Tailoring phase transition from topological superconductor to trivial superconductor
induced by magnetic textures of a spin-chain on a p-wave superconductor

Pritam Chatterjee,1, 2, * Saurabh Pradhan,3, † Ashis K. Nandy,4, ‡ and Arijit Saha 1, 2, §

1 Institute of Physics, Sachivalaya Marg, Bhubaneswar-751005, India
2 Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
3 Lehrstuhl für Theoretische Physik II, Technische Universität Dortmund Otto-Hahn-Str. 4, 44221 Dortmund, Germany
4 School of Physical Sciences, National Institute of Science Education and Research, An OCC of Homi Bhabha National Institute, Jatni 752050, India

We theoretically investigate the phase transition from a non-trivial topological p-wave superconductor to a trivial s-wave like superconducting phase through a gapless phase, driven by different magnetic textures as an one-dimensional spin-chain impurity, e.g., Bloch-type, in-plane and out-of-plane Néel-type spin-chains etc. In our proposal, the chain of magnetic impurities is placed on a spin-triplet p-wave superconductor where we obtain numerically as well as analytically an effective s-wave like pairing due to spin rotation, resulting in gradual destruction of the Majorana zero modes present in the topological superconducting phase. In particular, when the impurity spins are antiferromagnetically aligned i.e., spiral wave vector $G_s = \pi$, the system becomes an effective s-wave superconductor without Majorana zero modes in the local density of states. The Shiba bands, on the other hand, formed due to the overlapping of Yu-Shiba-Rusinov states play a crucial role in this topological to trivial superconductor phase transition, confirmed by the sign change in the minigap within the Shiba bands. We also characterize this topological phase transition via gap closing and winding number analysis. Moreover, interference of the Shiba bands exhibiting oscillatory behavior within the superconducting gap, $-\Delta_p \to \Delta_p$, as a function of G_s, also reflects an important evidence for the formation of an effective s-wave pairing. Such oscillation is absent in the p-wave regime. We also analyse the case of two-dimensional p-wave superconductor hosting Majorana edge modes (in absence of any magnetic chain) and show that initially Majorana zero modes (in presence of one-dimensional magnetic chain) can hybridize with such Majorana edge modes. Interestingly, in the topological regime with a fixed G_s value, the Mazorana zero modes survive at the ends of the magnetic chain even when the Majorana edge states disappear at some critical value of the chemical potential and exchange coupling strength.

I. INTRODUCTION

Topological phases of matter have been at the forefront of research in modern condensed matter physics for the past few decades. Due to nonlocal properties of these phases it is not possible to characterize the state of matter with a single physical order parameter. Instead, we need to define a topological invariant which can only take some discrete integer values. Quantization of the Hall conductance was the first signature of non-trivial topological states of matter [1]. However, the theoretical and experimental discovery of the quantum spin Hall effect in two-dimensional (2D) systems [2–6] characterized by Z_2 topological invariant [7, 8] have attracted a great deal of attention for the last two decades. These concepts have also been extended to three-dimensional (3D) materials with non-trivial topological features in the band structures [9–17]. The above ideas of topology were restricted to the system with a band gap and as a result these systems were insulators. However, later it was realized that the topological classification are in principle valid for a manybody state with a band gap in the spectrum [18]. In this regard, Kitaev’s elegant model was developed to characterize the topological superconductor (TSC) for an one-dimensional (1D) system [19, 20]. Earlier, Read and Green proposed the idea of TSC in fractional quantum Hall state based on a 2D system [21]. Later on, Fu and Kane emphasized the realization of TSC on the 2D surface of a 3D topological insulator, in close proximity to a s-wave superconductor and magnetic insulator [22].

Intriguingly, these TSCs host Majorana zero modes (MZMs) which are of their own anti-particle and satisfy non-abelian statistics [23–26]. These MZMs are also suggested to be beneficial for topological quantum computation as they are free from decoherence by the environment [26]. In this context, theoretical proposals [27, 28] to engineer such a TSC from a semiconducting 1D nanowire with Rashba spin-orbit coupling have stimulated a lot of recent exciting experiments towards realizing this exotic phase hosting MZMs. The zero bias peak, observed in several transport experiments based on hybrid superconductor-semiconductor systems, has been interpreted as the indirect signatures of Majorana fermions [29–34]. However, this conclusion still remains openly debated.

In recent times, much attention has been directed at an alternative proposal, where a TSC phase can be realized in a chain of magnetic impurities placed on the surface...
of a s-wave superconductor [35–54]. Physically, magnetic impurities placed on a conventional superconductor give rise to Yu-Shiba-Rusinov (YSR) states [55–58]. The individual localized YSR states can hybridize and form a band called Shiba band. The helical spin texture plays the combined role of the spin-orbit coupling and external magnetic field in the 1D nanowire proposal [27, 28]. As a result, the topological superconducting phase can be effectively realized in the Shiba bands, akin to spinless p-wave superconductors (Kitaev model) hosting MZMs at the two ends of the 1D spin-chain [19, 59–61]. A particular advantage of the YSR chain proposal is that the signature of YSR states or topological MZMs can be experimentally detected by scanning tunneling microscopy (STM) measurements [62–66].

In our work, we take the opposite route in which a chain of magnetic impurities is placed on a spin-triplet p-wave superconducting substrate. Although (pseudo) spin triplet or odd-parity superconductors are rarely observed in nature, various successful attempts are made to host unconventional superconductivity in materials e.g., heterostructures by growing a layer on a Rashba superconductor [67], superconducting doped topological insulator [68–70] etc. However, here we would not like to make any direct connection between our theoretical toy model and promising candidate material and relevant experiments. We rather investigate the effect of various magnetic textures in the form of in-plane and out-of-plane Néel-type, Bloch-type etc spin-spirals (SSs) on the topological superconducting phase. Depending on the spin configuration of the magnetic impurities, we observe a phase transition from TSC to trivial superconductor. As a result, the MZMs disappear via a gap closing within the Shiba bands. The system periodically returns back to the original TSC phase as the spins rotate back to their initial configuration. Considering a lattice model, we also show that the Majorana peak height in the local density of states (LDOS) gradually becomes smaller and eventually vanishes in the trivial phase. This also becomes evident from similar analysis in our 2D model. Initially, the MZMs can hybridize with the Majorana edge modes (MEMs) present for a pure 2D p-wave superconducting substrate i.e., in the absence of any magnetic spin chain. Such MEMs disappear at some critical value of the chemical potential and exchange coupling strength and hence, only the MZMs survive within the Shiba bands. These MZMs are further destroyed as we tune the spin configuration of the magnetic impurities. We further analytically emphasize that the spin configuration of the magnetic impurities induces an effective s-wave pairing in the non-trivial phase of the magnetic chain, resulting in a phase transition between topologically non-trivial to trivial superconductors.

The remainder of the paper is organized as follows. In Sec. II, we present our 1D lattice model including various possible configurations of the impurity spin-chains. We discuss our numerical results for the band spectrum, LDOS, topological invariant and analytical results for the effective pairing gap in Sec. III. In Sec. IV, we discuss our 2D results based on a lattice model. Finally, we summarize and conclude our paper in Sec. V.

II. MODEL HAMILTONIAN AND IMPURITY SPIN TEXTURE

In this section we construct a 1D tight-binding lattice model considering different orientations of the impurity spin-chains and our supporting observable.

A. Tight-binding Model and different impurity spin configurations

We consider a 1D chain of magnetic impurities placed on a superconducting substrate essentially with p-wave (spin-triplet) pairing. Our setup is schematically shown in Fig. 1. We can effectively describe this system using a 1D lattice model with the following Hamiltonian,

\[
H = \sum_{l,\alpha}(t_l c_{l,\alpha}^\dagger c_{l+1,\alpha} + \text{h.c.}) - \mu \sum_{l,\alpha} c_{l,\alpha}^\dagger c_{l,\alpha} + \sum_{l,\alpha,\beta}(\tilde{B}_l \hat{\sigma})_{\alpha,\beta} c_{l,\alpha}^\dagger c_{l,\beta} + \Delta_p \sum_{l,\alpha} (c_{l,\alpha}^\dagger c_{l+1,\alpha} + \text{h.c.})
\]

where, \(c_{l,\alpha}^\dagger\) and \(c_{l,\alpha}\) correspond to electron creation and annihilation operators, respectively for the superconductors, \(t\) is the electron hopping amplitude between adjacent spins in the 1D chain, \(\mu\) is the chemical potential and \(\Delta_p\) is the spin symmetric triplet order parameter of the superconductor [61, 71]. The doping of electron or hole depends on the sign of \(\mu\). Here, we assume \(t_1 = t_1^* = t\) and set \(t = 1\) for the overall energy scale of our system. Third term represents the exchange coupling between the magnetic impurity spin and the electron spin of the superconductor. We assume that all magnetic impurity spins in the chain are classical spins and each spin is represented by a three-dimensional vector with a magnitude \(S\). This assumption only remains valid for large \(S\) were the quantum fluctuations of impurity spins can be neglected. Hence, the impurity spins interacting with the electronic spin \(\hat{\sigma}\) can be replaced by an effective local magnetic field as \(\tilde{B}_l = B_0 \hat{S}_l\) in our model, where \(B_0 = JS\), \(J\) is the magnetic exchange coupling strength, \(\hat{S}_l\) is the site dependent impurity spin direction. Also, \(l\) and \(\alpha, \beta\) correspond to the lattice sites and spin indices, respectively. Then one can write the unit vector along impurity spin direction in spherical polar coordinate system [35, 36] as,

\[
\hat{S}_l = \sin \theta_l \cos \phi_l \hat{i} + \sin \theta_l \sin \phi_l \hat{j} + \cos \theta_l \hat{k} ,
\]

where \(\theta_l = G_s x_1\) [72] and \(\phi_l = G_s x_1\) [73], \(x_1 = l a\), \(a\) is the lattice constant which has been considered to be unity. Note that, \(\theta\) (cone angle) and \(\phi\) are two important quantities to determine the noncollinear spiral configuration. For a fixed value of \(\phi_l (\theta_l)\), \(G_s (G_h)\) determines the period
of SS. In our model, the impurity spin-chain propagates along the x direction as shown in Fig. 1. There is a number of cases arise depending on different configurations of the impurity spins [37] and few cases are mentioned below.

1. When \(\phi_l = 0 \) and \(\theta_l = G_x x_l \), then the impurity spin rotates in the \(xz \)-plane as shown in Fig. 1, named SS1. Therefore, spin rotation axis lies perpendicular to the direction of propagation of the SS. This is called out-of-plane Néel-type SS configuration [74].

