Chromosome-Scale Assembly of the Complete Genome Sequence of Leishmania (Mundinia) orientalis, Isolate LSCM4, Strain LV768

Hatim Almutairi,a,b Michael D. Urbaniak,a Michelle D. Bates,a Narissara Jariyapan,c Waleed S. Al-Salem,b Rod J. Dillon,a Paul A. Bates,a Derek Gatherer*a

Division of Biomedical & Life Sciences, Faculty of Health & Medicine, Lancaster University, Lancaster, United Kingdom
Ministry of Health, Riyadh, Saudi Arabia
Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand

ABSTRACT Leishmania (Mundinia) orientalis is a kinetoplastid parasite first isolated in 2014 in Thailand. We report the complete genome sequence of L. (M.) orientalis, sequenced using combined short-read and long-read technologies. This will facilitate greater understanding of this novel pathogen and its relationship to other members of the subgenus Mundinia.

Leishmaniasis is spread through sand fly bites and caused by kinetoplastid parasites of the genus Leishmania (1). It is present in over 90 countries, infecting approximately 12 million people and putting 350 million more at risk of infection from visceral, cutaneous, or mucocutaneous leishmaniasis (2, 3). The genus Leishmania is subdivided into four subgenera, Leishmania, Sauroleishmania, Viannia, and most recently Mundinia (4, 5), the latter being the least studied. Mundinia includes a wide range of species with different hosts and regional distributions (6), including Thailand, where leishmaniasis is an emerging disease (7–9). Leishmania orientalis was formally described as part of Mundinia in 2018 (10). We report here the complete genome sequence of Leishmania (Mundinia) orientalis, isolate LSCM4, strain LV768 (WHO code MHOM/TH/2014/LSCM4), originally obtained from a cutaneous biopsy specimen from a 57-year-old woman from northern Thailand (10).

Parasites were grown using an in vitro culture system previously developed for L. (M.) orientalis axenic amastigotes (11), in Schneider’s insect medium at 26°C as promastigotes, then in M199 medium supplemented with 10% fetal calf serum (FCS), 2% stable human urine, 1% basal medium Eagle vitamins, and 25 μg/ml gentamicin sulfate, with subpassage to fresh medium every 4 days to sustain the parasite growth and viability. DNA was extracted and purified using a Qiagen DNeasy blood and tissue kit according to the manufacturer’s instructions. The extracted DNA concentration was assessed using a Qubit fluorometer, microplate reader, and agarose gel electrophoresis. All sequencing libraries were based on the same extracted DNA sample to avoid any inconsistency.

Short-read library construction and sequencing were contracted to (i) BGI (Shenzhen, China) for DNBSEQ libraries, producing paired-end reads (170 bp, 270 bp, and 500 bp) using the Illumina HiSeq platform, and (ii) Aberystwyth University (Aberystwyth, UK) for TruSeq Nano DNA libraries, producing paired-end reads (300 bp) using the Illumina MiSeq platform. We performed long-read library preparation and sequencing according to the Nanopore protocol (SQK-LSK109) on R9 flow cells (FL0-MIN106). The read quality was assessed using MultiQC (12), incorporating the use of FastQC for Illumina short reads and pycoQC for Nanopore long reads.

We assembled the long reads using Flye (13), with default parameters, to generate chromosome-scale scaffolds. Then, using Minimap2 (14) and SAMBtools (15), we mapped the short reads onto the assembled scaffolds to correct erroneous bases within the long reads and create consensus sequences. After polishing the assembly with Pilon (16), another round of...
consensus short-read mapping was performed. Then, we removed the duplicated contigs and sorted the remainder according to length using Funannotate (17, 18). Finally, we separated the chimeric sequences and performed scaffolding using RaGOO (19) with the *Leishmania major* Friedlin strain genome (GenBank accession number GCA_000002725.2) (20) as a reference guide, aligning all 36 chromosomes for our assembly, thereby also determining the chromosome ends to be complete, with the exception of 62 small contigs totaling 257,579 bp.

The analysis workflow for assembly, repeat masking, and annotation was performed using Snakemake (21); it is available online for reproducibility purposes (https://github.com/hatimalmutairi/LGAAP), including the software versions and parameters used (22).

![Figure 1](image1.png)

FIG 1 Assembly comparison of *L. (M.)* orientalis LV768 with *L. (M.)* enriettii LEM3045 and *L. major* Friedlin.

