UPPER TRIANGULAR FORMS AND SPECTRAL ORDERINGS IN A II\textsubscript{1}-FACTOR

J. NOLES

Abstract. In [3], Dykema, Sukochev and Zanin used a Peano curve covering the support of the Brown measure of an operator \(T \) in a diffuse, finite von Neumann algebra to give an ordering to the support of the Brown measure, and create a decomposition \(T = N + Q \), where \(N \) is normal and \(Q \) is s.o.t.-quasinilpotent. In this paper we prove that a broader class of measurable functions can be used to order the support of the Brown measure giving normal plus s.o.t.-quasinilpotent decompositions.

1. Introduction and description of results

We start with a famous theorem of Schur (see for instance [7]) which will motivate this paper.

Theorem 1. For every matrix \(T \in M_n(\mathbb{C}) \), there exists a unitary matrix \(U \in M_n(\mathbb{C}) \) such that \(U^{-1}TU \) is an upper triangular matrix.

The diagonal entries of \(U^{-1}TU \) are the eigenvalues of \(T \), repeated up to multiplicity, and \(U \) can be chosen so that they appear in any order. Hence each ordering of the spectrum of \(T \) gives a decomposition \(T = N + Q \), where \(N \) is normal and \(Q \) is nilpotent.

In [3], Dykema, Sukochev and Zanin use Haagerup-Schultz projections to prove a related theorem in II\textsubscript{1}-factors.

Theorem 2. Let \(M \) be a diffuse, finite von Neumann algebra with normal, faithful, tracial state \(\tau \) and let \(T \in M \). Then there exist \(N, Q \in M \) such that

\begin{enumerate}
 \item \(T = N + Q \)
 \item the operator \(N \) is normal and the Brown measure of \(N \) equals that of \(T \)
 \item The operator \(Q \) is s.o.t.-quasinilpotent.
\end{enumerate}

The proof of Theorem 2 uses a Peano curve \(\rho : [0, 1] \to \overline{B_{\|T\|}} \). The normal operator \(N \) is created by taking the trace-preserving conditional expectation onto the von Neumann algebra generated by the Haagerup-Schultz projections of the operator \(T \) associated with the sets \(\rho([0, t]) \) for \(t \in [0, 1] \). These projections, along with the normal operator \(N \), are determined by the ordering on the support of the Brown measure of \(T \) given by \(z_1 \leq z_2 \) if and only if \(\min(\rho^{-1}(z_1)) \leq \min(\rho^{-1}(z_2)) \). Theorem 2 generalizes the idea of using an ordering of the spectrum of the operator \(T \) to write it as an uppertriangular form.

2000 Mathematics Subject Classification. 47C15.
In this paper we will further generalize the idea of spectral orderings from the finite dimensional case to II$_1$-factors. We show that normal plus s.o.t.-quasinilpotent decompositions are generated not only by continuous orderings, but by a large class of measurable orderings.

Theorem 3. Let M be a II$_1$-factor and $T \in M$. Let ν_T be the Brown measure of T and for a Borel set $B \subset \overline{B_{\|T\|}}$, let $P_T(B)$ be the Haagerup-Schultz projection for the operator T associated to the set B. Let $\psi : [0, 1] \to \overline{B_{\|T\|}}$ be a measurable function such that $\psi([0, t])$ is Borel for all $t \in [0, 1]$ and

$$\nu_T(\{z \in \overline{B_{\|T\|}} : \psi^{-1}(z) \text{ has a minimum}\}) = 1.$$

Then there exists a spectral measure E supported on $\text{supp}(\nu_T)$ such that

1. $E(\psi([0, t])) = P_T(\psi([0, t]))$ for all $t \in [0, 1]$,
2. $\tau(E(B)) = \nu_T(B)$ for all Borel $B \subset \overline{B_{\|T\|}}$, and
3. $T - \int_C zdE$ is s.o.t.-quasinilpotent.

In particular the conclusion holds if ψ is continuous or is a Borel isomorphism.

Note that part 2 of theorem 3 implies that $\int_C zdE$ and T have the same Brown measure.

2. Background: Brown measure, Haagerup Schultz projections and s.o.t.-quasinilpotent operators

This section includes some background necessary for the proof of Theorem 3. Throughout this section M is a II$_1$-factor with trace τ, and $T \in M$.

