Epidemiology of Complicated Urinary Tract Infections due to Enterobacterales Among Adult Patients Presenting in Emergency Departments Across the United States

Thomas P. Lodise,1,* Teena Chopra,2 Brian H. Nathanson,3 Katherine Sulham,4 and Mauricio Rodriguez2

1Department of Pharmacy Practice, Albany College of Pharmacy and Health Sciences, Albany, New York, USA, 2School of Medicine and Division of Infectious Diseases, Wayne State University, Detroit, Michigan, USA, 3OptiStatim LLC, Longmeadow, Massachusetts, USA, and 4Spero Therapeutics, Cambridge, Massachusetts, USA

In this multicenter study of adult patients who presented to the emergency department with an Enterobacterales complicated urinary tract infection (cUTI), high rates of resistance and co-resistance to commonly used oral antibiotics (fluoroquinolones, trimethoprim-sulfamethoxazole, nitrofurantoin, and third-generation cephalosporins) were observed.

Keywords. cUTI; epidemiology; resistance; urinary tract infection.

Complicated urinary tract infections (cUTI), which includes include cystitis (infection of the bladder/lower urinary tract) and pyelonephritis (infection of the kidney/upper urinary tract), are one of the most common bacterial infections encountered in the community and hospital setting and are associated with considerable morbidity and healthcare resource utilization [1–3]. A recent United States (US)–based cohort study indicated that there are 3 million newly diagnosed cUTIs annually among adults, resulting in 30-day healthcare costs in excess of 6 billion US dollars [4]. Fluoroquinolone and trimethoprim-sulfamethoxazole (TMP-SMX) have long been oral mainstay treatments for cUTIs but their use has been compromised by resistance among Enterobacterales [3, 5–10]. Resistance rates among common uropathogens remain lower for the oral β-lactams relative to the fluoroquinolones and TMP-SMX, but data indicate that the prevalence of community-acquired extended-spectrum β-lactamase-producing gram-negative urinary tract infections (UTIs) has sharply increased in recent years [8, 11]. Nitrofurantoin still remains highly active against Escherichia coli but it has limited microbiologic activity against other Enterobacterales and its use is restricted to cUTIs that only involve the lower genitourinary tract [9, 12]. This study sought to quantify the prevalence of resistance to the commonly used oral cUTI agents across US regions and co-resistance rates among adult patients who presented to the emergency department (ED) with an Enterobacterales cUTI.

METHODS

A retrospective multicenter analysis using data from the Premier Healthcare Database [13] was performed among adult cUTI patients from 2013 through 2018 who presented to the ED for their care. Patients presenting to the ED were included if they (1) were aged ≥18 years; (2) had a cUTI diagnosis based on previously published cUTI diagnostic code identification algorithms (Supplementary Appendix A) [14–16]; (3) had a positive blood or urine culture for an Enterobacterales between index ED/hospital days −5 to +2; and (4) were not a transfer patient transferred from another acute care facility. Patients meeting all study criteria were classified as “ED only” if they were discharged from the ED without a hospital admission or “inpatient” if admitted to the hospital. Because this study utilized already existing Health Insurance Portability and Accountability Act of 1996 (HIPAA)–compliant fully de-identified data, it was exempt from institutional review board review [13].

Hospital- and Patient-Level Covariates

Hospital-level covariates included US census regions, hospital size, teaching status, and location (urban vs rural). Demographics and baseline covariates at ED presentation included age, sex, race, admission source, Charlson Comorbidity Index and individual conditions [17], and baseline Enterobacterales. Susceptibility testing was performed at the local hospitals and presence of resistance to fluoroquinolones, TMP-SMX, nitrofurantoin, and third-generation cephalosporins (resistance to any 1 of the following: ceftibuten, cefixime, ceftriaxone, cefditoren, cefotaxime, ceftepime, cefoperazone, cefdinir, and ceftazidime) was recorded for each Enterobacterales among unique patients with the infecting pathogen. Antibiotic resistance was defined as the presence of resistant or intermediate susceptibility results. For patients with multiple urine or blood cultures, determination of resistance for each antibiotic was based on
presence of at least 1 intermediate or resistant susceptibility result on any recovered Enterobacterales isolate(s). Patients with missing nitrofurantoin susceptibility data for Proteus mirabilis, Providencia sp, Serratia marcescens, Morganella morganii, Proteus sp, and Serratia sp were all classified as nitrofurantoin resistant due to its lack of in vitro activity against these pathogens [18].

