INTRODUCTION

Macrophytes are aquatic and amphibious plants found in the littoral zones of running waters (eg. rivers, streams, and the like) and shallow lakes contributing largely to the autotrophic carbon pool and oxygen budget of the aquatic ecosystem (Janauer & Dokulil, 2006). These plants have a significant function in water biocenoses, hydrology and sediment dynamics, biochemical cycles, structuring and altering the physico-chemical features (of an aquatic ecosystem) by photosynthesis, mineralization, and decomposition (Jeppesen et al., 2002; Joniak et al., 2007; Spoljar et al., 2012). Macrophytes have diverse species of microalgae attached to submerged plant parts which have been shown to be an important productive component of the aquatic ecosystem (Sheldon & Boyle, 1975). Algal epiphytes form a matrix system of microalgae and cyanobacteria attached to submerged aquatic macrophytes. These algae are regarded as primary species in different lotic water systems and are involved in maintaining ecological balance among the different groups of macrophytes and aquatic organisms (Hassan et al., 2014; Fawzy, 2016). It is widely recognized that these organisms supply food to invertebrates, fish, and in other aquatic fauna in the littoral zone and contributes an estimated of 0.2% to 41% of the total primary production in an aquatic ecosystem (Laugaste & Kuumamen, 2005; Effiong & Inyang, 2015). Several observational and experimental studies on ecological status of water showed an increase in the population and diversity of algal epiphytes in response to nutrient loading and pollution (Gil et al., 2006; Peterson et al., 2007; Fawzy, 2016). This led to the consideration of these organisms as excellent bioindicators of environmental and water quality alterations because of its sensitivity to external sources of pollution (Lowe, 1996; Fawzy, 2016). Species of algal epiphytes associated with organically polluted enriched waters include Euglena, Phacus, Nitzschia, Chlorella, Synechococcus, Cryptoglena, Tetradesmus, Chlamydomonas, Cladophora, and Closterium (Effiong & Inyang, 2015). The biological interconnection and relationship between algal epiphytes and host aquatic macrophyte in the aquatic environment are still limited and incompletely studied (Wetzel, 1996). Several reports suggested that biotic and abiotic factors such as physico-chemical characteristics of submerged parts (stem, leaves and roots) of macrophytes, availability of substrates, temperature, light intensity and grazing affects the diversity and prevalence of epiphytic algal community (Gil et al., 2006; Fawzy, 2016). Aquatic macrophytes are sometimes detrimental for algal epiphytes since they are capable of monopolizing light and assimilate nutrients within the vertical expanse of the water column, inhibiting algal epiphytes as well as other submerged macrophytes from acquiring enough resources for growth and survival (Schramm & Jirka, 1989). Moreover, morphology of several macrophyte species, specifically the length of stem and leaves, may limit the growth and proliferation of algal epiphytes by releasing inhibitory substances (allelochemicals) (Tunca et al., 2014). Thus, development of algal epiphyton community as well as its distribution and abundance depend largely on macrophyte host species. On the other hand, in situations where there is an evident increased in algal epiphyte population, it is observed that there is a reduction in the total macrophyte biomass density due to restriction in nutrient diffusion from the water to host plant (Fawzy, 2016). In the Philippines, taxonomic studies of algal epiphytes associated to different macrophytes were done only to those plant species inhabiting Laguna de Bay (Rañola et al., 1990; Arguelles, 2019 a,b,c; Arguelles, 2020a). To date, a total of 82 taxa of algal epiphytes associated with four dominant aquatic macrophytes (Hydrilla verticillata, Nymphaea pubescens, Eichhornia crassipes and Ipomoea aquatica) found in Laguna de Bay were documented in in the Philippines. These taxonomic surveys reported the occurrence of five rare microalgae – namely, Cryptoglena skajae Marin and Melkonian, Pseudanabaena minima (G.S. An) Anagnostidis, Synechococcus nidulans (Pringsheim) Komárek, Chroococcus schizodermaticus West and Francea amphihricha (Lagerheim) Hegewald – for the first time in the Philippines. Also, some of the microalgal genera documented in these taxonomic studies (eg. Cryptoglena, Tetradesmus, Nitzschia, Euglena, Chroococcus, Oscillatoria, Phacus and Chlorella) are usually associated with organically polluted enriched waters (Arguelles, 2019 a,b,c; Arguelles, 2020a). These algal epiphytes are regarded as good indicators of environmental changes and water quality due to their sensitivity to external sources of fertilization which can be use in the assessment of ecological status of Laguna de Bay (Arguelles, 2020a). The taxonomic records reported in these studies provided baseline information regarding distribution and diversity of Philippine epiphytic algae from aquatic macrophytes found in local freshwater habitat. Diversity and ecological studies of epiphytic microalgae of different aquatic macrophytes found in running waters (such as rivers and streams) in the Philippines remain poorly understood. To date, no documented taxonomic survey was conducted on these group of macrophytes. Thus, additional taxonomic survey of algal epiphytes of different aquatic macrophytes found in these aquatic ecosystems are needed to deepen our understanding of the diversity and
ecological roles of these microorganisms. The goal of this investigation is to account the species diversity of algal epiphytes associated to different aquatic macrophytes observed in Sta. Cruz River, one of the 21 major tributary rivers of Laguna de Bay. Also, morpho-taxonomic description of each algal taxa were documented together with a brief description of the sampling sites and natural environment of its existence.

