Aurora Kinases as Druggable Targets in Pediatric Leukemia: Heterogeneity in Target Modulation Activities and Cytotoxicity by Diverse Novel Therapeutic Agents

Aarthi Jayanthan¹, Yibing Ruan¹, Tony H. Truong², Aru Narendran¹,2*

¹Pediatric Oncology Experimental Therapeutics Investigators Consortium (POETIC) Laboratory for Pre-Clinical and Drug Discovery Studies, University of Calgary, Calgary, Alberta, Canada, ²Division of Pediatric Oncology, Alberta Children's Hospital, Calgary, Alberta, Canada

Abstract

Leukemia is the most common pediatric malignancy, constituting more than 30% of all childhood cancers. Although cure rates have improved greatly, approximately one in five children relapse and poor survival rates post relapse remain a challenge. Given this, more effective and innovative therapeutic strategies are needed in order to improve prognosis. Aurora kinases, a family of serine/threonine kinases essential for the regulation of several mitotic processes, have been identified as potential targets for cancer therapeutics. Elevated expression of Aurora kinases has been demonstrated in several malignancies and is associated with aberrant mitotic activity, aneuploidy and alterations in chromosomal structure and genome instability. Based on this rationale, a number of small molecule inhibitors have been formulated and advanced to human studies in the recent past. A comparative analysis of these agents in cytotoxicity and target modulation analyses against a panel of leukemia cells provides novel insights into the unique mechanisms and codependent activity pathways involved in targeting Aurora kinases, constituting a distinctive preclinical experimental framework to identify appropriate agents and combinations in future clinical studies.

It has been well established that cell cycle protein kinases are overexpressed and exhibit aberrant activity in several malignancies, resulting in uncontrolled proliferation [8–10]. As a result, small molecule kinase inhibitors have been developed targeting these proteins. One group of cell cycle protein kinases of particular interest are the Aurora kinases. Aurora kinases are a family of serine/threonine kinases essential for regulated mitotic cell division [11]. It has been determined that these proteins are involved in regulating centromere duplication, formation of a bipolar mitotic spindle, chromosome alignment on the mitotic spindle and fidelity monitoring of the spindle checkpoint, thereby promoting genome stability [12]. At present, three aurora kinase isoforms have been identified in mammalian cells: Aurora kinase A (Aurora-A), Aurora kinase B (Aurora-B) and Aurora kinase C (Aurora-C) [13,14]. The isoforms differ in localization, expression levels and timing of activity [15].

Elevated expression of Aurora kinases has been identified in several primary tumours types, including breast, ovarian, gastric, colon and pancreatic, among others [8]. It has been determined that corresponding gene amplification and overexpression of Aurora-A overrides the spindle checkpoint, produces aberrant chromosomes and leads to transformation [16]. Similarly, overexpression of Aurora-B leads to increased phosphorylation of histone H3 and the formation of more aggressive tumours in

Introduction

Leukemia develops through the transformation of hematopoietic progenitor cells blocked at an early stage of differentiation, leading to uncontrolled proliferation of abnormal leukemic blasts and suppression of normal haematopoiesis, decreasing the number of mature cells in the blood [1,2]. At present, the five year event-free survival rates for children diagnosed with acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) undergoing protocol-based therapy in developed countries range from 76% to 86% and from 49% to 63%, respectively [3]. Comparatively, the event free survival rates for infant leukemia, especially for infants with MLL rearrangements, is significantly lower compared to older children, ranging from 30% to 40% [3,4]. Despite improved survival rates in the recent past, approximately 20% of children with ALL and 30% of children diagnosed with AML relapse [5,6]. Of those who relapse, only 40% to 50% survive with current therapies, which include re-induction treatment and hematopoietic stem cell transplantation [6,7]. Given the incidence of refractory and relapsed leukemia and its poor response to current available treatments, novel therapeutic approaches are being actively pursued by cooperative groups and early phase clinical trial consortia.

Citation: Jayanthan A, Ruan Y, Truong TH, Narendran A (2014) Aurora Kinases as Druggable Targets in Pediatric Leukemia: Heterogeneity in Target Modulation Activities and Cytotoxicity by Diverse Novel Therapeutic Agents. PLoS ONE 9(7): e102741. doi:10.1371 journal.pone.0102741

Editor: Claude Prigent, Institut de Génétique et Développement de Rennes, France

Received March 10, 2014; Accepted June 23, 2014; Published July 21, 2014

Copyright: © 2014 Jayanthan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. Data are included within the paper.

Funding: This research was supported by grants from the Kids Cancer Care Foundation of Alberta (KCCFA) and Alberta Children’s Hospital Foundation (ACHF). AJ is the recipient of a Canadian Institutes for Health Research (CIHR) Training Program in Genetics, Child Development and Health Graduate Studenthip awarded by Alberta Children’s Hospital for Child and Maternal Health (ACHHR) and a McCarthy Tetrau$t Graduate Studenthip awarded by ACHF. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: a.narendran@ucalgary.ca

PLOS ONE | www.plosone.org 1 July 2014 | Volume 9 | Issue 7 | e102741
transgenic mouse models [17,18]. Given that cancer cells tend to divide faster than normal cells, proteins that disrupt this process can preferentially harm cancer cells before non-tumorigenic cells in the body. The demonstrated overexpression in many forms of cancer and their involvement in mitotic control and genomic instability make Aurora kinases a promising target for therapeutic intervention. It is important to note that Aurora kinase inhibitors do not induce mitotic arrest like antimitotic agents. Rather, these inhibitors promote aberrant mitosis, leading to arrest in a pseudo G1 state and multiple cell cycles without cytokinesis, resulting in a polyploid phenotype [19]. These factors contribute to the induction of mitotic catastrophe, considered to be a cell death mechanism caused by aberrant mitosis, leading to apoptosis [20].

The majority of Aurora kinase inhibitors developed to date target the ATP binding site and are either pan-Aurora inhibitors or selective Aurora-A or Aurora-B inhibitors [21]. Most often, cells exposed to dual Aurora-A/Aurora-B inhibitors express phenotypes indicative of Aurora-B inhibition [22]. Aurora kinase inhibitors may have significant advantages over traditional inhibitors targeting mitosis, such as taxanes and vinca alkaloids, which target microtubules. There are dose limiting toxicities associated with these conventional therapies, as tubulin is essential for several cellular processes in addition to mitosis [23]. Although it has been established that several Aurora kinase inhibitors induce apoptosis, details of the mechanisms of these processes are currently unclear and are the subject of investigation in a number of laboratories. The availability of a spectrum of Aurora kinase inhibitors with targeted but distinct activities provide a unique opportunity to uncover molecular interrelationships and associated pathways of control. The objective of this study is to assess, in preclinical studies, the activity of Aurora kinase inhibitors against pediatric and infant leukemia cell lines and primary samples with respect to target availability and off-target effects. We also aim to evaluate the heterogeneity in activity of the different Aurora kinase targeting agents in the context of distinct molecular vulnerabilities seen among pediatric leukemia subgroups.

