Review

Molecular Predictors of EGFR-TKI Sensitivity in Advanced Non–small Cell Lung Cancer

Xiaozhu Zhang, Alex Chang

International Medical Centre, Johns Hopkins Singapore, Singapore

Correspondence to: Zhang Xiaozhu, Johns Hopkins Singapore International Medical Centre, 11 Jalan Tan Tock Seng, Singapore 308433. Tel: 65-63266115; Fax: 65-62273787; Email: xiaozhu@imc.jhmi.edu

Received: 2008.05.22; Accepted: 2008.07.10; Published: 2008.07.11

The epidermal growth factor receptor (EGFR) is overexpressed in the majority of non-small cell lung cancers (NSCLC) and is a major target for new therapies. Specific EGFR tyrosine kinase inhibitors (TKIs) have been developed and used for the treatment of advanced NSCLC. The clinical response, however, varies dramatically among different patient cohorts. Females, East Asians, non-smokers, and patients with adenocarcinoma usually show higher response rates. Meanwhile, a number of biological factors are also associated with EGFR-TKIs responsiveness. In order to better understand the predictive value of these biomarkers and their significance in clinical application we prepared this brief review. Here we mainly focused on EGFR somatic mutations, MET amplification, K-ras mutations, EGFRvIII mutation, EGFR gene dosage and expression, HER2 gene dosage and expression, and Akt phosphorylation. We think EGFR somatic mutation probably is the most effective molecular predictor for EGFR-TKIs responsiveness and efficacy. Mutation screening test can provide the most direct and valuable guidance for clinicians to make decision on EGFR-TKIs therapy.

Key words: non-small cell lung cancer, EGFR, somatic mutation, tyrosine kinase inhibitor, gene amplification

Introduction

Lung cancer is one of the most common human cancers and the leading cause of cancer death worldwide (1). Lung cancer is generally classified into two histological types, small cell lung cancer (SCLC) and non–small cell lung cancer (NSCLC). NSCLC accounts for approximately 85% of the cases and it is further divided into squamous-cell carcinoma (SSC), adenocarcinoma (AC), large cell carcinoma, and others (2). Adenocarcinoma has become the most prevalent subtype of NSCLC in recent decades (3, 4). The treatment of lung cancer is mainly based on the stage of cancer, patients’ performance status, comorbidity, etc (5). For patients with early stage disease (stage I or II) surgical resection is considered the primary therapeutic choice. It is worth taking notice, however, that majority of NSCLC cases have reached locally advanced (stage III) or metastatic stage (stage IV) at the time of diagnosis (6), and chemotherapy is usually recommended as the first line therapy.

Chemotherapy is often considered too toxic, particularly for elderly patients and patients with poor performance status. The well-established platinum-based regimen can only bring modest survival benefit by increasing the median survival time about three months in average (7, 8). In recent years more effort has been put onto the development of molecular-targeted drugs.

Epidermal growth factor receptor (EGFR) is overexpressed in the majority of NSCLC and it is an important target in the treatment of NSCLC. EGFR is a member of the family of EGF-related tyrosine kinase receptors. Upon ligands binding, the receptors homo- or hetero-dimerize. Subsequently, it activates receptors’ intrinsic tyrosine kinase activity and broad downstream signaling cascades, mainly including Ras-Raf-MAP-kinase pathway, PI3K-Akt pathway, and STAT pathway. All these have strong stimulatory effect on cell proliferation, differentiation, survival, angiogenesis and migration (9-11). EGFR has emerged as a critical tumorigenic factor in the development and progression of NSCLC (12-14). Two specific EGFR tyrosine kinase inhibitors (TKIs), gefitinib (ZD1839, Iressa) and erlotinib (OSI-774, Tarceva), have been developed and used clinically in the treatment of advanced NSCLC. These two drugs disrupt EGFR signaling by competing with adenosine triphosphate (ATP) for the binding sites at tyrosine kinase domain,
and thus inhibiting the phosphorylation and activation of EGFRs and the downstream signaling network. Both agents can induce dramatic clinical response in patients who fail chemotherapy. Erlotinib and gefitinib have been shown to have survival benefit in Caucasians and Asians respectively when compared to placebo in controlled double-blinded randomized phase III trials (15, 16). However, among unselected NSCLC patients the objective response rate is only about 10% (17, 18). Female patients, nonsmokers, East Asians, and patients with lung adenocarcinoma are noted to have higher response rates (17-19). In addition, many laboratories have found a number of other factors which are associated with EGFR-TKIs sensitivity. In order to better understand and interpret these basic and clinical research knowledge and accelerate the translation of research findings into daily medical practice, we reviewed the literature and carefully evaluated the predictive value of these biomarkers. We hope this brief review could provide useful information for clinicians, patients, and research professionals, help clinicians to select the right subgroup of NSCLC patients for EGFR-TKI therapy with high frequency of success, and to stimulate future research interest and effort in targeted therapy for NSCLC patients.

1. Somatic mutations in EGFR

Somatic mutation is the mutation that occurs only in somatic cells, which are in contrast to germ cells. A number of somatic mutations have been identified in the EGFR gene in NSCLC. In general these mutations can be classified into three major types: in-frame deletion, insertion, and mis-sense mutation. Most of the mutations are located in the tyrosine kinase coding domain (exons 18-21) of the EGFR gene. The amino acids 746~753 encoded by exon 19 and amino acid 858 encoded by exon 21 are two mutation hotspots, which accounts for over 80% of all the detected mutations.

