Research Article
Computing SS Index of Certain Dendrimers

Weidong Zhao, M.C. Shanmukha, A. Usha, Mohammad Reza Farahani, and K.C. Shilpa

1 School of Computer Science, Chengdu University, Chengdu, China
2 Department of Mathematics, Jain Institute of Technology, Davanagere-577003, Karnataka, India
3 Department of Mathematics, Alliance School of Applied Mathematics, Alliance University, Bangalore-562106, Karnataka, India
4 Department of Mathematics, Iran University of Science and Technology, Narmak, Tehran 16844, Iran
5 Department of Computer Science & Engg, Bapuji Institute of Engineering and Technology, Davanagere-577004, Karnataka, India

Correspondence should be addressed to M.C. Shanmukha; mcshanmukha@gmail.com

Received 25 June 2021; Accepted 28 August 2021; Published 25 September 2021

1. Introduction and Terminologies

Every year, large number of new drugs are produced due to the rapid growth of medicine manufacturing. As a result, determining the pharmacological, chemical, and biological characteristics of a substance necessitates a significant amount of effort.

These new medications are becoming increasingly clumsy and clumped. In order to check the performance of new drugs and their side effects, sufficient reagents, equipment, and technicians are needed. However, in low-income countries, there is an insufficient funding to cover the costs of reagents and equipment needed to calculate biochemical properties. The existing studies have shown that the chemical and pharmacodynamic properties of drugs, as well as their molecular structures, are inextricably related. If we quantify measures of these drug molecular structures with the aim of identifying topological indices, medical and pharmaceutical researchers will be able to understand their therapeutic properties, which can compensate for the shortcomings of medicine and chemical experiments. In this regard, the methods computing topological index are suitable and useful for developing countries, as they can produce accessible biological and medical knowledge about new drugs without the use of chemical experiment hardware. To calculate the characteristics of drug molecules, the PI index, Zagreb index, and eccentric index are used. The number of vertices and edges of a chemical compound counts to the computation of topological indices [1–8].

A topological index is a computational parameter derived from the graph structure mathematically [9–13]. To visualize the relationships between the data sets, graphs are crucial tools which make the concept better understandable. A descriptor that gives the data regarding arrangement of
atoms in a compound in numerical form of information regarding its shape, branching, and other data of a compound is a topological index.

The significant number of early drug studies suggests that the biomedical and pharmacology properties of drugs, as well as their molecular structures, have a clear inner relationship. Many scientists have developed various indices to quantify the characteristics of drug molecules over the last 40 years. The indices are of great use in the study of pharmacology, toxicology, and chemistry (QSAR/QSPR/QSTR) [14–16].

Dendrimers are also called “cascade molecules,” but this term is not in general use compared to the term dendrimers. In 1978, Fritz Vogtle was the first to bring these nanomolecules into light. Dendrites normally include a unique chemically addressable unit known as focus or core. The usage and popularity of dendrimers have been greatly increased. Since 2005, there have been over 5000 research papers and patents. A second group of the synthesized macromolecules is called arborols. We can say that the molecules of dendrimers are of architectural design. These thoroughly tailored architectural nanomolecules can be functionalized and modify their physico-chemical or biological characteristics.

The hyper-branched macromolecules have three phases in its structural constitution. An atom at the centre of the structure called the core of the dendrimer has some functional properties. Secondly, the branches are ejected out of the core and add on the branches repetitively. Finally, the terminal groups are situated on the surface of the dendritic structure. Dendrimer synthesis is divided into two methods: divergent synthesis and convergent synthesis. It is difficult to synthesize dendrimers using either approach, because the actual reactions require several steps to protect the active site. As a result, it is difficult to manufacture and prohibitively costly to buy. Dendrites have significant applications in biomedical field because of its characteristics, including hyper-branching, well-defined globular structures, outstanding structural uniformity, multivalency, varying chemical constitution, and higher biological compatibility.

In medical field, mathematical modelling is used to analyse the representation of emerging drugs, normally as an undirected graph, such that each vertex depicts an atom and an edge depicts a link between atoms. Every year new drugs are available and needs remarkable work to select the qualities of the emerging drugs. Dendrimers are a good option in the drug design because of its biological characteristics such as polyvalency, self-assembling, electrostatic interactions, chemical stability, low cytotoxicity, and solubility. The remarkable and emerging role of dendritic macromolecules is in therapies of anticancer and image diagnosis.

