Quantumness of correlations and entanglement

A. R. Usha Devi
Department of Physics, Bangalore University, Bangalore-560 056, India.
Inspire Institute Inc., Alexandria, Virginia, 22303, USA.
aruth@rediffmail.com

A. K. Rajagopal
Inspire Institute Inc., Alexandria, Virginia, 22303, USA.

Sudha
Department of Physics, Kuvempu University, Shankaraghatta, Shimoga-577 451, India.
Inspire Institute Inc., Alexandria, Virginia, 22303, USA.

Received 20 May 2011
Revised 18 June 2011
Accepted 22 June 2011

Generalized measurement schemes on one part of bipartite states, which would leave the set of all separable states insensitive are explored here to understand quantumness of correlations in a more general perspective. This is done by employing linear maps associated with generalized projective measurements. A generalized measurement corresponds to a quantum operation mapping a density matrix to another density matrix, preserving its positivity, hermiticity and traceclass. The Positive Operator Valued Measure (POVM) – employed earlier in the literature to optimize the measures of classical/quantum correlations – correspond to completely positive (CP) maps. The other class, the not completely positive (NCP) maps, are investigated here, in the context of measurements, for the first time. It is shown that such NCP projective maps provide a new clue to the understanding of quantumness of correlations in a general setting. Especially, the separability-classicality dichotomy gets resolved only when both the classes of projective maps (CP and NCP) are incorporated as optimizing measurements. An explicit example of a separable state – exhibiting non-zero quantum discord, when possible optimizing measurements are restricted to POVMs – is re-examined with this extended scheme incorporating NCP projective maps to elucidate the power of this approach.

Keywords: Correlations; projective maps; quantumness.

1. Introduction

Entanglement between subsystems of a composite state brought forth perplexing distinctions between classical and quantum correlations. Fundamental significance of such incompatibility was highlighted by Bell’s novel work. Following Werner, it is believed that the statistical correlations between parts of a convex mixture of product (separable) states can be reproduced by a classical hidden
variable model and they satisfy all Bell inequalities. The physical source of separable correlations being a classical preparation device, they are termed classical. In other words, quantum correlation owes its origin to the impossibility of expressing a composite quantum state as a convex combination of product states. However, several other measures of non-classical correlations – which are more general than entanglement – are drawing significant attention during the past few years. It is identified that non-classical correlations, other than entanglement, offer quantum advantage in some information processing tasks.

Now we proceed to elaborate on the concept of quantumness of correlations – other than that implied by entanglement. In classical probability theory, two random variables A and B are said to be correlated if their probability distribution, $P(a, b)$ cannot be expressed as a mere product of the marginal probabilities $P(a)$ and $P(b)$. Shannon mutual information

$$H(A : B) = H(A) + H(B) - H(A, B)$$

where $H(A, B) = -\sum_{a,b} p(a, b) \log p(a, b)$, $H(A) = -\sum_a p(a) \log p(a)$, $H(B) = -\sum_b p(b) \log p(b)$ is an unequivocal measure of classical correlations.

In the quantum description, probability distributions are replaced by density operators and a bipartite density matrix $\hat{\rho}_{AB}$ is correlated if it cannot be expressed in a simple product form of its constituent subsystem density matrices $\hat{\rho}_A, \hat{\rho}_B$. The von Neumann mutual information,

$$S(A : B) = S(\hat{\rho}_{AB} |\!| \hat{\rho}_A \otimes \hat{\rho}_B)$$

$$= S(\hat{\rho}_A) + S(\hat{\rho}_B) - S(\hat{\rho}_{AB})$$

(2)

(where $S(\hat{\rho}) = -\text{Tr}[\hat{\rho} \log \hat{\rho}]$) quantifies the total correlations – classical as well as quantum – in a bipartite state $\hat{\rho}_{AB}$. Distinguishing these two kinds of correlations gains basic importance – that too when one addresses the issue from a significantly different perspective – keeping aside the established separability-entanglement demarkation of correlations. It is with this view that Ollivier and Zurek (OZ) pointed towards characterizing quantumness of correlations in a bipartite system based on measurement perspective. They considered the quantum anologue of mutual information, which is sensitive to measurement on one part of the composite system as,

$$S(A : B) = S(\hat{\rho}_B) - \sum_{\alpha} p_\alpha S(\hat{\rho}_{B|A,\alpha})$$

(3)

where

$$\hat{\rho}_{B|A,\alpha} = \frac{\hat{\Pi}_A^{\alpha} \otimes I_B \hat{\rho}_{AB} \hat{\Pi}_A^{\alpha} \otimes I_B}{p_\alpha}$$

(4)
denotes the conditional density operator, which results after a projective measurement \(\{ \hat{\Pi}^A_\alpha \} \) on subsystem \(A \) of the composite state \(\hat{\rho}_{AB} \): \(p_\alpha = \text{Tr}[\hat{\Pi}^A_\alpha \otimes I_B \hat{\rho}_{AB}] \) denotes the probability of outcome and \(\hat{\rho}^B_\alpha = \text{Tr}_A[\hat{\rho}_{B|A_\alpha}] \).

OZ proposed quantum discord as the minimum difference between the two equivalent quantum analogs (2) and (3) of mutual information to characterize quantumness of correlations in \(\hat{\rho}_{AB} \):
\[
\delta(A, B)_{(\hat{\Pi}^A_\alpha)} = S(A : B) - \max_{\{\hat{\Pi}^A_\alpha\}} S(A : B)
\] (5)
where the maximization is done over complete, orthogonal projective measurements \(\{ \hat{\Pi}^A_\alpha \} \) on subsystem \(A \).

