Mulching as soil moisture conservation to improve physiological traits in maize (*Zea mays* L.)

Zin Mar Aung*, Thu Zar

Department of Agronomy, Yezin Agricultural University, Myanmar

Abstract

Field experiments were conducted at Yezin farm and Sepin research farm, Yamethin, Myanmar to study the effect of different mulching materials on percent reduction of soil moisture content and physiological traits in Yezin and Yamethin. Randomized complete block design (RCB) was used with three replications from October, 2019 to March, 2020. Rice straw mulching (T2), rice husk mulching (T3), maize stover mulching (T4), mung bean stover mulching (T5), soybean stover mulching (T6) and white plastic polyethylene mulching (T7) and no mulching (T1) were tested with NK-621, variety. At Yezin, the minimum percent reduction of soil moisture content (45.89) was obtained from T2 and (76.79, 58.07) was resulted in T7 whereas the maximum percent reduction of soil moisture contents (76.93, 89.00, 83.93) were recorded from T1 at 14 DAI (Days after irrigation). At tasseling stage, the maximum photosynthesis rates (20.45 µmol m$^{-2}$s$^{-1}$) and (21.59 µmol m$^{-2}$s$^{-1}$) were observed from T2 at Yezin and Yamethin. At two locations, the maximum stomatal conductance (158.36 mmol m$^{-2}$s$^{-1}$) and (204.44 mmol m$^{-2}$s$^{-1}$) was observed from T2 at maximum growth stage. At maximum growth stage, the maximum SPAD values (33.90) and (53.98) were obtained from T6 at Yezin and T2 at Yamethin. The maximum five ears weight (1830.6 g) was recorded from rice straw mulching whereas the minimum five ears weight (1326.0 g) was resulted from no mulching at Yamethin. According to the results, rice straw mulching resulted in the highest physiological traits of maize, and white plastic polyethylene mulching recorded the minimum percent reduction of soil moisture content at Yezin and maize stover mulching at Yamethin.

Introduction

As the world’s population increases, more people begin to include higher amounts of meat, poultry, and dairy into their diets. Therefore, maize has become an important crop for the growing population around the world. This needs different strategies, like an intensification of modern agricultural crop production and increasing farm area. However, this could not be dependent on only rain-fed agriculture as the climate change scenario and limited area to produce a crop in only the rainy season. The difficulty of crop production in rain-fed regions is made worse by the seasonal

* Corresponding author: E-mail: zinmaraung.agro@gmail.com
and unique variation of rainfall, which is further accelerated by climate change (Pereira, 2017). However, this could not be dependent on only rain-fed agriculture as the climate change scenario and limited area to produce a crop in only the rainy season. Next to rice, maize stands as the second most important cereal crop in Myanmar. The majority of the country’s maize is grown as a seasonal crop in the monsoon and winter in the Shan, Chin, Sagaing, Magway, and Mandalay regions (Ministry of Agriculture, Livestock and Irrigation, 2014).

The stability of food production has been impacted since the late 1980s by increased frequency of droughts during the maize-growing season as a result of high temperatures, high evaporation rates, and uneven rainfall distribution (Hu et al., 2014). By reducing soil temperature, retaining soil moisture, preventing soil erosion, improving soil structure, and increasing the soil’s organic matter content, mulching is an efficient way to alter the crop-growing environment to enhance yield and improve product quality. Organic mulches enhance the soil, lower the soil’s temperature, prevent weed development, save soil moisture, and enhance the aesthetic appeal of landscapes. The crop, soil type, weather conditions, management strategy, and kind of mulching materials employed all have an impact on how the crop and soil react to the addition of organic mulching materials (Wang et al., 2019). However, research concerning different mulching materials is relatively scarce on physiological traits and percent reduction of soil moisture content of maize in Myanmar. Hence, the experiments were carried out to study the effect of different mulching materials on percent reduction of soil moisture content in maize, to evaluate the effect of different mulching materials on physiological traits of maize and to find out the most suitable mulching materials for maize cultivation at Yezin and Yamethin areas.

