Spin dynamics in \(\text{La}_{1-x}\text{Sr}_x\text{MnO}_3 \) \((x \leq 0.175)\) investigated by high-field ESR spectroscopy

D. Ivannikov, M. Biberacher, H.-A. Krug von Nidda, A. Pimenov*, and A. Loidl

Institut für Physik, Universität Augsburg, 86135 Augsburg, Germany

A. A. Mukhin

General Physics Institute of the Russian Acad. of Sciences, 119991 Moscow, Russia

A. M. Balbashov

Moscow Power Engineering Institute, 105835 Moscow, Russia

(Dated: February 1, 2002)

High-field electron spin resonance (ESR) experiments have been carried out in single crystals of \(\text{La}_{1-x}\text{Sr}_x\text{MnO}_3 \) in the concentration range \(0 \leq x \leq 0.175 \). Different quasi-optical arrangements have been utilized in the frequency range \(40 < \nu < 700 \text{GHz} \) and for magnetic fields \(B \leq 12 \text{T} \).

A splitting of the antiferromagnetic resonance (AFMR) mode is observed in the magnetic field for the parent compound \(\text{LaMnO}_3 \) in agreement with the antiferromagnetic structure of this material. Abrupt changes in the AFMR frequencies have been observed around \(x \approx 0.025 \) and attributed to the possible transition between antiferromagnetic and canted state. For increasing Sr-doping the observed AFMR modes are split even in zero field, which can be naturally explained using a concept of a canted magnetic structure for \(x < 0.1 \). In \(\text{La}_{0.825}\text{Sr}_{0.175}\text{MnO}_3 \) the ESR spectra are consistent with the ferromagnetic and metallic state. The lines of ferromagnetic resonance and ferromagnetic antiresonance can be clearly seen in the spectra. For intermediate concentrations \(0.1 \leq x \leq 0.15 \) a complicated set of ESR spectra has been observed, which can be well explained by a single ferromagnetic resonance mode and taking into account electrodynamic effects.

I. INTRODUCTION

The main physical properties of doped manganites have been investigated nearly half a century ago by Jonker and van Santen\(^{1} \) and Wollan and Köhler\(^{2} \). The observed doping and temperature dependences have been qualitatively explained by de Gennes\(^{3} \) using an interplay of Mn-O-Mn superexchange and Zener’s double exchange (DE) mechanism\(^{4} \). In this model, on increasing doping the antiferromagnetic (AFM) and insulating (I) \(\text{LaMnO}_3 \) passes through a canted AFM (CAF) ground state and arrives at a ferromagnetic (FM) and metallic (M) state at doping levels \(x > 0.2 \). Within this picture a phase diagram of manganites has been constructed, which was in agreement with the existing experimental data.

The interest in doped manganites has been considerably renewed after several groups had observed exceptionally high values of the magnetoresistance in thin films\(^{5} \), later termed as ”colossal magnetoresistance” (CMR). The CMR effects at the ferromagnetic phase transition were analyzed within an extended double-exchange model\(^{6} \) but also with models taking a strong electron-phonon coupling\(^{7, 8} \) or a percolative metal-insulator transition\(^{6} \) into account. Subsequently it was realized that the rich phase diagram observed in various manganite systems can only be explained considering additional degrees of freedom such as Jahn-Teller distortions\(^{7, 8} \), electronic correlations and charge and orbital order\(^{7, 8} \).

In this paper we present high-field (HF) electron spin resonance (ESR) investigations of single crystals of \(\text{La}_{1-x}\text{Sr}_x\text{MnO}_3 \) for concentrations \(0 \leq x \leq 0.175 \), ranging from the AFM insulator to the FM metallic regime. The paper is organized as follows. The next section discusses the problem of phase separation in manganites. The discussion is focused on the low-doping region of the phase diagram, where important information can be extracted from the high-field ESR-experiments\(^{15, 16} \). The subsequent section presents the details of the sample preparation and the experimental procedure. The experimental results are discussed and presented within three groups, \(0 \leq x < 0.1, 0.1 \leq x \leq 0.15 \), and \(x > 0.15 \), respectively. The first region can be well described as antiferromagnetic insulator with a (modulated) canted structure followed by a ferromagnetic insulating ground state and, finally, by the ferromagnetic metal for \(x > 0.15 \).

II. PHASE SEPARATION VS. CANTED STRUCTURE

Enormous theoretical and experimental efforts have been devoted to the problem of phase separation in manganites. Already Wollan and Köhler\(^{2} \) have observed the coexistence of ferro- and antiferromagnetic lines in the neutron-scattering spectra, an effect, which could be

*corresponding author, email: Andrei.Pimenov@Physik.Uni-Augsburg.DE

\(^{1} \) Jonker and van Santen
\(^{2} \) Wollan and Köhler
\(^{3} \) de Gennes
\(^{4} \) Zener
\(^{5} \) Jonker and van Santen
\(^{6} \) Wollan and Köhler
\(^{7} \) de Gennes
\(^{8} \) Jonker and van Santen

...
equally explained by the canting of the parent antiferromagnetic structure or by phase separation into ferro- and antiferromagnetic domains. Later on, de Gennes derived theoretically the canted antiferromagnetic structure as a ground state of low-doped manganites. A number of subsequent experimental results have since then been explained using the concept of a canted structure [9, 23, 24, 25].

However, in recent years a number of theoretical models predicted that the CAF structure becomes unstable against electronic phase separation into ferromagnetic (FM) and antiferromagnetic (AFM) regions [9, 14, 21, 22]. According to the calculations on the basis of different models, the phase separation is energetically favorable in the whole range of the phase diagram. At present a number of reviews devoted especially to this problem is available in the literature [24, 27].

Phase diagrams of doped manganites are very complex and in many cases difficult to interpret. It is therefore reasonable to expect that different physical mechanisms play a major role at different parts of the phase diagram and the answer to the PS-CAF question will be ambiguous. Postponing for a moment the discussion of the experimental data, the situation is not simple even from the theoretical point of view. For example, analyzing lattice effects on the magnetism of LaMnO₃ using the local-spin-density approximation, Solovyev et al. [28] find a stable canted phase. Investigating the phase diagram of manganites on the basis of the DE model, Nagaev [24] confirmed the conclusions of de Gennes [9]: the CAF structure can be energetically favorable for certain portions of the phase diagram. Parameter regions resulting in a stable CAF phase have also been found using a Schwinger-boson representation for the magnetic moments [29]. More recently, similar results have been obtained re-investigating the DE theory within either multiple-scattering theory [30] or within a model including Coulomb repulsion and electron-phonon coupling [31]. However, we recall that the stability of a CAF phase in manganites has been obtained by comparative minority of theoretical concepts dedicated to the topic of phase separation.

