THE PUZZLE OF THE POLAR STRUCTURE IN NGC 4650A

E. Iodice
International School for Advanced Studies, via Beirut 2-4, I-34014 Trieste, Italy

M. Arnaboldi and G. De Lucia
Osservatorio Astronomico di Capodimonte, via Moiariello 16, I-80131 Napoli, Italy

J. S. Gallagher III and L. S. Sparke
Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, WI 53706-1582

AND

K. C. Freeman
Research School of Astronomy and Astrophysics, Mount Stromlo, Canberra, Cotter Road, Weston ACT 2611, Australia

Received 2000 December 13; accepted 2001 October 4

ABSTRACT

This work presents new surface photometry and two-dimensional modeling of the light distribution of the polar ring galaxy NGC 4650A, based on near-infrared (NIR) observations and high-resolution optical imaging acquired during the Hubble Heritage program. The NIR and optical integrated colors of the S0 galaxy and the polar ring and their scale parameters are compared with those for standard galaxy morphological types. The polar structure appears to be a disk of a very young age, while the colors and light distribution of the host galaxy do not resemble those of a typical early-type system. We compare these observational results with the predictions from different formation scenarios for polar ring galaxies. The peculiarities of the central S0 galaxy, the polar disk structure, and stellar population ages suggest that the polar ring galaxy NGC 4650A may be the result of a dissipative merger event rather than of an accretion process.

Key words:
galaxies: individual (NGC 4650A) — galaxies: photometry — galaxies: structure

1. INTRODUCTION

Polar ring galaxies (PRGs) are early-type galaxies surrounded by an outer ring made up of gas, stars, and dust, which orbits in a plane nearly perpendicular to the equatorial one of the central galaxy (Whitmore et al. 1990). NGC 4650A is considered the prototype of the class of wide polar ring galaxies, because the two components are bright and well defined (Whitmore 1991). This object is one of the best-investigated polar ring galaxies, in particular to put limits on the three-dimensional shape of its dark matter halo (Whitmore, McElroy, & Schweizer 1987; Sackett & Sparke 1990; Sackett et al. 1994; Combes & Arnaboldi 1996). To this aim, new high-resolution 21 cm observations were carried out by Arnaboldi et al. in 1997 at the Australia Telescope Compact Array. These were meant to resolve the rotation curve at small radii, where velocities were measured in two planes, the polar ring and the host galaxy equatorial plane, and to reach out at larger distances into the halo. The results showed that the total H I mass in this system is $8 \times 10^9 M_\odot$ and the H I distribution and kinematics are consistent with those of a spiral disk. The spiral pattern proposed by Arnaboldi et al. (1997) seems to be confirmed by the recent Hubble Space Telescope (HST) image of NGC 4650A, acquired during the Heritage project (Gallagher et al. 2001).

Is a polar disk likely to form in the standard picture for the formation and evolution of polar ring galaxies? The standard scenario suggests either that a gas-rich dwarf galaxy was accreted by an early-type galaxy or that gas was stripped from a nearby gas-rich object during a high-speed encounter. The accreted material would then form a ring (Quinn 1991; Hernquist & Weil 1993), which settles into one of the principal planes of the gravitational potential associated with the host galaxy (Heisler, Merritt, & Schwarzschild 1982; Bertola et al. 1991). Several studies focused on the evolution and stability of highly inclined rings. Smoothed-particle hydrodynamic simulations with strong dissipative cooling by Katz & Rix (1992) and Christodoulou et al. (1992) were used to study the evolution of the low-mass, highly inclined ring. Katz & Rix (1992) and Christodoulou et al. (1992) showed that a narrow ring precesses very slowly in a quasi-equilibrium configuration, with no appreciable evolution over a Hubble time. The gas-stripping scenario was studied by Reshetnikov & Sotnikova (1997). They analyzed the different morphologies generated in high-speed encounters between an elliptical or S0 galaxy and a gas-rich disk. Their results indicate that the average radius at which the ring forms is related to the central mass (luminous + dark) concentration of the host galaxy. If the mass is highly concentrated, the ring forms at smaller radii; if the host galaxy has an extended massive halo, the ring average radius, R_c, can be as large as 30 kpc. The common characteristic of all these secondary events, i.e., accretion of a dwarf or gas stripping, is the formation of narrow polar annuli, whose radial extent is of the order of 10% of the average radius, for a quasi-stable configuration, and the total amount of accreted gas is up to $10^7 M_\odot$.

A quite different approach to the formation of polar ring galaxies was proposed recently by Bekki (1998). In this scenario the polar ring results from a “polar” merger of two disk galaxies with unequal mass. The “intruder,” on a polar orbit with respect to the “victim” disk, passes through it...
near its center. It is slowed down and pulled back toward the victim by strong dissipation, which is caused by the interaction with the victim’s gaseous disk. In this encounter the two galaxies must have a small relative velocity, so that the intruder is brought to rest at the center of the victim’s disk. Dissipation removes the random kinetic energy of the gaseous component of the victim’s disk so that some gas can settle again into a disky configuration. The morphology of the merger remnants depends on the merging initial orbital parameter and the initial mass ratio of the two galaxies.

