Phase separation of saturated micellar network and its potential applications for nanoemulsification

Mihail T. Georgiev, Lyuba A. Aleksova, Peter A. Kralchevsky*, Krassimir D. Danov

Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, Sofia 1164, Bulgaria

ARTICLE INFO

Keywords:
Multiconnected micellar phase
Saturated network
Micelles with divalent ions
Rheology of giant micelles
Nanoemulsions

ABSTRACT

Phase separation of saturated micellar network, as a result of cross-linking of branched micelles, is established in mixed solutions of the anionic surfactant sodium lauryl ethersulfate (SLES) and the zwitterionic cocamidopropyl betaine (CAPB) in the presence of divalent counterions: Ca\(^{2+}\), Zn\(^{2+}\) and Mg\(^{2+}\). The saturated network appears in the form of droplets, which are heavier than water and sediment at the bottom of the vessel. In the case of Mg\(^{2+}\), the sedimented drops coalesce and form a separate multiconnected micellar phase – a supergiant surfactant micelle. For this phase, the rheological flow curves show Newtonian and shear-thinning regions. The appearance/disappearance of the Newtonian region marks the onset of formation of saturated network. The addition of small organic molecules (fragrances) to the multiconnected micellar phase leads to an almost spontaneous formation of oil-in-water nanoemulsion. The nanoemulsification capacity of the multiconnected micellar phase decreases with the rise of the volume of the oil molecule. A possible role of the network junctions in the nanoemulsification process can be anticipated. The properties of the multiconnected micellar phases could find applications in extraction and separation processes, in drug/active delivery, and for nanoemulsification at minimal energy input.

1. Introduction

The plot of viscosity of a micellar solution with ionic surfactant vs. the concentration of added salt usually has a typical shape with high maximum, known as “salt curve” [1–5]. This behavior is explained with the initial growth and entanglement of wormlike micelles, followed by a transition to branched micelles. In other words, the entangled network to the left of the maximum is replaced with an unsaturated branched network to the right of the maximum. With the rise of salt concentration, the degree of crosslinking in the branched network increases, until eventually a saturated network of multiconnected wormlike micelles is formed (Fig. 1); see Refs. [6–13]. To the right of the peak, the decrease of viscosity with the increase of salt concentration, which has been observed in many experimental studies [1–5,14],

https://doi.org/10.1016/j.colsurfa.2020.125487

Received 18 June 2020; Received in revised form 17 August 2020; Accepted 17 August 2020

Available online 26 August 2020

0927-7757/ © 2020 Elsevier B.V. All rights reserved.
can be explained with the formation of mobile junctions that can slide along the linear micelles [8,12,15,16]. The formation of branched micelles and multiconnected network (as a limiting case) has been used as explanation of the rheological and phase behavior of numerous experimental systems [9–11,17–23]. The viscosity curve can be essentially affected by the addition of fatty acids, alcohols, and fragrances [5,24–29].

Phase separation of isotropic micellar phase was first observed by Appel and Porte [6] in solutions of cationic surfactants, cetylpyridinium [5,24–29]. The yield of separated multiconnected micellar phase is the greatest in the case of Mg2+ – it is possible to produce macroscopic amounts of this phase and to investigate its properties in various experiments. This phase is transparent, of viscosity 300–600 mPa s. It is heavier than water, so that it is separated as sediment at the bottom of the vessel. When poured from one to another vessel, this phase is prone to produce long and relatively stable liquid fibers, i.e. it possesses elongational elasticity. An interesting property of the saturated micellar network is that in contact with small organic molecules (fragrances) it is transformed into oil-in-water nanoemulsion of drop diameter 100–200 nm. The latter finding implies that the multiconnected micellar phase could find applications for the production of nanoemulsions with their broad spectrum of pharmaceutical and biomedical applications for drug delivery [50–56]. Self-assembled structures, like the cubosomes and hexosomes, have been reported to have analogous potential applications [57–59].

The present article is our first report on the obtaining and properties of the multiconnected micellar phase from CAPB + SLES in the presence of divalent counterions. In Section 2, the used materials and methods are described. In Section 3, we report the similarities and dissimilarities between the systems with Ca2+, Zn2+ and Mg2+ counterions. In Section 4, the bicontinuous structure of the separated phase is confirmed by using lipophilic and hydrophilic dyes. The effects of CAPB:SLES ratio and MgCl2 concentration are investigated. The zeta-potential of droplets from the saturated network is determined. In Section 5, the effect of MgCl2 concentration on the rheology of the multiconnected micellar phase is investigated and the ability of this phase to rebuild its structure after intensive shearing is examined. Finally, Section 6 is dedicated to the nanoemulsification of oils (fragrances) in contact with the saturated network. It should be noted that a complete systematic investigation on the properties of this interesting system goes beyond the volume of a standard paper and should be continued in subsequent studies.

Concerning the terminology, the phase separation of saturated network was initially called "L1/L1 phase separation" [7]. In the next studies, the terms “saturated network” [8,9] and “multiconnected network of wormlike micelles” [10,15] were introduced and became generally accepted. In this study, the terms “saturated network” and “multiconnected micellar phase” are used as synonyms.

2. Materials and methods

2.1. Materials

The used anionic surfactant has been sodium lauryl ether sulfate with one ethylene oxide group (SLES-1EO or more briefly SLES), a product of Stepan Co; trade name STEOL CS-176; molecular mass 332.4 g/mol. Its critical micellization concentration (CMC) in pure water is 7 × 10−4 M. The used cationic surfactant has been cocamidopropyl betaine (CAPB) with a quaternary nitrogen atom and a carboxylic group (Fig. 2), product of Evonik Industries, under the trade name Tegobtain F50; molecular weight 356 g/mol. The CMC of CAPB in pure water is 9 × 10−6 M. Because the molecular weights of the two surfactants are not so different, the mol/mol composition of their mixed solutions is close to the weight/weight composition. In our experiments, the pH of the solutions was in the range 5–6, so that CAPB is in its zwitterionic form.

The used salts, CaCl2, ZnCl2 and MgCl2 were products of Merck.
(Darmstadt, Germany). The structural formulas of the two surfactants and of the four fragrances, viz. linalool, citronellol, limonene, and benzyl salicylate, used in the solubilization/ nanoemulsification experiments are shown in Fig. 2.

