Optimal Cutoff Levels of More Sensitive Cardiac Troponin Assays for the Early Diagnosis of Myocardial Infarction in Patients With Renal Dysfunction

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

Citation: Twerenbold, R., K. Wildi, C. Jaeger, M. R. Gimenez, M. Reiter, T. Reichlin, A. Walukiewicz, et al. 2015. “Optimal Cutoff Levels of More Sensitive Cardiac Troponin Assays for the Early Diagnosis of Myocardial Infarction in Patients With Renal Dysfunction.” Circulation 131 (23): 2041-2050. doi:10.1161/CIRCULATIONAHA.114.014245. http://dx.doi.org/10.1161/CIRCULATIONAHA.114.014245.

Published Version: doi:10.1161/CIRCULATIONAHA.114.014245

Citable link: http://nrs.harvard.edu/urn-3:HUL.InstRepos:17820805

Terms of Use: This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Optimal Cutoff Levels of More Sensitive Cardiac Troponin Assays for the Early Diagnosis of Myocardial Infarction in Patients With Renal Dysfunction

Raphael Twerenbold, MD; Karin Wildi, MD; Cedric Jaeger, MD; Maria Rubini Gimenez, MD; Miriam Reiter, MD; Tobias Reichlin, MD; Astrid Walukiewicz, MD; Mathias Gugala, MD; Lian Krivoshei, MD; Nadine Marti, MD; Zoraida Moreno Weidmann, MD; Petra Hillinger, MD; Christian Puelacher, MD; Katharina Rentsch, PhD; Ursina Honegger, MSc; Carmela Schumacher, MSc; Felicitas Zurbriggen, MS; Michael Freese, RN; Claudia Stelzig, MSc; Isabel Campodarve, MD; Stefano Bassetti, MD; Stefan Osswald, MD; Christian Mueller, MD

Background—It is unknown whether more sensitive cardiac troponin (cTn) assays maintain their clinical utility in patients with renal dysfunction. Moreover, their optimal cutoff levels in this vulnerable patient population have not previously been defined.

Methods and Results—In this multicenter study, we examined the clinical utility of 7 more sensitive cTn assays (3 sensitive and 4 high-sensitivity cTn assays) in patients presenting with symptoms suggestive of acute myocardial infarction. Among 2813 unselected patients, 447 (16%) had renal dysfunction (defined as Modification of Diet in Renal Disease–estimated glomerular filtration rate <60 mL·min⁻¹·1.73 m⁻²). The final diagnosis was centrally adjudicated by 2 independent cardiologists using all available information, including coronary angiography and serial levels of high-sensitivity cTnT. Acute myocardial infarction was the final diagnosis in 36% of all patients with renal dysfunction. Among patients with renal dysfunction and elevated baseline cTn levels (≥99th percentile), acute myocardial infarction was the most common diagnosis for all assays (range, 45%–80%). In patients with renal dysfunction, diagnostic accuracy at presentation, quantified by the area under the receiver-operator characteristic curve, was 0.87 to 0.89 with no significant differences between the 7 more sensitive cTn assays and further increased to 0.91 to 0.95 at 3 hours. Overall, the area under the receiver-operator characteristic curve in patients with renal dysfunction was only slightly lower than in patients with normal renal function. The optimal receiver-operator characteristic curve–derived cTn cutoff levels in patients with renal dysfunction were significantly higher compared with those in patients with normal renal function (factor, 1.9–3.4).

Conclusions—More sensitive cTn assays maintain high diagnostic accuracy in patients with renal dysfunction. To ensure the best possible clinical use, assay-specific optimal cutoff levels, which are higher in patients with renal dysfunction, should be considered.

Clinical Trial Registration—URL: http://www.clinicaltrials.gov. Unique identifier: NCT00470587.

(Circulation. 2015;131:2041-2050. DOI: 10.1161/CIRCULATIONAHA.114.014245.)

Key Words: high-sensitivity • kidney • myocardial infarction • renal insufficiency • troponin
evaluation of alternative diagnoses and contribute to medical errors and costs associated with crowding in the emergency department (ED). 7–9

For several reasons, patients with renal dysfunction merit particular attention. First, the incidence of AMI is increased in this vulnerable subgroup.10,11 Second, atypical clinical presentation of AMI may be more frequent.12,13 Third, left ventricular hypertrophy is common and often results in ECG changes that may mimic or obscure AMI. Fourth, patients with renal dys-

More sensitive cardiac troponin (cTn) assays with a limit of detection below the 99th percentile of a healthy reference pop-

Methods

Study Design and Population

The Advantageous Predictors of Acute Coronary Syndrome Evaluation (APACE) is an ongoing prospective, international, multicenter study designed and coordinated by the University Hospital Basel (Basel, Switzerland).19,20 From April 2006 to June 2013, 3030 consecutive patients >18 years of age presenting to the ED with symptoms sug-

Details on the 7 cTn assays used in this analysis are given in the Methods sec-

Adjudicated Final Diagnosis

Adjudication of the final diagnosis was performed centrally in a core laboratory (University Hospital Basel) and included levels of Roche hs-cTnT to take advantage of the higher sensitivity and higher overall diagnostic accuracy offered by hs-cTn assays (which allows the addi-

Investigational cTn Analysis

Details on the 7 cTn assays used in this analysis are given in the Methods sec-

Follow-Up and Clinical End Points

After hospital discharge, patients were contacted after 3, 12, and 24 months by telephone calls or in written form. Information on death was furthermore obtained from the national registry on mortality, the diagnosis registry of the hospitals, and the family physicians’ records. The primary prognostic end point was survival within 2 years.

