NNLO QCD corrections to $Wb\bar{b}$ production at the LHC

Heribertus Bayu Hartanto,¹ René Poncelet,¹ Andrei Popescu,¹ and Simone Zoia²

¹Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
²Dipartimento di Fisica and Arnold-Regge Center, Università di Torino, and INFN, Sezione di Torino, Via P. Giuria 1, I-10125 Torino, Italy

(Dated: May 17, 2022)

We compute theoretical predictions for the production of a W-boson in association with a bottom-quark pair at hadron colliders at next-to-next-to-leading order (NNLO) in QCD, including the leptonic decay of the W-boson, while treating the bottom quark as massless. This calculation constitutes the very first $2 \rightarrow 3$ process with a massive external particle to be studied at such a perturbative order. We derive an analytic expression for the required two-loop five-particle amplitudes in the leading colour approximation employing finite-field methods. Numerical results for the cross section and differential distributions are presented for the Large Hadron Collider at $\sqrt{s} = 8$ TeV. We observe an improvement of the perturbative convergence for the inclusive case and for the prediction with a jet veto upon the inclusion of the NNLO QCD corrections.

INTRODUCTION

Studying vector boson production in association with multi-jet final states at the Large Hadron Collider (LHC) offers a wide variety of interesting phenomenological explorations. In particular, the production of a W-boson in association with bottom quark (b) jets is very interesting both from experimental and theoretical perspectives. It is crucial to scrutinise experimental signatures for both $W+b$ jet and $W+2b$ jets, in order to test our knowledge of the strong interaction at high energies and improve our modelling of bottom-quark jets at the LHC. The cross sections for both the signatures have been measured at the Tevatron [1, 2] and LHC [3–6]. While the $W+b$ jet signature provides a fundamental probe of the bottom-quark parton distribution functions (PDFs), the $W+2b$ jets final state constitutes an irreducible background to many important reactions studied at the LHC, such as the Higgs-strahlung process ($pp \rightarrow WH (H \rightarrow b\bar{b})$) and single top production ($pp \rightarrow bt (t \rightarrow Wb)$), as well as many beyond the Standard Model (BSM) searches. Moreover, the $W+b$ jets processes are interesting from a theoretical point of view as they are a perfect testing ground to study the different ways of treating the b-quark. In particular, the choice of whether to take its mass and presence in the PDF into account, leads to two theoretical points of view as they are a perfect testbed for both from experimental and theoretical perspectives. It is crucial to scrutinise experimental signatures for both $W+b$ jet and $W+2b$ jets, in order to test our knowledge of the strong interaction at high energies and improve our modelling of bottom-quark jets at the LHC. The cross sections for both the signatures have been measured at the Tevatron [1, 2] and LHC [3–6]. While the $W+b$ jet signature provides a fundamental probe of the bottom-quark parton distribution functions (PDFs), the $W+2b$ jets final state constitutes an irreducible background to many important reactions studied at the LHC, such as the Higgs-strahlung process ($pp \rightarrow WH (H \rightarrow b\bar{b})$) and single top production ($pp \rightarrow bt (t \rightarrow Wb)$), as well as many beyond the Standard Model (BSM) searches. Moreover, the $W+b$ jets processes are interesting from a theoretical point of view as they are a perfect testing ground to study the different ways of treating the b-quark. In particular, the choice of whether to take its mass and presence in the PDF into account, leads to two disparate computational schemes: the four- (4FS) and five-flavour number schemes (5FS).

In this letter we compute the NNLO QCD corrections to W-boson production in association with a bottom-quark pair, which we henceforth call $Wb\bar{b}$, including the leptonic decay of the W-boson ($W \rightarrow \ell \nu$). We work in 5FS, thus treating the bottom quark, and additionally the charged leptons, as massless particles. They contribute to the $W+2b$ jets signature, as well as $W+1b$ jet production when at least one b-jet is tagged. Extensive studies of $Wb\bar{b}$ production at NLO QCD accuracy [7–12] indicate a poor perturbative behaviour at such order (i.e. the corrections are large and the scale uncertainties do not improve with respect to the leading order predictions for inclusive final states) due to the opening of the gg-initiated channel. Several efforts to assess corrections beyond NLO were done by including additional jet radiations [13, 14]. It is clear that a fully-fledged NNLO QCD prediction is mandatory to improve the perturbative convergence of $Wb\bar{b}$ production.

