SYSTEMATIC REVIEW

Outcome and complications following revision shoulder arthroplasty

A SYSTEMATIC REVIEW AND META-ANALYSIS

V. Ravi,
R. J. Murphy,
R. Moverley,
M. Derias,
J. Phadnis

From University Hospitals NHS Trust, Brighton, UK

Correspondence should be sent to Richard James Murphy; email: richardjamesmurphy@icloud.com
doi: 10.1302/2633-1462.28.BJO-2021-0092.R1
Bone Jt Open 2021;2-8:618–630.

Aims
It is important to understand the rate of complications associated with the increasing burden of revision shoulder arthroplasty. Currently, this has not been well quantified. This review aims to address that deficiency with a focus on complication and reoperation rates, shoulder outcome scores, and comparison of anatomical and reverse prostheses when used in revision surgery.

Methods
A Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) systematic review was performed to identify clinical data for patients undergoing revision shoulder arthroplasty. Data were extracted from the literature and pooled for analysis. Complication and reoperation rates were analyzed using a meta-analysis of proportion, and continuous variables underwent comparative subgroup analysis.

Results
A total of 112 studies (5,379 shoulders) were eligible for inclusion, although complete clinical data was not ubiquitous. Indications for revision included component loosening 20% (601/3,041), instability 19% (577/3,041), rotator cuff failure 17% (528/3,041), and infection 16% (490/3,041). Intraoperative complication and postoperative complication and reoperation rates were 8% (230/2,915), 22% (825/3,843), and 13% (584/3,843) respectively. Intraoperative and postoperative complications included iatrogenic humeral fractures (91/230, 40%) and instability (215/825, 26%). Revision to reverse total shoulder arthroplasty (TSA), rather than revision to anatomical TSA from any index prosthesis, resulted in lower complication rates and superior Constant scores, although there was no difference in American Shoulder and Elbow Surgeons scores.

Conclusion
Satisfactory improvement in patient-reported outcome measures are reported following revision shoulder arthroplasty; however, revision surgery is associated with high complication rates and better outcomes may be evident following revision to reverse TSA.

Cite this article: Bone Jt Open 2021;2-8:618–630.

Keywords: Total shoulder arthroplasty, Replacement, Revision, Systematic review and meta-analysis, Complications, Outcomes

Introduction
The prevalence of shoulder arthroplasty has increased dramatically over the past decade, with a projected growth rate exceeding that for lower limb arthroplasty. This is in part due to arthroplasty becoming the accepted primary or salvage treatment for diverse pathologies including arthritis, fractures, avascular necrosis, and rotator cuff tears. Furthermore, the success of modern shoulder arthroplasty and advances in prosthetic design has led to an expansion of shoulder arthroplasty surgery in younger patients. The lifetime risk of revision following shoulder arthroplasty is reported to be as high as one in four, with patients aged 60 and under having a fourfold higher risk of revision compared to those over 85 years of age. Hence, the exponential rise in primary surgery has been associated with
OUTCOME AND COMPLICATIONS FOLLOWING REVISION SHOULDER ARTHROPLASTY

Table I. Grouping of selected complications used to classify indications and outcomes.

Complication	Description
Component loosening	Glenoid or humeral component dissociation, screw failure, malposition, migration, or material disassembly following arthroplasty.
Instability	Recurrent dislocations due to a defect in the prosthesis
Rotator cuff failure	Insufficiency or tear in rotator cuff muscles
Glenoid failure	Glenoid disease following hemiarthroplasty (arthritis/erosion/arthrosis) or glenoid component failure (polyethylene wear or broken hardware) following anatomical TSA
Baseplate failure	Polyethylene wear or broken hardware in baseplate of glenoid component following reverse TSA
Fracture sequela	Nonunion, malunion, or failure following fracture fixation
Radiological complications*	Component or bone lucency, subsidence, scapular notching, or radiological loosening.
Wound problems	Wound infection or impaired healing post-surgery.

*Includes radiological inconsistencies reported as a complication and requiring reintervention as a result. Radiological outcomes were not studied in this systematic review.

TSA, total shoulder arthroplasty.

a corresponding increase in the demand for revision surgery. However, compared to hip and knee arthroplasty, this burden remains relatively low, which means most individual surgeons have limited experience and outcome data on revision arthroplasty.

Common indications for revision include glenoid wear, component loosening, infection, periprosthetic fracture, cuff failure, and instability. Many of the principles used in revision shoulder arthroplasty are derived from the more extensive lower limb literature, however revision shoulder arthroplasty poses some specific challenges such as the unique microbiological environment of the shoulder; the reliance on coordinated muscle function for stability; the proximity of neurovascular structures; and the relatively lower bone stock available.

There is currently no consensus for uniform implant selection in revision surgery, although there is a trend towards reverse total shoulder arthroplasty (TSA) as the favoured option. Nevertheless, anatomical TSA continues to have a role in revision surgery for particular modes of failure where the rotator cuff remains intact.

Although we know that inferior functional results and a higher incidence of complications (up to 50%) are associated with revision compared to primary shoulder arthroplasty, there is sparse data available on the specific outcomes and complications of revision arthroplasty. A recent systematic review provides some insight into this area, with comparisons made between European and North American practice. The authors identified similar practice in most aspects of revision shoulder arthroplasty between European and North American surgeons with a 17% reported overall complication rate.

This study aimed to comprehensively search the literature and present the relevant collated data on revision shoulder arthroplasty with a focus on complication and reoperation rates, shoulder outcome scores, and comparison of these metrics between anatomical and reverse TSA, when used in revision surgery.

Methods

This systematic review was registered on the PROSPERO database (Registration ID: CRD42019150698) and conducted as per the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol.

Search and data collection. All English language papers reporting clinical data for revision shoulder arthroplasty were included in this study. Abstracts from scientific meetings, unpublished reports, case reports, and review articles were excluded. Patients with a minimum of 24 months’ follow-up after revision surgery were included in the quantitative synthesis of PROMs, postoperative complication data, and reoperation data. Patients with inadequate or no follow-up were included for the purpose of studying intraoperative complications but were excluded when synthesizing postoperative outcomes.

Embase and MEDLINE databases were searched on 6 April 2021 for all articles published since 2001. References of all included studies were subsequently screened for further articles eligible for inclusion. For search strategy employed see Supplementary Material I. Search results and included papers were managed using spreadsheet software. One reviewer (VR) screened study titles followed by abstract and full manuscript review, where necessary, to determine appropriateness for inclusion. Three reviewers (RJM, MD, JP) assessed identified studies for confirmation of eligibility and any disagreement was resolved by consensus. One reviewer (VR) performed initial data collation followed by cross-checking by a second reviewer (MD).

Basic data collected from individual studies, where reported, included cohort demographics, indication for revision, index surgery, final implant used in revision, pre- and postoperative shoulder outcome scores, intra- and postoperative complications, and reoperations. Due to inconsistency in reporting terminology, some indications and complications were grouped to enable easier understanding and classification of reported data (see
Heterogeneity testing employed the I² statistic, describing effect estimates. Results are presented in the form of random-effects model was used to account for variability was performed using MedCalc software (Belgium) and to the reported rates and sample size of each study. This information to calculate an overall rate, weighted according to the percentage variation between studies; a value greater than 50% was considered 'substantial heterogeneity' for the purpose of this study.

