Kinetic analysis of the isoleucyl-tRNA synthetase mechanism: the next reaction cycle can start before the previous one ends

R. Kalervo Airas

Department of Biochemistry, University of Turku, Finland

Keywords
isoleucyl-tRNA synthetase; kinetics; magnesium; tRNA

Correspondence
R. K. Airas, Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland
E-mail: kalervo.airas@utu.fi

(Received 7 September 2017, revised 27 November 2017, accepted 27 November 2017)

doi:10.1002/2211-5463.12362

Aminoacyl-tRNA synthetases join correct amino acids to their cognate tRNA at the start of the protein synthesis. Through the kinetic analysis, it is possible to estimate how their functional details correspond to the known structural features. Kinetic analysis of the isoleucyl-tRNA synthetase (IleRS) from *Escherichia coli* was accomplished. Sixteen different steady-state two-ligand experiments were statistically analysed simultaneously so that the same rate equations and same rate and dissociation constants applied to all experiments. The so-called rapid equilibrium segments procedure was used to derive the rate equations. The final best-fit mechanism included the normal activation and transfer steps, and reorganization of the steps between them and after the transfer step. In addition, the analysis strongly suggested an additional activation step, formation of a new isoleucyl-AMP before the isoleucyl-tRNA was freed from the enzyme. The removal of Ile-tRNA was possible without the formation of Ile-AMP if both isoleucine and ATP were bound to the E-Ile-tRNA complex, but this route covered only 11% of the total formation of Ile-tRNA. In addition to the Mg$^{2+}$ in MgATP or MgPP$_i$, only two tRNA-bound Mg$^{2+}$ were required to explain the magnesium dependence in the best-fit mechanism. The first Mg$^{2+}$ could be present in all steps before the second activation and was obligatory in the first reorganizing step and transfer step. The second Mg$^{2+}$ was present only at the transfer step, whereas elsewhere it prevented the reaction, including the activation reactions. Chloride inhibited the IleRS reaction, while 100 mM KCl caused 50% inhibition if the ionic strength was kept constant with K-acetate. The K_{MPP} (tRNA) value was increased from 0.057 to 1.37 μM when the KCl concentration was increased from 0 to 200 mM. The total rate equation helps to understand the reaction route and how the simultaneous presence of Ile-tRNA and Ile-AMP can cause new possibilities to proofreading mechanisms of this enzyme.

Enzyme
Isoleucyl-tRNA synthetase (EC 6.1.1.5)

The basic mechanism of the aminoacyl-tRNA synthetases includes the formation of aminoacyl-AMP in the activation reaction and thereafter the transfer of the amino acid from aa-AMP to tRNA in the transfer reaction. The basic mechanism was elucidated quite early after the discovery of the aminoacyl-tRNA synthetases [reviews see Refs 1,2]. Thereafter, new details of the reaction have been the subject of continuous

Abbreviations
aa, aminoacyl; ArgRS, arginyl-tRNA synthetase; IleRS, isoleucyl-tRNA synthetase.
study, including the detailed crystal structure [3]. Much attention has been paid to the editing mechanisms, which eliminate the erroneously formed products, pretransfer proofreading at the aa-AMP level and post-transfer proofreading at the aa-tRNA level [4,5]. The aminoacyl-tRNA synthetases have been divided into two classes according to structural and functional properties [6,7]. Isoleucyl-tRNA synthetase (IleRS) falls into Class Ia together with other synthetases for the branched chain amino acids.

A decade ago, I published a best-fit analysis of the arginyl-tRNA synthetase (ArgRS) reaction [8] where numerous two-ligand experiments were simultaneously analysed. In this study, the same approach is repeated with the IleRS from *Escherichia coli*. Both IleRS and ArgRS belong to the Class I aminoacyl-tRNA synthetases and have close structural similarities [9].

In some previous works, I have applied the ‘rapid equilibrium segments’ procedure to derive rate equations for aminoacyl-tRNA synthetases [10,11]. These analyses included the dependences of the magnesium and polyamine concentrations and the dissociation of Mg^{2+} from Ile-tRNA before it is freed from the enzyme [10], the differences in the magnesium dependences between the Class I and Class II aminoacyl-tRNA synthetases [11], and chloride inhibition [12]. Due to limited experimental material, those studies did not lead to equations that could be satisfactorily used for new different experiments. In this study, the procedure has been improved by simultaneously analysing 16 different two-ligand experiments and, in addition, avoiding the inhibiting chloride and sulphate in adjusting the Mg^{2+} concentration. The optimal statistical result required a step at the end of the reaction cycle where Ile-AMP for the next cycle was formed before the Ile-tRNA is totally removed from the enzyme. This revives the old reaction cycle suggested by Yarus and Berg [13]. Apparently, the reaction site is opened when the CCA-Ile end of tRNA is turned to a separate editing site for the post-transfer proofreading [3]. So the formation of a new Ile-AMP could be possible on the reaction site before the Ile-tRNA is totally removed from the enzyme. This, also, increases the number of the enzyme intermediates, which could be involved in the pretransfer proofreading.

Experimental procedures

Materials

Isoleucyl-tRNA synthetase was purified from *E. coli* B as described previously [14]. Unfractionated tRNA from *E. coli* MRE 600 (Boehringer) was used.

