Cumulative Residual Extropy of Minimum Ranked Set Sampling with Unequal Samples

Mohammad Reza Kazemia, Saeid Tahmasebib, Camilla Calic, Maria Longobardic*

aDepartment of Statistics, Faculty of Science, Fasa University, Fasa, Iran
bDepartment of Statistics, Persian Gulf University, Bushehr, Iran
cDepartment of Biology, University of Napoli Federico II, Napoli, Italy

Abstract

Recently, an alternative measure of uncertainty called cumulative residual extropy (CREX) was proposed by Jahanshahi et al. (2019). In this paper, we consider uncertainty measures of minimum ranked set sampling procedure with unequal samples (MinRSSU) in terms of CREX and its dynamic version and we compare the uncertainty and information content of CREX based on MinRSSU and simple random sampling (SRS) designs. Also, using simulation, we study on new estimators of CREX for MinRSSU and SRS designs in terms of bias and mean square error. Finally, we provide a new discrimination measure of disparity between the distribution of MinRSSU and parental data SRS.

Keywords: Cumulative residual extropy, Discrimination measure, Minimum ranked set sampling, Stochastic ordering.

2010 MSC: 62B10, 60E15, 62D05, 94A17

1. Introduction

Ranked set sampling (RSS) design is a cost-effective sampling for situations where taking actual measurements on units is expensive but ranking units is easy. For the first time, based on the RSS sampling design, McIntyre (1952) provided a more efficient estimator of the population mean comparing to the simple random sampling (SRS) counterpart. To learn more about this concept, the readers can refer to Patil et al (1999). There are many available studies that have developed and generalized the method of sampling used in RSS scheme and they efficiently estimate the population parameter comparing to the SRS scheme. Recently, Qiu & Eftekharian (2020) studied information content of minimum ranked set sampling procedure with unequal samples (MinRSSU) as useful modification of RSS procedure in terms of extropy. In the MinRSSU, we draw m simple random samples, where the size of the ith samples is i, $i = 1, ..., m$. The one-cycle MinRSSU involves an initial ranking of m samples of size m as follows:

$1: \ X_{(1:1)}^{(1)} \rightarrow \ X_{1}^{(1)} = X_{(1:1)}$
$2: \ X_{(1:2)}^{(2)} \rightarrow \ X_{2}^{(1:2)} = X_{(2:2)}$
\vdots
$m: \ X_{(1:m)}^{(m)} \rightarrow \ X_{m}^{(1:m)} = X_{(1:m)}$

*Corresponding author

Email address: malongob@unina.it (Maria Longobardi)
where $X_{(i:j)}$ denotes the ith order statistic from the jth SRS of size i. The resulting sample is called one-cycle MinRSSU of size m and denoted by $X_{MinRSSU}^{(m)} = \{\tilde{X}_i, i = 1, \ldots, m\}$. The parameter m should be kept small because the ranking should not be difficult in this sense and the ranking may be done for example by using an easily measurable covariate, then it is not difficult to identify the minimum of ranked individuals in each subset. Note that \tilde{X}_i has the same distribution as $X_{(1:i)}$ which is the smallest order statistic in a set of size i with probability density function (pdf) $f_{(1:i)}(x) = i f(x) [1-F(x)]^{i-1}$ and survival function $\bar{F}_{(1:i)}(x) = [1-F(x)]^i = F^i(x)$, where $f(\cdot)$, $F(\cdot)$ and $\bar{F}(\cdot)$ are the underlying pdf, cumulative distribution function (cdf) and survival function. In reliability theory, \tilde{X}_i measures the lifetime of a series system.

Several authors have worked on measures of information for RSS and its variants. Jozani & Ahmadi (2014) explored the notions of information content of RSS data and compared them with their counterparts in SRS data. Tahmasebi et al. (2016) obtained some results of residual (past) entropy for ranked set samples. Eskandarzadeh et al. (2016) studied information measures for record ranked set sampling. Eskandarzadeh et al. (2018) considered information measures of maximum ranked set sampling procedure with unequal samples in terms of Shannon entropy, Rényi entropy and Kullback-Leibler information, instead Tahmasebi et al. (2020) in terms of Tsallis entropy. More recently, Qiu & Eftekharian (2020) studied information content of MinRSSU in terms of entropy and Raqab & Qiu (2019) considered the problems of uncertainty and information content of RSS data based on entropy measure and the related monotonic properties and stochastic comparisons.

Let X denotes a continuous random variable with pdf f. Frank et al. (2015) introduced a new measure termed by extropy associated with X as

$$J(X) = -\frac{1}{2} \int_{-\infty}^{+\infty} [f(x)]^2 dx = -\frac{1}{2} \int_{0}^{1} f(F^{-1}(u))du,$$

where $F^{-1}(\cdot)$ is the quantile function of X. Qiu (2017) explored some characterization results, monotone properties, and lower bounds of extropy of order statistics and record values. Also, Qiu & Eftekharian (2020) and Raqab & Qiu (2019) considered the information measure of extropy $J(X)$ based on MinRSSU and RSS schemes, respectively and compared the results with their counterpart under SRS design.

This paper is organized as follows: Section 2 deals with the results of cumulative residual extropy (CREX) for MinRSSU data by comparing to its counterpart under SRS data. In Section 3, new estimators are proposed for CREX in SRS and MinRSSU designs using empirical approach. Also, by using simulation study, the behavior of estimators of CREX in MinRSSU and SRS are compared in terms of bias and mean square error. Furthermore, we show that how MinRSSU scheme can efficiently reduce the uncertainty measure comparing to SRS design. Section 4 provides a new discrimination measure of disparity between the distribution of MinRSSU and parental data SRS. Section 5 concludes the paper.

