Title: Effect of rs4646994 polymorphism of angiotensin converting enzyme on the risk of nonischemic cardiomyopathy

Running head: ACE rs4646994 polymorphism and nonischemic cardiomyopathy

Authors’ names:

Jinsheng Shena, 1, Xiaofei Meib, 1, Jialu Yaob, Hezi Jianga, Kexin Lia, Tan Chenb, Yufeng Jiangb, *, Yafeng Zhoua, *

1These authors contributed equally to this work and should be considered as co-first authors.

aDepartment of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, PR China.

bDepartment of Cardiology, Dushu Lake Hospital Affiliated to Soochow University (Suzhou Dushu Lake Hospital), Suzhou City, 215123, PR China.

*Correspondence: Yafeng Zhou PhD, Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, PR China (Tel: 86-512-67972075. Fax: 86-512-67972075. Email:zhouyafeng73@126.com) and Yufeng Jiang MD, Department of Cardiology, Dushu Lake Hospital Affiliated to Soochow University (Suzhou Dushu Lake Hospital), Suzhou City, 215123, PR China. (Tel: 86-512-65955026. Fax: 86-512-65955026. Email: yufeng_jiang@hotmail.com).
Abstract

Background: ACE gene polymorphisms have recently been shown to be associated with risk of developing left ventricular hypertrophy (LVH). However, the results were controversial. We aimed to conduct this meta-analysis to further confirm the association between ACE rs4646994 polymorphism and HCM/DCM.

Methods: PubMed, EMBASE, the Chinese national knowledge information database, and Wanfang databases were searched for eligible studies. The Newcastle-Ottawa Scale was used to evaluate the quality of included studies. Then we evaluated the association between ACE gene mutation and HCM/DCM by calculating odds ratios and 95% confidence intervals. Subgroup analysis was further performed to explore situations in specialized subjects. Sensitivity analysis and publication bias was assessed to confirm the study reliability.

Results: There were 13 studies on DCM (2004 cases and 1376 controls) and 16 studies on HCM (2161 controls and 1192 patients). ACE rs4646994 polymorphism was significantly associated with DCM in all genetic models. However, in HCM, four genetic models (allele model, homozygous model, heterozygous model and dominant model) showed significant association between ACE rs4646994 polymorphism and DCM. In subgroup analysis, we found that ACE rs4646994 polymorphism was significantly associated with DCM / HCM in Asian population. Finally, we also conducted a cumulative meta-analysis, which indicates that the results of our meta-analysis are highly reliable.

Conclusion: ACE rs4646994 polymorphism increases the risk of DCM / HCM in Asian, but not in Caucasian. More case-control studies are needed to strengthen our conclusions and to assess the gene-gene and gene-environment interactions between ACE rs4646994 polymorphism and DCM /
HCM.

Key words: ACE, rs4646994, DCM, HCM, meta-analysis
Introduction

Cardiomyopathy is a kind of heterogeneous myocardial disease, resulting from pathological changes in the myocardium of different etiologies, manifesting as ventricular hypertrophy or dilation. Myocardial dysfunction due to other cardiovascular diseases is not part of the spectrum of the disease, such as valvular heart disease, hypertensive heart disease, congenital heart disease, coronary heart disease, or congenital heart disease. It can eventually lead to progressive heart failure, arrhythmia, thromboembolism and sudden death, and has a poor prognosis.

Cardiomyopathy can be generally classified into hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), restrictive cardiomyopathy (RCM), arrhythmogenic right ventricular cardiomyopathy (ARVC), and left ventricular noncompaction (LVNC). Among them, hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) are the main types of cardiomyopathy. Many previous clinical studies recognized that cardiomyopathy has a familial origin, suggesting that genetic factors may play a crucial role in disease pathogenesis.

Hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) are caused by mutant sarcomeric genes. Mutations in sarcomeric protein genes can cause changes in myofilament tension that determine cardiac hypertrophy and dilation. Polymorphisms including genes encoding components of the renin-angiotensin (RAS), such as ACE, have recently been shown to be associated with the risk of developing left ventricular hypertrophy (LVH) and thus may influence the clinical phenotype of HCM/DCM. The angiotensin converting enzyme (ACE) gene is located on chromosome 17q23 and is characterized by a major insertion/deletion (rs4646994) polymorphism, consisting of a 289 base pair Alu repeat sequence present or absent in intron 16.
ACE-D/D genotype and thus may be a genetic factor in the pathogenesis of HCM/DCM12,13.

Over the past 20 years, numerous studies have reported the association of insertion/deletion polymorphisms of the angiotensin I converting enzyme gene (ACE rs4646994) with HCM and DCM. But their results are inconsistent, especially the association with DCM, which is currently controversial14. Therefore, we conducted this meta-analysis to further confirm the association between ACE rs4646994 polymorphism and HCM/DCM.

Method

We followed PRISMA guidelines (http://prisma-statement.org/) in conducting the systematic review and meta-analysis.

Search strategy

As of March 2021, we have used the terms "angiotensin converting enzyme" or "ACE", "polymorphism" or "mutation" and "hypertrophic cardiomyopathy" and "dilated cardiomyopathy" without language restrictions in PubMed, EMBASE, the Chinese national knowledge information database, and Wan fang databases. Retrieved articles were reviewed to select related data of our interest. References included in the literature were also searched and reviewed to find other potentially eligible data.

