We present a model of truthful elicitation which generalizes and extends mechanisms, scoring rules, and a number of related settings that do not quite qualify as one or the other. Our main result is a characterization theorem, yielding characterizations for all of these settings, including a new characterization of scoring rules for non-convex sets of distributions. We generalize this model to eliciting some property of the agent’s private information, and provide the first general characterization for this setting. We also show how this yields a new proof of a result in mechanism design due to Saks and Yu.

1. INTRODUCTION

In this paper, we examine a general model of information elicitation where a single agent is endowed with some type t that is private information and is asked to reveal it. After doing so, he receives a score that depends on both his report t' and his true type t. For reasons that will become clear, we represent this as a function $A(t')(t)$ that maps his reported type to a function that maps types to real numbers, with his score being this function applied to his true type (equivalently his reported type selects from a parameterized family of functions with the result applied to his true type). We allow A to be quite general, with the main requirement being that $A(t')(\cdot)$ is an affine function of the true type t, and seek to understand when it is optimal for the agent to truthfully report his type. Given this restriction, it is immediately clear why convexity plays a central role—when an agent’s type is t, the score for telling the truth is $A(t)(t) = \sup_{t'} A(t')(t)$, which is a convex function of t as the pointwise supremum of affine functions.

One special case of our model is mechanism design with a single agent, where the designer wishes to select an outcome based on the agent’s type. In this setting, $A(t')$ can be thought of as the allocation and payment given a report of t', which combine to determine the utility of the agent as a function of his type. In this context, $A(t)(t)$ is the consumer surplus function (or indirect utility function), and Myerson’s well-known characterization [1981] states that, in single-parameter settings, a mechanism is truthful if and only if the consumer surplus function is convex and its derivative (or subgradient at points where it is not differentiable) is the allocation rule. More generally, this remains true in higher dimensions (see [Archer and Kleinberg 2008]). Note that here the restriction that $A(t’)$ be affine is without loss of generality, because we view types as functions and function application is a linear operation. (See Section 2.2 for more details.)

Another special case is a scoring rule, also called a proper loss in the machine learning literature, where an agent is asked to predict the distribution of a random variable and given a score based on the observed realization of that variable. In this setting, types are distributions over outcomes, and $A(t')(t)$ is the agent’s expected score for a report that the distribution is t' when he believes the distribution is t. As an expectation, this score is linear in the agent’s type. Gneiting and Raftery [2007] unified and

1A mapping between two vector spaces is affine if it consists of a linear transformation followed by a translation.

2Despite this restriction to a single agent, our characterization actually applies to mechanisms with any number of agents because notions of truthfulness such as dominant strategies and Bayes-Nash are phrased in terms of holding the behavior of other agents constant. Thus focus on the single agent case is standard. See [Chung and Ely 2002; Archer and Kleinberg 2008] for additional discussion.
generalized existing results in the scoring rules literature by characterizing proper scoring rules in terms of convex functions and their subgradients.

Further, the generality of our characterization allows it to include settings that do not quite fit into the standard formulations of mechanisms or scoring rules. These include counterfactual scoring rules for decision-making [Othman and Sandholm 2010; Chen and Kash 2011; Chen et al. 2011], proper losses for machine learning with partial labels [Cid-Sueiro 2012], mechanism design with partial allocations [Cai et al. 2013], and responsive lotteries [Feige and Tennenholtz 2010].

In many settings, it is difficult, or even impossible, to have agents report an entire type $t \in T$. For example, when allocating a divisible good (e.g., water), a mechanism that needs to know how much an agent would value each possible allocation requires him to submit an infinite-dimensional type. Even type spaces which are exponential in size, such as those that arise in combinatorial auctions, can be problematic from an algorithmic perspective. Moreover, in many situations, the principal is uninterested in all but some small aspect of an agent’s private type. For example, the information is often to be used to eventually make a specific decision, and hence only the information directly pertaining to the decision is actually needed—why ask for the agent’s entire probability distribution of rainfall tomorrow if a principal wanting to choose between {umbrella, no umbrella} would be content with its expected value, or even just whether he should carry an umbrella or not?

It is therefore natural to consider a model of truthful reporting where agents provide some sort of summary information about their type. Such a model has been studied in the scoring rules literature, where one wishes to elicit some statistic, or property, of a distribution, such as the mean or quantile [Savage 1971; Lambert et al. 2008; Gneiting 2011]. We follow this line of research, and extend the affine score framework to accept reports from a different (intuitively, much smaller) space than T.

1.1. Prior Work

The similarities between mechanisms and scoring rules were noted by (among others) Fiat et al. [2013], who gave a construction to convert mechanisms into scoring rules and vice versa, and Feige and Tennenholtz [2010], who gave techniques to convert both to “responsive lotteries.” Further, techniques from convex analysis have a long history in the analysis of both models (see [Gneiting and Raftery 2007; Vohra 2011]). However, we believe that our results use the “right” representation and techniques, which leads to more elegant characterizations and arguments. For example, the construction used by Fiat et al. has the somewhat awkward property that the scoring rule corresponding to a mechanism has one more outcome than the mechanism did, a complication absent from our results. Similarly, the constructions used by Feige and Tennenholtz only handle special cases and they claim “there is no immediate equivalence between lottery rules and scoring rules,” while we can give such an equivalence. So while prior work has understood that there is a connection, the nature of that connection has been far from clear.

On the mechanism design side, we show how existing characterizations of when an allocation rule is truthfully implementable generalize to our setting. This builds on a large literature that has explored such characterizations, including [McAfee and McMillan 1988; Jehiel et al. 1996; 1999; Jehiel and Moldovanu 2001; Saks and Yu 2005; Bikhchandani et al. 2006; Miller et al. 2007; Archer and Kleinberg 2008; Ashlagi et al. 2010; Carroll 2012]. Similarly, work on revenue equivalence can be cast in our framework as well [Myerson 1981; Krishna and Maenner 2001; Heydenreich et al. 2009; Carbajal and Ely 2012]. For scoring rules, our work connects to a literature that has used non-convex sets of probability distributions to separate (usefully) informed exports from uninformed experts [Fang et al. 2010; Babaioff et al. 2011].
The study of indirect elicitation in scoring rules can be traced to Savage, who considered the problem of eliciting expected values of random variables [Savage 1971]. Osband [Osband and Reichelstein 1985] goes on to provide a rigorous version, generalizing to expected values of functions of the underlying variable. More generally, Gneiting and Raftery [2007] and Gneiting [2011] consider other common statistics as well, such as quantiles, ratios of expectations, and expectiles.

While these and many other examples of specific statistics have appeared in the literature, it was perhaps Lambert, Pennock, and Shoham [2008] who first considered the following general problem: given an outcome space \(O \) and an arbitrary map \(\Gamma : \Delta(O) \rightarrow \mathbb{R} \), under what circumstances can we construct a proper scoring rule to elicit \(\Gamma(t) \)? Moreover, what is the full classification of functions \(\Gamma \) which can be elicited in this way? Lambert, Pennock, and Shoham [2008] make a number of significant contributions towards these goals for the special case of scalar properties, where \(\Gamma \) is real-valued. Lambert and Shoham [2009] also characterized elicitable properties \(\Gamma \) which take on finitely many values, showing a connection to power diagrams\(^3\) from computational geometry. Abernethy and Frongillo [2012] examined the case where \(\Gamma \) is linear but may be vector valued, and showed that truthful scores are derived from Bregman divergences.

We focus primarily on properties in scoring rule context because, while non-direct-revelation mechanisms are often studied, their goal is typically not to get the agent to make a particular truthful report. However, this is somewhat more natural in mechanism design with a finite set of allocations. In particular, mechanisms that elicit a ranking over outcomes rather than a utility for each outcome (common in, e.g., matching contexts) are a form of property elicitation, and our results are related to characterizations due to Carroll [2012]. Our results about finite properties also provide a new proof of a theorem due to Saks and Yu that characterizes when allocation rules that select from a finite set of allocations have payments that make them truthful [Saks and Yu 2005].

1.2. Our Contribution

Our main theorem (Section 2) is a general characterization theorem that generalizes and extends known characterization theorems for proper scoring rules (substantially) and truthful mechanisms (slightly, by removing a technical assumption). For scoring rules, this provides the first characterization of proper scoring rules with non-convex sets of distributions, an idea that has proved useful as a way of separating informed and uninformed experts [Babaioff et al. 2011; Fang et al. 2010], but for which no characterization was known. We also survey applications to related settings and show our theorem can be used to provide characterizations for them as well, including new results about mechanism design with partial allocation and responsive lotteries. Thus, our theorem eliminates the need to independently derive characterizations for such settings.

This unified characterization of mechanisms and scoring rules also clarifies their relationship: both are derived from convex functions in the exact same manner, with mechanisms merely facing additional constraints on the choice of convex function so that it yields a valid allocation rule. This aids in understanding when results or techniques from one setting can be applied in the other. Indeed, the proof of our characterization begins with Gneiting and Raftery’s scoring rule construction [2007] and adapts it with a variant of a technique from Archer and Kleinberg [2008] for handling mechanisms with non-convex type spaces (see their Theorem 6.1). As an example of the new insights this can provide, results from mechanism design show that a scor-

\(^3\)A generalization of Voronoi diagrams; see Section 5.
ing rule is proper if and only if it is locally proper (see Section B.2 and Corollary 2.7). More broadly, we show how results from mechanism design about implementability and revenue equivalence generalize to our framework.

We then move on to two general results for eliciting a particular property Γ of the agent’s private information. The first is essentially a direct generalization of Theorem 2.3, which keeps the same general structure but adds the constraint that the convex function must be flat on sets of types which share an optimal report. This is the first general result for multidimensional nonlinear properties; in addition to serving as our main tool to derive the remainder of our results, this theorem provides several ways to show that a property is not elicitable (by showing that no such convex function can exist). The second result is a transformation of this theorem using duality, which shows that there is a strong sense in which properties are subgradients of convex functions. We also use this results to introduce notions of dual properties and scores, which gives a new connection between scoring rules and randomized mechanisms.

We conclude by examining properties that take on a finite number of values, which Lambert and Shoham [2009] showed correspond to power diagrams. We extend their result to settings where the private information need not be a probability distribution, and give a tight characterization for a particular restricted “simple” case. We also give an explicit construction for generating power diagrams from other measures of distances via a connection to Bregman Voronoi diagrams [Boissonnat et al. 2007]. Finally, we show how these results imply a new proof of an implementability theorem from mechanism design due to Saks and Yu [2005].

1.3. Notation

We define $\mathbb{R} = \mathbb{R} \cup \{-\infty, \infty\}$ to be the extended real numbers. Given a set of measures M on X, a function $f : X \to \mathbb{R}$ is M-quasi-integrable if $\int_X f(x) \mu(x) \in \mathbb{R}$ for all $\mu \in M$. Let $\Delta(X)$ be the set of all probability measures on X. We denote by $\text{Aff}(T \to \mathbb{R})$ and $\text{Lin}(T \to \mathbb{R})$ the set of functions from T to \mathbb{R} which are affine and linear, respectively. We write $\text{Conv}(X)$ to denote the convex hull of a set of vectors X, the set of all (finite) convex combinations of elements of X. Some useful facts from convex analysis are collected in Appendix A.

2. AFFINE SCORES

We consider a very general model with an agent who has a given type $t \in T$ and reports some possibly distinct type $t' \in T$, at which point the agent is rewarded according to some score A which is affine in the true type t. This reward we call an affine score. We wish to characterize all truthful affine scores, those which incentivize the agent to report her true type t.

Definition 2.1. Any function $A : T \to A$, where $T \subseteq V$ for some vector space V over \mathbb{R} and $A \subseteq \text{Aff}(T \to \mathbb{R})$, is a affine score. We say A is truthful if for all $t, t' \in T$,

$$A(t')(t) \leq A(t)(t).$$

(1)

If this inequality is strict for all $t \neq t'$, then A is strictly truthful.

Our characterization uses convex analysis, a central concept of which is the subgradient of a function (a linear approximation, generalizing the gradient, that is always below the function by convexity).

Definition 2.2. Given some function $G : T \to \mathbb{R}$, a function $d \in \text{Lin}(V \to \mathbb{R})$ is a subgradient to G at t if for all $t' \in T$,

$$G(t') \geq G(t) + d(t' - t).$$

(2)
We denote by $\partial G : \mathcal{T} \to \text{Lin}(\mathcal{V} \to \mathbb{R})$ the multivalued map such that $\partial G(t)$ is the set of subgradients to G at t. We say a parameterized family of linear functions $\{d_t \in \text{Lin}(\mathcal{V} \to \mathbb{R})\}_{t \in \mathcal{T}}$, for $\mathcal{T}' \subseteq \mathcal{T}$ is a selection of subgradients if $d_t \in \partial G(t)$ for all $t \in \mathcal{T}'$; we denote this succinctly by $\{d_t\}_{t \in \mathcal{T}'} \in \partial G$.

For mechanism design, it is typical to assume that utilities are always real-valued. However, the log scoring rule (one of the most popular scoring rules) has the property that if an agent reports that an event has probability 0, and then that event does occur, the agent receives a score of $-\infty$. Essentially solely to accommodate this, we allow affine scores and subgradients to take on values from the extended reals. In the next paragraph we provide the relevant definitions, but for most purposes it suffices to ignore these and simply assume that all affine scores are real-valued.

It is standard (cf. [Gneiting and Raftery 2007]) to restrict consideration to the “regular” case, where intuitively only things like the log score are permitted to be infinite. In particular, an affine score A is regular if $A(t)(t) \in \mathbb{R}$ for all $t \in \mathcal{T}$, and $A(t')(t) \in \mathbb{R} \cup \{-\infty\}$ for $t' \neq t$. Similarly, a parameterized family of linear functions (e.g. a family of subgradients) $\{d_t \in \text{Lin}(\mathcal{V} \to \mathbb{R})\}_{t \in \mathcal{T}}$ is T-regular if $d_t(t) \in \mathbb{R}$ for all $t \in \mathcal{T}$, and $d_t(t) \in \mathbb{R} \cup \{-\infty\}$ for $t' \neq t$.

Likewise, T-regular affine functions have T-regular linear parts with finite constants (i.e. we exclude the constant functions $\pm \infty$). For the remainder of the paper we assume all affine scores and parameterized families of linear or affine functions are T-regular, where T will be clear from context.

We now state, and prove, our characterization theorem. The proof takes Gneiting and Raftery’s [2007] proof for the case of scoring rules on convex domains and extends it to the non-convex case using a variant of a technique Archer and Kleinberg [2008] introduced for non-convex mechanisms.

Theorem 2.3. Let an affine score $A : \mathcal{T} \to \mathcal{A}$ be given. A is truthful if and only if there exists some convex $G : \text{Conv}(\mathcal{T}) \to \mathbb{R}$ with $G(\mathcal{T}) \subseteq \mathbb{R}$, and some selection of subgradients $\{d_t\}_{t \in \mathcal{T}} \in \partial G$, such that

$$A(t')(t) = G(t') + d_t(t - t').$$

Proof. It is trivial from the subgradient inequality (2) that the proposed form is in fact truthful, as

$$A(t')(t) = G(t') + d_t(t - t') \leq G(t) = A(t)(t).$$

For the converse, we are given some truthful $A : \mathcal{T} \to \mathcal{A}$. Note first that for any $\hat{t} \in \text{Conv}(\mathcal{T})$ we may write t as a finite convex combination $t = \sum_{i=1}^{m} \alpha_i t_i$ where $t_i \in \mathcal{T}$. Now, as the range of A is affine, we may naturally extend $A(t)$ to all of $\text{Conv}(\mathcal{T})$ by defining

$$A(t)(\hat{t}) = \sum_{i=1}^{m} \alpha_i A(t)(t_i).$$

One easily checks that this definition coincides with the given A on \mathcal{T}.

Now we let $G(\hat{t}) := \sup_{t \in \mathcal{T}} A(t)(\hat{t})$, which is convex as the pointwise supremum of convex (in our case affine) functions. Since A is truthful, we in particular have $G(t) = A(t)(t) \in \mathbb{R}$ for all $t \in \mathcal{T}$ by our regularity assumption. Let $A(\cdot)$ denote the linear part.

4To define linear functions to $\overline{\mathbb{R}}$, we adopt the convention $0 \cdot -\infty = 0 \cdot (\infty) = 0$. Thus, any $\ell \in \text{Lin}(\mathcal{V} \to \overline{\mathbb{R}})$ can be written as $\ell_1 + \infty \cdot \ell_2$ for some $\ell_1, \ell_2 \in \text{Lin}(\mathcal{V} \to \mathbb{R})$.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.
of $A(\cdot)$. Then, also by truthfulness, we have for all $t' \in \mathcal{T}$ and $\hat{t} \in \text{Conv}(\mathcal{T})$,

$$G(\hat{t}) = \sup_{t \in \mathcal{T}} \sum_{i=1}^{m} \alpha_i A(t)(t_i) \geq \sum_{i=1}^{m} \alpha_i A(t')(t_i) = A(t'(\hat{t})) + \sum_{i=1}^{m} \alpha_i A(t')(t_i - t')$$

$$= G(t') + A(t')(\hat{t} - t').$$

Hence, $A(t')$ satisfies (2) for G at t', so A is of the form (3). □

In the remainder of this section, we show how scoring rules, mechanisms, and other related models fit comfortably within our framework.

