The major histocompatibility complex class I immunopeptidome of extracellular vesicles

Silvia A. Synowsky, Sally L. Shirran, Fiona G. M. Cooke, Antony N. Antoniou, Catherine H. Botting, and Simon J. Powis

From the Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews KY16 9ST, Scotland, the School of Medicine, University of St. Andrews, St. Andrews KY16 9TF, Scotland, and The Advanced Centre for Biochemical Engineering, University College London, London WC1E 7JE, United Kingdom

Extracellular vesicles (EVs) are released by most cell types and have been associated with multiple immunomodulatory functions. MHC class I molecules have crucial roles in antigen presentation and in eliciting immune responses and are known to be incorporated into EVs. However, the MHC class I immunopeptidome of EVs has not been established. Here, using a small-scale immunosolation of the antigen serotypes HLA-A*02:01 and HLA-B*27:05 expressed on the Epstein-Barr virus-transformed B cell line Jesthom and MS of the eluted peptides from both cells and EVs, we identified 516 peptides that bind either HLA-A*02:01 or HLA-B*27:05. Of importance, the predicted serotype-binding affinities and peptide-anchor motifs did not significantly differ between the peptide pools isolated from cells or EVs, indicating that during EV biogenesis, no obvious editing of the MHC class I immunopeptidome occurs. These results, for the first time, establish EVs as a source of MHC class I peptides that can be used for the study of the immunopeptidome and in the discovery of potential neoantigens for immunotherapies..

Results

In this study we have performed small-scale MHC class I immunosolation and peptide extraction to determine the repertoire of peptides from EVs of the EBV-transformed B cell line Jesthom, providing the first data that EVs can be used as a source for immunopeptidomic studies of MHC class I epitopes in health and disease.

The EBV-transformed B cell line Jesthom expresses HLA-A*02:01 and HLA-B*27:05. Three small-scale immunosolation experiments were performed from ~250, 600, and 800 million Jesthom cells, yielding ~200, 300, and 400 μg of EVs, respectively. Importantly, cell lysates and EVs from the same culture
were processed concomitantly to prevent temporal sample variations due to dissociation of low affinity peptides. EVs were isolated by standard procedures of filtration and ultracentrifugation. Immunoblot analysis of a sample of the cell and EV lysates indicated enrichment of MHC class I, and the prototypical EV markers CD9 and CD81 in the EV isolates, whereas the non-EV marker GRP78 (BiP) was present at very low levels in the cell lysate and EV isolates. Furthermore, the MHC class I allele (HLA-A*02:01, HLA-B*27:05) is prominent in both cells and EVs. Immunoblot analysis of a sample of the cell and EV lysates was used to confirm the enrichment of the MHC class I molecules, and the low molecular mass peptide pool fraction isolated with Centricon 3 centrifugal filters. The isolated peptide fraction was then processed and analyzed by mass spectrometry.

Identified peptides from the resulting MASCOT files between 8 and 13 amino acids long were analyzed for HLA-A*02:01 and HLA-B*27:05 predicted binding affinity using the NetMHCCons 1.1 server, which combines three algorithms (NetMHC, NetMHCpan, and PickPocket). From the combined data of the three biological replicates 145 and 94 peptides were identified from HLA-B*27:05 cell and EV preparations, respectively, and 172 and 105 peptides from HLA-A*02:01 cell and EV preparations, respectively (Table 1 and supplemental Table S1). In addition 11 HLA-C*01:02 (also expressed by Jesthom cells) peptides were also identified but are not reported here due to low numbers. The mean predicted binding affinity of the HLA-A*02:01-binding peptide pool was 33.3 nM for cells and 26.7 nM for EVs (Fig. 2A), and for the HLA-B*27:05-binding peptide pool the mean predicted affinity was 225.9 nM for cells and 199.5 nM for EVs (Fig. 2D). Although this might suggest that there is a loss of some lower affinity peptides during the biogenesis of EVs, two-tailed Mann-Whitney tests indicated no significant differences between the cell and EV pools for either MHC class I allele (HLA-A*02:01, p = 0.8329, and HLA-B*27:05, p = 0.3199, respectively). Peptide lengths did not alter, with a predominance of 9-mer peptides in both cells and EV for both HLA-A*02:01 and HLA-B*27:05 (Fig. 2B and D). The anchor binding motifs were also analyzed by Seq2Logo for 9-, 10-, and 11-mer peptide pools from each source, with no significant alterations between the typical P2 Leu and C-terminal Val/Leu anchors for HLA-A*02:01 (Fig. 2E) and the P2 Arg and C-terminal Phe/Tyr anchors for HLA-B*27:05 (Fig. 2F). 26 of the 94 HLA-B*27:05 peptides in the EV pool were not detected in the cell-derived pool, and 34 of the 105 HLA-A*02:01 peptides from EVs were not detected in the cell-derived pool (highlighted in red in Table 1), however, the cellular origin of these peptides was mostly from the cytoplasm and nucleus, suggesting they would also appear in the cell-derived pool in a larger sample size. One HLA-A*02:01-binding peptide (LLLD-VPTAAV) was identified from the endosome-located thiol-reductive GILT, but this has previously been reported in cells and therefore unlikely to be EV-specific (14). Taken together the data indicate that the MHC class I immunopeptidome of EVs is a replica of that found on the cell surface.

