Association between Subclinical Atherosclerosis Markers and the Level of Accumulated Advanced Glycation End-Products in the Skin of Patients with Diabetes

Hiroyo Ninomiya¹, Naoto Katakami¹, ², Ihoko Sato¹, Saeko Osawa¹, Yuichi Yamamoto¹, Mitsuyoshi Takahara¹, ³, Dan Kawamori¹, Taka-aki Matsuoka¹ and Iichiro Shimomura¹

¹Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
²Department of Metabolism and Atherosclerosis, Osaka University Graduate School of Medicine, Osaka, Japan
³Department of Diabetes Care Medicine, Osaka University Graduate School of Medicine, Osaka, Japan

Aim: The level of accumulated advanced glycation end-products (AGEs) in the skin has been shown to predict the risk of complications in patients with diabetes mellitus (DM). Recently, the level of accumulated fluorescent AGEs in the skin has become measurable as skin autofluorescence (skin AF) using a non-invasive apparatus, autofluorescence reader. The purpose of this study was to evaluate the association between skin AF and the subclinical atherosclerosis markers, especially endothelial dysfunction, in patients with DM.

Methods: We enrolled 140 Japanese subjects with DM who attended Osaka University Hospital, and measured the skin level of AGEs by skin AF and three subclinical atherosclerosis markers: endothelial function by flow-mediated vasodilation, FMD; carotid intima–media thickness, IMT; and brachial-ankle pulse wave velocity, baPWV.

Results: FMD was significantly associated with skin AF ($r = -0.259$, $p = 0.002$). Furthermore, a stepwise multivariate regression analysis revealed that skin AF was an independent determinant of FMD ($\beta = -0.180$, $p = 0.038$). Although there were significant associations between skin AF and maximum carotid intima-media thickness (max-IMT) ($r = -0.298$, $p < 0.001$) as well as baPWV ($r = 0.284$, $p = 0.001$) in univariate analysis, skin AF was not an independent determinant of either carotid max-IMT or baPWV after adjustment for conventional cardiovascular risk factors. Receiver-operating characteristic curve analysis revealed that skin AF can identify the subjects whose FMD, max-IMT, and baPWV were completely within the normal range (C-statistics, 0.73; 95% confidence interval, 0.61–0.84; $p < 0.001$).

Conclusions: Skin AF was independently associated with FMD as an indicator of endothelial dysfunction, and can be utilized as a screening marker of atherosclerosis in Japanese patients with DM.

Key words: Skin autofluorescence, Advanced glycation end products, Endothelial dysfunction, Atherosclerosis, Diabetes

Introduction/Aim

Atherosclerosis, which is accelerated in patients with prolonged diabetes mellitus (DM), leads to the reduction of the quality of life and is one of the major causes of mortality. Subclinical atherosclerotic changes without symptoms precede the onset of arterial disease such as cardiovascular disease (CVD) and peripheral arterial disease. The more commonly used subclinical atherosclerosis markers in the clinical setting are endothelial function assessed by flow-mediated vasodilation (FMD) of the brachial artery, arterial stiffness assessed by brachial-ankle pulse wave velocity (baPWV), and vascular structure assessed by the intima–media thick-
ness (IMT) of the carotid artery. These are well established indices of relatively early-stage atherosclerosis, and the significant relation between these parameters and CVD has been demonstrated in many previous studies1-3).

Advanced glycation end products (AGEs), a complex group of compounds produced from slowly occurring non-enzymatic glycation of proteins, represent the combined influence of various vascular risk factors including chronic hyperglycemia, and play important roles in the pathogenesis of diabetic vascular disease. Interestingly, the level of skin AGEs has been shown to predict the risk of future 10-year progression of diabetic complications in patients with type 1 DM (T1DM)4).

Recently, the level of accumulated fluorescent AGEs in the skin has become measurable non-invasively as skin autofluorescence (skin AF) using an autofluorescence reader. Skin AF intensity is correlated with accumulation of skin AGEs assessed by skin biopsy5) and has been shown to be associated with coronary artery calcification score used for the predictor of CVD6), diabetic complications and above mentioned indices of early-stage atherosclerosis such as carotid IMT and PWV7-9). With regard to endothelial dysfunction, however, such an association has not yet been validated in patients with DM, while Wang et al. found a strong association between skin AF and FMD in uremic patients on hemodialysis10).