Materials and Methods

This study was approved by: Conjoint Health Research Ethics Board, Calgary Region and the University of Calgary. Peripheral blood and bone marrow samples were obtained from infants and children diagnosed with leukemia at the Alberta Children’s Hospital after ethics approval from the Conjoint Health Research Ethics Board and written informed consent from parents and assent as appropriate (Ethics ID #17184). Normal peripheral mononuclear cells were obtained from healthy individuals with signed informed consent.

Cell lines and tissue culture

Cell lines were cultured in Opti-MEM medium (Gibco, Life Technologies Corporation, Burlington, Ontario) supplemented with 10% heat inactivated fetal bovine serum (FBS) (Gibco), 100 units/ml penicillin and 100 units/ml streptomycin (Gibco) and 0.05 mM 2-mercaptoethanol (Sigma-Aldrich, Oakville, Ontario) in T25 flasks (Nalge Nunc, Rochester, New York) or T75 flasks (Corning Incorporated, Corning, New York). All cell cultures were maintained at 37°C in a humidified incubator with 5% CO2. Characteristics of the cell lines used in this study are summarized in Table S1.

Isolation of white blood cells from peripheral blood and bone marrow samples

Peripheral blood and bone marrow samples were obtained from infants and children diagnosed with leukemia at the Alberta Children’s Hospital after local Institutional Review Board approval and informed consent and assent as appropriate (Ethics ID #17184). These include B-ALL (Patient #1), relapsed AML (Patient #2), AML/CML (Patient #3), infant ALL (Patient #4), and initial ALL presenting with secondary AML (Patient #5). The samples were diluted to double its original volume with sterile phosphate buffered saline (PBS; 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4; pH 7.25). The diluted sample was then layered on a Ficoll-Paque (GE Healthcare, Piscataway, New Jersey) gradient at a 1:2 ratio of Ficoll to diluted sample. Samples were then centrifuged 1800 rpm for 20 minutes at room temperature. The buffy coat was removed with a pipette and transferred to a new centrifuge tube and diluted with PBS. After an additional centrifugation at 1200 rpm, the white blood cell pellet was washed with PBS and centrifuged one last time. Cells were re-suspended in Opti-MEM and viable cells were counted using trypan blue (Invitrogen, Life Technologies Corporation, Burlington, Ontario) exclusion on a haemocytometer. An identical protocol was followed for the isolation of white blood cells, referred to as “normal lymphocytes” in the following paragraphs, from healthy volunteers. Samples grown in culture for up to six months were cultured in Opti-MEM medium supplemented with 10% heat inactivated FBS, penicillin/streptomycin and 2-mercaptoethanol. Characteristics of primary samples used in this study for cytotoxicity assays are summarized in Table S2.

Aurora kinase inhibitors

A library of fourteen inhibitors targeting Aurora kinases was provided by Selleck Chemicals (Houston, Texas) and included: PHA-739358, PHA-680632, CYC116, CCT129202, Aurora A Inhibitor I, ZM447439, [JN7]-7706621, ENMD-2076, MLN8237, SNS-314, AZD1152, Hesperadin, AT9283 and VX-680. All of the inhibitors were prepared in DMSO to a concentration of 10 mM and stored in 10 μl aliquots at −20°C. For subsequent experiments, the inhibitors were diluted in Opti-MEM plus supplements to the appropriate concentrations.

Cytotoxicity assays

For cytotoxicity profiling of Aurora kinase inhibitors against leukemia cell lines, inhibitors or vehicle control (DMSO, Sigma-Aldrich) were diluted in 100 μl of Opti-MEM per well in 96 well plates (Grenier Bio-One, Monroe, North Carolina) in triplicate at final concentrations ranging from 1×10−6 to 10 μM. 1×104 cells per well were seeded and plates were incubated for 4 days. Following incubation for 4 days, cell survival was quantified by Alamar blue assay (Invitrogen) or automated inverted microscopy using the Celigo Cell Cytometer (Cyntellect, San Diego, California). For Alamar blue assay, cells were incubated with 2.5% Alamar blue, which incorporates a propriety redox indicator that changes colour in response to metabolic activity, for up to 24 hours. During this period of incubation, the absorbance at 570–620 nm was measured (Opsys MR Plate Reader, Dynex Technologies, Chantilly, Virginia) at various time points, depending on the cell line or sample. Percent survival was calculated by comparing the absorbance ratio of the test well to the control well multiplied by 100%, as indicated in the following formula:
% Survival = \[
\frac{(\text{Absorbance } 570 - 620 \text{ nm} \text{ (Test Well)})}{(\text{Absorbance } 570 - 620 \text{ nm} \text{ (Control Well)})} \times 100\%
\]

For automated inverted microscopy, the number of cells in each well was determined using the direct cell counting application as described previously [24]. Briefly, after incubation, the cells were stained with trypan blue and counted using a hemocytometer. The accuracy of automated cell counting may be affected by the timing of these events. For this reason, both techniques were employed to determine Aurora kinase inhibitor induced cytotoxicity.

Hematopoietic colony forming cell assay

The hematopoietic colony forming cell assay was conducted based on a protocol outlined by StemCell Technologies (Vancouver, British Columbia, Canada). To begin, CD34+ cells were isolated from residual normal bone marrow transplant specimens obtained after informed consent. Next, several concentrations of Aurora A Inhibitor I, Hesperadin, ZM447439 and AT9283 (0.01, 0.1, 1, 10 \muM) and DMSO (Sigma-Aldrich, Oakville, Ontario) (10 \muM) were added to separate tubes of MethoCult (StemCell Technologies), a methylcellulose matrix containing recombinant human cytokines stem cell factor (rh SCF), granulocyte macrophage colony-stimulating factor (rh GM-CSF), interleukin-3 (rh IL-3), granulocyte colony stimulating factor (rh G-CSF) and erythropoietin (rh EPO). Following the addition of CD34+ cells at a final concentration of 5x10^5 cells per dish, the tubes were vortexed and allowed to stand for 5 minutes at room temperature. Next, the MethoCult mixtures were be dispensed into 35 mm dishes (Corning Incorporated, Corning, New York) through blunt end needles (StemCell Technologies) and 5 ml syringes (BD Biosciences, Mississauga, Ontario) at a volume of 1.1 ml per dish. The medium was evenly distributed across the surface of each dish by gentle tilting and rotation. The dishes were then placed in a 150 mm tissue culture dish (BD Biosciences) containing additional 35 mm dishes with sterile water to maintain humidity. The tissue culture dish was then placed at 37°C in a humidified incubator containing 5% CO2 for 14 days. The number of myeloid and erythroid derived colonies in both the treated and control dishes were counted and compared.

Preparation of cellular extracts

Following desired experimental conditions, cells were harvested and centrifuged at 1200 rpm at 4°C for 5 minutes. After removal of supernatant, cells were washed in cold PBS. Following an additional centrifugation step, supernatant was removed and the pellet was re-suspended in radioimmunoprecipitation assay (RIPA) buffer (50 mM Tris-HCl (pH 8), 150 mM NaCl, 1% NP-40, 0.5% sodium deoxycholate; 0.1% sodium dodecyl sulphate (SDS) supplemented with 1% phosphatase inhibitor (Sigma-Aldrich), 1% protease inhibitor (Sigma-Aldrich) and 1% sodium orthovanadate (Alfa Aesar, Ward Hill, Massachusetts). Samples were transferred to Eppendorf tubes, left on ice for 10 minutes, vortexed and then centrifuged at 14,000 rpm for 10 minutes.

