Determination of scale coefficients for samples of autoclave structurally heat-insulating aerated concrete based on fly ash

A Baranova¹ and M Krivyh¹

¹Department of Industrial and Civil Engineering, Angarsk State Technical University, Tchaikovsky str., 60, Angarsk, 665835, Russia
E:mail baranova2012aa@mail.ru

Abstract. The article presents the results of determining the scale coefficients for autoclave structurally heat-insulating aerated concrete based on fly ash. In the course of research, the dependences of the compression strength values on the size and area of the working section of samples of autoclave aerated concrete of the grades D500 and D600 are derived. The dependences of mechanical characteristics on its average density in the range from 500 to 600 kg/m³ are established. For samples of autoclave structurally heat-insulating aerated concrete based on fly ash, the values of scale coefficients were experimentally determined, which in relation to the base sample of 150x150x150 mm are: for prisms of 40x40x160 mm – 1.45, for cubes of 70,7x70,7x70,7 mm and 100x100x100 mm – 1.2 and 0.95, respectively.

Aerated concrete based on fly ash is a type of cellular concrete and is an artificial stone material with evenly distributed pores throughout the volume, obtained as a result of solidification of a rationally selected mixture of a binder, ash, water, additives (if necessary) and a gas-forming agent. Autoclave aerated concrete gains strength under conditions of saturated steam in autoclaves at high temperature (175÷195 °C) and high pressure (0.8÷1.2 MPa) for a certain time (10÷12 hours).

From previously published works [1÷15], it is known that when testing materials for compressive strength, the dimensions of the tested samples have a significant impact.

According to GOST 10180-2012, the compressive strength of concrete that is not determined on basic samples is adjusted using scale coefficients K, which are set experimentally for each type and class of concrete, as well as for each test equipment [16].

Since there is no large aggregate in aerated concrete, its strength characteristics can be determined on small samples, for example, on prisms with a size of 40x40x160 mm.

The purpose of the work was to determine the scale coefficients for samples made of autoclave structurally heat-insulating aerated concrete based on fly ash.

The research was carried out on samples of autoclave aerated concrete based on fly ash produced by CJSC «Stroikompleks».

The research methodology was as follows. Samples with dimensions of 40x40x160 mm, 70,7x70,7x70,7 mm, 100x100x100 mm and 150x150x150 mm were cut from blocks of autoclave aerated concrete of grades D500 and D600. Then they were dried to a constant mass at a temperature of 105±5 °C and tested for strength in accordance with GOST 10180-2012 Concretes. Methods for strength determination using reference specimens.

The scale coefficients, standard deviations and variation coefficients were determined using the method set out in application L of GOST 10180.
The test results are presented in tables 1÷3 and shown in figures 1÷4.

Table 1. Mechanical characteristics of autoclave structurally heat-insulating aerated concrete based on fly ash.

Grade of aerated concrete	Size of the sample, mm	Area of the working section of sample, sm²	Compressive strength, R_com, MPa	Flexural strength, R_fl, MPa
D500	40x40x160	25	2,39	1,29
	70,7x70,7x70,7	50	3,08	-
	100x100x100	100	3,8	-
	150x150x150	225	3,63	-
D600	40x40x160	25	2,95	1,47
	70,7x70,7x70,7	50	3,36	-
	100x100x100	100	4,43	-
	150x150x150	225	4,13	-

The results presented in table 1 show that as the samples size increases from 40x40x160 mm to 100x100x100 mm, the values of the compressive strength of autoclave aerated concrete based on fly ash increase. Further increase in size to 150x150x150 mm leads to a decrease in the values of the compression strength.

Figure 1. Values of the compressive strength of autoclave aerated concrete based on fly ash, depending on the size of the samples.

The difference in compressive strength between the grades D500 and D600 (figure 1) ranges from 9.1 to 23.4% depending on the size of the samples, while the average value is 15.7 %.

The dependence of the values of the compressive strength of autoclave aerated concrete based on fly ash on the area of the working section of the samples (figure 2) is described by the following equations.

For autoclave aerated concrete of the grade D500, the equation has the form:

\[R_{com} = -0.0001 \cdot x^2 + 0.0314 \cdot x + 1.7035 \] (1)

For autoclave aerated concrete of the grade D600:

\[R_{fl} = -0.0001 \cdot x^2 + 0.0336 \cdot x + 2.0962 \] (2)

where \(x \) is the area of the working section of sample of the autoclave aerated concrete based on fly ash, cm².
Figure 2. Values of compressive strength of autoclave aerated concrete based on fly ash, depending on the area of the working section of the samples.

According to the graph shown in figure 2, it can be determined that the maximum values of the compression strength of the studied grades of aerated concrete will be obtained on samples with an area of the working section of 150 cm2.

Figure 3. Dependence of the compressive strength of samples of autoclave aerated concrete based on fly ash on the average density.

According to the graph shown in figure 3, it can be seen that the change in the compressive strength of samples of autoclave aerated concrete in the range of average densities from 500 to 600 kg/m3 for a base sample of 150x150x150 mm is linear and is described by the equation:

$$R_{com} = 0.0038 \cdot x + 1.8132,$$

where x – is the average density of autoclave aerated concrete based on fly ash, kg/m3.

