ELASTIC-BRITTLE REINFORCEMENT OF FLEXURAL STRUCTURES

FRANCESCO MADDALENA∗, DANilo PERCIVALE** & FRANCO TOMARELLI***

Dedicated to Claudio Baiocchi with sore heart for the loss of a teacher and friend

Abstract. This note provides a variational description of the mechanical effects of flexural stiffening of a 2D plate glued to an elastic-brittle or an elastic-plastic reinforcement. The reinforcement is assumed to be linear elastic outside possible free plastic yield lines or free crack. Explicit Euler equations and a compliance identity are shown for the reinforcement of a 1D beam.

CONTENTS

1. Introduction 1
2. Statement of the problem and main results 4
3. One-dimensional analysis: reinforcement of flexural beams 7
4. Hard-device reinforcement of flexural plate 23
5. Strengthening reinforcement of flexural plate 23
6. Elastic-plastic reinforcement of flexural plate 27
References 28

1. INTRODUCTION

The main theme moving the present paper relies in studying the mechanisms ruling stress transfer between material structures affected by strongly different constitutive properties. We consider some functionals of the kind

\[\Lambda(K, v_r, v_p) = \mathcal{H}^1(K \cap \Omega) + \sigma \int_K |[Dv_r]| d\mathcal{H}^1 + \int_{\Omega \setminus K} (\eta |D^2v_r|^2 - f_r v_r) \, dx + \]

\[+ \mu \int_{\Omega} |v_r - v_p|^2 \, dx + \int_{\Omega} (\gamma |D^2v_p|^2 - f_p v_p) \, dx \]

dependent on competing triplets \((K, v_r, v_p)\). Here \(\Omega \subset \mathbb{R}^2\) is given together with the loads \(f_r, f_p\), the nonnegative constitutive parameters \(\sigma, \eta, \mu, \gamma\) and a suitable Dirichlet boundary condition, shared by both displacements \(v_r\) and \(v_p\). \(\mathcal{H}^1\) denotes

Date: May 12, 2021.
2020 Mathematics Subject Classification. 49J45, 74K30, 74K35, 74R10.
Key words and phrases. Calculus of variations, free discontinuity, variational inequality, adhesion, elastic clamped plate, crack, plastic yielding, flexural structures, coating, reinforcement.

This work is supported by PRIN (M.I.U.R) “Variational methods for stationary and evolution problems with singularities and interfaces” 2017 and Progetto G.N.A.M.P.A. (INDAM) “Problemi asintotici e fenomeni singolari in meccanica dei continui (2020)”.

1
the 1-dimensional Hausdorff measure. Concerning competing triplets \((K, v_r, v_p)\), the
set \(K\) is closed, the function \(v_r\) is smooth outside \(K\) while \(v_p\) is smooth on \(\Omega\).
Structural reinforcements are extensively employed in manufactured engineering sys-
tems, ranging from the traditional field of composite structures to the more recent
applications in microelectronic devices and nano-reinforced composites ([36]). Indeed,
external bonding of plates is a method of strengthening which involves an
additional adhering reinforcement to a structural element ([37]). The adhesive is
needed to transfer the stresses between the two elements. This technique is aimed
to reduce deflection, hence confine crack and plastic yielding location in order to in-
crease load carrying capacity (see e.g. [20], [25], [26], [35], [40]), as well as predicting
the behavior of paint coating layers ([36], [38]).

In a typical reinforcement system, represented by a brittle structure ([23]) bonded
to a more compliant substrate, cracking and debonding instabilities (delamination)
of the brittle element may appear under the action of external data that may be
ruled by external loading, temperature change or even residual thermal stresses.
The occurrence of plastic yielding, cracking and loss of adhesion (or delamination)
constitute the main failure modes of reinforcements, so a great deal of work has
been done over past decades to apply fracture mechanics in description of behavior
and the influence of cracks nucleated on or near an interface between two dissimilar
materials and a number of papers have been published on the problem (see, for
instance, [21], [24], [26]). The crucial questions, when studying the possible failure
of bonded structures, rely in understanding crack or yielding nucleation and crack
propagation in presence of debonding or delamination of the constituent materials.
This issue, precisely the role played by bonding layer in the formation of singularities,
has not been yet investigated in spite of its influence in the mechanical behavior
of such structural systems. Therefore, in our opinion, an appropriate description of
such problems should incorporate all these strongly nonlinear effects in a mathe-
matical theory which is able to detect qualitative and quantitative features of the
underlying physics ([31], [32]).

To this aim we propose in the present paper a variational approach in which debond-
ing and possible singular states arise as minimizers of suitable energy functionals.
In the previous works [27], [28], [29], [30], we have studied the adhesion interaction
of linear and nonlinear elastic structures by focusing on the influence of different
constitutive choices for the adhesive material, while in [30] we have investigated
the occurrence of global collapse and the interplay of cracking and debonding for a
couple of plane elastic sheets.

Here reinforcements are modelled in the framework of Kirchhoff-Love theory, while
the addition of a fracture energy term according to the Griffith theory allows to
capture crack formation. This program is achieved by exploiting the techniques
developed in the study of second order variational problems with free discontinuity
([8]-[11], [13]-[15], [33], [34]).

Precisely we aim to describe the mechanical effects of bending a 2-dimensional stiff
substrate fixed at the boundary, shortly called clamped plate from now on, which is
 glued to an elastic-plastic-brittle reinforcement. The reinforcement is assumed to be
linear elastic outside possible free plastic yield lines or free 1D crack. The adhesive
interaction between the structures is modelled through an energetic contribution whose density is the square of the modulus of difference of the displacement; concerning this assumption we recall that, if one assumes the q-power of the modulus of difference, with $0 < q < 1$, then the only stable configurations of the system are the completely detached or completely glued ones, even in the case of a flat plate as it was proved in Section 2.2 of [27].

The phenomenon is modeled as a variational problem which allows free discontinuity and free gradient discontinuity for the reinforcement. We assume that both configurations of the plate and its reinforcement are described as graphs referred to the coordinates in the horizontal plane, undergo vertical displacements and are subject to Dirichlet boundary conditions. We describe the details in these three main cases.

1. **hard-device reinforcement**: the structure consists in the glueing of a plate with a reinforcement; the plate undergoes a prescribed configuration (described by a given displacement) and consequently acts on the reinforcement through the adhesive layer; the reinforcement behaves as a piece-wise Kirchhoff-Love plate since it can develop lower-dimensional singularities of two kinds, plastic yielding (free gradient-discontinuity) and/or crack (free discontinuity).

2. **strengthening reinforcement**: the structure consists in the glueing of two objects, which are still labeled as plate and reinforcement; the plate behaves like a Kirchhoff-Love plate, whose unstressed flat reference configuration is horizontal, under the action of a given transverse (vertical) load f, while the plate displacement acts on the reinforcement through the adhesive layer; the reinforcement behaves as a piece-wise Kirchhoff-Love plate since it can develop lower-dimensional singularities of two kinds, plastic yielding and/or crack. We denote the admissible vertical displacement of the reinforcement by v_r and the admissible vertical displacement of the plate by v_p.

3. **elastic-plastic reinforcement**: as like as in case (2), but without crack and with a refinement of the yielding energy along the a priori unknown plastic yield lines.

As far as we know in structural mechanics literature there are few studies ([7]) of the interplay of plastic-yielding or fracture with bending bulk energy: here we aim to study this coupling in terms of integral functionals with free discontinuity and free gradient discontinuity by methods introduced in calculus of variations (see [2],[14],[16],[17],[19]).

In Section 3 we discuss the analogous one-dimensional case, say elastic-brittle reinforcement of flexural beams (Theorems 3.1,3.2,3.3). In Sections 2, 4 and 5 we examine details of the clamped plate reinforcement (hard-device and strengthening) showing the existence of energy minimizing solutions (Theorems 2.1,2.2,2.3). In the 1D case (beam reinforcement) we provide explicit Euler equations (Proposition 3.9), transmission conditions at free-discontinuity set and compliance identities fulfilled by minimizers (Proposition 3.10). Lack of convexity in these functionals may lead to non uniqueness of minimizers ([5],[6]). However we show uniqueness and hence smoothness in case of small loads: see Theorem 3.4, Remark 3.5. A more detailed analysis of non uniqueness phenomenon is postponed in a forthcoming article.
In present paper we omit the consideration of a unilateral constraint forcing non-interpenetration the plate and its reinforcement: such constraint leads to technical difficulties and substantial problems for existence of strong solutions in the 2D case of the plate, since Euler equations are replaced by variational inequalities ([3]); this issue is postponed to a subsequent paper (see Remark 5.2). Here we only start the analysis of solutions for the 1D cases of the beam reinforced by a hard device, obtaining a variational inequality coupled with free discontinuity (Propositions 3.7 and 3.11), and of the strengthening reinforced beam, obtaining quasi-variational inequalities coupled with free discontinuity (Propositions 3.8 and 3.12).

2. Statement of the problem and main results

Assume

\(\Omega \subset \subset \Omega_p \subset \subset \mathbb{R}^2 \) are bounded and connected \(C^2 \) open sets

\(w \in C^2(\Omega_p) \),

where \(\Omega_p \) represents the horizontal reference configuration of the plate and \(\Omega \) represents the horizontal reference configuration of the reinforcement and \(w : \Omega_p \mapsto \mathbb{R} \) prescribes the Dirichlet datum of the clamped plate.

In the case of hard-device reinforcement \(v : \Omega_p \mapsto \mathbb{R} \) denotes the generic admissible vertical displacement of the reinforcement, while the vertical displacement \(w \) of the plate is prescribed: since the reinforcing structure has to accomplish a prescribed configuration \(w \), this amounts to deal with a pre-strained state of the material competing with other energetic terms. In the case of strengthening reinforcement, \(v_r : \Omega_p \mapsto \mathbb{R} \) denotes the generic admissible vertical displacement of the reinforcement, while the generic admissible vertical displacement of the plate is denoted by \(v_p \) where \(v_p : \Omega_p \mapsto \mathbb{R} \), where \(v_p \) is subject to a Dirichlet-type boundary condition, prescribed on \(\Omega_p \setminus \Omega \). We face the three cases mentioned in the Introduction, by studying the minimization of suitable energy functionals:

- the energy \(E \) associated to a hard-device reinforcement, which is dependent on pairs \((K, v) \) where \(K \) denotes the damaged region of the reinforcement and \(v \) its transversal displacement;
- the energy \(F \) associated to a strengthening reinforcement, which is dependent on triplets \((K, v_r, v_p) \) where \(K \) still denotes the damaged region of the reinforcement (free discontinuity and free gradient-discontinuity) while \(v_r \) and \(v_p \) denote respectively the transversal displacements of reinforcement and plate;
- the energy \(G \) associated to an elastic-plastic reinforcement, which is dependent on triplets \((K, v_r, v_p) \) as above, but \(v_r \) may undergo only free gradient-discontinuity on \(K \).

We state some results related to minimization of these energies; their proofs are postponed in Sections 4 and 5. All functions under exam are real-valued.

Theorem 2.1. (hard-device reinforcement) Assume (2.1),(2.2) and

\(\eta > 0, \quad \mu > 0, \quad f \in L^4(\Omega) \),

\(\eta > 0 \), \(\mu > 0 \), \(f \in L^4(\Omega) \),
then there exists a pair \((Z, u)\) minimizing
\[
E(K, v) = \mathcal{H}^1 \left(K \cap \overline{\Omega} \right) + \int_{\Omega \setminus K} \left(\eta |D^2 v|^2 - f v \right) \, dx + \mu \int_{\Omega} |v - w|^2 \, dx
\]
over essential admissible pairs \((K, v)\), say pairs s.t.
\[
\left\{ \begin{array}{l}
\text{\(K\) is the smallest closed subset of } \mathbb{R}^2 \text{ s.t.} \\
v \in C^2(\Omega_p \setminus K), \quad v \equiv w \text{ a.e in } \Omega_p \setminus \overline{\Omega}.
\end{array} \right.
\]
Moreover \(Z \cap \Omega_p = Z \cap \overline{\Omega}\) is an \((\mathcal{H}^1, 1)\) rectifiable set and \(E(Z, u) < +\infty\).

Here and in the sequel we denote by \(\mathcal{H}^1\) the 1-dimensional Hausdorff measure. If \((Z, u) \in \text{argmin} \, E\), say \((Z, u)\) is an optimal pair among the ones fulfilling \((2.5)\), then \(Z\) represents the damaged zone of the reinforcement \(\Omega\), say the 1D set where either plastic yielding or fracture occur, and \(u\) is the related transverse displacement of the reinforcement.

Theorem 2.2. (strengthening reinforcement) - Assume \((2.1),(2.2),(2.3)\) and
\[
f_r \in L^4(\Omega), \quad f_p \in L^2(\Omega), \quad \gamma > 0.
\]
Then there exists a triplet \((Z, u_r, u_p) := (Z, U)\) minimizing
\[
F(K, v_r, v_p) = F(K, V) :=
\]
\[
\mathcal{H}^1 \left(K \cap \overline{\Omega} \right) + \eta \int_{\Omega \setminus K} \left(|D^2 v_r|^2 - f_r v_r \right) \, dx + \\
+ \mu \int_{\Omega} |v_r - v_p|^2 \, dx + \int_{\Omega} \left(\gamma |D^2 v_p|^2 - f_p v_p \right) \, dx
\]
over essential admissible triplets \((K, v_r, v_p)\), say triplets s.t.
\[
\left\{ \begin{array}{l}
v_p \in H^2(\Omega_p), \quad v_p \equiv w \text{ a.e in } \Omega_p \setminus \overline{\Omega}, \\
K \text{ is the smallest closed subset of } \mathbb{R}^2 \text{ s.t.} \\
v_r \in C^2(\Omega_p \setminus K), \quad v_r \equiv w \text{ a.e in } \Omega_p \setminus \overline{\Omega}.
\end{array} \right.
\]
Moreover \(Z \cap \Omega_p = Z \cap \overline{\Omega}\) is an \((\mathcal{H}^1, 1)\) rectifiable set and \(F(Z, u_r, u_p) < +\infty\).

