Dear Editor,

Stenotrophomonas maltophilia has received considerable attention owing to its high infection rate and resistance to multiple antibiotic classes [1]. Trimethoprim/sulfamethoxazole (SXT) is the recommended first-line therapy for *S. maltophilia* infection; however, resistance rates to SXT of *S. maltophilia* have increased worldwide; in Anhui province of China, the resistance rate has increased from 10% to 40% over the past five years [2]. Accordingly, it is important to study the mechanisms underlying SXT resistance and prevent the spread of resistance. We found that *sul1* in combination with *sul2* confers high-level resistance to SXT; *sul1* was always found as part of the 3’ end of the class 1 integron, in Anhui province [3]; however, no association between *sul2* and integrons was found.

In the present report, 41 *sul2*-positive *S. maltophilia* samples were collected in one month (September) every year (from 2010 to 2012) from different patients across 31 hospitals in Anhui, China. All *S. maltophilia* isolates were identified using the MicroScan WalkAway 40 System (Dade Behring, Deerfield, IL, USA). *Pseudomonas aeruginosa* ATCC 27853, *Escherichia coli* ATCC 35218, and *E. coli* ATCC 25922 were used as quality control strains for antimicrobial susceptibility testing. Minimal inhibitory concentrations (MICs) of SXT were determined for each isolate by the agar dilution method according to the Clinical and Laboratory Standards Institute [4]. Presence of *sul1*, *sul2*, and *dfrA* in each strain was assessed by PCR as described previously [3].

Of the 41 *sul2*-positive isolates, 30 (73.2%) were resistant to SXT, 28 (68.3%) carried *sul1*, eight (19.5%) carried *dfrA12*, and 10 (24.4%) carried *dfrA17* (Table 1). Twenty-eight of the 30 SXT-resistant and *sul2*-positive isolates contained *sul1* and/or *dfrA*. *Sul1* and *dfrA*, which lead to an increase in the MIC of SXT or SXT resistance in *S. maltophilia*, have been described previously [3].

Sul2 genes linked to insertion sequence common region (ISCR) elements were previously reported [5]. We investigated whether *sul2* could be linked to other mobile elements in this region by thermal asymmetric interlaced PCR (TAIL-PCR), which was developed for amplification of unknown DNA fragments flanked by known sequences. In TAIL-PCR, three nested, sequence-specific primers are utilized in consecutive reactions together with arbitrary degenerate (AD) primers to enhance the

© The Korean Society for Laboratory Medicine.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
amplification efficiency of specific products [6]. Three specific primers (sul2-SP1: AAAGAACGCCGCAATGTGATCC, sul2-SP2: GGATAAGCGACGCGCTCTGGAAA, and sul2-SP3: CATCTGCCCTGAGCGCGTCC) and four AD primers (AD1, AD2, AD3, and AD4) from the Genome Walking Kit (TaKaRa Bio, Dalian, China) were used to amplify the 3’ flanking sequences of sul2. Three specific primers (sul2-SP4: GTGGGAATGAGTTGGAAGAA, sul2-SP5: GTTGCCGTTGTGGGTGCTGT, and sul2-SP6: TGCGCTATCGTGGGGGAATG) and the four AD primers were used to amplify the 5’ flanking sequences of sul2. The specific primers were designed to have a melting temperature (60 to 65°C) that was higher than that of the AD primers (45°C). The flanking sequences of sul2 were amplified by PCR according to the protocol of the Genome Walking Kit (TaKaRa Bio). PCR products were cloned into the pMD19-T vector and sequenced.

According to results of TAIL-PCR and sequence analysis of the 41 sul2-positive isolates, in 27 isolates resistant to SXT, a 2-kb nucleotide sequence encoding transposase (tnpA2) and phosphoglucomutase (glmM) was obtained for the 5’ end of sul2; in the same 27 isolates, a 3.2-kb nucleotide sequence encoding a conserved hypothetical protein was obtained for the 3’ end of sul2. The genetic structure of the flanking nucleotides linked to sul2 is shown in Fig. 1 and has been deposited in GenBank.

Epidemiological genotyping of the 27 isolates was performed by randomly amplified polymorphic DNA PCR, as described previously [7]. Twenty-three isolates had unrelated genotypes, and the other four isolates were found to share the same genotype. After tracking clinical data, these four isolates were determined to be from the same department of a hospital, indicating that clonal spread was responsible for dissemination of sul2 among S. maltophilia isolates. Presence of sul2 has increased SXT resistance, when it is associated with transposons; sul2 could be further disseminated among bacteria through horizontal gene transfer in S. maltophilia isolates.

