Research Article

Belda Erkmen*, Aysel Caglan Günal, Hüseyin Polat, Kenan Erdoğan, Hilal Civelek and Figen Erkoç

Sublethal effects of acrylamide on thyroid hormones, complete blood count and micronucleus frequency of vertebrate model organism (*Cyprinus carpio*)

https://doi.org/10.1515/tjb-2022-0025
Received September 29, 2021; accepted April 13, 2022; published online June 15, 2022

Abstract

Objectives: Acrylamide, a widely used chemical in industry, clinical laboratory and waste treatment plants, is considered a carcinogen in humans. The present study examined the hormonal, hematologic, and genotoxic responses in the invertebrate model common carp *Cyprinus carpio* after exposure to sublethal acrylamide.

Methods: Fish were exposed to acrylamide at 10 and 50 mg/L for 96 h, along with the respective control group. Serum levels of cortisol and thyroid hormones were measured using diagnostic ELISA direct immunoenzymatic kits. For micronucleus (MN) frequency assay, thin smears of the peripheral blood of fish were prepared.

Results: Serum levels of cortisol in both treatment groups considerably increased, which proposed that acrylamide caused a stress reaction of acrylamide exposed fish (p<0.05). Fish demonstrated significant decreases in triiodothyronine (T₃), free thyroxine (FT₄), and free triiodothyronine (FT₃) concentrations in a dose-dependent manner after acrylamide exposure (p<0.05). However, serum thyroxine (T₄) concentrations did not alter significantly in the treatment groups. Mean MN frequencies of fish erythrocytes increased significantly in acrylamide exposed groups suggesting that acrylamide is genotoxic in common carp (p<0.05). The hematocrit, hemoglobin, and erythrocyte numbers of carp increased significantly in exposure groups (p<0.05).

Conclusions: These results suggested that acrylamide can significantly affect the hemopoietic system. Furthermore, this study confirmed that the widespread use of acrylamide, even in sublethal concentrations, could affect the survival of non-target organisms, especially fish, in aquatic environments.

Keywords: acrylamide; cortisol; *Cyprinus carpio*; micronuclei; thyroid hormones.

Introduction

Acrylamide (C₃H₅NO; CAS No: 79-06-1) is a high-volume compound used in many research and clinical diagnostic laboratories for electrophoresis gels preparation [1]. In addition, acrylamide, known as one of the heat-induced toxic substances, is an industrially produced chemical used as a monomer for producing polyacrylamides widely used for flocculant for the clarification of the drinking and the treatment of the wastewater as waterproofing agents in dam and tunnel constructions, agricultural processes, and textile manufacturing [1, 2]. Besides the industrial and laboratory uses, humans are exposed to acrylamide via the diet. The acrylamide formation in the foods is primarily linked with the Maillard reaction between amino acids & reducing sugars [3]. Acrylamide was classified as a “probable human and rodent carcinogen” by International Agency for Research on Cancer (IARC) in 2002, following...
reports of effects in several animal models [1, 4]. These findings increased concerns about possible risks to human health.

Acrylamide can easily contaminate the aquatic systems by releasing from the manufacturing processes dyes, organic chemicals, pesticides, and plastics [2]. Acrylamide cannot degrade rapidly in water with high contamination risks on the surface and ground for high solubility and mobility in water systems. The residues were noticed between 0.5 and 600 mg/L in the flocculants applied by the water treatment activities [2, 5]. Despite the contamination risk of acrylamide in water systems due to high usage and solubility, there is a lack of information about non-target organisms in aquatic environments. Also, there is no information to link acrylamide-caused thyroid endocrine system changes to deterioration in fish health in the field.

Laboratory study results in different species showed that acrylamide might induce cancers and genetic damages [6]. Studies have revealed that acrylamide is moderately toxic to aquatic organisms. United States Environmental Protection Agency (U.S. EPA) [7] has summarised the 24 and 96-h median lethal concentration (LC_{50}) values for goldfish (Carassius auratus) as 460 and 160 mg/L, respectively. The 7 days LC_{50} value for the guppy (Poecilia reticulata) is approximately 35 mg/L. The 24 h LC_{50} for Daphnia magna (water flea, first instar) is 230 mg/L [8], while the 48 h LC_{50} for D. magna is determined as 160 mg/L by Krautter et al. [9]. The 48 h LC_{50} values were calculated for rainbow trout (Oncorhynchus mykiss) as 110 mg/L; fathead minnows (Pimephales promelas) as 120 mg/L; bluegill (Lepomis macrochirus) as 100 mg/L [9]. Exposure to acrylamide caused neurotoxic and genotoxic effects as well as biochemical and histopathological alterations in some fish species [10-14].