Gefitinib sensitive mutations

A number of retrospective studies have reported that two activating mutations, small in-frame deletion in exon 19 (746~753) and substitution of leucine for arginine at amino acid 858 in exon 21 (L858R), have striking correlation with EGFR-TKI sensitivity (20-28). This discovery has been claimed as the most significant molecular event in lung cancer (29). Both activating mutations are able to enhance kinase activity of EGFR and the activation of its downstream signaling, and play a pivotal role in supporting NSCLC cell survival (20, 30). When specific EGFR-TKIs are applied, the excessive survival signals that cancer cells are “addicted to” are counteracted and dramatic apoptosis occurs (30, 31).

Seven phase II prospective studies (32-38) performed with gefitinib or erlotinib in EGFR mutation positive NSCLC patients have also demonstrated over 87% of response and disease control rate, and the duration of progression free survival ranges from 7.7 to 14 months, which is much longer than those reported in the literature by chemotherapy or other targeted therapy in unselected patient population (usually 4~6 months). In addition, the response rates were quite similar regardless race, gender, histology, or smoking history (Table 1). Some of the studies have suggested better quality of life and longer survival occurred in patients treated with gefitinib or erlotinib (26, 27, 39). All these demonstrate that EGFR activating mutations are effective predictor for EGFR-TKIs responsiveness and prognosis. Prospective randomized studies, however, are still needed to compare EGFR-TKIs with chemotherapy in NSCLC patients with positive EGFR mutation to establish the role of EGFR-TKIs as the treatment choice in such patients.

Table 1 Prospective studies of gefitinib/erlotinib in EGFR mutation positive NSCLC patients

Author	No. of participating patients with EGFR mutations	Ethnicity	EGFR mutation screening method	Overall response and disease control rate (%)	Complete response (%)	Partial response (%)	Stable disease (%)	Median progression-free survival (Months)
Yoshida K et al (35)	21	Japanese	Gene scan & cycleave real-time quantitative PCR technology	91%	3 (14%)	16 (76%)	0	7.7
Sunaga N, et al (32)	21	Japanese	Sequencing	91%	3 (14%)	13 (62%)	3 (14%)	12.9
Inoue A, et al (34)	16	Japanese	Sequencing	88%	0	12 (75%)	2 (13%)	9.7
Asahina H, et al (33)	16	Japanese	Sequencing	81%	2 (13%)	10 (62%)	1 (6%)	8.9
Paz-Ares L, et al (36)	21	Caucasian	Gene scan & TaqMan assay	91%	6 (29%)	13 (62%)	0	>8
van Zandwijk N, et al (37)	13	Caucasian	Sequencing and gene scan	92%	1 (8%)	10 (77%)	1 (8%)	14
Sequist LV, et al (38)	31	Asian & others	Sequencing	94%	1 (3%)	16 (52%)	12 (39%)	9.2

Int. J. Med. Sci. 2008, 5
Deletion in exon 19 and L858R are usually more common in women, East Asians, light smokers (less than 15 pack-years), and patients with adenocarcinoma (reviewed in (40)). Some studies have reported that exon 19 deletion is superior to L858R in prediction of response rates and survival (26, 39, 41). However, conflict results indicate there is no significant difference observed between these two mutations (33, 34). More studies are required to clarify this issue.

EGFR-TKIs resistant mutations

T790M, D761Y, L747S, and insertion in exon 20 are associated with resistance to EGFR-TKIs (42-47). T790 is located at the key position in ATP binding cleft of EGFR and is considered the gatekeeper residue. The introduction of T790M mutation increases ATP affinity of receptors, which relatively attenuates the binding of EGFR-TKIs (48). T790M is mainly present in relapsed tumors after an initial response and secondary to EGFR-TKIs therapy (42, 43), and it accounts for about half of acquired resistance to gefitinib or erlotinib (44). Therefore, T790M has been considered a specific marker for acquired resistance to EGFR-TKIs. L747S, D761Y and insertions in exon 20 also confer modest resistance to EGFR-TKIs. However, they are not as common as T790M among NSCLC patients with acquired resistance to EGFR-TKIs.

2. MET amplification

MET is a high affinity tyrosine kinase receptor for hepatocyte growth factor (HGF)/scatter factor. The binding of HGF results in autophosphorylation of MET at multiple tyrosine residues and activation of many downstream signaling components, which produce profound effect on cellular motility, growth, survival, invasion, and metastasis (49). Alteration of MET pathway contributes to the development and progression of a number of human tumors. Amplification of the MET gene has been detected in gastric cancers (10~20%) and esophageal cancers (50, 51). In addition, activating mutations of MET are observed in papillary renal carcinoma (52). MET amplification has been observed in NSCLC and it is associated with EGFR-TKI resistance (53, 54). Its incidence is about 21% (9 out of 43) among patients with acquired resistance. Among untreated patients it occurs much less frequently (about 3%) (53). MET amplification is able to activate ERBB3 (HER3)-dependent PI3K/Akt pathway, and ultimately lead to gefitinib resistance (54). Its occurrence is independent of T790M (53).

3. K-ras mutation

Ras is one of the important molecules in the downstream of EGFR signaling pathway. Ras is able to activate serine/theronine kinase Raf, the mitogen-activated protein kinases ERK1 and ERK2, and a number of nuclear proteins to promote cell proliferation. Ras genes, especially K-ras, have been implicated in the pathogenesis and prognosis of lung cancer (55). Mutated K-ras can be observed among 20~30% NSCLC patients. Majority of the mutations (approximately 80~90%) are guanine to thymine transversion in codon 12, which results in constitutive activation of K-ras protein (56, 57). NSCLC patients with K-ras mutations are associated with unfavorable prognosis (58-60).