2.1. Scoring rules for non-convex \mathcal{P}

In this section, we show that the Gneiting and Raftery characterization is a simple special case of Theorem 2.3 and moreover that we generalize their result to the case where the set of distributions \mathcal{P} may be non-convex. We also mention a result about local properness using tools from mechanism design developed in Appendix B.2. To begin, we formally introduce scoring rules and show that they fit into our framework. The goal of a scoring rule is to incentivize an expert who knows a probability distribution S to reveal it to a principal who can only observe a single sample from that distribution.

Definition 2.4. Given outcome space \mathcal{O} and set of probability measures $\mathcal{P} \subseteq \Delta(\mathcal{O})$, a scoring rule is a function $S : \mathcal{P} \times \mathcal{O} \to \mathbb{R}$. We say S is proper if for all $p, q \in \mathcal{P}$,

$$E_{\alpha \sim p}[S(q, o)] \leq E_{\alpha \sim p}[S(p, o)].$$

If the inequality in (5) is strict for all $q \neq p$, then S is strictly proper.

To incorporate this into our framework, take the type space $\mathcal{T} = \mathcal{P}$. Thus, we need only construct the correct set of affine functions available to the scoring rule as payoff functions. Intuitively, these are the functions that describe what payment the expert receives given each outcome, but we have a technical requirement that the expert’s expected utility be well defined. Thus, we take \mathcal{F} to be the set of \mathcal{P}-quasi-integrable functions $f : \mathcal{O} \to \mathbb{R}$, and $A = \{p \mapsto \int_{\mathcal{O}} f(o) \, dp(o) \mid f \in \mathcal{F}\}$.

We now apply Theorem 2.3 for our choice of \mathcal{T} and A, which yields the following generalization of Gneiting and Raftery [2007].

Corollary 2.5. For an arbitrary set $\mathcal{P} \subseteq \Delta(\mathcal{O})$ of probability measures, a regular\(^5\) scoring rule $S : \mathcal{P} \times \mathcal{O} \to \mathbb{R}$ is proper if and only if there exists a convex function $G : \text{Conv}(\mathcal{P}) \to \mathbb{R}$ with functions $G_p \in \mathcal{F}$ such that

$$S(p, o) = G(p) + G_p(o) - \int_{\mathcal{O}} G_p(o) \, dq(o),$$

where $G_p : q \mapsto \int_{\mathcal{O}} G_p(o) \, dq(o)$ is a subgradient of G for all $p \in \mathcal{P}$.

Proof. The given form is truthful by the subgradient inequality (2). Let $A : \mathcal{T} \to \mathcal{A}$ be a given truthful affine score. Since $A(p) \in A$, we have some $f_p \in \mathcal{F}$ generating $A(p)$. We can therefore use $G_p : q \mapsto \int_{\mathcal{O}} f_p(o) \, dq(o)$ as the subgradients in the proof of Theorem 2.3, thus giving us the desired form. □

Importantly, Corollary 2.5 immediately generalizes [Gneiting and Raftery 2007] to the case where \mathcal{P} is not convex, which is new to the scoring rules literature. One direction of this extension is obvious (if S is truthful on the convex hull of a set then it

\(^5\)We say that $f : \mathcal{O} \to \mathbb{R}$ is \mathcal{P}-quasi-integrable if $\int_{\mathcal{O}} f(o) \, dp(o) \in \mathbb{R}$ for all $p \in \mathcal{P}$.

\(^6\)This is the same concept as with affine scores: scores cannot be ∞ and only incorrect reports can yield $-\infty$.

A scoring rule S is proper and guarantees that experts with a belief in P receive a score of at least δ_A while experts with a belief of \bar{p} receive a score of at most δ_R if and only if S is of the form (\ref{eq:proper}) with $G(p) \geq \delta_A \forall p \in P$ and $G(\bar{p}) \leq \delta_R$.

With a similar goal to Babaioff et al., Fang et al. 2010 find conditions on P for which every continuous “value function” $G : p \mapsto S(p, p)$ on P can be attained by some S with the motivation of eliciting the expert’s information when it is known to come from some family of distributions (which in general will not be a convex set). As such, they provide sufficient conditions on particular non-convex sets, as opposed to our result which provides necessary and sufficient conditions for all non-convex sets. Beyond these specific applications, our characterization is useful for answering practical questions about scoring rules. For example, suppose we assume that people have beliefs about probabilities in increments of 0.01. Does that change the set of possible scoring rules? No. What happens if they have finer-grained beliefs but we restrict them to such reports? They will end up picking a “nearby” report (see the discussion of convexity in Section 3.3).

In Appendix B.2 we show how local truthfulness conditions, where one verifies that an affine score is truthful by checking that it is truthful in a small neighborhood around every point, from mechanism design generalize to our framework. In particular Corollary B.7 shows that local properness (i.e. properness for distributions in a neighborhood) is equivalent to global properness for scoring rules on convex P, an observation that is also new to the scoring rules literature. See Appendix B.2 for the precise meaning of (weak) local properness (i.e. truthfulness).

Corollary 2.7. For a convex set $P \subseteq \Delta(O)$ of probability measures, a scoring rule $S : P \times O \to \mathbb{R}$ is proper if and only if it is (weakly) locally proper.
with type \(t \) and report \(t' \) to the mechanism is \(U(t', t) = t(f(t')) - p(t') \); we say the mechanism \((f, p) \) is truthful if \(U(t', t) \leq U(t, t) \) for all \(t, t' \in T \).

Here we suppose that the mechanism can choose an allocation from some set \(O \) of outcomes, and there is a single agent whose type \(t \in T \) is itself the valuation function. That is, the agent's net utility upon allocation \(o \) and payment \(p \) is \(t(o) - p \). Following Archer and Kleinberg [2008], we view the type space \(T \) as lying in the vector space \(V = \mathbb{R}^O \). While agent valuations in mechanism design can generally be complicated functions, viewed this way they are in fact all linear: for any \(v_1, v_2 \in V \), we have \((v_1 + \alpha v_2)(t) = v_1(t) + \alpha v_2(t) \). Thus, we have an affine score \(A(t') = U(t', t) \), where \(A = \{ t \mapsto t(o) + c | o \in O, c \in \mathbb{R} \} \), so that every combination of outcome and payment a mechanism could choose is an element of \(A \).

As an illustration of our theorem, consider the following characterization, due to Myerson [1981], for a single parameter setting (i.e. when the agent's type can be described by a single real number). The result states that an allocation rule is implementable, meaning there is some payment rule making it truthful, if and only if it is monotone in the agent's type.

Corollary 2.9 (Myerson [1981]). Let \(T = \mathbb{R}^+, O \subseteq \mathbb{R} \), so that the agent's valuation is \(t \cdot o \). Then a mechanism \(f, p \) is truthful if and only if

1. \(f \) is monotone non-decreasing in \(t \),
2. \(p(t) = tf(t) - \int_0^t f(t') dt' + p_0 \).

Proof. By elementary results in convex analysis \(f \) is a subgradient of a convex function on \(\mathbb{R} \) if and only if it is monotone non-decreasing. By Theorem 2.3, the mechanism is truthful if and only if \(f \) is the subgradient of the particular function \(G(t) = U(t, t) = tf(t) - p(t) \), which is equivalent to (i) and the condition \(G(t) = \int_0^t f(t') dt' + C \). □

More generally, applying our theorem gives the following characterization. It is essentially equivalent to that of Archer and Kleinberg [2008] (their Theorem 6.1), although our approach allows the relaxation of a technical assumption their version requires when the set of types is non-convex.

Corollary 2.10. A mechanism \(f, p \) is truthful if and only if there exists a convex function \(G : \text{Conv}(T) \to \mathbb{R} \) and some selection of subgradients \(\{dG_t\}_{t \in T} \), such that for all \(t \in T \), \(f(t) = \langle dG_t \rangle \), and \(G(t) = tf(t) - p(t) \).

We remark on what may appear as limitations in our approach. First, note that we have focused on the single-agent case here, even though much of the mechanism design literature addresses the multi-agent case. In some sense, extending our characterizations to multiple agents is trivial: a mechanism is truthful if and only if it is truthful for agent \(i \) when fixing the reports of the other agents. Hence, we merely apply our characterization to each single-agent mechanism induced by reports of the other agents. This is sufficient for our present study, but there are certainly reasons to take a more nuanced approach to the multi-agent setting—see Section 4 for further discussion.

Another apparent limitation is that we are locked into a deterministic and non-Bayesian setting. This is purely for ease of exposition; if one is interested in randomized mechanisms, one can take \(f : T \to \Delta(O) \) and define \(U(t', t) = E_{o \sim f(t')}[t(o)] - p(t') \), which is still affine in \(t \). Even if one does not assume risk-neutral agents, taking the outcome space to be \(O' = \Delta(O) \) is sufficiently general. Finally, Bayesian agents can also be represented; in the above discussion of the multi-agent setting, take expectations instead of fixing specific types for the other agents.

Of course, mechanism design asks many questions beyond whether a particular mechanism is truthful, and some of these can be reframed as questions in convex anal-
Implementability focuses on the question of when there exist payments that make a given allocation rule truthful. Figure 1 (a) illustrates known characterizations and how they were proved. As it shows, several of them rely on showing equivalence to a condition from convex analysis known as cyclic monotonicity. Instead, in Appendix B, we reprove them in our more general framework by showing equivalence to the condition of being subgradients of a convex function (see Figure 1 (b)). This has three main benefits. First, by exposing the essential convex analysis question, we are able to greatly simplify the proofs of some of these results. For example, the original proof of Theorem B.3 relies on representing the allocation rule using a graph and arguing about the limit behavior of a process of creating paths in that graph. In contrast, our proof simply requires defining a function and showing it is convex with the correct subgradients by elementary arguments. Second, this reframing reveals that these results actually yield, we believe, new results in convex analysis (in particular, Theorems B.2, B.3 and B.5 and Corollary B.8). Third, this approach shows us how to translate known results from mechanism design into new results about scoring rules, as we saw in Section 2.1 While elements of a subgradient-based approach can be found in a variety of work on characterizing implementability (see, e.g., [McAfee and McMillan 1988; Jehiel et al. 1996, 1999; Krishna and Maenner 2001; Milgrom and Segal 2002; Bikhchandani et al. 2006]), this work has tended to use individual facts applied to particular settings, in contrast to our approach of translating mechanism design questions into convex analysis questions. Nevertheless, as these are essentially refinements of known results that do not directly provide new insights for mechanism design, we defer this material to Appendix B.

Revenue equivalence is the question of when all mechanisms with a given allocation rule charge the same prices (up to a constant). Translating this into convex analysis terms, when is the convex function associated with a given selection of a subgradient unique up to a constant? We ask the more general question, what are all the convex functions consistent with a given selection of a subgradient? The result is a theorem, extending a result due to Kos and Messner [2012], that characterizes the possible payments of every truthful mechanism, even those that do not satisfy revenue equivalence. As their analysis essentially applies the natural convex analysis technique, we again defer this material to Appendix C.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.
2.3. Other Applications

As previously mentioned, there are a number of other application domains that are not quite mechanisms or scoring rules, yet for which our main theorem yields characterization theorems. In the remainder of this section, we survey two domains for which we provide new characterizations. In Appendix D we provide additional information about these domains and survey two others where our theorem could have directly provided the characterization ultimately used rather than requiring effort to conceptualize and prove it (decision rules [Othman and Sandholm 2010; Chen and Kash 2011; Chen et al. 2011] and machine learning with partial labels [Cid-Sueiro 2012]).

2.3.1. Mechanism Design With Partial Allocation. Cai, Mahdian, Mehta, and Waggoner [2013], consider a setting where the mechanism designer wants to elicit two pieces of information: the agent’s (expected) value for an item in an auction and the probability distribution of a random variable conditional on that agent winning, with the goal of understanding how the organizer of a daily deal site can take into account the value that will be created for users (as opposed to just the advertiser) when a particular deal is chosen to be advertised (e.g. the site operator may prefer deals that sell to many users over equally profitable deals that sell only to a few because this keeps users interested for future days). Our approach allows us to provide a characterization of a more general setting where a mechanism designer wishes to elicit two pieces of information, but the second need not be restricted to probability distributions. For example the mechanism designer could have two distinct sets of goods to allocate and want to design a truthful mechanism that is consistent with a partial allocation rule that determines how the primary goods should be allocated given the agent’s preferences over both types of goods. Such mechanisms are characterized by the following informal theorem.

Theorem 2.11 (Informal). Consider an agent with type \(t = (t_1, t_2) \). There exists a truthful affine score consistent with a partial allocation rule \(f : t \mapsto a_1 \) (where \(a_1 \) is a partial allocation whose value is determined by \(t_1 \), and similarly for an \(a_2 \) which may also include a payment) if and only if

\[
f(t) \in \arg\sup_{a_1} \left\{ a_1(t_1) + \sup_{a_2 \in A(T)} \left\{ \{a_2'(t_2)\} \right\} \right\}
\]

In particular, this shows that the mechanism designer is restricted to mechanisms that make decisions based on a convex function of \(t_2 \) (the inner supremum is a point-wise supremum over affine functions and thus convex). For the full details, see Appendix D.3 and in particular (29).

2.3.2. Responsive Lotteries. Feige and Tennenholtz [2010] study the problem of how an agent can be incentivized to indirectly reveal his utility function over outcomes by being given a choice of lotteries over those outcomes, an approach with applications to experimental psychology, market research, and multiagent mechanism design. They give a geometric description of how such lotteries can be created with a finite set of outcomes. Our approach allows us to give a complete characterization, which highlights the relationship between natural desiderata and underlying geometric properties of the set of possible lotteries: strict truthfulness and continuity of the lottery rule jointly correspond to strict convexity of the lottery set, and uniqueness of the utility given the optimal lottery corresponds to smoothness of the boundary.

Utility functions consistent with particular preferences are only unique up to an affine transformation. (Since there are no payments, multiplying the value of each...
outcome by a constant or adding a constant to the value for each outcome has no effect on the optimal lottery for an agent). Therefore, we state our theorem for utilities that have been projected onto the unit sphere. For the proof, see Appendix D.4.

Theorem 2.12. Let \(T = \{ t \in \mathbb{R}^n : \|t\|_2 = 1 \} \) be the unit sphere in \(\mathbb{R}^n \), let \(A \subseteq \text{Lin}(\mathbb{R}^n \to \mathbb{R}) \cong \mathbb{R}^n \), and let a truthful affine score \(\Gamma : T \to A \) be given. Then \(\Gamma \) is surjective and continuous (as a function to \(\mathbb{R}^n \)) and strictly truthful if and only if \(A \) is the boundary of a compact and strictly convex set \(K \subseteq \mathbb{R}^n \). \(\Gamma \) is additionally injective if and only if \(K \) is additionally smooth.

Corollary 2.13. A lottery rule \(f \) satisfies incentive compatibility and rational uniqueness if and only if \(f(x) = \arg\max_{p \in K} \langle x, p \rangle \) for \(K \subseteq \Delta_n \) compact and strictly convex relative to \(\Delta_n \). Moreover, \(f \) additionally satisfies rational invertibility (and thus is truthful dominant) if and only if \(K \) is additionally smooth.

Proof. Project the utilities and probability simplex onto the set \(V = \{ x \in \mathbb{R}^n : \sum_i x_i = 0 \} \), which only changes the expected utilities by a constant. Then express these vectors in a basis for \(V \cong \mathbb{R}^{n-1} \), and normalize the utilities (only scaling them) to get the unit sphere in \(V \), and apply Theorem 2.12. \(\square \)

3. PROPERITY ELICITATION

We wish to generalize the notion of truthful elicitation from eliciting private information from some set \(T \) to accept reports from a space \(R \) which is different from \(T \). To even discuss truthfulness in this setting, we need a notion of a truthful report \(r \) for a given type \(t \). We encapsulate this notion by a general multivalued map which specifies all (and only) the correct values for \(t \).

3.1. Affine Scores for Properties

Definition 3.1. Let \(T \) be a give type space, where \(T \subseteq V \) for some vector space \(V \) over \(\mathbb{R} \), and \(R \) be some given report space. A property is a multivalued map \(\Gamma : T \rightrightarrows R \) which associates a nonempty set of correct report values to each type. We let \(\Gamma_r = \{ t \in T \mid r \in \Gamma(t) \} \) denote the set of types \(t \) corresponding to report value \(r \).

One can think of \(\Gamma_r \) as the “level set” of \(\Gamma \) corresponding to value \(r \). This concept will be especially useful when we consider finite-valued properties in Section 5. A natural constraint to impose on these level sets is that they be **non-redundant**, meaning no property value \(r \) has a level set entirely contained in another.

Definition 3.2. Property \(\Gamma : T \rightrightarrows R \) is **redundant** if there exist \(r, r' \in R \) such that \(\Gamma_{r'} \subseteq \Gamma_r \). Otherwise, \(\Gamma \) is **non-redundant**.

The non-redundancy condition is essentially a bookkeeping tool. If one adds report elements \(r' \) which are dominated by another report \(r \), then any time \(r' \) would be correct, an agent could safely report \(r \) instead. Hence, one could think of imposing this condition then as simply “pre-processing” \(\Gamma \) to remove any dominated reports.

