Many essential structures in nanoscience and nanotechnology, such as cellular organelles, nanoelectronic circuits, and photonic structures, have spatial features in the order of 100 nm. The optical resolution of conventional lenses is limited to approximately 200 nm by their numerical aperture and therefore they cannot resolve nanostructure. With fluorescence based imaging methods it is possible to reconstruct an image of objects that are a substantial factor smaller than the focus size by exploiting the photophysics of extrinsic fluorophores.[1–5] Their resolution strongly depends on the shape of the optical focus, which is determined by conventional lens systems. This dependence makes them vulnerable to focal distortion by scattering. Moreover, its not always feasible or desirable to dope the object under study. Other imaging methods improve their resolution by reconstructing the evanescent waves that decay exponentially with distance from the object. Intricate near field microscopes bring fragile nano-sized probes in close proximity of the object where the evanescent field is still measurable.[6] With this technique it is hard to quantify the interaction between the short-lived tip and the structure. Metamaterials, which are meticulously nanostructured artificial composites, can be engineered to access the evanescent waves and image sub-wavelength structures as demonstrated with superlenses[8] and hyperlenses[9] in the UV. These materials physically decrease the focus size, which brings the possibility for improvement of both linear and non-linear imaging techniques. In the especially relevant visible range of the spectrum, plasmonic metamaterials can be used to produce nano-sized isolated hot spots[10–12] but the limited control over their position makes them unsuitable for imaging. Up to now, a freely scannable nano-sized optical focus has not been demonstrated.

In this Letter we introduce a new type of lens that generates a scanning nano-sized optical focus. We used this lens to image a collection of gold nanoparticles at 97 nm optical resolution. The lens exploits multiple scattering of light in a porous high refractive index material to increase the numerical aperture of the system; a principle we name High Index Resolution Enhancement by Scattering (HIRES).

A HIRES-lens consists of a homogenous slab of high-index material on top of a strongly disordered scattering layer. The disordered layer breaks the translational invariance of the interface, which enables incident light to be coupled to all propagating angles inside the high-refractive-index material as is shown in Fig.1A. Yet multiple scattering also scrambles the wavefront creating a speckle-like pattern on the object plane that itself can-
not be used for imaging. Therefore we manipulate the incident wavefront in order to force constructive interference of the scattered light at a position in the object plane of our HIRES-lens. The wavefront is controlled using a feedback based method that is conventionally related to phase conjugation and time reversal. As a result, a perfectly spherical wave emerges from the porous layer and converges towards the object plane to form a sharp optical focus (Fig. 1B). Whereas in conventional optics (e.g. solid immersion lenses or total internal reflection microscopes) any inevitable surface roughness causes a distortion of the wavefront and a concomitant loss of resolution, the inherent random nature makes a HIRES-lens robust for these aberrations. Any wavefront error is distributed randomly over all outgoing directions, slightly reducing the contrast but not the resolution. In order to use the HIRES-lens for high resolution imaging, the focus is easily moved around in the object plane by steering the incident wavefront directly exploiting the angular correlations in the scattered light: an effect well known as the optical memory effect. By raster scanning the focus across an object we acquire an aberration-free high resolution image. The robust scanning high resolution focus makes the HIRES-lens excellently suited for optical imaging of nanostructures.

To demonstrate an experimental implementation of our HIRES-lens we fabricate it in gallium phosphide (GaP). GaP is transparent in a large part of the visible spectrum ($\lambda_0 > 550$ nm) and has a maximum refractive index of $n=3.41$, higher than any other transparent material in this wavelength range. Electrochemically etching GaP with sulfuric acid (H_2SO_4) creates macroporous networks resulting in one of the strongest scattering photonic structures ever observed. Using this etching process we create a $d = 2.8$ pm thick porous layer on one side of a crystalline GaP wafer. This layer is thick enough to completely randomize the incident wavefront and to suppress any unscattered background light.

The optical memory effect allows us to shift the scattered light in the object plane of the HIRES-lens over a distance $r \approx 1.8L\lambda/(2\pi n^2 d)$ before the intensity correlation decreases to $1/e^2$, where $L = 400$ pm is the thickness of the wafer. The loss of correlation only affects the intensity in the focus (not its shape) making it easy to correct for this effect without losing resolution. Due to the high refractive index contrast on the flat GaP-air interface, a large fraction of the light is internally reflected. The reflected light interferes with the light that comes directly from the porous layer. This interference causes a background signal that is 3 times larger than the focus intensity. We have therefore strongly suppressed the internal reflections by depositing an approximately 200 nm thick anti-internal-reflection coating of amorphous silicon on the surface. The amorphous silicon is nearly index matched with the GaP and strongly absorbs the light that would otherwise be internally reflected. As a result of this layer, the background signal is significantly reduced to only 0.04 times the focus intensity. The resulting field of view of our coated HIRES-lens is measured to be $r = 1.7 \pm 0.1$ pm in radius; 85% of the theoretical limit determined by the optical memory effect. In the center of the surface we created a small window of about 10 pm in diameter by locally removing the anti-internal-reflection coating. We use this window to place objects onto our HIRES-lens. As a test sample we have deposited a random configuration of gold nanoparticles with a specified diameter of 50 nm inside this window.

