Association between the expression of IncRNA BASP-AS1 and volume of right hippocampal tail moderated by episode duration in major depressive disorder: a CAN-BIND 1 report

Antoine Yrondi¹,¹⁴, Laura M. Fiori¹,¹⁴, Nikita Nogovitsyn²,³,⁴, Stefanie Hassel²,³, Jean François Théroux¹, Zahia Aouabed¹, Benicio N. Frey⁶, Raymond W. Lam⁶, Roumen Milev⁷, Daniel J. Müller⁸,⁹, Jane A. Foster⁵, Claudio Soares¹⁰,¹¹, Susan Rotzinger⁸, Stephen C. Strother¹², Glenda M. MacQueen⁴, Stephen R. Arnott¹², Andrew D. Davis¹², Mojdeh Zamyadi¹², Jacqueline Harris¹³, Sidney H. Kennedy⁵,⁸,¹⁰ and Gustavo Turecki⁻¹,¹²

© The Author(s) 2021

The pathophysiology of major depressive disorder (MDD) encompasses an array of changes at molecular and neurobiological levels. As chronic stress promotes neurotoxicity, there are alterations in the expression of genes and gene-regulatory molecules. The hippocampus is particularly sensitive to the effects of stress and its posterior volumes can deliver clinically valuable information about the outcomes of antidepressant treatment. In the present study, we analyzed individuals with MDD (N = 201) and healthy controls (HC = 104), as part of the CAN-BIND-1 study. We used magnetic resonance imaging (MRI) to measure hippocampal volumes, evaluated gene expression with RNA sequencing, and assessed DNA methylation with the (Infinium MethylationEpi Beadchip), in order to investigate the association between hippocampal volume and both RNA expression and DNA methylation.

We identified 60 RNAs which were differentially expressed between groups. Of these, 21 displayed differential methylation, and seven displayed a correlation between methylation and expression. We found a negative association between expression of Brain Abundant Membrane Attached Signal Protein 1 antisense 1 RNA (BASP1-AS1) and right hippocampal tail volume in the MDD group (β = −0.218, p = 0.021). There was a moderating effect of the duration of the current episode on the association between the expression of BASP1-AS1 and right hippocampal tail volume in the MDD group (β = −0.48, 95% C.I. [−0.80, −0.16], t = −2.95 p = 0.004). In conclusion, we found that overexpression of BASP1-AS1 was correlated with DNA methylation, and was negatively associated with right tail hippocampal volume in MDD.

Translational Psychiatry (2021)11:469; https://doi.org/10.1038/s41398-021-01592-4

INTRODUCTION

Major depressive disorder (MDD) is one of the leading causes of morbidity and disability worldwide. With more than 300 million people affected, and a lifetime prevalence of between 16 and 17% in the general population [1], MDD is an increasingly widespread illness [2]. Currently, there are no reliable biological tests or biomarkers to diagnose MDD. Moreover, the pathophysiological mechanisms underlying MDD are poorly understood. However, neuroimaging and biological studies may provide insight into the pathophysiology of depression and potentially aid in the diagnostic process.

Stressful life events can play a role in triggering the onset of an initial Major Depressive Episode (MDE); however, their role in episode onset seems to progressively diminish as the number of episodes increases [3, 4]. Biological changes that mediate the interplay between external stressors and recurrence could be involved in illness progression. One candidate mechanism is structural abnormalities within the hippocampus. This region is known to regulate behavioral and neuroendocrine responses to stress and can be sensitive to excessive exposure to stress-induced release of steroidal and inflammatory signaling molecules [5, 6]. Indeed, the hippocampus seems to be a highly stress-sensitive brain region [7, 8] and MDD is a highly stress-sensitive illness [9]. Moreover, preclinical studies suggest that stress can result in structural changes to the hippocampus [10, 11]. Also, several metaanalyses of magnetic resonance imaging (MRI) data suggest

