Perinatal stress, brain inflammation and risk of autism—Review and proposal

Asimenia Angelidou¹,⁶,⁸†, Shahrzad Asadi¹,⁵†, Konstantinos-Dionysios Alysandratos¹,⁶,⁹, Anna Karagkouni¹, Stella Kourembanas⁷, and Theoharis C. Theoharides¹,²,³,⁴,⁶*
children may be affected by ASD (http://www.cdc.gov/Features/CountingAutism/). In the majority of cases, however, the cause of ASD is unknown [8], in spite of the apparent increase in ASD prevalence [9-11]. We propose that a number of perinatal factors contribute to focal brain inflammation and thus ASD (Figure 1).

Prematurity

The contribution of perinatal, genetic, and immune factors in ASD was reviewed [12,13]. Premature births (less than 37 weeks gestation) have been increasing and currently account for 15% of all births in the US [14]. Infants less than 28 weeks gestation are at the highest risk for long-term neurologic problems. Placental dysfunction is a major cause of prematurity, along with intra-uterine infections and auto-immunity, which may also contribute to autism in the offspring due to anoxia [15]. An additional 5-8% of deliveries are complicated by pre-eclampsia or gestational diabetes, which may lead to placental insufficiency, abnormal growth, and postnatal metabolic imbalance [16]. *In utero* inflammation or infection can lead to preterm labor and premature birth [17-19]. A retrospective study that investigated rates of autism in children born in Atlanta, GA through the Metropolitan Atlanta Developmental Disabilities Surveillance Program (1981–93) who survived to three years of age, reported that birth prior to 33 weeks gestation was associated with a two-fold higher risk of autism [20]. A prospective study of all births less than 26 weeks gestation in 1995 in the United Kingdom and Ireland also concluded that preterm children are at increased risk for ASD in middle childhood, compared with their term-born classmates [21].

Neurodevelopmental problems due to prematurity

Infants born between 32 and 36 weeks account for a significant increase in the rate of prematurity in the recent years [22] and are also at risk for neurologic injury [23-26]. Studies evaluating neurobehavioral outcomes following preterm birth reveal a “preterm behavioral phenotype” characterized by inattention, anxiety and social interaction difficulties, and learning difficulties [27,28].

Intra-uterine inflammation [29] can also lead to fetal brain injury and is associated with long-term adverse neurodevelopmental outcomes for the exposed offspring [30], especially in premature infants [31,32]. Cerebellar hemorrhagic injury, in particular, is associated with a high prevalence of neurodevelopmental disabilities in infants surviving premature birth [33]. A recent study reported that neonatal jaundice was associated with ASD [34].

Figure 1 Diagrammatic representation of proposed events and interactions during the perinatal period that may contribute to autism. Placental dysfunction, as well as autoimmunity, maternal infection and gestational stress lead to prematurity. Defective neuronal development and susceptibility genes make the infant vulnerable to environmental triggers that activate mast cells to release mediators that disrupt the gut-blood–brain barriers causing brain inflammation. CRH, corticotropin-releasing hormone; IgE, immunoglobulin E; IL, interleukin; LPS, lipopolysaccharide; MCP-1, macrophage chemo-attractant protein-1; mtDNA, mitochondrial DNA; NT, neuropeptide; PCB, polychlorinated biphenyl; ROS, reactive oxygen species; SP, substance P; TNF, tumor necrosis factor.
Changes in the fetal brain lead to changes in gene expression patterns into the neonatal period. In fact, the lower the intelligence quotient (IQ), the more likely a child may display an ASD behavior [35]. One study of 1129 singleton children identified through school and health record review as having an ASD by age 8 years showed that mean IQ was significantly (p < 0.05) lower in preterm compared to term children, and term-born small-for-gestational age compared to appropriate-for-gestational age infants [36]. Gestational immune activation was reported to perturb social behaviors in genetically vulnerable mice [37].

Low birth weight and prematurity

Results from different studies strongly suggest that prematurity and/or low birth weight (LBW) increase the risk of ASD in the offspring. One prospective study assessed 91 very LBW (<1500 g) infants, who had been born preterm, at a mean age of 22 months, and found 26% of them were likely to develop autism as suggested by a positive modified checklist for autism in toddlers (M-CHAT) test [38]. Another study showed that the diagnostic prevalence of ASD in this LBW (<2000 g) preterm cohort was higher than that reported by the Centers for Disease Control and Prevention for 8-year-olds in the general US population in 2006 [39]. A recent study found a higher risk of infantile autism among children with LBW, but suggested that suboptimal birth conditions are not an independent risk factor for infantile autism that was increased for mothers older than 35 years, with foreign citizenship, and mothers who used medicine during pregnancy [40].

Perinatal factors contributing to higher risk of ASD

The conditions leading to premature birth may be more important than prematurity per se. For instance, the increased risk of ASD related to prematurity appeared to be mostly attributed to perinatal complications that occur more commonly among preterm infants, as shown in a cohort of 164 families with autistic children in New Jersey [41]. This was confirmed in a Swedish population-based case–control study [42]. Other population-based studies suggest that suboptimal birth conditions are not independent risk factors, but rather act as clusters to increase the risk of infantile autism [40]. A case–control population-based cohort study among Swedish children (born in 1974–1993) reported that the risk of autism was associated with daily maternal smoking in early pregnancy, maternal birth outside Europe and North America, cesarean delivery, being small-for-gestational age, a 5-minute APGAR score below 7, and congenital malformations; no association was found between autism and twin birth, head circumference, maternal diabetes, or season of birth [43].

Interestingly, a cohort study of infants born in Canada (between 1990–2002) concluded that perinatal risk factors (including prenatal, obstetrical and neonatal complications) may constitute independent risk factors for development of autism, but only for those children without a genetic susceptibility, while they appear not to influence autistic outcomes among genetically susceptible children [44]. Nevertheless, a meta-analysis on risk factors for autism concluded that there is insufficient evidence to implicate individual perinatal factors in ASD because significant association may have been observed by chance after multiple testing [45]. To the other extreme end of the spectrum, one paper had reported that estimated gestation greater than 42 weeks was associated with autism, but may play less of a role in high-functioning ASD individuals than suggested in studies of autism associated with severe retardation [46].

Obesity

Perinatal nutritional status was shown to be related to the epigenetic status in adulthood [47]. High weight gain in pregnancy has been considered an independent risk factor for ASD in the offspring [48]. This is interesting in view of the fact that obesity has been considered an inflammatory state [49] involving release of adipokines [50]. Leptin is higher in obese subjects [51,52] and elevated plasma leptin levels during pregnancy are indicative of placental dysfunction [53]. Elevated plasma leptin levels were reported in children with regressive autism (n = 37), compared with typically-developing controls (n = 50) [54]. Another paper reported significantly higher leptin values in 35 patients with autistic disorder aged 180 14.1 ± 5.4 years old versus controls both at baseline and after one year of follow-up [55]. Plasma levels of leptin were also significantly increased in Rett syndrome (n = 16) compared to healthy controls (n = 16), irrespective of obesity [55]. However, there is no evidence of either a direct relationship or any role in ASD pathogenesis.

