Central configurations, Morse and fixed point indices

D.L. Ferrario

October 6, 2018

Abstract

We compute the fixed point index of non-degenerate central configurations for the n-body problem in the euclidean space of dimension d, relating it to the Morse index of the gravitational potential function \bar{U} induced on the manifold of all maximal $O(d)$-orbits. In order to do so, we analyze the geometry of maximal orbit type manifolds, and compute Morse indices with respect to the mass-metric bilinear form on configuration spaces.

MSC Subject Class: 70F10, 55M20

Keywords: Central configurations, relative equilibria, n-body problem, fixed point indices.

1 Introduction: central configurations as critical points

Let $E = \mathbb{R}^d$ be the d-dimensional euclidean space, for $d \geq 1$. Fix an integer $n \geq 2$. The configuration space of n (colored) points in E is the set of all n-tuples of distinct points in E, and denoted by $\mathbb{F}_n(E)$:

$$\mathbb{F}_n(E) = \{ \mathbf{q} \in E^n : i \neq j \implies q_i \neq q_j \} = E^n \setminus \Delta,$$

where if $\mathbf{q} \in E^n$, its n components are denoted by \mathbf{q}_j, $j = 1, \ldots, n$; points in $\mathbb{F}_n(E)$ are termed configurations of n points in E; its complement in E^n is the set of collisions

$$\Delta = \{ \mathbf{q} \in E^n : \exists (i, j), i \neq j : q_i = q_j \} = \bigcup_{1 \leq i < j \leq n} \{ \mathbf{q} \in E^n : q_i = q_j \}.$$
For \(j = 1, \ldots, n \) let \(m_j > 0 \) be fixed parameters (that can be interpreted as the mass of the \(j \)-th particle in \(E \)), under the normalization condition
\[
\sum_{j=1}^{n} m_j = 1 .
\]

If \(v, w \) are vectors in (the tangent space of) \(E^n \), then let
\[
\langle v, w \rangle_M = \sum_{j=1}^{n} m_j v_j \cdot w_j
\]
denote the mass scalar product of \(v \) and \(w \), where \(v_j \cdot w_j \) is the standard euclidean scalar product (in \(E \)) of the \(j \)-th components of \(v \) and \(w \). The unit sphere in \(\mathbb{F}_n(E) \) is termed the inertia ellipsoid and denoted by \(S_n(E) = \left\{ q \in \mathbb{F}_n(E) : \|q\|^2_M = 1 \right\} \).

It is equal to the unit sphere/ellipsoid in \(E^n \), with collisions removed, \(S_n(E) = S_n(E) \setminus \Delta \). The unit sphere/ellipsoid in \(E^n \) is denoted by \(S_n(E) = \left\{ q \in E^n : \|q\|^2_M = 1 \right\} \). To simplify notation, if possible we will use the short forms \(S \) and \(S \) instead of \(S_n(E) \) and \(S_n(E) \).

The potential function \(U : \mathbb{F}_n(E) \to \mathbb{R} \) is simply defined as
\[
\sum_{1 \leq i < j \leq n} \frac{m_i m_j}{|q_i - q_j|^\alpha},
\]
given a fixed parameter \(\alpha > 0 \). For \(\alpha = 1 \), \(U \) is the gravitational potential. It is invariant under the full group of isometries of \(E \), acting diagonally on \(\mathbb{F}_n(E) \).

Let \(D = \nabla \) denote the covariant derivative (which is the Levi-Civita connection with respect to the mass-metric) in \(\mathbb{F}_n(E) \), which is again the standard derivative. If \(F : \mathbb{F}_n(E) \to E \) is a smooth function, then \(DF = dF \) is the differential of \(F \), which is a section of the cotangent bundle \(T^*\mathbb{F}_n(E) \) defined as \(DF[v] = D_v F \) for each vector field \(v \) on \(\mathbb{F}_n(E) \). If \(v \) and \(w \) are two vector fields on \(\mathbb{F}_n(E) \), then \(D_v w \) is the (Euclidean and covariant) derivative of \(w \) in the direction of \(v \).