Improvement of theoretical precision is also a critical component of the progress in Particle Physics, as we enter the precision LHC era with the upcoming Run 3 and high-luminosity phases. We have seen spectacular breakthroughs in perturbative QCD calculations in the recent years, with a number of $2 \rightarrow 3$ processes computed at NNLO QCD accuracy for fully massless final states [15–20]. This success stems from both the advancements in the scattering amplitude computations and the developments of NNLO subtraction schemes.

The analytic computation of the required two-loop five-particle amplitudes is one of the main bottlenecks towards achieving NNLO QCD accuracy for $2 \rightarrow 3$ processes. However, the progress for five-particle processes with a single massive external particle has been spectacular recently. All planar two-loop five-particle Feynman integrals are now available analytically in terms of bases of special functions which substantially simplify computation of the finite remainders, and allow for an extremely efficient numerical evaluation [21–24]. Partial results for the non-planar integral families have also become available recently [27, 29]. This progress resulted in a number of two-loop amplitude computations at leading colour [25, 30] and in this work we derive the analytic form of the leading colour two-loop amplitude contributing to $W(\rightarrow \ell \nu) b\bar{b}$ production, and employ it to compute a number of observables for this process at NNLO in QCD. Our computation marks a significant precision-calculation milestone, since it represents the very first prediction to be derived for a $2 \rightarrow 3$ process involving a massive final state.

This letter is structured as follows. We begin by dis-
Corrections do not apply to the W matrix elements. We consider pp → ℓνbb̄ production (with ℓ = e or μ) up to O(α2αs4). The calculation has been performed within the STRIPPER framework, a C++ implementation of the four-dimensional formulation of the sector-improved residue subtraction scheme [33–35]. The tree-level matrix elements are supplied by the AvH library [36], while the one-loop matrix elements are provided by the OPENLOOPS package [37, 38]. We compute the double virtual contribution \(V^{(2)} \) in the leading colour approximation for

\[
u(p_1) + \bar{d}(p_2) \rightarrow b(p_3) + b(p_4) + \ell^+(p_5) + ν(p_6)\,.
\]

It consists of the (colour and helicity summed) two-loop and one-loop squared matrix elements,

\[
\nu^{(2)} = \sum_{\text{col. hel.}} \sum \left\{ 2 \text{Re} \left[M^{(0)*} F^{(2)} \right] + |F^{(1)}|^2 \right\},
\]

where \(M^{(0)} \) is the tree-level amplitude, and \(F^{(L)} \) is the L-loop finite remainder. We decompose \(\nu^{(2)} \) at leading colour into

\[
\nu^{(2)}_{\text{LC}} = \nu^{(2),1} + \frac{n_f}{N_c} \nu^{(2),n_f} + \frac{n_f^2}{N_c^2} \nu^{(2),n_f^2},
\]

where \(n_f \) is the number of massless closed fermion loops. We note that the leading-colour approximation is only enforced in the scale-independent part of the double virtual contribution,

\[
\nu^{(2)}(\mu_R^2) = \nu^{(2)}_{\text{LC}}(\mu_R^2) + \sum_{i=1}^4 c_i \ln^i \left(\frac{\mu_R^2}{\mu_R^2} \right),
\]

where \(s_{ij} = (p_i + p_j)^2 \), and the kinematic-dependent coefficients \(c_i \) are expressed in terms of full colour lower-order matrix elements.