In rats, neonatal leptin administration late in the phase of developmental plasticity was able to reverse the developmental programming [56]. Mast cells also express leptin and leptin receptors, a finding implicating paracrine or autocrine immunomodulatory effects of leptin on mast cells [57].

Genetics and environmental factors

Increasing evidence suggests that there are different ASD endophenotypes [58], possibly due to the many autism “susceptibility” genes identified [59]. In certain genetic diseases, such as Fragile X syndrome or tuberous sclerosis, autistic symptoms affect approximately 40-45% of patients [60]. Similarly, in Rett syndrome, almost 50% of patients develop ASD [61].
There is strong evidence of genetic predisposition with high rates of ASD in twins [62].

Nevertheless, a recent study of identical and fraternal twin pairs with autism showed that genetic susceptibility to ASD was lower than estimates from prior twin studies of autism, with environmental factors common to twins explaining about 55% of their risk for developing autism [63]. This partial penetration may be the result of interactions between susceptibility genes and “environmental” factors [10,64]. Environmental signals can activate intracellular pathways during early development and lead to epigenetic changes in neural function [65].

A number of mutations involving the regulatory molecule mTOR [66] and its negative control molecule Pten [67] have been linked to autism. In particular, mutations affecting mTOR have been associated with Tuberculous Sclerosis I & II, but also with macrocephaly and abnormal social interactions in other diseases, such as Cowden disease [67]. Activation of mTOR [68] and reduced Pten activity [69] are also associated with increased mast cell proliferation and function.

An epidemiologic study, nested within a cohort of 698 autistic children in Denmark, concluded that perinatal environmental factors and parental psychopathology act independently to increase the risk of autism [70]. Moreover, it was recently shown that use of psychotropic medications by the mother, especially in the third trimester of pregnancy, substantially increases the risk of ASD [71]. Finally, use of general anesthesia in the newborn period was recently shown to lead to neurodevelopmental problems, such as ADHD [72,73].

Environmental toxins such as mercury [74] and polychlorinated biphenyl (PCB) [75] have been implicated in developmental neurotoxicity [76] and have been associated with ASD. Both mercury and PCBs can also stimulate mast cells [77-79].

Oxidative stress
Several studies have suggested a link between oxidative stress and the immune response [80]. Maternal infection and inflammation can lead to oxidative stress, such as increased lipid peroxidation, but more importantly to alterations in the expression of many genes associated with adverse perinatal outcomes [81]. Oxidative stress initiated by environmental factors in genetically vulnerable individuals leads to impaired methylation and neurological deficits secondary to reductions in methylation capacity [52]. One study showed increased levels of plasma malondialdehyde, a marker of oxidative stress, in the blood of mothers who delivered preterm and in the cord blood of their preterm neonates, compared to the levels in samples from term deliveries [82]. Preterm birth was associated with increased generation of reactive oxygen species (ROS) [83]. In fact, a recent study identified an increase in the oxidative stress marker non-protein bound iron (NPBI) in the cord blood of 168 preterm newborns of gestational age 24–32 weeks [84].

A strong association between oxidative stress and autoimmunity was shown in a group of 44 Egyptian autistic children, almost 89% of whom had elevated plasma F2–isoprostane (a marker of lipid peroxidation) and/or reduced glutathione peroxidase (an anti-oxidant enzyme), compared to 44 age-matched controls [85]. Several groups have hypothesized that oxidative stress is the mechanism by which perinatal lipopolysaccharide (LPS) affects neurodevelopment in the offspring [86,87].

Brain region-specific increase in the oxidative stress markers, 3-nitrotyrosine (3-NT) and neurotrophin-3 (NT-3), especially in the cerebellum, were reported in ASD [88,89]. Another study evaluating the metabolic status of 55 children with ASD compared to 44 typically-developing children matched for age and sex reported decreased plasma levels of reduced glutathione and increased levels of oxidized glutathione, as well as low levels of S-adenosyl methionine, both major innate antioxidant enzymes [90]. Deficiencies in anti-oxidant enzymes might, in certain cases, be associated with mercury toxicity, which was shown to be tightly bound to and inactivate human thioredoxin [91]. In fact, cytosolic and mitochondrial redox imbalance was found in lymphoblastoid cells of ASD children compared to controls, an event exaggerated by exposure to thimerosal [92].

Psychological stress
A higher incidence of stressors at 21–32 weeks gestation, the embryological age at which pathological cerebellar changes are also seen in autism, was associated with offspring developing autism [93]. Postnatal stressors in the first 6 months of life, such as death of relatives, were associated with increased risk of ASD [94]. Variations in early maternal care could affect behavioral responses in the offspring by altering at least the methylation status of the glucocorticoid receptor gene promoter [95]. Maternal stress due to the first child developing autism may also contribute to children born within a year from this first child having a much higher ASD risk [96]. ASD patients have high anxiety levels and are unable to handle stress appropriately [97]. High evening cortisol levels positively correlated to daily stressors in children with autism [98]. Moreover, increase in age of autistic children correlated with increased cortisol levels during social interaction stress [99].

Stress typically results in secretion of corticotropin-releasing hormone (CRH) from the hypothalamus and regulates the hypothalamic-pituitary-adrenal (HPA) axis [100]. Increased plasma levels of CRH have been linked to preterm labor [102-103]. CRH not only was increased
in the serum of mothers who delivered preterm babies [101,103], but also correlated with the mother’s level of anxiety during that period of pregnancy [104]. Maternal serum CRH can cross the placenta, and potentially high amounts of CRH could be produced by the placenta itself, in response to external or intrauterine stress [105,106]. CRH may have an immunomodulatory role as an autocrine/paracrine mediator of inflammation during reproduction [107]. A number of cytokines, including IL-1 and IL-6, can trigger secretion of CRH from human cultured placental trophoblasts [108]. In turn, CRH stimulates IL-6 release from human peripheral blood mononuclear cells that infiltrate the fetal membranes and the placenta during intrauterine infection [109].

Acute stress also leads to high serum IL-6 that is mast cell-dependent [110]. Mast cell-derived cytokines, such as IL-6, can increase BBB permeability [110,111]. These effects may be related to the apparent compromise of the BBB in ASD patients, as indicated by the presence of circulating auto-antibodies against brain peptides [112-116]. Even though no studies have so far investigated the integrity of BBB in ASD, BBB disruption appears to precede any pathological or clinical symptoms associated with other brain inflammatory diseases, such as multiple sclerosis [117-119].

Mast cells have been implicated in inflammatory conditions that worsen by stress [120] and in regulating BBB permeability [110]. BBB disruption due to stress is dependent on both CRH [121] and mast cells [122]. CRH also increases intestinal permeability of human colonic biopsies [123], and has been associated with intestinal inflammation [124]. One of the early effects of immune CRH is the activation of mast cells and the release of several pro-inflammatory cytokines [125]. Increased circulating CRH, alone or with other molecules, could disrupt the gut-blood–brain barriers directly or through immune cell activation [126] and permit neurotoxic molecules to enter the brain and result in brain inflammation [127], thus contributing to ASD pathogenesis (Figure 1). CRH can also be secreted from immune cells [128], mast cells [129], skin [130,131] and post-ganglionic nerve endings [132], leading to pro-inflammatory effects [133,134]. Moreover, CRH released from hair follicles can trigger proliferation and maturation of mast cell progenitors [135]. These findings may help explain why many children with ASD report “allergic-like” symptoms often in the absence of sensitivity to typical allergens [136] that implies mast cell activation [137].