Let \(\nabla^S \) denote the covariant derivative (Levi-Civita connection) on \(S \), induced by the mass-metric of \(\mathbb{F}_n(E) \) restricted to \(S \), i.e. the restriction to \(S \) of the Riemannian structure of \(\mathbb{F}_n(E) \). If \(v \) and \(w \) are two vector fields defined in a neighborhood of \(S \), then the covariant derivative \(\nabla^S_v w \) is equal, at \(x \in S \), to the orthogonal projection of \(D_v w \), projected orthogonally to the tangent space \(T_x S \) (cf. proposition 3.1 at page 11 of [7], or proposition 2).
1.2 at page 371 of [8]). The same holds with $S \subset S$ instead of S. If Π denote the projection $T\mathbb{F}_n(E) \mapsto T\mathbb{S}$, then $\nabla^S_v w = \Pi D_v w$.

If $F: \mathbb{F}_n(E) \to \mathbb{R}$ is a smooth function, and $f = F|_S$ is its restriction to S, then $\nabla^S f = df$ is the restriction of dF to the tangent bundle $T\mathbb{S}$. Let $\text{grad}(f) = df^\sharp$ and $\text{grad}(F) = dF^\sharp$ denote the gradients of f and F respectively (i.e., the images of the differentials under the musical isomorphisms induced by the mass-metric). For each $x \in S$, $df^\sharp(x) \in T_xS$ and $dF^\sharp(x) \in T_x\mathbb{F}_n(E)$ satisfy the equations

$$\langle df^\sharp, v \rangle_M = df[v] = \langle dF^\sharp, v \rangle_M = dF[v]$$

for any $v \in T_xS$, and hence $\text{grad}(f) = df^\sharp$ is the projection of $\text{grad}(F) = dF^\sharp$ on the tangent space T_xS. A critical point of f is a point $x \in S$ such that $df = 0 \iff \text{grad}(f) = 0$, which is equivalent to say that $\text{grad}(F)$ is orthogonal to T_xS.

The Hessian of the function f, at a critical point x of f in S, is (cf. page 343 of [8]) equal to the bilinear form $\text{Hess}(f)[v, w]$, defined on the tangent space T_xS as

$$\text{Hess}(f)[v, w](x) = \nabla^S_v \nabla^S_w f - \nabla^S_{\nabla^S_v w} f)(x) = (\nabla^S_v \nabla^S_w f)(x)$$

where v and w are two vector fields defined in a neighborhood of x.

The Hessian of F is simply the symmetric matrix of all the second derivatives D^2F:

$$\text{Hess}(F)[v, w](x) = (D_v D_w F)(x) = D^2F(x)[v, w]$$

$$= \sum_{j=1}^n \sum_{\beta=1}^d \sum_{\gamma=1}^d \frac{\partial^2 F}{\partial q_{i\beta} \partial q_{j\gamma}} v_{i\beta} w_{j\gamma}$$

where $q_{i\beta}, v_{i\beta}$ and $w_{j\gamma}$ are the d cartesian components in E (\mathbb{R}^d as the tangent space of E) of q_i, v_i and w_j respectively.

Using the mass-metric, if \mathcal{N} denotes the unit vector field normal to T_xS in $T_x\mathbb{F}_n(E)$, the projection of $\nabla^S_v u$ of any vector field u on T_xS is

$$\nabla^S_v u = D_v u - \langle D_v u, \mathcal{N} \rangle_M \mathcal{N}$$

and

$$df^\sharp = dF^\sharp - \langle dF^\sharp, \mathcal{N} \rangle_M \mathcal{N}.$$
Because of the product rule for each function φ and each vector field u
\[\nabla^S_v (\varphi u) = \varphi \nabla^S_v u + (d\varphi[v])u \]
which implies that
\[\langle \nabla^S_v (\langle dF^z, N \rangle_M N), w \rangle_M = \langle dF^z, N \rangle_M \langle \nabla^S_v N, w \rangle_M \]

since N is orthogonal to w. The same argument can be applied to show that for any vector field u (not necessarily tangent to S)
\[\langle \nabla^S_v u, w \rangle_M = \langle D_v u, w \rangle_M, \]
and therefore that, evaluated at the critical point x,
\[\text{Hess}(f)[v, w] = D^2 F[v, w] - \langle dF^z, q \rangle_M \langle D_v q, w \rangle_M \]