We extend the notion of an affine score to this setting, where the report space is \(R \) instead of \(T \) itself. Note that \(A \) is still a subset of \(\text{Aff}(V \to \mathbb{R}) \).

Definition 3.3. An affine score \(A : R \to A \) elicits a property \(\Gamma : T \rightrightarrows R \) if for all \(t \),

\[
\Gamma(t) = \arg\sup_{r \in R} A(r)(t). \tag{8}
\]

We define a convex set \(C \) to be **strictly convex** if no point \(x \) on the boundary of \(C \) can be expressed as a convex combination of other points in \(C \) (i.e. \(x \) is extreme). \(C \) is **smooth** if each point on the boundary of \(C \) has a unique unit normal vector. See Appendix D.4 for formal definitions.
If we merely have \(\Gamma(t) \subseteq \operatorname{argsup}_{r \in R} A(r)(t) \), we say \(A \) weakly elicits \(\Gamma \). A property \(\Gamma : T \Rightarrow R \) is elicitable if there exists some affine score \(A : R \rightarrow A \) eliciting \(\Gamma \).

Note that it is certainly possible to write down \(\Gamma \) such the \(\operatorname{argsup} \) in (1) is not well defined. This corresponds to some types not having an optimal report, which we view as violating a minimal requirement for a sensible affine score. Thus, in order for \(A \) to be an affine score, we require (1) to be well defined for all \(t \in T \).

As before, we allow \(A(r)(t) \) to take on values in the extended reals to capture scoring rules such as the log score, so we need a notion of regularity — an affine score \(A \) is \(\Gamma \)-regular if \(A(r)(t) < \infty \) always and \(A(r)(t) \in \mathbb{R} \) whenever \(r \in \Gamma(t) \). We define \(\Gamma \)-regular linear and affine families similarly.\[\]3.2. A first characterization

The simplest way to come up with an elicitable property is to induce one from an affine score. For any \(A : R \rightarrow \operatorname{Aff}(\mathcal{V} \rightarrow \mathbb{R}) \), the property

\[
\Gamma^A : t \rightarrow \operatorname{argsup}_{r \in R} A(r)(t)
\]

is trivially elicited by \(A \) if this \(\operatorname{argsup} \) is well defined.

Observe also that any affine score \(A \) eliciting \(\Gamma \) gives rise to a truthful affine score in the original sense — in fact, this is a version of the revelation principle from mechanism design. For each \(t \) let \(r_t \in \Gamma(t) \) be a report choice for \(t \); then the affine score \(A^T(t')(t) = A(r_t)(t) \) is truthful. Moreover, by our choices of \(\{r_t\} \), we have

\[
G(t) = \sup_{t' \in T} A^T(t')(t) = \sup_{r \in R} A(r)(t).
\]

Of course, in general, \(A^T \) will not be strictly truthful, since by definition, any reports \(t', t'' \) with \(r_{t'} = r_{t''} \) will have \(A^T(t') = A^T(t'') \). Thus we may think of a property as refining the notion of strictness for a truthful affine score. The connection we draw in Theorem 3.5 is that, in light of (10), a property \(\Gamma \) therefore specifies the portions of the domain of \(T \) where \(G \) must be “flat”. To get at the connection between properties and “flatness”, we start with a technical lemma which shows that having the same subgradient at two different points implies that \(G \) is flat in between.

Lemma 3.4. Let \(G : \operatorname{Conv}(T) \rightarrow \mathbb{R} \) be convex with \(G(T) \subseteq \mathbb{R} \), and let \(d \in \partial G_t \) for some \(t \in T \). Then for all \(t' \in T \),

\[
d \in \partial G_{t'} \iff G(t) - G(t') = d(t - t').
\]

Proof. First, the forward direction. Applying the subgradient inequality (2) at \(t' \) for \(dG_t = d \) and at \(t \) for \(dG_{t'} = d \), we have

\[
G(t') \geq G(t) + d(t' - t)
\]

\[
G(t) \geq G(t') + d(t - t'),
\]

from which the result follows (as \(G(t) \) and \(G(t') \) are finite).

For the converse, assume \(G(t) = G(t') + d(t - t') \) and let \(t'' \in T \) be arbitrary. Note that \(d(t) \in \mathbb{R} \) as \(d \in \partial G_t \), so \(d(t') \in \mathbb{R} \) as well. Then using the subgradient inequality (2),

\[
G(t') + d(t'' - t') = G(t') + d(t'' - t) + d(t - t') = G(t) + d(t'' - t) \leq G(t'').
\]

We are now ready to state our first characterization, which in essence says that eliciting a property \(\Gamma \) is equivalent to eliciting subgradients of a convex function \(G \).

3The family \(\{\ell_r \in \operatorname{Lin}(\mathcal{V} \rightarrow \mathbb{R})\}_{r \in R} \) is \(\Gamma \)-regular if \(\ell_r(t) \in \mathbb{R} \) for all \(t \in \Gamma_r \), and \(\ell_r(t') \in \mathbb{R} \cup \{-\infty\} \) for \(t' \neq \Gamma_r \). Likewise for \(\Gamma \)-regular affine functions.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.
Theorem 3.5. Let non-redundant property $\Gamma : \mathcal{T} \Rightarrow \mathcal{R}$ and Γ-regular affine score $A : \mathcal{R} \rightarrow A$ be given. Then A elicits Γ if and only if there exists some convex $G : \text{Conv}(\mathcal{T}) \rightarrow \mathbb{R}$ with $G(\mathcal{T}) \subseteq \mathbb{R}$, some $D \subseteq \partial G$, and some bijection $\phi : \mathcal{R} \rightarrow D$ with $\Gamma(t) = \phi^{-1}(D \cap \partial G_i)$, such that for all $r \in \mathcal{R}$ and $t \in \mathcal{T}$,

$$A(r)(t) = G(t_r) + \phi(r)(t - t_r), \quad (11)$$

where $\{t_r\}_{r \in \mathcal{R}} \subseteq \mathcal{T}$ satisfies $r' \in \Gamma(t_{r'})$ for all r'.

Proof. For the converse, let A be given of the form (11). We show that it elicits Γ, i.e. $\Gamma(t) = \text{argsup}_{r \in \mathcal{R}} A(r)(t)$. The third line of the derivation applies Lemma 3.4

$$r \in \Gamma(t) \iff r \in \phi^{-1}(D \cap \partial G_i)$$

$$\iff \phi(r) \in D \cap \partial G_t$$

$$\iff A(r)(t) = G(t)$$

$$\iff r \in \text{argsup}_{r' \in \mathcal{R}} A(r')(t)$$

For the forward direction, assume that affine score A elicits Γ. For each r, we may extend $A(r)$ to all $t \in \text{Conv}(\mathcal{T})$ by linearity as in the proof of Theorem 2.3, whence we may define $G(t) = \text{sup}_{r' \in \mathcal{R}} A(r')(t)$, which is finite for $t \in \mathcal{T}$ as A is Γ-regular. We wish to show that the choice $\phi : r \rightarrow A_t(r)$ suffices, where A_t denotes the linear part of A, with D the range of ϕ and $\{t_r\}$ arbitrary satisfying the theorem. Given this construction, we need to check each of the following.

1. G is convex with subgradients $\phi(\Gamma(t)) \subseteq \partial G_t$. Let t and $r \in \Gamma(t)$ be given. We show that $\phi(r)$ satisfies the property of a subgradient at t, and thus G is convex with appropriate subgradients.

$$G(t) + \phi(r)(t' - t) = \sup_{r' \in \mathcal{R}} A(r')(t) + A_t(r)(t' - t)$$

$$= A(r)(t) + A_t(r)(t' - t) = A(r)(t')$$

$$\leq \sup_{r' \in \mathcal{R}} A(r')(t') = G(t') \quad (12)$$

2. A satisfies eq. (11). This follows from (12) with $t = t_r$, as $r \in \Gamma(t_r)$.

3. ϕ is a bijection. By definition, D is the range of ϕ, so we only need to check that it is injective. Suppose for contradiction that $\phi(r) = \phi(r')$. Then, by definition, $A_t(r) = A_t(r')$. Since A elicits Γ, we have $A(r) = A(r')$. But then $r \in \Gamma(t) \iff r' \in \Gamma(t)$, contradicting Γ being non-redundant.

4. $\Gamma(t) = \phi^{-1}(D \cap \partial G_i)$. We already know that $\phi(\Gamma(t)) \subseteq \partial G_t$, so since D is the range of ϕ we have $\phi(\Gamma(t)) \subseteq \partial G_i$. For the other direction, $d \in \partial G_i$ is $\phi(r)$ for some r. Then by Lemma 3.4, $A(r')(t) = G(t_r) + \phi(r)(t - t_r) = G(t)$, so $r \in \Gamma(t)$. □

As a corollary, we also obtain a better understanding of weak elicitation, which we will need in the following sections.

Corollary 3.6. Let non-redundant property $\Gamma : \mathcal{T} \Rightarrow \mathcal{R}$ and Γ-regular affine score $A : \mathcal{R} \rightarrow A$ be given. Then A weakly elicits Γ if and only if A satisfies (11) with the weaker condition that $\Gamma(t) \subseteq \phi^{-1}(D \cap \partial G_i)$.

Proof. Given any affine score A, and defining A^Γ as in (9), we see that A weakly elicits Γ if and only if $\Gamma(t) \subseteq A^\Gamma(t)$ for all t. Now let A weakly elicit Γ. As A trivially elicits A^Γ, we apply Theorem 3.5 and now have in particular $r \in \Gamma(t) \implies r \in A^\Gamma(t) \implies \phi(r) \in \partial G_i$. For the converse, simply define $A^\Gamma(t) = \{r \in \mathcal{R} \mid \phi(r) \in \partial G_i\}$. By Theorem 3.5 A elicits A^Γ, and by assumption we have $\Gamma(t) \subseteq A^\Gamma(t)$ for all t. □
Using Corollary 3.6, we see that an affine score A is truthful if and only if it weakly elicits $\Gamma : t \mapsto \{t\}$. Hence, Theorem 3.5 and Corollary 3.6 are actually generalizations of Theorem 2.3. Of course, we also obtain the following corollary characterizing non-redundant properties.

Corollary 3.7. Non-redundant $\Gamma : \mathcal{T} \rightarrow \mathcal{R}$ is elicitable if and only if there exists some convex $G : \operatorname{Conv}(\mathcal{T}) \rightarrow \mathbb{R}$ with $G(\mathcal{T}) \subseteq \mathbb{R}$, some $\mathcal{D} \subseteq \partial G$, and some invertible $\varphi : \mathcal{R} \rightarrow \mathcal{D}$ such that $\Gamma(t) = \varphi^{-1}(\mathcal{D} \cap \partial G_t)$.

An important question which would give stronger characterizations is the following:

Question 1. Given non-redundant elicitable Γ, what are all pairs G, \mathcal{D} such that there exists some bijection φ satisfying Theorem 3.5? Equivalently (up to redundancy), given a convex function G with subgradient level sets $LS_G(d) = \{t : d \in \partial G_t\}$, what are all the convex functions G' with $LS_{G'} \equiv LS_G$?

In Section 5 we will see that the answer to this question has a lot of structure in the case where \mathcal{R} is finite. In the general case, certainly performing a homothet of the subgradients of G (i.e. scaling G and adding a linear term), will preserve the elicitation structure. However, surely more can be done—the property

$$\Gamma(t) = \begin{cases} \{t - 1\} & \text{if } t < 0 \\ \{0\} & \text{if } t = 0 \\ \{t + 1\} & \text{if } t > 0 \end{cases}$$

(13)

can be elicited with both $G(t) = |t| + t^2/2$ and $G(t) = t^2/2$, which is not a homothet transformation.

While we do not have a complete answer to Question 1, our characterization sheds new light on the structure of elicitable properties in two directions. First, in the scoring rules literature, it is common to assume strong conditions on Γ and \mathcal{R}, such as Γ being a function rather than a multivalued map, and Γ being linear [Abernethy and Frongillo 2012] or real-valued [Lambert et al. 2008] to achieve characterizations. In contrast, Theorem 3.5 allows for an extremely general Γ and \mathcal{R} and shows us how to construct affine scores for such properties. Second, we can identify features that all elicitable properties share, which provides a means to prove that specific properties are not elicitable.

3.3. What Properties Are Not Elicitable?

In the remainder of this section, we examine three features that subgradient mappings of convex functions possess and thus that the level sets of elicitable properties must possess.

Convexity. A well-known property of subgradient mappings is that their level sets are convex (for completeness, we provide a proof in Appendix A).

Proposition 3.8. For any convex function G, the set $\partial G^{-1}(d) = \{x \in \text{dom}(G) : d \in \partial G_x\}$ is convex.

In light of our characterizations, this fact about convex functions immediately applies to elicitable properties:

Corollary 3.9. If $\Gamma : \mathcal{T} \rightarrow \mathcal{R}$ is elicitable, then Γ_r is convex for all r.

To see this, just note that $\varphi(r) \in \partial G_t \cap \partial G'_t$ implies that $\varphi(r) \in \partial G_{\hat{t}}$ for all $\hat{t} = \alpha t + (1 - \alpha) t'$. Corollary 3.9 was previously known for special cases [Lambert et al.]
Cardinality. Combining Theorem 3.5 with the fact that finite-dimensional convex functions are differentiable almost everywhere (cf. [Aliprantis and Border 2007, Thm 7.26]) yields the following corollary, which shows that elicitable properties have unique values almost everywhere.

Corollary 3.10. Let \(\Gamma : \mathcal{T} \Rightarrow \mathcal{R} \) be an elicitable property with \(\mathcal{T} \subseteq \mathcal{V} = \mathbb{R}^n \). If \(\mathcal{T} \) is of positive measure in \(\text{Conv}(\mathcal{T}) \), and \(\Gamma \) is non-redundant, then \(|\Gamma(t)| = 1 \) almost everywhere.

Using an appropriate notion of “almost everywhere”, in some cases this holds in infinite-dimensional vector spaces as well (see e.g. [Borwein and Vanderwerff 2010, p. 195] and [Aliprantis and Border 2007, p. 274]). One can use this fact to show that \(\Gamma(p) = \{(a, b) : \int_a^b p(x)dx = 0.9\} \), the set of 90% confidence intervals for a distribution \(p \), is not an elicitable property. This was previously only known for the case where \(p \) has finite support [Lambert et al. 2008].

Topology. Combining Theorem 3.5 with a closure property of convex functions [Rockafellar 1997, Thm 24.4] yields the following.

Corollary 3.11. Let \(\Gamma : \mathcal{T} \Rightarrow \mathcal{R} \) be an elicitable property with \(\mathcal{T} \subseteq \mathcal{V} = \mathbb{R}^n \) convex that can be elicited by a closed, convex \(G \). Then \(\Gamma_r \) is closed for all \(r \).

Requiring \(G \) to be closed is a technical issue regarding the boundary of \(\mathcal{T} \), and is irrelevant for level sets in the relative interior. While [Lambert and Shoham 2009] showed this for finite report spaces \(\mathcal{R} \), this more general statement shows, for example, that if \(\mathcal{T} = \mathcal{R} \) the property \(\Gamma(t) = \text{floor}(t) = \max\{z \in \mathbb{Z} \mid z \leq t\} \) is not elicitable.

4. DUALITY IN PROPERTY ELICITATION

In the previous section, we saw from Theorem 3.5 that in a strong sense an elicitable property \(\Gamma \) is like a subgradient mapping of a convex function. We now turn to removing the word “like” from the sentence above — we look at properties which are subgradient mappings. This exploration has two main benefits. First, it gives us a concrete tool to reason about properties, by working directly with a convex function rather than through some map \(\varphi \). Second, it gives a new framework to discuss duality in elicitation, as has been observed between scoring rules and prediction markets [Abernethy and Frongillo 2012; Chen et al. 2013].

4.1. Direct elicitation

Now that we have formalized the relationship between the report space and subgradients of convex functions, we can see what the “canonical” properties look like: those which are (subsets of) subgradient mappings of a convex function. For these properties, we can talk about direct elicitation, which roughly speaking means removing the intermediary \(\varphi \) between \(\mathcal{R} \) and \(\partial G \). In fact, for such “canonical” properties, we can even talk about a convex function itself eliciting \(\Gamma \).

Definition 4.1. A property \(\Gamma : \mathcal{T} \Rightarrow \mathcal{D} \), where \(\mathcal{T} \subseteq \mathcal{V} \) and \(\mathcal{D} \subseteq \mathcal{V}^* = \text{Lin}(\mathcal{V} \rightarrow \mathbb{R}) \), is directly elicitable if there exists \(G : \text{Conv}(\mathcal{T}) \rightarrow \mathbb{R} \) convex with \(G(\mathcal{T}) \subseteq \mathbb{R} \) such that \(\Gamma(t) \subseteq \partial G_r \). In this case we say \(G \) directly elicits, or just elicits, \(\Gamma \).
In other words, \(G \) elicits \(\Gamma : \mathcal{T} \Rightarrow \mathcal{D} \) if the \(\varphi \) in Theorem \(3.5 \) and Corollary \(3.7 \) is the identity. Of course, it remains to be shown that there exists an affine score eliciting such a property, but the proof is trivial.