Maternal autoimmune diseases

The relationship between ASD and familial autoimmunity has long been recognized [138] and has been supported by at least three large population-based studies that utilized medical records and physician data. One case–control study, nested within a cohort of infants born in California (between 1995–1999), examined the association of “immune-related conditions” and reported that maternal psoriasis, asthma, hay fever and atopic dermatitis during the second trimester of pregnancy correlated with over two-fold increased risk of ASD in their children [139]. A study of a large pediatric population (n = 689,196, born in Denmark between 1993–2004), in which 3,325 children were diagnosed with ASD including 1,089 cases of infantile autism, confirmed an association between family history of type 1 diabetes, rheumatoid arthritis, as well as maternal celiac disease and ASD [140]. A significant association between parental rheumatic fever and ASD, as well as several significant correlations between maternal autoimmune diseases and ASD, were also reported in case–control studies (n = 1,227 ASD cases) based on 3 Swedish registries [141]. A preliminary report also indicated that mothers with mastocytosis, characterized by an increased number of activated mast cells in many organs [142,143], during pregnancy had a higher risk of delivering one or more children with ASD [144].

Auto-antibodies against brain proteins have also been reported in a number of mothers with children who developed ASD [145]. The transfer of such maternal auto-antibodies to the developing fetus during pregnancy could contribute to immune dysregulation and abnormal neurodevelopment in the offspring, possibly contributing to ASD [145-148]. One recent paper provided a different perspective. In this paper, maternal IgG reactivity to certain fetal brain proteins correlated strongly with diagnosis of autism (p = 0.0005), while reactivity to at least one or more proteins correlated strongly with a “broader” diagnosis of ASD [149].

Human studies investigating the role of perinatal infection in the pathogenesis of autism are limited, and have mostly addressed viral infections [150-152] especially rubella [151,153,154]. A nationwide study of children in Denmark (n > 20,000, born 1980–2005) reported an increased risk for ASD after maternal viral infection in the first trimester of pregnancy (adjusted hazard ratio = 2.98; CI: 1.29-7.15) or maternal bacterial infection in the second trimester of pregnancy (adjusted hazard ratio = 1.42; CI: 1.08-1.87) [155]. In spite of some anecdotal reports of the presence of xenotropic murine leukemia virus-related virus (XMRV) antibodies in autistic children, a recent publication detected no such virus in blood, brain or semen samples of ASD patients or their fathers [156]. Moreover, even though XMRV was reported to be present in as many as 60% of patients with chronic fatigue syndrome [157], recent reports have suggested that these findings may be due to contamination of laboratory reagents [158]. A number of rotaviruses have been isolated from many asymptomatic neonates [159] and could contribute to ASD.
Auto-inflammation in ASD children

Some form of autoimmunity has been suspected in ASD [85,160-162]. An endophenotype with complex immune dysfunction appears to be present both in autistic children and their non-autistic siblings [163]. As mentioned earlier, brain specific auto-antibodies are present in the plasma of many ASD individuals [112,164,165]. In a cohort of Egyptian autistic children, 54.5% had antineuronal antibodies [166]. The presence of such auto-antibodies suggests a loss of self-tolerance to neural antigens during early neurodevelopment, but their precise role in autism remains unknown [85,160-162]. In particular, a recent paper reported that about 40% of children (3.2 years old) from both the Autism Phenome Project and normotypic controls contained auto-antibodies against Macaque cerebellum Golgi neurons; there was no difference except that the children with auto-antibodies had higher scores for behavioral and emotional problems [167].

An inflammatory response in ASD is supported by a number of facts. TNF was increased almost 50 times in the cerebrospinal fluid (CSF) [168], and IL-6 gene expression was increased in the brain [169] of ASD children. CSF and microglia of ASD patients also had high levels of macrophage chemoattractant-protein-1 (MCP-1) [170], which is a potent chemo-attractant for mast cells [171]. In contrast, ASD plasma contained low levels of transforming growth factor-beta1 (TGF-β1) [172]. The clinical significance of such results is not clear given some findings from animal experiments. However, brain over-expression of TGF-β1 post-natally decreased social interaction in mice [173] but chronic brain TGF-β1 over-expression during adulthood led to opposite behavior in adult mice, a finding in agreement with reduced plasma TGF-β1 found in ASD patients. In line with the postnatal TGF-β1 expression worsening ASD-like symptoms in mice, TGF-β1 and IL-9 exacerbated excitotoxic brain lesions through mast cells in mice [174]. It is intriguing that mast cell-derived IL-9 exacerbates newborn brain toxic lesions [175], induces intestinal permeability and predisposes to oral antigen hypersensitivity in children [176]. One recent paper reported that IL-9 induces mast cell release of vascular endothelial growth factor (VEGF) [177] which also inhibits gut mast cell function [178].

Other studies have reported elevations of plasma cytokines [179,180]. However, these results have been variable and do not reflect similar changes in animal models of autism. We recently reported that neurtensin (NT) is increased in serum of young children with autism [181] and can stimulate mast cell secretion [182]. We also reported that NT can stimulate secretion of extracellular mitochondrial DNA, which was also increased in the serum of these ASD patients [183]. NT is a brain and gut peptide that contributes to gut inflammation due to acute stress [123] and also acts synergistically with CRH to increase vascular permeability [184], mostly due to the action of CRH to stimulate selective release of VEGF from mast cells [185].

This finding may add to the mitochondrial dysfunction reported in many patients with ASD [186,187]. This could relate to reduced energy production [188], decreased ability to buffer ROS [189], susceptibility to mercury neurotoxicity, and to increased TNF release [190,191] that may also be associated with extracellular mitochondrial DNA that was found to be increased in serum of young children with autism [183] and act as “autopathogen”.

Mast cells are well-known for their leading role in allergic reactions, during which they are stimulated by IgE binding to high-affinity receptors (FccRI), aggregation of which leads to degranulation and secretion of numerous pre-stored and newly-synthesized mediators, including IL-6 and TNF [192-197]. In addition to IgE, many substances originating in the environment, the intestine or the brain can trigger mast cell activation [137]. These include non-allergic environmental, infectious, neuro-hormonal and oxidative stress-related triggers, often involving release of mediators selectively, without degranulation [137,198].

Laboratory studies

Introduction of human systemic lupus erythematosus auto-antibodies to pregnant mice led to cortical impairment in their offspring [199]. Animal studies have shown that maternal immune activation (MIA) can cause both acute and lasting changes in behavior, CNS structure and function in the offspring [200]. Early life stress due to maternal separation in rats resulted in an altered brain-gut axis and was sufficient to increase blood concentrations of pro-inflammatory cytokines after a challenge with LPS [201]. A short period of restraint [202] or maternal deprivation stress [203] also increased the severity of experimental autoimmune encephalomyelitis in rodents. Maternal separation stress and CRH contributed to a dysfunctional mucosal barrier in rodents [204].