Table 1 shows data for some properties of the above fragrances. Their lipophilicity is characterized by log\(P\), where \(P\) is the partition coefficient of the fragrance between octanol and water. The van der Waals volume of a molecule is defined as the space occupied by the molecule, which is impenetrable to other molecules at ordinary temperatures. It can be calculated from the molecular structure. The last column refers to the nanoemulsification capacity of the multiconnected micellar phase with respect to the respective fragrance, which is determined in Section 6.2.

2.2. Methods

Preparation of the solutions. First, the aqueous solution of the two basic surfactants, CAPB and SLES, was prepared. Next, the salt (CaCl\(_2\), ZnCl\(_2\), or MgCl\(_2\)) was added. The obtained solution was stirred for 1 h at 60 °C. All measurements were carried out after equilibration of the solution for one night at 25 °C. The solutions were prepared with deionized water from the Millipore system (Milli-Q purification system, USA) with conductivity of 0.067 μS/cm.

Optical observations were carried out with a microscope AxioImager M2m (Zeiss, Germany) equipped with a fluorescence assay. Dyes were used to amplify the contrast between the water and micellar phases. The oil-soluble fluorescent dye BODIPY (Sigma Aldrich, 790,389) colors the oily part of the bicontinuous phase yellowish-green. BODIPY is a fluorescent marker with excitation maximum at 502 nm and emission maximum at 510 nm (green light). To color the aqueous phase, we used the water-soluble dye methylene blue (Sigma Aldrich, M9140). In the solubilization/ nanoemulsification experiments, to color the oily phase (the fragrances), the red dye Sudan III (Sigma Aldrich, S4131) was used. Optical observations of the samples by cross-polarized light microscopy (CPLM) were carried out to verify whether any liquid crystalline mesophases have been formed. For the same purpose, the samples were studied also by small angle X-ray scattering (SAXS) with diffractometer D8 Advance ECO (Bruker, Billerica, Massachusetts, USA).

Zeta potentials of droplets from the multiconnected micellar phase were measured by a light scattering system Zetasizer Nano ZS (Malvern Instruments, UK).

Rheological measurements were carried out by a Bohlin Gemini apparatus (Malvern Instruments, UK) equipped with a CP60 flat-parallel plate. The shear rate was varied from 0.1 to 1000 s\(^{-1}\). The temperature was controlled by a Peltier element; evaporation from the studied sample was prevented.

Particle size distributions in nanoemulsions were measured by two methods. First, laser particle sizer ANALYSETTE 22 NanoTec (Fritsch, Germany) with a measuring range of 0.01–2100 μm (laser diffraction method). Second, dynamic light scattering apparatus Malvern 4700C (Malvern Instruments, UK) – goniometric light scattering system for

![Fig. 2. Structural chemical formulas of the used surfactants and fragrances (oils).](image-url)
3. Effect of salts with divalent counterions

The experimental finding that the addition of Ca$^{2+}$ ions to a mixed solution of anionic and zwitterionic solution leads to the separation of isotropic micellar phase was serendipitous (observed when studying the effect of hard water on shampoo-type formulations). Next, we established that the phenomenon is more general and is observed also with other divalent counterions: Zn$^{2+}$ and Mg$^{2+}$. The effect is especially strong with Mg$^{2+}$ ions.

More specifically, we studied the phase behavior of CAPB + SLES solutions upon the addition of CaCl$_2$, ZnCl$_2$ and MgCl$_2$. The results are shown in Figs. 3 and 4. In Fig. 3, all solutions contain surfactant of total concentration $C_{\text{tot}} = 0.2$ wt% 1:1 w/w CAPB:SLES plus added salt at different concentrations (mM) shown on the caps of the vials. The micrographs of the solution in Fig. 3 have been taken for the vials with 9 mM added salt.

In Fig. 4, the total surfactant concentration, C_{tot}, is varied at fixed weight ratio of the two surfactants (1:1 CAPB:SLES) and fixed 12 mM concentration of the added salt. The results are presented and discussed separately for each salt.

3.1. Effect of CaCl$_2$

In Fig. 3a, for the surfactant solutions with CaCl$_2$ one can distinguish three types of phase behavior: A – clear solution; B – translucent (slightly turbid) solution, and C – precipitated (turbid) solution. Type A is observed with 1 mM added CaCl$_2$; this is a clear micellar solution (C_{tot} is above the CMC). Type B is observed in the concentration range $3 \leq C_{\text{salt}} \leq 15$ mM (C_{salt} denotes the CaCl$_2$ concentration). Type C is observed at $C_{\text{salt}} = 30$ mM, where crystallites are formed in the solution; the smaller of them are dispersed in the bulk, whereas the bigger ones sediment at the bottom of the vial.

The microscopic observations show that the turbidity of system type B is due to the formation of drops with diameter on the order of 10 μm, as illustrated in the micrograph for 9 mM CaCl$_2$ in Fig. 3a. In cross-polarized light + lambda plate, these drops do not show any birefringence typical for ordered phases. Hence, the drops are not formed from liquid-crystalline mesophases like hexagonal, lamellar or spherulites (onions) [64–67]. The viscosity of the disperse systems of type B (drops in water) is close to that of water.

The drops are heavier than water and with time they sediment at the bottom of the vial. In the sediment, the droplets with CaCl$_2$ do not coalesce, so that they can be easily re-dispersed by shaking. A possible explanation is that the droplets are stabilized by electrostatic (double layer) repulsion; see Section 4.3 for the measured zeta-potentials. However, if subjected to centrifugation at an acceleration of 3000g for 30 min, these drops coalesce and form a separate phase; see SI
Appendix, Fig. S1 (SI = Supplementary Information). As demonstrated below, the sediment can be identified as a multiconnected micellar phase (saturated network).

In Fig. 4a, the CaCl₂ concentration is fixed, C\text{salt} = 12 mM, whereas the total surfactant concentration, C\text{tot}, is increased from 0.1 to 2 wt\% (1:1 w/w CAPB:SLES). For 0.1 ≤ C\text{tot} ≤ 1 wt\%, one observes systems of type B with increasing turbidity. This can be explained with the increase of the volume fraction of the formed droplets with the rise of surfactant concentration. Finally, at C\text{tot} = 2 wt\% the solution becomes clear (system type A) and its viscosity is markedly higher than that of water. This is indication for the presence of uniform micellar phase composed of entangled wormlike or branched micelles. The most probable interpretation is that at the highest surfactant concentration, C\text{tot} = 2 wt\%, the amount of CaCl₂ is not enough for the formation of droplets from multiconnected micellar phase.

