Nonperturbative conserving approximations and Luttinger’s sum rule

Jutta Ortloff, Matthias Balzer, Michael Potthoff

Institute for Theoretical Physics, University of Würzburg, Germany
Nonperturbative conserving approximations and Luttinger’s sum rule

Jutta Ortloff, Matthias Balzer, Michael Potthoff

Institute for Theoretical Physics, University of Würzburg, Germany

Luttinger’s sum rule:

the volume in reciprocal space
enclosed by the Fermi surface
equals the average particle number
Nonperturbative conserving approximations and Luttinger’s sum rule

Luttinger’s sum rule:

the volume in reciprocal space
closed by the Fermi surface
equals the average particle number

conserving approximations:

HF, RPA, FLEX, ...
Nonperturbative conserving approximations and Luttinger’s sum rule

Jutta Ortloff, Matthias Balzer, Michael Potthoff

Institute for Theoretical Physics, University of Würzburg, Germany

Luttinger’s sum rule:
the volume in reciprocal space
enclosed by the Fermi surface
equals the average particle number

conserving approximations:
HF, RPA, FLEX, ...

DMFT-based approximations
dynamical mean-field theory
dynamical cluster approximation
cellular DMFT
...
Nonperturbative conserving approximations and Luttinger’s sum rule

Luttinger’s sum rule:
the volume in reciprocal space enclosed by the Fermi surface equals the average particle number

conserving approximations:
HF, RPA, FLEX, ...

DMFT-based approximations
dynmical mean-field theory
dynamical cluster approximation
cellular DMFT
...

different conserving approximations?
DIA, VCA
(self-energy-functional approach)
non-interacting Fermi gas

Hamiltonian: \(H = \sum_k \sum_{\sigma=\uparrow,\downarrow} \varepsilon(k) c^\dagger_{k\sigma} c_{k\sigma} \)

free dispersion:
\(\varepsilon(k) = \frac{\hbar^2 k^2}{2m} \)

tight-binding dispersion:
\(\varepsilon(k) = -2t(\cos(k_x a) + \cos(k_y a)) \)

Fermi surface: \(\{ k | \varepsilon(k) = \mu \} \)

Fermi-surface volume: \(V_{FS}^{(0)} = 2 \sum_k \Theta(\mu - \varepsilon(k)) \)

\[V_{FS}^{(0)} = N \]
interacting Fermi system

Hamiltonian: \(H = \sum_{\mathbf{k}} \sum_{\sigma = \uparrow, \downarrow} \varepsilon(\mathbf{k}) c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} + \frac{U}{2L} \sum_{\mathbf{kk}'\mathbf{q}} \sum_{\sigma\sigma'} c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}'\sigma'}^{\dagger} c_{\mathbf{k}\sigma} c_{\mathbf{k}'\sigma'} + q\sigma c_{\mathbf{k}-q\sigma}' \)

Fermi liquid (Landau)

Hamiltonian: \(H_{FL} = \sum_{\mathbf{k}} \sum_{\sigma} \varepsilon(\mathbf{k}) c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} + \frac{1}{2L} \sum_{\mathbf{kk}'\mathbf{\sigma,\sigma'}} F_{\mathbf{kk}'\mathbf{\sigma,\sigma'}}^{\mathbf{\sigma,\sigma'}} n_{\mathbf{k}\sigma} n_{\mathbf{k}'\sigma'} \)

\(\omega \to 0 \): no phase space for scattering
Fermi-liquid theory:
- there is a Fermi surface
- $V_{FS} = N = V_{FS}^{(0)}$ (Luttinger sum rule)
Hubbard model

\[H = H_0 + H_1 = \sum_{i,j,\sigma} t_{ij} c_{i\sigma}^\dagger c_{j\sigma} + U \sum_{i=1}^{L} n_{i\uparrow} n_{i\downarrow} \]

- nearest-neighbor hopping, amplitude: \(t_{ij} \)
- local (on-site) repulsion, strength \(U \)
test of the sum rule

\[H = H_0 + H_1 = \sum_{i,j,\sigma} t_{ij} c^\dagger_{i\sigma} c_{j\sigma} + U \sum_{i=1}^{L} n_{i\uparrow} n_{i\downarrow} \]

