Microbial Biology

Serine-rich repeat protein adhesins from *Lactobacillus reuteri* display strain specific glycosylation profiles

Dimitrios Latousakis2, Ridvan Nepravishta3, Martin Rejzek4, Udo Wegmann2, Gwenaëlle Le Gall2, Devon Kavanaugh2, Ian J Colquhoun2, Steven Frese5, Donald A MacKenzie2, Jens Walter6,7, Jesus Angulo3, Robert A Field4, and Nathalie Juge2,1

2The Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UA, UK, 3School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK, 4Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK, 5Evolve Biosystems, Davis, California, USA, 6Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada, and 7Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada

1To whom correspondence should be addressed: Tel: +44-1603255068; Fax: +44-1603507723; e-mail: nathalie.juge@quadram.ac.uk

Received 27 July 2018; Revised 19 October 2018; Editorial decision 19 October 2018; Accepted 25 October 2018

Abstract

Lactobacillus reuteri is a gut symbiont inhabiting the gastrointestinal tract of numerous vertebrates. The surface-exposed serine-rich repeat protein (SRRP) is a major adhesin in Gram-positive bacteria. Using lectin and sugar nucleotide profiling of wild-type or *L. reuteri* isogenic mutants, MALDI-ToF-MS, LC–MS and GC–MS analyses of SRRPs, we showed that *L. reuteri* strains 100-23C (from rodent) and ATCC 53608 (from pig) can perform protein O-glycosylation and modify SRRP100-23 and SRRP53608 with Hex-Glc-GlcNAc and di-GlcNAc moieties, respectively. Furthermore, in vivo glycoengineering in *E. coli* led to glycosylation of SRRP53608 variants with α-GlcNAc and GlcNAcβ(1→6)GlcNAcα moieties. The glycosyltransferases involved in the modification of these adhesins were identified within the SecA2/Y2 accessory secretion system and their sugar nucleotide preference determined by saturation transfer difference NMR spectroscopy and differential scanning fluorimetry. Together, these findings provide novel insights into the cellular O-protein glycosylation pathways of gut commensal bacteria and potential routes for glycoengineering applications.

Key words: accessory secretion system, glycosyltransferase, gut commensal bacteria, O-linked glycosylation, sugar nucleotides

Introduction

Although originally believed to be restricted to eukaryotes, protein glycosylation, i.e., the covalent attachment of a carbohydrate moiety to specific protein targets, is emerging as an important feature in bacteria and archaea, revealing an important diversity of glycan structures and pathways within and between microbial species (Schäffer and Messner 2017). To date, protein glycosylation has been widely studied in pathogenic bacteria, where glycoproteins are often essential for virulence and pathogenicity (Eichler and Koomey 2017). However, the nature and function of protein glycosylation in gut commensal bacteria remains largely unexplored (Latousakis and Juge 2018).
Lactobacillus reuteri is a Gram-positive bacterial symbiont inhabiting the gastrointestinal (GI) tract of a range of vertebrates (including humans) that displays a remarkable degree of host specialization (Oh et al. 2010; Frese et al. 2011; Frese et al. 2013; Wegmann et al. 2015; Duar et al. 2017). One of the mechanisms mediating specific interaction of L. reuteri strains with the host is provided by cell surface proteins that facilitate adherence to epithelial or mucosal surface along the GI tract, depending on the niche colonized by the bacteria (Mackenzie et al. 2010; Etzold et al. 2014; Sequeira et al. 2018). Previous analyses of the rodent strain L. reuteri 100-23C identified a gene encoding a predicted surface-exposed serine-rich repeat protein (SRRP₁₀₀₋₂₃) that was essential for L. reuteri biofilm formation in the forestostomach of mice (Frese et al. 2013). Inactivation of SRRP₁₀₀₋₂₃ completely abrogated epithelial association, indicating that initial adhesion represented the most significant step in biofilm formation, likely host specificity (Frese et al. 2013).

SRRPs are a family of adhesins found in many Gram-positive bacteria (Lizcano et al. 2012). These proteins were originally identified in pathogenic bacteria, such as streptococci and staphylococci (Wu et al. 1998; Bensing and Sullam 2002; Zhou and Wu 2009; Seo et al. 2013; Li et al. 2014), where their expression has been linked to virulence (Shivshankar et al. 2009; Sanchez et al. 2010). SRRPs are composed of distinct subdomains: a cleavable and unusually long signal peptide which, in some cases, is followed by an alanine-serine-threonine rich (AST) motif, a short serine rich repeat region (SRR1), a binding region (BR), a second and much larger SRR2, and an LPXTG cell wall anchoring motif (Rigel and Braunstein 2008). Previous studies on SRRPs from pathogenic organisms have shown that these proteins are O-glycosylated on serine or threonine residues and exported via an accessory secretion (SecA2/Y2) system (Bensing and Sullam 2002; Bensing et al. 2014; Takamatsu et al. 2004; Siboo et al. 2008; Chaze et al. 2014; Li et al. 2014). This specialized secretion system is encoded by genes that are normally co-located within a gene cluster and is composed of the motor protein SecA2, the translocon channel SecY2 and three to five accessory Sec proteins (Asp1-5). In addition, this gene cluster also contains genes encoding a variable number of glycosyltransferases (GTs), ranging between two and ten (Bensing et al. 2014). The best studied examples of SecA2/SecY2-mediated glycosylation systems are from pathogenic Streptococcus parasanguinis, Streptococcus pneumoniae, Streptococcus gordonii, Streptococcus agalactiae and Staphylococcus aureus (Takamatsu et al. 2004; Zhu et al. 2016; Jiang et al. 2017).

In all cases, the glycosylation process is initiated by a two-protein glycosyltransferase complex, consisting of GtfA and GtfB, that mediates the addition of N-acetylgalactosamine (GlcNAc) to serine and threonine residues within the SRR domains of the adhesins. This is sometimes followed by the extension of the core glycan via the action of additional GTs whose number and type vary between species, resulting in a range of glycan structures (Zhu et al. 2016; Jiang et al. 2017; Chen et al. 2018). Recently, a SecA2/Y2 cluster encoding three SRRPs has been identified in the commensal species Streptococcus salivarus JIM8777; unusually the first glycosylation step was carried out by two genetically linked GTs outside of the cluster (Couvigny et al. 2017).

To date, SecA2/Y2 clusters have been identified in the genomes of various Lactobacillus species (Tygart and de Vos 2016; Latousakis and Juge 2018; Sequeira et al. 2018). In L. reuteri, the intact cluster has mostly been found in strains of murine or porcine origin, and it appears to be absent from strains of human origin (Frese et al. 2011; Frese et al. 2013; Wegmann et al. 2015; Sequeira et al. 2018). The SecA2/Y2 cluster in the L. reuteri rodent strain 100-23C is crucial for ecological fitness and adhesion of the bacteria to the forestomach epithelium of the murine GI tract (Frese et al. 2013). Using proteomics, we showed that SRRP₁₀₀₋₂₃ is the primary cell wall-associated protein of L. reuteri 100-23C strain that is secreted through the accessory SecA2/Y2 system (Frese et al. 2013). In addition, our analysis of the completed genome of the pig isolate L. reuteri ATCC 53608 revealed the presence of a SecA2/Y2 system with an associated SRRP sharing the same domain organization as SRRP₁₀₀₋₂₃ (Wegmann et al. 2015). Further analysis of the pangenome of L. reuteri pig isolates also revealed the presence of a SecA2/Y2 system with an associated SRRP in these strains (Wegmann et al. 2015), suggesting a conserved role of SecA2/Y2 among L. reuteri strains that possess the cluster. We confirmed that the SRRPs from L. reuteri pig strains were secreted during growth in vitro (Sequeira et al. 2018), as previously shown for SRRP₁₀₀₋₂₃ (Frese et al. 2013). However, despite the central importance of the SecA2/Y2 cluster and SRRPs in specific L. reuteri strains, how SRRPs are glycosylated in lactobacilli has not yet been determined.