¹McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada. ²Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. ³Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada. ⁴Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada. ⁵Department of Psychiatry & Behavioural Neurosciences, McMaster University and St Joseph’s Healthcare Hamilton, Hamilton, ON, Canada. ⁶Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada. ⁷Department of Psychiatry at Queen’s University, Kingston, ON, Canada. ⁸Department of Psychiatry, University Health Network, Krembil Research Institute, University of Toronto, Toronto, ON, Canada. ⁹Centre for Addiction and Mental Health, Toronto, ON, Canada. ¹⁰St Michael’s Hospital, Li Ka Shing Knowledge Institute, Centre for Depression and Suicide Studies, Toronto, ON, Canada. ¹¹Department of Psychiatry, Queen’s University, Kingston, ON, Canada. ¹²Rotman Research Institute, Baycrest Health Sciences; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada. ¹³Department of Computer Science, University of Alberta, Edmonton, AB, Canada. ¹⁴These authors contributed equally: Antoine Yrondi, Laura M. Fiori. ¹⁵email: gustavo.turecki@mcgill.ca

Received: 5 July 2021 Revised: 16 August 2021 Accepted: 26 September 2021
Published online: 08 September 2021
that a reduction in hippocampal volume is associated with MDD [12–14], with moderate effect sizes (Cohen’s d range = 2.41–2.47) [14–16]. Most of these studies focused on the whole hippocampus, while only a few have investigated hippocampal subfields [17, 18]. In particular, Malykhiin et al. highlighted a reduction of the hippocampal tail during an MDE [18]. In a recent CAN-BIND report, Nagovitsyn et al. replicated the results published by Maller et al. [19] in a large independent cohort, supporting the notion that pretreatment hippocampal tail (HT) volumetry may have the capacity to predict clinical outcomes of antidepressant treatment in patients with MDD [20]. Studies have also shown that hippocampal volume reduction is associated with both the duration of the current episode and the number of previous episodes [21–24]. However, one meta-analysis indicated that the hippocampal volume reduction was found only for episodes of greater than 2 years duration, and for recurrent MDD [25]. Chronic stress appears to play an important role in the pathological decrease of hippocampal volume through neurotoxic processes, involving hypothalamic-pituitary-adrenal (HPA) axis dysregulation, inflammation, oxidative stress and altered neurotrophic signaling [7, 26, 27].

Several studies have suggested that risk genotypes of candidate genes or psychological stress do not directly modulate clinical symptoms, but regulate brain structure/function through cellular and molecular mechanisms [28]. In animal models, a history of stress exposure can permanently alter both gene expression patterns in the hippocampus and behavioral response to a novel stressor [29]. Moreover, chronic stress may induce various epigenetic changes in multiple signaling pathways, including the HPA axis, brain-derived neurotrophic factor (BDNF) signaling [30], and in different neural structures, such as the hippocampus, with a subsequent effect on their functions [31]. For example, early-life stress is associated with both hypomethylated and hypermethylated promoters in human hippocampal tissue, suggesting that active DNA methylation and demethylation may result from environmental stressors [32]. Labonté et al. suggested that differential methylation associated with early life stress occurs across a number of biological processes [32]. Moreover, epigenetic mechanisms have been involved in the regulation of adult neurogenesis in animal models [33]. Therefore, chronic stress may promote neurotoxicity by activating molecular cascades, which in turn are regulated by molecules such as non-coding RNA (ncRNA) and other RNA species [34, 35]. These molecular cascades could be associated directly or indirectly with brain alterations, mainly in the hippocampus. Therefore, in the current study, we aimed to assess the association between hippocampal tail (HT) volume and RNA expression regulated by epigenetic mechanisms, in a cohort of MDD and healthy participants, who were part of the Canadian Biomarker Integration Network in Depression (CAN-BIND)-1 study.

METHODS AND MATERIALS

Participants

Participants completed a two-phase clinical observational study designed to evaluate biomarkers associated with response to a selective serotonin reuptake inhibitor (SSRI) and subsequently, for non-responders to the SSRI (escitalopram), to a serotonin-dopamine modulator (aripiprazole) [36]. The MDD sample was between the ages of 18 and 60 years, with a Montgomery-Asberg Depression Rating Scale (MADRS) [37] score of 24 or greater, and also consisted of sex- and age-matched healthy controls (HC, n = 104) (see Table 1). Participants were recruited at six academic centers across Canada between August 2013 and December 2016 [36]. The Mini-International Neuropsychiatric Interview (MINI) [38] Version 6.1 was administered to confirm or rule-out MDD status and the presence or absence of other psychiatric comorbidities. Exclusion criteria included a diagnosis of bipolar disorder, and high suicide risk and/or psychosis in the current MDE. Failure to respond after four or more adequate antidepressant trials in the current episode or previous failure to respond to escitalopram or aripiprazole were also exclusion criteria. Importantly, all MDD participants were free from any psychotropic medications and were required to undergo a wash out period of at least five half-lives before entering the study. For a detailed description of inclusion and exclusion criteria, see Table 1 in Lam et al. [39]. All participants provided written informed consent, and ethics approval was obtained at each center. The trial was registered at ClinicalTrials.gov (identifier: NCT01655706).

