Cost Sharing Games for Energy-Efficient Multi-Hop Broadcast in Wireless Networks

Mahdi Mousavi, Student Member, IEEE, Hussein Al-Shatri, Member, IEEE, and Anja Klein, Member, IEEE,

Abstract

We study multi-hop broadcast in wireless networks with one source node and multiple receiving nodes. The message flow from the source to the receivers can be modeled as a tree-graph, called broadcast-tree. The problem of finding the minimum-power broadcast-tree (MPBT) is NP-complete. Unlike most of the existing centralized approaches, we propose a decentralized algorithm, based on a non-cooperative cost-sharing game. In this game, every receiving node, as a player, chooses another node of the network as its respective transmitting node for receiving the message. Consequently, a cost is assigned to the receiving node based on the power imposed on its chosen transmitting node. In our model, the total required power at a transmitting node consists of (i) the transmit power and (ii) the circuitry power needed for communication hardware modules. We develop our algorithm using the marginal contribution (MC) cost-sharing scheme and show that it is the only scheme by which the optimum broadcast-tree is always a Nash equilibrium (NE) of the game. Simulation results demonstrate that our proposed algorithm outperforms conventional algorithms for the MPBT problem. Besides, we show that the circuitry power, which is usually ignored by existing algorithms, significantly impacts the energy-efficiency of the network.

Index Terms

Energy-efficiency; minimum-power multi-hop broadcast; potential game; optimization.

I. INTRODUCTION

This paper focuses on the energy-efficiency of multi-hop broadcast in wireless networks where a source has a common message for a number of other nodes. The source’s message

The authors are with Communications Engineering Lab, Technische Universität Darmstadt, Germany. E-mail: {m.mousavi, h.shatri, a.klein}@nt.tu-darmstadt.de
is disseminated through the network with the help of some intermediate nodes which re-transmit the message. This problem is known as the minimum-power broadcast-tree (MPBT) problem since the connections between the source and the receiving nodes form a tree-graph rooted at the source, called the broadcast-tree \[1\]. MPBT construction has been studied by researchers extensively during the past two decades \[1\]-\[12\]. NP-completeness of the MPBT can be shown by reducing the Steiner tree problem to it \[13\]. This means that a polynomial-time algorithm to find the optimum broadcast-tree unlikely exists. Although many algorithms have been proposed for the MPBT problem, most of them are centralized heuristics \[1\]-\[6\]. Since multi-hop device-to-device communication is seen as a promising technique for improving the capacity of 5G cellular networks \[14\] and due to the variety of its applications, e.g., video streaming \[15\], vehicular communications \[16\], etc., it is vital to revisit the MPBT problem to find a decentralized yet efficient algorithm for it.

Seeing the MPBT problem from a decentralized optimization point of view, every individual node has to play its own role in forming the broadcast-tree by establishing a communication link to another node. This can be suitably modeled by game theory, in which the players of the game, here the nodes, are typically modeled as selfish agents seeking to minimize (maximize) their own cost (revenue). In our work, the action of a node is to choose another node in the network as its respective transmitting node to receive the source’s message from. As a consequence of its decision, a cost is assigned to the node based on the power it imposes on its chosen node.

In a game in which a group of players benefits from one resource, the cost of using the resource (the transmit power required at a transmitting node) can be shared among the ones who use it (nodes of a multicast receiving group). This class of game is called cost sharing game (CSG) \[17\]. Using a CSG, the nodes are motivated to choose a common transmitting node which can lead to network power reduction by reducing the number of transmissions. In our proposed game, the goal of every node is to minimize its own cost and hence, the game is called a non-cooperative cost sharing game. The Nash equilibrium (NE) is considered as the solution concept of the game at which none of the nodes changes its chosen transmitting node. To reach to an NE, we employ the so-called best response dynamics by which the nodes iteratively update their actions and at every iteration a node ”best-responds” to the actions taken by the other nodes. We show that our proposed game is an exact potential game for which an NE is always guaranteed to exist \[17\]. Moreover, we show that our proposed game is the only CSG for which the optimum state of the broadcast-tree is always an NE of the game.
The rest of the paper is organized as follows: Section II reviews the related works and explains the contribution of our work. The network model and problem statement are presented in Section III. Our game-theoretic algorithm is explained in Section IV. In Section V, a centralized approach is provided for the MPBT problem as a benchmark for our proposed algorithm. The simulation results are presented in Section VI and Section VII concludes the paper.

II. RELATED WORK AND CONTRIBUTION

A. Related Works

The algorithms proposed for the MPBT are usually not able to find the optimum broadcast-tree, especially when the number of nodes in the network is large, but they can find a low power broadcast-tree in polynomial-time. A well-known heuristic called the broadcast incremental power (BIP) algorithm is proposed in [1]. The BIP algorithm is a centralized greedy heuristic. To build a broadcast-tree, it starts from the source and iteratively connects the nodes to the source or to the other nodes already connected to the broadcast-tree. Considering the transmit power of the nodes which are already connected to the broadcast-tree, in each iteration, the node which requires the minimum incremental transmit power is chosen as the new node to connect to the broadcast-tree [1]. Since the BIP algorithm fails in exploiting the benefit of multicast transmission in the wireless medium, the authors of [1] further propose a procedure called sweeping in order to improve their algorithm. We refer to the BIP algorithm along with the sweeping procedure as the BIPSW algorithm. When the broadcast-tree is initialized by the BIP algorithm, the BIPSW prunes the links to the nodes which can be covered by other transmitting nodes and prevents unnecessary transmissions. Other heuristics based on minimum spanning tree [2], [3], ant colony optimization [4], particle swarm optimization [5], and genetic algorithm [6] have also been proposed during the past years for the MPBT problem which all are centralized and may perform better than the BIP algorithm at the expense of a higher complexity.

The main drawback of the centralized algorithms is their dependency on an access point. This makes the network vulnerable if the nodes lose their connections to it. Moreover, the access point needs to collect the network parameters such as the channel quality between any two nodes which is time-consuming and requires a high amount of overhead. Hence, decentralized algorithms [7–9], by which the nodes construct the broadcast-tree just based on their local information, are a better choice for real-world implementations. Since in a decentralized algorithm the nodes update their action independently, to find a valid tree-graph as broadcast-tree, the algorithm may require
to be initialized to restrict the decisions of the nodes. The authors of [9] suggest an algorithm called the broadcast decremental power (BDP) which first initializes the broadcast-tree by a centralized algorithm (Bellman-Ford), and then, every node changes its respective transmitting node if the change leads to a lower transmit power. A decentralized algorithm is also suggested in [8], but it requires the geographical position of all the nodes of the network at every single node. In comparison to centralized algorithms, decentralized approaches for the MPBT problem have received less attention and the existing algorithms, in general, lack a good performance compared to the centralized ones.

Game theory, as a powerful mathematical tool, has been widely used for designing games for distributed optimization [11], [12], [18], [19] or resource sharing in competitive situations [20], [21]. For instance, the authors of [10] exploit a potential game to control the topology and maintain the connectivity of a multi-hop wireless network. Their proposed approach does not consider multicast transmission and requires the information from several hops to be collected at every single node. Different cost sharing schemes, each with different properties in terms of implementation difficulties or convergence to an NE, can be employed in a CSG to share the cost of a multicast transmission among the nodes. The authors of [22] studied some of the schemes that can be used for coalition formation for a single-hop multicast transmission.

In [19] and [23], we showed that a CSG is a suitable decentralized approach to be used for modeling the MPBT problem. An important class of sharing schemes for CSGs is the class of budget-balanced schemes [24-26]. A cost sharing scheme is budget-balanced if the sum of the cost allocated to each of the receiving nodes of a multicast transmission (entities involved in a coalition) is equal to the transmit power of the transmitting node (the price of the resource used by the entities). One of the widely-adopted budget-balanced schemes is the Equal-share (ES) scheme in which the cost is simply shared equally among the nodes. Due to difficulties of designing a decentralized approach for the MPBT problem, the simplified versions of this problem have also been studied in the literature which we call the minimum-transmission broadcast-tree (MTBT) and the minimum fixed-power broadcast-tree (MFPBT) problems. In the MFPBT problem, the nodes have fixed but not necessarily equal transmit powers while in the MTBT problem, the transmit powers of the nodes are not only assumed to be fixed, but also equal for all the nodes. In fact, the MTBT problem is a special case of the MFPBT problem and both of them are simplified versions of the MPBT problem. The ES cost sharing scheme has been employed in [11] and [12] for the MTBT and MFPBT problems, respectively. The algorithm in [11] is called
GBBTC and the authors, by assuming a fixed transmit power at the nodes, minimize the number of transmissions in the network as a way to minimize the network power.

The GBBTC algorithm studied in [11] has three main drawbacks. Firstly, it does not perform power control at the transmitting nodes. Secondly, the ES cost sharing scheme employed in [11] (also in [12]), is not applicable to the MPBT problem since the convergence of the state of the broadcast-tree to an NE cannot be guaranteed. In fact, as we will show, to ensure the convergence to an NE when using the ES cost sharing scheme, the power control feature at the nodes cannot be exploited and a fixed transmit power must be used instead. Thirdly, to find a valid tree-graph as broadcast-tree, GBBTC in [11] requires initialization. Besides addressing these drawbacks in our proposed algorithm, we use a power model for the nodes which is more realistic than the models commonly-used in the literature [1–12] and show that with the proposed model the energy-efficiency of the network can be significantly improved.

B. Our Contribution

Despite its wide adoption, to the best of our knowledge, game theory has not been used for the MPBT problem in which the nodes can perform transmit power control. We propose a CSG for the MPBT problem based on the MC cost sharing scheme, in short MC, and refer to it as CSG-MC. We further study two of the well-known budget-balanced schemes, the ES and the Shapley value (SV), and compare their properties with the MC for the MPBT and the MTBT problems. We will show that the scheme based on which the cost is shared among the receiving nodes of a multicast transmission significantly impacts the performance of the game and its convergence to an NE. Although the MC is not budget-balanced, we will show that it is the only scheme for which the local objective at the nodes (cost minimization) is exactly aligned with the global objective (network power minimization). This vital property does not hold for any other cost sharing scheme for the MPBT problem. We also show that, with the MC, the optimum state of the broadcast-tree is always an NE while this does not hold in general for budget-balanced schemes. Moreover, our game-theoretic model, in contrast to other existing algorithms [1], [9], [11], [12], does not need initialization.