2. On the other hand, spiral configuration with \(\phi_l = \pi/2 \) and \(\theta_l = G_s x_l \) correspond to rotation axis of impurity spins parallel to the direction of propagation i.e., in the \(yz \)-plane [38, 39, 75]. Such configuration with helical modulation is called Bloch-type SS configuration, named SS2 in Fig. 1.

3. Now, if \(\theta_l \), the cone angle is fixed to \(\pi/2 \) and \(\phi_l = G_h x_l \), impurity spins rotate in the \(xy \) plane with rotational axis perpendicular the \(x \)-axis. Such configuration is known as in-plane Néel-type SS, named SS3 in Fig. 1. This type of SS configuration is also commonly known as flat spiral. Additionally, for \(0 < \theta_l < \pi/2 \) and \(\phi_l = G_h x_l \), the spiral structure takes the conical SS form.

4. One can in general consider the situation where both \(\theta_l \) and \(\phi_l \) change with respect to the lattice site index \(l \), resulting in a complex spin texture (see Fig. 2(b) as a schematic example).

In our analysis, we mainly focus on case 1 and 4 throughout the paper. After transforming to the Bogoliubov basis \(\Phi_l = (c_{l,\uparrow}, c_{l,\downarrow}, c_{l,h,\uparrow}, c_{l,h,\downarrow}, -c_{l,\uparrow}) \), the Hamiltonian in Eq. (1) takes the form

\[
H = \sum_l (\Phi_l^\dagger \mathcal{T}_l \Phi_{l+1} + h.c) + \Phi_l^\dagger \mathcal{E}_l \Phi_l ,
\]

where the matrices \(\mathcal{T}_l \) and \(\mathcal{E}_l \) can be written as,

\[
\mathcal{T}_l = \begin{pmatrix} t & 0 & 0 & -\Delta_p \\ 0 & t & \Delta_p & 0 \\ -\Delta_p & -t & 0 \\ 0 & 0 & 0 & -t \end{pmatrix},
\]

\[
\mathcal{E}_l = \begin{pmatrix} -\mu \sigma_0 + \vec{B}_l \cdot \vec{\sigma} & O_{2 \times 2} \\ O_{2 \times 2} & \mu \sigma_0 + \vec{B}_l \cdot \vec{\sigma} \end{pmatrix}.
\]

Here, \(\sigma_0 \) and \(\vec{\sigma} = (\sigma_x, \sigma_y, \sigma_z) \) are 2 \(\times \) 2 identity matrix and Pauli matrices in spin space, respectively and \(O_{2 \times 2} \) is a null matrix. Index \(l \) runs from 0 to \(N \) (any finite number of lattice sites). We consider \(N = 48 \) throughout our numerical computation employing open boundary condition (OBC).

B. Observable

To understand the physical presence of MZMs in a real system, one needs to calculate the LDOS [35, 66]. This identifies the topological superconducting phase by manifesting a zero-bias peak (ZBP) associated with the MZMs at the end of the impurity spin-chain, whereas, the middle of the system exhibits the presence of Shiba bands within the superconducting gap [35, 66]. Energy difference between the two Shiba bands main peaks (on either side of the Majorana ZBP) can be defined as a bandgap, called “minigap” \(\Delta_m \) [35]. Sign change of this minigap corresponds to non-topological to topological phase transition [35, 38]. The quasiparticle LDOS for \(i \)th site and at a given energy \(E \) can be defined as [35, 40],

\[
D_i(E) = \sum_{n\sigma} (|u_{in}^e|^2 + |v_{in}^h|^2) \delta(E - E_n) ,
\]

where, \(u_{in}^e \) and \(v_{in}^h \) are the electron like and hole like quasiparticle amplitudes, respectively. Here, \(n \) and \(\sigma \) being the eigenvalue and spin indices, respectively.

III. RESULTS

In this section, we discuss our numerical results based on the lattice model as well as the analytical treatment by considering a continuum model to support the former. We mainly focus on the discussions of how the topological properties of the system, in particular, the MZMs in the TSC phase are gradually destroyed due to the effect of different SS configurations, captured in their LDOS behavior. This essentially establishes that the p-wave superconducting gap contribution gradually decreases and the s-wave pairing gap amplitude grows with the controlled modulation of \(G_h \) and \(G_s \) in spin-chains.
A. LDOS at \(E=0 \) in \(G_s-G_h \) plane

In this subsection, we discuss the results of our model mainly for a general case where a chain of magnetic impurities along \(x \)-direction is engineered via controlled variations of \(G_s \) and \(G_h \) on top of a \(p \)-wave superconducting substrate. Due to the freedom of choosing different rotational configurations of impurity spins on the surface of a sphere, governed by \(G_s, G_h \) values, interesting phenomena can occur on the Majorana ZBP and the corresponding topological phase. In Fig. 2, we summarize our results in the \(G_s-G_h \) plane. Fig. 2(a) illustrates the schematic of a special case of SS with the rotation axis perpendicular to the \(xz \)-plane. Hence, along the \(G_h=0 \) line \((\phi_l=0)\), the linearly varying \(\theta_l \) with lattice sites keeps Néel-type spin rotation with a period \(\frac{2\pi}{G_s} \) in the unit of lattice constant. Furthermore, Fig. 2(b) schematically represents the more general case of a SS configuration with an arbitrary rotational axis direction due to both \(G_s, G_h \neq 0 \) i.e., both \(\theta_l \) and \(\phi_l \) vary linearly with the lattice sites.

![Fig. 2](image)

FIG. 2. (a) Spin-chain configuration for the Néel-type rotation in the \(xz \)-plane for \(G_h = 0 \). (b) Spin-chain configuration for the general type of rotation on a sphere, where both \(G_s, G_h \neq 0 \). (c) Numerical results for LDOS peak height at \(E=0 \) is shown in the \(G_s-G_h \) plane. The color bar at the right most indicates the amplitude of LDOS peak in an arbitrary unit. Here, we choose the other model parameters as \(\mu = 4t, B_0 = 5t, \Delta_0 = t \).

In Fig. 2(c), we show the variation of zero-energy LDOS as a function of \(G_s \) and \(G_h \) such that both \(\theta_l \) and \(\phi_l \) vary with the 1D lattice sites. Here, LDOS is computed employing the formula mentioned in Eq. (6). Also this LDOS is presented corresponding to the end of the finite chain where MZMs are present in the topological regime. At the four corner points in Fig. 2(c) corresponding to \(G_s, G_h = \{ (0,0), (0,2\pi), (2\pi,0) \) and \((2\pi,2\pi) \), the alignment of all spins is ferromagnetic in the chain. Those corner points and their nearby regime indicate Kitaev chains [19, 60] with pure spin symmetric triplet \(p \)-wave pairing gap \(\Delta_p \), highlighted by maroon color regime within the dashed white line in Fig. 2(c). The LDOS at zero-energy becomes maximum at those points, indicating topological superconducting phase hosting MZMs at the ends of the chain. Additionally, the red region beyond the white dashed line in Fig. 2(c) where the noncollinear spin configurations are determined by \(G_s, G_h \neq 0 \), the \(p \)-wave pairing is significantly strong enough to host MZMs which, however, gradually disappears in the blue region. This is due to the fact that an effective \(s \)-wave pairing is generated, giving rise to a trivial phase in the deep blue region. As a result, the LDOS peak height at \(E = 0 \) decreases significantly to a small value from its maximum value of about 0.25 (in arbitrary unit [35]). Therefore, the thin white regime separating red and blue regions in Fig. 2(c), represents roughly the phase boundary between topologically non-trivial and trivial superconducting phases via a non-trivial gap closing. Note that, when it enters into the topologically trivial phase, the zero energy LDOS peak height becomes vanishingly small and a trivial \(s \)-wave gap opens along \(G_s = \pi \) line, as indicated by a vertical dashed line at the middle of Fig. 2(c). In this regime, no MZMs are present as the \(p \)-wave pairing contribution is destroyed and the system hosts an effective \(s \)-wave pairing (see further discussion on this effective \(s \)-wave contribution in the subsequent sub-sections).

B. Topological characterization

![Fig. 3](image)

FIG. 3. (a) Bandgap \((E_2 - E_1) \) (normalized by \(\Delta_0 \)) is shown as a function of two spiral wave vectors \(G_s \) and \(G_h \) considering purely \(p \)-wave pairing. Here, we choose \(\mu = 4t, B_0 = 5t \). (b) Winding number \(W_n \) is depicted as a function of \(G_s \) for the Néel-like \((\phi_l = 0)\) rotation of the magnetic impurities. The gap closing points and the concomitant jumps of \(W_n \) indicate the topological phase transition.

From the features of LDOS, one can only observe how the Majorana peak height gradually decreases as we tune the spiral wave vector configuration. In this regard, we
illustrate the variation of gap structure \(|E_2 - E_1|/\Delta_0\) in \(G_s-G_h\) plane where the maroon lines (one such marked by the dashed white line for guide to the eye) indicate the boundary region between topologically non-trivial \((W_n = +1)\) and trivial \((W_n = 0)\) phase (see Fig. 3(a)). It has been clearly shown that when \(G_h = 0\), gap closing takes place around \(G_s \sim 2.5\). In order to characterize the topological phase of our model, we also calculate the topological invariant considering the Néel type SS configuration. As our lattice model doesn’t satisfy translation symmetry, but continues to preserve the chiral symmetry in the presence of the magnetic impurities, we follow Refs. [76, 77] to compute the winding number \(W_n\) in real space. The corresponding winding number \(W_n\) is shown for the case when \(\phi_l = 0\) and \(\theta_l = G_s l a\) (Néel type as shown in Fig. 1) in Fig. 3(b). It is evident that there are sharp topological phase transition around \(G_{s1} = 2.5\) and \(G_{s2} = 3.7\) where \(W_n\) jumps from 1\(\rightarrow 0\) in accordance with the gap \(|E_2 - E_1|\) closing points. This also matches with the \(G_h = 0\) line of Fig. 3(a). The topological superconducting phase with \(W_n = +1\) hosts Majorana zero modes. This gives a clear signature of the topological phase transition in our model. Furthermore, for the Néel type rotation, an analytical understanding of the gap structure is presented in Appendix C.

