Derivation of one-particle semiclassical kinetic theory in the presence of non-Abelian Berry curvature

Eldad Bettelheim

Racah Inst. of Physics, Hebrew University of Jerusalem, Edmund J. Safra Campus, Jerusalem 91904, Israel

E-mail: eldadb@phys.huji.ac.il

Received 30 March 2017, revised 20 August 2017
Accepted for publication 25 August 2017
Published 15 September 2017

Abstract
In quantum mechanics it is often required to describe in a semiclassical approximation the motion of particles moving within a given energy band. Such a representation leads to the appearance of analogues of fictitious forces, associated with the Berry curvature, in the semiclassical equations of motion. The purpose of this paper is to derive systematically the kinetic Boltzmann equations displaying these effects in the case that the band is degenerate, and as such the Berry curvature is generically non-Abelian. We use the formalism of phase-space quantum mechanics to derive the results.

Keywords: anomalous velocity, Berry curvature, Berry phase, semiclassics, Boltzmann equation, kinetic equation, Wigner transform

1. Introduction
The semiclassical motion of a particle inside a crystal displays anomalous terms in the presence of external electromagnetic fields (see, e.g., [1]). To understand the nature of such effects first recall that the eigenstates of the Hamiltonian have a Bloch form. Namely, an eigenstate in band n having Bloch momentum p is written as $\chi_n^p(x)e^{i\mathbf{p} \cdot \mathbf{x}}$, where χ_n^p is periodic in any period of the lattice (here n is an index not an exponent). For various reasons, including the development of a semiclassical theory, it is often advantageous to use rather the following basis of states

$$\varphi_{n,p}(x) = \chi_{p=0}^n(x)e^{i\mathbf{p} \cdot \mathbf{x}},$$

(1.1)

in which the Bloch eigenfunctions with zero Bloch momentum, p, are used to span Bloch functions with non-zero momentum. The advantage of this basis is that the momentum dependence appears only in the plane wave factor, while the periodic function is momentum independent.
This simplifies the analysis in various settings and is convenient in developing a semiclassical theory. Note that here we have used the zero momentum Bloch eigenfunctions, but nothing substantial changes in the sequel if a different point is chosen, this point often being chosen in practice as a point of higher symmetry in momentum space.

One may now write the Hamiltonian in the basis \(\varphi_{n,p} \), at which point one obtains a matrix Hamiltonian, depending on \(p \) and derivatives with respect to \(p \), which constitutes the starting point [2] of the analysis underlying many well-known models of condensed matter such as the Kane model [1], the Luttinger model [3], models of Dirac and Weyl semimetals, etc.

An eigenvalue of the Hamiltonian in band \(m \) and with a given Bloch momentum \(p \) (which we denoted by \(\chi_{m,p} \), up to a plane wave factor) can be written as a superposition of the functions \(\varphi_{n,p} \) as follows:

\[
e^{i\hbar p \cdot x} \chi_{m,p} = \sum_n U_{m,n}(p) \varphi_{n,p}.
\]

(1.2)

Consider now an electronic wave packet moving within the crystal created at the energy band \(m \). We may create such a wave packet by taking a superposition of \(\chi_{m,p} \) with fixed \(m \):

\[
\psi = \int \alpha_p e^{i\hbar p \cdot x} \chi_{m,p} d^3p = \sum_n \int \alpha_p U_{m,n}(p) \varphi_{n,p} d^3p.
\]

(1.3)

As a result of the motion of the packet through the crystal and in the presence of external fields its position and momentum changes. This leads to the change of \(\alpha_p U_{m,n}(p) \) in front of \(\varphi_{n,p} \) in the wave packet due to the \(p \)-dependence of \(U_{m,n}(p) \). The effect of the changing amplitude can be incorporated into the semiclassical equations of motion in analogy to the appearance of fictitious forces in the classical mechanics.

The modification of the semiclassical equations of motion allows one to understand a number of physical effects such as the anomalous Hall effect [4], the anomalous Nernst effect [5], negative magnetoresistance [6, 7], to name but a few of the developments related to this problem. The corrections to the semiclassical equations of motion were derived in [1, 8–10].

The purpose of this paper is to derive the Boltzmann kinetic equation describing such effects, especially in the case where the bands are degenerate and, as such, the Berry curvature is generically non-Abelian. In the non-Abelian case, it is not directly possible to recover the Boltzmann kinetic equation by considering the equations of motion for the averaged momentum and the center of a wave packet. Thus our approach would be to directly obtain an equation for the density matrix, in contrast to such approaches as the one described in [1]. Our approach allows to derive how the so called phase space volume element features in different calculations, so as the calculation of expectation values or in the kinetic equation itself. Other approaches recover such factors from additional considerations [11].

Our approach is quite similar to that of [12], with some notable differences, most prominently here we derive the kinetic equation in the general non-Abelian case. The approach here can also be recast in terms of the Keldysh formalism, as employed in [13, 14]. We mention also [15] which makes use of a field theory approach.

2. Derivation

Our starting point is a \(J \times J \) matrix Hamiltonian. Such Hamiltonians are derived in the condensed matter settings by writing the original Hamiltonian in the basis of states given by \(\varphi_{n,p} \) of equation (1.1) and subsequently truncating the infinite dimensional space into a smaller, \(J \) dimensional subspace. The set of \(J \) ‘relevant’ bands is usually chosen to be a set of bands
close in energy, such that there is a strong mutual effect of the bands’ spectrum, whereas the
effect of other bands may be treated perturbatively [16, 17]. In such a manner, Kane’s model
or Luttinger’s Hamiltonian may be derived [2, 3, 16, 17].

