The effects of sodium azide on seed germination and seedling growth of chili pepper (Capsicum annum L. cv. Landung)

Yafizham¹ and B Herwibawa²
1 Laboratory of Ecology and Crop Production, Department of Agriculture, Faculty of Animal and Agricultural Sciences, Diponegoro University, Semarang, Indonesia
2 Laboratory of Physiology and Crop Breeding, Department of Agriculture, Faculty of Animal and Agricultural Sciences, Diponegoro University, Semarang, Indonesia

E-mail: yafizham@live.undip.ac.id

Abstract. This study was aimed to determine the effects of sodium azide on the performance of chili pepper. Dry seeds from pure lines of chili pepper cv. Landung were used in this experiment. Each set containing 50 seeds was placed in nylon fishner bags, washed in flowing water and soaked in distilled water for four hours. After soaking, four sets of seeds were dabbed dry with tissue paper and were treated for two hours at 30 °C in appropriate solution of 0, 0.10, 0.20, 0.40, 0.80, 1.60 mM sodium azide with phosphate buffer at pH 3. After treatment, the seeds were germinated in plastic boxes containing sterilized sand and kept under laboratory condition by supplied with water everyday. The seeds for M₁ germination percentage, seedling height, plant height and number of leaves were recorded 30 days and 60 days after treatment, respectively. Seeds which radicle emerged were considered germinated, the seedling and plant height were measured from the tip of primary root to the base of the first leaf pair, and the number of leaves were counted for only fully expanded leaves. A completely randomized block design in four replicates was used throughout the experiment. Data obtained were analysed for range, mean, standard of deviation, and percent of control using Microsoft Office Excel 2007 software. It was concluded that different doses of sodium azide influenced the performances of chili pepper cv. Landung. Very low doses of sodium azide (0-1.60 mM) might be used to study the improvement of chili pepper diversity.

Keywords: sodium azide, chili pepper, germination

1. Introduction
The mutagenicity of sodium azide has been demonstrated in several plants, viz. maize [1], rice [2], wheat [3], chickpea [4], fenugreek [5], sunflower [6], rapeseed [7], tomato [8], etc. Inconsistent effects of sodium azide have been obtained in chili pepper, and it is well known that there are many factors such as varieties, ages and environmental factors [9,10,11]. There are varying opinions as to mutagenic properties of sodium azide, however, it has been reported that hydrogen ion concentration of its treatment solution as a key to its high mutagenic potency [12]. Mutagenic efficiency of sodium azide is also possibly due to the low physiologic damage azide induced in treated plants [13].

The mutagenicity of the sodium azide to an indirect action, through its inhibition of catalase and peroxidase were caused by the accumulation of hydrogen peroxidase [14]. Many studies demonstrated the sodium azide must be metabolized by plant cells to the mutagenic agent, identified as an amino acid analogue L-azidoalanine (N₃-CH₂-CH(NH)₂-COOH), and the production of this metabolite was
found on the O-acetylserinesulfhydrylase, in which the enzyme catalyses the condensation of azide or sulfide with O-acetylseryine to produce azidolaanline or L-cysteine respectively [15]. The pH of the solution influences the mutagenic efficiency of sodium azide, and it has been shown that azide is most effective in inducing mutations at pH 3 [13].

The increasing work on the induction of mutations to increase genetic diversity using mutagen reflects the growing interest in mutation breeding [16]. It is also indicative of the mutagenic efficiency of sodium azide. However, there is no work done in the mutagenicity of sodium azide on chili pepper cv. Landung. Its use in mutation breeding may help improve the existing varieties of the capsicums. Mutant selection would be done since germination phase [17]. The characters of germination, as measured in the laboratory, is able to reflect the ability of plants to live under field conditions [18]. This study was aimed to determine the effects of sodium azide on the performance of chili pepper. The M1 germination percentage, seedling height, plant height and number of leaves were recorded 30 days and 60 days after treatment, respectively. This study is expected to provide information that can be used in chili pepper breeding programs.

2. Materials and Methods
Dry seeds from pure lines of chili pepper cv. Landung were used in this experiment. A modified methods by [11] were employed. Each set containing 50 seeds was placed in nylon fishner bags, whased in flowing water and soaked in distilled water for four hours. After soaking in water, four sets of seeds were dabbed dry with tissue paper and were treated for two hours at 30 °C in appropriate solution of 0, 0.10, 0.20, 0.40, 0.80, and 1.60 mM sodium azide with phosphate buffer at pH 3. After treatment, the seeds were washed for 2 hours in running water and then germinated in sand sterilized for one hour at 16 p.s.i in plastic boxes and kept under laboratory condition by supplied with water everyday.