Various studies have revealed that there is a consistent correlation between the molecular structures of compounds, drugs, and their characteristics. Topological indices are numerical variants that assist researchers in understanding physical properties, chemical interactions, and biological activity [17–21]. Hence, the discussion on topological indices of chemical structures of drugs helps to know the theoretical basis to prepare new drugs. In this study, SS index is defined and computed for porphyrin (D₉₆P₉₆), propyl ether imine (DPZ₁₉), zinc porphyrin (PETIM), and polyethylene amide amine (PETAA) dendrimers [22,23].

In this paper, the notations and terminologies pertaining to the graphs are found in [24].

Definition 1. The oldest and the most studied indices, the first and second Zagreb indices [25], proposed by Gutman and Trinajstić are defined as

\[
M_1(G) = \sum_{v \in E(G)} (d_v + d_w),
\]

\[
M_2(G) = \sum_{v \in E(G)} (d_v - d_w) \tag{1}
\]

Definition 2. Vukičević et al. introduced inverse sum indeg index [26] and stated as

\[
ISI(G) = \sum_{v \in E(G)} \frac{d_v + d_w}{d_v + d_w} \tag{2}
\]

Definition 3. In this work, a novel invariant known as SS (Shilpa-Shanmukha) index is introduced and studied. This index is defined as follows:

\[
SS(G) = \sum_{v \in E(G)} \sqrt[4]{\frac{d_v \cdot d_w}{d_v + d_w}} \tag{3}
\]

Throughout this article, \(d_v\) and \(d_w\) represent the degrees of vertices \(v\) and \(w\), respectively.

2. Chemical Applicability of the SS Index through QSPR Analysis

Here, we discussed the proposed topological index known as SS index to study the physico-chemical properties, namely, \(bp, mv, mr, hv\), and \(cp\) of 67 alkanes ranging from \(n\)-butanes to nonanes. The 5 physico-chemical properties of 67 alkane isomers can be found in [27] and Table 1 represents the computed values of four topological indices (SS, ISI, \(M_1\), and \(M_2\)) of 67 alkane isomers. The 5 characteristics of alkane isomers are correlated with SS index and it is found that SS index has shown good correlation with all the 5 properties compared to the existing three most popular indices \(M_1, M_2\), and ISI considered in the study. The SS index is plotted against each of the 5 properties of alkane isomers which is depicted in Figure 1.

Regression model for properties of alkane isomers. The linear regression model is given by

\[
P = m(TI) + c, \tag{4}
\]

where \(P\) is the physical property and \(TI\) is the topological index. Equation (4) results in the following linear regression models for various properties with SS index.
Table 1: The values of various topological indices of alkanes.

Sl. No.	Alkane	SS (G)	ISI (G)	M_1 (G)	M_2 (G)
1	Butane	2.8165	2.6667	10	8
2	2-Methyl propane	2.598	2.25	12	4
3	Pentane	2.9428	3.3333	14	12
4	2-Methyl butane	3.644	3.3667	16	14
5	2,2-Dimethyl propane	3.5777	3.2	20	16
6	Hexane	4.633	4.3333	18	16
7	2-Methyl pentane	4.644	4.3667	20	18
8	3-Methyl pentane	4.69	4.4833	20	19
9	2,2-Methyl butane	4.6545	4.4	24	22
10	2,3-Dimethyl butane	4.6888	4.5	22	21
11	Heptane	5.633	5.3333	22	20
12	2-Methyl hexane	5.644	5.3667	24	22
13	3-Methyl hexane	5.6899	5.4833	24	23
14	3-Ethyl pentane	5.7358	5.6	24	24
15	2,2-Dimethyl pentane	5.6544	5.4	28	26
16	2,3-Dimethyl pentane	5.7347	5.616	26	26
17	2,4-Dimethyl pentane	5.655	5.4	26	24
18	3,3-Dimethyl pentane	5.7312	5.6	28	28
19	Octane	6.633	6.3333	26	24
20	2-Methyl heptane	6.644	6.3667	28	26
21	3-Methyl heptane	6.69	6.4833	28	27
22	4-Methyl heptane	6.68	6.49	28	27
23	3-Ethyl hexane	6.736	6.6	28	28
24	2,2-Dimethyl hexane	6.6545	6.4	32	30
25	2,3-Dimethyl hexane	6.7348	6.6166	30	30
26	2,4-Dimethyl hexane	6.7009	6.5166	30	29
27	2,5-Dimethyl hexane	6.655	6.4	32	30
28	3,3-Dimethyl hexane	6.7312	6.6	32	32
29	3,4-Dimethyl hexane	6.7807	6.7333	30	31
30	3-Ethyl-2-methyl pentane	6.7807	6.7333	30	30
31	3-Ethyl-3-methyl pentane	6.808	6.8	32	34
32	2,2,3-Trimethyl pentane	6.7706	6.731	34	35
33	2,2,4-Trimethyl pentane	6.6655	6.4333	34	32
34	2,3,3-Trimethyl pentane	6.8014	6.8143	34	36
35	2,3,4-Trimethyl pentane	6.7796	6.75	32	33
36	Nonane	7.6333	7.3333	30	28
37	2-Methyl octane	7.644	7.3667	32	30
38	3-Methyl octane	7.69	7.4833	32	31
39	4-Methyl octane	7.69	7.4833	32	31
40	3-Ethyl heptane	7.7358	7.6	32	32
41	4-Ethyl heptane	7.7358	7.6	32	32
42	2,2-Dimethyl heptane	7.6545	7.4	36	34
43	2,3-Dimethyl heptane	7.7348	7.6166	34	34
44	2,4-Dimethyl heptane	7.7009	7.5166	34	33
45	2,5-Dimethyl heptane	7.7963	7.7166	34	33
46	2,6-Dimethyl heptane	7.655	7.4	34	32
47	3,3-Dimethyl heptane	7.7312	7.6	36	36
48	3,4-Dimethyl heptane	7.7807	7.7333	34	35
49	3,5-Dimethyl heptane	7.7468	7.6333	34	34
50	4,4-Dimethyl heptane	7.7312	7.6	36	36
51	3-Ethyl-2-methyl hexane	7.7807	7.7333	34	35
52	4-Ethyl-2-methyl hexane	7.9246	8.0333	34	34
53	3-Ethyl-3-methyl hexane	7.808	7.8	36	36
54	2,2,4-Trimethyl hexane	7.7114	7.55	38	37
55	2,2,5-Trimethyl hexane	7.6655	7.4333	38	36
56	2,3,3-Trimethyl hexane	7.8014	7.8143	38	40
57	2,3,4-Trimethyl hexane	7.8255	7.8667	36	44
58	2,3,5-Trimethyl hexane	7.7458	7.65	36	44
59	3,3,4-Trimethyl hexane	7.8845	8	38	41
60	3,3-Diethyl pentane	7.866	7.931	44	40
Table 1: Continued.

