Nonmeasurability in Banach spaces

Robert Rałowski

Abstract. We show that for a σ-ideal \mathcal{I} with a Steinhaus property defined on Banach space, if two non-homeomorphic Banach with the same cardinality of the Hamel basis then there is a \mathcal{I} nonmeasurable subset as image by any isomorphism between of them. Our results generalize results from [2].

1. Notation and Terminology

Throughout this paper, X, Y will denote uncountable Polish spaces and $\mathcal{B}(X)$ the Borel σ-algebra of X. We say that the ideal \mathcal{I} on X has Borel base if every element $A \in \mathcal{I}$ is contained in a Borel set in \mathcal{I}. (It is assumed that an ideal is always proper.) The ideal consisting of all countable subsets of X will be denoted by $[X]^{\leq \omega}$ and the ideal of all meager subsets of X will be denoted by \mathbb{K}. Let μ be a continuous probability measure on X. The ideal consisting of all μ-null sets will be denoted by L_μ. By the following well known result, L_μ can be identified with the σ-ideal of Lebesgue null sets.

Theorem 1.1 ([5], Theorem 3.4.23). If μ is a continuous probability on $\mathcal{B}(X)$, then there is a Borel isomorphism $h : X \to [0, 1]$ such that for every Borel subset B of $[0, 1]$, $\lambda(B) = \mu(h^{-1}(B))$, where λ is a Lebesgue measure.

Definition 1.1. We say that (Z, \mathcal{I}) is Polish ideal space if Z is Polish uncountable space and \mathcal{I} is a σ-ideal on Z having Borel base and containing all singletons. In this case, we set

$$\mathcal{B}_+(Z) = \mathcal{B}(Z) \setminus \mathcal{I}.$$

A subset of Z not in \mathcal{I} will be called a \mathcal{I}-positive set; sets in \mathcal{I} will also be called \mathcal{I}-null. Also, the σ-algebra generated by $\mathcal{B}(Z) \cup \mathcal{I}$ will be denoted by $\overline{\mathcal{B}}(Z)$, called the \mathcal{I}-completion of $\mathcal{B}(Z)$.

1991 Mathematics Subject Classification. Primary 03E75; Secondary 03E35, 46XYY, 28A05, 28A99.

Key words and phrases. Lebesgue measure, Baire property, Banach space, measurable set, algebraic sum, Steinhaus property.
It is easy to check that $A \in \overline{B}(Z)$ if and only if there is an $I \in \mathcal{I}$ such that $A \triangle I$ (the symmetric difference) is Borel.

Example 1.1. Let μ be a continuous probability measure on X. Then $(X, [X]^{\leq \omega}), (X, K), (X, \mathbb{L}_\mu)$ are Polish ideal spaces.

Definition 1.2. A Polish ideal group is 3-tuple $(G, \mathcal{I}, +)$ where (G, \mathcal{I}) is Polish ideal space and $(G, +)$ is an abelian topological group with respect to the Polish topology of G.

Now we are ready to recall the crucial property which was introduced by Steinhaus see [6].

Definition 1.3. Let $(X, +)$ be any topological group with topology τ. We say that ideal $\mathcal{I} \subset \mathcal{P}(X)$ have Steinhaus property iff

$$\forall A_1, A_1 \in \mathcal{P}(X) \exists B_1, B_2 \in \mathcal{B}(X) \exists U \in \tau \ B_1 \subset A_1 \land B_2 \subset A_2 \land U \subset A_1 + A_2.$$

In the same paper [6] was proven that ideal of null sets poses the Steinhaus property.

Definition 1.4. Let $(X, +)$ be any topological group and let $\mathcal{I} \subset \mathcal{P}(X)$ be any invariant σ-ideal with singletons then \mathcal{I} has strong Steinhaus property iff

$$\forall B \in \mathcal{B}, \forall A \in \mathcal{P}(X) \setminus \mathcal{I} \text{ int}(A + B) \neq \emptyset.$$

It is well known that ideal of meager sets in any topological group $(G, +)$ has strong Steinhaus property see [4]. Moreover the ideal of the null sets respect to Haar measure on the locally compact topological group $(G, +)$ has also strong Steinhaus property see [1].

Definition 1.5. Let (X, \mathcal{I}) be a Polish ideal space and $A \subseteq X$. We say that A is \mathcal{I}–nonmeasurable, if $A \notin \overline{B}(X)$. Further, we say that A is completely \mathcal{I}–nonmeasurable if

$$\forall B \in \mathcal{B}(X) \ A \cap B \neq \emptyset \land A^c \cap B \neq \emptyset.$$

Clearly every completely \mathcal{I}–nonmeasurable set is \mathcal{I}–nonmeasurable. In the literature, completely $[X]^{\leq \omega}$–nonmeasurable sets are called Bernstein sets. Also, note that A is completely \mathbb{L}_μ–nonmeasurable if and only if the inner measure of A is zero and the outer measure one.