Bekki’s scenario successfully reproduces many of the observed morphologies for polar ring galaxies, such as the existence of both wide and narrow rings, helical rings, and double rings (Whitmore 1991). When wide polar rings are produced they have the following characteristics: (1) there is no central hole in the polar structure; (2) mass distributions in the central component and ring become more centrally concentrated after the encounter, and an $R^{1/4}$ profile can develop if the “intruder” disk is much more massive than the “victim”; and (3) the central component is nearly gas-free, similar to an S0-like system, while the density wave triggered by the intruder into the victim disk causes rapid star formation, within $\lesssim 10^9$ yr, so that the polar structure is characterized by a very young stellar population. This kind of model (§ 3.2.5 in Bekki’s 1998 paper) does predict peculiar characteristics for the intruder too: the intruder experiences both a heating of the disk (it puffs up) and energy dissipation, so that its density should increase relative to standard unperturbed stellar disks. While the “gas accretion” scenario can account for the existence of rings, the Bekki scenario would also explain the presence of wide and massive polar disks. One uncertainty related to the Bekki scenario is whether the polar rings formed in this way are stable, i.e., for how long these objects can preserve the polar morphology after the merger remnant reaches virial equilibrium.

To perform a detailed test of these two scenarios for the formation of PRGs we need to have data with the highest angular resolution, to resolve the inner central morphology of the polar ring and the central host galaxy, plus the near-infrared (NIR) data, to probe the stellar population without the strong absorption caused by dust. Such a data set is now available for NGC 4650A, and the aim of this work is to compare the predictions from different formation scenarios with the observational results from a study of the new NIR and high-resolution HST data. We adopt a distance of 41 Mpc based on $H_0 = 70$ km s$^{-1}$ Mpc$^{-1}$ and a heliocentric radial velocity $V = 2861$ km s$^{-1}$.

The observational data set in the NIR and optical bands are described in § 2. The morphology of the host galaxy and polar structure are discussed in § 2.3. The photometry and scale parameters for this system are derived in § 3. In § 4 the integrated colors of the polar structure and S0 galaxy are compared with those predicted from stellar synthesis population models. The new observational evidence coming from these data are summarized in § 5, and conclusions are derived.

2. OBSERVATIONS

Here the near-IR (J, H, and Kn bands) and the optical (B, V, and I bands) observations obtained for the polar ring galaxy NGC 4650A are presented. The morphology of the two main components, the host galaxy and the ring, are derived and discussed.

Table 1: NIR Observation Log of NGC 4650A

Filter	Total Integration Time (s)	FWHM (arcsec)	Image Field	Date
J......	1200	1.3	1	1995 Mar 21
J......	1200	1.3	2	1995 Mar 21
H	1200	1.5	1	1995 Mar 20
H	1200	1.4	2	1995 Mar 20–21
Kn....	2400	1.4	1	1995 Mar 03
Kn....	2400	1.4	2	1995 Mar 03

2.1. NIR Observations

The near-infrared J, H, and Kn images for NGC 4650A were obtained during two observing runs at the Mount Stromlo and Siding Spring Observatory 2.3-m telescope with the CASPIR infrared camera (McGregor 1994), with a field of view of 200×200 and an angular resolution of 0.5 per pixel. The observing log for these data is given in Table 1. Images were acquired with the offsetting mode and a cycle was defined containing five images on target plus five sky frames. Four cycles were obtained for J and H bands, and eight cycles for Kn band were needed to have a better estimate of the background level. Linearization, flat-fielding, sky-subtraction, and bad-pixel correction were performed using the REDIMAGE task in the CASPIR package in IRAF. The resulting image for each cycle was derived by registering and combining all subframes. The final image in each band was obtained by stacking images from each set of cycles. Several standard stars, from Carter & Meadows (1995), were observed at the beginning, middle, and end of each night to transform the magnitudes into the standard J-, H-, and Kn-band systems. The zero points that we derived are in good agreement with the indicative values derived for the CASPIR camera (available in the CASPIR user manual) in each band; the differences in zero points were less than 0.1 mag. The ring in NGC 4650A is too extended to lie inside one single pointing; therefore it was necessary to take two different frames and mosaic them in a single image. The two pointings are reduced independently; before the final mosaic image was produced we checked that the two pointings have similar values of the background level. Figure 1 shows the final Kn-band mosaicked image. For the combined images in all bands, several tests were performed on the background noise. Compared with the pixel-to-pixel variation, we found that there is more noise, both within sky regions of moderate size and between such regions, than predicted by a pure counting (Poisson) model. Large-scale variations in the background, due to an imperfect flat-field correction, contributed significantly to this “extra noise.” For the areas within which we measured magnitudes and colors (see § 3 below), we derived an estimate of the “total” error of the flux enclosed within the polygons, from the statistics of the sky background in many sky boxes of comparable area. The standard deviation for each pixel is the standard deviation of the mean counts per pixel in each measured area.

