Association of chronic obstructive pulmonary disease with mild cognitive impairment and dementia risk: A systematic review and meta-analysis

Li-Ying Zhao, Xue-Lai Zhou

BACKGROUND
Chronic obstructive pulmonary disease (COPD) is a common public health issue that has been linked to cognitive dysfunction.

AIM
To investigate the relationship between COPD and a risk of mild cognitive impairment (MCI) and dementia.

METHODS
A comprehensive literature search of the PubMed, Embase, Google Scholar, and Cochrane Library electronic databases was conducted. Pooled odds ratios (OR) and mean differences (MD) with 95% confidence intervals (CIs) were calculated using a random or fixed effects model. Studies that met the inclusion criteria were assessed for quality using the Newcastle Ottawa Scale.

RESULTS
Twenty-seven studies met all the inclusion criteria. Meta-analysis yielded a strong association between COPD and increased risk of MCI incidence (OR = 2.11, 95%CI: 1.32-3.38). It also revealed a borderline trend for an increased dementia risk in COPD patients (OR = 1.16, 95%CI: 0.98-1.37). Pooled hazard ratios (HR) using adjusted confounders also showed a higher incidence of MCI (HR = 1.22, 95%CI: -1.18 to -1.27) and dementia (HR = 1.32, 95%CI: -1.22 to -1.43) in COPD patients. A significant lower mini-mental state examination score in COPD patients was noted (MD = -1.68, 95%CI: -2.66 to -0.71).

CONCLUSION
Our findings revealed an elevated risk for the occurrence of MCI and dementia in COPD patients. Proper clinical management and attention are required to prevent and control MCI and dementia incidence in COPD patients.

Key Words: Mild cognitive impairment; Chronic obstructive pulmonary disease; Dementia; Meta-analysis

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Chronic obstructive pulmonary disease (COPD) is a common public health issue that has been linked to cognitive dysfunction. The current meta-analysis was performed to investigate the relationship between COPD and mild cognitive impairment (MCI) and dementia risk. Twenty-seven studies met all the inclusion criteria. Meta-analysis yielded a strong association between COPD and an increased risk of MCI incidence (odds ratio = 2.11, 95% confidence interval: 1.32-3.38). Our findings revealed an elevated risk for the occurrence of MCI and dementia in COPD patients. Proper clinical management and attention are required to prevent and control MCI and dementia incidence in COPD patients.

Citation: Zhao LY, Zhou XL. Association of chronic obstructive pulmonary disease with mild cognitive impairment and dementia risk: A systematic review and meta-analysis. World J Clin Cases 2022; 10(11): 3449-3460
URL: https://www.wjgnet.com/2307-8960/full/v10/i11/3449.htm
DOI: https://dx.doi.org/10.12998/wjcc.v10.i11.3449

INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is a progressive multicomponent lung disease that occurs more commonly in the elderly[1]. It is characterised by a partially irreversible chronic obstruction of lung airflow resulting in an abnormal decrease in blood oxygen levels, potentially leading to cognitive dysfunction[2]. Various studies have estimated that the prevalence of cognitive impairment in COPD patients ranges from 16% to 57%[3,4]. A prior review of 17 individual studies by Yohannes et al[5] showed that 32% of COPD patients showed some signs of cognitive dysfunction, with no less than 25% of patients showing at least mild cognitive impairment (MCI).

Cognitive impairment in COPD patients may compromise their capability to self-care and adhere to treatment regimens, making the relationship between COPD and cognitive impairment important for devising therapeutic approaches for COPD[6,7]. Some studies have focused on the relationship between COPD and neurologic function, but with inconsistent conclusions[8]. Data based on the Atherosclerosis Risk in Communities study showed that reduced lung function was associated with poor cognitive performance and higher risk of dementia hospitalization[9]. Data based on Taiwanese National Health Insurance Research Database showed that COPD patients exhibited a 1.27-fold higher risk of developing dementia[10].

To our knowledge, there has only been one published meta-analysis investigating the statistical association of COPD with cognition dysfunction. Zhang et al[11] concluded that COPD patients had an elevated risk of cognitive dysfunction. Similarly, only one single meta-analysis has looked at the relationship between COPD and dementia. Pooling data from three studies, Wang et al[12] showed that COPD patients faced a higher risk of developing dementia. However, these important clinical questions have not been investigated in a more thorough and conclusive manner. As such, we conducted a comprehensive systematic review and meta-analysis to investigate the association between COPD and the risk of MCI and dementia.

MATERIALS AND METHODS

Search strategy

Our meta-analysis was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines[13]. We conducted a comprehensive search using PubMed, Embase, Google Scholar, and Cochrane Library online databases for articles published prior to March 31, 2021. The following key terms were used: “Chronic Obstructive Pulmonary Disease” OR “COPD” OR “Chronic Obstructive Airway Disease” OR “COAD” AND “Mild Cognitive impairment” OR “MCI” OR “Cognitive dysfunction” OR “Cognitive decline” AND “Dementia”. Studies cited by articles that met the inclusion criteria were manually searched to identify additional eligible studies. Study eligibility
was not restricted based on language, sex, or publication year. Systematic reviews, conference abstracts, and editorials were excluded due to insufficient data presentation details.