Definition 4. In [2], Brown constructed and proved unique a probability measure ν_T supported on a compact subset of $\text{spec}(T)$ such that for any $\lambda \in \mathbb{C}$,

$$\tau(\log(|T - \lambda|)) = \int_C \log(|z - \lambda|) d\nu_T(z).$$

ν_T is called the **Brown measure** of T.

In the case that T is normal, Brown's construction gives $\nu_T = \tau \circ E$, where E is the projection valued spectral decomposition measure of T.

The following theorem of Haagerup and Schultz is the cornerstone of our proof.

Theorem 5. Let M be a II$_1$-factor with trace τ and let $T \in M$. For every Borel set $B \subset \mathbb{C}$, there exists a unique projection $P_T(B) \in M$ such that

1. $\tau(P_T(B)) = \nu_T(B)$, where ν_T is the Brown measure of T,
2. $TP_T(B) = P_T(B)TP_T(B)$,
3. if $P_T(B) \neq 0$, then the Brown measure of $TP_T(B)$ considered as an element of $P_T(B)M_P T(B)$ is supported in B and
4. if $P_T(B) \neq 1$, then the Brown measure of $(1 - P_T(B))T$, considered as an element of $(1 - P_T(B))M(1 - P_T(B))$, is supported in $\mathbb{C} \setminus B$.

Moreover, $P_T(B)$ is T-hyperinvariant and if $B_1 \subset B_2 \subset \mathbb{C}$ are Borel sets, then $P_T(B_1) \leq P_T(B_2)$.
The projection $P_T(B)$ in theorem 5 is called the Haagerup-Schultz projection of T

The following two results, from \[4\] and \[5\], respectively, will be crucial to the proof

Lemma 6. For any increasing, right-continuous family of T-invariant projections $(q_t)_{0 \leq t \leq 1}$ with $q_0 = 0$ and $q_1 = 1$, letting \mathcal{D} be the von Neumann algebra generated by the set of all the q_t and \mathcal{D}' be the relative commutant of \mathcal{D} in \mathcal{M}, and letting $\text{Exp}_{\mathcal{D}'}$ be the τ preserving conditional expectation, the Fuglede–Kadison determinants of T and $\text{Exp}_{\mathcal{D}'}(T)$ agree. Since the same is true for $T - \lambda$ and $\text{Exp}_{\mathcal{D}'}(T) - \lambda$ for all complex numbers λ, we have that the Brown measures of T and $\text{Exp}_{\mathcal{D}'}(T)$ agree.

Theorem 7. If $T \in \mathcal{M}$, and if $p \in \mathcal{M}$ is a projection such that $Tp = pTp$, so that we may write $T = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$, where $A = Tp$ and $C = (1 - p)T$, then

$$\Delta_{\mathcal{M}}(T) = \Delta_{p\mathcal{M}p}(A)^{\tau(p)}\Delta_{(1-p)\mathcal{M}(1-p)}(C)^{\tau(1-p)}$$

and

$$\nu_T = \tau(p)\nu_A + \tau(1-p)\nu_C,$$

where A is considered as an element of $p\mathcal{M}p$ and C is considered as an element of $(1 - p)\mathcal{M}(1 - p)$.

Definition 8. It was shown in \[4\] that for any $T \in \mathcal{M}$, $((T^*)^nT^n)^{1/2n}$ converges in the strong operator topology as n approaches ∞. An operator T is called s.o.t.-quasinilpotent if $((T^*)^nT^n)^{1/2n} \to 0$ in the strong operator topology as $n \to \infty$.

It was also shown in \[6\] that T is s.o.t.-quasinilpotent if and only if the Brown measure of T is concentrated at 0.

We will also need a characterization from \[6\] of the Haagerup-Schultz projection of T associated with the ball $B_r = \{ |z| \leq r \}$.

9. Suppose $\mathcal{M} \subseteq \mathcal{B}({\mathcal{H}})$. Define a subspace \mathcal{H}_r of \mathcal{H} by

$$\mathcal{H}_r = \{ \xi \in \mathcal{H} : \exists \xi_n \to \xi, \text{ with } \limsup_{n \to \infty} \|T^n\xi_n\|^{1/n} \leq r \}.$$

Then the projection onto \mathcal{H}_r is equal to $P_T(B_r)$.

