RESEARCH NOTE

Mouse mesoderm-specific transcript inhibits adipogenic differentiation and induces trans-differentiation into hepatocyte-like cells in 3T3-L1 preadipocytes

Yoshito Kadota*, Takashige Kawakami, Masao Sato and Shinya Suzuki

Abstract

Objective: The mesoderm-specific transcript (Mest) is an imprinted gene that is transcribed from the paternal allele. It is a marker of adipose tissue expansion; however, it is uncertain whether Mest expression promotes or suppresses adipogenic differentiation. To elucidate the effects of Mest expression on adipogenic differentiation, we transfected an expression vector or siRNA for mouse Mest into 3T3-L1 mouse preadipocyte cell line.

Results: In differentiated 3T3-L1 adipocytes, Mest overexpression decreased lipid accumulation. Conversely, gene silencing of Mest increased the accumulation of lipid droplets in adipocytes. These results demonstrate that Mest negatively regulates adipocyte differentiation. Further, Mest induced trans-differentiation of 3T3-L1 cells into hepatocytes, and its overexpression induced the expression of hepatocyte marker genes, including albumin and α-fetoprotein. In the presence of dexamethasone, the forced expression of the Mest caused morphological changes in 3T3-L1 cells. Cells were flat and polygonal shapes, with an increased accumulation of intracellular glycogen and other features that are typical of hepatocytes. Therefore, Mest inhibits adipogenic differentiation of 3T3-L1 preadipocytes by inducing hepatocyte trans-differentiation.

Keywords: Mesoderm specific transcript, Adipocyte, Lipid accumulation, Trans-differentiation, Hepatocyte

Introduction

The mesoderm-specific transcript (Mest) is an imprinted gene that is transcribed from the paternal allele and is expressed in the embryonic and extraembryonic mesoderm [1–4]. The Mest protein is a member of the α/β-hydrolase-fold superfamily, but its activity remains unknown [2].

The Mest mRNA levels are markedly upregulated in white adipose tissue in obese mice, and its increased expression correlates with the size of adipocytes [5–7]. In transgenic mice, Mest overexpression increases adipocyte size [5], while Mest knockout suppresses adipose tissue expansion in mice fed with a high-fat diet [8]. In vitro, Mest is upregulated during the differentiation of 3T3-L1 preadipocytes into adipocytes [9]. Mest overexpression promotes the differentiation of 3T3-L1 preadipocytes into adipocytes, and Mest silencing suppresses this differentiation [5, 10]. Mest knockout enhances the intracellular lipid accumulation in mouse mesenchymal progenitor cells that were treated with inducers of adipogenic differentiation [8]. Additionally, siRNA for human MEST promoted the differentiation of human adipose-derived stem cells into adipocytes [11]. To better
understand these diverse activities, we re-evaluated the effects of Mest overexpression and silencing on the adipogenic differentiation of 3T3-L1 preadipocytes.

Main text

Materials and methods

Cell culture and establishment of 3T3-L1 cell lines that stably express mest

We employed the pcDNA3.1 plasmid vector containing both the Mest and a neomycin resistance gene [12]. The 3T3-L1 cells (5 x 10^5) were seeded onto 60-mm dishes one day prior to transfection in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% Calf serum (CS) (Sigma-Aldrich, St. Louis, MO, USA). The cells were treated with a complex of Lipofectamine 3000 (Life Technologies, Carlsbad, CA, USA) and 5 μg of plasmid DNA. After 24 h of incubation, the cells were trypsinized and seeded into 100-mm dishes; then, neomycin-resistant cells were selected with 1 mg/mL G418. The 3T3-L1 preadipocytes, mock-transfected cells, and Mest expression vector-transfected 3T3-L1 cells, designated 3T3-L1-Mest, were maintained in DMEM supplemented with 10% CS at 37 °C in the presence of 5% CO₂.

RNA isolation and gene expression analysis using by RT-PCR

The total cellular RNA was isolated using RNAiso Plus (Takara Bio, Otsu, Japan). The RNA from each sample was reverse-transcribed using a High-Capacity cDNA RT kit (Applied Biosystems, Foster City, CA, USA). PCR was performed within a linear range of amplification using the primer sets indicated in Additional file 1: Table S1. The PCR products were resolved on 10% agarose gel electrophoresis, in a 10% gel. The samples were resolved using a sodium dodecyl sulfate–polyacrylamide gel electrophoresis, in a 10% gel. The proteins were transferred from the gel to a polyvinylidene difluoride membrane in a basic transfer buffer (48 mM Tris, 39 mM glycine, and 20% methanol, pH 9.2) using an electroblotter. Proteins were visualized by immunostaining with a primary antibody (either a goat anti-Mest antibody (1:1,000) or a rabbit anti-β-actin IgG (1:5,000) (Abcam Ltd., Cambridge, UK), a secondary antibody (either a horseradish peroxidase (HRP)-conjugated anti-goat IgG (Millipore, Billerica, MA, USA) or HRP-conjugated anti-goat IgG antibody (Abcam Ltd.)), and a chemiluminescent substrate (Millipore, Billerica, MA, USA) using an LAS-4000 mini image analyzer. Prestained protein markers (Bio-Rad, Hercules, CA, USA) were used as the standard molecular mass proteins.

