Investigation and analysis of green refrigerant zero ODP as an alternative refrigerant lower cost and GWP

Piyanut Saengsikhiao 1, Juntakan Taweekun 2 *, Kittinan Maliwan 2

1 Energy Technology Program, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; нacky_pik@hotmail.com
2 Department of Mechanical and Mechatronics Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; kittinan.m@psu.ac.th (K.M.), jantakan.t@psu.ac.th (J.T.)

* Author to whom correspondence should be addressed; E-Mail: jantakan.t@psu.ac.th, jantakan2016@gmail.com (J.T.); Tel.: +66896546846.

Received:
Accepted:

Abstract:

This research presents the development of hydrocarbon refrigerant mixture in hydrofluorocarbon blend, a non-flammable refrigerant that was retrofitted to replace R22. The properties of all refrigerant, as analyzed using national institute of standards and technology (NIST) reference fluid thermodynamic and transport properties database (REFPROP) software and NIST vapor compression cycle model accounting for refrigerant thermodynamic and transport properties (CYCLE_D-HX) software, are in accordance with the CAN/ANSI/AHRI540 standards of the Air-Conditioning, Heating, and Refrigeration Institute (AHRI). The results of this research showed. The cooling coefficient of performance (COPc) of R453A was nearly R22 at all condition with zero ODP. The R453A can be retrofitted to replace R22A due to its composition of POE, Class A1 incombustibility, and lower toxicity. R453A is another alternate refrigerant option that is composed of 1.2% hydrocarbon (HCs) R600 (0.6%) and R601a (0.6%), and is consistent with the evolution of fourth-generation refrigerants that contain a mixture of HFCs, HFOs, HCs, and natural refrigerants, which are required to produce a low-GWP, zero-ozone-depletion-potential (ODP), high-capacity, low-operating-pressure, and nontoxic refrigerant.

Keywords: hydrocarbon refrigerant, refrigeration system, energy technology; environmentally friendly
Introduction

Energy use in Thailand’s business sector is ranked second among overall energy users in the country, and is thus being targeted for energy-saving options [1]. The number of convenience stores in Thailand numbered to more than 20,000 locations in 2019, and this continuously increases on an annual basis [2]. The majority are open 24 hours per day, so the retail sector is the fourth largest consumer of energy in the business sector, consuming more energy than residences do [3]. The components that contribute to energy consumption of convenience stores in Thailand, ranked from highest to lowest, are refrigeration systems, air-conditioning systems, electrical equipment, and lighting [4,5]. However, proportions of energy use in convenience stores in Taiwan were previously ranked as shown in Figure 1 below [6]. The best options for reducing energy consumption in convenience stores in Thailand are high energy efficiency and an efficient energy-management system. A good example of energy savings in refrigeration systems is shown in Figure 2 below [7]. Energy savings in refrigeration systems can be achieved through decreased power consumption of the compressor, as this is the component that utilizes the most energy.

Refrigerant trends in Thailand have shown improvements in increasing energy efficiency and decreasing global-warming potential (GWP), as shown in Figure 3 [8,9], which is related to the hydrofluorocarbon (HFC) phase-down schedule, as shown in Figure 4 [10]. First- and second-generation refrigerants were composed of natural refrigerants and hydrocarbons (HCs), both of which do not impact the environment, have low GWP, and zero ozone-depletion potential (ODP) [11–13]. R744 operates under high pressure, and is highly toxic and flammable (Figure 5) [14–16]. Following the second generation, third-generation refrigerants were composed of chlorofluorocarbons (CFCs) [17–19] and hydrochlorofluorocarbon (HCFCs) [20–22], which are easy to use, can operate under low pressure, and are nontoxic. However, they have high GWP and ODP, contributing to ozone depletion and global warming. Therefore, the development of refrigerants has significantly decreased ODP and GWP. Moreover, third-generation refrigerants, CFCs and HCHCs, were further developed into hydrofluorocarbon (HFC) refrigerants that still possessed low GWP and zero-ODP [23–25]. Fourth-generation refrigerants are mainly hydrofluoroolefins (HFOs) with low GWP and low capacity [26–28]. Therefore, they are refrigerants that are mixed with HFCs [29–31], HFOs [32–34], and HCs [35–37]. Natural refrigerants are low-GWP, zero-ODP, high-capacity, low-pressure, and nontoxic [38–40].

For the refrigerant used in food industry as shown in Figure 5 below, that show the first refrigerants was R404A of 40%, that have refrigerants develop for R404A [41], R407A [42], R407F [43], R407H [44], R410A [45], R442A [46], R448A [47], R449A [48], R452A [49], R453A [50], and R463A [51] were developed to be retrofitted to replace R404A, and are mixed with HCs, HFOs, R134A, R32 and R744. These conform to the refrigerant-development trend and are an alternate option that can be mixed with HFC. The refrigerant proportion that was mixed with R125 was more or less similar to that of the R32 mixture, and it also possesses Class A1 nonflammability property [42-51]. Moreover, the second rank of
refrigerant used in food industry was R22 of 25% and the refrigerant was the basis for this research, and it is currently the most used refrigerant, that mean R22 still used in present and need to retrofit to refrigerants are low-GWP, zero-ODP, high-capacity, low-pressure, and nontoxic [9]. For the cost of refrigerant as shown in Figure 6 below [43], the refrigerant should be mixed with HFOs [52-54]. It also highest refrigerant cost but does not include HCs refrigerant cost compare with HFOs refrigerant cost, which is being presented as a refrigerant for comparative purposes in this research as it is composed of HCs [55-57] as showed on table 1-2.