Inclusion criteria

The studies included in the meta-analysis must meet the following three criteria: (1) evaluating the association between ACE rs4646994 polymorphisms and HCM / DCM; (2) a case-control design was used, and (3) the data had to include the genotypes of II, ID, and DD, as well as comprehensive statistical indexes that were direct or indirect: odd ratio (or) and 95% confidence interval (95% CI) and fulfilled the hardy Weinberg equilibrium (HWE) among the control group.
Exclusion criteria

All patients were excluded for potential influencing factors such as hypertension, hypertensive heart disease, coronary atherosclerotic heart disease, ischemic heart disease, ischemic cardiomyopathy, severe coronary obstruction for DCM, valvular heart disease, valvular heart disease, congenital heart or vascular malformations, and inherent pulmonary disease.

Data extraction

Two authors independently reviewed all included studies and extracted vital data. Disagreements were resolved by a third researcher, and a common outcome was finally reached. We extracted the following information: first author, year of publication, country from which subjects came, ethnicity, number of cases and controls, allele and genotype frequencies, source of control group, diagnostic criteria and HWE test. We have attempted to contact the original authors if study data are incomplete. Study quality was assessed by the Newcastle Ottawa Scale (NOS).

Statistical methods

HWE was performed in the control group, and the significance level was set at P < 0.05. The association between ACE rs4646994 polymorphisms and HCM / DCM was assessed by fixed or random effects models incorporating ORs and 95% CIs. We demonstrated the degree of heterogeneity between studies by using I^2 ranging from 0% (complete agreement) to 100% (complete inconsistency). We used a random effects model (Der Simonian and Laird method) for the pooled analysis, and $I^2 > 50\%$ indicated heterogeneity among studies. Otherwise, a fixed effects model (mantel Haenszel method) should be used. We also performed subgroup analysis to identify possible heterogeneity and cumulative meta-analysis to determine the reliability of the results. All analyses were performed in 5 genetic models: allelic model (d vs. I), homozygous
model (DD vs. II), heterozygous model (ID vs. II), dominant model (ID + DD vs. II) and recessive model (DD vs. ID + II). Sensitivity analyses assessed the potential impact of individual study datasets on pooling or omitting studies. We also performed egger's test and plotted Begg's funnel plot to determine publication bias, and concluded that there was no statistically significant publication bias when p > 0.05. All statistical tests were performed using Stata version 15.0 (Stata Corp, University of Texas).

Results

Research characteristics

Finally we found a total of 368 potential articles related to keywords, of which 48 duplicate studies were excluded. We then initially screened the remaining 320 articles, 263 of which were excluded. From the full-text reading of 57 articles, 28 were excluded because of their disassociation with ACE rs4646994 polymorphisms and HCM / DCM (n = 10), review (n = 9), insufficient data (n = 7) and deviation from the HWE test (n = 2). The entire process of exclusion and enrollment is shown in Figure 1. Finally, this meta-analysis included 13 studies on DCM (2004 controls and 1376 cases, Table 1) and 16 studies on HCM (2161 controls and 1192 patients, Table 2). The NOS scores of each study were more than 6, and the quality was good. The results are shown in Table 1 and Table 2.

Association between ACE rs4646994 polymorphism and susceptibility to DCM

Our meta-analysis showed that potential heterogeneity was found in all five genetic models (allele model: \(I^2: 69.6\% \); homozygous gene model: \(I^2: 71.7\% \); heterozygous gene model: \(I^2: 74.3\% \); dominant gene model: \(I^2: 74\% \); recessive gene model: \(I^2: 64.3\% \)). Therefore, a random-effects model is used in the meta-analysis (Figure 2). The results of the study on the association between
ACE rs4646994 polymorphism and the pathogenesis of DCM showed that allele gene model (D versus I): OR=1.39, 95%CI=1.14-1.69, P=0.001; homozygote gene model (DD versus II): OR=2.02, 95%CI=1.32-3.09, P=0.001; heterozygote gene model (ID versus II): OR=1.46, 95%CI=1.01-2.12, P=0.045; dominance gene model (ID+DD vs II): OR=1.62, 95%CI=1.14-2.29, P=0.006; recessive gene model (DD vs ID and II): OR=1.53, 95%CI=1.12-2.08, P=0.007. In summary, our meta-analysis showed that there was a significant association between ACE rs4646994 polymorphism and DCM in the five gene models. It can be concluded that the D allele and DD genotype of ACE rs4646994 polymorphism may be the genetic risk factors of DCM.

We try to determine more reliable results and explore the sources of heterogeneity by analyzing different subgroups. First of all, a subgroup analysis is carried out on the ethnicity (Asian race and White race). As shown in Table 3, the results show that four gene models of Asian race suggest that there is a significant association between ACE rs4646994 polymorphism and DCM (allele gene model: OR=1.47, 95%CI=1.21-1.78, P<0.001; homozygous gene model: OR=2.28, 95%CI=1.49-3.47, P<0.001; dominant gene model: OR=1.72, 95%CI=1.12-2.64, P=0.01; recessive gene model: OR=1.67, 95%CI=1.16-2.39, P=0.05). However, no association was shown between the Asian heterozygous gene model (heterozygous gene model: OR=1.51, 95%CI=0.91-2.50, P=0.11) and the white subgroup (allele gene model: OR=1.25, 95%CI=0.85-1.84, P=0.27; homozygous gene model: OR=1.61, 95%CI=0.70-3.67, P=0.26; Heterozygous gene model: OR=1.27, 95%CI=0.77-2.10, P=0.35; dominant gene model: OR=1.40, 95%CI=0.78-2.51, P=0.26; recessive gene model: OR=1.29, 95%CI=0.74-2.24, P=0.37). The results showed that the mutation of ACE gene significantly increased the risk of DCM in Asian population. Although there was no
statistical significance between the mutation of ACE gene and the incidence of DCM in white population, it had a tendency to increase the risk of DCM. We conducted a subgroup analysis of the sample size, and the subgroup analysis of the sample size ≥ 200 showed that there was an association between ACE rs4646994 polymorphism and the DCM risk of the three gene models (allele gene model: OR=1.35, 95% CI=1.07-1.70, P=0.01; homozygous gene model: OR=1.97, 95% CI=1.17-3.30, P=0.01; recessive gene model: OR=1.47, 95% CI=1.04-2.08, P=0.03).

