Iron deficiency anemia - Section 11

Novel approaches to oral iron treatment

Diego Moretti¹,²

¹Swiss Distance University of Applied Sciences, Regensdorf, Switzerland; ²Laboratory of Human Nutrition, ETH Zürich, Zürich, Switzerland

Take home messages

- Oral iron supplements are an important and accessible method to treat iron deficiency and iron deficiency anemia, but have low bioavailability and may cause side effects.
- Daily supplementation regimens are associated with an increase in hepcidin concentration, and with decreased absorption.
- Alternate day, low dose schedules provide higher fractional absorption compared to daily schedules. As side effects are likely dose dependent, such schedules may result in higher compliance and efficacy.
- However, reducing and spacing doses may reduce the total iron absorbed, despite increased fractional absorption.

Introduction

It is estimated that iron deficiency anemia (IDA) affects >1 billion people worldwide¹ and the prevalence of iron deficiency (ID) is likely higher. ID and IDA remain prevalent nutritional deficiencies also in countries with developed infrastructure and service industries. In Europe, ID and IDA were estimated to affect 10 to 32% and 2 to 5% of women of reproductive age, respectively.² Deficiency develops when physiological requirements and losses cannot be met by the iron absorbed from the diet.³ Requirements are increased in young children, adolescents and women of reproductive age, due to growth and menstrual losses, and in women, choice of contraceptive method has been associated with iron status, likely due to its effect on menstrual bleeding.⁴ Dietary iron absorption is determined by the balance of heme and non heme iron, as well as absorption enhancers (ie, ascorbic acid) and inhibitors (ie, tannins, phytates) which can substantially affect overall iron bioavailability³ (Table 1). Pathological conditions substantially contribute to the burden of IDA. These can either increase losses (such as hemorrhage, GI lesions, hookworm infestation, blood donation, anti-inflammatory drugs) or decrease absorption (inflammatory conditions, enteropathy, achlorhydria).⁵ Thus, it is of central importance for effective and long lasting treatment to assess, understand and treat the underlying causes for ID.⁶

Current state of the art

Iron absorption in the GI tract is governed by systemic and local stimuli acting in concert. Systemically, hepcidin binds to ferroportin, the only known cellular iron exporter, modulating systemic iron release from enterocytes. Hepcidin is regulated by iron status, erythropoietic stimuli and hypoxia as well as infection and inflammation. The cell itself governs its iron metabolism with iron responsive proteins (IRP), which directly sense cytoplasmic iron concentrations and consequently bind to iron responsive elements (IRE) within the mRNA of key iron proteins and transcriptional factors (such as transferrin receptor, dimetal transporter 1, ferritin, ferroportin, hypoxia inducible factor-2). Enterocyte iron absorption is also regulated by oxygen partial pressure via the hypoxia inducible factor-2 (HIF2α). Enterocyte cellular iron metabolism has been linked to the "mucosal block", which describes the inability of the mucosa to absorb additional iron following an iron bolus.⁸

Diagnosis of uncomplicated iron deficiency is straightforward,⁶ but it is challenging in presence of comorbidities such as infections or inflammation. A comprehensive review has been recently published on this topic and is recommended as further reading.⁹

Oral iron supplementation remains the primary therapy for ID and IDA, and guidelines generally foresee the use of 100 to 200mg elemental Fe/day either as single or as split dose. It has long been known that iron absorption from supplements is generally low and individually variable. When supplements are given with foods, fractional absorption varied between 0.5 and 13% from a 50mg dose, in contrast to the fasting state, which showed absorption ranges between 1.2 and 28%, depending on the subject’s iron status.¹⁰
It is also well known that iron supplements cause gastrointestinal side effects11,12 which are likely connected to gastric/duodenal irritation by the soluble iron salts administered (nausea, epigastric pain, constipation, heartbeat, diarrhea). Such side effects are prevalent (22–31\% of subjects reporting any side effect) and in an early study investigating ferrous sulfate, -gluconate or -fumarate against placebo, were not influenced by the iron compound used.13 There are suggestions, mostly from observational studies, that “slow release” formulations may cause less side effects than conventional formulations,12 but this observation was not confirmed in a recent meta-analysis including only randomized, double blind studies.11 Generally, it is plausible that lower dosages cause less side effects.6,14 even if the current evidence in this regard is insufficient.71

As hepcidin is directly responsive to the serum iron level and influences iron bioavailability, suggesting limited, if any, benefit for this practice in terms of fractional absorption.18 A follow up study was conducted with blood donors with mild anemia, and confirmed the findings after 24 hours from the first supplement administration, with a decrease in fractional absorption of about 40\%. After 48 hours from the second administration, in anemic subjects, no residual inhibition of iron absorption was detected. Interestingly, also serum concentration of hepcidin returned to baseline levels. The lack of residual absorption inhibition in concomitance with a “normal” hepcidin value suggest the absence of a mucosal block 48 hours post administration in this patient group with mild anemia.19

Overall these findings suggest that low dose, and alternate day schedules result in higher fractional absorption (ie, increased absorption efficiency). As it is likely that side effects occur on a dose dependent manner, reducing the dose and implementing alternate day schedules may result in less side effects while maintaining high bioavailability. However, it is important to note that decreasing the dose will generally also decrease the total amount of iron absorbed, as the gain in efficiency does not fully compensate for the lower levels of iron administered.

