REVIEW

Uterine natural killer cells: Time for a re-appraisal? [version 1; peer review: 2 approved]

Judith N. Bulmer¹, Gendie E. Lash²

¹Institute of Cellular Medicine, Newcastle University, William Leech Building, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
²Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, 9 Jinsui Road, Guangzhou, Guangdong, 510623, China

Abstract
The presence of unusual natural killer cells in human endometrium has been recognized for 30 years, but despite considerable research effort, the in vivo role of uterine natural killer (uNK) cells in both normal and pathological pregnancy remains uncertain. uNK cells may differentiate from precursors present in endometrium, but migration from peripheral blood in response to chemokine stimuli with in situ modification to a uNK cell phenotype is also possible. uNK cells produce a wide range of secretory products with diverse effects on trophoblast and spiral arteries which may play an important role in implantation and early placentation. Interactions with other decidual cell populations are also becoming clear. Recent evidence has demonstrated subpopulations of uNK cells and the presence of other innate lymphoid cell populations in decidua which may refine future approaches to investigation of the role of uNK cells in human pregnancy.

Keywords
uterine natural killer cell, uNK cell, human pregnancy, decidua
Corresponding author: Judith N. Bulmer (j.n.bulmer@ncl.ac.uk)

Author roles: Bulmer JN: Writing – Original Draft Preparation, Writing – Review & Editing; Lash GE: Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: This work was supported by the Biotechnology and Biological Sciences Research Council and Wellbeing of Women. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2019 Bulmer JN and Lash GE. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Bulmer JN and Lash GE. Uterine natural killer cells: Time for a re-appraisal? [version 1; peer review: 2 approved]
F1000Research 2019, 8(F1000 Faculty Rev):999 (https://doi.org/10.12688/f1000research.19132.1)

First published: 02 Jul 2019, 8(F1000 Faculty Rev):999 (https://doi.org/10.12688/f1000research.19132.1)
Introduction
Granulated cells were recognized in endometrial stroma almost a century ago, but despite light and electron microscopic evidence for a lymphocyte origin in humans, mouse, and rat, they were regarded as stromal cells until identified as unusual natural killer (NK) cells using monoclonal antibodies. The term uterine NK (uNK) cell has been commonly adopted, although “decidual NK cell” and “endometrial NK cell” are also used to reflect their presence only in endometrium. uNK cells, characterized as CD45^−CD56^brightCD16^−CD9^+CD10^+ cells, increase in number in luteal phase endometrium and early pregnancy decidua. A substantial number remain in late pregnancy and early pregnancy decidua; although fewer have cytoplasmic granules, explaining why early studies relying on identifying cytoplasmic granules reported their virtual absence at full term. This distribution suggests a role in pregnancy and this has been the focus of studies over the last 30 years.

Despite suggestions of a detrimental role of NK cells in early pregnancy failure, uNK cells are considered to be a positive force for healthy pregnancy, although their precise role remains uncertain. The recent identification of molecularly distinct uNK cell subgroups and other innate lymphoid cells (ILCs) in human decidua suggests that a re-appraisal may be timely. The aim of this review is to provide a brief overview of views on the origin and function of uNK cells that have developed over the last 30 years and consider future directions.

Origin of uterine natural killer cells
There is no consensus regarding the origin of uNK cells; their gene expression patterns differ from those of peripheral blood NK (pbNK) cells, but whether they differentiate locally or are recruited to endometrium (or both) is uncertain. Hematopoietic precursor cells (HPCs) have been reported in non-pregnant endometrium and early pregnancy decidua at a frequency of 0.1% to 4%. HPCs purified from decidua and cultured in decidual stromal cell (DSC)-conditioned medium or various cytokine combinations produced CD56^brightCD16^−CD9^+ uNK-like cells. Additional evidence for local differentiation comes from detection of increased CD56^+ uNK cells in human proliferative endometrium transplanted into non-obese diabetic/severe combined immunodeficiency (NOD/SCID) immunodeficient mice subjected to menstrual cycle-mimicking hormone treatment. In contrast, Male et al. did not detect HPCs in non-pregnant endometrium and suggested the possibility of local differentiation from stage 3 immature NK cells, although the cells detected in these studies express markers that are characteristic of type 3 ILCs and produce interleukin-22. Human endometrium produces several factors implicating in NK cell differentiation, including IL-15, IL-7, Flt3L, SCF (KL), and transforming growth factor beta 1 (TGFβ1), many of which are increased in the luteal phase and early pregnancy.