In the present work, we consider a more general power model than commonly-studied models in multi-hop networks [10], [11], [23]. Our proposed cost model consists of both transmit power for the radio link and circuitry power of a transmitting node as the total power required at a transmitting node. While most of the existing works ignore the circuitry power of wireless
TABLE I: Comparison between different algorithms proposed for the MPBT problem.

	BIPSW [1]	BDP [9]	MFPBT [12]	GBBTC [11]	CSG-MC (This work)
Decentralized	×	✅	✅	✅	✅
Transmit power control	✅		✅	✅	✅
Circuitry power consideration	✅	✅	×	✅	✅
Different max. transmit power	✅	✅	✅	✅	✅
Without initialization phase	✅	✅	✅	✅	✅

In summary, the main contributions of this paper are as follows:

- We propose a decentralized game-theoretic algorithm for the MPBT problems using the MC cost sharing scheme that can also be applied to the MFPBT and MTBT problems. With our algorithm, while the transmitting nodes can perform power control the convergence of the devices and just focus on the power required for the radio link, the circuitry power imposed on a transmitter has a significant impact on the energy consumption in a wireless network [27]. In practice, not only the circuitry power is not negligible compared to the transmit power required for the radio links, but also it can dominate when the distance between the transmitter and receiver is short [28], [29]. For instance, if the network is dense, having a single-hop broadcast would be more energy-efficient than having multiple short hops. Note that the impact of circuitry powers cannot be seen as a fixed value on top of the result obtained by an algorithm that ignores the circuitry power. In fact, as we will show, taking the circuitry power into account may significantly change the structure of the broadcast tree and having an algorithm that captures both the device’s circuitry power and radio link power jointly in broadcast-tree construction is of high importance. Table II summarizes the main differences between our work and the benchmark algorithms discussed earlier.

Finally, as the main benchmark for our algorithm, we formulate the MPBT problem as a mixed integer linear optimization problem (MILP). Although MILP formulations of the MPBT problem have been proposed in the literature, they usually do not take the circuitry power of the nodes into account. Moreover, they mostly rely on finding the optimum value of the MPBT and do not explicitly suggest how to construct the broadcast-tree [30–32]. Beside the MILP formulation of the MPBT problem, we provide a pseudo-code and explain how the optimum broadcast-tree can be constructed using the output of the proposed MILP. Notice that, since the MFPBT and MTBT problems are special cases of the MPBT problem, our proposed game can also be applied to those problems.
game to an NE is guaranteed.

- We extensively discuss our MC-based algorithm with two other budget-balanced cost sharing schemes. We show that the MC is only scheme for which the optimum broadcast-tree is always an NE. Moreover, by using a budget-balanced scheme, the network power minimization may be in contrast to the node’s cost minimization. We further show that by employing the ES cost sharing scheme an NE may not exist for the game.

- The algorithm that we proposed captures both transmit power and device’s circuitry power jointly in the broadcast-tree construction. To the best of our knowledge, including the circuitry power in broadcast-tree construction has not been studied before. We show that the device’s circuitry power, largely ignored by the existing algorithms, has a significant impact on the energy efficiency of the network.

- In contrast to most of the existing algorithms, our algorithm does not need to be initialized.

- An MILP formulation is proposed for the MPBT problem considering the device’s circuitry power as well as an algorithm that constructs the optimum broadcast-tree.

III. NETWORK MODEL AND PROBLEM STATEMENT

A network composed of \(N + 1 \) wireless nodes with random locations in a two-dimensional plane is considered; a source \(S \) and a set \(\mathcal{W} \) of \(N \) receiving nodes. The nodes in \(\mathcal{W} \) are interested in receiving the source’s message. We denote the set of all nodes of the network as \(\mathcal{Q} = \mathcal{W} \cup \{S\} \). Every node is equipped with an omnidirectional antenna and has a transmit power constraint \(p^\text{max}_j, j \in \mathcal{Q} \), and hence, its coverage area is limited.

In a transmission from a transmitting node \(j \in \mathcal{Q} \) to a receiving node \(i \in \mathcal{W} \), nodes \(j \) and \(i \) are called the parent node (PN) and the child node (CN), respectively. The transmitting nodes transmit either by multicast or unicast. It should be remarked that, although the antenna broadcasts the message omnidirectionally, we refer to the transmission as unicast or multicast, when a PN has one or more than one intended receivers as its CNs, respectively. A CN receives the message from its own PN and ignores the messages transmitted by the other nodes. The set of CNs of PN \(j \) is denoted by \(\mathcal{M}_j \), see Fig. 1. It is assumed that every CN is served by just one PN and if a node \(j \in \mathcal{W} \) does not forward the message to any other node, then \(\mathcal{M}_j = \emptyset \).

The hardware of a wireless device is composed of several modules such as base-band signal processing unit, digital-to-analog converter, power amplifier, etc., where every component has its own power requirement for proper operation [28]. The total power required at a transmitting
node consists of two main parts. The first part is the power required for the modules that mainly prepare the signal for transmission. We refer to this first part as the circuitry power of the node and denote it by $p_c^j, \forall j \in Q$. The second part is the power that has to be spent by a transmitter to amplify the signal, referred to as the transmit power of a node. As mentioned before, the circuitry power of a wireless device is not negligible compared to the transmit power and may even dominate it if the distance between the transmitter and the receiver is short [28]. Hence, we assume that every node $j \in Q$ has a total power budget of $p_c^j + p_{\text{max}}^j$. While the circuitry power of a transmitter can be assumed as a fixed value, the transmit power needed at a transmitting node j for amplifying the signal depends on the channel quality between the transmitter and its receivers in M_j and thus, it is denoted by $p_{\text{Tx}}^j(M_j)$ with $p_{\text{Tx}}^j(M_j) \leq p_{\text{max}}^j$. The total power required at node j for transmission to its CNs in M_j is

$$P_j(M_j) = p_c^j + p_{\text{Tx}}^j(M_j).$$ \hspace{1cm} (1)$$

We refer to the PN of CN i as a_i such that $a_i = j, j \in Q \setminus \{i\}$ and $a = (a_1, \ldots, a_N)$ represents a vector whose elements are the PNs of each of the nodes in W. For the sake of notational convenience, we use $P_j(a)$ instead of $P_j(M_j)$, when required.

Note that in our model, we omit the circuitry power required for message reception as it does not affect the energy-efficiency of the network. In other words, circuitry power required for receiving data, usually a fixed value, is needed at every node that aims to receive the message and this energy does not depend on the network topology.

The power p_{out}^j of the signal emitted from the antenna of a transmitter j depends on the efficiency of its power amplifier, denoted by η_j with $0 < \eta_j < 1$, as is given by [29]

$$p_{\text{out}}^j = \eta_j p_{\text{Tx}}^j.$$ \hspace{1cm} (2)$$

For the message reception, a threshold model is considered in the network, that is, a minimum signal-to-noise ratio (SNR), denoted by γ_{th}, is required at a CN for successful reception of the message transmitted from its PN. In other words, the bit-error rate is assumed to be negligible
considering γ^th. We assume that the statistical properties of the channel remain invariant during the data transmission. Let $g_{i,j}$ be the channel gain between the PN j and the CN i. By treating interference as noise and denoting their joint power at the receiver i as σ^2, the SNR of the signal received by CN i is given by

$$
\gamma_{i,j} = \frac{p_{\text{out}}^j g_{i,j}}{\sigma^2}.
$$

(3)

Based on the minimum required SNR γ^th at CN i, and using (2) and (3), the transmit power required at a transmitting node j for transmission to a receiving node i is given by

$$
P_{\text{req}}^{i,j} = \frac{\gamma^\text{th} \sigma^2}{\eta_j g_{i,j}}.
$$

(4)

Notice that $P_{\text{req}}^{i,j}$ takes the efficiency of the power amplifier of the transmitting node into account.

Our algorithm can employ any decentralized channel access scheme suitable for multi-hop communications [33–35]. For instance, as proposed in [33], a single, time-slotted channel can be used that consists of two sections, the first section as random access and the second section as scheduled access. The first section is contention-based and used for signaling message exchanges while the transmissions by the PNs are carried out during the scheduled access section. During the first section, the nodes send their requests to their chosen PNs for joining them. When a node, say j, is chosen as a PN by another node in the network during the random access section, it reserves a time-slot for itself in the scheduled section and broadcasts this information immediately in its neighboring area so that the other nodes find that this time-slot has been reserved by node j.

Clearly, if the node j had already been chosen as a PN by other nodes, it does not require to reserve a new time-slot. The index of the slot reserved by PN j must be greater than that reserved by its own PN whose distance to the source, in terms of the number of hops, is shorter. Note that the random access section is prone to collision and if a collision occurs, the nodes have to back off for a random interval. Since such a channel access scheme requires time synchronization at the nodes, it is common to use the clock of the source as a reference clock. The synchronization can be done using a dedicated time-slot via a single-hop transmission by the source, if the nodes can be reached by the source, or can be done hop by hop from the source toward the leaves of the broadcast-tree [36]. We assume that synchronization in the network is attained.

It is important to remark that in this paper, we do not focus on channel access optimization. Indeed, in this work, given a channel access method for multi-hop networks, we propose a decentralized algorithm that finds an energy-efficient broadcast-tree to be used for data dissemination.
during the scheduled access section. It should also be noted that, although the signaling messages impose additional energy consumption on the network, we assume that the imposed energy is negligible compared to that required for the actual data dissemination. We further discuss the overhead issue in the next section.