The properties of hydrocarbon refrigerant that class A3 high flammability as shown in Figure 7 below but zero ODP and GWP nearly zero, shown in Table 1 for R170 [58], R290 [59], R600 [60], R600a [61] and Table 2 for R601 [62], R601a [63], R1150 [64], R1270 [65]. The highest boiling of R170 and R1270 were found to be -88.70 °C and -103.8 °C respectively but the critical temperature was found to be 32.17 °C and 9.5 °C. This means those are refrigerant that cannot operated in refrigerant in accordance with the CAN/ANSI/AHRI540 Air-Conditioning, Heating, and Refrigeration Institute (AHRI) standards that standard for this research [66-68]. The R290 and R1270 were found to be nearly boiling point with R22 at -42.1. °C and -47.7 °C respectively but operate at high condenser pressure that will affect to refrigerant work and cooling coefficient of performance. as a result, Therefore, the R600, R600a, R601, R601a should be mix with HFC for alternative refrigerant.

Material and Methods

The properties of all refrigerants, summarized in Tables 4–7, conform to the use of REFPROP [69-71] and CYCLE_D-HX [72–74] software, as stipulated by the National Institute of Standards and Technology (NIST) [75–77], and are in accordance with the CAN/ANSI/AHRI540 Air-Conditioning, Heating, and Refrigeration Institute (AHRI) standards, as shown in Table 3 [66-68]. Both software programs can redefine mixtures and create new refrigerant mixtures. REFPROP can display results related to refrigerant properties under various conditions, and the CYCLE_D-HX software can also display results related to refrigerant cycles under various conditions. Results illustrated the relationship of all parameters for R417A [78], R417B [79], R422A [80], R422B [81], R422C [82], R422D [83], R424A [84], R437A [85], R438A [86] and R453A [50], such as GWP, boiling point, refrigerant effect, heat rejection, refrigerant work, evaporator pressure, high pressure, and cooling coefficient of performance (COPc), as shown in Tables 4–7 [88-91].
Results and Discussion

The results of the boiling point in Figure 8, shown in Figure 8 below, indicate that the lowest normal boiling point of R422A and R422C were -46.80 °C and R422C were -46.80 and -46.20, respectively, which was lower than that of R22 by 12.82% and 11.69%. This was due to hydrofluorocarbons (HFCs) R125 (85.1% and 82.0%) in its composition, which were consistent with those of R410A and R507. R410A and R507 displayed low boiling points of -51.6 and -46.74 °C, respectively, and are attractive as an alternative refrigerant to R134A and R404A, due to HFCs R125 contents of 50%, respectively. The boiling point of R125 was -48.1 °C, which high GWP values at 3,450 that effect to GWP of R422A and R422C displayed the highest GWP values at 3,143 and 3,185, respectively. The R422A and R422C have hydrocarbon (HCs) R601a (3%) in its composition. The boiling point and GWP of R601a was 0 and -11.73°C and, respectively, that effect to reduce GWP and add more boiling point. The Lower GWP compare with R22 in Figure 9 that R453A and R437A were 1,765 and 1,805, respectively, this was due to hydrofluorocarbons (HFCs) R134a (53.8% and 78.5%) in its composition and hydrofluorocarbons (HFCs) R32 (20%) in its composition for R453A, which consistent with the R407A, R407H and R407F that combine with R134a and R32 in R744 contents of 6% and 3%, respectively, in their compositions. The boiling point and GWP will Inverse by adjusting the composition of the refrigerant that low-high GWP and boiling point.

The result of the refrigerant effect in Figure 10 shows that R453A has the highest refrigerant effect, at 184.91, 178.36, and 165.49 kJ/kg for low, medium, and high conditions, respectively. This is 24.99%, 19.17% and 18.74 higher for low medium and high conditions, respectively, compared to R22. The result of heat rejection, shown in Figure 11, indicates that the maximal heat-rejection values for R453A were 312.00, 255.92, and 228.96 kJ/kg for the low, medium, and high conditions, respectively, which were 24.61% ,19.59% and 19.05% higher for the low, medium and high conditions, respectively, compared to those of R22. The refrigerant effect and heat rejection of R453A were found to be higher than those of R22 due to the presence of 20% hydrofluorocarbons (HFCs) R32. The R453A combined with hydrocarbons (HCs) R600 (0.6%) due to the high Qevap (kJ/kg) and high Qcond (kJ/kg) at 235.72 , 261.99 and 255.88 kJ/kg for low, medium, and high conditions, respectively for Qevap and 400.21 , 371.49 and 348.29 for low medium and high conditions, respectively for Qcond, and combined with R601a due to the high Qevap (kJ/kg) and high Qcond (kJ/kg) at 221.18 , 248.05 and 244.65 kJ/kg for low, medium, and high conditions, respectively for Qevap and 374.81 , 350.99 and 331.95 kJ/kg for low medium and high conditions, respectively for Qcond. The mixed-refrigerant design should be comparable to natural refrigerants in terms of having a strong refrigerant effect and high heat rejection but for select hydrocarbons refrigerant type, such as R290 and R1270 refrigerant effect and high heat rejection. The Qevap for R290 were 221.85, 240.37 and 223.89 kJ/kg for low, medium, and high conditions, respectively and The Qcond for R290 were 338.96, 349.48 and 314.59 kJ/kg for low, medium, and high conditions, respectively. The Qevap for R1270 were 232.45, 247.13 and 228.13 kJ/kg for low, medium, and high conditions, respectively and The Qcond for R1270 were 404.89, 358.77 and 320.62 kJ/kg for low, medium, and high conditions, respectively. But. The R290 and R1270 high refrigerant work and high operating pressure that will affect to power consumptions of compressor.
The results of the refrigerant work, shown in Figure 12, demonstrate a relationship between evaporator pressure, shown in Figure 13, and condenser pressure, shown in Figure 14. Refrigerants operated under low pressure display low refrigerant work value; in this case, the lowest refrigerant work of R422A was found to be 65.48 and 46.99 kJ/kg for low and medium conditions, respectively. This refrigerant possesses HCs from R600a (3%) in its composition. R422A also demonstrated the low evaporator pressure at 178.40 and 385.30 kPa for low and medium conditions, respectively, and operated at the low evaporator pressure of 2,233.50 and 2,149.10 kPa for low and medium conditions, respectively. The R453. The highest refrigerant work values for R453A were 127.56, 77.56, and 63.47 kJ/kg, which contained operated at the high evaporator pressure of 121.00, 342.10, and 595.70 kPa for low, medium and high conditions, respectively, and operated at the highest evaporator pressure of 1808.70, 2002.50, and 2584.30 kPa for low, medium and high conditions, respectively. This means that a refrigerant system that is operated at low pressure should be mixed with refrigerants that can operate under low pressure, such as R1234yf, R1234ze, and R134A. R450A, R456A, R513A and R515A, which were mixed with hydrofluoroolefins (HFOs) and operated under low pressure, achieving similar results to R453A operating under high pressure with 20% hydrofluorocarbons (HFCs) R32 contents in its composition.

