Inverse bremsstrahlung absorption with full electron-electron collisions operator

Su-Ming Weng†, Zheng-Ming Sheng‡, and Jie Zhang
Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Science, Beijing 100080, China
E-mail: †smweng@aphy.iphy.ac.cn; ‡zmsheng@aphy.iphy.ac.cn

Abstract. A two-dimensional Fokker-Planck program is developed, in which full e-e collisions are taken into account self-consistently with arbitrary anisotropy of electron distribution function (EDF), to investigate inverse bremsstrahlung and the evolution of EDF. The numerical results show that e-e collisions will enhance inverse bremsstrahlung absorption. The evolution of EDF can be divided into two stages distinguished by different absorption rates. During the first stage, an initially Maxwellian EDF transforms rapidly into an anisotropic one with two temperatures. With the increase of anisotropy, the absorption rate decreases dramatically while the contribution ratio of e-e collisions increases rapidly. In particular, we find that with the increase of ion charge state Z_i the contribution ratio of e-e collisions increases in the high laser frequency regime, while it decreases in the low frequency regime.

1. Introduction

Collisional absorption by inverse bremsstrahlung plays an important role in laser-plasma interactions, and it has been extensively investigated for many decades. The full description of inverse bremsstrahlung requires information of EDF. However, the accurate description of EDF in laser-embedded plasmas remains an open problem.

An important parameter in the modification of EDF is $\alpha = Z_i v_{\text{max}}^2 / v_e^2$, where Z_i is ion charge state, v_{max} is the peak velocity of electrons oscillating in laser field, v_e is the electron thermal velocity. When $\alpha \leq 1$ EDF is close to the Maxwellian. For $\alpha \geq 1$ inverse bremsstrahlung absorption results in a so-called self-similar state distribution $\ln f \approx -v^5$, for which the absorption rate is reduced dramatically [1, 2]. Numerical calculations and theoretical analysis have shown that EDF can also assume a self-similar state when e-e collisions are taken into account [3, 4]. However, these treatments rely on an assumption of small anisotropy of EDF which is valid only if $v_{\text{max}} \ll v_e$; here v_e is the initial electron thermal velocity. Porshnev et al. [5] removed this assumption and obtained EDF with arbitrary anisotropy. They found that an initially isotropic EDF transforms rapidly into an anisotropic one with two temperatures. The same results were deduced by theoretical analysis using Legendre polynomial expansion in an oscillating frame [6]. However, in these cases they ignored e-e collisions.

In fact, e-e collisions with large anisotropy are much more violent than those with small anisotropy. As a result, the accurate analysis of EDF with any degree of anisotropy should take e-e collisions into account self-consistently. In order to treat EDF and inverse bremsstrahlung more accurately, we numerically solve a Fokker-Planck equation with the e-e collisions included.
2. Master Equation and Numerical Solution

The evolution of EDF in a homogeneous laser-embedded plasma can be described by the well-known Fokker-Planck equation [7]

$$\frac{\partial f_e}{\partial t} + \frac{e\vec{E}}{m} \cdot \nabla \theta f_e = C_{ei}(f) + C_{ee}(f),$$

where \vec{E} is the electric field, $C_{ei}(f)$ and $C_{ee}(f)$ are $e-i$ and $e-e$ collisions terms respectively. In this paper we just consider the linearly polarized laser field. Then we can choose a spherical coordinate system and assume that the laser field is along the z direction. In this coordinate system all functions are independent of the azimuth angle ϕ, so that we simplify the original problem into a two-dimensional problem. In this case, the final normalized Fokker-Planck equation can be written as [7]

$$\frac{\partial f_e}{\partial t} = \nabla \cdot [(\nabla \nabla \theta G^e + \frac{1}{2\nu} Z_i \bar{e}_e \bar{e}_\theta) \cdot \nabla \theta f_e]
- (\nabla \theta H^e + 2\pi v_L v_{max} \cos(2\pi v_L t)(\cos \theta \bar{e}_e - \sin \theta \bar{e}_\theta)) f_e,$$

where v_L is the laser frequency, G^e and H^e are Rosenbluth potentials of EDF which can be calculated efficiently using Legendre polynomial expansion [7].