Immunoblotting

To begin, the protein content of the lysates was measured using the Bicinchoninic Acid (BCA) Protein Assay Kit (Pierce, Rockford, Illinois), which included a protein standard curve generated with bovine serum albumin. Appropriate volumes of samples and loading buffer (50 mM Tris-HCl (pH 6.8), 2% SDS, 10% glycerol, 1% β-mercaptoethanol, 12.5 mM EDTA, 0.02% bromophenol blue) were mixed, ensuring that equal amounts of protein were loaded (30 \mug of protein per well). Samples were then resolved on SDS-PAGE using various percentages of acrylamide gels (8%–12%), depending on the proteins of interest. SDS-PAGE was run in SDS running buffer (25 mM Tris, 192 mM glycerol, 0.1% SDS) and then transferred to nitrocellulose membranes in transfer buffer (48 mM Tris, 39 mM glycine, 20% (v/v) methanol) at 100 volts for 2 hours at 4°C. Immunoblots were then blocked in 5% skim milk in tris-buffered saline with 0.1% Tween-20 (TBS-T; 50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 0.1% (v/v) Tween-20 (Sigma-Aldrich)) for 1 to 2 hours. Immunoblots were then incubated with selected primary antibodies diluted in TBS-T with 0.1% gelatin (Bio-Rad, Mississauga, Ontario) and 0.05% sodium azide (Sigma-Aldrich) overnight. Primary antibodies included: Aurora-A (Cell Signalling, Danvers, Massachusetts; 1:1000), Aurora-B (Cell Signalling, 1:1000), phospho-Aurora-A/B/C (Cell Signalling, 1:1000), caspase 7 (Cell Signalling, 1:1000), PARP (Cell Signalling, 1:2000) and β-Actin (Sigma-Aldrich, 1:1000). Following washes with TBS-T 4 times for 5 to 10 minutes, immunoblots were incubated with appropriate secondary antibodies conjugated to horseradish peroxidase (Sigma-Aldrich) diluted in TBS-T plus 5% skim milk at a ratio of 1:5000 for 2 hours at room temperature. After an additional round of washes in TBS-T, immunoblots were exposed to combined enhanced chemiluminescence (ECL) reagents (Reagent 1: 100 mM Tris-HCl (pH 8.5), 5.4 mM hydrogen peroxide; Reagent 2: 100 mM Tris-HCl (pH 8.5), 2.5 mM luminol, 0.4 mM p-coumaric acid) for 1 minute and developed by exposure to X-ray film (Christie InnoMed, Montreal, Quebec).

Small interfering RNA (siRNA) transfection

Leukemia cells were plated in a 6 well plate (BD Biosciences) at a concentration of 1x10^5 cells per well in a volume of 500 \muL of Opti-MEM supplemented with PBS and antibiotics. Next, Silencer Select Negative Control Number 1 siRNA (Invitrogen), Aurora kinase A siRNA (si196, Invitrogen) and Aurora kinase B siRNA (si17611, Invitrogen) were diluted in individual tubes (BD Biosciences) to a final concentration of 30 nM in 500 \muL Opti-MEM without supplements. Following, HiPerfect Transfection Reagent (Qiagen, Toronto, Ontario) was added to the diluted siRNA at a ratio of 3:100 and the samples were left at room temperature for 10 minutes to allow for the formation of transfection complexes. The transfection complexes were then added to the cells at a volume of 500 \muL per well and the plates were placed in the incubator for 6 hours. After incubation, 1.4 ml of Opti-MEM plus supplements were added to each well, for a total volume 2.4 ml per well. The cells were returned to the incubator for an additional 48 or 72 hours and then processed for immunoblotting.
Results

Cytotoxicity profiling of Aurora kinase inhibitors against pediatric and infant leukemia cell lines and primary samples

In order to investigate the effects of Aurora kinase inhibition on pediatric and infant leukemia, a panel of 14 Aurora kinase inhibitors, listed and described in Table 1, was tested on cell lines and primary samples. The panel of cell lines included: six B-ALL cell lines (C1, SEM, B1, UOCCB1, Nalm6, KOPN8), two T-ALL cell lines (CEM, Molt-3), three AML cell lines (Molm13, MV4-11, TIB-202) and three APML cell lines (NB4, HL-60, HL-60 RA). The panel of primary samples included mononuclear fractions from pediatric patients diagnosed with B-ALL (Patient #1), relapsed AML (Patient #2), AML/CML (Patient #3), infant leukemia (Patient #4) and ALL which later relapsed as AML (secondary AML) (Patient #5). Normal lymphocytes and bone marrow stroma were employed as control samples for non-leukemia cytotoxicity. The inhibitors were tested at concentrations ranging from 1×10^{-6} to 10 μM and the generated cytotoxicity curves were used to determine the IC$_{50}$ values for each of the inhibitors against the cell lines and primary samples. The calculated values are summarized for the cell lines, normal lymphocytes and bone marrow stroma in Table 2 and for the primary samples in Table 3. Graphical representation comparing IC$_{50}$ values for each Aurora kinase inhibitor across cell lines and normal cells are presented in Figure 1.

Under the experimental conditions used, for several of the inhibitors, namely MLN8237, SNS-314, AZD1152, Hesperadin, AT9283 and VX-680, the calculated IC$_{50}$ values for the normal cells were higher than the IC$_{50}$ values for the leukemia cell lines, indicating a potential therapeutic window where the inhibitors are effective with lower toxicity to normal cells. For the remaining inhibitors, including PHA-739358, PHA-680632, CYC116, CCT129202, Aurora A Inhibitor I, ZM447439, JNJ-7706621 and ENMD-2076, calculated IC$_{50}$ values for several of the cell lines were lower than the IC$_{50}$ values for the normal cells, but not as pronounced. Aurora kinase inhibitors also showed measurable activity against primary leukemia samples, especially against the samples from Patient #1, Patient #2 and Patient #5. The inhibitors appear to be less effective against the samples from Patient #3 and Patient #4, with higher IC50 values.