3. Construction of the spectral measure

Throughout this section, \mathcal{M}, T, ν_T, P_T and ψ will be as described in Theorem 3, Z will denote $\{ z \in B_{||T||} : \psi^{-1}(z) \text{ has a minimum} \}$ and Y will denote $B_{||T||} \setminus Z$.

We first define a Borel measure on the unit interval which will be useful in later proofs.

Lemma 10. Let $X = \{ \min(\psi^{-1}(z)) : z \in B_{||T||} \}$. If $b \subseteq [0,1]$ is Borel, then $\psi(b \cap X)$ is Borel.

Proof. Note first that, for $t \in (0,1]$, we have $\psi([0,t] \cap X) = \psi([0,t]) \setminus Y$ and $\psi([0,t] \cap X) = \psi([0,t]) \setminus Y$, and these sets are Borel. Now, since ψ restricted to X is an injection, we have $\psi((\alpha,\beta) \cap X) = \psi([0,\beta] \cap X) \setminus \psi([0,\alpha] \cap X)$ which is Borel. Since
[0, 1] is second countable, an arbitrary open set \(v = \bigcup_{n \in \mathbb{N}} u_n \) is the countable union of open intervals so that \(\psi(v \cap X) = \psi(\bigcup_{n \in \mathbb{N}} (u_n \cap X)) = \bigcup_{n \in \mathbb{N}} (\psi(u_n \cap X)) \) is Borel.

To complete the proof, we show that the collection of sets

\[
S = \{ b \subset [0, 1] : \psi(b \cap X) \text{ is Borel} \}
\]

forms a \(\sigma \)-algebra. Suppose that \(\psi(b \cap X) \) is Borel. Then \(\psi(b^c \cap X) = \psi(X \setminus (b \cap X)) = Z \setminus \psi(b \cap X) \) is Borel. Now suppose that \((b_n)_{n \in \mathbb{N}} \subset S \). Then \(\bigcup_{n \in \mathbb{N}} b_n \in S \) by the same argument used for open sets, and we are done. \(\square \)

We now define \(\mu(b) = \nu_T(\psi(b \cap X)) \) for any Borel set \(b \subset [0, 1] \). It is clear that \(\mu \) is countably additive, and hence a Borel probability measure on \([0, 1] \). That \(\mu \) is a regular measure follows from Theorem 1.1 of [1].

Observation 11. For any Borel set \(B \subset B_{\|T\|}, \mu(\psi^{-1}(B)) = \nu_T(B) \).

Proof. Since \(\psi \) is a bijection from \(X \) to \(Z \) we have

\[
\mu(\psi^{-1}(B)) = \nu_T(\psi(\psi^{-1}(B) \cap X)) = \nu_T(B \cap Z) = \nu_T(B)
\]

\(\square \)

Prior to constructing the spectral measure, we will need a map from the open subsets of the closed unit interval to the set of projections in \(\mathcal{M} \). For an open interval, define

\[
F(\emptyset) = 0
\]

\[
F((\alpha, \beta)) = P_T(\psi([0, \beta))) - P_T(\psi([0, \alpha]))
\]

\[
F([0, \beta)) = P_T(\psi([0, \beta]))
\]

\[
F((\alpha, 1]) = 1 - P_T(\psi([0, \alpha]))
\]

Since \(P_T(\psi([0, t])) \) and \(P_T(\psi([0, t])) \) are increasing in \(t \), it follows that \(F(u) \) is increasing in \(u \), and \(F(u_1)F(u_2) = 0 \) if \(u_1 \cap u_2 = \emptyset \). For \(u_1 = (\alpha_1, \beta_1) \) and \(u_2 = (\alpha_2, \beta_2) \) with \(\alpha_1 \leq \alpha_2 \leq \beta_1 \leq \beta_2 \),

\[
F(u_1)F(u_2) = (P_T(\psi([0, \beta_1])) - P_T(\psi([0, \alpha_1])))(P_T(\psi([0, \beta_2])) - P_T(\psi([0, \alpha_2])))
\]

\[
= P_T(\psi([0, \beta_1])) - P_T(\psi([0, \alpha_2])) - P_T(\psi([0, \alpha_1])) + P_T(\psi([0, \alpha_1]))
\]

\[
= F(u_1 \cap u_2).
\]

Hence for any open intervals \(u_1 \) and \(u_2 \), \(F(u_1)F(u_2) = F(u_1 \cap u_2) \).

