Evaluation of Association of HNF1B Variants with Diverse Cancers: Collaborative Analysis of Data from 19 Genome-Wide Association Studies

Citation
Elliott, Katherine S., Eleftheria Zeggini, Mark I. McCarthy, Julius Gudmundsson, Patrick Sulem, Simon N. Stacey, Steinunn Thorlacius, et al. 2010. Evaluation of association of HNF1B variants with diverse cancers: collaborative analysis of data from 19 genome-wide association studies. PLoS ONE 5(5): e10858.

Published Version
doi:10.1371/journal.pone.0010858

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:4621713

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story.

Accessibility
Evaluation of Association of HNF1B Variants with Diverse Cancers: Collaborative Analysis of Data from 19 Genome-Wide Association Studies

Katherine S. Elliott1, Eleftheria Zeggini1,2, Mark I. McCarthy1,3, Julius Gudmundsson4, Patrick Sulem4, Simon N. Stacey4, Steinunn Thorlacus4, Laufey Amundadottir5, Henrik Grönberg6, Jianfeng Xu7,8, Valerie Gabrielou9, Rosalind A. Eeles10, David E. Neal11, Jenny L. Donovan12, Freddie C. Hamdy13, Kenneth Muir14, Shih-Jen Hwang15, Margaret R. Spitz16, Brent Zanke17,18, Luis Carvajal-Carmona1, Kevin M. Brown19, Australian Melanoma Family Study Investigators*, Nicholas K. Hayward20, Stuart Macgregor20, Ian P. M. Tomlinson1, Mathieu Lemire17, Christopher I. Amos16, Joanne M. Murabito21, William B. Isaacs22, Douglas F. Easton23, Paul Brennan9, The PanScan Consortium**, Rosa B. Barkardottir24,25, Daniel F. Gudbjartsson4, Thorunn Rafnar4, David J. Hunter26, Stephen J. Chanock5, Kari Stefansson4, John P. A. Ioannidis27,28.

1 Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom, 2 Applied Statistical Genetics, Wellcome Trust Sanger Institute, University of Cambridge, Cambridge, United Kingdom, 3 Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom, 4 deCODE Genetics, Reykjavik, Iceland, 5 Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America, 6 Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden, 7 Center for Cancer Genomics, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America, 8 Center for Human Genomics, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America, 9 Genetic Epidemiology Group, International Agency for Research on Cancer (IARC), Lyon, France, 10 Oncogenetics Team, The Institute of Cancer Research, Sutton, United Kingdom, 11 Department of Oncology, University of Cambridge, Cambridge, United Kingdom, 12 Department of Social Medicine, University of Bristol, Bristol, United Kingdom, 13 Nuffield Department of Surgery, University of Oxford, Oxford, United Kingdom, 14 Health Sciences Research Institute, University of Warwick, Coventry, United Kingdom, 15 Framingham Study, National Heart, Lung, and Blood Institute, Bethesda, Maryland, United States of America, 16 Department of Epidemiology, M.D. Anderson Cancer Center, Houston, Texas, United States of America, 17 Ontario Institute for Cancer Research, MaRS Centre, Toronto, Ontario, Canada, 18 Ottawa Health Research Institute, University of Ottawa, Ottawa, Ontario, Canada, 19 Integrated Cancer Genomics Division, The Translational Genomics Research Institute, Phoenix, Arizona, United States of America, 20 Queensland Institute of Medical Research, Royal Brisbane Hospital, Brisbane, Queensland, Australia, 21 Section of General Internal Medicine, Harvard School University School of Medicine, Boston, Massachusetts, United States of America, 22 The Brady Urological Institute, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America, 23 Cancer Research UK Genetic Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom, 24 Department of Pathology, Landspitali-University Hospital of Iceland, Reykjavik, Iceland, 25 Faculty of Medicine, University of Iceland, Reykjavik, Iceland, 26 Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America, 27 Department of Hygiene and Epidemiology, University of Ioannina School of Medicine and Biomedical Research Institute, Foundation for Research and Technology-Hellas, Ioannina, Greece, 28 Center for Genetic Epidemiology and Modelling, Tufts University School of Medicine, Boston, Massachusetts, United States of America.

15 for both); and 1.00 (0.97, 1.04) for all other cancers. No malignancy other than prostate cancer had a nominally statistically significant association.

Abstract

Background: Genome-wide association studies have found type 2 diabetes-associated variants in the HNF1B gene to exhibit reciprocal associations with prostate cancer risk. We aimed to identify whether these variants may have an effect on cancer risk in general versus a specific effect on prostate cancer only.