Therefore, the primary purpose of this study was to evaluate the association between skin AF and endothelial function assessed by FMD in patients with DM. We also investigated the association between skin AF and IMT and baPWV and assessed the relationship between skin AF and these three subclinical atherosclerosis markers at the same time.

Methods

Subjects

The present investigation used the baseline data obtained from an ongoing prospective observational study to evaluate the association between skin AF and vascular complications. The main eligibility criteria of the original study were as follows: 1) a diagnosis of type 1 or 2 DM based on the criteria of the Japan Diabetes Society; and 2) age ≥ 20 but < 80 years. We aimed to recruit 447 subjects with and without DM for the comparison between groups. This prospective observational study started in May 2014 at the Osaka University Hospital in Japan, and 372 subjects were enrolled. For the present investigation, we selected all the diabetic subjects who met the following criteria: 1) being hospitalized for the treatment of diabetes, 2) completed FMD, baPWV, and carotid ultrasonography examinations, 3) were not under dialysis treatment, 4) were not receiving nitrous acid treatment, and 5) were not current smokers.

The protocol was approved by the ethical review board at the Osaka University Hospital and the study was conducted in compliance with the Declaration of Helsinki and current legal regulations in Japan. Written informed consent for participation and publication was obtained from all the participants after a full explanation of the study was provided.

Measurement of Skin AF

Skin AF was measured using the AGE ReaderTM (DiagnOptics TechnologiesBV, Groningen, the Netherlands), a non-invasive desktop device. This device detects the characteristic fluorescence of some AGEs and was used to estimate the level of AGEs in the skin according to a previously reported protocol5). In short, the AGE ReaderTM uses an excitation light source with a peak excitation of 370 nm to illuminate a skin surface area of 4 cm². Subsequently, the emitted fluorescence light (within the wavelength range of 420–600 nm) and the reflected excitation light (within the wavelength range of 300–420 nm) from the skin are measured with a spectrometer. Skin AF is calculated in arbitrary units (AU) as the ratio between the emitted light and the reflected light. Skin AF was measured three times in series at a site on the ventral side of the forearm and the mean of those assessments was used as the representative value. The coefficient of variation between investigators for measurement of skin AF in the present study was 4.2%, demonstrating good reproducibility. In addition, intra-patient seasonal variance and the inter-day variance for measurement of skin AF were reported to be about 5%5).

Measurement of FMD, IMT, and baPWV

FMD of the brachial artery was measured in a quiet, temperature-controlled room on the morning after at least 12 hours of fasting. In order to minimize intra- and inter-investigator variation, all measurements were performed by a single expert investigator using the UNEX EF 38G (UNEX Corporation, Nagoya, Japan) in a previously reported manner11, 12). To summarize, after measuring the vessel diameter of the brachial artery at rest, the forearm cuff was inflated to 50 mmHg above the systolic blood pressure and maintained at 50 mmHg for 5 minutes before deflation. After deflation, the change in vessel diameter was measured at the same point and the maximum value was recorded. FMD was calculated as follows: FMD (%) = (maximum diameter – diameter at rest) × 100/diameter at rest. UNEX EF 38G determines the dia-
Assessment of Clinical and Biochemical Characteristics

Clinical characteristics data such as duration of DM, current medication use, smoking history and biochemical data were collected. Fasting blood samples were collected and hemoglobin A1c (HbA1c), serum total, low-density lipoprotein (LDL) and high-density lipoprotein (HDL) cholesterol, triglycerides, and creatinine (Cr) levels were measured using standard laboratory protocols. The presence of hypertension and dyslipidemia was diagnosed by the primary doctors based on the criteria of the Japanese Society of Hypertension and the Japan Atherosclerosis Society.