We recall briefly the procedure of obtaining the matrix Hamiltonian in the basis of states
\(\varphi_{n,p} \). First we assume a normal ordered Hamiltonian \(\hat{\mathcal{H}}(\mathbf{p}, \mathbf{x}) \), where the momentum operators
are always to the right of any position operator. Next, one uses the definition of \(\varphi_{n,p} \) to write
down:

\[
\langle \varphi_{j,p} | \hat{\mathcal{H}}(\mathbf{p}, \mathbf{x}) : | \varphi_{j',p'} \rangle = \int e^{-\frac{i}{\hbar} \mathbf{p} \cdot \mathbf{x}} \chi^j(x) \hat{\mathcal{H}}(-i\hbar \nabla, -i\hbar \nabla(\mathbf{p}')) e^{\frac{i}{\hbar} \mathbf{p}' \cdot \mathbf{x}} \chi^{j'}(x) \, dx. \tag{2.1}
\]

Here \(\nabla(\mathbf{p}') \) is the gradient operator with respect the momentum and the integral is performed
over the entire lattice, and \(\chi^{m} \equiv \chi^{m}_{p=0} \). The derivative with respect to momentum can be taken
outside the integral, whereupon the integral becomes the Fourier transform of a periodic
function. Namely, it vanishes unless \(\mathbf{p} - \mathbf{p}' \) is a reciprocal lattice vector. Since \(\mathbf{p} \) and \(\mathbf{p}' \) are within
the Brillouin zone, \(\mathbf{p} - \mathbf{p}' \) must vanish and the result becomes proportional to a delta function
in \(\mathbf{p} - \mathbf{p}' \) and derivatives thereof. In this manner the matrix element of the Hamiltonian may be
written as:

\[
\langle \varphi_{j,p} | \hat{\mathcal{H}}(\mathbf{p}, \mathbf{x}) : | \varphi_{j',p'} \rangle = \int \chi^j(x) \hat{\mathcal{H}}(\mathbf{p} - i\hbar \nabla, i\hbar \nabla(\mathbf{p}')) \chi^{j'}(x) \delta(\mathbf{p} - \mathbf{p}') \, dx. \tag{2.2}
\]

The integral is to be taken over a unit cell of the lattice. Next one defines the matrix operator
as \(H_{jj'}(\mathbf{p}) \) (which is distinct from \(\hat{\mathcal{H}} \)) as:

\[
H_{jj'}(\mathbf{p}, -i\hbar \nabla(\mathbf{p}')) \delta(\mathbf{p} - \mathbf{p}') = \int \chi^j(x) \hat{\mathcal{H}}(\mathbf{p} + i\hbar \nabla, i\hbar \nabla(\mathbf{p}')) \chi^{j'}(x) \delta(\mathbf{p} - \mathbf{p}') \, dx. \tag{2.3}
\]

The elements of the matrix operator \(H_{jj'} \) are then operators constructed from the multiplicative
operator \(\mathbf{p} \) and the gradient operator \(\nabla(\mathbf{p}) \). At this point \(\hat{\mathcal{H}} \) is usually truncated into a finite
\(J \times J \) matrix.

Other schemes in this and other settings may produce matrix Hamiltonians with elements
which are operators in the algebra generated by \(\mathbf{x} \) and \(\mathbf{p} \). The results of this paper are valid to
such systems as well.

We may diagonalize the matrix Hamiltonian by finding \(J \) eigenfunctions, \(U_j^k(\mathbf{p}) \). Namely,
we write

\[
\sum_k H_{jj'}(\mathbf{p}) U_j^k(\mathbf{p}) = U_j^k(\mathbf{p}) \epsilon_k(\mathbf{p}), \tag{4.4}
\]

Here the superscript 0 on \(H^0 \) denotes that external fields are absent (and therefore \(H^0_{jj'} \) depends
only on \(\mathbf{p} \) and not on \(\nabla(\mathbf{p}) \)) and \(k \) denotes that this is the \(k \)th eigenfunctions. In fact here and
throughout, raised indices pertain to band indices while lower indices are vector indices in the
space on which the Hamiltonian acts.

We wish to project onto a subset of the band consisting of, say, \(M \) bands. We introduce
here the convention in which Greek indices denote band indices taking values from 1 to \(M \)
while Roman indices denote indices taking values from 1 to \(J \). The \(J \times M \) matrix \(U_j^\alpha(\mathbf{p}) \) is a
projector onto the \(M \) bands for given \(\mathbf{p} \). If we wish to write an operator valued matrix acting
on the Hilbert space such that it will achieve the same projection for any state, then we may
define \(\tilde{U}_j^\alpha = U_j^\alpha(\mathbf{p}) \). The matrix \(\tilde{U} \) can be written as:
\[\hat{u}_j^\sigma = \int U_j^\sigma(p)|p\rangle\langle p| \frac{d^3p}{(2\pi\hbar)^3}. \] (2.5)

It is easy to show the following properties for \(\hat{u} \):

\[\hat{u}^\dagger \hat{u} = 1, \quad H^0(\hat{p})\hat{u} = \hat{u}\hat{h}, \] (2.6)

with \(\hat{h}^\sigma = \delta^\sigma_\varepsilon \varepsilon^\varepsilon(\hat{p}) \). We shall refer to \(\hat{h} \) as the ‘projected Hamiltonian’. The operator \(\hat{u}\hat{u}^\dagger \) is a \(J \times J \) projection operator onto the \(M \) bands. The fact that \(\hat{u} \) is a projection operator with rank \(M \) can be surmised from the first equation in (2.6), which states that \(\hat{u} \) is unitary on its image, an image which in turn has dimension \(M \). The latter statement being trivially given the \(J \times M \) dimensions of the matrix \(\hat{u} \).

