Awareness of Medicinal Applications of Piper nigrum among Dental Students

Nithyanandham Masilamani, Dhanraj Ganapathy*
Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India

ABSTRACT

Black pepper includes the many commonly used ingredients upon this planet, remarkable for some of its potent component piperine. White pepper is made with closely related species, while black pepper is prepared by fast processing and wind drying of underripe natural products, white pepper is made from dried, regular and ready-mixed seeds. Piperine has been the conventional biologically active conjugate of Piper nigrum and Piper longum, having been taken into consideration for therapeutic effects. The purpose of this survey was for assessing the awareness of medicinal applications of Piper nigrum amongst dental students. A cross-sectional survey was done with a self-administered questionnaire with 10 questions circulated among 100 dental students. The questionnaire assessed the awareness about Piper nigrum therapy in medical applications, their immunomodulatory properties, antipyretic properties, antispasmodic activity, anti-inflammatory activity, and its mechanism of action and side effects. The responses were recorded and analysed. 16% of the respondents were aware of the medical applications of Piper nigrum therapy. 11% were aware of the anti-immunomodulatory activity of Piper nigrum therapy. 9% were aware of antipyretic properties of Piper nigrum therapy. 13% were aware of antispasmodic properties of Piper nigrum therapy. 10% were aware of anti-inflammatory properties of Piper nigrum therapy. 6% were aware of mechanisms of action and side effects of Piper nigrum therapy. The awareness about the use of Piper nigrum therapy in medicinal applications is low among dental students. Increased awareness programs and sensitization and continuing dental education programs along with greater importance to the curricular modifications, can further enhance knowledge and awareness about Piper nigrum therapy.

INTRODUCTION

Black pepper includes the many commonly used ingredients upon this planet, remarkable for some of its potent component piperine. White pepper is made with closely related species, while black pepper is prepared by fast processing and wind drying of underripe natural products, white pepper is made from dried, regular and ready-mixed seeds. (Dyer and Palmer, 2004) Piperine has been the conventional biologically active conjugate of Piper nigrum and Piper longum, having been taken into consideration for therapeutic effects for having immune modulating, anti-cancer, antiasthmatic, hepatoprotective, anti-inflammatory, anti-infective, anti-parasitic, anti-microbial and anti-oxidant effects.
Dhanraj Ganapathy and Nithyanandham Masilamani, Int. J. Res. Pharm. Sci., 2020, 11 (SPL3), 927-930

It also has antioxidant and biotransformation effects and has been shown to improve the absorption of drugs such as rifampicin, sulphadiazine, tetracycline and phenytoin. In the ancient Asian clinical setting of Ayurveda, both kinds of peppers were used to control diabetes and to stimulate the CNS, such as antispasmodics, tonics related to the stomach, haematopurifiers, and antipyretics. Pepper is known for some popular formulations designed to boost the potency of other bioactive mixtures, such as vasicine and curcumin. (Lee et al., 2001; Yang et al., 2002). The purpose of this survey was for assessing the awareness of medicinal applications of Piper nigrum amongst dental students.

MATERIALS AND METHODS

A cross-sectional survey was done with a self-administered questionnaire with 10 questions circulated among 100 dental students. The questionnaire assessed the awareness about Piper nigrum therapy in medical applications, their immunomodulatory properties, antipyretic properties, antispasmodic activity, anti-inflammatory activity, and its mechanism of action and side effects. The responses were recorded and analysed.

RESULTS AND DISCUSSION

16% of the respondents were aware of the medical applications of Piper nigrum therapy (Figure 1). 11% were aware of the anti-immunomodulatory activity of Piper nigrum therapy (Figure 2). 9% were aware of antipyretic properties of Piper nigrum therapy (Figure 3). 13% were aware of antispasmodic properties of Piper nigrum therapy (Figure 4). 10% were aware of anti-inflammatory properties of Piper nigrum therapy (Figure 5), 6% were aware of a mechanism of action and side effects of Piper nigrum therapy (Figure 6).

Pepper is a loaded source of various organically dynamic constituents, monoterpenes, sesquiterpenes, and other unpredictable mixes. The different wellbeing gainful utilization and uses of P. nigrum have been perceived by testing on cell, creature, and human subjects. They have numerous potential restorative applications as an immune modulator, energizers, hepatoprotective agent, anti-inflammatory agent, antioxidant, antiamoebic, anticancer-causing, anti-ulcer, antibacterial, antifungal, antihyperlipidemic, and antiasthmatic. They additionally found to have upgraded bioavailability of...
Dhanraj Ganapathy and Nithyanandham Masilamani, Int. J. Res. Pharm. Sci., 2020, 11 (SPL3), 927-930

