Design and Implementation of Internet of Everything’s Business Platform Ecosystem

Shrutika Mishra (shrutika.bhu@gmail.com)
Banaras Hindu University https://orcid.org/0000-0003-3029-6503

A. R. Tripathi
Banaras Hindu University

R.S. Singh
IIT BHU: Indian Institute of Technology BHU Varanasi

Priyanshu Mishra
Banaras Hindu University

Research

Keywords: IoE Platform, Platform Business, Prototypes, Business Ecosystem, IoE, Business Model, 6G technology, Platform Ecosystem

DOI: https://doi.org/10.21203/rs.3.rs-402461/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Internet of Everything plays a vital role for the business and industry. Internet of everything's is an assembly of technologies, strategies over the network strategies and connections which required a set of protocols, data server storage strategy, infrastructure mechanism, integration of all technology, and communication protocols with all the connecting devices. Internet of everything's (IoE) is a diversified and distributed interconnection of the platform strategies, heterogeneous devices through man and machines over the Internet. Business tycoons are continuously shifting their business model to innovative business model with internet technology-based features. The IoE based model able to generate and capture huge amounts of data in nano seconds. Industrialist using this data driven approach in their businesses to generate huge number of profits from their business. IoE based data driven approach learn from existing patterns and solutions to predict the future behavior and analytics of business.

There is however, very little attention has given on platform business models from an Internet of Everything viewpoint and data driven approaches. In this study we examine up-to-date landscape of IoE business platform ecosystem along with 5G and 6G technology scope for business to how they can be integrated to work on IoE platform ecosystem.

JEL Classification: M10, M12, M13, M15, M16, M21, M31, M37.

1. Introduction

The word “Internet of Things” was thought up by Kevin Ashton in 1999 for the period of his work at Procter & Gamble in a business supply chain optimization and craved to invite senior administration's responsiveness through Radio Frequency Identification (RFID). The acceptance of the term IoT did not speed up until 2010/2011 and stretched corpus marketplace in the initial of 2014 (Cisco Annual Report, 2018–2023). In 2011, Gartner, the market research company which conceived the famous “hype-cycle for emerging technologies” contained within a new emerging phenomenon on their list: "The Internet of Things". In the succeeding year signature theme of Europe's leading Internet conference LeWeb was the “Internet of Things”. Around the same span widely held tech-focused journals like Forbes, Fast Company, and Wired magazine opening expending IoT as their terminology to designate the occurrence (Bega et al., 2017).

Internet of Things (IoT) is basically the combination of sensors and actuators implanted in somatic bits and pieces. They are interconnected over and done with wired and/or wireless networks. More or less familiar examples for Internet of Things applications today are: Wearable devices, fitness trackers, like as Jawbone Up, Fitbit, Pebbl, Home Automation like as Nest, 4Control, Lifx, Industrial asset monitoring like as GE, AGT Intl., Smart energy meters, smart mineral water which show quantity of available minerals during drinking according to the requirement of the persons. Cisco has also been motivating the term Internet of Everything (IoE) in his white paper (Cisco Annual Report, 2020). Intel in the beginning called it the “embedded internet”. Additional terms that have been suggested but don’t mean exactly all the same
are: M2M (Machine to machine) communication, Web of Things, Industry 4.0, Industrial internet (of Things), Smart systems, Pervasive computing, Intelligent systems etc (Cisco Annual Report, 2020).

Technological innovation is a key hypothesis to flourish the business and its societal impact. The most influential trend in business is innovative digital and network connected platforms. These platforms fundamentally changing the added values of companies to products and services. Samsung in his white paper predicted that the number of linked devices will influence 500 billion by 2030 (Samsung, 2020), which is approximately 59 times greater than the anticipated world population (8.5 billion) by that time. Mobile and cellular devices will take innumerable form-factors, such as augmented reality (AR) glasses, virtual reality (VR) headsets, and hologram devices. Ever more, machines will prerequisite to be connected by means of cellular communications. Examples of connected machines include vehicles, robots, drones, home appliances, displays, smart sensors installed in various infrastructures, construction machineries, and factory equipment (Samsung, 2020).

Consumers of mobile devices will appreciate life-like audiovisual aid contents everywhere and trillions of associated devices will independently communicate with one another so that new fancy services can be delivered to societies (Cisco Annual Report, 2020). In a research survey, it was predicted that 6G will contribute to fill the gap between beyond 2020 societal and business demands and what its predecessors-5G can support. The internet generation and mobile generations are augmenting the business its communal impact (Cisco Annual Report, 2020). The following figure illustrates this trend of mobile devices and connected machines generations.

Samsung visualizes the fifth Generation (5G) mobile communication to messenger an era of truly immersive amenities. In this way the Samsung white paper, tipoffs the imminent amenities, significant and strategic necessities, and empowering technologies that will apprehend 5G technology (Samsung, 2020). Dedicated network protocols empower proficient communication in this environment, together with applicable machine-to-machine (M2M) communication models. These machineries, expertise and technologies are developing with limitations and boundaries for the IoE ecosphere that are diverse from the archetypal IT environment, because of the necessities for security, protection, real-time reactions, low power process, etc. Security, privacy, and safety require particular attention and special techniques as IoE is a fast-changing field. This will add the value to consumers’ experience as customers, but also would contemporaneous businesses with an enormous amount of innovative business openings from the strains for these innovative services.

The business platform and its role are changing dynamically across the globe, due to innovation and technology upgradation. Evolution of internet technology is describing as below (Cisco Annual Report, 2020).

1.1 Internet of Everything’s Communication Taxonomy

The IoE communication taxonomy can be classified in four ways.
Face – Face communication, Face to Machine Communication, Machine to Face Communication and Machine to Machine Communication. The stint Machine to Machine (M2M) has been in practice for more than a decade, and is recognized in the communication segment. M2M communication had at the start been a one-to-one linking, connecting one machine to additional machine. But today’s flare-up of cellular connectivity means that data can nowadays be more effortlessly conveyed, via a system of internet protocols networks, to a considerable extensive array of devices (*Cisco Annual Report, 2020*).

The Internet of Everything is basically machine to machine communication while the internet of thing is face to machine and vice-versa communication. The robotics communication is M2M as well as F2M communication which is now becoming trending business ecosystems. The M2M-IoE communication architecture is illustrated below.