In the subgroup with sample size ≤ 200, this relationship disappeared (allele gene model: OR=1.49, 95% CI=1.00-2.23, P=0.05; homozygous gene model: OR=2.16, 95% CI=0.95-4.90, P=0.06; heterozygous gene model: OR=1.40, 95% CI=0.98-2.00, P=0.07; recessive gene model: OR=1.66, 95% CI=0.81-3.40, P=0.16).

In order to further determine the reliability of the results, through cumulative meta-analysis, we find that the more stable the association between ACE rs4646994 polymorphism and the incidence of DCM is as the year of publication approaches (Figure 3). It indicates that the results of this meta-analysis are very reliable.

Association between ACE rs4646994 polymorphism and susceptibility to HCM

Our meta-analysis showed that there was a significant association between ACE rs4646994 polymorphism and HCM in four genetic models: allele gene model (D vs I): OR=1.36, 95% CI=1.13-1.63, P=0.001; homozygous gene model (DD vs II): OR=1.80, 95% CI=1.21-2.67, P=0.003; heterozygous gene model (ID vs II): OR=1.76, 95% CI=1.29-2.40, P<0.001; dominant gene model (ID+DD vs II): OR=1.77, 95% CI=1.30-2.41, P<0.001. The difference is that the recessive gene model (DD vs ID and II: OR=1.28, 95% CI=0.99-1.67, P=0.064) shows that ACE gene mutation has nothing to do
with HCM. However, the trend of increasing risk can still be seen. The results of the Forest plot are shown in Figure 4.

In order to determine more reliable results and explore the source of heterogeneity, we conducted a subgroup analysis. First of all, we conducted a subgroup analysis of ethnicity, and table 4 showed that the mutation of ACE gene was not associated with the incidence of HCM in White population (allele gene model: OR=1.19, 95%CI=0.91-1.54, P=0.02; homozygous gene model: OR=1.40, 95%CI=0.83-2.35, P=0.212; heterozygous gene model: OR=1.18, 95%CI=0.81-1.74, P=0.39; dominant gene model: OR=1.25, 95%CI=0.82-1.91, P=0.29; recessive gene model: OR=1.21, 95%CI=0.87-1.68, P=0.26).

Although the recessive gene model (OR=1.31, 95%CI=0.87-1.97, P=0.20) analysis in Asian population showed that there was no association between ACE rs4646994 polymorphism and the incidence of HCM, there was a significant association among the other four models (allele gene model: OR=1.49, 95%CI=1.20-1.85, P<0.001; homozygous gene model: OR=2.06, 95%CI=1.10-3.87, P=0.02; dominant gene model: OR=1.89, 95%CI=1.06-3.36, P=0.03), while the other two showed nothing to do with
it (heterozygous gene model: OR = 1.78, 95% CI = 1.00-3.15, P = 0.05; recessive gene model: OR = 1.36, 95% CI = 0.95-1.94, P = 0.10). Similarly, the results in the subgroup with sample size ≤ 200 also showed that there was an association between the three gene models (allele gene model: OR = 1.33, 95% CI = 1.06-1.68, P = 0.02; heterozygous gene model: OR = 1.71, 95% CI = 1.27-2.30, P < 0.001; dominant gene model: OR = 1.71, 95% CI = 1.27-2.30, P < 0.001), while there was no such phenomenon in the other two gene models (homozygous gene model: OR = 1.61, 95% CI = 0.99-2.64, P = 0.06; recessive gene model: OR = 1.18, 95% CI = 0.78-1.79, P = 0.44).

As shown in Figure 5, through cumulative meta-analysis, we find that with the passage of time of the five gene models, the more stable the association between ACE rs4646994 polymorphism and the risk factors of HCM is.

Sensitivity analysis

We conducted the sensitivity analysis to assess whether omitting each study would change the overall ORs. As shown in Supplementary Figure 1 and 2, none of the studies would change the results of our meta-analysis, which showed that our results are reliable.

Publication bias

The Begg’s funnel plots associated with the above analyses are presented in Supplementary Figure 3 and 4. From the Begg’s funnel plot, it can be seen that there was no obvious asymmetry in each meta-analysis, thus indicating that there was no publication bias in our study. We performed Egger’s test to further validate the above conclusion (DCM: allele model: P = 0.068; homozygote model: P = 0.051; heterozygote model: P = 0.121; dominant model: P = 0.040; and recessive model: P = 0.079. HCM: allele model: P = 0.472; homozygote model: P = 0.678; heterozygote model: P = 0.343; dominant model: P = 0.087; and recessive model: P = 0.897).
Discussion

In this meta-analysis, we critically reviewed all eligible published studies that met the inclusion and exclusion criteria to evaluate the association between ACE rs4646994 polymorphisms and the risk of DCM/HCM. There were thirteen studies regarding DCM and sixteen on HCM. Our findings suggest that ACE rs4646994 polymorphisms may be associated with both HCM and DCM.