The analytic computation of the two-loop amplitude follows closely Ref. [25], with modifications implemented to incorporate the decay of the W-boson. Since the QCD corrections do not apply to the W \(\rightarrow \ell ν \) decay, we can separate the 6-point squared amplitude \(M^{(2)}_6 \) into the product of the 5-point W-production squared amplitude \(M^{(2)}_{5\muκ} \) and the leptonic tensor \(D^{\nuκ} \),

\[
M^{(2)}_6 = M^{(2)}_{5\muκ} D^{\nuκ} |P(s_{56})|^2,
\]

where \(P(s) = 1/(s - M^2_W + i M_W Γ_W) \) is the W-boson propagator factor. We perform tensor decomposition on the 5-point W-production squared amplitude,

\[
M^{(2)\nuκ}_{5\muκ} = \sum_{i=1}^{16} a_i^{(2)} v^{(2)\nuκ}_i,
\]

using \(\{ p_1, p_2, p_3, p_5 + p_6 \} \) as the spanning basis to build the \(v^{(2)\nuκ}_i \) basis tensors [39, 40]. The coefficients \(a_i^{(2)} \) can be determined by contracting Eq. (6) with \(v_{\muκ} \) and inverting the resulting linear system of equations. The analytic form of the contracted squared amplitudes \(v_{\muκ} M^{(2)\nuκ}_5 \) was derived using finite-field reconstruction methods within the \textsc{FiniteFlow} framework [41, 42]. We expressed them in terms of the special functions of Ref. [26] and rational coefficients, which we simplified using \textsc{MultivariateApart} [43] and \textsc{Singular} [44]. We further implemented these amplitudes in C++ for a fast numerical evaluation. We evaluate the special functions using the \textsc{PentagonFunction++} library [26]. Our analytic result is validated numerically against the \(W + 4 \) quarks helicity amplitudes derived in Ref. [31] at the level of the helicity-summed squared finite remainder. The complete analytic expression is included in ancillary files.

PHENOMENOLOGY

We present numerical results for the LHC center-of-mass energy \(\sqrt{s} = 8 \) TeV, focusing on the \(W^+ (\rightarrow \ell^+ ν) b̄b \) final state. The Standard Model input parameters are

\[
M_W = 80.351972 \text{ GeV}, \quad Γ_W = 2.0842989 \text{ GeV},
\]

\[
M_Z = 91.153481 \text{ GeV}, \quad Γ_Z = 2.4942665 \text{ GeV},
\]

\[
G_F = 1.16638 \times 10^{-5} \text{ GeV}^{-2},
\]

from which the electromagnetic coupling \(α \) can be derived within the \(G_μ \) scheme. We assume a diagonal CKM matrix and employ the \textsc{NNPDF31} __as _0118 PDF sets [45] with its perturbative order matching that of the corresponding calculations. Since we treat the bottom quark as massless, we need a flavour-sensitive jet algorithm to define the flavoured jets in an infrared-safe way. The partons are clustered into a jet using the flavour-\(k_T \) jet algorithm [46] with \(R = 0.5 \). The jets (including b-jets) and charged leptons are required to fulfill the following event-selection criteria [9]:

\[
p_{\text{T},\ell} > 30 \text{ GeV}, \quad |η| < 2.1, \quad p_{\text{T},j} > 25 \text{ GeV}, \quad |η_j| < 2.4.
\]

The renormalisation and factorisation scales are set to a common value \(μ_R = μ_F = H_T \), with

\[
H_T = E_T(ℓν) + p_T(b_1) + p_T(b_2),
\]

where \(b_1, b_2 \) are correspondingly the hardest and second hardest b-flavoured (either b or b̄) jets. Unless otherwise specified, the scale uncertainties are obtained using the 7-point scale variation, where \(μ_R \) and \(μ_F \) are
Table I. Fiducial cross sections for $pp \to \ell^+\nu b\bar{b}$ production at the LHC with $\sqrt{s} = 8$ TeV at LO, NLO and NNLO for both inclusive (inc) and exclusive (exc) final states. The corresponding \mathcal{K} factor is defined as $\mathcal{K} = \sigma_{NLO}\left(\sigma_{NNLO}\right) / \sigma_{LO}$. The statistical errors are shown for the central predictions. Scale uncertainties for the exclusive predictions are provided using both the standard 7-point scale variation and uncorrelated prescription of Ref. [47]. The latter is quoted inside parentheses in the error estimates.