The inertia ellipsoid S is defined by the equation $\|q\|^2_M = 1$, or equivalently $h(q) = \frac{1}{2}$ where $h(q) = \frac{1}{2} \|q\|^2_M$. The normal unit vector N is equal to $dh^z = q$, and thus
\[\text{Hess}(f)[v, w] = D^2 F[v, w] - \langle dF^z, q \rangle_M \langle D_v q, w \rangle_M \]

If $F = U$, then U is homogeneous of degree $-\alpha$, and therefore $\langle dU^z, q \rangle_M = dU(q)[q] = -\alpha U(q)$. The following equation follows, at any critical point x of the restriction of U to S.
\[(1.1) \quad \text{Hess}(U|_S)[v, w] = D^2 U(x)[v, w] + \alpha U(x) \langle v, w \rangle_M \]

A central configuration is a configuration $q \in F_n(E)$ with the property that there exists a multiplier $\lambda \in \mathbb{R}$ such that
\[(1.2) \quad dU^z(q) = \lambda q, \]
where dU^z is the gradient in E^n of the potential function U, with respect to the mass-metric. Equation (1.2) implies that $\lambda = -\alpha \frac{U(q)}{\|q\|^2_M}$ (for more on central configurations see e.g. [17] (§369–§382bis at pp. 284–306), [13], [10], [12], [14], [1], [6], [2], [11], [5]). An equivalent definition for a normalized (i.e. $q \in S$) central configuration is the following:
(1.3) \(q \in S_n(E) \) is a central configuration if and only if it is a critical point for the restriction \(U|_S \) of the potential function to \(S = S_n(E) \).

Let \(c: E^n \to E^n \) be the isometry defined as \(c(q) = q' \), with

\[
q'_j = q_j - 2q_0
\]

for each \(j = 1, \ldots, n \), and with \(q_0 = \sum_{j=1}^n m_jq_j \). It is an isometry, since

\[
\|q'_j\|^2_M = \sum_{j=1}^n m_j|q_j - 2q_0|^2 = \sum_{j=1}^n m_j(|q_j|^2 + 4|q_0|^2 - 4q_j \cdot q_0) = \sum_{j=1}^n m_j|q_j|^2 + 4(\sum_{j=1}^n m_j)|q_0|^2 - 4|q_0|^2 = \|q\|^2_M.
\]

It is the orthogonal reflection around the space of all configurations with center of mass \(q_0 \) equal to zero: \(cq = q \iff q_0 = 0 \). It is easy to see that if \(q \) is a central configuration then \(cq = q \), and hence \(q \) has center of mass \(q_0 \) in 0. Let \(Y \) be defined as \(Y = \{ q \in E^n : q_0 = 0 \} \), and \(S^c = S \cap Y, S^c_c = S \cap Y \). In other words, elements of \(S^c \) are normalized configurations with center of mass in 0. Since the potential function is invariant up to translations, \(U(cq) = U(q) \), and any critical point of the restriction \(U|_{S^c} \) is a critical point of \(U|_S \) (for example, by Palais Principle of Symmetric Criticality [13]). Thus it is equivalent to define central configurations as critical points of \(U|_{S^c} \) or as critical points of \(U|_S \).

2 Fixed points, \(SO(d) \)-orbits and projective configuration spaces

Following [3, 4], consider the function \(F: S_n(E) \to S_n(E) \) defined as

\[
F(q) = -\frac{dU^1(q)}{\|dU^2(q)\|_M}
\]

where \(dU^2 \) is the gradient of \(U \), with respect to the mass-metric.

First, consider the isometry \(c \) defined above in [1.4]. Since \(F(cq) = cF(q) \), \(F(S) \subset S^c \). Moreover, as the image of \(F \) is in \(S^c \), if \(F^c \) denotes the restriction \(F^c: S^c \to S^c \),

\[
(2.2) \quad \text{Fix}(F^c) = \text{Fix}(F),
\]

and the fixed point indexes are exactly the same.