The COPc results in Figure 15 show that R453A had the highest COPc at 1.45, 2.3, and 2.607 for low, medium and high conditions, respectively, as R453A did not have the highest refrigerant effect and heat rejection, nor the lowest boiling point, but could be operated under low pressure, which has an impact on low refrigerant work. In this case, that show the hydrocarbon refrigerant mixture in hydrofluorocarbon blend as an alternative Refrigerant to R22 and COPc was nearly. This was due to hydrofluorocarbons (HCs) R600 (0.6%) and R601a (0.6%) that operated under low pressure, which has an impact on low refrigerant work and having a strong refrigerant effect and high heat rejection that affect COPc of R453A was nearly to R22. Hydrofluorocarbons can also be combined with hydrofluorocarbons (HCs), which has a lower GWP, boiling point and high COPc. The lower GWP, boiling point and high COPc are consistent with the evolution of the fourth-generation refrigerants that contain a mixture of HFCs, HFOs, HCs, and natural refrigerants, which are required to produce a low-GWP, zero-ODP, high-capacity, low-operating-pressure, and nontoxic refrigerant. This shows that a mixed-refrigerant design should consider all parameters, such as the GWP, boiling point, Cp liquid/vapor and liquid/vapor conductivity, refrigerant effect, heat rejection, refrigerant work, evaporator pressure, high pressure, and COPc.
Conclusions

The results for hydrocarbon refrigerant mixture in hydrofluorocarbon blend as an Alternative Refrigerant to R22 using REFPROP and CYCLE_D-HX software, and following the CAN/ANSI/AHRI540 AHRI standards, indicate that COPc of R453A zero ODP, 1765 GWP nearby R22 0.055 ODP, 1600 GWP. This means that the mixed-refrigerant design should consider all of the parameters, such as the GWP, boiling point, Cp liquid/vapor and liquid/vapor conductivity, refrigerant effect, heat rejection, refrigerant work, evaporator pressure, high pressure, and COPc. R453A is another alternate refrigerant option that is composed of 1.2% hydrocarbon (HCs), and is consistent with the evolution of the fourth-generation refrigerants that contain a mixture of HFCs, HFOs, HCs, and natural refrigerants, which are required to produce a low-GWP, zero-ODP, high-capacity, low-operating-pressure, and nontoxic refrigerant. In the future, researchers should incorporate HCs at contents above 3.4% (R422A and R422D) in order to use natural refrigerants that are low-cost. The problems of high evaporator pressure and high condenser pressure that impact high refrigerant work can be solved by adjusting the composition of the refrigerant or mix using a refrigerant that operates at low pressure, thereby improving the COP of the refrigerant.

Acknowledgements

This research was funded by Prince of Songkla University and SANYO S.M.I. (Thailand) Co., Ltd.

Conflict of Interest

"The authors declare no conflict of interest".