Enzyme assays

The rate of the aminoacylation of tRNA was assayed with the filter paper–acid precipitation method [15] with modifications. The reaction mixture (100 μL) contained 50 mM Hepes/25 mM KOH (pH 7.4 at 30 °C), 0.02% chicken egg albumin, 1 mg·mL^{-1} of tRNA (1.1 μM tRNA_{Ile}), 2 mM ATP, 5 μM nonradioactive Ile, about 60 000 cpm of [14C]Ile (0.9 μM), 3 mM Mg-(acetate)$_2$ (1 mM excess Mg$^{2+}$), 50 mM K-acetate, 1 mM dithiothreitol and the enzyme. The reaction temperature was 30 °C. 180 μM Mg$^{2+}$ was carried to the reaction mixture by tRNA, and was taken into account in the calculations. The reaction was stopped by pipetting a sample (40 μL) onto Whatman 3MM paper placed close to the surface of 50% formic acid, which reduces the pH below 4 in 4 seconds. The paper pieces were washed three times with a solution containing 0.2 M HCl and 5% acetic acid and finally once with ethanol. The paper pieces were counted for radioactivity of the formed aminoacyl-tRNA. The initial rates were calculated using the integrated Michaelis equation containing the product inhibition [16] to avoid the slight curvature in the rate curves caused by the formed Ile-tRNA.

The ATP-PP$_i$ exchange activities were measured in a similar reaction mixture to the aminoacylation, but 32PP$_i$ (50 000–300 000 cpm, 0.05–1 μM) was substituted for the radioactive amino acid and 50 μM nonradioactive PP$_i$ was added. The Ile concentration was 50 μM. The product radioactive ATP was separated from the radioactive PP$_i$ by paper chromatography as described previously [14].

Equations and best-fit analysis

The equations were derived as described previously [8,10]. The following steps were included:

1. The total reaction scheme was divided into 4–6 segments, depending on the mechanism to be tested. The enzyme intermediates within a segment should be in equilibrium with each other. The C and D terms were defined to express the total enzyme intermediate concentrations in the segment (D_i*[E_i]) and the rates between the segments (C_i*[E_i]).

2. The steady-state rate equations were derived for the ATP-PP$_i$ exchange reaction and the aminoacylation of tRNA using the C and D terms. The segments were handled like the enzyme intermediates in the normal derivation of rate equations.

3. In the rate equation algorithm, the C and D terms were expressed using the real rate and equilibrium constants and ligand concentrations.

4. The algorithm and the rate equations (from step 2) were used to obtain the calculated rate values. These calculated rate values and the measured rate values were used in the best-fit analysis.
The best-fit analysis was performed using the nonlinear regression with the least squares of the residuals between the measured rate and calculated rate values. The kinetic constants were refined by successive iterations. The variances and standard errors were calculated as described [8]. The sum of the variances of the different experiments was minimized. The minimization was performed by systematically changing (in 5%, 1% or 0.2% steps) the value of a kinetic constant in the rate equation algorithm, choosing the value giving the lowest sum of variances and doing the same with all (39) constants one by one. As the values of the kinetic constants are not independent of each other, the procedure is repeated so many times that the sum of the variances and the values of the constants do not change. The order of the constants in the row should be varied, too.

Results

Measurements

The kinetic measurements for the statistical analysis are presented in Figs 1 and 2. They all are two-ligand steady-state experiments where either the ATP-PP$_i$ exchange or the aminoacylation of tRNA is measured. The experiments were chosen to cover the different parts of the total reaction. For instance, the changes in the ATP and isoleucine concentrations (in segment 1) or PP$_i$ concentrations (segment 2) or AMP concentrations (segment 3) describe mainly the events close to the segments where these ligands are bound. In the aminoacylation reactions (Fig. 2), the products PP$_i$ and AMP inhibit, but in the ATP-PP$_i$ exchange reaction PP$_i$ works like

![Fig. 1. ATP-PP$_i$ exchange rates at different conditions.](image_url)
Fig. 2. Aminoacylation of tRNA at different conditions. Equation (1) was used in the calculations of the lines. The total Mg$^{2+}$ ion concentrations were in (A) [MgATP] + 4 mM; (B) as shown; (C) [MgPP$_i$] + 4 mM; (D) [MgATP] + 8 mM; (E) [MgATP] + 2 mM; (F) [MgATP] + 1 mM; (G) 4 mM; (H) [Mg-acetate] + 1 mM; (I) [MgATP] + [Mg-acetate]. The standard errors were in (A) 5.0%; (B) 9.8%; (C) 5.3%; (D) 6.7%; (E) 5.1%; (F) 3.7%; (G) 3.7%; (H) 6.9%; and (I) 6.1%.
substrate. The simultaneous analysis of all experiments requires that they have been performed under similar conditions. The potassium concentration used here was 75 mM, which resulted from 50 mM K-acetate and the buffer. Chloride and sulfate were avoided due to their inhibiting effect. Their concentrations are low in E. coli cells [17,18]. Mg-acetate was used instead of MgCl2 or MgSO4 to adjust the magnesium concentration. The substrate concentration dependences were plotted as Hanes plots (s/v vs. s) and the inhibition dependences as Dixon plots (1/v vs. 1/s). Due to the complexity of the reaction, the Hanes and Dixon plots are seldom straight lines and the v vs. [Mg2+] plots are not hyperbolas.

