Characterization of the individual glucose uptake systems of Lactococcus lactis: mannose-PTS, cellobiose-PTS and the novel GlcU permease

Rute Castro,1 Ana R. Neves,1* Luís L. Fonseca,1 Wietske A. Pool,2 Jan Kok,2 Oscar P. Kuipers2 and Helena Santos1
1Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Rua da Quinta Grande, 6, Apt 127, 2780-156 Oeiras, Portugal. 2Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, PO Box 14, 9750 AA, Haren, the Netherlands.

Summary

According to previous reports, Lactococcus lactis imports glucose via two distinct phosphoenolpyruvate:phosphotransferase systems (mannose-PTS and cellobiose-PTS) and one or more unknown non-PTS permease(s). GlcU was identified as the sole non-PTS permease involved in the transport of glucose. Additionally, the biochemical properties of PTSman, PTScel and GlcU were characterized in double knockout mutants with glucose uptake restricted to a single system. Transport susceptibility to protonophores indicated that glucose uptake via GlcU is proton motive force dependent. Competition assays revealed a high specificity of GlcU for glucose. Furthermore, the permease has low affinity for glucose and displays strong preference for the β-anomer as shown by the profiles of consumption of the two glucose anomers studied by 13C-NMR. Similar kinetic properties were found for PTScel, while PTSman is a high-affinity system recognizing equally well the two anomic forms of glucose. Transcripts of the genes encoding the three transporters are present simultaneously in the parent strain NZ9000 as shown by reverse transcription-PCR. Investigation of the distribution of GlcU homologues among bacteria showed that these proteins are restricted to the low-GC Gram-positive Firmicutes. This work completes the identification of the glucose transport systems in L. lactis MG1363.

Introduction

Glucose is abundant in nature, reasonably cheap, and has been the substrate of choice for most bacteria used in biotechnological applications (de Vos and Hugenholtz, 2004; Gosset, 2005; Wendisch et al., 2006; Nevoigt, 2008), since it supports high growth rates and biomass yields. Furthermore, glucose is a preferred sugar in many bacteria and known to repress the synthesis of enzymes necessary for the utilization of other carbohydrates via regulatory mechanisms involving glucose-specific phosphoenolpyruvate (PEP):sugar phosphotransferase system (PTS) components (Stülke and Hillen, 2000; Deutscher et al., 2006; Görke and Stülke, 2008; Jahreis et al., 2008).

A wealth of data have been gathered on the different metabolic reactions that convert glucose into pyruvate; however, the first event in the metabolism of any external nutrient, i.e. transport, has only attracted modest attention. Transport of glucose across the bacterial cytoplasmic membrane proceeds via ATP-binding cassette (ABC) transporters (primary active transporters), secondary carriers or group translocators (PEP:sugar PTS) (Postma et al., 1993; Ehrmann et al., 1998; Pao et al., 1998; Jack et al., 2001; Konings, 2006; Jahreis et al., 2008). The presence of multiple glucose uptake systems is a common feature in many organisms. For example, the Gram-negative model bacterium Escherichia coli possesses at least a glucose-PTS (PTSgly), a mannose-PTS (PTSmann), a proton symporter (GalP) and an ABC transporter (Mgl system) to import glucose (Gosset, 2005), and expression of the genes encoding these transporters is influenced by several factors, such as the nature and the concentration of sugar (Death and Ferenci, 1994; Vanderpool and Gottesman, 2004). The low-GC Gram-positive Bacillus subtilis internalizes glucose by PTSglc, PTSman, and the glucose/mannose-proton symporter GlcP during vegetative growth (Paulsen et al., 1998). Lactococcus lactis is a low-GC Gram-positive coccoid bacterium that is used worldwide as a constituent of

© 2008 The Authors
Journal compilation © 2008 Blackwell Publishing Ltd
starter cultures in the dairy industry. The glucose-PTS is not present in this bacterium: glucose is transported and concomitantly phosphorylated by mannose and cellobiose PTSs (PTSMan and PTSCel). Moreover, glucose can also be imported via non-PTS permease(s) and subsequently phosphorylated by glucokinase (Thompson \textit{et al}., 1985; Pool \textit{et al}., 2006). Hitherto, gene(s) coding for active non-PTS permease(s) in \textit{L. lactis} remained elusive. Therefore, we set out to identify the non-PTS transport system(s) and characterize the routes for glucose uptake. In this work, we demonstrate the role of GlcU in the transport of glucose by this organism. Deletion of glcU in a PTS-deficient strain abolished growth on glucose, proving that GlcU is the sole non-PTS permease in \textit{L. lactis}. Biochemical features of the individual transporters were determined in double mutant strains with glucose transport restricted to a single system. Kinetic properties were obtained by studying uptake of radiolabelled glucose in whole cells; moreover, \textit{in vivo} 13C-NMR was used to monitor the consumption of \textalpha- and \textbeta- anomers of glucose as well as the dynamics of intracellular metabolite pools. The expression of the transporter encoding genes in the parent and mutant strains was evaluated by reverse transcription (RT)-PCR analysis.

Results

\textit{GlcU} is the only non-PTS glucose permease of \textit{L. lactis}

\textit{Lactococcus lactis} NZ9000 transports glucose via PTSMan (\textit{ptnABCD}), PTSCel (\textit{pttBAC}) and by thus far unknown non-PTS permease(s). Previously, a transcriptome analysis approach proved useful to identify PTSCel as a glucose transporter (Pool \textit{et al}., 2006). Assuming that the non-PTS system(s) would be expressed at a higher level in a double-PTS mutant (in which PTSMan and PTSCel are inactivated), mRNA levels in NZ9000 and this transport mutant were compared using DNA microarrays. Genes encoding proteins with high isoelectric points and with putative transmembrane segments were selected among all genes significantly upregulated (data not shown). The gene with the highest fold overexpression in the PTSs-defective strain was \textit{ytgA} (llmg_2145), which is part of a putative operon (\textit{ytgBAH}). However, deletion of this gene cluster in the double-PTS mutant did not affect growth on glucose, suggesting a minor or even no role of \textit{ytgBAH}-encoding proteins in glucose transport. As a second approach, BLASTP searches of the \textit{L. lactis} MG1363 genome sequence were performed using sequence information on functionally characterized glucose non-PTS permeases. Of these, only the \textit{Staphylococcus xylosus} glucose uptake protein (GluC) (Fiegler \textit{et al}., 1999) showed homology (36% identity) to an \textit{L. lactis} MG1363 protein that is encoded by llmg_2561 and is annotated as GlcU (Wegmann \textit{et al}., 2007). This gene was not significantly upregulated in the DNA microarray analysis of the double-PTS knockout mutant. Nevertheless, to investigate whether llmg_2561 (\textit{glcU}) encodes a functional glucose permease the gene was deleted in a PTSMan/PTSCel-deficient strain. First, the PTSCel route was inactivated in NZ9000\textit{ΔptnABCD} (Pool \textit{et al}., 2006) by deleting the gene encoding its membrane component, \textit{ptcC}: a 1.25 kb fragment 45 bp downstream of the start codon was removed by double-cross-over recombination. Subsequently, llmg_2561 (\textit{glcU}) was inactivated in strain NZ9000\textit{ΔptnABCDΔptcC} by removing a 0.97 kb fragment starting 103 bp upstream of the start codon of the gene. The triple mutant was obtained on M17 medium supplemented with galactose (1%).

