Magnetotail energy dissipation during an auroral substorm

E. V. Panov1*, W. Baumjohann1, R. A. Wolf2, R. Nakamura1, V. Angelopoulos3, J. M. Weygand3 and M. V. Kubyshkina4

Violent releases of space plasma energy from the Earth’s magnetotail during substorms produce strong electric currents and bright aura. But what modulates these currents and aura and controls dissipation of the energy released in the ionosphere? Using data from the THEMIS fleet of satellites and ground-based imagers and magnetometers, we show that plasma energy dissipation is controlled by field-aligned currents (FACs) produced and modulated during magnetotail topology change and oscillatory braking of fast plasma jets at 10–14 Earth radii in the nightside magnetosphere. FACs appear in regions where plasma sheet pressure and flux tube volume gradients are non-collinear. Faster tailward expansion of magnetotail dipolarization and subsequent slower inner plasma sheet restretching during substorm expansion and recovery phases cause faster poleward then slower equatorward movement of the substorm aura. Anharmonic radial plasma oscillations build up displaced current filaments and are responsible for discrete longitudinal auroral arcs that move equatorward at a velocity of about 1 km s⁻¹. This observed auroral activity appears sufficient to dissipate the released energy.

Substorms are magnetospheric disturbances during which energy is released from the tail of the Earth’s magnetosphere and injected in the inner magnetosphere and ionosphere. The development of an auroral substorm, the visible part of a magnetospheric substorm, has been investigated for the past half century. Multispacecraft observations have revealed that a substorm onset sequence is initiated by magnetotail reconnection. Newly reconnected field lines relax their magnetic tension, generating series of earthward flow bursts (bursty bulk flows or BBFs) that encompass magnetic flux fronts. Because the velocity of newly reconnected magnetic flux in these fronts is substantially lower than that of a flow burst’s core, the fronts partly dissipate BBFs’ kinetic energy through thermalization and diversion of plasma flows. Earthward flow bursts are associated with small auroral expansions.

Low-entropy BBFs overcome the pressure balance inconsistency, enabling magnetic flux transport to the inner magnetosphere. When BBFs deposit flux from the tail to the inner magnetosphere, the magnetotail dipolarizes first around ten Earth radii (Rₑ), then farther downtail. Encounters with and oscillations of the dominant dipolar magnetic field finally brake flow bursts and magnetic flux fronts.

Rapid modification of pressure and entropy distributions in the inner magnetosphere by a slowing flow burst has been suggested to generate an enduring substorm current wedge. In addition, azimuthal displacement or bending of field lines in the tail may provide dynamic balancing of the plasma sheet through closure of transient currents in the ionosphere as north–south (meridional) Pedersen currents across the auroral arc.

Using simultaneous observations in the near-Earth plasma sheet by five Time History of Events and Macroscale Interactions during Substorms (THEMIS) probes, conjugate ground all-sky camera observations from Canada, and magnetometer arrays over North America on 23 March 2009 between 6:00 and 6:40 UT, we investigate the source of dissipation of magnetotail energy released when flow bursts stop. Magnetotail observations were provided by the probes’ fluxgate magnetometers and their electrostatic analyser (ESA) particle detectors. Ground-based observations of auroral emissions and the ionospheric magnetic field were provided by the All-Sky Imagery (ASI at Snap Lake, Rankin Inlet, and Sanikiluaq) and a dense network of ground magnetometer arrays over Greenland and North America. A fortuitous THEMIS probe configuration in space and with their magnetic footpoints over the aforementioned network of MAGs and ASIs under clear skies, allowed us to unambiguously ascertain the physical connection between ground and space phenomena for an isolated substorm.

23 March 2009 auroral substorm

On 23 March 2009 at about 6:04 UT, THEMIS ASIs at Snap Lake (SNAP), Rankin Inlet (RANK), and Sanikiluaq (SNKQ) in Canada started to observe an auroral substorm. Figure 1a shows a snapshot (at 6:12:30 UT) from the three ASIs. The ASI at SNAP observed a westward travelling surge (a bright bold spot), whereas the ASI at RANK observed most of an auroral bulge. The ASI at SNKQ observed the eastward end of an auroral bulge. Note that ASIs at SNAP and SNKQ were contaminated with a non-auroral light (stable white spots at the western edge of the ASI at SNAP and at the northern edge of the ASI at SNKQ). A movie (in the Supplementary Information) containing all ASI snapshots on 23 March 2009 between 6:00 and 6:40 UT at 3 s cadence shows the dynamics of the two auroral structures throughout the substorm. Between 6:04 and 6:17 UT the auroral bulge expanded northward by more than 7 degrees latitude. After 6:17 UT it started to fade away.