In Fig. 3, the relation between the ATP-PPi exchange and aminoacylation rates, vexch/vacyl, was determined, and these results were used in the statistical analysis. This relation gives a simple expression if the second activation reaction does not exist [8], but the second activation makes the relation more complicated.

Best-fit model

In the best-fit analysis, the sum of the squares of the residuals between the measured rate and calculated rate values was used to calculate the error percentages for all two-ligand experiments in Figs 1–3. The sum of the error percentages was minimized. The scheme of the best-fit model of the reaction is given in Fig. 4. The reaction is divided into six segments according to the procedure of the ‘rapid equilibrium segments’ [19]. The reaction scheme follows mainly the known reaction mechanism [1–5] until segment 4, including the activation and transfer reactions and the binding modes of the substrates. The role of the separate post-transfer editing site, which as well is a known structure [3,5], becomes evident in segments 5–6. It gives the possibility for the CCA-Ile end of tRNA and for Ile-AMP to be bound to different sites. Although there seems not to be any discrepancy between this structure and the present kinetic model, the kinetic details remain to be adjusted.

The total rate is slow (kcat = 0.7 s−1) allowing the equilibrium to be settled in the different segments. The reaction can run either through segment 5 → segment 1 or through segment 5 → segment 6 → segment 2. The rate equation is an algorithm which is shown in the scheme shown in Fig. 4. The rate of the aminoacylation of tRNA is shown in Eqn 1. The rate of the ATP-PPi exchange in the presence of tRNA and in the absence of tRNA is in Eqn 2 and in Eqn 3, respectively. The values of the kinetic constants in the best-fit system are in Table 1. If a ligand exists similarly in a segment and the reactions from and to the segment, the terms containing the ligand need not to be written in the equations. Therefore, tRNA has not been written in D3 and Ile-tRNA is not in D4, D5 or D6. If all rate constants are multiplied by the same number, the error percentages and thus the whole best-fit system remain the same, and the dissociation constants remain unchanged. The level of the rate constants is chosen to give the kcat value measured at optimal conditions, 0.7 s−1. To find the main route of the product dissociation, the removal of the product Ile-tRNA from the enzyme complex is divided into seven different rate constants kES, depending on the enzyme intermediate from which the product is removed.

Rate equation algorithm

In the algorithm, ATPf means ATP without Mg, and tRNAf is tRNA without Mg.

\[[tRNAf] = [tRNA_{tot}]/(1 + ([Mg^{2+}] / K_{MR})*([Mg^{2+}] / K_{MR2})) \]

\[[MgtRNA] = [tRNA] * ([Mg^{2+}] / K_{MR}) \]

\[[MgtRNA] = [tRNA] * ([Mg^{2+}] / K_{MR}) * ([Mg^{2+}] / K_{MR2}) \]

\[C_{12} = k_{s2}/([tRNAf] / K_{S1} + [MgtRNA] / K_{S1}) * ([Ile] / K_{s2} * [MgATP] / K_{IM}) \]

\[C_{21} = k_{s3}/([tRNAf] / K_{S2} + [MgtRNA] / K_{S2}) * ([MgPPi] / K_{IM}) \]

![Fig. 3. Relation of the rates of ATP-PPi exchange and aminoacylation of tRNA. The lines were calculated using equations (1) and (2) and the optimized constant values. The exchange and aminoacylation rates were measured at identical conditions, only the radioisotope was changed. ATP was 2 mM, Ile 10 μM and total Mg2+ 4 mM + [MgPPi]. The standard error was 7.0%.]
Fig. 4. Division of the isoleucyl-tRNA synthetase reaction in six segments. The central enzyme intermediate and the ligands, which are bound to it in each segment, are indicated. The sum of the enzyme intermediate concentration in the segment \(i \) is \(C_i^*[E] \), where \(E \) is the central intermediate. The rate from segment \(i \) to segment \(j \) is \(C_i^*[E] \). The expressions of the \(D_i \) and \(C_i \) terms are written in the rate equation algorithm.