Differentiation induction toward adipocytes and hepatocytes

The cells were seeded at a density of 3 x 10⁴ cells/cm² and precultured for two days. Adipogenic differentiation of preadipocytes was induced on day 0 by replacing the original medium with DMEM containing 10% fetal bovine serum (FBS) (Sigma-Aldrich) supplemented with an adipogenic cocktail (1 μg/ml insulin, 1 μM dexamethasone (DEX), and 0.5 mM 3-isobutyl-1-methylxanthine (IBMX) (Sigma-Aldrich). After two days (day 2), the culture medium was changed to DMEM containing 10% FBS supplemented with 1 μg/ml insulin, and the cells were cultured for two more days. On day 4, the medium was replaced with DMEM containing 10% FBS, subsequently the cells were cultured until day 8. For trans-differentiation into hepatocytes, the cells were treated with 1 μM DEX in DMEM containing 10% FBS for four days, and then the medium was replaced and cells were treated DMEM containing 10% FBS for four more days.

Oil Red O staining

Lipid accumulation was evaluated by measuring Oil Red O retention. The cells were fixed with 4% paraformaldehyde (FUJIFILM Wako Pure Chemical, Osaka, Japan) and stained with 3 mg/mL Oil Red O (Sigma-Aldrich) in 60% 2-propanol. To quantify intracellular lipid accumulation, the absorbance of Oil Red O was measured at 520 nm using a microplate spectrophotometer.

Knockdown of Mest by siRNA

We transfected the cells with stealth siRNAs targeting mouse Mest mRNA and a RNAi negative control (Life Technologies, Carlsbad, CA, USA) at a final concentration of 20 nM using Lipofectamine RNAi MAX (Life Technologies Carlsbad, CA, USA). The sequences of the siRNAs and negative control RNAs are shown in Additional file 2: Table S2.

Periodic acid-Schiff (PAS) stain for glycogen

The cells were fixed in 4% paraformaldehyde. After rinsing in distilled water, the samples were oxidized in 0.5% periodic acid (FUJIFILM Wako Pure Chemical) for 10 min and then reacted with Schiff’s reagent (Merck KGaA, Darmstadt, Germany) for 30 min. Cells were rinsed again, this time in tap water for 5 min. Samples were counterstained with Mayer’s hematoxylin for 1 min and rinsed with distilled water.
Measurement surface area of cells
The cells were trypsinized and resuspended in DMEM + 10% CS. The cell suspension was then applied to a cell counter plate. Images were obtained using the TrueChrome II (TUCSEN Photonics, Fuzhou, China). The surface area of the cells in the images was calculated using the software functions of the adjusted threshold and analyzed using ImageJ (ImageJ: http://imagej.nih.gov/ij).

Statistical analysis
BellCurve for Excel (Social Survey Research Information, Tokyo, Japan) was used for the statistical analysis. Data sets were compared for significant differences by one-way analysis of variance using the Dunnett’s test or the paired Student’s t-test.

Results
Expression of recombinant mouse Mest and Mest protein in transformed 3T3-L1 cells
We compared Mest expression levels between 3T3-L1 cells, 3T3-L1-Mest, and mock-transfected cells. While the expression level of Mest in mock-transfected cells was similar to that of the parent cells, Mest mRNA was significantly expressed in the 3T3-L1-Mest cells (Fig. 1A and Additional file 3: Fig. S1A, B). Immunoblotting analysis with an anti-Mest protein antibody revealed a significant increase in Mest protein, an approximately 53-kDa protein in 3T3-L1-Mest cells, compared with the mock-transfected cells (Fig. 1B and Additional file 3: Fig. S1C, D).

Overexpression of Mest decreases in lipid accumulation in 3T3-L1 adipocytes
To evaluate the effect of Mest gene overexpression on adipogenic differentiation of 3T3-L1 cells, the retention of Oil Red O in lipid droplets was measured. The quantity of Oil Red O in differentiated 3T3-L1-Mest adipocytes was half of that in mock-transfected cells (Fig. 1C–E).

Silencing of Mest gene stimulates adipocyte differentiation
To analyze the loss of function of the Mest on adipocyte differentiation, we used two siRNAs targeting Mest mRNA. The Mest mRNA expression levels increased on day 3 and remained steady until day 7 during adipocyte differentiation in 3T3-L1 cells (Fig. 2A), as reported previously [9]. Both siRNAs 1 and 2 repressed the upregulation of Mest mRNA and protein expression (Fig. 2A, B, and Additional file 4: Fig. S2A–D). Treatment with the siRNAs for the Mest significantly increased lipid droplets in 3T3-L1 adipocytes (Fig. 2C, D).

