Allergen Extracts for *In Vivo* Diagnosis and Treatment of Allergy: Is There a Future?

Rudolf Valenta, MD⁠a,b,c, Alexander Karaulov, MD⁠c, Verena Niederberger, MD⁠d, Yury Zhernov, PhD⁠b, Olga Elisyutina, MD⁠b, Raffaella Campana, PhD⁠e, Margarete Focke-Tejkl, PhD⁠a, Mirela Curin, PhD⁠a, Leyla Namazova-Baranova, MD⁠e, Jiu-Yao Wang, MD, PhD⁠f, Ruby Pawankar, MD, PhD⁠g, and Musa Khaitov, MD⁠b

⁠aDepartment of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria

⁠bNRC Institute of Immunology FMBA of Russia, Moscow, Russia

⁠cLaboratory for Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia

⁠dDepartment of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria

⁠eDepartment of Pediatrics, Pirogov Russian National Research Medical University, Moscow, Russia

⁠fCenter for Allergy and Immunology Research (ACIR), College of Medicine, National Cheng Kung University (Hospital), Tainan, Taiwan

⁠gDivision of Allergy, Department of Pediatrics, Nippon Medical School, Tokyo, Japan

Abstract

Today, *in vivo* allergy diagnosis and allergen-specific immunotherapy (AIT) are still based on allergen extracts obtained from natural allergen sources. Several studies analyzing the composition of natural allergen extracts have shown severe problems regarding their quality such as the presence of undefined nonallergenic materials, contaminants as well as high variabilities regarding contents and biological activity of individual allergens. Despite the increasing availability of sophisticated analytical technologies, these problems cannot be overcome because they are inherent to allergen sources and methods of extract production. For *in vitro* allergy diagnosis problems related to natural allergen extracts have been largely overcome by the implementation of recombinant allergen molecules that are defined regarding purity and biological activity. However, no such advances have been made for allergen preparations to be used *in vivo* for diagnosis and therapy. No clinical studies have been performed for allergen extracts available for *in vivo* allergy diagnosis that document safety, sensitivity, and specificity of the products. Only for very few
therapeutic allergen extracts state-of-the-art clinical studies have been performed that provide evidence for safety and efficacy. In this article, we discuss problems related to the inconsistent quality of products based on natural allergen extracts and share our observations that most of the products available for in vivo diagnosis and AIT do not meet the international standards for medicinal products. We argue that a replacement of natural allergen extracts by defined recombinantly produced allergen molecules and/or mixtures thereof may be the only way to guarantee the supply of clinicians with state-of-the-art medicinal products for in vivo diagnosis and treatment of allergic patients in the future.

Keywords
Allergy; Allergen; Diagnosis; Allergen-specific immunotherapy; Allergen extract; Quality control; Recombinant allergen; Molecular allergy diagnosis

IgE-associated allergy is the most common and important immunologically mediated hypersensitivity disease affecting approximately 30% of the population worldwide. In the USA, allergies are a leading cause of chronic illness representing an immense burden for the health care system. The identification of the disease-causing allergens is critical for the accurate diagnosis of allergy and forms the basis for the treatment of allergic patients by allergen-specific interventions (eg, allergen avoidance, diet, allergen-specific immunotherapy [AIT]). AIT is in fact the only causal, disease-modifying, and long-lasting form of treatment. Therefore considerable efforts have been spent in the characterization of allergens beginning with the isolation of allergens from the natural allergen sources by biochemical means. A major breakthrough regarding allergen characterization has been achieved with the introduction of molecular cloning techniques for the isolation of the genes coding for allergens. Thirty years ago the genes coding for the first allergens were isolated and sequenced, and soon thereafter the first recombinant allergens were produced and used for in vitro diagnosis of allergy. In 1999, recombinant allergens were made available in a fully automated in vitro allergy diagnostic test system, and the first allergen chip containing micro-arrayed allergen molecules to be used as a multiallergen test was reported in 2002. Since then, in vitro allergy diagnosis has been revolutionized by molecular allergy diagnosis. However, recombinant allergen molecules have also been used for in vivo allergy diagnosis. More than 20 years ago the first skin prick test studies and also in vivo provocation test studies (eg, bronchial provocation, nasal provocation) were performed with recombinant allergens in patients and showed that recombinant allergens can be effective, safe, sensitive, and specific when used for in vivo allergy diagnosis. Despite the fact that several clinical studies have documented the advantages of recombinant allergen–based skin testing over allergen extract–based skin testing regarding specificity and clinical information, up to now no recombinant allergen–based in vivo tests are available. Presently only allergen extract–based tests that are not complying with the regulations for medicinal products are available for in vivo allergy diagnosis (ie, mainly skin testing). In fact, double-blind, placebo-controlled studies comparing sensitivity and specificity of the in vivo test allergen in patients for whom IgE reactivity profiles have been determined in parallel by serology would be desirable.
Likewise, recombinant allergen derivatives and recombinant allergens have been successfully evaluated for AIT more than 10 years ago.24–26 Unfortunately, only few molecular AIT approaches have been moved successfully into clinical evaluation,24–31 and there are therefore currently only allergen extract—based allergy vaccines available.

However, also only for few of the allergen extract—based AITs safety and efficacy have been documented according to the current rules for medicinal products as demanded by the European Directive 2001/83/EC in 2004.32 For most of the AIT products, no sufficient documentation in the form of properly randomized, double-blind, placebo-controlled clinical trials is available. We found only 2 subcutaneous immunotherapy (SCIT) products for grass pollen allergy,33,34 2 sublingual immunotherapy (SLIT) products for grass pollen allergy,35–37 1 SLIT product for ragweed pollen allergy,38 and 2 SLIT products for house dust mite allergy,39–43 which have been evaluated in large numbers of patients. Several large-scale clinical trials with allergen extracts are currently registered in the clinical trial database (https://clinicaltrials.gov/), but results are not yet published and it seems that a longer transition period is needed to implement European Directive 2001/83/EC. Regarding allergen extracts for in vivo diagnostic testing so far no studies and/or documentation satisfying the demands of European Directive 2001/83/EC are available and there are discussions ongoing if there should be a distinction between therapeutic and diagnostic allergen preparations.

In the next section, we discuss the problems that are associated with the preparation and characterization of allergen extracts from natural allergen sources to meet current requirements for medicinal products. Although allergen extracts to be used for in vivo allergy diagnosis and AIT need to be distinguished, they fall under the definition of medicinal products (ie, “any substance or combination of substances that may be used in or administered to human beings either with a view to restoring, correcting, or modifying physiological functions by exerting a pharmacological, immunological, or metabolic action, or to making a medical diagnosis”).

Allergen Extracts: Production and Quality Control

For a long time expert opinion was sufficient to place allergen products for in vivo diagnosis and therapy on the market and clinical studies following good clinical practice (GCP) standards were never performed. In many countries, especially in the European Union, the legal situation has dramatically changed during the last 2 decades. It is now required to demonstrate safety and efficacy for therapeutic allergen products as well as for allergen products used for in vivo application such as diagnostic allergen extracts used for provocation testing, including skin testing, bronchial, nasal, conjunctival, and food provocation testing.44,45 Although there are differences regarding the regulations in different continents and countries,44–49 the overall goal is that according to the “International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use” (http://www.ich.org/home.html), medicinal products that include also allergen products for in vivo diagnosis and treatment must be evaluated in clinical trials and undergo a thorough evaluation to be registered for use in patients. A major prerequisite for clinical trials and subsequent use in humans is that the medicinal product is produced.
following good manufacturing practice (GMP) and is shown to have consistent characteristics and quality. This requirement is already a major hurdle for allergen extracts that are produced from natural allergen sources. Figure 1 provides an overview of the steps leading to a diagnostic or therapeutic allergen extract. A first major problem relies in the allergen source that is used for the production of allergen extracts. The contents, concentrations, and ratios of the individual allergens have been reported to vary greatly depending on a large variety of factors. Only a few examples shall be mentioned in this context: for example, allergen contents in pollen vary depending on environmental factors such as ozone exposure, pollution, and plant species to name a few. The contents of house dust mite allergens and their ratios depend on the growth conditions of mites, how they are fed and cultivated, and what mite material (feces, bodies) is used as raw material for the production of extracts. In the case of animal allergens, allergen type and contents may vary depending on gender. Food allergens are expressed to a different extent in different parts of fruits and cultivars and are extracted differently depending on the method used for extraction. Lipophilic allergens have therefore been overlooked for a long time. The spectrum of mold allergens shows great variation depending on mold strains and culture conditions. Furthermore, it has been shown that allergens occur in pollen as different isoforms with different allergenic activities and immunological properties in varying quantities, which means that no homogeneous single natural allergen preparation can be obtained from a natural allergen source. Therefore, only the recombinant expression of a defined isoform based on the corresponding gene can overcome this problem.

The presence of proteases in allergen extracts is another major problem because it may lead to the degradation of allergens that affects the allergenic activity, immunogenicity, and immunomodulatory capacity of an allergen extract. Because protease inhibitors that can help overcoming this problem are often toxic, it is impossible to prevent allergen degradation in extracts by the addition of such protease inhibitors. Certain allergens are proteases by themselves and therefore can digest not only other allergens but also may have effects on immune cells and tissues in the allergic patient on administration. This was shown for example for fungal allergens in mouse models but also for the major house dust mite allergen ex vivo for the human system. Some allergens are toxic and, at high concentrations, may induce inflammatory reactions per se in a nonsensitized subject.

Another major problem is that allergen extracts contain a large variety of unknown nonallergenic materials that may have toxic and/or immunomodulatory effects. For example, it has been shown that nonallergenic components such as pollen-derived phytoprostanes may activate cells of the innate immune system (ie, dendritic cells) “unspecifically” and thus indirectly have effects on the adaptive immune response by inducing Th2 responses. Such effects have been observed for pollen and house dust mite allergen extracts. Another major concern is that allergen extracts may contain contaminants from other allergen sources. For example, the presence of house mite allergens in animal dander allergen extracts has been reported, pollen may be contaminated with unrelated pollen or fungi,
and recently the presence of IgE-reactive bacterial antigens in house mite allergen extracts has been reported.79

When allergen extracts are prepared from natural allergen sources, one must therefore analyze not only the presence of intact allergens but also of allergen-derived materials exhibiting different properties as the intact allergens (eg, allergen peptides) (Figure 1). In this context, it should be mentioned that fractions of allergen extracts with different molecular weights have been shown to exhibit different allergenic and immunomodulatory properties as has, for example, been shown already early for grass pollen extracts.80 Furthermore, the presence of nonallergenic materials and possible contaminants requires analysis (Figure 1).