MATERIAL AND METHODS

Study Site

Sta. Cruz River is considered as one of the main branch rivers of Laguna de Bay. It lies at 14.3001°N and 121.4068°E, specifically within the municipalities of Liliw, Magdalena, Nagcarlan, Pagsanjan, Pila, and Sta. Cruz (Figure 1). The river is measured to be approximately 14.48 km in length, flowing towards Laguna de Bay. Currently, the principal use of this river is for fishery and agriculture (with coconut and rice production, livestock, poultry, and piggery raising as main activities). This body of water is known to be a receptacle for floodwaters coming from its small tributary rivers such as Maimpis river, Liliw river, San Diego river, Tipacan river, and Talabebeng river (Madamba et al., 1992).

Sampling and Specimen Preparation of Epiphytic Algae

A single preliminary collection of algal epiphytes from submerged aquatic macrophytes was done from the littoral zone of Sta. Cruz River. The plant parts were put into sterile autoclavable plastics filled with water for laboratory examination. A total of 20 aquatic macrophyte samples (each for Pistia stratiotes, Eichhornia crassipes and Ipomoea aquatica) were collected and analyzed throughout the study period. Immediately after collection, these samples were washed several times with sterile distilled water throughout the study period. Immediately after collection, these samples were washed several times with sterile distilled water. The algal epiphytes from submerged leaves, stems and roots on the collected aquatic macrophytes were set apart from the plant by gently scraping the attached algae on the plant material (Zimba & Hopson, 1997; Arguelles, 2021a,b,c). The collected scraped algal epiphyte were carefully mixed, and a portion of 50 mL was kept for taxonomic enumeration. The mixed algal epiphyte sample was transferred into a sterile beaker and left overnight to allow settling of the scraped algal samples. An aliquot of 45 mL of the liquid specimen was removed in the beaker after the settling period. The residual 5 mL of the collected scraped material was transferred into a sterile drum vial for taxonomic enumeration of algal epiphytes and were preserved using 2-3 drops of Lugol’s iodine from the prepared specimens (Urtermohl, 1958: Arguelles et al., 2014; Tunca et al., 2014; Arguelles, 2019a,b,c; Arguelles, 2020b; Arguelles, 2021a,b,c). A small portion (5 mL) of the concentrated scraped epiphytic algal samples was used for the analysis of diatom flora. The scraped samples were chemically digested following the standard procedure for diatom cleaning and slide preparation of Round et al., 1990). Mixtures of cleaned diatoms were dried onto glass coverslips and mounted. Three slides were prepared for each aquatic macrophyte sample for microscopic observation and enumeration of diatoms. The preserved algal specimens and diatom slides were kept as voucher specimens at the Philippine National Collection of Microorganisms, National Institute of Molecular Biology and Biotechnology (BIOTEC), University of the Philippines Los Baños (UPLB), College, Laguna, Philippines.

RESULTS AND DISCUSSION

Epiphytic algal flora of three dominant aquatic macrophyte (P. stratiotes, E. crassipes and I. aquatica) observed in Sta. Cruz River consisted of 22 taxa. Of these, 8 belong to the Chlorophyta, 4 to the Cyanobacteria, 3 to the Bacillariophyta, and 3 to the Euglenophyta divisions. Chlorophyta was dominant and comprised 36.36% of all recorded taxa. Bacillariophyta, Cyanobacteria and Euglenophyta represented 31.81%, 18.18% and 13.63% of all recorded taxa, respectively. The taxonomic list of the algal epiphytes determined in Sta. Cruz River is given in Table 1. All the taxa are systematically enumerated with morpho-taxonomic descriptions along with a simple habitat information where the alga was observed. Illustrative photomicrographs of some of the algal species are given in Plates I-IV. Currently accepted algal taxonomic names were used based on the recent nomenclatural indices for algae of the International Association of Plant Taxonomy (IAPT) and Round et al. (1990).

Dichotomous Key

1. Cells without membrane-bound organelles ... 2
2. Cells with membrane-bound organelles ... 5
3. Unicellular and spherical occurring as singly or in clusters of 2 to 4 cells ... Chroococcus minutus
4. Filamentous occurring as single or in groups of trichomes 3
5. Filamentous cyanobacteria exhibiting true branching Hapalosiphon welwitschii
6. Filamentous cyanobacteria not exhibiting true branching 4

4. Trichomes are straight and 5.0–7.0 μm wide Oscillatoria tenus
7. Trichomes are straight, cylindrical and 6.0–8.5 μm wide Planktothrix compressa

5. Cells with siliceous cell wall.. 6
6. Cells without siliceous cell wall .. 12
7. Cells radial in nature ... 7
8. Cells bilateral in nature .. 8
9. Cells grow in linear colonies joined by spines ... Aulacoseira granulata
10. Cells are not capable of forming linear colonies and without linking spines ... Cyclotella meneghiniana

8. Cells with sigmoid shape in appearance ... Gyrosigma acuminatum
9. Cells without sigmoid shape in appearance ... Gyrosigma obtusatum

11. Valves linear not inflated in the median part Nitzschia palea
12. Valves linear-elliptical and inflated in median part 11

11. Valves with linear-arched central area Cymbella affinis
12. Valves are linear-elliptical and inflated in median part ... Rhopalodia gibba

13. Cells with red eyespot and proteinacious pellicle 13
14. Cells without red eyespot and proteinacious pellicle 15
15. Cells with membrane ... 14
16. Cells without membrane .. 14

16. Cells with membrane ... 16
17. Cells are crescent shaped .. 18
18. Cells not crescent shaped .. 20
19. Cells spherical (10-13 μm in diameter) Chlorococcum infusionum
20. Cells spherical or ellipsoidal (2-5 μm in diameter) Chlorella vulgaris

21. Cells with ellipsoidal ... 21
22. Cells with spherical (10-15 μm in diameter) ... Westella botryoides

Figure 1 Location map of Sta. Cruz River and its vicinities.