Eligibility criteria
Inclusion criteria: We included studies that: (1) Investigated the association between COPD and a risk of MCI or dementia; (2) adopted a definite outcome of cognitive impairment or dementia in COPD and non-COPD subjects; (3) reported raw values necessary to calculate odds ratios (OR) or hazard ratios (HRs) for the incidence of cognitive impairment or dementia; (4) contained case controls, were prospective or retrospective-cohort, or had a cross-sectional design; and (5) compared the association between COPD and non-COPD patients.

Exclusion criteria: We excluded studies that: (1) Did not report relevant outcomes; or (2) were full-text inaccessible.

Data collection and analysis
All eligible studies were separately screened by two reviewers to determine whether they met the inclusion criteria. Screening was first conducted at the abstract content level, with relevant studies further investigated at the full-text level. Articles published in languages other than English were machine-translated using Google Translate, with the translated version reviewed. The following information was extracted from the included studies for summarization and analysis: Author, year, study design type, group investigated, sample size, diagnostic criteria for COPD, adjusted confounder for calculating pooled ratio, MCI prevalence, dementia prevalence, and scales used for cognitive assessment.

Quality assessment
Study quality was assessed independently by two separate reviewers using the Newcastle-Ottawa Scale (NOS)[14], which examined three components: Selection, comparability, and ascertainment of outcome. Disagreements were resolved through discussion.

Publication bias
Publication bias was assessed using Funnel plot analysis and Egger’s regression test[15,16].
Zhao LY et al. Association of COPD with MCI and dementia risk

A

Study or subgroup	MCI in COPD	MCI in control	Odds ratio M-H, random, 95%CI			
Fekri et al., 2017	39	87	20	60	9.4%	1.63 [0.82, 3.22]
Lutsey et al., 2019	730	2490	2953	6108	11.7%	0.44 [0.40, 0.49]
Martinez et al., 2014	426	1812	2917	15723	11.6%	1.35 [1.20, 1.51]
Singh et al., 2013	78	288	238	1639	11.2%	2.19 [1.63, 2.93]
Singh et al., 2014	52	171	178	1254	11.0%	2.64 [1.84, 3.80]
Siraj et al., 2020	5545	64397	15693	243420	11.7%	1.37 [1.32, 1.41]
Taskiran et al., 2015	27	167	3	34	6.4%	1.99 [0.57, 6.99]
Thakur et al., 2010	66	1202	6	302	8.5%	2.87 [1.23, 6.68]
Villeneuve et al., 2012	16	45	6	50	7.4%	4.05 [1.42, 11.55]
Xie et al., 2019	97	515	68	4220	11.1%	14.17 [10.23, 19.63]
Total (95%CI)	71774	277280	0.00%	0.00	2.11 [1.32, 3.38]	

Heterogeneity: Tau² = 0.49; Chi² = 698.67, df = 9 (P < 0.00001); I² = 99%
Test for overall effect: Z = 3.12 (P = 0.002)

B

Study or subgroup	log [Hazard ratio]	SE	Weight	Hazard ratio IV, Fixed, 95%CI	Hazard ratio IV, Fixed, 95%CI
Lutsey et al., 2019	0.27	0.108	3.6%	1.31 [1.06, 1.62]	
Singh et al., 2014	0.2852	0.1663	1.5%	1.33 [0.96, 1.84]	
Siraj et al., 2020	0.1906	0.0215	91.2%	1.21 [1.16, 1.26]	
Xie et al., 2019	0.392	0.107	3.7%	1.48 [1.20, 1.83]	
Total (95%CI)	100.00%		1.22 [1.18, 1.27]		

Heterogeneity: Chi² = 4.08, df = 3 (P = 0.25); I² = 26%
Test for overall effect: Z = 9.86 (P < 0.00001)

Figure 2 Forest plot examining the association of chronic obstructive pulmonary disease with mild cognitive impairment risk. A: Odds ratios; B: Hazard ratios.

Statistical analysis

Mean differences (MDs) with 95% confidence intervals (CIs) were calculated for continuous outcomes. For categorical outcomes, ORs and HRs with 95% CIs were calculated to estimate pooled findings. Heterogeneity between studies (measurable heterogeneity) was evaluated using I^2 statistics. If I^2 values > 50%, a random-effects model was applied, otherwise a fixed-effect model was applied. Statistical analyses were performed using Review Manager software (Version 5.3, Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration 2014).

RESULTS

Literature search

Preliminary screening of PubMed, Embase, Google Scholar, and Cochrane Library databases yielded 234 results (Figure 1). Review of article title and abstract resulted in 72 remaining studies. Full-text review further excluded 45, leaving 27 studies [3, 4, 17-40] that were ultimately included in the meta-analysis.

