LHC sensitivity to lepton flavour violating Z boson decays

Sacha Davidson 1,*, Sylvain Lacroix 1,† and Patrice Verdier 1,‡

1IPNL, Université de Lyon, Université Lyon 1, CNRS/IN2P3, 4 rue E. Fermi 69622 Villeurbanne cedex, France

Abstract

We estimate that the LHC could set bounds \(BR(Z \to \mu^+\mu^-) < 4.1 \times 10^{-7} \) and \(BR(Z \to \tau^+\tau^-) < 3.5 \times 10^{-6} \) (at 95% C.L.) with 20 fb\(^{-1}\) of data at 8 TeV. A similar sensitivity can be anticipated for \(Z \to \tau^\pm e^\mp \), because we consider leptonic \(\tau \) decays such that \(Z \to \tau^\pm \mu^\mp \to e^\mp \mu^\pm \) invisible. These limits can be compared to the LEP1 bounds of order \(10^{-6} \to 10^{-8} \). Such collider searches are sensitive to a flavour-changing effective \(Z \) coupling which is energy dependent, so are complementary to bounds obtained from \(\tau \to ll\ell \) and \(\mu \to eee \).

1 Introduction

Lepton flavour is conserved in the Standard Model (SM) of particle physics. However, the observation of neutrino oscillations implies that there is Beyond-the-Standard-Model physics which changes lepton flavour. Lepton Flavour Violation (LFV) among charged leptons is therefore a phenomenologically motivated place to search for elusive Beyond-the-Standard-Model (BSM) physics.

The LHC is an electroweak-scale hadron collider, so can reasonably be expected to give information on electroweak symmetry breaking, weakly interacting dark matter candidates (WIMPs) and new particles or interactions in the quark sector. In this paper, we are interested in the prospects of Lepton Flavour Violating processes at the LHC, involving SM particles. LFV in BSM scenarios, such as supersymmetry or heavy singlet neutrinos, has received more attention [1, 2, 3, 4].

The LHC produces many \(\tau \)s in the decays of \(W \) and \(Z \) bosons, and \(b \)s (respectively \(\sim 10^8, 3 \times 10^7 \), and \(10^{12} \) for 10 fb\(^{-1}\) at 7 TeV [5]), so one could hope to be sensitive to LFV \(\tau \) decays such as \(\tau \to \ell\gamma \). LHCb obtained a bound \(BR(\tau \to \mu\mu\gamma) < 7.8 \times 10^{-8} \) with 1 fb\(^{-1}\) of data [6]. However, for ATLAS and CMS, there do not seem to be enough high-\(p_T \) \(\tau \)s, to allow an interesting sensitivity [5, 7]. We therefore explore LFV in the production of leptons — that is — in LFV decays of the \(Z \). The cross-section times branching ratio for \(pp \to Z \to \mu^+\mu^- \) is of order a nanobarn at the 7 or 8 TeV LHC, so with 20 fb\(^{-1}\) of data at the end of 2012, the LHC will have \(2 \times 10^7 / BR(Z \to \mu^+\mu^-) \approx 5 \times 10^8 \) Zs. This can be compared to the \(1.7 \times 10^7 \) Zs at LEP1. Effective LFV \(Z \) couplings can also be constrained by the possible \(Z \) contribution to decays such as \(\tau \to \mu\mu\mu \) and \(\mu \to eee \). In section 2, we review the complementarity of the collider and low energy searches.

We study the decays \(Z \to \mu^+e^- \) and \(Z \to \tau^+\mu^- \) (which results we extrapolate to \(Z \to \tau^\pm e^\mp \)). We focus on leptonic \(\tau \) decays, so the \(\tau^\pm \) final state is \(e^\mp \mu^\pm + \) two neutrinos. This is not without backgrounds, as discussed in section 3. The most dominant is \(Z \to \tau^+\tau^- \to e^\pm \mu^\mp + 4 \) neutrinos, so section 2 also reviews some kinematic considerations, which suggest that this background could be reduced to an acceptable level. In section 4, we present our selection criteria, designed to maximise sensitivity to the signal. The bounds this analysis could obtain are in the final summary, which also discusses future prospects.

2 Theoretical review

The three \(Z \) decays which violate lepton flavour conservation are \(Z \to e^\pm \mu^\mp \), \(Z \to \mu^\pm \tau^- \), and \(Z \to e^\pm \tau^\mp \). We consider the detection of \(e^\pm \mu^\mp \) final states, arising either directly, \(Z \to e^\pm \mu^\mp \), or through leptonic tau decays: \(Z \to \mu^\pm \tau^- \to \mu^\pm e^\mp\nu\bar{\nu} \), and \(Z \to e^\pm \tau^- \to e^\pm \mu^\mp\nu\bar{\nu} \). As the last two decay channels differ only by exchange of the electron and the muon, we only consider \(Z \to \mu^\pm \tau^- \to \mu^\pm e^\mp\nu\bar{\nu} \) in this paper. We anticipate that the

*E-mail address: s.davidson@ipnl.in2p3.fr
†E-mail address: s.lacroix@ipnl.in2p3.fr
‡E-mail address: verdier@ipnl.in2p3.fr
To be compared with the Belle bound in Table 2.

LFV in the decay of Higgs produced at hadron colliders was discussed in [8], taking into account the constraints from low energy processes. An earlier study of the collider prospects was [9]. This subject has recently been revisited [10].
sensitivity to $Z \to e^\pm \tau^\mp$ should be equivalent, or better, because the SM backgrounds should be similar to those of $Z \to \mu^\pm \tau^\mp \to \mu^\pm e^\mp \nu \bar{\nu}$, and the detection prospects for a low p_T muon (from tau decay) are better than those of a low p_T electron.