Statistical Analysis

Details on statistical analysis can be found in the online-only Data Supplement.
Results

Patient Characteristics

Among the 2813 unselected patients in the total cohort, 447 (16%) had renal dysfunction (Table 1). Among the 7 assay-specific subcohorts, baseline characteristics and final diagnoses were comparable (Table I in the online-only Data Supplement). Patients with renal dysfunction differed from patients with normal renal function in multiple baseline characteristics, including higher prevalence

Table 1. Baseline Patient Characteristics
All Patients (n=2813)

Male sex, n (%)
Age, median (Q1, Q3), y

Cardiovascular risk factors, n (%)

- Diabetes mellitus: 488 (17) vs. 363 (15) vs. 125 (28) <0.001, 49 (31) vs. 76 (26) 0.039
- Current smoking: 720 (26) vs. 675 (29) vs. 45 (10) <0.001, 22 (14) vs. 23 (8) 0.803
- History of smoking: 1013 (36) vs. 823 (35) vs. 190 (43) <0.001, 58 (37) vs. 132 (46) 0.089
- Hypercholesterolemia: 1407 (50) vs. 1099 (46) vs. 308 (69) <0.001, 119 (74) vs. 189 (66) 0.062
- Hypertension: 1741 (62) vs. 1342 (57) vs. 399 (89) <0.001, 148 (93) vs. 251 (88) 0.099

History, n (%)

- Known coronary artery disease: 965 (34) vs. 714 (30) vs. 251 (56) <0.001, 96 (60) vs. 155 (54) 0.221
- Previous myocardial infarction: 653 (23) vs. 475 (20) vs. 178 (40) <0.001, 70 (44) vs. 108 (38) 0.205
- Previous revascularization: 768 (27) vs. 590 (25) vs. 178 (40) <0.001, 65 (41) vs. 113 (39) 0.795
- Peripheral artery disease: 171 (6) vs. 112 (5) vs. 59 (13) <0.001, 27 (17) vs. 32 (11) 0.086
- Previous stroke: 154 (6) vs. 106 (5) vs. 48 (11) <0.001, 22 (14) vs. 26 (9) 0.125

Vital status, median (Q1, Q3)

- Heart rate, bpm: 76 (66, 89) vs. 76 (66, 89) vs. 74 (63, 91) 0.162, 79 (63, 96) vs. 73 (63, 88) 0.033
- Systolic blood pressure, mm Hg: 141 (127, 159) vs. 142 (128, 159) vs. 138 (120, 157) 0.001, 137 (119, 159) vs. 139 (120, 159) 0.213
- Diastolic blood pressure, mm Hg: 82 (72, 92) vs. 83 (74, 92) vs. 75 (65, 86) <0.001, 74 (65, 84) vs. 76 (65, 87) 0.157
- Body mass index, kg/m²: 26 (24, 30) vs. 26 (24, 30) vs. 27 (24, 30) 0.414, 25 (23, 28) vs. 27 (25, 31) <0.001

ECG, n (%)

- ST-segment elevation: 134 (5) vs. 110 (5) vs. 24 (6) 0.010, 23 (15) vs. 1 (0.4) <0.001
- ST-segment depression: 322 (11) vs. 228 (10) vs. 94 (21) <0.001, 61 (38) vs. 33 (11) <0.001
- T-wave inversion: 375 (13) vs. 287 (12) vs. 88 (20) <0.001, 46 (29) vs. 42 (15) <0.001
- Left bundle-branch block: 81 (3) vs. 52 (2) vs. 29 (7) <0.001, 16 (10) vs. 13 (5) 0.024

Diagnostic examinations and interventions,‡ n (%)

- Stress testing: 711 (25) vs. 626 (27) vs. 85 (19) <0.001, 20 (13) vs. 65 (23) 0.009
- Coronary angiographies: 739 (26) vs. 590 (25) vs. 149 (33) >0.001, 94 (59) vs. 55 (19) <0.001
- Coronary interventions: 443 (16) vs. 357 (15) vs. 86 (19) 0.027, 64 (40) vs. 22 (8) <0.001
- CABG: 64 (2) vs. 52 (2) vs. 12 (3) 0.527, 10 (6) vs. 2 (1) <0.001

Renal function, median (Q1, Q3)

- Creatinine, μmol/L: 76 (65, 90) vs. 72 (63, 83) vs. 116 (99, 139) <0.001, 120 (106, 147) vs. 115 (96, 135) 0.038
- MDRD eGFR, mL·min⁻¹·1.73 m⁻²: 85 (69, 101) vs. 90 (77, 104) vs. 49 (39, 55) <0.001, 47 (37, 55) vs. 49 (41, 55) 0.089

Stages of renal dysfunction, n (%)

- eGFR 30–59 mL·min⁻¹·1.73 m⁻²: 403 (14) vs. ... vs. 403 (90) 141 (88) 262 (91) 0.491
- eGFR 15–29 mL·min⁻¹·1.73 m⁻²: 34 (1) vs. ... vs. 34 (8) NA 14 (9) 20 (7)
- eGFR <15 mL·min⁻¹·1.73 m⁻²: 10 (0.4) vs. ... vs. 10 (2) 5 (3) 5 (2)

AMI indicates acute myocardial infarction; CABG, coronary artery bypass graft; eGFR, estimated glomerular filtration rate; MDRD, Modification of Diet in Renal Disease; Q1, quartile 1; and Q3, quartile 3.

