Pylorus-preserving pancreateoduodenectomy for pancreatic head cancer after surgery for esophageal cancer with gastric tube reconstruction in a long-term survivor: A case report

Takashi Orii*, Masaki Yoshimura, Hiroe Kitahara, Yukihiko Karasawa

Showa Inan General Hospital, Akaho 3230, Komagane, Nagano, 399-4117, Japan

A R T I C L E I N F O

Article history:
Received 10 January 2019
Accepted 21 January 2019
Available online 30 January 2019

Keywords:
Pylorus-preserving pancreateoduodenectomy
Gastroduodenal artery
Right gastroepiploic artery
Gastric tube
Esophagectomy

A B S T R A C T

INTRODUCTION: To maintain the blood circulation of the gastric tube in pylorus-preserving pancreateoduodenectomy (PPPD) for periampullary cancer after esophagectomy for esophageal cancer, it is necessary to preserve the gastroduodenal artery and its branch, the right gastroepiploic artery, which are usually resected for more convenient, complete, and effective lymph node dissection. Here we report the case of a patient with a postoperative survival period of more than 5 years.

PRESENTATION OF CASE: A 79-year-old man, who underwent subtotal esophagectomy and gastric tube reconstruction 11 years ago, was diagnosed with pancreatic head cancer during routine examination 5 years after the esophageal surgery. After placement of a coronary artery stent for an arterial branch stenosis incidentally found during preoperative screening electrocardiogram, he underwent pancreatic surgery. As the tumor did not extend to the anterior surface of the pancreas and as there were no swollen lymph nodes in the area, the gastroduodenal artery, the gastroepiploic artery and vein could be preserved. Elective PPPD was conducted without incident, and good preoperative gastric tube circulation was maintained postoperatively. Reconstruction was performed according to the modified Child procedure with duct-to-mucosa stentless pancreaticojejunostomy. The postoperative course was uneventful and though it took the patient a long time to overcome the physical decline, he remains alive with no recurrent disease over 5 years post-operation.

CONCLUSION: Although PPPD may be performed after esophagectomy with gastric tube reconstruction, it is still unclear how the risk of recurrence is affected. Therefore, the indications of this procedure should always be carefully considered.

© 2019 The Author(s). Published by Elsevier Ltd on behalf of IJS Publishing Group Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Recently, there has been an increase in the number of patients with double cancers occurring simultaneously or metachronously and in the treatment options. Pancreateoduodenectomy (PD) is the standard surgery for resectable periampullary cancer and involves resection of the gastroduodenal artery (GDA) and its branches such as the right gastroepiploic artery (RGEA) to allow for complete dissection of lymph vessels and nodes. However, when the cancer occurs in patients who have had esophageal cancer surgery, we have to decide whether maintaining the gastric tube circulation or aiming for a definitive surgical cure for the cancer.

Here we report the case of a patient who underwent PD without GDA resection for pancreatic head cancer after surgery for lower esophageal cancer with a postoperative survival time of more than 5 years.

The work has been reported in line with the SCARE criteria [1].

2. Case presentation

A 79-year-old man, who underwent subtotal esophagectomy and reconstruction using a gastric tube 11 years ago, visited a primary care doctor with abdominal pain and no previous signs of disease recurrence over a period of 5 years. Ultrasoundography revealed dilatation of the biliary tree and he was referred to our hospital.

Laboratory test showed no hepatorenal or hematological abnormalities. It was observed that the titer of carbohydrate antigen 19-9 increased slightly to 54.1 U/ml, though carcinoembryonic antigen, DUPAN-2, and Span-1 were within normal range.

Contrast-enhanced computerized tomography (CT) showed a low-density area of 20 mm in the pancreatic head at the convergence of the dilated common bile duct and the main pancreatic
duct. The tumor did not reach the surface of the pancreas and did not invade the GDA (Fig. 1). The patency of the RGEA, right gastroepiploic vein (RGEV), right gastric artery (RGA), and right gastric vein (RGV) were confirmed (Figs. 2 and 3). There was no distant metastasis.

Magnetic resonance imaging showed a tumor with irregularly low-intensity on T2 weighted image, mild low-intensity on T1 weighted image, and gradual enhancement with contrast medium from the margin.

A combination of positron emission tomography with fluoro-2-deoxyglucose and CT confirmed the tumor as a thin uptake area with a maximum standard uptake value of 2.6.