Let \(O(d) \) be the special orthogonal group, acting diagonally on \(E^n \), and \(SO(d) \) the special orthogonal subgroup. The inertia ellipsoid \(S \), \(S \) and \(Y \) are \(O(d) \)-invariant in \(E^n \), and so are \(S^c \) and \(S^c_c \). Let \(\pi: S \to S/G \) denote the quotient map onto the space of \(G \)-orbits, for \(G = SO(d) \) or \(G = O(d) \).
Since U is a G-invariant function, F is a G-equivariant map, and hence it induces a map on the quotient spaces:

\[(2.3)\]

\[
\begin{array}{ccc}
S & \xrightarrow{F} & S \\
\pi & \downarrow & \pi \\
S/G & \xrightarrow{\pi} & S/G
\end{array}
\]

A fixed point of F is a normalized configuration q such that $F(q) = q$. A fixed point of f is a conjugacy class $[q]$ of configurations such that $f([q]) = [q]$, i.e. it is a conjugacy class $[q]$ such that $F(q) = gq$ for some $g \in G$. It follows from Theorem (2.5) of [4] that if $G = SO(d)$, then $F(q) = gq \iff F(q) = q$, or equivalently that

\[(2.4)\]

\[G = SO(d) \implies \pi(\text{Fix}(F)) = \text{Fix}(f),\]

and hence also that $\pi(\text{Fix}(F^c)) = \text{Fix}(f^c)$.

(2.5) Remark. Elements in S/G are called projective configurations: for $d = 2$ and $G = SO(2)$, S/G is the $(n - 1)$-dimensional complex projective space $\mathbb{P}^{n-1}(\mathbb{C})$, and S^c is a hyperplane in it, hence a $(n - 2)$-dimensional complex projective space $\mathbb{P}^{n-2}(\mathbb{C})$. For $n = 3$, it is the Riemann sphere. Projective configurations are projective classes of elements $[q_1 : q_2 : q_3]$ in $\mathbb{P}^1(\mathbb{C}) \subset \mathbb{P}^2(\mathbb{C})$ such that $m_1q_1 + m_2q_2 + m_3q_3 = 0$, $q_j \in \mathbb{C}$, and $q_1 \neq q_2$, $q_1 \neq q_3$, $q_2 \neq q_3$.

For $d = 1$, projective configurations are equivalence classes under the action of the orthogonal group $G = O(1) = \mathbb{Z}_2$.

The following Corollary of (2.4) shows that the difference is minor.

(2.6) Corollary. If $q \in S$ is a central configuration such that $F(q) = gq$, with $g \in O(d)$ (acting diagonally on E^n), then $g = 1$.

Proof. Let $E' = E \oplus \mathbb{R}$ be the euclidean space of dimension $d+1$, and $E \subset E'$ one of its d-dimensional subspaces. If $q \in S \subset \mathbb{F}_n(E)$, then $q \in S \subset \mathbb{F}_n(E) \subset \mathbb{F}_n(E')$, and there exists $g' \in SO(d+1)$ such that $g'E = E$ and the restriction of g' to E is equal to g: it follows that $F(q) = g'q$, in $\mathbb{F}_n(E')$, and therefore $g' = 1$, from which it follows that $g = 1$.

q.e.d.

Homological calculations on configurations spaces for the sake of central configurations have been done by Palmore [14], Pacella [12] and McCord [9]. We can arrange all the spaces inertia ellipsoids and the corresponding
projective quotients as in diagram (2.7)

\[
\begin{array}{c}
\mathbb{S}^c_n(\mathbb{R}) \xrightarrow{\iota_1} \mathbb{S}^c_n(\mathbb{R}^2) \xrightarrow{\iota_2} \mathbb{S}^c_n(\mathbb{R}^3) \xrightarrow{\iota_3} \cdots \\
\mathbb{S}^c_n(\mathbb{R})/SO(1) \xrightarrow{\gamma_1} \mathbb{S}^c_n(\mathbb{R}^2)/SO(2) \xrightarrow{\gamma_2} \mathbb{S}^c_n(\mathbb{R}^3)/SO(3) \xrightarrow{\gamma_3} \cdots
\end{array}
\]

(2.7)

For each \(d \), \(\mathbb{S}^c_n(\mathbb{R}^d) \) is a deformation retract of \(\mathbb{P}^c_n(\mathbb{R}^d) \), which in turn is a deformation retraction of \(\mathbb{F}_n(\mathbb{R}^d) \) (where \(\mathbb{F}_n(E) \) denotes the space of all configurations with center of mass in 0). The Poincaré polynomial for the cohomology of the configuration space \(\mathbb{F}_n(\mathbb{R}^d) \) is equal to

\[
P(t) = \prod_{k=1}^{n-1} (1 + kt^{d-1}),
\]

as shown e.g. in Theorem 3.2 of [16] (see also Proposition 2.11.2 of [11]).

