Sensory attributes, dog preference ranking, and oxidation rate evaluation of sorghum-based baked treats supplemented with soluble animal proteins

Krystina A. Lemaidea, † Kadri Koppel, † and Charles G. Aldrich,a,b,c †

aDepartment of Grain Science and Industry, Kansas State University, Manhattan, KS 66506
bCenter for Sensory Analysis and Consumer Behavior, Department of Food, Nutrition, Dietetics and Health, Kansas State University, KS 66502
cNew affiliation: Mars Petcare, 2013 Ovation Parkway, Franklin, TN 37067

*Corresponding author: aldrich4@ksu.edu

Abstract

Treats are offered to dogs to reinforce the animal–owner bond and as rewards. Wheat, which contains gluten (gliadin and glutenin proteins), is often used in treats. The United States is a leading producer of sorghum which might be an alternative; however, it does not have functional properties to form viscoelastic doughs, because it is mainly composed of kafirin protein. Therefore, the objectives of this study were to determine the effects of supplementing soluble animal proteins in whole sorghum rotary-molded baked dog treats on dog preference, sensory attributes, and oxidation rate. The treats were produced in triplicate in a 2 x 4 + 1 augmented factorial arrangement of treatments. Two whole sorghum flours (WWS and WRS), four protein sources [none (NC), spray-dried plasma (SDP), egg protein (EP), and gelatin (GL)], and a positive control with wheat (WWF-GTN) were evaluated. A preference ranking test with twelve dogs was performed. Additionally, five trained panelists scored the intensity of appearance, aroma, flavor, texture/mouthfeel, and aftertaste attributes. Finally, the treats were stored at 30 °C and 60% RH, and hexanal concentrations were measured on days 0, 28, 56, and 112. The data was analyzed using the statistical software SAS for the animal and oxidation rate evaluations with significance considered at P<0.05. The descriptive sensory evaluation data was analyzed using multivariate analysis (XLSSTAT). The hexanal values were not noticeable, except for the EP treatments that had higher values (2.0–19.3 mg/kg) across the shelf-life test. The predominant flavor and aftertaste identified were “grainy.” The hexanal values for all treats were <1.0 mg/kg except for the EP treatments that had higher values (2.0–19.3 mg/kg) across the shelf-life test. This work indicated that the replacement of WWF-GTN by WWS and WRS, along with soluble animal proteins like SDP or GL would produce comparable preference by dogs, oxidation rates, product aromatics, flavor, aftertaste attributes, and, at a lower degree, product texture.

Lay Summary

Treats are commonly given to dogs to create a better relationship with the owner. Most treats on the market are baked and wheat based as this grain has gluten that provides good texture attributes and facilitates production. Other grains such as sorghum are widely produced in the United States. However, baking treats with alternative grains is challenging as they lack the same functional proteins. The objectives of this study were to determine the effects of soluble animal proteins in whole sorghum rotary-molded dog treats on dog preference, sensory attributes, and oxidation markers, such as hexanal. Two whole sorghum flours [white (WWS) and red (WRS)], four protein sources [none (NC), spray-dried plasma (SDP), egg protein (EP), and gelatin (GL)], and a positive control with wheat (WWF-GTN) were evaluated. The dogs did not detect differences between WWF-GTN, WWS, or WRS treats when evaluated together. However, the WWF-GTN, WWS-SDP, and WWS-EP treatments were preferred among the white sorghum treatments. The EP treatments led to some consumption difficulties by dogs because of their hard texture. The panelists reported a high degree of variation in the appearance and texture across treatments. The WRS and WWS treats with SDP or EP were darker, while NC treats had more surface cracks. Initial crispness, hardness, and fracturability were higher in EP treatments compared to all other sorghum treatments. The predominant flavor and aftertaste identified were “grainy.” The hexanal values for all treats were <1.0 mg/kg except for the EP treatments that had higher values (2.0–19.3 mg/kg) across the shelf-life test. This work indicated that the replacement of WWF-GTN by WWS and WRS, along with soluble animal proteins like SDP or GL would produce comparable preference by dogs, oxidation rates, product aromatics, flavor, aftertaste attributes, and, at a lower degree, product texture.

Key Words: beagle dogs, descriptive panel, hexanal, oxidation, palatability, ranking test

Abbreviations AFT, aftertaste; APR, appearance; ARM, aroma; FVR, flavor; PCA, principal component analysis; TEX, texture;

Introduction

The development of new products involves many steps, including: identifying the product and market requirements, developing and testing the concept, defining and producing the prototypes, sourcing from suppliers, planning the manufacturing process, and the marketing design (Wang et al., 2012). As a key step for product development of pet treats, it is also important to assess the acceptance by dogs, their owners, and their stability through transport and storage, and the retention of nutritional quality and palatability. Most baked pet treats are produced with wheat which contains gluten (gliadin and glutenin prolamin functional proteins) that provide good dough structure, durability, and texture to the products. The United States is a leading producer of...
sorghum which might serve as a grain in baked treats (biscuits); unfortunately, it contains mostly kafrin prolamin protein, so breakage and texture are problems in its use. In a previous research, rotary-molded dog treats containing soluble animal proteins were successfully produced and determined to have comparable binding and physical attributes to those containing wheat (Lema, 2021).

Since dogs cannot provide verbal feedback, multiple indirect approaches have been evaluated to understand their preferences. For instance, food choice as preference or acceptance tests have been conducted with two foods offered simultaneously (two-bowl test) or a single food (single-bowl test) (Tobie et al., 2015). In these cases, the preferred food is determined by the total quantity eaten. Other researchers have explored operant testing methods in which the animal is required to show a response (press a lever) to access a food (Rashotte and Smith, 1984). However, in cases where more food options are intended to be compared, and there is no intention for the animals to consume excessive quantities of food, other approaches, such as a preference ranking test may be a better indicator of liking. The preference ranking test is a multiple-choice test that allows one to understand a preference based on multiple comparisons of ingredient aromatics and flavors and provides direction for individual foods when offered multiple times (Li et al., 2017). This technique of determining the preference of a product over other options is important considering that 44% of U.S. consumers purchase pet food and treats when their pet shows a positive attitude or behavior towards the flavor (Dornblaser, 2017).