We now wish to include external fields. We include those by taking the Hamiltonian at zero field, \(H^0(\hat{p}) \) and substituting the kinematical momentum \(\hat{p} = \hat{p} - \frac{i\hbar}{\epsilon} A(\hat{x}) \), with and \(\hat{x} = -i\hbar \nabla(\hat{p}) \). The kinematical momentum satisfies

\[[\hat{p}, \hat{h}] = \frac{i\hbar}{c} \sum_k \varepsilon_{ijk} B_k. \] (2.7)

In addition, the magnetic field also couples to the spin to produce a term \(g\mathbf{B} \cdot \mathbf{S} \) and an additive term, \(q\Phi(\hat{x}) \), associated with the scalar potential, \(\Phi \), is added to the Hamiltonian. We thus take the matrix Hamiltonian in the presence of electro-magnetic, \(H(\hat{p}, \hat{x}) \), fields to be

\[H(\hat{p}, \hat{x}) = H^0(\hat{p}) - g\mathbf{B} \cdot \mathbf{S} + q\Phi(\hat{x}), \] (2.8)

where, as mentioned, \(\hat{p} \) is the kinematical momentum and \(\mathbf{S} \) is a matrix representation of the spin operator in the basis states \(\chi^j \).

All spin orbit effects, the coupling of orbital momentum to the electric field, etc are contained within (2.8). In particular spin orbit coupling is part of the zero field Hamiltonian and the coupling of the electric field to the orbital magnetization will feature in the derivation below.

In the presence of external fields we define \(\hat{u} \) similarly as in equation (2.6):

\[\hat{u}^\dagger \hat{u} = 1, \quad H(\hat{p}, \hat{x})\hat{u} = \hat{u}\hat{h}, \] (2.9)

We do not demand that \(\hat{h} \) be diagonal, only that it is an \(M \times M \) matrix. Effectively what has been done by finding \(\hat{h} \) is to block-diagonalize \(H \) into an \(M \times M \) block and a \((J - M) \times (J - M)\) block, where \(\hat{h} \) is the former block in question.

Due to the second equation in (2.9), the operator \(\hat{u}\hat{u}^\dagger \) commutes with the Hamiltonian:

\[H(\hat{p}, \hat{x})\hat{u}\hat{u}^\dagger = \hat{u}\hat{h} = \hat{u}\hat{u}^\dagger H(\hat{p}, \hat{x}), \] (2.10)

as to be expected from a projection operator onto an invariant space of the Hamiltonian, the invariant space in question being composed of the \(M \) bands.

It is then the fact that \(\hat{u} \) is a \(J \times M \) matrix that satisfy the properties in (2.9) that justify the designation of \(\hat{u} \) as a projection operator onto \(M \) bands. As such, we shall use (2.9) as the defining properties of \(\hat{u} \) in the case where electromagnetic fields are present. Indeed, In the presence of a magnetic field the elements of \(\hat{p} \), which denotes the kinematical momentum, are no longer good quantum numbers, such that (2.5) is no longer valid. Instead we shall seek out a solution of equation (2.9) in a semiclassical expansion. Namely, a formal expansion in \(\hat{h} \).

Before continuing to carry out this expansion, we digress to note that we shall be interested in writing down the dynamics of the density matrix, with the assumption that the density matrix acts only in the invariant subspace of \(M \) bands. This requirement may be written as:
\[\hat{\rho} = \hat{\rho} \hat{u}^\dagger = \hat{u} \hat{u}^\dagger \hat{\rho}. \]
(2.11)

The property defined by equation (2.11) is invariant under time translations. Namely, it is obeyed at all times if it is obeyed at any single point in time. Indeed, due to (2.10),

\[i\hbar \partial_t \hat{\rho} = i\hbar \partial_t [\hat{\rho}, \hat{H}(\hat{p}, \hat{x})] = [\hat{\rho} \hat{u}^\dagger, \hat{H}(\hat{p}, \hat{x})] = \hbar \partial_t (\hat{\rho} \hat{u}^\dagger). \]
(2.12)

This allows us to define the operator \(\hat{u}^\dagger \hat{\rho} \hat{u} \), as an \(M \times M \) density matrix that contains all the information of the quantum state of the system at all times. This is exhibited by the following relation, which may be derived making use of (2.11):

\[i\hbar \partial_t (\hat{u}^\dagger \hat{\rho} \hat{u}) = [\hat{u}^\dagger \hat{\rho} \hat{u}, \hat{H}(\hat{p}, \hat{x}) \hat{u}] = [\hat{u}^\dagger \hat{\rho} \hat{u}, \hat{h}], \]
(2.13)

where we have used the following relation (easily derived) which will also be useful in the sequel:

\[\hat{u}^\dagger \hat{H}(\hat{p}, \hat{x}) \hat{u} = \hat{h}. \]
(2.14)

Let us comment that we are using a single particle formalism. This poses no loss of generality in the absence of interaction. If ultimately interactions are to be included in the form of a collision integral, the drawback of the one particle formalism will be encountered when one wishes to analyze Berry phase effects on the collisions themselves. If one excludes from the analysis such effects the current formalism is sufficient.