References and Notes

1. Jeffrey Kuo, C.-F.; Lin, C.-H.; Lee, M.-H., Analyze the energy consumption characteristics and affecting factors of Taiwan's convenience stores-using the big data mining approach. Energy and Buildings 2018, 168, 120-136.
2. Saengsikhiao, P.; Taweekun, J.; Maliwan, K.; Sae-Ung, S.; Theppaya, T., Investigation and Analysis of R463A as an Alternative Refrigerant to R404A with Lower Global Warming Potential. Energies 2020, 13 (6).
3. Shen, H.; Xu, K.; Freihaut, J., A statistical study on energy performance of U.S. convenience stores: Investigation of factors and bench marking on store energy use. Energy and Buildings 2019, 183, 792-802.
4. Tassou, S. A.; Ge, Y.; Hadawey, A.; Marriott, D., Energy consumption and conservation in food retailing. Applied Thermal Engineering 2011, 31 (2), 147-156.
5. Wang, A.-P.; Hsu, P.-L., The network-based energy management system for convenience stores. Energy and Buildings 2008, 40 (8), 1437-1445.
6. Chou, D.-c.; Chang, C.-S.; Hsu, Y.-Z., Investigation and analysis of power consumption in convenience stores in Taiwan. Energy and Buildings 2016, 133, 670-687.
7. Evans, J. A.; Hammond, E. C.; Gigié, A. J.; Fostera, A. M.; Reinholdt, L.; Fikiin, K.; Zilio, C., Assessment of methods to reduce the energy consumption of food cold stores. Applied Thermal Engineering 2014, 62 (2), 697-705.
8. Mota-Babiloni, A.; Navarro-Esbrí, J.; Makkouch, P.; Molés, F., Refrigerant R32 as lower GWP working fluid in residential air conditioning systems in Europe and the USA. Renewable and Sustainable Energy Reviews 2017, 80, 1031-1042.
9. Cardoso, B. J.; Lamas, F. B.; Gaspar, A. R.; Ribeiro, J. B., Refrigerants used in the Portuguese food industry: Current status. International Journal of Refrigeration 2017, 83, 60-74.
10. Sánchez, D.; Cabello, R.; Llopis, R.; Catalán-Gil, J.; Nebot-Andrés, L., Energy assessment and environmental impact analysis of an R134a/R744 cascade refrigeration plant upgraded with the low-GWP refrigerants R152a, R1234ze(E), propane (R290) and propylene (R1270). International Journal of Refrigeration 2019, 104, 321-334.
11. Calleja-Anta, D.; Nebot-Andrés, L.; Catalán-Gil, J.; Sánchez, D.; Cabello, R.; Llopis, R., Thermodynamic screening of alternative refrigerants for R290 and R600a. Results in Engineering 2020, 5, 100081.
12. Massuchetto, L. H. P.; Nascimento, R. B. C. d.; Carvalho, S. M. R. d.; Araújo, H. V. d.; d'Angelo, J. V. H., Thermodynamic performance evaluation of a cascade refrigeration system with mixed refrigerants: R744/R1270, R744/R717 and R744/RE170. International Journal of Refrigeration 2019, 106, 201-212.
13. Zhang, L.; Yang, C.; Liu, H.; Du, P.; Gao, H., Theoretical Investigation on the Properties of R744/R290 Mixtures. Procedia Engineering 2017, 205, 1620-1626.
14. Mečárik, K.; Masaryk, M., Thermodynamic properties of refrigerants R11, R12, R13, R14, R22, R23, R113, R114, R500 and R502. Heat Recovery Systems and CHP 1991, 11 (2), 193-197.
15. Bao, Z. Y.; Fletcher, D. F.; Haynes, B. S., Flow boiling heat transfer of Freon R11 and HCFC123 in narrow passages. International Journal of Heat and Mass Transfer 2000, 43 (18), 3347-3358.
16. Chen, S.; Liu, J.; Liu, X.; Hou, Y., An experimental comparison of heat transfer characteristic between R134-a and R22 in spray cooling. Experimental Thermal and Fluid Science 2015, 66, 206-212.
17. Fatouh, M.; Ibrahim, T. A.; Mostafa, A., Performance assessment of a direct expansion air conditioner working with R407C as an R22 alternative. Applied Thermal Engineering 2010, 30 (2), 127-133.
18. Kuczynski, W.; Bohdal, T.; Meyer, J. P.; Denis, A., A regressive model for dynamic instabilities during the condensation of R404A and R507 refrigerants. International Journal of Heat and Mass Transfer 2019, 141, 1025-1035.
19. Kuczynski, W., Experimental research on condensation of R134a and R404A refrigerants in mini-channels during impulsive instabilities. Part I. International Journal of Heat and Mass Transfer 2019, 128, 728-738.
20. Kondou, C.; Umemoto, S.; Koyama, S.; Mitooka, Y., Improving the heat dissipation performance of a looped thermosyphon using low-GWP volatile fluids R1234ze(Z) and R1234ze(E) with a super-hydrophilic boiling surface. Applied Thermal Engineering 2017, 118, 147-158.
21. Colombo, L. P. M.; Lucchini, A.; Molinaroli, L., Experimental analysis of the use of R1234yf and R1234ze(E) as drop-in alternatives of R134a in a water-to-water heat pump. International Journal of Refrigeration 2020.
22. Sun, Z.; Cui, Q.; Wang, Q.; Ning, J.; Guo, J.; Dai, B.; Liu, Y.; Xu, Y., Experimental study on CO2/R32 blends in a water-to-water heat pump system. Applied Thermal Engineering 2019, 162, 114303.
23. Hu, X.; Yang, T.; Meng, X.; Wu, J., Isothermal vapor liquid equilibrium measurements for difluoromethane (R32) + fluoroethane (R161) + trans-1,3,3,3-tetrafluoropropene (R1234ze(E)) ternary mixtures. International Journal of Refrigeration 2017, 79, 49-56.
24. Ju, F.; Fan, X.; Chen, Y.; Zhang, H.; Wang, T.; Tang, X., Performance assessment of heat pump water heaters with R1233zd(E)/HCs binary mixtures. Applied Thermal Engineering 2017, 123, 1345-1355.