Due to the transmit power constraint, a node j can be a PN of node i if the power required for the link between the nodes j and i is less than p_{j}^{max}. The set of neighboring nodes of node i is denoted by \mathcal{N}_i and defined as

$$\mathcal{N}_i = \{ j \mid j \in \mathbb{Q}, p_{i,j}^{\text{req}} \leq p_{j}^{\text{max}} \}.$$

(5)

It is assumed that every node knows the channel gains of the links to its neighboring nodes. We specifically denote the unicast transmit power required for the link between node j and its neighboring node i as $p_{i,j}^{\text{uni}}$. In other words, $p_{i,j}^{\text{uni}} = p_{i,j}^{\text{req}}$, if $j \in \mathcal{N}_i$, see Fig. 1. Moreover, considering the circuitry power of PN j, the total power required for a unicast communication at PN j is equal to

$$P_{i,j}^{\text{uni}} = p_{j}^{c} + p_{i,j}^{\text{uni}}.$$

(6)

In case of multicast transmission, where a parent node j has multiple CNs, the total required power at a PN j in (1) is given by

$$P_{j}(\mathcal{M}_j) = \max_{i \in \mathcal{M}_j} \{ P_{i,j}^{\text{uni}} \}.$$

(7)

Finally, the total required power in the network for message dissemination among all the nodes, simply termed the network power, is calculated by

$$P_{\text{net}}(\mathcal{A}) = \sum_{j \in \mathbb{Q}} P_{j}(\mathcal{A}).$$

(8)

It should be remarked that the message flow from the source to the nodes must result in a tree-graph, rooted at the source without any cycle. When a cycle occurs in a graph, a part of the network loses its connections to S. We define the route of a node as the set of the nodes which are on the route from S to node i, including node i, and denote it by \mathcal{R}_i. For instance, $\mathcal{R}_w = \{ w, u, k, S \}$ for the given broadcast-tree in Fig. 1. The route of S is set to $\mathcal{R}_S = \{ S \}$. If node i chooses PN j, \mathcal{R}_i can be simply found as

$$\mathcal{R}_i = \mathcal{R}_j \cup \{ i \}.$$

(9)

The network-wide objective, which is also referred to as the global objective, is to minimize the network power defined in (8) such that every receiving node in \mathcal{W} receives the source’s
message from a node $j \in Q \setminus \{i\}$ and has the source in its route as

$$\text{minimize } \sum_{j \in Q} P_j(M_j)$$

subject to: $\forall i \in W, \exists j \in Q \setminus \{i\} : i \in M_j, S \in R_j$

Since every node $i \in W$ is allowed to choose one PN and the source must be in the route of the PN, i.e., $S \in R_j$, the constraints above give us a tree-graph.

IV. Game-Theoretic Algorithm

A. Game design and properties

The game is characterized by the set W of non-cooperative and rational nodes, that is all the nodes in the network except the source. The proposed game is a dynamic (iterative) game such that at every iteration t, one of the nodes of the network takes one of its possible actions from its action set. The action of a node $i \in W$ in this game is to choose another node $j \in Q \setminus \{i\}$ as its PN to connect to and receive the source’s message from. We denote the action of node i as $a_i \in A_i(t)$ in which $A_i(t)$ is the action set of player i at iteration t. The action profile of the game is shown by $a = (a_1, \ldots, a_N) \in A(t)$ in which $A(t) = A_1(t) \times \cdots \times A_N(t)$ is the joint action set of the game at iteration t. The action profile of the game can also be denoted by $a = (a_i, a_{-i})$ in which a_{-i} represents the actions of all the players except node i. The total power required in the network depends on the action profile of the game, i.e., which nodes are chosen as PNs. We denote the action profile corresponding to the optimum broadcast-tree by a^{opt}. Based on the action profile of the game at iteration t, i.e., $a \in A(t)$, a non-negative cost is assigned to every player of the game. The cost function is defined as $C_i(a_i, a_{-i}) : A(t) \to \mathbb{R}^+ \cup \{0\}, \forall i \in W$ in which \mathbb{R}^+ represents the positive real numbers. We show the cost of node i in case of choosing PN j as $C_i(j, M_j)$ since the cost just depends on the set of the nodes who choose the same PN. The non-cooperative dynamic game G is defined formally by the tuple $G := \langle W, \{A_i\}_{i \in W}, \{C_i\}_{i \in W} \rangle$.

The game G is a child-driven game, that is, a node as a child selects another node in its neighborhood with minimum cost as its PN. The action set of a node has to be defined in a way to ensure that no cycle occurs in different iterations of the game. Based on definition, a cycle occurs in a rooted tree when a node $i \in W$ connects to one of its descendants $[37]$. The descendants of a node $j \in Q$ are all the nodes who have the node j on their route to S and a cycle occurs if it chooses one of its descendants as its PN. For instance in Fig. [1], if node k chooses node w as its PN. Denoting the route of node j at iteration t by $R_j(t)$, we define the
action set of a node $i \in \mathcal{W}$ at iteration t as all the neighboring nodes of node i except its descendants as
\begin{align}
\mathcal{A}_i^{(t)} = \left\{ j \mid j \in \mathcal{N}_i, S \in \mathcal{R}_j^{(t-1)}, i \notin \mathcal{R}_j^{(t-1)} \right\}
\end{align}
(11)
in which $S \in \mathcal{R}_j^{(t-1)}$ indicates node j in order to be a PN of node i must be connected to the broadcast-tree. For simplicity, we omit the time indicator t in the $\mathcal{A}^{(t)}$.

In order to benefit from the broadcast nature of the wireless channel, the cost of the nodes should be defined in a way to motivate the CNs to form a multicast group and choose a common PN. Moreover, the circuitry power of a transmitting node must also be considered in the cost model. The cost function in this game, based on the MC principle [17], is defined as
\begin{align}
C_{i}^{\text{MC}}(j, \mathcal{M}_j) = & P_j(\mathcal{M}_j) - P_j(\mathcal{M}_j \setminus \{i\}), \quad i \in \mathcal{M}_j
\end{align}
(12)
in which $\mathcal{M}_j \setminus \{i\}$ represents the set of CNs of PN j except the CN i. Roughly speaking, the cost of node i is the difference in the total power required at node j with and without node i. Based on (12), a positive cost is assigned to the CN that requires the highest unicast transmit power from PN j while the cost assigned to other CNs in \mathcal{M}_j is zero. The game G with the MC, defined in (12), as its cost function is called the CGS-MC.

To illustrate the cost model in (12), let us assume that node i and node l require the highest and the second highest unicast powers form PN j, respectively, see Fig. 1. In this case, the cost assigned to the CN i using (12) is given by
\begin{align}
C_{i}^{\text{MC}}(j, \mathcal{M}_j) = & P_j^c + p_{i,j}^{\text{uni}} - \left(P_j^c + \max_{h \in \mathcal{M}_j \setminus \{i\}} \{p_{h,j}^{\text{uni}}\} \right) = p_{i,j}^{\text{uni}} - p_{l,j}^{\text{uni}}.
\end{align}
(13)
In this case, either $i \in \mathcal{M}_j$ or $i \notin \mathcal{M}_j$, the circuitry power is consumed at PN j as it must serve the CN l. Therefore, no additional power, here the circuitry power, is imposed on PN j by CN i and hence, the circuitry power of PN j does not appear in the cost assigned to the CN i. Moreover, if we assume that the CN i is the only CN of the PN j, then based on (12), the cost of CN i contains the circuitry power of PN j, i.e., $C_{i}^{\text{MC}}(j, \mathcal{M}_j) = P_j^c + p_{i,j}^{\text{uni}}$, as $\max_{h \in \mathcal{M}_j \setminus \{i\}} \{p_{h,j}^{\text{uni}}\} = 0$. That is, since in this case both transmit and circuitry powers are imposed on the PN j by the CN i, the circuitry power appears in the cost assigned to the CN i as well as the unicast transmit power. Therefore, depending on the structure of the broadcast-tree and the transmission scheme (unicast or multicast), the cost model in (12) treats the circuitry power intelligently. The proposed cost model keeps or removes the circuitry power from the cost of receiving nodes to, respectively, prevent establishing a new unicast transmission or motivate
the nodes to form a multicast receiving group and reduce the number of transmissions. Whether
joining a multicast group is better than establishing a unicast is decided by the node based on
its cost function.

We employ the best response dynamics for game \(G\) such that at every iteration of the game,
one of the players chooses an action as its best response to the action of other players. The best
response of player \(i\), which is also referred to as the local objective, is defined as

\[
a_i = \arg\min_{j \in \mathcal{A}(i)} C_i(j, M_j), \quad \forall i \in \mathcal{W}, j \in \mathcal{N}_i.
\]

(14)

Note that the nodes are not restricted to take their actions one after another. It is indeed
possible to have multiple actions at the same time but, due to the utilization of a shared random-
access channel for updating the broadcast-tree, a collision occurs if two neighbor nodes send
their requests simultaneously. In such a case, they must back off for random intervals to send
their requests again. That said, the best-response dynamics still can be seen as a fair approach for
studying the network. This approach helps us reaching an equilibrium in polynomial-time for the
class of potential games \([38]\). Later in this section, we will show that the game \(G\) is a potential
game. Finally, we consider an NE as the converging point of the state of the broadcast-tree.

Definition 1. (NE) An action profile \(a^* \in \mathcal{A}\) is an (pure) NE of the game \(G\) if

\[
C_i(a^*_i, a^*_{-i}) \leq C_i(a_i, a^*_{-i}), \quad \forall i \in \mathcal{W}, a_i \in \mathcal{A}_i.
\]

(15)

B. Convergence and Discussion

In this subsection, we discuss the properties of the game described in the previous subsection.
We first show that the game converges to an NE. Then we discuss the properties of the game.

