Basalts of the Republic of Buryatia and their suitability for obtaining mineral fibres

L I Khudyakova¹, S L Buyantuev², V T Buyantuev²

¹Laboratory of chemistry and technologies of natural raw materials, Baikal Institute of Nature Management of the Siberian Branch of the Russian Academy of Sciences, 6, Sakhyanova str., Ulan-Ude 670047, Russia
²Laboratory of plasma and energy technologies, East Siberia State University of Technology and Management, 40V, Kluchevskaia str., Ulan-Ude 670013, Russia

E-mail: lkhud@binm.ru

Abstract. Mineral wool is one of the most effective and environmentally safe types of heat insulation materials. Basalt is the main raw material for its production. The quality of the fibre produced depends on its chemical composition. The priority task is to assess the suitability of basalts for use in the production by their chemical composition. The main indicator is the acidity index, which reflects the acid-base characteristics of rocks. Basalt deposits of the Republic of Buryatia have been studied. It was found that the basalts of the Ilyushkin Klyuch deposit have a chemical composition which meets the requirements for continuous fibre production, and the basalts of the Selendum and Mukhor-Talinsky deposits – for staple fibre production. The production of continuous fibres for basalts of the Selendum deposit requires additional charging of calcium- or magnesium-containing rocks, and for basalts of Mukhor-Talinsky deposit- an addition of silicon-containing rocks.

1. Introduction

Due to the intensive development of the northern regions of Russia, the demand for heat insulation materials with high physical and mechanical characteristics, including mineral wool, is increasing. The main raw material for its production is gabbro-basalt rocks, mainly basalts and diabases. Basalt fibre is environmentally safe. It has high physical and chemical characteristics at low cost. It can be used in a wide temperature range (from -260 °C to 900 °C) [1-5]. The quality of the obtained fibre and field of its application depend on the chemical and mineralogical composition of the rocks used [6,7]. Therefore, the first stage is a preliminary assessment of the suitability of raw materials according to their chemical and mineralogical composition [8-10]. This is an urgent task, because basalts of various deposits differ in their composition and structure, and local raw materials are not always suitable for obtaining high-quality basalt fibre.

The purpose of this work is to assess the quality of basalt rocks of the Republic of Buryatia and to determine their suitability for fibre production, as well as to compare them with known literature data.

2. Materials and methods

The basalts of the Republic of Buryatia were taken for research. Their chemical analysis was carried out. The obtained values are compared with the composition of basalts of known deposits.
Chemical analysis was performed by methods of atomic absorption spectroscopy using a Unicam spectrophotometer SOLAAR–6M (Thermo Electron, Franklin, Ma, USA) with the suitable software, photocolorimetry using a photocolorimeter PE-5300 (ECRUSCHEM, St. Petersburg, Russia) and gravimetry using an electronic scale VSL–200/0.1A (Nevskiye Vesy, St. Petersburg, Russia).

3. Results and discussion

The raw materials for producing mineral wool must have a certain chemical composition. The requirements for the content of basic oxides are well-founded. The suitability of raw materials for the production of mineral fibres is determined by the physical and mechanical properties of their melts, in particular, the viscosity. These indicators, in turn, are directly depending on the chemical composition of the feedstock. Numerous experimental studies of rocks show that the influence of a particular oxide on the viscosity of the melt is determined not only by its nature, but also by its content \[11,12\]. There are certain requirements for the chemical composition of raw materials for the production of various types of basalt fibre, presented in Table 1 \[13\].

Table 1. Chemical composition of rocks for fiber production.

Basic oxides	The content of basic oxides, wt. %	
	continuous fiber	staple fiber
SiO₂	47.0±55.0	39.0±51.0
Al₂O₃	14.0±20.0	10.0±19.0
FeO+Fe₂O₃	7.0±13.5	10.0±18.0
MgO	3.0±8.5	4.0±12.0
CaO	7.0±11.0	8.0±13.0
K₂O+N₂O₃	2.5±7.5	2.0±5.0
TiO₂	0.2±2.0	2.0±5.0
MnO, no more	0.25	0.2±0.3
SO₃, no more	0.2	-
LOI^a, no more	5.0	5.0

^aLOI – Losses on ignition.

