Correlations between kinetic and thermodynamic parameters of the extraction of tobacco leaves

S Tasheva¹, V Gandova², V Popova³,⁵, T Ivanova³, S Damyanova⁴ and A Stoyanova³

¹ Department of Heat Engineering, University of Food Technologies, Plovdiv, Bulgaria
² Department of Analytical and Physical Chemistry, University of Food Technologies, Plovdiv, Bulgaria
³ Department of Tobacco, Sugar, Vegetable and Essential Oils, University of Food Technologies, Plovdiv, Bulgaria
⁴ Department of Biotechnologies and Food Technologies, University of Russe, Branch Razgrad, Bulgaria

E-mail: vpopova2000@abv.bg

Abstract: The correlations between thermodynamic and kinetic parameters in the extraction of tobacco leaves (solid – liquid system) were determined. The values of the parameters internal molecular diffusio coefficient, activation energy and entropy were used in the calculation procedure presented in the study, with regard to the extraction process of leaves of three types of tobacco (Virginia, Burley and Oriental), carried out with 50% ethanol as a solvent at different temperatures (20, 30, 40, 50, 60 and 70°C) and duration (10, 20, 30, 40, 50 and 60 min). On the basis of the Arrhenius law the effective diffusion coefficient in solid – liquid system and the reaction rate constant of the three types of tobacco were computed.

1. Introduction

Extraction is a process of transferring one or more components of a complex solid with a porous structure into a liquid medium (solvent). According the Benda [1] this process is performed on the basis of selective solubility of each substance(s) of the solid material.

The extraction process is often called diffusion, as is the driving force of transfer. The diffusion of extracted components of the starting mixture in the extractant is based on the difference in their concentration [1-6].

The diffusion coefficient is a major characteristic of the diffusion setting and is an important parameter in the theory of all diffusion processes [1-12]. The ideal thermodynamic system would represent an ensemble of non-interacting particles, which diffuse as a result of the chaotic movement. The theory of chaotic motion model is based on the strict laws of static mechanics and is sufficiently accurate. In this reason, the diffusion coefficient in a given case can be calculated accurate enough, so as to create the conditions for the development of theories of the complex diffusion process.

For example, the molecular diffusion coefficient represents only a physical constant characterizing the ability of a substance to penetrate through diffusion into an immobile environment, not dependent on the hydrodynamic conditions in which the process runs. The molecular diffusion coefficient is a function of the properties of the extracted substance and the setting, in which it diffuses, as well as of temperature and pressure. Usually the molecular diffusion coefficient increases with increasing the
temperature and decreasing the pressure (for gases). In some specific cases, the molecular diffusion coefficient was determined by experimental data or in theoretical or semi-empirical equations, taking into account the influence of the temperature and the pressure at which the diffusion proceeds [3-7, 13-15]. According to several authors [6, 7, 16-18] the molecular diffusion coefficient was also called a conductivity coefficient for the solid-liquid system.

Often an effective diffusion coefficient was used instead of an internal molecular diffusion coefficient, which gives the optimal value of the diffusion coefficient for the solid-liquid extraction and can be used for its application in electronic devices for controlling the extraction process.

According to literature data [16, 18-22] there are results for determining an effective diffusion coefficient depending on the value of the internal molecular diffusion coefficient. In some of the publications Arrhenius law was used for the determination of the effective diffusion coefficient based on a constant value of the diffusion coefficient. Some authors [22-24] prepared mathematical models for calculating the effective diffusion coefficient in dependence with the structure of the solid, the temperature and the type of solvent used. Castillo-Santos et al. [25] and Simeonov et al. [9] calculated an effective diffusion coefficient based on the different porosity of the raw material.

Some authors [11, 12, 20, 21, 26, 27] represent the influence of temperature on the process by the Arrhenius law to determine the reaction rate constant (k) in the extraction process. On this basis were presented the graphical dependencies between lnk and the extraction temperature 1/T and the activation energy of the system was determined as well as the entropy and enthalpy.

The effective diffusion coefficient calculated according to the Arrhenius law establishes the relationship between the kinetic (coefficient of internal molecular diffusion and temperature) and thermodynamic (activation energy and temperature) parameters of the extraction process.

The reaction rate constant calculated for a given thermodynamic system provides information to determine the order of the reaction, its speed, and the mechanism of the reaction. It can be used to optimize a process.

Ivanova et al. [13-15] presented the results of the investigations of the extraction process of leaves from three types of tobacco (Oriental, Virginia and Burley) with 50% ethanol solvent, namely: the calculated values of the internal molecular diffusion coefficient and the activation energy of the thermodynamic liquid extraction system.