It is useful to define following quantities to evaluate the inverse bremsstrahlung absorption rate and the evolution of EDF: (a) The average inverse bremsstrahlung absorption rate over a laser period $R_n = \frac{1}{2\nu} (E_{n+1} - E_{n-1})$, where τ_L is laser period and E_n is the average electron thermal energy over the n-th laser period. (b) The contribution ratio of e-e collisions effect will be enhanced while the distribution departs from the Maxwellian; therefore the contribution ratio γ_n increases fast with the time in the first 50 laser periods. After the 50-th laser period, the shape of $f_0^e(v)$ will not change significantly, neither do the parameters R_n and γ_n.

In order to solve equation (2), we develop a two-dimensional Fokker-Planck program, with a scheme similar to Ref. [7], together with some special numerical methods and techniques [8, 9, 10, 11] to enforce stability and particle conservation. In the following, we discuss results of four representational cases: (i) $Z_i = 10, \nu_L = 10\nu_{ee}$; (ii) $Z_i = 1, \nu_L = 10\nu_{ee}$; (iii) $Z_i = 10, \nu_L = 1.25\nu_{ee}$; (iv) $Z_i = 1, \nu_L = 1.25\nu_{ee}$, with an invariable parameter $v_{max} = 0.5v_{e0}$, where v_{ee} is e-e collision frequency.

In case (i), $Z_i v_{max}^2/v_{e0}^2 = 2.5 > 1$ and $\nu_{ee}\tau_L = 0.1 \ll 1$, so that inverse bremsstrahlung absorption is sufficient and e-e collisions is slow. And e-e collisions are not rapid or powerful enough to reestablish a Maxwellian distribution, but a self-similar state of EDF is formed. We find that $f_0^e(v)$ departs from the Maxwellian and almost achieves a flat-topped distribution in the first 50 laser periods (Fig. 2). Meanwhile the absorption rate R_n decreases acutely with time (Fig. 1(a)). This means that this flat-topped distribution will reduce the absorption rate dramatically, which is in agreement with Ref [1, 5] very well. On the other hand, e-e collisions effect will be enhanced while the distribution departs from the Maxwellian; therefore the contribution ratio γ_n increases fast with the time in the first 50 laser periods. After the 50-th laser period, the shape of $f_0^e(v)$ will not change significantly, neither do the parameters R_n and γ_n.

Because absorption rate is proportional to ion state Z_i, R_n in case (ii) is reduced by an order of magnitude comparing with those in the case (i). And $f_0^e(v)$ in Fig. 2(ii) departs from the Maxwellian much smaller than that in Fig. 2(i). Meanwhile the main part of e-e collisions
will decrease much significantly, while 1(c) and Fig. 2). Consequently, decreasing energy will be absorbed more efficiently in this regime, and the self-similar state will be achieved with the increase of C Legendre coefficient of EDF. The energy is in units of the initial thermal energy. The time is in units of laser period.

$C(f_0^e, f_0^i)$ sensitively depends on the degree of $f_0^i(v)$ departing from the Maxwellian. Therefore the e-e collision effect $C_{ee}(f)$ for $Z_i=10$ will be larger than that for $Z_i=1$. And it is obvious that the main part of i-e collisions $C_{ei}(Z_i, f_0^i)$ will increase with Z_i, but the first anisotropic Legendre coefficient of EDF f_0^i decreases significantly with increasing Z_i as illustrated by the degree of anisotropy κ_n shown in Fig. 1(c). Therefore, $C_{ei}(Z_i, f_0^i)$ may not increase as fast as $C(f_0^e, f_0^i)$ with Z_i. As a result, the contribution ratio of e-e collisions γ_n may increase slightly with the increase of Z_i.