On the basis of these requirements, the basalts of the Republic of Buryatia were analyzed. The comparative characteristics of the studied rocks and rocks known from literary sources, the chemical composition of which is presented in Table 2, are given.

The acidity index is one of the main widely used parameters and reflects the acid-base characteristics of materials. It is used in production practice as a preliminary assessment of the suitability of raw materials for obtaining mineral fibre and is calculated using the formula \(M_K = (\text{SiO}_2 + \text{Al}_2\text{O}_3) / (\text{CaO} + \text{MgO})\). For melts with good working characteristics it is assumed that \(M_K = 3÷6\). According to literature data, rocks with \(M_K > 1.2\) are suitable for obtaining super-thin and thin staple fibres.

The acidity index of the Mukhor-Talinskoye and Ilyushkin Klyuch deposits basalts (table 2) is within the required limits, which indicates good working characteristics of the melt from them and a normal process of fiberization. The acidity index of the Selendum deposit basalts exceeds these values.

The content of the main oxides in the studied rocks is within acceptable values. Based on the requirements (table 1), only the basalts of the Ilyushkin Klyuch deposit are suitable for continuous fibre production. The rocks of the Selendum deposit have a reduced content of calcium oxides and an increased content of titanium oxides. The basalts of the Mukhor-Talinsky deposit have a low content of silicon oxide and a high content of iron oxides. Staple fibre can be obtained from the basalts of these deposits.
Deposit	SiO₂	Al₂O₃	FeO+Fe₂O₃	MgO	CaO	K₂O+Na₂O	TiO₂	LOI	\(Mₖ^{b} \)
Berestovetskoe (Ukraine) [14]	49.03	12.58	14.03	5.47	9.53	3.00	2.85	0.75	4.11
Marneul’skoe (Georgia) [14]	50.61	16.75	10.26	4.65	9.07	4.88	1.81	0.31	4.91
Karatosh (Uzbekistan) [10]	48.54	14.40	11.65	7.18	9.88	3.99	2.14	2.36	3.68
Dubersay (Kazakhstan) [15]	43.85	15.10	10.71	5.1	17.71	5.32	1.06	-	2.58
Osmansay (Uzbekistan) [16]	47.05	15.74	8.71	5.44	8.45	4.99	-	7.94	4.52
Achin (Uzbekistan) [16]	44.01	6.99	19.65	6.95	13.35	-	-	2.15	2.51
Suluu Terek (Kyrgyzstan) [17]	44.00	14.80	10.95	6.30	8.33	4.84	2.30	6.79	4.02
Kuluevskaya (Southern Urals, Russia) [9]	49.92	15.96	9.39	8.22	10.52	2.85	0.68	2.24	3.51
Shandong Province (China) [18]	55.17	15.57	9.10	12.23	5.89	-	-	-	5.78
Myandukha (Russia) [14]	50.42	11.82	12.25	10.58	8.84	2.52	1.04	0.08	3.20
Kondopoga (Russia) [14]	53.54	14.12	10.44	6.70	6.60	4.84	1.52	0.08	5.09
Vasil’evka (Yakutiya, Russia) [19]	51.70	17.00	12.90	5.29	7.00	3.81	2.20	-	5.59
Mataram Baru, (Sumatera, Indonesia) [20]	48.42	18.82	12.60	4.56	9.76	3.99	1.33	-	4.70
Yanova Dolyna (Ukraine) [21]	50.60	16.00	22.90	5.10	9.80	3.20	0.90	-	4.47
Donetsk (Ukraine) [21]	47.60	17.50	24.40	5.10	9.50	4.70	1.50	-	4.46
Uschakivske (Ukraine) [21]	48.70	15.90	20.80	5.40	12.90	3.50	0.80	-	3.53
Suduntuskoie (Trans-Baikal Territory, Russia)	48.43	14.23	12.36	3.58	8.58	5.56	-	1.02	5.15
Selendum (Republic of Buryatia, Russia)	48.60	16.70	11.69	4.47	6.25	7.40	2.12	-	6.09
Mukhor-Talinsky (Republic of Buryatia, Russia)	44.28	15.21	13.92	8.58	9.61	5.24	2.08	-	3.27
Ilyushkin Klyuch (Republic of Buryatia, Russia)	47.98	16.04	10.60	4.82	7.69	6.72	1.93	4.09	5.10

