Treatment of left main shock syndrome with percutaneous coronary intervention in the absence of an advanced left ventricular assist device or ECMO

Mutlu Vural, İrfan Şahin, İlker Avcı, Fatih Kızkapan, Sezai Yıldız
Clinic of Cardiology, Bağcılar Education and Research Hospital; Istanbul-Turkey

Introduction

Acute total occlusion of the unprotected left main coronary artery (LM) results in cardiogenic shock, or left main shock syndrome (LMSS), in the majority of affected patients (1). The prognosis of the subset of patients with LMSS and complete occlusion is dire, with up to 100% mortality (2).

In this paper, three patients with LMSS who underwent percutaneous coronary intervention (PCI) alone or PCI with the implementation of IABP were included. We have discussed how to approach a patient with LMSS on diagnosis and transfer and its treatment in the absence of advanced LV assist devices or ECMO.

Case Reports

Case 1

A patient with a direct crossover LM-to-LAD stent had a sudden onset of chest pain at our outpatient clinic. His ECG showed ST-segment elevation of D1 and aVL (Fig. 1). We observed an acute complete occlusion of LM, which resulted from subacute thrombosis of the crossover LM-to-LAD stent. Ventricular fibrillation (VF) occurred during the introduction of a 2.0×20-mm catheter balloon (Invader, Alvi Medica Co). Because the balloon catheter was already at the tip of the JL4 guiding catheter, we first inflated the balloon at 8 atm. Then, we attempted to convert VF and observed that it already spontaneously recovered to sinus rhythm after balloon dilatation. Later, a 3.5×15-mm bare metal stent (BMS, Integrity, Medtronic Co.) was inserted to the proximal portion of the previous stent with a final kissing balloon (2.0×20 mm and 3.5×20 mm; Invader, Alvi Medica Co) in LAD and the left circumflex artery (LCx). During the procedure, three VFs and one pulseless ventricular tachycardia (VT) were converted to sinus rhythm via a defibril-
Case 1
A 64-year-old man was admitted to the emergency department with complaints of chest pain, nausea, vomiting, and confuson for an hour. ECG showed an anterolateral infarction (Fig. 2). The history of smoking and Bonsai (synthetic cannabinoids) abuse was noted. LM was totally occluded. The symptom-onset-to-balloon time was more than 1 h. After predilatation with a 3.0×20-mm balloon (Invader, Alvi Medica Co), the implantation of a crossover LM-to-LAD stent with a 4.0×20-mm BMS (CC Flex, Euatech AG) resulted in TIMI 3 perfusion of LAD (Fig. 3). VF occurred and was successfully defibrillated. After the introduction of IABP, he was transferred to the coronary care unit. He died despite all efforts.

Case 2
A 19-year-old man was admitted to the emergency department with complaints of nausea, vomiting, and confusion for an hour. ECG showed an anterolateral infarction (Fig. 2). The history of smoking and Bonsai (synthetic cannabinoids) abuse was noted. LM was totally occluded. The symptom-onset-to-balloon time was more than 1 h. After predilatation with a 3.0×20-mm balloon (Invader, Alvi Medica Co), the implantation of a crossover LM-to-LAD stent with a 4.0×20-mm BMS (CC Flex, Euatech AG) resulted in TIMI 3 perfusion of LAD (Fig. 3). VF occurred and was successfully defibrillated. After the introduction of IABP, he was transferred to the coronary care unit. He died despite all efforts.

Case 3
A 74-year-old man was admitted to the medical center with syncope that developed an hour before admission. ECG (Fig. 4) indicated an anterolateral myocardial infarction. There was a thrombus in the ostium of LM. The symptom-onset-to-balloon time was 3 h. A 4.0×12-mm BMS (Liberte, Boston Scientific) was directly implanted (Fig. 5). The deployment of a stent to LCx was unsuccessful. Four VFs were successfully defibrillated during this procedure. He died despite the implementation of IABP and intensive medical care.

