Interventional therapies for hepatocellular carcinoma

Jonathon M. Willatt, Isaac R. Francis, Paula M. Novelli, Ranjith Vellody, Amit Pandya, V.N. Krishnamurthy

University of Michigan, 1500 E Medical Center Drive, Ann Arbor, MI 48109, USA

Corresponding address: Dr Jonathon M Willatt, MB ChB, University of Michigan, 1500 E Medical Center Drive, Ann Arbor, MI 48109, USA.
Email: jwillatt@med.umich.edu

Date accepted for publication 27 January 2012

Abstract

Hepatocellular carcinoma is the third most common cause of cancer-related death. In the past few years, staging systems have been developed that enable patients to be stratified into treatment algorithms in a multidisciplinary setting. Several of these treatments involve minimally invasive image-guided therapy that can be performed by radiologists.

Keywords: Hepatocellular carcinoma; radiofrequency ablation; embolization.

Introduction

Hepatocellular carcinoma is the third most common cause of cancer-related deaths worldwide. Owing to changes in the prevalence of the hepatitis B and C viruses, its incidence and death rate continue to rise throughout the developed world[1–3]. Cirrhosis is the strongest predisposing factor for hepatocellular carcinoma (HCC)[4]. Approximately 80% of cases of HCC develop in a cirrhotic liver[5]. The most common etiologic agent for cirrhosis in Asia and Africa is the hepatitis B virus; in Japan, Europe and America, 80% is attributed to the hepatitis C virus, 20% to the hepatitis B virus, and the remainder to alcoholic liver disease, hepatic steatosis, hemochromatosis and primary biliary cirrhosis[6,7]. Concomitant factors such as hepatitis C infection together with alcoholism, tobacco use, diabetes or obesity increase the relative risk of HCC[8,9].

Staging

Treatment of HCC is determined by various staging systems. The Barcelona Cancer of the Liver Clinic (BCLC) staging system is increasingly endorsed and validated as an appropriate system with which to determine optimal treatment strategies[10–13]. The BCLC has been approved by the European Association for the Study of the liver (EASL) and the American Association for the Study of Liver Diseases (AASLD). The system takes into account the degree of hepatic dysfunction related to cirrhosis as defined by the Child–Pugh score, serum bilirubin and albumin levels, portal hypertension, and the patient’s performance status, as well as tumour burden, presence or absence of vascular invasion, and the presence or absence of extrahepatic spread. It is combined with a treatment algorithm (Fig. 1)[14,15].

Patients should be considered on an individual basis at a multidisciplinary team meeting and stratified according to staging and treatment options. There has been an increase in the use of non-invasive local and regional therapies for the treatment of HCC in recent years[16].

Patients exceeding the criteria for either transplantation or resection are characterized as having non-resectable or non-surgical HCC. Depending on the performance status, vascular invasion and extrahepatic spread, this non-resectable group is then divided into an intermediate stage or an advanced stage. It is this intermediate group that is considered suitable for hepatic artery chemoembolization.

Patients who are characterized as at an earlier stage (single nodule or 3 nodules <3 cm) than intermediate stage are also divided into 2 groups: very early stage and early stage (Fig. 1). Again depending on the performance status and constitutional symptoms, the patients are stratified into treatment pathways including resection,
radiofrequency ablation (RFA) and percutaneous ethanol injection (PEI).

Local ablation: RFA

RFA uses an alternating electric current, which induces agitation of tissue ions causing hyperthermia-induced coagulation necrosis of the hepatic parenchyma [17]. A needle with an insulated shaft and an active non-insulated tip is placed within the tumour either percutaneously or in the operating room environment during a laparotomy procedure. Depending on the type of needle used, the temperature of the tissue surrounding the needle tip is raised to at least 50°C.

