GENERATION AND ATRACTION TRAVEL IN BOGOR DISTRICT

Zainab Nina
Civil Engineering Departement, Ibn Khaldun University Bogor, INDONESIA
E-mail: zainabnina12@gmail.com

ABSTRACT

Cibungbulang District has 32.66 km² area with 15 villages, Ciampea District has 51.06 km² area with 13 villages, Dramaga District has 24.47 km² area with 10 villages, and Ranca Bungur District 21.68 km² area with 15 villages are conterminal districts to Kota Bogor, and are crossed by the main road that connects between West Java Province and Banten Province. The increase of movement in and out of this area affects the number of movements and also the trip generation and trip attraction caused in the four districts such as education centers, offices, hospitals and recreation places. Conduct a Traffic counting survey on the main road sections that begin to be processed based on MKJI 2017 methode. Also using Trip Generation Manual, describe the number of trip generation and trip attraction to MAT. Then, modeled into SATURN Software. So that, the research results are 9,522 trip/hour trip generation with 382,504 smp/hour trip attraction. And has Level of Service on A-F with B level average. This proves the need for improvement and equitable distribution of infrastructure and facilities, traffic infrastructure. And to realize alternative roads and mass transportation.

Key word: trip generation; trip attraction; MAT; transportation.

INTRODUCTION

The current high development, especially in Bogor Regency, has also resulted in the high demand for transportation which is a must to be fulfilled

Cibungbulang Subdistrict, Ciampea Subdistrict, Dramaga Subdistrict, and Ranca Bungur Subdistrict are sub-districts that are directly adjacent to Bogor City, and are crossed by the main road connecting West Java Province with Banten Province. Each district has an area of 32.66 km² with a population of 133,845 people/km² in Cibungbulang District, 51.06 km² with a population of 160,487 people/km² in Ciampea District. Meanwhile, 24.47 km² with a population of 111,119 people/km² in Dramaga District and an area of 21.68 km² with a population of 54,260 people/km² in Ranca Bungur District (Bogor Regency in Figures 2018). In this research area, one of the best universities in Indonesia has also been built, hospitals, markets, to natural and family tourism destinations. Thus, it causes a movement of the awakening and attraction of the journey of people and goods which is expected to cause several problems, especially in the decline in road performance (Badan Pusat Statistik Kabupaten Bogor, 2018); (Badan Pusat Statistik Kabupaten Bogor, 2018a); (Badan Pusat Statistik Kabupaten Bogor, 2018b); (Badan Pusat Statistik Kabupaten Bogor, 2018c); (Badan Pusat Statistik Kabupaten Bogor, 2018d); (Dinas Kabupaten Bogor, 2018); (Direktorat Jenderal Pelayanan Kesehatan, 2018); (Direktorat Jenderal Pendidikan Dasar dan Menengah, 2015) (IPB University, 2014).

The movement of the awakening

Movement generation is a modeling stage that estimates the amount of movement originating from a zone or land use and the amount of movement attracted to a land use or zone. Traffic movement is a land use function that produces traffic movements (Mecky.R.E.M, Theo.KS, 2011); (Prasetyo.W.H,2018); (Silvia.S., 199); (Suriyadi.RA, Azmeri, 2017); (Tamin, 2000). This traffic generation includes:

1) Traffic leaving a location
2) Traffic to or from a location
The output from the calculation of traffic generation and attraction is the number of vehicles, people, or goods per unit of time, for example vehicles/hour.

A person's journey is influenced by a need; a need is someone's guidance in traveling. People travel either using motorized vehicles or non-motorized vehicles. Using a motorized vehicle affects the importance of traveling. This need will support daily activities, whether traveling or not. So that motorized vehicles are very useful so that they can be categorized as vehicles as a necessity (M. Mubarak, et.al, 2020); (S. Syaiful, A. Fadly, 2020); (Thamrin, Syaiful, 2016).

The distribution of movements
The goal of moving within an area will cause problems, such as congestion, air pollution, noise, delays and so on. One way to be able to find solutions to these problems is to understand the current and future movement patterns. Understanding patterns can be identified by searching data about the origin and destination of movements, the magnitude of the movements, and when the movements occur.

Origin Destination Matrix (MAT)
MAT is a matrix of origin and destination which contains information about the magnitude of movement between zones within a certain area. In this case, the Tid notation states the amount of movement flow (vehicles, passengers, and goods) moving from origin zone i to destination zone d during a certain time interval.

Degree of saturation
The value of the degree of saturation or Volume Capacity Ratio (VCR) for roads is obtained based on the analysis of traffic volume divided by road capacity. To obtain road and intersection capacity, geometric measurements of existing roads and intersections are required. Furthermore, the amount of traffic volume in the coming period will be calculated based on traffic forecasting analysis. The amount of the traffic growth factor is based on the growth rate of vehicles.

