International Cancer of the Pancreas Screening (CAPS) Consortium summit on the management of patients with increased risk for familial pancreatic cancer

Marcia Irene Canto,1 Femme Harinck,2 Ralph H Hruban,3 George Johan Offerhaus,4 Jan-Werner Poley,2 Ihab Kamel,5 Yung Nio,6 Richard S Schulick,7 Claudio Bassi,8 Irma Kluijt,9 Michael J Levy,10 Amitabh Chak,11 Paul Fockens,12 Michael Goggins,1 Marcio Bruno,2 on behalf of the International Cancer of the Pancreas Screening (CAPS) Consortium

ABSTRACT

Background Screening individuals at increased risk for pancreatic cancer (PC) detects early, potentially curable, pancreatic neoplasia.

Objective To develop consortium statements on screening, surveillance and management of high-risk individuals with an inherited predisposition to PC.

Methods A 49-expert multidisciplinary international consortium met to discuss pancreatic screening and vote on statements. Consensus was considered reached if ≥75% agreed or disagreed.

Results There was excellent agreement that, to be successful, a screening programme should detect and treat T1N0M0 margin-negative PC and high-grade dysplastic precursor lesions (pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasm). It was agreed that the following were candidates for screening: first-degree relatives (FDRs) of patients with PC from a familial PC kindred with at least two affected FDRs; patients with Peutz–Jeghers syndrome; and p16, BRCA2 and hereditary non-polyposis colorectal cancer (HNPCC) mutation carriers with ≥1 affected FDR.

Consensus was not reached for the age to initiate screening or stop surveillance. It was agreed that initial screening should include endoscopic ultrasonography (EUS) and/or MRI/magnetic resonance cholangiopancreatography not CT or endoscopic retrograde cholangiopancreatography. There was no consensus on the need for EUS fine-needle aspiration to evaluate cysts. There was disagreement on optimal screening modalities and intervals for follow-up imaging. When surgery is recommended it should be performed at a high-volume centre. There was great disagreement as to which screening abnormalities were of sufficient concern to for surgery to be recommended.

Conclusions Screening is recommended for high-risk individuals, but more evidence is needed, particularly for how to manage patients with detected lesions. Screening and subsequent management should take place at high-volume centres with multidisciplinary teams, preferably within research protocols.

INTRODUCTION

Pancreatic ductal adenocarcinoma (PC) is a deadly disease. It remains the fourth most common cause of death from cancer in the USA1 and one of the deadliest cancers in the world. Although treatments have improved, average PC 5-year survival is <5%. Because pancreatic neoplasia detected early is potentially curable, there is interest in pancreatic screening. Because of the low incidence of PC in the general population, population-based screening has not been recommended.

Selective screening of individuals at increased risk for PC (high-risk individuals (HRIs)) based on their family history or identifiable genetic predisposition is considered worthwhile. Over the past decade, centres in the USA and Europe initiated pancreatic screening programmes. Single1–10 and multicentre6–11 cohort studies have evaluated the diagnostic yield of screening (detection of asymptomatic precursor lesions and PCs at baseline and follow-up) using different imaging modalities and study populations (table 1).

AIMS AND METHODS

Scope and purpose

The International Cancer of the Pancreas Screening (CAPS) Consortium was formed in 2010 to help organise global pancreatic screening. After prior formulation of key topics for discussion, the CAPS Consortium held a multidisciplinary consensus conference. The statements developed at this conference provide recommendations related to the following questions: (1) Who should be screened? (2) How should HRIs be screened and followed up? (3) When should surgery be performed? (4) What are the goals of screening and what outcome should be considered a success?

Consortium participants

The conference chairs (Professors Canto and Bruno) selected an international multidisciplinary group of 50 experts from 10 countries in four continents representing the fields of epidemiology, genetics, gastroenterology, radiology, oncology, surgery and pathology. Participant selection was based upon expertise, publications and participation in ongoing PC screening and surveillance programmes. The group included physicians, scientists, nurses and genetic counsellors from community-based practices, academic institutions and cancer centres.
Guidelines

Table 1 Summary of diagnostic yield of familial pancreatic cancer screening and surveillance programmes

