OrienTel - Multilingual access to interactive communication services for the Mediterranean and the Middle East

Rainer Siemund¹, Barbara Heu², Khalid Choukri², Ossama Emam³, Emmanuel Maragoudakis³, Herbert Tropf³, Oren Gedge⁶, Sherrie Shammass⁶, Asunción Moreno⁷, Albino Nogueiras Rodriguez⁷, Imed Zitouni⁷, Dorota Iskra⁷

¹ Philips Speech Processing, ² ELDA, ³ IBM, ⁴ University of Patras, ⁵ Siemens, ⁶ Natural Speech Communication, ⁷ Universitat Politècnica de Catalunya, ⁸ Lucent Technologies, ⁹ SPEX

1 Philips Speech Processing, 2 ELDA, 3 IBM, 4 University of Patras, 5 Siemens, 6 Natural Speech Communication, 7 Universitat Politècnica de Catalunya, 8 Lucent Technologies, 9 SPEX

c/o Rainer Siemund, Philips Speech Processing, Kackerstr. 10, D-52072 Aachen, Germany
rainer.siemund@philips.com
http://www.orientel.org

Abstract

OrienTel is a project funded within the European Commission’s IST framework that focuses on collecting linguistic data for telephony-based IT applications across the Mediterranean and the Middle East. Languages covered in this SpeechDat-based project are Cypriot Greek, Turkish, Hebrew, different varieties of Arabic, French, English and German. Within the project’s lifetime of 30 months, starting in September 2001, OrienTel will produce a set of 22 databases, develop dialect adaptation techniques, conduct research into multilingual acoustic modelling and deploy two demonstrators as a proof of concept.

1. Introduction and goal of the paper

Like all other members of the SpeechDat family of data collections, OrienTel is driven by an international industrial and academic consortium.¹ This time the co-ordinator is Philips Speech Processing, the other participants being ELDA, IBM, Knowledge, the University of Patras, Siemens, NSC, Universitat Politècnica de Catalunya, and Lucent Technologies. OrienTel resembles previous SpeechDat-like undertakings insofar as the recordings are supposed to serve the broadest possible application areas, ranging from simple command and control services to unified messaging, information retrieval, customer care, banking, WAP and service portals. It is different from previous projects, however, as it takes SpeechDat to a variety of non-European languages such as Arabic, Hebrew and Turkish, which require far-reaching adaptations to database design and annotation standards. The aim of the present paper is to introduce the broad setup of OrienTel, give an account of the present status of database design, and to call for a joint effort in producing language resources for the Mediterranean and the Middle East.

2. Commercial and technological settings

The OrienTel region presents a very heterogeneous picture both from a technological and a commercial point of view. In terms of purchasing power measured in US$ per capita, the potential OrienTel countries range from Yemen's 304 to the United Arab Emirates' 16,800. In terms of the telecommunications infrastructure, the fixed line teledensity ranges again from Yemen's 1.4 per cent coverage to Cyprus' 54 per cent, the number of mobile service subscribers from virtually zero for Syria to 7,871,500 in Egypt (CIT Publications 2000). State of the art technology in many of the Gulf States stands in sharp contrast to the outmoded systems installed in countries such as Yemen or Syria. Largely due to such infrastructural and commercial considerations, the OrienTel consortium chose nine out of a potential set of 19 countries between Morocco in the West and the Gulf States in the East. The countries treated in OrienTel so far are depicted in Table 1:

Country	Partner
UAE	Philips
Saudi Arabia	Lucent
Israel/Palestine	NSC
Egypt	IBM
Tunisia	UPC/ELDA
Morocco	ELDA/UPC
Turkey	Siemens
Cyprus	Knowledge/Patras Univ.

Table 1: OrienTel countries and partners

More countries may follow in case new partners decide to join the project.

3. Linguistic settings

From a linguistic point of view, too, the OrienTel region is far more diverse than any region covered in previous projects of a similar scope such as the various members of the SpeechDat-family or SpeeCon (Siemund et al. 2000, cf. also http://www.speecon.com). In order to treat the linguistic peculiarities of the area adequately, OrienTel follows a different strategy than previous SpeechDat projects. As Table 1 shows, each partner in the consortium is not responsible for a single language but for a whole country. The difference is an important one,
mainly because of the country’s colonial, protectorate or migration history, the most prominent foreign languages in the region are French, English and, for different reasons, German. On the one hand, collecting data of this kind will ensure true multilinguality of applications in the OrienTel countries. On the other hand, French, English and German services already under operation in the EU can be adapted to foreign accent variation.

6. Demonstrator development

In order to show that the multilinguality approach taken in OrienTel is feasible, the project will produce two demonstrator applications. The exact kind of services will be specified at a later stage of the project. Considerations will, however, take into account the convergence of internet, WAP and voice for service portals, unified messaging, customer care applications, directory assistance and banking. The two demonstrators will reflect...
two different types of services and will account for two different linguistic regions.