\[
\begin{align*}
C_{23} &= k_{64}*[\text{MgtRNA}]/K_{52}^*(1 + [\text{MgPPi}]/K_{4M}) \\
C_{32} &= k_{64}*(1 + [\text{MgPPi}]/K_{4M}) \\
C_{34} &= k_{6}*[\text{Mg}^2+] / K_{\text{ME3}} \\
C_{43} &= k_{6}*[\text{AMP}]/K_{74}^*([\text{Mg}^2+] / K_{\text{ME42}})*([\text{Mg}^2+] / K_{\text{ME42}}) \\
C_{45} &= k_{6}*(1 + [\text{Mg}^2+] / K_{\text{ME44}}) \\
C_{54} &= k_{6}*(1 + [\text{Mg}^2+] / K_{\text{ME5}}) \\
C_{65} &= k_{35}*[\text{Ile}]/K_{25}^*([\text{MgATP}]/K_{\text{AM}}) \\
C_{65} &= k_{35}*[\text{MgPPi}]/K_{1M6} \\
C_{51} &= k_{8}*(1 + [\text{MgATP}]/K_{\text{AM}} + [\text{Ile}]/K_{25}^* + k_{8}\text{SSA} \\
&*[([\text{Ile}]/K_{25}^* + ([\text{MgATP}]/K_{\text{AM}}) + k_{8}\text{SSA}) \\
&*[([\text{Mg}^2+] / K_{\text{ME5}})*([\text{Mg}^2+] / K_{\text{ME5}})] \\
C_{62} &= k_{6}^*[\text{MgPPi}]/K_{1M6} \\
D_1 &= ([\text{Mg}_{2}\text{tRNA}]/K_{5M1} + (1 + [\text{trNA}]/K_{5F1}) \\
&*[([\text{Mg}_{2}\text{tRNA}]/K_{5M1}) + (1 + ([\text{Ile}]/K_{25}^*)) \\
&*[1 + [\text{MgATP}]/K_{1M} + [\text{ATP}]/K_{1} + [\text{AMP}]/K_{21}) \\
D_2 &= (1 + [\text{MgPPi}]/K_{4M} + [PPi]/K_{4} + [\text{ATP}]/K_{A2}) \\
&*[1 + [\text{trNA}]/K_{5F2} + ([\text{Mg}_{2}\text{tRNA}]/K_{4M}) \\
D_3 &= (1 + [\text{Mg}^2+] / K_{\text{ME3}} + [\text{MgPPi}]/K_{4M}) \\
D_4 &= (1 + [\text{AMP}]/K_{73}^*([1 + [\text{Mg}^2+] / K_{\text{ME42}}] \\
&*[([\text{Mg}^2+] / K_{\text{ME42}})] \\
D_5 &= (1 + [\text{Ile}]/K_{25}^*([\text{Mg}^2+] / K_{\text{ME5}}) \\
&*[1 + [\text{MgATP}]/K_{\text{AM}}) \\
D_6 &= (1 + [\text{MgPPi}]/K_{1M6}) \\
\end{align*}
\]

\[
\begin{align*}
\text{PAR}5 &= C_{65}/C_{56} + C_{62}/C_{56} \\
\text{PAR}4 &= (C_{54}/C_{45} + C_{51}/C_{45})*\text{PAR}5 + C_{62}/C_{45} \\
\text{PAR}3 &= C_{43}/C_{34}^*\text{PAR}4 + C_{51}/C_{45}^*\text{PAR}5 \\
&+ C_{62}/C_{45} \\
\text{PAR}2 &= C_{32}/C_{23}^*\text{PAR}3 + C_{51}/C_{23}^*\text{PAR}5 \\
&+ C_{62}/C_{23} \\
\text{PAR}1 &= C_{21}/C_{12}^*\text{PAR}2 + C_{51}/C_{12}^*\text{PAR}5 \\
\text{DENOM} &= D_1^*\text{PAR}1 + D_2^*\text{PAR}2 + D_3^*\text{PAR}3 \\
&+ D_4^*\text{PAR}4 + D_5^*\text{PAR}5 + D_6 \\
\text{\(v_{\text{acyl}}\)} &= (C_{51} * \text{PAR}5 + C_{62}) / \text{DENOM} \tag{1} \\
\text{\(v_{\text{exch}}\)} &= (C_{21} * \text{PAR}2 + C_{65}) / \text{DENOM} \tag{2} \\
\text{\(v_{\text{exch}}\)} &= C_{21} / (D_1 * C_{21} / C_{12} + D_2) \tag{3}
\end{align*}
\]

Description of the details of the reaction in different segments

Segment 1: The substrates isoleucine, MgATP and MgtRNA are written in \(D_1 \) to be bound in random order. MgtRNA is bound but does not stay bound further in \(C_{12} \) and thus inhibits. Free ATP and AMP compete with MgATP. The binding of the free tRNA (without \(\text{Mg}^2\)) is weak. The reaction \(C_{12} \) runs both in the presence and in the absence of MgtRNA.

Segment 2: In the best-fit system, PPi and tRNA can be bound simultaneously, or they do not compete.
Segment 3: One Mg$^{2+}$ ion is coming to segment 3 in MgtRNA. Another Mg$^{2+}$ ion is bound to the complex at this segment. The next step, the transfer reaction, requires two bound Mg$^{2+}$ ions. MgPP$_i$ is not necessary in this segment but it does not inhibit either. In the next C_{34} reaction, MgPP$_i$ is not present.

Segment 4: AMP and one Mg$^{2+}$ ion must dissociate from the E-Ile-tRNA complex in segment 4. The other Mg$^{2+}$ ion can also dissociate, but can as well be present in the further C_{45} reaction.

Segment 5: The best-fit mechanism requires strong binding of Mg$^{2+}$ in segment 5. This can be the same Mg$^{2+}$ ion as before in C_{45}, but the binding is about 13 times stronger. The Mg$^{2+}$ ion in segment 5 competes with isoleucine (not necessarily for the same binding site), and the presence of Mg$^{2+}$ almost totally prevents the further reactions C_{51} and C_{56}. The further reactions require that both isoleucine and ATP are bound. That is, naturally, obligatory on the route segment 5 \rightarrow segment 6 \rightarrow segment 2, but even on the route segment 5 \rightarrow segment 1 as much as 93% of the reaction goes through the intermediate Ile-tRNA-E(Ile)(ATP).