Our code can be applied to the low frequency regime such as case (iii) and (iv). The laser energy will be absorbed more efficiently in this regime, and the self-similar state will be achieved in a significantly shorter time (Fig. 2). With the decrease of ν_L, the degree of anisotropy κ_n will decrease much significantly, while $f_0^i(v)$ approaches to the Maxwellian not so obviously [Fig. 1(c) and Fig. 2]. Consequently, $C_{ei}(Z_i, f_0^i)$ will not increase as obviously as $C(f_0^e, f_0^i)$ does with decreasing ν_L. Finally, the contribution ratio γ_n will increase with decreasing ν_L.

Similar to the high frequency regime, we observe that the absorption rate in the case (iv) is reduced almost by an order of magnitude compared with the case (iii) in the low laser frequency regime [Fig. 1(a)]. From Fig. 1(b), we see that the contribution ratio γ_n increases from 0.16 to 0.23 when ion state Z_i decreases from 10 to 1 in low frequency regime. This seems to be contrary to the result in the high laser frequency regime. But if we notice that the absorption with a low ν_L is efficient [Fig. 1(a)] and $f_0^i(v)$ departs from the Maxwellian seriously even if $Z_i = 1$ (Fig. 2), so there is not much space remained for $Z_i = 10$ departing from the Maxwellian. On the other hand, the anisotropy is very small for any Z_i when ν_L is small [Fig. 1(c)]. Therefore, with the increase of Z_i, $C(f_0^e, f_0^i)$ will increase more slowly than $C_{ei}(Z_i, f_0^i)$ does even if f_0^i decreases. As a result, the contribution ratio of e-e collisions γ_n decreases with the increase of Z_i in the
low frequency regime.

3. Summary
Numerical results show that e-e collisions tend to enhance inverse bremsstrahlung. The contribution ratio of e-e collisions γ_n varies from 0.07 to 0.23 in reported cases. Similar to previous works, we observe that the evolution of EDF can be divided into two stages distinguished by different absorption rates. During the first stage, an initially Maxwellian EDF transforms rapidly into an anisotropic two-temperature EDF. The anisotropic degree κ_n is a monotone-increasing function of υ_L but a monotone-decreasing function of Z_i. With the increase of anisotropy, the absorption rate R_n decreases dramatically and the contribution ratio γ_n increases rapidly. In particular, we find that with the increase of Z_i the contribution ratio γ_n increases in the high laser frequency regime, while it decreases in the low frequency regime.

Acknowledgments
This work is supported by the Natural Science Foundation of China (Grant No. 10425416, 10335020, 10575129, 10674175, 60678007), National Basic Research Program of China (973 Program) (Grant No. 2007CB815105), and the National High-Tech ICF Committee of China.

References
[1] A. B. Langdon, Phys. Rev. Lett., 44, 575 (1980).
[2] R. Balescu, J. Plasma Phys., 27, 553 (1982).
[3] D. Deck, Laser Particle Beams, 5, 49 (1987).
[4] P. Porshnev, G. Ferrante and M. Zarcone, Phys. Rev. E, 48, 2081 (1993).
[5] P. Porshnev, S. Bivona and G. Ferrante, Phys. Rev. E, 50, 3943 (1994).
[6] P. I. Porshnev, E. I. Khanevich, S. Bivona and G. Ferrante, Phys. Rev. E, 53, 1100 (1996).
[7] C.F.F. Karney, Comput. Phys. Rep., 4 (1986) 183.
[8] M. G. McCoy, A. A. Mirin, J. Kileen, Comput. Phys. Comm., 24, 37 (1981).
[9] A. A. Mirin, M. G. McCoy, G. P. Tomacchke, J. Kileen, Comput. Phys. Comm., 51, 373 (1988).
[10] J.S. Chang, G. Cemper, J. Comput. Phys., 6 (1970) 1.
[11] L. Chacón, D. C. Barnes, D. A. Knoll and G. H. Miley, J. Comput. Phys., 157 (2000) 618.