Definition 2. (Potential game) A game \(G\) is an exact potential game \([39]\) if there exists a
function \(\Phi : \mathcal{A} \to \mathbb{R}\), called the potential function, such that for every \(i \in \mathcal{W}\), \(a_i, a'_i \in \mathcal{A}_i\),

\[
C_i(a'_i, a_{-i}) - C_i(a_i, a_{-i}) = \Phi(a'_i, a_{-i}) - \Phi(a_i, a_{-i}).
\]

(16)

Theorem 1. The game \(G\) with the proposed MC cost sharing scheme is an exact potential game
with the potential function

\[
\Phi(a) = \sum_{j \in \mathcal{Q}} P_j(a).
\]

(17)

Proof: We verify (16) with the cost function and the potential function, introduced in (12)
and (17), respectively. Let us assume that node \(i \in \mathcal{W}\), as a CN of PN \(j \in \mathcal{Q}\backslash\{i\}\), changes its
PN to PN $k \in Q\{i, j\}$, i.e., $a_i = j$ and $a'_i = k$, see Fig. 1. With such a transition, just PN j and PN k will be affected among the PNs in the network. Thus, the network power, here the potential function of the game, can be written as

$$\Phi(a) = \sum_{j \in Q} P_j(a) = P_j(M_j) + P_k(M_k) + \sum_{m \in Q\{j,k\}} P_m(M_m).$$

(18)

The cost of node i when $i \in M_j$ is given by

$$C_{i}^{MC}(j, M_j) = P_j(M_j) - P_j(M_j\{i\}),$$

(19)

and the cost assigned to node i when it joins PN k is

$$C_{i}^{MC}(k, M_k \cup \{i\}) = P_k(M_k \cup \{i\}) - P_k(M_k).$$

(20)

Using (19) and (20), the potential function in (18) when $a_i = j$ and $a_i = k$ are given by

$$\Phi(a_i = j, a_{-i}) = P_j(M_j) + P_k(M_k) + \sum_{m \in Q\{j,k\}} P_m(M_m)$$

(21)

and

$$\Phi(a'_i = k, a_{-i}) = P_j(M_j\{i\}) + P_k(M_k \cup \{i\}) + \sum_{m \in Q\{j,k\}} P_m(M_m),$$

(22)

respectively. Then, using (21) and (22) we have

$$\Phi(a'_i = k, a_{-i}) - \Phi(a_i = j, a_{-i}) = P_k(M_k \cup \{i\}) - P_k(M_k) - P_j(M_j) + P_j(M_j\{i\})$$

$$= C_{i}^{MC}(k, a_{-i}) - C_{i}^{MC}(j, a_{-i}).$$

(23)

Corollary 1. The local objective in the game G is exactly aligned with the global objective defined in (10) if and only if the cost of the nodes is defined based on the MC.

Corollary 2. The best response dynamics converges to an (pure) NE for the game G.

Proof: Since the game G is an exact potential game, it possesses a pure NE [39]. An NE of the game is any action profile a^* that (locally) minimizes the potential function in (17). When a node updates its action in order to reduce its cost, based on Theorem 1, the same reduction occurs in Φ. As Φ, i.e., the network power, is bounded from below, after some iterations the game G reaches a state at which none of the nodes can further reduce its own cost given the action of other nodes.

Corollary 3. The time complexity of the proposed algorithm is Polynomial Local Search (PLS)-complete.
Proof: Since the best response of each node can be found in polynomial time and since the game is a potential game, the proposed algorithm is PLS-complete [12], [38].

Theorem 2. Using MC, \(a^{opt} \) is always an NE of the game \(G \).

Proof: Recall that \(a^{opt} \) is the action profile of the game associated with the optimum broadcast-tree. Let us assume that the \(a^{opt} \) is not an NE. Therefore, based on the definition, at least one of the nodes of the network can update its action to reach a lower cost. As showed in Theorem 1 reduction in the cost of a node results in the same reduction of \(\Phi \), that is, the network power. This is a contradiction as the broadcast-tree of \(a^{opt} \) is optimum.

In a CSG with MC as the sharing scheme, the aggregated cost paid by CNs is not necessarily equal to the total power required at their corresponding PN. This property makes the MC a non-budget-balanced scheme. We now discuss the properties of ES and SV schemes if one applies them to the MPBT problem. ES and SV are two of the widely-adopted budget-balanced schemes in the field of CSGs and are known to be fair depending on the application [40], [41].

Definition 3. (Budget-balanced cost sharing scheme [17]) A cost sharing scheme \(C^{BB}(.) \) is budget-balanced if

\[
\sum_{i \in \mathcal{M}_j} C^{BB}_i(j, \mathcal{M}_j) = P_j(\mathcal{M}_j). \tag{24}
\]

Definition 4. (The Shapley value (SV) [42]) If the individual powers imposed on PN \(j \) by its CNs are sorted as \(\mathcal{M}_j \) and \(p_{uni,j}^0 = 0 \leq p_{uni,j}^1 \leq \cdots \leq p_{uni,j}^{\left|\mathcal{M}_j\right|} \leq \cdots \leq p_{uni,j}^{\left|\mathcal{M}_j\right|} \), then, the cost of the \(i \)-th node based on the Shapley value is given by [43]

\[
C^{SV}_i(j, \mathcal{M}_j) = \sum_{n=1}^{i} \frac{p_{uni,n,j} - p_{uni,n-1,j}}{\left|\mathcal{M}_j\right| + 1 - n}. \tag{25}
\]

Definition 5. (Equal-share (ES) cost sharing scheme) A cost sharing scheme is ES if the cost is shared among the CNs of a PN equally, regardless of the individual powers imposed by the CNs on the PN [17], i.e.,

\[
C^{ES}_i(j, \mathcal{M}_j) = \frac{P_j(\mathcal{M}_j)}{\left|\mathcal{M}_j\right|}, \quad \forall i \in \mathcal{M}_j. \tag{26}
\]

Theorem 3. With a budget-balanced cost sharing scheme, \(a^{opt} \) is not necessarily an NE.

Proof: We first show that with a budget-balanced cost sharing scheme, the local objective in (14) is not necessarily aligned with the global objective in (10). Using the definition 3 and
Fig. 2: Budget-balanced schemes are not suitable for the MPBT problem.

by a summation over all the nodes $j \in Q$ we have

$$\sum_{j \in Q} \sum_{i \in M_j} C^{BB}_i(j, M_j) = \sum_{j \in Q} P_j(M_j).$$

The left side of (27), i.e., $\sum_{j \in Q} \sum_{i \in M_j} C^{BB}_i(j, M_j)$ represents the total cost received by the PNs $j \in Q$ which is equal to the cost paid by the CNs $i \in W$. Therefore, we replace the left side of (27) with $\sum_{i \in W} C^{BB}_i(a)$ and rewrite it as

$$\sum_{i \in W} C^{BB}_i(a) = \sum_{j \in Q} P_j(a).$$

By expanding the left side of (28), the cost of node i is given by

$$C^{BB}_i(a) = \sum_{j \in Q} P_j(a) - \sum_{m \in W \setminus \{i\}} C^{BB}_m(a) = P_{net}(a) - \sum_{m \in W \setminus \{i\}} C^{BB}_m(a)$$

in which $P_{net}(a)$ is defined in (8). Eq. (29) indicates that a node $i \in W$ deviates from the action a_i (in action profile a), if the combination of the network power and the cost of the other nodes reduces. This shows that deviation from $a \in A$ may not merely result in network power reduction. Since $a^{opt} \in A$, the global optimum is not necessarily an NE.

Theorem 3 is further illustrated in Fig. 2. In Fig. 2, net' represents the part of the network, with power $P_{net'}(a')$, which is not affected by the action of the node i. Using the ES scheme in this network, employed in [11] and [12], node i updates its action from $a_i = j$ to $a_i' = k$ to reduce its cost from $(p^c_j + 6)/2$ to $(p^c_k + 3)/2$. Assuming $p^c_j = p^c_k$, this action reduces the cost of node i from 3 to 1.5 while at the same time, it increases the network power by 1 unit, that is, from $P_{net}(a) = P_{net'}(a') + p^c_j + 6 + p^c_k + 1$ to $P_{net}(a) = P_{net'}(a') + p^c_j + 5 + p^c_k + 3$. Note that, using the SV defined in (25) leads to the same conclusion as the node i reduces its cost from 3.5 to 2.5 by the same action. In case of employing the MC in this example, node i does not change its action since it increases its cost from 1 to 2.
In the rest we further investigate the properties of ES and SV in comparison to MC. Before that we define the following property for a cost function.

Definition 6. (cross-monotonicity) A cost function $C(.)$ is cross-monotone if

$$C_i(j, M_j) \geq C_i(j, M_j \cup \{k\}) \quad \forall k \in \mathcal{W} \setminus M_j.$$

(Roughly speaking, if the set of CNs of PN $j \in \mathcal{Q}$ expands, the cost of the nodes who already chose the PN j must not increase. This property for the convergence of the game is intuitive. When the cost is not cross-monotone, by joining a new node to the multicast group, the other nodes leave the group if their cost increases. This may result in instability.

Lemma 1. A necessary condition of a budget-balanced cost sharing scheme to guarantee the existence of an NE is cross-monotonicity [44].

Theorem 4. The ES does not guarantee the existence of an NE for the game G.

Proof: It is easy to see that based on Definition 6 the ES is not cross-monotone and hence, based on Lemma 1 the convergence to an NE is not guaranteed. Moreover, we provide an instance of the network in Fig. 3 for which the ES scheme does not lead to an NE. In this figure, updating the action at node i increases the cost of node v and vice versa. Hence, the nodes i and v iteratively update their actions and the game G does not converge.

Lemma 2. The ES is a special case of the SV when the contributions of the CNs in a multicast receiving group on the power of their PN are assumed to be equal.

Proof: If $P_{i,j}^{uni} = P_j(M_j), \forall i \in M_j$, using (25) for $i = 1$ we have $C_1^{SV}(j, M_j) = P_j(M_j)/|M_j|$. We assume $P_{n,j}^{uni} = P_{n-1,j}^{uni}, \forall i, n > 1$, then, $C_i^{SV}(j, M_j) = C_1^{SV}(j, M_j), \forall i \in M_j$.

Note that for the MTBT problem where the transmit powers are all equal and fixed (and their values do not matter), the ES shares the cost as $C_i^{ES}(j, M_j) = 1/|M_j|$.

Lemma 3. Applying the SV to a non-cooperative CSG makes the game potential for which an NE always exists [39] [24].

Theorem 5. The ES guarantees the existence of an NE for the MFPBT (and MTBT) problem.

Proof: As stated in Lemma 2 the ES scheme is a special case of the SV when the
TABLE II: Properties of different cost sharing schemes

	MC	SV	ES
Convergence for MPBT	yes	yes	no
Convergence for MTBT/MFPBT	yes	yes	yes
Is a^{opt} always an NE?	yes	no	no
Overhead	medium	high	low

Contributions of the receiving nodes are assumed to be equal. This is the case for the MFPBT problem where the transmit power of a PN, regardless of the powers required for the unicast links, is fixed. Hence, using the ES for the MFPBT problem can be seen as a special case of the MPBT problem with the SV scheme. Since based on Lemma 3, the SV guarantees the existence of equilibrium for the MPBT problem, the ES does so for the MFPBT problem.

