Bioinformatic analysis of key pathways and genes involved in pediatric atopic dermatitis

Tianyi Wang¹, Bingxin Zhang¹, Danhui Li², Xiaoli Qi³, Chijin Zhang¹,*

¹Department of Dermatology, First teaching hospital of Tianjin University of TCM

²School of Pharmacy, University of Auckland, Auckland, New Zealand

³Department of Pediatric Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital

*Correspondence author: Chijin Zhang, Department of Dermatology, First teaching hospital of Tianjin University of TCM. E-mail: drzhang139@gmail.com

Running title: Genetic signature of pediatric atopic dermatitis
Abstract

The initiation of atopic dermatitis (AD) typically happens very early in life, but most of our understanding of AD is derived from studies on AD patients in adult. The aim of this study was to identify gene signature specific to pediatric AD compared to adult AD. The gene expression profiles of four datasets (GSE32924, GSE36842, GSE58558, and GSE107361) were downloaded from the GEO database. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses were performed, and protein-protein interaction (PPI) network was constructed by Cytoscape software. Total 654 differentially expressed genes (DEGs) (394 up-regulated and 260 down-regulated) were identified in pediatric AD samples with adult AD samples as control. The up-regulated DEGs were significantly enriched in the migration and chemotaxis of granulocyte and neutrophil, while down-regulated DEGs were significantly enriched in biological adhesion. KEGG pathway analysis showed that up-regulated DEGs participated in chemokine signaling pathway while down-regulated DEGs participated in adherens junction, Focal adhesion, Regulation of actin cytoskeleton. The top 10 hub genes, GAPDH, EGFR, ACTB, ESR1, CDK1, CXCL8, CD44, KRAS, PTGS2, SMC3 were involved in chemokine signaling pathway, cytokine-cytokine receptor interaction, interleukin-17 signaling pathway, and regulation of actin cytoskeleton. In conclusion, we identified DEGs and hub genes involved in pediatric AD, which might be used as therapeutic targets and diagnostic biomarkers for pediatric AD.

Keywords: Bioinformatics analysis; Pediatric atopic dermatitis; Microarray; Differentially expressed gene
Introduction

Atopic dermatitis (AD) is the most common inflammatory skin disease with an estimated prevalence of around 20% in children and 7%-10% in adults [1-4]. AD is predominantly a Th2/Th22 polarized disease with Th1 polarization in the chronic phase and the impairment of Th17 pathway [5]. The initiation of AD typically happens very early in life, but most of our understanding of AD is derived from studies on AD patients in adult. Therefore, the molecular mechanism underlying pediatric AD initiation and progression is elusive, resulting in a lack of specific treatment for this disease.

Bioinformatics analysis of microarray data is increasingly valued as a promising tool in gene expression profiling in inflammatory diseases to identify differentially expressed genes (DEGs) that play important role in the diseases [6-8]. However, comparative analysis of the DEGs between pediatric AD and adult AD remains to be elucidated.

The aim of this study was to explore gene signature of pediatric AD and identify differentially expressed genes involved in pediatric AD compared to adult AD. In present study, we download the original data (GSE32924, GSE36842, GSE58558, and GSE107361) from Gene Expression Omnibus and compared gene expression profiles of pediatric AD with those in adult AD. The DEGs were identified and analyzed by gene ontology (GO) and pathway enrichment analysis.

Materials and methods

Identification of DEGs
From the Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/), four gene expression profiles (GSE32924, GSE36842, GSE58558, and GSE107361) were selected because they were on gene expression profiling of AD samples (total 49 adult AD samples versus 19 pediatric AD samples) based on Affymetrix GPL570 platform [9-12]. The original probe-level data were converted into gene-level data using Robust multi-array average (RMA) approach for background correction and normalization. Next, limma package in R language was used to identify the DEGs between pediatric and adult samples. Subsequently, a between-subjects t-test was performed to identify DEGs of each AD group with the cutoff criteria of log2 fold change (FC) >2 and FDR <0.01. Volcano plots were generated to visualize the distribution of DEGs between pediatric and adult samples of AD patients.

Gene Ontology and pathway enrichment analysis of DEGs

Bioinformatics analysis of the DEGs was performed as described previously [13]. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed by employing an online software DAVID Database (https://david.ncifcrf.gov/). P <0.05 was considered statistically significant.

