INTRODUCTION

Rheumatoid arthritis (RA) is a chronic inflammatory disease that mainly destroys cartilages or bones at the joints. This inflammatory disorder is initiated by self-attack using own immune system, but the detail of pathological mechanism is unclear. Features of autoantigens leading to autoimmune disease are also under veil although several candidates including type II collagen have been suggested to play a role in pathogenesis. In this report, we tried to identity proteins responding to antibodies purified from RA patients and screen proteins up-regulated or down-regulated in RA using proteomic approach. Fibronectin, semaphorin 7A precursor, growth factor binding protein 7 (GRB7), and immunoglobulin light chain were specifically associated with antibodies isolated from RA synovial fluids. In addition, some metabolic proteins such as adipocyte fatty acid binding protein, galectin-1 and apolipoprotein A1 precursor were overexpressed in RA synovium. Also, expression of peroxiredoxin 2 was up-regulated in RA. On the contrary, expression of vimentin was severely suppressed in RA synoviocytes. Such findings might give some insights into understanding of pathological mechanism in RA.

MATERIALS AND METHODS

Materials

Human synovial fluids were obtained from the swollen knee of Korean RA patients (9 males and 16 females, average age: 50 yr) using syringe at the Gyeongsang National University Hospital during 2002-2003. RA (two females and a male, average age: 60 yr) or OA (15 females and 5 males, average age: 50 yr) patients were used as controls.
age: 67 yr) synovial tissues were obtained during the knee operation after obtaining informed consents of patients at the same institute for proteomic analysis. These patients were diagnosed as RA by a clinical specialist in the basis of RA clinical classification criteria (1987 ACR criteria). In addition, the joint area of these patients was erosive by radiography detection.

Purification of autoantibodies from synovial fluids

Synovial fluids were diluted 3 folds with binding buffer (10 mM Tris, pH 7.5) and applied to the 1 mL ImmunoPure Plus Protein A Column (PIERCE, Rockford, IL, U.S.A.) pre-equilibrated with 5 column volumes of the IgG binding buffer. The column was washed with 10-15 column volumes of the binding buffer. The bound IgG was eluted with 3-5 column volumes of the elution buffer (0.1 M glycine buffer, pH 2-3). The pooled protein fractions were immediately adjusted to a physiological pH by the addition of a suitable, more concentrated buffer (1.0 M Tris, pH 7.5, 100 μL of the buffer to 1 mL of sample). The eluted immunoglobulins were dialyzed with 1 x PBS buffer (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 2 mM KH2PO4). The concentration of purified IgG was estimated using a commercial Bradford reagent (Bio-Rad, Hercules, CA, U.S.A.).

Western blot

Total cell proteins derived from tissue or cells were separated on a SDS-gel electrophoresis or two-dimensional gel electrophoresis and subsequently transferred to the nitrocellulose membrane using a Trans-Blot Semi-dry transfer cell (Bio-Rad) for 15-30 min at 15 V. SDS, acrylamide, methylene-bisacrylamide, TEMED, ammonium persulfate, DTT, urea, Tris, glycine, and glycerol, were purchased from Bio-Rad or USB (Cleveland, OH, U.S.A.). Mass fingerprinting with a search program MS-FIT (http://prospector.ucsf.edu/ucsfhtml 3.4/msfit.htm).

RESULTS

High molecular weight proteins respond to antibodies isolated from RA patients

We here assumed most antibodies in the synovial fluid of patients with severe RA are auto-reactive because autoantibodies reacting with local synovial components are very crucial for the pathological process of RA. Local synovial fluids in synovial fluids were purified using Protein-A affinity chromatography. Total twenty different antibodies have been independently isolated from RA patients (average age: 50 yr),
and all antibodies were purified to the near homogeneity (data not shown). Two of them were shown in Fig. 1A.