Polymorphisms in the ACE gene, encoding one of the components of the renin angiotensin aldosterone system (RAAS), have been found to be associated with a variety of cardiovascular diseases, such as hypertension, myocardial infarction, and cardiomyopathy. Increased synthesis of angiotensin II induces cell proliferation, migration, and hypertrophy and can enhance proinflammatory cytokine and matrix metalloproteinase production. Studies have shown that the anatomical features of HCM are characterized by asymmetric hypertrophy of the ventricles, whereas DCM is a class of cardiomyopathies characterized by systolic dysfunction of the left ventricle or biventricular enlargement class. Meanwhile, aldosterone production is regulated by the renin-angiotensin system, and studies have shown that it has a direct effect on the heart, including recurrent cardiac hypertrophy and fibrosis, ultimately leading to cardiac remodeling.

Therefore, ACE rs4646994 polymorphisms provisionally play an important role in the pathogenesis of HCM/DCM cardiomyopathy. While the results of our meta-analysis revealed that ACE rs4646994 polymorphism was associated with the risk of DCM/HCM incidence, providing a rationale of genetic aspects for the treatment of DCM/HCM.

Our subgroup analysis showed that ACE gene mutations can increase the risk of DCM and HCM in Asian population, while no such results were obtained for Caucasian population. The above
results suggest an association between the risk of incident DCM and HCM and the race. In addition, the population may be the source of heterogeneity because the heterogeneity was reduced in the subgroup analysis of the population. In the subgroup analysis with a dividing line of sample size 200, we found that the association of ACE gene mutations with the risk of DCM incidence was shown in the subgroup analysis with a sample size greater than 200 in DCM but not in the subgroup analysis with less than 200. Therefore, we believe that a larger sample size is needed for the association of DCM with ACE gene mutations to confirm the reliability of the results. Whereas in HCM the analysis of a subsample size, both showed an association of ACE gene mutations with the onset of HCM. The results of our time-series analyses all showed a stable relationship between ACE gene mutations and the risk of incident DCM/HCM. None of the studies could change the meta-analysis results in the sensitivity analysis (Supplementary Figure 1 and 2). No publication bias was found in our study (Supplementary Figure 3 and 4).

There are certain limitations to our study. First, we failed to group familial DCM/HCM and sporadic DCM/HCM due to limited data. Second, most of our reference studies had small sample sizes, which may affect the results of the meta-analysis. Third, the ethnic distribution of our included studies was relatively single, only Caucasian and Asian ethnicities were included, and subgroup analysis could not be performed for all ethnic populations. Besides, heterogeneity due to differences in the regression models of the included studies could not be avoided due to unavailability of specific information. The review protocol of this study was not pre-registered with PROSPERO.

Conclusion

This meta-analysis showed an association between the onset of HCM/DCM and ACE rs4646994
polymorphism. The findings of the current study may contribute to stratification strategies for patients with HCM/DCM. In addition, these results also show the potential possibility to treat HCM/DCM by modulating the RAAS system function in patients.

Data Availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Competing Interests

The authors declare that there are no competing interests associated with the manuscript.

Funding

This work was supported by grants from National Natural Science Foundation of China (81873486), Suzhou "Promoting Health through Science and Education" Youth Science and Technology Project (KJXW2020001), Natural Scientific Fund of Jiangsu province (BK20161226), Jiangsu Province’s Key Provincial Talents Program (ZDRCA2016043), Jiangsu Province’s 333
High-Level Talents Project (BRA2017539). The funders had no roles in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author Contribution

Jinsheng Shen and Yufeng Jiang contributed equally to this work. Jinsheng Shen and Yafeng Zhou designed the study. Jinsheng Shen, Yufeng Jiang, Yafeng Zhou, Xiaofei Mei, Jialu Yao, Hezi Jiang, Kexin Li and Tan Chen did the literature search, data extraction, statistical analysis, and drafted the figures. Jinsheng Shen wrote the first draft of the report, and Yafeng Zhou, Yufeng Jiang helped to write the final version. All authors read and met the criteria for authorship. All authors agree with the results and conclusions of the report.

Ethics Approval and Consent to Participate

Ethical approval was not needed because this is a meta-analysis.

Acknowledgements

None

Reference

1. Report of the WHO/ISFC task force on the definition and classification of cardiomyopathies. Br Heart J. 1980;44(6):672-673.

2. Richardson P, McKenna W, Bristow M, et al. Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the Definition and
Classification of cardiomyopathies. Circulation. 1996;93(5):841-842.

3. Maron BJ, Towbin JA, Thiene G, et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation. 2006;113(14):1807-1816.

4. Michels VV, Moll PP, Miller FA, et al. The frequency of familial dilated cardiomyopathy in a series of patients with idiopathic dilated cardiomyopathy. N Engl J Med. 1992;326(2):77-82.

5. Kaufman BD, Auerbach S, Reddy S, et al. RAAS gene polymorphisms influence progression of pediatric hypertrophic cardiomyopathy. Hum Genet. 2007;122(5):515-523.

6. Marian AJ, Roberts R. Recent advances in the molecular genetics of hypertrophic cardiomyopathy. Circulation. 1995;92(5):1336-1347.

7. van Spaendonck-Zwarts KY, van Rijsingen IA, van den Berg MP, et al. Genetic analysis in 418 index patients with idiopathic dilated cardiomyopathy: overview of 10 years' experience. Eur J Heart Fail. 2013;15(6):628-636.