Methodology/Principal Findings: In a collaborative analysis, we collected data from GWAS of cancer phenotypes for the frequently reported variants of HNF1B, rs4430796 and rs7501939, which are in linkage disequilibrium ($r^2 = 0.76$, HapMap CEU). Overall, the analysis included 16 datasets on rs4430796 with 19,640 cancer cases and 21,929 controls; and 21 datasets on rs7501939 with 26,923 cases and 49,085 controls. Malignancies other than prostate cancer included colorectal, breast, lung and pancreatic cancers, and melanoma. Meta-analysis showed large between-dataset heterogeneity that was driven by different effects in prostate cancer and other cancers. The per-T2D-risk-allele odds ratios (95% confidence intervals) for rs4430796 were 0.79 (0.76, 0.83) per G allele for prostate cancer ($p < 10^{-15}$ for both); and 1.03 (0.99, 1.07) for all other cancers. Similarly for rs7501939 the per-T2D-risk-allele odds ratios (95% confidence intervals) were 0.80 (0.77, 0.83) per T allele for prostate cancer ($p < 10^{-15}$ for both); and 1.00 (0.97, 1.04) for all other cancers. No malignancy other than prostate cancer had a nominally statistically significant association.

Conclusions/Significance: The examined HNF1B variants have a highly specific effect on prostate cancer risk with no apparent association with any of the other studied cancer types.
Introduction

A large number of epidemiological studies have suggested correlations between type 2 diabetes (T2D) and various cancers[1,2,3]. Most evidence suggests an inverse correlation between T2D and prostate cancer[4,5,6] although not all studies agree on this[7]. Several studies also suggest positive correlations between other cancers and T2D[1,2,3]. It is unclear whether these correlations, if true, represent causal relationships and whether they may also reflect some shared genetic background. Recently, with the advent of genome-wide association studies (GWAS), a large number of genetic variants have been identified that confer susceptibility to T2D or specific types of cancer[8]. An interesting observation has been that specific variants in the HNF1B gene (formerly TCF2) have been demonstrated to be associated both with the risk of prostate cancer[9,10,11] and the risk of T2D[9,12] with the effects being in the opposite direction for these two phenotypes.

HNF1B was previously known to be mutated in individuals with maturity-onset diabetes of the young type 5 (MODY 5)[13], but a biological explanation of the impact of the identified common variants from GWAS on cancer phenotypes in Caucasian populations can be found in the respective primary publications of these GWA studies[14,15,16].

Results

Database of contributed information

All the originally contacted investigators of cancer-related GWA studies agreed to participate in this collaborative analysis, with the exception of the investigators of 3 GWA studies [14,15,16] (1 on breast cancer, 1 on colorectal cancer and 1 on neuroblastoma), 1 of which had no data on the requested variants, as they had used an Affymetrix platform[15]. Investigators who agreed to participate in the collaborative analysis contributed data on 3 datasets for rs4430796 and 19 datasets for rs7501939 [11,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34]. For 5 datasets, data were available only for the latter polymorphism either because the polymorphism was not available on the platform used or the SNP failed quality control criteria.

The contributing teams and datasets are shown in Table 1 with data on the number of cases and controls for each polymorphism and for each type of cancer. Datasets from the Framingham cohort contained imputed data for both polymorphisms since an Affymetrix platform had been used, rs4430796 data from the M.D. Anderson Cancer Center was imputed since this SNP had not been directly genotyped, and melanoma data from AMFS and Q-MEGA contained counts from pooling experiments, otherwise all other datasets had direct genotyping on individual participants.

Detailed demographic and other characteristics of the study populations can be found in the respective primary publications of these GWA studies [14,15,16,17,18,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34].

Overall, the collaborative analysis included data on rs4430796 for 19,640 cancer cases and 21,929 controls; for prostate cancer there were 11,145 cases and 9,650 controls, while for all other cancers there were 8,495 cases and 12,279 controls. The collected data on rs7501939 included 26,923 cases and 49,085 controls; for prostate cancer there were 12,898 cases and 40,371 controls, while for the other cancers there were 14,025 cases and 35,714 controls.