For any set E, $|E|$ will denote the cardinality of E.

The rest of our notations and terminology are standard. For other notation and terminology in Descriptive Set Theory we follow [5].

The main motivation of this paper is the Theorem about the nonmeasurability of the images under isomorphism over \mathbb{Q} between \mathbb{R}^n and \mathbb{R}^m whenever $m \neq n$. More precisely in [2] the following Theorem was proved.
Theorem 1.2. Let I is nontrivial invariant σ-ideal of subsets of the group $(\mathbb{R}, +)$ which has strong Steinhaus property such that $[\mathbb{R}]^\omega \subset I$. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be any linear isomorphism over \mathbb{Q}. Then

1. If $A \subset \mathbb{R}^2$ is a bounded subset of the real plane such that $A + T = \mathbb{R}^2$ for some $T \in [\mathbb{R}^2]^\omega$ then $f[A]$ is I-nonmeasurable subset of the real line.
2. If $A \subset \mathbb{R}^2$ is a bounded subset of the real plane with non empty interior $\text{int}(A) \neq \emptyset$. Then the set $f[A]$ is completely I–nonmeasurable subset of the real line.

2. Results

Here we present the main results of this paper.

Theorem 2.1. Let X, Y be a Banach spaces and let us suppose that

1. $I \subset \mathcal{P}(Y)$ be an σ - ideal with Steinhaus property,
2. $\forall n \in \omega \forall A \in I$ $n \neq 0 \to nA \in I$,
3. $f : X \to Y$ by any isomorphism between X, Y which is not homeomorphism.

Then the image of the unit ball $f[K]$ is I non-measurable in Y, where K a unit ball of the space X with the center equal $0 \in X$.

Theorem 2.2. Let X, Y be any Banach spaces for which there exists linear isomorphism $f : X \to Y$ which is not continuous then image of the unit ball $K \subset X$ by f has not Baire property.

Theorem 2.3. Let X, Y be a Banach spaces and let us assume that

1. $I \subset \mathcal{P}(Y)$ be an κ - complete additive invariant ideal with Steinhaus property,
2. let $\min\{|S| : S \in \mathcal{P}(X) \land S \text{ is dense set in } X\} < \kappa$,
3. $f : X \to Y$ by any isomorphism between X, Y, which is not homeomorphism.

Then the image of the unit ball $f[K]$ is I non-measurable in Y, where K a unit ball of the space X with the center equal $0 \in X$.

3. Proofs o the main results

Proof. of the Theorem 2.1. Let assume that image $f[K]$ is I-measurable in space Y. First of all let observe that

$$Y = f[X] = f[\bigcup_{n=1}^{\infty} nK] = \bigcup_{n=1}^{\infty} f[nK] = \bigcup_{n=1}^{\infty} nf[K]$$

then we have that $f[K] \notin I$ is I positive. Then by Steinhaus property of the ideal I there exist unit ball $0 \in U$ consisting 0 for which $U \subset f[K] - f[K] = f[K - K]$ is hold. But f is linear isomorphism then $f^{-1}[U] \subset K - K$ then f^{-1} is bounded linear
operator (so is continuous) then by Banach Theorem on invertible operator we have
that \(f \) is bounded then \(f \) is homeomorphism what is impossible by (3).

Here we give the following Lemma:

Lemma 3.1. Let \((X, \| \cdot \|)\) be any Banach space then \(\sigma\)-ideal \(K\) of the meager sets
has Steinhaus property.

Proof. Let \(A, B \in \mathcal{P}(X) \setminus K\) be any meager positive subsets of the Banach space
then there exists positive radius \(r > 0\) of two balls \(K_1 = K(x, \frac{r}{2}), K_2 = K(y, r) \subset X\)
with the centers \(x, y \in X\) such that \(A_1 = A \cap K_1\) and \(B_1 = B \cap K_2\) are comeager subsets in the balls \(K_1(x, r)\) and \(K_2(y, r)\) respectively. Let \(z = y - x\) and \(r_0 = \frac{r}{2}\) and
let \(K_0 = K(z, r_0)\) then we will show that
\[
\forall t \in K_0 \ (t + A) \cap B_1 \neq \emptyset
\]
First let observe that if \(t \in K_0\) and \(s \in K_1\) then
\[
\| (t + s) - y \| = \| (t - z + z) + (s - x + x) - y \| = \| (t - z) + (s - x) + z + x - y \|
\]
\[
= \| (t - z) + (s - x) \| \leq \| t - z \| + \| s - x \| < r_0 + \frac{r}{2} = r
\]
thus we have \(K_0 + K_1 \subset K_2\) and then \((K + A_1) \cap B_1\) is comeager in the open set
\((K_0 + K_1) \cap K_2\) then \((K + A_1) \cap B_1\) is nonempty set.
Thus there exists open set \(K_0\) such that
\[
\forall t \in K_0 \ (t + A) \cap B \neq \emptyset
\]
Finally we have
\[
\forall t \in K_0 \ (t + A) \cap B \neq \emptyset \iff \forall t \in K_0 \exists a \in A \exists b \in Bt + a = b \iff \forall t \in K_0 t \in B - A
\]
Thus we have \(K_0 \subset B - A\) what finishes proof of this lemma.