If \((Z, U) = (Z, u_r, u_p)\) is an optimal triplet among the ones fulfilling \((2.8)\), say it is an essential admissible pair \((Z, U) \in \text{argmin} \, F\), then \(Z\) represents the damaged zone of the reinforcement \(\Omega\), say the 1D set where either plastic yielding or fracture occur, and \(u_r, u_p\) respectively are the related displacement of the reinforcement and the plate.

Theorem 2.3. (elastic-plastic reinforcement of flexural plate) - Assume \((2.1),(2.2),(2.3)\), \(\sigma > 0\), \(f_r \in L^4(\Omega)\), \(s > 2\), and \(f_p \in L^2(\Omega)\).
Then there is a triplet \((Z, u_r, u_p) = (Z, U)\) minimizing
\[
G(K, v_r, v_p) = G(K, V) :=
\]
\[
\mathcal{H}^1 \left(K \cap \overline{\Omega} \right) + \sigma \int_{K \cap \overline{\Omega}} |D v_r| \, d\mathcal{H}^1 + \int_{\Omega \setminus K} \left(\eta |D^2 v_r|^2 - f_r v_r \right) \, dx + \\
+ \mu \int_{\Omega} |v_r - v_p|^2 \, dx + \int_{\Omega} \left(\gamma |D^2 v_p|^2 - f_p v_p \right) \, dx
\]
over elastic-plastic essential admissible triplets \((K, v_r, v_p) \), say triplets s.t.

\[
F_r(K, v_r) := \mathcal{H}^1 \left(K \cap \Omega \right) + \int_{\Omega \setminus K} \left(\eta |D^2v_r|^2 - f_r v_r \right) \, dx ,
\]

\[
M(v_r - v_p) := \mu \int_{\Omega} |v_r - v_p|^2 \, dx ,
\]

\[
F_p(v_p) := \int_{\Omega} \left(\gamma |D^2v_p|^2 - f_p v_p \right) \, dx .
\]

Hence

\[
E(K, v) = F_r(K, v) + M(v - w) , \quad f_r = f , \quad \text{with domain (2.5)},
\]

\[
F(K, v_r, v_p) = F_r(K, v_r) + M(v_r - v_p) + F_p(v_p) , \quad \text{with domain (2.8)}
\]

\[
G(K, v_r, v_p) = F(K, v_r, v_p) + \sigma \int_{K \cap \Delta \Omega} |[Dv_r]| \, d\mathcal{H}^1 , \quad \text{with domain (2.10)}
\]

where \(F_r \) represents the potential energy of the reinforcement under the Griffith assumption on the fracture energy, \(M \) represents the adhesive interaction energy (dependent on the slip \(|v_r - v_p| \) between the plate and the reinforcement) and \(F_p \) represents the elastic energy of the Kirchhoff-Love plate under the action of a transverse dead load \(f \).

Remark 2.4. We emphasize that, when minimizing (2.7), the Dirichlet datum turns out to be forced on the plate \((v_p = w \text{ on } \partial \Omega) \) since \(v_p - w \in H_0^2(\Omega) \) and \(H^2(\Omega_p) \subset C^0(\Omega_p) \), while the Dirichlet datum is prescribed by penalization on the reinforcement (through \(v_r = w \) a.e. \(\Omega_p \setminus \Omega \)). Hence the damage of the reinforcement may develop also at the boundary: if this is the case then \(\mathcal{H}^1(K \cap \partial \Omega) > 0 \).

In any case: \(K \subset \overline{\Omega} \); \(\overline{\Omega} \) is the closure of the set where either \(v_r \) or \(\nabla v_r \) is not continuous; \(w \in C^2 \) and \(v_r = w \) in \(\Omega_p \setminus \overline{\Omega} \).

Remark 2.5. The notions of essential pair or triplet in (2.5),(2.8),(2.10) select those pairs or triplets which are cleansed of every artifact that does not affect the functional value and are good representatives in equivalence classes of admissible displacements. These classes allow highly irregular displacement function \(v \) for \(v_r \) for the reinforcement: see Remarks 2.3-2.5 and Lemmas 2.6, 2.7 in [17] for comparison with Definition 2.1 in [16] of admissible triplets in the context of image segmentation and/or image inpainting. Minimization among admissible triplets (as defined in [15]) would be equivalent to minimization among essential admissible triplets.
Remark 2.6. The more general case where $|D^2v_p|^2$ is replaced by $Q(D^2v_p)$, with Q positive definite quadratic form, leads to claims similar to the ones we prove here (in Theorems 2.2 and 2.3) without any change in the proofs.

Remark 2.7. The present paper deals with the Dirichlet boundary condition for both reinforcement and plate: explicitly the reinforcement acts on the whole plate Ω_p and sticks perfectly to it outside $\overline{\Omega}$. Nevertheless the study of Neumann boundary condition for the reinforcement, still keeping the Dirichlet condition w on the plate (this boundary conditions correspond to a structure where the reinforcement is present only on the proper subset Ω of the plate Ω_p), can be easily recovered by the present analysis with minor changes: by considering admissible displacements for the reinforcement defined only in the smaller domain reference set Ω and replacing (2.5), (2.8), (2.10) respectively by

\begin{align}
(2.17) & \quad K \text{ is the smallest closed subset of } \mathbb{R}^2 \text{ s.t. } v \in C^2(\Omega \setminus K); \\
(2.18) & \quad v_p - w \in H^2_0(\Omega_p), \ K \text{ smallest closed subset of } \mathbb{R}^2 \text{ s.t. } v_p \in C^2(\Omega \setminus K); \\
(2.19) & \quad v_p - w \in H^2_0(\Omega_p), K \text{ smallest closed subset of } \mathbb{R}^2 \text{ s.t. } v_p \in C^2(\Omega \setminus K) \cap C^0(\Omega).
\end{align}

All the claims in Theorems 2.1 and Theorem 2 still hold true under these different admissible classes of pairs and triplets. The only change to be made in the proofs amounts to refer to [11] instead of [15], to perform the analysis of partial regularity for weak minimizers.

3. One-dimensional analysis: reinforcement of flexural beams

We study the 1D case, namely the hard-device reinforcement and strengthening reinforcement of a clamped beam, in order to make explicit some properties of minimizers like compliance identity, Euler equations, issues related to uniqueness and possible addition of the unilateral constraint describing the non-interpenetration of beam and reinforcement. The displacement of the clamped beam is modeled by a function of one variable which is free in the interval $[-1, +1]$ while it must coincide with a given function outside $[-1, +1]$ to take into account of boundary conditions. We consider possibly different weights for energy dissipation when crack or crease do appear: the constants α and β introduced below.

We consider real valued functions defined on bounded intervals, and set

\begin{align}
(3.1) & \quad \Omega = (-1, 1), \quad \Omega_p = (-2, 2), \quad w \in C^2(-2, +2),
\end{align}

moreover, concerning the notation, \dot{v} denotes the absolutely continuous part of the distributional derivative v' of v, \ddot{v} denotes the absolutely continuous part of $(\dot{v})'$, S_v denotes the set of discontinuity points of v, $S_{\dot{v}}$ denotes the set of discontinuity points of \dot{v} and v^-, v^+ denote respectively the left and right limit of v. Since we will consider admissible only piece-wise H^2 functions $v : (-2, 2) \to \mathbb{R}$ fulfilling $v = w$ in $(-2, -1) \cup (1, 2)$, we have $(S_v \cup S_{\dot{v}}) \subset [-1, 1]$ for them all. Here $H^2(a, b)$ denotes the usual Sobolev space of real-valued functions $v \in L^2(a, b)$ s.t. $v', v'' \in L^2(a, b)$. We emphasize that the beam may develop singularities also at both clamped endpoints ± 1: namely, it may undergo crack discontinuity (if $S_v \cap \{\pm 1\}$ is nonempty)
or plastic-yield bending (if $S_0 \cap \{\pm 1\}$ is nonempty).

After labeling by \sharp the counting measure, we denote by

\begin{equation}
J(v) = \alpha^\sharp(S_v) + \beta^\sharp(S_v \setminus S_v)
\end{equation}

the whole energy associated to damage of the reinforcement: in this one-dimensional setting we allow different release energy for crack and crease, respectively α and β.

In the one-dimensional setting the functionals E, F and G are replaced respectively by E_1, F_1 and G_1 defined below: we emphasize that for them all the strong and weak formulation of related free discontinuity problems coincide in the one-dimensional case, since finite energy entails that only a finite number of discontinuity points is allowed by finite energy, hence only piece-wise regular functions have finite energy.

The total energy for hard-device reinforcement of a clamped beam is given by functional E_1:

\begin{equation}
E_1(v) = J(v) + \int_{-1}^{1} (\eta |\ddot{v}|^2 - f v) \, dx + \mu \int_{-1}^{1} |v - w|^2 \, dx;
\end{equation}

functional E_1 has to be minimized among the admissible functions v such that

\begin{equation}
v \in H^2(-2, 2) := \{ v : (-2, 2) \to \mathbb{R}, \text{ s.t. } v \text{ is piece-wise } H^2 \},
\end{equation}

\begin{equation}
v = w \quad \text{a.e } (-2, -1) \cup (1, 2)
\end{equation}

The total energy for strengthening reinforcement of a clamped beam is given by functional F_1:

\begin{equation}
F_1(v_r, v_p) = F_1(V) := J(v_r) + \int_{-1}^{1} (\eta |\ddot{v}_r|^2 - f_r v_r) \, dx + \mu \int_{-1}^{1} |v_r - v_p|^2 \, dx + \int_{-1}^{1} (\gamma |v_p''|^2 - f_p v_p) \, dx.
\end{equation}

Functional F_1 has to be minimized among the admissible pairs V such that

\begin{equation}
V = (v_r, v_p) \in H^2(-2, 2) \times H^2(-2, 2)
\end{equation}

\begin{equation}
v_r = v_p = w \quad \text{in } (-2, -1) \cup (1, 2)
\end{equation}

The total energy for strengthening reinforcement of an elastic-plastic clamped beam is given by functional G_1:

\begin{equation}
G_1(v_r, v_p) = G_1(V) := \beta^\sharp(S_\dot{v}_r) + \sigma \sum_{S_{\ddot{v}_r}} |\dddot{v}_r| + \int_{-1}^{1} (\eta |\dddot{v}_r|^2 - f_r v_r) \, dx + \mu \int_{-1}^{1} |v_r - v_p|^2 \, dx + \int_{-1}^{1} (\gamma |v_p''|^2 - f_p v_p) \, dx.
\end{equation}

Functional G_1 has to be minimized among the admissible pairs V fulfilling

\begin{equation}
V = (v_r, v_p) \in \left(C^0([-2, 2]) \cap H^2[-2, 2] \right) \times H^2(-2, 2),
\end{equation}

\begin{equation}
v_r = v_p = w \quad \text{in } (-2, -1) \cup (1, 2).
\end{equation}
Concerning respectively (3.4), (3.7), (3.10), we recall that in all cases the finiteness of total energy implies respectively \(\#(S_u) < +\infty, \#(S_u \cup (S_{ur})) < +\infty \) and \(S_{ur} = \emptyset \) with \(\#(S_{ur}) < +\infty \), hence \(u \) and \(u_r \), are made by finitely many \(H^2 \) pieces.

Theorem 3.1. Assume (3.1), (3.2), (3.3), \(\eta > 0, \mu > 0, f \in L^2(-1,1) \) and

\[
0 < \beta \leq \alpha \leq 2\beta,
\]

then the functional \(E_1 \) defined by (3.3) achieves a finite minimum over functions \(v \) fulfilling conditions (3.4),(3.5).

Proof - After noticing that

\[
(3.13) \quad \int_{-1}^{1} (\mu |v-w|^2 - f v) \, dx = \int_{-1}^{1} \mu \left(v-(w+f/(2\mu)) \right)^2 \, dx - \int_{-1}^{1} (f w+f^2/(4\mu)) \, dx
\]

where the last summand on right-hand side is a constant, we deduce that the functional \(E_1 \) is bounded from below since all terms are nonnegative, except such constant. Thus the claim follows by choosing \(g = w + f/(2\mu) \in L^2(-1,1) \) in the result of [22]. \(\square \) constraint n=1.

Theorem 3.2. Assume (3.1), (3.2), (3.6), (3.12), \(\eta > 0, \mu > 0, \gamma > 0, f_r, f_p \in L^2(-1,1) \). Then the functional \(F_1 \) defined by (3.6) achieves a finite minimum over functions \(v \) fulfilling conditions (3.7),(3.8).

Proof - The only novelty with respect to Theorem 3.1 consists in the addition of the functional \(\int_{-1}^{1} (\gamma |v''|^2 - f_p v_p - f_r v_r) \, dx \) and adhesive interaction \(\mu \int_{-1}^{1} |v_r - v_p|^2 \, dx \) coupling \(v_r \) and \(v_p \).

In case of functional \(F_1 \) the identity (3.13) reads as follows

\[
(3.14) \quad \int_{-1}^{1} (\mu |v_r-v_p|^2 - f_r v_r) \, dx = \int_{-1}^{1} \mu \left(v_r-(v_p+f_r/(2\mu)) \right)^2 \, dx - \int_{-1}^{1} (f_r v_p+f_r^2/(4\mu)) \, dx
\]

where the last summand is not a priori bounded from below, unless we show an a priori bound on \(\|v_p\|_{L^2(-1,1)} \), moreover we have to check that minimizing sequences are not made by pair sequences \(((v_r)_n, (v_p)_n) \) balancing \(\mu \|v_p\|_{L^2(-1,1)} \rightarrow +\infty \)

together with \(\int_{-1}^{1} (\gamma |v''|^2 - f v_p) \, dx \rightarrow -\infty \).