Study	High-risk group	Imaging tests	Diagnostic yield*n (%)
Brentnell 1999 (1) n=14	FPC	EUS + ERCP + CT	7/14 (50)†
Kimmye 2002 n=461	FPC	EUS; ERCP	12/46 (26)†
Canto 2004 (2) n=38	FPC, PJS	EUS; ERCP, EUS-FNA, CT	2/38 (5.3)†
Canto 2006 (3) n=78	FPC, PJS	EUS; CT, EUS-FNA, ERCP§	8/78 (10.3)‡,1
Poley 2009 (4) n=44	FPC, BRCA, PJS, p16, p53, HP	EUS, CT, MRI§	10/44 (23)
Langer 2009 (5) n=76	FPC, BRCA	EUS + MRCP, EUS-FNA§	1/76 (1.3)‡,1
Verna 2010 (6) n=51	FPC, BRCA, p16	EUS and/or MRCP	6/51 (12)†
Ludwig 2011 =109	FPC, BRCA	MRCP, EUS3, EUS-FNA§	9/109 (8.3)§
Vasen 2011 (7) n=79	p16	MRR/MRCP	14/79(18)
Al-Sukhni 2011 (8) n=262	FPC, BRCA, PJS, p16, HP	MRI, CT, EUS, ERCP§	19/262(7.3)
Schneider 2011 (9)** n=72	FPC, BRCA, PALB2	EUS + MRCP	11/72 (15)‡†
Canto 2012 (10) n=216	FPC, BRCA, PJS	CT, MRR/MRCP, EUS; ERCP§	5/216 (2.3)†–92/216 (43)

* Yield is defined as the detection of any pathologically proven (pre)malignant lesion (≥PanIN-2/IPMN and pancreatic adenocarcinoma) and lesions that are morphologically suspicious for branch-duct IPMNs.
**Continuation of Langer 2009, included high-risk individuals from this series.
†–Continuation of Brentnell 1999, included high-risk individuals from Brentnell 1999.
‡Includes only pathologically proven pancreatic neoplasms (histology or cytology).
§Test performed only as an additional test for detected abnormalities.
¶Includes baseline and follow-up.
**Continuation of Brentnell 1999, included 14 high-risk individuals from Brentnell 1999.
Eleven and 5 (strong=definitely do it), 2 (weak=probably do it), 5 (no recommendation), 4 (weak=probably don’t do it) and 5 (strong=definitely don’t do it).

RECOMMENDATION STATEMENTS

Each statement includes its grade of evidence, the voting results (table 2) and a brief discussion.

Who should be screened?

Since the incidence of PC in the general population is low (lifetime risk 1.5%), screening is not recommended for the general population, but instead for individuals considered to be at high risk of developing the disease (ie, >5% lifetime risk, or fivefold increased RR). The main tool used to quantify PC risk is still the family history; risk stratification is determined from the number of affected family members and the relationships among at-risk individuals. Gene testing can identify a family’s underlying genetic susceptibility, but it has a limited role because the genetic basis of much of the inherited susceptibility to PC remains unexplained. Additional PC susceptibility genes may be discovered in the near future that should improve our ability to identify individuals who would benefit most from pancreatic screening.

Patients with a family history of PC

Individuals with three or more blood relatives with PC, with at least one affected first-degree relative (FDR,) should be considered for screening (grade 91.9%, grade moderate, ‘probably do it’). Those with at least two affected FDRs should be considered for screening (grade 91.9%, grade moderate, ‘probably do it’). Individuals with two affected blood relatives with PC, with at least one FDR, should be considered for screening (grade 77.5%, grade low, ‘probably do it’).

These recommendations for screening are primarily based on evidence of increased risk, rather than a proven efficacy of screening. Prospective studies demonstrate an increased risk of developing PC in unaffected FDRs that depends on the number of relatives with PC. This risk has been estimated to be 6.4-fold greater in individuals with two FDRs with PC (lifetime risk 8–12%) and 52-fold greater in individuals with three or more FDRs with PC (lifetime risk 40%). Among kindreds with familial PC, risk is higher in kindreds with a young-onset PC (age <50 years, RR=9.3) compared with kindreds...
with a young-onset PC relative, or patients with new-onset individuals without an affected FDR, including individuals with two or more affected blood relatives with PC, with at least one affected FDR, should be considered for screening. Patients with apparently sporadic pancreatic cancer can have mutations in BRCA2, as can those without a family history of breast, ovarian cancer. Incomplete or low penetrance is a common feature of familial PC susceptibility gene mutations.

Mutations carriers

Germline mutations in the BRCA2, PALB2, p16, STK11, ATM, PRSS1 genes and the hereditary colon cancer (Lynch syndrome) genes, are associated with significantly increased risk of PC. Mutations in these genes explain only ~10% of the familial susceptibility to PC. Individuals with PC susceptibility gene mutations may not have many affected family members. Patients with apparently sporadic pancreatic cancer can have mutations in BRCA2, as can those without a family history of breast, ovarian cancer. Incomplete or low penetrance is a common feature of familial PC susceptibility gene mutations.

Patients with Peutz–Jeghers syndrome, regardless of family history, should be considered for screening (agree 96%, grade moderate, ‘do it’).