Discussion

Our data has several important implications. It demonstrates that the EV immunopeptidome is essentially identical to that of the cell of origin. As such, important antigenic peptides, such as viral or tumor-associated antigens and tumor-specific antigens were identified in both cell and EV samples (Fig. 1C), which were HC10 reactive (Fig. 1D). Additional bands were detected migrating at the dye front, which were presumed to be β2-microglobulin (Fig. 1C). The remaining 98% of the immunoslated cell and EV samples were acidified in 0.5% TFA to denature the MHC class I molecules, and the low molecular mass peptide pool fraction isolated with Centricon 3 centrifugal filters. The isolated peptide fraction was then processed and analyzed by mass spectrometry.

The immunopeptidome of extracellular vesicles

Figure 1. Characterization of Jesthom EV. A, cell lysates and EVs from Jesthom cells were immunoblotted for MHC class I (HC10), GRP78, CD9, and CD81. B, representative nanoparticle tracking analysis of culture supernatant after 0.2-μm filtration, but prior to ultracentrifugation. C, Coomassie Blue-stained SDS-PAGE gel of ~2% of the washed W6/32 immunosolation beads. Control beads (ctrl) received just lysis buffer. The W6/32 was not cross-linked and elutes from the beads with the MHC class I. D, immunoblot of ~2% of the washed W6/32 immunosolation beads, using anti-HLA-B and -C antibody HC10. The second stage anti-IgG also recognizes the IgH and IgL from W6/32 used in the immunosolation step as indicated in C.
Table 1

Peptide identification and predicted binding affinities

The sequence of the identified peptides for cell and EV derived peptides eluted from HLA-A*02:01 and HLA-B*27:05 are shown in alphabetical order. Peptides in red are those detected in the EV pool only. Predicted binding affinities were generated using NetMHCcons 1.1.

