ABSTRACT – Taxonomic revision and re-evaluation of the eastern North Atlantic deep-sea ostracods are conducted based on late Quaternary sediments from Ocean Drilling Program (ODP) Hole 982A, Rockall Plateau, eastern North Atlantic. Twenty-one genera and 51 species were examined and (re-)illustrated with high-resolution scanning electron microscopy images. Six new species are described: Polycope lunaris, Argilloecia labri, Bythoceratina nuda, Cytheropteron colesoabyssorum, Cytheropteron colesopunctatum and Cytheropteron paramammoiun. Excellent fossil ostracod preservation in this sediment core enabled us to provide a robust taxonomic baseline of the eastern North Atlantic deep-sea ostracods for application to palaeoceanographical, palaeoecological and biogeographical studies.

KEYWORDS: deep-sea, Ostracoda, taxonomy, Quaternary, eastern North Atlantic, upper bathyal

INTRODUCTION
North Atlantic deep-sea ostracods have been well investigated (e.g. Brady, 1880; Whatley & Coles, 1987; Coles & Whatley, 1989; Dingle & Lord, 1990; Cronin & Raymo, 1997; Cronin et al., 1999; Didié et al., 2002; Yasuhara & Cronin, 2008; Yasuhara et al., 2008, 2009a; Alvarez Zarikian, 2009; Yamaguchi & Norris, 2012). However, detailed taxonomic studies using the scanning electron microscope (SEM) are still limited and concentrated on the ostracod faunas from the lower bathyal and abyssal zones (i.e. >2000 m water depth) (Whatley & Coles, 1987; Coles & Whatley, 1989; Coles et al., 1994; Alvarez Zarikian, 2009). Thus, little is known on the bathyal North Atlantic ostracod taxonomy, compared to well-investigated Mediterranean bathyal fauna (Bonaduce et al., 1976; Colalongo & Pasini, 1980; Aiello et al., 2000; Guernet, 2005; Aiello & Barra, 2010), even though bathyal faunas are usually more diverse than abyssal faunas (e.g. Yasuhara et al., 2012). Furthermore, there is some taxonomic confusion in North Atlantic ostracod taxonomy, faunal and palaeoecological studies in which a same species has often been called by several different names (see synonymy lists in the present study).

Recently, Yasuhara et al. (2009b) conducted a comprehensive taxonomic revision of western North Atlantic Quaternary deep-sea ostracods using a sediment core taken from the upper bathyal zone with high-resolution SEM images of 87 species and a detailed literature survey. However, a comparable in-depth taxonomic study has not been undertaken previously for the upper bathyal zone of the eastern North Atlantic.

Ocean Drilling Program (ODP) Hole 982A gave us an ideal opportunity to study eastern North Atlantic deep-sea ostracods from the upper bathyal zone in detail, because its sediments have an abundant, diverse and well-preserved ostracod fauna. Here we investigate late Quaternary ODP 982A ostracod taxonomy using high-resolution SEM images to reduce taxonomic confusion of North Atlantic bathyal ostracods. In addition, we briefly discuss similarity of bathyal ostracod faunas among the western and eastern North Atlantic, the Mediterranean, and the western North Pacific.

MATERIALS AND METHODS
A total of 47 samples of ODP Hole 982A (57°30.992′N, 15°52.001′W, 1135.3 m water depth; Rockall Plateau, eastern North Atlantic) covering the past 230 000 years and Marine Isotope Stages (MIS) 1–7 (Venz et al., 1999) were examined for ostracod taxonomy. The full information for the samples and specimens used for the present study is shown in Tables 1 and 2. Uncoated specimens were digitally imaged with a Philips XL-30 environmental SEM. High-resolution figures of ostracod SEM images (Figs 2–16) are available at Dryad (http://datadryad.org/; http://doi.org/10.5061/dryad.sc193. We follow the higher classification scheme of the World Register of Marine Species (WoRMS: http://www.marinespecies.org/) with certain modifications.

Repository. Figured specimens are deposited in the National Museum of Natural History (Washington DC, catalogue numbers USNM 603625–USNM 603760).

Abbreviations. LV, left valve; RV, right valve; L, length (mm); H, height (mm).

SYSTEMATIC PALAEONTOLOGY
Class Ostracoda Latreille, 1802
Subclass Myodocopa Sars, 1866
Order Halocyprida Dana, 1853
Suborder Cladocopina Sars, 1866
Superfamily Polycopidea Sars, 1866
Family Polycopidae Sars, 1866
Genus Polycope Sars, 1866

Type species. Polycope orbicularis Sars, 1866

Remarks. We use the genus name Polycope in a broad sense following typical deep-sea ostracod taxonomy, but note that recent zoological studies, for example Karanovic & Brandão (2012), divide the genus into several separate genera based on soft parts, which are not preserved in fossil ostracods.

Polycope martinezi (Karanovic & Brandão, 2012) (Fig. 2A)
2001 Polycope sp. cf. P. arcys Joy & Clark; Didié & Bauch: 104, pl. 1, fig. 28 (as erratum for Didié & Bauch, 2000).
Table 1. Detailed information of the specimens used for the present study.

USNM No.	ODP982154poly	Species	T	V	Instar	Hole	Section	Figure
603625	Polycope martinezi	L	?	982A	1/3/2–4	2A		
603626	Polycope lunaris sp. nov.	H	L?	A?	982A	1/3/42–44	2B	
603627	Polycope lunaris sp. nov.	P	R?	A?	982A	1/3/42–44	2C	
603628	Polycope cf. bireticulata	L	?	982A	1/3/32–34	2D		
603629	Polycope cf. bireticulata	R	?	982A	1/3/32–34	2E		
603630	Polycope orbicularis s.l.	R	?	982A	1/3/112–114	2F		

(Continued)
USNM	No.	Species	T	V	Instar	Hole	Section	Figure
603679	ODP982085	Cytheropteron didieae	R	A		982A	1/1/50–52	7D
603680	ODP982086	Cytheropteron didieae	R	A		982A	1/1/60–62	7E
603681	ODP982087	Cytheropteron didieae	R	A		982A	1/1/60–62	7F
603682	ODP982088	Cytheropteron didieae	L	A		982A	1/1/60–62	7G
603683	ODP982089	Cytheropteron didieae	L	A		982A	1/2/127–129	7H
603684	ODP982090	Cytheropteron didieae	L	A		982A	1/2/67–69	7I
603685	ODP982091	Cytheropteron didieae	R	A		982A	1/2/57–59	8A
603686	ODP982092	Cytheropteron didieae	R	A		982A	1/2/57–59	8B
603687	ODP982093	Cytheropteron omega	L	A		982A	1/4/12–14	8C
603688	ODP982094	Cytheropteron omega	L	A		982A	1/3/132–134	8E
603689	ODP982095	Cytheropteron omega	L	A		982A	1/2/127–129	8F
603690	ODP982096	Cytheropteron omega	L	A		982A	1/1/97–99	8G
603691	ODP982097	Cytheropteron omega	L	A		982A	1/1/2–19	8H
603692	ODP982098	Cytheropteron omega	L	A		982A	1/1/97–99	8I
603693	ODP982099	Cytheropteron omega	L	A		982A	1/2/17–19	9A
603694	ODP982100	Cytheropteron omega	L	A		982A	1/1/137–139	9B
603695	ODP982101	Cytheropteron omega	L	A		982A	1/1/137–139	9C
603696	ODP982102	Cytheropteron omega	L	A		982A	1/3/52–54	9H
603697	ODP982103	Cytheropteron perlaria	L	A		982A	1/2/17–19	10A
603698	ODP982104	Cytheropteron perlaria	L	A		982A	1/2/17–19	10B
603699	ODP982105	Cytheropteron perlaria	L	A		982A	1/1/142–144	10C
603700	ODP982106	Cytheropteron perlaria	L	A		982A	1/1/142–144	10D
603701	ODP982107	Cytheropteron perlaria	L	A		982A	1/1/142–144	10E
603702	ODP982108	Cytheropteron perlaria	L	A		982A	1/1/70–72	10F
603703	ODP982109	Cytheropteron perlaria	L	A		982A	1/1/90–92	10G
603704	ODP982110	Cytheropteron perlaria	L	A		982A	1/1/1107–109	10H
603705	ODP982111	Cytheropteron perlaria	L	A		982A	1/3/112–114	10I
603706	ODP982112	Cytheropteron perlaria	L	A		982A	1/3/92–94	10J
603707	ODP982113	Cytheropteron perlaria	L	A		982A	1/3/112–114	11A
603708	ODP982114	Cytheropteron perlaria	L	A		982A	1/3/112–114	11B
603709	ODP982115	Cytheropteron perlaria	L	A		982A	1/3/112–114	11C
603710	ODP982116	Cytheropteron perlaria	L	A		982A	1/1/137–139	11D
603711	ODP982117	Cytheropteron perlaria	L	A		982A	1/1/70–72	11E
603712	ODP982118	Cytheropteron perlaria	L	A		982A	1/3/82–84	11F, G
603713	ODP982119	Cytheropteron perlaria	L	A		982A	1/3/82–84	11H, I
603714	ODP982120	Cytheropteron perlaria	L	A		982A	1/3/82–84	12A
603715	ODP982121	Cytheropteron perlaria	L	A		982A	1/3/92–94	12B
603716	ODP982122	Cytheropteron perlaria	L	A		982A	1/3/92–94	12C, D
603717	ODP982123	Cytheropteron perlaria	L	A		982A	1/3/92–94	12E, F
603718	ODP982124	Cytheropteron perlaria	L	A		982A	1/3/122–124	12G, H
603719	ODP982125	Cytheropteron perlaria	L	A		982A	1/3/122–124	12L, J
603720	ODP982126	Cytheropteron perlaria	L	A		982A	1/3/122–124	13A
603721	ODP982127	Cytheropteron perlaria	L	A		982A	1/3/122–124	13B
603722	ODP982128	Cytheropteron perlaria	L	A		982A	1/3/122–124	13C, D
603723	ODP982129	Cytheropteron perlaria	L	A		982A	1/3/122–124	13E, F

(Continued)
Table 1. (Continued)