The analysis of the different materials in an extract (ie, allergen, allergen-derived materials, nonallergenic materials, contaminants) (Figure 1) must include many different parameters such as contents, concentrations, quality, ratios, activity parameters (eg, allergenic activity, immunogenicity, immunomodulatory activity), shelf-life, and stability; chemical and biological properties related to safety must be characterized for each of the different components, which is an extremely complex process. There are methods that in principle allow us to analyze the aforementioned parameters for single molecules with sufficient accuracy. Mass spectrometry has recently been proposed as a method for the standardization of allergen extracts.81 However, mass spectrometry can only demonstrate the presence of certain allergen-derived peptides in an extract but is not a real quantitative method and cannot tell anything about the allergenic or immunogenic properties of the molecules.82 Unfortunately, there is therefore no method that can analyze all important characteristics (physicochemical, structural, immunological properties) of the individual components present in complex mixtures such as allergen extracts at the same time.

The allergen extraction process is not a real purification process of certain allergen molecules but leads to a crude bulk allergen extract that can be further used for different purposes (Figure 1). Allergen extracts for in vivo diagnostic testing are usually prepared from the bulk allergen extracts by dilution and addition of certain preservatives. In this context, it has been found that certain allergen extracts contain also components that have been added during the manufacturing process. For example, human serum albumin is sometimes added by the manufacturers for stabilization purposes.50,51,54 Mixed allergen extracts are produced by mixing bulk allergen extracts from different allergen sources that may create several problems. For example, mixing of allergens dilutes the concentrations of allergens from each of the extracts that has been used for mixing to an unknown extent or may introduce proteases from other allergen sources leading to degradation.83–86

Denaturation of allergen extracts by various physicochemical procedures is performed for allergen extracts used for AIT to reduce the allergenic activity. There are different processes for denaturation such as aldehyde treatment, boiling, chemical denaturation, and various other treatments, but these procedures cannot be fully controlled and therefore affect to various degrees allergenic, immunogenic, and immunomodulatory properties of allergen extracts.87,88 Importantly, individual allergens cannot be traced any more as intact molecules in chemically modified or denatured allergen extracts, and one therefore can only
try to assess the overall allergenic and/or immunogenic activity of a denatured extract, both of which may vary from one production batch to another.49,89

Finally, one has to consider that allergen extracts to be used for AIT are manufactured in different ways. Some allergen extracts are made as aqueous solutions without adjuvants, some are mixed with powders and excipients to form tablets, and some extracts are adsorbed to different adjuvants to which individual allergens may bind with different strength and stability.90–93 All these additional processes may affect individual allergens/immunogens to a different extent and thus introduce another layer of uncertainty in addition to those due to variations caused by allergen sources and methods of extraction, processing, denaturation, and mixing.

Methods for the Quality Control of Allergen Extracts

In Table I we have summarized advantages and disadvantages of different methods that can be used for the quality control of allergen extracts. For example, the determination of the total protein contents has been introduced as one of the first methods for the quality control of allergen extracts.94 It measures protein contents but does not identify specifically allergens and their properties. Methods for measuring the allergenic activity and IgE reactivity of allergen extracts (ie, potency assays) were introduced later as additional methods for quality control.95 These methods depend on reagents derived from patients because allergen extracts are assessed for reactivity with IgE antibodies, in basophil activation tests or by skin testing.95,96 Since allergic patients react with different allergens and have different sensitivities to these allergens, results obtained with potency assays depending on patients materials will vary widely. As a result, allergen preparations that are standardized according to such methods in different countries cannot be compared.48 Potency assays measuring the allergenic activity cannot be used for allergen extracts that have been modified to reduce allergenic activity, except one wants to measure the extent of reduction of allergenic activity in comparison with an unmodified allergen extract.

In addition, a series of biochemical and biophysical methods have been developed. They include, for example, mass spectrometry, circular dichroism, size exclusion that allows the detection of allergen peptides, and the analysis of the fold of proteins and of the aggregation behavior, respectively.97,98 In particular, mass spectrometry has been suggested as a powerful method for the standardization of allergen extracts.81,99,100 Although circular dichroism and gel filtration are very useful and suitable for the analysis of single purified molecules,101 these methods cannot be used for complex allergen mixtures. Sodium dodecyl sulfate polyacrylamide gel electrophoresis and immunoblotting allow the qualitative analysis of allergen extracts and may discriminate between intact allergens, aggregation, and degradation products according to molecular weight.102 Quantitative enzyme-linked immunosorbent assays performed with allergen-specific antibody probes permit the determination of the concentrations of intact allergens.103–105 The determination of the ability of an allergen extract to induce the production of allergen-specific IgG antibodies that block patients’ IgE binding can be obtained by immunization of animals with the formulated vaccine.106 Because antibodies induced in inbred mouse strains by allergy vaccines recognize other epitopes than those induced in allergic patients, it is recommended to
perform immunization experiments in outbred animals such as rabbits. The IgG antibodies obtained in the animals can then be tested for their ability to inhibit allergic patients’ IgE binding to the allergens and allergen-induced effector cell activation. In fact, a recent study showing that cat allergy can be treated by passive immunization with recombinant allergen-specific antibodies emphasizes the importance of blocking antibodies for success of treatment and the need to test allergy vaccines for the induction of blocking antibodies in model systems. However, clinical studies in humans and postmarketing assessment will always be required to assess the immunogenic properties of AIT vaccines because there may be differences of immunogenicity in animals and man.

In addition to the assays characterizing allergens, allergen-derived materials, nonallergenic components and contaminants, additional tests are mandatory for safety, stability, toxicity, and sterility assessment. These methods are mandatory for the quality control of medicinal products (Table I).

Allergen Extracts for Diagnosis and Treatment

Table E1 (available in this article’s Online Repository at www.jaci-inpractice.org) contains an overview of allergen extracts that we found to be registered or to be available in different continents and countries and, when available, the corresponding homepages of the regulatory agencies providing the information. As examples, we have analyzed a few countries, that is, the USA, Germany, Russia as well as Taiwan and Japan from Asia. However, already in this small selection of countries the heterogeneity of the regulations in different parts of the world becomes very clear. However, one common feature seems to be that allergens, regardless of whether they are used for therapy or as in vivo test allergens, are considered as biological medicinal products and therefore require marketing authorizations that are usually issued for the finished product. In the USA, so-called standardized and also nonstandardized injectable allergen extracts from a variety of manufacturers are available (Table E1). However, we were unable to find published state-of-the-art clinical studies that document the safety, specificity, and efficacy for the majority of these products. Randomized, double-blind, placebo-controlled clinical studies following the rules set for medicinal products have only been performed for few extracts available as tablets for sublingual therapy. The situation was similar for Germany. On the homepage of the Paul Ehrlich Institute that is responsible for the registration of medicinal products in Germany, extracts from several companies for skin testing and provocation testing are listed, but for none of these test allergen extracts we could find any documentation by clinical studies. For a handful of allergen extracts available for subcutaneous and sublingual AIT, clinical studies have been performed, whereas for the majority of therapeutic products, no evidence for efficacy and safety in the form of clinical studies could be found. In fact, in the European Union (EU), allergen products such as AIT vaccines and allergen products used for in vivo testing are defined as medicinal products according to Directive 2001/83/EC and are therefore required to obtain a market authorization that can follow different procedures in individual EU countries or via a centralized procedure that is valid for the whole EU. The current state-of-the-art approach for obtaining marketing authorization requires randomized, double-blind, placebo-controlled studies that are performed according to GCP guidelines, but in reality this has...
been fulfilled only for few AIT vaccines in the EU. A similar situation was found for Russia, Taiwan, and Japan where a quite limited number of allergen extracts are available (Table E1). One possibility for making allergen extracts available without fulfilling new rules for allergen products is based on so-called named patient products that can be prescribed by practitioners on an individual patient basis. However, it must be clear that the level of evidence for such products is very low (ie, expert opinion) and named patient prescription hence does not follow the current rules for medicinal products.

The legal situation in the USA is that allergen products are regulated as biological medicinal products under the Public Health Service Act and as drug product under the Federal Food, Drug and Cosmetics Act, and require a marketing authorization termed a biologics license application (BLA). The BLA has to demonstrate that the product is manufactured under GMP and is safe, pure, and effective. Thus randomized, double-blind, placebo-controlled studies according to the current GCP regulation are now required for marketing authorization. In the EU, the pharmaceutical industry has been requested to provide the necessary documentation for their products, and accordingly clinical studies are currently performed, however, mainly for AIT products but not for allergen extracts used for in vivo testing. It is therefore not surprising that there is a great risk that many natural allergen extracts will disappear in the EU, especially those for in vivo testing. Ultimately, also many AIT extracts may not be available any more in the future. Although the regulatory situation is different in other countries, it cannot be excluded that the pressure on quality control on allergen extracts will increase suddenly also there because the continuously rising costs for health care systems will demand that the safety and efficacy of medicinal products and drugs is documented by extensive clinical studies. It will therefore be necessary to intensify the discussions between major allergy societies and international control agencies to provide reliable, safe, efficient, and cost-effective options for therapy and in vivo diagnosis and eventually to distinguish between therapeutic and diagnostic allergen preparations.

Transition from Allergen Extracts to Molecules: The Only Solution?

If indeed the requirements for quality control and the documentation of safety and efficacy by clinical trials set by regulatory authorities increase for test and treatment allergens, there are basically at least 2 options. One option would be to fulfill the requirements with allergen extract-based technologies, whereas the other option would be to replace allergen extracts by defined recombinant allergen molecules and combinations of the 2 options can be envisaged. In Table II, we have performed a SWOT (Strength, Weakness, Opportunity, and Threat) analysis of the advantages and disadvantages of natural allergen extracts versus recombinant allergen molecules. One may argue that allergen extracts are traditional products that are known to the allergologist for a long time without requiring detailed knowledge regarding the individual allergen molecules. However, in the field of in vitro allergy diagnosis, molecular testing has become an important part of the diagnostic armamentarium of the allergologist, and it is argued that molecular testing will eventually completely replace extract-based testing. Of course, molecular testing requires detailed knowledge of the individual allergen molecules and hence continued medical education to enjoy the many advantages of molecular testing (eg, understanding of cross-
reactivities, precise identification of the culprit allergen, resolution of complex cases, refinement of AIT prescription, identification of sensitization to high- or low-risk allergens) over allergen extract-based testing. One particular strength of molecular allergy diagnosis is that it allows us to identify precisely the culprit allergen sources in polysensitized patients that facilitate the accurate prescription of AIT. One may also consider the use of recombinant allergen mixes instead of natural allergen extracts. It is also possible that the knowledge gained from molecular allergen characterization may help to improve the quality of natural allergen extracts. The disadvantages of allergen extracts are mainly related to the fact that it is technically almost impossible to manufacture them in a way to satisfy the current requirements for medicinal products due to the limitations set by raw materials, extraction, and processing (Table I).