Service level	City Size Factor (FVBUK)	Scope Limit V/C
A	Free traffic flow conditions with high speed and low traffic volume	0.00 – 0.20
B	The flow is stable, but the operating speed is starting to be limited by traffic conditions	0.20 – 0.44
C	The current is stable, but the speed and motion of the vehicle are controlled	0.45 – 0.74
D	The current is close to stable, the speed can still be controlled, V / C can still be tolerated	0.75 – 0.84
E	Flow unstable speed sometimes stops, demand is close to capacity	0.85 – 1.00
F	Forced flow, low speed, volume over capacity, long queue (jammed)	≥ 1.00

(Source: MKJI, 2017)
Simulation and Assignment of Traffic on Urban Road Network (SATURN)

SATURN (Simulation and Assignment of Traffic on Urban Road Network) is a computer software developed by the Institute of Transport Studies, University of Leeds.

SATURN can also function as both a loading model and a pure intersection simulation model. SATURN is also equipped with other standard loading models, such as Generalized Cost, All or Nothing, Wardrop Balance, Burrel Multi-Route Loading (SUE), and others. SATURN can also be used to estimate the trip matrix using traffic flow data or update an existing matrix, as part of an external iteration using the output of the last loading in the iteration process.

RESEARCH METHODS

Executing Place

The research locations are located on main roads, education centers, office buildings, recreation and tourism areas, economic and health centers located in the four study areas.

![Figure 1. Study area (Google Maps, 2019)](image_url)

Research time

The research was carried out at peak hours based on daily traffic habits through Google Maps.

Materials and tools

1) The materials needed in this study are primary and secondary data obtained from the analysis and related agencies in the form of growth data for Bogor Regency, existing conditions in Bogor Regency, and RTRW Map data for Bogor Regency.

2) The tools needed consist of: Traffic Counting questionnaire form, stationery, counting, a computer for data processing, and a printer, A4 paper as a print out of the planning results.

Procedure

The way this research works is described based on the stages that have been designed in the research flow diagram shown in Figure 2 below.
RESULTS AND DISCUSSION
Existing Condition of the Study Area

The categories of road functions in the study area based on the 2016 RTRW of Bogor Regency are shown in Table 2.

No	Road name	Road type	The width of roads	Road function
1	Jl. Leuwiliang	2/2 TT	7 m	Primary Collector I
	Bogor			
2	Jl. Baru Galuga	2/2 TT	8 m	Secondary Artery
3	Jl. Raya Galuga	2/2 TT	6 m	Secondary Collector I
Vehicle surveys are carried out on road sections based on the 2016 RTRW of Bogor Regency which are then adjusted based on times of daily congestion on the Google Maps application. Which then counts the total volume and the total flow of the vehicle is calculated.

Table 3. Vehicle Volume Flow with Urban Road Classification in Dramaga District

No	Road name	Road type	The width of roads	Road function
4	Jl. Lapangan Tembak	2/2	5 m	Secondary Collector I
5	Jl. Leuwiliang Bogor (Ciampea)	2/2	7 m	Primary Collector I
6	Jl. Letnan Sukarna	2/2	6 m	Secondary Collector I
7	Jl. Cikampak-Cicadas	2/2	5 m	Secondary Collector I
8	Jl. Cihideung Ilim	2/2	4 m	Secondary Collector I
9	Jl. Cihideung Udik	2/2	4 m	Secondary Collector I
10	Jl. Pumawarman	2/2	4 m	Secondary Collector I
11	Jl. Lapangan Tembak (Ciampea)	2/2	5 m	Secondary Collector I
12	Jl. Leuwiliang Bogor (Jl. Raya Dramaga)	2/2	7 m	Primary Collector I
13	Jl. Lingkar Laladon	2/2	14 m	Secondary Artery
14	Jl. H. Miing	2/2	8 m	Secondary Collector I
15	Jl. Raya Cagak	2/2	6 m	Secondary Collector I
16	Jl. Raya Rancabungur	2/2	7 m	Secondary Collector I
17	Jl. Letkol Atang Sanjaya	2/2	5 m	Secondary Collector I
18	Jl. Mekarsari	2/2	5 m	Secondary Collector I

Source: Analysis Results

Flow of volume Jl. Laladon Circle to the west and east.

Table 4. Vehicle Volume Flow with Urban Outer Road Classification in Dramaga District

Period	Road	SM	KBM	BB	KR	Volume	Total Q (flow hour)
17:00-18:00	Jl. Leuwiliang-Bogor (Jl. Raya Dramaga)	1164	32	3	612	1811	1352.7
	T	2080	26	2	560	2668	1841.8

(Source: Analysis Results)
(Source: Analysis Results)

Flow of volume Jl. Leuwiliang Bogor (Ciampea) west and east.

Table 5. Vehicle Volume Flow with Urban Road Classification in Ciampea District

Period	Road Description	Direction	SM	KBM	BB	KR	Volume	Total Q/hour
07:00-08:00	Jl. Leuwiliang – Bogor (Ciampea)	B	1728	12	0	472	2212	1523.2

(Source: Analysis Results)

Traffic volume in Ciampea Subdistrict, west and east, north and south.

