Matrix Recovery from Rank-One Projection Measurements via Nonconvex Minimization

Peng Li\(^1\) and Wengu Chen\(^2\)

Abstract. In this paper, we consider the matrix recovery from rank-one projection measurements proposed in [Cai and Zhang, Ann. Statist., 43(2015), 102-138], via nonconvex minimization. We establish a sufficient identifiability condition, which can guarantee the exact recovery of low-rank matrix via Schatten-\(p\) minimization \(\min_X \|X\|_{Sp}^p\) for \(0 < p < 1\) under affine constraint, and stable recovery of low-rank matrix under \(\ell_q\) constraint and Dantzig selector constraint. Our condition is also sufficient to guarantee low-rank matrix recovery via least \(q\) minimization \(\min_X \|A(X) - b\|_q^q\) for \(0 < q \leq 1\). And we also extend our result to Gaussian design distribution, and show that any matrix can be stably recovered for rank-one projection from Gaussian distributions via least \(1\) minimization with high probability.

Key Words and Phrases. Low-rank matrix recovery, Rank-one projection, \(\ell_q\)-Restricted uniform boundedness, Schatten-\(p\) minimization, Least \(q\) minimization.

MSC 2010. 62H10, 62H12, 90C26, 94A08

1 Introduction

As is well known to us, a closely related problem to compressed sensing, which was initiated by Candès, Romberg and Tao’s seminal works [16, 17] and Donoho’s groundbreaking work [28], is the low-rank matrix recovery. It aims to recover an unknown low-rank matrix based on its affine transformation

\[
\begin{equation}
\label{eq:11}
b = A(X) + z,
\end{equation}
\]

where \(X \in \mathbb{R}^{m \times n}\) is the decision variable and the linear map \(A : \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^L\), \(z \in \mathbb{R}^L\) is a measurement error and \(b \in \mathbb{R}^L\) is measurements. The linear map \(A\) can be equivalently specified by \(L\) \(m \times n\) measurement matrices \(A_1, \ldots, A_L\) with

\[
\begin{equation}
\label{eq:12}
[A(X)]_j = \langle A_j, X \rangle,
\end{equation}
\]

where the inner product of two matrices of the same dimensions is defined as \(\langle X, Y \rangle = \sum_{i,j} X_{ij} Y_{ij} = \text{trace}(X^T Y)\). Low-rank matrices arise in an incredibly wide range of settings

\(^*\) Corresponding author.

1.P. Li is with Graduate School, China Academy of Engineering Physics, Beijing 100088, China (E-mail: lipeng16@gcaep.ac.cn)

2.W. Chen is with Institute of Applied Physics and Computational Mathematics, Beijing 100088, China (E-mail: chenwg@iapc.ac.cn)
throughout science and applied mathematics. To name just a few examples, we commonly encounter low-rank matrices in contexts as varied as: ensembles of signals [27, 1], system identification [39], adjacency matrices [38], distance matrices [6, 7, 43], machine learning [3, 40, 30], and quantum state tomography [32, 2].

Let \(\|X\|_{S_p} := \|\sigma(X)\|_p = \left(\sum_{j=1}^{\min\{m,n\}} |\sigma_j|^p \right)^{1/p} \) denote the Schatten \(p \)-norm of the matrix \(X \), where \(\sigma(X) = (\sigma_1, \ldots, \sigma_{\min\{m,n\}}) \) is the vector of singular values of the matrix \(X \) and \(\sigma_j \) denote the \(j \)-th largest singular value of \(X \). We should point out that \(\|X\|_{S_1} = \|X\|_* \) the nuclear norm, \(\|X\|_{S_2} = \|X\|_F \) the Frobenius norm and \(\|X\|_{S_{\infty}} = \|X\| \) the operator norm. In 2010, Recht, Fazel and Parrilo [42] generalized the restricted isometry property (RIP) in [19, 28] from vectors to matrices and showed that if certain restricted isometry property holds for the linear transformation \(A \), then the low-rank solution can be recovered by solving the the nuclear norm minimization problem

\[
\min_X \|X\|_* \quad \text{subject to} \quad A(X) = b.
\]

Later, the low-rank matrix recovery problem has been studied by many scholars, readers can refer to [26, 11, 12, 52] under matrix restricted isometry property, and [31, 33] under rank null space property.

In this paper, we consider one matrix recovery model with additional structural assumption—the rank-one projection (ROP), which introduced by Cai and Zhang [12]. Under the ROP model, we observe

\[
b_j = (\beta^j)^T X \gamma^j + z_j, \quad j = 1, \ldots, L,
\]

where \(\beta^j \) and \(\gamma^j \) are random vectors with entries independently drawn from some distribution \(P \), \(z_j \) are random errors. In view of the linear map in \((1.2)\), it can be rewrite as

\[
b_j = [A(X)]_j + z_j = \langle \beta^j(\gamma^j)^T, X \rangle + z_j, \quad j = 1, \ldots, L,
\]

i.e. \(A_j = \beta^j(\gamma^j)^T \) for \(j = 1, \ldots, L \). For this model, Cai and Zhang proposed a constrained nuclear norm minimization method, which can be stated as follows

\[
\min_X \|X\|_{S_1} \quad \text{subject to} \quad A(X) = b.
\]

In the noiseless case, they took \(B = \{0\} \), i.e.,

\[
\min_X \|X\|_{S_1} \quad \text{subject to} \quad A(X) = b.
\]

And in the noisy case, they took \(B = B^{\ell_1}(\eta_1) \cap B^{D_2}(\eta_2) \), i.e.,

\[
\min_X \|X\|_{S_1} \quad \text{subject to} \quad \|b - A(X)\|_1 / L \leq \eta_1, \quad \|A^*(b - A(X))\|_{S_{\infty}} \leq \eta_2.
\]

However, the matrix RIP framework is not well suited for the ROP model and would lead to suboptimal results. Cai and Zhang [12] introduced the restricted uniform boundedness (RUB) condition (see Definition 2.1), which can guarantee the exact recovery of low-rank matrices in the noiseless case and stable recovery in the noisy case through the
constrained nuclear norm minimization. They also showed that the RUB condition are satisfied by sub-Gaussian random linear maps with high probability.

The ROP model can be further simplified by taking $\beta_j = \gamma_j$ if the low-rank matrix X is known to be symmetric. This can be found in many problem, for example, low-dimensional Euclidean embedding \cite{46, 42}, phase retrieval \cite{13, 21, 14, 36} and covariance matrix estimation \cite{9, 10, 25}. In this case, the ROP design can be simplified to symmetric rank-one projections (SROP)

$$b_j = \langle \beta_j (\beta_j)^T, X \rangle + z_j, \quad j = 1, \ldots, L. \quad (1.8)$$

Unfortunately, the original sampling operator A does not satisfy RUB. This occurs primarily because each measurement matrix A_i has non-zero mean, which biases the output measurements. In order to get rid of this undesired bias effect, Cai and Zhang \cite{12} (see also \cite{25}) introduced a set of “debiased” auxiliary measurement matrices as follows

$$\tilde{A}_j = A_{2j-1} - A_{2j}, \quad j = 1, \ldots, \left\lfloor \frac{L}{2} \right\rfloor.$$ (1.9)

By this notation, we can define a linear map $\tilde{A} : S^m \rightarrow \mathbb{R}^{\lfloor L/2 \rfloor}$ by

$$\tilde{b}_j = [\tilde{A}(X)]_j + \tilde{z}_j = \langle \tilde{A}_j, X \rangle + \tilde{z}_j,$$

where $\tilde{b}_j = b_{2j-1} - b_{2j}$, $\tilde{z}_j = z_{2j-1} - z_{2j}$ and S^m denotes the set of all $m \times m$ symmetric matrices. Owing to $A(X) = b$ implying $\tilde{A}(X) = b$, they still considered (1.6) in noiseless case. And note that $\|\tilde{b} - \tilde{A}(X)\|_1 \leq \|b - A(X)\|_1$, therefore they consider

$$\min_X \|X\|_{S_1} \text{ subject to } \|b - A(X)\|_1 / L \leq \eta_1, \quad \|\tilde{A}^*(\tilde{b} - \tilde{A}(X))\|_{S_{\infty}} \leq \eta_2. \quad (1.10)$$

In this paper, we introduce ℓ_p-RUB condition, which is a natural generalization of RUB condition. And we consider Schatten-p minimization

$$\min_X \|X\|_{S_p}^p \text{ subject to } b - A(X) \in B, \quad (1.11)$$

for ROP model (1.4), where B is a set determined by the noise structure and $0 < p \leq 1$. We consider two types of bounded noises $\cite{8}$. One is l_q bounded noises $\cite{29}$, i.e.,

$$B^{l_q}(\eta_1) = \{z : \|z\|_q / L \leq \eta_1\} \quad (1.12)$$

for some constant η_1; and the other is motivated by Dantzig Selector procedure $\cite{20}$, where

$$B^{DS}(\eta_2) = \{z : \|A^*(z)\|_{S_{\infty}} \leq \eta_2\} \quad (1.13)$$

for some constant η_2. In particular, $B = \{0\}$ in noiseless case.

And if A is a symmetric rank-one projection, we use

$$\min_X \|X\|_{S_p}^p \text{ subject to } \tilde{b} - \tilde{A}(X) \in B. \quad (1.14)$$

instead of (1.11).
In the noisy case, we also consider the simpler least q-minimization problem
\begin{equation}
\min_{X \in \mathbb{R}^{m \times n}} \| A(X) - b \|_q^q
\end{equation}
which may work equally well or even better than Schatten p minimization problem (1.11) in terms of recovery under certain natural conditions. Apart from simplicity and computational efficiency (see [35, 45] for $q = 2$, [37] for $q = 1$), it has the additional advantage that no estimate η of the noise level is required. It was proposed by Candès and Li [14] for $q = 1$, which is used to solve PhaseLift problem [13, 21]. They constructed the dual certificate condition to solve this problem. Later, Kabanava, Kueng, Ravuhut et.al. [33] considered it for $q \geq 1$ for density operators under robust rank null space property. We should point out that when $q = 1$, least q-minimization problem in vector case is just the least absolute deviation introduced in [5]. Moreover works about the least absolute deviation, readers can see [41, 48, 49, 47].

In this paper, we consider the recovery of the matrix $X \in \mathbb{R}^{m \times n}$ possessing some density, i.e. $\left(\text{tr} \left((X^T X)^{p/2} \right) \right)^{1/p} = 1$, via nonconvex least q minimization. And our method can be written as
\begin{equation}
\min_{X \in \mathbb{R}^{m \times n}} \| A(X) - b \|_q^q \quad \text{subject to} \quad \left(\text{tr} \left((X^T X)^{p/2} \right) \right)^{1/p} = 1,
\end{equation}
where $0 < p \leq q \leq 1$. And if A is a symmetric rank-one projection, we use
\begin{equation}
\min_{X \in \mathbb{R}^m} \| \tilde{A}(X) - \tilde{b} \|_q^q \quad \text{subject to} \quad \left(\text{tr} \left(X^p \right) \right)^{1/p} = 1
\end{equation}
instead of (1.16).

The contribution of the present work can be summarized as follows.

1. We introduce the ℓ_q-RUB for $0 < q \leq 1$, which includes the RUB condition in [12].

2. A uniform and stable ℓ_q-RUB condition for low-rank matrices' recovery, via Schatten-p minimization ($0 < p < 1$), is given for ROP model. And our condition is also sufficient for SROP model.

3. We obtain that the robust rank null space property of order r can be deduced from the ℓ_q RUB of order $(k + 1)r$ for some $k > 1$.

4. A stable ℓ_q-RUB condition for low-rank matrices’ recovery, via least-q minimization ($0 < q \leq 1$), is also given for ROP model.

