The Classification of Diffeomorphism Classes of Real Bott Manifolds

Admi Nazra

Abstract—A real Bott manifold (RBM) is obtained as the orbit space of the n-torus T^n by a free action of an elementary abelian 2-group $(\mathbb{Z}_2)^n$. This paper deals with the classification of some particular types of RBMs of dimension n, so that we know the number of diffeomorphism classes in such RBMs.

Index Terms—Real Bott manifolds, orbit space, diffeomorphism classes, Seifert fiber space.

I. INTRODUCTION

KAMISHIMA et al. [1], [2] defined a real Bott manifold of dimension n (RBM$_n$) as the total space B_n of the sequence of $\mathbb{R}P^1$-bundles

$$B_n \to B_{n-1} \to \cdots \to B_2 \to B_1 \to \{\text{a point}\}$$ \hspace{1cm} (1)

starting with a point, where each $\mathbb{R}P^1$-bundle $B_i \to B_{i-1}$ is the projectivization of the Whitney sum of a real line bundle L_i and the trivial line bundle over B_{i-1}, then, from the viewpoint of group actions, it was explained that a RBM$_n$ is the quotient of the torus of dimension n, $T^n = S^1 \times \cdots \times S^1$ by the product $(\mathbb{Z}_2)^n$ of cyclic group of order 2. Such RBM$_n$ can be expressed by an upper triangular matrix A of size n (called a Bott matrix of size n, BM$_n$) whose entries are either 1 or 0 except the diagonal entries which are 0. Each row of the BM$_n$ A express the free action of $(\mathbb{Z}_2)^n$ on T^n and the orbit space $M_n(A) = T^n/(\mathbb{Z}_2)^n$ is the RBM$_n$. In fact, $M_n(A)$ is a Riemannian flat manifold (compact Euclidean space form). To classify RBM$_n$s, we can apply the Bieberbach Theorem [3] and by this theorem, it was obtained in [1], [4] the classification of RBM$_n$s up to dimension 4.

Kamishima and Nazra proved in [2] that every RBM$_n$ $M_n(A)$ admits an injective Seifert fibred structure which has the form $M_n(A) = T^k \times (\mathbb{Z}_2)^s \times M(B)$, that is there is a k-torus action on $M_n(A)$ whose quotient space is an $(n-k)$-dimensional real Bott orbifold $M_{n-k}(B)/((\mathbb{Z}_2)^s)$ by some $(\mathbb{Z}_2)^s$-action ($1 \leq s \leq k$). Moreover, they have proved the smooth rigidity that two RBM$_n$s $M_n(A_1)$ and $M_n(A_2)$ are diffeomorphic if and only if the corresponding actions $((\mathbb{Z}_2)^s_1,M_{n-k_1}(B_1))$ and $((\mathbb{Z}_2)^s_2,M_{n-k_2}(B_2))$ are equivariantly diffeomorphic. By the above rigidity we can determine the diffeomorphism classes of higher dimensional RBM$_n$s when the low dimensional ones with $(\mathbb{Z}_2)^s$-actions are classified. RBM$_n$s up to dimension 5 have been classified (see [5], [6]).

This paper aims to study the number of diffeomorphism classes in some particular types of RBM$_n$s.

II. PRELIMINARIES

In this section, we shall review some concepts from [2] related to the RBM.

A. Seifert fiber space

In a BM$_n$ A, each i-th row defines a \mathbb{Z}_2-action on T^n by

$$g_i(z_1, z_2, \ldots, z_n) = (z_1, \ldots, z_{i-1}, -z_i, \tilde{z}_{i+1}, \ldots, \tilde{z}_n)$$

where \tilde{z}_m is either z_m or \bar{z}_m depending on whether (i, m)-entry ($i < m$) is 0 or 1 respectively while (i, i)-(diagonal) entry 0 acts as $z_i \to -z_i$. Note that \tilde{z} is the conjugate of the complex number $z \in S^1$. It is always trivial: $z_m \to z_m$ whenever $m < i$. Here (z_1, \ldots, z_n) are the standard coordinates of the n-dimensional torus $T^n = S^1 \times \cdots \times S^1$ whose universal covering is the n-dimensional Euclidean space \mathbb{R}^n. The projection $p: \mathbb{R}^n \to T^n$ is denoted by

$$p(x_1, \ldots, x_n) = (e^{2\pi i x_1}, \ldots, e^{2\pi i x_n}) = (z_1, \ldots, z_n).$$

Those g_1, \ldots, g_n constitute the generators of $(\mathbb{Z}_2)^n$.n. In fact, $(\mathbb{Z}_2)^n$ acts freely on T^n such that the orbit space $M_n(A) = T^n/(\mathbb{Z}_2)^n$ is a smooth compact n-dimensional manifold. In this way, given a BM$_n$ A, we obtain a free action of $(\mathbb{Z}_2)^n$ on T^n.