- nearest-neighbor hopping, amplitude: \(t_{ij} \)
- local (on-site) repulsion, strength \(U \)

\(t \)-\(J \) model:
expansion up to \(\beta^{12} \), \(J/t = 0.4 \), \(n = 0.8 \), \(T = 0.2J \),
criteria: \(|\nabla n(k)| = \text{max (dotted)}, \frac{dn(k)}{dT} = 0 \) (dashed)

Puttika et al (1998)
Hubbard model:

\[H = H_0 + H_1 = \sum_{i,j,\sigma} t_{ij} c_{i\sigma}^\dagger c_{j\sigma} + U \sum_{i=1}^L n_{i\uparrow} n_{i\downarrow} \]

- nearest-neighbor hopping, amplitude: \(t_{ij} \)
- local (on-site) repulsion, strength \(U \)

Hubbard model:

\(T = 0, U = W \)

ad hoc approximations
Hubbard model

\[H = H_0 + H_1 = \sum_{i,j,\sigma} t_{ij} c_{i\sigma}^\dagger c_{j\sigma} + U \sum_{i=1}^L n_{i\uparrow} n_{i\downarrow} \]

- nearest-neighbor hopping, amplitude: \(t_{ij} \)
- local (on-site) repulsion, strength \(U \)

questions:
- are there violations of Luttinger’s sum rule ?
- how to construct approximations satisfying the sum rule ?
- how to construct approximations not artificially satisfying the sum rule ?
Green's function

one-particle excitation / photoemission:

Green's function: \(G_\mathbf{k}(\omega) = \int dz \frac{A_\mathbf{k}(z)}{\omega - z} \) \(A_\mathbf{k}(\omega) = -\text{Im} \ G(\mathbf{k}, \omega + i0^+)/\pi \)

\[
I(\mathbf{k}, \omega) \propto \sum_m \left| \langle N - 1, m \mid c_\mathbf{k} \mid N, 0 \rangle \right|^2 \delta (\omega - (E_m(N - 1) - E_0(N))) = A_\mathbf{k}(\omega)
\]
Green’s function

one-particle excitation / photoemission:

\[I(k, \omega) \propto \sum_m \left| \langle N - 1, m | c_k | N, 0 \rangle \right|^2 \delta (\omega - (E_m(N - 1) - E_0(N))) = A_k(\omega) \]

Green’s function:

\[G_k(\omega) = \int dz \frac{A_k(z)}{\omega - z} \quad A_k(\omega) = -\text{Im} \frac{G(k, \omega + i0^+)}{\pi} \]

→ Luttinger’s sum rule:

\[N = V_{\text{FS}} \]

\[N = \sum_k \int_{-\infty}^{0} d\omega \ A_k(\omega) = -\frac{1}{\pi} \text{Im} \sum_k \int_{-\infty}^{0} d\omega \ G_k(\omega + i0^+) \]

→ FS: \[G_k(\omega = 0)^{-1} = 0 \quad V_{\text{FS}} = \sum_k \Theta(G_k(\omega = 0)^{-1}) \]
perturbation theory

\[H = H_0 \rightarrow G_k^{(0)}(\omega) \] (free system)

\[H = H_0 + H_1 \rightarrow G_k(\omega) \] (interacting system)

\[\Sigma_k(\omega) : \text{self-energy} \]

\[G_k(\omega) = G_k^{(0)}(\omega) + G_k^{(0)}(\omega)\Sigma_k(\omega)G_k(\omega) \] (Dyson’s equation)
proof of the sum rule

expansion of the self-energy:

\[\Sigma = \quad + \quad + \quad + \ldots \]

define Luttinger-Ward functional:

\[\Phi = \quad + \quad + \quad + \ldots \]

hence:

\[\Sigma[G] = \frac{\delta \Phi[G]}{\delta G} \]

consider shift transformation

\[G(\omega) \rightarrow G(\omega + \nu) \equiv G_\nu(\omega) \]

exploiting the invariance:

\[0 = \frac{d}{d\nu} \Phi[G_\nu]\bigg|_{\nu=0} = \int d\omega \frac{\delta \Phi}{\delta G} \frac{\partial G}{\partial \omega} = \text{Tr} \left(\Sigma \frac{\partial G}{\partial \omega} \right) \]

some algebra:

\[N = \text{Tr} G = \text{Tr} \left(G \frac{\partial G^{(0)^{-1}}}{\partial \omega} \right) = \text{Tr} \left(G \frac{\partial}{\partial \omega} (G^{-1} + \Sigma) \right) \]

\[= \text{Tr} \left(\frac{\partial}{\partial \omega} \ln G^{-1} \right) - \text{Tr} \left(\Sigma \frac{\partial G}{\partial \omega} \right) = V_{FS} \]

Luttinger, Ward (1963)
conserving approximations

recipe:

– write down a truncated Luttinger-Ward functional: \(\Phi[G] \mapsto \Phi_{\text{trunc}}[G] \)

\[\Phi_{\text{HF}} = \begin{array}{c}
\begin{array}{c}
\text{circ}
\end{array}
\end{array} + \begin{array}{c}
\begin{array}{c}
\text{dashed}
\end{array}
\end{array} \]

e.g. Hartree-Fock approximation:

– derive self-energy: ("\(\Phi \) derivable")

\[\Sigma[G] = \frac{\delta \Phi[G]}{\delta G} \]

– use Dyson’s equation

\[G = \frac{1}{G^{(0)}^{-1} - \Sigma} \]

result:

Baym, Kadanoff (1961)

– macroscopic conservations laws respected (energy, momentum, spin, ...)

– thermodynamical consistency

– Luttinger’s sum rule satisfied

\[\rightarrow \text{non-perturbative conserving approximations?} \]
non-perturbative construction of Φ

$$\Omega_{U}[G_{0}^{-1}] = -T \ln \int D[c^{*}, c] \ e^{-S_{U}[G_{0}^{-1}]}$$

$$G[G_{0}^{-1}] = - \frac{1}{T} \frac{\delta \Omega_{U}[G_{0}^{-1}]}{\delta G_{0}^{-1}} \quad \text{(one-to-one)}$$

$$\Phi_{U}[G] = \Omega_{U}[G_{0}^{-1}, U[G]] + \text{Tr}(GG_{0, U}^{-1}[G]) - \text{Tr} \ln G$$

\rightarrow Luttinger-Ward functional, universal

$\Lambda_{U}[\Sigma]$: Legendre transform of $\Phi_{U}[G]$

$$\Omega_{t, U}[\Sigma] = \text{Tr} \ln \frac{1}{G_{0, t}^{-1} - \Sigma} + \Lambda_{U}[\Sigma]$$

$$\delta \Omega_{t, U}[\Sigma] = 0 \iff \frac{-1}{G_{0, t}^{-1} - \Sigma} = \frac{\delta \Lambda_{U}[\Sigma]}{\delta \Sigma}$$

$\delta \Omega[\Sigma] = 0$

$\Omega = \Omega[\Sigma]$

self-energy-functional theory (SFT)
\[\Omega U[G_0^{-1}] = -T \ln \int D[c^*, c] e^{-S_U[G_0^{-1}]} \]

\[G[G_0^{-1}] = -\frac{1}{T} \frac{\delta \Omega U[G_0^{-1}]}{\delta G_0^{-1}} \] (one-to-one)

\[\Phi_U[G] = \Omega U[G_0^{-1}, U[G]] + \text{Tr}(GG_0^{-1}U[G]) \]
\[-\text{Tr} \ln G \]

→ Luttinger-Ward functional, universal

\[\Lambda_U[\Sigma]: \text{Legendre transform of } \Phi_U[G] \]

\[\Omega_{t, U}[\Sigma] = \text{Tr} \ln \frac{1}{G_{0,t}^{-1} - \Sigma} + \Lambda_U[\Sigma] \]

\[\delta \Omega_{t, U}[\Sigma] = 0 \iff \frac{-1}{G_{0,t}^{-1} - \Sigma} = \frac{\delta \Lambda_U[\Sigma]}{\delta \Sigma} \]