The ability of the mutants to grow on glucose was investigated. Inactivation of llmg_2561 (\textit{glcU}) in the PTS-deficient background rendered a strain unable to grow on glucose (Fig. 1A). We verified that this phenotype arises from the inability of the triple mutant to transport glucose (Fig. 1B). Expression \textit{in trans} of \textit{glcU} under the control of the nisin promoter in the triple mutant restored growth on glucose (Fig. 1A). Altogether these findings unequivocally show that the protein encoded by llmg_2561, hereafter denominated GlcU, is the sole PTS-independent glucose transporter in \textit{L. lactis}.

Kinetic properties of \textit{L. lactis} glucose transport systems

The kinetic properties of GlcU were investigated in the double mutant NZ9000\textit{ΔptnABCDΔptcC}. To characterize the PTSMan and the PTSCel, \textit{glcU} was deleted in strains NZ9000\textit{ΔptcC} and NZ9000\textit{ΔptnABCD}, respectively, resulting in strains NZ9000\textit{ΔptcCglcU} (only PTSMan functional) and NZ9000\textit{ΔptnABCDglcU} (only PTSCel functional). The kinetic properties of the various glucose transporters were determined from \textit{[14]}-glucose uptake experiments using non-linear regression analysis to estimate \textit{K}_m and \textit{V}_\text{max} values.

\textit{Glucose transport via GlcU is proton-motive force dependent}. The lactococcal non-PTS permease, GlcU, showed a low affinity (\textit{K}_m, 2.4 mM) and a moderate capacity (39 nmol min-1 mg prot-1) for glucose uptake in resting cells of NZ9000\textit{ΔptnABCDΔptcC}. To investigate the mechanism of transport via GlcU, the protonophores tetrachlorosalicylanilide (TCS) and carbonyl cyanide-m-chlorophenylhydrazone (CCCP) were used. CCCP and TCS inhibited the uptake of \textit{[14]C]-glucose by 53% and 100% respectively. Furthermore, cells energized with arginine (formation of ATP via the arginine deiminase pathway) prior to glucose addition showed a twofold (81 nmol min-1 mg prot-1) increase in the transport capac-
Glucose uptake via GlcU is driven by the proton-motive force. To further characterize GlcU, transport competition assays were performed in which the uptake of radiolabelled glucose was measured in the presence of 100-fold excess concentration of ribose, rhamnose, mannose, xylose, arabinose, cellobiose and galactose. Glucose uptake was reduced by approximately 30% in the presence of mannose and xylose; the other sugars affected glucose transport to a minor extent (less than 15%).

PTSMan and PTSCel have different affinity for glucose. Kinetic properties of PTSMan and PTSCel were determined in whole cells of NZ9000ΔptcCΔglcU and NZ9000ΔptnABCDΔglcU, respectively (Table 1). Both PTSMan and PTSCel transport glucose with high capacity, but PTSCel exhibits a much lower affinity (K_m of 8.7 mM compared with 13 μM for PTSMan).

The transport route affects glycolytic flux and dynamics of intracellular metabolites

Lactococcus lactis strains with single glucose uptake systems, PTSMan, PTSCel or GlcU, were studied by in vivo 13C-NMR (Fig. 2). The isogenic L. lactis laboratory strains MG1363 and NZ9000 convert glucose homofermentatively with a maximal glucose consumption rate of about 0.40 μmol min$^{-1}$ mg prot$^{-1}$ (Neves et al., 2002a; 2006). All mutants showed lower maximal glucose consumption rates (1.4- to 2.9-fold lower). Glucose consumption in NZ9000ΔptcCΔglcU was quasi-linear up to concentrations close to depletion and the maximal rate was 0.29 μmol min$^{-1}$ mg prot$^{-1}$, a value similar to that of V_{max} for PTSMan (Table 1). In NZ9000ΔptnABCDΔglcU, glucose consumption was initially relatively high, slowing down (sixfold) at approximately 8 min, at the onset of β-glucose depletion. When uptake of glucose was restricted to GlcU (NZ9000ΔptnABCDΔptcC) the kinetics of consumption

Table 1. Kinetic parameters for glucose transport via the three different systems.

Strain	Transporter present	V_{max} (μmol min$^{-1}$ mg prot$^{-1}$)	K_m (mM)
NZ9000ΔptcCΔglcU	PTSMan	0.22 ± 0.01	(13 ± 2) $\times 10^{-3}$
NZ9000ΔptnABCDΔglcU	PTSCel	0.25 ± 0.02	8.7 ± 1.5
NZ9000ΔptnABCDΔptcCb	GlcU	0.08 ± 0.01	2.4 ± 0.2

a. Values of two or more independent experiments were averaged and are reported ± SD. V_{max} and K_m were determined using glucose concentrations varying as follows: NZ9000ΔptcCΔglcU, 1–100 μM; NZ9000ΔptnABCDΔglcU, 0.5–15 mM; NZ9000ΔptnABCDΔptcC, 0.01–10 mM. *b.* Transport determinations were performed in the presence of 2 mM arginine.

© 2008 The Authors
Journal compilation © 2008 Blackwell Publishing Ltd, *Molecular Microbiology*, 71, 795–806
Glucose metabolism in non-growing cell suspensions of \(K \) (mM)

Kinetic parameters obtained from the profiles of glucose consumption in the parental strain \(K \) (active PTSMan) or PTSCel or GlcU, respectively, at 30°C under anaerobic conditions with pH controlled at 6.5. Maximal glucose consumption rates (\(\mu \text{mol min}^{-1} \text{ mg prot}^{-1} \)) are boxed in the upper-right corner. Symbols: (\(\bullet \)) glucose; (\(\bigcirc \)) \(\beta \)-glucose; (\(\triangle \)) \(\alpha \)-glucose; (\(\blacktriangle \)) fructose 1,6-bisphosphate; (\(\square \)) 3-phosphoglycerate; (\(\square \)) phosphoenolpyruvate. The lines drawn in the graph are interpolations. For the sake of simplicity, glucose transients are defined by every 1 min data points in (B) and (C).

Table 2. Kinetic parameters obtained from the profiles of glucose consumption in the parental strain \(L. \ lactis \) NZ9000 and its derivatives.

Strain	Transport system	\(V_{\text{max}} \) (\(\mu \text{mol min}^{-1} \text{ mg prot}^{-1} \))	\(K_s^a \) (mM)	\(K_s^b \) (mM)
\(\Delta \)ptc\(\Delta \)glcU	PTS\(^{\text{Man}} \)	0.32 ± 0.01	0.7 ± 0.1	0.8 ± 0.1
\(\Delta \)ptnABCD\(\Delta \)glcU	PTS\(^{\text{Cel}} \)	0.15 ± 0.01	442 ± 42	0.9 ± 0.1
\(\Delta \)ptnABCD\(\Delta \)ptcC	GlcU	0.53 ± 0.13	122 ± 32	2.6 ± 0.7
NZ9000	<PTS\(^{\text{Cel}} \)GlcU>	0.25 ± 0.01	0.7 \(b \)	0.8 \(b \)
		0.31 ± 0.07	119 ± 43	2.8 ± 1.5

\(a \). The model was fitted to data obtained during the metabolism of glucose in cells energized with arginine (2 mM).