2.1 Flavour-changing Z couplings

We suppose that new LFV particles arise at a scale $M > m_Z$, which allows to describe the flavour changing Z vertices with Effective Field Theory, via operators of dimension six and higher[11]3. The discussion applies to any flavour changing vertex, although we focus on the $Z\tau^\pm \mu^- \to \tau^\pm e^\mp \nu \bar{\nu}$ interaction to avoid flavour index sums. At dimension six, Buchmuller and Wyler[12] give the following SM gauge invariant operators which can contribute (with their hermitian conjugates) to $Z \to \tau^\pm \mu^\mp$:

\begin{align}
 &\left[H^\dagger \sigma^\dagger D_\alpha H\right] \langle \ell_\mu \sigma^\dagger \gamma^\alpha \ell_\tau \rangle \text{,} \\
 &\left[H^\dagger D_\alpha H\right] \langle \ell_\mu \gamma^\alpha \ell_\tau \rangle \text{,} \\
 &\left[H^\dagger D_\alpha H\right] \langle \tau_\mu \gamma^\alpha \tau_\tau \rangle \text{,} \\
 &\left[H^\dagger D_\alpha H\right] \langle \tau_\mu \gamma^\alpha \tau_\tau \rangle \text{,} \end{align}

where ℓ, τ are the electron and tau doublet, B^α the hypercharge gauge boson, σ^\dagger are the Pauli matrices, $i g_\mu$ is the muon doublet, β the tau singlet, B^α the hypercharge gauge boson, σ^\dagger are the Pauli matrices, $i g_\mu$ is the muon doublet, β the tau singlet, $B^\alpha = \partial^\alpha B^0 - \partial^\beta Z^\alpha$ and so on. We suppose that these operators are normalised such that, in the presence of electroweak symmetry breaking, the combination of operators on the first (or second, third) line of equation (1 - 3) appear in the Lagrangian as the first (or second, third) line below:

\begin{align}
g_Z m_\tau^2 &\left[\alpha_{\mu \tau} (A_{\mu \tau} P_L + A_{R \mu \tau} P_R) Z^\alpha \tau + h.c. \right], \\
+ 2 g_Z &\left[\alpha_{\mu \tau} (C_{\mu \tau} P_L + C_{R \mu \tau} P_R) \beta^\alpha \tau + h.c. \right] Z^{\alpha \beta}, \\
+ i g_Z m_\tau &\left[\alpha_{\mu \tau} (D_{\mu \tau}^L P_L + D_{R \mu \tau}^L P_R) \beta^\alpha \tau - h.c. \right] Z^{\alpha \beta},
\end{align}

where $g_Z = \sqrt{g^2 + g^\tau}$, $Z^{\alpha \beta} = \partial^\alpha Z^\beta - \partial^\beta Z^\alpha$, and the A, C, D coefficients have mass dimension -2. We assume that these interactions are generated by a loop involving particles of mass $\sim M > m_Z$, so $A, C, D \propto g_Z^2/(16\pi^2 M^2)$. Concretely, if $C_{\mu \tau}, C_{R \mu \tau}$ are taken real, and the Z on-shell, then equation (5) and the SM Z couplings give:

\begin{equation}
\frac{-g}{2 \cos \theta_W} \left(\tau \not{\!\!} \mu \right) \gamma^\alpha Z^\alpha - \frac{g_V - g_A \gamma_5}{2} \left[m_\tau^2 [C_{\mu \tau} + C_{R \mu \tau} - (C_{\mu \tau} - C_{R \mu \tau}) \gamma_5] \right] \left(\mu \right)
\end{equation}

where $g_V - g_A \gamma_5 = 1/2$ and $g_A = -1/2$.

The effective interactions relevant to LFV Z decays are those of equation (5). This is because the A and D coefficients are constrained by low energy data (see below), whereas the coefficients C_L, C_R are multiplied by the Z four-momentum-squeezed, which suppresses their contribution in low-energy tree processes. For instance, the effective flavour-changing coupling on the Z pole would be $g_Z m_\tau^2 (C_{\mu \tau} P_L + C_{R \mu \tau} P_R)$, whereas in $\tau \to \mu \mu$ it would be $\lesssim g_Z m_\tau^2 (C_{\mu \tau} P_L + C_{R \mu \tau} P_R)$.

Their contribution to Z decays is:

\begin{equation}
BR(Z \to \tau^\pm \mu^\mp) \simeq 16 m_\tau^4 (|C_{\mu \tau}|^2 + |C_{R \mu \tau}|^2) \times BR(Z \to \mu^\pm \mu^\mp) \sim 1.7 \times 10^{-5} \frac{m_\tau^4}{M^4}
\end{equation}

where $g_V \to 0$ and the last estimate for $C_{\mu \tau} \simeq C_{R \mu \tau} \simeq g_Z^2/(16\pi^2 M^2)$. Recall that the effective operator formalism supposes $m_Z < M$, so constraints $\lesssim 10^{-5}$ are interesting. The current bounds on the Cs which can be extracted from the OPAL and DELPHI bounds on LFV Z decays [13, 14] are given in Table 1.

Bounds on the C couplings can also be obtained from the contribution of a Z loop to decays such as $\tau \to \mu \gamma$. To estimate a bound, we assume that $M \gg m_Z$, so the effective LFV vertices can be treated as contact interactions in the loop, and we suppose that at the scale M, New Physics induces $C \sim g_Z^2/(16\pi^2 M^2)$ and no A or D coefficients. Then, renormalisation group mixing from the scale M to m_Z can induce D^γ coefficients, which we estimate (for the case of $\tau \to \mu \gamma$) to be

\begin{equation}
em_\tau D_{\mu \tau}^\gamma \sim \frac{g_Z^2 C_{\mu \tau}^Z}{32\pi^2} \log \frac{m_Z^2}{M^2} \sim \frac{g_Z^2}{16\pi^2} \left(\frac{g_Z^2}{16\pi^2} \right)^2 \frac{1}{2M^2} \log \frac{m_Z^2}{M^2}.
\end{equation}

3Our discussion is patterned on [11]; additional references can be found in the references and citations thereof.