5. With high probability, ROP with $L \geq Cr(m + n)$ random projections from Gaussian distribution is sufficient to ensure stable and robust recovery of all rank-r matrices via least absolute deviation estimator.

Throughout the article, we use the following basic notations. We denote \mathbb{Z}_+ by positive integer set. For any random variable x, we use $\mathbb{E}x$ denote the expectation of x. For any vector $x \in \mathbb{R}^L$ and index set $S \subseteq \{1, \ldots, L\}$, let x_S be the vector equal to x on S and to zero on S^c. And we denote I_L by $L \times L$ identity matrix. For any matrix $X \in \mathbb{R}^{m \times n}$, we denote $X_{\text{max}(r)}$ as the best rank-r approximation of X, and $X_{\text{max}(r)} = X - X_{\text{max}(r)}$ as the error of the best rank-r approximation of X. We use the phrase “rank-r matrices” to refer to matrices of rank at most r.
2 Recovery via Schatten-p Minimization

In this section, we introduce ℓ_q-RUB condition for $0 < q \leq 1$ and consider the recovery of matrices through Schatten-p minimization (1.11). We show that the ℓ_q-RUB condition of order $(k+1)r$ for any $k > 1$ such that $kr \in \mathbb{Z}_+$, with constants C_1, C_2 satisfies $C_2/C_1 < k^{(1/p-1/2)q}$ for $0 < p \leq q \leq 1$ is sufficient to guarantee the exact and and Stable recovery of all rank-r matrices.

2.1 ℓ_q-RUB and Some Auxiliary Lemmas

In this subsection, we will introduce ℓ_q-RUB condition for $0 < q \leq 1$ and give some auxiliary lemmas. Firstly, we introduce ℓ_q-RUB condition, which is a natural generalization of RUB in [12].

Definition 2.1. (ℓ_q-Restricted Uniform Boundedness) For a linear map $A : \mathbb{R}^{m \times n} \to \mathbb{R}^L$, a positive integer r and $0 < q \leq 1$, if there exist uniform constants C_1 and C_2 such that for all nonzero rank-r matrices $X \in \mathbb{R}^{m \times n}$

\[
C_1 \|X\|_q S_q \leq \|A(X)\|_q S_q \leq C_2 \|X\|_q S_q,
\]

we say that linear map A satisfies ℓ_q-Restricted Uniform Boundedness (ℓ_q-RUB) condition of order r with constants C_1 and C_2.

Remark 2.2. (RIP-ℓ_2/ℓ_q for low-rank matrices) If we take $C_1 = 1 - \delta_{rl}^b$ and $C_2 = 1 + \delta_{ru}^r$, then (2.1) becomes

\[
(1 - \delta_{rl}^b) \|X\|_q S_q \leq \frac{1}{L} \|A(X)\|_q S_q \leq (1 + \delta_{ru}^r) \|X\|_q S_q.
\]

And we call that the linear map A satisfies RIP-ℓ_2/ℓ_q of order r with constants δ_{rl}^b and δ_{ru}^r. Especially, when $q = 1$, it is the RIP-ℓ_2/ℓ_1 for low-rank matrices introduced in [25]. When $\delta_{rl}^b = \delta_{ru}^r$, it is the restricted q-isometry property introduced in [51].

Then we will give some auxiliary lemmas.

The first lemma give out the condition guaranteeing the additivity of Schatten-p norm, which comes from [42, Lemma 2.3] for $q = 1$, and [34, Lemma 2.2] and [51, Lemma 2.1] for $0 < q < 1$.

Lemma 2.3. Let $0 < q \leq 1$. Let $X, Y \in \mathbb{R}^{m \times n}$ be matrices with $X^T Y = O$ and $X Y^T = O$, then the following holds:

1. $\|X + Y\|_q S_q \geq \|X\|_q S_q + \|Y\|_q S_q$;

2. $\|X + Y\|_q S_q \geq \|X\|_q S_q + \|Y\|_q S_q$.

And the second one, which comes from [24, Lemma 2.6], is the cone constraint for matrix’s Schatten-p norm.
Lemma 2.4. Suppose $X, \hat{X} \in \mathbb{R}^{m \times n}$, $R = \hat{X} - X$. If $\|\hat{X}\|_{S_p}^p \leq \|X\|_{S_p}^p$, then we have

$$\|R_{\max(r)}\|_{S_p}^p \leq 2\|X_{\max(r)}\|_{S_p}^p + \|R_{\max(r)}\|_{S_p}^p.$$

In order to estimate the Schatten-2 norm of $(\hat{X} - X)_{\max(r)}$ for the stable recovery, we also need the following lemma, which is inspired by [12, Lemma 7.8].

Lemma 2.5. Let

$$f(t) = t^{(2-p)/p}(c - kt),$$

where c is a positive constant independent of t. Then we have

$$f(t) \leq \frac{p}{2} \left(\frac{2 - p}{2k} \right)^{(2-p)/p} c^{2/p}, \quad t > 0.$$

Proof. By taking derivation of $f(t)$, we have

$$f'(t) = -\frac{1}{p} t^{(2-2p)/p} (2kt - (2 - p)c).$$

Therefore

$$f(t) \leq f \left(\frac{(2 - p)}{2k} c \right) = \frac{p}{2} \left(\frac{2 - p}{2k} \right)^{(2-p)/p} c^{2/p}.$$

\[\square\]

2.2 Exact Recovery via via Schatten-p Minimization

In this subsection, we will consider the exact recovery under ℓ_q-RUB condition.

Theorem 2.6. Let r be any positive integer, and $k > 1$ such that kr be positive integer. Suppose that A satisfies ℓ_q-RUB of order $(k+1)r$ with $C_k/C_1 < k^{(1/p - 1/2)q}$ for any $0 < p \leq q \leq 1$, then the Schatten-p minimization (1.11) exact recovers all rank-r matrices. That is, for all rank-r matrices X with $b = A(X)$, we have $\hat{X} = X$, where \hat{X} is the solution of (1.11) with $B = \{0\}$.

Before proving Theorems 2.6, let us first state the well known matrix null space property, which lies in the heart of the proof of this main result.

Lemma 2.7. ([50]) All rank-r matrices $X \in \mathbb{R}^{m \times n}$ with $b = A(X) \in \mathbb{R}^L$ can be exactly recovered by solving problem (1.11) with $B = \{0\}$ if and only if

$$\|R_{\max(r)}\|_{S_p}^p < \|R_{\max(r)}\|_{S_p}^p$$

holds for all $R \in \mathcal{N}(A) \backslash \{O\}$, where O is $m \times n$ zero matrix.
Proof of Theorem 2.6. Our proof follows the idea of [23, Theorem 2.4]. By Lemma 2.7, we only need to show that for all matrices $R \in \mathcal{N}(A) \setminus \{O\}$, one has $\|R_{\max(r)}\|_{S_p}^{p} < \|R_{\max(r)}\|_{S_p}^{p}$. Assume there exists a nonzero matrix R with

\begin{equation}
A(R) = 0
\end{equation}

and

\begin{equation}
\|R_{-\max(r)}\|_{S_p}^{p} \leq \|R_{\max(r)}\|_{S_p}^{p}.
\end{equation}

We denote $l = \min\{m, n\}$ and assume that the singular value decomposition of R is

$$
R = U\Sigma V^T = U\text{diag}(\sigma)V^T,
$$

where $\sigma = (\sigma_1, \ldots, \sigma_l)$ is the singular vector with $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_l \geq 0$. Without loss of generality, we assume that $(k + 1)r \leq l$, otherwise we set the undefined entries of σ as 0.

Let $\text{supp}(\sigma_{\max(r)}) = \{1, \ldots, r\} =: T_0$. We partition $T_0^c = \{r + 1, \ldots, l\}$ as

$$
T_0^c = \bigcup_{j=1}^J T_j,
$$

where T_1 is the index set of the s largest entries of $\sigma_{-\max(r)}$, T_2 is the index set of the next s largest entries of $\sigma_{-\max(r)}$, and so on. Here, $s \in \mathbb{Z}_+$ is to be determined. The last index set T_J may contain less s elements. Then for $j \geq 2$, we have $|\sigma_i|^p \leq |\sigma_{T_{j-1}}|^p/s$ for any $i \in T_j$. Therefore

$$
\|\sigma_{T_j}\|^2_2 = \sum_{i \in T_j} |\sigma_i|^2 \leq \sum_{i \in T_j} \left(\frac{\|\sigma_{T_{j-1}}\|^p_s}{s}\right)^{2/p} \leq \frac{\|\sigma_{T_{j-1}}\|^2_p}{s^{2/p-1}},
$$

so that

\begin{equation}
\sum_{j \geq 2} \|\sigma_{T_j}\|^q = \sum_{j \geq 2} \left(\frac{\|\sigma_{T_j}\|^2_2}{q/2}\right)^{q/2} \leq \sum_{j \geq 2} \left(\frac{\|\sigma_{T_{j-1}}\|^2_p}{s^{2/p-1}}\right)^{q/2} = \frac{1}{(s^{1/p-1/2})^q} \sum_{j \geq 2} \left(\frac{\|\sigma_{T_{j-1}}\|^p_p}{q/p}\right)^{q/p} \leq \frac{1}{(s^{1/p-1/2})^q} \left(\sum_{j \geq 2} \|\sigma_{T_{j-1}}\|^p_p\right)^{q/p} = \frac{1}{(s^{1/p-1/2})^q} \left(\|\sigma_{-\max(r)}\|^p_p\right)^{q/p},
\end{equation}

where the second line follows from $q/p \geq 1$.

Let $T_{01} = T_0 \cup T_1$, we consider the following identity

\begin{equation}
\|A(R)\|^q_q = \left\|A(R_{T_{01}}) + \sum_{j \geq 2} A(R_{T_j})\right\|^q_q,
\end{equation}

where

$$
R_{T_j} = U\text{diag}(\sigma_{T_j})V^T, \ \forall j = 0, 1, \ldots
$$

First, we give out a lower bound for (2.5). Note that $\text{rank}(R_{T_{01}}) \leq r + s$ and $|T_j| \leq s$. By the $r + s$ order ℓ_q-RUB condition, we have

$$
\|A(R)\|^q_q \geq \|A(R_{T_{01}})\|^q_q - \sum_{j \geq 2} \|A(R_{T_j})\|^q_q.
$$
\[\begin{align*}
&\geq C_1 L \| R_{T_01} \|_{S_2}^q - \sum_{j \geq 2} C_2 L \| R_{T_j} \|_{S_2}^q = C_1 L \| R_{T_01} \|_{S_2}^q - C_2 L \sum_{j \geq 2} \| \sigma_{T_j} \|_2^q \\
&\geq C_1 L \| R_{T_01} \|_{S_2}^q - \frac{C_2 L}{(s^{1/p-1/2})^q} (\| \sigma_{\max(r)} \|_p^q)^{q/p},
\end{align*} \]

(2.6)

where the last inequality follows from (2.4). Then by (2.3), we get a lower bound of \(\| A(R) \|_q \) as follows

\[\| A(R) \|_q \geq C_1 L \| R_{T_01} \|_{S_2}^q - \frac{C_2 L}{(s^{1/p-1/2})^q} (\| \sigma_{\max(r)} \|_p^q)^{q/p} \]

\[\geq C_1 L \| R_{T_01} \|_{S_2}^q - C_2 L \left(\frac{r}{s} \right)^{(1/p-1/2)q} \| \sigma_{\max(r)} \|_2^q \]

\[= C_1 L \| R_{T_01} \|_{S_2}^q - C_2 L \left(\frac{r}{s} \right)^{(1/p-1/2)q} \| R_{\max(r)} \|_{S_2}^q \]

(2.7)

We also need an upper bound of \(\| A(R) \|_q \). Using (2.2), we have

(2.8)

\[\| A(R) \|_q = 0. \]

Combining the lower bound (2.7) with the upper bound (2.8), we get

(2.9)

\[L \left(C_1 - C_2 \left(\frac{r}{s} \right)^{(1/p-1/2)q} \right) \| R_{T_01} \|_{S_2}^q \leq 0. \]

Taking \(s = kr \) for \(k > 1 \) with \(kr \in \mathbb{Z}_+ \). Note that

\[\frac{C_2}{C_1} < \left(\frac{s}{r} \right)^{(1/p-1/2)q} = k^{(1/p-1/2)q}. \]

Then (2.9) implies that

\[\| R_{\max(r)} \|_{S_p} \leq r^{1/p-1/2} \| R_{\max(r)} \|_{S_2} \leq r^{1/p-1/2} \| R_{T_01} \|_{S_2} \leq 0. \]

However, (2.2) implies that

(2.10)

\[0 \leq \| R_{\max(r)} \|_{S_p} \leq \| R_{\max(r)} \|_{S_p}, \]

which is a contradiction. \(\square \)

As a direct consequence of Theorem 2.6, we have following two corollaries.