For an arbitrary open set \(v \subset [0, 1] \), we first write \(v = \bigcup_{n \in \mathbb{N}} u_n \), where the \(u_n \) are pairwise disjoint, and all nonempty \(u_n \) are open intervals. Then \(\sum_{n \in \mathbb{N}} F(u_n) \) converges to a projection in the strong operator topology. We define \(F(v) = \sum_{n \in \mathbb{N}} F(u_n) \). Multiplication of the series and application of the corresponding result for intervals gives us \(F(v_1)F(v_2) = F(v_1 \cap v_2) \) for open sets \(v_1, v_2 \subset [0, 1] \).

Observation 12. For any open \(v \subset [0, 1] \), \(\tau(F(v)) = \mu(v) \).
Proposition 13. For any Borel set \(E \), we will prove later that \(\mu \) defines a spectral measure. We are now ready to define the spectral measure \(E \). For any Borel set \(B \subset B_{||T||} \), define

\[
E(B) = \wedge \{ F(v) : v \text{ is open and } \psi^{-1}(B) \subset v \}.
\]

Note that \(E \) is increasing and that the range of \(E \) is contained in the von Neumann algebra generated by the projections \(P_T(\psi([0,t])) \) for \(t \in [0,1] \), which is commutative. We will prove later that \(E \) defines a spectral measure.

Proposition 13. For any Borel set \(B \subset B_{||T||} \), \(\tau(E(B)) = \nu_T(B) \).

Proof. Let \(\epsilon > 0 \) be given. There exist open sets \(v_1, v_2 \subset [0,1] \) such that

1. \(\psi^{-1}(B) \subset v_1 \) and \(\mu(v_1) - \mu(\psi^{-1}(B)) < \epsilon \), and
2. \(\psi^{-1}(B) \subset v_2 \) and \(\tau(F(v_2)) - \tau(E(B)) < \epsilon \).

Applying Observations 11 and 12 to (1), we have

\[
\tau(E(B)) - \nu_T(B) \leq \tau(F(v_1)) - \nu_T(B) = \mu(v_1) - \mu(\psi^{-1}(B)) < \epsilon.
\]

Applying Observations 11 and 12 to (2) gives

\[
\nu_T(B) - \tau(E(B)) = \mu(\psi^{-1}(B)) - \tau(E(B)) \leq \mu(v_2) - \tau(E(B)) = \tau(F(v_2)) - \tau(E(B)) < \epsilon.
\]

Hence we have \(|\tau(E(B)) - \nu_T(B)| < \epsilon \), and we are done. \(\square \)

Lemma 14. If \(B_1 \) and \(B_2 \) are Borel subsets of \(B_{||T||} \), then \(E(B_1)E(B_2) = E(B_1 \cap B_2) \).

Proof. Noting that whenever \(v_1 \) is an open set containing \(\psi^{-1}(B_1) \) and \(v_2 \) is an open set containing \(\psi^{-1}(B_2) \), \(v_1 \cap v_2 \) is an open superset of \(\psi^{-1}(B_1) \cap \psi^{-1}(B_2) \), we have

\[
E(B_1 \cap B_2) = \wedge \{ F(v) : v \text{ open, } \psi^{-1}(B_1 \cap B_2) \subset v \}
\]

\[
= \wedge \{ F(v) : v \text{ open, } \psi^{-1}(B_1) \cap \psi^{-1}(B_2) \subset v \}
\]

\[
\leq \wedge \{ F(v_1 \cap v_2) : v_1, v_2 \text{ open, } \psi^{-1}(B_1) \subset v_1, \psi^{-1}(B_2) \subset v_2 \}
\]

\[
= \wedge \{ F(v_1)F(v_2) : v_1, v_2 \text{ open, } \psi^{-1}(B_1) \subset v_1, \psi^{-1}(B_2) \subset v_2 \}
\]

\[
= \wedge \{ F(v_1) : v_1 \text{ open, } \psi^{-1}(B_1) \subset v_1 \} \wedge \{ F(v_2) : v_2 \text{ open, } \psi^{-1}(B_2) \subset v_2 \}
\]

\[
= E(B_1)E(B_2).
\]

Now let \(\epsilon > 0 \) be given. There exist open subsets \(v, \tilde{v}_1, \tilde{v}_2 \) of \([0,1]\) such that

