in the boundary and $p = 0 \in I$ a basepoint;
- Morphisms: $\text{Aut}_{\mathcal{M}_2} \left(\Sigma^s_{g,1} \right) = \Gamma^s_{g,1}$ for all natural numbers g and s.

Let $\mathcal{M}^g_{2,1}$ be the full subgroupoid of \mathcal{M}_2 on the objects $\{ \Sigma_{n,1} \}_{n \in \mathbb{N}}$. By [27, Proposition 5.18], the boundary connected sum $\#$ induces a strict braided monoidal structure $(\mathcal{M}^g_{2,1}, \pi_0, (\Sigma_{0,1}, I))$.

For all natural numbers g, we denote by $a_{\Sigma^0_{g,1}}$ the action of the mapping class group $\Gamma_{g,1}$ on the fundamental group $\pi_1 \left(\Sigma^0_{g,1}, p \right)$. We define a functor $A_{\mathcal{M}^g_{2,1}} : \mathcal{M}^g_{2,1} \rightarrow \mathfrak{Gr}$ to be the fundamental groups $\pi_1 \left(\Sigma_{1,1}, p \right)$ and $\pi_1 \left(\Sigma_{0,1}, p \right)$ on the objects $\Sigma_{1,1}$ and $\Sigma_{0,1}$, and then inductively $A_{\mathcal{M}^g_{2,1}} \left(\Sigma_{n,1} \# \Sigma_{n',1} \right) = \pi_1 \left(\Sigma_{n,1}, p \right) \ast \pi_1 \left(\Sigma_{n',1}, p \right)$ for all natural numbers n, and assigning the morphism $a_{\Sigma^0_{g,1}}(\varphi)$ for all $\varphi \in \Gamma_1$. Recall that the group $\pi_1 \left(\Sigma_{n,1}, p \right)$ is free of rank $2n$. By Van Kampen’s theorem (see for example [20, Section 1.2]), the group $A_{\mathcal{M}^g_{2,1}} \left(\Sigma_{n,1} \# \Sigma_{n',1} \right)$ is isomorphic to the fundamental group of the surface $\Sigma_{n,1} \# \Sigma_{n',1}$, our assignment is thus consistent.

Hence, it follows from Lemma 2.4:

Proposition 2.14. The functor $A_{\mathcal{M}^g_{2,1}} : (\mathcal{M}^g_{2,1}, \pi_0, \Sigma^0_{0,1}) \rightarrow (\mathfrak{Gr}, \ast, 0_{\mathfrak{Gr}})$ is strict monoidal and extends to a functor $\pi_1 \left(\Sigma_{0,1}, p \right) : \Omega \mathcal{M}^g_{2,1} \rightarrow \mathfrak{Gr}$ by assigning for all natural numbers n and n':

$$
\pi_1 \left(\Sigma_{n',1}, p \right) \left(\left[\Sigma_{n',1}, id_{\Sigma_{n'+1,1}} \right] \right) = t_{\pi_1 \left(\Sigma_{n',1}, p \right)} \ast id_{\pi_1 \left(\Sigma_{n,1}, p \right)}
$$
For all natural numbers \(n \), since the free group \(\pi_1 (\Sigma_{n,1}, x) \) acts trivially on the homology group \(H_1 (\Sigma_{n,1}, \mathbb{Z}) \), we have an isomorphism:

\[
H_1 \left(\pi_1 (\Sigma_{n,1}, x) , H_1 (\Sigma_{n,1}, \mathbb{Z}) \otimes H_2 \right) \cong H_1 (\Sigma_{n,1}, \mathbb{Z})^{(m+1)}.
\]

Also, the action of \(\Gamma_{n,2} \) on \(H_1 (\Sigma_{n,1}, \mathbb{Z}) \otimes m \) is induced by the one of \(\Gamma_{n,1} \) via the surjections \(\omega_0 \circ \rho : \Gamma_{n,2} \twoheadrightarrow \Gamma_{n,1} \to \Gamma_{n,1} \). It follows from Lemma 2.8 that the functor \(H_1 \left(A_{\mathfrak{g}_n}, \mathbb{Z} \right) \otimes m \) is very strong polynomial of degree \(m \). Using the terminology of [5] and [9], \(H_1 \left(A_{\mathfrak{g}_n}, \mathbb{Z} \right) \otimes m \) is thus a coefficient system of degree \(m \). Hence, it follows from the stability results of Boldsen [5] or Cohen and Madsen [9] that:

Theorem 2.15. [5, Theorem 4.17][9, Theorem 0.4] Let \(m, n \) and \(q \) be natural numbers such that \(2n \geq 3q + m \):

\[
H_q \left(\Gamma_{n,2}, H_1 (\Sigma_{n,1}, \mathbb{Z}) \otimes m \right) \cong H_q \left(\Gamma_{n,1}, H_1 (\Sigma_{n,1}, \mathbb{Z}) \otimes m \right).
\]

Then, we prove:

Theorem 2.16. Let \(m, n \) and \(q \) be natural numbers such that \(2n \geq 3q + m \). Then, there is an isomorphism:

\[
H_q \left(\Gamma_{n,1}, H_1 (\Sigma_{n,1}, \mathbb{Z}) \otimes m \right) \cong \bigoplus_{\left\lfloor \frac{q-n}{2} \right\rfloor \geq 0} H_q - (2k+1) \left(\Gamma_{n,1}, H_1 (\Sigma_{n,1}, \mathbb{Z}) \otimes m^{-1} \right).
\]

Proof. The Lyndon-Hochschild-Serre spectral sequence with coefficients given by \(H_1 (\Sigma_{n,1}, \mathbb{Z}) \otimes m \) associated with the short exact sequence (10) has only two non-trivial rows. Hence, for all natural numbers \(n \geq 1 \), we obtain the following long exact sequence, where \(\lambda_q = H_q \left(\rho, H_1 (\Sigma_{n,1}, \mathbb{Z}) \otimes m \right) \).

\[
\cdots \xrightarrow{d_{q+1,0}^2} H_{q-1} \left(\Gamma_{n,1}, H_1 (\Sigma_{n,1}, \mathbb{Z}) \otimes (m+1) \right) \xrightarrow{\lambda_q} H_q \left(\Gamma_{n,2}, H_1 (\Sigma_{n,1}, \mathbb{Z}) \otimes m \right) \xrightarrow{\omega_q} H_{q-1} \left(\Gamma_{n,1}, H_1 (\Sigma_{n,1}, \mathbb{Z}) \otimes m^{-1} \right) \xrightarrow{d_q} \cdots
\]

Recall from the split short exact sequence (8) of Proposition 2.12, that the isomorphism (12) is given by

\[
H_q \left(\omega_0, H_1 (\Sigma_{n,1}, \mathbb{Z}) \otimes m \right) \cong q^q_{\varphi_q},
\]

where \(q^q_{\varphi_q} \) denotes a splitting of \(q_\varphi \) (which exists by the splitting lemma for abelian groups). We fix a natural number \(n \) such that \(2n \geq 3q + m \). We consider the projection:

\[
pr : H_q \left(\Gamma_{n,1}, H_1 (\Sigma_{n,1}, \mathbb{Z}) \otimes m \right) \oplus H_{q-1} \left(\Gamma_{n,1}, H_1 (\Sigma_{n,1}, \mathbb{Z}) \otimes m^{-1} \right) \to H_q \left(\Gamma_{n,1}, H_1 (\Sigma_{n,1}, \mathbb{Z}) \otimes m \right).
\]

