New engineered antibodies against prions

Nives Škrlj and Marko Dolinar*
Chair of Biochemistry; Faculty of Chemistry and Chemical Technology; University of Ljubljana; Ljubljana, Slovenia

A number of recently developed and approved therapeutic agents based on highly specific and potent antibodies have shown the potential of antibody therapy. As the next step, antibody-based therapeutics will be bioengineered in a way that they not only bind pathogenic targets but also address other issues, including drug targeting and delivery. For antibodies that are expected to act within brain tissue, like those that are directed against the pathogenic prion protein isoform, one of the major obstacles is the blood-brain barrier which prevents efficient transfer of the antibody, even of the engineered single-chain variants. We recently demonstrated that a specific prion-specific antibody construct which was injected into the murine tail vein can be efficiently transported into brain tissue. The novelty of the work was in that the cell penetrating peptide was used as a linker connecting both specificity-determining domains of the antibody peptide, thus eliminating the need for the standard flexible linker, composed of an arrangement of three consecutive (Gly4Ser) repeats. This paves the road toward improved bioengineered antibody variants that target brain antigens.

Introduction

The causative agent of several brain disorders, the prion protein, is still far from being fully understood. Although little doubt remains about its essential involvement in the pathogenicity, we still miss a detailed understanding of the process when we consider prion's biochemical properties and perturbances that result in the development of diseases such as the Creutzfeldt-Jakob disease (CJD). Despite its rare occurrence, CJD and related disorders are important because of their uniqueness and because we still have no therapy for the diseases once they are diagnosed.

Prions and Prion Therapy Approaches

Prion diseases or transmissible spongiform encephalopathies (TSEs) are fatal neurodegenerative disorders caused by a pathogenic form of the host-encoded prion protein (PrPC), named PrPSc or shortly prion.2 The conversion of the PrPC into the PrPSc is believed to involve post-translation modification from mainly α-helical to β-sheet protein arrangement.3 Disorders affect not only humans but also a wide variety of animals; the most common diseases are Creutzfeldt-Jakob disease (CJD) in humans, scrapie in sheep, and bovine spongiform encephalopathy (BSE) in cattle (reviewed in ref. 4). No effective prophylactic or therapeutic treatment is currently available.

Prion diseases in humans were first described almost 100 y ago,5 but did not attract widespread interest until the
European BSE crisis occurred in 1990s. First suggestions that BSE is transmissible to humans lead to huge investments in research of prion diseases and more important, finding an effective cure. Further research revealed that clinical symptoms of prion diseases manifest themselves when most of the brain damage has already taken place. Besides, the pathogenic prion can unfortunately only be detected by postmortem brain histology to confirm the diagnosis. Numerous compounds and different therapeutic strategies have been tested to overcome the obstacles and to find not only an appropriate drug but also an early pretreatment diagnostics of asymptomatic prion-infected individuals. Results show that anti-prion antibodies and their variants represent one of the most promising compounds that could be used in TSE treatment. Since the first successful production of high affinity anti-PrP antibodies, several antibodies against prion protein have been produced. Anti-prion activity in vitro as well as in vivo has been described for different antibodies. Antibodies that are able to distinguish between cellular and pathogenic prion by using the quaternary structure and size. Murine monoclonal antibodies that laboratory develop and characterize cannot be used on humans due to the immune response against non-human epitopes on these antibodies. Solutions went in two directions: reducing the size and structural complexity was achieved by development of single-chain antibody fragments (scFvs), while the response against murine epitopes was tackled by preparation of humanized forms. Single-chain antibodies are about 25 kDa (less than a sixth of immunoglobulin G size) bioengineered molecules that combine the heavy and the light chain variable domain of an antibody by a flexible linker. The specificity thus remains unchanged, although this reduction in size results in absence of complement response that is present with regular antibodies. Due to its smaller size, scFvs are believed to better penetrate tissues. In addition, scFvs can be produced in prokaryotic systems as these antibody fragments lack glycosylation sites (reviewed in ref. 17). Bioengineered scFvs can also be designed as bispecific agents and for a range of applications other than clinical use.