Rather than differentiation from HPCs, it is possible that locally secreted chemokines/cytokines could attract pbNK cells to endometrium and also mediate further local differentiation. Purified CD16^−CD9^+ pbNK cells converted into CD16^−CD9^+ uNK-like cells after culture with DSC-conditioned medium or TGFβ1, and a uNK cell-type phenotype (CD56^brightCD16^−CD9^+KIR^+VEGF-A producing, low cytotoxicity) was induced by exposure of pbNK cells to hypoxia, TGFβ1, and demethylating agents. DSCs produce chemokine-implanted in recruitment of pbNK cells to endometrium, including C-X-C motif chemokine 10 (CXCL10), CXCL12, CX3CL1, and chemerin, and compared with non-pregnant and male cells, pbNK cells from pregnant women have increased ability to migrate through DSCs. Furthermore, pbNK cells acquire a uNK cell-type chemokine receptor pattern after co-culture with DSCs. NK cell populations could also be recruited into endometrium in pregnancy in response to trophoblast.

uNK cells consistently localize to areas of stromal decidualization, including progesterone-treated endometrium, intrauterine decidua in ectopic pregnancy, and extrauterine decidua in normal pregnancy. This indicates a role for DSCs in uNK cell differentiation or recruitment (or both) and clearly demonstrates that they are not (all) dependent on trophoblast. It seems likely that both recruitment from blood and local differentiation play a role but perhaps with different contributions in non-pregnant and pregnant endometrium. A developing population is suggested by phenotypic differences with increasing gestation, and there is reduced expression of HLA-C–specific killer immunoglobulin-like receptors (KIRs) from 6 to 12 weeks, increased NKGD2 expression from 8 to 12 weeks, increased expression of NKp80 and NKGD2, and a population with reduced CD56 brightness in second (13 to 20 weeks) compared with first (6 to 12 weeks) trimester of pregnancy. Functional changes may also reflect an evolving population. Altered cytokine/growth factor expression and differing effects on trophoblast invasion have been reported in CD56^− uNK cells from 8 to 10 compared with 12 to 14 weeks of gestational age, and a reduced proportion of cells expressing granzyme and perforin, reduced CD56^− cells in proximity to extravillous trophoblast (EVT), and altered interactions with HTR-8/SVneo trophoblast-like cells have been reported in the second compared with the first trimester of pregnancy. These phenotypic and functional variations reflect further local differentiation of immature NK cells or recruitment and further differentiation of additional populations from peripheral blood. CD56^− cells also proliferate in endometrium, and the highest expression of the proliferation marker Ki67 is in the mid/late luteal phase and this could account for phenotypic differences as the menstrual cycle and pregnancy progress. The biological significance of the phenotypic and functional changes related to gestational age is not known. In addition, whether any altered decidual NK cell populations in pathological pregnancy represent alteration of a resident uNK cell population or recruitment of an additional population has not been established.

Interaction with trophoblast
uNK cells express a range of receptors, including KIRs and leukocyte immunoglobulin-like receptors (LILRs) that can recognize HLA-E, HLA-G, and HLA-C, which are expressed by EVT. uNK cell expression of these receptors differs from that of pbNK cells and is biased toward HLA-E and HLA-C1.
There were early suggestions that uNK cells may limit EVT invasion by cytotoxicity, and some studies have suggested that uNK cells are capable of cytotoxic activity. Co-culture of IL-2–activated CD56+ decidual NK cells with an EVT-like cell line HTR-8/SV40neo led to granulolysin accumulation in the EVT cells, and transfection of granulolysin into HTR-8/SC40neo cells induced their apoptosis. Furthermore, a more recent study detected cytotoxic activity by IL-2–stimulated CD56+ cells (>90% purity) from early pregnancy decidualia against both cytotrophoblast and the NK target K562, an activity that was inhibited by decidual macrophages. Nevertheless, in most studies, uNK cells have been poorly cytotoxic to both classic NK cell targets and trophoblast, and the consensus is that uNK cells are not cytotoxic in healthy pregnancy. uNK cells can acquire cytotoxic ability when decidualia is infected by pathogens such as cytomegalovirus and toxoplasma, suggesting a possible role in protection against infection.

There are many reports of cytokine, chemokine, and growth factor production by uNK cells, mainly at a gestational age of 8 to 14 weeks, when trophoblast invasion and spiral artery remodeling are maximal; a summary is given in Table 1 but the list is not exhaustive. Several different approaches have been used for tissue disaggregation, uNK cell purification, and mechanisms and durations of cell activation; this may explain the variation between different studies.

Given the phenotypic changes, it is not surprising that the uNK cell secretome varies with gestational age. uNK cell production of IL-1β, IL-6, CXCL8, granulocyte-macrophage colony-stimulating factor (GM-CSF), and interferon-gamma (IFNγ) was increased at 12 to 14 weeks compared with 8 to 10 weeks of gestation, whereas angiopoietin 2 (Ang2) and vascular endothelial growth factor-C (VEGF-C) secretion were higher at the earlier gestational age. Increased cytokine levels at 12 to 14 weeks may tie in with reports that interactions between pbNK cells and soluble HLA-G induce a pro-inflammatory/pro-angiogenic senescence-associated secretory phenotype with increased secretion of, among others, IL-1β, IL-6, and CXCL8, although this has not been demonstrated for uNK cells. uNK cell secretory products are also altered by trophoblast; uNK cell secretion of Ang1, VEGF-C, IL-6, CXCL8, and TGFβ1 were reduced by coculture with EVT and cytotrophoblast. In contrast, increased IFNγ mRNA was reported after incubation of uNK cells with cytotrophoblast. Interaction of HLA-C (expressed by EVT) with the activating receptors KIR2DS1 and KIR2DS4 expressed by uNK cells stimulates their production of cytokines, including GM-CSF, which can stimulate trophoblast invasion in vitro. Furthermore, a recent study demonstrated that, when co-cultured with EVT, a subset of uNK cells (CD49a/Eomes+) secrete growth-promoting factors, including pleiotrophin and osteoglycin; this effect is stimulated by HLA-G/ILT2 crosstalk.