Similarly, human perception is essential because the owner interacts with the food and the animal response (Francis et al., 2020). Most pet owners look for treats and snacks marketed as raw, natural, organic, U.S. sourced, with functional claims, using limited ingredients, and (or) exotic proteins, clean labels, and those that resemble human foods (Sprinkle, 2019). Moreover, the brand is also associated with quality and helps with the selection process. For instance, in a study conducted in New Zealand with 103 pet owners, 62% replied that they were loyal to a brand (Sutie, 2014).

Further, pet owners also consider sensory attributes such as appearance and aroma, with color being the most influential purchasing attribute (Di Donfrancesco et al., 2014). Food preference can better be understood with a detailed breakdown of the sensory attributes identified in a product by a trained panel, even though the real perceptions of taste and flavor differ between humans and dogs (Koppel, 2014).

A product’s shelf-life is a period in which it maintains acceptable quality, specific functionality, and safety (Young, 2011). Low-moisture treats generally have a long shelf-life due to their low water activity that retards pathogenic and spoilage microorganism growth (Bramoulle et al., 2013). Nonetheless, loss of crispiness and lipid oxidation can occur because of moisture adsorption and penetration of oxygen or light (Galić et al., 2009) during long-term storage. An appropriate package can control moisture adsorption; however, the oxidation process can still take place and is generally the main reason for quality decay (Manzocco et al., 2020). With lipid oxidation, secondary volatiles such as hexanal are produced which can impact food quality and negatively alter the organoleptic, nutritional, and shelf-life properties of a product (Jelef and Waśowicz, 2011). In dry pet food products, oxidation can mostly produce off-flavors and odors; however, it can also affect the animal well-being in a long term. For instance, Turek et al. (2003) observed that highly-oxidized diets fed to puppies reduced their serum vitamin E levels, total body fat, and impaired the rate of bone formation, which in turn affected their growth, antioxidant status, and some immune functions (Turek et al., 2003).

Our hypothesis for conducting this research was that the addition of soluble animal proteins will enhance the sensory attributes of rotary-molded dog treats with no impairment in the oxidation rates. Therefore, the objectives of this study were to determine the effects of whole wheat containing dog treats versus those produced with whole sorghum when supplemented with soluble animal proteins on their sensory attributes, dog preference ranking, and hexanal production during storage.

Materials and Methods

The animal evaluation was conducted at Kansas State University Large Animal Research Center (LARC) under the Kansas State University Institutional Animal Care and Use Committee (IACUC) protocol #4277. In addition, the descriptive sensory evaluation was conducted at Kansas State University Center for Sensory Analysis and Consumer Behavior under the Institutional Review Board (IRB) protocol #5930.

Experimental treatments

Rotary-molded baked dog treats were produced in triplicate at a pilot research facility (Cookie Cracker Laboratory, AIB International, Inc.; Manhattan, KS). The experimental ingredients included whole wheat flour (WWF-GTN) <180 μm (Ultragain Hard, Ardent Mills, Denver, CO), white wheat (WW) and red sorghum (WRS) flours <150 μm (White Whole Grain and Burgundy Whole Grain, Nu Life, Scott City, KS), spray-dried plasma (SDP, Innomax Porcine Plasma, Sonac, Maquoketa, IA), egg protein (EP, OvaBind, Isonova, Spencer, IA), and gelatin (GL, Pro-Bind Plus 50, Sonac, The Netherlands). Each of the treatments also included cornmeal (Enriched Corn Meal Yellow, Sysco), salt (Iodized Salt, Morton Salt Inc., Chicago, IL), molasses (Rich Brown Hue [2.3 - #715:#677], International Molasses Corporation, Ltd., Saddle Brook, NJ), baking soda (Pure Baking Soda, Arm & Hammer, Princeton, NJ), nonfat dry milk (Nonfat Dry Milk Classic, Sysco), sodium bisulfite (Sodium Metabisulphite, LD Carlson Company, Kent, OH), inactive dry yeast (Nutritional Yeast, Bob’s Red Mill Natural Foods, Milwaukie, OR), and all-purpose shortening (Premium All-Purpose Shortening, Ventura Foods, Brea, CA). A negative control (NC) with no protein added was also tested (Table 1). The dry ingredients were mixed in a planetary mixer (Hobart Legacy HL800 Mixer) for 1 min at 55 rpm, then the wet ingredients were added and mixed for 2 min at 55 rpm plus 4.5–6 min at 96 rpm. The dough was molded into bone-shaped treats in a rotary molder (70 PSI Weidenmiller) and baked for 20–25 min at 375°F (Lema, 2021).

Animal evaluation

The order of treat preference was evaluated according to the preference ranking test for dogs developed by Li et al. (2017). The test consisted of five different phases each of 5-d length. An acclimation phase included a null test in which commercial dog treats (Milk-Bone Flavor Snack Dog Biscuits, Big Heart Pet Brands Inc., San Francisco, CA) were provided. This was followed by two evaluations, one each for white sorghum
Table 1. Ingredient composition of the experimental treats produced by rotary molding: Positive control with wheat, whole white sorghum, whole red sorghum, negative control with no protein added, spray-dried plasma, egg protein, and gelatin.

Ingredients, %	Treatments								
	WWF GTN	WWS NC	WWS SDP	WWS EP	WWS GL	WRS NC	WRS SDP	WRS EP	WRS GL
Whole wheat flour	70.1								
Whole red sorghum flour		68.6	68.9	65.3	69.8	68.6	69.0	65.3	69.8
Whole white sorghum flour	0	17.5	19.1	12.5	11.8	11.8	19.1	12.5	12.5
Cornmeal	12.5								
Spray-dried plasma									
Egg protein									
Gelatin									
Water (% added on top of ingredients)	24.5	41.1	28.9	24.6	31.0	41.1	29.2	27.5	32.8

Other ingredients: molasses 5.6%, all-purpose shortening 3.5%, nonfat dry milk 2.2%, salt 0.7%, baking soda 0.4%, sodium bisulfite 0.003%, inactive dry yeast 0.003%.

treatments and red sorghum treatments (both compared to WWF-GTN), and a final ranking test comparing WWF-GTN to selected white and red sorghum treatments. The treatments for the last phase were chosen based on the results obtained in the two previous phases. The white sorghum treatments were reevaluated before the last phase due to a lack of dog responses on the first trial.