Recombinant allergens that exactly resemble the allergenic activity of the natural allergens as well as recombinant allergen derivatives with favorable properties for AIT are available now for decades and can be produced by controlled expression in appropriate host cells (eg, bacteria, eukaryotic cells) under defined conditions of GMP, which is the standard for medicinal products. Of course, the production of recombinant allergens and allergen derivatives requires a different know-how as compared with allergen extracts, but it is completely independent from natural and thus variable raw materials. Because recombinant allergen-based products are new kids on the block, they will require clinical studies and market authorizations, but ultimately such studies also need to be performed for allergen extracts; otherwise they may disappear. As a concrete example for the replacement of allergen extracts by recombinant allergen-based technologies, we would like to refer to grass pollen that is one of the most important allergen sources worldwide. It has been demonstrated that natural grass pollen allergen extracts show large variations regarding the contents of the individual allergens and therefore are highly heterogeneous. Likewise, grass pollen extract-specific AIT induces only partial protective immune responses against the individual major allergens. All these problems could be overcome with a recombinant hybrid allergen comprising the 4 major timothy grass pollen allergens: Phl p 1, Phl p 2, Phl p 5, and Phl p 6. This hybrid molecule can be easily produced in *Escherichia coli* in defined, reproducible quality and in a very large amount. The hybrid resembles the allergic activity of grass pollen and can be used for *in vivo* diagnosis of grass pollen allergy. The single recombinant hybrid molecule could also be used to formulate AIT vaccines for grass pollen because AIT with Phl p 1, Phl p 2, Phl p 5, and Phl p 6 has been shown to be clinically effective. Moreover, several AIT approaches based on recombinant hypoallergenic molecules, recombinant allergens, and allergen-derived synthetic peptides have reached clinical application in controlled studies (Table III). One of these approaches is that a new recombinant B-cell epitope-based grass pollen allergy vaccine, termed BM32, which contains recombinant hypoallergenic fusion proteins consisting of nonallergen peptides from the 4 timothy grass pollen allergens fused to the hepatitis B-derived PreS protein as a carrier, has been shown to be hypoallergenic *in vivo*. In AIT trials, BM32 was safe and few injections were effective in reducing symptoms of grass pollen allergy (Table III). Thus grass pollen allergy is a very good and concrete example of how traditional allergen extracts used for *in vivo* testing and AIT can be replaced by modern recombinant technology.
Interestingly, recombinant allergenebased approaches seem to be not only applicable for the development of AIT approaches for respiratory allergies, but also for food and venom allergy. Regarding food allergy, a recombinant hypoallergenic mutant of the major fish allergen parvalbumin, mCyp c 1, has been expressed in *E. coli* and was shown to have strongly reduced allergenic activity in skin prick tests. The recombinant mCyp c 1 molecule was then formulated for subcutaneous AIT, and first clinical studies showed that treatment was safe and induced allergen-specific blocking IgG antibodies (ClinicalTrials.gov Identifiers: NCT02017626, NCT02365168, NCT02382718). Likewise, recombinant allergenebased strategies might be developed for venom allergy because the clinically relevant bee and wasp allergens have been expressed as recombinant proteins and could be used to develop recombinant AIT approaches.

Summary

Recombinant hypoallergenic allergen derivatives comprising some of the most important allergen sources (eg, grass pollen, birch pollen, ragweed pollen, olive pollen, *Parietaria* pollen, cedar pollen, house dust mites, cat, dog, bee, and wasp venoms) have been characterized at a preclinical level and could be evaluated in clinical trials. For a few allergen sources, it may be challenging to prepare all the individual allergen molecules by recombinant technology to represent the complexity of the allergen source properly. However, so far recombinant AIT approaches have not reached wide-scale use in clinical practice. Because the molecules can be produced well in different expression systems, there are, in principle, no technical hurdles for their manufacturing. Some of the molecules are protected by international patents, but these are available for licensing. It rather seems that pharmaceutical companies were so far not willing to invest in their development because this would require the setting up of suitable production facilities and the conductance of clinical trials. With the implementation of regulations requesting the documentation of traditional allergen extracts by clinical trials during the last few years, the situation may change because the pharmaceutical industry is now requested to conduct GMP production and clinical trials to maintain their traditional allergen extracts on the market and/or may decide to develop recombinant allergenebased products. It is therefore likely that the pressure by the regulatory agencies will boost the development of high-quality allergens for *in vivo* use, and, accordingly, we may see the parallel development of allergen extract and recombinant allergenebased products for clinical use. Unfortunately, most of the current allergen extracts do not meet the criteria of medicinal products and are therefore at risk of disappearing. Even with the most advanced analytical methods, it is not possible to overcome all the quality problems that are due to the limits of allergen extractbased technologies. However, during the last 30 years, the most important allergen molecules from the most relevant allergen sources have been produced as defined recombinant molecules resembling the allergenic activity of the natural allergens. The recombinant allergen molecules can be produced at low costs, in consistent quality, and in large amounts for *in vivo* allergy testing and thus would meet easily the criteria set for medicinal products. Likewise, they could be used to formulate modern allergy vaccines. Moreover, recombinant hypoallergenic allergen derivatives have been produced for most of the important allergen sources and hold promise to improve safety, efficacy, and convenience of allergen-specific
immunotherapy as well as to be useful for preventive allergy vaccination. It is thus argued that the time has come to implement recombinant technology for the production of new high-quality in vivo allergy tests and allergy vaccines.

Online Repository

Extended Data

Table E1

Diagnostic and therapeutic allergen extracts registered in the USA, Germany, Russia, and Asia

USA (https://www.fda.gov/BiologicsBloodVaccines/Allergenics/default.htm)	
Injectable allergen extracts standardized (https://www.fda.gov/BiologicsBloodVaccines/Allergenics/ucm391514.htm)	
Cat Hair (*Felis domesticus*): 7 manufacturers	
Cat Pelt (*Felis domesticus*): 2 manufacturers	
Mite D.f. (*Dermatophagoides farinae*): 6 manufacturers	
Mite D.p. (*Dermatophagoides pteronyssinus*): 6 manufacturers	
Bermuda Grass (*Cynodon dactylon*): 6 manufacturers	
Kentucky (June) Bluegrass (*Poa pratensis*): 6 manufacturers	
Orchard Grass (*Dactylis glomerata*): 6 manufacturers	
Redtop Grass (*Agrostis alba*): 6 manufacturers	
Perennial Ryegrass (*Lolium perenne*): 6 manufacturers	
Sweet Vernal Grass (*Anthoxanthum odoratum*): 6 manufacturers	
Timothy Grass (*Phleum pratense*): 6 manufacturers	
Short Ragweed (*Ambrosia artemisiifolia*): 6 manufacturers	
Honey Bee Venom (*Apis mellifera*): 2 manufacturers	
Wasp Venom Protein (*Polistes spp*): 2 manufacturers	
Yellow Hornet Venom Protein (*Dolichovespula arenaria*): 2 manufacturers	
Yellow Jacket Venom Protein (*Vespula spp*): 2 manufacturers	
Mixed Vespid Venom Protein (mixed yellow jacket, yellow hornet, and white-faced hornet): 2 manufacturers	
Injectable allergen extracts, nonstandardized (https://www.fda.gov/BiologicsBloodVaccines/Allergenics/ucm391517.htm)	
Six companies are licensed to manufacture and distribute such extracts	
Allergen extracts: sublingual tablets for AIT (https://www.fda.gov/BiologicsBloodVaccines/Allergenics/ucm391505.htm)	
GRASTEK Merck Sharp & Dohme Corp: Timothy grass pollen extract	
ORALAIR Stallergenes S.A.L.: mix of 5 grass species	
ODACTRA Merck Sharp & Dohme Corp: House dust mite (*Dermatophagoides farinae* and *Dermatophagoides pteronyssinus*) allergen extract	
RAGWITEK Merck Sharp & Dohme Corp: Short ragweed pollen extract	
Germany (https://www.pei.de/DE/arzneimittel/allergene/allergene-node.html)	
Allergen extracts for skin prick testing (https://www.pei.de/DE/arzneimittel/allergene/test-allergene/pricktest/pricktest-node.html)	
• Grass-, corn-, weed pollen	
• Tree pollen	
• Food
 • Molds and yeast
 • House dust mites/storage mites
 • Animal dander/hair
 • Venoms
 • Latex

Allergen extracts for provocation testing: https://www.pei.de/DE/arzneimittel/allergene/test-allergene/provokationstest/provokationstest-node.html

• Grass-, corn-, weed pollen
• Tree pollen
• Food
• Molds and yeast
• House dust mites/storage mites
• Animal dander/hair

For AIT:

For subcutaneous AIT: https://www.pei.de/DE/arzneimittel/allergene/therapie-allergene/subkutan/subkutane-therapie-node.html;jsessionid=FD6BE393DB5711476E2BC4D3FDCBF8C4.1_cid319

Grass-, corn-, and weed pollen: https://www.pei.de/DE/arzneimittel/allergene/therapie-allergene/subkutan/graeser/graeser-getreide-kraeuter-pollen-node.html

25 products

Tree pollen: https://www.pei.de/DE/arzneimittel/allergene/therapie-allergene/subkutan/baumpollen/baumpollen-node.html

44 products

House dust mites: https://www.pei.de/DE/arzneimittel/allergene/therapie-allergene/subkutan/hausstaubmilben/hausstaubmilben-node.html

28 products

Venoms: https://www.pei.de/DE/arzneimittel/allergene/therapie-allergene/subkutan/insektengifte/insektengifte-node.html

18 products

Sublingual AIT:

Grass-, corn-, weed pollen: https://www.pei.de/DE/arzneimittel/allergene/therapie-allergene/sublingual/graeser/graeser-getreide-kraeuter-pollen-node.html

27 products

Tree pollen: https://www.pei.de/DE/arzneimittel/allergene/therapie-allergene/sublingual/baumpollen/baumpollen-node.html

4 products

House dust mites: https://www.pei.de/DE/arzneimittel/allergene/therapie-allergene/sublingual/hausstaubmilben/hausstaubmilben-node.html

3 products

Russia

For in vivo diagnostic purposes:

Water-salt allergen extracts produced by AO “Biomed” Mechnikov

Water-salt allergen extracts produced by NPO Microgen

For AIT:

Water-salt allergen extracts produced by AO “Biomed” Mechnikov and by NPO Microgen

Subcutaneous AIT “Phostal,” “Alustal” (Stallergenes, France): tree pollen, grass pollen, HDM
Sublingual AIT “Staloral” (Stallergenes, France): HDM, birch pollen

Sublingual tablet “Oralair” (Stallergenes, France): grass pollen

Sublingual AIT by allergoids (Lopharma, Italy): HDM, grass pollen

Asia

Japan
In Japan allergen products are considered as biomedicines

For in vivo diagnostic purposes:

- Extracts from Tori Pharmaceutical Co. https://www.torii.co.jp/en/
- Allergen extract for Scratch test: HDM “TORII” 100,000 JAU/mL,
- Dermatophagoides farinae extract 10,000 AU/mL,
- Dermatophagoides pteronyssinus extract 10,000 AU/mL,
- Allergen Scratch Extract Positive control “TORII” Histamine dihydrochloride

For AIT:

- Miticure House Dust Mite Sublingual Tablets 3,300 JAU Miticure House Dust Mite Sublingual Tablets 10,000 JAU (Torii Pharmaceutical Co., Ltd.) (Dermatophagoides farinae extract, Dermatophagoides pteronyssinus extract)
- Actair 100 IR Sublingual Tablets-HDM Actair 300 IR Sublingual Tablets-HDM (Shionogi & Co., Ltd.) Dermatophagoides farinae extract bulk powder, Dermatophagoides pteronyssinus extract bulk powder.
- Allergen extract for subcutaneous injection-HDM “TORII” 100,000 JAU/mL
- Allergen extract for subcutaneous injection-HDM “TORII” 10,000 JAU/mL (Torii Pharmaceutical Co., Ltd.)
- Cedartolen Sublingual Drop-Japanese Cedar Pollen 200 JAU/mL bottle
- Cedartolen Sublingual Drop-Japanese Cedar Pollen 2,000 JAU/mL bottle
- Standardized Japanese cedar pollen extract original solution 10,000 JAU/mL

Taiwan

- Allergen extracts available from Allermed (USA), now merged by Greer Co. (USA).

China

- Allergen extracts available from:
 - ALK (Horsholm, Denmark), Stallergenes Greer Co. (USA), WolwoPharma. Co. (China) http://www.wolwobiotech.com/

AIT, Allergen-specific immunotherapy; HDM, house dust mite.

Acknowledgments

This study was supported by grants F4605, F4613 and P29991 of the Austrian Science Fund (FWF), by the Russian Academic Excellence Project 5-100 and by a Megagrant of the Government of the Russian Federation, grant No 14.W03.31.0024.

Abbreviations used

- **AIT**: Allergen-specific immunotherapy
- **BLA**: Biologics license application
- **EU**: European Union
- **GCP**: Good clinical practice
- **GMP**: Good manufacturing practice
References

1. Anto JM, Bousquet J, Akdis M, Auffray C, Keil T, Momas I, et al. Mechanisms of the Development of Allergy (MeDALL): introducing novel concepts in allergy phenotypes. J Allergy Clin Immunol. 2017; 139:388–99. [PubMed: 28183433]

2. Valenta R, Karaulov A, Niederberger V, Gattinger P, van Hage M, Flicker S, et al. Molecular aspects of allergens and allergy. Adv Immunol. 2018; 138:195–256. [PubMed: 29731005]

3. Meltzer EO, Blaiss MS, Derebery MJ, Mahr TA, Gordon BR, Sheth KK, et al. Burden of allergic rhinitis: results from the Pediatric Allergies in America survey. J Allergy Clin Immunol. 2009; 124(Suppl):S43–70. [PubMed: 19592081]

4. Larché M, Akdis CA, Valenta R. Immunological mechanisms of allergen-specific immunotherapy. Nat Rev Immunol. 2006; 6:761–71. [PubMed: 16998509]

5. Curin M, Khaitov M, Karaulov A, Namazova-Baranova L, Campana R, Garib V, et al. Next-generation of allergen-specific immunotherapies: molecular approaches. Curr Allergy Asthma Rep. 2018; 18:39. [PubMed: 29886521]

6. Matricardi PM, Kleine-Tebbe J, Hoffmann HJ, Valenta R, Hilger C, Hofmaier S, et al. EAACI molecular allergology user’s guide. Pediatr Allergy Immunol. 2016; 27(Suppl 23):1–250. [PubMed: 27288833]

7. Curin M, Garib V, Valenta R. Single recombinant and purified major allergens and peptides: how they are made and how they change allergy diagnosis and treatment. Ann Allergy Asthma Immunol. 2017; 119:201–8. [PubMed: 2889016]

8. Valenta R, Ferreira F, Focke-Tejkl M, Linhart B, Niederberger V, Swoboda I, et al. From allergen genes to allergy vaccines. Annu Rev Immunol. 2010; 28:211–41. [PubMed: 20192803]

9. Fang KS, Vitale M, Fehlner P, King TP. cDNA cloning and primary structure of a white-face hornet venom allergen, antigen 5. Proc Natl Acad Sci U S A. 1988; 85:895–9. [PubMed: 342469]

10. Chua KY, Stewart GA, Thomas WR, Simpson RJ, Dilworth RJ, Plozza TM, et al. Sequence analysis of cDNA coding for a major house dust mite allergen, Der p 1. Homology with cysteine proteases. J Exp Med. 1988; 167:175–82. [PubMed: 3335830]

11. Breiteneder H, Pettenburger K, Bito A, Valenta R, Kraft D, Rumpold H, et al. The gene coding for the major birch pollen allergen Bet v 1, is highly homologous to a pea disease resistance response gene. EMBO J. 1989; 8:1935–8. [PubMed: 2571499]

12. Valenta R, Lidholm J, Niederberger V, Hayek B, Kraft D, Grönlund H. The recombinant allergen-based concept of component-resolved diagnostics and immunotherapy (CRD and CRIT). Clin Exp Allergy. 1999; 29:896–904. [PubMed: 10383589]

13. Hiller R, Laffer S, Harwanegg C, Huber M, Schmidt WM, Twardosz A, et al. Microarrayed allergen molecules: diagnostic gatekeepers for allergy treatment. FASEB J. 2002; 16:414–6. [PubMed: 11790727]

14. Lupinek C, Wollmann E, Valenta R. Monitoring allergen immunotherapy effects by microarray. Curr Treat Options Allergy. 2016; 3:189–203. [PubMed: 27330931]

15. Moser M, Crameri R, Brust E, Suter M, Menz G. Diagnostic value of recombinant Aspergillus fumigatus allergen I/a for skin testing and serology. J Allergy Clin Immunol. 1994; 93:1–11. [PubMed: 7508461]

16. Lynch NR, Thomas WR, Chua Y, García N, Di Prisco MC, López R. In vivo biological activity of recombinant Der p II allergen of house-dust mite. Int Arch Allergy Immunol. 1994; 105:70–4. [PubMed: 7522071]

17. Müller UR, Dudler T, Schneider T, Crameri R, Fischer H, Skrbic D, et al. Type I skin reactivity to native and recombinant phospholipase A2 from honeybee venom is similar. J Allergy Clin Immunol. 1995; 96:395–402. [PubMed: 7560642]

18. Menz G, Dolecek C, Schönheit-Kenn U, Ferreira F, Moser M, Schneider T, et al. Serological and skin-test diagnosis of birch pollen allergy with recombinant Bet v 1, the major birch pollen allergen. Clin Exp Allergy. 1996; 26:50–60. [PubMed: 8789543]

19. Pauli G, Oster JP, Deviller P, Heiss S, Bessot JC, Susani M, et al. Skin testing with recombinant allergens rBet v 1 and birch profilin, rBet v 2: diagnostic value for birch pollen and associated allergies. J Allergy Clin Immunol. 1996; 97:1100–9. [PubMed: 8626988]
20. Godnic-Cvar J, Susani M, Breiteneder H, Berger A, Havelec L, Waldhör T, et al. Recombinant Bet v 1, the major birch pollen allergen, induces hypersensitivity reactions equal to those induced by natural Bet v 1 in the airways of patients allergic to tree pollen. J Allergy Clin Immunol. 1997; 99:354–9. [PubMed: 9058691]

21. Niederberger V, Stübner P, Spitzauer S, Kraft D, Valenta R, Ehrenberger K, et al. Skin test results but not serology reflect immediate type respiratory sensitivity: a study performed with recombinant allergen molecules. J Invest Dermatol. 2001; 117:848–51. [PubMed: 11676821]

22. Niederberger V, Eckl-Dorna J, Pauli G. Recombinant allergen-based provocation testing. Methods. 2014; 66:96–105. [PubMed: 23920475]

23. Heiss S, Mahler V, Steiner R, Spitzauer S, Schweiger C, Kraft D, et al. Component-resolved diagnosis (CRD) of type I allergy with recombinant grass and tree pollen allergens by skin testing. J Invest Dermatol. 1999; 113:830–7. [PubMed: 10571741]

24. Niederberger V, Horak F, Vrtala S, Spitzauer S, Krauth MT, Valent P, et al. Vaccination with genetically engineered allergens prevents progression of allergic disease. Proc Natl Acad Sci. 2004; 101(Suppl 2):14677–82. [PubMed: 15310844]

25. Jutel M, Jaeger L, Suck R, Meyer H, Fiebig H, Cromwell O. Allergen-specific immunotherapy with recombinant grass pollen allergens. J Allergy Clin Immunol. 2005; 116:608–13. [PubMed: 16159631]

26. Pauli G, Larsen TH, Rak S, Horak F, Pastorello E, Valenta R, et al. Efficacy of recombinant birch pollen vaccine for the treatment of birch-allergic rhinoconjunctivitis. J Allergy Clin Immunol. 2008; 122:951–60. [PubMed: 19000581]

27. Spertini F, Perrin Y, Audran R, Pellaton C, Boudousquié C, Barbier N, et al. Safety and immunogenicity of immunotherapy with Bet v 1-derived contiguous overlapping peptides. J Allergy Clin Immunol. 2014; 134:239–40. [PubMed: 24797422]

28. Klimek L, Bachert C, Lukat KF, Pfäar O, Meyer H, Narkus A. Allergy immunotherapy with a hypoallergenic recombinant birch pollen allergen rBet v 1-FV in a randomized controlled trial. Clin Transl Allergy. 2015; 5:28. [PubMed: 26328056]

29. Spertini F, DellaCorte G, Kettner A, de Blay F, Jacobsen L, Jutel M, et al. Efficacy of 2 months of allergen-specific immunotherapy with Bet v 1-derived contiguous overlapping peptides in patients with allergic rhinoconjunctivitis: results of a phase 2b study. J Allergy Clin Immunol. 2016; 138:162–8. [PubMed: 27373329]

30. Zieglmayer P, Focke-Tejkl M, Schmutz R, Lemell P, Zieglmayer R, Weber M, et al. Mechanisms, safety and efficacy of a B cell epitope-based vaccine for immunotherapy of grass pollen allergy. EBioMedicine. 2016; 11:43–57. [PubMed: 27650868]

