Phenotypic and molecular characterization of ESBLs producing *Escherichia coli* in bovine faecal and milk samples of North Gujarat

B I PRAJAPATI, K M SOLANKI, SARITA DEVI*, B P KATIRA, S S PATEL, S H RAVAL and R R MOMIN

Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, Gujarat 385 506 India

Received: 6 October 2019; Accepted: 26 November 2019

ABSTRACT

Extended-spectrum β-lactamases (ESBLs) producing *E. coli* seems to be emerging in veterinary science impacting major threat to public health due to resistance to golden age antibiotics. In this study a total of 109 samples (42 faecal and 67 mastitis milk) of bovines were collected from different regions of North Gujarat. The samples were cultured and identified by standard procedures. The screening for ESBLs production was performed by using Cefotaxime and Cefotaxime-Clavulanate (Combination disc screening method). A total of 71 *E. coli* isolates were recovered from 109 samples processed, out of which thirty (42.25%) isolates (17 from milk and 13 from faecal) were positive for ESBLs showing multiple resistance to the antibiotics used. The ESBL confirmed isolates were further processed for detection of *blaCTX-M*, *blaTEM*, and *blaSHV* genes. Major gene detected was *blaTEM* in 17 (23.94%) *E. coli* isolates. Antibiotic resistance pattern of *E. coli* isolates was studied against eleven commonly used antimicrobial drugs in the northern region of Gujarat. The results recorded resistance to following antibiotics: tetracycline (100%), ampicillin/sulbactum (83.10%), amoxiclav and gentamicin (83.10%), chloramphenicol (57.74%), ceftriaxone (66.19%), cefoperazone (66.19%), ciprofloxacin (74.65%), amikacin (57.74%), enrofloxacin (74.65%) and, levofloxacin (74.65%).

Keywords: BlaTEM, Bovines, ESBLs producing E. coli, Mastitis milk, North Gujarat

Most of the bacterial pathogens associated with human enteric illness are either of animal origin that can be transmitted directly or indirectly to humans, e.g. through food of animal origin, contaminated water or from a common reservoir (Schlundt et al. 2004, Newell et al. 2010). This type of mode of horizontal gene transfer facilitates the spread of resistance genes in and between various bacterial species. Extended spectrum beta-lactamase (ESBLs), plasmid-encoded enzyme, inactivates a broad range of β-lactam antibiotics such as oxyiminocephalosporins including cefotaxime. Added to this, ESBL producers are also resistant to other antibiotics such as fluoroquinolones, aminoglycosides and trimethoprim-sulfamethoxazole (Machado et al. 2008, Pasom et al. 2013, Rath et al. 2014). Beta-lactam antimicrobial agents are the most commonly used drugs for treating the bacterial infections. As per WHO, third and fourth generation cephalosporins are critically important antimicrobials, their therapeutic effectiveness and short withdrawal period make them increasingly important in dairy farming, providing a selection pressure for the emergence of bacterial resistance against these compounds by production of ESBLs (Snow et al. 2012, Liebana et al. 2013).

Since, late 1990’s, ESBLs producing Enterobacteriaceae, in particular *E. coli* has emerged globally. Initially, ESBL producing bacteria were only observed in human medicine (Olowe et al. 2012, Ogbolu et al. 2013) but the occurrence of these bacteria in companion animals firstly and increasingly in livestock nowadays, has initiated monitoring studies more focused on livestock (Smet et al. 2010). It has been documented that food-producing animals are important reservoirs for ESBL-producing Enterobacteriaceae (Carattoli 2008, EFSA 2011, Smet et al. 2010). Recent studies raised severe concerns about the role of farm animals, especially dairy cattle, on dissemination of ESBL-producing Enterobacteriaceae and/or their mobile genetic elements via the food chain (Brinas et al. 2002, Aarestrup et al. 2006, Meunier et al. 2006, Dahmen et al. 2013, Liebana et al. 2013, Schmid et al. 2013).

ESBL determinants have been detected not only in clinical isolates but also in commensal bacteria from humans and, animals and in isolates from products of the food chain and sewage, revealing distribution and suggesting the presence of environmental reservoirs for these resistance determinants (Brinas et al. 2002).

