Effects of Using Fermented Moringa (*Moringa oleifera*) Leaf Meal and Yellow Corn in the Diets on the Performances and Income Over Feed Cost of Broiler Chickens

(Pengaruh penggunaan campuran daun kelor dan jagung terhadap performan dan IOFC ayam broiler)

Zulfan*1, Zulfikar1, Herawati Latif1, Alaily1, Taufik Nazarullah1, and Rhaudatul Shaleha1

1Animal Husbandry Department, Faculty of Agriculture, Universitas Syiah Kuala, Banda Aceh, Indonesia

ABSTRACT. This study aimed to examine the effect of including fermented moringa leaf meal (fMOL) + yellow corn (yC) to substitute fractionally commercial diet (CD) on the performances and Income over Feed Cost (IOFC) of broiler chickens. The study was done in the Field Laboratory of Animal Husbandry, Animal Husbandry Department, Syiah Kuala University from August 4 until September 15, 2020. The study used 100 broiler chicks strain CP 707, unsex. This study was set up into Block Randomized Design (BRD) consisting of 4 treatments and 5 blocks. The treatments were MC = 100% CD, MC = 95% CD + 2.5% fMOL + 2.5% yC, MC = 90% CDR + 5% fMOL + 5% yC, and MC = 85% CD + 7.5% fMOL + 7.5% yC. The results of studies showed that including fMOL + yC to substitute partly commercial diet significantly (P<0.05) reduced final body weight (FBW) and increased feed conversion ratio (FCR) of the broilers. Feed consumption statistically was not significantly affected but tended to reduce. Using fMOL + yC reduced feed cost but revenue and IOFC also declined.

Keywords: Broiler, corn, fermentation, IOFC, moringa, performances

INTRODUCTION

Many studies have been done to explore the potency of various alternative feed sources possibly formulated into the poultry diets to carry out more economic feeds. The major problems in involving unconventional feed ingredients were ordinarily thought about their lack of nutritional value and the potential contents of any anti nutrition found within innumerable composites. Recently, comprising unusual feedstuffs were not merely interested at the point of lower cost, but also a free residue of chemical compounds, herbals, and supporting bird health have been noticing on the critical assessments by poultry nutritionists to serve better meat.

Exploring the natural sources derived from the plants, for instance, moringa leaves (*Moringa oleifera* Lamk) can be an alternative to offer low prices of feed ingredients rich in nutrients and other bioactive compounds that support the body health. The leaves of moringa are rich in minerals, vitamins, and other essential phytochemicals (Gopalakrishnan, 2016). Moringa leaves consist of high sources of vitamin C, calcium, potassium, and protein (Zaku et al., 2015). The profile of essential amino acids (EAA) in the leaves is comparable to soybean meal (Makkar and Becker, 1997). Saini et al. (2013) investigated the *M. oleifera* leaves as an extraordinary source of carotenoids, which is significant for its implications in malnutrition programmer to alleviate the vitamin A deficiency. Moringa leaves can also improve the immune system of the body and enhance meat quality (Rahmat and Herdi, 2016).

Moringa leaves processed into the powder can be used in the poultry diet. The effect of using moringa in poultry diets had been reported contrary by any earlier workers. Ayssiwede et al.
(2011) reported that the moringa leaves meal inclusion in the diets up to 24% in substitution groundnut cake meal had not caused any adverse impact on live body weight (LBW), average daily weight gain (ADWG), and feed conversion ratio (FCR), and in indigenous Senegal chickens compared to their controls. A study on laying hen reported by Kakengi et al. (2007) showed Moringa oleifera leaves meal (MOLM) reciprocally replaced sunflower seed meal (SSM) up to 20% significantly reduced egg weight and laying percentage showed a significant progressive decreasing trend as MOLM proportion increased in the diet. A similar result also was reported by Olugbemi et al. (2010), the inclusion of MOLM at levels up to 10% in cassava chip-based diets fed to commercial egg-laying hens was possible and without negative effects in terms of egg quality parameters. Therefore, various species of bird types should also bear in mind expected to offer wide responses in different levels of consumed moringa.