2.2. Hubble Space Telescope Observations

NGC 4650A was observed with the Wide Field Planetary Camera 2 on the HST in 1999 April, during the Hubble Heritage Project (Gallagher et al. 2001). The filters used are F450W, F606W, and F814W, at optical wavelengths.
Figure 2 shows the final multicolor image of NGC 4650A from the HST press release. The observing log is listed in Table 2. Several frames were taken for each filter with different exposure times. During data reduction, different exposures were registered, scaled to the same exposure time and combined to obtain the final image frame after cosmic-ray removal. The magnitudes for the F450W, F606W, and F814W filters were computed following Holtzman et al. (1995). For each filter, \(i \), these are given by

\[
m(i) = -2.5 \log(DN/s) + 2.5 \log(GR) + ZP[m(i)],
\]

where GR is the gain ratio, DN is the data number per second and ZP\([m(i)]\) is the filter zero point, from Table 9 of Holtzman et al. (1995). The observed zero point was adopted for the F814W filter and the synthetic zero point for the F450W and F606W filters. To convert the F450W, F606W, and F814W magnitudes to the \(BVI \) standard system we used the relation derived by Holtzman et al. (1995) for the F606W filter and in Matthews, Gallagher, & van Driel (1999) for the F450W filter.

2.3. Host Galaxy and Polar Ring Morphology in the NIR and Optical Bands

The \(J, H, \) and \(Ks \) images of NGC 4650A show that the host galaxy is the dominant luminous component, and its morphology resembles that of an early-type object, most likely an S0 galaxy (see Fig. 1). The high angular resolution of the HST images allows a more detailed study of the inner
regions of the polar ring and central spheroid. The light distribution associated with the host galaxy shows a very concentrated central component and a shallower, thicker envelope (see Fig. 2). The bulge-to-disk ratio (B/D) for this system will be discussed in detail in the following sections.

The polar ring is more extended in the optical (B, V, and I bands) than in the NIR, and it appears knotty and dusty. The new HST data reveal the presence of young blue star clusters describing arches out of the main polar ring plane.

![Color composite image of NGC 4650A from the HST Heritage program. The image size is $1'3 \times 2'7$. North is 20° counterclockwise from the y-axis; east is 110° counterclockwise from the same axis, on the left side of the image.](image)

TABLE 2

Filter	Total Integration Time (s)	FWHM (arcsec)	Exposures	Date
F450W....	7500	0.24	8	1999 Apr
F606W....	4900	0.31	6	1999 Apr
F814W.....	7600	0.28	8	1999 Apr

The polar ring is more extended in the optical (B, V, and I bands) than in the NIR, and it appears knotty and dusty. The new HST data reveal the presence of young blue star clusters describing arches out of the main polar ring plane,
along the southeastern and northwestern directions of the main light distribution (Fig. 2; see also Gallagher et al. 2001).

3. PHOTOMETRY

Integrated magnitudes and colors are computed for the two main components of NGC 4650A, the host galaxy and ring. The structural parameters are derived from the modeling of the surface brightness distribution.

3.1. Total Magnitudes

The integrated magnitudes are computed in B, V, and I and in J, H, and K_s in five different areas. These areas are chosen as follows: one coincident with the nucleus; two areas, southwest and northeast of the nucleus, placed within the host galaxy stellar component (outside the nucleus, in regions unperturbed by the polar ring); and two areas for the polar ring, northwest and southeast of the galaxy center; see Figure 3 for a complete summary. The polygons are computed. The distance between two labeled stars (A and B) is about 28". North is up, and east is to the left.

Fig. 3.—NGC 4650A contour plot in the J band plus the five polygons limiting the different areas (heavy lines) where the integrated magnitudes are computed. The distance between two labeled stars (A and B) is about 28". North is up, and east is to the left.

The regions affected by the strong absorption are not taken into account in the fitting routine; those symmetric with respect to the galaxy center were used instead. Moreover, the regions affected by foreground stars and by the polar ring light along the S0 minor axis are accurately masked before performing the fit to the light distribution. The light distribution of the S0 galaxy was modeled through the superposition of a spheroidal central component and an exponential disk (Iodice, D’Onofrio, & Capaccioli 2001; Byun & Freeman 1995). The projected light of the spheroidal component follows the generalized de Vaucouleurs law,

$$
\mu_d(x, y) = \mu_e + k \left[\left(\frac{r_e}{r_h} \right)^{1/n} - 1 \right],
$$

with $k = 2.17n - 0.355$ and $r_h = [x^2 + (y^2/q_{b_0}^2)]^{1/2}$, and q_{b_0}, μ_e, and r_e are the apparent axial ratio, the effective surface brightness, and the effective radius, respectively (Caon, Capaccioli, & D’Onofrio 1993). The projected light distribution of the exponential disk is given by

$$
\mu_d(x, y) = \mu_0 + 1.086 \left(\frac{r_e}{r_h} \right),
$$

with $r_d = [x^2 + (y^2/q_{d_0}^2)]^{1/2}$, and q_{d_0}, μ_0, and r_h are the apparent axial ratio, the central surface brightness, and the scale length of the disk, respectively (Freeman 1970).