	inclusive [fb]	\mathcal{K}_{inc}	exclusive [fb]	\mathcal{K}_{exc}
σ_{LO}	213.2(1)+21.4%-16.1%	-	213.2(1)+21.4%-16.1%	-
σ_{NLO}	362.0(6)+13.7%-11.4%	1.7	249.8(4)+3.9%+27%-6.0%(-19)%	1.17
σ_{NNLO}	445(5)+6.7%-7.0%	1.23	267(3)+1.8(11)%-2.5(-11)%	1.067

TABLE I. Fiducial cross sections for $pp \to \ell^+\nu b\bar{b}$ production at the LHC with $\sqrt{s} = 8$ TeV at LO, NLO and NNLO for both inclusive (inc) and exclusive (exc) final states. The corresponding \mathcal{K} factor is defined as $\mathcal{K} = \sigma_{NLO}\left(\sigma_{NNLO}\right) / \sigma_{LO}$. The statistical errors are shown for the central predictions. Scale uncertainties for the exclusive predictions are provided using both the standard 7-point scale variation and uncorrelated prescription of Ref. [47]. The latter is quoted inside parentheses in the error estimates.

varied by a factor of 2 around H_T, while satisfying the $1/2 \leq \mu_R / \mu_F \leq 2$ constraint.

Based on the number of jets required in the final states, we can define the following configurations for the NLO and NNLO predictions:

- inclusive (inc): at least 2 b-jets;
- exclusive (exc): exactly 2 b-jets and no other jets.

Naïve scale variation of the exclusive prediction may lead to an underestimation of the scale uncertainties [47]. Hence, for the exclusive configuration, we use also the uncorrelated prescription of Ref. [47], in addition to the 7-point scale variation.

In Table I we present numerical results for the fiducial cross section for the inclusive and exclusive configurations at different perturbative orders. As observed in the previous studies [9, 14], the NLO QCD corrections are large in the case of the inclusive phase space. In our calculation this amounts to about 70% corrections. The jet veto in the exclusive selection reduces the NLO QCD corrections to a moderate 17%. A similar observation holds at NNLO QCD, where we find a positive correction of 23% in the inclusive and 6.7% in the exclusive case. The NNLO QCD corrections are smaller than the NLO QCD corrections in both cases indicating perturbative convergence. In that respect, by using the scale dependence as the canonical way to estimate the uncertainties from missing higher orders, we conclude that theoretical uncertainty reduces with inclusion of higher order terms. However, for the inclusive phase space, the NLO corrections are significantly larger than the LO scale dependence. The situation at NNLO QCD slightly improves, but the corrections are still only barely covered by the NLO scale band. For the exclusive case, the NLO corrections are within the LO band, however the estimated uncertainty from the 7-point scale variation is comparatively small, only 5%. The NNLO corrections here are also smaller, but are well outside the NLO scale uncertainty, indicating that the NLO scale dependence is underestimated. This motivates the alternative prescription of Ref. [47] to estimate theory uncertainties, taking into account the jet veto effect. The uncertainties resulting from this prescription are shown in the parentheses and are significantly larger. The higher order corrections fall well within the uncertainty bands, implying that this method is more reliable, but also quite conservative.