Statistical Methods
Resistance to fluoroquinolones, TMP-SMX, nitrofurantoin, and third-generation cephalosporins for each Enterobacterales was reported among the unique number of cUTI patients with that pathogen. Within each cohort and US census region, the overall proportion of patients with resistance to fluoroquinolones, TMP-SMX, nitrofurantoin, and third-generation cephalosporins resistance was determined. The percentage of patients with resistant to 0, 1, 2, or ≥3 antibiotic classes was also quantified in each patient cohort and US census region. Co-resistance rates to fluoroquinolones, TMP-SMX, nitrofurantoin, and third-generation cephalosporins were determined overall and by study cohort. The χ² test was used for all statistical comparisons of categorical variables. We used the t test to compare means and the Mann-Whitney test to compare medians. All analyses were conducted using Stata/MP 15.1 for Windows software (StataCorp LLC, College Station, Texas).

RESULTS
Cohort derivation is shown in Supplementary Figure 1. There were 60,006 in the ED only cohort and 86,743 in the inpatient cohort. Hospital-level characteristics, demographics, and baseline covariates by admission status are shown in Supplementary Table 1. The ED only cohort were younger, less likely to be male, had fewer baseline comorbid conditions, and were less likely to be transferred from a non–acute care long-term care facility than the inpatient cohort. Across

Table 1. Resistance to Fluoroquinolones, Trimethoprim-Sulfamethoxazole, Nitrofurantoin, and Third-Generation Cephalosporins for Each Enterobacterales Among Patients With Complicated Urinary Tract Infection, by Hospital Admission Status

Organism	No. of Patients	FQ Resistance	TMP-SMX Resistance	NTF Resistance	Third-Generation Cephalosporin Resistance
ED only organisms					
Klebsiella pneumoniae	5281	7.0%	11.2%	59.9%	6.2%
Proteus mirabilis	3338	31.7%	25.3%	99.9%	4.7%
Escherichia coli	48,357	16.4%	27.8%	3.4%	5.0%
Enterobacter cloacae	896	8.5%	14.8%	65.2%	22.8%
Providencia sp	475	41.1%	19.4%	78.5%	10.5%
Serratia marcescens	390	7.2%	4.1%	100.0%	9.0%
Morganella morganii	375	40.5%	36.3%	100.0%	15.2%
Enterobacter aerogenes	819	2.0%	1.6%	82.5%	12.9%
Proteus spp	182	8.2%	9.9%	99.5%	24.2%
Citrobacter freundii	443	12.2%	17.8%	9.0%	21.0%
Klebsiella oxytoca	658	4.4%	6.4%	14.4%	5.0%
Enterobacter sp	89	5.6%	4.5%	40.5%	14.6%
Citrobacter sp	405	5.2%	5.4%	24.2%	4.2%
Serratia sp	44	9.1%	9.1%	95.5%	11.4%
Klebsiella sp	48	6.3%	12.5%	52.1%	6.3%
Inpatient organisms					
Klebsiella pneumoniae	14,024	14.3%	18.6%	60.4%	12.9%
Proteus mirabilis	9349	50.0%	37.2%	99.9%	7.5%
Escherichia coli	57,681	35.6%	33.2%	5.6%	12.5%
Enterobacter cloacae	2393	17.5%	19.7%	63.6%	33.9%
Providencia sp	1310	57.9%	20.5%	74.4%	12.2%
Serratia marcescens	995	9.2%	3.5%	99.7%	10.4%
Morganella morganii	1292	50.5%	48.6%	99.8%	19.7%
Enterobacter aerogenes	1213	5.6%	4.3%	78.1%	20.6%
Proteus spp	427	16.9%	16.2%	99.3%	24.1%
Citrobacter freundii	1038	14.6%	19.0%	10.3%	25.5%
Klebsiella oxytoca	1846	7.4%	8.4%	18.0%	8.2%
Enterobacter sp	174	11.5%	8.1%	34.5%	18.4%
Citrobacter sp	838	9.0%	9.1%	25.4%	10.6%
Serratia sp	88	25.0%	18.2%	86.4%	15.9%
Klebsiella sp	141	14.2%	17.0%	34.8%	8.5%