Now, note that in the sequence of projections

\[
\mathbb{S}^c_n(\mathbb{R}^d) \to \mathbb{S}^c_n(\mathbb{R}^d)/SO(d) \to \mathbb{S}^c_n(\mathbb{R}^d)/O(d)
\]

the second map corresponds to the projection given by the action of the quotient group \(\mathbb{Z}_2 = O(d)/SO(d) \) on the quotient space \(\mathbb{S}^c_n(\mathbb{R}^d)/SO(d) \) (\(SO(d) \) is normal in \(O(d) \)). For \(d \geq 2 \), let \(h \) be the orthogonal reflection of \(\mathbb{R}^d \) around \(\mathbb{R}^{d-1} \subset \mathbb{R}^d \): its coset \(hSO(d) \) is the generator of \(O(d)/SO(d) \), and hence the image \(\text{Im}(\tilde{t}_{d-1}) \) in \(\mathbb{S}^c_n(\mathbb{R}^d)/SO(d) \) is fixed by \(O(d)/SO(d) \). Actually, it is equal to the fixed point subset of \(O(d)/SO(d) \) in \(\mathbb{S}^c_n(\mathbb{R}^d)/SO(d) \). Outside the image of \(\tilde{t}_{d-1} \), therefore the \(\mathbb{Z}_2 \) action is free: let \(\mathcal{M}_n(\mathbb{R}^d) \) denote the manifold

\[
\mathcal{M}_n(\mathbb{R}^d) = (\mathbb{S}^c_n(\mathbb{R}^d)/SO(d) \setminus \text{Im}(\tilde{t}_{d-1})) / \mathbb{Z}_2 = \mathbb{S}^c_n(\mathbb{R}^d)/O(d) \setminus \text{Im}(\tilde{t}_{d-1}),
\]

where the last equality holds since \(\tilde{t}_{d-1} \) factors through \(\mathbb{S}^c_n(\mathbb{R}^{d-1}) \).

The next proposition follows from the dimension of \(SO(d) \) and the previous remarks.

(2.9) The subspace of all points in \(\mathbb{S}^c_n(\mathbb{R}^d)/O(d) \) with maximal orbit type is the open subspace \(\mathcal{M}_n(\mathbb{R}^d) \) defined in (2.8), and it is a manifold of dimension

\[
\dim \mathcal{M}_n(\mathbb{R}^d) = d(n - 1) - 1 - d(d - 1)/2
\]
For $d = 1$, it is the projective space $\mathbb{P}^{n-2}(\mathbb{R})$ minus collisions. For $d = 2$, it is a $(2n - 4)$ dimensional manifold (where $\mathbb{P}^{n-2}(\mathbb{C})$ minus collinear and minus collisions is its double cover).

(2.10) $\mathbb{S}_c^n(\mathbb{R}^2)/SO(2)$ has the same homotopy type of $\mathbb{F}_{n-2}(\mathbb{R}^2) \setminus \{p, q\}$, where p, q are two arbitrary distinct points of \mathbb{R}^2.

Proof. It is Lemma 4.1 of [9]. $q.e.d.$

It follows that the Poincaré polynomial (where β_j are Betti numbers) of $\mathbb{S}^c_n(\mathbb{R}^2)/SO(2)$ is

(2.11) $p(t) = \prod_{k=2}^{n-1} (1 + kt) = \sum_{j=0}^{n-2} \beta_j t^j$.

(see also Proposition 2.11.3 of [11]). McCord in [9] proved also that

$$\dim H^k(M_n(\mathbb{R}^2)) = \begin{cases} \sum_{j=0}^{k} \beta_j & \text{if } k \leq n - 3 \\ 0 & \text{otherwise,} \end{cases}$$

while Pacella in (2.4) of [12] computed the $SO(3)$-equivariant homology (using Borel homology) Poincaré series of $\mathbb{S}^c_n(\mathbb{R}^2) \sim \mathbb{F}_n(\mathbb{R}^3)$ as

$$p^{SO(3)}(t) = \prod_{k=2}^{n-1} (1 + kt^2) \frac{1}{1 - t^2}$$

(2.12) Remark. The projective quotient $\mathbb{S}^c_n(\mathbb{R}^2)/SO(2)$ is a manifold (it is the projective space $\mathbb{P}^{n-2}(\mathbb{C})$ with collisions removed). It contains $\mathbb{S}^c_n(\mathbb{R})/O(1)$ as a submanifold (the collinear configurations). For $d \geq 3$ the isotropy groups of the action start being non-trivial, and the filtration of subspaces of constant orbits type in $\mathbb{S}^c_n(\mathbb{R}^d)/SO(d)$ is given by the horizontal arrows \bar{i}_j in diagram (2.7).

