Review

Precancerous lesions of the stomach, gastric cancer and hereditary gastric cancer syndromes

Irene Gullo1*, Federica Grillo2,3*, Luca Mastracci2,3, Alessandro Vanoli4, Fatima Carneiro1, Luca Saragoni5, Francesco Limarzi6, Jacopo Ferro2, Paola Parente7, Matteo Fassan8

1 Department of Pathology, Centro Hospitalar Universitário de São João (CHUSJ) & Department of Pathology, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal and Instituto de Investigação e Inovação em Saúde (i3S) & Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Portugal; 2 Anatomic Pathology Unit, Department of Surgical Sciences and Integrated Diagnostics (DICS), University of Genova, Italy; 3 Ospedale Policlinico San Martino, IRCCS for Oncology and Neuroscience, Genova, Italy; 4 Anatomic Pathology Unit, Department of Molecular Medicine, University of Pavia and Fondazione IRCCS San Matteo Hospital, Pavia, Italy; 5 UO Anatomia Patologica, Ospedale G.B. Morgagni-L. Pierantoni, Forlì, Italy; 6 Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST)/IRCCS, Meldola (FC), Italy; 7 Pathology Unit, Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG) Italy; 8 Surgical Pathology Unit, Department of Medicine (DMED), University of Padua, Italy

* These authors contributed equally

Summary

Gastric cancer accounts for about 6% of cancers worldwide, being the fifth most frequently diagnosed malignancy and the third leading cause of cancer related death. Gastric carcinogenesis is a multistep and multifactorial process and is the result of the complex interplay between genetic susceptibility and environmental factors. The identification of predisposing conditions and of precancerous lesions is the basis for screening programs and early stage treatment. Furthermore, although most gastric cancers are sporadic, familial clustering is observed in up to 10% of patients. Among them, hereditary cases, related to known cancer susceptibility syndromes and/or genetic causes are thought to account for 1-3% of all gastric cancers. The pathology report of gastric resections specimens therefore requires a standardized approach as well as in depth knowledge of prognostic and treatment associated factors.

Key words: gastric cancer, gastric dysplasia, gastric adenocarcinoma, hereditary gastric cancer syndromes, hereditary diffuse gastric cancer (HDGC)

Introduction

Gastric cancer accounts for about 6% of cancers worldwide, being the fifth most frequently diagnosed malignancy and the third leading cause of cancer related death, behind lung and colorectal cancer. According to the most recent GLOBOCAN cancer estimates, gastric cancer was responsible for over 1,000,000 new cancer cases and 783,000 deaths in 2018 1. Although there has been a steady decline in the incidence and mortality of gastric cancer over the last 15 years, as the result of the decrease of Helicobacter pylori prevalence and better dietary habits, the absolute incidence rate continues to rise, due to the advancing age of the world population.

Gastric cancer incidence and mortality vary substantially across countries and within each country. Incidence rates are elevated (up to 32 cases per 100,000) in Eastern and Western Asia. Zones of low incidence (< 7 cases
per 100,000) are Northern America, Northern Europe, and most regions of Africa. In Italy, gastric cancer ranks eighth among all cancers, with 12,803 new cases and 9,457 deaths in 2018. The poor clinical outcome of gastric cancer is mainly due to late diagnosis, poor response to therapeutic regimens and the highly heterogeneous nature of the disease.

Gastric carcinogenesis is a multistep and multifactorial process and is the result of the complex interplay between genetic susceptibility and environmental factors. Risk factors predisposing to gastric cancer include *Helicobacter pylori* infection, tobacco smoking, dietary habits (high intake of salt-preserved, smoked foods, red and processed meat, low intake of fresh fruit and vegetables), and Epstein-Barr virus (EBV) infection, as well as microbial community modifications by long-term use of proton-pomp inhibitors. A number of precancerous conditions have been recognized, such as chronic atrophic gastritis and intestinal metaplasia due to *Helicobacter pylori* infection or autoimmunity (pernicious anemia), peptic ulcer disease, gastric stump after partial gastrectomy and gastric polyps.

Although most gastric cancers are sporadic, familial clustering is observed in up to 10% of patients. Among them, hereditary cases, related to known cancer clustering is observed in up to 10% of patients. Among them, hereditary cases, related to known cancer susceptibility syndromes and/or genetic causes are thought to account for 1-3% of all gastric cancers. The three major hereditary syndromes that primarily affect the stomach are hereditary diffuse gastric cancer (HDGC), gastric adenocarcinoma, proximal polyposis of the stomach (GAPPs), and familial intestinal gastric cancer (FIGC).

Precancerous lesions

Atrophic gastritis and intestinal metaplasia

Gastric carcinogenesis is a multistep process which involves, in most cases, a progression from normal mucosa through chronic gastritis (chronic inflammation of the gastric mucosa), mucosal atrophy (loss of gastric glands) and intestinal metaplasia (substitution of gastric epithelium by intestinal epithelium) to dysplasia (intraepithelial neoplasia) and carcinoma. This sequence of events may last several years and has been designated as the Correa's cascade of multistep gastric carcinogenesis. According to this model, long standing inflammation is the primary pathogenic factor leading to gastric cancer development.

Among environmental factors leading to inflammation-mediated gastric cancer, *Helicobacter pylori* infection is associated with almost 90% of new cases of non-cardia gastric cancers and was classified as a type I carcinogen by the WHO in 1994. Approximately half of the world's population is infected with *Helicobacter pylori*, however, only a small fraction will end up developing gastric carcinoma, suggesting that additional factors participate in the carcinogenic process, including *Helicobacter pylori* virulence factors, genetic susceptibility, diet, smoking, and possibly other bacteria species. *Helicobacter pylori* virulence factors that appear to influence the pathogenicity of the bacterium, as well as the risk of gastric cancer development, include CagA (cag pathogenicity island-encoded cytotoxin associated gene A) and VacA (vacuolating cytotoxin A), while polymorphisms of genes involved in initiation and modulation of the inflammatory response, such as genes codifying IL-1β, IL-1 receptor antagonist, IL-10 and TNFα, are host genetic susceptibility factors associated with individual or familial susceptibility to carcinogenesis mediated by *Helicobacter pylori* infection. Although the magnitude of risk is not uniformly defined, atrophic gastritis caused by autoimmunity (pernicious anemia) is associated with an increased risk of dysplasia and adenocarcinoma, as well as neuroendocrine neoplasms and gastric epithelial polyps, such as intestinal-type adenomas and pyloric gland adenomas.

Several classification systems for chronic gastritis have been developed, including the Sydney classification system, the Gastric Risk Index and the Operative Link on Gastritis Assessment (OLGA) system. These staging systems, particularly the five-tiered (0-IV) OLGA system, provide a basis for predicting gastric cancer risk associated with atrophic gastritis and intestinal metaplasia and guide clinical surveillance. Well established evidence links intestinal metaplasia to intestinal-type gastric cancer. Complete intestinal metaplasia shows goblet cells, absorptive enterocytes with luminal brush border and intestinal mucin (MUC2) expression. In contrast, incomplete intestinal metaplasia displays goblet cells, absorptive cells without brush border and co-expression of intestinal and gastric (MUC5AC, MUC6) mucins. Reliable indicators of gastric cancer risk include the topographical extent of intestinal metaplasia and the degree of incomplete-type intestinal metaplasia.

Another pattern of metaplasia, which is believed to represent an alternative pathway to gastric neoplasia, is pseudopyloric or spasmodolytic polypeptide-expressing metaplasia (SPEM), which expresses trefoil factor family 2 (TFF2) spasmodolytic polypeptide and represents the metaplastic replacement of oxyntic glands by mucin secreting antral-like glands. SPEM develops in the gastric body and fundus and is associated with chronic *Helicobacter pylori* infection and development of gastric cancer.

Histopathology of tumors of the stomach

Although familial and hereditary cases of gastric cancer were described many years ago, the recognition of gastric cancer risk associated with genetic susceptibility has only been appreciated in the last two decades. Among environmental factors leading to inflammation-mediated gastric cancer, *Helicobacter pylori* infection is associated with almost 90% of new cases of non-cardia gastric cancers and was classified as a type I carcinogen by the WHO in 1994. Approximately half of the world's population is infected with *Helicobacter pylori*, however, only a small fraction will end up developing gastric carcinoma, suggesting that additional factors participate in the carcinogenic process, including *Helicobacter pylori* virulence factors, genetic susceptibility, diet, smoking, and possibly other bacteria species. *Helicobacter pylori* virulence factors that appear to influence the pathogenicity of the bacterium, as well as the risk of gastric cancer development, include CagA (cag pathogenicity island-encoded cytotoxin associated gene A) and VacA (vacuolating cytotoxin A), while polymorphisms of genes involved in initiation and modulation of the inflammatory response, such as genes codifying IL-1β, IL-1 receptor antagonist, IL-10 and TNFα, are host genetic susceptibility factors associated with individual or familial susceptibility to carcinogenesis mediated by *Helicobacter pylori* infection. Although the magnitude of risk is not uniformly defined, atrophic gastritis caused by autoimmunity (pernicious anemia) is associated with an increased risk of dysplasia and adenocarcinoma, as well as neuroendocrine neoplasms and gastric epithelial polyps, such as intestinal-type adenomas and pyloric gland adenomas.

