Modified TruSeq Small RNA Library Prep using Randomized 4N Adapters: In house 4N Protocol D

CURRENT STATUS: POSTED

MD Giraldez
Department of Internal Medicine, University of Michigan, Ann Arbor, MI
✉ mgiralde@med.umich.edu Corresponding Author

DJ Galas
Pacific Northwest Research Institute, Seattle, WA
✉ dgalas@pnri.org Corresponding Author

M Tewari
Departments of Internal Medicine and Biomedical Engineering, Center for Computational Medicine and Bioinformatics, and Biointerfaces Institute, University of Michigan, Ann Arbor, MI
✉ mtewari@med.umich.edu Corresponding Author

RM Spengler
Department of Internal Medicine, University of Michigan, Ann Arbor, MI

A Etheridge
Pacific Northwest Research Institute, Seattle, WA

PM Godoy
Lung Biology Center, Department of Medicine, University of California San Francisco

AJ Barczak
Lung Biology Center, Department of Medicine, University of California San Francisco

S Srinivasan
Department of Reproductive Medicine and Sanford Consortium for Regenerative Medicine, University of California San Diego

PL De Hoff
Department of Reproductive Medicine and Sanford Consortium for Regenerative Medicine, University of California San Diego

K Tanriverdi
Department of Medicine, Division of Cardiovascular Medicine, University of Massachusetts Medical School, Worcester, MA
A Courtright
Neurogenomics, The Translational Genomics Research Institute (TGen), Phoenix, AZ

S Lu
Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA

J Khoory
Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA

R Rubio
Center for Cancer Computational Biology, Dana-Farber Cancer Institute, Boston, MA

D Baxter
Institute for Systems Biology, Seattle, WA

TAP Driedonks
Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands

HPJ Buermans
14 Leiden Genome Technology Center, Department of Human Genetics, Leiden University Medical Center, The Netherlands

ENM Nolte-t Hoen
Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands

H Jiang
Center for Computational Medicine and Bioinformatics and Department of Biostatistics, University of Michigan, Ann Arbor, MI

K Wang
Institute for Systems Biology, Seattle, WA

I Ghiran
Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA

Y Wang
Center for Cancer Computational Biology, Dana-Farber Cancer Institute, Boston, MA

K Van Keuren-Jensen
Neurogenomics, The Translational Genomics Research Institute (TGen), Phoenix, AZ

JE Freedman
Department of Medicine, Division of Cardiovascular Medicine, University of Massachusetts Medical School, Worcester, MA

PG Woodruff
Cardiovascular Research Institute and the Department of Medicine, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of California San Francisco

LC Laurent
Department of Reproductive Medicine and Sanford Consortium for Regenerative Medicine, University of California San Diego

DJ Erle
Lung Biology Center, Department of Medicine, University of California San Francisco

DOI: 10.1038/protex.2018.052

**SUBJECT AREAS**
- Biotechnology
- Molecular Biology

**KEYWORDS**
- small RNA sequencing, 4N adapters, small RNA library preparation, extracellular RNA, exRNA, ERCC
Abstract
This protocol describes a library preparation method for sequencing small RNA. The method uses
degenerate adapters to alleviate the problem of bias in the ligation steps during small RNA library
preparation, and it optimizes several other parameters to make it appropriate for use specifically with
plasma RNA.

Introduction
Extracellular RNAs (exRNAs) have been identified in every biofluid that has been tested. In biofluids,
they have been found in extracellular vesicles, ribonucleoprotein complexes, and lipoprotein
complexes. ExRNAs are of considerable interest because they can serve as signaling molecules
between cells, they have the potential to serve as biomarkers for prediction and diagnosis of disease,
and exRNAs or the extracellular particles that carry them might be used for therapeutic purposes.
The Extracellular RNA Communication Consortium (ERCC) is a group of laboratories funded by the U.S.
National Institutes of Health. One goal of the ERCC is to develop robust and standardized methods for
collecting and processing of biofluids, separating different types of exRNA-containing particles, and
isolating and analyzing exRNAs. The "Reference Profiles group":http://exrna.org/referenceprofiles/
within the consortium is tasked with collecting reliable profiles of the spectrum of extracellular RNAs
found in healthy individuals. These reference profiles will serve as benchmarks for comparison with
the exRNA profiles from patients with disease. The present protocol for small RNA library preparation
was developed by the ERCC Reference Profiles group for use with RNA isolated from human plasma.