Here we provide a comprehensive analysis of the glycosylation of L. reuteri SRRPs (LrSRRPs) from L. reuteri ATCC 53608 (pig) and 100-23C (rodent) strains. Using a combination of bioinformatics analysis, lectin screening, LC-MS-based sugar nucleotide profiling, MALDI-ToF and GC-MS analyses, we showed that the L. reuteri ATCC 53608 and 100-23C strains are capable of performing protein glycosylation and that SRRP₁₀₀₋₂₃ and SRRP₅₃₆₀₈ are glycosylated with hexose (Hex₂)-N-acetylhexosamine (HexNAc) and di-HexNAc moieties, respectively. Following in vivo glycoengineering in E. coli, NMR analysis and enzymatic treatment showed that SRRP₅₃₆₀₈ is glycosylated with GlcNAc₁₋₆GlcNAc moieties. In addition, using Differential Scanning Fluorimetry (DSF) and Saturation Transfer Difference (STD) NMR, we provide biochemical insights into the specificity of the glycosyltransferases involved in the SecA2/Y2 accessory pathway leading to the protein glycosylation of these adhesins in gut symbionts.

Results

SRRPs from L. reuteri strains 100-23C and ATCC 53608 are glycosylated

To determine whether L. reuteri strains 100-23C and ATCC 53608 are capable of performing protein glycosylation of LrSRRPs, the proteins from the spent media (SM) were separated by SDS-PAGE and analyzed by western blot using a range of fluoroscenin (f)-labeled lectins. A similar lectin recognition profile was observed between proteins from both L. reuteri strains with binding to F-WGA, F-RCA and F-SNA (Figure 1A) while no binding was observed with F-ConA, F-LTL, F-PNA or F-UEA (data not shown). This suggests the presence of glycoproteins carrying GlcNAc, sialic acid or galactose (Gal) residues. A large protein with an apparent molecular weight (MW) > 300 kDa was detected in both L. reuteri strains by f-WGA but not with any of the other lectins tested. This protein was also recognized by anti-SRRP-BR₅₃₆₀₈ antibodies in L. reuteri ATCC 53608 SM, suggesting that it corresponds to SRRP₅₃₆₀₈ (Figure 1B). It is of note that Coomassie-staining cannot efficiently detect LrSRRPs, probably due to their unusual amino acid composition and glycosylation. The anti-SRRP-BR₅₃₆₀₈ does not cross-react with SRRP₁₀₀₋₂₃ which may be due to the low amino acid similarity (48%) between the two binding regions of the two adhesins (Sequeira et al. 2018). Previous reports have also shown that lectins can detect SRRPs with greater
sensitivity than antibodies, since the high degree of glycosylation masks the underlying amino acid and protein antigens (Siboo et al. 2008). Therefore, to confirm the identity of the putative SRRP glycoprotein secreted by *L. reuteri* 100-23C, the lectin binding profile of *L. reuteri* 100-23C Δsrr mutant (lacking SRRP100-23 expression, see Frese et al. 2013) was determined as above following western blot analysis with f-labeled lectins. The protein band >300 kDa recognized by f-WGA in the *L. reuteri* 100-23C wild-type strain was missing in the Δsrr mutant (Figure 1C) while no other difference in the lectin recognition pattern was observed with f-WGA or when the SM proteins were probed with f-RCA or f-SNA (data not shown), confirming that this protein is SRRP100-23 (marked with an arrow in Figure 1A). It is interesting to note that the theoretical MW of SRRP53608 and SRRP100-23 is 116 kDa and 224 kDa, respectively, therefore the high apparent MW of *Lr*SRRPs is in line with the potential glycosylation of these adhesins. The lectin recognition pattern of *Lr*SRRPs suggests that these adhesins are glycosylated with glycans carrying GlcNAc residues.

In support of this analysis, the profile of intracellular sugar nucleotides produced by *L. reuteri* strains was determined as described in Rejzek et al. (2017) with some modifications specific for the cell lysis of Gram-positive bacteria. The LC–MS/MS based analysis revealed the presence of six abundant nucleotide 5′-diphosphosugar (NDP-sugar) species in *L. reuteri* 100-23C and ATCC 53608 (Figure 2) at concentrations ranging from low nmol to low μmol per gram of wet cell pellet (Table S1). UDP-GlcNAc and UDP-Glc were detected in both *L. reuteri* strains at high levels (Figure 2). UDP-Gal was also found in both strains but at significantly lower levels in *L. reuteri* 100-23C, under the conditions tested. These results are in line with the bioinformatics analyses showing the genetic requirement for the synthesis of UDP-GlcNAc, UDP-Glc, UDP-Gal (data not shown) which are commonly used as sugar donors by GTs in protein glycosylation (Freeze et al. 2017) and in agreement with the presence of GlcNAc moieties onto LrSRRPs, as suggested by the lectin screening.

SRRP₁₀₀₋₂₃ and SRRP₅₃₆₀₈ are glycosylated with Hex₂GlcNAc and di-GlcNAc moieties, respectively

To identify the glycans decorating *Lr*SRRPs, SRRP₁₀₀₋₂₃ and SRRP₅₃₆₀₈ were purified from *L. reuteri* culture supernatant by affinity chromatography using an agarose-bound WGA (agWGA) column. The purified proteins migrated at a MW > 300 kDa on SDS-PAGE and were recognized by f-WGA (Figure 1D) on western blot. The purified *Lr*SRRPs were then subjected to reductive β-elimination, and the chemically released glycans permethylated and analyzed by MALDI-ToF. The spectra of SRRP₁₀₀₋₂₃ showed a peak at
738 Da, corresponding to Hex3HexNAc (Figure 3A) and fragmentation of this ion species suggested a linear glycan structure (Figure 3B). The peak at 330 Da corresponds to reduced, permethylated HexNAc, suggesting some degree of heterogeneity in the glycosylation of SRRP100-23 which may also explain the recognition of SRRP100-23 by WGA. Interestingly, the Hex-HexNAc intermediate could not be identified in the sample. As further support of SRRP100-23 glycosylation, SM proteins from L. reuteri 100-23C asp2 and gtfB mutants (Frese et al. 2013) were analyzed by western blot using f-WGA. The WGA-band corresponding to SRRP100-23 was missing in both mutants (Figure 1C) and glycomics analysis of SM proteins from the gtfB mutant showed a loss of the peak at 738 Da compared to the wild-type strain (Supplementary data, Figure S1), further confirming that this modification was due to SecA2/Y2-mediated protein glycosylation. To identify the nature of the monosaccharides constituting SRRP100-23 glycans, the adhesin was treated with α- or β-glucosidase, or α-, β-galactosidase and the reaction product was analyzed by western blot using f-WGA. The results showed that treatment with either α-glucosidase or α-galactosidase led to reduction of the apparent MW of the adhesin after SDS-PAGE (Figure 3C), suggesting that the terminal hexoses could be either Glc or Gal. Further analysis of the monosaccharides in the elution fraction of the agWGA affinity chromatography by GC–MS, following methanolation, N-acetylation and TMS-derivatization of the released methyl-glycosides, showed that Glc and Gal were the only hexoses present, supporting the enzymatic deglycosylation data (Figure 3D). The analysis also showed that GlcNAc was the only HexNAc present. Together these results suggest that SRRP100-23 is modified with GlcNAc and Gal or Gal moieties with GlcNAc being at the reducing end of the glycans.

MALDI-ToF analysis of SRRP53608 glycans revealed a single peak at 575 Da, which corresponds to the mass of a reduced, permethylated sodiated di-HexNAc (Figure 4A). Further fragmentation of this species confirmed the nature of the glycan, as it produced two main peaks at 282 Da and 316 Da, corresponding to a non-reducing and a reducing terminal HexNAc, respectively (Figure 4B). To determine the nature of the glycan residues, the carbohydrate content of purified SRRP53608 was further analyzed by GC–MS. The chromatogram showed a single HexNAc peak with a retention time (~29 min) corresponding to that of GlcNAc (Figure 4C).

Taken together, these data suggest that SRRP100-23 is mainly glycosylated with Hex-Hex-GlcNAc and SRRP53608 with di-GlcNAc moieties. These results are in agreement with the lectin and sugar nucleotide profiling of L. reuteri strains 100-23C and ATCC 53608.