Statistical analysis. Pooled descriptive analysis of collected data was used to understand patient demographic details, indications for revision, and frequency of different index and revision surgical procedures. Complication rates used the number of patients with at least one complication/reoperation as the numerator and total number of patients studied as the denominator. Results were pooled across different studies using a meta-analysis of proportion, which involves using a Freeman-Tukey transformation to calculate an overall rate, weighted according to the reported rates and sample size of each study. This was performed using MedCalc software (Belgium) and random-effects model was used to account for variability in effect estimates. Results are presented in the form of a forest plot, with each study represented by its weight, reported rate and 95% confidence interval (95% CI). Heterogeneity testing employed the I² statistic, describing the percentage variation between studies; a value greater than 50% was considered 'substantial heterogeneity' for the purpose of this study.

PROMs were studied using minimal clinically important difference (MCID), a measure of responsiveness that represents the smallest subjective difference in shoulder outcome score corresponding to a clinically important change to the patient. Change in mean score over follow-up duration for each reported study was used to identify proportion of studies that achieved MCID.

Sub-groups were defined as 1) shoulders revised to reverse TSA and 2) shoulders revised to anatomical TSA. Complication rates were compared using chi-squared and Fisher’s exact test; with results summarized using percentages and odds ratio (OR). OR greater than 2 with a 95% CI not spanning null value (OR = 1) was considered clinically relevant. Shoulder outcome scores were pooled across reported studies using frequency-weighted means and compared between sub-groups using independent-samples t-test. Statistical tests were performed using SPSS software v26.0.0.0 (USA) and a p-value less than 0.05 was considered statistically significant for this study.

Results

Overall, 112 studies were deemed eligible for inclusion (Figure 1); 84 were level IV studies, 27 level III, and one level II, all of which reported clinical data for patients undergoing revision shoulder arthroplasty. All studies included cohorts with adequate follow-up periods apart from one, which reported intraoperative data for a group of patients not followed up after revision surgery. This study was included in the systematic review as it was deemed eligible to study intraoperative complications; but was excluded for the purpose of analyzing postoperative outcomes. For a list of individual studies with cohort size and reported complications see Supplementary Table I.

A total of 57 of 112 (51%) studies achieved ideal global MINORS scores. Scores from the remaining studies ranged from 12 to 15 for level IV and 19 to 23 for level III studies. All studies were deemed eligible to be included in quantitative synthesis; for individual study scores see Supplementary Material II.

Overall, 5,379 shoulders in 5,225 patients having undergone revision shoulder arthroplasty were included. Complete demographic data for patients undergoing revision was reported in 85 out of 112 (76%) studies. Pooled demographic and clinical data with indications for revision are presented in Table II. The mean age of patients at revision surgery was 67 years (21 to 84) and 60% of patients were female. Follow-up duration was reported in 3,240 of 3,474 (93%) shoulders with adequate follow-up; the cohort was followed up for a mean of 48 months (24 to 113). Of the shoulders with available data regarding index and revision procedures (See Table II), the most common index procedure was hemiarthroplasty (50%, 1,645/3,295) and the majority of shoulders were revised to reverse TSA (67%, 3,341/5,004).

Of the shoulders with available data regarding indication for revision (see Table II), the most common indications were component loosening (20%, 601/3,041), instability (19%, 577/3,041), rotator cuff failure (17%, 528/3,041), and infection (16%, 490/3,041).

Intraoperative complications were reported in 50 of 112 studies (45%). Of 2,915 shoulders, 230 (8%) had an intraoperative complication during revision shoulder arthroplasty; reported complications are presented in Table III. Of the 230 intraoperative complications, 162 (70%) were iatrogenic fractures and of these, 91 of 162 (56%) involved the humerus. The weighted global intraoperative complication rate was 7.9% (95% CI 5.5 to 10.6; see Supplementary Material III) with substantial heterogeneity between studies ($I^2 = 77.7\%$ (95% CI 70.9 to 82.9)).

Postoperative complications were reported in 111 of 112 studies. Of 3,843 shoulders included in this analysis, 825 (21%) reported a postoperative complication following revision shoulder arthroplasty; reported complications are presented in Table IV. Instability was the most commonly reported postoperative complication (26%, 215/825), followed by component loosening (19%, 158/825), infection (16%, 129/825), and
periprosthetic fracture (12%, 100/825). The weighted global postoperative complication rate was 21.9% (95% CI 19.2 to 24.7, see Supplementary Material IV) with substantial heterogeneity between studies ($I^2 = 76.4\%$, 95% CI 71.7 to 80.2).

Reoperation rate was reported in 111 of 112 studies. Of 3,843 shoulders, 584 (15%) shoulders underwent reoperation following revision shoulder arthroplasty; reported reoperations are presented in Table V. Of 533 reoperations, 232 (40%) reoperations stated need for revision of one or both components of the shoulder prosthesis, 45 (8%) reoperations did not require component revision, and 307 (58%) reoperation procedures were not specified. The weighted global reoperation rate was 13.3% (95% CI 11.5 to 15.3, see Supplementary Material IV) with substantial heterogeneity among studies ($I^2 = 66.1\%$ (95% CI 58.7 to 72.2)).

Shoulder outcome scores were reported pre- and postoperatively in 55 of 112 (49%) studies; these are presented in Table VI. The American Shoulder and Elbow Surgeons (ASES) score was reported in 27 of 55 (49%) studies and Constant score was reported in 28 of 55 (51%) studies. MCID was achieved in 48 of 55 (87%) studies; this required a 21- and eight-point improvement in ASES and Constant scores respectively. ASES score was reported in 21 of 48 (44%) studies that achieved MCID and Constant score was reported in 27 of 48 (56%) studies that achieved MCID.

Reported postoperative complications were separated into subgroups of those occurring following revision to anatomical TSA or to reverse TSA from data provided in 81 of 111 (73%) studies that reported postoperative outcome data. This included 455 complications in 2,073 shoulders revised to reverse TSA and 174 complications in 601 shoulders revised to anatomical TSA. The incidence and OR of postoperative complications in the two groups is presented in Table VII.

In the group revised to anatomical TSA, compared to those revised to reverse TSA, there was a significantly higher incidence of postoperative complications using a chi-squared test (OR 1.5 (95% CI 1.2 to 1.8); $p < 0.001$), with a clinically relevant higher incidence of pain and stiffness (OR 5.3 (95% CI 2.7 to 10.5); $p < 0.001$) and rotator cuff failure (OR 42.7 (95% CI 13.1 to 139.2); $p < 0.001$) following revision.

In the group revised to reverse TSA, there was a clinically relevant higher incidence of periprosthetic fracture (OR 2.5 (95% CI 1.2 to 5.0); $p < 0.009$, chi-squared test) following revision.
There was no clinically relevant difference in the incidence of instability, component loosening, infection, haematoma formation, fracture sequelae, radiological complications, nerve injuries, or wound problems between the two groups.

Reported shoulder outcome scores were separated into subgroups of those occurring following revision to anatomical TSA or to reverse TSA from data provided in 45 of 55 (82%) studies that reported PROMs. ASES score was reported in 22 of 45 studies20,28,32,48,50,52,53,58,60,61,63,68,70,72,74,76,77,79,81,83,85,87 and Constant score was reported in 23 out of 45 studies21,22,27,38,47,51,59,62,64–67,69,73,75,78,82,84,88,90–92,118 This included outcomes for 1,208 shoulders revised to reverse TSA (669 reported using ASES and 539 reported using Constant score) and 162 shoulders revised to anatomical TSA (42 reported using ASES and 120 reported using Constant score). Comparison of postoperative scores and changes in scores following revision to anatomical and reverse TSA are presented in Figures 2a and 2b, respectively.

