Title
Pd-catalyzed α-arylation of trimethylsilyl enolates of α,α-difluoroacetamides.

Permalink
https://escholarship.org/uc/item/8gzs6p62p

Journal
Journal of the American Chemical Society, 136(41)

ISSN
1520-5126

Authors
Ge, Shaozhong
Arlow, Sophie I
Mormino, Michael G
et al.

Publication Date
2014-10-03

DOI
10.1021/ja508590k

Peer reviewed
Pd-Catalyzed α-Arylation of Trimethylsilyl Enolates of α,α-Difluoroacetamides

Shaozhong Ge, Sophie I. Arlow, Michael G. Mormino, and John F. Hartwig*

Department of Chemistry, University of California, Berkeley, California 94720, United States

Supporting Information

ABSTRACT: We report the arylation and heteroarylation of α,α-difluoro-α-(trimethylsilyl)acetamides with aryl and heteroaryl bromides catalyzed by an air- and moisture-stable palladacyclic complex containing P(t-Bu)₂Cy as ligand. A broad range of electronically varied aryl and heteroaryl bromides underwent this transformation to afford α-aryl-α,α-difluoroacetamides in high yields. Due to the electrophilicity of the fluorinated amide, this palladium-catalyzed cross-coupling reaction provides a versatile platform to generate a range of α,α-difluoro carbonyl compounds, such as α-aryl-α,α-difluoroketones, -acetaldehydes, -acetates, and acetic acids, and difluoroalkyl derivatives, such as 2-aryl-2,2-difluoroethanols and -ethylamines, under mild conditions.

Thus, the coupling of aryl and heteroaryl halides with difluoroalkyl nucleophiles would be a valuable reaction for the synthesis of fluoroalkylarenes. However, the coupling reaction between an aryl electrophile and a difluoroalkyl nucleophile occurs with limited scope. For example, the Pd-catalyzed coupling of aryl halides with difluorinated enolates of carbonyl compounds has been reported with only 1,1-difluoroacetophenone derivatives.

The Pd-catalyzed coupling of an aryl bromide with the enolate of a 1,1-difluorocarboxylic acid derivative could provide a general route to a variety of functionalized α,α-difluoroalkylarenes due to the versatile reactivity of carboxylic acid derivatives. However, the couplings of aryl halides with α,α-difluorocarboxylic acid derivatives are distinct from those of a difluorocarboxylic acid because the fluorinated carboxylic acid derivatives are less acidic than their non-fluorinated analogues, and they are not stable to soluble strong bases. Thus, the generation of the difluoroenolate of a carboxylic acid derivative by deprotonation is challenging. In addition, the rate of reductive elimination of fluoroalkylpalladium complexes is slower than that of their non-fluorinated analogues, and this slow rate of reductive elimination could cause the catalytic reaction to require temperatures at which the enolates of difluorocarboxylic acid derivatives are unstable.

We show that these challenges can be met by conducting the coupling of aryl and heteroaryl bromides with the silicon enolates of α,α-difluoroacetamides in the presence of a highly active palladium catalyst. The reactions of the silicon enolates of α,α-difluoroacetamides with a range of aryl and heteroaryl bromides occur when catalyzed by an air- and moisture-stable palladacyclic complex containing the sterically hindered P(t-Bu)₂Cy as ligand and KF as activator of the enolate (eq 1).

```latex
\begin{equation}
\text{ArBr} + \text{Me}_2\text{SiO}N_\text{R}_2 \xrightarrow{[\text{PdLigand}]} \text{ArO}F_2\text{F}N_\text{R}_2
\end{equation}
```

carbonyl unit in these products is more electrophilic than that of a non-fluorinated amide; this property can be exploited to convert the coupled products to a variety of α,α-difluoroalkyl benzyl compounds.
We initiated our studies of Pd-catalyzed α-arylation of α,α-difluorocetamides by evaluating reactions of an aryl bromide with the silicon enolate of the amide. We tested a variety of single-component palladacyclic catalyst precursors containing simple trialkyl phosphine ligands12 and various solvents for the coupling reaction of 1-bromo-4-tert-butylbenzene with N,N-diethyl-α,α-difluoro-α-(trimethylsilyl)acetamide. The results of these experiments are summarized in Table 1.