Table 6. Vehicle Volume Flows with the Classification of Urban Outer Roads in Ciampea District

Period	Road Description	Direction	SM	KBM	BB	KR	Volume	Total Q/hour
08:00-09:00	Jl. Letman Sukarni	U	1164	0	0	248	1412	946.4
10:00-11:00	Jl. Cihidueng Ilir	U	384	0	0	72	456	302.4
11:00-12:00	Jl. Cihidueng Udile	S	448	0	0	64	512	332.8
10:00-11:00	Jl. Lapangan	S	216	0	0	16	232	158.4
11:00-12:00	Jl. Cikampak – Cieadas	S	376	7	1	88	472	323.3

(Source: Analysis Results)

Flow of volume Jl. Leuwiliang - Bogor (Cibungbulang) west and east.

Table 7. Vehicle Volume Flow with Urban Road Classification in Cibungbulang District

Period	Road Description	Direction	SM	KBM	BB	KR	Volume	Total Q/hour
11:00-12:00	Jl. Leuwiliang – Bogor (Cibungbulang)	B	1520	0	4	460	1984	1377.2

(Source: Analysis Results)

Vehicle volume flow in Cibungbulang subdistrict to the west and east, north and south.

Table 8. Flow of Vehicle Volume with the Classification of Urban Outer Roads in Cibungbulang District
The flow of vehicle volume in Rancabungur District is west and east, north and south.

Table 9. Vehicle Volume Flow with Urban Outer Road Classification in Ranca Bungur District

Period	Road	Direction	SM	KBM	BB	KR	Volume
10:00-	Jl. Baru Galuga	B	476	4	208	588	498.8
11:00		T	416	2	216	634	488
15:00-	Jl. Raya Galuga	U	368	0	80	466	311.6
16:00		S	88	0	112	200	164.8
09:00-	Jl. Lapangan Tembak (Cibungbulang)	B	332	0	100	432	299.2
10:00		T	288	0	56	284	192.8

(Source: Analysis Results)

Road Speed and Capacity Calculation

The calculation of road speed and capacity in the study location is calculated based on the results of a road clarification survey which is then processed and adjusted based on the 2017 MKJI.

Speed Calculation

\[V_b = (V_{bd} + V_{bl}) \cdot F_{vbhs} \cdot F_{vbuk} \] (1)

Table 10. Average Speed of Urban Road Classification Section

No	Road	VBD	VBL	FvBhs	FvBuk	Vb(min)
1	Jl. Raya Bogor - Leuwaliang (Cibubulan)	42	0	0.93	1.03	40.23
2	Jl. Raya Bogor - Leuwaliang (Ciampea)	42	0	0.93	1.03	40.23
3	Jl. Raya Bogor - Leuwaliang (Darmaga)	42	3	0.93	1.03	43.11
Vb = (Vbd + Fvb-W). Fvb-Hs.Fvb-Fj (2)

Table 11. Average Speed of Outer-Urban Road Classification Section

No	Road	VBD	VBL	FVBSH	FVBJ	VB
1	Jl. Raya Galuga	68	3	0,96	0,98	61,15
2	Jl. Baru Galuga	68	3	1	1	65
3	Jl. Lapangan Tembok	65	3	1	1	62
4	Jl. Raya Cikampak-Cicadas	65	11	0,91	0,98	48,16
5	Jl. Ciheuneg Hir	65	11	0,91	0,94	46,19
6	Jl. Ciheuneg Udik	61	9	0,96	0,94	46,92
7	Jl. Raya Pasear Cianpea	68	11	0,85	0,91	44,09
8	Jl. Purnawarman	61	9	0,96	0,94	46,92
9	Jl. Lap. Tembok	61	9	1	0,94	48,88
10	Jl. Lingkor Laladon	68	0	0,96	0,93	60,71
11	Jl. Raya Cagak	68	3	0,91	0,93	55,01
12	Jl. Raya Rancabungur	61	0	0,96	0,93	54,46
13	Jl. Letkol Atang Sanjava	68	11	0,91	0,93	48,24
14	Jl. Mekarsari	65	11	1	0,94	50,76
15	Jl. H. Ming	65	3	1	1	58,28

The calculation of road capacity based on MKJI 2017 is stated in the following table:

C = C0 X FcLj X FcPa X FcHS X FcUK (3)

Table 12. Urban Road Capacity

No	Road	Co	FcLj	FcPA	FcHS	FcUK	C
1	Jl. Raya Bogor - Leuwilang	2900	1	1	1,04	0,92	2774,72
	(Cibubutan)						
2	Jl. Raya Bogor - Leuwilang	2900	1	1	1,04	0,92	2774,72
	(Ciampea)						
3	Jl. Raya Bogor - Leuwilang	2900	1,14	1	0,92	1,04	3163,18
	(Dranaga)						