The advantages of RFA include lower complication rates in comparison with surgery, as well as lower cost. The procedure can be repeated if necessary. There is some consensus that lesions measuring greater than 5 cm in maximum dimension are too large for RFA. RFA should be limited to patients with 3 or fewer tumours [18]. Treatment success depends on the size of the tumour(s); treatment is more successful for smaller lesions (Fig. 2) [19,20]. Size greater than 2.5 or 3.0 cm is associated with a greater risk of local recurrence [21]. Survival ranges from 78–94% at 1 year and 58–96% at 3 years [19].

Immediate complications include pain and haemorrhage. Later complications include abscess formation, tumour seeding along the electrode track, burns from the grounding pads, bile duct injury and thermal injury to adjacent organs. However, the capsule of the liver is relatively robust and the risk of capsular rupture is low. Blood flow in nearby blood vessels can create a heat sink effect, caused by dissipation of heat from the ablation zone resulting in less effective cell necrosis.

The organ most vulnerable to accidental thermal ablation is the bowel. Techniques to prevent this from happening include placing the patient in an alternative position to allow the bowel to fall away with gravity, or instilling sterile water (hydrodistension) or gas to displace it.

Local ablation: PEI

PEI involves the repeated injection of alcohol into the tumours [22]. In the early 1990s it was considered the primary percutaneous treatment for HCC. Fine-needle injection with 95% ethyl alcohol is performed under ultrasound guidance. Its efficacy is predicated on the soft tissue of the tumour being surrounded by hard cirrhotic tissue, which restricts the alcohol from diffusing out into the liver. It is a low-cost procedure with a low rate of complications, but the need for repeat treatments and the inability to achieve complete necrosis in larger tumours has led to this technique being largely superseded by RFA [23,24]. PEI is still used in areas where RFA equipment is less readily available. It is also used for exophytic tumours where thermal damage to the capsule can cause intraperitoneal bleeding or a bile leak, and for tumours that lie adjacent to blood vessels to avoid the heat sink phenomenon.
Local ablation: comparative studies

Two randomized controlled trials have compared local resection with RFA. The first, although undermined by a short follow-up period of 4 years and some cross treatment between local ablative therapy and local resection, showed similar results in terms of survival and disease-free survival, although there was a higher complication rate with surgery\(^{[25]}\). The other trial demonstrated a superiority for local resection in both survival and disease-free survival, although in this study there was a high rate of loss to follow-up, cross treatment, and some selection bias with more multinodular HCC in the RFA group\(^{[26]}\).

A single randomized controlled trial comparing PEI and local resection for lesions measuring up to 3 cm shows equal rates of effectiveness and safety\(^{[27]}\). However, 5 randomized controlled trials involving 701 patients have compared the efficacy of RFA vs PEI\(^{[28]}\). A meta-analysis of these studies shows an overall superiority of RFA in comparison with PEI in 3-year survival rates and cancer-free survival rates, tumour response and tumour recurrence\(^{[29]}\). It is suggested that the better results of RFA can be explained by the stronger and larger coagulation effect of thermal ablation on the HCC nodules and on the tumour microsatellites compared with the chemical damage induced by ethanol\(^{[29]}\).

A large retrospective Italian study of 478 cirrhotic patients comparing resection with ablative techniques including 214 treated with RFA and 83 with PEI showed that in patients with a single HCC measuring greater than 5 cm, and in patients with 2 or 3 HCCs larger than 3 cm, local resection is superior, but in patients with 1 HCC smaller than 5 cm and 2 or 3 HCCs smaller than 3 cm, the results were comparable\(^{[30]}\).

Transarterial chemoembolization (TACE)

HCC is supplied mainly by the hepatic artery, in contrast with the normal liver parenchyma, which is largely supplied by the portal vein. Techniques have therefore developed that are based on the principles of embolization of the feeding arteries as well as on targeted infusion of cytotoxic chemotherapy to the tumour(s). Bland embolization with lipiodol, an iodinated ester derived from poppy-seed oil, has been used successfully for the treatment of unresectable or recurrent HCC\(^{[31,32]}\). Lipiodol is
selectively taken up and retained by HCCs (Fig. 3)[33,34]. However, increased survival rates, although not statistically significant, have been shown with a combination of embolization and chemoembolization[35,36]. The theory behind the combined technique is that embolization should enhance the effect of chemotherapy by causing metabolically active cell membrane pumps to fail, thereby overcoming drug resistance[37].