The length and orientation of tiny yellow lines in the snapshot (see zoom-in insert in white rectangle in Fig. 1a) indicate the magnitude and direction of the auroral substructures’ local velocities (the lines’ origin is always at the edge of an auroral substructure). These velocities were calculated using a computer vision algorithm.
Figure 1 | Ground observations of aurora and electric currents. a. Snapshot from three ASIs at Snap Lake (SNAP), Rankin Inlet (RANK), and Sanikiluaq (SNKQ) at 06:12:30 UT. Tiny yellow lines show local velocity of auroral substructures. b. Current system structure on the ground: snapshot of EICs (arrows) and the SECS scaling factors (colour: upward in reddish, and downward in bluish) at 06:12:30 UT, calculated using ground-based magnetometer array data. The footprints of the five THEMIS probes as predicted by the AM-03 model are denoted by overplotted crosses (red for P1, green for P2, blue for P3, cyan for P4, and magenta for P5; see also zoom-in).

that solves the optical flow constraint equation. Optical flow is the distribution of apparent velocities of objects in an image (auroral substructures within the ASI snapshots). By estimating optical flow between video frames, one can measure the velocities of objects in the video. We solved the optical flow constraint equation using the Lucas–Kanade method, which divides the original image into smaller sections and assumes a constant velocity in each.

Ionospheric currents

We used magnetometer arrays over Greenland and North America\(^{23-25}\) and the 2D Spherical Elementary Current Systems (SECSs) method\(^{26,27}\) to investigate ionospheric currents on the ground. In this method, the divergence-free elementary current system is expanded at each pole of the grid shown in Fig. 2 of ref. 25, allowing derivation of horizontal equivalent ionospheric currents (EICs). Using EICs, we calculated vertical components of the curl of EICs integrated over each grid point area. We refer to the vertical components as SECS scaling factors because the amplitude of each elementary system is scaled (measured in amperes). If the ionospheric conductance gradient is parallel to the electric field direction, the SECS scaling factors are proportional to field-aligned currents (FACs)\(^{27}\), and the factor of proportionality between FACs and the SECS scaling factors is the Hall-to-Pedersen conductance ratio.

Figure 1b shows a snapshot of EICs (arrows) and SECS scaling factors (colour: upward, reddish; downward, bluish) at 06:12:30 UT (see movie containing all snapshots for 23 March 2009 between 6:00 and 6:40 UT at 1 s cadence in Supplementary Information).

The ionospheric current system consists of a pair of vertical (FAC) currents with opposite polarity (reddish and bluish spots in the SECS scaling factors) and a westward electrojet (larger arrows in EICs between the reddish and bluish spots). Between 6:04 and 6:17 UT the ionospheric current area appeared to drastically expand in both the azimuthal and north–south directions. The current maxima moved northward from about 59° latitude to about 63° latitude (close to RANK) between 6:04 and 6:17 UT. By 6:40 UT the ionospheric currents had almost died out. The expansion, northward motion, and drying out of the ionospheric currents thus coincided with the auroral bulge behaviour.

Linking an auroral substorm with plasma sheet dynamics

The appearance and fading away of the auroral bulge and ionospheric currents reflect the substorm expansion and recovery phases. Assuming that auroral and ionospheric current dynamics originate in the magnetosphere, observations in the plasma sheet may provide a clue about the substorm generation process. The expansion and recovery phases are not one-dimensional (radial) problems. In particular, flow divergence in the out-of-plane direction may be responsible for an azimuthal flux transport\(^{28}\).

During the time under discussion, five THEMIS probes (P1–P5) were orbiting inside the near-Earth plasma sheet between −11 and −14 Earth radii (\(R_E\)) downtail (Fig. 2a), with their ionospheric footprints in the Northern Hemisphere near the ASI at RANK (see zoom-in insert in black rectangle in Fig. 1b). Such spacecraft location allows us to link plasma sheet and ground ASI and MAG observations near the central part of the auroral bulge.

