A structure theorem on non-homogeneous linear equations in Hilbert spaces

BIAGIO RICCERI

Abstract: A very particular by-product of the result announced in the title reads as follows: Let \((X, \langle \cdot, \cdot \rangle)\) be a real Hilbert space, \(T: X \to X\) a compact and symmetric linear operator, and \(z \in X\) such that the equation \(T(x) - \|T\| x = z\) has no solution in \(X\). For each \(r > 0\), set \(\gamma(r) = \sup_{x \in S_r} J(x)\), where \(J(x) = \langle T(x) - 2z, x \rangle\) and \(S_r = \{ x \in X : \|x\|^2 = r \}\). Then, the function \(\gamma\) is \(C^1\), increasing and strictly concave in \([0, +\infty[\), with \(\gamma'(0, +\infty[) = \|T\|, +\infty\]; moreover, for each \(r > 0\), the problem of maximizing \(J\) over \(S_r\) is well-posed, and one has

\[T(\hat{x}_r) - \gamma'(r)\hat{x}_r = z \]

where \(\hat{x}_r\) is the only global maximum of \(J|_{S_r}\).

Keywords: linear equation; Hilbert space; eigenvalue; well-posedness.

Here and in the sequel, \((X, \langle \cdot, \cdot \rangle)\) is real Hilbert space. For each \(r > 0\), set

\[S_r = \{ x \in X : \|x\|^2 = r \} \]

In [1], we established the following result (with the usual conventions \(\sup \emptyset = -\infty\), \(\inf \emptyset = +\infty\)):

THEOREM A ([1], Theorem 1). - Let \(J : X \to \mathbb{R}\) be a sequentially weakly continuous \(C^1\) functional, with \(J(0) = 0\).

Set

\[\rho = \limsup_{\|x\| \to +\infty} \frac{J(x)}{\|x\|^2} \]

and

\[\sigma = \sup_{x \in X \setminus \{0\}} \frac{J(x)}{\|x\|^2} \].

Let \(a, b\) satisfy

\[\max\{0, \rho\} \leq a < b \leq \sigma \].

Assume that, for each \(\lambda \in]a, b[\), the functional \(x \to \lambda \|x\|^2 - J(x)\) has a unique global minimum, say \(\hat{y}_\lambda\). Let \(M_a\) (resp. \(M_b\) if \(b < +\infty\) or \(M_b = \emptyset\) if \(b = +\infty\)) be the set of all global minima of the functional \(x \to a \|x\|^2 - J(x)\) (resp. \(x \to b \|x\|^2 - J(x)\) if \(b < +\infty\)). Set

\[\alpha = \max \left\{ 0, \sup_{x \in M_b} \|x\|^2 \right\} \],
\[\beta = \inf_{x \in M_a} \|x\|^2 \]

and, for each \(r > 0 \),

\[\gamma(r) = \sup_{x \in S_r} J(x) \]

Finally, assume that \(J \) has no local maximum with norm less than \(\beta \).

Then, the following assertions hold:

(\(a_1 \)) the function \(\lambda \to g(\lambda) := \|\hat{y}_\lambda\|^2 \) is decreasing in \(]a, b[\) and its range is \(]\alpha, \beta[\);

(\(a_2 \)) for each \(r \in]\alpha, \beta[\), the point \(\hat{x}_r := \hat{y}_{g^{-1}(r)} \) is the unique global maximum of \(J_{|S_r} \) and every maximizing sequence for \(J_{|S_r} \) converges to \(\hat{x}_r \);

(\(a_3 \)) the function \(r \to \hat{x}_r \) is continuous in \(]\alpha, \beta[\);

(\(a_4 \)) the function \(\gamma \) is \(C^1 \), increasing and strictly concave in \(]\alpha, \beta[\);

(\(a_5 \)) one has

\[J'(\hat{x}_r) = 2\gamma'(r)\hat{x}_r \]

for all \(r \in]\alpha, \beta[\);

(\(a_6 \)) one has

\[\gamma'(r) = g^{-1}(r) \]

for all \(r \in]\alpha, \beta[\).