The double virtual corrections, which have been included only in the leading colour approximation, deserve an additional comment. For the inclusive setup, we find that the contribution of Eq. (4) to the cross section is about 5%. In the exclusive case, the Born configurations are unaffected by the jet veto, but a fraction of the hard radiative corrections are suppressed. This leads to an enhancement of the sensitivity to the double virtual matrix element, which contributes $\sim 10\%$ of the fiducial cross section in this case. The naïve expectation for the subleading colour effects is that they are about 10% of the double virtual matrix element, implying that potential corrections to the fiducial cross section would be about 1% (0.5%) for the exclusive (inclusive) case.
Turning to the differential distributions, we present the transverse momentum of the charged lepton, $p_{T,\ell}$, in Fig. 1 for the inclusive, as well as exclusive, phase space selection. Focusing on the perturbative convergence of the spectrum, we can draw similar conclusions as for the fiducial cross section. In the inclusive case, we find sizeable NNLO QCD corrections of $\sim 20\%$, which are barely contained in the NLO uncertainty. The corrections have a tendency to increase at higher energies, being the largest around $p_{T,\ell} \approx 100$ GeV, similarly to the NLO corrections. For the exclusive phase space, we find positive corrections of about 7% for low $p_{T,\ell}$, and negative corrections of order $\sim 10\%$ for $p_{T,\ell} > 100$ GeV. Again, we observe that the decorrelated prescription to estimate the uncertainty is more reliable.

The next two distributions characterise the $b\bar{b}$ system. In Fig. 2, we show the transverse momentum of the $b\bar{b}$ system, $p_{T,b\bar{b}}$. In terms of perturbative corrections we find a similar trend as for the charged lepton transverse momentum. Additionally, the absolute distributions highlight that the inclusive spectrum is, in general, harder than the exclusive case, confirming the intuition that the jet veto suppresses additional large transverse momentum jets. In the case of exclusive phase space, this differential distribution can be understood as a proxy for the W transverse momentum.

The distribution of the invariant mass of the $b\bar{b}$ system, $M_{b\bar{b}}$, is shown in Fig. 3. This observable is interesting when considering the QCD process $Wb\bar{b}$ as background to the Higgs-strahlung process $WH(\rightarrow b\bar{b})$. Around the Higgs mass we can see that the NNLO QCD corrections are about 20% in the inclusive selection and only $\sim 5\%$ in the exclusive case. By comparing the two prescriptions for estimating the uncertainty, we see that around the Higgs mass the 7-point prescription implies a 2-3 times smaller uncertainty than the decorrelated method.

The reader is invited to find our results for other observables in the auxiliary files to this publication.

CONCLUSIONS

We presented fiducial and differential cross sections for the $Wb\bar{b}$ process at the LHC with 8 TeV center-of-mass energy. This includes the computation of the double virtual amplitudes in the leading colour approximation with incorporated decay of the W-boson.

We addressed the observation of large NLO QCD corrections in this process, and found that the NNLO QCD corrections are significantly smaller. We observe a significant reduction of the scale dependence, which indicates perturbative convergence. We discussed the behaviour of the jet-vetoed cross section, which exhibits much smaller corrections but suffers from accidental cancellations in the scale dependence, rendering the theory uncertainty estimates from canonical scale variation unreliable. At
NNLO accuracy we validated the alternative prescription of Ref. [17] for estimating the theory uncertainties.

This work constitutes the first NNLO QCD calculation for a $2 \rightarrow 3$ process including a massive final state particle. Studying this class of processes at such accuracy is of the utmost importance for the physics programme of the LHC. However, the steep requirements for amplitudes involving many loops and high multiplicities used to put them beyond the reach of computational capabilities. Our results demonstrate that the door of precision phenomenology is finally open for these processes as well.

The authors would like to thank Michał Czakon for making the STRIPPER library available to us, Vasily Sotnikov for help in the comparison with the results of Ref. [31], and Simon Badger and Alexander Mitov for many inspiring discussions and useful comments on the draft. This project received funding from the European Union’s Horizon 2020 research and innovation programmes New level of theoretical precision for LHC Run 2 and beyond (grant agreement No 683211), and High precision multi-jet dynamics at the LHC (grant agreement No 772009). HBH was partially supported by STFC consolidated HEP theory grant ST/T000694/1. SZ gratefully acknowledges the computing resources provided by the Max Planck Institute for Physics and by the Max Planck Computing & Data Facility. AP is also supported by the Cambridge Trust and Trinity College Cambridge. RP acknowledges the support from the Leverhulme Trust and the Isaac Newton Trust, as well as the use of the DiRAC Cumulus HPC facility under Grant No. PPSP226.