Funding: API is supported by funding for the Tufts Clinical and Translational Science Institute and the Center for Genetic Epidemiology and Modeling is supported by grant UL1 RR025752 from the National Institutes of Health. KSE is supported by the Wellcome Trust (WT075491/Z/04/Z). NH and SM were funded by the Australian National Health and Medical Research Council (NHMRC) and the National Institutes of Health (grant R01-CAB8363). HG is supported by Swedish Cancer Society (Cancerfonden), Swedish Research Council, and Linneus grant “Prediction and prevention of breast cancer and prostate cancer”. RE and KM are supported by Cancer Research UK Grant CS047/A3835; CS047/A7357, The Institute of Cancer Research and The Everyman Campaign and The Prostate Cancer Research Foundation. The authors acknowledge support from the NIHR to the National Institute of Cancer Research and The Royal Marsden NHS Foundation Trust. DEN, JLD and FCH would like to acknowledge the support of the National Cancer Research Institute (NCRI) formed by the Department of Health, the Medical Research Council and Cancer Research UK. The Prostate Testing for Cancer and Treatment (ProTect) study is funded by the UK National Institute for Health Research Health Technology Assessment Programme (projects 96/20/06, 96/00/99). The NCI provided funding through ProBMP (Prostate Mechanisms of Progression and Treatment) and this support is gratefully acknowledged. The Cambridge prostate biorepository also received funding from the NIHR Comprehensive Biomedical Research Centre Grant. This support is gratefully acknowledged. The views and opinions expressed therein are those of the authors and are not necessarily those of the funding bodies. deCODE acknowledges grant support from the 6th Framework Program of the EU: contract 018827 (Polygene). The Australian Melanoma Family Study (AMFS) was supported by grants from the NHMRC, Cancer Councils of Queensland, NSW and Victoria, and by National Institutes of Health grant R01-CAB83115 to the GenoMEl consortium. The Framingham Heart Study (FHS) The Framingham Heart Study of the National Heart Lung and Blood Institute’s Framingham Heart Study Contract No. N01-HC-25195 and its contract with Affymetrix, Inc for genotyping services (Contract No. N02-HL-6-4278). Analyses reflect intellectual input and resource development from the Framingham Heart Study investigators participating in the SNP Health Association Resource (SHArE) project. A portion of this research was conducted using the Linux Cluster for Genetic Analysis (LinGA-II) funded by the Robert Dawson Evans Endowment of the Department of Medicine at Boston University School of Medicine and Boston Medical Center.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: joisannid@cc.uoi.gr

Acknowledgments: We thank the following institutions and organizations for support of research:

ProMPT (Prostate Mechanisms of Progression and Treatment) and this support is gratefully acknowledged. The Cambridge prostate biorepository also received funding from the NIHR Comprehensive Biomedical Research Centre Grant. This support is gratefully acknowledged. The views and opinions expressed therein are those of the authors and are not necessarily those of the funding bodies. deCODE acknowledges grant support from the 6th Framework Program of the EU: contract 018827 (Polygene). The Australian Melanoma Family Study (AMFS) was supported by grants from the NHMRC, Cancer Councils of Queensland, NSW and Victoria, and by National Institutes of Health grant R01-CAB83115 to the GenoMEl consortium. The Framingham Heart Study (FHS) The Framingham Heart Study of the National Heart Lung and Blood Institute’s Framingham Heart Study Contract No. N01-HC-25195 and its contract with Affymetrix, Inc for genotyping services (Contract No. N02-HL-6-4278). Analyses reflect intellectual input and resource development from the Framingham Heart Study investigators participating in the SNP Health Association Resource (SHArE) project. A portion of this research was conducted using the Linux Cluster for Genetic Analysis (LinGA-II) funded by the Robert Dawson Evans Endowment of the Department of Medicine at Boston University School of Medicine and Boston Medical Center.

HNF1B Variants and Cancer Risk

A definitive answer on whether HNF1B variants modulate also the risk of other malignancies, or show specificity for prostate cancer, requires large sample sizes. Here we present the results of a large collaborative meta-analysis of HNF1B, rs4430796 and rs7501939, which have the most consistent associations with both prostate cancer and T2D. Relevant data were collected on the two variants from GWAS on cancer phenotypes in Caucasian populations in order to examine whether they have an effect on cancer risk in general, on few specific cancers, or only on prostate cancer.

The meta-analysis of all datasets (Table 2, Figure 1) showed a per T2D risk allele association with both rs4430796 (G allele OR 0.91 [95% CI: 0.88, 0.94] p = 3e-10) and rs7501939 (T allele
OR 0.91 [95% CI: 0.88, 0.94] p = 5×10⁻¹⁰ according to fixed effects calculations, while by random effects calculations there was nominal significance (OR 0.94 [95% CI: 0.88, 1.00], p = 0.033 for rs4430796 and 0.93 [95% CI: 0.86, 1.01], p = 0.07 for rs7501939). The reason for this diversity is that there was very large between-study heterogeneity in the effect sizes (I² of 82% [95% CI: 73-89%] and 80% [95% CI: 70-86%], respectively, for the two polymorphisms respectively and random effects estimates were thus identical to fixed effects estimates. The summary OR was 1.03 and 1.00 for the two polymorphisms (Q-test p-value <0.001 for both polymorphisms), and this makes the fixed effects calculations less reliable. Results were qualitatively similar when we increased the variance in deCODE, FHS, and IARC estimates to account for the overlapping control group (not shown).