Properties and characteristics of included studies

Relevant study data, including the diagnostic criteria for COPD, sample size, and disease assessment scales for all the 27 included studies [3, 4, 10-17-40] are shown in Table 1. The included studies were published between 1996 and 2020, and study sample sizes ranged from 20 to 243420 subjects. Ten studies [17, 19-22, 28, 29, 34, 35, 39] were case-controlled, ten were cross-sectional [3, 4, 24-26, 32-36, 38, 40], four were prospective-cohort [18, 27, 30, 31], and three were retrospective-cohort [10, 23, 33]. Seventeen studies [4, 17-22, 29, 31, 32, 34-40] reported cognitive impairment data based on the mini-mental state examination (MMSE) scoring system. Twenty-two studies used the GOLD criteria, three [10, 23, 33] reported the ICD-9 CM criteria, and two [3, 26] followed the standardized guidelines for COPD diagnosis. The quality score was high in twelve studies, medium in seven, and low in six (Supplementary Table 1). The assessment criteria involving the NOS uses three broad criteria: Selection, comparability, and exposure, where the selection defines and analyses the cases and control subjects included in the study, comparability defines the matching or comparison of cases and control subjects for better empirical investigation, and exposure determines whether the study was conducted in a blinded or unbiased manner along with the response of the subjects.