Several classification systems for chronic gastritis have been developed, including the Sydney classification system, the Gastric Risk Index and the Operative Link on Gastritis Assessment (OLGA) system. These staging systems, particularly the five-tiered (0-IV) OLGA system, provide a basis for predicting gastric cancer risk associated with atrophic gastritis and intestinal metaplasia and guide clinical surveillance. Well established evidence links intestinal metaplasia to intestinal-type gastric cancer. Complete intestinal metaplasia shows goblet cells, absorptive enterocytes with luminal brush border and intestinal mucin (MUC2) expression. In contrast, incomplete intestinal metaplasia displays goblet cells, absorptive cells without brush border and co-expression of intestinal and gastric (MUC5AC, MUC6) mucins. Reliable indicators of gastric cancer risk include the topographical extent of intestinal metaplasia and the degree of incomplete-type intestinal metaplasia.

Another pattern of metaplasia, which is believed to represent an alternative pathway to gastric neoplasia, is pseudopyloric or spasmodolytic polypeptide-expressing metaplasia (SPEM), which expresses trefoil factor family 2 (TFF2) spasmodolytic polypeptide and represents the metaplastic replacement of oxyntic glands by mucin secreting antral-like glands. SPEM develops in the gastric body and fundus and is associated with chronic *Helicobacter pylori* infection and development of gastric cancer.
Gastric dysplasia

Gastric dysplasia is defined as unequivocal neoplastic changes in the gastric epithelium, without evidence of lamina propria invasion. The diagnostic criteria are based on the presence of cellular atypia, abnormal differentiation, architectural disorganisation and increased mitotic activity. Endoscopically, gastric dysplasia may present as flat, depressed or polypoid lesions (the latter may be referred to as gastric – intestinal type and foveolar type – adenomas). It may arise de novo or may occur within pre-existing benign sporadic polyps, namely hyperplastic polyps and fundic gland polyps or hamartomatous polyps, such as juvenile polyps and Peutz-Jeghers polyps.

On the basis of the histomorphological profile, gastric dysplasia may be classified as intestinal or foveolar (gastric) type. Intestinal type dysplasia shows features resembling colonic adenomas, with tubular glands lined by columnar cells with overlapping, pseudostratiﬁed and penicillate nuclei, which can be hyperchromatic and/or pleomorphic. Differentiation towards goblet cells, absorptive cells and Paneth cells may be observed. Intestinal type dysplasia shows immunoreactivity for MUC2, CD10 and CDX2. The foveolar (gastric) phenotype is characterized by cuboidal to low columnar cells resembling gastric foveolar cells, with round to oval nuclei and clear or eosinophilic cytoplasm. Gastric differentiation may be conﬁrmed by MUC5AC and MUC6 expression. Using immunohistochemistry, hybrid or mixed cases may also occur, with both intestinal and gastric marker expression, as well as null cases, negative for the aforementioned markers. Foveolar type dysplasia is more likely to be high-grade and is associated more frequently to gastric adenocarcinoma.

Dysplasia is graded as low grade or high grade on the basis of architectural distortion, nuclear and cytoplasmic cell features and mitotic activity. In low grade dysplasia, glandular architecture is relatively preserved, cellular pleomorphism is mild or absent, nuclei maintain basal polarity and mitotic activity is not markedly increased. High grade dysplastic features include complex glandular architecture, marked cytologic atypia with large nuclei and prominent nucleoli, loss of cell polarity and frequent mitotic ﬁgures. Distinction between high-grade dysplasia and intramucosal intestinal adenocarcinoma may be challenging, especially in small biopsy samples, and there is only limited consensus about diagnostic criteria, especially between Asian and Western pathologists. Helpful features for the diagnosis of intramucosal adenocarcinoma include marked glandular crowding, cribriform and crawling pattern, budding, inﬁltration of isolated cells and intraglandular necrotic debris (Fig. 1). The presence of desmoplasia is not necessary for the deﬁnition of stromal invasion. The distinction between reactive/regenerative changes and true dysplasia may be diﬃcult, especially in small biopsies and specimens with technical artefacts. For these cases, the term “indefinite for dysplasia” may be applied. Gastric dysplasia limited to the pit region, without superﬁcial epithelial involvement, is deﬁned as crypt dysplasia.

Gastric adenomas

A recent classiﬁcation proposed by Hackeng WM et al. distinguishes gastric polyps according to the gastric mucosa compartment from which the gastric polyp arises. Gastric adenomas arising from the foveolar compartment include foveolar type adenomas (arising
from foveolar epithelium without intestinal metaplasia) (Fig. 2a) and intestinal type adenomas (arising from foveolar epithelium with intestinal metaplasia) (Fig. 2b). Gastric adenomas arising from the glandular compartment include pyloric gland adenoma (PGA) (Fig. 2c) and oxyntic gland adenoma (OGA). Consistent with

Figure 2. Gastric adenomas: (a) foveolar type adenoma with low grade dysplasia (HE, left image, magnification 40x, right image, magnification 10x) showing diffuse immunoreactivity for MUC5AC (inset); (b) intestinal type adenoma associated to mucinous carcinoma invading the submucosa (arrow) (HE, left image, magnification 4x); the image on the right represents an area of intestinal-type low grade dysplasia with tubular/villous morphology (HE, magnification 10x); (c) pyloric gland adenoma (HE, left image, magnification 4x, right image, magnification 20x).
their glandular histogenesis, OGAs and PGAs show diffuse immunoreactivity for MUC6. PGAs consist of closely packed tubules or dilated glands of pyloric type epithelium, lined by cuboidal/low columnar cells with pale, clear or slightly eosinophilic cytoplasm. PGAs may occur in syndromic contexts, namely familial adenomatous polyposis (FAP) and Lynch syndrome. OGAs is composed of dysplastic glands showing variable differentiation to chief and parietal cells. There is a morphological continuum between OGA and gastric adenocarcinoma of fundic gland type. Whether they are distinct lesions, the former representing the precursor lesion of the latter, or represent a morphological spectrum of the same lesion is still debated.

Benign Gastric Polyps with Possible Gastric Dysplasia And Gastric Cancer

Hyperplastic polyps (HPs) are benign gastric epithelial lesions consisting of hyperplastic and cystically dilated foveolar epithelium, in a background of prominent inflammatory changes. As HPs represent a hyperproliferative response to tissue injury, most of them arise in a background of longstanding gastric mucosal inflammation and are the prevalent polyp type in countries with a high prevalence of *Helicobacter pylori* infection. Foveolar or intestinal type dysplasia and adenocarcinoma (intestinal type or diffuse type) may arise in about 2% of larger HPs (Fig. 3). Copy number alterations and TP53 mutations are restricted to the adenocarcinoma component.

Fundic gland polyps (FGPs) are benign gastric epithelial lesions composed of disordered, expanded and cystically dilated oxyntic glands lined by parietal and chief cells, as well as mucous neck epithelium. FGPs are the predominant polyp type in Western countries, are associated with the use of proton pump inhibitors and are inversely related to *Helicobacter pylori* gastritis. FGPs may develop foveolar-type dysplasia, which is usually low-grade (Fig. 4). In sporadic FGPs, dysplasia is rarely observed and the finding of dysplasia should raise suspicion of an inherited syndrome, especially in the case of young patients, multiple FGPs and (in the case of FAP) polyps elsewhere in the gastrointestinal tract. In the syndromic context, dysplasia in FGPs may be observed in gastric adenocarcinoma and proximal polyposis of the stomach (see below) and FAP. The genomic landscape of syndromic and sporadic FGPs is distinctive. FAP-associated FGPs may present second-hit inactivation of the APC gene but no CTNNB1 (beta-catenin) mutations, while sporadic FGPs harbour CTNNB1 mutations and usually lack APC alterations.
Gastric cancer

DEFINITIONS

Gastric adenocarcinoma is a malignant epithelial neoplasm with glandular differentiation arising from the gastric mucosa and represents a biologically heterogeneous group of tumors with respect to etiology, histogenesis, morphology, and molecular features. Overall, gastric adenocarcinoma accounts for 90-95% of gastric malignancies.

According to the depth of invasion in the gastric wall, gastric cancer is classified as early or advanced. Early gastric cancer is defined as a carcinoma limited to the mucosa (pT1a) or the mucosa and submucosa (pT1b), regardless of tumor size or the presence of lymph-node metastases. Gastric adenocarcinomas invading the muscularis propria and beyond (> pT2) are defined as advanced.

CLINICAL FEATURES

The clinical presentation of gastric cancer is mainly related to topography and stage of the disease. The majority of early gastric cancers are asymptomatic at diagnosis. Screening programs in high-risk populations (Japan, Korea) have resulted in early diagnosis in asymptomatic patients and better overall survival.

At advanced disease stage, common signs and symptoms include dyspepsia, epigastric pain, abdominal mass and alarm symptoms ("red flags"), such as dysphagia, significant weight loss, signs and symptoms of gastrointestinal hemorrhage and vomiting.