B27 cells	nM	B27 EV	nM	A2 cells	nM	A2 EV	nM
ARFLTTGF	36.12	ARFLTTGF	36.12	AIAPFIAAV	13.2	AIAPFIAAV	13.2
ARFLEGQV	123.99	ARFPEPAF	277.63	AISGIIMGI	107.14	AIVDKVPSV	15.45
ARFPEPAF	277.63	ARFSPDGQYQ	143.49	AIVDKVPSV	15.45	AILADGVQKV	8.2
ARFSPDGQYQ	143.49	ARIALLPLL	34.77	ALAAALAH	17.88	ALAGHQDGTIT	24.2
ARIALLPLL	34.77	ARILPNVPVL	122.66	ALADGVQKV	8.2	ALDQVPDF	13.42
ARIFQFQNF	361.9	ARLFIFETF	113.1	ALDSQPVK	13.42	ALDTHVDPV	38.54
ARILPNVPVL	122.66	ARLKEVLEY	302.73	ALFQRPPPL	53.61	ALLAYTLG	5.1
ARLIFETF	113.4	ARLOQALLV	89.62	ALIEKLV	6.06	ALLDRIVS	3.8
ARLKEVLEY	302.73	ARNKAITS	147.43	ALAYTLGV	5.1	ALMDEVVKA	7.6
ARLPVNSY	113.1	ARNPVVS	243.82	ALMPVLNQV	4.52	ALMPVLNQV	4.52
ARLOQALLV	89.62	ARSPVAPAR	306.02	ALPPVLTV	12.71	ALSDSIHTV	4.26
ARLOQALLV	89.62	ARSPVAPAR	306.02	ALPPVLTV	12.71	ALSDSIHTV	4.26
ARLOQALLV	89.62	ARSPVAPAR	306.02	ALPPVLTV	12.71	ALSDSIHTV	4.26
ARLOQALLV	89.62	ARSPVAPAR	306.02	ALPPVLTV	12.71	ALSDSIHTV	4.26
ARLOQALLV	89.62	ARSPVAPAR	306.02	ALPPVLTV	12.71	ALSDSIHTV	4.26
ARLOQALLV	89.62	ARSPVAPAR	306.02	ALPPVLTV	12.71	ALSDSIHTV	4.26
ARLOQALLV	89.62	ARSPVAPAR	306.02	ALPPVLTV	12.71	ALSDSIHTV	4.26
ARLOQALLV	89.62	ARSPVAPAR	306.02	ALPPVLTV	12.71	ALSDSIHTV	4.26
ARLOQALLV	89.62	ARSPVAPAR	306.02	ALPPVLTV	12.71	ALSDSIHTV	4.26
ARLOQALLV	89.62	ARSPVAPAR	306.02	ALPPVLTV	12.71	ALSDSIHTV	4.26
ARLOQALLV	89.62	ARSPVAPAR	306.02	ALPPVLTV	12.71	ALSDSIHTV	4.26
ARLOQALLV	89.62	ARSPVAPAR	306.02	ALPPVLTV	12.71	ALSDSIHTV	4.26
ARLOQALLV	89.62	ARSPVAPAR	306.02	ALPPVLTV	12.71	ALSDSIHTV	4.26
ARLOQALLV	89.62	ARSPVAPAR	306.02	ALPPVLTV	12.71	ALSDSIHTV	4.26
ARLOQALLV	89.62	ARSPVAPAR	306.02	ALPPVLTV	12.71	ALSDSIHTV	4.26
ARLOQALLV	89.62	ARSPVAPAR	306.02	ALPPVLTV	12.71	ALSDSIHTV	4.26
ARLOQALLV	89.62	ARSPVAPAR	306.02	ALPPVLTV	12.71	ALSDSIHTV	4.26
ARLOQALLV	89.62	ARSPVAPAR	306.02	ALPPVLTV	12.71	ALSDSIHTV	4.26
ARLOQALLV	89.62	ARSPVAPAR	306.02	ALPPVLTV	12.71	ALSDSIHTV	4.26
ARLOQALLV	89.62	ARSPVAPAR	306.02	ALPPVLTV	12.71	ALSDSIHTV	4.26
ARLOQALLV	89.62	ARSPVAPAR	306.02	ALPPVLTV	12.71	ALSDSIHTV	4.26
ARLOQALLV	89.62	ARSPVAPAR	306.02	ALPPVLTV	12.71	ALSDSIHTV	4.26
ARLOQALLV	89.62	ARSPVAPAR	306.02	ALPPVLTV	12.71	ALSDSIHTV	4.26
ARLOQALLV	89.62	ARSPVAPAR	306.02	ALPPVLTV	12.71	ALSDSIHTV	4.26
ARLOQALLV	89.62	ARSPVAPAR	306.02	ALPPVLTV	12.71	ALSDSIHTV	4.26
ARLOQALLV	89.62	ARSPVAPAR	306.02	ALPPVLTV	12.71	ALSDSIHTV	4.26
ARLOQALLV	89.62	ARSPVAPAR	306.02	ALPPVLTV	12.71	ALSDSIHTV	4.26
ARLOQALLV	89.62	ARSPVAPAR	306.02	ALPPVLTV	12.71	ALSDSIHTV	4.26
ARLOQALLV	89.62	ARSPVAPAR	306.02	ALPPVLTV	12.71	ALSDSIHTV	4.26
ARLOQALLV	89.62	ARSPVAPAR	306.02	ALPPVLTV	12.71	ALSDSIHTV	4.26
ARLOQALLV	89.62	ARSPVAPAR	306.02	ALPPVLTV	12.71	ALSDSIHTV	4.26
ARLOQALLV	89.62	ARSPVAPAR	306.02	ALPPVLTV	12.71	ALSDSIHTV	4.26
ARLOQALLV	89.62	ARSPVAPAR	306.02	ALPPVLTV	12.71	ALSDSIHTV	4.26
ARLOQALLV	89.62	ARSPVAPAR	306.02	ALPPVLTV	12.71	ALSDSIHTV	4.26
ARLOQALLV	89.62	ARSPVAPAR	306.02	ALPPVLTV	12.71	ALSDSIHTV	4.26
ARLOQALLV	89.62	ARSPVAPAR	306.02	ALPPVLTV	12.71	ALSDSIHTV	4.26
ARLOQALLV	89.62	ARSPVAPAR	306.02	ALPPVLTV	12.71	ALSDSIHTV	4.26