MRI data acquisition and processing

All details of the CAN-BIND neuroimaging acquisition protocols and procedures for data quality control were published elsewhere [40], but briefly, all sites followed harmonized MRI acquisition protocols performed on 3 T MR scanners located at six different academic institutions. A whole-brain T1-weighted turbo gradient echo sequence was acquired at 1 mm3 resolution. Structural brain images were acquired with the following parameters: repetition time (TR) = 6.4–1900 ms; echo time (TE) = 2.2–3.4 ms; flip angle (θ) = 8–15°; inversion time (TI) = 450–950 ms; field of view (FOV) = 256 mm; matrix dimensions = 220 × 220 and 256 × 256; contiguous slices at 1 mm thickness.

Hippocampal volume measurements were obtained using a subfield-specific segmentation workflow [41] that was integrated as a part of FreeSurfer version 6.0 (http://surfer.nmr.mgh.harvard.edu/). This segmentation workflow generated bilateral total hippocampal volume (THV) as well as 12 additional segmentations for hippocampal subregions including hippocampal tail (HT), subiculum, fissure, presubiculum, parasubiculum, molecular layer (ML), granule cell layer and molecular layer of the dentate gyrus (GC-ML-DG), fimbra, the cornu ammonis (CA) area subdivided into CA1, CA2/3, CA4, and hippocampal amygdala transition area (HATA). For the present analysis, we used neuroimaging data that were generated for a previous CAN-BIND-1 report, which also included a three-step quality control procedure for the hippocampal segmentations [20]. To reduce site scanner effects, following MacQueen et al. (2019), the imaging group made efforts at all phases of data acquisition and management to maintain consistent neuroimaging protocols, centralized data collection and quality assurance. Human and lego phantoms were used and we have reported on the current work relied on the probabilistic algorithm [41] that has already been assessed for the test-retest/scan-rescan reliability considering existing differences between scanner parameters [42]. Third, to control for possible between-site variance in hippocampal volumes we used a backward multiple regression model as described in Nogovitsyn et al. 2020 [20].

Biological assessments

RNA extraction and sequencing. Whole blood for RNA analysis was collected at baseline and filtered using LeukoLOCK filters (Life Technologies). Total RNA was extracted using a modified version of the LeukoLOCK

Table 1. Socio-demographic characteristics of study participants.

	MDD (N = 201)	HC (N = 104)	p value
Age (SD)	35.26 (12.62)	33.10 (10.73)	0.12a
Sex (%)Female	125 (62.2%)	66 (63.5%)	0.83b
MADRS (SD)	29.89 (5.46)	0.85 (1.72)	<0.001a
Ethnicity			
Caucasian	146 (69.5%)	71 (68.2%)	0.43c
Asian	32 (15.9%)	23 (22.1%)	0.18d
Hispanic	10 (5%)	2 (1.9%)	0.19e
Black	16 (8%)	4 (3.8%)	0.16f
Others	2		
No answer			
Duration of current episode-months (SD)	25.79 (33.61)	–	

HC healthy control, MADRS Montgomery Asberg Depression Rating Scale, MDD Major Depressive Disorder, N = number, SD standard deviation.