For this study, 12 healthy Beagle dogs (four females and eight males) aged 5.58 ± 0.23-yr old were used. They were housed under ambient environmental conditions (20 °C; 60% relative humidity) in pairs inside pens (7.8 square meter inside run with an attached 18 square meter outdoor run) on a 12-h light cycle and had access to water ad libitum. They received two main feedings per day at 0800 and 1100 h before starting the trial at 1600 h each day. The allowance of food with a short lapse between each feeding allowed to provide the animals their daily energy requirement but also avoid the animals to be full by the time of the test, which increased their interest for the ranking test. Treats from all production replicates were blended into their respective composite samples. In each test, 3.0–5.0 g of treat was placed into a numbered hollow rubber toy (Kong). Each dog was first allowed to sniff each toy + treat individually, then five toys + treats, in a randomized order, were evenly distributed on the floor in a corner of the experimental pen. The pen had an area of approximately 1.5m x 1.5m in a room that was separate from all other dogs. The room was a noise-free and smell-free environment, which eliminated the distraction from the barking and smell of the other dogs. The time (mm:ss:0) was recorded from the moment the dog was released until it ate each treat. Each empty rubber toy was picked up from the floor and its number (sample identification) was recorded. Each dog was allowed to continue with the test until all treats had been removed from the toys.

Statistical analysis

The ranking scores were analyzed with ANOVA Cochrane–Mantel–Haenszel statistic, which is a generalization of Friedman’s test using the FREQ Procedure by statistical analysis software (SAS 9.4 Inst. Inc., Cary, NC). Then, the rank means were separated using Tukey’s HSD (Honest Significance Difference) test and considered significant at a probability of P<0.05 using the GLIMMIX procedure by statistical analysis software (SAS 9.4 Inst. Inc., Cary, NC).

2.3 Descriptive sensory evaluation

Five highly trained panelists scored the intensity of appearance, aroma, flavor, texture/mouthfeel, and aftertaste attributes of the treats. A consensus method and intensity scores were used based on a scale from 0 = none to 15 = extremely high with 0.5 increments according to the work of Di Donfrancesco et al. (2012). Each of the sensory panelists had more than 120 h of descriptive analysis panel training with a variety of products, including dry cat- and dog-food. They were trained on techniques and practices for attribute identification, terminology development, and intensity scoring.

Each sample was randomly assigned a three-digit code. For appearance, flavor, texture/mouthfeel, and aftertaste evaluation, one small treat was served in a 100-mL cup and provided individually to each panelist. For the aroma evaluation, one large treat was crushed and served (approximately 15 g) in a medium glass snifter; two panelists shared a snifter. Hot towels, cucumbers, and water were provided to assist panelists as cleanout. The evaluation was divided into three phases. On orientation day 1, the panelists smelled and tasted the samples to generate a lexicon of attributes according to Di Donfrancesco et al. (2012). Then, the panelists evaluated three treatments per day for a duration of 3 d. Finally, a single day side-by-side evaluation was conducted to confirm scores.

The attributes identified by the trained panelists were brown, color uniformity, surface roughness, and surface cracks for the appearance. For the aroma, attributes such as overall intensity, grain, musty/dusty, toasted, cardboard, stale, and sweet aromatics were detected. The identified flavors were grain, cardboard, leavening, starchy, toasted, and sweet aromatics. Moreover, the texture/mouthfeel attributes detected were initial crispiness, hardness, fracturability, gritty, cohesiveness of mass, and particles. Finally, grain, cardboard, starchy, and toasted were perceived as aftertaste attributes. All attributes were defined and anchored to the scale with reference materials as described in Di Donfrancesco et al. (2012). Surface cracks, leavening, and overall intensity were new attributes detected in this study. Surface cracks refers to the perceived amount of cracks on the surface. The reference used was a package picture of Nabisco ginger snaps cookies.
in our study. Therefore, the results presented could be per-

Animal evaluation

Results

The data processing, analysis of variance, and least-squares means separation for repeated measures across time were

Statistical analysis

A multivariate analysis approach was applied to the perceived attributes using XLSTAT (Addinsoft, New York, USA) and a Principal Component Analysis (PCA) was performed to differentiate the treats relative to the sensorial characteristics. To determine linear correlations across the attributes perceived, Pearson correlation coefficients were used with significance considered at $P<0.05$. Radar charts were also plotted in Excel to visualize the relationships among treatments and attributes.

Oxidation rate evaluation

Samples were kept frozen (-18 °C) prior to this evaluation. Approximately 50 g of treats per replicate were placed into a whirl-pak bag, each with four pinholes and kept in an environmental chamber at 30 °C and 60% relative humidity for evaluation at 0, 28, 56, and 112 d. At each time point samples were removed and frozen (-18 °C) before analyzing aromatic compounds. For the sample preparation, treats were ground in a coffee grinder and 0.5 ± 0.02 g of the pulverized sample was weighed into a 10 mL screw-cap vial to which 0.99 mL of distilled water was added. The extraction of the volatiles was performed according to Koppel et al. (2013). The isolation, tentative identification, and semiquantification of the volatile compounds were performed on a gas chromatograph (GC:

Statistical analysis

The data processing, analysis of variance, and least-squares means separation for repeated measures across time were performed using the GLM procedure of the statistical analysis software (SAS 9.4 Inst., Cary, NC). For the least-squares means separation, Tukey’s HSD (Honest Significance Difference) test was applied and were considered significant when the probability was $P<0.05$. Two different models were generated: a one-way ANOVA comparing the nine treatments across a day and a one-way ANOVA comparing time within a treatment.

Results

Animal evaluation

The ranking results correspond to 10 dogs because two did not complete the study. The dog cohort size was a limitation in our study. Therefore, the results presented could be perceived different if repeated with a larger sample size. Lower values indicate more preferred treatments. In the white sorghum evaluation, the WWF-GTN, SDP, and EP treatments were comparable and preferred ($P<0.05$) over NC. The GL was less preferred than EP but equally accepted relative to the SDP and WWF-GTN treatments. In the red sorghum evaluation, there were no differences among treatments ($P>0.05$); however, lower numerical values were associated with SDP, EP, and WWF-GTN treatments. Based on the results of the individual phases, an analysis comparing the proteins SDP and GL from white and red sorghum vs. the positive control (WWF-GTN) was merited. These treatments were selected based on their similar protein content and considering the difficulties observed for the dogs in eating the EP treatments due to their harder texture. In this last comparison, no differences were found between treatments ($P>0.05$); nonetheless, lower numerical values were observed for the sorghum treatments. Also, the white sorghum treatments had lower rank values within the same protein source (Table 2). The average time the dogs took to complete the white sorghum phase was slightly shorter than the red sorghum phase (2.2%). However, unlike to what occurred in the individual phases, the average time in the combined evaluation was shorter for the WRS when compared to the WWS treatments. When average times were compared overall, they significantly decreased in the final evaluation, most likely because the dogs were more acclimated to the study procedures (Table 2).