Statistical Analysis

Data are presented as the mean ± standard deviation for continuous variables, and percentage for dichotomous variables. The relationships among clinical characteristics, skin AF, and three subclinical atherosclerosis markers (FMD, max-IMT, or baPWV) were evaluated using the Pearson rank correlation coefficient. Forward and backward stepwise multivariate linear regression analyses to identify determinants of subclinical atherosclerosis markers were performed. In these analyses, variables with \(p < 0.05 \) in univariate analysis were entered into the model. The cutoff of max-IMT was set at 1.5 mm and that of baPWV was set at 1800 cm/sec in accordance with previous reports. Since the specific standard value of FMD doesn’t exist, we adopted 6.0% as the cutoff value in accordance with a previous report that investigated FMD as a predictor of coronary artery stenosis in Japanese subjects. We evaluated the association between skin AF and the number of atherosclerotic indices that showed abnormal values using the Jonckheere–Terpstra trend test. The ability of skin AF to detect the subjects whose FMD, max-IMT, and baPWV were all within the normal range, was evaluated by receiver-operating characteristic (ROC) analysis. A \(p \) value < 0.05 was considered statistically significant. These statistical analyses were performed using SPSS version 22 (SPSS Inc., Chicago, IL, USA).

Results

In the present study, a total of 140 subjects with DM were selected for analyses. Their clinical and biochemical characteristics are presented in Table 1. Skin AF values were significantly associated with gender (male, \(r=0.173, p=0.041 \)), age (\(r=0.398, p<0.001 \)), duration of DM (\(r=0.274, p=0.001 \)), and estimated glomerular filtration (eGFR) (\(r=-0.254, p=0.002 \)). The subjects with hypertension (\(r=0.231, p=0.006 \)) and dyslipidemia (\(r=0.233, p=0.006 \)) showed higher level of skin AF. There was no statistically significant association between skin AF values and the other parameters (data not shown).

FMD was significantly associated with age (\(r=-0.273, p=0.001 \)), BMI (\(r=-0.188, p=0.026 \)), and skin AF (\(r=-0.259, p=0.002 \)) (Fig. 1, Table 2). The patients who were prescribed renin–angiotensin system (RAS) inhibitors (\(r=-0.178, p=0.036 \)) and statins (\(r=-0.183, p=0.031 \)) had lower levels of FMD. To evaluate whether skin AF is a determinant of FMD independent of other risk factors, we performed a stepwise multivariate regression analysis including age, BMI, and administration of RAS inhibitors and statins as explanatory variables. This analysis revealed that age, BMI, and skin AF were independent determinants of FMD (Table 2).

Max-IMT was significantly associated with age (\(r=-0.254, p=0.002 \)) and skin AF (\(r=-0.233, p=0.006 \)) (Table 2). The patients who were prescribed renin–angiotensin system (RAS) inhibitors (\(r=-0.178, p=0.036 \)) and statins (\(r=-0.183, p=0.031 \)) had lower levels of FMD. To evaluate whether skin AF is a determinant of FMD independent of other risk factors, we performed a stepwise multivariate regression analysis including age, BMI, and administration of RAS inhibitors and statins as explanatory variables. This analysis revealed that age, BMI, and skin AF were independent determinants of FMD (Table 2).
tension \((r=0.216, p=0.001)\), and skin AF \((r=0.284, p<0.001)\). Although skin AF was significantly associated with both max-IMT and baPWV in univariate analysis (Fig. 1), it was not an independent determinant of either carotid max-IMT or baPWV after adjustment for conventional cardiovascular risk factors (Table 2).

Next, we identified the number of subclinical atherosclerosis tests (FMD, IMT, and baPWV) that
showed an abnormal range and evaluated their association with skin AF values. Interestingly, as the number of abnormal subclinical atherosclerosis parameters increased, skin AF showed higher values (p for trend <0.001) (Fig. 2a). The ROC analysis for the absence of any subclinical atherosclerosis, that means all the subclinical atherosclerosis parameters were within the normal range, revealed that the area under the curve (AUC) for skin AF was 0.73 (95% confidence interval, 0.61–0.84, $p<0.001$), and that the threshold of skin AF ≤ 1.9 AU was associated with a sensitivity of 36% and a specificity of 95%, respectively (Fig. 2b).

Discussion

The present study revealed that skin AF, a non-invasive and simple marker of the accumulation of AGEs in the skin, is an independent determinant of brachial FMD, an indicator of endothelial dysfunction, in Japanese patients with DM. This finding is compatible with the idea that AGEs and their receptor system (RAGE) play an important role in the impairment of vascular function. Oxidative stress provoked by the generation of AGEs as well as AGE–RAGE interactions inhibit the endothelial nitric oxide synthase, thereby impairing endothelial function. The binding of AGEs to RAGE is also known to cause phenotypic changes in various cells such as endothelial cells and smooth muscle cells. In addition, AGEs, by cross-linking proteins and thereby changing their three-dimensional structures, impair vasodilation. Thus, AGEs are not only markers of “metabolic memory” in various metabolic disorders, but also have important pathogenic roles. This explains why skin AF can serve as a marker of endothelial dysfunction independent of other established risk factors.
The present study also confirmed that skin AF was associated with arterial thickening assessed by max-IMT and arterial stiffness assessed by baPWV, which was consistent with previous studies. Considering the crucial roles of AGEs in the pathogenesis of atherosclerosis, it is reasonable that the index of AGEs accumulation in skin is associated with arterial thickening and/or stiffness.