4We thank Micheal Peskin for pointing out that this suppression may not occur in loops.
Dipole operators are more sensitive probes of dipole operators than
This is different from the photon dipole operator
so the rare lepton decay bounds of Table 2 put
Table 2: Bounds from low energy Lepton Flavour Violating decays, on the
The last column of Table 2 gives bounds on the $D_{\alpha\beta}^Z$, which can translated into bounds on the $C_{\alpha\beta}^Z$ coefficients via
equation (9). The $\mu \to e\gamma$ decay imposes $m_Z^2 C_{\mu\mu}^Z < 10^{-5}$, which corresponds to $BR(Z \to e \pm \mu \mp) < 10^{-10}$. The $\tau \to e\gamma$ decays allow $M \sim m_Z$, so the loop calculation makes little sense, and the best bounds are the LEP limits of table 1.
We can make conflicting guesses for the “probable” values of C_L and C_R. If the new particle mass scale M is beyond the reach of the LHC, then so are the LFV Z branching ratios (see equation 8). Also, as discussed below, the A and D coefficients are constrained by low energy rare decay data to be smaller than the LEPI bounds on the Cs. It is unclear to the authors how to build a model 5 with $A,D \ll C$. However, the Cs are physically distinct, so it is phenomenologically interesting to constrain them. Furthermore, the OPAL experiment observed a $e^+e^- \to e^+\mu^-$ event at LEP2 $^{[15]}$, which increases the interest of high centre-of-mass-energy searches for LFV.
To obtain bounds from processes at scales $\ll m_Z$, the Z and its interactions (4-6) can be matched onto LFV four fermion operators. Current rare lepton decay bounds constrain the coefficients $A_{\mu\tau}, A_{R\mu\tau}$ more strictly 6 than the Z decay bounds of Table 1. The branching ratios mediated by the A coefficients are
so the rare lepton decay bounds of Table 2 put A_L and A_R at or beyond the sensitivity of the 7 or 8 TeV LHC.
We neglect the D coefficients of equation (6), because their contribution to $BR(Z \to \tau^\pm \mu^\mp)$ is proportional to m_τ^4. This is different from the photon dipole operator
where the m_τ^4 factor is cancelled in $BR(\tau \to \mu\gamma)$ by a similar factor in the denominator. The $SU(2) \times U(1)$ gauge invariant operators of equation (3) induce both D^γ and D^Z, so $D^\gamma \sim D^Z$ could be expected, in which case radiative lepton decays are more sensitive probes of dipole operators than Z decays. In Table 2, are given the current bounds on $D_L^\tau = D_{\mu\tau}^\tau$, normalised to $g_Z^2/16\pi^2 m_Z^2$.
Table 2: Bounds from low energy Lepton Flavour Violating decays, on the A and D coefficients of equations (4) and (6). The third [fourth] column assumes the decay is mediated by $A_{\mu\tau} \simeq A_{R\mu\tau} \simeq g_Z^2/16\pi^2 M^2$ [$D_{\mu\tau}^\tau \simeq D_{R\mu\tau}^\tau \simeq g_Z^2/16\pi^2 M^2$], and gives the bound on m_Z^2/M^2. If $eD^\gamma \sim g_Z D^Z$, the D^γ bounds would apply to D^Z.

\begin{tabular}{|c|c|c|}
\hline
process & exp. limit & $16\pi^2 m_Z^2 A/g_Z^2 <$ \\
\hline
$BR(\tau \to e\gamma)$ & 2.7×10^{-8} $^{[17]}$ & 0.17 \\
$BR(\tau \to \mu\mu)$ & 2.1×10^{-8} $^{[17]}$ & 0.15 \\
$BR(\mu \to e\gamma)$ & 1.0×10^{-12} $^{[18]}$ & 4.3×10^{-4} \\
$BR(\mu \to e\gamma)$ & 3.3×10^{-8} $^{[19]}$ & 1.3×10^{-3} \\
$BR(\mu \to \mu\gamma)$ & 4.4×10^{-8} $^{[19]}$ & 1.5×10^{-3} \\
$BR(\mu \to \mu\gamma)$ & 2.4×10^{-12} $^{[20]}$ & 4.6×10^{-6} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline
process & exp. limit & $16\pi^2 m_Z^2 D/g_Z^2 <$ \\
\hline
$BR(\tau \to e\gamma)$ & 2.7×10^{-8} $^{[17]}$ & 0.17 \\
$BR(\tau \to \mu\mu)$ & 2.1×10^{-8} $^{[17]}$ & 0.15 \\
$BR(\mu \to e\gamma)$ & 1.0×10^{-12} $^{[18]}$ & 4.3×10^{-4} \\
$BR(\mu \to e\gamma)$ & 3.3×10^{-8} $^{[19]}$ & 1.3×10^{-3} \\
$BR(\mu \to \mu\gamma)$ & 4.4×10^{-8} $^{[19]}$ & 1.5×10^{-3} \\
$BR(\mu \to \mu\gamma)$ & 2.4×10^{-12} $^{[20]}$ & 4.6×10^{-6} \\
\hline
\end{tabular}

5 A could be suppressed with respect to C if the loop particles do not couple to the Higgs, but this does not suppress D couplings.

6 The operators inducing A coefficients also induce flavour-changing four fermion operators involving neutrinos. These are referred to as “Non-Standard neutrino Interactions”, and can appear linearly in probabilities. Despite this potential enhanced sensitivity, the bounds $^{[16]}$ on $16\pi^2 A m_\tau^2/g_Z^2$ are generically $\gtrsim 1$.
2.2 Kinematics

The LHC has more Zs than LEP1, but a less clean environment. So we here review some simple kinematics, for the decays $Z \to \tau^{\pm}\ell^\mp$, which suggest that the LHC backgrounds could be sufficiently reduced to probe couplings below the LEP1 bounds. The analysis for $Z \to \mu^{\pm}e^{\mp}$ is relatively straightforward, since the $\mu^{\pm}e^{\mp}$ should have the invariant mass of the Z, and is performed in section 4.2.

