Effects of Antibiotics on Fibrinolytic Activity

Isamu OKUNO, Yumi FUJIHARU and Kiyohisa UCHIDA
Shionogi Research Laboratories, Shionogi & Co., Ltd.,
Fukushima-ku, Osaka 553, Japan
Accepted July 7, 1986

Abstract—Latamoxef, cefamandole, carbenicillin and cefotaxime were examined for their effects on fibrinolytic activity in vitro by means of the fibrin plate method, fibrin clot lysis time and euglobulin lysis time with human, rabbit and rat plasma. These antibiotics showed no fibrinolytic but weak antifibrinolytic activity at 1000 or 3000 \(\mu \text{g/ml} \) in some assay systems.

Antibiotics have been reported to cause bleeding in some severely ill patients (1, 2), and although the mechanism is not yet known, a disorder of the vitamin K-dependent coagulation system (3, 4) and platelet dysfunction (5, 6) are suspected causes. Enhancement of fibrinolysis also causes bleeding (7), but the effect of antibiotics on fibrinolytic activity is not yet known. In this study, we examined the effects of some antibiotics on fibrinolytic activity in vitro by means of the fibrin plate method, fibrin clot lysis time and euglobulin lysis time. Latamoxef (LMOX) and cefotaxime (CTX) from the third generation, cefamandole (CMD) from the second, and carbenicillin (CBPC) from penicillin-type antibiotics were chosen, and the results with these compounds were compared with those for some reference compounds.

6-Amino-n-caproic acid (EACA) and trans-(aminomethyl)cyclohexanecarboxylic acid (AMCHA) were purchased from Nakarai Chemicals (Japan), sodium dextran sulfate from Pharmacia (Sweden), urokinase (UK) from Green Cross Co. (Japan), and fibrinogen from Seikagaku Kogyo (Japan). All the test compounds and euglobulin fractions were dissolved in 0.12 M acetate buffer (pH 7.4) unless otherwise mentioned.

Fibrin plates were prepared by the method of Norén et al. (8) and the effects of antibiotics and EACA on fibrinolytic activity of UK were examined using plasminogen-containing fibrin plates. The test compounds were dissolved in 0.1 ml of 0.01 M phosphate buffer (pH 7.8) in various concentrations and mixed with 0.1 ml of UK saline solution (75 U/ml). An aliquot (5 \(\mu l \)) of the mixture was put into wells (3 mm in diameter) on the fibrin plates. The lysis area was measured after incubation at 37°C for 20 hr.

EACA inhibited the UK activity by 20% (lysis area) at the final concentration of 200 \(\mu \text{g/ml} \) (1.5x10^{-2} M), but LMOX, CMD, CBPC and CTX showed no inhibition at the concentrations of 0.64-2000 \(\mu \text{g/ml} \).

Fibrin clot lysis time was measured with an aliquot (350 \(\mu l \)) of human fibrinogen solution, which was enriched with 2.5 \(\mu \text{g} \) of bovine plasminogen, transferred to a polystyrene tube, mixed in sequence with 50 \(\mu l \) of UK solution (20 U/ml), 50 \(\mu l \) of the test compound solution and 50 \(\mu l \) of thrombin solution (20 U/ml), and incubated at 37°C in a water bath. The time for complete lysis of the formed fibrin clot was measured (Table 1). LMOX and CBPC showed no effect on the fibrin lysis time, but it was increased significantly by DMD at 1000 \(\mu \text{g/ml} \) and CTX at 3000 \(\mu \text{g/ml} \). EACA prolonged the fibrin clot lysis time at 100 \(\mu \text{g/ml} \) and AMCHA prolonged it at 30 \(\mu \text{g/ml} \), confirming the report of Westlund et al. (9).