Integration of protein-protein interaction (PPI) network

STRING online database (http://string-db.org) was used for analyzing the protein-protein interaction (PPI) information. The cut-off criteria were a combined score of > 0.4 for a PPI network and a node degree of > 10 for screening hub genes. Cytoscape MCODE plug-in was used for searching clustered sub-networks. The default parameters were as follows: degree
cutoff ≥10, node score cutoff ≥0.2, K-core ≥2, and max depth = 100.

Results

Identification of DEGs

A total of 654 genes (394 were up-regulated and 260 were down-regulated) special to pediatric AD samples were identified after the analyses in all four independent cohorts with adult AD samples as control (Supplemental Table 1 and 2). Red or green dots in the volcano plots represented significantly upregulated or downregulated genes, respectively (Fig. 1). The top 50 up-regulated and down-regulated genes were shown in the heat map (Fig. 2).

Functional and pathway enrichment analyses

We uploaded all DEGs to the online software DAVID to identify overrepresented GO categories and KEGG pathways. GO term enrichment analysis showed that upregulated DEGs were significantly enriched in the migration and chemotaxis of granulocyte and Neutrophil, while downregulated DEGs were mainly involved in a multi-organism process. In addition, molecular function analysis showed that upregulated DEGs were mainly associated with chemokine activity, while downregulated DEGs were involved in protein binding (Table 1). Furthermore, KEGG pathway analysis showed that upregulated DEGs participated in the chemokine signaling pathway while downregulated DEGs participated in adherens junction, focal adhesion, and regulation of actin cytoskeleton (Table 2).

Protein-protein interaction network construction and analysis of modules
Based on the information in the STRING database, the top 10 hug nodes with higher degrees were screened (Table 3). Among these nodes, GAPDH showed the highest degree. A total of 594 nodes and 1,651 edges were analyzed using plug-ins MCODE. The top 3 significant modules were selected, the functional annotation of the protein involved in the modules was summarized. Enrichment analysis showed that the proteins in modules 1-3 were mainly associated with the chemokine signaling pathway, Pathway in cancer, Oxytocin signaling pathway (Figure 3).

Discussion

Understanding of the molecular mechanism of pediatric AD might help develop approaches that can prevent atopic diathesis [14]. Previous studies have compared gene expression profiling of pediatric AD samples with adult AD samples or normal healthy samples, respectively, but the sample size of the individual study was limited and the conclusion was controversial [9-12]. Therefore, in this study we retrieved gene expression data of 19 pediatric AD samples and 49 adult AD samples from previous studies and identified 654 DEGs in pediatric AD samples, among which 394 were up-regulated and 260 were down-regulated. Cumulative evidence has demonstrated that the co-expressed genes normally consist of a group of genes with similar expression profiles and participate in parallel biological process. To better understand the interactions of DEGs, we further performed GO, KEGG pathway and PPI network analysis.

GO analysis showed that DEGs mainly participated in extracellular space, anchoring junction and adherens junction, involved in granulocyte and neutrophil migration, performed
functions of cytokine activity, chemokine receptor binding, chemokine activity, and cytoskeletal protein binding. Furthermore, enriched KEGG pathways of up-regulated DEGs included Chemokine signaling pathway and Cytokine-cytokine receptor interaction, and those of down-regulated DEGs included Adherens junction, Focal adhesion and Regulation of actin cytoskeleton. Therefore, all these pathways could contribute to the pathogenesis of pediatric AD.

The analysis based on PPI networks indicated that GAPDH, EGFR, ACTB showed the highest betweenness and belonged to crucial modules of the PPI network. GAPDH is a classic glycolytic enzyme involved in membrane transport and membrane-fusion, microtubule assembly, nuclear RNA export, protein phosphotransferase/kinase reactions, and translational control of gene expression [15]. The β-actin cytoskeleton functions in cellular shape and anchorage where transmembrane glycoproteins link fibronectin in the extracellular matrix with actin microfilaments on the cytoplasmic side of the membrane [16]. While GAPDH and β-actin are regarded as housekeeping genes, accumulating evidence has suggested their mRNA levels vary with cellular proliferation [17-21]. Moreover, their transcription is upregulated rapidly in response to mitogenic stimuli including epidermal growth factor, transforming growth factor-β and platelet-derived growth factor [22-24]. We hypothesized that β-Actin and GAPDH expression levels in AD were variable and not suitable for normalizing mRNA levels. Our results were similar to some studies in asthma, which was part of the atopic march [25].