In a poly(I:C) mouse model for MIA, co-administration of anti-IL-6 antibody or use of IL-6−/− mice prevented the social deficits and associated gene expression changes in the brain of the offspring [205]. In addition to its direct detrimental effect on the placenta and fetal brain tissue, IL-1 also induces selective release of IL-6 from mast cells [206]. IL-1 receptor antagonism after systemic end-of-gestation exposure to LPS prevented neurodevelopmental anomalies in pregnant rats [207]. Bacterial LPS activates Toll-like receptor-4 (TLR-4) on immune cells leading to synthesis and release of TNF [197], IL-1 and IL-6 [18]. Moreover, viral double-stranded RNA like poly(I:C)
induces release of TNF and IL-6 without degranulation from mast cells through viral TLR-3 [208].

Conclusions
Prematurity, low birth weight and perinatal problems may contribute to increase risk of ASD. This status and susceptible genes, especially of the mTOR and Pten pathways, may make the infant more vulnerable to mast cell activation. Mast cells are now considered important in both innate and acquired immunity [209,210], as well as in inflammation [211,212], and obesity [213]. Such processes may define at least one ASD endophenotype that may be more amenable to therapy.

We propose that perinatal mast cell activation by environmental, infectious, neurohormonal and immune triggers could adversely affect neurodevelopment, disrupt the gut-blood–brain barriers, and contribute to focal brain inflammation and ASD (Figure 1). This premise could be further tested by investigating levels of CRH, NT and mtDNA in archived mother and infant blood and comparing the levels between those cases that eventually have children that develop ASD and neurotypic children. Moreover, well-designed studies could be conducted measuring potential biomarkers and providing evidence of allergic and non-allergic mast cell activation postnatally, and particularly at times of developmental regression. Reduction of stress during gestation and infancy, postnatally, and particularly at times of developmental regression. Mast cells are now considered important in inflammation [211,212], and obesity [213]. Such events and future directions with immunomodulatory therapy.

Acknowledgements
A.A. and K-D.A. were recipients of scholarships for postgraduate studies from the Hellenic State Scholarships Foundation (Athens, Greece).

Author details
1Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Molecular Physiology and Pharmacology, Tufts University School of Medicine and Tufts Medical Center, Boston, MA 02111, USA.
2Department of Biochemistry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA 02111, USA. 3Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA 02111, USA. 4Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA 02111, USA. 5Department of Pediatrics, University of Texas Southwestern, Childrens Medical Center, Dallas, TX 75235, USA. 6Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.

Received: 13 July 2011 Accepted: 28 May 2012
Published: 2 July 2012

References
1. Johnson CP, Myers SM: Identification and evaluation of children with autism spectrum disorders. Pediatrics 2007, 120:1183–1215.
2. Volkmar FR, State M, Klin A: Autism and autism spectrum disorders: diagnostic issues for the coming decade. J Child Psychol Psychiatry 2009, 50:108–115.
3. Matson JL, Kozowski AM: Autistic regression. Res Autism Spectr Disord 2010, 4:340–345.
4. Zappella M: Autistic regression with and without EEG abnormalities followed by favourable outcome. Brain Dev 2010, 32:739–745.
5. Fombonne E: Epidemiology of pervasive developmental disorders. Pediatr Rev 2009, 30:591–598.
6. Kogan MD, Blumberg SJ, Schieve LA, Perrin JM, Ghandour RM, Singh GK, Strickland BB, Trevathan E, van Dyk PC: Prevalence of parent-reported diagnosis of autism spectrum disorder among children in the US, 2007. Pediatrics 2009, 1195–11903.
7. Luft R, Elendic S, Hollier T: Somatostatin: both hormone and neurotransmitter? Diabetologia 1978, 14:1–13.
8. Levy SE, Mandell DS, Schultz RT: Autism. Lancet 2009, 374:1672–1638.
9. Durkin MS, Maenner MJ, Meaney FJ, Levy S, DiGuiseppi C, Nicholas JS, Kirby RS, Pinto-Martin JA, Schieve LA: Socioeconomic inequality in the prevalence of autism spectrum disorder: evidence from a U.S. cross-sectional study. PloS One 2010, 5:1951.
10. Herbert MR: Contributions of the environment and environmentally vulnerable physiology to autism spectrum disorders. Curr Opin Neurol 2010, 23:103–110.
11. Miles JH: Autism spectrum disorders-A genetics review. Genet Med 2011, 13:278–294.
12. Careaga M, Van de WJ, Ashwood P: Immune dysfunction in autism: a pathway to treatment. Neurotherapeutics 2010, 7:283–293.
13. Chez MG, Guido-Estrada N: Immune therapy in autism: historical experience and future directions with immunomodulatory therapy. Neurotherapeutics 2010, 7:293–301.
14. MacDorman MF, Declercq E, Zhang J: Obstetrical intervention and the singleton preterm birth rate in the United States from 1991–2006. Am J Public Health 2010, 100:2241–2247.
15. Vogdani A: Antibodies as predictors of complex autoimmune diseases and cancer. Int J Immunopharmacol Pharmacol 2008, 2:1337–346. Erratum in: Int J Immunopharmacol Pharmacol 2008 Oct-Dec;22(4):following 1051. PMID:18831922.
16. Jauniaux E, Van Oppenraaij RH, Burton GJ: Obstetric outcome after early placental complications. Curr Opin Obstet Gynecol 2010, 22:452–457.
17. Dubé A, Fransson E, Centini G, Andersson E, Byström B, Malmström A, Petraglia F, Svenmark-Björk E, Ekman-Ordeberg G: Pro-inflammatory
and anti-inflammatory cytokines in human preterm and term cerebral ripping. J Reprod Immunol 2010, 84:176–185.

18. Snegovskikh V, Schatz F, Arcuri T, Toti P, Kayisli UA, Mirk W, Guoyang L, Lockwood CJ, Norwitz ER: Intra-amniotic infection upregulates decidual cell vascular endothelial growth factor (VEGF) and neuropilin-1 and –2 expression: implications for infection-related preterm birth. Reprod Sci 2009, 16:767–782.

19. Thaxton JE, Nevers TA, Sharma S: TLR-mediated preterm birth in response to pathogenic agents. Infect Dis Obstet Gynecol 2010, 2010: –. 378472. Epub 2010 Aug 23.

20. Limperopoulos C, Basan H, Sullivan NR, Soul JS, Robertson RJ, Jr, Moore M, Ringer SA, Volpe JJ, du Plessis AJ: Positive screening for autism in early-preterm infants: prevalence and risk factors. Pediatrics 2008, 121:759–765.

21. Johnson S, Hollis C, Kochhar P, Hennessy E, Wolke D, Marlow N: Autism spectrum disorders in extremely preterm children. J Pediatr 2010, 156:525–531.