Among other chemokines and growth factors, uNK cells stimulate trophoblast invasion by production of CXCL8 and CXCL10, although decidual CD3+ T cells, which produce higher levels of CXCL8, did not stimulate EVT invasion. Other cytokines produced by uNK cells, such as tumor necrosis factor alpha (TNFα) and IFNγ, inhibit invasion of EVT cells by various mechanisms, including trophoblast apoptosis, inhibition of proliferation, and reduced matrix metalloproteinase (MMP) production. The effect of uNK cells on EVT invasion may also depend on gestational age; in keeping with increased production of cytokines such as CXCL8, uNK cell supernatants at 12 to 14 weeks of gestation stimulated trophoblast invasion, whereas those at 8 to 10 weeks had no effect. In contrast, others have reported reduced trophoblast migration from villous explants co-cultured with decidual CD56+ cells, and the effect was mediated by IFNγ.

uNK cells have a complex array of secretory products which may alter with different approaches to purification and activation. Despite the many and varied reports, the in vivo relevance of these studies remains unclear. Examination of any one cytokine is unlikely to reflect its importance in vivo, which may vary with gestational age; for example, a role in spiral artery remodeling may shift in later gestation to promoting trophoblast invasion. In regard to the role of uNK cells in the regulation of trophoblast invasion, it is important to remember that the cells are confined to decidua/endometrium, whereas even in the first trimester of normal pregnancy, interstitial trophoblast invades into inner myometrium. Trophoblast also invades into myometrium in placenta accreta spectrum disorders, in which decidua (and uNK cells) are absent. Therefore, other factors, including the inherent invasive capacity of EVT following epithelial–mesenchymal transition and other maternal cell populations, must play a role.

Interaction with spiral arteries

Remodeling of spiral arteries in decidua basalis and underlying superficial myometrium is essential for healthy pregnancy and it is now accepted that, in addition to trophoblast, maternal uterine cells play a role, although the presence of trophoblast may be required for the uNK cell effect. Morphological changes in spiral arteries and arterioles in luteal phase endometrium and intrauterine decidua in ectopic pregnancy also suggest a trophoblast-independent effect.

uNK cells from decidua of 8 to 10 weeks, but not 12 to 14 weeks, of gestation can induce separation of vascular smooth muscle...
Publication	Cytokines, chemokines, and growth factors detected	Cell preparation	Conditions
El Costa et al.	IFN, TNF, MIP-1α, GM-CSF	MACS-negative selection, >96% CD3−CD56+	8–12 weeks
Higuma-Myojo et al.	TGF, minor populations of CD56+ cells producing other cytokines	Ficoll, flow cytometry	6–12 weeks
Lash et al.	Ang1, Ang2, PDGF-BB (low), KGF (low), ICAM-1 (low), VEGF-C, PGE2, TGF, EGF, VEGF,	MACS-positive selection, >95% CD56+	8–10 weeks, 12–14 weeks
Lash et al.	IL-1β, IL-4, IL-6, IL-8, IL-10, IL-13, GM-CSF, IFNγ, RANTES, TNFα	MACS-positive selection >95% CD56+	8–10 weeks, 12–14 weeks
Hanna et al.	CXCL8 (IL-8), CXCL10 (IP-10), CCL5 (RANTES), CCL22	Flow cytometry cell sorting, >99% CD56 bright CD16−CD3−	First trimester
Sotnikova et al.	IFNγ	Dynabeads-positive selection	7–10 weeks
Engert et al.	GRO, MCP-1, IL-309, RANTES, IL-8, IL-10, IL-12, TNFα, IL-2, TPO, M-CSF, ENA, angiogenin, IL-1α, IL-4, IL-12p40p70, IFNγ, SCF, SDF-1, MCP-2 (detected in >50% samples)	MACS, >90% pure	7–8 weeks
Saito et al.	G-CSF, GM-CSF, M-CSF, TNFα, INFγ, IL-1α, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12, TNFα, IL-15, SCF	Flow cytometry sorting	Flow-culture with EVT
Frasier et al.	CXCL10, IL-8, CXCL10, IL-1β, IL-18, TNFα, I-309, RANTES, IL-8, IL-10, IL-12, IFNγ, IL-15, SCF	MACS-negative selection, >90% CD56+	7–9 weeks
Wallace et al.	Angiogenin, sIL2-R, endostatin, PlGF, IL-1RA, MIG, MIP-1α, MIP-1β, RANTES, IL-15, SCF	MagCellect-negative selection, CD56+ 93.6 ± 1.3%, viability after 6 hours 84.6 ± 2.8%	9–14 weeks
Kennedy et al.	GM-CSF, CCL3, CCL1, XCL1	Flow cytometry and intracellular cytokine detection; or MACS positive selection and ELISA	First trimester
Chen et al.	Angiogenin, bFGF, VEGF-A, VEGFR-1, IL-1α	MACS-positive selection, 91.9% CD56+	1–7 non-pregnant endometrium

