WEAK SUBCONVEXITY WITHOUT A RAMANUJAN HYPOTHESIS

KANNAN SOUNDARARAJAN AND JESSE THORNER,
WITH AN APPENDIX BY FARRELL BRUMLEY

1. Statement of results

In [28], the first author obtained a weak subconvexity result bounding central values of a large class of L-functions, assuming a weak Ramanujan hypothesis on the size of Dirichlet series coefficients of the L-function. If C denotes the analytic conductor of the L-function in question, then C^4 is the size of the convexity bound, and the weak subconvexity bound established there was of the form $C^4/(\log C)^{1-\epsilon}$. In this paper we establish a weak subconvexity bound of the shape $C^4/(\log C)^{\delta}$ for some small $\delta > 0$, but with a much milder hypothesis on the size of the Dirichlet series coefficients. In particular our results will apply to all automorphic L-functions, and (with mild restrictions) to the Rankin-Selberg L-functions attached to two automorphic representations.

In order to make clear the scope and limitations of our results, we axiomatize the properties of L-functions that we need. In Section 2 we shall discuss how automorphic L-functions and Rankin-Selberg L-functions fit into this framework. Let $m \geq 1$ be a natural number. We now describe axiomatically a class of L-functions, which we shall denote by $S(m)$.

1. Dirichlet series and Euler product. The functions $L(s, \pi)$ appearing in the class $S(m)$ will be given by a Dirichlet series and Euler product

$$(1.1) \quad L(s, \pi) = \sum_{n=1}^{\infty} \frac{a_\pi(n)}{n^s} = \prod_p L_p(s, \pi), \quad L_p(s, \pi) = \prod_{j=1}^{m} \left(1 - \frac{\alpha_{j,\pi}(p)}{p^s}\right)^{-1} = \sum_{j=0}^{\infty} \frac{a_\pi(p^j)}{p^{js}},$$

with both the series and the product converging absolutely for $\text{Re}(s) > 1$. It will also be convenient for us to write

$$(1.2) \quad \log L_p(s, \pi) = \sum_{k=1}^{\infty} \frac{\lambda_\pi(p^k)}{k p^{ks}}, \text{ where } \lambda_\pi(p^k) = \sum_{j=1}^{m} \alpha_{j,\pi}(p^k).$$

Setting $\lambda_\pi(n) = 0$ if n is not a prime power, we have

$$(1.3) \quad -\frac{L'}{L}(s, \pi) = \sum_{n=1}^{\infty} \frac{\lambda_\pi(n)\Lambda(n)}{n^s}, \text{ and } \log L(s, \pi) = \sum_{n=2}^{\infty} \frac{\lambda_\pi(n)\Lambda(n)}{n^s \log n}.$$

2. Functional equation. Write

$$(1.4) \quad L_\infty(s, \pi) = N_\pi^{s/2} \pi^{-ms/2} \prod_{j=1}^{m} \Gamma\left(\frac{s + \mu_\pi(j)}{2}\right),$$

where $N_\pi \geq 1$ is known as the “conductor” of the L-function, and the $\mu_\pi(j)$ are complex numbers. We suppose that there is an integer $0 \leq r = r_\pi \leq m$ such that the completed
L-function $s^r(1 - s)^r L(s, \pi) L_\infty(s, \pi)$ extends to an entire function of order 1, and satisfies the functional equation

\begin{equation}
(1.5)
 s^r(1 - s)^r L(s, \pi) L_\infty(s, \pi) = \kappa s^r(1 - s)^r L(1 - s, \overline{\pi}) L_\infty(1 - s, \overline{\pi}).
\end{equation}

Here κ is a complex number with $|\kappa| = 1$, and

\begin{equation}
(1.6)
 L(s, \overline{\pi}) = \sum_{n=1}^{\infty} \frac{a_\pi(n)}{n^s}, \quad L_\infty(s, \overline{\pi}) = \Lambda_\pi^{s/2} \pi^{-ms/2} \prod_{j=1}^{m} \Gamma \left(\frac{s + \mu_\pi(j)}{2} \right).
\end{equation}

We suppose that r has been chosen such that the completed L-function does not vanish at $s = 1$ and $s = 0$. Thus, if $L(s, \pi)$ has a pole at $s = 1$ then we are assuming that the order of this pole is at most m, and r is taken to be the order of the pole. If $L(s, \pi)$ has no pole at $s = 1$, then we take $r = 0$ and are making the assumption that the $L(1, \pi) \neq 0$.

In our work, a key measure of the “complexity” of the L-function is a complex number with $Re(\overline{\pi}) = 1$, which implies that $Re(\overline{\pi}) \geq 1$. We impose a modest strengthening of these estimates. Namely, we assume that for all $1 \leq j \leq m$

\begin{equation}
(1.7)
 C(\pi) = N\prod_{j=1}^{m} (1 + |\mu_\pi(j)|).
\end{equation}

3. Bounds towards the Generalized Ramanujan and Selberg conjectures. The absolute convergence of the Euler product in (1.1) implicitly includes the assumption that $|\alpha_{j, \pi}(p)| < p$ for all p and j. Further, the Euler product shows that $L(s, \pi)$ is non-zero in $Re(s) > 1$, which implies that $Re(\mu_\pi(j)) > -1$ for all j (else there would be a trivial zero of $L(s, \pi)$ in $Re(s) > 1$ to compensate for a pole of $\Gamma((s + \mu_\pi(j))/2)$). We impose a modest strengthening of these estimates. Namely, we assume that for all $1 \leq j \leq m$

\begin{equation}
(1.8)
 |\alpha_{j, \pi}(p)| \leq p^{1-1/m}, \quad Re(\mu_\pi(j)) \geq -(1 - 1/m).
\end{equation}

The widely believed Generalized Ramanujan and Selberg conjectures for automorphic L-functions state that the bounds in (1.8) hold with $1 - 1/m$ replaced by 0. While these conjectures are still open, the weak bounds in (1.8) are known both for automorphic L-functions as well as their Rankin-Selberg convolutions. We could also weaken (1.8) further by replacing $1 - 1/m$ with $1 - \delta$ for some $\delta > 0$, but the present formulation is convenient and includes all L-functions of interest to us.

4. Rankin-Selberg and Brun-Titchmarsh bounds on $\lambda_\pi(n)$. Our final hypothesis prescribes two mild average bounds on $|\lambda_\pi(n)|$, which can be verified by Rankin-Selberg theory for the class of automorphic L-functions and their Rankin-Selberg convolutions. First, we assume that for all $\eta > 0$

\begin{equation}
(1.9)
 \sum_{n=1}^{\infty} \frac{|\lambda_\pi(n)| \Lambda(n)}{n^{1+\eta}} \leq \frac{m}{\eta} + m \log C(\pi) + O(m^2).
\end{equation}

Second, we assume that for all $T \geq 1$

\begin{equation}
(1.10)
 \sum_{x < n \leq xe^{1/T}} |\lambda_\pi(n)| \Lambda(n) \ll m \frac{x}{T}, \quad \text{provided } x \gg m \left(C(\pi) T \right)^{144m^3}.
\end{equation}

There is considerable latitude in formulating the conditions (1.9) and (1.10), and for example we could have chosen the range for x in (1.10) differently. The specific choice made here is based on the applicability of these conditions to automorphic L-functions. When T is of constant size, the criterion (1.10) may be viewed as a Chebyshev type estimate for $|\lambda(n)|$.
Theorem 1.1. If $L(s, \pi)$ is an L-function in the class $S(m)$ and $0 \leq \delta < \frac{1}{2}$, then
\[
\log |L(1/2, \pi)| \leq \left(\frac{1}{4} - 10^{-9}\delta\right) \log C(\pi) + 10^{-7}\delta N_\pi(1 - \delta, 6) + 2 \log |L(3/2, \pi)| + O(m^2).
\]

Theorem 1.1 adds to a long line of investigations relating the size of L-functions to the distribution of their zeros. For example, it is well known that the Generalized Riemann Hypothesis implies the Generalized Lindelöf Hypothesis. One could weaken the assumption of GRH, and establish (as Backlund did originally for $\zeta(s)$) that if almost all the zeros of the L-function up to height 1 are in the region $\operatorname{Re}(s) < 1 + \epsilon$, then the Lindelöf bound $L(1/2, \pi) \ll C(\pi)^{\epsilon}$ would follow. In contrast, Theorem 1.1 states that the more modest assumption that not too many of the zeros of $L(s, \pi)$ are very close to the 1 line leads to a subconvex bound for $L(1/2, \pi)$ (which is a modest form of the Lindelöf bound). For recent related work in the context of character sums and zeros of Dirichlet L-functions, see [12]. The proof of Theorem 1.1 is a refinement of an argument of Heath-Brown [13] to prove sharp convexity bounds for L-values.

To obtain from Theorem 1.1 a genuine subconvexity bound of the form $L(1/2, \pi) \ll C(\pi)^{\frac{1}{4} - \delta}$ for some $\delta > 0$, we would need a zero density estimate of the form $N_\pi(1 - \delta, 6) \leq 10^{-4}\log C(\pi)$, which we are unable to establish for any fixed $\delta > 0$. However, one can establish a “log-free zero density” estimate which will permit values of δ of size $(\log \log C(\pi))/\log C(\pi)$. This will then lead to the weak subconvexity bound where a power of $\log C(\pi)$ is saved over the convexity bound.

Theorem 1.2. Let $L(s, \pi) \in S(m)$ and $T \geq 1$. For all $1/2 \leq \sigma \leq 1$,
\[
N_\pi(\sigma, T) \ll_m (C(\pi)T)^{10^7m^3(1 - \sigma)}.
\]

Log free zero density estimates have a long history, going back to Linnik’s pioneering work on the least prime in arithmetic progressions. Our proof of Theorem 1.2 follows an argument of Gallagher, based on Turán’s power sum method. A key feature is the formulation of hypotheses (1.9) and (1.10), which are L^1-bounds that can be verified for automorphic L-functions as well as Rankin-Selberg convolutions of two automorphic L-functions. Thus Theorem 1.2 applies to a larger class of L-functions than the earlier log free zero-density estimates established by (for example) Kowalski and Michel [18], Motohashi [21], Akbary and Trudgian [1], and Lemke Oliver and Thorner [19]. We have not made any attempt to optimize the exponent $10^7 m^3$, but our argument does not seem to yield an exponent independent of m.

Combining Theorems 1.1 and 1.2 we deduce the following bound for $L(1/2, \pi)$.

Corollary 1.3. Let $L(s, \pi) \in S(m)$. Then
\[
|L(1/2, \pi)| \ll_m |L(3/2, \pi)|^2 \frac{C(\pi)^{1/4}}{(\log C(\pi))^{1/(10^7m^3)}}.
\]
In the above corollary, one should expect the term $|L(3/2, \pi)|$ (which is evaluated in the region of absolute convergence) to be bounded, in which case the corollary furnishes a weak subconvexity bound. The boundedness of $|L(3/2, \pi)|$ would follow for example from a stronger version of assumption (1.8), and we shall check that this holds for automorphic L-functions. For Rankin-Selberg convolutions of automorphic L-functions, we cannot give a satisfactory bound for the L-value at $3/2$ in complete generality. Compared to the work in [28], Corollary 1.3 extends considerably the class of L-functions for which a weak subconvexity bound may be established, but the power of $\log C(\pi)$ saved is smaller than in [28].

Acknowledgments. We thank Dimitris Koukoulopoulos, James Maynard, and Maksym Radziwiłł for many helpful conversations. We are particularly grateful to Paul Nelson and Dinakar Ramakrishnan for discussions regarding Lemma 2.1 including pointing out [7], and to Farrell Brumley for supplying the Appendix. Kannan Soundararajan was partially supported by NSF grant DMS 1500237, and a Simons Investigator grant from the Simons Foundation. Jesse Thorner was partially supported by an NSF Postdoctoral Fellowship. Part of this work was carried out when the authors were in residence at MSRI, Berkeley during the Spring semester of 2017, supported in part by NSF grant DMS 1440140.

2. Applications to automorphic L-functions

In this section we describe how the framework and results described in Section 1 apply to automorphic L-functions. We restrict attention to automorphic representations over \mathbb{Q}, and let $A(m)$ denote the set of all cuspidal automorphic representations of GL_m over \mathbb{Q} with unitary central character. Here we give a brief description of the analytic properties of the standard L-functions associated to such automorphic representations. Our goal is twofold: we wish to show that elements of $A(m)$ give rise to L-functions in the class $S(m)$, and also that if $\pi_1 \in A(m_1)$ and $\pi_2 \in A(m_2)$ then the Rankin–Selberg L-function $L(s, \pi_1 \times \pi_2)$ fits into the framework of $S(m_1 m_2)$. For proofs and further discussion of the properties that we need we refer to [11, 15, 23], or the surveys in Michel [22, Lecture 1], or Brumley [5, Section 1].