Abbreviations: ED, emergency department; FQ, fluoroquinolones; NFT, nitrofurantoin; TMP-SMX, trimethoprim-sulfamethoxazole.
Table 2. Resistance Rates by Drug Class and Hospital Admission Status

Drug Class	ED Only (n=60006)	Inpatient Only (n=86743)	P Value
Presence of at least 1 organism that is resistant to the following resistance to FQ, TMP-SMX, NFT, or third-generation cephalosporins			
Fluoroquinolones	9713 (16.2)	28407 (32.8)	<.001
TMP-SMX	15299 (25.5)	26401 (30.0)	<.001
NFT	10742 (18)	26810 (30.9)	<.001
Third-generation cephalosporins	3516 (6)	11720 (13.5)	<.001

Most resistant organism; resistant to FQ, TMP-SMX, NFT, or third-generation cephalosporins

Resistance to	ED Only	Inpatient Only	P Value
Resistant to 0	32706 (54.5)	33619 (38.8)	<.001
Resistant to 1	18783 (31.3)	27621 (31.8)	
Resistant to 2	5603 (9.3)	13775 (15.9)	
Resistant to ≥3	2914 (4.9)	11734 (13.5)	

Data are presented as No. (%) unless otherwise indicated.

Abbreviations: ED, emergency department; FQ, fluoroquinolones; NFT, nitrofurantoin; TMP-SMX, trimethoprim-sulfamethoxazole.

In both cohorts, E coli was the predominant pathogen but a more diverse group of Enterobacteriales was observed in the inpatient cohort.

Resistance to fluoroquinolones, TMP-SMX, nitrofurantoin, and third-generation cephalosporins were generally similar across the US census divisions. In the ED only cohort, 40%–50% of cUTIs in each region displayed resistance to at least 1 agent and 10%–18% in each region had resistance to ≥2 agents. In the inpatient cohort, 55%–65% of cUTIs in each region were resistant to at least 1 agent and 25%–35% in each region were resistant to ≥2 agents.

DISCUSSION

This US multicenter study of adult patients who presented to the ED with a cUTI due to an Enterobacteriales assessed rates of resistance and co-resistance to the most commonly used oral antibiotics. Although no aggregate antibiotic resistance percentages to guide empiric antibiotic treatment decisions exist for cUTI patients, all US census divisions exceeded resistance thresholds cited for empiric use of TMP-SMX and fluoroquinolones for uncomplicated cystitis and pyelonephritis in women [19]. Not surprisingly, given the baseline differences between patients, resistance rates were more pronounced among patients in the inpatient cohort. Although resistance rates were lower in the ED only cohort, resistance to fluoroquinolones and nitrofurantoin exceeded 15% and exceeded 25% for TMP-SMX. Third-generation cephalosporin resistance was only approximately 6%, but there are bioavailability, dosing (ie, inability to achieve critical pharmacokinetic/pharmacodynamic exposure targets with standard approved regimens), and treatment failure concerns with the oral advanced-generation cephalosporins that limit their clinical utility [19, 20]. Co-resistance among agents was also found to be commonplace in both patient cohorts, especially between fluoroquinolones, TMP-SMX, and nitrofurantoin.

These findings have important clinical implications. Treatment decisions are largely empiric and based on symptoms, physical findings, and underlying perceived risk of resistance. Given the high observed rates of resistance observed in both cohorts, adult patients who present to the ED with a

Table 3. Co-resistance Rates by Drug Class and Hospital Admission Status

Admission Status	FQ Resistant	TMP-SMX Resistant	NFT Resistant	Third-Generation Cephalosporin Resistant
Emergency only				
FO resistant		55.3%	26.7%	23.4%
TMP-SMX resistant	35.1%		16.9%	12.2%
NFT resistant	24.1%	24.1%		11.9%
Third-generation cephalosporin	64.5%	53.1%	36.3%	
Inpatient only				
FO resistant		59.8%	37.7%	31.5%
TMP-SMX resistant	64.3%		34.1%	27.0%
NFT resistant	40.0%	33.6%		18.7%
Third-generation cephalosporin	76.4%	60.7%	42.8%	

Percentages in each cell represent the proportion of Enterobacteriales that are resistant to the antibiotic listed in the column when resistance is present to the antibiotic in the row.