DOI: 10.12998/wjcc.v10.i11.3449 Copyright © The Author(s) 2022.
No.	Ref.	Country or region	Study design	Groups investigated	Age	Diagnostic criteria	Assessment scales	Adjusted variables	MCI (%)	Dementia (%)	NOS quality score
1	Mermit Çilingir et al[17], 2020	Turkey	Case Control	COPD-E (n = 30); COPD-S (n = 54); Control (n = 37)	COPD-E: 71.8 ± 12.3; COPD-S: 62 ± 10.2; Control-65.9 ± 12.8	GOLD	MMSE; RCS	NA	NA	NA	7
2	Xie et al[18], 2019	China	Prospective Cohort	COPD (n = 515); No COPD (n = 4220)	COPD: 82.9 ± 9.7	GOLD	MMSE	Age, gender, marital status, education level, alcohol drinking, current exercise, BMI, baseline prevalence of HTN, DM, and stroke	18.8	2.9	1.6
3	Samareh Fekri et al[19], 2017	Iran	Case Control	COPD (n = 87); Control (n = 60)	COPD: 60.4 ± 9.8; Control-58.1 ± 9.8	GOLD	MMSE	Age and sex	51.7	NA	7
4	Gupta et al[20], 2013	India	Case Control	COPD (n = 40); Control (n = 40)	COPD-57.2 ± 9.1; Control-56.9 ± 9.2	GOLD	MMSE	Age	NA	NA	5
5	Li et al[21], 2013	China	Case Control	Mild COPD (n = 27); Severe COPD (n = 35); Control (n = 27)	Mild COPD-70.4 ± 7.7; Severe COPD-68.2 ± 7.8; Control-66.2 ± 7.1	GOLD	MMSE	Age, sex, education level, BMI, smoking status, and CVD	NA	NA	6
6	Li et al[22], 2013	China	Case Control	Mild COPD (n = 37); Severe COPD (n = 48); Control (n = 37)	Mild COPD-69.2 ± 8.1; Severe COPD-67.6 ± 7.6; Control-66.5 ± 6.9	GOLD	MMSE	Age, sex, education level, BMI, smoking status, and CVD	NA	NA	8
7	Liao et al[23], 2015	Taiwan	Retrospective Cohort	COPD (n = 20492); No COPD (n = 40765)	COPD-68.2 ± 12.4; No COPD-67 ± 12.5	ICD-9CM	NA	Age and sex	NA	13.29	11
8	Martinez et al[24], 2014	Michigan	Cross-sectional	COPD (n = 1812); No COPD (n = 15723)	COPD-70.3 ± 9.0; No COPD-68.7 ± 9.9	GOLD	ADL	Baseline cognition	16.5	3.9	3.1
9	Dal Negro et al[25], 2015	Italy	Cross-sectional	COPD with LTOT (n = 73); COPD without LTOT (n = 73)	COPD with LTOT-70.9 ± 8.9; No COPD with LTOT-71.2 ± 9.1	GOLD	MMSE; MRC; CAT	Age, gender, smoking history, BMI, dyspnoea score, ABG, and lung function	32.8	NA	6
10	Singh et al[26], 2013	United States	Cross-sectional	COPD (n = 288); No COPD (n = 1639)	MCI-82.7 ± 11.2; Normal Cognition-79.7 ± 12.5	Standard criteria	BDI, CDR	BDI-II Depression, history of stroke, APOE4 genotype, DM, HTN, CAD, and BMI	14.6	27.1	7
11	Singh et al[27], 2014	United States	Cross-sectional	Total COPD (n = 1425); COPD (n = 171); No COPD (n = 1254)	COPD-80.8 ± 7.5; No COPD-79.1 ± 7.5	Standard criteria	BDI	BDI-II depression, history of stroke, APOE4 genotype, smoking, DM, HTN, CAD, z-scores, and BMI	NA	NA	7
Study Reference	Country	Study Type	COPD Conditions	Results	Risk Factors						
-----------------	---------	------------	----------------	---------	-------------						
Lutsey et al. [27], 2019	United States	Prospective Cohort	COPD (n = 2490); No COPD (n = 6108)	COPD-55.1 ± 5.8; No COPD-53.9 ± 5.7	GOLD	NA	Age, sex, education level, race, center, cigarette smoking and pack-years of smoking, physical activity, BMI, systolic BP, BP medication use, diabetes, HDL, LDL, lipid-lowering medications, CAD, heart failure, stroke, apolipoprotein E genotype, and fibrinogen				
Siraj et al. [28], 2020	United Kingdom	Case Control	COPD (n = 64397); No COPD (n = 243420)	COPD-66.4 ± 10.9; No COPD-65.7 ± 11	Standard criteria	NA	Age, sex, GP, BMI, smoking status, modified CCI, CV disease, corticosteroid use, and socioeconomic class				
Villeneuve et al. [29], 2012	Canada	Case Control	Total COPD (n = 45); Control (n = 50)	COPD-68.4 ± 8.7; Control-67.4 ± 8.7	GOLD	MMSE; MoCA	Age and education				
Yeh et al. [30], 2018	Taiwan	Prospective Cohort	COPD (n = 10266); No COPD (n = 20513)	COPD-65.6 ± 11.8; No COPD-65.5 ± 11.9	GOLD	NA	Age, sex, each comorbidity, inhaled corticosteroid, and oral steroids				
Orge et al. [31], 2006	Turkey	Prospective cohort	COPD (n = 54); Control (n = 24)	COPD-64.6 ± 8.5; Control-62.4 ± 8.4	GOLD	MMSE; BDS, CDR, IADL	Age and sex				
Favalli et al. [32], 2008	Turkey	Cross-sectional	COPD (n = 21); Control (n = 20)	COPD-74.6 ± 5.4; Control-73.7 ± 4.5	GOLD	MMSE; GDS	NA				
Liao et al. [10], 2015	Taiwan	Retrospective Cohort	COPD (n = 8640); No COPD (n = 17280)	COPD-68.7 ± 10.7; No COPD-68.7 ± 10.7	ICD-9CM	Self-administered questionnaire	Age and sex				
Thakur et al. [33], 2010	United States	Retrospective Cohort	COPD (n = 1202); Control (n = 302)	COPD-58.2 ± 6.2; Control-58.5 ± 6.2	ICD-9CM	MRC; BODE index; MMSE	Age, sex, race, educational attainment, and smoking history				
Zhou et al. [34], 2012	China	Case Control	COPD (n = 110); Control (n = 110)	COPD-80.9 ± 1.7; Control-80.8 ± 1.5	GOLD	CDR; MMSE	Age and education				
Dodd et al. [4], 2013	United Kingdom	Cross-sectional	COPD-E (n = 30); COPD-S (n = 50); Control (n = 30)	COPD-E-70 ± 11; COPD-S-69 ± 8; Control-65 ± 8	GOLD	MMSE	Age				
Isoaho et al. [35], 1996	Finland	Case Control	COPD (n = 81); Control (n = 245)	COPD-70.4 ± 4.8; Control-71.3 ± 5.9	GOLD	MMSE	Age and sex				
Lima et al. [36], 2007	Brazil	Cross-sectional	COPD (n = 30); Control (n = 34)	COPD-65 ± 8; Control-66 ± 8	GOLD	MMSE; DSM-IV	NA				
Ozyemisci-Taskiran et al. [37], 2015	Turkey	Cross-sectional	COPD-E (n = 133); COPD-S (n = 34); Control (n = 34)	COPD-E-69.3 ± 8.9; COPD-S-67.5 ± 8.9; Control-68.3 ± 8.8	GOLD	MMSE; HAD; BODE	Age and sex				
Salik et al. [38], 2007	Turkey	Cross-sectional	COPD (n = 32); Control (n = 26)	COPD-66.7 ± 2.5; Control-65.7 ± 7.3	GOLD	MMSE; MCS	NA				
Sarınc Ulaşlı et al. [39], 2013	Turkey	Case Control	COPD (n = 112); Control (n = 44)	COPD-65 ± 7.6; Control-64 ± 9	GOLD	MMSE	Age and sex				
Association of COPD with MCI risk

Ten studies\[3,18,19,24,26-29,33,37\] detailing 71174 COPD patients and 22082 control subjects investigated the association of COPD with MCI risk. Our meta-analysis indicated a strong association between COPD and an increased MCI incidence risk (OR = 2.11, 95%CI: 1.32-3.38). A significant degree of heterogeneity was observed (\(I^2 = 99\%\)). Using a random effects model, we demonstrated that COPD patients were 1.26 times more susceptible to MCI compared to non-COPD controls (Figure 2A).