We seek now to find a semiclassical expansion of \(\hat{u}_j^\sigma \), assuming knowledge of the solution of the eigenstates of the Hamiltonian, \(U_j^\sigma \), which are themselves defined for the problem in the strict semiclassical approximation (lowest order in \(\hbar \)). Here we shall only deal with the expansion to subleading order in \(\hbar \), where the effects we wish to derive are displayed.

The semiclassical expansion is facilitated by using a phase space formulation of quantum mechanics (see, e.g. [18]). We thus take the Wigner transform of \(\hat{u} \) to obtain functions \(\tilde{u}_j^\sigma \). The defining equations of \(\hat{u} \), equation (2.9), become the following equations for the Wigner transform, \(\tilde{u} \):

\[\tilde{u}^\dagger \star \tilde{u} = 1, \quad H \star \tilde{u} = \tilde{u} \star \hat{h}, \]
(2.15)

where matrix multiplication is implied and the star denotes the usual start product. We need to solve these equations order by order in \(\hbar \). We recount the expansion of the star product:

\[f \star g = f g + \frac{i}{2} \{ f, g \} + \ldots \]
(2.16)

Here the Poisson brackets is given by:

\[\{ f, g \} = \nabla f \cdot \nabla \phi g - \nabla \phi f \cdot \nabla g + \frac{q}{c} B \cdot \nabla \phi f \times \nabla \phi g, \]
(2.17)

where \(\nabla \) denotes spatial derivatives while \(\nabla \phi \) denotes derivatives with respect to the momentum. From here on \(p \) denotes throughout the kinematical momentum.

The solution of equation (2.15) to leading order in \(\hbar \) is obtained by ignoring the star product and replacing it with a regular product, such that we may write:

\[\tilde{u}^\dagger_j \sigma = U_j^\sigma + O(\hbar), \]
(2.18)

with \(U_j^\sigma \) spanning an \(M \)-dimensional eigenspace of the semiclassical Hamiltonian:

\[\sum_j H_{j\tau} U_{j\tau}^\sigma = \sum_{\tau} U_{j\tau}^\sigma \hbar^{\tau \sigma}. \]
(2.19)
Finding the functions U_j is a problem of diagonalizing a J-dimensional matrix for each p and x. The additional terms in the semiclassical equations of motion that we derive below will be written in terms of these functions. In particular the Berry connection,

$$
\mathcal{A} \equiv i U^\dagger \nabla^{(p)} U
$$

(2.20)

and the Berry curvature,

$$
\Omega \equiv \nabla^{(p)} \times \mathcal{A} - i \mathcal{A} \times \mathcal{A}
$$

(2.21)

associated with these these functions will feature in the corrections to the semiclassical equations of motion.

We shall need to compute the projected Hamiltonian, \tilde{h}, and the dynamics it dictates in the M bands to subleading order in \hbar. We thus first expand \tilde{u} in powers of \hbar

$$
\tilde{u} = U + \hbar \delta U + O(\hbar^2).
$$

(2.22)

We have from $\tilde{u}^\dagger \tilde{u} = 1$ (equation (2.15)):

$$
U^\dagger \delta U + \delta U^\dagger U + U^\dagger \tilde{u} U = 1.
$$

(2.23)

Namely, we may choose:

$$
U^\dagger \delta U = -\frac{\hbar q}{4c} \mathbf{B} \cdot \nabla^{(p)} \times \mathcal{A},
$$

(2.24)

The projected Hamiltonian is given by $\tilde{h} = \tilde{u}^\dagger \mathcal{H} \tilde{u}$ from the phase space representation of equation (2.14), such that we may now derive an \hbar expansion of it by using the expansion of the star product, equation (2.16), and making use of and (2.24) and (2.8):

$$
\hbar \frac{q}{c} \mathbf{B} \cdot \nabla^{(p)} \times \mathcal{A},
$$

(2.25)

where

$$
\epsilon_{\text{eff}} = \epsilon - \frac{q \hbar}{c} \mathcal{M} \cdot \mathbf{B} - g \mathcal{S} \cdot \mathbf{B},
$$

(2.26)

with

$$
\mathcal{M} \equiv \frac{i}{2} \nabla^{(p)} U^\dagger \times (H - \epsilon) \nabla^{(p)} U,
$$

(2.27)

$$
\mathcal{S} \equiv U^\dagger \mathcal{S} U,
$$

(2.28)

and ϵ being defined below equation (2.6) as the energy spectrum of the Hamiltonian with no external fields. \mathcal{M} is the well known orbital magnetization of the wave packet.

A derivation of the evolution equation for ρ is obtained by applying the expansion of the star product, equation (2.16), to equation (2.13). This computation yields:

$$
\partial_t \rho + S \left(\nabla \rho \cdot \nabla^{(p)} h - \nabla^{(p)} \rho \cdot \nabla h + \frac{q}{c} \mathbf{B} \times \nabla^{(p)} \rho \cdot \nabla^{(p)} h \right) + \frac{[\rho, h]}{i \hbar} = 0,
$$

(2.29)

where S denotes the symmetrization of matrix products, such that, e.g.

$$
S(AB) \equiv \frac{1}{2} (AB + BA).
$$

(2.30)
For purposes of symmetrization a commutator is considered a single matrix, hence, e.g.
\[S([A, B]) = [A, B], \quad S([A, B][C]) = \frac{1}{2}(C[A, B] + [A, B][C]). \]

Equation (2.29) may be understood as the collisionless kinetic (Boltzmann) equation which is valid to subleading order in \(\hbar \) in the presence of non-Abelian Berry curvature. Nevertheless, the formalism that we have used thus far is not gauge invariant, and in the next section we wish to correct that. This is not to say that equation (2.29) is somehow incorrect, but rather that it is usually preferred to work in a formalism where gauge invariance is manifest.