USNM	No.	Species	T	V	Instar	Hole	Section	Figure
603733	ODP982148	Pedicythere klothopetasi	L	A	982A	1/1/80–82	13G	
603734	ODP982149pedi	Pedicythere klothopetasi	R	A	982A	1/1/80–82	13H	
603735	ODP982150	Pedicythere klothopetasi	R	A	982A	1/1/80–82	13I, J	
603736	ODP982151	Pedicythere klothopetasi	R	A	982A	1/1/80–82	14A	
603737	ODP982152	Pedicythere klothopetasi	L	A	982A	1/1/70–72	14B, C	
603738	ODP982153	Pedicythere klothopetasi	R	A	982A	1/1/70–72	14D, E	
603739	ODP982099	Eucythere triangula	L	A	982A	1/2/117–119	14F	
603740	ODP982127-2	Cluthia sp.	L	A	982A	1/3/12–14	14G	
603741	ODP982128	Cluthia sp.	R	A	982A	1/3/92–94	14H	
603742	ODP982129-1	Cluthia sp.	L	A	982A	1/3/92–94	14I	
603743	ODP982130	Cluthia sp.	R	A	982A	1/3/92–94	14J	
603744	ODP982123	Loxoconchidea minima	L	A	982A	1/3/12–14	15A	
603745	ODP982135	Paracytherois bondi	R	A	982A	1/1/80–82	15B, C	
603746	ODP982169rock	Arcacythere enigmatica	L	A	982A	1/2/77–79	15D	
603747	ODP982170rock	Arcacythere enigmatica	R	A	982A	1/2/77–79	15E	
603748	ODP982171rock	Arcacythere enigmatica	L	A	982A	1/2/77–79	15F	
603749	ODP982172rock	Arcacythere enigmatica	R	A	1/2/77–79	15G		
603750	ODP982173rock	Arcacythere enigmatica	R	A	1/2/67–69	15H		
603751	ODP982174rock	Arcacythere enigmatica	L	A	1/3/92–94	15I		
603752	ODP982027	Echinocythereis echinata	R	A	982A	1/1/142–144	16A	
603753	ODP982028	Echinocythereis echinata	R	A	982A	1/1/142–144	16B	
603754	ODP982029	Echinocythereis echinata	L	A	982A	1/3/72–74	16C	
603755	ODP982030	Echinocythereis echinata	L	A	982A	1/3/72–74	16D	
603756	ODP982022	Henryhowella asperrima	L	A	982A	1/1/137–139	16E	
603757	ODP982023	Henryhowella asperrima	R	A	982A	1/1/137–139	16F	
603758	ODP982026	Henryhowella asperrima	L	A	1/0/0–2	16G		
603759	ODP982024	Henryhowella asperrima	R	A	982A	1/1/142–144	16H, I	
603760	ODP982025	Henryhowella asperrima	L	A	982A	1/1/107–109	16J	

All specimens from late Quaternary sediments. Core samples are specified by standard ODP notation (core/section/interval). USNM, catalog number; No., M.Y.’s personal catalog number. T, type (P, paratype; H, holotype); V, valve (L, left; R, right); A, adult; J, juvenile.

2009b Polycope arcys Joy & Clark; Yasuhara et al.: 881, pl. 1, fig. 6. 2012 Archypolycope martinezi Karanovic & Brandão: 348, figs 20–24.

Remarks. Polycope martinezi is very similar to the Arctic species Polycope arcys, but distinguished by lacking obvious lateral spines and having finer reticulation. P. martinezi was originally reported from the equatorial Atlantic (Karanovic & Brandão, 2012) and is also known from the North Atlantic (Didié & Bauch, 2000, 2001; Yasuhara et al. 2009b).

Polycope lunaris sp. nov. (Fig. 2B–C)
2001 Polycope sp. Didié & Bauch: 103, pl. 1, fig. 27 (as erratum for Didié & Bauch, 2000).

Derivation of name. From Latin lunaris (adjective; nominative singular; gender, neutral) = lunar.

Diagnosis. A small, heavily calcified Polycope species with well-developed primary reticulation.

Holotype. LV, USNM 603626 (ODP982161) (Fig. 2B).

Paratype. RV, USNM 603627 (ODP982162).

Type locality and horizon. ODP 982A, 1/3/42–44.

Description. Carapace heavily calcified, small in size. Outline rounded in lateral view. Lateral surface ornamented with well-developed, rounded primary reticulation. Anteroventral ridge thick, well developed and bearing no reticulation. Internal features as for genus.

Dimensions. USNM 603626 (ODP982161) (Holotype), L=0.378, H=0.343; USNM 603627 (ODP982162) (Paratype), L=0.353, H=0.328.

Remarks. This species is distinctive from any other Polycope species by having a heavily calcified carapace with well-developed, rounded primary reticulation and thick anteroventral ridge.

Polycope cf. bireticulata Joy & Clark, 1977 (Fig. 2D–E)
2009b Polycope cf. bireticulata Joy & Clark; Yasuhara et al.: 881, pl. 1, figs 3 and 4.

Remarks. ODP 982A specimens have better developed reticulation compared to the specimens from the western North Atlantic (Yasuhara et al., 2009b), considered here to be...
Late Quaternary deep-sea ostracods, North Atlantic

intraspecific variation. This species is similar to *P. bireticulata*, but the latter has a more evenly rounded outline and different alignment of muri (Yasuhara *et al.* in press b).

Table 2. The list of ODP 982A samples used for the present study.

Core	Section	Interval (top: cm)	Interval (bottom: cm)	MCD (cm)	Age (ka BP)	N	S
1	1	0	2	0.0	87	10	
1	1	10	12	1.0	119	15	
1	1	20	22	2.2	107	14	
1	1	30	32	3.4	204	19	
1	1	40	42	5.2	276	26	
1	1	50	52	7.2	221	35	
1	1	60	62	10.0	231	40	
1	1	70	72	14.9	184	39	
1	1	80	82	19.9	141	25	
1	1	90	92	24.9	140	31	
1	1	97	99	28.3	237	42	
1	1	107	109	33.3	234	30	
1	1	117	119	38.3	241	25	
1	1	127	129	43.2	312	29	
1	1	137	139	48.2	259	28	
1	1	142	144	50.7	354	34	
2	7	9	157	58.1	264	40	
2	17	19	167	63.1	283	34	
2	27	29	177	68.0	268	37	
2	37	39	187	73.0	228	34	
2	47	49	197	77.9	237	35	
2	57	59	207	82.9	214	28	
2	67	69	217	87.9	195	32	
2	77	79	227	92.8	155	32	
2	87	89	237	97.8	264	29	
2	97	99	247	102.8	123	25	
2	107	109	257	107.7	320	25	
2	117	119	267	112.7	201	21	
2	137	139	287	122.6	148	24	
3	2	4	302	130.0	220	30	
3	12	14	312	136.3	169	25	
3	22	24	322	146.5	161	27	
3	32	34	332	156.8	139	28	
3	42	44	342	165.0	195	27	
3	52	54	352	172.5	152	28	
3	62	64	362	179.6	228	26	
3	72	74	372	184.9	128	25	
3	82	84	382	190.2	229	28	
3	92	94	392	195.3	164	31	
3	102	104	402	200.4	294	43	
3	112	114	412	205.6	198	34	
3	122	124	422	210.7	367	39	
3	132	134	432	215.8	131	27	
3	142	144	442	220.9	164	27	
4	2	4	452	226.0	202	29	
4	12	14	462	231.1	161	29	

N, number of ostracode specimens per sample; S, number of ostracode species per sample. Chronology from Venz *et al.* (1999)

Remarks.

We consider that *Polycope reticulata* sensu Bonaduce *et al.* (1976) is not conspecific with *P. reticulata* Müller, 1894 because the original sketch by Müller (1894, pl. 8, fig. 20) lacks secondary reticulation and has a different primary reticulation pattern and more inflated carapace.

Subclass **Podocopa** Müller, 1894
Order **Platycopida** Müller, 1866
Suborder **Platycopina** Sars, 1866
Superfamily **Cytherelloidea** Sars, 1866

Polycopida orbicularis s.l. Sars, 1866
(Fig. 2F–G)

2009b *Polycope cf. orbicularis* Sars; Yasuhara *et al.*: 881, pl. 1, fig. 5.
2009b *Polycope orbicularis* s.l. Sars; Yasuhara *et al.*: 881.

Polycopida vasfiensis Sissingh, 1972
(Fig. 2H–I)

1972 *Polycope vasfiensis* Sissingh: 68, pl. 1, fig. 6.
1976 *Polycope vasfiensis* Sissingh; Bonaduce *et al.*: 18, pl. 1, figs 6–8, text-fig. 6.
2000 *Polycope vasfiensis* Sissingh; Aiello *et al.*: 85, pl. 1, fig. 1.
2009b *Polycope vasfiensis* Sissingh; Yasuhara *et al.*: 882, pl. 1, figs 1–2.

Polycopida reticulata Müller, 1894
(Fig. 2J–K)

1894 *Polycope reticulata* Müller: 235, pl. 7, figs 44, 49–50; pl. 8, fig. 20.
1976 *Polycope reticulata* Müller; Bonaduce *et al.*: 14, pl. 2, figs 9 and 10.
2013 *Polycope reticulata* Müller; Cabral & Loureiro: 137, pl. 1, fig. 1.

Remarks.

We consider that *Polycope reticulata* sensu Bonaduce *et al.* (1976) is not conspecific with *P. reticulata* Müller, 1894 because the original sketch by Müller (1894, pl. 8, fig. 20) lacks secondary reticulation and has a different primary reticulation pattern and more inflated carapace.
Family **Cytherellidae** Sars, 1866
Genus **Cytherella** Jones, 1849

Type species. *Cytherina ovata* Roemer, 1841 (designated by Ulrich, 1894)

Cytherella robusta Colalongo & Pasini, 1980 (Fig. 3A–B)
1979 *Cytherella* sp. 11 Ducasse & Peypouquet: pl. 1, figs 3–4.

1980 *Cytherella robusta* Colalongo & Pasini: 78, pl. 6, figs 4–10.
1996b *Cytherella robusta* Colalongo & Pasini; Aiello et al.: 184, pl. 2, figs 4–5, 8–12.
2001 *Cytherella serratula* (Brady); Didié & Bauch: 104, pl. 1, fig. 5 (erratum for Didié & Bauch, 2000).
2001 *Cytherella* sp. 1 Didié & Bauch: 104, pl. 1, fig. 6 (erratum for Didié & Bauch, 2000).