2. Cumulative residual extropy of MinRSSU

Let X denotes the lifetime of a system with survival function \bar{F}. Recently, a new measure of information is proposed by Jahanshahi et al. (2019) with substituting the function \bar{F} in extropy formula (1.1).
This new measure is called CREX and defined as
\[\xi J(X) = -\frac{1}{2} \int_0^{+\infty} F^2(x) dx. \quad (2.1) \]

Note that \(-\infty < \xi J(X) \leq 0\). If the CREX of \(X\) is less than that of another random variable, say \(Y\), i.e. \(\xi J(X) \leq \xi J(Y)\), then \(X\) has less uncertainty than \(Y\). Now let \(\xi J(X) < +\infty\). Then, for the MinRSSU and SRS designs, we have
\[\xi J(X_{\text{MinRSSU}}^{(m)}) = \frac{-1}{2} \prod_{i=1}^{m} (2\xi J(X_{(1;i)})) = \frac{-1}{2} \prod_{i=1}^{m} \int_0^{+\infty} F^{2i}(x) dx \]
\[= \frac{-1}{2} \prod_{i=1}^{m} \int_0^1 (1-u)^{2i} du \]
\[= \frac{-1}{2} \prod_{i=1}^{m} \mathbb{E} \left[\frac{(1-U)^{2i}}{f(F^{-1}(U))} \right], \quad (2.3) \]
and
\[\xi J(X_{\text{SRS}}^{(m)}) = \frac{-1}{2} \left[\int_0^{+\infty} F^2(x) dx \right]^m = \frac{-1}{2} [-2\xi J(X)]^m. \quad (2.4) \]

To compare the above measures, let us consider the following examples.

Example 2.1. If \(U \sim \text{Uniform}(0,1)\), then
\[\xi J(U_{\text{MinRSSU}}^{(m)}) = \frac{-1}{2} \prod_{i=1}^{m} \frac{1}{2i+1} = \frac{-1}{2} \left(\frac{\sqrt{\pi}}{2^{m+1}(m+\frac{1}{2})} \right) < \xi J(U_{\text{SRS}}^{(m)}) = -0.5 \left(\frac{1}{3} \right)^m. \quad (2.5) \]

Example 2.2. If \(Z\) is exponentially distributed with mean \(\frac{1}{\lambda}\). Then, we have
\[\xi J(Z_{\text{MinRSSU}}^{(m)}) = \frac{-1}{2} \prod_{i=1}^{m} \frac{1}{2i\lambda} < \xi J(Z_{\text{SRS}}^{(m)}) = \frac{-1}{2} \left(\frac{1}{2\lambda} \right)^m. \quad (2.6) \]

Example 2.3. Let \(X\) be finite range distribution with \(\bar{F}(x) = (1-ax)^b\), \(0 < x < \frac{1}{a}\), \(a > 0\), \(b > 0\). Then, we have
\[\xi J(X_{\text{MinRSSU}}^{(m)}) = \frac{-1}{2} \prod_{i=1}^{m} \frac{1}{a(1+2ib)} < \xi J(X_{\text{SRS}}^{(m)}) = -\frac{1}{2} \left(\frac{1}{a(1+2b)} \right)^m. \quad (2.7) \]

Theorem 2.1. Let \(X_{\text{MinRSSU}}^{(m)}\) be the MinRSSU from population \(X\) with pdf \(f\) and cdf \(F\). Then,
\(\xi J(X_{\text{MinRSSU}}^{(m)}) \leq \xi J(X_{\text{SRS}}^{(m)})\) for \(m > 1\).

Proof. Since \(F^2(x) \geq F^{2i}(x)\) for \(i \geq 1\), we have
\[\left(\int_0^{+\infty} F^2(x) dx \right)^m \leq \prod_{i=1}^{m} \int_0^{+\infty} F^{2i}(x) dx. \]
The proof follows by recalling (2.2) and (2.4). \(\square\)

Remark 2.1. If \(f(F^{-1}(u)) \geq 1\), \(0 < u < 1\), then \(\xi J(X_{\text{MinRSSU}}^{(m)})\) is increasing in \(m \geq 1\).

Proof. From (2.2), we get
\[\frac{\xi J(X_{\text{MinRSSU}}^{(m+1)})}{\xi J(X_{\text{MinRSSU}}^{(m)})} = \int_0^1 \frac{(1-u)^{2m+2}}{f(F^{-1}(u))} du \leq \frac{1}{2m+3} \leq 1. \]
The result follows readily, since the extropy is negative. \(\square\)
In the following, we provide some results on the cumulative residual extropy of $X_{\text{MinRSSU}}^{(m)}$ in terms of stochastic ordering properties. Now, we state important properties of $\xi J(X_{\text{MinRSSU}}^{(m)})$ using the stochastic ordering. For that we present the following definitions:

Definition 2.2. (Shaked and Shanthikumar, 2007) Let X and Y be two non-negative random variables with pdfs f and g, cdfs F and G, and hazard functions $\lambda_X(x) = \frac{f(x)}{F(x)}$ and $\lambda_Y(y) = \frac{g(y)}{G(y)}$, respectively. Then