Table 13. Capacity of Outer Urban Roads

No	Road	Co	FcLj	FcPA	FcHS	C
1	Jl. Raya Galuga	3100	0,91	1	0,88	2482,48
2	Jl. Baru Galuga	3100	1,08	1	0,93	3113,64
3	Jl. Lapangan Tembok	3100	0,69	1	0,93	1989,27
4	Jl. Raya Cikampak-Cicadas	3100	0,69	1	0,84	1796,76
5	Jl. Ciheuneg Hir	3100	0,69	1	0,84	1796,76
6	Jl. Ciheuneg Udik	3000	0,69	1	0,88	1821,6
7	Jl. Raya Pasear Cianpea	3100	0,91	1	0,88	2258,80
8	Jl. Purnawarman	3000	0,69	1	0,93	1821,6
9	Jl. Lap. Tembok	3100	0,69	1	0,84	1989,27
10	Jl. Lingkor Laladon	3100	1	1	0,96	2976,00
11	Jl. Raya Cagak	3100	0,91	1	0,84	2369,64
12	Jl. Raya Rancabungur	3100	1	1	0,88	2738,00
13	Jl. Letkol Atang Sanjava	3100	0,69	1	0,88	1882,32
14	Jl. Mekarsari	3100	0,69	1	0,93	1989,27
15	Jl. H. Ming	3100	0,91	1	0,93	2623,53
(Source: Analysis Results)

Existing Service Level
Existing Service Level (Level of Service, LoS) of roads in the Study Area in 2019

Roads	Type	The width of the road	skr/hour	c	VCR	LOS
Jl. Leuwiliang Bogor	2/2	7 m	2603	2775	0.9	E
(Cibungbulang)	TT					
Jl. Baru Galuga	2/2	8 m	967	3114	0.3	B
Jl. Raya galuga	2/2	6 m	476	2482	0.2	A
Jl. Lap. Tembak	2/2	5 m	492	1989	0.2	A
Jl. Leuwiliang Bogor	2/2	7 m	3872	2775	1.4	F
(Ciampea)	TT					
Jl. Letnan Sukama	2/2	6 m	2492	2257	1.1	F
Jl. Chidueng Ilir	2/2	4 m	635	1797	0.4	B
Jl. Chidueng Udik	2/2	4 m	304	1822	0.2	A
Jl. Lap. Tembak	2/2	5 m	870	1989	0.4	B
(Ciampea)	TT					
Jl. Purnawarman	2/2	4 m	741	1822	0.4	B
Jl. Cikampak-Cicadas	2/2	5 m	712	1797	0.4	B
Jl. Raya Dramaga	2/2	8 m	3195	3163	1.0	E
Jl. lingkar Laladon	2/2	7 m	828	2728	0.3	B
Jl. Raya Cagak	2/2	6 m	1706	2454	0.7	C
Jl. Raya Rancabungur	2/2	7 m	802	2728	0.3	B
Jl. Letkol ATS	2/2	5 m	1212	1882	0.6	C
Jl. Mekarsari	2/2	5 m	678	1989	0.3	B
Jl. H. Miing	2/2	6 m	697	2624	0.3	B

(Source: Analysis Results)

Prediction of Generation and Withdrawal Calculations in the Study Area
In the calculation of the generation, an assumption is made of the number of units and the area for each generation, including: schools, offices, apartments, hotels, hospitals to recreation areas in the study area. Furthermore, to get the total number of pcu / hour pulls, the assumption is that the proportion of vehicles is uniform with the traffic counting data which is changed based on the
vehicle coefficient on the MKJI. Estimation of generation and attraction using the Trip Generation Manual ITE (Institute Transportation Engineers).