The plant leaves of the drumsticks are good sources of numerous nutrients beneficial for ruminants but not exactly acceded for poultry. The limiting factor of introducing the drumstick leaves is though digested by the chickens. As common plant leaves the content of crude fiber within moringa leaves is so high with approximately 19.2 gram/100 gram (Gopalakrishnan, 2016). Another obstruction of these leaves was the presence of any anti-nutritional factors such as antioxidant substances, including α-tocopherol, ascorbic acid, carotenoids, polysaccharides, flavonoids, saponins, phenolics, tannins, and proanthocyanidins. These compounds potentially cause negative effects as included in a high percentage within the diet.

The digestibility of the feed ingredient can be enhanced by directing the method of fermentation (Fardiaz, 1992). The fermentation can reduce crude fiber (PasariBu, 2007). The fermentation also can remove any possible anti-nutritional compounds found within the feed assisting to support bird health. For this reason, the moringa leaves were firstly treated by fermentation before feeding to the chickens.

Since ME containing within the moringa is quite low, replacement of commercial diet with some moringa leaves can cause reduce the dietary ME. Therefore, the uses of moringa had been regarded to combine with other sources of feed ingredients containing high ME such as yellow corn. Based on this reason, the fermentation moringa leaves were mixed with yellow corn then substitute in the partly commercial diet. The objective of this study was to examine the effect of the use of fermentation moringa leaves + yellow corn to substitute partly commercial diet on the broiler performance and Income over Feed Cost (IOFC).

**MATERIALS AND METHODS**

The study was conducted at the Field Laboratory of Animal Husbandry, Animal Husbandry Department, Syiah Kuala University from August 4 until September 15, 2020.

**Materials and equipment**

The study used 100 broiler chicks, CP 707 strain, unsex. A control diet was commercial diets with the market code of CP 511. Experimental diets utilized fermented moringa leaf meal (fMOL) and yellow corn (yC) to substitute fractionally commercial diets. Other materials consisted of vaccine ND and IBD, EM4, and molasses. Experimental units were set up by the 20 cages 1 x 1 m provided heating bulbs, feeders, and drinkers each.

**Diets**

The experimental diets included fMOL mixed with yC with equal numbers i.e. 2.5, 5, and 7.5% each. The mixture feeds were then used to partly replace the commercial diet, CP 511 Bravo (CD). The nutritional contents of the diets were met to the recommendation of NRC (1994). The computed composition and nutritional contents of the experimental diets were shown in Table 1. The dietary treatments were represented as follows:

\[ \text{MC}_0 = \text{CD} 100\% \text{ (control)} \]
\[ \text{MC}_1 = \text{CD} 95\% + \text{fMOL} 2.5\% + \text{yC} 2.5\% \]
\[ \text{MC}_2 = \text{CD} 90\% + \text{fMOL} 5\% + \text{yC} 5\% \]
\[ \text{MC}_3 = \text{CD} 85\% + \text{fMOL} 7.5\% + \text{yC} 7.5\% \]

**Fermentation Procedures**

The moringa leaves were cropped from the plants wild grew in the uncultivated lands in Desa Rukoh and surrounding, Darussalam, Banda Aceh. The leaves then were cleaned and sorted off other materials such as stems then dried under a sunrise. The dried leaves were ground using a disk mill until resulting in the leaf powder.

The next step was to fermentation the leaf powder. As much as 9 ml EM4 and 9 ml molasses were poured into a chamber containing 3 liters of freshwater then mixed homogenized then inserting into a sprayer. The liquid was sprayed into 6 kg of
moringa leaf powder while mixing homogenized then filled into a plastic bag tightly tied to meet anaerobe condition. Afterwards, the feed was incubated at darkroom temperature for 7 days. On the 8th day, the plastic bag was opened, and the feed was dried at room temperature.

Experimental Design
The study was performed into Block Randomized Design (BRD) consists of 4 treatments and 5 blocks. Every block represented an experimental unit consists of 5 birds. Block was designed based on the differences in body weights recorded on the last day of the second week. The mathematical model for this study was

\[ Y_{ij} = \mu + \alpha_i + \beta_j + \epsilon_{ij} \]

where \( \mu \) is overall mean, \( \alpha_i \) effect due to BW block \( j \), \( \beta_j \) effect due to the diet treatments \( i \), and \( \epsilon_{ij} \) is random error. The average final body weight (FBW), the average body weight gain (BWG), feed consumption, feed conversion ratio (FCR), and mortality. The FBW was obtained by weighing the birds on the last day of 5 weeks. Feed consumption was obtained by subtracting the amount of feed furnished by the residual feed. The rest parameters were computed as follows:

- **Average weekly BWG**: \( \frac{\text{FBW} – \text{FBW}_{t-1}}{\text{BW}_{t-1}} \)
- **FCR**: \( \frac{\text{Feed Consumption}}{\text{BWG}} \)
- **IOFC**: \( \frac{\text{Revenue} – \text{Feed Cost}}{\text{Feed Consumption}} \)
- **Feed Cost**: \( \text{Feed Consumption} \times \text{Feed Price} \)
- **Revenue**: \( \text{FBW} \times \text{Broiler Price} \)

Feeding the Broilers
All chicks were fed on full commercial diets during the first two weeks. Feeding experimental diets had been commenced at the beginning of the third week until the last day of the 5th week. Feeds were served ad libitum with the addition twice a day. Drinking water also was supplied ad libitum supplemented with vita stress during the first four weeks.

### Table 1. The composition and nutrient contents of experimental diets (%)

| Ingredients                  | MC0 | MC1       | MC2       | MC3       |
|------------------------------|-----|-----------|-----------|-----------|
| Commercial diet CP 511 Bravo¹ | 100 | 95.75     | 91.50     | 87.50     |
| Moringa Leaf Meal, fMOL²     | 0   | 2.50      | 5.00      | 7.50      |
| Yellow corn (yC)³            | 0   | 1.75      | 3.50      | 5.00      |
| Total                        | 100 | 100       | 100       | 100       |
| Protein (%)                  | 21.00–23.00 | 21.00–22.92 | 21.01–22.84 | 21.04–22.79 |
| ME (kcal/kg)                 | 2.900–3.000 | 2.868–2.964 | 2.836–2.927 | 2.802–2.890 |
| Crude fiber (%) (max)        | 5.00 | 5.05      | 5.10      | 5.16      |
| Crude fat (%) (max)          | 5.00 | 5.04      | 5.09      | 5.14      |

¹ Nutrient contents based on the marked label of commercial diet CP511B Bravo produced by PT. Charoen Pokphand: crude protein min. 21.0–23.0%, crude fat 5.0%, crude fiber 5.0%, Ca min. 0.9%, and P min. 0.6%, and EM 2.900–3.000 kcal/kg.
² Nutrient contents based on Laboratory of Nutrition and Animal Feed, Brawijaya University, Malang 2007: crude protein 29.61%, crude fat 7.48%, crude fiber 8.98%, and EM 1.380 kcal/kg (estimated 70% of the GE, Patrick and Schaible, 1990)
³ Nutrient contents based on Hartadi et al. (2005)

**RESULTS AND DISCUSSIONS**

The average final body weight (FBW), weekly body weight gain (BWG), feed consumption, and feed conversion ratio (FCR) of broilers fed the diets containing fermented *Moringa oleifera* leaf meal and Yellow Corn in the Diets on the Performances and Income… (Zulfan, et al.)
Feed Consumption

Results of ANOVA showed that the use of fMOL + yC as partial substitution of commercial diet did not significantly (P>0.05) influence feed consumption. However, broilers fed the diets containing fMOL + yC (MC₁–MC₃) had a slight tendency to lower feed intake. The decreased feed consumption was highly suspected due to the influence of the moringa leaves. A study reported by Banjo (2012) showed that the inclusion of up to 2% of Moringa oleifera significantly (P>0.05) increased feed intake but significantly decreased at the level of up to 3%. As reported by Ntila et al. (2019), moringa leaves had a bitter taste with significantly lower acceptability as indicated by the caregivers. A high concentrate of saponins and phenolics existing within moringa leaves (Makkar and Becker, 1997) are responsible for the bad taste. It might be possible that the inclusion of MOL in low numbers may increase feed consumption conversely decrease at the higher level of the inclusion.

Various types of drumstick plants can lead to varying feed intake. As reported by Chodur et al. (2018), the types of moringa included wild type and domesticated M. oleifera strongly differ in taste depending upon the content of direct antioxidant potential and their proportions of the two predominant glucosinolates which were glucomoriginin and glucosoonjain. Then reported that wild type plant had significantly more glucosoonjain (33.79 µmol/g with 95% CI 13.35–54.23) than cultivated moringa (1.16 µmol/g with 95% CI 0.85–1.49). Feed consumptions of the broilers during 5 weeks of feeding the diets at the different levels of the inclusions of the drumstick leaf meals were illustrated in Figure 1.