Currently, there is limited information available on ESBL producing *E. coli* in veterinary science and the possible contribution. The objective of the present study was to detect ESBL producing *E. coli* in the faecal and milk samples of bovines from different regions of North Gujarat.
MATERIALS AND METHODS

A total of 109 samples (42 faecal and 67 mastitic milk) were collected from bovines into sterile capped universal bottles with sterile spatula and were transported to the laboratory immediately. Isolation of *E. coli* isolates were carried out by culturing of samples on MacConkey’s agar and incubated for 18–24 h at 37°C. The identification of *E. coli* was carried out by culturing on eosin methyl blue agar and incubated for 18–24 h at 37°C. Presumptive characteristic of *E. coli* isolates were identified and confirmed using arrays of biochemical tests (IMViC). The study was carried from August, 2017 to October, 2018 in the Department of Veterinary Public Health and Epidemiology, College of Veterinary Science and Animal Husbandry, SDAU, Sardarkrushinagar.

Antimicrobial susceptibility of pure colonies to ampicillin/sulbactum (A/S) (20 µg), amoxiclav (AMC) (30 µg), ceftriaxone (CTR) (30 µg), ciprofloxacin (CIP) (5 µg), chloramphenicol (C) (30 µg), amikacin (AK) (30 µg), enrofloxacin (EX) (10 µg), levofloxacin (LE) (5 µg), gentamicin (GEN) (10 µg) and tetracycline (TE) (10 µg) was determined and interpreted by the disc diffusion method following the guidelines of Clinical Laboratory Standard Institute (CLSI) (2012). Phenotypic detection of ESBL production is done by combination disc screening method. Cefotaxime and cefotaxime+clavulanate (Hi Media, INDIA) discs were applied on freshly prepared Muller Hinton agar and the plates were further incubated aerobically at 37°C. A final measurement of the zone of inhibition was made after overnight incubation. ESBL producers were defined as having a differential zone diameter of ≥+5 mm (Cefotaxime+clavulanate zone - cefotaxime zone).

The DNA of the ESBL confirmed isolates by combination disc screening method was extracted separately using a DNA extraction kit (Qiagen, Germany). Molecular confirmation of ESBL producing *E. coli* was done by detection of *blaCTX-M*, *blaTEM*, and *blaSHV* genes by multiplex polymerase chain reaction (m-PCR) as described by Monstein *et al.* (2007) with some modifications using specific primers. The recommended oligonucleotide primers specific for the *blaSHV*, *blaTEM*, and *blaCTX-M* genes used in the m-PCR assay and expected amplicon sizes are depicted in Table 1.

RESULTS AND DISCUSSION

In the present study, out of 109 samples, 71 (65.13%) isolates were identified as *E. coli*, giving greenish metallic sheen on EMB agar (Fig. 1) and through biochemical characterization. The highest prevalence of *E. coli* was observed in faecal samples (83.33%) followed by mastitic milk samples (53.73%).

All the 71 *E. coli* isolates that were subjected to antimicrobial testing (Fig. 2) and interpreted as resistant, intermediate and sensitive following the guidelines of CLSI (2012) is depicted in Table 2 (Fig. 3). Resistance to tetracycline (TE) (100%), ampicillin/sulbactum (A/S) (83.10%), amoxyclav (AMC) (83.10%) and gentamicin (GEN) (83.10%) was found to be higher as compared to

Table 1. Details of primer sequence used for detection of *blaSHV*, *blaTEM* and *blaCTX-M* genes

Target gene	Primer sequence	Amplicon size (bp)	References
blaSHV	F: ‘ATG CGT TAT ATT CGC CGT TG’	747	Paterson *et al.* 2003
	R: ‘TGC TTT GTT ATT CGG GCC AA’		
blaTEM	F: ‘TCG CCG CAT ACA CTA TTC TCA GAA TGA’	445	Monstein *et al.* 2007
	R: ‘ACG CTC ACC GGC TCC AGA TTT AT’		
blaCTX-M	F: ‘ATG TGC AGY ACC AGT AAR GTK ATG GC’	593	Boyd *et al.* 2004
	R: ‘TGG GTR AAR TAR GTS ACC AGA AYC AGC GG’		

Fig. 1. Greenish metallic sheen on EMB agar.

Fig. 2. *In vitro* antimicrobial drug sensitivity test for ESBLs producing *E. coli*.
other antibiotics. Comparatively resistance to chloramphenicol (C) (57.74%) was recorded to be lower.