8. Lim GB. Cardiomyopathies: Tension between hypertrophic and dilated cardiomyopathies. Nat Rev Cardiol. 2016;13(7):380-381.

9. Bleumink GS, Schut AF, Sturkenboom MC, Deckers JW, van Duijn CM, Stricker BH. Genetic polymorphisms and heart failure. Genet Med. 2004;6(6):465-474.

10. Keren A, Syrris P, McKenna WJ. Hypertrophic cardiomyopathy: the genetic determinants of clinical disease expression. Nat Clin Pract Cardiovasc Med. 2008;5(3):158-168.

11. Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corv"{e}l P, Soubrier F. An insertion/deletion
polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest. 1990;86(4):1343-1346.

12. Perkins MJ, Van Driest SL, Ellsworth EG, et al. Gene-specific modifying effects of pro-LVH polymorphisms involving the renin-angiotensin-aldosterone system among 389 unrelated patients with hypertrophic cardiomyopathy. Eur Heart J. 2005;26(22):2457-2462.

13. Rai TS, Dhandapani PS, Ahluwalia TS, et al. ACE I/D polymorphism in Indian patients with hypertrophic cardiomyopathy and dilated cardiomyopathy. Mol Cell Biochem. 2008;311(1-2):67-72.

14. Yang J, Zhao Y, Hao P, et al. Impact of angiotensin I converting enzyme insertion/deletion polymorphisms on dilated cardiomyopathy and hypertrophic cardiomyopathy risk. PLoS One. 2013;8(5):e63309.

15. Montgomery HE, Keeling PJ, Goldman JH, Humphries SE, Talmud PJ, McKenna WJ. Lack of association between the insertion/deletion polymorphism of the angiotensin-converting enzyme gene and idiopathic dilated cardiomyopathy. J Am Coll Cardiol. 1995;25(7):1627-1631.

16. Sanderson JE, Young RP, Yu CM, Chan S, Critchley JA, Woo KS. Lack of association between insertion/deletion polymorphism of the angiotensin-converting enzyme gene and end-stage heart failure due to ischemic or idiopathic dilate cardiomyopathy in the Chinese. Am J Cardiol. 1996;77(11):1008-1010.

17. Yamada Y, Ichihara S, Fujimura T, Yokota M. Lack of association of polymorphisms of the angiotensin converting enzyme and angiotensinogen genes with nonfamilial hypertrophic or dilated cardiomyopathy. Am J Hypertens. 1997;10(8):921-928.

18. Tiret L, Mallet C, Poirier O, et al. Lack of association between polymorphisms of eight candidate genes and idiopathic dilated cardiomyopathy: the CARDIGENE study. J Am Coll Cardiol.
2000;35(1):29-35.

19. Mahjoub S, Mehri S, Bousaada R, et al. Association of ACE I/D polymorphism in Tunisian patients with dilated cardiomyopathy. J Renin Angiotensin Aldosterone Syst. 2010;11(3):187-191.

20. Rani B, Kumar A, Bahl A, Sharma R, Prasad R, Khullar M. Renin-angiotensin system gene polymorphisms as potential modifiers of hypertrophic and dilated cardiomyopathy phenotypes. Mol Cell Biochem. 2017;427(1-2):1-11.

21. Kucukarabaci B, Birdane A, Gunes HV, et al. Association between angiotensin converting enzyme (ACE) gene I/D polymorphism frequency and plasma ACE concentration in patients with idiopathic dilated cardiomyopathy. Anadolu Kardiyol Derg. 2008;8(1):65-66.

22. Shan J, Li Z, Ping S, Fu G. Association between angiotensin converting enzyme gene polymorphism and dilated cardiomyopathy. Zhong Hua Xin Xue Guan Bing Za Zhi. 2001;29(5):286-288.

23. Wu G, Ma A, Ma Z, Geng T. Relationship between dilated cardiomyopathy and angiotensin converting enzyme gene, chymase gene polymorphism. J Clin Cardiol (China). 2002;18(3):100-102.

24. Zou D, Yuan F, Guo J, Jian B, Wu K. Relationship between angiotensin converting enzyme gene polymorphism and hypertrophic and dilated cardiomyopathy. J Chin Med Univ. 2003;32(2):162-114.

25. Kong Y, Yun M, Wang Z. Association between ACE gene polymorphism and dilated cardiomyopathy in Han nationality. CHINA TROPICAL MEDICINE. 2012;12(5):623-624.

26. Chen W, Zhao T, Chen T, Liu Y, Xiong M, Gui Q. Relationship between ACE gene polymorphism and idiopathic dilated cardiomyopathy in southern Chinese Han population. Shan Dong Yi Yao. 2017;57(6):24-26.
27. Marian AJ, Yu QT, Workman R, Greve G, Roberts R. Angiotensin-converting enzyme polymorphism in hypertrophic cardiomyopathy and sudden cardiac death. Lancet. 1993;342(8879):1085-1086.

28. Lopez-Haldon J, Garcia-Lozano JR, Martinez Martinez A, Nunez-Roldan A, Burgos Cornejo J. [The effect of polymorphisms of the angiotensin-converting enzyme and angiotensinogen genes on the phenotypic expression of Spanish patients with hypertrophic cardiomyopathy]. Med Clin (Barc). 1999;113(5):161-163.

29. Ogimoto A, Hamada M, Nakura J, Miki T, Hiwada K. Relation between angiotensin-converting enzyme II genotype and atrial fibrillation in Japanese patients with hypertrophic cardiomyopathy. J Hum Genet. 2002;47(4):184-189.

