Hyperbolic orbifolds of small volume

Mikhail Belolipetsky
IMPA

Friday, August 15. 16:00–16:45
2014 Seoul ICM
http://icm2014.org/
(IL5.2)
Volume in hyperbolic geometry

\(\mathcal{H}^n \) – the \textit{hyperbolic n-space}
(e.g. the upper half space with the hyperbolic metric \(ds^2 = \frac{dw^2}{y^2} \)).

Isom(\(\mathcal{H}^n \)) – the \textit{group of isometries} of \(\mathcal{H}^n \).
Volume in hyperbolic geometry

\mathbb{H}^n – the *hyperbolic n-space*
(e.g. the upper half space with the hyperbolic metric $ds^2 = \frac{dw^2}{y^2}$).

$\text{Isom}(\mathbb{H}^n)$ – the *group of isometries* of \mathbb{H}^n.

$\Gamma < \text{Isom}(\mathbb{H}^n)$, a discrete subgroup $\implies \mathcal{M} = \mathbb{H}^n / \Gamma$ is a

hyperbolic n-orbifold.

\mathcal{M} is a manifold $\iff \Gamma$ is torsion free.
Volume in hyperbolic geometry

\mathcal{H}^n – the *hyperbolic* n-space
(e.g. the upper half space with the hyperbolic metric $ds^2 = \frac{dw^2}{y^2}$).

Isom(\mathcal{H}^n) – the *group of isometries* of \mathcal{H}^n.

$\Gamma < $ Isom(\mathcal{H}^n), a discrete subgroup $\implies \mathcal{M} = \mathcal{H}^n/\Gamma$ is a

hyperbolic n-*orbifold*.

\mathcal{M} is a manifold \iff Γ is torsion free.

We will discuss *finite volume* hyperbolic n-manifolds and orbifolds.
Volume in hyperbolic geometry

For n even:

\[\text{Vol}(\mathcal{M}) = \frac{\text{Vol}(S^n)}{2} \cdot (-1)^{n/2} \chi(\mathcal{M}) \]
(Chern–Gauss–Bonnet Theorem)
Volume in hyperbolic geometry

For n even:

$$\text{Vol}(\mathcal{M}) = \frac{\text{Vol}(S^n)}{2} \cdot (-1)^{n/2} \chi(\mathcal{M}) \quad \text{(Chern–Gauss–Bonnet Theorem)}$$

For $n \geq 3$ finite volume hyperbolic n-orbifolds are rigid
(Mostow–Prasad rigidity) \implies *volume is a topological invariant.*
Volume in hyperbolic geometry

For n even:

$$\text{Vol}(\mathcal{M}) = \frac{\text{Vol}(S^n)}{2} \cdot (-1)^{n/2} \chi(\mathcal{M}) \quad (\text{Chern–Gauss–Bonnet Theorem})$$

For $n \geq 3$ finite volume hyperbolic n-orbifolds are rigid
(Mostow–Prasad rigidity) \implies volume is a topological invariant.

If \mathcal{M} is an oriented connected hyperbolic n-manifold,

$$\text{Vol}(\mathcal{M}) = v_n \|\mathcal{M}\| \quad (\text{Gromov–Thurston})$$

\implies volume is a measure of complexity.
Volume in hyperbolic geometry

(Callahan–Dean–Weeks’ 1999)
Problem 23. (Thurston, Bull. AMS, 1982) Show that volumes of hyperbolic 3-manifolds are not all rationally related.
Problem 23. (Thurston, Bull. AMS, 1982) Show that volumes of hyperbolic 3-manifolds are not all rationally related.

For even n the volumes are rationally related by the Gauss–Bonnet theorem.
Volume in hyperbolic geometry

Problem 23. (Thurston, Bull. AMS, 1982) Show that volumes of hyperbolic 3-manifolds are not all rationally related.

For even \(n \) the volumes are *rationally related* by the Gauss–Bonnet theorem.

The problem (restricted to arithmetic manifolds) is connected with difficult open problems in number theory about rational independence of certain Dedekind \(\zeta \)-values.
Volume in hyperbolic geometry

Minimal Volume Problem. Show that the volume of a hyperbolic \(n \)-orbifold is bounded below and find the minimal volume \(n \)-orbifolds and manifolds.