25. Longo, G. A.; Mancin, S.; Righetti, G.; Zilio, C.; Steven Brown, J., Assessment of the low-GWP refrigerants R600a, R1234ze(Z) and R1233zd(E) for heat pump and organic Rankine cycle applications. Applied Thermal Engineering 2020, 167, 114804.
26. Zhu, J.; Elbel, S., Experimental investigation into the influence of vortex control on transcritical R744 ejector and cycle performance. Applied Thermal Engineering 2020, 164, 114418.
27. Zhang, Y.; Wang, X.; Yin, J., Viscosity of saturated mixtures of 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide with R600a and R152a. The Journal of Chemical Thermodynamics 2020, 141, 105970.
28. Longo, G. A.; Righetti, G.; Zilio, C., Heat-transfer assessment of the low GWP substitutes for traditional HFC refrigerants. International Journal of Heat and Mass Transfer 2019, 139, 31-38.
29. Shaik, S. V.; Babu, T. P. A., Theoretical Computation of Performance of Sustainable Energy Efficient R22 Alternatives for Residential Air Conditioners. Energy Procedia 2017, 138, 710-716.
30. La Rocca, V.; Panno, G., Experimental performance evaluation of a vapour compression refrigerating plant when replacing R22 with alternative refrigerants. Applied Energy 2011, 88 (8), 2809-2815.
31. Kasera, S.; Bhaduri, S. C., Performance of R407C as an Alternate to R22: A Review. Energy Procedia 2017, 109, 4-10.
32. Elgendy, E.; Melike, M.; Fatouh, M., Experimental assessment of a split air conditioner working with R-417A under different indoor and outdoor conditions. International Journal of Refrigeration 2018, 85, 268-281.
33. Fernández-Seara, J.; Uñía, F. J.; Diz, R.; Dopazo, J. A., Vapour condensation of R22 retrofit substitutes R417A, R422A and R422D on CuNi turbo C tubes. International Journal of Refrigeration 2010, 33 (1), 148-157.
34. Aprea, C.; Maiorino, A., An experimental investigation of the global environmental impact of the R22 retrofit with R422D. Energy 2011, 36 (2), 1161-1170.
35. Oruç, V.; Devecioğlu, A. G., Thermodynamic performance of air conditioners working with R417A and R424A as alternatives to R22. International Journal of Refrigeration 2015, 55, 120-128.
36. Chen, X.; Liu, C.; Yang, J.; Chen, J., Experimental study on R-22, R-427A, R-161 and R-290 in air-source heat pump for space heating at low ambient temperatures. International Journal of Refrigeration 2018, 96, 147-154.
37. Devecioğlu, A. G.; Oruç, V., The influence of plate-type heat exchanger on energy efficiency and environmental effects of the air-conditioners using R453A as a substitute for R22. Applied Thermal Engineering 2017, 112, 1364-1372.
38. Yang, M.; Zhang, H.; Meng, Z.; Qin, Y., Experimental study on R1234yf/R134a mixture (R513A) as R134a replacement in a domestic refrigerator. Applied Thermal Engineering 2019, 146, 540-547.
39. Makhnatch, P.; Mota-Babiloni, A.; López-Belchí, A.; Khodabandeh, R., R450A and R513A as lower GWP mixtures for high ambient temperature countries: Experimental comparison with R134a. Energy 2019, 166, 223-235.
40. Heredia-Aricapa, Y.; Belman-Flores, J. M.; Mota-Babiloni, A.; Serrano-Arellano, J.; García-Pabón, J. J., Overview of low GWP mixtures for the replacement of HFC refrigerants: R134a, R404A and R410A. International Journal of Refrigeration 2020, 111, 113-123.
41. Mota-Babiloni, A.; Navarro-Esbrí, J.; Peris, B.; Molés, F.; Verdú, G., Experimental evaluation of R448A as R404A lower-GWP alternative in refrigeration systems. Energy Conversion and Management 2015, 105, 756-762.
42. Hu, X.; Zhang, Z.; Yao, Y.; Wang, Q., Non-azeotropic refrigerant charge optimization for cold storage unit based on year-round performance evaluation. Applied Thermal Engineering 2018, 139, 395-401.
43. Bortolini, M.; Gamberi, M.; Gamberini, R.; Graziani, A.; Lolli, F.; Regattieri, A., Retrofitting of R404a commercial refrigeration systems using R410a and R407f refrigerants. International Journal of Refrigeration 2015, 55, 142-152.
44. Mota-Babiloni, A.; Makhnatch, P.; Khodabandeh, R., Recent investigations in HFCs substitution with lower GWP synthetic alternatives: Focus on energetic performance and environmental impact. International Journal of Refrigeration 2017, 82, 288-301.
45. Mancin, S.; Del Col, D.; Rossetto, L., Partial condensation of R407C and R410A refrigerants inside a plate heat exchanger. Experimental Thermal and Fluid Science 2012, 36, 149-157.
46. Oruç, V.; Devecioğlu, A. G.; Ender, S., Improvement of energy parameters using R442A and R453A in a refrigeration system operating with R404A. Applied Thermal Engineering 2018, 129, 243-249.
47. Mendoza-Miranda, J. M.; Mota-Babiloni, A.; Navarro-Esbrí, J., Evaluation of R448A and R450A as low-GWP alternatives for R404A and R134a using a micro-fin tube evaporator model. Applied Thermal Engineering 2016, 98, 330-339.
48. Makhnatch, P.; Mota-Babiloni, A.; Rogstam, J.; Khodabandeh, R., Retrofit of lower GWP alternative R449A into an existing R404A indirect supermarket refrigeration system. International Journal of Refrigeration 2017, 76, 184-192.
49. Górny, K.; Stachowiak, A.; Tyczewski, P.; Zwierzycki, W., Lubricity of selected oils in mixtures with the refrigerants R452A, R404A, and R600a. Tribology International 2019, 134, 50-59.