When Constant scores were compared using an independent-samples t-test, the group revised to reverse TSA from any type of index prosthesis demonstrated a significantly higher postoperative score when compared to those revised to anatomical TSA (p < 0.001) (mean difference 6.1 (95% CI 3.7 to 8.5)) and change in score (p < 0.001) (mean difference 21.2 (95% CI 18.1 to 24.3) following revision. When ASES scores were compared, there was no significant difference in the postoperative

Table II. Demographic data of the pooled cohort.

Variable	Reported studies (n = 112)	Shoulders with available data (n = 5,379)	Result	%	
Mean age at revision, yrs (range)	105*	5,225	67 (21 to 84)		
Mean follow-up, mths	107†	3,609	48		
Sex	101‡	4,862	Female	2,925/4,862	60
			Male	1,910/4,862	40
Index surgery	100§	3,295	Hemiarthroplasty	1,645/3,295	50
			Anatomical TSA	1,152/3,295	35
			Reverse TSA	402/3,295	15
Revision surgery	109¶	5,004	Reverse TSA	3,341/5,004	67
			Anatomical TSA	1,213/5,004	24
			Hemiarthroplasty	348/5,004	7
			Resection arthroplasty	43/5,004	<1
			Antibiotic spacer implantation	41/5,004	<1
Indication for revision surgery	90**	3,041	Component loosening	601/3,041	20
			Instability	577/3,041	19
			Rotator cuff failure	528/3,041	17
			Infection	490/3,041	16
			Glenoid failure	401/3,041	13
			Baseplate failure	83/3,041	3
			Pain and stiffness	62/3,041	2
			Fracture sequelae	59/3,041	2
			Periprosthetic fracture	58/3,041	2
			Tuberosity resorption	18/3,041	<1

*Age was not reported in seven studies.20–26
†Mean follow-up duration was not reported in four studies,23,27–29 all of which included cohorts followed up for longer than 24 months and one study19 included a cohort that was not followed up.
§Sex of patients undergoing revision was not reported in 11 studies.23–26,30–36
¶Revision surgical procedure was not reported in three studies.26,41,42
**Indication for revision surgery was not reported in 22 studies.19,20,23,24,27,30,32,34–37,44–54
TSA, total shoulder arthroplasty.

Table III. Reported intraoperative complications during revision shoulder arthroplasty.

Intraoperative complication	Reported (n = 230)	%
Iatrogenic humeral fracture	91/230	40
Iatrogenic glenoid fracture	4/230	2
Unspecified iatrogenic fracture	67/230	29
Cement extrusion	17/230	7
Shaft perforation	10/230	4
Nerve injury	9/230	4
Humerus fissure	6/230	3
Antibiotic related complication	3/230	1
Iatrogenic cuff tears	2/230	<1
Bony window	1/230	<1
Vascular injury	1/230	<1
Unspecified intraoperative complication	19/230	9

There was no clinically relevant difference in the incidence of instability, component loosening, infection, haematoma formation, fracture sequelae, radiological complications, nerve injuries, or wound problems between the two groups.
score (p = 0.571) and change in score (p = 0.072) between the two groups.

Outcomes scores for shoulders revised from index anatomical TSA were reported in 14 of 112 (13%) studies; ASES score was reported in five (36%) studies and Constant score in nine (64%) studies. This included outcomes for 216 shoulders with index anatomical TSA revised to reverse TSA (45 reported using ASES and 171 reported using Constant score) and 102 shoulders with index anatomical TSA revised to a second anatomical TSA (29 reported using ASES and 73 reported using Constant score). Comparison of postoperative score and change following revision is presented in Figures 2c and 2d, respectively.

When ASES and Constant scores were compared, the group with index anatomical TSA revised to reverse TSA, in comparison to those revised to anatomical TSA, reported a significantly higher postoperative score (p < 0.001) (ASES mean difference 9.6 (95% CI 5.7 to 13.4); Constant mean difference 11.6 (95% CI 7.7 to 15.5)) and change in score following revision (ASES mean difference 18.4 (95% CI 13.2 to 23.6); Constant mean difference 32.0 (95% CI 28.2 to 35.7); p < 0.001).

Discussion

The meta-analysis data demonstrated overall rates for intraoperative complications, postoperative complications, and reoperations following revision shoulder arthroplasty of 8%, 22%, and 13%, respectively. The most commonly reported intraoperative and postoperative complications were iatrogenic humeral fractures and instability, respectively. Overall, 87% of studies with reporting outcome scores demonstrated an improvement in PROMs of a greater magnitude than the MCID.

A higher incidence of postoperative complications was reported in shoulders that were revised to anatomical TSA, compared to reverse TSA, however this did not reach our predetermined clinically relevant threshold. There was a clinically relevant higher incidence of pain and stiffness, and rotator cuff failure following revision to anatomical TSA versus reverse TSA, although clear objective definitions of these two outcomes are difficult to ascertain from the literature investigated. Conversely, there was a clinically relevant higher incidence of periprosthetic fractures following revision to reverse TSA, versus anatomical TSA. Revision from any index prosthesis to reverse TSA, versus revision to anatomical TSA, resulted in greater absolute postoperative Constant score as well as perioperative improvement in Constant score. Furthermore, revision of index anatomical TSA to reverse TSA, versus revision to a second anatomical TSA, achieved greater absolute postoperative and perioperative improvement in both ASES and Constant scores.

Iatrogenic fractures during shoulder arthroplasty are relatively uncommon, although they can be a challenge to manage when they arise during revision surgery. Reports indicate that intraoperative fracture results in increased operating time, higher blood loss, and poorer postoperative outcomes. Our findings suggest that humeral fractures have a higher incidence compared to glenoid fractures, which is consistent with results from other studies. Fracture during prosthesis explantation is the most likely cause, with removal of stemmed humeral components being the riskiest stage of the procedure according to our data. The fracture risk can occur when...
removing a cemented stem, removing cement itself, or explanting an uncemented stem, however evidence to suggest which of these was the most likely was not demonstrable in our results due to lack of individual case data. Future use of exchangeable modular, short-stemmed, and stemless humeral prostheses may have an impact on reducing intraoperative fracture risk.

A high incidence of postoperative instability following revision was expected (6% in this meta-analysis) as it is commonly reported following primary reverse TSA,116–118 and two-thirds of the shoulders included in the present study were revised to a reverse prosthesis. Despite this presumption, subgroup analysis found no difference in incidence of instability following revision to reverse or anatomical TSA. We speculate this may be due to inconsistency in terminology used by individual studies to report instability, as well as the differences in presentation of instability occurring in anatomical and reverse TSAs. The clinical relevance of this comparison may be limited.

The clinically relevant higher incidence of pain and stiffness following revision to anatomical TSA may be attributable to dynamic cuff dysfunction from chronic cuff disease. Less substantial soft-tissue release in anatomical arthroplasty or postoperative immobilization following subscapularis repair may also be factors contributing to stiffness in anatomical revision. There was a comparatively higher rate of cuff failure as a reported complication following anatomical TSA, which was a predictable finding and clinically unimportant when comparing complication rates.

The clinically relevant higher incidence of postoperative periprosthetic fracture following revision to reverse TSA was an unexpected finding; periprosthetic fractures are thought to be uncommon, with low incidence rates previously reported following reverse TSA.12,139,140 We believe this is an incidental finding and acknowledge that the result is subject to bias, as multiple factors that increase risk of fractures have not been taken into consideration when comparing the two groups, such as age, bone density, and presence of other comorbidities. Surgical technique used in revision, individual prosthetic design, and preferential use of press fit stems could have contributed to this result. Additionally, fracture location

Table VI. Functional outcome scores before and after revision shoulder arthroplasty.