→ \(\Omega[\Sigma] \) stationary at physical self-energy

→ \(\Lambda_U[\Sigma] \) constructed formally, but unknown

	SFT	DFT
\(\delta \Omega[\Sigma] \)	0	\(\delta \Omega[n] \) = 0

- p.10
Rayleigh, Ritz

Original system: \(H_{t,U} \)
Reference system: \(H_{t',U'} \)

\[E_{t,U}[\Psi_{t',U'}] \xrightarrow{\Psi_{t',U'}} \Psi_{t',U'} \]

\[
E_{t,U}[|\Psi\rangle] = \langle \Psi | H_{t,U} | \Psi \rangle
\]

\[
\frac{\partial E_{t,U}[|\Psi_{t',U'}\rangle = 0]}{\partial t'} \neq 0
\]

→ Hartree-Fock approximation
Rayleigh, Ritz

\[E_{t,U} [\Psi_{t',U'}] = \langle \Psi | H_{t,U} | \Psi \rangle \]

\[\frac{\partial E_{t,U} [\Psi_{t',U'}=0]}{\partial t'} = 0 \]

→ Hartree-Fock approximation

type of approximation ⇔ choice of reference system
Non-perturbative conserving approximations

Rayleigh, Ritz

\[E_{t,U}[\Psi_{t',U'}] = \langle \Psi | H_{t,U} | \Psi \rangle \]

\[\frac{\partial E_{t,U}[\Psi_{t',U'}]}{\partial t'} \bigg|_{t'=0} \neq 0 \]

\[\rightarrow \text{Hartree-Fock approximation} \]

SFT

\[\Omega_{t,U}[\Sigma_{t',U'}] = ? \]

\[\frac{\partial \Omega_{t,U}[\Sigma_{t',U'}]}{\partial t'} \bigg|_{t'=0} \neq 0 \]

\[\rightarrow \text{new approximations} \]

Type of approximation \(\leftrightarrow\) choice of reference system
non-perturbative, thermodynamically consistent, systematic approximations

$\Lambda_U[\Sigma]$ unknown but **universal**!

original system:

$$\Omega_{t,u}[\Sigma] = \text{Tr} \ln \frac{1}{G_{0,t}^{-1} - \Sigma} + \Lambda_U[\Sigma]$$

reference system:

$$\Omega_{t',u}[\Sigma] = \text{Tr} \ln \frac{1}{G_{0,t'}^{-1} - \Sigma} + \Lambda_U[\Sigma]$$

combination:

$$\Omega_{t,u}[\Sigma] = \Omega_{t',u}[\Sigma] + \text{Tr} \ln \frac{1}{G_{0,t}^{-1} - \Sigma} - \text{Tr} \ln \frac{1}{G_{0,t'}^{-1} - \Sigma}$$

→ non-perturbative, thermodynamically consistent, systematic approximations

→ Φ-derivable, conserving, respecting Luttinger sum rule?
original system, $H_{t,U}$:

lattice model ($D = 2$) in the thermodynamic limit

n.n. hopping: t
local interaction: U
electron density: $n = N/L$
original system, $H_{t,U}$:

- lattice model ($D = 2$) in the thermodynamic limit
- n.n. hopping: t
- local interaction: U
- electron density: $n = N/L$

reference system, $H'_{t',U}$:

- system of decoupled clusters
- diagonalization
- trial self-energy: $\Sigma = \Sigma(t')$
- self-energy functional: $\Omega_t[\Sigma(t')]$
- stationary point: $\frac{\partial}{\partial t'} \Omega_t[\Sigma(t')] = 0$
original system, $H_{t,U}$:

lattice model ($D = 2$) in the thermodynamic limit

reference system, $H'_{t',U}$:

system of decoupled clusters
original system, $H_{t,U}$:

lattice model ($D = 2$) in the thermodynamic limit

reference system, $H_{t',U}$:

system of decoupled clusters

cluster size: L_c

- $L_c \leq 2$: analytic
- $L_c \leq 6$: exact diagonalization
- $L_c \leq 12$: Lanczos method
- $L_c \leq 100$: stochastic techniques
example: \(D = 1 \) Hubbard model