Properties 1 to 3 listed in Section 1 follow from the standard theory of automorphic forms, while Property 4 will require further discussion. Thus, given $\pi \in A(m)$, its standard L-function $L(s, \pi)$ has a Dirichlet series, Euler product, and satisfies a functional equation, exactly as described in (1.1) to (1.6). Note also that here $\tilde{\pi}$ denotes the contragredient representation of π. Concerning Property 3, for $\pi \in A(m)$ it is known that

$$|\alpha_{j, \pi}| \leq p^{\theta_m}, \quad \text{Re}(\mu_{\pi}(j)) \geq -\theta_m,$$

where

$$\theta_m = \begin{cases} 0 & \text{if } m = 1, \\ 7/64 & \text{if } m = 2, \\ 1/2 - 1/(m^2 + 1) & \text{if } m \geq 3. \end{cases}$$

These bounds follow from the work of Rudnick and Sarnak [26] and Luo, Rudnick and Sarnak [21] for $m \geq 3$, and from Kim and Sarnak [16, Appendix 2] for $m = 2$. For analogous results over general number fields see Blomer and Brumley [3, 4] who also clarify that the bounds in (2.1) and (2.2) hold at all ramified places. The generalized Ramanujan and Selberg conjectures assert that θ_m may be taken as 0 in (2.1).
Now we turn to Rankin–Selberg L-functions. If $\pi_1 \in \mathcal{A}(m_1)$ and $\pi_2 \in \mathcal{A}(m_2)$ are two automorphic representations, then the Euler product and Dirichlet series expansions of the Rankin–Selberg L-function $L(s, \pi_1 \times \pi_2)$ are given by

$$L(s, \pi_1 \times \pi_2) = \sum_{n=1}^{\infty} a_{\pi_1 \times \pi_2}(n)/n^s = \prod_p \prod_{j_1=1}^{m_1} \prod_{j_2=1}^{m_2} \left(1 - \frac{\alpha_{j_1, j_2, \pi_1 \times \pi_2}(p)}{p^s}\right)^{-1}.$$

Here we may index the parameters $\alpha_{j_1, j_2, \pi_1 \times \pi_2}(p)$ in such a way that, for all but finitely many primes p, one has

$$\alpha_{j_1, j_2, \pi_1 \times \pi_2}(p) = \alpha_{j_1, \pi_1}(p)\alpha_{j_2, \pi_2}(p).$$

At the archimedean place, we write

$$L_\infty(s, \pi_1 \times \pi_2) = N_{\pi_1 \times \pi_2}^{s/2} \pi^{-m_1 m_2 s/2} \prod_{j_1=1}^{m_1} \prod_{j_2=1}^{m_2} \Gamma\left(\frac{s + \mu_{\pi_1 \times \pi_2}(j_1, j_2)}{2}\right),$$

where, if both π_1 and π_2 are unramified at infinity, one may write

$$\mu_{\pi_1 \times \pi_2}(j_1, j_2) = \mu_{\pi_1}(j_1) + \mu_{\pi_2}(j_2).$$

If either π_1 or π_2 is ramified at infinity, an explicit description of $\mu_{\pi_1 \times \pi_2}(j_1, j_2)$ is given in [14, Proof of Lemma A.2]. As part of the Langlands functoriality conjectures, one expects that $\pi_1 \times \pi_2$ corresponds to an automorphic representation of $GL(m_1 m_2)$ (not necessarily cuspidal), but this remains unknown, apart from the work of Ramakrishnan [25] in the case $m_1 = m_2 = 2$ and the work of Kim and Shahidi [17] in the case $m_1 = 2$ and $m_2 = 3$.

Properties 1 and 2 may thus be verified for Rankin–Selberg L-functions. As for Property 3, using (2.1) and (2.2), and proceeding as in [26, Appendix] (see also [4, Section 3] and [5, Section 1]), we obtain for all primes p

$$|\alpha_{j_1, j_2, \pi_1 \times \pi_2}(p)| \leq p^{\theta_{m_1} + \theta_{m_2}}, \quad \text{Re}(\mu_{\pi_1 \times \pi_2}(j_1, j_2)) \geq -\theta_{m_1} - \theta_{m_2}. \tag{2.5}$$

So far we have discussed how automorphic L-functions, as well as Rankin–Selberg L-functions satisfy Properties 1 to 3 of Section 1. To facilitate our discussion of Property 4, we require two lemmas.

Lemma 2.1. If $\pi_1 \in \mathcal{A}(m_1)$ and $\pi_2 \in \mathcal{A}(m_2)$, then

$$C(\pi_1 \times \pi_2) \leq C(\pi_1)^{m_2} C(\pi_2)^{m_1},$$

and

$$C(\pi_1 \times \bar{\pi}_1)^{m_2} C(\pi_2 \times \bar{\pi}_2)^{m_1} \leq e^{O((m_1 m_2)^2)} C(\pi_1 \times \pi_2)^{4m_1 m_2}.$$

Proof. Both these bounds rely upon the work of Bushnell and Henniart [6, 7], together with an archimedean counterpart of their results. Write $C(\pi) = N_\pi K_\pi$. The first bound follows from the bound on $N_{\pi_1 \times \pi_2}$ in [6, Theorem 1] and the bound on $K_{\pi_1 \times \pi_2}$ in [14, Lemma A.2].

For the second bound, Bushnell and Henniart [7, Corollary B] proved that

$$N_{\pi_1 \times \bar{\pi}_1}^{m_2} N_{\pi_2 \times \bar{\pi}_2}^{m_1} \leq N_{\pi_1 \times \pi_2}^{2m_1 m_2},$$

and our claimed bound will follow from the slightly weaker analogue

$$K_{\pi_1 \times \bar{\pi}_1}^{m_2} K_{\pi_2 \times \bar{\pi}_2}^{m_1} \leq e^{O((m_1 m_2)^2)} K_{\pi_1 \times \pi_2}^{4m_1 m_2}.$$
First, assume that both \(\pi_1 \) and \(\pi_2 \) are unramified at the infinite place of \(\mathbb{Q} \), in which case (2.3) holds. Suppose \(z_1, z_2, w_1 \) and \(w_2 \) are complex numbers all having real part \(\geq -1/2 \). We claim that
\[
\frac{(1 + |z_1 + w_1|)(1 + |z_2 + w_2|)}{(1 + |z_1 + z_2|)(1 + |z_1 + w_2|)(1 + |w_1 + z_2|)(1 + |w_1 + w_2|)} \leq C
\]
for some absolute constant \(C \). This is easily checked, for example by splitting into cases depending on the sizes of \(z_1, z_2, w_1 \) and \(w_2 \). Apply this estimate with \(z_1 = \mu_{\pi_1}(i_1) \), \(w_1 = \mu_{\pi_1}(j_1) \) and \(z_2 = \mu_{\pi_2}(i_2) \), \(w_2 = \mu_{\pi_2}(j_2) \), with \(1 \leq i_1, j_1 \leq m_1 \) and \(1 \leq i_2, j_2 \leq m_2 \). Taking the product over all the inequalities so obtained, we find the desired inequality.

If either \(\pi_1 \) or \(\pi_2 \) is ramified at the infinite place of \(\mathbb{Q} \), then we appeal to the explicit expressions for \(L_\infty(s, \pi_1 \times \overline{\pi}_1) \), \(L_\infty(s, \pi_2 \times \overline{\pi}_2) \), and \(L_\infty(s, \pi_1 \times \pi_2) \) which follow from [14, Proof of Lemma A.2]. With these explicit expressions, we bound \(K(\pi_1 \times \pi_2) \) from below much like the unramified case.

Lemma 2.2. Let \(\pi_1 \in \mathcal{A}(m_1) \) and \(\pi_2 \in \mathcal{A}(m_2) \). With the notation
\[
\log L(s, \pi_1 \times \pi_2) = \sum_{n=2}^{\infty} \frac{\lambda_{\pi_1 \times \pi_2}(n) \Lambda(n)}{n^s \log n},
\]
for all prime powers \(n \) we have
\[
|\lambda_{\pi_1 \times \pi_2}(n)| \leq \sqrt{\lambda_{\pi_1 \times \overline{\pi}_1}(n) \lambda_{\pi_2 \times \overline{\pi}_2}(n)} \leq \frac{1}{2} \left(\lambda_{\pi_1 \times \overline{\pi}_1}(n) + \lambda_{\pi_2 \times \overline{\pi}_2}(n) \right).
\]
Further, for any \(\pi \in \mathcal{A}(m) \) we have
\[
|\lambda_{\pi}(n)| \leq \sqrt{\lambda_{\pi \times \overline{\pi}}(n)} \leq \frac{1}{2} \left(1 + \lambda_{\pi \times \overline{\pi}}(n) \right).
\]

If \(n \) is the power of an unramified prime \(p \), then from (2.3) one may see that \(\lambda_{\pi_1 \times \pi_2}(n) = \lambda_{\pi_1}(n) \lambda_{\pi_2}(n) \), and that \(\lambda_{\pi_1 \times \overline{\pi}_1}(n) = |\lambda_{\pi_1}(n)|^2 \) and \(\lambda_{\pi_2 \times \overline{\pi}_2}(n) = |\lambda_{\pi_2}(n)|^2 \). In this situation, the bound of Lemma 2.2 follows readily by Cauchy–Schwarz. The point of the lemma is that the same bound applies in the ramified case also. We thank Farrell Brumley for supplying a proof of this fact in Appendix [A].

We now discuss Property 4 with relation to automorphic \(L \)-functions, starting with the estimate (1.9). In the next section, we shall establish the following lemma, from which we can deduce (1.9).

Lemma 2.3. If \(\pi \in \mathcal{A}(m) \) is a cuspidal automorphic representation then for any \(\eta > 0 \)
\[
(2.6) \quad \sum_{n=1}^{\infty} \frac{\lambda_{\pi \times \overline{\pi}}(n) \Lambda(n)}{n^{1+\eta}} \leq \frac{1}{\eta} + \frac{1}{2} \log C(\pi \times \overline{\pi}) + O(m^2).
\]

Verifying (1.9) for \(\pi \in \mathcal{A}(m) \). Applying Lemma 2.2 it follows that
\[
\sum_{n=1}^{\infty} \frac{|\lambda_{\pi}(n)| \Lambda(n)}{n^{1+\eta}} \leq \frac{1}{2} \left(\sum_{n=1}^{\infty} (1 + \lambda_{\pi \times \overline{\pi}}(n)) \frac{\Lambda(n)}{n^{1+\eta}} \right) \leq \frac{1}{\eta} + \frac{1}{4} \log C(\pi \times \overline{\pi}) + O(m^2),
\]
by Lemma 2.3. Now applying Lemma 2.1 we see that \(\log C(\pi \times \overline{\pi}) \leq 2m \log C(\pi) \), and therefore
\[
\sum_{n=1}^{\infty} \frac{|\lambda_{\pi}(n)| \Lambda(n)}{n^{1+\eta}} \leq \frac{1}{\eta} + m \log C(\pi) + O(m^2).
\]
This verifies (1.9) for cuspidal automorphic representations.

Verifying (1.9) for $\pi_1 \times \pi_2$. If $\pi_1 \in \mathcal{A}(m_1)$ and $\pi_2 \in \mathcal{A}(m_2)$ are two cuspidal automorphic representations, then from Lemma 2.2 and Lemma 2.3 we see that

$$
\sum_{n=1}^{\infty} \frac{\lambda_{\pi_1 \times \pi_2}(n)\Lambda(n)}{n^{1+\eta}} \leq \frac{1}{2} \sum_{n=1}^{\infty} \left(\lambda_{\pi_1 \times \pi_1}(n) + \lambda_{\pi_2 \times \pi_2}(n)\right) \frac{\Lambda(n)}{n^{1+\eta}} \\
\leq \frac{1}{\eta} + \frac{1}{8} \log C(\pi_1 \times \pi_1) + \frac{1}{8} \log C(\pi_2 \times \pi_2) + O(m_1^2 + m_2^2).
$$

Appealing now to Lemma 2.1, we conclude that for any $\eta > 0$

$$
\sum_{n=1}^{\infty} \frac{|\lambda_{\pi_1 \times \pi_2}(n)|\Lambda(n)}{n^{1+\eta}} \leq \frac{1}{\eta} + m_1 m_2 \log C(\pi_1 \times \pi_2) + O((m_1 m_2)^2).
$$

This completes our verification of (1.9) for the Rankin–Selberg convolution $\pi_1 \times \pi_2$.

