CONSTRUCTION OF SEPARATELY CONTINUOUS FUNCTIONS
WITH GIVEN RESTRICTION

V.V.MYKHAYLYUK

Abstract. It is solved the problem on constructed of separately continuous
functions on product of two topological spaces with given restriction. In partic-
ular, it is shown that for every topological space \(X \) and first Baire class function
\(g : X \to \mathbb{R} \) there exists separately continuous function \(f : X \times X \to \mathbb{R} \) such
that \(f(x, x) = g(x) \) for every \(x \in X \).

1. Introduction

It ia well-known (see [1]) that the diagonals of separately continuous functions
of two real variables are exactly the first Baire functions. It is shown in [2] that for
every topological space \(X \) with the normal square \(X^2 \) and \(G_\delta \)-diagonal and every
function \(g : X \to \mathbb{R} \) of the first Baire class there exists a separately continuous
function \(f : X \times X \to \mathbb{R} \), for which \(f(x, x) = g(x) \), i.e. every the first Baire class
function on the diagonal can be extended to a separately continuous function on
all product. Analogous question for functions of \(n \) variables was considered in [3].

On other hand, in the investigations of separately continuous functions \(f : X \times Y \to \mathbb{R} \) defined on the product of topological spaces \(X \) and \(Y \) the fol-
lowing two topologies naturally arise (see [4]): the separately continuous topol-
ygy \(\sigma \) (the weakest topology with respect to which all functions \(f \) are continu-
ous) and the cross-topology \(\gamma \) (it consists of all sets \(G \) for which all \(x \)-sections
\(G_x = \{ y \in Y : (x, y) \in G \} \) and \(y \)-sections \(G^y = \{ x \in X : (x, y) \in G \} \) are open in \(Y \)
and \(X \) respectively). Since the diagonal \(\Delta = \{(x, x) : x \in \mathbb{R} \} \) is a closed discrete
set in \((\mathbb{R}^2, \sigma)\) or in \((\mathbb{R}^2, \gamma)\) and not every function defined on \(\Delta \) can be extended
to a separately continuous function on \(\mathbb{R}^2 \), even for \(X = Y = \mathbb{R} \) the topologies \(\sigma \) and \(\gamma \) are not normal (moreover, \(\gamma \) is not regular [4,5]). Besides, every separately
continuous function \(f : X \times Y \to \mathbb{R} \) is a Baire class function for a wide class of
the products \(X \times Y \), in particular, if at least one of the multipliers is matrizable
[6]. Thus, the following question naturally arises: for which sets \(E \subseteq X \times Y \) and
\(\sigma \)-continuous (\(\gamma \)-continuous) function \(g : E \to \mathbb{R} \) of the first Baire class there exists
a separately continuous function \(f : X \times Y \to \mathbb{R} \) for which the restriction \(f|_E \)
coincides with \(g \)?

In this paper we generalize an approach proposed in [2] and solve the problem
formulated above for sets \(E \) of some type in the product of topological spaces.

2000 Mathematics Subject Classification. Primary 54C08, 54C30, 54C05.
Key words and phrases. separately continuous functions, first Baire class function, diagonal of
mapping.
2. Notions and auxiliary statements

A set $A \subseteq X$ has the extension property in a topological space X, if every continuous function $g : A \to [0, 1]$ can be extended to a continuous function $f : X \to [0, 1]$. According to Tietze-Uryson theorem [7, p.116], every closed set in a normal space has the extension property.

Lemma 2.1. Let sets X_1 and Y_1 have the extension property in a topological spaces X and Y respectively, $e : X_1 \to Y_1$ be a homeomorphism, $E = \{(x, e(x)) : x \in X_1\}$ and $g : E \to [-1, 1]$ be a continuous function. Then there exist continuous functions $f : X \times Y \to [-1, 1]$ and $h : X \times Y \to [-1, 1]$, which satisfy the following conditions:

(i) $f|E = g$;
(ii) $E \subseteq h^{-1}(0)$;
(iii) for every $x', x'' \in X$ and $y', y'' \in Y$ if $x' = x''$ or $y' = y''$ then $|f(x', y') - f(x'', y'')| = |h(x', y') - h(x'', y'')|$.