22. Martin JA: Preterm Births — United States, 2007, MMWR Surveill Sumw 2011, 60:78–79.

23. Adams-Chapman I: Neurodevelopmental outcome of the late preterm infant. Clin Perinatol 2008, 35:947–964.

24. Argyropoulou MI: Brain lesions in preterm infants: initial diagnosis and follow-up. Pediatr Radiol 2010, 40:811–818.

25. Valient P, Akin C, Aroc K, Brockow K, Butterfield JH, Carter MC, Castells M, Eribarino L, Hartman K, Lieberman P, Nedoszytko B, Orfao A, Schwabitz LB, Sotlar K, Sperr WR, Triggiani M, Valenta R, Horny HP, Metcalfe DD: Definitions, criteria and global classification of mast cell disorders with special reference to mast cell activation syndromes: a consensus proposal. Int Arch Allergy Immunol 2012, 157(3):215–25. Epub 2011 Oct 27.

26. Volpe JJ: The encephalopathy of prematurity-brain injury and impaired brain development inexcisibly intertwined. Semin Pediatr Neurol 2009, 16:167–178.

27. Johnson S, Marlow N: Preterm birth and childhood psychiatric disorders. Pediatr Res 2011, 69(5 Pt 2):1119–1126.

28. Limperopoulos C: Autism spectrum disorders in survivors of extreme prematurity. Clin Perinatol 2009, 36:791–805. vi.

29. Kandl AM, Favrais G, Gregersen P: Molecular mechanisms involved in injury to the preterm brain. J Child Neurol 2009, 24:1112–1118.

30. Ellovitz MA, Brown AG, Breen K, Anton K, Lautab M, Burd A: Intrauterine inflammation, insufficient to induce parturition, still evokes fetal and neonatal brain injury. J Dev Neurosci 2011, 29:653–671.

31. Lin CY, Chang YC, Wang ST, Lee TY, Lin CF, Huang CC: Altered inflammatory responses in preterm children with cerebral palsy. Ann Neurol 2010, 68:204–212.

32. Rivara N, Alarcon A, Iriodra M, Ibarra M, Poo P, Cusi V, Agut T, Pertietia A, Krauel X: Impact of histological chorioamnionitis, funisitis and clinical chorioamnionitis on neurodevelopmental outcome of preterm infants. Early Hum Dev 2011, 87(1):253–257. Epub 2011 Feb 26. PMID:21354722.

33. Limperopoulos C, Basset H, Gauvreaux K, Robertson RJ, Jr, Sullivan NR, Benson CB, Avery L, Stewart J, Soul JS, Ringer SA, Volpe JJ, duPlessis AJ: Does cerebellar injury in premature infants contribute to the high prevalence of long-term cognitive, learning, and behavioral disability in survivors? Pediatrics 2007, 120:584–593.

34. Amin SB, Smith T, Wang H: Is neonatal jaundice associated with Autism Spectrum Disorders: a systematic review. J Autism Dev Disord 2011, 41:445–1563.

35. Levy S, Zoltak B, Saelens T: A comparison of obstetrical records of autistic and nonautistic referrals for psychotechnical evaluations. J Autism Dev Disord 1988, 18:573–581.

36. Schieve LA, Bax J, Rice CE, Durkin M, Kirby RS, Drets-Roths C, Miller LA, Nicholas JS, Cunniff CM: Risk for cognitive deficit in a population-based sample of U.S. children with autism spectrum disorders: variation by perinatal health factors. Disabil Health J 2010, 3:202–201.

37. Ehinger D, Sano Y, de Vries PJ, Dies K, Franz D, Geschwind DH, Kaur M, Lee YS, Li W, Lowe JK, Nakagawa JA, Sahin M, Smith K, Whittemore V, Silva AJ: Gestational immune activation and Tsc2 haploinsufficiency cooperate to disrupt fetal survival and may perturb social behavior in adult mice. Mol Psychiatry 2012, 17(1):620–70. doi:10.1038/mp.2011.315. Epub 2010 Nov 16. Erratum in: Mol Psychiatry. 2012 Apr;17(4):469. PMID:21076060.

38. Kleinman JM, Robbins DL, Ventola PE, Pandey J, Boorstein HC, Esler EL, Wilson LB, Rosenthal MA, Sutera S, Verbalis AD, Barton M, Hodgson S, Green J, Dumont-Mathieu T, Volkmar F, Chawarska K, Klein A, Fein D: The modified checklist for autism in toddlers: a follow-up study investigating the early detection of autism spectrum disorders. J Autism Dev Disord 2008, 38:827–839.

39. Pinto-Martin JA, Levy SE, Feldman JF, Lorenz JM, Pandey N, Whitaker AH: Prevalence of autism spectrum disorder in adolescents born weighing <2000 grams. Pediatrics 2011, 128:883–891.

40. Maimburg RD, Vaeth M: Perinatal risk factors and infantile autism. Acta Psychiatr Scand 2006, 114:237–244.

41. Bramacohe M, Ming X, Lamendola M: Prenatal and birth complications in autism. Matern Child Health J 2007, 11:73–79.

42. Buchmayer S, Johansson S, Johansson A, Hultman CM, Sparen P, Cnattingius S: Can association between preterm birth and autism be explained by maternal or neonatal morbidity? Pediatrics 2009, 124:e17–e625.

43. Volpe JJ, Sparen P, Cnattingius S: Perinatal risk factors for infantile autism. Epidemiology 2002, 13:417–423.

44. Dodds L, Fell DB, Shea S, Arnsom BA, Allen AC, Bryson S: The role of prenatal, obstetric and neonatal factors in the development of autism. J Autism Dev Disord 2010.

45. Gardner H, Spiegelman D, Buka SL: Prenatal risk factors for autism: comprehensive meta-analysis. Br J Psychiatry 2009, 195:1–14.

46. Lord C, Mulloy C, Winderboe M, Schopler E: Pre- and perinatal factors in high-functioning females and males with autism. J Autism Dev Disord 1991, 21:197–209.

47. Gluckman PD, Lillycrop KA, Vickers MH, Pleasants AB, Phillips ES, Beedle AS, Burdge GC, Hanson MA: Metabolic plasticity during mammalian development is directionally dependent on early nutritional status. Proc Natl Acad Sci U S A 2003, 100:7296–12800.

48. Stein D, Weizman A, Ring A, Barak Y: Obstetric complications in individuals diagnosed with autism and in healthy controls. Compr Psychiatry 2006, 47:69–75.

49. Theoharides TC, Makris M, Kalogeromitros D: Allergic inflammation and adipocytokines. Int J Immunopathol Pharmacol 2008, 21:1–4.

50. Tilg H, Moschen AR: Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol 2006, 6:722–783.

51. Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TH, Nyce MR, Channer N, Hanning JP, Cobb MJ, McKie LJ, Bauer TL: Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 1996, 334:292–295.

52. Dardeno TA, Chou SH, Moon HS, Chamberland JP, Fiorenza CG, Mantzoros CS: Leptin in human physiology and therapeutics. Front Neuroendocrinol 2010, 31:377–393.

53. Hauguel-de Mouzon S, Lepercq J, Catalano P: The case for leptin as a fetal neurosteroid. Pediatrics 2009, 123:1463.

54. Buhrmester S, Johansson A, Hultman CM, Sparen P, Cnattingius S: Altered leptin and leptin receptors. Horm Environ 2011, 14:252.