Epidermal growth factor receptor (EGFR) is a large transmembrane glycoprotein with ligand-induced tyrosine kinase activity [26]. Inhibition of EGFR signaling leads to decreased
expression of cytoskeleton proteins such as actin-binding protein ACTN1 (actinin-1), increased keratinocyte adhesion, resulting in the inhibition of the migration of keratinocytes from the basal layer to the stratum corneum [27-30]. Blockade of EGFR signaling can regulate the expression of CCL26/eotaxin-3 in primary keratinocytes in AD [31,32].

In summary, we identified genes differentially expressed in pediatric AD compared to adult AD and explored their potential function and relevant pathways in the pathogenesis of pediatric AD. Moreover, our study suggested that chemokine pathway and cytoskeletal protein binding play a vital role in the molecular mechanism of pediatric AD. However, this study has limitation because it is based on bioinformatic analysis of online datasets and the differentially expressed genes in pediatric AD should be validated by real-time PCR analysis and function assay. In particular, further studies are needed to validate GAPDH, EGFR and ACTB, which can be considered as crucial genes involved in pediatric AD, with the potential to be used in the diagnosis and therapy.

Competing interests

The authors declare no conflict of interest.

Ethics statement

No ethics statement was require because this study involved no human or animals.

Authors’ contributions
CZ designed the study. TW, BZ, DL and XQ collected and analyzed the data. All authors read and approved the manuscript.

Data availability

All data are available upon request.

Funding

No funding was received.

References

1. Flohr C, Mann J. New insights into the epidemiology of childhood atopic dermatitis. Allergy 2014;69:3-16.

2. Weidinger S, Novak N. Atopic dermatitis. Lancet 2016;387:1109-22.

3. Silverberg JI. Public health burden and epidemiology of atopic dermatitis. Dermatol Clin 2017;35:283-9.

4. Han H, Roan F, Ziegler SF. The atopic march: current insights into skin barrier dysfunction and epithelial cell-derived cytokines. Immunol Rev 2017;278:116-30.

5. Guttman-Yassky E, Lowes MA, Fuentes-Duculan J, Cardinale I, Kikuchi T, et al. Low expression of the IL-23/Th17 pathway in atopic dermatitis compared to psoriasis. J Immunol 2008;181:7240-7.

6. Zhong J, Deng L, Jiang Y, Zou L, Yuan H, Tan S. Gene expression profiling of HepG2 cells after treatment with black tea polyphenols. Biocell 2018;42: 99-104.
7 Ding Y, Shao X, Li X et al. Identification of candidate genes in atopic dermatitis based on bioinformatics methods. Int J Dermatol 2016;55:791-800.

8 Jing W, Li C, Lu Y, Feng L. MicroRNA expression profile and lipid metabolism characteristics in liver of rat undergoing high-fat diet. Biocell 2019;43:129-138.

9 Suárez-Farias M, Tintle S, Shemer A, et al. Non-lesional atopic dermatitis (AD) skin is characterized by broad terminal differentiation defects and variable immune abnormalities. J Allergy Clin Immunol. 2011;127:954-964.

10 Khattri S, Shemer A, Rozenblit M, et al. Cyclosporine A in Atopic Dermatitis Modulates activated inflammatory pathways and reverses epidermal pathology. J Allergy Clin Immunol 2014;133:1626-1634.

11 Brunner PM, Israel A, Zhang N, et al. Early-onset pediatric atopic dermatitis is characterized by T H 2/T H 17/T H 22-centered inflammation and lipid alterations. J Allergy Clin Immunol 2018;141:2094-2106.

12 Gittler JK, Shemer A, Mayte Suárez-Farias, et al. Progressive activation of Th2/Th22 cytokines and selective epidermal proteins characterizes acute and chronic atopic dermatitis. J Allergy Clin Immunol 2012;130:1344-1354.

13 He L, He R, Liang R, Li Y, Li X, Li C, Zhang S. Protein expression profiling in the hippocampus after focal cerebral ischemia injury in rats. J Integr Neurosci. 2018;17:149-158.

14 Gene Ontology C. The gene ontology (GO) project in 2006. Nucleic Acids Res. 2006; 34: D322–6.
15 Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000; 25:25–9.

16 Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000; 28:27–30.

17 Czarnowicki T, Krueger JG, Guttmann-Yassky E. Novel concepts of prevention and treatment of atopic dermatitis through barrier and immune manipulations with implications for the atopic march. J Allergy Clin Immunol 2017; 139:1723-34.