3 Fixed points and Morse indices

Let $q \in \mathbb{S}^c_n(\mathbb{R}^d)$ a central configuration, and hence a fixed point of the map F defined above in (2.1), such that its $O(d)$-orbits lies in the maximal orbit type submanifold $M_n(\mathbb{R}^d) \subset \mathbb{S}^c(\mathbb{R}^d)/O(d)$.

(3.1) If $DF : T_q\mathbb{S} \to T_q\mathbb{S}$ denotes the differential of F at the central configuration q, then for any $v, w \in T_q\mathbb{S}$ the following equation holds:

$$D^2U(q)[v, w] = -\alpha U(q)\langle DF[v], w \rangle_M$$
Proof. As we have seen in the introduction, \(\langle D_dU^2, w \rangle_M = D^2U[v, w] \), and if \(q \) is a normalized central configuration then by (1.2) \(dU^2(q) = \lambda q \) with \(\lambda = -\alpha \frac{U(q)}{\|q\|^2_M} = -\alpha U(q) \). It follows that \(\langle dU^2, w \rangle_M = 0 \), being \(w \) tangent to \(S \), and \(\|dU^2\|_M = -\lambda = \alpha U(q) \). Also,

\[
\langle DF[v], w \rangle_M = \langle D_v \left(-\frac{dU^2}{\|dU^2\|_M} \right), w \rangle_M = -\langle \left(\frac{D_v dU^2}{\|dU^2\|_M} \right), w \rangle_M - \langle D_v \left(\frac{1}{\|dU^2\|_M} \right) dU^2, w \rangle_M = \langle DF[v], w \rangle_M - 0 = -\frac{1}{\alpha U(q)} D^2U(q)[v, w].
\]

q.e.d.

Combining (3.1) with equation (1.1) the following corollary holds.

(3.2) Corollary. If \(q \) is as above, then for each \(v, w \in T_qS \)

\[
\text{Hess}(U|_S)[v, w] = \alpha U(q) \left(\langle v, w \rangle_M - \langle DF[v], w \rangle_M \right)
\]

Finally, consider again the group \(O(d) \) acting on \(S_n^c(\mathbb{R}^d) \). Let \(F \) and \(q \) be the map and the central configuration defined above. Recall that \(f: S/O(d) \to S/O(d) \) denotes the map defined on the quotient. Let \([q] \in M_n(\mathbb{R}^d)S/O(d) \) denote the projective class (i.e. the \(O(d) \)-orbit of \(q \)) of \(q \), which is a fixed point of \(f \), and is a critical point of the map \(\bar{U}: M_n(\mathbb{R}^d) \to \mathbb{R} \) induced on \(M_n \) by \(U \), defined simply as \(\bar{U}([x]) = U(x) \) for each \(x \in S_n^c(\mathbb{R}^d) \).

(3.3) Theorem. The point \([q]\) is a non-degenerate critical point of \(\bar{U} \) if and only if it is a non-degenerate fixed point of \(f \). If \(\text{ind}([q], f) \) denotes the fixed point index of \([q]\) for \(f \), and \(\mu([q]) \) the Morse index of \([q]\), then the following equation holds:

\[
\text{ind}([q], f) = (-1)^{\mu([q])}.
\]

Proof. The point \([q]\) is a non-degenerate critical point if and only if the dimension of the kernel of the Hessian \(\text{Hess}(U|_S)(q) \) is equal to the dimension of \(SO(d) \), i.e. \(d(d - 1)/2 \). By (3.2) the kernel is equal to the eigenspace of \(DF(q) \) corresponding to the eigenvalue 1, which has dimension \(d(d - 1)/2 \) if and only if the fixed point \([q]\) is non-degenerate. Now, if this holds then the index \(\text{ind}([q], f) \) is equal to the number \((-1)^e\). where \(e \) is the number
of negative eigenvalues $1 - f'$, which is the same as the number of negative eigenvalues of $1 - F'$. Again by (3.2) and since $U > 0$, e is equal to the number of negative eigenvalues of $\text{Hess}(U|_S)$, which is by definition the Morse index $\mu([q])$.

q.e.d.

