Blue Tansy Essential Oil: Chemical Composition, Repellent Activity Against *Aedes aegypti* and Attractant Activity for *Ceratitis capitata*

Iris Stappen¹, Juergen Wanner², Nurhayat Tabanca³, Ulrich R. Bernier⁴, and Paul E. Kendra³

Abstract

Blue tansy essential oil (BTEO) (*Tanacetum annuum* L.) was analyzed by GC-MS and GC-FID using two different capillary column stationary phases. Sabinene (14.0%), camphor (13.6%), myrcene (8.0%), β-pinene (7.7%), and chamazulene (6.9%) were the main components using an SE52 column (non-polar). On a polar CW20M phase column, sabinene (15.1%), camphor (14.4%), α-phellandrene (7.9%), β-pinene (7.7%), and myrcene (6.9%) were the most abundant compounds. To assess the oil for potential applications in integrated pest management strategies, behavioral bioassays were conducted to test for repellency against yellow fever mosquito *Aedes aegypti*, and for attractant activity for Mediterranean fruit fly *Ceratitis capitata*. Results showed that BTEO was not effective in repelling *Ae. aegypti* (minimum effective dosage [MED]: 0.625 ± 0.109 mg/cm² compared with the standard insect repellent DEET (N,N-diethyl-3-methylbenzamide). In assays with male *C. capitata*, BTEO displayed mild attraction compared with two positive controls (essential oils from tea tree *Melaleuca alternifolia* and African ginger bush *Tetradenia riparia*). Additional studies are needed to identify the specific attractant chemicals in BTEO and to determine if they confer a synergistic effect when combined with other known attractants for *C. capitata*. To the best of our knowledge, this study represents the first investigation of BTEO for repellency against the mosquito vector *Ae. aegypti* and for attractancy to *C. capitata*, a major agricultural pest worldwide.

Keywords

essential oil, *Tanacetum annuum*, GC-MS/FID, chamazulene, mosquito and pest control, mediterranean fruit fly, tephritid fruit flies, diptera

Received: November 4th, 2020; Accepted: January 2nd, 2021.

Global warming is likely to impact human life in part through an increase in infectious diseases to humans and in part through a decrease in agricultural production. When the average temperature is higher, the metabolic rate of insects accelerates, which contributes to greater losses of agricultural products and a concomitant need for increased efficiency in food production. Additionally, there is a shift in insect numbers to new geographic locations.¹ The ease of human travel has led to globalization which comes with an increased risk of introduction of exotic pathogens and their invertebrate vectors to new locations.² This is the case with *Aedes aegypti* L. (Diptera: Culicidae) and other *Aedes* species, primary vectors of chikungunya, Zika, yellow fever, and dengue viruses, which affect the health and well-being of humans globally.³ Moreover, climatic changes could have a significant impact on the development and distribution of agricultural insect pests in new areas.⁴⁵ Furthermore, many countries enforce subsequent quarantine regulations against agricultural pests such as invasive species of tephritid fruit fly; the consequent restrictions have a significant detrimental impact on the agricultural productivity to international markets.⁶⁷ For example, the outbreak of Mediterranean fruit fly (medfly), *Ceratitis capitata* Wiedemann (Diptera: Tephritidae) in the Dominican Republic in March 2015 resulted in an export
bans that cost the country an estimated $40 million. Current prevention of mosquito-borne diseases and control of agricultural pests largely rely on the use of synthetic chemical pesticides. However, excessive exposure may lead to development of pesticide resistance as well as adverse effects on human health, the environment, and non-target (beneficial) organisms. Therefore, there is a need for research to identify health, the environment, and non-target (beneficial) organisms of pesticide resistance as well as adverse effects on human populations.

Results and Discussion

BTEO was analyzed simultaneously by GC-MS/GC-FID using two columns differing in polarity (see Experimental) to ensure a more comprehensive identification and detect coeluting constituents. The results of quantitative and qualitative oil analyses are given in Table 1. A total of 73 components were identified based on their retention times in a non-polar column (SE52), accounting for 94.9% of the oil. The oil contained sabinen (14.0%), camphor (13.6%), myrcene (8.0%), β-pinene (7.7%), chamazulene (6.9%), and α-phellandrene (6.5%). Additional components in an amount above 5% were 3,6-dihydrochamazulene (5.2%) and β-cymene (5.5%). Separation on a polar column (CW20M) allowed for the identification of 62 compounds (97.8% of the oil). The most abundant constituents were sabine (15.1%), camphor (14.4%), α-phellandrene (7.9%), β-pinene (7.7%), and myrcene (6.9%), followed by chamazulene with 6.0% and β-cymene (5.5%). There is a good correlation between compounds identified using the two methods. The results corroborate findings of some earlier publications whereas they differ from an investigation describing BTEO derived from Morocco. The authors of that study found a high content of sabine (22.3%), which was probably due to environmental and climatic conditions. Interestingly, our sample showed four azulene derivatives: Besides chamazulene and 3,6-dihydrochamazulene, small amounts of 5,6-dihydrochamazulene (0.5%/0.3%) and 7,12-dehydro-5,6,7,8-tetrahydrochamazulene (0.6%/0.5%) were identified, accounting for a total of 13.2% and 11.1%, respectively.