Author and year of publication	Cases	Preop	Postop	Change in score > MCID?	Author and year of publication	Cases	Preop	Postop	Change in score > MCID?
Cox et al14	72	33.7	51.1	No	Jaiswal et al15	26	35.06	59.69	Yes
Crosby et al16	102	32.56	58.7	Yes	Werner et al18	50	11.1	39.5	Yes
Hernandez et al19	65	21.4	67.7	Yes	Antoni et al22	37	26.9	53.3	Yes
Kohan et al21	19	35	65	Yes	Cisneros et al24	40	16.79	58.09	Yes
Otte et al17	35	24.4	40.8	No	Ortega et al25	50	18.5	49.3	Yes
Stephens et al28	58	45.6	52.9	No	Wiesner et al26	45	24	45	Yes
Kelly et al24	30	54.8	71.8	No	Melis et al27	37	31.6	75.6	Yes
Deutsch et al26	32	34	39	No	Valenti et al29	30	24.47	51.57	Yes
Walker et al201220	22	38.5	67.5	Yes	Kany et al27	29	27	60	Yes
Weber-Spickschen et al27	15	12	36	Yes	Bonneville et al27	42	54.2	79.3	Yes
Holcomb et al24	14	36	70	Yes	Werner et al25	14	8.9	41	Yes
Lee et al28	12	32.25	64.17	Yes	Farshad et al29	37	23	46	Yes
Budge et al26	15	38.2	68.3	Yes	Flury et al21	21	16.6	56	Yes
Schubkegel et al27	14	33	72	Yes	Beekman et al28	5	50.2	64.2	Yes
Waser et al31	44	41.8	59.9	No	Postacchini et al32	16	38.7	50.6	Yes
Stephens et al32	32	29.7	70.6	Yes	Hoffmeier et al32	11	24	40	Yes
Levy et al33	29	22.3	52.1	Yes	Geervelt et al33	11	67.1	96.1	Yes
Patel et al34	28	24	66	Yes	Natera et al35	23	24.26	84	Yes
Chacon et al35	25	31.7	69.4	Yes	Valenti et al36	10	39.4	71	Yes
Levy et al37	19	29.1	61.2	Yes	Castagna et al34	26	25.28	47.88	Yes
Holschen et al35	28	19.2	58.5	Yes	Muh et al36	26	25.2	27.3	No
Cuff et al38	17	31.9	57.0	Yes	Hartel et al38	19	19.8	38.7	Yes
Johnston et al39	13	19.6	58.9	Yes	Gehlke et al40	25	12.67	45.08	Yes
Andersen et al42	5	32	54.4	Yes	Pellegrini et al43	21.7	21.7	39.5	Yes
Franke et al44	123	31	55	Yes	Grubhofer et al45	48	26.8	43	Yes
Gorman et al44	98	35	58	Yes	Crosby et al47	73	24	71.91	Yes
Franke et al55	113	30	59	Yes	Elhassan et al51	21	27.80	65.09	Yes
De Wilde et al52	4	14	66	Yes	Postacchini et al51	30	44.7	65.5	Yes

ASES, American Shoulder and Elbow Surgeons; MCID, minimal clinically important difference.
may have influenced this result, with tuberosity fractures perhaps more likely in reverse implants due to them occupying a larger proportion of the metaphysis, the lower neck cut required for implantation, and the increased retraction on the humerus required to implant a glenosphere.

Revision to reverse TSA from any index prosthesis resulted in better outcome scores versus revision to an anatomical TSA. Previous studies have demonstrated better outcomes for revision to an anatomical prosthesis when used appropriately (i.e. revision for isolated glenoid arthrosis or failure in the presence of an intact rotator cuff)."68,101 Our findings raise the possibility that conversion to reverse TSA may result in equally good, if not better, outcomes even in these situations. This notion should be tempered by the fact that this systematic review did not specifically evaluate the use of anatomical and reverse TSA in this context and hence a definitive conclusion should not be inferred, given the heterogeneity of preoperative pathology and broad inclusion criteria used. Physical and functional integrity of the rotator cuff are distinct states that would influence outcomes following revision to anatomical TSA, hence it may be prudent to further investigate how to preoperatively differentiate these states in the setting of an existing arthroplasty.

The quality of our data is linked to the accuracy of studies used in this systematic review, all of which were retrospective in nature. Most of the studies used for quantitative synthesis were of level IV evidence (77% of all studies), highlighting the need for more robust studies on outcomes following revision shoulder arthroplasty. The strength of our evidence is affected by strong heterogeneity among studies, affirmed from high I^2 values (range 69% to 76%) found in meta-analyses of complication and reoperation data. The random-effects model was used to help account for heterogeneity in reported rates, but the high variance indicates potential external bias if applied to other populations.17

The high heterogeneity indicates a significant degree of methodological or clinical variance in the included studies. Results from individual articles may have been influenced by hidden confounding factors that were not extractable from published data. An example of this is the operating surgeon’s experience and surgical technique used in revision, which was not reported in most studies. Similarly, many shoulder implant systems have

Table VII. Postoperative complications following revision to reverse total shoulder arthroplasty versus anatomical total shoulder arthroplasty: reported incidence and odds ratio.

Postoperative complication	RTSA cases (n = 2,073)	ATSA cases (n = 601)	p-value	OR*	RTSA	ATSA
Instability	134 (6.46%)	51 (8.49%)	0.084†	1.34 (0.96 to 1.88)		
Component loosening	92 (4.44%)	22 (3.66%)	0.405†	1.22 (0.76 to 1.96)		
Infection	60 (2.89%)	16 (2.66%)	0.765†	1.09 (0.62 to 1.91)		
Periprosthetic fracture	75 (3.62%)	9 (1.50%)	0.009†	2.47 (1.23 to 4.96)		
Pain and stiffness	14 (0.68%)	21 (3.49%)	< 0.001†			
Rotator cuff failure	3 (0.14%)	35 (5.82%)	< 0.001†	42.67 (13.08 to 139.24)		
Haematoma	24 (1.16%)	1 (0.17%)	0.027‡	7.02 (0.95 to 52.06)		
Glenoid failure	- (0.00%)	5 (0.83%)				
Baseplate failure	10 (0.48%)	- (0.00%)				
Fracture sequelae	1 (0.05%)	1 (0.17%)	0.399‡	3.45 (0.23 to 55.30)		
Radiological complications	12 (0.58%)	0 (0.00%)	0.080‡	7.29 (0.43 to 123.39)		
Nerve injuries	6 (0.29%)	1 (0.17%)	1.000‡	1.74 (0.21 to 14.50)		
Wound problems	6 (0.29%)	1 (0.17%)	1.000‡	1.74 (0.21 to 14.50)		
Others	15 (0.72%)	6 (1.00%)				
Unspecified	3 (0.14%)	5 (0.83%)				
Overall complication rate	455 (21.95%)	174 (28.95%)	< 0.001†	1.45 (1.18 to 1.78)		

*Odds ratio (OR) with 95% confidence interval. OR greater than 2 with 95% CI not spanning null value (OR = 1) was considered clinically relevant.
†Compared using chi-squared test.
‡Compared using Fisher’s exact test.
ATSA, anatomical total shoulder arthroplasty; OR, odds ratio; RTSA, revision total shoulder arthroplasty.
been updated over time to address problems with the original implant design, and it was not possible to determine whether an original or updated design was used in revision from these articles.