(3.4) Remark. Unfortunately, a former version of this statement had a wrong formula for $\text{ind}(q)$. In fact, in (3.5) of [4] one should put $\epsilon = 0$, and not $\epsilon = d(n - 1) - 1 - d(d - 1)/2 = \dim \mathbb{M}_n(\mathbb{R}^d)$. The error occurred because I used the wrong sign of U in (3.1) ($V = -U$ instead of U).

(3.5) Example. For $d = 1$ and any n, all critical points are local minima of U, and hence $\mu = 0$, and fixed points have index 1. The map induced on the quotient can be regularized on binary collisions (see [4,3]), hence the map on the quotient can be extended to a self-map $f: \mathbb{P}^1(\mathbb{R}) \to \mathbb{P}^1(\mathbb{R})$ with three fixed points of index 1. Therefore the Lefschetz number of f is 3, and f has degree -2.

For $d = 2$ and $n = 3$, the three Euler configurations have $\mu = 1$, while the two Lagrange points have $\mu = 1$, hence the map f induced on the quotient $\mathbb{P}^1(\mathbb{C})$ (again, by regularizing the binary collisions) has Lefschetz number equal to $L(f) = 2 - 3 = -1$. Therefore the degree of f is equal to -2.

References

[1] A. Albouy. Symétrie des configurations centrales de quatre corps. C. R. Acad. Sci. Paris Sér. I Math., 320(2):217–220, 1995.

[2] A. Albouy and V. Kaloshin. Finiteness of central configurations of five bodies in the plane. Ann. of Math. (2), 176(1):535–588, 2012.

[3] D. L. Ferrario. Planar central configurations as fixed points. J. Fixed Point Theory Appl., 2(2):277–291, 2007.

[4] D. L. Ferrario. Fixed point indices of central configurations. J. Fixed Point Theory Appl., 17(1):239–251, 2015.

[5] D. L. Ferrario. Central configurations and mutual differences. arXiv preprint [arXiv:1608.00480], 2016.

[6] M. Hampton and R. Moeckel. Finiteness of relative equilibria of the four-body problem. Invent. Math., 163(2):289–312, 2006.

[7] S. Kobayashi and K. Nomizu. Foundations of differential geometry. Vol. II. Interscience Tracts in Pure and Applied Mathematics, No. 15 Vol.
II. Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1969.

[8] S. Lang. *Fundamentals of differential geometry*, volume 191 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, 1999.

[9] C. K. McCord. Planar central configuration estimates in the n-body problem. *Ergodic Theory Dynam. Systems*, 16(5):1059–1070, 1996.

[10] R. Moeckel. On central configurations. *Math. Z.*, 205(4):499–517, 1990.

[11] R. Moeckel. Central configurations. In *Central configurations, periodic orbits, and Hamiltonian systems*, Adv. Courses Math. CRM Barcelona, pages 105–167. Birkhäuser/Springer, Basel, 2015.

[12] F. Pacella. Central configurations of the N-body problem via equivariant Morse theory. *Arch. Rational Mech. Anal.*, 97(1):59–74, 1987.

[13] R. S. Palais. The principle of symmetric criticality. *Comm. Math. Phys.*, 69(1):19–30, 1979.

[14] J. I. Palmore. Classifying relative equilibria. I. *Bull. Amer. Math. Soc.*, 79:904–908, 1973.

[15] D. G. Saari. *Collisions, rings, and other Newtonian N-body problems*, volume 104 of *CBMS Regional Conference Series in Mathematics*. American Mathematical Society, 2005.

[16] V. V. Vershinin. Homology of braid groups and their generalizations. In *Knot theory (Warsaw, 1995)*, volume 42 of *Banach Center Publ.*, pages 421–446. Polish Acad. Sci., Warsaw, 1998.

[17] A. Wintner. *The Analytical Foundations of Celestial Mechanics*. Princeton Mathematical Series, v. 5. Princeton University Press, Princeton, N. J., 1941.

[18] Z. Xia. Central configurations with many small masses. *J. Differential Equations*, 91(1):168–179, 1991.