We want to remark that, in the original statement of [1], one assumes that \(X \) is infinite-dimensional and that \(J \) has no local maxima in \(X \setminus \{0\} \). These assumptions come from [2] whose results are applied to get \((a_3), (a_4)\) and \((a_5)\). The validity of the current formulation just comes from the proofs themselves given in [2] (see also [3]).

The aim of this very short paper is to show the impact of Theorem A in the theory of non-homogeneous linear equations in \(X \).

So, throughout the sequel, \(z \) is a non-zero point of \(X \) and \(T : X \to X \) is a continuous linear operator.

We are interested in the study of the equation

\[T(x) - \lambda x = z \]

for \(\lambda > \|T\| \). In this case, by the contraction mapping theorem, the equation has a unique non-zero solution, say \(\hat{v}_\lambda \). Our structure result just concerns such solutions.

As usual, we say that:
- \(T \) is compact if, for each bounded set \(A \subset X \), the set \(\overline{T(A)} \) is compact;
- \(T \) is symmetric if

\[\langle T(x), u \rangle = \langle T(u), x \rangle \]

for all \(x, u \in X \).

We also denote by \(V \) the set (possibly empty) of all solutions of the equation

\[T(x) - \|T\| x = z \]
and set
\[\theta = \inf_{x \in V} \|x\|^2. \]

Of course, \(\theta > 0 \).

Our result reads as follows:

THEOREM 1. - Assume that \(T \) is compact and symmetric.

For each \(\lambda > \|T\| \) and \(r > 0 \), set
\[g(\lambda) = \|\hat{v}_\lambda\|^2 \]

and
\[\gamma(r) = \sup_{x \in S_r} J(x) \]

where
\[J(x) = \langle T(x) - 2z, x \rangle. \]

Then, the following assertions hold:

\(b_1 \) the function \(g \) is decreasing in \(\|T\|, +\infty[\) and
\[g(\|T\|, +\infty[) = 0, \theta[; \]

\(b_2 \) for each \(r \in]0, \theta[\), the point \(\hat{x}_r := \hat{v}_{g^{-1}(r)} \) is the unique global maximum of \(J|_{S_r} \) and every maximizing sequence for \(J|_{S_r} \) converges to \(\hat{x}_r ; \)

\(b_3 \) the function \(r \to \hat{x}_r \) is continuous in \(]0, \theta[; \)

\(b_4 \) the function \(\gamma \) is \(C^1 \), increasing and strictly concave in \(]0, \theta[; \)

\(b_5 \) one has
\[T(\hat{x}_r) - \gamma'(r)\hat{x}_r = z \]

for all \(r \in]0, \theta[; \)

\(b_6 \) one has
\[\gamma'(r) = g^{-1}(r) \]

for all \(r \in]0, \theta[. \)

Before giving the proof of Theorem 1, we establish the following

PROPOSITION 1. - Let \(T \) be symmetric and let \(J \) be defined as in Theorem 1.

Then, for \(\hat{x} \in X \), the following are equivalent:

(i) \(\hat{x} \) is a local maximum of \(J \).

(ii) \(\hat{x} \) is a global maximum of \(J \).

(iii) \(T(\hat{x}) = z \) and \(\sup_{x \in X} \langle T(x), x \rangle \leq 0 \).

PROOF. First, observe that, since \(T \) is symmetric, the functional \(J \) is Gâteaux differentiable and its derivative, \(J' \), is given by
\[J'(x) = 2(T(x) - z) \]
for all $x \in X$ ([4], p. 235). By the symmetry of T again, it is easy to check that, for each $x \in X$, the inequality
\[J(\hat{x} + x) \leq J(\hat{x}) \]
(1)
is equivalent to
\[(2(T(\hat{x}) - z) + T(x), x) \leq 0 . \]
(2)
Now, if (i) holds, then $J'(\hat{x}) = 0$ (that is $T(\hat{x}) = z$) and there is $\rho > 0$ such that (1) holds for all $x \in X$ with $\|x\| \leq \rho$. So, from (2), we have $(T(x), x) \leq 0$ for the same x and then, by linearity, for all $x \in X$, getting (iii). Vice versa, if (iii) holds, then (2) is satisfied for all $x \in X$ and so, by (1), \hat{x} is a global maximum of J, and the proof is complete. △

