Argulus japonicus (Branchiura: Argulidae) parasitic on largemouth bass Micropterus salmoides in Japan, with the morphology of the adult female of the argulid

Kazuya Nagasawa

Abstract.—Largemouth bass Micropterus salmoides (Lacepède, 1802) was introduced from North America into Japan in 1925 and 1972. The fish has spread extensively since the late 1960s and is now found in all prefectures of Japan. An adult female of the argulid branchiuran Argulus japonicus Thiele, 1900 was collected from the body surface of a largemouth bass in the Kako River, Hyogo Prefecture, Japan. This represents a new host record for A. japonicus. The morphology of the adult female collected is reported in detail. Although A. japonicus is native to Japan, the species is not strictly host-specific and can utilize largemouth bass of the North American origin as its host in Japan.

Key words: fish parasite, fish louse, new host record

Introduction

Many species of freshwater fishes have been introduced from other countries to Japan for aquaculture, sport-fishing, and ornamental purposes (Chiba et al., 1989). The largemouth bass Micropterus salmoides (Lacepède, 1802) (Centrarchiformes: Centrarchidae) is one such fish: the species was introduced in 1925 and 1972 from North America into Japan, where, since the late 1960s, it has established populations nationwide (Takamura, 2007). Nonetheless, little attention has been paid to the parasite fauna of largemouth bass from Japan. In addition to some helminth parasites and glochidial larvae of unionid bivalves, only two species of crustacean parasites are known to infect largemouth bass in Japan (Nagasawa, 2017a), both are cyclopoid copepods: Lernaea cyprinacea Linnaeus, 1758 (Lernaeidae) (Kasahara, 1962) and Neoergasilus japonicus (Harada, 1930) (Ergasilidae) (Nagasawa & Inoue, 2012; Nagasawa & Sato, 2014).

A specimen of crustacean parasite collected from a largemouth bass in western Japan was received from a student at Hiroshima University. As described below, the specimen was identified as Argulus japonicus Thiele, 1900 (Branchiura: Argulidae). This represents a new host record for A. japonicus and its first record from largemouth bass in Japan. Argulus japonicus was originally described by Thiele (1900) based on a single female specimen from Tokyo (reported as “Yeddo”), Japan, but its original description was very short, without any figure and host information. Thus, the species was later redescribed by Thiele (1904) from specimens collected from goldfish Carassius auratus (Linnaeus, 1758) from Yokohama, Japan, and also by Nakazawa (1914), Tokioka (1936), and Yamaguti (1937) from specimens taken from Japanese freshwater fishes, including goldfish and common carp Cyprinus carpio Linnaeus, 1758. However, as compared with the current descriptions of Argulus spp. (e.g., Benz et al., 1995; Uyeno et al., 2017; Nagasawa & Hirose, 2021), the redescriptions of A. japonicus by the above authors lack detailed
morphological information. Moreover, as *A. japonicus* has spread globally (Poly, 2008), it is important to accurately describe the species from Japan in order to aid in distinguishing it from morphologically similar species in other countries. Therefore, based on a detailed examination of the specimen collected, this paper reports on the morphology of *A. japonicus*.

Materials and Methods

The argulid specimen was collected from a largemouth bass *M. salmoides* (body size not measured) on 5 June 2007 in a reservoir (34°47′38″N, 134°53′35″E) created upstream of a barrage in the lower reaches of the Kako River at Yahata, Kakogawa, Hyogo Prefecture, western Japan. It was removed from the fish’s body surface, fixed, and then preserved in 70% ethanol. Later, at the Aquaparasitology Laboratory, Shizuoka Prefecture, the specimen was first examined under an Olympus SZX10 stereo microscope. It was then cleared in lactophenol and examined under an Olympus BX51 phase-contrast compound microscope using the wooden slide procedure (Humes & Gooding, 1964; Benz & Otting, 1996). All drawings were made with the aid of drawing tubes attached to the microscopes. Morphological terminology follows Benz *et al.* (1995) and Benz & Otting (1996). The specimen was deposited in the Crustacea (Cr) collection of the National Museum of Nature and Science, Tsukuba, Ibaraki Prefecture (NSMT-Cr 29117).

Results

The argulid specimen collected in this study is an adult female of *A. japonicus*, measuring 6.0 mm total length (from anterior tip of carapace to posterior tip of abdomen) and 3.8 mm maximum width (around midlength of carapace).