Descriptive sensory evaluation

Brown color and surface cracks were the most differentiating appearance attributes, wherein WRS and WWS treats with SDP or EP resulted in a darker appearance (10.0–14.0), while NC treats had more surface cracks (10.0–12.0) (Figure 1). Aroma attributes did not vary substantially among samples except for the overall intensity that was higher for WRS-EP (7.0). Sweet aromatics were mostly imperceptible (< 2.0) for all treatments (Figure 1). Grainy was the most perceived flavor with values ranging from 5.0–7.0. Other flavors such as cardboard, leavening, starchy, and toasted were perceived at lower proportions (2.0–4.0), while sweet aromatics were almost unnoticed (<1.0) (Figure 1). Initial crispiness, hardness, and fracturability were pronounced in EP treatments (11.0–14.5) in comparison to all other sorghum treatments (4.0–9.0). The WWF-GTN treatment was higher than SDP, GL, and NC treatments regarding hardness (10.0) but had lower initial crispiness (6.0) and fracturability (5.0). All treats had less cohesiveness of mass and more particle residuals than the control WWF-GTN (Figure 1). The predominant after-taste of all the samples was grainy with values that ranged from 4.0–6.0 (Figure 1). All values presented correspond to intensity attributes, wherein higher values indicate a more perceived note. Refer to Section 2.3 to find the reference used for each attribute and the value given for comparison. Based on the multivariate analysis, it was found that brown appearance had a strong positive correlation with musty/dusty aroma ($r = 0.944$) and initial crispiness ($r = 0.891$). Moreover, aroma attributes such as grain had a strong positive correlation with the overall aroma intensity ($r = 0.808$) and toasted aroma with stale aroma ($r = 0.922$). Regarding the texture attributes, initial crispness had a strong positive correlation with musty/dusty aroma ($r = 0.868$) and treat fracturability ($r = 0.860$) (Tables 3, 4, and 5).

An overall picture of the attributes perceived per treatment is presented in the biplot obtained by PCA. The components F1 and F2 explained 49.43% of the variation in the
dataset wherein, hardness, toasted flavor, cardboard aroma, initial crispiness, and overall intensity aroma were the attributes that explained a large proportion of the total variation or were the most differential notes across samples. The PCA clustered similarly perceived samples (NC, SDP, and GL) regarding their sensorial attributes with most of them
in the negative quadrant of component 1 (F1). Nonetheless, the EP treatments were separated and located in the positive quadrant of component 1 because these treatments had higher initial crispness, hardness, and fracturability (F1). The WWF-GTN treatment was not part of the main cluster because it had higher cohesiveness of mass and hardness than the main cluster; however, it was also located in the negative quadrant of component 1 because most attributes were similar (Figure 2).

Oxidation rate evaluation

Hexanal is an aldehyde that originates from the oxidation of unsaturated fatty acids such as linoleic acid within a food matrix. Therefore, it can be used as a marker of oxidative

Variables	Appearance	Aroma									
	Brown	Surface Roughness	Surface Crack	Overall Intensity	Grain	Musty/Dusty	Toasted	Cardboard	Stale	Sweet Aromatics	
APR	Brown 1	0.098	-0.515	0.443	0.437	0.944	0.467	0.041	0.298	0.391	
	Surface Roughness		1	-0.179	-0.278	-0.337	-0.083	-0.014	-0.120	-0.153	-0.472
	Surface Crack	-0.515	-0.179	1	-0.103	0.070	-0.372	-0.534	0.620	-0.335	-0.140
ARM	Overall Intensity	0.443	-0.278	-0.103	1	0.808	0.543	0.720	0.395	0.687	-0.156
	Grain	0.437	-0.337	0.070	0.808	1	0.607	0.610	0.316	0.516	-0.071
	Musty/Dusty	0.944	-0.083	-0.372	0.543	0.607	1	0.505	0.217	0.396	0.313
	Toasted	0.467	-0.014	-0.534	0.720	0.610	0.505	1	-0.024	0.922	-0.305
	Cardboard	0.041	-0.120	0.620	0.395	0.316	0.217	-0.024	1	0.163	-0.158
	Stale	0.298	-0.153	-0.335	0.687	0.516	0.396	0.922	0.163	1	-0.369
	Sweet Aromatics	0.391	-0.472	-0.140	-0.156	-0.071	0.313	-0.305	-0.158	-0.369	1
FVR	Starchy	0.271	-0.214	-0.093	0.638	0.486	0.496	0.605	0.538	0.752	-0.378
	Toasted	0.278	-0.342	0.322	0.622	0.376	0.390	-0.013	0.754	0.085	0.164
	Sweet Aromatics	0.011	-0.777	0.083	0.188	0.100	0.026	-0.270	-0.052	-0.248	0.699
TEX	Initial Crispness	0.891	0.167	-0.422	0.709	0.658	0.868	0.735	0.179	0.575	0.035
	Fracturability	0.718	0.363	-0.301	0.626	0.565	0.753	0.596	0.379	0.441	-0.240
	Particle (Residuals)	0.702	0.025	0.059	0.681	0.612	0.662	0.314	0.426	0.204	0.236
AFT	Cardboard	-0.611	-0.042	0.157	-0.629	-0.767	-0.755	-0.511	-0.212	-0.396	0.224

Pearson (r-values) in bold are different from 0 (P<0.05). Appearance (APR), aroma (ARM), flavor (FVR), texture (TEX), aftertaste (AFT)