Footnotes:
- FIC, flow cytometry
- ELISA, enzyme-linked immunosorbent assay
- ENA, epithelial neutrophil-activating protein
- EVTs, extravillous trophoblasts
- MIP, monocyte chemotactic protein
- M-CSF, macrophage colony-stimulating factor
- MIG, monokine induced by interferon-gamma
- MIP, macrophage inflammatory protein
- PDGF-BB, platelet-derived growth factor beta
- TGF, transforming growth factor, TNF, tumor necrosis factor alpha, TPO, thrombopoietin
- UPA, urokinase-type plasminogen activator
- VEGFR, vascular endothelial growth factor receptor.
cells and loss of extracellular matrix via secretion of Ang1, Ang2, VEGF-C, and IFNγ. uNK cells (and macrophages) also produce MMPs that can break down collagen in an in vitro spiral artery model. uNK cell supernatants also mediate vascular smooth muscle cell dedifferentiation and this effect is seen at 12 to 14 weeks but not 8 to 10 weeks of gestation. Other chemokines and growth factors have been implicated in the uNK cell effect on spiral arteries. For example, Choudhury et al. suggested that IL-6 and CXCL8 secreted by EVT activate secretion of C-C motif chemokine 14 (CCL14) and CXCL6 by endothelial cells which then recruit uNK cells and macrophages to spiral arteries. Both IL-6 and CXCL8 also induce dedifferentiation of vascular smooth muscle cells in a choric plate artery model.

Altered decidual leucocytes have been reported in pre-eclampsia, although results have varied, there have been reports of reduced, unchanged, and increased uNK cells compared with controls. Uterine artery Doppler studies in early pregnancy can predict women at increased risk of developing pre-eclampsia in later pregnancy; compared with post-delivery samples, these high-risk samples allow investigation when the pathogenetic lesion develops, before compensatory measures are in place, and this approach has been used to investigate uNK cell function in pregnancies at high risk of developing pre-eclampsia. uNK cells from 9- to 14-week gestational age pregnancies with abnormal Doppler wave forms showed reduced expression of KIR2DL/S1,3,5 and LILRB1, reduced stimulation of trophoblast outgrowth from villous explants, reduced in vitro induction of apoptosis in vascular smooth muscle cells and endothelial cells, increased angiogenic growth factor secretion, and reduced ability to destabilize endothelial structures. These results all suggest that uNK cells from pregnancies at increased risk of pre-eclampsia display altered effects on trophoblast invasion and spiral arteries and emphasize the likely importance of uNK cells in early pregnancy. Nevertheless, in common with trophoblast invasion, spiral artery remodeling extends into inner myometrium. CD14+ macrophages and CD3+ T cells are present in the wall and adventitia of spiral arteries in both decidua and superficial myometrium, suggesting that these cells also have a role, either alone or in collaboration with uNK cells.

Interactions with other cells

uNK cells may also interact with other cell types in non-pregnant and pregnant endometrium. uNK cells interact with CD14+ cells in decidua to produce IDO (indoleamine-2,3-dioxygenase), which induces regulatory T cells. This interaction appears to be mediated by IFNγ and TGFβ and is not seen with pbNK cells or CD14+ cells. uNK cells also form conjugates with immature dendritic cells in first-trimester decidua which can induce uNK cell proliferation and cytotoxicity. It has also been suggested that uNK cells induce apoptosis of CD209 (DC-SIGN) dendritic cells in decidua. Evidence from mouse pregnancy suggests that IL-10 secreted by uNK cells regulates dendritic cell phenotype and function, and IL-10 deficiency and dendritic cell expansion are associated with early pregnancy failure. In addition to affecting their recruitment or differentiation (or both), DSCs may affect uNK cell function; cultured first-trimester DSCs inhibited proliferation, cytotoxicity, IFNγ production, and upregulation of activation receptor expression by pbNK cells. In non-pregnant endometrium, uNK cells may clear senescent decidual cells at the end of the menstrual cycle, playing a crucial role in endometrial homeostasis.

Summary

Knowledge has increased dramatically since their recognition as unusual NK cells, but despite considerable research effort, the in vivo role of uNK cells remains unclear. Recent advances suggest that a re-appraisal may be timely. Whether uNK cell phenotype and function differ between non-pregnant and pregnant endometrium, between decidua basalis and parietalis, or at different sites within decidua (such as those related to spiral arteries) and at different gestational ages remains largely unknown. Pre-eclampsia, fetal growth restriction, and recurrent pregnancy failure have been associated with altered uNK cell numbers and function and specific KIR/HLA-C combinations but the significance of these observations is not fully established. uNK cells produce a wide range of chemokines, cytokines, growth factors, and MMPs, and many have been shown to have specific effects on trophoblast or spiral arteries, but in vivo translation is difficult. Gestational age differences in phenotype and function suggest that including samples across a range of gestational weeks in the first trimester may result in skewing of data.