*Renal dysfunction was diagnosed if the MDRD eGFR was <60 mL·min⁻¹·1.73 m⁻² at presentation.
†The χ² test was used for comparison of proportions.
‡Performed during or directly after the index visit (within 1 month).
of cardiovascular risk factors, previous myocardial infarction, stroke, and ECG abnormalities. In patients with renal dysfunction, the total rate of additional cardiac testing related to AMI diagnosis (in addition to detailed history, ECG, cTn, chest x-ray), including coronary angiography or cardiac stress testing with or without imaging, was similar to that of patients with normal renal function (52% in both groups; \(P=\text{NS} \)). Coronary angiography was performed more frequently in patients with renal dysfunction (33%) compared with patients with normal renal function (25%; \(P<0.001 \)).

AMI was the adjudicated final diagnosis in 36% of patients with renal dysfunction compared with 18% in patients with normal renal function (\(P<0.001 \)). Both type I AMI and type II AMI were more frequent in patients with renal dysfunction. Among patients with non–ST-segment–elevation myocardial infarction, type II AMI was seen in 23% of patients with renal dysfunction compared with 10% in patients with normal renal function (\(P<0.001 \); Table II in the online-only Data Supplement). Disagreement between the 2 independent cardiologists adjudicating the final diagnosis was more common in patients with renal dysfunction compared with patients with normal renal function (8.7% versus 5.9%; \(P=0.023 \)) and tended to be more common in patients presenting with elevated levels of hs-cTnT compared with patients presenting with normal levels of hs-cTnT (7.4% versus 5.7%; \(P=0.063 \)).

cTn Levels at Presentation

In patients with renal dysfunction and in patients with normal renal function, cTn levels at presentation, as assessed by all 7 more sensitive cTn assays, were significantly higher in patients whose final diagnosis was AMI compared with those with other diagnoses (\(P<0.001 \) for comparisons). Among the patients whose final diagnosis was not AMI, patients with renal dysfunction had significantly higher baseline levels of all 7 more sensitive cTn assays compared with patients with normal renal function (\(P<0.001 \) for all comparisons with patients with normal renal function). Overall, 12% of patients with renal dysfunction and a final diagnosis other than AMI had elevated baseline levels above the 99th percentile with Abbott-Architect s-cTnI, 20% with Siemens-Ultra s-cTnI, 12% with Beckman-Coulter Accu s-cTnI, 71% with Roche hs-cTnT, 17% with Abbott hs-cTnI, 46% with Siemens hs-cTnI, and 54% with Beckman-Coulter hs-cTnI. Among patients with normal renal function, the percentages were significantly lower (7%, 7%, 7%, 15%, 6%, 23%, and 21%, respectively; \(P<0.001 \) for all comparisons; Figure 1). Among patients with renal dysfunction and elevated (\(\geq 99\text{th percentile} \)) baseline cTn levels, AMI was the most common diagnosis for all assays (range, 45%–80%; Figure 2). Among patients with renal dysfunction and normal baseline cTn levels, noncardiac cause of chest pain is the most common diagnosis (Figure I in the online-only Data Supplement). Details on median absolute changes of hs-cTnT during serial sampling are shown in Table IIIA and IIB in the online-only Data Supplement.

Correlations Between cTn Levels and eGFR

Among patients with final diagnoses other than AMI, all 7 more sensitive cTn assays correlated significantly and inversely with renal function as quantified with the Modification of Diet in Renal Disease eGFR formula (correlation coefficient, \(r \), ranging from \(-0.448 \) to \(-0.222 \); \(P<0.001 \) for all correlations). The correlation between eGFR and hs-cTnT was stronger compared with the correlation between eGFR and hs-cTnI as measured with all assays (Figure II in the online-only Data Supplement).

Diagnostic Accuracy of More Sensitive cTn

In patients with renal dysfunction, the diagnostic accuracy for measurements obtained at presentation, as quantified by the area under the receiver-operating characteristic curve (AUC), overall was high (AUC, 0.87–0.89) for all 7 more sensitive cTn assays compared with patients with normal renal function (\(P<0.001 \) for all comparisons with patients with normal renal function). Overall, 12% of patients with renal dysfunction and a final diagnosis other than AMI had elevated baseline levels above the 99th percentile with Abbott-Architect s-cTnI, 20% with Siemens-Ultra s-cTnI, 12% with Beckman-Coulter Accu s-cTnI, 71% with Roche hs-cTnT, 17% with Abbott hs-cTnI, 46% with Siemens hs-cTnI, and 54% with Beckman-Coulter hs-cTnI. Among patients with normal renal function, the percentages were significantly lower (7%, 7%, 7%, 15%, 6%, 23%, and 21%, respectively; \(P<0.001 \) for all comparisons; Figure 1). Among patients with renal dysfunction and elevated (\(\geq 99\text{th percentile} \)) baseline cTn levels, AMI was the most common diagnosis for all assays (range, 45%–80%; Figure 2). Among patients with renal dysfunction and normal baseline cTn levels, noncardiac cause of chest pain is the most common diagnosis (Figure I in the online-only Data Supplement). Details on median absolute changes of hs-cTnT during serial sampling are shown in Table IIIA and IIB in the online-only Data Supplement.

Figure 1. Baseline levels of more sensitive cardiac troponin (cTn) assays at presentation in patients with final diagnosis other than acute myocardial infarction. cTn levels are displayed as multiples of the 99th percentile. Boxes represent interquartile ranges; whiskers display ranges (without outliers further than 1.5 interquartile ranges). Left, In patients with normal renal function. Right, In patients with renal dysfunction.
sensitive-cTn assays (Table 2 and Figure 3). Diagnostic accuracy further increased to 0.91 to 0.95 for samples obtained at 3 hours (Table IV in the online-only Data Supplement) and for combinations of the baseline level with early absolute changes (eg, at 1 hour: AUC, 0.90–0.93; Table V in the online-only Data Supplement). No significant differences among the 7 more sensitive cTn assays were observed (P=NS for all comparisons). Overall, the AUCs in patients with renal dysfunction were only slightly lower than in patients with normal renal function. The AUC for levels obtained at presentation in patients with normal renal function was 0.91 to 0.94 (P<0.05 for the 4 assays with the largest sample size/comparisons with patients with renal dysfunction).

