Data in Brief

High-quality draft genome sequence of *Kocuria marina* SO9-6, an actinobacterium isolated from a copper mine

Daniel B.A. Castro a,1, Letícia Bianca Pereira a,1, Marcus Vinícius M. e Silva c, Bárbara P. da Silva b, Bruna Rafaela Z. Palermo a, Camila Carlos a, Daiane R.B. Belgini b, Elmer Erasmo G. Limache b, Gileno V. Jr Lacerda b, Mariana B.P. Nery b, Milene B. Gomes b, Salatiel S. de Souza d, Thiago M. da Silva a, Viviane D. Rodrigues a, Luciana C. Paulino e, Renato Vicentini a, Lúcio F.C. Ferraz f, Laura M.M. Ottoboni a,⁎

a Center for Molecular Biology and Genetic Engineering (CBMEG), State University of Campinas — UNICAMP, Campinas, Brazil
b Chemical, Biological and Agricultural Multidisciplinary Research Center, State University of Campinas — UNICAMP, Campinas, Brazil
c Center APTA Citros Sylvio Moreira, Cordeirópolis, Brazil
d Department of Animal Biology, Institute of Biology, State University of Campinas — UNICAMP, Campinas, Brazil
e Center of Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
f Department of Molecular Biology and Pharmacology, University of São Francisco, Bragança Paulista, Brazil

A R T I C L E I N F O

Article history:
Received 31 March 2015
Received in revised form 6 May 2015
Accepted 10 May 2015
Available online 16 May 2015

Keywords:
Kocuria marina SO9-6
Genome
Copper mine
Aromatic compound degradation
Heavy metal tolerance

A B S T R A C T

An actinobacterial strain, designated SO9-6, was isolated from a copper iron sulfide mineral. The organism is Gram-positive, facultatively anaerobic, and coccoid. Chemotaxonomic and phylogenetic properties were consistent with its classification in the genus *Kocuria*. Here, we report the first draft genome sequence of *Kocuria marina* SO9-6 under accession JROM00000000 (http://www.ncbi.nlm.nih.gov/nuccore/725823918), which provides insights for heavy metal bioremediation and production of compounds of biotechnological interest.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Direct link to deposited data

The draft genome sequence of *Kocuria marina* SO9-6 has been deposited at DDBJ/EMBL/GenBank under the accession JROM00000000 (http://www.ncbi.nlm.nih.gov/nuccore/725823918), and this paper describes its first version.

2. Experimental design, materials and methods

The genus *Kocuria*, which belongs to the Micrococcaceae family, was first proposed by Stackebrandt et al. [1]. These bacteria were formerly classified in the genus *Micrococcus*, but were subsequently separated from it based on phylogenetic and chemotaxonomic analyses. The members of this genus are coccoid, Gram-positive, non-encapsulated, and aerobic, but *Kocuria kristinae* and *Kocuria marina* are exceptions, since the first is facultatively anaerobic and the second can grow in 5% CO₂ [1,2]. Members of the *Kocuria* genus have been isolated from different environments including marine sediment [2], saline desert soil [3] and fermented food [4]. Our strain was isolated from a sulfite ore containing partially oxidized chalcopyrite, obtained from the Sossego mine (6°25’45"S, 50°3’58"W) in Canaã dos Carajás, Brazil. To date, there is only one complete published genome of *Kocuria rhizophila* DC2201 (GenBank/EMBL/DDBJ accession number AP009152) [5] and

⁎ Corresponding author. Tel.: +551935211099.
E-mail address: ottoboni@unicamp.br (L.M.M. Ottoboni).
1 Both are first authors and equally contributed to this work.
the possibility of genetic features that could be targeted in future bioremediation processes and especially copper), and siderophore biosynthesis (implying the capacity to acquire iron), which could explain the organism’s survival in extreme environments and raises the possibility of genetic features that could be targeted in future bioremediation studies.