Using Theorem 2.15, the composition \(H_q \left(\omega_0 \circ \rho, H_1 (\Sigma_{n,1}, \mathbb{Z}) \otimes m \right)^{-1} \circ pr \circ \left(H_q \left(\omega_0, H_1 (\Sigma_{n,1}, \mathbb{Z}) \otimes m \right) \oplus q^q_{\varphi_q} \right) \) defines a splitting of \(\lambda_q \). Using the isomorphism (12), the differential \(d_{q,0}^2 \) of the long exact sequence (13) induces the isomorphism for \(2n \geq 3q + m \):

\[
H_{q-1} \left(\Gamma_{n,1}, H_1 (\Sigma_{n,1}, \mathbb{Z}) \otimes m^{-1} \right) \cong H_{q-2} \left(\Gamma_{n,1}, H_1 (\Sigma_{n,1}, \mathbb{Z}) \otimes m \right) \oplus H_{q-3} \left(\Gamma_{n,1}, H_1 (\Sigma_{n,1}, \mathbb{Z}) \otimes m^{-1} \right).
\]

The result then follows by induction on \(q \). \(\square \)

Remark 2.17. In [24, Theorem 1.B.], Kawazumi leads the analogous computation for cohomology. The method and techniques used in [24] are different from the ones presented here. Using the universal coefficient theorem for twisted coefficients (see for example [16, Théorème I.5.5.2]), Theorem 2.16 recovers the computation [24, Theorem 1.B.].
Computation of \(H_d \left(\Gamma_{n,1}^s, \mathbb{Z} \right) \). Another application of Proposition 2.12 is to compute the stable homology groups \(H_d \left(\Gamma_{n,1}^s, \mathbb{Z} \right) \) for all natural numbers \(d \). Using Proposition 2.12 with constant module \(\mathbb{Z} \) and Theorem 2.16 with \(m = 1 \), we prove:

Theorem 2.18. Let \(n \) and \(q \) be natural numbers such that \(2n \geq 3q \). Then, there is an isomorphism:

\[
H_q \left(\Gamma_{n,1}^{s+1}, \mathbb{Z} \right) \cong \bigoplus_{k \geq 0} H_{q-2k} \left(\Gamma_{n,1}^{s}, \mathbb{Z} \right).
\]

Using other techniques (namely an equivalence of classifying spaces), Bödigheimer and Tillmann prove the equivalent result:

Theorem 2.19. [4, Corollary 1.2] Let \(q \) and \(n \) be natural numbers such that \(n \geq 2q \). For all natural numbers \(s \)

\[
H_q \left(\Gamma_{n,1}^{s}, \mathbb{Z} \right) \cong \bigoplus_{k+l=q} \left(H_k (\Gamma_{n,1}, \mathbb{Z}) \otimes H_l (\mathbb{C}P^\infty)^s, \mathbb{Z} \right)
\]

where \(\mathbb{C}P^\infty \) denotes the infinite dimensional complex projective space.

2.3.2 Automorphisms of free groups with boundaries

Let \(\mathcal{G}_{n,k} \) denote the topological space consisting of a wedge of \(n \in \mathbb{N} \) circles together with \(k \) distinguished circles joined by arcs to the basepoint. For \(s \in \mathbb{N} \), let \(\mathcal{G}_{n,k}^s \) be the space obtained from \(\mathcal{G}_{n,k} \) by wedging \(s - 1 \) edges at the basepoint. We denote by \(A_{n,k}^s \) the group of path-components of the space of homotopy equivalences of \(\mathcal{G}_{n,k}^s \) which fix the \(k \) distinguished circles and the \(s \) basepoints. For instance, for \(n \) a natural number and denoting by \(F_n \) the free group of rank \(n \), then \(A_{1,1}^1 \) is isomorphic to the automorphism group of \(F_n \) (denoted by \(\text{Aut} (F_n) \)) and \(A_{2,0}^2 \) is isomorphic to the holomorph of the free group \(F_n \). We refer the reader to [21] and [23] for more details on these groups.

For \(k, n \in \mathbb{N} \), we denote by \(Aut_{n,k} \) the subgroup of \(\text{Aut} (F_{n+k}) \) of automorphisms that take each of the \(k \) last generators to a conjugate of itself. We recall that the homotopy long exact sequence associated with the fibration induced by restricting the homotopy equivalences of \(\mathcal{G}_{n,k} \) to their rotations of the \(k \) distinguished circles provides a surjective map \(A_{n,k} \twoheadrightarrow Aut_{n,k} \). For \(k, n \in \mathbb{N} \), we denote by \(a_{A_{n,k}} \) the composition \(A_{n,k}^1 \twoheadrightarrow A_{n,k} \twoheadrightarrow Aut_{n,k} \) where the map \(A_{n,k}^1 \twoheadrightarrow A_{n,k} \) forgets the basepoint. We recall the following useful result:

Lemma 2.20. [21] Let \(n, k \) and \(s \geq 2 \) be natural numbers. There is a split short exact sequence

\[
1 \longrightarrow F_{n+k} \longrightarrow A_{n,k}^s \longrightarrow A_{n,k}^{s-1} \longrightarrow 1,
\]

where the map \(A_{n,k}^s \twoheadrightarrow A_{n,k}^{s-1} \) forgets the last basepoint and a fortiori \(A_{n,k}^s \cong (F_{n+k})^{s-1} \rtimes A_{n,k}^1 \) where \(A_{n,k}^1 \) acts diagonally on \((F_{n+k})^{s-1} \) via the map \(a_{A_{n,k}} : A_{n,k}^1 \twoheadrightarrow Aut (F_{n+k}) \).

Let \(k \) and \(s \) be fixed natural numbers. Let \(\mathfrak{A}_{s,k} \) be the groupoid with the spaces \(\mathcal{G}_{n,k}^s \) as objects and \(A_{n,k}^s \) as automorphism groups for all natural numbers. In particular, for \(s = 1 \) and \(k = 0 \), \(\mathfrak{A}_{1,0} \) is the maximal subgroupoid of the category \(\mathfrak{g} \mathfrak{r} \) of finitely generated free groups. The coproduct \(* \) thus induces a strict symmetric monoidal structure \((\mathfrak{A}_{1,0}, * , 0_{\mathfrak{g} \mathfrak{r}}) \). Moreover, we define a functor \(i : \mathfrak{g} \mathfrak{r}_{1,0} \longrightarrow \mathfrak{g} \mathfrak{r} \) by the identity on objects and sending a morphism \([F_{n_2}, n_2, g] : F_{n_1} \longrightarrow F_{n_2} \) of \(\mathfrak{g} \mathfrak{r}_{1,0} \) (where \(g \in \text{Aut} (F_{n_2}) \)) to the morphism \(g \circ (iF_{n_2}^{-1} - n_1 \circ idF_{n_1}) : F_{n_1} \hookrightarrow F_{n_2} \) of \(\mathfrak{g} \mathfrak{r} \).