Based on the above findings, the patient was diagnosed with resectable pancreatic head cancer. However, as electrocardiogram revealed a complete left bundle branch block and coronary angiogram showed a 99% stenosis of a coronary artery branch, a coronary artery stent was placed. Obstructive jaundice occurred a few days following the stenting and an endoscopic biliary stent

Fig. 1. Scans of early-phase preoperative computed tomography with contrast medium: A: the gastroduodenal artery passing over the surface of the pancreatic head without tumor invasion; the asterisk indicates the pancreatic head cancer; B: the common bile duct and main pancreatic duct are considerably dilated.
2.1. Surgical procedure

Following laparotomy by upper midline incision, peritoneal exploration was conducted but revealed no peritoneal metastases. Although palpable as a hard mass of about 3 cm in diameter, the tumor was not observable on the anterior surface of the pancreatic head, so the RGEA and RGEV could be preserved.

Dissection of the paraaortic lymph nodes (#16b1-inter, -pre, and -lat) was performed using Kocher's maneuver, and the nodes were perioperatively confirmed by pathology to be negative for cancer cells. Henle's trunk was exposed and the inferior pancreaticoduodenal vein and accessory right colic vein, which are tributaries of the trunk, were resected. However, the RGEV, another tributary of Henle's trunk, was preserved.

The GDA and proper hepatic artery were confirmed after resection of the supraduodenal arteries following the dissection of the lymph nodes around the common hepatic artery (#8a and 8p). After the gallbladder was detached from its hepatic bed, the common hepatic duct was skeletonized and disconnected. The lymph nodes of the hepatoduodenal ligament (#12a, 12p, and 12b) were dissected. After adequately separating the GDA from the posterior surface of the duodenum, the duodenal bulb was cut 2 cm distal to the pyloric ring using GIA 60.

The jejunum was cut about 15 cm distal to the Treitz ligament and the mesentery was resected with the first jejunal artery (J1A).
and vein. After skeletonizing the common root of the J1A and the inferior pancreaticoduodenal artery from the superior mesenteric artery (SMA), the root was resected. The proximal cut end of the jejunum was then drawn out to the right and passed posterior to the SMA and the superior mesenteric vein (SMV), and some small SMV branches from the pancreatic head were resected.

The GDA-RGEA was completely separated from the pancreatic head by resecting 3 small branches and the posterior superior pancreaticoduodenal artery. After confirming the inflow site of the RGV, the pancreatic parenchyma was cut with a scalpel along the left margin of the portal vein (PV)-SMV following the tunneling method. Pylorus-preserving pancreatoduodenectomy (PPPD) was then completed after dissecting the lymph nodes along the SMA (#14p, 14d), and the plexus of the pancreatic head and the right half of the SMA (Fig. 4).

Although the reconstruction was performed based on the modified Child procedure, Roux-en-Y procedure was adopted because, in aiming to preserve the RGA, RGV, RGEA and RGEV, the degree of freedom was limited. Stents were not used in duct-to-mucosa pancreaticojunostomy and hepaticojejunosotomy. Prophylactic closed drains with continuous aspiration were placed around hepaticojejunosotomy and pancreaticojejunosotomy.

Fig. 3. Scans of delayed-phase preoperative computed tomography with contrast medium; A and B: the right gastroepiploic and right gastric veins are patent and act as drainage veins for the gastric tube.
The histopathological examination of the resected specimen showed that, although the moderately differentiated invasive ductal carcinoma reached the bile duct and duodenum and metastasized to 1 of the 18 resected regional lymph nodes, the tumor did not extend to the surface of the pancreas. The tumor was stage II according to the TNM classification of the Union for International Cancer Control (7th edition).

Although postoperative physical rehabilitation took a relatively long time because the patient had a poor preoperative physical condition (American Society of Anesthesiologists performance status 3), he did not experience complications like pancreatic fistula or surgical site infection. He was discharged on postoperative day 36 and remains alive with no disease recurrence 5 years and 3 months after the surgery.

3. Discussion

The prognosis of periampullary cancers such as pancreatic head cancer, bile duct cancer, and cancer of papilla Vater, is poor and complete resection is the only definitive treatment. Since radical resection involves complete dissection of lymph nodes, neural plexuses and surrounding connective tissue, it is important to also resect the nutritional artery and drainage vein.

In contrast, it is essential, in the surgery for esophageal cancer, to preserve the RGEA to maintain the blood circulation and status of the gastric tube as a reconstructed organ.

In recent years, along with the increase in lifespan, the number of the patients with double cancers occurring non-concomitantly has increased. While deliberation on whether to preserve or resect a vessel in a patient is ongoing, the chance to treat the cancers may be lost.

Periampullary cancer after surgery for esophageal cancer is just a typical disease. Since GDA gives off RGEA, which is preserved to maintain the circulation of the gastric tube, and some small arterial branches directly to the pancreatic parenchyma, it is necessary to resect the GDA in radical operations on the periampullary cancer.

Therefore, preserving the GDA may lead to disease recurrence after surgery for periampullary cancer.

