Use of Antibiotics in Upper Respiratory Tract Infections in Tertiary Care Teaching Hospital of Delhi

Md. Zulqarnain *, Singh Sanjit, Prasad Abhishek, Abdullah , Palit Tanaya

1. Assistant Professor, Bihar College of Pharmacy, New Bailey Road, Patna, Bihar 801503, India
2. Research Scientist, Clinical Pharmacology Unit, Sun Pharmaceutical Industries Ltd, New Delhi 110062, India

INTRODUCTION:
The rise in antibiotic resistance has become an increasing public health concern worldwide. In developing countries like India, recent hospital and some community based data showed increase in burden of antimicrobial resistance.

The impact of antibiotic resistance includes increased morbidity and mortality from antibiotic-resistant infections, increased socioeconomic burden and greater healthcare costs. Poor antibiotic stewardship is a key driver of antibiotic resistance. One of the most common causes of visit to physician is Upper respiratory tract infections (URTI). These infections are often considered to be of little value from a standpoint of mortality but these infections are responsible for limited activity and absence from work and school in the general population of nation mainly in a developing country like India, when compared it with other infections.

URTI are commonly caused by the viruses, common viruses which are responsible are rhinovirus, parainfluenza virus, respiratory syncytial virus, influenza virus, coronavirus, coxsackievirus, adenovirus. URTI are caused by an acute infection which affect the upper respiratory tract including the nose, sinuses, pharynx or larynx and causes common cold, sinusitis, otitis media, tonsillitis, pharyngitis, laryngitis. As mentioned above, viruses are the most common causes of URTI and thus it requires only symptomatic treatment. To thin the respiratory secretions, it is usually advised to use frictional and antihistamines for cough or sore throat; decongestants and antihistamines for runny or stuffy nose. Many studies suggest that the antibiotics are not required, but almost 75% of adults with URTIs are given antibiotics by their consulting doctor.

A substantial proportion of all antibiotics are prescribed in the community, and URTI are one of the commonest...
conditions in the primary care setting for which antibiotic prescriptions have been reported to be high worldwide.15-17 The decision to prescribe antibiotics is intricate and involves number of factors. Apart from clinical factors, others like patient, provider and community characteristics, regulatory practices, cultural influences do play a role.18

However, current evidence-based guidelines do not support antibiotic use in the majority of URTI cases,19, 20 as URTIs are frequently of viral etiology21-23 and are often self-limiting24, 25, and seldom lead to serious complications.26 Inappropriate expectations of antibiotics by patients have been commonly observed in primary healthcare, and is a key factor driving over-prescription of antibiotics in such settings. A study found that physicians are more likely to prescribe antibiotics to patients who desire antibiotics.27 Furthermore, another study observed that various inappropriate behaviours by patients often pressured physicians to prescribe antibiotics,20 such as direct request for antibiotics, portraying severity of illness, or volunteering previous positive experience with use of antibiotics and it is also observed in study that primary healthcare physicians over-prescribe antibiotics in order to satisfy their patients.28 These studies underscore how patient’s expectations for antibiotics influence prescriptions by physicians.

By creating awareness and preventing the irrational prescription we can increase the effectiveness of the drugs and thus decreasing the morbidity associated with URTI. The objective of present study is to focus on the trends in the prescription pattern of antibiotics in URTI and to monitor adverse drug reaction associated with the use of these antibiotics.

MATERIALS AND METHOD:

Study was carried out in the medicine OPD/IPD patient in Hakeem Abdul Hameed (HAHC) Hospital associated with Hamdard Institute of Medical science and Research (HIMSR) Hamdard. It was a prospective, cross sectional, non-interventional, qualitative drug utilization evaluation of antibiotics utilized in URTI patients. Total 103 URTI patients, including 51 males and 52 females were enrolled according to the inclusion criteria. This research was carried out in accordance with the Basic Principles defined in ICH ‘Guidance for good clinical Practice’ and the principles enunciated in Declaration of Helsinki (Edinburgh, October 2000).

RESULTS

A total of 103 patients of URTIs were studied for patient demographics, prescribing pattern and adverse drug reactions.

Demographic Details of the Patients

Gender Distribution of Patients with URTI

Among the total of 103 patients, 51 (49.2\%) were male patients with the mean age of 35.25 years ± 11.26 and 52 (50.8\%) were female patients with the mean age of 35.19 years ± 8.96.