Effect of Aurora kinase inhibitors on in vitro hematopoietic colony formation

The colony forming assay was used to evaluate the effect of Aurora kinase inhibition on formation of multi-lineage colonies from CD34$^+$ bone marrow cells in vitro. Increasing concentrations

Figure 1. Graphical representation of the IC$_{50}$ values of a panel of Aurora kinase inhibitors against leukemia cell lines, normal lymphocytes and bone marrow stroma presented in Table 2. The diverse sensitivity of each Aurora kinase inhibitor in this panel against B-ALL (C1, SEM, B1, UOCCB1, Nalm6, KOPN8), T-ALL (CEM, Molt-3), AML (Molm13, MV4-11, TIB-202), APML (NB4, HL-60, HL-60RA) cell lines and normal lymphocytes and bone marrow stroma (BMS) is shown in graphs A-N. Each graph indicates IC$_{50}$ values in a tested range from 1×10^{-6} to 10 μM. Points at 1×10^{-6} μM represents IC$_{50}$ values of 1×10^{-6} μM or less and points at 10 μM represents IC$_{50}$ values of 10 μM or more. Values are calculated averages from three separate experiments ± standard deviations.

doi:10.1371/journal.pone.0102741.g001
of four Aurora kinase inhibitors (Aurora A Inhibitor I, Hesperadin, ZM447439 and AT9283) were added to methylcellulose culture matrix containing cytokines to optimize the formation of erythroid and myeloid colonies. After 14 days in culture, colonies were counted under an inverted microscope based on morphology. Representative results presented in Figure 2 shows that colony formation in the presence of either Aurora A Inhibitor I or ZM447439 was not affected up to concentrations of 0.1 μM of the inhibitors. For Hesperadin and AT9283, colony formation remained similar to that of vehicle control plates at 0.01 μM, but completely inhibited the formation of both types of colonies at 0.1 μM. The targets and corresponding IC_{50} values for a panel of 14 Aurora kinase inhibitors are listed.

Table 1. Summary of Aurora kinase inhibitors investigated in this study.

Inhibitor	Targets (IC_{50} Value)	References	Inhibitor	Targets (IC_{50} Value)	References
PHA-739358	Aurora-A (13 nM) Aurora-B (79 nM) Aurora-C (61 nM) c-Abl, Ret, Trk-A, FGFR-1	[44,45]	ENMD-2076	Aurora-A (14 nM) Aurora-B (350 nM) FL53, Src, VEGFR2, FGFR-1, c-Kit	[46,47]
PHA-680632	Aurora-A (27 nM) Aurora-B (135 nM) Aurora-C (120 nM) FGFR-1, FL53, LCK, PIK-1, STK2, VEGFR2, VEGFR3	[48,49]	MLN8237	Aurora-A (2 nM)	[50]
CYC116	Aurora-A (44 nM) Aurora-B (19 nM) Aurora-C (69 nM) VEGFR2, FL53	[10,51]	SNS-314	Aurora-A (9 nM) Aurora-B (31 nM)	[52–54]
				Aurora-C (3 nM) Trk-A, B, FMS, FLT4, DDR2, Axl, c-Raf	
CCT129202	Aurora-A (40 nM) Aurora-B (200 nM) Aurora-C (227 nM) VEGFR2, FL53	[55,58]	AZD1152	Aurora-A (1369 nM) Aurora-B (0.4 nM)	[40,52]
Aurora A Inhibitor I	Aurora-A (3 nM) Aurora-B (3400 nM)	[57]	Hesperadin	Aurora-A (250 nM)	[58]
ZM447439	Aurora-A (110 nM) Aurora-B (130 nM)	[59]	AT9283	Aurora-A (3 nM) Aurora-B (3 nM) JAK2, FL53, c-Abl	[22,27]
JNJ-7706621	Aurora-A (11 nM) Aurora-B (15 nM) CDK1-4, 6	[60,61]	VX-680	Aurora-A (36 nM) Aurora-B (18 nM)	[62–64]

Aurora kinase inhibition by targeted therapeutics promotes changes in Aurora kinase activity and the induction of apoptosis

Western blot analysis was performed to determine the effectiveness of Aurora kinase inhibitors at reducing Aurora kinase activity and promoting apoptosis. To begin, B-ALL cell lines C1 and KOPN8 were each treated with either Aurora A Inhibitor I at a concentration of 1 μM for 18 hours (Figure 3). The lysates were made in groups of four or five inhibitors plus a vehicle control for each group, designated DMSO1, DMSO2, and DMSO3. Following standard western blot protocol, it was determined that each of the inhibitors promoted dephosphorylation of one or more of the Aurora kinase isoforms compared to vehicle control, with the exception of Aurora A Inhibitor I and ENMD-2076. In addition, evidence of apoptosis was indicated by cleavage of PARP and caspase 7 by all of the inhibitors in the panel against C1 and KOPN8, with the exception of JNJ-7706621 for both cell lines and ENMD-2076 against KOPN8.

Silencing of Aurora kinases by siRNA promotes changes in Aurora kinase activity and the induction of apoptosis

In order to determine if the previously described changes in Aurora kinase activity and induction of apoptosis were the result of specific Aurora kinase targeting, as opposed to off-target effects or the unintended targeting of alternative proteins by these inhibitors, siRNA studies were performed. To begin, SEM and TIB-202 cells were exposed to siRNA specific to either Aurora-A or Aurora-B or a negative control siRNA for 48 and 72 hours. Cells incubated under similar conditions without siRNA were used as a negative control. As shown in Figure 6, silencing of Aurora-A and Aurora-B induced cleavage of PARP at both time points.
Table 2. Summary of half maximal inhibitory concentration (IC_{50}) values for Aurora kinase inhibitors against pediatric and infant leukemia cell lines, normal lymphocytes and bone marrow stroma.

Inhibitor	B-ALL	SEM	B1	UCOS81	KOPN8	CEM	Molt-3
PHA-739386	0.001±0.003	0.01±0.01	0.0	0.002±0.007	0.0	0.0	0.0
PHA-480632	0.001±0.003	0.01±0.01	0.0	0.002±0.007	0.0	0.0	0.0
CYC16	0.01±0.01	0.01±0.01	0.0	0.002±0.007	0.0	0.0	0.0
CCT129522	0.01±0.01	0.01±0.01	0.0	0.002±0.007	0.0	0.0	0.0
Aurora A Inhibitor I	0.01±0.01	0.01±0.01	0.0	0.002±0.007	0.0	0.0	0.0
ZM447439	0.01±0.01	0.01±0.01	0.0	0.002±0.007	0.0	0.0	0.0
JNJ-7706271	0.01±0.01	0.01±0.01	0.0	0.002±0.007	0.0	0.0	0.0
MLN82737	0.01±0.01	0.01±0.01	0.0	0.002±0.007	0.0	0.0	0.0
SNS-3374	0.01±0.01	0.01±0.01	0.0	0.002±0.007	0.0	0.0	0.0
AZD1152	0.01±0.01	0.01±0.01	0.0	0.002±0.007	0.0	0.0	0.0
Heperoxarin	0.01±0.01	0.01±0.01	0.0	0.002±0.007	0.0	0.0	0.0
ATR-203	0.01±0.01	0.01±0.01	0.0	0.002±0.007	0.0	0.0	0.0
VX-480	0.01±0.01	0.01±0.01	0.0	0.002±0.007	0.0	0.0	0.0