Let $\pi(A) = \langle \tilde{g}_1, \ldots, \tilde{g}_n \rangle$ be the lift of $(\mathbb{Z}_2)^n = \langle g_1, \ldots, g_n \rangle$ to \mathbb{R}^n. Then, we get

$$\tilde{g}_i(x_1, x_2, \ldots, x_n) = (x_1, \ldots, x_{i-1}, \frac{1}{2} + x_i, \tilde{x}_{i+1}, \ldots, \tilde{x}_n)$$

where \tilde{x}_m is either x_m or $-x_m$. One can see that $\pi(A)$ acts properly discontinuously and freely on \mathbb{R}^n as Euclidean motions. Note that $\pi(A)$ is a Bieberbach group which is a discrete uniform subgroup of the Euclidean group $E(n) = \mathbb{R}^n \rtimes O(n)$ (cf. [3]). It follows that

$$\mathbb{R}^n/\pi(A) = T^n/(\mathbb{Z}_2)^n = M_n(A).$$

Now, we consider the following moves (I, II, III) to A under which the diffeomorphism class of RBM$_n$ $M_n(A)$ does not change.

I. If the j-th column has all 0-entries for some $j > 1$, then interchange the j-th column and the $(j - 1)$-th column. Next, interchange the j-th row and the $(j - 1)$-th row.

We perform move I iteratively to get a BM$_n$ A'.

$$A = \begin{pmatrix} 0 & * & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 0 \\ \end{pmatrix}, A' = \begin{pmatrix} O_k & C \\ 0 & B \\ \end{pmatrix},$$

A. Nazra is with the Department of Mathematics, Andalas University, Kampus Unand Limau Manis 25161, Padang, Indonesia e-mail: nazra@sci.unand.ac.id.

Manuscript received May 28, 2020; accepted December 4, 2020.
\[
B = \begin{pmatrix}
0 & * \\
. & . \\
0 & 0
\end{pmatrix}.
\]

\(O_k\) is a \(k \times k\) zero matrix \((1 \leq k \leq n)\) and we call it a block zero matrix of size \(k\).

Note the following.

1. \(O_k\) is a maximal block of zero matrix.
2. As \(B\) is an \((n-k)\)-dimensional Bott matrix, we obtain a real Bott manifold \(M_{n-k}(B) = T^{n-k}/(\mathbb{Z}_2)^{n-k}\).

\[
M_n(A) = \frac{T^k \times T^{n-k}}{(\mathbb{Z}_2)^{k} \times (\mathbb{Z}_2)^{n-k}} = T^k \times M_{n-k}(B) = M_n(A').
\]

4. The matrix \(C\) corresponds to \((\mathbb{Z}_2)^k\)-action on \(T^{n-k}\).

II For an \(m\)-th row \((1 \leq m \leq k)\) whose entries in \(C\) are all zero, divide \(T^k \times M_{n-k}(B)\) by the corresponding \(\mathbb{Z}_2\)-action.

III If there are two rows, \(p\)-th row and \(ℓ\)-th row \((1 \leq p < \ell \leq k)\), having the common entries in \(C\), then compose the \(\mathbb{Z}_2\)-action of \(p\)-th row and \(\ell\)-th row and divide \(T^k \times M_{n-k}(B)\) by \(\mathbb{Z}_2\)-action.

By using **II**, **III**, the quotient is again diffeomorphic to \(T^k \times (\mathbb{Z}_2)^k M_{n-k}(B)\) but consequently the \((\mathbb{Z}_2)^k\)-action is reduced to the effective \((\mathbb{Z}_2)^*\)-action on \(T^k \times M_{n-k}(B)\).

Therefore \(A'\) reduces to

\[
A'' = \begin{pmatrix}
0_{k-s} & 0 & 0 \\
0 & 0_s & * \\
0 & 0 & B
\end{pmatrix} \tag{2}
\]

in which \(M_{n}(A') = T^k \times (\mathbb{Z}_2)^k M_{n-k}(B) = \frac{T^{k-s} \times T^s \times M_{n-k}(B)}{(\mathbb{Z}_2)^k \times (\mathbb{Z}_2)^s} = M_{n}(A'').\) Since \((\mathbb{Z}_2)^k\)-acts trivially on \(T^s \times M_{n-k}(B)\), we have \(M_{n}(A'') \cong T^k \times (\mathbb{Z}_2)^{n-k}(B)\).

Hereinafter, we write \(M_{n}(A)\) in place of \(M_{n}(A'')\).

Remark 1: Concerning \(*\) in (2), the group \((\mathbb{Z}_2)^s = \langle g_{k-s+1}, \ldots, g_k \rangle\) acts on \(T^k \times M_{n-k}(B)\) by

\[
g_{i}(z_1, \ldots, z_{k-s+1}, \ldots, z_k, z_{k+1}, \ldots, z_n) = (z_1, \ldots, z_{k-s+1}, -z_i, \ldots, z_k, [z_{k+1}, \ldots, z_n]) \tag{3}
\]

where \(\tilde{z} = \tilde{z}\). So there induces an action of \((\mathbb{Z}_2)^s\) on \(M_{n-k}(B)\) by

\[
g_{i}(\tilde{z}_{k+1}, \ldots, \tilde{z}_n) = [\tilde{z}_{k+1}, \ldots, \tilde{z}_n]. \tag{4}
\]

Moreover in [2], it was obtained the following theorem.