Proof. Consider the continuous function $\varphi : X_1 \to [-1, 1]$ and $\psi : Y_1 \to [-1, 1]$, which defined by: $\varphi(x) = g(e(x), e(x))$, $\psi(y) = g(e^{-1}(y), y)$. Since X_1 and Y_1 have the extension property in X and Y respectively, there exist continuous functions $\hat{\varphi} : X \to [-1, 1]$ and $\hat{\psi} : Y \to [-1, 1]$ such that $\hat{\varphi}|_{X_1} = \varphi$ and $\hat{\psi}|_{Y_1} = \psi$. Put $h(x, y) = \frac{\hat{\varphi}(x) + \hat{\psi}(y)}{2}$ and $h(x, y) = \frac{\hat{\varphi}(x) - \hat{\psi}(y)}{2}$. Clearly that f and h are continuous on $X \times Y$ and valued in $[-1, 1]$. Moreover, for every point $p = (x, y) \in E$ we have $\hat{\varphi}(x) = \varphi(x) = g(y) = \psi(y) = \hat{\psi}(y)$. Therefore $f|E = g$ and $h|E = 0$, i.e. the conditions (i) and (ii) are hold.

Let $x', x'' \in X$ and $y, y'' \in Y$. Then

$$f(x', y) - f(x'', y) = \frac{\hat{\varphi}(x') - \hat{\varphi}(x'')}{2} = h(x, y') - h(x, y'').$$

If $x \in X$ and $y', y'' \in Y$, then

$$f(x, y') - f(x, y'') = \frac{\hat{\psi}(y') - \hat{\psi}(y'')}{2} = h(x, y') - h(x, y'').$$

Thus, the condition (iii) is holds and lemma is proved. \qed

In the case if the set E satisfies a compactness-type condition we will use the following proposition.

Lemma 2.2. Let X be a topological space, E be a pseudocompact set in X, $(f_n)_{n=1}^{\infty}$ be a sequence of continuous functions $f_n : X \to \mathbb{R}$ which pointwise converges on the set E. Then there exists a functionally closed set $F \subseteq X$ such that $E \subseteq F$ and the sequence $(f_n)_{n=1}^{\infty}$ pointwise converges on the set F.

Proof. Consider the diagonal mapping

$$f = \Delta_{n \in \mathbb{N}} f_n : X \to \mathbb{R}^\mathbb{N}, \ f(x) = (f_n(x))_{n \in \mathbb{N}}.$$

Since the set E is pseudocompact and f is continuous, the set $f(E)$ is a pseudocompact set in the metrizable space $\mathbb{R}^\mathbb{N}$. Therefore $f(E)$ is closed and the set $F = f^{-1}(f(E))$ is functionally closed. It remains to verify that the sequence $(f_n)_{n=1}^{\infty}$ pointwise converges on F. Let $x \in F$. Then there exists an $x_1 \in E$ such that $f(x) = f(x_1)$, i.e. $f_n(x) = f_n(x_1)$ for every $n \in \mathbb{N}$. Since the sequence $(f_n(x_1))_{n=1}^{\infty}$ is convergent, the sequence $(f_n(x))_{n=1}^{\infty}$ is convergent too. \qed
The following proposition we will use in a final stage of the construction of separately continuous functions with the given restriction.

Lemma 2.3. Let X be a topological space, F be a functionally closed set in X, $(h_n)_{n=1}^\infty$ be a sequence of continuous functions $h_n : X \to \mathbb{R}$ such that $F \subseteq h_n^{-1}(0)$ for every $n \in \mathbb{N}$. Then there exists a locally finite partition of the unit $(\varphi_n)_{n=0}^\infty$ on G such that the supports $G_n = \text{supp}\varphi_n = \{ x \in G : \varphi_n(x) > 0 \}$ of functions φ_n satisfy the conditions:

(a) $G_n \cap F = \emptyset$ for every $n = 0, 1, 2, \ldots$;
(b) $G_n \subseteq h_n^{-1}((-\frac{1}{n}, \frac{1}{n}))$ for every $n = 1, 2, \ldots$.