\(b \). The \(K_s \) values obtained for PTS\(^{\text{Man}} \) were used to model glucose consumption by \(L. \ lactis \) NZ9000.

Fig. 2. Glucose metabolism in non-growing cell suspensions of \(L. \ lactis \) strains carrying only one active glucose uptake system. Kinetics of [\(^{1} \)C]-glucose (20 mM) consumption and pools of intracellular metabolites in resting cells of \(L. \ lactis \) strains NZ9000::\(\Delta \)ptc\(\Delta \)glcU (A), NZ9000::\(\Delta \)ptnABCD\(\Delta \)glcU (B) and NZ9000::\(\Delta \)ptnABCD\(\Delta \)ptcC (C), which possess as glucose transporter PTS\(^{\text{Man}} \) or PTS\(^{\text{Cel}} \) or GlcU, respectively, at 30°C under anaerobic conditions with pH controlled at 6.5. Maximal glucose consumption rates (\(\mu \text{mol min}^{-1} \text{ mg prot}^{-1} \)) are shown in Table 2. Glucose consumption in strain NZ9000::\(\Delta \)ptnABCD\(\Delta \)ptcC (active GlcU) was complex (Fig. 2C): an initial lag-phase was followed by a period of acceleration, with the rate varying up to a maximum of 0.17 \(\mu \text{mol min}^{-1} \text{ mg prot}^{-1} \). Depletion of \(\beta \)-glucose resulted in a drastic reduction of the glucose consumption rate. Energization of cells with arginine (2 mM) prior to glucose addition reduced the lag-time about 2.2-fold and increased the maximal glucose consumption rate to 0.23 \(\mu \text{mol min}^{-1} \text{ mg prot}^{-1} \), indicating that glucose transport via GlcU is dependent on the energetic status of the cell.

The profile of intracellular metabolites in NZ9000::\(\Delta \)ptc\(\Delta \)glcU (active PTS\(^{\text{Man}} \)) resembles that of the parent strains (Neves et al., 2002a; 2006), except for the maximal concentrations of 3-phosphoglycerate (3-PGA) and PEP, which were approximately three times higher in the mutant (Fig. 2A). When glucose was internalized via the PTS\(^{\text{Cel}} \) (in NZ9000::\(\Delta \)ptnABCD\(\Delta \)glcU) fructose 1,6-bisphosphate (FBP) accumulated rapidly to a concentration of 35 ± 1 mM, subsequently declining to undetectable levels as glucose consumption decreased. Concomitantly, the pools of 3-PGA and PEP rose to maximal concentrations of 35 ± 3 mM and 12 ± 2 mM respectively (Fig. 2B). Curiously, in NZ9000::\(\Delta \)ptnABCD\(\Delta \)ptcC (active GlcU) the FBP pool decreased slowly to undetectable values (Fig. 2C); the accumulation of 3-PGA and PEP was delayed as compared with NZ9000::\(\Delta \)ptnABCD\(\Delta \)glcU, and the PEP potential was about 1.8-fold lower.

Modelling of glucose consumption

The kinetics of \(\alpha \)- and \(\beta \)-glucose consumption via the individual glucose transport systems was monitored by in vivo \(^{13}\)C-NMR. The model was developed to quantify the \(\alpha \)- and \(\beta \)-anomer uptake fluxes and the flux of anomeration using the NMR time-courses for glucose utilization as input data (see Fig. S1). The estimated kinetic parameters are shown in Table 2. Glucose consumption in strain NZ9000::\(\Delta \)ptnABCD\(\Delta \)ptcC (active GlcU) was strongly dependent on the energy status of the cells (see above); therefore, all calculations were performed using data obtained with energized cells.

\(\Delta \)ptc\(\Delta \)glcU

\(\Delta \)ptnABCD\(\Delta \)glcU

\(\Delta \)ptnABCD\(\Delta \)ptcC

NZ9000

<PTS\(^{\text{Cel}} \)GlcU>
PTS^{Man} showed no preference for α-glucose or β-glucose, since the two anomers were consumed efficiently (Fig. 2A) and similar affinity constants (K_{α/β}) were obtained for the two anomers in strain NZ9000ΔptcCΔglcU (Table 2). Accordingly, the net flux for the anomeric conversion was negligible, indicating that the equilibrium anomeric ratio was maintained during glucose consumption. On the other hand, the very high K_α values for α-glucose, the low fluxes of α-glucose consumption, and the low K_β values for β-glucose in strains NZ9000ΔptnABCDΔglcU and NZ9000ΔptnABCDΔptcC denote the strong preference of PTS^{Cel} and GlcU for β-glucose. Therefore, the double-phase kinetics observed for glucose consumption in the latter two strains (Fig. 2) are explained by the inability of PTS^{Cel} and GlcU to import α-glucose; the initial phase corresponds to the fast uptake of the preferred anomer (β-glucose), while the glucose consumption rate in the second phase is limited by the rate of conversion of α- into β-glucose.

Taking advantage of the distinct anomeric specificities of the individual transporters it was possible to characterize glucose consumption in the parental strain <i>L. lactis</i> NZ9000. PTS^{Cel} and GlcU were lumped since they displayed similar anomer selectivity (high and low K_α values for α- and β-glucose respectively). Therefore, the profile of glucose consumption in strain NZ9000 was modelled with two transport systems: PTS^{Man} and <i><PTS^{Cel}+GlcU</i>. Moreover, the K_α values determined in the mutant strain NZ9000ΔptcCΔglcU for α- and β-glucose (Table 2) were used to model PTS^{Man} in the parent strain. The calculations indicate that the parent strain takes up α-glucose exclusively via PTS^{Man} (Fig. S1); furthermore, glucose is taken up with similar efficiency by PTS^{Man} and <i><PTS^{Cel}+GlcU</i> (similar V_{max} values, see Table 2).

At this stage it should be pointed out that the kinetic parameters obtained by modelling glucose consumption (Table 2) are inherently different from the kinetic parameters obtained from modelling the results of the radiolabelling assays (Table 1). The latter were obtained from assays in which metabolism of glucose was minimized (up to 10 s), while the profiles of glucose consumption were obtained in cells actively metabolizing glucose using <i>in vivo</i> NMR, a technique that allows distinguishing the individual anomers. Transport assays were fitted with a Michaelis–Menten function and the consumption of the glucose anomers was fitted with a similar formalism that considered the two anomers as competitors for the same binding site of the transporters. Thus, although K_α and K_β represent conceptually the same property it is not surprising that the two models yield different values.

It is also pertinent to stress that the K_αs obtained for PTS^{Cel} and GlcU in the strains NZ9000ΔptnABCDΔglcU and NZ9000ΔptnABCDΔptcC from the radiolabelling assays (Table 1) are overestimated since these transporters recognize β-glucose only, while total glucose (α plus β) was used to extract the kinetic parameters.

The three transport systems are expressed in the parent strain NZ9000

The level of expression of glcU, ptnC and ptcC in strain NZ9000 and derivatives with a single transporter was investigated by RT-PCR analysis (Fig. 3). The results show that all three genes are transcribed in NZ9000 (Fig. 3A). The expression level of glcU and ptnC in the double transporter mutants NZ9000ΔptnABCDΔptcC and NZ9000ΔptcCΔglcU, respectively, was higher than that in the parent strain NZ9000 (Fig. 3B). In contrast, ptcC expression was reduced in strain NZ9000ΔptnABCDΔglcU when compared with that in strain NZ9000.