Based on Definition 6, it is straightforward to see that the ES is cross-monotone for the MFPBT problem.

Note that, in designing games for decentralized optimization, the elements of the game such as cost function, action sets and the strategy of the nodes have to be designed in a way to guarantee that the individual local behavior of the players is desirable from the global system point of view. Moreover, the implantation of different cost sharing schemes differs in terms of the information overhead they require. The ES is the simplest one since a node, to calculate its cost, just requires knowing the number of CNs in a multicast receiving group. With MC, every node needs to know the highest and the second highest unicast powers required by the CNs of a PN. Finally, the SV imposes the highest overhead on the network. To calculate the cost using the SV, a node must know the unicast power required of every individual CN in a multicast group. The information required for decision making has to be transmitted in a neighboring area by every node as overhead information via a broadcast channel. Table II summarizes the properties of the different cost sharing schemes. The comparison in terms of overhead is relative.

In conclusion, based on what has been discussed and using Table II, we can find that the MC has two main advantages over the SV for the MPBT problem. Firstly, with MC, unlike SV or any other budget-balanced cost sharing scheme, a^{opt} is always an NE. Secondly, the required overhead information for MC is lower than that of the SV. This becomes more important when the size of the multicast receiving group increases. Note that here we do not consider the ES for the MPBT problem due to the lack of convergence guarantee.

The efficiency of a game-theoretic scheme can be studied by analyzing the worst-case outcome for which the measures of the price of anarchy (PoA) and the price of stability (PoS) are used.
Definition 7. (PoA and PoS) Let $E(G)$ be the set of NEs of the game G and \mathcal{G} denote the set of all possible games G. The PoS and the PoA of the game G are defined respectively as \[\text{PoS}(G) := \sup_{G \in \mathcal{G}} \min_{a \in E(G)} \frac{P_{\text{net}}(a)}{P_{\text{net}}(a^{\text{opt}})}, \quad \text{and} \] (31) \[\text{PoA}(G) := \sup_{G \in \mathcal{G}} \max_{a \in E(G)} \frac{P_{\text{net}}(a)}{P_{\text{net}}(a^{\text{opt}})}. \] (32)

Observation 1. The PoS of the proposed game is 1.

Proof: Based on Theorem 2, a^{opt} is always an NE of the game G, thus, $\text{PoS}(G) = 1$. ■

Note that, thanks to employing the MC, the PoS is 1. If one uses a budget-balanced scheme for this problem, then based on Theorem 3, $\text{PoS}(G) > 1$.

We provide a lower bound for the PoA of our game considering the circuitry power as zero and assuming the channel gains modeled by path-loss with path-loss exponent equal to 2 so that $g_{i,j} = 1/r_{i,j}^2$ in which $r_{i,j}$ is the distance between the nodes i and j.

Theorem 6. By defining $n = \lfloor |Q|/3 \rfloor$ in which $\lfloor . \rfloor$ is the floor operator, the lower bound of the PoA of our game is given by \[\text{PoA}(G) \geq l^2 + n(1 - l)^2 \] (33)
in which \[l = 1 + 2 \sin^2(\pi/n) - \sqrt{(2 \sin^2(\pi/n) + 1)^2 - 1}. \] (34)

Proof: The proof is provided in Appendix I. ■

V. CENTRALIZED APPROACH

In this section, we model the MPBT problem of (10) as an MILP. The provided MILP mainly finds the optimum value of the network power by finding the nodes that should act as transmitting nodes as well as their transmit power. It does not determine the structure of the optimum broadcast-tree. We first provide the MILP for the MPBT problem and then propose an algorithm by which the structure of the optimum broadcast-tree can be found based on the solution of the MILP. Before providing the MILP formulation, we define the following vectors and variables and, later in this section, explain them by a toy example:

- Transmission vector: the transmission vector is used to determine whether a node $j \in Q$ acts as a transmitting node or not. Moreover, in case that node j is a transmitting node, it
Fig. 4: A sample broadcast-tree from S to four other nodes. The numbers on the links show the required unicast powers, $p^{\text{uni}}_{i,j}$, and the downstream values, $d_{i,j}$.

determines the CN of PN j that requires the highest unicast power. The transmission vector is defined as $t_j = [t_{1,j}, \ldots, t_{N,j}]^T$, $j \in Q$ as an $N \times 1$ vector such that $t_{i,j} \in \{0, 1\}$ and $t_{i,j} = 1$ if and only if node i is the CN of PN j that requires the highest unicast power among all nodes in \mathcal{M}_j. Moreover, $\|t_j\| \leq 1$ in which $\|\cdot\|$ represents the norm operator. If node j is a transmitter, then $\|t_j\| = 1$, otherwise $\|t_j\| = 0$.

- **Reachability vector:** it determines that if a node $i \in \mathcal{W}$ is a CN of PN j with highest required unicast power, given $P_{j}^{\text{Tx}} = p^{\text{uni}}_{i,j}$, which of the other nodes in \mathcal{W} fall inside the coverage area of PN j (without imposing additional transmit power on PN j). It is defined as $r_{i,j} = [r_{i,j}^{(1)}, \ldots, r_{i,j}^{(l)}, \ldots, r_{i,j}^{(N)}]$ as a $1 \times N$ binary vector for all $j \in Q$ and $i, l \in \mathcal{W}$. The l-th entry of $r_{i,j}$ is equal to 1 if $p^{\text{uni}}_{i,j} \leq p^{\text{uni}}_{i,j} = P_{j}^{\text{Tx}}, \forall i \in \mathcal{W}$. Since a node does not transmit to itself, then, $r_{i,i}^{(l)} = 0, \forall i, l \in \mathcal{W}, r_{i,j}^{(j)} = 0, \forall i, j \in \mathcal{W}$. Reachability matrix $R_j = [r_{1,j}^T, \ldots, r_{N,j}^T]^T$, $j \in Q$ is an $N \times N$ binary matrix with $r_{i,j}$ the reachability vector.

- **Downstream value:** the downstream value $d_{i,j}$ is defined for the link between any two nodes j and i in Q and shows the total number of nodes in the network that rely on the transmission from PN j to CN i for receiving the source’s message.

Since the outcome of the MILP must be a tree graph rooted at the source, i.e., $S \in R_i, \forall i \in \mathcal{W}$, three conditions for the downstream have to be met \[11\]. Firstly, the source node cannot be in the downstream of any other node as it is not a CN for other PNs. Secondly, the number of downstream nodes of the source node must be equal to N, as the whole network is connected to the source, either directly or indirectly. Finally, the difference between the sum of the downstream values of the links coming in and going out of a node in \mathcal{W} must equal to 1.

We explain the defined vectors and matrices in detail using the illustration shown in Fig. 4. In the broadcast-tree of Fig. 4, the source node multicasts the message to node 1 and node 2. Then, node 2 forwards the message to nodes 3 and 4. $p^{\text{uni}}_{i,j}$ required between any two nodes i and j and $d_{i,j}$ of the link are also shown in Fig. 4. As can be seen, the downstream values of the links between the source and nodes 1 and 2 are equal to $d_{1,S} = 1$ and $d_{2,S} = 3$, respectively.
Therefore, \(d_{1,S} + d_{2,S} = 4 \), that is, the total number of downstream nodes of \(S \) is equal to the total number of receiving nodes in \(W \). The difference between the downstream values coming to and going out of node 2, as an intermediate node, is 1, i.e., \(d_{2,S} - (d_{3,2} + d_{4,2}) = 1 \). This is also true for the nodes which do not forward the message.

Variables \(t_{i,j} \) and \(d_{i,j} \) are to be found by the MILP for all \(i,j \in Q \), while \(R_j \) can be obtained based on the unicast power required between the nodes. Based on the unicast power for each link shown in Fig. 4, the reachability matrix for \(S \) is given by

\[
R_S = \begin{bmatrix}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}.
\] (35)

The entries of the last row in (35), i.e., \(r_{4,S} \), are all zero as node 4 and \(S \) are no neighbors, that is, node 4 cannot be reached by \(S \) due to the power constraint at \(S \). It can be seen in (35) that \(r_{1,S} = [1, 1, 0, 0] \), that is, \(r_{1,S}^{(1)} \) and \(r_{1,S}^{(2)} \) are equal to 1. Recall the entries of \(r_{i,j} \) show the nodes that can receive the message from PN \(j \) without additional transmit power at node \(j \) if the transmit power of node \(j \) is equal to \(p_{uni}^{j} \). This shows that if the source node transmits to node 1, then, node 2 can also receive the source’s message by a multicast transmission without additional transmit power. In order to find which of the nodes of the network are covered by PN \(j \) based on its transmission, we define \(y_j = [y_{1,j}, \ldots, y_{N,j}]^T \) as

\[
y_j = R_j^T t_j.
\] (36)

More precisely, \(y_j \) is equal to one of the reachability vectors of node \(j \) depending on its transmission matrix \(t_j \). In the broadcast-tree shown in Fig. 4, \(t_S = [1, 0, 0, 0]^T \). Using (35) and (36), we have \(y_S = r_{1,S}^T = [1, 1, 0, 0]^T \).