Sl. No.	Alkane	SS (G)	ISI (G)	M_1 (G)	M_2 (G)
61	2,2-Dimethyl-3-ethyl pentane	7.878	8.0143	54	40
62	2,3-Dimethyl-3-ethyl pentane	7.8255	7.8666	46	42
63	2,4-Dimethyl-3-ethyl pentane	7.8575	8	44	38
64	2,2,3,3-Tetramethyl pentane	7.8575	8	42	46
65	2,2,3,4-Tetramethyl pentane	7.8154	7.643	40	42
66	2,2,4,4-Tetramethyl pentane	7.676	7.4667	42	40
67	2,3,3,4-Tetramethyl pentane	7.8715	8.0281	40	44

![Graphs](a) (b) (c) (d)
\[bp = -64.28 + 25.99 \text{ (SS)}, \]
\[mv = 66.57 + 14.07 \text{ (SS)}, \]
\[mr = 10.46 + 4.26 \text{ (SS)}, \]
\[hv = 10.4 + 4.173 \text{ (SS)}, \]
\[cp = 39.87 - 1.98 \text{ (SS)}. \]

The SS index has correlation coefficients of 0.931, 0.98, 0.99, 0.951, and -0.889 with residual standard errors 14.46, 3.76, 0.57, 1.69, and 1.45 and all these models are statistically significant, since the level of significance value of all models is less than 0.05.

Some important observations from the data are presented in Table 2. The correlation coefficients of \(bp, mv, mr, \) and \(hv \) have shown high positive correlation for the introduced SS index. Also, it is interesting to know that the correlation coefficient for \(cp \) shows highly negative correlation for the SS index.

3. Dendrimers

Dendrimers, come from the Greek word which means “trees,” are branched at the core and they form a spherical three-dimensional structure. Dendrimers have attracted a lot of researchers globally in the study of topological indices [28–33]. The aim of this paper is to compute SS index of four dendrimer structures, namely, \(D_nP_n, \) DPZ, PETIM, and PETAA.

3.1. SS Index of Porphyrin Dendrimer (\(D_nP_n \))

Consider the porphyrin dendrimer family. This family of dendrimers is denoted by \(D_nP_n \). The molecular graph of \(D_nP_n \) is shown in Figure 2.

Let \(G \) be the molecular graph of \(D_nP_n \). By calculation, it is found that \(G \) consists of number of vertices and edges to be \(96n - 10 \) and \(105n - 11 \), respectively. Table 3 shows the six forms of edges in \(D_nP_n(G) \) based on degrees of end vertices of each edge.