Proposition 4.2. Directly elicitable properties are elicitable.

Proof. Let \(\Gamma : \mathcal{T} \Rightarrow \mathcal{R} \) and \(G : \mathcal{T} \rightarrow \mathbb{R} \) convex with \(G(\mathcal{T}) \subseteq \mathbb{R} \) be given such that \(\Gamma(t) \subseteq \partial G(t) \). Then taking \(\mathcal{D} = \mathcal{R} \) and \(\varphi = \text{id}_\mathcal{D} \), we have by Theorem \(3.7 \) that \(\Gamma \) is elicitable. □

Note that this direct elicitation in no way necessary for elicitation, since the report space is not required to have any intrinsic meaning. For example, one can take \(\Gamma(t) = -\partial G(t) \) for some \(\partial G \), which in general will not be directly elicitable, but still elicitable with \(\varphi(r) = -r \) and \(G \).

The notion of direct elicitation is often useful for generating intuitive examples, since the report space itself has meaning. In fact, given any convex function \(G \), the property \(\Gamma(t) = \partial G(t) \) is directly elicitable by \(G \). This is in fact how equation (13) was generated, though at \(t = 0 \) we selected \(\{0\} \) instead of the full subgradient set \(\partial G_0 = [-1, 1] \) to make \(\Gamma \) non-redundant.

We can also clarify what we mean when we say direct elicitation is canonical: every elicitable property gives rise to a directly elicitable property.

Proposition 4.3. Let \(\Gamma \) be an elicitable property, elicited by \(A(r)(t) = G(t_r) + \varphi(r)(t - t_r) \). Then \(\Gamma^\varphi(t) = \varphi(\Gamma(t)) \) is directly elicitable.

Proof. Simply keep \(G \) and take \(\text{id}_\mathcal{D} \) as the new \(\varphi \). □

In other words, properties are literally just subsets of subderivative mappings, up to some bijection (or link function) taking them to some other report space \(\mathcal{R} \).

As a final remark, we note a few observations about direct elicitation. One first notices that the \(G \) eliciting some \(\Gamma \) is not unique, as \(\Gamma' = G + c \) will also elicit \(\Gamma \) for any constant \(c \). But these are the only convex functions directly eliciting \(\Gamma \). Moreover, recovering such a \(G \) from \(\Gamma \) is easy: simply integrate (a selection of) \(\Gamma \) to obtain \(G \). Testing whether \(\Gamma \) is directly elicitable is less straightforward, but there are a variety of monotonicity conditions addressing this issue as well (cf Appendix B).

4.2. Report duality

We are now ready to hold up a mirror to properties and their scores, by introducing notions of duality. As we will see, there are actually two mirrors, yielding four combinations of dualities (see Table I). In this subsection we will explore the first, flipping the report from the type to the dual type. For now, we will take our dual vector space to be all linear functions from \(\mathcal{V} \) to \(\mathbb{R} \) (not \(\mathbb{R} \) as above).

We begin with the fundamental object of convex duality, the convex conjugate.

Definition 4.4. Let \(\mathcal{V}^* = \text{Lin}(\mathcal{V} \rightarrow \mathbb{R}) \). The convex conjugate of \(G : \mathcal{V} \rightarrow \mathbb{R} \), denoted \(G^* : \mathcal{V}^* \rightarrow \mathbb{R} \), is given by

\[
G^*(d) = \sup_{v \in \mathcal{V}} d(v) - G(v).
\]

The power of the conjugate is apparent after the following lemma, which says roughly that the convex conjugate "encodes" the subgradients of \(G \). This is a classic result in convex analysis (cf. [Urruty and Lemarchal 2001, Thm E.1.4.1]).

9When the dual space can take on infinite values, the conjugate is not always well-defined, as values of the form \(\infty - \infty \) are encountered.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.
Lemma 4.5. Let $G : \mathcal{V} \to \mathbb{R}$ be convex. Then for all $v \in \mathcal{V}, d \in \mathcal{V}^*$,

$$G^*(d) = d(v) - G(v) \iff d \in \partial G_v.$$

Proof. We can simply break down the conditions step by step:

$$G^*(d) = d(v) - G(v) \iff v \in \text{argsup}_{v' \in \mathcal{V}} d(v') - G(v')$$

$$\iff \forall v' \in \mathcal{V}, d(v) - G(v) \geq d(v') - G(v')$$

$$\iff \forall v' \in \mathcal{V}, G(v') \geq G(v) + d(v' - v),$$

where in the last step we merely negated and added $d(v') \in \mathbb{R}$ to both sides. \qed

Theorem 4.6. Let non-redundant property $\Gamma : \mathcal{T} \Rightarrow \mathcal{R}$ and Γ-regular affine score $A : \mathcal{R} \to A$ be given, $A \subseteq \text{Aff}(\mathcal{T} \to \mathbb{R})$. Then A elicits Γ if and only if there exists some convex $G : \text{Conv}(\mathcal{T}) \to \mathbb{R}$, and bijective $\varphi : \mathcal{R} \to \mathcal{D}$ with $\mathcal{D} \subseteq \partial G$ satisfying $\varphi(\Gamma(t)) \subseteq \partial G_t$, such that for all $r \in \mathcal{R}$ and $t \in \mathcal{T}$,

$$A(r)(t) = \varphi(r)(t) - G^*(\varphi(r)).$$ \hspace{1cm} (15)

Theorem 4.6 has natural interpretations for both mechanisms and scoring rules. For mechanisms, it captures a version of the **taxation principle**, that a mechanism can be viewed as a menu of possible allocations and payment associated with each allocation. For scoring rules, it captures the relationship between a scoring rule and a prediction market. We discuss these ideas briefly following Table I and in more detail in Appendix F.

4.3. Type duality and the duality quadrangle

Beyond dual report spaces, we now define dual **properties** and their scores, where we swap the roles of types and reports. This is the second “mirror,” and with both in hand now we have a full four combinations of dual report and type, which we call the duality quadrangle; see Table I.

To start, we need a dual vector space with more structure than simply $\text{Lin}(\mathcal{V} \to \mathbb{R})$. For this we use the notion of a **dual pair**, which is a standard setting for convex analysis in infinite-dimensional spaces.

Definition 4.7. (Aliprantis and Border [2007] §5.14). A pair of topological vector spaces $(\mathcal{V}, \mathcal{V}^*)$ is a **dual pair** if it is equipped with a bilinear form $\langle \cdot, \cdot \rangle : \mathcal{V} \times \mathcal{V}^* \to \mathbb{R}$ which separates points, in the sense that $\forall v^* \langle v, v^* \rangle = 0$ implies $v = 0$ and $\forall v \langle \cdot, v^* \rangle = 0$ implies $v^* = 0$.

Note that the above assumption that $(\mathcal{V}, \mathcal{V}^*)$ is a dual pair implies in particular that for all $v^* \in \mathcal{V}^*$, the map $v^* \mapsto \langle v, v^* \rangle$ is linear. This isn’t crucial when interpreting $\mathcal{R} \subseteq \mathcal{V}^*$ as the type space, since affine scores must be affine in the type. Note that as \mathbb{R} is Hausdorff, \mathcal{V} together with the product topology inherited from the dual pair is also Hausdorff and locally convex; see [Aliprantis and Border 2007, §7] for details. For the remainder of this section (§4) we will assume that we have a dual pair $(\mathcal{V}, \mathcal{V}^*)$.

A natural question is to determine the conditions under which we have $G^{**} = (G^*)^* = G$. That is, when is the conjugacy operator an involution? This has been thoroughly studied in convex analysis. We state the classic theorem due to Fenchel and Moreau [Ioffe and Tikhomirov 1979, Lai and Lin 1988].

Definition 4.8. A function $f : X \to \mathbb{R}$ is **lower semi-continuous** (l.s.c.) if for every x_0 in $\text{dom}(f)$ it holds that $\liminf_{x \to x_0} f(x) \geq f(x_0)$.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.
Theorem 4.9 (Fenchel–Moreau). Let X be a Hausdorff locally convex space. For any function $G : X \to \mathbb{R}$, it follows that $G = G^{**}$ if and only if one of the following is true: (1) G is a proper, l.s.c., and convex function, (2) $G \equiv +\infty$, or (3) $G \equiv -\infty$.

The following corollary will prove very helpful in our discussion of type duality below. The proof follows from applying Theorem 4.9 (recall that dual pairs are automatically Hausdorff and locally convex), and then Lemma 4.5 twice, once for G and once for G^*.

Corollary 4.10. If G is convex, proper, and l.s.c., then $v^* \in \partial G_v \iff v \in \partial G^*_v$.

We now introduce the concept of a *dual property* Γ^*, which essentially swaps the type and the report. That is, an agent has a “true report” r and $\Gamma^*(r)$ encodes all the “correct types” t. We then go on to show the relationship between the direct elicitation of dual properties. See Appendix F for possible interpretations of dual properties.

Definition 4.11. Let $\Gamma : \mathcal{T} \Rightarrow \mathcal{R}$ where $\mathcal{R} \subseteq \mathcal{V}^*$. Then the dual of Γ, written $\Gamma^* : \mathcal{R} \Rightarrow \mathcal{T}$, is defined by $\Gamma^* = \Gamma^{-1}$. In other words, Γ^* satisfies $r \in \Gamma(t) \iff t \in \Gamma^*(r)$.

Theorem 4.12. For dual pair $(\mathcal{V}, \mathcal{V}^*)$, let $\Gamma : \mathcal{T} \Rightarrow \mathcal{D}$ be given with $\mathcal{T} \subseteq \mathcal{V}$ and $\mathcal{D} \subseteq \mathcal{V}^*$. Let convex proper and l.s.c. G be given. Then G elicits Γ if and only if G^* elicits Γ^*.

Proof. We apply Corollary 4.10 to obtain $d \in \partial G_t \iff t \in \partial G^*_d$. If G directly elicits Γ, then we have

$t \in \Gamma^*(d) \iff d \in \Gamma(t) \iff d \in \partial G_t \iff t \in \partial G^*_d$.

so G^* directly elicits Γ^*. Clearly the above may be applied in the reverse direction as well, yielding the result. ☐

Note that when G and G^* elicit Γ and Γ^*, respectively, we have by the above discussion that $A(d)(t) = \langle t, d \rangle - G^*(d)$ elicits Γ and $A^*(t)(d) = \langle t, d \rangle - G(t)$ elicits Γ^*. Moreover, the “consumer surplus” functions of A and A^* are G and G^*, respectively. This curious relationship, combined with the notion of report duality, can be visualized as shown in Table I. Note that traveling around the table does not necessarily mean arriving at the same choice of G, nor does it imply that $G^{**} = G$. However, when $G^{**} = G$ does hold, the diagram “commutes” in a certain sense (see Appendix F).

Type	Primal	Dual
Report	Scoring rule	Menu auction
A(p')(p)	A*(p')(q)	
Dual	Prediction market	Randomized mechanism
A(q')(p)	A*(q')(q)	

Table I.

The duality quadrangle for the duality between distributions and functionals.

In Table I we give a particular instantiation of our duality notions, with $\mathcal{T} = \Delta(\Omega)$ and $\mathcal{T}^* = (\Omega \to \mathbb{R})$; that is, we construct our affine scores and their duals upon the classic duality between integrable functions and probability measures. As we discussed in...
Section 4.2, the columns of Table I are well-understood already; the first gives prediction market duality, the well-known fact that market scoring rules are dual to prediction markets, and the second gives the taxation principle, which says that without loss of generality one could think of a direct revelation mechanism as assigning prices to each outcome ω.

The rows of this table, however, are new: in essence, scoring rules are dual mechanisms. In the scoring rule or prediction market setting, an agent has a private distribution (their belief) and the principal gives the agent a utility vector (the score or the bundle of securities), which assigns the agent a real-valued payoff for each possible state of the world. Dually, in a mechanisms, the agent possesses a private type encoding their utility for each state of the world, and the principal assigns a distribution over these states.

The connections go much deeper than swapping types, however. For example, one observation is that for any p, q, a prediction market A with cost function G^* (see Abernethy et al. 2013 for the framework we are referring to) and menu auction A^* satisfy $A(q)(p) - A^*(p)(q) = G(p) - G^*(q)$. This means that difference between the expected payoff under p for purchasing q from the prediction market, and the the expected utility according to q for selecting menu item p, is equal to the difference between the corresponding consumer surpluses.

To illustrate this with a somewhat whimsical example, suppose a gambler in a casino examines the rules of a dice-based game of chance and forms belief p about the probabilities of possible outcomes. The gambler then participates in a prediction market A and purchases a bundle q. Before the game is actually played however, the casino informs the gambler that the dice used need not be fair (which of course would change the probabilities), and offers the gambler the opportunity to select from among different choices of dice using a truthful mechanism where the gambler’s private information is q. If the mechanism used is A^*, then outcome of the mechanism will be using fair dice. The power of duality is that this holds regardless of our choice of A.

We further elaborate on related issues in Appendix F. It remains to be seen whether these connections will provide new insights into the design of mechanisms, scoring rules, or prediction markets.

5. Finite-Valued Properties

We now examine the special case where \mathcal{R} is a finite set of reports, using the additional structure to provide stronger characterizations. In the scoring rules literature, Lambert and Shoham [2009] view this as eliciting answers to multiple-choice questions. There are also applications to mechanism design, discussed in Section 5.1. Assume throughout that \mathcal{R} is finite and that \mathcal{T} is a convex subset of a vector space \mathcal{V} endowed with an inner product, so that we may write $\langle t, t' \rangle$ and in particular $\|t\|_2^2 = \langle t, t \rangle$. In this setting, we will use the concept of a power diagram from computational geometry.

Definition 5.1. Given a set of points $P = \{p_i\}_{i=1}^m \subset \mathcal{V}$, called sites, and weights $w \in \mathbb{R}^m$, a power diagram $D(P, w)$ is a collection of cells $\text{cell}(p_i) \subseteq \mathcal{V}$ defined by

$$\text{cell}_{P, w}(p_i) = \left\{ t \in \mathcal{T} | i \in \arg\min_j \{ \|p_j - t\|^2 - w_j \} \right\}. \quad (16)$$

The following result is a generalization of Theorem 4.1 of Lambert and Shoham [2009], and is essentially a restatement of results due to Aurenhammer [1987a; 1987b].

Theorem 5.2. A property $\Gamma : \mathcal{T} \Rightarrow \mathcal{R}$ for finite \mathcal{R} is elicitable if and only if the level sets $\{ \Gamma_r \}_{r \in \mathcal{R}}$ form a power diagram $D(P, w)$.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.
PROOF. Let us examine the condition that \(t \) is an element of \(\text{cell}_{P,w}(p_i) \) for some power diagram \(D(P,w) \):
\[
\begin{align*}
t \in \text{cell}_{P,w}(p_i) & \iff i \in \arg\min_j \{ \|p_j - t\|^2 - w_j \} \\
& \iff i \in \arg\min_j \{ \|p_j\|^2 - 2 \langle p_j, t \rangle - w_j \}. \quad (17)
\end{align*}
\]

Note that eq. (17) is affine in \(t \). Now given some \(D = D(P,w) \) with index set \(\mathcal{R} \), we simply let \(A(r)(t) = 2 \langle p_r, t \rangle + w_r - \|p_r\|^2 \). By (17) we immediately have \(r \in \arg\sup_{r^\prime} A(r')(t) \iff t \in \text{cell}_{P,w}(p_r) \), as desired.

Conversely, let an affine score \(A \) eliciting \(\Gamma \) be given. Note that since we are in an inner product space, we may write \(A(r)(t) = \langle x_r, t \rangle + c_r \) for \(x_r \in \mathcal{V} \) and \(c_r \in \mathbb{R} \). Letting \(p_r = x_r/2 \) and \(w_r = \|p_r\|^2 + c_r \), we see by (17) again that \(\Gamma_r = \text{cell}(p_r) \) of the diagram \(D(\{p_r\}, w) \). Hence, \(\Gamma \) is a power diagram. \(\Box \)

We have now seen what kinds of finite-valued properties are elicitable, but how can we elicit them? More precisely, as the proof above gives sufficient conditions, what are all ways of eliciting a given power-diagram? In general, it is difficult to provide a “closed form” answer to this question, so we restrict to the simple case, where essentially the cells of a power diagram are as constrained as possible.

Definition 5.3 ([Aurenhammer 1987c]). A \(j \)-polyhedron is the intersection of dimension \(j \) of a finite number of closed halfspaces of \(\mathcal{V} \), where \(0 \leq j \leq \dim(\mathcal{V}) < \infty \). A cell complex \(C \) in \(\mathcal{V} \) is a covering of \(\mathcal{V} \) by finitely many \(j \)-polyhedra, called \(j \)-faces of \(C \), whose (relative) interiors are disjoint and whose non-empty intersections are faces of \(C \). \(C \) is called simple if each of its \(j \)-faces is in the closure of exactly \((d-j+1) \) \(d \)-faces (cells).