GENDER	No of Patients	Percentage (%)
MALE	51	49.2
FEMALE	52	50.8
TOTAL	103	100

Distribution of Patients with URTI according to Different Age Group

Among the total of 103 patients enrolled approximately 40\% of the patients were from the age group of 20-29 years and above, 27\% of patients were in the age group of 30 – 39 years, 12\% of patients were in the age group of 40 – 49 years, and 15\% of patients were in the age group of 50-59 years. So these four groups contributed almost 94\% of the total patients enrolled. This was followed by the patients of age group 60+ years that contributed almost 5\% of total patients. The number of elder patients diagnosed with URTI was very small, that is 1\%.

S.No.	Age in Year	Male Patients (n=51)	Female Patients (n=52)	No. of Patient (n=103)			
		Total	%	Total	%	Total	%
1	20-29	22	20.9	20	19.4	42	40
2	30-39	12	11.4	16	15.2	28	26.6
3	40-49	06	5.7	06	5.7	12	11.4
4	50-59	08	7.6	07	6.6	15	14.3
5	60+	03	2.8	03	2.8	06	5.7
Comorbid Conditions

Out of total patients enrolled (n=103), 18 patients were observed with co-morbid conditions.

Comorbid Conditions	Total (n=18)	Percentage
Diabetes	06	33
Multiple Sclerosis	01	5
Thyroid Dysfunction	07	38
Leucoderma	01	5
Tuberculosis	01	5
Diarrhoea	02	11

Drug Utilization

Drugs Utilized for Treatment of URTI

Out of 103, 47 patients (45.6%) were on Antibiotic Treatment and 56 patients (54.5%) were on Non-Antibiotics. Among total patients enrolled, highest number of patients were diagnosed with common cold (n=38), followed by Sinusitis (n=21). The number of patients with Pharyngitis (n=17) and Laryngitis (n=19) were almost equal. Least number of patients were diagnosed with Otitis Media (n=7).

Type of URTI	Number of Patients on Antibiotic treatment (45.6%) (n=47)	Number of patients on Non-Antibiotic treatment (54.4%) (n=56)	Total (n=103)	Percentage (%) Receiving Antibiotic
Common Cold	04	34	38	10.5
Pharyngitis	13	04	17	76.47
Laryngitis	12	07	19	63.15
Otitis media	07	00	7	100
Sinusitis	11	10	21	52.38

Figure 2: URTI among Different Age Groups

Figure 3: Treatment for different types URTI
Antibiotics prescribed for different types of URTI

Antibiotic were prescribed in 47 patients, that is (45.6%) of the total patient enrolled. The remaining 56 patients that is (54.4%) patients were on non-Antibiotic treatment. The most commonly prescribed antibiotic throughout the study was found to be Azithromycin (n=33) i.e. 70.3% of the total prescriptions. This was followed by combination of Amoxicillin and Clavulanic Acid which was prescribed to 14 patients i.e. 29.7% of the total Antibiotics prescribed.

Type of URTI	Antibiotics Prescribed	Number of Patients	Total Number of Patients on Antibiotic
Common Cold	Azithromycin	04	04
Pharyngitis	Azithromycin	09	13
	Amoxicillin + Clavulanic Acid	04	
Laryngitis	Azithromycin	12	12
Otitis Media	Amoxicillin + Clavulanic Acid	07	
Sinusitis	Amoxicillin + Clavulanic Acid	03	11
	Azithromycin	08	

Table 6: Antibiotics Prescribed for treatment of URTI

Therapy	Number of Patients	Percentage of Total Antibiotics Prescribed (n=47)
Azithromycin	33	70.3
Combination of Amoxicillin + Clavulanic acid	14	29.7

Adverse Drug Reactions of Antibiotics

Out of 103 patients, 10 patients reported adverse drug reactions. Out of which 8 were on Azithromycin and 2 were on Amoxicillin Clavulanic acid.

The adverse drug reactions reported were as follows:

Number of Patients	Antibiotic	Adverse Drug Reaction
6	Azithromycin	Diarrhea and Loose stools
2	Azithromycin	Stomach Pain and Nausea, Vomiting
2	Amoxicillin + Clavulanic Acid	Diarrhea

CONCLUSION

1. The common causes of URTI at HAHC Hospital were Common cold, Sinusitis, followed by Pharyngitis, Laryngitis and Otitis Media.
2. The antibiotics prescription for URTI was found to be relatively low of 45.6%.
3. The most commonly prescribed antibiotic was Azithromycin followed by amoxicillin and clavulanic acid combination
4. The antibiotic prescriptions were in accordance with the clinical practice guidelines of Indian council of medical research.

