DARK ENERGY AND COSMIC CURVATURE: MONTE CARLO MARKOV CHAIN APPROACH

YUNGUI GONG
College of Mathematics and Physics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;
gongyg@cqupt.edu.cn

QIANG WU
GCAP-CASPER, Department of Physics, Baylor University, Waco, TX 76798; qiang_wu@baylor.edu

ANZHONG WANG
Department of Theoretical Physics, Institute of Physics, State University of Rio de Janeiro, Brazil; and GCAP-CASPER,
Department of Physics, Baylor University, Waco, TX 76798; anzhong_wang@baylor.edu

Received 2007 August 15; accepted 2008 March 21

ABSTRACT

We use the Monte Carlo Markov chain method to explore the dark energy properties and the cosmic curvature by fitting two popular dark energy parameterizations to the observational data. The new 182 gold Type Ia supernova data and the ESSENCE data both give good constraints on the dark energy parameters and the cosmic curvature for the dark energy model \(w_0 + w_a z/(1 + z) \). The cosmic curvature is found to be \(|\Omega_k| \lesssim 0.03 \). For the dark energy model \(w_0 + w_a z/(1 + z)^2 \), the ESSENCE data gives better constraints on the cosmic curvature, and we get \(|\Omega_k| \lesssim 0.02 \).

Subject headings: cosmological parameters — cosmology: observations

Online material: color figures

1. INTRODUCTION

The Type Ia supernova (SN Ia) observations indicate the accelerated expansion of the universe (Riess et al. 1998; Perlmutter et al. 1999). The direct and model-independent evidence of the acceleration of the universe was shown by using the energy conditions in Gong & Wang (2007b) and Gong et al. (2007). The driving force of the late-time acceleration of the universe, dubbed “dark energy” (DE), imposes a big challenge on theoretical physics. Although the cosmological constant is the simplest candidate for DE and is consistent with current observations, other possibilities are also explored due to the many orders of magnitude discrepancy between the theoretical estimation and astronomical observations for the cosmological constant. For a review of DE models see, for example, Sahni & Starobinsky (2000), Padmanabhan (2003), Peebles & Ratra (2003), Sahni (2005), and Copeland et al. (2006).

There are model-independent studies on the nature of DE that use the observational data. In particular, one usually parameterizes the DE density or the equation of state parameter \(w(z) \) of DE (Alam et al. 2004a, 2004b; Astier 2001; Barger et al. 2007; Cardone et al. 2004; Chevallier & Polarski 2001; Choudhury & Padmanabhan 2005; Clarkson et al. 2007; Corasaniti & Copeland 2003; Efstathiou 1999; Gerke & Efstathiou 2002; Gong 2005a, 2005b; Gong & Zhang 2005; Gong & Wang 2006, 2007a; Gu & Khlopov 2007; Huterer & Turner 2001; Huterer & Cooray 2005; Ichikawa et al. 2006; Ichikawa & Takahashi 2006, 2007; Jassal et al. 2005; Jönsjö et al. 2004; Lee et al. 2005; Linder 2003; Setare et al. 2007; Sullivan et al. 2007; Wang 2000; Wang & Mukherjee 2004; Wang & Tegmark 2004; Weller & Albrecht 2001, 2002; Wetterich 2004; Zhu et al. 2004). Because of the degeneracies among the parameters in the model, complementary cosmological observations are needed to break the degeneracies. The Wilkinson Microwave Anisotropic Probe (WMAP) measurement on the cosmic microwave background (CMB) anisotropy together with the SN Ia observations provide complementary data. In this paper we use the three-year WMAP (WMAP3) data (Spergel et al. 2007), the SN Ia data (Riess et al. 2007; Wood-Vasey et al. 2007; Davis et al. 2007), and the baryon acoustic oscillation (BAO) measurement from the Sloan Digital Sky Survey (Eisenstein et al. 2005) to study the properties of DE and the cosmic curvature. Two DE models \(w(z) = w_0 + w_a z/(1 + z) \) (Chevallier & Polarski 2001; Linder 2003) and \(w(z) = w_0 + w_a z/(1 + z)^2 \) (Jassal et al. 2005) are considered. In Elgaroy & Multamäki (2007), the authors showed that combining the shift parameters \(R \) and the angular scale \(l_0 \) of the sound horizon at recombination appears to be a good approximation of the full WMAP3 data. Wang and Mukherjee gave model-independent constraints on \(R \) and \(l_0 \) by using the WMAP3 data; they also provided the covariance matrix of the parameters \(R, l_0, \) and \(\Omega_k h^2 \) (Wang & Mukherjee 2007). So we use the shift parameter \(R \), the angular scale \(l_0 \) of the sound horizon at recombination, and their covariance matrix given in Wang & Mukherjee (2007) to avoid using several inflationary model parameters and calculating the power spectrum. When the covariance matrix is used, we have six parameters. We use the Monte Carlo Markov chain (MCMC) method to explore the parameter space. Our MCMC code is based on the publicly available package COSMOMC (Lewis & Bridle 2002).