18 Sirover MA. New insights into an old protein: the functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase. Biochim Biophys Acta 1999; 1432:159–84

19 Blatti SP, Foster DN, Ranganathan G, et al. Induction of fibronectin gene transcription and mRNA is a primary response to growth-factor stimulation of AKR-2B cells. Proc Natl Acad Sci USA 1988; 85:1119–23.

20 Coffey RJ Jr, Bascom CC, Sipes NJ, et al. Selective inhibition of growth-related gene expression in murine keratinocytes by transforming growth factor beta. Mol Cell Biol 1988; 8:3088–93.

21 Goldsworthy SM, Goldsworthy TL, Sprankle CS, et al. Variation in expression of genes used for normalization of Northern blots after induction of cell proliferation. Cell Prolif 1993; 26:511–8.

22 Meyer-Siegler K, Rahman-Mansur N, Wurzer JC, et al. Proliferative dependent regulation of the glyceraldehyde-3-phosphate dehydrogenase/uracil DNA glycosylase gene in human cells. Carcinogenesis 1992;13:2127–32.
23 Kim JW, Kim SJ, Han SM, et al. Increased glyceraldehyde-3-phosphate dehydrogenase gene expression in human cervical cancers. Gynecol Oncol 1998; 71(2):266–9.

24 McNulty SE, Toscano WA Jr. Transcriptional regulation of glyceraldehyde-3-phosphate dehydrogenase by 2,3,7,8-Tetrachlorodibenzo-p-Dioxin. Biochem Biophys Res Commun 1995; 212:165–71.

25 Leof EB, Proper JA, Getz MJ, et al. Transforming growth factor type beta regulation of actin mRNA. J Cell Physiol 1986; 127: 83–8.

26 Keski-Oja J, Raghow R, Sawdey M, et al. Regulation of mRNAs for type-I plasminogen activator inhibitor, fibronectin, and type I procollagen by transforming growth factor-beta. Divergent responses in lung fibroblasts and carcinoma cells. J Biol Chem 1988; 263:3111–5.

27 Elder PK, Schmidt LJ, Ono T, et al. Specific stimulation of actin gene transcription by epidermal growth factor and cycloheximide. Proc Natl Acad Sci USA 1984; 81:7476–80.

28 Glare EM, Divjak M, Bailey MJ, et al. beta-actin and GAPDH housekeeping gene expression in asthmatic airways is variable and not suitable for normalising mRNA levels. Thorax, 2002, 57(9):765-70.

29 Ceresa BP, Peterson JL. Cell and molecular biology of epidermal growth factor receptor. Int Rev Cell Mol Biol, 2014,313: 145-178.

30 Lacouture ME. Mechanisms of cutaneous toxicities to EGFR inhibitors. Nat Rev Cancer. 2006,6: 803-812.
31 Kamakura R, Kolegraff KN, Nava P, et al. Loss of the desmosomal cadherin desmoglein-2 suppresses colon cancer cell proliferation through EGFR signaling. Oncogene, 2014, 33: 4531-4536.

32 Dahlhoff M, Gaborit N, Bultmann S, et al. CRISPR-assisted receptor deletion reveals distinct roles for ERBB2 and ERBB3 in skin keratinocytes. FEBS J, 2017, 284: 3339-3349.

33 Merkulova Y, Shen Y, Parkinson LG. et al. Granzyme B inhibits keratinocyte migration by disrupting epidermal growth factor receptor (EGFR) -mediated signaling. Biol Chem, 2016, 397:883-895.

34 Mascia F, Mariani V et al. Blockade of the EGF receptor induces a deranged chemokine expression in keratinocytes leading to enhanced skin inflammation. Am J Pathol 2003;163:303-312.

35 Sääf A, Pivarcsi A, Winge MC, Wahlgren CF, Homey B, Nordenskjöld M, Tengvall-Linder M, Bradley M. Characterization of EGFR and ErbB2 expression in atopic dermatitis patients. Arch Dermatol Res. 2012;304:773-780.
Figure legends

Figure 1. Volcano plots of genes that are significantly different between pediatric and adult controls. The X-axis indicates the \(p \) values (log scale), whereas the Y-axis shows the fold change (log scale). Each symbol represents a different gene, and the red/green color of the symbols categorize the upregulated/downregulated genes falling under different criteria (\(p \)-value and fold change threshold). \(p \)-value <0.01 is considered as statistically significant, whereas fold change = 2 is set as the threshold.

Figure 2. Heat map of the top 100 differentially expressed genes. Shown were 50 up-regulated genes and 50 down-regulated genes). Each column represented a biological sample and each row in the heat map represents a gene. Red: up-regulation; Blue: down-regulation.

