Almost η-Ricci and almost η-Yamabe solitons with torse-forming potential vector field

Adara M. BLAGA and Cihan ÖZGÜR

Abstract

We provide properties of almost η-Ricci and almost η-Yamabe solitons on submanifolds isometrically immersed into a Riemannian manifold $\left(\tilde{M}, \tilde{g}\right)$ whose potential vector field is the tangential component of a torse-forming vector field on \tilde{M}, treating also the case of a minimal or pseudo quasi-umbilical hypersurface. Moreover, we give necessary and sufficient conditions for an orientable hypersurface of the unit sphere to be an almost η-Ricci or an almost η-Yamabe soliton in terms of the second fundamental tensor field.

1 Introduction

In 1982, R. S. Hamilton introduced the intrinsic geometric flows, Ricci flow \[24\]
\[
\frac{\partial}{\partial t} g(t) = -2 \text{Ric}(g(t))
\]
and Yamabe flow \[23\]
\[
\frac{\partial}{\partial t} g(t) = -\text{scal}(t) \cdot g(t)
\]
which are evolution equations for Riemannian metrics. In a 2-dimensional manifold, Ricci flow and Yamabe flow are equivalent, but for higher dimensions, we do not have such a relation.

2010 Mathematics Subject Classification. 35Q51, 53B25, 53B50.
Key words and phrases. almost η-Ricci solitons, almost η-Yamabe solitons, hypersurface, submanifold.
Almost η-Ricci and η-Yamabe solitons

Ricci solitons and Yamabe solitons correspond to self-similar solutions of Ricci flow and Yamabe flow, respectively. Therefore, on an n-dimensional smooth manifold M, a Riemannian metric g and a non-vanishing vector field V is said to define a Ricci soliton \cite{23} if there exists a real constant λ such that

\begin{equation}
\frac{1}{2} \mathcal{L}_V g + \text{Ric} = \lambda g,
\end{equation}

respectively, a Yamabe soliton \cite{23} if there exists a real constant λ such that

\begin{equation}
\frac{1}{2} \mathcal{L}_V g = (\text{scal} - \lambda) g,
\end{equation}

where \mathcal{L}_V denotes the Lie derivative operator in the direction of the vector field V, Ric and scal denote the Ricci curvature tensor field and respectively the scalar curvature of g. A Ricci soliton (or a Yamabe soliton) (V, λ) on a Riemannian manifold (M, g) is said to be shrinking, steady or expanding according as λ is positive, zero or negative, respectively.

Remark that Ricci solitons are natural generalizations of Einstein metrics, any Einstein metric giving a trivial Ricci soliton.

Different generalizations of Ricci and Yamabe solitons have been lately considered. If λ is a smooth function on M, then (3) defines an almost Ricci soliton \cite{27} and (4) defines an almost Yamabe soliton \cite{1}. Moreover, for a given 1-form η on M, if there exist two real constants λ and μ such that

(i)

\begin{equation}
\frac{1}{2} \mathcal{L}_V g + \text{Ric} = \lambda g + \mu \eta \otimes \eta
\end{equation}

we call (V, λ, μ) an η-Ricci soliton \cite{18}, and if

(ii)

\begin{equation}
\frac{1}{2} \mathcal{L}_V g = (\text{scal} - \lambda) g + \mu \eta \otimes \eta
\end{equation}

we call (V, λ, μ) an η-Yamabe soliton \cite{16}. If λ and μ are smooth functions on M, then (5) defines an almost η-Ricci soliton \cite{5} and (6) defines an almost η-Yamabe soliton \cite{26}.

If the potential vector field V is of gradient type, $V = \text{grad}(\sigma)$, for σ a smooth function on M, then (V, λ, μ) is called a gradient soliton (see \cite{23}, \cite{27}, \cite{18} and \cite{5}). If σ is a constant, then the gradient soliton (V, λ, μ) is trivial.
Motivated by the above studies, in the present paper, we establish some properties of almost η-Ricci and almost η-Yamabe solitons on Riemannian manifolds and on submanifolds isometrically immersed into a Riemannian manifold $\left(\tilde{M}, \tilde{g}\right)$ whose potential vector field is the tangential component of a torse-forming (in particular, concircular or recurrent) vector field on \tilde{M}, treating also the case of a minimal or pseudo quasi-umbilical hypersurface. Moreover, we provide necessary and sufficient conditions for an orientable hypersurface of the unit sphere to be an almost η-Ricci or an almost η-Yamabe soliton in terms of the second fundamental tensor field. A partial study on this topic has been begun in [4]. Remark also that almost Yamabe solitons on submanifolds were studied in [30].
2 Preliminaries

A non-flat Riemannian manifold \((M, g)\) \((n \geq 3)\) is called

a) \textit{mixed generalized quasi-Einstein manifold} \([3]\) if its Ricci tensor field is not identically zero and verifies

\begin{equation}
\text{Ric} = \alpha g + \beta A \otimes A + \gamma B \otimes B + \delta (A \otimes B + B \otimes A),
\end{equation}

where \(\alpha, \beta, \gamma\) and \(\delta\) are smooth functions and \(A, B\) are 1-forms on \(M\) such that the corresponding vector fields to the 1-forms \(A\) and \(B\) are \(g\)-orthogonal. In particular, the manifold \(M\) is called:

i) \textit{generalized quasi-Einstein} \([6]\) if \(\delta = 0\);

ii) \textit{almost quasi-Einstein} \([9]\) if \(\beta = \gamma = 0\);

iii) \textit{quasi-Einstein} \([7]\) if \(\beta = \delta = 0\) or \(\gamma = \delta = 0\);

iv) \textit{Einstein} \([2]\) if \(\beta = \gamma = \delta = 0\);

b) \textit{pseudo quasi-Einstein} \([25]\) if its Ricci tensor field is not identically zero and verifies

\[
\text{Ric} = \alpha g + \beta A \otimes A + \gamma E,
\]

where \(\alpha, \beta\) and \(\gamma\) are smooth functions, \(A\) is a 1-form and \(E\) is a symmetric \((0,2)\)-tensor field with vanishing trace on \(M\). In particular, if \(\gamma = 0\), then the manifold \(M\) is \textit{quasi-Einstein}.

A vector field \(V\) on a (pseudo)-Riemannian manifold \((M, g)\) is called \textit{torse-forming} \([32]\) if

\[
\nabla_X V = aX + \psi(X)V,
\]

where \(a\) is a smooth function, \(\psi\) is a 1-form and \(\nabla\) is the Levi-Civita connection of \(g\). Moreover, if \(\psi(V) = 0\), then \(V\) is called a \textit{torqued} vector field.

In particular, if \(\psi = 0\), \(V\) is called a \textit{concircular vector field} \([22]\) and if \(a = 0\), \(V\) is called a \textit{recurrent vector field} \([28]\).
3 Solitons with torse-forming potential vector field

3.1 Almost η-Ricci solitons

Remark that any concircular vector field with $a(x) \neq 0$, for any $x \in M$, is of gradient type, namely

$$V = \frac{1}{2a} \text{grad}(|V|^2)$$

whose divergence is $\text{div}(V) = an$, with $n = \text{dim}(M)$. Moreover,

$$R(X,V)V = X(a)V - V(a)X$$

for any $X \in \chi(M)$ and

$$\text{Ric}(V,V) = (1 - n)V(a).$$

If (M,g) is an almost η-Ricci soliton with the potential vector field V and η is the g-dual of V, then

$$\text{Ric} = (\lambda - a)g + \mu \eta \otimes \eta,$$

$$\text{scal} = (n - 1) \left[(\lambda - a) - \frac{V(a)}{|V|^2} \right]$$

and we can state:

Proposition 3.1. If a Riemannian manifold (M,g) is an almost η-Ricci soliton (V,λ,μ) with concircular potential vector field V and a is a non zero constant, η is the g-dual of V, then

i) M is a quasi-Einstein manifold with associated functions $(\lambda - a)$ and μ;

ii) $\text{grad}(\lambda)$, $\text{grad}(\mu)$ and $\text{grad}(\text{scal})$ are collinear with V.