Antibiotic resistance is an emerging threat in human medicine as well as in veterinary medicine (Witte 1998, Lawson 2008). Antibiotic resistance has put deleterious effect on livestock disease management thus in turn on the productivity of the animals.

Recently, there has been increased resistance to beta lactam antibiotics due to plasmid mediated acquisition of ESBL producing genes predominantly by E. coli. Although most of the studies conducted on ESBL producers are confined to human beings within the hospital premises, focus should also be given on its occurrence and dissemination in food producing animals. Reports by several researchers also indicated its presence in chicken meat and raw milk (Geser et al. 2012, Lyhs et al. 2012).

Phenotypic detection of ESBL producing E. coli is detected in 30 (42.25%) isolates (17 from mastitis milk and 13 from faecal samples) out of the 71 isolates by combination disc screening method (Fig.4). Similarly, higher prevalence of 71% ESBLs was recorded by Olugbenga et al. (2015) from bovine faecal samples. All the 30 ESBL producers were resistant (100%) to ceftiraxone, ampicillin/sulbactum, amoxiclav, cefoperazone, ciprofloxacin, chloramphenicol, amikacin, enrofloxacin, levofloxacin, gentamicin and tetracycline as revealed by disc diffusion assay. These observations reiterate the findings in other studies that have reported increased antibiotic resistance amongst different bacterial species especially E. coli isolated from cattle and other animals at an alarming rate (Kozak et al. 2009, Ajayi et al. 2011). The conclusive finding in the present study is multiple drug resistant against commensal E. coli in bovines to most commonly used antibiotics such as tetracycline (100%), ampicillin/sulbactum (83.10%), amoxiclav (83.10%), and gentamicin (83.10%). This finding correlates with similar results obtained from other studies that have reported some levels of multiple antibiotic resistance by E. coli from cattle, meat products and other animals (Saenz et al. 2001, Umolu et al. 2006). Chromosomal AmpC β-lactamase hyperproduction by E. coli isolates (Livermore 1995) and plasmid-mediated β-lactamases (Sanders and Sanders 1992, Zhou et al. 1994) are documented as the main cause for the increasing resistance to aminopenicillins, β-lactam–β-lactamase inhibitor combinations, narrow-spectrum cephalosporins, and cephemycins to a greater extent and, resistance to carboxy- and ureidopenicillins and extended-spectrum cephalosporins to a lesser extent. Amongst, the plasmid-mediated β-lactamases, more often TEM-1 hyperproduction and its inhibitor-resistant variant (IRT enzymes) are found to be responsible for β-lactam–β-lactamase inhibitor combination resistance, a major threat to therapeutic success and occasionally OXA type is reported for the same (Martinez et al. 1987, Zhou et al. 1994, Wu et al. 1994, Stapleton et al. 1995).

Out of 71 E. coli isolates, ceftiraxone, chloramphenicol, enrofloxacin, cefoperazone, levofloxacin, ciprofloxacin were found to be sensitive in 24 (33.81%), 24 (33.81%), 18 (25.35%), 6 (8.45%), 6 (8.45%), 6 (8.45%) isolates, respectively. Also, few isolates were found to be of intermediate resistance to ampicillin/sulbactum (16.90%), amoxiclav (16.90%), cefoperazone (25.35%), ciprofloxacin (16.90%), chloramphenicol (8.45%), amikacin (25.35%), enrofloxacin (8.45%), levofloxacin (16.90%) and.

Fig. 3. Antibiotic sensitive pattern of E. coli.

![Antibiotic sensitive pattern of E. coli](image)

Table 2. Antibiotic sensitive pattern of E. coli isolates (n=71)

Antibiotic	Resistant (%)	Intermediate (%)	Sensitive (%)
Ampicillin/Sulbactum (10/10 mcg)	83.10	16.90	0
Amoxyclav (20/10 mcg)	83.10	16.90	0
Ceftriaxone (30 mcg)	66.19	0	33.81
Cefoperazone (75 mcg)	66.19	25.35	8.45
Ciprofloxacin (5 mcg)	74.65	16.90	8.45
Chloramphenicol (30 mcg)	57.74	8.45	33.81
Amikacin (30 mcg)	57.74	25.35	16.90
Enrofloxacin (5 mcg)	66.20	8.45	25.35
Levofloxacin (5 mcg)	74.65	16.90	8.45
Gentamicin (10 mcg)	83.10	16.90	0
Tetracycline (30 mcg)	100.00	0.00	0

Fig. 4. Detection of ESBLs producing E. coli by combination disc method. A. Positive for ESBLs production. B. Negative for ESBLs production.
gentamicin (16.90%).