Corollary 2.8. Let \(r \) be any positive integer, and \(k > 1 \) such that \(kr \) be positive integer. Suppose that \(\hat{A} \) satisfies \(\ell_q \) RUB of order \((k+1)r\) with \(C_2/C_1 < k^{(1/p-1/2)q} \) for any \(0 < p \leq q \leq 1 \), then the Schatten-\(p \) minimization (1.14) exact recovers all symmetric rank-\(r \) matrices. That is, for all symmetric rank-\(r \) matrices \(X \) with \(\hat{b} = \hat{A}(X) \), we have \(\hat{X} = X \), where \(\hat{X} \) is the solution of (1.14) with \(B = \{0\} \).
Corollary 2.9. Let $\tau > 1$ and $s = \lceil \tau \frac{2p}{(2-p)q} \rceil$. Suppose that A satisfies RIP-ℓ_2/ℓ_q of order $s + r$ with

$$\delta_{s+r}^{\text{sup}} + \tau \delta_r^{\text{lb}} < \tau - 1$$

for any $0 < p \leq q \leq 1$, then the Schatten-p minimization (1.11) recovers all rank-r matrices. That is, for all rank-r matrices X with $b = A(X)$, we have $\tilde{X} = X$, where \tilde{X} is the solution of (1.11) with $B = \{0\}$.

However, our results may not be optimal and can be improved further.

Remark 2.10. We emphasize that our $(k+1)r$ order ℓ_q-RUB condition for $q = 1$ is a litter stronger than the condition kr order RUB condition in [12]. We note that in [12], Cai and Zhang used a sparse representation of a polytope in ℓ_1 norm (see [11, Lemma 1.1]), which provide a more refined analysis. And Zhang and Li [53, Lemma 2.1] gave out a similar sparse representation in ℓ_p norm for $0 < p \leq 1$. However this sparse representation cannot be direct used in our model (1.11). Therefore, we don’t know whether or not it is possible to reduce this $(k+1)r$ order ℓ_q-RUB condition to kr order for $k > 1$ with $kr \in \mathbb{Z}_+$.

2.3 Stable Recovery via Schatten-p Minimization

In this subsection, we consider the stable recovery. We show that the ℓ_q-RUB condition of order $(k+1)r$ with constants C_1, C_2 satisfies $C_2/C_1 < k^{(1/p-1/2)q}$ is also sufficient to guarantee the stable recovery of all rank-r matrices via the noisy measurements.

Theorem 2.11. Let r be any positive integer and $0 < p \leq q \leq 1$. Let \tilde{X}^{ℓ_q} be the solution of the Schatten-p minimization (1.11) with $B = B^{\ell_q}(\eta_1) \cap B^{DS}(\eta_2)$.

1. For any rank-r X, let $k > 1$ with kr be positive integer, and A satisfies ℓ_q-RUB of order $(k+1)r$ with $C_2/C_1 < k^{(1/p-1/2)q}$, then

$$\|\tilde{X} - X\|_S^q \leq \left(\frac{1}{k} \right)^{(1/p-1/2)q} + 1 \frac{1}{\rho_1 L^q} \min \left\{ \frac{2}{L^{1-2q} \eta_1^q}, \frac{2q/p+q}{\rho_1} r^{(1/p-1/2)q} \eta_2^q \right\},$$

where $\rho_1 = C_1 - C_2 (1/k)^{(1/p-1/2)q}$.

2. And for more general matrix X, let $k > 2^q/p$ with kr be positive integer, and A satisfies ℓ_q-RUB of order $(k+1)r$ with $C_2/C_1 < 2^{1-q/p} k^{(1/p-1/2)q}$, then

$$\|\tilde{X} - X\|_S^q \leq \left(\frac{C_2 2^{2q/p-1}}{\rho_2} \left(\frac{1}{k} \right)^{(1/p-1/2)q} + 1 \right) \left(2^{2q/p-1} \left(\frac{1}{k} \right)^{(1/p-1/2)q} + 1 \right) \left(\frac{\|X - \max(r)\|_{S_p}}{r^{1/p-1/2}} \right)^q$$

$$+ \left(2^{q/p-1} \left(\frac{1}{k} \right)^{(1/p-1/2)q} + 1 \right) \frac{1}{\rho_2 L^q} \min \left\{ \frac{2}{L^{1-2q} \eta_1^q}, \frac{2q/p+q+1}{\rho_1} r^{(1/p-1/2)q} \eta_2^q \right\},$$

where $\rho_2 = C_1 - C_2 2^{q/p-1} (1/k)^{(1/p-1/2)q}$.
In fact, Theorem 2.11 can be deduced by following Proposition 2.12 for \(B^q(\eta_1) \) and Proposition 2.13 for \(B^{DS}(\eta_2) \). First, we give out the estimate \(\| \hat{X} - X \|_{S_2}^q \) for the \(B = B^q(\eta_1) \).

Proposition 2.12. Let \(r \) be any positive integer and \(0 < p \leq q \leq 1 \). Let \(\hat{X}^q \) be the solution of the Schatten-\(p \) minimization (1.11) with \(B = B^q(\eta_1) \).

(1) For any rank-\(r \) \(X \), let \(k > 1 \) with \(kr \) be positive integer, and \(A \) satisfies \(\ell_q \)-RUB of order \((k+1)r \) with \(C_2/C_1 < k^{(1/p-2)/q} \), then

\[
\| \hat{X}^q - X \|_{S_2}^q \leq \frac{2}{\rho_1 L^{1-q}} \left(\frac{1}{k} \right)^{(1/p-1/2)q} + 1 \eta_1^q,
\]

where \(\rho_1 = C_1 - C_2 (1/k)^{(1/p-1/2)q} \).

(2) And for more general matrix \(X \), let \(k > 2^{2(q-p)} \) with \(kr \) be positive integer, and \(A \) satisfies \(\ell_q \)-RUB of order \((k+1)r \) with \(C_2/C_1 < 2^{1-q/p} k^{(1/p-2)/q} \), then

\[
\| \hat{X}^q - X \|_{S_2}^q \leq \frac{C_2 2^{2q/p-1}}{\rho_2} \left(\frac{1}{k} \right)^{(1/p-1/2)q} + 1 \left(\frac{2^{2q/p-1}}{k} \right)^{(1/p-1/2)q} + 1 \left(\frac{\| X_{\text{max}(r)} \|_{S_p}}{r^{1/p-1/2}} \right)^q
\]

\[+ \frac{2}{\rho_2 L^{1-q}} \left(\frac{2^{q/p-1}}{k} \right)^{(1/p-1/2)q} + 1 \eta_1^q,
\]

where \(\rho_2 = C_1 - C_2 2^{q/p-1} (1/k)^{(1/p-1/2)q} \).

Proof. We denote \(l = \min\{m, n\} \). Let \(R = \hat{X}^q - X \). We have the following tube constraint inequality

\[
(2.11) \quad \| A(R) \|_q^2 \leq \| A(\hat{X}^q) - b \|_q^2 + \| b - A(X) \|_q^2 \leq (L\eta_1)^q + (L\eta_1)^q = 2 L^q \eta_1^q.
\]

By Lemma 2.4, we have cone constraint inequality as follows

\[
(2.12) \quad \| R_{\text{max}(r)} \|_{S_p}^p \leq 2 \| X_{\text{max}(r)} \|_{S_p}^p + \| R_{\text{max}(r)} \|_{S_p}^p.
\]

We still assume that the singular value decomposition of \(R \) is

\[
R = U\Sigma V^T = U\text{diag}(\sigma)V^T,
\]

where \(\sigma = (\sigma_1, \ldots, \sigma_l) \) is the singular vector with \(\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_l \geq 0 \). And we denote \(T_0 := \text{supp}(\sigma_{\text{max}(r)}) = \{1, \ldots, r\} \). We also partition \(T_0^c = \{r+1, \ldots, l\} \) as

\[
T_0^c = \bigcup_{j=1}^m T_j,
\]

which is the same as the proof of Theorem 2.6. And (2.4) still holds.

Let \(T_{01} = T_0 \cup T_1 \), we also consider identity (2.5).
First, by (2.6) and (2.12), we can estimate a lower bound for (2.5) as follows

\[
\|A(R)\|_q^p \geq C_1 L \|R_{T_01}\|_S_2^q - \frac{C_2 L}{(s^{1/p-1/2})^q} \left(\|\sigma_{\text{max}(r)}\|_p^p + 2\|X_{-\text{max}(r)}\|_{S_p}^p \right)^{q/p}
\]

\[
\geq C_1 L \|R_{T_01}\|_S_2^q - C_2 L \left(\frac{r}{s} \right)^{(1/p-1/2)q} \left(\|\sigma_{\text{max}(r)}\|_2^p + 2\left(\frac{\|X_{-\text{max}(r)}\|_{S_p}}{r^{1/p-1/2}} \right)^p \right)^{q/p}
\]

It follows from \(|a| + |b|)^{q/p} \leq 2^{q/p-1}(|a|^{q/p} + |b|^{q/p})\) for \(q/p \geq 1\) that

\[
\left(\|\sigma_{\text{max}(r)}\|_2^p + 2\left(\frac{\|X_{-\text{max}(r)}\|_{S_p}}{r^{1/p-1/2}} \right)^p \right)^{q/p} \leq 2^{q/p-1} \left(\|\sigma_{\text{max}(r)}\|_2^q + 2^{q/p} \left(\frac{\|X_{-\text{max}(r)}\|_{S_p}}{r^{1/p-1/2}} \right)^q \right).
\]

But when \(X\) is rank-\(r\), i.e., \(\|X_{-\text{max}(r)}\|_{S_p}^p = 0\), we have a simpler form

\[
\left(\|\sigma_{\text{max}(r)}\|_2^p + 2\left(\frac{\|X_{-\text{max}(r)}\|_{S_p}^p}{r^{1/p-1/2}} \right)^p \right)^{q/p} = \|\sigma_{\text{max}(r)}\|_2^q.
\]

Therefore

\[
\|A(R)\|_q^p \geq C_1 L \|R_{T_01}\|_S_2^q - C_2 L 2^{q/p-1} \left(\frac{r}{s} \right)^{(1/p-1/2)q} \left(\|\sigma_{\text{max}(r)}\|_2^q + 2^{q/p} \left(\frac{\|X_{-\text{max}(r)}\|_{S_p}}{r^{1/p-1/2}} \right)^q \right)
\]