In the case of $Z \to \tau^{\pm}\ell^\mp$, we consider leptonic τ decays, in particular $\tau^\pm \to e^\pm \nu \bar{\nu}$, so as to obtain opposite flavour charged leptons in the final state:

$$Z \to \tau^\pm \mu^\mp \to (e^\pm \nu \bar{\nu})\mu^\mp \ .$$ \hfill (11)

The various backgrounds are studied in section 3; here we focus on the most problematic:

$$Z \to \tau^\pm \tau^\mp \to (e^\pm \nu \bar{\nu})(\mu^\mp \nu \bar{\nu}) \ ,$$ \hfill (12)

which is referred to as “background” for the remainder of this section, and labelled $Z + \text{jets}$ in Tables 3, 5 and 7. To estimate the number of such events, recall that $BR(Z \to \tau^\pm \tau^\mp) = 0.0337$ and $BR(\tau^\pm \to e^\pm \nu \bar{\nu}) = 0.178$ [21].

With some simple approximations, one can show that the two-neutrino signal events of equation (11) may be kinematically distinguishable from the four-neutrino background events. First, since the τs are boosted by a factor of at least $m_Z/2m_\tau$, it is not unreasonable to approximate as collinear all the momenta of the τ-daughters. For clarity, suppose that the τ^+ in the signal and background decays of equations (11) and (12) decays to e^+. Then in both decays:

$$p_{\tau^+} = p_{e^+} + p_\nu + p_{\bar{\nu}} \equiv \alpha p_{e^+} \ .$$ \hfill (13)

Similarly, for the τ^- of the background process, one can define $p_{\tau^-} = \beta p_{\mu^-}$ (where we neglect all final state masses). This gives:

$$m_Z^2 - m_\tau^2 = 2\alpha p_{e^+} \cdot p_{\mu^-} \quad \text{signal}$$ \hfill (14)

$$m_Z^2 - 2m_\tau^2 = 2\beta p_{e^+} \cdot p_{\mu^-} \quad \text{background}$$ \hfill (15)

As expected, the invariant mass $2p_{e^+} \cdot p_{\mu^-}$ of the charged final state leptons should be lower for the background events, and the p_T of the signal muon will have a harder distribution than that of the τ daughters (see Fig. 1).

The second approximation is to neglect the transverse momentum $p_{T,Z}$ of the Z, so that the p_T of the Z-daughters balance. This implies that

$$\alpha|p_{T,e^+}| = |p_{T,\mu^-}| \quad \text{signal}$$ \hfill (16)

$$\alpha|p_{T,e^+}| = \beta|p_{T,\mu^-}| \quad \text{background}$$ \hfill (17)

To distinguish signal and background, we extract α_1 and α_2 from our “data” using respectively equations (14) and (16), and use the difference

$$\Delta \alpha = \alpha_2 - \alpha_1$$ \hfill (18)

as a discriminating variable between background and signal (which peaks at zero).

There is a small fraction of background events, with $\beta \to 1$, which constitute an irreducible background to our signal. These correspond to events where the μ carries (almost) all the momentum of its parent-τ. They will occur when, in the reference frame of the decaying τ, the μ carries close to the maximum allowed energy $(m_\tau^2 + m_\mu^2)/2m_\tau$, and when it is emitted in the direction of the boost of the τ. If the charged lepton energies are measured with a fractional uncertainty ϵ, then we estimate that such irreducible events correspond to $\sim \epsilon^2$ of the background. For $\epsilon \sim$ few %, this suggests that the background of equation (12) can be sufficiently reduced.

3 Background and signal simulation

The signal investigated in this paper consists of events with exactly one electron and one muon. At the LHC, the dominant SM process leading to $e^\pm \mu^\mp$ dilepton final states is $Z/\gamma^* \to \tau^+\tau^-$ where both tau lepton decays leptonically, one to a muon and neutrinos and the other to an electron and neutrinos. Two processes involving top quark(s) also lead to $e^\pm \mu^\mp$ final states: the top quark pair production channel $pp \to tt \to b\ell^\mp v b\ell^\mp v$ and the single-top production channel $pp \to Wt \to \ell^\pm v b\ell^\mp v$ with $\ell, \ell' = e, \mu, \tau$. Finally, gauge boson pair production can lead to $e^\pm \mu^\mp$ states.

\[\text{The notation } pp \to Wt \text{ includes both } pp \to tW^- \text{ and } pp \to W^+ \text{.} \]
via: \(pp \rightarrow W^+W^- \rightarrow \ell^+\nu\ell^-\bar{\nu} \) and \(pp \rightarrow WZ/\gamma^* \rightarrow \ell^+\nu\ell^-\ell^- \) with \(\ell, \ell' = e, \mu, \tau \), \(pp \rightarrow WZ/\gamma^* \rightarrow q\bar{q}'\tau^+\tau^- \), and \(pp \rightarrow Z/\gamma^*Z/\gamma^* \rightarrow f\bar{f}'f\bar{f}' \) with \(f = q, \nu, e, \mu, \tau \).

The **FEWZ** [22] program was used to compute the inclusive \(pp \rightarrow Z/\gamma^* \) cross section at next-to-next-to-leading order (NNLO). The next-to-next-to-leading logarithm (NNLL) cross sections were taken from Ref. [23] for \(pp \rightarrow t\bar{t} \), and from Ref. [24] for \(pp \rightarrow tW \), with a top quark mass of 173.3 GeV. Finally, the diboson \((pp \rightarrow WW, WZ, ZZ) \) cross sections were computed using **MCFM** [25] at next-to-leading order (NLO). These results are used to predict the total number of background events, which we then simulate at leading order.

The simulation of those SM backgrounds and of the signal processes \(pp \rightarrow Z \rightarrow \mu^+\mu^- \rightarrow \mu^+e^-\nu\bar{\nu} \) and \(pp \rightarrow Z \rightarrow e^+e^- \) was performed using **PYTHIA** version 8.162 [26], except the simulation of the \(pp \rightarrow Wt \rightarrow \ell^+\nu b\ell'^-\nu \) process which also used **MADGRAPH5** version 1.4.6 [27]. In all Monte Carlo simulations, the **CTEQ6L1** [28] parton density functions were used; initial and final state radiations and multi-parton interactions were also included. However, pile-up effects due to additional interactions were not taken into account in those simulations.

