Abstract—We propose a belief propagation list (BPL) decoder with comparable performance to the successive cancellation list (SCL) decoder of polar codes, which already achieves the maximum likelihood (ML) bound of polar codes for sufficiently large list size L. The proposed decoder is composed of multiple parallel independent belief propagation (BP) decoders based on differently permuted polar code factor graphs. A list of possible transmitted codewords is generated and the one closest to the received vector, in terms of Euclidean distance, is picked. To the best of our knowledge, the proposed BPL decoder provides the best performance of plain polar codes under iterative decoding known so far. The proposed algorithm does not require any changes in the polar code structure itself, rendering the BPL into an alternative to the SCL decoder, equipped with a soft output capability enabling, e.g., iterative detection and decoding to further improve performance. Further benefits are lower decoding latency compared to the SCL decoder and the possibility of high throughput implementations. Additionally, we show that a different selection strategy of frozen bit positions can further enhance the error-rate performance of the proposed decoder.

I. INTRODUCTION

Polar codes [1] were adopted by the 3GPP group as the channel codes for the upcoming 5th generation mobile communication standard (5G) uplink/downlink control channel [2]. Therefore, decoding of polar codes has been grasping more and more attention as a practical implementation challenge.

As successive cancellation (SC) decoding, originally proposed in [1], is sub-optimal for finite length polar codes, successive cancellation list (SCL) decoding [3] was later introduced achieving the maximum likelihood (ML) bound for a sufficiently large list size L, at the cost of increased complexity due to the list decoding nature. Further enhancement of the code was conducted via concatenating a high rate outer code such as Cyclic Redundancy Check (CRC) and parity-check (PC) codes. Under SCL decoding, these CRC-aided polar codes [3] and parity-check concatenated polar codes [4] were shown to outperform the state-of-the-art low-density parity-check (LDPC) codes. Later, an extension of polar codes, namely Polar Subcodes, were proposed in [5], outperforming the above-mentioned code constructions. However, the SCL decoder is characterized by a high complexity and an inherently serial decoding nature, which in turn reduces the decoding throughput and causes high decoding latency (see [6] and references therein). In addition, SCL decoding is not a good match to iterative detection and decoding due to its hard-decision output nature (i.e., not a soft-in/soft-out decoder).

In this work, the major focus is on the achievable performance of iterative decoding of polar codes based on message passing over the encoding graph [7]. The BP algorithm enjoys some fundamental advantages over SC-based decoding, as it can be easily parallelized, thus high throughput/low latency implementations are possible, and it inherently enables soft-in/soft-out decoding, facilitating joint iterative detection and decoding. Thus, BP decoding is a promising candidate for high data rate and low latency demanding applications.

Although much effort has been spent on enhancing its performance, e.g., significant improvements through post-processing were reported in [8], the BP decoding algorithm is still outperformed by the SCL decoding algorithm. In [9], it was shown that BP decoding of polar codes can be enhanced by appending a short-length LDPC code to the semi-polarized bit channels of the polar code. In [10], the selection of information and frozen bit channels was altered based on log-likelihood ratio (LLR)-evolution leading to a considerable performance gain. Though these approaches push the performance of BP-based decoding of polar codes a bit forward, the gap between their performance compared to that of SCL decoding is, however, still quite large. Besides, all these methods, making them incompatible to the standardized polar codes (i.e., CRC/PC-aided polar codes).

Based on the observation that the stages of the encoding graph of a polar code of length N can be permuted leading to $(\log_2 N)!$ different graphs with the same encoding behavior, the idea of decoding on parallel BP decoders, each based on a different stage-permutated factor graph realization, was introduced in [11], but has not yet been investigated further. This new decoding scheme was then implemented in a se-
quential manner and used in [12] to overcome the effects of insufficient LLR-clipping. It was further studied in [13] where the performance of polar codes under iterative BP decoding with the help of a high rate CRC code was shown to be comparable to SCL (i.e., SCL without the CRC aid). This decoding scheme offers a trade-off between good error-rate performance and large decoding delay (also complexity) due to its sequential decoding fashion. In addition, the decoder approaches the performance of SCL only when the code is concatenated with a high rate CRC code, which is used as a stopping flag in the decoder. Similar permutation decoding techniques were reported in [14] for Reed–Muller (RM) codes.