Let \(k \) and \(s \geq 1 \) be natural numbers. Precomposing by the surjection \(A_{n,k}^s \twoheadrightarrow A_{n,k}^{s-1} \twoheadrightarrow \cdots \twoheadrightarrow A_{n,k}^1 \), the morphisms \(\{a_{A_{n,k}}\}_{n \in \mathbb{N}} \) assemble to define a functor \(A_{3,k} : \mathfrak{g} \mathfrak{r}_{3,k} \longrightarrow \mathfrak{g} \mathfrak{r} \) such that \(A_{3,k} (n) = F_{n+k} \) for all natural numbers \(n \). Furthermore, we recall the stable homology result for automorphism groups of free groups due to Galatius for constant coefficients and Djament and Vespa for twisted coefficients:

Theorem 2.21. Let \(q \geq 1 \) be a natural number. Then:
• [14] for $n \geq 2q + 1$, $H_q(Aut(F_n), Q) = 0$;
• [11, Théorème 1] for $F : \mathfrak{gr} \to \mathbf{Ab}$ a polynomial functor such that $F(0_{\mathfrak{gr}}) = 0_{\mathfrak{gr}}$, then $\operatorname{Colim}_{n \in \mathbb{N}} \left(H_q \left(Aut(F_n), F(n) \right) \right) = 0$.

Hence, we can establish the main result of Section 2.3.2.

Theorem 2.22. Let $s \geq 2$ and $q \geq 1$ be natural numbers.

1. Let $F : \mathfrak{gr} \to \mathbf{Ab}$ be a polynomial functor such that $F(0_{\mathfrak{gr}}) = 0_{\mathfrak{gr}}$. The action of A^s_n on $F(n)$ is induced by the surjections $A^s_{n,0} \to A^s_{n-1,0} \to \cdots \to A^1_{n,0}$. Then $\operatorname{Colim}_{n \in \mathbb{N}} \left(H_q \left(A^s_{n,0}, F(n) \right) \right) = 0$.

2. For all natural numbers $n \geq 2q + 2$ and $k \geq 0$, $H_q \left(A^s_{n,k}, Q \right) = 0$.

Proof. As i is a strong monoidal functor, we deduce from Proposition 2.6 that the functor $F \circ i : \mathfrak{gr} \to \mathbf{Ab}$ is strong polynomial. It follows from Lemma 2.9 that $H_1(F_-, Q) \otimes F(-) : \mathfrak{gr} \to \mathbf{Ab}$ is a strong polynomial functor. Hence, the first result follows from Corollary 2.3 and Theorem 2.21.

In [22, Theorem 1.1], Hatcher and Wahl prove that the stabilization morphism $A^s_{n,k} \to A^s_{n,k+1}$ induces an isomorphism for the rational homology $H_q \left(A^s_{n,k}, Q \right) \sim H_q \left(A^s_{n,k+1}, Q \right)$ if $n \geq 3q + 3$. The second result thus follows from the previous statement.

Remark 2.23. For $k = 0$ and $s = 2$, Theorem 2.22 recovers the results [23, Theorem 1.2 (b) and (c)] due to Jensen.

3 Twisted stable homologies for FI-modules

In this section, we present a general principle to compute the twisted stable homology for mapping class groups with non-trivial finite quotient groups. First, we give a general decomposition for the twisted stable homology using functor homology Section 3.1. Then, we can establish in Theorem 3.7 a general formula to compute the stable homology with twisted coefficients given by functors over categories associated with the aforementioned finite quotient groups in Section 3.2. This allows to set explicit formulas for the stable homology with coefficients given by FI-modules for braid groups, mapping class groups of orientable surfaces and some particular right-angled Artin groups in Section 3.3. Throughout Section 3, we fix K a field.

3.1 General decomposition for the twisted stable homology using functor homology

In this first subsection, we prove a decomposition result for the stable homology with twisted coefficients for families of groups whose associated groupoid is a pre-braided homogeneous groupoid (see Theorem 3.2). It extends a previous analogous result due Djament and Vespa in [10, Section 1 and 2] when the ambient monoidal structure is symmetric. It will be a key step to prove Theorem 3.7. We refer the reader to the papers [13, Section 2] and [10, Appendix A] for an introduction to homological algebra in functor categories and we assume that all the definitions, properties and results there are known.

Throughout Section 3.1, we consider $(G, z, 0)$ a small braided strict monoidal groupoid, with objects indexed by the natural numbers. An object of G is thus denoted by n, where n is its corresponding indexing natural number. We denote the automorphism group $Aut_G(n)$ by G_n.

We assume that G has no zero divisors, that $Aut_G(0) = \{ id_0 \}$ and that it satisfies the properties (C) and (I) of Definition 1.10. By Theorem 1.11, the monoidal structure z extends to Quillen’s bracket construction and defines pre-braided homogeneous category $(\mathcal{U}G, z, 0)$. Also, the unit 0 is an initial object in $\mathcal{U}G$ and we recall that $i_n = [n, id_n] : 0 \to n$ denotes the unique morphism in $\mathcal{U}G$ from 0 to n.

Hence, we have canonical morphisms $id_{\mathcal{U}G} z^{n-n'} : n \to n'$ in $\mathcal{U}G$, for all natural numbers n and n' such that $n' \geq n$. We fix F an object of $\mathcal{Fct}(\mathcal{U}G, K-\mathcal{Mod})$. Our goal is to compute the stable homology of the family of groups G_- with coefficients given by F.

13
Notation 3.1. We denote by G_∞ the colimit with respect to (\mathbb{N}, \leq) of the family of groups G_- and by F_∞ the colimit of the G_n-modules $F (\underline{n})$ with respect to the morphisms $F (\underline{id}_{x \cdot y} \cdot \underline{n} - x)$. Then we denote $H_\ast (G_\infty, F_\infty) = \text{Colim}_{n \in (\mathbb{N}, \leq)} \left(H_\ast (G (\underline{n}), F (\underline{n})) \right)$. This notation makes sense since group homology commutes with filtered colimits.

As categories with one object, the groups $\{G_n\}_{n \in \mathbb{N}}$ are subcategories of $\mathcal{U}G$. We denote by $\Pi : \mathcal{U}G \to \mathcal{U}G$ the projection functor and by Π' the precomposition by Π. Hence, for all natural numbers n, the canonical group morphism $G_n \to G_\infty$ and the faithful functors $G_n \to \mathcal{U}G$ induce a natural inclusion functor $\Psi_{F,n} : H_\ast (G_n, F (n)) \to H_\ast (G_\infty \times \mathcal{U}G, \Pi' F)$ by the functoriality of the homology of categories (see [10, Appendix A]).