Antibody Humanization

Therapeutic antibodies have become an important class of modern medicines. By early 2012, 28 therapeutic antibodies were marketed in Europe or USA, of which 36% were prepared by humanization and 32% were human monoclonal antibodies. With a discovery of rodent antibodies and hybridoma technology in 1975 it became possible to prepare highly specific monoclonal antibodies for the first time. Further research soon revealed the biggest disadvantages of nonhuman antibodies: immunogenicity (see ref. 20 for review). Therefore their conversion into more human-like antibodies was introduced (Fig. 1). The first try to reduce immunogenicity of nonhuman antibodies was by chimerization, where constant domains were completely replaced with the human ones and connected with the nonhuman variable domains. A further step was humanization, where also human amino acid residues in variable domains were replaced with those more often found in human antibodies. Technically, humanization methods can be classified in two groups: rational methods and empirical methods. The most popular among the rational methods are CDR grafting, resurfacing, and SDR grafting, where the design of humanized version is based on sequence and structure analysis and assessing of a few humanized variants for desired properties. The antibody with the best results is chosen as a final humanized variant. Empirical methods on the other hand rely on selection rather than on design cycle with the invention of phage display (reviewed in ref. 22). By early 2012, 28 therapeutic antibodies were marketed in Europe or USA, of which 36% were prepared by humanization and 32% were human monoclonal antibodies, prepared in transgenic mice such as the XenoMouse (presented in a

![Figure 1. An overview of hybrid molecules between murine and human antibodies, developed for reducing the HAMA response. Humanized antibodies are represented by CDR grafting and resurfacing approaches. Each box corresponds to one immunoglobulin domain. Shaded, human sequences; empty, murine sequences.](image-url)
In recent years, various strategies and several routes for delivering drugs into the brain have been developed and tested for their advantages and disadvantages. The approaches generally include drug manipulation, disrupting of the BBB or finding of alternative routes for drug delivery. Macromolecules have been tried to smuggle across the BBB as lipophilic precursors, inside liposomes, in the forms of produgs, conjugate has been approved by FDA yet.37

Figure 2. A schematic representation of the parent (top) and bioengineered scFv (bottom) in which the standard linker was replaced by the penetratin sequence (underlined).

Targeting to Brain

Neurodegenerative diseases, such as Alzheimer disease, Parkinson disease and stroke, are rapidly increasing as population ages. However, successful treatment is limited to efficient drug delivery through the blood-brain barrier to the brain. Blood-brain barrier (BBB) is almost impermeable, highly selective, and well-coordinated barrier that limits drug delivery by allowing to enter the brain from the bloodstream only to lipophilic molecules with low molecular mass (less than 400 Da).38 Therefore, nearly all large therapeutic molecules, such as antibodies, oligonucleotides and viral vectors, cannot pass through the BBB. Less than 30% of therapeutic agents for neurodegenerative diseases enter into clinical trial just because of poor brain penetration.39

In recent years, various strategies and several routes for delivering drugs into the brain have been developed and tested for their advantages and disadvantages. The approaches generally include drug manipulation, disrupting of the BBB or finding of alternative routes for drug delivery. Macromolecules have been tried to smuggle across the BBB as lipophilic precursors, inside liposomes, in the forms of produgs, conjugate has been approved by FDA yet.37

Figure 2. A schematic representation of the parent (top) and bioengineered scFv (bottom) in which the standard linker was replaced by the penetratin sequence (underlined).

In recent years, various strategies and several routes for delivering drugs into the brain have been developed and tested for their advantages and disadvantages. The approaches generally include drug manipulation, disrupting of the BBB or finding of alternative routes for drug delivery. Macromolecules have been tried to smuggle across the BBB as lipophilic precursors, inside liposomes, in the forms of produgs, conjugate has been approved by FDA yet.37

Figure 2. A schematic representation of the parent (top) and bioengineered scFv (bottom) in which the standard linker was replaced by the penetratin sequence (underlined).

In recent years, various strategies and several routes for delivering drugs into the brain have been developed and tested for their advantages and disadvantages. The approaches generally include drug manipulation, disrupting of the BBB or finding of alternative routes for drug delivery. Macromolecules have been tried to smuggle across the BBB as lipophilic precursors, inside liposomes, in the forms of produgs, conjugate has been approved by FDA yet.37

Figure 2. A schematic representation of the parent (top) and bioengineered scFv (bottom) in which the standard linker was replaced by the penetratin sequence (underlined).

In recent years, various strategies and several routes for delivering drugs into the brain have been developed and tested for their advantages and disadvantages. The approaches generally include drug manipulation, disrupting of the BBB or finding of alternative routes for drug delivery. Macromolecules have been tried to smuggle across the BBB as lipophilic precursors, inside liposomes, in the forms of produgs, conjugate has been approved by FDA yet.37

Figure 2. A schematic representation of the parent (top) and bioengineered scFv (bottom) in which the standard linker was replaced by the penetratin sequence (underlined).