Future perspectives

As treatment with oral iron is likely to remain the most accessible treatment for uncomplicated ID and IDA, it is important that high quality data on GI side effects from different supplementation schedules is generated. Ideally, treatment should be personalized, and the supplementation schedule (dose, frequency) should take into account the severity of the deficiency, individual oral supplements tolerability, and should also include advice on how to prevent relapse to iron depletion once the therapy is completed (dietary advice).

References

1. Kassebaum NJ. Collaborators. GBD The global burden of anemia. *Hematol Oncol Clin North Am*. 2016;30:247–308.
2. Milman N, Taylor CL, Merkel J, et al. Iron status in pregnant women and women of reproductive age in Europe. *Am J Clin Nutr*. 2017;106 (Suppl 6):16535–1662S.
3. Zimmermann MB, Hurrell RF. Nutritional iron deficiency. *Lancet*. 2007;370:511–520.
4. Harvey LJ, Armah CN, Dainty JR, et al. Impact of menstrual blood loss and diet on iron deficiency among women in the UK. *Br J Nutr*. 2005;94:357–364.
5. Hurrell R, Egli I. Iron bioavailability and dietary reference values. *Am J Clin Nutr*. 2010;91:1461S–1467S.
6. Overview of dietary factors affecting iron balance.
7. Nielsen OH, Coskun M, Weiss G. Iron replacement therapy: do we need new guidelines? *Curr Opin Gastroenterol*. 2016;32:128–135.
8. Galy B, Ferring-Appel D, Becker C, et al. Iron regulatory proteins control a mucosal block to intestinal iron absorption. *Cell Rep*. 2013;3:844–857.
9. Lynch S, Pfeiffer CM, Georgieff MK, et al. Biomarkers of nutrition for development (BOND)-iron review. *J Nutr*. 2018;148 (suppl 1):1001S–1067S.
10. Comprehensive and up to date overview of iron status assessment.
11. Cook JD, Reddy MB. Efficacy of weekly compared with daily iron supplementation. *Am J Clin Nutr*. 1995;62:117–120.
12. Tolkien Z, Stecher L, Mander AP, et al. Ferrous sulfate supplementation causes significant gastrointestinal side-effects in adults: a systematic review and meta-analysis. *PloS One*. 2015;10: e0117383.
13. Systematic review of studies assessing side effects to iron supplementation using a variety of iron compounds.
14. Cancelo-Hidalgo MJ, Castelo-Branco C, Palacios S, et al. Tolerability of different oral iron supplements: a systematic review. *Curr Med Res Opin*. 2013;29:291–303.
Systematic review of randomized, controlled studies assessing side effects of iron supplementation with ferrous sulfate.

13. Hallberg L, Ryttinger L, Sovell L. Side-effects of oral iron therapy. A double-blind study of different iron compounds in tablet form. *Acta Med Scand Suppl.* 1966;459:3–10.

14. Girelli D, Ugolini S, Busti F, et al. Modern iron replacement therapy: clinical and pathophysiological insights. *Int J Hematol.* 2018;107:16–30.

15. Zimmermann MB, Troesch B, Biebinger R, et al. Plasma hepcidin is a modest predictor of dietary iron bioavailability in humans, whereas oral iron loading, measured by stable-isotope appearance curves, increases plasma hepcidin. *Am J Clin Nutr.* 2009;90:1280–1287.

16. Schaap CC, Hendriks JC, Kortman GA, et al. Diurnal rhythm rather than dietary iron mediates daily hepcidin variations. *Clin Chem.* 2013;59:527–535.

17. Moretti D, Goede JS, Zeder C, et al. Oral iron supplements increase hepcidin and decrease iron absorption from daily or twice-daily doses in iron-depleted young women. *Blood.* 2015;26:1981–1989.

Study assessing the iron induced hepcidin response and the effect of dose and alternate day administration on iron absorption from ferrous sulfate supplements.

*18. Stoffel NU, Cercamondi CI, Brittenham G, et al. Iron absorption from oral iron supplements given on consecutive versus alternate days and as single morning doses versus twice-daily split dosing in iron-depleted women: two open-label, randomised controlled trials. *Lancet Haematol.* 2017;4:e524–e533.

Two/four week study assessing iron bioavailability from daily and alternate day and daily and bi daily supplementation schedules on iron absorption and hepcidin.

19. Stoffel N., Zimmermann MB, Zeder C, Brittenham G, Moretti D. In anemic women, daily oral iron supplementation increases hepcidin and decreases iron absorption compared to alternate day dosing. European Iron Club meeting 2018; Zürich.

20. Who/Fao. Vitamin and mineral requirements in human nutrition joint FAO/WHO Expert Consultation on Human Vitamin and Mineral Requirements. In Vol second edition. Geneva: WHO/FAO; 2004.