Proof. Since $R(X,V)V = 0$, for any $X \in \chi(M)$, we get $\text{Ric}(V,V) = 0$ and

$$(\lambda - a) + |V|^2\mu = 0.$$

Differentiating the previous relation, using $d\text{scal} = 2\text{div}(\text{Ric})$ and taking into account that

$$(\text{div}(\mu(\eta \otimes \eta)))(X) = \mu g(\nabla_VV,X) + \mu \eta(X)\text{div}(V) + \eta(X)d\mu(V),$$

we get:

$$(n - 3)\text{grad}(\lambda) = 2[(n + 1)a\mu + g(\text{grad}(\mu),V)]V$$
and applying the gradient to the same relation, we have:

$$\text{grad}(\lambda) = -2\mu V - \text{grad}(\mu)|V|^2,$$

which combined give:

$$\text{grad}(\mu) = -\frac{2}{(n-3)|V|^2}[2(n-2)\mu + g(\text{grad}(\mu),V)]V.$$

Taking now the inner product with V, we get:

$$g(\text{grad}(\mu),V) = -\frac{4(n-2)}{n-1}\mu,$$

therefore

$$\text{grad}(\mu) = -\frac{4(n-2)}{n-1}\mu\frac{V}{|V|^2}.$$

Also, we get

$$\text{grad}(\lambda) = \frac{2(n-3)}{n-1}\mu V$$

and

$$\text{grad}(\text{scal}) = 2(n-3)\mu V.$$

If M has constant scalar curvature and $n > 3$, then $\mu = 0$, $\lambda = a$, Ric = 0 and scal = 0, therefore:

Corollary 3.2. Under the hypotheses of Proposition [3.4], if M is of constant scalar curvature and $n > 3$, then M is a Ricci-flat manifold.

For the almost Ricci solitons, we can state:

Proposition 3.3. If an n-dimensional Riemannian manifold (M, g), with $n > 3$, is an almost Ricci soliton (V, λ, μ) with concircular potential vector field V and a is a non zero constant, then M is a Ricci-flat manifold.

Proposition 3.4. If a Riemannian manifold (M, g) is an almost η-Ricci soliton (V, λ, μ) with torqued potential vector field V and η is the g-dual of V, then M is a mixed generalized quasi-Einstein manifold with associated functions $(\lambda - a), \mu, 0$ and $-\frac{1}{2}$.
Proof. From the condition for V to be torqued, we get
\[\frac{1}{2}(\mathcal{L}_V g)(X,Y) = \frac{1}{2}[g(\nabla_X V, Y) + g(\nabla_Y V, X)] = ag(X,Y) + \frac{1}{2}[\psi(X)\eta(Y) + \eta(X)\psi(Y)] \]
and from the soliton equation, we obtain
\[\text{Ric}(X,Y) = (\lambda - a)g(X,Y) + \mu\eta(X)\eta(Y) - \frac{1}{2}[\psi(X)\eta(Y) + \eta(X)\psi(Y)]. \]

Let U be the g-dual vector field of ψ. Then
\[\eta(U) = \psi(V) = 0, \]
hence the conclusion.

Corollary 3.5. Under the hypotheses of Proposition 3.4, if $\psi = \mu\eta$, then M is an Einstein manifold. In this case:

i) V is a geodesic vector field if and only if $\mu = -\frac{a}{|V|^2}$;

ii) V is concircular and the soliton is given by $(V, a, 0)$.

Proof. From $\psi(V) = \mu\eta(V)$, we have
\[\nabla_V V = (a + \mu|V|^2)V, \]
hence the two statements.

If the potential vector field is torse-forming, we get the following two results for almost η-Ricci solitons similar to those proved in [15] for Ricci solitons with concurrent potential vector field.

Theorem 3.6. Let (M, g) be an n-dimensional Riemannian manifold and let V be a torse-forming vector field satisfying $\text{Ric}_M(V,V) = 0$. Then (V, λ, μ) is an almost η-Ricci soliton with η the g-dual of V if and only if the following conditions hold:

i) the soliton is given by $\left(\lambda, \psi(V) - \frac{\lambda - a}{|V|^2}\right)$;

ii) M is an open part of a warped product manifold $(I \times_s F, ds^2 + s^2g_F)$, where I is an open real interval with arclength s and F is an $(n-1)$-dimensional Einstein manifold with $\text{Ric}_F = (n-2)g_F$.
Almost η-Ricci and η-Yamabe solitons

Proof. Following the same steps like in [15], we get ii). In our case

$$\frac{1}{2}L_V g = ag + \frac{1}{2}(\psi \otimes \eta + \eta \otimes \psi)$$

and from [3], we have:

$$\text{Ric}_M = (\lambda - a)g + \mu \eta \otimes \eta - \frac{1}{2}(\psi \otimes \eta + \eta \otimes \psi).$$

By using $\text{Ric}_M(V, V) = 0$, we obtain i).

For almost Ricci solitons with concurrent potential vector field, we can state:

Proposition 3.7. An n-dimensional Riemannian manifold (M, g) is an almost Ricci soliton (V, λ) with concurrent potential vector field V if and only if the following conditions hold:

i) the soliton is a shrinking Ricci soliton with $\lambda = 1$;

ii) M is an open part of a warped product manifold $(I \times_s F; ds^2 + s^2 g_F)$, where I is an open real interval with arclength s and F is an $(n-1)$-dimensional Einstein manifold with $\text{Ric}_F = (n-2)g_F$.

Therefore, there do not exist proper almost Ricci solitons (i.e. with non-constant λ) with concurrent potential vector field.

It was proved in [10] that the gradient of a non-constant smooth function σ on a Riemannian manifold (M, g) is a torse-forming vector field with

$$\nabla_X (\text{grad}(\sigma)) = aX + \psi(X) \text{grad}(\sigma)$$

if and only if

$$\text{Hess}(\sigma) = ag + \delta d\sigma \otimes d\sigma,$$

where $\psi = \delta d\sigma$ and we can state:

Proposition 3.8. If a Riemannian manifold (M, g) is an almost η-Ricci soliton (V, λ, μ) with torse-forming potential vector field $V = \text{grad}(\sigma)$ and η is the g-dual of V, then M is a quasi-Einstein manifold with associated functions $(\lambda - a)$ and $(\mu - \delta)$.

Proof. From [3], we get

$$\text{Ric} = (\lambda - a)g + (\mu - \delta)d\sigma \otimes d\sigma.$$

So M is a quasi-Einstein manifold with associated functions $(\lambda - a)$ and $(\mu - \delta)$. □
Corollary 3.9. With the above notations, if a Riemannian manifold \((M, g)\) is an almost \(\eta\)-Ricci soliton \((V, a, \delta)\) with torse-forming potential vector field \(V\) of gradient type and \(\eta\) is the \(g\)-dual of \(V\), then \(M\) is a Ricci-flat manifold.