Unlike [13], where the code itself was changed via concatenating the polar code with a high rate CRC code, the proposed algorithm in this paper proposes a new decoder based on a list of L parallel independent BP decoders without altering the code itself (i.e., no code concatenation is involved), hence it is referred to as “BPL decoder”. Compared to the decoder proposed in [13], BPL allows the parallel execution of all graphs and, thus, possibly both higher throughput and lower latency can be achieved. It is worth mentioning that this decoder resembles the one proposed in [15] where Bose-Chaudhuri-Hocquenghem (BCH) and Golay codes are decoded based on multiple BP decoders over different graph realizations. To the best of our knowledge, the proposed BPL decoder provides the best, so far, known performance of plain polar codes under iterative decoding. The decoder is introduced in its basic high complexity (but conceptually simple) form. Further complexity reduction approaches are reserved to future investigation.

II. POLAR CODES AND ITERATIVE DECODING

As introduced in [1], polar codes are based on the concept of channel polarization, where $N = 2^n$ identical channels are combined such that a channel polarization effect occurs. The recursive channel combination leads to the generator matrix G, given by $G = F^{[n]}$, where $F = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ and $F^{[n]}$ denotes the n-th Kronecker power of F.

The codewords x can be obtained by $x = u \cdot G$, where u contains k information bits and $N-k$ frozen bits. The k information bits are assigned to the k most reliable positions denoted as information set \hat{A} (and \hat{A} denotes the frozen positions), which have to be found during the code construction phase. If not explicitly mentioned, we use Arikan’s Bhattacharyya-based design; however, any other polar code construction (i.e., different \hat{A}) could be used. Let $\mathcal{P}(N,k)$ denote a polar code with codeword length N and k information bits, i.e., the information set has the cardinality $k = |\hat{A}|$.

An iterative decoding algorithm was introduced in [7] based on Gallager’s BP decoding of LDPC codes. The main difference is that the iterative message passing is applied over the encoding factor graph (Fig. 2) instead of the parity-check matrix. This factor graph consists of $n+1$ stages containing N nodes per stage. Due to the limited space, only a short overview on the BP decoding algorithm is provided. We refer the interested reader to [7], [12] and [16]. Two types of messages are involved, left-to-right messages (R-messages) and right-to-left messages (L-messages). The R-messages at stage 1 represent the a priori information available to the decoder and thus, are either 0 or ∞ for non-frozen ($i \in \hat{A}$) and frozen ($i \notin \hat{A}$) bits, respectively. The L-messages at the last stage $(n+1)$ are initialized with the channel output LLRs $L_{ch,i} = \log \frac{P_{y_i=1|x_i=1}}{P_{y_i=1|x_i=0}}$, i.e., $L_{i,n+1} = L_{ch,i}$.

During each iteration, L- and R-messages are iteratively propagated from stage to stage through the factor graph [7]. As shown in Fig. 2, the polar factor graph consists of $\log_2(N) \cdot \frac{N}{2}$ processing elements (PEs) (or check nodes, CNs) [12].

(a) Conventional factor graph (b) Stage-shuffled factor graph

Fig. 2: Factor graphs of $\mathcal{P}(8,k)$-code (loop structure changes).

The BP decoder can stop after a pre-defined maximum number of iterations N_{max}, or if an early stopping condition is fulfilled [16]. Finally, either the LLRs of the estimated information word \hat{u} and the estimated codeword \hat{x} is forwarded as the decoder output, or a hard decision is applied to recover the information bits. Two stopping conditions, based on intermediate hard-decisions on \hat{u} and \hat{x}, are practically relevant: 1) G-matrix-based [16]: stop when $\hat{x} = \hat{u} \cdot G$ is fulfilled. 2) CRC-based: stop when the CRC on \hat{x} is fulfilled. However, this would require an outer CRC code (i.e., a change in the code structure).

