Radon induced surface contaminations in low background experiments

L. Pattavina

INFN-LNGS

luca.pattavina@lngs.infn.it

10th April 2013
OUTLINE

* Rare event physics

* DBD bolometric experiments

* Background sources in bolometric experiments

* \(^{222}\text{Rn}\) induced surface contaminations
 * Mechanisms
 * \(^{222}\text{Rn} \) “Sticking Factor” \((\Sigma_{\text{Rn}})\)

* Conclusions
Low background experiments

rare events

DBD2ν & DBD0ν
DM interactions with RM
rare α/β decays

elusive rates

\(< 10^{-2} - 10^{-4} \, \text{c/keV/kg/y}\)
\(< 10^{-3} - 10^{-4} \, \text{c/kg/d}\)
\(< 10^{-2} - 10^{-xx} \, \text{c/kg/d}\)

Low radioactive techniques are used:

* material selection
* underground installation
* (re)contamination control
* highly sensitive detectors
Sensitivity for DBD0ν

\[S_{0ν} \propto a.i. \sqrt{\frac{M \cdot t}{B \cdot ΔE}} \]

\(S_{0ν} \): half-life corresponding to the minimum number of detectable signals above background at a given C.L.

- \(i.a. \): isotopic abundance
- \(M \): detector mass
- \(t \): measuring time
- \(B \): background
- \(ΔE \): energy resolution

Q_value: 2995 keV
Material: ZnSe
Enriched a.i.: 95%
Source Mass: 15 kg of Se-82
Projected Bkg: \(~10^{-3}\) c/keV/kg/y
Resolution: \(~10\) keV @ROI
Sensitivity \(T_{1/2} \): \(~10^{26}\) y in 5 y

Q_value: 2528 keV
Material: TeO₂
Natural a.i.: 34%
Source Mass: 206 kg of Te-130
Projected Bkg: \(~0.01\) c/keV/kg/y
Resolution: \(~5\) keV @ROI
Sensitivity \(T_{1/2} \): \(~10^{26}\) y in 5 y

F. Alessandria et al., arXiv:1109.0494
Surface background issue

Cuoricino: • first large array (62 bolometers = ~41 kg) for DBD
• high statistics (exposure: 19.75 kg(Te$_{130}$) x y)
• energy resolution @ DBD0ν: 6.3±2.5 keV

Cuoricino:

- background @ DBD0ν (2.5 MeV): 0.17 c/keV/kg/y

External high energy γ (232Th) 35%

Degraded α struggling from TeO$_2$ and Cu surface contaminations (232Th & 238U) 65%

CUORICINO final energy spectrum
α decays (210Po $Q=5.4$ MeV) may occur on surfaces of Cu structure or on the detectors.

N.B. bolometers are fully-active detectors

$E_{\text{tot}} = E_\alpha + E_{\text{recoil}}$

1-2-4 may induce a bkg in the "high energy region"

3-4-5 in the "low energy" region

M. Clemenza, C. Maiano, L. Pattavina, E. Previtali, Eur. Phys. J. C 71, 1805 (2011)
Radon induced contaminations

210Po is the most intense source of surface contaminations in DBD bolometric experiments (and not only).

238U $\tau = 4.5 \times 10^9$ y

Radon decay chain

- 222Rn $\tau = 3.8$ d
 - α 5.5 MeV - 100%
- 218Po $\tau = 3$ m
 - α 6 MeV - 100%
- 214Pb $\tau = 27$ m
 - β 1 MeV - 100%
- 214Bi $\tau = 20$ m
 - β 3.3 MeV - 99%
- 214Po $\tau = 0.16$ ms
 - α 7.7 MeV - 100%

- 210Pb $\tau = 22.3$ y
 - β 16 keV; 63 keV
- 210Bi $\tau = 5.01$ d
 - β 1.17 MeV - 99%
- 210Po $\tau = 138.4$ d
 - α 5.3 MeV - 100%
 - γ 803 keV - 0.001%
- 206Pb τ = stable
Why 222Rn?

Radon is the most intense air-borne contaminant

210Pb and 210Po are 222Rn daughters and background sources

Is 222Rn the primary source of surface background?

* Storage of material in non-ultra-pure containers
* Handling in non-controlled environment
* Not appropriate surface cleaning

*

222Rn can induce a re/contamination of 210Pb and 210Po?

- Exposing an radio-pure material to 222Rn will contaminate the sample?
We expressly expose different radio-pure materials to an atmosphere rich in ^{222}Rn. We analyze the surface contaminations of the samples due to the exposure.

* We evaluate the probability that a nucleus of ^{222}Rn (or daughters) can stick on the surface of the sample (^{222}Rn Sticking Factor).