Table 2. Body weight, weekly BWG, feed consumption, and FCR of broilers

| Parameters | Total feed consumption (g bird⁻¹) | Avg feed consumption (g bird⁻¹/week⁻¹) | FBW (g bird⁻¹) | Weekly BWG (g bird⁻¹/week⁻¹) | FCR |
|------------|-----------------------------------|----------------------------------------|----------------|-----------------------------|-----|
|            | MC₀ | MC₁ | MC₂ | MC₃ | 2–5 weeks | 0–5 weeks |
| Total feed consumption (g bird⁻¹) | 2.317.5±53.2 | 2.291.8±11.4 | 2.276.2±26.1 | 2.262.6±26.9 | 2.291.8±11.4 | 2.276.2±26.1 | 2.262.6±26.9 | 2.291.8±11.4 | 2.276.2±26.1 | 2.262.6±26.9 | 2.291.8±11.4 | 2.276.2±26.1 | 2.262.6±26.9 | 2.291.8±11.4 | 2.276.2±26.1 | 2.262.6±26.9 |
| Avg feed consumption (g bird⁻¹/week⁻¹) | 772.5±17.7 | 763.9±3.8 | 758.8±8.7 | 754.2±9.0 | 561.7±10.6 | 556.6±2.3 | 553.5±5.2 | 550.8±5.4 | 2.054.9±40.4 | 1.923.6±55.5 | 1.961.5±36.7 | 1.884.4±87.8 | 1.50±0.03 | 1.62±0.04 | 1.57±0.06 | 1.65±0.11 |
| FBW (g bird⁻¹) | 2.514.2±17.7 | 471.2±13.6 | 483.8±16.6 | 458.1±29.4 | 402.7±8.1 | 376.4±11.1 | 384.1±7.3 | 368.8±17.6 | 1.50±0.03 | 1.62±0.04 | 1.57±0.06 | 1.65±0.11 | 1.50±0.03 | 1.62±0.04 | 1.57±0.06 | 1.65±0.11 |
| Weekly BWG (g bird⁻¹/week⁻¹) | 514.2±17.7 | 471.2±13.6 | 483.8±16.6 | 458.1±29.4 | 402.7±8.1 | 376.4±11.1 | 384.1±7.3 | 368.8±17.6 | 1.50±0.03 | 1.62±0.04 | 1.57±0.06 | 1.65±0.11 | 1.50±0.03 | 1.62±0.04 | 1.57±0.06 | 1.65±0.11 |
| FCR | 1.50±0.03 | 1.62±0.04 | 1.57±0.06 | 1.65±0.11 | 1.50±0.03 | 1.62±0.04 | 1.57±0.06 | 1.65±0.11 | 1.50±0.03 | 1.62±0.04 | 1.57±0.06 | 1.65±0.11 | 1.50±0.03 | 1.62±0.04 | 1.57±0.06 | 1.65±0.11 |

Table 2. Body weight, weekly BWG, feed consumption, and FCR of broilers

a,b The numbers in the same rows with different superscripts indicated significant differences (P<0.05)

The declined feed consumption in the present study only occurred in a small quantity. The birds did not quite refuse the MC diets. It could be explained that MOL had undergone a fermentation process considering assist to reduce the unpleasant smell of these meals. Fermentation could improve a flavor and taste (Pelczar and Chan, 2007). Another reason was fMOL was not included solely but combined with yellow corn, one of the most palatable feedstuffs for the broilers.

Final Body Weight (FBW) and Body Weight Gain (BWG)

Results of ANOVA showed that using fMOL + yC as partial substitution of commercial diet significantly (P<0.05) affected BW and BWG. Broilers fed the diets containing fMOL + yC (MC₁–MC₃) had FBW and BWG lower than those fed the control diet (MC₀). Hence, the use of fMOL + yC depressed FBW and BWG. Decreased BW might be due to the declined feed consumption. According to Jull (1992), BWG
correlated to the types and the numbers of the consumed feed. Reduced feed intake caused reduced protein and other nutrient intakes. The final body weights of the broilers at 5 weeks of ages at the different levels of the inclusions of the fMOL in the diets were illustrated in Figure 2.