*Chi-2. **t test.
Total RNA Isolation System protocol, which included DNase treatment to remove genomic DNA. The quality of RNA was assessed using the Agilent 2100 Tapestation, and only samples with RNA Integrity Number (RIN) ≥ 6.0 were used. All libraries were prepared using the Illumina TruSeq mRNA stranded protocol following the manufacturer’s instructions. Samples were sequenced at the McGill University and Genome Quebec Innovation Centre (McGill University and Genome Quebec Innovation Center (GQ)). The Illumina MethylationEPIC Beadchip was used to assess genome-wide DNA methylation (Illumina, US). After accounting for attrition rates, and DNA sample QC was assessed by plotting log median methylated and unmethylated signals at each CpG site, and those that exhibited lower median intensities in either signal channel. Probes with low QC was detected using single value decomposition analysis. Detected and known batch effects reported as

Genome-wide DNA methylation analysis on the Infinium MethylationEPIC Beadchip

DNA was extracted from whole blood samples obtained from healthy controls and MDD participants at baseline, using a modified version of the Qiagen FlexiGene DNA kit as described in Ju et al. [45]. Bisulfite conversion, DNA quality control, genome-wide methylation analysis, and initial methylation signal detection quality control was performed at the McGill University and Genome Quebec Innovation Centre (GQ). The Infinium MethylationEPIC Beadchip was used to assess genome-wide DNA methylation (Illumina, US). After accounting for attrition rates, and DNA sample quality control, pre-processing and analysis of raw microarray data for the remaining samples was conducted within R (version 3.4) predominantly using the Chip Analysis Methylation Pipeline (ChAMP) Biocductor package [46], which utilizes many elements of minfi [47]. Sample methylation signal QC was assessed by plotting log median methylated and unmethylated signals. Samples were removed if they failed to cluster with others or if they exhibited lower median intensities in either signal channel. Probes with low signal detection relative to control probes, probes with <3 beads in >5% of samples, cross reactive probes, non-CpG probes, sex chromosome probes, and probes that hybridize to single nucleotide polymorphism sites were removed. Beta (β) values were calculated as the ratio of methylated signal to the sum of unmethylated and methylated signals at each CpG site, and subsequently normalized. Log2 transformed β values were used for the remainder of pre-processing steps as recommended by Du et al. [48], but reported as β values. Technical batches and covariates were detected using single value decomposition analysis. Detected and known batch effects were corrected for prior to differential methylation analysis. The CpG site annotations are based on the chip manifest (the manifest uses information from the UCSC). CpG sites are annotated to a gene if they are in the body or within 500 bp upstream of the transcription start site (TSS). Technical batches and covariates were detected using single value decomposition analysis. Detected and known batch effects were corrected for prior to differential methylation analysis.

Investigating effects of blood cell heterogeneity

Heterogeneity of white blood cell types has potential confounding effects on DNA methylation measurements based in peripheral blood samples [49]. To address the possibility of confounding effects of blood cell composition, complete blood cell counts were obtained from each patient during the trial. Linear regressions were used to assess effects of cell composition on DNA methylation.

Statistical analysis

Sociodemographic and clinical characteristics are presented using means and standard deviations for continuous variables and frequency distributions for categorical variables. As part of data preparation, all RNA expression values were log2 transformed. The following covariates: sex, age and RIN were used in the general linear model (GLM) implementation of DESeq2 to perform the differential analysis. We focused on RNAs with fold changes greater than 20% between MDD and HC. We used a False Discovery Rate (FDR) threshold of 5% for each multiple comparison. For selected genes, we compared the level of methylation (β values) for each CpG site annotated to that gene using t-tests. We used a FDR threshold of 5% to identify significant CpG sites within each gene region. For each CpG site with significant methylation differences comparing HC and depressed RNA expression and DNA methylation

We identified 60 RNAs which were differentially expressed between groups. Among these, we identified 21 genes that were differentially methylated between groups (Table S1). Seven of these genes displayed both differential methylation between MDD and HC groups and a significant correlation between methylation and expression (Table 2). Expression of two of these genes, Brain Abundant Membrane Attached Signal Protein 1 antisense 1 RNA (BASP1-AS1) and Interleukin 18 Receptor Accessory Protein (IL18RAP), were each associated with three differentially methylated sites, whereas the expression of the remaining five genes [ArfGAP With GTPase Domain, Ankyrin Repeat And PH Domain 1 (AGAP1), Alpha Kinase 1 (ALPK1), Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Delta antisense RNA1 (C1orf200), Membrane Bound O-Acyltransferase Domain Containing 2 (MOBAT2), and Long Intergenic Non-Protein Coding RNA 1270 (LINC01270)] were each associated with one differentially methylated site. BASP1-AS1, C1orf200 and LINC01270 are long non-coding RNAs (lncRNA). We found no effects of blood cell composition on DNA methylation (Table S2).