According to the AM-03 model\(^{29}\), magnetic field line evolution shows that the magnetotail depolarized rapidly between 6:04 and 6:17 UT. After 6:17 UT, magnetic field lines started to stretch tailward. The dipolarization and stretching cover a wide range of X GSM (Geocentric Solar Magnetospheric coordinate system in which X ≈ Earth–Sun line). As indicated by the black arrow in Fig. 2b, the plasma sheet \(B_z\) magnetic field grew between 6:03 and 6:18 UT (during magnetotail dipolarization), such that the \(B_z\) increase propagated tailward (from \(X = −11R_E\) to \(X = −14R_E\)) at a velocity of 35 km s\(^{-1}\). In contrast, after 6:18 UT (during magnetotail restretching), \(B_z\) decreased earthward at a velocity of 13 km s\(^{-1}\) (from \(X = −14R_E\) to \(X = −11.5R_E\), black arrow in Fig. 2c).

The auroral electrojet (AE) index (Fig. 3a) reveals substorm expansion (between about 6:03 UT and 6:15 UT) and recovery (after 6:15 UT) phases. Magnetospheric perpendicular currents may divert to parallel because of zero divergence of total (perpendicular plus parallel) current density. For example, when the ions cannot carry all needed perpendicular current in a stronger total field, the divergent (to parallel) diamagnetic perpendicular current is proportional to \(\nabla \times V \times P\) (ref. 30), where \(P\) is plasma sheet pressure and \(V\) is flux tube volume. The triangular configuration of THEMIS probes in the X–Y plane (see ionospheric footprints in the Northern Hemisphere near the ASI at RANK, zoom-in insert in black rectangle in Fig. 1b) allowed us to calculate the Z GSM component of \(\nabla \times V \times P\) in the region between the probes, where \(V\) is calculated using formula (6) in ref. 31. The main component contributing to \(\nabla \times V \times P\) appeared to be \(\partial V/\partial z\left(\partial P/\partial y\right)\). \(\partial V/\partial z\) was estimated between THEMIS probes separated along X GSM and confirmed by the AM-03 model.

Regions of enhanced \((\nabla \times V \times P)_{\perp}\) around the neutral sheet are believed to feed substorm field-aligned currents, as shown by MHD simulations in Figs 4 and 5 in ref. 19. According to these simulations, field-aligned current is oppositely directed on two sides of the flow burst’s core. Kinetic particle-in-cell simulations indicate that these currents may be asymmetric due to strong duskward ion flow at the magnetic flux front.
Figure 2 | AM-03 model predictions of the magnetotail development near THEMIS probes. a, Locations of THEMIS probes P1–P5 on 23 March 2009 at 6:12 UT projected onto the noon meridian GSM plane, and evolution of the magnetic field lines between 6:02 and 6:42 UT. b, c, Evolution of the Bz magnetic field component for 6:03 and 6:18 UT (b) and for 6:21 and 6:40 UT (c) according to the AM-03 model are overplotted (see legends for colour coding).

Indeed, Fig. 3b shows that (∇V × ∇P)z grew rapidly during the substorm expansion phase and decreased slowly during the substorm recovery phase. This behaviour agrees with development of substorm currents in the ionosphere, Fig. 3e.

The time-integrated average meridional auroral velocity at SNAP, RANK and SNKQ, ∫Vzdtd (red curve in Fig. 3c) indicates that during the substorm expansion phase, auroral activity moved poleward by about 9° (from about 55° to 64° latitude). During the substorm recovery phase, ∫Vzdtd slowly returned. The ratio between the velocity of tailward expansion of plasma sheet dipolarization (∼35 km s⁻¹, see Fig. 2b) and the poleward propagation velocity of the auroral activity (∼1.8 km s⁻¹) is close to the ratio between the velocity of inner plasma sheet restretching (∼13 km s⁻¹, see Fig. 2c) and the equatorward propagation velocity of the auroral activity (∼0.7 km s⁻¹). Because of the earthward then tailward convection of magnetic field lines past the THEMIS probes (Fig. 2a), the geographic latitude of the five THEMIS footprints predicted by the AM-03 model (pink area in Fig. 3c) appeared to partly follow the auroral activity location. In effect, Fig. 3c,d shows that a poleward fast-moving bright aurora slows down and dims after the expansion phase, recedes to lower latitudes, then fades away during late substorm recovery phase.

The above observations indicate that non-colllinear pressure and flux tube volume gradients in the magnetotail indeed feed the direct part of the ionospheric currents (DC). However, as seen from the ASI observations, auroral activity within the auroral bulge near the maximal ionospheric currents (near RANK) is fairly complex (Fig. 3d), and alternating ionospheric currents exist there (Fig. 3e). The amplitudes of the alternating currents are significantly smaller than those of the DC currents; thus, they do not change the direction of the total current.