The correlation of K-ras mutations with EGFR mutations and gefitinib response has been investigated by several groups (61-63). In general, the mutations of EGFR and K-ras are mutually exclusive. NSCLC patients with K-ras mutations have poor sensitivity to EGFR-TKIs (25, 64). Screening K-ras mutation among NSCLC patients who are negative for EGFR mutations could provide additional information to avoid EGFR-TKIs.

4. Type III epidermal growth factor receptor mutation

Type III deletion mutation (EGFRvIII) is the deletion of exons 2~7, a 801bp fragment of EGFR cDNA, which produces a truncated receptor lacking a portion of extracellular ligand binding domain (65). The truncated receptor, however, is oncogenic. It has constitutive kinase activity, which is strong enough to activate downstream signaling cascades and gives cells growth advantage (66, 67). EGFRvIII has been identified in a number of human solid tumors, including glioblastoma, breast cancer, ovarian cancer, prostate cancer, and lung cancer (66-69). The incidence of EGFRvIII in NSCLC varies among studies. Okamoto et al and Garcia et al have identified 16% (5 of 32) and 39% (30 of 76) of EGFRvIII using immunohistochemistry staining (66, 70). In contrast, low detected rates have been reported using RT-PCR (2.8%~3.2% or undetectable) (71-73). The study performed in transgenic mouse has revealed that EGFRvIII mutant cancer cells are relatively resistant to EGFR-TKIs, but sensitive to irreversible EGFR inhibitor (71) and anti-EGFR antibody 806 (74).

5. EGFR gene dosage

Gene dosage is the number of copies of a gene present in a cell or nucleus. An increase in gene dosage means the gene is amplified. Gene amplification is a molecular mechanism responsible for oncogene overexpression. By production of multiple copies of a particular gene or genes, the phenotype that the gene confers is amplified in the cell. High copies of EGFR (amplification or high polysomy) have been detected in approximately 30% of NSCLC patients using fluo-
rescence in situ hybridization (FISH), and it is usually associated with poor clinical prognosis (75). High copies of EGFR probably is an effective predictor for better treatment response to EGFR-TKIs (Table 2)(22, 23, 76, 77). Patients who have increased copies of EGFR gene show significant survival benefit from EGFR-TKIs treatment in both Phase II (23, 78) and Phase III clinical trials (Iressa Survival Evaluation in Lung cancer and BR.21) (79, 80) (Table 2).

High EGFR copy number is frequently correlated with EGFR somatic mutations(22, 27, 31, 81). This casts doubt about the independent predictive value. Additional preclinical and clinical studies with large sample size are paramount to resolving this issue. Since the mutation rate of EGFR is much lower among Caucasians (~10%) comparing with Asians (30~50%) and a substantial portion of patients without EGFR mutations still benefit from EGFR-TKIs treatment, increased EGFR gene copy number could play its unique role in predicting EGFR-TKIs susceptibility. Japanese patients with EGFR gene amplification, however, do not benefit from gefitinib treatment (72).

Table 2 Detected EGFR copy number using FISH and EGFR-TKI treatment response in NSCLC

Study subjects	Scoring criteria	Result	Conclusion		
81 (Southwest Oncology Group study 0126)	FISH negative	with no or low genomic gain (≤4 copies in 40% cells)	68%	EGFR copy number is associated with improved survival after gefitinib therapy (78)	
	FISH Positive	high level of polysomy (≥4 copies in 40% cells)	32%	Gene amplification and high polysomy has higher response rate and better survival (23)	
	Disomy	≤2 copies in <90% of cells	35%		
	Low trisomy	≤2 copies in ≥40% of cells, 3 copies in 10%–40% of the cells, ≥4 copies in <10% of cells	17%		
	High trisomy	≤2 copies in ≥40% of cells, 3 copies in ≥40% of cells, ≥4 copies in <10% of cells	2%		
	Low polysomy	≥4 copies in 10%–40% of cells	14%		
	High polysomy	≥4 copies in ≥40% of cells	20.0%		
	Gene amplification	EGFR/chr7 ≥2, or ≥15 copies per cell in ≥10% cells	13%		
102	Disomy	≤2 copies in <90% of cells	69%	EGFR gene copy number is a predictor for survival benefit from gefitinib (80).	
	Low trisomy	≤2 copies in ≥40% of cells, 3 copies in 10%–40% of the cells, ≥4 copies in <10% of cells	16%		
	High trisomy	≤2 copies in ≥40% of cells, 3 copies in ≥40% of cells, ≥4 copies in <10% of cells	24%		
	Low polysomy	≥4 copies in 10%–40% of cells	27%		
	High polysomy	≥4 copies in ≥40% of cells	17%		
	Gene amplification	EGFR/chr7 ≥2, or ≥15 copies per cell in ≥10% cells	14%		
370	Disomy	≤2 copies in <90% of cells	10%	High copies of EGFR was associated with survival benefit from Erlotinib (79).	
	Low trisomy	≤2 copies in ≥40% of cells, 3 copies in 10%–40% of the cells, ≥4 copies in <10% of cells	18%		
	High trisomy	≤2 copies in ≥40% of cells, 3 copies in ≥40% of cells, ≥4 copies in <10% of cells	2%		
	Low polysomy	≥4 copies in 10%–39% of cells	24%		
	High polysomy	≥4 copies in ≥40% of cells	34%		
	Gene amplification	EGFR/chr7 ≥2, or ≥15 copies per cell in ≥10% cells	11%		
125	Pooled study subjects from Italy and SWOG study 0126	FISH negative	no or low genomic gain (≤4 copies in 40% cells)	68%	EGFR gene copy number is an independent predictive biomarker for survival (77)
	FISH Positive	Gene amplification (EGFR/chr7 ≥2, or ≥15 copies per cell in ≥10% cells)	32%		