Figure 6 shows the comparison between the observed and calculated light profiles in the K_s band (left) and in the I band (right). The structural parameters are listed in Table 4. This model is fitted to the light distribution of the S0 galaxy in such a way that there are no negative residuals; i.e., this is the "minimum" model of the S0 light in the K_s and in the I bands. The S0 models in the J and H bands and in the B and
V bands are simply scaled versions of the Kn- and I-band models, respectively, based on the average colors of the stellar component (see § 3.1). The photometric errors do take into account the photon statistics and background fluctuations (see § 2.1). The effect of the point-spread function (PSF) was also considered in the central regions (by masking a region around the nucleus somewhat larger than the PSF). Figure 7 shows the ratio between the HST image for the whole galaxy and the S0 model, in the V band. We see that the central galaxy is a stellar disk, which has a warp in the outer parts. The bright features near the galaxy center connect the outer parts of the polar ring and the nucleus of the system. This suggests that there is no central hole, which is totally empty, at small radii in the polar ring light distribution. Similar results are obtained for the two-dimensional modeling of the light distribution in the NIR images. The value for the apparent q_d ratio of the S0 disk, \sim0.5, should be considered an upper limit to the true flattening: the warp present in the S0 disk makes the isophotes more boxy in the outer parts and therefore may produce a larger q_d value.

3.4. Scale Parameters for the S0 Galaxy

The study of the host galaxy light distribution and its structural parameters will help to understand whether this component is really a standard early-type system. The optical light distribution in the host galaxy central regions has a quasi-exponential behavior: the value of n in the exponent in equation (2) is about 1, and the light is very concentrated toward the center, as the small value of the effective radius suggests. The convolution of this bright nuclear light concentration with the PSF on ground-based images may have caused a smoothing of the light profiles toward the center, leading to a spuriously larger value for r_e and a smaller value of n in the exponent in the NIR S0 model with respect to the I-band one. The scale parameters for the central spheroid in NGC 4650A may be compared with those obtained by Caon et al. (1993) for a sample of early-type galaxies in the Virgo cluster. The exponents n derived by Caon et al. (1993) are those along the minor axis of the system, to exclude the contribution from a possible disk component. The typical range is $1 < n < 10.7$, while the effective radius is in the range $0.44 \text{ kpc} < r_e < 20.0 \text{ kpc}$. The bulge parameters for NGC 4650A do not fall in the same area occupied by early-type galaxies in n-r_e space; it is more centrally peaked, as indicated by its small effective radius. The B/D ratios in the I and Kn bands are very small: B/D = 0.107 in the I band and B/D = 0.122 in the Kn band; they are smaller than the typical values expected for standard S0 galaxies for which $0.2 < B/D < 3.0$ (Bothun & Gregg 1990). The disk scale

Component	Region	m_B	M_B	m_J	M_J	$B-V$	$V-I$	$B-H$	$J-K$	$J-H$	$H-K$
PR	Southeast	16.38	15.46	16.67	0.29	0.71	1.39	0.79	0.47	0.32	
PR	Northwest	15.90	15.01	16.20	0.23	0.71	1.37	0.68	0.49	0.26	
S0	Southwest	16.72	14.73	18.30	0.87	1.07	2.52	0.76	0.53	0.23	
S0	Northeast	17.21	15.35	17.20	0.85	1.06	2.46	0.88	0.60	0.28	
S0	Center	15.40	13.30	19.80	0.87	1.15	2.80	0.94	0.66	0.28	

Fig. 4.—Left: NIR surface brightness profiles along the S0 major axis, at P.A. = 62°. The arrow indicates the absorption dip caused by the polar ring on the central spheroid. Right: Surface brightness profiles along the polar ring major axis, at P.A. = 162°, showing the J band (triangles), H band (circles), and Kn band (asterisks).
length of the central spheroid in the I band is about 100 larger than in the K_n band, which may suggest that there could be a difference in the stellar population of the S0 disk as function of radius.

