Dependence of the density of states on the probability distribution for discrete random Schrödinger operators

CRM, November 2018

Christoph Marx
joint with Peter Hislop (Univ. of Kentucky)

Oberlin College, Department of Mathematics

14 November 2018
Basic question: Can we recover the density of states for the Bernoulli-Anderson model from regular approximations?
Basic question: Can we recover the density of states for the Bernoulli-Anderson model from regular approximations?

We answer this question positively by:

1. proving that the density of states is weak-star continuous in the underlying probability measure
2. quantifying the modulus of continuity
I. Introduction & motivation
Random lattice Schrödinger operators

Consider discrete Anderson model on \(\mathbb{Z}^d, d \in \mathbb{N} \):

\[
H_\omega = \Delta^{(d)} + \sum_{j \in \mathbb{Z}^d} \omega_j |j\rangle \langle j| \quad \text{on } \ell^2(\mathbb{Z}^d)
\]

- \(\omega_j \) iid random potentials, \(\omega_j \in [-V, V] \), some \(V > 0 \)
- common **single-site probability measure** \(\nu \), \(\text{supp} \nu \subseteq [-V, V] \)
- **Probability space**: \(\Omega = [-V, V]^{\mathbb{Z}^d} \), \(\mathbb{P} = \bigotimes_{j \in \mathbb{Z}^d} \nu =: \nu^{(\infty)} \)
Random lattice Schrödinger operators

Consider discrete Anderson model on \mathbb{Z}^d, $d \in \mathbb{N}$:

$$H_\omega = \Delta^{(d)} + \sum_{j \in \mathbb{Z}^d} \omega_j |j\rangle \langle j| \quad \text{on } l^2(\mathbb{Z}^d)$$

- ω_j iid random potentials, $\omega_j \in [-V, V]$, some $V > 0$
- common single-site probability measure ν, $\text{supp} \nu \subseteq [-V, V]$
- Probability space: $\Omega = [-V, V]^{\mathbb{Z}^d}$, $\mathbb{P} = \bigotimes_{j \in \mathbb{Z}^d} \nu =: \nu^{(\infty)}$

Our results are not limited to the discrete Anderson model. Indeed, our framework also applies to e.g.

- finite rank potentials: finite-range Anderson model, random polymer models
- random Schrödinger operators on graphs, e.g. the Bethe lattice
- models on the strip: long-range Jacobi, Anderson model on the Bethe-strip
The density of states

... carries information about the averaged spectral properties of ergodic family \(\{ H_\omega, \omega \in \Omega \} \)

Probability space: \(\Omega = [-V, V]^{\mathbb{Z}^d} \), \(\mathbb{P} = \bigotimes_{j \in \mathbb{Z}^d} \nu =: \nu^{(\infty)} \)
where \(\nu \) ... single site probability measure, \(\text{supp} \ \nu \subseteq [-V, V] \)

Define:

- density of states measure (DOSm)
 \[n(f) := \mathbb{E}_{\nu^{(\infty)}} \langle 0 | f(H_\omega) | 0 \rangle, \text{where } f \in \mathcal{C}_c(\mathbb{R}) \]

- integrated density of states (IDS):
 \[N(E) := n((-\infty, E)) \]
Known continuity in the energy

\[H_\omega = \Delta^{(d)} + \sum_{j \in \mathbb{Z}^d} \omega_j |j \times j|, \omega_j \in [-V, V] \]

Theorem (Craig-Simon; Bourgain- A. Klein)

*The IDS is log-Hölder continuous in the energy, i.e. there exists a constant \(C_I = C_I(d, V) \) such that for all \(E \in \mathbb{R} \) and \(0 < \epsilon \leq \frac{1}{2} \):

\[
|N_\nu(E) - N_\nu(E + \epsilon)| = n_\nu^{(\infty)}([E, E + \epsilon]) \leq \frac{C_I}{\log \left(\frac{1}{\epsilon} \right)}.
\]

(i) Mild modulus of continuity is optimal in general and takes into account that single-site measure \(\nu \) could be highly singular, e.g. Bernoulli-Anderson model (Carmona, Klein, Martinelli; Simon, Taylor; . . .)