C. Detailed study of the topologically non-trivial to trivial superconductor phase transition for Néel type rotation in the magnetic impurity-chain

In this subsection, we further discuss the outcome for a Néel-type rotation of impurity spin-chain, SS1 depicted in Fig. 1. In this case, we obtain the variation of different physical quantities for a SS with varying period by changing \(G_s\) while keeping \(\phi_l = 0\). In Fig. 4(a)-(e), we show the eigenvalue spectrum for different values of \(G_s\), considering a finite size system with OBC. Those \(G_s\) values are approximately marked by the cyan dots on the \(G_s\) axis of Fig. 2(c). This enables one to understand the appearance and disappearance of MZMs under the influence of SS period. For \(G_s = 0\) and \(2\pi\), a pair of MZMs appears at the two ends of a finite chain due to pure \(p\)-wave superconductivity i.e., the Kitaev limit [19, 59–61]. Around these points, MZMs appear with the following condition \(B_0 \geq \sqrt{\mu^2 + \Delta_p^2}\) [27, 28], akin to the 1D nanowire case. Due to the modulation of SS wave vector by changing \(G_s\), the topological superconducting gap or the minigap, \(\Delta_m\), within the Shiba bands gradually decreases and the MZMs lying in the gap disappear from the system for \(G_s = 2.45\). Interestingly, a nontrivial gap closing takes place within the Shiba bands for a particular period of the SS corresponding to \(G_s = 2.45\) as shown in Fig. 4(d). However, further modulation of \(G_s\) up to \(\pi\) opens up a trivial superconducting gap without MZMs in the system. The \(G_s = \pi\) represents an antiferromagnetic spin-chain configuration and with further rotation of spins from \(\pi\), the spin-chain will again become a ferromagnetic chain at \(G_s = 2\pi\) point. Therefore, within \(2\pi > G_s > \pi\), the phenomena repeats as we move away from \(2\pi\) point towards \(\pi\) point and the Kitaev phase reappears at \(G_s = 2\pi\).

The main underlying physics of our model is governed by the modulated spin textures which can be characterized by \(G_h\) and \(G_s\). Here, it is worth to mention that noncollinear magnetism \([75, 78]\) including spin-spiral order \([74]\) occurs due to the competition between underlying Heisenberg exchange interaction and the Dzyaloshinskii-Moriya (DM) interaction. In most cases where magnetic layer/chain is grown on metallic or semiconducting substrate, the ubiquitous Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange tensor between magnetic atoms contain both Heisenberg exchange and DM interactions. The antisymmetric DM interaction is the result of spin-orbit coupling that occurs in magnetic heterostructures due to the broken inversion symmetry. In addition, there may exist another spin-orbit coupling induced interaction parameter called axial magnetic anisotropy constant. In order to engineer \(G_s\), one needs to have control on these interaction parameters. Indeed, these parameters are highly tunable through intercalation \([79]\), electron doping \([78]\), thickness \([80]\), strain \([81]\), external electric filed \([82]\), and adjusting the interatomic distances \([83]\) etc. Hence, the smooth variation in \(G\) can be attributed to the high tunability of RKKY exchange tensor and magnetocrystalline anisotropy energy.

In the presence of superconducting substrate, the exchange frustration arises from the similar RKKY-type exchange interactions between the impurity spins \([38, 41, 84]\). Such RKKY-type interaction between two magnetic impurities at a distance \(x_{ij}\) can be mediated via the virtual exchange of electron-hole excitations whereas superconductivity prohibits this pairs with energy less than the superconducting gap. As a result, system exhibits an effective pairing gap which depends on \(x_{ij}\) and spin spiral wave vector. Hence, for our case, the physical reason behind the disappearance of zero-energy MZMs can be attributed to the fact that interplay of Néel-type spin spiral order and \(p\)-wave superconductivity generates an effective pairing gap which is \(s\)-wave in nature. This can be written in real space as

\[
\Delta_{ij}^{\text{eff}} = -\frac{\epsilon_0}{2} \delta_{ij} - (1 - \delta_{ij}) \left[\frac{\Delta_t}{\sqrt{1 + \Delta_p^2}} \sin(k_F' |x_{ij}|) + \gamma \Delta_t \cos(k_F' x_{ij}) \right] \\
\times e^{-i |x_{ij}| / \ell_0} \cos \left(\frac{G_s}{2} x_{ij} \right),
\]

where, \(x_{ij} = x_i - x_j\), \(k_F' = \frac{k_F}{\sqrt{1 + \Delta_p^2}}\), \(\Delta_p = \Delta_p / V_F\), \(\Delta_t = \frac{\Delta_p k_F}{\sqrt{1 + \Delta_p^2}}\), and \(\gamma = \frac{\Delta_p}{\sqrt{1 + \Delta_p^2}}\).
FIG. 4. (i) The first row, Fig. 4(a)-(e), represents the eigenvalue spectrum for a finite size 1D chain considering different values of spiral wave vector $G_s = 0.0, 1.57, 2.0, 2.5, 3.14$. Here, we choose the other model parameters as $\mu = 4t, B_0 = 5t, \Delta_p = t$. (ii) In the second row Fig. 4(f)-(j), we show the LDOS as a function of energy for the same set of SS wave vector G_s, and choosing the same parameter values as mentioned above. The Majorana ZBP is indicated by the red plots in panels (f)-(h) when LDOS is computed at the end of the finite chain. Whereas, blue plots denote the Shiba bands in LDOS when it is measured at the middle of the chain.

FIG. 5. (a) Band spectrum where the energy, E, is plotted as a function of G_s within the energy range $-\Delta_p$ to Δ_p. (b) Enlarged view of the energy spectrum is shown as a function of G_s, around the trivial gapped region in the vicinity of $G_s = \pi$. (c) LDOS at $E = 0$ is shown as a function of G_s and the vanishing LDOS represents the trivial s-wave gapped phase. (d) Variation of the absolute value of the minigap (Δ_m) is illustrated as a function of G_s. Here, other model parameters are chosen as $\mu = 4t, B_0 = 5t, \Delta_p = 1.0t$.

Here, $\xi_0 = V_F/\omega(0)$ is the superconducting coherence length, V_F and k_F are the Fermi velocity and Fermi momentum respectively, and $\omega(0) = \Delta_t/\sqrt{1 + \Delta_p^2}$. ϵ_0 is the YSR bound state energy in the deep Shiba limit when a single magnetic impurity is placed on a p-wave superconductor [85]. Detailed analytical derivation of Eq. (7) is presented in Appendix B based on a low-energy continuum model. It is evident from Eq. (7) that the nature of the effective gap is s-wave like as $\Delta_{ij}^{\text{eff}} = \Delta_{ji}^{\text{eff}}$. Due to the emergence of effective s-wave pairing, the system approaches to a trivial superconducting phase with the modulation of G_s within the range $\pi \approx G_s \approx 2.5$. Particularly at $G_s = \pi$, the SS corresponds to the antiferromagnetic spin-chain and the effective gap is purely s-wave type, consistent with the earlier reports [73].

To elaborate further, in Fig. 4(f)-(j), we discuss about the variation of LDOSs as a function of energy with different values of G_s. In the topological regime, if we compute the LDOS at the end of the finite chain, we obtain Majorana ZBP (red color) at exactly zero-energy ($E = 0$). On the other hand, feature of LDOS at the middle of the chain indicate non-topological Shiba band (blue color) within the superconducting gap $-\Delta_p$ to Δ_p [35, 66]. Distance between the two closest Shiba peaks on either sides of the $E = 0$ peak is called the minigap, Δ_m [35]. From Fig. 4(f), it is evident that the height of the Majorana ZBP for $G_s = 0$ is maximum, ≈ 0.25 in an arbitrary unit. Concomitantly, no Shiba peak appears within $-\Delta_p$ to Δ_p as the impurities are ferromagnetically aligned. Height of the Majorana peak at $E = 0$ decreases with the enhancement of G_s. Eventually at $G_s = 2.5$, Majorana ZBP disappears and it refers to a gapless phase in LDOS. Finally, we obtain some trivial gap in LDOS spectrum at $G_s = \pi$. Simultaneously, the signature of Shiba bands are reflected in the LDOS behavior within
ZBP height is maximum for the ferromagnetic spin-chain again as one changes s. The effective peak disappears. The corresponding gap in the LDOS from G_S behavior with change of p superconducting phase with a dominant system starts to tunes itself and the initial topological G_SS configuration, within a range $3.8 \gtrsim G_\text{S} \gtrsim 2.5$. Such type of oscillations can be another evidence of the G_S−wave superconducting phase oscillate as they interfere with each other in the presence of a magnetic impurity chain. This can be clearly visible in Fig. 5(b) where the interference of Shiba bands exhibits oscillations around $G_\text{S} = \pi$ SS configuration, within a range $3.8 \gtrsim G_\text{S} \gtrsim 2.5$. Such type of oscillations can be another evidence of the formation of an effective pure s-wave pairing and is absent in the non-trivial topological p-wave superconducting phase. In Appendix A, we discuss in detail that similar oscillations of Shiba bands can be obtained when 1D spin spiral is placed on a purely s-wave superconductor. Further increase in G_S beyond $G_\text{S} \approx 3.8$ value, the system starts to tunes itself and the initial topological superconducting phase with a dominant p-wave pairing reappears as shown by the normalized LDOS peak height behavior with change of G_S in Fig. 5(c). The Majorana ZBP height is maximum for the ferromagnetic spin-chain corresponding to $G_\text{S} = 0$ and 2π. As we tune the G_S towards π, a smooth variation of the Majorana peak height is observed as a function of G_S. Interestingly, it monotonically decreases up to $G_\text{S} \approx 2.5$ ($G_\text{S} \approx 3.8$) starting from $G_\text{S} \approx 0$ ($G_\text{S} \approx 2\pi$) and after that the Majorana peak disappears. The corresponding gap in the LDOS signifies emergence of topologically trivial phase with an effective s-wave pairing. Therefore, in a real system, one can control the appearance and disappearance of MZMs using the variation of SS wave vector. In Fig. 5(d), we depict the variation of the absolute value of the minigap (Δ_m) as a function of the G_S. The absolute value of Δ_m gradually decreases from its maximum value at $G_\text{S} = 0$ and vanishes around $G_\text{S} = 2.5$, referring to the topological phase in the system. A small plateau corresponding to $\Delta_m = 0$ indicates a gapless phase near $G_\text{S} = 2.5$ (see also Fig. 4(d) and (i)) and afterwards it’s magnitude rises again as one changes G_S. Hence, it is evident that there is a sign change of Δ_m within the Shiba bands, indicating a topological phase transition from a non-trivial p-wave to a trivial s-wave superconductor through a gapless phase.

D. Analytical results based on continuum model

In this subsection, we discuss our analytical approach for the Néel-type rotation in order to support our numerical results presented in the previous subsection. Our analytical calculation is based on an effective continuum theory of our lattice model in Eq. (1). Similar approach was reported earlier in case of a chain of magnetic impurities placed on a s-wave superconductor [38, 42, 43]. From the features of the energy spectrum, the effective gap structure and total density of states (DOS) presented in Fig. 6 and Fig. 7, respectively, we confirm the topological phase transition along with the nature of an effective s-wave pairing gap.