Transcription of glcU, ptnC and ptcC was studied in NZ9000 for the sugars shown to sustain growth in CDM (Fig. 4). The three genes were transcribed under all the conditions tested. Glucose and mannose induced the expression of glcU, whereas ptnC expression was induced by mannose, cellobiose and maltose. Glucose, cellobiose and maltose stimulated the transcription of ptcC.

Discussion

This work completes the identification of the glucose transport systems in <i>L. lactis</i> MG1363. Glucose uptake can proceed via PTS^{Man}, PTS^{Cel} and the secondary carrier GlcU, herein disclosed for the first time. Noteworthy, the genes encoding the three different transporters are also present in the genome sequences of <i>L. lactis</i> strains IL1403 and SK11 (Bolotin et al., 2001; Makarova et al., 2006). Moreover, it is shown that GlcU is the sole non-PTS permease involved in the transport of glucose in <i>L. lactis</i> MG1363. The protein shares 36% identity with the functionally characterized <i>S. xylosus</i> glucose uptake protein (Fiegler et al., 1999). The latter is a member of the exclusively prokaryotic glucose/ribose porter family, which belongs to the drug metabolite superfamily of transporters (Jack et al., 2001). A recent genomic analysis revealed that the glucose/ribose porters are well represented in low-GC Gram-positive organisms (Lorca et al., 2007).

Moreover, BLASTP searches of all available prokaryotic genome sequences (http://www.ncbi.nlm.nih.gov/Genbank/genom_table.cgi) using the lactococcal or the staphylococcal GlcU sequences as queries retrieved homologues only within the low-GC Gram-positive Firmicutes (data not shown). In fact, GlcU-like proteins are widespread in the orders <i>Bacillales</i> and <i>Lactobacillales</i> and are also found in two <i>Clostridium</i> spp. strains. In <i>Bacillus</i> spp., glcU is transcribed during the sporulation process in the forespore (Fujita et al., 1977; Nakatani et al., 1989), whereas vegetative cells express a different non-PTS permease, the
glucose/mannose:H⁺ symporter (Paulsen et al., 1998). Additionally, we speculate that GlcU is the primary non-PTS glucose permease in the Lactobacillales. This assumption is based on a screen of all available genomes of this taxonomic order for homologues of the other characterized bacterial glucose secondary carriers, the E. coli GalP (McDonald et al., 1997) and the Streptomyces coelicolor GlcP (van Wezel et al., 2005), which retrieved exclusively proteins annotated as xylose:H⁺ symporters (data not shown).

The reported K_m values for glucose uptake via secondary carriers vary up to three orders of magnitude (mM or...
μM), a broad range of affinity that is unrelated to the transporter family type (Cvitkovitch et al., 1995; Weisser et al., 1995; Wagner et al., 2000; Gosset, 2005; van Wezel et al., 2005; Parche et al., 2006). The lactococcal GlcU (Ke, 2.4 mM) clusters in the low-affinity group together with the non-PTS permease of Bacillus megaterium and the glucose facilitator (Gf) of Zymomonas mobilis (Ke values of 2.5–5 mM and 4.1 mM respectively). The low affinity of these systems for glucose was associated with a facilitated diffusion mechanism (Weisser et al., 1995; Wagner et al., 2000), but this explanation does not suit the data on lactococcal GlcU since we showed that transport via GlcU is dependent on the proton-motive force. Thus, our data are in line with the hypothesis that members of the glucose/ribose porter family operate by H+ symport (Jack et al., 2001).

Internalization of glucose in L. lactis is either coupled to PEP-dependent phosphorylation (PTSMan and PTSεm) or driven by the PMF (GlcU). Our data show that the lactococcal PTSMan is a high-affinity, high-capacity system able to import both anomers of glucose, while PTSεm and GlcU are low-affinity transporters with a strong preference for β-glucose. Noteworthy is the clear dependency of glucose metabolism on the pathway used for taking up this sugar. As described before for wild-type strains (Neves et al., 2002a; 2006), consumption of glucose led to an increase in the FBP pool, of which the build-up rate and maximal concentration correlate with the glucose consumption rate. As opposed to the other L. lactis strains characterized here, the utilization of glucose, and the subsequent accumulation of FBP, in strain NZ9000ΔptnABCDΔptcC (missing glucose PTSs) did not start immediately after glucose addition. This emphasizes the advantage conferred by PTSs for the rapid uptake of sugar after a starvation period; moreover, the high energetic efficiency of this uptake system is well documented (Postma et al., 1993). Loss of a PEP-consuming activity (either of the two glucose PTSs) resulted in a PEP potential (pools of 3-PGA and PEP) that is three- to fourfold higher than that in wild-type strains (Neves et al., 2002a; 2006). Curiously, the PEP potential in the strain devoid of glucose PTSs was lower than that in the isogenic strains with a single PTS (NZ9000ΔptcCΔgicU and NZ9000ΔptnABCDΔgicU). This feature is most likely associated with the low rate of FBP disappearance, which is indicative of a constriction at the level of glyceraldehyde 3-phosphate dehydrogenase or phosphoglycerate kinase in the double-PTS mutant.

RT-PCR experiments using RNA from the parent strain L. lactis NZ9000 showed that the gicU, ptnC and ptcC genes are all transcribed under the conditions employed, suggesting that the three transport systems are present in this strain (Fig. 3A). Analysis of the consumption of α- and β-glucose in strain NZ9000 allowed us to assess the relative contributions of the high-affinity transporter PTSMan and the low-affinity systems <PTSεm,GlcU>. The similar capacities found for the high- and the lumped low-affinity systems in strain NZ9000 indicate that their contributions to the total glucose uptake are comparable. The individual contributions of the two low-affinity transporters are difficult to evaluate. Assuming that the transcript level is proportional to the uptake activity, the higher level of ptcC transcript would imply that the PTSεm uptake rate in strain NZ9000 is higher than that found for the transporter in the absence of both other transporters (in strain NZ9000ΔptnABCDΔgicU) (Table 2). Along the same line of reasoning, strain NZ9000 would have a lower GlcU activity. Thus, it is possible that PTSεm contributes to a greater extent than GlcU to glucose uptake in NZ9000.

We showed that NZ9000 possesses two distinct PTSs and the secondary carrier GlcU for glucose uptake. The presence of two systems displaying similar kinetic properties, the PTSεm and the secondary carrier GlcU, is an intriguing feature. It is reasonable to question whether the systems are simultaneously operative or if the environmental conditions dictate the activity of each transporter. Indeed, it has been described that an acidic environment has a negative effect on PTS activity (Vadeboncoeur et al., 1991). Furthermore, it was shown that non-PTS permease(s) in Streptococcus mutans become functional at low pH (Hamilton and Ellwood, 1978; Cvitkovitch et al., 1995). Given that the fermentation of glucose to lactic acid progressively acidifies the lactococcal growth medium, we speculate that the presence of GlcU in L. lactis confers a competitive advantage to thrive at acidic pHs. It is anticipated that the insight into glucose transport derived from this work will assist in the design of L. lactis strains with improved traits for industrial applications.