(2.13)

\[
\geq L \left(C_1 - C_2 2^{q/p-1} \left(\frac{r}{s} \right)^{(1/p-1/2)q} \right) \|R_{T_01}\|_S_2^q - C_2 L 2^{q/p-1} \left(\frac{r}{s} \right)^{(1/p-1/2)q} \left(\frac{\|X_{-\text{max}(r)}\|_{S_p}}{r^{1/p-1/2}} \right)^q
\]

or

\[
\|A(R)\|_q^p \geq C_1 L \|R_{T_01}\|_S_2^q - C_2 L \left(\frac{r}{s} \right)^{(1/p-1/2)q} \|\sigma_{\text{max}(r)}\|_2^q
\]

(2.14)

\[
\geq L \left(C_1 - C_2 \left(\frac{r}{s} \right)^{(1/p-1/2)q} \right) \|R_{T_01}\|_S_2^q.
\]

We also need an upper bound of \(\|A(R)\|_q^q\). Using (2.11), we have

(2.15)

\[
\|A(R)\|_q^q \leq 2L^q \eta_1^q.
\]

Combining the lower bound (2.13) (or (2.14)) with the upper bound (2.15), we get

(2.16)

\[
L \left(C_1 - C_2 2^{q/p-1} \left(\frac{r}{s} \right)^{(1/p-1/2)q} \right) \|R_{T_01}\|_S_2^q - C_2 L 2^{q/p-1} \left(\frac{r}{s} \right)^{(1/p-1/2)q} \left(\frac{\|X_{-\text{max}(r)}\|_{S_p}}{r^{1/p-1/2}} \right)^q \leq 2L^q \eta_1^q
\]

or

(2.17)

\[
L \left(C_1 - C_2 \left(\frac{r}{s} \right)^{(1/p-1/2)q} \right) \|R_{T_01}\|_S_2^q \leq 2L^q \eta_1^q
\]
Therefore

$$\|R_{T_0}\|_{S_2}^q \leq \frac{C_2 \sigma_{s+r}^{2q/p-1}}{\rho} \left(\frac{1}{k} \right)^{(1/p-1/2)q} \left(\frac{\|X_{\max(r)}\|_{S_p}}{r^{1/p-1/2}} \right)^q + \frac{2}{\rho L^{1-q} \eta_1^q}$$

or

$$\|R_{T_0}\|_{S_2}^q \leq \frac{2}{\rho L^{1-q} \eta_1^q}.$$

Next, we estimate $\|R_{T_0}\|_{S_2}^q$. Here, we use some idea of the proof of [12, Lemma 7.8]. First, by a simply computation, we have

$$\|R_{T_0}\|_{S_2}^q = \|\sigma_{\max(s+r)}\|_2^q \leq \left(\left(\|\sigma_{\max(s+r)}\|_{P_\infty} \right)^{(2-p)/p} \|\sigma_{\max(s+r)}\|_p \right)^{q/2}$$

$$\leq \left(\left(\sigma_{s+r}^{(2-p)/p} \left(\|\sigma_{\max(r)}\|_p - \sum_{j=r+1}^{s+r} \sigma_j^p \right) \right)^{q/2}$$

$$\leq \left(\left(\sigma_{s+r}^{(2-p)/p} \left(\|\sigma_{\max(r)}\|_p + 2 \|X_{\max(r)}\|_{S_p} - s \sigma_{s+r}^p \right) \right)^{q/2}$$

$$= \left(f(\sigma_{s+r}) \right)^{q/2},$$

where

$$f(t) = t^{(2-p)/p} \left(\|\sigma_{\max(r)}\|_p^2 + 2 \|X_{\max(r)}\|_{S_p}^2 - st \right).$$

We need to estimate the upper bound of $f(\sigma_{s+r}^p)$. By Lemma 2.5, we have

$$f(t) \leq \frac{p}{2} \left(\frac{2 - p}{2s} \right)^{(2-p)/p} \left(\|\sigma_{\max(r)}\|_p^2 + 2 \|X_{\max(r)}\|_{S_p}^2 \right)^{2/p}$$

$$\leq \frac{p}{2} \left(\frac{2 - p}{2} \right)^{(2-p)/p} \left(\frac{1}{k} \right)^{(1/p-1/2)q} \left(\|\sigma_{\max(r)}\|_2^q + 2 \left(\frac{\|X_{\max(r)}\|_{S_p}}{r^{1/p-1/2}} \right)^q \right),$$

which implies that

$$\|R_{T_0}\|_{S_2}^q \leq \left(\frac{p}{2} \right)^{q/2} \left(\frac{2 - p}{2} \right)^{(1/p-1/2)q} \left(\frac{1}{k} \right)^{(1/p-1/2)q} \left(\|\sigma_{\max(r)}\|_2^q + 2 \left(\frac{\|X_{\max(r)}\|_{S_p}}{r^{1/p-1/2}} \right)^q \right)^{q/p}$$

$$\leq 2^{q/p-1} \left(\frac{p}{2} \right)^{q/2} \left(\frac{2 - p}{2} \right)^{(1/p-1/2)q} \left(\frac{1}{k} \right)^{(1/p-1/2)q} \left(\|\sigma_{\max(r)}\|_2^q + 2 \left(\frac{\|X_{\max(r)}\|_{S_p}}{r^{1/p-1/2}} \right)^q \right)^{q/p}$$

$$\|R_{T_0}\|_{S_2}^q \leq 2^{q/p-1} \left(\frac{p}{2} \right)^{q/2} \left(\frac{2 - p}{2} \right)^{(1/p-1/2)q} \left(\frac{1}{k} \right)^{(1/p-1/2)q} \left(\|R_{T_0}\|_{S_2}^q + 2^{q/p} \left(\frac{\|X_{\max(r)}\|_{S_p}}{r^{1/p-1/2}} \right)^q \right),$$

(2.21)
or

\[\|R_{\mathcal{G}}^q\|_{S_2} \leq \left(\frac{p}{2} \right)^{q/2} \left(\frac{2 - p}{2} \right)^{(1/p-1/2)q} \left(\frac{1}{k} \right)^{(1/p-1/2)q} \left(\|\sigma_{\text{max}(r)}\|_{p/2} \right)^{q/p} \]

(2.22)

\[\leq \left(\frac{p}{2} \right)^{q/2} \left(\frac{2 - p}{2} \right)^{(1/p-1/2)q} \left(\frac{1}{k} \right)^{(1/p-1/2)q} \|R_{\mathcal{G}}\|_{S_2}^{q} \cdot \]

It follows from (2.21) or (2.22) that

\[\|R\|_{S_2}^{q} \leq \|R_{\mathcal{G}}\|_{S_2}^{q} + \|R_{\mathcal{G}}\|_{S_2}^{q} \]

(2.23)

\[\leq \left(\frac{p}{2} \right)^{q/2} \left(\frac{2 - p}{2} \right)^{(1/p-1/2)q} \left(\frac{1}{k} \right)^{(1/p-1/2)q} + 1 \|R_{\mathcal{G}}\|_{S_2}^{q} \]

or

\[\|R\|_{S_2}^{q} \leq \|R_{\mathcal{G}}\|_{S_2}^{q} + \|R_{\mathcal{G}}\|_{S_2}^{q} \]

(2.24)

\[\leq \left(\frac{p}{2} \right)^{q/2} \left(\frac{2 - p}{2} \right)^{(1/p-1/2)q} \left(\frac{1}{k} \right)^{(1/p-1/2)q} + 1 \|R_{\mathcal{G}}\|_{S_2}^{q} \cdot \]

Then substituting (2.18) into (2.23), we have

\[\|R\|_{S_2}^{q} \leq \left\{ \frac{C_22^{q/p-1}}{\rho} \left(\frac{1}{k} \right)^{(1/p-1/2)q} \left(2^{q/p-1} \left(\frac{p}{2} \right)^{q/2} \left(\frac{2 - p}{2} \right)^{(1/p-1/2)q} \left(\frac{1}{k} \right)^{(1/p-1/2)q} + 1 \right) \right\} \]

+ \left\{ \frac{2}{\rho L^{1-q}} \left(2^{q/p-1} \left(\frac{p}{2} \right)^{q/2} \left(\frac{2 - p}{2} \right)^{(1/p-1/2)q} \left(\frac{1}{k} \right)^{(1/p-1/2)q} + 1 \right) \right\} \eta_1^{q} \]

(2.25)

\[\leq \left(\frac{C_22^{q/p-1}}{\rho} \left(\frac{1}{k} \right)^{(1/p-1/2)q} + 1 \right) \left(2^{q/p-1} \left(\frac{1}{k} \right)^{(1/p-1/2)q} + 1 \right) \left(\|X_{\text{max}(r)}\|_{S_p} \right)^{q} \]

\[+ \frac{2}{\rho L^{1-q}} \left(2^{q/p-1} \left(\frac{1}{k} \right)^{(1/p-1/2)q} + 1 \right) \eta_1^{q} \]

where the last inequality follows from 0 < p/2 ≤ 1 and (1/p - 1/2)q > 0.

And substituting (2.19) into (2.24), we have

(2.26)

\[\|R\|_{S_2}^{q} \leq \frac{2}{\rho L^{1-q}} \left(\left(\frac{1}{k} \left(\frac{1}{(p-1/2)q} + 1 \right) \eta_1^{q} \right) \right. \]

which finishes the proof. \[\square \]

Next, we consider Dantzig selector constraint \(B^{DS}(\eta_2) \).
Proposition 2.13. Let \(r \) be any positive integer and \(0 < p \leq q \leq 1 \). Let \(\hat{X}^{DS} \) be the solution of the Schatten-\(p \) minimization (1.11) with \(B = B^{DS}(\eta_2) \).

(1) For any rank-\(r \) \(X \), let \(k > 1 \) with \(kr \) be positive integer and \(A \) satisfies \(\ell_q \)-RUB of order \((k+1)r\) with \(C_2/C_1 < k^{1/(p-2)/q} \), then

\[
\| \hat{X}^{DS} - X \|_{S_2}^q \leq \frac{2^{q/p+1}(1/p-1/2)q}{L^q \rho_1^q} \left(\left(\frac{1}{k} \right)^{(1/p-1/2)q} + 1 \right) \eta_2^q,
\]

where \(\rho_1 = C_1 - C_2 \left(\frac{1}{k} \right)^{(1/p-1/2)q} \).

(2) And for more general matrix \(X \), let \(k > \frac{2^{q/p}(q-p)}{q(p-1)} \) with \(kr \) be positive integer, and \(A \) satisfies \(\ell_q \)-RUB of order \((k+1)r\) with \(C_2/C_1 < 2^{1-q/p} k^{1/(p-2)/q} \), then

\[
\| \hat{X}^{DS} - X \|_{S_2}^q \leq \left\{ \left(\frac{C_2 2^{q/p}}{\rho_2} \right)^{1/(p-1/2)q} \left(\frac{3}{2} \right) 2^{q/p-1} \left(\frac{1}{k} \right)^{(1/p-1/2)q} + 1 \left(\frac{\| X_{\text{max}}(r) \|_{S_p}}{\nu} \right)^q \right\}^q
\]

where \(\rho_2 = C_1 - C_2 2^{q/p-1} \left(\frac{1}{k} \right)^{(1/p-1/2)q} \).

Proof. We denote \(l = \min\{m,n\} \). Let \(R = \hat{X}^{DS} - X \). We have the following tube constraint inequality

\[
| \mathcal{A}^*(\mathcal{A}(R))|_{S_{\infty}} \leq | \mathcal{A}^*(\mathcal{A}(\hat{X}^{DS}) - b)|_{S_{\infty}} + | \mathcal{A}^*(b - \mathcal{A}(X))|_{S_{\infty}} \leq \eta_2 = 2\eta_2,
\]

instead of (2.11). By Lemma 2.4, cone constraint inequality (2.12) still holds.