Key elements of this small RNA library preparation method include the use of 4 random nucleotides
on the end of the adapters ligated to the small RNAs of interest, the use of higher than usual adapter
concentrations, and the use of increased amounts of polyethylene glycol (PEG) in the ligation steps.
Small RNA library preparation methods that lack such degenerate adapters have been found to
exhibit significant bias in the representation of different RNA sequences.1-4 The use of random
adapters is designed to alleviate that problem. The use of high adapter concentrations and
macromolecular crowding agents such as PEG reduces bias by driving the ligation reactions toward
completion. It should be noted that the use of improved ligation conditions and increased adapter
concentrations also results in the formation of more adapter dimers, so purification of desired ligation products from such unwanted side products by size fractionation is essential in this protocol.

**PCR amplification** Small RNA libraries may require 10-20 cycles of PCR amplification depending on the type and amount of input. It has been shown that increased amplification does not significantly affect library bias.\(^1\)\(^5\) Increased number of PCR cycles will, however, increase the amount of adapter dimers that must be separated from the library. Typically, a single PCR and gel purification step is sufficient to remove most of the adapter dimer products from insert-containing PCR products.

**Size selection** Because of the large excess of adapter dimers in low-input small RNA libraries, electrophoretic purification of PCR products is often necessary. This can be done using either acrylamide or agarose gels, as long as the gel can sufficiently resolve the insert-containing fragments (\(\approx 150\)bp) from the adapter dimer fragments (\(\approx 125\)bp).

A full list of the protocols developed by the ERCC is available at the “exRNA Portal”: [http://exrna.org/resources/protocols/](http://exrna.org/resources/protocols/), the ERCC’s website.

This protocol is one of four protocols relating to a 2018 Nature Biotechnology paper.

Library Preparation for small RNA sequencing using 4N adapters: In house 4N Protocol A

"10.1038/protex.2018.049": [http://dx.doi.org/10.1038/protex.2018.049](http://dx.doi.org/10.1038/protex.2018.049)

Library Preparation for small RNA sequencing using 4N adapters: In house 4N Protocol B

"10.1038/protex.2018.050": [http://dx.doi.org/10.1038/protex.2018.050](http://dx.doi.org/10.1038/protex.2018.050)

Library Preparation for small RNA sequencing using 4N adapters: In house 4N Protocol C

"10.1038/protex.2018.081": [http://dx.doi.org/10.1038/protex.2018.081/](http://dx.doi.org/10.1038/protex.2018.081/)

Modified TruSeq Small RNA Library Prep using Randomized 4N Adapters: In house 4N Protocol D

"10.1038/protex.2018.052": [http://dx.doi.org/10.1038/protex.2018.052](http://dx.doi.org/10.1038/protex.2018.052)

**Reagents**

**Oligonucleotide sequences**\(^1\)

5’ adapter (desalted) – 5’

rGrUrUrCrArGrArGrUrUrCrArCrArGrCrGrUrCrGrArGrArGrArUrCr(N:2525252525)r(N)r(N)r(N)r(N)-3’

3’ adapter (HPLC purification) – 5’-/5rApp/(N1:25252525)(N1)(N1)(N1)(N1) TGGAATTCTCGGGTGCCAAGG/3ddC/-3’
Reagents for 3’ Ligation
TruSeq Small RNA Kit (Illumina RS-200-0012)
T4 RNA Ligase 2, Deletion Mutant (NEB M0242)
50% PEG 8000 (included with T4 RNA ligase)
Strip tubes (Axygen PCR-0208-CP-C or equivalent)

Reagents for adapter depletion
E. coli single-stranded DNA binding protein (SSB) (Promega M3011)
5’ deadenylase (NEB M0331)
RecJf (NEB M0264)