A large body of experimental work has been devoted to the detection of the phase separation in manganites, which led in many cases to convincing experimental evidences [32, 33] especially in the vicinity of the ferromagnetic phase transition [34, 35]. The discussion of most of these results has been recently reviewed by Dagotto et al. [28]. In spite of enormous experimental progress in the field of phase separation, the region of low-doped LaMnO₃, and especially the composition range \(x < 0.1 \) still remains to be the matter of discussion. Among others, the Sr- and Ca-doped LaMnO₃ represent the most extensively studied systems. Their physical properties are quite similar, especially in the low-doping regime. One of the most prominent differences is a slightly stronger effect of Sr-substitution: the transition to a ferromagnetic insulator takes place around \(x \approx 0.1 \) for Sr, compared to \(x \approx 0.125 \) for Ca-substitution [36, 37].

First neutron scattering data measured on Ca-doped LaMnO₃ by Wollan and Koehler have been interpreted as equally compatible with either PS or CAF picture in the low-doped region. About forty years later, after the interest to manganites has been renewed, Kawano et al. [15] explained the neutron-scattering and magnetization results as pointing towards the CAF magnetic structure. Later on, using the same technique, Hemion et al. [17] found evidences for inhomogeneities in the canted structure, which have been termed "magnetic droplets" or "magnetic polarons". It should be pointed out that these results have been interpreted using the CAF phase as a ground state with the droplets arising from the effective modulation of the canting angle. This picture of the modulated CAF phase has been later confirmed by the same group [38, 39]. Almost simultaneously with the neutron-scattering data, evidences for inhomogeneities in the low-doped region of the phase diagram have been found by NMR spectroscopy by Allodi et al. [11, 12]. The NMR spectra pointed towards pure phase segregation into FM and AFM domains (see also Refs. [13, 14]). The NMR results seemingly contradict other available experimental data on low-doped manganites, which point towards the CAF structure as a ground state. However, as discussed by Kumagai et al. [15], the NMR spectra might be affected by the ceramic character of the samples. This open problem certainly deserves additional investigations.

The antiferromagnetic-resonance (AFMR) technique has been applied to Sr-doped LaMnO₃ in the low-doping regime (\(0 \leq x \leq 0.1 \)) without magnetic field by Mukhin et al. [11]. In addition, these investigations have been carried out in magnetic fields on untwinned single crystals of La\(_{1-x}\)Sr\(_x\)MnO\(_3\) with \(x = 0.05 \). Two resonance modes have been observed in the spectra, which revealed distinct excitation conditions, magnetic field and doping dependence. These results could be directly explained using the CAF picture and have been found to contradict the phase separation into pure FM and AFM phases. In agreement with this conclusion, the recent calculations of the spin-wave branches by Román and Soto confirm the distinctive character of the AFMR experiments on solving the PS-CAF problem. However, the AFMR experiments do not exclude a possible modulation of the canting angle, as found in neutron-scattering experiments [38, 39]. The modulation rather produces an additional broadening of the observed lines [16].

The problem of phase separation has been addressed from the point of view of magnetization data by Paraskevopoulos et al. [31] and Geck et al. [16]. Although the magnetization measurements cannot in general case distinguish between PS and CAF structures, the detailed analysis of the anisotropic magnetization or hysteresis curves did provide weighty arguments in favor of a CAF structure.

Concluding the discussion on the PS-CAF problem for
low-doped manganites, we try to formulate the description of the magnetic structure for the low-doped manganites, which seems to be consistent with the majority of existing experimental data: The magnetic ground state is represented by a canting magnetic structure, which is statically modulated around an average value. Therefore, the term modulated canting structure seems to be appropriate in this case. Such idea of the local inhomogeneities of spin distortion has already been discussed by de Gennes [3]. Naively, in weakly doped manganites every doping atom could be considered as a center, which tends to locally increase the canting angle and thus to produce the modulation of the CAF structure. However, according to the neutron scattering data [38, 40], the inhomogeneities of spin distortion have already been discussed by de Gennes [3]. Naively, in weakly doped manganites every doping atom could be considered as a center, which tends to locally increase the canting angle and thus to produce the modulation of the CAF structure. However, according to the neutron scattering data [38, 40], the inhomogeneities in the magnetic structure are roughly one order of magnitude larger than the distance between the doping ions.

III. EXPERIMENTAL DETAILS

Single crystals of La$_{1-x}$Sr$_x$MnO$_3$ were grown by the floating-zone method with radiation heating [17]. Raw La$_2$O$_3$, SrCO$_3$ and Mn$_3$O$_4$ chemicals of a high purity (not less 99.99%) were used for ceramic rods preparation. Some excess of Mn$_3$O$_4$ concentration (~0.5 at. %) was used in order to compensate a Mn loss due to the evaporation from the melt in the floating-zone process. The initial synthesis of composition was provided by annealing of mixed chemical powder at a temperature about 1200°C during 24 h. After pressing of feed rods they were sintered at 1350°C during 24 h. Single crystals with concentrations $x \leq 0.075$ were grown in Ar atmosphere, while for $x > 0.075$ the samples were grown in air. The typical growth direction was [110]. In order to obtain crack free crystals they were annealed at a temperatures about 1300°C. X-ray powder-diffraction measurements revealed single phase material. Two-dimensional X-ray topography of the crystals indicated a twin structure of all crystals, except for $x = 0.05$, which turned out to be twin-free.

The temperature dependence of the dc resistivity of La$_{1-x}$Sr$_x$MnO$_3$ [18] was measured utilizing a four-point technique and resembles quantitatively and qualitatively the data known from literature [19, 40]. In addition, the submillimeter-wave properties [21] and magnetization [31, 22] of these samples have been investigated and have been published previously. Plane-parallel plates of approximately 8×8×1 mm3 have been cut from the crystals for the high-field ESR measurements.

The high-field ESR spectra for frequencies 40 GHz ≤ ν ≤ 700 GHz (1.3 - 23 cm$^{-1}$) were recorded using a quasioptical technique utilizing backward-wave oscillators as coherent light sources [33]. Depending upon the transparency of the samples, two different types of experiments have been employed, i.e. transmission and reflection geometry. Using a similar technique, high-field ESR spectra of Nd$_{1-x}$Ca$_x$MnO$_3$ have been recently investigated by Dupont et al. [24].

Within the transmission geometry the conventional quasioptical arrangement [23] is equipped with a superconducting split-coil magnet. The Mylar optical windows allow to carry out transmission experiments in magnetic fields up to 8 T with the field parallel (Faraday geometry) as well as perpendicular (Voigt geometry) to the propagation of the electromagnetic beam [23]. The combination of both geometries is especially important investigating the ferromagnetically-ordered samples because in both cases different resonance conditions occur due to demagnetization fields. For a thin platelet the following expression for the ferromagnetic resonance frequencies can be written:

$$\omega_{FM} = \gamma \sqrt{(H + 4\pi M)\mu} \quad \text{Voigt geometry}$$

$$\omega_{FM} = \gamma |H - 4\pi M| \quad \text{Faraday geometry}$$

where γ is the gyromagnetic ratio and M is the magnetization. Equations (1) and (2) have been written under the assumption that the platelet is oriented perpendicular to the quasioptical beam (i.e. normal incidence). Therefore, the resonance frequencies are shifted to higher frequencies for the Voigt and to lower frequencies for the Faraday geometry.

