INTRODUCTION

Severe haemophilia A (HA) and haemophilia B (HB; factor levels <0.01 IU/mL) are characterised by spontaneous joint and muscle bleeding and represent approximately 30% of haemophilia cases in Europe. Patients with severe haemophilia experience acute pain and joint stiffness during bleeds, with recurrent bleed events leading to chronic synovitis and diminished range of movement (ROM) in the affected joint. Approximately 90% of patients will develop chronic haemophilic arthropathy, associated with chronic pain, disability and impaired health-related quality of life (HRQoL), by 30 years of age.

Introduction: Clinical severity and impact of haemophilia on quality of life have been generally considered to be lower for haemophilia B (HB) compared with haemophilia A (HA) patients.

Aims: To compare annual bleeding rate (ABR), target joint development and health-related quality of life (HRQoL) between adult (≥18 years) severe HA and HB patients using recent data from the Cost of Haemophilia in Europe: a Socioeconomic Survey (CHESS) study.

Methods: Multivariate generalized linear models (GLM) were constructed to assess the relationship between haemophilia type, ABR, HRQoL (derived from EQ-5D index scores) and the presence of target joints while controlling for covariates.

Results: Of the 1225 patients included, 77% (n = 949) had HA and 23% (n = 278) had HB. Of the 514 patients who completed the EQ-5D, 78% (n = 405) had HA, and 22% (n = 110) had HB. Unadjusted mean ABR was 3.79 in HA and 4.60 in HB. The presence of ≥1 target joint was reported in 59% and 54% of patients with HA and HB, respectively. Unadjusted mean EQ-5D index score was 0.78 in HA and 0.76 in HB. Haemophilia type was not a significant predictor of ABR, target joints or HRQoL when adjusted for confounding factors such as BMI, age and replacement therapy regimen.

Conclusion: Data suggest comparable ABR, incidence of target joints and HRQoL between patients with HB and HA indicating comparable clinical severity and disease impact on patient quality of life.

KEYWORDS

annual bleed rate, haemophilia type (A & B), target joints, health-related quality of life
There has been a perception that HB is associated with less severe clinical symptoms than HA, and that patients with HA have worse HRQoL when compared with HB.7,9 In 2009, Tagariello et al10 showed that patients with HA had a threefold greater risk of undergoing orthopaedic arthroplasty. Lower rates of prophylaxis use and overall factor concentrate consumption have been used to support the notion that HB is less severe than HA.11,12 Recently, it was reported in an Italian cohort of 105 patients that the proportion with a high incidence (>50) of haemarthroses across their lifetime was greater in HA compared with HB.13 A suggested explanation for the clinical symptoms in patients with HB being milder than HA may be genetic factors that are still poorly understood.4 However, this clinical perception of the differences between the severity of clinical findings and HRQoL in HA and HB remains to be supported or refuted within a single research cohort.

Recently, the findings from a cross-sectional, retrospective study, the Cost of Haemophilia in Europe: a Socioeconomic Survey (CHESS) was reported.14 The CHESS study evaluated the annual economic and psychosocial burden of severe haemophilia A and B, in patients sampled from five European countries. Using data from the CHESS study, this study aimed at comparing the annual bleeding rate (ABR), reporting of target joints and HRQoL between patients with HA and HB.

2 | MATERIALS AND METHODS

2.1 | Patient data source: the CHESS study

The Cost of Haemophilia in Europe: a Socioeconomic Survey (CHESS) was a cross-sectional, retrospective study of patients ≥18 years with severe haemophilia (FVIII/FIX level <1 IU/dL) from five European countries: France, Germany, Italy, Spain and the UK.14,15 Participating clinicians (139 haematologists and, in France, also haemophilia care providers) selected consecutive patients consulting at their clinics or hospitals irrespective of the reason for consultation. Most clinicians recruited up to eight patients, with a small number recruiting up to 16. The main focus of the CHESS study was on direct and indirect costs of health care for patients with severe haemophilia, but the clinical data gathered from CHESS were available for this study.