Fig. 2. Scanning electron microscope (SEM) images of *Polycope* species. **A,** *Polycope martinezi* (Karanovic & Brandão, 2012), USNM 603625 (ODP982154poly); LV from 1/3/2–4. **B–C,** *Polycope lunaris* sp. nov.: **B,** Holotype USNM 603626 (ODP982161); adult? LV? from 1/3/42–44; **C,** Paratype USNM 603627 (ODP982162); adult? RV? from 1/3/42–44. **D–E,** *Polycope cf. bireticulata* Joy & Clark, 1977; **D,** USNM 603628 (ODP982155poly); LV from 1/3/32–34; **E,** USNM 603629 (ODP982156poly); RV from 1/3/32–34. **F–G,** *Polycope orbicularis* s.l. Sars, 1866; **F,** USNM 603630 (ODP982157poly); RV from 1/3/112–114; **G,** USNM 603631 (ODP982158poly); LV from 1/3/112–114. **H–I,** *Polycope vasfiensis* Sissingh, 1972; **H,** USNM 603632 (ODP982159poly); adult? LV from 1/2/27–29; **I,** USNM 603633 (ODP982160poly); adult? RV from 1/2/27–29. **J–K,** *Polycope reticulata* Müller, 1894; **J,** USNM 603634 (ODP982163poly); LV from 1/3/32–34; **K,** USNM 603635 (ODP982164poly); RV from 1/3/32–34. All lateral views. All specimens from late Quaternary section of ODP Hole 982A, Rockall Plateau, eastern North Atlantic. Scale bars represent 0.5 mm.
Late Quaternary deep-sea ostracods, North Atlantic

2001 *Cytherella* sp. 2 Didié & Bauch: 104, pl. 1, fig. 7 (erratum for Didié & Bauch, 2000).
2009 *Cytherella* sp. Alvarez Zarikian: 7, pl. P10, fig. 5.
2009b *Cytherella robusta* s.l. Colalongo & Pasini; Yasuhara et al.: 882, pl. 1, figs 7–12.
2013 *Cytherella robusta* Colalongo & Pasini; Cabral & Loureiro: 137, pl. 1, fig. 3.

Remarks. Juvenile specimens of *Cytherella robusta* are shown here. As discussed in Yasuhara & Okahashi (in press), this species has certain intraspecific variation. A comprehensive synonymy list in Aiello et al. (1996b), Yasuhara et al. (2009b) and Yasuhara & Okahashi (in press).

Order Podocopida Sars, 1866
Suborder Bairdiocopina Gründel, 1967
Superfamily Bairdioidae Sars, 1866
Family Bairdiidae Sars, 1866

Remarks. We follow Maddocks’ (1969) genus-level taxonomy for this family.
Genus *Bairdoppilata* Coryell, Sample & Jennings (1935)

Type species. *Bairdoppilata martyni* Coryell, Sample & Jennings (1935)

Bairdoppilata conformis (Terquem, 1878)

(Fig. 3C–F)

1878 *Bairdia subdeltoidea var. conformis* Terquem: 93, pl. 10, fig. 17a–c.

1962 *Bairdia conformis* Terquem; Ruggieri: 13.

1976 *Bairdia conformis* Terquem; Bonaduce et al.: 22, pl. 6, figs 5–10.

2000 *Bairdoppilata conformis* (Terquem); Aiello et al.: 85, pl. 1, fig. 2.

2003 *Bairdoppilata conformis* (Terquem); Sciuto: 182, fig. 2a.

2008 *Bairdoppilata conformis* (Terquem); Faranda et al.: 300, tab. 2.

2010 *Bairdoppilata conformis* (Terquem); Aiello & Barra: 406.

Remarks. A comprehensive synonymy list is in Aiello et al. (2000) and supplemented herein. Our specimens are identical to that shown in Aiello et al. (2000). Our specimens are also very similar to the specimens in Terquem (1878) and Bonaduce et al. (1976), but the latter specimens have a more heavily calcified carapace and slightly more upturned caudal process. Other authors have also reported this species, but with a slightly different outline (Sciuto, 2003) or without images (Faranda et al., 2008; Aiello & Barra, 2010). We consider all of these differences as intraspecific variation and include them in *Bairdoppilata conformis*. Slight differences in outlines may be due to intraspecific variation in calcification. No SEM or microscopic image of type specimens has been published.

Suborder *Cypridocopina* Jones, 1901

Superfamily *Macrocypridoidea* Müller, 1912

Family *Macrocypridae* Müller, 1912

Genus *Macrocyprissa* Triebel, 1960

Type species. *Bairdia cylindracea* Bornemann, 1855

Macrocyprissa arcuata (Colalongo & Pasini, 1980)

(Fig. 3G–I)

1980 *Paramacrocypris arcuata* Colalongo & Pasini: 106, pl. 25, figs 1–8.

1990 *Macrocyprissa arcuata* (Colalongo & Pasini); Maddocks: 85, figs 12.17–18, 13.17–18, 21.24, 23.24, 24.34, 28.29–30, 29.9, 35.19, 44.5, 47.6–7, 50.15–19, 51.9–13, 56.10, 24, 27, 57.11, 32, 58.18, 59.26, 33, 60.4, 63.3, 17, 64.23, 40, 51, 68.5, 72.1–3, 76.3, 78.9–10; pl. 30, figs 7–10, pl. 31, figs 7–11; pl. 67, figs 8–9; pl. 68, figs 6–14; pl. 69, fig. 1; pl. 70, figs 1–4; pl. 80, fig. 7; pl. 91, figs 10–14; pl. 104, figs 1–5; pl. 111, fig. 6.

1996 *Macrocyprissa arcuata* (Colalongo & Pasini); Coles et al.: 132, pl. 1, figs 10–11.

Remarks. A comprehensive synonymy list is given in Maddocks (1990).

Superfamily *Pontocypridoidea* Müller, 1894

Family *Pontocypridae* Müller, 1894

Genus *Argilloecia* Sars, 1866

Type species. *Argilloecia cylindrica* Sars, 1866

Argilloecia acuminata Müller, 1894

(Fig. 4A–D)

1894 *Argilloecia acuminata* Müller: 261, pl. 12, figs 1–2, 12–22.

1975 *Argilloecia acuminata* Müller; Breman: 82, pl. 2, fig. 21, pl. 6, fig. 69.

1987 *Argilloecia* sp. 5 Whatley & Coles: 87, pl. 1, figs 19–20.

2004 *Argilloecia acuminata* Müller; Aiello & Szczechura: 16, pl. 1, fig. 2.

2009b *Argilloecia acuminata* Müller; Yasuhara et al.: 886, pl. 3, figs 1–2, 4–5.

2009 (part) *Argilloecia* sp. 2 Alvarez Zarikian: 7, pl. P8, fig. 4 (non 3).

Remarks. Comprehensive synonymy lists are given in Aiello & Szczechura (2004), Yasuhara et al. (2009b) and supplemented herein.

Argilloecia caju Yasuhara, Okahashi & Cronin 2009

(Fig. 4E–F)

2009b *Argilloecia caju* Yasuhara, Okahashi & Cronin: 886, pl. 3, figs 21–24.

Remarks. *Argilloecia caju* is similar to Pacific species *A. viriosa* Hao, 1988 (in Ruan & Hao, 1988), but distinguished by having a much more slender outline. *A. caju* was originally reported from the western North Atlantic (Yasuhara et al., 2009b) and is here confirmed in the eastern North Atlantic.

Argilloecia labri sp. nov.

(Fig. 4G–J)

1987 *Argilloecia* sp. 4 Whatley & Coles: 86, pl. 1, figs 17–18.

2000 *Argilloecia* sp. 2 Didié & Bauch: 116, pl. 3, figs 3–4.

Derivation of name. From Latin *labri* (noun, genitive singular) = lip.

Diagnosis. A small, moderately calcified *Argilloecia* species with lip-shaped outline.

Holotype. LV, USNM 603651 (ODP982060) (Fig. 4I).

Paratypes. LV, USNM 603649 (ODP982058); RV, USNM 603650 (ODP982059); RV, USNM 603652 (ODP982061).

Type locality and horizon. ODP 982A, 1/1/50–52.

Description. Carapace moderately calcified, small, highest at mid-length. Outline trapezoidal in lateral view; anterior margin rounded and upturned; posterior margin acuminate and slightly upturned; dorsal margin arched; ventral margin slightly sinuous. Anterodorsal and posterodorsal margins obtuse-angular. RV strongly overlaps LV. Lateral surface smooth. Internal features as for genus.

Dimensions. USNM 603651 (ODP982060) (Holotype), L = 0.461, H = 0.202;

USNM 603650 (ODP982059) (Paratype), L = 0.497, H = 0.223.

Remarks. This species is similar to the Pacific species *Argilloecia spicata* Hao, 1988 (in Ruan & Hao, 1988), but distinguished by having a much more upturned posterior margin.

Argilloecia bensoni Barra, Aiello & Bonaduce, 1996

(Fig. 4K–N)

1996 *Argilloecia bensoni* Barra, Aiello & Bonaduce: 129, pl. 2, figs 3–4; pl. 3, figs 1–3.

M. Yasuhara & H. Okahashi
Late Quaternary deep-sea ostracods, North Atlantic

This species was originally reported from Mediterranean Plio-Pleistocene strata.

Genus Propontocypris Sylvester-Bradley, 1947

Type species. Pontocypris trigonella
Sars, 1866

Propontocypris acuminata (Müller, 1894)

(Fig. 5A)

1894 Erythrocypris acuminata Müller: 259, pl. 11, figs 5–6, 16–18, 40–42; pl. 28, figs 23, 30; pl. 38, figs 47–48.

1976 Pontocypris acuminata (Müller); Bonaduce et al.: 25, pl. 9, figs 1–2.

2000 Pontocypris sp. Didié & Bauch: 116, pl. 4, fig. 17.

Fig. 4. SEM images of Argilloecia species. A–D, Argilloecia acuminata Müller, 1894: A, USNM 603643 (ODP982062); adult LV from 1/1/60–62; B, USNM 603644 (ODP982063); adult RV from 1/1/60–62; C, USNM 603645 (ODP982064); adult LV from 1/1/50–52; D, USNM 603646 (ODP982065); adult RV from 1/1/50–52. E–F, Argilloecia caju Yasuhara, Okahashi & Cronin, 2009: E, USNM 603647 (ODP982052); adult LV from 1/2/17–19; F, USNM 603648 (ODP982053); adult RV from 1/2/17–19. G–J, Argilloecia labri sp. nov.: G, Paratype USNM 603649 (ODP982058); adult LV from 1/3/102–104; H, Paratype USNM 603650 (ODP982059); adult RV from 1/3/102–104; I, Holotype USNM 603651 (ODP982060); adult LV from 1/1/50–52; J, Paratype USNM 603652 (ODP982061); adult RV from 1/3/82–84. K–N, Argilloecia bensoni Barra, Aiello & Bonaduce, 1996: K, USNM 603653 (ODP982054); adult RV from 1/1/97–99; L, USNM 603654 (ODP982057); adult LV from 1/1/142–144; M, USNM 603655 (ODP982056); adult RV from 1/3/112–114; N, USNM 603656 (ODP982055); adult LV from 1/1/107–109. C–F, I–J, M–N, lateral views; A–B, G–H, K–L, internal views. All specimens from late Quaternary section of ODP Hole 982A, Rockall Plateau, eastern North Atlantic. Scale bar represents 1 mm.
Propontocypris sp.
(Fig. 5B)

?2009 Propontocypris trigonella Sars; Alvarez Zarikian: 7, pl. P8, fig. 10.