In recent years, various strategies and several routes for delivering drugs into the brain have been developed and tested for their advantages and disadvantages. The approaches generally include drug manipulation, disrupting of the BBB or finding of alternative routes for drug delivery. Macromolecules have been tried to smuggle across the BBB as lipophilic precursors, inside liposomes, in the forms of produgs, conjugate has been approved by FDA yet.37

Figure 2. A schematic representation of the parent (top) and bioengineered scFv (bottom) in which the standard linker was replaced by the penetratin sequence (underlined).

In recent years, various strategies and several routes for delivering drugs into the brain have been developed and tested for their advantages and disadvantages. The approaches generally include drug manipulation, disrupting of the BBB or finding of alternative routes for drug delivery. Macromolecules have been tried to smuggle across the BBB as lipophilic precursors, inside liposomes, in the forms of produgs, conjugate has been approved by FDA yet.37

Figure 2. A schematic representation of the parent (top) and bioengineered scFv (bottom) in which the standard linker was replaced by the penetratin sequence (underlined).
antibodies have thus again shown its great potential and the last word in their optimization has not yet been said.

Disclosure of Potential Conflicts of Interest
No potential conflict of interest was disclosed.

Acknowledgments
We would like to thank Prof Vladka Curin Šerbec from the National Blood Transfusion Centre and to her colleagues for a fruitful cooperation on the prion antibody topic, as well as to Drs Gorazd Drevenšek, Rok Romih, and Samo Hudoklin from the University of Ljubljana Medical Faculty for their contribution in performing experiments on mice and on immunohistology analyses. Nives Škrlj was supported by the Young Investigator grant from the Slovenian Research Agency. Marko Dolinar was funded in part by the Slovenian Research Agency grant L3–0206 and research program P1–0048.

Prospects
Although construction of the new type of penetratin-equipped scFv and demonstration of its functionality was rather preliminary, it certainly opens new ways toward bioengineered antibody fragments. Generally used linkers that are foreign sequences to the immune system can be efficiently replaced by the Trojan horse peptide sequence with essentially equal linking properties but with the additional benefit of directing scFvs across the BBB. The next step would certainly be applying this same approach on the humanized version of the antibody.44 This could as well be done with any other antibody fragments with targets in the brain. Bioengineered antibodies have thus again shown its great potential and the last word in their optimization has not yet been said.

Disclosure of Potential Conflicts of Interest
No potential conflict of interest was disclosed.

Acknowledgments
We would like to thank Prof Vladka Curin Šerbec from the National Blood Transfusion Centre and to her colleagues for a fruitful cooperation on the prion antibody topic, as well as to Drs Gorazd Drevenšek, Rok Romih, and Samo Hudoklin from the University of Ljubljana Medical Faculty for their contribution in performing experiments on mice and on immunohistology analyses. Nives Škrlj was supported by the Young Investigator grant from the Slovenian Research Agency. Marko Dolinar was funded in part by the Slovenian Research Agency grant L3–0206 and research program P1–0048.

A more detailed look at the subcellular localization of the penetratin-scFv revealed that unexpectedly in brain cell, the engineered antibody fragment was found in nuclei, whereas it was located in the cytoplasm of liver cells.1 Although the penetratin sequence in the context of scFv does resemble the nuclear entry signal, it was interesting to see that the same sequence resulted in nuclear location only in brain nerve cells but not in hepatocytes. More work is required to unravel the properties of localization signals that are cell- or tissue-specific, possibly due to a different set of transport and transport-associated proteins.

Figure 3. A side-by-side comparison of the two scFvs used in the study. Left: parent scFv; right: penetratin-scFv. Models were prepared as described in the text. Green, immunoglobulin folds of the heavy and light chain variable domains, including the C-terminal His-tag; red, linker region.
References

1. Škrdljević, D., Vidan, L., Srebro, K., Anstee, D., Collinge, J., and Sudlow, C. Fpr1 is a candidate single-chain antibody with the Trojan peptide positioned in the synaptic cleft during scrapie infection. FEBS Lett. 2013, 587(11), 2739-2744; http://dx.doi.org/10.1016/j.febslet.2013.05.033.