All Monte Carlo events were passed through the **DELPHES** [29] program which provides a fast simulation of LHC detector response. The default configuration corresponding to the CMS detector [30] at the LHC was used. In the following, the pseudorapidity is defined as \(\eta = -\ln \tan (\theta/2) \) with \(\theta \) the polar angle with respect to the beam direction; and \(\phi \) is the azimuthal angle. Isolated electrons and muons were identified by requiring no track with \(\eta > 1 \) and \(\phi > 5.5 \) around those lepton candidates, with \(\Delta R = \sqrt{\Delta\eta^2 + \Delta\phi^2} \). Standard Model backgrounds with non-isolated leptons were therefore not taken into account. Jets were reconstructed with the **FASTJET** [31] program using the anti-kt algorithm with a distance parameter of 0.7.

Table 3 contains the details of the Monte Carlo event production performed for the studies reported in this paper. As a total integrated luminosity of \(20 \, fb^{-1} \) at \(\sqrt{s} = 8 \, TeV \) is assumed in the following analyses, the equivalent luminosities of these simulations are always higher than \(200 \, fb^{-1} \) for each process to reduce statistical uncertainties.

Processes	\(\sigma \times BR \) (pb)	Number of simulated events	
\(Z + \text{jets} \)	\(Z/\gamma^* \rightarrow \tau^+\tau^- \rightarrow \ell^+\nu\ell^-\nu\bar{\nu} \) with \(\ell, \ell' = e, \mu, \tau \) \((M_{Z/\gamma^*} > 20 \, GeV) \)	237	47,500,000
\(tt \)	\(tt \rightarrow b\ell^+\nu b\ell^-\bar{\nu} \) with \(\ell, \ell' = e, \mu, \tau \)	23.6	4,720,000
single-top	\(Wt \rightarrow \ell^+\nu b\ell^-\nu \) with \(\ell, \ell' = e, \mu, \tau \)	2.35	400,000
diboson	\(W^+W^- \rightarrow \ell^+\nu\ell^-\bar{\nu} \) with \(\ell, \ell' = e, \mu, \tau \)	6.00	1,200,000
	\(WZ/\gamma^* \rightarrow q\bar{q}'\tau^+\tau^- \)	0.735	140,000
	\(WZ/\gamma^* \rightarrow \ell^+\nu\ell^-\tau^- \) with \(\ell, \ell' = e, \mu, \tau \)	1.06	220,000
	\(Z/\gamma^*Z/\gamma^* \rightarrow f\bar{f}'f' \) with \(f = q, \nu, e, \mu, \tau \)	8.26	1,660,000
signals	\(Z \rightarrow \tau^+\tau^- \rightarrow e^+\nu\bar{\nu} \mu^+\mu^- \)	100,000	
	\(Z \rightarrow \mu^+\mu^- \)	100,000	

Table 3: Standard model backgrounds in the search for Z decay violating lepton number at the LHC; the second column contains \(\sigma \times BR \) (in pb) for p-p collisions at \(\sqrt{s} = 8 \, TeV \), and the third column shows the number of simulated events in this analysis which is in all cases greater than 10 times \(L \sigma BR \) with \(L = 20 \, fb^{-1} \).

4 Sensitivity at the 8 TeV LHC

For the signal investigated in this study, at least one lepton comes directly from the Z boson decay. As shown in Fig. 1, the distribution of this lepton \(p_T \) has a clear peak around \(\sim 40 \, GeV \), as expected for this jacobian distribution.

At the LHC, a large fraction of SM backgrounds leading to \(e^+e^- \) final states comes W and Z bosons decaying to tau lepton(s) which decay leptonically (\(\tau \rightarrow \ell\nu\bar{\nu} \)). In that case, the \(p_T \) of the final lepton is strongly reduced due to the energy carried away by neutrinos (see Fig. 1). Requiring at least one high \(p_T \) lepton, can significantly increase the signal to background ratio. This selection criterium also guarantees that events are accepted by single lepton trigger conditions of LHC experiments. In the following, 100% trigger efficiency is therefore assumed.
Figure 1: Lepton (electron or muon) p_T distribution at generator level at the 8 TeV LHC: for leptons from $pp \rightarrow Z/\gamma^* \rightarrow \ell^+\ell^-$ (plain line) and for leptons from $pp \rightarrow Z\gamma^* \rightarrow \tau^+\tau^- \rightarrow \ell^+\nu\ell^-\bar{\nu}$ (dotted line), with $\ell = e$ or μ.

4.1 The $pp \rightarrow Z \rightarrow \mu^\pm\tau^\mp$ channel

In the $pp \rightarrow Z \rightarrow \mu^\pm\tau^\mp \rightarrow \mu^\pm e^\mp\bar{\nu}\nu$ channel, the muon comes directly from the Z boson decay. The muon p_T is required to be above 30 GeV and in the detector pseudorapidity acceptance $|\eta| < 2.1$. As the electron comes from the tau decay, the selection criterion on the electron p_T has to be reduced to keep high signal efficiency. The electron p_T is therefore required to be above 10 GeV and with $|\eta| < 2.5$. To reduce the diboson background coming from events with more than 3 leptons, events are required to contain exactly 2 leptons. At this stage, a reducible diboson background comes from events where lepton(s) failed identification criteria leading to same-sign $e^\pm\mu^\pm$ final states. This background is therefore rejected by requiring two opposite-sign leptons. Double and single-top quark production are then strongly reduced by rejecting events which contain at least one jet with $p_T > 30$ GeV and $|\eta| < 2.5$. To reduce the remaining diboson backgrounds, angular criteria in the transverse plane are used. For the signal, electrons and muons are almost back-to-back in the transverse plane, while the distribution of the $\Delta \phi$ angle between the muon and the electron is more flat for the diboson backgrounds. This $\Delta \phi(e, \mu)$ angle is therefore required to be higher than 2.7 radians. Another difference between backgrounds and signal is the $\Delta \phi$ angle between the electron and the direction of the missing transverse energy (\not{E}_T), which is peaked at 0 for signal since electrons and missing transverse energy both come from a highly boosted tau lepton. This $\Delta \phi(e, \not{E}_T)$ angle is therefore required to be below 0.7 radians. Finally, the $e\mu$ invariant mass is required to be in the range $[38 - 92]$ GeV, i.e. in the region around the broad peak expected for the signal. The numbers of events expected from SM backgrounds at each step of the event selection are reported in Table 4, together with the signal efficiency.