Example 3.10. Let \(M = \{(x, y, z) \in \mathbb{R}^3, z > 0\}\), where \((x, y, z)\) are the standard coordinates in \(\mathbb{R}^3\). Set
\[
V := -z \frac{\partial}{\partial z}, \quad \eta := -\frac{1}{z} dz,
\]
\[
g := \frac{1}{z^2} (dx \otimes dx + dy \otimes dy + dz \otimes dz).
\]

Consider the linearly independent system of vector fields:
\[
E_1 := z \frac{\partial}{\partial x}, \quad E_2 := z \frac{\partial}{\partial y}, \quad E_3 := -z \frac{\partial}{\partial z}.
\]

Then:
\[
\eta(E_1) = 0, \quad \eta(E_2) = 0, \quad \eta(E_3) = 1,
\]
\[
[E_1, E_2] = 0, \quad [E_2, E_3] = E_2, \quad [E_3, E_1] = -E_1
\]
and the Levi-Civita connection \(\nabla\) is deduced from Koszul’s formula
\[
2 g(\nabla_X Y, Z) = X(g(Y, Z)) + Y(g(Z, X)) - Z(g(X, Y)) -
\]
\[
-g([X, Y], Z) + g([Y, Z], X) + g([Z, X], Y),
\]
precisely
\[
\nabla_{E_1} E_1 = -E_3, \quad \nabla_{E_1} E_2 = 0, \quad \nabla_{E_1} E_3 = E_1, \quad \nabla_{E_2} E_1 = 0,
\]
\[
\nabla_{E_2} E_2 = -E_3, \quad \nabla_{E_2} E_3 = E_2, \quad \nabla_{E_3} E_1 = 0, \quad \nabla_{E_3} E_2 = 0, \quad \nabla_{E_3} E_3 = 0.
\]

Then the Riemann and the Ricci curvature tensor fields are given by:
\[
R(E_1, E_2) E_2 = -E_1, \quad R(E_1, E_3) E_3 = -E_1, \quad R(E_2, E_1) E_1 = -E_2,
\]
\[
R(E_2, E_3) E_3 = -E_2, \quad R(E_3, E_1) E_1 = -E_3, \quad R(E_3, E_2) E_2 = -E_3,
\]
\[
\text{Ric}(E_1, E_1) = \text{Ric}(E_2, E_2) = \text{Ric}(E_3, E_3) = -2.
\]

Writing the \(\eta\)-Ricci soliton equation in \((E_i, E_i)\) we obtain:
\[
g(\nabla_{E_i} E_3, E_i) + \text{Ric}(E_i, E_i) = \lambda g(E_i, E_i) + \mu \eta(E_i) \eta(E_i),
\]
for all \(i \in \{1, 2, 3\}\) and we get that for \(\lambda = \mu = -1\), the data \((V, \lambda, \mu)\) define an \(\eta\)-Ricci soliton on \((M, g)\). Moreover, it is a gradient \(\eta\)-Ricci soliton, since the potential vector field \(V\) is a torse-forming vector field of gradient type, \(V = \text{grad}(f)\), where \(f(x, y, z) := -\ln z\).
Example 3.11. Let $M = \mathbb{R}^3$, (x, y, z) be the standard coordinates in \mathbb{R}^3 and g be the Lorentzian metric:

$$g := e^{-2z}dx \otimes dx + e^{2x-2z}dy \otimes dy - dz \otimes dz.$$

Consider the vector field V and the 1-form η:

$$V := \frac{\partial}{\partial z}, \quad \eta := dz.$$

For the orthonormal vector fields:

$$E_1 = e^z \frac{\partial}{\partial x}, \quad E_2 = e^{z-2} \frac{\partial}{\partial y}, \quad E_3 = \frac{\partial}{\partial z},$$

we get:

$$\nabla_{E_1} E_1 = -E_3, \quad \nabla_{E_1} E_2 = 0, \quad \nabla_{E_1} E_3 = -E_1, \quad \nabla_{E_2} E_1 = e^z E_2,$$

$$\nabla_{E_2} E_2 = -e^z E_1 - E_3, \quad \nabla_{E_2} E_3 = -E_2, \quad \nabla_{E_3} E_1 = 0, \quad \nabla_{E_3} E_2 = 0, \quad \nabla_{E_3} E_3 = 0$$

and the Riemann tensor field and the Ricci tensor field are given by:

$$R(E_1, E_2)E_2 = (1 - e^{2z}) E_1, \quad R(E_1, E_3)E_3 = -E_1, \quad R(E_2, E_1)E_1 = (1 - e^{2z}) E_2,$$

$$R(E_2, E_3)E_3 = -E_2, \quad R(E_3, E_1)E_1 = E_3, \quad R(E_3, E_2)E_2 = E_3,$$

$$\text{Ric}(E_1, E_1) = \text{Ric}(E_2, E_2) = 2 - e^{2z}, \quad \text{Ric}(E_3, E_3) = -2.$$

Then the data (V, λ, μ), for $\lambda = 1 - e^{2z}$ and $\mu = -1 - e^{2z}$, define an almost η-Ricci soliton on (M, g). Moreover, it is a gradient almost η-Ricci soliton, since the potential vector field V is of gradient type, $V = \text{grad}(f)$, where $f(x, y, z) := -z$.

3.2 Almost η-Yamabe solitons

Assume that V is a torse-forming vector field on an n-dimensional Riemannian manifold (M, g), $\nabla_X V = aX + \psi(X)V$, for any $X \in \chi(M)$, where ∇ is the Levi-Civita connection of g. If η is the g-dual 1-form of V and U is the g-dual vector field of ψ, then

$$\eta(U) = \psi(V)$$

and

$$\text{div}(V) = an + \eta(U) = an + \psi(V).$$
Also
\[\text{div}(\psi \otimes \eta + \eta \otimes \psi) = \text{div}(V)\psi + \text{div}(U)\eta + i_{\nabla V}g + i_{\nabla U}y. \]

Since
\[\nabla U = aU + |U|^2 V, \]
we obtain:
\[\text{div}(\psi \otimes \eta + \eta \otimes \psi) = \left[(n+1)a + \psi(V) \right] \psi + \left[|U|^2 + \text{div}(U) \right] \eta + i_{\nabla V}g. \]

Let \((V, \lambda, \mu)\) be an almost \(\eta\)-Yamabe soliton with \(\eta\) the \(g\)-dual 1-form of the torse-forming vector field \(V\). Then
\[\frac{1}{2}(\psi \otimes \eta + \eta \otimes \psi) = (\text{scal} - \lambda - a)g + \mu \eta \otimes \eta \]
and taking the divergence, we get
\[(8) \quad d(\text{scal} - \lambda - a) = \frac{1}{2} i_{\nabla V}g \]
\[+ \frac{1}{2} \left[(n+1)a + \psi(V) \right] \psi + \left[|U|^2 \right] + \frac{\text{div}(U)}{2} - (\mu + n)a - (\mu + 1)\psi(V) - V(\mu) \right] \eta. \]

PROPOSITION 3.12. Let \((M, g)\) be an \(n\)-dimensional Riemannian manifold and let \((V, \lambda, \mu)\) be an almost \(\eta\)-Yamabe soliton with \(\eta\) the \(g\)-dual 1-form of the torse-forming vector field \(V\). Then \((V, \lambda, \mu)\) is an almost Yamabe soliton with \(\lambda = \text{scal} - \frac{1}{2|V|^2} V(|V|^2) \) or \(\left[\psi(V) \right]^2 = |V|^2 \cdot |U|^2 \).