3. Gauge invariant formalism

As just mentioned, the formalism we have used thus far is not gauge invariant. In fact, the density matrix \(\rho \) is not gauge invariant. Indeed, by choosing a different set of eigenvectors \(U \) one obtains a new density matrix \(\tilde{\rho} \) that is not a simple unitary rotation of the original density matrix. A gauge invariant object may nevertheless be defined by considering \(\tilde{\rho} \equiv \mathcal{V} U \dagger \tilde{\rho} U \). It will turn out however that a slightly more complicated object is more convenient to work with. This is given by \(\bar{\rho} \) defined as follows:

\[\bar{\rho} \equiv \mathcal{V} U \dagger \tilde{\rho} U, \]

with

\[\mathcal{V} = \left(1 - \frac{hq}{2c} B \cdot \Omega \right). \]

Since \(\Omega \) is gauge invariant, \(\bar{\rho} \) defined in (3.1) is also gauge invariant.

We should stress however, that the difficulty of working with \(\bar{\rho} \) is that it is not an exact projection onto an invariant space of the Hamiltonian. In order to write a kinetic equation one must utilize equations (2.11) and (2.13), which are more naturally written for \(\rho \) rather than for \(\bar{\rho} \). Nevertheless, an evolution equation may be written for \(\bar{\rho} \) by different means, the most straightforward at this point, having already derived an equation for \(\rho \), is to relate \(\bar{\rho} \) to \(\rho \) and then translate equation (3.4) into an evolution equation for \(\bar{\rho} \). The actual calculation is rather cumbersome, but mechanical. This relation between \(\rho \) and \(\bar{\rho} \), is obtained by writing out the definitions of both objects. Expanding in \(\hbar \) and relating the two. The result is:

\[\rho = \bar{\rho} - \frac{ihq}{2c} B \times A \rho \cdot A \]

\[+ hS \left(\nabla \rho \cdot A + \frac{q}{c} B \times \nabla \rho \rho \cdot A + \frac{q}{2c} B \cdot \nabla \rho \rho \cdot \nabla \times A + \rho \frac{q}{2c} B \cdot \Omega \right). \]

3.1. Collisionless Kinetics

Plugging equation (3.3) this into (2.29), and after the requisite calculus the following equation, which is the gauge invariant collisionless kinetic equations we seek, is obtained:

\[S \left\{ \partial_t \bar{\rho} + \nabla \cdot (\bar{\rho} \bar{v}) + \mathcal{D} \cdot (\bar{\rho} \bar{F}) - \frac{i}{\hbar} \left[\tilde{\rho}, \varepsilon^{\text{eff}} \right] \right\} = 0. \]

The equation is derived under the assumption that \(\tilde{\rho} = \rho \bar{\rho} + \hbar \tilde{\rho} \), where \(\tilde{\rho} \) is traceless. Namely, terms involving the commutator of \(\tilde{\rho} \) are automatically of a lower order. From here
on this assumption will be made throughout. The effective energy ε_{eff} is defined in (2.26), the covariant momentum derivative, \mathcal{D}, is defined making use of the Berry connection (equation (2.20)) as follows:

$$\mathcal{D} g = \nabla^{(p)} g - i[\mathcal{A}, g].$$

(3.5)

As for the definitions of the velocity, v and force, F, we have made use of the following notations

$$v = v_0 + \hbar \Omega \times \left(qE + \frac{q}{c} v_0 \times B \right), \quad v_0 = \mathcal{D} \varepsilon_{\text{eff}}.$$

(3.6)

$$F = qE + \frac{q}{c} v \times B.$$

(3.7)

where the Berry curvature, Ω, is defined in equation (2.21). The velocity and force in equations (3.6) and (3.7) may be viewed as the next to leading order in \hbar solution of the following equations derived in [1, 8]:

$$v = v_0 + \hbar \Omega \times F,$$

(3.8)

$$F = qE + \frac{q}{c} v \times B.$$

(3.9)

3.2. Expectation values

Let us note that $\bar{\rho}$ was defined such that it does not require the introduction of a phase space volume element. Indeed making use of (2.11), (2.24), the fact that $\text{tr}(\hat{A}\hat{B}) = \int \frac{\hbar d^3 x d^3 p}{(2\pi \hbar)^3}$, and the expansion of the star product, one may write the expression for the trace of $\hat{\rho}$ as:

$$\text{tr} \hat{\rho} = \int \text{tr} [\hat{\rho}(u \star u^\dagger)] d^3 x d^3 p = \int \text{tr} [\bar{\rho}] d^3 x d^3 p.$$

(3.10)

We present also the calculation of the expectation value of scalar observables in terms of $\bar{\rho}$. We use the term ‘scalar observable’ for all a quantum operator, \hat{f}, the representation of which in terms of the Wigner transform takes the form $\tilde{f}(r,p)\delta_{ij}$. We define $f^{\alpha\gamma} \equiv \tilde{f}\delta_{\alpha\gamma}$. We will need the following relation:

$$f \equiv u^\dagger \star \tilde{f} \star u = \tilde{f} + \hbar \nabla \tilde{f} \cdot \mathcal{A} + \frac{\hbar q}{c} B \times \nabla^{(p)} \tilde{f} \cdot \mathcal{A},$$

(3.11)

which is derived by the standard means already employed thus far.