This systematic review used a non-specific inclusion criterion to generate a generic analysis of all types of revision shoulder arthroplasty. Concomitant procedures performed during revision were not taken into consideration in this study, potentially introducing performance bias into our results. Intraoperative osteotomies, rotator cuff repairs, and use of bone grafts for complex reconstructions is associated with inferior outcomes following
revision. Thus, inclusion of these cases in our study might have resulted in underestimation of clinical outcome.

Outcomes for individual subgroups analyzed in this systematic review were not extractable from all studies, making our findings from subgroup analyses unrepresentative of every revision case. Statistical analyses were applied to pooled raw data collected from eligible studies, but a formal comparative meta-analysis of results was not appropriate due to lack of homogeneity in study types. The findings from this systematic review suggest high complication and reoperation rates following revision shoulder arthroplasty, which warrants effective and open communication to patients contemplating both revision and primary shoulder arthroplasty. Our findings provide a greater insight into the available literature on outcomes following revision shoulder arthroplasty, but also illustrate the frailties of the existing literature, particularly in terms of informing decision-making around what type of revision prostheses to consider.

In conclusion, in this systematic review we demonstrated that revision shoulder arthroplasty results in improved PROMs but is associated with a high incidence of intraoperative complications (8%), postoperative complications (22%), and reoperations (13%). It appears that revision to reverse TSA demonstrates superior outcomes than revision to anatomical TSA, however decision-making should still be on a case-by-case basis given the inherent flaws in the existing literature.

Take home message
- Revision to reverse total shoulder arthroplasty is associated with better outcomes than revision to anatomical total shoulder arthroplasty (TSA).
- Intraoperative complication rate was 8%, postoperative complications rate was 22%, and reoperation rate was 13% following revision shoulder arthroplasty.
- Outcomes from revision shoulder arthroplasty show clinically important improvement in patient-reported outcome measures (PROMs).
- Revision to reverse geometry TSA rather than to anatomical TSA from any index procedure appears to result in lower complication rates and better postoperative outcome scores.

Supplementary material

Search strategy used for database search, MINORS score for individual studies, and forest plots from meta-analysis of proportion.

References

1. Day JS, Lau E, Ong KL, Williams GR, Ramsey ML, Kurtz SM. Prevalence and projections of total shoulder and elbow arthroplasty in the United States to 2015. J Shoulder Elbow Surg. 2010;19(8):1115–1120.
2. Craig RS, Lane JCE, Carr AJ, Furniss D, Collins GS, Rees J. Serious adverse events and lifetime risk of reoperation after elective shoulder replacement: Population based cohort study using hospital episode statistics for England. BMJ. 2019;364:k298.
3. Khatib O, Onyekwu I, Yu S, Zuckerman JD. Shoulder arthroplasty in New York state, 1991 to 2010: Changing patterns of utilization. J Shoulder Elbow Surg. 2015;24(10):286–31.
4. Schairer WW, Nwachukuwu BU, Lyman S, Craig EV, Goluta LV. National utilization of reverse total shoulder arthroplasty in the United States. J Shoulder Elbow Surg. 2015;24(1):91–97.
5. Petersen SA, Hawkins RJ. Revision of failed total shoulder arthroplasty. Orthop Clin North Am. 1998;29(3):519–533.
6. Austin L, Zmistowski B, Chang ES, Williams GR. Is reverse shoulder arthroplasty a reasonable alternative for revision arthroplasty? Clin Orthop Relat Res. 2011;469(9):2531–2537.
7. Boileau P,Watkinson D, Hatzidakis AM, Novorka I. Neer Award 2006: the Grammont reverse shoulder prosthesis: results in cuff tear arthritis, fracture sequelae, and revision arthroplasty. J Shoulder Elbow Surg. 2006;15(5):527–540.
8. Dines JS, Fealy S, Strauss EJ, et al. Outcomes analysis of revision total shoulder replacement. J Bone Joint Surg Am. 2006;88-A(7):1494–1500.
9. Safadi KR, Kwon YW, Zuckerman JD. Revision shoulder arthroplasty: an analysis of indications and outcomes. J Shoulder Elbow Surg. 2010;19(2):318–313.
10. Wall B, Nové-Josserand L, O’Connor DP, Edwards TB, Walch G. Reverse total shoulder arthroplasty: A review of results according to etiology. J Bone Joint Surg Am. 2007;89-A(7):1476–1485.
11. Saltzman BM, Chalmers PN, Gupta AK, Romeo AA, Nicholson GP. Complication rates comparing primary with revision reverse total shoulder arthroplasty. J Shoulder Elbow Surg. 2014;23(11):1647–1654.
12. Zumstein MA, Pinedo M, Old J, Boileau P. Problems, complications, reoperations, and revisions in reverse total shoulder arthroplasty: A systematic review. J Shoulder Elbow Surg. 2011;20(1):145–157.
13. Knowles NK, Columbus MP, Wegmann K, Ferreira LM, Athwal GS. Revision shoulder arthroplasty: A systematic review and comparison of North American vs. European outcomes and complications. J Shoulder Elbow Surg. 2020;29(5):1071–1082.
14. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int J Surg. 2010;8(9):336–341.
15. Slim K, Nini E, Forestier D, Kwiatkowski F, Panis Y, Chipponi J. Methodological index for non-randomized studies (minors): Development and validation of a new instrument. ANZ J Surg. 2003;73(3B):712–716.
16. Nyaga VN, Arbyn M, Aerts M. METAPROP: A stata command to perform meta-analysis of binomial data. Arch Public Health. 2014;72(1):39.
17. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–560.
18. Tashjian RZ, Hung M, Keener JD, et al. Determining the minimal clinically important difference for the American shoulder and elbow surgeons score, simple shoulder test, and visual analog scale (VAS) measuring pain after shoulder arthroplasty. J Shoulder Elbow Surg. 2017;26(1):144–148.
19. Bowling HM, Holland P, Crowther P, Kottm L, Baker PN, Rangan A. Intraoperative complications during revision shoulder arthroplasty: A study using the National Joint Registry Dataset. Shoulder Elbow. 2017;9(2):92–99.
20. Chacon A, Virani N, Shannon R, Levy JC, Pupello D, Frankie M. Revision arthroplasty with use of a reverse shoulder prosthesis-allograft composite. J Bone Joint Surg Am. 2009;91-A(11):119–127.
21. Fiury MP, Frey P, Goldhahn J, Schwayer H, Simmen BR. Reverse shoulder arthroplasty as a salvage procedure for failed conventional shoulder replacement due to cuff failure–midterm results. Int Orthold. 2011;35(1):53–60.
22. Hoffelner T, Moroder P, Auffarth A, Tauber M, Resch H. Outcomes after shoulder arthroplasty revision with glenoid reconstruction and bone grafting. Int Orthop. 2018;42(4):575–582.
23. Merolla G, Tartaroni A, Sperling JW, Paladinini P, Fabbri E, Porcellini G. Early clinical and radiological outcomes of reverse shoulder arthroplasty with an eccentric all-polyethylene glenosphere to treat failed hemiarthroplasty and the sequelae of proximal humeral fractures. Int Orthop. 2017;41(1):141–148.
24. Trappey GJ, O’Connor DP, Edwards TB. What are the instability and infection rates after reverse shoulder arthroplasty? Clin Orthop Relat Res. 2011;469(9):2505–2511.
25. Andersen JR, Williams CD, Cain R, Migotth M, Frankie M. Surgically treated humeral shaft fractures following shoulder arthroplasty. J Bone Joint Surg Am. 2013;95-A(1):9–18.
26. Foruria AM, Oh LS, Sperling JW, Cofield RH. Anteromedial approach for shoulder arthroplasty: Current indications, complications, and results. J Shoulder Elbow Surg. 2010;19(5):734–738.
27. Crosby LA, Wright TW, Zuckerman JD. Revision total shoulder arthroplasty without humeral component removal. Bull Hosp Jt Dis. 2013;75 Suppl 1:S138–S139.
49. Mahylis JM
50. Otto RJ, Clark RE, Frankie MA. Reverse shoulder arthroplasty in patients younger than 55 years: 2- to 12-year follow-up. J Shoulder Elbow Surg. 2017;26(5):792–797.