1. X is said to be smaller than Y in the usual stochastic order (denoted by $X \leq_{st} Y$) if $P(X \geq x) \leq P(Y \geq x)$ for all $x \in \mathbb{R}$.
2. X is smaller than Y in the hazard rate order (denoted by $X \leq_{hr} Y$) if $\lambda_X(x) \geq \lambda_Y(x)$ for all x.
3. X is smaller than Y in the dispersive order (denoted by $X \leq_{\text{disp}} Y$) if $f(F^{-1}(u)) \geq g(G^{-1}(u))$ for all $u \in (0,1)$, where F^{-1} and G^{-1} are right continuous inverses of F and G, respectively.
4. X is said to have decreasing failure rate (DFR) if $\lambda_X(x)$ is decreasing in x.
5. X is smaller than Y in the convex transform order (denoted by $X \leq_{c} Y$) if $G^{-1}(F(x)) = 1$ for $x \geq 0$.
6. X is smaller than Y in the star order (denoted by $X \leq_{st} Y$) if $\lambda_X(x)$ is increasing in $x \geq 0$.
7. X is smaller than Y in the superadditive order (denoted by $X \leq_{\text{su}} Y$) if $G^{-1}(F(t + u)) \geq G^{-1}(F(t)) + G^{-1}(F(u))$ for $t \geq 0, u \geq 0$.
8. X is said to have an increasing reversed hazard rate (IRHR) if $\lambda_X(x) = \frac{f(x)}{F(x)}$ is increasing in x.

Theorem 2.3. If $X \leq_{st} Y$, then $\xi J(X_{\text{MinRSSU}}^{(m)}) \geq \xi J(Y_{\text{MinRSSU}}^{(m)}), \ m > 1$.

Proof. By the assumption of the stochastic order, $F^{2i}(x) \leq G^{2i}(x)$ for all $x \geq 0$. Now using (2.2), for $m > 1$, we get the desired result.

Theorem 2.4. Let X and Y be two non-negative random variables. If $X \leq_{\text{disp}} Y$, then $\xi J(X_{\text{MinRSSU}}^{(m)}) \geq \xi J(Y_{\text{MinRSSU}}^{(m)}), \ m > 1$.

Proof. By the assumption of the dispersive order, $f(F^{-1}(u)) \geq g(G^{-1}(u))$ for all $u \in (0,1)$. Using (2.2), for $m > 1$ the result follows.

Theorem 2.5. If $X \leq_{hr} Y$, and X or Y is DFR, then $\xi J(X_{\text{MinRSSU}}^{(m)}) \geq \xi J(Y_{\text{MinRSSU}}^{(m)}), \ m > 1$.

Proof. If $X \leq_{hr} Y$, and X or Y is DFR, then $X \leq_{\text{disp}} Y$, due to Bagai & Kochar (1986). Thus, from Theorem (2.4) the desired result follows.

Theorem 2.6. Let X and Y be two non-negative random variables with pdf’s f and g, respectively, such that $f(0) \geq g(0) > 0$. If $X \leq_{su} Y (X \leq_{c} Y$ or $X \leq_{c} Y$), then $\xi J(X_{\text{MinRSSU}}^{(m)}) \geq \xi J(Y_{\text{MinRSSU}}^{(m)}), \ m > 1$.

Proof. If $X \leq_{su} Y (X \leq_{c} Y$ or $X \leq_{c} Y$), then $X \leq_{\text{disp}} Y$, due to Ahmed et al. (1986). So, from Theorem (2.4) the desired result follows.
Proposition 2.7. Let $X_{\text{MinRSSU}}^{(m)}$ and $X_{\text{RSS}}^{(m)}$ be MinRSSU and RSS data from distribution X with DFR ageing property, respectively. Then for $m > 1$ we have

$$\xi J(X_{\text{MinRSSU}}^{(m)}) \geq \xi J(X_{\text{RSS}}^{(m)}).$$

Remark 2.2. Let φ be a non-negative function such that the derivative $\varphi'(x) \geq 1$ for all x. Then $X \leq_{\text{disp}} \varphi(X)$. Thus,

$$\xi J(X_{\text{MinRSSU}}^{(m)}) \geq \xi J(\varphi(X_{\text{MinRSSU}}^{(m)})).$$

If $X \leq_{\text{disp}} Y$, Theorem 3.B.26 in Shaked & Shanthikumar (2007) claims that $X_{i:m} \leq_{\text{disp}} Y_{i:m}, \ i = 1, 2, \ldots, m$. Thus, according to Theorems 4.5 and 4.6 in Qiu (2017), we obtain the following Proposition.

Proposition 2.8. Let $X_{\text{MinRSSU}}^{(m)}$ be a sample from MinRSSU design.

(i) If X is DFR ageing property, then $\xi J(X_{(1:m)})$ is increasing in $m \geq 1$.

(ii) If X is IRHR property, then $\xi J(X_{(1:m)})$ is decreasing in $m \geq 1$.

Proposition 2.9. Let $Y_{\text{MinRSSU}}^{(m)} = aX_{\text{MinRSSU}}^{(m)} + b$ with $a > 0$ and $b \geq 0$. Then, $\xi J(Y_{\text{MinRSSU}}^{(m)}) = a\xi J(X_{\text{MinRSSU}}^{(m)})$.

Proposition 2.10. Let X be a symmetric random variable with respect to the finite mean $\mu = E(X)$. Then

$$\xi J(X_{\text{MinRSSU}}^{(m)}) = CJ(X_{\text{MinRSSU}}^{(m)}),$$

where $CJ(X) = -\frac{1}{2} \int_{0}^{+\infty} [F'(x)]^2 dx$ is the cumulative extropy (see Jahanshai et al. (2014)).