The immunopeptidome of extracellular vesicles

17086 J. Biol. Chem. (2017) 292(41) 17084 –17092
Table 1—continued

The immunopeptidome of extracellular vesicles

B27 cells	nM	B27 EV	nM	A2 cells	nM	A2 EV	nM
GRSAF1G1GF	107.14	243.82	GLDGPPPTV	51.34	KLGNVINN	16.84	
GRSEV1YYN	265.87	291.48	GLDRNAPS	59.73	KLLDPEDVAVQ	24.73	
GRTVE5F1L	212.98	471.75	GLDQRQTV	10.81	KLSGSLVAKL	54.48	
GRTF1QM1M	249.16	111.88	GLDGVLIN	18.87	LLDSAPLNV	20.14	
GRTL1V1NY	133.75	170.61	GLDGNAVE	8.2	LLDPVTA4V	28.78	
GRSV1A5AF	254.61	233.74	GLDQVQTV	44.6	LLGGPVPGV	72.97	
GRSF1K5SY	147.43	37.71	GLWEIEINPTV	21.03	LLNQVSL	8.34	
GRTV1G5SNK	531.38	87.7	GLWQGQVPTA	51.06	LLDDPPVTA	7.73	
GRTV1TTNR	222.4	54.19	GQIEIVPVE	4.15	LLLAPPA	245.15	
GRWS1G5LY	54.78	134.47	HIIEINAV	18.17	LMDHTIEPV	3.8	
GRYQ1PVLY	37.71	115.57	HLEEPIYL	7.6	LMVDHVTEV	3.55	
GRYA1GQ0GY	80.87	484.69	HLSTINEL	138.16	MLPPPLTA	263.01	
GRYP1GVSNY	193.22	31.38	ILDKKVKEK	75.79	QSDEVFIQL	23.94	
GRYQ1V5WSL	34.77	71.79	ILDQKINE	13.42	QVTDIEK	21.25	
HRAQ1Y1TR	54.48	270.22	ILDVTVVL	31.89	RLGQSPTL	50.51	
HRDS1T1NL	1091.15	110.08	ILTDIITKV	37.71	RLSQAVTV	16.31	
HRFEQ1AF1TY	47.34	522.82	ILTETINTV	11.98	RLPQAEVE	8.52	
HRFY1GK5SSY	122	83.54	IMLEALERV	5.38	RLQPDDPGV	44.6	
HRIK1D1HYSY	253.23	189.08	IQDNHDGTYTV	409.85	RLQEPQAPGV	42.25	
HRT11K1RF	211.83	50.78	KGTYFVRV	212.98	RLQEEINEV	9.91	
HRLL1P1VTSF	98.79	759.4	KIYEGQVE	7.81	SIIGRLE	18.27	
HRNEV1TEL	388.27	337.32	KLADFQDVAQL	52.18	SLADQNDE	35.34	
HRYG1DGGSTF	108.72	719.41	KLQENIAQL	26.25	SLEAVGVLQ	35.15	
IRAA1P1PLF	243.82	26.25	KLDDQDNEV	11.05	SLAQYLIN	4.65	
IRLP15QYFN	291.48	18.47	KLFGMIIT	8.07	SLAQYNK	20.47	
IRNHS1H5QVR	471.75	14.55	KLGSVPVTVT	21.96	SLAVADLF	17.59	
KRAALQ1ALK	27.71	14.48	KLDDQVQVL	11.66	SLDQPTGTV	91.58	
KRFA1DEG1TYVVR	74.57	104.28	KLIPQUTL	6.03	SLHIDIQLSL	24.47	
KRFEH1AKL	54.48	66.56	KLLDISELDMV	9.81	SLINGVGLS	11.47	
KRFEQ1E1AKK	170.61	32.77	KLDDPEDVAVQ	24.73	SLDDPDP VE	3.31	
KRFG1AY1NL	22.56	9.39	KLQGYPSSL	6.94	SLLDRFLATV	5.8	
KRFK1EANNF	234.76	133.03	KLNPQQFEV	6.71	SLLLENK	21.03	
KRFK1V1D5VEGF	260.18	38.33	KLYAGAIL	4.67	SLLEVENESTV	27.11	
KRFK1VAV1NL	37.71	67.28	KVLQGVVG	13.13	SLLGQDDVSV	9.49	
KRHN1V1RKV	149.84	67.65	LLDRFLATV	9.54	SLPLEGPAI	28.47	
KRDI1D1HN	46.57	21.49	LLDDPVTA	28.78	SLPPDLAVGL	51.89	
KRLD1NT1NYY	134.47	28.62	LLGPPPVGV	72.77	SSLQTLYKV	6.75	
KRLD1TVQ5SF	60.71	55.08	LLIDDKGTVK	84.9	SLMLTVEL	12.51	
KRLT1L1VTY	44.12	90.6	LLNQVSL	8.34	SLSPIYPAA	41.12	
KRMNP1SP55TY	81.75	141.18	LLIPGALTA	13.57	SLWQPAEA	51.61	
KRND1V1MHL	69.88	102.05	LLSSGLPIT	5.87	SLVDYNPNL	3.43	
KRPNP1V1KG5Y	484.69	192.18	LLLDDPVTA	32.59	SMADILPGLG	16.39	
KRQA1X1TAF	98.79	236.04	LLMLDVMI	37.51	SMDADVPLV	5.47	
KRTP1S1ETV	995.27	328.32	LLPEGPAI	25.55	SVIEQIVVY	6.06	