\(^{b}M_k \) – acidity modulus
The quantity of silica in the rock affects the viscosity of the melt. The content of silicon oxide should be more than 46% [22] for the stability of the fibre formation process. As the value increases, the mechanical characteristics of the fibre improve. In addition, the quality of the material is affected by aluminum oxide [23]. The higher its content, the stronger the fibre is. In the basalt of the Mukhor-Talinsky deposit, the quantity of SiO2 is 44.28%, and the quantity of Al2O3 is 15.21%. Although the acidity index of the rock is equal to 3.27, which indicates the suitability for obtaining fibre, however, the fibre formation process will be unstable, and the formed fibres will have low mechanical indicators.

Iron oxides have a great influence on the quality of the fibres produced [11]. An increase in their content worsens not only its physical and mechanical characteristics, but also increases the number of non-fibrous inclusions of “shots” formed [17]. The smallest number of “shots” will be observed in the material obtained from the basalts of the Ilyushkin Klyuch deposit, and the largest – from the Mukhor-Talinsky deposit.

The acidity index of the Selendum deposit basalts exceeds the boundary value, which is due to the reduced content of calcium and magnesium oxides. Selendum deposit basalts have a minimum content of oxides of calcium, magnesium and a maximum of oxides of potassium and sodium among all submitted basalt deposits. The melt will have an increased viscosity. To eliminate this disadvantage, an addition of dolomites or limestone to the batch is required.

According to the content of silicon, aluminum, iron and titanium oxides, the basalts deposits of Buryatia do not differ from those presented in Table 2. All of them can be used in production, subject to adjustment of the process regimes.

4. Conclusion

Thus, all the basalts of Buryatia deposits can be used to produce mineral fibre. The basalts of the Ilyushkin Klyuch deposit are suitable for the production of continuous fibre. It is possible to obtain staple fibre from basalts of the Selendum and Mukhor-Talin deposits. The production of continuous fibres for basalts of the Selendum deposit requires additional charging of calcium- or magnesium-containing rocks, and for basalts of Mukhor-Talinsky deposit – an addition of silicon-containing rocks.

References

[1] Vikas G and Sudheer M 2017 A review on properties of basalt fiber reinforced polymer composites American Journal of Materials Science 7(5) 156–165. DOI:10.5923/j.materials.20170705.07
[2] Ullegaddi K, Mahesha C R and Shivarudraiah 2019 Tribological properties of basalt fibers - A Review Mat. Science Forum 969 335–342. DOI:10.4028/www.scientific.net/MSF.969.335
[3] Buratti C, Moretti E, Belloni E and Agosti F 2015 Thermal and acoustic performance evaluation of new basalt fiber insulation panels for buildings Energy Procedia 78 303–308. DOI:10.1016/j.egypro.2015.11.648
[4] Kumbhar V P 2014 An overview: Basalt rock fibers – new construction material Acta Engineering International 2(1) 11–18
[5] Li Z, Ma J, Ma H and Xu X 2018 Properties and applications of basalt fiber and its composites IOP Conference Series: Earth and Environmental Science 186 012052. DOI:10.1088/1755-1315/186/2/012052
[6] Francis Luther King M, Srinivasan V and Purushothaman T 2014 Basalt fiber: An ancient material for innovative and modern application Middle-East Journal of Scientific Research 22 (2) 308–312 DOI:10.5829/idosi.mejsr.2014.22.02.21872
[7] Regar M L and Amjad A I 2016 Basalt fibre – ancient mineral fibre for green and sustainable development Tekstilec 59(4) 321–334. DOI:10.14502/Tekstilec2016.59.321-334
[8] Perevozchikov B V 2009 The preliminary review of suitability of base rock in the northern part of the Tagil zone of the Urals for hi-tech manufacture of a basalt fiber Vestnik Perm State University 11(37) 36–45
[9] Perevozchikov B V, Pisciotta A, Osovetsky B M, Menshikov E A and Kazymov K P 2014 Quality evaluation of the Kuluevskaya basalt outcrop for the production of mineral fiber, Southern Urals, Russia Energy Procedia 59 309–314. DOI:10.1016/j.egypro.2014.10.382