3.2. Effect of ZnCl₂

Fig. 3b illustrates the phase behavior of 0.2 wt\% 1:1 w/w CAPB:SLES solutions upon the addition of ZnCl₂. With 1 mM ZnCl₂, a clear micellar solution is observed – system of type A. Systems of type B, translucent solutions with dispersed droplets, are observed in the concentration range 3 ≤ C\text{salt} ≤ 9 mM ZnCl₂. Milky-white precipitated system type C1 with dispersed submicron crystallites is observed at 12 ≤ C\text{salt} ≤ 15 mM, and precipitated system type C2 with sediment of crystallites is observed at 30 ≤ C\text{salt} ≤ 200 mM added ZnCl₂. The solutions with ZnCl₂ exhibit a stronger tendency to precipitation as compared with the solutions containing CaCl₂ and MgCl₂ (Fig. 3).

For the systems type B, in cross-polarized light + lambda plate the spherical drops with ZnCl₂ do not show birefringence typical for crystal phases. However, we observe also the presence of particles of non-spherical shape, like those shown in the micrograph in Fig. 3b (taken at 9 mM ZnCl₂), which show birefringence in polarized light. Hence, in the case of ZnCl₂ we observe coexistence of particles with liquid crystalline structure and particles from an isotropic phase (supposedly, multi-connected micellar phase).

In Fig. 4b, one sees that the turbidity does not monotonically depend on the total surfactant concentration, C\text{tot}, at fixed (12 mM) ZnCl₂ concentration. Only the solution with C\text{tot} = 0.2 wt\% is milky-white and precipitated. It seems that at C\text{tot} = 0.1 wt\% the surfactant concentration is insufficient for precipitation, whereas at C\text{tot} ≥ 0.5 wt\% the surfactant micelles have “solvulized” the crystallites.

3.3. Effect of MgCl₂

Fig. 3c illustrates the phase behavior of 0.2 wt\% 1:1 w/w CAPB:SLES solutions upon the addition of MgCl₂. Systems of type A (clear micellar solutions) are observed for C\text{salt} = 1 and 3 mM MgCl₂. Systems of type B (translucent solutions with dispersed droplets), are observed in the concentration range 6 ≤ C\text{salt} ≤ 15 mM MgCl₂. The micrograph in Fig. 3c shows the droplets formed in a solution with 9 mM MgCl₂; some of them look darker because they are out of the focal plane of the microscope. A system of new type D is observed at 30 ≤ C\text{salt} ≤ 125 mM added MgCl₂. The solutions with MgCl₂ exhibit a stronger tendency to precipitation as compared with the solutions containing CaCl₂ and MgCl₂ (Fig. 3).

The system of type B with MgCl₂ possesses a remarkable property. Upon sedimentation at the bottom of the vial, the drops spontaneously coalesce and form a separate phase. The bigger drops sediment and coalesce during the first 15 min. After 1 day at rest, practically all drops have merged into one large phase at the bottom. In Fig. 3c, the sedimented phase is not well visible because its refractive index is close to that of water. (In Section 4, the sedimented phase is visualized by the addition of dyes.) In Fig. 4c, all solutions correspond to type B, but some of them are clearer because of the sedimentation of a part of the drops.

Samples of the sedimented phase with MgCl₂ were subjected to observations in polarized light – no birefringence indicating liquid crystal mesophase was observed (just like in the case of drops with CaCl₂); see SI Appendix, Fig. S3. It is known that isotropic micellar phases and cubic liquid-crystal mesophases do not exhibit birefringence (colored patterns) in cross-polarized light with λ-plate [64,68,69].

Samples of the sedimented phase with MgCl₂ were subjected also to SAXS investigation. The shape of the SAXS spectrum (see, e.g., SI Appendix, Fig. S4) indicates that the sedimented phase is not a cubic phase, or any other liquid-crystal mesophase; see, e.g., Refs. [57,58,69–71]. Then the only possibility is it to be an isotropic saturated network from crosslinked wormlike surfactant micelles (Fig. 1), which form a separate phase. The existence of such phases was predicted and observed in preceding studies as a limiting case of branched micelles at high electrolyte concentrations [6–9,15]. The bicontinuous structure of the sedimented phase is confirmed by using lipophilic and hydrophilic dyes – see Section 4. Moreover, the position of the phase-separation domain in the viscosity salt curve (Section 5) is in full agreement with the theoretical predictions for the appearance of saturated network [11,12,30].

4. Visualization by dyes and zeta-potential measurements

4.1. Effects of salt concentration and CAPB/SLES ratio

Our subsequent investigations are focused on the systems with MgCl₂, because only in this case the separated surfactant-rich droplets spontaneously coalesce and form a separate phase, and the volume of this phase is the greatest at identical other conditions. To visualize its presence, the lipophilic dye BODIPY has been dissolved in the surfactant solution, where it is solubilized in the micelles. Upon phase-separation of the droplets of saturated micellar network and their sedimentation at the bottom of the vial, BODIPY is transferred in the sediment, which acquires yellow-green color – see Fig. 5a. The excess, non-solubilized dye represents reddish crystals that are seen at the bottom of some vials.

Fig. 5b shows the micellar phase separated from a solution of 0.5 wt % 1:1 (w/w) CAPB:SLES at six concentrations of MgCl₂ from 8 to 18 mM. One sees that the volume of the sedimented phase markedly decreases with the rise of MgCl₂ concentration. This can be due to the interplay of two effects. First, the increased electrolyte concentration suppresses the electrostatic swelling of the micellar network. Second, at higher salt concentrations water molecules can migrate from the multiconnected micellar phase to the bulk aqueous phase that leads to shrinkage of the micellar network (salting-out effect).

In Fig. 5c, the total surfactant and salt concentrations are fixed (C\text{tot} = 1 wt\% and C\text{salt} = 30 mM MgCl₂), whereas the composition of the surfactant mixture is varied from 3:1 to 1:2 (w/w) CAPB:SLES, that is from 25 to 67 % mass fraction of SLES relative to the total mass of surfactant. The photographs are taken one week after the preparation of the solutions. Separation of micellar phase is observed in the range from 25 to 50 % SLES. In contrast, at 67 % SLES (1:2 CAPB:SLES) the solution is uniform (no phase separation) and more viscous. In this case, we are probably dealing with uniformly distributed entangled branched or wormlike micelles, rather than with saturated micellar network; see e.g. [9,11].