Suborder Cytherocopina Gründel, 1967
Superfamily Cytheroidea Baird, 1850

Family Bythocytheridae Sars, 1866
Genus Bythoceratina Hornibrook, 1952

Type species, Bythoceratina mestayerae, Hornibrook, 1952

Bythoceratina scaberrima (Brady, 1886)
(Fig. 5C)

1886 Cytherura scaberrima Brady: 198, pl. 14, figs 10–11.
Late Quaternary deep-sea ostracods, North Atlantic

1980 Bythoceratina scaberrima mediterranea Colalongo & Pasini: 72, pl. 1, fig. 9; pl. 4, figs 9–10.
2001 Bythoceratina scaberrima (Brady); Didié & Bauch: pl. 1, fig. 29 (erratum for Didié & Bauch, 2000).
2005 Retibythere scaberrima (Brady); Guernet: 109.

Remarks. Comprehensive synonymy list and detailed discussion in Guernet (2005) and Yasuhara et al. (in press b).

Bythoceratina nuda sp. nov. (Fig. 5D–E)

Derivation of name. From Latin nuda (adjective, nominative singular, gender feminine or neuter) = stripped, with reference to its carapace without any spine or reticulation.

Diagnosis. A large, moderately calcified Bythoceratina species without spines or reticulation.

Holotype. LV, USNM 603660 (ODP982073) (Fig. 5D)
Paratype. RV, USNM 603661 (ODP982074).

Type locality and horizon. ODP 982A, 1/35–1/54.

Description. Carapace moderately calcified, large, highest at anterodorsal corner (= anterior cardinal angle). Outline parallelogram-like in lateral view; anterior margin rounded; caudal process upturned; dorsal margin sinuous; ventral margin slightly curved. Anterodorsal margin prominent; posterodorsal margin slightly angular. Lateral surface smooth. A ventrolateral ridge well developed, reaching to anterior margin; thin dorsolateral ridge present. A median sulcus present, but very shallow. Internal features as for genus.

Dimensions. USNM 603660 (ODP982073) (Holotype), L = 0.920, H = 0.462; USNM 603661 (ODP982074) (Paratype), L = 0.948, H = 0.471.

Remarks. This species is distinguished from any other Bythoceratina species by its lack of spines and reticulation.

Genus Pseudocythere Sars, 1866

Type species. Pseudocythere caudata Sars, 1866

Pseudocythere caudata Sars, 1866 (Fig. 5F–G)

1866 Pseudocythere caudata Sars: 88.
1926 Pseudocythere caudata Sars; Sars: 239, pl. 109, fig. 2a–k.
2009b Pseudocythere caudata Sars; Yasuhara et al.: 892, pl. 4, figs 7–12.

Remarks. We think that this species has considerable intraspecific variation. A comprehensive synonymy list and detailed discussion are given in Yasuhara et al. (in press b).

Family Cytheridae Baird, 1850
Genus Paijenborchella Kingma, 1948

Type species. Paijenborchella iocosa Kingma, 1948

Paijenborchella cymbula Ruggieri, 1950 (Fig. 5H–K)

1950 Paijenborchella cymbula Ruggieri: 60, 1 unnumbered fig. on p. 61.

1973 Paijenborchella (Eopaijenborchella) malaiensis cymbula Ruggieri; Doruk: 161,pls 1.30.162, 1.30.164.
2000 Paijenborchella malaiensis cymbula Ruggieri; Aiello et al.: 93, pl. 2, fig. 12.
2005 Paijenborchella cymbula Ruggieri; Guernet: 107.

Remarks. A comprehensive synonymy list can be found in Aiello et al. (2000) and Guernet (2005). To our knowledge, this is the first well-illustrated record (SEM images) of this species from the Atlantic. This species was recently reported from the Iberian Margin at IODP Site U1387 (Expedition 339 Scientists, 2013).

Family Cytheruridae Müller, 1894
Genus Aversovalva Hornibrook, 1952

Type species. Cythereopteron (Aversovalva) aureum Hornibrook, 1952

Aversovalva hydrodynamica Whatley & Coles, 1987 (Fig. 6A–D)

1987 Aversovalva hydrodynamica Whatley & Coles: 69, pl. 3, figs 10–11.
1996 Aversovalva hydrodynamica Whatley & Coles; Coles et al.: 150, pl. 3, fig. 17.
1988 (part) Aversovalva sp. 2 Whatley & Ayress: 742, pl. 2, fig. 1a (non 1b).
2001 Aversovalva sp. cf. A. hydrodynamica Didié & Bauch: 103, pl. 1, fig. 12 (as erratum for Didié & Bauch, 2000).
2009 Aversovalva hydrodynamica Whatley & Coles; Alvarez Zarikian: 3, pl. P3, fig. 7.

Remarks. Very similar, but slightly different species are reported from the western North Atlantic as Aversovalva sp. 1 and A. cf. hydrodynamica (Yasuhara et al., 2009b). A Pliocene Mediterranean species Aversovalva denticulatum (Aiello, Barra & Bonaduce, 1996) shows strong affinity to A. hydrodynamica Whatley & Coles, 1987, but the former has a more triangular outline. A. hydrodynamica is also similar to A. consueta (Dall’Antonia, 2003), but the latter has thicker and more downward-extended alae and weaker reticulation. Although Coles et al. (1990, 1996) suggested a global distribution for this species, reliable records with SEM images are restricted in the eastern North Atlantic.

Genus Cythereopteron Sars, 1866

Type species. Cythere latissima Norman, 1865 (designated by Brady & Norman, 1889; see Horne & Whittaker (1988) for details and lectotype).

Remarks. We agree with Horne & Whittaker (1988) and consider Kobayashina Hanai, 1957b and Lobosocythereopteron Ishizaki & Gunther, 1974 as junior synonyms of Cythereopteron.
Cytheropteron aielloi Yasuhara, Okahashi & Cronin, 2009
(Fig. 6E–G)
1996 Cytheropteron sedovi Schneider; Whatley et al.: 19, pl. 2, figs 15–17.
1998 Cytheropteron sedovi Schneider; Whatley et al.: 21, pl. 2, figs 11–12.
2009 Cytheropteron aielloi Yasuhara, Okahashi & Cronin: 898, pl. 10, figs 3–6.
Remarks. This species is known not only from the North Atlantic proper but also from the Nordic seas.

Cytheropteron alatum Sars, 1866
(Fig. 6H)
1866 Cytheropteron alatum Sars: 81.
1926 Cytheropteron alatum Sars; Sars: 225, pl. 104, fig. 1.
1993 Cytheropteron alatum Sars; Penney: figs 4n–o.
1996 Cytheropteron vespertilio (Reuss); Coles et al.: 136, pl. 3, fig. 9.
1998 Cytheropteron alatum Sars; Freiwald & Mostafawi: 260, pl. 59, fig. 7.
2000 Cytheropteron alatum Sars; Didié & Bauch: pl. 2, fig. 6.

Fig. 6. SEM images of Aversovalva and Cytheropteron species. A–D, Aversovalva hydrodynamica Whatley & Coles, 1987: A, USNM 603668 (ODP982048); adult RV from 1/1/107–109; B, USNM 603669 (ODP982049); adult LV from 1/1/107–109; C, USNM 603670 (ODP982050); adult LV from 1/1/107–109; D, USNM 603671 (ODP982051); adult RV from 1/1/117–119. E–G, Cytheropteron aielloi Yasuhara, Okahashi & Cronin, 2009: E, USNM 603672 (ODP982042); adult LV from 1/3/42–44; F, USNM 603673 (ODP982043); adult RV from 1/3/42–44; G, USNM 603674 (ODP982044); adult RV from 1/3/112–114. A–B, E–F, H, lateral views; C–D, G, internal views. All specimens from late Quaternary section of ODP Hole 982A, Rockall Plateau, eastern North Atlantic. Scale bar represents 0.5 mm.
Remarks. Reliable occurrence records of this species with SEM image(s) or sketches are known only from the eastern North Atlantic as listed in the synonymy list above. Detailed discussion of this species can be found in Yasuhara et al. (in press b).

Cytheropteron colesobbysuorum sp. nov.
(Fig. 7A)
1996 Cytheropteron cf. abyssorum Brady; Coles et al.: 136, pl. 3, figs 12–13.

Derivation of name. In honour of Graham P. Coles for his contribution to deep-sea ostracod research; and with reference to its similarity to Cytheropteron abyssorum as indicated by him.

Diagnosis. A large, moderately calcified Cytheropteron species with finely punctate carapace, upturned caudal process, and relatively rounded outline.

Holotype. RV, USNM 603676 (ODP982077) (Fig. 7A).

Type locality and horizon. ODP 982A, 1/2/37–39.

Description. Carapace moderately calcified, large, highest at mid-length. Outline rhomboidal and rounded in lateral view; anterior margin evenly rounded; caudal process strongly upturned; dorsal margin arched; ventral margin slightly curved; alae well developed, almost reaching to anterior margin and slightly extended below ventral margin; median sulcus present on alae; thin dorsolateral ridge present along dorsal margin. Anterdorsal and posterodorsal margins slightly angular. Lateral surface finely punctate. Internal features as for genus.

Dimensions. USNM 603676 (ODP982077) (Holotype), L=0.489, H=0.306; USNM 603678 (ODP982083) (Paratype), L=0.545, H=0.338.

Remarks. Cytheropteron colesopunctatum sp. nov. is similar to C. punctatum Brady, 1868 in certain aspects, such as punctate carapace and general outline, but is distinguished by having smoothly curved and horizontally longer alae reaching to anterior margin and well-developed primary and secondary reticulation in posterior one-third. C. punctatum has sinuous and horizontally shorter alae and no or only poorly developed reticulation, according to the sketches and SEM images shown in Brady (1868), Sars (1928) and Whatley & Masson (1979). C. colesopunctatum sp. nov. is similar to C. paracarolinae Zhao et al., 2000 (see Zhao et al., 2000; Hou & Gou, 2007), but the latter is larger, lacks punctuation in anterior one-third, and has more slender outline and stronger caudal process.

Cytheropteron didieae Yasuhara, Okahashi & Cronin 2009 (Fig. 7D–H)
2009 Cytheropteron didieae Yasuhara, Okahashi & Cronin: 900, pl. 6, figs 5–9, 11–12.

Remarks. This is the first record of the species from the eastern North Atlantic.

Cytheropteron fugu Yasuhara, Okahashi & Cronin, 2009 (Figs. 7I–J, 8A–B)
2009 Cytheropteron fugu Yasuhara, Okahashi & Cronin: 902, pl. 7, figs 1–6.