The simplicity of the transmission geometry allows two different experimental modes: frequency-sweep and field-sweep runs. In the frequency-sweep mode the data can be collected even without magnetic field, which strongly simplifies the detection of weakly field-dependent modes. The frequency-dependent transmission spectra are analyzed using the Fresnel formulae for the transmittance $T = |t|^2$ of a plane-parallel sample (Voigt geometry) [25]

$$t = \frac{(1 - r^2)t_1}{1 - r^2 t_1^2},$$

where $r = \sqrt{\varepsilon/\mu - 1}/\sqrt{\varepsilon/\mu + 1}$ and $t_1 = \exp(-2\pi i\sqrt{\varepsilon/\mu} d/\lambda)$. Here r is the reflection amplitude at the air-sample interface, t_1 is the “pure” transmission amplitude, ε and μ are the (complex) dielectric permittivity and magnetic permeability of the sample, respectively, d is the sample thickness, and λ is the radiation wavelength. This expression can be applied also for anisotropic crystals, if the incident radiation is polarized along the principal optical axes. For experiments in Faraday geometry the transmission has to be determined by a more complicated expressions, which strongly depends on the mutual orientation of analyzer and polarizer and will be presented in a separate paper.

The relatively good transparency of the low-doped ($x < 0.1$) manganites in the submillimeter frequency range resulted in interference patterns due to internal reflections from the sample surface. The observation of these interferences allowed the calculation of the optical
parameters of the sample without measuring the phase shift of the transmitted signal. The dispersion of the magnetic permeability has been taken into account assuming a harmonic oscillator model for the complex magnetic permeability:

\[
\mu^*(\nu) = \mu_1 + i\mu_2 = 1 + \frac{\Delta \mu \nu_0^2}{\nu_0^2 - \nu^2 + i\nu\delta}
\]

where \(\nu_0\), \(\Delta \mu\) and \(\delta\) are eigenfrequency, mode strength and width of the resonance, respectively. The dielectric parameters of the sample \((\varepsilon^* = \varepsilon_1 + i\varepsilon_2)\) in good approximation behave regularly in the vicinity of the resonance frequency. Hence, frequency-sweep measurements allowed to obtain absolute values of the parameters of the ESR-AFMR lines.

The reflection geometry has been utilized in a top-loading 16 T superconducting magnet. The usual quasi-sioptical elements have been set-up outside the magnet. A stainless-steel rod has been constructed to guide the beam inside the magnet, which was finally focused on the sample by a Teflon lens. This arrangement did not allow to change the sample against the reference mirror, which hampered frequency-sweep experiments. In the reflection experiment with the top-loading magnet the sample surface is perpendicular to the static magnetic field and to the propagation direction of the beam, which corresponds to the Faraday geometry.

IV. RESULTS AND DISCUSSION

Since the early phase diagrams \([49, 50]\) of low-doped manganites a number of additional details and corrections have been provided \([18, 58, 59]\). On the basis of the samples investigated in this work, a similar phase diagram has been presented, which has been constructed on the basis of conductivity and magnetization measurements \([36, 15]\). Except for minor details and slightly different interpretations, this diagram agrees well with the established ones and also with the detailed phase diagram, published recently by Lui et al. \([52]\). These phase diagrams will be referred when discussing the results of the high-field ESR experiments.

A. The Parent Antiferromagnet \((x = 0)\)

Fig. 1 shows the frequency dependence of the transmittance of \(LaMnO_3\) in the frequency range of the antiferromagnetic resonance. The spectra in zero magnetic field are dominated by an intensive absorption line around 520 GHz, which represents the AFMR-mode. The transmittance spectra can be well approximated using a Lorentzian (Eq. 1) for the resonance mode. The fringes on both sides of the resonance line arise due to interference of the beam reflected from the opposite sides of the sample. The amplitude and the period of these fringes allow an independent determination of the dielectric parameters of the sample. The solid lines in Fig. 1 represent the calculated transmittance of a plane-parallel sample according to the Fresnel equations, Eq. 1.

A better description of the resonance minimum can be achieved assuming two closely separated AFMR lines instead of a single line \([13]\). Previously, the small splitting of the AFMR line has been explained by the magnetic anisotropy due to the low (orthorhombic) symmetry of the crystal \([15]\). However, it is not clear at present, whether this effect is simply due to a slight oxygen non-stoichiometry. E.g. the existence of a small canting has been observed even in pure stoichiometric \(LaMnO_3\) \([60]\) and attributed later \([61]\) to a Dzyaloshinski-Moriya exchange coupling.

The application of the static magnetic field splits the AFMR mode into two clearly resolved modes (lower frame of Fig. 1). This behavior is typical for an antiferromagnet \([22, 33]\) and has previously been observed in field-sweep spectra in pure \(LaMnO_3\) by Mitsudo et al. \([24]\). Within a simplified picture the line splitting takes place for the orientation of the external magnetic field parallel to the magnetic moments of the sublattices (i.e. parallel to the antiferromagnetic vector, \(I = M_1 - M_2\) in Fig. 2). For a two-sublattice axial antiferromagnet the external magnetic field along the easy axis removes the degeneracy of two circularly-polarized modes and splits them into two lines. The corresponding resonance frequencies \(\omega_{\pm}\) are given in a crude approximation simply
FIG. 2: Schematic representation of the antiferromagnetic modes for a canted antiferromagnetic structure. The magnetic moments of the two sublattices M_1 and M_2 correspond to adjacent (ab)-layers and are brought to the same point for simplicity, $m = M_1 + M_2$ - ferromagnetic moment, $l = M_1 - M_2$ - antiferromagnetic moment. The oscillations corresponding to two possible modes are also shown (ellipses and double arrows). The quasi-ferromagnetic mode (F) is excited by $h_{ac} \parallel a$ and $h_{ac} \parallel b$, the quasi-antiferromagnetic mode (AF) is excited by $h_{ac} \parallel c$.

by [32]:

$$\omega_{\pm} = \omega_0 \pm \gamma H . \quad (5)$$

Here ω_0 is the resonance frequency without external field, H is the magnetic field parallel to the antiferromagnetic vector and γ is the gyromagnetic ratio. A closer analysis of the field-dependent antiferromagnetic resonances in Fig. 1 reveals the appearance of an additional splitting of the lines, which is due to twinning of the crystal and is documented in Fig. 1b (Section V).