Association between RNA expression and volume of substructures of the hippocampus

With regards to right hippocampal tail volume, we found a negative association between expression of BASP1-AS1 and right hippocampal tail volume in the MDD group (β = -0.218, p = 0.021) (Fig. 1A). There was a trend for a negative association between right hippocampal tail volume and expression of (i) MBOAT2 (β = -0.171, p = 0.051) and (ii) ALPK1 (β = -0.176, p = 0.051) (Table 3). We did not find any association between the seven identified RNAs and the right hippocampal tail volume in the healthy control group (Table 3). Moreover, the association between expression of BASP1-AS1 and right hippocampal tail volume in the MDD group remained significant when we added clinical features (MADRS and duration of current episode), total brain volume, age and sex as covariates (Table 4).
analysis with age and sex as co-variables suggested a significant moderating effect of the duration of the current episode of MDD on the association between the expression of BASP1-AS1 and right hippocampal tail volume in the MDD group ($\beta = -0.48$, 95% CI. [−0.80, −0.16]. $t = -2.95$ $p = 0.004$). We highlighted that the duration of current episode could influence the association between volume of the right hippocampal tail and BASP1-AS1 in the MDD group. Indeed, the expression of BASP1-AS1 was only influential in reducing right hippocampal tail volume (Fig. 1B) when the current episode was longer than 28 months.

In addition to this, we also examined whether the reported association is exclusive to the right tail of the hippocampus, or if it extends to other subfields of the hippocampus. We found no association between the seven identified RNAs and left hippocampal tail volume in either the MDD nor the healthy control groups (Tables S3, S4). In addition, we did not detect any significant associations between the RNAs and the rest of the subfields of the hippocampus (for details see Table S5).

DISCUSSION

In the present study, we investigated associations between the volumes of hippocampus and RNA expression in patients with MDD. We showed a negative association between the right tail of the hippocampus and the expression of BASP1-AS1 in the MDD group ($\beta = -0.48$, 95% CI. [−0.80, −0.16]). This association was significantly influenced by the duration of the current episode of MDD ($t = -2.95$ $p = 0.004$). We also highlighted that the duration of current episode could influence the association between volume of the right hippocampal tail and BASP1-AS1 in the MDD group. Indeed, the expression of BASP1-AS1 was only influential in reducing right hippocampal tail volume when the current episode was longer than 28 months.

In addition to this, we also examined whether the reported association is exclusive to the right tail of the hippocampus, or if it extends to other subfields of the hippocampus. We found no association between the seven identified RNAs and left hippocampal tail volume in either the MDD nor the healthy control groups (Tables S3, S4). In addition, we did not detect any significant associations between the RNAs and the rest of the subfields of the hippocampus (for details see Table S5).
hippocampal tail volume and BASP1-AS1 expression, which was moderated by the duration of the current episode of MDD. BASP1-AS1 is an antisense IncRNA. IncRNAs are defined as RNA molecules greater than 200 nucleotides in length with low protein-coding potential. They are found throughout the genome and are generally categorized based on their relation to other known genes. IncRNAs are annotated on the basis of their genomic position with respect to the protein-coding genes. According to this classification, IncRNA biotypes broadly fall into two types—genic IncRNA (sense or antisense) and intergenic [52, 53]. IncRNAs may interact with DNA, RNA or protein molecules [54]. They are engaged in diverse structural, functional, and regulatory activities, and have roles in nuclear organization and transcriptional, post-transcriptional, and epigenetic processes [55]. IncRNA transcription is implicated in the regulation of sense protein-coding genes. Indeed, antisense transcription has been ascribed roles in gene regulation involving degradation of the corresponding sense transcripts (RNA interference). It has also been involved in gene silencing at the chromatin level [56]. Although the exact physiological role of BASP1-AS1 in the brain is not fully understood, it could regulate the expression of BASP1. Indeed, a recent study, Prajapati et al. highlighted, in “in vitro” model, that BASP1-AS1 regulates BASP1 in human neural progenitor cells, and has a critical role in neuronal differentiation [57]. It seemed that over-expression of BASP1 in adult neurons promotes sprouting [58] and, more specifically, modulates neurite outgrowth in hippocampal neurons [59]. Moreover, BASP1 is highly expressed in neurons during brain development [59]. In this study, we showed that BASP1-AS1 expression was higher in patients with MDD compared to healthy controls. The negative association between the right hippocampal tail volume and BASP1-AS1 is strongest for episodes that have progressed for more than two years. This negative association could be explained by a negative regulation of expression of BASP1, involved in neurite growth and in neural differentiation. This association could be a biomarker of the duration of the current episode. This finding is of importance to clinical practice because it is known that longer duration of a current episode is associated with non-response and resistance to the treatment [60, 61]. This finding could represent potential treatment targets in future. These data are also consistent with literature highlighting associations between hippocampal plasticity and growth factors [62]. The fact that our associations were only found with the right hippocampal tail because the extant literature has consistently demonstrated that volumetric measures of the posterior hippocampus are strongly associated with the likelihood of clinical improvements following antidepressant treatment [19, 20, 65]. We would like to acknowledge that the results of the present analysis cannot exclude the possibility that the levels of RNA expression (BASP1-AS1) can also be associated with other stress-sensitive brain regions, including the amygdala, hypothalamus or prefrontal cortex.