With the same proof of Theorem 2.12, we still have (2.13) (or (2.14)), which gives out a lower bound of \(\| \mathcal{A}(R) \|_q^q \).

But the upper bound of \(\| \mathcal{A}(R) \|_q^q \) needs a completely different proof from that of Theorem 2.12. Using (2.27), we have

\[
\| \mathcal{A}(R) \|_q^q \leq L^{1-q/2} \| \mathcal{A}(R) \|_q^q = L^{1-q/2} \left(\| \mathcal{A}(R) \|_q^q \right)^{q/2}
\]

\[
\leq L^{1-q/2} \left(\| \mathcal{A}^*(\mathcal{A}(R)) \|_{S_{\infty}} \| R \|_{S_1} \right)^{q/2} \leq L^{1-q/2} \left(2\eta_2 \| R \|_{S_p} \right)^{q/2}
\]

\[
= L^{1-q/2} \left(2\eta_2 \right)^{q/2} \left(\| R_{\text{max}}(r) \|_{S_p} + \| R_{-\text{max}}(r) \|_{S_p} \right)^{q/(2p)}
\]

\[
\leq L^{1-q/2} \left(2\eta_2 \right)^{q/2} \left(2\| \sigma_{\text{max}}(r) \|_{S_p} + 2 \| X_{\text{max}}(r) \|_{S_p} \right)^{q/(2p)}
\]

(2.28)

\[
= \left\{ L^{1-q/2} \left(2\eta_2 \right)^{q/2} \left(\| R_{T_0} \|_{S_2} \right)^{q/2} \right\}^{1/2},
\]

\[
= \left\{ L^{1-q/2} \left(2\eta_2 \right)^{q/2} \left(\| R_{T_0} \|_{S_2} + \left(\frac{\| X_{\text{max}}(r) \|_{S_p}}{\nu} \right)^q \right)^{1/2} \right\}^{1/2},
\]

if \(X \) is rank \(r \), otherwise.
Combining the lower bound (2.14) (or 2.13) with the upper bound (2.28), we get

\[
\left\{ L\left(C_1 - C_2\left(1 - \frac{1}{k}\right)\right)\right\}^2 R_{T_{01}}^2 \leq L^2 - q_2 q/p + q_1 q_1 (1/p - 1/2)q_1 q_1 \eta_{12}^q \left(R_{T_{01}}^q \right)^2
\]

or

\[
\left\{ L\left(C_1 - C_2 q/p - 1\right)\left(1/p - 1/2\right)\right\}^2 R_{T_{01}}^q S_2 - C_2 L^2 q/p - 1\left(1/p - 1/2\right)q_1 q_1 \eta_{2}^q \left(R_{T_{01}}^q \right)^2 + \left(\left|X_{-\text{max}}(r)\right|_{S_p}^p\right)^q \right\}
\]

(2.30)

where \((x)_+ = \max\{x, 0\} \).

First, we consider (2.30). Let \(x = R_{T_{01}}^q S_2 \) and \(y = \left(r^{-1/p + 1/2}\right)\left|X_{-\text{max}}(r)\right|_{S_p}^p \). Note that

\[
\rho = C_1 - C_2 q/p - 1\left(1/p - 1/2\right) > 0.
\]

When

\[
R_{T_{01}}^q S_2 \geq \frac{C_2 q/p - 1\left(1/p - 1/2\right)}{\rho} \left(1/p - 1/2\right)q_1 q_1 \eta_{12}^q \left(\left|X_{-\text{max}}(r)\right|_{S_p}^p\right)^q,
\]

we have

\[
L^2 \rho^2 x^2 - \left(C_2 L^2 \rho^2 q/p - 1\right)\left(1/p - 1/2\right)q_1 q_1 \eta_{12}^q y \leq 0.
\]

Note that for the second order inequality \(ax^2 - bx - c \leq 0 \) for \(a, b, c > 0 \), we have

\[
x \leq \frac{b + \sqrt{b^2 + 4ac}}{2a} \leq \frac{b}{a} + \sqrt{\frac{c}{a}}.
\]

Hence we can get an upper bound of \(x \) as follows

\[
x \leq \frac{C_2 L^2 q/p}{L^2 \rho^2} \left(1/p - 1/2\right)q_1 q_1 \eta_{12}^q \left(\left|X_{-\text{max}}(r)\right|_{S_p}^p\right)^q + \frac{L^2 q_2 q/p + q_1 q_1 (1/p - 1/2)q_1 q_1 \eta_{12}^q}{L^2 \rho^2} \left(R_{T_{01}}^q \right)^2
\]

\[
+ \left[\frac{L^2 q_2 q/p + q_1 q_1 (1/p - 1/2)q_1 q_1 \eta_{12}^q \eta_{2}^q}{L^2 \rho^2} \right] y
\]

\[
\leq \frac{C_2 q/p}{\rho} \left(1/p - 1/2\right)q_1 q_1 \eta_{2}^q \left(\left|X_{-\text{max}}(r)\right|_{S_p}^p\right)^q + \frac{2 q_2 q/p + q_1 q_1 (1/p - 1/2)q_1 q_1 \eta_{12}^q \eta_{2}^q}{L^2 \rho^2} \left(R_{T_{01}}^q \right)^2
\]

\[
+ \frac{1}{2} \left(\frac{q_2 q/p + q_1 q_1 (1/p - 1/2)q_1 q_1 \eta_{12}^q \eta_{2}^q}{L^2 \rho^2} + y\right)
\]

15
\[(2.31) \quad \leq \left(\frac{C_2 2^{4q/p}}{\rho} \left(\frac{1}{k} \right)^{(1/p-1/2)q} + \frac{1}{2} \right) y + \frac{2^{4q/p+1} q_{r(1/p-1/2)q}}{L^q \rho^2} \eta^q. \]

Hence whenever
\[\| R_{T_{01}} \|^q_{S_2} \geq \frac{C_2 2^{4q/p-1}}{\rho} \left(\frac{1}{k} \right)^{(1/p-1/2)q} \left(C \max(\|X_\rho\|_{S_p}) \right) \]

or not, we always have
\[\| R_{T_{01}} \|^q_{S_2} \leq \max \left\{ \frac{C_2 2^{4q/p}}{\rho} \left(\frac{1}{k} \right)^{(1/p-1/2)q} \left(C \max(\|X_\rho\|_{S_p}) \right)^q, \right. \]
\[\left. \frac{2^{4q/p+1} q_{r(1/p-1/2)q}}{L^q \rho^2} \eta^q \right\} \]

Then, we consider \((2.29) \). Note that
\[\rho = C_1 - C_2 \left(\frac{1}{k} \right)^{(1/p-1/2)q} > 0. \]

Therefore
\[(2.33) \quad \| R_{T_{01}} \|^q_{S_2} \leq \frac{2^{4q/p+1} q_{r(1/p-1/2)q}}{L^q \rho^2} \eta^q. \]

Note that \((2.23) \) and \((2.24) \) still holds.
Then substituting \((2.32) \) into \((2.23) \), we have

\[\| R \|^q_{S_2} \leq \left\{ \frac{C_2 2^{4q/p}}{\rho} \left(\frac{1}{k} \right)^{(1/p-1/2)q} + \frac{1}{2} \right\} \left(2^{q/p-1} \left(\frac{p}{2} \right)^{q/2} \left(2 - \frac{p}{2} \right) \right)^{(1/p-1/2)q} \left(\frac{1}{k} \right)^{(1/p-1/2)q} + 1 \]
\[+ \frac{2^{4q/p+1} q_{r(1/p-1/2)q}}{L^q \rho^2} \left(2^{q/p-1} \left(\frac{p}{2} \right)^{q/2} \left(2 - \frac{p}{2} \right) \right)^{(1/p-1/2)q} \left(\frac{1}{k} \right)^{(1/p-1/2)q} + 1 \]
\[\leq \left\{ \frac{C_2 2^{4q/p}}{\rho} \left(\frac{1}{k} \right)^{(1/p-1/2)q} + \frac{3}{2} \right\} \left(2^{q/p-1} \left(\frac{p}{2} \right)^{q/2} \left(2 - \frac{p}{2} \right) \right)^{(1/p-1/2)q} \left(\frac{1}{k} \right)^{(1/p-1/2)q} + 1 \]
\[\times \left(C \max(\|X_\rho\|_{S_p}) \right)^q \]
\[+ \frac{2^{4q/p+1} q_{r(1/p-1/2)q}}{L^q \rho^2} \left(2^{q/p-1} \left(\frac{p}{2} \right)^{q/2} \left(2 - \frac{p}{2} \right) \right)^{(1/p-1/2)q} \left(\frac{1}{k} \right)^{(1/p-1/2)q} + 1 \]
where the last inequality follows from $0 < p/2 \leq 1$ and $(1/p - 1/2)q > 0$.

And substituting (2.33) into (2.24), we have

\begin{equation}
||R||^q_{S_2} \leq \frac{2^{q/p+q+1}(1/p-1/2)q}{L^2 \rho^2} \left(\frac{1}{k} \right)^{(1/p-1/2)q} + 1 \right) \eta_2^q,
\end{equation}

which finishes the proof. \hfill \Box

Remark 2.14. What should be noticed is that Zhang, Huang and Zhang [51] also considered matrix recovery via Schatten-p minimization with $B = B^{\ell_2(\eta)}_q - \ell_2$ norm constraint, under the ℓ_p-RUB condition. The problem (1.11) considered in Proposition 2.12 and Theorem 2.11 are different from that of they considered.

If $A : \mathbb{S}^n \rightarrow \mathbb{R}^L$ is a SROP, we consider Schatten-p minimization (1.14) instead of (1.11) and have the following results.

Corollary 2.15. Let r be any positive integer, $0 < p \leq q \leq 1$ and $L = \lfloor L/2 \rfloor$. Let X^ℓ_q be the solution of the Schatten-p minimization (1.14) with $B = B^{\ell_q(\eta_1)}_q \cap B^{\ell_p(\eta_2)}_p$.

(1) For any symmetric rank-r X, let $k > 1$ with kr be positive integer, and \hat{A} satisfies ℓ_q-RUB of order $(k+1)r$ with $C_2/C_1 < k^{(1/p-2)q}$, then

\begin{equation}
||\hat{X} - X||^q_{S_2} \leq \left(\frac{1}{k} \right)^{(1/p-1/2)q} + 1 \right) \frac{1}{\rho_1 L^q} \min \left\{ \frac{2}{L^{1-2q}} \eta_1^q, \frac{2^{q/p+q}}{\rho_1} r^{(1/p-1/2)q} \eta_2^q \right\},
\end{equation}

where $\rho_1 = C_1 - C_2 (1/k)^{(1/p-1/2)q}$.

(2) And for more general symmetric matrix X, let $k > 2^{2(q-p)}$ with kr be positive integer, and \hat{A} satisfies ℓ_q-RUB of order $(k+1)r$ with $C_2/C_1 < 2^{1-2q/p}k^{(1/p-2)q}$, then

\begin{equation}
||\hat{X} - X||^q_{S_2} \leq \left(\frac{C_2 2^{q-1}}{\rho_2} \right)^{(1/p-1/2)q} \left(\frac{1}{k} \right)^{(1/p-1/2)q} + 1 \right) \frac{1}{\rho_2 L^q} \min \left\{ \frac{2}{L^{1-2q}} \eta_1^q, \frac{2^{q/p+q+1}}{\rho_1} r^{(1/p-1/2)q} \eta_2^q \right\},
\end{equation}

where $\rho_2 = C_1 - C_2 2^{q-1}(1/k)^{(1/p-1/2)q}$.
3 Robust Null Space Property and ℓ_q-RUB

In this section, we will investigate the relationship between the RUB and robust rank null space property.