Remarks. This is the first record of the species from the eastern North Atlantic.
2000 *Cytheropteron hanaii* Ishizaki; Zhao et al.: 262, pl. 3, figs 8–9.
2007 *Cytheropteron hanaii* Ishizaki; Hou & Gou: 294, pl. 119, figs 14–15; pl. 122, figs 11–12.
2009 *Cytheropteron* sp. g Yasuhara, Okahashi & Cronin: 908, pl. 6, fig. 14.
2012 *Cytheropteron hanaii* Ishizaki; Tanaka et al.: 10, pl. 1, fig. 13.

Remarks. Detailed comparison with similar species such as *C. fraudulentum* Aiello, Barra & Bonaduce 1996 and *C. sulcatum* Bonaduce, Ciampo & Masoli, 1976 is found in Aiello et al. (1996a) and Athersuch et al. (1989). In our opinion, *C. hanaii* Ishizaki, 1981 (see Ishizaki, 1981; Zhao et al., 2000; Hou & Gou, 2007) is a junior synonym of *C. inornatum* Brady & Robertson, 1872.

Fig. 7. SEM images of *Cytheropteron* species.

A. *Cytheropteron colesoabyssorum* sp. nov., Holotype USNM 603676 (ODP982077); adult RV from 1/2/37–39.
B–C, *Cytheropteron colesopunctatum* sp. nov.: B, Holotype USNM 603677 (ODP982082); adult RV from 1/1/30–32; C, Paratype USNM 603678 (ODP982083); adult LV from 1/1/30–32.

D–H, *Cytheropteron didieae* Yasuhara, Okahashi & Cronin, 2009: D, USNM 603679 (ODP982085); adult RV from 1/1/50–52; E, USNM 603680 (ODP982086); adult RV from 1/1/60–62; F, USNM 603681 (ODP982087); adult RV from 1/1/60–62; G, USNM 603682 (ODP982088); adult LV from 1/1/60–62; H, USNM 603683 (ODP982089); adult LV from 1/2/127–129.

I–J, *Cytheropteron fugu* Yasuhara, Okahashi & Cronin, 2009: I, USNM 603684 (ODP982035); adult LV from 1/2/67–69; J, USNM 603685 (ODP982036); adult LV from 1/2/67–69.

A–E, G, I, lateral views; F, H, J, internal views. All specimens from late Quaternary section of ODP Hole 982A, Rockall Plateau, eastern North Atlantic. Scale bar represents 0.5 mm.
Late Quaternary deep-sea ostracods, North Atlantic

Cytheropteron massoni Whatley & Coles, 1987

(Fig. 8K–L)

1987 *Cytheropteron massoni* Whatley & Coles: 63, pl. 2, figs 15–17.

2000 *Cytheropteron massoni* Whatley & Coles; Didié & Bauch: 113, pl. 2, fig. 11.

2009b *Cytheropteron massoni* Whatley & Coles; Yasuhara et al.: 904, p. 6, figs 7, 10, 13.

Remarks. *C. massoni* Whatley & Coles, 1987 is known from both the eastern and western North Atlantic.

Cytheropteron omega Aiello, Barra & Bonaduce, 1996

(Fig. 8C–F)

1987 (part) *Cytheropteron syntomoalatum* Whatley & Coles: pl. 2, fig. 27 (non pl. 2, figs 25–26, 28–29).
1996 Cytheropteron omega Aiello, Barra & Bonaduce: 170, pl. 2, figs 7–9.

Remarks. Detailed comparison with similar species such as C. garganicum Bonaduce, Ciampo & Masoli, 1976 can be found in Aiello et al. (1996a). Our specimens have relatively weakly developed dorsal ridges compared to the type specimens and thus the ‘upside-down omega’ structure is unclear, but otherwise identical. We consider this difference as intraspecific variation. Well-preserved specimens shown here indicate that there are two spines at the apex of alae. A paratype specimen of C. syntomoalatum of Whatley & Coles (1987, pl. 2, fig. 27) is not conspecific with C. syntomoalatum Whatley & Coles, 1987 and is considered here and by Aiello et al. (1996a) as C. omega Aiello, Barra & Bonaduce, 1996, although this specimen has only one spine at the apex of the alae and a slightly more slender outline.

Cytheropteron paramediotaum sp. nov. (Fig. 9A–B)
1996 (part) Cytheropteron gr. punctatum Brady; Coles et al.: 136, pl. 3, figs 5–6 (non 7–8).

Derivation of name. With reference to its similarity to Cytheropteron mediotitumidum.

Diagnosis. A large, moderately calcified Cytheropteron species with finely punctate carapace and straight-sided alae.

Holotype. LV, USNM 603698 (ODP982092) (Fig. 9A).

Paratype. RV, USNM 603699 (ODP982093).

Type locality and horizon. ODP 982A, 1/2/107–109.

Description. Carapace moderately calcified, large, highest at mid-length. Outline subrhomboidal in lateral view; anterior margin rounded; caudal process moderately prominent; dorsal margin arched; ventral margin slightly curved; alae straight, thin and horizontally long, almost reaching to anterior margin, and extending slightly below ventral margin; a small subcentral depression present on alae. Anterodorsal margin slightly angular; posterodorsal margin weakly prominent. Lateral surface finely punctate in posterior two-thirds; primary and secondary reticulation weakly developed in posterior one-third. Internal features as for genus.

Dimensions. USNM 603698 (ODP982092) (Holotype), L=0.638, H=0.389; USNM 603699 (ODP982093) (Paratype), L=0.671, H=0.431.

Remarks. Cytheropteron paramediotaum sp. nov. is very similar to C. mediotitumidum Zhao, Whatley & Zhou, 2000, but distinguished by having irregular and coarser punctuation and a less upturned caudal process. This species was originally reported from the western North Pacific.

Cytheropteron pararhombiformis Whatley & Coles, 1987 (Fig. 9G–H)
1987 Cytheropteron pararhombiformis Whatley & Coles: 63, pl. 2, figs 18–20.

Remarks. Our specimens have weakly developed primary reticulation in the posterior one-third, but otherwise are identical to C. pararhombiformis Whatley & Coles, 1987. We consider this difference as intraspecific variation. This species is known only from the eastern North Atlantic.

Cytheropteron perlaria Hao, 1988 (in Ruan & Hao, 1988) (Fig. 10A–B)
1988 Cytheropteron perlaria Hao (in Ruan & Hao, 1988): 280, pl. 47, figs 4–9.

1996 Cytheropteron testudo Sars; Coles et al.: 136, pl. 3, figs 10–11.

1999 Cytheropteron perlaria Hao; Swanson & Ayress: 155, pl. 1, figs 7–13; pl. 2, figs 1–3, non 2004 Cytheropteron perlaria Hao; Ayress et al.: 29, pl. 3, figs 7–8.

2006 Cytheropteron perlaria Hao; Stepanova: S163, pl. 3, figs 8–10.

2007 Cytheropteron testudo Sars; Hou & Gou: 290, pl. 120, figs 9–10.

2009 Cytheropteron perlaria Hao; Alvarez Zarikian: 4, pl. P3, figs 1–2.

2009b Cytheropteron perlaria Hao; Yasuhara et al.: 904, pl. 7, figs 12–13.

2011 Cytheropteron perlaria Hao; Zhao et al.: 27, pl. 1, fig. 26.

Remarks. This species is known from the Atlantic, Arctic and Pacific oceans.

Cytheropteron pherozigzag Whatley, Ayress & Downing, 1986 (Fig. 10C–D)
1986 Cytheropteron pherozigzag Whatley, Ayress & Downing: 32, pl. 1, figs 6–20.
Late Quaternary deep-sea ostracods, North Atlantic

Fig. 9. SEM images of Cytheropteron species. A–B, Cytheropteron paramediotumidum sp. nov.: A, Holotype USNM 603698 (ODP982092); adult LV from 1/2/107–109; B, Paratype USNM 603699 (ODP982093); adult RV from 1/2/127–129. C–D, Cytheropteron demenocali Yasuhara, Okahashi & Cronin, 2009: C, USNM 603700 (ODP982090); adult LV from 1/1/137–139; D, USNM 603701 (ODP982091); adult RV from 1/2/17–19. E–F, Cytheropteron pararhombiformis Zhao, Whatley & Zhou, 2000: E, USNM 603702 (ODP982095); adult LV from 1/1/30–32; F, USNM 603703 (ODP982096); adult RV from 1/1/40–42. G–H, Cytheropteron paucipunctatum Whatley & Coles, 1987: G, USNM 603704 (ODP982097); adult LV from 1/2/127–129; H, USNM 603705 (ODP982098); adult RV from 1/3/52–54. All lateral views. All specimens from late Quaternary section of ODP Hole 982A, Rockall Plateau, eastern North Atlantic. Scale bars represent 0.5 mm.

1988 Cytheropteron pherozigzag Whatley, Ayress & Downing: Whatley & Ayress: pl. 2, fig. 3a–b.
1996 Cytheropteron pherozigzag Whatley, Ayress & Downing: Zhao & Zheng: 72, pl. 2, fig. 3.
2000 Cytheropteron pherozigzag Whatley, Ayress & Downing: Zhao et al.: 263, pl. 1, fig. 20.
2005 Cytheropteron pherozigzag Whatley, Ayress & Downing: Zhao: 39, pl. 2, fig. 15.
2007 Loboscytheropteron pherozigzag (Whatley, Ayress & Downing); Hou & Gou: 309, pl. 125, fig. 17.
2009b Cytheropteron pherozigzag Whatley, Ayress & Downing; Yasuhara et al.: 906, pl. 5, figs 6–8, 10.

Remarks. This species is known from the eastern and western North Atlantic and northwestern Pacific oceans.
Cytheropteron pseudoalatum Colalongo & Pasini, 1980
(Fig. 10E)
1980 Cytheropteron pseudoalatum Colalongo & Pasini: 92, pl. 8, fig. 8; pl. 9, figs 1–5.
1996a Cytheropteron pseudoalatum Colalongo & Pasini; Aiello et al.: 171, pl. 2, figs 1–3; pl. 3, figs 1–2.

Remarks. This species was originally reported from the Mediterranean. This is the first record from the North Atlantic.

Genus Eucytherura Müller, 1894
Type species. Cytherea complexa Brady, 1867 (designated by Alexander, 1936).

Remarks. We agree with Ayress et al. (1995) and consider Typhlocythere Bonaduce, Ciampo & Masoli, 1976, Typhloeucytherura Colalongo & Pasini, 1980 and Parahemmingwayella Dingle, 1984 as junior synonyms of Eucytherura Müller, 1894.