3.5. Study of the Light Distribution in the Polar Structure

Because of the polar ring morphology in the optical, the luminosity profile along the polar ring major axis is computed as averages of 20 extracted profiles parallel to P.A. = 162°, and the final profile is obtained as the average of the two sides opposite the nucleus. The polar ring light profiles are well reproduced by an exponential law, and the comparison between the observed average profiles and the relative best fit is shown in Figure 8. The polar ring scale length decreases from the optical to the NIR bands; i.e., the polar ring is more extended in the optical than in the NIR and may also suggest the presence of different stellar populations: an older inner component and a more extended younger one.
An important quantity related to the size of the polar ring is the moment of its radial distribution,

\[
(\Delta R)^2 = \frac{\int_r^{\infty} (r - \bar{R})^2 \mu(r)dr}{\int_r^{\infty} \mu(r)dr},
\]

where \(\bar{R}\) is the average radius,

\[
\bar{R} = \frac{\int_r^{\infty} r\mu(r)dr}{\int_r^{\infty} \mu(r)dr},
\]

weighted by the surface brightness distribution, and \(r_c\) is the effective radius of the central component. For a pure exponential disk, the \(\Delta R/R\) ratio tends to unity when \(r\) tends to infinity. For a real object, this value is expected to be less than 1, because of its finite extension. This is confirmed by the \(\Delta R/R\) values derived for a sample of spiral galaxies (de Jong 1996) in the \(B\) band; this quantity varies from 45% to 75%, and the average value is \(\Delta R/R \sim 65\%\). In the \(B\) band, the polar structure in NGC 4650A and spiral galaxies in the de Jong sample have similar scale lengths (for spiral galaxies \(13'' \leq r_b \leq 65''\), with an average value of about \(25'' \pm 11''\)). The polar ring is less luminous than typical spiral galaxies (see Table 3), so the \(\Delta R/R\) for the polar ring is going to be smaller than the average value obtained for spiral galaxies. This value is computed for the \(I\) band (which is less disturbed by dust absorption) and gives \(\Delta R/R \sim 50\%\). The structural parameters of the light distribution and its extension suggest that the polar structure is more similar to a disk than an annular ring.

4. Using Colors to Date the Stellar Populations of NGC 4650A

One wishes to compare the integrated colors of the main components (host galaxy and polar structure, shown in Table 3) with those of standard morphological galaxy types and check whether differences in colors are related to dust absorption or to different stellar populations.

NIR colors.—The NIR colors of the central spheroid and the polar structure are compared with those of (1) standard early-type galaxies in the Fornax and Virgo clusters (Persson, Frogel, & Aaronson 1979), (2) spiral galaxies (Giovanardi & Hunt 1996; Frogel 1985; de Jong & van der Kruit 1994), (3) dwarf elliptical galaxies (Thuan 1985), and (4) low surface brightness galaxies (Bergvall et al. 1999). The \(J - H\) versus \(H - K\) plot in Figure 9 (left) shows that the nucleus of the central component is redder than its outer regions and falls in the area occupied by early-type galaxies. The other two regions show bluer colors and are close to the area identified by the dwarf galaxies. The color gradient through the host galaxy spheroid may be accounted for by the reddening due to the dust, as indicated by the reddening vector computed for a screen model approximation and \(A_V = 0.3\)
On average, the polar ring is bluer than the central galaxy. There is an additional color difference between the two regions of the polar ring: the south side of the polar structure has a redder $H-K$ color with respect to the north side, which cannot be accounted for by the reddening vector alone. It may be caused by a different dust distribution and high scattering in the two regions of the polar ring; the screen model is inadequate to describe it.

Optical colors.—The $B-V$ versus $V-I$ colors for the S0 component and the polar ring (Fig. 9, right) are compared with those of (1) standard early-type galaxies (Michard & Poulain 2000), (2) spiral galaxies (de Jong & van der Kruit 1994), (3) dwarf galaxies (Makarova 1999), and (4) low surface brightness (LSB) galaxies (O’Neil et al. 1997; Bell et al. 2000). The optical colors of the host galaxy appear very similar to those of early-type objects. If one accounts for a reddening caused by the dust in the polar ring, in the screen
model approximation the colors of the central spheroid will fall in the region for late-type systems. The reddening due to dust can also account for the color gradient between the center and outer regions along the polar ring major axis. On the other hand, the difference between the integrated colors of the polar structure and those of the central component cannot be accounted for by the reddening vector alone; such a large gradient is more likely due to a difference in stellar populations.

The stellar population synthesis models by Bruzual & Charlot (1993) were used to reproduce the integrated colors of different regions (see § 3.1) in the polar ring galaxy NGC 4650A. The goal is to derive an estimate of the stellar population ages in the central spheroid and the polar structure. As a first step, we selected a set of models that were able to reproduce the average integrated colors of galaxies with different morphological types in the local universe, and then they were optimized to reproduce the colors observed for the two main components of NGC 4650A, in particular the \(B-H \) and \(J-K \) colors. The \(B-H \) versus \(J-K \) diagram is used to break the age-metallicity degeneracy, as suggested by Bothun et al. (1984). The \(J-K \) color is a good estimate of the metallicity, and it is quite insensitive to the presence of a young stellar population. This is supported by the observed monotonic increase of the mean \(J-K \) color in globular clusters with increasing metallicity (Aaronson et al. 1978; Frogel, Cohen, & Persson 1983), and the population synthesis models by Bothun (1982) show that \(J-K \) is decreased by only 0.05 mag as a result of a starburst, while the \(B \) luminosity is increased by 1 mag. On the other hand, the \(B-H \) color is sensitive to the combined effect of the star formation rate (SFR), metallicity, and age (Bothun et al. 1984). Figure 10 shows that the central component is overall bluer in the \(B-H \) color than the average values for early-type galaxies, so a younger age is to be expected. The polar structure is significantly bluer than the central galaxy, implying an even younger age for its stellar population.