7. Dissemination of information and results

In order to keep the speech recognition community informed about the OrienTel efforts, the project will contribute to scientific discussions concerning the languages of the OrienTel region at conferences, in publications and through relevant mailing lists. It will furthermore continuously update the project’s website with information on OrienTel activities and publish the results (cf. section 9 below). The 22 databases will be made publicly available through the European Language Resources Association (ELRA) in due course after the project has ended.

8. Database specification

Due to the linguistic heterogeneity of the region, questions of database specification such as corpus composition, orthographic and phonetic transcription strategies constitute a crucial part of the project. Particularly Arabic and Hebrew pose interesting problems for speech recognition that were never tackled in projects of the OrienTel scale before. Cases in point are the rendering of vowels, the right-to-left writing system and the transcription of oral or colloquial speaking styles. While at the time of writing the present paper a few design details are still under discussion (the design phase is due for completion before the LREC2002 conference starts), some of the cornerstones can already be reported at the present stage.

8.1. Recording scenarios and platforms

All OrienTel databases will be recorded from fixed and mobile networks via ISDN lines and multiple channels, i.e. either through a Basic Rate Interface or a Primary Rate Interface (cf. Senia 1998). A dialogue will be implemented by the application driving the recordings. The dialogues will be designed to make the caller speak and act comfortably.

8.2. Corpus and vocabulary

Data collections will rely on three separate sets of prompt sheets, namely one each for

- the ‘foreign’ languages in Arabic-speaking countries, i.e. English and French, including Turkish, Greek, Hebrew and German
- Modern Standard Arabic
- Modern Colloquial Arabic

While the specifications for English, French, Greek and German are largely based on previous SpeechDat projects and SpeeCon, the design for Arabic and Turkish presents a novelty. All three sets of prompt sheets, however, contain the following items, though in varying quantities with at least 47 items per sheet:

- isolated digits
- digit and number strings
- natural numbers
- currency amounts
- yes/no questions
- dates
- times
- application keywords and phrases
- word spotting phrase using embedded application words
- directory assistances names (proper names, place names, company names)
- spellings
- phonetically rich words and sentences
- spontaneous utterances

8.3. Transcription and annotation

The OrienTel transcription and annotation conventions are largely based on conventions used by the Linguistic Data Consortium and ARPA in producing the ATIS CD-ROMs and the simplifications made for the SpeechDat predecessors of this project, and SpeeCon. The goal of the specification document that is currently being drafted is to define a coarse transcription that can be performed quickly, but covers adequately the acoustic events most important for the training and testing of automatic speech recognisers. The transcription is orthographic (cf. the lexicon section below for phonetic renderings) and includes a few markers representing audible acoustic events (speech and non-speech) present in the corresponding waveform files. The phoneme symbol set aims at the localisation of the main acoustic events according to a coarse categorisation rather than a full description of all possible sounds that may appear during a recording. Extra marks contained in the transcription aid in interpreting the text form of the utterance; markers for non-speech acoustic events and distortions have been chosen such that they can be automatically removed or modified to yield the base transcription. The overall aim is to keep as much speech in the corpus as possible and to avoid the need for deleting recordings from the corpus due to some extra noises, disfluencies, etc. All items for all languages covered will be transcribed in standard orthography and will be romanized in the label files. A Sampa transliteration will be generated and discussed with the Department of Phonetics and Linguistics at UCL (cf. http://www.phon.ucl.ac.uk/home/sampa/home.htm) if need be. Administrative information on speech files and their properties will be stored in SAM files (cf. http://www.icp.grenet.fr/Relator/standsam.html).

8.4. Specification of speakers

The number of speakers to be recorded is 2000 per country. This number is distributed between the set of databases to be collected. Table 4 on the following page shows the minimum number of speakers per country and recorded language. A maximum overlap of 15% in the total number of speakers per country between the different databases is allowed.

3 Cf. http://www.ldc.upenn.edu/, http://www.arpa.gov/, and http://www.atis.org, respectively.
Each gender must be recorded in each environment. Between 650 and 750 of them should be in the database; e.g., if there are 1000 speakers in the database, between 65 to 75% of the total number of speakers in each partner in the LSP documentation. The distribution of speakers over dialect regions refers to the colloquial varieties of the language. Speech specific cases should be documented in the LSPs. The specific number of dialects relevant to each country should be discussed in the LSP documentation.

8.4.1. Gender

The distribution of male and female speakers should be 50% each per database, with an allowed deviation of 5% for the whole database per language. There is no gender restriction for “Age” and “Dialect.” For “Environment”, the gender distribution must be 30-70% for each sub-category.

8.4.2. Age

Table 5 presents the distribution of speaker age:

Age	16-30	31-45	46-60
Proportion	≥ 30%	≥ 20%	≥ 10%
Requirement	Mandatory	Mandatory	Mandatory

8.4.3. Dialect

Many (though not all) of the languages spoken in the OrienTel regions are not the speaker’s actual mother tongue. In such cases, we consider a person who spent most of his/her childhood, or who grew up in the concerned region, as having no foreign accent. Language-specific cases should be documented in the LSPs.