55. Grether JK, Risch N: Genotypic and phenotypic associations between maternal or neonatal morbidity. Can association between preterm birth and autism be explained by maternal or neonatal morbidity? Pediatrics 2009, 124:e17–e625.
among twin pairs with autism. Arch Gen Psychiatry 2011, 68(11):1095–1102. doi:10.1001/archgenpsychiatry.2011.76. 2011 Jul 1. PMID:21727249.

46. Deth R, Muratore C, Benzeczky J, Power-Charnitsky VA, Waly M. How environmental and genetic factors combine to cause autism: A redox/methylation hypothesis. NeuroToxicol 2008, 29:190–201.

47. Zhang TY, Meany MJ. Epigenetics and the environmental regulation of the genome and its function. Annu Rev Psychol 2010, 61:39–449.

48. Hoefner CA, Klann E: mTOR signaling: at the crossroads of plasticity, memory and disease. Trends Neurosci. 2010, 33:57–65.

49. Redfern RE, Daou MC, Li L, Munson M, Gercke A, Ross AH: A mutant form of PTEN linked to autism. Protein Sci 2010, 19:1948–1956.

50. Kim MS, Kuehn HS, Metcalf DD, Gillilan AM: Activation and function of the mTORC1 pathway in mast cells. J Immunol 2008, 180:4586–4595.

51. Furumoto Y, Charles N, Olivera A, Leung WH, Dillahunt S, Sargent JL, Tinsley E, Hoeffer CA, Klann E: mTORC1 in the developing brain: a crucial target for autism risk factors: infantile perinatal factors, parental psychiatric history, and socioeconomic status. Am J Epidemiol 2005, 161:916–925.

52. Gentile S. Drug treatment for mood disorders in pregnancy. Curr Opin Psychiatry 2011, 24:34–40.

53. DiMaggio C, Sun LS, Li G: Early childhood exposure to anesthesia and risk of development of behavioral disorders in a sibling birth cohort. Anesth Analg 2011, 113:1143–1151.

54. Sprung J, Flick RP, Katusic SK, Colligan RC, Barbasrei WJ, Bojanic K, Welch TL, Larson HH, Eaton WW, Madsen RM, Viora M, Quaranta MG, Straface E, Vari R, Malorni W, Thorsen P, Mortensen PB: Risk factors for autism: perinatal exposures to persistent and non-persistent organic compounds and effects on immune system development. Basic Clin Pharmacol Toxicol 2008, 102:146–154.

55. Grandjean P, Landrigan PJ: Developmental neurotoxicity of industrial chemicals. Lancet 2006, 368:2167–2178.

56. Asadi S, Zhang B, Weng Z, Angelidou A, Kempuraj D, Aysianadott K, Thearodes TC: Luteolin and thiosalicylate inhibit HgCl(2) and thimerosal-induced VEGF release from human mast cells. Am J Obstet Gynecol 2011, 205:848–854. Epub 2011 Jun 21. PMID:21674409.

57. Kwon O, Lee E, Moon TC, Jung H, Lin CX, Nam KS, Baek SH, Min HK, Chang HY: Expression of cyclooxygenase-2 and pro-inflammatory cytokines during play is associated with age and social engagement in children with autism. J Autism Dev Disord 2010, 40:13–24. Epub 2009 Sep 25. PMID:19762733.

58. Viora M, Quaranta MG, Straface E, Vari R, Malorni W, Sram R, Angelidou A, Smith ME, Meany MJ: Epigenetic programming by maternal behavior. Nat Neurosci 2004, 7:847–854.

59. Collins BK, Mann JM, Taralekar VS: Cellular and mitochondrial glutathione redox imbalance in lymphohblastos derived from children with autism. PLoS ONE 2009, 4(1):e4562. Epub 2008 Dec 2. doi:10.1371/journal.pone.0004562. PMID:19213029.

60. Closely spaced pregnancies are associated with increased odds of autism in California siblings. Pediatrics 2011, 127(2):246–253. Epub 2011 Jan 10. PMID:21203934.

61. Gillott A, Standen PJ: Levels of anxiety and sources of stress in adults with autism. J Intellect Disabil Res 2007, 51:397–403.

62. Corbett BA, Schupp CW, Levine S, Mendoza S: Elevated cortisol during play is associated with age and social engagement in children with autism. Mol Autism 2010, 1:13.

63. Chrousos GP: The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N Engl J Med 1995, 332:1351–1362.

64. Campbell EA, Linton EA, Wolfe CD, Scraggs PF, Jones MT, Lowry PJ: Plasma corticotropin-releasing hormone concentrations during pregnancy and parturition. J Clin Endocrinol Metab 1987, 64:1024–1029.

65. Mancuso RA, Schetter CD, Rini CM, Roesch SC, Hobel CJ: Maternal prenatal anxiety and corticotropin-releasing hormone associated with timing of delivery. Psychosom Med 2004, 66:762–769.

66. Warren WB, Patrick SL, Goland RS: Elevated maternal plasma corticotropin-releasing hormone levels in pregnancies complicated by preterm labor. Am J Obstet Gynecol 1992, 166:1199–1204.

67. Makrigiannakis A, Semmler M, Briese V, Eckerle H, Minas V, Mlynarz I, Friese K, Jeschke U: Maternal serum corticotropin-releasing hormone and ACTH levels as predictive markers of premature labor. Int J Gynaecol Obstet 2007, 97:115–119.

68. Grammatopoulos DK: Placental corticotropin-releasing hormone and its receptors in human pregnancy and labour: still a scientific enigma. J Neuroendocrinol 2008, 20:432–438.

69. Tonielli M, Novembri R, Bioso E, De BM, Chills JR, Petraglia F: Changes in placental CRH, urocrins, and CRH-receptor mRNA expression associated with preterm delivery and chorioamnionitis. J Clin Endocrinol Metab 2011, 96:534–540.

70. Kalantaridou S, Makrigiannakis A, Zoumakis E, Chrousos GP: Corticotropin-releasing hormone is produced in the immune and reproductive systems: actions, potential roles and clinical implications. Front Biosci 2002, 7:1257–580.

71. Petraglia F, Garuti GC, De RB, Angioni S, Genazzani AR, Bilekzjian LM: Mechanism of action of interleukin-1 beta in increasing corticotropin-releasing factor and adrenocorticotropic hormone release from cultured human placental cells. Am J Obstet Gynecol 1990, 163:1307–1312.
Antibodies as predictors of complex autoimmune diseases. Critical role of mast cells in the blood–brain barrier disruption in a placebo-controlled trial of natalizumab in siblings. Antibrain antibodies in children with autism and their unaffected siblings. Neurriunmunol 2006, 178:149–155.

Vojdani A. Antibodies as predictors of complex autoimmune diseases. Int J Immunopharmacol 2008, in press.

Wills S, Cabanlit M, Bennett, Ashwood P, Amaral DG, Van de WJ: Detection of autoantibodies to neural cells of the cerebellum in the plasma of subjects with autism spectrum disorders. Brain Behav Immun 2009, 23:694–7.