Materials and methods

The experiments were conducted at two locations, namely, Yezin farm, Nay Pyi Taw and Sepin Research Farm, Yamethin Township during dry season, October, 2019 to March, 2020. The soil types of Yezin and Yamethin experimental site are loamy sand with a pH value of 8.05 and sandy loamy with a pH value of 7.16. The experiments were laid out in randomized complete block design (RCB) with three replications. The experimental area was (46.5 m × 19 m) and each plot size was 5.5 m × 5 m. NK-621 was used as the tested variety. Row and plant spacing were 75 cm and 25 cm. Treatments were assigned to the experimental plots at two different locations such as T1 = no mulching, T2 = Rice straw mulching, T3 = Rice husk mulching, T4 = Maize stover mulching, T5 = Mung bean stover mulching, T6 = Soybean stover mulching, T7 = White plastic polyethylene mulching.

Land preparation and crop management

Land preparation was done with ploughing, harrowing and leveling in both locations. The fertilizers were applied according to Department of Agricultural Research (DAR), Myanmar recommended guidelines at basal, 20 DAS (days after sowing) and 40 DAS. The seeds were sown on 11th October, 2019 in Yezin and 2nd November, 2019 in Sepin Research Farms, Yamethin. AT 21 DAS, different mulching materials were covered after earthing up the experimental sites. The dry organic mulches of 10 ton ha⁻¹ (10,000 kg ha⁻¹) were covered on the surface of soil as the mulching materials. When the plants from no mulching started to wilt and the leaf started to wilt, irrigation was applied.

Data collection

The percent reduction of soil moisture content was calculated before water irrigation, 7 DAI (Days after irrigation), 14 DAI at both areas. Photosynthesis rate (Pn)(µmol/m2/s), stomatal conductance (gₛ) (mmol/m2/s) and intercellular concentration (Int CO₂) (µmol/mol) were measured on the uppermost fully expanded leaf of two selected sample plants for each plot at maximum growth stage (MGS), tasseling stage (MGS) and grain filling stage (GFS) by using CI-340 Handheld Photosynthesis system. The flow rate was 0.75 and measurements were conducted at 9:00 am to 11:00 am on clear sunny days and SPAD value was measured by using SPAD 502 Plus.
Chlorophyll Meter. Five ears weight was noted as gram at harvest.

Statistical analysis
The collected data was analyzed for ANOVA by using Statistix (version 8th) software program, treatment means were compared by using least significant difference (LSD) test at 5% level of significance (Gomez & Gomez, 1984) and visualization of data was showed by R program (version 4.1.3).

Results and discussion
Percent reduction of soil moisture content
At first time of irrigation after mulch application, percent reduction of soil moisture content effects among different mulching materials on at Yezin are shown in Table 1. There was significantly different in percent reduction of soil moisture content among the different mulching materials at 7 DAI and 14 DAI. The minimum percent reduction of soil moisture content (17.72) and (45.89) were obtained from T2 whereas the maximum percent reduction of soil moisture content (38.27) and (76.93) were recorded from T1 at 7 DAI and 14 DAI at first time of irrigation. At second time of irrigation, there were significantly different in percent reduction of soil moisture contents among the different mulching materials at 7 DAI and 14 DAI. The highest percent reduction of soil moisture content (84.80) and (89.00) were observed from T1 while the minimum percent reduction of soil moisture content (28.92) and (76.79) were observed from T7. At third time of irrigation, the effects of different mulching materials on percent reduction of soil moisture content were significantly different at 7 DAI and 14 DAI. The highest percent reduction of soil moisture content (70.24) and (83.93) were found in T1 meanwhile the lowest percent reduction of soil moisture content (45.41) and (58.07) were obtained from T7. Based on the results, white plastic polyethylene mulching and rice straw mulching conserved maximum soil moisture throughout the entire period of growth when compared to other mulching materials and no mulching. According to Suyana, et al. (2019), applying 4.5 to 9.0 tons of maize straw mulch per hectare can boost plant growth while regulating soil temperature and maintaining soil moisture.