Using the group morphisms $G_n \to G_{n+1}$ sending $\varphi \in G_n$ to $\varphi \cdot \underline{id}_1$ and the morphisms $\underline{id}_{x \cdot y} \cdot \underline{n} - x$ by the functoriality in two variables of group homology (see for example [6, Section III.8]), we define maps $H_\ast (G_n, F (n)) \to H_\ast (G_{n+1}, F (n+1))$ so that the inclusion functors $\Psi_{F,n}$ are natural with respect to n. Hence, we form a morphism:

$$\Psi_F : H_\ast (G_\infty, F_\infty) \to H_\ast (G_\infty \times \mathcal{U}G, \Pi' F).$$

Let us state the main result of this section.

Theorem 3.2. Let \mathbb{K} be a field and $(\mathcal{U}G, \zeta, 0)$ be a pre-braded homogeneous category as detailed before. For all functors $F : \mathcal{U}G \to \mathbb{K}\text{-}\mathsf{Mod}$, the morphism Ψ_F is a \mathbb{K}-modules isomorphism. Moreover, Ψ_F decomposes as a natural isomorphism:

$$H_\ast (G_\infty, F_\infty) \cong \bigoplus_{k+l=\ast} \left(H_k (G_\infty, \mathbb{K}) \otimes H_l (\mathcal{U}G, F) \right).$$

Proof. Note that the morphism Ψ_F is a morphism of δ-functors commuting with filtered colimits (see [31, Section 2.1]). Since the category $\mathsf{Fct} (\mathcal{U}G, \mathbb{K}\text{-}\mathsf{Mod})$ has enough projectives, provided by direct sums of the standard projective generators functors $P^{\mathcal{U}G}_\underline{m} = \mathbb{K} \left[\text{Hom}_{\mathcal{U}G} (\underline{n}, -) \right]$ for all natural numbers n (see [10, Appendix A]), we only have to show that Ψ_F is an isomorphism when $F = P^{\mathcal{U}G}_\underline{m}$. Indeed, the result for an ordinary functor F thus follows from a resolution of F by direct sums of $P^{\mathcal{U}G}_\underline{m}$.

We deduce from Lemma 1.9 that we have the following isomorphism of G_m-sets for all natural numbers $m \geq n$:

$$\text{Hom}_{\mathcal{U}G} (\underline{m}, \underline{n}) \cong G_m / G_{m-n}.$$

Hence, $P^{\mathcal{U}G}_\underline{m} (\underline{m}) \cong \mathbb{K} [G_m] \otimes_{\mathbb{K}[G_{m-n}]} \mathbb{K}$ as G_m-modules. Therefore, it follows from Schapiro’s lemma that:

$$H_\ast \left(G_m, P^{\mathcal{U}G}_\underline{m} (\underline{m}) \right) \cong H_\ast (G_{m-n}, \mathbb{K}).$$

Taking the colimit with respect to m, we deduce the isomorphism $H_\ast \left(G_\infty, P^{\mathcal{U}G}_\underline{m} (\underline{m}) \right) \cong H_\ast (G_\infty, \mathbb{K})$. Recall that $P^{\mathcal{U}G}_\underline{m}$ is a projective object in $\mathcal{U}G$. Hence, using the first Künneth spectral sequence for the product of two categories (see for example [10, Proposition 2.27]), the morphism $\Psi_{P^{\mathcal{U}G}_\underline{m}}$ identifies with:

$$H_\ast \left(G_\infty, P^{\mathcal{U}G}_\underline{m} (\underline{m}) \right) \cong H_\ast (G_\infty, \mathbb{K}) \cong H_\ast (G_\infty \times \mathcal{U}G, \Pi' \left(P^{\mathcal{U}G}_\underline{m} \right)).$$

The second part of the statement follows applying Künneth formula for homology of categories.

4.2 Framework and first equivalence for stable homology

Throughout the remainder Section 3, we assume that the field \mathbb{K} is of characteristic 0.

We consider three families of groups K_-, G_- and C_- which fit into the following short exact sequence in the category $\mathsf{Fct} ((\mathbb{N}, \leq), \mathfrak{Gr})$:

$$0 \to K_- \xrightarrow{k} G_- \xrightarrow{c} C_- \to 0,$$

(15)

where $k : K_- \to G_-$ and $c : G_- \to C_-$ are natural transformations and 0 denotes the constant object of $\mathsf{Fct} ((\mathbb{N}, \leq), \mathfrak{Gr})$ at $0_{\mathfrak{Gr}}$.

Let K, G and C denote the groupoids with objects indexed by natural numbers and such that $\text{Aut}_K (\underline{n}) = K_n$, $\text{Aut}_G (\underline{n}) = G_n$ and $\text{Aut}_C (\underline{n}) = C_n$. We assume that the groupoids G and C are endowed with braided strict monoidal structures $(G, \zeta_G, 0_G)$ and $(C, \zeta_C, 0_C)$, where ζ_G and ζ_C are defined by the addition on objects, such that:
• the morphisms \(\{c_n\}_{n \in \mathbb{N}} \) induce a strict monoidal functor \(\epsilon : \mathcal{G} \to \mathcal{C} \) defined by the identity on objects;

• \(G_-(\gamma_n) = \mathrm{id}_{\mathcal{G}^\prime} : G_n \hookrightarrow G_{n+1} \) and \(C_- (\gamma_n) = \mathrm{id}_{\mathcal{C}^\prime} : C_n \hookrightarrow C_{n+1} \) for all natural numbers \(n \).

Recall that the associated Quillen’s bracket construction \((\mathcal{U}G, \mathcal{Z}_G, 0)\) and \((\mathcal{U}C, \mathcal{Z}_C, 0)\) are pre-braided strict monoidal by Proposition 1.7. Let \(\Theta'_G : (\mathbb{N}, \leq) \to \mathcal{U}G \) and \(\Theta'_C : (\mathbb{N}, \leq) \to \mathcal{U}C \) be the faithful and essentially surjective functors assigning \(\Theta'_G (n) = \mathcal{O}(\mathcal{G}) = n \) and \(\Theta'_C (n) = \mathcal{O}(\mathcal{C}) = 1 \) for all natural numbers \(n \). Using the functors \(\Theta'_G \) and \(\Theta'_C \), the natural transformation \(\epsilon : \mathcal{G} \to \mathcal{C} \) identifies the morphisms \([n' - n, \mathrm{id}_n] \) (with natural numbers \(n' \geq n \)) of \(\mathcal{U}G \) and \(\mathcal{U}C \). The criteria (1) and (2) of Lemma 1.5 being trivially checked, the functor \(\epsilon : \mathcal{G} \to \mathcal{C} \) lifts to a functor \(\mathcal{U}G \to \mathcal{U}C \), again denoted by \(\epsilon \) (abusing the notation).

The short exact sequence (15) implies that the braided strict monoidal structure \((\mathcal{G}, \mathcal{Z}_G, 0)\) induces a braided strict monoidal structure on \(\mathcal{K} \), denoted by \((\mathcal{K}, \mathcal{Z}_\mathcal{K}, 0)\), such that:

\[
\mathcal{K}_- (\gamma_n) = \mathrm{id}_{\mathcal{G}^\prime} : \mathcal{K}_n \hookrightarrow \mathcal{K}_{n+1}
\]

for all natural numbers \(n \). As for the morphisms \(\{c_n\}_{n \in \mathbb{N}} \), the morphisms \(\{k_n\}_{n \in \mathbb{N}} \) induce a strict monoidal functor \(\mathcal{K}_- : \mathcal{U}K \to \mathcal{K} \).