SRRP100-23 and SRRP53608 display different glycosylation pathways

In addition to the SecA2 and SecY2 translocases and the accessory secretion associated proteins Asp1-3, the L. reuteri ATCC 53608 SecA2/Y2 glycosylation system contains genes encoding the priming GtfA53608 and GtfB53608, and a gene encoding GtfC53608 (Figure 5) whereas, in L. reuteri 100-23C, the SecA2/Y2 cluster includes eight genes encoding predicted GTs, including GtfA100-23, GtfB100-23 and GtfC100-23 (Figure 5). Based on homologous SecA2/Y2 clusters in streptococcal and staphylococcal systems, GtfA and GtfB are predicted to act together to initiate glycosylation of SRRPs by the addition of a GlcNAc residue, whereas GtfC is predicted to mediate the second glycosylation step (Zhu et al. 2016; Couvigny et al. 2017; Jiang et al. 2017). Based on the SRRP100-23 and SRRP53608 glycosylation profiles determined above, GtfC53608 and GtfC100-23 are predicted to add a GlcNAc residue or a Hex residue, respectively, to the GlcNAc core, while sharing 97% identity in amino acid sequence (Supplementary data, Figure S2). To confirm the ligand specificity of these enzymes, GtfC53608 and GtfC100-23 were heterologously expressed in E. coli and the recombinant enzymes first analyzed by differential scanning fluorimetry (DSF). Interactions of proteins with their ligands often lead to increased stabilization of the protein, and this is reflected by an increased melting temperature (Tm) (D’Urzo et al. 2012). GtfC53608 showed a UDP-GlcNAc concentration-dependent increase in Tm, from 42°C in the absence of the ligand to 47°C in the presence of 4 mM UDP-GlcNAc (Figure 6A). The specificity of GtfC53608 interaction was further tested against UDP, UDP-Gal and UDP-Glc, showing a concentration-dependent increase in Tm for all ligands tested (Figure 6B) but lower than the interaction with UDP-GlcNAc (Figure 6B, C), indicating a preference of GtfC53608 towards UDP-GlcNAc. GtfC100-23 showed an increase in Tm of up to 3°C in the presence of UDP-Glc, whereas other ligands had a reduced effect at concentrations up to 4 mM (Figure 6D), indicating a preference of GtfC100-23 for UDP-Glc. DSF was also used to investigate the dependency of GtfC53608 and GtfC100-23 to metal ions. The Tm of GtfC53608 was increased by 2.5°C in the presence of 5 mM of the divalent ions (Mg2+, Mn2+, Ca2+) and by 7°C when both the sugar ligand UDP-GlcNAc and metal ions were present (Figure 6E). A smaller shift in Tm (~1°C) was detected when the ions were added to GtfC100-23 in the absence or presence of UDP-Glc (Figure 6F). These results suggest that GtfC53608 and GtfC100-23 have different requirements for divalent ions for optimum binding.

Saturation Transfer Difference (STD) NMR was used to obtain structural insights into the interaction between GtfC53608 or GtfC100-23 and these sugar nucleotides. We obtained binding epitope maps (maps of distribution of STD(%) factors along the molecule) for each ligand tested (UDP, UDP-Gal, UDP-Glc and UDP-GlcNAc), reflecting the main contacts with the surface of the protein in the bound state. For each ligand, the highest STD(%) factors were observed for the uracil and ribose moieties whereas the hexopyranose moieties (Glc, GlcNAc and Gal) showed lower STD(%) factors (Figure 6G–L). In addition, there were differences between the
ligand binding epitopes in complex with GtfC53608 or GtfC100-23. UDP-GlcNAc showed higher STD(%) factors on average in the presence of GtfC53608 (Figure 6J), supporting a preference of this protein for UDP-GlcNAc whereas GtfC100-23 showed a binding preference for UDP-Glc (Figure 6H). UDP-Gal showed only weak interactions with GtfC100-23 or GtfC53608 (Figure 6I, L). STD NMR titrations were carried out to determine the ligand affinity of GtfC53608 and GtfC100-23. Since the stability of the protein samples imposed time constraints on the NMR measurements precluding an STD initial slope titration approach to get thermodynamic values (Angulo et al. 2010), the KD values were considered as apparent. All apparent KD values were in excellent agreement with the epitope mappings of the sugar nucleotides, supporting the preference of GtfC100-23 towards UDP-Glc, despite the lower apparent KD obtained for UDP-Gal. The difference in apparent KD may be due to a conformational rearrangement of GtfC100-23 in the presence of UDP-Glc, reducing the kinetics rate of the association process (on-rate, kON), leading to an underestimation of affinity due to ligand rebinding (Angulo et al. 2010), as was previously reported for the complex of the human blood group B galactosyltransferase and its donor substrate UDP-Gal (Angulo et al. 2006).

Taken together, these results suggest that GtfA/B are involved in GlcNAc attachment to SRRP53608, while GtfC100-23 extends the chain with a GlcNAc residue and GtfC100-23 with Glc.

In vivo glycoengineering of SRR1 domain

To gain further insights into the glycosylation of SRRP53608, a sequence encoding a His-tagged SRR1 region covering aa 81-236 of SRRP53608 was co-expressed in E. coli together with an operon encoding GtfA53608, GtfB53608 and GtfC53608. MS analysis after trypsin
digest of protein bands at 60, 50 and 40 kDa (Supplementary data, Figure S4A), confirmed that these correspond to the successfully expressed GtfA53608, GtfB53608 and GtfC53608, respectively (data not shown). The protein extract was further analyzed by western blot, using f-WGA. A protein migrating between 45 and 60 kDa was detected by f-WGA when GtfA/B/C 53608 and SRR1, were co-expressed, but not in the control experiment expressing SRR1 only (Supplementary data, Figure S4B), suggesting that this protein corresponds to glycosylated SRR1 (gSRR1). The his-tagged gSRR1 was purified by IMAC and subjected to reductive β-elimination. Analysis of the permethylated glycans by MALDI-ToF MS showed a peak at 575 Da (Supplementary data, Figure S5A), consistent with the presence of di-HexNAc species, as seen for the glycans from the native SRRP53608. The assignment of this peak as a di-HexNAc-ol was also supported by fragmentation of the species at 575 Da that showed dominant peaks at 316 and 282 Da (Supplementary data, Figure S5A). Two weak signals at 330 Da and at 534 Da, corresponding to the mass of a permethylated, sodiated HexNAc and Hex-HexNAc-ol, respectively, were also observed (Supplementary data, Figure S5A).

The released, underivatized glycans were analyzed using 2D NMR and DEPT experiments in order to characterize the conformation and linkage of the disaccharide. NMR spectra of α/β-GlcNAc and GlcNAc-ol standards were recorded for comparison with the experimental samples. The NMR analysis of the gSRR1 glycans

Fig. 4. Structural analysis of SRRP53608 glycosylation (A) MALDI-ToF analysis of SRRP$_{53608}$ released glycans. (B) Fragmentation of the 575 Da peak. (C) Monosaccharide composition analysis of SRRP$_{53608}$ glycans. Extracted ion chromatogram for ions at 204 and 173 Da, characteristic for monosaccharides.

Fig. 5. Schematic representation of the accessory SecA2/Y2 clusters from *L. reuteri* 100-23C and ATCC 53608.
Fig. 6. Analysis of GtfC100-23 and GtfC35608 ligand specificity. (A–F) Differential scanning fluorimetry (DSF) analysis. (A) Melt curve of GtfC35608 in the presence of increasing concentrations of UDP-GlcNAc. (B) Tm of GtfC35608 in the presence of increasing concentrations of UDP, UDP-Glc, UDP-Glc and UDP-GlcNAc. Error bars represent the standard error of the mean of four technical replicates. (C) Melt curve of GtfC35608 in the presence of 4 mM UDP-GlcNAc, UDP-Glc, UDP-Gal and UDP. (D) Melt curve of GtfC100-23 in the presence of 4 mM UDP-GlcNAc, UDP-Glc, UDP-Gal and UDP. (E) Melt curves of GtfC35608 in the presence of 5 mM MnCl₂ (left), or 5 mM MnCl₂ and 4 mM UDP-GlcNAc. (F) Melt curves of GtfC100-23 in the presence of 5 mM MnCl₂ (left), or 5 mM MnCl₂ and 4 mM UDP-Glc. Since no significant difference was observed between the different divalent ions, only MnCl₂ is shown. (G–L) Saturation Transfer Difference (STD) NMR analysis. (G), (H), (I) Binding epitope maps for the complexes of GtfC100-23 with UDP-GlcNAc, UDP-Glc and UDP-Gal, respectively. Bottom row, (J), (K), (L) binding epitope maps for the complexes of GtfC35608 with UDP-GlcNAc, UDP-Glc and UDP-Gal, respectively. See also Table I and Figure S2 for the competition assays of the sugar nucleotides against GtfC100-23 and GtfC35608.
confirmed the presence of a di-GlcNAc disaccharide (Table II), in agreement with the MS analysis of gSRR1 and the glycosylation of native SRRP53608. The disaccharide was determined to be β-GlcNAc-(1→6)-GlcNAc-ol (Supplementary data, Figure S5B-C). In addition, the released glycan fraction also revealed the presence of free GlcNAc-ol and the two mixture components were present in the proportions GlcNAc-ol (60%): disaccharide (40%) (Supplementary data, Figure S5B), suggesting that the glycosylation of gSRR1 in E. coli consists of a combination of mono- and di-GlcNAc side chains. A minor doublet was detected at 4.30 ppm, suggesting the presence of a second disaccharide on gSRR1, in agreement with the MALDI-TOF analysis that showed the presence of a Hex-HexNAc-ol. The enzymatically-treated gSRR1 showed reduced apparent size on western blot following detection by β-WGA as compared to non-treated gSRR1 (Supplementary data, Figure S5C).