Minagar A, Alexander JS: Blood–brain barrier disruption in multiple sclerosis. Mult Scr 2003, 9:540–549.

Soon D, Altmann DR, Fernando KT, Giovannini G, Barkhof F, Polman CH, O'Connor P, Gray B, Panzara M, Miller D: A study of subtle blood brain barrier disruption in a placebo-controlled trial of natalizumab in relapsing remitting multiple sclerosis. J Neurol 2007, 254:306–314.

Stone LA, Smith ME, Albert PS, Bash CN, Maloni H, Frank JA, McFarland HF: Brain–blood barrier disruption on contrast-enhanced MRI in patients with mild relapsing-relenting multiple sclerosis: Relationship to course, gender, and age. Neurology 1995, 45:1122–1126.

Theoharides TC: Cochrane DE: Critical role of mast cells in inflammatory diseases and the effect of acute stress. J Neuroimmunol 2004, 146:1–12.

Esposto P, Chandler N, Kandere-Grzybowska K, Basu S, Jacobson S, Connolly T, Theoharides TC: Corticotropin-releasing hormone (CRH) and brain mast cells regulate blood–brain-barrier permeability induced by acute stress. J Pharmacol Exp Ther 2003, 303:1061–1066.

Esposto P, Gheorghe D, Kendere K, Pang X, Conally R, Jacobson S, Theoharides TC: Acute stress increases permeability of the blood–brain barrier through activation of brain mast cells. Brain Res 2001, 888:117–127.

Castagliuolo I, Leeman SE, Bartolac-Suki E, Nikulasson S, Qiu B, Carraway RE, Theoharides TC: Corticotropin-releasing hormone (CRH) and brain mast cells regulate blood–brain-barrier permeability induced by acute stress. Proc Natl Acad Sci USA 1996, 93:2611–2615.

Pothoulakis C, Castagliuolo I, Leeman SE: Neuroimmune mechanisms of intestinal responses to stress, Role of corticotropin-releasing factor and neurotensin. Ann N Y Acad Sci 1998, 840:635–648.

Theoharides TC, Donelan JM, Papadopoulou N, Cao J, Kempuraj D, Conti P: Mast cells as targets of corticotropin-releasing factor and related peptides. Trends Pharmacol Sci 2004, 25:563–568.

Theoharides TC, Doyle R: Autism, gut-blood–brain barrier and mast cells. J Clin Pharmacol 2008, 48:749–483.

Theoharides TC, Doyle R, Francis K, Conti P, Kalogeromitros D: Novel therapeutic targets for autism. Trends Pharmacol Sci 2008, 29:375–382.

Kanai K, Lous M, Bae D, Hilderbrand H, Macgab J: CRH and the immune system. J Neuroimmunol 1997, 72:131–136.

Kempuraj D, Papadopoulou NG, Lytnas M, Huang M, Kandere-Grybowska K, Madhappan B, Boucher W, Christodoulou S, Athanassios A, Theoharides TC: Corticotropin-releasing hormone and its structurally related urocortin are synthesized and secreted by human mast cells. Endocrinology 2004, 145:43–48.

Słomiński A, Wortsman J, Pisarcik L, Zbytkov B, Linton EA, Mazurkiewicz J, Wei ET: Cutaneous expression of corticotropin-releasing hormone (CRH), urocortin, and CRH receptors. FASEB J 2001, 15:1678–1693.

Słomiński A, Zbytkov B, Zmijewski M, Słomiński RM, Kauser S, Wortsman J, Tobin DJ: Corticotropin-releasing hormone and the skin. Front Biosci 2006, 11:2230–2248.

Sklitış D, Zamin N, Heije CJ, Switt JM, Jacobowitz DN: Corticotropin-releasing factor-like immunoactivity in sensory ganglia and capsicain sensitive neurons of the rat central nervous system: colocalization with other neuropeptides. Peptides 1985, 6:307–318.

Singh LR, Pang X, Alexacos N, Letourneau R, Theoharides TC: Acute immobilization stress triggers skin mast cell degranulation via corticotropin-releasing hormone, neurotensin and substance P: A link to neurogenic skin disorders. Brain Behav Immun 1999, 13:225–239.

Theoharides TC, Singh LR, Boucher W, Pang X, Letourneau R, Webster E, Chrousos G: Corticotropin-releasing hormone induces skin mast cell degranulation and increased vascular permeability, a possible explanation for its pro-inflammatory effects. Endocrinology 1998, 139:403–413.

Ito N, Sagawa K, Bodo E, Takigawa M, Van BN, Ito T, Paus R: Corticotropin-releasing hormone stimulates the in situ generation of mast cells from precursors in the human hair follicle mesenchyme. J Invest Dermatol 2010, 130:995–1004.

Angeliou A, Alysandratos KD, Asadi S, Zhang B, Francis K, Vasiadi M, Kalogeromitros D, Theoharides TC: Brief Report: "Allergic Symptoms" in children with Autism Spectrum Disorders. In More than meets the eye, J Autism Dev Disord. 41st edition. 2011:1579–1585.

Theoharides TC, Angelidou A, Alysandratos KD, Zhang B, Asadi S, Francis K, Toniato E, Kalogeromitros D: Mast cell activation and autism. Biochim Biophys Acta 2012, 1822:34–41.

Money J, Bobrow NA, Clarke FC: Autism and autoimmune disease: a family study. J Autism Child Schizopr 1971, 1:146–160.

Cohen LA, Grether JK, Yoshida CK, Odouli R, Van de WJ: Maternal autoimmune diseases, asthma and allergy in a population controlled study of maternal corticotropin-releasing hormone stimulates the in situ generation of mast cells from precursors in the human hair follicle mesenchyme. J Invest Dermatol 2007, 130:995–1004.

Angelidou A, Alysandratos KD, Asadi S, Zhang B, Francis K, Vasiadi M, Kalogeromitros D, Theoharides TC: Brief Report: "Allergic Symptoms" in children with Autism Spectrum Disorders. Int J Immunopharmacol 2009, 31:6487–694.

Kell A, Daniels JL, Forsgren U, Hultman C, Chatzistilianou S, Soderberg KC, Fehschling M, Spreen P: Parental autoimmune diseases associated with autism spectrum disorders in offspring. Epidemiology 2010, 21:805–808.

Akin C, Valentin P, Metcalfe DD: Mast cell activation syndrome: Proposed diagnostic criteria. J Allergy Clin Immunol 2010, 126:6104.e4–6109.e4. Epub 2010 Oct 12. PMID:20135176.

Castells M, Austen KF: Mastocytosis: mediator-related signs and symptoms. Int Arch Allergy Immunol 2002, 127:147–152.

Theoharides TC: Autism spectrum disorders and mastocytosis. Int J Immunopharmacol 2009, 22:859–865.

Cohen LA, Braunschweig D, Haapanen L, Yoshida CK, Fireman B, Grether JK, Khanazi M, Hansen RL, Ashwood P, Van de WJ: Maternal mid-pregnancy autoantibodies to fetal brain protein: the early markers for autism study. Biol Psychiatry 2008, 64:583–588.

