qGaussian: Tools to Explore Applications of Tsallis Statistics

W. S.de Limaa, E.L de Santa Helenaa.

aDepartamento de Física, Universidade Federal do Sergipe, Aracaju, Brazil.

Abstract

q-Gaussian distribution appear in many science areas where we can find systems that could be described within a nonextensive framework. Usually, a way to assert that these systems belongs to nonextensive framework is by means of numerical data analysis. To this end, we implement random number generator for q-Gaussian distribution, while we present how to computing its probability density function, cumulative density function and quantile function besides a tail weight measurement using robust statistics.

1. Introduction

Entropy is a fundamental concept in physics since it is in essence of second law of thermodynamics. In the article ‘Possible generalization of Boltzmann-Gibbs statistics’ \cite{1}, was postulated the Tsallis entropy $S_q[p(x)] = (q-1)^{-1} \ast (1- \int_{-\infty}^{\infty} p^q(x) dx)$. Within the nonextensive approach, the sum of the entropy of two independent subsystems is given by: $S_q(a+b) = S_q(a) + S_q(b) + (1-q)S_q(a)S_q(b)$, where q is an entropic index. The q-Gaussian density function $p_q(x)$, presented in the next section, arises from maximizing the q-entropy functional $S_q[p(x)]$ under constraints \cite{2} and \cite{3} and it is important at the framework of the nonextensive statistical mechanics.

There is a broad literature where the nonextensive approach is used to model systems and/or explain many-body problems and issues related to chaos. In

Email address: elsh@ufs.br (E.L de Santa Helena)
some cases, there exist strong evidences that theory works, certified by a broad numerical decade from experimental measurements or numerics simulation that let us obtain a q value by an almost flawless curve fitting. In other cases, a lot of observational data are only suggestive of a nonextensive approach. A myriad of examples can be found in [4] and [2]. This work aims to spread among users of R, a statistical package that deals with the distribution of q-Gaussian, allowing researchers to infer and evaluate, from empirical data, a nonextensive behaviour.

At section theoretical background, we first see a way to represent the probability density function and how to write the cumulative density function and quantile function using the Beta function. Then, we present the random number generator and a way to identify the q-Gaussian at empirical data. Next, we will see the implementation in R of all subjects described previously. Lastly, illustrative examples section present the density function shape, after the comparison among q-Gaussian with its special cases and an estimate of q value is made up from a data set.

2. Theoretical background

The q-Gaussian probability density function, named here $qPDF$, with q-mean μ_q and q-variance σ_q can be written as:

$$p(x; \mu_q, \sigma_q) = \frac{1}{\sigma_q B\left(\frac{a}{2}, \frac{1}{2}\right)} \sqrt{|Z|} \frac{u(x)}{u(1+1/Z)} \tag{1}$$

where $Z = (q - 1)/(3 - q)$,

$$\alpha = \begin{cases} 1 - 1/Z & \text{if } q < 1, \\ 1/Z & \text{if } 1 < q < 3, \end{cases}$$

$$u(x) = 1 + Z(x - \mu_q)^2/\sigma_q^2,$$

and $B(a, b)$ is the Beta function. In the limit of $q \to 1$ a $qPDF$ tends to a standard Gaussian distribution. For $q < 1$, it is

1 Beta function: $B(a, b) = \int_0^1 t^{a-1}(1 - t)^{b-1}dt$.

2
a compact support distribution, with \(x \in [\pm \sigma_q / \sqrt{-Z}] \). When \(1 < q < 3 \), it is a heavy tail. In the last case, a power law asymptotic behaviour describes well this class of distribution.

Given \(X = (x_1, x_2, \ldots, x_n) \) a random variable, the cumulative distribution function (qCDF), \(F(x) = P[X < x] \)

\[
F(x) = \int_{-\infty}^{x} p(v) dv,
\]
could be represented through \(I_w(a, b) \), the regularized incomplete Beta function \(^2\):

\[
F(x; \mu_q; \sigma_q) = \begin{cases}
\frac{1}{2} I_\beta \left(\frac{\alpha}{2}, \frac{1}{2} \right) & \text{if } x < \mu_q, \\
1 - \frac{1}{2} I_\beta \left(\frac{\alpha}{2}, \frac{1}{2} \right) & \text{if } x > \mu_q,
\end{cases}
\]

where

\[
\beta = \begin{cases}
u(x) & \text{if } q < 1, \\
1/\nu(x) & \text{if } 1 < q < 3.
\end{cases}
\]

