Facile Synthesis of Fe-Doped Hydroxyapatite Nanoparticles from Waste Coal Ash: Fabrication of a Portable Sensor for the Sensitive and Selective Colorimetric Detection of Hydrogen Sulfide

Negar Alizadeh* and Abdollah Salimi

Cite This: ACS Omega 2022, 7, 42865−42871

ABSTRACT: In this work, a new strategy has been reported for the portable detection of H$_2$S based on Fe-doped hydroxyapatite nanoparticles (Fe-HA) using a colorimetric paper test strip integrated with a smartphone platform. Fe-HA NPs were fabricated successfully via recycling waste coal ash. The obtained probe response toward H$_2$S was through a distinct visual color change. The sensing mechanism is based on the displacement reaction, in which PO$_4^{3-}$ is replaced by S2-. The prepared test strip shows high selectivity, and the other compounds containing thiol and sulfur anion have a negligible effect on the detection of H$_2$S. The designed scheme is applied for H$_2$S detection in the concentration range of 0.5−130 ppm with a limit of detection of 70 ppb. Furthermore, such a disposable sensor was used as a practical system for monitoring H$_2$S in actual water samples, suggesting the promising potential of this platform for suitable analysis of H$_2$S in an aqueous environment.

INTRODUCTION

Owing to increasing population and lack of raw materials, numerous studies are acting on reusing industrial waste as a source for the synthesis of nanomaterials. Coal ash is a major byproduct of coal combustion produced in large quantities during the energy production in the power plants. This solid waste is mainly disposed of in lagoons and landfill, which lead to groundwater and soil pollution. In recent years, numerous works have been conducted to recycle coal ash including manufacturing cement and ceramics, geopolymer production, zeolite synthesis, and stabilizing soils. However, compared to the amount of waste ash generated, the recycling scale is still low. Thus, it is required to find more ways to exploit the potential applications of this byproduct. Recently, many efforts have been made to synthesize diverse nanomaterials from fly ash such as iron oxide, magnesium oxide, mesoporous silica, and carbon nanofiber. Abdelbasir et al. synthesized nanocuprous oxide from waste electric cables for the electrochemical detection of dopamine. An electrochemical sensor was prepared by anchoring cuprous oxide nanoparticles to flexible graphene electrode. In another study, an aluminosilicate framework was prepared from agro-waste material and introduced as a substrate and hosting material for AuNi bimetallic nanoparticles. The aluminosilicate framework possesses large porosity and high specific surface area for the construction of a suitable catalyst. The designed
Scheme 1. Schematic Illustration of (a) the Synthetic Process of Fe-Doped HA Nanoparticles and (b) the Colorimetric Detection of H₂S Using Fe-Doped HA Nanoparticles

Detection techniques are accurate and sensitive, but, the application of those methods is hindered because they mostly rely on liquid media.30 Lead acetate paper is a commercial sensor widely used for the colorimetric detection of H₂S. Upon the addition of H₂S, the white paper turns black from the formation of PbS.31,32 Over other analytical methods, paper test strips have rapidly developed in different areas because of low-cost and easy-to-use analytical tools.33 Although this commercial test strip is popular and readily available, it has various drawbacks including the toxicity of lead metal and high detection limit.34 Hence, a sensitive and green probe for the colorimetric detection of H₂S in the solid phase is highly desirable. Hydroxyapatite [Ca₁₀(PO₄)₆(OH)₂, HA] is an excellent biocompatible and low toxic nanostructure and has gained greater attention for construction of sensors. For instance, HA has been used for the detection of glucose,35 hydrogen peroxide,36 carbon dioxide,37 cyanide38 and phenolic compounds.39 However, HA has been not reported to date for the detection of H₂S.