A classically correlated bipartite state remains insensitive to a specific choice of projective measurement \(\{ \hat{\Pi}^A_\alpha \} \) on a part of the system – leading to vanishing quantum discord:
\[
\delta(A, B)_{(\hat{\Pi}^A_\alpha)} = 0 \Rightarrow \hat{\rho}^{(cl)}_{AB} = \sum_\alpha \hat{\Pi}^A_\alpha \otimes \hat{\tau}^B_\alpha.
\] (6)

Non-zero values of quantum discord quantify quantumness of correlations.

Expressing the classically correlated state in the basis \(\{ |\alpha\rangle \} \) of the orthogonal projectors, it is easy to see that
\[
\hat{\rho}^{(cl)}_{AB} = \sum_{\alpha, \beta'} \langle \alpha; \beta' | \hat{\rho}^{(cl)}_{AB} |\alpha; \beta \rangle \hat{\Pi}^A_\alpha \otimes |\beta'\rangle \langle \beta |
\]
\[
= \sum_\alpha q_\alpha \hat{\Pi}^A_\alpha \otimes \hat{\tau}^B_\alpha
\] (7)
where \(q_\alpha = \sum_\beta \langle \alpha; \beta | \hat{\rho}^{(cl)}_{AB} |\alpha; \beta \rangle = \text{Tr}[\hat{\rho}^{(cl)}_{AB}] \) and \(\hat{\tau}^B_\alpha = \sum_{\beta, \beta'} \frac{\langle \alpha; \beta' | \hat{\rho}^{(cl)}_{AB} |\alpha; \beta \rangle}{q_\alpha} |\beta'\rangle \langle \beta | \).

Clearly, the classically correlated states form a subset of separable states of the form \(\left\{ \sum_\alpha q_\alpha \hat{\Pi}^A_\alpha \otimes \hat{\tau}^B_\alpha \right\} \). Quantum discord does not necessarily vanish for all separable states. In other words, it suggests that the concept of quantum correlations is more general than entanglement – as separable states too exhibit quantumness of correlations (non-zero quantum discord). OZ, however, based their discussion on quantumness of correlations by confining their attention only to orthogonal projective measurements \(\{ \hat{\Pi}^A_\alpha \otimes I_B \} \).

We give here an example of a two qubit separable state, which has non-zero quantum discord: \(\hat{\rho}_{AB} = p |0_A, 0_B\rangle \langle 0_A, 0_B| + (1 - p) |+A, +B\rangle \langle +A, +B| \).
\[
0 \leq p \leq 1, \quad |\pm\rangle = \frac{1}{\sqrt{2}} (|0\rangle \pm |1\rangle).
\] (8)

Following a similar approach Henderson and Vedral (HV) \(^{[5]}\) independently investigated how to separate classical and quantum correlations. They employed general
positive operator valued measures (POVMs) to quantify classical correlations in the state $\hat{\rho}_{AB}$ in terms of the residual information entropy of B as follows:

$$C_A(\hat{\rho}_{AB}) = \max_i \{ V^A_i \} \frac{S(\hat{\rho}_B)}{-\sum_i q_i S(\hat{\rho}_B^i)}$$

(9)

where $\hat{\rho}^B_i = \text{Tr}_A [V^A_i \otimes I_B \hat{\rho}_{AB} V^{A_i}_i \otimes I_B] / q_i$ is the density matrix of subsystem B after the measurement $\{ V^A_i \otimes I_B \}$ is performed on A and $q_i = \text{Tr}_A [V^A_i \otimes I_B \hat{\rho}_{AB} V^{A_i}_i \otimes I_B]$ denotes the probability of outcome. In a classically correlated state the residual information entropy of B does not increase under an optimal measurement scheme on A.

By analyzing some examples HV found that classical and entangled correlations do not add up to give total correlations, i.e., $C_A(\hat{\rho}_{AB}) + E_{RE}(\hat{\rho}_{AB}) \neq S(A : B)$, where $E_{RE}(\hat{\rho}_{AB})$ denotes the relative entropy of entanglement. Hamieh et. al. showed that optimization of classical correlations in two qubit states may be achieved using orthogonal projective measurements themselves. This also leads to the identification that the classical correlations and the quantum discord add up to give the mutual information entropy in two-qubit states.

Another measure of quantum correlations is the one-way information deficit which is defined as the minimal increase of entropy after a projective measurement $\{ \hat{\Pi}^A_\alpha \}$ on subsystem A is done:

$$\Delta^\rightarrow(\hat{\rho}_{AB}) = \min \{ \hat{\Pi}^A \} S \left(\sum_\alpha \hat{\Pi}^A_\alpha \hat{\rho}_{AB} \hat{\Pi}^A_\alpha \right) - S(\hat{\rho}_{AB}).$$

(10)

The one-way information deficit vanishes only on states with zero quantum discord.

Quantum discord $\delta(A, B)_{\{ \hat{\Pi}^A \}}$, the HV classical correlations $C_A(\hat{\rho}_{AB})$ and the one-way information deficit $\Delta^\rightarrow(\hat{\rho}_{AB})$ are all asymmetric with respect to measurements on the subsystems A and B. Quantum deficit – one other measure of non-classical correlations – which is symmetric about the subsystems A, B, was proposed by Rajagopal and Rendell as follows:

$$D_{AB} = S(\hat{\rho}_{AB} || \hat{\rho}^{(d)}_{AB}) = \text{Tr} \left[\hat{\rho}_{AB} \log \hat{\rho}_{AB} \right] - \text{Tr} \left[\hat{\rho}_{AB} \log \hat{\rho}^{d}_{AB} \right],$$

(11)

where $\hat{\rho}^{(d)}_{AB} = \sum_{a,b} P(a,b) \hat{\Pi}^A_a \otimes \hat{\Pi}^B_b$, where $\hat{\Pi}^A_a, \hat{\Pi}^B_b$ correspond to eigenprojectors of the subsystems $\hat{\rho}_A, \hat{\rho}_B$ with $P(a,b) = \langle a,b | \hat{\rho}_{AB} | a,b \rangle$ denoting the diagonal elements of $\hat{\rho}_{AB}$, in its subsystem eigen basis and $P(a) = \sum_b P(a,b), P(b) = \sum_a P(a,b)$ the eigenvalues of $\hat{\rho}_A, \hat{\rho}_B$ respectively. The quantum deficit D_{AB} determines the quantum excess of correlations in the state $\hat{\rho}_{AB}$, with reference to its classically decohered counterpart $\hat{\rho}^{(d)}_{AB}$ and it vanishes iff $\hat{\rho}_{AB} \equiv \hat{\rho}^{(d)}_{AB}$. It may be noted that bipartite states with zero quantum deficit have vanishing quantum discord.