The paper is organized as follows. In §2 we give all the formulae and show that the constraints on the cosmic curvature are much better by using the parameters \(R, l_0, \) and their covariance matrix than those obtained by only using the parameter \(R \). We also discuss the effect of the radiation component \(\Omega_r \) on \(l_0 \). In §3 we give our results. We discuss the analytical marginalization over \(H_0 \) in the Appendix.

2. METHOD

For the SN Ia data, we calculate

\[
\chi^2 = \sum_i \frac{(\mu_{\text{obs}}(z_i) - \mu(z_i))^2}{\sigma_i^2},
\]

(1)
where the extinction-corrected distance modulus $\mu(z) = 5 \log_{10}(d_L(z)/(1 \text{ Mpc})) + 25$, σ_i is the total uncertainty in the SN Ia data, and the luminosity distance is

$$d_L(z) = \frac{1 + z}{H_0 \sqrt{|\Omega_k|}} \sin \left[\sqrt{|\Omega_k|} \int_0^z \frac{dz'}{E(z')} \right],$$

(2)

where

$$\sin \left(\frac{\sqrt{|\Omega_k|} x}{\sqrt{|\Omega_k|}} \right) = \begin{cases} \sin \left(\frac{\sqrt{|\Omega_k|} x}{\sqrt{|\Omega_k|}} \right), & \Omega_k < 0, \\ x, & \Omega_k = 0, \\ \sinh \left(\frac{\sqrt{|\Omega_k|} x}{\sqrt{|\Omega_k|}} \right), & \Omega_k > 0, \end{cases}$$

(3)

and the dimensionless Hubble parameter is

$$E^2(z) = H^2(z)/H_0^2 = \Omega_m(1 + z)^3 + \Omega_r(1 + z)^4 + \Omega_k(1 + z)^2 + \Omega_{DE},$$

(4)

where $\Omega = 8\pi G \rho/3H^2_0$, $\rho_B = \sigma_B T_{\text{CMB}}^4$, σ_B is the Stefan-Boltzmann constant, the CMB temperature $T_{\text{CMB}} = 2.726$ K, and Ω_{DE} is the DE density. Note that the distance normalization is arbitrary in the SN Ia data; the Hubble constant H_0 determined from the SN data is also an arbitrary number, not the observed Hubble constant. Therefore, we need to marginalize over this nuisance parameter H_0. The parameter H_0 is marginalized over with a flat prior; the analytical marginalization method is discussed in the Appendix.

For the DE model (Chevallier & Polarski 2001; Linder 2003)

$$w(z) = w_0 + \frac{w_a z}{1 + z},$$

(5)

the dimensionless DE density is

$$\Omega_{DE}(z) = (1 - \Omega_m - \Omega_k - \Omega_r) \times (1 + z)^3(1 + w_0 + w_a) \exp \left[-3w_a z/(1 + z) \right].$$

(6)

For the DE model (Jassal et al. 2005)

$$w(z) = w_0 + \frac{w_a z}{(1 + z)^2},$$

(7)

the dimensionless DE density is

$$\Omega_{DE}(z) = (1 - \Omega_m - \Omega_k - \Omega_r) \times (1 + z)^3(1 + w_0 + w_a) \exp \left[3w_a z^2/(2 + z)^2 \right].$$

(8)

For the SDSS data, we add the term

$$\left[A - 0.469(0.95/0.98)^{-0.355} \right]^{0.017}$$

to χ^2 (Eisenstein et al. 2005; Spergel et al. 2007), where the BAO parameter

$$A = \sqrt{\frac{\Omega_m}{0.35}} \left\{ E(0.35)/|\Omega_k| \right\}^{35} \left[\sqrt{|\Omega_k|} \int_0^{0.35} \frac{dz}{E(z)} \right]^{1/3}.$$

(9)

For the WMAP3 data, we first add the term

$$\left(R - 1.71 \right)^2/0.03$$

to χ^2 (Wang & Mukherjee 2006), where the shift parameter

$$R = \frac{\sqrt{\Omega_m}}{\sqrt{|\Omega_k|}} \sin \left[\sqrt{|\Omega_k|} \int_0^{z_{ls}} \frac{dz}{E(z)} \right],$$

(10)

and $z_{ls} = 1089 \pm 1$.