Theorem 1 (Structure): For a RBM \(_n M_{n}(A)\), there is a maximal \(T^k\)-action \((k \geq 1)\) such that \(M_{n}(A) = T^k \times (\mathbb{Z}_2)^s M_{n-k}(B)\) is an injective Seifert fiber space over the \((n-k)\)-dimensional real Bott orbifold \(M_{n-k}(B)/(\mathbb{Z}_2)^s\):

\[
T^k \rightarrow M_{n}(A) \rightarrow M_{n-k}(B)/(\mathbb{Z}_2)^s. \tag{5}
\]

There exist a central extension of the fundamental group \(\pi(A)\) of \(M_{n}(A)\):

\[
1 \rightarrow \mathbb{Z}^k \rightarrow \pi(A) \rightarrow Q_B \rightarrow 1 \tag{6}
\]

such that

(i) \(\mathbb{Z}^k\) is the maximal central free abelian subgroup

(ii) The induced group \(Q_B\) is the semidirect product \(\pi(B) \rtimes (\mathbb{Z}_2)^s\) for which \(\mathbb{R}^{n-k}/\pi(B) = M_{n-k}(B)\).

See [2] for the proof.

Using this theorem, a RBM \(_n M_{n}(A)\) which admits a maximal \(T^k\)-action \((k \geq 1)\) can be created from an RBM \(_{n-k} M_{n-k}(B)\) by a \((\mathbb{Z}_2)^s\)-action, and the corresponding \(BM_n\) \(A\) has the form as in (2) above.

B. Affine maps between real Bott manifolds

Next, to check whether two RBM’s are diffeomorphic, we can apply the following theorem.

Theorem 2 (Rigidity): Suppose that \(M_{n}(A_1)\) and \(M_{n}(A_2)\) are RBM’s and \(1 \rightarrow \mathbb{Z}^{k_1} \rightarrow \pi(A_1) \rightarrow Q_{B_1} \rightarrow 1\) is the associated group extensions \((i = 1, 2)\). Then, the following are equivalent:

(i) \(\pi(A_1)\) is isomorphic to \(\pi(A_2)\).

(ii) There exists an isomorphism of \(Q_{B_1} = \pi(B_1) \times (\mathbb{Z}_2)^{s_1}\) onto \(Q_{B_2} = \pi(B_2) \times (\mathbb{Z}_2)^{s_2}\) preserving \(\pi(B_1)\) and \(\pi(B_2)\).

(iii) The action \((\mathbb{Z}_2)^{s_1}, M_{n-k}(B_1))\) is equivariantly diffeomorphic to the action \((\mathbb{Z}_2)^{s_2}, M_{n-k}(B_2))\).

See [2] for the proof. Here Bott matrices \(A_1\) and \(A_2\) are created from \(B_1\) and \(B_2\) respectively.

Note that two RBM’s \(M_{n}(A_1)\) and \(M_{n}(A_2)\) are diffeomorphic if and only if \(\pi(A_1)\) is isomorphic to \(\pi(A_2)\) by the Bieberbach theorem [3]. Moreover, by Theorem 1 and 2 we have,

Remark 2: Let \(RB_{n} M_{n}(A_i) = T^{k_i} \times (\mathbb{Z}_2)^{s_i} M_{n-k}(B_i)\) \((i = 1, 2)\). If \(M_{n}(A_1)\) and \(M_{n}(A_2)\) are diffeomorphic then the following hold.

(i) \(k_1 = k_2\).

(ii) \(M_{n-k}(B_1)\) and \(M_{n-k}(B_2)\) are diffeomorphic.

(iii) \(s_1 = s_2\).

If two RBM’s have the same maximal \(T^k\)-action, then the quotients \((\mathbb{Z}_2)^{s_1}, M_{n-k}(B_1))\) are compared. So, what we have to do next is to distinguish the \((\mathbb{Z}_2)^{s_1}\)-action on \(M_{n-k}(B_1)\) when it is the case that \(s_1 = s_2 = s\) and \(M_{n-k}(B_1)\) is diffeomorphic to \(M_{n-k}(B_2)\).

C. Type of fixed point set

Note that from (4), the action of \((\mathbb{Z}_2)^s\) on \(M_{n-k}(B)\) is defined by \(\alpha(\tilde{z}_1, \ldots, \tilde{z}_{n-k}) = [\alpha(\tilde{z}_1, \ldots, \tilde{z}_{n-k}) = ([\tilde{z}_1, \ldots, \tilde{z}_{n-k}] = \tilde{z}\) for \(\alpha \in (\mathbb{Z}_2)^s\) and \(\tilde{z} = z\) or \(\tilde{z}\). Since \(M_{n-k}(B) = T^{n-k}/(\mathbb{Z}_2)^{n-k}\), the action \(\langle \alpha \rangle\) lifts to a linear (affine) action on \(T^{n-k}\) naturally: \(\alpha(\tilde{z}_1, \ldots, \tilde{z}_{n-k}) = (\tilde{z}_1, \ldots, \tilde{z}_{n-k})\). Then, the fixed point set is characterized by the equation: \(\tilde{z}_1, \ldots, \tilde{z}_{n-k} = g(z_1, \ldots, z_{n-k}) \) for some \(g \in (\mathbb{Z}_2)^{n-k}\). It is also an affine subspace of \(T^{n-k}\). So the fixed point sets of \((\mathbb{Z}_2)^s\) are affine subspaces in \(M_{n-k}(B)\).