The starting point for most studies of uNK cell function is decidua retrieved from pregnancy terminations or miscarriages. uNK cells within these samples have been exposed directly to EVT or to soluble HLA-G with possible functional effects. Investigations of uNK cells purified from non-pregnant endometrium are relatively infrequent, although several studies have reported increased uNK cells in luteal phase endometrium in recurrent early pregnancy failure. A recent study of uNK cells from timed luteal phase endometrium reported increased expression of angiogenin, VEGF-A, and basic fibroblast growth factor (bFGF) in women with recurrent miscarriage compared with fertile controls. Recent studies indicate that menstrual blood may act as a surrogate for endometrial NK cells and this approach may increase the scope for future studies.
Similar studies of pathological pregnancy and non-pregnant endometrium, including endometrial NK cell populations in women with recurrent early pregnancy failure, may clarify the roles of specific uNK cell subsets in pathological pregnancy. The suggestion that there are subsets of NK cells in human decidua is supported by a report of production of growth-promoting factors by CD49a+Eomes+ uNK cells via interactions with HLA-G\(^6\), as well as the demonstration of a subpopulation of “pregnancy-trained” uNK cells in repeated compared with first pregnancies, characterized by high expression of the receptors NKG2C and LILRB1 and increased IFN\(\gamma\) and VEGF-A secretion\(^8\).

Besides uNK cells, other innate lymphoid cells have been identified in human decidua\(^5\)–\(^7\), including CD56\(^{-}\)CD94\(^{+}\)– non-cytotoxic type 1 ILCs (ILC1s), CD56\(^{-}\)CD117\(^{+}\)CD127\(^{+}\) lymphoid tissue inducer (LIIT)-like cells, and CD56\(^{-}\)CD94\(^{+}\)CD117\(^{-}\)CD127\(^{-}\)NKp44\(^{+}\) type 3 ILCs (ILC3s). These ILCs may contribute to the cytokine production reported by decidual CD56\(^{+}\) cells. For example, ILC1s may contribute to IFN\(\gamma\) production, while ILC3s produce IL-22 and CXCL8, which may regulate neutrophil recruitment\(^9\). The distribution and function of the different ILC populations are still unknown, although it has been suggested that ILC3 cytokine production may be regulated by programmed cell death (PD-1) expressed by ILC3s and its ligand PD-L1 expressed by EVT\(^10\).

It is now clear that “uNK cells” are not a single population and the relative importance of these subpopulations may change as gestation progresses. ILCs in decidua may contribute to the reported cytokine production by CD56\(^{-}\) uNK cells and this may differ according to different purification and activation protocols. Abnormal function in pathological pregnancy could affect specific uNK cell subpopulations or ILCs. Rather than referring to “uNK cells”, perhaps we should dissect populations more precisely and consider the functional contribution of ILCs. Technical advances may allow localization of different subpopulations, and investigation of pathological pregnancies may provide valuable clues to function. The advent of scRNA-seq technology provides an exciting way forward to unravel the role of uNK cells in normal and pathological pregnancy, making it possible to target specific cell populations for more accurate diagnosis and potential intervention.

Grant information

This work was supported by the Biotechnology and Biological Sciences Research Council and Wellbeing of Women.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