The reactions were conducted with 1-bromo-4-tert-butylbenzene as the limiting reagent and 1 mol % Pd precatalyst in the presence of KF at 100 °C. They were conducted in 1,4-dioxane with palladacyclic complexes [Pd1]−[Pd4] containing trialkylphosphines possessing different steric properties (PCy3, PCy2(t-Bu), PCy(t-Bu)2, and P(t-Bu)3; entries 1−4). Reactions catalyzed by the PCy2− and P(t-Bu)3-ligated Pd-complexes occurred to low conversion of aryl bromide and afforded the coupled product in low yields (entries 1 and 4). The reaction conducted with [Pd2] ligated by PCy2(t-Bu)2 occurred to modest conversion of aryl bromide and gave the coupled product (entry 2). However, the reaction catalyzed by [Pd3] containing PCy2(t-Bu)2 as ligand occurred to full conversion and afforded the coupled product in 87% yield (entry 3).

The solvent effect on this reaction was pronounced. The reaction catalyzed by 1 mol % of [Pd3] in toluene occurred to low conversion of the aryl bromide (28%), but with good mass balance (entry 5). The reaction in DMF led to full conversion of the aryl bromide, but formed predominantly the hydrodebromination product 1-bromo-4-tert-butylbenzene and less than 5% of the coupled product (entry 6). The reaction conducted in DMSO proceeded to both low conversion and low yield (<5%, entry 8). The reaction in THF (entry 7) occurred similarly to the reaction in 1,4-dioxane (entry 3). Analysis of the conversion of the trimethylsilyl enolate of α,α-difluoroacetamide showed that it was fully consumed during the reactions in 1,4-dioxane, DMF, THF, and DMSO (entries 3 and 6−8), but that the mass balance was not as high as it was for the reaction in toluene (entry 5). Given the high yield of the reaction in 1,4-dioxane, but the higher mass balance of the reaction in toluene, we tested the reaction in a mixture of 1,4-dioxane and toluene (v/v 1:1, entry 9). In this solvent system, full conversion of the aryl bromide occurred, and the coupled product formed in nearly quantitative yield.

With an active catalyst in hand and reliable conditions identified for this Pd-catalyzed arylation reaction, we studied the scope of aryl bromides that undergo this cross-coupling reaction. These results are summarized in Table 2. In general, a wide range of electronically varied aryl bromides reacted to give the corresponding coupled products in high yields (68−93%) with 1 mol % of [Pd3].

The data in Table 2 show that the electronic properties of the aryl bromides have little influence on the yields of this cross-coupling process. Products formed from the reactions of electron-deficient (2a−2c) and electron-rich (2f−2k) aryl bromides were isolated in yields as high as those from reactions of electron-neutral aryl bromides (2d and 2e). However, the reaction of the most electron-deficient 1-bromo-4-benzotrifluoride was slower than the reactions of the more electron-rich aryl bromides when conducted in the presence of 1 mol % [Pd3] and afforded the coupled product (2a) in only a modest yield (53%). The same reaction catalyzed by 2 mol % [Pd3] gave the desired product in high yield (82%).

This coupling reaction tolerates a range of functionalities, including thioether (2h), ether (2i and 2j), ester (2q and 2s), and carbamate (2t) moieties. Reactions of aryl halides

Table 2. Pd-Catalyzed Coupling of N,N-Diethyl-α,α-difluoro-α-(trimethylsilyl)acetamide with Aryl Bromides

Entry	Pd Complex	Solvent	Conversion (%)	Yield (%)
1	Pd1	1,4-dioxane	90	42
2	Pd2	1,4-dioxane	85	52
3	Pd3	1,4-dioxane	95	92
4	Pd4	1,4-dioxane	80	78
5	Pd3	toluene	70	70
6	Pd3	DMF	50	50
7	Pd3	THF	60	60
8	Pd3	DMSO	40	40
9	Pd3	1,4-dioxane/toluene (1:1)	80	80

Conditions: aryl bromide (0.400 mmol), N,N-diethyl-α,α-difluoro-α-(trimethylsilyl)acetamide (0.800 mmol), KF (1.20 mmol), Pd (4.0 μmol), solvent (1 mL), 100 °C, 30 h. Determined by GC analysis with dodecane as internal standard.
bearing both bromo and chloro substituents occurred selectively at the bromide (2o) under standard conditions, leaving the C–Cl bond intact. Enolizable ketone, aldehyde, free hydroxyl, and arylamine groups are not compatible with the reaction conditions. However, aryl bromides containing an enolizable ketone (2p, the protecting group was removed upon workup under acidic conditions) or aldehyde (2r) protected as the diethyl acetal, an alcohol protected as the acetyl ester (2s), and aniline protected as the Boc carbamate (2t) afforded the corresponding coupled products in high yields.