[10] Khakberdiev N and Khamidov R 2018 Mineral raw material resources for producing basalt fibers on west and south of Uzbekistan and prospects of their industrial use International Journal of Geology, Earth & Environmental Sciences 8(2) 54–59

[11] Gutnikov S I, Zhukovskaya E S, Popov S S and Lazorjak B I 2019 Correlation of the chemical composition, structure and mechanical properties of basalt continuous fibers AIMS Materials Science 6(5) 806–820. DOI:10.3934/matersci.2019.5.806

[12] Liu J, Yang J, Chen M and Lei L 2018 Effect of SiO2, Al2O3 on heat resistance of basalt fiber Thermochimica Acta 660 56–60. DOI:10.1016/j.tca.2017.12.023

[13] Khodakova N N, Uglova T K, Firsov V V and Tatarinceva O S 2013 Mineral raw materials of the Caucasus for the production of basalt fibers Polzunovsky Vestnik 1 138–142

[14] Morozov N N, Bakunov V S, Morozov E N, Aslanova L G, Granovskii P A, Prokshin V V and Zemlyanitsyn A A 2001 Materials based on basalts from the European North of Russia Glass and Ceramics 58(3–4) 100–104

[15] Shevko V M, Badikova A D, Karataeva G E, Tuleev M A, Amanov D D and Uteeva R A 2019 Theoretical substantiation and technology of smelting ferroalloy and calcium carbide from basalt Dubersay Int. J of Applied and Fundamental Research 10 193–197. DOI:10.17513/mpfi.12892

[16] Shevchenko V P 2013 Natural raw materials of the Republic of Uzbekistan for superfine basalt fiber Novye Ogneupory (New Refract.) 2 6–8. DOI:10.17073/1683-4518-2013-2-6-8

[17] Aydaraliev Zh K, Kaynazarov A T, Ismanov Yu Kh, Abdiev M S, Atyrova R S and Sopubekov N A 2019 Superfine fibers on the basis of aleurrolite and basalt produced in Kyrgyzstan International J of Applied and Fundamental Research 5 109–114 DOI:10.17513/mpfi.12748

[18] Luo L, Zhang Q, Wang Q, Xiao J, Liu J, Ding L and Jiang W 2019 Effect of the iron reduction index on the mechanical and chemical properties of continuous basalt fiber Materials 12 2472. DOI:10.3390/ma12152472

[19] Vasil’eva A A, Kychkin A K, Anan’eva E S and Lebedev M P 2014 Investigation into the properties of basalt of the Vasil’evskoe deposit in Yakutia as the raw material for obtaining continuous fibers Theoretical Foundations of Chemical Engineering 48 (5) 667–670. DOI:10.1134/S004057951405011X

[20] Birawidha D C, Isnugroho K, Hendronursito Y, Amin M and Muttaqi M A 2019 The X-ray diffraction (XRD) analysis of basalt from Mataram Baru via Slow and rapid cooling process Multitek Indonesia, Jurnal Ilmiah 13(2) 6–14

[21] Gots V I, Berdnyk O Y, Rogozina N O and Maystreiko A A 2019 Production of modified basalt fibre for heat-insulating products manufacturing IOP Conference Series: Materials Science and Engineering 708 012082. DOI:10.1088/1757-899X/708/1/012082

[22] Deák T and Czigány T 2009 Chemical composition and mechanical properties of basalt and glass fibers: A comparison Textile Research Journal 79 645–651. DOI:10.1177/0040517508095597

[23] Bauer F, Kempf M, Weiland F and Middendorf P 2018 Structure-property relationships of basalt fibers for high performance applications Composites Part B 145 121–128. DOI:10.1016/j.compositesb.2018.03.028

Acknowledgments
The work was carried out within the framework of state tasks of the BINM SB RAS, No. state reg. AAAA-A17-117021310253-8.