Arguelles and Monsalud et al., 2021
Table 1: Distribution of epiphytic algae on dominant aquatic macrophytes from Sta. Cruz River (Laguna, Philippines).

Algal Species	Dominant Aquatic Macrophytes		
	Water Lettuce (Pistia stratiotes)	Water Hyacinth (Eichhornia crassipes)	Water Spinach (Ipomoea aquatica)
Cyanobacteria			
Class Cyanophyceae			
Order: Chroococcales			
Family: Chroococcales			
Chroococcus minutus (Kützing) Nägeli	+	+	+
Order: Oscillatoriales			
Family: Oscillatoriaceae			
Oscillatoria tenuis C. Agardh ex Gomont	+	+	+
Family: Microcoleaceae			
Planktothrix compressa (Utermöhl) Anagnostidis et Komárek	+		
Order: Nostocales			
Family: Hapalosiphonaceae			
Hapalosiphon welwitschii West & G.S.West	+		
Chlorophyta			
Class Trebouxiiaceae			
Order: Chlorellales			
Family: Chlorellaceae			
Chlorella vulgaris Beyerinck [Beijerinck]	+		
Family: Chlorococcaceae			
Chlorococcum infusionum (Schrank) Meneghini	+	+	+
Family: Hydrodictyaceae			
Lacunastrium gracillimum (West & G.S. West) H. McManus	+		
Class: Chlorophyceae			
Order: Sphaeropleales			
Family: Scenedesmaceae			
Scenedesmus quadricauda (Turpin) Brébisson	+	+	+
Westella botryoides (West) De Wildeman	+		
Order: Sphaeropleales			
Family: Selenastraceae			
Kirchneriella lunaris (Kirchner) Möbius	+	+	+
Ankistrodesmus falcatus Corda (Ralfs)	+	+	+
Class: Conjugatophyceae (Zygnematophyceae)			
Order: Desmidiales			
Family: Desmidiaceae			
Staurastrum gracile Ralts ex Ralts	+		
Bacillariophyta			
Class: Bacillariophyceae			
Order: Bacillariaceae			
Family: Bacillariaceae			
Nitzschia palea (Kützing) W. Smith	+	+	+
Order: Naviculales			
Family: Naviculaceae			
Gyrosigma acuminatum (Kützing) Rabenhorst	+	+	+
Order: Cymbellales			
Family: Cymbellaceae			
Cymbella affinis Kützing	+		
Order: Rhopalodiales			
Family: Rhopalodiaceae			
Rhopalodia gibba (Ehrenberg) O. Müller	+		
Order: Licmophorales			
Family: Ulnariaceae			
Ulnaria ulna (Nitzsch) Compère	+		
Class: Stephanodiscophyceae			
Order: Stephanodiscales			
Family: Stephanodiscaceae			
Cyclotella meneghiniana Kützing	+	+	+
Class: Coscinodiscophyceae			
Order: Aulacoseirales			
Family: Aulacoseiraceae			
Aulacoseira granulata (Ehrenberg) Simonsen	+		
Euglenophyta			
Class: Euglenophyceae			
Order: Euglenales			
Family: Phacaceae			
Phacus longicauda (Ehrenberg) Dujardin	+		
Lepocinclis acus (O.F. Müller) B. Marin and Melkonian	+	+	+
Family: Euglenaceae			
Genus: Trachelomonas			
Trachelomonas armata (Ehrenberg) F. Stein	+		

* = Present
Taxonomic Enumeration of Algal Epiphytes

Cyanobacteria
Class: Cyanophyceae
Order: Chroococcales
Family: Chroococcaceae
Genus: Chroococcus Nägeli
1. *Chroococcus minutus* (Kützing) Nägeli
 Pl. I, Fig. 1
 BASIONYM: *Protococcus minutus* Kützing
 Cells spherical or irregularly spherical usually occurring as single or in cluster of 2-4 cells, bluish green to light green in color; colonies enclosed in an amorphous, colorless, homogenous mucilage diffusent at the margin; 5.0-7.0 μm in diameter with sheath and 3.0-5.0 μm in diameter without sheath; protoplast is smooth or slightly granulated.
 Found existing as a brownish green layer associated on stems and roots of water lettuce and water hyacinth together with other green microalgae and filamentous cyanobacteria.

Class: Cyanophyceae
Order: Oscillatoriales
Class: Cyanophyceae
Genus: *Oscillatoria* Vaucher ex Gomont
1. *Oscillatoria tenuis* C. Agardh ex Gomont
 Pl. I, Fig. 2
 BASIONYM: *Lyngbya compressa* Utermöhll 1925
 SYNONYM: *Oscillatoria compressa* (Utermöhll) Geitler 1925
 Filaments occurring as planktonic, solitary and without mucilaginous sheaths; trichomes are cylindrical (6.0-7.5 μm wide), dark blue green to brownish in color, cross-walls are slightly constricted and attenuated towards the ends without false branching. Cells are shorter than wide and with few aerotopes. Apical cells widely rounded and not capitated. Specialized cell such as heterocytes and akinetes are absent.
 A new record for the Philippines.
 Found existing as a brownish green layer on leaves of water lettuce and water hyacinth submerged slightly in water together with several filamentous cyanobacteria.