![Figure 2. Final body weight at different levels of moringa leaves](image)

Moringa leaf powder contains high crude fiber (CF) as reported by Gopalakrishnan *et al.* (2016) while the birds are not able to digest a high amount of the CP. As reported by Banjo (2012), the inclusion of moringa significantly (P<0.05) enhanced the weight gain of birds at the 2% level of inclusion but significantly decreased at 3%. Different result report by Paguia *et al.* (2014), supplementation up to 0.5% *Moringa oleifera* in broiler diet did not quite trigger well FBW. Cui *et al.* (2018) reported BW decreased linearly and quadratically in response to the increase of dietary MOL supplementation. Kavoi *et al.* (2016) found the decline of BWG in broilers fed dietary *Moringa oleifera* leaves meal (MoLM) at levels 15% as the impacts negatively on intestinal structure i.e. degenerative changes in the lamina propria and crypts and also in the villus muscle strands. Contrary results were reported by Alnidawi *et al.* (2016) the effect of supplementation of *M. oleifera* poultry diets at treatments of 5 and 10% increased on BW of broilers.

Although fermentation can enhance the digestibility of the feeds (Winarno *et al.*, 1990), it seemed a fermentation treatment in moringa leaves supported to improve the feed quality in the restricted capacity. The BWG reduced not more than 200 gram/bird. However, a balanced diet with the proper dietary nutrients was most crucial in achieving optimally FBW.

### Feed Conversion Ratio (FCR)

Results of ANOVA showed that the use of fMOL + yC as partial substitution of commercial diet significantly (P<0.05) increased FCR. The decline of FBW and BWG on the broilers fed the MC diets (MC1–MC3) in this study should not be solely caused by the reduction of feed consumption but also the potential influence of losing some dietary nutrients within the substituted diets were regarded. Remove some commercial diet then replaced with fMOL + yC possibly caused by the deterioration of any important nutrients within the diet required by the birds. The feed conversion ratio of the broilers during 5 weeks of feeding the diets at the different levels of the inclusions of moringa was illustrated in Figure 3.

![Figure 3. Feed conversion ratio at different levels of moringa leaves](image)

Plant sources usually were lack methionine which is abundantly found in a fish meal to designate that birds highly need animal protein. The nutritive value endowed from the fMOL + yC were thought not comparable to those existing in the removal commercial diet. It indicated that the use of plant leaves to substitute partly commercial diets should not be used exclusively but better combined with animal feed sources. Zulfan *et al.* (2020) showed that the use of indigofera leaf combined with a fish meal as a substitute for a partial commercial diet could maintain the egg production of the quails without adverse effect on FCR then generated better income.

High FCR meant that the utilization of the dietary nutrients by the birds were less efficient. Although moringa leaves contain high amino acids (Makkar and Becker, 1997), the birds were not able to make use of any nutrients available in the leaves at the high levels of the inclusion of MOL. Physiologically, the system of avian
digestion was constructed for the grains, not for the foliage. Therefore, utilizing feed ingredients invented from the plant leaves in the poultry diet must be in limited number. Supplementation up to 0.5% MOL in the broiler diet did not significantly (P<0.05) influence FCR as reported by Pagui et al. (2014). Cui et al. (2018) calculated the optimal inclusion of MOL in broiler diets was 1.56% evaluated by quadratic regression analysis with a reliable equation for FCR (whole phase) i.e. y = 0.00154x^2 – 0.00482x + 1.86382 (P < 0.05, R^2 = 0.6669). These positive effects of MOL were mostly observed at a supplemental level not more than 5% of intake (Cui et al., 2018).

**Table 3. Income over feed cost (IOFC) of broilers feeding on experimental diets**

| Parameters          | Experimental diets composed of moringa + yellow corn (MC) | --- (Rp bird^2) --- |
|---------------------|----------------------------------------------------------|---------------------|
|                     | MC0 | MC1 | MC2 | MC3 |
| Total revenue (TR) | 36,988.56 | 34,894.08 | 35,299.08 | 34,197.84 |
| Variable cost (VC) |     |     |     |     |
| Feed cost           | 22,750.23 | 22,044.67 | 21,427.70 | 20,832.39 |
| Other cost          | 11,741.91 | 11,741.91 | 11,741.91 | 11,741.91 |
| Total VC            | 34,492.14 | 33,786.58 | 33,169.61 | 32,574.30 |
| Fixed cost (FC)     | 220.00 | 220.00 | 220.00 | 220.00 |
| Total cost (TC)     | 34,712.14 | 34,006.58 | 33,389.61 | 32,794.30 |
| IOFC                | 14,238.33 | 12,849.41 | 13,871.38 | 13,365.45 |
| Total income        | 2276.42 | 887.50 | 1909.47 | 1403.54 |
| R/C                 | 0.066 | 0.026 | 0.057 | 0.043 |
| B/C                 | 1.066 | 1.026 | 1.057 | 1.043 |