Adjusted HRs for MCI risk in COPD patients

Pooling adjusted HRs from four studies\[3,18,27,28\] investigating the relationship between COPD and MCI incidence revealed a significant association (HR = 1.22, 95%CI: -1.18 to -1.27; \(I^2 = 26\%\)) (Figure 2B).

Association of COPD with risk of dementia

Seven studies\[10,18,23,24,27,28,30\] involving 108606 COPD patients and 347939 control subjects, investigated the relationship between COPD and dementia risk. Pooling these data showed a borderline trend for an increased dementia risk in COPD patients compared to non-COPD control patients (OR = 1.16, 95%CI: 0.98-1.37). A high degree of heterogeneity was observed (\(I^2 = 94\%\)). Our meta-analysis showed that COPD patients were more susceptible to dementia (Figure 3A).

Adjusted HRs for dementia risk in COPD patients

Pooling adjusted HRs from six studies\[10,18,23,27,28,30\] investigating the relationship between COPD and dementia incidence revealed a significant association (HR = 1.32, 95%CI: -1.22 to -1.43; \(I^2 = 99\%\)) (Figure 3B).

MMSE score in COPD and non-COPD patients

Seventeen studies\[4,17-22,32,35-40,25,31,34\] involving 1392 COPD patients and 5097 control subjects, reported mean MMSE score data for both COPD and non-COPD patients. Pooling these results showed a significant lower MMSE score in COPD patients compared to controls [MD = -1.68, 95%CI: -2.66 to -0.71] (Figure 4). A high degree of heterogeneity among these seventeen studies was observed (\(I^2 = 96\%\)).

Publication bias

Egger’s tests did not show any significant publication bias for the examined comparisons. Figure 5 shows the funnel plot of the studies included in each comparison. However, no significant publication bias was observed.
Zhao LY et al. Association of COPD with MCI and dementia risk

Figure 3 Forest plot examining the association of chronic obstructive pulmonary disease with dementia risk. A: Odds ratios; B: Hazard ratios.

Differences were observed for the association of COPD with risk of MCI and dementia, MCI risk in COPD patients, dementia risk in COPD patients, and comparison of MMSE score between the COPD and control groups.

DISCUSSION

This study is the first systematic review and meta-analysis examining the association between COPD and the risk of MCI and dementia. We found that patients with COPD are 2.11 times more susceptible to MCI and 1.16 times more susceptible to dementia. Moreover, lower MMSE scores were observed in COPD patients, indicating greater cognitive impairment.
Zhao LY et al. Association of COPD with MCI and dementia risk

COPD-associated neurological impairment and dementia put a great burden on the patients and the healthcare system. In particular, declining cognition leads to COPD patients requiring more assistance for daily activities[41]. Our analysis was performed based on the reported adjustments within individual studies for confounding factors such as age, sex, smoking, body mass index, education level, diabetes mellitus, and previous history of stroke or cardiovascular disease[10,23,27,28,30]. Studies by Thakur et al[33], Singh et al[26], and Martinez et al[24] reported data as ORs for adjusted confounders and therefore were not included in the calculations for pooled incidence for MCI or dementia.

From a clinical approach, COPD can lead to pulmonary encephalopathy, hypoxemia, and inflammation, all of which may impact brain function[42]. Indeed, COPD patients exhibit a unique neurophysiological profile stemming from neurotoxicity featuring deficits of attention, motor, memory, and cognitive domain executive function[1]. Interestingly, the relationship between COPD and dementia persists even after accounting for the presence of vascular disease, suggesting that COPD is an independent predictor of dementia.

Our findings are consistent with the previous literature[5,11,12,42,43]. However, the available literature on the relationship between dementia and COPD remains limited, as only seven studies were found for this meta-analysis. Our study also had several other limitations. The included studies had different designs, which may be one of the leading causes of heterogeneity. Additional sources of heterogeneity may include different geographical population, variation in the diagnostic criteria of COPD, and diversity in the factors undertaken for the multivariate analysis of each included studies.

Figure 5 Funnel plot. A: Mild cognitive impairment (MCI); B: Dementia; C: MCI risk in chronic obstructive pulmonary disease (COPD) patients; D: Dementia risk in COPD patients; E: Comparison of mini-mental state examination score between COPD and control groups.
The included studies also lacked long-term follow-up data, as well as data that would facilitate subgroup analysis based on co-morbidities, age, and gender. Finally, different studies varied on how they assessed and diagnosed COPD and cognitive impairment.

CONCLUSION
Our meta-analysis revealed an elevated risk for MCI and dementia in COPD patients. Proper clinical management and attention are necessary to prevent or mitigate the incidence of MCI and dementia in COPD patients.

ARTICLE HIGHLIGHTS

Research background
Chronic obstructive pulmonary disease (COPD) is a common public health issue that has been linked to cognitive dysfunction. No clear evidence is available for the relationship between COPD and mild cognitive impairment (MCI) and dementia risk.

Research motivation
To our knowledge, there has only been one published meta-analysis with limited number studies investigating the statistical association of COPD with cognition dysfunction.