(ii) For more regular \(\nu \), modulus of continuity improves, e.g. Wegner estimate: If \(d\nu(\omega_j) = \phi(\omega_j) d\omega_j \) for some \(0 \leq \phi \in L^1 \cap L^\infty([-V, V]) \), \(\|\phi\|_1 = 1 \), then \(n_\nu^{(\infty)}([E, E + \epsilon]) \leq \|\phi\|_\infty \cdot \epsilon \).
II. Main result
Basic hypothesis: Given

- a random lattice Schrödinger operator with finite rank-potentials.
- single-site probability measures \((\nu_\alpha)\) and \(\nu\) compactly supported in \([-V, V]\) such that

\[\nu_\alpha \xrightarrow{w^*} \nu.\]
Basic hypothesis: Given

- a random lattice Schrödinger operator with finite rank-potentials.
- single-site probability measures \((\nu_\alpha)\) and \(\nu\) compactly supported in \([-V, V]\) such that

\[
\nu_\alpha \overset{w^*}{\longrightarrow} \nu .
\]

Theorem (Qualitative continuity, P. Hislop, CM ’18 - [1])

If \(\nu_\alpha \overset{w^*}{\longrightarrow} \nu\), then so do the density of states measures (DOSm), i.e.

\[
n^{(\infty)}_{\nu_\alpha} \overset{w^*}{\longrightarrow} n^{(\infty)}_{\nu} .
\]

Moreover, the integrated density of states (IDS) converges point-wise:

\[
\lim_{\alpha \to \infty} N_{\nu_\alpha}(E) = N_{\nu}(E) , \forall E \in \mathbb{R} .
\]
Quantitative continuity

... to quantify modulus of continuity of the map

\[\nu \mapsto n^{(\infty)}_\nu \] useful to work with metric
Quantitative continuity

... to quantify modulus of continuity of the map

$$\nu \mapsto n^{(\infty)}_\nu$$ useful to work with metric

Consider the space:

- $\mathcal{P}([a, b])$... Borel probability measures on $[a, b] \subset \mathbb{R}$
- w^*-topology on $\mathcal{P}([a, b])$ is metrizable by metric derived from the Lipschitz dual norm (e.g. R. M. Dudley, 1966), i.e.

$$d_w(\mu, \nu) = \sup \{|\mu(f) - \nu(f)| : f \in \text{Lip}([a, b]) \text{ with } \|f\|_{\text{Lip}} \leq 1\}$$,

where $\text{Lip}([a, b])$ are the Lipschitz functions on $[a, b]$ with the norm

$$\|f\|_{\text{Lip}} := \|f\|_\infty + \sup_{x \neq y \in [a, b]} \frac{|f(x) - f(y)|}{|x - y|}$$

While there are other common metrics that induce w^*-convergence on $\mathcal{P}([a, b])$ (e.g. Prokhorov or Wasserstein metric), the metric above will be most natural in view of our applications.
Theorem (Modulus of continuity, P. Hislop, CM ’18 - [1])

For $\nu \in \mathcal{P}([-V, V])$ and $E \in \mathbb{R}$, the modulus of continuity of the maps

$$\nu \mapsto n^{(\infty)}_{\nu}, \quad \nu \mapsto N_{\nu}(E),$$

in the weak-* topology is quantified by the following: there exist constants $\gamma > 0$, $C > 0$, and $0 < \rho < 1$, only depending on d and V, such that for all single-site measures $\mu, \nu \in \mathcal{P}([-V, V])$ with $d_w(\mu, \nu) < \rho$ one has

$$d_w(n^{(\infty)}_{\mu}, n^{(\infty)}_{\nu}) \leq \gamma d_w(\mu, \nu)^{\frac{1}{1+2d}},$$

and, for all $E \in \mathbb{R}$,

$$|N_{\mu}(E) - N_{\nu}(E)| \leq \frac{C}{\log \left(\frac{1}{d_w(\mu, \nu)}\right)}.$$

Remarks:

- The log-Hölder modulus of the IDS in the probability distribution is a consequence of the general log-Hölder continuity of the IDS in the energy.
- It can be improved to Hölder locally about every measure $\nu \in \mathcal{P}([-V, V])$ where $E \mapsto N_{\nu}(E)$ is known to be Hölder.
Our results are not limited to the discrete Anderson model on \mathbb{Z}^d.

as we will explain later, our approach extends to random operators on graphs with a certain finite range structure.

e.g. to the Anderson model on the Bethe-lattice \mathcal{B} with coordination number (degree) $k \geq 3$.

\[
 H_\omega = \Delta_{\mathcal{B}} + \sum_{x \in \mathcal{B}} \omega_x |x\rangle\langle x|
\]

\[
 (\Delta_{\mathcal{B}}\psi)(x) := \sum_{y \in \mathcal{B}: y \sim x} \psi(y) \quad \text{Laplacian on } \mathcal{B}
\]

Coordination number $k = 3$.

14 November 2018 11 / 30
Given the Anderson model on the Bethe lattice with coordination number $k \geq 3$. Then, for $\nu \in \mathcal{P}([-V, V])$ and $E \in \mathbb{R}$, the modulus of continuity of the maps

$$
\nu \mapsto n^{(\infty)}_{\nu}, \quad \nu \mapsto N_{\nu}(E),
$$

in the weak-* topology is quantified by the following: there exist constants $\gamma_B > 0$ and $0 < \rho_B < 1$, only depending on k and V, such that for all single-site measures $\mu, \nu \in \mathcal{P}([-V, V])$ with $d_w(\mu, \nu) < \rho_B$ one has

$$
d_w(n^{(\infty)}_{\mu}, n^{(\infty)}_{\nu}) \leq \frac{\gamma_B}{\sqrt{\log \left(\frac{1}{d_w(\mu, \nu)} \right)}}.
$$
Extensions: In a recent work in progress [2], we generalize this quantitative continuity result for the DOS measure to:

(a) discrete lattice operators with non-compactly supported single-site measures

(b) continuum Schrödinger operators on \mathbb{R}^d with compactly supported single-site measures and

$$H_\omega = -\Delta + \sum_{n \in \mathbb{Z}^d} \omega_n \phi(\cdot - n), \text{ for } \phi \in \mathcal{C}^d_c(\mathbb{R}^d; \mathbb{R})$$

(c) continuum Schrödinger operators with δ-potentials and compactly supported single-site measures
Extensions: In a recent work in progress [2], we generalize this quantitative
continuity result for the DOS measure to:

(a) discrete lattice operators with non-compactly supported single-site measures
(b) continuum Schrödinger operators on \mathbb{R}^d with compactly supported
 single-site measures and

$$H_\omega = -\Delta + \sum_{n \in \mathbb{Z}^d} \omega_n \phi(\cdot - n), \text{ for } \phi \in C_c^d(\mathbb{R}^d; \mathbb{R})$$

(c) continuum Schrödinger operators with δ-potentials and compactly supported
 single-site measures

These extensions however, in general, require higher regularity assumptions (than
Lipschits) on the class of functions, i.e. for $\nu_\alpha \overset{w^*}{\to} \nu$

$$|n^{(\infty)}_{\nu_\alpha}(f) - n^{(\infty)}(f)| \leq \gamma \|f\|_{C_c^m} d_{w}(\nu_\alpha, \nu)^{\kappa},$$

for all $f \in C_c^m(\mathbb{R})$ with $m = m(d)$.
III. Application: weak disorder limit of the DOS
Weak disorder limit of the DOSm and IDS

\[H_\omega = \Delta^{(d)} + \lambda \cdot \sum_{j \in \mathbb{Z}^d} \omega_j |j \times j|, \quad 0 \leq \lambda \quad \ldots \quad \text{disorder parameter} \]

with a \textit{general (not necessarily ac)} single-site measure \(\nu \in \mathcal{P}([-1, 1]) \)

\[\text{Theorem (Weak disorder continuity of the DOSm, P. Hislop, CM '18 - [1])} \]

The DOSm is \(\omega \)-continuous as \(\lambda \rightarrow 0 \), that is

\[n_\lambda \rightarrow n_0. \]