J. Biol. Chem. (2017) 292(41) 17084–17092
Table 1—continued

B27 cells	nM	B27 EV	nM	A2 cells	nM	A2 EV	nM
KRYAVPSAGL	33.48	SRLGLPLL	31.38	LLPPAPPHA	245.15	TLFDIEVRL	8.57
KRYKSTTVVY	71.79	SRLNEGATY	1229.06	LMDHTIPAV	3.8	TLWDPVEV	6.4
LRFPEVPSKF	95.12	SRTSVPQTF	437.34	LMDVHTEV	3.55	TLYEAVREV	11.17
LRFQSSAVMA	270.22	SRTVYVTY	700.21	MLFPGSIAL	4.78	TVLPPFSSTV	40.68
LRNPILAKG	110.08	SRVKLILEY	166.06	MLPPPLTA	263.01	VLDYQRNV	11.53
LRNSQSFN	522.82	SRYQGVNLY	181.07	MLYDIVMV	2.78	VLGESINSV	6.43
NRFPAGGIGGL	83.54	TRYQGVNLY	384.09	NLSFIEQV	10.87	VLIEITLVL	10.75
NRLPILVS	141.95	YRFLQPQIYLY	63.39	NLIDLDDLY	11.6	VLPKLQPL	10.75
QRAVIERF	189.08	NLPKLHIV	17.21	VMDSKIVQV	10.46		
QRPFLSFGF	50.78	NMAKVDEV	57.51	YLADVTVN	3.51		
QRHSFQISL	105.42	QLDDQVEQI	53.32	YLDPAQRGV	24.87		
QRIDLAVL	116.83	QLQEXPQTL	11.41	YLDGQSERV	7.24		
QRILYTVTY	175.29	QLVDIEIKV	21.25	YLPALVHI	3.76		
QRNIVVEL	759.4	QVFPGLLERV	186.06	YLLTHPPPPIM	31.89		
QRODIAFAY	337.32	RLFDQAGFL	4.02	YLPEDFIRV	3.99		
QQTDLTVL	719.41	RLLIESVT	6.82	YLTNEQGQY	11.6		
QRVSIFDYD	595.31	RLDDYVVN	3.74	YLYCTFISL	5.35		
QRYNPPS	89.62	RRLEDYPYL	4.02	YQVQGLYSV	3.72		
RQTGVNL	187.05	RLMSNTEAV	6.94	YTPVNPNAV	33.3		
RRAKLDADRY	71.41	RLPEAIEV	8.52				
RRAQLQQYQQR	34.59	RLQEDPPAGV	44.6				
RRDVQKVVG	207.3	RLQEDPPVG	42.25				
RRRFPPYVV	41.8	RLQEENEV	9.91				
RRRFSPPPPLSY	26.25	RLWGEVPNL	30.54				
RRFFVNVPFT	14.55	RLYPWPVVEV	6.5				
RRIKEIVKHH	104.28	RQLEEEGTTF	64.08				
RRESSQVDRYY	66.56	RNFENVAV	10.07				
RRILSDQVVTGY	133.03	RVIQSTLEEV	48.11				
RRMPFPPQGH	44.4	RVLDPSMVIEV	47.34				
RRMPFPQGHR	67.65	SIIGRILLEV	18.27				
RRMPFQGHR	21.49	SILEDPPSI	64.43				
RRWLPQGDA	16.22	SLAEVAGLVQ	35.15				
RRYYFGTEDRL	90.6	SLAQYLIN	4.65				
SRASKVKNF	917.7	SLAGPYK	20.47				
SRFPMEAY	192.18	SLDPVPQTV	91.58				
SRFQGTLYL	56.28	SLHDQLQSL	24.47				
SRFSLENF	361.9	SLNIGLSV	11.47				
SRFFPNQALVF	331.89	SLDPVTEV	3.31				
SRLAYHNY	328.32	SLLDRFLATV	5.8				
SRLATUNEK	198.52	SLLLENIK	21.03				
SRLGPLLLL	31.38	SLEVNEESTV	27.11				
SRLPSLGAGF	197.45	SLLGGDVQSV	9.49				
SRLSFEYTG	60.06	SLLPEGPAI	28.47				
SRLVYAYQF	52.74	SLLPPDVALG	51.89				
Table 1—continued

B27 cells	nM	B27 EV	nM	A2 cells	nM	A2 EV	nM
SRNAQTGF	191.14			SLLQTLKYV	6.75		
SRNEGVATY	1229.06			SLMLYTVEL	12.51		
SRNGVITQY	405.44			SLPDFGSIYSV	6.22		
SRNSNTWVFVK	723.31			SLSPIYPPAA	41.12		
SRSNTQPQGF	543			SLSQTTPRPRV	75.79		
SRTSVQPTF	437.34			SLWQGQPAEA	51.61		
SRVKLILEY	166.06			SLVDYNPNI	3.43		
SRWKEKVQQR	93.59			SLYGTTITI	19.28		
SRYQGVNL	181.07			SMADIPLGFGV	16.39		
TRLQPSAYAK	979.25			SMSADVPLV	5.47		
TRSQAIFTK	238.6			SMYDKVLML	10.58		
TRYQGVNL	384.09			SQTFVNHIV	358.01		
VRFYIESISY	267.31			SVIEEQVYV	6.66		
YRFFLGNQF	42.71			TLFDYEVR	8.57		
YRLGNVDAFQ	61.37			TLJEDILGV	4.36		
				TLJGLSIV	15.61		
				TLWDOFYEVE	6.4		
				TLYEAVRE	11.17		
				VLFFENTSVH	21.72		
				VLIDVGTGYV	10.07		
				VLIDYQRNV	11.53		
				VLIEGSINSV	6.43		
				VLIPKLQL	10.75		
				VLLDAPQQL	8.43		
				VLLGKVYYV	6.43		
				VLMTEDIKL	54.78		
				VLODIQVHL	21.72		
				VLDWRDTS	3.43		
				VMDSKIQVQ	10.46		
				YLADVTNAL	3.51		
				YLGQVTITI	52.74		
				YLJEPDVEL	5.99		
				YLLQHILI	4.4		
				YLEQTEQQA	25.55		
				YLLPAIVHI	3.76		
				YLLQEPPTV	13.57		
				YLPEDFRV	3.99		
				YLSKIIPI	4.29		
				YLTHDSPSV	5.29		
				YLTNEGQY	11.6		
				YLYPDITRL	4.06		
				YQVQLYSV	3.72		
are likely to be released in EVs, potentially subverting antigen-specific CD8+ cytotoxic T cells at a distance from the infected cell or main tumor, thus potentially reducing effective CTL responses. The same observation would, however, also imply that EVs can be used as an effective source to isolate and detect tumor-specific antigens and tumor-associated antigens from...
readily available biological samples such as blood. EVs are known to be raised in pathological conditions (15, 16), suggesting a relatively non-invasive technique for screening. As such, the EV-derived peptidome can now be studied as a source for neoantigens for personalized immunotherapeutic approaches, as recently demonstrated in principle for melanoma solid tissue biopsies (17). Such identified peptides could then be utilized in dendritic cell exosome-based therapies (18), for which phase I and II trials have already been conducted. Furthermore, this MS technique could be used to monitor the efficacy of target-peptide loading onto dendritic cell exosomes.