These purified antibodies were used for a primary antibody in blotting with total cellular proteins derived from RA synovial tissue and separated on a SDS-gel electrophoresis or two-dimensional gel electrophoresis. Some proteins with high molecular weight (over 100 kDa, indicated by arrows) were reacted to most RA’s antibodies (Fig. 1B, lane 1-8). In addition, we detected not only heavy chains and light chains of immunoglobulins but also some proteins placed between heavy chain and light chain of immunoglobulin (Fig. 1B). Furthermore, we applied the 2-DE gel blot method to detect and isolate antigens using a RA antibody (marked as asterisk in Fig. 1B). Again we found some RA synovium proteins reacting with antibodies at the high molecular weight (Fig. 1C) but failed to identify them.

Protein analysis using antibody cross-linked chromatography

Due to the technical limitation for identification of auto-antigens using 2-DE gel western blot as above-mentioned, we tried another approach to isolate proteins binding to RA antibodies. Antibody-affinity purification is generally used for isolation of proteins that can interact with antibody. First, antibodies purified from RA patients were cross-linked to Sepharose resins using CNBr-activation. Then, whole cellular proteins solubilized from tissues (OA or RA) were mixed with antibody-bound beads. Antibody-bound proteins were analyzed by SDS-PAGE. As shown in Fig. 2A, several high molecular weight proteins were specifically bound to antibody beads (lane 1-4) but not to beads without antibody cross-link (lane C), suggesting that these are antibody-specific proteins. Some of these proteins have been identified using mass spectrometry. One of them was fibronectin, a connective tissue protein.

Identification of proteins bound to antibodies in the synovial fluid

Some antibodies in synovial fluid might be already bound to soluble antigen molecules. If these antigen-antibody complexes can be isolated, we can identify proteins being associated with antibody in rheumatoid synovial fluids. Synovial fluids containing antigen-antibody complexes were directly applied to Protein A resins, and antigen-antibody complexes were solubilized in SDS-sample buffer rather than eluted by low pH buffer after extensive wash in order to remove non-specific proteins or proteins with low affinity. The bound proteins were separated by a SDS-PAGE and each protein was identified by MALDI-TOF mass spectrometry. As shown in Fig. 2B, several proteins were bound to antibodies in synovial fluids (indicated by lane B). They were fibronectin, semaphorin 7A (CD108), nucleoside triphosphate phosphorylase 1, growth factor receptor binding protein 7 (GRB7), and μ heavy chain of immunoglobulin. They all were similarly found in most RA synovial fluids (data not shown). These proteins were dissociated from antibodies during the elution with low pH glycine buffer as shown in Fig. 2B (indicated by lane E).

Fig. 1. Purification of autoantibodies and blotting. (A) Antibody purification. Antibodies were purified from RA patients’ synovial fluid using protein A affinity chromatography as described in “Materials and Methods”. Two samples of antibody (each 10 μg) was analyzed by 12.5% SDS-PAGE. Lane 1 is protein size marker. H and L indicate heavy chain and light chain of immunoglobulins, respectively. (B) Blotting on a one-dimensional gel. Total cellular proteins (20 μg each lane) derived from RA synovium tissue (63/M) were separated on a 12.5% SDS-gel electrophoresis. They were subsequently transferred to the nitrocellulose membrane. Eight different primary antibodies isolated from RA patients (1:500 in 5% skim milk/TBST) were incubated with the membrane for 2 hr at room temperature using multi-channel blotting system (Bio-RAD). Secondary antibody, rabbit anti-human IgG HRP (1:2,000 in 5% skim milk/TBST), was incubated with membrane at room temperature for 1 hr. Proteins were visualized by a ECL developing system. (C) Blotting on a two-dimensional gel. Total proteins 150 μg from the RA synovium protein (63/M) was separated on a 7 cm and pH3-10 IPG strip, in the first dimension and 12.5% SDS-PAGE at the second dimension and subsequently transferred to the nitrocellulose membrane. Primary antibody from a RA patient (40/F) (1:100 in 5% skim milk/TBST) and subsequent HRP-conjugated rabbit anti-human IgGs (1:1,000 in 5% skim milk/TBST) were incubated with the membrane. Proteins were visualized by a ECL detecting system.
Comparison of OA and RA synovium proteins