Abbreviations: FQ, fluoroquinolones; NFT, nitrofurantoin; TMP-SMX, trimethoprim-sulfamethoxazole.
cUTI have an elevated risk for receiving an inappropriate empiric empirical agent if prescribed a fluoroquinolone, TMP-SMX, or nitrofurantoin. This is concerning as the deleterious outcomes associated with delayed appropriate therapy are well-documented for adult patients with community-onset UTIs [21–29]. The elevated risk of inappropriate empiric therapy highlights the need for clinicians to use institution-specific antibiotic resistance risk stratification tools to guide empiric antibiotic decisions among patients presenting to the ED with a cUTI. The high observed resistance rates among the oral cUTI options also indicate that many cUTI patients will require intravenous antibiotics for their entire treatment course. Thus, there is a clear unmet need for new oral options for patients with cUTI due to Enterobacteriales.

Several issues should be considered when interpreting these findings. Patient and microbiologic data were extracted from an electronic database and the potential for inaccuracies exist. However, Premier has several validation processes in place to ensure the accuracy of the data [13]. Urinalysis results, physical examination findings, and physician notes were not available, and diagnosis of cUTIs were based on diagnostic and procedure codes. Although there was a potential for misclassification of cUTI (eg, classified asymptomatic bacteriuria as cUTI), the codes used to identify cUTIs have been previously validated to have high positive predictive value [30–34]. Resistance rates were stratified by US census regions, but local epidemiology and resistance should be considered when making empiric treatment decisions in the ED. Enterobacteriales are not the only causative cUTI pathogens [16] and fluoroquinolones, TMP-SMX, nitrofurantoin, and third-generation cephalosporins have limited activity against many non-Enterobacteriales uropathogens [9]. Thus, our reported resistance rates should be viewed as conservative estimates of resistance and co-resistance among adults presenting to the ED with a cUTI. Finally, amoxicillin-clavulanate and fosfomycin are potential oral cUTI Enterobacteriales agents but were not included in this study given their limited use relative to the agents assessed [14]. Furthermore, susceptibility results were only available for these agents in approximately 1% of the Enterobacteriales cUTIIs in this study. Future studies should assess the viability of amoxicillin-clavulanate and fosfomycin as potential oral agents in adult patients with Enterobacteriales cUTIs.

In conclusion, patients with cUTI infections presenting to EDs in the US are frequently resistant to many commonly used oral antibiotics. Institutions should consider developing specific antibiotic resistance risk stratification tools to best inform clinicians of the appropriate empiric antibiotic selection among patients presenting to the ED with a cUTI. The findings also highlight the clear need for new oral options for cUTI patients to address the growing challenge of antibiotic resistance.

Supplementary Data

Supplementary materials are available at Open Forum Infectious Diseases online. Consisting of data provided by the authors to benefit the reader, the posted materials are not copyedited and are the sole responsibility of the authors, so questions or comments should be addressed to the corresponding author.

Notes

Patient consent. The Premier Research Database only contained only de-identified patient records per 45 Code of Federal Regulations (C.F.R.) 164.506(d)(2)(ii)(B) through the “Expert Determination” method. Premier Research Database data are considered exempt from institutional review board oversight as dictated by Title 45 C.F.R. part 46 of the United States, specifically 45 C.F.R. 46.101(b)(4).

Financial support. This work was supported by Spero Therapeutics.

Potential conflicts of interest. T. P. L. and T. C. are consultants for Spero Therapeutics. B. H. N.’s company, OptiStatim, LLC, had a consulting agreement with Spero Therapeutics. K. S. is a former employee of Spero Therapeutics. M. R. is an employee of Spero Therapeutics.