Variables	Flavor						
	Grain	Cardboard	Leavening	Starchy	Toasted	Sweet Aromatics	
APR	Surface Roughness	0.361	0.087	0.332	-0.214	-0.342	-0.777
ARM	Cardboard	0.178	0.580	0.271	0.538	0.754	-0.052
	Stale	-0.531	0.338	0.386	0.752	0.085	-0.248
	Sweet Aromatics	-0.113	-0.574	-0.537	-0.378	0.164	0.699
FVR	Grain	1	0.219	0.222	-0.255	0.425	0.157
	Leavening	0.219	1	0.423	0.520	0.302	-0.302
	Starchy	-0.255	0.520	0.194	1	0.466	-0.186
	Toasted	0.425	0.302	0.078	0.466	1	0.459
	Sweet Aromatics	0.157	-0.302	-0.363	-0.186	0.459	1
AFT	Toasted	-0.024	0.318	-0.119	0.725	0.719	0.464

Pearson (r-values) in bold are different from 0 (P < 0.05). Appearance (APR), aroma (ARM), flavor (FVR), aftertaste (AFT)
Koppel and Aldrich

Discussion

Animal evaluation

Throughout years of evolution, dogs have retained many ancestral eating behaviors. For instance, dogs rely heavily on olfactory senses when offered any food (Bradshaw, 2006; Pétel et al., 2018). Some research shows that olfactory sense is critical to discerning preferred versus non-preferred foods (Houpt et al., 1982). However, it is not well-understood whether the odors of the preferred foods are more hedonically appealing (Hall et al., 2017). Also, dogs usually do not invest much time masticating and savoring, instead they eat in a gluttonous manner (Aldrich and Koppel, 2015). Dogs possess only a fraction of the taste buds in comparison to humans (Koppel, 2014). Nonetheless, dogs can detect sour, bitter, salty, sweet, and umami flavors when stimulation of these chemoreceptors occurs. Therefore, it can be inferred that their highly developed sense of smell (>220 million olfactory receptors) contributes to a greater degree their overall flavor perception as the nose concentrates, moisturizes, and directs odorized air towards their olfactory epithelium which assures that warmed molecules can be more easily detected (Castillo, 2014). In addition, dogs have different bite forces that increase with higher body weight and size of the skull which can also be influenced by the dog’s chewing enthusiasm, personality, breed, and training (Kim et al., 2018).

Dogs choose short-term food based on its palatability (Hall et al., 2018). This is influenced by a combination of taste, aroma, texture, size, appearance, temperature, and consistency (Griffin and Beidler, 1984). Moreover, their food preferences can also be determined by their genetics and early-life experiences (Bhadra and Bhadra, 2014). Our results could be explained by the combination of these factors, which were perceived by the animal after the various treatments were offered repeatedly. For instance, the EP treatments were numerically preferred over the other treatments, most likely because of a stronger aroma, especially when these treatments were offered repeatedly. For instance, the EP treatments were more easily detected (Castillo, 2014). In addition, dogs have different bite forces that increase with higher body weight and size of the skull which can also be influenced by the dog’s chewing enthusiasm, personality, breed, and training (Kim et al., 2018).
consumption (Houpt and Smith, 1981), and the texture may have played an essential role regarding enjoyment while eating.

Higher moisture (lower dry matter) and lower crude fiber in dry foods are thought to boost palatability and a dog’s food preference (Araujo and Milgram, 2004; Alegría-Morán et al., 2019). Pétel et al. (2018) demonstrated that higher moisture can increase the elasticity and the porosity of kibbles, which may contribute to greater volatile (aroma) release. In addition, higher moisture also reduces the texture, which is preferred by dogs as denoted by Kitchell (1972) when they compared canned and semimoist food to dry food, most likely due to a more pleasant mouthfeel. In our study, treat moisture did not differ across treatments with average values fluctuating between 3%–8%, this was consistent with that recommended by Bramoulle (2013).

An important observation in this study was that the addition of protein sources increased the acceptance of the sorghum treats. In both individual phases, the treatments with...
no added soluble animal proteins had the highest numerical
values (least preferred). For this reason, the NC treatments
were not included in the final comparison. According to
Nagodawithana et al. (2008), the hydrolysis of proteins can
help enhance a product’s acceptability. One reason could be
that the biogenic and volatile amines can influence the aroma
of a product. In turn, this may increase product palatability
given that the aroma of a food presented before eating can
increase the appetite (Zoon et al., 2016). Moreover, dogs tend
to be highly sensitive to the tastes of amino acids, organic
acids, and nucleotides that are mainly found in animal tissues
(Case et al., 2011; Hidalgo and Takatsu, 2012).

In the preliminary phases of preference ranking tests, dogs
ate the WWS faster relative to WRS and this was thought to
be associated with the astringent flavor that has been reported
for sorghum, especially when the pericarp is darker (House et
al., 1995). Awika and Rooney (2004) indicated that red sor-
ghums have significantly higher levels of extractable phenols
than white sorghums. Nonetheless, a slightly different pattern
was observed in the combined phase in which both WWS and
WRS were analyzed. Thus, further investigation regarding
this single parameter and with a larger dog cohort should be
conducted to better understand the change.

Comparable to our study, Thompson et al. (2016) evalu-
ated preference of dog foods in two phases. In the first phase,
the dogs sniffed and observed two products without being
able to eat them, while in the second phase, the dogs were
allowed to consume the products. The authors observed that
the proportion of time spent by the dogs exploring the foods
was correlated to their consumption. In our preference rank-
ing test, the time allowed for sniffing each toy + treat before
starting the trial was not recorded; however, the dog handler
displayed each of the five treatments to the dogs for approxi-
mately the same amount of time. In both instances, there was
a substantial impact from aroma which superseded visual cues
on dogs’ selection.

4.2 Descriptive sensory evaluation

The human sensory panel complemented the ranking test
results and the physical measurements obtained by the instru-
mental analysis. Sorghum products have previously been evalu-
ated for their sensory attributes. For example, Chiremba et
al. (2009) found comparable acceptance of red tannin-free
sorghum biscuits in comparison to wheat regarding liking but
not texture. In our case, the panelists found similarities
regarding flavor and aftertaste as “grainy” was predominant,
and “overall intensity” the stronger aroma regardless of the
cereal or protein used.