Step C_{56} is another activation reaction (like step C_{12}) for the next reaction cycle. The position of the post-transfer proofreading should be at segment 5, and therefore, the step in fact is more complicated. Apparently, the synthetic site is opened for new Ile and ATP when the CCA-Ile end of the tRNA turns to the editing site. The removal of Mg$^{2+}$ (K_{MES}) may have a role in the opening.

Segment 6: Both Ile-tRNA and Ile-AMP stay attached to the enzyme. The best-fit analysis suggests a random dissociation order of PP$_i$ and Ile-tRNA from the enzyme at step C_{52}.

The calculated amounts of the enzyme intermediates in different segments show that 84% of the enzyme is in segment 2 and 6.6% in segment 6 in the absence of PP$_i$ and AMP.

Chloride inhibition

Chloride inhibits the IleRS reaction (Fig. 5). The inhibition is prominent at about a 1 mM concentration of free Mg$^{2+}$ (i.e. 3 mM in Fig. 5A, Mg^{2+}_{16} plus MgATP = 3 mM), which is the concentration of free Mg$^{2+}$ in the cell [21–23]. High Mg$^{2+}_{16}$ concentrations (> 10 mM) almost eliminate the chloride inhibition. K-acetate inhibits weakly but K_{5}SO$_4$ is stronger than KCl (Fig. 5B). KCl and K-acetate inhibit above 50 mM concentrations when high enough K$^+$ concentration for full activity has been reached. If the K$^+$ concentration is kept constant at 200 mM, the inhibitory effect of KCl starts from low concentrations; 50 mM K-acetate was used throughout this study to keep the K$^+$ amount high enough (75 mM together with the buffer).
KCl affects the K_m (tRNA) value. The K_m values were 0.057, 0.129, 0.334, 0.657 and 1.37 mM at KCl concentrations of 0, 50, 100, 150 and 200 mM, respectively.

The best-fit analysis for chloride effects was performed using three types of experiments: the K_m (tRNA) assay, and the experiments similar to Fig. 2H and I at 50 and 150 mM KCl. 150 mM KCl caused an approximately eight times increase in the value of K_{MR2} and a twofold increase in K_{ME42}. The value of K_{52} was 0.3, 0.5 or 2.0 μm at 0, 50 and 150 mM KCl, respectively.

The chloride inhibition in IleRS is somewhat stronger than in the arginyl-tRNA synthetase [8] and tyrosyl-tRNA synthetase [12]. Essentially similar chloride inhibition was observed in the Class II synthetases for phenylalanine, serine, histidine and lysine (not shown) and seems to be a general feature of the aminoacyl-tRNA synthetases, at least in E. coli. The chloride concentration in growing E. coli is low (below 25 mM [18] or ‘virtually absent’ [17]). Chloride inhibition might make a connection between the rate of protein synthesis and the function of chloride channels and cell potentials [24,25].

Effect of spermidine

Polyamines can replace part of the Mg$^{2+}$ ions in the aminoacyl-tRNA synthetase reactions [11,26,27]. Polyamines were not included in the above experiments for the statistical analysis. Only one experiment with spermidine is presented here (Fig. 6). Analysis of spermidine was carried out using the above mechanism and the constant values from Table 1, but spermidine was set to compete with the Mg$^{2+}$ ions in the equations. Only two competition sites were important. Spermidine could replace Mg$^{2+}$ (K_{ME3}) and Mg$^{2+}$ (K_{ME42}), which are involved in the forward and backward transfer reaction. The corresponding dissociation constant values were $K_{SE3} = 470 \mu$m and $K_{SE42} = 390 \mu$m. The competition with Mg$^{2+}$ (K_{MR}) was much weaker, $K_{SR} = 2800 \mu$m. At the other binding sites, no competition was observed.
Other reaction mechanisms

The above reaction mechanism is the best found so far. If the sum of the error percentages is used as a figure of merit (FOM), it gives the lowest reading, 83.9 per cent units. Some changes can be made in segment 5 without essential weakening the FOM value. If isoleucine and Mg2+ (KME5) do not compete, the FOM is 86.6. If [Mg2+]/KME5 is removed from C54, the FOM is 86.8. In that case, Mg2+ (KME5) is not on the same binding site as Mg2+ (KME42), and the backward rate constant kBC becomes higher, about as high as k8SC. When Mg2+ (KME5) is removed from segment 5, the FOM rises to 108.

When segment 6 is removed, or the reaction runs through segment 5 → segment 1, the FOM is 90, but even then 99% of the reaction runs through the Ile-tRNA-E(ATP)(Ile) complex where both ATP and Ile are bound. If ATP is then removed from segment 5, the FOM is 228; if Ile is removed, it is 128; and if Mg2+ (KME5) is removed, it is 145.

In all the above cases, the optimization of all constants was carried out, not only the constants involved in the mentioned change.

Discussion

Reaction cycle with the formation of second aa-AMP before dissociation of the product aa-tRNA

In one of the oldest kinetic works on IleRS, Yarus and Berg [13] studied the binding of tRNA, Ile-tRNA and modified tRNAs to the enzyme, and were led to suggest a sequence where the Ile-AMP for the next reaction cycle was formed before the Ile-tRNA was freed from the enzyme complex. Eldred and Schimmel [28] also deduced the same reaction cycle. In a thorough kinetic analysis by Freist et al. [29], a similar model was one of the possible reaction cycles. Generally, however, such an early formation of Ile-AMP has not been included in the proposed reaction mechanisms.