To determine the configuration of GlcNAc linked to the protein, NMR experiments were carried out on the intact gSRR-1 protein. NMR assignments of the sugar residues in gSRR1 are reported in Table II and details of how the assignments were made are provided in the Supplementary data, Figure S5 captions (Supplementary data, Figure S6). The analysis revealed that GlcNAc was α-linked to gSRR1 and confirmed that both single α-GlcNAc and GlcNAcβ-(1→6)-GlcNAc disaccharide side chains were present. In the 1H spectrum of gSRR1, the anomeric signal of β-GlcNAc appeared as a simple doublet, \(J_{1,2} = 8.6 \text{ Hz} \), at 4.34, but the anomeric signal of α-GlcNAc appeared as a broad feature centered at 6.487. This broad feature consisted of a superposed series of doublets, all with 1H chemical shifts in the range 4.91–4.85 ppm (Supplementary data, Figure S6C). The displacement arises because the sugars are linked to serine or threonine residues that occupy slightly different environments as a result of the protein secondary structure. By integrating the α- and β- 1H anomeric signals (Supplementary data, Figure S6D) it was possible to estimate the proportions of mono- to disaccharide side chains as 64%:36%, in agreement with the result obtained from the released glycans mixture.

Together these data showed that GtfA, GtfB and GtfC can glycosylate gSRR1 in E. coli. Detailed NMR analysis of the intact glycoprotein, as well as the released glycans, showed that gSRR1 is modified with α-linked GlcNAc residues and GlcNAcβ-(1→6) GlcNAc-ol moieties at a ~4:6 ratio with a small fraction of a Hex-GlcNAc species further identified by MS and NMR.

Discussion

Protein glycosylation is emerging as an important feature in bacteria. Protein glycosylation systems have been reported and studied in many pathogenic bacteria, revealing an important diversity of glycan structures and pathways within and between bacterial species.

Table I. Affinity ranking of UDP, UDP-GlcNAc, UDP-Glc and UDP-Gal for GtfC53608 and GtfC100-23 from different 1H STD NMR approaches

Ligands	GtfC53608	GtfC100-23
	\(K_D \) (mM)	Affinity from competition
UDP-Glc	1.8	+
UDP-GlcNAc	0.43	++++
UDP-Gal	1.66	-

Table II. 1H and 13C chemical shifts of reference standards, glycan released from gSRR1 and glycan units present in intact gSRR1

Reference Standards	1	2	3	4	5	6	CH3	C=O
α-GlcNAc H	5.21	3.88	3.78	3.50	3.86	3.86,3.80	2.06	–
α-GlcNAc C	93.70	56.96	73.52	72.91	74.44	63.42	24.77	177.40
β-GlcNAc H	4.72	3.68	3.55	3.47	3.47	3.92,3.76	2.06	–
β-GlcNAc C	97.79	59.54	76.73	72.69	78.81	63.58	25.05	177.65
GlcNAc-ol (R) H	3.64,3.74	4.08	3.97	3.60	3.76	3.66,3.83	2.06	–
GlcNAc-ol (R) C	63.68	56.58	71.14	73.79	73.93	65.62	24.96	177.35

See also Supplementary data, Figure S5 and Table S3 for information on the expression of GtfA, GtfB and GtfC, and glycosylation of gSRR1 and Supplementary data, Figures S5 and S6 for information on the structural characterization of the gSRR1 released and native glycans by NMR. n.d. = not determined.
Studies focused on SRRPs from streptococci and staphylococci have demonstrated that these adhesins are O-glycosylated. In these closely related bacteria, glycosylation of SRRPs is initiated by a complex between GtFA and GtFB that adds GlcNAc to the SRR domains of the adhesins while additional GTs, including GtFC, may further modify SRR glycosylation by sequentially adding other glycan moieties onto the GlcNAc core (Takamatsu et al. 2004; Shi et al. 2014; Zhu et al. 2016; Jiang et al. 2017). Here we showed that the putative L. reuteri is capable of performing O-glycosylation on proteins, and that L. reuteri strains differentially modify SRRPs. SRRP100-23 is glycosylated with GlcNAc and Hex-Glc-GlcNAc whereas SRRP53608 is glycosylated with GlcNAc and di-GlcNAc moieties. L. reuteri GtFA and GtFB are expected to be involved in the addition of the core GlcNAc to serine or threonine, in agreement with the glycan structure of SRRP100-23 and SRRP53608 and with their high sequence homology with other functionally characterized GtFAs (e.g., –46% identity with GtFA from S. pneumoniae TIGR4 (Jiang et al. 2017), E-value < 10^{-10}). In addition to the SecA2/SecY export system dedicated to the glycosylation of SRRPs, a general O-glycosylation system has been reported in L. plantarum WCF51 where homologs of L. reuteri SecA2/Y2 GtFA and GtFB have been shown to be involved in the addition of a single hexNAc molecule onto the glycosylation site of the acceptor proteins (Lee et al. 2014). These two enzymes contain a DUF1975 in the N-terminus which probably mediates the interaction between the two GTs and the target proteins and a GT domain in the C-terminus, as demonstrated for GtFA and GtFB from S. paraspanguinis FW213 (Wu and Wu 2011), suggesting a similar mode of action to the SecA2/Y2-specific GtFA and GtFB.

The glycosylation of SRRP100-23 with Hex-Glc-GlcNAc is in line with the specificity of GtC100-23 to UDP-Glc by DSF and STD NMR. The second Hex (either Gc or Gal) may be the result of another GT present in the L. reuteri 100-23C SecA2/Y2 cluster (see Figure 5). The number of GTs in the L. reuteri 100-23C SecA2/Y2 cluster exceeds the number of sugars on SRRP100-23, as also reported for the pneumococcal SecA2/Y2 system (Jiang et al. 2017). Here the putative GtD100-23 and GtE100-23 encoded genes share a similar organization with a GT4 in the N-terminus and a DUF1792 in the C-terminus. In addition, GtF1100-23 and GtF2100-23 may be part of the same gene separated by a gene encoding a putative transposase, with GtF1100-23 encoding a GT4 domain in the N-terminus and part of a DUF1792 domain in the C-terminus and GtF2100-23 encoding the remaining part of the DUF1792 domain. Glycosyltransferases possessing a DUF1792 has been shown to be involved in the third glycosylation step of the SRRPs, Fap1 and PorP, from S. paraspanguinis FW213 and S. pneumoniae TIGR4, respectively (Zhang et al. 2014; Jiang et al. 2017). While DUF1792 has been shown to expand the Fap1 glycan with Glc moieties in S. paraspanguinis (Zhang et al. 2014), DUF1792 from S. pneumoniae showed a relaxed specificity transferring either Glc or Gal to SRR1 in E. coli (Jiang et al. 2017). As all additional GTs in the L. reuteri 100-23C SecA2/Y2 cluster contain such a domain, it is possible that only one of these enzymes is active or that there is redundancy in their function. Taken together with the SRRP100-23 enzymatic deglycosylation data, it is likely that SRRP100-23 is modified by GtC-Glc-GlcNAc or Gal-Glc-GlcNAc. Interestingly, the Glc-GlcNAc intermediate could not be identified by MALDI-ToF analysis, suggesting that the addition of the third monosaccharide onto the expanding glycan is a rapid reaction, as observed for Fap1 in S. paraspanguinis FW213 (Zhang et al. 2014).