Description of adult female

Body dorsoventrally flattened (Fig. 1A, B). Carapace nearly circular, 4.0 mm long, comprising 66.7% of total length, with frontal region weakly delimited by anterolateral indentations, and almost totally covering first to second pairs of legs (Fig. 1A, B). Paired compound eyes distinct dorsally in frontal region of carapace (Fig. 1A). Naupliar eye located posterior to compound eyes along midline of frontal region of carapace (Fig. 1A). Dorsal surface of carapace smooth without spines (Fig. 1A). Ventral surface of frontal and lateral regions of carapace ornamented with numerous, small sharply pointed spines (Fig. 1B). Posterolateral lobes of carapace 1.1 mm long, comprising 27.5% of carapace length, ending in rounded margin, separated by sinus nearly 1/3 length of carapace (Fig. 1A). Paired respiratory areas each consisting of small, oval anterior area and large, reniform posterior area, located at levels of first maxillae and second maxillae to first legs, respectively (Fig. 1B, D). Thorax indistinctly segmented (due to developed ovary filled with eggs) (Fig. 1A, B). Abdomen bilobed by anal indentation, longer than wide, with posterior margin of each lobe rounded and covered with tiny spines (Fig. 1A, B); anal indentation 46.2% as long as abdomen. Paired spermathecae oval in antero-central region of abdomen (Fig. 1A, B). Subquadrate caudal rami located at base of anal indentation with four short naked setae on each ramus (Fig. 1A, C).

First antennae with four segments (Fig. 1E); first segment sclerotized, with large projection on posterolateral margin; second segment also sclerotized, with large projection on anterior margin, apically bent hook at lateral corner, and large projection and knob-like swelling on posterior margin; third segment longer than wide, with two naked spiniform setae near distal margin; apical segment shorter than third segment, with seven short naked spiniform setae apically. Second antennae with five segments (Fig. 1E); first segment sclerotized, with
ARGULUS JAPONICUS FROM LARGEMOUTH BASS

Fig. 1. Argulus japonicus, adult female, 6.0 mm total length, NSMT-Cr 29117, from a largemouth bass Micropterus salmoides in the Kako River, Hyogo Prefecture, Japan. A, habitus, dorsal view; B, habitus, ventral view; C, caudal rami, dorsal view; D, respiratory areas, ventral view; E, first antenna (a1), second antenna (a2), and postantennal spine (pas), ventral view; F, preoral sheath and stylet, ventral view; G, mouth tube, ventral view; H, section of sucker membrane of first maxilla showing two supporting rods and marginal projections, ventral view; I, second maxilla, ventral view; J, tip of terminal segment of second maxilla, ventral view; K, two scale-like denticles on third segment of second maxilla, ventral view. Scale bars: A, B, 2 mm; C, E, F, 0.1 mm; D, 0.5 mm; G, I, 0.2 mm; H, J, K, 0.05 mm.
large projection and small swelling with four naked spiniform setae on posterior margin; second segment shorter than first segment, with three and three naked spiniform setae, respectively, near distal and on posterior margins; third, fourth, and apical segments each longer than wide, decreasing in length; third segment with two and two naked spiniform setae, respectively, near distal and on posterior margins; fourth segment with seven naked spiniform setae on distal margin; apical segment ending in six naked spiniform setae. Postantennal spines large and stout, located posterior to projections of first segments of first antennae (Fig. 1E). Preoral sheath on ventral midline of frontal region of carapace, with anterior tip of stylet seen at sheath opening (Fig. 1F). Mouth tube located posterior to preoral sheath, longer than wide, becoming wider posteriorly, composed of anterior labrum and posterior labium furnished with scales and pair of tiny spines (Fig. 1G).

First maxillae forming cup-like suckers (Fig. 1B, H), with 50 and 52 supporting rods each in two sucker membranes; each rod composed of six to seven (mostly seven, n = 10) sclerites; basal sclerite nearly three times as long as wide, widening distally; other sclerites trapezoidal or oval, decreasing in size distally; outer margin of rim of sucker membrane with numerous triangular projections. Second maxillae with five segments (Fig. 1I–K); first segment robust, with three basally separated, subequally long blunt projections on posterior margin; corpus of first segment bearing two posteriorly directed spiniform setae and furnished with raised field of scale-like denticles; second segment nearly two times as long as wide, with raised patch of serrate scale-like denticles on anterodistal surface; third segment shorter than second segment, with patch of serrate scale-like denticles on anterolateral surface; fourth
segment subquadrate, with small denticles anteriorly; terminal segment smallest, ending in one club-like and two spiniform projections. Accessory spines near first segments of second maxillae (Fig. 1B). Postmaxillary spines located posterior to accessory spines (Fig. 1B).