When we fit DE models (5) and (7) to the observational data, we have four parameters Ω_m, Ω_k, w_0, and w_a. The MCMC method is used to explore the parameter space. The marginalized probability of Ω_k is shown in Figure 1. It is obvious that the cosmic curvature cannot be well constrained for DE model (5). As discussed in Elgarøy & Multamäki (2007) and Wang & Mukherjee (2007), the combination of the shift parameter and the angular scale of the sound horizon at recombination gives much better constraints on cosmological parameters. So we add the angular scale of the sound horizon at recombination (Wang & Mukherjee 2007)

$$l_a = \frac{\pi R/\sqrt{\Omega_m}}{\int_{z_{ls}} \frac{dz}{E(z)}} = 302.5 \pm 1.2,$$

(11)

where the sound speed $c_s = 1/\{3(1 + \tilde{R}_0 a)\}^{1/2}$, $\tilde{R}_0 = 315,000 \Omega_{h^2}[T_{\text{CMB}}/(2.7 \text{ K})]^{-4}$, a is the scale factor, and $\Omega_h h^2 = 0.02173 \pm 0.00082$ (Wang & Mukherjee 2007). To implement the WMAP3 data, we need to add three fitting parameters R, l_a, and $\Omega_h h^2$. So we need to add the term $\Delta x_i \text{Cov}^{-1}(x_i, x_j) \Delta x_j$ to χ^2, where $x_i = (R, l_a, \Omega_h h^2)$ denotes the three parameters for the WMAP3 data, $\Delta x_i = x_i - x_i^{\text{obs}}$, and $\text{Cov}(x_i, x_j)$ is the covariance matrix for the three parameters. Follow Wang and Mukherjee, we use the covariance matrix for $x_i = (R, l_a, \Omega_h h^2)$ derived in Wang & Mukherjee (2007). Since the covariance matrix for the six quantities in Wang & Mukherjee (2007) is defined as the pair correlations for those variables, each element in the matrix is obtained by marginalizing over all other variables. Therefore, the covariance matrix between x_i and x_j is the 3×3 submatrix of the full 6×6 matrix in Wang & Mukherjee (2007). The marginalized
probability of Ω_k is shown in Figure 1. We see that the cosmic curvature is constrained better with the addition of the angular scale l_θ of the sound horizon at recombination.

Since the angular scale of the sound horizon depends on the early history of the universe, it strongly depends on Ω_k. However, we can neglect the effect of Ω_r when we evaluate the distance modules $\mu(z)$ and the shift parameter R, because the universe is matter dominated. So only when we implement the CMB data with l_θ do we need to consider the effect of Ω_r. We know the energy density ρ_r of radiation, so the dependence of $\Omega_r = 8\pi G \rho_r / (3H_0^2)$ is manifested by the Hubble constant H_0. Since we can neglect the effect of Ω_r in fitting SN Ia data, the effect of the observed value of H_0 can be neglected by marginalizing over it. Therefore, we use the Hubble constant H_0 as a free parameter instead of Ω_r. The marginalized probabilities of Ω_k for $H_0 = 65$ and 72 km s$^{-1}$ Mpc$^{-1}$ are shown in Figure 2. We see that the results indeed depend on H_0. As discussed in Elgarøy & Multamäki (2007), the combination of R and l_θ approximates the WMAP3 data, and the WMAP3 data depends on H_0 through l_θ. So, as expected, l_θ also depends on H_0. From now on we also take H_0 as a fitting parameter and impose a prior of $H_0 = 72 \pm 8$ km s$^{-1}$ Mpc$^{-1}$ (Freedman et al. 2001). To understand why we can marginalize over H_0 in fitting SN Ia data and treat H_0 as a parameter in fitting WMAP3 data, we should think that we actually treat Ω_r, not H_0, as a parameter when fitting the WMAP3 data. The parameter H_0 is not the observed Hubble constant when fitting the SN data, because the normalization of the distance modulus was chosen arbitrarily. In summary, we have six fitting parameters for DE models (5) and (7).