Let X be the random lifetime of a system, recall that $X_{[t]} = [X - t \mid X \leq t]$ describes the residual lifetime of a system. For all $t \geq 0$ the mean residual lifetime is given by

$$\mu(t) = E[X - t \mid X \geq t] = \frac{1}{F(t)} \int_{t}^{+\infty} \bar{F}(x) dx.$$

Now, we can define a generalized measure of cumulative residual extropy as

$$\xi J(X; t) = -\frac{1}{2} \int_{t}^{+\infty} \left[\frac{\bar{F}(x)}{F(t)} \right]^2 dx. \quad (2.8)$$

Note that $\xi J(X; t) \geq -\mu(t)/(2\bar{F}(t))$. Moreover, we have

$$\xi J(X_{\text{RSS}}^{(m)}; t) = -\frac{1}{2}[2\xi J(X, t)]^m. \quad (2.9)$$

Under the MinRSSU design, it is clear that

$$\xi J(X_{\text{MinRSSU}}^{(m)}; t) = -\frac{1}{2} \prod_{i=1}^{m} [-2\xi J(X_{(i:i)}; t)] = -\frac{1}{2} \prod_{i=1}^{m} \int_{t}^{+\infty} \left[\frac{\bar{F}(x)}{F(t)} \right]^{2i} dx$$

$$= -\frac{1}{2} \prod_{i=1}^{m} \left[\frac{U^{2i} \bar{F}(t)}{f(F^{-1}(1-U \bar{F}(t)))} \right]. \quad (2.10)$$

Theorem 2.11. Let X be a random lifetime variable with cdf $F(\cdot)$. Then, for $m > 1$

$$\xi J(X_{\text{MinRSSU}}^{(m)}; t) \leq \xi J(X_{\text{RSS}}^{(m)}; t). \quad (2.11)$$

Proof. The proof is similar to Theorem 2.1.

Remark 2.3. If $f(F^{-1}(1-u \bar{F}(t))) \geq 1$, $0 < u < 1$, then $\xi J(X_{\text{MinRSSU}}^{(m)}; t)$ is decreasing in $m \geq 1$.

3. Results on empirical measure of CREX

This section focuses on the estimation of the $\xi J(X)$ based on the SRS and MinRSSU schemes. Let $X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(n)}$ be the order statistics of the random sample X_1, X_2, \ldots, X_n from cdf F. Then the empirical measure of F is defined as

$$\hat{F}_n(x) = \begin{cases}
0, & x < X_{(1)}, \\
\frac{k}{n}, & X_{(k)} \leq x \leq X_{(k+1)}, \quad k = 1, 2, \ldots, n-1 \\
1, & x > X_{(n)}.
\end{cases}$$

Thus, the empirical measure of $\xi J(X)$ is obtained by replacing the distribution function F by the empirical distribution function \hat{F}_n as

$$V_n = -\frac{1}{2} \int \hat{F}_n^2(x) dx = -\frac{1}{2} \sum_{k=1}^{n-1} \int_{X_{(k)}}^{X_{(k+1)}} \left(1 - \frac{k}{n}\right)^2 dx$$

$$= -\frac{1}{2} \sum_{k=1}^{n-1} U_{k+1} \left(1 - \frac{k}{n}\right)^2,$$ \hspace{1cm} (3.1)

where $U_{k+1} = X_{(k+1)} - X_{(k)}, k = 1, \ldots, n - 1$. [Jahanshahi et al. (2019)] showed that V_n almost surely converges to the CREX of X, i.e.

$$V_n \xrightarrow{a.s.} \xi J(X), \quad \text{as} \quad n \to +\infty.$$

The problem of estimation of $\xi J(X)$ based on MinSSU scheme can be deduced in the same line of the estimation based on SRS design V_n. In this part, we assume that instead of one-cycle MinRSSU, the process is repeated l cycles to have a sample of size $n = ml$. In this case, the resulting MinRSSU is denoted by $\{X_{(1:i)j}, i = 1, \ldots, m; j = 1, \ldots, l\}$, where $X_{(1:i)j}$ is the lowest order statistic from the ith sample in the jth cycle. Let $Y_{(1)}, \ldots, Y_{(n)}$ be the ordered values of the MinRSSU design $\{X_{(1:i)j}, i = 1, \ldots, m; j = 1, \ldots, l\}$. Then, the natural estimation of $\xi J(X)$ based on the MinRSSU, can be obtained as

$$R_n = -\frac{1}{2} \sum_{k=1}^{n-1} Z_{k+1} \left(1 - \frac{k}{n}\right)^2,$$

where $Z_{k+1} = Y_{(k+1)} - Y_{(k)}, k = 1, 2, \ldots, n - 1$. Our preliminary computations and simulations showed that R_n has some deficiencies to be unbiased and have low mean square error (MSE) to estimate the $\xi J(X)$. We observed that the term $\left(1 - \frac{k}{n}\right)$ should be slightly modified so that the estimator has optimal properties to estimate $\xi J(X)$. We propose to modify this term with $\left(1 - \frac{k}{n+m+w}\right)$, where w is a number that resulting estimator has optimally low bias and MSE. The resulting estimator of the $\xi J(X)$ has the following form

$$R_{m,n} = -\frac{1}{2} \sum_{k=1}^{n-1} Z_{k+1} \left(1 - \frac{k}{n+m+w}\right)^2.$$

\hspace{1cm} (3.2)

3.1. A new estimation

In the previous section, the estimator V_n of $\xi J(X)$ is a linear function of sample spacing $U_{k+1} = X_{(k+1)} - X_{(k)}, k = 1, \ldots, n - 1$. The asymptotic distribution of this linear function of sample spacing can
be found, for example in Di Crescenzo & Longobardi (2009) and Tahmasebi (2019) only for exponential and standard uniform distributions. So we provide another estimator for \(\xi \mathcal{J}(X) \) which is a linear function of order statistics.