Table 1 shows additional summary metrics for the sequencing, assembly, and annotation for *L. (M.)* orientalis LV768.

Feature(s)	Metric(s)
Total no. of reads	80,540,964
No. of MiSeq reads	3,831,060
No. of HiSeq reads	76,124,074
No. of MinION reads (read N_{50} [bp])	585,770 (11,497)
No. of bases (Gb)	29.20
Genome coverage (×)	390.7
Total no. of scaffolds	98
Genome size (bp)	34,194,276
N_{50} (bp)	1,120,138
GC content (%)	59.70
No. of Ns (% of genome)	1,707 (0.005)
No. of genes	8,158
Gene density (no. of genes/Mb)	238.6
No. of exons	8,488
Mean gene length (bp)	1,938
Total length of CDSs^a (Mb) (% of genome)	15.40 (45.05)

^a CDSs, coding DNA sequences.
Data availability. The assembly and annotations are available under GenBank assembly accession number GCA_017916335.1. The master record for the whole-genome sequencing project is available under accession number JAFHLR000000000.1. The raw sequence reads are available at PRJNA691532.

ACKNOWLEDGMENT

This work was funded by a Ph.D. studentship grant to H.A. from the Ministry of Health and Public Health Authority of Saudi Arabia.

REFERENCES

1. Burza S, Croft SL, Boelaert M. 2018. Leishmaniasis. Lancet 392:951–970. https://doi.org/10.1016/S0140-6736(18)31204-2.
2. Ikeogu NM, Akaluka GN, Edechi CA, Salako ES, Onyilagha C, Barazande AF, Uzonna JE. 2020. Leishmania immunity: advancing immunotherapy and vaccine development. Microorganisms 8:1201. https://doi.org/10.3390/microorganisms8081201.
3. Alvar J, Velez ID, Bern C, Herreró M, Desjeux P, Cano J, Jannin J, den Boer M, WHO Leishmaniasis Control Team. 2012. Leishmaniasis worldwide and global estimates of its incidence. PLoS One 7:e35671. https://doi.org/10.1371/journal.pone.0035671.
4. Muniz J, Medina H. 1948. Cutaneous leishmaniasis of the guinea pig, Leishmania enriettii n. sp. Hospital (Rio J) 33:7–25.
5. Espinosa OA, Serrano MG, Camargo EP, Teixeira MMG, Shaw JJ. 2018. An appraisal of the taxonomy and nomenclature of trypanosomatids presently classified as Leishmania and Endotrypanum. Parasitology 145:430–442. https://doi.org/10.1017/S0031182016002092.
6. Sereno D. 2019. Leishmania (Mundinia) spp.: from description to emergence as new human and animal Leishmania pathogens. New Microbes New Infect 30:100540. https://doi.org/10.1016/j.nnni.2019.100540.
7. Pothirat T, Tantworawit A, Chaivarth I, Jariyapan N, Wannasan A, Sirisasatien P, Supparatpinyo K, Bates MD, Kwakye-Nuako G, Bates PA. 2014. First isolation of Leishmania from Northern Thailand: case report, identification as Leishmania maruiniensis and phylogenetic position within the Leishmania enriettii complex. PLoS Negl Trop Dis 8:e3339. https://doi.org/10.1371/journal.pntd.0003339.
8. Thisyakorn U, Jongvuttiwes S, Vanichsetakul P, Lertsapcharoen P. 1999. Visceral leishmaniasis caused by Leishmania donovani from Northern Thailand: case report, identification as Leishmania maruiniensis and phylogenetic position within the Leishmania enriettii complex. PLoS Negl Trop Dis 8:e3339. https://doi.org/10.1371/journal.pntd.0003339.
9. Maharom P, Siripattanapipong S, Mungthin M, Naaglor T, Sukkawee R, Alonge M, Soyk S, Ramakrishnan S, Wang X, Goodwin S, Sedlazeck FJ, Lippman ZB, Schatz MC. 2019. RaGDO: fast and accurate reference-guided scaffolding of draft genomes. Genome Biol 20:224. https://doi.org/10.1186/s13059-019-1829-6.