To date, all characterized GtFCs have been shown to add a Glc residue onto the GlcNAc core, therefore the glycosylation of SRRP53608 by di-GlcNAc was unexpected. The specificity of L. reuteri GtC53608 was further supported by DSF and STD NMR analyses, showing a preference for UDP-GlcNAc, in line with the MS/GC-MS analyses. This is therefore the first report of a GtFC from the SecA2/Y2 system showing ligand specificity to UDP-GlcNAc. In addition, we showed that GtC53608 (and GtC100-23 to a lesser extent) bound to divalent ions, suggesting that they may contribute to optimum enzyme activity. Although these enzymes do not possess the DxD motif, commonly involved in ion binding, they harbor a DxE motif that could have a similar role. Such dependency for divalent ions is well established in Leloir GTs, and some examples have recently been reported in prokaryotic systems such as the dGT1-mediated glycosylation of Fap1 in S. paraspanguinis (Zhang et al. 2014). However, no divalent ions have been identified so far in GtFCs from other microorganisms (Zhu et al. 2011).

SRRP53608 glycosylation was further confirmed by the introduction of GtFA/B/C53608 into E. coli, resulting in glycosylation of a co-expressed SRR1 domain by mono- and di-GlcNAc, as shown by MS and NMR. Heterogeneity in the glycosylation of SRRPs has been reported in SRR glycoproteins from Streptococcus species (Chaze et al. 2014; Zhang et al. 2014; Couvigny et al. 2017), where deposition of GlcNAc moieties is not followed by further elongation of the glycan, suggesting this is a common feature among SRRPs. This heterogeneity was also observed in the glycosylation of SRRP100-23 (see Results section) and could explain the recognition of SRRP100-23 by WGA.

The NMR analysis also indicated that SRRP53608 is glycosylated with GlcNAcβ(1→6)-GlcNAc moieties, providing a unique example of SRRP glycans extended with GlcNAc residues in the second position. Although only so far reported for GlcNAc residues that are directly attached onto the protein backbone, it is possible that SRRP53608 contains additional O-acetyl group moieties as previously identified in SRRPs from S. gordonii M99 (Seepersaud et al. 2017), S. agalactiae H36b (Chaze et al. 2014) and S. salivarius JIM8777 (Couvigny et al. 2017). In these Streptococcus SRRPs, Asp2 was found to be responsible for this modification, probably on the O-6 position (Seepersaud et al. 2017). Since L. reuteri SecA2/Y2 clusters harbor a gene encoding a predicted Asp2 with conserved catalytic residues, Asp2 may also carry out this function in L. reuteri. However, since the O-AcGlcNAc modification is lost under the conditions used in our MALDI-ToF or GC-MS analyses (the high pH used for the release of the glycans leads to base-catalyzed ester hydrolysis and thus loss of the modification), more work is required to establish whether Asp2 functions as an acetyltransferase that modifies GlcNAc moieties of SRRP53608. The α-linked configuration we demonstrated here for the first time for an SRRP is in agreement with the retaining mechanism reported for GtFA from S. gordonii (Chen et al. 2016) and S. pneumoniae (Shi et al. 2014).

Interestingly, a small fraction of the gSR1 glycans consisted of Hex-HexNAc moieties, a modification that was not found on the native protein. This suggests that GtFC could mediate the transfer of either Glc or GlcNAc in the E. coli glycosylation model, while showing a preference for GlcNAc in L. reuteri ATCC 53608, in agreement with the enzyme donor specificity and the increased levels of UDP-GlcNAc in L. reuteri ATCC 53608.

In L. reuteri 100-23C, the Δasp2 and ΔgtB mutants lost the WGA band corresponding to SRRP100-23, indicating that, in this strain, Asp2 and GtFB are essential for glycosylation and/or export of SRRP100-23. In S. gordonii, Asp2 is involved in both the post...
translational modification and transport of SRR glycoproteins during their biogenesis (Yen et al. 2011; Seepersaud et al. 2012; Seepersaud et al. 2017). This requirement for the coupling of glycosylation and secretion has been proposed as a mechanism underpinning the co-evolution of SRR glycoproteins with their dedicated accessory SecA2/Y2 system such that the adhesin is optimally modified for binding (Seepersaud et al. 2012).

In conclusion, we showed that LrSRRP adhesins are differentially glycosylated in L. reuteri strains 100-23C and ATCC 53608, reflecting differences in the organization of the SecA2/Y2 accessory cluster of these strains. In addition, LrSRRPs from pig and rodent strains differ with respect to the number of repeat motifs and their sequences of their SRR regions (Sequeira et al. 2018). The glycosylation of SRRPs in Lactobacillus species, as demonstrated for the first time in this study, is likely to impact on the adhesion capacity of these strains. A recent analysis of all available genomes of L. reuteri strains showed that homologs of functional SRRPs (and the corresponding linked SecA2/Y2 gene cluster) were exclusively found in rodent and pig isolates, with the exception of one chicken isolate (Sequeira et al. 2018). Differences in LrSRRP glycosylation profile may therefore contribute to the mechanisms underpinning L. reuteri adaptation to these hosts. In addition, bioinformatics analyses revealed the presence of complete SecA2/Y2 clusters with an intact SRRP in the genomes of other Lactobacillus species including strains from Lactobacillus oris, Lactobacillus salivarius, Lactobacillus johnsonii and Lactobacillus fructivorans (Latousakis and Juge 2018; Sequeira et al. 2018), suggesting a common role of SRR glycoproteins in adhesion to host epithelia, which may be related to the ecological context of these strains (see Duar et al. (2017) for a review). This aspect can be particularly important in the selection of probiotics targeting different vertebrate hosts. Furthermore, knowledge of the cellular pathways of glycosylation in gut symbionts expands the range of glycoengineering applications for the recombinant production of glycoprotein conjugates in different cell types.

Materials and Methods

Materials, strains and culture conditions

Uridine diphosphate (UDP), UDP-glucuronic acid (UDP-GlcA), UDP-N-acetylglucosamine (UDP-GlcNAc), UDP-N-acetylgalactosamine (UDP-GalNAc), UDP-glucose (UDP-Glc), UDP-galactopyranose (UDP-Gal), thymidine diphosphate (TDP-Glc) and all chemical reagents were from ThermoFisher Scientific, Loughborough, UK in 3-Morpholinopropane-1-sulfonic acid (MOPS) or Tris-Acetate (200 mM aqueous ammonium bicarbonate in 50% acetonitrile; ACN) buffer, using an X-cell II blot module (ThermoFisher Scientific, Loughborough, UK) at 30 V for 2 h. The membrane was then blocked for 1 h at RT and probed with either fluorescein (f)-labeled lectins at 5 μg/mL or with anti-SRRP-BR53608 primary antibody (1000-fold dilution). Alkaline phosphatase-conjugated anti-rabbit IgG antibody Merck (Gottingen, Germany) was used as secondary antibody. Three washes with PBS supplemented with 0.1% vol/vol Tween-20 were included between antibody incubations. Bound antibody was detected using alkaline phosphatase substrate (nitroblue tetrazolium 0.1 mM, 5-bromo-4-chloro-indolyl phosphate p-toluidine 1 mM, in Tris-HCl 0.1 M containing 4 mM MgCl₂) at pH 9.6 and scanned in a GS-800 calibrated densitometer (Bio-Rad, UK).

LrSRRP purification

L. reuteri strains were grown in LDM-II overnight at 37°C under static conditions. This culture was used to inoculate fresh LDM-II at 0.2% vol/vol. Following incubation under static conditions at 37°C overnight, the cultures were centrifuged at 4000 × g for 5 min and the spent media (SM) concentrated 10-fold by spin filtration using 10 kDa MWCO spin filters. The SM proteins were analyzed by SDS-PAGE, using Bio-Tris 4–12% or Tris-Acetate 3–8% NuPAGE gels (ThermoFisher Scientific, Loughborough, UK) in 3-Morpholinopropane-1-sulfonic acid (MOPS) or Tris-Acetate NOVEX buffer for 50 min at 200 V. The gels were then stained with InstantBlue protein stain (Expedeon, Over, UK). Alternatively, proteins were transferred onto PVDF membranes in NuPAGE transfer buffer, using an X-cell II blot module (ThermoFisher Scientific, Loughborough, UK) at 30 V for 2 h. The bacteria were removed following centrifugation at 10,000g for 10 min. Ammonium sulfate was added to the SM at a final concentration of 60% (w/v) to precipitate the proteins. The suspension was stirred overnight. The precipitated proteins were recovered by centrifugation at 10,000 × g for 20 min. The proteins were resuspended in HEPES buffer (HEPES 10 mM, NaCl 150 mM, pH 7.5) and LrSRRP purified by gravity flow affinity chromatography, using agarose-bound wheat germ agglutinin (agWGA). Loosely bound proteins were removed with 10 column vol of HEPES buffer and the bound proteins were eluted with six column vol of HEPES buffer containing 0.5 mM GlnAc. The proteins were extensively dialyzed in 50 mM ammonium bicarbonate to remove free GlnAc.