A star formation history with an exponentially decreasing rate was adopted for the central component. It has the following analytical expression: \(\text{SFR}(t) = (1/\tau) \exp(-t/\tau) \), where the \(\tau \) parameter quantifies the “timescale” when the star formation was most efficient. Adopting \(\tau = 1 \) Gyr and \(\tau = 7 \) Gyr, the corresponding evolutionary tracks were derived for different metallicities (\(Z = 0.0004, Z = 0.008, Z = 0.02, Z = 0.05 \), and \(Z = 0.1 \)), which were assumed constant with age. As shown in Figure 10 (left) these models reproduce the photometric properties of early-type galaxies in the local universe. A constant star formation model (with metallicities \(Z = 0.0004, Z = 0.008, Z = 0.02, Z = 0.05 \), and \(Z = 0.1 \)) that reproduces the integrated colors of local spiral galaxies (Fig. 10, right) was used for the polar structure. In every model it has been assumed that stars form according to the Salpeter (1955) initial mass function, in the range from 0.1 to \(125 \, M_\odot \). The lines of constant age were computed from the evolutionary tracks and suggest an age between 1 to 3 Gyr for the central component (see Fig. 10 (left)), which has an overall younger age than the typical ages of an early-type system. The age derived for the polar structure is less than \(10^8 \) yr (see Fig. 10, right). A cautionary note: our derived colors are all upper limits, since they were not corrected for the absorption caused by the dust in the polar structure, and indeed the true colors of the central stellar population.

![Fig. 10.—\(B-H \) vs. \(J-K \) diagram of the evolutionary tracks for the stellar synthesis models optimized for the central component (left) and the polar ring component (right). Left: Models with a characteristic timescale \(\tau = 1 \) Gyr (heavy dotted lines) and models with \(\tau = 7 \) Gyr (heavy dashed lines). Models are computed for different metallicities as shown on this figure. Light dotted and light dashed lines indicate loci of constant age for the different models; different ages are reported on the plot. The square and pentagons correspond, respectively, to the nucleus and the outer regions of the central spheroid in NGC 4650A, circles and asterisks correspond to bulges and disks from a sample of S0 galaxies (Bothun & Gregg 1990). Right: Model with constant SFR computed for different metallicities (heavy lines; as reported on the plot). Light lines are loci of constant age; different ages are quoted on the plot. Triangles indicate the polar ring regions; crosses are for a sample of spiral galaxies (Bothun et al. 1984).](image-url)
component might be even bluer. Furthermore, the age estimates for the central component and the polar structure are uncertain because we lack independent information on the star formation law and metallcity of the stellar population in the central host galaxy and polar structure. The intrinsic uncertainties of the synthesis population models must also be considered, particularly for the age of the central component. By comparing three recent synthesis codes, Charlot, Worthey, & Bressan (1996) found that the colors predicted for old populations with an age greater than 1 Gyr and the same input age and metallicity are affected by discrepancies, which are primarily due to the different prescriptions adopted for the stellar evolution theory. Thus, our estimates are only indicative of the relative ages of the central host galaxy and polar structure.

5. CONSTRAINTS ON THE FORMATION SCENARIO FOR NGC 4650A: CONCLUSIONS

We have presented a detailed photometric study of the polar ring galaxy NGC 4650A, based on new NIR observations and high-resolution optical imaging acquired with the HST. We now wish to compare our results with the properties predicted for PRGs in different formation scenarios. Possible scenarios for polar ring formation can be grouped into pictures of two main kinds, i.e., (1) accretion of a gas-rich dwarf galaxy by an early-type system or gas stripped from a nearby gas-rich object and (2) a major dissipative merging of two disk galaxies. Accretion in, or gas stripping by, an oblate, triaxial galaxy can predict the formation of a narrow polar annulus. These annuli can be in a quasi-equilibrium configuration if (1) their ratio DR/R is between 10% and 30%, where DR is the radial extension of the ring and R the average radius (Katz & Rix 1992; Christodoulou et al. 1992; Reshetnikov & Sotnikova 1997) and (2) self-gravity is at work (Sparke 1986; Arnaboldi & Sparke 1994). The total amount of accreted gas can be of the order of $10^9 M_\odot$, which is the typical amount of H I in a gas-rich dwarf (Carignan 1999). The process of ring formation through accretion or stripping of a gas-rich companion takes a few gigayears at most. In this scenario the host galaxy is an early-type gas-free system and preserves its structure (luminosity profile, B/D ratio, and scale parameters), while some star formation is triggered by the event (Arnaboldi et al. 1993).