31. Niederberger V, Neubauer A, Gevaert P, Zidarn M, Worm M, Aberer W, et al. Safety and efficacy of immunotherapy with the recombinant B-cell epitope-based grass pollen vaccine BM32. J Allergy Clin Immunol. 2018; 142:497–509. [PubMed: 29361332]

32. Bonertz A, Roberts GC, Hoefnagel M, Timon M, Slater JE, Rabin RL, et al. Challenges in the implementation of EAACI guidelines on allergen immunotherapy: a global perspective on the regulation of allergen products. Allergy. 2018; 73:64–76. [PubMed: 28771830]

33. Frew AJ, Powell RJ, Corrigan CJ, Durham SR. UK Immunotherapy Study Group. Efficacy and safety of specific immunotherapy with SQ allergen extract in treatment-resistant seasonal allergic rhinoconjunctivitis. J Allergy Clin Immunol. 2006; 117:319–25. [PubMed: 16461133]

34. DuBuske LM, Frew AJ, Horak F, Keith PK, Corrigan CJ, Aberer W, et al. Ultrashort-specific immunotherapy successfully treats seasonal allergic rhinoconjunctivitis to grass pollen. Allergy Asthma Proc. 2011; 32:239–47. [PubMed: 21535913]

35. Dahl R, Kapp A, Colombo G, de Monchy JG, Rak S, Emminger W, et al. Efficacy and safety of sublingual immunotherapy with grass allergen tablets for seasonal allergic rhinoconjunctivitis. J Allergy Clin Immunol. 2006; 118:434–40. [PubMed: 16890769]

36. Didier A, Worm M, Horak F, Sussman G, de Beaumont O, Le Gall M, et al. Sustained 3-year efficacy of pre- and coseasonal 5-grass-pollen sublingual immunotherapy tablets in patients with grass pollen-induced rhinoconjunctivitis. J Allergy Clin Immunol. 2011; 128:559–66. [PubMed: 21802126]
37. Valovirta E, Petersen TH, Piotrowska T, Laursen MK, Andersen JS, Sørensen HF, et al. Results from the 5-year SQ grass sublingual immunotherapy tablet asthma prevention (GAP) trial in children with grass pollen allergy. GAP investigators. J Allergy Clin Immunol. 2018; 141:529–53. [PubMed: 28689794]

38. Creticos PS, Esch RE, Couroux P, Gentile D, D’Angelo P, Whitlow B, et al. Randomized, double-blind, placebo-controlled trial of standardized ragweed sublingual-liquid immunotherapy for allergic rhinoconjunctivitis. J Allergy Clin Immunol. 2014; 133:751–8. [PubMed: 24332263]

39. Nolte H, Bernstein DI, Nelson HS, Kleine-Tebbe J, Sussman GL, Seitzberg D, et al. Efficacy of house dust mite sublingual immunotherapy tablet in North American adolescents and adults in a randomized, placebo-controlled trial. J Allergy Clin Immunol. 2016; 138:1631–8. [PubMed: 27521719]

40. Bergmann KC, Demoly P, Worm M, Fokkens WJ, Tabar AI, et al. Efficacy and safety of sublingual tablets of house dust mite allergen extracts in adults with allergic rhinitis. J Allergy Clin Immunol. 2014; 133:1608–14. [PubMed: 24388010]

41. Emminger W, Hernández MD, Cardona V, Smeenk F, Fogh BS, Calderon MA, et al. The SQ house dust mite SLIT-tablet is well tolerated in patients with house dust mite respiratory allergic disease. Int Arch Allergy Immunol. 2017; 174:35–44. [PubMed: 28950268]

42. Virchow JC, Backer V, Kuna P, Prieto L, Nolte H, Villesen HH, et al. Efficacy of a house dust mite sublingual allergen immunotherapy tablet in adults with allergic asthma: a randomized clinical trial. JAMA. 2016; 315:1715–25. [PubMed: 27115376]

43. Demoly P, Emminger W, Rehm D, Backer V, Tommerup L, Kleine-Tebbe J. Effective treatment of house dust mite-induced allergic rhinitis with 2 doses of the SQ HDM SLIT-tablet: results from a randomized, double-blind, placebo-controlled phase III trial. J Allergy Clin Immunol. 2016; 137:444–51. [PubMed: 26292778]

44. Klimk L, Hoffmann HJ, Renz H, Demoly P, Werfel T, Matricardi PM, et al. Diagnostic test allergens used for in vivo diagnosis of allergic diseases are at risk: a European perspective. Allergy. 2015; 70:1329–31. [PubMed: 26105127]

45. Klimk L, Hoffmann HJ, Kugler A, Muraro A, Hellings PW. Impact of changed legislation on skin tests: the present and future. Curr Opin Allergy Clin Immunol. 2016; 16:465–8. [PubMed: 27536937]

46. Jeong KY, Lee JH, Kim EJ, Lee JS, Cho SH, Hong SJ, et al. Current status of standardization of inhalant allergen extracts in Korea. Allergy Asthma Immunol Res. 2014; 6:196–200. [PubMed: 24843793]

47. Teshima R. Regulation of allergen products in Japan. Arb Paul Ehrlich Inst Bundesinstitut Impfstoffe Biomed Arzneim Langen Hess. 2009; 96:224–9.

48. Larenas-Linnemann D, Cox LS. European allergen extract units and potency: review of available information. Ann Allergy Asthma Immunol. 2008; 100:137–45. [PubMed: 18320915]

49. Zimmer J, Vieths S, Kaul S. Standardization and regulation of allergen products in the European Union. Curr Allergy Asthma Rep. 2016; 16:465–8. [PubMed: 27536937]

50. Focke M, Marth K, Flicker S, Valenta R. Heterogeneity of commercial timothy grass pollen extracts. Clin Exp Allergy. 2008; 38:1400–8. [PubMed: 18564332]

51. Focke M, Marth K, Valenta R, Molecular composition and biological activity of commercial birch pollen allergen extracts. Eur J Clin Invest. 2009; 39:429–36. [PubMed: 19302561]

52. Brunetto B, Tinghino R, Braschi MC, Antonicelli L, Pini C, Iacovacci P. Characterization and comparison of commercially available mite extracts for in vivo diagnosis. Allergy. 2010; 65:184–90. [PubMed: 19796217]

53. Curin M, Reininger R, Swoboda I, Focke M, Valenta R, Spitzauer S. Skin prick test extracts for dog allergy diagnosis show considerable variations regarding the content of major and minor dog allergens. Int Arch Allergy Immunol. 2011; 154:258–63. [PubMed: 20861648]

54. Casset A, Mari A, Purohit A, Resch Y, Weghofer M, Ferrara R, et al. Varying allergen composition and content affects the in vivo allergenic activity of commercial Dermatophagoides pteronyssinus extracts. Int Arch Allergy Immunol. 2012; 159:253–62. [PubMed: 22722650]
55. Twaroch TE, Curin M, Sterflinger K, Focke-Tejkl M, Swoboda I, Valenta R. Specific antibodies for the detection of Alternaria allergens and the identification of cross-reactive antigens in other fungi. Int Arch Allergy Immunol. 2016; 170:269–78. [PubMed: 27780168]

56. Eckl-Dorna J, Klein B, Reichenauer TG, Niederberger V, Valenta R. Exposure of rye (Secale cereale) cultivars to elevated ozone levels increases the allergen content in pollen. J Allergy Clin Immunol. 2010; 126:1315–7. [PubMed: 20674963]

57. Ackaert C, Kofler S, Horejs-Hoeck J, Zulehner N, Asam C, von Grafenstein S, et al. The impact of nitration on the structure and immunogenicity of the major birch pollen allergen Bet v 1.0101. PLoS One. 2014; 9:e104520. [PubMed: 25126882]

58. Erler A, Hawranek T, Krückemeier L, Asam C, Egger M, Ferreira F, et al. Proteomic profiling of birch (Betula verrucosa) pollen extracts from different origins. J Proteomics. 2011; 11:1486–98.

59. Erban T, Harant K, Hubert J. Detailed two-dimensional gel proteomic mapping of the faces of the house dust mite Dermatophagoides pteronyssinus and comparison with D. farinae: reduced trypsin protease content in D. pteronyssinus and different isoforms. J Proteomics. 2017; 162:11–9. [PubMed: 28442447]

60. Ramadour M, Guetat M, Guetat J, El Biaze M, Magnan A, Vervoet D. Dog factor differences in Can f 1 allergen production. Allergy. 2005; 60:1060–4. [PubMed: 15969688]

61. Mattsson L, Lundgren T, Everberg H, Larsson H, Lidholm J. Prostatic kallikrein: a new major dog allergen. J Allergy Clin Immunol. 2009; 123:362–8. [PubMed: 19135239]

62. Sancho AI, van Ree R, van Leeuwen A, Meulenbroek BJ, van de Weg EW, Gilissen LJ, et al. Measurement of lipid transfer protein in 88 apple cultivars. Int Arch Allergy Immunol. 2008; 146:19–26. [PubMed: 18087158]

63. Akkerdaas JH, Wensing M, Knulst AC, Krebitz M, Breiteneder H, de Vries S, et al. How accurate and safe is the diagnosis of hazelnut allergy by means of commercial skin prick test reagents? Int Arch Allergy Immunol. 2003; 132:132–4. [PubMed: 14600425]

64. Schwager C, Kull S, Behrends J, Rückendorf N, Schocker F, Frey A, et al. Peanut oleosins associated with severe peanut allergy-importance of lipophilic allergens for comprehensive allergy diagnostics. J Allergy Clin Immunol. 2017; 140:1331–8. [PubMed: 28342912]

65. Jappe U, Schwager C. Relevance of lipophilic allergens in food allergy diagnosis. Curr Allergy Asthma Rep. 2017; 17:61. [PubMed: 28795292]

66. Swoboda I, Jilek A, Ferreira F, Engel E, Hoffmann-Sommergruber K, Scheiner O, et al. Isoforms of Bet v 1, the major birch pollen allergen, analyzed by liquid chromatography, mass spectrometry, and cDNA cloning. J Biol Chem. 1995; 270:2607–13. [PubMed: 7852325]

67. Ferreira F, Hirtenlehner K, Jilek A, Godnik-Cvar J, Breiteneder H, Grimm R, et al. Dissection of immunoglobulin E and T lymphocyte reactivity of isoforms of the major birch pollen allergen Bet v 1: potential use of hypoallergenic isoforms for immunotherapy. J Exp Med. 1996; 183:599–609. [PubMed: 8627171]

68. Spiric J, Engin AM, Karas M, Reuter A. Quality control of biomedicinal allergen products—highly complex isoallergen composition challenges standard MS database search and requires manual data analyses. PLoS One. 2015; 10:e0142404. [PubMed: 26561299]

69. Chevigne A, Jacquet A. The emerging roles of the protease allergen Der p 1 in house dust mite-induced airway inflammation. J Allergy Clin Immunol. 2018; 142:398–400. [PubMed: 29906529]