B. The Canted Antiferromagnet ($0 < x < 0.1$)

As discussed in Section II, as far as low-doped manganites are concerned, the concept of a (modulated) canted magnetic structure is well in agreement with the majority of experimental data in the field [2, 14, 13, 14, 17, 18, 19, 20, 22, 23, 30, 37, 38, 39, 40, 46, 49, 52]. Specifically for the high-field ESR experiments, this concept successfully describes the splitting of the antiferromagnetic lines, excitation conditions, magnetic field, doping dependence, etc. [12, 16]. To our best knowledge there exists no theory, which could explain the AFMR data on the basis of phase separation into pure FM and AFM regions. Therefore, the following presentation and discussion will be given within the concept of the canted magnetic structure, only.

The substitution of the trivalent La$^{3+}$ in the parent LaMnO$_3$ by divalent Sr$^{2+}$ or Ca$^{2+}$ introduces holes in the structure. Assuming Zener’s double-exchange mechanism [8, 9], the holes favor the ferromagnetic orientation of the magnetic lattice and therefore lead to a canting of the magnetic moments along the crystallographic c-axis.

Compared to the pure antiferromagnetic structure, the modes of the antiferromagnetic resonance are split even in the absence of an external magnetic field. The resonances of the canted structure can be well described by separating two sublattices of both magnetization directions (M_1 and M_2, two-sublattice model [3]). The behavior of the antiferromagnetic resonances of the canted structure has been calculated by a number of authors [13, 60, 67], and especially for manganites by de Gennes [3] nearly forty years ago.

The two modes observed can be represented as the oscillation of the ferro- and antiferromagnetic vectors, $m = M_1 + M_2$, $l = M_1 - M_2$, respectively. Here M_1 and M_2 are the magnetizations of the sublattices. These vectors and the corresponding modes are represented in Fig. 2. The two AFMR-modes can be termed quasi-ferromagnetic (F-mode) and quasi-antiferromagnetic (AF-mode) resonances, respectively. The interaction of the modes with the electromagnetic field is realized via the term $(m \cdot H)$ in the free energy. The oscillations in the F-mode involve the following components of the magnetic vectors: m_a, m_b, and l_c (Fig. 2 left panel). This mode can therefore be excited by the electromagnetic wave with the ac magnetic field (h) having a nonzero component in the ab-plane. By analogy, the AF-mode (Fig. 2 right panel), which involves (m_a, l_a, l_b) is excited for (h) lying along the c-axis [66, 68].

A realistic two-sublattice model for manganites [68] has been successfully applied to the doping dependence...
of the AFMR-modes in La$_{1-x}$Sr$_x$MnO$_3$ [12] and to the magnetic-field dependence of the resonances in untwinned La$_{0.95}$Sr$_{0.05}$MnO$_3$ single crystal [16]. An example of the transmittance spectra in the field-sweep modus for $x = 0.05$ is given in Fig. 3, which represents the field dependence of the submillimeter transmittance for two different orientations. Above the antiferromagnetic transition $T_N \simeq 140$ K a single paramagnetic line (EPR) at $g = 2$ is observed. The width of the EPR line for $h||c$ ($B \parallel b$, upper panel) is substantially larger than the linewidth for $h||b$ ($B \parallel c$, lower panel). Below the magnetic ordering transition the mode with $h||b$ (lower panel of Fig. 3) rapidly shifts to lower fields and finally stabilizes at ~ 180 GHz at low temperature and in zero magnetic field.

According to the excitation conditions and the zero-field resonance frequency, this mode corresponds to the quasi-ferromagnetic mode in Fig. 3.

The resonance line in the upper panel of Fig. 3 apparently disappears below the magnetic transition. However, the analysis of the high-frequency spectra shows that this line strongly broadens in the field-sweep scale. Similar to the quasi-F mode, this line shifts to lower fields and saturates at $\nu \sim 420$ GHz (for $B = 0$ T). The large difference between this value and the frequency of the field-sweep experiment (120 GHz) is the second reason for the apparent disappearance of the ESR line as documented in the upper panel of Fig. 3.

Fig. 3 shows the temperature dependence of the parameters of the ESR modes of Fig. 3. These data have been obtained mainly from the analysis of the frequency-dependent transmittance via Eqs. (3) and (4). As demonstrated in the lower panel of Fig. 3, in the paramagnetic state the ESR line is located around $g \approx 2$ independent of the orientation of the magnetic field. In the magnetically ordered state the excitation conditions become orientation-selective (Fig. 3) and both geometries reveal strongly different resonance frequencies. In addition, the lower panel of Fig. 3 reveals that the magnetic-field induced shift of the ordering temperature is orientation dependent, too. The corresponding transition temperatures are marked by $T_N = T_1$ and T_2, respectively. The magnetic field along the c-axis favors the low-temperature magnetic configuration $m \parallel c$, $I \parallel b$ and therefore strongly enhances $T_N = T_2$. On the contrary, for $B||b$ the application of the static field favors the configuration $m \parallel b$, $I \parallel c$, which has a lower Neel temperature and is energetically unstable. In that case the transition at $T_N = T_1$ broadens and remains approximately field-independent.

As is documented in the middle panel of Fig. 3, the ESR line strongly broadens below $T_N \approx 140$ K. This explains the non-observability of these lines in conventional X-band ESR [25] and the apparent disappearance of the $B||b$ mode in the upper panel of Fig. 3. The anisotropy of the line-width at low temperatures is seen both in the paramagnetic and in the magnetically ordered state. From an extensive analysis of X-band (9 GHz) ESR experiments [26], [27], this anisotropy has been attributed to the Dzyaloshinski-Moriya interaction and to the crystal-field effects. A detailed report on the low-frequency EPR-experiments in La$_{1-x}$Sr$_x$MnO$_3$ has been published elsewhere [28]. [29].

The upper panel of Fig. 3 shows the mode contribution of the ESR modes in La$_{0.95}$Sr$_{0.05}$MnO$_3$. At low temperatures the contributions of both modes coincide within the experimental accuracy. The absolute values of the contribution ($\Delta \mu \approx 0.01$) agree well with the predictions of the two-sublattice model [15]. The mode contribution for $B||c$ in the paramagnetic state follows the Curie-Weiss behavior. However, the estimate of the effective paramagnetic moment yields $\mu_{e ff} \approx 7 \mu_B$, which is substantially higher than $\mu_{e ff} \approx 5.5 \mu_B$, obtained from dc-susceptibility [30]. This effect most probably is due to the smearing of the Curie-Weiss law in the vicinity of the Neel temperature and in high magnetic fields ($B = 7$ T).

The detailed analysis of the AFMR modes in La$_{0.95}$Sr$_{0.05}$MnO$_3$ and at low temperatures has been published previously [13]. In agreement with the classical predictions for a canted antiferromagnet, two AFMR lines could be observed, which revealed distinct excitation conditions and magnetic field-dependence. The full set of the experimental data including the magnetization and AFMR modes was satisfactorily explained using a...
the two-sublattice model of the canted magnetic structure.