Patient data were collected retrospectively between January and April 2015 and included 1285 patients referred from 139 haematologists and haemophilia care providers based on haemophilia treatment centres (HTCs), hospitals and clinics. Five hundred and fourteen patients provided an EQ-5D response. Inhibitor status was defined according to the CHESS study protocol: never (no recorded inhibitors at any time), previously (at least one recorded measurement at any time) or current. Patients who had inhibitors to replacement therapy at the time of the survey (n = 58) were excluded in this study sample.

2.2 | Annual bleeding rate (ABR)

Bleeding frequency was reported in this study as a combination of annual major and minor bleeding rates, derived from patient records, to generate the ABR. Bleeds were categorized as major or minor and defined by the bleeding component of the World Federation of Hemophilia (WFH) Physical Examination Score (Gilbert score).16 A minor joint bleed was defined as one with mild pain, minimal joint swelling, minimal restriction of movement (ROM) and resolution within 24 hours of treatment. A major joint bleed was defined as one with moderate-to-severe pain, effusion, limitation of ROM and failure to improve within 24 hours of bleeding episodes were pooled for analysis.

2.3 | Target joints

A “target joint” as defined in the CHESS study encompasses any joint with known chronic synovitis. To incorporate the nuanced definitions and diagnostic options that exist within registries, trials and guidelines,17 study investigators were given discretion as to any further criteria they might use to define target joints with respect to bleed frequency and period of observation.

2.4 | Health-related quality of life (HRQoL)

Health-related quality of life for patients in the CHESS study was assessed using the three-level version (no problems, some problems and extreme problems) of the EQ-5D patient questionnaire covering the following five dimensions: self-care, mobility, usual daily activities, pain/discomfort and anxiety/depression.18,19 A single weighted index score is derived through an amalgam of the five dimensions, with index scores anchored at 0 (dead) and 1 (perfect health), though scores of less than zero (“worse than dead”) can also be derived.20 The EQ-5D questionnaire was chosen for this study because it provided a validated method for measuring health status as shown in the recently reported findings of the CHESS study.14,18,19 Health status as described by the EQ-5D visual analogue scale (VAS), a 0-100 scale of the patient’s perception of their current health (0 = the worst health the respondent can imagine; 100 = the best health state), is also shown in the descriptive analysis.

2.5 | Statistical analysis

Descriptive analysis was used to summarize patient clinical characteristics. The mean and standard deviation (SD) were used for data and frequency analysis. Standard t tests and Pearson’s chi-squared test were used for between-group differences between data on HA and HB, including for ABRs, the presence of one or more target joints and EQ-5D index scores.

Multivariate models were constructed to determine whether haemophilia type (ie HA or HB) was a statistically significant predictor of ABR, target joints or HRQoL when controlling for additional covariates linked to these clinical outcomes. A generalized linear model (GLM) was used to specify the ABR and HRQoL (ie EQ-5D index scores) models,21 while multivariate logistic regression model was used to assess the relationship with the presence of target joints. Age and body mass index (BMI) were included as covariates in all three models; additional covariates in the ABR and target joint models
were current treatment strategy (primary/secondary prophylaxis/on demand) and history of inhibitor detection (never/once/more than once). Physician-reported therapy adherence as measured on a 1-3 scale (full, partial, none) was included as a further covariate in the ABR model. Additional covariates in the EQ-SD model were HCV/HIV seropositivity, physician-reported chronic pain using the pain component of the WFH Physical Examination Score (Gilbert score).16

To avoid censoring data, for prediction of EQ-SD index scores, the index score value \(Y \) was transformed using \(nY = 1 - Y \) and results reported as EQ-SD disutility. The final value output was the average marginal effect of HA and HB on ABRs, target joints and EQ-SD index score, expressed as additionally recorded bleeds and target joints per year, and disutility, respectively.