Theorem 5.4. Let finite-valued, elicitable, simple property \(\Gamma : \mathcal{T} \Rightarrow \mathcal{R} \) be given. Then there exist points \(\{p_r\}_{\mathcal{R}} \subseteq \mathcal{V} \) such that an affine score \(A : \mathcal{R} \to \mathcal{A} \) elicits \(\Gamma \) if and only if there exist \(\alpha > 0 \), and \(p_0 \in \mathcal{V} \) such that
\[
A(r)(t) = 2 \langle \alpha p_r + p_0, t \rangle - \| \alpha p_r + p_0 \|^2 + w_r, \quad (18)
\]
where the choice \(w \in \mathbb{R}^\mathcal{R} \) is determined by \(\alpha \) and \(p_0 \).

Proof. A result of Aurenhammer for simple cell complexes, given in Lemma 1 of [Aurenhammer 1987b] and the proof of Lemma 4 of [Aurenhammer 1987a], states the following: given sites \(P \) and \(P' \) and weights \(w \), there exist weights \(w' \) such that \(D(P', w') = D(P, w) \) if and only if \(P' \) is a homothet (translated and positively scaled copy) of \(P \). We simply apply this fact to the proof of Theorem 5.2. \(\Box \)

See Appendix G for a discussion about Bregman Voronoi diagrams and the role of \(\| \cdot \|^2 \) in Theorem 5.2.

5.1. Finite Properties in Mechanism Design

Suppose we have are in a mechanism design setting with a finite set of allocations \(\mathcal{A} \) and we have picked an allocation rule \(a \). Under what circumstances is \(a \) implementable (i.e. when is there a payment rule that makes the resulting mechanism truthful)? If the set of types is convex, Saks and Yu [2005] showed that the following condition is necessary and sufficient.

Definition 5.5. Allocation rule \(a \) satisfies weak monotonicity (WMON) if \(a(t) \cdot (t' - t) \leq a(t') \cdot (t' - t) \) for all \(t, t' \in \mathcal{T} \).
From Theorem 2.3 we know that a being implementable means that there exists a G such that a is a selection of its subgradients. But this is equivalent to saying that the property $\Gamma(t) = A \cap dG$ is directly elicitable! This gives us a new proof of this theorem by showing that WMON characterizes power diagrams. In particular, we can leverage the following characterization of power diagrams.

Theorem 5.6 (Aurenhammer, 1987). A cell complex C is a power diagram if and only if there exists a point-set $\{p_1, \ldots, p_n\}$ satisfying.

1. **Orthogonality.** For $Z_i \neq Z_j$, the line L that contains p_i and p_j (and is directed from p_i to p_j) is orthogonal to each face common to Z_i and Z_j.
2. **Orientation:** Any directed line that can be obtained by translating L and that intersects Z_i and Z_j first meets Z_i.

Theorem 5.7. A cell complex C is a power diagram with sites $\{p_1, \ldots, p_n\}$ if and only if for all $t \in Z_i$ and $t' \in Z_j$ we have $p_i \cdot (t' - t) \leq p_j \cdot (t' - t)$ (i.e. C satisfies WMON).

Proof. If C is a power diagram, then by definition

\[
2p_i \cdot t - w_i \geq 2p_j \cdot t - w_j \\
2p_j \cdot t' - w_j \geq 2p_i \cdot t' - w_i.
\]

Adding these shows C satisfies WMON.

Now suppose C satisfies WMON. We show orthogonality and orientation. For orthogonality, let $t, t' \in Z_i \cap Z_j$. Then $p_i \cdot (t' - t) = p_j \cdot (t' - t)$, or $(p_i - p_j) \cdot (t' - t) = 0$. Thus, the face is orthogonal to L.

For orientation, let $t \in Z_i$ and $t' \in Z_j$ be on such a translated L. That is, we can write $t' = t + c(p_j - p_i)$ for some $c \in \mathbb{R}$. By WMON, $(p_j - p_i) \cdot (t' - t) \geq 0$, or $c(p_j - p_i) \cdot (p_j - p_i) \geq 0$. Thus $c \geq 0$. Therefore such a translated L first meets Z_i. \qed

6. DISCUSSION

We have presented a model of truthful elicitation which generalizes and extends both mechanisms and scoring rules. On the mechanism design side, we have seen how our framework provides simpler, more general, or more constructive proofs of a number of known results about implementability and revenue equivalence, some of which lead to new results about scoring rules. On the scoring rules side, we have provided the first characterization for scoring rules for non-convex sets of probability distributions. We have also extended our model to eliciting a property of the agent’s private information. This has been studied for specific cases in the scoring rules literature, but we have provided the first general characterization. We also show how results about power diagrams in the scoring rules literature lead to a new proof of the Saks-Yu result in mechanism design.

Our analysis makes use of the fact that $A(t')(t)$ is affine in t to ensure that $G(t) = \sup_{t'} A(t')(t)$ is a convex function. However, this property continues to hold if $A(t')(t)$ is instead a convex function of t. Thus, a natural direction for future work is to investigate characterizations of convex scores. While mechanisms can always be represented as affine functions by taking the types to be functions from allocations to \mathbb{R}, it may be more natural to treat the type as a parameter of a (convex) utility function. While many such utility functions are affine (e.g. dot-product valuations), others such as Cobb-Douglas functions are not. Berger, Müller, and Naeemi (2009, 2010) have investigated such functions and given characterizations that suggest a more general result is possible. Another potential application is scoring rules for alternate representations of uncertainty, several of which result in a decision maker optimizing a convex function [Halpern, 2003].
In one sense getting such a characterization is straightforward. In the affine case we want $A(t')(t)$ to be an affine function such that $A(t')(t) \leq G(t)$ and $A(t')(t') = G(t')$. Since we have fixed its value at a point, the only freedom we have is in the linear part of the function, and being such a linear function is exactly the definition of a subgradient. So while our characterization of affine scores is in some sense vacuous, it is also powerful in that it allows us to make use of the tools of convex analysis. A similarly vacuous characterization is possible for the convex case: $A(t')(t)$ is a convex function such that $A(t')(t) \leq G(t)$ and $A(t')(t') = G(t')$. The challenge is to find a way to state it that is useful and naturally handles constraints such as those imposed by the form of a utility function.

Many questions in the literature on properties remain open. Most notable is the characterization of elicitable nonlinear and multidimensional properties — the single dimensional case is covered in [Lambert et al. 2008] and the linear vector-valued case in [Abernethy and Frongillo 2012]. We hope that the results and intuition from Section 3 will yield a useful characterization in this case. Another interesting direction is for non-functional properties: aside from the finite R case, all work in the literature to our knowledge assumes that Γ is a function (having a single correct report for each type). The generality of Theorem 3.5 may prove useful in exploring non-functional settings as well. A result requiring few regularity conditions on Γ would be useful in domains such as statistics where natural properties like the median cannot in general be expressed as functions.

Theorem 5.2 shows that scoring rules for finite properties are essentially equivalent the weights and points that induce a power diagram. As power diagrams are known to be connected to the spines of amoebas in algebraic geometry, aspects of toric geometry used by string theorists, and tropical hypersurfaces in tropical geometry [Van Manen and Siersma 2005] there may be useful characterization results in those fields as well. The last is particularly suggestive given the recent use of tropical geometry techniques in mechanism design [?].

While our examples have focused on mechanism design and scoring rules, another interesting direction to pursue is other settings where our results may be applicable. One natural domain is the literature on M-estimators in machine learning, statistics and economics. Essentially, this literature takes a loss function (i.e. a scoring rule) and asks what it elicits. For example, the mean is an M-estimator induced by the squared error loss function. Some work in this literature (e.g. [Negahban et al. 2010]) requires that the loss function satisfy certain conditions, and our results may be useful in characterizing and supplying such loss functions.

ACKNOWLEDGMENTS

We would like to thank Aaron Archer, Gabriel Carroll, Yiling Chen, Philip Dawid, Felix Fischer, Hu Fu, Philippe Jehiel, Nicolas Lambert, Peter Key, David Parkes, Colin Rowat, Greg Stoddard, Matus Telgarsky, and Rakesh Vohra for helpful discussions and anonymous reviewers for helpful feedback.

REFERENCES

Abercethy, J., Chen, Y., and Vaughan, J. W. 2013. Efficient market making via convex optimization, and a connection to online learning. ACM Transactions on Economics and Computation 1, 2, 12.

Abernethy, J. and Frongillo, R. 2012. A characterization of scoring rules for linear properties. In Proceedings of the 25th Conference on Learning Theory.

Aliprantis, C. D. and Border, K. C. 2007. Infinite Dimensional Analysis: A Hitchhiker’s Guide. Springer.

Archer, A. and Kleinberg, R. 2008. Truthful germs are contagious: a local to global characterization of truthfulness. In Proceedings of the 9th ACM Conference on Electronic Commerce.
A:23

ASHLAGI, I., BRAVERMAN, M., HASSIDIM, A., AND MONDERER, D. 2010. Monotonicity and implementability. Econometrica 78, 5, 1749–1772.

AURENHAMMER, F. 1987a. A criterion for the affine equivalence of cell complexes in r d and convex polyhedra in r d+1. Discrete & Computational Geometry 2, 1, 49–64.

AURENHAMMER, F. 1987b. Power diagrams: properties, algorithms and applications. SIAM Journal on Computing 16, 1, 78–96.

AURENHAMMER, F. 1987c. Recognising polytopical cell complexes and constructing projection polyhedra. Journal of Symbolic Computation 3, 3, 249–255.

BABAIOFF, M., BLUMROSEN, L., LAMBERT, N. S., AND REINGOLD, O. 2011. Only valuable experts can be valued. In Proceedings of the 12th ACM conference on Electronic commerce. 221–222.

BABAIOFF, M., SHARMA, Y., AND SLIVKINS, A. 2009. Characterizing truthful multi-armed bandit mechanisms. In Proceedings of the 10th ACM conference on Electronic commerce. 79–88.

BERGER, A., MILLER, R., AND HOSSEIN, N. S. 2010. Path-monotonicity and incentive compatibility. Tech. rep., Maastricht: METEOR, Maastricht Research School of Economics of Technology and Organization.

BERGER, A., MILLER, R., AND NAEEMI, S. 2009. Characterizing incentive compatibility for convex valuations. Algorithmic Game Theory, 24–35.

Bikhchandani, S., Chatterji, S., Lavi, R., Mu’alem, A., Nisan, N., AND Sen, A. 2006. Weak monotonicity characterizes deterministic dominant-strategy implementation. Econometrica 74, 4, 11091132.

Boissonnat, J.-D., Nielsen, F., AND Nock, R. 2007. Bregman voronoi diagrams: Properties, algorithms and applications. CoRR abs/0709.2196.

BOWEIN, J. M. AND VANDERWERFF, J. D. 2010. Convex Functions: Constructions, Characterizations and Counterexamples. Cambridge University Press.

CAI, Y., MAHDIAN, M., MEHTA, A., AND WAGGONER, B. 2013. Designing markets for daily deals. Preprint.

CARRAL, J. C. AND ELY, J. C. 2012. Mechanism design without revenue equivalence. Journal of Economic Theory.

CARRROLL, G. 2012. When are local incentive constraints sufficient? Econometrica 80, 2, 661–686.

CHEN, Y., KASH, I., RUBBERRY, M., AND SHNAYDER, V. 2011. Decision markets with good incentives. Internet and Network Economics, 72–83.

CHEN, Y. AND KASH, I. A. 2011. Information elicitation for decision making. AAMAS.

CHEN, Y., RUBBERRY, M., AND WORTMAN VAUGHAN, J. 2013. Cost function market makers for measurable spaces. In Proceedings of the fourteenth ACM conference on Electronic commerce. 785–802.

CHUNG, K. S. AND ELY, J. C. 2002. Ex-post incentive compatible mechanism design. URL http://www.kellogg.northwestern.edu/research/math/dps/1339.pdf. Working Paper.

CID-SUEIRO, J. 2012. Proper losses for learning from partial labels. In Advances in Neural Information Processing Systems 25. 1574–1582.

DIAKONIKOLAS, I., PAPADIMITRIOU, C., PIERRAKOS, G., AND SINGER, Y. 2012. Efficiency-revenue trade-offs in auctions. In Automata, Languages, and Programming. Springer, 488–499.

FANG, F., STINCHCOMBE, M. B., AND WHINSTON, A. B. 2010. Proper scoring rules with arbitrary value functions. Journal of Mathematical Economics 46, 6, 1200–1210.

FEIGE, U. AND TENNENHOLZ, M. 2010. Responsive lotteries. Algorithmic Game Theory 6386, 150–161.

FELDMAN, J. AND MUTHUKRISHNAN, S. 2008. Algorithmic methods for sponsored search advertising. In Performance Modeling and Engineering, Z. Liu and C. H. Xia, Eds. Springer US, 91–122.

FIAT, A., KARLIN, A., KOUTSOUPIAS, E., AND VIDALI, A. 2013. Approaching utopia: strong truthfulness and externality-resistant mechanisms. In Proceedings of the 4th conference on Innovations in Theoretical Computer Science. 221–230.

GNITING, T. 2011. Making and evaluating point forecasts. Journal of the American Statistical
Association 106, 494, 746–762.
Gneiting, T. and Raftery, A. 2007. Strictly proper scoring rules, prediction, and estimation. Journal of the American Statistical Association 102, 477, 359–378.
Halpern, J. 2003. Reasoning about uncertainty. MIT Press.
Heydenreich, B., Miller, R., Uetz, M., and Vohra, R. V. 2009. Characterization of revenue equivalence. Econometrica 77, 1, 307–316.
Ioffe, A. D. and Tikhomirov, V. M. 1979. Theory of extremal problems. North-Holland Pub. Co.; sole distributors for the U.S.A. and Canada, Elsevier North-Holland, Amsterdam; New York; New York.
Iyer, R. and Bilkis, J. 2013. The lovasz-bregman divergence and connections to rank aggre-
gation, clustering, and web ranking: Extended version. Uncertainty in Artificial Intelligence.
Jehiel, P. and Moldovanu, B. 2001. Efficient design with interdependent valuations. Econo-
metrica 69, 5, 12371259.
Jehiel, P., Moldovanu, B., and Stacchetti, E. 1996. How (not) to sell nuclear weapons.
The American Economic Review 86, 4, pp. 814–829.
Jehiel, P., Moldovanu, B., and Stacchetti, E. 1999. Multidimensional mechanism design
for auctions with externalities. Journal of Economic Theory 85, 2, 258 – 293.
Kos, N. and Messner, M. 2012. Extremal incentive compatible transfers. Journal of Economic Theory.
Krishna, V. and Maenner, E. 2001. Convex potentials with an application to mechanism
design. Econometrica 69, 4, 1113–1119.
Lai, H.-C. and Lin, L.-J. 1988. The fenchel-moreau theorem for set functions. Proceedings of
the American Mathematical Society, 85–90.
Lambert, N., Pennock, D., and Shoah, Y. 2008. Eliciting properties of probability distrib-
utions. In Proceedings of the 9th ACM Conference on Electronic Commerce. 129–138.
Lambert, N. and Shoah, Y. 2009. Eliciting truthful answers to multiple-choice questions.
In Proceedings of the 10th ACM conference on Electronic commerce. 109–118.
McAfee, R. and McMillan, J. 1988. Multidimensional incentive compatibility and mech-
anism design. Journal of Economic Theory 46, 2, 335–354.
Milgrom, P. and Segal, I. 2002. Envelope theorems for arbitrary choice sets. Econo-
metrica 70, 2, 583–601.
Miller, R., Pere, A., and Wolf, S. 2007. Weak monotonicity and bayes-nash incentive
compatibility. Games and Economic Behavior 61, 2, 344–358.
Myerson, R. B. 1981. Optimal auction design. Mathematics of operations research, 58–73.
Negahban, S. N., Ravikumar, P., Wainwright, M. J., and Yu, B. 2010. A unified framework
for high-dimensional analysis of m-estimators with decomposable regularizers. arXiv preprint
arXiv:1010.2731.
Ok, E. A. 2007. Real analysis with economic applications. Vol. 10. Princeton University Press.
Osband, K. and Reichelstein, S. 1985. Information eliciting compensation schemes. Jour-
nal of Public Economics 27, 1, 107–115.
Othman, A. and Sandholm, T. 2010. Decision rules and decision markets. In Proceedings of
the 9th International Conference on Autonomous Agents and Multiagent Systems. Vol. 1.
625–632.
Rochet, J. C. 1987. A necessary and sufficient condition for rationalizability in a quasi-linear
context. Journal of Mathematical Economics 16, 2, 191–200.
Rockafellar, R. 1997. Convex analysis. Princeton Mathematics Series Series, vol. 28. Prince-
ton University Press.
Saks, M. and Yu, L. 2005. Weak monotonicity suffices for truthfulness on convex domains.
In Proceedings of the 6th ACM conference on Electronic commerce. 286–293.
Savage, L. 1971. Elicitation of personal probabilities and expectations. Journal of the American
Statistical Association, 783–801.
Urruty, J.-B. H. and Lemarchal, C. 2001. Fundamentals of Convex Analysis. Springer.
Van Manen, M. and Siersma, D. 2005. Power diagrams and their applications. arXiv preprint
math/0508037.
Vohra, R. V. 2011. Mechanism design: a linear programming approach. Cambridge University
Press, Cambridge; New York.
A. CONVEX ANALYSIS PRIMER

In this appendix, we review some facts from convex analysis that are used in the paper.