Here, a very simple method is reported for the synthesis of Fe-HA nanoparticles to be used in colorimetric test strips for smartphone-based detection of H₂S. The application of smartphones as a portable color sensor for chemical analysis reduces the expense and simplifies the operation.40 In the presence of H₂S, the color of the paper strip turned green. This obvious color change could be easily observed by the naked eyes and quantitively monitored by the smartphone. The detection mechanism was proposed as a displacement reaction between PO₄³⁻ and S²⁻. In contrast to the neurotoxic commercial lead (II) acetate-based test papers, this nanomaterial is used due to its non-toxic properties. The sensing properties of the paper strips were examined against increasing H₂S concentration between 0.5 and 130 ppm with a LOD of 70 ppb. Furthermore, the experimental results of the selectivity test display that the colorimetric sensor is not affected by thiol-containing interferences. Considering these characteristics, this proposed sensor a simple, portable, and inexpensive qualitative detector of H₂S for practical applications.

2. EXPERIMENTAL SECTION

2.1. Materials and Instruments. Sodium sulfide hydrate (Na₂S·xH₂O), monosodium phosphate (NaH₂PO₄), and sodium hydroxide (NaOH) were analytical grades purchased from Sigma-Aldrich. All solutions were supplied by deionized water from a Milli-Q Plus system (Millipore). Scanning electron microscopy (SEM) images were recorded on MIRA3 TESCAN HV: 20.0 kV (Czech Republic). X-ray diffraction (XRD) patterns were acquired by a Bruker D8 Advance diffractometer using a copper source and a general area detector diffraction system (GADDS) (Netherlands). X-ray photoelectron spectroscopy (XPS) was obtained by a Kratos AXIS Supra spectrometer equipped with a monochromatic Al K (alpha) source (15 mA, 15 kV). The FT-IR spectra were recorded by a SPECTROD 250-Analytik Jena spectrophotometer (Germany).

2.2. Synthesis of Fe-HA Nanoparticles. The coal ashes received from the power plant were used as a precursor for the preparation of Fe-HA NPs (Scheme 1a). Ca²⁺ and (PO₄)³⁻ ions arranged around the OH⁻ ion in a hexagonal crystal structure. 10 calcium cations decorated in two non-equivalent positions with relative abundance of Ca(I)/Ca(II) = 2/3 and surrounded by phosphates. This arrangement in hexagonal unit cells makes HA a stable and flexible structure for cation substitution.41 Iron-substituted HA was synthesized by a facile method at room temperature. First, 1.0 g of coal ash was dispersed in 3 mL of water and then 3 mL of HCl was added as the leaching agent. The coal ashes contain high concentrations of metallic cations, particularly Ca²⁺ and Fe³⁺. The mixed slurry was stirred at 60 °C for 1 h. After leaching, the sample was centrifuged and the liquid phase was separated. Here, 20 mL of NaH₂PO₄ solution (0.5 M, pH = 10) was slowly added to the leachate taken to precipitate out the cations. After vigorous stirring for 15 min, the mixture was washed with deionized water several times. Finally, the precipitate product was dried and stored for further analysis.

2.3. Procedure for Colorimetric Studies. The stock solution of Fe-HA NPs (3 mM) was prepared in deionized water. A sheet of filter paper was cut into 2 × 1 pieces, and each piece was immersed in Fe-HA aqueous solution. The colorimetric tests were performed by dropping different concentrations of Na₂S aqueous solutions on paper strips. Afterward, a photograph was taken with the smartphone (Galaxy A31) and the green color intensity of each piece was measured using Color Picker application installed on the smartphone. The registered color intensity of papers was utilized to make the calibration curve which defines the analytical performance of the designed sensor.

42866
For real sample analysis, the water samples of the tap water and river used to prepare Na$_2$S solution. After filtering, samples were spiked with different concentrations of Na$_2$S solution. The color intensity of all samples was recorded, and concentrations were calculated using the standard curve method.