This is prevented by the subsequent estimate from below (3.16) due to \(v_p - w \in H_0^2(-1,1) \), where \(C_P \) denotes the best Poincaré constant fulfilling

\[
(3.15) \quad \|v\|_{L^2(-1,1)} \leq C_P \|v''\|_{L^2(-1,1)}^2 \quad \forall v \in H_0^2(-1,1).
\]

and we denote shortly \(\| \cdot \|^2 \) in place of \(\| \cdot \|_{L^2(-1,1)}^2 \)
\[
F_1(v_r, v_p) = J(v_r) + \int_{-1}^{1} \left(\eta |\dot{v}_r|^2 + \mu |v_r - v_p|^2 (\gamma |v_p''|^2) \right) \, dx - \int_{-1}^{1} (f_r v_r + f_p v_p) \, dx \\
= J(v_r) + \int_{-1}^{1} \left(\eta |\dot{v}_r|^2 + \mu |v_r - v_p|^2 (\gamma |v_p''|^2) \right) \, dx + \\
- \int_{-1}^{1} f_r (v_r - v_p) \, dx - \int_{-1}^{1} (f_r + f_p) (v_p - w) \, dx - \int_{-1}^{1} (f_r + f_p) w \, dx \\
\geq J(v_r) + \int_{-1}^{1} \left(\eta |\dot{v}_r|^2 + \mu |v_r - v_p|^2 + \gamma |v_p''|^2 \right) \, dx + \\
- \frac{1}{4\mu} \|f_r\|^2 - \sqrt{C_P} \|f_r + f_p\| \|(v_p - w)''\| - \|f_r + f_p\| \|w\| \\
(3.16) \geq J(v_r) + \int_{-1}^{1} \left(\eta |\dot{v}_r|^2 + \gamma |v_p''|^2 \right) \, dx + \\
- \frac{1}{4\mu} \|f_r\|^2 - \sqrt{C_P} \|f_r + f_p\| \|(v_p - w)''\| - \|f_r + f_p\| \|w\| \\
\geq J(v_r) + \int_{-1}^{1} \left(\eta |\dot{v}_r|^2 + \gamma |v_p''|^2 \right) \, dx - \sqrt{C_P} \|f_r + f_p\| \|v_p''\| \\
- \frac{1}{4\mu} \|f_r\|^2 - \sqrt{C_P} \|f_r + f_p\| \|w''\| - \|f_r + f_p\| \|w\| \\
\geq J(v_r) + \int_{-1}^{1} \left(\frac{1}{\gamma} |\dot{v}_r|^2 + |v_p''|^2 \right) \, dx - C(\mu, \gamma, f_r, f_p, C_P) .
\]

Then we can fix a minimizing sequence \((v_r, \gamma, (v_p) \, h)\) for \(F_1\), and get boundedness of \(\|v_p\|_{H^2(-1, 1)}\), thanks to \(F_1(w, w) < +\infty\), (3.16) and the Poincaré inequality (3.15). There is \(u_p \in L^2\) such that we can extract a subsequence, without relabeling, fulfilling \((v_p) \to u_p\) weakly in \(H^2\) and strongly in \(L^2\), with \(\|v_p''\|_2 \to \|u_p''\|_2\).

By (3.14) and (3.16) also \(\|v_r - (v_p)\|_2 \text{ and } \|v_r\|_2 \text{ are bounded: by extracting again, without relabeling, } (v_r) \to u_r \text{ weakly in } L^2\). We write

\[
F_1((v_r) h, (v_p) h) = F_1((v_r) h, (v_p) h) + F_1((v_r) h, (v_p) h) - F_1((v_r) h, (v_p) h) + \\
+ F_1((v_r) h, (v_p) h) = F((v_r) h, (v_p) h) + A(h, k) + B(h, k).
\]

By lower semicontinuity of the functional \(v \to \mu \int_{-1}^{1} |v - v_p|^2 \, dx + \int_{-1}^{1} (\gamma |v''|^2 - f_p v) \, dx\) we get \(\liminf_k B(h, k) \leq 0\). Moreover, \(\forall \varepsilon > 0 \exists h_{\varepsilon} : \text{ for every } h, k > h_{\varepsilon}\)

\[
|A(h, k)| \leq \mu \int_{-1}^{1} |(v_p)_k - (v_p)_h| \|2(v_r) - ((v_p)_k + (v_p)_h) \| \, dx + \\
+ \eta (\|v_p''^h\|^2 - \|v_p''^h\|^2) + \|f_p\|_L^2 (\|v_p''^h\| - \|v_p''^h\|) < \varepsilon .
\]

By evaluating on both sides of (3.17) first \(\liminf_k\), then \(\liminf_{h}\), we obtain that also \((v_r) h, (v_p) h)\) is a minimizing sequence for the functional \(F_1\) which is lower semicontinuous, or equivalently \((v_r) h)\) is a minimizing sequence for functional \(E_1\) with datum \(u_p\). Then \((u_r, u_p)\) belongs to \(\text{argmin} F_1\).
Theorem 3.3. Assume (3.1), (3.2), (3.9), $\beta \geq 0$, $\sigma > 0$, $\eta > 0$, $\mu > 0$, $\gamma > 0$, and f_r, f_p belong to $L^2(-1,1)$. Then the functional G_1 defined by (3.9) achieves a finite minimum over pairs (v_r, v_p) fulfilling Dirichlet condition (3.8) and

\begin{equation}
V = (v_r, v_p) \in \left(C^0(-2,2) \cap H^2(-2,2) \right) \times H^2(-2,2).
\end{equation}

Proof - Notice that $v_r \in C^0$ entails $S_{v_r} = \emptyset$. We set $I(v_r) = \beta \tilde{v}(S_{v_r}) + \sigma \sum S_{v_r} |\tilde{v_r}|$. By arguing as like as in the derivation of (3.16) (the only difference consists in replacing $J(v_r)$ with $I(v_r)$), we get

\begin{equation}
G_1(v_r, v_p) \geq I(v_r) + \int_{-1}^{1} \left(\eta |\tilde{v_r}|^2 + (\gamma/2) |v_p''|^2 \right) dx - C(\mu, \gamma, f_r, f_p, C_p).
\end{equation}

If $\beta > 0$, we conclude by arguing as in the proof of Theorem 3.2 that a minimizing sequence has a subsequence converging to a minimum. When $\beta = 0$, after finding an optimal u_p again by the argument in the proof of Theorem 3.2, we exploit Theorem 2.1 of [34] to find the related optimal u_r.

We emphasize that the safe load condition assumed in [34] is unnecessary here thanks to adhesion term $\int_{-1}^{1} |v_r - v_p|^2 dx$, providing boundedness from below by (3.19). □

Next result shows that, provided the load and Dirichlet datum are suitably small, the strengthening reinforcement of the clamped beam (argmin F_1) has a unique solution (u_r, u_p) where v_r has neither crack nor hinges, say $S_{u_r} \cup S_{\tilde{u}_r} = \emptyset$.

Theorem 3.4. In addition to assumptions of Theorem 3.2 we assume

\begin{equation}
\frac{1}{4\mu} \|f_r\|_{L^2(-1,1)}^2 + \frac{C_1}{2\gamma} \|f_r + f_p\|_{L^2(-1,1)}^2 + \|w''\|_{L^2(-1,1)}^2 + \int_{-1}^{1} (f_r + f_p) w \, dx < \beta - M,
\end{equation}

where $-\infty < M = \min \{ F_1(v_r, v_p) : v_r - w \in H^2_0(-1,1), v_p - w \in H^2_0(-1,1) \} < +\infty$. Then there is a unique minimizer (u_r, u_p) of F_1 over $H^2 \times H^2$ and such minimizer fulfils $S_{u_r} \cup S_{\tilde{u}_r} = \emptyset$, thus $u_r - w \in H^2_0(-2,2)$.

Proof - We denote shortly $\| \cdot \|_2$ in place of $\| \cdot \|_{L^2(-1,1)}^2$. First we note that

$$\min \{ F_1(v_r, v_p) : v_r - w \in H^2_0(-1,1), v_p - w \in H^2_0(-1,1) \} \leq F_1(w, w) = (\eta + \gamma) \|w''\|_2^2 - \int_{-1}^{1} (f_r + f_p) w \, dx;$$

moreover, thanks to (3.16), F_1 is bounded from below and coercive hence its infimum M is attained and is a finite minimum.

Assume by contradiction that a minimizer (u_r, u_p) of F_1 on $H^2 \times H^2$ has $S_{u_r} \cup S_{\tilde{u}_r} \neq \emptyset$, we deuce $\alpha \tilde{u}(S_{u_r}) + \beta \tilde{u}(S_{u_r} \setminus S_{\tilde{u}_r}) \geq \beta$, hence, exploiting Poincaré inequality (3.15)
and assumption \((3.20) \) we get
\[
\int_{-1}^{1} f_r u_r + \int_{-1}^{1} f_p u_p - \int_{-1}^{1} (f_r + f_p) w = \int_{-1}^{1} f_r (u_r - u_p) + \int_{-1}^{1} (f_r + f_p) (u_p - w) \leq \\
\leq \frac{1}{4\mu} \| f_r \|^2 + \mu \| u_r - u_p \|^2 + \frac{C_{\Omega}}{2\gamma} \| f_r + f_p \|^2 + \frac{\gamma}{2} \| u_p - w \|^2 \leq \\
\leq \frac{1}{4\mu} \| f_r \|^2 + \mu \| u_r - u_p \|^2 + \frac{C_{\Omega}}{2\gamma} \| f_r + f_p \|^2 + \frac{\gamma}{2} \| u_p - w' \|^2 \leq \\
\leq \frac{1}{4\mu} \| f_r \|^2 + \frac{C_{\Omega}}{2\gamma} \| f_r + f_p \|^2 + \gamma \| w' \|^2 + \eta \| \ddot{u}_r \|^2 + \mu \| u_r - u_p \|^2 + \gamma \| u_p'' \|^2 \\
< \beta - M - \int_{-1}^{1} (f_r + f_p) w + \eta \| \ddot{u}_r \|^2 + \mu \| u_r - u_p \|^2 + \gamma \| u_p'' \|^2 \\
\leq \alpha \sharp 1 (S_{u_r}) + \beta \sharp 1 (S_{u_r} \setminus S_{\dot{u}_r}) + \eta \| \ddot{u}_r \|^2 + \mu \| u_r - u_p \|^2 + \gamma \| u_p'' \|^2 - M - \int_{-1}^{1} (f_r + f_p) w .
\]

say, an inequality contradicting minimality of \((u_r, u_p)\): \(M < F_1(u_r, u_p) \).

Uniqueness of minimizer over \(H^2 \times H^2 \) with Dirichlet datum \(w \) follows by uniqueness over \(H^2 \times H^2 \). \(\square\)

Remark 3.5. By analogous computations to the ones in the last proof, we obtain that the inequality
\[
\frac{1}{4\mu} \| f \|^2_{L^2(-1,1)} + \int_{-1}^{1} f w \, dx < \beta - \tilde{M}
\]
entails uniqueness and \(H^2 \) regularity for minimizer of \(E_1 \) in \(H^2 \) with Dirichlet boundary condition \(w \), where
\[-\infty < \tilde{M} = \min \left\{ E_1(v) : v - w \in H^2_0(-1,1) \right\} \leq E_1(w) < +\infty.\]

We show the analysis of \(E_1 \) under the addition of the unilateral constraint
\[
(3.21) \quad v \geq w \quad \text{on} \quad [-1, +1].
\]
Concerning notation, from now on we set \(v^+(x) = \lim_{t \to x_+} v(t), v^-(x) = \lim_{t \to x_-} v(t) \).

Remark 3.6. Actually, the constraint \((3.21)\) has to be understood as a pointwise everywhere weak inequality, since it refers to functions \(v \in H^2([-2,2]): \) explicitly, \(v(x) \geq w(x) \) at \(x \in [-1, +1] \setminus S_v \); \(v^+(x) \geq w(x) \) at \(x \in S_v \cup \{-1\} \); \(v^-(x) \geq w(x) \) at \(x \in S_v \cup \{+1\} \).

Thus, the contact set \(\{ x \in [-2,2] : v^+(x) = w(x) \text{ or } v^-(x) = w(x) \} \) is a closed set for every \(v \) fulfilling \((3.21)\); the complement in \((-1,1)\) of the contact set is an open set. Actually, the inequality \((3.21)\) prevents interpenetration and refers to a reinforcement placed above: this conventional choice is made here in order to have agreement with the usual formulation of variational inequalities \((3)\).

Theorem 3.7. (Hard device with unilateral constraint)
Assume \((3.1),(3.2),(3.3),(3.12)\) \(\eta > 0, \mu > 0 \) and \(f \in L^2(-1,1) \).