Photosynthesis rate (Pn), stomatal conductance (gs), intercellular concentration (Int CO₂) and SPAD value of maize
Physiological growth analysis is a way to evaluate what events occurs during plant growth and eventually it is important in the prediction of yield of crop (Hokmalipour & Darbandi, 2011). At Yezin, photosynthesis rate (Pn) was not significantly different among
different mulching materials at MGS (Table 3). Among all mulching treatments, the maximum Pn (5.27 µmol m⁻² s⁻¹) was recorded from T2 followed by T3 > T5 > T4 > T7 > T6 and the minimum Pn (19.52 µmol m⁻² s⁻¹) was resulted in T1. At TS, Pn was significantly different among different mulching materials. The maximum Pn (20.45 µmol m⁻² s⁻¹) was observed from T2 which was followed by T6 > T3 > T5 > T4 > T7 whereas the minimum Pn (12.05 µmol m⁻² s⁻¹) was observed T1. Photosynthesis rate (Pn) was significantly different among different mulching materials at GFS. The maximum Pn (22.44 µmol m⁻² s⁻¹) was achieved from T3 followed by T4 > T2 > T6 > T7 > T5 meanwhile the minimum Pn (12.09 µmol m⁻² s⁻¹) was recorded from T1. In Pn, all mulching materials were higher than no mulching at every stage. At Yamethin, Pn was not significantly different among different mulching materials at MGS (Table 2). The minimum Pn (24.97 µmol m⁻² s⁻¹) was observed from T1 and the maximum Pn (31.80 µmol m⁻² s⁻¹) was resulted in T2 which was followed by T4 > T6 > T5 > T7 > T3. At TS, Pn was significantly different among different mulching materials. The maximum Pn (23.39 µmol m⁻² s⁻¹) was found in T7 followed by T2 > T3 > T6 > whereas the minimum Pn (15.80 µmol m⁻² s⁻¹) was recorded in T1. At GFS, Pn was significantly different among different mulching materials. The maximum Pn (24.91 µmol m⁻² s⁻¹) was achieved from T7 while the minimum Pn (16.85 µmol m⁻² s⁻¹) was observed T1. It was found that the average photosynthesis rate of maize with all mulching material was significantly higher than without no mulching. The raw materials and energy needed for a plant's development and other related biochemical activities are provided by photosynthesis. Under conditions of water deficiency, reduced photosynthesis is often attributed to stomatal restriction. (Shahrokhnia & Sepaskhah, 2017). Bruce, et al. (2009) reported that increase in yield was accompanied by more efficient photosynthesis, as well as improved photosynthetic rate after stress events helps come out from severe stress.

Preservation of water by closing of stomata is an important drought resistance mechanism as continued photosynthesis involves continuous water loss (Teare, et al., 1973). The timing and completeness of stomatal closure during water stress and reopening after water stress relief, is an important character. At Yezin, stomatal conductance (gₛ) was significantly different among different mulching materials at MGS, TS and GFS (Table 4). At MGS, the maximum gₛ (158.36 mmol m⁻² s⁻¹) was observed from T2 which was followed by T7 > T6 > T4 whereas the minimum gₛ (103.62 mmol m⁻² s⁻¹) was achieved from T1. At TS, the minimum gₛ (66.67 mmol m⁻² s⁻¹) was obtained from T1 and the maximum gₛ (103.33 mmol m⁻² s⁻¹) was resulted in T3 followed by T6 and T2. At GFS, T3 showed the maximum gₛ (99.39 mmol m⁻² s⁻¹) followed by T4 while T1 was reported as the minimum gₛ (62.44 mmol m⁻² s⁻¹). At Yamethin, stomatal conductance (gₛ) was significantly different among different mulching materials at MGS, TS and GFS (Table 4). At MGS, the maximum gₛ (204.44 mmol m⁻² s⁻¹) was observed from T2 followed by T4 meanwhile the minimum gₛ (115.50 mmol m⁻² s⁻¹) was achieved from T3. At TS, the minimum gₛ (50.00 mmol m⁻² s⁻¹) was resulted in T1 while the maximum gₛ (87.32 mmol m⁻² s⁻¹) was recorded from T4 followed by T7 with mean value of (86.56 mmol m⁻² s⁻¹). At GFS, T7 was recorded as the maximum gₛ (94.08 mmol m⁻² s⁻¹) which was followed by T4 while T1 resulted the minimum gₛ (55.11 mmol m⁻² s⁻¹). Numerous researchers have suggested using stomatal conductance (gs) as an indicator to compare stomatal and non-stomatal constraints to photosynthesis in conditions with restricted water resources (Brini, 2017). Many studies have shown that water deficit can inhibit the photosynthetic rate in plants, mainly due to the increased stomatal resistance under drought stress limiting the diffusion of CO₂ from the air into the leaves (Lavinsky et al., 2016).