The purpose of the present work is to calculate the effective diffusion coefficient and the reaction rate constant for liquid extracts from three types of tobacco leaves - Virginia, Oriental and Burley, with 50% ethanol solvent, as well as to establish a relationship between the kinetic and thermodynamic parameters of the extraction process of the three types of tobacco.

2. Materials and methods

In the extraction of capillary-pore material the process is carried out by molecular diffusion. The density of the diffuse stream in the material relative to a unit of its surface was described by Fick’s law using the effective diffusion coefficient D_e (coefficient of mass conductivity). The dependence of the effective diffusion coefficient on the parameters of the porous structure was characterized by the equation (1):

$$D_e = D \cdot e \cdot \Pi = D \cdot m$$ (1)

where: D is the coefficient of diffusion in a homogeneous setting (in a pure liquid); Π - coefficient of diffusion permeability; m - parameter depending on the porous structure [4, 9].

According to Castillo-Santos et al. [25] and Simeonov et al. [9] the porosity of the raw material can be used.

Effective diffusion coefficient can be determined, which connects the kinetic and thermodynamic parameters of the extraction process according to equation (2) [28]:

$$D_e = D_0 \cdot e^{\frac{E_a}{RT}}$$ (2)
where: \(D_e \) is the effective diffusion coefficient, m\(^2\)/s; \(D_0 \) - pre-exponential factor or internal molecular diffusion coefficient, m\(^2\)/s; \(E_a \) - activation energy in the system, J/mol; \(R \) - universal gas constant, J/mol·K; \(T \) - extraction temperature, K.

The effective diffusion coefficient in dependence with the temperature of the Arrhenius law was calculated based on the values of the internal molecular diffusion coefficient for liquid extracts of Oriental, Virginia and Burley tobacco types, provided by Ivanova et al. [13-15], according to equation (2).

Temperature is a parameter that affects the diffusion properties of substances being extracted, as well as the running of the process. Its influence was expressed by a reaction rate constant, according to equation (3) [11, 12, 20, 21, 26, 29, 30]:

\[
k = A \cdot e^{-\frac{E_a}{RT}}
\]

where: \(k \) is the reaction rate constant; \(E_a \) - activation energy, J/mol; \(R \) - universal gas constant, J/mol·K; \(T \) - absolute temperature, K.

To determine the reaction rate constant and Arrhenius constant value the activation energy and entropy of the thermodynamic system were used. Calculations prepared for liquid extracts obtained from the extraction of three types of tobacco, extracted with ethanol solvent at concentration 50%, provided by Popova et al. [19, 31, 32].

Arrhenius constant (A) or frequency factor can be calculated according to equation (4) [11, 26]:

\[
A = \frac{R \cdot T}{N \cdot h} e^{\frac{\Delta S}{R}}
\]

where: \(N \) is the Avogadro number; \(h \) - Plank constant; \(\Delta S \) - activation entropy in the system; \(R \) - universal gas constant, J/mol·K.

3. Results and discussion

In Table 1 were presented results obtained after calculation of effective diffusion coefficient on the basis of the Arrhenius law, which takes into account the temperature influence on the extraction process. The values obtained for effective diffusion coefficient were calculated with parameters of an internal molecular diffusion of the three types of tobacco (Virginia, Burley and Oriental) with ethanol solvent at a concentration 50% according to Ivanova at al. [13-15].

As it can be seen from the presented results, the determined effective diffusion coefficient of the three types of tobacco exhibited values between 3.68 and 888.78.10\(^{-9}\) m\(^2\)/s (Table 1). It was observed good correlation between results in this work and literature data.

The values of the effective diffusion coefficient \(D_e \) depended on the type of the raw material, the solvent used, the particle size, as well as on the raw material: solvent ratio. After reaching a maximum the effective diffusion coefficient decreases (increases the resistance in the solid phase), because of the changes occurring in the structure of the solid phase. From the data presented in Table 1 it can be seen that the values of effective diffusion coefficient \(D_e \) for a certain temperature also reach the maximum, and then decrease.

At 30 and 60°C temperature, the maximum value of effective diffusion coefficient \(D_e \) coincided with the end of the process for all three types of tobacco. Consequently, it can be concluded that these values were optimal in terms of the temperature and duration of the solvent extraction process with 50% ethanol for tobacco. For the solid phase used under these conditions there was no change in structure as a result of the extraction process.