The robust null space property with ℓ_2 bound $\|Ax\|_2$ was first introduced by Sun in [44], which is called sparse approximation property. And this name was first used by Foucart and Rauhut in [31]. And they also introduced the robust null space property with Dantzig selector bound $\|A^*Ax\|_\infty$. In [31], Foucart and Rauhut also introduced the robust rank null space property.

Inspired by [44], we introduce (ℓ_t, ℓ_p)-robust rank null space property as follows.

Definition 3.1. Let $0 < p, t \leq \infty$ and $0 < q < \infty$. A linear map A satisfies (ℓ_t, ℓ_p)-robust rank null space property of order r for ℓ_q bound with constants D and β if

\[
\|X_{\text{max}(r)}\|_{S_t}^p \leq D\|A(X)\|_{S_p}^q + \beta \frac{\|X_{\text{max}(r)}\|_{S_t}^p}{r(1/p-1/t)p}
\]

holds for all $X \in \mathbb{R}^{m \times n}$.

And a linear map A satisfies the (ℓ_t, ℓ_p)-robust rank null space property of order r for Dantzig selector bound with constants D and β if

\[
\|X_{\text{max}(r)}\|_{S_t}^p \leq D\|A^*A(X)\|_{S_p}^r + \beta \frac{\|X_{\text{max}(r)}\|_{S_t}^p}{r(1/p-1/t)p}
\]

holds for all $X \in \mathbb{R}^{m \times n}$.

By similar proofs as that of Theorems 2.12 and 2.13, we have the following theorem, which implies that (ℓ_2, ℓ_p)-robust rank null space property of order r can be induced from ℓ_q-RUB of order $(k+1)r$ for any fixed $k > 1$ with $kr \in \mathbb{Z}_+$.

Theorem 3.2. Let $r \in \mathbb{Z}_+$, and $k > 1$ with $kr \in \mathbb{Z}_+$.

(1) Suppose that A satisfies ℓ_q-RUB of order $(k+1)r$ with $C_2/C_1 < k^{(1/p-1/2)q}$ for any $0 < p \leq q \leq 1$, then

\[
\|X_{\text{max}(r)}\|_{S_2}^p \leq \frac{1}{(C_1L)^p/q} \|A(X)\|_{S_q}^p + \left(\frac{C_2}{C_1k^{(1/p-1/2)q}}\right)^{p/q} \frac{\|X_{\text{max}(r)}\|_{S_p}^p}{r(1/p-1/t)p}
\]

\[=: D_1\|A(X)\|_{S_q}^p + \beta_1 \frac{\|X_{\text{max}(r)}\|_{S_p}^p}{r(1/p-1/t)p},\]

i.e., A satisfies (ℓ_2, ℓ_p) robust rank null space property of order r for ℓ_q bound with constant pair (D_1, β_1).

(2) Suppose that A satisfies ℓ_q-RUB of order $(k+1)r$ with $C_2/C_1 < k^{(1/p-1/2)q}/4$ for any $0 < p \leq q \leq 1$, then

\[
\|X_{\text{max}(r)}\|_{S_2}^p \leq \left(\frac{2^{p+1}p}{C_1^{2p/q}L^p}\right)^{p/q} \frac{1}{r(1/p-1/t)p} \|A^*A(X)\|_{S_p}^r + \left(\frac{2C_2}{C_1k^{(1/p-1/2)q}} + \frac{1}{2}\right)^{p/q} \frac{\|X_{\text{max}(r)}\|_{S_p}^p}{r(1/p-1/t)p}
\]
3.2 also holds for vector case. We only need to let X be any diagonal matrix, and let each element A_j of linear map A be diagonal matrix.

4 Recovery via Least q Minimization

In this section, we will consider the matrix’s recovery via least q minimization (1.16). We show that the ℓ_q-RUB of order $(k+1)r$ with $C_2/C_1 < k^{(1/p-1/2)q}$ for $0 < p \leq q \leq 1$ is also sufficient to recover any matrix $X \in \mathbb{R}^{m \times n}$. We also extend our result to Gaussian design distribution and assert that $L \geq Cr(m+n)$ measurements is sufficient to guarantee all rank-r matrices’ stable recovery with high probability.

4.1 Stable Recovery via Least q Minimization

Theorem 4.1. Let $r \in \mathbb{Z}^+$, and $k > 1$ with $kr \in \mathbb{Z}^+$. Suppose that A satisfies ℓ_q-RUB of order $(k+1)r$ with $C_2/C_1 < k^{(1/p-1/2)q}$ for $0 < p \leq q \leq 1$. Let \hat{X} be the solution of

$$\min_{Y \in \mathbb{R}^{m \times n}} \|A(Y) - b\|_q^p \text{ subject to } \left(\text{tr}(Y^T Y)^{p/2}\right)^{1/p} = 1$$

where $b = A(X) + z$, then

$$\|\hat{X} - X\|_{S_p}^p \leq \frac{2(1 + \beta_1)^2}{1 - \beta_1} \|X_{-\text{max}(r)}\|_{S_p}^p + \frac{2p/q(3 + \beta_1)D_1}{1 - \beta_1} \|z\|_q^p,$$

where $D_1 = (C_1L)^{-p/q} > 0$ and $0 < \beta_1 = (C_2k^{-(1/p-1/2)q}/C_1)^{p/q} < 1$.

Theorem 4.1 can be deduced from the following stronger result and Theorem 3.2.

Theorem 4.2. Let $0 < p \leq t \leq \infty$.

1. If $A : \mathbb{R}^{m \times n} \to \mathbb{R}^L$ satisfies the (ℓ_t, ℓ_p)-robust rank null space property of order r for ℓ_q bound with constants $D_1 > 0$ and $0 < \beta_1 < 1$, then

$$\|Y - X\|_{S_t}^p \leq \frac{(1 + \beta_1)^2}{1 - \beta_1} \frac{1}{r^{(1/p-1/t)p}} (\|Y\|_{S_p}^p - \|X\|_{S_p}^p + 2\|X_{-\text{max}(r)}\|_{S_p}^p) + \frac{(3 + \beta_1)D_1}{1 - \beta_1} \|A(Y - X)\|_q^p,$$

2. If $A : \mathbb{R}^{m \times n} \to \mathbb{R}^L$ satisfies the (ℓ_t, ℓ_p)-robust rank null space property of order r for Dantzig selector bound with constants $D_2 > 0$ and $0 < \beta_2 < 1$, then

$$\|Y - X\|_{S_t}^p \leq \frac{(1 + \beta_2)^2}{1 - \beta_2} \frac{1}{r^{(1/p-1/t)p}} (\|Y\|_{S_p}^p - \|X\|_{S_p}^p + 2\|X_{-\text{max}(r)}\|_{S_p}^p) + \frac{(3 + \beta_2)D_2}{1 - \beta_2} \|A^*A(Y - X)\|_{S_{\infty}}^p.$$
The proof requires some auxiliary lemmas. We start with a matrix version of Stechkin's bound. It follows immediately from [31, Proposition 2.3 of Chapter 2].

Lemma 4.3. Let \(X \in \mathbb{R}^{m \times n} \) and \(0 < r \leq \min\{m, n\} \). Then for any \(0 < p \leq t \leq \infty \),

\[
\|X_{-\max(r)}\|_{S_t} \leq \frac{\|X\|_{S_p}}{r^{1/p - 1/t}}.
\]

In order to get a similar cone constraint for matrix’s Schatten-\(p \) norm, we also need the following lemma which was given by Yue and So in [50] and Audenaert [4].

Lemma 4.4. Let \(X, Y \in \mathbb{R}^{m \times n} \) be given matrices. Suppose that \(f : \mathbb{R}_+ \rightarrow \mathbb{R}_+ \) is a concave function satisfying \(f(0) = 0 \). Then, for any \(k \in \{1, \ldots, \min\{m, n\}\} \), we have

\[
\sum_{j=1}^{k} |f(\sigma_j(X)) - f(\sigma_j(Y))| \leq \sum_{j=1}^{k} f(\sigma_j(X - Y)).
\]

Lemma 4.5. Let \(0 < p \leq t \leq \infty \).

1. If \(A : \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{L} \) satisfies the \((\ell_t, \ell_p)\)-robust rank null space property of order \(r \) for \(\ell_q \) bound with constants \(D_1 > 0 \) and \(0 < \beta_1 < 1 \), then

\[
\|Y - X\|_{S_p}^p \leq \frac{2D_1}{1 - \beta_1} r^{(1/p - 1/t)p} \|A(Y - X)\|_{\ell_q}^p + \frac{1 + \beta_1}{1 - \beta_1} \left(\|Y\|_{S_p}^p - \|X\|_{S_p}^p + 2\|X_{-\max(r)}\|_{S_p}^p \right).
\]

2. If \(A : \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{L} \) satisfies the \((\ell_t, \ell_p)\)-robust rank null space property of order \(r \) for Dantzig selector bound with constants \(D_2 > 0 \) and \(0 < \beta_2 < 1 \), then

\[
\|Y - X\|_{S_p}^p \leq \frac{2D_2}{1 - \beta_2} r^{(1/p - 1/t)p} \|A^*A(Y - X)\|_{\ell_\infty}^p + \frac{1 + \beta_2}{1 - \beta_2} \left(\|Y\|_{S_p}^p - \|X\|_{S_p}^p + 2\|X_{-\max(r)}\|_{S_p}^p \right).
\]

Proof. Our proof follows the idea of [31, Section 4.3]. Let \(R = Y - X \). Lemma 2.3 states that

\[
\|R\|_{S_p}^p = \|R_{\max(r)}\|_{S_p}^p + \|R_{-\max(r)}\|_{S_p}^p \leq r^{(1/p - 1/t)p} \|R_{\max(r)}\|_{S_t}^p + \|R_{-\max(r)}\|_{S_p}^p.
\]

Applying the \((\ell_t, \ell_p)\)-robust rank null space property of \(A \), we obtain that

\[
\|R_{\max(r)}\|_{S_t}^p \leq D_1 \|A(R)\|_{\ell_q}^p + \frac{\|R_{-\max(r)}\|_{S_p}^p}{r^{(1/p - 1/t)p}}.
\]

Therefore, we have

\[
\|R\|_{S_p}^p \leq D_1 r^{(1/p - 1/t)p} \|A(R)\|_{\ell_q}^p + (1 + \beta_1) \|R_{-\max(r)}\|_{S_p}^p.
\]

Next, we estimate the upper bound of \(\|R_{-\max(r)}\|_{S_p}^p \). Since \(x \rightarrow |x|^p \) is concave on \(\mathbb{R}_+ \) for any \(p \in (0, 1] \), by taking \(f(\cdot) = (\cdot)^p \) in Lemma 4.4, we immediately obtain

\[
\|Y\|_{S_p}^p = \|\sigma(Y)\|_{S_p}^p + \|\sigma(Y)\|_{S_p}^p \geq \|\sigma(X)\|_{S_p}^p + \|\sigma(R)\|_{S_p}^p + \|\sigma(R)\|_{S_p}^p - \|\sigma(X)\|_{S_p}^p.
\]
where \(T = \text{supp}(\sigma(X)_{\max(r)}) \). By rearranging the terms in the above inequality, we get
\[
\|R_{- \max(r)}\|_{S_p}^p \leq \|\sigma(R)_{T^c}\|_{S_p}^p \leq \|Y\|_{S_p}^p - \|\sigma(X)_{T}\|_{S_p}^p + \|\sigma(X)_{T^c}\|_{S_p}^p + \|\sigma(R)_{T}\|_{S_p}^p
\]
\[
\leq (\|Y\|_{S_p}^p - \|X\|_{S_p}^p + 2\|X_{- \max(r)}\|_{S_p}^p) + \|R_{\max(r)}\|_{S_p}^p
\]
\[
\leq (\|Y\|_{S_p}^p - \|X\|_{S_p}^p + 2\|X_{- \max(r)}\|_{S_p}^p) + r^{(1/p-1/2)}\|R_{\max(r)}\|_{S_t}^p
\]
\[
\leq (\|Y\|_{S_p}^p - \|X\|_{S_p}^p + 2\|X_{- \max(r)}\|_{S_p}^p) + D_1 r^{(1/p-1/2)}\|A(R)\|_{q}^p + \beta_1 \|R_{- \max(r)}\|_{S_p}^p,
\]
where the last line follows from (4.1). Note that \(0 < \beta_1 < 1 \). Therefore,
\[
(4.3) \quad \|R_{- \max(r)}\|_{S_p}^p \leq \frac{1}{1 - \beta_1} (\|Y\|_{S_p}^p - \|X\|_{S_p}^p + 2\|X_{- \max(r)}\|_{S_p}^p) + \frac{D_1}{1 - \beta_1} r^{(1/p-1/2)}\|A(R)\|_{q}^p.
\]

And substituting (4.3) into (4.2), we obtain
\[
\|R\|_{S_p}^p \leq (1 + \beta_1) \left(\frac{1}{1 - \beta_1} (\|Y\|_{S_p}^p - \|X\|_{S_p}^p + 2\|X_{- \max(r)}\|_{S_p}^p) + \frac{D_1}{1 - \beta_1} r^{(1/p-1/2)}\|A(R)\|_{q}^p \right)
\]
\[
+ D_1 r^{(1/p-1/2)}\|A(R)\|_{q}^p + \frac{1 + \beta_1}{1 - \beta_1} (\|Y\|_{S_p}^p - \|X\|_{S_p}^p + 2\|X_{- \max(r)}\|_{S_p}^p),
\]
which finishes the proof of item (1).