Stomata are the entrance of water loss and carbon dioxide absorbability, and stomatal closure is one of the first responses to water stress which result in declined rate of photosynthesis. At Yezin, intercellular CO₂ concentration (Int CO₂) was not significantly different among different mulching materials at MGS and GFS (Table 3). At MGS, the maximum Int CO₂ (93.92 µmol mol⁻¹) was achieved from T6 and the...
minimum Int CO$_2$ (46.00 µmolmol$^{-1}$) was observed from T3. At TS and GFS, the minimum Int CO$_2$ (68.33 µmolmol$^{-1}$) and (53.90 µmolmol$^{-1}$) were observed at T1 and T7 at GFS whereas the maximum Int CO$_2$ (103.67 µmolmol$^{-1}$) and (80.33 µmolmol$^{-1}$) were recorded from T2. At Yamethin, Int CO$_2$ was significantly different among different mulching materials at MGS and GFS (Table 4). At MGS, the maximum Int CO$_2$ (120.42 µmolmol$^{-1}$) was resulted in T2 followed by T4 whereas the minimum Int CO$_2$ (61.92 µmolmol$^{-1}$) was recorded from T1. At TS, the minimum Int CO$_2$ (73.47 µmolmol$^{-1}$) was T1 while the maximum Int CO$_2$ (119.75 µmolmol$^{-1}$) was obtained from T6. At GFS, the maximum Int CO$_2$ (34.50 µmolmol$^{-1}$) was achieved from T7 whereas the minimum Int CO$_2$ (22.33 µmolmol$^{-1}$) was observed from T1. Although there is no difference in Int CO$_2$ between mulching and no mulching, mulching produces more Int CO$_2$. According to Farquhar and Sharkey (1982), the decrease in Pn can be explained by an increase in stomatal resistance when C and Int CO2 decrease simultaneously, but if Pn decreases as C increases, it is considered that the main limiting factor for Pn is the decreased photosynthetic activity of mesophyll cells.

At Yezin, SPAD values were not significantly different among different mulching materials at MGS, TS, and GFS (Table 1). At TS and GFS, the minimum SPAD values (23.90) and (20.93) were recorded from T1, whereas the maximum SPAD values (33.73) and (29.92) were derived from T6. At MGS, SPAD value was not significantly different among different mulching materials at Yamethin (Table 2). At TS and GFS, SPAD values were significantly different among different mulching materials. At T3, the maximum SPAD values (57.60) and (47.15) were recorded from T4 at TS and T7 at GFS, while the minimum SPAD value (44.05) and (38.48) were observed from T1. Higher water availability in the mulching treatment plots may be the result of the improved SPAD value working in conjunction with mulch application. Due to a change in leaf water concentration and its impact on SPAD, time of day is another potential source of variance in the samples (Galanti, et al., 2019). A close relationship between leaf chlorophyll content and photosynthetic rate was observed by Watanabe and Yoshida (1970) and stated that higher chlorophyll content is one of the important factors responsible for higher photosynthetic rate.

Five ears weight (g)

Five ears weight was recorded and the ear weight of maize was not significantly different among different mulching materials at Yezin (Figure 1A). The maximum five ears weight (519.00 g) was observed from T2 followed by T7, T4 and T5, while the minimum five ear weight (384.05 g) was obtained from T1. At Yamethin, the five ears weight was not significantly different among different mulching materials (Figure 1B). The maximum five ears weight (1830.6 g) was recorded from T2 followed by T7, T4, T5 and T6 whereas the minimum five ears weight (1326.0 g) was resulted from T1. The observed increase in ear weight in the mulched plot compared to the no mulching plot may be attributed to greater moisture retention brought on by mulching. Vaezi and Ahmadikhah (2010) investigated how dryness reduces the length of the growing season, disrupts photosynthesis, and assimilates remobilization, all of which lead to a reduction in grain weight. Furthermore, Singh, et al., (2016) found that using rice straw mulch (6 t/ha) increased maize green cob yield by 37% as compared to flat planting alone.

