Introduction

In the modern era of advancement, new scientific technologies have taken over the traditional methods of investigation. Expansion of recent investigative techniques and sources have made the investigation more specific to an individual/suspect in forensic field. Since when DNA has been explored an unequivocal to an individual, since then, DNA fingerprinting have become probably the most common technique in the context of fast and reliable identification purpose [1]. Yet another aspect such as palmar surface, planter surface, labial mucosa etc. are also valuable form of evidences which are considered exclusive, perpetual, and ubiquitous by nature. These evidences have proven their feasibility in the field of investigation. Likewise the fingerprints, lip prints have been classified as an individualize feature of identification [3]. The lip prints consist cracks, wrinkles/folds in form of elevation and depressions in between the inner labial mucosa and outer skin of a human lip [3].

Lip prints can be identified in the sixth week of intrauterine life and these patterns rarely change. Minor trauma such as inflammation or herpes, will not have a pronounced effect on the appearance of the lips and adjacent tissues. A trauma such as scarring, surgical treatments, deep cut can affect the morphology (Shape & size) of the lips. In 1902, R. Fischer was the first person to study these exclusive features of lip prints and who classified these prints further [4]. In 1950, Le Moyne Synder followed his work and introduced a concept of utilization the wrinkles and grooves of lip prints for personal identification [5]. According to these researchers, lip prints were divided into four blazons namely; straight lines, curved lines, angled and sine shaped curve. In addition of their work, Suzuki and Tsuchihashi further classified the lip prints into clear cut groove, branched groove, intersected groove, reticular type V pattern etc.

The impressions of lip prints are considered analogous to the fingerprint in forensic field. The prints found at a spectacle of occurrence can establish a scientific base to determine the identity of an individual. Such impressions of the lips can be found on the surface of the window, painting, doors, plastic bags, cigarette butts, etc. Although, presence of lipsticks can give a hint directed towards the gender of suspect but not conclusively. The assumption behind this study was to determine the gender of suspect, implementation of cosmetics, occupational characteristics or any pathological changes of the lips themselves.

Potentiality of lip prints at distinctive surfaces

Lip prints are infallible mean of identity based on class
or individual characteristics which means incapable of being wrong in personal identification of individual. Lip prints are recovered in distinct form such as static, half static or dynamic print from the scene of occurrence. Such features offer the error free results for identification of culprits found at several objects at crime scene [6,7]. Static and half static prints will carry the identical characteristics of suspect/individual while dynamic prints are found in smudged form. Therefore, the identification from such prints are impossible and identity of suspect are left questionable (Figures 1–3).

Methodology

In this pilot study, 50 samples including males and females were collected from the local jaat residents of District Baghpat and Meerut of Western Uttar Pradesh, Northern population of India. All the samples were collected from the age group of 18–25 years. All the subjects were selected by simple random sampling method of sampling. All subjects with any kind of injury on vermillion zone or disease were excluded from sampling. Subjects were informed about the objective of this study and consent was taken prior to the sampling. Firstly, all samples were collected in June 2018 at an environmental temperature approximately 30–40°C. While second time, samples were collected from same individuals in September 2018 at an approximate environmental temperature 23–36°C.

Material

All the samples were collected on A4 size white paper sheet with the help of coloured material i.e. lipstick, lip glue etc. All subjects were asked to apply the material over lip prints and subjects were requested to implement their prints over paper sheet. All the collected samples were preserved in simple brown paper envelope to prevent them from the atmospheric moisture or foreign ingredients i.e. dust, dirt etc. Both samples (fresh samples and old samples) were analysed for individualization as well as determination of gender. To determine the gender, six parameters were fixed over the lateral lip prints. All fixed parameters are given below in Table 1.

During the analysis of samples stereo-microscope including hand lens of 5x and 10x were used. All samples were photographed by Oppo A5 smartphone of 16 megapixels camera. For the calculation, SPSS latest version 17.0 along with MS excel was used (Figures 4,5).

To conclude the individuality of the suspect/individual, two-tailed fashion t-test was embedded as in SPSS version 17.0 for this study. A hypothesis was set for both parameters in which, it is estimated that H0 is rejected in favour of Ha [10]. It means that lip prints will be able to determine the gender of an individual/ suspect.

Result and discussion

Often, it is observed that the individual characteristics and class characteristics of lip prints are studied for the establishment of individuality. The lip prints can be observed...
in several predicaments i.e. static, half static or dynamic form and the identity are often left in questionable form. Since, the interpersonal and interpretational variations coming in, Therefore, this method was adopted to turn out the involvement of an individual in a crime. The collected samples analysed dossier are given below in Table 2.

In the process of identification of an individual/ suspect and determination of sex, earlier fixed parameters were studied in both sampling for both gender’s lip prints. These parameters include total dimension of lip print, inner breadth between lip prints, width of lip prints, inner width of lip prints, angle of lip print from point C, angle of lip print from point of D.

All the samples were analysed to determine the values of all the selected parameters. As mentioned in the study, the exemplar which were collected to find out the correlation were also analysed for same parameters. All the secondly collected samples were measured at same fixed parameters. The analysed exemplar is given below in Table 3.