Class: Cyanophyceae
Order: Nostocales
Family: Spirulinaeae
Genus: *Planktothrix* K. Agnagnostidis & J. Komárek
1. *Planktothrix compressa* (Utermöhll) Anagnostidis et Komárek
 Pl. I, Fig. 3
 BASIONYM: *Lyngbya compressa* Utermöhll 1925
 SYNONYM: *Oscillatoria compressa* (Utermöhll) Geitler 1925
 Filaments occurring as planktonic, solitary and without mucilaginous sheaths; trichomes are cylindrical (6.0-7.5 μm wide), dark blue green to brownish in color, cross-walls are slightly constricted and attenuated towards the ends without false branching. Cells are shorter than wide and with few aerotopes. Apical cells widely rounded and not capitated. Specialized cell such as heterocytes and akinetes are absent.
 A new record for the Philippines.
 Found existing as a greenish layer on leaves of water lettuce submerged in water together with several filamentous green algae and cyanobacteria.

Class: Cyanophyceae
Order: Nostocales
Family: Chroococcaceae
Genus: *Hapalosiphon* Nägeli ex É. Bornet & C. Flahault
1. *Hapalosiphon welwitschii* West & G.S. West
 Pl. I, Fig. 4
 Cells are elongate and sub-spherical; dark green to bluish green in color, 1.0-2.0 μm in length and 2.0-3.0 μm in width, characterized with protoplam that are smooth, septa of each cell is granulated, terminal end cells usually rounded; trichomes are in one series exhibiting true branches along the filament, anterior end cell is not capitated and attenuated; gelatinous sheaths are colorless and thin; and lateral branches are usually shorter than the main filament.
 Found existing as a greenish to blue green layer on stem and leaves of water spinach submerged in water together with other green algae and cyanobacteria.

Bacillariophyta
Class: Bacillariophyceae
Order: Bacillarales
Family: Bacillaraceae
Genus: *Nitzschia* Hassall
1. *Nitzschia palea* (Kützing) W. Smith
 Pl. I, Fig. 5
 BASIONYM: *Synedra palea* Kützing
 Valves are linear lanceolate tapering rapidly at the terminal poles with protracted round to capitate apices. Fibulae with central nodule are discrete and with striae that are slightly visible (18.0-24.0 striae in 10.0 μm). Valve mantle wider on keel side; 25.0–45.0 μm (length) and 4.0–8.0 μm (width), costae is 9.0-15.0 μm.
 Found existing as a brownish layer on submerged roots and leaves of water hyacinth and water spinach together with other filamentous fungi and diatoms.

Class: Bacillariophyceae
Order: Naviculales
Family: Pleurosigmaeaceae
Genus: *Gyrosigma* Hassall
1. *Gyrosigma acuminatum* (Kützing) Rabenhorst
 Pl. I, Fig. 6
 BASIONYM: *Frustulina acuminata* Kützing
 Valves are slender and sigmoid in shape with terminal ends that are rounded. The raphe is central and follows an S-shaped appearance. Cells are large 65.0-147.0 μm in length and 11.0-20.0 μm in width. Middle area of the cell is oval, not rotated. The cells have two chloroplasts plate-like in appearance. Striae on the valve surface are both parallel and transverse to the raphe.
 Found existing as a brownish layer on leaves and stem of water hyacinth and water spinach submerged in water together with cyanobacteria and green algae.

Plate I. Photomicrographs of (1) *Chroococcus minutus* (Kützing) Nägeli, (2) *Oscillatoria tenuis* C. Agardh ex Gomont, (3) *Planktothrix compressa* (Utermöhll) Anagnostidis et Komárek, (4) *Hapalosiphon welwitschii* West & G.S.West, (5) *Nitzschia palea* (Kützing) W. Smith, (6) *Gyrosigma acuminatum* (Kützing) Rabenhorst. All scale bars = 10 μm.

Class: Bacillariophyceae
Order: Cymbellales
Family: Cymbellaceae
Genus: *Cymbella* C. Agardh
1. *Cymbella affinis* Kützing
 Pl. II, Fig. 1
 Cells are solitary and naviculoid; cell length is 21.5–28.0 μm and breadth of 6.0–8.0 μm. Valves are lanceolate with protracted to slightly subciliate and subciliate terminal ends. Cells have narrow axial area and central area that is linear-arched, and indistinct; striae are 8–11 for every 10 μm.
 Found existing as a brownish layer on leaves and stem of water spinach submerged in water together with filamentous fungi and cyanobacteria.

Class: Bacillariophyceae
Order: Rhopalodiales
Family: Rhopalodiaceae
Genus: *Rhopalodia* O. Müller
1. *Rhopalodia gibba* (Ehrenberg) O. Müller
 Pl. II, Fig. 2
 BASIONYM: *Navicula gibba* Ehrenberg
 Frustules with swollen middle and are bracket in shape (valve view), apices are sharply bent with convex margin; in girdle view, valves linear-elliptical, inflated in median part with rounded poles; valves 45.5–53.5 μm long and 11.5–15.0 μm broad; ventral margin are usually straight and curve at the ends while the dorsal margin is convex; striae slightly radiate to parallel; striae 14-16 in 10 μm.
 Found existing as a brownish layer on stem and leaves of water hyacinth submerged in water together with several filamentous cyanobacteria and green microalgae.