Theorem 1

Let \(D_nP_n \) be the family of porphyrin dendrimers. Then, the SS index of \(D_nP_n \) is given by

\[
SS(D_nP_n) = \left[2\left(\frac{3}{4} \right)^{1/2} + 24\left(\frac{4}{5} \right)^{1/2} + 10 + 48\left(\frac{6}{5} \right)^{1/2} + 13\left(\frac{9}{6} \right)^{1/2} + 8\left(\frac{12}{7} \right)^{1/2} \right] n - \left[5 + 6\left(\frac{6}{5} \right)^{1/2} \right].
\]

Proof. From the definition of SS index and Table 3, we deduce

![Figure 1: Correlation of SS index with properties of alkane isomers.](image)

Table 2: The correlation coefficient between SS, ISI, \(M_1 \), and \(M_2 \) indices with some physico-chemical properties of alkane isomers.

Properties	\(bp \)	\(mv \)	\(mr \)	\(hv \)	\(cp \)
SS (G)	0.931	0.98	0.99	0.951	-0.889
ISI (G)	0.931	0.96	0.984	0.942	-0.855
\(M_1 \) (G)	0.779	0.799	0.837	0.715	-0.684
\(M_2 \) (G)	0.816	0.8065	0.854	0.737	-0.688
3.2. SS Index of Zinc Porphyrin Dendrimer \((DPZ_n) \). Consider the zinc porphyrin dendrimer family. This family of dendrimers is represented by \(DPZ_n \). The molecular graph of \(DPZ_n \) is depicted in Figure 3.

Let \(G \) be the molecular graph of \(DPZ_n \). By calculation, it is found that \(G \) has \(56 \times 2^n - 7 \) vertices and \(64 \times 2^n - 4 \) edges. Table 4 shows the four forms of edges in \(DPZ_n \) based on degrees of end vertices of each edge.
Theorem 2. Let DPZ_n be the family of zinc porphyrin dendrimers. Then, the SS index of DPZ_n is given by

$$SS(\text{DPZ}_n) = \left[16 + 40 \left(\frac{6}{7} \right)^{1/2} + 8 \left(\frac{9}{6} \right)^{1/2} \right] 2^n - \left[4 + 16 \left(\frac{16}{5} \right)^{1/2} + 16 \left(\frac{9}{6} \right)^{1/2} - 4 \left(\frac{12}{7} \right)^{1/2} \right].$$

(8)

Proof. From the definition of SS index and Table 4, we deduce

| Edge partition of DPZ_n. |
|-----------------|-----------------|-----------------|-----------------|
| (d_x, d_ω), where $\omega \in E(G)$ | (2, 2) | (2, 3) | (3, 3) | (3, 4) |
| Number of edges | $16 \times 2^n - 4$ | $40 \times 2^n - 16$ | $8 \times 2^n - 16$ | 4 |

Figure 3: The molecular graph of zinc porphyrin dendrimer.
3.3. SS Index of Propyl Ether Imine Dendrimer (PETIM). Consider the family of propyl ether imine dendrimers. This family of dendrimers is represented by PETIM. The molecular graph of PETIM is depicted in Figure 4.

Let G be the molecular graph of PETIM. By calculation, G has $24 \times 2^n - 23$ vertices and $24 \times 2^n - 24$ edges. Table 5 shows the three forms of edges in PETIM based on degrees of end vertices of each edge.

\[
SS(\text{PETIM}) = \sum_{(v,w) \in E(G)} \sqrt{d_v d_w} = (2 \times 2^n - 2^{1/2} (1 \times 2 + 2) + (16 \times 2^n - 18) (2 \times 2 + 2) + (6 \times 2^n - 6) (2 \times 3)^{1/2},
\]

\[
SS(\text{PETIM}) = 2 (\frac{2}{3})^{1/2} + 16 + 6 (\frac{6}{3})^{1/2} \ 2^n - \left[18 + 6 (\frac{6}{3})^{1/2} \right].
\]

3.4. SS Index of Polyethylene Amide Amine (PETA) Dendrimer. Consider the family of polyethylene amide amine dendrimers. This family of dendrimers is represented by PETA. The molecular graph of PETA is depicted in Figure 5.