30. Kawaguchi H. Angiotensin-converting enzyme and angiotensinogen gene polymorphism in hypertrophic cardiomyopathy. Exp Clin Cardiol. 2003;8(3):155-159.

31. Doolan G, Nguyen L, Chung J, Ingles J, Semsarian C. Progression of left ventricular hypertrophy and the angiotensin-converting enzyme gene polymorphism in hypertrophic cardiomyopathy. Int J Cardiol. 2004;96(2):157-163.

32. Kaya CT, Gurlek A, Altin T, et al. The relationship between angiotensin converting enzyme gene I/D polymorphism and QT dispersion in patients with hypertrophic cardiomyopathy. J Renin Angiotensin Aldosterone Syst. 2010;11(3):192-197.

33. Coto E, Palacin M, Martin M, et al. Functional polymorphisms in genes of the Angiotensin and Serotonin systems and risk of hypertrophic cardiomyopathy: AT1R as a potential modifier. J Transl Med. 2010;8:64.

34. Moiseev VS, Demurov LM, Kobalava Zh D, et al. [The polymorphism of the
angiotensin-converting enzyme gene in patients with hypertension, left ventricular hypertrophy and the
development of a myocardial infarct at a young age. Preliminary report]. Ter Arkh. 1997;69(9):18-23.

35. Cai Y, Wu. X. Relationship between angiotensin converting enzyme gene deletion polymorphism and left ventricular hypertrophy in patients with hypertrophic cardiomyopathy. Zhe Jiang Yi Xue 2000;22(9):521-523.

36. Gao1 M, Xiao B, Hu D, et al. Distribution of angiotensin converting enzyme genotypes in patients with hypertrophic cardiomyopathy. Journal of Capital University of Medical Sciences. 2000;21(2):112-114.

37. Yang R, Zhang F, Ma W, Xie Y, Jia Y. Angiotensin converting enzyme gene deletion polymorphism in patients with hypertrophic cardiomyopathy. AC TA UN IV ERSIT ATIS MEDICIN ALIS N AN JIN G. 2000;20(4):272-274.

38. Li Z, Ma A, Wu G, Hui N. Insertion of angiotensin converting enzyme gene/Relationship between deletion polymorphism and hypertrophic cardiomyopathy. J Clin Cardiol (China). 2001;17(3):132-133.

39. Kato N, Tatura Y, Ohishi M, et al. Angiotensin-converting enzyme single nucleotide polymorphism is a genetic risk factor for cardiovascular disease: a cohort study of hypertensive patients. Hypertens Res. 2011;34(6):728-734.

40. Zhang H, Sun ML, Peng J, Sun T, Zhang Y, Yang JM. Association of the angiotensin type 1 receptor gene A1166C polymorphisms with myocardial infarction: a meta-analysis. J Thromb Haemost. 2011;9(6):1258-1260.

41. Brilla CG, Matsubara LS, Weber KT. Anti-aldosterone treatment and the prevention of myocardial fibrosis in primary and secondary hyperaldosteronism. J Mol Cell Cardiol. 1993;25(5):563-575.

42. Young M, Fullerton M, Dilley R, Funder J. Mineralocorticoids, hypertension, and cardiac fibrosis.
J Clin Invest. 1994;93(6):2578-2583.
Figure Legends

Figure 1: The PRISMA flow diagram of the study selection and exclusion. PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses

Figure 2: Forest plot from the meta-analysis on the association of ACE rs4646994 gene polymorphism and DCM risk. A: allele; B: homozygote; C: heterozygote; D: dominant; and E: recessive.

Figure 3: The cumulative meta-analysis of the association of ACE rs4646994 gene polymorphism and DCM risk. A: allele; B: homozygote; C: heterozygote; D: dominant; and E: recessive.

Figure 4: Forest plot from the meta-analysis on the association of ACE rs4646994 gene polymorphism and HCM risk. A: allele; B: homozygote; C: heterozygote; D: dominant; and E: recessive.

Figure 5: The cumulative meta-analysis on the association of ACE rs4646994 gene polymorphism and HCM risk. A: allele; B: homozygote; C: heterozygote; D: dominant; and E: recessive.
Figure 1. The PRISMA flow diagram of the study selection and exclusion.
Table 1. The characteristics of included studies and ACE rs4646994 polymorphism genotype distribution and allele frequency of DCM in case group and control group.