The merging scenario of two disks can account for the formation of narrow rings, as well as wide massive disklke structures, depending on the initial mass ratio of the two merging progenitors. According to this scenario, the polar structure represents what remains of the “victim” disk galaxy, while the accreted “intruder” has supplied the S0-like component. Polar rings are more likely to form when the two disks encounter each other on a polar orbit, with a small initial orbital angular momentum (Bekki 1998). This dissipative merger event transforms the intruder’s thin stellar disk into a thicker structure. Both the intruder’s and the victim’s disk radial mass distribution deviate from the initial exponential profiles as the merger process goes on. When extended polar structures are formed (depending on the intruder-to-victim mass ratio), they are characterized by the absence of a hole in the central regions, and their H I content can be as large as that of late-type spiral galaxies, i.e., up to $10^{10} M_\odot$. The predicted evolution time for the whole resulting polar ring galaxy is of about 10^9 yr, and the outwardly propagating gaseous waves, excited by the intruder galaxy, trigger a burst of stellar formation in the polar disk.

What are the observational properties of the polar ring galaxy NGC 4650A? Can they discriminate between the two scenarios? Both in the NIR and HST images, we have found that stellar light and dust lanes connect the outer parts of the polar structure with the inner central nucleus of the system; i.e., this component does not show a completely empty central hole. The light distribution of the polar structure follows an exponential profile and has $\Delta R/R\sim50\%$. These properties suggest that this structure is more similar to a disk than a narrow annulus, as already suggested by Arnaboldi et al. (1997) through the analysis of the H I distribution in the polar structure. Furthermore, the H I observations for NGC 4650A showed that the total H I mass in this component is about $10^{10} M_\odot$. The high-resolution HST images indicate that the central spheroidal component is not a standard early-type system. It has a small exponential bulge and a disk with an exponential profile, which appears slightly warped in the outer regions. This warp is observed both in the optical and in NIR. The study of the integrated colors of NGC 4650A has shown that polar structure is much bluer than the stellar central component, as it is also visible in the beautiful HST multicolor images. The comparison with the predicted colors from stellar population synthesis codes suggests a very young age (<0.5 Gyr) for the polar structure. The age of the central component is in the range of 1 to 3 Gyr, which is of a significantly younger age than those typical for early-type galaxies.

Whatever event may have occurred in the past of NGC 4650A, it has strongly changed the properties of the host galaxy, both in the structure and stellar population, so that this component differs from a standard S0 system. Published simulations of the accretion and stripping scenario were not able to reproduce either these observed properties for the host galaxy in NGC 4650A or those for the polar structure. In particular, we note the absence of a hole in the center of the polar disk, which has an exponential light distribution and a large amount of H I, which is an order of magnitude larger than what is expected in the accretion models. Furthermore, for reasonable mass-to-light ratios ($M/L \sim 2$ in the NIR, from Matthews, van Driel, & Gallagher 1998), the luminous mass (gas plus stars) in the polar structure, which is about $12 \times 10^9 M_\odot$, is comparable with or even higher than the total luminous mass in the host galaxy, which is about $5 \times 10^9 M_\odot$. In the accretion scenario, one would expect the accreted baryonic mass (stellar plus gas) to be a fraction of that in the preexisting galaxy, and not vice versa, as it is observed for NGC 4650A. Based on these new observational results, we have considered the alternative ideas discussed by Bekki according to which the polar ring galaxies, such as NGC 4650A, may have formed from a dissipational merger event of some kind. The dissipative merger scenario proposed by Bekki (1998) may provide a coherent explanation for the wide and massive polar disk of NGC 4650A and its larger baryonic mass content with respect to the central component, plus the nonstandard properties of the light distribution in the central S0-like component. A future test of Bekki’s scenario for PRG formation should also include a detailed analysis of the kinematics predicted from the N-body simulations and a comparison with PRG kinematics, and it should address the question about the stability of those merger configurations that lead to the formation of a massive disk.
The authors wish to thank the anonymous referee, whose comments and suggestions greatly improved the presentation of this work. E. I. and M. A. gratefully acknowledge the University of Wisconsin at Madison and the staff of the Astronomy department for their support. L. S. S. acknowledges grant AST 98-03114 from the National Science Foundation. J. S. G. is grateful to the Graduate School of University of Wisconsin at Madison and the Vilas Foundation for financial support through a Vilas Associateship.