Impairment of the thyroid endocrine system by environmental pollutants has attracted much attention due to thyroid hormones (THs) being especially significant in maintaining many physiological functions involved in the normal development and reproduction of vertebrates. In fish, the hypothalamus secretes corticotropin-releasing factor (CRF) to induce thyroid-stimulating hormone (TSH) secretion from the pituitary and the regulation of TH synthesis and release within the hypothalamic-pituitary-thyroid (HPT) axis [15]. Thyroxine (T4), the predominant hormone of thyrocytes, is primarily converted to the biologically active hormone tri-iodothyronine (T3) [16]. Alteration of thyroid hormone regulation may cause an endocrine response in which many physiological instabilities coexist, affecting reduced individual health. Therefore, it is pivotal to recognize thyroid-disrupting chemicals that alter thyroid hormone homeostasis and evaluate their risks to wildlife [17].

Many different groups of emerging compounds may interrupt thyroid hormone function, such as perfluorooctane sulfonate (PFOS) [15], pentachlorophenol [18], and synthetic pyrethroids [19]. Previous studies proposed that the effect of environmental substances on the hypothalamic-pituitary-thyroid (HPT) axis, involving changes in regulatory enzyme activities and hormone levels, could be carried out to examine the thyroid endocrine disruption [20].

As for cortisol, a predominant circulating corticosteroid hormone secreted from the hypothalamic-pituitary-interrenal axis (HPI-axis) is involved in the physiological reaction to stress conditions and in osmoregulatory processes [21]. Cortisol is a sensitive stress indicator in fish due to its rapid elevation in response to various stressors. Furthermore, the HPI-axis has been shown to modulate the thyroid axis in fish and other vertebrates [22].

The common carp, *C. carpio*, was chosen as the sentinel organism in this study because of its easy adaptability to laboratory conditions, tolerance to various environmental conditions, high ecological and economic importance, and wide distribution in the freshwater environment representing a well-suited species for toxicity studies. In addition, the common carp provides one of the most promising alternatives, the harmonized and cost-effective vertebrate models for predicting human health risks from acrylamide exposure.

Fish are commonly used to monitor environmental pollution due to wide distribution worldwide and bioaccumulate xenobiotics in response to even low concentrations of environmental contaminants. The response of fish to xenobiotics is similar to the higher vertebrates like humans. Therefore, the trend for improvements in *in vivo* toxicological bioassays with fish as vertebrate models is increasing. Fish in the upper levels of the food chain in aquatic ecosystems are in direct and/or indirect contact with environmental pollutants. In this case, chemicals found in aquatic ecosystems, especially at sublethal levels, affect fish the most. The accumulation of environmental pollutants in various organs and tissues of fish and their biological transfer to humans through the food chain adds a serious ecotoxicological dimension and importance to the phenomenon. Furthermore, the main structure and function of the HPT axis across all vertebrates tend to be well conserved. Hence, the results of fish researches with environmental toxicants can potentially serve as the basis for practical cross-species extrapolation of potential effects.

Peripheral erythrocyte micronuclei assay (MN), a validated and reliable test for determining genotoxicity, is standardised by the guidelines of OECD [23]. Hematological parameters are useful indicators to assess the toxicological effects and the status of fish health [24].
Although there are some studies on acrylamide toxicity and accumulation in the tissues of some fish species, there is a lack of data on the effects of acrylamide on common carp, C. carpio. The present investigation was carried out to determine the hormonal, hematologic, and genotoxic responses of common carp, C. carpio, the most produced and widespread freshwater species, to reflect the stress response and health status of fish as a vertebrate model after exposure to sublethal acrylamide.