All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

References

1. Flores-Mireles AL, Walker JN, Caparon M, Hultgren S. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol 2015; 13:269–84. doi:10.1038/nrmicro3432
2. Foxman B. Urinary tract infection syndromes: occurrence, recurrence, bacteriology, risk factors, and disease burden. Infect Dis Clin North Am 2014; 28:1–13. doi:10.1016/j.idc.2013.09.003
3. Jernigan JA, Hatfield KM, Welford H, et al. Multidrug-resistant bacterial infections in U.S. hospitalized patients, 2012–2017. N Engl J Med 2020; 382: 1309–19. doi:10.1056/NEJMoai1914433
4. Carreno JJ, Tam JM, Meyers JL, Estergard E, Candrilli SD, Lodise TP, Jr. Corrigendum to: Longitudinal, nationwide, cohort study to assess incidence, outcomes, and costs associated with complicated urinary tract infection. Open Forum Infect Dis 2020; 7:ofz536. doi:10.1093/ofid/ofz536
5. Critchley JA, Crotoneo N, Pucci MJ, Mendes R. The burden of antimicrobial resistance among urinary tract isolates of Escherichia coli in the United States in 2017. PloS One 2019; 14:e0220265. doi:10.1371/journal.pone.0220265
6. Zilberberg MD, Nathanson BH, Sulham K, Shorr AF. Antimicrobial susceptibility and cross-resistance patterns among common complicated urinary tract infections in U.S. hospitals, 2013 to 2018. Antimicrob Agents Chemother 2020; 64: e00346–20. doi:10.1128/AAC.00346-20
7. Weiner-Lustiger LM, Abner S, Edwards JR, et al. Antimicrobial-resistant pathogens associated with adult healthcare-associated infections: summary of data reported to the National Healthcare Safety Network, 2015–2017. Infect Control Hosp Epidemiol 2020; 41:1–18. doi:10.1017/ice.2019.296
8. Lob SH, Nicolle LE, Hoban DJ, Karmierczak KM, Badal RE, Sahm DF. Susceptibility patterns and ESBL rates of Escherichia coli from urinary tract infections in Canada and the United States, SMART 2010–2014. Diagn Microbiol Infect Dis 2016; 85:459–65. doi:10.1016/j.diagmicrobio.2016.04.022
9. Rank EL, Lodise T, Avery L, et al. Antimicrobial susceptibility trends observed in urinary pathogens obtained from New York State. Open Forum Infect Dis 2018; 5:sof297. doi:10.1093/ofid/ofy297
10. Sanchez GV, Babiker A, Master RN, Luu T, Mathur A, Bordon J. Antibiotic resistance among urinary isolates from female outpatients in the United States in 2003 and 2012. Antimicrob Agents Chemother 2016; 60:2680–3. doi:10.1128/AAC.02897-15
11. Talan DA, Takhar SS, Krishnasasan A, et al. Emergence of extended-Spectrum beta-lactamase urinary tract infections among hospitalized emergency department patients in the United States. Ann Emerg Med 2021; 77:32–43. doi:10.1016/j.annemergmed.2020.08.022
12. Sanchez GV, Baird AM, Karlowsky JA, Master RN, Bordon JM. Nitrofurantoin retains antimicrobial activity against multidrug-resistant urinary Escherichia coli from US outpatients. J Antimicrob Chemother 2014; 69:3259–62. doi:10.1093/jac/dku282
13. Premier Applied Sciences. Premier Healthcare Database: data that informs and drives health care decisions. Available at: https://products.premierinc.com/downloads/PremierHealthcareDatabaseWhitepaper.pdf. Accessed 1 April 2022.
14. Carrero JJ, Tam IM, Meyers JL, Esterberg E, Candrilli SD, Lodise TP, Jr. Longitudinal, nationwide, cohort study to assess incidence, outcomes, and costs associated with complicated urinary tract infection. Open Forum Infect Dis 2019; 6(4):246. doi:10.1093/ofid/ofz536

15. Lodise T, Ye MJ, Zhao Q. Prevalence of invasive infections due to carbapenem-resistant Enterobacteriaceae among adult patients in U.S. hospitals. Antimicrob Agents Chemother 2017; 61:6022-17. doi:10.1128/AAC.00228-17

16. Lodise TP, Chopra T, Nathanson BH, Sulham K. Hospital admission patterns of adult patients with complicated urinary tract infections who present to the hospital by disease acuity and comorbid conditions: how many admissions are potentially avoidable? Am J Infect Control 2021; 49:1528–34. doi:10.1016/j.ajic.2021.05.013

17. Deyo RA, Cherkin DC, Ciol MA. Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases. J Clin Epidemiol 1992; 45:613–9. doi:10.1016/0895-4356(92)90133-8