3 | RESULTS

3.1 | Population characteristics

Of the 1227 patients studied, 77% (n = 949) had HA (mean age, 35 years) and 23% (n = 278) had HB (mean age, 36 years; Table 1). The proportion of patients with inhibitors was similar for haemophilia A and haemophilia B; this may be a chance occurrence or possibly the result of clinical practice in the participating countries. There were slightly fewer HB patients receiving prophylaxis compared with HA (54% vs 58%), but this difference was not statistically significant (\(P = 0.194 \)). Two patients were excluded from the ABR analysis due to physician responses written as proportions (%) of minor vs major bleeds (sum of bleeds = 100). Patient record data were available for all patients on target joints. Of the 514 patients who completed the EQ-5D, 78% (n = 404) had HA, and 22% (n = 110) had HB.

3.2 | Unadjusted comparison of clinical outcomes and health status

The mean ABR was significantly greater in HB patients (4.6 ± 5.8) compared with HA (3.8 ± 4.4; \(P = 0.015 \); Table 2). However, the proportion of patients reporting 10 or more bleeds in the previous year (10% and 13% for HA and HB, respectively) was not significantly higher in HB. There were no significant differences between HA and HB with regard to the proportion of patients with ≥1 target joints (59% and 54% for HA and HB, respectively; \(P = 0.104 \)) nor the mean number of target joints affected (1.15 ± 1.37 vs 0.99 ± 1.33; \(P = 0.083 \)).

Of the 514 patients who completed the EQ-5D questionnaire, the mean EQ-5D index score for patients with HA (0.78 ± 0.26) and

TABLE 1	Characteristics of the 1227 patients with haemophilia A and B (HA and HB)		
	HA	HB	\(P \) value*
PRF, N	949	278	-
PSC (EQ-SD response), N (%)	405 (43)	118 (42)	-
Age, mean ± SD	35.4 ± 14.4	36.3 ± 15.3	0.387
BMI, mean ± SD	24.7 ± 3.4	24.8 ± 3.3	0.819
Treatment History, N (%)	-	-	-
On demand	255 (27)	82 (30)	0.594
Secondary prophylaxis	384 (40)	107 (38)	
Primary prophylaxis	173 (18)	44 (16)	
Secondary on demand	137 (14)	45 (16)	
History of inhibitor, N (%)	-	-	-
Never	846 (89)	244 (89)	0.075
Once	85 (9)	23 (8)	
More than once	16 (2)	11 (4)	
Physician-reported adherence, N (%)	-	-	-
Low	65 (7)	24 (9)	0.594
Moderate	304 (32)	86 (31)	
High	580 (61)	168 (60)	
Comorbidities, N (%)	-	-	-
HCV	55 (6)	10 (4)	0.148
HIV	31 (3)	4 (1)	0.106
Chronic pain, N (%)	-	-	-
None	333 (35)	120 (43)	0.111
Mild	359 (38)	94 (34)	
Moderate	224 (24)	57 (21)	
Severe	31 (3)	7 (3)	

ABR, annual bleeding rate; BMI, body mass index; PRF, patient record form; PSC, patient self-completion; SD, standard deviation.
*\(P \) value is calculated by independent t test or Pearson’s chi-squared test.

TABLE 2	ABR and target joint status of the 1225 patients with severe haemophilia A and B (HA and HB)		
	HA	HB	\(P \) value*
ABR	-	-	-
Mean ± SD	3.8 ± 4.4	4.6 ± 5.8	0.015
Reporting 10 or more bleeds, N (%)	90 (10)	35 (13)	0.135
Target joints	-	-	-
No. of target joints, mean ± SD	1.15 ± 1.37	0.99 ± 1.33	0.083
Reporting ≥1 target joint, N (%)	564 (59)	150 (54)	0.104

ABR, annual bleeding rate; SD, standard deviation.
*\(P \) value is calculated by independent t test or Pearson’s chi-squared test.
HB (0.76 ± 0.29) was similar (Table 3). A positive association between HB and the self-care domain of the EQ-5D was observed, with 77% and 82% of HA and HB patients reporting no problems, respectively (P = 0.048).

3.3 Multivariate regression

The average mean effect (AME) of model covariates on ABR is shown in Table 4. Positive associations with ABR were BMI (AME = 0.07, 0.01–0.13) and history of an inhibitor (either once [AME = 1.40, 0.29–2.51] or more than once [AME = 3.48, 0.29–6.68]). Primary prophylaxis (AME = −2.24, −2.89 to −1.60) was negatively associated with ABR. Haemophilia type had no significant marginal effect on ABR (AME = 0.23, −0.38–0.84).

