Association between RANTES Gene Polymorphisms and Asthma: A Meta-Analysis

Dan Wen, Xin Du, Shao-Ping Nie, Jian-Zeng Dong, Chang-Sheng Ma*
Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China

Abstract

Background: A few recent studies have suggested that regulated on activation, normal T cell expressed and secreted (RANTES) polymorphisms (−403 G/A, −28 C/G) are associated with asthma. However, there still existed studies which did not confirm these correlations.

Objective: The objective of this study was to evaluate the relationship of RANTES and asthma using a meta-analysis.

Methods: Pubmed, Embase, and Cochrane library databases were systemically searched. Data were extracted by two independent reviewers and pooled odds ratio (OR) with 95% confidence interval (CI) were calculated.

Results: Eighteen studies were enrolled, including a total of 2558 cases and 2630 controls of −403 G/A, as well as 3311 cases and 4031 controls of −28 C/G in this meta-analysis. The overall ORs and 95% CIs of −403 G/A were 1.19, 1.06–1.33 (P<0.001) and 1.25, 1.03–1.51 (P=0.933) in dominant and recessive models, respectively. The overall ORs and 95% CIs of −28 C/G were 1.23, 1.09–1.39 (P=0.221) and 1.76, 1.32–2.34 (P=0.356) in dominant and recessive models, respectively. No publication bias among studies was showed.

Conclusions: This meta-analysis showed that RANTES −403 G/A polymorphism was a risk factor for asthma, while −28 C/G polymorphism were not associated with asthma.

Citation: Wen D, Du X, Nie S-P, Dong J-Z, Ma C-S (2014) Association between RANTES Gene Polymorphisms and Asthma: A Meta-Analysis. PLOS ONE 9(6): e90460. doi:10.1371/journal.pone.0090460

Editor: Paul Proost, University of Leuven, Rega Institute, Belgium

Received October 7, 2013; Accepted January 30, 2014; Published June 25, 2014

Copyright: © 2014 Wen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the International S&T Cooperation Program of China (No. 2013DFB30330). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: azcmuwdd@gmail.com

Introduction

Asthma is a common chronic respiratory inflammation disease associated with airway hyperreactivity, reversible airway obstruction, mucus hypersecretion, inflammatory cell migration, bronchial epithelial desquamation, and airway wall remodeling [1,2]. It is a complex disorder caused by both genetic and environmental factors. Over 100 genes have been reported to be associated with asthma risk and related phenotypes [3,4].

The regulated on activation, normal T cell expressed and secreted (RANTES), a member of the CC chemokine family, is a potent eosinophil, monocyte, basophile and lymphocyte chemo-attractant. It had close correlations with the attraction and recruitment of lymphocytes, monocytes, basophils and eosinophils to the places of inflammation, and thus, was involved in various inflammatory and immune disorders, including asthma [5,6,7]. Two RANTES promoter polymorphisms of −403 G/A and −28 C/G were demonstrated to affect the promoter activity and increase the expression of RANTES [8].

Although numerous studies have demonstrated the correlation between RANTES (−403 G/A and −28 C/G) polymorphisms and asthma, the results still remains inconsistent. Therefore, this meta-analysis was performed currently to observe the association of these two polymorphisms with asthma risk, which firstly provided the updated meta-analysis of comprehensive studies about RANTES gene polymorphisms and asthma.

Methods

2.1 Search strategy

Two independent reviewers searched Pubmed, Embase, and Cochrane library databases systemically and extensively to obtain the case-control genetic association of RANTES polymorphisms and asthma studies without any language restrictions. The Medical Subject Heading (MeSH) and keyword terms “RANTES”, “CCL5”, “asthma”, and “polymorphism” were used as search criteria.

2.2 Study selection and data abstraction

The inclusion criteria for the gene association studies in this meta-analysis were as follows: 1) case-control studies and cohort studies; 2) original data on genotype and allele distributions and frequencies were available for case and control subjects; 3) genotype distributions of the controls were in Hardy-Weinberg equilibrium. Data abstraction was performed by two independent reviewers as mentioned above.
2.3 Statistical analysis

Chi-square test was used to determine whether the genotype distributions of the controls were in Hardy-Weinberg equilibrium. Heterogeneity between studies was tested with both Cochran’s test and I^2 statistics. $P < 0.1$ or $I^2 > 50\%$ indicated significant heterogeneity in this study [9]. Publication bias was assessed by funnel plot and Egger’s regression test [10]. Data of this meta-analysis were analyzed by Stata software (Version 12.0; Stata Corporation, College Station, TX). P-value < 0.05 were considered statistically significant.