* We analyze the mechanisms/dynamics that lead to sample recontaminations.

Box with hermetic enclosures

Samples and ^{238}U sources

Surface barrier detector

M. Clemenza, C. Maiano, L. Pattavina, E. Previtali, Eur. Phys. J. C 71, 1805 (2011)
Samples exposure

MATERIAL	Exposure [days]
Copper	1076
PTFE	1140
Si	1080
TeO₂	1183
ZnSe	xxxx

\[\text{\^{222}Rn} \text{ concentration inside the Rn-box} \]

\[@ \text{saturation} \quad \sim 320 \text{ kBq/m}^3 \]

* Po isotopes stick to the surfaces
* \(^{214}\text{Po}\) and \(^{210}\text{Po}\) peak+tail
* Tails extend to low energy

After the exposure we measure the sample
210Po contaminant & ΣRn

170h measurement acquired after \(\tau(222\text{Rn}) > t >> \tau(218\text{Po}, 214\text{Po}) \)

* No evidence of 222Rn contamination
* 210Po contamination produces a continuum
* 210Po activity is proportional to exposure time (for the same materials)
* 210Po increases with time

Sticking Factor (Σ) for a nucleus that interacts with a surface (S) is defined as:
The ratio between the number of nuclei that stick on a surface \(A_{210\text{Pb}}^0 \cdot \tau_{210\text{Pb}} \) and the total number of nuclei that are close enough to the surface to stick \(\Gamma \sim \text{Rn concentration} \).

\[
\Sigma_{\text{Rn}} = \frac{A_{210\text{Pb}}^0 \cdot \tau_{210\text{Pb}}}{\Gamma \cdot S \cdot t_{\text{exp}}}
\]

MATERIAL	Σ_{Rn}
Copper	\((1.86\pm0.10) \cdot 10^{-9} \)
PTFE	\((3.06\pm0.22) \cdot 10^{-10} \)
Si	\((3.97\pm0.54) \cdot 10^{-10} \)
TeO2	\((3.75\pm0.21) \cdot 10^{-10} \)
ZnSe	measurement on going

N.B. We refer to 210Pb activity because we assume that after a long period of time \((t \gg \tau_{1/2\text{Rn}}) \), all the 222Rn daughters have decayed and have populated the 210Pb level.
Sticking Factor (\(\Sigma\)) for a nucleus that interacts with a surface (\(S\)) is defined as:

\[
\Sigma_{\text{Rn}} = \frac{A_{\text{Pb}}^0 \cdot \tau_{\text{Pb}}}{\Gamma \cdot S \cdot t_{\text{exp}}}
\]

the ratio between the number of nuclei that stick on a surface \(A_{\text{Pb}}^0 \cdot \tau_{\text{Pb}}\) and the total number of nuclei that are close enough to the surface to stick (\(\Gamma \sim \text{Rn concentration}\)).

\[
A_{\text{Po}} = A_{\text{Pb}}^0 \frac{\lambda_{\text{Po}}}{\lambda_{\text{Po}} - \lambda_{\text{Pb}}} (e^{-\lambda_{\text{Po}}t} - e^{-\lambda_{\text{Pb}}t})
\]

* No evidence of \(^{222}\text{Rn}\) contamination
* \(^{210}\text{Po}\) contamination produces a continuum
* \(^{210}\text{Po}\) activity is proportional to exposure time (for the same material)
* \(^{210}\text{Po}\) increases with time

MATERIAL	\(\Sigma_{\text{Rn}}\)
Copper	\((1.86\pm0.10) \cdot 10^{-9}\)
PTFE	\((3.06\pm0.22) \cdot 10^{-10}\)
Si	\((3.97\pm0.54) \cdot 10^{-10}\)
TeO2	\((3.75\pm0.21) \cdot 10^{-10}\)
ZnSe	Measurement on going

N.B. We refer to \(^{210}\text{Pb}\) activity because we assume that after a long period of time (\(t \gg T_{1/2\text{Rn}}\)), all the \(^{222}\text{Rn}\) daughters have decayed and have populated the \(^{210}\text{Pb}\) level.
210Pb production

210Po contamination is driven by 210Pb contamination
\Rightarrow 210Po activity does not decrease with time

210Pb on the surface can be produced by:

* direct 210Pb surface sticking (prompt)

* 218Po & 214Po isotopes sticking (delayed)

210Pb evaluated from 210Po contamination.
“prompt” (t ~ h) and “delayed” (t ~ 1.5 y).

In Clean Room design Po isotopes contamination must be kept under control.