The Internet of Everything’s (IoE) can be definiens as a new business platform ecosystem which can be integrated with sensors, actuators, machine learning tools, online analytical tools with other state of the art technology (Mishra & Tripathi, 2019, 2020b, 2021). Internet of Everything’s (IoE) is a cohesive application software and API which links the budding digital devices, right of access points, and information repository hub to the other digital devices which is commonly for the customer application link. It has been projected that the number of IoE coupled devices worldwide will soon surpass more than 20 billion mark and, consequently, IoE will impact many aspects of everyday life and decisions (Muntés-Mulero et al., 2019, Mishra and Tripathi 2021). The pictorial structure of Internet of Everything’s can be illuminated as below.

Internet of Everything’s (IoE) poses as one of the multilayer and multidimensional digitally enabled tools to connect Internet of Things to undertake and automate the associated strategies and devices. This phenomenon is known as IoE platform. The IoE platform connect the cohesive corporeal effects accessible through connected API and machine learning enabled devices. This IoE platform ecosystem make accessible us with amenities to associate the strategies and things for a machine to machine and machine to man communication (Spiekermann, 2019, Mishra, 2020, 2020a).

1.2 Industry 4.0

The term industrial internet is stalwartly pushed by German Government. It is more powerful and beyond M2M since it not only emphases on influences between machines but also embraces human edges. IoT has yet an extensive stretch as it also consists of networks outside the industrial framework such as wearable devices on society. The internet is a legitimately insignificant box. In its central it associates only people. Industry 4.0 is the enduring revolution of outmoded industrial and business follows pooled with the state-of-the-art insolent technology. The large-scale machine to machine communication (M2M) and Internet of Things (IoT) distributions to offer augmented computerization, upgraded and value-added kommuniqué and self-monitoring, as well as smart technologies which can investigate and make a diagnosis concerns deprived of the prerequisite for human involvement. There is a very shuttle difference between the IoT and IoE. The Web of Things is much thinner in latitude as the other impressions as it exclusively emphases on software design. Internet of Everything (IoE) still a rather elusive notion, IoE
ambitions is to consist of all sorts of networks that one can visualize. The concept has thus the utmost extent. Industry 4.0 designates a set of notions to get-up-and-go the next industrial rebellion. That comprises all kinds of connectivity perceptions in the industrial framework. However, its energies promote and contains tangible vicissitudes to the corporeal ecosphere everywhere such as 3D-printing machineries or the outline of innovative enlarged veracity hardware. Both M2M as well as the industrial internet are not conflicting notions to IoT. In fact, both are a subset of the Internet of Things with a thinner extent. The following figure illustrate the difference between M2M vs IoT vs IoE.

The Internet of Everything (IoE) business platform is an amalgamation of people, data, process and things through internet for efficient communication and business categorization. This can be explained articulate as below.

The rest of the paper is organized as follows. Section 2 summarizes the method and business model ecosystem. In sec 3 we discuss about the Internet of Everything Platform Communication Architecture. Section 4 studies the State-of-the-art Landscapes of IoE Platforms. Section 5 analyzes Hologram technology for IoE platform business while Sect. 6 discusses about the Artificial intelligence in business platform. Section 7 infer the Security and privacy paradigms and Sect. 8 explains the discussion and results while Sect. 9 concludes the paper.

2. Methods And Business Model Ecosystem

The 5G technology is being realistic to the essential infrastructure of an extensive assortment of businesses, and is employed to upkeep the whole thing from excellent communications amenities to smart industries and factories, automated vehicle-to-vehicle communication using AI and ML technologies, machine to machine communication, machine to human and human to machine communication and a bundle of other new amenities. For full functional and real business application of this technology to the next level entail an excessive deal of advanced research focus and development. The digital track to asphyxiating some of the current technological challenges facing communications technologies. It normally fabrications in elevating software's competences and progressing artificial intelligence, machine learning and deep learning technologies. Communication networks and internet of the forthcoming will claim capabilities that can process gigantic amounts of data and information, which means that more commanding network tools and technology will be required, and the efficient intelligent software's can make tools more bendable and less costly, will turn out to be progressively significant. Moreover, emerging core technologies for 6G with enduring idea and dynamic worldwide normalization are significant. The communications technology can be defined as "technology that offers the infrastructure needed to enable people and things (i.e., devices, places, etc.) to connect and interact with one another across physical and virtual spaces." It’s also defined as "It is the basis for the foundation of a smarter age in which AI and robots will become a common part of our lives."

The communications technology associates not just societies and people but also business strategies and devices and other things entirely significantly systemized, controlled and organized. It will hang onto
embryonic so as to countenance that give-and-take of gratified and philosophies in innovative and exhilarating customs. It’s not frightened to say that the current communication technology can process huge amounts of data in Micro to Nano second. We can process more data in shorter time compared to the earlier generation of communication technology vs contemporary communication technology. Network devices is also experiencing advancements to lever more arduous requests due to this technical inclination. Ultimately, the business industry is moving towards computerization, automation and robotics alignment which can become accustomed to the complexity of evolving communication technologies and their set-ups and operations to be intelligent to nurture the quality of service delivered to society. Improvements of advance communications technology have gone outside merely enabling the interchange of statistics and information. Now, it’s about advancing this technology in consideration of what types of businesses and services the industries can provide for better and better business decisions and its effectiveness to society.

Furthermore, fast shifting market environments in technology-related businesses implies that companies must quickly fine-tune market experiments in order to flourish their business ecosystem. As a result, business model innovations are fetching “new routes to competitive advantage” (Sun et al., 2012, Bucherer et al., 2012, Hawlitschek, 2019). It can be defined by some key issues when scheming IoT business models, including “information between nodes and win-win information exchange for all stakeholders” Chan, (2015. Furthermore, Westelund (Westelund et al., 2014) has identified three up-to-date contests of the IoE. These are the array and manifold of things, the ingenuousness of innovation, and the unstructured business ecosystems (Tee et al., 2018, Mishra et al., 2020). The IoE platform ecosystem which leads to IoE platforms ecosystem is defined as below.

The array and manifold of things signifies to an assembly of heterogeneous linked things and devices using different cohesive layers which generally accepted emerging and innovative criteria. Immaturity of innovation denotes today’s quintessential IoE innovations have not yet matured into products and services. Amorphous ecosystems denote to the lack of defined underlying structures and governance, stakeholder roles, and value-creating logics (Kindström, 2010, Mishra, 2018, 2019a). Despite of these challenges, several IoT and IoE business model frameworks exist, but there are still some major gaps in the IoE platform and business model that need to be properly addressed. Gartner has expected that by 2030 there will be around 40 billion devices (as per the firm Gartner) that will be connected to the internet, some forecast a much larger figure (40 billion – 60 billion). About $6 trillion will be spent on solutions motivated by IoT in the next five years while the business nest egg will upsurge from 215 billion to 832 billion (Hawlitschek, 2019).