The effects of antibiotics on euglobulin lysis time were examined by preparing euglobulin fractions from human, rabbit and rat plasma according to the method of Kluft et al. (10). An aliquot (400 \(\mu l \)) of the euglobulin solution was mixed with 50 \(\mu l \) of
the test compound solution and 50 μl of thrombin solution (25 U/ml) in a polystyrene test tube and incubated at 37°C for up to 600 min. Euglobulin lysis time was taken as the interval between addition of thrombin and complete lysis of the formed clot. As shown in Table 2, LMOX, CMD and CTX prolonged the euglobulin lysis time at 1000 μg/ml, and CBPC prolonged it at 3000 μg/ml. EACA also increased the lysis time at 10 μg/ml, but UK decreased the time at 0.3 U/ml. When rabbit euglobulin was used, the responses of EACA and UK were weaker than those with human euglobulin, and rat euglobulin gave weaker results than rabbit euglobulin. This species difference in the response agrees with the antifibrinolytic activities disclosed upon addition of UK to rat, rabbit and human whole plasma.

Table 1. Effects of some substances on fibrinolytic activity based on fibrin clot lysis time (min)

Substance	No. of experiments	0	100	300	1000	3000
Latamoxef (×1 μg/ml)	3	87±7	88±7	90±7	88±5	121±10
Cefamandol (×1 μg/ml)	4	88±5	91±5	100±6	117±8*	211±20*
Carbenicillin (×1 μg/ml)	3	89±7	90±7	92±7	94±7	99±7
Cefotaxime (×1 μg/ml)	3	86±6	87±6	91±7	106±7	171±19*
EACA (×10⁻¹ μg/ml)	4	98±5	98±4	94±5	115±7*	194±7*
AMCHA (×10⁻² μg/ml)	4	88±5	93±5	105±6	143±8*	
Streptokinase (×10⁻³ U/ml)	4	91±5	93±4	32±1	22±0	
Dextran sulfate (×10⁻⁸ μg/ml)	4	90±5	74±7	61±6	51±4*	

EACA, 6-amino-n-caproic acid. AMCHA, trans-4-(aminomethyl)cyclohexanecarboxylic acid. *Mean ±S.E. *Statistically significant difference compared with 0 concentration (P<0.05).

Table 2. Effects of latamoxef, cefamandole, carbenicillin and cefotaxime on euglobulin lysis time in human, rabbit and rat plasma

Substance	No. of experiments	0	100	300	1000	3000
Human						
Latamoxef (×1 μg/ml)	4	359±12	341±10	386±4	490±12*	>600
Cefamandol (×1 μg/ml)	4	355±8	358±11	376±15	441±14*	>600
Carbenicillin (×1 μg/ml)	4	351±14	338±6	370±23	379±15	423±23*
Cefotaxime (×1 μg/ml)	4	340±12	335±3	350±15	416±21*	>600
EACA (×10⁻² μg/ml)	4	361±10	383±2	417±17	487±29*	
Urokinase (×10⁻⁴ U/ml)	3	336±8	308±9	272±17	185±27*	

Rabbit

Substance	No. of experiments	0	100	300	1000	3000
Latamoxef (×1 μg/ml)	3	28±2	29±2	29±1	31±1	30±3
Cefamandol (×1 μg/ml)	3	28±1	28±1	29±1	30±1	33±1*
Carbenicillin (×1 μg/ml)	3	28±1	29±2	28±1	30±2	28±1
Cefotaxime (×1 μg/ml)	3	29±1	29±1	30±1	31±1	34±1*
EACA (×10⁻¹ μg/ml)	3	28±2	30±2	31±3	42±2*	
Urokinase (×10⁻³ U/ml)	3	27±1	26±1	23±1	20±0*	

Rat

Substance	No. of experiments	0	100	300	1000	3000
Latamoxef (×1 μg/ml)	4	100±4	100±4	99±2	102±4	99±2
Cefamandol (×1 μg/ml)	3	102±5	104±8	105±9	111±7	137±17
Carbenicillin (×1 μg/ml)	4	99±4	97±4	98±4	92±4	88±10
Cefotaxime (×1 μg/ml)	4	97±4	103±5	103±4	110±8	139±7*
EACA (×10⁻¹ μg/ml)	3	99±3	102±4	109±4	236±9*	
Urokinase (×10⁻² U/ml)	3	95±3	89±4	77±7	54±6*	