(2039) (Siegel, 1945) Raised the problem and solved it for \(n = 2 \).

(2039) (Kazhdan–Margulis, 1968) Proved the existence of the lower bound in general.

(2039) (B., B.–Emery) Minimal volume arithmetic hyperbolic \(n \)-orbifolds for \(n \geq 4 \).
Volume in hyperbolic geometry

Minimal Volume Problem. Show that the volume of a hyperbolic n-orbifold is bounded below and find the minimal volume n-orbifolds and manifolds.

- **(Siegel, 1945)** Raised the problem and solved it for $n = 2$.
Volume in hyperbolic geometry

Minimal Volume Problem. Show that the volume of a hyperbolic n-orbifold is bounded below and find the minimal volume n-orbifolds and manifolds.

- *(Siegel, 1945)* Raised the problem and solved it for $n = 2$.

- *(Kazhdan–Margulis, 1968)* Proved the existence of the lower bound in general.
Volume in hyperbolic geometry

Minimal Volume Problem. Show that the volume of a hyperbolic n-orbifold is bounded below and find the minimal volume n-orbifolds and manifolds.

- **(Siegel, 1945)** Raised the problem and solved it for $n = 2$.

- **(Kazhdan–Margulis, 1968)** Proved the existence of the lower bound in general.

- **(B., B.–Emery)** Minimal volume *arithmetic* hyperbolic n-orbifolds for $n \geq 4$.
Arithmeticity and volume: Example

\mathcal{H}^2 – the hyperbolic plane with the Poincaré metric.

$\text{Isom}^+(\mathcal{H}^2) = \text{PSL}(2, \mathbb{R})$.

$\Gamma = \text{PSL}(2, \mathbb{Z}) < \text{PSL}(2, \mathbb{R})$, a discrete subgroup.

Γ acts on hyperbolic plane with $\mathcal{O} = \mathcal{H}^2 / \Gamma$.

$\text{Vol}(\mathcal{O}) = \int\int F \, dx \, dy = -2\pi \chi(\mathcal{O}) = \frac{4\pi}{\pi^3} |\zeta(-1)| = \frac{\pi^3}{3}$.

Arithmeticity and volume: Example

\mathcal{H}^2 – the hyperbolic plane with the Poincaré metric.

$\text{Isom}^+(\mathcal{H}^2) = \text{PSL}(2, \mathbb{R})$.

$\Gamma = \text{PSL}(2, \mathbb{Z}) < \text{PSL}(2, \mathbb{R})$, a discrete subgroup.

Γ acts on hyperbolic plane with $\mathcal{O} = \mathcal{H}^2 / \Gamma$.

\[\text{Vol}(\mathcal{O}) = \int\int_{\mathcal{F}} dxdy = -2\pi \chi(\mathcal{O}) = \frac{1}{\pi} \prod_{\text{primes}} p^{3} \# \text{PSL}(2, \mathbb{F}_p) = 4\pi |\zeta(-1)| = \pi^3. \]
Arithmeticity and volume: Example

\mathcal{H}^2 – the hyperbolic plane with the Poincaré metric.

$\text{Isom}^+(\mathcal{H}^2) = \text{PSL}(2, \mathbb{R})$.

$\Gamma = \text{PSL}(2, \mathbb{Z}) < \text{PSL}(2, \mathbb{R})$, a discrete subgroup.

Γ acts on hyperbolic plane with $\mathcal{O} = \mathcal{H}^2 / \Gamma$.

$\text{Vol}(\mathcal{O}) = \int\int_{\mathcal{F}} \frac{dx\,dy}{y^2} = -2\pi \chi(\mathcal{O})$

$$= \frac{1}{\pi} \prod_{\text{primes}} \frac{p^3}{\#\text{PSL}_2(\mathbb{F}_p)} = 4\pi |\zeta(-1)| = \frac{\pi}{3}. $$
Arithmeticity and volume: Definitions

Let G be an algebraic group defined over a number field k.