Adjusted odds ratios (aORs) of the model predictors on the presence of a target joint are shown in Table 5. Primary prophylaxis (aOR = 0.62, 0.43–0.90), age (aOR = 0.99, 0.98–1.00), BMI (aOR = 1.07, 1.02–1.11), secondary prophylaxis (aOR = 1.91, 1.42–2.55), secondary on demand (aOR = 1.69, 1.16–2.47) and inhibitor history (either once [aOR = 3.39, 2.02–5.72] or more than once [aOR = 3.24, 1.20–8.78]) were all positive predictors of the presence of one or more target joints. Haemophilia type was not found to be a significant predictor of the presence of one or more target joints (aOR = 0.77 [0.58, 1.02]).

The average mean effect of model covariates on EQ-5D index scores is shown in Table 6. Positive associations with EQ-5D were age (AME = 0.00, 0.00–0.01) and any nonzero level of chronic pain (mild: AME = 0.14, 0.06–0.22; moderate: AME = 0.25, 0.15–0.36; severe: AME = 0.71, 0.32–1.11). Haemophilia type had no significant marginal effect on EQ-5D index scores (AME = 0.04, −0.06–0.13).

4 Discussion and conclusion

This study compared the ABR and HRQoL between patients with HA and HB using recent data from the Cost of Haemophilia in Europe: a Socioeconomic Survey (CHESS) study. After controlling for potential confounding factors, study results showed that the diagnosis of HA compared with HB was not a significant predictor of ABR, target joint development or HRQoL in this patient cohort. Patients with HA and HB in the CHESS study experienced comparable haemophilia-related clinical and HRQoL impacts. These study findings support the recommendations of current clinical guidelines that efforts to

Table 3

	HA	HB	P value*
EQ-5D VAS, mean ± SD	70.19 ± 15.68	68.09 ± 18.15	0.223
EQ-5D index utility score, mean ± SD	0.78 ± 0.26	0.76 ± 0.29	0.510
Mobility, N (%)			
No problems	246 (62)	65 (57)	0.431
Some problem	150 (38)	48 (42)	
Severe problems	3 (1)	2 (2)	
Self-care, N (%)			
No problems	307 (77)	94 (82)	0.048
Some problem	88 (22)	17 (15)	
Severe problems	4 (1)	4 (3)	
Usual activities, N (%)			
No problems	270 (68)	72 (63)	0.588
Some problem	121 (30)	40 (35)	
Severe problems	8 (2)	3 (3)	
Pain, N (%)			
No problems	152 (38)	53 (46)	0.274
Some problem	231 (58)	59 (51)	
Severe problems	16 (4)	3 (3)	
Anxiety, N (%)			
No problems	240 (60)	68 (59)	0.491
Some problem	142 (36)	39 (34)	
Severe problems	17 (4)	8 (7)	

SD, standard deviation; VAS, visual analogue scale.

*P value is calculated by independent t test or Pearson's chi-squared test.
TABLE 4 Regression analysis for annual bleeding rate (ABR) using a generalized linear model (GLM)

	AME (95% CI)	P value
Haemophilia B (vs HA)	0.23 (0.38, 0.84)	0.459
Age	−0.01 (−0.03, 0.01)	0.176
BMI	0.07 (0.01, 0.13)	0.024
Current treatment strategy (vs primary on demand)		
Secondary prophylaxis	−0.32 (−1.00, 0.35)	0.344
Primary prophylaxis	−2.24 (−2.89, −1.60)	<0.001
Secondary on demand	0.11 (−0.79, 1.01)	0.807
History of inhibitor detection (vs never)		
Once	1.40 (0.29, 2.51)	0.013
More than once	3.48 (0.29, 6.68)	0.033
Adherence (vs low)		
Moderate	−0.14 (−1.33, 1.06)	0.824
High	−0.65 (−1.80, 0.50)	0.268

AME (95% CI): average marginal effect and 95% confidence interval.