Mest induces cell enlargement of 3T3-L1 preadiocytes
While more than half of 3T3-L1-mock cells had cell surface area less than 400 µm², most of 3T3-Mest preadipocytes showed over 400 µm² (Fig. 3A). These results
suggested that the Mest causes cell enlargement in 3T3-L1 preadipocytes, but not adipocytes.

Mest induces trans-differentiation of 3T3-L1 preadipocytes toward hepatocyte-like cells

Although mesenchymal stem cells (MSCs) are multipotent cells, that can differentiate into a variety of cell types, including osteoblasts, chondrocytes, and adipocytes [13,14]. The MSCs can also be transdifferentiated into hepatocytes [15]. Wnt/β-catenin signaling was suppressed during the trans-differentiation of human MSCs toward hepatocytes [16,17]. This suppression of Wnt/β-catenin signaling enhanced the hepatic differentiation of MSCs [16–18]. The 3T3-L1 preadipocytes are derived from mouse embryonic fibroblasts [19] and are differentiated into adipocyte-like cells by treatment with an adipogenic cocktail [20]. 3T3-L1 cells are that are similar to the MSC lineage and can differentiate into osteoblasts [21–24]. Jung et al. reported that Mest inhibits Wnt signaling through the regulation of LRP6 glycosylation [10]. We hypothesized that Mest overexpression in 3T3-L1 cells induced the dedifferentiation of 3T3-L1 preadipocytes into MSCs or the trans-differentiation into hepatocytes. We confirmed the mRNA expression levels of the hepatocyte marker genes, including albumin (ALB) and α-fetoprotein (AFP), in 3T3-L1-Mest cells. Increased expression of ALB mRNA and weak expression of AFP mRNA were observed in 3T3-L1-Mest cells (Fig. 3B, and Additional Fig. 2).
file 5: Fig. S3A–D). DEX was shown to induce trans-differentiation of MSCs into hepatocytes [25]. In addition, DEX induced polygonal and cuboidal morphology in rat primary hepatocytes [26]. 3T3-L1-Mest and mock-transfected cells were treated with 1 μM DEX. In the presence of DEX, forced expression of the Mest gene caused morphological changes in 3T3-L1 cells with flat and polygonal shapes and intracellular glycogen accumulation, which are both features of liver cells (Fig. 3C).

Discussion
Takahashi et al. demonstrated that the Mest is a marker of adipose cell size in mice [5]. We also confirmed that the expression levels of the Mest were positively correlated with adipocyte size in mouse adipose tissue [27, 28]. Previous studies demonstrate that Mest overexpression in 3T3-L1 preadipocytes promotes adipocyte differentiation [5]; however, when the overexpression of Mest gene was induced, differentiation was suppressed rather than promoted (Fig. 1C–E). These contradictory results may be due to differences in the copy number of the exogenous Mest, compared between the retrovirus vector and our plasmid vector.

Jung et al. showed that shRNA for the mouse Mest suppressed differentiation of 3T3-L1 cells [10]. In contrast, Anunciado-Koza et al. reported that Mest knock-out promoted the differentiation of mouse stem cells [8]. Knockdown of human MEST facilitated the differentiation of human multipotent adipose-derived stem cells [11]. Even though Karbiener et al. suggest the possible differences in species-specific regulation between humans and mice, our data indicates mouse Mest (Fig. 2B, C) support the results of gene silencing of human MEST in human stem cells. Hasegawa et al. reported that the overexpression of human MEST enhanced the expression of stem cell markers and the multi-differentiation capacity, and knockdown of MEST inhibited the expression of stem cell markers and promoted differentiation of periodontal ligament stem cells [29]. In mouse adipose tissue, the expression level of Mest is decreased during the lactation period, when adipocyte differentiation and maturation should become more prolific [7]. We showed that overexpression of Mest induced cell enlargement in 3T3-L1 preadipocytes (Fig. 3A). The function of Mest in adipocyte differentiation and adipocyte expansion should be considered separately.

Activated Wnt signaling downregulates the differentiation of MSCs into adipocytes and hepatocytes [30]. Thus, it seems consistent that the forced expression of Mest upregulates adipogenesis through the inhibition of Wnt signaling. However, the suppression of Wnt/β-catenin signaling also enhances hepatic differentiation of MSCs [16–18]. The different levels and/or the timing of Mest expression may be involved in the differentiation of 3T3-L1 cells into either adipocytes or non-adipocyte lineage, hepatocyte-like cells. The differentiation of 3T3-L1 cells into hepatocytes induced by Mest could prevent the preadipocytes from differentiating into adipocytes. Additionally, yet to be elucidated functions of Mest, other than Wnt inhibition, may exist.