Experimental procedures

Microbial strains and growth conditions

Strains and plasmids used in this work are listed in Table 3. Routinely, L. lactis strains were cultivated as batch cultures without aeration in M17 medium (Difco™, Sparks, MD, USA) supplemented with glucose (1% w/v) at 30°C. Deletion mutants were constructed in galactose-M17 (0.5% w/v), and the temperature was raised to 37°C for plasmid integration/excision. NMR studies were performed with cells grown in chemically defined medium (CDM) supplemented with 1% glucose (w/v), under anaerobic conditions in a 2 l fermenter (B. Braun Biostat® MD, B. Braun Biotech International, Melsungen, Germany). The CDM was gassed with argon for 60 min prior to inoculation (4–5% inoculum from a culture grown overnight), the pH was kept at 6.5 by automated addition of 10 M NaOH, and an agitation rate of 70 r.p.m. was used. RT-PCR studies were performed with cells grown in rubber-stoppered bottles (200 ml) in CDM without pH control (initial pH 6.5). The following sugars (1% w/v) were tested as carbon sources: glucose, mannose, cellobiose, maltose, galactose, xylose, rhamnose and ribose. Growth was not
observed when xylose, rhamnose and ribose were used as sole carbon sources in CDM. When necessary, erythromycin or chloramphenicol was used at a final concentration of 5 μg ml⁻¹. For complementation, nisin (1 ng ml⁻¹) was used. Growth was monitored by measuring the optical density at 600 nm.

DNA techniques

General molecular techniques were performed essentially as described elsewhere (Sambrook et al., 1989). Chromosomal and plasmid DNA were isolated by the method of Johansen and Kibeniich (1992) and Birnboim and Doly (1979) respectively. *L. lactis* was transformed with plasmid DNA by electroporation as described by Holo and Nes (1995). Restriction enzymes and T4 DNA ligase were obtained from New England Biolabs (Ipswich, MA, USA) and Pwo polymerase and Taq polymerase were obtained from Roche Applied Science (Mannheim, Germany) and were used according to the supplier’s instructions. PCR reactions were performed in a MyCyclerTM thermal cycler (Bio-Rad, Hercules, CA, USA). Primers (listed in Table S1) were purchased from Thermo Fisher Scientific (Waltham, MA, USA).

Construction of *L. lactis* mutant strains and plasmids

Gene deletions were all performed in *L. lactis* NZ9000 and were constructed using a two-step homologous recombination method (Leenhouts et al., 1996). This method does not leave antibiotic resistance markers in the chromosome, and multiple deletions in one strain can be accomplished. Chromosomal DNA of *L. lactis* NZ9000 was used as a template in PCR amplifications. The PTS^{Man} route was inactivated by deletion of *ptnABCD*-encoding enzyme II^{Man} as previously described (Pool et al., 2006). To disrupt the PTS^{Cel}, a strain carrying a deletion in *ptcC*, the membrane-bound domain IIC of enzyme IIC^{Cel}, was constructed as follows: a 1253 bp deletion in *glcU* (1338 bp) was made using the primer pairs *ptcC1/ptcC2* and *ptcC3/ptcC4*. Genes *ytgBAH* (locus tags *llmg_2146*, *llmg_2145* and *llmg_2143* in *L. lactis* MG1363 genome sequence) (Wegmann et al., 2007) were inactivated by deletion in strain NZ9000::*ptnABCD*_Δ*ptcC* using the primers *ytgBAH1/ytgBAH2* and *ytgBAH3/ytgBAH4*. *L. lactis* NZ9000::*ptcC*_Δ*glcU*, carrying only the last 23 bp of *llmg_2561* (*glcU*), was engineered using the primer pairs *glcU1/glcU2* and *glcU3/glcU4*. The deletions were confirmed by PCR and Southern blotting analysis (Fig. S2). For a complementation study, the *glcU* gene (888 bp) was amplified by PCR using *L. lactis* NZ9000 DNA as template and primer pairs GlcU-fw and GlcU-rev (Table S1). The Ncol/HindIII-restricted PCR product was cloned in Ncol-HindIII-restricted pNZ8048. The resulting plasmid pNZ8048[glcU] was transformed into strain NZ9000::*ptnABCD*_Δ*ptcC*_Δ*glcU*, yielding strain NZ9000::*ptnABCD*_Δ*ptcC*_Δ*glcU*_Δ*ytgBAH*_Δ*ytgBAH*_Δ*ytgBAH*_Δ*ytgBAH*.

[14C]-glucose transport studies

All strains were grown in M17 medium supplemented with 1% glucose, without pH control. Cells were harvested at the mid-exponential phase of growth, washed twice in KP buffer (5 mM, pH 6.5) and suspended in the KP buffer (50 mM, pH 6.5). Initial glucose uptake rates were measured at 30°C in 100 μl of cell suspensions with appropriate optical densities at 600 nm. [U-¹³C]glucose was added to a final concentration of 0.001–20 mM (specific activity 0.02–19 μCi μmol⁻¹). Uptake assays were performed essentially as described by Wolken et al. (2006), except that KP buffer (50 mM, pH 6.5) was used to wash the filters. For kinetic analysis of glucose transport via GlcU (in NZ9000::*ptnABCD*_Δ*ptcC*), the cell sus-

Table 3. *L. lactis* strains and plasmids used in this study.

Strain/plasmid	Description	Reference
Strains		
LL302	*RepA*⁺ MG1363, carrying a single copy of pWV01 *repA* in *pepX*	Leenhouts et al. (1998)
NZ9000	MG1363 derivative carrying *pepP*:nisRK	Kuipers et al. (1998)
NZ9000::*ptnABCD*	Derivative of NZ9000 containing a 1736 bp deletion in *ptnABCD*	Pool et al. (2006)
NZ9000::*ptcC*	Derivative of NZ9000 containing a 1254 bp deletion in *ptcC*	This work
NZ9000::*ptnABCD*_Δ*ptcC*	Derivative of NZ9000::*ptnABCD*_Δ*ptcC* containing a 1716 bp deletion in *ytgBAH*	This work
NZ9000::*ptnABCD*_Δ*ptcC*_Δ*glcU*_Δ	Derivative of NZ9000::*ptnABCD*_Δ*ptcC* containing a 864 bp deletion in *glcU*	This work
NZ9000::*ptnABCD*_Δ*ptcC*_Δ*glcU*_Δ*ytgBAH*	Derivative of NZ9000::*ptnABCD*_Δ*ptcC*_Δ*glcU*_Δ carrying pNZ8048-glU	This work
NZ9000::*ptnABCD*_Δ*ptcC*_Δ*glcU*_Δ*ytgBAH*	Derivative of NZ9000::*ptnABCD*_Δ*ptcC*_Δ*glcU*_Δ carrying pNZ8048-glU	This work

Plasmids	Description	Reference
pORI280	*Emr*, lacZ⁺, ori* of pWV01, replicates only in strains providing *repA* in trans	Leenhouts et al. (1996)
pVE6007	*Cmr*, temperature-sensitive derivative of pWV01	Maguin et al. (1992)
pNZ8048	Derivative of *pORI280* specific for integration in *L. lactis ptcC*	de Ruyter et al. (1996)
pNZ8048-glU	*Cmr*, *pNG8048* with *glcU* cloned in the Ncol/HindIII site	This work
pORI280-tpcC⁺	*Emr*, derivative of pORI280 specific for integration in *L. lactis ytgBAH*	This work
pORI280-ytgBAH	*Emr*, derivative of pORI280 specific for integration in *L. lactis ytgBAH*	This work
pORI280-glU⁺	*Emr*, derivative of pORI280 specific for integration in *L. lactis glcU*	This work