III. BELIEF PROPAGATION LIST DECODER

As outlined in [11], there exist $n!$ different permutations of the polar code factor graph which fulfill the condition $x = u \cdot G$. Any permutation of the factor graph based on Arikan’s kernel can be characterized by a vector Π with entries π_j from 1 to n permuted in any random order, written as: $\{\Pi\}_{1 \times n} = \text{randperm}(n)$ (i.e., random permutations of the vector $[1,2,3,\ldots,n]$). The j^{th} stage in the factor graph is characterized by s_j defining the separation between the two bit channels to be connected together via a check node. The vector s with entries s_j for the n stages is calculated as: $s_j = 2^{\pi_j-1}$, where $1 \leq j \leq n$. Fig. 2a and 2b show a pair of permutations for $\mathcal{P}(8,k)$-code (i.e., $n = 3$). The factor graph in Fig. 2a is defined by the vector $\Pi = [3,2,1]$ and thus the separation $s = [4,2,1]$. While the factor graph in Fig. 2b is defined by the vector $\Pi = [2,1,3]$ and thus the separation $s = [2,1,4]$.

1Remark: the decoder can be sufficiently described by s, however, from an implementation perspective that a permutation Π of the natural numbers from 1 to n is more convincing.
BP decoding can be performed over any one of such permuted factor graphs. Different permutations contain different loops as depicted in Fig. 2. Thus, one factor graph permutation may be better than another permutation for a specific set of inputs (i.e., transmitted codeword plus noise realization).

As shown in [6], iterative decoding of polar codes has a higher potential of high throughput implementations when compared to SC-based decoding. Thus, BPL enjoys a higher potential of parallel hardware implementations leading to high throughput and low latency. The latency of BPL scales with $\mathcal{O}(N_{a,\text{max}} \cdot \log N)$ as each stage can be fully parallelized, i.e., it scales with $\log_2 N$ for a constant number of iterations. Furthermore, stage-combining is possible without any performance loss, reducing the decoding latency and the memory complexity. In contrast, due to the sequential decoding nature of SCL, low latency implementations are hard to realize (cf. [6]), i.e., the latency of SCL scales with $\mathcal{O}(N)$ without further pruning techniques such as partitioning.

A major advantage of our proposed decoder, namely BPL, is the reduced sorting complexity when compared to the SCL decoder. In SCL decoding, for large values of L, the metric sorter is time consuming and expensive in terms of complexity, while in BPL decoding no intermediate sorting steps are needed; only one sorting operation is done at the very end to pick the closest codeword to y.

The price, however, to pay is having L parallel BP decoders with an overall complexity of $\mathcal{O}(L \cdot N \cdot \log N)$ assuming a constant number of iterations. It is worth mentioning that the complexity of BPL increases linearly with the number of performed BP iterations. Thus, in terms of the number of performed operations, a naive implementation of BPL is more computationally complex than SCL. A basic SCL ($L = 32$) implementation for a $\mathcal{O}(2048, 1024)$-code requires 0.7209×10^6 unit calculation updates [17]. BPL ($L = 32, N_{a,\text{max}} = 200$) requires 25×10^6 PE updates at $\frac{E_b}{N_0} = 2$ dB and $14 \cdot 10^6$ PE updates at $\frac{E_b}{N_0} = 3.2$ dB, respectively. However, in the high SNR region (e.g., $\frac{E_b}{N_0} = 3.2$ dB), BPL only requires a list size $L = 5$ to achieve the SCL ($L = 32$) error-rate performance and, thus, requires 1.01×10^6 PE updates. PE and unit calculation updates have similar complexity. Thus, in the high SNR region and without further complexity reductions, the BPL has a feasible complexity when compared to plain SCL.

IV. RM-POLAR CODES UNDER BPL DECODING

We observed that the BPL decoder benefits only slightly from an outer CRC/PC code. However, we show in this section that a more proper polar code design can further reduce the gap to the CRC-aided SCL performance by simply selecting the frozen/information bit positions according to [18].