Technology is outperforming us and we have to keep up it. The prevalent gaffe of a business can make right now is not to do everything at all (Szopinski et al, 2019). IoT and IoE is an expected advancement of smart technology, cloud, telecoms etc – all the things that we were already using, just all rolled into one (Kerr, 2019). IoE based business models are explicit as they intercrossed the industry and internet with intelligent devices. Industrialist are the key service providers of the gigantic data and digital platforms for creating innovative openings for those who are able to integrate those new patterns, standards and
business models. Companies are investing lot of funds in cloud platforms, digital innovation and other smart technology-based opportunities to collaborate in order to make their business successful. The below figure shows the IoT technology stack for decision framework.

The following figure show the future IoE platform business model with data driven and outcome-based approach.

3. Internet Of Everything Platform Communication Architecture

IoE architecture is a term that emulates the straightforward configuration of any IoE system that contains substantial layers: Devices fitted out with right of entry access control server, Gateways, sensors, Communication links, Access tickets, for interaction and data collection. Gateways certifying proper data transmission through processing and filtering access ticket with proper certification under secure communication (Luo et al., 2019). Following figure show the basic IoE architectures for digital business platform.

The data is self-possessed and metamorphosed into significant and meaningful data in the access network − 1, access network − 2, access network-3, access network-4, under Personal Area Network (PAN) through Multimedia Service Provider (MSP). The MSP is bidirectional with Traffic analysis. The traffic analysis is unidirectional with Multimedia services. While in the next stage, data is transmuted from a correspondent form to security operation framework. Control of network arrangement and additional exploration and examination of data is done in the third stage. In the last and fourth stage data entails additional computing and instantaneous computing will be produced to the data epicenter and cloud centered taxonomies as per protocols of the layer. The IoE 3-tier architecture is described below in Fig-10.

The IoE media-aware traffic security architecture is described below in Fig-10.

3.1 IoE Platform Layer Architecture

IoE middleware is the intermediary between the hardware and application layers housed in the IoE digital platform. The main task of IoE platform is the data collection from the connected devices over diverse internet and platform protocol, network topologies, distant located network devices, IoE setup, mechanism device supervision, and over-the-air (OTA) firmware and keep up-to-date (Shan et al., 2019). In the everyday life the IoE ecosystems is diversified strategy in nature and IoE middleware is predictable to maintain the virtual assimilation of effectively linked and consistent device with IoE protocols and intermingling with third-party applications used by the connected devices. This liberation from core hardware and circuitous software badges IoE platform to get done any kind of allied and unified device in the same up-front approach (Muntés-Muleroot al., 2019). Contemporary IoE platforms go further and acquaint with a diversity of valuable landscapes into the hardware and application strata as well. They provide components for frontend and analytics, real time device data processing, and cloud-based setting. Some of them can handle end-to-end IoE elucidation and execution from the ground up.
4. State-of-the-art Landscapes Of IoE Platforms

There are some other substantial landscapes that extricate IoE platforms to IoT platforms. They differentiate between each other, such as scalability, customizability, ease of use, encryption and decryption control hub protocols, communication protocols taxonomies, and amalgamation with third and multi-with intelligent devices, deployment options flexibility, arrangement protocols, simplicity and novelty, user privacy, cloud glassy security and the data security mechanism level (Leminen et al., 2012, Vogt et al., 2017).

- **Platform Scalability** – A scalable platform empowers system of establishment to solve large-scale business glitches through the high-performance processing of massive data volumes. Cutting-edge IoE platforms make certain springy scalability from corner to corner from any number of endpoints that the customer may have need of. Scalability talk about to the number of various users and customers, sessions and quality meetings, secure transactions, and procedures that can be put up by the whole system. Only locate, scalability is about doing what you do in a better-quality way: Scaling a Netting application means allowing more people to use the application by growing it to meet growing demand, without changing the code or sacrificing the data affinity and service levels your user’s demand. Why is scalability important? Because, in the end, we ideally want to build an application that can serve millions of users with zero downtime. Several organizations build an unwanted item of applications that don’t conform to set standards and don’t share a cohesive deployment pattern. This reduces their ability to iterate on product development and thereby creates a lag in business. Adopting a scalable platform architecture that covers all applications is a way to solve this problem. Developing a stretchy, scalable design for an application or service can be a substantial experiment. It’s inflexible to categorize the stress opinions in your application until you’ve essentially perceived it fail, at least on one occasion. However, more and more big business are house solicitations that require high-load tolerance and countless up-time. In addition, system of government dearth to be able to grow their user base with a minimum of effort, which plants more load on applications and navies them to cope with ever-increasing request. For such applications, a solid and scalable platform architecture is essential. Every aspect of the application’s design requires consideration, including the consideration of ways in which the runtime of hard-hit areas can be reduced, or of the ways in which caching can be made just a bit smaller to ease the memory footprint. From this perspective, developing a scalable platform architecture is really more of an art than a science, so smart organizations often turn to vendors who can provide and manage a scalable architecture that meets their needs. A scalable platform enables organizations to solve large-scale business problems through the high-performance processing of massive data volumes. By incorporating an SOA architecture that all applications can inherit, you can ensure that all of your applications have an efficiently scalable architecture and can be easily managed and upgraded. Several high-quality providers, such as Apprenda, provide an “out of the box” scalable architecture that does just that.
• **Flexible Integration of API** – A significant factor for the fleetness of distribution. It closely relates to flexibility of amalgamation APIs, loose coupling of the platform's elements, and source code limpidity. For small-scale, straightforward IoT solutions, good APIs may be adequate to flap, while feature-rich, swiftly embryonic IoT ecosystems frequently entail developers to have a greater degree of rheostat over the comprehensive system, its source code, integration edges, setting out options, data schemas, connectivity, confidentiality and security appliances, etc. (Washizaki et al., 2019).