Table 3 EGFR protein expression and EGFR-TKI treatment response

Sample size	Scoring criteria	Results	Conclusion	
325 (Phase III clinical trial BR.21 study)	Negative	<10% cells positive for membranous staining	43%	EGFR expression is associated with erlotinib treatment response (79)
	Positive	≥10% of tumor cells positive for membranous staining	57%	
100	Negative	0–99 100–199	40%	EGFR protein status is associated with gefitinib treatment response (23)
	Positive	200–299 300–400	58%	
200 (Pooled study subjects from Italy and SWOG study 0126)	Negative	0–99 100–199	39%	EGFR protein status is associated with treatment response (77)
	Positive	200–299 300–400	61%	
6. EGFR protein expression

Overexpression of EGFR protein is very common in NSCLC patients (40-80%) (13, 14), and it is associated with aggressive clinical behaviors and poor prognosis (82-87). The relationship between EGFR protein level and EGFR-TKIs sensitivity has been studied intensively. Both positive (23, 77, 79, 80) and negative correlation (88, 89) have been reported (Table 3). The conflict observations partially could be attributed to the methodology (immunohistochemistry staining, IHC) applied for EGFR protein quantification because different laboratories use different antibodies, different scoring systems, and different protocols. EGFR protein is often associated with EGFR gene copy number (23, 75, 90, 91). Hirsch et al have recently suggested that patients with FISH and IHC double positive (approximately 23%) probably can benefit more from EGFR-TKIs (77).

7. HER2 expression and gene dosage

HER2 is another member of erbB transmembrane receptor family. It has intrinsic kinase activity. HER2 is known to be a preferred coreceptor for EGFR in the process of EGFR heterodimerization. Increased expression of HER2 is associated with inferior survival in NSCLC patients, and high EGFR and HER2 coexpression has additive impact on unfavorable prognosis (92). Overexpression of HER2 protein is not associated with gefitinib response and survival (76, 93). Neither is HER2 copy number (78). However, HER2 amplification could predict gefitinib sensitivity and survival among NSCLC patients with increased EGFR copy number (76, 94).

8. Akt phosphorylation

The phosphatidylinositol 3'-kinases (PI3K)/Akt pathway is one of the important downstream signal transduction pathways of EGFR. It plays critical role in regulating cell survival and apoptosis. Akt activation is able to protects cells from apoptosis by inactivating pro apoptotic proteins (95, 96). Increased PI3K/Akt activity has been observed in NSCLC. Positive p-Akt expression is associated with better gefitinib responsiveness and prognosis (77, 97, 98). Conflicting result have also indicated that p-Akt is not associated with EGFR-TKI efficacy (99).

Gene expression signature and mass spectrometry

Gene expression signature and mass spectrometry are fast growing area in cancer research. Although both biotechnologies are costly, they are robust for new biomarkers discovery. For patients who are negative for EGFR mutations and/or other markers, gene expression and mass spectrometry analysis probably could introduce new insight into clinical practice to assure better clinical outcomes. By comparing the gene expression patterns of gefitinib sensitive and gefitinib resistant lung cancer, Balko and Coldren et al have found several novel markers associated with gefitinib sensitivity (100, 101). In addition, they have generated a multivariate model, which is supposed to provide more accurate prediction for EGFR-TKI sensitivity than single biomarkers or clinical characteristics (100).

Mass spectrometry is currently the most powerful analytic proteomic tool. Using mass spectrometry Taguchi et al have performed a multicohort cross-institutional study to investigate serum predictive biomarkers for clinical outcome after EGFR-TKIs treatment. They have identified eight distinct peaks and developed an algorithm, which could be used for patients selection and to predict prognosis after EGFR-TKI treatment (102). However, there are some concerns regarding the predictive value because the identities of the eight discriminatory peaks remain unknown and there are no other validation tests performed beyond their laboratory.

Discussion

Identifying a panel of predictive markers is important for selection of advanced NSCLC patients for EGFR-TKI therapy. Although several important demographic and clinical factors are associated with treatment response, EGFR somatic mutations are still the most effective predictor for EGFR-TKI sensitivity. EGFR mutation screening could be number one test to provide the most direct and valuable information to help clinicians to make treatment decision. Among NSCLC patients with EGFR-TKI susceptible mutations 70% of objective response rate or higher can be expected with progression-free survival of at least 7.7 months upon gefitinib/erlotinib treatment. Moreover, mutation analysis can also provide insight into resistance mechanisms to EGFR-TKIs by NSCLC cells.

| 379 (Phase III Iressa Survival Evaluation in Lung Cancer) | Negative 0–99 | 30% | EGFR protein status is associated with treatment response (80) |
| Positive 200–299 | 70% |
| 300–400 |
| 50 | 0/1+ Negative to faint immunoreactive cells 54% | EGFR protein is not a significant predictive factor for response to gefitinib (88) |
| 2+/3+ Medium to strong immunoreactive cells 46% |

*Percentage of positive tumor cells per slides *dominant intensity pattern of staining
The question, however, is who should have EGFR mutation screening test. We recommend all advanced NSCLC patients to consider mutation test before EGFR-TKIs treatment. For female patients with favorable clinical factors such as adenocarcinoma and/or low exposure to smoking, mutation test might not be necessary if the patients object to the test or the test is not available. Male patients with squamous-cell carcinoma or heavy smoking history and failing standard chemotherapy had little possibility responding to EGFR-TKI. It is prudent to test EGFR mutation before starting EGFR-TKI treatment.