Another important feature is that evaluating quantum deficit is easier compared to the other measures of correlations outlined above, as no optimization procedure is involved in its evaluation.

It appears natural to raise the question are there more general measurement schemes on one part of bipartite states, which would leave all the separable
Quantumness of correlations and entanglement

states insensitive? Possibility of such generalized measurements would resolve the dichotomy of separability vs classicality of correlations. Furthermore any measure of quantumness of correlations could then be identified with that of entanglement itself. In this paper, we analyze the basic features of generalized measurement scheme which could imply that absence of entanglement and classicality are synonymous. We show that not completely positive (NCP) projective maps – in contrast to POVMs – are the essential ingredients of generalized measurements on one end of a bipartite system that leave separable states unaltered.

2. A generalized measure of quantumness of correlations

We discuss some specific properties of quantum discord so as to extend the notion of quantumness of correlations in a bipartite system by invoking generalized measurements.

Consider a bipartite state ρ_{AB}, for which optimization of quantum discord $\delta(A, B)\{\Pi_A\}$ is realized in terms of a complete orthogonal projective set $\{\Pi_A\}$. The state left after measurement is given by,

$$\rho_{DAB} = \sum_{\alpha} p_{\alpha} \Pi_A^\alpha B \rho_{AB}$$

where $\rho_{B|A_\alpha}$ is the conditional density operator (see [1]) and $p_{\alpha} = \text{Tr}[\Pi_A^\alpha B \rho_{AB}]$. Using the property [2]

$$S(\rho_{DAB}) = -\sum_{\alpha} p_{\alpha} \log p_{\alpha} + \sum_{\alpha} p_{\alpha} S(\rho_{B|A_\alpha})$$

one can express quantum discord (see [3]) in terms of the relative entropies as follows:

$$\delta(A, B)\{\Pi_A\} = S(\hat{\rho}_{DAB}) - S(\hat{\rho}_{AB}) + S(\hat{\rho}_A) - \sum_{\alpha} p_{\alpha} \log p_{\alpha}$$

$$= S(\hat{\rho}_{AB}||\hat{\rho}_{AB}^D) + S(\hat{\rho}_A||\hat{\rho}_A^D)$$

This structure of quantum discord clearly projects out the fact that (i) $\delta(A, B)\{\Pi_A\} \geq 0$ as the relative entropies $S(\hat{\rho}_{AB}||\hat{\rho}_{AB}^D)$, $S(\hat{\rho}_A||\hat{\rho}_A^D)$ are positive semidefinite quantities (ii) they vanish iff $\hat{\rho}_{AB} = \hat{\rho}_{AB}^D$ i.e., if the state $\hat{\rho}_{AB}$ remains insensitive to projective measurement $\{\Pi_A\}$. Moreover, observing that the state after measurement is a classically correlated state i.e., $\hat{\rho}_{AB}^D = \sum_{\alpha} p_{\alpha} \Pi_A^\alpha A \otimes \rho_B^\alpha$, the quantum discord gets related to [14] distance between the given state $\hat{\rho}_{AB}$ and its closest classically correlated state $\hat{\rho}_{AB}^D$ (where distance is considered in terms of the relative entropy).
A natural extension of the measure of quantumness of correlations [12] – as a distance between the given bipartite state and the closest state realized after measurements at one end of the state – will be outlined in the following.

Let us consider the set of all tripartite density operators $\{\hat{\rho}_{A'AB}\}$ in an extended Hilbert space $\mathcal{H}_A \otimes \mathcal{H}_A \otimes \mathcal{H}_B$, such that the bipartite state $\hat{\rho}_{AB}$ under investigation is a marginal of this extended system:

$$\text{Tr}_{A'}[\hat{\rho}_{A'AB}] = \hat{\rho}_{AB}. \quad (15)$$

Now, carrying out an orthogonal projective measurement $\Pi_i^{(A')}$; $i = 1, 2, \ldots$, on one of the subsystems A' of the tripartite state $\hat{\rho}_{A'AB}$ we obtain,

$$\hat{\rho}_{A'AB} \rightarrow \hat{\rho}_{A'AB}^{(i)} = \frac{1}{p_i} \left[\hat{\Pi}_i^{(A')} \otimes I_B \hat{\rho}_{A'AB} \hat{\Pi}_i^{(A')} \otimes I_B \right] \quad (16)$$

and

$$\hat{\rho}_{AB} \rightarrow \hat{\rho}_{AB}^{(i)} = \frac{1}{p_i} \text{Tr}_{A'} \left[\hat{\Pi}_i^{(A')} \otimes I_B \hat{\rho}_{A'AB} \hat{\Pi}_i^{(A')} \otimes I_B \right]$$

where $p_i = \text{Tr}_{A'AB} [\hat{\Pi}_i^{(A')} \otimes I_B \hat{\rho}_{A'AB}]$ denotes the probability of occurrence of i^{th} outcome.