For the first three vials in Fig. 5c the volume of the separated micellar phase with the surfactant composition at fixed C\text{tot} = 1 wt\% and C\text{salt} = 30 mM MgCl₂. This effect is probably related to the different micelle surface charge and counterion (Mg²⁺) binding inside the network for different fractions of SLES in the surfactant blend.

4.2. Experiments with hydrophilic and lipophilic dyes

If the separated phase is a saturated network of wormlike micelles (rather than compact drops of salted-out surfactant), it should contain continuous water phase. The latter is confirmed in an experiment with...
the water-soluble dye methylene blue – after its addition in the vial with the phase-separated solution, it penetrates in the sedimented phase, which acquires dark blue color (Fig. 6a). After dispersing the dark blue phase in the upper aqueous phase, in transmitted light we see that the dispersed droplets also have bluish color (Fig. 6b). This time the intensity of the blue color in the drops is only slightly higher than that of the water background, because the thickness of the drops is much smaller than the thickness of the surrounding aqueous phase. If we cover the light source with 502 nm filter (the excitation wavelength of BODIPY), we see the same drops (as in Fig. 6b) shining in green color – Fig. 6c.

The fact that the sedimented surfactant-rich phase engulfs both the hydrophilic methylene blue (located in the aqueous phase) and the lipophilic BODIPY (solubilized in the micelles) confirms that we are dealing with a bicontinuous phase. This fact, combined with the lack of birefringence in polarized light and the shape of the SAXS diffraction spectrum (SI Appendix, Figs S3 and S4), as well as by the shape of the viscosity salt curve (Section 5) proves that the dispersed drops, and the bulk phase obtained after their coalescence, are composed of multi-connected micellar phase (saturated network); see Section 5.2 for a more detailed discussion.

It should be also noted that the dark background around the drops in Fig. 6c evidences that practically the whole amount of surfactant is concentrated in the multiconnected micellar phase, which should co-exist with surfactant monomers in the aqueous phase. The fraction of smaller micelles (that could also solubilize BODIPY) in the aqueous phase turns out to be negligible.

The experiments illustrated in Fig. 6 were carried out in the presence of MgCl2. Similar experiments with CaCl2 and ZnCl2 (instead of MgCl2) lead to analogous results (see SI Appendix, Fig. S2). In other words, the drops separated in the solutions with CaCl2 and ZnCl2 also represent pieces of multiconnected micellar phase, despite the fact that they are more stable against coalescence and do not spontaneously merge into a large bicontinuous phase. However, such phase can be separated by centrifugation of the respective solution. The greatest yield of multiconnected micellar phase has been observed with Mg2+. It seems that in the case of Ca2+ and Zn2+ a significant part of surfactant remains in the upper aqueous phase in the form of separate micelles. As already mentioned, in the case of Zn2+ we observe also a population of non-spherical particles of liquid crystalline structure, which can be distinguished in polarized light, and which coexist with the spherical drops from the multiconnected micellar phase.

4.3. Results from zeta-potential measurements

To check whether the stability of the drops from the multiconnected micellar phase in the cases of Ca2+ and Zn2+, and the drop coalescence in the case of Mg2+ is related to electrostatic double-layer interactions, we carried out zeta-potential measurements with such drops. For this goal, the sediment of multiconnected micellar phase was re-dispersed to μm-sized droplets in the aqueous phase above the sediment. The sedimentation of the obtained droplets was relatively slow, so that they were convenient for zeta-potential measurements. The composition of the used solutions was 0.5 wt% 1:1 w/w CAPB:SLES with added 16 mM CaCl2, or MgCl2, or ZnCl2. The results (average from three runs) are shown in Table 2.

In Table 2, the close values of conductivity for the three different
salts indicate that the ionic strength in the aqueous medium is almost the same. Then, the difference between the values of the zeta-potentials could be due to different specific binding of the Ca\(^{2+}\), Mg\(^{2+}\) and Zn\(^{2+}\) ions to the headgroups of SLES expressed on the surface of the drops from the multiconnected micellar phase. The negative sign of the zeta-potential indicates that the binding of divalent counterions does not invert the sign of the drop surface charge. In the case of Ca\(^{2+}\), the magnitude of the zeta-potential is the highest, which is in agreement with the fact that the coalescence of drops is suppressed in the presence of Ca\(^{2+}\). In the case of Zn\(^{2+}\), the zeta potential is the lowest by magnitude, which indicates higher degree of counterion binding. The stability of the formed droplets against coalescence could be attributed to the short-range hydration repulsion [72] due to the bound strongly hydrated Zn\(^{2+}\) ions [73]. In the case of Mg\(^{2+}\), the drop coalescence can be a result of specific ability of the magnesium ions to interact with the surfactant headgroups, to bridge between neighboring drops and promote their merging.

5. Rheology of the multiconnected micellar phase

5.1. Salt curve and flow curves

In these experiments, the input surfactant concentration was fixed to 5 wt% 1:1 w/w CAPB:SLES. Fig. 7a shows the dependence of zero-shear viscosity, \(\eta_0\), on the concentration of added MgCl\(_2\). This dependence has the shape of a typical “salt curve” with a maximum [3–5]. The interpretation of the salt curve, which was established and confirmed in numerous works [3–5,8–13], is as follows. To the left from the maximum, \(\eta_0\) increases with salt concentration because of the growth and entanglement of wormlike micelles. The maximum of \(\eta_0\) marks the appearance of branched micelles. The degree of branching increased with the further rise of salt concentration. This is accompanied with a lowering of \(\eta_0\) because of the mobility of the junctions in the branched micelles [15]. At sufficiently high salt concentrations, the connection of all branched micelles leads to phase separation of saturated micellar network [8–12]. Despite the relatively high MgCl\(_2\) concentrations (up to 90 mM) all solutions are clear (no precipitation), which can be explained with the binding of Mg\(^{2+}\) ions to the micellar aggregates.