The MILP for the MPBT problem is provided in Fig. 5. \(P_{uni,i,j} \) in (37a) is defined in (6). Eq. (37b) expresses that the source node must be a transmitter while the other nodes \(j \in W \) are not necessarily a transmitter. The constraints in (37c) and (37d), as stated before, guarantee that the resulting tree is a broadcast-tree rooted at the source. The values of \(y_{i,j} \), found by (36), are used in (37d) to find the downstream values of the links between the nodes. Eq. (37d) represents the constraint on the downstream values. More precisely, \(y_{i,j} = 0 \) in (37d) indicates that, for a given \(t_j \), node \(i \) cannot be covered by node \(j \) and the downstream value of the link between the nodes \(j \) and \(i \) must be zero, that is, \(d_{i,j} = 0 \).
\[
\begin{align*}
\min_{t_{i,j}} & \quad \sum_{j \in Q, i \in N_j} t_{i,j} p_{i,j}^{uni} \quad (37a) \\
\text{s.t.} & \quad \sum_{i \in N_j} t_{i,j} = \begin{cases}
1 & j = S \\
\leq 1 & j \in W
\end{cases} \quad (37b) \\
& \quad \sum_{i \in N_j} (d_{i,j} - d_{j,i}) = \begin{cases}
N & j = S \\
1 & j \in W
\end{cases} \quad (37c) \\
& \quad d_{i,j} \leq N y_{i,j} \quad \forall j \in Q, \forall i \in N_j \quad (37d) \\
& \quad t_{j,j} = 0 \quad \forall j \in W \quad (37e) \\
& \quad t_{i,j} \in \{0, 1\}, d_{i,j} \in \mathbb{R}. \quad (37f)
\end{align*}
\]

Fig. 5: The MILP formulation for MPBT problem.

Finally, it should be mentioned that the proposed MILP can also be used for the MFPBT and the MTBT problems \[11\], \[12\], however, due to the fixed transmit power, the number of constraints for the MFPBT problem will be much lower than that of the MPBT problem. In fact, since every node has only two choices, that is, whether to transmit or not, there will be only a reachability vector for the nodes and no reachability matrix.

By the solution of the MILP, a node \(j \in Q \) is a transmitting node if \(\|t_j\| = 1 \) and its transmit power is equal to \(p_j^{Tx} = p_{i,j}^{uni} \) if \(t_{i,j} = 1 \). As a node can be covered by multiple transmitting nodes in the network, an algorithm is required to find the set \(\mathcal{M}_j \) of each PN \(j \in Q \) in the optimum broadcast-tree as well as the route \(\mathcal{R}_i \) of every receiving node in \(\mathcal{W} \). To this end, we suggest Algorithm \[1\]. In this algorithm, using the solution of the MILP and starting from the source, node \(i \in \mathcal{W} \) is a CN of node \(j \) if \(y_{i,j} \neq 0 \) and node \(i \) has not been already connected to the broadcast-tree. The set \(C \) in this algorithm refers to the set of nodes which are connected to the broadcast-tree. This set at first contains \(S \) and the algorithm is run until all the nodes of the network are added to this set. The algorithm visits the nodes one by one to see if based on the solution of the MILP, a given node must be a PN of other nodes or not. In this algorithm, the set of visited nodes by the algorithm is given by \(\mathcal{V} \). The number of binary variables that have to be determined with the proposed MILP are \(N \) binary variables for the source and, as \(t_{j,j} = 0 \) and \(t_{S,j} = 0 \), a number \(N - 1 \) of binary variables for each of the \(N \) nodes in \(\mathcal{W} \). Thus, the total number of binary variables for the proposed MILP is \(N + N(N - 1) = N^2 \).
Algorithm 1 Constructing the optimum broadcast-tree

1: \(C = \{S\} \), \(V = \emptyset \)
2: while \(Q \setminus C \neq \emptyset \) do
3: for each node \(j \in C \setminus V \) do
4: \(V = V \cup j \)
5: if \(y_{i,j} \neq 0, i \in N_j, i \notin C \) then
6: \(M_j = M_j \cup \{i\} \)
7: \(R_i = R_j \cup \{i\} \)
8: \(C = C \cup \{i\} \)
9: end if
10: end for
11: end while

VI. SIMULATION RESULTS

A. Simulation Setup

For simulation, a 250m×250m area is considered in which the coordinate of a node is determined by \((x, y)\) with \(x\) and \(y\) as independently and uniformly distributed random variables in the interval \([0, 250]\). The total number of nodes varies between 10 and 50.

The simulation results are based on the Monte-Carlo method and in each simulation run, one of the nodes in the network is randomly chosen as the source. The channel is based on the path-loss model. Let \(l_{i,j}\) and \(l_0\) be the distance between nodes \(i\) and \(j\) and a reference distance, respectively. Then, by considering \(\alpha\) as the path loss exponent and \(\lambda\) as the signal wavelength, the power gain of the channel between nodes \(i\) and \(j\) is defined as

\[
g_{i,j} = \left(\frac{\lambda}{4\pi l_0}\right)^2 \left(\frac{l_0}{l_{i,j}}\right)^\alpha
\]

During the simulation, we set \(\lambda = 0.125\) m, \(r_0 = 1\) m and \(\alpha = 3\). Moreover, using [28], we assume uniformly distributed random values for \(p_{i}^{\text{max}} \in [150, 250]\) mW and \(p_{j}^{c} \in [50, 100]\) mW and \(\eta_j = 0.3\) for all \(j \in Q\). The minimum SNR for successful decoding is set to \(\gamma^{\text{th}} = 10\) dB and the noise power is assumed to be \(\sigma^2 = -90\) dBm. We compare our algorithm with the conventional centralized and decentralized algorithms. The benchmarks of our algorithm are the optimum solution of the MILP, explained in Sec. V, and the BIPSW [1], the BDP [9] and the GBBTC [11] algorithms which are discussed in Sec. I and Sec. IV-B. It should be noted that the result obtained for the MFPBT problem using the ES scheme will be similar to that of GBBTC for the MTBT problem, on average. Hence, we just use the CBBTC algorithm representing both. The results for the network power for all the algorithms are normalized to the average
of the maximum power budget of the nodes denoted by \bar{P}_{max}, i.e., $\bar{P}_{\text{max}} = \mathbb{E}_{j \in Q} [p_c^j + p_{\text{max}}^j]$. The normalized network power is then denoted by $\hat{P}_{\text{net}}(a) = \frac{P_{\text{net}}(a)}{\bar{P}_{\text{max}}}$ in which $P_{\text{net}}(a)$ is defined in (8). The simulation has been carried out in MATLAB and the proposed MILP is solved using CVX and Gurobi.

We compare our approach with other benchmark algorithms as they have been proposed and without any changes. For instance, in terms of the circuitry power, the benchmarks ignore it and we also implement them in this way. After constructing the broadcast-tree by those algorithms, we consider the circuitry powers in calculating the actual network power. Modifying those algorithms in a proper way to consider the circuitry power is out of the scope of our work. Furthermore, we aim at emphasizing on the impact of the circuitry power which has been largely ignored by the existing algorithms and showing that the broadcast-tree resulting from those algorithms are not efficient.

B. Results

Fig. 6 compares the normalized network power versus the number of nodes for different algorithms for the MPBT problem. The benchmark algorithms, except the MILP, do not consider the circuitry power during the broadcast-tree construction. As can be observed, our proposed algorithm outperforms other benchmark algorithms. The main reason is that our algorithm, besides the transmit power, considers the amount of circuitry power of the nodes and adapts the broadcast-tree based on that. In a dense network, the effect of the circuitry power on the network power is significant. In our algorithm, by increasing the number of nodes, the network power first starts increasing and then tends to saturate. When the number of nodes in the network increases,
the distances between the nodes and consequently the transmit powers required between the nodes reduce. Despite the fact that the required transmit powers reduce, the number of transmitting nodes in the network increases and since each transmitting node imposes a fixed power on the network, which is not negligible, the network power increases. When the network becomes dense, the number of transmitting nodes required to cover the whole network, as well as the network power, remains roughly the same.

Fig. 7 compares the three main cost sharing schemes discussed in this paper, that is, the MC, the SV, and the ES in terms of the total normalized network power versus the number of nodes in the network. We replace the MC cost sharing scheme in CSG-MC with SV and ES and refer to them as the CSG-SV and the CSG-ES, respectively. Due to the lack of convergence guarantee with the ES scheme, the transmit power of the nodes for the CSG-ES, as well as for the GBBTC, are assumed to be fixed and equal to 200 mW. In this experiment, all the algorithm, except the GBBTC, consider the circuitry power in broadcast-tree construction. In fact, the only difference between GBBTC and CSG-ES is that GBBTC relies merely on the transmit power. There are two main observations in Fig. 7. First, performing power control at the nodes and taking the circuitry power into account, which is the case for the CSG-MC and CSG-SV, significantly improves the energy-efficiency of the network. For instance, in a network with $|Q| = 40$, the normalized network power obtained by CSG-MC is $\hat{P}_{\text{net}}(a) \simeq 5$. This number for the GBBTC (an also for BIPSW in Fig. 6) is more than 8 which means that the broadcast-tree obtained by our algorithm requires around 40% less energy. The second observation is that the MC performs slightly better than the SV. This observation is in accordance with Theorems 2 and 3. Aside from the performance, the information overhead required for the MC is much lower than that of the SV and this makes the MC the best choice for such a network. Although the transmit power of the nodes is fixed for both the GBBTC and the CSG-ES, the network power with CSG-ES is less than that of the GBBTC. This is because, unlike the GBBTC, the CSG-ES considers the circuitry power in broadcast-tree formation and thus, less number of nodes act as PN.

In Fig. 8, we depict the number of iterations required for each of these algorithms to converge. The number of iterations of an algorithm can also represent its time complexity. As can be observed, the CSG-MC algorithm requires the lowest number of iterations among all. Moreover, the SV-based CSG requires a higher number of iterations than the MC-based CSG. This difference stems from the way these algorithms share a cost among the receiving nodes of a multicast group. With MC, the cost of all CNs except one of them is zero, and hence, the CNs have no incentive
Fig. 8: Number of iterations required for algorithms to converge.

Fig. 9: Average number of PNs (transmitting nodes) in the network for different total number of nodes.

to change their PN. In contrast, the cost of the CNs with SV is always a positive value and the CNs may have an incentive for updating their action and finding a PN with lower cost. Moreover, the number of iterations required for all algorithms, except for the BDP, increases almost linearly. The non-linear time complexity of BDP stems from the Bellman-Ford algorithm with which the BDP needs to be initialized.