1. \(\psi^{-1}(B_1 \cap B_2) \subset v \) and \(\mu(v \setminus \psi^{-1}(B_1 \cap B_2)) < \epsilon \),
2. \(a_1 = \psi^{-1}(B_1) \setminus \psi^{-1}(B_1 \cap B_2) \subset \tilde{v}_1 \) and \(\mu(\tilde{v}_1 \setminus a_1) < \epsilon \), and
3. \(a_2 = \psi^{-1}(B_2) \setminus \psi^{-1}(B_1 \cap B_2) \subset \tilde{v}_2 \) and \(\mu(\tilde{v}_2 \setminus a_2) < \epsilon \).
Let \(v_1 = \tilde{v}_1 \cup v \) for \(i = 1, 2 \). Then \(v_1 \) is an open set containing \(\psi^{-1}(B_1) \) and \(v_2 \) is an open set containing \(\psi^{-1}(B_2) \). We have

\[
\mu(v_1 \cap v_2 \setminus \psi^{-1}(B_1 \cap B_2)) \leq \mu(v \setminus \psi^{-1}(B_1 \cap B_2)) + \mu(\tilde{v}_1 \cap \tilde{v}_2 \setminus \psi^{-1}(B_1 \cap B_2)).
\]

Observing that \(a_1 \cap a_2 = \emptyset \) and

\[
\tilde{v}_1 \cap \tilde{v}_2 = (a_1 \cap a_2) \cup ((\tilde{v}_1 \setminus a_1) \cap a_2) \cup ((\tilde{v}_2 \setminus a_2) \cap a_1) \cup ((\tilde{v}_1 \setminus a_1) \cap (\tilde{v}_2 \setminus a_2))
\]

we have

\[
\mu((v_1 \cap v_2) \setminus \psi^{-1}(B_1 \cap B_2)) < 4\epsilon.
\]

Applying Observations 11 and 12 and Proposition 13, we have

\[
\tau(E(B_1)E(B_2)) - \tau(E(B_1 \cap B_2)) \leq \tau(F(v_1)F(v_2)) - \tau(E(B_1 \cap B_2))
\]

\[
= \tau(F(v_1 \cap v_2)) - \tau(E(B_1 \cap B_2)) < 4\epsilon,
\]

and we conclude \(E(B_1)E(B_2) = E(B_1 \cap B_2) \). \(\square \)

Lemma 15. \(E \) is countably additive on disjoint sets, where convergence of the series is in the strong operator topology.

Proof. Suppose \((B_n)_{n \in \mathbb{N}} \) is a countable collection of disjoint Borel subsets of \(B_{||T||} \). By claim 7, \(E(B_i)E(B_j) = 0 \) if \(i \neq j \). Then \(E(\bigcup_{n \in \mathbb{N}} B_n) \) is a superprojection of each \(E(B_n) \), and hence a superprojection of \(\sum_{n \in \mathbb{N}} E(B_n) \). Also, \(\tau(E(\bigcup_{n \in \mathbb{N}} B_n)) = \nu_T(\bigcup_{n \in \mathbb{N}} B_n) = \tau(\sum_{n \in \mathbb{N}} E(B_n)) \). We conclude \(E(\bigcup_{n \in \mathbb{N}} B_n) = \sum_{n \in \mathbb{N}} E(B_n) \). \(\square \)

We are now ready to show that \(E \) is a spectral measure supported on \(\text{supp}(\nu_T) \).

Proof. We must show three things:

1. \(E(\emptyset) = 0 \) and \(E(\text{supp}(\nu_T)) = 1 \)
2. \(E(B_1 \cap B_2) = E(B_1)E(B_2) \) for Borel sets \(B_1, B_2 \), and
3. if \(\mathcal{M} \) acts on a Hilbert space \(\mathcal{H} \), and \(x, y \in \mathcal{H} \), then \(\eta(B) = \langle E(B)x, y \rangle \) defines a regular Borel measure on \(C \).

1. Follows from Proposition 13, since \(\tau(E(\emptyset)) = 0 \) and \(\tau(E(\text{supp}(\nu_T))) = 1 \).
2. Was proven as Lemma 14.
3. That \(\eta \) is countably additive on disjoint sets follows from Lemma 15. Regularity of \(\eta \) follows from Theorem 1.1 of [1]. \(\square \)

4. Proof of Theorem 3

We first establish several results which will be used to prove Part 3. Throughout this section, \(\mathcal{M}, T, \) and \(\psi \) are as described in Theorem 3, and \(\mu, E \) and \(E_n \) are as defined in Section 3. \(\mathcal{M} \) acts on a Hilbert space \(H \).