In Section 6, we will prove the following theorem, from which we will deduce (1.10) for $L(s, \pi_1)$ and $L(s, \pi_1 \times \pi_2)$.

Theorem 2.4. Let $\pi \in \mathcal{A}(m)$ be a cuspidal automorphic representation. If $x \gg_m C(\pi \times \overline{\pi})^{36m^2}$ and $1 \leq T \leq x^{9m^2}$, then

$$
\sum_{x<n<x^{1/T}} \lambda_{\pi \times \overline{\pi}}(n)\Lambda(n) \ll_m \frac{x}{T}.
$$

Deducing (1.10) for $L(s, \pi)$. By Lemma 2.2

(2.7)

$$
\sum_{x<n<x^{1/T}} |\lambda_{\pi}(n)\Lambda(n)| \leq \frac{1}{2} \sum_{x<n<x^{1/T}} \left(1 + \lambda_{\pi \times \overline{\pi}}(n)\right) \Lambda(n).
$$

By Theorem 2.4, the second term in the right side above contributes $\ll x/T$, provided $1 \leq T \leq x^{9m^2}$ and $x \geq C(\pi \times \overline{\pi})^{36m^2}$. In view of Lemma 2.1 it suffices to assume that $x \geq (C(\pi)T)^{72m^3}$. For the same range of x and T, the Brun-Titchmarsh inequality bounds the first term in the right side of (2.7) by $\ll x/T$, which completes our deduction.

Deducing (1.10) for $L(s, \pi_1 \times \pi_2)$. This follows similarly, appealing to Lemma 2.1 Lemma 2.2 and Theorem 2.4

Gathering together the observations made so far, we arrive at the following proposition.

Proposition 2.5. If $\pi \in \mathcal{A}(m)$ is a cuspidal automorphic representation, then $L(s, \pi)$ is in the class $\mathcal{S}(m)$. If $\pi_1 \in \mathcal{A}(m_1)$ and $\pi_2 \in \mathcal{A}(m_2)$ are two cuspidal automorphic representations, then $L(s, \pi_1 \times \pi_2)$ is in the class $\mathcal{S}(m_1 m_2)$.

Therefore the results given in Section 1, Theorem 1.1, Theorem 1.2 and Corollary 1.3 apply in the context of automorphic L-functions and yield the following corollaries.

Corollary 2.6. If $\pi \in \mathcal{A}(m)$ is a cuspidal automorphic representation, then for all $T \geq 1$ and $\frac{1}{2} \leq \sigma \leq 1$ we have

$$
N_\pi(\sigma, T) \ll_m (C(\pi)T)^{10^7 m^3(1-\sigma)}.
$$
Further, if \(\pi_1 \in \mathcal{A}(m_1) \) and \(\pi_2 \in \mathcal{A}(m_2) \) are two automorphic representations, then for all \(T \geq 1 \) and \(\frac{1}{2} \leq \sigma \leq 1 \) we have

\[
N_{\pi_1 \times \pi_2}(\sigma, T) \ll_{m_1, m_2} \left(C(\pi_1 \times \pi_2)T \right)^{10^7 m_1^2 m_2^2(1-\sigma)}.
\]

Apart from the exponent, this corollary gives a general result which in special situations (or with additional hypotheses) was given by a number of authors; see Kowalski and Michel [18], Motohashi [24], Akbary and Trudgian [1], and Lemke Oliver and Thorner [19].

As a consequence of Corollary [13] we obtain the following weak subconvexity results for automorphic \(L \)-functions.

Corollary 2.7. If \(\pi \in \mathcal{A}(m) \) is a cuspidal automorphic representation then

\[
|L(1/2, \pi)| \ll_{m} \frac{C(\pi)^{1/4}}{(\log C(\pi))^{1/(10^7 m^3)}}.
\]

If \(\pi_1 \in \mathcal{A}(m_1) \) and \(\pi_2 \in \mathcal{A}(m_2) \) are two cuspidal automorphic representations then

\[
|L(1/2, \pi_1 \times \pi_2)| \ll_{m_1, m_2} \frac{C(\pi_1 \times \pi_2)^{1/4}}{(\log C(\pi_1 \times \pi_2))^{1/(10^7 m_1^3 m_2^3)}}.
\]

In the first part of Corollary 2.7 we dropped the term \(|L(3/2, \pi)|^2 \). This is permissible because (2.1) and (2.2) give \(|\lambda_\pi(n)| \ll n^{\delta_m} \) so that \(|L(3/2, \pi)| \ll_m 1 \) follows. For the general Rankin Selberg \(L \)-function \(L(s, \pi_1 \times \pi_2) \) we are not able to obtain the bound \(|L(3/2, \pi_1 \times \pi_2)| \ll 1 \)—without additional hypotheses, the best known bound for \(|L(3/2, \pi_1 \times \pi_2)| \) follows from Theorem 2 of [20] and this is larger than any power of \(\log C(\pi_1 \times \pi_2) \).

Nevertheless, in a number of special situations the term \(|L(3/2, \pi_1 \times \pi_2)| \) may be dropped, and we give a few such examples.

Example 1. If either \(\pi_1 \) or \(\pi_2 \) satisfies the Ramanujan conjecture, then using (2.1) and (2.2), we obtain \(|\lambda_{\pi_1 \times \pi_2}(n)| \ll n^{1/2-\delta} \) for some \(\delta = \delta(m_1, m_2) > 0 \), and therefore \(|L(3/2, \pi_1 \times \pi_2)| \ll_{m_1, m_2} 1 \).

Example 2. Since \(\theta_2 \) may be taken as 7/64 (see (2.2)), if \(\pi_1 \) and \(\pi_2 \) are both cuspidal automorphic forms on \(GL(2) \) then \(|L(3/2, \pi_1 \times \pi_2)| \ll 1 \) and

\[
|L(1/2, \pi_1 \times \pi_2)| \ll \frac{C(\pi_1 \times \pi_2)^{1/4}}{(\log C(\pi_1 \times \pi_2))^{1/10^{100}}}.
\]

Alternatively, here we could use the work of Ramakrishnan [25] which shows that \(\pi_1 \times \pi_2 \) is an isobaric sum of cuspidal automorphic representations of dimension at most 4, and then use our bound for each constituent.

Example 3. If \(\pi_1 \) and \(\pi_2 \) are cuspidal automorphic representations in \(\mathcal{A}(2) \), then \(\text{Sym}^2 \pi_1 \) is an automorphic representation on \(GL(3) \) (by the work of Gelbart and Jacquet [10]). Since \(\theta_2 = 7/64 \), we find that \(|\lambda_{\text{Sym}^2 \pi_1 \times \pi_2}(n)| \ll n^{21/64} \), and so \(|L(3/2, \text{Sym}^2 \pi_1 \times \pi_2)| \ll 1 \). Therefore, if \(\text{Sym}^2 \pi_1 \) is cuspidal then

\[
|L(1/2, \text{Sym}^2 \pi_1 \times \pi_2)| \ll \frac{C(\text{Sym}^2 \pi_1 \times \pi_2)^{1/4}}{(\log C(\text{Sym}^2 \pi_1 \times \pi_2))^{1/10^{20}}}.
\]

The bound also applies when \(\text{Sym}^2 \) is not cuspidal, upon decomposing this and using our result for each component. Similarly, one can obtain

\[
|L(1/2, \text{Sym}^2 \pi_1 \times \text{Sym}^2 \pi_2)| \ll \frac{C(\text{Sym}^2 \pi_1 \times \text{Sym}^2 \pi_2)^{1/4}}{(\log C(\text{Sym}^2 \pi_1 \times \text{Sym}^2 \pi_2))^{1/10^{20}}}.
\]
Example 4. If π_1 and π_2 are in $\mathcal{A}(2)$, then $\text{Sym}^3\pi_1$ is an automorphic form on $GL(4)$ by the work of Kim and Shahidi [17], and as in Example 3, we can obtain a weak subconvexity bound for $L(1/2, \text{Sym}^3\pi_1 \times \pi_2)$.

Example 5. While we have formulated our results for the L-values at the central point $1/2$, with trivial modifications the results apply equally to any point $1/2 + it$ on the critical line. If π_1 in $\mathcal{A}(m_1)$ and π_2 in $\mathcal{A}(m_2)$ are considered fixed, then in t-aspect our work gives the weak subconvexity bound

$$|L(1/2 + it, \pi_1 \times \pi_2)| \ll_{\pi_1, \pi_2} \frac{(2 + |t|)^{m_1 m_2/4}}{(\log(2 + |t|))^{1/(1017 m_1^2 m_2^2)}}.$$

Here we have used the absolute convergence of $L(s, \pi \times \pi)$ for $\text{Re}(s) > 1$ (due to Jacquet, Piatetski-Shapiro, and Shalika [15]) to bound $|L(3/2 + it, \pi_1 \times \pi_2)|$ by $\ll_{\pi_1, \pi_2} 1$.

3. Preliminary lemmas

Let $L(s, \pi) \in \mathcal{S}(m)$. Since the Euler product expansion of $L(s, \pi)$ converges absolutely and $L_\infty(s, \pi) \neq 0$ for $\text{Re}(s) > 1$, there are no zeros of $L(s, \pi)L_\infty(s, \pi)$ in this region. By the functional equation, the same must be true in the region $\text{Re}(s) < 0$. Thus all of the zeros of $L(s, \pi)L_\infty(s, \pi)$ lie in the critical strip $0 \leq \text{Re}(s) \leq 1$; we call these zeros the nontrivial zeros of $L(s, \pi)$. On the other hand, $L(s, \pi)$ might have a zero corresponding to a pole of $L_\infty(s, \pi)$; we call these zeros the trivial zeros of $L(s, \pi)$. Because the Selberg eigenvalue conjecture is not yet resolved for all $L(s, \pi)$, we might have trivial zeros in the critical strip. Unless specifically mentioned otherwise, we will always use $\rho = \beta + i\gamma$ to denote a nontrivial zero of $L(s, \pi)$, and note that neither 0 nor 1 can be a non-trivial zero of $L(s, \pi)$.

By hypothesis, $s^r (1 - s)^r L(s, \pi)L_\infty(s, \pi)$ is an entire function of order 1, and thus has a Hadamard product representation

$$s^r (1 - s)^r L(s, \pi)L_\infty(s, \pi) = e^{a_\pi + b_\pi s} \prod_\rho \left(1 - \frac{s}{\rho}\right)e^{s/\rho},$$

where ρ runs through the nontrivial zeros of $L(s, \pi)$. By taking the logarithmic derivative of both sides of (3.1) we see that

$$\sum_\rho \left(\frac{1}{s - \rho} + \frac{1}{\rho}\right) + b_\pi = \frac{L'}{L}(s, \pi) + \frac{L'}{L}(s, \pi_\infty) + \frac{r}{s} + \frac{r}{s - 1}.$$

Using (1.3) and the fact that $s^r (1 - s)^r L(s, \pi)L_\infty(s, \pi)$ is an entire function of order 1, one can prove that $\text{Re}(b_\pi)$ equals the absolutely convergent sum $-\sum_\rho \text{Re}(\rho^{-1})$. Therefore, it follows from (1.3) that

$$\sum_\rho \text{Re} \left(\frac{1}{s - \rho}\right) = \text{Re} \left(\frac{L'}{L}(s, \pi_\infty) + \frac{L'}{L}(s, \pi) + \frac{r}{s - 1} + \frac{r}{s}\right).$$

Lemma 3.1. We have

$$N_\pi(0, 6) = \#\{\rho = \beta + i\gamma : |\gamma| \leq 6\} \geq \frac{4}{15} \log C(\pi) + O(m).$$

Further, for any real number t, and any $0 < \eta \leq 1$, we have

$$\sum_\rho \frac{1 + \eta - \beta}{|1 + \eta + it - \rho|^2} \leq 2m \log C(\pi) + m \log(2 + |t|) + \frac{2m}{\eta} + O(m^2),$$
so that
\begin{equation}
\#\{\rho: |\rho - (1 + it)| \leq \eta\} \leq 10m\eta \log C(\pi) + 5m\eta \log(2 + |t|) + O(m^2).
\end{equation}

Proof. These results all follow from the Hadamard formula \((3.3)\). We start with \((3.5)\) and \((3.6)\). Apply \((3.3)\) with \(s = 1 + \eta + it\). The left side there is
\begin{equation}
\sum_{\rho} \frac{(1 + \eta - \beta)}{(1 + \eta - \beta)^2 + (t - \gamma)^2} \geq \frac{1}{5\eta} \#\{\rho: |\rho - (1 + it)| \leq \eta\}.
\end{equation}

The right side there is
\[\leq \frac{1}{2} \log N_\pi + \frac{1}{2} \sum_{j=1}^{m} \text{Re} \frac{\Gamma' \Gamma}{\Gamma} \left(\frac{1 + \eta + it + \mu_\pi(j)}{2} \right) + \sum_{n=1}^{\infty} \frac{|\lambda_\pi(n)|\Lambda(n)}{n^{1+\eta}} + \frac{r}{\eta} + r, \]
which after using \((1.9)\), Stirling’s formula, and \(r \leq m\) is
\[\leq 2m \log C(\pi) + m \log(2 + |t|) + 2\frac{m}{\eta} + O(m^2). \]

From this estimate and \((3.7)\) we conclude \((3.5)\) and \((3.6)\).