In Fig. 7a, the viscosity \(\eta_0\) of the phase-separated saturated micellar network (the four rightmost points) is compared with the values of \(\eta_0\) for the homogeneous phase before the phase separation (all other experimental points). For the multiconnected micellar phase, \(\eta_0\) turns out to be constant (independent of the input MgCl\(_2\) concentration) and relatively low, as expected [15]. The separation of isotropic surfactant phase at the highest studied salt concentrations (Fig. 7a) is full agreement with the well-established consequence of salt concentration, viz. wormlike micelles \(\rightarrow\) branched micelles \(\rightarrow\) saturated network. From a general viewpoint, there are only two possible explanations of the phase separation at high salt concentrations [9,11,12,30]:

(1) Precipitation (salting out) of surfactant; the precipitates are either solid or liquid crystals, which can be detected by CPLM and SAXS experiments [69].

(2) Separation of saturated network from wormlike micelles [8–12], which was initially termed L1/L1 phase separation [7].

It is important to note that the saturated network is the only kind of micellar (isotropic) structure, which phase-separates, as predicted theoretically [8], and confirmed in the subsequent studies in this field; see e.g. Refs. [6–15]. All other micellar structures do not phase-separate, but occupy the whole volume of the aqueous solution.

Our CPLM experiments (plus SAXS for the cubic phases) showed that the observed phase separation is not precipitation (salting out) of surfactant. Hence, only the second possibility remains, viz. the separated phase to be saturated network of wormlike micelles.

From a logical viewpoint, the CPLM experiments (plus SAXS for the cubic phases) are sufficient to conclude that we are dealing with saturated micellar network. Our additional experiments, viz. (1) staining
with dyes (Fig. 6) and (ii) rheological salt curve (Fig. 7a), have auxiliary character – they only support and confirm the conclusions based on the CPLM + SAXS experiments. Other supporting experiments could be carried out with diffusion NMR and cryo-TEM, which could be subjects of future studies.

6. Nanoemulsification of oils by the multiconnected micellar phase

6.1. Wormlike micelles vs. multiconnected micellar phase

Illustrative results are shown in Fig. 8a and b, where the left bottle (with almost clear aqueous phase) represents a solution of 5 wt% 1:1 w/w CAPB:SLES (≈145 mM total surfactant) without MgCl₂, where short wormlike micelles are formed [26]. The right bottle has been filled with multiconnected micellar phase, which represents the sediment from a solution of 1 wt% 1:1 w/w CAPB:SLES plus 30 mM MgCl₂. From the volume of the sedimented multiconnected micellar phase relative to the total volume of the solution (Fig. 5c), one could estimate that the left and right bottles contain solutions of approximately equal surfactant concentrations, but with different initial micellar structures: wormlike micelles vs. saturated network. The viscosities of the two initial phases are close to each other, 0.3 – 0.4 Pa·s.

To visualize the location of the oil phase, it was colored red by a small amount of the oil-soluble dye Sudan III. In Fig. 8a and b, respectively, 1 wt% and 3 wt% limonene was added over the aqueous phase. Then, the solutions were subjected to mild agitation by magnetic stirrer for an hour at room temperature. The photographs taken afterwards show that the solution with wormlike micelles in the left bottles (Fig. 8a and b) has solubilized only a tiny fraction of limonene, as evidenced by the pale pink color of the aqueous phase, whereas the main part of limonene is separated as a top layer of oil. In contrast, in the right bottles the whole oil phase has been absorbed by the surfactant solution, which has acquired intense red color and has become turbid. The turbidity is due to the presence of 100–200 nm droplets, as seen in Fig. 8c. Hence, the interaction of the multiconnected micellar phase with the oil has led to the formation of oil-in-water nanoemulsion.

To obtain the graph in Fig. 8c, the laser particle sizer was used. For this goal, the turbid dispersion in the right-hand-side bottle in Fig. 8a was diluted 150 times with pure water. The quantity $q_3(D)\,dD$ presents the volume fraction of particles (droplets) with diameters in the interval from D to $D + dD$; $q_3(D)$ represents the particle size distribution. Correspondingly, the quantity

$$Q_3(D) = \int_D^{\infty} q_3(D')\,dD'$$

(1)

is the cumulative particle size distribution; D is a variable of integration. Fig. 8c shows that the droplets in the nanoemulsion have log-normal size distribution, the most probable drop diameter being 128 nm. The small peak at $D < 30$ nm probably represents spheroidal and/or short rodlike micelles.

The dilution of the sample during the particle sizing by laser
diffraction (Fig. 8c) has certainly affected the size of the surfactant self-assemblies present in the solution. Note, however, that the target of this measurement is the size of the produced emulsion drops, rather than the size of the micelles. The emulsion drops are expected to be stable, despite the dilution, because the surfactant concentration remains above the CMC. To confirm that, we carried out independent drop-sizing experiments by DLS. The result, which is shown in SI Appendix Fig. S7, is in very good agreement with that in Fig. 8c. We can conclude that the size distribution of the nanoemulsion drops has been correctly determined.

6.2. Nanoemulsification capacity of the multiconnected micellar network

By the addition of increasing amounts of oil (limonene, linalool, etc.) to the separated multiconnected micellar phase, we found that above a certain amount of oil it cannot be emulsified by the surfactant solution, but forms lenses floating above the aqueous phase (or sediment from the heavier benzyl salicylate at the bottom). Hence, the saturated micellar network has a certain nanoemulsification capacity. In analogy with the micellar solubilization capacity [74], the nanoemulsification capacity can be defined by the expression:

$$\chi = \frac{C_{\text{sat}} - S_w}{C_{\text{tot}} - \text{CMC}} = \frac{C_{\text{sat}}}{C_{\text{tot}}}$$

Here, C_{sat} is the saturation concentration of oil in the aqueous surfactant solution; S_w is the solubility of the respective oil in pure water, and C_{tot} is the total surfactant concentration. All concentrations in Eq. (2) are expressed in mol/l relative to the total volume of the liquid, so that χ is a dimensionless quantity. We have used also the circumstance that in our case $C_{\text{sat}} > > S_w$ and $C_{\text{tot}} > > \text{CMC}$.

In this series of experiments, we produced a greater amount of the multiconnected micellar phase, which was separated as sediment from an initial aqueous solution of 1 wt% 1:1 w/w CAPB:SLES with 30 mM MgCl$_2$. To determine C_{tot} in the sedimented phase, a portion of it was...
dried to constant weight. The amount of surfactant was estimated by subtracting the amount of MgCl\(_2\), assuming one Mg atom per two SLES molecules in the dried substance. Then, knowing the contents of the active, the sedimented phase was diluted by pure water to \(C_{\text{sat}} = 1\) wt\% 1:1 w/w CAPB:SLES, which is the real surfactant concentration in the saturated network.