The panelists identified darker hues in SDP and EP treats,
and also for GI when combined with WRS. Visually, the NC
treatments, because of their lack of added protein had more
surface fissures/cracks. Thus, the inclusion of proteinaceous
ingredients verified once again their importance for increas-
ing the hardness and cohesiveness from the production and
human site (pet owner) perspective. The highly positive cor-
relations found between initial crispiness with musty/dusty
aroma and fracturability were mainly driven by the scores
for the EP treatments. The panelists identified the EP treat-
ments as hard and difficult to bite, with values of 13.0 and
14.5 out of 15.0 for the WWS and WRS, respectively. Peak
bite forces in adult humans can go from 200 to 450 newtons
(N) (Lieberman, 2011). As earlier stated, these treatments also
presented eating difficulties for adult Beagle dogs. Adult dogs
can have a wide range of bite forces, Lindner et al. (1995)
evaluated 22 pet dogs between 7 and 55 kg and determined
bite forces ranges from 13 to 1394 N with a mean of 256 N.
The averaged value found in dogs closely resembled the val-
ues reported in humans; thus, the collective perception of the
panelists served as an indicator of the force the dogs needed
to exert in order to consume the treats.

The sensory relationships described by the panelists regard-
ing various attributes for color, aroma, and hardness (brown
appearance with musty/dusty aroma and initial crispiness,
and toasted aroma with stale aroma) may have been associ-
ated with the Maillard reaction that occurred during baking
and includes a group of reactions rather than a single reac-
tion. In biscuit production, reducing sugars (monosaccharides
and lactose) react with free amino acids (especially lysine)
when the product is heated during baking and promotes the
brown hue formation on the surface, contributing to the tex-
ture and flavor (Leiva-Valenzuela et al., 2018). It is important
to emphasize that the Maillard reaction has also an effect on
animal assimilation of the product as the bioavailability of
lysine reduces (van Rooijen et al., 2013). Treats are products
not intended to fulfill the nutritional requirements of the ani-
mal. Nonetheless, it would be recommended to quantify the
reactive lysine to evaluate their nutritive value.

Similarly, the predominant “grainy” flavor detected and the
strong positive correlations between the “grainy” aroma and
the “overall intensity” aroma could be influenced by the for-
mulation of the products in which the main ingredient was
a cereal (wheat or sorghum). According to Ma et al. (2017),
high-carbohydrate (human) food is usually related to sweet
taste, while the savory taste is associated with high-protein
food (Griffioen-Roose et al., 2012). Savory taste refers to
nonsweet taste and it is closely linked to the “umami,” which
is also described as a “broth-like” or “meaty” flavor (Yama-
guchi and Ninomiya, 2000). In our evaluation, the sweet aro-
amics were only slightly perceived by the panelists, whereas
the savory taste was not identified. Therefore, the soluble
animal proteins in the amounts added did not overshadow the
predominant “grainy” taste from the high level of cereals.

Commonly, sweet and umami tastes are well-accepted by
dogs and humans because they are associated with nutritive
foods (Houpt and Smith, 1981; Yarmolinsky et al., 2009). In
addition, Houpt et al. (1979) described that female dogs tend
to have a slightly more preference for sucrose as compared
to males. Despite the differences reported among species
in sweet taste receptors and genes that influence the sweet
taste responses (Bachmanov et al., 2011), the scores obtained
from the panelists gave us a narrower idea of the attributes
which existed in these products. Nonetheless, further research
should be conducted to better understand these observations.

4.3 Oxidation rate evaluation

Lipid oxidation is a process in which unsaturated fatty acids
react with oxygen, creating intermediate products (lipid
hydroperoxides) that are tasteless and odorless. These can
be further decomposed into volatile compounds (aldehydes,
ketones, and hydrocarbons) that interact with food compo-
nents (Mozuraityte et al., 2016). The secondary volatile prod-
ucts are important quality indicators because they degrade
food quality and influence the organoleptic, nutritional, and
shelf-life properties of a product (Jeleń and Wąsowicz, 2011).

There are numerous methods to evaluate oxidation of fats.
These range from measurement of compounds such as peroxide
value which are an indicator of hydroperoxides, anisidine value which is an indicator of nonvolatile secondary oxidation products, and free fatty acids that are products of hydrolysis of the triglyceride and organic volatiles (Velasco et al., 2010; Mozuraityte et al., 2016; Bench, 2019). In raw and processed value which are an indicator of hydroperoxides, anisidine

10 aging (water, vapor, O₂, or CO₂ permeability), and storage properties), the processing, the antioxidants included, the pack-

aging which occurs via a free-radical chain mechanism in an auto- catalytic manner (Shahidi, 2001; Mozuraityte et al., 2016).

Oxidation can happen before and during the processing of biscuits. The oxidative stability of a product can be attributed to the formulation (moisture content, physical-chemical properties), the processing, the antioxidants included, the pack-

aging (water, vapor, O₂, or CO₂ permeability), and storage conditions (temperature, light, humidity) (Galić et al., 2009).

For this reason, some authors suggest analyzing the fat com-

position and level of oxidation that ingredients possess before making a product (Manzocco et al., 2020) because an ingre-
dient with a very high oxidation level can lead to a rise in the level of primary oxidation products, and subsequently sec-

ondary oxidation products may accumulate after processing. Nonetheless, other authors have found that the ingredient oxidation does not completely account for later product dete-

rioration (Gray, 2015).

It has been documented that there exists a high level of lipid oxidation in dough preparation due to the presence of active enzymes and oxygen available. It can also occur during baking, but in minor proportions (Caponio et al., 2008; Maire et al., 2013). Interestingly, the high baking temperatures can have a two-factor effect on a product. They can inactivate the enzymes responsible for oxidation (lipase and lipoxygenase) and also favor auto-oxidation (Maire et al., 2013). Additional-

ally, the baking temperatures can produce Maillard Reactions Products (MRP) which to some degree are considered antioxidants (Barden and Decker, 2016). The MRP can act as oxy-
gen scavengers or metal ion sequestrators, slowing the initial lipid oxidation and thereby hydroperoxide formation (Bressa

et al., 1996).$ Wheat and sorghum contain low levels of total fats that vary from (2.2%–3.3%) and (3.9%), respectively. Addition-

ally, the predominant fatty acids from wheat are linoleic (56.3%) and palmitic (24.5%); whereas, in sorghum, oleic and linoleic acids account for 84% of the total fatty acids making it highly unsaturated (Becker, 2007). In our study, the original level of hydroperoxides and secondary oxidation products was not analyzed in the ingredients before produc-

ing the treats. This could be why the initial hexanal level and stale (lack of freshness) aroma detected by the panelists were higher, especially in the EP treatments as the odor threshold for hexanal has been previously reported to be at 97 ppb in healthy adult (22–40 yr) humans (Ernstgård et al., 2017). At those quantified values, we also expected a canine perception because dogs’ olfactory receptors are more sensitive to hex-

anal than those from humans (Cho and Park, 2019); none-

theless, this note did not cause any refusal of the product but could instead influence the buying or serving decisions of the pet owner (Koppel et al., 2013).