The seeds were scored for M1 germination percentage and seedling height 30 days later, and plant height and number of leaves 60 days after treatment. Seeds which radicle emerged were considered germinated, the seedling and plant height were measured from the tip of the primary root to the base of the first leaf pair, and the number of leaves were counted for only fully expanded leaves. The entire experiment was arranged in a completely randomized block design in four replicates. Data obtained were analyzed for range, mean, standar of deviation, and percent of control using Microsoft Office Excel 2007 software.

3. Results and Discussions
Sodium azide decreased germination percentage of chili pepper (Table 1). It was found that the germination percentage ranged from 28 to 100 % and decreased 1.01 to 2.96 times. Similar experiments have been carried out in chili pepper by [10] and [11]. The germination percentage of chili pepper cv. pusa jwala and cv. hyderabad in different doses were detected from 40 to 90 %. It was explained the sensitivity to sodium azide was doses dependent, and evident that sodium azide produced physiological effects. The effect of sodium azide was also noticeable in growth inhibition as a very common effect in chili pepper [9].

Table 1. Germination percentage of seeds of chili pepper cv. Landung after sodium azide treatments

Sodium Azide (mM)	Germination Percentage (%)	Percent of control	
	Range	Mean/SE	
0	99 – 100	99.67 ± 0.58	100.00
0.10	93 – 94	93.33 ± 0.58	93.65
0.20	90 – 93	91.33 ± 1.53	91.64
0.40	83 – 92	87.00 ± 4.58	87.29
0.80	67 – 80	73.67 ± 6.51	73.91
1.60	28 – 42	33.67 ± 7.37	33.78
Table 2. Seedling height of chili pepper cv. L andung after sodium azide treatments

Sodium Azide (mM)	Range	Seeding Height (cm)	Percent of control
		Mean/SE	
0	3.27 – 3.90	3.59 ± 0.32	100.00
0.10	2.30 – 3.70	3.13 ± 0.74	87.28
0.20	2.10 – 3.50	2.84 ± 0.70	79.20
0.40	2.00 – 3.20	2.67 ± 0.61	74.28
0.80	1.80 – 2.90	2.39 ± 0.55	66.57
1.60	0.59 – 1.84	1.23 ± 0.63	34.26

There is little information on the mechanism of azide mutagenesis in chili pepper. However, it has been reported that sodium azide causes the reduction of plant height of rice [19] and wheat [3]. The reports support the findings of the experiment, which is sodium azide reduce seedling height (Table 2) and plant height (Table 3). Different results shown in sunflower [20], grapevine [21], and lentil [22] where the plant height reduction is not consistent with increase of sodium azide doses. It is common knowledge that mutations whether they are point or gross chromosomal aberrations involve alterations in the DNA molecule. Alterations in the DNA structure and constituent nucleotides brought about by mutagens may change the genetic information, and possible to give different expressions.

Table 3. Plant height after 60 days of chili pepper cv. L andung after sodium azide treatments

Sodium Azide (mM)	Range	Plant Height (cm)	Percent of control
		Mean/SE	
0	14.30 – 15.70	14.93 ± 0.71	100.00
0.10	13.40 – 14.70	14.02 ± 0.65	93.91
0.20	12.80 – 13.40	13.11 ± 0.30	87.79
0.40	12.30 – 13.30	12.77 ± 0.50	85.49
0.80	11.60 – 12.40	11.98 ± 0.40	80.20
1.60	4.15 – 5.81	5.16 ± 0.89	34.58

Table 4. Number of leaves after 60 days of chili pepper cv. L andung after sodium azide treatments

Sodium Azide (mM)	Range	Number of Leaves	Percent of control
		Mean/SE	
0	9.20 – 13.10	11.14 ± 1.95	100.00
0.10	7.80 – 10.20	8.99 ± 1.20	80.68
0.20	8.70 – 10.00	9.39 ± 0.65	84.27
0.40	8.20 – 10.30	9.30 ± 1.05	83.46
0.80	8.00 – 11.60	9.27 ± 2.21	83.16
1.60	3.75 – 5.43	4.66 ± 0.85	41.82