The mosquito repellency assays with Ae. aegypti mosquitoes revealed BTEO to have a MED (see Experimental) for repellency of 0.625 ± 0.109 mg/cm²; however, this indicated weak repellency compared to the reference standard repellent, DEET (N,N-diethyl-3-methylbenzamide) (MED = 0.008 ± 0.002 mg/cm²). The repellency of BTEO was significantly less (F = 10.741; df = 4.10; P < .001) than the other three oils, Anthemis scorbicularis essential oil (AMEO), Caryopteris × danthonensis essential oil (CCEO), and Prunus platyphyllea essential oil (PPEO), but all these oils were less potent than DEET (Figure 1). Additionally, we have tested some of the predominant compounds in BTEO for their repellency. Sabine and α-phellandrene were not repellent as high as a MED value of 0.187 ± 0 mg/cm². Myrcene did not repel mosquitoes at a concentration of 0.375 ± 0 mg/cm². (−)-Camphor had slightly better repellency, with a MED of 0.375 ± 0 mg/cm², than its (+)-enantiomer (0.500 ± 0.125 mg/cm²). In our prior study, we found that (−)-β-pinene showed mild repellency with a MED value of 0.140 ± 0.047 mg/cm², while β-cymene was not repellent at the highest tested dose of 1.5 mg/cm².

In short-range laboratory bioassays with male C. capitata, there were significant differences in mean behavioral response to five essential oil treatments (F = 10.087; df = 4.20; P < .001). Attraction to BTEO was significantly lower than that observed with two positive controls, that is, tea tree oil (TTO) Melaleuca alternifolia (Maiden and Betche) Cheel. and ginger bush Tetradenia riparia (Hochst.) Codd essential oil (TREO) (Figure 2). However, the level of attraction to BTEO was equivalent to that seen with two sources of mastic gum (Pistacia lentiscus L. var. chia) essential oil (MGEO-1 and 2). It is reasonable to assume that there are chemical constituents common to BTEO and MGEO that confer the mild attraction of C. capitata. We recently analyzed the chemical composition of MGEO-1 and 2, reporting that α-pinene (52% to 56%), myrcene (19% to 20%), and β-pinene (3%) were the dominant components characteristic of wild-type MGEO. Studies using electroantennography (EAG) to quantify olfactory responses confirmed that α-pinene and myrcene elicit weak EAG responses in male C. capitata. Our research group previously found that myrcene was negatively correlated with attraction of male C. capitata in short-range bioassays; however, no studies have included enantiomeric identification of these compounds. Therefore, individual enantiomers of α- and β-pinene need to be evaluated for attractancy of male C. capitata. In addition, BTEO should be combined with other known medfly attractants (eg, TTO and other essential oils high in
Stappen et al.

Table 1. Chemical Composition of Blue Tansy Essential Oil (*Tanacetum annuum* L.).