Materials and methods

Fish

Freshwater fish C. carpio is recommended as a test species and useful vertebrate model for toxicity studies (OECD 1992, 2000). Juvenile common carp (C. carpio) were obtained from a local fish farm and used for the experiment with an average weight and standard length of 60.72±2.66 g and 16.91±0.23 cm, respectively. Fish were allowed to acclimate for 15 days in lab conditions in glass tanks containing 300 L of water, including 10 fish each. The composition of test water (pH 7.2, dissolved oxygen 7 mg/L, water temperature 18–20 °C) was measured daily following the standard procedures described in APHA [25]. Carp were fed once daily with commercial fish food dry pellets at a rate of their 2% of body weights. The ethical protocol for using C. carpio in the experiments was approved by the Gazi University Research Ethical Commission (G.Ü.Et-14.034 26.05.2014–06).

Experimental design

Following the acclimation period, experimental fish were transferred to 300 L volume aquariums in groups of 10 fish per tank. One tank is the control, and the other two are acrylamide sublethal exposure groups. Groups of experimental fish were selected randomly and exposed to the selected concentration of acrylamide in aerated aquaria. The experimental concentrations were selected according to literature and pre-test before the experiment. The acrylamide exposure concentrations were selected from the information of LC50 values of other aquatic vertebrates, reporting the threshold over 100 mg/L [4, 9]. The LC50 (96 h) determined for freshwater fish was from 100 mg/L (bluegill), 110 mg/L (rainbow trout) 119.5 mg/L (goldfish) and 120 mg/L (fathead minnow) [4, 9]. The sublethal concentrations were selected as 1/2 and 1/10 of 96 h LC50 concentration and decided as 10 mg/L and 50 mg/L acrylamide. Carp were treated with acrylamide for 96 h, and the concentrations were selected as 10 and 50 mg/L. The control group was kept the same way without acrylamide. During the experimental period, carps’ behavioral changes and survival were monitored daily.

Blood sampling

At the end of the 96 h exposure period, the fish were immediately anesthetized (benzocaine, 60 mg/L; Sigma), and the total length and the weight of the fish were measured. Blood samples were obtained from the caudal vein. They were put into the non-heparinized microtubes, and then the microtubes were centrifuged at 3,000 g for 15 min at 4 °C. The supernatant (serum) was preserved at −80 °C until the analysis of the hormone assays.

Hormone assay

Serum levels of cortisol, total thyroxine (TT4), total triiodothyronine (TT3), free thyroxine (FT4), and free triiodothyronine (FT3) were analyzed using diagnostic ELISA direct immunoenzymatic kits (Diemetra, Italy). The assays were done according to the instructions given along with the kits. All samples were analyzed in duplicate.

Hematological assay

The blood samples were put into EDTA tubes by the “direct tail cutting method”. Haematological variables ”(WBC=White blood cells; Lymph=lymphocyte; Mon=monocyte; Gra=granulocyte; RBC=Red blood cells; Hb=hemoglobin; Hct=hematocrit; MCV=Hct×10/RBC; MCH=Hb×10/RBC; MCHC=Hb/Hct)” were measured within 30 min by using an automated veterinary hematology analyzer MS 4 e automated cell counter (Melet Schloesing Laboratories, France).

Micronucleus (MN) frequency assay

For MN assay, thin smears of the peripheral blood of fish were prepared on pre-cleaned slides. After air drying, they were fixed with 96% ethanol for 20 min, re-air-dried, and then stained with 5% Giemsa solution for 20 min. Samples were scored from each slide under 1,000 × magnification from 1,000 cells of two slides per fish. Scoring criteria for MN and other nuclear abnormalities (NAS) except for micronuclei in erythrocytes were done according to Kirsh-Volders et al. [26]. Nuclear abnormality data were expressed as total NA calculated by the sum of all nuclear abnormalities (binucleated, blebbed nuclei, lobed nuclei, notched nuclei) [27]. A light microscope (Zeiss Primostar) was used to score the MN preparations.