Aurora during anharmonic oscillatory braking
As predicted by the AM-03 model, the footprints of THEMIS probes P1 and P2 at the auroral bulge location most of the time. That is, they were located between the red and blue spots of upward and downward ionospheric currents at the westward electrojet current (see the Supplementary Movie containing all snapshots of ASI observations at Rankin Inlet on 23 March 2009 between 6:00 and 6:40 UT at 3 s cadence).

In Fig. 4a we show ∫δVzdtd—time-integrated oscillations of the radial ion velocity Vr, where δ indicates bandpass filtering at periods between 10 and 500 s, and positive Vr means earthward. The location of the oscillating magnetic flux tube with respect to its...
equilibrium position is indicated by \(\int \delta V_r \, dt \). When the oscillating flow tube was earthward of this position (that is, when red and green curves in Fig. 4a were above zero), the force acting on it (Fig. 4b) was directed tailward (towards the equilibrium position). During such intervals (\(\nabla \times \nabla P \)) in Fig. 4c exhibited peaks. Hence, the plasma sheet field-aligned current is modulated by the oscillating magnetic flux tube, getting stronger or weaker depending on the location of the oscillating magnetic flux tube with respect to its point of equilibrium. In contrast to the steady (DC) component of (\(\nabla \times \nabla P \)) from Fig. 3b, the alternating (AC) component of (\(\nabla \times \nabla P \)) in Fig. 4c may be partly balanced by inertial currents, agreeing with thin filament simulations. Nonetheless, ground \(I_{up} \) (Fig. 4d) still reveals significant (up to 15% of an average magnitude) oscillations.

We correlated space \(\int \delta V_r \, dt \) and ground \(I_{up} \) observations. We found that the ionospheric current dynamics lags behind THEMIS observations by about 45 s (for example, a plot of \(\int \delta V_r \, dt \) against \(I_{up} \) (not shown) reveals a linear dependence, with the correlation coefficients exceeding 0.9). This time delay is about 15%; the observed oscillation period of \(\int \delta V_r \, dt \) is about 5 min. This represents a phase lag of about 1 radian, which is consistent with Fig. 25 of ref. 15 for a reasonable level of an average Pedersen conductance in the ionosphere of 3 S.

The intervals of positive \(\int \delta V_r \, dt \) correspond to about 10–15% increases in the ionospheric field-aligned currents (Fig. 4d). Every peak in the field-aligned current corresponds to enhanced auroral luminosity (Fig. 4e) and velocity (Fig. 4f) of the auroral arcs like the one shown in Fig. 1 at RANK (two more arc examples are given in the Supplementary Information for ground ASI and current observations at 6:17:30 UT and at 6:21:00 UT). The arcs were longitudinally oriented and moved equatorward at a velocity up to 200 km min\(^{-1}\) (with an average value of the order of 50 km min\(^{-1}\), Fig. 4f). The velocity of the auroral activity (Fig. 4g) peaked when the magnetic flux tube moved earthward from its equilibrium position. Hence, magnetic flux tube oscillations during fast flow braking in the near-Earth plasma sheet modulated the ionospheric current and auroral dynamics during the substorm under study.

Recently, with the help of the thin filament approach\(^2\), the oscillatory flow braking between 6:00 UT and 6:40 UT on 23 March 2009 was suggested to have occurred in an asymmetric potential in which the thin filament oscillations appeared to be anharmonic. Figure 5 shows the theoretical predictions for THEMIS observations on 23 March 2009 around 6:21 UT: phase portrait of a thin filament oscillating anharmonically around its equilibrium position at \(X \approx -14 R_E \) (panel a) in the asymmetric potential well \(U \) (panel b). The Supplementary Movie shows one period of the thin filament oscillation on 23 March 2009 around 6:21 UT. The force per unit magnetic flux \(F \) (black arrows in Fig. 5b) acting on the thin filament in its most earthward position (red solid circle at \(X \approx -13 R_E \)) appeared to be about three times larger than \(F \) in the filament’s most tailward position (blue solid circle at \(X \approx -16 R_E \)). Thus, the aurora brightened (field-aligned current enhanced) when the thin filament was earthward of its equilibrium position, and dimmed (field-aligned current depleted) when the thin filament was tailward of its equilibrium position.