No.	Compounda	RIb	%AreaFID	RIb	%AreaFID	
1	Ethyl 2-methylbutanoate	846	0.1	1040	0.1	
2	Ethyl isovalerate	849	tr.			
3	Ethyl tiglate	922	tr.			
4	Tricyclene			1005	0.1	
5	α-Thujene	932	0.4			
6	α-Pinene	941	3.6	1016	4.0	
7	Propyl 2-methylbutanoate			1127	0.4	
8	Camphene	958	1.3	1057	1.4	
9	Thuj-2,4(10)-diene	962	tr.			
10	Sabinene	980	14.0	1113	15.1	
11	β-Pinene	987	7.7	1102	7.7	
12	Myrcene	991	8.0	1150	6.9	
13	α-Phellandrene	1012	6.5	1155	7.9	
14	3-Methylbutyl isobutanoate			1186	0.1	
15	α-Terpinene	1023	0.8	1171	1.1	
16	p-Cymene	1031	5.2	1259	5.5	
17	Limonene	1036	2.8	1192	2.8	
18	β-Phellandrene	1038	0.4	1203	0.9	
19	1,8-Cineole	1040	0.4			
20	trans-β-Ocimene	1049	tr.			
21	γ-Terpinene	1065	1.3	1234	1.5	
22	Octanol	1069	0.1	1546	0.1	
23	cis-Sabinene hydrate	1075	0.1	1453	0.1	
24	6,7-Epoxy myrcene	1094	0.2	1403	0.3	
25	Terpinolene	1096	0.6	1270	0.8	
26	Linalool	1101	0.1	1535	0.1	
27	2-Methylbutyl 2-methylbutanoate	1103	0.2			
28	trans-Sabinene hydrate	1107	0.1	1539	0.1	
29	(E)−4,8-Dimethylnona-1,3,7-triene	1119	0.3	1464	0.2	
30	(E)−Myroxide	1119	0.3	1464	0.2	
31	cis-p-Menth-2-en-1-ol	1131	0.1			
32	α-Campholenal	1135	tr.			
33	4-Acetyl-1-methyclohexene	1138	0.3	1552	0.4	
34	trans-p-Menth-2-en-1-ol	1149	0.1			
35	trans-Sabinol	1797	0.1			
36	trans-Pinocarveol	1153	tr.			
37	Camphor	1159	13.6	1504	14.4	
38	Sabin ketone	1168	0.1			
39	Pinocarvone	1176	0.1			
40	Borneol	1180	2.5	1684	2.5	
41	Terpinen-4-ol	1189	1.6	1592	1.7	
42	α-Terpineol	1200	0.2			
43	Decanal	1206	tr.			
44	Myrtenol	1208	tr.		1778	tr.
45	Myrrhenal	1210	0.1			
46	trans-Piperitol	1217	tr.			
47	trans-Carveol	1226	tr.			
48	cis-3-Hexenyl 2-methylbutanoate	1232	0.1	1459	0.1	
49	cis-3-Hexenyl 3-methylbutanoate	1236	0.1			
50	Cumin aldehyde		1784	tr.		
51	Pulegone	1252	1.0	1640	1.0	
52	Carvotanacetone	1260	0.1			

(Continued)
α-copaene21 to assess potential synergistic effects, as has been observed with kairomones for other insect pests.44

In conclusion, the chemical composition of BTEO differed from other blue oils, such as\textit{Matricaria chamomilla} essential oils from different geographic locations,45 by the presence of four azulene derivatives. Due to their high chamazulene46 and low thujone content, blue oils are considered as potential skin care applications with a wound healing47 and anti-inflammatory48 effect. The reason for choosing this particular oil for our investigation was that it was characterized by a very high amount of

No.	Compounda	RIb	%Area$^c_{FID}$	RIb	%Area$^c_{FID}$	
53	Piperitone	1267	tr.			
54	Thymol	1295	0.7	2181	1.0	
55	Carvacrol	1306	0.1	2210	0.1	
56	6-Hydroxy carvotanacetone	1326	tr.			
57	(E)-β-Damascenone		1807	tr.		
58	α-Copaene	1396	0.1	1479	0.1	
59	7-epi-Sesquithujene	1400	0.1			
60	β-Elemene	1409	0.2	1575	0.1	
61	Sesquithujene			1520	0.1	
62	β-Caryophyllene	1446	1.7	1578	1.8	
63	\textit{trans}-α-Bergamotene	1450	0.1	1568	tr.	
64	Sesquisabinene A	1456	1.1	1625	1.2	
65	\textit{trans}-β-Farnesene	1461	0.1	1662	0.1	
66	α-Humulene	1481	0.2	1650	0.3	
67	γ-Curcumene	1492	0.1	1672	0.1	
68	\textit{ar}-Curcumene	1495	0.2			
69	Phenethyl 2-methylbutanoate	1497	0.2	1938	0.1	
70	β-Sesquiphellandrene	1503	0.1	1753	0.7	
71	Germacene D	1507	1.1	1691	1.8	
72	Valencene			1707	0.2	
73	β-Selinene	1514	0.3	1700	0.4	
74	β-Curcumene			1721	0.1	
75	Bicyclogermacrene	1523	0.4	1715	0.2	
76	5,6-Dihydrochamazulene	1532	5.2	1894	4.3	
77	δ-Cadinene			1735	0.2	
78	Elemol	1569	0.1	2066	tr.	
79	Spathulenol	1607	tr.			
80	Caryophyllene oxide	1616	0.3	1969	0.3	
81	5,6-Dihydrochamazulene	1643	0.5	2088	0.3	
82	7,12-Dehydro-5,6,7,8-tetrahydrochamzulene	1659	0.7	2144	0.4	
83	β-Eudesmol	1683	0.6	2225	0.5	
84	Chamazulene	1766	6.9	2409	6.0	
85	γ-Eudesmol	2163	tr.			
86	Valerianol	2170	0.2			
87	Curcumen-12-ol	2242	0.5			