Then the functional \(E_1 \) achieves a finite minimum over pairs \((v_r, v_p)\) fulfilling conditions \((3.4),(3.5)\) together with the unilateral constraint \((3.21)\).
Proof - The proof can be achieved by exact repetition of the argument in the proof of Theorem 3.1 for the unconstrained case: both unilateral constraint \(v \geq w \) on \([-1,+1]\) and Dirichlet condition \(v = w \) a.e. on \((-2,-1) \cup (1,2)\) affect neither the compactness, nor the lower semicontinuity properties of \(E_1 \); moreover the a.e. convergence preserves the constraint in the limit of minimizing sequences. \(\square \)

Theorem 3.8. (reinforcement with unilateral constraint)

Assume (3.1), (3.2), (3.6), (3.12), \(\eta > 0, \mu > 0, \gamma > 0, f_r, f_p \in L^2(-1,1) \). Then the functional \(F_1 \) achieves a finite minimum over pairs \((v_r, v_p)\) fulfilling the conditions (3.7) and (3.8) together with the unilateral constraint (corresponding to a reinforcement placed above the plate)

\[
(3.22) \quad v_r \geq v_p \quad \text{on } [-1,+1].
\]

Also the constraint (3.22) has to be understood as a pointwise everywhere everywhere weak inequality, in the sense of Remark 3.6, as like as (3.21) but here with \(v_p \) replacing \(w \): thus, the admissible pairs belong to the convex set

\[
K := \{ (v_r, v_p) \in H^2(-2,2) \times H^2(-2,2) : v_r \geq v_p \text{ on } [-1,1], v_r=v_p=w \text{ on } (-2,-1) \cup (1,2) \}.
\]

Proof of Thm 3.8 - The proof can be achieved by exact repetition of the argument in the proof of Theorem 3.2 for the unconstrained case: both unilateral constraint \(v_r \geq v_p \) a.e. on \((-1,+1)\) and Dirichlet condition \(v_r=v_p=w \) a.e. on \((-2,-1) \cup (1,2)\) affect neither the compactness, nor the lower semicontinuity properties of \(F_1 \); moreover a.e. convergence preserves the constraint in the limit of minimizing sequences. \(\square \)

By performing all the admissible variations of minimizers for \(E_1 \) and \(F_1 \) without the unilateral constraint, we can deduce the necessary conditions for minimality listed below in Propositions 3.9 and 3.10.

Proposition 3.9. (Euler equations for functional \(E_1 \)) Every \(u \in \arg \min E_1 \) fulfills

\[
(3.23) \quad \eta u'''' + \mu(u - w) = f/2 \quad \text{in } (-1,1) \setminus (S_u \cup S_{\bar{u}}),
\]

\[
(3.24) \quad \dddot{u}^+ = \dddot{u}^- = \dddot{\bar{u}}^+ = \dddot{\bar{u}}^- = 0 \quad \text{in } S_u \setminus \{\pm 1\},
\]

\[
(3.25) \quad \dddot{u}^+ = \dddot{u}^- = [\dddot{u}] = 0 \quad \text{on } S_{\bar{u}} \setminus (S_u \cup \{\pm 1\}),
\]

\[
(3.26) \quad \dddot{u} \in H^2(-1,1) \quad \text{and} \quad \eta \dddot{u}'' + \mu(u - w) = f/2 \quad \text{on } \mathcal{D}'(-1,1).
\]

\[
(3.27) \quad \begin{cases}
\dddot{u}^+(-1) = \dddot{u}^-(-1) = 0 & \text{if } -1 \in S_u \setminus S_{\bar{u}}, \\
\dddot{u}^-(+1) = \dddot{u}^-(+1) = 0 & \text{if } +1 \in S_u \setminus S_{\bar{u}},
\end{cases}
\]

\[
(3.28) \quad \begin{cases}
\dddot{u}^+(-1) = 0 & \text{if } -1 \in S_{\bar{u}} \setminus S_u, \\
\dddot{u}^-(+1) = 0 & \text{if } +1 \in S_{\bar{u}} \setminus S_u,
\end{cases}
\]

When \(\alpha = \beta \) the conditions (3.24),(3.25),(3.27),(3.28) altogether are improved as follows:

\[
(3.29) \quad \text{if } \alpha = \beta \quad \text{then} \quad \dddot{u}^+ = \dddot{u}^- = \dddot{\bar{u}}^+ = \dddot{\bar{u}}^- = 0 \quad \text{on } (S_u \cup S_{\bar{u}}).
\]

**Euler equations for functional \(F_1 \)) Every \((u_r, u_p) \in \arg \min F_1\) fulfills

\[
(3.30) \quad \eta u'''' + \mu(u_r - u_p) = f_r/2 \quad (-1,1) \setminus (S_u \cup S_{\bar{u}}),
\]
\(\gamma u'''_p + \mu (u_p - u_r) = f_p/2 \quad \text{in } \mathcal{D}'(-1,1) \),

\(\eta u'''_r + \gamma u'''_p (f_r + f_p)/2 \quad \text{in } \mathcal{D}'(-1,1) \setminus (S_u \cup S_{ur}) \),

\(\ddot{u}_r^+ = \ddot{u}_r^- = \dddot{u}_r^- = 0 \quad \text{in } S_u \setminus \{\pm 1\} \),

\(\ddot{u}_r^- = \dddot{u}_r^- = [\dddot{u}_r] = 0 \quad \text{in } S_{ur} \setminus (S_u \cup \{\pm 1\}) \),

hence \(\ddot{u}_r \in H^2(-1,1) \) and

\(\eta (\ddot{u}_r)'' + \mu (u_r - u_p) = f_r/2 \quad \text{in } \mathcal{D}'(-1,1) \),

\(\eta (\dddot{u}_r)'' + \gamma u'''_p = (f_r + f_p)/2 \quad \text{in } \mathcal{D}'(-1,1) \).

\[
\begin{cases}
\ddot{u}_r^+(-1) = \dddot{u}_r^+(-1) = 0 & \text{if } -1 \in S_u \setminus S_{ur}, \\
\ddot{u}_r^-(+1) = \dddot{u}_r^-(+1) = 0 & \text{if } +1 \in S_u \setminus S_{ur},
\end{cases}
\]

\[
\begin{cases}
\dddot{u}_r^+(-1) = 0 & \text{if } -1 \in S_{ur} \setminus S_u, \\
\dddot{u}_r^-(-1) = 0 & \text{if } +1 \in S_{ur} \setminus S_u,
\end{cases}
\]

So, (3.35) and (3.36), together give

\(2\eta (\ddot{u}_r)'' + \mu (u_r - u_p) + \gamma u'''_p = f_r + (1/2)f_p \quad \text{in } \mathcal{D}'(-1,1) \).

When \(\alpha = \beta \) the conditions (3.33), (3.34), (3.37), (3.38) altogether are improved as follows:

\(\text{if } \alpha = \beta \quad \text{then } \dddot{u}_r^+ = \dddot{u}_r^- = \dddot{u}_r^+ = \dddot{u}_r^-=0 \quad \text{on } (S_u \cup S_{ur}). \)

Eventually we deduce the following compliance identities.

Proposition 3.10. Compliance identity for functional \(E_1 \):

Assume \(w(-1) = w(1) = w'(-1) = w'(1) = 0 \). Then any \(u \in \arg\min E_1 \) fulfils

\[
E_1(u) = J(u) + \mu \int_{-1}^{1} (w^2 - wu) \, dx - \frac{1}{2} \int_{-1}^{1} f u \, dx .
\]

If boundary conditions are nonhomogeneous then the right-hand side of compliance (3.41) has to be added with the correction + \(\eta \int \ddot{u} \dddot{u} \, dx \), where \([z]_{-1}^1 = z^-(1) - z^+(1) \). Notice that (due to (3.27), (3.28), (3.29)) some of the four terms in the correction may be null if one endpoint or the other belongs to \(S_u \cup S_{ur} \).

Compliance identity for functional \(F_1 \):

Assume \(w(-1) = w(1) = w'(-1) = w'(1) = 0 \), then any \((u_r, u_p) \in \arg\min F_1 \) fulfils

\[
F_1(u_r, u_p) = J(u_r) - \mu \int_{-1}^{1} (u_r - u_p)^2 \, dx - \frac{1}{2} \int_{-1}^{1} f_r u_r \, dx - \frac{1}{2} \int_{-1}^{1} f_p u_p \, dx .
\]

If boundary conditions are nonhomogeneous then the right-hand side of compliance (3.42) has to be added with the correction

\[+ \left[\gamma (u_p''w' - u_p'''w) + \eta (\dddot{u}_r \dddot{u} - \dddot{u}_r u) \right]_{-1}^{1}, \text{ where } [z]_{-1}^1 = z^-(1) - z^+(1). \]
Proof of Proposition 3.9 (Euler equations for E_1 and F_1) -
Let u be a minimizer of E_1 among $v \in H^2 := H^2(-2,2)$ fulfilling (3.4) and (3.5).
For any $v \in H^2$ we set $[v] = v^+ - v^-$ where v^-, v^+ denote respectively the left and right values of v on S_v.
We introduce the localized version of functional E_1: given w, α, β, we set, for any v in H^2 and any Borel set $A \subset [-1,1],$

$$E_1(v, A) = \int_A (\eta |\dot{\varphi}|^2 + \mu |v - w|^2) \, dx + \alpha \#(S_v \cap A) + \beta \#((S_v \setminus S_v) \cap A).$$

Step 1 - (Green formula) Assume: $u \in \text{argmin} E_1$.
Since $J(u) \leq E_1(u) < +\infty$, the set $S_u \cup S_u$ is finite and contained in $[-1,1]$; $u \in H^4(I)$ for every interval $I \subset (-2,2) \setminus \{S_u \cup S_u\}$.

From now on we label $t_0 = -1$ and $t_{T+1} = 1$ and t_j, for $j = 1, ..., T$, the (possibly empty) finite ordered set $(S_u \cup S_u) \cap (-1, 1)$. Then, integrating by parts, the next identity is achieved for every $\varphi \in H^2$

$$E_1(v, A) = \sum_{t=0}^{T} \int_{t}^{t+1} \dot{u} \dot{\varphi} \, dx = \sum_{t=0}^{T} \int_{t}^{t+1} u'' \varphi'' \, dx = \sum_{t=0}^{T} \int_{t}^{t+1} u''' \varphi' \, dx +$$

$$\sum_{t=1}^{T} \left((-\ddot{u}^{(1)} \varphi^{(1)}(t_{t+1}) + \ddot{u}^{(1)}(t_t) \varphi^{(1)}(t_t)) + (\ddot{u}^{(1)}(t_{t+1}) \varphi^{(1)}(t_{t+1}) - \ddot{u}^{(1)}(t_t) \varphi^{(1)}(t_t)) \right) +$$

$$+ \left((-\ddot{u}^{(1)} \varphi^{(1)}(t_1) + \ddot{u}^{(1)}(t_1) \varphi^{(1)}(t_1)) + \ddot{u}^{(1)}(t_T) \varphi^{(1)}(t_T) - \ddot{u}^{(1)}(t_T) \varphi^{(1)}(t_T) \right) +$$

$$+ \left(\ddot{u}^{(1)}(1) \varphi^{(1)}(1) \right) \right).$$

Step 2 - At first we show that each minimizer u solves the fourth order elliptic equation (3.23) on the interior of $(-1,1) \setminus (S_u \cup S_u)$, by performing smooth variations. For every open set $A \subset (-1,1) \setminus (S_u \cup S_u)$, for every $\varepsilon \in \mathbb{R}$ and for every $\varphi \in C_0^\infty (A)$ we have

$$0 \leq E_1(u + \varepsilon \varphi, A) - E_1(u, A) = 2\varepsilon \left(\eta \int_A u'' \varphi'' \, dx + \mu \int_A (u - w) \varphi \, dx - \int_A \frac{f}{2} \varphi \, dx \right) + o(\varepsilon)$$

where $o(\varepsilon)$ is an infinitesimal of higher order than ε. Hence

$$\eta \int_A u'' \varphi'' \, dx = \int_A \left(f/2 - \mu (u - w) \right) \varphi \, dx \forall \varphi \in C_0^\infty (A).$$

Then (3.23) follows integrating by parts with Green formula (3.44).

Now we seek the Euler conditions at inner discontinuity points and at clamped endpoints.

Step 3 - We prove necessary conditions (3.24) for extremality on S_u and necessary conditions (3.27) for extremality at endpoints when they do belong to $S_u \setminus S_u$.

Choose $\varphi \in H^2 \cap C^2([t_l, t_{l+1}])$, $l = 0, ..., T$, $\text{spt}(\varphi) \subset A$, where A is a Borel subset of $[-1,1]$ with $(S_u \setminus S_u) \cap A = \emptyset$. Then for every $\varepsilon \in \mathbb{R}$ we have

$$(S_u + \varepsilon \varphi) \cap A \subset S_u \cap A$$

By (3.44) we have:
0 \leq E_1(u + \varepsilon \varphi, A) - E_1(u, A) = \\
= \alpha (\sharp(S_{u+\varepsilon\varphi} \cap A) - \sharp(S_u \cap A)) + \beta \# ((S_{\varphi} \setminus S_{u+\varepsilon\varphi}) \cap A) + \\
+ 2\varepsilon \left(\sum_{t_l=0}^{T} \int_{t_{l-1}}^{t_l} (\eta u''' + \mu(u - w)\varphi - \frac{f}{2} \varphi) \, dx \right) + o(\varepsilon) = \\
= \alpha (\sharp(S_{u+\varepsilon\varphi} \cap A) - \sharp(S_u \cap A)) + \beta \# ((S_{\varphi} \setminus S_{u+\varepsilon\varphi}) \cap A) + \\
+ 2\varepsilon \left(\sum_{t_l=0}^{T} \int_{t_{l-1}}^{t_l} (\eta u''' + \mu(u - w)\varphi - \frac{f}{2} \varphi) \, dx + \\
+ \ddot{u}^+(-1)\varphi^+(-1) - \ddot{u}^+(-1)\varphi^+(-1) - \ddot{u}^-(1)\varphi^-(1) + \ddot{u}^-(1)\varphi^-(1) + \\
+ \eta \sum_{(S_u \cap A) \setminus \{\pm 1\}} \left([\ddot{u}] - [\ddot{\varphi}] \right) \right) + o(\varepsilon).

Up to a finite set of possible values of \varepsilon entailing cancellation of discontinuity, we have \(S_{u+\varepsilon\varphi} \cap A = S_u \cap A \). Then by discarding such values we can choose arbitrarily small \varepsilon satisfying

\[\sharp((S_{\varphi} \setminus S_{u+\varepsilon\varphi}) \cap A) = \sharp((S_{\varphi} \setminus S_u) \cap A) = 0 \]

By taking into account (3.23) and the arbitrariness of the two traces of \varphi and \varphi on the two sides of points in \(S_u \), for small \varepsilon, we can choose \varphi with \(\varphi^\pm = 0 \), and \(\varphi^+ = 0 \) together with \(\varphi^- \) arbitrary, or viceversa to get \(\ddot{u}^\pm = 0 \) on \(S_u \setminus \{ \pm 1 \} \).