Patients with Peutz–Jeghers syndrome (who generally carry germline STK11 gene mutations) have a very high (152-fold)
risk of PC. Lifetime cumulative risk to age 65–70 for PC in patients with Peutz–Jeghers syndrome is 11–36%.22

BRCA2 mutation carriers with one or more affected FDR with PC (agree 85.7%, grade low, ‘probably do it’) and those with two or more affected family members (even without a FDR) (agree 89.8%, grade low, ‘probably do it’) should be considered for screening.

Germline **BRCA2** gene mutations account for the highest percentage of known causes of inherited PC. These have been identified in 5–17% of familial PC kindreds.23–25 The RR of PC in **BRCA2** gene mutation carriers is 3.5 (95% CI 1.87 to 6.58).26 27 Individuals with Jewish ancestry and a family history of PC should be considered for genetic counselling and testing for the founder **BRCA2** gene mutation, 6174delIT, present in 1% of Ashkenazi Jewish individuals28 and 4% of patients with PC.29 It has not been established that the risk of PC in **BRCA1** gene mutation carriers is increased. One cohort study found a modest increased risk of pancreatic cancer (RR=2.3).30 No agreement was reached on the question of screening **BRCA2** mutation carriers with no family history of PC (agree 51.1%), or for **BRCA1** mutation carriers with one affected FDR or two affective relatives but no FDR (agree 69.4%).

PALB2 mutation carriers with one or more affected FDR with PC should be screened (agree 77.5%, grade very low, ‘probably do it’).

PALB2 (partner and localiser of **BRCA2**) was recently identified as a PC susceptibility gene.31 Germline mutations have been detected in up to 5% of patients with familial PC.31–35 The magnitude of PC risk in **PALB2** mutation carriers has not been established. However, given the function of the **PALB2** gene, the risk of PC among **PALB2** gene mutation carriers is estimated to be similar to that found for **BRCA2** gene mutation carriers.

p16 mutation carriers with one or more affected FDR with PC should be considered for screening. (agree 87.5%, grade low, ‘probably do it’).

Germline **p16** gene mutations are found in families with familial atypical multiple mole melanoma syndrome (FAMMM syndrome), an autosomal dominant disease with variable penetrance. PC risk among **p16** gene mutation carriers is estimated to be increased 15- to 22-fold, compared with the general population.36–38

Patients with Lynch syndrome and one affected FDR with PC should be considered for screening. (agree 87.5%, grade low, ‘probably do it’).

Patients with mismatch repair gene (**MLH1**, **MSH2**, **MSH6**, **PMS2**) gene mutations (Lynch syndrome) have an estimated lifetime risk of 3.7% of developing PC (8.6-fold higher risk).39 40 Patients with PC having histology characteristic of mismatch repair-deficient cancers (‘medullary’ histology)41 should have their pedigree evaluated for possible hereditary non-polyposis colorectal cancer.

The estimated lifetime risk of PC in individuals with hereditary pancreatitis is high (about 40%).42 Many of these individuals have germline **PRSS1** gene mutations. This PC risk is directly related to the duration of recurrent pancreatitis and chronic inflammation.43 Screening of **PRSS1** mutation carriers with longstanding chronic pancreatitis is being performed within established programmes44 but it is controversial whether healthy siblings with a **PRSS1** mutation should also be screened.

At what age should screening begin and end?

There was disagreement about the age to initiate screening in HRIs (Appendix). For individuals with familial PC, the average age at diagnosis is 68.18 Fifty-one per cent voted to recommend starting screening at age 50. In contrast, screening typically begins at age 40 in **PRSS1** mutation carriers with hereditary pancreatitis owing to younger age of onset of PC.43 Smokers with a family history of PC have a greater risk of developing PC than non-smokers,18 but there was no consensus as to whether to recommend initiating screening at an earlier age for current smokers (Appendix). There was also no consensus recommendation about the age to end screening for HRIs without pancreatic lesions (Appendix).

How should high-risk individuals be screened?

Published screening studies have employed different screening tests. Direct interpretation of screening modalities is limited by differences in study populations, and reported diagnostic yields have ranged between 1.3% and 50%, depending on whether resected neoplasms or pancreatic lesions were tabulated (table 1).2 4 6–9 34 46 47 Of 1040 HRIs screened, to date only 70 (6.7%) had a pancreatic lesion or suspected neoplasm resected.2 4 6–9 34 46 47 Small cysts (branch-duct intraductal papillary mucinous neoplasms or BD-IPMNs) are the most common abnormality detected (in 34% and 53% of HRIs aged 50–59 and 60–69, respectively).41 Solid masses are rarely detected (20 of 70 resected were pancreatic ductal adenocarcinomas).2 4 6–9 34 46 47 The number of incident PCs detected in published studies is likely to be unreported (only four were cohort studies, all with limited follow-up), but eight of 20 (40%) of the PCs diagnosed in screened HRIs were not detected at baseline screening.