Proposition 3.1. Let \(X \) be an absolutely continuous non-negative random variable with survival function \(\bar{F} \), then

\[
\xi \mathcal{J}(X) = - \int_{0}^{+\infty} x \bar{F}(x) dF(x). \tag{3.3}
\]

Proof. By (2.1) and Fubini’s theorem, we obtain

\[
- \int_{0}^{+\infty} x \bar{F}(x) dF(x) = - \int_{0}^{+\infty} \left(\int_{0}^{x} dt \right) \bar{F}(x) f(x) dx = - \int_{0}^{+\infty} \left(\int_{t}^{+\infty} \bar{F}(x) f(x) dx \right) dt = - \frac{1}{2} \int_{0}^{+\infty} \bar{F}^2(t) dt.
\]

Hence, the proof is completed.

The new estimator can be obtained replacing \(\bar{F}(x) \) with \(\hat{\bar{F}}_n(x) \) in (3.3), so \(\hat{\xi} \mathcal{J}(X) \) has the following form

\[
\hat{\xi} \mathcal{J}(X) = - \int_{0}^{+\infty} x \hat{\bar{F}}_n(x) d\hat{F}_n(x) = - \frac{1}{n} \sum_{i=1}^{n} \left(1 - \frac{i}{n} \right) X_{(i)}. \tag{3.4}
\]

Let \(J(x) = (1 - x) \). Then (3.4) has the form

\[
\hat{\xi} \mathcal{J}(X) = - \frac{1}{n} \sum_{i=1}^{n} J \left(\frac{i}{n} \right) X_{(i)},
\]

which is a linear function of order statistics. The natural estimation of \(\xi \mathcal{J}(X) \) based on the MinRSSU, can be obtained as

\[
\hat{\xi} \mathcal{J}(X) := \hat{\xi} \mathcal{J}(X_{\text{MinRSSU}}) = - \frac{1}{n} \sum_{i=1}^{n} J \left(\frac{i}{n} \right) Y_{(i)}.
\]

Stigler (1974) showed that asymptotic distribution of such a linear combination is normal distribution. The results of Stigler (1974) also hold if the independent observations are not identically distributed. These properties help us to obtain the asymptotic distribution of \(\hat{\xi} \mathcal{J}(X) \) for both SRS (observations are independent and identical) and MinRSSU (observations are only independent) designs.

Theorem 3.2. Assume that \(E(X^2) < +\infty \). Then

\[
\sqrt{n} \left(\hat{\xi} \mathcal{J}(X) - \xi \mathcal{J}(X) \right) \xrightarrow{d} N\left(0, \sigma^2(J,F) \right),
\]

\[
\sqrt{n} \left(\hat{\xi} \mathcal{J}(Y) - \xi \mathcal{J}(X) \right) \xrightarrow{d} N\left(0, \sigma^2_{\text{MinRSSU}}(J,\bar{F},K) \right),
\]

where

\[
\sigma^2(J,F) = \int_{0}^{+\infty} \int_{0}^{+\infty} J(F(x))J(F(y))[F(\min(x,y)) - F(x)F(y)] dx dy,
\]

\[
\sigma^2_{\text{MinRSSU}}(J,\bar{F},K) = \int_{0}^{+\infty} \int_{0}^{+\infty} J(\bar{F}(x))J(\bar{F}(y))K(x,y) dx dy,
\]
and \(\tilde{F}(\cdot) \) and \(K(x, y) \) are given as

\[
\tilde{F}(x) = \frac{1}{m} \sum_{i=1}^{m} F_{(1)i}(x),
\]
\[
K(x, y) = \frac{1}{m} \sum_{i=1}^{m} [F_{(1)i}(\min(x, y)) - F_{(1)i}(x)F_{(1)i}(y)].
\]

Proof. For \(\tilde{F}(x) \) and \(K(x, y) \), we have

\[
\tilde{F}(x) = \lim_{n \to +\infty} \frac{l}{n} \sum_{i=1}^{n} F_{(1)i}(x) = \frac{1}{m} \sum_{i=1}^{m} F_{(1)i}(x),
\]
\[
K(x, y) = \lim_{n \to +\infty} \frac{l}{n} \sum_{i=1}^{n} [F_{(1)i}(\min(x, y)) - F_{(1)i}(x)F_{(1)i}(y)]
\]
\[
= \frac{1}{m} \sum_{i=1}^{m} [F_{(1)i}(\min(x, y)) - F_{(1)i}(x)F_{(1)i}(y)],
\]

where as before \(l \) is the size of the cycle of MinRSSU design with \(n = ml \). The rest of the proof is done by using the results of Stigler (1974) for both SRS and MinRSSU designs.