EACA, 6-amino-n-caproic acid. AMCHA, trans-4-(aminomethyl)cyclohexanecarboxylic acid. *Mean±S.E. *Statistically significant difference compared with 0 concentration (P<0.05).
The effects of the antibiotics on euglobulin-induced fibrinolysis were examined by the fibrin plate method. An aliquot (180 μl) of the human euglobulin solution in 2.7 mM EDTA buffer (pH 7.8) was mixed with 20 μl of the test compound solutions. A 20 μl aliquot of the mixture or the preincubated mixture at 37°C for 30 min was put into wells (5 mm in diameter) of the fibrin plates and incubated at 37°C for 20 hr, after which the lysis area was measured. The effective doses of EACA and UK were nearly the same as those obtained with the euglobulin lysis time experiments (Table 2), and LMOX, CMD and CTX reduced the fibrinolytic activity of the human euglobulin fraction at 3000 μg/ml. The antifibrinolytic activity of antibiotics found with the human euglobulin test was more pronounced than those with the other system, and the activity was about one tenth that of EACA when compared by the minimum effective molar concentration.

These results suggest that the four antibiotics studied show no fibrinolytic activity but show antifibrinolytic activity only at high concentrations (more than 1000 μg/ml) which are not achievable in vivo.

References
1. Marier, R.L., Faro, S., Sanders, C.V., Williams, W., Derks, F., Janney, A. and Aldridge, K.: Moxalactam in the therapy of serious infections. Antimicrob. Agents Chemother. 21, 650–654 (1982)
2. Bruch, K.: Hypoprothrombinaemia and cephalosporins. Lancet i, 536–538 (1983)
3. Uchida, K., Ishigami, T. and Komeno, T.: Effects of latemoxef and methyltetrazolethiol on gammaglutamylcarboxylase activity. Japan. J. Pharmacol. 35, 330–333 (1984)
4. Jenkinson, S.G. and Neu, H.C.: Adverse effects of new cephalosporins. Ann. Intern. Med. 98, 415–416 (1983)
5. Bang, N.U., Tessier, S.S., Heidenreich, R.O., Marks, C.A. and Mattler, L.E.: Effects of moxalactam on blood coagulation and platelet function. Rev. Infect. Dis. 4, s546–s554 (1982)
6. Weitekamp, M.R. and Aber, R.C.: Prolonged bleeding times and bleeding diathesis associated with moxalactam administration. JAMA 249, 69–71 (1983)
7. Bennett, B. and Ogston, D.: Fibrinolytic bleoding syndromes. In Disorders of Hemostasis, Edited by Ratnoff, O.D. and Forbes, C.D., p. 321, Grune & Stratton, Inc., London (1984)
8. Néren, I., Ramström, G. and Wallén, P.: Fibrin plate method with reagents purified by affinity chromatography and its use for determination of fibrinolytic and other proteolytic activity in saliva, bile and plasma. Haemostasis 4, 110–124 (1975)
9. Westlund, L.E., Lundén, R. and Wallén, P.: Effect of EACA, PAMBA, AMCA and AMBOCA on fibrinolysis induced by streptokinase, urokinase and tissue activator. Haemostasis 11, 236–241 (1982)
10. Kluft, C., Brakman, P. and Veldhuysen-Stolk, E.C.: Screening of fibrinolytic activity in plasma euglobulin fractions on the fibrin plate. In Progress in Chemical Fibrinolysis and Thrombosis, Edited by Davidson J.F., Samana, M.M. and Desnoyers, P.C., Vol. 2, p. 57–65, Raven Press, New York (1976)
11. Hedlin, A.M., Monkhouse, F.C. and Milojevic, S.M.: A comparative study of fibrinolytic activity in human, rat, rabbit, and dog blood. Can. J. Physiol. Pharmacol. 50, 17–21 (1971)