1. Weill P. Les cellules granuleuses des muqueuses intestinale et uterine. Arch Anat Microsc 1921; 17: 77–82. Reference Source
2. Smith LJ. Mietrial gland and other glycophen containing cells in the mouse uterus following mating and through implantation of the embryo. Am J Anat 1960; 119(1): 15–23. Published Abstract | Publisher Full Text
3. Stewart I, Peel S. The structure and differentiation of granulated mietrial gland cells of the pregnant mouse uterus. Cell Tissue Res 1977; 184(4): 517–27. Published Abstract | Publisher Full Text
4. Peel S, Bulmer D. The fine structure of the rat mietrial gland in relation to the origin of the granulated cells. J Anat 1977; 123(Pt 3): 687–96. Published Abstract | Free Full Text
5. Ritson A, Bulmer JN. Endometrial granulocytes in human decidua react with a natural-killer (NK) cell marker, NKH1. Immunology 1987; 62(2): 329–31. Published Abstract | Free Full Text
6. Starkey PM, Sargent IL, Redman CW. Cell populations in human early pregnancy decidua: characterization and isolation of large granular lymphocytes by flow cytometry. Immunology 1988; 65(1): 129–34. Published Abstract | Free Full Text
7. King A, Wellings V, Gardner L, et al.: Immunocytochemical characterization of the unusual large granular lymphocytes in human endometrium throughout the menstrual cycle. Hum Immunol 1989; 24(3): 195–205. Published Abstract | Publisher Full Text
8. Bulmer JN, Morrison L, Longfellow M, et al.: Granulated lymphocytes in human endometrium: histochemical and immunohistochemical studies. Hum Reprod 1991; 6(6): 791–8. Published Abstract | Publisher Full Text
9. Marshall RJ, Jones DB: An immunohistochemical study of lymphoid tissue in human endometrium. Int J Gynecol Pathol 1988; 7(3): 225–35. Published Abstract
10. Kamal BR, Isaacsen PG: The immunocytochemical distribution of leukocytic subpopulations in human endometrium. Am J Pathol 1987; 127(1): 66–73. Published Abstract | Free Full Text
11. Kwan M, Hazon A, Zhang J, et al.: Dynamic changes in maternal decidua leukocyte populations from first to second trimester gestation. Placenta 2014; 35(12): 1027–34. PubMed Abstract | Publisher Full Text
12. Williams PJ, Stearle RF, Robson SC, et al.: Decidual leukocyte populations in early to late gestation normal human pregnancy. J Reprod Immunol 2009; 82(1): 24–31. PubMed Abstract | Publisher Full Text | F1000 Recommendation
13. Bulmer JN, Williams PJ, Lash GE: Immune cells in the placental bed. Int J Dev Biol 2010; 54(2–3): 281–94. PubMed Abstract | Publisher Full Text | F1000 Recommendation
14. Vento-Tormo R, Etremova M, Bobtig RA, et al.: Single-cell reconstruction of the early maternal-fetal interface in humans. Nature 2018; 563(7731): 347–53. PubMed Abstract | Publisher Full Text | F1000 Recommendation
15. Vaccaro P, Vitale C, Munari E, et al.: Human Innate Lymphoid Cells: Their Functional and Cellular Interactions in Decidua. Front Immunol 2018; 9: 1897. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
16. Vaccaro P, Montaldo E, Croxatto D, et al.: Identification of diverse innate lymphoid cells in human decidua. Mucosal Immunol 2015; 8(2): 254–64. PubMed Abstract | Publisher Full Text
17. Miller D, Motomura K, Garcia-Flores V, et al.: Innate Lymphoid Cells in the Maternal and Fetal Compartments. Front Immunol 2018; 9: 2396. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
18. Koopman LA, Kopcow HD, Rybalov B, et al.: Human decidual natural killer cells are a unique NK cell subset with immunomodulatory potential. J Exp Med 2003; 198(6): 1201–12. PubMed Abstract | Publisher Full Text | Free Full Text
19. Lynch L, Golden-Mason L, Eogan M, et al.: Cells with haematopoietic stem cell phenotype in adult human endometrium: relevance to infertility? Hum Reprod 2007; 22(4): 919–26. PubMed Abstract | Publisher Full Text
20. Kaskin DB, Allan DS, Rybalov B, et al.: TGFBeta promotes conversion of CD116+ peripheral blood NK cells into CD16+ NK cells with similarities to decidual NK cells. Proc Natl Acad Sci U S A 2007; 104(9): 3378–83. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
21. Vaccaro P, Vitale C, Montaldo E, et al.: CD34+ hematopoietic precursors
are present in human decidua and differentiate into natural killer cells upon interaction with trophoblast cells. Proc Natl Acad Sci U S A. 2011; 108(4): 2402–7.

32. Szereday L, Miko E, Meggyes M, et al.: Commitment of decidua haematopoietic progenitor cells in first trimester pregnancy. Am J Reprod Immunol. 2012; 67(1): 9–16.

33. Matsuura-Sawada R, Murakami T, Ozawa Y, et al.: Enhancement of uterine natural killer cell activity during normal pregnancy with trophoblast cells. J Immunol. 2010; 185(7): 3913–8.

34. Wu X, Jin LP, Yuan MM, et al.: Chemerin regulates NK cell accumulation in uterine NK cells. J Immunol. 2008; 181(10): 5951–6.

35. Cerdeira AS, Rajakumar A, Royle CM, et al.: Expression of c-kit and kit ligand at the implantation site of gestational trophoblastic tissue. Mol Hum Reprod. 2002; 8(12): 948–96.

36. Sharkey AM, Gardner L, Hiby S, et al.: Conversion of peripheral blood NK cells to a decidual-like phenotype by a cocktail of defined factors. Eur J Immunol. 2012; 42(3): 683–7.

37. Sharkey AM, Gardner L, Sharkey AM, et al.: Review: Functional role of uterine natural killer cells during early pregnancy. J Immunol. 2010; 185(3): 1451–60.

38. Lash GE, Naruse K, Robson A, et al.: Interaction between uterine natural killer cells and extravillous trophoblast cells: effect on cytokine and angiogenic growth factor production. Hum Reprod. 2011; 26(3): 2288–95.

39. Jones RK, Searle RF, Stewart JA, et al.: Apoptosis, toll-like expression, and proliferative activity in human decidual stroma and endometrial granulated lymphocytes. Biol Reprod. 1998; 58(4): 995–1002.

40. Szereday L, Miko E, Meggyes M, et al.: Commitment of decidua haematopoietic progenitor cells in first trimester pregnancy. Am J Reprod Immunol. 2012; 67(1): 9–16.

41. Szereday L, Miko E, Meggyes M, et al.: Commitment of decidua haematopoietic progenitor cells in first trimester pregnancy. Am J Reprod Immunol. 2012; 67(1): 9–16.

42. Chazara O, Xiong S, Moffet A: Maternal KIR and fetal HLA-C: a fine balance. J Leukoc Biol. 2011; 90(4): 793–10.

43. Apps R, Gardner L, Sharkey AM, et al.: A homodimeric complex of HLA-G on normal trophoblast cells modulates antigen-presenting cells via LILRB1. Eur J Immunol. 2007; 37(7): 1924–37.