Cmr⁺, chloramphenicol resistant; Emr⁺, erythromycin resistant.
pension was incubated with 2 mM arginine prior to the addition of labelled glucose. The kinetic parameters \((K_a, V_{max})\) for glucose uptake were estimated by fitting the data using non-linear least squares regression analysis (Excel solver, Microsoft Excel 2003) to the Michaelis–Menten equation. Glucose uptake was also evaluated in the presence of 20 \(\mu\)M TCS and 150 \(\mu\)M CCCP. The effect of protonophores was studied as follows: cell suspensions of NZ9000ΔptnABCDΔptcC were incubated with the compound for 3 min at 30°C. \([1^{13}C]\)-glucose was added to a final concentration of 150 \(\mu\)M and the uptake was stopped after 60 s. The influence of ethanol (2%, v/v), the solvent of CCCP and TCS, was also examined. Transport competition experiments were performed with energized NZ9000ΔptnABCDΔptcC (in the presence of 2 mM arginine). Glucose uptake was measured in cell suspensions with 0.5 mM glucose and 100-fold excess of the following carbohydrates: ribose, rhamnose, mannose, xylose, arabinose, cellobiose and galactose. The competition assays were performed in triplicate using cells from two independent cultures.

In vivo NMR experiments

Cells were grown in CDM containing 1% glucose (w/v) and suspensions were made anaerobic as described elsewhere (Neves et al., 1999). In vivo NMR experiments were performed using an online system and glucose specifically labelled with \(^{13}\)C on carbon one (20 mM) as substrate (Neves et al., 1999; 2002a). In strain NZ9000ΔptnABCDΔptcC, \([1^{13}C]\)-glucose utilization was also studied following energization of the resting cells with arginine (2 mM). Cells were grown in CDM containing 1% glucose (w/v) and the formation of other metabolites was determined by 1H-NMR in a Bruker AMX300 (Bruker BioSpin GmbH, Karlsruhe, Germany) as described before (Neves et al., 1999). Lactate was quantified in the NMR-sample extracts by 1H-NMR in a Bruker AMX300 (Bruker BioSpin GmbH). The concentration of other metabolites was determined in fully relaxed \(^{13}\)C spectra of the NMR-sample extracts as previously described (Neves et al., 2002b). Each experiment was repeated at least twice and the results were highly reproducible.

Kinetics of \(\alpha\) and \(\beta\)-glucose consumption

A mathematical model for the consumption of \(\alpha\) and \(\beta\)-glucose was developed using Michaelis–Menten formalism, and taking into account the first-order kinetics of anomerization. The model considers that each anomer competes with the other for the free transporter (\(T_{max}\)), leading to the formation \((k_j\) of a complex \([\alpha\text{Glc}-T]\) or \([\beta\text{Glc}-T]\). Binding to the transporter is reversible and dissociation can occur without transport \((k_j\), or the glucose anomer is transported and released to the intracellular space \((k_j\) (schematic representation in Fig. S3). The uptake rate of the individual anomers is given by

\[
\nu = \frac{V_{max} ([\alpha\text{Glc}])}{K_{app}^\alpha + [\alpha\text{Glc}]} \quad \text{and} \quad \nu = \frac{V_{max} ([\beta\text{Glc}])}{K_{app}^\beta + [\beta\text{Glc}]},
\]

where \(K_{app}^\alpha = \frac{k_2^\alpha + k_3^\alpha}{k_0^\alpha} \quad \text{and} \quad V_{max} = k_2 \cdot T \quad \text{for} \quad n = \alpha \text{ or } \beta\). Moreover, it was assumed that the \(V_{max}\) values for \(\alpha\)- and \(\beta\)-glucose were identical, i.e. \(k_2^\alpha = k_2^\beta\). Therefore, \(V_{max}\) represents the maximum capacity of glucose consumption, regardless the anomeric form that is taken up. The parameters \(K_{app}^\alpha\) and \(K_{app}^\beta\) are the affinity constants for utilization of each glucose anomer. It is implicitly assumed that transport is the rate limiting step in the metabolism of glucose and the actual kinetics of glucose uptake may be affected by subsequent metabolism. Consumption of \(\alpha\)- and \(\beta\)-glucose by \(L.\ lactis\) was monitored by \(^{13}\)C-NMR in some cases slower than the anomerization rate, thus requiring the consideration of the anomerization step. The first-order rate constants of glucose anomerization were determined by acquiring sequences of \(^{13}\)C-NMR spectra of 20 mM \(\alpha\)-[\(1^{13}\)C]-glucose dissolved in the same buffer used for \(in vivo\) NMR experiments (50 mM KPO, pH 6.5), at 30°C. Under these conditions the equilibrium molar percentages of \(\alpha\)-glucose and \(\beta\)-glucose were 38.2% and 62.8% respectively. The first-order rate constants were 0.108 ± 0.001 min^{-1} for the conversion of \(\alpha\) into \(\beta\) and 0.063 ± 0.001 min^{-1} for the conversion of \(\beta\) into \(\alpha\).

The profile of glucose consumption by \(L.\ lactis\) was approximately sigmoidal, i.e. at the initial stage, immediately after glucose addition, glucose uptake proceeded at a rate lower than maximal and this feature was especially apparent in the strain transporting glucose via the GlcU permease only (see above). To account for this behaviour the \(V_{max}\) of glucose transport was multiplied by the following function:

\[
\varphi = \begin{cases}
1 + a + b \cdot t + c \cdot t^2, & a + b + c \cdot t^2 \\ 1, & a + b + c \cdot t^2 > 1
\end{cases}
\]

The parameters \(a, b\) and \(c\) were determined so that \(0 \leq \varphi \leq 1\), and \(\varphi\) increases from \(a\) to \(1\) monotonically with time, \(t\). The model was implemented in MATLAB v7.3.0 (The MathWorks, Natick, MA, USA) as a set of ordinary differential equations.

\[
\begin{align*}
\frac{d[\alpha\text{Glc}]}{dt} &= \frac{V_{max} [\alpha\text{Glc}]}{K_{app}^\alpha + [\alpha\text{Glc}]} \cdot \varphi \\
\frac{d[\beta\text{Glc}]}{dt} &= \frac{V_{max} [\beta\text{Glc}]}{K_{app}^\beta + [\beta\text{Glc}]} \cdot \varphi
\end{align*}
\]

The parameters \((V_{max}, K_{app}^\alpha, K_{app}^\beta, a, b \text{ and } c)\) were determined by fitting the model to the \(\alpha\)- and \(\beta\)-glucose consumption profiles determined experimentally. A simulated annealing algorithm was used to ensure that the minimum found was indeed a global minimum. The differential equations were solved using the \textit{ode23s} function and the non-linear regression performed using the \textit{lsqnonlin} function.
RT-PCR experiments