We found that overexpression of BASP1-AS1 was correlated with DNA methylation, and was negatively associated with right tail hippocampal volume in MDD. This association was moderated by the duration of the current major depressive episode. As well as representing potential diagnostic biomarkers, RNA and methylation sites associated with neuroimaging represent potential treatment targets, as well as possible biomarkers of treatment response. Although these results are promising, they need to be independently replicated and mechanistic follow up studies should be conducted to confirm these hypotheses.

REFERENCES

1. Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry. 2005;62:593–602.
2. WHO Depression. WHO. http://www.who.int/mediacentre/factsheets/fs369/en/.
3. Monroe SM, Harkness KL. Life stress, the ‘kindling’ hypothesis, and the recurrence of depression: considerations from a life stress perspective. Psychol Rev. 2005;112:417–45.
4. Post RM. Transduction of psychosocial stress into the neurobiology of recurrent affective disorder. Am J Psychiatry. 1992;149:999–1010.
5. McEwen BS. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiological Rev. 2007;87:873–904.
6. Treadway MT, Waskom ML, Dillon DG, Holmes AJ, Park M, Chakravarty MM, et al. Illness progression, recent stress, and morphometry of hippocampal subfields and medial prefrontal cortex in major depression. Biol Psychiatry. 2015;77:285–94.
7. Belleau EL, Treadway MT, Pizzagalli DA. The impact of stress and major depressive disorder on hippocampal and medial prefrontal cortex morphology. Biol Psychiatry. 2019;85:443–53.
8. Thomas RM, Hotsenpiller G, Peterson DA. Acute psychosocial stress reduces cell survival in adult hippocampal neurogenesis without altering proliferation. J Neurosci. 2007;27:2734–43.
9. Kessler RC. The effects of stressful life events on depression. Annu Rev Psychol. 1997;48:191–214.
10. Malberg JE, Duman RS. Cell proliferation in adult hippocampus is decreased by inescapable stress: reversal by fluoxetine treatment. Neuropsychopharmacology. 2003;28:1562–71.
11. Pham K, Nacher J, Hof PR, McEwen BS. Repeated restraint stress suppresses neurogenesis and induces biphasic PSA-NCAM expression in the adult rat dentate gyrus. Eur J Neurosci. 2003;17:879–86.
12. Campbell S, Marriott M, Nahmias C, MacQueen GM. Lower hippocampal volume in patients suffering from depression: a meta-analysis. Am J Psychiatry. 2004;161:598–607.
13. Cole J, Costaferda SG, McGuffin P, Fu CYH. Hippocampal atrophy in first episode depression: a meta-analysis of magnetic resonance imaging studies. J Affect Disord. 2011;134:483–7.
14. Kooloosh JCMP, van Haren NEM, Lensvelt-Mulders GJLM, Hulshoff Pol HE, Kahn RS. Brain volume abnormalities in major depressive disorder: a meta-analysis of magnetic resonance imaging studies. Hum Brain Mapp. 2009;30:3719–35.
15. Arnone D, McIntosh AM, Ebmeier KP, Munafò MR, Anderson IM. Magnetic resonance imaging studies in major depressive disorder: contributions of disease and treatment. J Affect Disord. 2011;130:177–85.
16. Koolschijn PCMP, van Haren NEM, Lensvelt-Mulders GJLM, Hulshoff Pol HE, Kahn RS. Brain volume abnormalities in major depressive disorder: a meta-analysis of magnetic resonance imaging studies. Hum Brain Mapp. 2009;30:3719–35.
17. Arnone D, McIntosh AM, Ebmeier KP, Munafò MR, Anderson IM. Magnetic resonance imaging studies in unipolar depression: systematic review and meta-regression analyses. J Affect Disord. 2011;130:177–85.
18. Kempton MJ, Salvador Z, Munafò MR, Geddes JR, Simmons A, Frangou S, et al. Structural neuroimaging studies in major depressive disorder. Meta-analysis and comparison with bipolar disorder. Arch Gen Psychiatry. 2011;68:675–90.
19. Han KM, Won E, Sim Y, Tae WS. Hippocampal subfield analysis in medication-naïve female patients with major depressive disorder. J Affect Disord. 2016;194:21–29.
20. Mal’khin NV, Carter R, Seres P, Coupland NJ. Structural changes in the hippocampus in major depressive disorder: contributions of disease and treatment. J Psychiatry Neurosci. 2010;35:337–43.
21. Maller JJ, Broadhouse K, Rush AJ, Gordon E, Koslow S, Grieve SM. Increased hippocampal tail volume predicts depression status and remission to antidepressant medications in major depression. Mol Psychiatry. 2018;23:1737–44.
22. Napolitovyn, N et al. Hippocampal tail volume as a predictive biomarker of anti-depressant treatment outcomes in patients with major depressive disorder: a CAN-BIND report. Neuropsychopharmacology. (2020). https://doi.org/10.1038/s41386-019-0542-1.
21. Sheline YJ, Sanghavi M, Mintun MA, Gado MH. Depression duration but not age predicts hippocampal volume loss in medically healthy women with recurrent major depression. J Neurosci. 1999;19:5034–43.