44. Apps R, Gardner L, Sharkey AM, et al.: Ex vivo functional responses to HLA-G differ between blood and decidual NK cells. Mol Hum Reprod. 2011; 17(9): 577–86.

45. El Costa H, Casemayou A, Aguerre-Girr M, et al.: Critical and differential roles of nkp46- and nkp30-activating receptors expressed by uterine NK cells in early pregnancy. J Immunol. 2008; 181(5): 3029–37.

46. Male V, Sharkey A, Masters L, et al.: The effect of pregnancy on the uterine NK cell repertoire. J Reprod Immunol. 2011; 81(10): 3017–27.

47. De Vries A, Smit T, Van Koppen P, et al.: Uterine natural killer cells reveal a tissue-specific receptor repertoire. Hum Immunol. 2018; 79(11): 823–31.

48. Ivarsson MA, Skilund N, Marquardt N, et al.: Composition and dynamics of the uterine NK cell KIR repertoire in menstrual blood. Mucosal Immunol. 2017; 10(2): 322–31.

49. Huhm O, Chazara O, Ivarsson MA, et al.: High-Resolution Genetic and Phenotypic Analysis of KIR2DL1 Alleles and Their Association with Pre-eclampsia. J Immunol. 2018; 201(9): 2593–601.

50. Saito S, Takenaka Y, Sakai M, et al.: The incidence of pre-eclampsia among couples consisting of Japanese women and Caucasian men. J Reprod Immunol. 2006; 70(1–2): 93–8.

51. Lassen TG, Hackmon R, Geraghty DE, et al.: Fetal human leukocyte antigen-C and maternal killer-cell immunoglobulin-like receptors in cases of severe pre eclampsia. Placenta. 2019; 75: 27–33.

52. Nakashima A, Shiozaki A, Miyao S, et al.: Granulysin produced by uterine natural killer cells induces apoptosis of extravillous trophoblasts in spontaneous abortion. Am J Pathol. 2008; 173(3): 653–66.

53. Ca EC, Gomley M, Kapidiz M, et al.: Maternal decidua macrophages inhibit nk cell killing of invasive cytrophoblasts during human pregnancy. Biol Reprod. 2013; 88(1): 155.

54. Le Bouritier P, Bersussan A: Up-and-down immunity of pregnancy in humans [version 1; peer review: z approved]. F1000Res. 2017; 6: 1216.

55. Rajagopalan S, Bryceon YT, Kuppusamy SP, et al.: Activation of NK cells by an endocytosed receptor for soluble HLA-G. J Leukoc Biol. 2006; 80(1): 17–24.

56. Rajagopalan S, Long EO: Cellular senescence induced by CD158d reprograms natural killer cells to promote vascular remodeling. Proc Natl Acad Sci U S A. 2011; 108(10): 4452–7.

57. Rajagopalan S: HL A-mediated NK cell senescence promotes vascular remodeling: implications for reproduction. Cell Mol Immunol. 2014; 11(5): 460–6.

58. Sotnikova N, Voronin D, Antisferova Y, et al.: Interaction of decidua CD69+ NK cells with human endometrium during normal pregnancy and recurrent spontaneous abortion at early term of gestation. Scand J Immunol. 2014; 80(3): 198–208.

59. Lash GE, Naruse K, Robson A, et al.: Interaction between uterine natural killer cells and extravillous trophoblast cells: effect on cytokine and angiogenic growth factor production. Hum Reprod. 2011; 26(3): 2288–95.

60. Lash GE, Naruse K, Robson A, et al.: Interaction between uterine natural killer cells and extravillous trophoblast cells: effect on cytokine and angiogenic growth factor production. Hum Reprod. 2011; 26(3): 2288–95.
82. Higuma-Myojo S, Sasaki Y, Miyazaki S, Craven CM, Morgan T, Ward K, et al. Natural Killer Cell receptor expression is altered in pregnancies with impaired vascular remodeling and a higher risk of pre-eclampsia. J Leukoc Biol. 2015; 97(1): 79–86.

83. Chen X, Liu Y, Cheung WC, et al. Increased expression of angiogenic cytokines in CD68+ uterine natural killer cells from women with recurrent miscarriage. Cytokine. 2018; 110: 272–6.

84. Wallace AE, Whiteley GS, Thilaganathan B, et al. Decidual natural killer cell cell interactions with trophoblasts are impaired in pregnancies at increased risk of preeclampsia. J. Am. J. Reprod. Immunol. 2014; 72(4): 565–60.

85. Wallace AE, Whiteley GS, Thilaganathan B, et al. Decidual natural killer cell cell receptor expression is altered in pregnancies with impaired vascular remodeling and a higher risk of pre-eclampsia. J. Leukoc. Biol. 2015; 97(1): 79–86.

86. Chen X, Liu Y, Cheung WC, et al. Increased expression of angiogenic cytokines in CD68+ uterine natural killer cells from women with recurrent miscarriage. Cytokine. 2018; 110: 272–6.