• **IoE Cloud as a Service Platform**– An IoE cloud is a high point of the IoT platforms advancement. Sometimes these two terms are used interchangeably, in which case the system at hand is usually an IoT platform-as-a-service (PaaS). This type of solution allows us to let cloud set-up and an IoT platform all from a single technology backer. Also, there might be ready-to-use IoT solutions (IoT cloud services) offered by the benefactor, built and hosted on its infrastructure (Luet et al., 2015). However, one important competence of a modern IoT platform encompasses in a private IoT cloud enablement. As opposed to public PaaS solutions placed at a provider's cloud, a private IoT cloud can be lay on any cloud infrastructure, composed with a private big data center. This type of arrangement bids much superior control over the new landscape's amplification, customization, and third-party assimilations. It is also backed for inflexible big data privacy and security and enactment necessities and business concerns (Chanson et a., 2019). Cloud models is labeled as below.

5. **Hologram Technology For IoE Platform Business**

Hologram technology will be a game changing business for 21st century. It redefines the face of business particular for marketing business strategy. It is not just about to generating life expectancy like images, it’s more than this as it amplifies reality vs simulated reality or virtual reality. It means the globe is around us in 3D and business allows hologram advertising as what they would habitually show on screen or on poster and turn it into eye catching 3D content and visuals in real world. The companies can create an immense business all over the globe as it can see in your mind's eye in any language using AI. Like lens kart is an example of a part of hologram technology where users not only can gauge their face with the products (spectacles) and have a clear vision of what they want and how the product will look at them through their apps with the help of real time technology. This can reduce travel cost, printing cost etc. and generate return. The following figure show the sign of hologram technology as elaborated in white paper of Samsung (Samsung, 2020).

We are now able to use 3D technology across the globe from one place to another place and the Hologram promotion and advertising categorically on the way of outer space. 3D Holographic corroborate instance studies from iconic make, brands and varieties such as Nike, Puma, Louis Vuitton, Apple, Microsoft, Samsung show that HYPERVSN 3D digital signage can enhance transactions and sales on middling by 20–30 percentage on contingent how the technology exploited for their make and brands. In a research study establish that 79 percent of dealers and sellers in the United States use dealings to create sales. This substantial and significant amount stresses responsiveness from businesses in quest of get-up-and-go jumble sale income, gain repeat buying and increase brand and make consciousness.
3D Holographic illustrations are game changer in the marketplace, bountiful brands the supremacy to take their happenings to new and innovative statures. Coupling the control of 3D Holographic metaphors in exhibitions, opens spectators up to a “seeing is believing” understanding. Hologram for retail solutions can be used to craft 3D gratified which climaxes product bargains and good deals, the state-of-the-art style and more cognizant varieties when errands. 3D setting up immobile shoppers in their trajectories and flickered cheerfulness inside them.

6. Artificial Intelligence In Ioe Business Platform

Artificial Intelligence (AI) is having a transformational influence in each and every single business and will expected be the footing of a fourth industrial revolution. Certainly, we are in the middle of the seamless blizzard pushing AI from innovations in hardware, software, storage, API and applications areas. In areas such as business, industry, computer vision marketing, high performance gaming, and natural language processing, AI has previously made substantial progressions and innovations, and their presence is unquestionably omnipresent. In contrast, the application of AI within the business domain, while encouraging, is still in its emerging junctures.

- **AI Core Algorithms**

The contemporary AI expertise has surpassed anthropological talents in convinced zones of appreciation, but keep on numerous sprints to flabbergast. For example, it has faith in comprehensively on big data without exploiting domain knowledge and is not operational on problems that have need of reasoning, rational, exploration, and response. Also, the emphasis on single modality acknowledgment is inadequate for fresh strategies or amenities to make available a cutting-edge user capability because of imprecision in recognition and a smaller amount of expected communication. Samsung research in his white paper claimed that they are emerging next-generation AI technologies to be functional to all its products and facilities. The key objective of this amenities is making safe cutting-edge AI essential technologies and platforms-human-level AI by means of the capability to express, identify, and reflect-to offer innovative AI-driven capabilities and value to its businesses.

To address these problems, we try to find to use domain knowledge in addressing the orthodox restrictions of deep learning, explicitly the data size constraint and lengthy training time. Domain knowledge can also benefit safeguard immovability on the way to eventualities and malicious outbreaks. We have to use state-of-the-art user capabilities by precise appreciation of user prominence and resolved through neuro-symbolic and multimodal cognition technologies.

- **On-device AI**

As we know that predictable artificial intelligence (AI) depends on cloud computing to accumulate data and deliver amenities, it inclines to be invasive with user confidentiality and grounds latency because of the faraway hosting of the cloud. To elucidate these complications, an accumulative number of investigators are developing hardware enlargements in device CPU, GPU, and NPU to make server-level AI
technology a genuineness. Samsung in his white paper stated and claimed such types of breaking. Samsung Research look for to safe and sound the core technologies essential for optimizing the gatherings of server-based AI functionalities on an explicit device, thereby solving the concerns with user privacy and low-latency rejoinders.

The company is also working to develop the most advanced AI algorithms in the world, which will enable the use of voice, language, and vision-based user interactions as stated in his white paper.

- **Data Driven Approach**

The significance and value of data is mounting in these days and stage of development and acknowledged as driving forces of innovation and effectiveness in assorted manufacturing arenas. As data cohort is explosively fast speed, the volume of data is also quickly amplifying. However, it is not the enormous amount of data itself that clues to innovation, but the technology that empowers using the data evocatively. AI and machine learning technologies can solve the problem of a lack of labeled data and the striving of illumination scrutinizes results, together with causality, which are archetypal problems of data analyses based on machine learning. Bearing in mind the physiognomies of our data, we are engrossed in multi-modal data analysis concentrated on time-series data. AI objective is to ascertain latent arrays (including anomalies) from mostly unlabeled data to revolutionize based yields and amenities by pleasing to the user eye capabilities and feedbacks. There are an eclectic varieties of business assortments are a necessity to button data from voluminous sources: mobile apps, cellular devices, consumer electronics, POS marketing, logistics, manufacturing, customer relations, enterprise resource planning, and human resources. It is an exigent necessity to develop advanced data intelligence technologies, turning gigantic data into actionable insights and excellent user understandings, to make available more expressive and significant customer values. It’s a multidimensional and multidisciplinary methodology which requires many researchers from various arenas functioning as a coders, mathematicians, scientists, researchers, consultants, and innovators. We have to push the boundaries of technology to enable “data-driven” decisions and accelerate innovations.

- **Graph AI Technologies**

Moreover, we have to develop and apply Graph AI technologies to pick up subterranean acumen from exceedingly inter-connected digital data (i.e., user-device graphs including knowledge, contents/Ads) and vigorously envisage customers’ physiognomies and activities in amenity business, at value-added accuracy, to distribute exceptionally battered amenity. It empowers an innovative approach of investigating corporate-wide heterogeneous data about each customer in the interior a solitary scalable, cohesive deep learning structure.