3. RESULTS

In this section we present our results. We first use the 182 gold SN Ia data (Riess et al. 2007), then we use the ESSENCE data (Riess et al. 2007; Wood-Vasey et al. 2007; Davis et al. 2007). For the SN Ia data, we consider both the SN Ia flux averaging with marginalization over H_0 (Wang 2000; Wang & Mukherjee 2004; Wang & Tegmark 2004) and the analytical marginalization without the flux averaging. The results with the analytical marginalization are shown with solid lines and the results with flux averaging are shown with dashed lines in our figures. We also place the ΛCDM model with the plus symbol in the contour plots.

3.1. Gold SN Ia Data

Figure 3 shows the marginalized probabilities for Ω_m, Ω_k, w_0, and w_a for the DE model $w_0 + w_a z/(1 + z)^2$. Figure 4 shows the marginalized Ω_m-Ω_k and w_0-w_a contours. The w_0-w_a contour with the flux averaging is consistent with the result in Wang & Mukherjee (2007). From Figures 3 and 4, we see that the difference in the results between the analytical marginalization and the flux averaging is small. The ΛCDM model is consistent with the observations at the 1 σ level. The value of w_a is better constrained with the analytical marginalization.

Figure 5 shows the marginalized probabilities for Ω_m, Ω_k, w_0, and w_a for the DE model $w_0 + w_a z/(1 + z)$. Figure 6 shows the marginalized Ω_m-Ω_k and w_0-w_a contours. From Figures 5 and 6, we see that the parameters are a little better constrained with the flux averaging. For the analytical marginalization, the ΛCDM model is consistent with the observations at the 2 σ level. For the flux averaging, the ΛCDM model is consistent with the observations at the 1 σ level.

3.2. ESSENCE Data

Figure 7 shows the marginalized probabilities for Ω_m, Ω_k, w_0, and w_a for the DE model $w_0 + w_a z/(1 + z)$. Figure 8 shows the marginalized Ω_m-Ω_k, and w_0-w_a contours. From Figures 7 and 8, we see that the difference in the results between the analytical marginalization and the flux averaging is small. The ΛCDM model is consistent with the observations at the 1 σ level.

Figure 9 shows the marginalized probabilities for Ω_m, Ω_k, w_0, and w_a for the DE model $w_0 + w_0 z/(1 + z)^2$. Figure 10 shows the marginalized Ω_m-Ω_k, and w_0-w_a contours. From Figures 9 and 10, we see that the parameters are a little better constrained with the analytical marginalization. The ΛCDM model is consistent with the observations at the 1 σ level.

We summarize the results in Tables 1 and 2. We do not see much improvement on the constraints on the DE parameters and the cosmic curvature by using the flux-averaging method. For the DE model $w_0 + w_a z/(1 + z)$, the gold data gives better constraints than the ESSENCE data on the DE parameters w_0 and w_a, but both data sets give good constraints on the cosmic curvature. For the DE model $w_0 + w_0 z/(1 + z)^2$, the ESSENCE data gives much better constraints on the cosmic curvature than the gold data, although the constraints on the DE parameters w_0 and w_a are almost the same for both data sets. For the 182 gold data, the DE model $w_0 + w_a z/(1 + z)$ gives much better constraints on the cosmic curvature Ω_k. For the ESSENCE data, the two DE models give almost the same constraints on Ω_m and Ω_k. For the DE model $w_0 + w_a z/(1 + z)$, the mean value of w_0 determined from the observation tends to be $w_0 < -1$, while the mean value of w_a is less than -1 for the DE model $w_0 + w_a z/(1 + z)^2$.

From Tables 1 and 2, we see that the constraints on Ω_k are almost the same for two different DE models (5) and (7). In other words, the results we obtained on Ω_k do not depend on the chosen models much. Recently, the authors in Clarkson et al. (2007) found that the assumption of a flat universe induces critically large errors in reconstructing the DE equation of state at $z > 0.9$ even if the true cosmic curvature is very small, $\Omega_k \sim 0.01$ or less. They obtained the result by fitting the data derived from a DE model with $\Omega_k \neq 0$ with a flat model, so the result may not be conclusive. To see how the value of Ω_k affects the constraints on the properties of DE, we perform the MCMC analysis on DE models.
Fig. 3.—Marginalized probabilities for the DE model $w_0 + w_z(1 + z)$ by using the gold SN Ia data. The solid lines denote the results with analytical marginalization, and the dashed lines denote the results with flux averaging.
Fig. 4.—Marginalized 1 σ and 2 σ Ω_m-Ω_k and w_0-w_a contours for the DE model $w_0 + w_a z/(1 + z)$ by using the gold SN Ia data. The top panels denote the results with analytical marginalization, and the bottom panels denote the results with flux averaging.
Fig. 5.—Same as Fig. 3, but for the DE model $w_0 + w_a(1 + z)^2$.
Fig. 6.—Same as Fig. 4, but for the DE model $w_0 + w_a z / (1 + z)^2$.
Fig. 7.—Marginalized probability distributions for the DE model $w_0 + w_z/(1+z)$ by using the ESSENCE data. The solid lines denote the results without flux averaging, and the dashed lines denote the results with flux averaging.
Fig. 8.—Marginalized Ω_m-Ω_k and w_0-w_a contours for the DE model $w_0 + w_a z/(1 + z)$ by using the ESSENCE data. The top panels denote the results without flux averaging, and the bottom panels denote the results with flux averaging.
Fig. 9.—Same as Fig. 7, but for the DE model $w_0 + w_a z/(1 + z)^2$.