Research objectives
The current meta-analysis was performed to investigate the relationship between COPD and MCI and dementia risk.

Research methods
A comprehensive search was performed using PubMed, Embase, Google Scholar, and Cochrane Library online databases for articles published prior to March 31, 2021.

Research results
Twenty-seven studies met all the inclusion criteria. Meta-analysis yielded a strong association between COPD and an increased risk of MCI incidence. It also revealed a borderline trend for an increased dementia risk in COPD patients. A significant lower MMSE score in COPD patients was noted.

Research conclusions
Our findings revealed an elevated risk for the occurrence of MCI and dementia in COPD patients. Proper clinical management and attention are required to prevent and control MCI and dementia incidence in COPD patients.

Research perspectives
Further large prospective observational studies are needed to strengthen the evidence on this important subject.

FOOTNOTES

Author contributions: Zhao LY conceived and designed the study; Zhao LY and Zhou XL were involved in literature search and data collection; Zhao LY analyzed the data; Zhao LY and Zhou XL wrote the paper; Zhao LY edited the manuscript; all authors read and approved the final manuscript.

Conflict-of-interest statement: The authors deny any conflict of interest for this article.

PRISMA 2009 Checklist statement: The authors have read the PRISMA 2009 Checklist, and manuscript was prepared and revised according to the PRISMA 2009 Checklist.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
REFERENCES

1. Singh D, Agusti A, Anzueto A, Barnes PJ, Bourbeau J, Celli BR, Criner GJ, Frith P, Halpin DMG, Ham M, López Varela MV, Martínez F, Montes de Oca M, Papi A, Pavord ID, Roche N, Sin DD, Stockley R, Vestbo J, Wedzicha JA, Vogelmeier C. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease: the GOLD science committee report 2019. *Eur Respir J* 2019; 53 [PMID: 30846476 DOI: 10.1183/13993003.00164-2019]

2. Ranizini L, Schiavi M, Pierobon A, Granata N, Giardini A. From Mild Cognitive Impairment (MCI) to Dementia in Chronic Obstructive Pulmonary Disease. Implications for Clinical Practice and Disease Management: A Mini-Review. *Front Psychol* 2020; 11: 337 [PMID: 32184750 DOI: 10.3389/fpsyg.2020.00337]

3. Singh B, Mielke MM, Parida AK, Cha RH, Roberts RO, Scanlon PD, Gede YE, Christianson TJ, Pankratz VS, Petersen RC. A prospective study of chronic obstructive pulmonary disease and the risk for mild cognitive impairment. *JAMA Neurol* 2014; 71: 581-588 [PMID: 24637951 DOI: 10.1001/jamaneurol.2014.949]

4. Dodd JW, Charlton RA, van den Broek MD, Jones PW. Cognitive dysfunction in patients hospitalized with acute exacerbation of COPD. *Chest* 2013; 144: 119-127 [PMID: 23349026 DOI: 10.1378/chest.12-2099]

5. Yohannes AM, Chen W, Moga AM, Leroi I, Connolly MJ. Cognitive Impairment in Chronic Obstructive Pulmonary Disease and Chronic Heart Failure: A Systematic Review and Meta-analysis of Observational Studies. *J Am Med Dir Assoc* 2017; 18: 451.e1-451.e11 [PMID: 28292570 DOI: 10.1016/j.jamda.2017.01.014]

6. Chang SS, Chen S, McAvay GJ, Tinetti ME. Effect of coexisting chronic obstructive pulmonary disease and cognitive impairment on health outcomes in older adults. *J Am Geriatr Soc* 2012; 60: 1839-1846 [PMID: 23035917 DOI: 10.1111/j.1532-5419.2012.04171.x]

7. Campbell NL, Boustani MA, Skapelja EN, Gao S, Unverzagt FW, Murray MD. Medication adherence in older adults with cognitive impairment: a systematic evidence-based review. *J Am Geriatr Pharmacother* 2012; 10: 165-177 [PMID: 22657941 DOI: 10.1016/j.amjopharm.2012.04.004]

8. Schou L, Østergaard B, Rasmussen LS, Rydal-Hansen S, Phanareth K. Cognitive dysfunction in patients with chronic obstructive pulmonary disease—a systematic review. *Respir Med* 2012; 106: 1071-1081 [PMID: 22579108 DOI: 10.1016/j.rmed.2012.03.013]

9. Pathan SS, Gottesman RF, Mosley TH, Knopman DS, Sharrett AR, Alonso A. Association of lung function with cognitive decline and dementia: the Atherosclerosis Risk in Communities (ARIC) Study. *Eur J Neurol* 2011; 18: 888-889 [PMID: 21244584 DOI: 10.1111/j.1468-1331.2010.03340.x]

10. Liao WC, Lin CL, Chang SN, Tu CY, Kao CH. The association between chronic obstructive pulmonary disease and dementia: a population-based retrospective cohort study. *Eur Neurol* 2015; 22: 334-340 [PMID: 25303726 DOI: 10.1111/ene.12573]