An overview of our setup is shown in Fig. 1C. We use a CW laser with a wavelength of $\lambda_0 = 561$ nm just below the GaP bandgap of 2.24 eV (550 nm) where the refractive index is maximal and the absorption is still negligible. We partially partition the wavefront into square segments of which we independently control the phase using a spatial light modulator (SLM). The SLM is first imaged onto a two-axis fast steering mirror and then onto the porous surface of the HIRES-lens. With a variable aperture we set the radius R_{max} of the illuminated surface area between 0 pm and 400 pm. The visibility of the gold nanoparticles is maximized by blocking the central part of the illumination ($R < 196$ pm), placing the system in a dark field configuration. At the back of the HIRES-lens a high-quality oil immersion microscope objective (NA = 1.49) images the object plane onto a CCD camera. This objective is used to efficiently collect all the light scattered from the object plane and to obtain an reference image which is used as a comparison for our HIRES-lens. Notice that in our scheme the resolution is determined by the HIRES-lens itself and does not depend on the imaging optics at the back.

We first synthesize the wavefront that, after being scattered, creates a focus in the object plane. We use light scattered from one of the gold nanoparticles in the object plane as a feedback signal to obtain a set of complex amplitudes that describe the propagation from different incident positions on the porous layer towards the nanoparticle. By reversing the phase of these complex amplitudes we force the light waves to interfere constructively at the exact location of the nanoparticle. The focus is moved around in the image plane by rotating every contributing k-vector over a corresponding angle. We apply these rotations by adding a deterministic phase pattern to the incident wavefront. In the paraxial limit, a simple tilt of the wavefront would suffice to displace the focus. For our high resolution focus, which lies beyond this limit, an additional position dependent phase correction is required that we apply using the SLM.

The addition of this correction is essential for a proper displacement of the focus.

In Fig. 2 we show the imaging capabilities of the GaP HIRES-lens. First a reference image was acquired with the high-quality microscope behind the HIRES-
The radial intensity distribution of the focus is directly calculated from a plane wave decomposition of the contributing waves,

\[I(r) = I_0 \left(k_{\text{max}}^2 J_1(k_{\text{max}} r) - k_{\text{min}}^2 J_1(k_{\text{min}} r) \right)^2 \]

where \(J_1 \) is a Bessel function of the first kind. The minimum and maximum coupled transversal k-vectors, \(k_{\text{min}} \) and \(k_{\text{max}} \), are directly related to the inner and outer radius, \(R_{\text{min}} \) and \(R_{\text{max}} \), of the illuminated area: \(k_{\text{max}} = n k_0 \left(1 + L^2/R_{\text{max}}^2\right)^{-\frac{1}{2}} \) (and similar for \(k_{\text{min}} \)). To confirm this dependence, we imaged the objects for different values of the illumination radius \(R_{\text{max}} \). For each measurement the resolution is determined by modeling the resulting image of a single 50 nm gold nanoparticle with Eq. 1. Since it is hard to quantify the resolution from the width of a non-Gaussian focal shape we use Sparrow’s criterion which defines the resolution as the minimal distance at which two separate objects are still discernible, see e.g. [26]. In Fig. 3 the measured resolution versus \(R_{\text{max}} \) is shown. As a reference we also plotted the measured resolution of the high-quality oil immersion microscope. We see that the resolution improves as we increase the illuminated area. The measured resolutions are in excellent correspondence with the expected resolution obtained from the calculated intensity profile. The resolution of the HIRES-lens is much better than the high-quality conventional oil immersion microscope. The highest resolution we measured is 97 ± 2 nm, which demonstrates imaging in the nanometer regime with visible wavelengths.

A GaP HIRES-lens has the potential to reach even better optical resolutions up to 72 nm. It is then possible to resolve objects placed in each others near field at distances of \(\lambda_0/2\pi \). To achieve these resolutions a wider area of the scattering porous layer has to be illuminated and as a result light has to be scattered at increasingly higher angles from the porous layer. Here advances could benefit from investigations in the field of thin film solar...
cells where high angle scattering is beneficial for optimal light harvesting\cite{27}.