50. Devecioğlu, A. G.; Oruç, V., An analysis on the comparison of low-GWP refrigerants to alternatively use in mobile air-conditioning systems. Thermal Science and Engineering Progress 2017, 1, 1-5.
51. Mota-Babiloni, A.; Haro-Ortuño, J.; Navarro-Esbrí, J.; Barragán-Cervera, Á., Experimental drop-in replacement of R404A for warm countries using the low GWP mixtures R454C and R455A. International Journal of Refrigeration 2018, 91, 136-145.
52. Longo, G. A.; Mancin, S.; Righetti, G.; Zilio, C., R1234yf and R1234ze(E) as environmentally friendly replacements of R134a: Assessing flow boiling on an experimental basis. International Journal of Refrigeration 2019, 108, 336-346.
53. Wu, X.; Dang, C.; Xu, S.; Hihara, E., State of the art on the flammability of hydrofluoroolefin (HFO) refrigerants. International Journal of Refrigeration 2019, 108, 209-223.
54. Mylona, S. K.; Hughes, T. J.; Saeed, A. A.; Rowland, D.; Park, J.; Tsuji, T.; Tanaka, Y.; Seiki, Y.; May, E. F., Thermal conductivity data for refrigerant mixtures containing R1234yf and R1234ze(E). The Journal of Chemical Thermodynamics 2019, 133, 135-142.
55. Yu, C.-C.; Teng, T.-P., Retrofit assessment of refrigerator using hydrocarbon refrigerants. Applied Thermal Engineering 2014, 66 (1), 507-518.
56. Wang, X.; Yan, Y.; Li, B.; Hao, X.; Gao, N.; Chen, G., Prospect of solar-driven ejector-compression hybrid refrigeration system with low GWP refrigerants in summer of Guangzhou and Beijing. International Journal of Refrigeration 2020, 117, 230-236.
57. Longo, G. A.; Mancin, S.; Righetti, G.; Zilio, C.; Brown, J. S., Assessment and optimisation of low-GWP refrigerants during two-phase heat transfer inside small-diameter smooth tubes. International Journal of Refrigeration 2020, 117, 61-70.
58. Wang, D.; Liu, Y.; Kou, Z.; Yao, L.; Lu, Y.; Tao, L.; Xia, P., Energy and exergy analysis of an air-source heat pump water heater system using CO2/R170 mixture as an azeotropy refrigerant for sustainable development. International Journal of Refrigeration 2019, 106, 628-638.
59. Berkah Fajar, T. K.; Restu Bagas, P.; Ukhi, S.; Alhamid, M. I.; Lubis, A., Energy and exergy analysis of an R410A small vapor compression system retrofitted with R290. Case Studies in Thermal Engineering 2020, 21, 100671.
60. Yang, L.; Gong, M.; Guo, H.; Dong, X.; Shen, J.; Wu, J., Isothermal (vapour+liquid) equilibrium measurements and correlation for the \{n-butane (R600)+1,1,1,3,3-pentafluoropropane (R245fa)\} system at temperatures from (303.150 to 373.150)K. The Journal of Chemical Thermodynamics 2016, 95, 49-53.
61. Qiu, J.; Zhang, H., Experimental investigation on two-phase frictional pressure drop of R600a and R600a/3GS oil mixture in a smooth horizontal tube. International Journal of Refrigeration 2020, 117, 307-315.
62. Pratama, F.; Reyseliani, N.; Syauqi, A.; Daud, Y.; Purwanto, W. W.; Wulan, P. P. D. K.; Hidayatno, A., Thermoeconomic assessment and optimization of wells to flash–binary cycle using pure R601 and zeotropic mixtures in the Sibayak geothermal field. Geothermics 2020, 85, 101778.
63. Li, J.; Liu, Q.; Duan, Y.; Yang, Z., Performance analysis of organic Rankine cycles using R600/R601a mixtures with liquid-separated condensation. Applied Energy 2017, 190, 376-389.
64. Wu, X.; Yang, Z.; Wang, X.; Lin, Y., Experimental and theoretical study on the influence of temperature and humidity on the flammability limits of ethylene (R1150). Energy 2013, 52, 185-191.
65. Zhang, Y.; He, Y.; Wang, Y.; Wu, X.; Jia, M.; Gong, Y., Experimental Investigation of the Performance of an R1270/CO2 Cascade Refrigerant System. International Journal of Refrigeration 2020.
66. CAN/ANSI/AHRI540, Performance Rating of Positive Displacement Refrigerant Compressors and Compressor Units. Air-Conditioning, Heating, and Refrigeration Institute (AHRI) (E) 2015, 5.
67. Aprea, C.; Maiorino, A.; Mastrullo, R., Change in energy performance as a result of a R422D retrofit: An experimental analysis for a vapor compression refrigeration plant for a walk-in cooler. Applied Energy 2011, 88 (12), 4742-4748.
68. Lumpkin, D. R.; Bahman, A. M.; Groll, E. A., Two-phase injected and vapor-injected compression: Experimental results and mapping correlation for a R-407C scroll compressor. International Journal of Refrigeration 2018, 86, 449-462.
69. Tomassetti, S.; Coccia, G.; Pierantozzi, M.; Di Nicola, G.; Brown, J. S., Vapor phase and two-phase PvTz measurements of difluoromethane + 2,3,3,3-tetrafluoroprop-1-ene. The Journal of Chemical Thermodynamics 2020, 141, 105966.
70. Miyara, A.; Alam, M. J.; Kariya, K., Measurement of viscosity of trans-1-chloro-3,3,3-trifluoropropene (R-123zd(E)) by tandem capillary tubes method. International Journal of Refrigeration 2018, 92, 86-93.
71. Fouad, W. A.; Vega, L. F., Transport properties of HFC and HFO based refrigerants using an excess entropy scaling approach. The Journal of Supercritical Fluids 2018, 131, 106-116.
Bell, I. H.; Domanski, P. A.; McLinden, M. O.; Linteris, G. T., The hunt for nonflammable refrigerant blends to replace R-134a. International Journal of Refrigeration 2019, 104, 484-495.