Bird price based on market price when study conducted

Analysis of revenue showed that using fMOL + yC as a partial substitution of commercial diet reduced revenue. The declined revenue resulted from the decreased FBW on the broilers fed the diet containing fMOL + yC while the broilers were sold at the same prices for all types of carcasses. The broilers produced with fMOL + yC should be offered at a higher market price than those produced with the absence of these feeds but the consumers did not assure the additional values of the current yields yet. Therefore, when the products may be likely to demand a higher price, the revenue can upturn over the usual product selling.

The total cost of fMOL + yC diets dropped because the variable cost lessened as the impact of lowering feed costs. Since the moringa leaves meal was fabricated at a lower cost the inclusion of this meal combined with yellow corn to substitute partly commercial diet brought to minimalize linearly feed price. The diet prices of the experimental diet counted for MC0, MC1, MC2, and MC3 were Rp8.100.00, Rp7.882.97, Rp7.6650.94, and Rp7.448.91 per kg, respectively. This result was in accordance with Ayssiwede et al. (2011), feed costs recorded in growing indigenous chickens fed the diets containing Moringa oleifera leaves were more economically profitable. The relationship on revenues, feed costs, and IOFC of produced broilers during 5 weeks liaised on feeding the diets at the different levels of the inclusions of the drumstick leaf meals were illustrated in Figure 4.
The results of the present study concluded that the inclusion of *Moringa oleifera* leaves collected from the plants of wild type up to 7.5% combined with yellow corn in the same number as partial substitution of commercial diet significantly reduced final body weight, body weight gain, and feed consumption, and increased feed conversion of broiler chickens. Including the moringa + yellow corn to replace partially commercial diet also resulted in the decline of income over feed cost (IOFC). The advantages of using moringa were supposed to support bird health with low mortality and morbidity as well as improve the appearance of the carcass with deeper yellow coloration and possibly furnished valuable nutrition.

**ACKNOWLEDGMENTS**

This research was funded by the Extension and Research Center, Syiah Kuala University, Darussalam, Banda Aceh.

**REFERENCES**

Alnidiawi, N.A.A., Ali, H.F.M., Abdelgayed, S.S., Ahmed, F.A., Farid, M., 2016. *Moringa oleifera* leaves in broiler diets: Effect on chicken performance and health. *Food Sci. and Quality Management*. 48: 40–48.

Ayissiwe, S.B., Dieng, A., Bello, H., Chrysostome, C.A.A.M., Hane, M.B., Mankor, A., Dahouda, M., Houinato, M., Hornick, M.R., Missohou, J.L., 2011. A Effects of *Moringa oleifera* (Lam.) leaves meal incorporation in diets on growth performances, carcass characteristics and economic results of growing indigenous Senegal chickens. *Pak. J. Nutr.* 10(12): 1132–1145.

Banjo, O.S., 2012. Growth and performance as affected by inclusion of *Moringa oleifera* leaf meal in broiler chicks diet. *Journal of Biology, Agriculture and Healthcare*. 2(9): 35–38.

Chodur, G.M., Olson, M.E. Wade, K.L., Stephenson, K.K., Garima, W., Fahey, J.W., 2018. Wild and domesticated *Moringa oleifera* differ in taste, glucosinolate composition, and antioxidant potential, but not myrosinase activity or protein content. *Sci Rep.* 8: 79-95.

Cui, Y.M., Wang, J., Lu, W., Zhang, H.J., Wu, S.G., Qi, G.H., 2018. Effect of dietary supplementation with *Moringa oleifera* leaf on performance, meat quality, and oxidative stability of meat in broilers. *Poultry Sci.* 97: 2836–2844.

Fardiaz, S. 1992. Mikrobiologi Pangan I. PT Gramedia. Jakarta.
Gopalakrishnan, L., Doriya, K., Kumar, D.S. 2016. Moringa oleifera: A review on nutritive importance and its medicinal application. J. Food Sci. and Human Wellness. 5(2): 49–56.