Regarding the specimen and the method used for mutation analysis, we do not think the answer is universal, and the choices are multiple. By now direct sequencing is the most commonly used method for EGFR mutation screening although the sensitivity is often concerned, especially for heterogeneous specimens, such as pleural effusion drainage, blood or plasma. In addition, a number of genotyping methods with high sensitivity have been developed for EGFR mutation screening, such as single-strand conformation polymorphism (SSCP), scorpion allele specific PCR, mutation enriched PCR, and peptide nucleic acid-locked nucleic acid (PNA-LNA) PCR clamp. Most of them are able to detect even one EGFR mutant tumor cell with the presence of up to 1000-2000 normal cells(103-106). However, these sensitive methods have only been tested in small number of patients, and they are available in limited numbers of research laboratories. These methods are also needed to be standardized and validated. Therefore, under current situation direct sequencing probably is a mature method which could be used in health institutions for routine clinical mutation screening. For the commonly known mutations, such as deletion in exon 19, L858R, and T790M, gene scan, Scorpion allele specific PCR, and TaqMan genotyping assay are applicable. These methods are highly sensitive and easy to handle.

Among EGFR mutation negative patients, other predictive markers, such as EGFR copy number detected by FISH or K-ras mutation could provide important information in deciding the use of EGFR-TKIs for NSCLC patients.

Conclusions

EGFR mutation is the most effective molecular predictor of sensitivity in patients with advanced NSCLC to EGFR-TKIs treatment. Almost 75% of patient with EGFR mutations will have objective response to either gefitinib or erlotinib. Other molecular markers or methods, such as EGFR gene copy numbers, K-ras mutation, gene expression signature or serum protein profiles by mass spectroscopy may add additional value but require further studies.

Conflict of Interest

The authors have declared that no conflict of interest exists.

References

1. Parkin DM. Global cancer statistics in the year 2000. Lancet Oncol. 2001; 2(9): 533-43.
2. Brambilla E, Travis WD, Colby TV, et al. The new World Health Organization classification of lung tumours. Eur Respir J. 2001; 18(6): 1059-68.
3. Travis WD, Travis LB, Devesa SS. Lung cancer. Cancer. 1995; 75(1 Suppl): 191-202.
4. Franceschi S, Bidoli E. The epidemiology of lung cancer. Ann Oncol. 1999; 10 (Suppl 5): S3-6.
5. Miller JD, Gorenstein LA, Patterson GA. Staging: the key to rational management of lung cancer. Ann Thorac Surg. 1992; 53(1): 170-8.
6. Fossella FV, DeVore R, Kerr RN, et al. Randomized phase III trial of docetaxel versus vinorelbine or ifosfamide in patients with advanced non-small-cell lung cancer previously treated with platinum-containing chemotherapy regimens. The TAX 320 Non-Small Cell Lung Cancer Study Group. J Clin Oncol. 2000; 18(12): 2354-62.
7. Marino P, Pampallona S, Preaton A, et al. Chemotherapy vs supportive care in advanced non-small-cell lung cancer. Results of a meta-analysis of the literature. Chest. 1994; 106(3): 861-5.
8. Grilli R, Oxman AD, Julian JA. Chemotherapy for advanced non-small-cell lung cancer: how much benefit is enough? J Clin Oncol. 1993; 11(10): 1866-72.
9. Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2000; 103(2): 211-25.
10. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001; 2(2): 127-37.

The authors have declared that no conflict of interest exists.