Initial screening should include (multiple answers allowed): endoscopic ultrasonography (EUS) (agree 83.7%, grade moderate, ‘do it’), MRI/magnetic resonance cholangiopancreatography (MRCP) (agree 75.5%, grade moderate, ‘do it’), CT (26.5%), abdominal ultrasound (14.5%), endoscopic retrograde cholangiopancreatography (ERCP) (2%).

EUS and MRI are considered the most accurate tools for pancreatic imaging and do not involve ionising radiation. Few studies have compared the diagnostic yield of imaging tests for HRIs in screening, and most comparisons have not been performed in a blinded, randomised fashion. The prospective CAPS3 study (published after the CAPS summit) performed blinded comparisons of standardised pancreatic-protocol CT, secretin-enhanced MRI/MRCP and EUS for one-time screening.41 It showed that EUS and MRI are better than CT for the detection of small, predominantly cystic, pancreatic lesions, with good to excellent concordance of lesion number, size and location between EUS and MRI/MRCP. EUS, MRI/MRCP and CT identified pancreatic lesions in 42.6%, 53.3% and 11% of screened HRIs, respectively.41 MRCP provided the best visualisation of cyst communication with the main pancreatic duct.

Incorrect diagnosis of lesions identified by EUS and/or MRI is a significant concern, particularly in the screening process. Some cysts are found at resection to be benign serous cystadenomas, while other resected pancreata have only low-grade pancreatic intraepithelial neoplasia (PanIN) associated with lobulocentric parenchymal atrophy.42–47 54 These results highlight the risk of overtreatment when using available screening tests.
The risk of overtreatment for pancreatic screening is magnified by the risks of morbidity and mortality (~1–2%) of pancreatic surgery. The risk of incorrect diagnosis is particularly true for EUS, an operator-dependent test with only modest interobserver agreement.48

There was excellent agreement that radiation exposure and the suboptimal detection rate preclude CT from being a routine pancreatic screening test.2 11 46 Abdominal ultrasound and ERCP were also not recommended for screening, owing to their low diagnostic sensitivity and the risk of pancreatitis, respectively.

Additional tests

ERCP should be performed as an additional test if a solid lesion (disagree 77.5%, grade high, ‘don’t do it’) or cystic lesion (disagree 77.5%, grade moderate, ‘don’t do it’) is detected. When a solid lesion is detected, CT should be performed (agree 75.5%, grade low, ‘do it’).

When ERCP was performed routinely for abnormal EUS results, it did not improve diagnostic yield and was associated with a 7% pancreatitis rate.4

No consensus was reached on the role of EUS-guided fine-needle aspiration (FNA) to evaluate solid or cystic lesions in asymptomatic HRIs (Appendix). The role of EUS-FNA in the clinical management of most pancreatic cysts is limited, given the low accuracy of cytology in cystic lesions,49 50 and the low volume of cyst fluid aspirated from small cysts. False-positive cytology from subcentimetre solid indeterminate lesions may also lead to unnecessary surgery.5 9

Multidetector pancreatic-protocol CT was recommended for evaluation of solid lesions identified by EUS or MRI. The level of evidence that supports this agreement is low.

Surveillance

For routine follow-up, the best imaging test is (multiple answers allowed): EUS (79.6%), MRI/MRCP (69.4%), CT (22.4%), abdominal ultrasound (4.1%), ERCP (2%). How should surveillance be performed after baseline screening? Published studies have generally used the same imaging tests for follow-up as for baseline imaging. There was no consensus reached on the ideal screening interval in the absence of pancreatic abnormalities at baseline, but 73.5% of participants suggested a 12-month interval. There is only indirect and limited evidence to support this recommendation. The vast majority of individuals in whom a clinically relevant lesion developed during follow-up had pancreatic abnormalities at baseline.4 9

Furthermore, HRIs who presented with an advanced pancreatic malignancy after prior normal or indeterminate imaging were diagnosed ≥12 months later.4 9

Patients with a non-suspicious cyst should have an imaging test after 6–12 months (agree 83.7%, grade moderate, ‘do it’). Patients with a newly detected indeterminate solid lesion should have follow-up screening at 3 months, if surgery is not imminent (agree 85.7%, grade low, ‘do it’). If an indeterminate main pancreatic duct stricture is detected, repeat imaging should be performed within 3 months (agree 95.9%, grade low, ‘do it’).

Cystic branch-duct lesions (presumed BD-IPMNs) without concerning features indicating malignancy31 should be re-evaluated at intervals depending on size, similar to accepted international consensus guidelines for sporadic BD-IPMNs.51 The majority of such BD-IPMNs remained stable during follow-up.2 5 7 9 34

Small (<1 cm diameter) lesions identified as solid by EUS are difficult to manage, particularly when not detected by MRI or CT. These lesions can be aspired but the yield for these lesions is low. Some indeterminate solid lesions identified only by EUS are cancers, but they can be benign lesions, such as non-metastatic pancreatic neuroendocrine tumours4 11 or low-grade PanIN with focal associated lobulocentric parenchymal atrophy.5 There was no consensus reached on the need for additional tests such as CT, ERCP, FNA, or timing of repeat imaging (although 73.5% suggested 5 months) to evaluate these lesions (Appendix).