An analogous case was found with ArgRS, which normally requires the presence of tRNA for the ATP-PP exchange, but the exchange reaction was continued after cessation of tRNA, in the presence of Arg-tRNA [8].

Although IleRS is an one-subunit enzyme and has one reaction site, it has an additional editing site for the elimination of wrong amino acids [3,5]. The CCA-Ile end of the Ile-tRNA is turned from the reaction site to the editing site. It looks as if the reaction site could be opened for a new Ile-AMP when the CCA-Ile end is on the editing site.

The present work suggests that Ile-tRNA is freed from the enzyme either without the formation of Ile-AMP in reaction C51, or after its formation in C62. The calculated rates show that 89% of the Ile-tRNA comes through the route segment 5 → segment 6 → segment 2 and only 11% through segment 5 → segment 1 (at 2 mM MgATP, 50 μM Ile and 1 mM free Mg2+). Moderate changes in the ligand concentrations do not much change this relation. Only PPi lowers the relation; at 50 μM PPi, it is 80%.

Number of participating Mg2+ ions

ATP and PPi always exist in the aminoacyl-tRNA synthetase reactions as MgATP and MgPPi, but Mg2PPi seems not to have importance in the IleRS reaction.

Generally, several Mg2+ ions are bound to tRNA [30–33] and are involved in its correct folding [34–36]. However, only few of the tRNA-bound Mg2+ ions are kinetically important [11]. Only two tRNA-bound Mg2+ ions are included in the present analysis of IleRS, and one or two Mg2+ ions are attached at the same time to the E-tRNA complex in different steps of the reaction. The equations contain six Mg2+ ions (in addition to those in MgATP or MgPPi), but some of them must have common binding sites. The terms [Mg2+]/KME5 and [Mg2+]/KME42 must refer to the same binding site as both participate only in the transfer reaction, one forward and the other backward, and in addition, spermidine can replace both of these Mg2+ ions. This binding not only promotes the transfer reaction but also prevents the other steps, including the activation reactions. According to the equation, the ion Mg2+ (KMR2) could have the same site, too, although it represents the binding to tRNA and not to the E-tRNA complex. Chloride weakens the binding of Mg2+ (KMR2) and Mg2+ (KME2).

Mg2+ (KMR) and Mg2+ (KME2) form another pair, which probably binds to a common site. They cannot be replaced by spermidine, and chloride does not weaken their binding. In the ordered binding to the free tRNA, Mg2+ (KMR) is bound first, and in the ordered dissociation in segment 4 Mg2+ (KME), it is freed last.

Whether Mg2+ (KME3) and Mg2+ (KME5) have the same binding site remains an open question. According to the equations that could be possible, the latter is, however, bound 13 times more strongly. The other possibility of having different sites can also be correct, as removing the term [Mg]/KME3 from C54 leads to only a slightly weaker result in the best-fit analysis.

In conclusion, in addition to the Mg2+ ion in MgATP or MgPPi, two or three Mg2+ ions participate
in the IleRS reaction. One of them can be present in all steps but must be present in the transfer reaction and the reorganizing step before it. The second of them is present only in the transfer reaction and prevents, for example, the activation reaction. A strongly bound Mg^{2+} ion is involved in the events after the transfer reaction.

Relation to the pretransfer proofreading

During the whole time span of studies on IleRS, understanding the discrimination of the noncognate valine has been one of the key objectives [4]. The correction mechanisms include the pretransfer proofreading, where the wrong Val-AMP is eliminated, and post-transfer proofreading, where the wrong Val-tRNAIle is eliminated. The post-transfer proofreading has been shown to occur at a separate editing site where the noncognate amino acids are hydrolysed [3].

In recent years, the pretransfer proofreading has received new attention [37–39]. Although it occurs at the aa-AMP level, it requires tRNA and is believed to be connected to the post-transfer proofreading site. In the present work, measurements of the proofreading were not taken. However, the existence of both Ile-AMP and Ile-tRNA in a ternary complex expands the number of enzyme intermediates that could be involved. If the pretransfer proofreading occurs at segment 6, before the dissociation of Ile-tRNA from the enzyme, the connection to the post-transfer editing site could be possible through Ile-tRNA.

The kinetic proofreading system has been a subject of discussion and mathematical calculations [40–42]. It requires either an increased pyrophosphorolysis rate of the wrong aa-AMP (in C_{65} and C_{21}) or dissociation of the wrong aa-AMP from the enzyme and hydrolysis thereafter. These rates can be different in the presence of Ile-tRNA in segment 6 from that in segment 2. In addition, the $\text{Mg}^{2+}(K_{M_{EE}})$ ion in the presence of Ile-tRNA can affect the rates.

Still another possibility for the pretransfer proofreading is a hydrolytic elimination of the wrong aa-AMP on the synthetic site. Even then, the presence of Ile-tRNA and the Mg^{2+} ion can have their effects.

In the cell, a major part of tRNA is as aa-tRNA [43]. A rough estimate of the strength of binding of Ile-tRNA to the enzyme can be calculated by analysing the rate curve of the aminocyclation assay by the integrated Michaelis equation [16]. This gives the result that the K_a for tRNA is about twice the value of K_p for Ile-tRNA, or Ile-tRNA is bound more strongly to the enzyme. The high amount of Ile-tRNA and its stronger binding mean that the amounts of enzyme intermediates with bound Ile-tRNA in segments 6 and 5 are higher compared to segment 2. This emphasizes segment 6 as the possible site of the pretransfer proofreading.