Endoscopic examination with biopsies is the gold standard method for gastric cancer diagnosis. Image enhanced endoscopy and magnifying endoscopy may improve the detection rate of early gastric lesions. Accurate (TNM) staging is the cornerstone for accurately defining gastric cancer prognosis and therapeutic approaches. Compared to advanced gastric cancers, early gastric cancers have a much better prognosis, with a 5-year survival rate of > 90% after surgical resection. If untreated, 63% of early gastric carcinomas progress to advanced tumors within 5 years.

In contrast, advanced and unresectable gastric cancers have a poor prognosis with an expected survival of few months. Endoscopic ultrasonography is the preferred technique for defining the depth of invasion into the gastric wall (pT stage).

Endoscopic resection is recommended for early gastric cancers with low probability of metastasising to lymph nodes. Risk factors associated with the development of nodal metastases, for which surgery with lymph-node dissection should be considered, include submucosal invasion, tumor diameter greater than 20-30 mm, vascular venous or lymphatic invasion, depressed or ulcerated macroscopic subtypes and undifferentiated histology. Treatment for advanced gastric cancer is based on surgery and chemo-radiation therapy. For patients with unresectable gastric cancer, systemic therapy is the only approach, encompassing conventional chemotherapy and targeted therapies. The latter include monoclonal antibodies directed against HER2, VEGFR2 and immune checkpoint inhibitors.

According to the most recent European recommendations, the only established predictive biomarker for the treatment of gastric cancer is HER2 status, evaluated by HER2 immunohistochemistry and ERBB2 in situ hybridization to select patients with unresectable or metastatic gastric cancer for anti-HER2 based therapies. Heterogeneity in HER2 assessment in gastric cancer has been widely documented and this is of practical importance when HER2 evaluation is performed on endoscopic biopsies: a minimum set of 5 biopsies has shown to be necessary for a reliable HER2 assessment.

Figure 4. Fundic gland polyp with focus of low grade, foveolar-type dysplasia (upper image, HE, magnification 4x; lower image, HE, magnification 20x). The patient had attenuated variant of familial adenomatous polyposis.
Emerging predictive biomarkers for selecting gastric cancer patients who may benefit from immune-checkpoint inhibitor-based immunotherapies include microsatellite instability (MSI)-high status, EBV infection, PD-L1 expression (combined positive score ≥ 1%), tumor mutation load and density of intra-tumoral CD8+ T-cells. Adverse prognostic factors in resectable cases include higher pT and pN stages, limited lymph node dissection, lymphatic and vascular invasion, and involvement of surgical margins.

Microscopic findings and histopathological classifications

Gastric cancer presents a variability of morphological phenotypes, as reflected by the large number of histopathological classifications proposed over time. The histopathological classifications most commonly used include those proposed by Laurén and the World Health Organization (WHO). The Laurén classification (Tab. I) distinguishes two major types, intestinal and diffuse. The former, is composed of glands or papillae, while the latter shows an infiltrative growth pattern and is composed of tumor cells without cellular cohesion. Tumors presenting both intestinal and diffuse components are termed mixed carcinomas. Solid, poorly differentiated or undifferentiated carcinomas that do not fit in one of these subtypes are placed in the indeterminate category. Despite dating back to 1965, Laurén classification is still relevant, as it distinguishes subtypes with distinct pathological classifications proposed over time.

Table I. Checklist for gastric cancer reporting (based on WHO Classification of Digestive System Tumors, 5th Edition and AJCC Cancer Staging Manual, 8th Edition).

| Procedure | Endoscopic resection
Partial gastrectomy: specify if proximal, distal, other
Total gastrectomy
Other |
|---|---|
| Specimen description | Endoscopic resection
Dimension of mucosal surface (cm) and depth (cm)
Gastrectomy
Length (cm) of lesser and greater curvature
Length (cm) of duodenal and oesophageal segments, if applicable |
| Macroscopic examination | Tumor not identified macroscopically
Tumor location (gastric region): cardia, fundus, body, transitional zone, antrum, pylorus
Tumor location (gastric curvatures and walls): lesser curvature, greater curvature, anterior wall, posterior wall
Tumor size: greatest dimension (cm) or three dimensions (cm)
Tumor macroscopic appearance
- Borrmann type I: polypoid/fungating
- Borrmann type II: ulcerated mass
- Borrmann type III: infiltrative neoplasm with ulceration
- Borrmann type IV: infiltrative neoplasm without ulceration |
| Margins | Endoscopic resection
Mucosal margin
- Involved by invasive carcinoma
- Involved by dysplasia (low-grade/high-grade)
- Uninvolved by invasive carcinoma or dysplasia
Deep margin
- Involved by invasive carcinoma
- Involved by dysplasia (low-grade/high-grade)
- Uninvolved by invasive carcinoma or dysplasia
Gastrectomy
Esophageal (proximal) margin
- Involved by invasive carcinoma
- Involved by dysplasia (low-grade/high-grade)
- Uninvolved by invasive carcinoma or dysplasia
Duodenal (distal) margin
- Involved by invasive carcinoma
- Involved by dysplasia (low-grade/high-grade)
- Uninvolved by invasive carcinoma or dysplasia
Omental (radial) margin
- Involved by invasive carcinoma (greater and/or lesser omental margin)
- Uninvolved by invasive carcinoma |
Table I. continues

Gastric cancer histological subtype	*Laurén classification*³⁰:
- Diffuse type	- Tubular adenocarcinoma
- Intestinal type	- Papillary adenocarcinoma
- Mixed type	- Tubulo-papillary adenocarcinoma
- Indeterminate	- Poorly cohesive carcinoma: signet ring cell type/not otherwise specified
WHO classification (major types and rare variants):	- Mucinous adenocarcinoma
- Tubular adenocarcinoma	- Mixed adenocarcinoma
- Papillary adenocarcinoma	- Gastric squamous carcinoma
- Tubulo-papillary adenocarcinoma	- Gastric adenosquamous carcinoma
- Poorly cohesive carcinoma: signet ring cell type/not otherwise specified	- Gastric undifferentiated carcinoma
- Mucinous adenocarcinoma	- Gastric cancer with lymphoid stroma
- Mixed adenocarcinoma	- Hepatoid carcinoma
- Gastric squamous carcinoma	- Alpha-fetoprotein producing gastric cancer (adenocarcinoma with enteroblastic differentiation, yolk-sac tumor like carcinoma)
- Gastric adenosquamous carcinoma	- Micropapillary adenocarcinoma
- Gastric undifferentiated carcinoma	- Gastric adenocarcinoma of the fundic gland type
- Gastric cancer with lymphoid stroma	- Mucoepidermoid carcinoma
- Hepatoid carcinoma	- Paneth cell carcinoma
- Alpha-fetoprotein producing gastric cancer (adenocarcinoma with enteroblastic differentiation, yolk-sac tumor like carcinoma)	- Parietal cell carcinoma
- Micropapillary adenocarcinoma	
- Gastric adenocarcinoma of the fundic gland type	
- Mucoepidermoid carcinoma	
- Paneth cell carcinoma	
- Parietal cell carcinoma	

Histologic grade	Only applicable to tubular and papillary adenocarcinoma:
- Low grade	- Low grade
- High grade	- High grade

| Pathological stage: descriptors | |- m (multiple primary tumors) |
|---------------------------------|--|
| - r (recurrent) | - r (recurrent) |
| - y (post-treatment) | - y (post-treatment) |

| Pathological stage: primary tumor (pT) | |- pTX: primary tumor cannot be assessed |
|--|--|
| - pT0: no evidence of primary tumor | - pT0: no evidence of primary tumor |
| - pTis: *in situ* SRC carcinoma, pagetoid progression of SRCs, high-grade dysplasia | - pTis: *in situ* SRC carcinoma, pagetoid progression of SRCs, high-grade dysplasia |
| - pT1a: tumor invades the lamina propria or muscularis mucosae | - pT1a: tumor invades the lamina propria or muscularis mucosae |
| - pT1b: tumor invades the submucosa | - pT1b: tumor invades the submucosa |
| - pT2: tumor invades the muscularis propria | - pT2: tumor invades the muscularis propria |
| - pT3: tumor penetrates the subserosal connective tissue without invasion of the visceral peritoneum or adjacent structures | - pT3: tumor penetrates the subserosal connective tissue without invasion of the visceral peritoneum or adjacent structures |
| - pT4a: tumor invades the serosa (visceral peritoneum) | - pT4a: tumor invades the serosa (visceral peritoneum) |
| - pT4b: tumor invades adjacent structures/organs | - pT4b: tumor invades adjacent structures/organs |

Lymph node examination	Number of lymph nodes involved
- Lesser omentum	- Lesser omentum
- Greater omentum	- Greater omentum
- Other	- Other

Ratio between lymph nodes involved and examined
Number of lymph nodes examined
- Lesser omentum
- Greater omentum
- Other

| Pathological stage: regional lymph nodes (pN) | |- pNX: regional lymph node(s) cannot be assessed |
|---|--|
| - pN0: no regional lymph node metastasis | - pN0: no regional lymph node metastasis |
| - pN1: metastasis in one or two regional lymph nodes | - pN1: metastasis in one or two regional lymph nodes |
| - pN2: metastasis in three to six regional lymph nodes | - pN2: metastasis in three to six regional lymph nodes |
| - pN3a: metastasis in seven to 15 regional lymph nodes | - pN3a: metastasis in seven to 15 regional lymph nodes |
| - pN3b: metastasis in 16 or more regional lymph nodes | - pN3b: metastasis in 16 or more regional lymph nodes |

Pathological stage: distant metastasis	Not applicable (pM status required only if confirmed pathologically)
- pM1: distant metastasis(es) (specify site)	- pM1: distant metastasis(es) (specify site)

Lymphovascular invasion	- Not identified
- Present	- Present
- Cannot be determined	- Cannot be determined
I. Gullo et al.