By the above Lemma we can give the Theorem 2.2.

Proof. (of the Theorem 2.2). By Lemma 3.1 the ideal of the meager sets of the space \(Y\) has Steinhaus property and let observe that for any \(\alpha \in \mathbb{R} \setminus \{0\}\) the map
\[
Y \ni y \mapsto \alpha \cdot y \in Y
\]
is the homeomorphism then second condition of the Theorem 2.1 is fullfiled then we are getting assertion.

Immediately we have

Corollary 3.1. Let \(X < \| \cdot \|\) be infinite dimensional Banach space then there
exists linear automorphism of \(X\) for which image of the unit ball do not has Baire property.

Proof. Let \(B\) is Hamel base which is subset of the unit ball of the space \(X\). Let \(B_0 = \{e_n \in X : n \in \omega\} \subset B\) be any countable subset of the our Hamel base \(B\).
Let define \(g : \mathcal{B} \to \mathcal{B} \) as follows:
\[
g(x) = \begin{cases} (n + 1) \cdot x & x = e_n \in \mathcal{B}_0 \\ x & x \in \mathcal{B} \setminus \mathcal{B}_0 \end{cases}
\]
Now we are ready to define \(f : X \to X \) let \(x \in X \) and let \(A \in [\mathcal{B}]^{<\omega} \) and assume that
\[
x = \sum_{e \in A} \alpha_e \cdot e
\]
then \(f(x) = \sum_{e \in A} \alpha_e \cdot g(e) \). It is easy to see that \(f \) is noncontinuous linear automorphism of \(X \). Then by Theorem 2.2 proof is finished. ■

Proof. of the Theorem 2.3 Let assume that image \(f[K] \) is \(\mathcal{I} \)-measurable in space \(Y \). Let \(\gamma < \kappa \) be such that \(\gamma = |S| \) and the subset \(S \subset X \) be dense in space \(X \) then we have
\[
Y = f[X] = f[\bigcup_{x \in S} \{x\} + K] = \bigcup_{x \in S} f[\{x\} + K] = \bigcup_{x \in S} \{f(x)\} + f[K]
\]
thus \(f[K] \not\in \mathcal{I} \) is \(\mathcal{I} \) positive. Then by Steinhaus property of the ideal \(\mathcal{I} \) there exist unit ball \(0 \in U \) consisting \(0 \) for which \(U \subset f[K] - f[K] = f[K - K] \) is hold. But \(f \) is linear isomorphism then \(f^{-1}[U] \subset K - K \) then \(f^{-1} \) is bounded linear operator (so is continuous) then by Banach Theorem on invertible operator we have that \(f \) is bounded then \(f \) is homeomorphism what is impossible by (3). ■

Immediately we are getting the following

Corollary 3.2. Let \(X, Y \) be a Banach spaces with the following properties:
\begin{itemize}
 \item[(1)] \(X \) is separable Banach space,
 \item[(2)] \(\mathcal{I} \subset \mathcal{P}(Y) \) be additive invariant \(\sigma \)-ideal with Steinhaus property,
 \item[(3)] \(f : X \to Y \) by any isomorphism between \(X, Y \), which is not homeomorphism.
\end{itemize}
Then the image of the unit ball \(f[K] \) is \(\mathcal{I} \) non-measurable in \(Y \), where \(K \) a unit ball of the space \(X \) with the centre equal \(0 \in X \).

Acknowledgement Author is very indebted to Professor Jacek Cichoń for help and critical remarks.

References
[1] A. Beck, H.H. Corson, A. B. Simon, The interior points of the product of two subsets of a locally compact group, Proc. Amer. Math. Soc. 9 (1958), 648–652
[2] J. Cichoń, P. Szczepaniak, When is the unit ball nonmeasurable?, accepted to Fund. Math.
[3] D. H. Fremlin, Measure additive coverings and measurable selectors, Dissertationes Math. 260 (1987)
[4] E. J. McShane, Images of sets satisfying the condition of Baire, Ann. of Math. 51 (1950), 380–386
[5] S.M. Srivastava, A course on Borel sets, Springer-Verlag, New York, 1998
[6] H. Steinhaus, Sur les distances des points dans les ensembles de mesure positive, Fund. Math. 1 (1920), 99–104

Robert Ralowski, Institute of Mathematics, Wroclaw University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
E-mail address: robert.ralowski@pwr.wroc.pl