Atherosclerosis is a multifactorial and systemic disease with a broad spectrum of morphologic and functional features and clinical presentations. Therefore, to assess the presence and extent of atherosclerosis in individuals, it would be desirable to perform multiple vascular tests. Indeed, to detect atherosclerotic changes in individuals as early as possible, combinations of multiple non-invasive vascular tests, including FMD, carotid IMT, and PWV, are often utilized. Interestingly, the present study showed that the value of skin AF ≤1.9 had strong screening power to identify individuals without subclinical atherosclerosis assessed by FMD, carotid IMT, and baPWV (sensitivity of 36%, specificity of 95%). Since measurement of the skin AF value using the AGE ReaderTM is a very simple and non-invasive approach, it would be clinically worthwhile, from a time and convenience perspective, to use the skin AF value as a screening tool for atherosclerosis.

There are several limitations in this study. First, this is a cross-sectional survey with a relatively small number of subjects and the associations shown in this study were statistically significant but not very strong. Secondly, since the recruited subjects were patients who had been hospitalized for glycemic control or DM education, almost all the subjects were under poor glycemic control; the average of HbA1c was 8.9%. Therefore, it would be premature to generalize our findings to all individuals with DM. Thirdly, this study included premenopausal women. Since FMD is affected by the female menstrual cycle, we cannot deny that the female menstrual cycle may have affected the results. Fourthly, this study included both T2DM and T1DM patients. When we divided the

Table 2. The associations between FMD/max-IMT/baPWV and skin AF

	FMD	max-IMT	baPWV
	Univariate Multivariate	Univariate Multivariate	Univariate Multivariate
	r p β p	r p β p	r p β p
Skin AF (AU)	-0.259 0.002 -0.180 0.038	0.298 <0.001 NI	0.284 0.001 NI
Sex (male)	0.000 0.999 - -	0.153 0.072 - -	-0.051 0.546 - -
Age (years)	-0.273 0.001 -0.232 0.008	0.416 <0.001 0.339 0.001	0.499 <0.001 0.402 0.001
Duration of diabetes (years)	-0.167 0.050 - -	0.107 0.210 - -	0.325 <0.001 0.177 0.018
BMI (kg/m²)	-0.188 0.026 -0.229 0.005	-0.148 0.082 - -	-0.187 0.027 -0.174 0.020
FPG (mg/dL)	0.028 0.744 - -	0.006 0.941 - -	-0.079 0.356 - -
HbA1c (%)	-0.111 0.191 - -	-0.073 0.392 - -	-0.046 0.590 - -
LDL-C (mg/dL)	0.042 0.625 - -	-0.048 0.577 - -	-0.080 0.354 - -
HDL-C (mg/dL)	0.015 0.865 - -	-0.007 0.931 - -	0.138 0.104 - -
Log(TG)	-0.087 0.304 - -	0.136 0.109 - -	-0.056 0.508 - -
eGFR (mL/min/1.73 m²)	0.156 0.066 - -	-0.212 0.122 NI	-0.173 0.041 NI
SBP (mmHg)	-0.155 0.068 - -	0.258 0.002 0.256 0.001	0.238 0.005 0.247 0.001
DBP (mmHg)	-0.041 0.630 - -	0.116 0.174 - -	0.007 0.934 - -
Hypertension	-0.150 0.077 - -	0.283 0.001 NI	0.216 0.010 NI
Dyslipidemia	-0.150 0.078 - -	0.187 0.027 NI	0.140 0.100 - -
RAS inhibitor	-0.178 0.036 NI	0.287 0.001 NI	0.090 0.290 - -
Statin	-0.183 0.031 NI	0.257 0.002 0.179 0.026	0.123 0.147 - -

R² 0.134 0.236 0.327

The threshold of statistical significance was defined as p < 0.05.