Long-term follow-up of PC screening cohorts is lacking, (maximum follow-up period: 10 years9 34 mean follow-up time of 49 to 4.2 years59). Importantly, the group acknowledged that until there are additional studies we will not know if screening HRIs saves lives.

When should surgery be performed? What type of surgery should be performed?

Screening should only be offered to individuals who are candidates for surgery (agree 75.5%, grade moderate, ‘do it’). Pancreatic resections should be performed at high-volume specialty centres (agree 100%, grade moderate, ‘do it’). Determining when surgery is required for pancreatic lesions is difficult and is best individualised after multidisciplinary assessment, preferably within research studies.

There is little consensus about which lesions detected by screening require surgery. The few published reports are based on limited numbers of patients.52 53 Because of the risks of pancreaticectomy, prophylactic surgery is not recommended for asymptomatic HRIs without an identifiable lesion. When indicated, pancreatic surgery is best performed at a high-volume specialty centre. Multiple studies have shown volume directly correlates with outcomes.54 55

Unambiguous solid lesions (≥1 cm, or seen by multiple imaging modalities) are ominous and the threshold for removing them is much lower. There was no consensus as to whether any indeterminate solid lesions detected by EUS should be resected (Appendix).

The majority of cystic lesions detected by screening appear to be low-risk branch-duct IPMNs (table 1). The Sendai international consensus guidelines have been developed and updated38 to help stratify patients with an IPMN as low risk versus high risk for either developing or currently harbouring a malignancy.51 In subjects with suspected BD-IPMNs, resection is considered if the patient has symptoms attributable to the cyst(s), if the cysts are >3 cm in size, or if the cysts contain mural nodules. Logic would dictate that if these are the recommendations for subjects without a strong family history of PC, then these thresholds for resection should be either the same or lower in subjects with a strong family history. There was no consensus on the size criterion for resection of suspected BD-IPMNs or other cysts in HRIs but the majority agreed that surgery should be considered for suspected BD-IPMNs which were ≥2 cm (Appendix). Pathologically confirmed PanIN-3 lesions have been found in the pancreata of individuals who had resections of IPMNs smaller than 1 cm.5 11 High-grade dysplasia and main-duct involvement have been identified at resection of some individuals who had surgery for one or more small (<3 cm) BD-IPMNs.5 5 34 31 However, there is insufficient evidence to lower the threshold criteria for surgery for patients with lesions identified during pancreatic screening.
Management of patients with resected lesions was discussed, particularly how the preliminary and final pathology results, including margin status, should influence operative treatment.

Intraoperatively, further pancreatectomy (including total pancreatectomy) should generally be performed to achieve R0 resection of cancer (agree 75.5%, grade low, ‘do it’). Intraoperatively, further pancreatectomy (including total pancreatectomy) should not be performed on patients with only unifocal PanIN-2 in the resected specimen, (agree 77.6%, grade low, ‘don’t do it’). The presence of PanIN-3 at the margin should be dealt with in consideration of the overall medical condition and life expectancy of the patient. The presence of PanIN-2, low-grade IPMN or intermediate-grade IPMN (on either frozen or permanent sections) at the margin or in the resection specimen should not drive further resection.

In patients undergoing surgery for invasive PC, complete resection of the cancer is recommended. If only PanIN is at the margin, it is considered unlikely that resection of additional parenchyma would be beneficial, even if the PanIN is high grade. Importantly, it is difficult to grade PanIN in intraoperative frozen sections.

Postoperatively, further resection of the pancreas to remove PanIN-2 at the margin should be performed in high-risk patients without PC (disagree 79.5%, grade low, ‘don’t do it’). Postoperatively, further resection of the pancreas should be performed because unifocal PanIN-2 (disagree 81.6%, grade low, ‘don’t do it’) or multifocal PanIN-2 (disagree 77.5%, grade low, ‘don’t do it’) was found anywhere in the resected specimen.

Multiple scenarios for consideration of further pancreatectomy after R0 resection of cancer did not reach consensus agreement, including management of PanIN-3 at the margin (Appendix). PanIN-3 at the resection margin in non-familial patients treated for PC does not significantly affect the post-operative course. However, follow-up imaging was recommended less than 6 months after surgery if there was any PanIN-3 in the resected pancreas of individuals without PC.

What are the goals of screening? What outcome(s) would be considered a ‘success’?