PROOF. From the soliton equation (8), taking \(X = Y = V\), we get
\[(9) \quad \text{scal} - \lambda - a - \psi(V) + \mu |V|^2 = 0 \]
and taking \(X = Y = U\), we obtain
\[(10) \quad [\text{scal} - \lambda - a - \psi(V)] |U|^2 + \mu [\psi(V)]^2 = 0. \]

Replacing (9) in (10), we get:
\[-\mu |V|^2 |U|^2 + \mu [\psi(V)]^2 = 0, \]
which implies \(\mu = 0\) (which yields an almost Yamabe soliton) or \([\psi(V)]^2 = |V|^2 \cdot |U|^2 \).
Almost η-Ricci and η-Yamabe solitons

If $\mu = 0$, from (9), we get

$$\text{scal} - \lambda - a - \psi(V) = 0$$

and since

$$\frac{1}{2}V(|V|^2) = g(\nabla_V V, V) = [a + \psi(V)]|V|^2,$$

we obtain $\lambda = \text{scal} - \frac{1}{2|V|^2}V(|V|^2).$

Proposition 3.13. Let (M, g) be an n-dimensional Riemannian manifold and let (V, λ, μ) be an almost η-Yamabe soliton with η the g-dual 1-form of the concircular vector field V. Then V is ∇-parallel or the soliton is given by

$$(\lambda, \mu) = (\text{scal} - a + n|V|^2, n).$$

Proof. Taking $\psi = 0$ and $U = 0$ in (8), we get

$$d(\text{scal} - \lambda - a) = [-(\mu + n)a - V(\mu)]\eta$$

and by differentiating (9), we obtain:

$$d(\text{scal} - \lambda - a) = -\mu d(|V|^2) - |V|^2 d\mu.$$

Replacing the second relation in the previous one and computing it in V, we get

$$\mu V(|V|^2) = (\mu + n)a|V|^2.$$

Also

$$V(|V|^2) = 2g(\nabla_V V, V) = 2a|V|^2,$$

which combined with the previous relation implies either $a = 0$ (i.e. V is ∇-parallel) or $\mu = n$, which from (9) gives $\lambda = \text{scal} - a + n|V|^2.$

Proposition 3.14. Let (M, g) be an n-dimensional mixed generalized quasi-Einstein manifold and let (V, λ, μ) be an almost η-Yamabe soliton with η the g-dual 1-form of the torqued vector field V. If the Ricci tensor field of M is of the form $\text{Ric} = \alpha g + \beta \eta \otimes \eta + \gamma (\eta \otimes \psi + \psi \otimes \eta)$, then

$$(11) \quad \lambda = \left(\beta + \frac{\mu}{n}\right)|V|^2 + \alpha n - a.$$
PROOF. Since V is a torqued vector field and η the g-dual 1-form of V, we have

$$(\mathcal{L}_V g)(X, Y) = 2ag(X, Y) + \eta(X)\psi(Y) + \psi(X)\eta(Y).$$

On the other hand,

$$\text{Ric}(X, Y) = \alpha g(X, Y) + \beta\eta(X)\eta(Y) + \gamma[\eta(X)\psi(Y) + \psi(X)\eta(Y)],$$

gives us

$$\text{scal} = \alpha n + \beta |V|^2 + 2\gamma \psi(V) = \alpha n + \beta |V|^2.$$

Then (6) turns into

$$ag(X, Y) + \frac{1}{2} [\eta(X)\psi(Y) + \psi(X)\eta(Y)] = [\alpha n + \beta |V|^2 - \lambda]g(X, Y) + \mu\eta(X)\eta(Y).$$

So by a contraction in the last equation, we obtain (11).

Example 3.15. Let $M = \{(x, y, z) \in \mathbb{R}^3, z > 0\}$, where (x, y, z) are the standard coordinates in \mathbb{R}^3. Set

$V := -z \frac{\partial}{\partial z}, \quad \eta := \frac{1}{z} dz,$

$$g := \frac{1}{z^2} (dx \otimes dx + dy \otimes dy + dz \otimes dz)$$

and consider the linearly independent system of vector fields:

$$E_1 := z \frac{\partial}{\partial x}, \quad E_2 := z \frac{\partial}{\partial y}, \quad E_3 := -z \frac{\partial}{\partial z}.$$

According to Example 3.10, the Riemann and the Ricci curvature tensor fields are given by:

$$R(E_1, E_2)E_2 = -E_1, \quad R(E_1, E_3)E_3 = -E_1, \quad R(E_2, E_1)E_1 = -E_2,$$

$$R(E_2, E_3)E_3 = -E_2, \quad R(E_3, E_1)E_1 = -E_3, \quad R(E_3, E_2)E_2 = -E_3,$$

$$\text{Ric}(E_1, E_1) = \text{Ric}(E_2, E_2) = \text{Ric}(E_3, E_3) = -2$$

and the scalar curvature is $\text{scal} = -6$.

Writing the η-Yamabe soliton equation in (E_i, E_i) we obtain:

$$g(\nabla_{E_i} E_3, E_i) = (-6 - \lambda)g(E_i, E_i) + \mu\eta(E_i)\eta(E_i),$$

for all $i \in \{1, 2, 3\}$ and we get that for $\lambda = -7$ and $\mu = -1$, the data (V, λ, μ) define an η-Yamabe soliton on (M, g). Moreover, it is a gradient η-Yamabe soliton, since the potential vector field V is a torse-forming vector field of gradient type, $V = \text{grad}(f)$, where $f(x, y, z) := -\ln z$.
Example 3.16. Let \(M = \mathbb{R}^3 \), \((x, y, z)\) be the standard coordinates in \(\mathbb{R}^3 \), let \(g \) be the Lorentzian metric:

\[
g := e^{-2z}dx \otimes dx + e^{2x-2z}dy \otimes dy - dz \otimes dz.
\]

Consider the vector field \(V \) and the 1-form \(\eta \):

\[
V := \frac{\partial}{\partial z}, \quad \eta := dz.
\]

For the orthonormal vector fields:

\[
E_1 = e^z \frac{\partial}{\partial x}, \quad E_2 = e^{z-x} \frac{\partial}{\partial y}, \quad E_3 = \frac{\partial}{\partial z},
\]

according to Example [3.11] the Riemann tensor field, the Ricci tensor field and the scalar curvature are given by:

\[
\begin{align*}
R(E_1, E_2)E_2 &= (1 - e^{2z})E_1, \\
R(E_1, E_3)E_3 &= -E_1, \\
R(E_2, E_1)E_1 &= (1 - e^{2z})E_2, \\
R(E_2, E_3)E_3 &= -E_2, \\
R(E_3, E_1)E_1 &= E_3, \\
R(E_3, E_2)E_2 &= E_3, \\
\text{Ric}(E_1, E_1) &= \text{Ric}(E_2, E_2) = 2 - e^{2z}, \\
\text{Ric}(E_3, E_3) &= -2, \\
\text{scal} &= 2(3 - e^{2z}).
\end{align*}
\]

Then the data \((V, \lambda, \mu)\), for \(\lambda = 7 - 2e^{2z} \) and \(\mu = -1 \), define an almost \(\eta \)-Yamabe soliton on \((M, g)\). Moreover, it is a gradient almost \(\eta \)-Yamabe soliton, since the potential vector field \(V \) is of gradient type, \(V = \text{grad}(f) \), where \(f(x, y, z) := -z \).