First to fourth pairs of legs biramous; sympods two-segmented, consisting of coxa and basis, with small scale-like projections on ventral surface; rami each consisting of exopod and endopod, with two rows of plumose setae, respectively, near ventro- and dorsoposterior margins (Figs. 1, 2). First and second pairs of legs each with dorsal flagellum projecting from extreme proximal part of exopod (flagella usually not seen in ventral view, but flagellum bearing 13 plumose setae ventrally visible on second leg of specimen examined, Fig. 2C). First pair of legs each with single plumose seta on posterior margin of coxa and three-segmented endopod ending in three short spines (Fig. 2A, B). Sympods of second and third pairs of legs without setae (Fig. 2C, D). Endopods of third and fourth pairs of legs two-segmented (Fig. 2D, E). Fourth pair of legs each with coxa forming natatory lobe bearing 12 plumose and three short naked setae, respectively, on posterior and distal margins, and basis bearing seven plumose setae on posterior margin (Fig. 2E).

Color in ethanol-preserved specimen: Carapace, abdomen, and legs white; thorax pale yellow with irregularly shaped black spots unevenly scattered on dorsal surface; respiratory areas fringed by continuous black pigment (Fig. 3).

Remarks

Although the carapace of *A. japonicus* from Japan has been reported to cover the first to third or fourth pairs of legs (Nakazawa, 1914; Tokioka, 1936; Yamaguti, 1937), the argulid specimen collected in this study has a shorter carapace that does not reach the third pair of legs (Fig. 1A, B). In spite of this difference, other morphological characters of the specimen correspond to those of *A. japonicus* reported by the above authors, and the specimen is identified as *A. japonicus*.

Only one adult female of *A. japonicus* was examined in this study, but several morphological differences are known between both sexes of the species (Nakazawa, 1914; Tokioka, 1936; Yamaguti, 1937). The male of *A. japonicus* has two posteriorly directed finger-like projections on the posteroventral margin of the coxa of the second leg, a swelling (=socket) on the posterior margin of the basis of the third leg, and a peg on the anterior margin of the basis of the fourth leg. A knob-like projection is also found at the anteroventral side of the third segment of the thorax of the male. These structures are not found on the sympods and thorax of the female (Figs. 1B, 2C, D, E).

Argulus japonicus has been introduced to other continents from east/southeast Asia (Poly,
in which it has been reported from Japan, Russian Far East (Gusev, 1987), Korea (Choi & Yang, 1998; Han et al., 1998; De Zoysa et al., 2017), China (e.g., Tokioka, 1939; Hsiao, 1950; Wang, 1958; Institute of Hydrobiology, Hubei Province, 1973; Kuang & Qian, 1991; Wadeh et al., 2008; Yang, 2009), Vietnam (Arthur & Te, 2006; Ky & Te, 2007), Malaysia (Leong, 1986), Philippines (Cruz-Lacierda & Nagasawa, 2017), and Indonesia (e.g., Inaya et al., 2015; Idris et al., 2020). The species has been identified using a traditional microscopic technique (Tokioka, 1939; Hsiao, 1950; Wang, 1958; Institute of Hydrobiology, Hubei Province, 1973; Leong, 1986; Kuang & Qian, 1991; Choi & Yang, 1998; Ky & Te, 2007; Yang, 2009; Cruz-Lacierda & Nagasawa, 2017) and a scanning electron microscope (Wadeh et al., 2008; De Zoysa et al., 2017). Although no morphological information exists on *A. japonicus* from Far East Russia and Indonesia, there is no significant difference in the morphology of the species from Japan, China, Korea, Philippines, and Malaysia (see the above literature).