The specific number of dialects relevant to each country should be discussed in the LSP documentation. The distribution of speakers over dialect regions refers only to the colloquial varieties of the language. Speech should be collected from a minimum of three different dialect regions (if possible), with at least 20 speakers recorded for each defined dialect.

The speaker’s dialectal region is determined by asking the question “in which district did you grow up” or “where did you spend most of your childhood”, not the question “where do you live”. The allocation of city/district names to the corresponding dialect region can be determined according to the information provided by each partner in the LSP documentation.

8.4.4. Distribution of environments

The speaker distribution for the mobile network should be between 65 to 75% of the total number of speakers in the database: e.g., if there are 1000 speakers in the database, between 650 and 750 of them should be recorded through the mobile network. At least 30% of each gender must be recorded in each environment.

Country	Colloquial	Standard	Business
Morocco	1000	500	500
Tunisia	1000	500	500
Egypt	1000	500	500
UAE	1000	500	500
Saudi Arabia	1000	500	500
Turkey	-	1700	300
Israel	500	500	1000
Cyprus	1000	-	1000

Table 4: Number of speakers per database

Table 6: Distribution of recording environments

8.5. Specification of the lexicon

The lexicon is an alphabetically ordered table of distinct lexical items that occur in the corpus with the corresponding pronunciation information. Each distinct word should have a separate entry, which will be laid down in the order orthography ⟷ frequency ⟷ transliteration (for Arabic and Hebrew) ⟷ phonetic transcription ⟷ variants (optional).

The lexicon is derived from the annotated database and is set up as follows:

- Standard Language: Arabic & Hebrew script, both vocalized and not vocalized.
- European languages: Latin script
- Colloquial Language: Region specific Arabic script (same as in orthographic annotations)
- Acronyms such as “IBM” should appear as complete words in the lexicon, i.e. as letters with no spaces in between. The reason is that there are often different ways of pronouncing them (spelled and expanded).

The phonetic alphabet used will be SAMPA, and is thus case-sensitive. While a Hebrew SAMPA alphabet is currently under negotiation for standardization as part of the SpeeCon project, OrienTel will make an effort to further standardize Arabic and Turkish SAMPA alphabets. Sampa symbols for each language are defined in the language-specific documents accompanying each database and are considered as a standard set of phonemes for that language.

9. Disclaimer and Contact

Since the specifications outlined in this document are still being discussed at present and are thus still subject to revision, the latest state of the OrienTel art can always be gathered from the continuously updated OrienTel website at http://www.orientel.org. The co-ordinators of the project can be contacted either via the internet pages or through rainer.siemund@philips.com.
10. References

CIT Publications (2000). Telecommunications markets in the Middle East. Exeter: CIT Publications.

Höge, H., C. Draxler, H. van den Heuvel, F.T. Johansen, E. Sanders, H. Tropf (1999). Speechdat multilingual speech databases for teleservices: Across the finish line. In Proceedings of EUROspeech '99, vol. 6 (pp. 2699–2702). Budapest: ESCA.

Höge, H., H. Tropf (1996). SpeechDat (M) Final Report (D06/D07). Available from http://www.speechdat.org.

Moreno, A., B. Lindberg, C. Draxler, G. Richard, K. Choukri, S. Euler, J. Allen (2000a). SpeechDat-Car. A large speech database for automotive environments. In Second International Conference on Language Resources and Evaluation. Proceedings vol. II (pp. 895–900). Athens: ELRA.

Moreno, A. R. Comeyne, K. Haslam, H. v. d. Heuvel, H. Högë, S. Horbach, G. Micca (2000b). SALA: SpeechDat across Latin America. Results of the first phase. In Second International Conference on Language Resources and Evaluation. Proceedings vol. II (pp. 877–882). Athens: ELRA.

Pollak, P., J. Cernocky, J. Boudy, K. Choukri, H. v.d. Heuvel, K. Vicsi, A. Virag, R. Siemund, W. Majewski, J. Sadowski, P. Staroniewicz, H. Tropf, J. Kochanina, A. Ostrouchov, M. Rusko, M. Trnka (2000). SpeechDat(E) - Eastern European Telephone Speech Databases. In Proceedings LREC’2000 Satellite workshop XLDB - Very large Telephone Speech Databases, 29 May 2000 (pp. 20–25). Athens: ELRA.

Rabiner L.R., and B. Juang (1989). A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. In IEEE Transactions on Acoustics, Speech and Signal Processing 77(2), 257–286.

Senia, F., I. Chatzi (1997), Installation of the recording device and documentation. Deliverable SD2.1 of the SpeechDat II project LE2-4001-SD2.1. Available from http://www.speechdat.org/speechdat/deliverables/public/SD21V22.doc.

Siemund R., H. Höge, S. Kunzmann, and Marasek K., (2000). SpeeCon - speech data for consumer devices. Second International Conference on Language Resources and Evaluation. Proceedings vol. II (pp. 883—886). Athens: ELRA.