The expectation value of \tilde{f} is given by:

$$\langle \tilde{f} \rangle = \text{tr}(\hat{\rho}\tilde{f}) = \text{tr} \int \rho f d^3 x d^3 p.$$

(3.12)

Substituting into this equation (3.11) and equation (3.3) and integrating by parts yields simply:

$$\langle \tilde{f} \rangle = \int f \text{tr} \bar{\rho} d^3 x d^3 p.$$

(3.13)
3.3. Equilibrium

We conclude this section by deriving the equilibrium distribution function described by \(\hat{\rho}_0 = f(\beta H) \), where \(f \) may be chosen, e.g. as the Fermi–Dirac or Bose–Einstein distribution, depending on the statistics of the particle described. From this distribution we may compute

\[
\hat{\rho}_0 = \tilde{u}^\dagger \hat{\sigma} \tilde{u} = f(h).
\]

One may easily derive:

\[
\hat{\rho}_0 = \frac{1}{\beta(\hbar - \epsilon)} f'(\epsilon).
\]

(3.14)

Computing \(\bar{\rho} \) by making use of (3.3) gives:

\[
\bar{\rho}_0 = V^2 f(\epsilon_{\text{eff}}).
\]

(3.15)

This result is somewhat counterintuitive since it shows that, although expectation values do not require the introduction of a phase factor due to equation (3.13), one does have to include the phase space factor \(V^2 \) when averaging with the quantum distribution (Fermi–Dirac or Bose–Einstein). In other words, within the current formalism, solving the semiclassical kinetics described by the Boltzmann equation (possibly with a collision term) will lead to a distribution \(\bar{\rho}_0 \) which includes a factor which may be interpreted phase space volume, such that the phase space volume must not be posited as an extra factor that must be included, but rather appears automatically, after solving the kinetic equation.

4. Collision integral

We wish now to demonstrate how the effect of collisions enters into the Boltzmann equation. We derive the collision integral in the case where the collisions are with the disorder potential, assuming that the disorder potential is smooth enough such that it may be considered within the semiclassical approach. Namely, the entire effect of collisions with disorder can be incorporated by assuming a disordered electric field in the semiclassical Boltzmann equation that was already derived, equation (3.4). The procedure we implement in this section, then, is to show that averaging over disorder allows us to represent the effect of collisions as a collision integral.

Our starting point is then equation (3.4). We write it as:

\[
e^{-\mathcal{L}_0 t} \hat{\rho} e^\mathcal{L}_0 t \hat{\rho} = \mathcal{L}_V \hat{\rho}
\]

(4.1)

where the differential operators \(\mathcal{L}_0 \) and \(\mathcal{L}_V \) are defined through their action on any function \(f \) as follows:

\[
\mathcal{L}_0 f = \nabla \cdot (vf) + \mathcal{D} \cdot (Ff)
\]

(4.2)

\[
\mathcal{L}_V f = \nabla V \cdot \mathcal{D} f + \frac{h q}{c} \mathcal{D} \cdot ((\Omega \times \nabla V) \times B f) + h \Omega \times \nabla V \cdot \nabla f.
\]

(4.3)

The evolution can be written using objects defined in the interaction picture (designated here by the superscript \((I) \)):

\[
\partial_t \hat{\rho}^{(I)}(t) = \mathcal{L}_V^{(I)}(t) \hat{\rho}^{(I)}(t),
\]

(4.4)

where \(\hat{\rho}^{(I)}(t) \) and \(\mathcal{L}_V^{(I)}(t) \) are defined by:

\[
\hat{\rho}^{(I)}(t) \equiv e^{\mathcal{L}_0 t} \hat{\rho}(t), \quad \mathcal{L}_V^{(I)}(t) \equiv e^{\mathcal{L}_0 t} \mathcal{L}_V e^{-\mathcal{L}_0 t}.
\]

(4.5)
The evolution equation for $\rho^{(l)}$, equation (4.4), is solved in perturbation theory to first orders as follows:

$$\dot{\rho}^{(l)}(t) = \dot{\rho}(0) + \int_0^t dt' L_v^{(l)}(t') \dot{\rho}(0), \quad (4.6)$$

hitting (4.4) with $e^{-L_v t}$ and combining with (4.6) leads to

$$\partial_t \dot{\rho} + L_v \dot{\rho} = L_v e^{-tL_v} \dot{\rho}(0) + L_v \int_{-t}^0 dt' L_v^{(l)}(t')e^{-tL_v} \dot{\rho}(0). \quad (4.7)$$

Motivated by the assumption of self-averaging, we wish now to consider averaging equation (4.7) over the disorder potential V. Without loss of generality, one may assume that the average electric field produced by the disorder potential vanishes, and as a result the the term $L_v \dot{\rho}^{(l)}(-t)$ in equation (4.7) vanishes after averaging, which leaves the second term on the right hand side as the collision integral, I_{coll}:

$$I_{\text{coll}} \equiv \langle L_v \int_{-t}^0 dt' L_v^{(l)}(t')e^{-tL_v} \dot{\rho}(0) \rangle \quad (4.8)$$

where the angled brackets denote disorder averaging. To compute $L_v(t)$, which features in this equation, we write down the following differential equation for it:

$$\partial_t L_v^{(l)}(t) = [L_0, L_v^{(l)}(t)] \quad (4.9)$$

with initial conditions for $L_v^{(l)}$ given by $L_v^{(l)}(0) = L_v$, where the latter is given in equation (4.3).