Discussion
LMSS has an extremely poor prognosis with common occurrences of poor final flow, pump failure, and multiorgan failure. The dominance of RCA, which is the only open artery in LMSS, extent of LM perfusion (TIMI 0-3), and symptom-onset-to-balloon time probably determine the longevity of time period to develop and sustain LMSS. This invaluable time is usually wasted in LMSS during diagnosis and transfer. ECG showed a high lateral infarction in the first case and anterolateral infarction in the other two cases. The diagnosis of LM involvement can only be made on angiography.
A prompt application of stenting results in acceptable mortality and morbidity rates (1-5). Hata et al. (6) suggest that an immediate PCI with mechanical supports is required prior to coronary artery bypass surgery for the survival of patients with LMSS. Unfortunately, percutaneous assist devices or ECMO are not widely available (7-9). The first patient survived after PCI alone, probably because of the less than 15-min symptom-onset-to-balloon time, which was 75 and 180 min in the other two cases respectively (10). A late successful reperfusion of LM was not sufficient to recover the bad outcome despite introduction of an IABP.

Conclusion

Because ECG is not a reliable tool, an anterolateral infarction should be treated as LMSS unless it is disregarded on coronary angiography. Despite a proper PCI and implementation of IABP, LMSS cannot easily recover and may deteriorate faster. We believe that a part time introduction of advanced LV assist devices or ECMO to support a failing heart contributes to poor prognosis in LMSS. The rapid restoration of flow with a symptom-onset-to-balloon time less than 15 min may be a definitive intervention with optional implementation of IABP for an inpatient.

Video 1. A definitive PCI was performed with final kissing at the end of the procedure to treat subacute thrombosis of a crossover LM-to-LAD stent.

Figure 5. a, b. On coronary angiography, both a massive thrombus occluding to LM and a 90% stenosis of LCx were shown in the third case with LMSS (a). IABP was introduced after PCI (b)

LCx - left circumflex artery; LM - left main; LMSS - left main shock syndrome; PCI - percutaneous coronary intervention

References

1. Yamane M, Inoue S, Yamane A, Kinebuchi O, Yokozuka H. Primary stenting for left-main shock syndrome. Euro Intervention 2005; 1: 198-203.
2. de Man K, Patterson M, Kiemeneij F. Bifurcation balloon for left main shock syndrome: facilitating the simultaneous percutaneous reperfusion of the LAD and circumflex. J Invasive Cardiol 2006; 18: E270-2.
3. Yip HK, Wu CJ, Chen MC, Chang HW, Hsieh KY, Hang CL, et al. Effect of primary angioplasty on total or subtotal left main occlusion. Chest 2001; 120: 1212-7. [CrossRef]
4. Sakia K, Nakagawa Y, Kimura T, Ando K, Yokoi K, Iwabuchi M, et al. Primary angioplasty of the unprotected left main coronary artery for acute anterolateral myocardial infarction. J Invasive Cardiol 2004; 16: 621-5.
5. Hochman JS, Boland J, Sleeper LA. Current spectrum of cardiogenic shock and effect of early revascularization on mortality: Results of an international registry. Circulation 1995; 91: 873-81. [CrossRef]
6. Hata M, Shiono M, Sezai A, Iida M, Yoshitake I, Waku S, et al. Outcome of emergency conventional coronary surgery for acute coronary syndrome due to left main coronary disease. Ann Thorac Cardiovasc Surg 2006; 12: 28-31.
7. Que B, Cheng YT, Gao H, Hou XT, Dong R, Li N, et al. A successful team treatment for left main shock syndrome. J Geriatr Cardiol 2013; 10: 302-4.
8. Thiele H, Smalling RW, Schuler GC. Percutaneous left ventricular assist devices in acute myocardial infarction complicated by cardiogenic shock. Eur Heart J 2007; 28: 2057-63. [CrossRef]
9. Grabmaier U, Theiss HD. ECMO therapy after thrombotic left main occlusion bridges prolonged cardiac arrest. Resuscitation 2013; 84: e57. [CrossRef]
10. Lee HM, Nam CW, Cho YK, Yoon HJ, Park HS, Kim H, et al. Long-term outcomes of simple crossover stenting from the left main to the left anterior descending coronary artery. Korean J Intern Med 2014; 29: 597-602. [CrossRef]

Address for Correspondence: Dr. Mutlu Vural, Başçılard Eğitim ve Araştırma Hastanesi, Kardiyoloji Kliniği, Merkez Mah. Mimar Sinan Cad. 6. Sok. Başçılard, İstanbul - Türkiye

Phone: +90 542 369 01 01
E-mail: drmvural@gmail.com

Available Online Date: 22.05.2015

©Copyright 2015 by Turkish Society of Cardiology - Available online at www.anatoljcardiol.com

DOI: 10.5152/akd.2015.6195