On the one hand, RM and polar codes are based on the same polarization matrix \mathbf{F}^RM. On the other hand, they differ in the selection of bit channels used for conveying the information bits. In polar codes, the information bits are those k bits with the k smallest Bhattacharyya parameters; while in RM codes, the information bits are the k bits corresponding to the highest row weights (i.e., Hamming weights) in the generator matrix \mathbf{G}. The goal of the polar code construction is to minimize the error probability under SC decoding, which is not necessarily optimum under iterative decoding (i.e., “flooding” BP decoding). However, the goal of the RM construction is to design a code with the largest minimum Hamming distance. For finite
length codes, the distance properties are of more significant
impact than the polarization effect [19].

In [18], a new type of codes is constructed according to
both the RM and polar code construction rules together,
yielding a code with a higher minimum Hamming distance
than polar codes, and thus, better error-rate performance in
the finite length regime. First, the bits corresponding to a
row in the G-matrix which has a weight less than or equal
to a certain threshold \(d \) are set to be frozen, regardless of
the Bhattacharyya parameter values of these bit channels.
 Afterwards, the \(k \) information bits are the ones with the
smallest Bhattacharyya parameters from the remaining set (i.e.,
the most reliable \(k \) bit channels under SC decoding). Finally,
the remaining set of bits are set to be frozen. An RM-polar
code of length \(N \) with \(k \) information bits and the Hamming
weight threshold \(d \) is denoted by \(\mathcal{P}_{RM}(N,k,d) \).

This hybrid RM-polar code construction method yields codes that have significantly better error-rate performance than
the codes constructed by the Bhattacharyya parameter under
BPL and SCL decoding, Fig. 4. Note that an SCL decoder of
a \(\mathcal{P}_{RM}(2048,1024,16) \)-code requires a pretty large list size
\(L (L > 512) \) to closely approach the ML bound of the hybrid
RM-polar code [18]. For the case of the \(\mathcal{P}_{RM}(2048,1024) \)-code
under SCL decoding, it was shown in [3] that a list size of 32
is sufficient to closely approach the ML bound of the polar
code in the high SNR region \((E_b/N_0 > 1.5 \text{ dB}) \).

In Fig. 4 it can also be seen that the hybrid RM-polar code
construction method yields codes that have better error-rate
performance than the codes constructed by the Bhattacharyya
parameter under BPL decoding. This gain comes at no extra
complexity cost, where the only difference between the codes
is the frozen/information bits selection. It should be emphasized
that no additional CRC was used for the results in Fig. 4.

V. CONCLUSION

We propose a multiple permuted factor graph-based iterative
decoding algorithm of polar codes which reaches the same
error-rate performance as SCL decoding. To the best of our
knowledge, this BPL decoder is the best iterative decoder for
plain polar codes known thus far. The proposed algorithm
does not require any changes or additions in the polar code
structure, i.e., the gains are solely based on the improved
decoding algorithm itself. Additionally, a hybrid RM-polar
code design can further significantly enhance the performance
as it improves the distance spectrum of the polar code.
We show results for carefully constructed polar codes under
iterative (i.e., BPL) decoding, surprisingly only less than 0.5 dB
away from the CRC-aided polar codes under SCL decoding.
The advantages of the proposed decoder are soft-in/soft-out
decoding and the possibility of low-latency implementations.
The drawbacks, high decoding complexity and the missing
CRC/PC compatibility, are left open for future research.