- **Home Edge Platform**

With the propagation of devices with on-device AI technology, customers are encountered with the bigger necessity to link and rheostat devices at home and safeguard data security. As such, synchronization...
between devices made by poles apart industrialists and manufacturers has abetted dimensions a stout ecosystem for the IoT. Additionally, smart device control has enabled vigorous technological expansion among manufacturers for them to extricate their devices from the rivalry. AI is eyeing into context sensing, analysis, and other technologies of notable distinction, providing optimal information services for users in dissimilar circumstances. AI even cross the threshold into inter-device synchronization technologies but also in the worldwide race for all things that encompass artificial intelligence (AI) is at a excitement terrain and the business incentives are in elevation. In the near future, AI technology will expected become a mode of life for many general publics, with day-to-day communications with an intelligent speaker or a bespoke AI that make available explanations derived from a consumer’s visual, concrete, and expressive reminders. AI will also become the most effective enabler of economic improvement during the course of maximum regions of society and the low-cost. The AI approach is available anytime, anywhere and is constantly surfacing to continuously be helpful, with the decisive objective of value design by assimilating AI into the open Internet of Everything’s (IoE) ecosystem. The essential technologies for computerized elevated data analyses and for revolving conventional data into smart data that will empower the knack to brand suppositions. Technology to seize conventional data into smart data and mark inferences. We can visualize the IoE based future home structure as below.

7. Security And Privacy Paradigm

- Philip N. Howard, a professor and author, writes that the Internet of Things compromises gigantic prospective for vesting inhabitants, building government translucent, and augmentation of information admittance. Howard attentiveness, however, that privacy terrorizations are colossal, as is the prospective for community device and political management.

- Distresses about privacy have led numerous to cogitate the opportunity that big data set-ups such as the Internet of things and data mining are naturally unharmonious with privacy. Significant and strategic experiments of augmented digitalization in the water, transport, energy sector is related to privacy and cybersecurity which compel tolerable reaction from investigation and legislators equally.

- Writer Adam Greenfield assertions that IoT technologies are not only an incursion of unrestricted interplanetary but are also being used to disseminate normative performance, quoting an occurrence of commercials with out of sight cameras that followed the demographics of spectators who at a standstill to declaim the billboard.

- In rejoinder to escalating trepidations about privacy and insolent technology, in 2007 the British Government stated it would follow strict Privacy by Design principles when executing their digital metering platform. The program would prime to emergency of outmoded power meters with smart power meters, which could pathway and accomplish energy treatment more precisely. However, the British Computer Society is unconvinced these ideologies were ever essentially instigated. In 2009 the Dutch Parliament excluded an analogous smart metering program, centering their resolution on privacy distresses. The Dutch program later brush up and reviewed and passed in 2011.
• The IoT agonizes from platform crumbling, lack of interoperability and mutual technical canons a state of affairs where the diversity of IoT devices, in expressions of both hardware disparities and variances of the software's in a row on them, marks the assignment of emerging solicitations that work reliably between dissimilar unpredictable technologies ecosystems. For example, cellular connectivity for IoT devices can be done by means of Bluetooth, Zigbee, Z-Wave, LoRa, NB-IoT, Cat M1 as well as entirely convention trademarked receivers – each with its specific compensations and shortcomings; and exceptional sustenance biome.

• The IoT's nebulous computing landscape is also a delinquent for security, since reinforcements to bugs establish in the central operating system over and over again do not influence customers of grown-up and lower-price devices. One set of investigators say that the letdown of purveyors to sustenance mature devices with spots and bring up-to-date foliage more than 87% of vigorous Android devices exposed.

8. Discussion And Results

• 56 per cent of defendants acknowledged technological innovation as the worldwide trend having the utmost overall impact on business.

• 76 per cent of industries contributing in the survey accepted that technological innovation gives them access to new arcades.

• Comprehensive commercial amalgamation is growing the synchronization of business overall control, tax/monitoring and business atmospheres, which is having a hefty impression on businesses.

• 40 per cent of businesses informed that this has had an outsized impact on their establishments.

• 37 per cent of administrators revealed cumulative acquaintance to universal commercial and dogmatic insecurity as a key inclination.

• 62 per cent of enterprises in Europe and 58 per cent in Asia stated that a deteriorating at work age inhabitants will have a great impression on their corporate.

• 45 per cent of productions in Latin America and the Caribbean and 39 per cent in Africa, showed the youth prominence would have a significant impression for them.

• 51 per cent of trades said that policy-makers are progressively arduous amenability with ecological goals.

• 40 per cent of multinationals from high-income and 45 per cent from upper-middle-income republics stated that their employees and customers are challenging more maintainable working surroundings and business values.

• 78 per cent of managers designated that bring up-to-date the institute and learning core curriculum to contest the financial prudence necessities would offer them with the accomplished employees they entail.
• This feeling is mostly robust in embryonic marketplaces, mounting to 79 per cent of defendants in Latin America and 86 per cent in Africa.
• SMEs are the utmost energetic cohorts of fluctuations in the expertise schema.
• 84 per cent of small businesses subsidiary bring up-to-date education systems to meet expertise essentials.

9. Conclusions

Internet of Everything may be the ubiquitous innovation in a comprehensive technology setting since the worldwide networking and Internet enlargement, because it is self-possessed to send substantial financial and operative value in almost each commercial progression all over every productiveness. The innovatory prospective of Internet of Everything (IoE) will entail a diverse mix of technologies, business process knowledge and services that bring information technology into the empire of operational technologies. Because these solutions are complex and interdependent, success requires a single-source solution built upon a foundation of collaborations and partnerships across the digital spectrum.

Internet of Everything is a contemporary expansion in technological and platform evolution such that there is still a scarcity of literature and research on the community, behavioral, economic, and managerial aspects of the Internet of Everything. This creates very thought-provoking for enterprises to make up-to-date resolutions as honors internet of everything execution.