We define Quantumness Q_{AB} associated with a bipartite state $\hat{\rho}_{AB}$ as the relative entropy

$$Q_{AB} = \min_{\{\hat{\Pi}_i^{(A')}, \hat{\rho}_{AB}^{(i)}\}} S(\hat{\rho}_{AB} || \hat{\rho}_{AB}^{(i)}) \quad (17)$$

Here, $\hat{\rho}_{AB}^{(i)} = \text{Tr}_{A'} [\sum_i \hat{\Pi}_i^{(A')} \otimes I_B \hat{\rho}_{A'AB} \hat{\Pi}_i^{(A')} \otimes I_B]$, denotes the residual state of the bipartite system, left after the generalized projective measurement is performed. The minimum in Eq. (17) is taken over the set $\{\hat{\Pi}_i^{(A')}\}$ of projectors on the subsystems A' of all possible extendend states $\{\hat{\rho}_{A'AB}\}$, which contain the given bipartite state $\hat{\rho}_{AB}$ as their marginal system.

The quantumness, $Q_{AB} \geq 0$ (by definition), for all generalized measurements - the equality sign holding iff $\hat{\rho}_{AB}^R = \hat{\rho}_{AB}$ i.e., quantumness vanishes iff the bipartite state $\hat{\rho}_{AB}$ remains insensitive to generalized measurement $\{\hat{\Pi}_i^{(A')}\}$.

Corresponding to a chosen measurement scheme $\{\hat{\Pi}_i^{(A')}\}$ we may express the extended state $\hat{\rho}_{A'AB}$ in terms of the complete, orthogonal set of basis states $\{|i\rangle_{A'} \otimes |\beta\rangle_B\}$ as,

$$\hat{\rho}_{A'AB} = \sum_{i', \beta', \beta} P(i', \beta'; i, \beta) |i'\rangle_{A'} \langle i'| \otimes |\beta\rangle_B \langle \beta|. \quad (18)$$

We then obtain,

$$\hat{\rho}_{A'AB}^R = \hat{\Pi}_i^{(A')} \otimes I_B \hat{\rho}_{A'AB} \hat{\Pi}_i^{(A')} \otimes I_B = \sum_{\beta', \beta} P(i, \beta'; i, \beta) \hat{\Pi}_i^{(A')} \otimes |\beta\rangle_B \langle \beta|$$
Quantumness of correlations and entanglement

which leads in turn to

$$\tilde{\rho}_{AB} = \text{Tr}_{A'} \left[\sum_i \tilde{\Pi}_i^{(A'A)} \otimes I_B \tilde{\rho}_{A'AB} \tilde{\Pi}_i^{(A'A)} \otimes I_B \right]$$

$$= \sum_i p_i \tilde{\rho}_i^A \otimes \tilde{\rho}_i^B$$

(19)

where $\tilde{\rho}_i^A = \text{Tr}_{A'} [\tilde{\Pi}_i^{(A'A)}]$ and

$$\tilde{\rho}_i^B = \sum_{\beta', \beta} P(i, \beta'; i, \beta) \frac{p_i}{p_i} |\beta\rangle_B \langle \beta|,$$

$$p_i = \text{Tr} [\tilde{\Pi}_i^{(A'A)} \otimes I_B \tilde{\rho}_{A'AB}] = \sum_{\beta} P(i, \beta; i, \beta).$$

Clearly, the state $\tilde{\rho}_{AB}$ of the bipartite system – left after performing the generalized measurement $\{\tilde{\Pi}_i^{(A'A)}\}$ on the part A' of the global system – is a separable state. As the optimization of quantumness Q_{AB} is done over the set of all projectors $\{\tilde{\Pi}_i^{(A'A)}\}$, and the set of all extended states $\{\tilde{\rho}_{A'AB}\}$, it is readily seen that $\{\tilde{\rho}_{AB} = \tilde{\rho}_{AB}^{(\text{sep})}; \tilde{\rho}_B = \text{Tr}[\tilde{\rho}_{AB}^{(\text{sep})}]\}$ corresponds to the set of all separable states which share the same subsystem density matrix $\tilde{\rho}_B$ for the part B (i.e., the subsystem, which does not come under the direct action of generalized measurements $\{\tilde{\Pi}_i^{(A'A)}\}$).

We thus obtain

$$Q_{AB} = \min_{\{\tilde{\Pi}_i^{(A'A)}}, \tilde{\rho}_{A'AB}\} S(\tilde{\rho}_{AB} || \tilde{\rho}_{AB}^{(\text{sep})})$$

$$= \min_{\{\tilde{\rho}_{AB}^{(\text{sep})}\}} S(\tilde{\rho}_{AB} || \tilde{\rho}_{AB}^{(\text{sep})})$$

(20)

with minimization taken over the set of all separable states $\{\tilde{\rho}_{AB}^{(\text{sep})}; \tilde{\rho}_B = \text{Tr}[\tilde{\rho}_{AB}^{(\text{sep})}]\}$.

In other words, the generalized measure Q_{AB} of quantumness of correlations corresponds to the distance between the given state $\tilde{\rho}_{AB}$ with the closest separable state $\tilde{\rho}_{AB}^{(\text{sep})}; \text{Tr}[\tilde{\rho}_{AB}^{(\text{sep})}] = \tilde{\rho}_B$. From Eq. (20) it is evident that quantumness Q_{AB} is necessarily non-zero for all entangled bipartite states $\tilde{\rho}_{AB}$ and vanishes for all separable states. Moreover, Q_{AB} also serves as an upper bound to the relative entropy of entanglement \(^1\). While the evaluation of Q_{AB} is as hard a task as that of relative entropy of entanglement, the significant point here is that it brings out the required generalized scheme of measurements, which resolve the dichotomy between quantumness of correlations and entanglement. Further, the established connection – viz., the quantumness of correlations is the distance between the given bipartite state with its closest separable state (sharing the same marginal state for the subsystem B) – highlights the merger of quantumness of correlations with quantum entanglement itself. This in turn ensures that any other operational measure of bipartite entanglement would faithfully reflect quantumness of correlations in the state.