All the 30 isolates were further subjected to m-PCR for the detection of beta-lactamase genes viz. blaSHV, blaTEM and blaCTX-M. The genes blaTEM were detected in 17 isolates. Similarly high prevalence of TEM-52 was detected in food animals by various researchers (Costa et al. 2004, Machado et al. 2008).CTX-M and SHV genes were not detected in any of the collected samples.

Similar study carried out in China by Yuan et al. (2009) showed higher prevalence of blaTEM gene followed by blaCTX-M with no samples detected positive for blaSHV gene in chickens. These findings suggested that blaTEM was more common amongst the ESBL genes in these isolates. In this study, the occurrence of ESBL producing E. coli was as high as 23.94% as ESBL genes were detected in 17 out of 71 isolates screened. Several studies on high prevalence of ESBL-producing E. coli isolates in faecal samples from food producing animals has also been found in other European countries (Blanc et al. 2006, Moreno et al. 2007, Smet et al. 2008, Falgenhauer et al. 2019). The wide dissemination of ESBL-positive E. coli among faecal isolates of food-producing animals is a serious issue of food safety and it is important to analyze the factors that could contribute to this situation. One possible origin of this problem might be the use of broad-spectrum cephalosporins in animal production. Other possible factor would be overcrowding in herds, facilitating the transmission of resistant bacteria amongst the animals. It is difficult to know the specific contribution of each factor to the global problem of the wide dissemination of ESBL in the animal ecosystem, and all these factors should be further studied with larger sample size. Previous reports also refer to a relatively higher frequency of the presence of ESBL-producing E. coli isolates in samples of healthy humans (Miro et al. 2005, Moubareck et al. 2005, Pallecchi et al. 2007, Valverde et al. 2004). An important issue to be elucidated is whether presence of ESBL-producing bacteria in the intestinal tract of healthy animals and humans has occurred in an independent way, or by contrast, both ecosystems interacted in their evolution.

In conclusion, increasing prevalence of ESBL producers in fecal and milk samples of normal animals is pointing towards the hypothesis of animals might be becoming carriers or even reservoirs of the same thus contributing to silent spread of these multidrug resistant bacteria amongst the animals at different places, borders and boundaries. Globally occurring climate changes had put effect on the genes causing mutations amongst organisms leading to resistance. These resistant traits call for gross surveillance in community settings because ESBLs gene is a growing threat worldwide for available antibiotics but its epidemiological effects and evaluation are still underestimated with low awareness.