In this paper, we have studies on a theoretical model of IoT applications for innovativeness. We admitted three types of IoE applications: monitoring and control, big data and business analytics, and information sharing and collaboration. We also presented investment opportunities and investment evaluation and real options. Finally, we have addressed the Internet of Everything’s (IoE) based business platform issues and more explicitly innovative business cross-domain solutions which deal with the heterogeneity of devices on different business platforms and application paradigms. The prototypes and corresponding characteristics of IoE business model can serve as starting points for studies on the transformation of the identified business model standards. In addition, when linking the identified business model prototypes to financial figures, they support the analyses of IoT platform benefactors with regard to features such as the probability of long-term success or the funding received, or the procurement patterns of discrete models vis-à-vis others. Moreover, the consideration of business platform operational costs in an upcoming analysis will result in a more wide-ranging appreciative of the branded prototypes with real time user behavior about the products. However, based on the generalization of state-of-the-art organization, the goal to fit diverse styles of IoE platforms. We formulated ourselves on the level of granularity and AI and machine learning based IoE platform for business analytics and intelligent decision for making IoE based analytics.

On the above study it is clear that future business will be based on specific taxonomies by concentrating on explicit innovative and state-of-the-art business models of IoT and IoE platforms. Further, the future
business decisions will be based on IoE platforms with the help of 5G and 6G technology, machine learning algorithms and blockchain technology for secure transactions.

Abbreviations

3 G- Third Generation
4 G- Fourth Generation
5G- Fifth Generations
6G- Sixth Generations
AI- Artificial Intelligence
API- Application Programming Interface
AR- Augmented Reality
ERP- Entrepreneurship Resource Planning
F2M- Face to Machine
IoT- Internet of Things
IoE- Internet of Everything's
LTE- Long Term Evolution
M2M- Machine to Machine
ML- Machine Learning
MSP- Multimedia Service Provider
OTA-Over-the-Air
PaaS-Platform-as-a-Service
RFID-Radio Frequency Identification
VR-Virtual Reality

Declarations

Availability of data and materials: For reasons of anonymization, the empirical material is not available.
Competing interests: The authors declare that they have no competing interests.

Funding: Not applicable.

Authors’ contributions: All the authors made substantial contributions and approved the submitted version.

Acknowledgements: The authors are highly thankful to the editor and anonymous reviewers for kind suggestions and critical comments for improvement of the paper.

Authors’ information (optional):

References

1. Abdmeziem, R., & Tandjaoui, D. (2014). Internet of Things: Concept, building blocks, applications and challenges. arXiv preprint arXiv:1401.6877.

2. Andrews, J. G., Buzzi, S., Choi, W., Hanly, S. V., Lozano, A., Soong, A. C., & Zhang, J. C. (2014). What will 5G be? IEEE Journal on selected areas in communications, 32(6), 1065-1082.

3. Atzori, L., Iera, A., & Morabito, G. (2014). From "smart objects" to "social objects": The next evolutionary step of the internet of things. IEEE Communications Magazine, 52(1), 97-105.

4. Bega, D., Gramaglia, M., Banchs, A., Sciancalepore, V., Samdanis, K., & Costa-Perez, X. (2017, May). Optimising 5G infrastructure markets: The business of network slicing. In IEEE INFOCOM 2017-IEEE Conference on Computer Communications (pp. 1-9). IEEE.

5. Bucherer, E., Eisert, U., & Gassmann, O. (2012). Towards systematic business model innovation: lessons from product innovation management. Creativity and innovation management, 21(2), 183-198.

6. Boccardi, F., Heath, R. W., Lozano, A., Marzetta, T. L., & Popovski, P. (2014). Five disruptive technology directions for 5G. IEEE communications magazine, 52(2), 74-80.

7. Chanson, M., Bogner, A., Bilgeri, D., Fleisch, E., & Wortmann, F. (2019). Blockchain for the IoT: privacy-preserving protection of sensor data. Journal of the Association for Information Systems, 20(9), 10.

8. Chan, H. C. (2015). Internet of things business models. Journal of Service Science and Management, 8(04), 552.

9. Chen, M. (2013). Towards smart city: M2M communications with software agent intelligence. Multimedia Tools and Applications, 67(1), 167-178.

10. Cisco Annual Internet Report, (2018–2023) (Accessed on March 9, 2020).

11. da Cruz, M. A. A., Rodrigues, J. J. P. C., Al-Muhtadi, J., Korotaev, V. V., & de Albuquerque, V. H. C. (2018). A reference model for internet of things middleware. Internet Things J 5: 871–883.

12. Dahlberg, T., & Nokkala, T. (2019). Willingness to Share Supply Chain Data in an Ecosystem, Governed Platform–An Interview Study.
13. Dellyana, D., Simatupang, T. M., & Dhewanto, W. (2018). Managing the Actor's Network, Business Model and Business Model Innovation to Increase Value of the Multidimensional Value Networks. *International Journal of Business and Society, 19*(1), 209-218.

14. Fleisch, E., Weinberger, M., & Wortmann, F. (2015). Business models and the internet of things. In Interoperability and Open-Source Solutions for the Internet of Things (pp. 6-10). *Springer, Cham.*

15. Greenleaf, G. (2019). Global Data Privacy Laws 2019: New Eras for International Standards.

16. Gao, J., Liu, H., Li, Y., Liu, C., Yang, Z., Li, Q., ... & Chen, Z. (2019, May). Towards automated testing of blockchain-based decentralized applications. In 2019 IEEE/ACM 27th International Conference on Program Comprehension (ICPC) (pp. 294-299). IEEE.

17. Gassmann, O., & Schweitzer, F. (Eds.). (2014). Management of the fuzzy front end of innovation. *Cham: Springer.*

18. Gassmann, O., Frankenberger, K., & Csik, M. (2014). Revolutionizing the business model. In *Management of the fuzzy front end of innovation* (pp. 89-97). Springer, Cham.

19. Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. *Future generation computer systems, 29*(7), 1645-1660.