Association between five ears weight, percent reduction of soil moisture content and physiological traits of maize

Association between five ears weight, percent reduction of soil moisture content and physiological traits of maize at Yezin and Yamethin during dry season, 2019-2020 was shown in Figures 2A and Figure 2B. At Yezin and Yamethin, five ears weight was negatively correlated with soil moisture reduction (First time) ($r = -0.82*$ and $r = -0.79*$), soil moisture reduction (second time) ($r = -0.69$ and $r = -0.82*$), soil moisture reduction (Third time) ($r = -0.57$ and $r = -0.55$) and positively correlated with Pn rate ($r = 0.67$ and $r = 0.89$), g$_c$ ($r = 0.70$ and $r = 0.88$), Int CO$_2$ ($r = 0.38$ and $r = 0.82*$) and SPAD value ($r = 0.36$ and $r = 0.95**$). Soil moisture reduction (First time) was positively correlated with soil moisture reduction.
(Second time) \(r = 0.97^{**}\) and \(r = 0.66^{**}\) and soil moisture reduction (Third time) \(r = 0.68\) and \(r = 0.52\) and negatively correlated with Pn rate \(r = -0.75\) and \(r = -0.94^{**}\), g\(_s\) \(r = -0.73\) and \(r = -0.79^{**}\), Int CO2 \(r = -0.32\) and \(r = -0.98^{**}\) and SPAD value \(r = -0.56\) and \(r = -0.86^{*}\). Similar to the soil moisture reduction (First time), soil moisture reductions (Second and Third times) were positively correlated with the soil moisture reduction (First time). Pn rate correlated positively with g\(_s\) \(r = 0.94^{*}\) and \(r = 0.83^{**}\), Int CO2 \(r = 0.34\) and \(r = 0.90^{**}\), and SPAD value \(r = 0.71\) and \(r = 0.88^{**}\), but negatively with the soil moisture reductions (First, Second and Third time). g\(_s\), Int CO2, and SPAD value were all positively correlated, just like Pn rate.

Table 1. Percent reduction of soil moisture content as affected by different mulching materials at Yezin during dry season, 2019-2020

Treatments	1st Irrigation	2nd Irrigation	3rd Irrigation							
	7 DAI	14 DAI	21 DAI	28 DAI	35 DAI	7 DAI	14 DAI	21 DAI	28 DAI	35 DAI
T1	38.27 a	76.93 a	84.8 a	89.00 a	70.24 a	83.93 a				
T2	17.72 d	45.89 d	43.37 e	78.56 bc	55.02 bc	68.93 bc				
T3	21.18 cd	61.62 b	59.24 cd	82.66 b	63.13 ab	78.11 ab				
T4	25.98 b	48.84 cd	56.32 d	77.00 c	64.06 ab	77.26 ab				
T5	25.88 b	57.85 bc	67.98 bc	81.10 bc	57.74 abc	80.12 ab				
T6	24.90 bc	56.55 bcd	76.98 ab	81.97 bc	62.02 ab	70.21 bc				
T7	24.44 bc	49.38 cd	28.92 f	76.79 c	45.41 c	58.07 c				
LSD\(_{0.05}\)	13.94	11.84	9.56	5.56	13.35	5.64				
Pr>F	<0.0001	0.0016	<0.0001	0.0060	0.0356	0.0102				
CV%	8.69	11.73	9.02	3.86	12.58	9.36				

DAI – Days after irrigation, T1 – No mulching, T2 – Rice straw mulching, T3 – Rice husk mulching, T4 – Maize stover mulching, T5 – Mung bean stover mulching, T6 – Soybean stover mulching, T7 – White plastic polyethylene mulching

Mean values in each column having the different letters are significantly different at 5% level

CV = Coefficient of Variation

Table 2. Percent reduction of soil moisture content as affected by different mulching materials at Yamethin during dry season, 2019-2020