Let G be the molecular graph of PETA. By calculation, G has $44 \times 2^n - 18$ vertices and $44 \times 2^n - 19$ edges. Table 6 shows the four forms of edges in PETA based on degrees of end vertices of each edge.

\[
SS(\text{PETA}) = 4 (\frac{2}{3})^{1/2} + 4 (\frac{2}{4})^{1/2} + 20 (\frac{6}{5})^{1/2} \ 2^n - \left[2 (\frac{3}{4})^{1/2} + 8 + 9 (\frac{6}{5})^{1/2} \right].
\]
4. Results and Discussion

In this work, novel topological index known as SS index is introduced and the proposed index is computed for 67 alkane isomers to study the physico-chemical properties, namely, \textit{bp}, \textit{mv}, \textit{mr}, \textit{hv}, and \textit{cp}. A linear regression model of these physical properties with SS index is presented. From Table 2 and Figure 1, the SS index has highest correlation with molar refraction (\textit{mr}) which is 0.99. Also, SS index is with boiling point (\textit{bp}) 0.931, with molar volume (\textit{mv}) 0.98, with heat of vaporization (\textit{hv}) 0.951, and with critical pressure (\textit{cp}) −0.889. From Table 2 by inspection, it is clear that SS index has good correlation with the physico-chemical properties compared to the existing indices, namely, inverse sum indeg index, first Zagreb index, and second Zagreb index. Also, the work focuses on computing the SS index for four dendrimer structures, namely, DnP_n, DPZ_n, PETIM, and PETA.A. The values of n are substituted for $n=1$ to 10. By inspection from Table 7, it is very clear that SS index increases as n increases. Also, it is observed that correlation coefficient of DnP_n is $r=1$, which is more than the correlation coefficients of DPZ_n, PETIM, and PETA.A which are 0.798837, 0.798841, and 0.798835, respectively. For each of the four structures, a graph as shown in Figure 6 is plotted against the values found in Table 7.

Table 5: Edge partition of PETIM.

(d$_v$,d$_w$), where $vw \in E(G)$	(1,2)	(2,2)	(2,3)
Number of edges	2×2^n	$16 \times 2^n - 18$	$6 \times 2^n - 6$

Figure 4: The molecular graph of propyl ether imine dendrimer.
As the SS index is found to have very good correlation coefficient \(r = 0.99 \approx 1 \) with the above-discussed physicochemical properties, the novel index is of great use in the QSPR/QSAR/QSTR analysis by the chemists.

5. Mathematical Properties of SS Index

In this section, the SS indexes of cycle, star, path, and simple graphs are computed [34–38].

Theorem 5. For a cycle \(C_n \) where \(n \) is the cardinality of vertices, then the SS index of \(C_n \) is given by \(\text{SS}(C_n) = n \).

Proof. A cycle \(C_n \) has \(n \) vertices and \(n \) edges. The \(n \) edges of the cycle will be of type \((2, 2)\). By considering all the \(n \) edges and using the definition of SS index, we get \(\text{SS}(C_n) = n \).

| \((d_u, d_v)\), where \\
\(uv \in E(G) \)	\((1, 2)\)	\((1, 3)\)	\((2, 2)\)	\((2, 3)\)
Number of edges	\(4 \times 2^n\)	\(4 \times 2^n - 2\)	\(16 \times 2^n - 8\)	\(20 \times 2^n - 9\)

Theorem 6. For a star \(S_n \) where \(n \) is the cardinality of vertices, then the SS index of \(S_n \) is given by

\[
\text{SS}(S_n) = \frac{(n-1)^{3/2}}{\sqrt{n}}.
\]

Proof. A star \(S_n \) has \(n \) vertices and \((n-1)\) edges. The \((n-1)\) edges of the star graph will be of type \((1, n-1)\). By considering all the \((n-1)\) edges and using the definition of SS index, we get

\[
\text{SS}(S_n) = \frac{(n-1)^{3/2}}{\sqrt{n}}.
\]
Theorem 7. For a path P_n, where n is the cardinality of vertices, then the SS index of P_n is given by $SS(P_n) = (n - 3) + \left(\frac{2}{\sqrt{n}}\right)$.

Proof. A path P_n has n vertices and $(n - 1)$ edges. The $(n - 1)$ edges of the path graph will be 2 edges of type (1, 2) and $(n - 3)$ edges of type (2, 2), respectively. By considering all the $(n - 1)$ edges and using the definition of SS index, we get $SS(P_n) = (n - 3) + \left(\frac{2}{\sqrt{n}}\right)$.

The SS indexes of cycle, star, and path graphs are related as follows:

$$SS(S) = \frac{(n - 1)^{3/2}}{\sqrt{SS(C_n)}}$$

$$SS(P_n) = SS(C_n) + \frac{2\sqrt{2}}{\sqrt{3}} - 3.$$ (16)

Table 7: Numerical comparison of $SS(DnP_n)$, $SS(DPZ_n)$, $SS(PETIM)$, and $SS(PETTA)$ for $n = 1$ to 10.

n	1	2	3	4	5	6	7	8	9	10
DnP_n	100.60	212.78	324.95	437.13	549.31	661.48	773.66	885.84	998.01	1110.2
DPZ_n	92.252	231.48	509.95	1066.9	2180.7	4408.4	8863.9	17775	35596	71240
PETIM	23.84	72.251	169.07	362.72	750.02	1524.6	3073.8	6172.2	12369	24762
PETTA	37.69	94.97	209.53	438.65	896.89	1813.4	3646.3	7312.2	14644	29308

Figure 6: Graphical comparison of $SS(DnP_n)$, $SS(DPZ_n)$, $SS(PETIM)$, and $SS(PETTA)$ for $n = 1$ to 10.