Proof. Let $h_0 : X \to [0, 1]$ be a continuous function such that $F = h_0^{-1}(0)$. For every $n \in \mathbb{N}$ we put

$$A_n = \bigcap_{k=0}^n h_k^{-1} \left((-\frac{1}{n}, \frac{1}{n}) \right), \quad B_n = \bigcap_{k=0}^n h_k^{-1} \left([-\frac{1}{n}, \frac{1}{n}] \right),$$

$$G_n = A_n \setminus B_{n+2} \text{ and, moreover, } G_0 = G \setminus B_2.\text{ Clearly that all sets } G_n \text{ are functionally open and } G_n \subseteq h_n^{-1}((-\frac{1}{n}, \frac{1}{n})) \text{ for every } n \in \mathbb{N}, \text{ i.e. the condition (b) holds. Note that}\text{ }$$

$$\bigcap_{n=1}^\infty A_n = \bigcap_{n=1}^\infty B_n = \bigcap_{n=0}^\infty h_n^{-1}(0) = F.$$

Since $A_{n+1} \subseteq B_{n+1} \subseteq A_n$ for every $n \in \mathbb{N}$,

$$A_n \setminus A_{n+1} \subseteq A_n \setminus B_{n+2} \subseteq A_n \setminus A_{n+2} = (A_n \setminus A_{n+1}) \cup (A_{n+1} \setminus A_{n+2}).$$

Therefore

$$\bigcup_{n=1}^\infty G_n = \bigcup_{n=1}^\infty (A_n \setminus B_{n+2}) = \bigcup_{n=1}^\infty (A_n \setminus A_{n+1}) = A_1 \setminus \left(\bigcap_{n=1}^\infty A_n \right) = A_1 \setminus F.$$

Thus, $\bigcup_{n=0}^\infty G_n = (G \setminus B_2) \cup (A_1 \setminus F) = G.$

We show that the family $(G_n : n = 0, 1, \ldots)$ is locally finite on G. Let $x \in G$, i.e. $h_0(x) \neq 0$. We choose $n_0 \in \mathbb{N}$ such that $\frac{1}{n_0} < |h_0(x)|$. Then $x \notin B_{n_0}$ and the set $G \setminus B_{n_0}$ is a neighborhood of x. On other hand, $G_n \subseteq A_n \subseteq B_{n_0}$ for every $n \geq n_0$. Therefore $G_n \cap (G \setminus B_{n_0}) = \emptyset$ for every $n \geq n_0$. Thus, the family $(G_n : n = 0, 1, \ldots)$ is locally finite at the point x.

Since the sets G_n are functionally open, there exist continuous functions $\psi_n : X \to [0, 1]$ such that $G_n = \psi_n^{-1}([0, 1])$. The function $\psi : G \to [0, +\infty)$ which defined by $\psi(x) = \sum_{n=0}^\infty \psi_n(x)$ is continuous, moreover, $\text{supp}\psi = G$. For every $x \in G$ and $n = 0, 1, \ldots$ we put $\varphi_n(x) = \frac{\psi_n(x)}{\psi(x)}$. The functions φ_n are continuous and formed a locally finite partition of the unit on G, moreover $G_n = \text{supp}\varphi_n$.

It remains to verify the condition (a). Since $G_n \subseteq X \setminus B_{n+2} \subseteq X \setminus A_{n+2}$ and the set $X \setminus A_{n+2}$ is closed, $G_n \subseteq X \setminus A_{n+2}$, i.e. $G_n \cap A_{n+2} = \emptyset$. Moreover, $F \subseteq A_{n+2}$, therefore $\overline{G_n \cap F} = \emptyset$ for every $n = 0, 1, \ldots$. □
3. Main results

Theorem 3.1. Let sets X_1 and Y_1 have the extension property in topological spaces X and Y respectively, $e : X_1 \to Y_1$ be a homeomorphism, $E = \{(x, e(x)) : x \in X_1\}$, $g : E \to R$ be the first Baire class function and at least one of the following conditions: E is pseudocompact, E is functionally closed in $X \times Y$, X_1 is functionally closed in X, Y_1 is functionally closed in Y holds. Then there exists a separately continuous function $f : X \times Y \to R$ such that $f|_E = g$.