Different portions of colored (with Sudan III) oil were added by a micropipette to a series of vials filled with identical volumes of the multiconnected micellar phase thus prepared. Next, the content of the vials was agitated by magnetic stirrer for 1 h, and then the vials were kept at rest for 3 weeks. \(C_{\text{sat}}\) was determined as the mean arithmetic between the concentrations of oil in the first vial with separated oil phase and in the last vial without separated oil phase; see, e.g., the vials with citronellol in SI Appendix, Fig. S3.

Next, the nanoemulsification capacity of the multiconnected micellar phase, \(\chi\), has been calculated using Eq. (2). The results for \(\chi\) are shown in Table 1 and plotted in Fig. 9a and b as functions, respectively, of the van der Waals volume of the oil molecule, \(V_{\text{vw}}\), and \(\log P\) for this oil; see Table 1. One sees that \(\chi\) monotonically decreases with \(V_{\text{vw}}\), but \(\chi\) does not correlate with \(\log P\). If the nanoemulsification capacity was governed by the lipophilicity of the oil phase, then one could expect that \(\chi\) should grow with the rise of \(\log P\); however, such tendency is observed only for linalool and limonene (Fig. 9b). The correlation between \(\chi\) and \(V_{\text{vw}}\) is demonstrated also in Fig. 9c, where the same data (as in Fig. 9a) are plotted in linear scale. One sees that in first approximation the dependence of \(\chi\) on \(V_{\text{vw}}\) is linear. This dependence indicates that the mechanism of production of nanoemulsions, as a result of interaction of the saturated micellar network with the oil, is governed by steric (in addition to the hydrophobic) interactions.

Fig. 9c indicates that for \(V_{\text{vw}} > 207\) Å\(^3\) oil separation always takes place. Note, however, that nanoemulsions can be formed even for oil concentrations > \(C_{\text{sat}}\), for which the turbid o/w nanoemulsion coexists with separated oil phase. As an example, see the data for benzyl salicylate in SI Appendix, Fig. S3, where the non-emulsified oil (colored red with Sudan III at the bottom of vials) coexists with a multiconnected micellar phase (the clear phase) and with a nanoemulsion (the turbid phase). Such phase behavior resembles that of Winsor III systems [75,76], but its investigation is out of the scope of the present study. We observed nanoemulsification by multiconnected micellar phase also with linear alkanes of not too long paraffin chain, viz. octane and decane.

6.3. Discussion on nanoemulsification

The solubilization of fragrances in the micelles of sodium dodecyl sulfate (SDS) was investigated by Fan et al. [77]. These authors concluded that the perfumes with a linear chain structure or an aromatic group can penetrate into the palisade layer and closely pack with the surfactant molecules in spherical or slightly elongated micelles (97.5 mM SDS, no salt).

In our case, the fragrances interact with a network of multiconnected (crosslinked) wormlike micelles (Fig. 1). The fact that (unlike the saturated network) the wormlike micelles in contact with oil do not produce nanoemulsions (see Fig. 8), implies that the junctions (nodes) in the micellar network play a central role in nanoemulsification. Indeed, the junctions are the structural units that make the difference between wormlike micelles and saturated network. We could hypothesize that the interaction of the oil molecules with the micellar network includes solubilization of oil inside the junctions, which swell and detach as separate nanoemulsion drops. At that, the saturated micellar network is destroyed. This process deserves to be investigated in more details in the future.

Whatever the mechanism of nanoemulsification by the multiconnected micellar phase could be, it is much less energy consuming in comparison with the methods that employ mechanical drop breakup, like the high pressure homogenizers. In the case of multiconnected micellar phase, only a gentle mechanical stirring has been used to mix the two phases and to bring the oil in contact with the micellar network.

7. Conclusions

Although the phase separation of a saturated micellar network as a result of interconnection of branched micelles was predicted long ago...
CAPB in the presence of divalent counterions, Ca\(^{2+}\), Zn\(^{2+}\) and Mg\(^{2+}\), at mixed solutions of the anionic surfactant SLES and the zwitterionic ticonnected micellar phases, on the basis of production of macroscopic after Ref. [15], which is especially dedicated to the properties of multiconnected micellar phases, which were next subjected to investigation.

Phase separation of saturated micellar network was established in mixed solutions of the anionic surfactant SLES and the zwitterionic ticonnected micelle.

The multiconnected micellar phases could find applications, at least, in three fields:

(i) Their ability to be dispersed to small droplets, which can solubilize target molecules and then coalesce again, can be used in some extraction and separation processes.

(ii) Stable droplets of saturated micellar network, like those with Ca\(^{2+}\), can be used as carriers of various drugs, actives and fragrances, like the cubosomes and hexosomes [57–59].

(iii) The nanoemulsification of oily substances by multiconnected micellar phase can find applications for the production (at low energy cost) of nanoemulsions with their numerous applications [50–56].

CRediT authorship contribution statement

Mihail T. Georgiev: Investigation, Methodology, Data curation.
Lyuba A. Aleksova: Investigation, Data curation. Peter A. Kralchevsky: Conceptualization, Supervision, Writing - original draft.
Krassimir D. Danov: Conceptualization, Formal analysis.

Declaration of Competing Interest

The authors report no declarations of interest.

Acknowledgments

The authors gratefully acknowledge the support from the National Science Fund of Bulgaria, Grant No. DN 09/8/2016 and from the Operational Programme “Science and Education for Smart Growth”, Bulgaria, project No. BG05M2OP001-1.002-0023. They thank Dr. Krastanka Marinova for her contribution to the management of this project; Dr. Filip Ublekov for the SAXS measurements, and Ms. Theodora Stancheva for a part of the rheological measurements.

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.colsurfa.2020.125487.