This arylation reaction also occurred with brominated nitrogen-containing heterocycles, such as bromopyridines, bromoisoquinolines (2u–2z). For these reactions of nitrogen-containing heterocycles, a higher catalyst loading (4 mol %) was required to obtain the coupled products in good yields.

The scope of α,α-difluoro-α-(trimethyl)silylacetamides that undergo this coupling reaction is summarized in Table 3. For each amide, we studied the arylation with three electronically varied aryl bromides (4-bromobenzotriazole, bromoquinolines, and bromoisoquinolines (2u–2z)). They also include a series of cyclic amides. These amides reacted with the selected electronically varied aryl bromides to afford the coupled products in good yields.

Table 3. Pd-Catalyzed Coupling of α,α-Difluoro-α-(trimethylsilyl)acetamides and Aryl Bromides

```
| ArBr | MeSi3 | complex [Pd3] (3 mol %) | KF (3 equiv) | 1,4-dioxane | 110 °C, 24 h |
|------|-------|------------------------|--------------|-------------|--------------|
| F,F | NMe2 | 3a, 73% | F,F | F,F | F,F |
| F,C | NBrMe | 3b, 67% | F,F | F,F | F,F |
| F,G | NBrMe | 3c, 67% | F,F | F,F | F,F |
| C,F | NMe2 | 4a, 54% | F,F | F,F | F,F |
| C,F | NMe2 | 4b, 66% | F,F | F,F | F,F |
| C,F | NMe2 | 4c, 70% | F,F | F,F | F,F |
| C,F | NMe2 | 4d, 74% | F,F | F,F | F,F |
| C,F | NMe2 | 5a, 74% | F,F | F,F | F,F |
| C,F | NMe2 | 5b, 70% | F,F | F,F | F,F |
| C,F | NMe2 | 5c, 80% | F,F | F,F | F,F |
| C,F | NMe2 | 5d, 80% | F,F | F,F | F,F |
| C,F | NMe2 | 6a, 80% | F,F | F,F | F,F |
| C,F | NMe2 | 6b, 80% | F,F | F,F | F,F |
| C,F | NMe2 | 6c, 84% | F,F | F,F | F,F |
| C,F | NMe2 | 6d, 84% | F,F | F,F | F,F |

*Conditions: aryl bromide (0.400 mmol), α,α-difluoro-α-(trimethylsilyl)acetamide (0.800 mmol), KF (1.2 mmol), [Pd3] (6.5 mg, 12 μmol), 1,4-dioxane (1.0 mL), 110 °C, 24 h. For these reactions of nitrogen-containing heterocycles, a higher catalyst loading (4 mol %) was required to obtain the coupled products in good yields.

The scope of α,α-difluoro-α-(trimethyl)silylacetamides that undergo this coupling reaction is summarized in Table 3. For each amide, we studied the arylation with three electronically varied aryl bromides (4-bromobenzotriazole, bromoquinolines, and bromoisoquinolines (2u–2z)). They also include a series of cyclic amides. These amides reacted with the selected electronically varied aryl bromides to afford the coupled products in good yields.

The scope of α,α-difluoro-α-(trimethyl)silylacetamides that undergo this coupling reaction is summarized in Table 3. For each amide, we studied the arylation with three electronically varied aryl bromides (4-bromobenzotriazole, bromoquinolines, and bromoisoquinolines (2u–2z)). They also include a series of cyclic amides. These amides reacted with the selected electronically varied aryl bromides to afford the coupled products in good yields.

The scope of α,α-difluoro-α-(trimethyl)silylacetamides that undergo this coupling reaction is summarized in Table 3. For each amide, we studied the arylation with three electronically varied aryl bromides (4-bromobenzotriazole, bromoquinolines, and bromoisoquinolines (2u–2z)). They also include a series of cyclic amides. These amides reacted with the selected electronically varied aryl bromides to afford the coupled products in good yields.