Among patients with different stages of renal dysfunction, AUCs for all more sensitive cTn assays were lower in the lowest tertile of renal function (eGFR ≤42 mL·min⁻¹·1.73 m⁻²) compared with the intermediate tertile (eGFR, 42–53 mL·min⁻¹·1.73 m⁻²). This difference was statistical significant for the 3 assays with the largest sample size. In contrast, the AUCs were comparable for all assays in patients in the highest tertile (eGFR >53 mL·min⁻¹·1.73 m⁻²) and the intermediate tertile (Table VI in the online-only Data Supplement).

Diagnostic Performance in the Early Diagnosis of AMI at the 99th Percentile

Overall, at the 99th percentile, all 7 more sensitive cTn assays showed higher sensitivity (77%–98%) in patients with renal dysfunction compared with patients with normal renal function. This increase in sensitivity, however, was associated with a decrease in specificity (32%–89%; P<0.001; Table VIIA and VIIIB in the online-only Data Supplement). Sensitivity and specificity at the 99th percentile differed markedly between the more sensitive cTn assays. For 3 of the 4 hs-cTn assays, the specificity and positive predictive value at the 99th percentile were <60% and 55%, respectively.

Optimal Cutoff Levels for cTn in the Early Diagnosis of AMI

The optimal cutoff levels to separate cTn from other conditions underlying acute chest pain in the ED determined by the receiver-operator characteristic curve analysis in patients with renal dysfunction were close to the 99th percentile for the 3 s-cTn assays (1.0 times the 99th percentile for Abbott-Architect s-cTnI, 1.2 times the 99th percentile for Siemens Ultra s-cTnI, and 0.9 times the 99th percentile for Beckman-Coulter Accu s-cTnI) and substantially higher for most hs-cTn assays (2.1 times the 99th percentile for Roche hs-cTnT, 1.1 times the 99th percentile for Abbott-Architect hs-cTnI, 3.6 times the 99th percentile for Siemens hs-cTnI, and 2.8 times the 99th percentile for Beckman-Coulter hs-cTnI).

Overall, all cutoff levels fulfilling a predefined criteria (derived by receiver-operator characteristic curve, optimized for sensitivity, optimized for specificity) were higher in patients with renal dysfunction compared with patients with normal renal function. The optimal receiver-operator characteristic curve–derived cutoff levels in patients with renal dysfunction were 1.9 to 3.4 times the levels in patients with normal renal function.

Prognostic Performance of More Sensitive cTn in Renal Dysfunction

Median follow-up was 759 days (first quartile, 455 days; third quartile, 895 days). Overall, 182 patients (6%) died during follow-up. Cumulative survival at 2 years was 79% in patients with renal dysfunction versus 96% in patients with normal renal function (log-rank P<0.001; Figure III in the online-only Data Supplement). Survival was 67% among patients with renal dysfunction and AMI versus 85% in patients with renal dysfunction and diagnoses other than AMI (log-rank P<0.001). Levels of cTn as measured with all 7 more sensitive cTn assays were higher in deceased patients compared with survivors and accordingly predicted long-term survival (Table VIII and Figure IV in the online-only Data Supplement).
Renal Dysfunction

In this multicenter study, we examined the diagnostic performance and identified the optimal cutoff levels of 7 more sensitive cTn assays for the early diagnosis of AMI in patients with renal dysfunction. We report 7 novel findings that have important clinical implications for the early diagnosis of AMI in that they clearly highlight that more sensitive cTn assays maintain high diagnostic utility in patients with renal dysfunction as long as optimized cutoff levels are used.

First, cTn levels at presentation, as assessed by all 7 more sensitive cTn assays, were significantly higher in patients whose final diagnosis was AMI compared with those with other final diagnoses. The prevalence of elevated cTn levels above the 99th percentile in patients with renal dysfunction and a final diagnosis other than AMI differed substantially among the 7 more sensitive cTn assays, ranging from 12% to 71%. Second, despite this, AMI remained the most common final diagnosis among patients with elevated cTn levels for all assays (range, 45%–80%). Third and perhaps most important, for all 7 more sensitive cTn assays, the diagnostic accuracy at presentation was high in patients with renal dysfunction with an AUC ranging from 0.87 to 0.89 and further increased for later sampling points and for combinations of the baseline level or cutoff levels at presentation to the ED. Alternatively, if we aim to rule in AMI at presentation to the ED, the cutoff level achieving high sensitivity and negative predictive value will likely be lower than the 99th percentile to allow for a further increase in cTn during serial sampling.

Discussion

In this multicenter study, we examined the diagnostic performance and identified the optimal cutoff levels of 7 more sensitive cTn assays for the early diagnosis of AMI in patients with renal dysfunction. We report 7 novel findings that have important clinical implications for the early diagnosis of AMI in that they clearly highlight that more sensitive cTn assays maintain high diagnostic utility in patients with renal dysfunction as long as optimized cutoff levels are used.