Besides the WRS-GL and WRS-EP treatments that reduced hexanal content over time, most of the treatments had consis-
tent values. This observation agreed with Mandić et al. (2013), who noted that hexanal content in refined and whole grain wheat and buckwheat crackers had values lower than 1.0 mg/kg until the sixth month. However, after that point, the values increased to > 5.0 mg/kg towards month 12 at ambient temperature (22 ± 2 °C). Similarly, Sakač et al. (2016) observed a similar pattern during the first 9 mo of unpacked and packed gluten-free rice-buckwheat cookies stored at 23 °C and 40% relative humidity for 16 mo. Nonetheless, these authors reported higher aldehydes values (2.05–3.93 mg/kg) when they combined the octanal, hexanal, and pentanal results. It is worth emphasizing that our study was conducted at a higher temperature and relative humidity and yet the treats had low hexanal values. Though the cited studies all evaluated products with higher fat content (>20%) and for more extended periods.

The reduction of hexanal observed in some treatments could be explained by the possibility that it volatilized through the holes in whirl bags or that some oxidative reac-
tions involving hexanal occurred during the storage period. Similar findings were observed by Purcaro et al. (2008) when analyzed crispy bread for 12 mo at 39%–43% RH. However, further evaluation should be performed characterizing the spray-dried plasma, egg protein, and gelatin level on markers of oxidation, including other aldehydes such as heptanal, (t)-2-heptenal, nonanal, and (t)-2-nonenal.

Another factor that can influence oxidation is the level of iron in a product due to its ability to enhance the propaga-
tion of lipid peroxidation through redox cycling even at very low concentrations (<50 ppb). This reaction creates free radicals that further attack labile molecules (Minotti and Aust, 1992; Goddard et al., 2012). The manufacturers reported that the whole flours used in our study contained iron; thus, some oxidation was expected. However, our observations let us conclude that iron did not affect the oxidation stability of treats because the low moisture in the product most likely reduced its diffusion as reported by Barden (2014).

5.Conclusion$ Our hypothesis was validated through this study as the addi-
tion of soluble animal proteins enhanced the sensory attributes of sorghum rotary-molded dog treats. Moreover, the resultant treats were highly comparable to those made with wheat when SDP and GL were included. Results from the human sensory panel complemented the interpretation of the ranking test and better-defined differences in the product appearance and acceptability. There was not an impairment in the oxidation rates. The hexanal values were not affected when SDP or GL were included as compared to WWF-GTN (<1.0 mg/kg); however, the EP considerably increased the hexanal concentra-
tions, especially at the beginning of the study and throughout the evaluation. It is recommended that another ranking test with a larger dog cohort and descriptive sensory analysis be performed over time to identify rancidity notes which would help predict shelf-life stability. Also, other aldehydes typical for rancidity development should be analyzed to identify the changes in their profile over a longer period.

Acknowledgment This work was funded by the United Sorghum Checkoff Program (KS002-16 / MD004-19).
Disclosures
The authors declare no real or perceived conflicts of interest in this work.

Literature Cited
Aldrich, C. G., and K. Koppel. 2015. Pet food palatability evaluation: a review of standard assay techniques and interpretation of results with a primary focus on limitations. Anim. Open Access J. MDPI 5:43–53. doi:10.3390/ani0100043.

Alegria-Morán, R. A., S. A. Guzmán-Pino, J. I. Egaña, C. Muñoz, and C. J. Figueroa. 2019. Food preferences in dogs: effect of dietary composition and intrinsic variables on diet selection. Anim. Open Access J. MDPI 9:1–12. doi:10.3390/ani09005219.

Aranujo, J. A., and N. W. Milgram. 2004. A novel cognitive palatability assessment protocol for dogs. J. Anim. Sci. 82:2200–2206. doi:10.2527/2004.82272200x.

Awika, J. M., and L. W. Rooney. 2004. Sorghum phytochemicals and their potential impact on human health. Phytochem. 65:1199–1221. doi:10.1016/j.phytochem.2004.04.001.

Bachmanov, A. A., N. P. Bosak, W. B. Floriano, M. Inoue, X. Li, C. Lin, V. O. Murovets, D. R. Reed, V. A. Zolotarev, and G. K. Beauchamp. 2011. Genetics of sweet taste preferences. Flavour Frag. J. 26:286–294. doi:10.1002/jff.2074.

Barden, L. M. 2014. Understanding lipid oxidation in low-moisture food. University of Massachusetts Amherst. doi:10.7275/RK58-7Z49.

Barden, L., and E. A. Decker. 2016. Lipid oxidation in low-moisture food: a review. Crit. Rev. Food Sci. Nutr. 56:2467–2482. doi:10.1080/10408398.2013.848833.

Becker, R. 2007. Fatty acids in food cereal grains and grain products. In C. Kuang Chow, editor, Fatty acids in foods and their health implications. 3rd ed. Elsevier.

Bench, B. J. 2019. Determination of lipid oxidation parameters in solid non-oil matrices and the impacts on the pet food industry. AOAC Annual Meeting & Expo. p. 1.

Bhadra, A., and A. Bhadra. 2014. Preference for meat is not innate in dogs. J. Ethol. 32:15–22. doi:10.1007/s10164-013-0388-7.

Bradshaw, J. W. 2006. The evolutionary basis for the feeding behavior of domestic dogs (Canis familiaris) and cats (Felis catus). J. Nutr. 136:1927S–1931S. doi:10.1093/jn/136.7.1927S.

Bramoulle, L., J. Ruaud, I. Guiller, and A. Levesque. 2013. Method for producing highly palatable dry cat food (Justia Patents Patent No. 20130287930).https://patents.justia.com/patent/20130287930.

Bressa, E., N. Tesson, M. Dalla Rosa, A. Sensidoni, and F. Tubaro. 1996. Antioxidant effect of maillard reaction products: application to a butter cookie of a competition kinetics analysis. J. Agric. Food Chem. 44:692–695. doi:10.1021/jf950436b.