We now show that \(\int_C zdE \) is the norm limit of conditional expectations onto an increasing sequence of abelian von Neumann algebras. For each \(n \), divide the \(3\|T\| \) by \(3\|T\| \) square centered at 0 into \(2^n \) by \(2^n \) squares of equal size indexed \((A_{n,k})_{k=1}^{2^n} \), \(k \) increasing to the right then down. Include in each \(A_{n,k} \) the top and left edge, excluding the bottom-left and top-right corners, so that for each \(n \), \(A_{n,k} \cap A_{n,j} = \emptyset \)
whenever \(j \neq k \) and \(\overline{B_{\|T\|}} \subset \cup_{k=1}^{2^n} A_{n,k} \). Let \(D_n \) be the von Neumann algebra generated by the (orthogonal) projections \((E(A_{n,k}))_{k=1}^{2^n} \).

Proposition 16. Let \(\mathbb{E}_{D_n}(T) \) denote the conditional expectation of \(T \) onto \(D_n \). Then \(\mathbb{E}_{D_n}(T) \) converges in norm as \(n \to \infty \) to \(\int_C z dE \).

Proof. Observe that

\[
\mathbb{E}_{D_n}(T) = \sum_{1 \leq k \leq 2^n} \frac{\tau(E(A_{n,k})TE(A_{n,k}))}{\tau(E(A_{n,k}))} E(A_{n,k}).
\]

Applying Brown’s analog of Lidskii’s theorem (see [2]) gives

\[
\mathbb{E}_{D_n}(T) = \sum_{1 \leq k \leq 2^n} \frac{\int_{A_{n,k}} z d\nu_T(z)}{\nu_T(A_{n,k})} E(A_{n,k}).
\]

For each \(n \), define

\[
f_n(w) = \sum_{1 \leq k \leq 2^n} \frac{\int_{A_{n,k}} z d\nu_T(z)}{\nu_T(A_{n,k})} \chi_{A_{n,k}}(w) + \sum_{1 \leq k \leq 2^n} \frac{\int_{A_{n,k}} z dm(z)}{m(A_{n,k})} \chi_{A_{n,k}}(w),
\]

where \(m \) is the Lebesgue measure on \(C \).

Since \(\nu_T(A_{n,k}) = 0 \) implies \(E(A_{n,k}) = 0 \), \(\int_C f_n dE = \mathbb{E}_{D_n}(T) \). Note that \(f_n \) converges uniformly on \(\text{supp}(E) \) to the inclusion function \(f(z) = z \). Hence \(\int_C f_n dE \) converges in norm to \(\int_C z dE \), and we are done. \[\Box \]

Let \(D \) be the von Neumann algebra generated by \((E(\psi([0, t])))_{t \in [0,1]} \) (or equivalently by \(\bigcup_{n=1}^{\infty} D_n \)).

Proposition 17. Suppose that \(T \in D' \) and \(B \subset \overline{B_{\|T\|}} \) is Borel with \(\nu_T(B) \neq 0 \). Then the Brown measure of \(E(B)TE(B) \), considered as an element of \(E(B)\mathcal{M}E(B) \), is concentrated in \(B \).

Proof. We begin by observing that for any open \(v \subset [0,1] \), with \(\tau(F(v)) \neq 0 \), \(F(v) \in D \) and if \(v = (\alpha, \beta) \) is an open interval, then \(\nu_{TF(v)} \) is concentrated in \(\psi([0, \beta]) \setminus \psi([0, \alpha]) \), and hence is also concentrated in \(\psi((\alpha, \beta)) \cap Z \), where \(Z \) is as described in Section 3. Thus \(\nu_{TF(v)} \) is concentrated in \(\psi((\alpha, \beta) \cap X) \).