Braunschweig D, Ashwood P, Kralicki P, Hertz-Picciotto I, Hansen RL, Fireman B, Grether JK, Khanazi M, Hansen RL, Ashwood P, Van de WJ: Maternal autoimmune antibodies specific for fetal brain peptides. NeuroToxicology 2008, 29:226–231.

Singh HS, Morris CM, Gause CD, Gillin PK, Crawford S, Zimmerman AW: Antibodies against fetal brain in sera of mothers with autistic children. J Neuroimmunol 2008, 194:165–172.

Zimmerman AW, Connors SL, Matteson KJ, Lee LC, Singer HS, Castaneda JA, Pearce DA: Maternal autoimmune antibodies in autism. Brain Behav Immun 2007, 21:351–357.

Braunschweig D, Duncanson P, Boyce R, Hansen R, Ashwood P, Pessah IN, Hertz-Picciotto I, Van de WJ: Behavioral correlates of maternal antibody status among children with autism. J Autism Dev Disord 2012, 42:471:1435–1445. PMID:22021245.

Chess S: Follow-up report on autism in congenital rubella. J Autism Child Schizopr 1977, 7:59–81.

Libbey JE, Sweeten TL, McMahon WM, Fujinami RS: Autism spectrum disorders and viral infections. J Neurovirol 2005, 11:1–10.

Willerson DS, Volpe AG, Dean RS, Titus JB: Perinatal complications as predictors of infantile autism. Int J Neurosci 2002, 112:1085–1098.

Chess S: Autism in children with congenital rubella. J Autism Child Schizopr 1977, 7:59–81.

Richler J, Luyster R, Risi S, Dunn M, Happe B, Hyman SL, McMahon WM, Gouldie-Nice J, Minshew N, Rogers S, Sigmam G, Spence MA, Goldberg WA, Tager-Flusberg H, Volkmar FR, Lord C: Is there a 'regressive phenotype' of Autism Spectrum Disorder associated with the measles-mumps-rubella vaccine? A CPEA Study. J Autism Dev Disord 2006, 36:299–316.
194. Schroeder JT, Kagey-Sobotka A, MacGlashan DW, Lichtenstein LM: The interaction of cytokines with human basophils and mast cells. *Int Arch Allergy Immunol* 1995, 107:79–81.

195. Schwartz LB: Mediators of human mast cells and human mast cell subsets. *Ann Allergy* 1987, 58:226–235.

196. Serfati WE, Auster KP: Mediators of immediate hypersensitivity reactions. *N Engl J Med* 1987, 317:30–34.

197. Torique C, Goldstein B, Wofsy C, Metzger H: Shuttling of initiating kinase between discrete aggregates of the high affinity receptor for IgE regulates the cellular response. *Proc Natl Acad Sci U S A* 1997, 94:1372–1377.

198. Theoharides TC, Kempraj D, Tagen M, Conti P, Kalogeromitros D: Differential release of mast cell mediators and the pathogenesis of inflammation. *Immunol Rev* 2007, 217:65–78.

199. Lee JY, Huerta PT, Zhang J, Kowal C, Bertini E, Volpe BT, Diamond B: Neurotoxic autoantibodies mediate congenital cortical impairment of offspring in maternal lupus. *Nat Med* 2009, 15:91–96.

200. Boksa P: Effects of prenatal infection on brain development and behavior: a review of findings from animal models. *Brain Behav Immun* 2010, 24:881–897.

201. O'Mahony SM, Marchesi JR, Scully P, Codling C, Cedeño AM, Quigley EM, Teunis MA, Heijnen CJ, Sluyter F, Bakker JM, Van Dam AM, Hof M, Cools AR, Chandler N, Jacobson S, Connolly R, Esposito P, Theoharides TC: IL-1 induces differential release of IL-6 form human mast cells. *FASEB J* 2005, 19:2833–2845.

202. Schroeder JT, Kagey-Sobotka A, MacGlashan DW, Lichtenstein LM: Mediators of human mast cells and human mast cell subsets. *Ann Allergy* 1987, 58:226–235.

203. Serfati WE, Auster KP: Mediators of immediate hypersensitivity reactions. *N Engl J Med* 1987, 317:30–34.

204. Soderholm JD, Yates DA, Gareau MG, Yang PC, MacQueen G, Perdue MH: Neonatal maternal separation predisposes adult rats to colonic barrier dysfunction in response to mild stress. *J Neuroimmunol* 2002, 133:30–38.

205. Soderholm JD, Yates DA, Gareau MG, Yang PC, MacQueen G, Perdue MH: Neonatal maternal separation predisposes adult rats to colonic barrier dysfunction in response to mild stress. *Am J Physiol Gastrointest Liver Physiol* 2002, 283:G1257–G1263.

206. Smith SE, Li J, Garbett K, Mirmics K, Patterson PH: Maternal immune activation alters fetal brain development through interleukin-6. *J Neurosci* 2007, 27:10695–10702.

207. Candere-Grzymbowski K, Kempraj D, Letourneau L, Asare A, Athanasiou A, Theoharides TC: IL-1 induces differential release of IL-6 form human mast cells. *FASEB J* 2002, 16:3324–3332.

208. Girard S, Tremblay L, Lepage M, Sebire G: IL-1 receptor antagonist protects against placental and neurodevelopmental defects induced by maternal inflammation. *J Immunol* 2010, 184:4997–5005.

209. Kulka M, Alexopoulos L, Flavell RA, Metcalfe DD: Activation of mast cells by double-stranded RNA: evidence for activation through Toll-like receptor 3. *J Allergy Clin Immunol* 2004, 114:174–182.

210. Galli SJ, Kalesnikoff J, Grimbaldiston MA, Piliponsky AM, Williams CM, Tsai M: Mast cells as “tunable” effector and immunoregulatory cells: recent advances. *Annu Rev Immunol* 2005, 23:749–786.

211. Galli SJ, Tsai M, Piliponsky AM: The development of allergic inflammation. *Nature* 2008, 454:445–454.

212. Theoharides TC, Alyssandrotos KD, Angelidou A, Delivanis DA, Sismanopoulos N, Zhang B, Asadi S, Vasiadi M, Weng Z, Miniati A, Kalogeromitros D: Mast cells and inflammation. *Biochim Biophys Acta* 2010, 1822:21–33.

213. Theoharides TC, Kalogeromitros D: The critical role of mast cell in allergy and inflammation. *Ann NY Acad Sci* 2006, 1088:78–90.

214. Liu J, Divoux A, Sun J, Zhang J, Clement K, Glickman JN, Sukhova GK, Wolters PJ, Du J, Gorgun CZ, Doria A, Libby P, Blumberg RS, Kahn BB, Hotamisligil GS: Shi GP: Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice. *Nat Med* 2009, 15:940–945.

215. Middleton E Jr, Kandaswami C, Theoharides TC: The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease and cancer. *Pharmacol Rev* 2000, 52:673–751.

216. Theoharides TC, Asadi S, Panagiotidou S: A case series of a luteolin formulation (NeuroProtea) in children with autism spectrum disorders. *Int J Immunopathol Pharmacol* 2012, 25(2):317–323. PMID: 22697063.