We now derive an expression for the collision integral in leading order in \hbar. We further assume that the momentum change of the particle due to the electric field during the collision time is negligible. To this approximation, a solution for $L_v(t)$, of equation (4.9), and an expression for $e^{-tL_v} \dot{\rho}(0)$ can be written as follows:

$$L_v(t) = \nabla V(x + v_0 t) \cdot \nabla^{(p)} \quad e^{-tL_v} \dot{\rho}(0) = \dot{\rho}(x - v_0 t, p, 0). \quad (4.10)$$

The collision integral in this approximation is designated as $I_{\text{coll}}^{(0)}$. It takes the form:

$$I_{\text{coll}}^{(0)} \simeq \langle \nabla V(x) \cdot \nabla^{(p)} \int_{-t}^0 dt' \nabla V(x - v_0(t')) \cdot \nabla^{(p)} \dot{\rho}(x - v_0 t, p, 0) \rangle,$$

where the angled brackets denote disorder averaging, and we have assumed, as usual, that the density matrix is diagonal in the leading order in \hbar. We have assumed that the momentum change of the particle due to the electric field during the collision time is negligible.

To bring this expression into more familiar form, we write it in terms of the Fourier transform of V. We further assume that the density is constant within a region of the size comparable to the distance a particle travels within the collision time (this allows one to replace $\dot{\rho}(x - vt, p, 0)$ by $\dot{\rho}(x, p, 0)$). We implement the disorder average by a simplified procedure whereby it is assumed that any two realizations of the disorder are related by a translation. The disorder ensemble is then modelled as a uniform measure over these translations. This ensemble is sufficient to obtain the result, a more realistic model of disorder does not affect the derivation beyond adding complexity to the formalism, we forgo then such more realistic models for the sake of notational brevity. We thus introduce a translation vector, R, the integral over which signifies averaging over the disorder. This, together, with the Fourier transform of the potential V_q, leads to the following expression for the collision integral:
\(I_{\text{coll}} = \int \frac{dRdpdp'}{(2\pi)^6} V_{-p'}V_p \frac{1}{\delta'(-x - (t - t')) - p' \cdot x + (p - p') \cdot R} p' \cdot \nabla(p) p' \cdot \nabla(p) \hat{\rho}(x, p, 0). \) (4.11)

We may now perform the integral with respect to \(R \) which forces \(p' \) to be equal to \(p \). In addition, the semiclassical limit requires a small momentum transfer for collisions, such that one may replace derivatives with respect to the momentum with finite differences involving the transferred momentum, \(p \). This yields the following for the collision integral:

\[I_{\text{coll}} = \hbar \int \frac{dp}{(2\pi)^2} |V_q|^2 \frac{\delta'(\epsilon - \epsilon(p + p))}{v \cdot p - 0^+} \left(\hat{\rho}(x, p + p, 0) + \hat{\rho}(x, p - p, 0) - 2\hat{\rho}(x, p, 0) \right). \]

Simple manipulations involving the change of integration variable from \(p \) to \(-p \) and by replacing \(v \cdot p \) by \(\epsilon(p) - \epsilon(p + p) \) (justified again in the limit of small momentum transfer) lead to the familiar form of the collision integral:

\[I_{\text{coll}} = \hbar \int \frac{dp}{(2\pi)^2} |V_q|^2 \delta'(\epsilon - \epsilon(p + p)) \left(\hat{\rho}(x, p + p, 0) - \hat{\rho}(x, p, 0) \right). \] (4.12)

Various effects can be recovered by lifting some of the assumptions made in the derivation. For example, we may consider \(\hbar \) corrections in the presence of a constant electric field but in the absence of a magnetic field. Coming back to the differential equation for \(L_V(t) \), equation (4.9), we may write in the current approximation:

\[\partial_t L_V^{(j)}(t) = [(v_0 + \hbar q \Omega \times E) \cdot \nabla, L_V^{(j)}(t)]. \] (4.13)

The solution of this equation to leading and sub-leading order in \(\hbar \) is given by:

\[L_V^{(j)}(t) = \nabla V(x - v_0 t) \cdot \mathcal{D} + q \hbar t (\Omega \times E \cdot \nabla V(x - v_0 t)) \cdot \mathcal{D}, \] (4.14)

where we have also neglected any terms in \(L_V^{(j)}(t) \) that are proportional to the spatial derivative operator, \(\nabla \), since they will not be important in the following once we let \(L_V^{(j)}(t) \) act on the density matrix, which we assume does not depend strongly on position within the collision distance.