A qualitatively similar behavior has also been observed for La$_{0.925}$Sr$_{0.075}$MnO$_3$. However, this sample turned out to be heavily twinned and the separation of the different orientations was not possible. As will be shown later (Fig. 5, Sec. 3), the field dependence of the antiferromagnetic resonances is well described by the two-sublattice model of the canted structure.

C. The Ferromagnetic Insulator ($0.10 \leq x \leq 0.15$)

The doping dependence of the AFMR-frequencies in the low-x region of the phase diagram, which has been discussed in the previous sections, reveals a gradual softening of the quasi-ferromagnetic mode and the weakening of the quasi-antiferromagnetic mode (Fig. 2). In de Gennes scenario a ferromagnetic and metallic phase follows the CAF structure. In the manganites an intermediate ferromagnetic insulating state is found for Sr and Ca doping. This FM/I most probably results from a suppression of the static Jahn-Teller distortions, the increasing importance of the orbital degeneracy and a subsequent onset of a new orbital order which stabilizes the ferromagnetic insulator. In the ferromagnetic state the demagnetization effects due to the spontaneous magnetization start to become important. In addition, the insulating character of the manganites in this composition range leads to additional complications of the spectra.

Figures 5 and 6 shows the high-field ESR spectra of La$_{1-x}$Sr$_x$MnO$_3$ with $x = 0.125$ measured in Faraday geometry. Compared to the spectra of the lower-doped manganites, these data are more difficult to interpret. We recall that in this concentration range La$_{0.875}$Sr$_{0.125}$MnO$_3$ is a ferromagnetic insulator and the spectra are expected to consist of a single FMR mode. The physical origin of the complicated spectra observed is due to additional electrodynamic effects, which arise in Faraday geometry and for high intensities of the FMR mode. In the Faraday geometry left- and right-rotating circular polarized components of the incident radiation reveal strongly different propagation constants near resonance. As a result, the linearly polarized incident wave transforms into an elliptically polarized wave. Depending on the relative orientation of analyzer and polarizer qualitatively different transmission (reflection) spectra are expected. Multiple reflections of the radiation within the platelet-shaped sample result in additional peculiarities. Similar effects in the vicinity of a AFMR mode have been observed previously in YFeO$_3$ orthoferrite.

Within the transmission geometry of our experiments the analyzer is positioned parallel to the polarizer. Taking into account the above-mentioned effects we have simulated these spectra both for the frequency (Fig. 5) and field (Fig. 6) sweeping modes. A single ferromagnetic resonance mode Eqs. (4, 2) has been taken into account using $g = 2$ and a magnetic susceptibility characteristic of the platelet-shaped sample assuming a parallel orientation of the polarizer and analyzer. The model parameters are the same for all curves: $g = 2$, $M \approx 4 \mu_B$/Mg-atom, $\epsilon^* = 56 + i5.7$, FMR linewidth $\delta = 0.1$ cm$^{-1}$.

![FIG. 5: Frequency-dependent transmittance of a 0.194 mm thick La$_{0.875}$Sr$_{0.125}$MnO$_3$ single crystal in Faraday geometry.](image)

![FIG. 6: High-field ESR spectra of La$_{0.875}$Sr$_{0.125}$MnO$_3$ in the Faraday/transmission geometry. Symbols - experiment, line - theory, which takes into account only a single ferromagnetic resonance mode and electrodynamic effects in the Faraday geometry (see text). The model parameters are the same as given in Fig. 5.](image)
for an ordinary ferromagnet. The FMR linewidth was used as the only fitting parameter \((\delta = 0.1 - 0.15 \text{cm}^{-1})\), since the intensity and the frequency shift of the FMR mode is directly determined by the magnetization, which was taken from static measurements \((M \approx 4 \mu_\text{B}/\text{Mg-atom})\). The complex dielectric permittivity, which is also important to explain these phenomena was determined by fits of the transmittance at \(H = 0\) as \(\varepsilon^* = 56 + i5.7\). No further fitting parameters have been utilized. The reasonable agreement between theory and experiment demonstrates the validity of our ansatz using a single FMR mode. Similar transmittance spectra were also observed for the composition \(x = 0.1\) (not shown), which revealed even more pronounced peculiarities in a thicker sample. Finally, we note that in some sense the observed peculiarities of the transmission spectra can be considered as magnetostatic modes \([32]\).

Closer to the ferromagnetic metallic region of the phase diagram \((x \gtrsim 0.15)\) the increase of the conductivity hampers the transmission experiments. Therefore in this composition range the reflectance geometry has been employed in our high-field ESR experiments. A typical example of a field-sweep curve is represented in Fig. 7 showing ESR spectra of \(\text{La}_{0.85}\text{Sr}_{0.15}\text{MnO}_3\). We recall that the reflection experiments have been carried out within the Faraday geometry. The spectra in Fig. 7 are dominated by the single ferromagnetic resonance (FMR), which is shifted to higher magnetic fields by the value of the static magnetization (cf. Eq. 2). Due to only weak interference effects in reflection measurements of thick samples, the line of the ferromagnetic antiresonance (FMAR) \([32]\) becomes clearly visible and is indicated by arrows.

FMAR line has previously been observed in manganites \([34]\) as a minimum in the microwave absorption. The FMAR line corresponds to the zero crossing of the real part of the magnetic susceptibility \((\mu^*(\omega, B) = \mu_1 + i\mu_2)\), which leads to a minimum in the reflectance. Therefore, in the field derivative \((dR/dH)\) this line reveals an opposite sign, compared to the FMR-mode, which corresponds to a local maximum in reflectance.

Figure 8 shows the temperature dependence of the high-fields EPR modes (i.e. positions of the interference minima in the transmission) for \(\text{La}_{0.9}\text{Sr}_{0.1}\text{MnO}_3\) and \(\text{La}_{0.85}\text{Sr}_{0.15}\text{MnO}_3\). The complicated pattern observed for \(x = 0.1\) and shown in the upper panel is related to the above discussed interference effects near the ferromagnetic resonance. The temperature dependence of the line positions reflects the change of the magnetization and of the dielectric permittivity. The number of modes becomes reduced for higher temperatures, i.e. as the sample is getting closer to paramagnetic state where gyrotropic and interference effects are much weaker. The data in the upper panel of Fig. 8 correspond to a static magnetic field of 5-6 T. This is most probably the reason, why the magnetic ordering near 210 K becomes rather smooth and is shifted by about 60 K compared to \(T_C \approx 150\text{ K}\) observed in zero magnetic field. In contrary, the transition to the orbital-ordered state \(T_{O'O''} \approx 120\text{ K}\) is only weakly affected by the magnetic field. In addition to these well known transitions, the temperature depen-
which correspond to FMR and FMAR modes. Because observed in La therein this composition range are represented in Fig. 9. the absolute reflection. Typical high-field ESR specification rapidly increases resulting in a significant increase of the absolute reflectance. In this case the relative effect of the magnetic resonance line decreases. Assuming a temperature independent contribution of the FMR mode the simulation of the line intensity yields a value of the dc-resistivity, $\rho_{dc} = 1/\sigma_1 \sim 10^{-4}\Omega\cdot$cm at low temperature, which is in agreement with the measured value 48.