Domanski, P. A.; Brignoli, R.; Brown, J. S.; Kazakov, A. F.; McLinden, M. O., Low-GWP refrigerants for medium and high-pressure applications. International Journal of Refrigeration 2017, 84, 198-209.

Brignoli, R.; Brown, J. S.; Skye, H. M.; Domanski, P. A., Refrigerant performance evaluation including effects of transport properties and optimized heat exchangers. International Journal of Refrigeration 2017, 80, 198-209.

Abas, N.; Kalair, A. R.; Khan, N.; Haider, A.; Saleem, Z.; Saleem, M. S., Natural and synthetic refrigerants, global warming: A review. Renewable and Sustainable Energy Reviews 2018, 90, 557-569.

Zhang, H.; Gao, B.; Li, H.; Zhao, Y.; Wu, W.; Zhong, Q.; Dong, X.; Chen, Y.; Gong, M.; Luo, E., Saturated liquid density equation for pure refrigerants including CFCs, HCFCs, HFCs, HCs, HFOs, HFEs, PFAs and ISs based on the scaling law and the law of rectilinear diameter. International Journal of Refrigeration 2018, 87, 65-77.

Vaghela, J. K., Comparative Evaluation of an Automobile Air - Conditioning System Using R134a and Its Alternative Refrigerants. Energy Procedia 2017, 109, 153-160.

Zhang, X., Heat transfer and enhancement analyses of flow boiling for R417A and R22. Experimental Thermal and Fluid Science 2011, 35 (7), 1334-1342.

Llopis, R.; Torrella, E.; Cabello, R.; Sánchez, D., HCFC-22 replacement with drop-in and retrofit HFC refrigerants in a two-stage refrigeration plant for low temperature. International Journal of Refrigeration 2012, 35 (4), 810-816.

Oruç, V.; Devecioğlu, A. G.; Berk, U.; Vural, İ., Experimental comparison of the energy parameters of HFCs used as alternatives to HCFC-22 in split type air conditioners. International Journal of Refrigeration 2016, 63, 125-132.

Wang, F.; Wang, F.; Fan, X.; Lian, Z., Experimental study on an inverter heat pump with HFC125 operating near the refrigerant critical point. Applied Thermal Engineering 2012, 39, 1-7.

Arora, A.; Sachdev, H. L., Thermodynamic analysis of R422 series refrigerants as alternative refrigerants to HCFC22 in a vapour compression refrigeration system. International Journal of Energy Research 2009, 33 (8), 753-765.

Saeed, M. U.; Qureshi, S. R.; Hashmi, K. J.; Khan, M. A.; Danish, S. N., Performance assessment of alternate refrigerants for retrofitting R22 based air conditioning system. Thermal Science 2018, 22 (2), 931-941.

Devecioğlu, A. G.; Oruç, V., The experimental comparison of environmental impacts of some hfc's used instead of hfc-22. Isi Bilimi Ve Teknigi Dergisi/ Journal of Thermal Science and Technology 2016, 36 (1), 99-105.

Subiantoro, A.; Ooi, K. T.; Junaidi, A. Z., Performance and suitability comparisons of some R22 possible substitute refrigerants. In 8th International Conference on Compressors and their Systems, Woodhead Publishing: 2013; pp 67-76.

Hari Sankar, R.; Basnath, S.; Ajay Ghosh, K. J.; Sivan, M.; Vyshak Dileep, K., Research on environment friendly alternatives for R22, R12 and R409A refrigerants. International Journal of Recent Technology and Engineering 2019, 8 (1 Special Issue 4), 265-271.

Shaik, S. V.; Babu, T. P. A., Theoretical Performance Investigation of Vapour Compression Refrigeration System Using HFC and HC Refrigerant Mixtures as Alternatives to Replace R22. Energy Procedia 2017, 109, 235-242.
88. Saengsikhiao, P., Taweekun, J., Maliwan, K., Sae-ung, S., Theppaya, T. (2020a). The improvement of energy efficiency for refrigeration system in Thailand convenience store by digital scroll compressor. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 74(1), 144–150. DOI 10.37934/arfmts.74.1.144150.

89. Saengsikhiao, P., Juntakan, T., Kittinan, M., Somchai, S., Thanansak, T. (2020). The replacement of the R404A refrigeration system with the environmentally friendly R448A, to improve convenience store energy efficiency in Thailand. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 75(1), 137–146. DOI 10.37934/arfmts.75.1.137146.

90. Saengsikhiao, Piyanut, Juntakan Taweekun, Kittinan Maliwan, Somchai Sae-ung, and Thanansak Theppaya. "The Performance Simulation of the New R463A HFC-HFO-Carbon Dioxide Refrigerant with lower GWP, as an Alternate Option for the R404A Refrigeration System." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 76, no. 1 (2020): 113-123.

91. Saengsikhiao, P., Taweekun, J., Maliwan, K., Sae-ung, S., & Theppaya, T. (2021). Development of Environmentally Friendly and Energy Efficient Refrigerants for Refrigeration Systems. Energy Engineering, 118(2), 411–433.

List of Tables

Table 1. Properties of R170, R290, R600, R600a.

Condition	LT	MT	HT	LT	MT	HT	LT	MT	HT
Refrigerant	R170 [58]	R290 [59]	R600 [60]						
Formula	C2H6	C3H8	C4H10						
Chemical name	Ethane	Propane	Butane						
Boiling point (°C)	-88.7	-42.1	-0.5						
Critical Pressure (kPa)	4872	4251	3796						
Critical Temperature (°C)	32.17	96.74	151.98						
ODP	0	0	0						
GWP	3	3	3						
Class	A3	A3	A3						
Lubricant type	MO/POE	MO/POE	MO/POE						
Qevap (kJ/kg)	N/A	N/A	N/A	388.96	240.37	223.89	235.72	261.99	255.88
Qcond (kJ/kg)	N/A	N/A	N/A	221.85	349.48	314.59	400.21	371.49	348.29
Work (kJ/kg)	N/A	N/A	N/A	221.85	109.11	90.70	164.50	109.51	92.41
COPc	N/A	N/A	N/A	1.33	2.20	2.47	1.43	2.39	2.77
Evaporator Pressure (kPa)	N/A	N/A	N/A	157.70	385.90	623.90	26.20	80.20	145.60
Condenser Pressure (kPa)	N/A	N/A	N/A	1653.10	1803.10	2269.40	484.30	535.40	705.00
Temperature Point	Air Conditioning and Heat Pump	Refrigeration							
-------------------	-------------------------------	---------------							
	Heating	Cooling	Low	Medium	High				
Suction dew point (°C)	-15.0	10.0	-31.5	-6.5	7.0				
Discharge dew point (°C)	35.0	46.0	40.5	43.5	54.5				
Suction return gas temperature (°C)	-4.0	21.0	4.5	18.5	18.5				
Superheat (K)	11.0	11.0	11.0	11.0	11.0				
Subcooling (K)	0.0	0.0	0.0	0.0	0.0				
Table 4. Properties of R22, R417A and R417B