Let \(B\) be the Bott matrix as in above. By a repetition of move \(I\), \(B\) has the form

\[
B = \begin{pmatrix}
0_{b_2} & C_{23} & \cdots & \cdots & C_{2t} \\
0_{b_3} & C_{34} & \cdots & C_{3t} \\
\vdots & \ddots & \ddots & \ddots \\
0 & 0_{b_{t-1}} & C_{(t-1)t} & \cdots & C_{tt} \\
0 & 0_{b_t} & \cdots & \cdots & 0
\end{pmatrix} \tag{7}
\]
where rank $B = b_2 + \cdots + b_{\ell} = n - k$ ($b_j \geq 1$), $C_{j\ell}$ ($j = 2, \ldots, \ell - 1$, $t = 3, \ldots, \ell$) is a $b_j \times b_{\ell}$ matrix.

Note that by the Bieberbach theorem (cf. [3]), if f is an isomorphism of $\pi_1(A_1)$ onto $\pi_1(A_2)$, then there exists an affine element $g = (h, H) \in \mathbb{A}(n) = \mathbb{R}^n \rtimes \text{GL}(n, \mathbb{R})$ such that

$$f(r) = g r g^{-1} \quad (\forall r \in \pi_1(A_1)).$$

Recall that if $M_n(A_1)$ is diffeomorphic to $M_n(A_2)$ then $M_{n-k}(B_1)$ is diffeomorphic to $M_{n-k}(B_2)$. This implies that B_1 and B_2 have the form as in (7).

Using (8) and according to the form of B in (7) we obtain that

$$g = \left(\begin{array}{ccc}
\mathbf{h}_1 & H_1 & \mathbf{0} \\
\mathbf{h}_2 & H_2 & \mathbf{0} \\
\vdots & \vdots & \vdots \\
\mathbf{h}_\ell & H_\ell & \mathbf{0}
\end{array}\right)$$

(9)

where \mathbf{h}_i is an $b_i \times 1$ ($s_i = \text{rank } I_i$) column matrix (\mathbf{h}_1 is a $k \times 1$ column matrix), $H_i \in \text{GL}(b_i, \mathbb{R})$ ($i = 2, \ldots, \ell$), $H_1 \in \text{GL}(k, \mathbb{R})$ (see Remark 3.2 [2]).

Let $\tilde{f} : Q_{B_1} \to Q_{B_2}$ be the induced isomorphism from f (cf. Theorem 2). Now the affine equivalence $\tilde{g} : \mathbb{R}^{n-k} \to \mathbb{R}^{n-k}$ has the form

$$\tilde{g} = \left(\begin{array}{ccc}
\mathbf{h}_2 & H_2 & \mathbf{0} \\
\vdots & \vdots & \vdots \\
\mathbf{h}_\ell & H_\ell & \mathbf{0}
\end{array}\right)$$

(10)

which is equivalent with respect to \tilde{f}. The pair (\tilde{f}, \tilde{g}) induces an equivariant affine diffeomorphism $(f, g) : (\mathbb{Z}_2)^s, M_{n-k}(B_1)) \to (\mathbb{Z}_2)^s, M_{n-k}(B_2)).$

Let $\text{rank} H_i = b_i$ ($i = 2, \ldots, \ell$). (Note that $b_2 + \cdots + b_{\ell} = n - k$.) Since $M_{n-k}(B_1) = T^{n-k}/(\mathbb{Z}_2)^{n-k}$, \tilde{g} induces an affine map \tilde{g} of T^{n-k}. Put $X_{b_2} = \{x_1, \ldots, x_{b_2}\}$, $X_{b_\ell} = \{x_{b_\ell+1}, \ldots, x_{b_\ell+b_\ell-1}\}$, $w_{b_i} = p(X_{b_i}) \in T^{b_i}$ ($i = 2, \ldots, \ell$), $v_{b_{\ell-1}} = b_2 + \cdots + b_{\ell-1}$. Since $\tilde{g}p = p\tilde{g}$, $\tilde{g}(t w_{b_2}, \ldots, t w_{b_\ell}) = (t w'_{b_2}, \ldots, t w'_{b_\ell})$ where $w'_{b_i} = p(h_i + H_i X_{b_i}) \in T^{b_i}$. That is, \tilde{g} preserves each T^{b_i} of $T^{n-k} = T^{b_2} \times \cdots \times T^{b_{\ell}}$, so does \tilde{g} on $M_{n-k}(B_1) = \{(z_1, \ldots, z_{b_2}; z_{b_2+1}, \ldots, z_{b_2+b_2}; \ldots; z_{b_{\ell-1}+1}, \ldots, z_{b_{\ell-1}+b_{\ell-1}})\}$.