First, cTn levels at presentation, as assessed by all 7 more sensitive cTn assays, were significantly higher in patients whose final diagnosis was AMI compared with those with other final diagnoses. The prevalence of elevated cTn levels above the 99th percentile in patients with renal dysfunction and a final diagnosis other than AMI differed substantially among the 7 more sensitive cTn assays, ranging from 12% to 71%. Second, despite this, AMI remained the most common final diagnosis among patients with elevated cTn levels for all assays (range, 45%–80%). Third and perhaps most important, for all 7 more sensitive cTn assays, the diagnostic accuracy at presentation was high in patients with renal dysfunction with an AUC ranging from 0.87 to 0.89 and further increased for later sampling points and for combinations of the baseline level or cutoff levels at presentation to the ED. Alternatively, if we aim to rule in AMI at presentation to the ED, the cutoff level achieving high sensitivity and negative predictive value will likely be lower than the 99th percentile to allow for a further increase in cTn during serial sampling.

Second, despite this, AMI remained the most common final diagnosis among patients with elevated cTn levels for all assays (range, 45%–80%). Third and perhaps most important, for all 7 more sensitive cTn assays, the diagnostic accuracy at presentation was high in patients with renal dysfunction with an AUC ranging from 0.87 to 0.89 and further increased for later sampling points and for combinations of the baseline level or cutoff levels at presentation to the ED. Alternatively, if we aim to rule in AMI at presentation to the ED, the cutoff level achieving high sensitivity and negative predictive value will likely be lower than the 99th percentile to allow for a further increase in cTn during serial sampling.

Third and perhaps most important, for all 7 more sensitive cTn assays, the diagnostic accuracy at presentation was high in patients with renal dysfunction with an AUC ranging from 0.87 to 0.89 and further increased for later sampling points and for combinations of the baseline level or cutoff levels at presentation to the ED. Alternatively, if we aim to rule in AMI at presentation to the ED, the cutoff level achieving high sensitivity and negative predictive value will likely be lower than the 99th percentile to allow for a further increase in cTn during serial sampling.

Fourth, diagnostic accuracies were comparable among the 7 more sensitive cTn assays in patients with renal dysfunction with no systematic superiority of hs-cTn assays over sensitive assays. Fifth, at the 99th percentile, all cTn assays showed higher sensitivity but lower specificity in patients with renal dysfunction compared with patients with normal renal function, reflecting the higher baseline levels observed in patients with renal dysfunction even in the absence of AMI. Sixth, the receiver-operator characteristic curve–derived optimal cutoff levels

Table 2. Diagnostic Performance of cTn at Presentation in Patients With Renal Dysfunction and in Patients With Normal Renal Function

Assay	Normal Renal Function	Renal Dysfunction			
	n	ROC AUC (95% CI)	n	ROC AUC (95% CI)	P-Value*
s-cTn assays					
Beckman-Coulter s-cTnI	964	0.92 (0.89–0.94)	190	0.89 (0.84–0.94)	0.576
Siemens Ultra s-cTnI	2247	0.92 (0.91–0.94)	416	0.87 (0.84–0.91)	0.013
Abbott-Architect s-cTnI	1095	0.91 (0.89–0.94)	219	0.89 (0.85–0.94)	0.449
hs-cTn assays					
Roche hs-cTnT	2366	0.94 (0.93–0.95)	447	0.87 (0.84–0.91)	<0.001
Siemens Ultra hs-cTnI	1591	0.94 (0.92–0.95)	283	0.89 (0.84–0.93)	0.034
Beckman-Coulter hs-cTnT	964	0.93 (0.90–0.95)	190	0.89 (0.84–0.94)	0.217

CI indicates confidence interval; cTn, cardiac troponin; hs, high-sensitivity; ROC AUC, area under the receiver-operating characteristic curve; and s, sensitive.

*Comparisons of the ROC AUC of patients with renal dysfunction and normal renal function.

Although the 99th percentile of healthy individuals is the undisputed reference value to diagnose AMI according to the universal definition of AMI, optimal clinical decision levels or cutoff levels at presentation to the ED may well differ from the 99th percentile of healthy individuals. For example, if we aim to rule out AMI at presentation to the ED, the cutoff level achieving high sensitivity and negative predictive value will likely be lower than the 99th percentile to allow for a further increase in cTn during serial sampling. Alternatively, if we aim to rule in AMI at presentation to the ED, the cutoff level achieving high specificity and positive predictive value will likely be higher than the 99th percentile because mild elevations in cTn can often be caused by conditions other than AMI. The fine-tuning of clinical decision levels for specific clinical settings (eg, ED) and patient populations (eg, renal dysfunction) is a key step in the clinical implementation of novel diagnostic tools such as biomarkers and has recently been done successfully for other biomarkers such as B-type natriuretic peptide and procalcitonin.

Our findings highlight that these clinical decision levels are assay specific and need to be determined for each assay individually. For example, the clinical decision level for cTn assay A achieving a specificity of 90% in patients with renal dysfunction cannot be reliably extrapolated from observations made with cTn assay B. To some extent, this requirement is explained by biochemical differences among the cTn assays and the challenges to define a healthy reference population to determine the 99th percentile. The 99th percentile is currently derived for each assay individually in
unstandardized, healthy cohorts that differ from community-based cohorts.37 In addition, as shown, for example, by Gore et al,37 the 99th percentile of community-based cohorts also differs largely and will depend on the cohort’s mean age and the prevalence of cardiovascular comorbidities and renal dysfunction. Some of the differences observed for the performance of the more sensitive cTn assays at the respective 99th percentile of healthy individuals may be associated at least in part with differences between the cohorts of healthy individuals chosen for the determination of the 99th percentile.