Treatments	1st Irrigation	2nd Irrigation	3rd Irrigation							
	7 DAI	14 DAI	21 DAI	28 DAI	35 DAI	7 DAI	14 DAI	21 DAI	28 DAI	35 DAI
T1	37.67 a	79.76	87.33	88.29	89.21 a	31.71 a	52.10	28.22	40.47	
T2	14.65 e	59.61	76.09	81.56	81.22 c	21.29 bcd	36.65	24.14	31.17	
T3	30.80 b	72.44	75.47	84.06	85.37 abc	23.13 bc	33.91	26.62	38.57	
T4	21.68 d	69.53	79.73	81.76	83.02 bc	18.83 cd	24.78	12.26	22.61	
T5	35.69 a	66.94	83.16	86.36	85.57 ab	22.79 bc	32.77	19.63	28.90	
T6	29.81 bc	71.90	79.81	82.57	83.03 bc	26.68 ab	38.80	28.41	35.64	
T7	26.15 c	68.30	79.97	83.18	82.97 bc	15.43 d	25.42	24.90	34.95	
LSD\(_{0.05}\)	3.93	11.41	8.78	5.34	4.35	6.11	17.38	12.16	17.18	
Pr>F	<0.0001	0.0650	0.1383	0.1308	0.0322	0.0021	0.0688	0.1239	0.3661	
CV%	7.87	9.19	6.15	3.58	2.90	15.04	27.97	29.15	29.10	

DAI – Days after irrigation, T1 – No mulching, T2 – Rice straw mulching, T3 – Rice husk mulching, T4 – Maize stover mulching, T5 – Mung bean stover mulching, T6 – Soybean stover mulching, T7 – White plastic polyethylene mulching

Mean values in each column having the different letters are significantly different at 5% level

CV = Coefficient of Variation
Table 3. Effect of different mulching materials on photosynthesis rate (Pn), stomatal conductance (g_s), intercellular concentration (Int CO₂) and SPAD value of maize at Yezin during dry season, 2019 - 2020

Treatments	Maximum Growth Stage (MGS)	Tesseling Stage (TS)	Grain Filling Stage (GFS)									
	Pn¹	g_s¹	Int CO₂¹	SPAD value	Pn¹	g_s¹	Int CO₂¹	SPAD value	Pn¹	g_s¹	Int CO₂¹	SPAD value
T1	19.52	103.62	65.95	31.12	12.05 b	66.67 c	68.33 c	23.90	12.09 c	62.44 c	78.52	20.93
T2	25.27	158.36	66.36	31.20	20.45 a	93.83 ab	103.67 a	30.83	19.45 ab	73.83 bc	80.33	26.07
T3	21.92	107.00	46.00	32.28	20.26 a	103.33 a	102.17 a	30.62	22.44 a	99.39 a	55.92	24.97
T4	21.13	120.94	79.77	33.57	18.94 a	83.17 abc	98.74 a	26.33	19.79 ab	85.33 ab	53.74	25.03
T5	21.58	119.71	69.69	29.60	18.97 a	66.92 c	70.83 bc	29.90	14.25 bc	68.33 ab	79.17	25.58
T6	20.80	128.53	93.92	33.90	20.37 a	100.08 ab	97.00 a	33.73	19.25 ab	80.25 abc	67.50	29.92
T7	21.04	141.00	60.83	29.28	18.54 a	78.08 bc	80.57 b	31.00	17.68 abc	74.92 bc	53.90	27.92
LSD_{0.05}	4.51	38.23	33.96	11.19	4.39	24.27	10.29	13.10	6.09	22.71	31.52	9.03
Pr>F	0.02630	0.0941	0.1714	0.9524	0.0152	0.0272	<0.0001	0.7276	0.0046	0.0679	0.2649	0.5533
CV%	11.72	17.11	27.70	19.93	13.32	16.13	6.52	24.98	19.08	16.41	26.44	19.78

T1- No mulching, T2- Rice straw mulching, T3- Rice husk mulching, T4- Maize stover mulching, T5- Mung bean stover mulching, T6- Soybean stover mulching, T7- White plastic polyethylene mulching
Mean values in each column having the different letters are significantly different at 5% level

CV = Coefficient of Variation

Table 4. Effect of different mulching materials on photosynthesis rate (Pn), stomatal conductance (g_s), intercellular concentration (Int CO₂) and SPAD value of maize at Yamethin during dry season, 2019 - 2020