Nagai et al. [2] performed a prospective study of 10 cases on GDA preservation in PPPD for periampullary cancer of the pancreas with confirmed absence of tissue invasion and lymph node metastasis in the vicinity of the GDA in a retrospective study of 8 patients who underwent PD. The study did not show direct invasion, lymphatic spread, or lymph node metastasis around the GDA, so PPPD with GDA preservation for periampullary cancer with confined tumor was strongly advocated. In addition, they posited that the operation could prevent massive hemorrhage of the GDA stump if a pancreatic fistula occurred. However, their case report did not include any pancreatic cancer patient.

Following a PubMed search using the keyword “PD after esophageal cancer”, 11 case reports were found, 7 of which were by Japanese authors (Table 1). In 5 of the cases [3–7], the primary disease was pancreatic head cancer and bile duct cancer in 2 cases each and metastatic renal cell carcinoma in 1 case. The prognosis was clearly described for 3 cases with 1 patient each dying in less than a year, surviving over a year and surviving over 14 months.

With the relatively higher risk of postoperative local recurrence of pancreatic head cancer compared to other periampullary cancers, more careful consideration is required for GDA preservation. Inoue et al. [8] reported that, for the pancreatic head cancer patient with suspected GDA invasion after surgery for esophageal cancer, the GDA was resected and microscopic vascular reconstruction was performed with anastomosis of the RGEA to the GDA stump and the RGEV to the left renal vein to maintain the blood circulation of the gastric tube.

Okochi et al. [9] also reported that they successfully anastomosed the cut end of the RGEA to the right branch of the middle colic artery (MCA) microscopically after RGEA resection because the pancreatic head cancer was adjacent to the vessel.

For colonic reconstruction after esophagectomy, different vessels are preserved. In the report by Nagano et al. [10], the right colic artery, MCA, and middle colic vein (MCV) were preserved.
Table 1: Published case reports of pancreatoduodenectomy after esophagectomy for esophageal cancer.

Authors	Published year	Age	Gender	Disease	Timing of two operations	Years after esophageal op.	Preserved vessels	Prognosis	Appendix	Refs. No.
Our case	2014	70	M	PHC	Metachronous	11	RGEA, RGEV, RGA, RGV	5y2m, recurrent free, alive	Reconstruction of RGEA to GDA, RGEV to L. renal vein, RGEA, resected and reconstructed to R. branch of MCA.	[9]
Okamoto et al.	2014	70	M	BDC	Metachronous	10	RGEA, RGEV, RGA, RGV	Not described		[3]
Nandy et al.	2014	70	M	PHC	Metachronous	3	RGEA, RGEV	Not described		[4]
Addeo et al.	2011	70	M	mRCC	Metachronous	6	RGEA	1y2m, liver metastasis, alive		[5]
Fragulis et al.	2011	50	M	PHC	Metachronous	13	RGEA, RGEV, RGV	Sy, recurrent free, alive		[6]
Ikeda et al.	2009	61,63	M	BDC	PHC	10	RGEA	6y, recurrent free, alive		[7]
Inoue et al.	2014	72	M	PHC	Metachronous	5	RGEA	8y, alive		[8]
Okochi et al.	2015	70	M	PHC	Metachronous	17	RCA, MCA, MCV	Not described		[9]
Nagano et al.	2005	55	M	PVC	Metachronous	0.5	LGA, LGV, MCA, MCV	Not described		[10]
Gyorki et al.	2011	58	M	pNET	Metachronous	2	RGEA, RGEV, RGA	Not described		[11]
Uehara et al.	2004	57	M	IPMN	Metachronous	0	RGEA, RGEV, RGA	2y6m, alive		[12]
Behaye et al.	2009	54	F	CP	Synchronous	0	RGEA, RGEV	Sy, recurrent free, alive		[13]
Kurosaki et al.	2000	72	M	IPMN	Synchronous	0	RGEA, RGEV	Not described		[14]

PHC: pancreas head cancer; BDC: bile duct cancer; mRCC: metastatic renal cell carcinoma; PVC: papilla vater carcinoma; pNET: pancreatic neuroendocrine tumor; IPMN: intraductal papillomucinous neoplasm; CP: chronic pancreatitis; RGEA: right gastroepiploic artery; RGEV: right gastroepiploic vein; RGA: right gastric artery; RGV: right gastric vein; RCA: right colic artery; MCA: middle colic artery; MCV: middle colic vein; LGA: left gastric artery; LGV: left gastric vein; DG: distal gastrectomy; TG: total gastrectomy.

4. Conclusion

PPD after esophagectomy with gastric tube reconstruction is an effective surgical procedure whose indication may further increase wwhen combined with microsurgery and preservation. However, as the survival rates in cases with microsurgery and preservation have not yet been confirmed to be the same, it is difficult to determine the validity of the procedure.
of the written consent is available for review by the Editor-in-Chief of this journal on request.