4 Almost \(\eta \)-Ricci and almost \(\eta \)-Yamabe solitons on submanifolds

Let \(M \) be a submanifold isometrically immersed into a Riemannian manifold \((\tilde{M}, \tilde{g})\). Denote by \(g \) the Riemannian metric induced on \(M \), by \(\nabla \) and \(\tilde{\nabla} \) the Levi-Civita connections on \((M, g)\) and \((\tilde{M}, \tilde{g})\). The Gauss and Weingarten formulas corresponding to \(M \) are given by:

\[
\begin{align*}
\tilde{\nabla}_X Y &= \nabla_X Y + h(X, Y), \\
\tilde{\nabla}_X N &= -B_N(X) + \nabla^\perp_X N,
\end{align*}
\]

where \(h \) is the second fundamental form and \(B_N \) is the shape operator.
where h is the second fundamental form and B_N is the shape operator in the direction of the normal vector field N defined by $\tilde{g}(B_N(X), Y) = \tilde{g}(h(X, Y), N)$ for $X, Y \in \chi(M)$ [11].

A Riemannian submanifold M is called \textit{minimal} if its mean curvature vanishes.

A submanifold M in a Riemannian manifold (\tilde{M}, \tilde{g}) is called

i) \textit{ξ-umbilical} [8] (with respect to a normal vector field $ξ$) if its shape operator satisfies $B_ξ = \varphi I$, where φ is a function on M and I is the identity map;

ii) \textit{totally umbilical} [11] if it is umbilical with respect to every unit normal vector field.

An n-dimensional hypersurface M, $n \geq 4$, in a Riemannian manifold (\tilde{M}, \tilde{g}) is called

i) \textit{2-quasi-umbilical} [20] if its second fundamental tensor field H satisfies

$$H = \alpha g + \beta \varpi \otimes \varpi + \gamma \eta \otimes \eta,$$

where ϖ and η are 1-forms and α, β and γ are smooth functions on M such that the corresponding vector fields to the 1-forms ϖ and η are g-orthogonal. In particular, if $\gamma = 0$, then M is called \textit{quasi-umbilical} [11];

ii) \textit{pseudo quasi-umbilical} [25], if its second fundamental tensor field H satisfies

$$H = \alpha g + \beta \varpi \otimes \varpi + E,$$

where ϖ is a 1-form, α and β are smooth functions on M and E is a symmetric $(0, 2)$-tensor field with vanishing trace. If E vanishes, then M is quasi-umbilical.

If V is a concurrent vector field on \tilde{M}, then for any $X \in \chi(M)$, we have

$$\nabla_X V^T = X + B_{VT}(X), \quad \nabla_X V^\perp = -h(X, V^T),$$

therefore

$$\frac{1}{2} \text{grad}(|V^\perp|^2) = -B_{VT}(V^T), \quad \frac{1}{2} \text{grad}(|V|^2) = V^T$$

and we can state:

Proposition 4.1. Every almost η-Ricci and every almost η-Yamabe soliton (V^T, λ, μ) on a submanifold M, which is isometrically immersed into a Riemannian manifold (\tilde{M}, \tilde{g}), is of gradient type with the potential function $\frac{1}{2} \text{grad}(|V|^2)$, where $V^T \in \chi(M)$ is the tangential component of the concurrent vector field $V \in \chi(\tilde{M})$ and η is the g-dual of V^T.
In particular, if V is of constant length, then the almost η-Ricci soliton (M, g) is a quasi-Einstein manifold with associated functions λ and μ.

Next, we shall characterize almost η-Ricci and almost η-Yamabe solitons on M whose potential vector field is the tangential component of a torse-forming vector field on \tilde{M}.

Theorem 4.2. Let M be a submanifold isometrically immersed into a Riemannian manifold (\tilde{M}, \tilde{g}), let V be a torse-forming vector field on \tilde{M} and let η be the g-dual of V^T. Then

i) (M, g) is an almost η-Ricci soliton (V^T, λ, μ) if and only if the Ricci tensor field of M satisfies:

$$\text{Ric}_M(X, Y) = (\lambda - a)g(X, Y) - \tilde{\nabla}(h(X, Y), V^\perp) + \mu\eta(X)\eta(Y) - \frac{1}{2}[\psi(X)\eta(Y) + \eta(X)\psi(Y)],$$

for any $X, Y \in \chi(M)$;

ii) (M, g) is an almost η-Yamabe soliton (V^T, λ, μ) if and only if:

$$(\text{scal} - \lambda - a)g(X, Y) - \tilde{\nabla}(h(X, Y), V^\perp) + \mu\eta(X)\eta(Y) - \frac{1}{2}[\psi(X)\eta(Y) + \eta(X)\psi(Y)] = 0,$$

for any $X, Y \in \chi(M)$.

Proof. For any $X \in \chi(M)$, we have:

$$aX + \psi(X)V^T + \psi(X)V^\perp = \tilde{\nabla}_X V = \nabla_X V^T + h(X, V^T) - B_{V^\perp}(X) + \nabla^\perp_X V^\perp$$

and by the equality of the tangent components, we get:

$$\nabla_X V^T = aX + \psi(X)V^T + B_{V^\perp}(X).$$

Then

$$(L_{V^T}g)(X, Y) = g(\nabla_X V^T, Y) + g(\nabla_Y V^T, X) = 2[a\psi(X, Y) + \tilde{g}(h(X, Y), V^\perp)] + \psi(X)\eta(Y) + \eta(X)\psi(Y).$$

i) Suppose that there exist smooth functions λ and μ on M such that the condition in the hypotheses holds. Then we obtain

$$\frac{1}{2}(L_{V^T}g)(X, Y) + \text{Ric}_M(X, Y) = \lambda g(X, Y) + \mu\eta(X)\eta(Y).$$

Hence the submanifold (M, g) is an almost η-Ricci soliton. The converse is trivial.
ii) Suppose that there exist smooth functions λ and μ on M such that the condition in the hypotheses holds. Then we obtain
\[
\frac{1}{2}(\mathcal{L}_{V^T}g)(X,Y) = (\text{scal} - \lambda)g(X,Y) + \mu \eta(X)\eta(Y).
\]
Hence the submanifold (M,g) is an almost η-Yamabe soliton. The converse is trivial. □

If M is a minimal submanifold, then we can state the following corollary:

Corollary 4.3. Let M be an n-dimensional isometrically immersed minimal submanifold of a Riemannian manifold (\tilde{M},\tilde{g}), let V be a concircular vector field on \tilde{M} and let η be the g-dual of V^T.

i) If (V^T,λ,μ) is an almost η-Ricci soliton on M, then $\text{scal}_M = n(\lambda - a) + \mu |V^T|^2$.

ii) If (V^T,λ,μ) is an almost η-Yamabe soliton on M, then $\text{scal}_M = \lambda + a - \frac{\mu}{n} |V^T|^2$.

When M is a V^\perp-umbilical submanifold, we have:

Corollary 4.4. Let M be an n-dimensional V^\perp-umbilical submanifold isometrically immersed into an $(n+d)$-dimensional Riemannian manifold (\tilde{M},\tilde{g}). If V is a concircular vector field on \tilde{M}, then M is an almost η-Ricci soliton with potential vector field V^T, for η the g-dual of V^T if and only if M is a quasi-Einstein submanifold with associated functions $(\lambda - a - \phi)$ and μ.