According to RAST, K. rhizophila DC2201 is the closest neighbor of our strain, encoding a type III polyketide synthase (T3pks) and a nonribosomal peptide synthetase, and is probably capable of degrading the aromatic compounds phenylacetate, protocatechuate, and homoprotocatechuate [5]. The functional annotation of K. marina SO9-6 revealed genes related to the degradation of aromatic compounds including the industrial water contaminant phenylacetic acid [17], benzene (by means of hydroxylation), and phenylacetate. The antiSMASH v.2.0 [18] analysis revealed five known secondary metabolic clusters, one siderophore, two bacteriocins, one terpene, and one T3pks synthetis, in contigs KM0016, KM0022, KM0028, KM0045, and KM0055, respectively. A nearly complete route for butanol production from glycerol degradation was also identified, as well as genes involved in antibiotic resistance, tolerance to heavy metals (mercury, arsenic, zinc, and especially copper), and siderophore biosynthesis (implying the capacity to acquire iron), which could explain the organism’s survival in the high metal content environment. The genes for aromatic compound degradation and heavy metal tolerance suggest that K. marina SO9-6 could be used to improve bioremediation processes in contaminated areas.

Comparative genomics analyses of SO9-6 are in progress and will be published separately. This first genome of K. marina helps to provide insights into its survival in extreme environments and raises the possibility of genetic features that could be targeted in future bioremediation studies.

Table 1

Attributes	Value
Genome size (bp)	3,066,141
Total contigs	62
GC content (%)	68.82
Protein-coding genes	2818
tRNA genes	48
rRNA genes	9
Genes assigned to subsystems	1250

References

1. E. Stackebrandt, C. Koch, O. Gvozdiak, P. Schumann, Taxonomic dissection of the genus Micrococcus: Kocuria gen. nov., Nesterenkonia gen. nov., Ryphotococcus gen. nov., and Micrococcus Cohn 1872 gen. emend. Int. J. Syst. Bacteriol. 45 (1995) 682–692.

2. S.K. Kim, Kocuria marina sp. nov., a novel actinobacterium isolated from marine sediment. Int. J. Syst. Evol. Microbiol. 54 (2004) 1617–1620, http://dx.doi.org/10.1099/ijs.0.02742-0.

3. W.J. Li, Y.J. Zhang, P. Schumann, H.H. Chen, W.N. Hozzein, X.P. Tian, L.H. Xu, C.L. Jiang, Kocuria gen. nov., sp. nov., a novel actinobacterium isolated from a saline, alkaline desert soil in Egypt. Int. J. Syst. Evol. Microbiol. 56 (2006) 733–737, http://dx.doi.org/10.1099/ijs.0.02876-0.

4. D.B. Castro, M.S. Kim, S.W. Roh, M.J. Jung, J.W. Bae, Kocuria atrinae sp. nov., isolated from traditional Korean fermented seafood. Int. J. Syst. Evol. Microbiol. 60 (2010) 914-918, http://dx.doi.org/10.1099/ijs.0.00456-0.

5. H. Takahara, M. Sekine, H. Kosugi, Y. Matsu, T. Fujisawa, S. Omata, E. Kishi, A. Shimizu, N. Takarada, M. Sekine, H. Kosugi, T. Fujisawa, Kocuria gen. nov. Kocuria rhizophila J. Bacteriol. 190 (2008) 4139–4146, http://dx.doi.org/10.1128/JB.01853-07.

6. W.J. Li, Y.-Q. Kim, Y.-D. Kim, D.-S. Kim, S.-H. Choi, D.-W. Kim, J.-S. Lee, H.J. Yong, B.H. Nam, B.-S. Kim, S.-J. Lee, H.-S. Park, S.-H. Chae, Draft genome sequence of Kocuria rhizophila P7-4. J. Bacteriol. 193 (2011) 4286–4287, http://dx.doi.org/10.1128/JB.01534-11.

7. Y.D. Nam, M.-J. Seo, S.J. Lim, S.L. Park, Genome sequence of Kocuria atrinae C3-8, isolated from peatgalls, a traditional Korean fermented seaweed. J. Bacteriol. 194 (2012) 5996–6000, http://dx.doi.org/10.1128/JB.01333-12.

8. D.A. Cost, J. Doctor, J.M. Lang, A.E. Darling, J.A. Eisen, Draft genome sequence of Kocuria sp. strain UCD-OTCP (Phylum Actinobacteria). Genome Announc. 2 (2014) e01261-13, http://dx.doi.org/10.1128/genomeA.01261-13.

9. R.K. Patel, M. Jain, NGS QC toolkit: a toolkit for quality control of next generation sequencing data. PLoS One 7 (2012) e30619, http://dx.doi.org/10.1371/journal.pone.0030619.

10. G. Marçais, I. Kingsford, A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27 (2011) 764–766, http://dx.doi.org/10.1093/bioinformatics/btr011.