Class: Bacillariophyceae
Order: Licmophorales
Family: Ulnariaceae
Genus: Ulnaria (Kützing) Compère
1. Ulnaria ulna (Nitzsch) Compère
 BASIONYM: Bacillaria ulna Nitzsch
 Valves are linear-lanceolate to linear with blunt rostrate to sub-rostrate terminal ends. Cell length is usually 91.0-192.0 µm and width of 4.5-8.5 µm. Central area is characterized by having roughly square outline (sometimes circular or elliptical outline) extending to the margin of the valves. Ghost striae are noticeable within the central area of the cell. Striae are parallel and usually 7-9 for every 10 µm.
 Found existing as a brownish layer on stems and leaves of water lettuce submerged in water together with other unicellular and filamentous fungi as well as cyanobacteria.
 Class: Coscinodiscophyceae
 Order: Aulacoseirales
 Family: Ulnariaceae

Genus: Ankistrodesmus Corda
1. Ankistrodesmus falcatus Corda (Ralfs)
 BASIONYM: Microstarias falcatus Corda
 Cells are solitary or sometimes in clustered bundles or in tufts or mixed with other microscopic algae, lacking a mucilage envelope, cells are crescent-shaped and needle-like in appearance; 21.0-33.0 µm in length and 2.0-4.0 µm in width; narrowly tapering toward the anterior and posterior end, sometimes straight but majority of the times occurring as curved rods; parietal chloroplast with pyrenoid.
 Found existing as a dark greenish layer on stem and leaves of water lettuce submerged in water together with filamentous fungi and cyanobacteria.

Class: Chlorophyta
Order: Trebouxiophyceae
Family: Scenedesmaceae
Genus: Scenedesmus Meyen
1. Scenedesmus quadricauda Chodat
 BASIONYM: Achnanthes quadricauda Turpin
 Cells oblong to spherical in shape (5.0-6.0 µm in length and 1.0-3.0 µm in width); parietal chloroplasts are present with a solitary pyrenoid; cells usually occur in parallel attached adjacent to each other (organized linearly in groups); inner cells of the coenobium are usually without spines while the terminal cells with two spiny projections.
 Found existing as a light green layer on stems of water spinach and water lettuce submerged in water together with other filamentous cyanobacteria.
 Class: Chlorophyceae
 Order: Sphaeropleales
 Family: Scenedesmaceae

Genus: Westella Meyen
1. Westella botryoides (West) De Wildeman
 BASIONYM: Tetracoccus botryoides West
 Colonies occurring usually in 4-6 celled coenobia (10.0-15.0 µm in diameter). Cells spherical but are flat and are in contact with other cells in the colony, 3.0-8.0 µm in diameter, with smooth cell walls. Cells are uninucleated with single parietal chloroplast and a pyrenoid. Usually assemble to form irregular colonies (compound colonies to over 100 cells with 90.0-110.0 µm in diameter).
 Found existing as a brownish layer on leaves of water hyacinth submerged slightly in water together with several cyanobacteria.
 Class: Trebouxio phyceae
 Order: Chlorellales
 Family: Scenedesmaceae

Genus: Chlorella Beyerinck [Beijerinck]
1. Chlorella vulgaris Beyerinck [Beijerinck]
 BASIONYM: Chlorella pyrenoidosa var. duplex (Kützing)
 Cells are 2.0-5.0 µm in diameter, symmetrical; chloroplast band-shaped or lobed; pyrenoid is solitary associated with starch grains; cell reproduction is by formation of autospores released by rupture from the mother cell wall.
 Found existing as a brownish layer on stem and leaves of water spinach submerged slightly in water together with other filamentous fungi and cyanobacteria.
 Class: Trebouxio phyceae
 Order: Chlorellales
 Family: Chlorellaceae

Genus: Chlorococcum Meneghini
1. Chlorococcum infusionum (Schrank) Meneghini
 SYNONYM: Chlorococcum humicola (Nägeli) Rabenhorst 1868
 BASIONYM: Cystococcus humicola Nägeli
 Spherical cells with a diameter of 10.0-13.0 µm, solitary but sometimes several cells form a cluster of greenish cells, parietal chloroplasts with a single pyrenoid covering the cells.
Found existing as a light greenish layer on stem and leaves of water hyacinth and water spinach submerged in water together with several filamentous blue green algae.

Class: Trebouxiophyceae
Order: Chlorodiales
Family: Hydrodictyaceae
Genus: Lacunastrum H. McManus
1. *Lacunastrum gracilimum* (West & G.S. West) H. McManus
BASIONYM: *Pediastrum duplex var. gracilimum* (Kützing)
Coenobia is composed of 8.0-16.0 cells (100.0–110.0 μm in diameter); marginal cells are morphologically similar or with two processes that are horn-like in appearance. Cell walls are characterized as smooth. Marginal cells of the coenobium are 16.0–21.0 μm long. 14.0–18.0 μm in diameter; inner cells 13.0–19.0 μm long, 16.0–22.0 μm in diameter.
Found existing as a greenish layer on stem and leaves of water hyacinth submerged in water together with other filamentous green algae and cyanobacteria.

Plate III. Photomicrographs of (1) *Ankistrodesmus falcatus* Corda (Ralfs), (2) *Scenedesmus quadricauda* Chodat, (3) *Westella botryoides* (West) De Wildeman, (4) *Chlorella vulgaris* Beyerinck [Beijerinck], (5) *Chlorococcum infusionum* (Schräk) Meneghini, (6) *Lacunastrum gracilimum* (West & G.S. West) H. McManus. All scale bars = 10 μm.
Class: Conjugatophyceae (Zygnematophyceae)
Order: Desmidiales
Family: Desmidaceae
Genus: Staurastrum Meyen ex Ralfs
1. *Staurastrum gracile* Ralfs ex Ralfs
BASIONYM: *Pl. IV, Fig. 1*
Cells are small to large with 13.0-54.0 μm in length and 21.0-107.0 μm in width; shallow median constriction (isthmus) is present where semicell walls overlap, usually occurring in two intergrading cell morphologies. Single stellate (lobed) chloroplasts (end view), with one or several pyrenoid. Reproduction is by cell division and formation of semicell typical of desmids.
Found existing as a brownish green layer on stem and leaves of water lettuce submerged slightly in water together with other filamentous fungi and cyanobacteria.