We illustrate the scheme of generalized projective measurements on $A'A$ subsystem of an extended tripartite state $\tilde{\rho}_{A'AB}$ of the separable state \(^5\). An extended
quantumness

January 21, 2013 20:54 WSPC/INSTRUCTION FILE

A. R. Usha Devi, A. K. Rajagopal and Sudha

three qubit state

$$\hat{\rho}_{AB}^{R} = \rho_{|1_{A},0_{A},0_{B}\rangle \langle 1_{A},0_{A},0_{B}| + (1-p)\rho_{|0_{A},+_{A},+_{B}\rangle \langle 0_{A},+_{A},+_{B}|} \quad (21)$$

leads to the given two qubit state \(S\) by tracing over the \(A'\) qubit. We find that

the complete, orthogonal set of projectors \(\{\hat{\Pi}_{i}(A')\}\) on \(A'\) constituted by

$$\hat{\Pi}_{1}^{(A')} = |0_{A'},+_{A}\rangle \langle 0_{A'},+_{A}| \quad \hat{\Pi}_{2}^{(A')} = |0_{A'},-_{A}\rangle \langle 0_{A'},-_{A}| \quad \hat{\Pi}_{3}^{(A')} = |1_{A'},0_{A}\rangle \langle 1_{A'},0_{A}| \quad \hat{\Pi}_{4}^{(A')} = |1_{A'},1_{A}\rangle \langle 1_{A'},1_{A}| \quad (22)$$

leaves the overall state \(S\) unaltered:

$$\hat{\rho}_{AB}^{R} = \sum_{i=1}^{4} \hat{\Pi}_{i}(A') \otimes I_{B} \hat{\rho}_{AB} \otimes I_{B} \equiv \hat{\rho}_{AB}. \quad (23)$$

So, we identify that the bipartite state \(S\) is insensitive under the generalized projective measurements \(\{22\}\) i.e., \(\hat{\rho}_{AB}^{R} = \hat{\rho}_{AB}\) implying that \(Q_{AB} = S(\hat{\rho}_{AB}\|\hat{\rho}_{AB}^{R}) = 0\) in this state.

The generalized projective measurements on \(A'\) part of the extended state may be viewed as quantum maps, which transform density matrices \(\hat{\rho}_{A}\) (before measurement) to density matrices \(\hat{\rho}_{A}^{R}\) (after measurement) – preserving their hermiticity, positivity and trace class. In the next section we investigate the properties of the linear map associated with the generalized measurements.

3. Linear \(A, B\) maps associated with generalized projective measurements

Dynamical \(A\) and \(B\) maps have been employed extensively by Sudarshan and co-workers to investigate open system evolution of quantum systems. \(20\) \(21\) \(22\) Here, we elucidate the projective measurements \(\{\hat{\Pi}_{i}(A')\}\) on \(\hat{\rho}_{A}\) in terms of linear \(A, B\) quantum maps on \(\hat{\rho}_{A}\) – transforming it to the resultant density matrix \(\hat{\rho}_{A}^{R}\) – preserving the positivity, hermiticity and unit trace conditions. The elements \((\hat{\rho}_{A}^{R})_{a_{k},a_{l}}\) after measurement are explicitly expressed in terms of those of initial density matrix \((\hat{\rho}_{A})_{a_{k},a_{l}}\) via the \(A\) map as \(20\) \(21\)

$$\quad (\hat{\rho}_{A}^{R})_{a_{i},a_{j}} = \sum_{a_{k},a_{l}} A_{a_{i},a_{j};a_{k},a_{l}} (\hat{\rho}_{A})_{a_{k},a_{l}}. \quad (24)$$

That the resultant density matrix \(\hat{\rho}_{A}^{R}\) is Hermitian and has unit trace leads to the conditions

Hermiticity : \(A_{a_{i},a_{j};a_{k},a_{l}} = A_{a_{j},a_{i};a_{l},a_{k}}^{*}\), \((25)\)

Trace preservation : \(\sum_{a_{k}} A_{a_{k},a_{i},a_{l}} = \delta_{a_{i},a_{l}}\), \((26)\)
In order to bring out the properties (25), (26) in a lucid manner, a realigned matrix B:

$$B_{a_ia_ak;ajal} = A_{a_ia_a;ak;ajal}. \quad (27)$$

The hermiticity property (25) leads to the condition $B_{a_ia_ak;ajal} = B_{ajal;ak;ai}^*$, i.e., the map B is hermitian.

In terms of the spectral decomposition $B_{a_ia_ak;ajal} = \sum_{\lambda} \alpha_{\lambda} M_{a_ia_\lambda^*} M_{ajal}^{(\lambda)^*}$, the action of the B map on the density matrix is then readily identified as,

$$\left(\hat{\rho}_A^{RA}\right)_{aij} = \sum_{\alpha,a_k,a_l} \lambda_\alpha M_{a_ia_\alpha} M_{ajal}^{(\alpha)^*} \left(\hat{\rho}_A^{RA}\right)_{akal} \Rightarrow \hat{\rho}_A^{RA} = \sum_{\alpha} \lambda_\alpha M^{(\alpha)} \hat{\rho}_A M^{(\alpha)^*} \quad (28)$$

and this corresponds to POVM on $\hat{\rho}_A$ provided $\lambda_\alpha \geq 0$ or a completely positive (CP) map associated with projective measurement; otherwise it is a not completely positive (NCP) map.