Author	Year	Country	Ethnicity	sample size	Genotype (N)	Allele Frequency (N, %)	NOS score	HWE test	
Montgomery HE et al.	1995	UK	Caucasian	463	II 18 ID 50 DD 31	Total 84 168 112 364	86 112 0.57 336	392 0.54	6 0.173
Sanderson JE et al.	1996	China	Asian	200	II 39 ID 49 DD 12	Total 100 39 48 13	100 127 0.37 126	74 0.37	6 0.767
Yamada Y et al.	1997	Japan	Asian	210	II 36 ID 35 DD 17	Total 88 50 55 17	122 107 0.39 155	89 0.36	6 0.764
Tiret L et al.	2000	Frech	Caucasian	809	II 94 ID 200 DD 128	Total 422 71 190 126	387 388 0.54 332	442 0.57	6 0.966
Shan J et al.	2001	China	Asian	238	II 27 ID 25 DD 31	Total 83 50 80 25	155 79 0.37 122	100 0.37	6 0.764
Wu GR et al.	2002	China	Asian	106	II 14 ID 22 DD 7	Total 43 23 28 12	63 50 0.42 74	52 0.41	6 0.509
Zou DL et al.	2005	China	Asian	96	II 12 ID 18 DD 13	Total 43 28 20 5	53 42 0.51 76	30 0.28	6 0.609
Rai TS et al.	2008	India	Asian	215	II 8 ID 33 DD 10	Total 51 47 87 30	164 49 0.52 181	147 0.45	6 0.353
Kucukarabaci B et al.	2008	Turkey	Caucasian	49	II 5 ID 18 DD 6	Total 29 7 9 4	20 28 0.52 23	17 0.43	6 0.722
Mahjoub S et al.	2010	Tunisia	Caucasian	227	II 12 ID 38 DD 26	Total 76 46 83 22	151 62 0.59 175	127 0.42	6 0.116
Kong YQ et al.	2012	China	Asian	206	II 20 ID 49 DD 32	Total 101 30 53 22	105 89 0.56 113	97 0.46	6 0.874
Rani B et al.	2017	India	Asian	377	II 15 ID 120 DD 42	Total 177 72 86 42	200 150 204 0.58	230 170 0.43	6 0.089
Chen W et al.	2017	China	Asian	184	II 17 ID 29 DD 18	Total 64 51 57 12	120 63 0.51 159	81 0.34	6 0.496

N: number; NOS: Newcastle-Ottawa Scale; HWE: Hardy-Weinberg equilibrium; RAF: Risk Allele Frequency; risk allele: D allele; I: wild type; D: mutant type.
Table 2. The characteristics of included studies and ACE rs4646994 polymorphism genotype distribution and allele frequency of HCM in case group and control group.

Author	Year	Country	Ethnicity	Sample size	Genotype (N)	Allele Frequency (N, %)	NOS score	HWE test	
Marian AJ et al.	1993	USA	Caucasian	206	II 7, ID 49, DD 44	Total 100, I 22, D 46, DD 38	106, I 63, D 137, DD 0.69	90, I 90, D 122, DD 0.58	6, 0.778
Yamada Y et al.	1997	Japan	Asian	193	ID 31, II 32, D 8	Total 71, ID 50, D 48	172, ID 48, D 0.34, DD 0.48	155, ID 89, D 0.36	6, 0.667
Moiseev VS et al.	1997	Russia	Caucasian	181	II 2, ID 5, DD 6	Total 13, II 13, ID 33, DD 55	80, II 9, ID 17, D 0.65	121, II 121, ID 0.64	6, 0.315
Lopez-Haldon J	1999	Spain	Caucasian	309	II 2, ID 13, DD 25	Total 40, II 132, ID 33, DD 111	269, II 17, ID 63, D 0.79	191, II 191, ID 0.64	6, 0.952
Cai et al.	2000	China	Asian	101	II 16, ID 16, DD 13	Total 45, II 26, ID 23, DD 7	56, II 48, ID 42, D 0.47	75, II 75, ID 37, DD 0.33	6, 0.528
Gao et al.	2000	China	Asian	101	II 12, ID 15, DD 13	Total 40, II 31, ID 18, DD 12	61, II 39, ID 41, D 0.51	80, II 80, ID 42, DD 0.34	6, 0.185
Yang et al.	2000	China	Asian	149	II 13, ID 35, DD 15	Total 63, II 37, ID 36, DD 13	86, II 61, ID 65, D 0.52	110, II 110, ID 62, DD 0.36	6, 0.86
Li et al.	2001	China	Asian	96	II 13, ID 19, DD 1	Total 33, II 28, ID 23, DD 12	63, II 45, ID 42, D 0.32	79, II 79, ID 47, DD 0.37	6, 0.001
Ogiimoto A et al.	2002	Turkey	Caucasian	343	II 53, ID 64, DD 21	Total 138, II 83, ID 95, DD 27	205, II 170, ID 106, D 0.38	261, II 261, ID 149, DD 0.36	6, 0.653
Zou et al.	2003	China	Asian	66	II 5, ID 7, DD 1	Total 13, II 28, ID 20, DD 5	53, II 17, ID 9, D 0.35	76, II 76, ID 30, DD 0.28	6, 0.052
Kawaguchi H et al.	2003	Japan	Asian	168	II 26, ID 41, DD 13	Total 80, II 43, ID 28, DD 17	88, II 93, ID 67, D 0.42	114, II 114, ID 62, DD 0.35	6, 0.661
Doolan G et al.	2004	Australia	Caucasian	236	II 10, ID 14, DD 12	Total 36, II 48, ID 94, DD 58	200, II 34, ID 38, D 0.53	190, II 190, ID 210, DD 0.52	6, 0.147
Rai TS et al.	2008	India	Asian	282	II 11, ID 63, DD 44	Total 118, II 47, ID 87, DD 30	164, II 85, ID 151, D 0.64	181, II 181, ID 147, DD 0.45	6, 0.048
Kaya CT et al.	2010	Turkey	Asian	83	II 8, ID 34, DD 21	Total 63, II 5, ID 9, DD 6	20, II 50, ID 76, D 0.6	20, II 20, ID 19, DD 0.52	6, 0.661
Coto E et al.	2010	Spain	Caucasian	507	II 35, ID 100, DD 72	Total 207, II 46, ID 135, DD 119	300, II 170, ID 244, D 0.59	227, II 227, ID 373, DD 0.62	6, 0.147
Rani B et al.	2017	India	Asian	332	II 16, ID 89, DD 27	Total 132, II 72, ID 86, DD 42	200, II 121, ID 143, D 0.54	230, II 230, ID 170, DD 0.43	6, 0.048