Results

By searching Pubmed, Embase, and Cochrane library databases systemically and extensively, one was excluded because of unavailable data [11]. A total of 18 case-control and cohort studies with usable data met the inclusion criteria and were enrolled in this meta-analysis, including 14 articles on -403 G/A, and 14 on -28 C/G [12–29]. The included studies provided 2558 cases and 2630 controls of -403 G/A, as well as 3311 cases and 4031 controls of -28 C/G for this analysis. The characteristics of included studies in this present meta-analysis were showed in Table 1 and Table 2.

We compared the minor allele to major allele in dominant, recessive, and additive models. The overall ORs and 95% CIs of -403 G/A were 1.19, $1.06–1.33$ ($P = 0.001$) and 1.25, $1.03–1.51$ ($P = 0.933$) in dominant and recessive models, respectively (Figure 1,2). The overall ORs and 95% CIs of -28 C/G were 1.23, $1.09–1.39$ ($P = 0.221$) and 1.76, $1.32–2.34$ ($P = 0.356$) in dominant and recessive models, respectively (Figure 3,4) (Table 3). Funnel plot and Egger’s regression test showed no publication bias among studies of -403 G/A ($P = 0.743$ and 0.400 in dominant and

Table 1. Characteristics of included studies in the meta-analysis for the -403 G/A polymorphism.
First Author (Ref)

Fryer (19)
Szalai (12)
Hizawa (13)
Yao (14)
Liu (21)
Leung (17)
Moissidis (18)
Al-Abdelhadi (16)
Lachheb (23)
Sohn (24)
Tölgyesi G (22)
Muro (25)
Nahas (27)
Liu (27)

doi:10.1371/journal.pone.0090460.t001

Table 2. Characteristics of included studies in the meta-analysis for the -28 C/G Polymorphism.
First Author (Ref)

Szalai (12)
Hizawa (13)
Yao (14)
Wang (15)
Huang (20)
Moissidis (18)
Liu (21)
Lachheb (23)
Muro (25)
Sohn (24)
Muro (26)
Nahas (27)
Liu (28)
Kaneko (29)

doi:10.1371/journal.pone.0090460.t002
Figure 1. The association between RANTES-403G/A polymorphism and asthma in dominant model.
doi:10.1371/journal.pone.0090460.g001

Figure 2. The association between RANTES-403G/A polymorphism and asthma in recessive model.
doi:10.1371/journal.pone.0090460.g002
Figure 3. The association between RANTES \(-28C/G\) polymorphism and asthma in dominant model. doi:10.1371/journal.pone.0090460.g003

Figure 4. The association between RANTES \(-28C/G\) polymorphism and asthma in recessive model. doi:10.1371/journal.pone.0090460.g004
recessive, respectively) and −28C/G (P = 0.435 and 0.244 in dominant and recessive, respectively).

Discussion

Data of this meta-analysis showed that RANTES −403 G/A polymorphism was a risk factor for asthma, while −28C/G polymorphism were not associated with asthma.

RANTES, also known as C-C motif chemokine ligand 5 (CCL5), is a potent chemotactic factor which play an important role in immune and inflammatory regulation process. The RANTES gene is located on chromosome 17q11.2-q12, which is composed of three exons and two introns. It was reported that RANTES gene polymorphisms could influence the activity of transcription and protein expression in human [30]. Significantly elevated concentrations of RANTES were observed in asthmatic patients, and associated with asthma severity, demonstrating the important role of RANTES in the pathogenesis of this disorder [31,32,33]. Serum RANTES may a helpful noninvasive and diagnostic marker for monitoring asthma severity. Identification and blocking of RANTES and/or its receptor may be a promising therapeutic approach to asthmatic patients [34]. Previous investigations have reported the association of RANTES gene polymorphisms (−403G/A and −28C/G) and asthma susceptibility, however, findings of the possible relationships are remain inconsistent.