TABLE 5 Regression analysis for the presence of one or more target joints using logistic regression

	aOR (95% CI)	P value
Haemophilia B (vs HA)	0.77 (0.58, 1.02)	0.066
Age	0.99 (0.98, 1.00)	0.005
BMI	1.07 (1.02, 1.11)	0.001
Current treatment strategy (vs primary on demand)		
Secondary prophylaxis	1.91 (1.42, 2.55)	<0.001
Primary prophylaxis	0.62 (0.43, 0.90)	0.012
Secondary on demand	1.69 (1.16, 2.47)	0.007
History of inhibitor detection (vs never)		
Once	3.39 (2.02, 5.72)	<0.001
More than once	3.24 (1.20, 8.78)	0.021

aOR (95% CI), adjusted odds ratio and 95% confidence interval.

TABLE 6 Regression analysis for EQ-5D disutility using a generalized linear model (GLM)

	AME (95% CI)	P value
Haemophilia B (vs HA)	0.04 (−0.06, 0.13)	0.484
Age	0.00 (0.00, 0.01)	0.013
BMI	0.00 (−0.01, 0.02)	0.801
HCV seropositive	0.03 (−0.14, 0.20)	0.741
HIV seropositive	−0.05 (−0.30, 0.21)	0.715
Chronic pain (vs none)		
Mild	0.14 (0.06, 0.22)	<0.001
Moderate	0.25 (0.15, 0.36)	<0.001
Severe	0.71 (0.32, 1.11)	<0.001

AME (95% CI), average marginal effect and 95% confidence interval.
ACKNOWLEDGEMENTS

Editorial support for writing this manuscript was provided by Dinah Parums. Review and feedback on the manuscript were provided by Shire.

DISCLOSURES

This study was funded by Shire Pharmaceuticals. JB and AO are full-time employees of Shire. JOH has been an invited speaker at meetings organized by Bayer, Biogen, Pfizer and Roche, served on advisory boards for Bayer, Roche, Shire and Sobi, and has acted as an occasional paid consultant for Roche and Shire. SW, LC, DGD, TS and BOM declared no interests which might be perceived as posing conflict or bias.

AUTHORS’ CONTRIBUTIONS

JB, AO and JOH were involved in the conception and design of the study, verification of the results and interpretation of data. SW and CC were involved in the analysis of results, verification of results and interpretation of data. All authors were involved in drafting and revising the manuscript and reviewed and approved the final version of the manuscript.