Similarly, we obtain \(\ddot{u}^\pm = 0 \) on \(S_u \setminus \{ \pm 1 \} \) by choosing \(\varphi^\pm = 0 \), and \(\varphi^+ = 0 \) together with \(\varphi^- \) arbitrary or vice-versa. So (3.24) is proved.

If some clamped endpoint \(-1 \) and/or \(+1 \) belong to \(S_u \), then (3.27) is obtained as above, but taking into account that \(\varphi \equiv 0 \) outside \([-1, 1] \).

Step 4 - We prove the necessary condition (3.25) for extremality on \(S_{\dot{u}} \setminus (S_u \cup \{ \pm 1 \}) \):

\[(3.45) \quad \ddot{u}^\pm = 0 \quad \text{in} \quad S_{\dot{u}} \setminus (S_u \cup \{ \pm 1 \}) , \]

\[(3.46) \quad [\ddot{u}] = 0 \quad \text{in} \quad S_u \setminus (S_u \cup \{ \pm 1 \}) . \]

Let \(\varphi \in H^2 \cap C^2(\gamma(t_l, t_{l+1})) \), \(l = 0, \ldots, T \), \(\text{spt}(\varphi) \subset A \), with \(A \) Borel subset of \((-1, 1) \) and \(S_{\varphi} = \emptyset = (S_y \setminus S_{\dot{u}}) \cap A \). Then, up to a finite set of possible values of \varepsilon entailing cancelation of \dot{u} discontinuity, we can choose \varepsilon arbitrarily small such that

\[(S_{u+\varepsilon\varphi} \cup S_{u+\varepsilon\varphi}) \cap A = S_{u+\varepsilon\varphi} \cap A = S_{\dot{u}} . \]
Moreover, by Green formula (3.44):

\[
0 \leq E_1(u + \varepsilon \varphi, A) - E_1(u, A) \leq \\
\beta \left(\sharp (S_{u+\varepsilon \varphi} \cap A) - \sharp (S_u \cap A) \right) + \\
+ 2\varepsilon \left(\sum_{l=0}^{T} \int_{t_l}^{t_{l+1}} \left(\eta u'' \varphi'' + \mu(u-w)\varphi - \frac{f}{2} \varphi \right) dx \right) + o(\varepsilon) = \\
= 2\varepsilon \left(\sum_{l=0}^{T} \int_{t_l}^{t_{l+1}} \left(\eta u''' \varphi dx + \mu(u-w)\varphi - \frac{f}{2} \varphi \right) dx + \\
+ \dot{u}^+(-1)\varphi^+(-1) - \dot{u}^-(1)\varphi^-(-1) - \ddot{u}^-(-1)\varphi^-(1) + \ddot{u}^-(1)\varphi^-(1) + \\
+ \eta \sum_{(S_u \cap A) \setminus \{\pm 1\}} \left([\dot{u} \varphi] - [\ddot{u} \varphi] \right) \right) + o(\varepsilon) .
\]

By taking into account (3.23), for small \(\varepsilon \) and by the arbitrariness of \(\varphi \) and of the two traces of \(\dot{\varphi} \) on the two sides of \(S_u \), we can choose \(\varphi \) with \(\varphi \pm = 0 \), and arbitrary \(\dot{\varphi} \pm = \dot{\varphi} \), to get (3.45).

On the other hand, by choosing \(\dot{\varphi} \pm = 0 \) together with arbitrary \(\varphi \) and taking into account that \([\varphi] = 0\), we obtain (3.46).

Then (3.25) follow from (3.45) and (3.46).

Step 5 - The analysis of minimizers at \((S_u \setminus S_u) \cap \{\pm 1\}\) can be done exactly in the same way as in Step 5, but taking into account that \(u = w \) and \(\varphi = 0 \) on \([-2, -1] \cup [1, 2]\), thus obtaining (3.27) and (3.28).

Step 6 - (3.26) is a straightforward consequence of (3.23)-(3.25).

Step 7 - Eventually, under the additional condition \(\alpha = \beta \), we prove the refinement (3.29) of (3.24),(3.25),(3.27),(3.28) on \((S_u \cup S_u)\) for every minimizer \(u \).

We are left only to show that

(3.47) if \(\alpha = \beta \) then: \(1 \in S_u \setminus S_u \Rightarrow \ddot{u}^-(1) = 0; \ -1 \in S_u \setminus S_u \Rightarrow \ddot{u}^+(-1) = 0 \).

Fix a Borel set \(A \) s.t. \(A \subset (-2, 2), S_u \cap A = \emptyset \neq S_u \cap A \).

Let \(\varphi \in H^2 \cap C^2([t_l, t_{l+1}]), l = 0, ..., T \) and

\[
S_u \cap A = S_\varphi \cap A \quad \text{and} \quad S_u \cap A = S_{\dot{\varphi}} \cap A = \emptyset .
\]

Then, for every value of \(\varepsilon \in \mathbb{R} \) we have \(S_{u+\varepsilon \varphi} \cap A = S_\varphi \cap A \) and

\[
(S_{u+\varepsilon \varphi} \cup S(\dot{u}+\varepsilon \dot{\varphi})) \cap A = S_u \cap A .
\]
By (3.44), (3.23), (3.24) and (3.25) we have

\[
0 \leq E_1(u + \varepsilon \varphi, A) - E_1(u, A) = \\
= \alpha \varepsilon \left(S_{u+\varepsilon \varphi} \cap A \right) + \beta \left((S_{(u+\varepsilon \varphi)} \setminus S_{u+\varepsilon \varphi}) \cap A \right) - \beta \varepsilon \left(S_{u \cap A} \right) + 2\varepsilon \left(\sum_{l=0}^{T} \int_{t_l}^{t_{l+1}} \left(\eta u'\varphi'' + \mu(u-w)\varphi - \frac{f}{2}\varphi \right) \, dx \right) + o(\varepsilon) \\
= \alpha \varepsilon \left(S_{\varphi \cap A} \right) + \beta \varepsilon \left((S_u \setminus S_{\varphi}) \cap A \right) - \beta \varepsilon \left(S_{u \cap A} \right) + 2\varepsilon \left(\sum_{l=0}^{T} \int_{t_l}^{t_{l+1}} \left(\eta u''' \varphi + \mu(u-w)\varphi - \frac{f}{2}\varphi \right) \, dx \right) + \eta \sum_{(S_u \cap A) \setminus \pm 1} \left([\ddot{u}\varphi] - [\ddot{u}\varphi] \right) \\
+ \eta \left(\ddot{u}^+(-1)\varphi^+(-1) - \ddot{u}^+(-1)\dot{\varphi}^+(-1) - \ddot{u}^-(1)\varphi^+(1) + \ddot{u}^-(1)\dot{\varphi}^+(1) \right) + o(\varepsilon) \\
= \alpha \varepsilon \left(S_{\varphi \cap A} \right) - \beta \varepsilon \left(S_u \cap A \right) + 2\eta \varepsilon \sum_{(S_u \cap A) \setminus \pm 1} \left[\ddot{u}\varphi \right] + o(\varepsilon). \\
\]

Since \(S_{\varphi \cap A} = S_u \cap A \), when \(\alpha > \beta \) then the inequality is fulfilled for \(\varepsilon \) small enough, hence we do not obtain further information (recall that the necessary condition for semicontinuity \(\alpha \geq \beta \) is always assumed). On the other hand, when \(\alpha = \beta \), we get

\[
0 \leq E_1(u + \varepsilon \varphi, A) - E_1(u, A) = \\
= 2\eta \varepsilon \left(\sum_{S_u \cap A} \left[\ddot{u}\varphi \right] + \ddot{u}^+(-1)\varphi^+(-1) - \ddot{u}^-(1)\varphi^+(1) \right) + o(\varepsilon). \\
\]

So the coefficient of \(2\varepsilon \) must vanish, and by the arbitrariness of the two traces of \(\varphi \) at points in \(S_u \cap A \), of the right trace at \(-1 \) and of the left trace at \(+1 \), taking into account that \(\varphi \equiv 0 \) outside \([-1, 1]\) we get (3.47).

Step 8 - We make explicit all the details for \(E_1 \) only, since the proof of Euler equations for \(F_1 \) is identical. In fact \(F_1(v_r, v_p) - E_1(v_r) = \int_{-1}^{1} (\gamma |\dot{v}_p|^2 - f v_p) \) is a classical integral functional: so the analysis of any minimizer \(U = (u_r, u_p) \) of \(F_1 \) can be done by performing all the admissible variations separately for \(u_r \) and \(u_p \).

Proof of Proposition 3.10 (compliance identities) - Assume \(u \in \arg\min E_1 \) and label \(t_0 = -1 \) and \(t_{T+1} = 1 \) and \(t_j \), for \(j = 1, ..., T \), the (possibly empty) finite ordered set \((S_u \cup S_u) \cup (-1, +1) \).
Then, by (3.23)-(3.28), integrating by parts on the intervals $[t_j, t_{j+1}]$ we get

$$\eta \int_{-1}^{1} |\ddot{u}|^2 \, dx = \eta \sum_{j=0}^{T} \int_{t_j}^{t_{j+1}} |\ddot{u}|^2 \, dx =$$

$$= - \eta \int_{-1}^{1} (\ddot{u})' \dot{u} \, dx + \eta \left[\ddot{u} \dot{u} \right]_{-1}^{1} =$$

$$= \eta \int_{-1}^{1} (\ddot{u})'' u \, dx + \eta \left[\ddot{u} \dot{u} - \dddot{u} u \right]_{-1}^{1} =$$

$$= \mu \int_{-1}^{1} (w - u) u \, dx + \int_{-1}^{1} (f/2) u \, dx + \eta [\ddot{u} \dot{u} - \dddot{u} u]_{-1}^{1},$$

here above and in the sequel, the notation $[z]_{-1}^{1}$ stands for $z^{-1} - z^{-1}$. Hence

$$E_1(u) = \eta \int_{-1}^{1} |\ddot{u}|^2 \, dx - \int_{-1}^{1} fu \, dx + \mu \int_{-1}^{1} |u - w|^2 \, dx + J(u) =$$

$$= J(u) + \mu \int_{-1}^{1} ((w - u)u + (u - w)^2) \, dx + (-1 + 1/2) \int_{-1}^{1} fu \, dx +$$

$$+ \eta \left(- \dddot{u}^{-1}(-1)\dot{u}(-1) + \dddot{u}^{-1}(1)\dot{u}(1) + \dddot{u}^{-1}(1)u(-1) - \dddot{u}^{-1}(1)u(1) \right).$$

Now assume $(u_r, u_p) \in \text{argmin} F_1$ and label t_j as above. By taking into account (3.30)-(3.38) and performing integrations by parts, we get

$$\eta \int_{-1}^{1} |\ddot{u}_r|^2 \, dx = \eta \int_{-1}^{1} (\ddot{u}_r)'' u_r \, dx = - \mu \int_{-1}^{1} (u_r - u_p) u_r \, dx + \int_{-1}^{1} (f_r/2) u_r \, dx + \eta [\ddot{u}_r \dot{u}_r - \dddot{u}_r u_r]_{-1}^{1}. $$

Performing two integrations by parts and taking into account (3.31), we get

$$\gamma \int_{-1}^{1} |u_p''|^2 \, dx = \gamma \int_{-1}^{1} u_p''' u_p \, dx + \gamma \left[u_p''' u_p' - u_p''' u_p \right]_{-1}^{1} =$$

$$= \mu \int_{-1}^{1} (u_r - u_p) u_p \, dx + \frac{1}{2} \int_{-1}^{1} f_p u_p \, dx + \gamma \left[u_p''' u_p' - u_p''' u_p \right]_{-1}^{1} .$$

Then for any $(u_r, u_p) \in \text{argmin} F_1$ we obtain

$$F_1(u_r, u_p) = J(u_r) + (-1 + 1/2) \left(\int_{-1}^{1} f_r u_r \, dx + \int_{-1}^{1} f_p u_p \, dx \right) - \mu \int_{-1}^{1} (u_r - u_p)^2 \, dx$$

$$+ \left[\eta \left(\dddot{u}_r \dot{u}_r - \dddot{u}_r u_r \right) + \gamma \left(u_p''' u_p' - u_p''' u_p \right) \right]_{-1}^{1} . \quad \square$$

Proposition 3.11. *(Variational conditions for the minimizers of E_1 under unilateral constraint)*