REFERENCES
Aarestrup F M, Hasman H, Agerso Y, Jensen L B, Harksen S and Svensmark B. 2006. First description of blaCTX-M-1-carrying Escherichia coli isolates in Danish primary food production. Journal of Antimicrobial Chemotherapy 57: 1258–59.
Ajayi A O, Oluweye A O, Olowe O A and Famurewa O. 2011. Antibiotic resistance among commensal Escherichia coli isolated from faeces of cattle in Ado-Ekiti, Nigeria. Journal of Animal and Veterinary Advances 10(2): 174–79.
Blanc V, Mena R and Saco M. 2006. ESBL- and plasmidic class C beta-lactamase producing E. coli strains isolated from poultry, pig and rabbit farms. Veterinary Microbiology 118: 299–21.
Boyd D A, Tyler S, Christianson S, McGeer A and Muller M P. 2004. Complete nucleotide sequence of a 92-kilobase plasmid harbouring the CTX-M-15 extended-spectrum beta-lactamase involved in an outbreak in long-term-care facilities in Toronto. Canada. Antimicrobial Agents and Chemotherapy 48(10): 3758–64.
Brias L, Zarazaga M, Saenz Y, Ruiz-Larea F and Torres C. 2002. b-lactamases in ampicillin-resistant Escherichia coli isolates from foods, humans, and healthy animals. Antimicrobial Agents and Chemotherapy 46: 3156–63.
Carattoli A. 2008. Animal reservoirs for extended-spectrum b-lactamase producers. Clinical Microbiology and Infection 14(1): 117–23.
CLSI. 2012. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing: Twenty-second Informational Supplement M100-S22. CLSI, Wayne, PA.
Costa D, Poeta P, Brinas L, Saenz Y, Rodrígues J and Torres C. 2004. Detection of CTX-M-1 and TEM-52 b-lactamases in Escherichia coli strains from healthy pets in Portugal. Journal of Antimicrobial Chemotherapy 54: 960–61.
Dahmen S, Metayer V, Gay E, Madec J Y and Haenni M. 2013. Characterization of extended-spectrum b-lactamase (ESBL)-carrying plasmids and clones of Enterobacteriaceae causing cattle mastitis in France. Veterinary Microbiology. 162: 793–99.
EFSA. 2011. Scientific opinion on the public health risks of bacterial strains producing extended-spectrum b-lactamases and/or AmpC b-lactamases in food and food-producing animals. European Food Safety Authority Journal 9(8): 2322.
Falgenhauer L, Imizaliogla C, Oppong K, Akenten C, Hogan B, Krumkamp R, Poppert S, Levermann V, Schwengers O, Sarpong N, Dabo E, May J and Eibach D. 2019. Detection and characterization of ESBL-producing Escherichia coli from Humans and Poultry in Ghana. Frontiers in Microbiology 9: 1–8.
Geser N, Stephan R and Hachler H. 2012. Occurrence and characteristics of extended-spectrum beta-lactamase (ESBL) producing Enterobacteriaceae in food producing animals, minced meat and raw milk. BMC Veterinary Research 8(21): 1–9.
Kozak G K, Boerlin P, Janecko N, Reid-Smith R J and Jardine C. 2009. Antimicrobial resistance in Escherichia coli isolates from Swine and wild small mammals in the proximity of swine farms and in natural environments in Ontario, Canada. Applied and Environmental Microbiology 75(3): 559–66.
Lawson M A. 2008. The antibiotic resistance problem revisited. American Biology Teacher 70(7): 405–10.
Liebana E, Carattoli A, Coque T M, Hasman H, Magiorakos A P, Mevius D, Peixe L, Poirel L, Schuepbach-Regula G, Torneke K, Torren-Edo J, Torres C and Threlfall J. 2013. Public health risks of enterobacterial isolates producing extended-spectrum beta-lactamases or AmpC beta-lactamases in food and food-producing animals: an EU perspective of epidemiology.
analytical methods, risk factors, and control options. *Clinical Infectious Diseases* **56**: 1030–37.

Livermore D M. 1995. *B-Lactamases* in laboratory and clinical resistance. *Clinical Microbiology Review* **8**: 557–84.

Lyhs U, Ikonen I, Pohtianvirta T, Raninen K, Perko-Makela P and Pelkonen S. 2012. Extra intestinal pathogenic *Escherichia coli* in poultry meat products on the Finnish retail market. *Acta Veterinaria Scandavica* **16**: 54–64.

Machado E, Coque T M, Canto’r R, Sousa J C and Peixe L. 2008. Antibiotic resistance integrons and extended-spectrum b-lactamases among Enterobacteriaceae isolates recovered from chickens and swine in Portugal. *Journal of Antimicrobial Chemotherapy* **62**: 296–302.

Martinez J L, Cercenado E, Rodriguez-Creixems M, Vicente-Machado E, Coque T M, Canto’n R, Sousa J C and Peixe L. 2007. Abundance and phenotypic characterisation of extended-spectrum beta-lactamase producing *Escherichia coli* obtained from animal fecal samples in Ado Ekiti, Nigeria. *Journal of Environmental and Public Health*.

Pallecchi L, Bartoloni A, Fiorelli C, Mantella A, Di Maggio T, Gambha H, Gotuzzo E, Kronvall G, Paradisi F and Rossolini G M. 2007. Rapid dissemination and diversity of CTX-M extended-spectrum beta-lactamase genes in commensal *Escherichia coli* isolates from healthy children from low-resource settings in Latin America. *Antimicrobial Agents and Chemotherapy* **51**: 2720–25.