Proteomics

Protein bands of interest were excised from SDS-NuPAGE gels and cut up to small cubic pieces. After two washes with 200 μL of ABC buffer (200 mM aqueous ammonium bicarbonate in 50% acetonitrile; ACN) for 15 min and then ACN for 10 min, the gel plugs were air-dried for 15 min. Proteins were reduced in a DL-dithiothreitol solution (200 μL, 10 mg in 50 mM ammonium bicarbonate) at 60°C for 30 min and carboxymethylated with iodoacetamide (10 mM in 30 mM ammonium bicarbonate) in the dark for an additional 30 min. The iodoacetamide solution was removed and the washing and drying steps were repeated. Trypsin Gold (10 μL, 10 ng/μL; Promega, UK) was added to the gel plugs along with equal amount of 10 mM ammonium bicarbonate. After incubation at 37°C for 3 h, 20 μL of 1% formic acid was added
and the samples were further incubated at a room temperature for 10 min. The solution was then transferred to a clean tube and tryptic peptides were further extracted from the gel plugs by addition of 40 μL of 50% ACN and incubation for 10 min at room temperature. The samples were pooled together and dried on a centrifugal evaporator. The peptide mixtures were analyzed by nano-scale liquid chromatographic tandem mass spectrometry (nLC MS/MS), using an Orbitrap Fusion trihybrid mass spectrometer coupled with a nano flow ultra-high performance liquid chromatography (UHPLC) system (ThermoFischer Scientific, UK). The peptides were separated on a C18 pre-column, using a gradient of 3–40% ACN in 0.1% formic acid (vol/vol) over 50 min at a flow rate of 300 nL/min at 40°C. The peptides were fragmented in the linear ion trap by a data-dependent acquisition method, selecting the 40 most intense ions. Mascot (Matrix Science, UK) was used to analyze the raw data against an in-house maintained database of the L. reuteri and/or E. coli proteome. The tolerance on parent ions was 5 ppm and on fragments was 0.5 Da. Carboxymethylation of cysteine was selected as fixed modification and oxidation of methionine as variable modification. One miscleavage was allowed.

Enzymatic treatment of SRRPs

LrSRRPs was treated with α-glucosidase from Saccharomyces cerevisiae, α-galactosidase from green coffee beans, β-glucosidase from almonds or β-galactosidase from Aspergillus oryzae (0.5 U/μL; Merck, Germany) in 50 mM sodium acetate, 5 mM CaCl2, pH 6 for 16 h. The reaction products were analyzed by SDS-PAGE and western blot, as described above.

Glycan analysis by Matrix Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-ToF)

LrSRRP glycans were released by β-elimination, after treatment of the purified proteins with 1 M NaBH4 in 50 mM NaOH for 16 h at 45°C. Excess of NaBH4 was neutralized by the addition of acetic acid, before sodium ions were removed by ion-exchange chromatography, using a DOWEX 50WX8 H+ column. Glycans were collected in the flow-through and wash fractions using 5% acetic acid. These fractions were pooled and freeze-dried, prior to permethylation of the glycans with 300 μL NaOH – anhydrous dimethylsulfoxide (DMSO) slurry and 400 μL iodomethane. The reaction was incubated at room temperature for 60 min under vigorous shaking and quenched by the dropwise addition of H2O, until fudging stopped. The permethylated glycans were extracted in 2 mL chloroform, washed three times with 2 mL H2O. After drying the organic phase under nitrogen, glycans were dissolved in 50 μL aqueous methanol 50% vol/vol and loaded onto a pre-washed with methanol, acetonitrile and water Empore™ C18-SD cartridge (7 mm; Merck, Germany). Hydrophilic contaminants were washed with 500 μL H2O and 400 μL 15% vol/vol aqueous acetonitrile. Permethylated carbohydrates were eluted with 400 μL of 35%, 50% and 75% vol/vol aqueous ACN. The eluants were dried under a gentle stream of nitrogen, dissolved in 10 μL of TA30 [30% (vol/vol) ACN, 0.1% (vol/vol) trifluoroacetic acid] and mixed with equal amount of 2,5-dihydroxybenzoic acid (DHB; Sigma-Aldrich, UK; 20 mg/mL in TA30), before being spotted onto an MTP 384 polished steel target plate (Bruker, UK). The samples were analyzed by MALDI-ToF, using the Bruker Autoflex™ analyzer mass spectrometer (Bruker, UK) in the positive-ion and reflectron mode.

Monosaccharide analysis by gas chromatography (GC–MS)

LrSRRPs were treated with methanolic HCl (1 M) for 16 h and 5 μg of myo-inositol added as internal standard. Silver carbonate (~50 mg) was added to the solution, followed by 100 μL acetic anhydride and the reactions were incubated at room temperature for 16 h in the dark. Lipids were removed by three washes with heptane and the remaining methanolic phase was dried under a gentle nitrogen flow. Tri-Sil HTP reagent (200 μL) (ThermoFischer Scientific, Loughborough, UK) was added to the dried sample and the reaction was incubated at 80°C for 30 min. The solution was dried under nitrogen and 1 mL of hexane was used to extract sugars by sonication for 15 min. The samples were transferred to clean vials, dried and dissolved in dichloromethane (100 μL) before injection onto the GC–MS. The samples were analyzed on an Agilent 7890B GC–MS system pair with an Agilent 5977A mass spectrometry detector (Agilent, UK), using a BPX70 column (SGE Analytical Science, Australia). Helium was used as the carrier gas. The inlet was maintained at 220°C, 12.9 psi, and 23 mL/min flow. The injection volume was 1 μL in split mode (1:20). The oven temperature increased initially from 100°C to 120°C over 5 min, followed by a second increase from 120°C to 230°C over 40 min.

Cloning, expression and purification of glycosyltransferases

For the production of recombinant GtfC53608, the coding region of gtfC53608 was amplified by PCR from the genomic DNA of L. reuteri ATCC 53608 using 0907-F and 0907-R primers (Table S2) and cloned into a pOPINF vector linearized with KpnI-HF and HindIII-HF, using the In-Fusion HD kit (Clontech, California, USA), following the manufacturer’s instructions. The recombinant vector was used to transform E. coli BL21 (DE3). AIM medium was inoculated with an overnight culture of the recombinant clone at 1%. The fresh culture was incubated at 37°C for 3 h and then 16°C for 48 h. The cells were harvested by centrifugation at 10,000g, resuspended in Tris buffer (Tris-HCl 50 mM, NaCl 150 mM, pH 7.5). The bacteria were lysed by 12 cycles of sonication and soluble, His6-tagged proteins were purified by immobilized metal ion affinity chromatography (IMAC). Bound proteins were eluted with Tris buffer containing 100 mM EDTA, concentrated by spin filtration, using a 10 kDa MWCO Vivaspin® Turbo 15 spin filter (Sartorius, Gottingen, Germany) and buffer-exchanged in Tris buffer using PD10 desalting columns (GE Healthcare Lifesciences, Little Chalfont, UK), following the manufacturer’s instructions. Purified recombinant GtfC53608-23 produced in E. coli was a kind gift from Carl Young (Prozomix, UK).

Glycosylation of SRR1

For the glycosylation of SRR acceptor in E. coli, an artificial gtfCAB53608 operon was cloned into pETCoco™-1 (Merck, Gottingen, Germany). Briefly, primer pairs nss_F and nss_R or gtfA_F and gtfB_R (Table S2) were used together with ATCC 53608 template DNA to generate two PCR products of 1035 bp or 2905 bp, respectively. Next, equimolar amounts of these products were mixed and used as template together with the primers nss_F and gtf_R (Table S2) to generate the final 3915 bp splice PCR product. Subsequently, the Nofl restricted product was cloned into pETCoco™-1 that had been restricted with Sphi, treated with T4-polymerase (New England Biolabs) and subsequently cut with Nofl,
resulting in pETcoco_gtfCAB53608. Partial srr gene was cloned into pET-15b. Briefly, a primer pair dssr_F and dssr_R (Table S2) was used to amplify a 487 bp product encoding the 81-236 aa region of SRRP53608 that corresponds to the first serine-rich repeat region (SRR1) of SRRP53608. Restriction sites incorporated into the primers (Table S2) enabled the restriction with NdeI and BamHI and the subsequent ligation into pET-15b that had been restricted in the same way resulting in pET-15b_srr1. Both pETcoco_gtfCAB53608 and pET-15b_srr1 were then used to transform E. coli BL21 (DE3). Induction of the expression and purification of the His-tagged SRR1 were performed as described above for GtfC53608.