Every minimizer u of E_1 over the closed convex set

(3.48) \[K := \left\{ v \in H^2(-2, 2) : v \geq w \text{ on } [-1, 1], v = w \text{ on } (-2, -1) \cup (1, 2) \right\} \]
(see Remark 3.6 about the pointwise everywhere meaning the unilateral constraint) fulfils the variational inequality

\[
\begin{aligned}
\{ u \in K : & \quad \int_{(-1,1) \setminus (S_u \cup S_{\tilde{u}})} \left(\eta u'''' + \mu (u - w) - f/2 \right) (u - v) \leq 0 \quad \forall v \in K, \\
\end{aligned}
\]

together with the bilateral conditions at the free discontinuity and free-gradient discontinuity set where the contact does not play a role:

\[
\begin{aligned}
\dot{u}^+ = \ddot{u}^- = 0 & \quad \text{on} \ (S_u \setminus \{ \pm 1 \}) \cap \{ u^+ > w \} \cap \{ u^- > w \}, \\
\dot{u}^- = \ddot{u}^+ = 0 & \quad \text{on} \ (S_u \setminus \{ \pm 1 \}) \cap \{ u^- > w \} \cap \{ u^+ > w \}, \\
\dot{u}^- = \ddot{u}^- = [\ddot{u}] = 0 & \quad \text{on} \ (S_{\tilde{u}} \setminus (S_u \cup \{ \pm 1 \})) \cap \{ u^+ > w \} \cap \{ u^- > w \}, \\
\end{aligned}
\]

\[\ddot{u} \in H^2((-1,1) \setminus \{ u^+ = w \ \text{or} \ u^- = w \}) \quad \text{and} \quad \eta (\ddot{u})'' + \mu (u - w) = f/2 \quad \text{in} \ \mathcal{D}'((-1,1) \setminus \{ u^+ = w \ \text{or} \ u^- = w \}) , \]

\[
\begin{aligned}
\dot{u}^-(-1) = \ddot{u}^-(-1) = 0 & \quad \text{if} \ -1 \not\in S_u \setminus S_{\tilde{u}} \ \text{and} \ u^+(1) > w(-1), \\
\dot{u}^+(1) = \ddot{u}^+(1) = 0 & \quad \text{if} \ +1 \not\in S_u \setminus S_{\tilde{u}} \ \text{and} \ u^-(1) > w(+1), \\
\end{aligned}
\]

jump condition \([\ddot{u}^+] = 0\) in (3.52) can be improved when \(\alpha = \beta\), hence

\[
\begin{aligned}
\dot{u}^+(1) = 0 & \quad \text{if} \ -1 \in S_u \setminus S_{\tilde{u}} \ \text{and} \ u^+(1) > w(-1), \\
\dot{u}^+(1) = 0 & \quad \text{if} \ +1 \in S_u \setminus S_{\tilde{u}} \ \text{and} \ u^-(1) > w(+1), \\
\end{aligned}
\]

if \(\alpha = \beta\) then \(\ddot{u}^+ = \ddot{u}^- = 0\) on \((S_u \cup S_{\tilde{u}}) \setminus \{ \pm 1 \}) \cap \{ u^+ > w \} \cap \{ u^- > w \}, \)

\[
\begin{aligned}
\dot{u}^+(-1) = 0 & \quad \text{if} \ -1 \not\in S_u \cup S_{\tilde{u}} \ \text{and} \ u^+(1) > w(-1), \\
\dot{u}^-(1) = 0 & \quad \text{if} \ +1 \not\in S_u \cup S_{\tilde{u}} \ \text{and} \ u^-(-1) > w(+1), \\
\end{aligned}
\]

and in addition the unilateral conditions at the free discontinuity and free-gradient discontinuity sets of \(u\) where the contact with the obstacle plays a role:

\[
\begin{aligned}
\dot{u}^+ & \geq 0 \quad \text{on} \ ((S_u \cup S_{\tilde{u}}) \setminus \{ +1 \}) \cap \{ u^+ = w \}, \\
\dot{u}^- & \geq 0 \quad \text{on} \ ((S_u \cup S_{\tilde{u}}) \setminus \{ -1 \}) \cap \{ u^- = w \} . \\
\end{aligned}
\]

No condition on \(\ddot{u}^\pm\) is present on \(S_u \cup S_{\tilde{u}}\).

Proof - The proof repeats the first 7 steps of Proposition 3.9 proof, but achieves less information since there is a strictly smaller set of admissible variations. Step 1 is fully recovered thus, here we can exploit the Green formula (3.44). We repeat Steps 2-7, by performing all the admissible variations of \(u\) which are of the kind \(u + \varepsilon (v - u)\), with \(\varepsilon \in [0,1]\) and \(v \in K\): for comparison, here \(\varphi = v - u\). As in Step 3 for the case of non constrained competitors, for \(\varphi = v - u\) belonging
to $H^2 \cap C^2([t_l, t_{l+1}]), l = 0, ..., T$, with spt($\varphi$) $\subset A$ Borel subset of $[-1, 1]$ and $(S_u \setminus S_u) \cap A = \emptyset$ we still get $(S_{u+\varepsilon \varphi} \cup S_{u+\varepsilon \varphi}) \cap A \subset S_u \cap A$ and

$$0 \leq E_1(u + \varepsilon \varphi, A) - E_1(u, A) = \alpha (\#(S_{u+\varepsilon \varphi} \cap A) - \#(S_u \cap A)) + \beta (\#((S_u \setminus S_{u+\varepsilon \varphi}) \cap A) +$$

$$+ 2\varepsilon \left(\sum_{l=0}^{T} \int_{t_l}^{t_{l+1}} (\eta u'' \varphi + \mu(u-w)\varphi - (f/2)\varphi) \, dx \right) + o(\varepsilon) =$$

$$= \alpha (\#(S_{u+\varepsilon \varphi} \cap A) - \#(S_u \cap A)) + \beta (\#((S_u \setminus S_{u+\varepsilon \varphi}) \cap A) +$$

$$+ 2\varepsilon \left(\sum_{l=0}^{T} \int_{t_l}^{t_{l+1}} (\eta u''' \varphi + \mu(u-w)\varphi - (f/2)\varphi) \, dx +$$

$$+ \ddot{u}^+(1)\varphi^+(1) - \ddot{u}^+(1)\varphi^-(1) - \ddot{u}^-(1)\varphi^+(1) + \ddot{u}^-(1)\varphi^-(1) +$$

$$+ \eta \sum_{(S_u \setminus A) \setminus \{\pm 1\}} \left([\dddot{u} \varphi] - [\dddot{u} \varphi] \right) + o(\varepsilon).$$

(3.60)

As in Step 4, let $\varphi \in H^2 \cap C^2([t_l, t_{l+1}]), l = 0, ..., T$, spt($\varphi$) $\subset A$, with A Borel subset of $(-1, 1)$ and $S_u = \emptyset = (S_u \setminus S_u) \cap A$. Then, up to a finite set of possible values of ε entailing cancelation of \ddot{u} discontinuity, we can choose ε arbitrarily small such that $(S_{u+\varepsilon \varphi} \cup S_{u+\varepsilon \varphi}) \cap A = S_{u+\varepsilon \varphi} \cap A = S_u$; thus, by Green formula (3.44)

$$0 \leq E_1(u + \varepsilon \varphi, A) - E_1(u, A) \leq \beta (\#(S_{u+\varepsilon \varphi} \cap A) - \#(S_u \cap A)) +$$

$$+ 2\varepsilon \left(\sum_{l=0}^{T} \int_{t_l}^{t_{l+1}} (\eta u''' \varphi + \mu(u-w)\varphi - (f/2)\varphi) \, dx \right) + o(\varepsilon) =$$

$$= 2\varepsilon \left(\sum_{l=0}^{T} \int_{t_l}^{t_{l+1}} (\eta u''' + \mu(u-w) - (f/2)) \varphi \, dx +$$

$$+ \dddot{u}^+(1)\varphi^+(1) - \dddot{u}^+(1)\varphi^-(1) - \dddot{u}^-(1)\varphi^+(1) + \dddot{u}^-(1)\varphi^-(1) +$$

$$+ \eta \sum_{(S_u \setminus A) \setminus \{\pm 1\}} \left([\dddot{u} \varphi] - [\dddot{u} \varphi] \right) + o(\varepsilon).$$

(3.60)

In all cases now $\varphi = v - u$ with $v \in K$.

By all choices of open sets A and $v \in K$ fulfilling spt($v-u$) $\subset A \subset (-1, 1) \setminus (S_u \cup S_u)$ we get,

$$\int_{(-1,1) \setminus (S_u \cup S_u)} (\eta u''' + \mu(u-w) - f/2) (v-u) \, dx =$$

$$= \int_{(-1,1) \setminus (S_u \cup S_u)} (\eta u''(v-u) + \mu(u-w) - f/2) (v-u) \, dx \geq 0$$

say (3.49). Then, by inserting (3.49) in (3.59),(3.60), we single out the conditions at every point of singular set.

Outside the contact set $\{u^+ = w\} \cup \{u^- = w\}$ we can repeat the discussion made in the proof of Proposition 3.9, since $\varphi^\pm = (v-u)^\pm$ and $\dot{\varphi}^\pm = (\dot{v} - \dot{u})^\pm$ are allowed to achieve both positive and negative values outside the contact set.
Up to a finite set of possible values of \(\varepsilon \) entailing cancellation of discontinuity, we have \(S_{u+\varepsilon \varphi} \cap A = S_u \cap A \). Then by discarding such values we can choose arbitrarily small \(\varepsilon \) satisfying
\[
\begin{array}{r}
\hat{z} ((S_{\varphi} \setminus S_{u+\varepsilon \varphi}) \cap A) = \hat{z} ((S_{\varphi} \setminus S_u) \cap A) = 0 \\
\end{array}
\]
By taking into account (3.23) and the arbitrariness of the two traces of \(\varphi \) and \(\dot{\varphi} \) on the two sides of points in \(S_u \), for small \(\varepsilon \), we can choose \(\varphi \) with \(\varphi^\pm = 0 \), and \(\dot{\varphi}^\pm = 0 \) together with \(\dot{\varphi}^- \) arbitrary, or vice versa to get \(\ddot{u}^\pm = 0 \) on \(S_u \setminus \{\pm 1\} \).

Similarly, we obtain \(\dddot{u}^\pm = 0 \) on \(S_u \setminus \{\pm 1\} \) by choosing \(\dot{\varphi}^\pm = 0 \), and \(\varphi^\pm = 0 \) together with \(\varphi^- \) arbitrary or vice versa. So (3.50) is proved.

If some clamped endpoint \((-1\) and/or \(+1\) belong to \(S_u \), then (3.54) is obtained as above, but taking into account that \(\varphi \equiv 0 \) outside \([-1, 1]\).

Summarizing, we obtain (3.51), (3.53), (3.54), (3.55), hence (3.52) and (3.56), by the same argument of Steps 3 - 7.

On the contact set \(\{u = w\} \) we can repeat again the discussion made in the proof of Proposition 3.9, but here the coefficient of \(2\varepsilon \) in (3.60) must be only nonnegative, thus we get inequalities in place of equalities. Moreover, since \(\dot{\varphi}^+ = (\dddot{v} - \dddot{u})^+ \) is allowed to achieve only positive values and \(\dot{\varphi}^- = (\dddot{v} - \dddot{u})^- \) is allowed to achieve only negative values, whereas left and right values have always opposite sign, we deduce (3.57), (3.58). On the other hand, on the contact set \(\varphi^\pm = (v - u)^\pm \) is always null; therefore, we get no condition on every term whose multiplier is \(\varphi^+ \) or \(\varphi^- \). \(\square \)

Proposition 3.12. (Variational conditions for the minimizers of \(F_1 \) under unilateral constraint)

Every minimizing pair \((u_r, u_p)\) of \(F_1 \) over the convex set
\[
K := \{(v_r, v_p) \in H^2(-2, 2) : v_r \geq v_p \text{ on } [-1, 1], v_r = v_p = w \text{ on } (-2, -1) \cup (1, 2)\}
\]
fulfils the quasi-variational inequalities

\[
\begin{array}{l}
\begin{aligned}
& u_r \in H^2(-2, 2) : v_r \geq v_p \text{ on } [-1, 1], v_r = v_p = w \text{ on } (-2, -1) \cup (1, 2) \text{ and } \\
& \int_{(-1,1) \setminus (S_u \cup S_{u_r})} \left(\eta uu'' + \mu (u_r - u_p) - f_r/2 \right) (u_r - v) \leq 0 \quad \forall v : (u_r, v) \in K, \\
\end{aligned} \\
\begin{aligned}
& u_p \in H^2(-2, 2) : v_p \leq v_r \text{ on } [-1, 1], v_r = v_p = w \text{ on } (-2, -1) \cup (1, 2) \text{ and } \\
& \int_{(-1,1) \setminus (S_u \cup S_{u_r})} \left(\gamma uu'' + \mu (u_p - u_r) - f_p/2 \right) (u_p - z) \leq 0 \quad \forall z : (z, u_p) \in K, \\
\end{aligned}
\end{array}
\tag{3.62}
\]

together with the standard bilateral conditions (say (3.50)-(3.55) with \(u_r, u_p \) replacing respectively \(u, w \)) at the free discontinuity and free-gradient discontinuity set where the contact does not play a role, and the unilateral conditions at the free discontinuity and free-gradient discontinuity set where the contact with the obstacle plays a role:

\[
\begin{array}{r}
\ddot{u}_r^+ \geq 0 \quad \text{on } (S_u \cup S_{u_p}) \setminus \{+1\} \cap \{u_r^+ = u_p\}, \\
\ddot{u}_r^- \geq 0 \quad \text{on } (S_u \cup S_{u_p}) \setminus \{-1\} \cap \{u_r^- = u_p\}.
\end{array}
\tag{3.63}
\tag{3.64}
\]

No condition on \(\ddot{u}_r^\pm \) is present on \(S_{u_r} \cup S_{u_r} \).
Proof - Repetition of the steps of the last proof provides the proof the claims about minimizers \((u_r, u_p)\) of \(F_1\) with unilateral implicit constraint, by performing all the admissible variations of \(u_r\) which are of the kind \(u_r + \varepsilon (v - u_r)\), with \(\varepsilon \in [0, 1]\) and \((v, u_p) \in K\) and \(u_r + \varepsilon (z - v),\) with \(\varepsilon \in [0, 1]\) and and \((u_r, z) \in K\).

\[\square\]

4. HARD-DEVICE REINFORCEMENT OF FLEXURAL PLATE

In this section we deduce the existence statement in the case of hard-device reinforcement: minimization of functional \(E\) defined by (2.4).

Proof of Theorem 2.1 - After noticing that by

\[E(\emptyset, w) = \eta \|D^2 w\|_{L^2(\Omega)}^2 - \int_\Omega f w \, dx < +\infty.\]

the domain of \(E\) is not empty, and by

\[(4.1) \int_\Omega (\mu |v - w|^2 - fv) \, dx = \int_\Omega \mu \left(v - (w + f/(2\mu))\right)^2 \, dx - \int_\Omega \left(fw + f^2/(4\mu)\right) \, dx\]

where the last summand on the right-hand side is a constant, we have that the functional \(E\) is bounded from below since beside such constant all other terms are nonnegative.