87. Wallace AE, Whiteley GS, Thilaganathan B, et al. Decidual natural killer cell cell interactions with trophoblasts are impaired in pregnancies at increased risk of preeclampsia. J. Am. J. Reprod. Immunol. 2013; 183(6): 1535–61.

88. Wallace AE, Fraser R, Gunung S, et al. Increased angiogenic factor secretion by decidual natural killer cells from pregnancies with high uterine artery resistance alters trophoblast function. Hum. Reprod. 2014; 29(4): 652–60.
105. Vacca P, Cantoni C, Vitale M, et al.: Crosstalk between decidual NK and CD14+ myelomonocytic cells results in induction of Tregs and immunosuppression. Proc Natl Acad Sci U S A. 2010; 107(26): 11918–23. PubMed Abstract | Publisher Full Text | Free Full Text

106. Kämmerer U, Eggert AO, Kapp M, et al.: Unique appearance of proliferating antigen-presenting cells expressing DC-SIGN (CD209) in the decidua of early human pregnancy. Am J Pathol. 2003; 162(3): 887–96. PubMed Abstract | Publisher Full Text | Free Full Text

107. Dietl J, Höing A, Kämmerer U, et al.: Natural killer cells and dendritic cells at the human feto-maternal interface: an effective cooperation? Placenta. 2006; 27(4–5): 341–7. PubMed Abstract | Publisher Full Text

108. Tirado-González I, Muñoz-Fernández R, Prados A, et al.: Apoptotic DC-SIGN+ cells in normal human decidua. Placenta. 2012; 33(4): 257–63. PubMed Abstract | Publisher Full Text

109. Laskarin G, Redzović A, Rubesa Z, et al.: Decidual natural killer cell tuning by autologous dendritic cells. Am J Reprod Immunol. 2008; 59(5): 433–45. PubMed Abstract | Publisher Full Text

110. Blois SM, Freitag N, Tirado-González I, et al.: NK cell-derived IL-10 is critical for DC-NK cell dialogue at the maternal-fetal interface. Sci Rep. 2017; 7(1): 2189. PubMed Abstract | Publisher Full Text | F1000 Recommendation

111. Croxatto D, Vacca P, Canegallo F, et al.: Stromal cells from human decidua exert a strong inhibitory effect on NK cell function and dendritic cell differentiation. PLoS One. 2014; 9(2): e89008. PubMed Abstract | Publisher Full Text | Free Full Text

112. Brighton PJ, Manuyama Y, Fishwick K, et al.: Clearance of senescent decidual cells by uterine natural killer cells in cycling human endometrium. eLife. 2017; 6: pii: e31274. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

113. Laird SM, Tuckerman EM, Cork BA, et al.: A review of immune cells and molecules in women with recurrent miscarriage. Hum Reprod Update. 2003; 9(2): 163–74. PubMed Abstract | Publisher Full Text

114. Tuckerman E, Maree N, Prakash A, et al.: Uterine natural killer cells in peri-implantation endometrium from women with repeated implantation failure after IVF. J Reprod Immunol. 2010; 87(1–2): 60–6. PubMed Abstract | Publisher Full Text | F1000 Recommendation

115. Quenby S, Nik H, Innes B, et al.: Uterine natural killer cells and angiogenesis in recurrent reproductive failure. Hum Reprod. 2008; 24(1): 45–54. PubMed Abstract | Publisher Full Text

116. Marron K, Walsh D, Harrity C: Detailed endometrial immune assessment of both normal and adverse reproductive outcome populations. J Assist Reprod Genet. 2019; 36(2): 199–210. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

117. van der Molen RG, Schutten JH, van Cranenbroek B, et al.: Menstrual blood closely resembles the uterine immune micro-environment and is clearly distinct from peripheral blood. Hum Reprod. 2014; 29(2): 303–14. PubMed Abstract | Publisher Full Text

118. Gamliel M, Goldman-Wohl D, Isaacson B, et al.: Trained Memory of Human Uterine NK Cells Enhances Their Function in Subsequent Pregnancies. Immunity. 2018; 48(5): 951–962.e5. PubMed Abstract | Publisher Full Text | F1000 Recommendation

119. Croxatto D, Micheletti A, Montaldo E, et al.: Group 3 innate lymphoid cells regulate neutrophil migration and function in human decidua. Mucosal Immunol. 2016; 9(6): 1372–83. PubMed Abstract | Publisher Full Text | F1000 Recommendation

120. Vacca P, Pesce S, Greppi M, et al.: PD-1 is expressed by and regulates human group 3 innate lymphoid cells in human decidua. Mucosal Immunol. 2015; 8(2): 624–31. PubMed Abstract | Publisher Full Text | F1000 Recommendation
Open Peer Review

Current Peer Review Status: ✔ ✔

Editorial Note on the Review Process
F1000 Faculty Reviews are written by members of the prestigious F1000 Faculty. They are commissioned and peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

The reviewers who approved this article are:

Version 1

1 Shigeru Saito
 Department of Gastroenterology, Cancer Institute Hospital, Japanese Foundation For Cancer Research, Tokyo, Japan
 Competing Interests: No competing interests were disclosed.

2 Surendra Sharma
 Department of Pediatrics, Women and Infants Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
 Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com