In order to isolate RA-specific synovium proteins, we first solubilized total proteins from RA patient’s synovium and compared them with ones obtained from OA patients, as a control, in two-dimensional gel electrophoresis. Proteomic analysis has several drawbacks in experimental repeatability and statistical significance of data when in particular few samples are used for analysis. To minimize these experimental errors, we created a reference set, as a control, from five OA synovium samples composed of different sex and age and matched it with those from RA synovium of three different patients (Fig. 3). From these comparative analyses, we found that about 200 proteins were 3-fold more overexpressed in RA; and more than 100 proteins showed their expression to be decreased in RA. Some of these proteins were directly compared in the gel (Fig. 4). Proteins (#0204, 0212, 4008, 5001, 6003, 7001) dominantly expressed in RA have been identified by mass spectrometry and database search. They are tropomyosin chain, fatty acid binding protein (adipocyte lipid binding protein), peroxiredoxin 2, galectin 1, and apolipoprotein A1 precursor (Table 1). Most of these proteins have been implicated to play some roles in RA pathogenesis. More details will be discussed. In addition, we examined total protein expression in synoviocytes sub-cultured from RA and OA synovium tissues using two-dimensional gel electrophoresis. Many proteins showed also their differential expression between OA and RA primary synoviocytes sub-cultured from each patient. In particular, a skeletal protein vimentin was much more highly overexpressed in OA than RA (data not shown).
Rheumatoid arthritis, an autoimmune disease with chronic inflammation and destruction of cartilage and bone, has a prevalence of 1% over the world. Recently, the research in cytokines has provided some critical insights about their role in the RA development, but the immunological identities causing autoimmunity in RA pathogenesis are not clear (11, 12). To date, several candidates for autoantigen that might involve in occurrence of RA have been identified. For example, type II collagen, glucose-6-phosphate isomerase, human cartilage protein gp39, and chaperone protein BiP have been isolated and studied for their roles in RA. In particular, the mouse injected by type II collagen showed the development of arthritis, relatively similar to RA (5). Also, antibodies reacting with collagen have been found in the synovial fluids of RA patients. However, only 25-45% of RA patients contain anti-collagen antibodies, and even these patients have different epitopes of collagen, suggesting that antibody production against collagen might be the secondary consequence of RA induction (7). Human cartilage protein gp39, a glycoprotein, is specifically expressed in synoviocytes of some

DISCUSSION

Rheumatoid arthritis, an autoimmune disease with chronic
RA patients and sometimes found in synovial fluid (13). Furthermore, this protein binds to DR4 that have been considered as RA-specific haplotype. However, according to a recent paper, main CD4+ lymphocytes existing at the connective tissues of RA patients were not specific to gp39 protein (14). Antibody against glucose 6-phosphate isomerase has been found in RA patients and also in K/BxN mice developed RA-like arthritis by serum transfer (6, 15). But it is still not clear how this protein involves in RA pathogenesis. Besides, aggrecan, a component of cartilage, and epithelial filaggrin have been determined as autoantigen (16, 17). In addition, endoplasmic reticulum chaperone protein BiP is strongly expressed in the lining cells of RA synovium, and BiP stimulates T lymphocyte proliferation. Anti-BiP antibodies have been found in many RA patients (63%) (18, 19).