To prove \((3.4)\), we begin by applying \((3.3)\) with \(s = \sigma \geq 3\). This gives
\[\sum_{\rho} \frac{(\sigma - \beta)}{(\sigma - \beta)^2 + \gamma^2} = \log C(\pi) + O(m) + O\left(\sum_{n=1}^{\infty} \frac{|\lambda_\pi(n)|\Lambda(n)}{n^3} \right) = \log C(\pi) + O(m). \]

Applying the above with \(\sigma = 3\) and \(\sigma = 4\) we obtain
\[\sum_{\rho} \left(\frac{(3 - \beta)}{(3 - \beta)^2 + \gamma^2} - \frac{13}{15} \frac{(4 - \beta)}{(4 - \beta)^2 + \gamma^2} \right) = \frac{2}{15} \log C(\pi) + O(m). \]

A small calculation shows that when \(|\gamma| > 6\) the terms on the left side above are negative, and when \(|\gamma| \leq 6\) the corresponding term is \(\leq 1/(3 - \beta) \leq 1/2\). From this \((3.4)\) follows. \(\square\)

We end this section by establishing Lemma \(2.3\).

Proof of Lemma \(2.3\). The proof is standard, based on the Hadamard factorization formula (see [19] Lemma 3.5). Rearranging the expression for the logarithmic derivative of the Hadamard factorization formula for \(L(s, \pi \times \pi)\) (see \((3.3)\)), we must bound
\[\text{Re} \left(-\frac{L'}{L}(1 + \eta, \pi \times \pi) \right) = \frac{1}{\eta} + \frac{1}{1 + \eta} + \text{Re} \left(\frac{L_\infty'}{L_\infty}(1 + \eta, \pi \times \pi) \right) - \sum_{\rho \neq 0,1} \text{Re} \left(\frac{1}{1 + \eta - \rho} \right), \]
where \(\rho = \beta + i\gamma\) runs through the zeros of \(s(1 - s)L(s, \pi \times \pi)L_\infty(s, \pi \times \pi)\). Since \(0 < \beta < 1\), we have
\[\text{Re} \left(\frac{1}{1 + \eta - \rho} \right) = \frac{1 + \eta - \beta}{|1 + \eta - \rho|^2} > 0, \]
so that the contribution from zeros is negative, and may be discarded. Moreover, by Stirling’s formula and \((1.8)\),
\[\text{Re} \left(\frac{L_\infty'}{L_\infty}(1 + \eta, \pi \times \pi) \right) = - \sum_{|1 + \eta + \mu_\pi(j)| < 1} \text{Re} \left(\frac{1}{s + \mu_\pi \times \pi(j)} \right) + \frac{1}{2} \log C(\pi \times \pi) + O(m^2) \]
\[\leq \frac{1}{2} \log C(\pi \times \pi) + O(m^2). \]
Therefore,
\[
\sum_{n=1}^{\infty} \frac{\lambda_{\pi \times \overline{\pi}}(n) \Lambda(n)}{n^{1+\eta}} \leq \frac{1}{\eta} + \frac{1}{2} \log C(\pi \times \overline{\pi}) + O(m^2),
\]
completing our proof. \(\square\)

4. Proof of Theorem 1.2

We prove the log-free zero density estimate of Theorem 1.2 by following Gallagher’s treatment \[2\], which is based on Turán’s power sum method. For the sake of completeness, we show that the axiomatic framework given in (1.1) to (1.10) is sufficient to establish such a log-free zero density estimate.

Let \(k \geq 1\) be a natural number, and let \(\eta\) be a real number with \(1/\log(C(\pi)T) < \eta \leq 1/(200m)\). Let \(\tau\) be a real number with \(T \geq |\tau| \geq 200\eta\). Differentiating (3.2) \(k\) times we find, with \(s = 1 + \eta + i\tau\),
\[
\left(\frac{L'}{L}(s, \pi)\right)^{(k)} + \left(\sum_{j=1}^{m} \frac{1}{2} \Gamma'(s + \mu_\pi(j))\right)^{(k)} + (-1)^k k! \left(\frac{r}{s^{k+1}} + \frac{r}{(s-1)^{k+1}}\right) = (-1)^k k! \sum_{\rho} \frac{1}{(s-\rho)^{k+1}}.
\]
Since \(\text{Re}(\mu_\pi(j)) \geq -1 + 1/m\), we obtain
\[
\frac{1}{2} \left(\frac{\Gamma'}{\Gamma}\left(s + \mu_\pi(j)\right)\right)^{(k)} = (-1)^{k+1} k! \sum_{n=0}^{\infty} \frac{1}{(n + (s + \mu_\pi(j))/2)^{k+1}} \ll m^{k+1} k!,
\]
and since \(|\tau| \geq 200\eta\) and \(r \leq m\) clearly
\[
(-1)^k k! \left(\frac{r}{s^{k+1}} + \frac{r}{(s-1)^{k+1}}\right) \ll \frac{mk!}{(200\eta)^{k+1}}.
\]
Thus, since \(m \leq 1/(200\eta)\),
\[
\frac{(-1)^k}{k!} \left(\frac{L'}{L}(s, \pi)\right)^{(k)} = O\left(\frac{m}{(200\eta)^{k+1}}\right) + \sum_{\rho} \frac{1}{(s-\rho)^{k+1}}.
\]
Applying (3.5) we see that
\[
\left| \sum_{|s-\rho| \geq 200\eta} \frac{1}{(s-\rho)^{k+1}} \right| \leq \frac{1}{(200\eta)^{k+1}} \sum_{|s-\rho|^2} \frac{1}{|s-\rho|^2} \leq \frac{1}{(200\eta)^{k+1}} \frac{1}{\eta} \sum_{\rho} \frac{(1 + \eta - \beta)}{|s-\rho|^2} \ll \frac{1}{(200\eta)^{k}} \left(m \log(C(\pi)T) + \frac{m}{\eta}\right) \ll \frac{m \log(C(\pi)T)}{(200\eta)^{k}}.
\]
Since \(\eta \geq 1/\log(C(\pi)T)\), using this estimate in (4.1) we conclude that
\[
\frac{(-1)^k}{k!} \left(\frac{L'}{L}(s, \pi)\right)^{(k)} = O\left(\frac{m \log(C(\pi)T)}{(200\eta)^{k}}\right) + \sum_{|s-\rho| \leq 200\eta} \frac{1}{(s-\rho)^{k+1}}.
\]
Equation (4.2) forms the starting point for the proof of Theorem 1.2. Using Turán’s power sum method \[27\], we shall obtain a lower bound for the right side of (4.2) for a suitable \(k\), provided there is a zero \(\rho\) with \(|1+i\tau-\rho| \leq \eta\). On the other hand, we shall bound from above
the left side of (4.2) in terms of Dirichlet polynomials over prime powers. The interplay of these bounds will yield the theorem. We start with the lower bound, which will use the following result from Turán’s method (see the Theorem in [27]).

Lemma 4.1. Let \(z_1, \ldots, z_\nu \in \mathbb{C}\). If \(K \geq \nu\), then there exists an integer \(k \in [K, 2K]\) such that \(|z_1^{k} + \cdots + z_\nu^{k}| \geq (|z_1|/50)^k\).

Lemma 4.2. Let \(\eta \) and \(\tau\) be real numbers with \(1/\log(C(\pi)T) < \eta \leq 1/(200m)\) and \(200\eta \leq |\tau| \leq T\). Suppose that \(L(s, \pi)\) has a zero \(\rho_0\) satisfying \(|\rho_0 - (1 + i\tau)| \leq \eta\). If \(K > \lceil 200m\eta \log(C(\pi)T) + O(m^2) \rceil\), then one has (recall \(s = 1 + \eta + i\tau\))

\[
\left| \sum_{|s - \rho| \leq 200\eta} \frac{1}{(s - \rho)^{k+1}} \right| \geq \left(\frac{1}{100\eta} \right)^{k+1},
\]

for some integer \(k \in [K, 2K]\).

Proof. By (3.6) we see that there are at most \(200m\eta \log(C(\pi)T) + O(m^2)\) zeros \(\rho\) satisfying \(|s - \rho| \leq 200\eta\). Applying Lemma 4.1 with \(z_1\) there being \(1/(s - \rho_0)\), which is \(\geq 1/(2\eta)\) in size, the lemma follows.

We now proceed to the upper bound.

Lemma 4.3. Let \(\eta \) and \(\tau\) be real numbers with \(1/\log(C(\pi)T) < \eta \leq 1/(200m)\) and \(200\eta \leq |\tau| \leq T\). Let \(K \geq 1\) be a natural number, and put \(N_0 = \exp(K/(300\eta))\) and \(N_1 = \exp(40K/\eta)\). With \(s = 1 + \eta + i\tau\), we have for all \(K \leq k \leq 2K\)

\[
\left| \frac{\eta^k}{k!} \left(\frac{L'}{L}(s, \pi) \right)^{(k)} \right| \leq \eta^2 \int_{N_0}^{N_1} \sum_{N_0 \leq n \leq u} \frac{\lambda_\pi(n)\Lambda(n)}{n^{1+i\tau}} \frac{du}{u} + O\left(\frac{m\eta \log(C(\pi)T)}{(110)^k} \right).
\]

Proof. Computing the \(k\)-th derivative of the Dirichlet series for \(L'(s, \pi)\), we find

\[
\left| \frac{\eta^k}{k!} \left(\frac{L'}{L}(s, \pi) \right)^{(k)} \right| = \left| \sum_{n=1}^{\infty} \frac{\lambda_\pi(n)\Lambda(n)(\eta \log n)^k}{n^{1+\eta+i\tau} k!} \right|.
\]

Put \(j_k(u) = e^{-u}u^k/k!\), and split the sum over \(n\) into the ranges \(n \in [N_0, N_1]\) and \(n \not\in [N_0, N_1]\). For \(n \not\in [N_0, N_1]\) we estimate trivially using the triangle inequality, and use partial summation in the range \(n \in [N_0, N_1]\). Thus the above is

\[
\leq \sum_{n \in [N_0, N_1]} \frac{|\lambda_\pi(n)|\Lambda(n)}{n} j_k(\eta \log n) + \sum_{N_0 \leq n \leq N_1} \frac{|\lambda_\pi(n)|\Lambda(n)}{n} j_k(\eta \log N_1)
\]

\[
+ \int_{N_0}^{N_1} \left| \frac{d}{du} j_k(\eta \log u) \right| \sum_{N_0 \leq n \leq u} \frac{\lambda_\pi(n)\Lambda(n)}{n^{1+i\tau}} |du|.
\]

Now \(\left| \frac{d}{du} (j_k(\eta \log u)) \right| = \left| -j_k(\eta \log u) + j_{k-1}(\eta \log u) \right| (\eta/u) \leq \eta/u\), and so the integral in (4.3) is

\[
\leq \eta \int_{N_0}^{N_1} \left| \sum_{N_0 \leq n \leq u} \frac{\lambda_\pi(n)\Lambda(n)}{n^{1+i\tau}} \right| du.
\]
A small calculation with Stirling’s formula shows that for \(n \notin [N_0, N_1] \) one has \(j_k(\eta \log n) \ll n^{-\eta/2}(110)^{-k} \), and this estimate also implies that for \(N_0 \leq n \leq N_1 \) one has \(j_k(\eta \log N_1) \ll n^{-\eta/2}(110)^{-k} \). Therefore the sums appearing in (4.3) are bounded by

\[
\ll \frac{1}{(110)^k \sum_{n=1}^{\infty} \left| \lambda_\pi(n) \Lambda(n) \right|}{n^{1+\eta/2}} \ll \frac{m \log(C(\pi)T)}{(110)^k}
\]

using (1.9).

We now combine Lemmas 4.2 and 4.3 to prove Theorem 1.2.