Current research has indicated the atomic reason for the pharmacological attribute of black pepper against human infections, and some clinical preliminaries have shown the security and viability of pepper in the human subject. Piperine is the major impactful alkaloid existing in P. nigrum L., along with chavicine, its stereoisomer, which is gradually changed to piperine on capacity, prompting a misfortune in sharpness. (Srinivasan, 2007) Pepper and its resin are valued fixings in prepared nourishments as they have helpful seasoning properties and forestall microbial defilement and biodeterioration. Gas chromatography (GC)- mass spectrometry and refining extraction investigation of P. nigrum indicated that vinyl mixes are the most predominant volatiles present in pepper. (Jagella and Grosch, 1999)

Customary utilizations P. nigrum is utilized in the treatment of help with discomfort, chills, ailment, influenza, strong hurts, colds, weariness, fevers, nerve soother, to build dissemination of blood, increment the progression of salivation, animate hunger, and to support peristalsis. (Tucker, 1999) Black pepper, along with ginger, are elements of 'Trikatu', a significant old Ayurvedic recipe despite everything utilized for stomach related purposes. (Chen et al., 2011; Lianzhong et al., 1998)

The impact long pepper are for the most part because of the nearness of piperine, a diuretic, carminative, sialagogue, anti-asthmatic and energizer. It additionally has a wide range of antimicrobial action (Jin et al., 2009). Remotely, the oil is utilized as anti-rheumatic, rubefacient and lozenges for sore throat. A portion of these utilizations have been bolstered by exploratory outcomes. However, present-day research is currently progressively focussed on the utilization of pepper as medicaments and antioxidants for the avoidance of degenerative issue and as bioaccessibility enhancer for different homegrown drugs. (Jin et al., 2009; Sarnaizul et al., 2013)

CONCLUSIONS

The awareness about the use of Piper nigrum therapy in medicinal applications is low among dental students. Increased awareness programs and sensitization and continuing dental education pro-
grams along with greater importance to the curricular modifications, can further enhance knowledge and awareness about Piper nigrum therapy.

Funding Support

The authors declare that they have no funding support for this study.

Conflict of Interest

The authors declare that they have no conflict of interest for this study.

REFERENCES

Bai, Y. F., Xu, H. 2000. The protective action of piperine against experimental gastric ulcer. *Acta Pharmacologica Sinica*, 21(4):357–359.

Chen, W. X., Dou, H. G., Ge, C., Li, C. F. 2011. Comparison of Volatile Compounds in Pepper (Piper nigrum L.) by Simultaneous Distillation Extraction (SDE) and GC-MS. *Advanced Materials Research (Vols*, pages 2643–2646.

Darshan, S., Doreswamy, R. 2004. Patented anti-inflammatory plant drug development from traditional medicine. *Phytotherapy Research*, 18(5):343–357.

Dyer, L., Palmer, A. 2004. Piper: A Model Genus for Studies of Phytochemistry, Ecology, and Evolution. *Springer Science & Business Media*.

Jagella, T., Grosch, W. 1999. Flavour and off-flavour compounds of black and white pepper (Piper nigrum L.). *European Food Research and Technology*, 209(1):22–26.

Jin, Z., Borjihan, G., Zhao, R., Sun, Z., Hammond, G. B., Uryu, T. 2009. Antihyperlipidemic Compounds from the Fruit of Piper longum L. *Phytotherapy Research*, 23(8):1194–1196.

Lee, S. E., Park, B. S., Kim, M. K., Choi, W. S., Kim, H. T., Cho, K. Y., Lee, S. G., Lee, H. S. 2001. Fungicidal activity of piperonaline, a piperidine alkaloid derived from long pepper, Piper longum L., against phytopathogenic fungi. *Crop Protection*, 20:172–173.

Lianzhong, D., Shiyue, D., Yan, Z., Yixu, L., Songmei, Z. 1998. A study on chemical composition of spices irradiated by electron beam. *Radiation Physics and Chemistry*, 52(1-6):49–52.

Meghwal, M., Goswami, T. K. 2013. Piper nigrum and Piperine: An Update. *Phytotherapy Research*, 27(8):1121–1130.

Reddy, S. V., Srinivas, P. V., Praveen, B., Kishore, K. H., Raju, B. C., Murthy, U. S., Rao, J. M. 2004. Antibacterial constituents from the berries of Piper nigrum. *Phytomedicine*, 11(7-8):697–700.

Sarnaizul, E., Borjihan, G., Zhaorigetu, S. 2013. The preparation and antihyperlipidaemic assay of piperlonguminine in vivo. *Phytochemistry Letters*, 6(1):101–105.

Srinivasan, K. 2007. Black Pepper and its Pungent Principle-Piperine: A Review of Diverse Physiological Effects. *Critical Reviews in Food Science and Nutrition*, 47(8):735–748.

Tucker, A. O. 1999. Medicinal and aromatic plants—industrial profiles. volume 8, pages 1259–1260. Harwood Academic Publishers.

Yang, Y. C., Lee, S. G., Lee, H. K., Kim, M. K., Lee, S. H., Lee, H. S. 2002. A Piperidine Amide Extracted from Piper longum L. Fruit Shows Activity against Aedes aegypti Mosquito Larvae. *Journal of Agricultural and Food Chemistry*, 50:3765–3767.