Argulus japonicus is morphologically similar to *Argulus coregoni* Thorell, 1864, which also occurs in east/southeast Asia, including Japan (e.g., Tokioka, 1936; Yamaguti, 1937; Hoshina, 1950; Wang, 1958; Institute of Hydrobiology, Hubei Province, 1973; Leong, 1986; Kuang & Qian, 1991; Choi & Yang, 1998; Ky & Te, 2007; Yang, 2009; Cruz-Lacierda & Nagasawa, 2017) and a scanning electron microscope (Wadeh et al., 2008; De Zoysa et al., 2017). Although no morphological information exists on *A. japonicus* from Far East Russia and Indonesia, there is no significant difference in the morphology of the species from Japan, China, Korea, Philippines, and Malaysia (see the above literature).

Argulus japonicus is morphologically similar to *Argulus coregoni* Thorell, 1864, which also occurs in east/southeast Asia, including Japan (e.g., Tokioka, 1936; Yamaguti, 1937; Hoshina, 1950; Wang, 1958; Institute of Hydrobiology, Hubei Province, 1973; Leong, 1986; Kuang & Qian, 1991; Choi & Yang, 1998; Ky & Te, 2007; Yang, 2009; Cruz-Lacierda & Nagasawa, 2017) and a scanning electron microscope (Wadeh et al., 2008; De Zoysa et al., 2017). Although no morphological information exists on *A. japonicus* from Far East Russia and Indonesia, there is no significant difference in the morphology of the species from Japan, China, Korea, Philippines, and Malaysia (see the above literature).

Argulus japonicus is distinguished from *A. coregoni* by having an apically rounded abdomen (Fig. 1A, B) (vs. apically pointed abdomen in *A. coregoni*), about 50 supporting rods in the sucker membrane of the first maxilla (vs. 60 or more supporting rods in *A. coregoni*), and a single plumose seta on the posterior margin of the coxa of the first leg (Fig. 2A) (vs. four to eight plumose setae in *A. coregoni*). The morphological characters of *A. coregoni* have been reported from Japan, China, and Malaysia (see the above literature).

No information is available on the native hosts of *A. japonicus* in the Kako River, where the specimen was collected in this study. Previously, two specimens of *A. japonicus* were collected from the river, but one specimen was found on an unknown host and another specimen was a detached, free-swimming individual (Nagasawa et al., 2009). In this study, the infested largemouth bass was collected in the lower reaches of the river, where 18 species of cyprinids are found (Nishiguchi, 2007) and likely to serve as native hosts for *A. japonicus*.

Discussion

Largemouth bass is native to North America, where the species is known as the hosts of several *Argulus* species (*A. appendiculatus* C. B. Wilson, 1907, *A. flavescens* C. B. Wilson, 1916, *A. mississippiensis* C. B. Wilson, 1916, and an unidentified species) (Hoffman, 1999; McAllister et al., 2016). Although *A. japonicus* was introduced from Asia including Japan into the U.S.A. (Meehean, 1940; Wilson, 1944; Cressey, 1978), it has not been reported from largemouth bass (e.g., Amin, 1981; Poly, 1998; Hoffman, 1999). For sport fishing, largemouth bass has been transplanted from North America into other regions, such as South America, Europe, South Africa, and Far East Asia (Pereira & Vitule, 2019) but, to date, *A. japonicus* has not been recorded from the fish in these regions. Thus, the collection of *A. japonicus* in this study represents the first record of the species from largemouth bass worldwide.

In Japan, various species of cyprinids (Cypriniformes) serve as the hosts for *A. japonicus* (e.g., Nagasawa et al., 2012, 2013, 2018, 2021; Yamauchi & Shimizu, 2013; Nagasawa, 2017b, 2018; Nagasawa & Miyajima, 2018; Nagasawa & Ishiyama, 2019; see Nagasawa, 2009, 2011...
for the earlier literature), and a non-cyprinid fish, *i.e.*, Amur catfish *Silurus asotus* Linnaeus, 1758 (Siluriformes: Siluridae) is also known as a host for the parasite (Nagasawa et al., 2010; Yamauchi et al., 2011). Largemouth bass is the second species of non-cyprinid host of *A. japonicus* in Japan. Moreover, two species of parasitic copepods, *L. cyprinacea* and *N. japonicus*, have been reported from largemouth bass in Japan (Kasahara, 1962; Nagasawa & Inoue, 2012; Nagasawa & Sato, 2015), and *A. japonicus* is the third crustacean parasite from this fish species. Like *A. japonicus*, both *L. cyprinacea* and *N. japonicus* show no strict host specificity (Nagasawa et al., 2007; Nagasawa & Uyeno, 2012), and these three crustacean parasites can utilize largemouth bass of the North American origin as their host in Japan.