Statistical analysis

The statistical analyses of micronucleus assay were carried out using a commercially available statistical software package (GraphPad Insta3). Data were tested for normality and homogeneity of variances using the Kolmogorov-Smirnov test. Statistical differences were tested using the non-parametric Kruskal Wallis test. Dunn’s test was used for the multiple comparisons of the groups. For serum hormone and hematological assays, statistical analysis was performed using the SPSS 24.0 statistical program. One-way ANOVA followed by Duncan’s multiple range tests were used to analyze the experimental parameters. Data were tested for normality and homogeneity of variances using the Shapiro-Wilk and Levene test. A value of p < 0.05 was considered statistically significant. All data were expressed as arithmetic mean ± standard error (SEM).
Results

Mortality and abnormal behavior were not determined in control and acrylamide exposed fish groups during the 96 h exposure period.

Serum thyroid hormones

The results of serum levels of TT₄, TT₃, FT₄, and FT₃ are shown in Table 1. As seen in Table 1, serum TT₄ levels did not change significantly in the control and sublethal acrylamide exposed groups. For TT₃, the concentration levels in both treatment groups significantly decreased compared to the control group (p<0.05). Regarding FT₄ and FT₃, the concentration levels decreased significantly in both treatment groups compared to the control group (p<0.05).

Serum cortisol

Serum cortisol levels are presented in Figure 1. There was a dose-dependent elevation in serum cortisol concentrations in treatment groups with considerably higher levels after 96 h exposure when compared with the control group (p<0.05).

Hematology

The hematological results of the experiment are presented in Table 2. As seen in Table 2, exposure to sublethal acrylamide of carp resulted in a significant increase in Hct (%), Hb (g/dL), and RBC (M/mm³) (p<0.05). On the other hand, the parameters of WBC (m/mm³), Lym (%), Mon (%), Gra (%), MCV (fl), MCH (pg), and MCHC (g/dl), and were not affected significantly by sublethal acrylamide concentrations (p>0.05).

Micronucleus (MN) (%) and nuclear abnormality (NA) (%) frequency

MN and NA analyses of carp exposed to 10 and 50 mg/L acrylamide are shown in Table 3. Mean MN frequencies of carp erythrocytes increased significantly after exposure to 10 and 50 mg/L acrylamide for 96 h (p<0.05). Both acrylamide

Groups	FreeT₃, pg/mL	Free T₄(pg/mL)	Total T₃(nmol/mL)	Total T₄, nmol/L
Control	4.6 ± 0.05⁴a	0.72 ± 0.03⁴a	1.01 ± 0.02⁴a	21.0 ± 0.52
10 mg/L AA	4.2 ± 0.42⁴a	0.67 ± 0.06⁴b	0.97 ± 0.02⁴b	20.1 ± 0.45
50 mg/L AA	1.9 ± 0.15⁴b	0.56 ± 0.03⁴b	0.96 ± 0.01⁴b	20.0 ± 0.31

Significant differences between control fish and treated fish are indicated (small letters in the column refers significance a, b; p<0.05) for each exposure groups.

Figure 1: Serum cortisol levels of common carp, *Cyprinus carpio*, control and treatment groups exposed to 10 and 50 mg/L acrylamide. Significant differences between control fish and treated fish are indicated (a, b p<0.05) for each exposure groups.
Table 2: The hematology parameters of carp (Cyprinus carpio) after exposed to acrylamide for 96 h. (mean ± S.E.M.; n=10).

Parameters	Control	10 mg/L	50 mg/L	p-Values
WBC, m/mm³	9.08 ± 0.57	10.08 ± 0.36	10.13 ± 0.45	0.32
Lym, %	76.63 ± 2.30	74.97 ± 1.77	71.18 ± 2.28	0.27
Mon, %	2.28 ± 0.45	2.44 ± 0.24	2.71 ± 0.39	0.11
Gra, %	21.08 ± 2.15	22.59 ± 1.69	26.1 ± 2.16	0.24
RBC, M/mm³	1.43 ± 0.03a	1.54 ± 0.11a	1.66 ± 0.07b	0.01
Hb, g/dL	12.10 ± 0.56a	12.70 ± 0.33a	13.57 ± 0.67b	0.03
Hct, %	27.90 ± 1.80a	34.80 ± 1.90b	35.50 ± 1.90b	0.02
MCV, fl	195.10 ± 8.96	225.90 ± 17.07	213.80 ± 13.87	0.17
MCH, pg	84.60 ± 4.66	81.10 ± 4.71	81.69 ± 3.23	0.79
MCHC, g/dL	43.30 ± 1.53	35.89 ± 6.69	38.20 ± 2.18	0.08
THR, m/mm³	265.43 ± 55.02	214.29 ± 23.12	273.57 ± 41.05	0.54

Small letter in the row refer to significance a, b; p<0.05 for each exposure groups; WBC, white blood cells; Lym, lymphocyte; Mon, monocyte; Gra, granulocyte; RBC, red blood cells; Hb, hemoglobin; Hct, hematocrit; MCV, Hct*RBC; MCH, Hb*10/RBC; MCHC, Hb/Hct.