Epidemiologic settings, clinicopathologic profiles and biological behaviors. As an example, in view of their cohesive nature, intestinal type gastric cancers have the ability to survive more easily into venous vessels and tend to metastasise haematogenously, while the poorly cohesive phenotype of diffuse gastric cancer tends to disseminate through peritoneal surfaces. Mixed gastric cancer shows a poorer prognosis compared to intestinal or diffuse types\(^{49}\) and a dual metastatic pattern (hematogenous metastases and peritoneal dissemination with lymph node metastases)\(^{50}\), probably because of the cumulative adverse effect of the two components within a single tumor.

The WHO classification\(^\text{23}\) (Table I) distinguishes five main histopathological subtypes of gastric cancers (Fig. 5): tubular adenocarcinoma, composed of tubular, glandular or acinar structures of variable diameter and various degrees of differentiation (some solid carcinomas may be classified as high-grade tubular adenocarcinomas); papillary carcinoma, showing finger-like papillary architecture, eventually admixed with glandular structures (tubulo-papillary phenotype); poorly cohesive carcinoma, composed of tumor cells isolated or in small clusters lacking cellular cohesion; mucinous adenocarcinoma, defined by the presence of mucin pools accounting for > 50% of the tumor; and mixed carcinomas, presenting a distinct tubulo-papillary and poorly cohesive component. In mixed carcinomas, the two components may be intermingled, adjacent, or completely separated. Providing that the two components are clearly identified within the tumor, there is no minimum cell percentage defining this entity.

Grading system (low-grade or high-grade gastric adenocarcinoma) applies primarily to tubular, papillary and tubulo-papillary subtypes\(^{53}\). Tubular and papillary carcinomas roughly correspond to intestinal type gastric cancers, while poorly cohesive carcinomas correspond to the diffuse subtype by Laurén. The 2019 WHO Classification of digestive system tumors stresses the importance of distinguishing different subtypes within the poorly cohesive carcinoma category, based on presence and quantity of signet ring cells. By definition, a signet ring cell has an abundant mucin vacuole filling the cytoplasm and pushing the nucleus at the cell periphery. Poorly cohesive carcinomas of the signet ring cell type are composed predominantly or exclusively (e.g. > 90%) of signet ring cells, while non-signet ring cell type (i.e. not otherwise specified) poorly cohesive carcinomas are composed (or show a component) of poorly cohesive and infiltrating cells without a classic signet ring cell morphology. It is important to recognise this latter subtype of poorly cohesive gastric cancer, as it presents poorer prognosis when compared to pure signet ring cell carcinomas\(^{51}\).

The gastric cancer histopathological classification proposed by the Japanese Gastric Cancer Association (JGCA) is mainly used by Asian pathologists\(^{52}\). Noteworthy, in the last version of the JGCA and the WHO classifications, gastric cancer expert pathologists have built a table showing the similarities of the two classification systems and corresponding entities. To improve standards of gastric cancer reporting, macroscopic and histological examination should follow a specific checklist, as presented in Table I.

Table I. continues

Perineural invasion	- Not identified	- Present	- Cannot be determined
Treatment effect	- No known presurgical therapy	- Present	- Complete response (no viable cancer cells) – score 0
			- Near complete response (single or rare small groups of cancer cells) – score 1
			- Partial response (evident tumor regression but more than single or rare small groups of cancer cells) – score 2
			- Poor or no response (no evident tumor regression) – score 3
			- Cannot be determined
Additional findings	- Helicobacter pylori infection	- Chronic gastritis (lymphoid follicles, neutrophilic activity, erosion/ulceration)	
	- Glandular atrophy	- Intestinal metaplasia	
	- Dysplasia	- Polyps: specify type	
Ancillary studies	Add any relevant ancillary study performed		
Comments	Add any relevant comment		

Perineural invasion - Not identified - Present - Cannot be determined
Treatment effect - No known presurgical therapy - Present - Complete response (no viable cancer cells) – score 0 - Near complete response (single or rare small groups of cancer cells) – score 1 - Partial response (evident tumor regression but more than single or rare small groups of cancer cells) – score 2 - Poor or no response (no evident tumor regression) – score 3 - Cannot be determined
Additional findings - Helicobacter pylori infection - Chronic gastritis (lymphoid follicles, neutrophilic activity, erosion/ulceration) - Glandular atrophy - Intestinal metaplasia - Dysplasia - Polyps: specify type
Ancillary studies Add any relevant ancillary study performed
Comments Add any relevant comment
Figure 5. Main histopathological subtypes of gastric cancer: (a) papillary and tubulo-papillary gastric adenocarcinoma (HE, magnification 10x); (b) tubular adenocarcinoma with solid (high grade) areas (HE, magnification 10x); (c) poorly cohesive gastric cancer of the signet ring cell type (HE, magnification 20x); this tiny intramucosal focus was found in a prophylactic gastrectomy specimen in a CDH1 variant carrier; (d) poorly cohesive gastric cancer not otherwise specified (HE, magnification 20x); in this case the poorly cohesive cells show pleomorphic and plasmacytoid features; (e) mucinous adenocarcinoma, with and signet ring cells floating in mucin lakes (HE, magnification 20x); (f) mixed gastric cancer (HE, magnification 20x).
Early gastric cancer (EGC) is carcinoma limited to the gastric mucosa and/or submucosa regardless of lymph node status with good prognosis. Unfortunately, some EGC will have nodal metastases and recent studies have focused on key parameters that could be associated with worse prognosis. In particular, size, depth of infiltration, and histological type of tumors, as well as the distribution of nodal metastases, are predictors of worse survival in this subset of tumors.

A dated but useful classification (see Tab. II) was introduced by Kodama in 1983 that identifies growth patterns of EGC and correlates them with prognosis; more recent studies have confirmed the importance of this classification which should be part of the pathology report both in surgical specimens but more importantly in endoscopic resections (Penetrating A growth subtype has a 10 year prognosis of 74% compared to 94% of non-penetrating A type).

Immuno histochemical biomarkers and molecular subtypes

Gastric cancer is the result of accumulated genomic damage that affects essential cellular functions for cancer development. Multiple gene mutations, somatic copy number alterations, epigenetic and transcriptional changes have been detected in gastric cancer, highlighting its molecular heterogeneity. Through high-throughput genomic analysis, several groups have analyzed and deciphered the molecular alterations of gastric cancer at high resolution, attempting to achieve integrated molecular classification schemes which recognise molecular entities with different molecular signatures and clinical phenotypes. These classifications include the Singapore-Duke group classification, based on gene expression profiling, and the molecular classifications proposed by The Cancer Genome Atlas (TCGA) and the Asian Cancer Research Group (ACRG), both based on the integrative analysis of multiple genomic and proteomic data. These molecular classifications have been proposed as a roadmap for gastric cancer prognostic evaluation and targeted therapy approaches. However, the three molecular classifications overlap only partially, highlighting the need for a consensual patient stratification.

The landmark study of gastric cancer molecular-based stratification was carried out by The Cancer Genome Atlas (TCGA) research network, which defines four molecular subtypes: EBV-associated gastric cancers, characterized by recurrent PIK3CA mutations, high levels of DNA hypermethylation, frequent JAK2 and CD274 (PD-L1) amplification and enrichment in genes involved in immune signalling; MSI-high gastric cancer, characterized by MLH1 silencing and consequent high levels of DNA hypermethylation; genomically stable gastric cancer, associated with a diffuse morphology and recurrent CDH1 and RHOA events; gastric cancer with chromosomal instability exhibiting a high number of TP53 mutations and amplifications of tyrosine kinase receptors. The prognostic and predictive value of TCGA four-tiered molecular classification has been highlighted: EBV-associated and MSI-high gastric cancers present the best prognostic features and may respond to targeted immunotherapies, chromosomal unstable tumors present a moderately poor prognosis but show sensitivity to chemotherapy, while genomically stable tumors show the worst prognosis and are resistant to chemotherapy.

There is partial correlation between histopathological and molecular classifications. EBV-associated gastric cancer shows the features of gastric cancer with lymphoid stroma (see below) in up to 80% of EBV+ cases; some cases present Crohn’s disease-like lymphoid reaction, characterised by the presence of numerous lymphoid follicles with active germinal centres at the advancing edge of the tumor; conventional-type histology, with scant lymphocytic infiltrate, is observed in a minority of cases. MSI-high gastric cancers may also present abundant intratumoral and peritumoral lymphocytic infiltrate. EBV infection and MSI-high status represent two alternative pathways of gastric carcinogenesis and mutually exclusive gastric

Table II. Kodama’s Classification of growth patterns of early gastric cancer.