For the kinetic proofreading, some PPi must be present in C_{65} and C_{21}. Due to the fast pyrophosphorolysis rates (high k_3 and k_{35}), the required PPi amount is low, estimated to be below 20 μM. High PPi concentrations (0.5 mM) have repeatedly been measured in *E. coli* cells [44]. They cause such strong inhibition that, apparently, high PPi concentrations cannot be in contact with the enzyme. PPi increases the pyrophosphorolysis rates in C_{21} and C_{65} towards free Ile, and therefore, the advantage of pretransfer proofreading is lost when the corrected Ile from Ile-AMP is mixed with the original mixture of amino acids.

Concluding remarks

The key aim of the present work has been to do a best-fit analysis simultaneously on a large number of different steady-state kinetic experiments and thus improve the model of the reaction mechanism and the accuracy of the equations. Several improvements could be done, although this kind of kinetic work, naturally, cannot address the mechanism at the molecular level but only at the functional level.

The procedure of the ‘rapid equilibrium segments’ was used in the work. It can be seen that the equations in the procedure rapidly become complicated when the number of the segments increases. The rate equation algorithm contained 25 separate equations. On the other hand, the aminoacyl-tRNA synthetases are among the most complicated enzymes with three substrates, three products, activators and editing mechanisms; nonetheless, IleRS could be successfully analysed. The principal advantage of the procedure is that only a limited number of equations in the algorithm must be modified when the details of the mechanism in a given segment are tested.

Acknowledgement

The author thanks Dr David Smith for correcting the language and Dr Pekka Rappu and Dr Jarmo Käpylää for help in the figure handling.

References

1. Loftfield RB (1972) The mechanism of aminocyclation of transfer RNA. *Prog Nucleic Acid Res Mol Biol* **12**, 87–128.
2. Söll D and Schimmel PR (1974) Aminoacyl-tRNA synthetases. In *Enzymes* Vol. 10 (Boyer PD, ed.), pp. 489–538. Academic Press, New York, NY.
3 Nureki O, Vassylyev DG, Tateno M, Shimada A, Nakama T, Fukai S, Konno M, Hendrickson TL, Schimmel P and Yokoyama S (1998) Enzyme structure with two catalytic sites for double-sieve selection of substrate. Science 280, 578–582.

4 Ling J, Reynolds N and Ibba M (2009) Aminoacyl-tRNA synthesis and translational quality control. Annu Rev Microbiol 63, 61–78.

5 Silvian LF, Wang J and Steitz TA (1999) Insights into editing from an Ile-tRNA synthetase structure with tRNAIle and mupirocin. Science 285, 1074–1077.

6 Eriani G, Delarue M, Poch O, Gangloff J and Moras D (1990) Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature 347, 203–206.

7 Cramer F and Freist W (1993) Aminoacyl-tRNA synthetases: the division into two classes predicted by the chemistry of substrates and enzymes. Angew Chem Int Ed Engl 32, 190–200.

8 Airas RK (2006) Analysis of the kinetic mechanism of arginyl-tRNA synthetase. Biochim Biophys Acta 1764, 307–319.

9 Cavarelli J, Delagoutte B, Eriani G, Gangloff J and Moras D (1998) L-Arginine recognition by yeast arginyl-tRNA synthetase. EMBO J 17, 5438–5448.

10 Airas RK (1992) Analysis of the isoleucyl-tRNA synthetase reaction by total rate equations. Magnesium and spermidine in the tRNA kinetics. Eur J Biochem 210, 443–450.

11 Airas RK (1996) Differences in the magnesium dependences of the class I and class II aminoacyl-tRNA synthetases from Escherichia coli. Eur J Biochem 240, 223–231.

12 Airas RK (1999) Chloride affects the interaction between tyrosyl-tRNA synthetase and tRNA. Biochim Biophys Acta 1472, 51–61.

13 Yarus M and Berg P (1969) Recognition of tRNA by isoleucyl-tRNA synthetase. Effect of substrates on the dynamics of tRNA-enzyme interaction. J Mol Biol 42, 171–189.

14 Airas RK (1990) On the roles of magnesium and spermidine in the isoleucyl-tRNA synthetase reaction. Analysis of the reaction mechanism by total rate equations. Eur J Biochem 192, 401–409.

15 Mans RJ and Novelli GD (1961) Measurement of incorporation of radioactive amino acids into protein by a filter-paper disk method. Arch Biochem Biophys 94, 48–53.

16 Laidler KJ and Bunting PS (1973) Chemical Kinetics of Enzyme Action. Oxford University Press, Oxford, p. 170.

17 Kellenberger E (1996) Structure and function at the subcellular level. In Escherichia coli and Salmonella. Cellular and Molecular Biology, 2nd edn. (Neidhardt F. C., ed.), pp. 17–28, ASM Press, Washington.

18 Schultz SG, Wilson NL and Epstein W (1962) Cation transport in Escherichia coli. Intracellular chloride concentration. J Gen Physiol 46, 159–165.