Energy consumption rate

According to the above results, when the anharmonically oscillating magnetic flux tube is earthward of its equilibrium position, its interaction with the background plasma sheet is more dramatic: pressure and flux tube volume gradients become enhanced transiently. The plasma sheet currents appear transiently as a result of azimuthal displacement or bending of field lines in the tail and close at the ionospheric side through Pedersen currents across auroral arcs. The westward electrojet current, which is closed to itself, warping the upward and downward field-aligned currents, is the Hall current. Hence, during anharmonic oscillatory flow braking, flow burst kinetic energy may be damped and converted to Joule heating due to Pedersen conductance in the westward electrojet.

The ionospheric Joule heating is a part of the total energy dissipation that occurs during substorms\(^3,4\). Using an empirical relation between the auroral electrojet (AE) index and the Joule heating\(^5\) one can estimate the Joule heating for both hemispheres during the substorm under study (taking 0.6 GW for 1 nT in the average AE index of about 50 nT) to be about 3 \(\times 10^{16} \) W.

Alternatively, the latitude-integrated precipitation rate near midnight for \(Kp = 2 \) is about 0.224 keV (s–sr)\(^{-1}\) for each half-hour bin in local time\(^6\). Multiplying by four to cover 2 h in local time, by two to include both hemispheres, by \(\pi \) to integrate over a solid angle, and by \(1.6 \times 10^{-16} \) to convert energy units, we get about \(4 \times 10^{16} \) W. Globally, Joule heating comes out to be of the order of twice the direct loss by precipitation; hence, the total dissipation would be approximately \(8 \times 10^{16} \) W. This is a little less than the above estimate, which is a reasonable correction due to statistical averaging. Let
us compare these estimates with the dissipation rate that can be provided by the observed auroral arcs.

The Alfvénic wave impedance exerted on the current flow by mirror force is \(R_{\text{Alfv}} = (\mu_0 L_2)/\tau_\alpha^1 \sim 1.4 \, \text{G}\), where the McIlwain number \(L \approx 11\), Alfvénic transit time \(\tau_\alpha \approx 45\,\text{s}\), and \(\Gamma \approx 1.2\) characterizes the high-beta effect on the magnetic field\(^7\). From Fig. 1b we get a current density for ionospheric field-aligned currents of about \(j_{\text{i,ion}} \approx 100\,\text{kA}/(150\,\text{km})^2 = 5\,\mu\text{A}\,\text{m}^{-2}\). Note that the amplitudes of the alternating ionospheric currents are about ten times smaller (10% of the DC currents, Figs 3e and 4d). Knowing that the field-aligned currents are generated equal or exceed the area covered by THEMIS probes in the XY GSM plane, about \(4R_E^2\), one can obtain the field-aligned current density in the plasma sheet, \(j_i \approx 4\,\text{nA}\,\text{m}^{-2}\). Knowing that the size of the region with enhanced \((\nabla V \times \nabla P)_E\), a circle with diameter \(3R_E\) (distance between P1, P2 and P3–P5), we find that the energy flux may reach \(W_{\text{arc}} = R_{\text{Alfv}}j_i^2 \approx 0.35\,\text{W}\,\text{m}^{-2}\), where \(j_{\text{i,ion}} = j_i \times 3R_E \approx 0.5\,\text{A}\,\text{m}^{-2}\). Hence, direct energy inflow into the arc with thickness \(\omega_{\text{arc}} = 50\,\text{km}\) and length \(l_{\text{arc}} = 1,000\,\text{km}\) is \(W_{\text{arc}}\omega_{\text{arc}}l_{\text{arc}} \approx 1.75 \times 10^{10}\,\text{W}\).