Growth Patterns	Details
Small mucosal (M)	Intramucosal EGCs measuring < 4 cm
Small mucosal (SM)	Intramucosal EGCs minimally invading submucosa measuring < 4 cm
Supermucosal (M)	Intramucosal EGCs measuring > 4 cm
Supermucosal, (SM)	Intramucosal EGCs minimally invading submucosa measuring > 4 cm
PEN (penetrating) (A)	EGCs massively invading submucosa with nodular pattern measuring < 4 cm
PEN (penetrating) (B)	EGCs massively invading submucosa with saw tooth pattern measuring < 4 cm

EGC: early gastric cancer
cancer molecular subtypes, with distinct transcriptional profiles, the former enriched by genes related in the immune response and the latter associated with mitosis and cell cycle biological terms. Genomically stable gastric cancers show predominantly diffuse type histology. When compared to pure signet ring cell carcinomas, poorly cohesive carcinomas classified as not otherwise specified show a distinct genomic profile, enriched by TP53, RHOA, SMAD4, BRAF and PIK3CA mutations. Gastric cancers with chromosomal instability mostly present intestinal morphology.

Overall, tumor morphology may provide insight into tumor biology and should be used as a frame for the identification of clinically relevant subgroups, as the backbone for building algorithms for directed and cost-effective molecular characterization. Moreover, practical algorithms based on immunohistochemistry and in situ hybridization can be applied in the routine diagnostic practice to translate specific immunophenotypes into molecular subgroups with prognostic and predictive significance. Thus, positive in situ hybridization for EBV-encoded small RNA (EBER) distinguishes EBV-associated gastric cancer; loss of expression of DNA mismatch repair proteins (MLH1, MSH2, MSH6, PMS2) identifies most of gastric cancers with MSI-high status; genomically stable gastric cancers are identified by the poorly cohesive morphology and abnormal E-cadherin immunoreactivity.

Figure 6. Rare histopathological variant of gastric cancer: (a) gastric cancer with lymphoid stroma showing abundant lymphoplasmacytic infiltrate (HE, magnification 10x); this case was associated to EBV infection, as evaluated by EBER-in situ hybridization (inset); (b) hepatoid gastric carcinoma with numerous hyaline globules (HE, magnification 20x); (c) micropapillary gastric carcinoma, with artefactual spaces at the periphery of the nests and inverted cell polarity (HE, 20x); (d) adenosquamous gastric carcinoma (HE, magnification 20x).
(decreased membranous, dotted, cytoplasmic, or absent); and p53 aberrant expression (overexpression or total loss) distinguishes a subset of chromosomal unstable gastric cancers with TP53 activation 64.

Differential diagnosis

In poorly differentiated or undifferentiated gastric cancers, in which epithelial differentiation is not morphologically evident, pancytokeratin and EMA immunohistochemistry may highlight the epithelial nature of the neoplasm and distinguish it from aggressive lymphomas, metastatic melanoma, germ cell neoplasms or other malignant neoplasms with epithelioid morphology.

Very well differentiated gastric cancers should be distinguished from gastritis cystica profunda, a benign lesion characterised by the displacement of gastric foveolar epithelium, gastric glands and mucin into the gastric wall or serosa. Gastritis cystica profunda usually develops in stomachs subjected to trauma-tism (e.g. surgery, gastroenterostomy) as the result of chronic inflammation, direct injury and ischemia 65. A helpful feature in distinguishing gastritis cystica profunda from adenocarcinoma is the presence of a rim of lamina propria-like stroma surrounding the cystically dilated glands, sometimes associated with smooth muscle fibres from the muscularis mucosae. Gastric adenocarcinoma may coexist with gastritis cystica profundal 66 and the distinction between the two lesions may be sometimes challenging (Fig. 7).

Rare histotypes of gastric carcinoma

Uncommon histological variants account for about 5% of gastric cancer and according to the WHO 2019 classification of digestive system tumors 23, encompass i) squamous cell carcinoma; ii) adenosquamous carcinoma; iii) and undifferentiated carcinoma.

Squamous cell carcinoma of the stomach is a carcinoma with evidence of squamous cell differentiation, in the absence of other morphologic aspects. It is preferentially located in upper part of the stomach and is extremely rare, accounting for less than 0.1% of gastric cancers. Thorough tumor sampling is required to exclude the presence of other components. Potential pitfalls include metastases from a squamous cell carcinoma from another organs or extension from an esophageal squamous cancer. It is an aggressive disease, associated with poor patient prognosis.

Adenosquamous carcinoma of the stomach (Fig. 6d) is a malignant epithelial neoplasm composed of both squamous and adenocarcinomatous components. The squamous cell component should constitute at least a quarter of the whole neoplasm to render this diagnosis. It is extremely rare, accounting for 0.2% of all gastric cancers and preferentially affects males. It is predominantly located in the distal stomach. Immunohistochemistry for p40 may help confirm the presence of a morphologically suspected squamous cell component. Adenosquamous carcinoma is an aggressive neoplasm.

Gastric undifferentiated carcinoma has been recent-
ly recognized as a specific histotype of gastric cancer. It is an anaplastic carcinoma with no evidence of any type of tumor cell differentiation. Four subtypes are described, including i) large cell carcinoma with rhabdoid features, ii) pleomorphic carcinoma, iii) sarcomatoid carcinoma, and iv) carcinoma with osteoclast-like giant cells. Rhabdoid carcinomas account for about 6% of gastric cancers with a solid architecture. Undifferentiated carcinomas are usually large, fungating masses, composed of intermediate-to-large cells, often with pleomorphic elements. Pancytokeratin is usually expressed by neoplastic cells, while vimentin shows a characteristic perinuclear dot-like pattern of expression. A subset of such cancers exhibits loss of SMARCB1 (INI1) or SMARCA4 (BRG1) expression. Mismatch repair protein deficiency may be present. Differential diagnoses include carcinomas with lymphoid stroma (a subtype of adenocarcinoma), lymphomas, sarcomas and melanomas. It is a very aggressive disease, with a dismal prognosis.

Carcinoma with lymphoid stroma (Fig. 6a) is also known as medullary carcinoma or lymphoepithelioma-like carcinoma. It is characterized by irregular sheets, trabeculae, poorly developed tubular structures and isolated cells, embedded within a prominent lymphocytic infiltrate with occasional lymphoid follicles. The lymphoid infiltrate can be so prominent that immunohistochemical study may be necessary to confirm the epithelial nature of the tumor. It is often associated with Epstein-Barr virus infection, which may be identified by in situ hybridization, though as a similar morphology can be observed in gastric cancer with microsatellite instability. It is associated with a better prognosis in comparison with conventional adenocarcinoma.

Other types: primary gastric hepatoid carcinoma (composed by hepatocyte-like cells) (Fig. 6b), adenocarcinoma with enteroblastic differentiation (composed of clear cells arranged in tubulo-papillary structures) and yolk-sac tumor-like carcinoma share the immunohistochemical expression of alpha-fetoprotein and should be distinguished from a metastatic hepatocellular carcinoma or a germ cell neoplasm. Alpha-fetoprotein and primitive enterocyte differentiation biomarkers, such as SALL4, glypican-3 and claudin-6 are expressed in adenocarcinoma with enteroblastic differentiation and hepatoid gastric carcinoma. Biomarkers which help to distinguish between primary hepatoid gastric adenocarcinoma from hepatocellular carcinoma metastases include SALL4 and claudin-6 expression in hepatoid gastric cancer and loss of SMARCB1 (INI1) immunoreactivity in hepatocellular carcinoma. Micropapillary carcinoma (Fig. 6c), shows small aggregated of neoplastic cells without fibrovascular cores within empty clefts and is associated with a poor prognosis. In this subtype, epithelial membrane antigen (EMA) and E-cadherin show a distinctive inside-out staining pattern with loss of immunoreactivity at the stroma interface. Gastric adenocarcinoma of fundic-gland type (chief cell predominant, parietal cell predominant, or mixed phenotype) account for about 1% of early gastric cancers and has been more frequently described in Asia. It derives from the so-called oxyntic-type adenoma and shows immunoreactivity for pepsinogen I and MUC6, suggesting a predominant chief cell differentiation. This subtype is rather indolent, with a limited propensity to lymph node dissemination. Other types include parietal cell carcinoma and Paneth cell carcinoma and these are regarded as subtypes of gastric adenocarcinoma according to the 2019 WHO classification.

Hereditary gastric cancer syndromes

Three major hereditary autosomal dominant syndromes affecting the stomach have been described: hereditary diffuse gastric cancer (HDGC), gastric adenocarcinoma and proximal polyposis of the stomach (GAPPS) and familial intestinal gastric cancer (FIGC) (Tab. III). Moreover, several other hereditary cancer syndromes are characterized by an increased risk of gastric cancer, namely classic and attenuated FAP, MUTYH-associated polyposis, Peutz-Jeghers syndrome, juvenile polyposis syndrome, Lynch Syndrome, Li-Fraumeni syndrome, hereditary breast and ovarian cancer syndrome, and Cowden syndrome.