19 Cha S (1968) A simple method for derivation of rate equations for enzyme-catalyzed reactions under the rapid equilibrium assumption or combined assumptions of equilibrium and steady state. J Biol Chem 243, 820–825.

20 Brevet A, Chen J, Leveque F, Plateau P and Blanquet S (1989) In vivo synthesis of adenylylated bis (5’nucleosidyl)tetraphosphates (Ap4A) by Escherichia coli aminoacyl-tRNA synthetases. Proc Natl Acad Sci U S A 86, 8275–8279.

21 Alatossava T, Jütte H, Kuhn A and Kellenberger E (1985) Manipulation of intracellular magnesium content in polymyxin B nonapeptide-sensitized Escherichia coli by ionophore A23187. J Bacteriol 162, 413–419.

22 Kwack H and Veech RL (1992) Citrate: its relation to free magnesium ion concentration and cellular energy. Curr Top Cell Regul 33, 185–207.

23 Romani A and Scarpa A (1992) Regulation of cell magnesium. Arch Biochem Biophys 298, 1–12.

24 Iyer R, Iversen TM, Accardi A and Miller C (2002) A biological role for prokaryotic CIC chloride channels. Nature 419, 715.

25 Martinac B, Saimi Y and Kung C (2008) Ion channels in microbes. Physiol Rev 88, 1449–1490.

26 Igarashi K, Matsuoka K and Takeda Y (1971) Aminoacyl transfer RNA formation: absence of pyrophosphate-ATP exchange in aminoacyl-tRNA formation stimulated by polyamines. Biochim Biophys Acta 254, 91–103.

27 Lövgren TNE, Pettersson A and Loftfield RB (1978) The mechanism of aminoacylation of transfer ribonucleic acid. The role of magnesium and spermine in the synthesis of isoleucyl-tRNA. J Biol Chem 253, 6702–6710.

28 Eldred EW and Schimmel PR (1972) Investigation of the transfer of amino acid from a transfer ribonucleic acid synthetase-aminoacyl adenylate complex to transfer ribonucleic acid. Biochemistry 11, 17–23.

29 Freist W, Sternbach H and Cramer F (1982) Isoleucyl-tRNA synthetase from Escherichia coli MRE 600. Different pathways of the aminoacylation reaction depending on presence of pyrophosphatase, order of substrate addition in the pyrophosphate exchange, and substrate specificity with regard to ATP analogs. Eur J Biochem 128, 315–329.

30 Lynch DC and Schimmel PR (1974) Cooperative binding of magnesium to transfer ribonucleic acid studied by a fluorescent probe. Biochemistry 13, 1841–1852.

31 Draper DE (1996) Strategies for RNA folding. Trends Biochem Sci 21, 145–149.

32 Wittberger D, Berens C, Hammann C, Westhof E and Schroeder R (2000) Evaluation of uranyl photo cleavage as a probe to monitor ion binding and flexibility in RNAs. J Mol Biol 300, 339–352.
33 Shi H and Moore PB (2000) The crystal structure of yeast phenylalanine tRNA at 1.93 Å resolution: a classic structure revisited. *RNA* **6**, 1091–1105.

34 Serebrov V, Clarke RJ, Gross HJ and Kisselev L (2001) Mg$^{2+}$-induced tRNA folding. *Biochemistry* **40**, 6688–6698.

35 Nobles KN, Yarian CS, Liu G, Guenther RH and Agris PF (2002) Highly conserved modified nucleosides influence Mg$^{2+}$-dependent tRNA folding. *Nucl Acids Res* **30**, 4751–4760.

36 Jones CI, Spencer AC, Hsu JL, Spremulli LL, Martinis SA, DeRider M and Agris PF (2006) A counterintuitive Mg$^{2+}$-dependent and modification-assisted functional folding of mitochondrial tRNAs. *J Mol Biol* **362**, 771–786.

37 Martinis SA and Boniecki MT (2010) The balance between pre- and post-transfer editing in tRNA synthetases. *FEBS Lett* **584**, 455–459.

38 Dulic M, Perona JI and Gruic-Sovulj I (2014) Determinants for tRNA-dependent pretransfer editing in the synthetic site of isoleucyl-tRNA synthetase. *Biochemistry* **53**, 6189–6198.

39 Cvetesic N, Bilus M and Gruic-Sovulj I (2015) The tRNA A76 hydroxyl groups control partitioning of the tRNA-dependent pre- and post-transfer editing pathways in class I tRNA synthetase. *J Biol Chem* **290**, 13981–13991.

40 Hopfield JJ (1974) Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. *Proc Natl Acad Sci U S A* **71**, 4135–4139.

41 Ninio J (1975) Kinetic amplification of enzyme discrimination. *Biochimie* **57**, 587–595.

42 Airas RK (1992) Effect of inorganic pyrophosphate on the pretransfer proofreading in the isoleucyl-tRNA synthetase from *Escherichia coli*. *Eur J Biochem* **210**, 451–454.

43 Dittmar KA, Sorensen MA, Elf J, Ehrenberg M and Pan T (2005) Selective charging of tRNA isoacceptors induced by amino acid starvation. *EMBO Rep* **6**, 151–157.

44 Heinonen JK (2001) *Biological Role of Inorganic Pyrophosphate*, pp. 45–48. Kluwer Academic Publishers, Dordrecht.