Eucytherura calabra (Colalongo & Pasini, 1980) (Fig. 10F–H)
1980 Typhloeucytherura calabra Colalongo & Pasini: 122, pl. 20, figs 1–8; pl. 21, figs 1–2.
1987 Eucytherura calabra (Colalongo & Pasini); Whatley & Coles: pl. 3, figs 14–16.
1988 Eucytherura sp. 1; Ruan & Hao: 291, pl. 49, fig. 18.
1988 Eucytherura calabra (Colalongo & Pasini); Whatley & Ayress: pl. 1, fig. 9a–b.
1995 Eucytherura calabra (Colalongo & Pasini); Ayress et al.: 211, fig. 3A–D.
1996 Eucytherura calabra (Colalongo & Pasini); Coles et al.: 136, pl. 3, fig. 18.
1996 Eucytherura calabra (Colalongo & Pasini); Zhao & Zheng: 72, pl. 2, fig. 36.
2001 Eucytherura calabra (Colalongo & Pasini); Didié & Bauch (as erratum of Didié & Bauch, 2000): 103, pl. 1, figs 9–10.

Remarks. Eucytherura calabra (Colalongo & Pasini, 1980) is similar to E. spinicorona Yasuhara, Okahashi & Cronin 2009, but the former has a curved dorsal margin and rectangular outline. E. calabra is known from the Atlantic, Mediterranean and Pacific.

Eucytherura multituberculata Ayress, Whatley, Downing & Millson, 1995 (Fig. 101–J)
1983 ?Tuberculocythere sp. Cronin: 107, pl. 6, fig. A.
1987 Eucytherura sp. 2 Whatley & Coles: 90, pl. 3, fig. 18.
1995 Eucytherura multituberculata Ayress, Whatley, Downing & Millson: 213, fig. 5A–E.

Remarks. This species is known both from the western and eastern North Atlantic.

Eucytherura tetrapteron (Bonaduce, Ciampo & Masoli, 1976) (Fig. 11A–C)
1976 ?Cytheropteron tetrapteron Bonaduce, Ciampo & Masoli: 99, pl. 47, fig 1–7.
1980 Cytheropteron? tetrapteron Bonaduce, Ciampo & Masoli; Ciampo: 19, pl. 3, fig. 5.
1980 Tuberculocythere tetrapteron (Bonaduce, Ciampo & Masoli); Colalongo & Pasini: 120, pl. 34 fig. 2.
1985 Tuberculocythere tetrapteron (Bonaduce, Ciampo & Masoli); Moncharmont-Zei et al.: 28, pl. 1, fig. 1.
1994 Parahemmingwayella tetrapteron (Bonaduce, Ciampo & Masoli); Malz & Jellinek: 28, pl. 7, figs 37–40.
2000 Parahemmingwayella tetrapteron (Bonaduce, Ciampo & Masoli); Aiello et al.: 94, pl. 3, fig. 9.
2001 Eucytherura sp. Didié & Bauch (as erratum of Didié & Bauch, 2000): 103, pl. 1, fig. 11.
2005 Parahemmingwayella tetrapteron (Bonaduce, Ciampo & Masoli); Guernet: 108.

Remarks. Eucytherura tetrapteron (Bonaduce, Ciampo & Masoli, 1976) is very similar to E. downingae (Coles & Whatley, 1989), but the latter has more strongly developed primary and secondary reticulation and bears two spines on the anterodorsal margin (the former bears a continuous frill). Although these differences are subtle and may be a result of intraspecific variation in calcification, we consider these two as separate species at least for now. E. tetrapteron is known from the Mediterranean and the eastern North Atlantic.

Genus Kangarina Coryell & Fields, 1937
Type species. Kangarina quellita Coryell & Fields, 1937

Kangarina abyssicola (Müller, 1894) (Fig. 11D–E)
1894 Cytheropteron abyssicolum Müller: 302, pl. 20, figs 5, 11; pl. 21, figs 6–9.
1952 Cytheropteron (Kangarina) abyssicolum Müller; Ruggieri: 77, pl. 6, fig. 9.
1953 Kangarina abyssicola coaractata Ruggieri: 53, figs 16, 16a.
1953 Kangarina abyssicola (Müller); Ruggieri: 53, figs 15, 15a.
1972 Kangarina septentrionalis Neale: 33, pl. 1, figs 1–8.
1976 Kangarina abyssicola (Müller); Bonaduce et al.: 84, pl. 17, fig. 16.
1980 Kangarina abyssicola (Müller); Colalongo & Pasini: 58, pl. 22, fig. 2.
1988 Kangarina abyssicola (Müller); Guernet & Fourcade: 145, pl. 4, fig. 12.
1993 non Kangarina abyssicola (Müller); Witte: 43, pl. 9, figs 25–26.
1996 Kangarina abyssicola (Müller); Coles et al.: 135, pl. 2, figs 10–11.
2004 Kangarina? abyssicola (Müller); Aiello & Szczechura: 53, pl. 8, fig. 15.
2005 Kangarina abyssicola (Müller); Guernet: 103.
2005 Kangarina coaractata Ruggieri; Guernet: 103.
2009b Kangarina cf. abyssicola (Müller); Yasuhara et al.: 914, p. 14, fig. 13.
2010 Kangarina abyssicola (Müller); Aiello & Barra: 412.

Remarks. We consider Kangarina coaractata Ruggieri, 1953 and K. septentrionalis Neale, 1972 as junior synonyms of K. abyssicola (Müller, 1894). K. abyssicola is known from the Mediterranean and the eastern and western North Atlantic.

Genus Pedicythere Eagar, 1965
Type species. Pedicythere tessae Eagar, 1965

Remarks. We found four Pedicythere species in ODP 982A, all of which also occur in the western North Atlantic (Yasuhara et al., 2009b).
Late Quaternary deep-sea ostracods, North Atlantic

Fig. 10. SEM images of *Cytheropteron* and *Eucytherura* species. A–B, *Cytheropteron perlaria* Hao, 1988: A, USNM 603706 (ODP982033); adult LV from 1/2/17–19; B, USNM 603707 (ODP982034); adult RV from 1/2/17–19. C–D, *Cytheropteron pherozigzag* Whatley, Ayress & Downing, 1986: C, USNM 603708 (ODP982032); adult LV from 1/1/142–144; D, USNM 603709 (ODP982031); adult RV from 1/2/17–19. E, *Cytheropteron pseudoalatum* Colalongo & Pasini, 1980, USNM 603710 (ODP982094); adult LV from 1/2/127–129. F–H, *Eucytherura calabra* (Colalongo & Pasini, 1980): F, USNM 603711 (ODP982100); adult LV from 1/1/70–72; G, USNM 603712 (ODP982101); adult LV from 1/1/90–92; H, USNM 603713 (ODP982102); adult RV from 1/1/107–109. I–J, *Eucytherura multituberculata* Ayress, Whatley, Downing & Millson, 1995: I, USNM 603714 (ODP982004); adult RV from 1/3/112–114; J, USNM 603715 (ODP982005); adult LV from 1/3/92–94. A–F, H–J, lateral views; G, internal view. All specimens from late Quaternary section of ODP Hole 982A, Rockall Plateau, eastern North Atlantic. Scale bars represent 0.5 mm.

Pedicythere atroposopetasi Yasuhara, Okahashi & Cronin, 2009 (Figs 11F–I, 12A–D)

?2000 *Pedicythere* sp. B Guernet & Bellier: 270, pl. 5, fig. 3.

2009 *Pedicythere atroposopetasi* Yasuhara, Okahashi & Cronin: 914, pl. 15, figs 1–13.

Pedicythere kennettopetasi Yasuhara, Okahashi & Cronin, 2009 (Fig. 13E–F)

?2000 (part) *Pedicythere* sp. A Guernet & Bellier: 270, pl. 5, fig. 2 (non fig. 1).

2009 *Pedicythere kennettopetasi* Yasuhara, Okahashi & Cronin: 916, pl. 16, figs 1–10.

Pedicythere klothopetasi Yasuhara, Okahashi & Cronin, 2009 (Figs 13G–J, 14A–E)

2009 *Pedicythere klothopetasi* Yasuhara, Okahashi & Cronin: 916, pl. 15, figs 14–21.
Pedicythere lachesisopetasi Yasuhara, Okahashi & Cronin, 2009
(Figs 12E–J, 13A–D)

1983 *Pedicythere* sp. A Cronin: 110, pl. 4H.
2008 *Pedicythere* sp. Bergue & Coimbra: 130, pl. 6, fig. 13.
2009 *Pedicythere lachesisopetasi* Yasuhara, Okahashi & Cronin: 918, pl. 16, figs 11–21.

Family Eucytheridae Puri, 1954
Genus Eucythere Brady, 1868

Type species. *Cythere declivis* Norman, 1867 (designated by Brady & Norman, 1889; see Horne & Whittaker (1985) for details and lectotype).

Eucythere triangula Whatley & Coles, 1987
(Fig. 14F)

1987 *Eucythere triangula* Whatley & Coles: 74, pl. 4, figs 16–18.
2000 *Eucythere triangula* Whatley & Coles; Didié & Bauch: 114, pl. 3, fig. 21.

Fig. 11. SEM images of *Eucytherura, Kangarina* and *Pedicythere* species.
A–C, *Eucytherura tetrapteron* (Bonaduce, Ciampo & Masoli, 1976):
A, USNM 603716 (ODP982001); adult LV from 1/3/112–114;
B, USNM 603717 (ODP982002); adult RV from 1/3/112–114;
C, USNM 603718 (ODP982003); adult LV from 1/3/112–114.
D–E, *Kangarina abyssicola* (Müller, 1894):
D, USNM 603719 (ODP982104); adult LV from 1/1/137–139;
E, USNM 603720 (ODP982103); adult RV from 1/1/70–72.
F–I, *Pedicythere atroposopetasi* Yasuhara, Okahashi & Cronin, 2009:
F–G, USNM 603721 (ODP982136); adult LV from 1/3/82–84;
H–I, USNM 603722 (ODP982137); adult RV from 1/3/82–84.
A–B, D–F, H, lateral views;
C, internal view;
G, I, oblique views.
All specimens from late Quaternary section of ODP Hole 982A, Rockall Plateau, eastern North Atlantic.
Scale bar represents 0.5 mm.
Late Quaternary deep-sea ostracods, North Atlantic

2009 *Eucythere triangula* Whatley & Coles; Alvarez Zarikian: 4, pl. P6, fig. 4.

2009b *Eucythere triangula* Whatley & Coles; Yasuhara et al.: 920, pl. 17, figs 2–7.

Remarks. This species is known both from the eastern and western North Atlantic.

Family *Krithidae* Mandelstam, 1958 (in Bubikyan, 1958)
Genus *Krithe* Brady, Crosskey & Robertson, 1874
Type species. *Ilyobates praetexta* Sars, 1866

Remarks. *Krithe* is one of the most abundant genera in this core, representing on average 20% of the total fauna. We followed the taxonomy of Coles et al. (1994). *Krithe* in this core is mainly composed of *K. dolichodeira* van den Bold, 1946, *K. ayressi* Coles et al., 1994 and *K. minima* Coles et al., 1994.