Another energy consumption estimate can be obtained from the potential drop \(\Phi_1 = \sqrt{W_{\text{arc}}/K} \approx 35\,\text{kV}\), where \(K = (R_{\text{Alfv}}\omega_{\text{arc}})^{-1} \approx 2.9 \times 10^{-10}\,\text{S}\,\text{m}^{-2}\) (see 37). Following empirical expressions for conductivities\(^8\), we estimate the Hall-to-Pedersen conductivity ratio \(s = \Sigma_{\text{H}}/\Sigma_{\text{P}} = 0.45\,\text{f}^{0.85} \approx 9.24\) and the Pedersen conductivity \(\Sigma_{\text{P}} = 40S(\Phi_1/(16 + \Phi_1^2))\sqrt{W_{\text{arc}}/(1\,\text{mW}\,\text{m}^{-2})} \approx 21.1S\). Hence, the Cowling conductivity \(\Sigma_{\text{C}} = (1 + (s/\alpha))\Sigma_{\text{P}} \approx 1,763S\), where \(\alpha = 1 + (1/R_\circ \Sigma_{\text{P}}), |s| \approx 1.034\). Note that such conductivity levels are found in the brightest auroral elements, such as the surge horn\(^9\). The resulting tangential (westward) electric field in the ionosphere \(E_i = \sqrt{(RV_\circ/\Sigma_{\text{P}})}l_{\text{arc}} \approx 14.1\,\text{mV}\,\text{m}^{-1}\). The total energy consumption in the westward electrojet can be estimated as \(W_{\text{arc}} = 2\Sigma_{\text{C}}E_i\omega_{\text{arc}}l_{\text{arc}} \approx 3.5 \times 10^{12}\,\text{W}\) (ref. 37), comparable to the above estimates of the direct energy inflow (\(\approx 1.75 \times 10^{10}\,\text{W}\)) and of the Joule heating (\(\approx 0.8 \times 10^{10}\,\text{W}\) and \(3 \times 10^{10}\,\text{W}\)).

Whereas a substantial part of the magnetotail energy is brought with the magnetic flux\(^10,13\), only a tenth of the total Joule heating (\(10^9\,\text{W}\)) can be associated with the oscillating plasma sheet fast flows: in Figs 3e and 4d, the amplitudes of the alternating ionospheric currents are about 10% of the DC currents. The fastest flows (observed by P4 at 6:08 UT, not shown here) reached 600 km s\(^{-1}\). Knowing that BBOC visual in very localized channels up to \(3R_E\) (distance between P1 and P5 in the L\(_{\text{Zmin}}\) direction), and that the radial flow size exceeded \(11R_E\) (earthward flow velocity P4 integrated over 4 min braking time between 6:03 UT and 6:07 UT), a minimal flow burst kinetic energy can be estimated as \(W_b = (1/2)m_p n_p 99R_E^2 \times (600\,\text{km}\,\text{s}^{-1})^2 \approx 8.1 \times 10^{13}\), where \(m_p\) is the proton mass, and \(n_p \approx 0.1\,\text{cm}^{-3}\) is the proton number density. Thus, reasonably consistent with the presented THEMIS observations, \(W_b\) can be dissipated by five arcs, each providing a dissipation rate of approximately \(10^9\,\text{W}\) over an arc lifetime (Fig. 4e,f) of about three minutes.

Conclusions

The THEMIS space and ground magnetometer and all-sky imager observations analysed above suggest that substorm currents and auroral dynamics are controlled by oscillatory braking fast flows at 10–14 Earth radii in the nightside magnetosphere. The auroral bulge appears to map in the flow braking region where the plasma sheet pressure and flux tube volume gradients are non-collinear. Two processes were identified to control the ionospheric current and auroral dynamics during the substorm. The first is a fast (35 km s\(^{-1}\)) tailward expansion of magnetotail dipolarization and then slower (13 km s\(^{-1}\)) inner plasma sheet restretching during substorm expansion and recovery phases cause faster (1.7 km s\(^{-1}\)) poleward, then slower (0.7 km s\(^{-1}\)) equatorward movement of the substorm auroral bulge. The second is the presence of plasma sheet parcels, oscillating anharmonically around their equilibrium position and building up stronger pressure and flux tube volume gradients earthward of this position, which are responsible for discrete longitudinal auroral arcs within the bulge that move equatorward at a velocity of the order of 1 km s\(^{-1}\). The observed auroral activity appears to consume sufficient energy to dissipate the released magnetotail energy.

Data availability. Time History of Events and Macroscale Interactions during Substorms (THEMIS) probes data is available from the Space Physics Data Facility of the Goddard Space Flight Center (http://cdaweb.gsfc.nasa.gov). All Sky Imager data from THEMIS Mission Data website (http://themis.ssl.berkeley.edu/gbo/display.py); geomagnetic indices from the World Data Center for Geomagnetism, Kyoto (http://wdc.kugi.kyoto-u.ac.jp); ground magnetometer data from the Canadian Array for Real Time Investigations of Magnetic Activity (http://www.carisma.ca); and from SuperMAG consortium (http://supermag.jhuapl.edu). Upon request the authors will attempt to provide all other data supporting this study.