Our study does have some limitations. Our current small-scale study yielded a few hundred peptides, but larger samples and improved detection could yield thousands of identified peptides. The small, but consistent alteration in predicted binding affinities in the EV peptide pool would be worth studying in greater detail with such larger sample sizes. The residency time of an MHC class I complex during its incorporation into and secretion via an EV would be expected to promote the loss of low-affinity peptides. Larger sample sizes would help resolve this issue. Furthermore, variations in the biogenesis of MVBs in different cell types could also have a significant impact upon the EV immunopeptidome. An extensive study of multiple cell types is now required. Of technical interest, the antibody-based immunosorption of MHC molecules for peptide isolation utilized here is just one of several possible techniques (19). We have also performed preliminary studies on EV samples using mild acid elution (MAE), which in theory would not disrupt the cell or EV samples. The MAE technique removes the detergent lysis, immunosorption, and extensive washing steps that could lead to loss of low-affinity peptides. However, MAE is known to produce increased peptide signals of non-MHC origin (20), but intriguingly we were able to detect some peptides with known binding motifs for the MHC class II molecules expressed on Jesthom cells (data not shown), thus further enhancing the capacity of EVs to produce useful immunopeptidomic information. Taken together our study opens a new avenue for the characterization of the immunopeptidome from highly biologically relevant vesicles.

Experimental procedures

Cell and EV isolation

The EBV-transformed B cell line (obtained from the European Collection of Authenticated cell Lines no. 88052004) was grown in RPMI 1640 (Invitrogen, UK) supplemented with 5% FBS (Invitrogen, UK). Once the required number of cells was obtained, the medium was replaced with serum-free medium to prevent contamination from FBS-derived exosomes (EX-Cell 610-HSF serum-free, Sigma-Aldrich, UK) for 48 h. Cells were then isolated by centrifugation (300 × g, 10 min). The cells were washed once in PBS, then immediately resuspended in 5 ml of lysis buffer (1% Nonidet P-40, 150 mM NaCl, 10 mM Tris, pH 7.6, with 1 mM PMSE). After 10 min on ice the lysates were centrifuged at 20,000 × g for 5 min and the supernatant stored on ice. 10–20 μl was removed for immunoblotting.

The EV containing supernatant was processed immediately by 0.2-μm filtration and ultracentrifugation at 100,000 × g for 2 h. The pellets were resuspended in 500 μl of PBS and 10–20 μl was removed for BCA protein estimation or EV characterization by immunoblotting. The remaining bulk EV suspension was immediately lysed in 5 ml of lysis buffer, as above.

EV characterization

Nanoparticle tracking analysis was performed on a 0.5-ml cell culture sample after 0.2 μm filtration. Videos were taken using a Nanosight LM-10 unit (Malvern, UK), with a 4-ms camera shutter and analysis detection threshold of 2 using NTA 2.3 software. For immunoblotting, 5 μg of cell or EV lysates were run on 4–20% gels (Invitrogen) and transferred to nitrocellulose. Samples were incubated with the following antibodies overnight, HC10 (anti-HLA-B and -C), HCA2 (anti-HLA-A, a gift from Jacques Neefjes, Leiden), anti-GRP78 (dilution 1:5000, code STJ97526, St. Johns Laboratories, UK), or anti-CD9 or -CD81 (Thermo Fisher Scientific UK, codes: anti-CD9 clone Ts9, dilution 1:5000, code 15328354; and CD81, dilution 1:5000, code 15304032). Immunoblots were then incubated with 1:10,000 diluted IR Dye800cw anti-mouse IgG (LI-COR, UK, code 925-32210) and visualized using a LI-COR Odyssey scanner.