Family *Leptocytheridae* Hanai, 1957
Genus *Cluthia* Neale, 1973
Type species. *Cythere cluthae* Brady, Crosskey & Robertson, 1874

Fig. 12. SEM images of *Pedicythere* species. A–D, *Pedicythere atroposopetasi* Yasuhara, Okahashi & Cronin, 2009: A, USNM 603723 (ODP982138); adult RV from 1/1/70–72; B, USNM 603724 (ODP982139); adult LV from 1/3/92–94; C–D, USNM 603725 (ODP982146); adult RV from 1/1/142–144. E–J, *Pedicythere lachesisopetasi* Yasuhara, Okahashi & Cronin, 2009: E–F, USNM 603726 (ODP982140); adult RV from 1/1/97–99; G–H, USNM 603727 (ODP982141); adult LV from 1/3/122–124; I–J, USNM 603728 (ODP982142); adult RV from 1/3/122–124. C, E, G, I, lateral views; A–B, internal views; D, F, H, J, oblique views. All specimens from late Quaternary section of ODP Hole 982A, Rockall Plateau, eastern North Atlantic. Scale bar represents 0.5 mm.
Cluthia sp.
(Fig. 14G–J)
1998 *Nannocythere* sp. Whatley, Eynon & Moguilevsky: 23, pl. 3, figs 9–10.
?2000 *Nannocythere* sp. Didić & Bauch: 111, pl. 4, fig. 25.

Remarks. This species is formally described as new in Yasuhara *et al.* (in press b).

Family Loxoconchidae Sars, 1926
Genus *Loxoconchidea* Bonaduce, Ciampo & Masoli, 1976

Type species. *Loxoconchidea minima* Bonaduce, Ciampo & Masoli, 1976

Loxoconchidea minima Bonaduce, Ciampo & Masoli, 1976
(Fig. 15A)
1976 *Loxoconchidea minima* Bonaduce, Ciampo & Masoli: 112, pl. 59, figs 1–7, text-fig. 43.
2000 *Loxoconchidea minima* Bonaduce, Ciampo & Masoli; Aiello *et al.*: 97, pl. 3, figs 1–3.
2004 *Loxoconchidea minima* Bonaduce, Ciampo & Masoli; Aiello & Szczechura: 35, pl. 7, figs 1–3.
2006 *Loxoconchidea minima* Bonaduce, Ciampo & Masoli; Bergue *et al.*: 206, fig. 6E.
2008 *Loxoconchidea minima* Bonaduce, Ciampo & Masoli; Bergue & Coimbra: 115, pl. 1, fig. 16.
2009b *Loxoconchidea minima* Bonaduce, Ciampo & Masoli; Yasuhara *et al.*: 920, pl. 17, figs 8–11.

Remarks. A comprehensive synonymy list can be found in Aiello & Szczechura (2004) and Yasuhara *et al.* (2009b). This species is known from the Atlantic and Mediterranean regions.

Family **Paradoxostomatidae** Brady & Norman, 1889

Genus **Paracytherois** Müller, 1894

Type species. *Paracytherois striata* Müller, 1894 [designated by Howe, 1955 (he considered this species a junior synonym of *Paradoxostoma flexuosum* Brady (1868) (*sic*; correctly, *Bythocythere flexuosa* Brady, (1867)); see Ellis & Messina Catalogue].
Paracytherois bondi Yasuhara, Okahashi & Cronin, 2009
(Fig. 15B–C)
2009b Paracytherois bondi Yasuhara, Okahashi & Cronin: 924, pl. 19, figs 5–10, 15 (?12).

Remarks. This species was known only from the western North Atlantic, but this record confirms its presence in the eastern North Atlantic.

Family Rockallidae Whatley, Uffenorde, Harlow, Downing & Kesler, 1982
Genus Arcacythere Hornibrook, 1952
Type species. Arcacythere chapmani Hornibrook, 1952

Remarks. We agree with Ayress (1991) in considering Rockallia Whatley, Frame & Whittaker, 1978 as a junior synonym of Arcacythere Hornibrook, 1952. See Yasuhara & Okahashi (in press) for detailed discussion.
Late Quaternary deep-sea ostracods, North Atlantic

Arcacythere enigmatica (Whatley, Frame & Whittaker, 1978) (Fig. 15D–I)
1978 Rockallia enigmatica Whatley, Frame & Whittaker: 137, pls 5-138, 5-140, 5-142, 5-144; text-fig. 1.
1979 Indet. Gen. 3 Ducasse & Peyrouquet: pl. 5, fig. 9.
1982 Rockallia enigmatica Whatley, Frame & Whittaker; Whatley et al.: 3, pl. 1, figs 1, 4.
1987 Rockallia enigmatica Whatley, Frame & Whittaker; Whatley & Coles: 80, pl. 2, figs 3–4.
1987 Rockallia sp. Whatley & Coles: 89, pl. 2, fig. 5.
1988 Rockallia enigmatica Whatley, Frame & Whittaker; Ruan & Hao: 377, pl. 70, figs 2–4.
1988 Rockallia inceptiocelata Whatley, Uffenorde, Harlow, Downing & Kesler; Ruan & Hao: 377, pl. 70, figs 5–7.
1990 Rockallia enigmatica Whatley, Frame & Whittaker; Malz: 143, fig. 4.2.
2000 Rockallia enigmatica Whatley, Frame & Whittaker; Didié & Bauch: 116, pl. 3, figs 13–14.

Fig. 16. SEM images of Echinocythereis and Henryhowella species. A–D, Echinocythereis echinata (Sars, 1866): A, USNM 603752 (ODP982027); adult RV from 1/1/142–144; B, USNM 603753 (ODP982028); adult RV from 1/1/142–144; C, USNM 603754 (ODP982029); adult LV from 1/3/72–74; D, USNM 603755 (ODP982030); adult LV from 1/3/72–74. E–K, Henryhowella asperrima (Reuss, 1850): E, USNM 603756 (ODP982022); adult LV from 1/1/137–139; F, USNM 603757 (ODP982023); adult RV from 1/1/137–139; G, USNM 603758 (ODP982026); adult LV from 1/1/0–2; H–I, USNM 603759 (ODP982024); adult RV from 1/1/142–144; J–K, USNM 603760 (ODP982025); adult LV from 1/1/107–109. A, C, E–G, I, K, lateral views; B, D, H, J, internal views. All specimens from late Quaternary section of ODP Hole 982A, Rockall Plateau, eastern North Atlantic. Scale bar represents 1 mm.
Remarks. This species is known from the eastern North Atlantic and northwestern Pacific oceans.

Family Trachyleberididae Sylvester-Bradley, 1948

Remarks. *Ambocythere, Bantonia* and *Pennyella* occur in this core, but we will discuss these genera elsewhere.

Genus *Echinocythereis* Puri, 1954

Type species. *Cythere margaritifera* Brady, 1870 (= *Cythereis garretti* Howe & McGuirt, 1935 in Howe & graduate students, 1935); see Hazel (1967).

Echinocythereis echinata (Sars, 1866) (Fig. 16A–D)

1866 *Cythereis echinata* Sars: 44.

1880 *Cythere irpex* Brady: 107, pl. 17, figs 2a–d.

1967 *Echinocythereis echinata* (Sars); Hazel: 37, pl. 6, figs 10–11.

1976 *Cythere irpex* Brady; Puri & Hulings: 278, pl. 11, figs 1–9.

1990 *Echinocythereis whatleyi* Dingle, Lord & Boomer: 303, figs 35B–F, 36E–G, 1–J.

2000 *Echinocythereis echinata* (Sars); Barra & Bonaduce: 214, pl. 1, figs 1–10; text-fig. 1.

2004 *Echinocythereis echinata* (Sars); Ayress et al.: 35, pl. 3, fig. 9.

2009 *Echinocythereis echinata* (Sars); Alvarez Zarikian: 6, pl. P9, figs 3–4.

2009b *Echinocythereis echinata* (Sars); Yasuhara et al.: 926, pl. 21, figs 6–9.

Remarks. A comprehensive synonymy and detailed discussion are found in Yasuhara et al. (2009b) and references therein. This species is known from the Atlantic and Southern Oceans.

Genus *Henryhowella* Puri, 1957

Type species. *Cythere evax* Ulrich & Bassler, 1904

Henryhowella asperrima (Reuss, 1850) (Fig. 16E–K)

1850 *Cypridina asperrima* Reuss: 74, pl. 10, fig. 5a–b.

2005 *Henryhowella asperrima* (Reuss); Mazzini: 50, figs 26A–I, 27B.

2009 *Henryhowella dasysderma* (Brady); Alvarez Zarikian: 6, pl. 9, figs 6–8.

2009b *Henryhowella cf. asperrima* (Reuss); Yasuhara et al.: 926, pl. 20, fig. 7; pl. 21, figs 1–4.

2010 *Henryhowella asperrima* (Reuss); Bergue & Govindan: 751, fig. 3.14.

2011 *Henryhowella asperrima* (Reuss); Pirkenseer & Berger: 54, pl. 7, figs 6a–6c, 7a–7c; pl. 8, figs 1a–1c, 2a–2c, 3a–3c.

Remarks. To be discussed in detail elsewhere.

DISCUSSION

ODP 982A late Quaternary ostracod assemblages show a strong affinity to the western North Atlantic and Mediterranean bathyal faunas and, to a lesser extent, to the western North Pacific bathyal fauna. There are many common or closely related species among these regions, as shown in the Systematic Palaeontology section above. The strong affinity among the western North Atlantic, the eastern North Atlantic and the Mediterranean faunas is understandable, given their proximity and bathyal-depth connections (e.g. Strait of Gibraltar and Greenland–Iceland–Faeroe Ridge). However, an affinity between the North Atlantic and the North Pacific is more difficult to explain. Two possibilities are proposed: (1) many bathyal ostracod species are cosmopolitan; or (2) they were able to migrate through the Bering Strait despite its present-day shallow depth (<50m). We will need further modern and palaeo-biogeographical studies to evaluate these hypotheses.

ACKNOWLEDGEMENTS

We thank D. A. Hodell for kindly loaning ODP 982A samples; L. M. Y. Wong and C. Sanford for continuous support; S. Whittaker for help with SEM imaging; G. Hunt for help in depositing type and figured specimens; C. Alvarez Zarikian and an anonymous reviewer for valuable comments. Samples used for this research were provided by the Integrated Ocean Drilling Program (IODP). This work was supported by the Seed Funding Programme for Basic Research of the University of Hong Kong (project codes: 20110519002, 201210159043), Hung Hing Ying Physical Sciences Research Fund 2012–13, Smithsonian Postdoctoral Fellowship, and Smithsonian Marine Science Network Postdoctoral Fellowship (to M.Y.).

Manuscript received 8 September 2013

Manuscript accepted 15 January 2014

Scientific Editing by Alan Lord.