20. Hawlitschek, F. (2019). In Blockchain we Trust: Consumer Trust Relationships in the Sharing Economy 2.0. *Perspectives on the Sharing Economy.*

21. Hodapp, D., Remane, G., Hanelt, A., & Kolbe, L. M. (2019). Business Models for Internet of Things Platforms: *Empirical Development of a Taxonomy and Archetypes.*

22. Hoffmann, J., Stich, V., & Schuh, G. (2019). Informations system-Architekturen produzierender Unternehmen bei software-definierten Plattformen (No. RWTH-2018-231121). *Lehrstuhl für Produktionssystematik.*

23. Höller, J., Tsiatsis, V., Mulligan, C., Karnouskos, S., Avesand, S., & Boyle, D. (2014). From Machine to the Internet of Things: *Introduction to a New Age of Intelligence.*

24. Hui, G. (2014). How the internet of things changes business models. *Harvard Business Review, 92*(7/8), 1-5.

25. Intelligence, G. S. M. A. (2014). From concept to delivery: the M2M market today. *White Paper, Feb, 1-21.*

26. James, R. (2014). The internet of things: a study in hype, reality, disruption, and Growth. Raymond James US Research, *Technology & Communications, Industry Report.*

27. James, R. (2014). The internet of things: A study in hype, reality, disruption, and growth. US Research– *Technology and Communications. Industry Report, 154-175.*

28. Kerr, I. (2019). Schrödinger's Robot: Privacy in Uncertain States. *Theoretical Inquiries in Law, 20*(1), 123-154.

29. Kindström, D. (2010). Towards a service-based business model–Key aspects for future competitive advantage. *European management journal, 28*(6), 479-490.
30. Kumar, P., Kunwar, R. S., & Sachan, A. (2016). A survey report on: Security & challenges in internet of things. *In Proc National Conference on ICT & IoT* (pp. 35-39).

31. Leminen, S., Westerlund, M., Rajahonka, M., & Siuruainen, R. (2012). Towards IOT ecosystems and business models. *In Internet of things, smart spaces, and next generation networking* (pp. 15-26). Springer, Berlin, Heidelberg.

32. Li, Y., Hou, M., Liu, H., & Liu, Y. (2012). Towards a theoretical framework of strategic decision, supporting capability and information sharing under the context of Internet of Things. *Information Technology and Management, 13*(4), 205-216.

33. Lueth, K. L., & Kotzorek, J. (2015). White paper, IoT platforms-The central backbone for the Internet of Things”. *IoT Analytics*, Nov.

34. Luo, X., Tong, S., Fang, Z., & Qu, Z. (2019). Frontiers: Machines vs. humans: The impact of artificial intelligence chatbot disclosure on customer purchases. *Marketing Science, 38*(6), 937-947.

35. Mejtoft, T. (2011, October). Internet of Things and Co-creation of Value. In 2011 *International Conference on Internet of Things and 4th International Conference on Cyber, Physical and Social Computing* (pp. 672-677). *IEEE*.

36. Miloslavskaya, N., Nikiforov, A., Plaksiy, K., & Tolstoy, A. (2019, April). Standardization Issues for the Internet of Things. *In World Conference on Information Systems and Technologies* (pp. 328-338). *Springer, Cham*.

37. Mishra, S. (2018). Financial management and forecasting using business intelligence and big data analytic tools. *International Journal of Financial Engineering, 05*(02):1850011.

38. Mishra, S., (2019). Performance analysis of women in Central Bank Monetary System using business intelligence. *Global Journal of Management and Business Research*. Vol. 19(3) pp 23-28. https://journalofbusiness.org/index.php/GJMBR/article/view/2707.

39. Mishra, S., & Triptahi, A. R. (2019a). Platforms oriented business and data analytics in digital ecosystem. *International Journal of Financial Engineering, 6*(04), 1950036.

40. Mishra, S., & Tripathi, A. R. (2020). Platform business model on state-of-the art business learning use case. *International Journal of Financial Engineering, 2050015*.

41. Mishra, S., & Tripathi, A.R. (2020a). IoT Platform Business Model for Innovative Management Systems. International Journal of Financial Engineering, 2050030. https://doi.org/10.1142/S2424786320500309.

42. Mishra, S., & Tripathi, A.R. (2020b). Literature review on business prototypes for digital platform. *J Innov Entrep 9*, 23 (2020). https://doi.org/10.1186/s13731-020-00126-4.

43. Mishra, S & Tripathi, A. R. (2021). AI business model: An Integrative Business Approach, *J Innov Entrep 10*, Springer.

44. Model, B. (2014). *Investopedia*. Retrieved May 05, 2020.

45. Muntés-Mulero, V., Dominiak, J., González, E., & Sanchez-Charles, D. (2019). Model-driven Evidence-based Privacy, *Risk Control in Trustworthy Smart IoT Systems*.
46. Murthy, D. N., & Kumar, B. V. (2015). Internet of things (IoT): is IoT a disruptive technology or a disruptive business model? *Indian Journal of Marketing, 45*(8), 18-27.

47. Leopold, S., Louthan IV, F. G., Mosesmann, H., Smigie, J. S., Tillman, T., Daniel Toomey, C. F. A., & Alexander Sklar, C. P. A. (2014). *The Internet of Things*.

48. Ofe, H., & Sandberg, J. (2019, January). Digital platform establishment: navigating competing concerns in emerging ecosystems. *In Proceedings of the 52nd Hawaii International Conference on System Sciences*.

49. Omoronyia, I. (2019). Why is Baking Privacy into Software Design Hard? *ITNOW, 61*(3), 44-45.

50. Osseiran, A., Boccardi, F., Braun, V., Kusume, K., Marsch, P., Maternia, M., ... & Tullberg, H. (2014). Scenarios for 5G mobile and wireless communications: the vision of the METIS project. *IEEE communications magazine, 52*(5), 26-35.

51. Panagiotou, P., Sklavos, N., & Zaharakis, I. D. (2018, August). Design and Implementation of a Privacy Framework for the Internet of Things (IoT). In 2018 21st *Euromicro Conference on Digital System Design* (DSD) (pp. 586-591). IEEE.

52. Peppet, S. R. (2014). Regulating the internet of things: first steps toward managing discrimination, privacy, security and consent. *L. Rev., 93, 85.*

53. Pontes, P. M., Lima, B., & Faria, J. P. (2018, November). Test patterns for IoT. In Proceedings of the 9th ACM SIGSOFT *International Workshop on Automating TEST Case Design, Selection, and Evaluation* (pp. 63-66).

54. Puar, V. H., Bhatt, C. M., Hoang, D. M., & Le, D. N. (2018). Communication in Internet of Things. *In Information Systems Design and Intelligent Applications* (pp. 272-281). Springer, Singapore.

55. Pribadi, I. L., & Suryanegara, M. (2017, July). Regulatory recommendations for IoT smart-health care services by using privacy impact assessment (PIA). In 2017 15th International Conference on Quality in Research (QiR): *International Symposium on Electrical and Computer Engineering* (pp. 491-496). IEEE.

56. Rong, K., Hu, G., Lin, Y., Shi, Y., & Guo, L. (2015). Understanding business ecosystem using a 6C framework in Internet-of-Things-based sectors. *International Journal of Production Economics, 159*, 41-55.

57. Samsung White Paper (July 14, 2020): https://research.samsung.com/next-generation-communications (Retrieve on July 16, 2020 at 10.40 pm IST).