Normal Lymphocytes

Inhibitor	Mdm12	TIB-202	NIA	HL-60	RA
PHA-739386	0.01±0.01	0.01±0.01	0.0	0.002±0.007	0.0
PHA-480632	0.01±0.01	0.01±0.01	0.0	0.002±0.007	0.0
CYC16	0.01±0.01	0.01±0.01	0.0	0.002±0.007	0.0
CCT129522	0.01±0.01	0.01±0.01	0.0	0.002±0.007	0.0
Aurora A Inhibitor I	0.01±0.01	0.01±0.01	0.0	0.002±0.007	0.0
ZM447439	0.01±0.01	0.01±0.01	0.0	0.002±0.007	0.0
JNJ-7706271	0.01±0.01	0.01±0.01	0.0	0.002±0.007	0.0
MLN82737	0.01±0.01	0.01±0.01	0.0	0.002±0.007	0.0
SNS-3374	0.01±0.01	0.01±0.01	0.0	0.002±0.007	0.0
AZD1152	0.01±0.01	0.01±0.01	0.0	0.002±0.007	0.0
Heperoxarin	0.01±0.01	0.01±0.01	0.0	0.002±0.007	0.0
ATR-203	0.01±0.01	0.01±0.01	0.0	0.002±0.007	0.0
VX-480	0.01±0.01	0.01±0.01	0.0	0.002±0.007	0.0

Bone Marrow Stromal

Inhibitor	AML	MLL-13	TIB-202	NIA	HL-60	RA
PHA-739386	0.01±0.01	0.01±0.01	0.0	0.002±0.007	0.0	
PHA-480632	0.01±0.01	0.01±0.01	0.0	0.002±0.007	0.0	
CYC16	0.01±0.01	0.01±0.01	0.0	0.002±0.007	0.0	
CCT129522	0.01±0.01	0.01±0.01	0.0	0.002±0.007	0.0	
Aurora A Inhibitor I	0.01±0.01	0.01±0.01	0.0	0.002±0.007	0.0	
ZM447439	0.01±0.01	0.01±0.01	0.0	0.002±0.007	0.0	
JNJ-7706271	0.01±0.01	0.01±0.01	0.0	0.002±0.007	0.0	
MLN82737	0.01±0.01	0.01±0.01	0.0	0.002±0.007	0.0	
SNS-3374	0.01±0.01	0.01±0.01	0.0	0.002±0.007	0.0	
AZD1152	0.01±0.01	0.01±0.01	0.0	0.002±0.007	0.0	
Heperoxarin	0.01±0.01	0.01±0.01	0.0	0.002±0.007	0.0	
ATR-203	0.01±0.01	0.01±0.01	0.0	0.002±0.007	0.0	
VX-480	0.01±0.01	0.01±0.01	0.0	0.002±0.007	0.0	

Tumour cells from six b-ALL cell lines (C1, SEM, B1, UCOS81, KOPN8, CEM), two ALL cell lines (Molt-3, three AM and INF ALL cell lines (Mdm12, TIB-202) and three PML/RARA cell lines (MLN82737, SNS-3374, AZD1152) were treated with individual inhibitors at eight concentrations (10^{-6}, 10^{-10}, 10^{-14}) for 72 hours. After four days in culture, cell viability was quantified by Alamar Blue assay or automated microscopy and expressed as a percentage of control. IC_{50} values were calculated for each cell line and are shown in Table 2. The calculated IC_{50} values represent the mean IC_{50} from three separate experiments. Normal lymphocytes were treated with individual inhibitors at eight concentrations (10^{-6}, 10^{-10}, 10^{-14}) for 72 hours. After four days in culture, cell viability was quantified by Alamar Blue assay or automated microscopy and expressed as a percentage of control. IC_{50} values were calculated for each cell line and are shown in Table 2. The calculated IC_{50} values represent the mean IC_{50} from three separate experiments. Bone marrow stroma was treated with single inhibitors at eight concentrations (10^{-6}, 10^{-10}, 10^{-14}) for 72 hours. After four days in culture, cell viability was quantified by Alamar Blue assay or automated microscopy and expressed as a percentage of control. IC_{50} values were calculated for each cell line and are shown in Table 2. The calculated IC_{50} values represent the mean IC_{50} from three separate experiments.
Comparatively, caspase 7 cleavage was only evident following silencing of Aurora-B. For TIB-202, silencing of Aurora-A induced increased phosphorylation of Aurora-B and Aurora-C at both time points. Similarly, silencing of Aurora-B induced increased phosphorylation of Aurora-A compared to controls at 48 and 72 hours. For apoptotic markers, silencing of either Aurora-A or Aurora-B induced cleavage of PARP at both time points. Comparatively, caspase 7 cleavage was only evident following silencing of Aurora-B.

Table 3. Summary of half maximal inhibitory concentration (IC$_{50}$) values for Aurora kinase inhibitors against pediatric and infant leukemia patient samples.

Inhibitor	Patient #1	Patient #2	Patient #3	Patient #4	Patient #5
	B-ALL	Relapsed AML	AML/CML	Infant Leukemia	ALL/AML
PHA-739358	9×10$^{-4}$	0.3	>10	>10	0.001
PHA-680632	0.01	2	>10	>10	8×10$^{-4}$
CYC116	0.01	0.07	>10	>10	4×10$^{-4}$
CCT129202	0.7	0.4	5	>10	0.07
Aurora A Inhibitor I	0.8	1	5	8	0.006
ZM447439	0.02	>10	10	7	0.009
JNJ-7706621	1	0.7	>10	8	5×10$^{-4}$
ENMD-2076	0.1	0.008	4	10	0.03
MLN8237	0.006	0.5	0.7	3	1×10$^{-4}$
SNS-314	<1×10$^{-6}$	5×10$^{-6}$	4	8	<1×10$^{-6}$
AZD1152	5×10$^{-6}$	0.6	>10	>10	2×10$^{-5}$
Hesperadin	4×10$^{-5}$	3×10$^{-6}$	3	2	1×10$^{-5}$
AT9283	0.003	0.08	1	5	3×10$^{-4}$
VX-680	9×10$^{-5}$	0.1	2	1	5×10$^{-4}$

Tumour cells from five patients representing several types of leukemia were treated with individual inhibitors at eight concentrations (1×10$^{-6}$ to 10 μM). After four days in culture, cell viability was quantified by Alamar blue assay or automated microscopy and percent growth inhibition was determined by comparison to cells treated with DMSO control. The calculated IC$_{50}$ values are representative of one complete study. doi:10.1371/journal.pone.0102741.t003

Comparatively, caspase 7 cleavage was only evident following silencing of Aurora-B. For TIB-202, silencing of Aurora-A induced increased phosphorylation of Aurora-B and Aurora-C at both time points. Similarly, silencing of Aurora-B induced increased phosphorylation of Aurora-A compared to controls at 48 and 72 hours. For apoptotic markers, silencing of either Aurora-A or Aurora-B induced cleavage of PARP at both time points. Comparatively, caspase 7 cleavage was only evident following silencing of Aurora-B.

Figure 2. Analysis of the effect of Aurora kinase inhibitors on in vitro hematopoietic colony formation.

Normal bone marrow derived CD34$^+$ cells were incubated with increasing concentrations of Aurora A Inhibitor I (A), Hesperadin (B), ZM447439 (C), AT9283 (D) or DMSO in methylcellulose cultures containing cytokines to stimulate haematopoiesis. After 14 days in culture, myeloid and erythroid colonies were enumerated by counting under an inverted microscope based on morphology. Data presented here are representative of two separate experiments. doi:10.1371/journal.pone.0102741.g002

Figure 3. Aurora kinase inhibitors promote changes in Aurora kinase activity and induce cleavage of apoptotic markers in leukemia cell lines C1 and KOPN8.