The TACE procedure involves catheterization of the hepatic artery and selection of either the right or left hepatic artery. Further super-selection can be performed if the tumour burden is limited to one or more segments and not the whole lobe. This normally requires the use of a microcatheter inserted coaxially through the main catheter. If there is bilateral disease, sequential treatment can be performed at least 1 month apart as concurrent biliary treatment may provoke a serious liver injury.

There is some variation in the chemotherapy drugs used for HCC. Randomized controlled trials have failed to show an advantage of one agent over another[38]. The most common cocktail is a mixture of doxorubicin, cisplatin and mitomycin C. These can be mixed with either iodinated contrast or lipiodol, as suggested above, although there is a school of thought that the entire dose of chemotherapy should be administered before the embolization agent[39].

Selection is generally limited to patients with Child Pugh A or B cirrhosis and unresectable lesions without vascular invasion or extrahepatic spread. Portal vein and inferior vena cava tumour thrombus confer a high risk of low survival in comparison with patients without these complications, particularly if the portal invasion is in the main trunk or the first order branch[40]. TACE has generally not been used in patients with major portal vein (PV) invasion due to the possibility of liver failure following embolization due to hepatic infarction. However, recent studies have shown that TACE using less aggressive embolization can be performed safely in patients with major PV thrombosis with no increase in morbidity or mortality[41]. TACE is also used as an adjunct to liver resection or RFA to prevent recurrence, and as a bridge to orthotopic liver transplant[5,42,43].

Post-procedure care normally includes admission for observation and pain control, as well as antibiotics and anti-emetics. The combination of abdominal pain and nausea and vomiting, known as post-embolization syndrome, seems to be less severe with the use of drug-eluting beads than with the chemotherapy drug cocktail mixed with lipiodol[44].

Complete response to TACE is seen in only about 2% of patients (Fig. 4). Although impressive radiographic response is seen more frequently, tumour recurrence is often seen at subsequent examinations, resulting in a tendency for many centres to repeat the TACE procedure at regular intervals.

When used in the treatment of a large unresectable tumour, or for multifocal tumours, there can be a 35–40% reduction in tumour bulk[45–47]. Many tumours do not decrease in size and therefore other markers of response are used including lack of contrast enhancement, lipiodol deposition, and a decline in the serum alpha feta protein[48,49].

Evidence for the survival benefits of TACE for a period remained equivocal[46,47,50–53]. Two randomized controlled trials and 2 meta-analyses have, however, shown survival benefit for arterial embolization over best supportive care, with survival rates following TACE ranging from 57 to 82% at 1 year and 31–63% at 2 years in comparison with 32–63% at 1 year and 11–27% at 2 years for the control groups[36,47,49,51].

Absolute contraindications to TACE include hepatic encephalopathy, jaundice, biliary obstruction and biliary sepsis. The most common complication of TACE is that of post-embolization syndrome, which manifests as nausea, abdominal pain, ileus, pyrexia and elevated liver enzymes. This normally lasts for 3–5 days. Liver failure can occur, particularly in patients with higher pre-TACE bilirubin levels[54,55]. Other complications include hepatic abscess, gastroduodenal ulcer and

![Figure 3 A right hepatic arteriogram shows a hypervascular lesion (a). Following embolization, the mass shows filling with lipiodol on CT (b).](image-url)
cholecystitis. The latter two entities are related to non-target embolization.