Proof of Theorem 1.2. We combine Lemmas 4.2 and 4.3 to detect zeros near the line \(\sigma = 1 \). Let \(\eta \) and \(\tau \) be real numbers with \(1/\log(C(\pi)T) < \eta \leq 1/(200m) \) and \(200\eta \leq |\tau| \leq T \). In keeping with Lemma 4.2, we suppose that

\[
K = 10^5 m^3 \eta \log(C(\pi)T) + O(m^2)
\]

is sufficiently large, and put (as in Lemma 4.3) \(N_0 = \exp(K/(300\eta)) \) and \(N_1 = \exp(40K/\eta) \). Suppose that \(L(s, \pi) \) has a zero \(\rho_0 \) satisfying \(|1 + i\tau - \rho_0| \leq \eta \). Since \(K \) satisfies (1.4) and is sufficiently large, combining (4.2) with Lemma 4.2 we obtain, for some \(k \in [K, 2K] \),

\[
\left| \frac{\eta^{k+1}}{k!} (\frac{L'}{L}(s, \pi))^{(k)} \right| \geq \left(\frac{1}{100} \right)^{k+1} \left(1 - O\left(\frac{m \eta \log(C(\pi)T)}{2^k} \right) \right) \geq \frac{1}{2(100)^{k+1}}.
\]

On the other hand, by Lemma 4.3 we obtain (for all \(k \in [K, 2K] \))

\[
\left| \frac{\eta^{k+1}}{k!} (\frac{L'}{L}(s, \pi))^{(k)} \right| \leq \eta^2 \int_{N_0}^{N_1} \left| \sum_{N_0 \leq n \leq u} \lambda_\pi(n) \Lambda(n) \right| \frac{du}{u} + \frac{1}{4(100)^{k+1}}.
\]

where we bounded the error term \(O((110)^{-k}(m \eta \log(C(\pi)T))) \) in Lemma 4.3 by \(\frac{1}{4}(100)^{-k-1} \).

Combining these two estimates, we conclude that if there is a zero \(\rho_0 \) with \(|1 + i\tau - \rho_0| \leq \eta \) then

\[
1 \leq 4(100)^{2K+1} \eta^2 \int_{N_0}^{N_1} \left| \sum_{N_0 \leq n \leq u} \lambda_\pi(n) \Lambda(n) \right| \frac{du}{u}.
\]

Squaring the above estimate and using Cauchy-Schwarz, we obtain

\[
1 \ll (100)^{4K} \eta^4 \left(\int_{N_0}^{N_1} \frac{du}{u} \right) \left(\int_{N_0}^{N_1} \left| \sum_{N_0 \leq n \leq u} \lambda_\pi(n) \Lambda(n) \right|^2 \frac{du}{u} \right)
\]

\[
\ll (101)^{4K} \eta^3 \int_{N_0}^{N_1} \left| \sum_{N_0 \leq n \leq u} \lambda_\pi(n) \Lambda(n) \right|^2 \frac{du}{u},
\]

since \(\log(N_1/N_0) \ll K/\eta \). Since there are \(\ll m \eta \log(C(\pi)T) \) zeros satisfying \(|1 + i\tau - \rho| \leq \tau \), we may also recast the above estimate as (for \(200\eta \leq |\tau| \leq T \))

\[
\# \{ \rho = \beta + i\gamma : \beta \geq 1 - \eta/2, |\gamma - \tau| \leq \eta/2 \} \ll 101^{4K} \eta^3 \int_{N_0}^{N_1} \left| \sum_{N_0 \leq n \leq u} \lambda_\pi(n) \Lambda(n) \right|^2 \frac{du}{u}.
\]
Integrating both sides above over $200\eta \leq |\tau| \leq T$ we conclude that

$$\#\{\rho = \beta + i\gamma : \beta \geq 1 - \eta/2, 200\eta \leq |\gamma| \leq T\}$$

(4.5) $$\ll 1014K^2\eta^3m \log(C(\pi)T) \int_{-T}^{T} \int_{N_0}^{N_1} \sum_{N_0 \leq n \leq u} \frac{\lambda_\pi(n)\Lambda(n)}{n^{1+i\tau}} \frac{du}{u} d\tau.$$

We now work on bounding the right side of (4.5), which is clearly

$$\ll 1014K^2\eta^3m \log(C(\pi)T) \log(N_1/N_0) \max_{u \in [N_0, N_1]} \left(\int_{-T}^{T} \left| \sum_{N_0 \leq n \leq u} \frac{\lambda_\pi(n)\Lambda(n)}{n^{1+i\tau}} \right|^2 d\tau \right).$$

(4.6) $$\ll 1024K^2\eta^2m \log(C(\pi)T) \max_{u \in [N_0, N_1]} \left(\int_{-T}^{T} \left| \sum_{N_0 \leq n \leq u} \frac{\lambda_\pi(n)\Lambda(n)}{n^{1+i\tau}} \right|^2 d\tau \right).$$

We bound the integral in the above display by an application of Plancherel, as in Gallagher [9] Theorem 1: for $T \geq 1$ and any sequence of complex numbers $\{a_n\}_{n=1}^\infty$ one has

$$\int_{-T}^{T} \left| \sum_{n=1}^\infty a_n n^{-it} \right|^2 dt \ll T^2 \int_{0}^{\infty} \sum_{n \in (w, w+1/T]} a_n^2 \frac{dw}{w}.$$

Applying Gallagher’s bound, we deduce that for any $u \in [N_0, N_1]$

$$\int_{-T}^{T} \left| \sum_{N_0 \leq n \leq u} \frac{\lambda_\pi(n)\Lambda(n)}{n^{1+i\tau}} \right|^2 d\tau \ll T^2 \int_{0}^{\infty} \sum_{x<n \leq xe^{1/T}} \frac{\lambda_\pi(n)\Lambda(n)}{n} \frac{dx}{x}$$

$$\ll T^2 \int_{N_0/e}^{N_1} \sum_{x<n \leq xe^{1/T}} |\lambda_\pi(n)|\Lambda(n) \frac{dx}{x^2}.$$

Appealing now to (1.10) (which applies because of (4.4)), we find that the above is

$$\ll_m T^2 \int_{N_0/e}^{N_1} \frac{x^2}{T^2} \frac{dx}{x^3} \ll_m \frac{K}{\eta}.$$

Using this in (4.6), we conclude that this quantity is bounded by

$$\ll 1024K^2K\eta m \log(C(\pi)T) \ll 1054K.$$

Inserting the above bound in (4.5), and noting that there are $\ll \eta m \log(C(\pi)T) \ll K$ zeros with $\beta > 1 - \eta/2$ and $|\gamma| \leq 200\tau$, we obtain

$$N_\pi(1 - \eta/2, T) \ll 1054K.$$

This estimate implies our theorem in the range $1/\log(C(\pi)T) \leq 1 - \sigma \leq 1/(400m)$. In the range $1 - \sigma \leq 1/\log(C(\pi)T)$, simply bound $N_\pi(\sigma, T)$ by $N_\pi(1 - 1/\log(C(\pi)T), T)$. In the range $1 - \sigma > 1/(400m)$, the theorem is trivial since there are $\ll mT \log(C(\pi)T)$ zeros with $\beta \in (0, 1)$ and $|\gamma| \leq T$. □
5. Proof of Theorem 1.1 and Corollary 1.3

Let $L(s, \pi) \in S(m)$, and in proving the theorem we may plainly suppose that $L(1/2, \pi) \neq 0$. Our starting point is Heath-Brown’s argument to establish a sharp convexity bound for L-functions. This begins with a variant of Jensen’s formula, connecting $\log |L(1/2, \pi)|$ with zeros lying in the critical strip $0 < \text{Re}(s) < 1$. The Jensen formula that we need is

\[
\log |(1/2)^r L(1/2, \pi)| + \sum_{\rho=\beta+i\gamma \atop 0<\beta<1} \log \left| \cot \left(\frac{\pi}{2} \left(\beta - \frac{1}{2} \right) \right) \right| + \sum_{\text{Re}(\mu_\pi(j))<0} \log \left| \cot \left(\frac{\pi}{2} \left(\mu_\pi(j) + \frac{1}{2} \right) \right) \right| + \frac{1}{2} \int_{-\infty}^{\infty} \log |L(1 + it, \pi)L(it, \pi)t^r(1 - it)^r| \frac{dt}{\cosh(\pi t)}.
\]

This may be established as in Heath-Brown [13], or applying [2, Lemma 3.1, p. 207] with $F(s) = (s-1)^r L(s, \pi)$ and $x = 1/2$. The proof is by conformally mapping the strip $z = x + iy$ with $0 < x < 1$ onto the unit disc $|\zeta| < 1$ by means of the substitution $\zeta = (e^{\pi i z} - i)/(e^{\pi i z} + i)$, and then using the usual Jensen formula for the unit disc.

Now if $z = x + iy$ is a complex number with $|x| \leq 1/2$, then a small calculation gives

\[
\log |\cot(\pi z/2)| = \frac{1}{2} \log \left(\frac{\cosh(\pi y) + \cos(\pi x)}{\cosh(\pi y) - \cos(\pi x)} \right) \geq \frac{\cos(\pi x)}{\cosh(\pi y)},
\]

where the last inequality follows because $\frac{1}{2}\log((1 + t)/(1 - t)) \geq t$ for $1 > t \geq 0$ by a Taylor expansion. From (5.2) and since $\text{Re}(\mu_\pi(j)) > -1$, the terms $\log |\cot(\pi(\mu_\pi(j) + 1/2)/2)|$ appearing in (5.1) are all non-negative. Bounding the sum over zeros below using (5.2), we conclude that the left side of (5.1) is at least

\[
\log |L(1/2, \pi)| + \sum_{\rho=\beta+i\gamma \atop 0<\beta<1} \sin(\pi \beta) \cosh(\pi \gamma).
\]

Now we consider the right side of (5.1). Using the functional equation to connect $L(it, \pi)$ with $L(1 - it, \pi)$, and then using Stirling’s formula, we obtain

\[
\log |L(it, \pi)| = \log |L(1 - it, \pi)| + \frac{1}{2} \log N_\pi + \sum_{j=1}^{m} \log \left| \frac{\Gamma((1 + \mu_\pi(j) - it)/2)}{\Gamma((\mu_\pi(j) + it)/2)} \right| + O(m)
\]

\[
= \log |L(1 + it, \pi)| + \frac{1}{2} \log N_\pi + \frac{1}{2} \sum_{j=1}^{m} \log(1 + |\mu_\pi(j) + it|) + O(m^2)
\]

\[
\leq \log |L(1 + it, \pi)| + \frac{1}{2} \log C(\pi) + \frac{m}{2} \log(1 + |t|) + O(m^2).
\]

Thus the right side of (5.1) is bounded by

\[
\frac{1}{4} \log C(\pi) + \int_{-\infty}^{\infty} \left(\log \left| t^r L(1 + it, \pi) \right| + \frac{m}{4} \log(1 + |t|) + O(m^2) \right) \frac{dt}{\cosh(\pi t)}
\]

\[
= \frac{1}{4} \log C(\pi) + O(m^2) + \int_{-\infty}^{\infty} \log \left| t^r L(1 + it, \pi) \right| \frac{dt}{\cosh(\pi t)}.
\]
Since $|t^r L(1 + it, \pi)|$ grows at most polynomially in $|t|$, and $1/ \cosh(\pi t)$ decreases exponentially in $|t|$, we may see that

$$\int_{-\infty}^{\infty} \log |t^r L(1 + it, \pi)| \frac{dt}{\cosh(\pi t)} = \lim_{\eta \to 0^+} \operatorname{Re} \left(\int_{-\infty}^{\infty} \log(t^r L(1 + \eta + it, \pi)) \frac{dt}{\cosh(\pi t)} \right) = \lim_{\eta \to 0^+} \operatorname{Re} \left(\sum_{n=2}^{\infty} \lambda_\pi(n) \Lambda(n) \int_{-\infty}^{\infty} \frac{n^{-it}}{\cosh(\pi t)} \right) + O(m).$$

Now

$$\int_{-\infty}^{\infty} \frac{dt}{\cosh(\pi t)} = \frac{1}{\cosh((\log n)/2)} = \frac{2}{\sqrt{n + 1/\sqrt{n}}} = \frac{2}{\sqrt{n}} + O\left(\frac{1}{n^{3/2}}\right),$$

and therefore

$$\int_{-\infty}^{\infty} \log |t^r L(1 + it, \pi)| \frac{dt}{\cosh(\pi t)} = 2\operatorname{Re} \left(\sum_{n=2}^{\infty} \frac{\lambda_\pi(n) \Lambda(n)}{n^{3/2} \log n} \right) + O\left(\sum_{n=2}^{\infty} \frac{|\lambda_\pi(n) \Lambda(n)|}{n^{5/2} \log n} + m \right) = 2 \log |L(3/2, \pi)| + O(m).$$

Combining the above remarks with (5.3) and (5.4), we conclude that

$$\log |L(1/2, \pi)| \leq \frac{1}{4} \log C(\pi) - \sum_{\rho = \beta + i\gamma, 0 < \beta < 1 \gamma} \frac{\sin(\pi \beta)}{\cosh(\pi \gamma)} + 2 \log |L(3/2, \pi)| + O(m^2).$$

All this follows closely the work of Heath-Brown, except that we have kept a negative contribution from the zeros of $L(s, \pi)$ which we shall now bound from below.