Scientific literature describes values of the effective diffusion coefficient of different plant materials, which vary considerably depending on the characteristics of the material, the extractant, the extraction conditions and the calculation procedure (Table 2).
Table 1. Effective diffusion coefficient (D_e) for extraction of tobacco leaves with solvent 50% ethanol

t, °C	τ, min	$D_e \cdot 10^9$, m²/s	Oriental	Virginia	Burley
20	10	3.68	3.72	87.01	
20	20	5.10	5.99	310.76	
20	30	5.90	5.63	279.69	
20	40	6.76	6.15	296.78	
20	50	5.25	5.91	377.58	
20	60	5.52	5.93	367.62	
30	10	4.26	4.05	128.97	
30	20	5.75	5.26	295.22	
30	30	5.10	6.28	298.33	
30	40	4.95	5.87	315.42	
30	50	5.40	6.40	296.78	
30	60	6.19	8.52	378.51	
40	10	4.97	5.71	152.28	
40	20	7.72	6.52	259.48	
40	30	10.12	6.56	289.00	
40	40	9.31	6.60	337.18	
40	50	9.92	7.25	400.88	
40	60	10.70	7.22	547.91	
50	10	5.80	13.08	220.63	
50	20	9.72	19.43	441.28	
50	30	10.25	22.67	428.85	
50	40	8.87	25.99	427.30	
50	50	9.16	47.37	626.18	
50	60	10.54	46.69	612.74	
60	10	7.65	7.81	413.31	
60	20	11.03	10.57	551.60	
60	30	10.55	12.39	658.82	
60	40	11.68	12.87	649.49	
60	50	12.44	12.35	596.66	
60	60	14.50	13.80	749.96	
70	10	38.96	20.49	170.92	
70	20	62.51	37.13	888.78	
70	30	50.44	23.12	739.61	
70	40	5049	17.05	680.57	
70	50	67.52	13.48	560.93	
70	60	69.65	14.62	621.52	

Table 2. Effective diffusion coefficient values for different plant raw materials.

Plant material	Conditions	D_e (m²/s)	Reference
Vanilla beans	60% (w/w) ethanol-water solvent; at 30, 40 and 50°C; fixed particle size	1.22 - 2.43$\cdot 10^{11}$	[25]
Birch bark	Ethanol as a solvent; at boiling temperature; with mixing; for different solid particle sizes	7.12 - 47.2$\cdot 10^{11}$	[5]
Mangrove barks Water as a solvent; isothermal extraction; temperature range 20-75°C; a simple pore diffusion model with constant diffusivity 5.0 - 7.5.10^{11} [10]

Oak barks Water as a solvent; isothermal extraction; temperature range 20-75°C; a simple pore diffusion model with constant diffusivity 4.35 - 5.10^{11} [10]

Geranium Ethanol as a solvent, with 70% concentration:
- depending on the calculated function of the effective coefficient 1.04 - 3.70.10^{10} [33]
- depending on the method of the regular calculated regime 1.58 - 5.25.10^{11} [24]
- taking into account the influence of other process parameters 1.2097 - 5.0567.10^{10} [24]

Tobacco Water as a solvent 0.28064 - 0.47784.10^{10} [24]

Peanut kernels Hexane as a solvent; at 25°C; for different thickness of the solid particles (seed slices) 0.49 - 1.26.10^{13} [28]

Tung seeds Different petroleum distillation products as solvents; at 30, 50, and 70°C; for different thickness of the solid particles (seed slices) 15.0 - 44.5.10^{13} [28]

Chickpea Grounded chickpea, a mixture of hexane and isopropanol (75:25, v/v) as a solvent; at 60°C 0.13 - 2.04.10^{13} [28]

Depending on the calculated values of the reaction rate constant (k) by equation (3), in Figures 1-3 were presented its variation on the temperature and the duration of the process for the three types of tobacco.

It is determined that reaction rate constant values increased with the increase of process duration and temperature. These results can be explained by the exponential type of the Arrhenius law (equation (4)). In future investigations the values of the reaction rate constant will be used to determine the order of the reaction, velocity and mechanism of the reaction.

In Figure 4 was presented the graphical dependence InK versus 1/T for the three types of tobacco (Oriental, Virginia, Burley). These graphical presentations were used to determine the angle of linear dependence, from where the activation energy and enthalpy of the process can be determined, in the absence of system data. The linear dependences were confirmed from literature data [11, 12, 20, 21, 26, 30].

Figure 1. Reaction rate constant (k) in dependence with temperature and duration of the extraction process for Oriental tobacco.
As it can be seen from the presented results the temperature had a very significant influence on the process of the extracted substances. Beside this factor, the structure of the solid, its size and the raw material: solvent ratio influences the process. All of these parameters will be taken into account in future studies of the solid-liquid extraction process.

4. Conclusions
There were determined relations between kinetic and thermodynamic parameters involved in extraction process, related to the influence of temperature on the diffusion of substances and the degree of their extraction from the solid. The values of the effective diffusion coefficient for leaved from three tobacco types were calculated, which were within the following ranges: for Oriental tobacco - between 3.68 and 69.65·10^{-9}\text{m}^2/\text{s}, for Virginia flue-cured tobacco – between 3.72 and 47.37·10^{-9}\text{m}^2/\text{s} and for Burley tobacco - between 87.01 and 888.78·10^{-9}\text{m}^2/\text{s}. The maximum values of the effective diffusion coefficient D_e can be used in practice for the characterization of the extraction process. Moreover, they can be applied for optimization of the process and its intensification against parameters influencing it.
Figure 4. Graphical dependence between lnK versus 1/T for three tobacco types:
 a) Oriental, b) Virginia, c) Burley.