Drug-eluting beads (DEB-TACE)

The technique for DEB-TACE is almost the same as that for TACE, except that the former involves the injection of the beads into the tumour-feeding artery. The procedure is performed without lipiodol, and is therefore not as aesthetically pleasing to watch. The beads are mixed with iodinated contrast so the course of the injection can be monitored, but there is no residual contrast material left within the tumour to visualize on post-procedure imaging or on follow-up computed tomography (Fig. 5). There is, however, a combined embolization and chemotherapy effect. The chemotherapy is sustained by the controlled release of doxorubicin over time. Pre-prepared doxorubicin-eluting beads are approved in Europe and Canada (DC Bead, Biocompatibles Internation Inc. In the United States, LC beads (Angiodynamics, Inc) are used in 100–300 μm, 300–500 μm or 500–700 μm sizes. The smaller range of beads is normally used to optimize deep penetration into the tumour bed. There is some risk of non-target embolization with beads measuring less than 100 μm. The larger beads are used for larger tumours where there is an intent to achieve angio-embolization as well as drug delivery. The larger beads, however, are associated with a higher complication rate attributed to hepatic ischemia. Doxorubicin doses range from 75 to 150 mg.

The use of drug-eluting beads for chemoembolization has produced promising early results, and 2 prospective randomized controlled trials have shown favourable response rates, fewer recurrences and better tolerability in comparison with conventional TACE. A review of the clinical outcomes demonstrating the benefits of drug-eluting beads over conventional TACE was published in 2011. The rates of post-embolization syndrome and serious liver toxicity are reduced with DEB-TACE in comparison with conventional TACE.

Radioembolization

Radioembolization involves the delivery of radioactive isotopes (yttrium-90 or iodine-131) to the tumour via the hepatic artery in a similar fashion to TACE. Yttrium-90 (90Y) is delivered in glass (TheraSphere) or resin (SIR-spheres). There are no randomized controlled trials comparing 90Y and TACE, but early results appear to be promising for disease response (Fig. 5). The procedure is complex to set up, expensive and, although
Radioembolization has been shown to downstage disease so that patients fall within transplant criteria70,71. Radioembolization is also used for palliation in patients with multifocal disease. A radiologic–pathologic analysis has shown very high rates of complete tumour necrosis72. Because of the minimal embolic effect, 90Y is safer than TACE in the treatment of patients with PV involvement73,75. Bilobar treatment can be performed at the same session, unlike with TACE, unless the hepatic reserve is low. Dosimetry is performed in conjunction with the radiation oncology team and depends on tumour burden, size of the liver, degree of shunting and hepatic function.

90Y microspheres are contraindicated in patients who demonstrate the potential for lung or gastrointestinal tract exposure. Non-target embolization can result in serious radiation injury to either of these organs. Because of this, a week prior to treatment, a technetium-99 m macroaggregated albumin (MAA) scan is performed to map the area targeted for treatment. The hepatopulmonary shunt fraction is calculated as the ratio of uptake in the lung compared with that in the liver. A shunt fraction of greater than 20\% is a contraindication to the procedure. Careful angiographic evaluation of the superior mesenteric, coeliac and hepatic arteries is carried out and coil embolization of the gastroduodenal, right gastric or other accessory artery is performed if required to prevent radiation injury to the gastrointestinal tract and gall bladder. The MAA is then injected into the target artery in the liver and the patient proceeds to the nuclear medicine department for gamma camera views of the liver, lungs and abdomen to evaluate for any extrahepatic distribution of the MAA.

Complications include gastritis, liver dysfunction, pneumonitis and pancreatitis, all radiation induced68.