We say that \tilde{g} preserves the type (b_2, \ldots, b_{ℓ}) of $M_{n-k}(B_1)$.

As \tilde{f} is \tilde{g}-equivariant, it also preserves the type corresponding to the fixed point sets between $((\mathbb{Z}_2)^s, M_{n-k}(B_1))$ and $((\mathbb{Z}_2)^s, M_{n-k}(B_2))$.

Proposition 1: The $(\mathbb{Z}_2)^s$-action on $M_{n-k}(B)$ is distinguished by the number of components and types and each positive dimensional fixed point subsets.

See [2] for the proof.

Definition 1: We say that two Bott matrices A and A' are equivalent (denoted by $A \sim A'$) if $M_n(A)$ and $M_n(A')$ are diffeomorphic.

III. CLASSIFICATION OF PARTICULAR TYPES OF RBM$_n$s

In this part, we will review some results from [6] and prove some new results regarding the classification of certain n-dimensional real Bott manifolds in order to obtain how many diffeomorphism classes of some particular types of RBM$_n$s.

Proposition 2: [6] There are 4 diffeomorphism classes of RBM$_n$s ($n \geq 4$) which admit the maximal T^{n-2}-actions (i.e., $s = 1, 2$):

$$M_n(A) = T^{(n-2)} \times M_2(B).$$

Proposition 3: [6] The diffeomorphism class is unique for the RBM of the form $M_n(A) = T^k \times Z_2 \times S^1$ for any k ($1 \leq k \leq n - 1$). In particular, if $k = n$ then $M_n(A) = T^n$.

Remark 3: By Proposition 3, for $n \geq 2$ there are n distinct diffeomorphism classes of RBM$_n$s $M_n(A), M_n(B)$ of the form $M_n(A) = T^k \times Z_2 \times S^1$ for $k \leq n - 1$.

Corollary 1: [6] If the RBM $M(A) = S^1 \times Z_2 \times S^1$ where $M(B) = T^k \times Z_2 \times S^1$, then for any $k \geq 1$ there is only one diffeomorphism class.

Remark 4: By Corollary 1, for $n \geq 3$ there are $n - 2$ distinct diffeomorphism classes of RBM$_n$s $M_n(A), M_n(B)$ of the form $M_n(A) = T^k \times Z_2 \times S^1$, $k \leq n - 2$.

Corollary 2: [6] Let $M(A)$ be a real Bott manifold which fibers S^1 over the real Bott manifold $M(B)$ for which $M(B)$ is $T^k \times Z_2 \times S^1$, $k \geq 2$. Here K is Klein bottle. Then the number of diffeomorphism classes of such $M(A)$ is 3.

Remark 5: By Corollary 2, for $n \geq 5$ there are $(3(n - 4))$ distinct diffeomorphism classes of RBM$_n$s $M_n(A), M_n(B)$ of the form $M_n(A) = T^k \times Z_2 \times S^1$, $k \leq n - 2, s = 1, 2$.

Corollary 3: [6] Let $M(A)$ be a real Bott manifold which fibers S^1 over the real Bott manifold $M(B)$ for which $M(B)$ is $T^k \times Z_2 \times S^1$, $k \geq 2$. Then the number of diffeomorphism classes of $M(A)$ is 3.

Remark 6: By Corollary 3, for $n \geq 5$ there are $(3(n - 4))$ distinct diffeomorphism classes of RBM$_n$s $M_n(A), M_n(B)$ of the form $M_n(A) = T^k \times Z_2 \times S^1$, $k \leq n - 2, s = 1, 2$.

Proposition 4: [6] Let $M(A)$ be a real Bott manifold which fibers S^1 over the real Bott manifold $M(B)$, where $M(B) = S^1 \times Z_2 \times T^k$, $k \geq 2$, then the diffeomorphism classes of such $M(A)$ is $[2]^k$. Here $[x]$ is the integer part of x.

Remark 7: By Proposition 4, for $n \geq 4$ there are $\sum_{k=1}^{n-2}(\binom{n-2}{k} + 1)$ distinct diffeomorphism classes of RBM$_n$s $M_n(A), M_n(B)$ of the form $M_n(A) = S^1 \times Z_2 \times T^k$, $k \leq n - 2, s = 1, 2$.

Proposition 5: For any $k \geq 1$ and $m \geq 2$ ($n - 3 \geq k + m = t \geq 3$), there are $\left[\frac{n-2}{2}\right] + 1$ diffeomorphism classes in RBM$_n$s $M_n(A), M_n(B)$ of the form $M_n(B) = T^m \times Z_2 \times T^{n-k-m}$.

Proof: Similar with the proof of Proposition 4 (see [6]).