\(T = 0 \), half-filling, \(U = 8 \), nearest-neighbor hopping \(t = 1 \)

variational parameter: nearest-neighbor hopping \(t' \) within the chain

\[\Omega(t') \equiv \Omega[\Sigma(t')] \text{ stationary at } t'_{\text{min}} \neq t \]

\[t'_{\text{min}} \approx t \]
original system, $H_{t,U}$:

lattice model ($D = 2$) in the thermodynamic limit

reference system, $H_{t',U}$:

system of decoupled clusters
original system, $H_{t,u}$:

lattice model ($D = 2$) in the thermodynamic limit

reference system, $H_{t',u}$:

system of decoupled clusters

variational parameters:
intra-cluster hopping
partial compensation of finite-size effects
cluster approximations

original system, \(H_{t,U} \):

lattice model \((D = 2)\) in the thermodynamic limit

reference system, \(H_{t',U} \):

system of decoupled clusters

variational parameters:

hopping between cluster boundaries

boundary conditions
boundary conditions

\[\Omega \]

exact: Lieb, Wu (1968)

\[D = 1 \text{ Hubbard model} \]
\[T = 0, \text{ half-filling, } U = 8 \]
\[t = 1 \]

open or periodic b.c. ?
open boundary conditions!
original system, $H_{t, U}$:

lattice model ($D = 2$) in the thermodynamic limit

reference system, $H_{t', U}$:

system of decoupled clusters
original system, $H_{t, U}$:

lattice model ($D = 2$) in the thermodynamic limit

reference system, $H'_{t', U}$:

system of decoupled clusters

variational parameters:
on-site energies
thermodynamic consistency
cluster approximations

original system, $H_{t, U}$:

- lattice model ($D = 2$) in the thermodynamic limit

reference system, $H_{t', U}$:

- system of decoupled clusters

 variational parameters:
 ficticious symmetry-breaking fields
 spontaneous symmetry breaking
original system, $H_{t,\mathcal{U}}$:

- lattice model ($D = 2$) in the thermodynamic limit

reference system, $H_{t',\mathcal{U}}$:

- system of decoupled clusters
- variational parameters:
 - ficticious symmetry-breaking fields
 - different order parameters
antiferromagnetism

$D = 2$ Hubbard model, half-filling
antiferromagnetism

$D = 2$ Hubbard model, half-filling

QMC, VMC: extrapolated to $L \to \infty$, $T \to 0$

QMC: Hirsch (1985)
VMC: Yokoyama, Shiba (1987)
Non-perturbative conserving approximations

antiferromagnetism

\[D = 2 \text{ Hubbard model, half-filling} \]

\[\Gamma \quad X \quad M \quad \Gamma \]

QMC / MaxEnt: \(\beta = 10, 8 \times 8 \text{ cluster} \]
classification of approximations

original system, $H_{t,U}$:

lattice model ($D = 2$) in the thermodynamic limit

reference system, $H_{t',U}$:

system of decoupled clusters

$L_c = 4$
original system, $H_{t,U}$:

- lattice model ($D = 2$) in the thermodynamic limit

reference system, $H_{t',U}$:

- system of decoupled clusters

 $L_c = 1$

 Hubbard-I-type approximation
classification of approximations

original system, $H_{t,U}$:

- lattice model ($D = 2$) in the thermodynamic limit

reference system, $H_{t',U}$:

- system of decoupled clusters with additional bath sites
- $L_c = 1$, $L_b = 2$
- improved description of temporal correlations
classification of approximations

original system, $H_{t,U}$:

- lattice model ($D = 2$) in the thermodynamic limit

reference system, $H_{t',U}$:

- system of decoupled clusters with additional bath sites
 - $L_c = 1$, $L_b = 5$
- improved mean-field theory
classification of approximations

original system, $H_{t,U}$:

- lattice model ($D = 2$) in the thermodynamic limit

reference system, $H_{t',U}$:

- system of decoupled clusters with additional bath sites
 - $L_c = 1$, $L_b = \infty$
- optimum mean-field theory, DMFT
 - *Metzner, Vollhardt* (1989)
 - *Georges, Kotliar, Jarrell* (1992)
classification of approximations

original system, $H_{t, U}$:

- lattice model ($D = 2$) in the thermodynamic limit

reference system, $H_{t', U}$:

- system of decoupled clusters with additional bath sites
 - $L_c = 4$, $L_b = \infty$
- cellular DMFT
 - Kotliar et al (2001)
 - Lichtenstein and Katsnelson (2000)
classification of approximations

original system, $H_{t,U}$:

- lattice model ($D = 2$) in the thermodynamic limit

reference system, $H_{t',U}$:

- system of decoupled clusters with additional bath sites
 - $L_c = 4$, $L_b = 5$
- variational cluster approach (VCA)
classification of approximations

original system, $H_{t,U}$:

- lattice model ($D = 2$) in the thermodynamic limit

reference system, $H_{t',U}$:

- system of decoupled clusters with additional bath sites
 - $L_c = 4$, $L_b = 2$
- variational cluster approach (VCA)
classification of approximations

original system, $H_{t, U}$:

lattice model ($D = 2$) in the thermodynamic limit

reference system, $H_{t', U}$:

system of decoupled clusters with additional bath sites
$L_c = 4$
variational cluster approach (VCA)
classification of approximations

- Dynamical mean-field theory (DMFT): Metzner, Vollhardt (1989), Georges, Kotliar, Jarrell (1992)
- Cellular DMFT
- Dynamical impurity approach (DIA): Kotliar, Savrasov, Palsson (2001)
- Variational cluster approach: Potthoff (2003), Potthoff, Aichhorn, Dahnken (2004)
self-energy functional:

\[
\Omega_{t, U[\Sigma]} = \Omega_{t', U[\Sigma]} + \text{Tr} \ln \frac{1}{G_{0,t}^{-1} - \Sigma} - \text{Tr} \ln \frac{1}{G_{0,t'}^{-1} - \Sigma}
\]

\(\mu\) derivative:

\[
- \frac{\partial \Omega_{t, U[\Sigma]}}{\partial \mu} = - \frac{\partial \Omega_{t', U[\Sigma]}}{\partial \mu} - \frac{\partial}{\partial \mu} \text{Tr} \ln \frac{1}{G_{0,t}^{-1} - \Sigma} + \frac{\partial}{\partial \mu} \text{Tr} \ln \frac{1}{G_{0,t'}^{-1} - \Sigma}
\]

particle number and FS volume:

\[
N = N' - V_{FS}' + V_{FS}
\]

proliferation of the sum rule:

\[
N = V_{FS} \iff N' = V_{FS}'
\]
dynamical impurity approximation

Hubbard model, semielliptical free DOS \((W = 4)\)

\[
\begin{align*}
\varepsilon_c & \quad V \\
\varepsilon_0 &
\end{align*}
\]

two-site DIA:

- total particle number:
 \((2\text{-site reference system})\)
 \(N' = 2\)
- Kondo regime:
 \(\varepsilon_0 \ll \varepsilon_c, \mu \ll \varepsilon_0 + U\)
- DMFT:
 \(\varepsilon_0 = \text{const} = 0\)
mass enhancement: \(\frac{m^*}{m} = z^{-1} = 1 - \Sigma'(\omega = 0) \)

- Mott transition for \(n \rightarrow 1 \) and strong \(U \)
- 2S-DMFT: non-conserving two-site approximation
Mott transition

\[U \ll W \quad U \gg W \]

atom → solid

energy

metal → insulator

\[IPE \quad PES \]
Mott transition: phase diagram

Hubbard model
half-filling
semielliptical DOS, $W = 4$
two-site DIA ($L_b = 2$)

\rightarrow qualitative agreement with DMFT (QMC, NRG)

Georges et al (1996), Joo, Oudovenko (2000), Bulla et al (2001)
convergence with increasing L_b

Hubbard model
half-filling
semielliptical DOS
$W = 4$
DIA

Pozgajcic (2004)