Theorem 8. Consider a simple graph G with m edges and cardinality n. Let p, Δ, and δ_1 be the pendent vertices and maximum and minimum vertex degrees of G, respectively. Then,

$$SS(G) \geq \frac{\rho \sqrt{\delta_1}}{\sqrt{1 + \delta_1}} + \frac{2\sqrt{n\delta_1\Delta}}{\Delta + \delta_1} \sqrt{ISI(G) - \frac{p\delta_1}{1 + \delta_1}}.$$ (17)

Proof. For $2 \leq \delta_1 \leq d_v, d_w \leq \Delta$,

$$\frac{d_v}{d_w} \geq \frac{\Delta}{2} \delta_1$$ (18)

such that the equality holds iff $d_v = d_w = \Delta$. Also,

$$\frac{d_v d_w}{d_v + d_w} \geq \frac{\delta_1}{2}$$ (19)

with equality holding if $d_v = d_w = \delta_1$. Using Polya–Szegö inequality,
we have
\[
SS(G) = \sum_{v \in \mathcal{E}(G)} \frac{d_v}{1 + d_v} + \left(\sum_{v \in \mathcal{E}(G); d_v, d_w \neq 1} \frac{d_v d_w}{d_v + d_w} \right).
\]
(21)

For \(\Delta \geq d_p \), from (20) and (21), we get
\[
SS(G) \geq \frac{p \sqrt{\delta_1}}{\sqrt{1 + \delta_1}} + \frac{2 \sqrt{\delta_1 \Delta}}{\Delta + \delta_1} \sqrt{ISI} - \frac{p \delta_1}{1 + \delta_1}.
\]
(22)

Theorem 9. For a tree \(T \) with cardinality \(n \) and pendent vertices \(p \), then the SS index is
\[
SS(T) \geq \frac{p \sqrt{\delta_1}}{\sqrt{1 + \delta_1}} + \frac{2 \sqrt{(m - 1) \delta_1 \Delta}}{\Delta + \delta_1} \sqrt{ISI} - \frac{p \delta_1}{1 + \delta_1}.
\]
(23)

\[
\left(\sum_{v \in \mathcal{E}(G); d_v, d_w \neq 1} \frac{d_v d_w}{d_v + d_w} \right)^2 \leq (m - p) \left(\sum_{v \in \mathcal{E}(G); d_v, d_w \neq 1} \frac{d_v d_w}{d_v + d_w} \right),
\]
\[
\leq (m - p) \left[ISI - \sum_{v \in \mathcal{E}(G); d_v = 1} \frac{d_v}{1 + d_v} \right]
\]
\[
\leq (m - p) \left[ISI - \frac{p \Delta}{1 + \Delta} \right]
\]
\[
\left(\sum_{v \in \mathcal{E}(G); d_v, d_w \neq 1} \frac{d_v d_w}{d_v + d_w} \right) \leq (m - p) \left[ISI - \frac{p \Delta}{1 + \Delta} \right].
\]
(25)

Theorem 10. Consider simple graph \(G \) of order \(n \) with \(m \) edges and cardinality \(n \). Here, \(p, \Delta, \delta_1 \) represent pendent vertices and maximum vertex degree and minimum non-ependent vertex degree, respectively, and then
\[
SS(G) \leq \frac{p \sqrt{\Delta}}{\sqrt{1 + \Delta}} + \sqrt{(m - p) \left[ISI - \frac{p \Delta}{1 + \Delta} \right]}.
\]
(24)

Proof. By Cauchy–Schwarz inequality.