REFERENCES

1. Kumar SG et al. Antimicrobial resistance in India: A review. Journal of natural science, biology, and medicine. 2013 Jul; 4(2):286.
2. Butler CC, et al. Antibiotic-resistant infections in primary care are symptomatic for longer and increase workload: outcomes for patients with E. coli UTIs. Br J Gen Pract. 2006; 56(530):686-92.
3. Thabit AK, et al. Antimicrobial resistance: impact on clinical and economic outcomes and the need for new antimicrobials. Expert Opin Pharmacother. 2015; 16(2):159-77.
4. Sootßíl G, et al. Can we prevent antimicrobial resistance by using antimicrobials better? Pathogens. 2013; 2(2):422-35.
5. Gårde AA, et al. Association between serum 25-hydroxyvitamin D level and upper respiratory tract infection in the third national health and nutrition examination survey. Archives Internal Med. 2009; 169(4):384-90.
6. Finch RG. Epidemiological features and chemotherapy of community-acquired lower respiratory tract infections. J Antimicrobial Chem. 1990; 26:53.
7. Hemming VG. Viral respiratory diseases in children: classification, etiology, epidemiology, and risk factors. J Pediatrics. 1994; 124(5):13-6.
8. Manoharan A, Winter J. Tackling upper respiratory tract infections. Practitioner. 2010; 254(1734):25-9.
9. http://www.clevelandclinicmeded.com/medicalpubs/diseasemanagement/infectiousdisease/upper-respiratory-tract-infection/ Accessed on 1 August 2012.

10. Schroeder K, Fahey T. Over-the-counter medications for acute cough in children and adults in ambulatory settings. Cochrane Database Syst Rev. 2008; 2(1):CD001831.

11. https://www.signup4.net/Upload/KAIS13A/APRO281E/DeamerURTIsummaryflyer2007.pdf. Accessed on 12 September 2015.

12. Arroll B, Smith GF. General practitioner management of upper respiratory tract infections: when are antibiotics prescribed? N Z Med J. 2000; 113(1122):493-6.

13. Wise R, et al. Antimicrobial resistance: a major threat to public health. BMJ (Br Med J). 1998; 317(7159):609.

14. Goossens H, et al. Outpatient antibiotic use in Europe and association with resistance: a cross-national database study. Lancet. 2005; 365(9459):579-87.

15. McCaig LF, Hughes JM. Trends in antimicrobial drug prescribing among office-based physicians in the United States. JAMA. 1995; 273(3):214-9.

16. Trap B, Hansen E. Treatment of upper respiratory tract infections—a comparative study of dispensing and non-dispensing doctors. J Clin Pharm Ther. 2002; 27(4):289-98.

17. Huang N, et al. Antibiotic prescribing by ambulatory care physicians for adults with nasopharyngitis, URI, and acute bronchitis in Taiwan.

18. Zoorob R, Sidani MA, Fremont RD, Kihlberg C. Antibiotic use in acute upper respiratory tract infections. Am Fam Physician. 2012; 86(9):817-22.

19. http://www.ncbi.nlm.nih.gov/books/NBK53632/. Accessed 24 Oct 2016.

20. Hong CY, et al. Acute respiratory symptoms in adults in general practice. Fam Pract. 2004; 21(3):317-23.

21. Gageldonk-Lafeber AR, et al. A case-control study of acute respiratory tract infection in general practice patients in The Netherlands. Clin Infect Dis. 2005; 41(4):940-7.

22. Poole PM, Tobin JO. Viral and epidemiological findings in MRC/PHLS surveys of respiratory disease in hospital and general practice. Postgrad Med J. 1973; 49(577):778-87.

23. Gonzales R, et al. Principles of appropriate antibiotic use for treatment of acute respiratory tract infections in adults: background, specific aims, and methods. Ann Emerg Med. 2001; 37(6):690-7.

24. Meropol SB, Localio AR, Metlay JP. Risks and benefits associated with antibiotic use for acute respiratory infections: a cohort study. Ann Fam Med. 2013; 11(2):165-72.

25. Petersen I, et al. Protective effect of antibiotics against serious complications of common respiratory tract infections: retrospective cohort study with the UK General Practice Research Database. BMJ. 2007; 335(7627):982.

26. Linder JA, Singer DE. Desire for antibiotics and antibiotic prescribing for adults with upper respiratory tract infections. J Gen Intern Med. 2003; 18(10):795-801.

27. Scott JG, et al. Antibiotic use in acute respiratory infections and the ways patients pressure physicians for a prescription. J Fam Pract. 2001; 50(10):853-8.

28. Lam T, Lam K. What are the non-biomedical reasons which make family doctors over-prescribe antibiotics for upper respiratory tract infection in a mixed private/public Asian setting? J Clin Pharm Ther. 2003; 28(3):197-201.

29. Fendrick AM, et al. The economic burden of non-influenza-related viral respiratory tract infection in the United States. Archives of internal medicine. 2003 Feb 24; 163(4):487-94