18. Cunha BA, Schoch PE, Hage JR. Nitrofurantoin: preferred empiric therapy for community-acquired lower urinary tract infections. Mayo Clin Proc 2011; 86:1243–4; author reply 1244. doi:10.4065/mcp.2011.0411

19. Gupta K, Hooton TM, Naber KG, et al. International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: a 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin Infect Dis 2011; 52: e103–120. doi:10.1093/cid/ciq257

20. Mogle BT, Beccari MV, Steele JM, Fazili T, Kufel WD. Clinical considerations for oral beta-lactams as step-down therapy for Enterobacteriaceae bloodstream infections. Expert Opin Pharmacother 2019; 20:903–7. doi:10.1080/14656566.2019.1594774

21. Puttagunta S, Aronin S, Gupta V, Murray J, Dunne M. Impact of initial inappropriate antibiotic therapy on outcome for uncomplicated urinary tract infection due to antibiotic non-susceptible Enterobacteriaceae. In: 28th European Congress of Clinical Microbiology and Infectious Diseases, Madrid, Spain, 21–24 April 2018.

22. Dunne M, Snow K, Mehta R. Failure of empiric treatment of uncomplicated urinary tract infection associated with resistant pathogens [poster 4561]. In: American Society for Microbiology (ASM) Microbe, San Francisco, CA, 20–24 June 2019.

23. Jorgensen S, Zurayk M, Yeung S, et al. Risk factors for early return visits to the emergency department in patients with urinary tract infection. Am J Emerg Med 2018; 36:12–7. doi:10.1016/j.ajem.2017.06.041

24. Gupta K, Hooton TM, Roberts PL, Stamm WE. Short-course nitrofurantoin for the treatment of acute uncomplicated cystitis in women. Arch Intern Med 2007; 167:2207–12. doi:10.1001/archinte.167.20.2207

25. Raz R, Chazan B, Kennes Y, et al. Empiric use of trimethoprim-sulfamethoxazole (TMP-SMX) in the treatment of women with uncomplicated urinary tract infections, in a geographical area with a high prevalence of TMP-SMX-resistant uropathogens. Clin Infect Dis 2002; 34:1165–9. doi:10.1086/339812

26. Jansåker F, Boel JB, Thønnings S, et al. Pivmecillinam compared to other antimicrobials for community-acquired urinary tract infections with Escherichia coli, ESBL-producing or not—a retrospective cohort study. Infect Drug Resist 2019; 12:1691–702. doi:10.2147/IDR.S209255

27. MacVane SH, Tuttle LO, Nicolau DP. Impact of extended-spectrum beta-lactamase-producing organisms on clinical and economic outcomes in patients with urinary tract infection. J Hosp Med 2014; 9:232–8. doi:10.1002/jhm.2157

28. Anesi JA, Lautenbach E, Nachamkin I, et al. The role of extended-spectrum cephalosporin resistance in recurrent community-onset Enterobacteriaceae urinary tract infections: a retrospective cohort study. BMC Infect Dis 2019; 19:163. doi:10.1186/s12879-019-3804-y

29. Raman G, Avendano E, Berger S, Menon V. Appropriate initial antibiotic therapy in hospitalized patients with gram-negative infections: systematic review and meta-analysis. BMC Infect Dis 2015; 15:395. doi:10.1186/s12879-015-1123-5

30. Huang X, Peterson S, Lavergne R, Ahuja M, McGrail K. Predicting the cost of health care services: a comparison of case-mix systems and comorbidity indices that use administrative data. Med Care 2020; 58(2):114–19.

31. Sharabiani MT, Aylin P, Bottle A. Systematic review of comorbidity indices for administrative data. Med Care 2012; 50(12):1109–18.

32. Wiese AD, Griffin MR, Stein CM, et al. Validation of discharge diagnosis codes to identify serious infections among middle age and older adults. BMJ Open 2018; 8(6):e020857.

33. Barber C, Llacalle D, Fortin PR. Systematic review of validation studies of the use of administrative data to identify serious infections. Arthritis Care Res (Hoboken) 2013; 65(8):1343–57.

34. Schneeweiss S, Robiscek A, Scranton R, Zuckerman D, Solomon DH. Veteran’s affairs hospital discharge databases coded serious bacterial infections accurately. J Clin Epidemiol 2007; 60(4):397–409.