If \(\mathcal{A} \) satisfies the \((\ell_t, \ell_p)\)-robust rank null space property for Dantzig selector bound, we replace (4.1) with
\[
(4.4) \quad \|R_{\max(r)}\|_{S_t}^p \leq D_2 \|A^* A(R)\|_{S_{\infty}}^p + \beta_2 \frac{\|R_{- \max(r)}\|_{S_p}^p}{r^{(1/p-1/2)/p}}.
\]

Then by a similar proof as item (1), we get
\[
\|R\|_{S_p}^p = \frac{2D_2}{1 - \beta_2} r^{(1/p-1/2)/p}\|A^* A(R)\|_{S_{\infty}}^p + \frac{1 + \beta_2}{1 - \beta_2} (\|Y\|_{S_p}^p - \|X\|_{S_p}^p + 2\|X_{- \max(r)}\|_{S_p}^p),
\]
which finishes the proof of item (2).

Proof of Theorem 4.2. Let \(R = Y - X \), then we have
\[
(4.5) \quad \|Y - X\|_{S_t}^p = \left(\|R_{\max(r)}\|_{S_t}^p + \|R_{- \max(r)}\|_{S_t}^p \right)^{p/t} \leq \|R_{\max(r)}\|_{S_t}^p + \|R_{- \max(r)}\|_{S_t}^p,
\]
where the inequality follows from \(0 < p \leq t \). By the \((\ell_t, \ell_p)\) robust rank null space property of \(\mathcal{A} \) with respect to \(\ell_p \),
\[
(4.6) \quad \|R_{\max(r)}\|_{S_t}^p \leq D_1 \|A(R)\|_{q}^p + \beta_1 \frac{\|R_{- \max(r)}\|_{S_p}^p}{r^{(1/p-1/2)/p}} \leq D_1 \|A(R)\|_{q}^p + \beta_1 \frac{\|R\|_{S_p}^p}{r^{(1/p-1/2)/p}}.
\]

Next we estimate \(\|R_{- \max(r)}\|_{S_t}^p \). Lemma 4.3 implies that
\[
(4.7) \quad \|R_{- \max(r)}\|_{S_t}^p \leq \left(\frac{\|R\|_{S_p}^p}{r^{(1/p-1/2)/p}} \right)^p.
\]
Then substituting (4.6) and (4.7) into (4.5) yields

\[(4.8) \quad \|Y - X\|^p_{S_t} \leq D_1 \|A(R)\|^p_q + (1 + \beta_1) \frac{\|R\|^p_{S_k}}{r(1/p-1/q)}.
\]

An application of Lemma 4.5, we obtain

\[
\|Y - X\|^p_{S_t} \leq \frac{(1 + \beta_1)}{r(1/p-1/q)} \left(\frac{2D_1}{1 - \beta_1} \|A(R)\|^p_q + \frac{1 + \beta_1}{1 - \beta_1} (\|Y\|^p_{S_p} - \|X\|^p_{S_p} + 2\|X_{\max(r)}\|^p_p) \right)
\]

\[
+ D_1 \|A(R)\|^p_q
\]

\[
= \frac{(1 + \beta_1)^2}{1 - \beta_1} \frac{1}{r(1/p-1/q)} (\|Y\|^p_{S_p} - \|X\|^p_{S_p} + 2\|X_{\max(r)}\|^p_p) + \frac{(3 + \beta_1)D_1}{1 - \beta_1} \|A(R)\|^p_q.
\]

And if \(A\) satisfies the \((\ell_t, \ell_p)\)-robust rank null space property for Dantzig selector bound, then by a similar proof, we have

\[
\|Y - X\|^p_{S_t} \leq \frac{(1 + \beta_2)^2}{1 - \beta_2} \frac{1}{r(1/p-1/q)} (\|Y\|^p_{S_p} - \|X\|^p_{S_p} + 2\|X_{\max(r)}\|^p_p) + \frac{(3 + \beta_2)D_2}{1 - \beta_2} \|A^*(R)\|^p_{S_{\infty}}.
\]

\[\square\]

Proof of Theorem 4.1. Note that \(A\) satisfies \(\ell_q\)-RUB of order \((k + 1)r\) with \(C_2/C_1 < k^{(1/p-1/2)q}\) for any \(0 < p \leq q \leq 1\). Therefore Theorem 3.2 implies the validity of the \((\ell_2, \ell_q)\) robust rank null space property for \(\ell_p\) bound with parameters \(D_1 = (C_1L)^{-p/q} > 0\) and \(0 < \beta_1 = (C_2k^{-(1/p-1/2)q}/C_1)^{p/q} < 1\). Then Theorem 4.2 leads to us that

\[(4.9) \quad \|\hat{X} - X\|^p_{S_2} \leq \frac{(1 + \beta_1)^2}{1 - \beta_1} \frac{1}{r(1/p-1/2)p} (\|\hat{X}\|^p_{S_p} - \|X\|^p_{S_p} + 2\|X_{\max(r)}\|^p_p)
\]

\[
+ \frac{(3 + \beta_1)D_1}{1 - \beta_1} \|A(\hat{X} - X)\|^p_q.
\]

We consider recovering density matrix. This property assures

\[(4.10) \quad \|\hat{X}\|^p_{S_p} - \|X\|^p_{S_p} = \text{tr}((\hat{X}^T\hat{X})^{p/2}) - \text{tr}((X^TX)^{p/2}) = 0.
\]

And

\[(4.11) \quad \|A(\hat{X} - X)\|^p_q \leq (\|A(\hat{X}) - b\|_q + \|b - A(X)\|_q^{p/q})^{p/q} \leq (\|z\|_q + \|z\|_q^{p/q}) = 2^{p/q}\|z\|_q^p.
\]

Combining (4.10), (4.11) with (4.9), we get

\[
\|\hat{X} - X\|^p_{S_2} \leq \frac{2(1 + \beta_1)^2}{1 - \beta_1} \frac{\|X_{\max(r)}\|^p_p}{r(1/p-1/2)p} + \frac{2^{p/q}(3 + \beta_1)D_1}{1 - \beta_1} \|z\|_q^p.
\]

\[\square\]

Remark 4.6. Kabanava, Kueng, Rauhut et al. [33] considered the least-\(q\) minimization for \(q \geq 1\). Here, we extend it to nonconvex case, i.e., least-\(q\) minimization for \(0 < q < 1\).
4.2 Matrix Recovery for ROP from Gauss Distribution via LAD

This subsection aims to show that recovering low-rank matrices through ROP \mathcal{A} from Gaussian distribution \mathcal{P} is still possible. First, we recall Gaussian random variable \mathcal{A}.

A linear map $\mathcal{A} : \mathbb{R}^{m \times n} \to \mathbb{R}^L$ is called ROP from distribution \mathcal{P} if \mathcal{A} is defined as in (1.4) with all the entries of β^j and γ^j independently drawn from the distribution \mathcal{P}. The following Theorem 4.7 shows that recovering low-rank matrices through ROP \mathcal{A} from the standard normal distribution \mathcal{P} via least 1 minimization (1.16) is possible.

Theorem 4.7. Let $r \in \mathbb{Z}_+$. Suppose that \mathcal{A} is a ROP from the standard normal distribution. Let \hat{X} be the solution of

$$ \min_{Y \in \mathbb{R}^{m \times n}} \|\mathcal{A}(Y) - b\|_1 \quad \text{subject to} \quad \left(\text{tr}((Y^T Y)^{p/2}) \right)^{1/p} = 1 $$

where $b = \mathcal{A}(X) + z$. Then there exist uniform constants c_1, c_2, C_3 and C_4 such that, whenever $L \geq c_1 r (m + n)$, \hat{X} obeys

$$ \|\hat{X} - X\|_{S_2}^p \leq C_3 \left[\frac{\|X - \mathcal{A}(X)\|_{\text{tr}}^p}{r^{(1/p - 1/2)p}} \right] + C_4 \frac{\|z\|_1^p}{L^p} $$

with probability at least $1 - e^{-c_2 L}$.

Proof. Suppose $k = 10$, by [12, Theorem 2.2], we can find a uniform constant c_0 and c_2 such that if $L \geq c_0 (k + 1) r (m + n)$, \mathcal{A} satisfies RUB of order $11r$ and constants $C_1 = 0.32$, $C_2 = 1.01$ with probability at least $1 - e^{-c_2 L}$. Hence, we have $c_1 = 11c_0$ and c_2 such that if $L \geq c_1 r (m + n)$, \mathcal{A} satisfies RUB of order $11r$ and constants satisfying $C_2/C_1 < 10^{1/p - 1/2}$ with probability at least $1 - e^{-c_2 L}$. Then it follows from Theorem 4.1 that

$$ \|\hat{X} - X\|_{S_2}^p \leq 2 \left(1 + \beta_1 \right) \frac{\|X - \mathcal{A}(X)\|_{\text{tr}}^p}{r^{(1/p - 1/2)p}} + \frac{2p/q (3 + \beta_1)}{1 - \beta_1} \|z\|_q^p $$

holds with probability at least $1 - e^{-c_2 L}$, where C_3, C_4 are constants depending only on p. \qed

Corollary 4.8. For the PhaseLift introduced in [13, 21], we consider

$$ (4.12) \min_{X \in \mathbb{R}^n} \|\tilde{A}(X) - \tilde{b}\|_1 \quad \text{subject to} \quad X \succeq O \text{ and } \text{tr}(X) = 1. $$

Then Theorem 4.7 implies that ROP with $L \geq Cm$ random projections from Gaussian distribution is sufficient to ensure the stable recovery of all symmetric rank-1 matrix $X = xx^T$ with high probability.

Remark 4.9. Note that the condition of Theorem 4.1 is ℓ_q-RUB for $0 < p \leq q \leq 1$. Therefore, if we can show that ROP \mathcal{A} from some distribution satisfies the ℓ_q-RUB condition for $0 < q < 1$ with high probability, then we can get a better conclusion.
5 Conclusions and Discussion

In this paper, we consider the matrix recovery from rank-one projection measurements via nonconvex minimization.