In third, the quantile function (qQF) is obtained as an inverse function of \(y = F(x) \), \(w = I_{2y}^{-1} \left(\frac{\alpha}{2}, \frac{1}{2} \right) \):

\[
C(y; \mu_q, \sigma_q) = \begin{cases}
\mu_q - \sigma_q^2 \sqrt{(\gamma - 1)/Z} & \text{if } y < 1/2, \\
\mu_q + \sigma_q^2 \sqrt{(\gamma - 1)/Z} & \text{if } 1 - y < 1/2,
\end{cases}
\]

where

\[
\gamma = \begin{cases}
I_{2y}^{-1} \left(\frac{\alpha}{2}, \frac{1}{2} \right) & \text{if } q < 1, \\
1/I_{2y}^{-1} \left(\frac{\alpha}{2}, \frac{1}{2} \right) & \text{if } 1 < q < 3.
\end{cases}
\]

It is worth calling attention despite the fact that qCDF and qQF obtained from a compact support distribution do not appear explicitly shown in [3], these could be deduced by the same straightforward method presented in it.

The random numbers generator from a qPDF can be implemented in different ways. The straightforward method use the quantile function to creates random sample elements \(x_i = C(y_i; \mu_q, \sigma_q) \), where \(y_i \in [0,1] \) are ob-

\(^2\) Incomplete Beta function: \(B_w(a, b) = \int_0^w t^{a-1}(1-t)^{b-1} dt \)

and the regularized incomplete Beta function: \(I_w(a, b) = B_w(a, b)/B(a, b) \)
obtained from a uniform random number. In the second way, we use the Box-Muller algorithm as presented in [7] with the Mersenne-Twister algorithm as a uniform random number generator to create a q-Gaussian random variable $X \equiv N_q(\mu_q, \sigma_q) \equiv \mu_q + \sigma_q N_q(0, 1)$ where $N_q(0, 1)$ is called standard q-Gaussian.

The classical kurtosis methods, when applied to a data set, are very sensitive to outlying values, however, it is possible to diminish this problem at a measurement of the tail heaviness by using robust statistic concepts. To doing that, given a sorted sample $\{x_1 < \cdots < \tilde{x} < \cdots < x_n\}$ from a univariate distribution with median \tilde{x}. [8] established the medcouple to evaluates the tail weight when applied to $\{x_1 < \cdots < \tilde{x}\}$ and $\{\tilde{x} < \cdots < x_n\}$. This procedure can be applied to characterize the q-Gaussian with heavy tail and compact support. To this end, [3] aiming to identify a q-Gaussian distribution at empirical data, proposed a relationship between medcouple and q value obtained by curve fitting.

3. R implementation

The main goal of the package qGaussian it is lets us to compute qPDF (1), qCDF (2) and qQF (3) as same time generates random numbers from a q-Gaussian distribution parametrised by q value. To compute the Beta function and its inverse it is necessary the zipfR package, while the robustbase is the package of robust statistic to implement a tail weight measurement.

Quantity	R’s commands
$p(x)$	dqgauss(x,q,mu,sig)
$F(x)$	pqgauss(x,q,mu,sig,lower.tail=T)
$C(y)$	cqgauss(y,q,mu,sig,lower.tail=T)
x_i	rqgauss(n,q,mu,sig,meth="Box-Muller")
q	qbymc(X)

Table 1: Sintaxe of R’s commands for each output quantities
In Table 1, the input argument x represents a vector of quantiles for instructions $dqgauss(x,..)$ and $pqgauss(x,..)$ while y represents a vector of probabilities and n the length sample, for the random number generator. The parameters q, mu and sig are the entropic index, q-mean and q-variance, respectively, assuming the default values $(0, 0, 1)$. The medcouple is used into the $qbymc(X)$ code to estimate q value and standard error, receiving a random variable X, from the class "vector", as input. We will see below, all the R's commands described above.

4. Illustrative and demonstrative examples

First of all, two packages should be loaded.

```r
library(robustbase)
library(zipfR)
```

After, we start examples section presenting the shape of the qPDF plotted for typical q values over a quantile range covering more than 99.9% of area of the standard Gaussian. Besides that, we create a random sample with $q = 0$ then we choose the appropriate class intervals to create the histogram that is plotted against the qPDF.

```r
### Plot six qPDFs
gv <- c(2.8, 2.5, 2, 1.01, 0, -5); nn <- 700
xrg <- sqrt((3-gv[6])/(1-gv[6]))
xr <- seq(-xrg, xrg, by = 2*xrg/nn)
y0 <- dqgauss(xr, gv[6])
plot(xr, y0, ty = 'l', xlim = range(-4.5, 4.5), ylab = 'p(x)', xlab = 'x')
for (i in 1:5)
  if (gv[i] < 1) xrg <- sqrt((3-gv[i])/(1-gv[i]))
  else xrg <- 4.5
  vby <- 2*xrg/nn
  xr <- seq(-xrg, xrg, by = 2*xrg/nn)
```
y0 <- dqgauss(xr, qv[i])
points (xr, y0, ty = 'l', col = (i+1))