We fix \(F \) an object of \(\mathbf{Fct} (\mathcal{U}G, \mathcal{K} \mathbf{- Mod}) \). For all natural numbers \(n \), we abuse the notation and write \(F (n) \) for the restriction of \(F \) from \(G_n \) to \(K_n \). Our aim is to compute the stable homology \(H_* (G_\infty, F_\infty) \) of the family of groups \(G_- \). A first step is given by the following result:

Proposition 3.3. For all natural numbers \(q \):

\[
H_q (G_n, F (n)) \equiv H_0 (C_n, H_q (K_n, F (n))).
\]

Proof. Applying the Lyndon-Hochschild-Serre spectral sequence for the short exact sequence (15), we obtain the following convergent first quadrant spectral sequence:

\[
E^2_{pq} : H_p (C_n, H_q (K_n, F (n))) \Longrightarrow H_{p+q} (G_n, F (n)).
\]

(17)

Fixing \(n \) a natural number, we have for \(p \neq 0 \):

\[
H_p (C_n, H_q (K_n, F (n))) = 0,
\]

since \(C_n \) is a finite group. Hence, the second page of the spectral sequence (17) has non-zero terms only on the 0-th column and zero differentials. A fortiori, the convergence gives that \(E^2 = E^\infty \) and this gives the desired result.

Let us focus on a key property for the homologies of the kernels \(\{k_n\}_{n \in \mathbb{N}} \) which improves Proposition (3.3). Recall that, as \(K_n \) is a normal subgroup of \(G_n \), the map \(\text{conj}_n : G_n \to \text{Aut}_{\mathbf{Fct}} (K_n) \) sending an element \(g \in G_n \) to the left conjugation by \(g \) is a group morphism.

Lemma 3.4. We define a functor \(\mathcal{K}_- : \mathcal{U}G \to \mathbf{Gr} \) assigning \(\mathcal{K}_- (\mathbf{G}) = K_n \) for all natural numbers \(n \) and:

1. for all \(g \in G_n \), \(\mathcal{K}_- (g) \in \text{Aut}_{\mathbf{Fct}} (K_n) \) to be \(\text{conj}_n (g) : k \mapsto g k g^{-1} \) for all \(k \in K_n \),
2. \(\mathcal{K}_- ([1, \mathrm{id}_{n+1}]) = \mathrm{id}_{\mathcal{G}^\prime} \).

Proof. It follows from the first assignment of Lemma 3.4 that we define a functor \(\mathcal{K}_- : \mathcal{G} \to \mathbf{Gr} \). The relation (1) of Lemma 1.5 follows from the definition of the monoidal product \(\mathcal{Z}_G \). Let \(n \) and \(n' \) be natural numbers such that \(n' \geq n \), let \(g \in G_n \) and \(g' \in G_{n'} \). We compute for all \(k \in K_n \):

\[
\left(\mathcal{K}_- (g' \mathcal{Z}_G) \circ \mathcal{K}_- \left(\left[n', n, \mathrm{id}_{n+1} \right] \right) \right) (k) = (g' \mathcal{Z}_G) \left(\mathrm{id}_{n'} \mathcal{Z}_G k \right) (g' \mathcal{Z}_G)^{-1} = \left(\mathcal{K}_- \left(\left[n', n, \mathrm{id}_{n+1} \right] \right) \circ \mathcal{K}_- (g) \right) (k).
\]

Hence, the relation (2) is satisfied a fortiori the result follows from Lemma 1.5. \(\square \)
Lemma 3.4 is useful to prove the following key result.

Proposition 3.5. For all natural numbers \(q \), the homology groups \(\{ H_q(K_n, F(\underline{n})) \}_{n \in \mathbb{N}} \) define a functor \(H_q(K_-, F(-)) : \mathcal{UC} \to K\text{-Mod} \).

Proof. Let \(\mathcal{P} \) be the category of pairs \((G, M)\) where \(G \) is a group and \(M \) is a \(G \)-module for objects; for \((G, M)\) and \((G', M')\) objects of \(\mathcal{P} \), a morphism from \((G, M)\) to \((G', M')\) is a pair \((\varphi, \alpha)\) where \(\varphi \in \text{Hom}_{\text{Set}}(G, G') \) and \(\alpha : M \to M' \) is a \(G \)-module morphism, where \(M' \) is endowed with a \(G \)-module structure via \(\varphi \). Using the functor \(F : \mathcal{UG} \to K\text{-Mod} \), by Lemma 3.4 \(K_- \) defines a functor \((K_-, F(-)) : \mathcal{UG} \to \mathcal{P} \). Recall from [6, Section 8] that group homology defines a covariant functor \(H_\bullet : \mathcal{P} \to K\text{-Mod} \) for all \(q \in \mathbb{N} \). Hence the composition with the functor \((K_-, F(-)) : \mathcal{UG} \to \mathcal{P} \) gives a functor:

\[
H_q(K_-, F(-)) : \mathcal{UG} \to K\text{-Mod}.
\]

Moreover, since inner automorphisms act trivially in homology, we deduce that for all natural numbers \(n \), the conjugation action of \(G_n \) on \((K_n, F(n))\) induces an action of \(C_n \) on \(H_\bullet(K_n, F(n)) \). The monoidal structures \((\mathcal{G}, \mathcal{G}, 0, \mathcal{G})\) and \((\mathcal{C}, \mathcal{C}, \mathcal{C}, 0, \mathcal{C})\) being compatible, we deduce that the functor \(H_q(K_-, F(-)) \) factors through the category \(\mathcal{UC} \) using the functor \(c : \mathcal{UG} \to \mathcal{UC} \).

Finally, we recall the following property for the homology of a category:

Proposition 3.6. [13, Example 2.5] Let \(\mathcal{C} \) be an object of \(\text{Cat} \) and let \(F \) be an object of \(\text{Fct}(\mathcal{C}, R\text{-Mod}) \). Then, \(H_0(\mathcal{C}, F) \) is isomorphic to the colimit over \(\mathcal{C} \) of the functor \(F : \mathcal{C} \to R\text{-Mod} \).