Let $P = (P_v)_{v \in V_f}$ a collection of parahoric subgroups $P_v \subset G(k_v)$, where v runs through all finite places of k and k_v denotes the non-archimedean completion of the field. The family P is called **coherent** if $\prod_{v \in V_f} P_v$ is an open subgroup of the finite adele group $G(\mathbb{A}_f(k))$. The group

$$\Lambda = G(k) \cap \prod_{v \in V_f} P_v$$

is called the **principal arithmetic subgroup** of $G(k)$ associated to P.

Example. $\text{SL}_n(\mathbb{Z}) = \text{SL}_n(\mathbb{Q}) \cap \prod_{p \text{ prime}} \text{SL}_n(\mathbb{Z}_p)$. Every maximal arithmetic subgroup is a normalizer of a principal arithmetic subgroup.
Arithmeticity and volume: Definitions

Let G be an algebraic group defined over a number field k.

Let $P = (P_v)_{v \in V_f}$ a collection of parahoric subgroups $P_v \subset G(k_v)$, where v runs through all finite places of k and k_v denotes the non-archimedean completion of the field. The family P is called coherent if $\prod_{v \in V_f} P_v$ is an open subgroup of the finite adèle group $G(\mathbb{A}_f(k))$. The group

$$\Lambda = G(k) \cap \prod_{v \in V_f} P_v$$

is called the principal arithmetic subgroup of $G(k)$ associated to P.

Example. $\text{SL}_n(\mathbb{Z}) = \text{SL}_n(\mathbb{Q}) \cap \prod_{p \text{ prime}} \text{SL}_n(\mathbb{Z}_p)$,
Arithmeticity and volume: Definitions

Let G be an algebraic group defined over a number field k.

Let $P = (P_v)_{v \in V_f}$ a collection of parahoric subgroups $P_v \subset G(k_v)$, where v runs through all finite places of k and k_v denotes the non-archimedean completion of the field. The family P is called **coherent** if $\prod_{v \in V_f} P_v$ is an open subgroup of the finite adèle group $G(\mathbb{A}_f(k))$. The group

$$\Lambda = G(k) \cap \prod_{v \in V_f} P_v$$

is called the **principal arithmetic subgroup** of $G(k)$ associated to P.

Example. $SL_n(\mathbb{Z}) = SL_n(\mathbb{Q}) \cap \prod_{p \text{ prime}} SL_n(\mathbb{Z}_p)$.

Every **maximal** arithmetic subgroup is a normalizer of a principal arithmetic subgroup.
If $\Gamma_1 < \Gamma_0$, then

$$\mathcal{O}_1 = \mathcal{H}^n / \Gamma_1$$

$$\mathcal{O}_0 = \mathcal{H}^n / \Gamma_0$$

Corollary. Minimal volume orbifolds correspond to maximal discrete subgroups.
Groups versus covers

If $\Gamma_1 < \Gamma_0$, then

\[O_1 = \mathbb{H}^n / \Gamma_1 \]

\[\downarrow \text{cover} \]

\[O_0 = \mathbb{H}^n / \Gamma_0 \]

Corollary. Minimal volume orbifolds correspond to maximal discrete subgroups.
Arithmeticity and volume

Borel–Harish-Chandra Theorem. Arithmetic subgroups are discrete and have finite covolume.
Arithmeticity and volume

Borel–Harish-Chandra Theorem. Arithmetic subgroups are discrete and have finite covolume.

The volume of G/Γ can be computed using volume formulas:
Arithmeticity and volume

Borel–Harish-Chandra Theorem. Arithmetic subgroups are discrete and have finite covolume.

The volume of G/Γ can be computed using *volume formulas*:

- G. Harder, *A Gauss–Bonnet formula for discrete arithmetically defined groups* (Ann. Sci. École Norm. Sup., 1971)
- A. Borel, *Commensurability classes and volumes of hyperbolic 3-manifolds* (Ann. Scuola Norm. Sup. Pisa Cl. Sci., 1981)
- *G. Prasad, Volumes of S-arithmetic quotients of semi-simple groups* (Inst. Hautes Études Sci. Publ. Math., 1989)
- B. Gross, *On the motive of a reductive group* (Invent. Math., 1997)
Arithmeticity and volume

Borel–Harish-Chandra Theorem. Arithmetic subgroups are discrete and have finite covolume.