Treatments	Maximum Growth Stage (MGS)	Tesseling Stage (TS)	Grain Filling Stage (GFS)									
	Pn¹	g_s¹	Int CO₂¹	SPAD value	Pn¹	g_s¹	Int CO₂¹	SPAD value	Pn¹	g_s¹	Int CO₂¹	SPAD value
T1	24.97	123.75 ed	61.92 c	50.07	15.80 b	50.00 e	73.47	44.05 c	16.85 d	55.11 c	22.33 c	38.48 c
T2	31.80	204.44 a	120.42 a	53.98	21.59 a	80.59 b	100.53	55.02 ab	22.81 ab	79.58 b	30.75 ab	46.52 b
T3	26.73	115.50 d	72.43 c	51.42	20.93 a	72.62 c	97.39	50.53 b	22.48 ab	79.25 b	26.72 bc	40.27 c
T4	30.01	195.33 a	99.53 ab	49.77	21.56 a	87.32 a	101.70	57.60 a	22.62 ab	86.17 ab	25.57 bc	41.50 bc
T5	28.38	166.68 b	82.33 bc	50.42	19.18 ab	63.23	103.30	54.20 ab	18.28 cd	64.08 c	22.83 c	43.53 abc
T6	28.91	134.53 c	77.39 bc	48.93	20.47 a	65.94 d	119.75	52.37 ab	20.68 bc	59.49 c	23.56 bc	41.66 abc
T7	27.86	157.00 b	82.25 bc	51.83	23.39 a	86.56 ab	103.61	55.15	24.91 a	94.08 a	34.50 a	47.15 a
LSD_{0.05}	8.15	16.03	6.42	6.24	4.46	6.31	32.76	6.19	2.85	13.08	7.55	5.54
Pr>F	0.6564	<0.0001	0.0040	0.0696	0.0636	<0.0001	0.2134	0.0098	0.0006	0.0002	0.0338	0.0426
CV%	16.13	5.75	15.91	7.09	12.27	4.91	18.42	6.60	7.56	9.94	15.94	7.29

T1- No mulching, T2- Rice straw mulching, T3- Rice husk mulching, T4- Maize stover mulching, T5- Mung bean stover mulching, T6- Soybean stover mulching, T7- White plastic polyethylene mulching
Mean values in each column having the different letters are significantly different at 5% level

CV = Coefficient of Variation
ZM Aung & T Zar, 2022 / Mulching as soil moisture conservation to improve physiological traits in maize (Zea mays L.)

Figure 1. Five ears weight of maize as affected by different mulching materials at Yezin (A) and Yamethin (B) during dry season, 2019-2020

Figure 2. Association of five ears weight, soil moisture reduction (First, Second and Third times) and physiological traits at Yezin (A) and Yamethin (B) during dry season, 2019-2020

Conclusions

The experiments were conducted to study the effect of different mulching materials on percent reduction of soil moisture content and physiological traits in maize and to find out the most suitable mulching materials. Physiological traits such as photosynthesis rate, stomatal conductance, intercellular CO2 concentration and SPAD value were higher in all mulching materials than no mulching in both sites. All mulching materials showed more conserved soil moisture in maize than no mulching. Among them, White plastic polyethylene mulching, rice straw mulching and maize stover mulching maintained more soil moisture content than other mulching materials. Rice straw mulching showed the maximum five ears weight, photosynthesis rate, stomatal conductance, intercellular CO2 concentration and SPAD value at Yezin. Rice straw mulching resulted the maximum five ears weight, photosynthesis rate, stomatal conductance, intercellular CO2 concentration and SPAD value followed by white plastic polyethylene mulching and maize stover mulching at Yamethin. According to the results, rice straw mulching was the most suitable mulching material for both sites. Therefore, organic or inorganic mulching
should be used instead of no mulching in maize cultivation. However, from the view of climate change, organic mulching is recommended for maize cultivation rather than plastic mulching. Based on the present study, different rates of mulching should be tested in maize cultivation.

Author’s declaration

Authors declare that there is no conflict of interest. ZMA carried out field experiments, recorded and analyzed field data, and prepared the manuscript. TZ, AZH, LTZ and HHO supervised the experiment and conducted manuscript proof-reading before submission. All authors read and approved the final version of the manuscript.

References

Brini, F. A. I. C. A. L. (2017). Photosynthesis under stressful environmental conditions: existing challenges. *Environment and Photosynthesis: A Future Prospect*, 68-91.