Proof. We take a sequence of continuous functions $g_n : E \to [-n, n]$ which pointwise converges to the function g and use Lemma 2.1. We obtain a sequence of continuous functions $f_n : X \times Y \to [-n, n]$ and $h_n : X \times Y \to [-n, n]$ which satisfy the following conditions (i)-(iii).

We show that the set E is contained in some functionally closed set F_1 on which the sequence $(f_n)_{n=1}^{\infty}$ pointwise converges. If E is functionally closed, then $F_1 = E$. It follows from Lemma 2.2 the existence of such set F_1 for pseudocompact set E. It remains to verify this in the case when X_1 or Y_1 is functionally closed in X or Y respectively. Let X_1 is functionally closed in X. Now we put

$$F_1 = (X_1 \times Y) \cap \left(\bigcap_{n=1}^{\infty} h_n^{-1}(0) \right).$$

It follows from the property (ii) that E is contained in a functionally closed set F_1. We take a point (x, y) from the set F_1. Using the condition (iii) of Lemma 2.1 we obtain $|f_n(x, y) - f_n(x, e(x))| = |h_n(x, y) - h_n(x, e(x))| = 0$. Hence, $f_n(x, y) = f_n(x, e(x))$. Since the sequence $(f_n)_{n=1}^{\infty}$ pointwise converges on E, the sequence $(f_n(x, y))_{n=1}^{\infty}$ converges, because $(x, e(x)) \in E$.

Now we use Lemma 2.3 to the functionally closed set

$$F = F_1 \cap \left(\bigcap_{n=1}^{\infty} h_n^{-1}(0) \right)$$

in the space $X \times Y$ and to the sequence of continuous functions h_n and obtain a locally finite partition of the unit $(\varphi_n)_{n=0}^{\infty}$ on $G = (X \times Y) \setminus F$, which satisfies the conditions (a) and (b).

Let $f_0 \equiv 0$ on $X \times Y$. We consider the function

$$f(x, y) = \begin{cases} \sum_{n=0}^{\infty} \varphi_n(x, y)f_n(x, y), & \text{if } (x, y) \in G, \\ \lim_{n \to \infty} f_n(x, y), & \text{if } (x, y) \in F. \end{cases}$$

Since $(\varphi_n)_{n=0}^{\infty}$ is a locally finite partition of the unit on the set G and all functions f_n are continuous, the function f is correctly defined and continuous on the set G. Note that $F \subseteq F_1$. Therefore the sequence $(f_n)_{n=0}^{\infty}$ pointwise converges on F and the function f correctly defined on F. Moreover, since $E \subseteq h_n^{-1}(0)$ for every n and $E \subseteq F_1$, $E \subseteq F$ and $f|_E = \lim_{n \to \infty} f_n|_E = \lim_{n \to \infty} g_n = g$.

It remains to verify that the function f is separately continuous at points of the set F. Let $p_0 = (x_0, y_0) \in F \setminus \varepsilon > 0$. We choose $n_0 \in N$ such that $\frac{1}{n_0} < \frac{\varepsilon}{2}$ and $|f_n(p_0) - f(p_0)| < \frac{\varepsilon}{2}$ for every $n \geq n_0$. It follows from the condition (a) that the set

$$W = X \times Y \setminus \left(\bigcup_{n=0}^{n_0} G_n \right),$$

...
where \(G_n = \text{supp} \varphi_n \), is an open neighborhood of \(p_0 \) in \(X \times Y \). We take a neighborhood \(U \) of \(x_0 \) in \(X \) such that \(U \times \{y_0\} \subseteq W \). Let \(x \in U \). If \(p = (x, y_0) \in F \), then \(h_n(p) = 0 \) for every \(n \in \mathbb{N} \). Then according to the condition (iii), we obtain
\[
|f_n(p) - f_n(p)| = |h_n(p_0) - h_n(p)| = 0, \text{ i.e. } f_n(p_0) = f_n(p).
\]
Therefore \(f(p_0) = f(p) \).