C1 and KOPN8 were treated with Aurora kinase inhibitors or vehicle control (DMSO) at 1 μM for 18 hours. The majority of the inhibitors tested induced dephosphorylation of one or more of the Aurora kinases, with the exception of Aurora-A Inhibitor I and ENMD-2076. Evidence of apoptosis is shown with increased cleavage of PARP and caspase 7 compared to vehicle control in all of the inhibitors tested, with the exception of JNJ-7706621 for both C1 and KOPN8 and ENMD-2076 for KOPN8. β-Actin was used as a loading control. Data presented are representative of three separate experiments. doi:10.1371/journal.pone.0102741.g003
Combined targeting of Aurora kinases with siRNA and targeted inhibitors promotes changes in Aurora kinase activity

Given that silencing of Aurora-A promotes increased Aurora-B phosphorylation and silencing of Aurora-B promotes increased Aurora-A phosphorylation, experiments were conducted combining siRNA and targeted inhibitors to determine changes in Aurora kinase activity. To begin, SEM (ALL) and TIB-202 (AML) were exposed to either Aurora-A siRNA or negative control siRNA for 60 hours. Subsequently, cells were then incubated with 0.1 μM Hesperadin for an additional 12 hours. As shown in Figure 7, silencing of Aurora-A promoted increased phosphorylation of Aurora-B and Aurora-C (Lane 4) and Hesperadin promoted dephosphorylation of Aurora-B (Lanes 3 and 6). With the addition of Hesperadin following silencing of Aurora-A (Lane 5), there was a decrease in phosphorylation of Aurora-B and Aurora-C compared to silencing of Aurora-A alone. In the following experiment (Figure 8), SEM and TIB-202 were exposed to either Aurora-B siRNA or negative control siRNA for 60 hours. Cells were then incubated with 1 μM Aurora A Inhibitor I for an additional 12 h. Silencing of Aurora-B promoted increased phosphorylation of Aurora-A (Lane 4) in both cell lines. Aurora A Inhibitor I promoted and maintained phosphorylation of Aurora-A and induced increased phosphorylation of Aurora-B and Aurora-C in SEM (Lanes 3 and 6). Comparatively, Aurora A Inhibitor promoted dephosphorylation of Aurora-A and increased phosphorylation of Aurora-B and Aurora-C in TIB-202 (Lanes 3 and 6). With the addition of Aurora-A Inhibitor I following silencing of Aurora-B (Lane 5), there was a decrease in phosphorylation of all three isoforms compared to treatment with Aurora A Inhibitor I alone or Aurora-B siRNA alone.

Discussion

Aurora kinases are overexpressed in several malignancies and are associated with aberrant mitosis and transformation [8,16,25]. The effect of Aurora kinase inhibition has been studied extensively in solid tumours, but information on haematological malignancies is limited, particularly in childhood leukemias. Cytotoxicity assays testing the effect of a panel of Aurora kinase inhibitors against pediatric and infant leukemia cell lines and patient samples...
demonstrated differences in effective inhibitory concentrations among the inhibitors (Tables 2, 3; Figure 1). There are several factors potentially responsible for these differences. These inhibitors differ structurally, inhibiting Aurora-A, Aurora-B and Aurora-C activities with varied efficiency, as indicated by their corresponding IC50 values (Table 1). In addition, several of these inhibitors target the activity of additional kinases, which may improve or decrease their effectiveness against malignant cells compared to normal cells. Given the diversity of pathways involved in leukemia cell growth and survival, the targeting of several kinases, particularly those overexpressed and essential to survival and/or proliferation, would be essential. Furthermore, effective responses to kinase inhibitors are influenced by additional mutations, overexpression, alterations in their downstream targets and activation of other signalling pathways [26]. We previously demonstrated the promising activity of the dual Aurora-A/B inhibitor, AT9283 against pediatric and infant leukemia, as it also targets additional proteins involved in leukemogenesis, including FLT3, JAK2 and c-Abl [27]. The application of a multi-targeted kinase inhibitor may prevent or in some instances delay the development of resistance. Despite these benefits, the lack of specificity associated with multi-targeted inhibitors has the potential to affect non-malignant cells resulting in treatment related toxicity [28]. Importantly, the distinct molecular alterations found in individual leukemia cell lines and primary samples demonstrated differences in effective inhibitory concentrations among the inhibitors (Tables 2, 3; Figure 1). There are several factors potentially responsible for these differences. These inhibitors differ structurally, inhibiting Aurora-A, Aurora-B and Aurora-C activities with varied efficiency, as indicated by their corresponding IC50 values (Table 1). In addition, several of these inhibitors target the activity of additional kinases, which may improve or decrease their effectiveness against malignant cells compared to normal cells. Given the diversity of pathways involved in leukemia cell growth and survival, the targeting of several kinases, particularly those overexpressed and essential to survival and/or proliferation, would be essential. Furthermore, effective responses to kinase inhibitors are influenced by additional mutations, overexpression, alterations in their downstream targets and activation of other signalling pathways [26]. We previously demonstrated the promising activity of the dual Aurora-A/B inhibitor, AT9283 against pediatric and infant leukemia, as it also targets additional proteins involved in leukemogenesis, including FLT3, JAK2 and c-Abl [27]. The application of a multi-targeted kinase inhibitor may prevent or in some instances delay the development of resistance. Despite these benefits, the lack of specificity associated with multi-targeted inhibitors has the potential to affect non-malignant cells resulting in treatment related toxicity [28]. Importantly, the distinct molecular alterations found in individual leukemia cell lines and primary samples...
may also contribute to the variable inhibitory effects of the Aurora kinase inhibitors. In the primary samples tested, the IC₅₀ values for Patient #3 and Patient #5 appear to be affected to a lesser extent by the inhibitors. Currently, the potential mechanisms behind this observation is not known completely and thought to be multifactorial, as a similar phenomenon has been described in other targeted inhibitors and tumor models. For instance, in the melanoma model, Molhoek and colleagues have suggested that fresh tumor cells and cell lines may have differences in activation of some receptor tyrosine kinases (RTKs) and that the lower levels of activated RTKs in fresh samples may be due to deactivated RTKs in stromal cells that are often part of the specimens analysed during in vitro assays [29]. On the other hand, increased activation of growth supporting pathways in cell lines may result from a selected and uniform clonal population devoid of micro-environmental niche support. In addition, during preparation, fresh leukemia cells may have sustained handling stress and not yet adopted culture conditions that may have led to the expression of stress responses or artificial lowering of target availability for drugs in comparison to tumor cell lines. Consequently, any mechanism that leads to a slower rate of cell proliferation in primary specimens compared to cell lines, may potentially lead to dampening of response to Aurora kinase inhibitors. However, additional experiments are needed to clearly test these possibilities.