Hereditary diffuse gastric cancer (HDGC)

Definition. HDGC is an autosomal dominant cancer syndrome defined by the presence of germline variants in CDH1 or CTNNNA1 genes and characterized by increased risk of diffuse (poorly cohesive) gastric cancer and lobular breast cancer. Families fulfilling genetic testing criteria for HDGC (Tab. III) but without CDH1 or CTNNNA1 germline variants, should be defined as “HDGC-like” families. Disease penetrance and clinical features. HDGC penetrance in proven mutation carriers is incomplete and variable between families. According to recent estimates, the risk of DGC is 42% for males and 33% for females while the lifetime risk of lobular breast cancer ranges from 42 to 55%. The time course from early to advanced HDGC is unpredictable and prophylactic risk reduction total gastrectomy in early adulthood is advised, regardless of endoscopic findings. Indeed, appropriate endoscopic surveillance, also with advanced imaging endoscopy, fails to detect precursor or invasive
carcinoma foci in up to 80% of cases. At the time of clinical presentation, almost the totality of affected individuals presents with advanced and incurable disease. In women, annual breast magnetic resonance imaging is advised, starting at 30 years of age.

Histopathological findings. Histopathological analysis of prophylactic (risk-reducing) total gastrectomies reveals, in the majority of the cases, multiple and tiny (< 0.1 mm to 16 mm) foci of intramucosal (pT1a) signet ring cell carcinoma (Fig. 5c). Two intraepithelial precursor lesions (pTis) of signet ring cell carcinoma have been recognised exclusively in CDH1 carriers, namely in situ SRCC, corresponding to the presence of signet ring cell within the basal membrane substituting normal epithelial cells, and pagetoid spread of signet ring cells, corresponding to a row of signet ring below the preserved epithelium of glands and foveolae, but still contained within the basal membrane. A proportion of intramucosal carcinoma foci from CDH1 carriers progress unpredictably to advanced disease, with diffuse infiltration of the gastric wall, peritoneal dissemination and metastases to distant organs.

Table III. Hereditary syndromes affecting primarily the stomach.

Syndrome	Genetic testing criteria	Recommended genetic testing	Histopathological findings
HDGC	**Family criteria (first and second relatives):**		Diffuse (poorly cohesive)
	- At least 2 cases of GC in family regardless of age, with at least one diffuse GC	**CDH1 genetic analysis**	GC and precursor lesions (in situ signet ring cell carcinoma, pagetoid spread of signet ring cells)
	- At least 1 case of diffuse GC any age and ≥1 case of LBC < 70 years in different family members		LBC
	- At least 2 cases of lobular breast cancer in family members < 50 years		
	Individual criteria:		
	- Diffuse GC < 50 years		
	- Diffuse GC at any age in individuals of Māori ethnicity		
	- Diffuse GC at any age with a personal or family history (1st degree) of cleft lip/cleft palate		
	- History of diffuse GC and lobular breast cancer, both diagnosed < 70 years		
	- Bilateral lobular breast cancer, diagnosed < 70 years		
	- Gastric in situ signet ring cells and/or pagetoid spread of signet ring cells in individuals < 50 years		
GAPPS	**Essential criteria:**		
	- Phenotypic features: proximal polyposis with antral sparing; no evidence of colorectal or duodenal polyposis; > 100 polyps carpeting the proximal stomach in the index patient or > 30 polyps in a first-degree relative of another patient; predominantly FGPs and/or fundic gland-like polyps - Proband or relative with either dysplastic FGPs or GC - Mutation in the promoter 1B (YY1 binding motif) of APC gene		FGPs (with dysplasia) Hyperplastic polyps Hyperproliferative aberrant pits Intestinal and foveolar adenomas Mixed polyps with FGP-like, adenomatous and hyperplastic features Intestinal and mixed GC
	Supportive criteria:		
	- Autosomal dominant pattern of inheritance		
	- Spectrum of other histological features, including hyperproliferative aberrant pits, hyperplastic polyps, gastric-type adenomas		
FIGC	**IGCLC criteria in high incidence countries:**	**APC promoter 1b mutation analysis**	
	- Intestinal GC in three or more relatives; and		
	- One being a first-degree relative of the other two; and		
	- Two or more successive generations affected; and		
	- Intestinal GC < 50 years in one or more patients; and		
	- Exclusion of gastric polyposis.		
	IGCLC criteria in low incidence countries:		
	- Intestinal GC in two or more first-degree relatives;		
	- Intestinal GC in second-degree relatives, one diagnosed < 50 years		
	- Intestinal GC in three or more relatives at any age.		
	Proposal of new criteria:	**NA**	Intestinal GC
	- GC in two or more relatives at any age; and		
	- At least one intestinal GC		

FIGC, Familial Intestinal Gastric Cancer; **GAPPS,** Gastric Adenocarcinoma and Proximal Polyposis of the Stomach; **GC,** Gastric Cancer; **HDGC,** Hereditary Diffuse Gastric Cancer; **HNPCC,** Hereditary Non polyposis Colorectal cancer; **IGCLC,** International Gastric Cancer Linkage Consortium.
Advanced HDGC shows the features of poorly cohesive (diffuse) gastric cancer and is not distinguishable from the sporadic setting, except for the presence of multifocal intramucosal foci and precursor lesions in the mucosa distant from the tumor bulk. In contrast to early HDGC, composed of bona fide signet ring cells with an "indolent" phenotype, advanced HDGC shows pleomorphic, bizarre and diffusely infiltrative neoplastic cells with increased proliferation and activation of oncogenic events. The finding of "aggressive" histopathological features in endoscopic biopsy specimens from CDH1 carriers is suggestive of advanced disease and should be reported in the pathology report to prompt staging and clinical intervention.

Immunohistochemical biomarkers. Consistent with biallelic inactivation of the CDH1 gene and supporting the key role of E-cadherin loss for tumor initiation, E-cadherin expression is usually abnormal in precursor and invasive cancer foci. Diverse E-cadherin staining patterns have been described in HDGC, including complete loss of expression, reduced membranous immunoreactivity and "dotted" or cytoplasmic staining. It should be clarified that HDGC may show retained E-cadherin immunoreactivity and that E-cadherin staining should not be used as a pre-screening method to select patients eligible for germline CDH1 variant analysis.

Differential diagnosis. The pathology of HDGC is unique and diagnostic expertise is needed to provide high quality diagnoses, both in biopsies and in resection specimens. Specifically, criteria for the identification of signet ring cell lesions should be strictly followed in order to diminish the risk of over diagnosing nonspecific changes and mimics of signet ring cells, such as globoid transformation and vacuolization of the superficial epithelium, xanthomatous cells, and artefacts secondary to cell autolysis. Second opinion by an independent pathologist with experience in the field should always be sought.

In HDGC patients presenting both lobular breast cancer and diffuse gastric cancer, a metastatic tumor should be considered and can be morphologically indistinguishable. Breast-associated immunomarkers are oestrogen receptor, BRST-2 (GCDFP-15) and mammaglobin, while the expression of CK20 and HNF4A may favour a diagnosis of gastric cancer.

Gastric adenocarcinoma and proximal polyposis of the stomach (GAPPS)

Definition. GAPPS is an autosomal dominant cancer predisposition syndrome associated with an increased risk of gastric cancer, arising in the context of polyposis of the proximal stomach. The genetic cause of GAPPS corresponds to germline point variants in the promoter 1B of the APC gene. Accordingly, GAPPS is defined as a variant of FAP with an exclusive gastric phenotype. Diagnostic criteria for GAPPS are listed in Table III. To consider a diagnosis of GAPPS, the presence of polyposis elsewhere in the gastrointestinal tract should be ruled out.

Clinical features. GAPPS penetrance is also incomplete, as proven by the evidence of normal endoscopies in elderly obligate carriers. The age of onset of gastric cancer is variable, ranging from 23 to 75 years. Fundic gland polyposis carpeting the gastric body and fundus has been detected as early as 10 years of age. Recommendations on the management of GAPPS should be decided on a case-by-case basis. Clinical strategies encompass endoscopic surveillance with biopsies and/or polypectomies and prophylactic/risk-reduction gastrectomy.

Histopathological findings. GAPPS is characterized by multiple fundic gland polyps carpeting the gastric body and fundus, some of which show foveolar-type dysplasia and by the presence of hyperproliferative aberrant pits, corresponding to hyper-proliferative and disorganized oxyntic glands around gastric pits. Other lesions include hyperplastic polyps, intestinal-type and foveolar-type adenomas with low- and high-grade dysplasia, as well as mixed polyps with FGP-like, adenomatous and hyperplastic features. Gastric adenocarcinomas are intestinal-type or mixed-type.

Differential diagnosis. Prolonged therapy with proton-pump inhibitors could cause the development of multiple FGPs and sporadic fundic gland polyposis. According to the clinical criteria to consider GAPPS diagnosis (Tab. III), upper endoscopy should be repeated after discontinuation of therapy and appropriate off-treatment interval.