The scope of α,α-difluoro-α-(trimethyl)silylacetamides that undergo this coupling reaction is summarized in Table 3. For each amide, we studied the arylation with three electronically varied aryl bromides (4-bromobenzotriazole, bromoquinolines, and bromoisoquinolines (2u–2z)). They also include a series of cyclic amides. These amides reacted with the selected electronically varied aryl bromides to afford the coupled products in good yields.

The scope of α,α-difluoro-α-(trimethyl)silylacetamides that undergo this coupling reaction is summarized in Table 3. For each amide, we studied the arylation with three electronically varied aryl bromides (4-bromobenzotriazole, bromoquinolines, and bromoisoquinolines (2u–2z)). They also include a series of cyclic amides. These amides reacted with the selected electronically varied aryl bromides to afford the coupled products in good yields.
aldehydes (10) without hydrodefluorination. Morpholine amides are known to act as surrogates for Weinreb amides, which can be converted selectively to ketones,13 and the difluoromorpholine amide 7c reacted with n-butyllithium to form difluorobenzyl alkyl ketone 12. This ketone product is not accessible by the Pd-catalyzed α-arylation of difluoromethyl butyl ketone.14 Piperidinyl difluoroamide 6 was transformed to the corresponding methyl ester (11a) by reaction with methanol and Me3SiCl (12 h at 70 °C). In addition, N,N-diethyl difluoroamides underwent hydrolysis more readily to afford α-aryl-α,α-difluorocarboxylic acid (13a) than the corresponding non-fluorinated amides.

The silicon enolates of difluoro esters, so far, do not undergo the same coupling as the amides, but we developed a simple one-pot method to form the 1-aryl-1,1-difluoro esters via the palladium-catalyzed coupling of difluoroamides. The reaction sequence comprising Pd-catalyzed arylation of piperidinyl α,α-difluoroacetamides and methanolation of the resulting amide products (B, Scheme 1) formed methyl α-aryl-α,α-difluoroacetates 13b−13d.

A similar protocol was developed for the transformation of aryl bromides to α-aryl-α,α-difluorocarboxylic acids. As shown in part C of Scheme 1, a series of α-aryl-α,α-difluorocarboxylic acids containing electron-rich, electron-poor, and functionalized aryl blocks containing nitrogen heterocycles, were coupled with α,α-difluoroacetamides and hydrolysis of the resulting amide products to the acids at 70 °C.

In summary, we have developed a convenient and efficient protocol for the α-arylation and heteroarylation of the trimethylsilyl enolates of α,α-difluoroacetamides with aryl and heteroaryl bromides catalyzed by a single-component air- and moisture-stable palladacyclic precatalyst [Pd3]. A broad range of aryl and heteroaryl bromides, including those of basic heteroaryl bromides catalyzed by a single-component air- and moisture-stable palladacyclic precatalyst [Pd3]. A broad range of aryl and heteroaryl bromides, including those of basic nitrogen heterocycles, were coupled with α,α-difluoro-α-(trimethylsilyl)acetamides in high isolated yields. The α-aryl-α,α-difluoroacetamide products of these coupling reactions can be converted to 2-aryl-2,2-difluoroethanols and -ethyleenamines, as well as α-aryl-α,α-difluoroketones, -acetalddehydes, -acetates, and -acetic acids. Therefore, this Pd-catalyzed cross-coupling of aryl halides with α,α-difluoro-α-(trimethylsilyl)acetamides provides a method to prepare a variety of valuable building blocks containing fluoride atoms at the metabolically labile benzylic position for medicinal chemistry.