Moreover, there exists \(C_1 > C_{1P} \) and \(\lambda_0 < 2^{-p/2}d \) such that for every \(f \in \text{Lip} \) one has

\[|n_\lambda f - n_0 f| \leq C_1 \| f \|_{\text{Lip}} \lambda^{p/2}d, \quad \text{for all} \quad 0 \leq \lambda \leq \lambda_0. \]
Weak disorder limit of the DOSm and IDS

\[H_\omega = \Delta^{(d)} + \lambda \cdot \sum_{j \in \mathbb{Z}^d} \omega_j |j \times j| , \quad 0 \leq \lambda \ldots \text{disorder parameter} \]

with a \textbf{general (not necessarily ac)} single-site measure \(\nu \in \mathcal{P}([-1, 1]) \)

\[\Rightarrow \text{rescaled single-site measure:} \]

\[\mathcal{P}([-\lambda, \lambda]) \ni d\nu\left(\frac{x}{\lambda}\right) \xrightarrow{w^*} \delta(x) , \text{as } \lambda \to 0^+ \]

\section*{Theorem (Weak disorder continuity of the DOSm, P. Hislop, CM '18 - [1])}

The DOSm \(n_\lambda \) is \(w^* \)-continuous as \(\lambda \to 0^+ \), that is \(n_\lambda \xrightarrow{w^*} n_{\lambda=0} \).

Moreover, there exists \(C_1 = C_1(d) > 0 \) and \(\lambda_0 = 2^{-(1+2d)} \) such that for every \(f \in \text{Lip}_c(\mathbb{R}) \) one has

\[|n_\lambda(f) - n_{\lambda=0}(f)| \leq C_1 \|f\|_{\text{Lip}} \cdot \lambda^{\frac{1}{1+2d}} , \text{for all } 0 \leq \lambda \leq \lambda_0. \]
DOSm for free case ($\lambda = 0$) is given explicitly \(dn_{\lambda=0}(E) = \rho_{\lambda=0}^{(d)}(E)dE\) with
\[
\rho_{\lambda=0}^{(1)}(E) = \frac{1}{2\pi} \frac{1}{\sqrt{1 - \left(\frac{E}{2}\right)^2}} \chi(-2,2)(E)
\]
\[
\rho_{\lambda=0}^{(d)}(E) = \left(\rho_{\lambda=0}^{(1)} * \cdots * \rho_{\lambda=0}^{(1)}\right)(E), \text{ for } d \geq 2.
\]
d-times

⇒ Hölder-continuity of IDS for free case ($\lambda = 0$):
\[
N_{\lambda=0}(E + \epsilon) - N_{\lambda=0}(E) = n_{\lambda=0}([E, E + \epsilon]) \leq c_0 \epsilon^\delta,
\]
where we take the constants \(c_0, \delta > 0\) to be uniform in \(E\), i.e. only depending on the dimension \(d\). For instance for \(d = 1\): \(\delta = \frac{1}{2}\) ("van Hove singularity"), while for \(d \geq 2\), one can take \(\delta = 1\).

Theorem (Weak disorder continuity of the IDS, P. Hislop, CM ’18 - [1])

There exists a constant \(C_2 = C_2(d, V) > 0\) such that for all \(E \in \mathbb{R}\) and \(0 \leq \lambda \leq \lambda_0 = 2^{-(1+2d)}\), one has
\[
|N_\lambda(E) - N_{\lambda=0}(E)| \leq C_2 \lambda^{\left(\frac{\delta}{1+\delta}\right)} \left(\frac{1}{1+2d}\right).
\]
Context: known continuity results of the IDS in the disorder (fixed energy!) for the weak-disorder regime
Context: known continuity results of the IDS in the disorder (fixed energy!) for the weak-disorder regime

- most known results restricted to dimension $d = 1$
 - the IDS and the usual Anderson model
 - with appropriate decay of the Fourier-transform of the single-site measure (Speis; Campanino, Klein; Bovier, Klein; Pastur Figotin; ...), thus in particular, exclude Bernoulli-Anderson!
Context: known continuity results of the IDS in the disorder (fixed energy!) for the weak-disorder regime