Familial intestinal gastric cancer (FIGC)

Definition. Familial intestinal gastric cancer (FIGC) is an autosomal dominant cancer syndrome associated with an increased risk of intestinal-type gastric cancer. Diagnostic criteria (Tab. III) differ depending upon the incidence of gastric cancer in the population analysed. The genetic cause underlying the disease remains to be fully elucidated, although recent studies brought up the possibility of a distinctive polygenic cause for the disease. The clinical phenotype of gastric cancer patients fulfilling the clinical criteria for FIGC has been characterized recently. The lifetime risk of gastric cancer is 66% for both sexes and the mean age at diagnosis is 72 years, approximately 10 years earlier than patients with sporadic intestinal-type gastric cancers. The disease spectrum is broad, en-
compassing 18 cancer types including colorectal and breast cancer.

Histopathological findings. FIGC displays macroscopic and histopathological features that are undistinguishable from intestinal-type sporadic gastric cancer.

Post neo-adjuvant treatment tumor regression grade in gastric adenocarcinoma

Preoperative neo-adjuvant chemotherapy or combined radiotherapy and chemotherapy (neo-CRT) has become the standard approach for locally advanced gastric carcinomas. Pathological tumor regression grading (TRG) systems, which aim to evaluate and quantify the amount of residual tumor and/or regressive changes following neo-CRT, should be applied to all resections specimens.

TRG scoring permits prognostic stratification of tumors, indeed, complete pathological response is significantly associated with better outcome – at least in some series – and this classification into prognostic classes is the basis for personalized treatment and follow-up strategy.

Problems in TRG assignment

The presence of several validated classification systems for TRG has however led to some confusion as to which system should be preferentially applied. The presence of similar but not “exactly” similar TRG systems may, in part, explain why studies on the prognostic impact of response have yielded variable results.

There are many possible reasons which explain the lack of a universally accepted TRG system: 1) absence of standardized different sampling methods which could lead to over-diagnosis of complete pathological tumor regression and this may in part explain its variable prognostic impact. Indeed, the complete microscopic assessment of the entire ulcerated/scarred area should be performed and this is absolutely mandatory if no tumor is identified in the initial blocks; 2) not all classifications take into account the evaluation of response in loco-regional lymph nodes; 3) there is a relatively low concordance rate among pathologists in TRG assignment; 4) systems with a higher number of tiers (more than 4) do not offer any clear cut prognostic advantage.

TRG systems for gastric cancer

Gastric cancer specific TRG systems have been proposed starting from the 2003 Becker system which requires the histologic assessment of the entire macroscopically identifiable residual tumor or the fibrous areas. The Becker system is based on the percentage of vital tumor tissue with no integrated nodal evaluation: TRG1 - complete tumor regression (TRG 1a: 0% residual tumor) or subtotal tumor regression (TRG 1b: < 10% residual tumor); TRG 2 - partial tumor regression (10% to 50% residual tumor); TRG 3 - minimal/no tumor regression per tumor bed (> 50% residual tumor cells with or without signs of tumor regression). Recently, an international group of experts, through a Delphi survey, has proposed a 4-tiered system based on the modified Becker grading system. The novelty of this system is the addition of the evaluation of response in metastatic lymph nodes (complete, partial, or no nodal response) and this seems add strength to the system.

Conclusions

The pathology report of gastric resections specimens requires a standardized approach as well as an in-depth knowledge of prognostic and treatment associated factors. Furthermore, the recognition of hereditary conditions is important and requires cross-talk between the pathologist and clinicians.

References

1. Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68:394-424. https://doi.org/10.3322/caac.21492
2. Gullo I, Carneiro F, Oliveira C, et al. Heterogeneity in gastric cancer: From pure morphology to molecular classifications. Pathobiology 2018;85:50-63. https://doi.org/10.1159/000473881
3. Eusebi LH, Telese A, Marasco G, et al. Gastric cancer prevention strategies: A global perspective. J Gastroenterol Hepatol 2020. Online ahead of print. https://doi.org/10.1111/jgh.15037
4. Fukayama M, Abe H, Kunita A, et al. Thirty years of Helicobacter pylori bacterial flora during acid-suppressive therapy: differential findings in gastric juice and gastric mucosa. Aliment Pharmacol Ther 2001;15:379-88. https://doi.org/10.1046/j.1365-2036.2001.0088.x
5. Sanduleanu S, Jonkers D, De Bruine A, et al. Non-helicobacter pylori bacterial flora during acid-suppressive therapy: differential findings in gastric juice and gastric mucosa. Aliment Pharmacol Ther 2001;15:379-88. https://doi.org/10.1046/j.1365-2036.2001.0088.x
6. Spoto CPE, Gullo I, Carneiro F, et al. Hereditary gastrointestinal carcinomas and their precursors: An algorithm for genetic testing. Semin Diagn Pathol 2018;35:170-83. https://doi.org/10.1053/j.semdp.2018.01.004
7. van der Post RS, Carneiro F. Emerging concepts in gastric neoplasia: Heritable gastric cancers and polyposis disorders. Surg Pathol Clin 2017;10:931-45. https://doi.org/10.1016/j. pat.2017.07.011
8. Correa P. Human gastric carcinogenesis: a multistep and multifactorial process—First american cancer society award lecture on cancer epidemiology and prevention. Cancer Res 1992;52:6735-40.
9. Plummer M, Franceschi S, Vignat J, et al. Global burden of
gastric cancer attributable to helicobacter pylori. Int J Cancer 2015;136:487-90. https://doi.org/10.1002/ijc.28999

10 Polk DB, Peek RM Jr. Helicobacter pylori: gastric cancer and beyond. Nat Rev Cancer 2010;10:403-14. https://doi.org/10.1038/nrc2857

11 Ferreira RM, Machado JC, Figueiredo C. Clinical relevance of helicobacter pylori vaca and caga genotypes in gastric carcinoma. Best Pract Res Clin Gastroenterol 2014;28:1003-15. https://doi.org/10.1016/j.bpg.2014.09.004

12 Persson C, Canedo P, Machado JC, et al. Polymorphisms in inflammatory response genes and their association with gastric cancer: a huge systematic review and meta-analyses. Am J Epidemiol 2011;173:259-70. https://doi.org/10.1093/aje/kqw370

13 Mahmud N, Stashek K, Katona BW, et al. The incidence of neoplasia in patients with autoimmune metaplastic atrophic gastritis: a renewed call for surveillance. Ann Gastroenterol 2019;32:67-72. https://doi.org/10.20524/aog.2018.0325

14 Sipponen P, Price AB. The Sydney system for classification of gastritis 20 years ago. J Gastroenterol Hepatol 2011;26 Suppl 1:31-4. https://doi.org/10.1111/j.1440-1746.2010.05636.x

15 Meining A, Bayerdorffer E, Muller P, et al. Gastric carcinoma risk index in patients infected with helicobacter pylori. Virchows Arch 1998;432:311-4. https://doi.org/10.1007/s004280050171

16 Rugge M, Meggio A, Pennelli G, et al. Gastric neoplasia with characteristic endoscopic features and immunophenotypic and biological anomalies. Histopathology 2016;68:843-9. https://doi.org/10.1111/his.12960

17 Reis CA, David L, Correa P, et al. Intestinal metaplasia of human stomach with gastric immunophenotype shows features of biological aggressiveness. Gastric Cancer 2015;18:720-8. https://doi.org/10.1007/s10120-014-0416-5

22 WHO Classification of tumors. Digestive system tumors. Tumors of the stomach. WHO Classification of Tumors Editorial Board. 5th Ed. Lyon: IARC press 2019, pp. 59-110.

23 Kim A, Ahn SJ, Park DY, et al. Gastric crypt dysplasia: a distinct subtype of gastric dysplasia with characteristic endoscopic features and immunophenotypic and biological anomalies. Histopathology 2016;68:843-9. https://doi.org/10.1111/his.12960

24 Hackeng WM, Montgomery EA, Giardiello FM, et al. Morphology and genetics of pyloric gland adenomas in familial adenomatous polyposis. Histopathology 2017;70:548-57. https://doi.org/10.1111/his.13105

25 Brosens LA, Wood LD, Offerhaus GJ, et al. Pathology and genetics of syndromic gastric polyps. Int J Surg Pathol 2016;24:185-99. https://doi.org/10.1177/1066896915620013

26 Benedict MA, Lauwers GY, Jain D. Gastric adenocarcinoma of the fundic gland type: Update and literature review. Am J Clin Pathol 2018;149:461-73. https://doi.org/10.1093/ajcp/aqy019

27 Ahn JY, Son DH, Choi KD, et al. Neoplasms arising in large gastric hyperplastic polyps: Endoscopic and pathologic features. Gastrointest Endosc 2014;80:1005-1013.e1002. https://doi.org/10.1016/j.gie.2014.04.020

28 Takayama Y, Ono Y, Mizukami Y, et al. Comparative genomewide analysis of gastric adenocarcinomas with hyperplastic polyp components. Virchows Arch 2019;475:383-9. https://doi.org/10.1007/s00428-019-02592-y

29 Carmack SW, Genta RM, Schuler CM, et al. The current spectrum of gastric polyps: A 1-year national study of over 120,000 patients. Am J Gastroenterol 2009;104:1524-32. https://doi.org/10.1111/j.1572-0241.2009.139

30 Abraham SC, Nobukawa B, Giardiello FM, et al. Fundic gland polyps in familial adenomatous polyposis: neoplasms with frequent somatic adenomatous polyposis coli gene alterations. Am J Pathol 2000;157:747-54. https://doi.org/10.1016/s0002-9440(00)76588-9