FACT 1. Let \(\{ f_t \in \text{Aff}(V \to \mathbb{R}) \}_{t \in T} \) be a parameterized family of affine functions. Then \(G(t) = \sup_{t' \in T} f_{t'}(t) \) is convex as the pointwise supremum of convex functions.

This follows because convex functions are those with convex epigraphs. The epigraph of this supremum is the intersection of the epigraphs of the individual functions, which is a convex set as the intersection of convex sets.

FACT 2. \(d : \mathbb{R} \to \mathbb{R} \) is a selection of subgradients of a convex function on \(\mathbb{R} \) if and only if it is monotone non-decreasing.

See [Rockafellar 1997, Theorem 24.3] for a proof of a slightly more general statement.

FACT 3. For convex \(G \) on convex \(T \), \(\{ dG_t \in \text{Lin}(V \to \mathbb{R}) \}_{t \in T} \in \partial G \) satisfies path independence.

Since the restriction of \(G \) to a line is a one-dimensional convex function, \(G(y) - G(x) = \int_{L_{x,y}} dG_t(y - x) dt \) [Rockafellar 1997, Corollary 24.2.1]. Summing along the individual lines in a path from \(x \) to \(y \) gives that the value of the path integral is \(G(y) - G(x) \) regardless of the path chosen.

FACT 4. For any convex function \(G \), the set \(\partial G^{-1}(d) \equiv \{ x \in \text{dom}(G) : d \in \partial G_x \} \) is convex.

PROOF. Let \(x, x' \in \partial G^{-1}(d) \); then one easily shows (cf. Lemma 3.4) that \(G(x) - G(x') = d(x - x') \). Now let \(\tilde{x} = \alpha x + (1 - \alpha)x' \); we have,

\[
G(\tilde{x}) \leq \alpha G(x) + (1 - \alpha)G(x')
\]

\(= \alpha (G(x) - G(x')) + G(x') \)

\(= \alpha d(x - x') + G(x') \)

\(= d(\tilde{x} - x') + G(x') \)

\(\leq G(\tilde{x}), \) \hspace{1cm} (21)

where we applied convexity of \(G \) in (19) and the subgradient inequality for \(d \) at \(x' \) in (21). Hence, by eq. (20) we have shown \(G(\tilde{x}) - G(x') = d(\tilde{x} - x') \), so by Lemma 3.4, \(d \in \partial G_{\tilde{x}} \). \(\square \)

B. CHARACTERIZING TRUTHFUL MECHANISMS

While our theorem provides a characterization of truthful mechanisms in terms of convex consumer surplus functions, this is not always the most natural representation for a mechanism. In this section, we examine two other approaches to characterizing truthful mechanisms that have been explored in the literature and show that they have insightful interpretations in convex analysis, which allows us to greatly simplify their proofs. Furthermore, our phrasing of these results is as conditions for a parameterized family of linear functions to be a selection of subgradients of a convex function. We believe this phrasing converts known results in mechanism design into new results in convex analysis. It also shows how any such result in convex analysis would give a characterization of implementable mechanisms. Note that certain results in this section require an assumption that the relevant parameterized families are in fact real-valued, which is natural given our focus on mechanism design.
B.1. Subgradient characterizations

From an algorithmic perspective, it may be more natural to focus on the design of the allocation rule f. There is a large literature that focuses on when there exists a choice of payments p to make f into a truthful mechanism (e.g. [Saks and Yu 2005; Ashlagi et al. 2010]). Viewed through our theorem, this becomes a very natural convex analysis question: when is a function f a subgradient of a convex function? Unsurprisingly, the central result in the literature is closely connected to convex analysis.

Definition B.1. A family $\{d_t \in \text{Lin}(V \to \mathbb{R})\}_{t \in T}$ satisfies cyclic monotonicity (CMON) if for all finite sets $\{t_0, \ldots, t_k\} \subseteq T$,

$$\sum_{i=0}^{k} d_{t_i}(t_{i+1} - t_i) \leq 0, \quad (22)$$

where indices are taken modulo $k + 1$. We refer to the weaker condition that (22) hold for all pairs $\{t_0, t_1\}$ as weak monotonicity (WMON).

A well known characterization from convex analysis is that a function f defined on a convex set is a subgradient of a convex function on that set iff it satisfies CMON [Rockafellar 1997]. Rochet’s [1987] proof that such payments exist on a possibly non-convex T iff f satisfies CMON is effectively a proof of the following generalization of this theorem.

Theorem B.2 (Adapted from Rochet [1987]). A family $\{d_t \in \text{Lin}(V \to \mathbb{R})\}_{t \in T}$ satisfies CMON if and only if there exists a convex $G : \text{Conv}(T) \to \mathbb{R}$ such that $\{d_t\}_{t \in T} \in \partial G$.

Rochet notes that his proof is adapted from the one given in Rockafellar’s text [1997] of the weaker theorem where T is restricted to be convex. We adapt Rochet’s proof to highlight how its core is a construction of G.

Proof. Given such a G, by (2) we have $d_{t_i}(t_{i+1} - t_i) \leq G(t_{i+1}) - G(t_i)$. Summing gives (22). Given such a family $\{d_t\}_{t \in T}$, fix some $t_0 \in T$ and define

$$G(t) = \sup_{\{t_1, \ldots, t_k\} \subseteq T} \sum_{i=0}^{k} d_{t_i}(t_{i+1} - t_i), \quad (23)$$

where $\{t_1, \ldots, t_k\}$ denotes any finite sequence (k is not fixed).

By CMON, for $t \in T$ this sum is upper bounded by $-d_t(t_0 - t)$. Thus, the supremum is finite on T. G is a pointwise supremum of convex functions, so is convex. By convexity, G is also finite on Conv(T).

More precisely, we want for all t the allocation $f(t)$ to be a subgradient at t. Equivalently, we can view f as a parameterized family of functions, which is how we state our results.
For any \(t \in \mathcal{T} \) and \(t' \in \text{Conv}(\mathcal{T}) \),

\[
G(t) + d_t(t' - t) = d_t(t' - t) + \sup_{\{t_1, \ldots, t_k\} \subseteq \mathcal{T}, t_i = t, t_{k+1} = t'} \sum_{i=0}^{k} d_{t_i}(t_{i+1} - t_i) \\
= \sup_{\{t_1, \ldots, t_k\} \subseteq \mathcal{T}, t_i = t, t_{k+1} = t'} \sum_{i=0}^{k} d_{t_i}(t_{i+1} - t_i) \\
\leq \sup_{\{t_1, \ldots, t_k\} \subseteq \mathcal{T}, t_i = t, t_{k+1} = t'} \sum_{i=0}^{k} d_{t_i}(t_{i+1} - t_i) \\
= G(t'),
\]

so \(d_t \) satisfies (2). \(\Box \)

A number of papers have sought simpler and more natural conditions than CMON that are necessary and sufficient in special cases, e.g. [Saks and Yu 2005; Archer and Kleinberg 2008; Ashlagi et al. 2010]. These results are typically proven by showing they are equivalent to CMON. However, it is much more natural to directly construct the relevant \(G \). As an example, we show one such result has a simple proof using our framework. This particular proof also has the advantage of providing a characterization of the payments that is more intuitive than the supremum in Rochet’s construction.

As in Myerson’s [1981] construction for the single-parameter case, we construct a \(G \) by integrating over \(d_t \). In particular, for any two types \(x \) and \(y \) our construction makes use of the line integral

\[
\int_{L_{xy}} d_t(y - x)dt = \int_0^1 d_{(1-t)x+ty}(y - x)dt.
\]

As Berger et al. [2009] and Ashlagi et al. [2010] observed, if \(\{d_t\}_{t \in \mathcal{T}} \) satisfies WMON and \(\mathcal{T} \) is convex, this (Riemann) integral is well defined because it is the integral of a monotone function. If these line integrals vanish around all triangles (equivalently \(\int_{L_{xy}} d_t(y - x)dt + \int_{L_{yz}} d_t(z - y)dt = \int_{L_{xz}} d_t(z - x)dt \)) we say \(\{d_t\} \) satisfies path independence.

Theorem B.3 (Adapted from [Miller et al. 2007]). For convex \(\mathcal{T} \), a family \(\{d_t \in \text{Lin}(\mathcal{V} \to \mathbb{R})\}_{t \in \mathcal{T}} \) is a selection of subgradients of a convex function if and only if \(\{d_t\}_{t \in \mathcal{T}} \) satisfies WMON and path independence.

Proof. Given a convex function \(G \) and selection of subgradients \(\{d_t\} \), \(\{d_t\} \) satisfies CMON and thus WMON. Path independence also follows from convexity (Rockafellar [1997] p. 232). Now given a \(\{d_t\} \) that satisfies WMON and path independence, fix a type \(t_0 \in \mathcal{T} \) and define \(G(t') = \int_{L_{t_0 t'}} d_t(t' - t_0)dt \) (well defined by WMON as the integral of a monotone function). Given \(x, y, z \in \mathcal{T} \) such that \(z = \lambda x + (1 - \lambda)y \), by path independence and the linearity of \(d_z \) we have

\[
\lambda G(x) + (1 - \lambda)G(y) \\
= G(z) + \lambda \int_{L_{xz}} d_t(x - z)dt + (1 - \lambda) \int_{L_{zy}} d_t(y - z)dt \\
\geq G(z) + \lambda d_z(x - z) + (1 - \lambda)d_z(y - z) = G(z),
\]
so G is convex. Similarly, for $x, y \in T$, d_t satisfies (2) because
\[d_x(y - x) \leq \int_{L_x y} d_t(y - x) dt = G(y) - G(x). \]

B.2. Local Characterizations

In many settings, it is easier to reason about the behavior of a mechanism given small changes to its input rather than arbitrary changes, so several authors have sought to characterize truthful mechanisms using local conditions [Archer and Kleinberg 2008; Berger et al. 2009; Carroll 2012]. We show in this section how many of these results are in essence a consequence of a more fundamental statement, that convexity is an inherently local property. For example, in the twice differentiable case it can be verified after a similar theorem for a different notion of local truthfulness. Our results (specifically Theorem B.5) show that these two notions of local truthfulness are equivalent because afterwards we turn to a characterization by Archer and Kleinberg [2008] that proved a similar theorem for a different notion of local truthfulness. Our results (specifically Theorem B.5) show that these two notions of local truthfulness are equivalent because Archer and Kleinberg’s definition corresponds to the property of being a weak, local subgradient, while Carroll’s corresponds to the property of being a weak, local subgradient, which we now define.

Definition B.4. Let T be convex. A family $\{d_t \in \text{Lin}(V \to \mathbb{R})\}_{t \in T}$ is a weak local subgradient (WLSG) of a convex function $G : T \to \mathbb{R}$ if for all $t \in T$ there exists an open neighborhood U_t of t such that for all $t' \in U_t$,
\[G(t) \geq G(t') + d_t(t' - t) \quad \text{and} \quad G(t') \geq G(t) + d_t'(t' - t). \] (24)
Furthermore, if for every $s \in T$, eq. (24) holds for all $t, t' \in U_s$, we say $\{d_t\}_{t \in T}$ is a local subgradient (LSG) of G.

We now show that being a WLSG is a necessary and sufficient condition for a family of functions to be a selection of subgradients. The proof is heavily inspired by Carroll [2012] and is presented in Appendix E (along with subsequent omitted proofs).

Theorem B.5. Let T be convex. A family $\{d_t \in \text{Lin}(V \to \mathbb{R})\}_{t \in T}$ is a selection of subgradients of a convex function $G : T \to \mathbb{R}$ if and only if it is a WLSG of G.

The WLSG condition translates to an analogous notion in terms of truthfulness, weak local truthfulness.

Definition B.6. An affine score is weakly locally truthful if for all $t \in T$ there exists some open neighborhood U_t of t, such that truthfulness holds between t and every $t' \in U$, and vice versa. That is,
\[\forall t \in T, \forall t' \in U_t, \ A(t')(t) \leq A(t)(t) \quad \text{and} \quad A(t)(t') \leq A(t')(t'). \] (25)

Corollary B.7 (Generalization of Carroll [2012]). An affine score $A : T \to \mathcal{A}$ for convex T is truthful if and only if it is weakly locally truthful.

Proof. Defining $G_t := A(t)(t)$, by weak local truthfulness we may write
\[
G(t) = A(t)(t) \geq A(t')(t) = G(t') + A_t(t')(t - t') \\
G(t') = A(t')(t') \geq A(t)(t') = G(t) + A_t(t')(t' - t),
\]
where t' is local to t and $A_t(\cdot)$ is the linear part of $A(\cdot)$. This says that $d_t = A_t(t)$ satisfies WLSG for convex function G; the rest follows from Theorem B.5 and Theorem 2.3. □
Finally, in the spirit of Section B.1, Archer and Kleinberg [2008] characterized local conditions under which an allocation rule can be made truthful. A key condition from their paper is vortex-freeness, which is a condition they show to be equivalent to local path independence (analogous to our terminology of weak local subgradients it can be thought of as weak local path independence). The other condition, local WMON, means that WMON holds in some neighborhood around each type. Their result then follows from the observation that local WMON and local path independence imply local subgradient. While this particular proof is not significantly simpler than the original, we believe it is somewhat more natural and clarifies the connection between the underlying reasons a notion of local truthfulness suffices both here and in Carroll's setting.

Corollary B.8. Let T be convex. A family $\{d_t \in \text{Lin}(V \rightarrow \mathbb{R})\}_{t \in T}$ is a selection of subgradients of a convex function if and only if it satisfies local WMON and is vortex-free.

C. Revenue Equivalence

Perhaps the most celebrated result in auction theory is the revenue equivalence theorem, which states that, in a single item auction, the revenue from an agent (equivalently that agent's consumer surplus) is determined up to a constant by the equilibrium probability that each possible type of that agent will receive the item [Myerson 1981]. A large body of work has looked for more general conditions under which this property holds (see, e.g., [Krishna and Maenner 2001]) or what can be said when it does not [Carbajal and Ely 2012]. One general approach is due to Heydenreich et al. [2009], who use a graphical representation related to CMON. Given our main theorem, this is unsurprising. In convex analysis terms, asking whether an implementable allocation rule satisfies revenue equivalence is asking whether all convex functions that have a selection of their subgradients that corresponds to that allocation rule are the same up to a constant. As we saw in the proof of Theorem B.2, CMON captures the natural construction of a convex function from its subgradient via (23). Intuitively, if we know the payments we want for some subset of types, we can check if those are consistent with a desired payment for some other type by checking whether this construction still works, both in terms of the constraints of the existing types on the new one and the new one on the existing ones. The following theorem applies this insight to get a result that is stronger than revenue equivalence as it characterizes the possible payments for every mechanism.

Theorem C.1. Let G be a convex function on $\text{Conv}(T)$, $\{dG_t\}_{t \in T}$ a selection of its subgradients on T, $S \subseteq T$ non-empty, $t^* \in T \setminus S$, and c be given. Then there exists a convex G' on $\text{Conv}(T)$ such that $G(t) = G'(t)$ for all $t \in S$, $\{dG_t\}_{t \in T} \in \partial G'$, and $G'(t^*) = c$ if and only if

$$\sup_{\{t_0, \ldots, t_{k+1}\} \subseteq T \atop t_0 \in S, t_{k+1} = t^*} G(t_0) + \sum_{i=0}^{k} dG_{t_i}(t_{i+1} - t_i) \leq c \leq \inf_{\{t_0, \ldots, t_{k+1}\} \subseteq T \atop t_0 = t^*, t_{k+1} \in S} G(t_{k+1}) - \sum_{i=0}^{k} dG_{t_i}(t_{i+1} - t_i)$$

(26)

Viewed through Theorem C.1, revenue equivalence holds when the upper and lower bounds from (26) match after the value of G is fixed as a single point. This allows us to derive a necessary and sufficient condition for revenue equivalence that is equivalent to that given by Heydenreich et al. [2009] and actually applies to all affine scores. For example, this gives a revenue equivalence theorem for mechanisms with partial allocation.
COROLLARY C.2 (Revenue Equivalence). Let a truthful affine score \(A : \mathcal{T} \to A \) be given, and \(\{d_t\}_{t \in \mathcal{T}} \) be the corresponding selection of subgradients from (3). Then every truthful affine score \(A' : \mathcal{T} \to A \) with the same corresponding selection of subgradients differs from \(A \) by a constant (i.e. \(A(t')(t) = A'(t')(t) + c \)) if and only if \(\{d_t\}_{t \in \mathcal{T}} \) satisfies (26).

We note that these two results are similar to results of Kos and Messner [2012]. The main novelties in our version are showing that every value in the interval yields a convex function (as opposed to merely the extremal ones), the ability to characterize possible values after the values at multiple points are fixed (as opposed to a single point), and the framing in terms of convex analysis.

The conditions given by Theorem C.1 and Corollary C.2, while general, are not particularly intuitive. However, there are a number of special cases where they do have natural interpretations for mechanism design. The first is when the set of types is finite. In this setting (explored in an auction theory context in, e.g., [Diakonikolas et al. 2012]) it is well known that revenue equivalence does not hold. The finite set of constraints (26) can be used in general as a linear program to, e.g., maximize revenue (see Section 6.5.2 of [Vohra 2011] for an example). In particular cases, they may become simple enough to have a nice characterization. For example, in the single-parameter setting only a linear number of paths need be considered. This setting is illustrated in Figure 2.