At low temperatures the line of the ferromagnetic resonance becomes split. The analysis of the temperature dependence of the splitting (inset of Fig. 9) shows that the splitting starts at the rhombohedral-to-orthorhombic (R/O) transition temperature has been determined as T_{RO} $\sim 180\,$K for this sample. Therefore, we attribute the splitting of the FMR line to the increase of the crystal anisotropy at the R/O transition. (The simultaneous observation of two lines arises from the twinning of the sample.) This effect is directly connected to lowering of the crystal symmetry below T_{RO}. In principle, one could expect a similar splitting for the FMR lines for $0.1 \leq x \leq 0.15$, which are all in the orthorhombically distorted phase (O''). But this effect is probably masked by the larger linewidth for these concentrations. We note that the interference effects are not excluded completely even for a highly conducting $La_{0.825}Sr_{0.175}MnO_3$.

V. SUMMARY

Figure 11 summarizes the high-field ESR results in $La_{1-x}Sr_xMnO_3$ for all compositions investigated:

The parent compound $LaMnO_3$ is purely antiferromagnetic and reveals two nearly degenerate AFMR lines ($x = 0$). These lines become split in an external magnetic field, as it is expected for a conventional antiferromagnet.

In the lowest-doping regime $0 \leq x \leq 0.075$ the compounds reveal close similarities concerning the appearance and the splitting of the AFMR modes. Already without magnetic field for increasing Sr-concentration the initially degenerate AFMR modes split into quasi-ferromagnetic (F) and quasi-antiferromagnetic (AF) modes. The F-mode rapidly softens and finally transforms into the line of ferromagnetic resonance for $x \geq 0.09$. The AF-mode reveals a much weaker composition dependence and disappears in the ferromagnetic state. The lines in Fig. 11 for $0 \leq x \leq 0.075$ represent the calculations using the two-sublattice model of the canted magnetic structure (Section V D). Fig. 11 shows the results for all orientations of the magnetic field simultaneously. For $x = 0$ and $x = 0.075$ this cannot be avoided.
FIG. 10: Summary of the high-field ESR spectra of La$_{1-x}$Sr$_x$MnO$_3$ at low temperatures. AF - antiferromagnet, CAF - canted AF, FM - ferromagnet, I - insulator, M - metal. Symbols - experiment. Lines for $x \leq 0.075$ represent the model for the canted magnetic structure and the $g = 2$-position for $x \geq 0.1$. The sample orientation and excitation conditions are determined unambiguously for the $x = 0.05$ concentration only (see Ref. [16] for details). The data for $x \geq 0.1$ have been obtained in the Faraday geometry.

because of the twinning of the samples. For $x = 0.05$ the comparison between theory and experiment can be carried out for all orientations separately (see Ref. [16] for a detailed analysis). Taking into account the twinning of the crystals, the two-sublattice model of the canted magnetic structure can well reproduce the high-field EPR spectra of the low-doped La$_{1-x}$Sr$_x$MnO$_3$ compounds.

The composition range $0.1 \leq x \leq 0.15$ corresponds to the ferromagnetic insulator at low temperatures. The ESR spectra in this concentration range are rather complicated, which can be attributed to the interference of two normal modes (right- and left-circular polarizations) near the ferromagnetic resonance, resulting in a significant change of the polarization of the incident radiation. The spectra in Fig. 11 are shown for the Faraday geometry and are therefore shifted to higher fields compared to $g = 2$ (dashed lines for $0.1 \leq x \leq 0.175$). All data can be satisfactorily accounted for using a single FMR mode.

The high-field ESR spectra for higher doping levels show ferromagnetic resonance (FMR) and ferromagnetic antiresonance (FMAR) modes. In addition, a splitting of the FMR mode is observed in La$_{0.825}$Sr$_{0.175}$MnO$_3$ below the structural orthorhombic/rhombohedral transition which is attributed to the lowering of the crystal symmetry.

Finally, we would like to compare the gap value of the spin-wave branches as determined in the present work with those as derived from neutron-scattering experiments in Sr-doped manganites. The wavelength of the submillimeter radiation is much larger than the interatomic distance. Therefore the high-field ESR determines the gap values at the center of the Brillouin zone. The concentration dependence of the high-frequency (QAF) and low-frequency (QF) mode are shown in Fig. 11 as determined at $T \approx 5$ K.

The high-field ESR results agree well with the neutron-scattering results [38]. Note the disappearance of the QAF branch at $x \sim 0.1$. The unusual doping dependence around $x \sim 0.025$ reflects a possible threshold concentration between the antiferromagnetic and canted structures.

FIG. 11: Doping dependence of the spin gap in La$_{1-x}$Sr$_x$MnO$_3$ from AFMR [15] and high-field ESR experiments. Closed circles - quasi-antiferromagnetic (QAF) mode, closed triangles - quasi-ferromagnetic (QF) mode (see Sec. IV B for details). Open symbols represent the neutron-scattering results [38].
scattering data for La$_{0.94}$Sr$_{0.06}$MnO$_3$ [28], which are included in Fig. 1 for comparison. For $0.025 \leq x \leq 0.1$ the concentration behavior of the quasi-ferromagnetic branch is approximately linear. On the contrary, the quasi-antiferromagnetic mode is roughly constant in this concentration range. At $x \approx 0.1$ the low-frequency branch becomes zero and the high-frequency mode disappears. This behavior corresponds well to the transition from the CAF to the ferromagnetic state with a gapless spin-wave branch. A very small nonzero gap ($\nu_0 \sim 0.019$ meV) has been observed in La$_{0.85}$Sr$_{0.15}$MnO$_3$ in inelastic neutron-scattering experiments [76]. However, this value cannot be distinguished from zero within the accuracy of our experiment. Nevertheless, the splitting of the FMR line for $x = 0.175$ is of comparable amplitude (0.12T±0.014 meV). Finally, we note that for $x \geq 0.1$ a FM ground state with a different orbital order is established.

An unusual behavior of the AFMR frequencies is observed for low concentrations (Fig. 1). For $x \leq 0.025$ both modes are close to each other and approximately independent on doping. We suggest that this may reflect the stability of the pure antiferromagnetic state against canting for low doping concentration. Above a threshold value of $x \approx 0.025$ the doping by Sr$^{2+}$ leads to the abrupt increase of the canting angle and to the corresponding drop of the AFMR frequencies. We note that such a transition above some critical concentration has been predicted theoretically by several authors [76].