Statistical calculated values of Table 2 are given below in Tables 4, 5.

According to the results obtained in this study, it was observed that both of the sampling including fresh and old samples (males and females) provide the significant similarity that were observed with minimum standard error in the measurements. At first parameter (total dimension of lip prints), the mean values are 4.31 and 4.3 with standard errors 0.07 and -0.139. The standard deviation values for both samples are quite similar 0.351 and 0.356 respectively. While at the second parameter (inner breadth), the means values are 4.63 and 4.69 which is the representation of variation at the time of implementation of lip prints. The standard deviation values are 0.497 and 0.462 at std. error rate of 0.101 and -0.491. While at the third and fourth parameter (Inner width of lip prints and parallel inner width), the means values are 2.4, 3.2 and for exemplar; values are 2.6 and 3.2 which gives an indication of natural variation. All the values were obtained at a minimum standard error 0.09, 0.117 and -0.339, 0. 151cm. the discrimination is graphically presented in Graph 1.

Every individual has their own style of their lip prints implementation over any object, that make it differ from others (males and females). The fifth and sixth parameter of lip print (Angle of lip print from right side, angle of lip prints from left side) are <C 640 C and 650 C while for angle <D, the values are 66.50 C and 680 C. In the study of these parameters, a range of variation was observed which is an indication human resources not a machine or any kind of forgery. During the analysis of these parameters, standard error is noticed which is <C 0.70 C and < D 0.2 0 C. Gender discrimination based on angle of lip prints from left and right joints are given below in Graph 2.

The significance level of the study was observed at p<0.10 confidence level. The obtained result of exemplar from the use of six parameters were highly conclusive. Out of six parameters, four parameters were providing significant values for identification. the significant table are given below in Table 6.

During the analysis of lip print from male sample and female sample of the parameter one (total dimension of lip print), the obtained T Value was -1.4847 and P Value was 0.072 which is significant as 0.072 <p < 0.10. it prefers that the parameter is capable to conclude the identity and determine the gender of suspsect/individual. While at the second parameter (Inner

Table 1: Estimated parameters for fixation individuality from lip print.

Sample	Total dimension of lip print (cm.)	Inner breadth of lip prints (cm.)	Width of lip prints (cm.)	Inner width of lip print (cm.)	Angle of lip print from Right joint (C°)	Angle of lip print from the Left joint (D°)

Figure 4: Image of lateral lip print taken with the help of coloured material.

Figure 5: Image of lateral lip print taken with the help of coloured material.
breadth of lip print) the obtained T Value was \(-0.432\) and P Value was \(0.633\) which is not significant at \(0.333 > p < 0.10\) level of confidence. It can occur due to variation in the implementation of lip prints at object. The third parameter (Width of lip print) provides the T Value \((0.526)\) and the P-value \((0.300)\). the obtained values are not significant 0.039 > p<0.10 level of confidence.

At the fourth parameter (Inner width of lip prints) gives the T –value \((0.526)\) and the p-value \((0.300)\). the obtained values are not significant 0.039 > p<0.10 and concludes that this parameter may provide the variation in implementation of lip prints for both genders (male and female). The Fifth diameter (Angle from the right joint of lip prints) provide the significant value T-Value was \(-1.32\) and p-value \((0.019)\). The obtained value 0.019 <p<0.10 is significant while on the other end, at the same fixed parameter of angle from the left joint of lip print; T- value is \(-1.024\) and p- value is 0.023. The obtained value T-Value was -1.024 and p-value (0.023). The obtained value 0.019 <p<0.10 is significant. During this study, it was observed that for last parameters are significant. It is an indication that an individual implements their lip prints in same formation (angle), it only differs in dimensions i.e. breadth, width etc.

As a resultant of this study, it was observed that both genders can be discriminated based on above fixed parameters. In comparison of females, males have greater total dimension of lip prints. Second the width of among lip prints was found higher in males. Third, the measured angles from point C and D, males have higher angle which means that the opening of lips against any surface are higher in male cases. The results of this study may vary on a large number of subjects, place, region or individual also. Atmospheric conditions or influence of any disease can also affect the deposition of lip prints, which can be observed in form of variation. These parameters can help to distinguish the group, community, race of an individual. Except the slight change in dimensions, this study will help the investigators to determine the gender of the suspects from lip prints.

By considering its consistency over the time and the accuracy in the correlation of indirect points, it is observed that no similarity was found between the lip prints. It offers the positive and error free results for identification of culprits.
and gender found from the scene of occurrence. Therefore, it can be a milestone in the field of investigation and to nab the suspects from the objects consisting lip prints recovered from crime scene.

Table 4: Statistical analysis of Table 2.

S NO.	Total dimension of lip print(cm.)	Inner breadth (cm.)	Width of lip prints (cm.)	Angle of lip print from the right joint C₀	Angle of lip print from the left joint D₀
Mean	4.132	4.63	2.42	63.84	65.3
Variance	0.1245	0.247	0.211	0.334	14.39
S.D.	0.3529	0.497	0.597	3.793	3.429
Skewness	-0.4837	-0.291	-0.395	-0.07	-0.022
S Error	0.07	0.101	0.093	0.117	0.7

Table 5: Statistical analysis of Table 3.