Combination treatments

The combined use of RFA and TACE is predicated on the increased sensitivity of tumour cells to heat following chemoembolization76. To date only a single small randomized controlled trial has compared the outcomes of combination therapy with RFA and TACE for tumours measuring 3.1–5.0 cm with RFA alone, showing a lower

\textbf{Figure 5} MRI shows a 4-cm arterial enhancing mass (arrow) in the right lobe with a satellite nodule (a). A common hepatic arteriogram before DEB-TACE confirms the tumour (arrow) (b). MRI 6 months later in the arterial phase (c) shows no residual enhancement in the tumour (arrow).
tumour progression rate with the combined treatment, and no statistical difference in survival rates\(^7\). In several other studies, local control and long-term survival were increased with combination RFA and chemoembolization compared with either procedure alone.\(^7\)

Future directions

The optimal strategy for the use of TACE has yet to be established and more evidence is required in the
comparison of the efficacy of drug-eluting beads with conventional TACE. TACE can be repeated, but the optimal number of treatments before switching to sorafenib is not yet known. There is also a rationale for combined treatment with TACE and sorafenib, as TACE has been shown to produce a proangiogenic response that would encourage the growth of new tumours\(^7\). The antiangiogenic properties of sorafenib would help to counteract this response. Clinical trials using this combination of therapies are ongoing. Drug-eluting beads combined with sorafenib would also be worthy of investigation as a combination therapy.

Conclusion

There are multiple treatment options for HCC based on knowledge of its molecular pathogenesis that are selected in a multidisciplinary environment based on staging and treatment stratification. Several of these treatments require image guidance and are performed by radiologists trained in the interpretation of pre- and post-treatment imaging and image-guided procedures.

PEI and RFA are used for early stage tumours as an alternative to surgical resection. TACE is the option for patients with unresectable HCC and preserved liver function in whom the tumour is too large or multifocal for RFA. Drug-eluting beads as an alternative to conventional TACE, and radioembolization, are more recently developed forms of targeted therapy that demonstrate very good early results and offer more options for more advanced disease including PV involvement.

References

[1] Bosch FX, Ribes J, Díaz M, Cléries R. Primary liver cancer: worldwide incidence and trends. Gastroenterology 2004; 127(Suppl 1): S5–16. doi:10.1053/j.gastro.2004.09.011.

[2] Davila JA, Morgan RO, Shaib Y, McGlynn KA, El-Serag HB. Hepatitis C infection and the increasing incidence of hepatocellular carcinoma: a population-based study. Gastroenterology 2004; 127: 1372–80. doi:10.1053/j.gastro.2004.07.020.

[3] Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics 2009. CA Cancer J Clin 2009; 59: 225–49. doi:10.3322/caac.20006.

[4] Fattovich G, Stroffolini T, Zagni I, Donato F. Hepatocellular carcinoma in cirrhosis: incidence and risk factors. Gastroenterology 2004; 127(Suppl 1): S35–50. doi:10.1053/j.gastro.2004.09.014.

[5] Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet 2003; 362: 1907–17. doi:10.1016/S0140-6736(03)14964-1.

[6] El-Serag HB, Davila JA, Petersen NJ, McGlynn KA. The continuing increase in the incidence of hepatocellular carcinoma in the United States: an update. Ann Intern Med 2003; 139: 817–23.

[7] Ohata K, Hamasaki K, Toriyama K, et al. Hepatic steatosis is a risk factor for hepatocellular carcinoma in patients with chronic hepatitis C virus infection. Cancer 2003; 97: 3036–43. doi:10.1002/cncr.11427.

[8] El-Serag HB, Richardson PA, Everhart JE. The role of diabetes in hepatocellular carcinoma: a case-control study among United States veterans. Am J Gastroenterol 2001; 96: 2462–7. doi:10.1111/j.1572-0241.2001.04054.x.
Lin SM, Lin CJ, Lin CC, Hsu CW, Chen YC. Radiofrequency ablation versus surgical resection for the treatment of small hepatocellular carcinoma: a prospective study. Ann Surg 2005; 242: 36–42. doi:10.1097/01.sla.0000167925.90380.fe.

Lencioni RA, Allgaier HP, Cioni D, et al. Small hepatocellular carcinoma in cirrhosis: randomized comparison of radiofrequency thermal ablation versus percutaneous ethanol injection. Radiology 2003; 228: 235–40. doi:10.1148/radiol.2281020718.