We begin from the low energy continuum model (Bogoliubov-de Gennes Hamiltonian (BdG)) in which a 1D chain of localized magnetic impurities is placed on a p-wave superconductor,

$$H = \xi_k \tau_z - \frac{1}{2} \sum_j \left(S^x_j \sigma^x \right) (x - x_j) + \Delta_p k \tau_y ,$$ \hspace{1cm} (8)

where, $\xi_k = k^2/2m - \mu$, k is the wave-vector corresponding to a model with 1D spin-chain placed on a superconducting substrate with pairing gap Δ_p. Particle-hole and spin degrees of freedom can be expressed in terms of the Pauli matrices σ and τ respectively. Starting from this model one can obtain an effective pairing gap in real space as mentioned in Eq. (7). The calculational details are presented in Appendix B. Hence, taking Fourier transform of this effective gap and diagonal components of the real-space Hamiltonian, we obtain diagonal elements (h_k) and effective pairing gap (Δ_k) as non-diagonal elements in momentum space. The analytical expressions of h_k and Δ_k for our 1D chain can be written as

$$h_k = \frac{\epsilon_0}{2} - \frac{1}{2} \sum_j \left(F_1 \delta(x - x_j) + \frac{\Delta_p}{2} \right) + \gamma \Delta_1$$

$$\frac{1}{2} \sum_j \left(F_2 \delta(x - x_j) + \frac{\Delta_p}{2} \right) ,$$ \hspace{1cm} (9)

$$\Delta_k = -\frac{\epsilon_0}{2} + \frac{1}{2} \sum_j \left(F_3 \delta(x - x_j) + \frac{\Delta_p}{2} \right) + \gamma \Delta_2$$

$$\frac{1}{2} \sum_j \left(F_3 \delta(x - x_j) + \frac{\Delta_p}{2} \right) .$$ \hspace{1cm} (10)

Therefore, from the BdG Hamiltonian (see Appendix B for details) we can obtain the effective energy spectrum of our system as $\epsilon_k = \pm \sqrt{k_F^2 + \Delta_p^2}$. In Eq. (9) and (10), $\epsilon_0 = 2\Delta_0/\alpha$ is the Shiba bound state energy for a single magnetic impurity placed on a p-wave superconductor [85], $\alpha = JS/(V_F \sqrt{1 + \Delta_p^2})$ is the impurity strength and the renormalized Fermi momentum, $k_F' = k_F/\sqrt{1 + \Delta_p^2}$. The corresponding functions which
FIG. 6. (i) In the first row, Fig. 6(a)-(e), we show the behavior of the energy eigenvalue spectrum ϵ_k for five different values of $G_s = 0.0, 1.57, 2.0, 2.55, 3.14$. (ii) Second row, Fig. 6(f)-(j), represents the variation of the on-site term h_k and the effective pairing gap Δ_k as a function of the propagating vector k, considering the same set of G_s values as mentioned above. Here, we choose the other parameters as $\epsilon_0 = 0$, $\xi_0 = 2\pi$, $k_Fa = (2\pi + G_s/2)$.

we have defined in Eq. (9) and (10) read,

$$F_1(k) = \Im \left[\frac{i}{1 - e^{\pi i / a} e^{-i(k_F + k)}} + \frac{i}{1 - e^{\pi i / a} e^{-i(k_F - k)}} \right],$$

$$F_2(k) = \Re \left[\frac{i}{1 - e^{\pi i / a} e^{-i(k_F + k)}} + \frac{i}{1 - e^{\pi i / a} e^{-i(k_F - k)}} \right],$$

$$F_3(k) = \Re \left[\frac{1}{1 - e^{\pi i / a} e^{-i(k_F + k)}} + \frac{1}{1 - e^{\pi i / a} e^{-i(k_F - k)}} \right],$$

$$F_4(k) = \Im \left[\frac{1}{1 - e^{\pi i / a} e^{-i(k_F + k)}} + \frac{1}{1 - e^{\pi i / a} e^{-i(k_F - k)}} \right],$$

where, ξ_0 is the superconducting coherence length. In principle, in our model Hamiltonian (Eq. (1)), we always consider $\xi_0 \to \infty$ limit so that mean field theory of superconductivity remains valid [86]. Therefore, in the theoretical model (Eq. (8)) we always consider $\xi_0 > a$ throughout our analysis.

In Fig. 6(a)-(e), we depict the variation of the energy spectrum ϵ_k for Néel-type rotation of the magnetic impurities, choosing different values of G_s. Moreover, Fig. 6(f)-(j) represent the variation of both the effective gap Δ_k and h_k as a function of k, employing Eq. (9) and (10), respectively. For $G_s = 0$ case, the superconducting gap is p-wave in nature. Therefore, we obtain a topologically non-trivial gap in the energy spectrum, see Fig. 6(a). This phase hosts MZMs. Afterwards, this gap became smaller in magnitude with increasing G_s, as one compares the gap around $\epsilon_k = 0$ in Fig. 6(b) and (c). Eventually, this gap closes at $G_s = 2.55$ and after that it again open up as evident from Fig. 6(d) and (e). Therefore, a topological phase transition takes place at $G_s = 2.55$. This phenomena can also be understood from the individual behavior of Δ_k and h_k for the same set of G_s values. Most importantly, this gap closing and reopening phenomena within our analytical treatment matches with our numerical results where it has been shown to take place at slight lower value of G_s, which is 2.5.

For $G_s = \pi$, when impurity spins form an antiferromagnetic spin-chain, the gap in the energy spectrum is trivial, see Fig. 6(e). However, this gap is not insulating as evident from the variation of Δ_k at $G_s = \pi$ in Fig. 6(j). Hence, one can conclude that it should be a trivial superconducting phase rather than a trivial insulator. To confirm that this superconducting phase is effective s-wave in nature, we compute the total DOS, both numerically as well as analytically, and compare their behavior at $G_s = \pi$ as a function of energy as shown in Fig. 7. We employ the following formula to numerically compute the total DOS as

$$D(E) = \frac{1}{\pi} \sum_n \delta(E - E_n),$$

where, the sum is taken over the energy eigenvalues (E_n) of Eq. (1) and $\delta(E - E_n)$ is modeled using a Lorentzian with broadening 0.01t. Analytically, normalized total DOS can be calculated from the formula,

$$D(E) = \int_{-\pi}^{\pi} \frac{dk}{2\pi} \delta(E - \epsilon_k),$$

where, $\epsilon_k = \pm \sqrt{h_k^2 + \Delta_k^2}$ and we use Eq. (9) and (10). Note, we obtain qualitatively similar features of total
Hence, one cannot distinguish between the MEMs and MZMs in this regime. However, MEMs disappear at some specific values of the \(\mu \) and \(B_0 \) even when the chain is in the topological regime. Only MZMs can survive and they are localized at the two ends of the chain. In this case, the Shiba states are energetically separated from the rest of the system. This is the prime reason for the suppression of the hybridization of the MZMs with the MEMs. Hence, this features hint towards an interesting interplay between \(\mu \) and \(B_0 \), which makes the distinction between MEMs and MZMs possible when the chain is in the topological regime. However, it is difficult to find an analytical condition between \(\mu \) and \(B_0 \) in the case of a 2D p-wave superconductor in presence of the magnetic spin chain. Although, the above mentioned features are evident from our numerical results based on the 2D p-wave superconductor. In Fig. 8(a), we depict the LDOS at \(E = 0 \) in \(L_x - L_y \) plane choosing \(B_0 = 0.0 \) and \(\mu = 2.0t \). In absence of any spin chain, the system is a purely 2D p-wave superconductor where MEMs appear and it is also reflected in the corresponding eigenvalue spectrum [see Fig. 8(e)]. On the other hand, at any intermediate values of \(\mu \) and \(B_0 \), the MZMs hybridize with the MEMs as shown via LDOS [Figs. 8(b)-(c)] and the corresponding eigenvalue spectrum [Figs. 8(f)-(g)]. Further, MEMs disappear when \(\mu = 4.0t \) and \(B_0 = 5.0t \), only MZMs present and localized at the two ends of the chain [see Fig. 8(d)]. In this case, we obtain gapped eigenvalue spectrum and only two localized MZMs appear at exactly \(E = 0 \) [see Fig. 8(h)]. In the above cases, we fix the spiral wave vector at \(\phi_s = 0.5 \) i.e., the chain is in the topological regime.

As we start increasing \(G_s \), the MZMs are gradually destroyed by the modulation of the spiral wave vector. It is clear from Fig. 9 that \(G_s \) drives the system from topological superconductor to trivial superconductor (s-wave like) within the magnetic spin chain (Shiba band). Note that, the magnitude of \(E = 0 \) LDOS (unnormalized) is vanishingly small in Fig. 9(d) due to the absence of any zero-energy state in the trivial phase as shown in Fig. 9(h). Therefore, when the chain is in the trivial regime, neither MEMs nor MZMs appear in the system.

V. SUMMARY AND CONCLUSIONS

To summarize, in this article, we consider a 1D chain of magnetic impurities placed on a p-wave unconventional superconducting substrate and discuss the effect of different spin textures on the topological superconducting phase. First, we numerically analyse various 1D SS configurations by varying both \(G_s \) and \(G_R \) (controlling parameters for changing \(\theta_l \) and \(\phi_l \)) as the general case. We
find that the effect of p-wave pairing gradually becomes weaker while an effective s-wave pairing is simultaneously generated, giving rise to a trivial superconducting phase at $G_h, G_s = (\pi, \pi)$. This is also reflected in the zero-energy LDOS behavior when it is calculated at the ends of the finite chain. If we continuously increase the pitch vectors of the SS by changing (G_h, G_s) till (π, π), then the Majorana peak height in the LDOS slowly decreases and eventually vanishes at (π, π). Hence, we find that the reason behind the complete destruction of MZMs is the formation of an effective s-wave pairing gap. Moreover, we analyse the gap structure $|E_2 - E_1|/\Delta_0$ in G_s-G_h plane to find the gap closing points in the parameter phase.

Interestingly, considering the Néel-type SS configuration $(G_h = 0, G_s \neq 0)$, we compute the topological winding number W_n and show that sharp topological phase transition takes place around $G_{s1} = 2.5$ and $G_{s2} = 3.7$ where the band gap $|E_2 - E_1|$ closes. In order to have a better understanding of this phenomena, we analyse this Néel-type rotation $(G_h = 0, G_s \neq 0)$ further in both numerical and analytical model studies. Interestingly, we find that the rotation of magnetic impurity spins in the chain and p-wave superconductivity generates an effective s-wave superconducting phase at $G_s = \pi$ i.e., when the impurity spins form an antiferromagnetic spin-chain. Thus, one can realize a phase transition from topological
to trivial superconductor in which the signature of MZMs vanishes in LDOS. In our analytical model, we begin from a low-energy model of a chain of magnetic impurities in the presence of p-wave superconducting pairing and obtain an analytical expression of the effective pairing Δ_{ij}^eff. We also calculate the total DOS from our analytically obtained energy spectrum ϵ_k at $G_s = \pi$. This exhibits a conventional s-wave like behavior which qualitatively matches with our numerical results. Moreover, we show that the non-topological Shiba bands (within $-\Delta_p$ to Δ_p) oscillate with the spiral wave vector G_s, when the system reaches to the trivial s-wave superconducting phase. Such kind of oscillation can be obtained when magnetic impurities are placed on a s-wave superconductor. We also consider a 2D p-wave superconductor and show via the LDOS and eigenvalue spectrum that initially MZMs can hybridize with the MEMs. However, even when the magnetic chain is in the topological regime, MEMs disappear at some critical value of the chemical potential μ and exchange coupling strength $B_0 = JS$ and only MZMs survive. These MZMs also disappear when the chain is in the trivial regime with further modulation of the SS wave vector G_s.