Screening HRIs can be considered successful if it can be shown that the benefits outweigh the costs of screening. The goal of screening is the reduction of pancreatic cancer-related mortality. Evidence for success is best provided by large randomised controlled trials in which the outcomes of subjects who undergo surveillance are compared with appropriate controls, as has been demonstrated for colonoscopy screening. However, given the relatively low incidence of familial PC, such trials are difficult to undertake. Surrogate end points that define the success of pancreatic screening are therefore needed. Pathological staging is critical and a standard protocol for handling pancreatic resection specimens is recommended (Appendix). The following questions (What are the goals of screening? What outcome(s) would be considered a success?) were designed to define surrogate end points of screening, such as resection of potentially curable lesions (high-grade precursor neoplasms and early invasive carcinomas), as these lesions, if left untreated, can progress to incurable and lethal disease.

One target for early detection and treatment is resectable carcinoma (agree 83.7%, grade high, ‘do it’). Detection and treatment of early invasive cancer (T1N0M0) (agree 89.8%, grade high, ‘do it’) at baseline or follow-up (agree 77.5%, grade moderate, ‘do it’) should be considered a success. Detection and treatment of any invasive resectable PC at baseline screening should also be considered a success of the screening programme (agree 89.8%, grade high, ‘do it’).

Long-term survival can be achieved by resecting small non-metastatic PCs, particularly if margins are negative for invasive PC (R0 resection). However, most patients who undergo an R0 resection of their pancreatic cancer will die from their disease. Survival is most likely for patients with the smallest cancers (T1N0M0). A critical statistic which screening and surveillance programmes should track is the number of high-risk patients that need to be screened and treated, which considers the likelihood that treatment will prevent the target event of PC at the expense of adverse events. In one prospective screening study of high-risk Leiden p16 mutation carriers using MRI/MRCP, nine invasive pancreatic PCs were detected and treated in 79 patients followed up for a median of 4 years. The number of patients needed to be screened to detect and treat one PC was 11.9.

Well-differentiated neuroendocrine tumours (PanNETs) have been detected within familial PC screening programmes. PanNETs <0.5 cm (microadenomas) are essentially benign lesions. Resection of PanNETs between 0.5 and 1.0 cm is generally curative. There was no consensus as to whether detecting and treating PanNETs should be considered a success of screening (Appendix).

One potential target for early detection is PanIN (agree 81.7%, grade high, ‘do it’). Detecting and treating multifocal PanIN-3 should be considered a success (agree 83.7%, grade moderate, ‘do it’). Whether to detect and treat unifocal PanIN-3 did not reach consensus (agree 73.5%).

The strength of the evidence linking sporadic PanIN-3 lesions to invasive carcinoma is based on clinical associations and genetic analyses. Similarly, strong evidence supports the hypothesis that some of the invasive PCs that arise in patients with a family history of pancreatic cancer arise from PanIN lesions. Although PanINs are a well-accepted precursor of sporadic and familial PC, the frequency and rate at which PanINs progress to invasive carcinoma is not known. In a non-familial population, it is estimated that the average adult pancreas has five PanINs and that 0.86% of these progress to invasive cancer. It may take a decade or more for an early precursor cell (a low-grade PanIN) to progress to PC, and initial estimates suggest that the first invasive cancer cell may take several years to extend beyond the pancreas or metastasize. Importantly, the ‘window’ for clinical detection of an invasive PC is shorter since these lesions are only detected once they reach a certain size. These estimates may not apply to patients with a strong family history of PC, especially those with specific genetic mutations that may increase the rate at which precursor lesions progress.

Another target for early detection and treatment is IPMN (agree 87.7%, evidence high, ‘do it’). Detection and treatment of IPMN with high-grade dysplasia should be considered a success of a screening/surveillance programme (agree 95.9%, evidence high, ‘do it’).

IPMNs, particularly IPMNs with high-grade dysplasia, are associated with a significantly increased risk of invasive PC. The IPMN phenotype has been described in familial PC relatives and gene mutation carriers. The frequency and rate at which IPMNs in HRIs progress to invasive PC are not well known. In patients with apparently sporadic non-invasive IPMNs it may take 3–5 years for a clinically detectable non-invasive lesion to progress to an invasive PC.
Furthermore, in patients with small BD-IPMN(s) followed up over 5 years, only 2.4–6.9% of these lesions progressed to invasive PC. 75 76

Important areas where there was lack of consensus: areas for future research

Topics that did not reach consensus voting are listed in the Appendix. Additional evidence is required to more accurately answer important questions, such as who to screen, when to begin screening and the frequency of screening. Some of the important gaps in knowledge pertain to the optimal age at which to begin screening, the role of as yet unidentified PC susceptibility genes as a guide to optimising screening and how to incorporate environmental risk factors such as smoking, diabetes, obesity and other exposures into risk stratification.