ORCID

Shaun Walsh http://orcid.org/0000-0002-3610-2602

Jamie O’Hara http://orcid.org/0000-0001-8262-034X

Daniel-Anibal Garcia Diego http://orcid.org/0000-0001-9410-3825

Brian O’Mahony http://orcid.org/0000-0001-9780-6972

REFERENCES

1. Bolton-Maggs PH, Pasi KJ. Haemophilias A and B. Lancet. 2003;361:1801-1809.
2. Escobar M, Sallah S. Hemophilia A and hemophilia B: focus on arthropathy and variables affecting bleeding severity and prophylaxis. J Thromb Haemost. 2013;11:1449-1453.
3. Oladapo AO, Epstein JD, Williams E, Ito D, Gringeri A, Valentino LA. Health-related quality of life assessment in haemophilia patients on prophylaxis therapy: a systematic review of results from prospective clinical trials. Haemophilia. 2015;21:e344-e358.
4. Siboni SM, Mannucci PM, Gringeri A, et al. Health status and quality of life of elderly persons with severe hemophilia born before the advent of modern replacement therapy. J Thromb Haemost. 2009;7:780-786.
5. Rodríguez-Merchan EC. Musculoskeletal complications of hemophilia. HSS J. 2010;6:37-42.
6. Riley RR, Witkop M, Hellman E, Akins S. Assessment and management of pain in hemophilia patients. Haemophilia. 2011;17:839-845.
7. Makris M. Is VIII worse than IX? Blood. 2009;114:750-751.
8. Mannucci PM, Franchini M. Is haemophilia B less severe than haemophilia A? Haemophilia. 2013;19:499-502.
9. Nagel K, Walker I, Decker K, Chan AKC, Pai MK. Comparing bleed frequency and factor concentrate use between haemophilia A and B patients. Haemophilia. 2011;17:872-874.
10. Tagariello G, Iorio A, Santagostino E, et al. Comparison of the rates of joint arthroplasty in patients with severe factor VIII and IX deficiency: an index of different clinical severity of the 2 coagulation disorders. Blood. 2009;114:779-784.
11. Biss TT, Chan AK, Blanchette VS, Iwenofu LN, McImont M, Carcao MD. The use of prophylaxis in 2663 children and adults with haemophilia: results of the 2006 Canadian national haemophilia prophylaxis survey. Haemophilia. 2008;14:923-930.
12. Schulman S, Eelde A, Holmström M, Ståhlberg G, Odeberg J, Blombäck M. Validation of a composite score for clinical severity of haemophilia. J Thromb Haemost. 2008;6:1113-1121.
13. Melchiorre D, Linari S, Manetti M, et al. Clinical, instrumental, serological and histological findings suggest that hemophilia B may be less severe than hemophilia A. Haematologica. 2016;101:219-225.
14. O’Hara J, Hughes D, Camp C, Burke T, Carroll L, Diego D-AG. The cost of severe haemophilia in Europe: the CHESS study. Orphanet J Rare Dis. 2017;12:106.
15. Oladapo A, Walsh S, O’Hara J, Kauf T. A descriptive comparison of disease burden between hemophilia patients with and without inhibitors: data from the CHESS study. Blood. 2016;128:4756.
16. Gilbert MS. Prophylaxis: musculoskeletal evaluation. Semin Hematol. 1993:30-3-6.
17. Hanley J, McKernan A, Creagh MD, et al. Guidelines for the management of acute joint bleeds and chronic synovitis in haemophilia. Haemophilia. 2017;23:511-520.
18. The EuroQol Group. EuroQol – a new facility for the measurement of health-related quality of life. Health Policy (New York). 1990;16:199-208.
19. Brooks R. EuroQol: the current state of play. Health Policy (New York). 1996;37:53-72.
20. Rabin R, de Charro F. EQ-5D: a measure of health status from the EuroQol Group. Ann Med. 2001;33:337-343.
21. Coughlan D, Yeh ST, Neill CO, Frick KD. Evaluating direct medical expenditures estimation methods of adults using the medical expenditure panel survey: an example focusing on head and neck cancer. Value Health. 2014;17:90-97.
22. World Federation of Hemophilia. Guidelines for the Management of Hemophilia [Internet]. 2012. http://www1.wfh.org/publication/files/pdf/1472.pdf. Accessed 01 12 2017.
23. Valentino LA, Mamonov V, Hellmann A, et al. A randomized comparison of two prophylaxis regimens and a paired comparison of on-demand and prophylaxis treatments in hemophilia A management. J Thromb Haemost. 2012;10:359-367.
24. Makris M, Kasper C. The World Federation of Hemophilia guideline on management of haemophilia. Haemophilia. 2013:19:1.
25. Srivastava A, Brewer AK, Mauser-Bunschoten EP, et al. WFH guidelines: guidelines for the management of hemophilia. Haemophilia. 2013;19:1-47.
26. Blanchette VS, Key NS, Ljung LR, et al. Definitions in hemophilia: communication from the SSC of the ISTH. J Thromb Haemost. 2014;12:1935-1939.
27. National Hemophilia Foundation. MASAC Recommendations Concerning Products Licensed for the Treatment of Hemophilia and Other Bleeding Disorders [Internet]; 2017. https://www.hemophilia.org/sites/default/files/document/files/249Text.pdf. Accessed September 17, 2017.

How to cite this article: Booth J, Oladapo A, Walsh S, et al. Real-world comparative analysis of bleeding complications and health-related quality of life in patients with haemophilia A and haemophilia B. Haemophilia. 2018;24:e322–e327. https://doi.org/10.1111/hae.13596