The heterogeneity was largely driven by the diversity in the effect sizes between prostate cancer and all other cancers. A meta-analysis limited to prostate cancer datasets gave consistent associations with both rs4430796 (OR per copy of T2D risk allele (A) 0.79 [95% CI: 0.76, 0.83] p<10⁻¹⁵ by fixed effects and 0.79 [95% CI: 0.74, 0.84] p = 10⁻¹⁰ by random effects), and rs7501939 (OR per copy of T2D risk allele (T) 0.80 [95% CI: 0.77, 0.83] p<10⁻¹⁵ by fixed effects and 0.79 [95% CI: 0.74, 0.85], p = 2×10⁻¹⁰ by random effects) (Table 2). There was some residual between-study heterogeneity even within the prostate cancer datasets (I² of 42% [95%CI: 0-79%] and 56% [95% CI: 0-82%], respectively, for the two polymorphisms; Q-test p-value 0.037 and 0.14, respectively), although the heterogeneity pertained only to the exact magnitude of the genetic effects and a nominally statistically significant association was seen in each of the datasets except for the Framingham study where the number of prostate cancer cases was more limited.

Conversely, the results for all other cancers suggested no significant association and results were consistent across studies. The summary OR was 1.03 and 1.00 for the two polymorphisms respectively (p = 0.14 and 0.81 by fixed effects) and the 95% CIs excluded ORs deviating more than 7% from the null (OR = 1.00) for rs4430796 and more than 4% from the null for rs7501939 (Table 2). The Q-test p-value was 0.99 and 0.45 for the two polymorphisms respectively and random effects estimates were thus identical to fixed effects estimates.

There was also no convincing evidence for an association between either of the two polymorphisms and any of the other cancers (besides prostate cancer), when each cancer type was evaluated separately. Point estimates were in the opposite direction (odds ratio 1.03–1.05) for pancreatic and lung cancer, but were not nominally statistically significant (Table 2). The difference between the prostate cancer and other cancers’ effect estimates was beyond chance (p<0.05) for both polymorphisms.

Table 1. Characteristics of datasets included in the collaborative meta-analysis.

Study Centre	Cancer	Genotyping platform(s)	rs4430796 #cases	rs4430796 #controls	rs7501939 #cases	rs7501939 #controls
*ARCTIC	colorectal[23]	Sequenom homogenous MassExtend (in house)	1,079	1,089	1,075	1,087
*AMFS	melanoma[17,24]	Illumina 550K (pooled)	490	427	490	427
Cambridge	breast [33]	Perlegen	387	363	387	363
*CGEMS	prostate[11,25]	Illumina 550K	4,960	5,021	4,869	4,930
*CAPS	prostate[26]	Sequenom (in house)	2,874	1,708	2,865	1,707
*CORGI	colorectal[27]	Illumina 550K	n/a	n/a	900	908
deCODE	breast[28]	Illumina 300K	n/a	n/a	1,815	30,742
deCODE	colorectal[29]	Illumina 300K	n/a	n/a	988	30,742
deCODE	lung[29,30]	Illumina 300K	n/a	n/a	651	30,742
deCODE	prostate[9,31,32]	Illumina 300K	n/a	n/a	1,619	30,742
*FHS	breast[34]	Affymetrix 500K and MIPS 50K combined	182	852	182	852
*FHS	colorectal[34]	Affymetrix 500K and MIPS 50K combined	108	1,498	108	1,498
*FHS	lung[34]	Affymetrix 500K and MIPS 50K combined	90	1,498	90	1,498
*FHS	prostate[34]	Affymetrix 500K and MIPS 50K combined	190	646	190	646
*IARC	lung[20,21]	Illumina 300K	641	2,435	1,797	2,378
*JHH	prostate[26]	Sequenom (in house)	1,512	478	1,521	479
*MDACC	lung[22]	Illumina 317K	1,152	1,137	1,152	1,137
*PANSCAN	pancreatic Stage 1[19,48]	Illumina 500K and 610K	1,754	1,796	1,757	1,796
*PANSCAN	pancreatic Stage 2[19,48]	Illumina 500K and 610K	1,748	1,818	1,769	1,841
*Q-MEGA	melanoma[24]	Illumina 550K (pooled)	864	864	864	864
*UKGPCS	prostate[18]	Illumina 550K	1,609	1,797	1,834	1,867

Unless otherwise indicated all data is from direct genotyping. *ARCTIC (Assessment of Risk for Colorectal Tumors in Canada), AMFS (Australian Melanoma Family Study), CGEMS (Cancer Genetics Markers of Susceptibility), CAPS (Cancer of the Prostate in Sweden), CORGI (Colorectal Tumour Gene Identification), FHS (Framingham Heart Study), IARC (International Agency for Research on Cancer), JHH (Johns Hopkins Hospital), MDACC (M.D. Anderson Cancer Center, Texas), PANSCAN (Pancreatic Cancer Cohort Consortium), Q-MEGA (Queensland study of Melanoma: Environment and Genetic Associations), UKGPCS (UK Genetic Prostate Cancer Study). n/a: no available data; i: imputed; p: pooled. doi:10.1371/journal.pone.0010858.t001
Discussion

The current collaborative analysis documents that both rs4430796 and rs7501939 have robust support for association with prostate cancer, while we did not observe any convincing evidence for an association of any of the other cancers examined with either polymorphism. When data from all other cancers, excluding prostate cancer, were combined the summary effects had 95% CIs that excluded even subtle associations. Apart from prostate cancer, when other datasets for each individual cancer type was combined, the 95% CIs consistently excluded associations with modest effects. This would suggest that the effects mediated by these polymorphisms are specific to T2D and prostate cancer and they do not involve any other cancer types.