Differential scanning fluorimetry (DSF)

DSF was used to assess glycosyltransferase – sugar donor interactions by measuring changes in the melting temperature (Tm) of the protein upon interaction with sugar nucleotides. The reactions were set up at a final volume of 20 μL in Tris-HCl 50 mM, pH 7.5. Proteins were used at a final concentration of 10 μM and SYPRO Orange (ThermoFischer Scientific, UK), the fluorescent dye used in the assay was used at 5× final concentration. Ligand and ion concentration ranged from 0 to 50 mM. To measure the effect of divalent ions on the protein–ligand interaction, sugar donors were used at 4 mM and divalent ions at 5 mM. The reactions were initially kept at 10°C for 10 min and then the temperature increased in a step-wise manner, with increments of 0.5°C every 15 s, up to 90°C. Measurement of the fluorescence was taken every 15 s on a Real-Time PCR Detection System (Bio-Rad CFX96 Touch™). The results were analyzed using CFX Manager 3.5 (Bio-Rad, UK).

Saturation Transfer Difference (STD) NMR experiments

Proteins were exchanged using an Amicon centrifuge filter unit with a 3 kDa MW cutoff in 20 mM d19,2,2-bis(hydroxymethyl)-2,2′,2′′-nitrotrilriethanol pH 7.4 (uncorrected for the deuterium isotope effect on the pH glass electrode) and 50 mM NaCl. Ligands (UDP, UDP-GlcNAc, UDP-Glc, UDP-Gal) were dissolved in 20 mM d19,2,2-bis(hydroxymethyl)-2,2′,2′′-nitrotrilriethanol pH 7.4, 50 mM NaCl. The final ligand concentration was measured using 4,4′-diaminodiphenyl sulfonic acid as an internal standard of known concentration. The protein concentration in the NMR tube (volume 500 μL) was 28 μM for GtfC100-23 and 21 μM for GtfC53608. Ligands were used in concentrations ranging from 0.3 to 3.5 mM. The STD NMR spectra were performed on a Bruker Avance 500 MHz at 298 K following published methodology (Mayer and Meyer 1999). The on- and off-resonance spectra were acquired using a train of 50 ms Gaussian selective saturation pulses at a fixed saturation time of 2 s (for Kd determination) or variable saturation time from 0.5 s to 4 s (for binding epitope mapping determination). The water signal was suppressed by using the WATERGATE technique as described in Pietto et al. (1992) while the remaining protein resonances were filtered using a T2 filter of 40 ms. The selective on-resonance irradiation was performed at 0.7 ppm while the off-resonance irradiation was performed at 40 ppm. The spectra were performed with a spectral width of 5 KHz and 32768 data points. For determination of apparent Kd, the spectra were collected with either 32 or 64 scans and 8 dummy scans at 2 s saturation time, while for the binding epitope mapping the spectra were collected with 512 scans, 8 dummy scans and a 4 s relaxation delay for all the spectra. For each ligand interacting with GtfC100-23 or GtfC53608, the STD build up curve was obtained and the STD0 parameter (STD factor at time 0) was used to derive the binding epitope. STD0 was obtained by fitting the build-up curve data to the equation $SD_{0} = SD_{\max} \cdot (1-\exp(-k_{sat} \cdot t_{sat}))$ where the STD0 factor is calculated by $SD_{\max} = k_{sat} = STD_{0}$. For each protein STD0 factors were normalized to the highest STD0 within each ligand, and expressed as relative STD(%), so that the binding epitope mappings could be derived.

Sugar nucleotide profiling by liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS)

L. reuteri strains 100-23C and ATCC 53608 were grown in 11 MRS until OD$_{600}$ reached ~1.0, harvested by centrifugation at 10,000×g for 10 min, washed three times in ice-cold PBS, and resuspended in 70% ethanol. UDP-GlcA (1.6 nmol/g wet pellet) was added to the suspension as an internal standard. Cells were then lysed for five cycles of 50 s each using 100 μm long glass beads on a FastPrep™-24 homogenizer (MP Biomedicals, UK). Cells were kept on ice for 2 min between cycles. After centrifugation at 10,000×g for 20 min, the supernatant was recovered and ethanol was evaporated under a stream of nitrogen. The aqueous residue was freeze-dried and contaminating lipids were extracted with butan-1-ol as previously described (Turnock and Ferguson 2007). Sugar nucleotides were dissolved in ammonium bicarbonate 5 mM and extracted using ENVI-Carb cartridges as described in Rabina et al. (2001). The samples were dissolved in 50 μL formic acid (80 mM) brought to pH 9.0 with ammonia (mobile phase A) and analyzed on a surface-conditioned porous graphene carbon (PGC) column (Hypercarb™, 100 × 1 mm, 5 μm; ThermoFischer, Loughborough, UK) with detection by tandem quadrupole mass spectrometer in electrospray ionization mode (ESI–MS/MS) (Pabst et al. 2010), using Xevo TQ-S coupled to an Acquity UPLC (Waters, Elstree, UK), as described previously (Rejzek et al. 2017). Available sugar nucleotide standards (10 μM) were injected (5 μL) to determine retention times. The mass spectrometer was operated in multiple reaction monitoring (MRM) mode. MRM transitions for sugar nucleotide standards were generated using IntelliStart software as described in Rejzek et al. (2017). For generic groups (e.g., UDP-N-acetylhexosamines, UDP-HexNAc) or where authentic standard was not available (UDP-N-acetylMuramic acid, UDP-MurNAc) predicted MRM functions were generated (Turnock and Ferguson 2007) (Supplementary Table S1). MassLynx software (Waters) was used to collect, to analyze and to process data. When needed, co-injection of samples with standards was used to further confirm analyte identification. Analysis of three biological replicates was performed. To ensure reproducible retention times, the Hypercarb PGC column was freshly regenerated before the analysis, as described in Supplemental methods.

Supplementary data

Supplementary data is available at Glycobiology online.

Funding

This work was supported by the Biotechnology and Biological Sciences Research Council (BBSRC) Institute Strategic Programmes for The Gut Health and Food Safety (BB/J004529/1), Gut Microbes and Health (BB/R012490/1) and Understanding and Exploiting Metabolism (BB/J004561/1), the BBSRC grant BB/P010660/1 and the John Innes Foundation. D.L.
acknowledges a PhD studentship with financial support from the Institute of Food Research (IFR)/Quadrum Institute Bioscience (QIR) Extra.

Acknowledgements

We would like to acknowledge Carl Young (Prozomix) for providing GtfC100-25 and Dr. Gerhard Saalbach for assistance with proteomics.

Conflict of interest statement

None declared.

Abbreviations

AST, alanine-serine-threonine; BR, binding region; DSF, differential scanning fluorimetry; GT, glycosyltransferase; IMAC, immobilized metal affinity chromatography; SM, spent media; SRRP, serine-rich repeat protein; STD, saturation transfer difference; UDP, uridine diphosphate.

References

Angulo J,看了一眼2010. Ligand-receptor binding affinities from saturation transfer difference (STD) NMR spectroscopy: The binding isotherm of STD initial growth rates. Chem-Eur J. 16: 7803–7812.

Angulo J, Langgab P, Blume A, Biet T, Mayer B, Krishna NR, Peters H, Palic MM, Peters T. 2006. Blood group B galactosyltransferase: Insights into substrate binding from NMR experiments. J Am Chem Soc. 128: 13529–13538.

Bensing BA, Gibson BW, Sullam PM. 2004. The Streptococcus gordonii gordonii-binding protein GspB undergoes glycosylation independently of export. J Bacteriol. 186:638–645.

Bensing BA, Seepersaud R, Yen YT, Sullam PM. 2014. Selective transport by SecA2: An expanding family of customized motor proteins. Biochim Biophys Acta. 1843:1674–1686.

Chase T, Guillot A, Valot B, Langella O, Chamot-Rooke J, Di Guilmi A-M, Bensing BA, Seepersaud R, Yen YT, Sullam PM. 2014. The evolution of host-specific biofilm formation in a vertebrate gut symbiont Lactobacillus reuteri. PLoS Genet. 10:e100457.