70. Reithofer M, Jahn-Schmid B. Allergens with protease activity from house dust mites. Int J Mol Sci. 2017; 18:E1368. [PubMed: 28653989]

71. Sirrac G, Saha B, Mandal RS, Pandey N, Saha S, Gupta Bhattacharya S. Purification, cloning and immuno-biochemical characterization of a fungal aspartic protease allergen Rhi o 1 from the airborne mold Rhizopus oryzae. PLoS One. 2015; 10:e0144547. [PubMed: 26672984]

72. Snelgrove RJ, Gregory LG, Peiró T, Akhtar S, Campbell GA, Walker SA, et al. Alternaria-derived serine protease activity drives IL-33-mediated asthma exacerbations. J Allergy Clin Immunol. 2014; 134:583–92. [PubMed: 24636086]

73. Balenga NA, Klchinsky M, Xie Z, Chan EC, Zhao M, Jude J, et al. A fungal protease allergen provokes airway hyper-responsiveness in asthma. Nat Commun. 2015; 6:6763. [PubMed: 25865874]
74. Hewitt CR, Brown AP, Hart BJ, Pritchard DI. A major house dust mite allergen disrupts the immunoglobulin E network by selectively cleaving CD23: innate protection by antiproteases. J Exp Med. 1995; 182:1537–44. [PubMed: 7595223]

75. Georgitis JW, Reisman RE. Venom skin tests in insect-allergic and insect-nonallergic populations. J Allergy Clin Immunol. 1985; 76:803–7. [PubMed: 3877747]

76. Traidl-Hoffmann C, Mariani V, Hochrein H, Karg K, Wagner H, Ring J, et al. Pollen-associated phytosterones inhibit dendritic cell interleukin-12 production and augment T helper type 2 cell polarization. J Exp Med. 2005; 201:1347.

77. Jacquet A. The role of innate immunity activation in house dust mite allergy. Trends Mol Med. 2011; 17:604–11. [PubMed: 21741880]

78. Van der Veen MJ, Mulder M, Witteman AM, van Ree R, Aalberse RC, Jansen HM, et al. False-positive skin prick test responses to commercially available dog dander extracts caused by contamination with house dust mite (Dermatophagoides pteronyssinus) allergens. J Allergy Clin Immunol. 1996; 98:1028–34. [PubMed: 8977501]

79. Dzoro S, Mittermann I, Resch-Marat Y, Vrtala S, Nehr M, Hirschl AM, et al. House dust mites as potential carriers for IgE sensitization to bacterial antigens. Allergy. 2018; 73:115–24. [PubMed: 28741705]

80. Chakrabarty S, Ekramoddoullah AK, Kisil FT, Sehon AH. Allergens of Kentucky Blue Grass pollen. II. Isolation of hapten-like components from Kentucky Blue Grass pollen by preparative isoelectrofocussing. Int Arch Allergy Appl Immunol. 1980; 63:369–82. [PubMed: 7429651]

81. Spiric J, Reuter A, Rabin RL. Mass spectrometry to complement standardization of house dust mite and other complex allergenic extracts. Clin Exp Allergy. 2017; 47:604–17. [PubMed: 28370618]

82. Casset A, Valenta R, Vrtala S. Allergen content and in vivo allergenic activity of house dust mite extracts. Int Arch Allergy Immunol. 2013; 161:287–8. [PubMed: 23548663]

83. Niemeijer NR, Kaufman HF, van Hove W, Dubois AE, de Monchy JG. Effect of dilution, temperature, and preservatives on the long-term stability of standardized inhalant allergen extracts. Ann Allergy Asthma Immunol. 1996; 76:535–40. [PubMed: 8673689]

84. Gangl K, Niederberger V, Valenta R. Multiple grass mixes as opposed to single grasses for allergen immunotherapy in allergic rhinitis. Clin Exp Allergy. 2013; 43:1202–16. [PubMed: 24152153]

85. Grier TJ, Hall DM, Duncan EA, Gada SM. Allergen stabilities and compatibilities in immunotherapy mixtures that contain cat, dog, dust mite, and cockroach extracts. Ann Allergy Asthma Immunol. 2015; 115:496–502. [PubMed: 26522255]

86. Grier TJ, Hall DM, Duncan EA, Coyne TC. Mixing compatibilities of Aspergillus and American cockroach allergens with other high-protease fungal and insect extracts. Ann Allergy Asthma Immunol. 2015; 114:233–9. [PubMed: 25578248]

87. Marsh DG, Lichtenstein LM, Campbell DH. Studies on “allergoids” prepared from naturally occurring allergens. I. Assay of allergenicity and antigenicity of formalinized rye group I component. Immunology. 1970; 18:705–22. [PubMed: 4192674]

88. Haddad ZH, Marsh DG, Campbell DH. Studies on “allergoids” prepared from naturally occurring allergens. II. Evaluation of allergenicity and assay of antigenicity of formalinized mixed grass pollen extracts. J Allergy Clin Immunol. 1972; 49:197–209. [PubMed: 4622163]

89. Weber M, Niespodziana K, Linhart B, Neubauer B, Huber H, Henning R, et al. Comparison of the immunogenicity of BM32, a recombinant hypoallergenic B cell epitope-based grass pollen allergy vaccine with allergen extract-based vaccines. J Allergy Clin Immunol. 2017; 140:1433–6. [PubMed: 28576673]

90. Ohashi-Doi K, Kito H, Du W, Nakazawa H, Ipsen H, Gudmann P, et al. Bioavailability of house dust mite allergens in sublingual allergy tablets is highly dependent on the formulation. Int Arch Allergy Immunol. 2017; 174:26–34. [PubMed: 28950271]

91. Mascarelle L, Batard T, Cuiné JF, Nony E. The bioavailability of allergens in allergy tablets depends on several factors. Int Arch Allergy Immunol. 2018; 175:252–3. [PubMed: 29414826]

92. Heydenreich B, Bellinghausen I, Lund L, Henmar H, Lund G, Adler Würtzen P, et al. Adjuvant effects of aluminium hydroxide-adsorbed allergens and allergoids—differences in vivo and in vitro. Clin Exp Immunol. 2014; 176:310–9. [PubMed: 24528247]
93. Moingeon P, Lombardi V, Baron-Bodo V, Mascarell L. Enhancing allergen-presentation platforms for sublingual immunotherapy. J Allergy Clin Immunol Pract. 2017; 5:23–31. [PubMed: 28065340]

94. Cox L. Standardized allergen extracts: past, present and future. Expert Rev Clin Immunol. 2005; 1:579–88. [PubMed: 20477599]

95. Turner KJ, Stewart GA, Sharp AH, Czarny D. Standardization of allergen extracts by inhibition of RAST, skin test, and chemical composition. Clin Allergy. 1980; 10:441–50. [PubMed: 7004662]

96. Kaul S, Lüttkopf D, Kastner B, Vogel L, Höltz G, Vieths S, et al. Mediator release assays based on human or murine immunoglobulin E in allergen standardization. Clin Exp Allergy. 2007; 37:141–50. [PubMed: 17210052]

97. Ferreira F, Wallner M, Gadermaier G, Erler A, Fritz G, Glatter O, et al. Physico-chemical characterization of candidate reference materials. Arb Paul Ehrlich Inst Bundesamt Sera Impfstoffe Frankf A M. 2006; 95:75–82.

98. Valenta R, Twardosz A, Vrtala S, Kraft D. Large scale production and quality criteria of recombinant allergens. Arb Paul Ehrlich Inst Bundesamt Sera Impfstoffe Frankf A M. 1999; 93:211–24.

99. Seppälä U, Dauly C, Robinson S, Hornshaw M, Larsen JN, Ipsen H. Absolute quantification of allergens from complex mixtures: a new sensitive tool for standardization of allergen extracts for specific immunotherapy. J Proteome Res. 2011; 10:2113–22. [PubMed: 21241049]

100. Chapman MD, Briza P. Molecular approaches to allergen standardization. Curr Allergy Asthma Rep. 2012; 12:478–84. [PubMed: 22740009]

101. Verdino P, Keller W. Circular dichroism analysis of allergens. Methods. 2004; 32:241–8. [PubMed: 14962758]

102. Anderson MC, Baer H. Immunoblotting of allergenic extracts. Arb Paul Ehrlich Inst Bundesamt Sera Impfstoffe Frankf A M. 1988; 82:95–106.

103. Chapman MD, Heymann PW, Wilkins SR, Brown MJ, Platts-Mills TA. Monoclonal immunoassays for major dust mite (Dermatophagoides) allergens, Der p I and Der f I, and quantitative analysis of the allergen content of mite and house dust extracts. J Allergy Clin Immunol. 1987; 80:184–94. [PubMed: 3611539]

104. Van Ree R. Value of monoclonal antibody-based assays: advantages and drawbacks. Arb Paul Ehrlich Inst Bundesamt Sera Impfstoffe Frankf A M. 1994; 87:127–35.

105. Valenta R, Steinberger P, Laffer S, Dolecek C, Wiedemann P, Flicker S, et al. Cloning allergen-specific antibody fragments (Fabs); tools for allergen standardization and therapy of type I allergy. Arb Paul Ehrlich Inst Bundesamt Sera Impfstoffe Frankf A M. 1997; 91:222–9.