Selection criteria	$N_{\text{background}}$	Signal efficiency (%)				
≥ 1 muon with $p_T > 30$ GeV and $	\eta	< 2.1$ and ≥ 1 electron with $p_T > 10$ GeV and $	\eta	< 2.5$	$48,181 \pm 68$	9.4 ± 0.1
exactly 2 leptons	$43,496 \pm 65$	9.4 ± 0.1				
2 leptons with opposite charge	$42,652 \pm 64$	9.4 ± 0.1				
jet veto: no jet with $p_T > 30$ GeV and $	\eta	< 2.5$	$11,358 \pm 34$	7.8 ± 0.1		
$\Delta \phi(e, \mu) > 2.7$	$6,850 \pm 26$	6.9 ± 0.1				
$\Delta \phi(e, \not{E}_T) < 0.7$	$3,763 \pm 19$	6.2 ± 0.1				
$38 \text{ GeV} < M_{\mu\ell} < 92 \text{ GeV}$	$3,201 \pm 18$	6.1 ± 0.1				

Table 4: Selection criteria for the $Z \rightarrow \tau^\pm\mu^\mp$ search at the $\sqrt{s} = 8$ TeV LHC with $\mathcal{L} = 20 fb^{-1}$ with the total number of events expected from SM backgrounds and the signal efficiency (%); uncertainties are statistical only.
The remaining SM backgrounds is 3201 events. As expected, 95% of this background comes from the $Z/\gamma^* \rightarrow \tau^+\tau^- \rightarrow \mu^+\mu^-\nu\bar{\nu}$ background (see Tab. 5). The signal efficiency is 6.1%. Normalized to the $pp \rightarrow Z$ cross section multiplied by $BR(Z \rightarrow \tau^+\tau^-) = 1.2 \times 10^{-5}$, which corresponds to the current 95% C.L. limit from LEP, the number of events expected for the signal is 489.

Processes	Number of events
Z+jets	3,037 ± 17
$t\bar{t}$	9 ± 1
single-top	7 ± 1
diboson	147 ± 4
Total SM backgrounds	3,201 ± 18
$Z \rightarrow \tau^+\tau^-$ signal	489 ± 6

Table 5: After selection criteria of Table 4 for the $Z \rightarrow \tau^+\tau^-$ search at the $\sqrt{s} = 8$ TeV LHC with $\mathcal{L} = 20$ fb^{-1}, number of events expected for each SM background and for the signal normalized to $\sigma(pp \rightarrow Z) \times BR(Z \rightarrow \tau^+\tau^-)$ with $BR(Z \rightarrow \tau^+\tau^-) = 1.2 \times 10^{-5}$. These numbers correspond to Fig. 2.

4.2 The $pp \rightarrow Z \rightarrow e^\pm\mu^\mp$ channel

In the $pp \rightarrow Z \rightarrow e^\pm\mu^\mp$ channel, selection criteria are very close to those reported in previous section. The fact that this signal contains two high p_T leptons with a narrow invariant mass allows to reach a much better signal to background ratio. The muon and the electron p_T are required to be above 30 GeV and their pseudorapidity $|\eta| < 2.1$ and < 2.5, respectively. Events are required to contain exactly two leptons, with opposite charge. The jet veto rejecting events with at least one jet with $p_T > 30$ GeV and $|\eta| < 2.5$ is then applied. Finally, the $\Delta\phi(e, \mu)$ angle is required to be higher than 2.7 radians. The numbers of events expected from SM backgrounds at each step of the event selection are reported in Table 6, together with the signal efficiency.

Selection criteria	$N_{\text{background}}$	Signal efficiency (%)				
≥ 1 muon with $p_T > 30$ GeV and $	\eta	< 2.1$ and ≥ 1 electron with $p_T > 30$ GeV and $	\eta	< 2.5$	36,489 ± 59	18.5 ± 0.1
exactly 2 leptons	34,787 ± 58	18.5 ± 0.1				
2 leptons with opposite charge	34,038 ± 58	18.5 ± 0.1				
jet veto: no jet with $p_T > 30$ GeV and $	\eta	< 2.5$	8,111 ± 28	15.9 ± 0.1		
$\Delta\phi(e, \mu) > 2.7$	4,771 ± 22	14.0 ± 0.1				

Table 6: Selection criteria for the $Z \rightarrow e^\pm\mu^\mp$ search at the $\sqrt{s} = 8$ TeV LHC with $\mathcal{L} = 20$ fb^{-1} with the total number of events expected from SM backgrounds and the signal efficiency (%); uncertainties are statistical only.

The remaining SM backgrounds is 4771 events. At this stage the dominant background comes from $Z/\gamma^* \rightarrow \tau^+\tau^- \rightarrow \mu^+\mu^-\nu\bar{\nu}$ events (see Tab. 7). And the signal efficiency is 14.0%. Normalized to the $pp \rightarrow Z$ cross section multiplied by $BR(Z \rightarrow e^\pm\mu^\mp) = 1.7 \times 10^{-6}$, which corresponds to the current 95% C.L. limit from LEP, the number of events expected for the signal is 158. In the mass region $[87 - 95]$ around the Z peak, this signal would give 121 events, whereas the total SM background represents 222 events, half of it coming $Z/\gamma^* \rightarrow \tau^+\tau^- \rightarrow \mu^+e^\pm\nu\bar{\nu}$ events and the other half from diboson events.