Table 3: Frequency of micronucleated cells (%MN, MN) and nuclear abnormalities (%NA, NA) in carp exposed to sublethal acrylamide for 96 h (mean ± S.E.M.; n=10).

Groups	Erythrocytes (frequency/1,000 cells)	MN Confident interval (95%)	NA Confidence interval (95%)
Control	2000	1.86 ± 0.51²	0.61–3.10
EMS	2000	7.83 ± 0.95²	5.4–10.27
10 mg/L AA	2000	7.0 ± 0.79²	5.01–8.92
50 mg/L AA	2000	8.86 ± 0.91²	6.62–11.09

The small letters (a, b) in the column refer to significance a, b; p<0.05; EMS, ethyl methanesulphonate; AA, acrylamide.

The small letters (a, b) in the column refer to significance a, b; p<0.05 for each exposure groups; WBC, white blood cells; Lym, lymphocyte; Mon, monocyte; Gra, granulocyte; RBC, red blood cells; Hb, hemoglobin; Hct, hematocrit; MCV, Hct*RBC; MCH, Hb*10/RBC; MCHC, Hb/Hct.

Discussion

The contamination of aquatic ecosystems with several environmental chemicals has attracted increasing attention due to their toxicity and bioaccumulation in the food chain resulting in sublethal toxic effects or death in fish populations. These chemicals can also inhibit endocrine system function in aquatic organisms like fish [28, 29]. Although the common carp is the most consumed fish species globally, the acrylamide toxicity effects related to serum cortisol and thyroid hormone concentrations, hematological parameters, and genotoxicological effects have not been studied in the open literature. Thus, we had to discuss our results with other teleost species.

In the current study, common carp exposed to sublethal concentrations of acrylamide indicated a dose-dependent increase in serum cortisol levels. An elevated serum cortisol level indicates significant functional changes in the HPI axis. These changes have been used as the primary biomarker of a stress reaction in fish in environmental monitoring [30]. The outcomes of this study propose that common carp subjected to acrylamide at sublethal concentrations promote physiological stress. Exposure to acrylamide activates the HPI axis, thus increasing serum cortisol concentrations. Our finding agrees with several previous studies indicating that different waterborne chemical exposures increase serum cortisol levels in fish [31, 32]. Tryptophan exposed fish exhibited elevated serum cortisol above control levels at 10 and 15 days [33]. In tilapia Oreochromis niloticus, exposure to cadmium (CdCl₂) during 24 and 48 h induced a significant increase in plasma cortisol levels, whereas at 96 h, no differences were found [31]. Similar results were obtained by [32] in crucian carp exposed to extracted microcystins at sublethal and lethal doses. In that study, cortisol levels in both treatment groups significantly increased and remained high throughout the experiment.