Figure 3. Diagnostic performance of cardiac troponin (cTn) at presentation in renal dysfunction. Receiver-operating characteristic (ROC) curves are describing the diagnostic performance of the 3 sensitive (s; green) and 4 high-sensitivity (hs; red) cTn assays at presentation for the diagnosis of acute myocardial infarction in patients with renal dysfunction. The figure containing multiple curves (upper left corner) is based on the subset of patients in whom data for all 7 assays are available. The figures for the individual assays are based on all patients with available data for the respective assays to maximize precision for the determination of the respective predefined cutoff levels, which are marked as follows: 1=99th percentile, 2=optimal cutoff derived from the ROC curve, 3=sensitivity ≥90%, 4=sensitivity ≥95%, 5=specificity ≥80%, and 6=specificity ≥90%.
Of note, the 99th percentile of the Roche hs-cTnT, the assay used for the adjudication of the final diagnosis in the present analysis, has rather consistently been reported to be \(\geq 14 \text{ ng/L} \), whereas the findings for other hs-cTn assays have been more variable.\(^{38,39}\)

Our data also confirm previous observations that the diagnostic challenge in patients with renal dysfunction appears to be largely confined to patients presenting without persistent ST-segment elevation and that ST-segment depression or T-wave inversion is much more common in patients with renal dysfunction, even in the absence of AMI.\(^ {2-4}\)

This study is the first analysis that specifically examined diagnostic performance of more sensitive cTn assays in patients presenting to the ED with renal dysfunction and symptoms suggestive of AMI. Our findings may also help to better put into perspective a contradictory conclusion derived from a recent retrospective single-center study analyzing all ED patients with renal dysfunction regardless of symptoms, clinical gestalt, and clinical pretest probability for AMI, which reported lower-than-expected diagnostic accuracy of hs-cTnT for AMI.\(^ {22}\) In that cohort, only 37% of patients had a clinical suspicion of AMI, and trauma, stroke, epileptic seizures, and acute heart failure accounted for the majority of patients. In those patients, the clinical role of measuring cTn is controversial and not at all comparable to the measurement in patients presenting with suspected AMI. In addition, that population of patients provides important methodological challenges for the adjudication of AMI based on the information obtained during routine clinical care, which might have further contributed to those findings. The findings from this prospective multicenter study using a gold standard diagnosis centrally adjudicated by 2 independent cardiologists should help to avoid possible misunderstandings related to the diagnostic utility of more sensitive cTn assays in patients with suspected AMI and renal dysfunctions.

The following limitations of the present study merit consideration. First, we evaluated 7 more sensitive-cTn assays. We hypothesize that our findings can be generalized to other cTn assays with similar sensitivity and precision. However, additional studies need to confirm this hypothesis. Second, in this ongoing prospective study, the subgroup analysis of patients with renal dysfunction was not predefined at the time of the writing of the first protocol but was added as an amendment in 2009, when we were still blinded to the results. Third, we cannot comment on the clinical utility of more sensitive cTn assays in patients undergoing dialysis because such patients were excluded from our study.\(^ {39}\)

Fourth, to reflect the clinical information available to the ED physician when interpreting cTn levels, we classified renal dysfunction according to cGFR on the basis of the serum creatinine level obtained in the ED. Accordingly, this classification differs from the definition of chronic kidney disease, which would require renal dysfunction to be present for 3 months.\(^ {25-27}\)

Conclusions

More sensitive cTn assays maintain high diagnostic accuracy in patients with suspected AMI and renal dysfunction. To ensure the best possible clinical use, assay-specific optimal cutoff levels, which are higher in patients with renal dysfunction, should be considered.

Sources of Funding

The study was supported by research grants from the Swiss National Science Foundation, the Swiss Heart Foundation, the Cardiovascular Research Foundation Basel, the University Hospital Basel, Abbott, Roche, Nanosphere, Siemens, 8sense, Bühllman, and B.R.A.H.M.S.

Disclosures

Dr Mueller has received research grants from the Swiss National Science Foundation and the Swiss Heart Foundation, the Cardiovascular Research Foundation Basel, 8sense, Abbott, ALERE, Brahms, Critical Diagnostics, Nanosphere, Roche, Siemens, and the University Hospital Basel, as well as speaker honoraria from Abbott, ALERE, Brahms, Novartis, Roche, and Siemens. Dr Reichlin has received research grants from the Swiss National Science Foundation (PASMP3-136995), the Swiss Heart Foundation, the University of Basel, the Professor Max Cloetta Foundation, and the Department of Internal Medicine, University Hospital Basel, as well as speaker honoraria from Brahms and Roche. The other authors report no conflicts. The sponsors had no role in the design of the study, the analysis of the data, the preparation of the manuscript, or the decision to submit the manuscript for publication.

References

1. Jneid H, Anderson JL, Wright RS, Adams CD, Bridges CR, Casey DE Jr, Ettinger SM, Fesmire FM, Ganiats TG, Lincoff AM, Peterson ED, Philippides GJ, Theroux P, Wenger NK, Zidar JP, Anderson JL, 2012 Writing Committee Members; American College of Cardiology Foundation; American Heart Association Task Force on Practice Guidelines. 2012 ACCF/AHA focused update of the guideline for the management of patients with unstable angina/non-ST-elevation myocardial infarction (updating the 2007 guideline and replacing the 2011 focused update): a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation. 2012;126:875–910. doi: 10.1161/CIR.0b013e318256f1e0.