Recently, using GenBank, molecular identification has been applied to *A. japonicus* and its populations (Wadeh et al., 2010; Tandel et al., 2021) but considerable variation is found between populations within the same country and those in different countries (Wadeh et al., 2010). There is, however, the possibility that molecular data of misidentified congeneric species have been registered at GenBank as those of *A. japonicus*. Thus, for better understanding such variations, accurate morphological identification of *A. japonicus* from each collection locality is essential in submitting its sequence data to GenBank.

Acknowledgments

I thank the student of the Faculty of Applied Biological Science, Hiroshima University, Higashi-Hiroshima, for providing me with the specimen of *A. japonicus* reported in this paper. I am grateful to Daisuke Uyeno, Kagoshima University, Kagoshima, for his help with literature. I also gratefully acknowledge two anonymous reviewers for their comments to improve the manuscript.

Literature Cited

Amin, O., 1981. On the crustacean ectoparasites of fishes from Southeast Wisconsin. Transactions of the American Microscopical Society, 100: 142–150.

Arthur, J. R., & Te, B. Q., 2006. Checklist of the Parasites of Fishes of Viet Nam. FAO Fisheries Technical Paper. No. 369/2. vi + 133 pp. FAO, Rome.

Benz, G. W., & Otting, R. L., 1996. Morphology of the fish louse (*Argulus*: Branchiura). Drum and Croaker, 27: 15–22.

Benz, G. W., Otting, R. L., & Case, A., 1995. Redescription of *Argulus melanostictus* (Branchiura: Argulidae), a parasite of California grunion (*Leuresthes tenuis*: Atherinidae), with notes regarding chemical control of *A. melanostictus* in a captive host population. Journal of Parasitology, 81: 754–761.

Chiba, K., Taki, Y., Sakai, K., & Oozeki, Y., 1989. Present status of aquatic organisms introduced into Japan. In: S. S. De Silva, (ed.), Exotic Aquatic Organisms in Asia. Proceedings of the Workshop on Introduction of Exotic Aquatic Organisms in Asia. Asian Fisheries Society Special Publications Vol. 3. Asian Fisheries Society, Manila, pp. 63–70.

Choi, S. D., & Yang, H. C., 1998. Prevalence and extermination of *Argulus japonicus* (Branchiura) parasitic on farmed carp (*Cyprinus carpio*). Bulletin of the Yosu National University, 13: 949–958. (In Korean with English abstract)

Cressey, R. F., 1978. Marine flora and fauna of the Northeastern United States. Crustacea: Branchiura. NOAA Technical Report NMFS Circular, 413: 1–10.

Cruz-Lacierda, E. R., & Nagasawa, K., 2017. Morphology of *Argulus japonicus* Thiele (Crustacea, Branchiura, Argulidae) from koi carp (*Cyprinus carpio*) and goldfish (*Carassius auratus*) (Cypriniformes, Cyprinidae) in Iloilo, Philippines. Philippine Agricultural Scientist, 100: 431–436.

De Zoysa, M., Ryu, S.-Y., Kim, H.-C., & Park, B.
K., 2017. A scanning electron microscopic study of *Argulus japonicus* (Crustacea: Branchiura) isolated from goldfish (*Carassius auratus*) in Korea. Pakistan Journal of Zoology, 49: 727–732.

Dogiel, V. A., & Akhmerov, A. K., 1952. Parasitic Crustacea of Amur River fishes. Uchenye Zapiski Leningradskogo Ordena Gosudarstvennogo Universiteta, 141, Seria Biologii Nauka 28: 268–294. (In Russian)

Ermolenko, A. V., 2004. Parasite fauna from loaches (Cobitidae) of water basins in the Primorsk Territory. Parazitologiya, 38: 53–67. (In Russian with English abstract)

Everts, L., & Avenant-Oldewage, A. 2009. First record of *Argulus coregoni*: a fish ectoparasitic crustacean from Malaysia and additional notes on the morphology. Malaysian Applied Biology, 38: 61–71.