Remark 8: By Proposition 5, for $n \geq 6$ there are

$$\sum_{k=1}^{n-5} \sum_{m=k+2}^{n-3} \left(\binom{n-2}{k} + 1\right)$$
distinct diffeomorphism classes of RBM_ns $M_n(A) = T^k \times Z_2 \ M_{n-k}(B)$ ($k = 1, \ldots, n - 5$) where $M_{n-k}(B) = T^m \times Z_2 \ T^{n-t}$ ($m \geq 2, \ n - 3 \geq t \geq 3$).

Proposition 6: [6] Let $M_n(A) = S^3 \times Z_2 \ M_{n-k}(B)$ be a RBM_n. Suppose that B is either one of the list in (11). Then $M_{n-k}(B)$ are diffeomorphic to each other and the number of diffeomorphism classes of such RBM_ns $M_n(A)$ above is $(k + 1)2^{n-k-3}$ ($k \geq 2, \ n - k \geq 3$).

\[
B_1 = \begin{pmatrix}
0 & 1 & 0 & 1 & \ldots & 1 \\
n & 0 & 1 & 0 & \ldots & 1 \\
0 & 1 & 0 & 1 & \ldots & 1 \\
0 & 0 & 1 & 0 & \ldots & 1 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & 1 & \ldots & 1 \\
0 & \ldots & 0 & 1 & 0 & \ldots & 1
\end{pmatrix},
\]

\[
B_2 = \begin{pmatrix}
0 & 1 & 0 & 1 & \ldots & 1 \\
n & 0 & 1 & 0 & \ldots & 1 \\
0 & 1 & 0 & 1 & \ldots & 1 \\
0 & 0 & 1 & 0 & \ldots & 1 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & 1 & \ldots & 1 \\
0 & \ldots & 0 & 1 & 0 & \ldots & 1
\end{pmatrix},
\]

\[
B_{n-k-1} = \begin{pmatrix}
0 & 1 & 0 & 1 & \ldots & 1 \\
n & 0 & 1 & 0 & \ldots & 1 \\
0 & 1 & 0 & 1 & \ldots & 1 \\
0 & 0 & 1 & 0 & \ldots & 1 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & 1 & \ldots & 1 \\
0 & \ldots & 0 & 1 & 0 & \ldots & 1
\end{pmatrix},
\]

\[
B_{n-k} = \begin{pmatrix}
0 & 1 & 0 & 1 & \ldots & 1 \\
n & 0 & 1 & 0 & \ldots & 1 \\
0 & 1 & 0 & 1 & \ldots & 1 \\
0 & 0 & 1 & 0 & \ldots & 1 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & 1 & \ldots & 1 \\
0 & \ldots & 0 & 1 & 0 & \ldots & 1
\end{pmatrix},
\]

\[
B_{n-k+(n-k-4)} = \begin{pmatrix}
0 & 1 & 0 & 1 & \ldots & 1 \\
n & 0 & 1 & 0 & \ldots & 1 \\
0 & 1 & 0 & 1 & \ldots & 1 \\
0 & 0 & 1 & 0 & \ldots & 1 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & 1 & \ldots & 1 \\
0 & \ldots & 0 & 1 & 0 & \ldots & 1
\end{pmatrix}.
\]

(11)

Remark 9: By Proposition 6, for $n \geq 5$ there are

\[
\sum_{\ell=3}^{n-2} \sum_{k=2}^{\ell-3} (k+1)2^{\ell-k-3}
\]
distinct diffeomorphism classes of RBM_ns $M_n(A) = T^{k'} \times Z_2 \ M_{n-k'}(B)$ ($k' = 1, \ldots, n - 4$) where B is either one of the list in (11).

Now we consider the other type of real Bott manifolds.

Proposition 7: Let $M_n(A) = T^k \times (Z_2)^2 T^{\ell},$ ($n = k + \ell \geq 5, \ell \geq 3$) be a RBM_n. Then the number of diffeomorphism classes of such $M_n(A)$ is

\[
\sum_{\ell=3}^{n-2} \sum_{x=1}^{\ell} \left(\frac{\ell}{2} - \frac{x}{2}\right) - (x - 1))
\]

diffeomorphism classes of such $M_n(A)$ corresponding to Bott matrices as in (15).

Proof: The proposition follows from Lemmas 1, 2 below.

Lemma 1: Let $M_n(A)$ be an RBM_n ($n \geq 5$) corresponding to the Bott matrix $A = \begin{pmatrix} O_k & 0 & \ldots & 0 \\ 0 & 1 & \ldots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 1 & \ldots & 1 \end{pmatrix} (\ell \geq 3).$ (14)

Then the number of diffeomorphism classes of such $M_n(A)$ is $\sum_{\ell=3}^{n-2} \left(\frac{\ell}{2}\right).$

Proof: We associate with the pair (y, x) the Bott matrix (14) where $y = n - x$ and x are the numbers of zero entries in the $(k - 1)$-th row and ℓ-th row respectively of the right-upper block matrix. Here $1 \leq x \leq \ell - 1.$ Because of move I, we may assume that $x \leq \ell - x.$ So $1 \leq x \leq \left\lfloor \frac{\ell}{2}\right\rfloor.$ For a fixed numbers ℓ and x, it is easy to check that the fixed point sets of $((Z_2)^2, T^{\ell})$ corresponding to (14) are 2^x components $T^{\ell - x}$ and $2^{\ell - x}$ components T^x.