Theorem 11. The cardinality \(n \) of a tree \(T \) and pendent vertices \(p \) and then the SS index is
\[
SS(T) \leq \frac{p \sqrt{\Delta}}{\sqrt{1 + \Delta}} + \sqrt{(n - 1 - p) \left[ISI - \frac{p \Delta}{1 + \Delta} \right]}.
\]
(26)

6. Conclusion

In this article, a novel index known as SS index is introduced and computed for four dendrimers such as \(D_n^mP_{2n} \), \(DPZ_n \), \(PETIM \), and \(PETAA \). To validate the performance of this novel index, the chemical applicability of 67 alkane isomers is studied. It is observed that the proposed index has a very good correlation with alkane isomers considered in the study. The results obtained for the dendrimers have proved that they play a major role in drugs including anti-inflammatory, antimicrobial, and anticancer in administering the drug. Dendrimers play a vital role in the discovery of drugs against the diseases such as Alzheimer’s, HIV, and cancer. The article is concluded by mathematical properties of SS indexes for cycle, star, path, and simple graphs.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

All the authors contributed equally to this study. M. C. Shannmukha gave the idea and wrote the manuscript. A. Usha and K. C. Shilpa edited and verified the results. Weidong Zhao checked and corrected the initial manuscript and verified the results. M. Reza Farahani added some final
remarks and improved the overall paper. All authors read and approved the final draft.

Acknowledgments

This work was supported by the National Key Research and Development Program under Grant 2018YFB0904205. This research received no external funding.

References

[1] W. Gao, W. F. Wang, and L. Shi, “Forgotten topological of some drug structures,” *Acta Medica Mediterranea*, vol. 32, pp. 579–585, 2016.

[2] M. C. Shanmukha, A. Usha, N. S. Basavarajappa, and K. C. Shilpa, “M-polynomials and topological indices of styrene-butadiene rubber (SBR),” *Polymeric Aromatic Compounds*, vol. 6, pp. 1–16, 2020.

[3] N. Trinajstić, *Chemical Graph Theory*, CRC Press, Boca Raton, FL, USA, 1992.

[4] R. Todeschini and V. Consonni, * Molecular Descriptors for Chemoinformatics*, Wiley VCH, Weinheim, Germany, 2009.

[5] W. Gao, M. K. Siddiqui, M. Imran, M. K. Jamil, and M. R. Farahani, “Forgotten topological index of chemical structure in drugs,” *Saudi Pharmaceutical Journal*, vol. 24, no. 3, pp. 258–64, 2016.

[6] W. Gao, W. Wang, and M. R. Farahani, “Topological indices study of molecular structure in anticancer drugs,” *Journal of Chemistry*, vol. 2016, Article ID 3216327, 8 pages, 2016.

[7] L. Yan, W. Gao, and J. Li, “General harmonic index and general sum connectivity index of polyomino chains and nanotubes,” *Journal of Computational and Theoretical Nanoscience*, vol. 12, no. 10, pp. 3940–3944, 2015.

[8] E. Estrada, L. Torres, L. Roriguez, and I. Gutman, “An atom-bond connectivity index. Modelling the enthalpy of formation of alkanes,” *Indian Journal of Chemistry*, vol. 37, pp. 849–855, 1998.

[9] V. Lokesha, A. Usha, P. S. Ranjini, and T. Deepika, “Hormonic index, redefined Zagreb indices of dragon graph with complete graph,” *Asian Journal of Mathematics and Computer Research*, vol. 9, no. 2, pp. 161–166, 2016.

[10] P. S. Ranjini, V. Lokesha, and A. Usha, “Relation between phenylene and hexagonal squeeze using harmonic index,” *International Journal of Graph Theory*, vol. 1, pp. 116–121, 2013.

[11] M. C. Shanmukha, A. Usha, N. S. Basavarajappa, and K. C. Shilpa, “Graph entropies of porous graphene using harmonic index,” *Journal of Chemical Information and Computer Sciences*, vol. 57, no. 3, pp. 827–837, 2017.

[12] M. Randic, “Characterization of molecular branching,” *Journal of the American Chemical Society*, vol. 119, no. 23, pp. 6609–6615, 1997.

[13] J. Zheng, S. Akhter, Z. Iqbal et al., “Irregularity measures of subdivision vertex-edge join of graphs,” *Journal of Chemistry*, vol. 2021, Article ID 6673221, 12 pages, 2021.

[14] M. Randić, “Quantitative Structure property Relationship: boiling points and planar Benzenoid,” *New Journal of Chemistry*, vol. 20, pp. 1001–1009, 1996.

[15] H. Wiener, “Structural determination of paraffin boiling points,” *Journal of the American Chemical Society*, vol. 69, no. 1, pp. 17–20, 1947.

[16] I. Gutman and K. C. Das, “The first Zagreb index 30 years after,” *MATCH Communications in Mathematical and in Computer Chemistry*, vol. 50, pp. 83–92, 2004.

[17] I. Gutman, B. Furtula, and C. Elphick, “Three new/old vertex-degree-based topological indices,” *MATCH Communications in Mathematical and in Computer Chemistry*, vol. 72, no. 3, pp. 617–632, 2014.