Pasom W, Chanawong A, Lulitanond A, Wilailuckana C, Kenprom S and Puang-Ngern P. 2013. Plasmid-mediated quinolone resistance genes, aac (60)-Ib-cr, qnrS, qnrB, and qnrA, in urinary isolates of *Escherichia coli* and *Klebsiella pneumoniae* in a teaching hospital, Thailand. *Japanese Journal of Infectious Diseases* **66**: 428–32.

Paterson D L, Hujer K M, Hujer A M, Yeiser B and Bonomo M D. 2003. Extended spectrum b-lactamases in *Klebsiella pneumoniae* bloodstream isolates from seven countries: Dominance and widespread prevalence of SHV-and CTX-M-type b-lactamases. *Antimicrobial Agents and Chemotherapy* **47**(1): 3553–60.

Rath S, Dubey D, Sahu M C and Padhy R N. 2014. Surveillance of ESBL producing multidrug resistant *Escherichia coli* in a teaching hospital in India. *Asian Pacific Journal of Tropical Disease* **4**: 140–49.

Saenz Y, Zarazaga M, Brias L, Lantero M, Ruiz-Larrea F and Torres C. 2001. Antibiotic resistance in *Escherichia coli* isolates obtained from animals, foods and humans in Spain. *International Journal of Antimicrobial Agents* **18**(4): 353–58.

Sanders C C, and Sanders W E. 1992. Beta-lactam resistance in hospital-acquired extended-spectrum beta-lactamase (CTX-M) on dairy farms in North West England and North Wales. *Preventive Veterinary Medicine* **79**: 3027–32.

Smet A, Aertje J, Vandekeere K and Vandekerckhove T T M. 2010. Complete nucleotide sequence of CTX-M-15-plasmids from *Escherichia coli* on Bavarian dairy and beef cattle farms. *Applied Environmental Microbiology* **3309–13.

Smet A, Martel A and Persoons D. 2008. Diversity of extension-spectrum beta-lactamases and class C beta-lactamases among cloacal *Escherichia coli* isolates in Belgian broiler farms. *Antimicrobial Agents and Chemotherapy* **52**: 1238–43.

Snow L C, Warner R G, Cheney T, Wearing H, Stokes M, Harris K, Teale C J and Coldham N G. 2012. Risk factors associated with extended spectrum beta-lactamase *Escherichia coli* (CTX-M) on dairy farms in North West England and North Wales. *Preventive Veterinary Medicine* **106**: 225–34.

Stapleton P, Wu P J, King A, Shannon K, French G and Phillips I. 1995. Incidence and mechanisms of resistance to the combination of amoxicillin and clavulanic acid in *Escherichia coli*. *Antimicrobial Agents and Chemotherapy* **39**: 2478–83.

Umolu P I, Ojigie O, Tafeng Y, Omorogbe F I, Aisabokhare F and Ugbodaghah O P. 2006. Antimicrobial susceptibility and plasmid profiles of *Escherichia coli* isolates obtained from different human clinical specimens in Lagos-Nigeria. *The
Valverde A, Coque T M, Sanchez-Moreno M P, Rollan A, Baquero F and Canton R. 2004. Dramatic increase in prevalence of fecal carriage of extended-spectrum β-lactamase-producing Enterobacteriaceae during non-outbreak situations in Spain. *Journal of Clinical Microbiology* **42**: 4769–75.

Witte W. 1998. Medical consequences of antibiotic use in agriculture. *Science* **279**(5353): 996–97.

Wu P J, Shannon K and Phillips I. 1994. Effect of hyperproduction of TEM-1 β-lactamase on in vitro susceptibility of *Escherichia coli* to β-lactam antibiotics. *Antimicrobial Agents and Chemotherapy* **38**: 494–98.

Yuan Li, Liu J, Hu G, Pan Y, Liu A, Mo J and Wei Y. 2009. Molecular characterization of extended-spectrum Beta lactamase producing *Escherichia coli* isolates from chicken in Henan Province, China. *Journal of Medical Microbiology* **58**: 1448–53.

Zhou X Y, Bordon F, Sirot D, Kitzis M D and Gutmann L. 1994. Emergence of clinical isolates of *Escherichia coli* producing TEM-1 derivatives or an OXA-1B-lactamase conferring resistance to β-lactamase inhibitors. *Antimicrobial Agents and Chemotherapy* **38**: 1085–89.