Immunosorption of MHC class I peptides

0.5 ml of Protein G-agarose (code 20399, binding capacity 11–15 mg/ml of IgG, Thermo Scientific UK) were pre-loaded with 30 ml of W6/32 containing tissue culture supernatant for 20 min at room temperature, then washed twice in lysis buffer. The beads were then added to the cell and EV lysates and mixed for 1 h at 4 °C. Control W6/32-loaded beads received lysis buffer alone. The beads were then washed with 60 volumes (3 × 10 ml) of lysis buffer without Nonidet P-40. 10 μl of beads was then removed for reducing SDS-PAGE and Coomassie Blue staining (Gelcode Blue, Thermo Scientific, UK). The remaining beads were resuspended in 1 ml of 0.5% TFA for 10 min at room temperature. The supernatant was then spun at 12,000 × g through pre-washed (in 0.1% TFA) Centricron 3 filtration units (MerckMillipore, UK). The peptide containing flow-through was then stored at −20 °C until analysis by mass spectrometry.

Mass spectrometry

Peptides were concentrated using a C18 column (NEST, Thermo Scientific UK), eluted in 70% acetonitrile, 0.5% TFA and dried down by SpeedVac. Peptides were then analyzed on an AB Sciex TripleTOF 5600+ system mass spectrometer (Sciex, Framingham, MA) coupled to an Eksigent nanoLC AS-2/2Dplus system. The samples were loaded in loading buffer (2% acetonitrile and 0.05% trifluoroacetic acid) and bound to an Aclaim pepmap 100 μm × 2-cm trap (Thermo Fisher Scientific), and washed for 10 min to waste after which the trap was turned in-line with the analytical column (Aclaim pepmap RSLC 75 μm × 15 cm). The analytical solvent system consisted of buffer A (2% acetonitrile and 0.1% formic acid in water) and buffer B (2% water with 0.1% formic acid in acetonitrile) at a flow rate of 300 nl/min with the following gradient: linear 1–20% of buffer B over 90 min, linear 20–40% of buffer B for 30 min, linear 40–99% of buffer B for 10 min, isocratic 99% of buffer B for 5 min, linear 99–1% of buffer B for 2.5 min, and
The immunopeptidome of extracellular vesicles

isocratic 1% solvent buffer B for 12.5 min. The mass spectrometer was operated in the DDA top 20 positive ion mode, with 120 and 80 ms acquisition time for the MS1 (m/z 400 –1250) and MS2 (m/z 95 –1800) scans, respectively, and 15-s dynamic exclusion. Rolling collision energy was used for fragmentation. Peak lists were generated within PeakView by using the “create mgf file” script. The MASCOT search engine with the following search parameters was used to identify peptides: no enzyme specificity, maximum of 4 misscleavages, oxidation as variable modification, peptide tolerance was set to 20 ppm, and the MS-MS tolerance to 0.1 Da. Data were searched against Swiss Prot database downloaded November 2016, restricted to proteins from humans only.

Peptides identified in the Mascot files were assessed for their potential allele-binding specificity and affinity using the NetMHCcons 1.1 algorithm. Alleles HLA-A*02:01, -B*27:05, and -C*01:02 were selected for screening, using standard settings of 0.5% Rank and IC₅₀ 50 nm for strong binders, and 2% Rank and IC₅₀ 500 nm for weak binders. Peptides identified as HLA-A*02:01, -B*27:05, and -C*01:02 binders were tabulated, and Mann-Whitney two-tailed tests were performed using Prism 7 software. Anchor motifs were analyzed using Seq2Logo algorithm (22) (www.cbs.dtu.dk/biotools/Seq2Logo/), using the Shannon format and standard settings.

Author contributions—S. J. P. and C. B. designed and obtained the funding for the study. S. J. P. and F. G. M. C. isolated the peptides. S. A. S. and S. L. S. performed the mass spectrometry and data analysis. S. J. P. performed the MHC algorithm data. A. N. A. and S. J. P. wrote the first draft of the manuscript, with all authors contributing to the final version.