Environmental xenobiotics that interfere endocrine system could affect the normal thyroid function in fish. In the current study, we evaluated the effects of acrylamide on the serum thyroid hormone levels in common carp.
Serum TT₄ levels did not change in the treatment groups. A significant decrease in the serum TT₃, FT₃, and FT₄ levels were observed following the acrylamide exposure, and the decrease in concentrations seemed to be dose-dependent during the experiment. Disruption of the HPT axis by acrylamide has also been reported in rats [34]. In that study, oral exposure to acrylamide at concentrations of 25, 100, and 500 μg/L showed no significant changes in serum TSH or T₃ levels. T₄ decreased at a high dose only. Our results demonstrated that exposure to acrylamide considerably affected the thyroid hormone levels in the HPT axis. These findings also indicate that acrylamide may directly impact the synthesis or secretion of the circulating thyroid hormones and the conversion of T₄ to T₃ in acrylamide exposed fish, showing its endocrine-disrupting activity on the HPT axis. In teleost fish, the biologically active form of thyroid hormone is T₃, which is from peripheral deiodination of T₄, principally due to D1 deiodinase enzymes [20]. In our study, significant decreases in TT₃ concentrations paralleled the unchanged serum T₄ concentrations in acrylamide exposed fish. The drop in T₄ levels was due to a reduction in hepatic T₄ monodeiodination. Stress could decline circulating T₄ concentrations by decreasing T₄ monodeiodination activity. Environmental chemicals have been reported in both lab and field to interact with the HPT axis in fish [32, 33]. Similar results to our study were obtained in tilapia, O. niloticus exposed to 25 mg/L CdCl₂ during 24, 48, and 98 h [31]. In that study, plasma T₃ levels decreased despite the unchanged T₄ levels [32]. demonstrated that crucian carp C. auratus exposed to extracted microcystin caused significant declines in T₃, FT₃, and FT₄ concentrations in a dose-dependent manner.

Free hormone levels are biomarkers of thyroidal status, and they are preferred clinically since total hormone levels may be mistakable under certain conditions [35]. In our study, the concentration levels decreased significantly in both treatment groups in a dose-dependent manner, when compared to the control group. Reduced concentrations indicate that the dose of thyroid hormones is inadequate for target tissues. Similar to present results decreased concentrations in a dose dependent-manner have been reported in crucian carp C. auratus exposed to extracted microcystins [32]. Considering our results, decreased thyroid hormone levels might have led to a disturbance of numerous physiological periods related to development, growth, metabolism, and reproduction.

The MN assay is a sensitive and rapid genotoxicity test system that assesses the effects of chemicals and provides an early warning of genotoxic threats [36]. Previous studies indicated that acrylamide is metabolized into reactive metabolite glycidamide in hepatocytes [36]. This reactive metabolite, when in contact with DNA, induces DNA damage [37]. Based on these experimental findings in vertebrates, acrylamide has been classified as a genotoxic, reproductive, and developmental toxicant [36]. Many studies have revealed that the peripheral fish erythrocytes have increased frequencies of MN after treatment with different waterborne pollutants such as pesticides, heavy metals, and the mixture of these contaminants [36]. Our study results showed that exposure to acrylamide increased MN frequency in common carp C. carpio peripheral erythrocytes. This finding indicates that acrylamide induces genotoxicity in fish. These results are consistent with the other studies that reported genotoxic effects of acrylamide in other fish species. The frequencies of micronuclei were significantly higher in the 96 h acrylamide (5, 10, 20 mg/L) exposed groups of fish C. auratus compared to controls [11]. In another study [4], golden fish Carassius auratus were exposed to several acrylamide concentrations for genotoxic damage. The results showed a dose-dependent increase in total DNA strand breakage and the formation of erythrocytic nuclear abnormalities.

The hematocrit, hemoglobin, and erythrocyte numbers of carp increased significantly after exposure to sublethal acrylamide. These results suggested that the toxic chemical acrylamide can significantly affect the hemopoietic system of the fish. Hematological parameters provide essential data about the physiological aspects of fish welfare assessments [38]. Similar hematological findings were also determined by authors of toxicological studies from different chemicals and stresses on carp [39, 40].

In conclusion, the results of the present study showed that widespread and regular use of acrylamide could threaten the survival and the health of the organisms, especially fish, in aquatic environments. Also, the results of the current study demonstrated that studied parameters supply essential biomonitoring tools for the evaluation of pollutant effects in aquatic ecosystems. Due to the wide usage of acrylamide, precautions should be taken for both human and ecosystem health. Further investigation on different toxicological endpoints of acrylamide using new molecular techniques is required for the adverse effects of acrylamide.

Research funding: None declared.

Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
Competing interests: Authors state no conflict of interest.
Informed consent: Non applicable.
Ethical approval: Non applicable.