Proof of Theorem 1.1. Plainly for any positive real number T, and any $\frac{1}{2} \geq \delta > 0$ we have

$$\sum_{\rho = \beta + i\gamma, 0 < \beta < 1 \gamma} \frac{\sin(\pi \beta)}{\cosh(\pi \gamma)} \leq \sum_{\rho = \beta + i\gamma, |\gamma| \leq T} \frac{\sin(\pi \beta)}{\cosh(\pi T)} \geq \frac{\sin(\pi \delta)}{\cosh(\pi T)} \sum_{\rho = \beta + i\gamma, \delta \leq \beta \leq 1 - \delta \gamma \leq T} 1.$$

The functional equation combined with complex conjugation shows that if $\beta + i\gamma$ is a zero then so is $1 - \beta + i\gamma$. Thus, choosing $T = 6$ and invoking (3.4), we obtain

$$\sum_{\rho = \beta + i\gamma, \delta \leq \beta \leq 1 - \delta |\gamma| \leq 6} 1 = N_{\pi}(0, 6) - 2N_{\pi}(1 - \delta, 6) \geq \frac{4}{15} \log C(\pi) - 2N_{\pi}(1 - \delta, 6) + O(m).$$

Therefore

$$\sum_{\rho = \beta + i\gamma, 0 < \beta < 1 \gamma} \frac{\sin(\pi \beta)}{\cosh(\pi \gamma)} \geq \frac{2\delta}{\cosh(6\pi T)} \left(\frac{4}{15} \log C(\pi) - 2N_{\pi}(1 - \delta, 6) \right) + O(m).$$

Inserting this lower bound into (5.3), we obtain Theorem 1.1. \hfill \Box

Proof of Corollary 1.3. Choose $\delta = 10^{-8}m^{-3}(\log \log C(\pi))/\log C(\pi)$. Then Theorem 1.2 gives $N_{\pi}(1 - \delta, 6) \ll_m \sqrt{\log C(\pi)}$. Inserting this bound in Theorem 1.1 the corollary follows. \hfill \Box
6. Proof of Theorem 2.4

We fix a nonnegative smooth function Φ supported in $(-2, 2)$, say, and write

\begin{equation}
\check{\Phi}(s) = \int_{-\infty}^{\infty} \Phi(y) e^{sy} dy.
\end{equation}

Thus $\check{\Phi}(s)$ is an entire function of s, and by integrating by parts many times we obtain for any integer $k \geq 0$

\begin{equation}
|\check{\Phi}(s)| \ll \Phi, k \left| \frac{e^{2|\text{Re}(s)|}}{|s|^k} \right|.
\end{equation}

Let $T \geq 1$ be a real parameter, and note that by Mellin (or Fourier) inversion one has (for any positive real number x, and any real c)

\begin{equation}
T \Phi(T \log x) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \check{\Phi}(s/T)x^{-s} ds.
\end{equation}

Recall that

\begin{equation}
L(s, \pi \times \tilde{\pi}) = \sum_{n \geq 1} \frac{a_{\pi \times \tilde{\pi}}(n)}{n^s} = \prod_p L_p(s, \pi \times \tilde{\pi}),
\end{equation}

with

\begin{equation}
L_p(s, \pi \times \tilde{\pi}) = \prod_{j_1=1}^{m} \prod_{j_2=1}^{m} \left(1 - \frac{\alpha_{j_1,j_2,\pi \times \tilde{\pi}}(p)}{p^s} \right)^{-1} = 1 + \sum_{j=1}^{\infty} \frac{a_{\pi \times \tilde{\pi}}(p^j)}{p^{js}}.
\end{equation}

The Rankin-Selberg L-function $L(s, \pi \times \tilde{\pi})$ has non-negative coefficients, converges in $\text{Re}(s) > 1$, and extends to the complex plane with a simple pole at $s = 1$.

Our proof of the Brun-Titchmarsh result Theorem 2.4 will be based on an application of the Selberg sieve. To pave the way for this, given a square-free number d we need an asymptotic formula for

$$
\sum_{d|n} a_{\pi \times \tilde{\pi}}(n) \Phi \left(T \log \frac{n}{x} \right),
$$

which we establish in the following lemma.

Lemma 6.1. Let $\pi \in A(m)$, and Φ be as above. Let $d \geq 1$ be a square-free integer. For any $x > 0$ and $T \geq 1$ we have

$$
\sum_{d|n} a_{\pi \times \tilde{\pi}}(n) \Phi \left(T \log \frac{n}{x} \right) = \kappa g(d) \frac{x}{T} \Phi(1/T) + O_m \left(x^{1/2} C(\pi \times \tilde{\pi}) d^{m^2 T^{-m^2}} \right),
$$

where

$$
\kappa = \text{Res}_{s=1} L(s, \pi \times \tilde{\pi}) \quad \text{and} \quad g(d) = \prod_{p|d} (1 - L_p(1, \pi \times \tilde{\pi})^{-1}).
$$

Proof. Using (6.3), we may write (for any real number $c > 1$)

$$
\sum_{d|n} a_{\pi \times \tilde{\pi}}(n) \Phi \left(T \log \frac{n}{x} \right) = \frac{1}{2\pi i T} \int_{c-i\infty}^{c+i\infty} \check{\Phi}(s/T)x^s \sum_{d|n} \frac{a_{\pi \times \tilde{\pi}}(n)}{n^s} ds.
$$
The Dirichlet series appearing above has non-negative coefficients and converges in the region $\text{Re}(s) > 1$, and matches the Rankin-Selberg L-function $L(s, \pi \times \tilde{\pi})$ except for the Euler factors at primes p dividing d. Indeed, by multiplicativity, we may write
\[\sum_{d|n} \frac{a_{\pi \times \tilde{\pi}}(n)}{n^s} = \prod_{p|d} L_p(s, \pi \times \tilde{\pi}) \prod_{p|d} \left(\sum_{j=1}^{\infty} \frac{a_{\pi \times \tilde{\pi}}(p^j)}{p^{js}} \right) = L(s, \pi \times \tilde{\pi})g_d(s, \pi \times \tilde{\pi}), \]
where
\[g_d(s, \pi \times \tilde{\pi}) = \prod_{p|d} \left(1 - L_p(s, \pi \times \tilde{\pi})^{-1} \right) = \prod_{p|d} \left(1 - \frac{1}{\prod_{j_1, j_2=1}^m \left(1 - \frac{\alpha_{j_1, j_2, \pi \times \tilde{\pi}}(p)}{p^s} \right)} \right). \]

Thus the integral above equals
\[\frac{1}{2\pi i T} \int_{c-i\infty}^{c+i\infty} \tilde{\Phi}(s/T) L(s, \pi \times \tilde{\pi})g_d(s, \pi \times \tilde{\pi})x^s ds. \]

We evaluate (6.6) by moving the line of integration to $\text{Re}(s) = 1/2$. We encounter a simple pole at $s = 1$ and the residue here is the main term appearing in our lemma; note that $g(d) = g_d(1, \pi \times \tilde{\pi})$. To bound the integral on the line $\text{Re}(s) = 1/2$, using the Phragmén-Lindelöf principle and Stirling’s formula (using that on the line $\text{Re}(s) = 5/2$ we have $L(s, \pi \times \tilde{\pi}) \ll 1$) we find
\[|L(\frac{1}{2} + it, \pi \times \tilde{\pi})| \ll C(\pi \times \tilde{\pi}) (2 + |t|)^{m^2}. \]

Further, since $|\alpha_{j_1, j_2, \pi \times \tilde{\pi}}(p)| \leq p$ for all j_1, j_2 and p, from the definition (6.5) it follows that
\[|g_d(\frac{1}{2} + it, \pi \times \tilde{\pi})| \leq \prod_{p|d} \left(1 + \left(1 + p^{\frac{1}{2}} \right)^{m^2} \right) \leq (2d)^{m^2}. \]

Thus the integral on the $\text{Re}(s) = 1/2$ line is
\[\ll \frac{\sqrt{x}}{T} C(\pi \times \tilde{\pi})(2d)^{m^2} \int_{-\infty}^{\infty} (2 + |t|)^{m^2} \left| \tilde{\Phi} \left(\frac{1}{T} \left(\frac{1}{2} + it \right) \right) \right| dt. \]
Using (6.2) with $k = 0$ for $|t| \leq H$, and $k = m^2 + 2$ for $|t| > H$, we see that the above is
\[\ll_{m, \Phi} \frac{\sqrt{x}}{T} C(\pi \times \tilde{\pi})d^{m^2} \int_{-\infty}^{\infty} (2 + |t|)^{m^2} \min \left(1, \frac{T^{m^2+2}}{(2 + |t|)^{m^2+2}} \right) dt \ll_{m, \Phi} \sqrt{x} C(\pi \times \tilde{\pi})d^{m^2} T^{m^2}. \]

From Lemma 6.1 and an application of the Selberg sieve we shall obtain the following proposition.

Proposition 6.2. Keep the notations of Lemma 6.1. Then for any $x > 0$, $T \geq 1$, and $z \gg_m C(\pi \times \tilde{\pi})^4$, we have
\[\sum_{\substack{p|n \Rightarrow p > z}} a_{\pi \times \tilde{\pi}}(n) \tilde{\Phi} \left(T \log \frac{n}{x} \right) \leq \frac{3x}{T \log z} \tilde{\Phi}(1/T) + O_{m, \Phi} \left(x^{\frac{1}{2}} C(\pi \times \tilde{\pi}) T^{m^2} z^{2m^2+3} \right). \]
Proof. As mentioned already, this follows from a standard application of Selberg’s sieve and Lemma 6.1; see for example Theorem 7.1 of [8]. Using Theorem 7.1 of [8] and (6.3) there (with $D = z^2$ in their notation), we find

$$\sum_{p \mid n} a_{\pi \times \bar{\pi}}(n) \Phi \left(T \log \frac{n}{x} \right) \leq \kappa \frac{x}{T} \Phi(1/T) \left(\sum_{d \mid \prod_{p \leq z} p} \prod_{p \leq z} \frac{g(p)}{1 - g(p)} \right)^{-1}$$

(6.7)

$$+ O_{m, \Phi} \left(x^{1/2} C(\pi \times \bar{\pi}) T^{m^2} \sum_{d \leq z^2} d^{m^2} \tau_3(d) \right).$$

Here $\tau_3(d)$ is the number of ways of writing d as a product of three natural numbers. Since $\tau_3(d) \ll d^k$ we may trivially bound the error term in (6.7) by $\ll_{m, \Phi} x^{1/2} C(\pi \times \bar{\pi}) T^{m^2} z^{2m^2 + 3}$.

For the first sum, we observe from the definitions of $g(p)$ and $L_p(s, \pi \times \bar{\pi})$ that

$$\sum_{d \leq z} \prod_{p \leq z} \frac{g(p)}{1 - g(p)} \geq \sum_{n \leq z} \prod_{p \mid n} a_{\pi \times \bar{\pi}}(p) \geq \sum_{n \leq z} a_{\pi \times \bar{\pi}}(n) \frac{1}{n}.$$

(6.8)

Let Φ_1 be a non-negative smooth function supported on $[0, 1]$, with $\Phi_1(t) = 1$ for $\epsilon \leq t \leq 1 - \epsilon$ and $\Phi_1(t) \leq 1$ for $0 \leq t \leq 1$. Then appealing to Lemma 6.1 with $d = 1$ and $H = 1$ there we obtain that

$$\sum_{y \leq n \leq ey} \frac{a_{\pi \times \bar{\pi}}(n)}{n} \geq \frac{1}{ey} \sum_{n} a_{\pi \times \bar{\pi}}(n) \Phi_1 \left(\frac{\log n}{y} \right) = \frac{1}{e} (e - 1 + O(\epsilon)) \kappa + O_m \left(y^{-\frac{1}{2}} C(\pi \times \bar{\pi}) \right).$$

Dividing the interval $[\sqrt{z}, z]$ into blocks of the form $[y, ey]$, it follows that

$$\sum_{\sqrt{z} \leq n \leq z} \frac{a_{\pi \times \bar{\pi}}(n)}{n} \geq \frac{\kappa}{3} \log z + O_m \left(z^{-\frac{1}{4}} C(\pi \times \bar{\pi}) \right).$$

Therefore, if $z \gg_m C(\pi \times \bar{\pi})^4$, then

$$\sum_{n \leq z} \frac{a_{\pi \times \bar{\pi}}(n)}{n} \geq 1 + \sum_{\sqrt{z} \leq n \leq z} \frac{a_{\pi \times \bar{\pi}}(n)}{n} \geq \frac{1}{3} (1 + \kappa \log z).$$

Using this bound in (6.8) and then in (6.7), and noting that for all $\kappa > 0$ one has $\kappa/(1 + \kappa \log z) \leq 1/\log z$, the proposition follows.