106. Mahler V, Vrtala S, Kuss O, Diepgen TL, Suck R, Cromwell O, et al. Vaccines for birch pollen allergy based on genetically engineered hypoallergenic derivatives of the major birch pollen allergen, Bet v 1. Clin Exp Allergy. 2004; 34:115–22. [PubMed: 14720271]

107. Orego JM, Radin AR, Kamat V, Badiathe A, Ben LH, Bennett BL, et al. Treating cat allergy with monoclonal IgG antibodies that bind allergen and prevent IgE engagement. Nat Commun. 2018; 9:1421. [PubMed: 29650949]

108. Batard T, Didierlaurent A, Chabre H, Mothes N, Bussières B, Bohle B, et al. Characterization of wild-type recombinant Bet v 1a as a candidate vaccine against birch pollen allergy. Int Arch Allergy Immunol. 2005; 136:239–49. [PubMed: 15722633]

109. Zuidmeer-Jongejan L, Huber H, Swoboda I, Rigby N, Versteeg SA, Jensen BM, et al. Development of a hypoallergenic recombinant parvalbumin for first-in-man subcutaneous immunotherapy of fish allergy. Int Arch Allergy Immunol. 2015; 166:46–51. [PubMed: 25765512]

110. Bonertz A, Roberts G, Slater JE, Bridgewater J, Rabin RL, Hoefnagel M, et al. Allergen manufacturing and quality aspects for allergen immunotherapy in Europe and the United States: an analysis from the EAACI AIT Guidelines Project. Allergy. 2018; 73:816–26. [PubMed: 29150848]

111. Canonica GW, Anzotegui JJ, Pawankar R, Schmid-Grendelmeier P, van Hage M, Baena-Cagnani CE, et al. A WAO-ARIA-GA2LEN consensus document on molecular-based allergy diagnostics. World Allergy Organ J. 2013; 6:17. [PubMed: 24090398]
112. Saltabayeva U, Garib V, Morenko M, Rosenson R, Ispayeva Z, Gatauova M, et al. Greater real-life diagnostic efficacy of allergen molecule-based diagnosis for prescription of immunotherapy in an area with multiple pollen exposure. Int Arch Allergy Immunol. 2017; 173:93–8. [PubMed: 28654920]

113. Mothes N, Heinzkill M, Drachenberg KJ, Sperr WR, Krauth MT, Majlesi Y, et al. Allergen-specific immunotherapy with a monophosphoryl lipid A-adjuvanted vaccine: reduced seasonally boosted immunoglobulin E production and inhibition of basophil histamine release by therapy-induced blocking antibodies. Clin Exp Allergy. 2003; 33:1198–208. [PubMed: 12956739]

114. Gadermaier E, Staikuniene J, Scheibelhofer S, Thalhamer J, Kundi M, Westritschnig K, et al. Recombinant allergen-based monitoring of antibody responses during injection grass pollen immunotherapy and after 5 years of discontinuation. Allergy. 2011; 66:1174–82. [PubMed: 21480924]

115. Linhart B, Hartl A, Jahn-Schmid B, Verdino P, Keller W, Krauth MT, et al. A hybrid molecule resembling the epitope spectrum of grass pollen for allergy vaccination. J Allergy Clin Immunol. 2005; 115:1010–6. [PubMed: 15867859]

116. Metz-Favre C, Linhart B, Focke-Tejkl M, Purohit A, de Blay F, Valenta R, et al. Skin test diagnosis of grass pollen allergy with a recombinant hybrid molecule. J Allergy Clin Immunol. 2007; 120:315–21. [PubMed: 17512042]

117. Norman PS, Ohman JL Jr, Long AA, Creticos PS, Gefter MA, Shaked Z, et al. Treatment of cat allergy with T-cell reactive peptides. Am J Respir Crit Care Med. 1996; 154:1623–8. [PubMed: 8970345]

118. Simons FE, Imada M, Li Y, Watson WT, HayGlass KT. Fel d 1 peptides: effect on skin tests and cytokine synthesis in cat-allergic human subjects. Int Immunol. 1996; 8:1937–45. [PubMed: 8982778]

119. Maguire P, Nicodemus C, Robinson D, Aaronson D, Umetsu DT. The safety and efficacy of ALLERVAX CAT in cat allergic patients. Clin Immunol. 1999; 93:222–31. [PubMed: 10600332]

120. Meyer W, Narkus A, Salapatek AM, Häfner D. Double-blind, placebo-controlled, dose-ranging study of new recombinant hypoallergenic Bet v 1 in an environmental exposure chamber. Allergy. 2013; 68:724–31. [PubMed: 23621350]

121. Nony E, Bouley J, Le Mignon M, Lemoine P, Jain K, Horiot S, et al. Development and evaluation of a sublingual tablet based on recombinant Bet v 1 in birch pollen-allergic patients. Allergy. 2015; 70:795–804. [PubMed: 25846209]

122. Sentí G, Crameri R, Kuster D, Johansen P, Martínez-Gomez JM, Graf N, et al. Intralymphatic immunotherapy for cat allergy induces tolerance after only 3 injections. J Allergy Clin Immunol. 2012; 129:1290–6. [PubMed: 22464647]

123. Wood RA, Sicherer SH, Burks AW, Grishin A, Henning AK, Lindblad R, et al. A phase 1 study of heat/phenol-killed, E. coli-encapsulated, recombinant modified peanut proteins Ara h 1, Ara h 2, and Ara h 3 (EMP-123) for the treatment of peanut allergy. Allergy. 2013; 68:803–8. [PubMed: 23621498]

124. Zhu D, Kepley CL, Zhang K, Terada T, Yamada T, Saxon A. A chimeric human-cat fusion protein blocks cat-induced allergy. Nat Med. 2005; 11:446–9. [PubMed: 15793580]

125. Couroux P, Patel D, Armstrong K, Larché M, Hafner RP. Fel d 1-derived synthetic peptide immuno-regulatory epitopes show a long-term treatment effect in cat allergic subjects. Clin Exp Allergy. 2015; 45:974–81. [PubMed: 25600085]

126. Patel D, Couroux P, Hickey P, Salapatek AM, Laidler P, Larché M, et al. Fel d 1-derived peptide antigen desensitization shows a persistent treatment effect 1 year after the start of dosing: a randomized, placebo-controlled study. J Allergy Clin Immunol. 2013; 131:103–9. [PubMed: 22981787]

127. Spertini F, DellaCorte G, Kettner A, de Blay F, Jacobsen L, Jutel M, et al. Efficacy of 2 months of allergen-specific immunotherapy with Bet v 1-derived contiguous overlapping peptides in patients with allergic rhinoconjunctivitis: results of a phase IIb study. J Allergy Clin Immunol. 2016; 138:162–8. [PubMed: 27373329]
128. Kettner A, DellaCorte G, de Blay F, Jacobsen L, Jutel M, Worm M, et al. Benefit of Bet v 1 contiguous overlapping peptide immunotherapy persists during first follow-up season. J Allergy Clin Immunol. 2018; 142:678–680.e7. [PubMed: 29678749]

129. Kinaciyan T, Nagl B, Faustmann S, Frommlet F, Kopp S, Wolkersdorfer M, et al. Efficacy and safety of 4 months of sublingual immunotherapy with recombinant Mal d 1 and Bet v 1 in patients with birch pollen-related apple allergy. J Allergy Clin Immunol. 2018; 141:1002–8. [PubMed: 28870463]

130. Valenta R, Campana R, Focke-Tejk M, Niederberger V. Vaccine development for allergen-specific immunotherapy based on recombinant allergens and synthetic allergen peptides: lessons from the past and novel mechanisms of action for the future. J Allergy Clin Immunol. 2016; 137:351–7. [PubMed: 26853127]

131. Focke-Tejk M, Weber M, Niespodziana K, Neubauer A, Huber H, Henning R, et al. Development and characterization of a recombinant, hypoallergenic, peptide-based vaccine for grass pollen allergy. J Allergy Clin Immunol. 2015; 135:1207–7.e1–11. [PubMed: 25441634]

132. Niederberger V, Marth K, Eckl-Dorna J, Focke-Tejk M, Weber M, Hemmer W, et al. Skin test evaluation of a novel peptide carrier-based vaccine, BM32, in grass pollen-allergic patients. J Allergy Clin Immunol. 2015; 136:1101–3. [PubMed: 26048664]

133. Valenta R, Campana R, Niederberger V. Recombinant allergy vaccines based on allergen-derived B cell epitopes. Immunol Lett. 2017; 189:19–26. [PubMed: 28472641]

134. Cornelius C, Schöneweis K, Georgi F, Weber M, Niederberger V, Ziegelmayer P, et al. Immunotherapy with the PreS-based grass pollen allergy vaccine BM32 induces antibody responses protecting against hepatitis B infection. EBioMedicine. 2016; 11:58–67. [PubMed: 27568223]

135. Swoboda I, Bugajska-Schretter A, Linhart B, Verdino P, Keller W, Schulmeister U, et al. A recombinant hypoallergenic parvalbumin mutant for immunotherapy of IgE-mediated fish allergy. J Immunol. 2007; 178:6290–6. [PubMed: 17475857]

136. Douладries N, Linhart B, Swoboda I, Götötter A, Vassilopoulou E, Stolz F, et al. In vivo allergenic activity of a hypoallergenic mutant of the major fish allergen Cyp c 1 evaluated by means of skin testing. J Allergy Clin Immunol. 2015; 136:493–5. [PubMed: 25746971]

137. Blank S, Bilò MB, Ollert M. Component-resolved diagnostics to direct in venom immunotherapy: important steps towards precision medicine. Clin Exp Allergy. 2018; 48:354–64. [PubMed: 2931065]

138. Gattinger P, Lupinek C, Kalogiros L, Silar M, Zidarn M, Korosec P, et al. The culprit insect but not severity of allergic reactions to bee and wasp venom can be determined by molecular diagnosis. PLoS One. 2018; 13:e0199250. [PubMed: 29940036]

139. Marth K, Focke-Tejk M, Lupinek C, Valenta R, Niederberger V. Allergen peptides, recombinant allergens and hypoallergens for allergen-specific immunotherapy. Curr Treat Options Allergy. 2014; 1:91–106. [PubMed: 24860720]

140. Hofer H, Asam C, Hauser M, Nagl B, Laimer J, Himly M, et al. Tackling Bet v 1 and associated food allergies with a single hybrid protein. J Allergy Clin Immunol. 2017; 140:525–33. [PubMed: 27939703]

141. Villalba M, Rodríguez R, Batanero E. The spectrum of olive pollen allergens. From structures to diagnosis and treatment. Methods. 2014; 66:44–54. [PubMed: 23920474]
145. Twaroch TE, Focke M, Civaj V, Weber M, Balic N, Mari A, et al. Carrier-bound, nonallergenic
Ole e 1 peptides for vaccination against olive pollen allergy. J Allergy Clin Immunol. 2011;
128:178–184.e7. [PubMed: 21513971]

146. Bonura A, Passantino R, Costa MA, Montana G, Melis M, Bondi ML, et al. Characterization of a
Par j 1/Par j 2 mutant hybrid with reduced allergenicity for immunotherapy of Parietaria allergy.
Clin Exp Allergy. 2012; 42:471–80. [PubMed: 22356145]

147. Curin M, Weber M, Thalhamer T, Swoboda I, Focke-Tejkl M, Blatt K, et al. Hypoallergenic
derivatives of Fel d 1 obtained by rational reassembly for allergy vaccination and tolerance
induction. Clin Exp Allergy. 2014; 44:882–94. [PubMed: 24552249]

148. Fujimura T, Fujinami K, Ishikawa R, Tateno M, Tahara Y, Okumura Y, et al. Recombinant fusion
allergens, Cry j 1 and Cry j 2 from Japanese Cedar Pollen, conjugated with polyethylene glycol
potentiate the attenuation of Cry j 1-specific IgE production in Cry j 1-sensitized mice and
Japanese cedar pollen allergen-sensitized monkeys. Int Arch Allergy Immunol. 2015; 168:32–43.
[PubMed: 26524293]