3. RESULTS AND DISCUSSION

3.1. Characterization of Fe-HA NPs.

To identify the structure of the Fe-HA nanocomposites, the SEM image is presented in Figure 1 A, B. The EDS analysis presented the atomic compositions of the prepared Fe-HA NPs in Figure 1C. The result reveals that the Fe/Ca atomic ratio value is 0.57. It displays spherical morphology and an average size of about 20 nm. Powder XRD patterns were recorded over a 2θ range between 20 and 60$^\circ$. As shown in Figure 1 D, the XRD peaks showed that the system crystallizes in the hexagonal $P6_3/m$ HA structure, matching the standard JCPDS card (no. 09−0432). No signals were observed related to metallic iron or iron oxide phases. The XPS spectra of the Fe-HA are shown in Figure 2, with Ca 2p, O 1s, and P 2p signals at 348, 531, and 135 eV, respectively. The chemical state of Ca, O, and P elements are accordance with the previous reports. The binding energies at 707 and 720.6 eV with an energy difference of 13.5 eV are attributed to Fe 2p$_{3/2}$ and Fe 2p$_{1/2}$ corresponding to the +3 oxidation state. The FTIR graph

![Figure 1](http://pubs.acs.org/journal/acsodf)

Figure 1. (A,B) SEM images and (C) EDS and (D) XRD pattern of Fe-doped HA nanoparticles.
of Fe-HA was recorded and shown in Figure 3. A broad peak between 3250 and 3450 illustrated the presence of adsorbed water molecules in the Fe-HA. The bands at 663 and 3550 cm\(^{-1}\) referred to the bending \((\nu_1)\) and stretching \((\nu_s)\) vibrational modes of the OH\(^-\) group, respectively. Peaks at 524 and 676 cm\(^{-1}\) were due to the triply degenerated \((\nu_4)\) bending modes of O–P–O phosphate bonds. The bands at 1060 and 1134 cm\(^{-1}\) were due to the triply degenerated \((\nu_3)\) asymmetric stretching mode of the P–O bonds.\(^{42,46}\)

3.2. Colorimetric Detection of H\(_2\)S by Fe-HA NPs. The colorimetric behavior of Fe-HA NPs was evaluated on the test strip by naked-eye detection and smartphone. Upon H\(_2\)S addition, the color of the test strip turned from yellow to green (Scheme 1b).

The detection mechanism is based on the replacement of PO\(_4^{3-}\) by S\(^2-\) and the formation of the Fe\(_2\)S\(_3\) product. The green solid of Fe\(_2\)S\(_3\) produced as follows

\[
\text{Fe}^{3+} + 3\text{S}^{2-} \rightarrow \text{Fe}_2\text{S}_3
\]

As seen in Figure 4A, with the increase in H\(_2\)S concentration, the probe response increased. The curves of the dynamic response of the Fe-HA NP sensor indicated nearly linear increase from 0.5 ppm to 130 ppm. The detection limit was measured as low as 70 ppb in aqueous solution. In comparison with other previously sensing platform for detection of H\(_2\)S, the proposed assay had a wide linear range.
and low detection limit, which confirms the good potential of this method for the sensing of H$_2$S (Table 1).

In order to investigate the selectivity of the colorimetric sensor for the detection of H$_2$S, competitive species (GSH, cysteine, ...) were dropped onto the paper sensor platform to observe the color intensity changes under the same conditions. Figure 4B showed that all interference compounds of the 10-fold concentration had no effect on the colorimetric sensor.

Therefore, Fe-HA NPs would be appropriate for the detecting of H$_2$S in complex samples.

The practical applications of Fe-HA NPs were checked on the test papers. To this end, a paper sensor was prepared by immersing a filter paper in the Fe-HA NP solution. When the filter paper dried, river water with different concentrations of H$_2$S was dripped on the Fe-HA NPs@test paper. As can be seen in Table 2, the recovery and RSD ranges were 97−103.5% and 0.9−2.6%, respectively, indicating the excellent potential of this colorimetric method for H$_2$S detection in real water samples. Furthermore, the colorimetric response of Fe-HA NPs for H$_2$S detection was also tested in various pH solutions (Figure 4C). It can be seen that in the presence of H$_2$S, the color change of Fe-HA was increased with the rise of pH level and reached a maximum at pH 8. These results indicated that alkaline reaction condition is better for the formation of iron sulfide.