Orlando A, Leandro G, Olivo M, Andriulli A, Cottone M. Radiofrequency thermal ablation versus percutaneous ethanol injection for small hepatocellular carcinoma in cirrhosis: meta-analysis of randomized controlled trials. Am J Gastroenterol 2009; 104: 514–24. doi:10.1038/ajg.2008.80.

Ruzzene A, Guglielmi A, Sandri M, et al. Surgical resection versus local ablation for hcc on cirrhosis: results from a propensity case-matched study. J Gastrointest Surg 2012; 16: 301–11. doi:10.1007/s11605-011-1745-x.

Brown KT, Nevins AB, Gettridge GM, et al. Particle embolization for hepatocellular carcinoma. J Vasc Interv Radiol 1998; 9: 822–8. doi:10.1016/S0891-5288(98)70398-7.

Covey AM, Maluccio MA, Schubert J, et al. Particle embolization of recurrent hepatocellular carcinoma after hepatectomy. Cancer 2006; 106: 2181–9. doi:10.1002/cncr.21883.

Konn T, Maeda H, Iwai K, et al. Effect of arterial administration of high-molecular-weight anticancer agent SMANCS with lipid lymphographic agent on hepatoma: a preliminary report. Eur J Cancer Clin Oncol 1983; 19: 1053–65. doi:10.1016/0277-5379(83)90028-7.

Nakakuma K, Tashiho S, Hiraoka T, et al. Studies on anticancer treatment with an oily anticancer drug injected into the ligated feeding hepatic artery for liver cancer. Cancer 1983; 52: 2193–200. doi:10.1002/1097-0142(19831215)52:12<2193::AID-CanCer205212033-0.0.CO;2-R>.

Camma C, Schepis F, Orlando A, et al. Transarterial chemoembolization for unresectable hepatocellular carcinoma: meta-analysis of randomized controlled trials. Radiology 2002; 224: 47–54. doi:10.1148/radiol.2241011262.

iarelli L, Stigliano R, Triantos C, et al. Transarterial therapy for hepatocellular carcinoma: which technique is more effective? A systematic review of cohort and randomized studies. Cardiovasc Intervent Radiol 2007; 30: 6–25. doi:10.1007/s00270-006-0062-3.

Kruskal JB, Hlatky L, Hahnfeldt P, Teramoto K, Stokes KR, Clouse ME. In vivo and in vitro analysis of the effectiveness of doxorubicin combined with temporary arterial occlusion in liver tumors. J Vasc Interv Radiol 1993; 4: 741–7. doi:10.1016/S1051-0443(93)70196-5.

Kawai S, Okamura J, Ogawa M, et al. Prospective and randomized clinical trial for the treatment of hepatocellular carcinoma—a comparison of lipiodol-transcatheter arterial embolization with and without adriamycin (first cooperative study). The Cooperative Study Group for Liver Cancer Treatment of Japan. Cancer Chemother Pharmacol 1992; 31(Suppl): S1–6. doi:10.1007/BF00687096.

Geschwind JF, Ramsey DE, Cleffken B, et al. Transcatheter arterial chemoembolization of liver tumors: effects of embolization protocol on injectable volume of chemotherapy and subsequent arterial patency. Cardiovasc Intervent Radiol 2003; 26: 111–17. doi:10.1007/s00270-002-2524-6.

Ikai I, Ariti S, Kojiri M, et al. Reevaluation of prognostic factors for survival after liver resection in patients with hepatocellular carcinoma in a Japanese nationwide survey. Cancer 2004; 101: 796–802. doi:10.1002/cncr.20426.

Kothary N, Weintraub JL, Susman J, Rundback JH. Transarterial chemoembolization for primary hepatocellular carcinoma in patients at high risk. J Vasc Interv Radiol 2007; 18: 1517–26. doi:10.1016/j.jvir.2007.07.035.