Stepwise multivariate regression analysis was performed to determine the predictor of FMD, max-IMT, or PWV. The significant variables in the Pearson correlation analysis were selected for multivariate analysis.

Abbreviations: Skin AF, skin autofluorescence; BMI, body mass index; eGFR, estimated glomerular filtration rate; FPG, fasting plasma glucose; HbA1c, hemoglobin A1c; LDL-cholesterol, low density lipoprotein cholesterol; HDL-cholesterol, high density lipoprotein cholesterol; TG, triglyceride; SBP, systolic blood pressure; DBP, diastolic blood pressure; RAS inhibitor, renin–angiotensin system inhibitor; max-IMT, maximum carotid intima-media thickness; baPWV, brachial-ankle pulse wave velocity.
study subjects into two groups (patients with T2DM and those with T1DM) and performed statistical analyses in these two groups separately, findings in the patients with T2DM were similar to those in the total study subject population: skin AF was significantly associated with markers of subclinical atherosclerosis (Supplementary Table 1, Supplementary Table 2, and Supplementary Fig. 1). Similarly, skin AF was significantly associated with max-IMT (\(r = -0.408, p = 0.043 \)) and baPWV (\(r = 0.727, p < 0.001 \)) in patients with T1DM. Although the coefficient of correlation value between skin AF and FMD in patients with T1DM was similar to that in patients with T2DM, it did not reach statistical significance in patients with T1DM (\(r = -0.244, p = 0.239 \)). However, we could not draw any conclusions since analyses in patients with T1DM lack sufficient statistical power due to the small number of subjects. A larger scale study is necessary to explore whether skin AF was associated with these subclinical markers of atherosclerosis in patients with T1DM. Finally, it has been reported that some diabetes medications such as dipeptidyl peptidase-4 inhibitors and \(\alpha \)-glucosidase inhibitors improved endothelial function\(^\text{23, 24}\). Although multivariate regression analyses indicated that there was no significant impact of type of DM medication on the association between skin AF and FMD (data not shown), we cannot rule out the influence of DM medications because of the cross-sectional nature of the present study. Future studies with longitudinal designs will be needed to address this point.

Notwithstanding these limitations, our study indicates an association between skin AF and endothelial function assessed by FMD as well as the other early-stage atherosclerotic indices like carotid-max IMT and baPWV. We also show that skin AF might serve as a screening marker of atherosclerosis in Japanese patients with DM.

Declarations

Ethics Approval and Consent to Participate

The study protocol was approved by the Research Ethics Committee of the Osaka University Graduate School of Medicine, and the study was conducted in accordance with the principles of the Helsinki Declaration. Written informed consent for participation and publication was obtained from all the participants after a full explanation of the study was provided.
Competing Interests
None.

Funding
This research was supported by Grants-in-Aid for Scientific Research from the Japanese Ministry of Education, Science, Sports, Culture and Technology [KAKENHI 16K09747].

Authors’ Contributions
All authors contributed to the concept and design of this ongoing study. All authors read and approved the final manuscript. NK was the principal guarantor of this work, has full access to all the data, and takes the responsibility for the integrity of the data and accuracy of the data analysis.