Condition	LT	MT	HT	LT	MT	HT	LT	MT	HT
Refrigerant	R22 [87]	R417A [78]	R417B [79]						
Composition Mass percentage	100	46.6/60/3.4	79/18.3/2.7						
Boiling point (°C)	-40.80	-39.10	-45.20						
Critical Pressure (kPa)	4,990	4,036	3,737						
Critical Temperature (°C)	96	87	74						
ODP	0.055	0	0						
GWP	1,600	1,950	3,027						
Class	A1	A1	A1						
Lubricant type	MO	MO/AB/POE	MO/POE						
Qevap (kJ/kg)	138.7	144.1	134.4	101.7					
Qcond (kJ/kg)	235.2	205.7	185.3	170.6	152.5	134.1	139.2	123.8	
Work (kJ/kg)	96.50	61.63	50.88	78.39	50.79	41.74	68.02	43.93	38.21
COPc	1.44	2.34	2.64	1.18	2.00	2.21	1.05	1.82	1.57
Evaporator Pressure (kPa)	1,831	2,017	2,572	1,720	1,889	2,424	2,114	2,312	3,209
Condenser Pressure (kPa)	90	60	70	60	90	60	90	60	40
Evaporator Temp glide (°C)	0.00	0.00	0.00	-2.00	-2.10	-1.80	-1.50	-1.50	-1.00
Condenser Temp glide (°C)	0.00	0.00	0.00	2.60	2.50	2.10	1.60	1.50	0.90

Table 5. Properties of R422A, R422B and R422C

Condition	LT	MT	HT	LT	MT	HT	LT	MT	HT
Refrigerant	R422A [92]	R422B [93]	R422C [94]						
Composition	100	100	100	100	100	100	100	100	100
Refrigerant	R422A [80]	R422B [81]	R422C [82]						
-------------	------------	------------	------------						
Composition	R125/R134a/R600a	R125/R134a/R600a	R125/R134a/R600a						
Mass percentage	85.1/11.5/3.4	55/42/3	82/15/3						
Boiling point \(^\circ\text{C}\)	-46.80	-41.59	-46.20						
Critical Pressure (kPa)	3,665	3,857	3,696						
Critical Temperature \(^\circ\text{C}\)	72	82	72						
ODP	0	0	0						
GWP	2,530	2,526	3,085						
Class	A1	A1	A0						
Lubricant type	MO/AB/POE	MO/POE	MO/POE						
Qevap (kJ/kg)	65.84	88.62	N/A						
Qcond (kJ/kg)	131.32	135.61	N/A						
Work (kJ/kg)	65.48	46.99	N/A						
COPc	1.01	-2.10	N/A						
Evaporator Pressure (kPa)	178.40	385.30	N/A						
Evaporator Condenser Pressure (kPa)	2,233.	2,149.	N/A						
Evaporator Temp glide \(^\circ\text{C}\)	-1.10	-2.10	N/A						
Condenser Temp glide \(^\circ\text{C}\)	1.00	2.00	N/A						

Table 6. Properties of R422D, R424A and R437A
Condition	LT	MT	HT	LT	MT	HT
Refrigerant	R438A [86]			R453A [50]		
Composition	R125/134A/R32/R600/R601a			A		
Mass percentage	45/44.2/8.5/1.7/0.6			20/20/53.8/5/0.6/0.6		
Boiling point (°C)	-42.61			-42.20		
Critical Pressure (kPa)	4,179			4,530		
Critical Temperature (°C)	84			88		
ODP	0			0		
GWP	2,265			1,765		
Class	A0			A1		
Lubricant type	MO/POE			MO/POE		
Qe vap (kJ/kg)	103.36	112.02	101.50	184.91	178.36	165.49
Qcond (kJ/kg)	188.79	167.29	146.94	312.00	255.92	228.96
Work (kJ/kg)	85.43	55.28	45.44	127.56	77.56	63.47
COPc	1.21	2.03	2.23	1.45	2.30	2.61
Evaporator Pressure (kPa)	128.70	359.00	616.00	121.00	342.10	595.70
Condenser Pressure (kPa)	1,901.3	2,089.9	2,675.8			
Evaporator Temp glide (°C)	-2.80	-3.00	-2.70	-5.20	-5.10	-4.70
List of Figures

Fig 1. Proportions of energy use in Taiwanese convenience stores [6].

Fig 2. Examples of energy savings in refrigeration systems [7].
Fig 3 Evolution of refrigerants [8,9].

![Evolution of Refrigerants Chart]

Fig 4. Hydrofluorocarbon (HFC) phase-down schedule (Co2e %) [10].

![HFC Phase-Down Schedule Graph]

Fig 5. Top refrigerants in food industry [9].

![Top Refrigerants Pie Chart]
Fig 6. Cost of refrigerant [43].

Fig 7. Refrigerant classification [2].
Fig 8. Normal boiling point of all refrigerants

![Boiling point (°C)](image)

Fig 9. GWP of all refrigerants.

![GWP](image)

Fig 10. Refrigerant effects of all refrigerants

![Q_{evap} (kJ/kg)](image)

Fig 11. Heat rejection of all refrigerants.
Fig 12. Refrigerant work of all refrigerants.

Fig 13. Evaporator pressure of all refrigerants.

Fig 14. Condenser pressure of all refrigerants.
Fig 15. Cooling coefficient of performance (COPc) for all refrigerants.