The highest number of leaves (11.14) was observed for control (0 mM) and the lowest (4.66) with 1.60 mM (Table 4). The reduction of number of leaves was similar to research [23] and [24] of black rice and tomato, repectively, where the number of leaves decreased as the higher of sodium azide doses. However, these results were different with those obtained by others, the reduction of number of leaves was not consistent with increase in sodium azide doses of rice [25] and groundnut [26]. The inhibitory effects of sodium azide on the different biological parameters of chili pepper may probably be explained by the inhibition of mitosis, disruption of the enzymatic process or direct changes on the genes involved [27]. There are different mechanism among the given mutagen doses, so it caused
changes of each individual [28]. It was evident from the results obtained that there were differences in the response to sodium azide were doses and individual chili pepper plant dependent. These may be attributed to differences in the uptake or metabolism of the mutagen, cellular repair mechanisms or differences in the individual metabolic activities.

4. Conclusion
It was concluded that different doses of sodium azide influenced the performances of chili pepper cv. Landung. Very low doses of sodium azide (0-1.60 mM) might be used to study the improvement of chili pepper diversity.

References
[1] Eze, J.J., Dambo, A. 2015. Mutagenic effects of sodium azide on the quality of maize seeds. Journal of Advanced Laboratory Research in Biology 6 (III): 77-82
[2] Herwibawa, B., Kusmiyati, F. 2017. Mutagenic effects of sodium azide on the germination in rice (Oryza sativa L. cv. Inago Unsoed 1). Jurnal Agroteknologi 7 (2): 9-14
[3] Srivastava, P., Market, S., Pandey, P., Tiwari, D.K. 2011. Mutagenic effects of sodium azide on the growth and yield characteristics in wheat (Triticum aestivum L. em. Thell.). Asian Journal of Plant Science 10 (3): 190-201 doi: 10.3923/ajps.2011.190.201
[4] Kulthe, M.P., Kothekar, V.S. 2011. Effects of sodium azide on yield parameters of chickpea (Cicer arietinum L.). Journal of Phytochemistry 3 (1): 39-42
[5] Siddiqui, S., Meghvansi, M.K., Hasan, Z. 2007. Cytogenetic changes induced by sodium azide (NaN₃) on Trigonella foenum-graecum L. seeds. South African Journal of Botany 73 (4): 632-635 doi: 10.1016/j.sajb.2007.06.005
[6] Elfeky, S., Abo-Hamad, S., Saad-Allah, K.M. 2014. Physiological impact of sodium azide on Helianthus annuus seedlings. International Journal of Agronomy and Agricultural Research 4 (5): 102-109
[7] Hussain, S., Khan, W.M., Khan, M.S., Akhtar, N., Umar, N., Ali, S., Ahmed, S., Shah, S.S. 2017. Mutagenic effect of sodium azide (NaN₃) on M₂ generation of Brassica napus L. (variety Dunkled). Pure and Applied Biology 6 (1): 226-236 doi: 10.19045/bspab.2017.60018
[8] El-Kaaby, E.J.S., Al-Ajeel, S.A., Al-Allmy, J.A., Al-Aubaidy, A.A., Ammar, K. 2015. Effect of the chemical mutagens sodium azide on plant regeneration of two tomato cultivars under salinity stress condition in vitro. Journal of Life Sciences 9: 27-31 doi: 10.17265/1934-7391/2015.01.004
[9] Sari, N.K.Y., Pharmawati, M., Junitha, I.K. 2012. Effects of sodium azide on morphological traits of Capsicum annuum L. Jurnal Metamorfosa 1 (1): 25-28 (In Indonesian)
[10] Padmavathi, S. 2015. Compatibility study of sodium azide induced macromutants of Capsicum annuum L. var. pusa jwala. International Journal of researches in biosciences, agriculture and technology Special Issue (6): 15-18
[11] Dahot, M.U., Rafiq, M., Arif, A.M., Naqvi, S.H.A. 2012. Effect of sodium azide on the growth of Capsicum annuum. Pakistan Journal of Biotechnology 9 (1): 13-20
[12] Singh, C., Olejniczak, J. 1983. Modification of mutagenic efficiency of sodium azide. Cytologia 48 (3): 437-444 doi: 10.1508/cytologia.48.437
[13] Gruszka, D., Szarejko, I., Maluszynski, M. Sodium azide as a mutagen. 2012. In: Plant Mutation Breeding and Biotechnology. CABI International, Wallingford, UK. pp. 159-166
[14] Kleinhofs, A., Kleinschmidt, M., Sciaky, D., Broembsen, S.V. 1975. Azide mutagenesis: in vitro studies. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 29 (3): 497-499 doi: 10.1016/0027-5107(75)90069-X
[15] Khan, S., Al-Qurainy, F., Anwar, F. 2009. Sodium azide: a chemical mutagen for enhancement of agronomic traits of crop plants. Environment and We: An International Journal of Science and Technology 4: 1-21
[16] Herwibawa, B., Haryanto, T.A.D., Sakhidin. 2014. The effect of gamma irradiation and sodium azide on germination of some rice cultivars. *Agrivita Journal of Agricultural Science* 36 (1): 26-32 doi: 10.17503/agrivita-2014-36-1-p026-032