To show how the circuitry power affects the structure of the broadcast tree, Fig. 9 shows the average number of PNs in the network versus the total number of nodes (|Q|) and for different values of the circuitry power. It actually shows the average number of transmissions that will be carried out in the network. The set \mathcal{T} of the PNs in the network is defined as $\mathcal{T} = \{ j | p^\text{Tx}_j > 0, j \in Q \}$ where $|\mathcal{T}|$ represents the number of PNs. As can be seen, when the circuitry power increases, the number of PNs in the network decreases. In this case, our proposed algorithm, as well as the MILP, exploit multicast transmission to reduce the network power by reducing the number of transmissions. For instance, when $|Q| = 30$ and the average value of the circuitry power is $E_{j \in Q}[p^c_j] = 25 \text{ mW}$, the broadcast-tree, constructed by our algorithm, consists of roughly $|\mathcal{T}| = 11$ PNs, which means, every PN has 2.75 CNs on average. When the average circuitry power is $E_{j \in Q}[p^c_j] = 150 \text{ mW}$, the number of PNs becomes $|\mathcal{T}| = 8$, that is, 3.75 CNs on average for every PN.

Finally, to have a better insight about how the algorithms construct the broadcast-tree, a realization of the network with $|Q| = 20$ nodes is presented in Fig. 10. In this figure, the broadcast-tree is constructed with four algorithms; the optimum broadcast-tree in Fig. 10 (b) and (e) based on the centralized MILP approach along with the Algorithm 1 explained in Section V, the proposed decentralized game theoretic algorithm in Fig. 10 (c) and (f) the GBBTC [11] in
Fig. 10: Broadcast-tree resulting from different algorithms in a 250m × 250m area with $|Q| = 20$.

Fig. 10(d) and the centralized BIPSW [1] in Fig. 10(a). In this experiment, to show the impact of the circuitry power on the broadcast-tree construction, the MILP and CSG-MC algorithms are run for two different values of the average circuitry power, that is, $p_j^c = 25$ mW in (b) and (c), and $p_j^c = 150$ mW in (e) and (f) which is assumed to be the same for all the nodes $j \in Q$. Recall that the GBBTC and BIPSW ignore the circuitry power. In Fig. 10 the nodes with just one outgoing link represent the PNs that transmit via unicast while multiple outgoing links show a multicast transmission. For instance, in the obtained broadcast-tree in Fig. 10(a), node 2 receives the message from the source by a unicast transmission and sends it to its CN, i.e., node 3, again by a unicast. Node 3 then forwards the message to its CNs, node 1 and 5, via multicast. In Fig. 10(a) we first find that the BIPSW constructs the broadcast-tree mostly with short hops including many unicasts. This is because the BIPSW relies merely on minimizing the transmit powers. For the given instance, BIPSW requires 14 transmissions in total where 11 of these transmissions are via unicast. In contrast to BIPSW, the GBBTC in Fig. 10(d), due to the fixed transmit power of the nodes, tends to form large multicast groups to reduces the number of transmissions.
Our proposed algorithm, as well as the optimum MILP-based broadcast-tree, are flexible. When the circuitry power is very low, the obtained broadcast-trees, similar to that obtained by the BIPSW, will be constructed by short hops and the unicast transmission is used relatively more often. For instance, with $p^c_j = 25$ mW, the broadcast-tree constructed by our algorithm in Fig. 10(c) contains 10 transmissions including 6 unicasts. With the optimum MILP algorithm in Fig. 10(b), 11 transmissions are needed with also 6 unicasts. When the circuitry power increases to $p^c_j = 150$ mW, in the same network, the number of transmissions with our algorithm becomes 6 including 1 unicast (Fig. 10(f)), while, the optimum broadcast-tree (Fig. 10(e)) consists of 5 transmissions, all via multicast. In fact, when the circuitry power, as a fixed term that affects the total transmit power of a node, dominates the transmit power, our proposed algorithm as well as the MILP, tend to exploit the multicast transmission. In other words, it adapts itself depending on the value of the circuitry power.

VII. Conclusion

In this paper, a non-cooperative cost sharing game with MC cost sharing scheme has been proposed for the MPBT problem in multi-hop wireless networks. The proposed game has been shown to be a potential game with guaranteed convergence. We showed that the MC cost sharing scheme is the only scheme for which the optimum broadcast-tree is always an NE of the game. Besides, the information overhead required for it is relatively low. These two properties make it the best choice among the cost sharing schemes for such a problem in terms of both performance and required information overhead. Unlike many of the existing algorithms, our proposed model not only captures the circuitry power of a device together with its transmit power, but also the nodes in our algorithm are able to perform transmit power control. It has been shown that the proposed algorithm and the considered power model significantly improve the network energy-efficiency.

VIII. Appendix I

In this section we provide a lower bound for the price of anarchy (PoA) of our game. We find an instance of an NE for which the network power compared to the global optimum is bad. We calculate the lower bound for a path-loss channel with path-loss exponent equal to 2. Further, the circuitry power is assumed to be zero ($p^c_j = 0, \forall j \in Q$).
Based on these assumptions, the channel gain between the nodes i and j can be represented as $g_{i,j} = 1/l_{i,j}^2$ in which $l_{i,j}$ is the distance between them. Using Eq. (4), the maximum transmit power is given by

$$p_{j}^{\text{max}} = \frac{\gamma_{\text{th}} \sigma^2 (l_{\text{max}})^2}{\eta_j}$$

in which l_{max} is the radius of the biggest area that can be covered by node j (depending on γ_{th}). We normalized all the distances in the network to l_{max} so that the distance between any neighboring nodes i and j is $0 \leq l_{i,j} \leq 1$ in which 1 represents the l_{max}. We further normalize all the link powers to $\frac{\gamma_{\text{th}} \sigma^2}{\eta_j}$, so that the transmit power between nodes i and j can be represented as $p_{i,j}^{\text{uni}} = (l_{i,j})^2$ and the maximum transmit power is given by $p_{j}^{\text{max}} = 1$.

Let us consider a network in which the receiving nodes are distributed on two circles as shown in Fig. 11: An inner circle with radius r on which n nodes are evenly distributed and an outer circle with radius 1 and $2n$ nodes on it such that $|Q| = 3n + 1, n \geq 1$ in which $|Q|$ is the total number of nodes in the network. The broadcast-tree shown in Fig. 11 is the optimum broadcast-tree with $P_{\text{net}}(a_1) = 1$ for which the cost of all the nodes, according to the marginal contribution (MC) scheme, is zero. Figure 12 and 13 are also representing two other NEs for the game with action profiles a_2 and a_3, respectively. The network power for these broadcast-trees are higher than $P_{\text{net}}(a_1)$.

Let us consider the state of a broadcast-tree in which one of the nodes on the inner circle has two CNs while the other nodes have no CN, see Fig. 14. As depicted in Fig. 14 node i has to choose a PN for itself in order to join the broadcast-tree. In this figure, node k has two CNs while node j has no CN. One can show that when r is small and n is large, the broadcast-tree a_3 (shown in Fig. 13) will be formed since based on the MC cost sharing scheme, the cost of node i in a multicast transmission by PN k will be less than the cost of a unicast by PN j, that
is, $l_{i,k}^2 - (1 - r + \epsilon)^2 < (1 - r + \epsilon)^2$. By increasing r from 0 to 1, at some point, node i chooses PN j as its PN if $l_{i,k}^2 - (1 - r + \epsilon)^2 > (1 - r + \epsilon)^2$. Let r_0 be the radius of the inner circle at which such a transition occurs. Since the CN i changes its PN from k to j to reduce its cost, based on Theorem 1, the same reduction occurs in the network power. Then, the highest network power belongs to broadcast-tree $P_{\text{net}}^\text{(a2)}$ at the transition radius r_0. Since this transition depends on n, in the sequel we find r_0 as a function of n. Then we calculate the PoA.

As shown in Fig. [15] since we have n nodes on the inner radius, then, $\alpha = 2\pi/n$. Moreover, since the triangle $\triangle Sjk$ is an isosceles triangle, then, we have $\theta = \pi/2 + \pi/n - \zeta$ and

$$l_{jk} = 2r \sin(\alpha/2) = 2r \sin(\pi/n).$$

(40)

Further, in $\triangle ijk$ and by using the relation $\cos(\pi/2 + x) = -\sin(x)$ we can find l_{ik}^2 as

$$l_{ik}^2 = l_{jk}^2 + (1 - r + \epsilon)^2 - 2l_{jk}(1 - r + \epsilon) \cos(\theta)$$

$$= l_{jk}^2 + (1 - r + \epsilon)^2 - 2l_{jk}(1 - r + \epsilon) \cos(\pi/2 + \pi/n - \zeta)$$

$$= l_{jk}^2 + (1 - r + \epsilon)^2 + 2l_{jk}(1 - r + \epsilon) \sin(\pi/n - \zeta).$$

(41)

Based on the MC cost sharing scheme, a transition occurs at r_0 if

$$(1 - r_0 + \epsilon)^2 = l_{ik}^2 - (1 - r_0 + \epsilon)^2.$$

(42)

The maximum power for the broadcast-tree is obtained when $\zeta \to 0$ which leads to $\epsilon \to 0$. Substituting l_{jk} form (40) into (41) and then using l_{ik}^2 in (42) gives the radius r_0 as

$$r_0 = 1 + 2 \sin^2(\pi/n) - \sqrt{(2 \sin^2(\pi/n) + 1)^2 - 1}.$$

(43)

The network power for the broadcast-tree a_2 is given by $P_{\text{net}}^\text{(a2)} = r^2 + n(1 - r + \epsilon)^2$ and
therefore, the PoA is calculated by

\[
\text{PoA}(G) = \lim_{\zeta \to 0} \frac{P_{\text{net}}(a_2)}{P_{\text{net}}(a_1)} = r_0^2 + n(1 - r_0)^2
\]

(44)

where \(r_0 \) is given in (43). It can be shown that this result is valid for any \(n = \lfloor \frac{|Q|}{3} \rfloor \) in which \(\lfloor \cdot \rfloor \) is the floor operator.

Fig. 16 shows the proposed lower bound for the PoA for different number of nodes along with the PoS which is always equal to 1 in our game.

IX. ACKNOWLEDGMENT

This work has been funded by the German Research Foundation (DFG) as part of project B3 within the Collaborative Research Center (CRC) 1053 MAKI. The authors would like to thank M. Sc. Robin Klose, working in subproject C1 of MAKI, for helpful discussions.