Western blot analysis was performed to determine the effectiveness of Aurora kinase inhibitors at reducing Aurora kinase activity and promoting apoptosis. The majority of inhibitors tested against leukemia cell lines at a concentration of 1 μM for 18 hours decreased Aurora kinase activity and promoted apoptosis, indicated by the cleavage of PARP and caspase 7 (Figures 3). The absence of these events occurring with certain inhibitors, such as Aurora-A Inhibitor and ENMD-2076, are most likely attributed to the selected dosage or duration of incubation, for which changes in protein expression could not be detected. As a means to determine changes in Aurora-A and Aurora-B specific activity over time, cell lines were treated with either Aurora-A Inhibitor I or Hesperadin for 2 to 24 hours. Following Aurora-A inhibition, there was an initial decrease in Aurora-A activity followed by a subsequent increase. In addition, a gradual increase in Aurora-B and Aurora-C activity was observed (Figure 4). Comparatively, following Aurora-B inhibition, Aurora-B activity decreased, but Aurora-A activity increased during the latter part of the time course (Figure 5). These events were also confirmed by siRNA studies, in which silencing of Aurora-A promoted increased Aurora-B activity and silencing of Aurora-B promoted increased Aurora-A activity (Figure 6). Given that silencing of Aurora-A promotes increased Aurora-B phosphorylation and silencing of Aurora-B promotes increased Aurora-A phosphorylation, experiments were conducted combining siRNA and targeted inhibitors to determine changes in Aurora kinase activity. Silencing of Aurora-A promotes increased phosphorylation of Aurora-B and Aurora-C and as a single agent, Hesperadin promoted dephosphorylation of Aurora B. With the addition of Hesperadin following silencing of Aurora-A, there was a decrease in phosphorylation of Aurora-B and Aurora-C compared to silencing of Aurora A alone (Figure 7). Similarly, with the addition of Aurora-A Inhibitor I following silencing of Aurora-B, there was a decrease in phosphorylation of all three isoforms compared to Aurora A Inhibitor I alone and Aurora-B siRNA alone (Figure 8).

Data from these studies suggest the possibility of inverse regulation of Aurora kinases, as the inhibition of one isoform leads to the up-regulation of other isoform(s). Previous studies have shown that Aurora-A and Aurora-B differ in localization, expression levels and timing of activity [15]. It is also known that Aurora-A and Aurora-B functions overlap in spindle assembly during metaphase and spindle disassembly during anaphase [30]. Specifically, inactivation of both Aurora-A and Aurora-B resulted in a significant loss of microtubules resulting from unregulated activity of microtubule depolymerases Kif18B and MCAK [31]. Although it has been established that these microtubule depolymerases are substrates of Aurora kinases, the interaction between these proteins requires further investigation as phosphorylation of different residues promote and inactivate microtubule depolymerase activity [30]. With respect to spindle disassembly, combined Aurora-A and Aurora-B inactivity resulted in the inhibition of microtubule depolymerization during anaphase, halting the movement of sister chromatids to opposite poles of the cell [32]. Although additional information is required regarding this process, it is important to note that individual targeting of Aurora-A or Aurora-B does not affect microtubule depolymerization, supporting the overlap in function of these kinases [30]. Similarly, in addition to histone H3 and CENP-A, other mitotic substrates of both Aurora-A and Aurora-B have been identified, such as CENP-E, which is important for the transport of chromosomes to the spindle equator and ensuring proper chromosomal alignment [30,33,34]. Since there are overlapping functions and substrates between Aurora kinase isoforms, it is possible that when one isoform is inhibited, the other isoform increases in activity to compensate for this loss of function.

These results indicate that although individual Aurora-A inhibitors (MLN8237) and individual Aurora-B inhibitors (AZD1152) have shown promising activity in in vitro and in vivo studies, the targeting of individual isoforms may result in the increased activity of other isoforms. Even though these data are suggestive of potential compensatory mechanisms among the different isoforms, additional experimental evidence is needed to show that such a process may lead to the development of resistance to Aurora kinase inhibitors. Other mechanisms of resistance have been shown to be associated with Aurora kinase inhibition, including p53 as a regulator of translation and MDR proteins, autophagic proteins involved in the lysosome dependent degradation of cytoplasmic organelles and proteins and factors involved in cellular metabolism [35]. These proteins may be considered as targets for combined therapy with Aurora kinase inhibitors to decrease the incidence of resistance, particularly in subpopulations involved in the development of relapsed leukemia. In addition, Aurora kinases in conjunction with supplementary pathways important for leukemogenesis may also be targeted, through combined therapy or multi-targeted inhibitors.

Data presented herein provide strong rationale to expand the current studies in a number of key directions. Importantly, the rational selection of Aurora kinase inhibitors in combination with chemotherapeutic agents or radiation may lead to increased cellular sensitivity to these therapeutic modalities. A number of studies have suggested the ability of Aurora kinase inhibitors to show synergy or potentiation with chemotherapies such as cytarabine [36], vomostatin [37], doxorubicin [27], vincristine [38], docetaxel [39] and daunorubicin [40]. In addition, the differential sensitivity of distinct leukemia subtypes such as high risk AML or BCR-ABL positive leukemia to Aurora kinase inhibitors should be explored further to optimize the efficacy of this family of agents [41–43].

In conclusion, the data presented indicate that Aurora kinase inhibitors are effective against pediatric and infant leukemia cell lines and primary samples, but may vary significantly among individual agents, possibly based on substrate availability and off-target effects. It was determined that the application of these inhibitors promotes apoptosis and when one Aurora kinase
isofom is inhibited, the activity of the other isofom(s) may increase in a compensatory manner. Given the overlap in function between Aurora kinases, it is conceivable that this increase in activity may act to overcome the loss of function of the inhibited isoform, which may result in decreased cytotoxicity and potential therapy induced development of resistance. Importantly, the data presented provide rationale for further evaluation of Aurora kinases as druggable targets for therapeutics in refractory pediatric leukemia. In addition, we present evidence for the considerable variability seen among the different agents and provide impetus to explore avenues for personalized treatment options based on target modulation studies on individual patient specimens.

Supporting information

Table S1 Characteristics of cell lines investigated in this study. Pediatric and infant leukemia cell lines and leukemia cell lines with molecular abnormalities commonly seen in pediatric leukemia.

References

1. Pai C-H, Jha S (2007) New therapeutic strategies for the treatment of acute lymphoblastic leukemia. Nat Rev Drug Discov 6: 149–165. doi:10.1038/nrd2240.
2. Paumula SE, Ross JA, Aplicc R, Spector LG (2013) Epidemiology of childhood acute myeloid leukemia. Pediatr Blood Cancer 60: 729–733. doi:10.1002/pbc.24664.
3. Pai C-H, Carroll WL, Aplenc R, Spector LG (2013) Epidemiology of childhood acute myeloid leukemia samples representing several types of pediatric leukemias are summarized.

Author Contributions

Conceived and designed the experiments: AJ AN. Performed the experiments: AJ. Analyzed the data: AJ. Contributed reagents/materials/analysis tools: YR TT AN. Wrote the paper: AJ AN.
41. Smith CC, Shah NP (2013) The role of kinase inhibitors in the treatment of patients with active myeloid leukemia. Am Soc Clin Oncol Educ Book ASCO Am Soc Clin Oncol Meet: 313–318. doi:10.1200/EdBook_AM.2013.33.313.