210Po production mechanism

$A^0 (^{210}\text{Pb})_{\text{delay}} / A^0 (^{210}\text{Pb})_{\text{prompt}} = \sim 6$

~85% of 210Pb contamination is generated by Rn fast daughter decays (218Po and 214Po)
Conclusions

- Surface contaminations are a serious limitation for low background experiments

- Rn exposure of ultra-pure samples induce re-contaminations

- ^{210}Pb (and especially Po isotopes) contaminations must be took under strict controls

- We have evaluated the sticking probability of ^{222}Rn, long-term exposure are dangerous
However the events that are in the tail are a small fraction of the overall activity (about 15%), assuming the continuum contribution negligible. We compare the plots in Fig. 4.19, which show the differential activity measurements (that are just the difference of two acquired spectra of the same sample), for each polonium nuclide for a copper and a tellurium dioxide sample: we see that the trends for the activities (dots) of 218Po (plots e and f) and 214Po (plots c and d) have the same shape, and are in agreement with the simulations (continuum lines). The simulations concern the time evolution of the contaminant activities once they are taken away from the main sources (222Rn). In fact the 218Po activity decreases with a proper decay constant (T_{218}Po = 3.1 min) while the 214Po activity after an initial increase falls with a decay constant given by equation 3.23, which is in complete agreement with the result presented in Fig. 3.10. If we look at plots a and b, which describe 210Po activity, we see that the experimental data are not in agreement with the simulations, the reason for this behavior is due to the fact that the time needed for the lower part of the Rn chain to reach the secular equilibrium is quite long because of the long 210Po half-life. The Polonium-210 is trying to reach the equilibrium but it needs about $4 \cdot T_{210}$Po to get to it, in the meanwhile the activity is increasing linearly. These plots corresponds exactly to a zoom in on the origin of the Cartesian axes of Fig. 3.9 b, it is an exponential function.

All the analyzed slabs have the same trend for the activity, but different values. The reason is probably linked to the chemical features of materials like copper and...
Analysis of the Contaminants (3)

In differential spectra ($\Delta T >> \tau_{Rn}$) there is no Rn evidences

^{210}Po is mainly implanted, it is not just ^{210}Pb deposition

$A_{\text{exp}} = 118.8 \text{ C/h}$
$A_{\text{meas}} = 100.5 \text{ C/h}$
$\sim 15\%$ peak

Copper slab “cleaned” with H_2O-ethanol-H_2O
Po210 tails

Table 4.3:

Sample	Material	Exposure time	Diffusion depth
Rame_BaseMen	Copper	63 days	430±20 nm
Rame_OFHC	Copper	56 days	410±20 nm
Rame_OFHC_brv	Copper	16 days	***
TeO2.2Mis	Tellurium Oxide	73 days	940±20 nm
TeO2.1Mis	Tellurium Oxide	49 days	500±20 nm
TeO2_brv	Tellurium Oxide	14 days	***
Teflon	PTFE	117 days	100±20 nm
Sticking factor

We suppose to have a surface (S) exposed to a high radon concentration atmosphere (n, particles per unit volume). If we wish to compute the number of radon nuclei which hit our surface per unit time and unit surface (it is just a flux), \(\Gamma \), we have to consider the number of nuclei in the volume \(v \cdot t \), where \(v \) is the particles velocity and \(t \) the unit time. If we integrate the solid angle with which all the particles in the \(v \cdot t \) see the surface \(S \):

\[
\Gamma \left[\frac{\text{hits}}{\text{cm}^2 \cdot \text{sec}} \right] = \int_0^{2\pi} \int_0^{\frac{\pi}{2}} d\theta \sin \theta \int_0^v dr r^2 \left(\frac{S \cos \theta}{4\pi r^2} \right) \frac{n}{S} = \frac{n \cdot v}{4}
\]

\[
\Gamma = 2.86 \cdot 10^6 \frac{\text{hits}}{\text{cm}^2 \cdot \text{sec}}
\]

\[
v = \sqrt{\frac{k_b T}{m}}
\]
The bolometric technique

Energy deposited in the absorber produces a measurable temperature rise.

The heat capacity of the crystal must be very small (→ low temperature ~10 mK)

Absorber
- M ~ 0.75 kg
- C ~ 10^{-9} J/K
- ΔT/ΔE ~ 100μK/MeV

Thermometer
- R = R_0 \exp[(T_0/T)^{1/2}]
- R ~ 100 MΩ
- ΔR/ΔE ~ 3 MΩ/MeV

Heat-sink: Copper
Thermal conductance (G): PTFE & gold wires
Absorber: ZnSe
Thermometer: Ge-NTD

\[\Delta T = \frac{E}{C} \]