N: number; NOS: Newcastle-Ottawa Scale; HWE: Hardy-Weinberg equilibrium; RAF: Risk Allele Frequency; risk allele: D allele; I: wild type; D: mutant type.
Number of studies	Allele comparison D versus I	Homozygous DD versus II	Heterozygous ID versus II	Dominant ID + DD versus II	Recessive DD versus ID + II																					
	OR	95% CI	P	I² (%)	OR	95% CI	P	I² (%)	OR	95% CI	P	I² (%)	OR	95% CI	P	I² (%)										
Total	13																									
Ethnicity																										
Asian	9	1.47	1.21-1.78	<0.001	48.5	0.05	2.28	1.49-3.47	<0.001	51.1	0.04	1.51	0.91-2.50	0.11	78.2	<0.001	1.72	1.12-2.64	0.01	73.7	<0.001	1.67	1.12-2.39	0.05	52.2	0.03
Caucasian	4	1.25	0.85-1.84	0.27	78.4	0.003	1.61	0.70-3.67	0.26	79.4	0.002	1.27	0.77-2.10	0.35	55.7	0.08	1.4	0.87-2.51	0.26	70.4	0.018	1.29	0.74-2.24	0.37	73	0.01
Sample size																										
> 200	8	1.35	1.07-1.70	0.01	74	<0.001	1.97	1.17-3.30	0.01	77.2	<0.001	1.43	0.84-2.46	0.19	83.9	<0.001	1.6	0.99-2.59	0.06	82.4	<0.001	1.47	1.04-2.08	0.03	68.4	0.02
≤ 200	5	1.49	1.00-2.23	0.05	64.5	0.02	2.16	0.95-4.90	0.06	62	<0.001	1.4	0.98-2.00	0.07	0	0.584	1.62	1.06-2.49	0.03	32.8	<0.001	1.66	0.81-3.40	0.16	60	0.04

I/D: insertion/deletion.
Table 4: Subgroup analysis of association between ACE I/D gene polymorphism and HCM

Number of studies	Allele comparison D versus I	Homozygous DD versus II	Heterozygous ID versus II	Dominant ID + DD versus II	Recessive DD versus ID + II
	OR 95% CI	OR 95% CI	OR 95% CI	OR 95% CI	OR 95% CI
	P I2 (%)	P I2 (%)	P I2 (%)	P I2 (%)	P I2 (%)
Total	16				
Ethnicity					
Asian	10	1.49 1.20-1.85	0.001 47 0.05 2.09 1.25-3.50 0.005 55.3 0.02 2.15 1.51-3.06 0.10 45.3 0.06 2.11 1.48-3.00 0.10	1.31 1.04-1.97 0.03 51.7 0.03 1.87-3.49 0.14	51.4 0.03 1.87-3.49 0.14
Caucasian	6	1.19 0.91-1.54	0.20 55.3 0.05 1.4 0.83-2.35 0.212 49.8 0.08 1.18 0.81-1.74 0.39 28.3 0.22 1.25 0.82-1.91 0.29 44.3 0.11 1.21 0.87-1.68 0.26	40.3 0.14 1.21 0.87-1.68 0.26	
Sample size					
> 200	7	1.39 1.05-1.84	0.02 76.4 0.001 2.06 1.10-3.87 0.02 76.9 0.001 1.78 1.00-3.15 0.05 77.8 0.001 1.89 1.06-3.36 0.03 80.3 0.001 1.36 0.95-1.94 0.10	64.9 0.04 1.36 0.95-1.94 0.10	
≤ 200	9	1.33 1.06-1.68	0.02 29.5 0.18 1.61 0.99-2.64 0.06 30.7 0.17 1.71 1.27-2.30 0.001 0 0.50 1.65 1.25-2.19 0.001 2.8 0.41 1.18 0.78-1.79 0.44	28.3 0.19 1.18 0.78-1.79 0.44	

I/D: insertion/deletion.
Title: Effect of rs4646994 polymorphism of angiotensin converting enzyme on the risk of nonischemic cardiomyopathy

Running head: ACE rs4646994 polymorphism and nonischemic cardiomyopathy

Authors’ names:
Jinsheng Shena, 1, Xiaofei Meiib, Jialu Yaoa, Hezi Jianga, Kexin Lia, Tan Chenb, Yufeng Jiangb, *, Yafeng Zhoua, *

1These authors contributed equally to this work and should be considered as co-first authors.

aDepartment of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, PR China.
bDepartment of Cardiology, Dushu Lake Hospital Affiliated to Soochow University (Suzhou Dushu Lake Hospital), Suzhou City, 215123, PR China.

Supplementary Materials

Supplementary figure 1: Sensitivity analysis of the association of ACE rs4646994 gene polymorphism and DCM risk. A: allele; B: homozygote; C: heterozygote; D: dominant; and E: recessive.

Supplementary figure 2: Sensitivity analysis of the association of ACE rs4646994 gene polymorphism and HCM risk. A: allele; B: homozygote; C: heterozygote; D: dominant; and E: recessive.

Supplementary figure 3: Begg funnel plot with pseudo 95% confidence limits of the association of ACE rs4646994 gene polymorphism and DCM risk. A: allele; B: homozygote; C: heterozygote; D: dominant; and E: recessive.

Supplementary figure 4: Begg funnel plot with pseudo 95% confidence limits of the association of ACE rs4646994 gene polymorphism and HCM risk. A: allele; B: homozygote; C: heterozygote; D: dominant; and E: recessive.