42. Akahane D, Tauchi T, Okabe S, Nunoda K, Ohyashiki K (2010) Activity of a novel Aurora kinase inhibitor against the T315I mutant form of BCR-ABL: in vitro and in vivo studies. Cancer Sci 99: 1251–1257. doi:10.1111/j.1349-7006.2008.00810.x.

43. Okabe S, Tauchi T, Ohyashiki K (2010) Efficacy of MK-0457 and in}

44. Carpinelli P, Ceruti R, Giorgini ML, Cappella P, Gianellini L, et al. (2007) Phase I pharmacokinetic and pharmacoodynamic study of the aurora kinase inhibitor danusertib in patients with advanced or metastatic solid tumors. J Clin Oncol Off J Am Soc Clin Oncol 25: 5094–5101. doi:10.1200/JCO.2006.02.0403.

45. Steeghs N, Eskens FALM, Gelderblom H, Verweij J, Nortier JWR, et al. (2009) Assessment of the in vivo antitumor effects of ENMD-2076, a novel Aurora kinase inhibitor with potent antitumoral activity. Clin Cancer Res Off J Am Assoc Cancer Res 15: 2057–2070. doi:10.1158/1535-7163.MCT-10-0709.

46. How J, Yee K (2012) ENMD-2076 for hematological malignancies. Expert Opin Investig Drugs 21: 717–732. doi:10.1517/13543780.2012.680892.

47. Tentler JJ, Bradshaw-Pierce EL, Serkova NJ, Hasebrock KM, Pitts TM, et al. (2010) Mechanism of action of the Aurora kinase inhibitor CCT129202 and in vivo quantification of biological activity. Mol Cancer Ther 9: 3147–3157. doi:10.1158/1535-7163.MCT-09-0990.

48. Aliagas-Martin I, Burdick D, Corson L, Dtono J, Drummond J, et al. (2012) Enhancing chemosensitivity in ABCB1- and ABCG2-overexpressing Cells and Cancer Stem-like Cells by An Aurora Kinase Inhibitor CCT129202. Mol Pharm. doi:10.1021/mp2006714.

49. Arbitrario JP, Belmont BJ, Evanich MJ, Flanagan WM, Bavetsias V, et al. (2007) Effect of Aurora B on mitotic kinetochore structure and Cenp-E to kinetochores. J Cell Biol 161: 267–280. doi:10.1083/jcb.20061205.

50. Kelly KR, Ezedey J, Medina E, Mahalingam D, Padmanabhan S, et al. (2011) The novel Aurora A kinase inhibitor MLN8237 is active in resistant chronic myeloid leukemia and significantly increases the efficacy of nilotinib. J Cell Mol Med 15: 2037–2070. doi:10.1111/j.1582-4934.2010.01218.x.

51. Wang S, Middley CA, Scatrou F, Grabarek JB, Griffiths G, et al. (2010) Discovery of N-(phenyl-4-(thiazol-5-yl)pyrimidin-2-amine aurora kinase inhibitors. J Med Chem 53: 4367–4376. doi:10.1021/jm901913s.

52. Lok W, Klein RQ, Safi MW (2010) Aurora kinase inhibitors as anti-cancer therapy. Anticancer Drugs 21: 339–350. doi:10.1097/CAD.0b013e3283359d41.

53. Arbitrario JP, Belmont BJ, Evanich MJ, Flanagan WM, Bavetsias V, et al. (2007) Mechanism of action of the Aurora kinase inhibitor CCT129202 and in vivo quantification of biological activity. Mol Cancer Ther 6: 3147–3157. doi:10.1158/1535-7163.MCT-07-2156.

54. Cheng C, Liu Z-G, Zhang H, Xie J-D, Chen X-G, et al. (2012) Enhancing chemosensitivity in ABCB1- and ABCG2-overexpressing Cells and Cancer Stem-like Cells by An Aurora Kinase Inhibitor CCT129202. Mol Pharm. doi:10.1021/mp2006714.

55. Chan F, Sun C, Preumal M, Nguyen Q-D, Ravetias Y, et al. (2007) Discovery of a potent and selective aurora kinase inhibitor with unusually high selectivity against Aurora A. J Med Chem 52: 3300–3307. doi:10.1021/jm0600314.

56. Emanuel MJ, Steenkregg PT (2009) Probing Kinetochore Structure and Function Using Xenopus laevis Frog Egg Extracts. In: McAinsh AD, editor. Mitosis. Methods in Molecular Biology. Humana Press. pp. 221–232. Available: http://link.springer.com/protocol/10.1007/978-1-60327-993-2_13. Accessed 2013 October 17.

57. Dickfeld C, Johnson VL, Tigh A, Elston R, Haworth C, et al. (2003) Aurora B couples chromosome alignment with anaphase by targeting Bub1B1, Mad2, and Cdc20 to kinetochores. J Cell Biol 161: 267–280. doi:10.1083/jcb.200208091.

58. Emanuele MJ, Stukenberg PT (2009) Probing Kinetochore Structure and Function Using Xenopus laevis Frog Egg Extracts. In: McAinsh AD, editor. Mitosis. Methods in Molecular Biology. Humana Press. pp. 221–232. Available: http://link.springer.com/protocol/10.1007/978-1-60327-993-2_13. Accessed 2013 October 17.

59. Ditchfield C, Johnson VL, Tigh A, Elston R, Haworth C, et al. (2003) Aurora B couples chromosome alignment with anaphase by targeting Bub1B1, Mad2, and Cdc20 to kinetochores. J Cell Biol 161: 267–280. doi:10.1083/jcb.200208091.

60. Emanuel S, Rugg CA, Grunning RH, Liu R, Fuentes-Pesquera A, et al. (2005) The in vitro and in vivo effects of [JNJ-7006621]: a dual inhibitor of cyclin-dependent kinases and aurora kinases. Cancer Res 65: 9038–9046. doi:10.1158/0008-5472.CAN-05-0882.

61. Seamon JA, Rugg CA, Emanuel S, Calcagno AM, Ambudkar SV, et al. (2006) Role of the ABCG2 drug transporter in the resistance and oral bioavailability of a potent cyclin-dependent kinase/Aurora kinase inhibitor. Mol Cancer Ther 5: 2459–2467. doi:10.1158/1535-7163.MCT-06-0339.

62. Tyler RK, Shpiro N, Marquez R, Eyers PA (2007) VX-680 inhibits Aurora A and Aurora B kinase activity in human cells. Cell Cycle Georget Tex 6: 2846–2854. doi:10.1007/s00277-010-0998-x.

63. Lok W, Klein RQ, Safi MW (2010) Aurora kinase inhibitors as anti-cancer therapy. Anticancer Drugs 21: 339–350. doi:10.1097/CAD.0b013e3283359d41.

64. Harrington EA, Bebbington D, Moore J, Rasmussen RK, Ajose-Adeogun AO, et al. (2004) VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nat Med 10: 262–267. doi:10.1038/nm1003.