Experimental realization of topological Shiba bands in atomic spin-chains has been reported in very recent experiments [62, 66, 89–93]. In those experiments, different transition metals like Fe [91], Mn [93] etc. have been designed as a chain of magnetic impurity atoms on the surface of conventional s-wave superconducting substrates like Pb (110), Nb (110) [66, 91] etc. In such systems, the value of the s-wave pairing gap (e.g., Nb) is approximately $\Delta_s \approx 1.52$ meV [91] and experiments have been performed at low temperatures (1.4 – 1.6 K) [66]. They have observed the Majorana ZBP in topological Shiba bands via (dI/dV) measurement with different positions of the scanning tunnelling microscope tip [66, 91]. Therefore, given the so far experimental progress in this research field, we believe that our theoretical model proposal is timely and may be possible to realize in future experiments based on p-superconductors engineered in materials e.g., heterostructures by growing a magnetic layer on a Rashba superconductor [67], doped topological insulator [68–70] etc. Furthermore, the smooth variation of G can be attributed to the high tunability of RKKY exchange tensor and magneto-crystalline anisotropy energy by various routes [78, 80–83].

ACKNOWLEDGMENTS

A.K.N and A.S acknowledge the support from the Department of Atomic Energy, Government of India. PC acknowledges Sudarshan Saha, Arnob Kumar Ghosh, Debashish Mandal for useful discussions.

Appendix A: Oscillation of the Shiba bands in case of s-wave superconductor

Here, we discuss the nature of the Shiba bands when magnetic impurities are placed on a conventional s-wave superconductor. It is evident from Fig. 10(a) and Fig. 10(b) that Shiba bands are formed within $-\Delta_p$ to Δ_p and they are non-topological in nature when $G_s = 0$. We obtain the oscillation of the Shiba bands with respect to G_s when the Shiba states corresponding to the individual impurity spin interferes with each other. It is an important observation for the formation of s-wave superconductor as mentioned in Fig. 5(a) of the main text. It is evident from Fig. 10(a) that such oscillation of Shiba band persists until $G_s \leq \pi/2$ i.e., within the trivial regime. When $G_s \geq \pi/2$, the system enters into the topological superconducting regime due to the formation of an effective p-wave gap and such oscillation of the Shiba bands disappears (see Fig. 10(b) for more clarity).

Appendix B: Analytical calculation of the effective pairing gap based on low energy effective model

In order to support our numerical results based on the lattice model (Eq. (1)), we also carry out analytical calculation considering low energy BdG Hamiltonian that describes magnetic impurities on a p-wave superconductor. Our continuum Hamiltonian can be written as,

$$H = \xi_k \tau_z - J \sum_j \vec{S}_j \cdot \vec{\sigma} \delta(x - x_j) + \Delta_p k \tau_y ,$$ \hspace{1em} (B1)

where, $\xi_k = \frac{\hbar^2}{2m} k^2 - \mu$, k is the momentum along the 1D chain and Δ_p is the superconducting gap. Particle-hole and spin degrees of freedom can be expressed in terms of Pauli matrices τ and σ respectively. The BdG Hamiltonian can be expressed in terms of Nambu basis $\Phi = (\phi_\uparrow, \phi_\downarrow, \phi_\downarrow^\dagger, -\phi_\uparrow^\dagger)$.

At first, we calculate the eigenvalues and eigenvectors for a single magnetic impurity placed on a p-wave superconductor. The motivation for this part is to understand the spinors that are needed for our final calculation of the multiple impurities. For arbitrary orientation of the single impurity spin, our Hamiltonian reads,

\[H = \xi_k \tau_z - J \hat{S} \cdot \hat{\sigma} + \Delta_p k \tau_y \, , \tag{B2} \]

The eigenvalues of Eq. (B2) are

\[
\begin{align*}
\lambda_1 &= -(JS + \sqrt{\xi_k^2 + \Delta_p^2 k^2}) \\
\lambda_2 &= JS - \sqrt{\xi_k^2 + \Delta_p^2 k^2} \\
\lambda_3 &= -(JS - \sqrt{\xi_k^2 + \Delta_p^2 k^2}) \\
\lambda_4 &= (JS + \sqrt{\xi_k^2 + \Delta_p^2 k^2}) \, .
\end{align*}
\]

The corresponding BdG spinors of the eigenvectors can be written as,

\[
\begin{align*}
\alpha_1 &= \frac{i(-\xi_k + \sqrt{\xi_k^2 + \Delta_p^2 k^2})}{\Delta_p} \cos \left(\frac{\theta}{2} \right) - \frac{i(-\xi_k - \sqrt{\xi_k^2 + \Delta_p^2 k^2})}{\Delta_p} e^{i\phi} \sin \left(\frac{\theta}{2} \right) \\
\alpha_2 &= \frac{i(-\xi_k + \sqrt{\xi_k^2 + \Delta_p^2 k^2})}{\Delta_p} e^{-i\phi} \sin \left(\frac{\theta}{2} \right) - \frac{i(-\xi_k - \sqrt{\xi_k^2 + \Delta_p^2 k^2})}{\Delta_p} \cos \left(\frac{\theta}{2} \right) \\
\alpha_3 &= \frac{(-\xi_k + \sqrt{\xi_k^2 + \Delta_p^2 k^2})}{\Delta_p} \cos \left(\frac{\theta}{2} \right) - \frac{(-\xi_k - \sqrt{\xi_k^2 + \Delta_p^2 k^2})}{\Delta_p} e^{i\phi} \sin \left(\frac{\theta}{2} \right) \\
\alpha_4 &= \frac{(-\xi_k + \sqrt{\xi_k^2 + \Delta_p^2 k^2})}{\Delta_p} e^{-i\phi} \sin \left(\frac{\theta}{2} \right) - \frac{(-\xi_k - \sqrt{\xi_k^2 + \Delta_p^2 k^2})}{\Delta_p} \cos \left(\frac{\theta}{2} \right) .
\end{align*}
\]

Under the approximation \(\xi_k \ll \Delta_p \), these spinors take the form,

\[
\begin{align*}
\psi_1 &= \begin{pmatrix} i \cos \left(\frac{\theta}{2} \right) \\ i e^{i\phi} \sin \left(\frac{\theta}{2} \right) \\ \cos \left(\frac{\theta}{2} \right) \\ e^{i\phi} \sin \left(\frac{\theta}{2} \right) \end{pmatrix}, \quad \psi_3 &= \begin{pmatrix} i e^{-i\phi} \sin \left(\frac{\theta}{2} \right) \\ i \cos \left(\frac{\theta}{2} \right) \\ -e^{-i\phi} \sin \left(\frac{\theta}{2} \right) \\ \cos \left(\frac{\theta}{2} \right) \end{pmatrix},
\end{align*}
\]

\[
\psi_2 = \begin{pmatrix} -i \cos \left(\frac{\theta}{2} \right) \\ -i e^{i\phi} \sin \left(\frac{\theta}{2} \right) \\ \cos \left(\frac{\theta}{2} \right) \\ e^{i\phi} \sin \left(\frac{\theta}{2} \right) \end{pmatrix}, \quad \psi_4 = \begin{pmatrix} i e^{-i\phi} \sin \left(\frac{\theta}{2} \right) \\ -i \cos \left(\frac{\theta}{2} \right) \\ -e^{-i\phi} \sin \left(\frac{\theta}{2} \right) \\ \cos \left(\frac{\theta}{2} \right) \end{pmatrix} .
\]

The eigenvectors of \(\sigma \cdot S \) are,

\[
\begin{align*}
|\uparrow\rangle &= \begin{pmatrix} \cos \left(\frac{\theta}{2} \right) \\ e^{i\phi} \sin \left(\frac{\theta}{2} \right) \end{pmatrix}, \quad |\downarrow\rangle &= \begin{pmatrix} -i e^{-i\phi} \sin \left(\frac{\theta}{2} \right) \\ - \cos \left(\frac{\theta}{2} \right) \end{pmatrix} ,
\end{align*}
\]

Hence, we can write the BdG spinors in terms of the eigenstates of \(\sigma \cdot S \) as

\[
\psi_1 = \begin{pmatrix} i |\uparrow\rangle \\ |\uparrow\rangle \end{pmatrix}, \quad \psi_3 = \begin{pmatrix} -i |\downarrow\rangle \\ - |\downarrow\rangle \end{pmatrix} .
\]

\[
\psi_2 = \begin{pmatrix} -i |\uparrow\rangle \\ |\uparrow\rangle \end{pmatrix}, \quad \psi_4 = \begin{pmatrix} i |\downarrow\rangle \\ - |\downarrow\rangle \end{pmatrix} .
\]

As for p-wave superconductor the constituents quasi-particles exhibit symmetric spin i.e., triplet pairing, therefore one has to choose the spatial wave-functions as,

\[
\psi_1(r_j) = \begin{pmatrix} i |\uparrow\rangle, j \rangle \\ |\uparrow\rangle, j \rangle \end{pmatrix}, \quad \psi_2(r_j) = \begin{pmatrix} -i |\uparrow\rangle, j \rangle \\ |\uparrow\rangle, j \rangle \end{pmatrix} .
\]

Hence, for multiple impurities we start from the Schrödinger equation \(H \psi(x) = E \psi(x) \). Now, following Ref. [38] we can write from Eq. (B1),

\[
|E - \xi_k \tau_z - \Delta_p k \tau_y | \psi(x) = -JS \sum_j \hat{S}_j . \hat{\sigma} \delta(x - x_j) \psi(x) ,
\]

Thus, one can further obtain

\[
\psi(x_i) = -JS \sum_j \int \frac{dk}{2\pi} e^{ik(x_i - x_j)} \hat{S}_j . \hat{\sigma} \psi(x_j) = -JS \sum_j \int \frac{dk}{2\pi} \left(\frac{E + \xi_k}{\sqrt{E^2 - \xi_k^2}} \right) \left(\frac{-i \Delta_k}{\sqrt{E^2 - \xi_k^2}} \right) \left(\frac{-i \Delta_k}{\sqrt{E^2 - \xi_k^2}} \right) \left(\frac{E - \xi_k}{\sqrt{E^2 - \xi_k^2}} \right)
\]

\[
\times e^{ik(x_i - x_j)} \hat{S}_j . \hat{\sigma} \psi(x_j) , \tag{B18}
\]