Gusev, A.V., 1987. Phylum Arthropoda. In: O. N. Bauer, (ed.), Key to the Parasites of Freshwater Fishes of the Fauna of the USSR. Part 3. Nauka, Leningrad, pp. 378–524. (In Russian)

Han, K.-S., Jung, Y.-M., Park, T.-W., Lim, C.-W., Song, H.-J., & Do, H.-K., 1998. Experimental infection of *Argulus japonicus* in freshwater fishes. Korean Journal of Veterinary Service, 21: 431–437. (In Korean with English abstract)

Hoffman, G. L., 1999. Parasites of North American Freshwater Fishes. Second Edition. xx + 539 pp. Comstock Publishing Associates, Cornell University Press, Ithaca and London.

Hoshina, T., 1950. Über eine *Argulus*-Art im Salmonidentiche. Bulletin of the Japanese Society of Scientific Fisheries, 16: 239–243.

Hsiao, S. C., 1950. Copepods from Lake Erh Hai, China. Proceedings of the United States National Museum, 100: 161–299.

Humes, A. G., & Gooding, R. U., 1964. A method for studying the external anatomy of copepods. Crustaceana, 6: 238–240.

Idris, F., Kismiyati, & Mahasri, G., 2020. Different concentration influence of *Moringa oleifera* leaf aqueous extract immersion against *Argulus japonicus* egg damage. IOP Conference Series: Earth and Environmental Science, 441: 012131. doi:10.1088/1755-1315/441/1/012131

Inaya, A. F. N., Kismiyati, & Subekti, S., 2015. The influence of paraya seed’s [sic] (*Carica papaya*) toward the damage *Argulus japonicus*’s [sic] eggs. Jurnal Ilmiah Perikanan dan Kelautan, 7: 159–164. (In Indonesian with English abstract)

Institute of Hydrobiology, Hubei Province, (ed.), 1973. [An Illustrated Guide to the Fish Disease and Causative Pathogenic Fauna and Flora in the Hubei Province]. 456 pp. Science Press, Beijing. (In Chinese)

Kasahara, S., 1962. Studies on the biology of the parasitic copepod *Lernaea cyprinacea* Linnaeus and the methods for controlling this parasite in fish-culture ponds. Contributions of the Fisheries Laboratory, Faculty of Agriculture, University of Tokyo, 3: 103–196. (In Japanese with English abstract)

Kuang, P., & Qian, J., 1991. Parasitic Crustacea of Freshwater Fishes. In: Editorial Committee of Fauna Sinica, Academia Sinica, (ed.), Economic Fauna of China. iv + 199 pp. Science Press, Beijing. (In Chinese)

Ky, H., & Te, B. Q., 2007. [Parasites of Freshwater Fishes of Vietnam]. 360 pp. Scientific and Technical Publishing House, Hanoi. (In Vietnamese)

Leong, T. S., 1986. Two ectoparasitic crustaceans belonging to the family Argulidae (Crustacea: Branchiura) in Malaysian freshwater fishes. Malayan Nature Journal, 39: 157–164.

McAllister, C. T., Poly, W. J., Cloutman, D. G., Robison, H. W., & Hill, M. K., 2016. *Argulus* spp. (Crustacea: Branchiura) on fishes from Arkansas and Oklahoma: new geographic distribution records. Proceedings of the Oklahoma Academy of Science, 96: 70–72.

Meehean, O. L., 1940. A review of the parasitic Crustacea of the genus *Argulus* in the collections of the United States National Museum. Proceedings of the United States National Museum, 88: 459–522.
ARGULUS JAPONICUS FROM LARGEMOUTH BASS

Nagasawa, K., 2009. Synopsis of branchiurans of the genus Argulus (Crustacea, Argulidae), ectoparasites of freshwater and marine fishes in Japan (1900–2009). Bulletin of the Biogeographical Society of Japan, 64: 135–148. (In Japanese with English abstract)

Nagasawa, K., 2011. The biology of Argulus spp. (Branchiura, Argulidae) in Japan: a review. In: A. Asakura, R. T. Bauer, A. H. Hines, M. Thiel, C. Held, C. Schubart, J. M. Furse, J. Coughran, A. Baeza, K. Wada, T. Yamaguchi, T. Kawai, S. Ohtsuka, M. V. Archdale, & M. Moriyasu, (eds.), New Frontiers in Crustacean Biology, Proceedings of the TCS Summer Meeting, Tokyo, 20–24 September 2009. Crustacean Monographs, 15: 15–21.