For a hypersurface, since
\[
\tilde{g} \left(h(X,Y),V^\perp\right) = g(B(X),Y)g(N,V^\perp) = H(X,Y)g(N,V^\perp),
\]
where N is the unit normal vector field of M and H is the second fundamental tensor field, if we denote by $\rho = g(N,V^\perp)$, then we can state:

Corollary 4.5. Let M be an n-dimensional hypersurface isometrically immersed into an $(n+1)$-dimensional Riemannian manifold (\tilde{M},\tilde{g}). If V is a torse-forming vector field on \tilde{M} and η is the g-dual of V^T, then

i) (M,g) is an almost η-Ricci soliton with potential vector field V^T if and only if there exist two smooth functions λ and μ on M such that the Ricci tensor field of M satisfies
\[
\text{Ric}_M = (\lambda - a)g - \rho H + \mu \eta \otimes \eta - \frac{1}{2}(\psi \otimes \eta + \eta \otimes \psi);
\]

ii) (M,g) is an almost η-Yamabe soliton with potential vector field V^T if and only if there exist two smooth functions λ and μ on M such that
\[
(\text{scal} - \lambda - a)g - \rho H + \mu \eta \otimes \eta - \frac{1}{2}(\psi \otimes \eta + \eta \otimes \psi) = 0.
\]
Almost η-Ricci and η-Yamabe solitons

Theorem 4.6. Let M be an n-dimensional hypersurface isometrically immersed into an $(n+1)$-dimensional Riemannian manifold $(\widetilde{M}(c), \widetilde{g})$ of constant curvature c. If V is a torse-forming vector field on \widetilde{M} and η is the g-dual of V^T, then

i) (M, g) is an almost η-Ricci soliton with potential vector field V^T if and only if there exist two smooth functions λ and μ on M such that the second fundamental tensor field H of M satisfies

$$H^2 = [\rho + tr(H)]H + [(n-1)c - \lambda + a]g - \mu\eta \otimes \eta + \frac{1}{2}(\psi \otimes \eta + \eta \otimes \psi);$$

ii) (M, g) is an almost η-Yamabe soliton with potential vector field V^T if and only if there exist two smooth functions λ and μ on M such that the second fundamental tensor field H of M satisfies

$$\rho H = [n(n-1)c + (tr(H))^2 - tr(H^2) - \lambda - a]g + \mu\eta \otimes \eta - \frac{1}{2}(\psi \otimes \eta + \eta \otimes \psi).$$

Proof. From the Gauss equation, we have

$$\text{Ric}_M(X, Y) = tr(H)H(X, Y) - H^2(X, Y) + (n-1)cg(X, Y).$$

i) Then comparing (18) and (14), we get

$$(\lambda - a)g(X, Y) - \rho H(X, Y) + \mu\eta(X)\eta(Y) - \frac{1}{2}[\psi(X)\eta(Y) + \eta(X)\psi(Y)]$$

$$= tr(H)H(X, Y) - H^2(X, Y) + (n-1)cg(X, Y),$$

which gives us

$$H^2(X, Y) = [\rho + tr(H)]H(X, Y) + [(n-1)c - \lambda + a]g(X, Y) - \mu\eta(X)\eta(Y)$$

$$+ \frac{1}{2}[\psi(X)\eta(Y) + \eta(X)\psi(Y)].$$

Conversely, assume that (16) is satisfied. Then by the Gauss equation, we have

$$\text{Ric}_M(X, Y) = (\lambda - a)g(X, Y) - \rho H(X, Y) + \mu\eta(X)\eta(Y) - \frac{1}{2}[\psi(X)\eta(Y) + \eta(X)\psi(Y)],$$

so by Corollary 4.5, (M, g) is an almost η-Ricci soliton with potential vector field V^T.

ii) By a contraction in (18), we find

$$\text{scal} = (tr(H))^2 - tr(H^2) + n(n-1)c$$
and replacing scal in (15), we get

\[n(n-1)c + (\text{tr}(H))^2 - \text{tr}(H^2) - \lambda - a]g - \rho H + \mu \eta \otimes \eta - \frac{1}{2}(\psi \otimes \eta + \eta \otimes \psi) = 0. \]

Conversely, assume that (17) is satisfied. Then by a contraction, we find

(20) \[\text{scal} = (\text{tr}(H))^2 - \text{tr}(H^2) + n(n-1)c, \]

so by Corollary 4.5, \((M,g)\) is an almost \(\eta\)-Yamabe soliton with potential vector field \(V_T\).

Proposition 4.7. Let \(M\) be an \(n\)-dimensional quasi-Einstein hypersurface isometrically immersed into an \((n+1)\)-dimensional Riemannian manifold \((\widetilde{M},\tilde{g})\). Assume that the Ricci tensor field of \(M\) is of the form \(\text{Ric} = \alpha g + \beta \eta \otimes \eta\). If \(V\) is a concircular vector field on \(\widetilde{M}\), then \((M,g)\) is an almost \(\eta\)-Ricci soliton with potential vector field \(V^T\), for \(\eta\) the \(g\)-dual of \(V^T\), if and only if it is a quasi-umbilical hypersurface with associated functions \(\frac{\lambda - a - \alpha}{\rho}\) and \(\frac{\mu - \beta}{\rho}\).

Proof. Assume that \(M\) is a quasi-Einstein hypersurface whose Ricci tensor field \(\text{Ric}\) is of the form \(\text{Ric} = \alpha g + \beta \eta \otimes \eta\). If \(V\) is a concircular vector field on \(\widetilde{M}\), then from Theorem 4.2, we can write

\[\alpha g(X,Y) + \beta \eta(X)\eta(Y) = (\lambda - a) g(X,Y) - \rho H(X,Y) + \mu \eta(X)\eta(Y), \]

which gives us

\[H(X,Y) = \frac{\lambda - a - \alpha}{\rho} g(X,Y) + \frac{\mu - \beta}{\rho} \eta(X)\eta(Y). \]

Hence \(M\) is a quasi-umbilical hypersurface with associated functions \(\frac{\lambda - a - \alpha}{\rho}\) and \(\frac{\mu - \beta}{\rho}\). The converse is trivial.

It is known that an \(n\)-dimensional hypersurface \(M, n \geq 4\), in a Riemannian manifold \((\widetilde{M}(c),\tilde{g})\) of constant curvature \(c\) is conformally flat if and only if it is quasi-umbilical [29]. So we have:

Corollary 4.8. Let \(M\) be an \(n\)-dimensional quasi-Einstein hypersurface isometrically immersed into an \((n+1)\)-dimensional Riemannian manifold \((\widetilde{M},\tilde{g})\). Assume that the Ricci tensor field of \(M\) is of the form \(\text{Ric} = \alpha g + \beta \eta \otimes \eta\). If \(V\) is a concircular vector field on \(\widetilde{M}\), then \((M,g)\) is an almost \(\eta\)-Ricci soliton with potential vector field \(V^T\), for \(\eta\) the \(g\)-dual of \(V^T\) and \(M\) is a conformally flat hypersurface.
Let \(\varphi : M \to \mathbb{S}^{n+1}(1) \) be an immersion. We denote by \(g \) the induced metric on the hypersurface \(M \) as well as that on the unit sphere \(\mathbb{S}^{n+1}(1) \). Let \(N \) and \(B \) be the unit normal vector field and the shape operator of the hypersurface \(M \) in the unit sphere \(\mathbb{S}^{n+1}(1) \) and we denote by \(\langle \cdot, \cdot \rangle \) the Euclidean metric on the Euclidean space \(\mathbb{E}^{n+2} \). Assume that \(V \) is a torse-forming vector field on \(\mathbb{E}^{n+2} \). If we denote by \(N_S \) the unit normal vector field of the unit sphere \(\mathbb{S}^{n+1}(1) \) in the Euclidean space \(\mathbb{E}^{n+2} \), we can define the smooth functions \(\delta, \rho \) on the hypersurface \(M \) by
\[
\delta = \langle V, N \rangle \big|_M \quad \text{and} \quad \rho = \langle V, N_S \rangle \big|_M .
\]
Hence the restriction of the torse-forming vector field \(V \) to the hypersurface \(M \) can be written as
\[
V \big|_M = U + \delta N + \rho N_S ,
\]
where \(U \in \chi(M) \).