As we formerly stated for providing the estimator \(R_{m,n} \), some adjusted forms of estimator \(\hat{\xi}J(Y) \) can be used since the estimator \(\hat{\xi}J(Y) \) has some deficiencies to estimate CREX which need to be fixed. We again observed that the term \((1 - \frac{i}{n}) \) needs to be slightly adjusted so that the resulting estimator has optimal properties to estimate CREX. This new term has the following form

\[
1 - \frac{i}{n + \psi(m, w)},
\]

where the function \(\psi(\ldots) \) is a challenging factor that can be specifically determined for each given distribution and consequently the resulting estimator has optimal low bias and MSE. In this case, the resulting estimator has the following form

\[
\hat{\xi}J_{m,n}(Y) = -\frac{1}{n} \sum_{i=1}^{n} J \left(\frac{i}{n + \psi(m, w)} \right) Y_{(i)}.
\]

In the next section, we determine the form of the function \(\psi(\ldots) \) for exponential, uniform and beta distributions and we show that the optimal choice of this function can reduce the bias and MSE in the estimate of CREX.

3.2. Simulation study

In advance, we explain the role of the parameter \(w \) and function \(\psi(m, w) \) for which \(R_{m,n} \) and \(\hat{\xi}J_{m,n}(X_{\text{MinRSSU}}) \) have optimally low bias and MSE. For this purpose, we examine some distributions to obtain the function \(\psi(m, w) \) and optimal value of \(w \) in \(R_{m,n} \) and \(\hat{\xi}J_{m,n}(Y) \). In Tables 1 and 2 for four estimators \(R_{n}, R_{m,n}, \hat{\xi}J(Y) \) and \(\hat{\xi}J_{m,n}(Y) \), we compute the bias and MSE to estimate the parameter \(\xi J(X) \) for some different values of \(w \). Here, the exponential \((\text{Exp}(\lambda)) \), uniform \((\text{Unif}(0,b)) \) and beta \((\text{Beta}(\alpha,1), \alpha > 1) \) distributions are considered. For each configuration, the simulation study was carried out with 5000 repetitions. The number of cycle and size of the sample in each cycle are taken as \(l = 2, 3 \) and \(m = 2, ..., 5 \), respectively. We compute the bias and root of MSE (RMSE) of each estimator.
of parameter $\xi \mathcal{J}(X)$. In Tables 1-3, it can be seen that results of biases and RMSEs of estimator $\tilde{\xi} \mathcal{J}(Y)$ are not comparable to those of $\xi \mathcal{J}_{m,n}(Y)$ for different values of w. We intuitively obtain the form of the function $\psi(m, w)$ for different distributions. We found that the function ψ has the form $5m - 4k_m + w$ with $k_2 = 0, k_3 = 0, m - (2k_m + 1) + w$ with $k_2 = -1, k_3 = 2$ and $m - w$ for exponential, uniform and beta distributions, respectively. It is observed that changing the value of l has no effect on the whole results verified from biases and RMSEs. In all tables, we see that choosing the proper function $\psi(m, w)$ and parameter w as the challenging factors can improve the efficiency of estimators $R_{m,n}$ and $\hat{\xi} \mathcal{J}_{m,n}(Y)$ against R_n and $\hat{\xi} \mathcal{J}(Y)$, respectively, in estimating the parameter $\xi \mathcal{J}$.

Table 1: The biases and MSEs of the different estimators: Exponential distribution

$l = 2$	$l = 3$	$l = 2$	$l = 3$								
m	w	Bias	RMSE	Bias	RMSE	m	w	Bias	RMSE	Bias	RMSE
2	-2	0.321	0.407	0.370	0.477	2	-11	0.632	0.650	0.536	0.562
2	-1	0.131	0.354	0.133	0.460	2	-10	0.402	0.483	0.354	0.427
0	-0.051	0.423	0.069	0.580	0	-9	0.263	0.435	0.223	0.370	
1	-0.216	0.556	-0.234	0.733	1	-8	0.171	0.434	0.125	0.361	
R_n	0.321	0.407	0.370	0.477	$\hat{\xi} \mathcal{J}(Y)$	0.402	0.483	0.354	0.427		
3	-1	0.124	0.367	0.164	0.304	3	-7	0.033	0.374	0.006	0.307
0	-0.017	0.429	0.040	0.315	0	-6	0.012	0.382	-0.020	0.317	
1	0.124	0.367	0.164	0.304	1	-5	-0.006	0.391	-0.044	0.328	
2	-0.253	0.632	-0.191	0.472	2	-4	-0.022	0.399	-0.065	0.340	
R_n	0.437	0.478	0.411	0.444	$\hat{\xi} \mathcal{J}(Y)$	0.452	0.489	0.354	0.427		
4	0	0.024	0.383	0.118	0.291	4	-3	0.029	0.329	-0.007	0.269
1	-0.077	0.452	0.029	0.313	1	-2	0.020	0.332	-0.019	0.274	
2	-0.170	0.532	-0.057	0.363	2	-1	0.012	0.334	-0.030	0.278	
3	-0.256	0.616	-0.139	0.427	3	0	0.004	0.337	-0.040	0.283	
R_n	0.486	0.509	0.474	0.490	$\hat{\xi} \mathcal{J}(Y)$	0.509	0.527	0.489	0.503		
5	1	-0.004	0.390	0.114	0.281	5	1	0.072	0.277	0.050	0.232
2	-0.082	0.448	0.046	0.296	2	2	0.067	0.277	0.043	0.233	
3	-0.156	0.512	-0.021	0.329	3	3	0.063	0.278	0.036	0.233	
4	-0.224	0.578	-0.085	0.373	4	4	0.058	0.278	0.030	0.234	
R_n	0.533	0.545	0.524	0.532	$\hat{\xi} \mathcal{J}(Y)$	0.554	0.563	0.540	0.547		