Now suppose that \(v = \bigcup_{n=1}^{\infty} u_n \) where all nonempty \(u_n \) are pairwise disjoint open intervals. Let \(\epsilon > 0 \) be given. Let \(N \) be so large that

\[
\tau \left(\sum_{n=1}^{N} F(u_n) \right) > \tau(F(v))(1 - \epsilon).
\]

Then, since each \(F(u_n) \) commutes with \(T \), Theorem 7 gives

\[
\nu_{TF(v)} = \frac{1}{\tau(F(v))} \left(\sum_{n=1}^{N} \tau(F(u_n)) \nu_{TF(u_n)} + \tau \left(\sum_{n=N+1}^{\infty} F(u_n) \right) \nu(\sum_{n=N+1}^{\infty} F(u_n))T \right).
\]
Hence, since each $\nu_{TF(u_n)}$ is concentrated in $\psi(u_n \cap X) \subset \psi(v \cap X)$, we have

$$\nu_{TF(v)}(\psi(v \cap X)) \geq \frac{1}{\tau(F(v))} \left(\sum_{n=1}^{N} \tau(F(u_n)) \right) \nu_{TF(u_n)}(\psi(v \cap X)) > 1 - \epsilon,$$

so that $\nu_{TF(v)}$ is concentrated in $\psi(v \cap X)$.

Now observe that when v is an open set containing $\psi^{-1}(B)$, since

$$\nu_{TF(v)} = \frac{1}{\tau(F(v))} (\tau(E(B))\nu_{TE(B)} + \tau(F(v) - E(B))\nu_{(F(v) - E(B))T}),$$

$\nu_{TE(B)}$ is concentrated in $\psi(v \cap X)$.

Choose an open set $v \subset [0, 1]$ such that $\psi^{-1}(B) \subset v$ and $\mu(v) - \mu(\psi^{-1}(B)) < \epsilon$. Then using Theorem 7 and Observation 11,

$$\epsilon > \nu_T(\psi(v \cap X)) - \nu_T(B)$$

$$= \tau(E(B))\nu_{TE(B)}(\psi(v \cap X) \setminus B) + (1 - \tau(E(B)))\nu_{(1-E(B))T}(\psi(v \cap X) \setminus B)$$

$$\geq \tau(E(B))\nu_{TE(B)}(\psi(v \cap X) \setminus B).$$

Hence

$$\tau(E(B)) - \epsilon < \tau(E(B))(1 - \nu_{TE(B)}(\psi(v \cap X) \setminus B)) = \tau(E(B))(\nu_{TE(B)}(B)).$$

Thus

$$1 - \frac{\epsilon}{\tau(E(B))} < \nu_{TE(B)}(B).$$

Letting ϵ tend to 0 gives the desired result.

\[\square \]

Lemma 18. If $T \in D'$, then the Brown measure of $T - \mathbb{E}_{D_n}(T)$ is supported in the ball of radius $\frac{6\sqrt{2}\|T\|}{2n}$.

Proof. The key observation is that for any $\alpha \in \mathcal{C}$, if $\nu_{T-\alpha}$ is the Brown measure of $T-\alpha$, then for any Borel set $B \subset \mathcal{C}$, $\nu_{T-\alpha}(B) = \nu_T(B-\alpha)$. Since whenever $E(A_{n,k}) \neq 0$ the Brown measure of $TE(A_{n,k})$ is supported in $A_{n,k}$, the Brown measure of $(T - \tau(TE(A_{n,k})))E(A_{n,k})$ is supported in the square centered at 0 with edge length $\frac{6\sqrt{2}\|T\|}{2n}$. We complete the proof by observing that $T - \mathbb{E}_{D_n}(T) = \sum_{k=1}^{2n} \left(T - \frac{\tau(TE(A_{n,k}))}{\tau(E(A_{n,k}))} \right) E(A_{n,k})$ and applying Theorem 7 to compute the Brown measure of the sum. \[\square \]

We now are ready to prove Theorem 3.

Proof. (1) Whenever v is an open set containing $\psi^{-1}(\psi([0, t]))$, there exists $\epsilon > 0$ such that $[0, t + \epsilon] \subset v$ so we see that

$$P_T(\psi([0, t])) \leq F([0, t + \epsilon]) \leq F(v).$$

Hence we see that

$$P_T(\psi([0, t])) \leq E(\psi([0, t])).$$

By Proposition 13 and Theorem 5,

$$\tau(P_T(\psi([0, t]))) = \tau(E(\psi([0, t])))$$
so that
\[P_T(\psi([0, t])) = E(\psi([0, t])). \]

(2) Was proven as Proposition 13.

(3) By Lemma 6, it suffices to assume that \(T \in D' \). We first observe from the proof of Proposition 16 that \(\| E_D(T) - E_{D_n}(T) \| \leq \frac{3\sqrt{2}\|T\|}{2^n} \). The rest of this argument is taken from the proof of Lemma 24 in [3].