We thus deduce from Proposition 3.5:

Theorem 3.7. Let \(K_-, G_- \) and \(C_- \) three families of groups fitting in the short exact sequence (15), such that the group \(C_n \) is finite for all natural numbers \(n \) and the groupoids \(\mathcal{G} \) and \(\mathcal{C} \) are endowed with the aforementioned braided strict monoidal structures \((\mathcal{G}, \mathcal{G}, 0, \mathcal{G})\) and \((\mathcal{C}, \mathcal{C}, \mathcal{C}, 0, \mathcal{C})\). Then, for all natural numbers \(q \):

\[
H_q(G_\infty, F_\infty) \cong \text{Colim}_{l \in \mathcal{UC}} (H_q(K_l, F(\underline{l}))).
\]

Moreover, if \(F \) factors through the category \(\mathcal{UC} \) (in other words, \(F : \mathcal{UG} \to \mathcal{UC} \to K\text{-Mod} \)), then:

\[
H_q(G_\infty, F_\infty) \cong \text{Colim}_{l \in \mathcal{UC}} (H_q(K_l, F(\underline{l}))) \otimes_{\mathcal{K}} (F(\underline{1})).
\]

Proof. Applying Theorem 3.2 to Proposition 3.3, we obtain that:

\[
\text{Colim}_{n \in \mathbb{N}} (H_0(C_n, H_q(K_n, F(\underline{n})))) \cong \text{Colim}_{n \in \mathbb{N}} (H_0(C_n, \mathcal{K}) \otimes_{\mathcal{K}} H_0(\mathcal{UC}, H_q(K_-, F))).
\]

By Proposition 3.6, \(H_0(\mathcal{UC}, H_q(K_-, F(\underline{l}))) \cong \text{Colim}_{l \in \mathcal{UC}} (H_q(K_l, F(\underline{l}))). \) Since \(H_0(C_n, \mathcal{K}) \cong \mathcal{K} \), we deduce the first result. Then, the second result thus follows from Künneth Theorem.

3.3 Applications

We present now how to apply the general result of Theorem 3.7 for various families of groups. Beforehand, we fix some notations. We denote by \(\mathcal{S}_n \), the symmetric group on \(n \) elements and by \(\mathcal{S}_- : (\mathbb{N}, \leq) \to \mathcal{S}_\mathcal{C} \) the family of groups defined by \(\mathcal{S}_-(\underline{n}) = \mathcal{S}_n \) and \(\mathcal{S}_-(\gamma_n) = id_1 \sqcup - \) for all natural numbers \(n \).

Let \(\Sigma \) be the skeleton of the groupoid of finite sets and bijections. Note that \(\text{Obj}(\Sigma) \cong \mathbb{N} \) and that the automorphism groups are the symmetric groups \(\mathcal{S}_n \). The disjoint union of finite sets \(\sqcup \) induces a monoidal structure \((\Sigma, \sqcup, 0)\), the unit 0 being the empty set. This groupoid is symmetric monoidal, the symmetry being given by the canonical bijection \(n_1 \sqcup n_2 \to n_2 \sqcup n_1 \) for all natural numbers \(n_1 \) and \(n_2 \). The category \(\mathcal{UC} \) is equivalent to the category of finite sets and injections \(FI \) studied in [8].
3.3.1 Braid groups

We denote by B_n (respectively PB_n) the braid group (resp. the pure braid group) on n strands. The braid groupoid β is the groupoid with objects the natural numbers $n \in \mathbb{N}$ and braid groups as automorphism groups. It is endowed with a strict braided monoidal product $\otimes : \beta \times \beta \rightarrow \beta$, defined by the usual addition for the objects and laying two braids side by side for the morphisms. The object 0 is the unit of this monoidal product. The braiding of the strict monoidal groupoid $(\beta, \otimes, 0)$ is defined for all natural numbers n and m by:

$$b^\beta_{n,m} = (\sigma_m \circ \cdots \circ \sigma_2 \circ \sigma_1) \circ \cdots \circ (\sigma_{n+m-2} \circ \cdots \circ \sigma_n \circ \sigma_{n-1}) \circ (\sigma_{n+m-1} \circ \cdots \circ \sigma_{n+1} \circ \sigma_n)$$

where $\{\sigma_i\}_{i \in \{1, \ldots, n+m-1\}}$ denote the Artin generators of the braid group B_{n+m}. We refer the reader to [25, Chapter XI, Section 4] for more details.

The classical surjections $\{B_n \twoheadrightarrow \Sigma_n\}_{n \in \mathbb{N}}$, sending each Artin generator $\sigma_i \in B_n$ to the transposition $\tau_i \in \Sigma_n$ for all $i \in \{1, \ldots, n-1\}$ and for all natural numbers n, assemble to define a functor $\mathcal{Q} : \mathcal{B} \rightarrow FI$. The functor \mathcal{Q} is strict monoidal with respect to the monoidal structures following short exact sequence for all natural numbers n. Moreover, the \mathcal{Q}-module structure of the homology groups $H_i(\mathbb{Z})$ is defined for all natural numbers n.

Let $PB_\mathcal{Q} : (\mathbb{N}, \leq) \rightarrow \mathcal{G}$ and $B_\mathcal{Q} : (\mathbb{N}, \leq) \rightarrow \mathcal{G}$ be the families of groups defined by $PB_{\mathcal{Q}}(n) = PB_n$, $B_{\mathcal{Q}}(n) = B_n$ and $B_{\mathcal{Q}}(\gamma_n) = PB_{\mathcal{Q}}(\gamma_n) = id_{PB_{\mathcal{Q}}} = \text{id}_{B_{\mathcal{Q}}}$ for all natural numbers n. Therefore, by Theorem 3.7:

Proposition 3.8. Let F be an object of $\text{Fct}(\mathcal{B}, \mathcal{K}-\text{Mod})$. For all natural numbers q, $H_q(B_{\infty}, F_{\infty}) \cong \text{Colim}_{n \in FI} \left(H_q(PB_n, F(n)) \right)$, and if F factors through the category FI, then:

$$H_q(B_{\infty}, F_{\infty}) \cong \text{Colim}_{n \in FI} \left(H_q(PB_n, K) \otimes F(n) \right).$$

The rational cohomology ring of the pure braid group on $n \in \mathbb{N}$ strands is computed by Arnold in [1]. Namely, $H^q(PB_n, \mathbb{Q})$ is the graded algebra generated by the classes $\omega_{i,j}$ for $i, j \in \{1, \ldots, n\}$ and $i < j$, subject to the relations $\omega_{i,j} \omega_{i,k} + \omega_{i,j} \omega_{k,j} + \omega_{k,j} \omega_{i,j} = 0$. By the universal coefficient theorem for cohomology and as $H^q(PB_n, K)$ is a finite-dimensional vector space, we deduce that $H_q(PB_n, K) \cong H^q(PB_n, \mathbb{Q})$.

Moreover, the PI-module structure of the holonomy groups $H_q(PB_{\mathcal{Q}}, K)$ is well-known by [8, Example 5.1.3]: the conjugation action of the symmetric group Σ_n on $H_q(PB_{\mathcal{Q}}, K)$ translates into the permutation action of Σ_n on the indices $i, j \in \{1, \ldots, n\}$ of the generators $\{\omega_{i,j}\}_{i,j \in \{1, \ldots, n\}}$. Hence, fixing some $F \in \text{Fct}(FI, K-\text{Mod})$, we have a complete description of the FI-module structure of the functor $H_q(PB_{\mathcal{Q}}, K) \otimes F(-)$.