The HNF1B gene encodes a transcription factor and it was initially identified as a MODY gene[13]. Subsequent studies have suggested that mutations in this gene may also be related to renal disease[35] and chromophobe renal cell carcinoma[36]. No GWAS evaluating kidney cancer were included in our analysis, the pleiotropic effects on diverse phenotypes will require very large studies, given the generally subtle effects involved. Collaborative studies on cancer phenotypes published as of May 20, 2008. We also performed additional PubMed searches to identify whether any additional GWA studies on cancer phenotypes had been published until then. We focused on solid cancers, excluding hematologic malignancies. Given that these GWAS did not include any studies on pancreatic cancer (of special interest, given the association with T2D), we also identified GWAS on pancreatic cancer that had not been published by that time, so as to ensure their inclusion.

Eligible GWA investigations and data

We used the NHGRI catalogue of published GWA studies[44], a comprehensive database of GWA investigations to identify GWA studies on cancer phenotypes published as of May 20, 2008. We also performed additional PubMed searches to identify whether any additional GWA studies on cancer phenotypes had been published until then. We focused on solid cancers, excluding hematologic malignancies. Given that these GWAS did not include any studies on pancreatic cancer (of special interest, given the association with T2D), we also identified GWAS on pancreatic cancer that had not been published by that time, so as to ensure their inclusion.

Table 2. Summary of results for association between rs4430796 and rs7501939 and diverse cancer types.

Cancer type	rs4430796	rs4430796	rs4430796	rs7501939	rs7501939	rs7501939
	Studies (cases, controls)	OR (95% CI)	I² (95% CI)	Studies (cases, controls)	OR (95% CI)	I² (95% CI)
All cancers	16 (19,640, 21,929)*	0.91 (0.88, 0.94)	82 (73, 89)	21 (26,923, 49,085)*	0.92 (0.90, 0.95)	80 (70, 86)
Prostate	5 (11,145, 9,650)	0.79 (0.76, 0.83)	42 (0, 79)	6 (12,898, 40,371)	0.80 (0.77, 0.83)	56 (0, 82)
All Others	11 (8,495, 12,279)*	1.03 (0.99, 1.07)	0 (0, 60)	15 (14,025, 43,893)*	1.00 (0.97, 1.04)	0 (0, 54)
Breast	2 (569, 1,215)	1.00 (0.84, 1.20)	n/a	3 (2,384, 31,957)	0.97 (0.91, 1.04)	0 (0, 90)
Lung	3 (1,883, 5,070)	1.05 (0.98, 1.13)	0 (0, 90)	4 (3,690, 35,755)	1.03 (0.96, 1.10)	0 (0, 85)
Colorectal	2 (1,187, 2,587)	1.01 (0.90, 1.14)	n/a	4 (3,071, 34,235)	1.01 (0.94, 1.08)	0 (0, 85)
Melanoma	2 (1,354, 1,291)	0.98 (0.87, 1.01)	n/a	2 (1,354, 1,291)	1.01 (0.90, 1.13)	n/a
Pancreatic	2 (3,502, 3,614)	1.04 (0.98, 1.11)	n/a	2 (3,526, 3,637)	1.03 (0.97, 1.10)	n/a

OR: odds ratio, CI: confidence interval, n/a: not applicable (heterogeneity I² confidence intervals are not calculated when there are only 2 studies). Odds ratios are based on fixed effects calculations. When point estimates or confidence intervals differ by over 1% in random effects calculations, random effects results are mentioned in the text. * the common control groups of deCODE and FHS are counted only once.

doi:10.1371/journal.pone.0010858.t002
Figure 1. Association of rs4430796 and rs7501939 with diverse cancer types. Panel A shows results for rs4430796 and panel B shows results for rs7501939. Each study is shown by its odds ratio and 95% confidence intervals. Prostate cancer studies appear on the top and other cancer studies follow in alphabetical order. For the abbreviations of the names of the studies see Table 1. The summary diamond at the bottom corresponds to the fixed effects summary. Weight indicates the relative proportion of the total evidence found in each study (the weight is inversely proportional to the variance).