Euglenophyta
Class: Euglenophyceae
Order: Euglenales
Family: Phacacae
Genus: Phacus Dujardin
1. *Phacus longicauda* (Ehrenberg) Dujardin
BASIONYM: *Euglena longicauda* Ehrenberg
Cells are solitary, elliptic and broadly flattened (71.5 μm × 43.5 μm); anterior end is broadly rounded while the terminal end are tapering into a long caudal (nearly straight or slightly curved usually 20.0 - 25.0 μm long); numerous small discoid chloroplasts; single paramylon grain lies at the center; spirally striated pellicle; eyespot is present.
Found existing as a light greenish layer on stem and leaves of water spinach submerged slightly in water together with other cyanobacteria.

Plate IV. Photomicrographs of (1) *Staurastrum gracile* Ralfs ex Ralfs, (2) *Phacus longicauda* (Ehrenberg) Dujardin, (3) *Lepocinclis acus* (O.F. Müller) B. Marin and Melkonian, (4) *Trachelomonas armata* (Ehrenberg) F. Stein
BASIONYM: *Pantotrichum armatum* Ehrenberg
Cells are always solitary, and protoplasts are highly metabolic and are loosely enclosed in a firm gelatinous shell (forica). Loricca broadly ovoid, (27.4 μm × 23.0 μm); presence of (4-6) spines at the posterior end of the cell; apical pore of the cell encircled with low collar; parietal chloroplasts which may or may not have pyrenoids; single emergent flagellum can be observed in an aperture.
Found existing as a brownish green layer on stem and leaves of water lettuce submerged slightly in water together with other filamentous fungi and cyanobacteria.

In the Philippines, little is known on the distribution, taxonomy and diversity of cyanobacteria and microalgae associated with aquatic macrophytes found in marine and freshwater ecosystems. A total of 22 epiphytic algal taxa from three dominant aquatic macrophyte (*Pistia stratiotes, Eichhornia crassipes* and *Ipomoea aquatica*) found in Sta. Cruz River were observed in the study. The taxonomic list present 8 taxa belonging to the Chlorophyta, 4 to the Cyanobacteria, 1 to the Bacillariophyta, and 3 taxa to the division Euglenophyta. This study reported and described for the first time in the Philippines the existence of *Planktothrix compressa* (Utermöhl) Anagnostidis et Komárek, a rare cyanobacteria first reported in submerged roots of *Pistia stratiotes* found in Sta. Cruz River. One species is also reported here for the first time in the Philippines based on recent algal taxonomic nomenclature and this is *Ulnaria ulna* (Nitzsch) Compère that is based on the former name of *Synedra ulna* (Nitzsch) Ehrenberg. In general, it was observed that the consortium of algal mats in submerged stem, leaves and roots of the dominant macrophytes are composed mainly of unicellular and filamentous type of the eukaryotic algae and cyanobacteria as well as other filamentous fungi. The algal groups observed on the macrophytes have been recorded to be similar in other taxonomic studies done for macrophytes in aquatic ecosystems found in the Philippines and other countries (Rañola et al., 1990; Sultana et al., 2004; Arguelles, 2019 a, b). Algal epiphytes associated with a macrophyte, *Vallisneria americana* in St. John Rivers in Florida (USA) documented a total of 122 taxa of algal epiphytes wherein thirteen genera (*Cyclorella, Nitzschia, Synedra (Ulmaria), Rhopalodia, Ankistrodesmus, Lacunastrum (Pediastrum), Chlorella, Oscillatoria, Chlorococcum, Scenedesmus, Chlorella, Euglena and Trachelomonas*) were observed to be similar to the taxa reported on the current investigation (Dunn et
According to the taxonomic survey done in this study shows diverse collection of microalgae and cyanobacteria associated with aquatic macrophytes found in Philippine freshwater ecosystem. Among these taxa, the existence of a rare filamentous hytotelmata from Calauan, Laguna (Philippines) such as dissolved oxygen, pH, light, and temperature must have been responsible for the wider distribution of algal epiphytes in the freshwater system. The taxonomic survey done in this study is important to further understand the ecological state of the river.

CONCLUSION

The taxonomic survey done in this study shows diverse collection of microalgae and cyanobacteria associated with aquatic macrophytes found in Philippine freshwater ecosystem. Among these taxa, the existence of a rare filamentous cyanobacteria, Planktothrix compressa, and filamentous diatoms such as dissolved oxygen, pH, light, and temperature must have been responsible for the wider distribution of algal epiphytes in the freshwater system. The taxonomic survey done in this study is important to further understand the ecological state of the river.

Acknowledgments: The authors are thankful to the National Institute of Molecular Biology and Biotechnology (BIOTECH), University of the Philippines Los Baños for the financial support of the study.

REFERENCES

Arguelles, E.D.L.R. (2021a). Phytomorphology of Pandan [Pandanus amaryllifolius Roxb.] (Pandanaceae) leaf axil tanks from Laguna (Philippines). Tropical Natural History, 21(1), 167-183.

Arguelles, E.D.L.R. (2021b). Unseen microalgal diversity – phytomorphata in Neoregelia spp. L.B. Smith (Bromeliaceae) from florists wholesalers in Laguna, Philippines. Philippine Journal of Science, 150(1), 123-137.

Arguelles, E.D.L.R. (2021c). First taxonomic records of epizoic freshwater algae on Golden apple snails (Pomacea canaliculata Lamarck) from rice paddies in Laguna (Philippines). Philippine Journal of Science, 150(4), 829-844.