References

1. Parzefall W. Minireview on the toxicity of dietary acrylamide. Food Chem Toxicol 2008;46:1360–4.
2. Tepe Y, Çebi A. Acrylamide in environmental water: a review on sources, exposure, and public health risks. Expo Health 2019;11:3–12.
3. Stadler RH, Blank I, Varga N, Robert F, Hav J, Guy PA, et al. Acrylamide from Maillard reaction products. Nature 2002;419:449–50.
4. Larguinho M, Costa PM, Sousa G, Costa MH, Diniz MS, Baptista PV, et al. Histopathological findings on Carassius auratus auratus hepatopancreas upon exposure to acrylamide: correlation with genotoxicity and metabolic alterations. J Appl Toxicol 2013;34:1293–302.
5. Xu Y, Cui B, Ran R, Liu Y, Chen H, Kai G, et al. Risk assessment, formation, and mitigation of dietary acrylamide: current status and future prospects. Food Chem Toxicol 2014;69:1–12.
6. Spencer H, Wahome J, Haasch M. Toxicity evaluation of acrylamide on the early life stages of the zebrafish embryos (Danio rerio). J Environ Protect 2018;9:1082–91.
7. U.S. EPA. Health and environmental effects profile for acrylamide (Final Report. Washington, D.C: U.S. Environmental Protection AgencyNTIS PB88170824); 1985, 19851985.EPA/600/X-85/270.
8. AQUIRE, EPA. ERL-Duluth’s aquatic ecotoxicology data systems. Duluth, MN: U.S. EPA; 1994.
9. Krautter GR, Mast RW, Alexander HC, Wolf CH, Friedman MA, Koschier FJ, et al. Acute aquatic toxicity tests with acrylamide monomer and macroinvertebrates and fish. Environ Toxicol Chem 1986;5:373–7.
10. Kilçle PA, Köc E, Dogan A, Gül S, Dogan ANC, Ersan Y. Investigation of the effect of acrylamide on Capoeta capoeta (Guldensheidt 1773) by histopathological, electrophoretic and biochemical methods. Caucasian J Sci 2020;7:153.
11. Tan D, Li L, Wang S, Wei B, Zhang X, Sun B, et al. The cytogenetic effects of acrylamide on Carassius auratus periperal blood cells. Food Chem Toxicol 2013;62:318–22.
12. Faria M, Ziv T, Gómez–Canela C, Ben-Lulu S, Prats E, Novoa-Luna KA, et al. Acrylamide acute neurotoxicity in adult zebrafish. Sci Rep 2018;8:7918.
13. Ibrahim MA, Ibrahim MD. Acrylamide-induced hematotoxicity, oxidative stress, and DNA damage in liver, kidney, and brain of catfish (Clarias gariepinus). Environ Toxicol 2020;35:300–8.
14. Gopika CM, Sumi N, Chitra KC. Involvement of reactive oxygen species in the toxicity of acrylamide in muscle tissue of the fish, Oreochromis niloticus (Linnaeus, 1758). World J Pharm Res 2018;7:1617–28.
15. Shi X, Liu C, Wu G, Zhou B. Waterborne exposure to PFOS causes disruption of the hypothalamus–pituitary–throid axis in zebrafish larvae. Chemosphere 2009;77:1010–8.
16. Blanco AC, Larsen PR. Cellular and structural biology of the deiodinases. Thyroid 2005;15:777–86.
17. Brucker-Davis F. Effects of environmental synthetic chemicals on thyroid function. Thyroid 1998;8:827–56.
18. Guo Y, Zhou B. Thyroid endocrine system disruption by pentachlorophenol: an in vitro and in vivo assay. Aquat Toxicol 2013;142:138:45.
19. Wu T, Xu C, Lu B, Lin C, Wu Y, Liu W, et al. Acute exposure to synthetic pyrethroids causes bioconcentration and disruption of the hypothalamus–pituitary–throid axis in zebrafish embryos. Sci Total Environ 2016;542:876–85.
20. Carr JA, Patino R. The hypothalamus-pituitary-thyroid axis in teleosts and amphibians: endocrine disruption and its consequences to natural populations. Gen Comp Endocrinol 2011;170:299–312.
21. Bolasina SN, Tagawa M, Yamashita Y. Changes on cortisol level and digestive enzyme activity in juveniles of Japanese flounder, Paralichthys olivaceus, exposed to different salinity regimes. Aquaculture 2007;266:255–61.
22. Kühn ER, Geris KL, Van der Geyten S, Mol KA, Darras VM. Inhibition and activation of the thyroidal axis by the adrenal axis in vertebrates. Comp Biochem Physiol 1998;120A:169–74.
23. OECD. OECD test no Mammalian erythrocyte micronucleus test, OECD guideline for the testing of chemicals, section, section 4, Paris: OECD Publishing; 2016.
24. García-García CR, Parrón T, Requena M, Alarcón R, Tsatsakis AM, Hernández AF. Occupational pesticide exposure and adverse health effects at the clinical, hematological and biochemical level. Life Sci 2016;145:274–83.
25. APHA. Standard methods for the examination of water and waste water. American Public Health Association; 1998:874.p.
26. Kirsch-Volders M, Sofuni T, Aardema M, Albertini S, Eastmond D, Fenech M, et al. Report from the in vitro micronucleus assay working group. Environ Mol Mutagen 2000;35:167–72.
27. Beni ACK, Erkmen B, Erkoc F. Genotoxicity of sub-lethal di-n-butyl phthalate (DBP) in Nile tilapia (Oreochromis niloticus). Arch Hig Rada Toksikol 2016;67:25–30.
28. Hontela A. Adrenal toxicology: environmental pollutants and the HPI axis. In: Mommsen TP, Moon TW., editors, Biochemistry and molecular biology fishes 2005;6:331–63.
29. Zhou T, John-Alder HB, Weis JS, Weis P. Endocrine disruption: thyroid dysfunction in mummichogs (Fundulus heteroclitus) from a polluted site. Mar Environ Res 2000;50:393–7.
30. Hontela A, Daniel C, Rasmussen JB. Structural and functional impairment of the hypothalamo–pituitary–interrenal axis in fish exposed to bleached Kraft mill effluent in the St Maurice River, Quebec. Ecotoxicology 1997;6:1–12.
31. García-Santos S, Fontainhas-Fernandes A, Monteiro SM, Wilson JM. Effects of exposure to cadmium on some endocrine parameters in Tilapia, Oreochromis niloticus. Bull Environ Contam Toxicol 2013;90:55–9.
32. Li D, Xie P, Zhang X. Changes in plasma thyroid hormones and cortisol levels in crucian carp (Carassius auratus) exposed to the extracted microcystins. Chemosphere 2008;74:13–8.
exogenous tryptophan and acute stress. Aquaculture 2016; 462:17–23.