149. Chen KW, Blatt K, Thomas WR, Swoboda I, Valenta P, Valenta R, et al. Hypoallergenic Der p
1/Der p 2 combination vaccines for immunotherapy of house dust mite allergy. J Allergy Clin
Immunol. 2012; 130:435–43. [PubMed: 22789398]

150. Niespodziana K, Focke-Tejkl M, Linhart B, Civaj V, Blatt K, Valenta P, et al. A hypoallergenic cat
vaccine based on Fel d 1-derived peptides fused to hepatitis B PreS. J Allergy Clin Immunol.
2011; 127:1562–70. [PubMed: 21411130]

151. Martínez-Gómez JM, Johansen P, Rose H, Steiner M, Senti G, Rhyner C, et al. Targeting the
MHC class II pathway of antigen presentation enhances immunogenicity and safety of allergen
immunotherapy. Allergy. 2009; 64:172–8. [PubMed: 19076537]

152. Nilsson OB, van Hage M, Grönlund H. Mammalian-derived respiratory allergens—implications
for diagnosis and therapy of individuals allergic to furry animals. Methods. 2014; 66:86–95.
[PubMed: 24041755]

153. Nilsson OB, Neimert-Andersson T, Bronge M, Grundström J, Sarma R, Uchtenhagen H, et al.
Designing a multimer allergen for diagnosis and immunotherapy of dog allergic patients. PLoS
One. 2014; 9:e111041. [PubMed: 25353166]

154. Vinzón SE, Marino-Buslje C, Rivera E, Biscoglio de Jiménez Bonino M. A naturally occurring
hypoallergenic variant of vespid Antigen 5 from Polybia scutellaris venom as a candidate for
allergen-specific immunotherapy. PLoS One. 2012; 7:e41351. [PubMed: 22844463]

155. Kussebi F, Karamloo F, Rhyner C, Schmid-Grendelmeier P, Salagianni M, Mannhart C, et al. A
major allergen gene-fusion protein for potential usage in allergen-specific immunotherapy.
J Allergy Clin Immunol. 2005; 115:323–9. [PubMed: 15696088]
Figure 1.
Steps in the production and quality control of allergen extracts.
Table 1
Advantages and disadvantages of methods for the quality control of allergen extracts

Method	Advantage	Disadvantage
Measurement of protein contents (quantitative by nitrogen determination, qualitative by SDS-PAGE)	Advantage: Measures amount/quality of proteins, applicable to denatured allergen extracts	Disadvantage: Does not identify allergen molecules and does not discriminate between allergenic and nonallergenic components in extracts; does not inform about immunogenicity
Determination of IgE reactivity and allergenic activity (IgE reactivity, basophil activation, skin testing)	Advantage: Measures IgE reactivity and allergenic activity of an extract	Disadvantage: Does not identify allergen molecules and does not discriminate between allergenic and nonallergenic components in extracts; does not inform about immunogenicity
Mass spectrometry	Advantage: Identifies allergen-derived materials according to characteristic mass	Disadvantage: Not suited for exact quantification, cannot discriminate between complete IgE-reactive allergens and nonallergenic allergen-derived materials such as allergen fragments/peptides, does not inform about immunogenicity
Circular dichroism, size exclusion	Advantage: Determine the fold of proteins and their aggregation behavior	Disadvantage: Usually only suitable for purified proteins, do not inform about IgE reactivity and allergenic activity, do not provide quantitative information, do not inform about immunogenicity, and not applicable to denatured allergen extracts
ELISA for quantification of allergens	Advantage: Allows quantifying of individual allergens	Disadvantage: Not available for each of the allergens, difficulty to discriminate between allergen isoforms and allergen-derived materials, does not necessarily measure IgE reactivity and allergenic activity, does not inform about immunogenicity, not applicable to denatured allergen extracts
Qualitative allergen detection (e.g., immunoblotting)	Advantage: Visualizes the presence of allergens in an extract with specific antibody probes	Disadvantage:
Does not allow a quantification of allergens, does not identify nonallergenic materials/contaminants, does not inform about allergenic activity or immunogenicity

	Immunization
Advantage	Informs about the immunogenicity of allergen extracts and denatured allergen extracts regarding the induction of allergen-specific IgE and IgG antibodies on immunization of animals, applicable also for denatured/modified allergen extracts
Disadvantage	Does not allow quantifying individual allergens, does not identify allergens, does not inform about IgE reactivity and allergenic activity of the extract; results obtained for certain animals (e.g., inbred mouse strains) do not necessarily reflect immunization of humans, may induce cross-reactive antibodies reacting also with other allergen sources

Safety and stability assays (chemical, biological)

| Measurement of endotoxins and foreign nucleic acids: mandatory for *in vivo* use in humans, useful to determine contents of endotoxins, foreign nucleic acids, and immunomodulatory substances |
| Sterility tests: mandatory for *in vivo* use in humans, prevent administration of potentially infectious materials to humans |
| Toxicity tests: *in vivo* and *in vitro* tests (single-dose, repeated-dose, genotoxicity studies) to determine toxic effects, mandatory for *in vivo* use in humans, prevent administration of potentially toxic and mutagenic materials to humans |
| Stability tests: tests measuring the stability of the active ingredients in an extract (allergens, modified allergens) to ensure the desired activity, mandatory for *in vivo* use in humans, useful to prevent the administration of material with reduced or lost activity |

ELISA, Enzyme-linked immunosorbent assay; *SDS-PAGE,* sodium dodecyl sulfate polyacrylamide gel electrophoresis.
Table II

Advantages and disadvantages of natural allergen extracts and recombinant/synthetic allergen molecules

Natural allergen extracts	Advantages	Disadvantages/limitations
	• Preparation without extensive purification steps	• May contain nonallergenic components with different properties
	• Contain several allergens of the allergen source	• May be contaminated with allergens from other sources
	• Often reflect the allergen contents of the natural allergen sources	• May present variable contents and ratios of allergens
	• Are already on the market with old authorizations	• May present batch-to-batch variations due to manufacturing procedures and raw materials
	• Known to allergologists as traditional products	• May be unstable and degrade
		• Contents cannot be fully influenced by the manufacturer but are determined by the raw material
		• Do not provide molecular information when used for diagnosis
		• May cause allergic reactions on administration
		• May not fulfill modern regulatory requirements for medicinal products
		• May contain infectious materials
	Recombinant/synthetic allergen molecules	
	Advantages	Possible disadvantages
	• Pure proteins/peptides of defined properties and quality	• Require knowhow
	• Manufactured according to good manufacturing practice	• Require modern recombinant or synthetic production process
	• Can be produced in defined amounts and concentrations in reproducible manner	• Require new market authorization and clinical studies
	• Fulfill regulatory requirements for medicinal products, modern drugs, and vaccines	
	• Allergenic, immunogenic, and tolerogenic properties are predefined	
	• Allow specific targeting of immune mechanisms (eg, IgG induction, tolerance induction)	
	• Allow patient-tailored treatment	
	• Multiple advantages when used for diagnosis (ie, identification of culprit allergen molecules, revealing cross-reactivity, providing molecular profiles)	
	• Provide detailed diagnostic test information	
	• Production is independent of allergen raw materials	
	• Can be produced at costs comparable to natural allergen extracts	
	• Biologically safe due to GMP production	
• Need to produce different components

GMP, Good manufacturing practice.
Table III
Clinical trials with recombinant allergens, recombinant allergen derivatives and synthetic allergen-derived peptides

Molecules/approximate timeframe	Description of the vaccine	Study design and clinical trial number	References
AllervaxCAT, 1996-1999	Two Fel d 1-derived peptides of 27 amino acids	SCIT, DBPC	117, 118, 119
Bet v 1 trimer, Bet v 1 fragments, 2000-2001	Hypoallergenic recombinant derivatives of Bet v 1	Phase II, SCIT/DBPC	24
rPh p 1, rPh p 2, rPh p 5a + b, rP h p 6, 2002-2013	Recombinant grass pollen allergen cocktail	Phase II, SCIT/DBPC, NCT00671268, NCT00309036	25
Folding variant of Bet v 1, 2002-2013	Hypoallergenic recombinant folding variant of the major birch pollen allergen (rBet v 1-FV)	Phase III, SCIT/DBPC, NCT00266526, NCT00354983, NCT00841516	28, 120
rBet v 1, 2002-2008	Comparison of rBet v 1 with nBet v 1 and birch pollen extract for SCIT in birch pollen allergic patients	Phase II, SCIT/DBPC, NCT00410930	26
rBet v 1 tablets, 2006-2013	r Bet v1 administered as sublingual tablets in birch pollen allergic subjects	Phase II, SLIT, DBPC, NCT00901914, NCT00396149, NCT00889460	121
ILIT with MAT-Fel d 1, 2008-2010	Intralymphatic immunotherapy for cat allergy	Phase I, NCT00718679	122
Ara h 1, Ara h 2, and Ara h 3, 2009-2013	Rectal application of E. coli-encapsulated, recombinant modified peanut proteins Ara h 1, Ara h 2, and Ara h 3	Phase I, safety study, NCT00850668	123
Fcγ1-Fel d 1 fusion protein, 2011-2014	Intradermal, human Fcγ1-Fel d 1 fusion protein	Safety study, NCT01292070	124
BM 32, 2012-2017	Hypoallergenic recombinant vaccine for immunotherapy of grass pollen allergy consisting of derivatives of the 4 major grass pollen allergens, phl p 1, phl p 2, phl p 5, and phl p 6	Phase IIa and 2 phase IIb studies, SCIT/DBPC, NCT01350635, NCT01538979, NCT02643641	30, 31
ToleroMuneCat, 2012-2016	Fel d 1-derived synthetic peptides for induction of tolerance in cat allergic patients	Phase III, intradermal/DBPC, NCT01620762	125, 126
AllerT, 2012-2015	Bet v 1-derived contiguous overlapping peptides	Phase IIb, SCIT/DBPC, NCT01720251, NCT02143583, NCT02271009, NCT02396680	32, 127, 128
Sublingual immunotherapy of birch pollen-associated apple allergy, 2012-2016	Recombinant Mal d 1	Single-center, double-blind, placebo-controlled explorative study, NCT01449786	129
FAST-Fish, 2013-2015	SCIT for fish allergy based on the subcutaneous application of mutated parvalbumin (rCyp p 1)	Phase IIa, NCT02017626	109
ToleroMune Grass, 2014-2016	Short peptides from grass pollen allergens	Phase IIb/III started intradermal/DBPC, NCT02955727, NCT02161107	121
ToleroMune HDM, 2014-2016	Short peptides derived from house dust mite allergens	Phase II, intradermal/DBPC, NCT02150343	126
ToleroMune Ragweed, 2014-2016	Short peptides from Amb a 1	Phase II, NCT02061709, NCT02396680	126

DBPC: Double-blind, placebo-controlled; HDM, house dust mite; SCIT, subcutaneous immunotherapy.