2. Hamm CW, Bassand JP, Agewall S, Bax J, Boersma E, Bueno H, Caso P, Dudek D, Gielen S, Huber K, Ohman M, Petrie MC, Sonntag F, Uva MS, Storey RF, Wijns W, Zahger D; ESC Committee for Practice Guidelines. ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: the Task Force for the management of acute coronary syndromes (ACS) in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC), Eur Heart J. 2011;32:2999–3054. doi: 10.1093/eurheartj/ehr236.

3. O’Gara PT, Kushner FG, Ascheim DD, Casey DE Jr, Chung MK, de Lemos JA, Ettinger SM, Fang JC, Fesmire FM, Franklin BA, Granger CB, Krumholz HM, Linderbaum JA, Morrow DA, Newby LK, Ornato JP, Ou N, Radford MJ, Tamis-Holland JE, Tommaso JE, Tracy CM, Woo YJ, Zhao DX; Force CAT. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: executive summary : a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2013;127:529–555.

4. Thyegeen K, Alpert JS, White HD, Jaffe AS, Apple FS, Galvani M, Katus HA, Newby LK, Ravkilde J, Chaitman B, Clemmensen PM, Dellborg M, Hod H, Porela P, Underwood R, Bax JJ, Beller GA, Bonow R, Van der Wall EE, Bassand JP, Wijns W, Ferguson TB, Steg PG, Uretsky BF, Williams DO, Armstrong PW, Antman EM, Fox KA, Hamm CW, Ohman EM, Simoons ML, Poole-Wilson PA, Gurinkel EP, Lopez-Sendon JL, Pais P, Mendis S, Zia JR, Wallentin LC, Fernández-Avilés F, Fox KM, Parkhomenko AN, Priori SG, Tendera M, Voipio-Pulkki LM, Vahanian A, Camm AJ, De Caterina R, Dean V, Dickstein K, Filippatos G, Funcck-Brentano C, Hellemans I, Kristensen SD, McGregor K, Sechtem U, Silber S, Tendler M, Widimsky P, Zamorano JL, Morais J, Bremer S, Harrington R, Morrow D, Lim M, Martinez-Rios MA, Steinhulb S, Levine GN, G Ihnen WB, Goff D, Tiberio M, Dudek D, Al-Attar N; Joint ESC/ACCF/AHA/WHF Task Force for the
Redefinition of Myocardial Infarction. Universal definition of myocardial infarction. Circulation. 2007;116:2634–2653. doi: 10.1161/CIRCULATIONAHA.107.187397.

5. Anderson JL, Adams CD, Antman EM, Bridges CR, Califf RM, Casey DE Jr, Chavey WE 2nd, Fesmire FM, Hochman JS, Levin TN, Lincoff AM, Peterson ED, Theroux P, Wenger NK, Wright RS, Smith SC Jr; 2011 Writing Group Members; ACCF/AHA Task Force Members. 2011 ACCF/AHA focused update incorporated into the ACC/AHA 2007 guidelines for the management of patients with unstable angina/non-ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2011;123:e426–e579. doi: 10.1161/0100h.00000000000002752.

20. Flores-Solís LM, Hernández-Domínguez JL. Cardiac troponin I in patients with chronic kidney disease stage 3 to 5 in conditions other than acute coronary syndrome. Clin Lab. 2014;60:281–290.

21. Chen S, Huang C, Wu B, Lian X, Mei X, Wan J. Cardiac troponin I in non-acute coronary syndrome patients with chronic kidney disease. PLoS One. 2013;8:e65275. doi: 10.1371/journal.pone.0065275.

22. Pförtmueller CA, Funk GC, Marti G, Leichtle AB, Fiedler GM, Schwarz C, Exadaktylos AK, Lindner G. Diagnostic performance of high-sensitive troponin I in patients with renal insufficiency. Am J Cardiol. 2013;112:1968–1972. doi: 10.1016/j.amjcard.2013.08.028.

23. Reichlin T, Irfan A, Twerjenbord R, Reiter M, Hochholzer W, Burkharter H, Basseti S, Steuer S, Winkler K, Peter F, Meisner J, Haaf P, Potokcy M, Dreixler B, Oswald S, Mueller C. Utility of absolute and relative changes in cardiac troponin concentrations in the early diagnosis of acute myocardial infarction. Circulation. 2011;124:136–145. doi: 10.1161/CIRCULATIONAHA.110.223937.

24. Reiter M, Twerenbrol R, Reichlin T, Haaf P, Peter F, Meissner J, Hochholzer W, Stelzig C, Freese M, Heinisch C, Breidhtardt T, Freidank H, Winkler K, Campodarve I, Gea J, Mueller C. Early diagnosis of acute myocardial infarction in the elderly using more sensitive cardiac troponin assays. Eur Heart J. 2011;32:1379–1389. doi: 10.1093/eurheartj/eh1033.

25. Levey AS, Boschi JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate rate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation: Modification of Diet in Renal Disease Study Group. Ann Intern Med. 1999;130:461–470.

26. Levey AS, Coresh J, Balk E, Kausz AT, Levin A, Steffes MW, Hogg RJ, Perrone RD, Lau J, Eknayan G; National Kidney Foundation. National Kidney Foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Ann Intern Med. 2003;139:137–147.

27. Thysgen K, Alpert JS, White HD; Joint ESC/ACCF/AHA/WHF Task Force for the Redefinition of Myocardial Infarction. Universal definition of myocardial infarction. Eur Heart J. 2007;28:2525–2538. doi: 10.1093/eurheartj/ehm355.

28. Apple FS, Wu AH, Jaffe AS. European Society of Cardiology and American College of Cardiology guidelines for redefinition of myocardial infarction: how to use existing assays clinically and for clinical trials. Am Heart J. 2002;144:981–986. doi: 10.1067/mhj.2002.124048.