3.3.2 Mapping class group of orientable surfaces

We take the notations of Section 3.3.1. Recall that we introduced the groupoid \mathcal{M}_2 associated with the surfaces $\Sigma_{n,1}$ for all natural numbers n and s. Let \mathcal{M}_2^n be the full subgroupoid of \mathcal{M}_2 on the objects $\{\Sigma_{n,1}\}_{n \in \mathbb{N}}$. By [27, Proposition 5.18], the boundary connected sum \mathcal{Z} induces a strict braided monoidal structure \mathcal{M}_2^n. Moreover, the \mathcal{Z}-module structure of the homology groups $H_q(\mathcal{Z})$ is defined for all natural numbers n.

The injections $\{\Gamma_{n,1}^n \twoheadrightarrow \Gamma_{n,1}^1\}_{n \in \mathbb{N}}$ induced by the inclusions $Diff_{\mathcal{Z}}$ fix the marked points $\left(\Sigma_{n,1}^n\right)$ and $Diff_{\mathcal{Z}}$ permute the marked points $\left(\Sigma_{n,1}^1\right)$ provide the following short exact sequence for all natural numbers n:

$$1 \longrightarrow \Gamma_{n,1}^n \longrightarrow \Gamma_{n,1}^1 \longrightarrow \mathcal{S}_n \longrightarrow 1.$$
The surjections \(\{\text{pm}_n\}_{n \in \mathbb{N}} \) define a strict monoidal functor \(\mathcal{M}_2 \to \Sigma \). Let \(\Gamma_{-1}^n : (\mathbb{N}, \leq) \to \mathcal{G}_n \) and \(\Gamma_{-1}^n : (\mathbb{N}, \leq) \to \mathcal{G}_n \) be the families of groups defined by \(\Gamma_{-1}^n(n) = \Gamma_{n,1}^n \), \(\Gamma_{-1}^n(n) = \Gamma_{n,1}^n \) and \(\Gamma_{-1}^n(\gamma_n) = \Gamma_{-1}^n(\gamma_n) = \text{id}_{\mathbb{N}} \) for all natural numbers \(n \).

Recall from Theorem 2.19 that for any natural numbers \(q \) such that \(n \geq 2q \):

\[
H_q\left(\Gamma_{n,1}^n, K \right) \cong \bigoplus_{k+1+q} \left(H_k(\Gamma_{n,1}^n, Z) \otimes H_l \left((C P^n)^{\times n}, Z \right) \right).
\]

The conjugation action of the symmetric group \(\mathcal{S}_n \) on \(\Gamma_{n,1}^n \) is induced by the natural action of \(\mathcal{S}_n \) on \(\Sigma_{n,1}^n \) given by permuting the marked points. Hence, according to the decomposition of the classifying space associated with the pure mapping class groups in [4, Theorem 1], the action of \(\mathcal{S}_n \) on \(H_q(\Gamma_{n,1}^n, K) \) corresponds to permuting the \(n \) factors \(C P^n \); the \(FI \)-module structure of the homology groups \(H_q(\Gamma_{n,1}^n, K) \) is thus well-understood using the Künneth formula for \(H_l \left((C P^n)^{\times n}, Z \right) \). A fortiori the homology group \(H_k(\Gamma_{n,1}^n, K) \) is a trivial \(\mathcal{S}_n \)-module. Recall also from [26] that:

\[
H_k(\Gamma_{n,1}^n, K) \cong K[\kappa_1, \kappa_2, \ldots]
\]

where each \(\kappa_i \) has degree 2i.

By Theorem 3.7, we deduce that:

Proposition 3.9. Let \(F \) be an object of \(\mathcal{Fct} (\mathcal{M}_2^{\infty}, K \text{-Mod}) \). For all natural numbers \(q \),

\[
H_q \left(\Gamma_{\infty,1}^\infty, F_\infty \right) \cong \text{Colim} \left(H_q(n, F(n)) \right).
\]

In particular, if \(F \) factors through the category \(FI \), then:

\[
H_q \left(\Gamma_{\infty,1}^\infty, F_\infty \right) \cong \text{Colim} \left(\bigoplus_{k+1+q} \left(H_k(\Gamma_{n,1}^n, K) \otimes H_l \left((C P^n)^{\times n}, K \right) \right) \otimes F(n) \right),
\]

and a fortiori \(H_{2k+1} \left(\Gamma_{\infty,1}^\infty, F_\infty \right) = 0 \) for all natural numbers \(k \).

3.3.3 Particular right-angled Artin groups

A right-angled Artin group (abbreviated RAAG) is a group with a finite set of generators \(\{s_i\}_{1 \leq i \leq k} \) with \(k \in \mathbb{N} \) and relations \(s_is_j = s_js_i \) for some \(i, j \in \{1, \ldots, n\} \). For instance, the free group on \(k \) generators \(F_k \) is a RAAG. By [15, Proposition 3.1], any RAAG admits a maximal decomposition as a direct product of RAAGs, unique up to isomorphism and permutation of the factors. A RAAG is said to be unfactorizable if its maximal decomposition is itself. We refer to [30] or [15, Section 3] for more details on these groups.

We have the following key property:

Proposition 3.10. [15, Proposition 3.3] Let \(A \) be a fixed unfactorizable RAAG different from \(\mathbb{Z} \). For all natural numbers \(n \), we have the following split short exact sequence:

\[
1 \longrightarrow \text{Aut}(A)^{\times n} \longrightarrow \text{Aut}(A^{\times n}) \longrightarrow \mathcal{S}_n \longrightarrow 1.
\]

Let \(\mathcal{R}_A \) be the groupoid with the groups \(A^{\times n} \) for all natural numbers \(n \) as objects and \(\text{Aut}(A^{\times n}) \) as automorphism groups. By [15, Sections 1 and 5], the direct product \(\times \) induces a strict symmetric monoidal structure \((\mathcal{R}_A, \times, 0) \). It is clear that the surjections \(\{s_n\}_{n \in \mathbb{N}} \) define a strict monoidal functor \(S : \mathcal{R}_A \to \Sigma \). Let \(\text{Aut}(A)^{-} : (\mathbb{N}, \leq) \to \mathcal{G} \) and \(\text{Aut}(A)^{-} : (\mathbb{N}, \leq) \to \mathcal{G} \) be the families of groups defined by \(\text{Aut}(A)^{-}(n) = \text{Aut}(A^{\times n}) \), \(\text{Aut}(A)^{-}(n) = \text{Aut}(A)^{\times n} \) and \(\text{Aut}(A)^{-}(\gamma_n) = \text{Aut}(A)^{\times n}(\gamma_n) = \text{id}_{\mathbb{N}} \times - \) for all natural numbers \(n \). By Theorem 3.7:
Proposition 3.11. Let F be an object of $\text{Fct}(\mathcal{U}R\mathcal{A}, K\text{-Mod})$ and A be a fixed unfactorizable right-angled Artin group different from \mathbb{Z}. For all natural numbers q, $H_q(\text{Aut}(A^\infty), F_\infty) \cong \text{Colim}_{n \in \mathcal{U}R\mathcal{A}} \left(H_q\left(\text{Aut}(A)^\times n, F(n)\right)\right)$, and if F factors through the category FI, then:

$$H_q(\text{Aut}(A^\infty), F_\infty) \cong \text{Colim}_{n \in FI} \left(H_q\left(\text{Aut}(A)^\times n, K\right) \otimes K F(n)\right).$$

(18)

Corollary 3.12. Let A be a fixed unfactorizable right-angled Artin group different from \mathbb{Z}, such that there exists $N_A \in \mathbb{N}$ such that $H_q(\text{Aut}(A), K) = 0$ for $1 \leq q \leq N_A$. Then, for all objects F of $\text{Fct}(\mathcal{U}R\mathcal{A}, K\text{-Mod})$ factoring through the category FI:

$$H_q(\text{Aut}(A^\infty), F_\infty) = 0,$$

for all natural numbers q such that $1 \leq q \leq N_A$.