In this report we tried to isolate RA-specific proteins using antibody-antigen interaction and proteomic approach. About 5 mg/mL antibodies present in the synovial fluid of RA patients. Some molecules bound to these antibodies were high molecular weight proteins such as fibronectin, nucleoside triphosphate phosphorylase 1, semaphorin 7A precursor, and growth factor receptor-bound protein 7. In particular, fibronectin has been previously suggested as an autoantigen for RA (20, 21). It is a glycoprotein that is typically expressed on the surface of fibroblasts. A major function of the fibronectin is cell adhesion to the extracellular matrix or cell-cell contact. Also, fibronectin stimulates endocytosis and promotes the clearance of particular materials from the circulation (22). Therefore, production of antibody against fibronectin might cause cell destruction typically appearing during the RA pathogenesis.

Currently, many techniques to massively detect the differential expression of genes between normal and malignant state have been developed. Here we applied proteomic approach to isolate some RA-specific proteins by comparing RA patient’s synovium with OA patient’s one in a two-dimensional gel. Because acquisition of synovial tissues from normal person is limited, we used OA patient’s synovium as a control. Many proteins were differentially expressed between RA and OA. Among them, vimentin was dominantly expressed in OA cultured-synoviocytes but its expression in RA cultured-synoviocytes was severely suppressed, suggesting that down-regulation of vimentin might play a role in RA pathology. Vimentin, an intermediate filament protein normally expressed in cells of mesenchymal origin, plays several roles in many biological reactions (23). For the most part, vimentin expression coincides with cellular growth and is cell-cycle-regulated (24). In addition, vimentin expression can contribute to the augmentation of motility and invasiveness in some cancers (25). Moreover, it has been suggested that vimentin can act as a signal transducer, relaying information from the extracellular matrix to the nucleus (26). Due to its diverse function, down-regulation in RA might cause some pathogenic phenotypes.

In this study, tropomyosin, adipocyte lipid binding protein, peroxiredoxin 2 (thioredoxin peroxidase 1), galectin-1 (beta-galactoside-binding lectin L-1-4-1), and apolipoprotein A-1 precursor (Apo-A1) were over-expressed in RA. These proteins have been previously suggested to play some roles in RA. Galectin-1 revealed a diverse range of activities in relation to cell survival and proliferation. Expression of galectin-1 was down-regulated in juvenile idiopathic arthritis characterized by hyperplasia of synovial cells, and galectin-3 was over-expressed (27). Also, galectin-3 expression was elevated in RA sera and synovial fluids (28). Antibody against peroxiredoxin 2, an anti-oxidative protein, has been detected in several systemic autoimmune diseases such as RA or lupus erythematosus. In particular, peroxiredoxin 2 antibody has been observed in 19% of RA patients (29). Cytokines such as TNF-α and IL-1β have been implicated in pathogenesis of RA. Production of these cytokines was blocked by apolipoprotein-A1, and level of this protein was highly elevated in the synovial fluid of RA patients (30, 31). In addition, tropomyosin antibodies have been observed in RA patients, suggesting that there are some correlation between muscular proteins and RA activity (32). According to a recent proteome analysis using synovial fluid and serum of patients with RA, calgranulin A, B, C proteins were highly elevated in erosive RA patients (33). Taken together, most proteins isolated from this comparative analysis of three RA synovial tissues and an OA match set are likely associated with a number of metabolic alterations leading to inflammatory arthritis although further analyses are required to make a solid conclusion.