Proof of Theorem 2.4: Since Theorem 2.4 follows from the Brun–Titchmarsh inequality for $m = 1$, we may assume below that $m \geq 2$. Suppose that $x \gg_m C(\pi \times \bar{\pi})^{36m^2}$, and that $1 \leq T \leq x^{9m^2}$. Take $z = x^{9m^2}$, and Φ to be a smooth non-negative function supported in $(-\epsilon, 1 + \epsilon)$ with $\Phi(t) = 1$ for $0 \leq t \leq 1$. An application of Proposition 6.2 gives

$$\sum_{x < n \leq xe^{1/T}} \frac{x}{T \log z} \ll_m x^{1/2} C(\pi \times \bar{\pi}) T^{m^2} z^{2m^2 + 3} \ll_m \frac{x}{T \log x}.$$

The left hand side above includes all prime powers p^k in $(x, xe^{1/T}]$ with $p > z$, and so we conclude that

$$\sum_{p \mid n, \Phi(p^k)} a_{\pi \times \bar{\pi}}(p^k) \ll_m \frac{x}{T \log x}.$$

(6.9)
In Theorem 2.4, we are interested in bounding $\lambda_{\pi \times \tilde{\pi}}(p^k)$ in place of $a_{\pi \times \tilde{\pi}}(p^k)$ above. Note that from (1.2) that for any given prime p, we have the formal identity
\[
\exp \left(\sum_{k=1}^{\infty} \frac{\lambda_{\pi \times \tilde{\pi}}(p^k)}{k} X^k \right) = 1 + \sum_{k=1}^{\infty} a_{\pi \times \tilde{\pi}}(p^k) X^k.
\]
Expanding both sides and comparing coefficients, from the non-negativity of $\lambda_{\pi \times \tilde{\pi}}(p^k)$ and $a_{\pi \times \tilde{\pi}}(p^k)$ we deduce that
\[
(6.10) \quad a_{\pi \times \tilde{\pi}}(p^k) \geq \frac{\lambda_{\pi \times \tilde{\pi}}(p^k)}{k}.
\]
From (6.9) and (6.10) it follows that
\[
\sum_{x < n = p^k \leq xe^{1/T}} \lambda_{\pi \times \tilde{\pi}}(n) \Lambda(n) \ll_{m} \frac{x}{T}.
\]
This finishes the proof of Theorem 2.4.

Appendix A. An inequality on Rankin-Selberg coefficients, by Farrell Brumley

Let π, π' be irreducible unitary generic representations of $\text{GL}_m(\mathbb{Q}_p)$ and $\text{GL}_{m'}(\mathbb{Q}_p)$, respectively. Let $L(s, \pi \times \pi')$ be the local Rankin-Selberg L-factor. Write its logarithm as
\[
\log L(s, \pi \times \pi') = \sum_{f \geq 1} \frac{\lambda_{\pi \times \pi'}(p^f)}{fp^fs}.
\]
Our aim is to prove the following inequality:

Proposition A.1. For every $f \geq 1$ we have
\[
|\lambda_{\pi \times \pi'}(p^f)| \leq \sqrt{\lambda_{\pi \times \tilde{\pi}}(p^f)\lambda_{\pi' \times \tilde{\pi}'}(p^f)} \leq \frac{1}{2}(\lambda_{\pi \times \tilde{\pi}}(p^f) + \lambda_{\pi' \times \tilde{\pi}'}(p^f)).
\]

The model computation is when π and π' are both unramified. In this case, the proposition is immediate from the well-known expression for the local Rankin-Selberg L-factor
\[
L(s, \pi \times \pi') = \prod_{j=1}^{m} \prod_{k=1}^{m'} (1 - \alpha_{\pi}(p, j)\alpha_{\pi'}(p, k)p^{-s})^{-1}
\]

1. LAGA - Institut Galilée, 99 avenue Jean Baptiste Clément, 93430 Villetaneuse, France, brumley@math.univ-paris13.fr
2. Supported by ANR grant 14-CE25
3. I would like to thank Kannan Soundararajan and Jesse Thorner for allowing me to include this appendix to their paper, and for helpful discussions regarding the proof during a visit to Stanford.
in terms of the Satake parameters $\alpha_\pi(p, j)$ and $\alpha_{\pi'}(p, k)$. From this it follows that the coefficients $\lambda_{\pi \times \pi'}(p^f)$ are given by

$$\lambda_{\pi \times \pi'}(p^f) = \sum_{j=1}^{m} \sum_{k=1}^{m'} \alpha_\pi(p, j)^f \alpha_{\pi'}(p, k)^f = \lambda_\pi(p^f) \lambda_{\pi'}(p^f).$$

Similarly, in the unramified situation, $\lambda_{\pi \times \pi'}(p^f) = |\lambda_\pi(p^f)|^2$ and $\lambda_{\pi' \times \pi}(p^f) = |\lambda_{\pi'}(p^f)|^2$. Thus $|\lambda_{\pi \times \pi'}(p^f)| = \sqrt{\lambda_\pi(p^f) \lambda_{\pi'}(p^f)}$ and the proposition follows from the inequality $|AB| \leq \frac{|A|^2 + |B|^2}{2}$ of geometric and arithmetic means. The proof of Proposition A.1 follows along the same lines, but we shall need a more explicit description of the Rankin-Selberg local L-factors. The main issue is that, contrary to the unramified case, the local roots of the Rankin-Selberg convolution are not simply the products of the local roots of the standard L-function.

A.1. Description of local Rankin-Selberg factor. In this section we describe the local Rankin-Selberg L-function $L(s, \pi \times \pi')$ in terms of representation theoretic data. The main identity is displayed (A.6) below. We follow closely the exposition in [26, Appendix A], where the case when $\pi' \simeq \pi$ was explicated.

We begin by realizing π as a Langlands quotient

$$\pi = J(G, P; \tau_1[\sigma_1], \ldots, \tau_r[\sigma_r]).$$

Here $G = \text{GL}_m(\mathbb{Q}_p)$, P is a standard parabolic of G corresponding to the partition (m_1, \ldots, m_r) of m, τ_j is a tempered representation of $\text{GL}_{m_j}(\mathbb{Q}_p)$, the real numbers σ_j satisfy $\sigma_1 \geq \cdots \geq \sigma_r \geq 0$, and $\tau[\sigma]$ denotes the representation $\tau \otimes |\det|^\sigma$. Similar notation holds for π'. Then

$$L(s, \pi \times \pi') = \prod_{j=1}^{r} \prod_{k=1}^{r'} L(s + \sigma_j + \sigma'_k, \tau_j \times \tau'_k).$$

Next we use the fact that tempered representations of $\text{GL}_m(\mathbb{Q}_p)$ are fully induced representations from discrete series. Moreover, discrete series themselves can be constructed as generalized Speh representations, obtained through an induction procedure from supercuspidals as follows. For any discrete series representation δ on $\text{GL}_m(\mathbb{Q}_p)$ there is a divisor $d \mid m$ and a unitary supercuspidal representation ρ on $\text{GL}_d(\mathbb{Q}_p)$ such that δ is isomorphic to the unique square-integrable subquotient of the representation

$$\bigotimes_{\nu=1}^{n} \rho[\nu - (n + 1)/2]$$

induced from the standard Levi

$$\text{GL}_d(\mathbb{Q}_p) \times \cdots \times \text{GL}_d(\mathbb{Q}_p),$$

where $n = m/d$.

We apply this for every τ_j appearing in (A.3), to obtain integers $d_j \mid m_j$, $n_j = m_j/d_j$, and unitary supercuspidals ρ_j on $\text{GL}_{d_j}(\mathbb{Q}_p)$. We proceed similarly for π'. Using induction by stages (to combine the reduction of tempered representations τ to discrete series δ with
the reduction of discrete series \(\delta \) to supercuspidals \(\rho \) we obtain

\[
L(s, \pi \times \pi') = \prod_{j=1}^{r} \prod_{k=1}^{r'} \prod_{\nu=1}^{\min(n_j, n'_k)} L \left(s + \frac{n_j + n'_k}{2} - \nu, \rho_j \times \rho'_k \right).
\]

We now organize the \(\rho_j \) and \(\rho'_k \) into twist-equivalence classes. Let

1. \(\mathcal{J} = \{ J_1, \ldots, J_A \} \) be a set partition of \(\{1, \ldots, r\} \);
2. \(\mathcal{K} = \{ K_1, \ldots, K_B \} \) be a set partition of \(\{1, \ldots, r'\} \);
3. \(\{ \varrho_1, \ldots, \varrho_L \} \) be a set of unitary twist-inequivalent supercuspidal representations \(\varrho_e \) of a general linear group over \(\mathbb{Q}_p \),

with the property that

1. for every \(a \in \{1, \ldots, A\} \) there is a \(\ell = \ell(a) \in \{1, \ldots, L\} \) and for every \(j \in J_a \) there is \(t_j \in \mathbb{R} \) such that \(\rho_j \simeq \varrho_{\ell(a)}[it_j] \);
2. for every \(b \in \{1, \ldots, B\} \) there is a \(\ell' = \ell'(b) \in \{1, \ldots, L\} \) and for every \(k \in K_b \) there is \(t'_k \in \mathbb{R} \) such that \(\rho'_k \simeq \varrho_{\ell'(b)}[it'_k] \);
3. the assignments \(a \mapsto \ell(a) \) and \(b \mapsto \ell'(b) \) are injective.

In this way, for any \(a \in \{1, \ldots, A\} \), the set \(\{ \rho_j : j \in J_a \} \) consists of all those \(\rho_j \) appearing in (A.5) which are twist equivalent to some given \(\varrho_{\ell(a)} \). We may assume, if we wish, that the set \(\{ \varrho_1, \ldots, \varrho_L \} \) is minimal for this property. Setting \(s_j = \sigma_j + it_j, \ s'_k = \sigma'_k + it'_k \), and

\[
L_{J_a, K_b}(s) = \prod_{j \in J_a} \prod_{k \in K_b} \prod_{\nu=1}^{\min(n_j, n'_k)} L \left(s + s_j + s'_k + \frac{n_j + n'_k}{2} - \nu, \varrho_{\ell(a)} \times \varrho_{\ell'(b)} \right),
\]

we obtain the following expression

\[
L(s, \pi \times \pi') = \prod_{a=1}^{A} \prod_{b=1}^{B} L_{J_a, K_b}(s).
\]

Now, many of the factors in the above product are simply 1. Indeed, for supercuspidal representations \(\varrho \) on \(GL_d(\mathbb{Q}_p) \) and \(\varrho' \) on \(GL_d(\mathbb{Q}_p) \), the local factor \(L(s, \varrho \times \varrho') \) is 1 unless \(\varrho \) is twist equivalent to \(\varrho' \) (in which case \(d = d' \)). Otherwise, when \(\varrho' = \varrho_{[\sigma]} \), we have

\[
L(s, \varrho \times \varrho_{[\sigma]}) = L(s + \sigma, \varrho \times \varrho) = (1 - p^{-\epsilon(s + \sigma)})^{-1},
\]

where \(\epsilon \) is the torsion number for \(\varrho \). (The torsion number is the order of the finite cyclic group of characters \(\chi = |\det| \) such that \(\varrho \otimes \chi \simeq \varrho \).)