References
[1] Benda A 2014 Heat and mass transfer in materials and processes (Moscow: MGUP) (in Russian)
[2] Gricenko V 2014 Processes and devices of food production (Rubtsovsk: RIIAltGTU) (in Russian)
[3] Ivanec V and Borodulin D 2006 Processes and devices of chemical technology (Kemerovo: KTIPP) (in Russian)
[4] Szytula A and Leciejewicz J 1989 Handbook on the physics and chemistry of rare earths, vol 12, Editors K A G Schneider Jr and L Erwin (Amsterdam: Elsevier) pp 133
[5] Koptelova E, Kutakova N and Tretyakov S 2013 Lesnoy Zhurnal (Forestry Journal) 4 119
[6] Makarevich N, Bogdanovich N, Tretyakov S, Koptelova E and Kutakova N 2014 Chemistry of plant materials 4 251
[7] Ostroushko V and Patchenko V 2012 East - European Journal of Advanced Technology 4/6(58) 12
[8] Parahonia AM and Pushanko MM 2012 Ukrainian Food Journal 1(2) 78 (in Ukrainian)
[9] Simeonov E, Tzibarska I and Minchev A 1999 Chemical Engineering Journal 73 255
[10] Tsiobraska I 2000 Communications of Bulgarian Academy of Sciences 53(6) 71
[11] Tusek A, Benkovic M, Cvitanovic A, Valinger D, Jurina T and Kljusuric J 2016 Industrial Crops and Products 91 205
[12] Uzoh C, Onukwu O and Nwabanne J 2014 Materials for Renewable and Sustainable Energy 3(38) 1
[13] Ivanova T, Popova V, Damyanova S, Tasheva S, Atanasova T and Damyanov D 2009 Scientific Works of the UFT 56 225
[14] Ivanova T, Popova V, Damyanova S, Tasheva S, Atanasova T and Damyanov D 2010 Scientific Works of the Union of Scientists in Bulgaria – Plovdiv B12 67
[15] Ivanova T, Popova V, Damyanova S, Tasheva S, Atanasova T and Damyanov D 2010 Scientific Works of the University of Russe 49(9.2) 86
[16] Promtov M, Stepanov A and Aleshin A 2017 TSTU Bulletin 23(2) 265
[17] Rudobashta S and Kosheleva M 2015 Textile Technology 6 175
[18] Hou K, Zheng Q, Li Y, Shen J and Hu S 2000 Computers and Chemical Engineering 24 1343
[19] Popova V, Tasheva S, Damyanova S and Stoyanova A 2014 Scientific Works of the University of Russe 53(10.2) 102
[20] Nwabanne J 2012 International Journal of Multidisciplinary and Engineering 3(6) 11
[21] Paunovic D, Mitic S, Kostic D, Mitic M, Stojanovic B and Pavlovic J 2014 Advanced Technologies 3(2) 58
[22] Simeonov E and Chilev C 2015 Journal of Chemical Technology and Metals 50(5) 597
[23] Simeonov E and Koleva V 2012 Chemical and Biochemical Engineering 26(3) 249
[24] Simeonov E, Yaneva Z and Chilev C 2017 Bulgarian Chemical Communications 49(2) 399
[25] Castillo-Santos K, Ruiz-Lopes I, Rodrigues-Jimenes G, Carrillo-Ahumada J and Garcia-Alvarado M 2017 Journal of Food Engineering 192 36
[26] Amin S, Hawash S, Diwani G and Rafei S 2010 Journal of American Science 6(11) 293
[27] Philibert J 2006 Defect and Diffusion Forum online 249 61
[28] Ruiz R, Martinez C and Vizcarra M 2011 Revista Mexicana de Ingenieria Quimica 10(3) 387
[29] Chan C, Yusoff R and Ngoh G 2013 Chemical Engineering Research and Design 92(6) 1169
[30] Charpe T and Rathod V 2016 Brazilian Journal of Chemical Engineering 33(4) 1003
[31] Popova V, Tasheva S, Damyanova S and Stoyanova A 2014 Vestnik MGUP 1(16) 67
[32] Popova V, Tasheva S, Damyanova S and Stoyanova A 2014 Journal of Eurasian Technological University 2(16) 9
[33] Saha D and Mukherjee A 2017 Journal of Chemical Sciences 129(7) 825