4. Discrimination information

This section considers a new discrimination measure of disparity between the distribution of MinRSSU and parental data SRS. Raqab & Qiu (2019) defined the discrimination information between the density function of the i^{th} order statistic $f_{(i)m}$ and the underlying density function f as

$$D_m (f_{(i)m} : f) = \frac{1}{2} \int_{-\infty}^{+\infty} f_{(i)m} (x) (f_{(i)m} (x) - f (x)) \, dx. \quad (4.1)$$

Analogously to (4.1), we define the discrimination information between the survival function of the smallest ordered statistic $\bar{F}_{(1)i}$ and the underlying survival function \bar{F} as

$$D (\bar{F}_{(1)i} : \bar{F}) = -\frac{1}{2} \int_{-\infty}^{+\infty} \bar{F}_{(1)i} (x) (\bar{F}_{(1)i} (x) - \bar{F} (x)) \, dx. \quad (4.2)$$
Table 2: The biases and MSEs of the different estimators: Uniform distribution

	Results based on $R_{m,n}$		Results based on $\hat{\xi}_{m,n}(Y)$								
	$l = 2$	$l = 3$									
m	w	Bias	RMSE	Bias	RMSE	m	w	Bias	RMSE	Bias	RMSE
2	-2	0.360	0.392	0.298	0.333	2	-4	0.098	0.275	0.058	0.227
	-1	0.249	0.305	0.212	0.264		-3	0.045	0.281	-0.001	0.236
	0	0.158	0.253	0.134	0.214		-2	0.005	0.293	-0.049	0.254
	1	0.085	0.233	0.066	0.186		-1	-0.026	0.306	-0.088	0.275
	R_n	0.360	0.392	0.298	0.333		$\hat{\xi}(Y)$	0.284	0.340	0.238	0.293
3	-1	0.191	0.243	0.201	0.237	3	-2	-0.006	0.247	-0.023	0.200
	0	0.125	0.204	0.147	0.196		-1	-0.026	0.255	-0.047	0.209
	1	0.067	0.183	0.096	0.165		0	-0.043	0.263	-0.068	0.220
	2	0.016	0.181	0.055	0.148		1	-0.058	0.270	-0.087	0.231
	R_n	0.349	0.372	0.318	0.339		$\hat{\xi}(Y)$	0.318	0.350	0.290	0.317
4	0	0.14	0.195	0.175	0.204	4	0	-0.012	0.205	-0.008	0.164
	1	0.092	0.171	0.135	0.173		1	-0.023	0.209	-0.021	0.168
	2	0.049	0.159	0.098	0.148		2	-0.034	0.213	-0.034	0.172
	3	0.018	0.159	0.062	0.131		3	-0.043	0.217	-0.046	0.177
	R_n	0.372	0.387	0.349	0.360		$\hat{\xi}(Y)$	0.352	0.369	0.337	0.350
5	1	0.116	0.17	0.175	0.198	5	2	0.020	0.181	0.028	0.146
	2	0.079	0.153	0.144	0.172		3	0.013	0.183	0.019	0.146
	3	0.044	0.144	0.114	0.150		4	0.006	0.184	0.010	0.147
	4	0.012	0.144	0.085	0.132		5	-0.001	0.186	0.002	0.148
	R_n	0.392	0.401	0.381	0.388		$\hat{\xi}(Y)$	0.387	0.398	0.375	0.383

The discrimination information in (4.2) may be rewritten in a simpler way. It can be shown that

$$D(F_{(1)i} : \bar{F}) = -\frac{1}{2} \left[E(X_{(1)2i}) - E(X_{(1)i+1}) \right],$$

(4.3)

where $X_{(1)i}$ is the smallest order statistic in a random sample of size j.

Example 4.1. Let $U \sim \text{Uniform}(0,1)$. We know that the order statistics from the standard uniform distribution follow the beta distribution. Then discrimination information based on (4.2) is

$$D(F_{(1)i} : \bar{F}) = -\frac{1}{2} \left[\frac{1}{2i+1} - \frac{1}{i+2} \right] = \frac{i-1}{2(2i+1)(i+2)}.$$

In the following theorem, we obtain the discrimination information D between MinRSSU and SRS designs.

Theorem 4.1. For $X^{(m)}_{\text{MinRSSU}}$ and $X^{(m)}_{\text{SRS}}$, we have

$$D(X^{(m)}_{\text{MinRSSU}} : X^{(m)}_{\text{SRS}}) = -\frac{1}{2} \left(\prod_{i=1}^{m} E(X_{(1)2i}) - \prod_{i=1}^{m} E(X_{(1)i+1}) \right).$$

Proof. From (2.1) and (4.2) we have

$$D(X^{(m)}_{\text{MinRSSU}} : X^{(m)}_{\text{SRS}}) = -\frac{1}{2} \left(\prod_{i=1}^{m} \int_{-\infty}^{+\infty} \bar{F}^{2i}(x_1) - \prod_{i=1}^{m} \int_{-\infty}^{+\infty} \bar{F}^{i+1}(x_1) \right)$$

$$= -\frac{1}{2} \left(\prod_{i=1}^{m} E(X_{(1)2i}) - \prod_{i=1}^{m} E(X_{(1)i+1}) \right).$$

The proof is completed. □
Table 3: The biases and MSEs of the different estimators: Beta distribution