Table 15. Calculation of Generation and Withdrawal in Cibungbulang District

Description/ITE Code	Description/ITE Code	Units	Large Sqm/Unit Of measure	Coefisien ITE	ITE Generation (trip/hour)	
SMA Taman Islam (Senior High School)	INSTITUTIONAL	KSF²	3815	0.97	39.83	
Pasar Saptu (Wholesale Market)	RETAIL	KSF²	2750	0.88	26.05	
Kantor Desa Situ Udik (Government Office)	OFFICE	KSF²	370	1.21	4.82	
SMPS Aulia (Junior High School)	INSTITUTIONAL	KSF²	700	1.19	8.97	
SMA Aulia (Senior High School)	INSTITUTIONAL	KSF²	700	0.97	7.31	
SMPS Mulia (Junior High School)	INSTITUTIONAL	KSF²	32000	1.19	409.90	
SMK Cahaya (Senior High School)	INSTITUTIONAL	KSF²	5000	0.97	52.21	
Taman Air, Gunung Handeleum (Athletic Club)	RECREATIONAL	KSF²	10394	5.96	666.83	
Kantor Desa Situ Ilir (Government Office)	OFFICE	KSF²	350	1.21	4.56	
SMP Ash-Shollhin (Junior High School)	INSTITUTIONAL	KSF²	2047	1.19	26.22	
SMP Tahfizh Al-Basyir (Junior High School)	INSTITUTIONAL	KSF²	1000	1.19	12.81	
Kantor Desa Cibatok 2 (Government Office)	OFFICE	KSF²	480	1.21	6.25	
SMP Taruna Bhakti (Junior High School)	INSTITUTIONAL	KSF²	3000	1.19	38.43	
Kantor Desa Ciaruteun Udik (Government)	OFFICE	KSF²	295	1.21	3.84	
Description/ITE Code	Description/ITE Code	Units	Larges Sqm/Unit Of measure	Coefisien ITE	ITE Generation (trip/hour)	
----------------------	----------------------	-------	---------------------------	---------------	--------------------------	
Office) SMAN 1	INSTITUTIONAL	KSF2	10000	0.97	104.41	
Cibungbulang (Senior High School)	SMK Bumi Sejahtera Kantor Desa Cibatok 1 (Government Office)	INSTITUTIONAL	KSF2	3565	0.97	37.22
Kantor Desa Sukamaju (Government Office)	OFFICE	KSF2	350	1.21	4.56	
Pt. Puspa Damayanti (Utilities) Kantor Desa Cemplang (Government Office)	OFFICE	KSF2	400	1.21	5.21	
Pt. M&S Aparel (General Light Industrial) SMK Teknomedika 2 (Senior High School) Kantor Desa Galuga (Government Office) SMP PGRI Cibungbulang (Junior High School) SMK Pertiwi Cibungbulang Bogor (Senior High School) Kantor Desa Dukuh (Government Office) SMPN 1 Cibungbulang (Junior High School) SMPS Al Badariah (Junior	INDUSTRIAL	KSF2	5880	0.76	48.10	
Kantor Desa Sukamaju (Government Office)	OFFICE	KSF2	680	1.21	8.86	
Pt. M&S Aparel (General Light Industrial) SMK Teknomedika 2 (Senior High School) Kantor Desa Galuga (Government Office) SMP PGRI Cibungbulang (Junior High School) SMK Pertiwi Cibungbulang Bogor (Senior High School) Kantor Desa Dukuh (Government Office) SMPN 1 Cibungbulang (Junior High School) SMPS Al Badariah (Junior	INDUSTRIAL	KSF2	33430	0.97	349	
Kantor Desa Sukamaju (Government Office)	OFFICE	KSF2	1935	0.97	20.20	
SMPN 1 Cibungbulang (Junior High School) SMPS Al Badariah (Junior	INSTITUTIONAL	KSF2	1500	1.19	19.21	
Kantor Desa Sukamaju (Government Office)	INSTITUTIONAL	KSF2	8500	0.97	88.75	
SMPN 1 Cibungbulang (Junior High School) SMPS Al Badariah (Junior	INSTITUTIONAL	KSF2	5768	1.19	73.89	
Kantor Desa Sukamaju (Government Office)	INSTITUTIONAL	KSF2	2657	1.19	34.03	
Description/ITE Code	Description/ITE Code	Units	Larges Sqm/Unit Of measure	Coefisien ITE	ITE Generation (trip/hour)	
----------------------	----------------------	-------	-----------------------------	---------------	--------------------------	
High School) Kantor Kecamatan Cibungbulang (Government Office)	OFFICE KSF\(^2\)	2170	1.21	28.26		
Kantor Desa Cimanggu 2 (Government Office)	OFFICE KSF\(^2\)	350	1.21	4.56		
Sejahtera (Junior High School)	INSTITUTIONAL KSF\(^2\)	2400	1.19	30.74		
SMA Bumi Sejahtera (Senior High School)	INSTITUTIONAL KSF\(^2\)	2000	0.97	20.88		
Nurul Ihsan (Junior High School)	INSTITUTIONAL KSF\(^2\)	3669	1.19	47.00		
Lembah Pelangi (Regional Park)	RECREATIONAL Acres	12.6	0.20	2.52		
Kantor Desa Cimanggu 1 (Government Office)	OFFICE KSF\(^2\)	400	1.21	5.21		
SMPN 2 Cibungbulang (Junior High School)	INSTITUTIONAL KSF\(^2\)	10300	1.19	131.94		
SMK Matusha Dwi Elang (Senior High School)	INSTITUTIONAL KSF\(^2\)	4369	0.97	45.62		
SMK Pandu Bogor (Senior High School)	INSTITUTIONAL KSF\(^2\)	17876	0.97	186.65		
Kantor Desa Girimulya (Government Office)	OFFICE KSF\(^2\)	350	1.21	4.56		
Kantor Desa Leuwung Kolot (Government Office)	OFFICE KSF\(^2\)	350	1.21	4.56		
Kantor Desa Ciaruteun Ilir (Government Office)	OFFICE KSF\(^2\)	700	1.21	9.12		
Prasati Batu Tulis Ciaruteun	INSTITUTIONAL KSF\(^2\)	2000	0.18	3.9		
The results of the analysis of the generation and pull calculations in Ciampea District are presented in the following table:

Table 16. Calculation of Generation and Withdrawal in Ciampea District

Description/ITE Code	Description/ITE Code	Units	Large Sqm/Unit Of measure	Coefisien ITE	ITE Generation (trip/hour)	
Pasar Selasa (Wholesale Market)	RETAIL	KSF²	2420	0.88	22.92	
Kantor Desa Ciampea Udik (Government Office)	OFFICE	KSF²	700	1.21	9.12	
SMP Madani (Senior High School)	INSTITUTIONAL	KSF²	5000	1.19	64.05	
SMK Madani (Senior High School)	INSTITUTIONAL	KSF²	2000	0.97	20.88	
Cakrawala Nuansa Nirwana (Athletic Club)	RECREATIONAL	KSF²	16200	5.96	1039.31	
Kantor Desa Cinangka (Government Office)	OFFICE	KSF²	450	1.21	5.86	
SMK Miftaahush Shuduur (Senior High School)	INSTITUTIONAL	KSF²	20250	0.97	211.44	
Kantor Desa Cibuntu	OFFICE	KSF²	730	1.21	9.51	
Description/ITE Code	Description/ITE Code	Units	Large Sqm/Unit Of measure	Coefisien ITE	ITE Generation (trip/hour)	
----------------------	----------------------	-------	---------------------------	---------------	---------------------------	
(Government Office)	SMP Bumi Sejahtera Ciampea (Junior High School)	INSTITUTIONAL	KSF²	3000	1.19	38.43
Kantor Desa Cicadas (Government Office)		OFFICE	KSF²	810	1.21	10.55
Kp. Wisata Rumah Joglo (Horse Race Track)		RECREATIONAL	Acres	8.35	4.3	35.91
Kantor Desa Tegal Waru (Government Office)		OFFICE	KSF²	260	1.21	3.39
Kantor Desa Bojong Jengkol (Government Office)		OFFICE	KSF²	630	1.21	8.21
PT. G&S (General Light Industrial)	SMA Hanura (Senior High School)	INDUSTRIAL	KSF²	11200	0.97	116.94
Kp. Wisata Cinangneng (Country Park)	Kantor Desa Cihideung Udik (Government Office)	INSTITUTIONAL	KSF²	700	0.97	7.31
Kp. Wisata Cinangneng (Country Park)	KANTOR DESA CIHIDEUNG UDIK (GOVERNMENT OFFICE)	RECREATIONAL	Acres	37.06	0.09	3.34
PT. G&S (General Light Industrial)	SMK Agri Insani (Senior High School)	INSTITUTIONAL	KSF²	13400	0.97	139.91
SMP Buana (Senior High School)						
SMPS Darussolihiin (Junior High School)		INSTITUTIONAL	KSF²	1650	1.19	21.14
SMK Agri Insani (Senior High School)		INSTITUTIONAL	KSF²	5035	0.97	52.57
SMK Farmasi Galenium (Senior High School)		INSTITUTIONAL	KSF²	500	0.97	5.22
SMK Geo Informatika						
Description/ITE Code	Description/ITE Code	Units	Large Sqm/Unit Of measure	Coefisien ITE	ITE Generation (trip/hour)	
----------------------	----------------------	-------	---------------------------	---------------	---------------------------	
LODGING	Office	2355	0.62		1460.1	
KSF^2						
Small						
Lodging	Office	600	1.21		7.81	
KSF^2						
Office		400	1.21		5.21	
KSF^2						
Lodging	Office	9450	1.19		121.05	
KSF^2						
Office		1225	1.19		15.69	
KSF^2						
Office		650	0.97		6.79	
KSF^2						
Office		15600	0.97		162.88	
KSF^2						
Office		5000	0.97		52.21	
KSF^2						
Office		2450	1.21		31.91	
KSF^2						
Office		450	1.21		5.86	
KSF^2						
Office		6099	0.97		63.68	
KSF^2						
Office		300	1.21		3.91	
KSF^2						
Office		350	1.21		4.56	
KSF^2						
Office		1200	0.97		12.53	
KSF^2						

Zainab Nina
Generation and Attraction Travel in Bogor District
The results of the analysis of the generation and pull calculations in Dramaga District are presented in the following table:

Table 7. Calculation of Generation and Withdrawal in Dramaga District

Description/ITE Code	Description/ITE Code	Units	Large Sqm/Unit of measure	Coefisien ITE	ITE Generation (trip/hour)
School Yayasan Darulfalah (Senior High School)	INSTITUTIONAL	KSF	33000	0.97	344.56
SMPN 1 Ciampea (Junior High School)	INSTITUTIONAL	KSF	3308	1.19	42.37
Pasar Ciampea Indah (Wholesale Market)	RETAIL	KSF	29320	0.88	277.74
Pasar Lama Ciampea (Wholesale Market)	RETAIL	KSF	17000	0.88	161.03
Kantor Desa Ciampea (Government Office)	OFFICE	KSF	500	1.21	6.51
Total					4636