11. R. Li, W. Fan, G. Tian, H. Zhu, L. Hu, H. Cai, Q. Huang, Q. Bai, R. Bai, Z. Zhang, Y. Wang, J. Li, F. Wei, H. Li, M. Jian, J. Li, Z. Zhang, R. Niemelä, D. Li, W. Gu, Z. Yang, X. Xuan, O.A. Ryder, F.C. Leung, Y. Zhou, J. Cao, S. Yan, Y. Fu, X. Fang, X. Guo, B. Wang, R. Hou, F. Shen, B. Mu, P. Ni, R. Liu, W. Qian, G. Wang, C. Yu, W. Nie, J. Wang, Z. Wu, H. Liang, J. Min, Q. Wu, S. Cheng, J. Ruan, M. Wang, Z. Shi, M. Weng, B. Liu, X. Ren, H. Zheng, D. Dong, K. Cook, G. Shan, H. Zhang, C. Kosiol, X. Xie, Z. Lu, H. Zheng, Y. Li, C.C. Steiner, T.T.-Y. Lam, S. Lin, Q. Zhang, G. Li, J. Tian, T. Goh, H. Liu, D. Zhang, L. Fang, C. Ye, J. Zhang, W. Hu, X. Yu, R. Ren, G. Zhang, M.W. Bradford, Q. Li, L. Ma, Y. Guo, N. An, Y. Hu, Y. Zheng, Y. Shi, Z. Li, Q. Liu, Y. Hu, X. Guo, L. Wang, B. Hu, H. Wang, H. Wang, L. Xu, X. Liu, T. Vinar, Y. Wang, T.-W. Lam, S.-M. Yiu, S. Liu, H. Zhang, D. Li, X. Huang, X. Wang, G. Yang, Z. Jiang, W. Wang, N. Qin, L. Li, J. Liu, L. Bolund, K. Kristiansen, G.-S. P7-4. J. Bacteriol. 193 (2011) 4286–4287, http://dx.doi.org/10.1128/JB.01534-11.

12. Y.D. Nam, M.-J. Seo, S.J. Lim, S.L. Park, Genome sequence of Kocuria atrinae C3-8, isolated from peatgalls, a traditional Korean fermented seaweed. J. Bacteriol. 194 (2012) 5996–6000, http://dx.doi.org/10.1128/JB.01333-12.

13. A. Bankevich, M.S. Kim, S.W. Roh, M.J. Jung, J.W. Bae, Kocuria atrinae sp. nov., isolated from traditional Korean fermented seafood. Int. J. Syst. Evol. Microbiol. 60 (2010) 914-918, http://dx.doi.org/10.1099/ijs.0.00456-0.

14. I.J. Tsai, T.D. Otto, M. Berriman, Method improving draft assemblies by iterative mapping and fusion of contigs KM0016, KM0022, KM0028, KM0045, and KM0055, respectively. A nearly complete route for butanol production from glycerol degradation was also identified, as well as genes involved in antibiotic resistance, tolerance to heavy metals (mercury, arsenic, zinc, and especially copper), and siderophore biosynthesis (implying the capacity to acquire iron), which could explain the organism’s survival in the high metal content environment. The genes for aromatic compound degradation and heavy metal tolerance suggest that K. marina SO9-6 could be used to improve bioremediation processes in contaminated areas. Comparative genomics analyses of SO9-6 are in progress and will be published separately. This first genome of K. marina helps to provide insights into its survival in extreme environments and raises the possibility of genetic features that could be targeted in future bioremediation studies.

Table 1

Kocuria marina SO9-6 genome statistics.
Attributes
Genome size (bp)
Total contigs
GC content (%)
Protein-coding genes
rRNA genes
rRNA genes
Genes assigned to subsystems

Acknowledgments

DBAC, LBP, MVMS, CC, CVLJ, MBPN, and TMS received fellowships from the São Paulo Research Foundation (FAPESP). BPS and EUGL received fellowships from the National Council for Technological and Scientific Development (CNPq). BRZP, SSZ, and VDR received fellowships from Coordination for the Improvement of Higher Education Personnel (CAPES). DRBB and MBG received fellowships from Petrobras.

The authors are grateful to Vale S.A. for the environmental mine sample.

D.B.A. Castro et al. / Genomics Data 5 (2015) 34–35