doi:10.1371/journal.pone.0010858.g001
We communicated with the corresponding and principal investigators of all of these studies to request their participation in the collaborative meta-analysis. The investigators of these studies were asked to contribute relevant data on genotype frequencies in cancer cases and non-cancer controls for the *HNF1B* variants, rs4430796 and rs7501939. The risk alleles for prostate cancer are A and C for rs4430796 and rs7501939 respectively. The risk alleles for T2D are G and T for rs4430796 and rs7501939 respectively. The two SNPs have modestly high LD in Caucasians, but low LD in Africans ($r^2 = 0.77$ and 0.22 in CEU and YRI, respectively). Investigators were requested to provide all GWA data that they had obtained for evaluation of any cancer phenotype, including any additional unpublished datasets. Additional genotyping for the two specific variants was encouraged, when a GWA platform had been used that did not directly genotype these polymorphisms (e.g. Affymetrix or Perlegen rather than Illumina). When a study had data on more than one cancer type, data were requested to be provided separately for each cancer type. Investigators were asked to provide also information and clarifications about the design of their studies, and to ensure that population stratification and cryptic relatedness had been appropriately addressed and appropriate quality controls were available for the genotyping. All GWAS investigations that contributed data on these SNPs used stringent QC standards (as described in detail in their original publications) and the two SNPs fulfilled these standards. Approval from local institutional review boards and steering committees was obtained, as deemed necessary for each study by its investigators. The contributed data were checked for completeness and with logical queries and any missing or unclear information was clarified through communication with the contributing investigators.

Meta-analysis

For each SNP, we performed meta-analyses including the data from all eligible cancer studies (regardless of the specific cancer phenotype addressed) and also subgroup meta-analyses, with each subgroup limited to studies addressing a specific cancer phenotype. A separate analysis compared the results of the association for subgroup limited to studies addressing a specific cancer phenotype. The risk alleles for T2D are G and T for rs4430796 and rs7501939 respectively. The risk alleles for prostate cancer are A and C for rs4430796 and rs7501939 respectively. The meta-analysis had 95% or higher power to detect an association of overall cancer risk, prostate cancer risk, or other cancer risk. Reported p-values are two-tailed. Analyses were performed in STATA 10.0 (College Station, Texas).

Acknowledgments

Australian Melanoma Family Study investigators: Graham J Maun1, John L. Hopper2, Joanne F Aitken3, Richard F Kefford3, Graham G Giles4, Bruce K Armstrong4.