In conclusion, using the high-field ESR technique we have investigated the magnetic properties of La$_{1-x}$Sr$_x$MnO$_3$ for the composition range from antiferromagnetic insulator up to ferromagnetic metal. In undoped LaMnO$_3$ a splitting of the antiferromagnetic resonance mode is observed only in the external magnetic field in agreement with the antiferromagnetic structure of this material. For increasing Sr-doping the AFMR modes are splitted even in zero field, which can be naturally explained assuming a canted magnetic structure for $x < 0.1$. A possible threshold concentration from the antiferromagnetic to the canted state is observed around $x \approx 0.025$. In the ferromagnetic insulating state ($0.1 \leq x \leq 0.15$) a complicated set of spectra has been observed. However, these spectra can be well explained by a single ferromagnetic resonance mode and taking into account electrodynamic effects. In La$_{0.825}$Sr$_{0.175}$MnO$_3$ the ESR spectra are consistent with the ferromagnetic and metallic state. The lines of ferromagnetic resonance and ferromagnetic antiresonance can be clearly observed in reflectance geometry. Therefore, the ground state of La$_{1-x}$Sr$_x$MnO$_3$ for $x \leq 0.175$ can be well characterized by the high-field ESR technique.

VI. ACKNOWLEDGEMENTS

We acknowledge stimulating discussion with M. Henning, D. Khomski, J. Deisenhofer and M. Paraskevopoulos. We are indebted to M. Müller, A. Pimenova and F. Mayr for carrying out SQUID and X-ray experiments. This work was supported in part by BMBF (13N6917/0 - EKM), by DFG (SFB 484), by INTAS (97-30850) and RFBR (99-02-16848).