From Eq. (B18), we can further find

\[
\psi(x_i) = - \sum_j E_j(|x_i - x_j|) \hat{S}_j . \hat{\sigma} \psi(x_j) , \tag{B19}
\]

where,

\[
J_E(|x_i - x_j|) = J_E(x_{ij}) = J_E^{(1)}(x_{ij}) + J_E^{(2)}(x_{ij}) \tau_z + J_E^{(3)}(x_{ij}) \tau_y ,
\]

and

\[
J_E^{(1)}(x_{ij}) = JS \int \frac{dk}{2\pi} \frac{E e^{ikx_{ij}}}{E^2 - \xi_k^2 - \Delta_p^2 k^2} ,
\]

\[
J_E^{(2)}(x_{ij}) = JS \int \frac{dk}{2\pi} \frac{\Delta_p k e^{ikx_{ij}}}{2\pi E^2 - \xi_k^2 - \Delta_p^2 k^2} ,
\]

\[
J_E^{(3)}(x_{ij}) = JS \int \frac{dk}{2\pi} \frac{\Delta_k e^{ikx_{ij}}}{2\pi E^2 - x_{ij}^2 - \Delta_p^2 k^2} .
\]
Afterwards, we linearize the spectrum around the Fermi momentum and thus obtain $\xi_k = V_F (k - k_F)$. Here V_F and k_F are the Fermi velocity and Fermi momentum respectively. Under this approximation, the results of the integrals are given by (see Ref. [85])

\[
f_E^{(1)}(x) = -\frac{E}{V_F} \frac{JS}{V_F} \frac{\cos(k'_p x)}{\omega(E)} e^{-\frac{\omega(E)}{V_F}},
\]

\[
f_E^{(2)}(x) = \frac{1}{V_F} \frac{JS}{1 + \Delta_p^2} \frac{\gamma \Delta_i}{\omega(E)} \cos(k'_p x) + \sin(k'_p x) e^{-\frac{\omega(E)}{V_F}},
\]

\[
f_E^{(3)}(x) = \frac{1}{V_F} \frac{JS}{1 + \Delta_p^2} \frac{\sqrt{\Delta_t^2 - E^2}}{\sqrt{1 + \Delta_p^2}} \sin(k'_p x) + \text{sgn}(x) \cos(k'_p x)
\times e^{-\frac{\omega(E)}{V_F}},
\]

where, $k'_p = \frac{k_p}{V_F}$, $\Delta_p = \frac{\Delta_p}{V_F}$, $\omega(E) = \frac{\sqrt{\Delta_t^2 - E^2}}{\sqrt{1 + \Delta_p^2}}$, $\Delta_t = \frac{\Delta_p}{\sqrt{1 + \Delta_p^2}}$, $\gamma = \frac{\Delta_p}{\sqrt{1 + \Delta_p^2}}$ as introduced in the main text also.

From Eq. (B19) we can write,

\[
\psi(x_i) + J E(0) \hat{S}_i \sigma \psi(x_i) = -\sum_{j \neq i} J E(|x_i - x_j|) \hat{S}_j \sigma \psi(x_j).
\]

Therefore, at $|x_i - x_j| = 0$, these functions become,

\[
f_E^{(1)}(0) = -\frac{JS}{V_F} \frac{E}{\sqrt{1 + \Delta_p^2}} \frac{1}{\sqrt{1 + \Delta_t^2 - E^2}}.
\]

\[
f_E^{(2)}(0) = \frac{JS}{V_F} \frac{\gamma \Delta_i}{\sqrt{1 + \Delta_p^2}} \frac{1}{\sqrt{1 + \Delta_t^2 - E^2}}.
\]

\[
f_E^{(3)}(x) = 0.
\]

We can define the impurity strength in terms of a new parameter $\alpha = JS/(V_F \sqrt{1 + \Delta_p^2})$. We further assume that impurities are sufficiently dilute such that the resulting impurity band remains well within the superconducting gap i.e., $\Delta_t \gg E$. Using Eq. (B24) and substituting $E = 0$, $\alpha = 1/\gamma$ in the RHS of the Eq. (B23), we obtain (following Ref. [85])

\[
\left[\hat{S}_i \sigma - \frac{\alpha E}{\Delta_t} - \alpha \gamma \tau_z \right] \psi(x_i) = -\sum_{j \neq i} [f_E^{(2)}(x_i) \tau_z + f_E^{(3)}(x_i) \tau_y (\hat{S}_j \sigma) \hat{S}_j \sigma] \psi(x_j),
\]

Hence, Eq. (B25) can be written as

\[
\hat{H}_{\text{eff}} \phi = E \phi
\]

Now projecting Eq. (B16) into Eq. (B25), we can find the diagonal and off-diagonal elements of H_{eff} as

\[
\hat{h}_{ij}^{\text{eff}} = -\frac{\epsilon_0}{2} \delta_{ij} + (1 - \delta_{ij})
\]

\[
[k'_p \Delta_p \sin(k'_p |x_{ij}|) + \gamma \Delta_i \text{sgn}(x_{ij}) \cos(k'_p x_{ij})]
\times e^{-\frac{|x_{ij}|}{\xi_0}} (\uparrow, i | \uparrow, j),
\]

and

\[
\Delta^{\text{eff}}_{ij} = -\left(-\frac{\epsilon_0}{2} \delta_{ij} - (1 - \delta_{ij}) \right)
\]

\[
\left[\frac{\Delta_i}{\sqrt{1 + \Delta_p^2}} \sin(k'_p |x_{ij}|) + \gamma \Delta_i \cos(k'_p x_{ij}) \right]
\times e^{-\frac{|x_{ij}|}{\xi_0}} (\uparrow, i | \uparrow, j),
\]

where, $\epsilon_0 = 2\Delta_t / \alpha$ denotes the Shiba bound state energy for a single magnetic impurity in the deep Shiba limit and $\xi_0 = V_F / \omega(0)$ is the phase coherence length for a p-wave superconductor. Here, Δ^{eff}_{ij} denotes the effective pairing gap in real space which we have mentioned in the main text (see Eq. (7)).

Therefore, considering Néel-type rotation of the magnetic impurities i.e., $\phi_i = 0$ and $\theta_i = G_a j a$ (j is the lattice site index and a is the lattice spacing), one can obtain

\[
(\uparrow, i | \uparrow, j) = \cos(G_s x_{ij} / 2)
\]

and

\[
(\uparrow, i | \downarrow, j) = -\sin(G_s x_{ij} / 2).
\]

Hence, the effective k-space 2×2 BdG Hamiltonian reads,

\[
H_k = \left(\begin{array}{cc} \Delta_k^{\text{eff}} & -h_{-k}^{\text{eff}} \\ h_{-k}^{\text{eff}} & -\Delta_k^{\text{eff}} \end{array} \right),
\]

where,

\[
h_k = \sum_j (\hat{h}_{ij}^{\text{eff}}) e^{ik x_{ij}},
\]

\[
\Delta_k = \sum_j (\Delta^{\text{eff}}_{ij}) e^{ik x_{ij}},
\]

Inserting Eqs. (B27-B28) into the above equations, we finally obtain Eqs. (9-10) which we have introduced in the main text to explain our analytical results.

Appendix C: Analytical solution of topological phase boundary for our 1D lattice model Hamiltonian

As the tight-binding model [Eq. (1) in our main text] doesn’t respect translational symmetry, hence we cannot directly perform Fourier transform to obtain a spectrum in k-space. Thus following Ref. [35], we transform our Hamiltonian to the Majorana basis in order to diagonalize it in momentum space. Under the new basis $m_k = (m_{k,1,1}, m_{k,1,\uparrow}, m_{k,2,\downarrow}, m_{k,2,\downarrow})$, our k-space Hamiltonian can be written for the Néel-type rotation as

\[
H(k) = \frac{i}{4} \sum_k m_k^\dagger h(k) m_k,
\]

(C1)
where, non-zero elements of Eq. (C1) are,

\begin{align*}
h_{13} &= (2t + \Delta_p)\cos(k) + B_0 - \mu = h_{31}^t, \quad (C2) \\
h_{14} &= 2it\beta \sin(k) - \Delta_p \beta \cos(k) = h_{11}^t, \quad (C3) \\
h_{23} &= -2it\beta \sin(k) + \Delta_p \beta \cos(k) = h_{32}^t, \quad (C4) \\
h_{24} &= (2t + \Delta_p)\cos(k) - B_0 - \mu = h_{42}^t. \quad (C5)
\end{align*}

For \(k = \pi \), the eigenvalues of the above Hamiltonian [Eq. (C1)] can be written as,

\[E = \pm \frac{1}{4} \left[B_0 \pm \sqrt{\left(\mu - 2at\right)^2 + \Delta_p^2} \right] \]

where, \(\alpha = \cos(G_s/2) \) and \(\beta = \sin(G_s/2) \). In presence of a \(p \)-wave superconductor, the system is initially topological and after a critical value of the exchange field \(B_0 = JS \), it goes to a non-topological phase. We obtain this critical exchange field from the gap-closing condition of the two minimum bands. From Eq. (C6) we obtain,

\[|B_{c1}| = \sqrt{(\mu + 2at)^2 + \Delta_p^2} \]

On the other hand, for \(k = 0 \) the eigenvalues of the Hamiltonian become,

\[E = \pm \frac{1}{4} \left[B_0 \pm \sqrt{\left(\mu - 2at\right)^2 + \Delta_p^2} \right] \]

Similarly, from the gap closing condition (considering the lowest two bands) the critical exchange field becomes,

\[|B_{c2}| = \sqrt{(\mu - 2at)^2 + \Delta_p^2} \]

Hence, considering the parameters values \(\mu = 4t \), \(B_0 = 0 \), \(\Delta_p = t \) and employing Eq. (C7), Eq. (C9) we obtain \(E_{c1} = 2.52639 \) and \(E_{c2} = 3.7568 \). This matches well with the numerically obtained gap closing points as well as sharp jump of the topological invariant (see Fig. 3(b)).

Out of four cases, here we present the calculation for Néel-like rotation (\(\theta = G_s l \) and \(\phi_i = 0 \)) only. For the other two cases, Bloch-type (\(\theta = G_s l, \phi_i = \pi/2 \)) and conical-spin spiral (\(\theta = \pi/2, \phi_i = G_s l \)), our results remain the same.

[1] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, “Quantized hall conductance in a two-dimensional periodic potential,” Phys. Rev. Lett. 49, 405–408 (1982).