In Chinese asthmatic children population, Leung et al. [17] found that RANTES −403G/A polymorphism was associated with asthma susceptibility, however, −28C/G polymorphism was not associated with asthma. In other countries, both −403G/A and −28C/G polymorphisms did not have a detectable effect on asthma susceptibility in African Americans, Lebanon, Spanish or Budapest population, respectively [12,18,25,27]. However, Lachheb et al. [23] suggested that both polymorphisms may play an important role in asthma predisposition, airway obstruction severity, or bronchial hyperresponsiveness among Tunisian or Korean children. Moreover, several investigations also demonstrated either −403G/A or −28C/G was related to asthma risk [16,19,29].

In this present study, we found that RANTES −403 G/A polymorphism was a risk factor for asthma susceptibility under dominant genetic model, indicating its potential role in asthma pathogenesis. In the meanwhile, the data also indicated that −28C/G polymorphism was not associated with asthma risk. Furthermore, no publication bias among studies was showed.

Conclusions

In summary, we concluded that RANTES −403 G/A polymorphism was a risk factor for asthma, while −28C/G polymorphism were not associated with asthma.

Supporting Information

Checklist S1 PRISMA Checklist.

Author Contributions

Analyzed the data: DW. Wrote the paper: DW. Concept and design: DW.

References

1. Seidell J, Roth M (2013) Anti-inflammatory dimethylfumarate: a potential new therapy for asthma? Mediators Inflamm 2013:875403.
2. Richter M, Canin AM, Beaulieu C, Cloutier A, Larivée P (2005) Zinc chelators inhibit eotaxin, RANTES, and MCP-1 production in stimulated human epithelial and fibroblasts. Am J Physiol Lung Cell Mol Physiol 265:L719–29.
3. Weiss ST, Raby BA, Rogers A (2009) Asthma genetics and genomics 2009. Curr Opin Genet Dev 19:279–82.
4. Zhang J, Paré PD, Sandford AJ (2008) Recent advances in asthma genetics. Respir Res 9:4.
5. Alam R (1997) Chemokines in allergic inflammation. J Allergy Clin Immunol 99:273–277.
6. Kameyoshi Y, Dorschner A, Mallet AI, Christophers E, Schroder JM (1992) Cytokine RANTES released by thrombin stimulated platelets is a potent attractant for human eosinophils. J Exp Med 176:507–592.
11. Liu CH, Chen H, Hu LP, Fu J, Zhang HQ, et al. (2009) Association between the genetic polymorphism of chemokine genes and asthma in Chinese children. Zhonghua Er Ke Za Zhi 43:462–3.

10. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analyses detected by a simple, graphical test. BMJ 315:629–34.

9. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–60.

8. Liu H, Chao D, Nakayama EE, Taguchi H, Goto M, et al. (1999) Polymorphism in RANTES chemokine promoter affects HIV-1 disease progression. Proc Natl Acad Sci USA 96:4581–4.

7. Lewis TC, Henderson TA, Carpenter AR, Ramirez IA, McHenry CL, et al. (2012) Nasal cytokine responses to natural colds in asthmatic children. Clin Exp Allergy 42:1734–44.

6. Huang JL (2005) Asthma severity and genetics in Taiwan. J Microbiol Immunol Infect 38:158–63.

5. Liu M, Li HL, Huang YK, Chen YH, Liu H, et al. (2003) The SNPs of chemokine RANTES promoter in children with asthma. Zhong Guo You Sheng Wu Xue Za Zhi 15:20–23.

4. Liu CH, Chen H, Hu LP, Fu J, Zhang HQ, et al. (2009) Association between the genetic polymorphism of chemokine genes and asthma in Chinese children. Zhonghua Er Ke Za Zhi 43:462–3.

3. Lewis TC, Henderson TA, Carpenter AR, Ramirez IA, McHenry CL, et al. (2012) Nasal cytokine responses to natural colds in asthmatic children. Clin Exp Allergy 42:1734–44.

2. Liu H, Chao D, Nakayama EE, Taguchi H, Goto M, et al. (1999) Polymorphism in RANTES chemokine promoter affects HIV-1 disease progression. Proc Natl Acad Sci USA 96:4581–4.

1. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analyses detected by a simple, graphical test. BMJ 315:629–34.