Table 1. Continued

No.	Compounda	RIb	%Area$^c_{FID}$	RIb	%Area$^c_{FID}$
88	3,6-Dihydrochamazulene	1778	0.3	2455	0.3
89	5,6-Dihydrochamazulene	1788	0.3	2504	0.3
90	7,12-Dehydro-5,6,7,8-tetrahydrochamzulene	1801	0.3	2552	0.3
91	β-Eudesmol	1843	0.6	2628	0.5
92	Chamazulene	1926	6.9	2715	6.0
93	γ-Eudesmol	2321	tr.		
94	Valerianol	2330	0.2		
95	Curcumen-12-ol	2406	0.5		

| sum | 94.9 | 97.8 |

Monoterpene Hydrocarbons	52.6	55.6
Oxygenated Monoterpenes	21.5	21.5
Sesquiterpene Hydrocarbons	5.8	6.8
Oxygenated Sesquiterpenes	1.0	1.5
Azulenes	13.3	11.0
Other	5.8	3.6

\(\text{tr.} = \text{traces (<0.1%).}\)

\(\text{a in elution order from DB-5 stationary phase.}\)

\(\text{b 50 m × 0.25 mm} \times 1.0 \mu \text{m SE-52.}\)

\(\text{c 60 m × 0.25 mm} \times 0.25 \mu \text{m CW20M.}\)
chamazulene, which was screened prior to testing, and therefore would be even more beneficial for people suffering from skin disorders. The results should be transmissible to other commercially available BTEOs with similar high chamazulene contents. However, the repellent activity of the investigated BTEO was too weak for practical use as, for example, skin care products against *Ae. aegypti*. There was mild attraction of male *C. capitata* to BTEO; further studies are needed to identify the specific attractive components and to determine potential application for improvement of medfly lures.

Experimental

Essential Oil

Blue tansy essential oil (BTEO) was provided by Kaders Paul GmbH Import u. GroßHdl, Hamburg, Germany, Ref 170911.

Essential Oil Analysis

GC-FID and GC-MS analysis were carried out simultaneously in one instrument configuration using a Finnigan Thermo Quest Trace GC with two split/splitless injectors each connected to a GC capillary column of different polarity, an FID detector, a Finnigan Automass quadrupole mass spectrometer (Thermo Quest Finnigan S.A., France) and a CTC GC-PAL autosampler. One GC injector was connected to a 60 m × 0.25 mm × 0.25 µm Carbowax 20 M (polyethylene glycol) column (J&W Scientific, USA), the other injector was coupled to a 50 m × 0.25 mm × 1.0 µm SE-54 (5% diphenyl, 1% vinyl-, 94% dimethylpolysiloxane) fused silica column (CS Chromatographie Service, Germany). Both columns were joined at the end with a quartz Y connector and the combined effluents split with another Y connector to the FID and MS detector. A short (ca. 0.3 m × 0.1 mm) uncoated deactivated GC capillary served as a flow restriction transfer line between the MS ion source and the split connector and a ca. 1 m × 0.25 mm GC capillary was connected to the FID detector. Only one injector was operated and pressurized at a time at a normal flow rate while the other was left with only a very small gas flow to protect the unused column.

Helium 5.0 was used as a carrier gas at a constant flow rate of 1.5 mL/min; injector temperature was 230 °C; the FID detector temperature, as well as the GC-MS interface heating were 250 °C; the ion source was at 150 °C; EI mode at 70 eV; scan range 40-500 amu. The following temperature program was applied: 46 °C for 1 minute to 100 °C at a rate of 5 °C/min; 100 to 230°C at 2 °C/min; 230 °C for 13.2 minutes. Essential oil samples were diluted 1:20 with dichloromethane and 1 µl of this solution was injected into the GC at a split ratio of 1:100.

Thermo Xcalibur 1.2 software was used for identifying the compounds by correlating mass spectra to databases of NIST 08,49 Wiley 8th ed.,50 Adams library,51 MassFinder terpenoids library52 and our own library. Retention indices were determined with the use of the measured retention times of a series of n-alkanes that elute over the whole span of the chromatogram and calculated according to the method of van den Dool and Kratz53 and confirmed using retention indices of data from the literature and those from reference compounds, if necessary. Quantification was performed using normalized peak area calculations of the FID chromatogram without (by first approximation) relative FID-response factors.
Repellency Bioassays

Female *Ae. aegypti* mosquitoes were obtained from a laboratory colony maintained at the Mosquito and Fly Research Unit at the Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, USA. Repellency was determined by the MED (mg/cm²), which is the minimum threshold surface concentration necessary to prevent mosquitoes from biting through the treated surface. The rearing conditions and detailed methods of evaluation have been described in earlier studies. BTEO was applied on the cloth at the highest concentration available and subsequent tests were with serial two-fold dilutions in acetone until the concentration failed to repel (greater than or equal to five bites in one minute) in a cage of 500 mosquitoes. The lowest concentration which passed was determined to be the MED for compound or plant extracts. The MED for each candidate was averaged from these tests of participants and reported as a mean MED ± SE.