Arguelles, E.D.L.R. (2020a). Species composition of algal epiphyton of Pink Lotus (Nymphaea pubescens Willd) found in Laguna de Bay (Philippines). Walailak Journal of Science and Technology, 17(3), 257-256. https://doi.org/10.4304/wjst.2020.5015

Arguelles, E.D.L.R. (2020b). Microalgae of pineapple (Ananas comosus (L.) Merr) phytomorphata from Calauan, Laguna (Philippines). Philippine Journal of Science, 149(3), 589-602.

Arguelles, E.D.L.R. (2020c). Morphophytometric study of algal epiphytes from Ipomoea aquatica Wal. (Convolvulaceae) found in Laguna de Bay (Philippines). Pertanika Journal of Tropical Agricultural Science, 42(2), 817-832.

Arguelles, E.D.L.R. (2019b). Systematic study of some epiphytic algae (diatoms) on the submerged parts of water hyacinth (Eichhornia crassipes Mart.) from Lipa City, Batangas Province, Philippines. Philippine Journal of Science, 30(1), 1-21. https://doi.org/10.23115/phi.2019.30.1.1

Arguelles, E.D.L.R. (2019c). Descriptive study of some epiphytic algae growing on Hydroila verticillata (Lf.) Royle (Hydrocharitaceae) found in the shallow freshwater lake, Laguna de Bay (Philippines). Egyptian Journal of Aquatic Biology and Fisheries, 23(2), 81-94. https://doi.org/10.21688/ejabf.2019.23900

Arguelles, E.D.L.R., & Monsalud, R.G. (2017). Morphoxonomy and diversity of terrestrial microalgae and cyanobacteria in biological crusts of soil from paddy fields of Los Baños, Laguna (Philippines). Philippine Journal of Systematic Biology, 11(2), 25-36. https://doi.org/10.26757/pjsb.2017b1016

Arguelles, E.D.L.R. (2016). Morphoehematoxonomic account of epiphytic microalga and cyanobacteria in Los Baños, Laguna (Philippines). IAMURE International Journal of Environmental Conservation, 22, 29-32. https://doi.org/10.7718/ijes.v17i1.1061

Arguelles, E.D.L.R., Martínez-Goss, M.R., & SHIN, W. (2014). Some noteworthy photosynthetic euglenophytes from Laguna and vicinities. The Philippine Scientist, 51, 1-36.

Asmachev, T. V. (1993). Phycology. I.C.R.A. Monograph on Algae.

Dunn, A.E., Dobberfuhr, D.R., & Casamatta, D.A. (2008). A survey of algae from Vallisneria americana Michx. (Hydrocharitaceae) in the Lower St. Johns River, Florida. Southeastern Naturalist, 7(2), 229–244. https://doi.org/10.1656/1528-7092-8007-20087229-angej2.0.co;2

Fawzy, M.A. (2016). Spatial distribution of epiphytic algae growing on the aquatic macrophytes Phragmites australis and Eichhornia crassipes at Assiut-Egypt. Mini Science Betin Botany Section, 27(2), 1-26.

Gil, M., Armitage, A.R., & Fourquerean, J.W. (2006). Nutrient impacts on epifaunal density and species composition in a subtropical seagrass bed. Hydrobiologia, 569, 437–447. https://doi.org/10.1007/s10750-006-0147-7

International Association of Plant Taxonomy (Taxon-LAP). (2020). Nomenclatural Indices and Repositories. https://www.uaapglobal.org/indices-and-repositories.

Hassan, F.M., Salman, J.M., Alkam, F.A., & Jawad, H.J. (2014). Ecological observations on epiphytic algae in Euphrates River at Hindya and Manthara, Iraq. International Journal of Advance Research, 2, 1183-1194.

Jaffong, K. S., & Doku, S. (2006). Macrophytes and algae in running waters. In: G. Ziglio, M., Siligardi, & G. Flaim (Eds.), Biological Monitoring of Rivers, Chichester (pp. 89-109) John Wiley and Sons. https://doi.org/10.1002/0470863781.ch6

Jeppesen, E., Søndergaard, M., Søndergaard, M., Christoffersen, K., Theil-Nielsen, J., & Jørgensen, K. (2022). Cascading trophic interactions in the littoral zone: an enclosure experiment in shallow Lake Stigsholm, Denmark. Fundamental and Applied Limnology – Archiv für Hydrobiologie, 153, 533–555. https://doi.org/10.1127/archiv-hydrobiol/153/2002/533

John, D.M., Tsarenko, P.M. (2011). Order Chlorococcales, In: D.M. John, B.A. Whittom, & A.J. Brook, (Eds.), The freshwater algal flora of the British Isles, An identification guide to freshwater and terrestrial algae (pp. 327-409). Cambridge University Press.

Joniai, T., Kuczyńska-Kippen, N., & Nagengast, B. (2007). The role of aquatic macrophytes in microbially transformation of physical-chemical features of small water bodies. Hydrobiologia, 584, 101–109. https://doi.org/10.1007/s10750-007-0595-8

Klaassen, M., & Notel, B.A. (2007). The role of herbivorous water birds in aquatic systems through interactions with aquatic macrophytes, with special reference to the Bewick’s Swan – Fennel Pondweed system. Hydrobiologia, 584: 205-213. https://doi.org/10.1007/s10750-007-0591-x

Kamirek, M. (2005). Cyanoprokaryota, II. Teil Oscillatoriales, Band 19/2, Süßwasserflora von Mitteleuropa. Elsevier.