S.N.	Total dimension of lip print(cm.)	Inner breadth (cm.)	Width of lip prints (cm.)	Angle of lip print from the right joint C₀	Angle of lip print from the left joint D₀
Mean	4.133	4.69	2.65	66.56	68.24
Variance	0.2126	0.403	0.434	0.579	4.701
S.D.	0.356	0.402	0.579	3.07	3.953
Skewness	0.07	0.094	0.118	1.083	0.959
S.Error	-0.139	-0.491	-0.339	-0.357	-0.299

Table 6: Statistical significance level of the lip prints between males and females samples.

S NO.	Total dimension of lip print(cm.)	Inner breadth (cm.)	Width of lip prints (cm.)	Angle of lip print from the right joint C₀	Angle of lip print from the left joint D₀
T-value	-1.4847	-0.432	-1.796	0.526	-1.320
P-Value	0.072	0.333	0.030	0.019	0.023
Significance	Y	N	Y	Y	Y

Conclusion

Establishment of individuality has become an essential in forensic investigation. Now a days, it has become possible from several sources of evidences such as blood, saliva, sweat urine etc. yet another alternate sources are often looked. To identify the suspect from lip prints has not such a long history but, it is emerging very rapidly. Similar like of fingerprints, the identification can be done by using the class characteristics as well as from individual characteristics also and it is admissible in court of law under article 6 of Universal declaration of human right. As in this study, determination of gender was constituted from lip prints by applying metric system was attempted to determine which can play a significant role in solving the crime in the forthcoming time. Similarly, Metric system can be implemented in fingerprints also. In which the gender can be identified by measuring the dimensions of ridges, dimensions between tow ridges. It was can be used in questioned documents to determine the variations among the handwriting of an individual, determination of forgery, disguised handwriting with a scientific backup. Metric system implementation covers various fields such as, forensic engineering, fire and arson cases, forensic photography, crime scene investigation, investigation of structural failure cases, etc.

References

1. Kasprzak J (1990) Possibilities of Cheiloscopy. Forensic Science International 46: 145-151. [Link](https://bit.ly/2Vmdf1Y)
2. Kim JO, Baik KS, Chung CH (2003) On a Lip Print Recognition by the Pattern Kernel with Multi-resolution Architecture. Lecture Notes in Computer Science 2690: 561-568. [Link](https://bit.ly/2wUfBM2)
3. Chauhan A, Singh J (2014) Identification of an individual from the latent palm prints present on documents International journal of Research Science & Innovation 1: 29-35. [Link](https://bit.ly/2RS1Ft6)
4. Russell LW, Welch AE (1984) Analysis of Lipsticks. Forensic Science International 25: 105-116. [Link](https://bit.ly/3cAJTmo)
5. Chauhan A, Singh J, Kushwaha KPS (2015) An Evaluation: Sexing from the Ridge density of latent palm prints of North Indian population. Research Journal of Recent Science 4: 73-75. [Link](https://bit.ly/2xOtBkq)
6. Segui MA, Feucht MM, Ponce AC, Pascual FAV (2000) Persistent Lipstick and Their Lip Prints: new hidden evidence at the crime scene. Forensic Science International 41-47. [Link](https://bit.ly/3buyJzi)
7. Suzuki K, Tsuchihashi Y (1970) Personal Identification by Means of Lip Prints. Journal of Forensic Medicine 52-57.

Citation: Chauhan A (2020) An application of metric system in determination of gender from lateral Lip prints. Forensic Sci Today 6(1): 006-011. DOI: [10.17352/fst.000015](https://dx.doi.org/10.17352/fst.000015)
8. Chauhan A, Chauhan A, Singh J, Shukla SK (2017) A correlative study between the implementation of rhythmic system and hieroglyphs substantial. International Journal of current research and review 9: 1-05. Link: https://bit.ly/2VmKTVo

9. Chauhan A, Gautam A, Singh SK, Shukla SK (20117) Gender inequity from the quadrant of lateral fingerprints among the age group of 18-25 years from the population of National capital region of India. International journal of civil engineering and technology 8: 1402-1407. Link: https://bit.ly/2VN0r6z

10. Tsuchihashi Y (1974) Studies on Personal Identification by Means of Lip Prints. Forensic Science 3: 233-248. Link: https://bit.ly/3akllLv

11. Suzuki K, Suzuki H, Tsuchihashi Y (1967) On the female lips and rouge. Jpn J Leg Med 67: 471.

12. Chauhan A, Chauhan V (2017) An expansion of indented signatures over the credential by the employment of domiciliary commodity. International journal of civil engineering and technology 8: 1960-1966. Link: https://bit.ly/34RsJb

13. Suzuki K, Tsuchihashi Y (1970) A new attempt of personal identification by means of lip print. J Indian Dent Assoc 42: 8-9. Link: https://bit.ly/3cAKu7C

Citation: Chauhan A (2020) An application of metric system in determination of gender from lateral Lip prints. Forensic Sci Today 6(1): 006-011. DOI: https://dx.doi.org/10.17352/fst.000015