For a fixed number ℓ, suppose that Bott matrices A_1 and A_2 correspond to the pairs (y_1, x_1) and (y_2, x_2) respectively. If $x_1 \neq x_2$, then by Proposition 1, $M_n(A_1)$ is not diffeomorphic to $M_n(A_2)$.

Therefore for a fixed number ℓ, there are $\left\lfloor \frac{\ell}{2}\right\rfloor$ diffeomorphism classes of such RBM_ns. This implies the lemma.

Lemma 2: Let $M_n(A)$ be a RBM_n ($n \geq 5$) corresponding to the Bott matrix

\[
A = \begin{pmatrix} O_k & 0 & \ldots & 0 \\ 0 & 1 & \ldots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 1 & \ldots & 1 \end{pmatrix} (\ell \geq 3).
\]

Then the number of diffeomorphism classes of such $M_n(A)$ is $\sum_{\ell=3}^{n-2} \sum_{x=1}^{\ell} \left(\frac{\ell}{2} - \frac{x}{2}\right) - (x - 1)).$

Proof: We associate with the pair (t, x) the Bott matrix (15) where x is the number of zero entries in the ℓ-th row of the right-upper block matrix and $t(\neq 0)$ is the number of columns having two non zero entries. Because of move I, we may assume that $1 \leq x \leq \ell - x - t$ and $x \leq \left\lfloor \frac{\ell}{2}\right\rfloor.$ So $1 \leq x \leq \ell - t \leq \left\lfloor \frac{\ell}{2}\right\rfloor.$ For fixed numbers ℓ, x and t, it is easy to check that the fixed point sets of $((Z_2)^2, T^{\ell})$ corresponding to (15) are 2^{t+x} components $T^{\ell - x - t}$ and $2^{\ell - x}$ components T^x.

For a fixed number ℓ, suppose that Bott matrices A_1 and A_2 correspond to the pairs (t_1, x_1) and (t_2, x_2) respectively. If $t_1 \neq t_2$ or(and) $x_1 \neq x_2$, then by Proposition 1, A_1 is not equivalent to A_2.

Therefore for fixed ℓ, and x, there are $\left(\frac{\ell - x}{2}\right) - (x - 1)$ diffeomorphism classes of such RBM_ns. Hence there are $\sum_{\ell=3}^{n-2} \sum_{x=1}^{\ell} \left(\frac{\ell - x}{2}\right) - (x - 1)$
diffeomorphism classes of such $M_n(A)$ corresponding to Bott matrices as in (15).

Since the fixed point sets of $((Z_2)^2, T^{\ell})$ corresponding to Bott matrices (14) and (15) are different, the corresponding real Bott manifolds are not diffeomorphics.
Remark 10: It is hard task algebraically to determine the number of n-dimensional $M_n(A) = T^k \times (\mathbb{Z}_2)^r T^t$ for $3 \leq s \leq \min\{n - \ell, \ell\}$. However we shall consider a special type in (12).

We associate with $(\ell_1, \ell_2, \ldots, \ell_{s-1}, \ell_s)$ the Bott matrix (12) where $\ell_1 = \ell - \sum_{i=2}^{s} \ell_s$, $\ell_2, \ell_3, \ldots, \ell_{s-1}, \ell_s$ are the number of nonzero entries at k-row, $(k-1)$-row, $(k-2)$-row, ..., $(k-(s-2))$-row, $(k-(s-1))$-row respectively in the right-upper block matrix. As in the arguments in the proof of Lemmas 1, 2 above, in order to obtain the diffeomorphism classes $RBM M(A)$, we may assume that $\ell_1 \geq \ell_2 \geq \ell_3 \geq \cdots \geq \ell_{s-1} \geq \ell_s \geq 1$ and $1 \leq \ell_s \leq \lfloor \frac{\ell}{s+1} \rfloor$. For any ℓ_s we determine the values of ℓ_{s-1}, namely $\ell_s \leq \ell_{s-1} \leq \lfloor \frac{\ell-t_s-t_{s-1}}{s-1} \rfloor$. Repeating the previous argument, we obtain that

$$
\ell_{t+1} \leq \ell_t \leq \left[\frac{\ell - \sum_{i=1}^{s} \ell_s}{t} \right], \quad t = 2, \ldots, s - 2, s - 1.
$$

It is easy to check that for fixed natural numbers $\ell_1, t = 3, 4, \ldots, s - 1, s$ and ℓ, there are $\frac{[\ell - \sum_{i=2}^{s} \ell_i]}{s} - (\ell_s - 1)$ diffeomorphism classes of $RBM M(A)$.