Figure 3. Top 3 modules from the protein-protein interaction network. A: module 1, B: module 2, C: module 3. Red: up-regulation; green: down-regulation. D: the enriched pathways of the three modules (FDR< 0.0005).
Category	Term	Involved in	n*	%	P
Up-Regulated					
	GO:0097530	granulocyte migration	9	2.3	1.32E-03
	GO:0006275	regulation of DNA replication	9	2.3	1.56E-03
	GO:1990266	neutrophil migration	8	2.0	1.86E-03
	GO:0071621	granulocyte chemotaxis	8	2.0	3.13E-03
	GO:0030593	neutrophil chemotaxis	7	1.8	4.78E-03
	GO:0005615	extracellular space	40	10.2	9.77E-03
	GO:0098687	chromosomal region	13	3.3	2.74E-02
	GO:0005125	cytokine activity	13	3.3	1.03E-03
	GO:0042379	chemokine receptor binding	7	1.8	1.16E-03
	GO:008009	chemokine activity	6	1.5	2.20E-03
	GO:0016791	phosphatase activity	12	3.1	1.71E-02
	GO:0016810	hydrolase activity, acting on carbon-nitrogen bonds	8	2.0	2.12E-02
Down-Regulated					
	GO:0016032	viral process	32	12.3	4.97E-06
	GO:0044764	multi-organism cellular process	32	12.3	5.75E-06
	GO:0022610	biological adhesion	46	17.7	5.76E-06
	GO:0044403	symbiosis, encompassing mutualism through parasitism	32	12.3	9.55E-06
	GO:0044419	interspecies interaction between organisms	32	12.3	9.55E-06
	GO:0005912	adherens junction	37	14.2	8.19E-12
	GO:0070161	anchoring junction	37	14.2	1.64E-11
	GO:0070062	extracellular exosome	73	28.1	5.49E-08
	GO:1903561	extracellular vesicle	73	28.1	6.76E-08
	GO:0043230	extracellular organelle	73	28.1	6.86E-08
	GO:0008092	cytoskeletal protein binding	31	11.9	1.30E-06
	GO:0032403	protein complex binding	29	11.2	1.70E-06
	GO:0050839	cell adhesion molecule binding	19	7.3	5.91E-05
	GO:0044877	macromolecular complex binding	36	13.8	7.47E-05
	GO:0098641	cadherin binding involved in cell-cell adhesion	14	5.4	1.70E-04

*Number of enriched genes in each term. If there were more than five terms enriched in this category, the top five terms based on P value were chosen.
Table 2. KEGG pathway analysis of DEGs associated with AD.

Category	Term	Count*	%	P
Up-Regulated	KEGG_PATHWAY hsa04062 Chemokine signaling pathway	8	2.0	0.044
	KEGG_PATHWAY hsa04060 Cytokine-cytokine receptor interaction	9	2.3	0.061
	KEGG_PATHWAY hsa04064 NF-kappa B signaling pathway	5	1.3	0.065
	KEGG_PATHWAY hsa04012 ErbB signaling pathway	5	1.3	0.065
	KEGG_PATHWAY hsa05323 Rheumatoid arthritis	5	1.3	0.067
Down-Regulated	KEGG_PATHWAY hsa04520 Adherens junction	6	2.3	0.004
	KEGG_PATHWAY hsa04510 Focal adhesion	9	3.5	0.013
	KEGG_PATHWAY hsa04810 Regulation of actin cytoskeleton	9	3.5	0.015
	KEGG_PATHWAY hsa04530 Tight junction	5	1.9	0.044
	KEGG_PATHWAY hsa04512 ECM-receptor interaction	5	1.9	0.044

*Count: the number of enriched genes in each term. If there were more than five terms enriched in this category, the top five terms based on P value were chosen.
Table 3. The top 10 hub nodes in Protein-protein interaction network.

Hub Node	information	Degree
GAPDH	Glyceraldehyde-3-phosphate dehydrogenase	89
EGFR	Epidermal growth factor receptor	69
ACTB	Actin, cytoplasmic 1	51
ESR1	Estrogen receptor	46
CDK1	Cyclin-dependent kinase 1	44
CXCL8	Interleukin-8	43
CD44	CD44 antigen	41
KRAS	GTPase Kras	36
PTGS2	Prostaglandin G/H synthase 2	33
SMC3	Structural maintenance of chromosomes protein 3	27