[18] S. Li and M. Zhang, “Sharp upper bounds for Zagreb indices of bipartite graphs with a given diameter,” *Applied Mathematics Letters*, vol. 24, no. 2, pp. 131–137, 2011.

[19] T. Risi, R. Sharafdini, A. Dregelyi-Kiss, and H. Haghdin, “Graph irregularity indices used as molecular descriptors in QSPR studies,” *MATCH Communications in Mathematical and in Computer Chemistry*, vol. 79, pp. 509–524, 2018.

[20] V. Sharma, R. Goswami, and A. K. Madan, “Eccentric connectivity index: a novel highly discriminating topological descriptor for Structure–Property and Structure–Activity studies,” *Journal of Chemical Information and Computer Sciences*, vol. 37, no. 2, pp. 273–282, 1997.

[21] B. Zhou and N. Trinajstić, “On general sum-connectivity index,” *Journal of Mathematical Chemistry*, vol. 47, no. 1, pp. 210–218, 2010.

[22] V. R. Kulli, “Nirmala index,” *International Journal of Mathematics Trends and Technology*, vol. 67, no. 3, pp. 8–12, 2021.

[23] W. Gao, M. Younas, A. Farooq, A. R. Virk, and W. Naezer, “Some reverse degree-based topological indices and polynomials of dendrimers,” *Mathematics*, vol. 6, pp. 1–20, 2018.

[24] J. A. Bondy and U. S. R. Murty, *Graph Theory*, Springer, Berlin, Germany, 2008.

[25] I. Gutman and N. Trinajstić, “Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons,” *Chemical Physics Letters*, vol. 17, no. 4, pp. 535–538, 1972.

[26] D. Vukicević and M. Gasperov, “Bond additivity modeling 1. Adriatic indices,” *Croatica Chemica Acta*, vol. 83, no. 3, pp. 243–260, 201.

[27] S. Mondal, A. Dey, N. De, and A. Pal, “QSPR analysis of some novel neighbourhood degree-based topological indices,” *Complex and Intelligent Systems*, vol. 7, pp. 977–996, 2021.

[28] A. Ghorbani and M. A. Hosseinzadeh, “Computing ABC4 index of nanostar dendrimers,” *Optoelectronics and Advanced Materials-Rapid Communications*, vol. 4, pp. 1419–1422, 2010.

[29] I. Graovac, M. Ghorbani, and M. A. Hosseinzadeh, “Computing fifth geometric arithmetic index for nanostar dendrimers,” *Journal of Mathematical Nanoscience*, vol. 1, pp. 33–42, 2011.

[30] S. M. Kang, M. A. Zahid, A. U. R. Virk, W. Naezer, and W. Gao, “Calculating the degree-based topological indices of dendrimers,” *Open Chemistry*, vol. 16, no. 1, pp. 681–688, 2018.

[31] V. R. Kulli, B. Chaluvaraju, V. Lokesha, and S. A. Basha, “Gourava indices of some dendrimers,” *Research Review International Journal of Multidisciplinary*, vol. 4, no. 6, pp. 212–215, 2019.

[32] M. Munir, W. Naezer, S. Rafique, and S. Kang, “M-polynomial and related topological indices of nanostar dendrimers,” *Symmetry*, vol. 8, no. 9, pp. 1–12, 2016.

[33] I. Goli Farkoush, M. Alaeiyan, M. R. Farahani, and M. A. Hosseinzadeh, “Computing novel neighbourhood degree-based topological indices,” *Chemical Physics Letters*, vol. 323, no. 1, pp. 1–6, 2000.

[34] C. Kinkar, “Atom-bond connectivity index of graphs,” *Discrete Applied Mathematics*, vol. 158, no. 11, pp. 1181–1188, 2010.

[35] V. Lokesha, B. Shwetha Shetty, P. S. Ranjini, I. N. Cangul, and A. S. Cevik, “New bounds for Randic and GA indices,” *Journal of Mathematical Chemistry*, vol. 50, pp. 83–92, 2004.
of Inequalities and Applications, no. 1, pp. 1–7, Article ID 180, 2013.

[36] A. Usha, P. S. Ranjini, and Harish, “Bounds of harmonic index,” Contemporary Studies in Discrete Mathematics, vol. 2, no. 1, pp. 27–29, 2018.

[37] P. Szego, Problems and Theorems in Analysis I. Series, Integral Calculus, Theory of Functions, Springer, New York, NY, USA, 1972.

[38] K. Agilarasan and A. Selvakumar, “Some bounds on forgotten topological index,” International Journal of Mathematics Trends and Technology, vol. 56, no. 7, pp. 1–3, 2018.