Reagents for 5’ Ligation
10mM ATP and T4 RNA ligase 1 from TruSeq Small RNA Kit

Reagents for Reverse Transcription
RNA RT primer, 25 mM dNTP mix and RNase inhibitor from TruSeq Small RNA Kit
SuperScript II (Invitrogen 18064-014)
5x First strand buffer (included with Superscript II)
0.1 M DTT (included with Superscript II)
Strip tubes (Axygen PCR-0208-CP-C or equivalent)

Reagents for PCR Amplification
TruSeq Small RNA Kit

Reagents for Gel Purification
3% agarose cassettes for Pippin Prep (Sage Science CDP3010)
QIAquick PCR purification kit (Qiagen 28104)

Reagents for Library Validation
High sensitivity DNA chip for Bioanalyzer (Agilent 5067-4626)

Equipment

Equipment for Ligations and Reverse Transcription
Vacuum concentrator
Thermal cycler

Equipment for PCR Amplifications
Thermal cycler

Equipment for Gel Purification
Pippin Prep (Sage Science, PIP0001) size selection instrument
Nanodrop spectrophotometer

Equipment for Library Validation
Agilent 2100 Bioanalyzer

Procedure

Thermocycler Setup
70°C  2 minutes  
28°C  1 hour  
30°C  45 minutes  
37°C  45 minutes  
70°C  2 minutes  
28°C  1 hour  
70°C  2 minutes  
50°C  1 hour  
98°C  30 seconds  

-------------------  
98°C  10 seconds  
60°C  30 seconds  20X  
72°C  15 seconds  
-------------------  
72°C  10 minutes  
4°C  Hold  

Prepare Adapter Stocks  
3’ adapter: dilute to 4 µM in water  
5’ adapter: dilute to 10 µM in water  

Prepare PEG Pellets  
1. Dilute 50% PEG to 15% PEG by adding water.  
2. Aliquot 10 µL of 15% PEG to PCR Tube.  
3. Dry PEG until it is a pellet.  
4. Store in dark conditions.  

3’ Ligation: Set Up on Ice.  
1. Add 1 µL of 4 µM 3’-4N adapter to each tube.
2. Add 5 µL of each RNA sample.
3. Gently mix, vortex, and centrifuge.
4. Incubate at 70°C for 2 minutes.
5. Immediately place on ice for 2 minutes.
6. Mix, vortex, and centrifuge.
7. Preheat thermocycler to 28°C.
8. **Prepare Ligation Master Mix:**

| Reagent                     | Volume (µL) |
|-----------------------------|-------------|
| Ligation Buffer (HML)²      | 2           |
| RNase Inhibitor             | 1           |
| T4 RNA Ligase 2, Deletion Mutant | 1          |
| Total Volume per Sample    | 4           |

9. Add 4 µL of Ligation Master Mix to each tube.
10. Gently mix, Vortex, and Centrifuge.
11. Incubate at 28°C for 1 hour.

**Adapter Depletion**

12. Add 1 µg of *E. coli* SSBP to each tube (1 µg/µL – will need to make dilution from stock.)
13. Incubate on ice for 10 minutes.
14. Add 1 µL of 5’ deadenylase.
15. Incubate at 30°C for 45 minutes.
16. Add 1 µL of RecJf.
17. Incubate at 37°C for 45 minutes.

**5’ Ligation**
18. Preheat thermocycler to 70°C.
19. Prepare a master mix by adding $1.1 \times N$ \((N = \text{number of samples})\) 10 µM 5′-4N adapter to separate PCR tube.
20. Incubate at 70°C for 2 minutes.
21. Place on ice for 2 minutes.
22. Preheat thermocycler to 28°C.
23. Add $1.1 \times N$ \((N = \text{number of samples})\) 10 mM ATP to the RNA 5′ Adapter PCR Tube.
24. Add $1.1 \times N$ \((N = \text{number of samples})\) T4 RNA Ligase to the RNA 5′ and ATP PCR Tube.
25. Gently mix, Vortex, and Centrifuge.
26. Add 3 µL of the master mix to each sample (reaction from step 17).
27. Incubate at 28°C for 1 hour.
28. Place on ice for 2 minutes.