The test was conducted by having each volunteer affix the treated cloth onto a plastic sleeve to cover a 32 cm² window previously cut into the sleeve. Each of the volunteers wore this sleeve-cloth assembly above a nylon stocking that covered the arm with the hand of each volunteer protected by a glove. If ~1% or the volunteer receives five bites through the cloth over the sleeve during one minute test, the oil was considered to have failed, that is, was not repellent at that concentration.

Untreated (acetone and ethanol) solvent controls exhibited 0% repellency. The standard repellent DEET (N,N-diethyl-3-methylbenzamide, 97% Sigma Aldrich, St. Louis, MO, USA) diluted in ethanol was included in the bioassays and results were compared with our recent studies of AMEO, CCEO, and PPEO. Compounds such as sabinene (CAS # 3387-41-5), α-phellandrene (CAS# 99-83-2), (-)-camphor (CAS# 464-48-2), (+)-camphor (CAS# 464-49-3), (-)-β-pinene (CAS# 18172-67-3) and p-cymene (CAS# 99-87-6) were purchased from Sigma-Aldrich Co. (St. Louis, MO). Analysis of variance (ANOVA), followed by mean separation with Tukey-Kramer method; α = 0.05, n = 3, was performed using MS Excel (Microsoft Office 2016 Professional).

Short-Range Attraction Bioassays

Sterile male *C. capitata*, 5-10 days posteclosion, were used in this study. The source of insect, rearing protocols and experiment design for laboratory bioassays were as described previously. All observations were carried out at room temperature in small collapsible cages (20.3 × 20.3 × 20.3 cm) into which 50 flies were introduced 1 hour prior to the start of each experiment. Tests were initiated by introducing a Petri dish (53 mm diameter × 12 mm height) with a filter paper disk containing a sample of essential oil (10 µL of a 10% dilution in acetone). Each test used a separate cage to observe fly response to (i) BTEO, (ii) TTO, a known strong attractant, obtained from *Melaleuca alternifolia* (Maiden and Betch) Cheel. (Essential Oil India-SAT Group, Kannauj, India), (iii) *Tetradenia riparia*, TREO, a good attractant, and (iv) mastic gum (*Pistacia lentiscus* L. var. *chia*) essential oils, MGEO-1 and 2, a mild attractant. Tests were concluded after 30 minutes, at which point results were recorded as the number of flies within a Petri dish, which was then converted to percentage of flies attracted. Tests were replicated five times, and the position of the cages was randomized between replicate runs. ANOVA, followed by mean separation with Tukey test (P < .05), was used to analyze results (Systat Software).

Acknowledgments

The authors are grateful to Kaders Paul GmbH Import u. GroßHdl, Hamburg, Germany, for providing tansy essential oil for this study. We thank Natasha M. Agramonte, Greg Allen (USDAARS, CMAVE, Gainesville, FL) and Micah Gill (USDA-ARS, Miami, FL) for bioassays; Monica Blanco, Amanda Perez-Castro and Sean Brown (USDA-ARS, Miami, FL) for technical assistance; Dr. Martina Hoeferl (University of Vienna, Austria) and Dr. Eugene K. Blythe (Auburn University, Auburn, AL, USA) for helpful suggestions; and journal reviewers/editors for critical reviews of an earlier version of the manuscript.

Declaration of Competing Interests

The author(s) declared the following potential conflicts of interest with respect to the research, authorship, and/or publication of this article: Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This study was supported by the United States Department of Agriculture (Project Number: 6038-22000-006-00-D) and the U.S. Department of Defense through the Armed Forces Pest Management Board.

ORCID IDs

Iris Stappen https://orcid.org/0000-0003-2390-2325
Juergen Wanner https://orcid.org/0000-0002-4835-7370
Nurhayat Tabanca https://orcid.org/0000-0003-2802-8796
Paul E. Kendra https://orcid.org/0000-0003-4425-0733

References

1. Deutsch CA, Tewksbury JJ, Tigchelaar M, et al. Increase in crop losses to insect pests in a warming climate. *Science*. 2018;361(6405):916-919. doi:10.1126/science.aat3466
2. Szyniszewska AM, Leppla NC, Huang Z, Tatem AJ. Analysis of seasonal risk for importation of the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae), via air passenger traffic arriving in Florida and California. *J Econ Entomol*. 2016;109(6):2317-2328. doi:10.1093/jec/iev088
3. Massaro E, Kondor D, Ratti C. Assessing the interplay between human mobility and mosquito borne diseases in urban environments. *Sci Rep*. 2019;9(1):16911. doi:10.1038/s41598-019-53127-z
4. WHO. Vector ecology and management: Mosquito-borne diseases.WHO.int. July 21, 2020. https://www.who.int/neglected_diseases/vector_ecology/mosquito-borne-diseases/en/

5. Papadopoulos NT. Fruit fly invasion: historical, biological, economical aspects and management. In: Shelly T, Epsky ND, Jang EB, Reyes-Flores J, Vargas R, eds. Trapping and the Detection, Control, and Regulation of Tephritid Fruit Flies. 1st ed. Springer Publishing; 2014:219-252.