REFERENCES

[1] J. E. Wieselthier, G. D. Nguyen, and A. Ephremides, “Energy-efficient broadcast and multicast trees in wireless networks,” Mobile Networks and Applications, vol. 7, no. 6, pp. 481–492, Dec. 2002.

[2] M. Čagalj, J.-P. Hubaux, and C. Enz, “Minimum-energy broadcast in all-wireless networks: NP-completeness and distribution issues,” in ACM Mobicom, 2002, pp. 172–182.

[3] I. Caragiannis, M. Flammini, and L. Moscardelli, “An exponential improvement on the MST heuristic for minimum energy broadcasting in ad hoc wireless networks,” IEEE/ACM Transactions on Networking, vol. 21, no. 4, pp. 1322–1331, Aug. 2013.

[4] H. Hernández and C. Blum, “Ant colony optimization for multicasting in static wireless ad-hoc networks,” Swarm Intelligence, vol. 3, no. 2, pp. 125–148, 2009.
[5] P.-C. Hsiao, T.-C. Chiang, and L.-C. Fu, “Static and dynamic minimum energy broadcast problem in wireless ad-hoc networks: A PSO-based approach and analysis,” Applied Soft Computing, vol. 13, no. 12, pp. 4786 – 4801, 2013.
[6] A. Singh and W. N. Bhukya, “A hybrid genetic algorithm for the minimum energy broadcast problem in wireless ad hoc networks,” Applied Soft Computing, vol. 11, no. 1, pp. 667 – 674, 2011.
[7] C. Miller and C. Poellabauer, A Decentralized Approach to Minimum-Energy Broadcasting in Static Ad Hoc Networks. Springer, Berlin, Heidelberg, 2009, pp. 298–311.
[8] J. Cartigny, D. Simplot, and I. Stojmenovic, “Localized minimum-energy broadcasting in ad-hoc networks,” in Proc. 22nd Conference of the IEEE Computer and Communications (INFOCOM), vol. 3, Mar. 2003, pp. 2210–2217.
[9] N. Rahnavard, B. N. Vellambi, and F. Fekri, “Distributed protocols for finding low-cost broadcast and multicast trees in wireless networks,” in Proc. 5th IEEE Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), June 2008, pp. 551–559.
[10] R. S. Komali, A. B. MacKenzie, and R. P. Gilles, “Effect of selfish node behavior on efficient topology design,” IEEE Transactions on Mobile Computing, vol. 7, no. 9, pp. 1057–1070, Sept 2008.
[11] F.-W. Chen and J.-C. Kao, “Game-based broadcast over reliable and unreliable wireless links in wireless multihop networks,” IEEE Transactions on Mobile Computing, vol. 12, no. 8, pp. 1613–1624, Aug. 2013.
[12] C. Chekuri, J. Chuzhoy, L. Levin-Eytan, J. Naor, and A. Orda, “Non-cooperative multicast and facility location games,” IEEE Journal on Selected Areas in Communications, vol. 25, no. 6, pp. 1193–1206, Aug. 2007.
[13] W. Liang, “Constructing minimum-energy broadcast trees in wireless ad hoc networks,” in Proceedings of the 3rd ACM International Symposium on Mobile Ad Hoc Networking, ser. MobiHoc ’02, 2002, pp. 112–122.
[14] M. N. Tehrani, M. Uysal, and H. Yanikomeroglu, “Device-to-device communication in 5g cellular networks: challenges, solutions, and future directions,” IEEE Communications Magazine, vol. 52, no. 5, pp. 86–92, May 2014.
[15] H. Baccouch, P. L. Ageneau, N. Tizon, and N. Boukhatem, “Network coding schemes for multi-layer video streaming on multi-hop wireless networks,” in IEEE Wireless Communications and Networking Conference, Mar. 2017, pp. 1–6.
[16] W. Lai, W. Ni, H. Wang, and R. P. Liu, “Analysis of average packet loss rate in multi-hop broadcast for vanets,” IEEE Communications Letters, vol. 22, no. 1, pp. 157–160, Jan. 2018.
[17] Y. Shoham and K. Leyton-Brown, Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations. New York, NY, USA: Cambridge University Press, 2008.
[18] J. R. Marden and A. Wierman, “Distributed welfare games,” Operations Research, vol. 61, no. 1, pp. 155–168, 2013.
[19] M. Mousavi, H. Al-Shatri, M. Wichtlhuber, D. Hausheer, and A. Klein, “Energy-efficient data dissemination in ad hoc networks: Mechanism design with potential game,” in Proc. IEEE 12th International Symposium on Wireless Communication Systems (ISWCS), Aug. 2015.
[20] G. Bacci, S. Lasaulce, W. Saad, and L. Sanguinetti, “Game theory for networks: A tutorial on game-theoretic tools for emerging signal processing applications,” IEEE Signal Processing Magazine, vol. 33, no. 1, pp. 94–119, Jan. 2016.
[21] M. Hajimiradeghi, N. B. Mandyam, and A. Reznik, “Joint caching and pricing strategies for popular content in information centric networks,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 3, pp. 654–667, Mar. 2017.
[22] C. Singh and E. Altman, “The wireless multicast coalition game and the non-cooperative association problem,” in Proc. IEEE Conference on Computer Communications (INFOCOM), Apr. 2011, pp. 2705–2713.
[23] A. Kuehne, H. Q. Le, M. Mousavi, M. Wichtlhuber, D. Hausheer, and A. Klein, “Power control in wireless broadcast networks using game theory,” in Proc. ITG Conference on Systems, Communications and Coding, Feb. 2015, pp. 1–5.
[24] R. Gopalakrishnan, J. R. Marden, and A. Wierman, “Potential games are necessary to ensure pure nash equilibria in cost sharing games,” Mathematics of Operations Research, vol. 39, no. 4, pp. 1252–1296, 2014.
[25] H.-L. Chen, T. Roughgarden, and G. Valiant, “Designing network protocols for good equilibria,” SIAM J. Comput., vol. 39, no. 5, pp. 1799–1832, 2010.

[26] S. Dobzinski, A. Mehta, T. Roughgarden, and M. Sundararajan, Is Shapley Cost Sharing Optimal? Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 327–336.

[27] G. Auer, V. Giannini, C. Desset, I. Godor, P. Skillermark, M. Olsson, M. A. Imran, D. Sabella, M. J. Gonzalez, O. Blume, and A. Fehske, “How much energy is needed to run a wireless network?” IEEE Wireless Communications, vol. 18, no. 5, pp. 40–49, Oct. 2011.

[28] S. Cui, A. J. Goldsmith, and A. Bahai, “Energy-constrained modulation optimization,” IEEE Transactions on Wireless Communications, vol. 4, no. 5, pp. 2349–2360, Sep. 2005.

[29] Q. Wang, M. Hempstead, and W. Yang, “A realistic power consumption model for wireless sensor network devices,” in proc. 3rd Annual IEEE (SECON), vol. 1, Sep. 2006, pp. 286–295.

[30] A. K. Das, R. J. Marks, M. El-Sharkawi, P. Arbabshahi, and A. Gray, “Minimum power broadcast trees for wireless networks: integer programming formulations,” in Proc. 22nd Annual Joint Conference of the IEEE Computer and Communications (INFOCOM), vol. 2, Mar. 2003.

[31] R. Montemanni, L. M. Gambardella, and A. K. Das, “The minimum power broadcast problem in wireless networks: a simulated annealing approach,” in Proc. IEEE Wireless Communications and Networking Conference., Mar. 2005.

[32] R. Klasing, A. Navarra, A. Papadopoulos, and S. Perennes, “Adaptive broadcast consumption (abc), a new heuristic and new bounds for the minimum energy broadcast routing problem,” in Networking, Lecture Notes in Computer Science 3042. Springer, 2004, pp. 866–877.

[33] V. Rajendran, K. Obrazcka, and J. J. Garcia-Luna-Aceves, “Energy-efficient, collision-free medium access control for wireless sensor networks,” Wireless Networks, vol. 12, no. 1, pp. 63–78, Feb. 2006.

[34] M. Fang, D. Malone, K. R. Duffy, and D. J. Leith, “Decentralised learning MACs for collision-free access in WLANs,” Wireless Networks, vol. 19, no. 1, pp. 83–98, 2013.

[35] H. Zhao, J. Wei, N. I. Sarkar, and S. Huang, “E-mac: An evolutionary solution for collision avoidance in wireless ad hoc networks,” Journal of Network and Computer Applications, vol. 65, no. Supplement C, pp. 1 – 11, 2016.

[36] Y. C. Wu, Q. Chaudhari, and E. Serpedin, “Clock synchronization of wireless sensor networks,” IEEE Signal Processing Magazine, vol. 28, no. 1, pp. 124–138, Jan. 2011.

[37] R. Diestel, Graph Theory, ser. Electronic library of mathematics. Springer, 2006.

[38] T. Roughgarden, Twenty Lectures on Algorithmic Game Theory, 1st ed. New York, NY, USA: Cambridge University Press, 2016.

[39] D. Monderer and L. S. Shapley, “Potential games,” Games and Economic Behavior, vol. 14, no. 1, pp. 124 – 143, 1996.

[40] E. Anshelevich, A. Dasgupta, J. Kleinberg, E. Tardos, T. Wexler, and T. Roughgarden, “The price of stability for network design with fair cost allocation,” in Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science, ser. FOCS ’04. Washington, DC, USA: IEEE Computer Society, 2004, pp. 295–304.

[41] M. Mousavi, S. Müller, H. Al-Shatri, B. Freisleben, and A. Klein, “Multi-hop data dissemination with selfish nodes: Optimal decision and fair cost allocation based on the shapley value,” in Proc. IEEE International Conference on Communications (ICC), May 2016.

[42] L. S. Shapley, A Value for n-person Games, ser. In Contributions to the Theory of Games. Princeton University Press, 1953, vol. 28, pp. 307–317.

[43] S. Littlechild and G. Owen, “A simple expression for the shapley value in a special case,” Management Science, vol. 20, no. 3, Nov 1973.
[44] J. R. Marden and A. Wierman, “Overcoming the limitations of utility design for multiagent systems,” IEEE Transactions on Automatic Control, vol. 58, no. 6, pp. 1402–1415, June 2013.