In summary, this is the first report showing the close association of the SXT resistance gene sul2 with transposase in S. maltophilia isolates. These results suggest that acquired resistance has an important role in the resistance of S. maltophilia to SXT, which may increase by means of mobile elements.

Nucleotide sequence accession numbers
Sequences of the tnpA2-glmM-sul2-hypothetical protein have been deposited in GenBank and were assigned the accession number JX869967.

Table 1. Distribution of the sul and dfrA genes in 41 sul2-positive Stenotrophomonas maltophilia isolates

Gene	N of isolates	MIC of SXT (µg/mL)							
		0.25/4.95	1/19	2/38	4/76	8/152	16/304	32/608	>32/608
sul2	13	1	6	4	2				
sul2, sul1	10			2	1	7			
sul2, sul1, dfrA12	8		3	1	4				
sul2, sul1, dfrA17	10	1	1	3	5				

Abbreviations: MIC, minimal inhibitory concentration; SXT, trimethoprim/sulfamethoxazole.

Fig. 1. Schematic diagram of nucleotides flanking the sul2 gene.

Table 1. Distribution of the sul and dfrA genes in 41 sul2-positive Stenotrophomonas maltophilia isolates

Gene	N of isolates	MIC of SXT (µg/mL)							
		0.25/4.95	1/19	2/38	4/76	8/152	16/304	32/608	>32/608
sul2	13	1	6	4	2				
sul2, sul1	10			2	1	7			
sul2, sul1, dfrA12	8		3	1	4				
sul2, sul1, dfrA17	10	1	1	3	5				

Abbreviations: MIC, minimal inhibitory concentration; SXT, trimethoprim/sulfamethoxazole.

Fig. 1. Schematic diagram of nucleotides flanking the sul2 gene.

Table 1. Distribution of the sul and dfrA genes in 41 sul2-positive Stenotrophomonas maltophilia isolates

Gene	N of isolates	MIC of SXT (µg/mL)							
		0.25/4.95	1/19	2/38	4/76	8/152	16/304	32/608	>32/608
sul2	13	1	6	4	2				
sul2, sul1	10			2	1	7			
sul2, sul1, dfrA12	8		3	1	4				
sul2, sul1, dfrA17	10	1	1	3	5				

Abbreviations: MIC, minimal inhibitory concentration; SXT, trimethoprim/sulfamethoxazole.

Fig. 1. Schematic diagram of nucleotides flanking the sul2 gene.

Authors’ Disclosures of Potential Conflicts of Interest
No potential conflicts of interest relevant to this article were reported.

Acknowledgments
This work was supported by a research grant from the National Natural Science Foundation of China (No. 81101313).

REFERENCES

1. Brooke JS. Stenotrophomonas maltophilia: an emerging global opportunistic pathogen. Clin Microbiol Rev 2012;25:2-41.
2. Hu LF, Gao LP, Ye Y, Chen X, Zhou XT, Yang HF, et al. Susceptibility of Stenotrophomonas maltophilia clinical strains in China to antimicrobial combinations. J Chemother 2014;26:282-6.
3. Hu LF, Chang X, Ye Y, Wang ZX, Shao YB, Shi W, et al. Stenotrophomonas maltophilia resistance to trimethoprim/sulfamethoxazole mediated by acquisition of sul and dfrA genes in a plasmid-mediated class 1 integron. Int J Antimicrob Agents 2011;37:230-4.
4. Clinical and Laboratory Standards Institute. Performance standards for
antimicrobial susceptibility testing. Twenty-third informational supplement, M100-S23. Wayne, PA: CLSI, 2013.
5. Toleman MA, Bennett PM, Bennett DM, Jones RN, Walsh TR. Global emergence of trimethoprim/sulfamethoxazole resistance in Stenotrophomonas maltophilia mediated by acquisition of sul genes. Emerg Infect Dis 2007;13:559-65.
6. Trinh Q, Zhu P, Shi H, Xu W, Hao J, Luo Y, et al. A-T linker adapter polymerase chain reaction for determining flanking sequences by rescuing inverse PCR or thermal asymmetric interlaced PCR products. Anal Chem 2014;466:24-6.
7. Nazik H, Ongen B, Erturan Z, Salcioglu M. Genotype and antibiotic susceptibility patterns of Pseudomonas aeruginosa and Stenotrophomonas maltophilia isolated from cystic fibrosis patients. Jpn J Infect Dis 2007;60:82-6.