Proof of Theorem 1. For each $x \in X$, we clearly have
\[J(x) \leq \|T(x) - 2z\||x| \leq \|T\||x|^2 + 2\|z\||x| \]
and so
\[\limsup_{\|x\| \to +\infty} \frac{J(x)}{\|x\|^2} \leq \|T\| \]
(3)
Moreover, if $v \in X \setminus \{0\}$ and $\mu \in \mathbb{R} \setminus \{0\}$, we have
\[\frac{J(\mu v)}{\|\mu v\|^2} \geq -2 \frac{\langle z, v \rangle}{\mu \|v\|^2} - \|T\| \]
and so
\[\limsup_{x \to 0} \frac{J(x)}{\|x\|^2} = +\infty . \]
(4)
Moreover, the compactness of T implies that J is sequentially weakly continuous ([4], Corollary 41.9). Now, let $\lambda \geq \|T\|$. For each $x \in X$, set
\[\Phi(x) = \|x\|^2 . \]
Then, for each $x, v \in X$, we have
\[\langle \lambda \Phi'(x) - J'(x) - (\lambda \Phi'(v) - J'(v)), x - v \rangle = \langle 2\lambda(x - v) - 2(T(x) - T(v)), x - v \rangle \geq 2\lambda\|x - v\|^2 - 2\|T(x) - T(v)\|\|x - v\| \geq 2(\lambda - \|T\|)\|x - v\|^2 . \]
(5)
From (5) we infer that the derivative of the functional $\lambda \Phi - J$ is monotone, and so the functional is convex. As a consequence, the critical points of $\lambda \Phi - J$ are exactly its global minima. So, \hat{v}_λ is the only global minimum of $\lambda \Phi - J$ if $\lambda > \|T\|$ and V is the set of all global minima of $\|T\|\Phi - J$. Now, assume that J has a local maximum, say w. Then, by Proposition 1, w is a global minimum of $-J$ and $\sup_{x \in X}(T(x), x) \leq 0$. Since T is symmetric, this implies, in particular, that $\|T\|$ is not in the spectrum of T. So, V is a singleton. By Proposition 1 of [1], we have
\[\|w\|^2 \geq \theta . \]

4
In other words, J has no local maximum with norm less than θ. At this point, taking (3) and (4) into account, we see that the assumptions of Theorem A are satisfied (with $a = \|T\|$ and $b = +\infty$, and so $\alpha = 0$ and $\beta = \theta$), and the conclusion follows directly from that result.

Some remarks on Theorem 1 are now in order.

REMARK 1. - Each of the two properties assumed on T cannot be dropped. Indeed, consider the following two counter-examples.

Take $X = \mathbb{R}^2$, $z = (1, 0)$ and $T(t, s) = (t + s, s - t)$ for all $(t, s) \in \mathbb{R}^2$. So, T is compact but not symmetric. In this case, we have

$$\hat{x}_r = (-\sqrt{r}, 0),$$
$$\gamma(r) = r + 2\sqrt{r}$$

for all $r > 0$. Hence, in particular, we have

$$T(\hat{x}_r) - \gamma'(r)\hat{x}_r = (1, \sqrt{r}) \neq z .$$

That is, (b_5) is not satisfied.

Now, take $X = l_2$, $z = \{w_n\}$, where $w_2 = 1$ and $w_n = 0$ for all $n \neq 2$, and $T(\{x_n\}) = \{v_n\}$ for all $\{x_n\} \in l_2$, where $v_1 = 0$ and $v_n = x_n$ for all $n \geq 2$.

So, T is symmetric but not compact. In this case, we have $\theta = +\infty$ and

$$\gamma(r) = r - 2\sqrt{r}$$

for all $r \geq 4$. Hence, γ is not strictly concave in $]0, +\infty[.$

REMARK 2. - Note that the compactness of T serves only to guarantee that the functional $x \to \langle T(x), x \rangle$ is sequentially weakly continuous. So, Theorem 1 actually holds under such a weaker condition.

REMARK 3. - A natural question is: if assertions $(b_1) - (b_6)$ hold, must the operator T be symmetric and the functional $x \to \langle T(x), x \rangle$ sequentially weakly continuous ?