Aoki T, Inamura H, Hasegawa K, et al. Sequential preoperative arterial and portal venous embolizations in patients with hepatocellular carcinoma. Arch Surg 2004; 139: 766–74.

Takayasu K, Ariti S, Ikai I, et al. Prospective cohort study of transarterial chemoembolization for unresectable hepatocellular carcinoma in 8510 patients. Gastroenterology 2006; 131: 461–9. doi:10.1053/j.gastro.2006.05.021.
Interventional therapies for hepatocellular carcinoma

[44] Poon RT, Tso WK, Pang RW, et al. A phase I/II trial of chemoe

mobilization for hepatocellular carcinoma using a novel intra-

arterial drug-eluting bead. Clin Gastroenterol Hepatol 2007; 5:

1100–8. doi:10.1016/j.cgh.2007.04.021.

[45] Bruix J, Llovet JM, Castells A, et al. Transarterial embolization

versus symptomatic treatment in patients with advanced hepatocellu

lar carcinoma: results of a randomized, controlled trial in a single

institution. Hepatology 1998; 27: 1578–83. doi:10.1002/hep.510270617.

[46] d’Etude G. A comparison of lipiodol chemoembolization and con

servative treatment for unresectable hepatocellular carcinoma.

N Engl J Med 1995; 332: 1256–61.

[47] Llovet JM, Real MI, Montaño X, et al. Arterial embolisation or

chemoembolisation versus symptomatic treatment in patients with

unresectable hepatocellular carcinoma: a randomised con-

trolled trial. Lancet 2002; 359: 1734–9. doi:10.1016/S0140-

6736(02)08649-X.

[48] Bruix J, Sherman M, Llovet JM, et al. Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL conference. European Association for the Study of the Liver. J Hepatol 2001; 35: 421–30. doi:10.1016/S0168-

8278(01)00130-1.

[49] Llovet JM, Bruix J. Systematic review of randomized trials for un

resectable hepatocellular carcinoma: Chemoembolization improves survival. Hepatology 2003; 37: 429–42. doi:10.1053/jhep.2003.50047.

[50] Doffoël M. Multicentre randomised phase III trial comparing tamoxifen alone or with transarterial lipiodol chemoembolisation for unresectable hepatocellular carcinoma in cirrhotic patients. Eur J Cancer 2008; 44: 528–38.

[51] Lo C-M. Randomized controlled trial of transarterial lipiodol chemoembolization for unresectable hepatocellular carcinoma. Hepatology 2002; 35: 1164–71. doi:10.1016/S0168-8278(01)00087-6.

[52] Pelletier G. Treatment of unresectable hepatocellular carcinoma with lipiodol chemoembolization: a multicenter randomized trial. J Hepatol 1998; 29: 129–34. doi:10.1016/S0168-8278(98)00187-6.

[53] Bruix J, Sherman M, Llovet JM, et al. Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL conference. European Association for the Study of the Liver. J Hepatol 2001; 35: 421–30. doi:10.1016/S0168-

8278(01)00130-1.

[54] Chung JW. Hepatic tumors: predisposing factors for complica

tions of transcatheter oily chemoembolization. Radiology 1996; 198: 33.

doi:10.1148/radiol.198.1.80187-6.

[55] Liapi E, Geschwind JF. Transcatheter arterial chemoembolization for unresectable hepatocellular carcinoma: results of a randomized, controlled trial in a single institution. J Hepatol 2001; 35: 421–30. doi:10.1016/S0168-

8278(01)00130-1.

[56] Llovet JM, Bruix J, Sherman M, Llovet JM, et al. Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL conference. European Association for the Study of the Liver. J Hepatol 2001; 35: 421–30. doi:10.1016/S0168-

8278(01)00130-1.

[57] Kooby DA, Egnatashvili V, Srinivasan S, et al. Comparison of yttrium-90 radioembolization and transcatheter arterial chemoe

mobilization for the treatment of unresectable hepatocellular carcino

ma. J Vasc Interv Radiol 2010; 21: 224–30. doi:10.1016/j.jvir.2009.10.013.