References

1. Costa-Silva, B., Aiello, N. M., Ocean, A. J., Singh, S., Zhang, H., Thakur, B. K., Becker, A., Hoshino, A., Mark, M. T., Molina, H., Xiang, J., Zhang, T., Theilen, T. M., Garcia-Santos, G., Williams, C., and Lazenby, A. J., et al. (2015) Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat. Cell. Biol. 17, 816–826
2. Arakelyan, A., Fitzgerald, W., Zicari, S., Vanpouille, C., and Margolis, L. (2017) Extracellular vesicles carry HIV Env and facilitate HIV infection of human lymphoid tissue. Sci. Rep. 7, 1695
3. Todorova, D., Simoncini, S., Lacroix, R., Sabatier, F., and Dignat-George, F. (2017) Extracellular vesicles and angiogenesis. Circ. Res. 120, 1658–1673
4. Denzer, K., van Eijk, M., Kleijmeer, M. J., Jakobson, E., de Groot, C., and Geuze, H. J. (2000) Follicular dendritic cells carry MHC class II-expressing microvesicles at their surface. J. Immunol. 165, 1259–1265
5. Thiery, C., Zitvogel, L., and Amigorena, S. (2002) Exosomes: composition, biogenesis and function. Nat. Rev. Immunol. 2, 569–579
6. Whiteside, T. L. (2017) Exosomes carrying immunoinhibitory proteins and their role in cancer. Clin. Exp. Immunol. 189, 259–267
7. Syn, N. L., Wang, L., Chow, E. K., Lim, C. T., and Goh, B. C. (2017) Exosomes in cancer nanomedicine and immunotherapy: prospects and challenges. Trends Biotechnol. 35, 665–676
8. Marino, J., Babiker-Mohamed, M. H., Crosby-Bertorini, P., Paster, J. T., LeGuern, C., Germana, S., Abdi, R., Uehara, M., Kim, J. L., Markmann, J. F., Toeco, G., and Benichou, G. (2016) Donor exosomes rather than passenger leukocytes initiate alloreactive T cell responses after transplantation. Sci. Immunol. 1, aaf759
9. Lundberg, V., Berglund, M., Skogberg, G., Lindgren, S., Lundqvist, C., Gudmundsdottir, J., Thörn, K., Telemo, E., and Ekwall, O. (2016) Thymic exosomes promote the final maturation of thymocytes. Sci. Rep. 6, 36479
10. Lynch, S., Santos, S. G., Campbell, E. C., Nimmo, A. M., Botting, C., Prescott, A., Antoniou, A. N., and Powis, S. I. (2009) Novel MHC class I structures on exosomes. J. Immunol. 183, 1884–1891
11. Sow, Y., Song, Y., Zheng, Y., Campbell, E. C., Riches, A. C., Gunn-Moore, F., and Powis, S. J. (2012) Nanoparticle tracking analysis monitors microvesicle and exosome secretion from immune cells. Immunology 136, 192–197
12. Zheng, Y., Campbell, E. C., Lucocq, J., Riches, A., and Powis, S. I. (2013) Monitoring the Rab27 associated exosome pathway using nanoparticle tracking analysis. Exp. Cell Res. 319, 1706–1713
13. Admyre, C., Johansson, S. M., Paulie, S., and Gabrielson, S. (2006) Direct exosome stimulation of peripheral human T cells detected by ELISPOT. Eur. J. Immunol. 36, 1772–1781
14. Hassan, C., Kester, M. G., de Ru, A. H., Hombrink, E., Drijfhout, J. W., Nijveen, H., Leunissen, J. A., Heemskerk, M. H., Falkenberg, J. H., and van Veen, P. A. (2013) The human leukocyte antigen-presented ligandome of B lymphocytes. Mol. Cell Proteomics 12, 1829–1843
15. Gercel-Taylor, C., Atay, S., Tulill, R. H., Kesimer, M., and Taylor, D. D. (2012) Nanoparticle analysis of circulating cell-derived vesicles in ovarian cancer patients. Anal. Biochem. 428, 44–53
16. Navabi, H., Croston, D., Hobot, J., Clayton, A., Zitvogel, L., Jasani, B., Bailey-Wood, R., Wilson, K., Tabi, Z., Mason, M. D., and Adams, M. (2005) Preparation of human ovarian cancer ascites-derived exosomes for a clinical trial. Blood Cells Mol. Dis. 35, 149–152
17. Bassani-Sternberg, M., Bräunlein, E., Klar, R., Engleitner, T., Sinitchyn, P., Audenh, S., Straub, M., Weber, J., Slotta-Huspenina, J., Speck, K., Martignoni, M. E., Werner, A., Hein, R., H Busch, D., Peschel, C., and Rad, R., et al. (2016) Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry. Nat. Commun. 7, 13404
18. Pitt, J. M., André, F., Amigorena, S., Soria, J. C., Eggermont, A., Kroemer, G., and Zitvogel, L. (2016) Dendritic cell-derived exosomes for cancer therapy. J. Clin. Invest. 126, 1224–1232
19. Caron, E., Kowalewski, D. J., Chiek Koh, C., Sturm, T., Schuster, H., and Aebesold, R. (2015) Analysis of Major histocompatibility complex (MHC) immunopeptidomes using mass spectrometry. Mol. Cell Proteomics 14, 3105–3117
20. Fortier, M. H., Caron, E., Hardy, M. P., Voisin, G., Lemieux, S., Perreault, C., and Thibault, P. (2008) The MHC class I peptide repertoire is molded by the transcriptome. J. Exp. Med. 205, 595–610
21. Karosiene, E., Lundegaard, C., Lund, O., and Nielsen, M. (2012) NetMHCcons: a consensus method for the major histocompatibility complex class I predictions. Immunogenetics 64, 177–186
22. Thomsen, M. C., and Nielsen, M. (2012) Seq2Logo: a method for construction and visualization of amino acid binding motifs and sequence profiles including sequence weighting, pseudo counts and two-sided representation of amino acid enrichment and depletion. Nucleic Acids Res. 40, W281–W287