Proof. It follows from Künneth Theorem that, for all natural numbers q such that $1 \leq q \leq N_A$, $H_q\left(\text{Aut}(A)^\times n, K\right) = 0$. Then, the result follows from (18).

Example 3.13. Let F_k be the free group on k generators. By [14, Corollary 1.2], for $k \geq 2q + 1$ and $q \neq 0$, $H_q(\text{Aut}(F_k), K) = 0$. Let F be an object of $\text{Fct}(\mathcal{U}R\mathcal{F}_k, K\text{-Mod})$ factoring through the category FI. Then, for all natural numbers q and k such that $1 \leq q \leq \frac{k-1}{2}$:

$$H_q\left(\text{Aut}\left((F_k)^\times n\right), F_\infty\right) = 0.$$

In particular, $H_q\left(\text{Aut}\left((F_\infty)^\times n\right), F_\infty\right) = 0$ for all FI-module F.

References

[1] Vladimir I Arnold. The cohomology ring of the colored braid group. In Vladimir I. Arnold-Collected Works, pages 183–186. Springer, 1969.

[2] Joan S. Birman. Braids, links, and mapping class groups. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1974. Annals of Mathematics Studies, No. 82.

[3] Joan S. Birman. Braids, links, and mapping class groups. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1974. Annals of Mathematics Studies, No. 82.

[4] Carl-Friedrich Bödigheimer and Ulrike Tillmann. Stripping and splitting decorated mapping class groups. In Cohomological methods in homotopy theory (Bellaterra, 1998), volume 196 of Progr. Math., pages 47–57. Birkhäuser, Basel, 2001.

[5] Søren K. Boldsen. Improved homological stability for the mapping class group with integral or twisted coefficients. Math. Z., 270(1-2):297–329, 2012.

[6] Kenneth S Brown. Cohomology of groups, volume 87. Springer Science & Business Media, 2012.

[7] Jean Cerf. Topologie de certains espaces de plongements. Bull. Soc. Math. France, 89:227–380, 1961.

[8] Thomas Church, Jordan S. Ellenberg, and Benson Farb. FI-modules and stability for representations of symmetric groups. Duke Math. J., 164(9):1833–1910, 2015.

[9] Ralph L. Cohen and Ib Madsen. Surfaces in a background space and the homology of mapping class groups. In Algebraic geometry—Seattle 2005. Part 1, volume 80 of Proc. Sympos. Pure Math., pages 43–76. Amer. Math. Soc., Providence, RI, 2009.

[10] Aurélien Djament and Christine Vespa. Sur l’homologie des groupes orthogonaux et symplectiques à coefficients tordus. Ann. Sci. Éc. Norm. Supér. (4), 43(3):395–459, 2010.
[11] Aurélien Djament and Christine Vespa. Sur l’homologie des groupes d’automorphismes des groupes libres à coefficients polynomiaux. Comment. Math. Helv., 90(1):33–58, 2015.

[12] Aurélien Djament and Christine Vespa. Foncteurs faiblement polynomiaux. To be published in International Mathematics Research Notices, arXiv: 1308.4106v5, 2017.

[13] Vincent Franjou and Teimuraz Pirashvili. Stable K-theory is bifunctor homology (after A. Scorichenko). In Rational representations, the Steenrod algebra and functor homology, volume 16 of Panor. Synthèses, pages 107–126. Soc. Math. France, Paris, 2003.

[14] Søren Galatius. Stable homology of automorphism groups of free groups. Ann. of Math. (2), 173(2):705–768, 2011.

[15] Giovanni Gandini and Nathalie Wahl. Homological stability for automorphism groups of RAAGs. Algebr. Geom. Topol., 16(4):2421–2441, 2016.

[16] Roger Godement. Topologie algébrique et théorie des faisceaux. Actualités Sci. Ind. No. 1252. Publ. Math. Univ. Strasbourg. No. 13. Hermann, Paris, 1958.

[17] André Gramain. Le type d’homotopie du groupe des difféomorphismes d’une surface compacte. In Annales scientifiques de l’École Normale Supérieure, volume 6, pages 53–66. Elsevier, 1973.

[18] Daniel Grayson. Higher algebraic K-theory: II (after Daniel Quillen). In Algebraic K-theory, pages 217–240. Lectures Notes in Math., Vol.551, Springer, Berlin, 1976.

[19] John Harer. The third homology group of the moduli space of curves. Duke Math. J., 63(1):25–55, 1991.

[20] Allen Hatcher. Algebraic topology. 2002. Cambridge UP, Cambridge, 606(9), 2002.

[21] Allen Hatcher and Nathalie Wahl. Stabilization for the automorphisms of free groups with boundaries. Geom. Topol., 9:1295–1336, 2005.

[22] Allen Hatcher and Nathalie Wahl. Stabilization for mapping class groups of 3-manifolds. Duke Math. J., 155(2):205–269, 2010.

[23] Craig A. Jensen. Homology of holomorphs of free groups. J. Algebra, 271(1):281–294, 2004.

[24] Nariya Kawazumi. On the stable cohomology algebra of extended mapping class groups for surfaces. In Groups of diffeomorphisms, volume 52 of Adv. Stud. Pure Math., pages 383–400. Math. Soc. Japan, Tokyo, 2008.

[25] Saunders Mac Lane. Categories for the working mathematician, volume 5. Springer Science & Business Media, 2013.

[26] Ib Madsen and Michael Weiss. The stable moduli space of Riemann surfaces: Mumford’s conjecture. Ann. of Math. (2), 165(3):843–941, 2007.

[27] Oscar Randal-Williams and Nathalie Wahl. Homological stability for automorphism groups. Adv. Math., 318:534–626, 2017.

[28] Arthur Soulié. The Long-Moody construction and polynomial functors. arXiv:1702.08279. Submitted, 2017.

[29] Arthur Soulié. The generalized Long-Moody functors. arXiv:1709.04278. Submitted, 2018.

[30] Karen Vogtmann. $GL(n,\mathbb{Z})$, $Out(F_n)$ and everything in between: automorphism groups of RAAGs. In Groups St Andrews 2013, volume 422 of London Math. Soc. Lecture Note Ser., pages 105–127. Cambridge Univ. Press, Cambridge, 2015.

[31] Charles A. Weibel. An introduction to homological algebra, volume 38 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1994.

IRMA, Université de Strasbourg, 7 Rue René Descartes, 67084 Strasbourg Cedex, France
E-mail address: soulie*math.unistra.fr