51. Postacchini R, Castagna A, Borroni M, Cinotti G, Postacchini F, Guminas S. Total shoulder arthroplasty for the treatment of failed hemiarthroplasty in patients with fracture of the proximal humerus. J Shoulder Elbow Surg. 2012;21(1):1542–1549.

52. Stephens SP, Paisley KC, Giveans MR, Wirth MA. The effect of proximal humeral bone loss on revision reverse total shoulder arthroplasty. J Shoulder Elbow Surg. 2015;24(10):1519–1526.

53. Wiater BP, Baker EA, Salisbury MR, et al. Elucidating trends in revision reverse total shoulder arthroplasty procedures: a retrieval study evaluating clinical, radiographic, and functional outcomes data. J Shoulder Elbow Surg. 2015;24(10):1915–1925.

54. Geeremyck P, Amouyel T, Saab M, et al. Clinical and radiological outcomes of 17 reverse shoulder arthroplasty cases performed after failed humeral head resurfacing. Orthop Traumatol Surg Res. 2019;105(8):1495–1501.

55. Richards RR, An KN, Bigliani LU, et al. A standardized method for the assessment of shoulder function. J Shoulder Elbow Surg. 1994;3(6):347–352.

56. Constant CR, Murley AH. A clinical method of functional assessment of the shoulder. Clin Orthop Relat Res. 1987;214(2):160.

57. Terrens C, Guirro P, Santana F. The minimal clinically important difference for function and strength in patients undergoing reverse shoulder arthroplasty. J Shoulder Elbow Surg. 2016;25(2):252–258.

58. Cox JL, McLendon PB, Christianson KN, Simon P, Migelli MA, Frankle MA. Clinical outcomes following reverse shoulder arthroplasty-allograft composite for revision of failed hemiarthroplasty associated with proximal humeral bone deficiency: 2- to 15-year follow-up. J Shoulder Elbow Surg. 2019;28(5):900–907.

59. Jaiswal A, Malhotra A, Hay S, Kelly CP. Revision shoulder arthroplasty for failed surface replacement hemiarthroplasty. Musculoskelet Surg. 2019;103(1):69–75.

60. Crosby LA, Wright TW, Yu S, Zuckerman JD. Conversion to reverse total shoulder arthroplasty with and without humeral stem retention: The role of a convertable-platfrom stem. J Bone Joint Surg Am. 2017;99(9):736–742.

61. Hernandez NM, Chalmers BP, Wagner ER, Sperling JW, Cofield RH, Sanchez-Sotelo J. Revision to reverse total shoulder arthroplasty restores stability for patients with unstable shoulder prostheses. Clin Orthop Relat Res. 2017;475(11):2716–2722.

62. Antoni M, Barthoulot M, Kempf JP, Clavert P. Revisions of total shoulder arthroplasty: Clinical results and complications of various modalities. Orthop Traumatol Surg Res. 2016;102(3):297–303.

63. Kohan EM, Chalmers PN, Salazar D, Keener JD, Yamaguchi K, Chamberlain AM. Dislocation following reverse total shoulder arthroplasty. J Shoulder Elbow Surg. 2017;26(7):1238–1245.

64. Cisneros LG, Atoun E, Abraham R, Tsvieli O, Bruguera J. Does the stem really matter? Reverse shoulder arthroplasty in revision of failed shoulder arthroplasty-outcome and follow-up. Int Orthop. 2013;37(1):167–175.

65. Wieser K, Borbas P, Ek ET, Meyer DC, Gerber C. Conversion of stemmed hemiarthroplasty to reverse total shoulder arthroplasty: advantages of a modular stem design. Clin Orthop Relat Res. 2015;473(2):651–660.

66. Melis B, Bonnevialle N, Neyton L, et al. Glenoid loosening and failure in anatomical total shoulder arthroplasty: is revision with a reverse shoulder arthroplasty a reliable option? J Shoulder Elbow Surg. 2012;21(3):342–349.

67. Deutsch A, Abboud JA, Kelly J, et al. Clinical results of revision shoulder arthroplasty for glenoid component loosening. J Shoulder Elbow Surg. 2007;16(6):706–716.

68. Valenti P, Vallee P, Sauziers P, et al. Uncremented metal-back glenoid component in revision of aseptic glenoid loosening: a prospective study of 10 cases with a minimum follow-up of 2 years. Arch Orthop Trauma Surg. 2012;132(6):795–791.

69. Walker M, Willis MP, Brooks JP, Pupello D, Mulieri P, Frankle MA. The use of the reverse shoulder arthroplasty for treatment of failed total shoulder arthroplasty. J Shoulder Elbow Surg. 2012;21(4):514–522.

70. Kany J, Amouyel T, Flamand O, Katz D, Valenti P. A convertible shoulder system: is it useful in total shoulder arthroplasty revisions? Int Orthop. 2015;39(2):285–294.

71. Weber-Spieksassen TS, Alfke D, Augerkirchner JD. The use of a modular system to convert an anatomical total shoulder arthroplasty to a reverse shoulder arthroplasty: clinical and radiological results. Bone Joint J. 2015;97-B(12):1662–1667.

72. Bonnevialle N, Melis B, Neyton L, et al. Aseptic glenoid loosening or failure in total shoulder arthroplasty. Revision with glenoid reimplantation. J Shoulder Elbow Surg. 2013;22(6):745–761.
resurfacing to non-cemented short-stem reverse prosthesis. Levy JC, Virani N, Pupello D, Frankle M. Use of the reverse shoulder prosthesis for the treatment of failed hemiarthroplasty in patients with glenohumeral arthritis and rotator cuff deficiency. J Bone Joint Surg Br. 2007;89-B(2):199-195.

Castagna A, Silvestrini M, de Caro F, et al. Conversion of shoulder arthroplasty to reverse implants: clinical and radiological results using a modular system. Int Orthop. 2013;37(1):1297-1305.

Holschen M, Siemes M-K, Witt K-A, Steinbeck J. Five-Year outcome after conversion of a hemiarthroplasty when used for the treatment of a proximal humeral fracture to a reverse total shoulder arthroplasty. Bone Joint J. 2016;98-B(6):761-766.

Mih SJ, Streit JJ, Lenarcz CJ, et al. Resection arthroplasty for failed shoulder arthroplasty. J Shoulder Elbow Surg. 2013;22(2):247-252.

Cuff DJ, Virani NA, Levy J, et al. The treatment of deep shoulder infection and glenohumeral instability with debridement, reverse shoulder arthroplasty and postoperative antibiotics. J Bone Joint Surg Br. 2008;90-B(3):336-342.

Hartel BP, Alta TD, Sewnath M, Willems WJ. Clinical outcome between total shoulder arthroplasty and reverse shoulder arthroplasty used in hemiarthroplasty revision surgery. Int J Shoulder Surg. 2015;9(3):69.

Pellegrini A, Legnani C, Macchi V, Meiani E. Two-stage revision shoulder prosthesis vs. Permanent articulating antibiotic spacer in the treatment of periprosthetic shoulder infections. Orthop Traumatol Surg Res. 2019;105(2):237-240.