Our results open the way to improve resolution in a wide range of optical imaging techniques. The robustness of a HIRES-lens against distortion and aberration, together with their ease to manufacture, makes them ideal for the imaging of fluorescent labeled biological samples or for the efficient coupling to metamaterials\cite{8, 9} and plasmonic nanostructures\cite{10–12}. Recent developments in spatio-temporal control of waves in disordered materials\cite{28–30} suggest the possibility for HIRES-lenses to create ultrashort pulses in a nano-sized focus. The fact that a HIRES-lens is a linear technique opens the possibility to use it for resolution improvement of a large range of existing linear and non-linear imaging techniques, such as confocal microscopy, STED\cite{2}, PALM\cite{3}, and STORM\cite{4}.

ACKNOWLEDGEMENTS

The authors would like to acknowledge Hannie van den Broek, Cock Harteveld, Léon Woldering, Willem Tjerkstra, Ivo Vellekoop, Christian Blum, and Vinod Subramaniam for their support and insightful discussions. This work is part of the research program of the “Stichting voor Fundamenteel Onderzoek der Materie (FOM)”, which is financially supported by the “Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)”. JB is partially financed by the FIRB-MIUR "Futuro in Ricerca" project RBFR08UH60. WLV thanks NWO-Vici and APM is supported by a Vidi grant from NWO.

[1] S. W. Hell and J. Wichmann, Opt. Lett. 19, 780 (1994).
[2] M. Dyba and S. W. Hell, Phys. Rev. Lett. 88, 163901 (2002).
[3] E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindowasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, Science 313, 1642 (2006).
[4] M. J. Rust, M. Bates, and X. Zhuang, Nat. Meth. 3, 793 (2006), ISSN 1548-7091.
[5] S. W. Hell, Science 316, 1153 (2007).
[6] D. Pohl and D. Courjon, Near Field Optics (Kluwer, Dordrecht, 1993).
[7] J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
[8] N. Fang, H. Lee, C. Sun, and X. Zhang, Science 308, 534 (2005).
[9] Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, Science 315, 1686 (2007).
[10] M. I. Stockman, S. V. Faleev, and D. J. Bergman, Phys. Rev. Lett. 88, 067402 (2002).
[11] M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. Garcia de Abajo, W. Pfeiffer, M. Rohner, C. Spindler, and F. Steeb, Nature 446, 301 (2007), ISSN 0028-0836.
[12] T. S. Kao, S. D. Jenkins, J. Ruostekoski, and N. I. Zheludev, Phys. Rev. Lett. 106, 085501 (2011).
[13] I. M. Vellekoop and A. P. Mosk, Opt. Lett. 32, 2309 (2007).
[14] E. N. Leith and J. Upatnieks, J. Opt. Soc. Am. 56, 523 (1966).
[15] M. Fink, D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter, J.-L. Thomas, and F. Wu, Rep. Prog. Phys. 63, 1933 (2000).
[16] Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, Appl. Phys. Lett. 75, 4064 (1999).
[17] D. Axelrod, T. P. Burghardt, and N. L. Thompson, Annu. Rev. Biophys. Bioeng. 13, 247268 (1984).
[18] I. Vellekoop, A. Lagendijk, and A. Mosk, Nat Photon 4, 320 (2010).
[19] S. Feng, C. Kane, P. A. Lee, and A. D. Stone, Phys. Rev. Lett. 61, 834 (1988).
[20] I. Freund, M. Rosenbluh, and S. Feng, Phys. Rev. Lett. 61, 2328 (1988).
[21] I. Vellekoop and C. Aegerter, Opt. Lett. 35, 1245 (2010).
[22] D. E. Aspnes and A. A. Studna, Phys. Rev. B 27, 985 (1983).
[23] F. J. P. Schurmanns, D. Vannmaekelbergh, J. van de Lagemaat, and A. Lagendijk, Science 284, 141 (1999).
[24] Details on materials and methods are forthcoming. (2011).
[25] C.-L. Hsieh, Y. Pu, R. Grange, G. Laporte, and D. Psaltis, Opt. Express 18, 20723 (2010).
[26] E. Hecht, Optics (Addison Wesley Longman, Inc., 1998).
[27] E. Yablonovitch and G. D. Cody, IEEE Trans. Electron Devices 29, 300 (1982).
[28] J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, Phys. Rev. Lett. 106, 103901 (2011).
[29] O. Katz, Y. Bromberg, E. Small, and Y. Silberberg, arXiv:1012.0413 (2011).
[30] D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, arXiv:1101.0976 (2011).