The notion of essential admissible pairs, set by (2.5), selects ([18]) those pairs \((K, v)\) which are cleansed of every spurious artifact that does not affect the functional value and are good representatives in equivalence classes of admissible pairs. This definition of admissible pair prevents diffused damage but allows to prove partial regularity of displacements \(v\): free discontinuity (crack) and free gradient discontinuity (folds) are allowed in competing configurations of the structure.

Thus, the claims of present Theorem 2.1 follow from Theorem 2.3 in [11] and [15] about functional (2.2) defined therein, by setting \(g = w + f/(2\mu)\), a datum which belongs to \(L^4(\Omega)\) due to present assumptions. Precisely we can choose \(\Omega = \Omega_p, \alpha = \beta = 1\); hence (2.3),(2.4),(2.5) and (2.20) of [15] are fulfilled thanks to the conditions (2.1),(2.3) assumed here. Moreover \(D^2 w \in L^\infty(A)\) for any open set s.t. \(\Omega \subset\subset A \subset\subset \Omega_p\) and we have that the sets \(M, T_0, T_1\) (as denoted in [15]) are empty, hence (2.6)-(2.11) of [15] hold true thanks to the assumption (2.2) made here.

\[\square\]

5. STRENGTHENING REINFORCEMENT OF FLEXURAL PLATE

In this section we deduce the existence statement in the case of strengthening reinforcement: minimization of functional \(F\) defined by (2.7).

To deal with the case of strengthening reinforcement we need a relaxed formulation of functional (2.7), as it is usual in the analysis of free discontinuity problems. We list standard notations (see [2],[11],[13],[17]): \(B_\varrho(x)\) denotes the open ball \(\{ y \in \mathbb{R}^2 : |y - x| < \varrho\}\); \(\mathcal{H}^1(A)\) and \(|A|\) denote respectively, the 1-dimensional Hausdorff measure and the outer Lebesgue measure of a subset \(A \subset \mathbb{R}^2\); for every Borel function \(v : \Omega \to \mathbb{R}\) and \(x \in \Omega, z \in \overline{\mathbb{R}} := \mathbb{R} \cup \{-\infty, +\infty\}\), we set \(z = \text{ap lim}_{y \to x} v(y)\).
(notation for the approximate limit of \(v \) at \(x \)) if, for every \(g \in C^0(\mathbb{R}) \),
\[
g(z) = \lim_{\varepsilon \to 0} |B_\varepsilon(0)|^{-1} \int_{B_\varepsilon(0)} g(v(x + \xi)) \, d\xi;
\]
the function \(\tilde{v}(x) = \lim_{y \to x} v(y) \) is called representative of \(v \);

\[
S_v = \{ x \in \Omega : z \text{ such that } \lim_{y \to x} v(y) = z \} \text{ is the singular set of } v.
\]

A Borel function \(v : \Omega \to \mathbb{R} \) is approximately continuous at \(x \in \Omega \) if \(v(x) = \lim_{y \to x} v(y) \).

As usual, \(Dv \) denotes the distributional gradient of \(v \) and \(\nabla v(x) \) denotes the approximate gradient of \(v \), say \(v \) is approximately differentiable at \(x \) if there exists a vector \(\nabla v(x) \in \mathbb{R}^2 \) (the approximate gradient of \(v \) at \(x \)) such that

\[
\lim_{y \to x} \frac{|v(y) - \tilde{v}(x) - \nabla v(x) \cdot (y - x)|}{|y - x|} = 0.
\]

A function \(u \in BV(\Omega) \) is approximately differentiable a.e., moreover for \(H^1 \) almost every \(x \in S_u \) there exist \(v(x) \in \partial B_1, v_+(x) \in \mathbb{R}, v_-(x) \in \mathbb{R} \) with \(v_+(x) > v_-(x) \) such that

\[
\lim_{\varepsilon \to 0} \varepsilon^{-n} \int_{\{y \in B_\varepsilon; |v(y) - v(x)| > \varepsilon\}} |v(x) - v_+(x)| \, dy = 0,
\]

\[
\lim_{\varepsilon \to 0} \varepsilon^{-n} \int_{\{y \in B_\varepsilon; |v(y) - v(x)| < \varepsilon\}} |v(x) - v_-(x)| \, dy = 0.
\]

\(SBV(\Omega) \) denotes the De Giorgi class of functions \(v \in BV(\Omega) \) such that

\[
\int_\Omega |Dv| = \int_\Omega |\nabla v| \, dx + \int_{S_v} v^+ - v^- \, dH^1.
\]

We introduce:

\[
SBV_{\text{loc}}(\Omega) := \{ v \in SBV(\Omega') : \forall \Omega' \subset \subset \Omega \},
\]

\[
(5.1) \ GSBV(\Omega) := \{ v : \Omega \to \mathbb{R} \text{ Borel function; } -k \vee v \wedge k \in SBV_{\text{loc}}(\Omega) \forall k \in \mathbb{N} \}.
\]

\[
(5.2) \ GSBV^2(\Omega) := \{ v \in GSBV(\Omega), \ \nabla v \in (GSBV(\Omega)^2) \}.
\]

If \(v \in GSBV(\Omega) \) then \(\nabla v \) exists a.e., and for \(v \in GSBV^2(\Omega) \) we set \(\nabla^2 v = \nabla(\nabla v) \).

Eventually, we introduce the weak formulation \(\mathcal{F} \) of functional \(F \) defined by (2.7):

\[
\mathcal{F}(v_r, v_p) = \mathcal{F}(V) :=
\]

\[
\mathcal{H}^1(S_{v_r}) + \eta \int_\Omega |\nabla^2 v|^2 \, dx + \mu \int_\Omega |v_r - v_p|^q \, dx + \int_\Omega (\gamma |D^2 v_p|^2 - f \, v_p) \, dx,
\]

\(\forall V = (v_r, v_p) \in \mathcal{X} := (GSBV^2(\Omega_p) \cap L^2(\Omega_p)) \times H^2(\Omega_p) \)

\(\text{s.t. } v_r = v_p = w \text{ a.e. } \Omega_p \setminus \overline{\Omega} \).

We emphasize that, since \(v_p = w \) in \(\Omega_p \setminus \overline{\Omega} \) and \(w \in C^2(\Omega_p \setminus \overline{\Omega}) \), we get \(S_{v_r} \cup S_{v_p} = \emptyset \)

\[
(5.4) \quad \mathcal{F}(v_r, v_p) = \mathcal{F}_r(v_r) + M(v_r - v_p) + F_p(v_p)
\]
where M, F_p and F_r are defined by (2.12), (2.13) and

\begin{equation}
F_r(v_r) := \mathcal{H}^1(S_v \cup S_v^c) + \int_\Omega \left(\eta |\nabla v_r|^2 - f_r v_r \right) \, dx.
\end{equation}

Theorem 5.1. Assume (2.1),(2.2),(2.3) and (2.6).

Then the functional F achieves a finite minimum over \mathcal{X}.

Proof - First we notice that F has non empty domain: in fact (2.2) entails $S_w = S_w^c = \emptyset$ and

\begin{equation}
F(w, w) < (\eta + \gamma)\|D^2 w\|_{L^2(\Omega)}^2 - \int_\Omega (f_r + f_p) w \, dx < +\infty.
\end{equation}

We have the identity

\begin{equation}
\int_\Omega \left(\mu |v_r - v_p|^2 - f_r v \right) \, dx = \int_\Omega \mu \left(v_r - \left(v_p + f_r / (2\mu) \right) \right)^2 \, dx - \int_\Omega \left(f_r v_p + f_r^2 / (4\mu) \right) \, dx.
\end{equation}

If K_Ω denotes the best Poincaré inequality constant in $H^2_0(\Omega)$, namely

\begin{equation}
\|v\|^2_{L^2(\Omega)} \leq K_\Omega \|v\|_{L^2(\Omega)}^2 \quad \forall v \in H^2_0(\Omega),
\end{equation}

and, arguing as like as in (3.16) we get, for every $V = (v_r, v_p) \in \mathcal{X}$

\begin{equation}
F(v_r, v_p) \geq J(v_r) + \int_{-1}^1 \left(\eta |\ddot{v}_r|^2 + (\gamma / 2) |v_p''|^2 \right) \, dx - C(\mu, \gamma, f_r, f_p, K_\Omega).
\end{equation}

Then the functional F is bounded from below on its domain. Hence we can select a minimizing sequence $V_h = ((v_r)_h, (v_p)_h)$ for F: $\lim h F(V_h) = \inf F \in \mathbb{R}$. Thanks to (5.6), we may suppose that

\begin{equation}
c \leq F(V_h) \leq C := F(w, w) < +\infty.
\end{equation}

Summarizing $F_p((v_p)_h) \leq C$, $F_r((v_r)_h) \leq C$ and $(v_p)_h$ is bounded in $H^2(\Omega)$. Moreover there is $u_p \in H^2(\Omega_p)$ such that, up to subsequences and without re-labelling, $(v_p)_h$ is converging to u_p weakly in $H^2(\Omega)$ and strongly in $L^2(\Omega)$, and $\|(v_p)'\|_{L^2} \to \|u_p'\|_{L^2} \to \infty$.

By using any fixed $(v_p)_h$ chosen from the sequence (which is bounded in H^2) as datum we find a minimizer, denoted by z_h, in $GSBV^2(\Omega_p) \cap L^q(\Omega_p)$ of

\[v \mapsto F_r(v) + M(v - (v_p)_h) \]

since this problem is equivalent to the minimization of Blake & Zisserman functional for image segmentation with gray-level datum $g = (v_p)_h + f_r / (2\mu)$ and Dirichlet boundary condition, referring to notation of Theorem 3.1 in [15]. Then

\begin{equation}
F_r(z_h) + M(z_h - (v_p)_h) \leq F_r((v_r)_h) + M((v_r)_h - (v_p)_h) \quad \forall h.
\end{equation}

Hence, by (5.4) and standard lower semicontinuity of F_p, the sequence of pairs $(z_h, (v_p)_h)$ is a minimizing sequence for F too. Moreover, by (5.10),(5.11) we get

\[F_r(z_h) + M(z_h - (u_p)_h) \leq C \]

By compactness property of Theorem 8 in [10], there are $u_r \in GSBV^2(\Omega_p) \cap L^2(\Omega_p)$ and a subsequence s.t., again by extracting without relabeling, $z_h \to u_r$. Moreover by lower semi-continuity property of Theorem 10 in [10], we get: $z_h \to u_r$ a.e.,
holds true also under the additional constraint $\nabla z_h \rightarrow \nabla u_r$ a.e., $\nabla^2 z_h \rightarrow \nabla^2 u_r$ a.e., $\nabla^2 z_h \rightarrow \nabla^2 z$ weakly in L^2 and

$$\mathcal{F}_r(u_r) + M(u_r - u_p) \leq \liminf_{h} \mathcal{F}_r(z_h) + M(z_h - (v_p)_h) \leq C .$$

Thus the pair (u_r, u_p) is a minimizer of relaxed functional \mathcal{F}.

Proof of Theorem 2.2 - Let $V = (u_r, u_p) \in \text{argmin} \mathcal{F}$ (the existence of at least one such V is warranted by Theorem 5.1). Then u_p minimizes $z \mapsto F_p(z) + M(v_r - z)$ among $z \in H^2(\Omega_p)$ s.t. $z = w$ a.e. $\Omega_p \setminus \overline{\Omega}$. So, due to (2.2) and (2.1), $u_p \in C^2 \cap L^\infty(\Omega)$. Moreover, if $V = (u_r, u_p) \in \text{argmin} \mathcal{F}$, then $u_p \in H^4(\Omega)$ and, referring to (2.12) and (2.13), u_r minimizes $v \mapsto \mathcal{F}_r(v) + M(v - u_p)$ among $v \in GSBV^2(\Omega_p) \cap L^2(\Omega_p)$ s.t. $v = u_p = w$ a.e. $\Omega_p \setminus \overline{\Omega}$. Thus, exploiting the identity (5.7), by Theorem 2.2 of [15] with the choices $\alpha = \beta = 1$, $g = u_p + f_r/(2\mu) \in L^4(\Omega_p)$ and $M = T_0 = T_1 = 0$, and setting $Z = S_{u_r} \cup S_{v_{u_r}}$, we obtain that the triplet (Z, \tilde{u}_r, u_p) is an essential admissible triplet that minimizes \mathcal{F}.

By applying the regularization argument detailed in [11],[15],[17] we obtain that $	ilde{u}_r \in C^2(\Omega_p \setminus Z)$, where Z is the smallest closed subset of Ω_p containing the region where C^2 regularity of \tilde{u}_r is missing, and $\mathcal{H}^1(Z \setminus (S_{u_r} \cup S_{v_{u_r}}) = 0$. Eventually

$$\mathcal{F}_r(\tilde{u}_r) + G(\tilde{u}_r - u_p) + F_p(u_p) \leq \mathcal{F}_r(u_r) + G(u_r - u_p) + F_p(u_p) \leq \liminf_{h} (\mathcal{F}_r(z_h) + G(z_h - u_h) + F_p(u_h)) \leq \inf_{\mathcal{X}} \mathcal{F}$$

hence $\mathcal{F}(\tilde{u}_r, u_p) = \min_{\mathcal{X}} \mathcal{F}$.

Summarizing $\mathcal{F}(Z, \tilde{u}_r, u_p) = \min \{ F(K, v_r, v_p) : (K, v_r, v_p) \text{ admissible triplet } \}$. □

Remark 5.2. We emphasize that also the non-interpenetration between plate and reinforcement could be taken into account: e.g., adding the constraint $v \geq w$ a.e Ω_p to the essential admissible pairs for hard-device reinforcement and adding the constraint $v_r \geq v_p$ a.e Ω_p to the essential admissible triplets for strengthening reinforcement. Notice that here Remark 3.6 does not apply: competing functions are functions defined only almost everywhere, therefore the unilateral constraints act in the almost everywhere sense only. These unilateral constraints do not introduce any additional difficulty in the study of the weak formulations of both \mathcal{F} and \mathcal{E}, since inequalities are preserved by compactness properties of minimizing sequences. Therefore Theorem 5.1 holds true also under the additional constraint $v_r \geq v_p$.