We deduce that

\[
L(s, \pi \times \pi') = \prod_{(a, b) \in \Delta} L_{J_a, K_b}(s),
\]

where

\[
\Delta = \{(a, b) \in \{1, \ldots, A\} \times \{1, \ldots, B\} : \ell(a) = \ell'(b)\}.
\]

Let \(\ell : \Delta \to \{1, \ldots, L\} \) be the map sending \((a, b) \) to \(\ell(a, b) := \ell(a) = \ell'(b) \); it is injective. If \(e_\ell \) denotes the torsion number of \(\varrho_{\ell} \), then

\[
L_{J_a, K_b}(s) = \prod_{j \in J_a} \prod_{k \in K_b} \prod_{\nu=1}^{\min(n_j, n'_k)} \left(1 - p^{-e_\ell(s + s_j + s'_k + \frac{n_j + n'_k}{2} - \nu)} \right)^{-1}.
\]
Setting $z_j = p^{-s_j - n_j/2}$ and $z_k' = p^{-s'_k - n'_k/2}$, we obtain the formula

$$L(s, \pi \times \pi') = \prod_{(a,b) \in \Delta} \prod_{j \in J_a} \prod_{k \in K_b} \prod_{\nu=1}^{\min(n_j, n_k)} \left(1 - (p^{\nu} z_j z_k')^{e_{\xi(a,b)} p^{-e_{\ell(a,b)s}}} \right)^{-1}. \tag{A.6}$$

We now give some examples, to show that formula (A.6) can be specialized to recover known cases.

Example 1. When $\pi' = \tilde{\pi}$, we have $r = r'$, $J = K$ (so that $A = B = L$), and the subset Δ is the diagonal copy of $\{1, \ldots, A\}$ inside $\{1, \ldots, A\} \times \{1, \ldots, A\}$. Letting $F = [F_1, \ldots, F_L]$ denote the set partition $J = K$ of $\{1, \ldots, r\}$, we recover in this case the formula

$$L(s, \pi \times \tilde{\pi}) = \prod_{l=1}^L \prod_{j,k \in F_l} \prod_{\nu=1}^{\min(n_j, n_k)} \left(1 - (p^{\nu} z_j z_k')^{e_{\xi} p^{-e_{\ell s}}} \right)^{-1} \tag{A.7}$$

of [26 (A.12)].

Example 2. When π and π' are both principal series representations we have $r = m$, $r' = m'$, and $n_j \equiv n'_k \equiv 1$. If, furthermore, π and π' are both unramified then $J = [J_1]$, where $J_1 = \{1, \ldots, m\}$ and $K = [K_1]$, where $K_1 = \{1, \ldots, m'\}$. Thus $A = B = L = 1$ and ℓ sends $(1,1)$ to 1. Set $\alpha_{\pi}(p,j) = p^s$ and $\alpha_{\pi'}(p,k) = p^{s'}$, so that $pz_j z_k' = \alpha_{\pi}(p,j) \alpha_{\pi'}(p,k)$. Then (A.6) simplifies to the expression (A.1).

A.2. Proof of Proposition A.1 Let \mathcal{L} denote the image of the injective map $\ell : \Delta \rightarrow \{1, \ldots, L\}$. Throughout this section we shall write $(a,b) \in \Delta$ for the preimage of $\ell \in \mathcal{L}$. We may rewrite (A.6) as

$$L(s, \pi \times \pi') = \prod_{\ell \in \mathcal{L}} L_\ell(s, \pi \times \pi'),$$

where

$$L_\ell(s, \pi \times \pi') = \prod_{\nu \geq 1} \prod_{j \in J_a} \prod_{k \in K_b} \prod_{n_j \geq \nu} \prod_{n'_k \geq \nu} \left(1 - (p^{\nu} z_j z_k')^{e_{\xi} p^{-e_{\ell s}}} \right)^{-1}.$$

Letting $\log L_\ell(s, \pi \times \pi') = \sum_{f \geq 1} \lambda_{\ell, \pi \times \pi'}(f) / p^{\ell(f)s}$, we obtain

$$\lambda_{\ell, \pi \times \pi'}(f) = \sum_{\nu \geq 1} p^{\nu f} \left(\sum_{j \in J_a} z_j^{e_{\ell f}} \right) \left(\sum_{k \in K_b} z_k^{e_{\ell f}} \right). \tag{A.8}$$

Example 3. We let $\pi' = \tilde{\pi}$ and use the notation of Example 4. Then the identity (A.8) reduces to

$$\lambda_{\ell, \pi \times \tilde{\pi}}(f) = \sum_{\nu \geq 1} p^{\nu f} \left(\sum_{j \in F_l} z_j^{e_{\ell f}} \right)^2,$$

which recovers the same expression in the proof of [26 Lemma A.1].

Example 4. When π and π' are both unramified, formula (A.8) reduces to

$$\lambda_{\ell, \pi \times \pi'}(f) = p^f m \sum_{j=1}^m z_j^f \sum_{k=1}^{m'} z_k^f = \sum_{j=1}^m \sum_{k=1}^{m'} \alpha_{\pi}(p,j)^f \alpha_{\pi'}(p,k)^f = \lambda_{\pi \times \pi'}(p^f).$$
Applying the Cauchy-Schwarz inequality in (A.8) we get
\begin{equation}
|\lambda_{\ell, \pi \times \pi'}(f)|^2 \leq \left(\sum_{\nu \geq 1} p^{e_{\ell \nu}} \left| \sum_{j \in J_\nu, n_j \geq \nu} e_{j \ell} f \right| \right)^2 \left(\sum_{\nu \geq 1} p^{e_{\ell \nu}} \left| \sum_{k \in K_\nu, n_k \geq \nu} e_{k \ell} f \right| \right)^2
= \lambda_{\ell, \pi \times \tilde{\pi}}(f) \lambda_{\ell, \pi' \times \tilde{\pi}'}(f),
\end{equation}
in view of (A.9).

Now from
\begin{equation}
\sum_{f \geq 1} p^{-fs} \left(\lambda_{\pi \times \pi'}(p^f) \right) = \log L(s, \pi \times \pi')
= \sum_{\ell \in \mathcal{L}} \log L_\ell(s, \pi \times \pi')
= \sum_{\ell \in \mathcal{L}} \sum_{f \geq 1} p^{-fs} \left(\lambda_{\ell, \pi \times \pi'}(f) \right)
= \sum_{f \geq 1} p^{-fs} \sum_{\ell \in \mathcal{L}} \lambda_{\ell, \pi \times \pi'}(f / e_\ell) / f e_\ell,
\end{equation}
we deduce
\begin{equation}
(\lambda_{\pi \times \pi'}(p^f) = \sum_{\ell \in \mathcal{L}} e_\ell \lambda_{\ell, \pi \times \pi'}(f / e_\ell).
\end{equation}

Using this and (A.10) we find, by Cauchy-Schwarz,
\begin{equation}
|\lambda_{\pi \times \pi'}(p^f)| \leq \sum_{\ell \in \mathcal{L}} e_\ell |\lambda_{\ell, \pi \times \pi'}(f / e_\ell)|
\leq \left(\sum_{\ell \in \mathcal{L}} e_\ell \lambda_{\ell, \pi \times \pi'}(f / e_\ell) \right)^{1/2} \left(\sum_{\ell \in \mathcal{L}} e_\ell \lambda_{\ell, \pi' \times \pi'}(f / e_\ell) \right)^{1/2}.
\end{equation}

From (A.11) we recognize the right-hand side as $\sqrt{\lambda_{\pi \times \tilde{\pi}}(p^f) \lambda_{\pi' \times \tilde{\pi}'}(p^f)}$, proving Proposition A.1. \qed

References

[1] A. Akbary and T. S. Trudgian. A Log-Free Zero-Density Estimate and Small Gaps in Coefficients of L-Functions. *Int. Math. Res. Not. IMRN*, (12):4242–4268, 2015.
[2] C. Bennett and R. Sharpley. *Interpolation of operators*, volume 129 of *Pure and Applied Mathematics*. Academic Press, Inc., Boston, MA, 1988.
[3] V. Blomer and F. Brumley. On the Ramanujan conjecture over number fields. *Ann. of Math. (2)*, 174(1):581–605, 2011.
[4] V. Blomer and F. Brumley. Non-vanishing of L-functions, the Ramanujan conjecture, and families of Hecke characters. *Canad. J. Math.*, 65(1):22–51, 2013.
[5] F. Brumley. Effective multiplicity one on GL_N and narrow zero-free regions for Rankin-Selberg L-functions. *Amer. J. Math.*, 128(6):1455–1474, 2006.
[6] C. J. Bushnell and G. Henniart. An upper bound on conductors for pairs. *J. Number Theory*, 65(2):183–196, 1997.
[7] C. J. Bushnell and G. Henniart. Strong exponent bounds for the local Rankin-Selberg convolution. *Bull. Iranian Math. Soc.*, 43(4):143–167, 2017.

[8] J. Friedlander and H. Iwaniec. *Opera de cribro*, volume 57 of *American Mathematical Society Colloquium Publications*. American Mathematical Society, Providence, RI, 2010.

[9] P. X. Gallagher. A large sieve density estimate near $\sigma = 1$. *Invent. Math.*, 11:329–339, 1970.

[10] S. Gelbart and H. Jacquet. A relation between automorphic representations of GL(2) and GL(3). *Ann. Sci. École Norm. Sup. (4)*, 11(4):471–542, 1978.

[11] R. Godement and H. Jacquet. *Zeta functions of simple algebras*. Lecture Notes in Mathematics, Vol. 260. Springer-Verlag, Berlin-New York, 1972.

[12] A. Granville and K. Soundararajan. Large character sums: Burgess’s theorem and zeros of L-functions. *J. Eur. Math. Soc. (JEMS)*, 20(1):1–14, 2018.

[13] D. R. Heath-Brown. Convexity bounds for L-functions. *Acta Arith.*

[14] P. Humphries. Standard zero-free regions for Rankin–Selberg L-functions via sieve theory. https://arxiv.org/abs/1703.05450.

[15] H. Jacquet, I. I. Piatetskii-Shapiro, and J. A. Shalika. Rankin-Selberg convolutions. *Amer. J. Math.*, 105(2):367–464, 1983.

[16] H. H. Kim. Functoriality for the exterior square of GL$_4$ and the symmetric fourth of GL$_2$. *J. Amer. Math. Soc.*, 16(1):139–183, 2003. With appendix 1 by Dinakar Ramakrishnan and appendix 2 by Kim and Peter Sarnak.

[17] H. H. Kim and F. Shahidi. Functorial products for GL$_2 \times$ GL$_3$ and the symmetric cube for GL$_2$. *Ann. of Math. (2)*, 155(3):837–893, 2002. With an appendix by Colin J. Bushnell and Guy Henniart.

[18] E. Kowalski and P. Michel. Zeros of families of automorphic L-functions close to 1. *Pacific J. Math.*, 207(2):411–431, 2002.

[19] R. J. Lemke Oliver and J. Thorner. Effective log-free zero density estimates for automorphic L-functions and the Sato-Tate conjecture. *Int. Math. Res. Not. IMRN*, (4):727–755, 2010.

[20] X. Li. Upper bounds on L-functions at the edge of the critical strip. *Int. Math. Res. Not. IMRN*, (4):727–755, 2010.

[21] W. Luo, Z. Rudnick, and P. Sarnak. On the generalized Ramanujan conjecture for GL(n). In *Automorphic forms, automorphic representations, and arithmetic (Fort Worth, TX, 1996)*, volume 66 of *Proc. Sympos. Pure Math.*, pages 301–310. Amer. Math. Soc., Providence, RI, 1999.

[22] P. Michel. Analytic number theory and families of automorphic L-functions. In *Automorphic forms and applications*, volume 12 of *IAS/Park City Math. Ser.*, pages 181–295. Amer. Math. Soc., Providence, RI, 2007.

[23] C. Mœglin and J.-L. Waldspurger. Le spectre résiduel de GL(n). *Ann. Sci. École Norm. Sup. (4)*, 22(4):605–674, 1989.

[24] Y. Motohashi. On sums of Hecke-Maass eigenvalues squared over primes in short intervals. *J. Lond. Math. Soc. (2)*, 91(2):367–382, 2015.

[25] D. Ramakrishnan. Modularity of the Rankin-Selberg L-series, and multiplicity one for SL(2). *Ann. of Math. (2)*, 152(1):45–111, 2000.

[26] Z. Rudnick and P. Sarnak. Zeros of principal L-functions and random matrix theory. *Duke Math. J.*, 81(2):269–322, 1996. A celebration of John F. Nash, Jr.

[27] V. T. Sós and P. Turán. On some new theorems in the theory of Diophantine approximations. *Acta Math. Acad. Sci. Hungar.*, 6:241–255, 1955.

[28] K. Soundararajan. Weak subconvexity for central values of L-functions. *Ann. of Math. (2)*, 172(2):1469–1498, 2010.

Department of Mathematics, Stanford University, Stanford, CA 94305

E-mail address: ksound@stanford.edu

Department of Mathematics, Stanford University, Stanford, CA 94305

E-mail address: jthorner@stanford.edu