[17] Harding, S.S., Johnson, S.D., Taylor, D.R., Dixon, C.A., Turay, M.Y. 2012. Effect of gamma rays on seed germination, seedling height, survival percentage and tiller production in some rice varieties cultivated in Sierra Leone. *American Journal of Experimental Agriculture* 2 (2): 247-255

[18] Wang, Z., Wang, J., Bao, Y., Wang, F., Zhang, H. 2010. Quantitative trait loci analysis for rice seed vigor during the germination stage. *Biomedicine and Biotechnology* 11 (12): 958-964

[19] Rao, D.R.M., Reddi, T.V.V.S. 1986. Azide mutagenesis in rice. *Proceedings of the Indian Academy of Sciences (Plant Science)* 96 (3): 205-205

[20] Mostafa, G.G. 2011. Effect of sodium azide on the growth and variability induction in *Helianthus annuus* L. *International of Plant Breeding and Genetics* 5: 76-85 doi: 10.3923/ijpbg.2011.76.85

[21] Munir, N., Safdar, I., Naz, S. 2015. Effect of induced mutation for varietal improvement in some local grapevine cultivars. *The Journal of Animal and Plant Sciences* 25 (1): 234-242

[22] Ali, A., Yubey, K., Deeka, U.K., Tomar, S.M.S. 2014. Effect of sodium azide on seed germination and related agro-metrical traits in *Lentil* (*Lens culinaris* Medik.) generation. *World Journal of Agricultural Sciences* 10 (3): 95-102 doi: 10.5829/idosi.wjas.2014.10.3.8582

[23] Dewi, K., Meidana, G., Sudjino, Suharyanto. 2016. Effects of sodium azide (*NaN₃*) and cytokinin on vegetative growth and yield of black rice plant (*Oryza sativa* L. ‘Cempo Ireng’). *AIP Conference Proceedings* 1755, 130005 (2016) doi: 10.1063/1.4958549

[24] Adebola, M.O. 2013. Mutagenic effects of sodium azide (*NaN₃*) on morphological characteristics of tomato (*Lycopersicum esculentum*). *Research Journal of Science and IT Management* 2 (4): 1-5

[25] Ali, A., Bordolo, N., Chand, S. 2014. Effect of sodium azide on indigenous rice (*Oryza sativa* L.) varieties of Nagaland. *International Journal of Recent Trends in Science and Technology* 12 (1): 123-130

[26] Animasaun, D.A., Oyedeji, S., Azeez, M.A., Onasanya, A.O. 2014. Evaluation of the vegetative and yield performances of groundnut (*Arachis hypogaea*) varieties samnut 10 and samnut 20 treated with sodium azide. *International Journal of Scientific and Research Publications* 4 (3): 1-10

[27] Lianngee, S.M., Ogah, J.J., Amagu, K.T., Kwon-Ndung, E.H., Iorkor, D., Tervershima, J.E. 2017. Mutagenic action of sodium azide on germination and emergence in landraces of *Phaseolus vulgaris* L. on the Jos Plateau Agro-Ecological Zone. *IOSR Journal of Agriculture and Veterinary Science* 10 (2): 64-70 doi: 10.9790/2380-1002016470

[28] Herwibawa, B., Haryanto, T.A.D., Sakhidin. 2014. Peroxidase isozyme identification of some rice genotypes in M₁ generation under drought stress level of -0.03 MPa. *Agrivita Journal of Agricultural Science* 36 (3): 210-215 doi:10.17503/agrivita-2014-36-3-210-216