4. CONCLUSIONS

In summary, for the first time, Fe-HA NPs were successfully synthesized from coal ash by a simple method. The synthesized Fe-HA NPs were applied for the fabrication of a novel colorimetric paper-based platform for specific detection of H$_2$S. The interaction between H$_2$S and Fe-HA NPs on colorimetric paper strips makes a color change from yellow to green. The sensing mechanism was on the basis of the anion replacement reaction between Fe-HA and H$_2$S. Quantitative detection of H$_2$S on the colorimetric paper test strip obtained from a smartphone application (Color picker). With the increase of H$_2$S concentration (0.5−130 ppm), the colorimetric response of Fe-HA NPs was gradually increased, and the LOD was obtained as 70 ppb. Furthermore, this colorimetric sensor applies to monitoring H$_2$S in environmental real samples. Taken together, the developed paper sensor integrated with the smartphone, provide simple, low cost, portable, and easy operation strategy for on-site detection of H$_2$S.

Table 1. Comparison of the Sensing Properties of Fe-Doped HA NPs with Other Sensors for the Detection of H$_2$S

sensing material	linear range (ppm)	detection limit (ppm)	reference
ZnO/CuO	1−20	1	48
Dye-loaded nanofiber	1−5	1	49
CuO−NiO	10−100	10	50
TiO2−Fe2O3	1−200	1	51
ZnFe$_2$O$_4$	1−50	0.5	52
MWCNTs-COOH	up to 16	0.3	53
Fe-doped HA NPs	0.5−130	0.07	this work

Table 2. Detection of H$_2$S in Real Water Samples

samples	Spiked (ppm)	Measured (ppm)	Recovery (%)	RSD (%)
tap water 2	1.95	97	1.8	
10	10.11	101.1	2.6	
50	100.4	103.5	1.1	
river water 2	2.07	103.5	0.9	
10	10.08	100.8	2.3	
50	101.1	101.1	1.7	

Figure 4. (A) Colorimetric response of the sensor to various concentrations of H$_2$S analyzed by the smartphone: (a) 0.5, (b) 15, (c) 40, (d) 70, (e) 100, and (f) 130 (ppm). (B) Selectivity of the proposed sensor toward different interferences including (1) Na$_2$S$_2$O$_3$, (2) GSH, (3) L-cysteine, (4) N-cysteine, (5) Na$_2$S$_3$O$_7$, (6) Na$_2$SO$_3$, (7) NaSCN, (8) methionine, and (9) H$_2$S and (C) the effect of pH water toward Fe-doped HA response.
Y. A green and facile synthesis of ordered mesoporous nanosilica using coal fly ash.

Abdollah Salimi — Department of Chemistry, University of Kurdistan, Sanandaj 66177-15175, Iran; Research Center for Nanotechnology, University of Kurdistan, Sanandaj 66177-15175, Iran

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.2c04905

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors acknowledge financial support from the Research Office of University of Kurdistan (grant number 4.1261) and Iranian Nanotechnology Initiative Funds for research on microfluidic-based sensors.

REFERENCES

(1) Beltrao-Nunes, A.-P.; Sennour, R.; Arus, V.-A.; Anoma, S.; Pires, M.; Bouazizi, N.; Roy, R.; Azzouz, A. CO2 capture by coal ash-derived zeolite-roles of the intrinsic basicity and hydrophilic character. J. Alloys Compd. 2019, 778, 866–877.

(2) Collins, F.; Rozhkova, A.; Outram, J. G.; Millar, G. J. A critical review of waste resources, synthesis, and applications for Zeolite LTA. Microporous Mesoporous Mater. 2020, 291, 109667.

(3) Pedrolo, D. R. S.; de Menezes Quines, L. K.; de Souza, G.; Marcilio, N. R. Synthesis of zeolites from Brazilian coal ash and its application in SO2 adsorption. J. Environ. Chem. Eng. 2017, 5, 4788–4794.