Bruce, W. B., Miguel, E., Satyanath, S., Dykema, J. A., & Lobell, D. B. (2009). Warming increase the risk of civil war in Africa. *Proceedings of the National Academy of Science*, 106(49), 20670-20674. CrossRef

El-Nemr, M. A. (2006). Effect of mulch types on soil environmental conditions and their effect on the growth and yield of cucumber plants. *Journal of Applied Sciences Research*, 2(2), 67-73.

Farquhar, G. D., & Sharkey, T. D. (1982). Stomatal conductance and photosynthesis. *Annual Review of Plant Physiology*, 33(1), 317-345. doi:10.1146/annurev.pp.33.060182.001533.

Galanti, R., Cho, A., Ahmad, A., & Radovich, T. (2019). Soil amendments and soil profiling impact on macadamia growth and yield performance. *HortScience*, 54(3), 519-527. CrossRef

Gomez, K.A., & Gomez, A. A. (1984). *Statistical procedures for agricultural research*: John Wiley & Sons. p.704.

Hokmalipour, S., & Darbandi, M.H. (2011). Physiological growth indices in corn (Zea mays L.) cultivars as affected by nitrogen fertilizer levels. *World Applied Sciences Journal*, 15(12), 1800-1805.

Hu, Y.N, Liu., Y.J, Tang., H.J, Xu., Y.L, & Pan. (2014). Contribution of drought to potential crop yield reduction in a wheat-maize rotation region in the North China Plain. *Journal of Integrative Agriculture*, 13(7), 1509-1519. CrossRef

Lavinsky, A. O., Magalhães, P. C., Diniz, M. M., Gomes-Jr, C. C., Castro, E. M., & Ávila, R. (2016). Root system traits and its relationship with photosynthesis and productivity in four maize genotypes under drought. *Cereal Research Communications*, 44(1), 89-97. CrossRef

Lawlor, D. W. (2002). Limitation to photosynthesis in water-stressed leaves: stomata vs. metabolism and the role of ATP. *Annals of Botany*, 89(7), 871-885. CrossRef

Ministry of Agriculture, Livestock and Irrigation. (2014). Myanmar Agriculture in Brief. Ministry of Agriculture, Livestock and Irrigation. Nay Pyi Taw, Myanmar.

Pereira, L. S. (2017). Water, agriculture and food: challenges and issues. *Water Resources Management*, 31(10), 2985-2999. CrossRef

Shahrokhnia, M., & Sepaskhah, A.R. (2017). Physiologic and agronomic traits in safflower under various irrigation strategies, planting methods and nitrogen fertilization. *Industrial Crops and Products*, 95, 126-139. CrossRef

Singh, G., Joshi, V. K., Chandra, S., Bhatnagar, A., & Dass, A. (2016). Spring maize (Zea mays L.) response to different crop establishment and moisture management practices in north-west plains of India. *Research on Crops*, 17(2), 226-230.

Suyana, J., Komariah, K., Nugraheni, N., & Lestariningsih, N. P. (2019). The effectiveness of maize stalks mulch on runoff, erosion, sediment enrichment ratio (SER), and the growth of cabbage and red beans in andisols, central Java, Indonesia. *Tropical and Subtropical Agroecosystems*, 22(3), 675-692.

Teare, I. D., Bates, L. S., & Waldren, R. P. (1973). Rapid determination of free proline in water stresses studies. *Plant and Soil*, 39, 205-207. CrossRef

Wang, X., Fan, J., Xing, Y., Xu, G., Wang, H., Deng, J., & Li, Z. (2019). The effects of mulch and nitrogen fertilizer on the soil environment of crop plants. *Advances in Agronomy*, 153, 121-173. CrossRef

Watanabe, H., & Yoshida, S. (1970). Effects of nitrogen, phosphorus, and potassium on photophosphorylation in rice in relation to the photosynthetic rate of single leaves. *Soil Science and Plant Nutrition*, 16(4), 163-166. CrossRef

Vaezi, B., & Ahmadikhah, A. (2010). Evaluation of drought tolerance of twelve improved barley genotypes in dry and warm condition. *Journal Of Plant Production (Journal of Agricultural Sciences and Natural Resources)*, 17(1), 23-44.