[1] G. H. Jonker and J. H. van Santen, Physica 16, 337 (1950); 19, 120 (1953)
[2] E. O. Wollan and W. C. Koehler, Phys. Rev. 100, 545 (1955).
[3] P.-G. de Genne, Phys. Rev. 118, 141 (1960).
[4] C. Zener, Phys. Rev. 82, 403 (1951).
[5] K. Chahara, T. Ohno, M. Kasai and Y. Kozono, Appl. Phys. Lett. 63, 1990 (1993); R. von Helmolt, J. Wecker, B. Holzapfel, L. Schulz and K. Samwer, Phys. Rev. Lett. 71, 2331 (1993); S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh and L. H. Chen, Science 264, 413 (1994).
[6] N. Furukawa, J. Phys. Soc. Jpn. 63, 3214 (1994).
[7] A. J. Millis, P. B. Littlewood and B. I. Shraiman, Phys. Rev. Lett. 74, 5144 (1995).
[8] H. Röder, Jun Zang, and A. R. Bishop, Phys. Rev. Lett. 76, 1356 (1996).
[9] A. Moreo, S. Yunoki, and E. Dagotto, Science 283, 2034 (1999); A. Moreo, M. Mayr, A. Feiguin, S. Yunoki, and E. Dagotto, Phys. Rev. Lett. 84, 5568 (2000).
[10] R. Maezono, S. Ishihara, and N. Nagaosa, Phys. Rev. B 58, 11583 (1998).
[11] R. Kilian and G. Khaliullin, Phys. Rev. B 58, 11841 (1998).
[12] P. Horsch, J. Jaklic, and F. Mack, Phys. Rev. B 59, 6217 (1999).
[13] J. van den Brink, P. Horsch, F. Mack, and A. M. Oleś, Phys. Rev. B 59, 6795 (1999).
[14] Z. Jirák, S. Krupička, Z. Šimša, M. Dlouhá, and S. Vratislav, J. Magn. Magn. Mater. 53, 153 (1985).
[15] A. A. Mukhin, V. Yu. Ivanov, V. D. Travkin, A. Pimenov, A. Loidl, and A. M. Balbashov, Europhys. Lett., 49, 514 (2000).
[16] A. Pimenov, M. Biberacher, D. Ivanikov, A. Loidl, V. Yu. Ivanov, A. A. Mukhin, and A. M. Balbashov, Phys. Rev. B 62, 5685 (2000).
[17] M. Henning, F. Moussa, J. Rodríguez-Carvajal, L. Pinsard, and A. Revcolevschi, Phys. Rev. B 56, R497 (1997).
[18] H. Kawano, R. Kajimoto, M. Kubota and H. Yoshizawa, Phys. Rev. B 53, 2202 (1996); H. Kawano, R. Kajimoto, M. Kubota and H. Yoshizawa, Phys. Rev. B 53, R14709 (1996); H. Yoshizawa, H. Kawano, Y. Tomioka, and Y. Tokura, Phys. Rev. B 52, R13145 (1995).
[19] A. Chakraborty, D. Bhattacharya, and H. S. Maiti, Phys. Rev. B 56, 8828 (1997).
[20] Y. Okimoto, T. Katsufuji, T. Ishikawa, T. Arima, and Y. Tokura, Phys. Rev. B 55, 4206 (1997).
[21] S. de Brion, F. Ciorcas, G. Chouteau, P. Lejay, P. Radaelli, and C. Chaillout, Phys. Rev. B 59, 1304 (1999).
[22] V. Skumryev, F. Otty, J.M.D. Coey, A. Anane, J.-P. Re
nard, L. Pinsard-Gaudart, and A. Revcolevschi, Eur. Phys. J. B 11, 401 (1999).
[23] E. L. Nagaev, Sov. Phys.-Uspekhi 39, 781 (1996).
[24] E. L. Nagaev, Phys. Rev. B 58, 2415 (1998).
[25] S. Yunoki, J. Hu, A. L. Malvezzi, A. Moreo, N. Furukawa, and E. Dagotto, Phys. Rev. Lett. 80, 845 (1998); S. Yunoki, A. Moreo, and E. Dagotto, Phys. Rev. Lett. 81, 5612 (1998).
[26] E. Dagotto, T. Hotta, and A. Moreo, Phys. Rep. 344, 1 (2001).
[27] M. Yu. Kagan and K. I. Kugel', Physics-Uspekhi 44, 57 (2001).
[28] G. Allodi, R. De Renzi, and G. Guidi, Phys. Rev. B 25, 392 (1985).
[29] M. Paraskevopoulos, F. Mayr, J. Hartinger, A. Pimenov, J. Hemberger, P. Lunkenheimer, A. Loidl, A. A. Mukhin, V. Yu. Ivanov, and A. M. Balbashov, J. Magn. Magn. Mater. 211, 118 (2000).
[30] M. L. Birss, Science 285, 399 (1999).
[31] M. Hennion, F. Moussa, G. Biotteau, J. Rodríguez-Carvajal, L. Pinsard, and A. Revcolevschi, Phys. Rev. B 61, 9513 (2000).
[32] M. Hennion, F. Moussa, G. Biotteau, J. Rodríguez-Carvajal, L. Pinsard, and A. Revcolevschi, Phys. Rev. B 63, 214402 (2001).
[33] S. Morić, C. H. Chen, and S.-W. Cheong, Nature 392, 473 (1998).
[34] P. G. Radaelli, R. M. Ibberson, D. N. Argyriou, H. Casalta, K. H. Andersen, S.-W. Cheong, and J. F. Mitchell, Phys. Rev. B 63, 172419 (2001).
[35] M. Uehara, S. Morić, C. H. Chen, and S.-W. Cheong, Nature 399, 560 (1999).
[36] M. Fäth, S. Freisem, A. A. Menovsky, Y. Tomioka, J. Aarts, and J. A. Mydosh, Science 285, 1540 (1999).
[37] G.-L. Liu, J.-S. Zhou, and J. B. Goodenough, Phys. Rev. B 64, 144414 (2001).
[38] G. H. Meijer, A. A. Mukhin, V. D. Travkin, S. P. Lebedev, and A. M. Prochorov, Infrared Phys. 25, 369 (1985).
[39] G. Allodi, R. De Renzi, G. Guidi, F. Licci, and M. W. Pieper, Phys. Rev. B 56, 6036 (1997).
[40] G. Allodi, R. De Renzi, and G. Guidi, Phys. Rev. B 57, 1024 (1998).
[41] K. Kumagai, A. Iwai, Y. Tomioka, H. Kuwahara, Y. Tokura, and A. Yakubovskii, Phys. Rev. B 59, 97 (1999).
[42] M. M. Savosta, P. Novák, M. Maryško, Z. Jírák, J. Hejtmanek, J. Englisch, J. Kohout, C. Martin, and B. Raveau, Phys. Rev. B 62, 9532 (2000).
[43] J. M. Román and J. Soto, Phys. Rev. B 62, 3300 (2000).
[44] J. Beck, B. Büchner, M. Hicker, R. Klingeler, R. Gross, L. Pinsard-Gaudart, and A. Revcolevschi, Phys. Rev. B 64, 144430 (2001).
[45] A. M. Balbashov, S. G. Karabashev, Ya. M. Mukovskii, and S. A. Zverkov, J. of Cryst. Growth, 167, 365 (1996).
[46] A. A. Mukhin, V. Yu. Ivanov, V. D. Travkin, S. P. Lebedev, A. Pimenov, A. Loidl and A. M. Balbashov, JETP Lett., 68, 356 (1998).
[47] A. Urichnaya, Y. Morito, T. Arima, A. Asamitsu, G. Kido, and Y. Tokura, Phys. Rev. B 51, 14103 (1995).
[48] Y. Morito, A. Asamitsu, and Y. Tokura, Phys. Rev. B 56, 12190 (1997).
[49] A. Pimenov, Ch. Hartinger, A. Loidl, A. A. Mukhin, V. Yu. Ivanov, A. M. Balbashov, Phys. Rev. B 59, 12419 (1999).
[50] M. Paraskevopoulos, F. Mayr, C. Hartinger, A. Pimenov, J. Hemberger, P. Lunkenheimer, A. Loidl, A. A. Mukhin, V. Yu. Ivanov, and A. M. Balbashov, J. Magn. Magn. Mater. 211, 118 (2000).
[51] G. V. Kozlov and A. A. Volkov in Millimeter and Submillimeter Wave Spectroscopy of Solids, Ed. by G. Gruner (Springer, Berlin, 1998), p. 51; A. A. Volkov, Yu. G. Goncharov, G. V. Kozlov, S. P. Lebedev, and A. M. Prochorov, Infrared Phys. 25, 369 (1985).
[52] F. Dupont, F. Millange, S. de Brion, A. Jánossy, and G. Chouteau, [cond-mat/0110133].
[53] A. K. Zvezdin and V. A. Kotov, Modern magnetooptics and magnetooptical materials (Inst. of Physics Publ., Bristol, 1997).
[54] M. Born and E. Wolf, Principles of optics (Pergamon, Oxford, 1986).
[55] A. K. Bogush, V. I. Pavlov and L. V. Balyko, Cryst. Res. Technol. 18, 589 (1983).
[56] Y. Yamada, O. Hino, S. Nohro and R. Kanao, Phys. Rev. Lett. 77, 904 (1996).
[57] J.-S. Zhou, J. B. Goodenough, A. Asamitsu and Y. Tokura, Phys. Rev. Lett. 79, 3234 (1997).
[58] M. Matsumoto, J. Phys. Soc. Japan 29, 606 (1970).
[59] J. Töpfer and J. B. Goodenough, J. Solid State Chem. 130, 117 (1997).
[60] S. Foner, Antiferromagnetic and Ferromagnetic Resonance, in Magnetism, vol. I, edited by G. T. Rado and H. Suhl (Acad. Press., New York, 1963) p. 383.
[61] E. A. Turov, Physical Properties of Magnetically Ordered Crystals, (Acad. Press., New York, 1965).
[62] S. Mitsudo, K. Hirano, H. Nojiri, M. Motokawa, K. Hirata, A. Nishizawa, N. Kaneko, and Y. Endoh, J. Magn. Magn. Mater. 177-181, 877 (1998).
[63] T. Moriya, in Magnetism, edited by G. T. Rado and H. Suhl, Vol. I (Academic Press, NY, 1984) p. 85.
[64] G. F. Herrmann, J. Phys. Chem. Sol. 24, 597 (1963); Phys. Rev. 133, A1334 (1964).
[65] G. Cinader, Phys. Rev. 155, 453 (1967).
[66] A. A. Mukhin et al., to be published.
[67] V. A. Ivanshin, J. Deisenhofer, H.-A. Krug von Nidda, A. Loidl, A. A. Mukhin, A. M. Balbashov, and M. V. Eremin, Phys. Rev. B 61, 6213 (2000).
[68] J. Deisenhofer, M. V. Eremin, D. V. Zakharov, V. A. Ivanshin, R. M. Eremina, H.-A. Krug von Nidda, A. A. Mukhin, A. M. Balbashov, and A. Loidl, [cond-mat/0108513].
M. A. Manheimer, and S. D. Tyagi, Phys. Rev. B 55, 2749-2751 (1997); A. Schwartz, M. Scheffler, and S. M. Anlage, Phys. Rev. B 61, R870 (2000).

[75] J.-S. Zhou and J. B. Goodenough, Phys. Rev. B 64, 024421 (2001).

[76] L. Vasiliu-Doloc, J. W. Lynn, A. H. Moudden, A. M. de Leon-Guevara, and A. Revcolevschi, Phys. Rev. B 58, 14913 (1998).

[77] E. L. Nagaev, Physics of Magnetic Semiconductors (Moscow, Mir Publ., 1979); M. Yu. Kagan, D. I. Khomskii, M. V. Mostovoy, Eur. Phys. J. B 12, 217 (1999).