Then as an extension of Theorem 3.3 given in [31], we can state:

Theorem 4.9. Let \(M \) be an orientable hypersurface of the unit sphere \(\mathbb{S}^{n+1}(1) \), with immersion \(\varphi : M \to \mathbb{S}^{n+1}(1) \) and let \(V \) be a torse-forming vector field on the Euclidean space \(\mathbb{E}^{n+2} \). Denote by \(\xi \) the tangential component of \(V \) on the unit sphere \(\mathbb{S}^{n+1}(1) \) and by \(U \) the tangential component of \(\xi \) on \(M \). Then

i) the hypersurface \((M, g) \) is an almost \(\eta \)-Ricci soliton \((U, \lambda, \mu)\) if and only if
\[
H^2(X, Y) = [\text{tr}(H) + \delta] H(X, Y) + (n - 1 - \rho - \lambda + \alpha) g(X, Y)
\]
\[
- \mu \eta(X) \eta(Y) + \frac{1}{2} [\psi(X) g(U, Y) + \psi(Y) g(U, X)] ,
\]
for any \(X, Y \in \chi(M) \);

ii) the hypersurface \((M, g) \) is an almost \(\eta \)-Yamabe soliton \((U, \lambda, \mu)\) if and only if
\[
\delta H(X, Y) = [n(n - 1) + (\text{tr}(H))^2 - \text{tr}(H^2) + \rho - \lambda - \alpha] g(X, Y)
\]
\[
+ \mu \eta(X) \eta(Y) - \frac{1}{2} [\psi(X) g(U, Y) + \psi(Y) g(U, X)] ,
\]
for any \(X, Y \in \chi(M) \). In this case, \(M \) is a pseudo quasi-umbilical hypersurface.

Proof. Let \(\nabla, \nabla \) and \(D \) denote the Levi-Civita connections on \(M, \mathbb{S}^{n+1}(1) \) and \(\mathbb{E}^{n+2} \), respectively. Then we can write
\[
V \big|_{\mathbb{S}^{n+1}(1)} = \xi + \rho N_S ,
\]
and for any \(X \in \chi(M) \), by taking the covariant differential w.r.t. \(X \), we have
\[
a X + \psi(X) V = a X + \psi(X) \xi + \psi(X) \rho N_S = D_X V = D_X \xi + X(\rho) N_S + \rho D_X N_S .
\]
By using the Gauss and Weingarten formulas, we find
\[aX + \psi(X)\xi + \psi(X)gN_S = \nabla_X\xi - g(X,\xi)N_S + X(g)N_S + gX. \]
By the equality of the tangent and the normal components, we get
\[(21)\]
\[\nabla_X\xi + (\varrho - a)X = \psi(X)\xi \]
and
\[X(\varrho) - g(X,\xi) = \psi(X)\varrho. \]
The vector field \(\xi \) on \(S^{n+1}(1) \) can be written as
\[\xi = U + \delta N. \]
So from \((21)\), we have
\[\nabla_X(U + \delta N) + (\varrho - a)X = \psi(X)(U + \delta N). \]
By using Gauss and Weingarten formulas again, we find
\[\psi(X)U + \psi(X)\delta N - (\varrho - a)X = \nabla_XU + g(B(X), U)N + X(\delta)N - \delta B(X). \]
Then by the equality of the tangent and the normal components, we have
\[(22)\]
\[\nabla_XU = \psi(X)U - (\varrho - a)X + \delta B(X) \]
and
\[\psi(X)\delta = g(B(X), U) + X(\delta). \]
So
\[(\mathcal{L}_U g)(X, Y) = g(\nabla_XU, Y) + g(\nabla_YU, X) \]
\[(23)\]
\[= \psi(X)g(U, Y) + \psi(Y)g(U, X) - 2(\varrho - a)g(X, Y) + 2\delta H(X, Y). \]
On the other hand, the Gauss equation for a hypersurface \(M \) in \(S^{n+1}(1) \) gives us
\[(24)\]
\[\text{Ric}(X, Y) = (n - 1)g(X, Y) + tr(H)H(X, Y) - H^2(X, Y). \]
i) Then combining \((21)\) and \((23)\), we find
\[\frac{1}{2} (\mathcal{L}_U g)(X, Y) + \text{Ric}(X, Y) = (n - 1 - \varrho + a)g(X, Y) + [tr(H) + \delta]H(X, Y) \]
\[-H^2(X, Y) + \frac{1}{2} [\psi(X)g(U, Y) + \psi(Y)g(U, X)]. \]
Suppose that there exist smooth functions λ and μ on M such that the condition in the hypothesis holds. Then we obtain \(\frac{1}{2} (\mathcal{L}_U g)(X,Y) + \text{Ric}(X,Y) = \lambda g(X,Y) + \mu \eta(X) \eta(Y) \). Hence the hypersurface M is an almost η-Ricci soliton. The converse is trivial.

ii) By a contraction in (24), we find

\[
\text{scal} = n(n-1) + (tr(H))^2 - tr(H^2).
\]

Then combining (25) and (23), we get

\[
\frac{1}{2} (\mathcal{L}_U g)(X,Y) - (\text{scal} - \lambda) g(X,Y) = \frac{1}{2} [\psi(X) g(U,Y) + \psi(Y) g(U,X)]
\]

\[
- [n(n-1) + (tr(H))^2 - tr(H^2) + g - \lambda - a] g(X,Y) + \delta H(X,Y).
\]

Suppose that there exist smooth functions λ and μ on M such that the condition in the hypothesis holds. Then we obtain \(\frac{1}{2} (\mathcal{L}_U g)(X,Y) = (\text{scal} - \lambda) g(X,Y) + \mu \eta(X) \eta(Y) \). Hence the hypersurface M is an almost η-Yamabe soliton and moreover, M is a pseudo quasi-umbilical hypersurface. The converse is trivial.