1Westmead Institute of Cancer Research, University of Sydney at Westmead Millennium Institute and Melanoma Institute Australia, Westmead, New South Wales, Australia. 2Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, School of Population Health, University of Melbourne, Melbourne, Victoria, Australia. 3Viertel Centre for Research in Cancer Control, The Cancer Council Queensland, Brisbane, Queensland, Australia. 4Cancer Epidemiology Centre, The Cancer Council Victoria, Carlton, Victoria, Australia. 5School of Public Health, University of New South Wales, Australia. 6Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA. 7Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA. 8Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MD, USA. 9Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. 10Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital, Harvard School of Public Health, Boston, MA, USA. 11Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA. 12Core Genotyping Facility, SAIC-Frederick Inc., Frederick, MD, USA. 13Bioinformatic Consulting Services, Gaithersburg, MD, USA. 14Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY, USA. 15Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA. 16Department of Gastrointestinal Medicine, Mount Sinai School of Medicine, New York, NY, USA. 17National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands and Department of Gastroenterology and Hepatology, University Medical Centre Utrecht, Utrecht, The Netherlands. 18Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada. 19Department of Laboratory Medicine/Pathology, School of Medicine, University of Minnesota, Minneapolis, MN, USA. 20Prevention and Research Center, Mercy Medical Center, Baltimore, MD, USA. 21Division of Epidemiology & Biostatistics, University of California San Francisco, San Francisco, CA, USA. 22Division of Epidemiology, American Cancer Society, Atlanta, GA, USA. 23Department of Oncology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA. 24Department of Epidemiology, the Bloomberg School of Public Health, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins Medical Institutions, Baltimore, MD, USA. 25Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA. 26Department of Gastrointestinal Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA. 27Group Health Center for Health Studies, Seattle, WA, USA. 28Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA. 29Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA. 30School of Medicine, Duke University, Durham, NC, USA. 31Department of Epidemiology, University of California, San Francisco, CA, USA. 32Dana-Farber Cancer Institute, Boston, MA, USA. 33Department of Public Health, University of California, Berkeley, CA, USA. 34Department of Preventive Medicine and Aging, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA. 35Department of Laboratory Medicine/Pathology, School of Medicine, University of Minnesota, Minneapolis, MN, USA. 36Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA. 37Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA. 38Inserm, Paris-Sud University, Institut Gustave-Roussy, Villejuif, France. 39Divisions of Preventive Medicine and Aging, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA. 40Department of Epidemiology, American Cancer Society, Atlanta, GA, USA. 41Department of Epidemiology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA. 42Department of Epidemiology, the Bloomberg School of Public Health, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins Medical Institutions, Baltimore, MD, USA. 43National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands and Department of Gastroenterology and Hepatology, University Medical Centre Utrecht, Utrecht, The Netherlands. 44Department of Laboratory Medicine/Pathology, School of Medicine, University of Minnesota, Minneapolis, MN, USA. 45Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA. 46Integrative Epidemiology and Cancer Control, Harvard School of Public Health, Boston, MA, USA. 47Department of Epidemiology, American Cancer Society, Atlanta, GA, USA. 48Department of Epidemiology, American Cancer Society, Atlanta, GA, USA. 49Department of Epidemiology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA. 50Department of Epidemiology, the Bloomberg School of Public Health, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins Medical Institutions, Baltimore, MD, USA. 51Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA. 52Department of Gastrointestinal Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA. 53Group Health Center for Health Studies, Seattle, WA, USA. 54Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA. 55Yale University School of Public Health, New Haven, CT, USA. 56Department of Medicine and Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA. 57Inserm, Paris-Sud University, Institut Gustave-Roussy, Villejuif, France. 58Subsections of Preventive Medicine and Aging, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA. 59Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA. 60Division of Epidemiology, American Cancer Society, Atlanta, GA, USA. 61Department of Epidemiology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA. 62Department of Epidemiology, the Bloomberg School of Public Health, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins Medical Institutions, Baltimore, MD, USA. 63Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA. 64Department of Gastrointestinal Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA. 65Group Health Center for Health Studies, Seattle, WA, USA. 66Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA. 67Yale University School of Public Health, New Haven, CT, USA. 68Department of Medicine and Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA. 69Inserm, Paris-Sud University, Institut Gustave-Roussy, Villejuif, France. 70Subsections of Preventive Medicine and Aging, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA. 71Department of Epidemiology, American Cancer Society, Atlanta, GA, USA. 72Department of Epidemiology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA. 73Department of Epidemiology, the Bloomberg School of Public Health, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins Medical Institutions, Baltimore, MD, USA. 74Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA. 75Department of Gastrointestinal Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA. 76Group Health Center for Health Studies, Seattle, WA, USA. 77Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA. 78Yale University School of Public Health, New Haven, CT, USA. 79Department of Medicine and Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA. 80Inserm, Paris-Sud University, Institut Gustave-Roussy, Villejuif, France. 81Subsections of Preventive Medicine and Aging, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA.
References

1. Inoue M, Iwasaki M, Otani T, Sasazuki S, Noda M, et al. (2006) Diabetes mellitus and the risk of cancer: results from a large-scale population-based cohort study in Japan. Arch Intern Med 166: 1071–1077.

2. Sturin P, Bjork JP, Ferrarini P, Lukanova A, Bergman P, et al. (2007) Prospective study of hyperglycemia and cancer risk. Diabetes Care 30: 561–567.

3. Rousseau MC, Parent ME, Pollak MN, Siemiatycki J (2006) Diabetes mellitus and prostate cancer in a population-based case-control study among men from Montreal, Canada. Int J Cancer 118: 2105–2109.

4. Kasper JS, Giovannucci E (2006) A meta-analysis of diabetes mellitus and the risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 15: 2056–2062.

5. Gong Z, Neuhauser ML, Goodman PJ, Albanes D, Chi C, et al. (2006) Obesity, diabetes, and risk of prostate cancer: results from the prostate cancer prevention trial. Cancer Epidemiol Biomarkers Prev 15: 1977–1983.

6. Salton BA, Chang SC, Wright ME, Kipinas Y, Lawson K, et al. (2007) History of diabetes mellitus and subsequent prostate cancer risk in the NIH-AARP Diet and Health Study. Cancer Causes Control 18: 493–503.

7. Will JC, Vinick J, Calle EE (1999) Is diabetes mellitus associated with prostate cancer incidence and survival? Epidemiology 10: 313–318.

8. Manolio TA, Brooks LD, Collins FS (2008) A HapMap harvest of insights into the genetics of common disease. J Clin Invest 118: 1590–1605.

9. Gudmundsson J, Sulem P, Steinthorsdottir V, Bergthorsson JT, Thorleifsson G, et al. (2007) Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes. Nat Genet 39: 977–983.

10. Sun J, Zheng SL, Wiklund F, Isaacs SD, Purr cellul et al. (2008) Evidence for two independent prostate cancer-risk-associated loci in the HNF1B gene at 17q12. Nat Genet 40: 1155–1158.

11. Thomas G, Jacobs KB, Yeager M, Kraft P, Wacholder S, et al. (2008) Multiple loci identified in a genome-wide association study of prostate cancer. Nat Genet. 34: 587–590.