Lactococcus lactis NZ9000 and derivatives were grown as described above. Total RNA was isolated from cells at the mid-exponential phase of growth using the SV total RNA isolation system (Promega, Woods Hollow Road, MA, USA), with the following modifications: incubation with lysozyme (5 mg ml\(^{-1}\), 20 min, 37°C) preceded the first step of the kit protocol, and an additional incubation step with the kit DNase I (1.5 h, 24°C) was required to remove chromosomal DNA. Total RNA (1 µg), dNTPs (final concentration of 0.5 mM) and random oligonucleotides (12 µg ml\(^{-1}\) (Invitrogen, Carlsbad, CA, USA) were heated to 65°C for 5 min and chilled on ice. Dithiothreitol (final concentration 5 µM), first-strand RT buffer and Superscript III (1/20; v/v) (Invitrogen, Carlsbad, CA, USA) were added and samples were incubated for 5 min at 25°C, 60 min at 50°C and 15 min at 70°C for enzyme inactivation. A parallel sample was treated in the same way, except for the addition of enzyme. cDNA was subsequently used 1/30 (v/v) in standard PCR reactions. To test for contamination of RNA with DNA, the RNA samples without reverse transcriptase were used as negative controls for all conditions tested. Chromosomal *L. lactis* NZ9000 DNA was used as positive control for the PCR reaction. The primer pairs (Table S1) were designed to amplify internal fragments of *tufC* (tufC\(_{RT1}\)/tufC\(_{RT2}\)) and *glcU* (glcU\(_{RT1}\)/glcU\(_{RT2}\), *ptnC* (ptnC\(_{RT1}\)/ptnC\(_{RT2}\), *pttC* (pttC\(_{RT1}\)/pttC\(_{RT2}\)) and *tufA* (tuf\(_{RT1}\)/tuf\(_{RT2}\)). *L. lactis* *tufA*, a housekeeping gene coding for the elongation factor TU required for continued translation of mRNA, was used as control. RT-PCR was performed twice with RNA isolated from independent cultures.

Transcriptome analysis

The levels of mRNA in NZ9000 and a derivative strain lacking PTS\(^{\text{Man}}\) and PTS\(^{\text{Cr}}\) glucose transporters were compared by transcriptome analysis using full-genome amplicon-based *L. lactis* IL1403 DNA microarrays (Kuipers et al., 2002). The experiments were performed essentially as described by van Hijum et al. (2005), with the modifications introduced by Pool et al. (2006).

Chemicals

\[1-\text{13}\text{C}]\text{-glucose (99% enrichment) and [U-\text{13}\text{C}]\text{-glucose (287 mCi mmol\(^{-1}\)} were obtained from Campro Scientific (Veenendaal, the Netherlands) and Amersham Biosciences (GE Healthcare, Europe) respectively. All other chemicals were reagent grade.

Acknowledgements

This work was supported by Fundação para a Ciência e a Tecnologia, Portugal (FCT) and FEDER, projects POCTI/BIO/48333/2002 and PTDC/ECA-ACR/69530/2006, and by contract QLK1-CT-2000-01376 of the Commission of the European Communities. R. Castro and L.L. Fonseca acknowledge FCT for the award of research fellowships SFRH/BD/17718/2004 and SFRH/BPD/26902/2006 respectively. We thank Professor T. Catarino for helpful discussions and A. de Jong and S.A.F.T. van Hijum for help in the analysis of DNA microarray data.

References

Birnboim, H.C., and Doly, J. (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. *Nucleic Acids Res* 7: 1513–1523.

Bolotin, A., Wincker, P., Mauger, S., Jaillon, O., Malarme, K., Weissenbach, J., et al. (2001) The complete genome sequence of the lactic acid bacterium *Lactococcus lactis* ssp. *lactis* IL1403. *Genome Res* 11: 731–753.

Cvitkovich, D.G., Boyd, D.A., Thevenot, T., and Hamilton, I.R. (1995) Glucose transport by a mutant of *Streptococcus mutans* unable to accumulate sugars via the phosphoenolpyruvate phosphotransferase system. *J Bacteriol* 177: 2251–2258.

Death, A., and Ferenci, T. (1994) Between feast and famine: endogenous inducer synthesis in the adaptation of *Escherichia coli* to growth with limiting carbohydrates. *J Bacteriol* 176: 5101–5107.

Deutscher, J., Francke, C., and Postma, P.W. (2006) How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. *Microbiol Mol Biol Rev* 70: 939–1031.

Ehmann, M., Ehrle, R., Hofmann, E., Boos, W., and Schlosser, A. (1998) The ABC maltose transporter. *Mol Microbiol* 29: 685–694.

Fiegler, H., Bassias, J., Jankovic, I., and Bruckner, R. (1999) Identification of a gene in *Staphylococcus xylosus* encoding a novel glucose uptake protein. *J Bacteriol* 181: 4929–4936.

Fujita, Y., Ramaley, R., and Freese, E. (1977) Location and properties of glucose dehydrogenase in sporulating cells and spores of *Bacillus subtilis*. *J Bacteriol* 132: 282–293.

Görke, B., and Stülke, J. (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. *Nat Rev Microbiol* 6: 613–624.

Gosset, G. (2005) Improvement of *Escherichia coli* production strains by modification of the phosphoenolpyruvate: sugar phosphotransferase system. *Microb Cell Fact* 4: 14.

Hamilton, I.R., and Ellwood, D.C. (1978) Effects of fluoride on carbohydrate metabolism in bacteria. *J Bacteriol* 137: 472–483.

Hajer, C., Verhagen, J., and Vinod, N.S. (2006) Identification of a gene coding for a glucose transport system-related protein in *Escherichia coli*. *Microbiology* 152: 599–609.

Holo, H., and Nes, I.F. (1995) Transformation of *Lactococcus* by electroporation. *Methods Mol Biol* 47: 195–199.

Jack, D.L., Yang, N.M., and Saier, M.H., Jr (2001) The drug/metabolite transporter superfamily. *Eur J Biochem* 268: 3620–3639.

Jahreis, K., Pimentel-Schmitt, E.F., Bruckner, R., and Tilgemeyer, F. (2008) Ins and outs of glucose transport systems in eubacteria. *FEMS Microbiol Rev* 32: 891–907.

Johansen, E., and Kibenich, A. (1992) Isolation and characterization of IS\(_{1165}\), an insertion sequence of *Leuconostoc mesenteroides* subsp. *cremoris* and other lactic acid bacteria. *Plasmid* 27: 200–206.

Konings, W.N. (2006) Microbial transport: adaptations to natural environments. *Antonie van Leeuwenhoek* 90: 325–342.
Kuipers, O.P., De Ruyter, P.G.G.A., Kleerebezem, M., and de Vos, W. (1998) Quorum sensing-controlled gene expression in lactic acid bacteria. *J Biotechnol* 64: 15–21.

Kuipers, O.P., de Jong, A., Baerends, R.J., van Hijum, S.A., Zomer, A.L., Karsens, H.A., et al. (2002) Transcriptome analysis and related databases of *Lactococcus lactis*. *Antonie Van Leeuwenhoek* 82: 113–122.

Leenhousts, K., Buist, G., Bolhuis, A., ten Berge, A., Kiel, J., Mierau, I., et al. (1996) A general system for generating unlabelled gene replacements in bacterial chromosomes. *Mol Gen Genet* 253: 217–224.

Leenhousts, K., Bolhuis, A., Venema, G., and Kok, J. (1998) Construction of a food-grade multiple-copy integration system for *Lactococcus lactis*. *Appl Microbiol Biotechnol* 49: 417–423.