11. Zhang X, Cai X, Shi X, Zheng Z, Zhang A, Guo J, Fang Y. Chronic Obstructive Pulmonary Disease as a Risk Factor for Cognitive Dysfunction: A Meta-Analysis of Current Studies. *J Alzheimers Dis* 2016; 52: 101-111 [PMID: 26967208 DOI: 10.3233/JAD-150735]

12. Wang Y, Li X, Wei B, Tung TH, Tao P, Chien CW. Association between Chronic Obstructive Pulmonary Disease and Dementia: Systematic Review and Meta-Analysis of Cohort Studies. *Dement Geriatr Cogn Dis Extra* 2019; 9: 250-259 [PMID: 31543892 DOI: 10.1159/0004946475]

13. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *Ann Intern Med* 2009; 151: 264-269, W64 [PMID: 19622511 DOI: 10.7326/0003-4819-151-4-200908180-00135]

14. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. *Eur J Epidemiol* 2010; 25: 603-605 [PMID: 20652370 DOI: 10.1007/s10654-010-9491-2]

15. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. *BMJ* 1997; 315: 629-634 [PMID: 9310563 DOI: 10.1136/bmj.315.7109.629]

16. Begg CB. Mazumdar M. Operating characteristics of a rank correlation test for publication bias. *Biometrics* 1994; 50: 1088-1101 [PMID: 7786990]

17. Mermit Çilingir B, Günbatar H, Çilingir V. Cognitive dysfunction among patients in chronic obstructive pulmonary disease: Effects of exacerbation and long-term oxygen therapy. *Cin Respir J* 2020; 14: 1137-1143 [PMID: 32772486 DOI: 10.1111/crij.13250]

18. Xie F, Xie L. COPD and the risk of mild cognitive impairment and dementia: a cohort study based on the Chinese Longitudinal Health Longevity Survey. *Int J Chron Obstruct Pulmon Dis* 2019; 14: 403-408 [PMID: 30863040 DOI: 10.2147/COPD.S194277]

19. Samareh Fekri M, Hashemi-Bajgani SM, Naghibzadeh-Tahami A, Arabnejad F. Cognitive Impairment among Patients with Chronic Obstructive Pulmonary Disease Compared to Normal Individuals. *Tanjafos* 2017; 16: 34-39 [PMID: 28638422]

20. Gupta PP, Sood S, Atreja A, Agarwal D. A comparison of cognitive functions in non-hypoxemic chronic obstructive pulmonary disease (COPD) patients and age-matched healthy volunteers using mini-mental state examination questionnaire.
and event-related potential, P300 analysis. Lung India 2013; 30: 5-11 [PMID: 23661909 DOI: 10.4103/0970-2113.106119]

21 Li J, Huang Y, Fei GH. The evaluation of cognitive impairment and relevant factors in patients with chronic obstructive pulmonary disease. Respiration 2013; 85: 98-105 [PMID: 23207572 DOI: 10.1159/000342970]

22 Li J, Fei GH. The unique alterations of hippocampus and cognitive impairment in chronic obstructive pulmonary disease. Respir Res 2013; 14: 140 [PMID: 24359060 DOI: 10.1186/1465-9921-14-140]

23 Liao KM, Ho CH, Ko SC, Li CY. Increased Risk of Dementia in Patients With Chronic Obstructive Pulmonary Disease. Medicine (Baltimore) 2015; 94: e930 [PMID: 26061317 DOI: 10.1097/MD.0000000000000930]

24 Martínez CH, Richardson CR, Han MK, Cigolle CT. Chronic obstructive pulmonary disease, cognitive impairment, and development of disability: the health and retirement study. Am Am Thorac Soc 2014; 11: 1362-1370 [PMID: 25285360 DOI: 10.1513/AnnalsATS.201405-187OC]

25 Dal Negro RW, Bonadiman L, Bricolo FP, Tognella S, Turco P. Cognitive dysfunction in severe chronic obstructive pulmonary disease (COPD) with or without Long-Term Oxygen Therapy (LTOT). Multidiscip Respir Med 2015; 10: 17 [PMID: 25932326 DOI: 10.1186/s40248-015-0013-4]

26 Singh B, Parsaik AK, Mielke MM, Roberts RO, Scanlon PD, Geda YE, Pankratz VS, Christiansson T, Yawn BP, Petersen RC. Chronic obstructive pulmonary disease and association with mild cognitive impairment: the Mayo Clinic Study of Aging. Mayo Clin Proc 2013; 88: 1222-1230 [PMID: 24182702 DOI: 10.1016/j.mayocp.2013.08.012]

27 Lutsy PL, Chen N, Mirabelli MC, Lakshminarayan K, Knopman DS, Vossel KA, Gottesman RF, Mosley TH, Alonso A. Impaired Lung Function, Lung Disease, and Risk of Incident Dementia. Am J Respir Crit Care Med 2019; 199: 1385-1396 [PMID: 30433810 DOI: 10.1164/rccm.201810-1220OC]