Jiang Y-L, Jin H, Yang H-B, Zhao R-L, Wang S, Chen Y, Zhou C-Z. 2017. Defining the enzymatic pathway for polymorphic O-glycosylation of the pneumococcal serine-rich repeat protein PsrP. J Biol Chem 292: 6213–6224.

Kotarski SF, Savage DC. 1979. Models for study of the specificity by which indigenous lactobacilli adhere to murine gastric epithelia. Infect Immun. 26:966–975.

Latousakis D, Juge N. 2018. How sweet are our gut beneficial bacteria? A focus on glycosylation in Lactobacillus. International Journal of Molecular Sciences. 19:136.

Lee IC, van Swam II, Tomita S, Morsomme P, Rolain T, Hols P, Kleerebezem M, Bron PA. 2014. GtA and GtB are both required for protein O-glycosylation in Lactobacillus plantarum. J Bacteriol. 196:1671–1682.

Li Y, Huang X, Li J, Zeng J, Zhu F, Fan W, Hu L. 2014. Both GtA and GtB are required for SarP glycosylation in Staphylococcus aureus. Curr Microbiol. 69:121–126.

Lizcano A, Sanchez CJ, Orihuela CJ. 2012. A role for glycosylated serine-rich repeat proteins in gram-positive bacterial pathogenesis. Mol Oral Microbiol. 27:257–269.

Mackenzie DA, Jeffers F, Parker ML, Vibert-Vallet A, Bongaerts RJ, Roos S, Walter J, Juge N. 2010. Strain-specific diversity of mucus-binding proteins in the adhesion and aggregation properties of Lactobacillus reuteri. Microbiology (Reading, Engl). 156:3368–3378.

Mayer M, Meyer B. 1999. Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew Chem Int Edit. 38:1784–1788.

Oh PL, Benson AK, Peterson DA, Patil PB, Moryamaha EN, Roos S, Walter J. 2010. Diversification of the gut symbiont Lactobacillus reuteri as a result of host-driven evolution. ISME J. 4:377–387.

Pabst M, Grass J, Fischl R, Leonard R, Jin CS, Hinterkorner G, Borth N, Altmann F. 2010. Nucleotide and nucleotide sugar analysis by liquid chromatography-electrospray ionization-mass spectrometry on surface-conditioned porous graphitic carbon. Anal Chem. 82:9782–9788.

Pietto M, Saudek V, Sklenar V. 1992. Gradient-tailored excitation for single-nucleotide polymerase chain reaction (PCR) amplification of a bacterial adhesion protein. J Bacteriol. 174:661–665.

Rabina J, Maki S, Savilahni EM, Jarvinen N, Penttila L, Renkonen R. 2001. Analysis of nucleotide sugars from cell lysates by ion-pair solid-phase extraction and reversed-phase high-performance liquid chromatography. Glycobiology. 11:879–885.

Rejzek M, Hill L, Hems ES, Kuhauodomlarp S, Wagstaff BA, Field RA. 2017. Profiling of sugar nucleotides. Method Enzymol. 597:209–238.

Rigal NW, Braunstein M. 2008. A new twist on an old pathway — accessory secretion systems. Mol Microbiol. 69:291–302.

Sanchez CJ, Shivshankar P, Stefl K, Trakhtenbroit S, Sullam PM, Sauer K, Hermans PWM, Orihuela CJ. 2010. The pneumococcal serine-rich repeat protein is an intra-species bacterial adhesin that promotes bacterial aggregation in vivo and in biofilms. PLoS Pathog. 6:e1001044.

Schäffer C, Messner P. 2017. Emerging facets of prokaryotic glycosylation. FEMS Microbiol Rev. 41:49–91.

Seepersaud R, Bensing BA, Yen YT, Sullam PM. 2012. The accessory Sec protein Asp2 modulates GlcNAc deposition onto the serine-rich repeat glycoprotein GspB. J Bacteriol. 194:5564–5575.
Seepersaud R, Sychantha D, Bensing BA, Clarke AJ, Sullam PM. 2017. O-acetylation of the serine-rich repeat glycoprotein GspB is coordinated with accessory Sec transport. *PLoS Pathog*. 13:e1006558.

Seo HS, Xiong YQ, Sullam PM. 2013. Role of the serine-rich surface glycoprotein Srr1 of *Streptococcus agalactiae* in the pathogenesis of infective endocarditis. *PLoS One*. 8:e64204.

Sequeira S, Kavanaugh D, MacKenzie DA, Šuligoj T, Walpole S, Leclaire C, Gunning AP, Latousakis D, Willats WGT, Angulo J et al. 2018. Structural basis for the role of serine-rich repeat proteins from *Lactobacillus reuteri* in gut microbe-host interactions. *Proceedings of the National Academy of Sciences*.

Shi W-W, Jiang Y-L, Zhu F, Yang Y-H, Shao Q-Y, Yang H-B, Ren Y-M, Wu H, Chen Y, Zhou C-Z. 2014. Structure of a novel O-linked N-acetyl-D-glucosamine (O-GlcNAc) transferase, GtfA, reveals insights into the glycosylation of pneumococcal serine-rich repeat adhesins. *J Biol Chem*. 289:20898–20907.

Shivshankar P, Sanchez C, Rose LF, Orihuela CJ. 2009. The *Streptococcus pneumoniae* adhesin PsrP binds to Keratin 10 on lung cells. *Mol Microbiol*. 73:663–679.

Siboo IR, Chaffin DO, Rubens CE, Sullam PM. 2008. Characterization of the accessory Sec system of *Staphylococcus aureus*. *J Bacteriol*. 190:6188–6196.

Takamatsu D, Bensing BA, Sullam PM. 2004. Four proteins encoded in the gspB-secY2A2 operon of *Streptococcus gordonii* mediate the intracellular glycosylation of the platelet-binding protein GspB. *J Bacteriol*. 186:7100–7111.

Turnock DC, Ferguson MAJ. 2007. Sugar nucleotide pools of *Trypanosoma brucei*, *Trypanosoma cruzi*, and *Leishmania major*. *Eukaryot Cell*. 6:1450–1463.

Tytgat HLP, de Vos WM. 2016. Sugar coating the envelope: Glycoconjugates for microbe-host crosstalk. *Trends Microbiol*. 24:853–861.

Wagstaff BA, Rezek M, Kuhadomlarp S, Hill L, Mascia I, Nepogodiev SA, Field RA. 2018. Discovery of an RmlC/D fusion protein in the microalga, *Prymnesium parvum*, and implications for NDP-β-L-rhamnose biosynthesis among microalgae. *J Biol Chem*, submitted.

Wegmann U, MacKenzie DA, Zheng J, Goesmann A, Roos S, Swarbreck D, Walter J, Crossman LC, Juge N. 2015. The pan-genome of *Lactobacillus reuteri* strains originating from the pig gastrointestinal tract. *BMC Genomics*. 16:1023.

Wu H, Mintz KP, Ladha M, Fives-Taylor PM. 1998. Isolation and characterization of Fap1, a fimbriae-associated adhesin of *Streptococcus parasanguinis* FW213. *Mol Microbiol*. 28:487–500.

Wu R, Wu H. 2011. A molecular chaperone mediates a two-protein enzyme complex and glycosylation of serine-rich streptococcal adhesins. *J Biol Chem*. 286:34923–34931.

Yen YT, Seepersaud R, Bensing BA, Sullam PM. 2011. Asp2 and Asp3 interact directly with GspB, the export substrate of the *Streptococcus gordonii* accessory Sec System. *J Bacteriol*. 193:3165–3174.

Zhang H, Zhu F, Yang T, Ding L, Zhou M, Li J, Haslam SM, Dell A, Erlandsen H, Wu H. 2014. The highly conserved domain of unknown function 1792 has a distinct glycosyltransferase fold. *Nat Commun*. 5:4339.

Zhou M, Wu H. 2009. Glycosylation and biogenesis of a family of serine-rich bacterial adhesins. *Microbiology (Reading, Engl)*. 155:317–327.

Zhu F, Erlandsen H, Ding L, Li J, Huang Y, Zhou M, Liang X, Ma J, Wu H. 2011. Structural and functional analysis of a new subfamily of glycosyltransferases required for glycosylation of serine-rich streptococcal adhesins. *J Biol Chem*. 286:27048–27057.

Zhu F, Zhang H, Yang T, Haslam SM, Dell A, Wu H. 2016. Engineering and dissecting the glycosylation pathway of a streptococcal serine-rich repeat adhesin. *J Biol Chem*. 291:27354–27363.