REFERENCES

1. Ziff M. Rheumatoid arthritis-Its present and future. J Rheumatol 1990; 17: 127-33.
2. Janossy G, Panayi G, Duke O, Bofill M, Poulter LW, Goldstein G. Rheumatoid arthritis: a disease of T-lymphocyte/macrophage immune regulation. Lancet 1981; 2: 839-42.
3. Cash JJ, Lipsky PE. Phenotypic analysis of synovial tissue and peripheral blood lymphocytes isolated from patients with rheumatoid arthritis. Arthritis Rheum 1988; 31: 1230-8.
4. Yamanishi Y, Firestein GS. Pathogenesis of rheumatoid arthritis: the role of synoviocytes. Rheum Dis Clin North Am 2001; 27: 335-71.
5. Feldmann M, Brennan FM, Mainin RN. Rheumatoid arthritis. Cell 1996; 85: 307-10.
6. Schaller M, Burton DR, Ditzel HJ. Autoantibodies to GPI rheumatoid arthritis: linkage between animal model and human disease. Nat Immunol 2001; 2: 746-53.
7. Holmdahi R, Andersson M, Goldschmidt TJ, Gustafsson K, Jansson L, Mo JA. Type II collagen autoimmunity in animals and provocations leading to arthritis. Immunol Rev 1990: 118: 193-232.
8. Kim DR. Proteomic changes during the B cell development. J Chromatogr B Analyt Technol Biomed Life Sci 2005; 815: 295-303.
9. Jin SH, Cho EH, Ko JE, Jung EH, Ahn B, Hahn JR, Kim JW, Kim
CW, Kim DR. Comparative analysis of nuclear proteins of B cells in different developmental stages. Proteomics 2003; 3: 2428-36.
10. Hwa JS, Park HJ, Jung JH, Kam SC, Park HC, Kim CW, Kang KR, Hyun JS, Chang KH. Identification of proteins differentially expressed in the conventional renal cell carcinoma by proteomic analysis. J Korean Med Sci 2005; 20: 450-5.
11. Choy EH, Panayi GS. Cytokine pathways and joint inflammation in rheumatoid arthritis. N Engl J Med 2001; 344: 907-16.
12. Kagari T, Doi H, Shimazato T. The importance of IL-1 beta and TNF-alpha, and the noninvolvement of IL-6, in the development of monoclonal antibody-induced arthritis. J Immunol 2002; 169: 1459-66.
13. Vos K, Miltenburg AM, van Meijgaard KE, van den Heuvel M, Elferink DG, van Galen PJ, van Hogezen RA, van Vliet-Daskalopoulou E, Ottenhoff TH, Breedveld FC, Boots AM, de Vries RR. Cellular immune response to human cartilage glycoprotein-39 (HC gp-39)-derived peptides in rheumatoid arthritis and other inflammatory conditions. Rheumatology 2000; 39: 1326-31.
14. Paulin NS, Hall FC, Drover S, Spurrell DR, Bos E, Cope AP, Sonderstrup G, Mellins ED. Autoantigenic HC gp39 epitopes are presented by the HLA-DM-dependent presentation pathway in human B cells. J Immunol 2001; 166: 33-41.
15. Matsumoto I, Maccioni M, Lee DM, Maurice M, Simmons B, Brenner M, Mathis D, Benoist C. How antibodies to a ubiquitous cytoplasmic enzyme may provoke joint-specific autoimmune disease. Nat Immunol 2002; 3: 360-5.
16. Manicourt DH, Polvache P, Van Egeren A, Devogelaer JP, Lenz ME, Thonar EJ. Tumor necrosis factor alpha and oncostatin M correlate with levels of markers of the degradation of crosslinked collagen and cartilage aggrecan in rheumatoid arthritis but not in osteoarthritis. Arthritis Rheum 2000; 43: 281-8.
17. Union A, Meheus L, Humbel RL, Conrad K, Steiner G, Moreeels H, Potel H, Serre G, De Keyser F. Identification of citrullinated rheumatoid arthritis-specific epitopes in natural filaggrin relevant for anti-filaggrin autoantibody detection by line immunobassay. Arthritis Rheum 2002; 46: 1185-95.
18. Corrigall VM, Bodman-Smith MD, Fife MS, Canas B, Myers LK, Wooley P, Soh C, Staines NA, Pappin DJ, Berlo SE, van Eden W, van Der Zee R, Lanchbury JS, Panayi GS. The human endoplasmic reticulum molecular chaperone BiP is overexpressed and is a major B and T cell target in rheumatoid arthritis. Arthritis Rheum 2001; 44: 761-71.
19. Shiozawa K, Hino K, Shiozawa S. Alternatively spliced EDA-con-