![Fig. 2](image)

Fig. 2. Consider a one-dimensional setting with type space \(\mathcal{T} = \{0, 1, 2\} \) and \(d_0 = 0, d_1 = 1, d_2 = 2 \). In (a), we fix \(G(0) = 0 \), yielding a range of possible values dictated by the subgradients: \(0 \leq G(1) \leq 1 \) and \(1 \leq G(2) \leq 3 \). We can pick any point in the resulting set and fix \(G \) there. However, we cannot pick any increasing function: in (b), we fix \(G(1) = 0.5 \), restricting \(G(2) \) to the interval \([1.5, 2.5]\).

More broadly, as we saw in the proof of Theorem B.3, the (supremum over the) sum can often be interpreted as an integral. In particular, the fact that \(G \) is convex guarantees that (under mild conditions) integrals of a selection of its subgradient are path independent and the integral from \(t \) to \(t' \) gives \(G(t') - G(t) \). If \(\mathcal{T} \) is connected by smooth paths (e.g. if it is convex), this means that \(\mathcal{T} \) satisfies revenue equivalence for all implementable mechanisms (previously shown under a somewhat different notion of the set of types [Heydenreich et al. 2009]). As it is particularly simple to prove, we state the version for convex \(\mathcal{T} \).

COROLLARY C.3. Let \(\mathcal{T} \) be convex, a truthful affine score \(A : \mathcal{T} \to A \) be given, and \(\{dG_t\}_{t \in \mathcal{T}} \) be the corresponding selection of subgradients from (3). Then any truthful
affine score $\mathbf{A}' : T \to \mathbb{A}$ with the same corresponding selection of subgradients differs from \mathbf{A} by a constant (i.e. $\mathbf{A}(t') = \mathbf{A}'(t') + c$).

Proof. By Theorem 2.3, we know that \mathbf{A} and \mathbf{A}' only differ only in their choice of convex function G. However, each choice has the same selection of subgradients, and two convex functions with the same selection of subgradients differ by a constant [Rockafellar 1997]. For intuition, see the construction of G by integrating its subgradients in the proof of Theorem B.3. \square

D. ADDITIONAL APPLICATIONS

In this section, we demonstrate the power of our characterization theorem with several additional applications.

D.1. Decision Rules

Theorem 2.3 also generalizes Gneiting and Raftery’s [2007] characterization to settings beyond eliciting a single distribution. For example, a line of work has considered a setting where a decision maker needs to select from a finite set D of decisions and so desires to elicit the distribution over outcomes conditional on selecting each alternative [Othman and Sandholm 2010; Chen and Kash 2011; Chen et al. 2011]. Since only one decision will be made and so only one conditional distribution can be sampled, simply applying a standard proper scoring rule generally does not result in truthful behavior. Applying Theorem 2.3 to this setting characterizes what expected scores must be, from which many of the results in these papers follow.

As an illustration, consider the model of proper scoring rules for decision rules [Chen and Kash 2011]. There is a decision maker who will select an action from a set $A = \{1, \ldots, n\}$. Once an action is selected, some outcome from the set $\mathcal{O} = \{o_1, \ldots, o_m\}$ will be realized, where the probability of each outcome depends on the action chosen. The decision maker seeks to elicit from an expert the probability $P_{i,o}$ of outcome o occurring given that action i is chosen. The decision maker uses a fixed decision rule $D : \mathcal{P} \to \Delta(A)$, where $D_i(P)$ is the probability of choosing action i given the expert reported the matrix P. The decision maker rewards the expert using a (regular) scoring rule that depends on the action chosen $S : A \times \mathcal{O} \times \mathcal{P} \to \mathbb{R} \cup \{-\infty\}$. For brevity, we write $S_{i,o}(P)$. Given a belief P and report Q, we can write the expert’s expected score as

$$V(Q, P) = \sum_{i,o} D_i(Q)P_{i,o}S_{i,o}(Q)$$

The definition of (strict) properness for a particular decision rule then follows naturally.

Definition D.1. A regular scoring rule S is *proper* for a decision rule D if

$$V(P, P) \geq V(Q, P)$$

for all P and all $Q \neq P$. It is *strictly proper* for the decision rule if the inequality is strict.

As this V is an affine score, we can immediately apply our theorem to derive Chen and Kash’s [2011] characterization and even extend it to the case where the set of probability matrices is not convex. In the theorem statement we make use of the Frobenius inner product $P : Q = \sum_{i,o} P_{i,o}Q_{i,o}$.
THEOREM D.2. Given a set of probability matrices \(\mathcal{P} \subseteq \Delta(\mathcal{O})^n \) a regular scoring rule is (strictly) proper for a decision rule \(D \) if and only if

\[
S_{i,o}(Q) = \begin{cases}
G(Q) - G_Q:Q + \frac{G_{Q,i,o}}{D_i(Q)} & D_i(Q) > 0 \\
\Pi_{i,o}(Q) & D_i(Q) = 0
\end{cases}
\]

where \(G : \text{Conv}(\mathcal{P}) \to \mathbb{R} \cup \{-\infty\} \) is a (strictly) convex function, \(G_Q \) is a subgradient of \(G \) at the point \(Q \) with \(G_{Q,i,o} = 0 \) when \(D_i(Q) = 0 \), and \(\Pi_{i,o} : \mathcal{P} \to \mathbb{R} \cup \{-\infty\} \) is an arbitrary function that can take a value of \(-\infty\) only when \(Q_{i,o} = 0 \).

PROOF. By Theorem 2.3, \(S \) is (strictly) proper for \(D \) if and only if there exists a (strictly) convex function \(V(Q,P) = \hat{G}(Q) + dG_Q(P - Q) \). That is,

\[
\sum_{i,o} D_i(Q)P_{i,o}S_{i,o}(Q) = G(Q) - G_Q:Q + \sum_{i,o} G_{Q,i,o}P_{i,o},
\]

or for all \(i \) such that \(D_i(Q) \neq 0 \),

\[
S_{i,o}(Q) = G(Q) - G_Q:Q + \frac{G_{Q,i,o}}{D_i(Q)}
\]

When \(D_i(Q) = 0 \), \(S \) is unconstrained (other than the minimal requirements regarding \(-\infty\) for regularity). However, note that our affine score is restricted in that, because \(D_i(Q) \) is fixed, some choices in \(A \) are not possible to select as subgradients. In particular, it must be that \(G_{Q,i,o} = 0 \) when \(D_i(Q) = 0 \) \(\square \).

D.2. Proper losses for partial labels

Several variants of proper losses have appeared in the machine learning literature, one of which is the problem of estimating the probability distribution of labels for an item when the training data may contain several noisy labels, possibly not even including the correct label. (This is frequently the case, for example, when using crowdsourced labels for items.) More formally, one wishes to estimate \(p \in \Delta_n \) where the true label \(y \in [n] \) is drawn from \(p \). However, instead of observing a sample \(y \sim p \) and designing a proper loss \(\ell(\hat{p}, y) \), one instead only observes some noisy set of labels \(S \subseteq [n] \). Hence, the task is to design a loss \(\ell(\hat{p}, S) \) which when minimized over one's data yields accurate estimates of the true \(p \).

Recently this problem was studied in [Cid-Sueiro 2012] under the assumption that \(S \sim q \) where \(q =Mp \) for some known \(M \in \mathbb{R}^{n \times n} \), meaning if the observed label is drawn from \(p \), the noisy set of labels is drawn from \(Mp \) (using some indexing of the sets, say lexicographical). Cid-Sueiro (in his Theorem 4.3) provides a characterization of all proper losses for an even more general version of this setting where \(M \) is known only to be a member of a class rather than exactly and we want the loss to be proper regardless of which member it is. Note that the (negative) payoff \(\mathbb{E}_{S \sim Mp}[\ell(\hat{p}, S)] = \ell(\hat{p}, \cdot)^{\top}Mp \) is linear in the underlying distribution \(p \), so our Theorem 2.3 applies and allows us to recover his characterization result. We refrain from introducing the model necessary to explicitly state this result as it would require an excessive number of definitions. Note that this is essentially a latent observation setting, and the fact that what we observe is a set of labels is in no way necessary — any observed outcome whose distribution has a linear (or affine) relationship with the latent outcome would suffice to apply our theorem.

D.3. Mechanism design with partial allocation

Several mechanism design settings considered in the literature have some form of exogenous randomization, in that “Nature” chooses some outcome \(\omega \) according to some
additionally choses some payoff function on a set of beliefs [ishnan 2008], multi-armed bandit mechanisms [Babaioff et al. 2009], and recent work on daily deals [Cai et al. 2013]. The work of Cai et al. [2013] introduces a very general model for such settings, which we now describe.

Let \(\mathcal{O} \) be a set of allocations, and for each allocation \(o \) and each agent \(i \), let \(\Omega^i_o \) be some set of outcomes (e.g. which agent wins an auction for the opportunity to advertise a special offer from its business). Agents each have a valuation function \(v^i : \mathcal{O} \to \mathbb{R} \) and a set of beliefs \(p^i_o \in \Delta(\Omega^i_o) \) for each allocation \(o \in \mathcal{O} \) (an expected value for getting to advertise and a probability distribution over the number of customers who accept the deal). The mechanism aggregates all of this information into a single allocation \(o \), and additionally choses some payoff function \(s^i : \Omega^i_o \to \mathbb{R} \), so that the final utility of agent \(i \) is \(v^i(o) + E_{p^i_o}[s^i] \) (the winning agent both gets to advertise and accepts a scoring rule contract regarding its prediction of the number of customers). A mechanism is truthful if for all values of \(v \) and \(p \) for the other agents, agent \(i \) maximizes her total utility by reporting \(v^i \) and \(p^i \equiv (p^i_o)_{o \in \mathcal{O}} \) truthfully. For additional examples, the standard sponsored search setting has \(\Omega^i_o = \{ \text{click, no click} \} \) for each allocation \(o \in \mathcal{O} \), and the probabilities \(p^i_o \) are assumed to be public knowledge. Moreover, the decision rules framework discussed above is a single-agent special case with \(v \equiv 0 \) and \(\Omega^o = \Omega^\emptyset = \Omega \) for all \(o \in \mathcal{O} \) (of course, unlike the notation above, \(o \in \mathcal{O} \) is the allocation/decision, and \(\Omega \) is the set of outcomes).

We first observe that this model can easily be cast as an affine score, as follows. For simplicity, we fix some agent \(i \) and focus on the single-agent case; as discussed several times above, this is essentially without loss of generality. The type space is simply the combined private information of the agent,

\[
\mathcal{T} = \left\{ (v, p) : v \in \mathcal{O} \to \mathbb{R}, \ p \in \prod_{o \in \mathcal{O}} \Delta(\Omega^i_o) \right\}.
\]

(27)

The utility of the agent upon allocation and payoff \(o, s \) is simply \(v(o) + E_{p^i_o}[s] = \text{Eval}_s[v] + s^i \mathbb{1}_o \), which is linear in the type \(t = (v, p) \) and therefore affine. (Here we represent \(p \) as a matrix in \(\mathbb{R}^{\mathcal{O} \times \Omega^i_o} \) and \(s \in \mathbb{R}^{\Omega^i_o} \), and define \(\mathbb{1}_o \) to be the standard vector with 1 at entry \(o \) and 0 elsewhere.) Thus, letting \(t = (v, p) \), we can represent this as an affine score:

\[
A(t')(t) = v(o(t')) + E_{p^i_o(t')}[s(t')].
\]

(28)

Motivated by incorporating the utilities of the end consumers in a daily deal setting, Cai et al. [2013] ask when one can implement an allocation rule of the form \(f(v, p) = \arg\max_{o \in \mathcal{O}} v(o) + g^o(p^o) \); in other words, when does there exist some choice of score \(s(v, p) \in \mathbb{R}^{\Omega^i_o(v, p)} \) making \(f \) truthful. They conclude that this can be done if and only if \(g^o \) is convex for each \(o \in \mathcal{O} \). It is interesting, and perhaps illuminating, to view this question in terms of our affine score framework.

Stepping back for a moment, consider a type space \(\mathcal{T} \subseteq \mathcal{V} = \mathcal{V}^X \times \mathcal{V}^Y \) which partitions into two (subsets of) subspaces. (Note that \(\mathcal{V}^Y \) no longer need be restricted to probability distributions.) We wish to know when a function \(f : \mathcal{T} \to \text{Lin}(\mathcal{V}^X \to \mathbb{R}) \) is implementable, in the sense that there exists some truthful affine score \(A : \mathcal{T} \to \mathbb{R}, A \subseteq \text{Aff}(\mathcal{V} \to \mathbb{R}) \), and some \(h : \mathcal{T} \to \text{Aff}(\mathcal{V}^Y \to \mathbb{R}) \) such that \(A(t')(t) = f(t')(t^X) + h(t')(t^Y) \), where of course \(t = (t^X, t^Y) \). That is, when can we complete the partial “allocation” \(f \) into a truthful affine score?

For convenience, for each \(a \in A \) we write \(X(a) \in \text{Lin}(\mathcal{V}^X \to \mathbb{R}) \) to be the linear part of \(a \) on \(\mathcal{V}^X \), and \(Y(a) \) to be the affine part of \(a \) on \(\mathcal{V}^Y \). Then we have that \(f \) is
implementable if and only if

\[
f(t) \in \operatorname{argsup}_{x \in X(A)} \left\{ x(t^X) + \sup_{a \in A(T)} \{ Y(a)(t^Y) \} \right\}
\]

(29)

To see this, one direction follows from the fact that an affine score is truthful if and only if

\[
A(t) \in \operatorname{argsup}\{ a(t) : a \in A(T) \},
\]

(30)

by taking the supremum first over \(X(A) \) and then over the rest. For the other direction, note that taking \(A(t') = f(t')(t^X) + y(t')(t^Y) \) where \(y \) is in the \(\operatorname{argsup} \) of the supremum of eq. (29) gives a truthful affine score.

Returning to the special case of daily deals, let us denote by \(a_{o,s} \in A \) the function \((v, p) \mapsto v(o') + E_{p'}[s]\). We now see that \(f(v, p) \) is implementable if and only if it satisfies

\[
f(v, p) \in \operatorname{argsup}_{o \in O} \left\{ v(o) + \sup_{s, a_{o,s} \in A(T)} \{ E_{p'}[s] \} \right\}.
\]

(31)

Thus, letting \(g^n(p^o) = \sup \{ E_{p'}[s] : a_{o,s} \in A \} \), we see that \(g^n \) is convex as the supremum of affine functions. Moreover, given any collection of convex functions \(\{ g^n \}_{n \in \mathbb{O}} \), where \(g^n : \Delta(\Omega^{1,n}) \to \mathbb{R} \), we can define \(S^n = \{ \omega \mapsto g(p) + dq(1, \omega - p) : p \in \text{dom}(g) \} \) and \(A = \{ a_{o,s} : o \in O, s \in S^n \} \), thus recovering each \(g^n \) in the above expression. It then only remains to show that no other nonconvex function can serve in the \(\operatorname{argsup} \); for this one may appeal to the argument of Cai et al. [2013] which observes that the indifference points between different allocations is fixed, thus determining the function in the \(\operatorname{argsup} \) up to a constant.

D.4. Responsive Lotteries

We motivated the problem in Section 2.3.2. Here we prove Theorem 2.12, beginning with formal definitions of various geometrical notions we will use. We denote by \(\partial K \) the boundary of the set \(K \subseteq \mathbb{R}^n \).

Definition D.3. Given a compact convex set \(K \subseteq \mathbb{R}^n \), we define the exposed face \(F_K(t) \) in direction \(t \neq 0 \) and the normal cone \(N_K(k) \) at point \(k \in \partial K \) by

\[
F_K(t) = \operatorname{argmax}_{k \in K} \{ \langle t, k \rangle \}, \quad N_K(k) = \{ t \in \mathbb{R}^n : k \in F_K(t) \}.
\]

(32)

Definition D.4. We say \(K \) is strictly convex if \(F_K(t) \) is a singleton for all \(t \neq 0 \). Dually, we say \(K \) is smooth if \(N_K(k) \) is a ray (i.e. \(\{ \alpha t : \alpha \geq 0 \} \) for some \(t \neq 0 \)) for all \(k \in \partial K \).

Proof of Theorem 2.12. We begin with the first part of the theorem. Let \(K \) be compact and strictly convex, and \(A = \partial K \). Then as \(S \) is truthful, we must have \(S(t) \in \operatorname{argsup}_{a \in A} \{ t, a \} \). As \(A = \partial K \), we may also write \(S(t) \in \operatorname{argmax}_{k \in K} \{ t, k \} \). Now by strict convexity of \(K \), we have for every \(a \in A = \partial K \), there exists some \(t \in T \) such that \(\{ a \} = \operatorname{argmax}_{k \in K} \{ t, k \} \), giving us both surjectivity and strict truthfulness (as \(S(t) = a \)). Continuity follows immediately from Berge’s Maximum Theorem [Ok2007].