[2] Charles L Kane and Eugene J Mele, “Quantum spin hall effect in graphene,” Phys. Rev. Lett. 95, 226801 (2005).

[3] Charles L Kane and Eugene J Mele, “Z2 topological order and the quantum spin hall effect,” Phys. Rev. Lett. 95, 146802 (2005).

[4] B Andrei Bernevig, Taylor L Hughes, and Shou-Cheng Zhang, “Quantum spin hall effect and topological phase transition in HgTe quantum wells,” Science 314, 1757–1761 (2006).

[5] Xiao-Liang Qi and Shou-Cheng Zhang, “Topological insulators and superconductors,” Rev. Mod. Phys. 83, 1057 (2011).

[6] Markus König, Steffen Wiedmann, Christoph Brüne, Andreas Roth, Hartmut Buhmann, Laurens W. Molenkamp, Xiao-Liang Qi, and Shou-Cheng Zhang, “Quantum spin hall insulator state in hgte quantum wells,” Science 318, 766–770 (2007).

[7] Mahito Kohmoto, “Topological invariant and the quantization of the hall conductance,” Annals of Physics 160, 343–354 (1985).

[8] “Chapter 1 - topological band theory and the Z2 invariant,” in Topological Insulators, Contemporary Concepts of Condensed Matter Science, Vol. 6, edited by Marcel Franz and Laurens Molenkamp (Elsevier, 2013) pp. 3–34.

[9] Joel E Moore and Leon Balents, “Topological invariants of time-reversal-invariant band structures,” Phys. Rev. B 75, 121306 (2007).

[10] Liang Fu, Charles L Kane, and Eugene J Mele, “Topological insulators in three dimensions,” Phys. Rev. Lett. 98, 106803 (2007).

[11] Rahul Roy, “Topological phases and the quantum spin hall effect in three dimensions,” Phys. Rev. B 79, 195322 (2009).

[12] Yoichi Ando, “Topological insulator materials,” Journal of the Physical Society of Japan 82, 102001 (2013).

[13] L. Fu and C. L. Kane, “Topological insulators with inversion symmetry,” Phys. Rev. B 76, 045302 (2007).

[14] Jeffrey C. Y. Teo, Liang Fu, and C. L. Kane, “Surface states and topological invariants in three-dimensional topological insulators: Application to Bi\(_{1-x}\)Sb\(_x\),” Phys. Rev. B 78, 045426 (2008).

[15] Xiao-Liang Qi, Taylor L Hughes, and Shou-Cheng Zhang, “Topological field theory of time-reversal invariant insulators,” Phys. Rev. B 78, 195424 (2008).

[16] M. Mofazzel Hosen, Klauss Dimitri, Ashis K. Nandy, Alex Aperis, Raman Sankar, Gyanendra Dhakal, Pablo Maldonado, Firoza Kabir, Christopher Sims, Fangcheng Chou, Dariusz Kaczorowski, Tomasz Durakiewicz, Peter M. Oppeneer, and Madhab Neupane, “Distinct multiple fermionic states in a single topological metal,” Nature Communications 9, 3002 (2018).

[17] Gyanendra Dhakal, Firoza Kabir, Ashis K. Nandy, Alex Aperis, Anup Pradhan Sakhya, Subhadip Pradhan, Klaus Dimitri, Christopher Sims, Sabin Regmi, M. Mofazzel Hosen, Yangyang Liu, Luis Persaud, Dariusz Kaczorowski, Peter M. Oppeneer, and Madhab Neupane, “Observation of anisotropic dirac cones in the topological material Ti\(_3\)Te\(_2\)P,” Phys. Rev. B 106, 125124 (2022).

[18] Alexander Altland and Martin R. Zirnbauer, “Non-standard symmetry classes in mesoscopic normal-superconducting hybrid structures,” Phys. Rev. B 55,
[19] A Yu Kitaev, “Unpaired Majorana fermions in quantum wires,” Physics-Uspekhi 44, 131 (2001).

[20] Alexei Kitaev, “Periodic table for topological insulators and superconductors," in AIP conference proceedings, Vol. 1134 (American Institute of Physics, 2009) pp. 22–30.

[21] Nicholas Read and Dmitry Green, “Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum hall effect,” Phys. Rev. B 61, 10267 (2000).

[22] Liang Fu and Charles L Kane, “Superconducting proximity effect and Majorana fermions at the surface of a topological insulator,” Phys. Rev. Lett. 100, 096407 (2008).

[23] Masatoshi Sato, “Non-abelian statistics of axion strings,” Phys. Lett. B 575, 126–130 (2003).

[24] Barry Simon, “Holonomy, the quantum adiabatic theorem, and Berry’s phase,” Phys. Rev. Lett. 51, 2167 (1983).

[25] Joseph E Avron, Ruedi Seiler, and Barry Simon, “Homotopy and quantization in condensed matter physics,” Phys. Rev. Lett. 51, 51 (1983).

[26] Chetan Nayak, Steven H Simon, Ady Stern, Michael Freedman, and Sanjib Das Sarma, “Non-abelian anyons and topological quantum computation,” Rev. Mod. Phys. 80, 1083 (2008).

[27] Yuval Oreg, Gil Refael, and Felix von Oppen, “Helical liquids and Majorana bound states in quantum wires,” Phys. Rev. Lett. 105, 177002 (2010).

[28] Roman M. Lutchyn, Jay D. Sau, and S. Das Sarma, “Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures,” Phys. Rev. Lett. 105, 077001 (2010).

[29] Vincent Mourik, Kun Zuo, Sergey M Frolov, SR Plissard, EPAM Bakkers, and Leo P Kouwenhoven, “Signature of Majorana fermions in hybrid superconductor-semiconductor nanowire devices,” Science 336, 1003–1007 (2012).

[30] Anindya Das, Yuval Ronen, Yonatan Most, Yuval Oreg, Moty Heiblum, and Hadas Shtrikman, “Zero-bias peaks and splitting in an Al – InAs nanowire topological superconductor as a signature of Majorana fermions,” Nat. Phys. 8, 887–895 (2012).

[31] Leonid P Rokhinson, Xinyu Liu, and Jacek K Furdyna, “The fractional ac Josephson effect in a semiconductor-superconductor nanowire as a signature of Majorana particles,” Nat. Phys. 8, 795–799 (2012).

[32] ADK Finck, DJ Van Harlingen, PK Mohseni, K Jung, and X Li, “Anomalous modulation of a zero-bias peak in a hybrid nanowire-superconductor device,” Phys. Rev. Lett. 110, 126406 (2013).

[33] S. M. Albrecht, A. P. Higginbotham, M. Madsen, F. Kuemmeth, T. S. Jespersen, J. Nygård, P. Kroghsrup, and C. M. Marcus, “Exponential protection of zero modes in majorana islands,” Nature 531, 206–209 (2016).

[34] M. T. Deng, S. Vaitiekünas, E. B. Hansen, J. Danon, M. Leijnse, K. Flensberg, J. Nygård, P. Kroghsrup, and C. M. Marcus, “Majorana bound state in a coupled quantum-dot hybrid-nanowire system,” Science 354, 1557–1562 (2016).

[35] S. Nadji-Perge, I. K. Drozdov, B. A. Bernevig, and Ali Yazdani, “Proposal for realizing majorana fermions in chains of magnetic atoms on a superconductor,” Phys. Rev. B 88, 020407 (2013).

[36] T.-P. Choy, J. M. Edge, A. R. Akhmerov, and C. W. J. Beenakker, “Majorana fermions emerging from magnetic nanoparticles on a superconductor without spin-orbit coupling,” Phys. Rev. B 84, 195442 (2011).

[37] Stefan Rex, Igor V. Gornyi, and Alexander D. Mirlin, “Majorana modes in emergent-wire phases of helical and cycloidal magnet-superconductor hybrids,” Phys. Rev. B 102, 224501 (2020).

[38] Falko Pientka, Leonid I. Glazman, and Felix von Oppen, “Topological superconducting phase in helical Shiba chains,” Phys. Rev. B 88, 155420 (2013).

[39] Falko Pientka, Leonid I. Glazman, and Felix von Oppen, “Unconventional topological phase transitions in helical Shiba chains,” Phys. Rev. B 89, 180505 (2014).

[40] Narayan Mohanta, Satoshi Okamoto, and Elbio Dagotto, “Skyrmion control of majorana states in planar josephson junctions,” Communications Physics 4, 163 (2021).

[41] Jenena Klinovaja, Peter Stano, Ali Yazdani, and Daniel Loss, “Topological superconductivity and majorana fermions in RKKY systems,” Phys. Rev. Lett. 111, 186805 (2013).

[42] Gian Marcello Andolina and Pascal Simon, “Topological properties of chains of magnetic impurities on a superconducting substrate: Interplay between the Shiba band and ferromagnetic wire limits,” Phys. Rev. B 96, 235411 (2017).

[43] Silas Hoffman, Jenena Klinovaja, and Daniel Loss, “Topological phases of inhomogeneous superconductivity,” Phys. Rev. B 93, 165418 (2016).

[44] Doru Sticlet and Cristian Morari, “Topological superconductivity from magnetic impurities on monolayer NbSe2,” Phys. Rev. B 100, 075420 (2019).

[45] Jay D. Sau and Eugene Demler, “Bound states at impurities as a probe of topological superconductivity in nanowires,” Phys. Rev. B 88, 205402 (2013).

[46] Mahdi Mashkoori and Annica Black-Schaffer, “Majorana bound states in magnetic impurity chains: Effects of d-wave pairing,” Phys. Rev. B 99, 024505 (2019).

[47] Mahdi Mashkoori, Saurabh Pradhan, Kristofer Björnson, Jonas Fransson, and Annica M. Black-Schaffer, “Identification of topological superconductivity in magnetic impurity systems using bulk spin polarization,” Phys. Rev. B 102, 104501 (2020).

[48] Raphael L. R. C. Teixeira, Dushko Kuzmanovski, Annica M. Black-Schaffer, and Luis G. G. V. Dias da Silva, “Enhanced majorana bound states in magnetic chains on superconducting topological insulator edges,” Phys. Rev. B 102, 165312 (2020).

[49] Andreas Theiler, Kristofer Björnson, and Annica M. Black-Schaffer, “Majorana bound state localization and energy oscillations for magnetic impurity chains on conventional superconductors,” Phys. Rev. B 100, 214504 (2019).

[50] Hoi-Yin Hui, P. M. R. Brydon, Jay D. Sau, S. Tewari, and S. Das Sarma, “Majorana fermions in ferromagnetic chains on the surface of bulk spin-orbit coupled s-wave superconductors,” Scientific Reports 5, 8880 (2015).

[51] Vivien Perrin, Marcello Civelli, and Pascal Simon, “Identifying majorana bound states by tunneling shot-noise tomography,” Phys. Rev. B 104, L121406 (2021).