Received 2 December 2015; accepted 4 August 2016; published online 12 September 2016

References

1. McPherron, R. L. Magnetospheric substorms. *Rev. Geophys. Space Phys.* 17, 657–681 (1979).

2. Akasofu, S.-I. Auroral substorms as an electrical discharge phenomenon. *Prog. Earth Planet. Sci.* 2, 1–21 (2015).
3. Angelopoulos, V. et al. Tail reconnection triggering substorm onset. Science 321, 931–935 (2008).
4. Baumjohann, W., Paschmann, G. & Luehr, H. Characteristics of high-speed ion flows in the plasma sheet. J. Geophys. Res. 95, 3801–3809 (1990).
5. Angelopoulos, V. et al. Statistical characteristics of bursty bulk flow events. J. Geophys. Res. 99, 21257–21280 (1994).
6. Angelopoulos, V. et al. Electromagnetic energy conversion at reconnection fronts. Science 341, 1478–1482 (2013).
7. Drake, J. F., Swisdak, M., Cassak, P. A. & Phan, T. D. On the 3-D structure and dissipation of reconnection-driven flow bursts. Geophys. Res. Lett. 41, 3710–3716 (2014).
8. Nakamura, R. et al. Earthward flow bursts, auroral streamers, and small expansions. J. Geophys. Res. 106, 10791–10802 (2001).
9. Pontius, D. H. Jr & Wolf, R. A. Transient flux tubes in the terrestrial magnetosphere. Geophys. Res. Lett. 17, 49–52 (1990).
10. Baumjohann, W. Modes of convection in the magnetotail. Phys. Plasmas 9, 3665–3667 (2002).
11. Nakamura, R. et al. Plasma flow and magnetic field characteristics near the midtail neutral sheet. J. Geophys. Res. 99, 23591–23601 (1994).
12. Schödel, R., Nakamura, R., Baumjohann, W. & Mukai, T. Rapid flux transport and plasma sheet reconfiguration. J. Geophys. Res. 106, 8381–8390 (2001).
13. Baumjohann, W. et al. Substorm depolarization and recovery. J. Geophys. Res. 104, 24995–25000 (1999).
14. Birn, J., Nakamura, R., Panov, E. V. & Hesse, M. Bursty bulk flows and dipolarization in MHD simulations of magnetotail reconnection. J. Geophys. Res. 116, A01210 (2011).
15. Wolf, R. A., Chen, C. X. & Toftoletto, F. R. Thin filament simulations for Earth’s plasma sheet: interchange oscillations. J. Geophys. Res. 117, A02215 (2012).
16. Panov, E. V. et al. Oscillatory flow braking in the magnetotail: THEMIS statistics. Geophys. Res. Lett. 40, 2505–2510 (2013).
17. Sergeev, V. A., Chernenkov, I. A., Angelopoulos, V., Runov, A. V. & Nakamura, R. Stopping flow bursts and their role in the generation of the substorm current wedge. Geophys. Res. Lett. 41, 1106–1112 (2014).
18. Birn, J., Hesse, M., Haerendel, G., Baumjohann, W. & Shokhov, K. Flow braking and the substorm current wedge. J. Geophys. Res. 104, 19895–19904 (1999).
19. Kepko, L. et al. Substorm current wedge revisited. Space Sci. Rev. 190, 1–46 (2015).
20. Angelopoulos, V. The THEMIS mission. Space Sci. Rev. 141, 5–34 (2008).
21. Auster, H. U. et al. The THEMIS fluxgate magnetometer. Space Sci. Rev. 141, 233–264 (2008).
22. McFadden, J. P. et al. The THEMIS ESA plasma instrument and in-flight calibration. Space Sci. Rev. 141, 277–302 (2008).
23. Mendre, S. B. et al. The THEMIS array of ground-based observatories for the study of auroral substorms. Space Sci. Rev. 141, 357–387 (2008).
24. Mann, J. R. et al. The upgraded CARISMA magnetometer array in the THEMIS era. Space Sci. Rev. 141, 413–451 (2008).
25. Weygand, J. M. et al. Application and validation of the spherical elementary currents system technique for deriving ionospheric equivalent currents with the North American and Greenland ground magnetometer arrays. J. Geophys. Res. 116, A03305 (2011).
26. Barron, J., Fleet, D. J. & Beauchemin, S. S. Performance of optical flow techniques. Int. J. Comput. Vis. 12, 43–77 (1994).
27. Amm, O. & Kauristie, K. Ionospheric signatures of bursty bulk flows. Surv. Geophys. 23, 1–32 (2002).
28. Hsieh, M.-S. & Otto, A. Thin current sheet formation in response to the loading and the depletion of magnetic flux during the substorm growth phase. J. Geophys. Res. 120, 4264–4278 (2015).
29. Kubyshkina, M. et al. Time-dependent magnetospheric configuration and breakup mapping during a substorm. J. Geophys. Res. 116, A00127 (2011).
30. Vasylkivska, V. M. in Particles and Field in the Magnetosphere Vol. 17 (eds McCormack, B. M. & Renzini, A.) 60–71 (Astrophysics and Space Science Library, 1970).
31. Wolf, R. A. et al. Estimating local plasma sheet PVs from single-spacecraft measurements. J. Geophys. Res. 111, A12218 (2006).
32. Panov, E. V., Wolf, R. A., Kubyshkina, M., Baumjohann, W. & Nakamura, R. Anharmonic oscillatory flow braking in the Earth's magnetotail. Geophys. Res. Lett. 42, 3708–3706 (2015).
33. Angelopoulos, V. et al. Multipoint analysis of a bursty bulk flow event on April 11, 1985. J. Geophys. Res. 101, 4967–4989 (1996).
34. Miyashita, Y. et al. A statistical study of energy release and transport midway between the magnetic reconnection and initial dipolarization regions in the near-Earth magnetotail associated with substorm expansion onsets. J. Geophys. Res. 117, A11214 (2012).
35. Baumjohann, W. & Kamide, Y. Hemispherical Joule heating and the AE indices. J. Geophys. Res. 89, 3883–3888 (1984).
36. Hardy, D. A., Gussenhoven, M. S. & Holeman, E. A statistical model of auroral electron precipitation. J. Geophys. Res. 90, 4229–4248 (1985).
37. Haerendel, G. Poleward arcs of the auroral oval during substorms and the inner edge of the plasma sheet. J. Geophys. Res. 114, A06214 (2009).
38. Robinson, R. M., Vondrak, R. R., Miller, K., Dabbs, T. & Hardy, D. On calculating ionospheric conductances from the flux and energy of precipitating electrons. J. Geophys. Res. 92, 2565–2569 (1987).
39. Gjerloev, J. W. & Hoffman, R. A. Height-integrated conductivity in auroral substorms. 1. Data. J. Geophys. Res. 105, 215–226 (2000).