6. Mangan RL. Prioritizations in formulation and activity of adjuvicial insecticide bait sprays for fruit flies. In: Shelly T, Epsky ND, Jang EB, Reyes-Flores J, Vargas R, eds. Trapping and the Detection, Control, and Regulation of Tephritid Fruit Flies. 1st ed. Springer Publishing; 2014:423-456.

7. Hill MP, Bertelsmeier C, Clusella-Trullas S, Garnas J, Robertsson MP, Terblanche JS. Predicted decrease in global climate suitability masks regional complexity of invasive fruit fly species response to climate change. Biol Invasions. 2016;18(4):1105-1119. doi:10.1007/s10530-016-1078-5

8. Kendra PE, Roda AL, Montgomery WS, et al. Gas chromatography for detection of citrus infestation by fruit fly larvae (Diptera: Tephritidae). Postharvest Biol Technol. 2011;59(2):143-149. doi:10.1016/j.postharvbio.2010.09.006

9. De Villiers M, Manakhan A, Addison P, Hattingh V. The distribution, relative abundance, and seasonal phenology of Ceratitis capitata, Ceratitis rosa, and Ceratitis azara (Diptera: Tephritidae) in South Africa. Environ Entomol. 2013;42(5):831-840. doi:10.1603/EN12289

10. FAO-IAEA. Eradication of the Mediterranean fruit fly from the Dominican Republic using nuclear technology. accessed July 31, 2020. http://www.fao.org/3/ca0148en/CA0148EN.pdf

11. Kim K-H, Kabir E, Jahan SA. Exposure to pesticides and the associated human health effects. Sci Total Environ. 2017;575:525-535. doi:10.1016/j.scitotenv.2016.09.009

12. Sternberg ED, Thomas MB. Insights from agriculture for the management of insecticide resistance in disease vectors. Evol Appl. 2018;11(4):404-414. doi:10.1111/eva.12501

13. Wedge DE, Tabanca N, Sampson BJ, et al. Antifungal and insecticidal activity of two Juniperus essential oils. Nat Prod Commun. 2009;4(1):1934578X0900400-127. doi:10.1177/1934578X0900400127

14. Carroll JF, Tabanca N, Kramer M, et al. Essential oils of Cupressus funebris, Juniperus communis, and J. chinenis (Cupressaceae) as repellents against ticks (Acar: Ixodidae) and mosquitoes (Diptera: Culicidae) and as toxicants against mosquito larvae. I Vector Ecol. 2011;36(2):258-268. doi:10.1111/j.1948-7134.2011.00166.x

15. Sakhanokho HF, Sampson BJ, Tabanca N, et al. Chemical composition, antiposition, antifungal and insecticidal activities of Hedychium essential oils. Molecules. 2013;18(4):4308-4327. doi:10.3390/molecules18044308

16. Quilici S, Atiama-Nurbe T, Breuvart T. Plant odors as fruit fly attractants. In: Shelly T, Epsky ND, Jang EB, Reyes-Flores J, Vargas R, eds. Trapping and the Detection, Control, and Regulation of Tephritid Fruit Flies. 1st ed. Springer Publishing; 2014:119-144.

17. Stappen I, Wanner J, Tabanca N, et al. Chemical composition and biological activity of essential oils of Dracaena clamoclitum and Hyssopus officinalis from Western Himalaya. Nat Prod Commun. 2015;10(1):1934578X1501000-19345781501138. doi:10.1177/1934578X1501000131

18. Stappen I, Tabanca N, Ali A, et al. Chemical composition and biological activity of essential oils from wild growing aromatic plant species of Skimmia laureola and Juniperus macropoda from Western Himalaya. Nat Prod Commun. 2015;10(6):1934578X1501000-19345781501074. doi:10.1177/1934578X1501000669

19. Tabanca N, Bernier UR, Agramonte NM, Tsikolia M, Bloomquist JR. Discovery of repellents from natural products. Curr Org Chem. 2016;20(25):2690-2702. doi:10.2174/1385272820666160421151503

20. Tabanca N, Nalbantsoy A, Bernier UR, et al. Essential oil composition of Pomipinella cypria and its insecticidal, cytotoxic, and antimicrobial activity. Nat Prod Commun. 2016;11(10):1934578X160101-193457816015034. doi:10.1177/1934578X1601010274

21. Niogret J, Gill MA, Espinoza HR, Kendra PE, Epsky ND. Attraction and electroantennogram responses of male Mediterranean fruit fly (Diptera: Tephritidae) to six plant essential oils. J Entomol Zool Stud. 2017;5:958-964.