(4) Lee, Y.-R.; Soe, J. T.; Zhang, S.; Ahn, J.-W.; Park, M. B.; Ahn, W.-S. Synthesis of nanoporous materials via recycling coal fly ash and other solid wastes: A mini review. Chem. Eng. J. 2017, 317, 821–843.

(5) Ahmaruzzaman, M. A review on the utilization of fly ash. Prog. Energy Combust. Sci. 2010, 36, 327–363.

(6) Lee, J.; Lee, Y. H.; Jones, K.; Sharek, E.; Pascall, M. A. Antimicrobial packaging of raw beef, pork and turkey using silver-zeolite incorporated into the material. Int. J. Food Sci. Technol. 2011, 46, 2382–2386.

(7) Andini, S.; Cioffi, R.; Colangelo, F.; Grieco, T.; Montagnaro, F.; Santoro, L. Coal fly ash as raw material for the manufacture of geopolymer-based products. Waste management 2008, 28, 416–423.

(8) Kumpiene, J.; Lagerkvist, A.; Maurice, C. Stabilization of Pb-and Cu-contaminated soil using coal fly ash and peat. Environ. Pollut. 2007, 145, 365–373.

(9) Qian, B.; Liu, C.; Lu, J.; Jian, M.; Hu, X.; Zhou, S.; Hosseini, T.; Etschmann, B.; Zhang, X.; Wang, H.; Zhang, L. Synthesis of in-situ Al3+-defected iron oxide nanoflakes from coal ash: A detailed study on the structure, evolution mechanism and application to water remediation. J. Hazard. Mater. 2020, 395, 122696.

(10) Qian, B.; Hosseini, T.; Zhang, X.; Liu, Y.; Wang, H.; Zhang, L. Coal waste to two-dimensional materials: Fabrication of α-Fe2O3 nanosheets and MgO nanosheets from brown coal fly ash. ACS Sustainable Chem. Eng. 2018, 6, 15982–15987.

(11) Yan, F.; Jiang, J.; Tian, S.; Liu, Z.; Shi, J.; Li, K.; Chen, X.; Xu, Y. A green and facile synthesis of ordered mesoporous nano silica using coal fly ash. ACS Sustainable Chem. Eng. 2016, 4, 4654–4661.