The volume of G/Γ can be computed using volume formulas:

$$\mathcal{O} = \mathcal{H}^2 / \text{PSL}(2, \mathbb{Z})$$

$$\text{Vol}(\mathcal{O}) = \frac{1}{\pi} \prod_{\text{primes}} \frac{p^3}{\#\text{PSL}_2(\mathbb{F}_p)} = 4\pi |\zeta(-1)|$$
Results about minimal volume

$H = \text{PO}(n, 1)^\circ = \text{Isom}^+(\mathcal{H}^n)$
Results about minimal volume

\[H = \text{PO}(n, 1)^\circ = \text{Isom}^+(\mathcal{H}^n) \]

Theorem 1. *(B.’2004, B.–Emery’2012)* For every dimension \(n \geq 4 \) there exists a **unique** cocompact arithmetic subgroup \(\Gamma_0^n < H \) of the smallest covolume. It is defined over \(k_0 = \mathbb{Q}[\sqrt{5}] \) and has

\[\text{Vol}(\mathcal{H}^n/\Gamma_0^n) = \omega_c(n). \]
Results about minimal volume

\[H = \text{PO}(n,1)^\circ = \text{Isom}^+(\mathbb{H}^n) \]

Theorem 1. (B.’2004, B.–Emery’2012) For every dimension \(n \geq 4 \) there exists a unique cocompact arithmetic subgroup \(\Gamma^n_0 < H \) of the smallest covolume. It is defined over \(k_0 = \mathbb{Q}[\sqrt{5}] \) and has

\[\text{Vol}(\mathbb{H}^n/\Gamma^n_0) = \omega_c(n). \]

Theorem 2. (B.’2004, B.–Emery’2012) For every dimension \(n \geq 4 \) there exists a unique non-cocompact arithmetic subgroup \(\Gamma^n_1 < H \) of the smallest covolume. It is defined over \(k_1 = \mathbb{Q} \) and has

\[\text{Vol}(\mathbb{H}^n/\Gamma^n_1) = \omega_{nc}(n). \]
\[n = 2r, \text{ } r \text{ even:} \]
\[
\omega_c(n) = \frac{4 \cdot 5^{r^2 + r/2} \cdot (2\pi)^r}{(2r - 1)!!} \prod_{i=1}^{r} \frac{(2i - 1)!^2}{(2\pi)^{4i}} \zeta_k(2i);
\]
\[n = 2r, \text{ } r \text{ odd:} \]
\[
\omega_c(n) = \frac{2 \cdot 5^{r^2 + r/2} \cdot (2\pi)^r \cdot (4r - 1)}{(2r - 1)!!} \prod_{i=1}^{r} \frac{(2i - 1)!^2}{(2\pi)^{4i}} \zeta_k(2i);
\]
\[(B.'2004) \]
\[n = 2r - 1: \]
\[
\omega_c(n) = \frac{5^{r^2 - r/2} \cdot 11^{r-1/2} \cdot (r - 1)!}{2^{2r-1} \pi^r} L_{\ell_0 | k_0}(r) \prod_{i=1}^{r-1} \frac{(2i - 1)!^2}{(2\pi)^{4i}} \zeta_k(2i),
\]
\[\text{where } k_0 = \mathbb{Q}[\sqrt{5}] \text{ and } l_0 \text{ is the quartic field with a defining polynomial } x^4 - x^3 + 2x - 1. \]
\[(B.-Emery'2012) \]
\[n = 2r, \text{ } r \text{ even}: \]
\[\omega_c(n) = \frac{4 \cdot 5^{r^2+r/2} \cdot (2\pi)^r}{(2r - 1)!!} \prod_{i=1}^{r} \frac{(2i - 1)!^2}{(2\pi)^{4i}} \zeta_{k_0}(2i); \]

\[n = 2r, \text{ } r \text{ odd}: \]
\[\omega_c(n) = \frac{2 \cdot 5^{r^2+r/2} \cdot (2\pi)^r \cdot (4r - 1)}{(2r - 1)!!} \prod_{i=1}^{r} \frac{(2i - 1)!^2}{(2\pi)^{4i}} \zeta_{k_0}(2i); \]

\[(B.'2004) \]