4.3 Limits

From the number of background events and the signal efficiencies reported in the previous section, expected 95% C.L. limits on the number of signal events can be computed and translated into limits on lepton flavour violating Z branching ratios. The modified frequentist CL_s [32] method was used to compute those expected limits. The shapes of the $\Delta\alpha$ (defined in equation 18) and $e^\pm\mu^\mp$ invariant mass distributions were used as final discriminant variables in the
Processes	Number of events
$Z + \text{jets}$	$2,756 \pm 17$
$t\bar{t}$	199 ± 4
single-top	132 ± 4
diboson	$1,683 \pm 13$
Total SM backgrounds	$4,771 \pm 22$
$Z \to e^\pm \mu^\mp$ signal	158 ± 1

Table 7: After selection criteria of the $Z \to e^\pm \mu^\mp$ search at the $\sqrt{s} = 8$ TeV LHC with $\mathcal{L} = 20 fb^{-1}$, number of events expected for each SM background and for the signal normalized to $\sigma(pp \to Z) \times BR(Z \to e^\pm \mu^\mp)$ with $BR(Z \to e^\pm \mu^\mp) = 1.7 \times 10^{-6}$. These numbers correspond to Fig. 2.

limit computation for the $Z \to \tau^\pm \mu^\mp$ and $Z \to e^\pm \mu^\mp$ channel, respectively. Those distributions are shown in Fig. 2. A 3\% systematic uncertainty was set on the SM background contributions and on the signal efficiencies. This uncertainty accounts for the experimental uncertainty on lepton identification [33], assuming that the uncertainty on luminosity measurement can be cancelled in our analysis using normalization to $pp \to Z \to \mu^+\mu^-$ and $pp \to Z \to e^+e^-$ events. This 3\% systematic uncertainty was treated as fully correlated between signal and SM backgrounds. This procedure allows to set 95\% C.L. expected limits of 3.5×10^{-6} and 4.1×10^{-7} on the Z boson branching ratios $BR(Z \to \tau^\pm \mu^\mp)$ and $BR(Z \to e^\pm \mu^\mp)$, respectively. Those expected limits are a factor ~ 4 better than the current experimental limits from LEP.

Figure 2: Search for flavour violating Z decay at the $\sqrt{s} = 8$ TeV LHC with $\mathcal{L} = 20 fb^{-1}$: in the $Z \to \mu^+\tau^- \to \mu^+ e^- \nu \bar{\nu}$, distribution of $\Delta \alpha$ after the final step of the event selection (left), and in the $Z \to e^\pm \mu^\mp$ channel, distribution of the $e^\pm \mu^\mp$ invariant mass after the final step of the event selection (right). The dashed signal corresponding to the LEP1 limits is superposed on the summed backgrounds.

5 Summary

The high number of Z bosons produced at the LHC allows to study rare Z boson decay predicted by BSM theories. Using $20 fb^{-1}$ of pp collisions at 8 TeV, we have shown that 95\% C.L. limits on Z decay branching ratios to $\tau^\pm \mu^\mp$ and $e^\pm \mu^\mp$ of 3.5×10^{-6} and 4.1×10^{-7}, respectively, could be obtained. This represents a factor 4 improvements with respect to current best limits from LEP. The expected limit on $BR(Z \to \tau^\pm e^\mp)$ should be equivalent to the one on $BR(Z \to \tau^\pm \mu^\mp)$. As discussed in section 2, such collider searches are generically complementary to rare lepton decay
searches, because they are sensitive to an effective vertex $\propto s$, which gives small contributions to tree level low energy processes. As shown in Eq. 8, reaching sensitivity to lower BRs would be interesting to test BSM models. However, an effective Z vertex $\propto s$ can also contribute in loops above m_Z; the limits on $\mu \rightarrow e\gamma$ are sufficiently restrictive to constrain this effect, implying that $BR(Z \rightarrow \mu^\pm e^\mp) \lesssim 10^{-10}$.

In the analyses presented in this paper, basic and simple selection criteria were used to distinguish signals from SM backgrounds. More sophisticated analyses might further reduce backgrounds and increase sensitivities. In the limit computation, a 3% total systematic uncertainty on signal and background has been assigned, assuming some systematics, as the one on the integrated luminosity, could be cancelled in this measurement.

It is interesting to speculate about the prospects of LFV Z decays at the post-2014 LHC. Our analysis is not immediately applicable, as the relative importance of the backgrounds will vary with the increased centre-of-mass energy. However, for the analysis described here, the expected limits reduce by factors of 2 or 3 with a luminosity of 200fb^{-1}, then further improvements are limited by the systematic uncertainties. Selection criteria which more effectively suppress the backgrounds, and reduced systematic uncertainties, would be required to profit from the full integrated luminosity of the future LHC.

Acknowledgements

We thank Gerald Grenier and Michael Peskin for useful suggestions.

References

[1] F. del Aguila, J. A. Aguilar-Saavedra, B. C. Allanach, J. Alwall, Y. Andreev, D. Aristizabal Sierra, A. Bartl and M. Beccaria et al., “Collider aspects of flavour physics at high Q,” Eur. Phys. J. C 57 (2008) 183 [arXiv:0801.1800 [hep-ph]].

[2] I. Hinchliffe and F. E. Paige, “Lepton flavor violation at the CERN LHC,” Phys. Rev. D 63 (2001) 115006 [hep-ph/0010086]; R. Allahverdi, B. Dutta, T. Kamon and A. Krislock, “Lepton Flavor Violation at the Large Hadron Collider,” arXiv:1203.3276 [hep-ph].

K. Hamaguchi and A. Ibarra, “Probing lepton flavor violation in slepton NLSP scenarios,” JHEP 0502 (2005) 028 [hep-ph/0412229];

S. Kaneko, J. Sato, T. Shimomura, O. Vives and M. Yamanaka, “Measuring Lepton Flavour Violation at LHC with Long-Lived Slepton in the Coannihilation Region,” Phys. Rev. D 78 (2008) 116013 [arXiv:0811.0703 [hep-ph]];

A. Bartl, K. Hidaka, K. Hohenwarter-Sodek, T. Kernreiter, W. Majerotto and W. Porod, “Test of lepton flavor violation at LHC,” Eur. Phys. J. C 46 (2006) 783 [hep-ph/0510074].

[3] G. Aad et al. [ATLAS Collaboration], “Search for lepton flavour violation in the emu continuum with the ATLAS detector in sqrt(s) = 7 TeV pp collisions at the LHC,” Eur. Phys. J. C 72 (2012) 2040 [arXiv:1205.0725 [hep-ex]]; V. M. Abazov et al. [D0 Collaboration], “Search for sneutrino production in emu final states in 5.3 fb$^{-1}$ of $p\bar{p}$ collisions at sqrt(s) =1.96 TeV,” Phys. Rev. Lett. 105 (2010) 191802 [arXiv:1007.4835 [hep-ex]].