Lautgaste, R., & Ruemann, M. (2005). The composition and density of epiphyte in some macrophyte species in the partly meromictic Lake Lerevi. Hydrobiologia, 547(5), 137-150. https://doi.org/10.1007/s10750-005-4155-9

Lowe, R.L. (1996). Periphyton partitums in lakes. In: J.R. Stevenson, M.L. Bothwell, & R.L. Lowe (Eds.), Algal Ecology. Freshwater Benthic Ecosystems, (pp. 57-76) Academic Press. https://doi.org/10.1016/0978-012668450-6-50032-1

Madamba, L.S.P., Galapate, R.P., Decena, A.M., & Canasurana, V.P. (1992). Pollution load contribution of Sta. Cruz River to Laguna de Bay. Philippine Journal of Science, 121(2), 161-180.

Martínez, M.R. (1984). A checklist of blue-green algae of the Philippines. National Institute of Molecular Biology and Biotechnology (BIOTECH)-University of the Philippine Los Baños.

McGregor, G., Fabbro, L.D., & Lobgeiber, J.S. (2007). Freshwater planctonic Cyanoflagellidae (Cyanoprokaryota) from North-Eastern Australia; a morphological evaluation. Nova Hedwigia, 84(3/4), 299-331. https://doi.org/10.1127/0029-5305/2007/0084-0299

Mollenhauer, D., Bödel, B., & Mollenhauer, R. (1994). Approaches to species delimitations in the genus Nostoc Vaucher 1803 ex Bornet et Flahault 1888. Algalogical Studies, 73, 189–209. https://doi.org/10.1016/S0168-1645(94)80002-4

Murphy, B.J., Franke, B.M., & Zasemský, I.C. (2007). Response of seagrass epiphyte loading to field manipulations of fertilization, gastropod grazing and leaf turnover rates. Journal of Experimental Marine Biology and Ecology, 349, 61-72. https://doi.org/10.1016/j.jembe.2007.04.012

Prescott, G.W. (1962). Algae of the western great lakes area, Dubuque, Iowa, Wm. C. Brown Co. Publishers.
Rañola, M.C.G., Zafaralla, M.T., & Valmonte, R.A.D. (1990). A preliminary investigation on the epiphyton of Eichhornia crassipes (Mart.) Solm. roots in Laguna de Bay. UP Los Baños Journal, 1(1), 53-67.

Round, P.E., Crawford, R.M., & Mann, D.G. (1990). The Diatoms: Morphology and Biology of the Genera. Cambridge: Cambridge University Press. https://doi.org/10.1017/s0025315400059245

Santos-Borja, A., & Nepomuceno, D.N. (2003). Experience and Lessons learned brief for Laguna de Bay, Philippines [Paper Presentation], Lake Basin Management Initiative ILEC/LakeNet Regional Workshop for Asia: Sharing Experience and Lessons Learned in Lake Basin Management, Manila, Philippines.

Schramm, H.L., & Jirka, K.J. (1989). Epiphytic macroinvertebrates as a food resource for bluegills in Florida lakes. Transactions of the American Fisheries Society, 118, 416-426. https://doi.org/10.1577/1548-8659(1989)118%3C0416:EMAAFR%3E2.CO;2

Sheldon, R.B., & Boylen, C.W. (1975). Factors affecting the contribution by epiphytic algae to the primary productivity of an oligotrophic freshwater lake. Applied Microbiology, 30(4), 657-667. https://doi.org/10.1128/am.30.4.657-667.1978

Spojar, M., Fresol, J., Dražina, T., Meseljević, M., & Grčić, Z. (2012). Epiphytic metazoa on emergent macrophytes in oxbow lakes of the Krapina River, Croatia: differences related to plant species and limnological conditions. Acta Botanica Croatica, 71(1), 125–138. https://doi.org/10.2478/v10184-011-0062-5

Sultana, M., Asaeda, T., Manatunge, J., & Ablimit, A. (2004). Colonisation and growth of epiphytic algal communities on Potamogeton perfoliatus under two different light regimes. New Zealand Journal of Marine and Freshwater Research, 38, 585-594. https://doi.org/10.1080/00288330.2004.9517264

Tunca, H., Ongun Sevindik, T., Nur Bal, D., & Arabaci, S. (2014). Community structure of epiphytic algae on three different macrophytes at Acafar floodplain forest (northern Turkey). Chinese Journal of Oceanology and Limnology, 32(4), 847-857. https://doi.org/10.1007/s00343-014-3205-4

Utermöhl, H. (1958). Zur Vervollkommnung der quantitativen Phytoplankton Methodik. Mitteilung Internationale Vereinigung fuer Theoretische und Angewandte Limnologie, 9, 1-38. https://doi.org/10.1080/05384680.1958.11904091

Velasquez, G.F. (1962). The blue green-algae of the Philippines. Philippine Journal of Science, 91(3), 267-380.

Wetzel, R.W. (1996). Benthic algae and nutrient cycling in lentic freshwater ecosystem. In: R.J. Stevenson, M.L. Bothwell, & R.L. Lowe (Eds.). Algal Ecology: freshwater benthic ecosystem. (pp. 641-667) Academic Press. https://doi.org/10.1016/b978-012668450-6/50049-7

Whitton, B.A. (2011). Phylum Cyanobacteria (Cyanophyta). In: D.M. John, B.A. Whitton, and A.J. Brook (Eds.). The freshwater algal flora of the British Isles. An identification guide to freshwater and terrestrial algae. (pp. 31-158), Cambridge University Press.

Zafaralla, M.T. (1998). Microalgae of Taal Lake. Bicutan, Taguig, Metro Manila. National Academy of Science and Technology.

Zimba, P.V., & Hopson, M.S. (1997). Quantification of epiphyte removal efficiency from submerged aquatic plants. Aquatic Botany, 58(2), 173-179. https://doi.org/10.1016/S0304-3770(97)00002-8