References
1) Teragawa H, Kato M, Kurokawa J, Yamagata T, Matsuura H and Chayama K: Usefulness of flow-mediated dilation of the brachial artery and/or the intima-media thickness of the carotid artery in predicting coronary narrowing in patients suspected of having coronary artery disease. Am J Cardiol, 2001; 88: 1147-1151
2) Irie Y, Katakami N, Kaneto H, Nishio M, Kasami R, Sakamoto K, Umayahara Y, Sumitsuji S, Ueda Y, Kosugi K and Shimomura I: The utility of carotid ultrasonography in identifying severe coronary artery disease in asymptomatic type 2 diabetic patients without history of coronary artery disease. Diabetes Care, 2013; 36: 1327-1334
3) Koji Y, Tomiyama H, Ichihashi H, Nagae T, Takanaka N, Takazawa K, Ishimaru S and Yamashina A: Comparison of ankle-brachial pressure index and pulse wave velocity as markers of the presence of coronary artery disease in subjects with a high risk of atherosclerotic cardiovascular disease. Am J Cardiol, 2004; 94: 868-872
4) Genuith S, Sun W, Cleary P, Sell DR, Dahms W, Malone J, Sivitz W and Monnier VM: Glycation and carboxymethyllysine levels in skin collagen predict the risk of future 10-year progression of diabetic retinopathy and nephropathy in the diabetes control and complications trial and epidemiology of diabetes interventions and complications participants with type 1 diabetes. Diabetes, 2005; 54: 3103-3111
5) Meerwaldt R, Graaff R, Oomen PH, Links TP, Jager JJ, Alderson NL, Thorpe SR, Baynes JW, Gans RO and Smit AJ: Simple non-invasive assessment of advanced glycation endproduct accumulation. Diabetologia, 2004; 47: 1324-1330
6) Hangai M, Takebe N, Honma H, Sasaki A, Chida A, Nakano R, Togashi H, Nakagawa R, Oda T, Matsu M, Yashiro S, Nagasawa K, Kajiwara T, Takahashi K, Takanashi Y, Satoh J and Ishigaki Y: Association of Advanced Glycation End Products with coronary Artery Calcification in Japanese Subjects with Type 2 Diabetes as Assessed by Skin Autofluorescence. J Atheroscler Thromb, 2016; 23: 1178-1187
7) Temma J, Matsuhashia M, Horie T, Kuroda A, Mori H, Tamaki M, Endo I, Aihara K, Abe M and Matsumoto T: Non-invasive Measurement of Skin Autofluorescence as a Beneficial Surrogate Marker for Atherosclerosis in Patients with Type 2 Diabetes. J Med Invest, 2015; 62: 126-129
8) Osawa S, Katakami N, Kuroda A, Takahara M, Sakamoto F, Kawamori D, Matsuoka T, Matsuhashia M and Shimomura I: Skin Autofluorescence is Associated with Early-stage Atherosclerosis in Patients with Type 1 Diabetes. J Atheroscler Thromb, 2017; 24: 312-326
9) Yoshioka K: Skin Autofluorescence is a Noninvasive Surrogate Marker for Diabetic Microvascular Complications and Carotid Intima-Media Thickness in Japanese Patients with Type 2 Diabetes: A Cross-sectional Study. Diabetes Ther, 2018; 9: 75-85
10) Wang CC, Wang YC, Wang GJ, Shen MY, Chang YL, Liou SY, Chen HC and Chang CT: Skin Autofluorescence Is Associated with Endothelial Dysfunction in Uremic Subjects on Hemodialysis. PLoS One, 2016; 11: e0147771
11) Corretti MC, Anderson TJ, Benjamin EJ, Celemajer D, Charbonneau F, Creager MA, Deanfield J, Drexler H, Gerhard-Herman M, Herrington D, Vallance P, Vita J and Vogel R: Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol, 2002; 39: 257-265
12) Tomiyama H, Higashi Y, Takase B, Node K, Sata M, Inoue T, Ishibashi Y, Ueda S, Shimada K and Yamashina A: Relationships among hyperuricemia, metabolic syndrome, and endothelial function. Am J Hypertens, 2011; 24: 770-774
13) Terminology and Diagnostic Criteria Committee JSouMi: Standard method for ultrasound evaluation of carotid artery lesions. J Med Ultrason (2001), 2009; 36: 219-226
14) Yamashina A, Tomiyama H, Takeda K, Tsuda H, Arai T, Hirose K, Koji Y, Hori S and Yamamoto Y: Validity, reproducibility, and clinical significance of noninvasive brachial-ankle pulse wave velocity measurement. Hypertens Res, 2002; 25: 359-364
15) Shimomoto K, Ando K, Fujita T, Hasebe N, Higaki J, Horiuuchi M, Imai Y, Imaiizumi T, Ishimitsu T, Ito M, Ito S, Itoh H, Iwao H, Kai H, Kario K, Kashihara N, Kawano Y, Kim-Mitsuyma S, Kimura G, Kohara K, Komuro I, Kumagai H, Matsuura H, Miura K, Morishita R, Naruse M, Node K, Ohya Y, Rakugi H, Saito I, Saitoh S, Shimada K, Shimosawa T, Suzuki H, Tamaura K, Tanahashi N, Tsuchihashi T, Uchiyama M, Ueda S and Umemura S: The Japanese Society of Hypertension Guidelines for the Management of Hypertension (JSH 2014). Hypertens Res, 2014; 37: 253-390
16) Teramoto T, Sasaki J, Ishibashi S, Birou S, Daida H, Doi S, Egusa G, Hiro T, Hirok E, Iida M, Kihara S, Kinoshita M, Maruyama C, Ohta T, Okamura T, Yamashita S, Yokode M and Yokote K: Executive sum-
mary of the Japan Atherosclerosis Society (JAS) guidelines for the diagnosis and prevention of atherosclerotic cardiovascular diseases in Japan -2012 version. J Atheroscler Thromb, 2013; 20: 517-523
17) Touboul PJ, Hennerici MG, Meairs S, Adams H, Amarenco P, Bornstein N, Csiba L, Desvarieux M, Ebrahim S, Hernandez Hernandez R, Jaff M, Kownator S, Naqvi T, Prati P, Rundek T, Sitzer M, Schminke U, Tardif JC, Taylor A, Vicaut E and Woo KS: Mannheim carotid intima-media thickness and plaque consensus (2004-2006-2011). An update on behalf of the advisory board of the 3rd, 4th and 5th watching the risk symposia, at the 13th, 15th and 20th European Stroke Conferences, Mannheim, Germany, 2004, Brussels, Belgium, 2006, and Hamburg, Germany, 2011. Cerebrovasc Dis, 2012; 34: 290-296
18) Yamashina A, Kario N, Kohara K, Sada M, Sugawara J, Suzuki H, Takazawa K, Tomiyama H, Node K, Hashimoto J, Higashi Y, Fujishiro K, Matsuo H, Miyata T, Munakata M and Watada H: <JCS2013_yamashina_.h.pdf>
19) Munakata M: Brachial-ankle pulse wave velocity in the measurement of arterial stiffness: recent evidence and clinical applications. Curr Hypertens Rev, 2014; 10: 49-57
20) Su J, Lucchesi PA, Gonzalez-Villalobos RA, Palen DI, Rezk BM, Suzuki Y, Boulares HA and Matrougui K: Role of advanced glycation end products with oxidative stress in resistance artery dysfunction in type 2 diabetic mice. Arterioscler Thromb Vasc Biol, 2008; 28: 1432-1438
21) Llaurado G, Ceperuelo-Mallafre V, Vilardell C, Simo R, Gil P, Cano A, Vendrell J and Gonzalez-Clemente JM: Advanced glycation end products are associated with arterial stiffness in type 1 diabetes. J Endocrinol, 2014; 221: 405-413
22) Hashimoto M, Akishita M, Eto M, Ishikawa M, Kozaki K, Toba K, Sagara Y, Taketani Y, Orimo H and Ouchi Y: Modulation of endothelium-dependent flow-mediated dilatation of the brachial artery by sex and menstrual cycle. Circulation, 1995; 92: 3431-3435
23) Emoto T, Sawada T, Hashimoto M, Kageyama H, Terashita D, Mizoguchi T, Mizuguchi T, Motodi Y, Iwasaki M, Taira K, Okamoto H, Matsuo Y, Kim SK, Takarada A and Yokoyama M: Effect of 3-month repeated administration of miglitol on vascular endothelial function in patients with diabetes mellitus and coronary artery disease. Am J Cardiol, 2012; 109: 42-46
24) Leung M, Leung DY and Wong VW: Effects of dipeptidyl peptidase-4 inhibitors on cardiac and endothelial function in type 2 diabetes mellitus: A pilot study. Diab Vasc Dis Res, 2016; 13: 236-243
Supplementary Table 1. The associations between FMD/max-IMT/baPWV and skin AF among the subjects with T2DM ($n=115$)