[4] F. del Aguila and J. A. Aguilar-Saavedra, “Distinguishing seesaw models at LHC with multi-lepton signals,” Nucl. Phys. B 813 (2009) 22 [arXiv:0808.2468 [hep-ph]]; A. G. Akeroyd, C. -W. Chiang and N. Gaur, “Leptonic signatures of doubly charged Higgs boson production at the LHC,” JHEP 1011 (2010) 005 [arXiv:1009.2780 [hep-ph]].

[5] M Giffels et al. [CMS Collaboration], “Lepton Flavour Violation in the Neutrinoless Decay with the CMS Experiment,” CMS-CR-2009-013.

[6] “Implications of LHCb measurements and future prospects”, CERN workshop, 16-18 april 2012. http://indico.cern.ch/conferenceDisplay.py?confId=176118
[7] L. Serin and R. Stroynowski [ATLAS Collaboration], “Study of lepton number violating decay $\tau \rightarrow \mu \gamma$ in ATLAS,” ATL-PHYS-97-114, ATL-GE-PN-114.

[8] S. Kanemura, T. Ota and K. Tsumura, “Lepton flavor violation in Higgs boson decays under the rare tau decay results,” Phys. Rev. D 73 (2006) 016006 [hep-ph/0505191];
S. Davidson and G. J. Grenier, “Lepton flavour violating Higgs and tau to mu gamma,” Phys. Rev. D 81 (2010) 095016 [arXiv:1001.0434 [hep-ph]].

[9] K. A. Assamagan, A. Deandrea and P. -A. Delsart, “Search for the lepton flavor violating decay $A^0/H^0 \rightarrow \tau^\pm \mu^\mp$ at hadron colliders,” Phys. Rev. D 67 (2003) 035001 [hep-ph/0207302].

[10] A. Goudelis, O. Lebedev and J. -h. Park, “Higgs-induced lepton flavor violation,” Phys. Lett. B 707 (2012) 369 [arXiv:1111.1715 [hep-ph]].

[11] A. Brignole and A. Rossi, “Anatomy and phenomenology of mu-tau lepton flavor violation in the MSSM,” Nucl. Phys. B 701 (2004) 3 [hep-ph/0404211].

[12] W. Buchmuller and D. Wyler, “Effective Lagrangian Analysis of New Interactions and Flavor Conservation,” Nucl. Phys. B 268 (1986) 621.

[13] R. Akers et al. [OPAL Collaboration], “A Search for lepton flavor violating Z0 decays,” Z. Phys. C 67 (1995) 555.

[14] P. Abreu et al. [DELPHI Collaboration], “Search for lepton flavor number violating Z0 decays,” Z. Phys. C 73 (1997) 243.

[15] G. Abbiendi et al. [OPAL Collaboration], “Search for lepton flavor violation in e+ e- collisions at s**(1/2) = 189-GeV - 209-GeV,” Phys. Lett. B519 (2001) 23-32 [hep-ex/0109011].

[16] B. Aubert et al. [BABAR Collaboration] , “Searches for Lepton Flavor Violation in the Decays $\tau^\pm \rightarrow e^\pm e^+e^-$,” Phys. Rev. Lett. 104 (2010) 021802 [arXiv:0908.2381 [hep-ex]]; K. Hayasaka et al. [Belle Collaboration], “New search for $\tau \rightarrow e\gamma$ and $\tau \rightarrow \mu \gamma$ decays at Belle,” Phys. Lett. B666 (2008) 16-22 [arXiv:0705.0650 [hep-ex]].

[17] J. Adam et al. [MEG collaboration], “New limit on the lepton-flavour violating decay $\mu^+ \rightarrow e^+\gamma$,” Phys. Rev. Lett. 107 (2011) 171801 [arXiv:1007.5547 [hep-ex]].
[25] J. M. Campbell, R. K. Ellis and C. Williams, “Vector boson pair production at the LHC,” JHEP 1107 (2011) 018 [arXiv:1105.0020 [hep-ph]].

[26] T. Sjostrand, S. Mrenna and P. Z. Skands, “A Brief Introduction to PYTHIA 8.1,” Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820 [hep-ph]].

[27] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, “MadGraph 5 : Going Beyond,” JHEP 1106 (2011) 128 [arXiv:1106.0522 [hep-ph]].

[28] J. Pumplin et al., “New generation of parton distributions with uncertainties from global QCD analysis,” JHEP 0207, 012 (2002) [arXiv:hep-ph/0201195];
D. Stump et al., “Inclusive jet production, parton distributions, and the search for new physics,” JHEP 0310, 046 (2003) [arXiv:hep-ph/0303013].

[29] S. Ovyn, X. Rouby and V. Lemaitre, “DELPHES, a framework for fast simulation of a generic collider experiment,” arXiv:0903.2225 [hep-ph].

[30] G. L. Bayatian et al. [CMS Collaboration], “CMS physics: Technical design report,” CERN-LHCC-2006-001.

[31] M. Cacciari, G. P. Salam and G. Soyez, “FastJet user manual,” Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097 [hep-ph]].

[32] T. Junk, “Confidence level computation for combining searches with small statistics,” Nucl. Instrum. Meth. A 434 (1999) 435 [hep-ex/9902006];
A. Read, “Modified Frequentist Analysis of Search Results (The CLs Method),” CERN-2000-005 (2000).

[33] V. Khachatryan et al. [CMS Collaboration], “Measurements of Inclusive W and Z Cross Sections in pp Collisions at sqrt(s)=7 TeV,” JHEP 1101 (2011) 080 [arXiv:1012.2466 [hep-ex]]; G. Aad et al. [ATLAS Collaboration], “Measurement of the inclusive W+- and Z/gamma cross sections in the electron and muon decay channels in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector,” Phys. Rev. D 85 (2012) 072004 [arXiv:1109.5141 [hep-ex]].