REFERENCES

Aaronson, M., Cohen, J., Mould, J., & Malkan, M. 1978, ApJ, 223, 824
Arnaboldi, M., Capaccioli, M., Barbaro, G., Buson, L., & Longo, G. 1993, A&A, 268, 103
Arnaboldi, M., Oosterloo, T., Combes, F., Freeman, K. C., & Koribalski, B. 1997, AJ, 113, 585
Arnaboldi, M., & Sparke, L. S. 1994, AJ, 107, 958
Bekki, K. 1998, ApJ, 499, 635
Bell, E. F., Banaby, D., Bower, R. G., de Jong, R. S., Harper, D. A., Hereld, M., Loewenstein, R. F., & Rauscher, B. J. 2000, MNRAS, 312, 470
Bergvall, N., Ronnback, J., Masegosa, J., & Ostlin, G. 1999, A&A, 341, 697
Bertola, F., Bettoni, D., Danziger, J., Sadler, E., Sparke, L., & de Zeeuw, T. 1991, ApJ, 373, 369
Bothun, G. D. 1982, ApJS, 50, 39
Bothun, G. D., & Gregg, M. D. 1990, ApJ, 350, 73
Bothun, G. D., Romanishin, W., Strom, S. E., & Strom, K. M. 1984, AJ, 89, 1300
Bruzual, G., & Charlot, S. 1993, ApJ, 405, 538
Byun, Y. J., & Freeman, K. C. 1995, ApJ, 448, 563
Caon, N., Capaccioli, M., & D’Onofrio. 1993, MNRAS, 265, 1013
Carignan, C. 1999, Proc. Astron. Soc. Australia, 16, 18
Carter, B. S., & Meadows, V. S. 1995, MNRAS, 276, 734
Charlot, S., Worthey, G., & Bressan, A. 1996, ApJ, 457, 625
Christodoulou, D. M., Katz, N., Rix, H., & Habe, A. 1992, ApJ, 395, 113
Combes, F., & Arnaboldi, M. 1996, A&A, 305, 763
de Jong, R. S. 1996, A&A, 118, 557
de Jong, R. S., & van der Kruit, P. C. 1994, A&AS, 106, 451
Freeman, K. C. 1970, ApJ, 160, 767
Frogel, J. 1985, ApJ, 298, 528
Frogel, J., Cohen, J., & Persson, E. 1983, ApJ, 275, 773
Gallagher, J. S., III, Sparke, L. S., Matthews, L. D., Frattare, L. M., English, J., Kinney, A. L., Iodice, E., & Arnaboldi, M. 2001, ApJ, in press
Giovanardi, C., & Hunt, L. K. 1996, AJ, 111, 1086
Gordon, K. D., Calzetti, D., & Witt, A. N. 1997, ApJ, 487, 625
Heisler, J., Merritt, D., & Schwarzchild, M. 1982, ApJ, 258, 490
Hernquist, L., & Wein, M. L. 1993, MNRAS, 261, 804
Holtzman, J. A., Burrows, C. J., Casertano, S., Hester, J. J., Trauger, J. T., Watson, A. M., & Worthey, G. 1995, PASP, 107, 1065
Iodice, E., D’Onofrio, M., & Capaccioli, M. 2001, Ap&SS, 276, 869
Katz, N., & Rix, H. 1992, ApJ, 389, L55
Makekova, L. 1999, A&AS, 139, 491
Matthews, L. D., Gallagher, J. S., & van Driel, W. 1999, AJ, 118, 2751
Matthews, L. D., van Driel, W., & Gallagher, J. S. 1998, AJ, 116, 2196
McGregor, P. J. 1994, PASP, 106, 508
Michard, R., & Poulain, P. 2000, A&AS, 141, 1
O’Neil, K., Bothun, G. D., Schombert, J., Cornell, M. E., & Impy, C. D. 1997, AJ, 114, 2448
Persson, S. E., Frogel, J. A., & Aaronson, M. 1979, ApJS, 39, 61
Quinn, T. 1991, in Warped Disks and Inclined Rings around Galaxies, ed. S. Casertano, P. Sackett, & F. Briggs (New York: Cambridge Univ. Press), 143
Reshetnikov, V., & Sotnikova, N. 1997, A&A, 325, 933
Sackett, P. D., Rix, H., Jarvis, B. J., & Freeman, K. C. 1994, ApJ, 436, 629
Sackett, P. D., & Sparke, L. S. 1990, ApJ, 361, 408
Salpeter, E. E. 1955, ApJ, 121, 161
Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525
Spitrik, L. S. 1986, MNRAS, 219, 657
Thuan, T. X. 1985, ApJ, 299, 881
Whitmore, B. C. 1991, in Warped Disks and Inclined Rings around Galaxies, ed. S. Casertano, P. Sackett, & F. Briggs (New York: Cambridge Univ. Press), 60
Whitmore, B. C., Lucas, R. A., McElroy, D. B., Steiman-Cameron, T. Y., Sackett, P. D., & Olling, R. P. 1990, AJ, 100, 1489
Whitmore, B. C., McElroy, D. B., & Schweizer, F. 1987, ApJ, 314, 439