REFERENCES

Aiello, G. & Barra, D. 2010. Crustacea Ostracoda. *Biologia Marina Mediterranea*, 17: 401–419.

Aiello, G. & Szczecurza, J. 2004. Middle Miocene ostracods of the Fore-Carpathian Depression (Central Parathetys, southwestern Poland). *Bollettino della Società Paleontologica Italiana*, 43: 11–70.

Aiello, G., Barra, D. & Bonaduce, G. 1996a. The genus *Cytheropteron* Sars, 1866 (Crustacea: ostracoda) in the Pliocene–Early Pleistocene of the Mount San Nicola Section (Gela, Sicily). *Micropaleontology*, 42: 167–178.

Aiello, G., Barra, D., Bonaduce, G. & Russo, A. 1996b. The genus *Cytherella* Jones, 1849 (Ostracoda) in the Italian Tortonian–recent. *Revue de Micropaléontologie*, 39: 171–190.

Aiello, G., Barra, D. & Bonaduce, G. 2000. Systematics and biostratigraphy of the Ostracoda of the Plio-Pleistocene Monte S. Nicola section (Gela, Sicily). *Bollettino della Società Paleontologica Italiana*, 39: 83–112.

Alexander, C.I. 1936. Ostracoda of the Genera *Eucythere*, *Cytherura*, *Eucytherura* and *Laxoconcha* from the Cretaceous of Texas. *Journal of Paleontology*, 10: 689–694.

Alvarez Zarikian, C.A. 2009. Data report: Late Quaternary ostracods at IODP Site U1314 (North Atlantic Ocean). *Proceedings of the Integrated Ocean Drilling Program*, 303/306: 1–22.

Athersuch, J., Horne, D.J. & Whittaker, J.E. 1989. Marine and Brackish Water Ostracods. *In Synopses of the British Fauna (New Series) No. 43*. The Linnean Society of London and the Estuarine and Brackish-Water Science Association, London, 343pp.
Late Quaternary deep-sea ostracods, North Atlantic

Ayress, M.A. 1991. On Arcytherium Hornbrook, 1952 (Cytheracea, Ostracoda, Crustacea), a senior synonym of Rockallia Whatley, Frame & Whittaker, 1978. Journal of Micropalaeontology, 10: 223–226.

Ayres, M.A., Whatley, R.C., Downing, S.E. & Millson, K.J. 1995. Cainozoic and Recent deep sea Cytherurid Ostracoda from the south western Pacific and eastern Indian Oceans, part I: Cytherurinae. Records of the Australian Museum, 47: 203–222.

Ayress, M.A., De Deckker, P. & Coles, G.P. 2004. A taxonomic and distributional survey of marine benthonic Ostracoda off Kerguelen and Heard Islands, South Indian Ocean. Journal of Micropalaeontology, 23: 15–38.

Baird, W. 1850. The Natural History of the British Entomostraca. Ray Society, London, 364pp.

Barra, D. & Bonaduce, G. 2000. Some species of Echinocythereis Puri, 1954 (Crustacea, Ostracoda) from the Torrónian and to Recent. Revista Española de Micropaleontología, 32: 213–224.

Barra, D., Aiello, G. & Bonaduce, G. 1996. The genus Argilloecia Sars, 1866 (Crustacea: Ostracoda) in the Pliocene–Early Pleistocene of the M. San Nicola Section (Gela, Sicily). Proceedings of the 2nd European Ostracologists Meeting, July 1993, Glasgow, UK, 129–134.

Bergue, C.T. & Coimbra, J.C. 2008. Late Pleistocene and Holocene benthal ostracodes from the Santos Basin, southeastern Brazil. Palaeoentognatica, A, 285: 101–144.

Bergue, C.T. & Govindan, A. 2010. Eocene–Pliocene deep sea ostracodes from ODP site 744A, southern Indian Ocean. Anais da Academia Brasileira de Ciências, 82: 747–760.

Bergue, C.T., Costa, K.B., Dwyer, G. & Moura, C.A.V. 2006. Bathyal ostracode diversity in the Santos Basin, Brazilian southeast margin: response to Late Quaternary climate changes. Revista Brasileira de Paleontologia, 9: 201–210.

Bonaduce, G., Ciampo, G. & Masoli, M. 1976. Distribution of Ostracoda in the Adriatic Sea. Pubblicazioni della Stazione Zoologica di Napoli, 40: 1–154.

Borenmann, J.G. 1855. Die Mikroskopische Fauna des Septarienthones von Hemsdorfer bei Berlin. Zeitschrift der Deutschen Geologischen Gesellschaft, 7: 307–371.

Brady, G.S. 1867. Report on the Ostracoda dredged amongst the Hebrides. Reports of the British Association for the Advancement of Science, 28: 208–211.

Brady, G.S. 1868. A monograph of the Recent British Ostracoda. Transactions of the Linnean Society of London, 26: 353–495.

Brady, G.S. 1870. Description of Ostracoda. In De Folin, L. & Perier, L. (Eds), Les Fonds de la Mer. 1. Savv, Paris, 177–256.

Brady, G.S. 1880. Report on the Ostracoda dredged by H.M.S. Challenger, during the years 1873–1876. Report on the Scientific Results of the Exploring Voyage of H.M.S. Challenger. Zoology, 1: 1–184.

Brady, G.S. 1886. Les Ostracodes nouveaux des explorations du Travailleur et du Talisman. Les Fonds de la Mer, 4: 164–166, 194–200.

Brady, G.S. & Norman, A.M. 1889. A monograph of the marine and fresh-water Ostracoda of the North Atlantic and of northwestern Europe. Section I: Pedocopa. Scientific Transactions of the Royal Dublin Society, 4: 63–270.

Brady, G.S. & Robertson, D. 1872. Contributions to the study of the Entomostraca. No. 6. On the distribution of the British Ostracoda. Annals and Magazine of Natural History, Series 4, 9, 48–70.

Brady, G.S., Crosskey, H.W. & Robertson, D. 1874. A monograph of the post-Tertiary Entomostraca of Scotland including species from England and Ireland. Monograph of the Palaeontographical Society, 28: 1–232.

Breman, E. 1975. The distribution of ostracodes in the bottom sediments of the Adriatic Sea. PhD thesis, Vrije Universiteit te Amsterdam, 165pp.

Bubikyan, S.A. 1958. Ostracoda from Paleogene deposits of the Erevan Basin. Izvestiya Akademiui Nauk Armianskoi SSR. Seriya Geologicheskii i Geograficheskii Nauk, 11: 3–16.

Cabral, M.C. & Loureiro, I.M. 2013. Overview of Recent and Holocene ostracods (Crustacea) from brackish and marine environments of Portugal. Journal of Micropalaeontology, 32: 135–159.

Ciampo, G. 1980. Ostracodi miocenici (Tortoniano–Messiniano) della regione di Ragusa (Sicilia). Bollettino della Società Paleontologica Italiana, 19: 5–20.

Colalongo, M.L. & Pasini, G. 1980. La ostracofauna plio-plisocenica della Sezione Vrica in Calabria (con considerazioni sul limite Neogene/Quaternario). Bollettino della Società Paleontologica Italiana, 19: 44–126.

Coles, G.P. & Whatley, R.C. 1989. New Palaeocene to Miocene genera and species of Ostracoda from DSDP sites in the North Atlantic. Revista Española de Micropaleontología, 21: 81–124.

Coles, G.P., Ayress, M.A. & Whatley, R.C. 1990. A comparison of North Atlantic and Pacific deep-sea Ostracoda. In Whatley, R.C. & Maybury, C. (Eds), Ostracoda and Global Events. Chapman & Hall, London, 287–305.

Coles, G.P., Whatley, R.C. & Moguilevskiy, A. 1994. The ostracod genus Krithe from the Tertiary and Quaternary of the North Atlantic. Palaeontology, 37: 71–120.

Cronin, T.M. 1983. Bathyal ostracodes from the Florida–Hatteras slope, the Straits of Florida, and the Blake Plateau. Marine Micropaleontology, 8: 89–119.

Cronin, T.M. & Dwyer, G.S. 2003. Deep sea ostracodes and climatic change. The Paleontological Society Papers, 9: 247–263.

Cronin, T.M. & Raymo, M.E. 1997. Orbital forcing of deep-sea benthic species diversity. Nature, 385: 624–627.

Cronin, T.M., DeMartino, D.M., Dwyer, G.S. & Rodriguez-Lazaro, J. 1999. Deep-sea ostracode species diversity: response to late Quaternary climate change. Marine Micropaleontology, 37: 231–249.

Dall’Antonia, B. 2003. Miocene ostracods from the Tremiti Islands and Hyblean Plateau: biostatigraphy and description of new and poorly known species. Geobios, 36: 27–54.

Dana, J.D. 1853. Tribe III: Cypridae = Ostracoda. Crustacea. United States Exploring Expedition during the Years 1838, 1839, 1840, 1841, 1842, under the Command of Charles Wilkes, U.S.N., with Atlas of 96 plates, 13: 1277–1304.

Didié, C. & Bauch, H.A. 2000. Species composition and glacial-interglacial variations in the ostracode fauna of the northeast Atlantic during the past 200,000 years. Marine Micropaleontology, 40: 105–129.

Didié, C. & Bauch, H.A. 2001. Erratum to ‘Species composition and glacial-interglacial variations in the ostracode fauna of the northeast Atlantic during the past 200,000 years’. Marine Micropaleontology, 41: 103–108.

Didié, C., Bauch, H.A. & Helmkne, J.P. 2002. Late Quaternary deep-sea ostracodes in the polar and subpolar North Atlantic: paleoecological and paleoenvironmental implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 184: 195–212.

Dingle, R.V. 1984. Mid-Cretaceous Ostracoda from Southern Africa and the Falkland Plateau. Annals of the South African Museum, 93: 97–211.

Dingle, R.V. & Lord, A.R. 1990. Benthic ostracodes and deep water masses in the Atlantic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 80: 213–235.

Dingle, R.V., Lord, A.R. & Boomer, I.D. 1990. Deep-water Quaternary Ostracoda from the continental margin off south-western Africa (SE Atlantic Ocean). Annals of the South African Museum, 99: 245–366.

Doruk, N. 1973. On Puijenborchella (Espaijenborchella) malaisensis cymbula Ruggieri. A Stereo-Atlas of Ostracod Shells, 1: 161–164.

Ducasse, O. & Peyponquet, J.P. 1979. Cenozoic ostracodes: their importance for bathymology, hydrology and biogeography. Initial Reports of the Deep Sea Drilling Project, 48: 343–363.
New publications
To add to your bookshelf

Browse the Online Bookshop for these and other titles from the Geological Society and other earth science publishers, visit: www.geolsoc.org.uk/bookshop