(12) Hintho, N.; Shaljkeen, A.; Masenda, H.; Naidoo, D.; Billing, D.; Franklyn, P.; Durbach, S. Direct synthesis of carbon nanofibers from South African coal fly ash. Nanoscale research letters 2014, 9, 387–11.
(32) Papanikolaou, N. C.; Hatziidakis, E. G.; Belivanis, S.; Tsanakakis, G. N.; Tsatsakis, A. M. Lead toxicity update. A brief review. Medical science monitor 2005, 11, RA329–36.
(33) Nguyen, T.-T. T.; Huy, B. T.; Lee, Y.-I. Disposable colorimetric paper-based probe for the detection of amine-containing gases in aquatic sediments. ACS omega 2019, 4, 12665–12670.
(34) Carpenter, T. S.; Rosolina, S. M.; Xie, Z.-L. Quantitative, colorimetric paper probe for hydrogen sulfide gas. Sensors and Actuators B: Chemical 2017, 253, 846–851.
(35) Zhang, Q.; Chen, C.; Xie, Q.; Liu, P. Electrodeposition of a biocompatible hydroxyapatite matrix to immobilize glucose oxidase for sensitive glucose biosensing. Microchim. Acta 2009, 165, 223–229.
(36) Wang, B.; Zhang, J.-J.; Pan, Z.-Y.; Tao, X.-Q.; Wang, H.-S. A novel hydrogen peroxide sensor based on the direct electron transfer of horseradish peroxidase immobilized on silica–hydroxyapatite hybrid film. Biosensors and Bioelectronics 2009, 24, 1141–1145.
(37) Mene, R. U.; Mahabole, M. P.; Khairnar, R. S. Surface modified hydroxyapatite thick films for CO2 gas sensing application: Effect of swift heavy ion irradiation. Radiat. Phys. Chem. 2011, 80, 682–687.
(38) Wang, S.; Lei, Y.; Zhang, Y.; Tang, J.; Shen, G.; Yu, R. Hydroxyapatite nanoarray-based cyanide biosensor. Analytical biochemistry 2010, 398, 191–197.
(39) Lu, L.; Zhang, L.; Zhang, X.; Huan, S.; Shen, G.; Yu, R. A novel tyrosinase biosensor based on hydroxyapatite–chitosan nanocomposite for the detection of phenolic compounds. Analytica chimica acta 2010, 665, 146–151.
(40) Feng, W.; Wan, Z.; Daniels, J.; Li, Z.; Xiao, G.; Yu, J.; Xu, D.; Guo, H.; Zhang, D.; May, E. F.; Li, G. Synthesis of high quality zeolites from coal fly ash: Mobility of hazardous elements and environmental applications. Journal of Cleaner Production 2018, 202, 390–400.
(41) Carrera, K.; Huerta, V.; Orozco, V.; Matutes, J.; Fernández, P.; Graeve, O.; Herrera, M. Formation of vacancy point-defects in hydroxyapatite nanobelts by selective incorporation of Fe1+ ions in Ca (II) sites. A CL and XPS study. Materials Science and Engineering: B 2021, 271, 115308.
(42) Jose, S.; Senthilkumar, M.; Elayaraja, K.; Haris, M.; George, A.; Raj, A. D.; Sundaram, S. J.; Bashir, A.; Maaza, M.; Kavijarasu, K. Preparation and characterization of Fe doped n-hydroxyapatite for biomedical application. Surfaces and Interfaces 2021, 25, 101185.
(43) Chang, M. C.; Tanaka, J. XPS study for the microstructure development of hydroxyapatite–collagen nanocomposites cross-linked using glutaraldehyde. Biomaterials 2002, 23, 3879–3885.
(44) Kaciulis, S.; Mattogno, G.; Pandolfi, L.; Cavalli, M.; Gnappi, G.; Montenero, A. XPS study of apatite-based coatings prepared by sol–gel technique. Appl. Surf. Sci. 1999, 151, 1–5.
(45) Hou, C.-H.; Hou, S.-M.; Hsueh, Y.-S.; Lin, J.; Wu, H.-C.; Lin, F.-H. The in vivo performance of biomagnetic hydroxyapatite nanoparticles in cancer hyperthermia therapy. Biomaterials 2009, 30, 3956–60.
(46) Balakrishnan, S.; Padmanabhan, V. P.; Kulandaivelu, R.; Sankara Narayanan Nellaiappan, T. S. N.; Sagadevan, S.; Paiman, S.; Mohammad, F.; Al-Lohedan, H. A.; Obulapuram, P. K.; Oh, W. C. Influence of iron doping towards the physicochemical and biological characteristics of hydroxyapatite. Ceram. Int. 2021, 47, 5061–5070.
(47) Douglas, T.; Dickson, D. P.; Betteridge, S.; Charnock, J.; Garner, C. D.; Mann, S. Synthesis and structure of an iron (III) sulfol-ferritin bioinorganic nanocomposite. Science 1995, 269, 54–57.
(48) Li, D.; Qin, L.; Zhao, P.; Zhang, Y.; Liu, D.; Liu, F.; Kang, B.; Wang, Y.; Song, H.; Zhang, T.; Lu, G. Preparation and gas-sensing performances of ZnO/CuO rough nanotubular arrays for low-working temperature H2S detection. Sensors and Actuators B: Chemical 2018, 254, 834–841.
(49) Kim, D.-H.; Cha, J.-H.; Lim, J. Y.; Bae, J.; Lee, W.; Yoon, K. R.; Kim, C.; Jang, J.-S.; Hwang, W.; Kim, I.-D. Colorimetric dye-loaded nanofiber yarn: Eye-readable and weavable gas sensing platform. ACS Nano 2020, 14, 16907–16918.