References

1. Parkin DM. Global cancer statistics in the year 2000. Lancet Oncol. 2001; 2(9): 533-43.
2. Brambilla E, Travis WD, Colby TV, et al. The new World Health Organization classification of lung tumours. Eur Respir J. 2001; 18(6): 1059-68.
3. Travis WD, Travis LB, Devesa SS. Lung cancer. Cancer. 1995; 75(1 Suppl): 191-202.
4. Franceschi S, Bidoli E. The epidemiology of lung cancer. Ann Oncol. 1999; 10 (Suppl 5): S3-6.
5. Miller JD, Gorenstein LA, Patterson GA. Staging: the key to rational management of lung cancer. Ann Thorac Surg. 1992; 53(1): 170-8.
6. Fossella FV, DeVore R, Kerr RN, et al. Randomized phase III trial of docetaxel versus vinorelbine or ifosfamide in patients with advanced non-small-cell lung cancer previously treated with platinum-containing chemotherapy regimens. The TAX 320 Non-Small Cell Lung Cancer Study Group. J Clin Oncol. 2000; 18(12): 2354-62.
7. Marino P, Pampallona S, Preaton A, et al. Chemotherapy vs supportive care in advanced non-small-cell lung cancer. Results of a meta-analysis of the literature. Chest. 1994; 106(3): 861-5.
8. Grilli R, Oxman AD, Julian JA. Chemotherapy for advanced non-small-cell lung cancer: how much benefit is enough? J Clin Oncol. 1993; 11(10): 1866-72.
9. Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2000; 103(2): 211-25.
10. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001; 2(2): 127-37.
11. Scagliotti GV, Selvaggi G, Novello S, et al. The biology of epidermal growth factor receptor in lung cancer. Clin Cancer Res. 2004; 10(12 Pt 2): 4227s-32s.
12. Mendelsohn J, Baselga J. The EGFR receptor family as targets for cancer therapy. Oncogene. 2000; 19(56): 6550-65.
13. Salomon DS, Brandt R, Ciardiello F, et al. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol. 1995; 19(3): 183-232.
14. Ennis BW, Lippman ME, Dickson RB. The EGFR receptor system as a target for antitumor therapy. Cancer Invest. 1991; 9(5): 553-62.
15. Shepherd FA, Rodrigues Pereira J, Ciuleanu T, et al. Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med. 2005; 353(2): 123-32.
16. Chang A, Parikh P, Thongprasert S, et al. Gefitinib (IRESSA) in patients of Asian origin with refractory advanced non-small cell lung cancer: subset analysis from the ISEL study. J Thorac Oncol. 2005; 353(1): 170-8.
17. Fukuoka M, Yano S, Giaccone G, et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial [corrected]. J Clin Oncol. 2003; 21(12): 2237-46.
18. Kris MG, Natale RB, Herbst RS, et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. Jama. 2003; 290(16): 2149-58.
19. Miller VA, Kris MG, Shah N, et al. Bronchioalveolar pathologic subtype and smoking history predict sensitivity to gefitinib in...
advanced non-small-cell lung cancer. J Clin Oncol. 2004; 22(6): 1103-9.
20. Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004; 350(21): 2129-39.
21. Paez JG, Janne PA, Lee JC, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004; 304(5676): 1497-500.
22. mTakano T, Ohe Y, Sakamoto H, et al. Epidermal growth factor receptor gene mutations and increased copy numbers predict gefitinib sensitivity in patients with recurrent non-small-cell lung cancer. J Clin Oncol. 2005; 23(28): 6829-37.
23. Cappuzzo F, Hirsch FR, Rossi E, et al. Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. J Natl Cancer Inst. 2005; 97(9): 643-55.
24. Huang SF, Liu HP, Li LH, et al. High frequency of epidermal growth factor receptor mutations with complex patterns in non-small cell lung cancers related to gefitinib responsiveness in Taiwan. Clin Cancer Res. 2004; 10(24): 8195-203.
25. Eberhard DA, Johnson BE, Amler LC, et al. Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J Clin Oncol. 2005; 23(23): 5900-9.
26. Mitsudomi T, Kosaka T, Endoh H, et al. Mutations of the epidermal growth factor receptor gene predict prolonged survival after gefitinib treatment in patients with non-small-cell lung cancer with postoperative recurrence. J Clin Oncol. 2005; 23(11): 2513-20.
27. Taron M, Ichinose Y, Rosell R, et al. Activating mutations in the tyrosine kinase domain of the epidermal growth factor receptor are associated with improved survival in gefitinib-treated chemorefractory lung adenocarcinomas. Clin Cancer Res. 2005; 11(6): 5878-85.
28. Shih JY, Gow CH, Yu CJ, et al. Epidermal growth factor receptor mutations in needle biopsy/aspiration samples predict response to gefitinib therapy and survival of patients with advanced nonsmall cell lung cancer. Int J Cancer. 2006; 118(4): 963-9.
29. Marx J. Medicine: Why a new cancer drug works well, in some patients. Science. 2004; 304(5671): 658-9.
30. Sordella R, Bell DW, Haber DA, et al. Gfitinib-sensitizing EGFR mutations in lung cancer activate anti-angiogenic pathways. Science. 2004; 305(5687): 1163-7.
31. Tracy S, Mukohara T, Hansen M, et al. Gfitinib induces apoptosis in the EGFR-L858R non-small-cell lung cancer cell line H3255. Cancer Res. 2004; 64(20): 7241-4.
32. Sunaga N, Tomizawa Y, Yanagitani N, et al. Phase II prospective study of the efficacy of gefitinib for the treatment of stage III/IV non-small cell lung cancer with EGFR mutations, irrespective of previous chemotherapy. Lung Cancer. 2007; 56(3): 383-9.
33. Ashinha H, Yamazaki K, Kinoshita I, et al. A phase II trial of gefitinib as first-line therapy for advanced non-small cell lung cancer with epidermal growth factor receptor mutations. Br J Cancer. 2006; 95(8): 998-1004.
34. Inoue A, Suzuki T, Fukuhara T, et al. Prospective phase II study of gefitinib for chemotherapy-naive patients with advanced non-small-cell lung cancer with epidermal growth factor receptor gene mutations. J Clin Oncol. 2006; 24(21): 3340-6.
35. Yoshida K, Yatabe Y, Park JY, et al. Prospective validation for prediction of gefitinib sensitivity by epidermal growth factor receptor gene mutation in patients with non-small cell lung cancer. J Thorac Oncol. 2007; 2(1): 22-8.
36. Paz-Ares L, Sanchez J, Garcia-Velasco A, et al. A prospective phase II trial of erlotinib in advanced non-small cell lung cancer (NSCLC) patients (p) with mutations in the tyrosine kinase (TK) domain of the epidermal growth factor receptor (EGFR). 2006 ASCO annual Meeting, 2006.
37. van Zandwijk N, Mathy A, Boerrigter L, et al. EGFR and KRAS mutations as criteria for treatment with tyrosine kinase inhibitors: retro- and prospective observations in non-small-cell lung cancer. Ann Oncol. 2007; 18(1): 99-103.
38. Sequist LV, Martins RG, Spigel D, et al. First-Line Gfetinib in Patients With Advanced Non-Small-Cell Lung Cancer Harboring Somatic EGFR Mutations. J Clin Oncol. 2008; 26(15): 2442-9.
39. Jackman DM, Yeap BY, Sequist LV, et al. Exon 19 deletion mutations of epidermal growth factor receptor are associated with prolonged survival in non-small cell lung cancer patients treated with gefitinib or erlotinib. Clin Cancer Res. 2006; 12(13): 3908-14.
40. Zhang X, Chang A. Somatic mutations of the epidermal growth factor receptor and non-small cell lung cancer. J Med Genet. 2007; 44(3): 166-72.
41. Riely GJ, Pao W, Pham D, et al. Clinical course of patients with non-small cell lung cancer and epidermal growth factor receptor exon 19 and exon 21 mutations treated with gefitinib or erlotinib. Clin Cancer Res. 2006; 12(3 Pt 1): 839-44.
42. Pao W, Miller VA, Politi KA, et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med. 2005; 2(3): e73.
43. Kobayashi S, Boggon TJ, Dayaram T, et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med. 2005; 352(8): 786-92.
44. Balak MN, Gong Y, Riely GJ, et al. Novel D761Y and common secondary T790M mutations in epidermal growth factor receptor-mutant lung adenocarcinomas with acquired resistance to kinase inhibitors. Clin Cancer Res. 2006; 12(21): 6494-501.
45. Costa DB, Halmons B, Kumar A, et al. BIM mediates EGFR tyrosine kinase inhibitor-induced apoptosis in lung cancers with oncogenic EGFR mutations. PLoS Med. 2007; 4(10): 1669-79.
46. Sasaki H, Endo K, Takada M, et al. EGFR exon 20 insertion mutation in Japanese lung cancer. Lung Cancer. 2007; 58(3): 324-8.
47. Greulich H, Chen TH, Feng W, et al. Oncogenic transformation by inhibitor-sensitive and -resistant EGFR mutants. PLoS Med. 2005; 2(11): e313.
48. Yun CH, Mengwasser KE, Toms AV, et al. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc Natl Acad Sci U S A. 2008; 105(6): 2070-5.
49. Birchmeier C, Birchmeier W, Ghersi E, et al. Met, metastasis, motility and more. Nat Rev Mol Cell Biol. 2003; 4(12): 915-25.
50. Smolen GA, Sordella R, Muiu B, et al. Amplification of MET may identify a subset of cancers with extreme sensitivity to the selective tyrosine kinase inhibitor PHA-665752. Proc Natl Acad Sci U S A. 2006; 103(7): 2316-21.
51. Miller CT, Lin L, Casper AM, et al. Genomic amplification of MET with boundaries within fragile site FRA7G and upregulation of MET pathways in esophageal adenocarcinoma. Oncogene. 2006; 25(3): 409-18.
52. Jeffers M, Schmidt L, Nakaigawa N, et al. Activating mutations for the met tyrosine kinase receptor in human cancer. Proc Natl Acad Sci U S A. 1999; 94(21): 11445-50.
53. Bean J, Brennan C, Shih JY, et al. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci U S A. 2007; 104(52): 20932-7.
54. Egelman JA, Zejnullahu K, Mitsudomi T, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007; 316(5827): 1039-43.
55. Bos JL. ras oncopgenes in human cancer: a review. Cancer Res. 1989; 49(17): 4682-9.
56. Keohavong P, DeMichele MA, Melacrinos AC, et al. Detection of K-ras mutations in lung carcinomas: relationship to prognosis. Clin Cancer Res. 1996; 2(2): 411-8.
62. Shigematsu H, van de Wetering ML, Mool WJ, et al. Mutational activation of the K-ras oncosene. A possible pathogenetic factor in adenocarcinoma of the lung. N Engl J Med. 1987; 317(15): 929-35.