Corollary 4.10. Under the conditions of Theorem 4.9, if the 1-form ψ is the g-dual of U, then

i) the hypersurface (M, g) is an almost η-Ricci soliton (U, λ, μ) if and only if

\[
H^2 = [tr(H) + \delta] H + (n - 1 - g - \lambda + a) g - \mu \eta \otimes \eta + \psi \otimes \psi;
\]

ii) the hypersurface (M, g) is an almost η-Yamabe soliton (U, λ, μ) if and only if

\[
\delta H = [n(n-1) + (tr(H))^2 - tr(H^2) + g - \lambda - a] g + \mu \eta \otimes \eta - \psi \otimes \psi.
\]

Corollary 4.11. Let M be an orientable hypersurface of the unit sphere $\mathbb{S}^{n+1}(1)$ and let V be a ∇-parallel or constant vector field on the Euclidean space \mathbb{E}^{n+2}. Then

i) the hypersurface (M, g) is an almost η-Ricci soliton (U, λ, μ) if and only if

\[
H^2 = [tr(H) + \delta] H + (n - 1 - g - \lambda) g - \mu \eta \otimes \eta;
\]

ii) the hypersurface (M, g) is an almost η-Yamabe soliton (U, λ, μ) if and only if

\[
\delta H = [n(n-1) + (tr(H))^2 - tr(H^2) + g - \lambda] g + \mu \eta \otimes \eta.
\]

It is known that a pseudo quasi-umbilical hypersurface of a Riemannian manifold of constant curvature $(\tilde{M}(c), \tilde{g})$ is a pseudo quasi-Einstein hypersurface [25]. So we have:

Corollary 4.12. Let M be an orientable hypersurface of the unit sphere $\mathbb{S}^{n+1}(1)$ and let V be a torse-forming vector field on the Euclidean space \mathbb{E}^{n+2}. If the hypersurface (M, g) is an almost η-Yamabe soliton (U, λ, μ), then it is a pseudo quasi-Einstein hypersurface.
Almost η-Ricci and η-Yamabe solitons

References

[1] E. Barbosa, E. Ribeiro, On conformal solutions of the Yamabe flow, Arch. Math. 101 (2013), 79–89.

[2] A. L. Besse, Einstein manifolds, Classics in Mathematics, Springer, 1987.

[3] A. Bhattacharyya, T. De, On mixed generalized quasi-Einstein manifolds, Differential Geometry - Dynamical Systems 9 (2007), 40–46.

[4] A. M. Blaga, A note on almost η-Ricci solitons in Euclidean hypersurfaces, Serdica Math. J. 43 (2017), no. 3/4, 361–368.

[5] A. M. Blaga, Almost η-Ricci solitons in $(LCS)_n$-manifolds, Bull. Belgian Math. Soc. - Simon Stevin 25 (2018), no. 5, 641–653.

[6] M. C. Chaki, On generalized quasi Einstein manifolds, Publ. Math. Debrecen 58 (2001), no. 4, 683–691.

[7] M. C. Chaki, R. K. Maity, On quasi Einstein manifolds, Publ. Math. Debrecen 57 (2000), no. 3-4, 297–306.

[8] B.-Y. Chen, A survey on Ricci solitons on Riemannian submanifolds, Recent advances in the geometry of submanifolds – dedicated to the memory of Franki Dillen (1963–2013), 27–39, Contemp. Math. 674, Amer. Math. Soc., Providence, RI, 2016.

[9] B.-Y. Chen, Classification of torqued vector fields and its applications to Ricci solitons, Kragujevac J. Math. 41 (2017), no. 2, 239–250.

[10] B.-Y. Chen, Euclidean submanifolds via tangential components of their position vector fields, Mathematics 5(4), no. 51, (2017).

[11] B.-Y. Chen, Geometry of submanifolds, Pure and Applied Mathematics 22, Marcel Dekker, Inc., New York, 1973.

[12] B.-Y. Chen, Ricci solitons on Riemannian submanifolds, Riemannian Geometry and Applications-Proceedings RIGA 2014, 30–45, Editura Univ. Bucur., Bucharest, 2014.

[13] B.-Y. Chen, Some results on concircular vector fields and their applications to Ricci solitons, Bull. Korean Math. Soc. 52 (2015), no. 5, 1535-1547.
[14] B.-Y. Chen, S. Deshmukh, Classification of Ricci solitons on Euclidean hypersurfaces, Intern. J. Math. 25 (2014), no. 11, 1450104, 22 pp.

[15] B.-Y. Chen, S. Deshmukh, Ricci solitons and concurrent vector fields, Balkan J. Geom. Appl. 20 (2015), no. 1, 14–25.

[16] B.-Y. Chen, S. Deshmukh, Yamabe and quasi-Yamabe solitons on Euclidean submanifolds, Mediterr. J. Math. (2018) 15:194.

[17] J. T. Cho, M. Kimura, Ricci solitons and Lagrangian submanifolds in Kähler manifolds, Mem. Fac. Sci. Eng. Shimane Univ. Ser. B 43 (2010), 27–32.

[18] J. T. Cho, M. Kimura, Ricci solitons and real hypersurfaces in a complex space form, Tohoku Math. J. 61 (2009), no. 2, 205–212.

[19] J. T. Cho, M. Kimura, Ricci solitons on locally conformally flat hypersurfaces in space forms, J. Geom. Phys. 62 (2012), no. 8, 1882–1891.

[20] W. De Meulemeester, L. Verstraelen, Codimension 2 submanifolds with a 2-quasi-umbilical normal direction, J. Korean Math. Soc. 15 (1978/79), no. 2, 101–108.

[21] Ş. E. Meriç, E. Kiliç, On submanifolds of Riemannian manifolds admitting a Ricci soliton, Mem. Secţ. Știinţ. Acad. Română Ser. IV 42 (2019), 59–66.

[22] A. Fialkow, Conformal geodesics, Trans. Amer. Math. Soc. 45 (1939), no. 3, 443–473.

[23] R. S. Hamilton, The Ricci flow on surfaces, Math. and general relativity (Santa Cruz, CA, 1986), Contemp. Math. 71 (1988), AMS, 237–262.

[24] R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geometry 17 (1982), no. 2, 255–306.

[25] S. Mallick, U. C. De, Certain investigations on pseudo quasi-Einstein manifolds, Proc. Nat. Acad. Sci. India Sect. A 88 (2018), no. 2, 223–230.

[26] B. L. Neto, H. P. de Oliveira, Generalized quasi Yamabe gradient solitons, Diff. Geom. Appl. 49 (2016), 167–175.

[27] S. Pigola, M. Rigoli, M. Rimoldi, A. G. Setti, Ricci almost solitons, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 5, Vol. X (2011), 757–799.
[28] J. A. Schouten, Ricci-Calculus: An introduction to tensor analysis and its geometrical applications, 2nd. ed., Die Grundlehren der mathematischen Wissenschaften, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1954.

[29] J. A. Schouten, Über die konforme Abbildung n-dimensionaler Mannigfaltigkeiten mit quadratischer Massbestimmung auf eine Mannigfaltigkeit mit euklidischer Massbestimmung, Math. Z. 11 (1921), 58–88.

[30] T. Seko, S. Maeta, Classification of almost Yamabe solitons in Euclidean spaces, J. Geom. Phys. 136 (2019), 97–103.

[31] H. Al-Sodais, H. Alodan, S. Deshmukh, Hypersurfaces of Euclidean space as gradient Ricci solitons, An. Șt. Univ. Al. I. Cuza, Iași (S. N.), Matematică LXI, f.2 (2015), 437–444.

[32] K. Yano, On the torse-forming directions in Riemannian spaces, Proc. Imp. Acad. Tokyo 20 (1944), 340–345.

Adara M. BLAGA
Department of Mathematics, West University of Timișoara
300223, Bld. V. Pârvan nr. 4, Timișoara, România
Email: adarablaga@yahoo.com

Cihan ÖZGÜR
Department of Mathematics, Balıkesir University
10145, Çağış, Balıkesir, Turkey
Email: cozgur@balikesir.edu.tr