58. Shan, L., Sangchoolie, B., Folkesson, P., Vinter, J., Schoitsch, E., & Loiseaux, C. (2019, September). A survey on the applicability of safety, security and privacy standards in developing dependable systems. *In International Conference on Computer Safety, Reliability, and Security* (pp. 74-86). Springer, Cham.

59. Spiekermann, M. (2019). Data Marketplaces: Trends and Monetization of Data Goods. *Inter economics, 54*(4), 208-216.

60. Sun, Y., Yan, H., Lu, C., Bie, R., & Thomas, P. (2012). A holistic approach to visualizing business models for the internet of things. *Communications in Mobile Computing, 1*(1), 4.
61. Szopinski, D., Schoormann, T., & Kundisch, D. (2019). Because your taxonomy is worth it: Towards a framework for taxonomy evaluation. In Proceedings of the Twenty-Seventh European Conference on Information Systems (ECIS), Stockholm (Vol. 2019).

62. Tee, R., Woodard, J., & Eaton, B. (2018, July). Managing Nascent Platform Ecosystems: Engaging Stakeholders through Productive Tensions. In Academy of Management Proceedings (Vol. 2018, No. 1, p. 16232). Briarcliff Manor, NY 10510: Academy of Management.

63. Thakore, R., Vaghashiya, R., Patel, C., & Doshi, N. (2019). Blockchain-based IoT: A Survey. Procedia Computer Science, 155, 704-709.

64. Thorburn, R., Margheri, A., & Paci, F. (2019). Towards an integrated privacy protection framework for IoT: contextualizing regulatory requirements with industry best practices.

65. Tudzarov, A., & Gelev, S. (2017). Requirements for next generation business transformation and their implementation in 5G architecture. International Journal of Computer Applications, 162(2), 31-35.

66. Turber, S., Vom Brocke, J., Gassmann, O., & Fleisch, E. (2014, May). Designing business models in the era of internet of things. In International Conference on Design Science Research in Information Systems (pp. 17-31). Springer, Cham.

67. Vemou, K., & Karyda, M. (2019). Evaluating privacy impact assessment methods: guidelines and best practice. Information & Computer Security.

68. Vogt, A., Landrock, H., & Dransfeld, H. (2016). Industrie 4.0/IoT vendor benchmark 2017: An Analysis by Experton Group AG. An ISG Business, Munich, Germany.

69. Washizaki, H., Yoshioka, N., Hazeyama, A., Kato, T., Kaiya, H., Ogata, S., ... & Fernandez, E. B. (2019, May). Landscape of IoT patterns. In 2019 IEEE/ACM 1st International Workshop on Software Engineering Research & Practices for the Internet of Things (SERP4IoT) (pp. 57-60). IEEE.

70. Westerlund, M., Leminen, S., & Rajahonka, M. (2014). Designing business models for the internet of things. Technology Innovation Management Review, 5-14.

71. Yin, R. K., Bateman, P. G., & Moore, G. B. (1983). Case studies and organizational innovation: Strengthening the connection. Cosmos Corporation.

72. Yoo, Y., Lyytinen, K. J., Boland, R. J., & Berente, N. (2010). The next wave of digital innovation: Opportunities and challenges: A report on the research workshop 'Digital Challenges in Innovation Research'.

Figures
Figure 1

Trend of mobile devices and connected machines generations.

Figure 2

Evolution of Internet Technology
Figure 3

M2M communication architecture

Figure 4

Internet of Everything’s (IoE)
M2M versus IoT versus IoE:

- **M2M (Machine to Machine):** A device... that captures an event... transmits it over a network... to an application... that translates it into meaningful information.
- **IoT (Internet of Things):** A network of uniquely identifiable “things” that communicate without human interaction using IP connectivity.
- **IoE (Internet of Everything):** Bringing together the people, process, data, and things to make networked connections more relevant by turning information into actions.

Figure 5

M2M vs IoT vs IoE.
Figure 6
IoE Platform

Leading IoT platforms

Commercial	Open Source		
Multination corporations	SME platforms		
Cloud centric	Industry centric	Comms centric	Device centric
Microsoft Azure IoT IBM Watson IoT Amazon AWS IoT	PTC ThingWorx Bosch SW Inno Suite GE Predix	PTC Axeda CISCO/Jasper Ayala Networks Aeris IoT	Intel IoT ARM mbed
ThingSpeak	Xively	Carrots	EvryThng
FIWARE*	Open Remote	OpenIoT*	

Figure 7
IoE Platform ecosystem

The IoT Decision Framework

You are here

The IoT Technology Stack

Devices	Embedded Software	Communications	Cloud Platform	Applications
UX	✓	✓	✓	✓
Data	✓	✓	✓	✓
Business	✓	✓	✓	✓
Technology	✓	✓	✓	✓
Security	✓	✓	✓	✓
Standards & Regulations	✓	✓	✓	✓

Figure 8
IoT Technology Stack for Decision Framework
Figure 9

Future IoE Platform Business Model

Figure 10
Basic IoE architectures for digital business platform

Figure 11

IoE-3-Tier Architecture
Figure 12
IoE Media-aware traffic security architecture

Figure 13
IoE platform layers architecture
Deployment Models

- Public
- Private
- Hybrid
- Community

Delivery/Service Models

- SaaS - Software as a Service
- Paas - Platform as a Service
- IaaS - Infrastructure as a Service

Figure 14

IoE Cloud Platform ecosystem
Figure 15

Sign of Hologram Technology

The Connected Home

- Connected health/wellness devices
 - Replenishment of active wear based on exercise schedule - e.g., running shoes
 - Home exercise equipment connected with fitness trackers to monitor health and recommend exercise programs
 - Shopping lists and grocery orders based on fitness and nutrition goals

- Connected Appliances
 - Real-time diagnosis and call from service provider partner when needed
 - Parts and accessories arrive when needed (e.g., refrigerator filter)

- Connected Pantry
 - Basic groceries arrive when needed
 - Suggested recipes based on ingredients available in home

- Connected Home Comfort Devices
 - Automatic setting / remote monitoring of temperature, lighting
 - Targeted home deliveries based on presence

- Connected Content
 - Deliver on-screen advertisements / product demonstration
 - Allow for direct purchase through the television

- Connected Medicine Cabinet
 - Replenishment of toiletries

- Home Security
 - Set/monitor alarm and door locks remotely

Figure 16

IoE based future home structure