For the converse, let \(S \) be strictly truthful, surjective, and continuous. By standard arguments, since \(T \) is a compact subset of \(\mathbb{R}^n \), we have \(A = S(T) \) is compact as a continuous image of a compact set. Thus, \(K \preceq \text{Conv}(A) \) is a compact convex set. Letting \(F_K(t) = \operatorname{argmax}_{k \in K} \{ t, k \} \) be the exposed face of \(K \) in direction \(t \), we will now show \(F_K(t) = \{ S(t) \} \). First, observe that the extreme points of \(K \), \(\text{ext}(K) \), are a subset of \(A \).
Hence \(p. 232 \), and now by path independence we see that \(\text{Conv} \{ (t, k) : k \in K \} \) is a convex set containing \(A \), contradicting the definition of \(K = \text{Conv}(A) \). Now we may apply [Urruty and Lemarchal 2001, Proposition A.2.4.6] to express the \(\text{argmax} \) in terms of the extreme points of \(K \), giving us

\[
F_K(t) = \text{argmax} \left\{ t, k \in K : \text{Conv} \left(\text{argmax} \left\{ t, k \right\} \right) \subseteq \text{Conv} \left(\text{argmax} \left\{ t, a \right\} \right) = \{ S(t) \} \right\}
\]

As \(K \) is compact, \(F_K(t) \) is nonempty, and thus \(F_K(t) = \{ S(t) \} \), and additionally we conclude \(S(t) \in \text{ext}(K) \). Hence \(A = S(T) \subseteq \text{ext}(K) \), and as we concluded the reverse conclusion above, we have \(A = \text{ext}(K) \). We now apply [Urruty and Lemarchal 2001, Proposition C.3.1.5] to obtain \(\partial K = \bigcup_{t \in T} F_K(t) \), which in turn gives \(\partial K = A \) by surjectivity. Finally, as \(\text{ext}(K) = A = \partial K \), we have strict convexity of \(K \).

For the final statement of the theorem, we note that by [Urruty and Lemarchal 2001, Proposition C.3.1.4], we have \(k \in F_K(t) \iff t \in N_K(k) \). By the above, we already have \(F_K(t) = \{ S(t) \} \) for all \(t \in T \), which implies \(N_K(k) \cap T = \{ t : S(t) = k \} \). Hence, \(N_K(a) \) is a ray for all \(a \in A \) if and only if \(S \) is injective. \(\square \)

E. OMITTED PROOFS

Proof of Theorem B.5

Proof (adapted from [Carroll 2012]). As usual, the forward direction is trivial. For the other, let \(t, t' \in T \) be given; we show that the subgradient inequality for \(d_t \) holds at \(t \). By compactness of \(\text{Conv}(\{t, t'\}) \), we have a finite set \(t_i = \alpha_i t' + (1 - \alpha_i) t \), where \(0 = \alpha_0 \leq \cdots \leq \alpha_{k+1} = 1 \), such that WLSG holds between each \(t_i \) and \(t_{i+1} \).

(The cover \(\{ U_s \mid s \in \text{Conv}(\{t, t'\}) \} \) has a finite subcover. Take \(t_{2i+1} \) from the subcover and \(t_{2i+2} \in U_{t_{2i}} \cap U_{t_{2i+2}} \).) By the WLSG condition \([24] \), we have for each \(i \),

\[
0 \geq G(t_{i+1}) - G(t_i) + d_{i+1}(t_i - t_{i+1})
\]

(33)

\[
0 \geq G(t_i) - G(t_{i+1}) + d_i(t_{i+1} - t_i).
\]

(34)

Now using the identity \(t_{i+1} - t_i = (\alpha_{i+1} - \alpha_i)(t' - t) \) and adding \(\alpha_i/(\alpha_{i+1} - \alpha_i) \) times \(33 \) to \(\alpha_{i+1}/(\alpha_{i+1} - \alpha_i) \) times \(34 \), we have

\[
0 \geq G(t_i) - G(t_{i+1}) + \alpha_i d_i(t' - t) - \alpha_{i+1} d_{i+1}(t' - t).
\]

(35)

Summing \(35 \) over \(0 \leq i \leq k \) gives

\[
0 \geq G(t_0) - G(t_k+1) + \alpha_0 d_0(t' - t) - \alpha_{k+1} d_{k+1}(t' - t),
\]

which when recalling our definitions for \(\alpha_i \) and \(t_i \) yields the result. \(\square \)

Proof of Corollary B.8

Proof. We prove the reverse direction; suppose \(\{ d_t \}_{t \in T} \) satisfies local WMON and is vertex-free. From Lemma 3.5 of [Archer and Klemburg 2008] we have that vertex-freeness is equivalent to path independence, so by Theorem B.3 for all \(t \) there exists some open \(U_t \) such that \(\{ d_t \}_{t \in U_t} \) is the subgradient of some convex function \(G(t') : U_t \to \mathbb{R} \). We need only show the existence of some \(G \) such that \(\{ d_t \}_{t \in T} \) is the subgradient of \(G \) on each \(U_t \); the rest follows from Theorem B.5.

Fix some \(t_0 \in T \) and define \(G(t) = \int_{t_0}^t d_t' dt' \), which is well defined by compactness of \(\text{Conv}(\{t_0, t\}) \) and the fact that a locally increasing real-valued function is increasing. But for each \(t' \) and \(t \in U_{t'} \) we can also write \(G(t')(t) = \int_{t'}^t d_t dt' \) by [Rockafellar 1997, p. 232], and now by path independence we see that \(G \) and \(G(t') \) differ by a constant. Hence \(\{ d_t \}_{t \in T} \) must be a subgradient of \(G \) on \(U_t' \) as well, for all \(t' \in T \). \(\square \)
Proof of Theorem C.1

PROOF. Condition (26) is necessary by repeated application of the subgradient inequality (2). To show sufficiency, we construct such a G'. Let $h(t) = G(t)$ for $t \in S$ and $h(t^*) = c$. We construct G' as

$$G'(t) = \max_{(t_0, \ldots, t_{k+1}) \in T} h(t_0) + \sum_{i=0}^{k} dG_i(t_{i+1} - t_i)$$

As in the proof of Theorem B.2, this G' is convex and has the correct subgradients, so it suffices to verify it takes on the correct values at t^* and points in S, which we do via induction. G is convex and fixed at one fewer point, so assume the theorem holds for G. It follows by CMON that for $t \in S$,

$$\max_{(t_0, \ldots, t_{k+1}) \in T} G(t_0) + \sum_{i=0}^{k} dG_i(t_{i+1} - t_i) = G(t).$$

(This is trivially true in the base case as well). By the lhs of (26) and CMON, $G'(t^*) = c$, while by the rhs for $t \in S, G'(t) = G(t)$ because

$$\max_{(t_0, \ldots, t_{k+1}) \in T} c + \sum_{i=0}^{k} dG_i(t_{i+1} - t_i) \leq G(t).$$

Proof of Corollary C.2

PROOF. First, define

$$P_d(t, t') = \max_{(t_0, \ldots, t_{k+1}) \in T} \sum_{i=0}^{k} d_i(t_{i+1} - t_i).$$

Then $P_d(t, t) = 0$ for all $t \in T$ and by CMON, for all $t, t' \in T$ we have $P_d(t, t') + P_d(t', t) \leq 0$. We will show that the revenue equivalence condition holds if and only if d is such that $P_d(t', t) + P_d(t, t') = 0$ for all $t, t' \in T$. Note that by the proof of Theorem B.2 for any $t_0 \in T, P_d(t_0, t)$ is a convex function with selection of subgradients d.

For the forward direction, taking (26) with $S = \{t_0\}$ and $G(t) = c + P_d(t_0, t)$ gives the condition $G(t_0) + P_d(t_0, t) \leq G'(t) \leq G(t_0) - P_d(t_0, t)$ for the value of $G'(t)$. But as $P_d(t_0, t) = -P_d(t_0, t)$ we have $G'(t) = P_d(t_0, t) + G(t_0) = G(t)$ for all t.

For the reverse direction, assume $P_d(t_1, t_2) \neq P_d(t_2, t_1)$ for some $t_1, t_2 \in T$, and let $G^1(t) = P_d(t_1, t)$ and $G^2(t) = P_d(t_2, t) + P_d(t_2, t_1)$. We easily check that $G^1(t_2) = G^2(t_2) = P_d(t_2, t_2)$, but at t_2 we have $G^1(t_2) = 0$ while $G^2(t_2) = P_d(t_1, t_2) + P_d(t_2, t_1) \neq 0$.

□

F. DUALITY IN ELICITATION

Dual-report mechanisms and the taxation principle. The notion of a dual-report mechanism is already well-known as a consequence of the taxation principle — instead of asking the agent for her type, one could simply ask the agent directly for the desired allocation, posting a menu prices (or “taxes”) for each. This is without loss of generality because a mechanism’s prices cannot depend on the agent’s type except through the chosen allocation. In our notation, each allocation d is listed with its price $G^*(d)$. It is worth noting however that this is not always identical to the original mechanism.
Specifically, while the equilibrium payoffs for the posted-price mechanism \(A(d)(t) \) are the same as those of the direct revelation mechanism \(A(t')(t) \), the off-equilibrium payoffs need not be equivalent, as the posted-price mechanism may allow reports \(d \in \partial G_i \) which are not \(dG_i \) for any \(t' \). In other words, because the primal-report (i.e., direct) mechanism must choose a single subgradient \(dG_i \) for every point, if \(\{dG_i\}_T \subsetneq \partial G = D \), the dual-report mechanism can be strictly more expressive.

Dual-report scoring rules and prediction markets. The notion of report duality exactly captures the relationship between scoring rules and prediction markets. Here the scoring rules have the primal report space, and prediction markets the dual, where the optimal share bundle is essentially a subgradient of the scoring rule at the trader’s belief. There we will further discuss conditions for which the duality can be run in reverse without loss of generality, but as mentioned above about mechanisms, in general the "menu" format (dual report) of an affine score can be strictly more expressive than the type format (primal report).

	Type	Dual
Primal	\(A(t')(t) = G(t') + \langle t - t', dG_i \rangle \)	\(A^*(t')(d) = \langle t', d \rangle - G(t') \)
Dual	\(A(d')(t) = \langle t, d' \rangle - G^*(d') \)	\(A^*(d')(d) = G^*(d) + \langle dG^*_d, d - d' \rangle \)

\[
sup A(\cdot)(t) = G(t) \quad sup A^*(\cdot)(d) = G^*(d)
\]

Table II. The duality quadrangle.

Identities. Table II shows that the theory of elicitation inherits a lot of structure from convex duality. Ignoring boundary and regularity concerns for the moment, we obtain some nice identities:

\[
A(d)(t) + A^*(t)(d) \geq \langle t, d \rangle \quad (36)
\]

\[
A(d)(t) - A^*(t)(d) = G(t) - G^*(d) \quad (37)
\]

The first follows from the classic Fenchel-Young inequality [Rockafellar 1997], the proof of which for \(G \) proper follows directly from the definition of the conjugate (Definition 4.4).

Lemma F.1 (Fenchel-Young Inequality). \(\forall v \in V, v^* \in V^*, \ G(v) + G^*(v^*) \geq (v, v^*) \).
The elicitation game. Define a two-player game $M(d, t)$, with row strategies $d \in D$ and column strategies $t \in T$, as

$$M(d, t) = \left(A(d)(t), \ A^*(t)(d) \right) = \left(\langle t, d \rangle - G^*(d), \ \langle t, d \rangle - G(t) \right).$$

(38)

One could think of the column player as choosing the agent’s type, and the row player as choosing the principal’s “allocation.” Interestingly, this interpretation implies that the row is the agent and the column is the principal (they each choose each other’s “type”). Immediately one realizes that the Nash equilibria of this elicitation game M are exactly the set of dual-optimal points $\{d, t\}$ such that $d \in \partial G_t$ and $t \in \partial G^*_d$. Moreover, the equilibrium payoffs for the Nash (d, t) are $(G(t), G^*(d))$.

It is interesting to note the mixed strategies of this game: if $d \sim P_D$ and $t \sim P_T$ independently, the payoffs are

$$M(P_D, P_T) = \left(\mathbb{E}_{P_D}[G^*(d)], \ \mathbb{E}_{P_T}[G(t)] \right),$$

(39)and if $(d, t) \sim P$ is supported only on dual points,

$$\mathbb{E}_P[M(d, t)] = \left(\mathbb{E}_{P_D}[G^*(d)], \ \mathbb{E}_{P_T}[G(t)] \right),$$(40)

both of which bear resemblance to quantities in Bayesian or randomized mechanism settings.

Score divergences. The score divergence $A(t)(t) - A(t')(t)$ is a natural notion of “regret” which arises frequently in the scoring rules literature (cf. [Gneiting and Raftery 2007]). Our score divergence, as we define below, is reminiscent of a Bregman divergence.

$$D_{G,dG}(t, t') = A(t)(t) - A(t')(t) = G(t) - G(t') - \langle t - t', dG^*_v \rangle.$$ (41)

Note that the first argument to D is the true type, as opposed to our A notation. Also note the subscripts to D, which specify both the convex function G and a selection of subgradients. A Bregman divergence requires G to be continuously differentiable, but our definition (41) is a natural extension, and has been studied before (cf. [Iyer and Bilmes 2013]).

Score divergences have many nice properties, like convexity in the first argument, and (directional) differentiability at $t' = t$ Score divergences also enable reasoning about the magnitude of off-equilibrium payoffs, which can be important in practice, when externalities are often present. For example, Fiat et al. [2013] introduce the notion of “strong truthfulness”, where the payoff decays as $\|t - t'\|^2$. To design mechanisms that are robust even when agents care about the utility of other agents.

Turning to our various notions of duality, the following are four divergences corresponding to the duality quadrangle, starting in the (primal,primal) setting and moving counter-clockwise.

$$D_{G,dG}(t, t') = G(t) - G(t') - \langle t - t', dG^*_v \rangle$$ (42)

$$D_G(t, d') = G(t) + G^*(d') - \langle t, d' \rangle$$ (43)

$$D_{G^*,dG^*}(d, d') = G^*(d) - G^*(d') - \langle dG^*_d, d - d' \rangle$$ (44)

$$D_{G^*}(d, t') = G^*(d) + G(t') - \langle t', d \rangle.$$ (45)

Amazingly, we see that $D_G(t, d) = D_{G^*}(d, t)$ for all t, d (not just dual points). In other words, the loss of reporting d in the primal but having type t is the same as reporting t in the dual but having “type” d. In the context of the elicitation game above, this means that at any pure strategy pair, both players have the same regret, so they both stand to gain the same amount in a best response (though a simultaneous best response will not lead to an equilibrium point in general).
G. BREGMAN VORONOI DIAGRAMS AND THE ROLE OF $\| \cdot \|^2$

The squared norm seems fundamental to our derivation; let us dig further to see if this is indeed the case. Observe that the form (18) is simply

$$A(r)(t) = 2 \langle t_r, t \rangle - \| t_r \|^2 + w_r,$$

where $t_r = \alpha p_r + p_0$. Consider the case where $w_r = 0$ for all r, which corresponds to Γ being a Voronoi diagram. In this case, could think of A as being a special case of the “Brier score” $A^B(t')(t) = 2 \langle t', t \rangle - \| t' \|^2$, so that $A(r)(t) = A^B(t_r)(t)$. In other words, we can think of our finite-report case as just restricting the allowed reports in a general direct-revelation affine score. Note that the score divergence for A^B is just $D_G(t', t) = \| t' - t \|^2$, where $G(t) = \| t \|^2$ is just the square norm. This raises the following interesting question: what do we get when we replace $G = \| \cdot \|^2$ with another convex function on T, and restrict the reports from T to just a few points $\{ t_r \}$? That is, take $A^G(t')(t) = G(t') - dG_t(t - t')$ and set $A(r)(t) = A^G(t_r)(t)$. Surely, for any such G, whatever Γ is elicited by such a modified affine score would have to be a diagram by Theorem 5.2. But then why does the squared norm seem so fundamental?

As it happens, we are touching on precisely the notion of a Bregman Voronoi dia-
gram, introduced by Boissonnat et al. [2007, §4]. There, instead of defining $\text{cell}_i = \{ t : i \in \text{argmin}_j \| t_j - t \| \}$, the squared norm is replaced by any Bregman divergence D_G, so that $\text{cell}_i = \{ t : i \in \text{argmin}_j D_G(t, t_j) \}$.[11] Our conclusion that such diagrams coincide with power diagrams corresponds to their Theorem 8.

Framed in terms of our report duality from §4.2, we can see this yet another way. We can rewrite the Bregman Voronoi cell as

$$\text{cell}_i = \left\{ t : i \in \text{argmax}_j G(t_j) - dG(t_j)(t - t_j) \right\}. \quad (46)$$

By Lemma 4.5 this can in turn be written

$$\text{cell}_i = \left\{ t : i \in \text{argmax}_j \langle \tilde{t}_j, t \rangle - G^*(\tilde{t}_j) \right\}, \quad (47)$$

where $\tilde{t}_j = dG_{t_j}$. Hence, for any convex function G, the sites $\{ p_j \}$ and weights w of a power diagram corresponding to the D_G Bregman Voronoi diagram with sites $\{ t_j \}$ are given by $p_j = \frac{1}{2} dG_{t_j}$ and $w_j = \frac{1}{4} \| dG_{t_j} \|^2 - G^*(dG_{t_j})$.

[11] In [Boissonnat et al. 2007], three types of diagrams are introduced; here we refer to the first type.