31 Hamashima C. Cancer screening guidelines and policy making: 15 years of experience in cancer screening guideline development in japan. Jpn J Clin Oncol 2018;48:278-86. https://doi.org/10.1093/jjco/hyx190

32 Teh JL, Shahbir A, Yuen S, et al. Recent advances in diagnostic upper endoscopy. World J Gastroenterol 2020;26;433-47. https://doi.org/10.3748/wjg.v26.i4.433

33 Tsukuma H, Mishima T, Oshima A. Prospective study of “early” gastric cancer. Int J Cancer 1983;31;421-26.

34 Pimentel-Nunes P, Dinis-Ribeiro M, Ponchon T, et al. Endoscopic submucosal dissection: European society of gastrointestinal endoscopy (esge) guideline. Endoscopy 2015;47;829-54. https://doi.org/10.1055/s-0034-1392882

35 Bang YJ, Van Cutsem E, Feyereislova A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of her2-positive advanced gastric or gastro-oesophageal junction cancer (toga): a phase 3, open-label, randomised controlled trial. Lancet 2010;376:687-97. https://doi.org/10.1016/s0140-6736(10)61121-x

36 Fuchs CS, Tabernero J, Tomasek J, et al. Biomarker analyses in regard gastric/gej carcinoma patients treated with vegfr2-targeted antibody ramucirumab. Br J Cancer 2016;115;974-82. https://doi.org/10.1038/bjc.2016.293

37 Smyth EC, Verheij M, Allum W, et al. Gastric cancer: esmo clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 2016;27:v38-v49. https://doi.org/10.1093/annonc/mdw350

38 Ahn JY, Son DH, Choi KD, et al. HER2 heterogeneity in gastric/gastroesophageal cancers: from benchside to practice. World J Gastroenterol 2016;22;5879-87. https://doi.org/10.3748/wjg.v22.i26.5879

39 Grilli F, Fassan M, Sarocchi F, et al. The reliability of endoscopic biopsies in assessing HER2 status in gastric and gastroesophageal junction cancer: a study comparing biopsies with surgical samples. Transl Oncol 2013;6:10-6. https://doi.org/10.1593/tlo.12334
Lei Z, Tan IB, Das K, et al. Identification of molecular subtypes of gastric cancer with different responses to p3-kinase inhibitors and 5-fluorouracil. Gastroenterology 2013;145;554-65. https://doi.org/10.1053/j.gastro.2013.05.010

TCGA. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014;513;202-9. https://doi.org/10.1038/nature13480

Cristescu R, Lee J, Nebozyn M, et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat Med 2015;21;449-56. https://doi.org/10.1038/nm.3850

Song HJ, Kim KM. Pathology of Epstein-Barr virus-associated gastric carcinoma and its relationship to prognosis. Gut Liver 2011;5;143-8. https://doi.org/10.5009/gnl.2011.5.2.143

Chiaravalli AM, Cornaggia M, Furlan D, et al. The role of histological investigation in prognostic evaluation of advanced gastric cancer. Analysis of histological structure and molecular changes compared with invasive pattern and stage. Virchows Arch 2001;439;158-69. https://doi.org/10.1007/s004280100441

Gullo I, Carvalho J, Martins D, et al. The transcriptomic landscape of gastric cancer: Insights into Epstein-Barr virus infected and microsatellite unstable tumors. Int J Mol Sci 2018;19. https://doi.org/10.3390/ijms19072079

Setia N, Agoston AT, Han HS, et al. A protein and mRNA expression-based classification of gastric cancer. Mod Pathol 2016;29;772-84. https://doi.org/10.1038/modpathol.2016.55

Ahn S, Lee SJ, Kim Y, et al. High-throughput protein and mRNA expression-based classification of gastric cancers can identify clinically distinct subtypes, concordant with recent molecular classifications. Am J Surg Pathol 2017;41;106-15. https://doi.org/10.1097/pas.0000000000000756

Machicado J, Shroff J, Quesada A, et al. Gastritis cystica profunda: endoscopic ultrasound findings and review of the literature. Endosc Ultrason 2014;3;131-4. https://doi.org/10.4103/2303-9027.131041

Choi MG, Jeong JY, Kim KM, et al. Clinical significance of gastritis cystica profunda and its association with Epstein-Barr virus in gastric cancer. Cancer 2012;118;5227-33. https://doi.org/10.1002/cncr.27541

Agaimy A, Rau TT, Hartmann A, et al. SMARC B1 (INI1)-negative rhabdoid carcinomas of the gastrointestinal tract: clinicopathologic and molecular study of a highly aggressive variant with literature review. Am J Surg Pathol 2014;38;910-20. https://doi.org/10.1097/PAS.0000000000000173

Gullo I, Oliveira P, Athelogou M, et al. New insights into the inflamed tumor immune microenvironment of gastric cancer with lymphoid stroma: from morphology and digital analysis to gene expression. Gastric Cancer 2019;22;77-90. https://doi.org/10.1007/s11012-018-0836-8

Yamazawa S, Ushiku T, Shinzaki-Ushiku A, et al. Gastric cancer with primitive enterocyte phenotype: An aggressive subgroup of intestinal-type adenocarcinoma. Am J Surg Pathol 2017;41;989-97. https://doi.org/10.1097/PAS.00000000000008869

Ushiku T, Uozaki H, Shinzaki A, et al. Glypican 3-expressing gastric carcinoma: distinct subgroup unifying hepatoid, clear-cell, and alpha-fetoprotein-producing gastric carcinomas. Cancer Sci 2009;100;626-32. https://doi.org/10.1111/j.1349-7006.2009.01108.x

Ushiku T, Shinzaki A, Shibahara J, et al. Sall4 represents fetal hepatoid gastric carcinoma. Nature 2014;513;202-9. https://doi.org/10.1038/nature13480

Mochizuki K, Kawai M, Odate T, et al. Smarcb1/INI1 is diagnostically useful in distinguishing alpha-fetoprotein-producing gas-
HISTOPATHOLOGY OF TUMORS OF THE STOMACH

Lee HE, Smyrk TC, Zhang L. Histologic and immunohistochemical differences between hereditary and sporadic diffuse gastric carcinoma. Hum Pathol 2018;74:64-72. https://doi.org/10.1016/j.humpath.2017.12.023

Mahmud N, Ford JM, Longacre TA, et al. Metastatic lobular breast carcinoma mimicking primary signet ring adenocarcinoma in a patient with a suspected cdh1 mutation. J Clin Oncol 2015;33;e19-21. https://doi.org/10.1200/jco.2013.49.1159

van der Post RS, Bult P, Vogelaar IP, et al. Hnf4a immunohistochemistry facilitates distinction between primary and metastatic breast and gastric carcinoma. Virchows Arch 2014;464;673-9. https://doi.org/10.1007/s00428-014-1574-x

Li J, Woods SL, Healey S, et al. Point mutations in exon 1b of apc reveal gastric adenocarcinoma and proximal polyposis of the stomach as a familial adenomatous polyposis variant. Am J Hum Genet 2016;98;830-42. https://doi.org/10.1016/j.ajhg.2016.03.001

Worthley DL, Phillips KD, Wayne N, et al. Gastric adenocarcinoma and proximal polyposis of the stomach (gaps): a new autosomal dominant syndrome. Gut 2012;61;774-9. https://doi.org/10.1136/gutjnl-2011-300348

de Boer WB, Ee H, Kumarasinghe MP. Neoplastic lesions of gastric adenocarcinoma and proximal polyposis syndrome (gaps) are gastric phenotype. Am J Surg Pathol 2018;42;1-8. https://doi.org/10.1097/PAS.0000000000000924

Caldas C, Carneiro F, Lynch HT, et al. Familial gastric cancer: overview and guidelines for management. J Med Genet 1999;36;873-80.

Carvalho J, Oliveira P, Senz J, et al. Redefinition of familial intestinal gastric cancer: Clinical and genetic perspectives. J Med Genet 2020. https://doi.org/10.1136/jmedgenet-2019-106346

Zhu Y, Sun Y, Hu S, et al. Comparison of five tumor regression grading systems for gastric adenocarcinoma after neoadjuvant chemotherapy: a retrospective study of 192 cases from National Cancer Center in China. BMC Gastroenterol 2017;17:41. https://doi.org/10.1186/s12876-017-0598-5

Fanelli GN, Loupakis F, Smyth E, et al. Pathological tumor regression grade classifications in gastrointestinal cancers: role on patients' prognosis. Int J Surg Pathol. 2019;27:816-35. https://doi.org/10.1177/1066896919869477

Becker K, Mueller JD, Schulmacher C, et al. Histomorphology and grading of regression in gastric carcinoma treated with neoadjuvant chemotherapy. Cancer 2003;98:1521-30.

Tsekrekos A, Detlefsen S, Riddell R, et al. Histopathologic tumor regression grading in patients with gastric carcinoma submitted to neoadjuvant treatment: results of a Delphi survey. Hum Pathol 2019;84;26-34. https://doi.org/10.1016/j.humpath.2018.08.028