\[
\Omega_m = 0.2 \rightarrow 0.35 \\
\Omega_k = -0.05 \rightarrow 0.1 \\
w_0 = -3 \rightarrow -0.5 \\
w_a = -10 \rightarrow 15
\]
Fig. 10.—Same as Fig. 8, but for the DE model $w_0 + w_a z/(1 + z)^2$.

Data	Marginalization	Ω_m	Ω_k	w_0	w_a
Gold	Analytical	0.29$^{+0.03}_{-0.02}$	0.007$^{+0.023}_{-0.019}$	$-0.99^{+0.18}_{-0.16}$	0.34 ± 0.77
Flux		0.29 ± 0.02	0.002 ± 0.018	-0.95 ± 0.22	$-0.05^{+1.04}_{-0.09}$
ESSENCE	Analytical	0.28$^{+0.03}_{-0.02}$	-0.007 ± 0.016	-0.94 ± 0.25	$-0.70^{+1.26}_{-0.52}$
Flux		0.28 ± 0.02	$-0.004^{+0.015}_{-0.016}$	$-1.0^{+0.24}_{-0.26}$	$-0.26^{+1.31}_{-0.31}$
TABLE 2

The Marginalized Results with 1σ Errors for the Model $w_0 + w_a \frac{z}{(1 + z)^2}$

Data	Marginalization	Ω_m	Ω_k	w_0	w_a
Gold	Analytical	0.27$^{+0.03}_{-0.02}$	0.05 ± 0.04	$-1.8^{+0.6}_{-0.5}$	6.4 ± 3.6
	Flux	0.27$^{+0.03}_{-0.02}$	0.02$^{+0.01}_{-0.01}$	$-1.6^{+0.5}_{-0.5}$	4.5 ± 3.6
ESSENCE	Analytical	0.28$^{+0.02}_{-0.03}$	0.00$^{+0.01}_{-0.01}$	$-1.1 ± 0.4$	0.5 ± 3.1
	Flux	0.29 ± 0.02	0.013 ± 0.011	$-1.1^{+0.4}_{-0.5}$	0.6 ± 3.3

TABLE 3

The Marginalized Results with 1σ Errors for the Model $w_0 + w_a \frac{z}{(1 + z)^2}$ with $\Omega_k = 0$

Data	Marginalization	Ω_m	w_0	w_a
Gold	Analytical	0.29 ± 0.02	$-0.98^{+0.17}_{-0.13}$	0.28$^{+0.65}_{-0.64}$
	Flux	0.29 ± 0.02	$-0.98 ± 0.20$	0.15 ± 0.78
ESSENCE	Analytical	0.27$^{+0.01}_{-0.01}$	$-1.06^{+0.18}_{-0.17}$	0.17 ± 0.85
	Flux	0.27 ± 0.02	$-1.09 ± 0.22$	0.28 ± 0.87

TABLE 4

The Marginalized Results with 1σ Errors for the Model $w_0 + w_a \frac{z}{(1 + z)^2}$ with $\Omega_k = 0$

Data	Marginalization	Ω_m	w_0	w_a
Gold	Analytical	0.29 ± 0.02	$-1.23 ± 0.26$	2.28$^{+1.71}_{-1.70}$
	Flux	0.28 ± 0.02	$-1.22^{+0.31}_{-0.29}$	1.94$^{+1.96}_{-1.96}$
ESSENCE	Analytical	0.27 ± 0.02	$-1.15^{+0.29}_{-0.30}$	1.04$^{+1.13}_{-1.14}$
	Flux	0.27 ± 0.02	$-1.29^{+0.33}_{-0.32}$	1.87$^{+1.12}_{-1.12}$
(5) and (7) with $\Omega_k = 0$. The results are reported in Tables 3 and 4. Although the uncertainties of Ω_k change the values of w_0 and w_a, the ranges of w_0 and w_a are almost the same for small Ω_k.