We focus on finding the CP/NCP nature of the projective quantum map transforming the single qubit state $\hat{\rho}_A = \text{Tr}_{A'B}\{\hat{\rho}_{A'AB}\}$ (before measurement) with $\hat{\rho}_A^{RA} = \text{Tr}_{A'B} \left\{ \sum \Pi_i^{(A')} \hat{\rho}_{A'AB} \Pi_i^{(A')} \right\}$ (after measurement) — corresponding to the specific measurement scheme $\{\Pi_i^{(A')}\}$ (see Eq. (22)) on the state $\hat{\rho}_{A'AA}$ of Eq. (21) — i.e., in the specific example discussed in Sec. 2. It is pertinent to point out here that the state $\hat{\rho}_{A'AB}$, and hence the reduced state $\hat{\rho}_A$, remain insensitive to the projective measurement (22), as has already been illustrated explicitly in Sec. 2 (see Eqs. (21, 23)). The corresponding quantum map transforming $\hat{\rho}_A \rightarrow \hat{\rho}_A^{RA}$ must reveal this insensitivity.

In order to deduce the explicit structure of the projective A, B maps, we employ the concept of assignment map.[23] Explicit technical details and derivations are elaborated in Appendix. We obtain the B map (see Appendix Eq. (52)) associated with this particular example as,

$$B = \begin{pmatrix} 1 & 0 & 0 & \frac{1}{2} \\ 0 & 0 & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & 0 & 0 & 1 \end{pmatrix} \quad (29)$$

where the rows and columns are labeled as \{00, 01, 10, 11\}. The associated A matrix is then obtained as (using (27)),

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad (30)$$
Applying the measurement map A of Eq. (30) on the state $\hat{\rho}_A = \text{Tr}_{A'B}[\hat{\rho}_{A'AB}] = p|0_A\rangle\langle 0_A| + (1-p)|+A\rangle\langle +A|$ (the state before measurement) it may be seen explicitly (following Eq. (24)) that $\hat{\rho}_A^{R}_{a_ia_j} = \sum_{a_k,a_l=0,1} A_{a_ia_j;a_ka_l}(\hat{\rho}_A)_{a_ka_l} \equiv [\hat{\rho}_A]_{a_ia_j}$ i.e., the state is insensitive to this measurement. It may be recalled here that the projective measurement (22) leaves the tripartite state (21) – and hence its subsystems $\hat{\rho}_{AB}$ (and also $\hat{\rho}_A$) – undisturbed as is illustrated in Sec. 2. This in turn led to the implication that the quantumness of correlation Q_{AB} vanishes for the separable state $\hat{\rho}_{AB}$ of Eq. (8) – whereas, quantum discord and quantum deficit are non-zero.

The eigenvalues of B are readily found to be $\left(\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, \frac{3}{2}\right)$, implying that the projective measurement (22) on the state $\hat{\rho}_A$ corresponds to a NCP map. In other words, we reach a crucial identification that the map, which leaves the state $\hat{\rho}_{AB}$ of Eq. (8) insensitive under measurements is NCP. Our generalized measure of quantumness (17) may also be expressed as,

$$Q_{AB} = \min_{\{CP/NCP\text{ projective maps on } A\}} S(\hat{\rho}_{AB}\|\hat{\rho}_{AB}^R)$$

(31)

where we emphasize that positivity, hermiticity and trace of the given density matrix are preserved by the optimizing CP/NCP projective maps. A comparison of Eq. (31) with the alternate form (given in Eq. (20)), suggests that both the classes of projective maps (CP and NCP) need to be incorporated in order to deem quantumness of correlations as synonymous with quantum entanglement itself. Having thus established that the quantumness of correlations Q_{AB} of bipartite states is non-zero only for entangled states, we point out once again that any other operational measure of entanglement would necessarily imply such non-classicality of correlations – and this identification takes away the burden of evaluating Q_{AB} (where the optimization procedure turns out to be a demanding task) per se to infer quantumness.

4. Summary

Sudarshan and coworkers \cite{20,21} put forward the conceptual formulation of quantum theory of open system evolution in terms of dynamical A, B maps almost 50 years ago and they also investigated it in the more general setting \cite{22,24,25} – including NCP dynamical maps. In this paper we highlight the important role of NCP projective maps in the context of measurements. It is shown that incorporating generalized measurement schemes – including both CP as well as NCP maps – resolves the dichotomy of separability vs classicality of correlations.

Acknowledgments

We thank insightful discussions with Dr. Kavan Modi on assignment maps.
Appendix: \mathcal{A}, \mathcal{B} maps associated with projective measurement

Let us consider complete, orthonormal set of projective measurements $\{\Pi_i^{(A',A)}\}$ on $\hat{\rho}_{A'A}$. We proceed to construct the \mathcal{A}, \mathcal{B} maps transforming the system state $\hat{\rho}_{A} = \text{Tr}_{A'}[\hat{\rho}_{A'A}]$ (before measurement) to the state $\hat{\rho}^R_{A} = \text{Tr}_{A'}[\sum_i \hat{\Pi}_i^{A'A} \hat{\rho}_{A'A} \hat{\Pi}_i^{A'A}]$ (after measurement).

$$
\hat{\rho}^R_{A} = \text{Tr}_{A'} \left[\sum_i \hat{\Pi}_i^{A'A} \hat{\rho}_{A'A} \hat{\Pi}_i^{A'A} \right] \\
= \sum_i \text{Tr}_{A'}[\hat{\Pi}_i^{A'A} \hat{\rho}_{A'A}] \text{Tr}_{A'}[\hat{\Pi}_i^{A'A}] \\
= \sum_i \mathcal{P}_i \hat{\rho}^A_{i}
$$

(32)

where we have denoted

$$
\text{Tr}_{A'}[\hat{\Pi}_i^{A'A} \hat{\rho}_{A'A}] = \hat{\rho}^A_{i}
$$

(33)

$$
\mathcal{P}_i = \text{Tr}_{A'}[\hat{\Pi}_i^{A'A} \hat{\rho}_{A'A}]
$$

(34)