61. Kosaka T, Yatabe Y, Endoh H, et al. Mutations of the epidermal growth factor receptor gene in lung cancer: biological and clinical implications. Cancer Res. 2004; 64(24): 8919-23.

60. Cho JY, Kim JH, Lee YH, et al. Correlation between K-ras gene mutation and prognosis of patients with nonsmall cell lung carcinoma. Cancer. 1997; 79(3): 462-7.

59. Fukuyama Y, Mitsudomi T, Sugio K, et al. K-ras and p53 mutations in non-small-cell lung cancer: analysis of a large series of cases and development of a rapid and sensitive method for diagnostic screening with potential implications on pharmacologic treatment. J Clin Oncol. 2005; 23(4): 857-65.

58. Pao W, Wang TY, Riely GJ, et al. KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med. 2005; 2(1): e17.

57. Rodenhuis S, van de Wetering ML, Mooi WJ, et al. Mutational analysis of the EGFR gene copy number and protein expression in patients with non-small-cell lung cancer. Br J Cancer. 1997; 75(8): 1125-30.

56. Cho JY, Kim JH, Lee YH, et al. Mutations of the epidermal growth factor receptor gene in lung cancer: biological and clinical implications. Cancer Res. 2004; 64(24): 8919-23.

55. Ishigematsu H, Lin L, Takahashi T, et al. Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J Natl Cancer Inst. 2005; 97(5): 339-46.

54. Marchetti A, Martella C, Felicioni L, et al. EGFR mutations in non-small-cell lung cancer: analysis of a large series of cases and development of a rapid and sensitive method for diagnostic screening with potential implications on pharmacologic treatment. J Clin Oncol. 2005; 23(4): 857-65.

53. Pao W, Wang TY, Riely GJ, et al. KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med. 2005; 2(1): e17.

52. Schwechheimer K, Huang S, Cavenee WK. EGFR gene amplification--rearrangement in human glioblastomas. Int J Cancer. 1995; 62(2): 145-8.