- most known results restricted to dimension $d = 1$
 - the IDS and the usual Anderson model
 - with appropriate decay of the Fourier-transform of the single-site measure (Speis; Campanino, Klein; Bovier, Klein; Pastur Figotin; ...), thus in particular, exclude Bernoulli-Anderson

Specifically, using the super-symmetric replica method:

- Campanino, Klein (1990): for a dense set of energies $E \in (-2, 2)$, the map $\lambda \mapsto N_\lambda(E)$ is C^∞ about $\lambda = 0$
- Speis (1991): for all energies $E \in (-2, 2)$, $\lambda \mapsto N_\lambda(E)$ is continuous about $\lambda = 0$
• **very few results for** $d > 1$: *Schenker* (2004) and *Hislop, Klopp, and Schenker* (2005) prove Hölder continuity of $\lambda \mapsto N_\lambda(E)$ IF the single-site measure is absolutely continuous (ac) with bounded density
• **very few results for** \(d > 1 \): Schenker (2004) and Hislop, Klopp, and Schenker (2005) prove Hölder continuity of \(\lambda \mapsto N_\lambda(E) \) IF the single-site measure is absolutely continuous (ac) with bounded density.

Our approach:

• works in any dimension and works for a general (i.e. not necessarily ac, in particular for Bernoulli) single-site measure of compact support

• yields quantitative information about the DOSm, not just the IDS
IV. Ideas of the proof
of the main result
Necessary features of the model

- the theory is **not restricted** to the lattice operators considered so far
- in fact, our framework applies to all discrete random operators \(H_\omega \) where

 1. the DOSm is well-defined as a spectral average:

\[
n(f) := \frac{1}{m} \mathbb{E}\{\operatorname{Tr}(Pf(H_\omega)P)\}, \ f \in C_c(\mathbb{R}),
\]

for some fixed finite-rank projector \(P \), \(\operatorname{rk}P = m \), some \(m \in \mathbb{N} \)

 2. the **operator has a “finite-range structure,”** that is for each \(n \in \mathbb{N} \), the function

\[
\omega = (\omega_j) \mapsto \operatorname{Tr}(P(H_\omega)^nP)
\]

depends on only finitely many variables \(\omega_j \) whose number is bounded above by some counting function \(\Gamma : \mathbb{N} \to \mathbb{N} \)

The “finite-range structure” allows to only consider the effects of varying the probability distribution at **finitely** many sites

 typically \(\Gamma(n) \sim \text{volume of ball of radius } n \)
Our proof of the qualitative and quantitative continuity of the DOSm has two key steps:

step 1 - finite range reduction:

- Given $\Omega = [-V, V]^d$ and prob. measures (ν_α) and ν supported on $[-V, V]$, i.e.

 $$\nu_\alpha^{(\infty)} := \bigotimes_{j \in \mathbb{Z}^d} \nu_\alpha, \quad \nu^{(\infty)} := \bigotimes_{j \in \mathbb{Z}^d} \nu \quad \ldots \quad \text{prob. meas. on } \Omega$$
Our proof of the qualitative and quantitative continuity of the DOSm has two key steps:

step 1 - finite range reduction:

- Given $\Omega = [-V, V]^d$ and prob. measures (ν_α) and ν supported on $[-V, V]$, i.e.

 $$
 \nu^{(\infty)}_\alpha := \bigotimes_{j \in \mathbb{Z}^d} \nu_\alpha, \quad \nu^{(\infty)} := \bigotimes_{j \in \mathbb{Z}^d} \nu \quad \text{... prob. meas. on } \Omega
 $$

- **Basic question:** For $F \in C(\Omega)$, estimate

 $$
 |\nu^{(\infty)}_\alpha(F) - \nu^{(\infty)}(F)|
 $$

- **Problem:** product measures differ in **infinitely** many factors

- here: $F(\omega) = \text{Tr}(Pf(H_\omega)P)$, for arbitrary $f \in C_c(\mathbb{R})$
Problem: product measures differ in \textbf{infinitely} many factors