The terms proportional to \(\hbar \) may now be collected to yield \(I_{\text{coll}}^{(1)} \), the correction to \(I^{(0)} \) in the current settings:

\[I_{\text{coll}}^{(1)} = \frac{\hbar}{(2\pi)^2} \int_{-t}^{0} dp dq dp' dq' \left(q \Omega \times E \cdot p \right) |V_q|^2 e^{-i \frac{\hbar}{\Omega} \cdot q} \delta'(\epsilon(p) - \epsilon(p + p)) \hat{\rho}(x, p, 0). \] (4.15)

Following the same steps leading to equation (4.12) now gives:

\[I_{\text{coll}}^{(1)} = \hbar^3 \int dp \left(q \Omega \times E \cdot p \right) |V_q|^2 \delta'(\epsilon - \epsilon(p + p)) \left(\hat{\rho}(x, p + p, 0) - \hat{\rho}(x, p, 0) \right). \] (4.16)

This correction to the collision integral is related to side jumps. A subject that was discussed in the past in several occasions, see e.g., [19–22].

We have neglected terms involving commutators of the density matrix with the Berry connection. These can be readily recovered. Corrections proportional to \(\hbar \) that appear when a magnetic field is turned on, can likewise be recovered.
5. Conclusion

In conclusion, we wish to reiterate the purpose of this paper, which is to derive a kinetic theory including non-Abelian Berry phase effects, making use only of pertinent formalisms. Indeed, the effects discussed here are a common feature of the semiclassics of theories described by matrix Hamiltonians, and as such the development of the formalism requires only quantum mechanics and a semiclassical expansion, the latter being straightforward within the phase space formulation (that is the formulation through the Wigner transform) of quantum mechanics.

The factor \mathcal{V}, which is associated with the phase space volume, was included in the definition of the density matrix $\bar{\rho}$ in equation (3.1) such as to allow the kinetic equation to have a conservation law-like form. Subsequently, its appears in different powers when computing expectation values, equation (3.13), and in the equilibrium distribution function, equation (3.15). Its role in other computations may be derived along the lines employed in the current paper.

We believe that a derivation of the equation in this manner, allows one to better grasp how to use the formalism when more subtle points are encountered, for example, when dealing with questions related to the phase space volume factor, or the proper formulation of collision integrals.

Acknowledgment

I wish to thank B Spivak, A Andreev, M Khodas and P Wiegmann for extensive discussions. I acknowledge the Israeli Science Foundation, which supported this research through grant 1466/15.

References

[1] Xiao D, Chang M-C and Niu Q 2010 Berry phase effects on electronic properties Rev. Mod. Phys. 82 1959–2007
[2] Luttinger J M and Kohn W 1955 Motion of electrons and holes in perturbed periodic fields Phys. Rev. 97 869–83
[3] Luttinger J M 1951 The effect of a magnetic field on electrons in a periodic potential Phys. Rev. 84 814–7
[4] Jungwirth T, Niu Q and MacDonald A H 2002 Anomalous hall effect in ferromagnetic semiconductors Phys. Rev. Lett. 88 207208
[5] Xiao D, Yao Y, Fang Z and Niu Q 2006 Berry-phase effect in anomalous thermoelectric transport Phys. Rev. Lett. 97 026603
[6] Son D T and Spivak B Z 2013 Chiral anomaly and classical negative magnetoresistance of Weyl metals Phys. Rev. B 88 104412
[7] Spivak B Z and Andreev A V 2016 Magnetotransport phenomena related to the chiral anomaly in Weyl semimetals Phys. Rev. B 93 085107
[8] Sundaram G and Niu Q 1999 Wave-packet dynamics in slowly perturbed crystals: gradient corrections and Berry-phase effects Phys. Rev. B 59 14915–25
[9] Chang M-C and Niu Q 1995 Berry phase, hyperorbits, and the Hofstadter spectrum Phys. Rev. Lett. 75 1348–51
[10] Chang M-C and Niu Q 1996 Berry phase, hyperorbits, and the Hofstadter spectrum: semiclassical dynamics in magnetic Bloch bands Phys. Rev. B 53 7010–23
[11] Xiao D, Shi J and Niu Q 2005 Berry phase correction to electron density of states in solids Phys. Rev. Lett. 95 137204
[12] Wong C H and Tserkovnyak Y 2011 Quantum kinetic equation in phase-space textured multiband systems Phys. Rev. B 84 115209
[13] Shindou R and Balents L 2008 Gradient expansion approach to multiple-band Fermi liquids Phys. Rev. B 77 035110
[14] Shindou R and Balents L 2006 Artificial electric field in fermi liquids Phys. Rev. Lett. 97 216601
[15] Stephanov M A and Yin Y 2012 Chiral kinetic theory Phys. Rev. Lett. 109 162001
[16] Kane E 1957 Band structure of indium antimonide J. Phys. Chem. Solids 1 249–61
[17] Winkler R, Papadakis S J, De Poortere E P and Shayegan M 2003 Spin–Orbit Coupling in Two-Dimensional Electron and Hole Systems vol 41 (Berlin: Springer)
[18] Baker G A 1958 Formulation of quantum mechanics based on the quasi-probability distribution induced on phase space Phys. Rev. 109 2198–206
[19] Sinitsyn N A, Niu Q, Sinova J and Nomura K 2005 Disorder effects in the anomalous Hall effect induced by Berry curvature Phys. Rev. B 72 045346
[20] Sinitsyn N A 2008 Topical review: Semiclassical theories of the anomalous Hall effect J. Phys.: Condens. Matter 20 023201
[21] Berger L and Bergmann G 1980 The Hall Effect of Ferromagnets (Boston, MA: Springer) pp 55–76
[22] Luttinger J M 1958 Theory of the Hall effect in ferromagnetic substances Phys. Rev. 112 739–51