Caponio, F., C. Summo, A. Pasqualone, and M. T. Bilancia. 2008. Effect of kneading and baking on the degradation of the lipid fraction of biscuits. J. Cereal Sci. 48:407–412. doi:10.1016/j.jcs.2007.11.003.

Case, L., L. Daristole, M. Hayek, and M. Raasch. 2011. Digestion and absorption. In: D.A. Dendy, editor, Agronomic principles. In: D.A. Dendy, editor, Agronomic principles. St. Paul, MN. p. 27–67.

Castillo, M. 2014. The complicated equation of smell, flavor, and taste. J. Sens. Stud. 29:489–510. doi:10.1111/joss.12017.

Di Donfrancesco, B., K. Koppel, B. Swaney-Stueve, and E. Chambers. 2014. Consumer acceptance of dry dog food variations. Anim. Open Access J. MDPI 4:313–330. doi:10.3390/ani04020313.

Dornblaser, L. 2017. What human food trends mean for treats and toppings. https://www.k-state.edu/pet-food/events/docs/2017/Dornblaser.pdf.

Ernstgärd, L., A. M. Dwivedi, J. N. Lundström, and G. Johanson. 2017. Measures of odor and lateralization thresholds of acrolein, crotonaldehyde, and hexanal using a novel vapor delivery technique. PLoS One 12:e0185479. 1–14. doi:10.1371/journal.pone.0185479.

Francis, J., K. Thompson-Witrick, and E. B. Perry. 2020. 104 president oral presentation pick: sensory analysis of horse treats: a comparison between horses and humans. J. Anim. Sci. 98(Suppl. 4):91. (Abstract). doi:10.1093/jas/skz278.166.

Galić, K., D. Ćurčić, and D. Gabrić. 2009. Shelf life of packaged bakery goods—a review. Crit. Rev. Food Sci. Nutr. 49:405–426. doi:10.1080/10408390802067878.

Gebreselasie, E., and H. Clifford. 2016. Oxidative stability and shelf life of crackers, cookies, and biscuits. In: Oxidative stability and shelf life of foods containing oils and fats. Elsevier. p. 461–478. doi:10.1016/B978-1-63067-06.00012-4.

Goddard, J. M., D. J. McClements, E. A. Decker. 2012. Innovative technologies in the control of lipid oxidation. Lipid Technol. 24:275–277. doi:10.1002/lite.201200242.

Gray, M. 2015. Evaluation of oxidized rendered protein meals in pet foods. Kansas State University.

Griffin, R. W., and L. M. Beidler. 1984. Studies in canine olfaction and feeding: A summing up and some comments on the academic-industrial relationship. Crit. Rev. Food Sci. Nutr. 24:180–213. doi:10.1080/10408390802067878.

Hidalgo, M., and C. Takatsu. 2012. Desarrollo de un snack para caballos. Universidad San Francisco de Quito. http://repositorio.usfq.edu.ec/bitstream/23000/1918/1/103475.pdf.

Houpt, K. A., B. Coren, H. F. Hintz, J. E. Hilderbrandt. 1979. Effect of sex and reproductive status on sucrose preference, food intake, and body weight of dogs. J. Am. Vet. Med. Assoc. 174:1083–1085.

Houpt, K. A., P. Davis, and H. Hintz. 1982. Effect of peripheral anosmia in dogs trained as flavor validators. Am. J. Vet. Res. 43:841–843.

House, L. R., M. Osmanzai, M. I. Gomez, and E. S. Monyo. 1995. Digestion and food-odor preferences in dogs: a pilot study. Chem. Senses 42:361–370. doi:10.1093/chemse/bjs016.

Hall, J. A., J. C. Vondran, M. A. Vanchina, D. E. Jewell. 2018. When fed foods with similar palatability, healthy adult dogs and cats choose different macronutrient compositions. J. Exp. Biol. 221:173450. 1–14. doi:10.1242/jeb.173450.

Jeleń, H., and E. Wasowicz. 2011. Lipid-derived flavor compounds. In: H. Jelen, editor, Food flavors. Vol. 20116950. CRC Press. p. 65–94. doi:10.1201/b11187-5.

Kim, S. E., B. Arzi, T. C. Garcia, F. J. Verstraete. 2018. Bite forces and their measurement in dogs and cats. Front. Vet. Sci. 5: 1–6. doi:10.3389/fvets.2018.00076.

Kitchell, R. L. 1972. Dogs know what they like. Friskies Res. 8:1–4.

Koppel, K. 2014. Sensory analysis of pet foods. J. Sci. Food Agric. 94:2148–2153. doi:10.1002/jsfa.6597.

Koppel, K., K. Adhikari, and B. Di Donfrancesco. 2013. Volatile compounds in dry dog foods and their influence on sensory aromatic profile. Molecules 18:2646–2662. doi:10.3390/molecules18012646.
Leiva-Valenzuela, G. A., M. Quilaqueo, D. Lagos, D. Estay, F. Pedreschi. 2018. Effect of formulation and baking conditions on the structure and development of non-enzymatic browning in biscuit models using images. J. Food Sci. Technol. 55:1234–1243. doi:10.1007/s13197-017-3008-7.

Lema, K. A. 2021. Lema, K. A. 2021. Leiva-Valenzuela, G. A., M. Quilaqueo, D. Lagos, D. Estay, F. Pedreschi. 2018. Effect of formulation and baking conditions on the structure and development of non-enzymatic browning in biscuit models using images. J. Food Sci. Technol. 55:1234–1243. doi:10.1007/s13197-017-3008-7.

Lindner, D. L., S. M. Marretta, G. J. Pijanowski, A. L. Johnson. 2018. Effect of formulation and baking conditions on the structure and development of non-enzymatic browning in biscuit models using images. J. Food Sci. Technol. 55:1234–1243. doi:10.1007/s13197-017-3008-7.

Lieberman, D. E. 2011. Lieberman, D. E. 2011. Lema, K. A. 2021. Leiva-Valenzuela, G. A., M. Quilaqueo, D. Lagos, D. Estay, F. Pedreschi. 2018. Effect of formulation and baking conditions on the structure and development of non-enzymatic browning in biscuit models using images. J. Food Sci. Technol. 55:1234–1243. doi:10.1007/s13197-017-3008-7.