*hbhartanto@hep.phy.cam.ac.uk
†poncelet@hep.phy.cam.ac.uk
‡popescu@hep.phy.cam.ac.uk
§simone.zoia@unito.it

[1] V. M. Abazov et al. (D0), A Search for $Wb\bar{b}$ and WH Production in $p\bar{p}$ Collisions at $\sqrt{s} = 1.96$ TeV, Phys. Rev. Lett. 94, 091802 (2005), arXiv:hep-ex/0410062.
[2] V. M. Abazov et al. (D0), Measurement of the $pp \rightarrow W + b + X$ production cross section at $\sqrt{s} = 1.96$ TeV, Phys. Lett. B 718, 1314 (2013) arXiv:1210.0627 [hep-ex]
[3] G. Aad et al. (ATLAS), Measurement of the cross-section for the production of a W boson in association with $b\bar{b}$ jets in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector, Phys. Lett. B 707, 418 (2012) arXiv:1109.1470 [hep-ex]
[4] G. Aad et al. (ATLAS), Measurement of the cross-section for W boson production in association with $b\bar{b}$-jets in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector, JHEP 06, 084, arXiv:1302.2929 [hep-ex]
[5] S. Chatrchyan et al. (CMS), Measurement of the Production Cross Section for a W Boson and Two b Jets in pp Collisions at $\sqrt{s}=7$ TeV, Phys. Lett. B 735, 204 (2014) arXiv:1312.6608 [hep-ex]
[6] V. Khachatryan et al. (CMS), Measurement of the production cross section of a W boson in association with two b jets in pp collisions at $\sqrt{s} = 8$ TeV, Eur. Phys. J. C 77, 92 (2017) arXiv:1608.07561 [hep-ex]
Master Integrals with one off-shell leg. JHEP **01**, 199, [arXiv:2009.13917 [hep-ph]]

[24] N. Syrrakos, Pentagon integrals to arbitrary order in the dimensional regulator, JHEP **06**, 037, [arXiv:2012.10635 [hep-ph]]

[25] S. Badger, H. B. Hartanto, and S. Zoia, Two-Loop QCD Corrections to $W\bar{b}$ Production at Hadron Colliders, Phys. Rev. Lett. **127**, 012001 (2021), [arXiv:2102.02516 [hep-ph]]

[26] D. Chicherin, V. Sotnikov, and S. Zoia, Pentagon Functions for One-Mass Planar Scattering Amplitudes, (2021), [arXiv:1910.06275 [hep-ph]]

[27] C. G. Papadopoulos and C. Wever, Internal Reduction method for computing Feynman Integrals, JHEP **02**, 112, [arXiv:1910.06275 [hep-ph]]

[28] S. Badger, H. B. Hartanto, and S. Zoia, Two-loop QCD Corrections to $W\bar{b}$ Production at Hadron Colliders, Phys. Rev. Lett. **127**, 012001 (2021), [arXiv:2102.02516 [hep-ph]]

[29] A. Kardos, C. G. Papadopoulos, A. V. Smirnov, N. Syrrakos, and C. Wever, Two-loop non-planar hexa-box integrals with one massive leg, (2022), [arXiv:2201.07509 [hep-ph]]

[30] S. Badger, H. B. Hartanto, J. Kryš, and S. Zoia, Two-loop leading-colour QCD helicity amplitudes for Higgs boson production in association with a bottom-quark pair at the LHC, JHEP **11**, 012, [arXiv:2107.14733 [hep-ph]]

[31] S. Abreu, H. Ito, B. Page, and W. Tschernow, Two-loop hexa-box integrals for non-planar five-point one-mass processes, JHEP **03**, 182, [arXiv:2107.14180 [hep-ph]]