	FMD	max-IMT	baPWV									
	Univariate	Multivariate	Univariate	Multivariate	Univariate	Multivariate						
	r	p	β	p	r	p						
Skin AF (AU)	-0.231	0.013	-0.220	0.019	0.255	0.006	Ni	0.198	0.034	Ni		
Sex (male)	-0.026	0.787	-	-	0.226	0.015	-0.180	0.051	-0.041	0.661	-	
Age (years)	-0.180	0.054	-	-	0.339	<0.001	0.217	0.009	0.439	<0.001	0.408	<0.001
Duration of diabetes (years)	-0.217	0.020	Ni	-	0.117	0.216	-	-	0.329	<0.001	Ni	
BMI (kg/m2)	-0.104	0.271	-	-	-0.288	0.002	-0.299	0.002	-0.297	0.001	Ni	
FPG (mg/dL)	0.022	0.818	-	-	0.045	0.631	-	-	-0.050	0.596	-	
HbA1c (%)	-0.100	0.288	-	-	-0.090	0.340	-	-	-0.0079	0.401	-	
LDL-C (mg/dL)	0.046	0.628	-	-	-0.017	0.858	-	-	0.122	0.199	-	
HDL-C (mg/dL)	-0.100	0.289	-	-	0.114	0.224	-	-	0.267	0.004	0.197	0.021
Log(TG)	0.000	0.999	-	-	0.079	0.399	-	-	-0.154	0.100	-	
eGFR (ml/min/1.73 m2)	0.150	0.111	-	-	-0.146	0.121	-	-	-0.114	0.225	-	
SBP (mmHg)	-0.045	0.630	-	-	0.220	0.018	-	-	0.177	0.059	-	
DBP (mmHg)	0.080	0.394	-	-	0.069	0.461	-	-	-0.068	0.472	-	
Hypertension	-0.146	0.120	-	-	0.247	0.008	Ni	-	0.182	0.051	-	
Dyslipidemia	-0.088	0.348	-	-	0.095	0.315	-	-	0.105	0.262	-	
RAS inhibitor	-0.133	0.155	-	-	0.239	0.010	0.273	0.003	0.038	0.688	-	
Statin	-0.169	0.072	-	-	0.197	0.035	Ni	-	0.079	0.402	-	