2. Kruse, M., Li, Z., and Hehenberger, L. Anti-fibril antibodies induce formation of large aggregates of PrP(Sc). J Biol Chem. 2013; 288(23):16050-62; http://dx.doi.org/10.1074/jbc.M113.476141.

3. Vyazovkin, S., and Wereszczynski, T. Natural antibodies. Curr Opin Immunol. 2013; 25(5), 547-553; http://dx.doi.org/10.1016/j.coi.2013.07.002.

4. Van't Land, E., Van Berkel, T. W., Kuijper, J. L., Zwinderman, A. H., Sterenborg, H. J. I., and Van Regenmortel, M. H. V. Neutralization of Scrapie by Human Natural Antibodies. J Gen Virol. 2013; 94(2), 299-307; http://dx.doi.org/10.1099/vir.0.052176-0.

5. Brouwer, A. M., and Van’t Land, E. J. W. Neutralizing antibodies against scrapie and prion infection. Curr Opin Virol. 2013; 3(5), 544-549; http://dx.doi.org/10.1016/j.coviro.2013.07.004.

6. Van't Land, E., and Van Berkel, T. W. Neutralizing antibodies against scrapie and prion infection. Curr Opin Virol. 2013; 3(5), 544-549; http://dx.doi.org/10.1016/j.coviro.2013.07.004.

7. Van’t Land, E., and Van Berkel, T. W. Neutralizing antibodies against scrapie and prion infection. Curr Opin Virol. 2013; 3(5), 544-549; http://dx.doi.org/10.1016/j.coviro.2013.07.004.

8. Van’t Land, E., and Van Berkel, T. W. Neutralizing antibodies against scrapie and prion infection. Curr Opin Virol. 2013; 3(5), 544-549; http://dx.doi.org/10.1016/j.coviro.2013.07.004.

9. Van’t Land, E., and Van Berkel, T. W. Neutralizing antibodies against scrapie and prion infection. Curr Opin Virol. 2013; 3(5), 544-549; http://dx.doi.org/10.1016/j.coviro.2013.07.004.

10. Van’t Land, E., and Van Berkel, T. W. Neutralizing antibodies against scrapie and prion infection. Curr Opin Virol. 2013; 3(5), 544-549; http://dx.doi.org/10.1016/j.coviro.2013.07.004.

11. Van’t Land, E., and Van Berkel, T. W. Neutralizing antibodies against scrapie and prion infection. Curr Opin Virol. 2013; 3(5), 544-549; http://dx.doi.org/10.1016/j.coviro.2013.07.004.

12. Van’t Land, E., and Van Berkel, T. W. Neutralizing antibodies against scrapie and prion infection. Curr Opin Virol. 2013; 3(5), 544-549; http://dx.doi.org/10.1016/j.coviro.2013.07.004.

13. Van’t Land, E., and Van Berkel, T. W. Neutralizing antibodies against scrapie and prion infection. Curr Opin Virol. 2013; 3(5), 544-549; http://dx.doi.org/10.1016/j.coviro.2013.07.004.

14. Van’t Land, E., and Van Berkel, T. W. Neutralizing antibodies against scrapie and prion infection. Curr Opin Virol. 2013; 3(5), 544-549; http://dx.doi.org/10.1016/j.coviro.2013.07.004.

15. Van’t Land, E., and Van Berkel, T. W. Neutralizing antibodies against scrapie and prion infection. Curr Opin Virol. 2013; 3(5), 544-549; http://dx.doi.org/10.1016/j.coviro.2013.07.004.

16. Van’t Land, E., and Van Berkel, T. W. Neutralizing antibodies against scrapie and prion infection. Curr Opin Virol. 2013; 3(5), 544-549; http://dx.doi.org/10.1016/j.coviro.2013.07.004.

17. Van’t Land, E., and Van Berkel, T. W. Neutralizing antibodies against scrapie and prion infection. Curr Opin Virol. 2013; 3(5), 544-549; http://dx.doi.org/10.1016/j.coviro.2013.07.004.

18. Van’t Land, E., and Van Berkel, T. W. Neutralizing antibodies against scrapie and prion infection. Curr Opin Virol. 2013; 3(5), 544-549; http://dx.doi.org/10.1016/j.coviro.2013.07.004.

19. Van’t Land, E., and Van Berkel, T. W. Neutralizing antibodies against scrapie and prion infection. Curr Opin Virol. 2013; 3(5), 544-549; http://dx.doi.org/10.1016/j.coviro.2013.07.004.