Grubhofer F, Imam MA, Wieser K, Ackermann Y, Meyer DC, Gerber C. Staged revision with antibiotic spacers for shoulder prosthetic joint infections yields high infection control. Clin Orthop Relat Res. 2018;476(1):146-152.

Ehassan B, Ozbaydar M, Higgins LD, Warner JP. Glenoid reconstruction in revision shoulder arthroplasty. Clin Orthop Relat Res. 2008;466(3):599-607.

De Wilde L, Mombert M, Van Petegem P, Verdonk R. Revision of shoulder replacement with a reversed shoulder prosthesis (Delto III): Report of five cases. Acta Orthop Belg. 2001;67(4):298-303.

Abdel MP, Hattrup SJ, Sperling JW, Cofield RH, Krofcheck CR. Sanchez-Sotelo J. Revision of an unstable hemiarthroplasty or anatomical total shoulder replacement using a reverse design prosthesis. Bone Joint J. 2013;95-B(5):668-672.

Albinfer WR, Schoch B, Schleck C, Sperling JW, Cofield RH. Revisions for aseptic glenoid component loosening after anatomic shoulder arthroplasty. J Shoulder Elbow Surg. 2015;24(5):758-763.

Alentorn-Geli E, Clark NJ, Assenmacher AT, et al. What are the complications, survival, and outcomes after revision to reverse shoulder arthroplasty in patients older than 80 years? Clin Orthop Relat Res. 2017;475(11):2744-2751.

Antuna SA, Sperling JW, Cofield RH, Rowland CM. Glenoid revision surgery after total shoulder arthroplasty. J Shoulder Elbow Surg. 2001;10(3):217-224.

Black EM, Roberts SM, Siegel E, Yannopoulos P, Higgins LD, Warner JP. Reverse shoulder arthroplasty as salvage for failed prior arthroplasty in patients 65 years of age or younger. J Shoulder Elbow Surg. 2014;23(7):1036-1042.

Black EM, Roberts SM, Siegel E, Yannopoulos P, Higgins LD, Warner JP. Failure after reverse total shoulder arthroplasty: What is the success of current revision arthroplasty? J Shoulder Elbow Surg. 2015;24(1):198-1914.

Carroll RM, Izquierdo R, Vazquez M, Blaine TA, Levine WN, Bigliani LU. Conversion of painful hemiarthroplasty to total shoulder arthroplasty; long-term results. J Shoulder Elbow Surg. 2004;13(6):599-603.

Cheung EV, Sperling JW, Cofield RH. Polyethylene insert exchange for wear after total shoulder arthroplasty. J Shoulder Elbow Surg. 2007;16(5):574-578.

Cheung EV, Sperling JW, Cofield RH. Revision arthroplasty for glenoid component loosening. J Shoulder Elbow Surg. 2008;17(3):371-375.

Cil A, Veillette CJH, Sanchez-Sotelo J, Sperling JW, Schleck C, Cofield RH. Revision of the humeral component for aseptic loosening in arthroplasty of the shoulder. J Bone Joint Surg Br. 2009;91-B(1):75-81.

Groh GI, Wirth MA. Results of revision from hemiarthroplasty to total shoulder arthroplasty utilizing modular component systems. J Shoulder Elbow Surg. 2011;20(5):777-782.

Holschen M, Francetzi B, Witt K-A, Liem D, Steinbeck J. Conversions from anatomic shoulder replacements to total reverse shoulder arthroplasty: do the indications for initial surgery influence the clinical outcome after revision surgery? Arch Orthop Trauma Surg. 2017;137(2):167-172.

Holschen M, Francetzi B, Witt K-A, Liem D, Steinbeck J. Is reverse total shoulder arthroplasty a feasible treatment option for failed shoulder arthroplasty? A retrospective study of 44 cases with special regards to stemless and stemmed primary implants. Musculoskelet Surg. 2017;101(2):173-180.

Merolla G, Wagner E, Sperling JW, Paladini P, Fabbi E, Porcellini G. Revision of failed shoulder hemiarthroplasty to reverse total arthroplasty: analysis of 157 revision implants. J Shoulder Elbow Surg. 2018;27(1):75-81.

Ortmaier R, Resch H, Hitzl W, Mayer M, Stundner O, Tauber M. Treatment strategies for infection after reverse shoulder arthroplasty. Eur J Orthop Surg Traumatol. 2014;24(5):723-731.

Rhee PC, Sassoon AA, Schleck CD, Harnsen WS, Sperling JW, Cofield RH. Revision total shoulder arthroplasty for painful glenoid arthrosis after humeral head replacement: the posttraumatic shoulder. J Shoulder Elbow Surg. 2011;20(8):1255-1264.

Sabesan VJ, Ho JC, Kovacevic D, Iannotti JP. Two-Stage reimplantation for treating prosthetic shoulder infections. Clin Orthop Relat Res. 2011;469(9):2539-2543.

Sanchez-Sotelo J, Sperling JW, Rowland CM, Cofield RH. Instability after shoulder arthroplasty: results of surgical treatment. J Bone Joint Surg Am. 2003;85-A(4):622-631.

Sassoon AA, Rhee PC, Schleck CD, Harnsen WS, Sperling JW, Cofield RH. Revision total shoulder arthroplasty for painful glenoid arthrosis after humeral head replacement: the nontraumatic shoulder. J Shoulder Elbow Surg. 2012;21(11):1484-1491.

Scalise JJ, Iannotti JP. Bone grafting severe glenoid defects in revision shoulder arthroplasty. Clin Orthop Relat Res. 2008;466(1):139-145.

Sheth M, Sholder D, Pedegmas EM, et al. Failure of anatomic total shoulder arthroplasty with revision to another anatomic total shoulder arthroplasty. Arch Bone Jt Surg. 2019;7(1):15-23.

Sheth MM, Sholder D, Abdou J, et al. Revision of failed hemiarthroplasty for painful glenoid arthrosis to anatomic total shoulder arthroplasty. J Shoulder Elbow Surg. 2018;27(10):1884-1890.

Sheth MM, Sholder D, Getz CL, Williams GR, Namdari S. Revision of failed hemiarthroplasty and anatomic total shoulder arthroplasty to reverse total shoulder arthroplasty. J Shoulder Elbow Surg. 2019;28(6):1074-1081.

Streubel PN, Simone JP, Cofield RH, Sperling JW. Revision of failed humeral head resurfacing arthroplasty. Int J Shoulder Surg. 2016;10(1):21-27.

Urie O, Bayleiy I, Lambert S. Hip-inspired implant for revision of failed reverse shoulder arthroplasty with severe glenoid bone loss. Improved clinical outcome in 11 patients at 3-year follow-up. Acta Orthop. 2014;85(2):171-176.

Valenti P, Kilinc AS, Saazieries P, Katz D. Results of 30 reverse shoulder prostheses for revision of failed hemi- or total shoulder arthroplasty. Eur J Orthop Surg Traumatol. 2014;24(6):599-607.

Wagner ER, Hevesi M, Houdek MT, Cofield RH. Sperling JW. Sanchez-Sotelo J. Can a reverse shoulder arthroplasty be used to revise a failed primary reverse shoulder arthroplasty? Bone Jt J. 2018;100-B(11):1493-1498.