22. Sheline YJ, Wang PW, Gado MH, Csernansky JG, Vannier MW. Hippocampal atrophy in recurrent major depression. Proc Natl Acad Sci USA. 1996;93:3908–13.

23. Sheline YJ, Gado MH, Kraemer HC. Untreated depression and hippocampal volume loss. Am J Psychiatry. 2003;160:1516–18.

24. Travis S, Coupland NJ, Silverstone PH, Huang Y, Fujiwara E, Carter R, et al. Dentate gyrus volume and memory performance in major depressive disorder. J Affect Disord. 2015;172:159–64.

25. McKinnon MC, Yezierski R, Nazarov A, MacQueen GM. A meta-analysis examining clinical predictors of hippocampal volume in patients with major depressive disorder. J Psychiatry Neurosci. 2009;34:41–54.

26. Reddy DW, Farrell C, Doolin K, Roman E, Tozzi L, Frodl T, et al. The Hippocampus in depression: more than the sum of its parts? advanced hippocampal substructure segmentation in depression. Biol Psychiatry. 2019;85:487–97.

27. Sheline YI, Liston C, McEwen BS. Parsing the hippocampus in depression: chronic stress, hippocampal volume, and major depressive disorder. Biol Psychiatry. 2019;85:436–8.

28. Pezawas L, Meyer-Lindenberg A. Imaging genetics: progressing by leaps and bounds. Neuroimage. 2010;53:801–3.

29. Joffe R, McIntyre RS, Macdonald K, Joffe R, Kazmi A, Beekman AT, et al. The value of the Hamilton Depression Rating Scale as a proxy for global functioning: a systematic review. J Affect Disord. 2015;172:159–64.

30. Burns SB, Szyfzkowicz JK, Luhehi GN, Lutz PE, Turecki G. Plasticity of the epigenome during early-life stress. Semin Cell Dev Biol 2018;78:1175–82.

31. Tafet GE, Nemeroff CB. The links between stress and depression: psychoneuro- endocrinological, genetic, and environmental interactions. J Neuropsychiatry Clin Neurosci. 2016;28:77–88.

32. Labonté B, Suderman M, Maussion G, Navaro L, Yerko V, Mahar I, et al. Genome-wide methylation and expression analyses reveal functional predictors of response to antidepressants. Transl Psychiatry. 2019;9:254.