\[n = 2r - 1: \]
\[\omega_c(n) = \frac{5^{r^2-r/2} \cdot 11^{r-1/2} \cdot (r - 1)!}{2^{2r-1} \pi r} L_{l_0|k_0}(r) \prod_{i=1}^{r-1} \frac{(2i - 1)!^2}{(2\pi)^{4i}} \zeta_{k_0}(2i), \]

where \(k_0 = \mathbb{Q}[\sqrt{5}] \) and \(l_0 \) is the quartic field with a defining polynomial \(x^4 - x^3 + 2x - 1. \)

\[(B.–Emery’2012) \]
\[n = 2r, \ n \equiv 0, \ 1 \pmod{4}: \]
\[\omega_{nc}(n) = \frac{4 \cdot (2\pi)^r}{(2r-1)!!} \prod_{i=1}^{r} \frac{(2i-1)!}{(2\pi)^{2i}} \zeta(2i); \]

\[n = 2r, \ n \equiv 2, \ 3 \pmod{4}: \]
\[\omega_{nc}(n) = \frac{2 \cdot (2^r - 1) \cdot (2\pi)^r}{(2r-1)!!} \prod_{i=1}^{r} \frac{(2i-1)!}{(2\pi)^{2i}} \zeta(2i); \quad \text{(B.)} \]

\[n = 2r - 1, \ r \text{ even}: \]
\[\omega_{nc}(n) = \frac{3^{r-1/2}}{2^{r-1}} L_{\ell_1|\mathbb{Q}}(r) \prod_{i=1}^{r-1} \frac{(2i-1)!}{(2\pi)^{2i}} \zeta(2i), \text{ where } \ell_1 = \mathbb{Q}[\sqrt{-3}]; \]

\[n = 2r - 1, \ n \equiv 1 \pmod{4}: \]
\[\omega_{nc}(n) = \frac{1}{2^{r-2}} \zeta(r) \prod_{i=1}^{r-1} \frac{(2i-1)!}{(2\pi)^{2i}} \zeta(2i); \]

\[n = 2r - 1, \ n \equiv 3 \pmod{4}: \]
\[\omega_{nc}(n) = \frac{(2^r - 1)(2^{r-1} - 1)}{3 \cdot 2^{r-1}} \zeta(r) \prod_{i=1}^{r-1} \frac{(2i-1)!}{(2\pi)^{2i}} \zeta(2i); \quad \text{(B.–Emery)} \]
Proofs use

- Prasad’s volume formula
- Galois cohomology of algebraic groups
- Bruhat–Tits theory
- Bounds for discriminants and class numbers (Odlyzko bounds, Brauer–Siegel theorem, Zimmert’s bound for regulator)
Growth of minimal volume
The minimal volume compact/non-compact arithmetic hyperbolic n-orbifold in any dimension n is unique.

For $n \geq 2$ the compact arithmetic manifolds have $|\chi| > 2$ (in fact, this is true for all even $n \geq 6$—Emery'2014).

For $n \geq 5$ we have $\omega_c(n) > \omega(nc)(n)$ ("compact > open").
Corollaries

- The minimal volume compact/non-compact arithmetic hyperbolic n-orbifold in any dimension n is unique.

- The values $\omega_c(n)$, $\omega_{nc}(n)$, and $\omega_c(n)/\omega_{nc}(n)$ grow super-exponentially.
Corollaries

- The minimal volume compact/non-compact arithmetic hyperbolic n-orbifold in any dimension n is unique.

- The values $\omega_c(n)$, $\omega_{nc}(n)$, and $\omega_c(n)/\omega_{nc}(n)$ grow super-exponentially.

- For $n = 2r \geq 12$ the compact arithmetic manifolds have $|\chi| > 2$

 (in fact, this is true for all even $n \geq 6$ — Emery’2014).
Corollaries

- The minimal volume compact/non-compact arithmetic hyperbolic n-orbifold in any dimension n is **unique**.

- The values $\omega_c(n)$, $\omega_{nc}(n)$, and $\omega_c(n)/\omega_{nc}(n)$ grow super-exponentially.

- For $n = 2r \geq 12$ the compact arithmetic manifolds have

 $$ |\chi| > 2 $$

 (in fact, this is true for all even $n \geq 6$ — Emery’2014).