The CAPS summit recommended prioritising research into areas where there was lack of consensus: diagnostic evaluation and management of cystic and solid lesions detected by screening and postoperative management. Importantly, the group recommends collaborative multicentre institutional review board-approved studies to collect data on demographics, family history, risk factors, and to bank tissue, juice, aspirated fluid and blood to improve biomarker prediction of the risk of progression to PC in HRIs. Ultimately, research into how to improve screening methods, the outcomes of screening and surveillance for PC and the cost-effectiveness of alternative approaches, is of the highest priority.

SUMMARY

Screening studies have identified pancreatic neoplasms in asymptomatic patients with strong family histories of PC. However, available evidence supporting screening and surveillance is limited to observational studies. The diagnostic yield from pancreatic screening depends on many factors, including the extent of an individual’s family history, the age at which screening begins and the screening modality used. Screening may also lead to the discovery of incidental or indeterminate lesions, resulting in diagnostic confusion and uncertain management. There is a clear need to improve approaches to screening of HRIs. The management of asymptomatic pancreatic lesions detected by imaging tests remains the most challenging aspect of screening and surveillance programmes. Individualised decision-making within multidisciplinary programmes and prospective research studies is essential. The findings of this workgroup should standardise current efforts and serve as a platform for the development of future multidisciplinary research protocols.

REFERENCES

1. Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA Cancer J Clin 2011; 61: 69–90.
2. Al-Sukhni W, Bongida A, Rothermund H, et al. Screening for Pancreatic Cancer in a High-Risk Cohort: An Eight-Year Experience. J Gastrointest Surg 2011; 15: 771–83.
3. Brentnall TA. Pancreatic cancer surveillance: learning as we go. Am J Gastroenterol 2011; 106: 955–6.
4. Canto MI, Goggins M, Hruban RH, et al. Screening for early pancreatic neoplasia in high-risk individuals: a prospective controlled study. Clin Gastroenterol Hepatol 2006; 4: 768–76; quiz 76.
5. Canto MI, Goggins M, Yeo C, et al. Screening for pancreatic neoplasia in high-risk individuals. Curr Gastroenterol Rep 2004; 2: 606–21.
6. Langer P, Karrn PH, Fendrich V, et al. Five prospective screening studies of high-risk individuals from families with familial pancreatic cancer. Gut 2009; 58: 1410–18.
Guidelines

7. Ludvig E, Olsson SH, Bayouga S, et al. Feasibility and yield of screening in relatives from familial pancreatic cancer families. Am J Gastroenterol 2011;106:546–54.

8. Polev JW, Kluit J, Gouma DJ, et al. Yield of first-time endoscopic ultrasonography in screening individuals at a high risk of developing pancreatic cancer. Am J Gastroenterol 2010;105:285–7.

9. Vassen HF, Wasser M, van Mil A, et al. Magnetic Resonance Imaging Surveillance Detects Early-Stage Pancreatic Cancer in Carriers of a p16-Leiden Mutation. Gastroenterology 2011;140:850–6.

10. Verma EC, Hwang C, Stevens PD, et al. Pancreatic Cancer Screening in a Prospective Cohort of High-Risk Patients: A Comprehensive Strategy of Imaging and Genetics. Clin Cancer Res 2010;16:5025–7.

11. Canto ML, Huaban RH, Fishman EK, et al. Frequent Detection of Pancreatic Lesions in Asymptomatic High-Risk Individuals. Gastroenterology 2012.

12. Atkins D, Best D, Briss PA, et al. Grading quality of evidence and strength of recommendations. BMJ 2004;328:1490–4.

13. Guyatt GH, Oxman AD, Vist GE, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008;336:924–6.

14. Jaeschke R, Guyatt GH, Dellinger P, et al. Use of GRADE grid to reach decisions on clinical practice guidelines when consensus is elusive. BMJ 2006;333:a744.

15. Wang W, Chen S, Brune KA, et al. PancreoPR: risk assessment for individuals with a family history of pancreatic cancer. J Clin Oncol 2007;25:1417–22.

16. Klein AP, Brune KA, Petersen GM, et al. Prospective risk of pancreatic cancer in familial pancreatic cancer kindreds. Cancer Res 2004;64:2634–6.

17. Grover S, Syngal S. Hereditary Pancreatic Cancer. Gastroenterology 2010;139:1076–80.

18. Brune KA, Lau B, Palinsmo E, et al. Importance of age of onset in pancreatic cancer kindreds. J Natl Cancer Inst 2010;102:11–26.

19. Hruban RH, Canto ML, Goggins M, et al. Update on familial pancreatic cancer. Adv Surg 2010;43:289–311.

20. Goggins M, Schutte M, Lu J, et al. Germline BRCA2 gene mutations in patients with apparently sporadic pancreatic cancers. Cancer Res 1996;56:5380–4.