But the subsequent step required to show Theorem 2.2, say the proof of partial regularity for weak minimizers, would be not straightforward.

For this reason in this short note we skip this substantial difficulty, postponing the analysis of the 2 dimensional problems with unilateral constraints to a forthcoming paper.

However, in 1 dimension the strong and weak formulation do coincide, so the analogous of Theorems 2.1 and 2.2 hold true with or without the non-interpenetration constraint for beams: we have taken into account these constraints in the one-dimensional case by Theorems 3.7, 3.8 and Propositions 3.11, 3.12.
6. Elastic-plastic reinforcement of flexural plate

In this section we deduce the existence statement in the case of strengthening reinforcement: minimization of functional G defined by (2.9).

Proof of Theorem 2.3 - By $G(\emptyset, w, w) = (\eta + \gamma)\|D^2 w\|_{L^2(\Omega)}^2 - \int_{\Omega} (f_r + f_p) w d\mathbf{x} < +\infty$, we know that the functional G has nonempty domain. Moreover (5.9) warrants that the functional G is bounded from below.

The existence of a minimizer of G over over essential admissible triplets (K, v_r, v_p), namely triplets fulfilling (2.10), can be achieved by repetition of the direct method approach with the techniques of [9].

Actually here, about minimization with respect to v_r, we have these differences with respect to [9]: presence of the additional coupling term $\mu \int_{\Omega} |v_r - v_p|^2 \mathbf{x}$; there are neither vanishing moments nor a safe load condition for the load f_r; last, there is a Dirichlet datum w at the boundary.

However vanishing moments and load f were exploited in [9] only to achieve the boundedness from below of the functional, whereas here such boundedness is already warranted by (5.9). Moreover the additional term is a lower order perturbation, not affecting the existence of weak minimizers (thanks to the identity (5.7), still valid in present case), but requiring a technical correction in the proof of strong solutions by regularization of weak solutions.

Precisely, first step (existence of weak solutions) requires no change: we introduce the space SBH of Special Bounded hessian functions

$$SBH(\tilde{\Omega}) := \{ v \in H^{1,1}(\tilde{\Omega}) : Dv \in SBV(\Omega), v = w \text{ on } \tilde{\Omega} \setminus \Omega \},$$

here SBV is the space of bounded variation functions whose derivative has no Cantor part ([2]); then we set the weak formulation of functional G defined in (2.9), defined on $v \in SBH(\Omega)$:

$$\mathcal{G}(v_r, v_p) := \mathcal{H}^1(S_{Dv_r}) + \sigma \int_{S_{Dv_r}} |[Dv_r]| d\mathcal{H}^1 + \int_{\Omega} (\eta |\nabla v_r|^2 - f_r v_r) d\mathbf{x} +$$

$$+ \mu \int_{\Omega} |v_r - v_p|^2 \mathbf{x} + \int_{\Omega} (\gamma |D^2 v_p|^2 - f_p v_p) d\mathbf{x}$$

where $[z]$ denotes the jump of z and ∇z denotes the approximate gradient of z, say the absolutely continuous part of Dz.

The existence of a minimizing pair (u_r, u_p) for \mathcal{G} follows by the same argument of present Theorem 5.1, taking into account of Theorem 2.9 in [9].

The proof of partial regularity in Ω for weak minimizers is achieved by exploiting blow-up and quasi-minimizers as in Theorem 4.15 in [9]: only Lemma 4.3 of [9] must be adapted as detailed below, to take into account of the additional glueing term.

Still by identity (5.7), the load and glue terms together are represented (up to the addition of a constant irrelevant in minimization) by $\mu \int_{\Omega} (v - h)^2 d\mathbf{x}$ where $h := u_p + f_r/(2\mu)$ and $h \in L^s, s > 2$: this contribution replaces here the term $-\int_{\Omega} g v$ of [9], however this does not affect regularization of weak solutions, since, setting $E(v) = \mathcal{G}(v) - \mu \int_{\Omega} (v - h)^2$, every local minimizer of \mathcal{G} is a local quasi minimizer of E, due to the excess estimate (consequence of $u, v \in SBH(\Omega) \subset L^\infty(\Omega), h \in L^s(\Omega)$,
\[s > 2 \text{ and Hölder inequality):} \]
\[
\int_{B_\varrho(x)} \left((v - h)^2 - (u - h)^2 \right) \, dx = \int_{B_\varrho(x)} \left(u^2 - v^2 - h(v-u) \right) \leq C \varrho^{2-2/s}
\]
valid for \(B_\varrho(x) \subset \Omega, \quad 0 < \varrho < 1 \) and \(u, v \in SBH(\Omega) \) s.t. \(v = u \) on \(\Omega \setminus B_\varrho(x) \).

Partial regularity at the boundary under Dirichlet condition, can be achieved by the same argument of [15], taking into account of the simplifications due to the fact that here the competing functions are not only in \(GSBV^2(\Omega) \), but they belong to \(SBH(\Omega) \), hence they are globally continuous.

Summarizing a minimizing pair \((u_r, u_p)\) of \(G \) leads to an essential minimizing triplet \((S_{Du_r}, u_r, u_p)\) of \(G \). \(\square \)

References

[1] M.Amar, V.De Cicco, *The uniqueness as a generic property for some one dimensiona l segmentation problems*, Rend. Semin. Mat. Univ. Padova, 88, 151–173 (1992).

[2] L.Ambrosio, N.Fusco & D.Pallara, *Functions of Bounded Variation and Free Discontinuity Problems*, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2000.

[3] C.Baiocchi & A.C.Capelo, *Variational and quasi-variational inequalities: applications to free-boundary problems*, Wiley, 1984, ISBN 0-471-90201-2.

[4] J.L. Beuth, *Cracking of thin bonded films in residual tension*, International Journal of Solids and Structures, 29, (1992), 16571675.

[5] T.Boccellari & F.Tomarelli, *About well-posedness of optimal segmentation for Blake & Zisserman functional*, Istituto Lombardo (Rend. Scienze), 142 (2008), 237–266.

[6] T.Boccellari & F.Tomarelli, *Generic uniqueness of minimizer for Blake & Zisserman functional*, Rev. Mat. Complut., 26 (2013), no. 2, 361-408.

[7] M.Carriero, A.Leaci & F.Tomarelli, *Free gradient discontinuities*, in “Calculus of Variations, Homogenization and Continuum Mechanics”, (Marseille 1993), 131-147, Ser.Adv.Math Appl.Sci., 18, World Sci. Publishing, River Edge, NJ, 1994.

[8] M. Carriero, A. Leaci & F. Tomarelli, *Special Bounded Hessian and elastic-plastic plate*, Rend. Accad. Naz. Sci. XL, Mem. Mat., (5) 16, 223–258 (1992).

[9] M. Carriero, A. Leaci & F. Tomarelli, *Strong solution for an Elastic Plastic Plate*, Calc. Var. Partial Differential Equations, 2, no.2, 219–240 (1994).

[10] M.Carriero, A.Leaci & F.Tomarelli, *A second order model in image segmentation: Blake & Zisserman functional*, in “Variational Methods for Discontinuous Structures” (Como, 1994), Progr. Nonlinear Differential Equations Appl. 25, Birkhäuser, Basel, (1996), 57–72.

[11] M.Carriero, A.Leaci & F.Tomarelli, *Strong minimizers of Blake & Zisserman functional*, Ann. Scuola Norm. Sup. Pisa Cl.Sci. (4), 25, n.1-2 (1997), 257–285.

[12] M.Carriero, A.Leaci & F.Tomarelli, *Euler equations for Blake & Zisserman functional*, Calc. Var. Partial Differential Equations, 32, n.1 (2008), 81–110.

[13] M.Carriero, A.Leaci & F.Tomarelli, *Uniform density estimates for Blake & Zisserman functional*, Discrete Contin. Dyn. Syst. - Series A, 31, (4) (2011), 1129–1150.

[14] M.Carriero, A.Leaci & F.Tomarelli, *A Dirichlet problem with free gradient discontinuity*, Advances in Mathematical Sciences and Applications, 20, n.1 (2010), 107–141.

[15] M.Carriero, A.Leaci & F.Tomarelli, *A candidate local minimizer of Blake & Zisserman functional*, J. Math. Pures Appl., 96, (2011), 58–87.

[16] M.Carriero, A.Leaci, F.Tomarelli *Image inpainting via variational approximation of a Dirichlet problem with free discontinuity*, Adv. Calc.Var., 7 (3), 267–295 (2014).
[18] M. Carriero, A. Leaci, F. Tomarelli, A survey on the Blake-Zisserman functional, Milan J. Math., DOI 10.1007/s00032-015-0246-x.

[19] M. Carriero, A. Leaci & F. Tomarelli, Segmentation and inpainting of color images, J. Convex Analysis, 25, 435–458 (2018).

[20] T.-H. Cheng, C.-C. Du, C.-H. Tseng, Study in IC chip failure during pick-up process by using experimental and finite element methods, Journal of Materials Processing Technology, 172 (2006), 407-416.

[21] N. Cordero, J. Yoon, Z. Suo, Channel cracks in a hermetic reinforcement consisting of organic and inorganic layers, Applied Physics Letters 90, 111910 (2007).

[22] A. Coscia, Existence result for a new variational problem in one-dimensional segmentation theory, Ann. Univ. Ferrara - Sez. VII - Sc. Mat., XXXVII (1991), 185-203.

[23] G. Dal Maso, F. Iurlano, Fracture models as Γ-limits of damage models, Communications on Pure & Applied Analysis, (2013), 12 (4): 1657-1686, DOI: 10.3934/cpaa.2013.12.1657

[24] J.W. Hutchinson, Z. Suo, Mixed mode cracking in layered materials, Adv. Appl. Mech. 29, 1991, 63191

[25] Hyung Jip Choi & Glaucio H. Paulino, Interfacial cracking in a graded reinforcement/substrate system loaded by a frictional sliding flat punch Proc. R. Soc. A published online 16 November 2009, doi: 10.1098/rspsa.2009.0437.

[26] Sung-Ryong Kim, Nairn J.A. Fracture mechanics analysis of reinforcement/substrate systems, Part I and II, Engineering Fracture Mechanics 65, 2000, 573607.

[27] F. Maddalena & D. Percivale, Variational models for peeling problems, Int. Free Boundaries, 10 (2008), 503-516.

[28] F. Maddalena, D. Percivale & F. Tomarelli, Elastic structures in adhesion interaction, in: Variational Analysis and Aerospace Engineering: Mathematical Challenges for Aerospace Design, Eds. G. Buttazzo, A. Frediani, Ser. Springer Optimization and Its Application, Vol. 66, ISBN 978-1-4614-2434-5, (2012) 289–304.

[29] F. Maddalena, D. Percivale & F. Tomarelli, Adhesive flexible material structures, Discrete and Continuous Dynamical Systems SERIES B Volume 17, Number 2, (2012) 553–574.

[30] F. Maddalena, D. Percivale & F. Tomarelli, Local and Nonlocal Energies in Adhesive Interaction, IMA Journal of Applied Mathematics, (2016) 81, 1051105.

[31] F. Maddalena, D. Percivale & F. Tomarelli, Variational Problems for Föppl-von Kármán plates SIAM Journal on Mathematical Analysis, (2018) 50, 251–282, DOI 10.1137/17M1115502.

[32] F. Maddalena, D. Percivale & F. Tomarelli, The Gap Between Linear Elasticity and the Variational Limit of Finite Elasticity in Pure Traction Problems, Arch. Rat. Mech. Anal., 234 (2019) 1091–1120. https://doi.org/10.1007/s00205-019-01408-2

[33] D. Percivale, F. Tomarelli, From SBD to SBH: the elastic-plastic plate, Interfaces Free Bound. 4 (2002), no. 2, 137-165.

[34] D. Percivale, F. Tomarelli, A variational principle for plastic hinges in a beam, Math. Models Methods Appl. Sci., 19, no. 12, 2263–2297 (2009).

[35] C. Pellegriano, J. Sena-Cruz, (eds), Design Procedures for the Use of Composites in Strengthening of Reinforced Concrete Structures, Springer Verlag, 2016.

[36] Phuong Nguyen Tri, Sami Rtimi, Claudiane M. Ouellet Plamondon, Nanomaterials-Based Coatings Fundamentals and Applications, Elsevier (2019).

[37] Paolo Podio-Guidugli, On the validation of theories of thin elastic structures, Meccanica, (2014) 49: 1343–1352, DOI: 10.1007/s11012-014-9901-5.

[38] G. Puglisi, L. Truskinovski, Cohesion-decohesion asymmetry in geckos, Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, (2013), 87(3), 032714.

[39] Sung-Ryong Kim, John A. Nairn Fracture mechanics analysis of reinforcement/substrate systems Part I: Analysis of tensile and bending experiments, Engineering Fracture Mechanics 00 (2000) 1-24.
[40] K. Zilch, R. Niedermeier, W. Finckh (eds), *Strengthening of Concrete Structures with Adhesively Bonded Reinforcement: Design and Dimensioning of CFRP Laminates and Steel Plates*, Wiley, 2014.

* Politecnico di Bari, Dipartimento di Meccanica, Matematica e Management, Italy

** Università di Genova, Dipartimento della Produzione Termoenergetica e Modelli Matematici, Italy

*** Politecnico di Milano, Dipartimento di Matematica, Italy

*Email address: f.maddalena@poliba.it
Email address: percivale@diptem.unige.it
Email address: franco.tomarelli@polimi.it*