Limitations
This study evaluated the effects of Mest in 3T3-L1 cells on adipogenic differentiation using Oil Red O staining and on hepatocyte trans-differentiation using RT-PCR and morphology observation. To measure the expression levels of differentiation markers for gene expression, different of techniques should be employed, including quantitative RT-PCR.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s13104-022-06051-x.

Acknowledgements
This work was partially supported by JSPS KAKENHI (Grant number 22790139). We would like to thank Editage (www.editage.com) for English language editing.

Author contributions
The authors confirm contribution to the paper as follows: Analysis and interpretation of results: Conceptualization, YK; Validation, YK; Formal Analysis, YK; Investigation, YK and TK; Resources, YK, TK, and SS; Data Curation, YK; Writing–Original Draft Preparation, YK; Writing–Review & Editing, TK, MS, and SS; Visualization, YK; Supervision, MS; Project Administration, YK and SS; Funding Acquisition, YK and SS. All authors read and approved the final manuscript.

Funding
The authors received no specific funding for this work.
Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate

This study was approved by the Safety Committee for Recombinant DNA Experiment at the Tokushima Bunri University (permission number: 92) and carried out according to the guidelines of the committee.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Received: 16 December 2021 Accepted: 26 April 2022

Published online: 10 May 2022

References

1. Sado T, Nakajima N, Tada M, Takagi N. A novel mesoderm-specific cDNA isolated from a mouse embryonal carcinoma cell line. (embryonal carci-
noma cell/cDNA/in situ hybridization/mesoderm/mouse embryo). Dev Growth Differ. 1993;35:551–60. https://doi.org/10.1111/j.1440-169X.1993.
00551.x.

2. Kaneko-Ishino T, Kuroya Y, Miyoshi N, Kohda T, Suzuki R, Yokoyama M, et al. Peg1/Mest imprinted gene on chromosome 6 identified by cDNA subtraction hybridization. Nat Genet. 1995;11:52–9. https://doi.org/10.1038/ng0995-52.

3. Nishita Y, Sado T, Yoshida I, Takagi N. Effect of CpG methylation on expression of the mouse imprinted gene Mest. Gene. 1999;226:199–209. https://doi.org/10.1016/S0378-1119(98)00576-9.

4. Mayer W, Hemberger M, Frank HG, Grümmer R, Winterhager E, Kaufmann P, et al. Expression of the imprinted genes MEST/Mest in human and mouse placenta suggests a role in angiogenesis. Dev Dyn. 2000;217:1–10. https://doi.org/10.1002/1097-0177(20000121)217%3c1::AID-
DVY1%3e3.0.CO;2-4.

5. Takahashi M, Kamei Y, Ezaki O, Mest/Peg1 imprinted gene enlarges adipocytes and is a marker of adipocyte size. Am J Physiol Endocrinol Metab. 2005;288:E117–24. https://doi.org/10.1152/ajpendo.2004.288.2.E117.

6. Koza RA, Nikonova L, Hagan J, Rim JS, Mendoza T, Faull C, et al. Changes in gene expression in response to a positive energy balance. FASEB J. 2008;22:3925–37. https://doi.org/10.1096/fj.08-108266.

7. Anunciado-Koza RP, Manuel J, Mynatt RL, Zhang J, Koza LP, Koza RA. Diet-induced adipose tissue expansion is mitigated in mice with a targeted inactivation of mesoderm specific transcript (Mest). PLoS ONE. 2017;12: e0179879. https://doi.org/10.1371/journal.pone.0179879.

8. Kadota Y, Yanagawa M, Nakaya T, Kawamata T, Sato M, Suzuki S. Gene expression of mesoderm specific transcript is upregulated as preadipo-
cytes differentiate to adipocytes in vitro. J Physiol Sci. 2012;62:403–11. https://doi.org/10.1007/s12576-012-0217-8.

9. Jung H, Lee SK, Jho EH. Mest/Peg1 inhibits Wnt signaling through regulation of LR6P glycosylation. Biochem J. 2011;436:263–9. https://doi.org/10.1042/BJ20101512.

10. Karbiener M, Giantschin G, Pisani DF, Laurencic K, Rahman L, Herzig S, et al. Mesoderm-specific transcript (MEST) is a negative regulator of human adipocyte differentiation. Int J Obses. 2015;39:1733–41. https://doi.org/10.1038/sj.ijs.2015.121.

11. Karbiener M, Giantschin G, Pisani DF, Laurencic K, Rahman L, Herzig S, et al. Mesoderm-specific transcript (MEST) is a negative regulator of human adipocyte differentiation. Int J Obses. 2015;39:1733–41. https://doi.org/10.1038/sj.ijs.2015.121.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.