Lorca, G.L., Barabote, R.D., Zlotopolski, V., Tran, C., Winnen, B., Hvorup, R.N., et al. (2007) Transcriptome of eleven gram-positive bacteria: comparative genomic analyses. *Biochim Biophys Acta* 1768: 1342–1366.

McDonald, T.P., Walmsley, A.R., and Henderson, P.J. (1997) Asparagine 394 in putative helix 11 of the galactose-H+ symport protein (GalP) from *Escherichia coli* is associated with the internal binding site for cytochalasin B and sugar. *J Biol Chem* 272: 15189–15199.

Maguin, E., Duwat, P., Hege, T., Ehrlich, D., and Gruss, A. (1992) New thermosensitive plasmid for gram-positive bacteria. *J Bacteriol* 174: 5633–5638.

Makarova, K., Slesarev, A., Wolf, Y., Sorokin, A., Mirkin, B., Koonin, E., et al. (2006) Comparative genomics of the lactic acid bacteria. *Proc Natl Acad Sci USA* 103: 15611–15616.

Nakatani, Y., Nicholson, W.L., Neitzke, K.D., Setlow, P., and Freese, E. (1989) Sigma-G RNA polymerase controls forespore-specific expression of the glucose dehydrogenase operon in *Bacillus subtilis*. *Nucleic Acids Res* 17: 999–1017.

Neves, A.R., Ramos, A., Nunes, M.C., Kleerebezem, M., Hugenholz, J., de Vos, W.M., et al. (1999) In vivo nuclear magnetic resonance studies of glycolytic kinetics in *Lactococcus lactis*. *Biotechnol Bioeng* 64: 200–212.

Neves, A.R., Ramos, A., Costa, H., van Swam, I.I., Hugenholz, J., Kleerebezem, M., et al. (2002a) Effect of different NADH oxidase levels on glucose metabolism by *Lactococcus lactis*: kinetics of intracellular metabolite pools determined in *in vivo* nuclear magnetic resonance. *Appl Environ Microbiol* 68: 6332–6342.

Neves, A.R., Ventura, R., Mansour, N., Shearman, C., Gasson, M.J., Maycock, C., et al. (2002b) Is the glycolytic flux in *Lactococcus lactis* primarily controlled by the redox charge? Kinetics of NAD(+) and NADH pools determined in *in vivo* by 13C NMR. *J Biol Chem* 277: 28088–28098.

Neves, A.R., Pool, W.A., Castro, R., Mingote, A., Santos, F., Kok, J., et al. (2006) The α-phosphoglucomutase of *Lactococcus lactis* is unrelated to the α-α-phosphohexomutase superfamily and encoded by the essential gene pgmH. *J Biol Chem* 281: 36864–36873.

Nevoigt, E. (2008) Progress in metabolic engineering of *Saccharomyces cerevisiae*. *Microbiol Mol Biol Rev* 72: 379–412.

Pao, S.S., Paulsen, I.T., and Saier, M.H., Jr (1998) Major facilitator superfamily. *Microbiol Mol Biol Rev* 62: 1–34.

Parche, S., Beleut, M., Rezzonico, E., Jacobs, D., Arigoni, F., Tilgemeyer, F., and Jankovic, I. (2006) Lactose-over-glucose preference in *Bifidobacterium longum* NCC2705: *gicP*, encoding a glucose transporter, is subject to lactose repression. *J Bacteriol* 188: 1260–1265.

Paulsen, I.T., Chauvaux, S., Choi, P., and Saier, M.H., Jr (1998) Characterization of glucose-specific catabolite repression-resistant mutants of *Bacillus subtilis*: identification of a novel hexose: H+ symporter. *J Bacteriol* 180: 498–504.

Pool, W.A., Neves, A.R., Kok, J., Santos, H., and Kuipers, O.P. (2006) Natural sweetening of food products by engineering *Lactococcus lactis* for glucose production. *Metab Eng* 8: 456–464.

Postma, P.W., Lengeler, J.W., and Jacobson, G.R. (1993) Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. *Microbiol Rev* 57: 543–594.

de Ruyter, P.G., Kuipers, O.P., and de Vos, W.M. (1996) Controlled gene expression systems for *Lactococcus lactis* with the food-grade inducer nisin. *Appl Environ Microbiol* 62: 3662–3667.

Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989) *Molecular Cloning: A Laboratory Manual*. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

Stülke, J., and Hillen, W. (2000) Regulation of carbon catabolism in *Bacillus* species. *Annu Rev Microbiol* 54: 849–880.

Thompson, J., Chassy, B.M., and Egan, W. (1985) Lactose metabolism in *Streptococcus lactis*: studies with a mutant lacking glucokinase and mannose-phosphotransferase activities. *J Bacteriol* 162: 217–223.

Vadeboncoeur, C., St Martin, S., Brochu, D., and Hamilton, I.R. (1991) Effect of growth rate and pH on intracellular levels and activities of the components of the phosphoenolpyruvate:sugar phosphotransferase system in *Streptococcus mutans* Ingbrtt. *Infect Immun* 59: 900–906.

Vanderpool, C.K., and Gottesman, S. (2004) Involvement of a novel transcriptional activator and small RNA in post-transcriptional regulation of the glucose phosphoenolpyruvate phosphotransferase system. *Mol Microbiol* 54: 1076–1089.

de Vos, W.M., and Hugenholz, J. (2004) Engineering metabolic highways in Lactococci and other lactic acid bacteria. *Trends Biotechnol* 22: 72–79.

Wagner, A., Kuster-Schock, E., and Hillen, W. (2000) Sugar uptake and carbon catabolite repression in *Bacillus megaterium* strains with inactivated ptsH. *J Mol Microbiol Biotechnol* 2: 587–592.

Wegmann, U., O’connell-Motherway, M., Zomer, A., Buist, G., Shearman, C., Canchaya, C., et al. (2007) Complete genome sequence of the prototype lactic acid bacterium *Lactococcus lactis* subsp. cremoris MG1363. *J Bacteriol* 189: 3256–3270.

Weisser, P., Kramer, R., Sahm, H., and Sprenger, G.A. (1995) Functional expression of the glucose transporter of *Zymomonas mobilis* leads to restoration of glucose and fructose uptake in *Escherichia coli* mutants and provides evidence for its facilitator action. *J Bacteriol* 177: 3351–3354.

Wendisch, V.F., Bott, M., and Eikmanns, B.J. (2006) Metabolic engineering of *Escherichia coli* and *Corynebacterium glutamicum* for biotechnological production of organic materials.
acids and amino acids. *Curr Opin Microbiol* 9: 268–274.

van Wezel, G.P., Mahr, K., Konig, M., Traag, B.A., Pimentel-Schmitt, E.F., Willmek, A., and Titgemeyer, F. (2005) GlcP constitutes the major glucose uptake system of *Streptomyces coelicolor* A3(2). *Mol Microbiol* 55: 624–636.

Wolken, W.A., Lucas, P.M., Lonvaud-Funel, A., and Lolkema, J.S. (2006) The mechanism of the tyrosine transporter TyrP supports a proton motive tyrosine decarboxylation pathway in *Lactobacillus brevis*. *J Bacteriol* 188: 2198–2206.

Supporting information

Additional supporting information may be found in the online version of this article.

Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.