Solution: reduce to a situation where product measures differ on only finitely many factors: replace $\nu_\alpha^{(\infty)}$ by

$$
\nu_\alpha^{(M)} := \left(\bigotimes_{j \in \mathbb{Z}^d; \|j\|_\infty \leq M} \nu_\alpha \right) \otimes \left(\bigotimes_{j \in \mathbb{Z}^d; \|j\|_\infty > M} \nu \right), \quad \text{for some } M \in \mathbb{N}
$$

Lemma ("finite range reduction")

For any $F \in \mathcal{C}(\Omega)$ and $\epsilon > 0$, there exists an integer $M = M(F, \epsilon) \in \mathbb{N}$ such that

$$
|\nu_\alpha^{(M)}(F) - \nu_\alpha^{(\infty)}(F)| < \epsilon, \quad \forall \alpha \in \mathbb{N}.
$$

we show that $M = M(F, \epsilon)$ can be determined explicitly by finding $\tilde{F} \in \mathcal{C}(\Omega)$ depending on only finitely many variables

$$
\{\omega_j : \|j\|_\infty \leq M\} \quad \text{such that } \|F - \tilde{F}\|_\infty < \frac{\epsilon}{2}.
$$

specifically, for $F(\omega) = \text{Tr}(Pf(H_\omega)P)$ and $f \in \mathcal{C}_c(\mathbb{R})$ we use approximation of f by Bernstein polynomials to determine \tilde{F}

relies on the operator having a "finite-range structure"
step 2 - single site variations:

- Step 1 reduces to a situation where we vary the measure at only finitely many sites.
- Vary one site at a time leads to a family of finite rank perturbations; more generally, consider

\[\lambda \mapsto H_\lambda := H^{(0)} + \lambda T_1, \]

where \(T_1 \in S_1 \) and \(H^{(0)} \) bounded s.a.

Lemma ("Lipschits property")

Let \(T_2 \in S_2 \) be given. Then, for every \(f \in \text{Lip}_c(\mathbb{R}) \) with Lipschitz constant \(L_f \), the map \[\mathbb{R} \ni \lambda \mapsto \text{Tr}(T_2 f (H_\lambda) T_2) \] is Lipschitz with Lipschitz constant \[\leq 2 \| T_2 \|_{S_2}^2 \cdot L_f. \]

- Proof uses quasi-analytic extensions & Helffer-Sjöstrand functional calculus.
step 2 - single site variations:

- step 1 reduces to a situation where we vary the measure at only finitely many sites.
- vary one site at a time leads to a family of finite rank perturbations; more generally, consider

\[\lambda \mapsto H_\lambda := H^{(0)} + \lambda T_1, \]

where \(T_1 \in S_1 \) and \(H^{(0)} \) bounded s.a.

Lemma ("Lipschitz property")

Let \(T_2 \in S_2 \) be given. Then, for every \(f \in \text{Lip}_c(\mathbb{R}) \) with Lipschitz constant \(L_f \), the map

\[\mathbb{R} \ni \lambda \mapsto \text{Tr}(T_2 f(H_\lambda) T_2) \]

is Lipschitz with

Lipschitz constant \(\leq 2 \| T_2 \|^2_{S_2} \cdot L_f \).

- proof uses quasi-analytic extensions & Helffer-Sjöstrand functional calculus
- extends a similar lemma by B. Simon for \(C^\infty \) functions (Proc. AMS 1998)
- known results on operator Lipschitz functions (generalizing results on the spectral shift function), in general, require higher regularity in \(f \)
V. Application: Continuity of the Lyapunov exponent in the probability distribution
Continuity of the Lyapunov exponent in the probability distribution

- continuity statement of the DOSm on the underlying probability distribution
- derive respective continuity statements for integral transforms of the DOSm

 e.g. for random Schrödinger operators on \(\mathbb{Z} \)

- Lyapunov exponent related to DOSm via the Thouless formula

\[
L_\nu(E) = \int_{\mathbb{R}} \log |E' - E| \ dn^{(\infty)}_\nu(E') \in [0, \infty), \ E \in \mathbb{C}.
\]
We use our quantitative continuity theorem for the DOSm to prove:

Theorem

(i) **Qualitative continuity:** For each fixed $E \in \mathbb{C}$, the map

$$\nu \mapsto L_\nu(E)$$

is continuous in the w^*-topology on $\mathcal{P}([-V, V])$.