10. Ivens AC, Peacock CS, Worthy EA, Murphy L, Aggarwal G, Berriman M, Sik E, Rajandream M-A, Adlem E, Aert R, Anupama A, Apostolou Z, Arkhipov P, Bason N, Bauser C, Beck A, Beflory SM, Benschett A, Boreyko Z, Bothe G, Bruschi CV, Collins M, Cadag E, Carloni L, Clayton C, Coulson RMR, Cronin A, Cruz AK, Davies RM, De Gaudenzi J, Dobson DE, Duisterhout A, Fazelina G, Rok N, Wohnitz L, et al. 2005. The genome of the kinetoplastid parasite, Leishmania donovani. Science 309:436–442. https://doi.org/10.1126/science.1112680.
11. Mendler F, Jablonski KP, Letcher B, Hall MB, Tomkins-Tinch CH, Sochat V, Forster J, Lee S, Twardziok SO, Kanitz A, Wilm A, Holtsgrewe M, Rahmann S, Nahnsten S, Köster J. 2021. Sustainable data analysis with Snakemake. F1000Res 10:133. https://doi.org/10.12688/f1000research.29032.2.
12. Almutairi H, Urbaniak MD, Bates MD, Jariyapan N, Kwakye-Nuako G, Thomas-Soccol V, Al-Salem WS, Dillon RJ, Bates PA, Gatherer D. 2021. LGAAP: Leishmaniinae genome assembly and annotation pipeline. Microb Resour Announc 10:e00439-21. https://doi.org/10.1093/microbiolspec/mraa.00439-21.
13. Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2014. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210–3216. https://doi.org/10.1093/bioinformatics/btu746.
14. Li H. 2016. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics 32:2103–2110. https://doi.org/10.1093/bioinformatics/btw152.
15. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352.
16. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, Earl AM. 2014. Plow: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9:e112963. https://doi.org/10.1371/journal.pone.0112963.
17. Li W-C, Wang T-F. 2021. PacBio long-read sequencing, assembly, and Funannotate reannotation of the complete genome of Trichodema reesei QM6a. Methods Mol Biol 2234:311–329. https://doi.org/10.1007/978-1-0716-1046-0_21.
18. Palmer JM, Stajich J. 2020. Funannotate v1.8.1: eukaryotic genome annotation. https://doi.org/10.5281/zenodo.1134477.
19. Alonge M, Soyk S, Ramakrishnan S, Wang X, Goodwin S, Sedlazeck FJ, Lippman ZB, Schatz MC. 2019. RaGDO: fast and accurate reference-guided scaffolding of draft genomes. Genome Biol 20:224. https://doi.org/10.1186/s13059-019-1829-6.
20. Verno AC, Peacock CS, Worthy EA, Murphy L, Aggarwal G, Berriman M, Sik E, Rajandream M-A, Adlem E, Aert R, Anupama A, Apostolou Z, Arkhipov P, Bason N, Bauser C, Beck A, Beflory SM, Benschett A, Boreyko Z, Bothe G, Bruschi CV, Collins M, Cadag E, Carloni L, Clayton C, Coulson RMR, Cronin A, Cruz AK, Davies RM, De Gaudenzi J, Dobson DE, Duisterhout A, Fazelina G, Rok N, Wohnitz L, et al. 2005. The genome of the kinetoplastid parasite, Leishmania donovani. Science 309:436–442. https://doi.org/10.1126/science.1112680.
21. Mölder F, Jablonski KP, Letcher B, Hall MB, Tomkins-Tinch CH, Sochat V, Forster J, Lee S, Twardziok SO, Kanitz A, Wilm A, Holtsgrewe M, Rahmann S, Nahnsten S, Köster J. 2021. Sustainable data analysis with Snakemake. F1000Res 10:133. https://doi.org/10.12688/f1000research.29032.2.
22. Almutairi H, Urbaniak MD, Bates MD, Jariyapan N, Kwakye-Nuako G, Thomas-Soccol V, Al-Salem WS, Dillon RJ, Bates PA, Gatherer D. 2021. LGAAP: Leishmaniinae genome assembly and annotation pipeline. Microb Resour Announc 10:e00439-21. https://doi.org/10.1093/microbiolspec/mraa.00439-21.
23. Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210–3216. https://doi.org/10.1093/bioinformatics/btv351.
24. Holt C, Yandell M. 2011. MAKER2: an annotation pipeline and genome database management tool for second-generation genome projects. BMC Bioinformatics 12:491. https://doi.org/10.1186/1471-2105-12-491.
25. Stanke M, Steinkamp R, Waack S, Morgenstern B. 2004. AUGUSTUS: a Web server for gene finding in eukaryotes. Nucleic Acids Res 32:W309–W312. https://doi.org/10.1093/nar/gkh379.