- For $n \geq 5$ we have $\omega_c(n) > \omega_{nc}(n)$ ("compact > open").
Conjecture. (B.–Emery) Let \mathcal{M} be a compact hyperbolic manifold of dimension $n \neq 3$. Then there exists a noncompact hyperbolic n-manifold \mathcal{N} whose volume is smaller than the volume of \mathcal{M}.

The conjecture is true for $n = 2$ – easy $n = 4$ – follows from Ratcliffe–Tschantz'2000 $n = 6$ – follows from Everitt–Ratcliffe-Tschantz'2012 arithmetic manifolds of dimension $n \geq 30$ (B.–Emery'2013)
Conjecture. (B.–Emery) Let \mathcal{M} be a compact hyperbolic manifold of dimension $n \neq 3$. Then there exists a noncompact hyperbolic n-manifold \mathcal{N} whose volume is smaller than the volume of \mathcal{M}.

The conjecture is *true* for

- $n = 2$ – easy
- $n = 4$ – follows from Ratcliffe–Tschantz’2000
- $n = 6$ – follows from Everitt–Ratcliffe-Tschantz’2012
- arithmetic manifolds of dimension $n \geq 30$ (B.–Emery’2013)
Lemma. (Margulis) For every dimension \(n \) there is a constant \(\mu = \mu_n > 0 \) such that for every discrete group \(\Gamma < \text{Isom}(\mathcal{H}^n) \) and every \(x \in \mathcal{H}^n \), the group

\[
\Gamma_\mu(x) = \langle \gamma \in \Gamma \mid \text{dist}(x, \gamma(x)) \leq \mu \rangle
\]

has an abelian subgroup of finite index.
Minimal volume without arithmeticity

Lemma. *(Margulis)* For every dimension n there is a constant $\mu = \mu_n > 0$ such that for every discrete group $\Gamma < \text{Isom}(\mathcal{H}^n)$ and every $x \in \mathcal{H}^n$, the group

$$\Gamma_\mu(x) = \langle \gamma \in \Gamma \mid \text{dist}(x, \gamma(x)) \leq \mu \rangle$$

has an abelian subgroup of finite index.

Theorem. *(Gelander)* Given a hyperbolic n-orbifold \mathcal{O}^n, we have

$$\text{Vol}(\mathcal{O}^n) \geq \frac{2v(0.25\varepsilon)^2}{v(1.25\varepsilon)}, \quad \varepsilon = \min\{\frac{\mu_n}{10}, 1\}.$$
Lemma. (Margulis) For every dimension n there is a constant $\mu = \mu_n > 0$ such that for every discrete group $\Gamma < \text{Isom}(\mathcal{H}^n)$ and every $x \in \mathcal{H}^n$, the group

$$\Gamma_\mu(x) = \langle \gamma \in \Gamma \mid \text{dist}(x, \gamma(x)) \leq \mu \rangle$$

has an abelian subgroup of finite index.

Theorem. (Gelander) Given a hyperbolic n-orbifold \mathcal{O}^n, we have

$$\text{Vol}(\mathcal{O}^n) \geq \frac{2v(0.25\varepsilon)^2}{v(1.25\varepsilon)}, \quad \varepsilon = \min\{\frac{\mu_n}{10}, 1\}.$$

Proposition. There exists a constant $C > 0$ such that $\mu_n \leq \frac{C}{\sqrt{n}}$.
Corollary. The lower bound for the volume decreases super-exponentially with n.
Corollary. The lower bound for the volume decreases super-exponentially with n.

Remark. The same is true for the bound of Adeboye–Wei obtained by quantifying the proof of the Kazhdan–Margulis Theorem.
Corollary. The lower bound for the volume decreases super-exponentially with n.

Remark. The same is true for the bound of Adeboye–Wei obtained by quantifying the proof of the Kazhdan–Margulis Theorem.

Conjecture. The minimal volume hyperbolic n-orbifold (manifold) is arithmetic.
Corollary. The lower bound for the volume decreases super-exponentially with n.

Remark. The same is true for the bound of Adeboye–Wei obtained by quantifying the proof of the Kazhdan–Margulis Theorem.

Conjecture. The minimal volume hyperbolic n-orbifold (manifold) is arithmetic.

It follows from the conjecture that we expect the minimal volume to grow super-exponentially but so far we can prove only super-exponentially decreasing bounds!