Wagner ER, Houdek MT, Ehassan BT, Sanchez-Sotelo J, Cofield RH, Sperling JW. What are risk factors for intraoperative humerus fractures during revision reverse shoulder arthroplasty and do they influence outcomes? Clin Orthop Relat Res. 2015;473(10):3226-3234.
121. Wagner ER, Houdek MT, Hernandez NM, Cofield RH, Sánchez-Sotelo J, Sperling JW. Cement-within-cement technique in revision reverse shoulder arthroplasty. J Shoulder Elbow Surg. 2017;26(8):1448–1453.

122. Wagner ER, Statz JM, Houdek MT, Cofield RH, Sánchez-Sotelo J, Sperling JW. Use of a shorter humeral stem in revision reverse shoulder arthroplasty. J Shoulder Elbow Surg. 2017;26(8):1454–1461.

123. Glanzmann MC, Kelling C, Schwzyzer H-K, Audigé L. Conversion to hemiarthroplasty as a salvage procedure for failed reverse shoulder arthroplasty. J Shoulder Elbow Surg. 2016;25(1):1795–1802.

124. Buchalter DB, Mahure SA, Mollon B, Yu S, Kwon YW, Zuckerman JD. Two-Stage revision for infected shoulder arthroplasty after minimum 2-year minimum follow-up. Journal of Shoulder and Elbow Surgery. 2017;26(5):e163.

125. Strickland JP, Sperling JW, Cofield RH. The results of two-stage re-implantation for infected shoulder replacement. J Bone Joint Surg Br. 2008;90-B(4):460–465.

126. Hsu JE, Gorbaty JD, Whitney LJ, Matsen FA. Single-Stage revision is effective for failed shoulder arthroplasty with positive cultures for Propionibacterium. Journal of Bone and Joint Surgery. 2016;98(24):2047–2051.

127. Sperling JW, Cofield RH. Humeral windows in revision shoulder arthroplasty. J Shoulder Elbow Surg. 2009;18(3):258–263.

128. Klatte TO, Junghans K, Al-Khateeb H, et al. Single-Stage revision for peri-prosthetic shoulder infection: outcomes and results. Bone Joint J. 2013;95-B(3):391–395.

129. Milet J, Sperling JW, Cofield RH. Reimplantation of a shoulder arthroplasty after a previous infected arthroplasty. J Shoulder Elbow Surg. 2004;13(5):528–531.

130. Ghijselings S, Stuyck J, Debeer P. Surgical treatment algorithm for infected shoulder arthroplasty: a retrospective analysis of 17 cases. Acta Orthop Belg. 2013;79(6):626–635.

131. Ince A, Seemann K, Frommelt L, Katzer A, Loehr JF. One-Stage exchange shoulder arthroplasty for peri-prosthetic infection. J Bone Joint Surg Br. 2005;87-B(5):916–918.

132. Jowa A, Shi L, O’Brien T, O’Brien T, et al. Prosthesis of antibiotic-loaded acrylic cement (PROSTALAC) use for the treatment of infection after shoulder arthroplasty. J Bone Joint Surg Am. 2011;93(21):2001–2009.

133. Sheth M, Sholder D, Namdari S, Lazarus M, Williams G, Namdar S. Revision of Anatomic Total Shoulder Arthroplasty to Hemiarthroplasty: Does it work. J Bone Joint Surg Am. 2011;93(21):2001–2009.

134. Sheth M, Sholder D, Abdou J, Lazarus M, Williams G, Namdar S. Revision of Anatomic Total Shoulder Arthroplasty to Hemiarthroplasty: Does it work. J Bone Joint Surg Am. 2011;93(21):2001–2009.

135. Zhou HS, Chang JS, Yi PH, Li X, Price MD. Management of complications after reverse shoulder arthroplasty. Curr Rev Musculoskelet Med. 2015;8(1):92–97.

136. Athwal GS, Sperling J, Rispohl DM, Cofield RH. Periprosthetic humeral fractures during shoulder arthroplasty. J Bone Joint Surg Am. 2009;91-A(3):594–603.

137. Bofigno T, Hersan A, Hubert L, Massin P. Reverse shoulder arthroplasty for the treatment of three- and four-part fractures of the proximal humerus in the elderly: a prospective review of 43 cases with a short-term follow-up. J Bone Joint Surg Br. 2007;89-B(4):516–520.

138. John M, Pap G, Angst F, et al. Short-Term results after reversed shoulder arthroplasty (delta III) in patients with rheumatoid arthritis and irreparable rotator cuff tear. Int Orthop. 2010;34(1):71–77.

139. Werner CML, Steinmann PA, Gilbert M, Gerber C. Treatment of painful pseudopanthesis due to irreparable rotator cuff dysfunction with the delta III reverse-ball-and-socket total shoulder prosthesis. J Bone Joint Surg Am. 2005;87-A(7):1478–1486.

140. Garcia-Fernández C, López-Morales Y, Rodríguez A, López-Durán L, Martínez FM. Periprosthetic humeral fractures associated with reverse total shoulder arthroplasty: incidence and management. Int Orthop. 2015;39(10):1965–1968.

141. Wierks C. Shoulder arthroplasty after a previous infected arthroplasty. J Shoulder Elbow Surg. 2005;14(3):258–263.

142. Whittingham IJ, Gorbaty JD, Whitney LJ, Matsen FA. Single-Stage revision for infected shoulder arthroplasty after minimum 2-year follow-up. Journal of Shoulder and Elbow Surgery. 2011;20(5):675–681.

143. V. Ravi, R. J. Murphy, R. Moverley, M. Derias, J. Phadnis. Reverse total shoulder replacement: intraoperative and early postoperative complications. Clin Orthop Relat Res. 2009;467(1):225–234.

Author information:
- V. Ravi, Medical Student, Brighton and Sussex Medical School, Brighton, UK.
- R. J. Murphy, MBChB, MA, DPhil, FRCS(Orth), Consultant Orthopaedic Surgeon
- M. Derias, BMBBS, MRCs, MSc, Specialist Registrar
- University Hospitals Sussex NHS Foundation Trust, Royal Sussex County Hospital, Brighton, UK.
- R. Moverley, MPChem, MBChB MSc(Eng), FRCS, Consultant Orthopaedic Surgeon, University Hospitals Dorset NHS Foundation Trust, Poole Hospital, Poole, UK.
- J. Phadnis, MBChB, FRCS(Orth), Consultant Orthopaedic Surgeon, Honorary Senior Lecturer, Brighton and Sussex Medical School, Brighton, UK; University Hospitals Sussex NHS Foundation Trust, Royal Sussex County Hospital, Brighton, UK.

Author contributions:
- V. Ravi: Investigation, Formal analysis, Writing - original draft.
- R. J. Murphy: Supervision, Formal analysis, Validation, Software, Writing - review and editing.
- R. Moverley: Formal analysis, Writing - original draft.
- M. Derias: Data curation, Formal analysis, Writing - review and editing.
- J. Phadnis: Conceptualization, Supervision, Methodology, Writing - review and editing.

Funding statement:
- The author or one or more of the authors have received or will receive benefits for personal or professional use from a commercial party related directly or indirectly to the subject of this article. In addition, benefits have been or will be directed to a research fund, foundation, educational institution, or other non-profit organization with which one or more of the authors are associated. Open access was self-funded.

ICMJE COI statement:
- J. Phadnis reports consultancy payments from Wright Medical, unrelated to this study.

Acknowledgements:
- Many thanks to Mr Tom Roper (Clinical Librarian – Brighton and Sussex University Hospitals NHS Trust) for his advice on search strategy.

© 2021 Author(s) et al. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (CC BY-NC-ND 4.0) licence, which permits the copying and redistribution of the work only, and provided the original author and source are credited. See https://creativecommons.org/licenses/by-nc-nd/4.0/