29. Omland T, de Lemos JA, Sabatine MS, Christophi CA, Rice MM, Jablonski KA, Tjora S, Domanski MJ, Gersh BJ, Rouleau JL, Pfeffer MA, Braunwald E; Prevention of Events with Angiotensin Converting Enzyme inhibition (PEACE) Trial Investigators. A sensitive cardiac troponin T assay in stable coronary artery disease. N Engl J Med. 2009;361:2538–2545. doi: 10.1056/NEJMoa0905299.

30. Eggers KM, Lamerquest B, Venge P, Wallentin L, Lindahl B; Persistent cardiac troponin I elevation in stabilized patients after an episode of acute coronary syndrome predicts long-term mortality. Circulation. 2007;116:1142–1143, A9.

31. Nakamura S, Uto T, Inenaga T, Kimura G. Prediction of coronary artery disease, complex ventricular arrhythmias, and silent myocardial ischemia and incidence of new coronary events in older persons with chronic renal insufficiency and with normal renal function. Am J Cardiol. 2000;86:1142–1143, A9.

32. Michos ED, Wilson LM, Yeh HC, Berger Z, Suarez-Cuervo C, Stacy SR, Bass EB. Prognostic value of cardiac troponin in patients with chronic kidney disease without suspected acute coronary syndrome: a systematic review and meta-analysis. Ann Intern Med. 2014;161:491–501. doi: 10.7326/M14-0743.

33. Stacy SR, Suarez-Cuervo C, Berger Z, Wilson LM, Yeh HC, Bass EB, Michos ED. Role of troponin in patients with chronic kidney disease and suspected acute coronary syndrome: a systematic review. Ann Intern Med. 2014;161:502–512. doi: 10.7326/M14-0746.

34. Maisel AS, Clopton P, Krishnaswamy P, Nowak RM, McCord J, Hocenauer JE, Duc P, Omland T, Storrow AB, Abraham WT, Wu AH, Steger HC, Bass EB. Prognostic value of cardiac troponin in patients with chronic kidney disease without suspected acute coronary syndrome: a systematic review and meta-analysis. Ann Intern Med. 2014;161:491–501. doi: 10.7326/M14-0743.

35. Stoyka LM, Stolz D, Bingisser R, Müller C, Miedinger D, Huber PR, Zimmerl W, Harbarth S, Tamann M, Müller B. Procalcitonin guidance of antibiotic therapy in community-acquired pneumonia: a systematic review. Ann Intern Med. 2007;146:647–654. doi: 10.7326/0003-4819-146-9-200705150-00005.
randomized trial. Am J Respir Crit Care Med. 2006;174:84–93. doi: 10.1164/rccm.200512-1922OC.

37. Gore MO, Seliger SL, Defilippi CR, Nambi V, Christenson RH, Hashim IA, Hoogeveen RC, Ayers CR, Sun W, McGuire DK, Ballantyne CM, de Lemos IA. Age- and sex-dependent upper reference limits for the high-sensitivity cardiac troponin T assay. J Am Coll Cardiol. 2014;63:1441–1448. doi: 10.1016/j.jacc.2013.12.032.

38. Sandoval Y, Apple FS. The global need to define normality: the 99th percentile value of cardiac troponin. Clin Chem. 2014;60:455–462. doi: 10.1373/clinchem.2013.211706.

39. Artunc F, Mueller C, Breidthardt T, Twerebold R, Peter A, Thamer C, Weyrich P, Haring HU, Friedrich B. Sensitive troponins: which suits better for hemodialysis patients? Associated factors and prediction of mortality. PLoS One. 2012;7:e47610. doi: 10.1371/journal.pone.0047610.

CLINICAL PERSPECTIVE

In this multicenter study, we examined the diagnostic performance and identified the optimal cutoff levels of 7 more sensitive cardiac troponin (cTn) assays for the early diagnosis of acute myocardial infarction (AMI) in patients with renal dysfunction. We report 7 novel findings that have important clinical implications for the early diagnosis of AMI in that they clearly highlight that more sensitive cTn assays maintain high diagnostic utility in patients with renal dysfunction as long as optimized cutoff levels are used. First, cTn levels at presentations, as assessed by all the more sensitive cTn assays, were significantly higher in patients whose final diagnosis was AMI compared with those with other final diagnoses. The prevalence of elevated cTn levels above the 99th percentile in patients with renal dysfunction and a final diagnosis other than AMI differed substantially among the 7 more sensitive cTn assays, ranging from 12% to 71%. Second, despite this, AMI remained the most common final diagnosis among patients with elevated cTn levels for all assays (range, 45%–80%). Third and perhaps most important, for all 7 more sensitive cTn assays, the diagnostic accuracy at presentation was high in patients with renal dysfunction and further increased for later sampling points. Diagnostic accuracy of the more sensitive cTn assays at presentation was only slightly lower compared with that in patients with normal renal function. Fourth, diagnostic accuracies were comparable among the 7 more sensitive cTn assays in patients with renal dysfunction with no systematic superiority of high-sensitivity cTn assays over sensitive assays. Fifth, at the 99th percentile, all cTn assays showed higher sensitivity but lower specificity in patients with renal dysfunction compared with patients with normal renal function, reflecting the higher baseline levels observed in patients with renal dysfunction even in the absence of AMI. Sixth, the receiver-operating characteristics curve–derived optimal cutoff levels in patients with renal dysfunction were 2- to 3-times higher in patients with renal dysfunction compared with patients with normal renal function. Seventh, cTn as measured with all 7 more sensitive cTn assays also retained prognostic value and predicted 2-year survival in patients with renal dysfunction.