[32] A. Kardos, C. G. Papadopoulos, A. V. Smirnov, N. Syrrakos, and C. Wever, Two-loop non-planar hexa-box integrals with one massive leg, (2022), [arXiv:2201.07509 [hep-ph]]

[33] S. Abreu, F. Febres Cordero, H. Ito, M. Klinkert, B. Page, and V. Sotnikov, Leading-color two-loop amplitudes for four partons and a W boson in QCD, JHEP **04**, 042, [arXiv:2110.05451 [hep-ph]]

[34] S. Badger, H. B. Hartanto, J. Kryš, and S. Zoia, Two-loop leading colour helicity amplitudes for $W^\pm + j$ production at the LHC, (2022), [arXiv:2201.04075 [hep-ph]]

[35] M. Czakon, A novel subtraction scheme for double-real radiation at NNLO, Phys. Lett. B **693**, 259 (2010), [arXiv:1005.0274 [hep-ph]]

[36] M. Czakon and D. Heymes, Four-dimensional formulation of the sector-improved residue subtraction scheme, Nucl. Phys. B **890**, 152 (2014), [arXiv:1408.2500 [hep-ph]]

[37] M. Czakon, A. van Hameren, A. Mitov, and R. Poncet, Single-jet inclusive rates with exact color at $\mathcal{O}(\alpha_s^4)$, JHEP **10**, 262, [arXiv:1907.12911 [hep-ph]]

[38] M. Bury and A. van Hameren, Numerical evaluation of multi-gluon amplitudes for High Energy Factorization, Comput. Phys. Commun. **196**, 592 (2015), [arXiv:1503.08612 [hep-ph]]

[39] F. Buccioni, S. Pozzorini, and M. Zoller, On-the-fly reduction of open loops, Eur. Phys. J. C **78**, 70 (2018), [arXiv:1710.11452 [hep-ph]]

[40] F. Buccioni, J.-N. Lang, J. M. Lindert, P. Maierhöfer, S. Pozzorini, H. Zhang, and M. F. Zoller, OpenLoops 2, Eur. Phys. J. C **79**, 866 (2019), [arXiv:1907.13071 [hep-ph]]

[41] L. Chen, A prescription for projectors to compute helicity amplitudes in D dimensions, Eur. Phys. J. C **81**, 417 (2021), [arXiv:1904.00705 [hep-ph]]

[42] T. Peraro and L. Tancredi, Tensor decomposition for bosonic and fermionic scattering amplitudes, Phys. Rev. D **103**, 054042 (2021), [arXiv:2012.00820 [hep-ph]]

[43] T. Peraro, Scattering amplitudes over finite fields and multivariate functional reconstruction, JHEP **12**, 030, [arXiv:1608.01902 [hep-ph]]

[44] T. Peraro, FiniteFlow: multivariate functional reconstruction using finite fields and dataflow graphs, JHEP **07**, 031, [arXiv:1905.08019 [hep-ph]]

[45] M. Heller and A. von Manteuffel, MultivariateApart: Generalized partial fractions, Comput. Phys. Commun. **271**, 108174 (2022), [arXiv:2101.08283 [cs.SC]]

[46] W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann, Singular 4-2-1 — A computer algebra system for polynomial computations, http://www.singular.uni-kl.de (2021).

[47] R. D. Ball et al. (NNPDF), Parton distributions from high-precision collider data, Eur. Phys. J. C **77**, 663 (2017), [arXiv:1706.00428 [hep-ph]]

[48] A. Baudi, G. P. Salam, and G. Zanderighi, Infrared safe definition of jet flavor, Eur. Phys. J. C **47**, 113 (2006), [arXiv:hep-ph/0601139]

[49] I. W. Stewart and F. J. Tackmann, Theory Uncertainties for Higgs and Other Searches Using Jet Bins, Phys. Rev. D **85**, 034011 (2012), [arXiv:1107.2117 [hep-ph]]