We assume without loss of generality that \(\| T \| \leq 1/2 \). Fix \(n \in \mathbb{N} \) and a unit vector \(\xi \in H \). By assumption \(T \in D' \), so we have
\[
(T - E_D(T))^{2m} = \sum_{k=0}^{2m} (-1)^k \binom{2m}{k} (E_D(T) - E_{D_n}(T))^{2m-k} (T - E_{D_n}(T))^k.
\]

Since \(\| T \| \leq 1/2 \), both \(E_D(T) - E_{D_n}(T) \) and \(T - E_{D_n}(T) \) are contractions. For \(k \leq m \) and any \(\eta \in H \), we have
\[
\| (E_D(T) - E_{D_n}(T))^{2m-k} (T - E_{D_n}(T))^k \eta \|_H \leq \| E_D(T) - E_{D_n}(T) \|^m \| \eta \|_H.
\]
For \(k > m \) and any \(\eta \in H \) we have
\[
\| (E_D(T) - E_{D_n}(T))^{2m-k} (T - E_{D_n}(T))^k \eta \|_H \leq \| (T - E_{D_n}(T))^{m+1} \eta \|_H.
\]
Hence for any \(\eta \in H \),
\[
\| (T - E_D(T))^{2m} \|_H \leq 2^{2m} \max \left\{ \left(\frac{3\sqrt{2}\|T\|}{2^n} \right)^m, \| (T - E_{D_n}(T))^{m+1} \|_H \right\}.
\]

By Lemma 18, the Brown measure of \(T - E_{D_n}(T) \) is supported in the ball of radius \(\frac{6\sqrt{2}\|T\|}{2^n} \) centered at 0. By the Haagerup-Schultz characterization (9), there exists a sequence \(\xi_m \to \xi \) such that \(\| \xi_m \|_H = 1 \) and
\[
\limsup_{m \to \infty} \| (T - E_{D_n}(T))^{m} \xi_m \|_H^{1/m} \leq \frac{6\sqrt{2}\|T\|}{2^n}.
\]
Hence there exists \(M \) (depending on \(n \)) such that
\[
\| (T - E_{D_n}(T))^{m} \xi_m \|_H \leq \left(\frac{7\sqrt{2}\|T\|}{2^n} \right)^m, \quad m > M.
\]
Taking \(\eta = \xi_m \) in (1), we have
\[
\| (T - E_D(T))^{2m} \xi_m \|_H^{1/m} \leq \frac{28\sqrt{2}\|T\|}{2^n}, \quad m > M.
\]
Since \(\xi \) was arbitrary, it follows from characterization (9) that the Brown measure of \((T - E_D(T))^2 \) is supported in the ball of radius \(\frac{28\sqrt{2}\|T\|}{2^n} \) centered at 0. Letting \(n \to \infty \), we obtain that the Brown measure of \(T - E_D(T) \) is \(\delta_0 \). \(\square \).
References

[1] P. Billingsley, *Convergence of Probability Measures*, John Wiley and Sons, New York, 1968.

[2] L. G. Brown, *Lidskii’s theorem in the type II case*, Geometric methods in operator algebras (Kyoto, 1983), Pitman Res. Notes Math. Ser., vol. 123, Longman Sci. Tech., Harlow, 1986, pp. 1–35.

[3] K. Dykema, F. Sukochev, and D. Zanin, *A decomposition theorem in II$_1$–factors*, J. reine angew. Math., to appear, available at http://arxiv.org/abs/1302.1114

[4] [Holomorphic Functional Calculus on Upper Triangular Forms in Finite von Neumann Algebras](http://arxiv.org/abs/1310.2524), preprint, available at http://arxiv.org/abs/1310.2524

[5] U. Haagerup and H. Schultz, *Brown measures of unbounded operators affiliated with a finite von Neumann algebra*, Math. Scand. 100 (2007), 209–263.

[6] [Invariant subspaces for operators in a general II$_1$–factor](http://arxiv.org/abs/1310.2524), Publ. Math. Inst. Hautes Études Sci. 109 (2009), 19-111.

[7] F. Zheng, *Matrix Theory: Basic results and techniques*, Second edition, Universitext, Springer, New York, 2011.

Department of Mathematics, Texas A&M University, College Station, TX, USA.
E-mail address: jnoles@math.tamu.edu