22. Beck JJ, Torto B, Vannette RL. Eavesdropping on plant-insect-microbe chemical communications in agricultural ecology: a virtual issue on semiochemicals. J Agric Food Chem. 2017;65(25):5101-5103. doi:10.1021/acs.jafc.7b02741

23. Stappen I, Tabanca N, Ali A, et al. Antifungal and repellent activities of the essential oils from three aromatic herbs from Western Himalaya. Open Chem. 2018;16(1):306-316. doi:10.1515/chem-2018-0028

24. Niogret J, Epsky ND. Attraction of Ceratitis capitata (Diptera: Tephritidae) sterile males to essential oils: the importance of linalool. Environ Entomol. 2018;47(5):1287-1292. doi:10.1093/ee/vny096

25. Tabanca N, Niogret J, Kendra PE, Epsky ND. TLC-based bioassay to isolate kairomones from tea tree essential oil that attract male Mediterranean fruit flies, Ceratitis capitata (Wiedemann). Bioresources. 2020;10(5):683. doi:10.3390/biom10050683

26. Blythe EK, Tabanca N, Demirci B, Kendra PE. Chemical composition of essential oil from Tetrudenia riparia and its attractiveness to Mediterranean fruit fly, Ceratitis capitata. Nat Prod Commun. 2020;15(9):1-6. doi:10.1177/1934578X20935955

27. Tabanca N, Nalbantsoy A, Kendra PE, Demirci F, Demirci B. Chemical characterization and biological activity of the mastic gum essential oils of Pistacia lentiscus var. chia from Turkey. Molecules. 2020;25(9):2136. doi:10.3390/molecules25092136

28. Abad MJ, Bermejo P, Villar A. An approach to the genus Tanacetum L. (Compositae): phytochemical and pharmacological review. Phytother Res. 1995;9(2):79-92. doi:10.1002/trr.2650090202

29. Kumar V, Tyagi D. Chemical composition and biological activities of essential oils of genus Tanacetum – a review. J Pharm Anal Phytochem. 2013;2(3):159-163.

30. Haider SZ, Mohan M, Pandey AK, Singh P. Use of Tanacetum tomentosum and T. dolichophyllum essential oils as botanical repellents and insecticidal agents against storage pest Tribolium castaneum (Coleoptera: Tenebrionidae). Entomol Res. 2017;47(5):318-327. doi:10.11171/1748-5967.12228

Stappen et al.
31. Haider SZ, Mohan M, Pandey AK, Singh P. Repellent and fumigant activities of *Tanacetum vulgare* Wall. ex DC essential oils against *Tribolium castaneum* (Herbst) (Coleoptera: Tenebrionidae). *J Okt Sci.* 2015;64(8):895-903. doi:10.5650/joscss15094

32. Pålsson K, Jaenson TGT, Backström P, Borg-Karlsson A-K. Tick repellent substances in the essential oil of *Tanacetum vulgare*. *J Med Entomol.* 2008;45(1):88-93. doi:10.1093/jmedent/45.1.88

33. Ali A, Tabanca N, Kurkcuoglu M, et al. Chemical composition, larvicidal, and biting deterrent activity of essential oils of two subspecies of *Tanacetum argenteum* (Asteraceae: Asteraeae) and individual constituents against *Aedes aegypti* (Diptera: Culicidae). *J Med Entomol.* 2014;51(4):824-830. doi:10.1603/ME13249

34. Zaim A, Benjelloun M, El Harchli EH, et al. Chemical composition, acridicial properties of the Moroccan *Tanacetum annuum* L. essential oils. *Res Invent: Int J Engineer Sci.* 2015;5:13-19.

35. Greche H, Hajjaji N, Ismaïli-Alaoui M, Mrabet N, Benjilali B. Chemical composition and antifungal properties of the essential oil of *Tanacetum annuum*. *Journal of Essential Oil Research.* 2000;12(1):122-124. doi:10.1080/10412905.2000.9712058

36. El Haddar S, Greche H, Bakri Y, Benjouad A. Chemical composition and anti-proliferative properties of the essential oil of *Tanacetum annuum* L. *Moroccan J Biol.* 2008;4:17-23.