Figure 4 shows that the change in the flexural strength of samples of autoclave aerated concrete based on fly ash in the range of average densities from 500 to 600 kg/m3 for prisms with a size of 40x40x160 mm is linear and is described by the equation:

$$R_{fl} = 0.0014 \cdot x + 0.636,$$

where x – is the average density of autoclave aerated concrete based on fly ash, kg/m3.

$$R_{com} = 0.0038 \cdot x + 1.8132.$$
Figure 4. Dependence of the flexural strength of samples of autoclave aerated concrete based on fly ash on the average density.

Values of scale coefficients for samples of autoclave structurally heat-insulating aerated concrete based on fly ash are given in table 2.

Table 2. Experimentally established values of scale coefficients for samples of autoclave structurally heat-insulating aerated concrete based on fly ash.

Grade of aerated concrete	Size of the sample, mm	Scale coefficient, K
D500	40x40x160	1,52
	70,7x70,7x70,7	1,18
	100x100x100	0,96
	150x150x150	1
D600	40x40x160	1,4
	70,7x70,7x70,7	1,23
	100x100x100	0,93
	150x150x150	1

For samples of aerated concrete of the studied grades, general values of scale coefficients were derived, as well as standard deviations and variation coefficients were determined (table 3).

Table 3. Scale coefficients, standard deviations and variation coefficients for samples of autoclave aerated concrete based on fly ash.

Grade of aerated concrete	Size of the sample, mm	Scale coefficient, K	Standard deviation, S_d	Variation coefficient, V, %
D500	40x40x160	1,45	0,0688	4,75
	70,7x70,7x70,7	1,2	0,0214	1,78
	100x100x100	0,95	0,0053	0,56
	150x150x150	1	0	0
D600	40x40x160	1,45	0,05	3,45
	70,7x70,7x70,7	1,2	0,0292	2,43
	100x100x100	0,95	0,0177	1,86
	150x150x150	1	0	0

The variation coefficients (table 3) of the studied grades of aerated concrete do not exceed 15%, accordingly, the obtained values of scale coefficients can be used for calculating the strength characteristics of autoclave structurally heat-insulating aerated concrete based on fly ash in the range of average densities from 500 to 600 kg/m3.
Thus, in the process of research, the dependence of the values of the compression strength of autoclaved aerated concrete of the grades D500 and D600 on the size and area of the working section of the samples is derived. The dependences of mechanical characteristics on the average density of autoclave aerated concrete based on fly ash in the range from 500 to 600 kg/m³ have been experimentally established.

For samples of autoclave structurally heat-insulating aerated concrete based on fly ash, the values of scale coefficients were experimentally determined, which in relation to the base sample with size 150x150x150 mm are: for prisms of 40x40x160 mm – 1.45, for cubes of 70,7x70,7x70,7 mm and 100x100x100 mm – 1.2 and 0.95, respectively.

References
[1] Lobastov N A and Chernyavets A N 2009 The effect of the size and geometric shapes of test specimens of structural graphite strength under compression RTC (OTK) 11-12 pp 13-16
[2] Eremichev A N 2014 Selection of the relative height of samples for compression tests VMSTU (VMGTU) 3 pp 136-140
[3] Kuznetsov N N and Pak A K 2014 Influence of the hard rock specimens size ratio on the results of their strength determination under uniaxial compression VMSTU (VMGTU) 17 (2) pp 246-253
[4] van Vliet M.R.A. and van Mier J.G.M 1998 Experimental and numerical investigation of size scale effects in concrete fracture MIS pp 185-206
[5] van Vliet M.R.A. and van Mier J.G.M 2000 Experimental investigation of size effect in concrete and sandstone under uniaxial tension EFM 65 (2-3) pp 165-188
[6] Kadleček V and Špetla Z 1967 Effect of size and shape of test specimens on the direct tensile strength of concrete RB 36 pp 175-184
[7] Kvirikadze O L 1974 The effect of size of cube samples for strength properties of concrete (Vliyanie razmerov obrazcov-kubov na prochnostnye harakteristiki betonov) Tbilisi: SabchotaSakartvelo p 53
[8] Tsvetkov S V 2014. On the statistical component of the scale factor when testing concrete ICE (PGS) 12 pp 52–54
[9] Sviridov N V and Hirnov V V 2015 Features of rationing of quality indicators of high strength concrete CT (TB) 7-8 pp 54-61
[10] Avdeev B A 1972 Technique of determining the mechanical properties of materials (M.: Engineering) p 298
[11] Chait R and Papirno R 1983 Compression testing of homogeneous materials and composites. Philadelphia, Pa: American Society for Testing and Materials p 294
[12] Pangaev V V, Horse M M, Serdyuk V M and Molokov D V 2012 Investigation of the scale factors to determine the strength of cement mortar under compression PHEI (IVUZS) 2 (638) pp 102-108
[13] Tsiskreli G D Lekishvili G L 1966. On the scale effect in concrete CRC (BZ) 10
[14] Krivyh M V, Baranova A A and Lonshakov I V 2019 The influence of the size of samples and their moisture on the compressive strength of foamed concrete based on microsilica (Vliyanie razmerov obrazcov i ih vlazhnosti na prochnost' pri szhatiy penobetona na osnove mikrokremnezeyoma) MTSTP (STNTP) 1 pp 182-184
[15] Baranova A A, Gass J A and Lonshakov I V 2019 Determination of scale and correction coefficients for fine-grained concrete specimens PUICR (IVISN) 3 (30) pp 502-509
[16] Gass Y A, Baranova A A and Lonshakov I V 2019. The influence of the size of samples and their moisture on the strength characteristics of fine-grained concrete MTSTP (STNTP) 1 pp 178-179