28 Siraj RA, McKeever TM, Gibson JE, Gordon AL, Bolton CE. Risk of incident dementia in COPD outpatients with severe chronic obstructive pulmonary disease (COPD): A large UK population-based study. Respir Med 2020; 177: 106288 [PMID: 33401149 DOI: 10.1016/j.rmed.2020.106288]

29 Villeneuve S, Pepin V, Rahayel S, Bertrand JA, de Lorientier M, Rizk A, Desjardins C, Parenteau S, Beaucauge F, Jonascs, Monchi O, Gagnon JF. Mild cognitive impairment in moderate to severe COPD: a preliminary study. Chest 2012; 142: 1516-1523 [PMID: 23364388 DOI: 10.1378/chest.11-3035]

30 Yeh JJ, Wei YF, Lin CL, Hsu WH. Effect of the asthma-chronic pulmonary disease syndrome on the stroke, Parkinson's disease, and dementia: a national cohort study. Oncotarget 2018; 9: 12418-12431 [PMID: 29523222 DOI: 10.18632/oncotarget.23811]

31 Ozge C, Ozge A, Unal O. Cognitive and functional deterioration in patients with severe COPD. Behav Neurol 2006; 17: 121-130 [PMID: 16873924 DOI: 10.1155/2006/848607]

32 Favalli A, Miozzo A, Cossi S, Marengoni A. Differences in neuropsychological profile between healthy and COPD older persons. Int J Geriatr Psychiatry 2008; 23: 220-221 [PMID: 17562525 DOI: 10.1002/gps.1847]

33 Thakur N, Blanc PD, Julian LJ, Yelin EH, Katz PP, Sidney S, Iribarren C, Eisner MD. COPD and cognitive impairment: the role of hypoxemia and oxygen therapy. Int J Chron Obstruct Pulmon Dis 2010; 5: 263-269 [PMID: 20856825 DOI: 10.2147/copd.s10684]

34 Zhou G, Liu J, Sun F, Xin X, Duan L, Zhu X, Shi Z. Association of chronic obstructive pulmonary disease with cognitive decline in very elderly men. Dement Geriatr Cogn Dis Extra 2012; 2: 219-228 [PMID: 22719748 DOI: 10.1159/000338378]

35 Isoaho R, Puolijoki H, Huhti E, Laippala P, Kivelä SL. Chronic obstructive pulmonary disease and cognitive impairment in the elderly. Int J Psychogeriatr 1996; 8: 113-125 [PMID: 8805092 DOI: 10.1017/s1041610296002517]

36 Lima OM, Oliveira-Souza Rd, Santos Oda R, Moraes PA, Sá LF, Nascimento OJ. Subclinical encephalopathy in chronic obstructive pulmonary disease. Arq Neuropsiquiatr 2007; 65: 1154-1157 [PMID: 18345421 DOI: 10.1590/s0004-282x2007000300012]

37 Ozyniak-Tiskarion O, Bozkurt SO, Koyuncu T, Karatas GK. Is there any association between cognitive status and functional capacity during exacerbation of chronic obstructive pulmonary disease? Chron Respir Dis 2015; 12: 247-255 [PMID: 26071384 DOI: 10.1177/1479972315589748]

38 Salik Y, Ozalevi S, Cinrin AH. Cognitive function and its effects on the quality of life status in the patients with chronic obstructive pulmonary disease (COPD). Arch Gerontol Geriatr 2007; 45: 273-280 [PMID: 17343931 DOI: 10.1016/j.archger.2006.12.002]

39 Sargin Ulas S, Oruç S, Günü E, Aktaş O, Akar O, Koyuncu T, Ünlü M. [Effects of COPD on cognitive functions: a case control study]. Tuberk Toraks 2013; 61: 193-199 [PMID: 24298960 DOI: 10.5578/tt.5841]

40 Soysal Tomruk M, Ozalevi S, Dizdar G, Narin S, Kılınc O. Determination of the relationship between cognitive function and hand dexterity in patients with chronic obstructive pulmonary disease (COPD): a cross-sectional study. Physioter Theory Practice 2015; 31: 313-317 [PMID: 25625565 DOI: 10.3109/09593985.2015.1004768]

41 Doherty MM, Schroeder DR, Benzo RP. Cognitive function and living situation in COPD: is there a relationship with self-management and quality of life? Int J Chron Obstruct Pulmon Dis 2015; 10: 1883-1889 [PMID: 26392762 DOI: 10.2147/COPD.S88035]

42 Baird C, Lovell J, Johnson M, Shiel K, Ibrahim JE. The impact of cognitive impairment on self-management in chronic obstructive pulmonary disease: A systematic review. Respir Med 2017; 129: 130-139 [PMID: 28732820 DOI: 10.1016/j.rmed.2017.06.006]

43 van Beers M, Janssen DJA, Gosker HR, Schols AMWJ. Cognitive impairment in chronic obstructive pulmonary disease: disease burden, determinants and possible future interventions. Expert Rev Respir Med 2018; 12: 1061-1074 [PMID: 30296384 DOI: 10.1080/17476348.2018.1533405]