37. Dragland S, Rohloff J, Mordal R, Iversen T-H, Thor-Henning I. Harvest regimen optimization and essential oil production in five tansy (*Tanacetum vulgare* L.) genotypes under a northern climate. *J Agric Food Chem.* 2005;53(12):4946-4953. doi:10.1021/jf047817m

38. Kesikatalo MK. Application of protoplast fusion technology to tansy (*Tanacetum vulgare* L.): biodiversity as a source to enhance biological activity of secondary compounds. *J Herbs Spices Med Plants.* 2002;9(2-3):197-203. doi:10.1300/j044v09n02_28

39. Yusufoglu HS, Tabanca N, Bernier UR, et al. Mosquito and tick repellency of two *Anthemis* essential oils from Saudi Arabia. *Saudi Pharm J.* 2018;26(6):860-864. doi:10.1016/j.jsps.2018.03.012

40. Blythe EK, Tabanca N, Demirci B, et al. Composition of the essential oil of Pink Chablis™ bluebeard (*Caryopteris × clandonensis* ‘Durio’) and its biological activity against the yellow fever mosquito *Aedes aegypti*. *Nat Volatiles & Essent Oils*. 2015;2(1):11-21.

41. Tabanca N, Wedge DE, Li X-C, et al. Biological evaluation, overpressured layer chromatography separation, and isolation of a new acetylenic derivative compound from *Prangos platychlaena* ssp. *platychlaena* fruit essential oils. *JPC.* 2018;31(1):61-71. doi:10.1556/1006.2018.31.1.8

42. Jang EB, Light DM, Flath RA, Nagata JT, Mon TR. Electroantennogram responses of the Mediterranean fruit fly, *Ceratitis capitata* to identified volatile constituents from calling males. *Entomol Exp Appl.* 1989;50(1):7-19. doi:10.1111/j.1570-7458.1989.tb02307.x

43. Light DM, Jang EB, Flath RA. Electroantennogram responses of the Mediterranean fruit fly, *Ceratitis capitata*, to the volatile constituents of nectarines. *Entomol Exp Appl.* 1992;63(1):13-26. doi:10.1111/j.1570-7458.1992.tb02415.x

44. Kendra PE, Owens D, Montgomery WS, et al. α-Copaene is an attractant, synergistic with quercivorol, for improved detection of *Euwallacea NR. fornicatus* (Coleoptera: curculionidae: Scolytinae. *PLoS One.* 2017;12(6):e0179416. doi:10.1371/journal.pone.0179416

45. Höflel M, Wanner J, Tabanca N, et al. Biological activity of *Matricaria chamomilla* essential oils of various chemotypes. *Planta Med Int Open.* 2020;7(3):c114-c121.

46. Ding M, Jinlong E, Dapeng H. Chamazulene reverses osteoarthritic inflammation through regulation of matrix metalloproteinases (MMPs) and NF-κB pathway in *in vitro* and *in vivo* models. *Biosci Biotech Biochem.* 2020;84(2):402-410.

47. Rezaie A, Mohajeri D, Zarkhah A, Nazeri M. Comparative assessment of *Matricaria chamomilla* and zinc oxide on healing of experimental skin wounds on rats. *Ann Biol Res.* 2012;3(1):550-560.

48. Wu Y-ni, Xu Y, Yao L. Anti-Inflammatory and anti-allergic effects of German chamomile *Matricaria chamomilla*. *J Med Entomol.* 2014;51(4):824-830. doi:10.1603/ME13249

49. The NIST 08 Mass Spectrometer database, NIST/EPA/NIH. *NIST/EP/NIH Mass Spectral Library. National Institute of Standards and Technology.* U.S. Department of Commerce; 2008.

50. NIST Mass Spectral Library. Wiley Registry of Mass Spectral Data. 8th ed.

51. Adams RP. *Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry.* 4th ed. Allured Publishing Corp; 2007.

52. König WA, Joulain D, Hochmuth DH. GC/MS library: terpenoids and related constituents of essential oils. http://www.massfinder.com

53. Van Den Dool H, Kratz PD. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. *J Chromatogr.* 1963;11:463-471. doi:10.1016/S0021-9673(01)80947-X

54. Schreck CE, Posey K, Smith D. Repellent activity of compounds submitted by Walter Reed army Institute of research Part I. Protection time and minimum effective dosage against *Aedes aegypti* mosquitoes. *Tech Bull.* 1977;1549

55. Katritzky AR, Wang Z, Slavov S, et al. Novel carboxamides as potential mosquito repellents. *J Med Entomol.* 2010;47(5):924-938. doi:10.1093/jmedent/47.5.924

56. Software S. *SigmaPlot for Windows V. 14.0.* Systat Software, Inc; 2017.