51. Garcia de Palazzo IE, Adams GP, Sundareshan P, et al. Expression of mutated epidermal growth factor receptor by non-small cell lung carcinomas. Cancer Res. 1993; 53(14): 3217-20.

50. Downward J, Yarden Y, Mayes E, et al. Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences. Nature. 1984; 307(5951): 521-7.

49. Wikstrand CJ, Hale LP, Batra SK, et al. Monoclonal antibodies against EGFrIII are tumor specific and react with breast and lung carcinomas and malignant gliomas. Cancer Res. 1995; 55(14): 3140-8.

48. Moscatelli DK, Holgado-Madruga M, Godwin AK, et al. Frequent expression of a mutant epidermal growth factor receptor in multiple human tumors. Cancer Res. 1995; 55(23): 5536-9.

47. Okamoto I, Kenyon IC, Enlet DR, et al. Expression of constitutively activated EGFR in non-small cell lung cancer. Cancer Sci. 2003; 94(1): 50-6.

46. Ji H, Zhao X, Yuzu Y, et al. Epidermal growth factor receptor variant III mutations in lung tumorigenesis and sensitivity to tyrosine kinase inhibitors. Proc Natl Acad Sci U S A. 2006; 103(20): 7817-22.

45. Sasaki H, Endo K, Okuda K, et al. Epidermal growth factor receptor gene amplification and gefitinib sensitivity in patients with recurrent lung cancer. J Cancer Res Clin Oncol. 2008;134(5):569-77.

44. Ohstuka K, Ohnishi H, Furuyashiki G, et al. Clincio-pathological and biological significance of tyrosine kinase domain gene mutations and overexpression of epidermal growth factor receptor for lung adenocarcinoma. J Thorac Oncol. 2006; 1(8): 787-95.

43. Li D, Ji H, Zaghul S, et al. Therapeutic anti-EGFR antibody 806 generates responses in murine de novo EGFR mutant-dependent lung carcinomas. J Clin Invest. 2007; 117(2): 346-52.

42. Hirsch FR, Varella-Garcia M, Bunn PA Jr, et al. Epidermal growth factor receptor in non-small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. J Clin Oncol. 2003; 21(20): 3798-807.
correlation with HER2 and epidermal growth factor receptor expression in locally advanced or metastatic NSCLC. J Clin Oncol. 2003; 21(14): 2658-63.

94. Daniele L, Macri L, Schena M, et al. Predicting gefitinib responsiveness in lung cancer by fluorescence in situ hybridization/chromogenic in situ hybridization analysis of EGFR and HER2 in biopsy and cytology specimens. Mol Cancer Ther. 2007; 6(4): 1223-9.

95. Datta SR, Dudek H, Tao X, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell. 1997; 91(2): 231-41.

96. Cardone MH, Roy N, Stennicke HR, et al. Regulation of cell death protease caspase-9 by phosphorylation. Science. 1998; 282(5392): 1318-21.

97. Han SW, Hwang PG, Chung DH, et al. Epidermal growth factor receptor (EGFR) downstream molecules as response predictive markers for gefitinib (Iressa, ZD1839) in chemotherapy-resistant non-small cell lung cancer. Int J Cancer. 2005; 113(1): 109-15.

98. Cappuzzo F, Magrini E, Ceresoli GL, et al. Akt phosphorylation and gefitinib efficacy in patients with advanced non-small-cell lung cancer. J Natl Cancer Inst. 2004; 96(15): 1133-41.

99. Cappuzzo F, Ligorio C, Toschi L, et al. EGFR and HER2 gene copy number and response to first-line chemotherapy in patients with advanced non-small cell lung cancer (NSCLC). J Thorac Oncol. 2007; 2(5): 423-9.

100. Balko JM, Potti A, Saunders C, et al. Gene expression patterns that predict sensitivity to epidermal growth factor receptor tyrosine kinase inhibitors in lung cancer cell lines and human lung tumors. BMC Genomics. 2006; 7: 289.

101. Coldren CD, Helfrich BA, Witta SE, et al. Baseline gene expression predicts sensitivity to gefitinib in non-small cell lung cancer cell lines. Mol Cancer Res. 2006; 4(8): 521-8.

102. Taguchi F, Solomon B, Gregorc V, et al. Mass spectrometry to classify non-small-cell lung cancer patients for clinical outcome after treatment with epidermal growth factor receptor tyrosine kinase inhibitors: a multicohort cross-institutional study. J Natl Cancer Inst. 2007; 99(11): 838-46.

103. Nagai Y, Miyazawa H, et al. Genetic heterogeneity of the epidermal growth factor receptor in non-small cell lung cancer cell lines revealed by a rapid and sensitive detection system, the peptide nucleic acid-locked nucleic acid PCR clamp. Cancer Res. 2005; 65(16): 7276-82.

104. Sugio K, Uramoto H, Omo K, et al. Mutations within the tyrosine kinase domain of EGFR gene specifically occur in lung adenocarcinoma patients with a low exposure of tobacco smoking. Br J Cancer. 2006; 94(6): 896-903.

105. Asano H, Toyooka S, Tokumo M, et al. Detection of EGFR gene mutation in lung cancer by mutant-enriched polymerase chain reaction assay. Clin Cancer Res. 2006; 12(1): 43-8.

106. Zhang X, Zhao Y, Wang M, et al. Detection and comparison of epidermal growth factor receptor mutations in cells and fluid of malignant pleural effusion in non-small cell lung cancer. Lung Cancer. 2008;60(2):175-82.