REMARK 4. - Note that if T, besides to be compact and symmetric, is also positive (i.e. $\inf_{x \in X} \langle T(x), x \rangle \geq 0$), then, by classical results, the operator $x \to T(x) - \|T\|x$ is not surjective, and so there are $z \in X$ for which the conclusion of Theorem 1 holds with $\theta = +\infty$.

We conclude with an application Theorem 1 to a classical Dirichlet problem.

So, let $\Omega \subset \mathbb{R}^n$ be a bounded domain with smooth boundary. Let λ_1 be the first eigenvalue of the problem

$$\begin{cases}
-\Delta u = \lambda u & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega .
\end{cases}$$

Fix a non-zero continuous function $\varphi : \overline{\Omega} \to \mathbb{R}$. 5
For each \(\mu \in]0, \lambda_1[\), let \(u_\mu \) be the unique classical solution of the problem
\[
\begin{aligned}
-\Delta u &= \mu (u + \varphi(x)) \quad \text{in} \; \Omega \\
 u &= 0 \quad \text{on} \; \partial \Omega .
\end{aligned}
\]
Also, set
\[
\psi(\mu) = \int_{\Omega} |\nabla u_\mu(x)|^2 dx
\]
and
\[
\eta(r) = \sup_{u \in U_r} \Phi(u)
\]
where
\[
\Phi(u) = \int_{\Omega} |u(x)|^2 dx + 2 \int_{\Omega} \varphi(x) u(x) dx
\]
and
\[
U_r = \left\{ u \in H^1_0(\Omega) : \int_{\Omega} |\nabla u(x)|^2 dx = r \right\} .
\]
Finally, denote by \(A \) the set of all classical solutions of the problem
\[
\begin{aligned}
-\Delta u &= \lambda_1 (u + \varphi(x)) \quad \text{in} \; \Omega \\
u &= 0 \quad \text{on} \; \partial \Omega
\end{aligned}
\]
and set
\[
\delta = \inf_{u \in A} \int_{\Omega} |\nabla u(x)|^2 dx .
\]
Then, by using standard variational methods, we can directly draw the following result from Theorem 1:

THEOREM 2. - The following assertions hold:

(c\(_1\)) the function \(\psi \) is increasing in \(]0, \lambda_1[\) and one has
\[
\psi(]0, \lambda_1[) =]0, \delta[;
\]

(c\(_2\)) for each \(r \in]0, \delta[\), the function \(w_r := u_{\psi^{-1}(r)} \) is the unique global maximum of \(\Phi_{|U_r} \) and each maximizing sequence for \(\Phi_{|U_r} \) converges to \(w_r \) with respect to the topology of \(H^1_0(\Omega) \);

(c\(_3\)) the function \(r \to w_r \) is continuous in \(]0, \delta[\) with respect to the topology of \(H^1_0(\Omega) \);

(c\(_4\)) the function \(\eta \) is \(C^1 \), increasing and strictly concave in \(]0, \delta[\);

(c\(_5\)) for each \(r \in]0, \delta[\), the function \(w_r \) is the unique classical solution of the problem
\[
\begin{aligned}
-\Delta u &= \frac{1}{\eta'(r)} (u + \varphi(x)) \quad \text{in} \; \Omega \\
u &= 0 \quad \text{on} \; \partial \Omega ;
\end{aligned}
\]

(c\(_6\)) one has
\[
\eta'(r) = \frac{1}{\psi^{-1}(r)}
\]
for all \(r \in]0, \delta[\).
References

[1] B. RICCERI, *On a theory by Schechter and Tintarev*, Taiwanese J. Math., 12 (2008), 1303-1312.

[2] M. SCHECHTER and K. TINTAREV, *Spherical maxima in Hilbert space and semi-linear elliptic eigenvalue problems*, Differential Integral Equations, 3 (1990), 889-899.

[3] K. TINTAREV, *Level set maxima and quasilinear elliptic problems*, Pacific J. Math., 153 (1992), 185-200.

[4] E. ZEIDLER, *Nonlinear functional analysis and its applications*, vol. III, Springer-Verlag, 1985.

Department of Mathematics
University of Catania
Viale A. Doria 6
95125 Catania
Italy

e-mail address: ricceri@dmi.unict.it