34. Bowyer JF, Latendresse JR, Delongchamp RR, Muskheilihvili L, Warbritton AR, Thomas M, et al. The effects of subchronic acrylamide exposure on gene expression, neurochemistry, hormones, and histopathology in the hypothalamus–pituitary–thyroid axis of male Fischer 344 rats. Toxicol Appl Pharmacol 2008;230:208–15.

35. Eales JG, Shostak S. Free T_4 and T_3, in relation to total hormone, free hormone indices, and protein in plasma of rainbow trout and arctic char. Gen Comp Endocrinol 1985;58: 291–302.

36. Tlili S, Jebali J, Banni M, Haouas Z, Mlayah A, Helal AN, et al. Multimarker approach analysis in common carp Cyprinus carpio sampled from three freshwater sites. Environ Monit Assess 2010; 168:285–98.

37. Lineback DR, Coughlin JR, Stadler RH. Acrylamide in foods a review of the science and future considerations. Annu Rev Food Sci Technol 2012;3:15–35.

38. Watzek N, Böhm N, Feld J, Scherbl D, Berger F, Merz KH, et al. N7-glycidamide-guanine DNA adduct formation by orally ingested acrylamide in rats a dose–response study encompassing human diet-related exposure levels. Chem Res Toxicol 2012;25:381–90.

39. Henrike S, Björn B, Alexander R. Blood will tell: what hematological analyses can reveal about fish welfare. Front Vet Sci 2021;8:194.

40. Sepici-Dincel A, Benli ACK, Selvi M, Sarikaya R, Sahin D, Ayhan Ozkul I, et al. Sublethal cyfluthrin toxicity to carp (Cyprinus carpio L.) fingerlings: biochemical, hematological, histopathological alterations. Ecotoxicol Environ Saf 2009;72: 1433–1.