	Results based on $R_{m,n}$		Results based on $\hat{\xi}_J(Y)$				
m	w	Bias	RMSE	m	w	Bias	RMSE
2	-2	0.296	0.298	2	-3	0.202	0.204
	-1	0.280	0.283		-2	0.108	0.116
0	0.267	0.271	0.253	0.257	-1	0.053	0.070
1	0.257	0.261	0.244	0.248	0	0.015	0.053
R_n	0.296	0.298	0.276	0.279	$\hat{\xi}_J(Y)$	0.108	0.116
3	-1	0.251	0.255	3	-3	0.096	0.102
	0	0.241	0.245		-2	0.052	0.064
	1	0.233	0.238		-1	0.019	0.045
	2	0.225	0.231		0	-0.007	0.043
R_n	0.275	0.278	0.256	0.259	$\hat{\xi}_J(Y)$	0.106	0.120
4	0	0.227	0.231	4	-3	0.059	0.068
	1	0.220	0.225		-2	0.031	0.047
	2	0.214	0.219		-1	0.007	0.038
	3	0.208	0.213		0	-0.012	0.041
R_n	0.264	0.267	0.246	0.249	$\hat{\xi}_J(Y)$	0.095	0.100
5	1	0.217	0.221	5	-3	0.043	0.053
	2	0.211	0.216		-2	0.022	0.039
	3	0.206	0.210		-1	0.004	0.034
	4	0.201	0.205		0	-0.012	0.036
R_n	0.257	0.259	0.239	0.242	$\hat{\xi}_J(Y)$	0.097	0.101

Example 4.2. Let $U \sim \text{Uniform}(0,1)$. Using the results of Example 4.1, the discrimination information D for the MinRSSU and SRS designs of the same size m is

$$D \left(U_{\text{MinRSSU}}^{(m)} : U_{\text{SRS}}^{(m)} \right) = -\frac{1}{2} \left(\prod_{i=1}^{m} \frac{1}{2i+1} - \prod_{i=1}^{m} \frac{1}{i+2} \right).$$

5. Conclusion

This paper has introduced the uncertainty measure of the cumulative residual extropy based on the MinRSSU and SRS data. Several results of the CREX measure including stochastic orders were obtained for MinRSSU and SRS data. Also, we provided two estimators of CREX measure for both SRS and MinRSSU data. Furthermore, it was shown that MinRSSU scheme can efficiently reduce the uncertainty measure of CREX. Also, by providing a discrimination measure, we derived the distance size between MinRSSU and SRS data.

Acknowledgements

C. Cafi and M. Longobardi are partially supported by the GNAMPA research group of INDAM (Istituto Nazionale di Alta Matematica) and MIUR-PRIN 2017, Project "Stochastic Models for Complex Systems" (No. 2017JFFHSH).
References

Ahmed, A. N., Alzaid, A., Bartoszewicz, J., & Kochar, S. C. (1986). Dispersive and superadditive ordering. *Advances in Applied Probability, 18*, 1019–1022.

Bagai, I., & Kochar, S. C. (1986). On tail-ordering and comparison of failure rates. *Communications in Statistics - Theory and Methods, 15*, 1377–1388.

Di Crescenzo, A., & Longobardi, M. (2009). On cumulative entropies. *Journal of Statistical Planning and Inference, 139*, 4072–4087.

Eskandarzadeh, M., Di Crescenzo, A., & Tahmasebi, S. (2018). Measures of information for maximum ranked set sampling with unequal samples. *Communications in Statistics - Theory and Methods, 47*, 4692–4709.

Eskandarzadeh, M., Tahmasebi, S., & Afshari, M. (2016). Information measures for record ranked set samples. *Ciência e Natura, 38*, 554–563.

Frank, L., Sanfilippo, G., & Agrò, G. (2015). Extropy: Complementary dual of entropy. *Statistical Science, 30*, 40–58.

Jahanshahi, S. M. A., Zarei, H., & Khammar, A. H. (2019). On cumulative residual extropy. *Probability in the Engineering and Informational Sciences, 264*, 1–21. doi:10.1017/S0269964819000196

Jozani, M. J., & Ahmadi, J. (2014). On uncertainty and information properties of ranked set samples. *Information Sciences, 264*, 291–301.

McIntyre, G. A. (1952). A method for unbiased selective sampling, using ranked sets. *Australian Journal of Agricultural Research, 3*, 385–390.

Patil, G., Sinha, A., & Taillie, C. (1999). Ranked set sampling: a bibliography. *Environmental and Ecological Statistics, 6*, 91–98.

Qiu, G. (2017). The extropy of order statistics and record values. *Statistics & Probability Letters, 120*, 52–60.

Qiu, G., & Eftekharian, A. (2020). Extropy information of maximum and minimum ranked set sampling with unequal samples. *Communications in Statistics - Theory and Methods, 49*, doi:10.1080/03610926.2019.1678640

Raqab, M., & Qiu, G. (2019). On extropy properties of ranked set sampling. *Statistics, 53*, 210–226.

Shaked, M., & Shanthikumar, J. G. (2007). *Stochastic Orders*. Springer, New York.

Stigler, S. (1974). Linear functions of order statistics with smooth weight functions. *The Annals of Statistics, 2*, 676–693.
Tahmasebi, S. (2019). Weighted extensions of generalized cumulative residual entropy and their applications. *Communications in Statistics - Theory and Methods*, . doi:10.1080/03610926.2019.1615094

Tahmasebi, S., Jafari, A. A., & Eskandarzadeh, M. (2016). Some results on residual entropy of ranked set samples. *Statistics & Probability Letters, 112*, 137–145.

Tahmasebi, S., Longobardi, M., Kazemi, M. R., & Alizadeh, M. (2020). Cumulative tsallis entropy for maximum ranked set sampling with unequal samples. *Physica A. Statistical Mechanics and its Applications*, . doi:10.1016/j.physa.2020.124763