Hartadi, H., Reksohadiprojo, dan Tillman, A.D., 2005. Komposisi Bahan Pakan Untuk Indonesia. Gadjah Mada University Press. Yogyakarta.

Jull, M.A., 1992. Poultry Husbandry. 3rd Ed. Tata McGraw-Hill Publish Co. Ltd. New Delhi.

Kakengi, A.M.V., Kajjage, J.T., Sarwatt, S.V., Mutayova, S., Shen, M.N., Fujihara, T., 2007. Effect of Moringa oleifera leaf meal as a substitute for sunflower seed meal on performance of laying hens in Tanzania. Livest Res. Rural Dev. 19(8).

Kavoi, B.M., Kakuya, D.W., Mbogua, P.N., Kiama, S.G., 2016. Effects of dietary Moringa oleifera leaf meal supplementation on chicken intestinal structure and growth performance. J. Morphol. Sci. 33(4): 186–192.

Makkar, H.P.S., Becker, K., 1997. Nutrient and antiquity factors on different morphological parts of the Moringa oleifera tree. J. Agric. Sci. 128(3): 311–322.

North, M.D., Bell, D.D., 1990. Commercial Chicken Production Manual. 4th Ed. The Avi Publishing Company Inc., Westport, Connecticut.

Ntila, S., Ndhlala, A.R. Kolanisi, U., Abdelgadir, H., Siwela, M., 2019. Acceptability of a moringa-added complementary soft porridge to caregivers in Hammanskaal, Gauteng province and Lebowakgomo, Limpopo province, South Africa. S. Afr. J. of Cli. Nutr., 32(3): 51–57.

Olugbemi, T.S., Mutayoba, S.K., Lekule, F.P., 2010. Evaluation of Moringa oleifera leaf meal inclusion in cassava chip based diets fed to laying birds. Livestock Research for Rural Development. 22(6):

Paguia, H.M., Paguia, R.Q., Balca, C., Flores, R.C., 2014. Utilization and Evaluation of Moringa Oleifera L. As Poultry Feeds. PCBEE Procedia. 8: 343–347.

Pasaribu, T., 2007. Produk fermentasi limbah pertanian sebagai bahan pakan unggas di Indonesia. Wartazoa. 17(3): 109–116.

Patrick, H., Schaible, P.J., 1990. Poultry: Feed and Nutrition. 2nd Ed. AVI Publishing Co., Westport. Connecticut.

Pelczar, M.J., Chan, E.C.S., 2007. Dasar-Dasar Mikrobiologi. Jilid ke-1. Penerjemah Hadioetomo, R. S., T. Imas, S. S. Tjitrosomo, dan S. L. Angka. UI Press. of Microbiology, Jakarta.

Rahmat, R., Herdi, Y., 2016. Budidaya Sayuran Lokal. Penebar Swadaya. Jakarta.

Saini, R.K., Shetty, N.P., Giridhar, P., 2014. Carotenoid content in vegetative and reproductive parts of commercially grown Moringa oleifera Lam. Eur. Food Res. Technol. 238: 971–978.

Sjojan, O., 2008. Efek penggunaan tepung daun kelor (moringa oleifera) dalam pakan terhadap penampilan produksi ayam pedaging. Seminar Nasional Teknologi Peternakan dan Veteriner. 971–978. 649–656.

Steel, R.G.D., Torrie, J.H., 1991. Prinsip dan Prosedur Statistika. Terjemahan oleh B. Sumantri. Cet. ke-2. PT Gramedia. Jakarta.

Winarno, F.G., Fardiaz, S., Fardiaz, D., 1990. Pengantar Teknologi Pangan. Gramedia. Jakarta.

Zaku, S.G., Emmanuel, S., Kabi, A., 2015. Moringa oleifera: An underutilized tree in Nigeria with amazing versatility: A review. Afr. J. of Food Sci. 9(9): 456–461.

Zulfan, Allaiy, Fitri, C.A., Ilham., 2020. Pengaruh substitusi sebagian ransum komersil ayam petelur dengan bahan pakan campuran fermentasi tepung limbah ikan leubim (Canthidermis maculata) dan daun indigofera terhadap penampilan produksi telur puyuh. J. Agripet. 20(1): 56–62.