(Source: Analysis Results)
Description/ITE Code	Description/ITE Code	Units	Large Sqm/Unit of measure	Coefisien ITE	ITE Generation (trip/hour)
Manggah Dua (Junior High School)					
Kantor Desa Suka Wening (Government Office)	OFFICE	KSF²	610	1.21	7.95
SMP Yafahi (Junior High School)	INSTITUTIONAL	KSF²	1900	1.19	24.34
SMK Yafahi (Senior High School)	INSTITUTIONAL	KSF²	1900	0.97	19.84
Kantor Desa Neglasari (Government Office)	OFFICE	KSF²	550	1.21	7.16
SMK Globin (Senior High School)	INSTITUTIONAL	KSF²	2400	0.97	25.06
Pasar Dramaga (Wholesale Market)	RETAIL	KSF²	2760	0.88	26.14
Kantor Desa Sinarsari (Government Office)	OFFICE	KSF²	400	1.21	5.21
Kantor Desa Cihang (Government Office)	OFFICE	KSF²	1050	1.21	13.68
SMPN 2 Dramaga (Junior High School)	INSTITUTIONAL	KSF²	11000	1.19	140.90
SMA Negeri 1 Dramaga (Senior High School)	INSTITUTIONAL	KSF²	14010	0.97	146.28
Rs. Karya Bhakti Pratiwi (Hospital)	INSTITUTIONAL	KSF²	7455	0.93	74.63
Kantor Kecamatan Dramaga (Government Office)	OFFICE	KSF²	2800	1.21	36.47
Mc Donald (Fast Food Restaurant With Drive Through Window)	SERVICES	KSF²	450	33.84	163.92
Kantor Desa	OFFICE	KSF²	1150	1.21	14.98
The results of the analysis of the generation and pull calculations in Rancabungur District are presented in the following table:

Table 18. Calculation of Generation and Withdrawal in Rancabungur District

Description/ITE Code	Description/ITE Code	Units	Large Sqm/Unit of measure	Coefisien ITE	ITE Generation (trip/hour)
Kantor Desa Mekarsari (Government Office)	OFFICE	KSF²	740	1.21	9.64
Ponpes Rafah (School)	INSTITUTIONAL	KSF²	14000	1.19	179.33
SMPN 1 Rancabungur (Junior High School)	INSTITUTIONAL	KSF²	10000	1.19	128.09
Total					1131
Description/ITE Code	Description/ITE Code	Units	Large Sqm/Unit Of measure	Coefisien ITE	ITE Generation (trip/hour)
----------------------	----------------------	-------	---------------------------	---------------	---------------------------
SMP Purnawarna (Junior High School) SMK Pembina Bangsa (Senior High School) Kecamatan Rancabunggu	INSTITUTIONAL KSF²	3000	1.19	38.43	
SMP Purnawarna (Junior High School) SMK Pembina Bangsa (Senior High School) Kecamatan Rancabunggu	INSTITUTIONAL KSF²	30000	0.97	313.24	
SMP Purnawarna (Junior High School) SMK Pembina Bangsa (Senior High School) Kecamatan Rancabunggu	OFFICE KSF²	1100	1.21	14.33	
SMP Purnawarna (Junior High School) SMK Pembina Bangsa (Senior High School) Kecamatan Rancabunggu	OFFICE KSF²	370	1.21	4.82	
SMP Purnawarna (Junior High School) SMK Pembina Bangsa (Senior High School) Kecamatan Rancabunggu	INSTITUTIONAL KSF²	5390	0.97	56.28	
SMP Purnawarna (Junior High School) SMK Pembina Bangsa (Senior High School) Kecamatan Rancabunggu	OFFICE KSF²	300	1.21	3.91	
SMP Purnawarna (Junior High School) SMK Pembina Bangsa (Senior High School) Kecamatan Rancabunggu	OFFICE KSF²	870	1.21	11.33	
SMP Purnawarna (Junior High School) SMK Pembina Bangsa (Senior High School) Kecamatan Rancabunggu	INSTITUTIONAL KSF²	2130	0.97	22.24	
SMP Purnawarna (Junior High School) SMK Pembina Bangsa (Senior High School) Kecamatan Rancabunggu	INSTITUTIONAL KSF²	2470	0.97	25.79	
SMP Purnawarna (Junior High School) SMK Pembina Bangsa (Senior High School) Kecamatan Rancabunggu	OFFICE KSF²	550	1.21	7.16	
SMP Purnawarna (Junior High School) SMK Pembina Bangsa (Senior High School) Kecamatan Rancabunggu	OFFICE KSF²	415	1.21	5.41	
Table 19. Calculation of Generation and Withdrawal in Rancabungur District

Zona	Kelurahan	Sub-District
1	Situ Udik	
2	Situ Ilir	
3	Cibatok 2	
4	Ciaruten Udik	Cibungbulang
5	Cibatok 1	
6	Sukamaju	
7	Cemplang	
8	Galuga	
9	Dukuh	
10	Cimanggu 2	
11	Cimanggu 1	
12	Girimulya	
13	Leuweung Kolot	
14	Ciaruten Ilir	
15	Cijujung	
16	Ciampea Udik	
17	Cinangka	
18	Cibuntu	
19	Cicadas	
20	Tegal Waru	Ciampea
21	Bojong Jengkol	
22	Cihideung Udik	
23	Cihideung Ilir	
24	Cibanteng	
25	Bojong Rangkas	
The results of the existing 2019 Origin Destination Matrix for the 4 sub-district study areas are shown in the following table:

Table 20. MAT Existing Study Area 2019

(Source: Analysis Results)

Road Network Modeling in the 4 sub-district study locations is shown in the following Figure:

Figure 4. Road Network for the Study Location (Source: Analysis Results)
The following is a picture of the road loading (VCR Variable Intensity) of the study location.