If \(p \notin F \), then
\[
f(p) = \sum_{n=0}^{\infty} \varphi_n(p)f_n(p) = \sum_{n=n_0}^{\infty} \varphi_n(p)f_n(p),
\]
because \(p \in W \). Then
\[
|f(p_0) - f(p)| = \left| \sum_{n=n_0}^{\infty} \varphi_n(p)(f(p_0) - f_n(p)) + \sum_{n=n_0}^{\infty} \varphi_n(p)f_n(p) - \sum_{n=n_0}^{\infty} \varphi_n(p)f_n(p) \right|
\]
\[
\leq \sum_{n=n_0}^{\infty} \varphi_n(p)f_n(p) \leq \sum_{n=n_0}^{\infty} \varphi_n(p)|f(p_0) - f_n(p)| +
\]
\[
+ \sum_{n=n_0}^{\infty} \varphi_n(p)|f_n(p) - f_n(p)| < \sum_{n=n_0}^{\infty} \varphi_n(p) \cdot \frac{\varepsilon}{2} +
\]
\[
+ \sum_{n=n_0}^{\infty} \varphi_n(p)|h_n(p_0) - h_n(p)| = \frac{\varepsilon}{2} + \sum_{n=n_0}^{\infty} \varphi_n(p)|h_n(p)|.
\]

It follows from the property (b) of sets \(G_n \) that if \(\varphi_n(p) \neq 0 \), then \(|h_n(p)| < \frac{1}{n} \).

Thus,
\[
\sum_{n=n_0}^{\infty} \varphi_n(p)|h_n(p)| \leq \sum_{n=n_0}^{\infty} \varphi_n(p) \cdot \frac{1}{n} \leq \frac{1}{n_0} \sum_{n=n_0}^{\infty} \varphi_n(p) = \frac{1}{n_0} < \frac{\varepsilon}{2}.
\]

Hence, \(|f(p_0) - f(p)| < \varepsilon \). Thus, \(f \) is continuous at \(p_0 \) with respect to \(x \).

The continuity of \(f \) at \(p_0 \) with respect to \(y \) can be proved analogously. Thus, \(f \) is separately continuous and the theorem is proved.

In the case of \(X = Y = X_1 = Y_1 \) we obtain the following theorem which generalized the result from \([2]\).

Theorem 3.2. Let \(X \) be a topological space and \(g : X \to \mathbb{R} \) be a function of the first Baire class. Then there exists a separately continuous function \(f : X \times X \to \mathbb{R} \) such that \(f(x, x) = g(x) \) for every \(x \in X \).

4. Functions on the Product of Compacts

Now we consider the case when \(X \) and \(Y \) satisfy compactness type conditions. A set \(E \) in a product \(X \times Y \) is called horizontally and vertically one-pointed if for every \(x \in X \) and \(y \in Y \) the sets \(E \cap \{x\} \times Y \) and \(E \cap (X \times \{y\}) \) are at most countable and horizontally and vertically \(n \)-pointed if corresponding sets contain at most \(n \) elements.

Theorem 4.1. Let \(X \) and \(Y \) be compacts, \(E \) be a closed horizontally and vertically one-pointed set in \(X \times Y \) and \(g : E \to \mathbb{R} \) be a function of the first Baire class. Then there exists a separately continuous function \(f : X \times Y \to \mathbb{R} \), for which \(f|_E = g \).
Proof. Since the set E is horizontally and vertically one-pointed, the projections the compact set E to the axis X and Y are continuous injective mappings. Hence, E is the graph of a homeomorphism $e : X_1 \to Y_1$, where X_1 and Y_1 are the projections of E on X and Y respectively. Now the existence of desired function f follows from Theorem 3.1. \hfill \Box

Theorem 4.2. Let X and Y be a locally compact spaces such that $X \times Y$ be a paracompact, E be a closed horizontally and vertically one-pointed set and $g : E \to \mathbb{R}$ be the first Baire class function. Then there exists a separately continuous function $f : X \times Y \to \mathbb{R}$ for which $f|_E = g$.