legend(2, 0.4, legend = c(expression(paste(q == -5)), expression(paste(q == 0)),
expression(paste(q == 1.01)), expression(paste(q == 2)),
expression(paste(q == 2.5)), expression(paste(q == 2.8))),
col = c(1, 6, 5, 4, 3, 2), lty = c(1,1,1,1,1,1)
)

qPDF Histogram for q = 0
qv <- 0
rr <- rqgauss(2\^16, qv)
nn <- 70
xrg <- sqrt((3-qv)/(1-qv))
vby <- 2*xrg/(nn)
xr <- seq(-xrg, xrg, by = vby)
hist (rr, breaks = xr, freq = FALSE, xlab = "x", main = "")
y <- dqgauss(xr)
lines(xr, y/sum(y*vby), cex = .5, col = 2, lty = 4)

In the next example, we compare q-Gaussian against two particular cases.
The q-Gaussian is related with Student’s-t distribution by \(q = (3 + df)/(1 + df) \) and Cauchy (\(q = 2 \)) \[^9\] and \[^10\]. At theses codes, first we can seen how Student’s-t distribution is a particular case of a more general distribution, using the standard qPDF as model. We generate a random sample by means R \texttt{stats} package using the command \texttt{rt(n,df)} with length \(n \) for \(df \) degree of freedom. At second, the cumulative Cauchy distribution is presented versus \texttt{rqgauss} random number generator.

qGaussian versus Student-t
set.seed(1234)
sam <- 1000; df <- 7
Figure 1: The standard q-Gaussian distribution shapes for representatives values of q, and a histogram with \texttt{rgauss(n, q = 0)}.

```r
r <- rt(sam, df)
qv <- (df+3)/(df+1)
plot(sort(r), (1:sam/sam), main = "qCDF vs rt", col = "blue",
ylab = "Probability", xlim = range(-4.5, 4.5), xlab = 'x')
x <- seq(min(r), max(r), length = 313)
lines(x, pqgauss(x, qv), lwd = 2)
legend(1.5, 0.7, legend = c(expression(paste(q == 1.25)), expression(paste(df == 7))),
col = c("black", "blue"), lty = c(1, 0), lwd = 1, pch = c(-1, 1))
```

qGaussian versus Cauchy

```r
set.seed(1234)
sam <- 1000
r2 <- rcauchy(sam, 100)
x2 <- 1:sam/sam
plot(x2, sort(r2), main = "qQF vs rcauchy", col = "red",
xlab = "Probability", ylim = range(70, 160), ylab = 'x')
```
In the third example, we will figure out how estimate the q value for a random sample using the \texttt{qbymc(X)} command. For that, we generate a synthetic data with parameters $q = 1.39$ and length $n = 2004$. After, it is shown that the value of q and its standard error that went obtained remain unchanged, regardless of the values chosen for q-mean and q-variance.

```r
set.seed(1000)
qbymc(rqgauss(2004, 1.39))
```

Estimate	Std. Error
1.411094	0.109256
Identifying a random sample regardless q and mu

```r
cset.seed(1000)
qbymc(rqgauss(2004, 1.39, 3.141592, 2.718281))
```

Estimate	Std. Error
1.411094	0.109256

5. Summary

In this work, we create a statistical package for q-Gaussian distribution following the pattern of R `stats` packages. Also, was included an algorithm that is used to identify qPDF at an empirical data set. Moreover, we hope to include in future releases, other mathematical topics related to q algebra and others nonextensive distributions.

References

[1] C. Tsallis, Possible generalization of boltzmann-gibbs statistics, J. Stat. Phys. 52 (1/2) (1988) 479.

[2] C. Tsallis, Introduction to Nonextensive Statistical Mechanics, Springer, 2009.

[3] A. Sato, Applied Data-Centric Social Sciences: Concepts, Data, Computation, and Theory, Springer-Verlag, 2014.

[4] M. Gell-Mann, C. Tsallis (Eds.), Nonextensive Entropy—Interdisciplinary Applications, Oxford University Press, 2004.

[5] E. L. de Santa Helena, C. M. Nascimento, G. J. Gerhardt, Alternative way to characterize a q-gaussian distribution by a robust heavy tail measurement, Physica A 435 (1) (2015) 44–50.
[6] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series, Dover Publications, 1983.

[7] W. Thistleton, J. A. Marsh, K. Nelson, C. Tsallis, IEEE Transactions on Information Theory 53(12) (2007) 4805.

[8] G. Brys, M. Hubert, A. Struyf, Comput. Statist. Data Anal. 50 (2006) 733.

[9] A. de Souza, C. Tsallis, Physica A 236 (1997) 52–57.

[10] C. Anteneodo, Physica A 358 (2005) 289–298.