# ASSOCIATED CONTENT

* Supporting Information*

Detailed experimental procedures, and characterization of all compounds, including ¹H and ¹³C NMR spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

# ACKNOWLEDGMENTS

We thank the NIH (GM-58108) for support of this work and Johnson-Matthey for Pd(OAc)₂. Dr. Wojciech Chaladaj is acknowledged for the initial synthesis of [Pd3].

# REFERENCES

(1) (a) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320. (b) Robert, F.; Yoshiro, K.; Yagupolskii, L. M. Organofluorine Compounds in Medicinal Chemistry and Biomedical Applications; Elsevier: New York, 1993; (c) Wang, J.; Sánchez-Roselló, M.; Aceña, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fuster, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.

(2) (a) Furuya, T.; Kamlet, A. S.; Ritter, T. Nature 2011, 473, 470. (b) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem., Int. Ed. 2013, 52, 8214. (c) Wu, X.-F.; Neumann, H.; Beller, M. Chem.—Asian J. 2012, 7, 1744.

(3) (a) Dubowchik, G. M.; Vrudhula, V. M.; D'Souza, B.; Ditta, J.; Chen, T.; Sheriff, S.; Sipman, K.; Witmer, M.; Tredup, J.; Vyas, D. M.; Verdoorn, T. A.; Bollini, S.; Vintsiky, A. Org. Lett. 2001, 3, 3987. (b) Lee, L.; Kreutter, K. D.; Pan, W.; Crisler, C.; Spurillo, J.; Player, M. R.; Tomczuk, B., Lu, T. Biorg. Med. Chem. Lett. 2007, 17, 6266.

(c) Ward, S. E.; Harries, M.; Aldgeheri, L.; Austin, N. E.; Ballantine, S.; Ballini, E.; Bradley, D. M.; Bax, B. D.; Clarke, B. P.; Harris, A. J.; Harrison, S. A.; Melarange, R. A.; Mookherjee, C.; Mosley, J.; Dal Negro, G.; Oliosi, B.; Smith, K. J.; Thewlis, K. M.; Woolard, P. M.; Yusaf, S. P. J. Med. Chem. 2010, 54, 78.

(4) (a) Shimizu, M.; Hiyama, T. Angew. Chem., Int. Ed. 2005, 44, 214. (b) Tozer, M. J.; Herpin, T. F. Tetrahedron 1996, 52, 8619.

(5) (a) Xia, J.-B.; Zhu, C.; Chen, C. J. Am. Chem. Soc. 2013, 135, 17494. (b) Xu, P.; Guo, S.; Wang, L.; Tang, P. Angew. Chem., Int. Ed. 2014, 53, 5955.

(6) (a) Feng, Z.; Min, Q.-Q.; Xiao, Y.-L.; Zhang, B.; Zhang, X. Angew. Chem., Int. Ed. 2014, 53, 1669. (b) Qi, Q.; Shen, Q.; Li, L. J. Am. Chem. Soc. 2012, 134, 6548. (c) Xiao, Y.-L.; Guo, W.-H.; He, G.-Z.; Pan, Q.; Zhang, X. Angew. Chem., Int. Ed. 2014, 53, 9909.

(7) (a) Ge, S.; Chaladaj, W.; Hartwig, J. F. J. Am. Chem. Soc. 2014, 136, 4149. (b) Guo, C.; Wang, R.-W.; Qing, F.-L. J. Fluorine Chem. 2012, 145, 135. (c) Guo, Y.; Shreeve, J. N. M. Chem. Commun. 2007, 3583.

(8) Bordwell, F. G. Acc. Chem. Res. 1988, 21, 456.

(9) Fujikawa, K.; Fujiyoka, Y.; Kobayashi, A.; Amii, H. Org. Lett. 2011, 13, 5560.

(10) Butin, K. P.; Kashin, A. N.; Beletskaya, I. P.; German, L. S.; Polschuk, V. R. J. Organomet. Chem. 1970, 25, 11.

(11) (a) Ball, N. D.; Kampf, J. W.; Sanford, M. S. J. Am. Chem. Soc. 2010, 132, 2878. (b) Culkin, D. A.; Hartwig, J. F. Organometallics 2004, 23, 3398. (c) Grushin, V. V.; Marshall, W. J. J. Am. Chem. Soc. 2006, 128, 12644.

(12) Similar palladacyclic precursors have been used to prepare C-C and C-N cross-coupling reactions: (a) Bruno, N. C.; Tudge, M. T.; Buchwald, S. L. Chem. Sci. 2013, 4, 916. (b) Bruno, N. C.; Buchwald, S. L. Org. Lett. 2013, 15, 2876.

(13) Badioli, M.; Ballini, R.; Bartolacci, M.; Bosica, G.; Torregiani, E.; Marcantoni, E. J. Org. Chem. 2002, 67, 8938.

(14) The arylation occurs at nonfluorinated α-methylene of difluoromethyl butyl ketone; see ref 7a.