21. Giardiello FM, van Lier MG, Wagner A, et al. Update on familial pancreatic cancer. Cancer Res 2010;70:3584–6; author reply 65.

22. Couch FJ, Johnson MR, Rabe KG, et al. BRCA2 germline mutations in familial pancreatic cancer. J Clin Oncol 2009;27:1358–65.

23. Hruban RH, tersmette AC, Hruban RH, Fishman EK, et al. Germline BRCA2 gene mutations in patients with pancreatic adenocarcinoma: implications of positive margin on survival. J Clin Oncol 2008;26:4700–7.

24. Raza AL, Sarr MG, et al. Long-term survival after pancreatoduodenectomy for pancreatic adenocarcinoma: is cure possible? Ann Surg 2008;247:456–62.

25. Jass JR, Marra M, et al. Histologic grading of adenocarcinoma of the pancreas: a new system. Cancer 1989;63:633–9.

26. Lerner S, D’Angelica M, et al. Organoid characterization of patient-grafted organoid xenografts. Clin Cancer Res 2014;20:5291–7.

27. Malinakova J, Zabin LS, et al. New nomenclature and classification of ductal adenocarcinoma of the pancreas. Arch Pathol Lab Med 2011;135:1637–44.

28. Diamandouros PG,golden M, et al. Pancreatic neoplasia: a new paradigm of classification. Cancer 2012;118:4251–61.

29. Ji Y, Pienta KJ, et al. Pancreatic cancer: a new model for disease progression. J Clin Invest 2012;122:262–70.

30. Los MA, Raza A, et al. Pancreatic cancer: a new paradigm for disease progression. J Clin Invest 2012;122:262–70.

31. Huang J, Yang J, et al. Pancreatic cancer: a new paradigm for disease progression. J Clin Invest 2012;122:262–70.

32. Hruban RH, et al. Pancreatic cancer: a new paradigm for disease progression. J Clin Invest 2012;122:262–70.

33. Malinakova J, Zabin LS, et al. New nomenclature and classification of ductal adenocarcinoma of the pancreas. Arch Pathol Lab Med 2011;135:1637–44.

34. Ji Y, Pienta KJ, et al. Pancreatic cancer: a new model for disease progression. J Clin Invest 2012;122:262–70.

35. Los MA, Raza A, et al. Pancreatic cancer: a new paradigm for disease progression. J Clin Invest 2012;122:262–70.
69. Terhune PG, Phifer DM, Tosteson TD, et al. K-ras mutation in focal proliferative lesions of human pancreas. *Cancer Epidemiol Biomarkers Prev* 1998; 7:515–21.

70. Yachida S, Jones S, Bozic I, et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. *Nature* 2010; 467:1114–17.

71. Wu J, Matthaei H, Maitra A, et al. Recurrent GNAS mutations define an unexpected pathway for pancreatic cyst development. *Sci Transl Med* 2011; 3:92ra66.

72. Matthaei H, Schulick RD, Hruban RH, et al. Cystic precursors to invasive pancreatic cancer. *Nat Rev Gastroenterol Hepatol* 2011; 8:141–50.

73. Sato N, Rasty C, Jansen M, et al. STK11/LKB1 Peutz-Jeghers gene inactivation in intraductal papillary-mucinous neoplasms of the pancreas. *Am J Pathol* 2001; 159:2017–22.

74. Sohn TA, Yeo CJ, Cameron JL, et al. Intraductal papillary mucinous neoplasms of the pancreas: an updated experience. *Ann Surg* 2004; 239:788–97; discussion 97–9.

75. Sawai Y, Yamada K, Bhatia V, et al. Development of pancreatic cancers during long-term follow-up of side-branch intraductal papillary mucinous neoplasms. *Endoscopy* 2010; 42:1077–84.

76. Uehara H, Nakazumi A, Ishikawa O, et al. Development of ductal carcinoma of the pancreas during follow-up of branch duct intraductal papillary mucinous neoplasm of the pancreas. *Gut* 2008; 57:1561–5.
Correction

Canto MI, Harinck F, Hruban RH, et al. International Cancer of the Pancreas Screening (CAPS) Consortium summit on the management of patients with increased risk for familial pancreatic cancer. Gut 2013;62:339–347.

The Collaborator Pascal Hamell’s name should read Pascal Hammell.

Gut 2014;63:178. doi:10.1136/gutjnl-2012-303108corr1
Correction

Canto MI, Harinck F, Hruban RH, et al. International Cancer of the Pancreas Screening (CAPS) Consortium summit on the management of patients with increased risk for familial pancreatic cancer. Gut 2013;62:339–47.

The Collaborator Pascal Hammell’s name should read Pascal Hammel.