We simplify $\mathcal{P}_i = \text{Tr}_{A'}[\hat{\Pi}_i^{A'A} \hat{\rho}_{A'A}]$ in order to construct the associated \mathcal{A} map as follows:

$$
\text{Tr}_{A'}[\hat{\Pi}_i^{A'A} \hat{\rho}_{A'A}] = \text{Tr}_{A'}[\hat{\Pi}_i^{A'A} \mathcal{A}(\hat{\rho}_{A})] = \mathcal{T} \circ \Pi \circ \hat{\mathcal{A}}(\hat{\rho}_{A}),
$$

(35)

where $\hat{\mathcal{A}}(\hat{\rho}_{A}) = \hat{\rho}_{A'A}$ defines the assignment map. The assignment map is linear i.e.,

$$
\hat{\mathcal{A}}(P^A_{\alpha}) = \tau^A_{\alpha} \otimes P^A_{\alpha}
$$

(36)

$$
\Rightarrow \hat{\mathcal{A}} \left(\sum_k r_{\alpha} P^A_{\alpha} \right) = \sum_{\alpha} r_{\alpha} \tau^A_{\alpha} \otimes P^A_{\alpha}
$$

(37)

where P^A_{α} are linearly independent states of system A. Let $\{Q_{\beta}\}$ be a set of hermitian operators such that

$$
\text{Tr}[P^A_{\alpha} Q_{\beta}] = \delta_{\alpha,\beta} \\
\sum_{\beta} Q_{\beta} = I_A.
$$

(38)

We can thus express

$$
\hat{\mathcal{A}} = \sum_{\alpha} \tau^A_{\alpha} \otimes P^A_{\alpha} \otimes Q^T_{\alpha}.
$$

(39)
The elements of the corresponding realigned B matrix (see 27) are then identified.
Quantumness of correlations and entanglement

as,

\[B_{\alpha a'_i a'_{j a}, a_{j a_i}} = \mathcal{A}_{\alpha a'_i a'_{j a}, a_{j a_i}} \]

\[= \sum_i \sum_{a'_i, a_{j a_i}} [\hat{\rho}^A]_{a'_i a_{j a_i}} [\hat{\Pi}^A]_{a'_i a_{j a_i}} \hat{A}_{a'_i a_{j a_i}} \]

\[\Rightarrow B = \sum_i \hat{\rho}^i \otimes \text{Tr}_{A^i A} [\hat{\Pi}^A \hat{A}] \]

\[= \sum_i \sum_\alpha \hat{\rho}^i_\alpha \otimes \text{Tr}_{A^i A} \left(\hat{\Pi}^A_\alpha \left(\tau^A_\alpha \otimes P^A_\alpha \right) \right) \]

\[= \sum_i \sum_\alpha \text{Tr}_{A^i A} \left(\hat{\Pi}^A_\alpha \left(\tau^A_\alpha \otimes P^A_\alpha \right) \right) \rho^i_\alpha \otimes Q^T_\alpha \]

\[B = \sum_\alpha \left(\sum_i q_{i \alpha} \hat{\rho}^i_\alpha \right) \otimes Q^T_\alpha \]

\[= \sum_\alpha \hat{n}^A_\alpha \otimes Q^T_\alpha \]

(43)

where we have denoted

\[\sum_\alpha q_{i \alpha} \hat{\rho}^i_\alpha = \hat{n}^A_\alpha, \]

(44)

\[q_{i \alpha} = \text{Tr}_{A^i A} [\hat{\Pi}^A_\alpha \left(\tau^A_\alpha \otimes P^A_\alpha \right)]. \]

Now, we consider a specific example of two qubit state (see (21))

\[\hat{\rho}^A = \text{Tr}_{B} [\hat{\rho}^{A \cdot AB}] \]

\[= \rho \left| A', 0_A \right\rangle \left\langle A', 0_A \right| + (1 - \rho) \left| 0_{A'}, +_{A} \right\rangle \left\langle 0_{A'}, +_{A} \right| \]

(45)

and complete, orthogonal projective measurement (22).

We choose the following set \(\{ P^A_\alpha \} \) of linearly independent \(2 \times 2 \) matrices (see (23)), which serve as a basis (23) for single qubit systems:

\[P^A_1 = \frac{1}{2} [I + \sigma_1] = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \]

\[P^A_2 = \frac{1}{2} [I + \sigma_2] = \frac{1}{2} \begin{pmatrix} 1 - i \\ i & 1 \end{pmatrix}, \]

\[P^A_3 = \frac{1}{2} [I + \sigma_3] = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \]

\[P^A_4 = \frac{1}{2} [I - \sigma_1] = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}. \]

(46)

The corresponding set of Hermitian matrices \(\{ Q_\beta \} \), which are orthogonal to \(\{ P^A_\alpha \} \) and obey the property \(\sum_\beta Q_\beta = I \) (see Eq. (35)) are given by,

\[Q_1 = \frac{1}{2} [I + \sigma_1 + \sigma_2 - \sigma_3] = \frac{1}{2} \begin{pmatrix} 0 & 1 - i \\ 1 + i & 2 \end{pmatrix}, \]

\[Q_2 = -\sigma_2 = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}, \]

\[Q_3 = \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \]

\[Q_4 = \frac{1}{2} [I - \sigma_1 + \sigma_2 - \sigma_3] = \frac{1}{2} \begin{pmatrix} 0 & 1 - i \\ -1 + i & 2 \end{pmatrix}. \]

(47)

Further, choosing

\[\tau^A_{1,4} = |0\rangle_{A'} \langle 0|, \quad \tau^A_{2,3} = |1\rangle_{A'} \langle 1| \]

(48)
in (39) and simplifying (using (45), (46) and (47) we obtain
\[\tilde{A}(\rho^A) = \tilde{A}((1 - p) P_1^A + p P_3^A) = (1 - p) P_1 \otimes \tau_1 + p P_3 \otimes \tau_3 = \tilde{\rho}_{A'A} \] (49)
confirming the consistency of the assignment map \(\tilde{A} \).