Nagasawa, K., 2017a. A checklist of the parasites of three species of centrarchids (bluegill, largemouth bass, and smallmouth bass) in Japan (1962–2017). Biosphere Science, 56: 105–120. (In Japanese with English abstract)

Nagasawa, K., 2017b. Argulus japonicus (Branchiura: Argulidae) parasitic on a freshwater minnow, Opsariichthys platypus (Cyprinidae): the second record from Shikoku, western Japan. Biogeography, 19: 150–152.

Nagasawa, K., 2018. Argulus japonicus (Branchiura: Argulidae) parasitic on a koi carp, Cyprinus carpio, reared in Hokkaido, northern Japan. Bulletin of the Biogeographical Society of Japan, 73: 201–204. (In Japanese with English abstract)

Nagasawa, K., & Hirose, M., 2021 Marine fish parasite Argulus caecus (Crustacea: Branchiura: Argulidae) accidentally collected from a fixed net caught squid in northern Japan. Species Diversity, 26: 289–296.

Nagasawa, K., & Inoue, A., 2012. Variations in the infection level of Neoergasilus japonicus (Copepoda: Ergasilidae) between freshwater fishes at different sites in the Ashida River system, western Japan. Zoosymposia, 8: 106–116.

Nagasawa, K., & Ishiyama, N., 2019. First record of Argulus japonicus (Branchiura: Argulidae) from Ishikawa Prefecture, central Japan, with a note on its infection on common carp and koi carp. Nature of Kagoshima, 46: 197–201. (In Japanese with English abstract)

Nagasawa, K., & Miyat, S., Inoue, A., & Umino, T., 2007. New host records for Lernaea cypniacea (Copepoda), a parasite of freshwater fishes, with a checklist of the Lernaeidae in Japan (1915–2007). Journal of the Graduate School of Biosphere Science, Hiroshima University, 46: 21–33.

Nagasawa, K., Miyat, S., Inoue, A., & Umino, T., 2009. Argulus japonicus Thiele and A. coregoni Thorell (Crustacea: Branchiura: Argulidae) from western Honshu, Japan. Journal of the Graduate School of Biosphere Science, Hiroshima University, 48: 43–47. (In Japanese with English abstract)
Nagasawa, K., Katahira, H., & Mizuno, K., 2010. New host and locality of the fish ectoparasite *Argulus japonicus* (Crustacea, Branchiura, Argulidae) in Japan, with a note on its heavy infection. Biogeography, 12: 17–20.

Nagasawa, K., Murase, T., Yanagi, S., & Maeno, K., 2012. *Argulus japonicus* Thiele (Crustacea: Branchiura, Argulidae) from Kyushu, western Japan, with a note on its heavy infection of koi carp (*Cyprinus carpio*) and Japanese crucian carp (*Carassius cuvieri*). Biosphere Science, 51: 15–20. (In Japanese with English abstract)

Nagasawa, K., Hanazaki, K., & Morimoto, S., 2013. Two branchiuran crustaceans (*Argulus coregoni* Thorell and *A. japonicus* Thiele) from Kyoto and Osaka prefectures, central Japan. Biosphere Science, 52: 59–64. (In Japanese with English abstract)

Nagasawa, K., Nitta, M., & Kawai, K., 2018. *Argulus japonicus* (Branchiura: Argulidae) parasitic on a lakeweed chub, *Ischikauia steenackeri* (Cyprinidae), in northern Kyushu, Japan. Biogeography, 20: 122–124.

Nakazawa, K., 1914. [A study on *Argulus japonicus*, a louse of goldfish]. Journal of the Imperial Fisheries Institute, 9: 306–316. (In Japanese)

Nishiguchi, R., 2007. [A survey at the Kako River]. Hyogo Biology, 13: 151–154. (In Japanese)

Pereira, F. W., & Vitule, J. R. S., 2019. The largemouth bass *Micropterus salmoides* (Lacepède, 1802): impacts of a powerful freshwater fish predator outside of its native range. Reviews in Fish Biology and Fisheries, 29: 639–652.