References

[1] E. Cappelaere, R. Cressey, Rheological behavior of an elongated micellar solution at low and high salt concentrations, Colloid Polym. Sci. 276 (1998) 1050–1056.
[2] E. Cappelaere, R. Cressey, Influence of NaClO\(_3\) on the rheological behavior of a micellar solution of CPC1, Rheol. Acts 39 (2000) 346–353.
[3] L. Nicolaos-Morgantini, Giant micelles and shampoos, in: R. Zana, E.W. Kaler (Eds.), Giant Micelles. Properties and Applications, Taylor and Francis, New York, 2007, pp. 493–514 Chapter 17.
[4] A. Parker, W. Fisher, Viscoelasticity of anionic wormlike micelles: effects of ionic strength and small hydrophobic molecules, Soft Matter 9 (2013) 1203–1213.
[5] V.I. Yavrukova, G.M. Radulova, K.D. Danov, P.A. Kralchevsky, H. Xu, Y.W. Ung, J.T. Petkov, Rheology of mixed solutions of sulfonated methyl esters and betaine in relation to the growth of giant micelles and shampoo applications, Adv. Colloid Interface Sci. 275 (2020) 102062.
[6] J. Appell, G. Porte, Cloud points in ionic surfactant solutions, J. Phys. Lett. 44 (1983) L-669 – L-695.
[7] G. Porte, R. Gomati, O. El Haidm, J. Appell, J. Marignan, Morphological transformations of the primary surfactant structures in brine-rich mixtures of ternary systems (surfactant/alcohol/brine), J. Phys. Chem. 90 (1986) 5746–5751.
[8] T.J. Drye, M.E. Cates, Living network: the role of cross-links in entangled surfactant solutions, J. Chem. Phys. 96 (1992) 1367–1375.
[9] S. Candau, A. Khatory, F. Lequeux, F. Kern, Rheological behaviour of wormlike micelles: effect of salt content, Journal de Physique IV Colloque 3 (C1) (1993), https://doi.org/10.1051/jp4:1993117 C1-197–C1-209.
[10] A. Khatory, F. Kern, F. Lequeux, J. Appell, G. Porte, N. Marie, A. Ott, W. Urbach, Entangled versus multiconnected network of wormlike micelles, Langmuir 9 (1993)

Future development of the present study could include the following research directions:

(i) Confirmation of the saturated network by cryogenic transmission electron microscopy (cryo-TEM).

(ii) Separation of bulk multiconnected micellar phases with other counterions (not only Mg\(^{2+}\)), and with other surfactants, and investigation of their properties.

(iii) Systematic investigation of the rheological properties of multiconnected micellar phases in different dynamic regimes and for different solution compositions and comparison with the theoretical predictions [8–12]; detection and characterization of the onset of network formation upon the rise of salt concentration.

(iv) Systematic study on nanoemulsification by multiconnected micellar phase – mechanism, factors affecting the drop size; appearance of microemulsion phases; rheology, etc.
3073–3081.

[72] J.N. Israelachvili, Intermolecular and Surface Forces, Academic Press, London, 2011.

[73] E. Cauet, S. Bogatko, J.H. Weare, J.L. Fulton, G.K. Schenter, E.J. Bylaska, Structure and dynamics of the hydration shells of the Zn$^{2+}$ ion from ab initio molecular dynamics and combined ab initio and classical molecular dynamics simulations, J. Chem. Phys. 132 (2010) 194502.

[74] M.S. Diallo, L.M. Abriola, W.J. Weber, Solubilization of nonaqueous phase liquid hydrocarbons in micellar solutions of dodecyl alcohol ethoxylates, Environ. Sci. Technol. 28 (1994) 1829–1837.

[75] B.K. Paul, S.P. Moulik, Microemulsions: an overview, J. Dispersion Sci. Technol. 18 (1997) 301–367.

[76] J. Flanagan, H. Singh, Microemulsions: a potential delivery system for bioactives in food, Crit. Rev. Food Sci. Nutr. 46 (2006) 221–237.

[77] Y. Fan, H. Tang, E. Strand, Y. Wang, Modulation of partition and localization of perfume molecules in sodium dodecyl sulfate micelles, Soft Matter 12 (2016) 219–227.

[78] M. Pleines, W. Kunz, T. Zemb, D. Banczédi, W. Fieber, Molecular factors governing the viscosity peak of giant micelles in the presence of salt and fragrances, J. Colloid Interface Sci. 537 (2019) 682–693.
Supplementary Information
for the article
Phase separation of saturated micellar network and its potential applications for nanoemulsification

Mihail T. Georgiev, Lyuba A. Aleksova, Peter A. Kralchevsky*, Krassimir D. Danov

*Corresponding author: Peter A. Kralchevsky
Email: pk@lcpe.uni-sofia.bg

APPENDIX

(List of the references cited here is given at the end of this Appendix)

\[C_{\text{tot}} = 0.5 \text{ wt\% 1:1 w/w CAPB:SLES-1EO} + 16 \text{ mM salt:} \]

- \[+ \text{CaCl}_2 \]
- \[+ \text{ZnCl}_2 \]
- \[+ \text{MgCl}_2 \]

Fig. S1. Separation of the multiconnected micellar phase by centrifugation from a solution of total surfactant concentration \(C_{\text{tot}} = 0.5 \text{ wt\% 1:1 w/w CAPB:SLES-1EO} + 16 \text{ mM salt: CaCl}_2, \text{ZnCl}_2 \text{ and MgCl}_2 \). The solutions have been subjected to centrifugation at 3000g for 30 min. All solutions contain equal amounts of methylene blue (a water soluble dye), which is distributed between the sediment and supernatant. The photographs show different volumes of sediment in the presence of \(\text{Ca}^{2+}, \text{Zn}^{2+} \text{ and Mg}^{2+} \) ions. The greatest yield of multiconnected micellar phase (the sediment) is observed with \(\text{MgCl}_2 \), for which the saturated network can be separated also by common gravitational sedimentation; the centrifugation only accelerates this process.
Fig. S2. Drops from the sedimented phase dispersed in the supernatant: Photomicrographs in transmitted light (left) and in fluorescence mode (right). In the latter case the same drops glow green owing to the solubilized lipophilic dye BODIPY. All solutions contain also methylene blue (Fig. S1).

\[C_{\text{tot}} = 0.5 \text{ wt}\% \ 1:1 \text{ w/w CAPB:SLES-1EO} + 16 \text{ mM salt:} \]

- + CaCl₂ – in transmitted light
- + CaCl₂ – in fluorescence mode
- + ZnCl₂ – in transmitted light
- + ZnCl₂ – in fluorescence mode
- + MgCl₂ – in transmitted light
- + MgCl₂ – in fluorescence mode
Fig. S3. Micrographs of drops from the sedimented phase dispersed in the supernatant; the total surfactant concentration is $C_{tot} = 1 \text{ wt}\%$ 1:1 w/w CAPB:SLES-1EO + 30 mM MgCl$_2$. (a) In cross-polarized light with λ-plate, the drops do not show any birefringence colors, which would indicate the formation of liquid-crystal mesophase; the observed uniform magenta color is typical for isotropic phases. (b) Control micrograph – the same drops in common transmitted light. The reference caliper shows 50 μm.
Fig. S4. SAXS spectrum from the surfactant-rich phase sedimented at the bottom of a solution of total concentration 0.5 wt% 1:1 w/w CAPB:SLES + 12 mM MgCl₂ – this is the system shown in the photos in Fig. 5a in the main text. The spectrum does not correspond to any ordered liquid-crystal mesophase, in particular – to cubic phase; see e.g. Refs. [1-5]. See comments on the SAXS spectrum on p. 6 below.