REFERENCES

[1] E. Arıkan, “Channel Polarization: A Method for Constructing Capacity-
Achieving Codes for Symmetric Binary-Input Memoryless Channels,”
IEEE Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, July 2009.
[2] Huawei, “Evaluation of TBCC and Polar Codes for Small Block
Lengths,” SGPP TSG RN 1 WG1 N.85, Tech. Rep., May 2016.
[3] I. Tal and A. Vardy, “List Decoding of Polar Codes,” IEEE Trans. Inf.
Theory, vol. 61, no. 5, pp. 2213–2226, May 2015.
[4] T. Wang, D. Qu, and T. Jiang, “Purity-Check-Concatenated Polar Codes,”
IEEE Commun. Lett., vol. 20, no. 12, pp. 2342–2345, Dec. 2016.
[5] P. Trifonov and V. Miloslavskaya, “Polar Subcodes,” IEEE J. Sel. Areas
Commun., vol. 34, no. 2, pp. 254–266, Feb. 2016.
[6] E. Arıkan, “Polar Codes: A Pipelined Implementation,” Proc. 4th ISBC,
pp. 11–14, 2010.
[7] E. Arıkan, “Channel Polarization: A Method for Constructing Capacity-
Achieving Codes for Symmetric Binary-Input Memoryless Channels,”
IEEE Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, July 2009.
[8] S. Sun, S.-G. Cho, and Z. Zhang, “Post-Processing Methods for Impro-
ving Coded Gain in Belief Propagation Decoding of Polar Codes,”
in IEEE Global Commun. Conf. (GLOBECOM), Dec. 2017.
[9] J. Guo, M. Qin, A. G. i Fabregas, and P. H. Siegel, “Enhanced Belief
Propagation Decoding of Polar Codes through Concatenation,” in IEEE
Inter. Symp. Inf. Theory (ISIT), June 2014, pp. 2987–2991.
[10] M. Qin, J. Guo, A. Bhatia, A. G. i Fabregas, and P. Siegel, “Polar Code
Constructions Based on LLR Evaluation,” IEEE Commun. Lett., vol. 21,
no. 6, pp. 1221–1224, June 2017.
[11] N. Hussami, S. B. Korada, and R. Urbanke, “Performance of Polar Codes
for Channel and Source Coding,” in IEEE Inter. Symp. Inf. Theory (ISIT),
2000, pp. 1488–1492.
[12] A. Elkelesh, S. Cammerer, M. Ebada, and S. ten Brink, “Mitigating
Clipping Effects on Error Floors under Belief Propagation Decoding of
Polar Codes,” in Proc. Inter. Symp. Wireless Commun. Syst., Aug. 2017.
[13] A. Elkelesh, M. Ebada, S. Cammerer, and S. ten Brink, “Belief Propa-
gation Decoding of Polar Codes on Permutated Factor Graphs,” in IEEE
Wireless Commun. and Networking Conf. (WCNC), Apr. 2018.
[14] I. Dumer and K. Shabunov, “Soft-Decision Decoding of Reed-Muller
Codes: Recursive Lists,” IEEE Trans. Inf. Theory, vol. 52, no. 3,
p. 1260–1266, Mar. 2006.
[15] T. Hein, J. B. Huber, S. Laendner, and O. Milenkovic, “Multiple-Bases
Belief-Propagation for Decoding of Short Block Codes,” in IEEE Inter.
Symp. Inf. Theory (ISIT), June 2007, pp. 311–315.
[16] B. Yuan and K. K. Parhi, “Early Stopping Criteria for Energy-Efficient
Low-Latency Belief-Propagation Polar Code Decoders,” IEEE Trans.
Sig. Process., vol. 62, no. 24, pp. 6496–6506, Dec. 2014.
[17] K. Chen, K. Niu, and J. Lin, “A Reduced-Complexity Successive
Cancellation List Decoding of Polar Codes,” in IEEE 77th Vehicular
Technology Conf. (VTC Spring), June 2013, pp. 1–5.
[18] B. Li, H. Shen, and D. Tse, “A RM-Polar Codes,” July 2014. [Online].
Available: https://arxiv.org/abs/1407.5483
[19] V. Bioglio, F. Gabry, I. Land, and J.-C. Belfiore, “Minimum-Distance
Based Construction of Multi-Kernel Polar Codes,” in IEEE Global
Commun. Conf. (GLOBECOM), Dec. 2017, pp. 1–6.

Fig. 4: BLER comparison between BP, SCL, and BPL for both \(\mathcal{P}_{RM}(2048,1024,16) \)-code and \(\mathcal{P}_{RM}(4096,1024,16) \)-code. All iterative decoders use the G-matrix-based stopping condition.