Proof. For every $p = (x, y) \in X \times Y$ we choose open neighborhoods U_p and V_p of x and y in X and Y respectively such that the closure $X_p = \overline{U_p}$ and $Y_p = \overline{V_p}$ are compacts and the set $E_p = E \cap (X_p \times Y_p)$ is horizontally and vertically one-pointed. According to Theorem 1.2 there exists a separately continuous function $f_p : X_p \times Y_p \to \mathbb{R}$ for which $f_p|_{E_p} = g|_{E_p}$. Since the space $X \times Y$ is a paracompact, there exists a partition of the unit $(\varphi_i : i \in I)$ on $X \times Y$ which is subordinated to the open cover $(W_p = U_p \times V_p : p \in X \times Y)$ of $X \times Y$ [7, p.447]. For every $i \in I$ we choose $p_i \in X \times Y$ such that $\text{supp} \varphi_i \subseteq W_{p_i}$ and put

$$g_i(x, y) = \begin{cases} f_p(x, y), & \text{if } (x, y) \in W_{p_i}, \\ 0, & \text{if } (x, y) \notin W_{p_i}. \end{cases}$$

Note that the functions $\varphi_i g_i$ are separately continuous on $X \times Y$ and $(\varphi_i g_i)|_E = (\varphi_i|_E)g$. Then the function $f = \sum_{i \in I} \varphi_i g_i$ is the required. \hfill \Box

5. Example

Finally we give an example which show the essentiality of conditions under the set E in Theorem 1.1.

Let $X = Y = [0, 1]$, $E_1 = \{((2k-1)/2^n, (2k-1)/2^n + 1/2^{n+1}) : k = 1, \ldots, 2^n-1, n \in \mathbb{N}\}$, $E_2 = \{(x, x) : x \in X\}$, $E = E_1 \cup E_2$, $g : E \to \mathbb{R}$, $g(x) = \begin{cases} 1, & x \in E_1, \\ 0, & x \in E_2. \end{cases}$ Clearly that E is a closed horizontally and vertically 2-pointed set in $X \times Y$ and g is a function of the first Baire class. Since the set E_1 is dense in E, the set $D(g)$ of discontinuity points set of the function g coincides with E. Therefore the projections of $D(g)$ on the axis X and Y coincide with X and Y respectively. On the other hand, it is well-known that for every separately continuous function $f : X \times Y \to \mathbb{R}$ the set $D(f)$ of points of discontinuity of f is contained in the product $A \times B$ of meagre sets $A \subseteq X$ and $B \subseteq Y$ respectively. Thus, $D(g) \not\subseteq D(f)$ and the function f can not be extension of the function g.

References

1. Baire R. *Sur les fonctions de variable reelles* An. Mat.Pura Appl., ser. 3 (1899), 1-123.
2. Mykhaylyuk V.V., Sobchuk O.V. *Functions with diagonal of finite Baire class* Mat.Studii. 14,N1 (2000), 23-28 (in Ukrainian).
3. Maslyuchenko V.K., Mykhaylyuk V.V., Sobchuk O.V. *Construction of a separately continuous function of n variables with given diagonal* Mat.Studii. 12,N1 (1999), 101-107 (in Ukrainian).
4. Henriksen M., Woods R.G. Separate versus joint continuity: A tale of four topologies Top. Appl. 97,N1-2 (1999) 175-205.
5. Mykhaylyuk V.V. Separately continuous topology and a generalization of a Sierpinski’s theorem Mat. Studii. 14,N2 (2000), 193-196 (in Ukrainian).
6. Rudin W. Lebesgue first theorem Math. Analysis and Applications, Part B. Edited by Nachbin.
 in Math. Supplem. Studies 78. - Academic Press (1981), 741-747.
7. Engelking R. General topology M. Mir, 1986 (in Russian).

DEPARTMENT OF MATHEMATICS, CHERNIVTSI NATIONAL UNIVERSITY, STR. KOTSJUBYN’SKOGO
2, CHERNIVTSI, 58012 UKRAINE
E-mail address: vmykhaylyuk@ukr.net