12. Windeler W, Weedon MN, Graham RR, McCarroll JA, Purcell S, et al. (2007) Evaluation of common variants in the six known maturity-onset diabetes of the young (MODY) genes for association with type 2 diabetes. Diabetes 56: 611–613.

13. Hori kawa Y, Iwasaki N, Hanr M, Furuta H, Hiro kyo Y, et al. (1997) Mutation in hepatocyte nuclear factor-1 beta gene (TCF2) associated with MODY. Nat Genet 17: 314–315.

14. Tenesa A, Farrington SM, Prendergast GJ, Porteous ME, Walker M, et al. (2008) Common sequence variants on chromosome 2p15 and Xp11.22 confer susceptibility to colorectal cancer. Nat Genet. 40: 703–706.

15. Yeager M, Orr N, Hayes RB, Jacobs KB, Kraft P, et al. (2007) Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat Genet 39: 649–654.

16. Duggan D, Zheng SL, Knowlson M, Benitez D, Dimitrov L, et al. (2007) Two genome-wide association studies of aggressive prostate cancer implicate putative prostate tumor suppressor gene DAB2IP. J Natl Cancer Inst 99: 1836–1844.

17. Tomlinson IP, Webb E, Carvajal-Carmona L, Broderick P, Howarth K, et al. (2008) A genome-wide association study identifies colorectal cancer susceptibility loci on chromosomes 10p14 and 8q23.3. Nat Genet 40: 623–630.

18. Stacey SN, Manolescu A, Sulen P, Thorlakson S, Gudjonsson SA, et al. (2008) Common variants on chromosome 8p12 confer susceptibility to estrogen receptor-positive breast cancer. Nat Genet 40: 763–766.

19. Rahi n T, Sulem P, Stacey SN, Geller F, Gudmundsson J, et al. (2009) Sequence variants at the TERT-CLPTM1L locus associate with many cancer types. Nat Genet 41: 221–227.

20. Thorgeirsson TE, Geller F, Sulem P, Rahi n T, Wise A, et al. (2008) A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature 452: 638–642.

21. Gudmundsson J, Sulen P, Manolescu A, Amundadottir LT, Gudbjartsson D, et al. (2007) Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat Genet 39: 631–637.

22. Gudmundsson J, Sulen P, Rafnar T, Berghorston JT, Manolescu A, et al. (2008) Common sequence variants on 11p15 and Xp11.22 confer susceptibility to prostate cancer. Nat Genet 40: 763–766.

23. Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D, et al. (2007) Genome-wide association study association identifies novel breast cancer susceptibility loci. Nature 447: 1087–1093.

24. http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000007. v1

25. Edg ill EL, Bingham C, Eillard S, Hattersley AT (2006) Mutations in hepatocyte nuclear factor-1 beta and their related phenotypes. J Med Genet 43: 84–90.

26. Rebouissou S, Vaisil V, Thomas C, Bellanne-Chatelet L, Bui H, et al. (2005) Germ line hepatocyte nuclear factor alpha and beta mutations in renal cell carcinomas. Hum Mol Genet 14: 603–614.

27. Reber M, Cereghini S (2001) Variant hepatocyte nuclear factor 1 expression in the mouse genital tract. Mech Dev 100: 75–78.
38. Coffinier C, Barra J, Babinet C, Yaniv M (1999) Expression of the vHNF1/ HNF1beta homeoprotein gene during mouse organogenesis. Mech Dev 89: 211–213.
39. Ioannidis JP, Thomas G, Daly MJ (2009) Validating, augmenting and refining genome-wide association signals. Nat Rev Genet 10: 310–329.
40. Yamada H, Penney KL, Takahashi H, Katoh T, Yamano Y, et al. (2009) Replication of prostate cancer risk loci in a Japanese case-control association study. J Natl Cancer Inst 101: 1330–1336.
41. Levin AM, Machiela MJ, Zuhlke KA, Ray AM, Cooney KA, et al. (2008) Chromosome 17q12 variants contribute to risk of early-onset prostate cancer. Cancer Res 68: 6492–6495.
42. Zeggini E, Scott LJ, Saxena R, Voight BF, Marchini JL, et al. (2008) Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet 40: 638–645.
43. Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, et al. (2007) Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316: 1336–1341.
44. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, et al. (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A 106: 9362–9367.
45. Kavvoura FK, Ioannidis JP (2008) Methods for meta-analysis in genetic association studies: a review of their potential and pitfalls. Hum Genet 123: 1–14.
46. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. Bmj 327: 557–560.
47. Ioannidis JP, Patsopoulos NA, Evangelou E (2007) Uncertainty in heterogeneity estimates in meta-analyses. Bmj 335: 557–560.
48. Petersen GM, Amundadottir L, Fuchs CS, Kraft P, Stolzenberg-Solomon RZ, et al. A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q22.1, and 5p15.33. Nat Genet.