→ quantitative agreement with DMFT (QMC, NRG)

Georges et al (1996), Joo, Oudovenko (2000), Bulla et al (2001)

→ extremely fast convergence with increasing L_b
Hubbard model, $D = 1, U = 4 = W, T = 0$: exact (Bethe ansatz) vs. DMFT vs. 2S-DIA
Luttinger sum rule for a k-independent self-energy:

$\Rightarrow V_{FS} = V_{FS}^{(0)}$

$V_{FS} = 2 \sum_{k} \Theta(\mu - \varepsilon(k) - \Sigma(0))$

$V_{FS}^{(0)} = 2 \sum_{k} \Theta(\mu_0 - \varepsilon(k))$

$\Rightarrow \mu = \mu_0 + \Sigma(0)$

$\rho(\omega) = \sum_{k} \delta(\omega + \mu - \varepsilon(k) - \Sigma(\omega))$

$\rho_0(\omega) = \sum_{k} \delta(\omega + \mu_0 - \varepsilon(k))$

$\Rightarrow \rho(0) = \rho_0(0)$
non-conserving approximations: Hubbard-I, 2S-DMFT
conserving approximation: two-site DIA
single-impurity Anderson model

sum rule fulfilled within 2S-DIA \(\Rightarrow\) sum rule fulfilled exactly for reference system

\[N = V_{FS} \iff N' = V'_{FS} \]

direct check:
1) \(L_b = 2\): analytically
2) \(L_b = 4\): full diagonalization
3) \(L_b \leq 10\): Lanczos

\(\Rightarrow\) sum rule never violated

Green’s function: \(G_{\alpha\beta}(\omega)\)
diagonalized Green’s function: \(G_k(\omega)\)
Luttinger sum rule:

\[
\sum_{k,m} \alpha_m^{(k)} \Theta(\mu - \omega_m^{(k)}) = \sum_{k,m} \Theta(\mu - \omega_m^{(k)}) - \sum_{k,n} \Theta(\mu - \zeta_n^{(k)})
\]
$N = V_{FS} \Leftrightarrow N' = V'_{FS}$
dynamical cluster approximation (DCA)

Hubbard model, $D = 2$, n.n. hopping t, $U = W = 8t$, $T = W/60$, $L_c = 16$, QMC

$n = 0.95$ $n = 0.9$ $n = 0.8$

$A(k, \omega = 0)$

\Rightarrow sum rule violated close to Mott insulator
sum rule violated for Hubbard clusters?

\[N = V_{FS} \iff N' = V'_{FS} \]

direct check:
1) \(L_c = 2 \): analytically
2) \(L_c = 4 \): full diagonalization
3) \(L_c \leq 10 \): Lanczos

→ sum rule violated for the Mott insulator

\[
\sum_{k,m} \alpha_m^{(k)} \Theta(\mu - \omega_m^{(k)}) = \sum_{k,m} \Theta(\mu - \omega_m^{(k)}) - \sum_{k,n} \Theta(\mu - \zeta_n^{(k)})
\]
finite Hubbard clusters

→ sum rule violated close to Mott insulator
Fermi-liquid theory: $N = V_{FS}$

proof: perturbation theory to all orders $n \ (n \to \infty) \ for \ T \to 0$

(weak-coupling) conserving approximations: truncation of $\Phi[G]$
- macroscopic conservation laws respected
- thermodynamically consistent
- Luttinger’s sum rule respected

non-perturbative construction of $\Phi[G]$ possible ($T > 0$)

self-energy-functional theory: non-perturbative conserving approximations
- dynamical impurity approximation (DIA)
- variational cluster approximation (VCA)
- DMFT, C-DMFT/DCA

sum rule: $N = V_{FS} \iff N' = V'_{FS}$

sum rule respected by DMFT, DIA \iff sum rule holds for the (finite) single-impurity Anderson model (Friedel sum rule)

sum rule violated by DCA, VCA \iff sum rule violated for Hubbard clusters

where is the defect in the proof? proposal: $\lim_{T \to 0} \lim_{n \to \infty} \neq \lim_{n \to \infty} \lim_{T \to 0}$