Poly, W. J., 1998. New state, host, and distribution records of the fish ectoparasite, *Argulus* (Branchiura), from Illinois (U.S.A.). Crustaceana, 71: 1–8.

Poly, W. J., 2008. Global diversity of fishlice (Crustacea: Branchiura: Argulidae) in freshwater. Hydrobiologia, 595: 209–212.

Smirnova, T. S., 1971. Parasitic Crustacea from the fishes of the river Amur’s basin. Parasitology Paper, 25: 177–195. (In Russian)

Sokolov, S. G., Shedko, M. B., Protasov, E. N., & Frolov, E. V., 2012. Parasites of the inland water fishes of Sakhalin Island. In: V. V. Bogatov, V. Yu. Barkalov, A. S. Lelej, E. A. Makarchenko, & S. Yu. Storozhenko, (eds.), Flora and Fauna of North-West Pacific Islands (Materials of International Kuril Island and International Sakhalin Island Projects). Dalnauka, Vladivostok, pp. 179–216. (In Russian with English abstract)

Takamura, K., 2007. Performance as a fish predator of largemouth bass [*Micropterus salmoides* (Lacepède)] invading Japanese freshwaters: a review. Ecological Research, 22: 940–946.

Thiele, J., 1900. Diagnosen neuer Arguiden-Arten. Zoologischer Anzeiger, 23: 46–48.

Thiele, J., 1904. Beiträge zur Morphologie der Arguliden. Mitteilungen aus dem Zoologischen Museum in Berlin II, 4: 1–51, 4 pls.

Uyeno, D., Miyazaki, W., & Nagasawa, K., 2017. First record of the fish louse *Argulus quadrirstratus* (Branchiura: Arguloida: Argulidae) from Japanese waters, with three new host records. Species Diversity, 22: 37–44.

Wadeh, H., Yang, J. W., & Li, G. Q., 2008. Ultrastructure of *Argulus japonicus* Thiele, 1900 (Crustacea: Branchiura) collected from Guangdong, China. Parasitology Research,
ARGULUS JAPONICUS FROM LARGEMOUTH BASS

Yamauchi, T., & Shimizu, M., 2013. New host and distribution records for the freshwater fish ectoparasite *Argulus japonicus* (Crustacea: Branchiura: Argulidae). Comparative Parasitology, 80: 136–137.

Yamauchi, T., Nakano, H., & Nagasawa, K., 2011. Infection with *Argulus japonicus* on Amur catfish *Silurus asotus* in an aquarium. Japanese Journal of Limnology, 72: 211–214. (In Japanese with English abstract)

Yang, S., 2009. Branchiura. In: D. Song, & S. Yang, (eds.), The Fauna of Hebei, China. Crustacea. Hebei Science and Technology Publishing House, Shijiazhuang, pp. 178–184. (In Chinese)

Addresses
(KN) Graduate School of Integrated Sciences for Life, Hiroshima University, 1–4–4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739–8528, Japan (KN’s present address) Aquaparasitology Laboratory, 365–61 Kusanagi, Shizuoka 424–0886, Japan

E-mail address of corresponding author
ornatus@hiroshima-u.ac.jp

102: 765–770.

Wadeh, H., Alsarakibi, M., & Li, G., 2010. Analysis of genetic variability within *Argulus japonicus* from representatives of Africa, Middle East, and Asia revealed by sequences of three mitochondrial DNA genes. Parasitology Research, 107: 547–553.

Wang, K.-N., 1958. Preliminary studies on four species of *Argulus* parasitic on fresh-water fishes taken from the area between Nanking and Shanghai, with notes on the early larval development of *Argulus chinensis*. Acta Zoologica Sinica, 10: 322–335. (In Chinese with English abstract)

Wilson, C. B., 1944. Parasitic copepods in the United States National Museum. Proceedings of the United States National Museum, 94: 529–582, pls. 20–34.

Yamaguti, S., 1937. On two species of *Argulus* from Japan. In: R.-E. S. Schulz, & M. P. Gnyedina, (eds.), Papers on Helminthology Published in Commemoration of the 30 Year Jubileum of the Scientific, Educational and Social Activities of the Honoured Worker of Science K. J. Skrabin, M. Ac. Sci. and of 15th Anniversary of All-Union Institute of Helminthology. Lenin All-Union Academy of Agricultural Science, Moscow, pp. 781–784.