**Reverse Transcription and Amplification**

29. Mix, Vortex, and Centrifuge.
30. Concentrate samples down from 14 µL to 6 µL.
31. Add 1 µL of RNA RT Primer to each tube.
32. Gently mix and centrifuge briefly.
33. Incubate at 70°C for 2 minutes.
34. Place on ice for 2 minutes.
35. Preheat thermocycler to 50°C.
36. **Prepare RT Master Mix:**

| Reagent                  | Volume (µL) |
|--------------------------|-------------|
| 5X First Strand Buffer   | 2           |
| 12.5 mM dNTP Mix^3       | 0.5         |
| 100mM DTT                | 1           |
37. Add 5.5 µL of RT Master Mix to each sample. (Total volume is 12.5 µL.)

38. Gently mix, Vortex, and Centrifuge.

39. Incubate at 50°C for 1 hour.

40. **Prepare PCR Master Mix:**

| Reagent            | Volume (µL) |
|--------------------|-------------|
| Ultra Pure Water   | 8.5         |
| PCR Mix            | 25          |
| RNA PCR Primer     | 2           |

Total Volume per Sample 35.5

41. Add 35.5 µL of PCR Master Mix to each tube.

42. Add 2 µL of unique PCR Primer Index to each tube. (Total volume is 50 µL.)

43. Gently mix and centrifuge.

44. **PCR Program:**

| Temperature | Time       | Repeat |
|-------------|------------|--------|
| 98°C        | 30 sec.    | 1X     |
| 98°C        | 10 sec.    |        |
| 60°C        | 30 sec.    | 20X    |
| 72°C        | 15 sec.    |        |
| 72°C        | 10 min.    | 1X     |
| 4°C         | Hold       |        |
**Quality Control**

1. Bioanalyzer High Sensitivity DNA Chip (Library peak should be 152bp.)

**Size Selection - Pippin Prep:**

1. Can either pool libraries or run libraries independently.
2. Purify libraries with QIAquick PCR Purification kit (5 µg). Elute in 10 µL water.
3. Nanodrop purification - Add no more than 5 µg of PCR product, minimum in low nanograms.
4. For each lane, bring total volume of library(s) + TE buffer to 30µL.
5. Add 10 µL of supplied loading buffer (at RT).
6. Size select for 152 bp. Device-to-device variation likely. Make sure to save some PCR product for optimizing. Our program is set at 117-146 Range.
7. Bioanalyzer HS DNA Chip (Peak at 152bp ONLY – may see some adapter-dimer and ~160bp peaks.)

**Troubleshooting**

1) Oligonucleotide sequences © 2016 Illumina, Inc. All rights reserved. Derivative works created by Illumina customers are authorized for use with Illumina instruments and products only. All other uses are strictly prohibited.

2) Do not use the ligation buffer supplied with the T4 RNA Ligase 2, Deletion Mutant. This enzyme retains activity in ligation buffer.

3) Dilute 25 mM dNTP 1:1 to a final concentration of 12.5 mM.

**References**

1) Jayaprakash AD, Jabado O, Brown BD, Sachidanandam R. 2011. Identification and remediation of biases in the activity of RNA ligases in small-RNA deep sequencing. *Nucleic Acids Research* **39**: e141.

2) Sorefan K, Pais H, Hall AE, Kozomara A, Griffiths-Jones S, Moulton V, Dalmay T. 2012. Reducing ligation bias of small RNAs in libraries for next generation sequencing. *Silence* **3**: 4.

3) Zhang Z, Lee JE, Riemondy K, Anderson EM, Yi R. 2013. High-efficiency RNA cloning enables
accurate quantification of miRNA expression by deep sequencing. *Genome Biology* **14**: R109.

4) Zhuang F, Fuchs RT, Sun Z, Zheng Y, Robb GB. 2012. Structural bias in T4 RNA ligase-mediated 3′-adapter ligation. *Nucleic Acids Research* **40**: e54.

5) Hafner M, Renwick N, Brown M, et al. 2011. RNA-ligase-dependent biases in miRNA representation in deep-sequenced small RNA cDNA libraries. *RNA* **17**:1697-1712.

Acknowledgements
This protocol was modified from the manufacturer’s instructions for the TruSeq Small RNA Library Preparation Kit.