Acknowledgements

We acknowledge NASA contract NASS-02099 for use of data from the THEMIS Mission and, specifically, for the use of FGM data supported through the German Ministry for Economy and Technology and the German Center for Aviation and Space (DLR) under contract 50 OC 0302. For the GO/ASIA project, we acknowledge S. Mende and E. Donovan, NASA contract NASS-02099 and the CSA for logistical support in fielding and data retrieval from the GBO stations. The authors gratefully acknowledge AUTUMN, CANMOS, CARISMA, DITU, GIMA, MACCS, MACMAC, STEP, THEMIS and USGS for the use of ground-based magnetic field data over Greenland and North America. The work of M.V.K. was supported by RFBR grant 16-05-00470. The work of E.V.P. and R.N. was partly supported by the Austrian Science Fund (FWF) I2016-N20 and by the Seventh Framework European Commission Programme (FP7, project 269198 Geoplasmas). The authors thank O. Amm for helping with ionospheric currents calculations, J. Hohl for helping with editing, and K.-H. Glatmeier, O. Panova, A. A. Petrukovich, V. A. Sergeev and F. R. Toftoletto for insightful discussions.

Author contributions

E.V.P. developed the research and did the main part of the data analysis; R.A.W. applied analytical thin filament calculations; W.B. and R.A.W. provided theoretical insight into interpretation of the observational data; R.N. and V.A. contributed to the data interpretation and manuscript preparation; J.M.W. applied the spherical elementary currents (SECS) method to the ground magnetometer data; M.V.K. applied the AM-03 model to THEMIS data and traced THEMIS probes' ionospheric footprints; E.V.P. wrote the manuscript, with revisions provided by V.A., W.B., R.N. and R.A.W.; all authors contributed to the discussion of the results and manuscript.

Additional information

Reprints and permissions information is available online at www.nature.com/reprints. Correspondence and requests for materials should be addressed to E.V.P.

Competing financial interests

The authors declare no competing financial interests.