[58] Salem R, Lewandowski RJ, Mulcahy MF, et al. Radioembolization for hepatocellular carcinoma using yttrium-90 microspheres: a comprehensive report of long-term outcomes. Gastroenterology 2010; 138: 52–64. doi:10.1053/j.gastro.2009.09.006.

[59] Woodall CE, Lewandowski RJ, Mulcahy MF, et al. Is selective internal radioembolization safe and effective for patients with inoperable hepatocellular carcinoma and venous thrombosis? J Am Coll Surg 2009; 208: 375–82. doi:10.1016/j.jamcollsurg.2008.12.009.

[60] Kulik LM, Allessi B, van Holsbeeck M, et al. Yttrium-90 microspheres (TheraSphere) treatment of unresectable hepatocellular carcinoma: downstaging to resection, RFA and bridge to transplantation. J Surg Oncol 2006; 94: 572–86. doi:10.1002/jso.20609.

[61] Lewandowski RJ, Kulik LM, Riaz A, et al. A comparative analysis of transarterial downstaging for hepatocellular carcinoma: chemoembolization versus radioembolization. Am J Transplant 2009; 9: 1920–8. doi:10.1111/j.1600-6143.2009.02695.x.

[62] Riaz A, Kulik L, Lewandowski RJ, et al. Radiologic-pathologic correlation of hepatocellular carcinoma treated with internal radiation using yttrium-90 microspheres. Hepatology 2009; 49: 1185–93. doi:10.1002/hep.22747.

[63] Kulik LM, Carr BI, Mulcahy MF, et al. Safety and efficacy of 90Y radiotherapy for hepatocellular carcinoma with and without portal vein thrombosis. Hepatology 2008; 47: 71–81. doi:10.1002/hep.21980.

[64] Salem R, Lewandowski RJ, Roberts C, et al. Use of yttrium-90 glass microspheres (TheraSphere) for the treatment of unresectable hepatocellular carcinoma in patients with portal vein thrombosis. J Vasc Interv Radiol 2004; 15: 335–45. doi:10.1016/j.jvir.2004.04.027.

[65] Tsai AL, Burke CT, Kennedy AS, et al. Use of yttrium-90 microspheres in patients with advanced hepatocellular carcinoma and portal vein thrombosis. J Vasc Interv Radiol 2010; 21: 1377–84. doi:10.1016/j.jvir.2010.04.027.
[76] Ahmed M, Liu Z, Lukyanov AN, et al. Combination radiofrequency ablation with intratumoral liposomal doxorubicin: effect on drug accumulation and coagulation in multiple tissues and tumor types in animals. Radiology 2005; 235: 469–77. doi:10.1148/radiol.2352031856.

[77] Morimoto M, Numata K, Kondou M, Nozaki A, Morita S, Tanaka K. Midterm outcomes in patients with intermediate-sized hepatocellular carcinoma. Cancer 2010; 116: 5452–60. doi:10.1002/cncr.25314.

[78] Liao GS, Yu CY, Shih ML, et al. Radiofrequency ablation after transarterial embolization as therapy for patients with unresectable hepatocellular carcinoma. Eur J Surg Oncol 2008; 34: 61–6.

[79] Virmani S, Harris KR, Szole-Kowalska B, et al. Comparison of two different methods for inoculating VX2 tumors in rabbit livers and hind limbs. J Vasc Interv Radiol 2008; 19: 931–6. doi:10.1016/j.jvir.2008.02.019.

[80] Wang L, Harris KR, Szole-Kowalska B, et al. Post-processing of dynamic gadolinium-enhanced magnetic resonance imaging exams of the liver: explanation and potential clinical applications for color-coded qualitative and quantitative analysis. Acta Radiol 2008; 49: 6–18. doi:10.1080/02841850701630300.