![Figure 5. VCR Variable Intensity (Source: Analysis Results)](image)

Figure 5. VCR Variable Intensity (Source: Analysis Results)

Figure 6. The Pattern of Generation and Withdrawal of the Existing 2019 Study Sites (Source: Analysis Results)

The origin-destination matrix is charged to the road network and calibrated to obtain rsq for the design of the transportation modeling equation in the four study districts, namely \(Y = 2310.06 + 273.16 \times X \) which is presented in the following figure:

![Figure 7. Calibration Results of the 2019 Study Location Network (Source: Analysis Results)](image)

Figure 7. Calibration Results of the 2019 Study Location Network (Source: Analysis Results)

CONCLUSION

Based on the results and discussion that have been described, the following conclusions can be drawn, the existing condition of the road network in the study area shows that the LoS is in the range A to F service for vulnerable E and F, while other roads in the study area have an average service level value for vulnerable B. This occurs as a result of greater movement in the main road corridor. The number of awakening and withdrawals in the education area, hospital, offices and trade/shopping areas in Cibungbulang District, Ciampia District, Drama District and Rancabungur District is 9,522 trips/hour with an attraction of 382,504 pcu/hour. The design of the transportation modeling equation in the four study districts, namely \(Y = 2310.06 + 273.16 \times X \).

REFERENCES
Badan Pusat Statistik Kabupaten Bogor. 2018. Kabupaten Bogor dalam angka 2018. (Indonesian)
Badan Pusat Statistik Kabupaten Bogor. 2018a. Kecamatan Cibungbulang dalam angka 2018 (Indonesian)
Badan Pusat Statistik Kabupaten Bogor. 2018b. Kecamatan Ciampea dalam angka 2018 (Indonesian)
Badan Pusat Statistik Kabupaten Bogor. 2018c. Kecamatan Dramaga dalam angka 2018 (Indonesian)
Badan Pusat Statistik Kabupaten Bogor. 2018d. Kecamatan Rancabungur dalam angka 2018 (Indonesian)
Dinas Kesehatan Kabupaten Bogor, 2018. http://dinkes.bogorkab.go.id/puskesmas/ (Indonesian)
Direktorat Jenderal Pelayanan Kesehatan, (2018) Data Rumah Sakit Online, Kementerian Kesehatan Republik Indonesia, http://sirs.yankes.kemkes.go.id/sonline/ (Indonesian)
Direktorat Jenderal Pendidikan Dasar dan Menengah, (2015) Data Pokok Pendidikan Dasar dan Menengah. Kementerian Pendidikan dan Kebudayaan, dilihat 10 April 2019, http://dapo.dikdasmen.kemdikbud.go.id. (Indonesian)
IPB University, (2014) Profil IPB 2014. dilihat pada 10 April 2019, https://ipb.ac.id. (Indonesian)
M Mubarak, R Rulhendri, S Syaiful, 2020. PERENCANAAAN PENINGKATAN PERKERASAN JALAN BETON PADA RUAS JALAN BABAKAN TENGAH KABUPATEN BOGOR, ASTONJADRO: JURNAL REKAYASA SIPIL 9 (1), 1-13. (Indonesian). http://ejournal.uikabogor.ac.id/index.php/ASTONJADRO/article/view/2694
Prasetyo, W. H. (2018) Analisis Dampak Lalu Lintas Pembangunan Apartemen Mbr Di Stasiun Paleang. (Indonesian)
S Syaiful, A Fadly, 2020. ANALYSIS OF THE EFFECTIVENESS OF BUS SERVICES OUTSIDE OF CAMPUS IPB DRAMAGA BOGOR, ASTONJADRO: JURNAL REKAYASA SIPIL 9 (2), 173-186. http://ejournal.uikabogor.ac.id/index.php/ASTONJADRO/article/view/3597
Suriyadi, Renni Anggraini, Azmeri (2017) Analisa Bangkitan P Bergerakan Pada Kawasan Lampulo Kota Banda Aceh Jurnal. Darussalam Banda Aceh. Universitas Syiah Kuala (Indonesian)
Sukirman, Silvia. (1999). Dasar-Dasar Perencanaan Geometri Jalur Bandung. (Indonesian)
Tamin, O. (2000) Perencanaan & Pemodelan Transportasi. Kedua. Bandung: ITB. (Indonesian).
Thamrin, Syaiful, 2016. ANALISIS KEBISINGAN YANG DITIMBULKAN KEPADATAN KENDARAAN BERMOTOR (Studi Kasus Depan Masjid Assalafiyah, Jl. Raya Sukabumi KM 22 Cigombong, Kabupaten Bogor), ASTONJADRO Jurnal Rekayasa Spil, 5(2).pp.46-57. (Indonesian). http://ejournal.uikabogor.ac.id/index.php/ASTONJADRO/article/view/839