Author contribution

Substantial contribution to the conception or design of the work; or the acquisition, analysis, or interpretation of the data for the work: TO.

Drafting the manuscript or critically revising it for important intellectual consent: TO.

Final approval of the version to be published: TO, MY, HK, YK.

Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved: MY, HK, YK.

All authors read and approved the final manuscript.

Registration of research studies

This study is report of a case, so has not been registered.

Guarantor

Takashi Orii, corresponding author of this article.

Provenance and peer review

Not commissioned, externally peer-reviewed.

References

[1] R.A. Agha, A.J. Fowler, A. Saetta, I. Barai, S. Rajmohan, D.P. Orgill, for the SCARE Group. The SCARE statement: consensus-based surgical case report guidelines, Int. J. Surg. 34 (2016) 180–186.

[2] H. Nagai, J. Ohki, Y. Kondo, T. Yasuda, K. Kasahara, K. Kanazawa, Pancreatoduodenectomy with preservation of the pylorus and gastroduodenal artery, Ann. Surg. 223 (1996) 194–198.

[3] S. Okimoto, T. Kobayashi, S. Kuroda, H. Tahara, M. Ohira, K. Ide, et al., Pancreatoduodenectomy with preservation of gastric tube blood flow after esophagectomy: report of a case, Int. J. Surg. Case Rep. 5 (2015) 746–749.

[4] N. Nandy, C.A. Dasanu, Second primary pancreatic adenocarcinoma three years after successfully treated index esophageal cancer, JOP 15 (2014) 46–48.

[5] P. Addeo, E. Marzano, E. Rosso, P. Bachelier, D. Jaeck, P. Pessaux, Gastroduodenal artery-preserving pancreatoduodenectomy after subtotal esophagectomy and gastric pull-up, Langenbecks Arch. Surg. 396 (2011) 693–697.

[6] G.P. Fragulidis, P.G. Athanasopoulos, A. Meleneni, K.D. Chondrogiannis, K. Nastos, V. Koutroulidis, et al., Pylorus-preserving pancreatoduodenectomy after transhiatal esophagectomy sparing the right gastroepiploic vessels and gastric tube, J. Gastrointest. Surg. 15 (2011) 367–370.

[7] M. Beda, K. Hasagawa, N. Akamatsu, M. Minagawa, H. Imamura, Y. Sugawara, et al., Pancreatoduodenectomy after esophageal and gastric surgery preserving right gastroepiploic vessels, Arch. Surg. 141 (2006) 205–208.

[8] A. Inoue, H. Akira, H. Eguchi, N. Hamu, H. Wada, K. Kawamoto, et al., Gastric conduit-preserving, radical pancreatoduodenectomy with microvascular reconstruction for pancreatic head cancer after esophagectomy: report of a case, Surg. Today 44 (2014) 786–791.

[9] M. Okochi, K. Ueda, T. Sakaba, A. Kenjo, M. Gotoh, Right gastro-omental artery reconstruction after pancreatoduodenectomy for subtotal esophagectomy and gastric pull-up, Int. J. Surg. Case Rep. 15 (2015) 42–45.

[10] Y. Nagano, H. Sekido, K. Matsuoi, K. Ohtsuki, K. Gorai, C. Kunisaki, et al., Successful pancreatoduodenectomy for carcinoma of the ampulla of vater after esophagectomy with remnant gastronomy, Hepatogastroenterology 52 (2005) 933–935.

[11] D.E. Gyorki, N.E. Clarke, M.W. Hii, S.W. Banting, R.J. Cade, Management of synchronous tumors of the esophagus and pancreatic head: a novel approach, Ann. R. Coll. Surg. Engl. 93 (2011) e111–113.

[12] H. Uehara, S. Kondo, S. Hirano, Y. Ambo, H. Katoh, Gastric tube-preserving pancreatoduodenectomy after esophagectomy and reconstruction using the gastric tube: report of a case, Surg. Today 34 (2004) 623–625.

[13] O. Belyaev, C.A. Muller, W. Uhl, Satisfactory long-term result after simultaneous resection of the esophagus, stomach and pancreas, Langenbecks Arch. Surg. 394 (2009) 383–385.

[14] I. Kurosaki, K. Hatakeyama, K. Nihei, T. Suzuki, K. Tsukada, Thoracic esophagectomy combined with pylorus-preserving pancreatoduodenectomy in a one-stage procedure: report of a case, Surg. Today 30 (2000) 168–172.

Open Access

This article is published Open Access at sciedirect.com. It is distributed under the IJSCR Supplemental terms and conditions, which permits unrestricted non commercial use, distribution, and reproduction in any medium, provided the original authors and source are credited.