First in Section 2, after introducing the \(\ell_q \)-RUB (Definition 2.1), we consider exact and stable recovery of rank-\(r \) matrices from rank-one projection measurements via Schatten-\(p \) minimization (1.11). And we show that \(\ell_q \)-RUB condition of order \((k + 1)r \) with \(C_2/C_1 < k^{(1/p - 1/2)q} \) for some \(k > 1 \) with \(kr \in \mathbb{Z}_+ \) and \(0 < p \leq q \leq 1 \) is sufficient for exact recovery of all rank-\(r \) matrices (Theorem 2.6) in Subsection 2.2. Subsection 2.3 considers extensions to the noisy case. We get stable recovery via Schatten-\(p \) model (1.11) with \(B = B^{\ell_q}(\eta_1) \cap B^{DS}(\eta_2) \) (Theorem 2.11), by combining \(B = B^{\ell_q}(\eta_1) \) (Proposition 2.12) with \(B = B^{DS}(\eta_2) \) (Proposition 2.13). And our condition is also sufficient for symmetric rank-one projections (Corollary 2.8 and Corollary 2.15).

By the proofs of Theorems 2.12 and 2.13, we also obtain that the robust rank null sapce property of order \(r \) can be deduced from the \(\ell_q \)-RUB of order \((k + 1)r \) for some \(k > 1 \) (Theorem 3.2) in Section 3.

And in Section 4, we consider the stable recovery via the least \(q \) minimization (1.16) for \(0 < q \leq 1 \) under \(\ell_q \)-RUB condition. We show that our condition in Theorem 2.6 is still sufficient (Theorem 4.1). And we also consider recovering matrix for ROP \(A \) from Gaussian distribution via least 1 minimization, and we show that with high probability, ROP with \(L \geq Cr(m + n) \) random projections from Gaussian distribution is sufficient to ensure stable recovery of all rank-\(r \) matrices (Theorem 4.7).

However, our \((k + 1)r \) \((k > 1)\) order RUB condition for \(q = 1 \) (Theorem 2.6) is a litter stronger than the \(kr \) order RUB condition in [12]. Therefore, this condition may be improved further (Remark 2.10). And note that Theorem 4.1 show that \(\ell_q \)-RUB condition can guarantee the stable recovery via least \(q \) minimization (1.16). Therefore, finding a ROP \(A \) from some distribution satisfying the \(\ell_q \)-RUB condition for \(0 < q < 1 \) is one direction of our future research (Remark 4.9).

Acknowledgement: Wengu Chen is supported by National Natural Science Foundation of China (No. 11371183).

References

[1] A. Ahmed and J. Romberg, Compressive multiplexing of correlated signals, IEEE Trans. Inform. Theory, 61(2015), 479-498.

[2] P. Alquier, C. Butucea, M. Hebiri, K. Meziani, and T. Mommiae,Rank penalized estimation of a quantum system, Phys. Rev. A (3), 88(2013), 032113-1-032113-9.

[3] A. Argyriou, T. Evgeniou, and M. Pontil, Convex multi-task feature learning, Mach. Learn., 73(2008), 243-272.

[4] K. M. R. Audenaert, A generalisation of Mirskys singular value inequalities, available at http://arxiv.org/abs/1410.4941, 2014.

[5] G. Bassett, R. Koenker, Asymptotic theory of least absolute error regression, J. Amer. Statist. Assoc., 73 (1978), 618-621.
[6] P. Biswas, T.-C. Lian, T.-C. Wang and Y. Ye, Semidefinite programming based algorithms for sensor network localization, ACM Transactions on Sensor Networks, 2(2006), 188-220.

[7] I. Borg and P. Groenen, Modern Multidimensional Scaling, New York, NY, USA: Springer, 2010.

[8] T. T. Cai and L. Wang, Orthogonal matching pursuit for sparse signal recovery with noise, IEEE Trans. Inform. Theory, 57(2011), 4680-4688.

[9] T. T. Cai, Z. Ma and Y. Wu, Sparse PCA: optimal rates and adaptive estimation, Ann. Statist. 41(2013), 3074-3110.

[10] T. T. Cai, Z. Ma and Y. Wu, Optimal estimation and rank detection for sparse spiked covariance matrices, Probab. Theory Relat. Fields, 161(2015), 781-815.

[11] T. T. Cai and A. Zhang, Sparse representation of a polytope and recovery of sparse signals and low-rank matrices, IEEE Trans. Inform. Theory, 60(2014), 122-132.

[12] T. T. Cai and A. Zhang, ROP: Matrix recovery via rank-one projections, Ann. Statist., 43(2015), 102-138.

[13] E. J. Candès, Y. Eldar, T. Strohmer and V. Voroninski, Phase retrieval via matrix completion, SIAM J. Imaging Sciences, 6(2013), 199-225. And also in SIAM Rev., 57(2015), 225-251.

[14] E. J. Candès, X. Li, Solving quadratic equations via PhaseLift when there are about as many equations as unknowns, Found. Comput. Math., 14(2014), 1017-1026.

[15] E. J. Candès and Y. Plan, Tight oracle inequalities for low-rank matrix recovery from a minimal number of noisy random measurements, IEEE Trans. Inform. Theory, 57(2009), 2342-2359.

[16] E. J. Candès, J. K. Romberg and T. Tao, Stable signal recovery from incomplete and inaccurate measurements, Comm. Pure Appl. Math., 59(2006), 1207-1223.

[17] E. J. Candès, J. K. Romberg and T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inform. Theory, 52(2006), 489-509.

[18] E. J. Candès, T. Strohmer and V. Voroninski, Phaselift: exact and stable signal recovery from magnitude measurements via convex programming, Comm. Pure Appl. Math., 66(2013), 1241-1274.

[19] E. J. Candès and T. Tao, Decoding by linear programming, IEEE Trans. Inform. Theory, 51(2005), 4203-4215.

[20] E. Candès and T. Tao, The Dantzig selector: Statistical estimation when p is much larger than n, Ann. Statist., 35(2007), 2313-2351.
[21] E. J. Candès, T. Strohmer and V. Voroninski, PhaseLift: Exact and stable signal recovery from magnitude measurements via convex programming, Comm. Pure Appl. Math., 66(2013), 1241-1274.

[22] A. Chambolle, T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vision, 40(2011), 120-145.

[23] R. Chartrand and V. Staneva, Restricted isometry properties and nonconvex compressive sensing, Inverse Problems, 24(2008), 035020-1-035020-14.

[24] W. Chen and Y. Li, Stable recovery of low-rank matrix via nonconvex Schatten p-minimization, Science China Mathematics, 58(2015), 2643-2654.

[25] Y. Chen, Y. Chi and A. J. Goldsmith, Exact and stable covariance estimation from quadratic sampling via convex programming, IEEE Trans. Inform. Theory, 61(2015), 4034-4059.

[26] P. Combettes and J.-C. Pesquet, Proximal splitting methods in signal processing, In Fixed-Point Algorithms for Inverse Problems in Science and Engineering, ed. by H. Bauschke, R. Burachik, P. Combettes, V. Elser, D. Luke, H. Wolkowicz (Springer, New York, 2011), 185-212.

[27] M. E. Davies and Y. C. Eldar, Rank awareness in joint sparse recovery, IEEE Trans. Inform. Theory, 58(2012), 1135-1146.

[28] D. L. Donoho, Compressed sensing, IEEE Trans. Inform. Theory, 52(2006), 1289-1306.

[29] D. L. Donoho, M. Elad, and V. N. Temlyakov, Stable recovery of sparse overcomplete representations in the presence of noise, IEEE Trans. Inform. Theory, 52(2006), 6-18.

[30] S. T. Dumais, Latent semantic analysis, Ann. Rev. Inf. Sci. Tech., 38(1)(2004), 188-230.

[31] S. Foucart and H. Rauhut, A mathematical introduction to compressive sensing, Applied and Numerical Harmonic Analysis Series, New York: Birkhäuser/Springer, 2013.

[32] D. Gross,. Y.-K. Liu, S. T. Flammia, S. Becker and J. Eisert, Quantum state tomography via compressed sensing, Phys. Rev. Lett., 105(2010), 150401-150404.

[33] M. Kabanava, R. Kueng, H. Rauhut and U. Terstiege, Stable low-rank matrix recovery via null space properties, Information and Inference, 5(2016), 405-441.

[34] L. Kong and N. Xiu, Exact low-rank matrix recovery via nonconvex Schatten p-minimization, Asia-Pac. J. Oper. Res., 30(2013), 1340010-1-1340010-13.

[35] K. Lee and Y. Bresler, ADMiRA: Atomic decomposition for minimum rank approximation, IEEE Trans. Image Process., 56(2010), 4402-4416.
[36] X. Li and V. Voroninski, Sparse signal recovery from quadratic measurements via convex programming, SIAM J. Math. Anal., 45(2012), 3019-3033.

[37] Y. Li, Y. Sun and Y. Chi, Low-rank positive semidefinite matrix recovery from corrupted rank-One measurements, Trans. Signal Process., 65(2017), 397-408.

[38] N. Linial, E. London, and Y. Rabinovich, The geometry of graphs and some of its algorithmic applications, Combinatorica, 15(1995), 215-245.

[39] Z. Liu and L. Vandenberghe, Interior-point method for nuclear norm approximation with application to system identification, SIAM J. Matrix Anal. Appl., 31(2009), 1235-1256.

[40] G. Obozinski, B. Taskar, and M. I. Jordan, Joint covariate selection and joint subspace selection for multiple classification problems, Stat. Comput., 20(2010), 231-252.

[41] J. L. Powell, Least absolute deviations estimation for the censored regression model, J. Econometrics, 25(1984), 303-325.

[42] B. Recht, M. Fazel, and P. A. Parrilo, Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization, SIAM Rev., 52(2010), 471-501.

[43] A M.-C. So and Y. Ye, Theory of semidefinite programming for sensor network localization, Math. Program. Ser. B, 109(2007), 367-384.

[44] Q. Sun, Sparse approximation property and stable recovery of sparse signals from noisy measurements, IEEE Trans. Signal Process., 59(2011), 5086-5090.

[45] J. Tanner and K. Wei, Normalized iterative hard thresholding for matrix completion, SIAM J. Sci. Comput., 59(2013), 7491-7508.

[46] M. W. Trosset, Distance matrix completion by numerical optimization, Comput. Optim. Appl., 17(2000), 11-22.

[47] H. Wang, L. Kong and J. Tao, The linearized alternating direction method of multipliers for sparse group LAD model, Optim Lett, 1(2017), 1-21.

[48] L. Wang, The L_1 penalized LAD estimator for high dimensional linear regression, J. Multivariate Anal., 120(2012), 135-151.

[49] Z. Wei, Nuclear norm penalized LAD estimator for low rank matrix recovery, Ph. D., Massachusetts Institute of Technology, Cambridge, USA, 2015.

[50] M.-C. Yue and A. M.-C. So, A perturbation inequality for concave functions of singular values and its applications in low-rank matrix recovery, Appl. Comput. Harmon. Anal., 40(2016), 396-416.

[51] M. Zhang, Z.-H. Huang and Y. Zhang, Restricted p-isometry properties of non-convex matrix recovery, IEEE Trans. Inform. Theory, 59(2013), 4316-4323.
[52] R. Zhang and S. Li, A proof of conjecture on restricted isometry property constants $\delta_{tk} \ (0 < t < \frac{4}{3})$, IEEE Trans. Inform. Theory, (2017), DOI: 10.1109/TIT.2017.2705741.

[53] R. Zhang and S. Li, Optimal RIP bounds for sparse signals recovery via ℓ_p minimization, Appl. Comput. Harmon. Anal., 2017, doi:10.1016/j.acha.2017.10.004.