![SAXS Spectrum](image)

Fig. S5. Rheological properties of the multiconnected micellar phase separated from a solution of 1 wt% 1:1 CAPB:SLES in the presence of 30 mM MgCl₂: Plot of η vs. time for three consecutive shear-rate-ramp runs with the same multiconnected micellar phase demonstrating the rebuilding of the micellar structure after intensive shearing.

![Rheological Properties](image)
Fig. S6. Interaction of oil (fragrance) with a multiconnected micellar phase, which contains 1 wt% 1:1 w/w CAPB:SLES + 30 mM MgCl$_2$. The amount of added oil (in wt% relative to the total liquid phase) is denoted in the top line and refers to all investigated oils in the same column. Initially, the multiconnected micellar phase was poured in the vial. Next, the respective amount of oil, colored red with the dye Sudan III, was added and the content of the vial was agitated by magnetic stirrer for 1 h. After that, the vials were kept at rest for 3 weeks and, then, the photographs shown above were taken. One sees that at the lower oil concentrations, we have phase separation of multiconnected micellar phase (clear) and nanoemulsion (translucent or turbid); the latter is heavier or lighter depending on the oil type and concentration. At the higher oil concentrations, the nanoemulsion occupies the whole vial. In the case of benzyl salicylate, which is heavier than water, we observe also three-phase equilibria, at which the oil is at the bottom and the saturated network is the clear phase.
Fig. S7. Dynamic light scattering (DLS): Size distribution of the drops in a nanoemulsion obtained by the addition of 1 wt% limonene to the multiconnected micellar phase separated from a solution of total concentration 1 wt% 1:1 w/w CAPB:SLES-1EO + 30 mM MgCl₂. The size distribution is very close to the lognormal one; the most probable (median) drop diameter is $D_H = 116$ nm; $\sigma = 1.188$ is the standard deviation on the log scale; 68.3% of the drop diameters belong to the interval between D_H / σ and $D_H \sigma$, that is between 98 and 138 nm. The size distribution obtained by DLS is in very good agreement with the one obtained by laser diffraction – see Fig. 8c in the main text.

Comment on the SAXS spectrum in Fig. S4

By structure, the multiconnected micellar network resembles the disordered *sponge phase* (L3) observed in microemulsions and phospholipid self-assemblies [2,6]. Just like the sponge phase, the micellar network displays a single pronounced peak, which is centered at $q = 0.483$ Å⁻¹ (Fig. S4) and appears on a decaying background curve. Such a peak is typical for fluid isotropic phases [2]. In view of Eq. (1) in Ref. [2], this peak corresponds to a reference distance $L = 2\pi/q = 1.30$ nm, which is very close to the expected radius of the cylindrical micelle; see e.g. Fig. 8a in Ref. [7]. In Ref. [2], the peak corresponds to the thickness of the phospholipid bilayer, ca. 3.2 nm. The obtained values are related to the fact that the cylindrical micelles (here) and phospholipid bilayers (Ref. [2]) are, respectively, linear and planar structures; see Ref. [8].

References

[1] S.T. Hyde, Identification of lyotrophic liquid crystalline mesophases (Chapter 16), In Handbook of Applied Surface and Colloid Chemistry, K. Holmberg, Ed., John Wiley & Sons, New York, 2001, p. 299–332. https://www.wiley.com/en-us/Handbook+of+Applied+Surface+and+Colloid+Chemistry%2C+2+Volume+Set-p-9780471490838

[2] B. Angelov, A. Angelova, R. Mutafchieva, S. Lesieur, U. Vainio, V.M. Garamus, G.V. Jensen, J.S. Pedersen, SAXS investigation of a cubic to a sponge (L3) phase transition in self-assembled...
lipid nanocarriers, Phys. Chem. Chem. Phys. 13 (2011) 3073–3081; https://doi.org/10.1039/C0CP01029D

[3] I.D.M. Azmi, S.M. Moghimi, A. Yaghmur, Cubosomes and hexosomes as versatile platforms for drug delivery, Ther. Deliv. 6 (2015) 1347–1364; https://doi.org/10.4155/tde.15.81

[4] S. Biffi, L. Andolfi, C. Caltagirone, C. Garrovo, A.M. Falchi, V. Lippolis, A. Lorenzon, P. Macor, V. Meli, M. Monduzzi, M. Obiols-Rabasa, L. Petrizza, L. Prodi, A. Rosa, J. Schmidt, Y. Talmon, S. Murgia, Cubosomes for in vivo fluorescence lifetime imaging, Nanotechnology 28 (2017) 055102; http://iopscience.iop.org/0957-4484/28/5/055102

[5] Y. Huang, S. Gui, Factors affecting the structure of lyotropic liquid crystals and the correlation between structure and drug diffusion, RSC Adv. 8 (2018) 6978–6987; http://doi.org/10.1039/C7RA12008G

[6] Z. Lin, Branched worm-like micelles and their networks, Langmuir 12 (1996) 1729–1737. https://doi.org/10.1021/la950570q

[7] K.D. Danov, P.A. Kralchevsky, S.D. Stoyanov, J.L. Cook, I.P. Stott, E.G. Pelan, Growth of wormlike micelles in nonionic surfactant solutions: Quantitative theory vs. experiment, Adv. Colloid Interface Sci. 256 (2018) 1–22. https://doi.org/10.1016/j.cis.2018.05.006

[8] D.A. Acharya, S.J. Sharma, C. Rodriguez-Abreu, K. Aramaki, Viscoelastic micellar solutions in nonionic fluorinated surfactant systems, J. Phys. Chem. B 110 (2006) 20224–20234; https://doi.org/10.1021/jp063804v