33. MacQueen GM, Yucel K, Taylor VH, Macdonald K, Joffe R. Posterior hippocampal lysis: a regression-based approach: (The Guilford Press., New York, 2013).

34. Duman, RS, Deyama, S & Fogaça, MV Role of BDNF in the pathophysiology and treatment of depression: Activity-dependent effects distinguish rapid-acting antidepressants. Eur J Neurosci. (2019). https://doi.org/10.1111/jen.14630.

35. Bennabi D, Aouizerate B, El-Hage W, Doumy O, Moliere F, Courtet P, et al. Risk factors for treatment resistance in unipolar depression: a systematic review. J Affect Disord. 2015;171:137–41.

36. Fortin J-P, Triche TJ, Hansen KD. Preprocessing, normalization and visualization of the Illumina HumanMethylationEPIC array with minfi. Bioinformatics. 2017;33:5588–60.

37. Lou S, Lu JY, Liu L, Yin Y, Chen C, Han X, et al. Divergent IncRNAs regulate gene expression and lineage differentiation in pluripotent cells. Cell Stem Cell. 2016;18:637–52.

38. MacQueen GM, Yucel K, Taylor VH, Macdonald K, Joffe R. Posterior hippocampal lysis: a regression-based approach: (The Guilford Press., New York, 2013).

39. Sheline YI, Wang PW, Gado MH, Csernansky JG, Vannier MW. Hippocampal atrophy in recurrent major depression. Proc Natl Acad Sci USA. 1996;93:3908–13.

40. Joffe R, McIntyre RS, Macdonald K, Joffe R, Kazmi A, Beekman AT, et al. The value of the Hamilton Depression Rating Scale as a proxy for global functioning: a systematic review. J Affect Disord. 2015;172:159–64.

41. Iglesias JE, Augustinack JC, Nguyen K, Player CM, Player A, Wright M, et al. A translational psychiatry and behavior. in Epigenetics and Neuroendocrinology: Clinical Focus on Psy-

42. Bondy DB, Samuel J, Janavs J, Kist M, Salvador A, Sanguineti M, et al. Quantitative DNA methylation analysis of human peripheral blood. Nucleic Acids Res. 2010;38:4350–55.

43. Mattick JS, Rinn JL. Discovery and annotation of long noncoding RNAs. Nat Struct Mol Biol. 2015;22:5–7.

44. McGowan SJ, Haroutunian V, Gado MH, Csernansky JG, Vannier MW. Amygdala volume, oendocrinological, genetic, and environmental interactions. J Neuropsychiatry Clin Neurosci. 2016;28:77–88.

45. Montgomery SA, Asberg M. A new depression scale designed to be sensitive to change. Br J Psychiatry. 1979;134:382–84.
and Servier. Funding and/or in kind support is also provided by the investigators’ universities and academic institutions. All study medications are independently purchased at wholesale market values.

COMPETING INTERESTS
AY: has received speaker honoraria from AstraZeneca, Janssen, Lundbeck, Otsuka, Servier unrelated to this work. BF: has received a research grant from Pfizer. GM: has received consulting fees from Pfizer, Lundbeck, Janssen, Johnson&Johnson; disclosed honoraria for lectures for Lundbeck and Allergen; and has received research funding from the Ontario Brain Institute, Brain Canada, the Hotchkiss Brain Institute and Canadian Institutes of Health Research. RM: has received consulting and speaking honoraria from Allergan, Janssen, KYE, Lundbeck, Otsuka, Pfizer and Sunovion, and research grants from CAN-BIND, CIHR, Janssen, Lallemand, Lundbeck, Nubiyota, OBI, OMHF and Pfizer. SK: has received research funding or honoraria from the following sources: Abbott, Alkermes, Allergan, BMS, Brain Canada, Canadian Institutes for Health Research (CIHR), Janssen, Lundbeck, Lundbeck Institute, Ontario Brain Institute, Ontario Research Fund (ORF), Otsuka, Pfizer, Servier, Sunovion, and Xian-Janssen. LMF, NN, SH, JFT, ZA, RL, DM, JF, CS, SR, SCS, SRA, ADD, MZ, JH, GT: declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41398-021-01592-4.