[52] Morten H. Christensen, Michael Schecter, Karsten Flensberg, Brian M. Andersen, and Jens Paaeke, “Spiral mag-
netic order and topological superconductivity in a chain of magnetic adatoms on a two-dimensional superconductor,” Phys. Rev. B 94, 144509 (2016).

[53] Girish Sharma and Sumanta Tewari, “Yu-Shiba-Rusinov states and topological superconductivity in ising paired superconductors,” Phys. Rev. B 94, 094515 (2016).

[54] Ménard, Gerbold C., Brun, Christophe, Leriche, Raphael, Trif, Mircea, Debontridder, François, Demaillé, Dominique, Roditchev, Dimitri, Simon, Pascal, and Cren, Tristan, “Yu-Shiba-Rusinov bound states versus topological edge states in Pb/Si(111),” Eur. Phys. J. Special Topics 227 (2019), 10.1140/epst/2018-800056-3.

[55] Hiroyuki Shiba, “Classical Spins in Superconductors,” Progress of Theoretical Physics 40, 435–451 (1968).

[56] Oindrila Deb, Silas Hoffman, Daniel Loss, and Girish Sharma and Sumanta Tewari, “Yu-Shiba-Rusinov states in superconductors,” Annual Review of Condensed Matter Physics 4, 435–451 (2013).

[57] Ali Yazdani, B. A. Jones, C. P. Lutz, M. F. Cromon, and Roland Wiesendanger, “Impurity-induced bound excitations of magnetic impurities near the boundary of a superconducting nanowire,” Phys. Rev. B 103, 165403 (2021).

[58] Felix von Oppen and Katharina J. Franke, “Yu-Shiba-Rusinov states in real metals,” Phys. Rev. B 103, 205424 (2021).

[59] Jon Ortuzar, Stefano Trivini, Miguel Alvarado, Mikol Rouco, Javier Zaldivar, Alfredo Levy Yeyati, Jose Ignacio Pascual, and F. Sebastian Bergeret, “Yu-Shiba-Rusinov states in two-dimensional superconductors with arbitrary fermi contours,” Phys. Rev. B 105, 245403 (2022).

[60] Jason Alica, “New directions in the pursuit of majorana fermions in solid state systems,” Reports on Progress in Physics 75, 076501 (2012).

[61] Martin Leijnse and Karsten Flensberg, “Introduction to topological superconductivity and majorana fermions,” Semiconductor Science and Technology 27, 124003 (2012).

[62] Dongfei Wang, Jens Wiebe, Ruidan Zhong, Genda Gu, and Roland Wiesendanger, “Spin-polarized Yu-Shiba-Rusinov states in an iron-based superconductor,” Phys. Rev. Lett. 126, 076802 (2021).

[63] Ali Yazdani, C. M. Howald, C. P. Lutz, A. Kapitulnik, and D. M. Eigler, “Probing the local effects of magnetic impurities on superconductivity,” Science 275, 1677–1679 (1997).

[64] Ali Yazdani, “Visualizing Majorana fermions in a chain of magnetic atoms on a superconductor,” Physica Scripta T164, 014012 (2015).

[65] S. Nadji-Perge, I. K. Drozdov, J. Li, H. Chen, S. Jeon, J. Seo, A. H. MacDonald, B. A. Bernevig, and A. Yazdani, “Observation of majorana fermions in ferromagnetic atomic chains on a superconductor,” Science 346, 602–607 (2014).

[66] Gerbold C. Ménard, Sébastien Guissart, Christophe Brun, Raphaël T. Leriche, Mircea Trif, Francois Debontridder, Dominique Demaillé, Dimitri Roditchev, Pascal Simon, and Tristan Cren, “Two-dimensional topological superconductivity in Pb/Co/Si(111),” Nature Communications 8, 2040 (2017).

[67] Y. S. Hor, A. J. Williams, J. G. Checkelsky, P. Roushan, J. Seo, Q. Xu, H. W. Zandbergen, A. Yazdani, N. P. Ong, and R. J. Cava, “Superconductivity in Cu3Bi2Se3 and its implications for pairing in the undoped topological insulator,” Phys. Rev. Lett. 104, 057001 (2010).

[68] Liang Fu and Erez Berg, “Odd-parity topological superconductors: Theory and application to Cu3Bi2Se3,” Phys. Rev. Lett. 105, 097001 (2010).

[69] L. Andrew Wray, Suyang Xu, Yuqi Xia, Dong Qian, Alexei V. Fedorov, Hsin Lin, Arun Bansil, Liang Fu, Yew San Hor, Robert J. Cava, and M. Zahid Hasan, “Spin-orbital ground states of superconducting doped topological insulators: A majorana platform,” Phys. Rev. B 83, 224516 (2011).

[70] V. Kaladzhyan, Cristina Bena, and Pascal Simon, “Topology from triviality,” Phys. Rev. B 97, 104512 (2018).

[71] N. Sedlmayr and C. Bena, “Visualizing majorana bound states in one and two dimensions using the generalized majorana polarization,” Phys. Rev. B 92, 115115 (2015).

[72] M. M. Vazifeh and M. Franz, “Self-organized topological state with majorana fermions,” Phys. Rev. Lett. 111, 206802 (2013).

[73] Ashis Kumar Nandy, Nikolai S. Kiselev, and Stefan Blügel, “Interlayer exchange coupling: A general scheme turning chiral magnets into magnetic multilayers carrying atomic-scale Skyrmions,” Phys. Rev. Lett. 116, 177202 (2016).

[74] Charanpreet Singh, Vikram Singh, Gyandeep Pradhan, Velaga Srihari, Himanshu Kumar Poswal, Ramesh Nath, Ashis K. Nandy, and Ajaya K. Nayak, “Pressure controlled trimerization for switching of anomalous hall effect in triangular antiferromagnet Mn3Sn,” Phys. Rev. Research 2, 043366 (2020).

[75] Takuya Kitagawa, Erez Berg, Mark Rudner, and Eugene Demler, “Topological characterization of periodically driven quantum systems,” Phys. Rev. B 82, 235114 (2010).

[76] Sumanta Tewari and Jay D. Sau, “Topological invariants for spin-orbit coupled superconductor nanowires,” Phys. Rev. Lett. 109, 150408 (2012).

[77] Charanpreet Singh, Sk Jamaluddin, Ashis K. Nandy, Masashi Tokunaga, Maxim Avdeev, and Ajaya K. Nayak, “Higher order exchange driven noncoplanar magnetic state and large anomalous hall effects in electron doped kagome magnet Mn3Sn,” arXiv:2211.12722.

[78] Guolin Zheng, Maoyuan Wang, Xiangde Zhu, Cheng Tan, Jie Wang, Sultan Albarakati, Nuriyah Aloufi, Meri Algarni, Lawrence Farrar, Min Wu, Yuguai Yao, Mingliang Tian, Jianhui Zhou, and Lan Wang, “Tailoring dzyaloshinskii-moriya interaction in a transition metal dichalcogenide by dual-intercalation,” Nature Communications 12, 3639 (2021).

[79] Tianning Ma, Ankit K. Sharma, Rana Saha, Abhay K. Srivastava, Peter Werner, Praveen Vir, Vivek Kumar, Claudia Felser, and Stuart S. P. Parkin, “Tunable magnetic antiskyrmion size and helical period from nanometers to micrometers in a D2d heusler compound,” Advanced Materials 32, 2002043.

[80] Pin-Jui Hsu, Aurore Finco, Lorenz Schmidt, André Kubytkzka, Kirsten von Bergmann, and Roland Wiesendanger, “Guiding spin spirals by local uniaxial strain relief,” Phys. Rev. Lett. 116, 017201 (2016).

[81] Hongxin Yang, Olivier Boule, Vincent Cros, Albert Fert, and Maïrbeck Chshiev, “Controlling dzyaloshinskii-moriya interaction via chirality dependent atomic-layer
stacking, insulator capping and electric field,” Scientific Reports 8, 12356 (2018).

[83] A. A. Khajetoorians, M. Steinbrecher, M. Ternes, M. Bouhassoune, M. dos Santos Dias, S. Lounis, J. Wiebe, and R. Wiesendanger, “Tailoring the chiral magnetic interaction between two individual atoms,” Nature Communications 7, 10620 (2016).

[84] Alexander A. Zyuzin and Daniel Loss, “RKKY interaction on surfaces of topological insulators with superconducting proximity effect,” Phys. Rev. B 90, 125443 (2014).

[85] V Kaladzhyan, C Bena, and P Simon, “Asymptotic behavior of impurity-induced bound states in low-dimensional topological superconductors,” Journal of Physics: Condensed Matter 28, 485701 (2016).

[86] Bruno Uchoa and A. H. Castro Neto, “Superconducting states of pure and doped graphene,” Phys. Rev. Lett. 98, 146801 (2007).

[87] K. L. Zhang, P. Wang, and Z. Song, “Majorana flat band edge modes of topological gapless phase in 2d kitaev square lattice,” Scientific Reports 9, 4978 (2019).

[88] P. Wang, S. Lin, G. Zhang, and Z. Song, “Topological gapless phase in kitaev model on square lattice,” Scientific Reports 7, 17179 (2017).

[89] Felix Küster, Sascha Brinker, Samir Lounis, Stuart S. P. Parkin, and Paolo Sessi, “Long range and highly tunable interaction between local spins coupled to a superconducting condensate,” Nature Communications 12, 6722 (2021).

[90] Felix Küster, Sascha Brinker, Richard Hess, Daniel Loss, Stuart S. P. Parkin, Jelena Klinovaja, Samir Lounis, and Paolo Sessi, “Non-majorana modes in diluted spin chains proximitized to a superconductor,” Proceedings of the National Academy of Sciences 119, 8210589119 (2022).

[91] Lucas Schneider, Philip Beck, Thore Posske, Daniel Crawford, Eric Mascot, Stephan Rachel, Roland Wiesendanger, and Jens Wiebe, “Topological Shiba bands in artificial spin chains on superconductors,” Nature Physics 17, 943–948 (2021).

[92] Philip Beck, Lucas Schneider, Levente Rózs, Krisztián Palotás, András Lászlóffy, László Szunyogh, Jens Wiebe, and Roland Wiesendanger, “Spin-orbit coupling induced splitting of Yu-Shiba-Rusinov states in antiferromagnetic dimers,” Nature Communications 12, 2040 (2021).

[93] Lucas Schneider, Philip Beck, Jannis Neuhaus-Steinmetz, Levente Rózs, Thore Posske, Jens Wiebe, and Roland Wiesendanger, “Precursors of majorana modes and their length-dependent energy oscillations probed at both ends of atomic shiba chains,” Nature Nanotechnology 17, 384–389 (2022).