(ii) **Assume that $E \in \mathbb{R}$ satisfies:** there exists a constant $0 < D < \infty$ and an exponent $0 < \beta \leq 1$ such that for all $\epsilon > 0$:

$$|N_{\nu_\alpha}(E + \epsilon) - N_{\nu_\alpha}(E - \epsilon)| \leq D\epsilon^\beta, \forall \alpha \in \mathbb{N},$$

$$|N_\nu(E + \epsilon) - N_\nu(E - \epsilon)| \leq D\epsilon^\beta$$

(*equi-β-Hölder continuity at E*)

Then, there exists $\alpha_0 \in \mathbb{N}$ and $C_L = C_L(D, \beta)$ such that for all $\alpha \geq \alpha_0$,

$$|L_{\nu_\alpha}(E) - L_\nu(E)| \leq C_L \cdot [d_w(\nu_\alpha, \nu)]^{\frac{1}{3}} \left(\frac{\beta}{\beta + 1}\right).$$
Remarks:

- result extends to random Schrödinger operators on the strip: continuity for the sum of all non-negative Lyapunov exponents
- recovers recent results by Avila, Eskin, Viana (announced); Viana, Bocker (ETDS 2017) on (qualitative) continuity of Lyapunov exponents in the probability distribution for products of random matrices
- in addition, in part (ii), we obtain quantitative continuity results for the case of Schrödinger cocycles at energies where the IDS is equi-Hölder continuous
- The theorem extends to random Schrödinger operators on the strip: continuity for the sum of all non-negative Lyapunov exponents
- Within our framework, the Hölder condition on the IDS in part (ii) cannot be relaxed
continuity theorem for the DOSm for \((E + i\epsilon) \in \mathbb{H}^+\) yields

\[|L_{\nu\alpha}(E + i\epsilon) - L_\nu(E + i\epsilon)| \leq C_3 \frac{1}{\epsilon} \cdot d_W(\nu_\alpha, \nu)^{\frac{1}{3}}, \text{ for all } \alpha \geq \alpha_0.\]

2. use successive approximation to obtain bound on the rate of convergence of:

\[|L_{\nu\alpha}(E) - L_\nu(E)| \leq |L_{\nu\alpha}(E) - L_{\nu\alpha}(E + i\epsilon)| + |L_{\nu\alpha}(E + i\epsilon) - L_\nu(E + i\epsilon)| + |L_\nu(E + i\epsilon) - L_\nu(E)|\]

3. quantify modulus of continuity for \(\epsilon \mapsto L_\nu(E + i\epsilon)\) as \(\epsilon \to 0^+\) (for fixed \(\nu\)):

\[
\limsup_{\epsilon \to 0^+} \left| \frac{L_\nu(E + i\epsilon) - L_\nu(E)}{\epsilon^\beta} \right| = \frac{1}{\beta} \limsup_{\epsilon \to 0^+} \left\{ \epsilon^{1-\beta} P_{n_\nu}^{(\infty)}(E + i\epsilon) \right\} \quad (1)
\]

with \(P_{n_\nu}^{(\infty)}\) ... Poisson transform of the DOSm

- (1) relates fractional derivatives of the Lyapunov exponent to continuity properties of the DOSm (extension of the starting point for Kotani theory where \(\beta = 1\))
- (1) is origin of equi-\(\beta\)-Hölder continuity condition in quantitative continuity result for the LE in the probability measure
Thank you!
[1] Peter D. Hislop, C. A. Marx, *Dependence of the Density of States on the Probability Distribution for Discrete Random Schrödinger Operators*, to appear in International Mathematics Research Notices, rny156, https://doi.org/10.1093/imrn/rny156
[1] Peter D. Hislop, C. A. Marx, *Dependence of the Density of States on the Probability Distribution for Discrete Random Schrödinger Operators*, to appear in International Mathematics Research Notices, rny156, https://doi.org/10.1093/imrn/rny156

[2] Peter D. Hislop, C. A. Marx, *Dependence of the density of states on the probability distribution - part II: Schrödinger operators on \mathbb{R}^d and non-compactly supported probability measures*, in progress.