Hence the number of diffeomorphism classes of $RBM M(A)$ is

$$
N^x_{\ell} = \sum_{\ell_{s-1} = \ell_s}^{\lfloor \frac{\ell}{s+1} \rfloor} \sum_{\ell_1 = \ell_{t+1}}^{[\ell - \sum_{i=2}^{s} \ell_i]} \cdots \sum_{\ell_3 = \ell_4}^{\lfloor \ell - \sum_{i=3}^{s} \ell_i \rfloor} -(\ell_3 - 1)
$$

diffeomorphism classes of $M(A)$ for $3 \leq s \leq \min\{n - \ell, \ell\}$.

The number of diffeomorphism classes of $RBM M(A)$ is

$$
N^x_{\ell} = \sum_{\ell = 3}^{n-3} \sum_{s=3}^{\min\{n-\ell, \ell\}} N^x_{\ell}.
$$

Let N_n be the number of diffeomorphism classes of RBM_n.

Choi[7] classified RBM_n corresponding to the following Bott matrices. He considers $\ell \times \ell$ Bott matrices A_ℓ of rank $\ell - 1$ all of whose diagonals are 0. Then for such A_ℓ, $i, i+1$-entry must be 1 for $i = 1, \ldots, \ell - 1$. Masuda[8] proved that for such matrices, there are $2(\ell-2)(\ell-3)/2$ diffeomorphism classes of ℓ-dimensional real Bott manifolds.

Next Choi considers an $n \times n$ Bott matrix A such that the rank of submatrix consisting of the first ℓ columns is $\ell - 1$ and the last $n - \ell$ columns are zero vectors (i.e., $A = \begin{pmatrix} A_\ell & 0 \\ 0 & 0 \end{pmatrix}$).

By move I, the Bott matrix A is equivalent to

$$
A = \begin{pmatrix} 0 & 0 \\ 0 & A_\ell \end{pmatrix}.
$$

By using the result of Masuda above, Choi[7] obtained that the number of diffeomorphism classes of RBM_n corresponding to Bott matrices (16) for $\ell = 2, \ldots, n$ is $\sum_{\ell=2}^{n} 2(\ell-2)(\ell-3)/2$.

Masuda[8] found that

$$
2(\ell-2)(\ell-3)/2 \leq N_n,
$$

by considering the Bott matrices A_ℓ above. Then, Choi[7] improved the Masuda’s result where he considers Bott matrices (16).

Theorem 3 ([7]): $2(\ell-2)(\ell-3)/2 < \sum_{\ell=2}^{n} 2(\ell-2)(\ell-3)/2 \leq N_n$.

By using Propositions 7, 2, Theorem 3, Remarks 3, 4, 5, 6, 7, 8, 9, 10, we obtain an improvement of the previous results about N_n.

Theorem 4: For $n \geq 4$,

$$
N_n \geq 8n + \sum_{\ell=2}^{n} 2(\ell-2)(\ell-3)/2 + \sum_{\ell=2}^{n} (\ell/2) + 1 + \sum_{k=1}^{n-5} \sum_{m=2}^{n-3} ((\ell-t_k)/2) + 1) \sum_{\ell=3}^{n-3} \sum_{s=3}^{\min\{n-\ell, \ell\}} N^x_{\ell} - 26.
$$

with

$$
N^x_{\ell} = \sum_{\ell_{s-1} = \ell_s}^{\lfloor \frac{\ell}{s+1} \rfloor} \sum_{\ell_1 = \ell_{t+1}}^{[\ell - \sum_{i=2}^{s} \ell_i]} \cdots \sum_{\ell_3 = \ell_4}^{\lfloor \ell - \sum_{i=3}^{s} \ell_i \rfloor} -(\ell_3 - 1)
$$

We assume that if $u < u_0$ in a summation $\sum_{u=u_0}^{n} u$, the value of such summation is equal to zero.
REFERENCES

[1] Y. Kamishima and M. Masuda, “Cohomological rigidity of real bott manifolds,” *Algebraic & Geometric Topology*, vol. 9, no. 4, pp. 2479–2502, 2009.

[2] Y. Kamishima and A. Nazra, “Seifert fibred structure and rigidity on real bott towers,” *Contemporary Mathematics*, vol. 501, p. 103, 2009.

[3] J. A. Wolf, *Spaces of constant curvature*. American Mathematical Soc., 1972, vol. 372.

[4] A. Nazra, “Real bott tower,” Master’s thesis, Tokyo Metropolitan University, 2008.

[5] ——, “Diffeomorphism type of real bott towers (geometry of transformation groups and related topics),” 2008.

[6] ——, “Diffeomorphism classes of real bott manifolds,” *Tokyo Journal of Mathematics*, vol. 34, no. 1, pp. 229–260, 2011.

[7] S. Choi, “Counting on real bott manifolds,” *RIMS Kokyuroku*, vol. 1670, pp. 69–71, 2009.

[8] M. Masuda, “Classification of real bott manifolds,” *arXiv preprint arXiv:0809.2178*, 2008.