Using the explicit matrices \(\{ P_\alpha \} \), \(\{ Q_\beta \} \) of (46), (47), and (48), along with (22) for projective measurements, we obtain (see (45))
\[q_1 = \text{Tr}_{A'}[\tilde{\Pi}_1^{A'}(P_1 \otimes \tau_1)] = (1, 0, 0, 0) \]
\[q_2 = \text{Tr}_{A'}[\tilde{\Pi}_2^{A'}(P_2 \otimes \tau_2)] = (1, 0, 1, 0) \]
\[q_3 = \text{Tr}_{A'}[\tilde{\Pi}_3^{A'}(P_3 \otimes \tau_3)] = (0, 1, 0, 0) \]
\[q_4 = \text{Tr}_{A'}[\tilde{\Pi}_4^{A'}(P_4 \otimes \tau_4)] = (0, 1, 0, 0) \] (50)
and (see (33, 44))
\[\eta_1 = \sum_i q_i \rho_i^A = \sum_i q_i \text{Tr}_E[\tilde{\Pi}_i^{A'}] = \text{Tr}_E[\tilde{\Pi}_4^{A'}] = |+\rangle\langle +| = P_1 \]
\[\eta_2 = \sum_i q_i \rho_i^A = \sum_i q_i \text{Tr}_E[\tilde{\Pi}_2^{A'}] = \frac{1}{2} \left(\text{Tr}_E[\tilde{\Pi}_3^{A'}] + \text{Tr}_E[\tilde{\Pi}_4^{A'}] \right) = \frac{1}{2}(|0\rangle\langle 0| + |1\rangle\langle 1|) = \frac{I}{2} \]
\[\eta_3 = \sum_i q_i \rho_i^A = \sum_i q_i \text{Tr}_E[\tilde{\Pi}_3^{A'}] = \text{Tr}_E[\tilde{\Pi}_3^{A'}] = |0\rangle\langle 0| = P_3 \]
\[\eta_4 = \sum_i q_i \rho_i^A = \sum_i q_i \text{Tr}_E[\tilde{\Pi}_4^{A'}] = \text{Tr}_E[\tilde{\Pi}_2^{A'}] = |\rangle\langle | = P_4 \] (51)

We thus obtain the \(B \) map (see (13)) corresponding to this particular example as,
\[B = P_1 \otimes Q_1 + \frac{I}{2} \otimes Q_2 + P_3 \otimes Q_3 + P_4 \otimes Q_4 \]
\[= \begin{pmatrix}
1 & 0 & 0 & \frac{1}{2} \\
0 & \frac{1}{2} & 0 & 0 \\
0 & 0 & \frac{1}{2} & 0 \\
\frac{1}{2} & 0 & 0 & 1
\end{pmatrix} \] (52)

References
1. A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, (1935) 777.
2. J. S. Bell, Physics 1 (1964) 195.
3. R. F. Werner, Phys. Rev. A 40 (1989) 4277.
4. H. Ollivier and W. H. Zurek, Phys. Rev. Lett. 88 (2001) 017901.
5. L. Henderson and V. Vedral, J. Phys. A: Math. Gen. 34 (2001) 6899.
6. A. K. Rajagopal and R. W. Rendell, Phys. Rev. A 66 (2002) 022104.
7. J. Oppenheim, M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Rev. Lett. 89 (2002) 180402.
Quantumness of correlations and entanglement

8. J. Eisert, K. Audenaert, and M. B. Plenio, J. Phys. A 36, 5605 (2003); M. H. Partovi, Phys. Rev. Lett. 92 (2004) 077904.
9. S. Hamieh, R. Kobes and H. Zaraket, Phys. Rev. A 70 (2004) 052325.
10. B. Groisman, S. Popescu, and A. Winter, Phys. Rev. A 72 (2005) 032317.
11. S. Luo, Phys. Rev. A 77 (2008) 022301.
12. A. R. Usha Devi and A. K. Rajagopal, Phys. Rev. Lett. 100 (2008) 140502.
13. S. Wu, U. V. Poulsen, and K. Moelmer, Phys. Rev. A 80, (2009) 032319.
14. K. Modi, T. Paterek, W. Son, V. Vedral, and M. Williamson, Phys. Rev. Lett. 104 (2010) 080501.
15. D. Cavalcanti, L. Aolita, S. Boixo, K. Modi, M. Piani, and A. Winter, Phys. Rev. A 83 (2011) 032324.
16. A. Streltsov, H. Kampermann, and D. Bruß, Phys. Rev. Lett. 106 (2011) 160401.
17. A. Datta, A. Shaji, and C. M. Caves, Phys. Rev. Lett. 100 (2008) 050502.
18. M. Piani, P. Horodecki, M. Horodecki, Phys. Rev. Lett. 100 (2008) 090502.
19. V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, Phys. Rev. Lett. 78 (1997) 2275; V. Vedral and M. B. Plenio, Phys. Rev. A 57 (1998) 1619.
20. E. C. G. Sudarshan, P. Mathews, and J. Rau, Phys. Rev. 121 (1961) 920.
21. T. F. Jordan and E. C. G. Sudarshan, J. Math. Phys. 2 (1961) 772.
22. T. F. Jordan, A. Shaji, and E. C. G. Sudarshan, Phys. Rev. A 70 (2004) 052110.
23. C. A. Rodríguez-Rosario, K. Modi, Phys. Rev. A 81 (2010) 012313.
24. C. A. Rodríguez-Rosario, K. Modi, Aik-meng Kuah, A. Shaji, and E. C. G. Sudarshan, J. Phys. A 41 (2008) 205301.
25. K. Modi and E. C. G. Sudarshan, Phys. Rev. A 81 (2010) 052119.