R^2 = 0.040, 0.235, 0.230

The threshold of statistical significance was defined as $p < 0.05$.

Stepwise multivariate regression analysis was performed to determine the predictor of FMD or max IMT or PWV. The significant variables in Pearson correlation analysis were selected for multivariate analysis.

Abbreviations: skin AF, skin autofluorescence; BMI, body mass index; eGFR, estimated glomerular filtration rate; FPG, fasting plasma glucose; HbA1c, hemoglobin A1c; LDL-cholesterol, low density lipoprotein cholesterol; HDL-cholesterol, high density lipoprotein cholesterol; TG, triglyceride; SBP, systolic blood pressure; DBP, diastolic blood pressure; RAS inhibitor, renin-angiotensin system inhibitor; max IMT, max intima-media thickness of the carotid artery; baPWV, brachial-ankle pulse wave velocity.

Supplementary Table 2. Association between skin AF and the presence of subclinical atherosclerosis according to DM type

	The numbers of atherosclerosis indices that showed abnormal values	p for trend			
	0	1	2	3	
skin AF (U)					
Total ($n=140$)	2.13 ± 0.47 ($n=25$)	2.46 ± 0.41 ($n=45$)	2.63 ± 0.54 ($n=47$)	2.64 ± 0.47 ($n=23$)	<0.001
T2DM ($n=115$)	2.18 ± 0.51 ($n=17$)	2.51 ± 0.41 ($n=35$)	2.61 ± 0.55 ($n=40$)	2.64 ± 0.47 ($n=23$)	0.015
T1DM ($n=25$)	2.01 ± 0.38 ($n=8$)	2.30 ± 0.35 ($n=10$)	2.74 ± 0.49 ($n=7$)	-	0.002

Association between skin AF and the number of atherosclerotic indices that showed abnormal values using Jonckheere-Terpstra trend test. Regardless of DM type, as the number of subclinical atherosclerosis parameters that showed abnormal range was gaining, skin AF showed higher values (p for trend < 0.001). The cutoffs of FMD, max-IMT, and baPWV were set 6.0%, 1.5 mm, and 1800 cm/sec, respectively.
Supplementary Fig. 1. The detection ability of skin AF for absence of any atherosclerosis among T2DM patients

The detection ability of skin AF for the absence of any atherosclerosis, which means that FMD, max-IMT, and baPWV were within the normal range, was evaluated by receiver-operating characteristic analysis among only T2DM patients. Skin AF ≤ 1.9 AU predicted the absence of subclinical atherosclerosis change at a sensitivity of 29% and a specificity of 94% with an AUC of 0.69 (95% CI 0.55–0.83, p=0.013). The cutoffs of FMD, max-IMT, and baPWV were set 6.0%, 1.5 mm, and 1800 cm/sec, respectively.