In conclusion, we first confirm previous results that the shift parameter R alone does not give good constraints on Ω_k; we must combine R and Ω_k to constrain Ω_k. By using R, Ω_k, and their covariance matrix, we get almost the same results as those obtained by using the original WMAP3 data. Without calculating the power spectrum, the fitting process is much faster and efficient. The cosmic curvature is found to be $|\Omega_k| \leq 0.03$.

Y. G. G. and A. W. thank Yun Wang for help with the MCMC method. Y. G. G. is grateful to Zong-hong Zhu for fruitful discussions, and he is supported by NNSF under grant 10605042. A. W. is partially supported by the VPR funds, Baylor University.

APPENDIX

ANALYTICAL MARGINALIZATION ON H_0

By assuming a flat prior $P(H_0) = 1$ for H_0, the marginalization over H_0 means

$$L = e^{-\chi^2/2} = \int e^{-\chi^2/2} P(H_0) dH_0 = \int e^{-\chi^2/2} dH_0.$$ \hfill (A1)

Let $x = 5 \log_{10} H_0$ and $\alpha_i = \mu_{\theta} \sigma_i(\tau_i) - 25 - 5 \log_{10}(1 + z_0)\sin^2(\Omega_k)_i^{1/2} \int_0^\tau_0 d\tau_0 / (\Omega_k)_i^{1/2}$. Substituting equation (1) into the above equation (A1), we get

$$L = \frac{\ln 10}{5} \int dx \exp \left[-\frac{1}{2} \sum_i \frac{(\alpha_i + x)^2}{\sigma_i^2} + \ln 10 \frac{x}{5} \right]$$

$$= \frac{\ln 10}{5} \int dx \exp \left[-\frac{1}{2} \left(\sum \frac{1}{\sigma_i^2} \right) \left(x + \sum \frac{\alpha_i}{\sigma_i^2} - \ln 10 / 5 \right)^2 - \frac{1}{2} \sum \frac{\alpha_i^2}{\sigma_i^2} + \frac{1}{2} \left(\sum \frac{\alpha_i}{\sigma_i^2} - \ln 10 / 5 \right)^2 \right]$$

$$= \frac{\ln 10}{5} \left(\sum \frac{1}{\sigma_i^2} \right)^{1/2} \exp \left[-\frac{1}{2} \sum \frac{\alpha_i^2}{\sigma_i^2} + \frac{1}{2} \left(\sum \frac{\alpha_i}{\sigma_i^2} - \ln 10 / 5 \right)^2 \right].$$ \hfill (A2)

So the minimum χ^2 is

$$\chi^2_m = \sum \frac{\alpha_i^2}{\sigma_i^2} - \left(\sum \frac{\alpha_i}{\sigma_i^2} - \ln 10 / 5 \right)^2 - 2 \ln \left(\frac{\ln 10}{5} \sum \frac{2\pi}{\sigma_i^2} \right).$$ \hfill (A3)

REFERENCES

Alam, U., Sahni, V., Saini, T. D., & Starobinsky, A. A. 2004a, MNRAS, 354, 275
Alam, U., Sahni, V., & Starobinsky, A. A. 2004b, J. Cosmol. Astropart. Phys., 06, 008
Astier, P. 2001, Phys. Lett. B, 500, 8
Barger, V., Gao, Y., & Marfatia, D. 2007, Phys. Lett. B, 648, 127
Cardone, V. F., Troisi, A., & Capozziello, S. 2004, Phys. Rev. D, 69, 083517
Chevallier, M., & Polarski, D. 2001, Int. J. Mod. Phys. D, 10, 213
Choudhury, T. R., & Padmanabhan, T. 2005, A&A, 429, 807
Clarkson, C., Cortes, M., & Bassett, B. A. 2007, J. Cosmol. Astropart. Phys., 08, 011
Copeland, E. J., Sami, M., & Tsujikawa, S. 2006, Int. J. Mod. Phys. D, 15, 1753
Corasaniti, P. S., & Copeland, E. J. 2003, Phys. Rev. D, 67, 063521
Davis, T. M., et al. 2007, ApJ, 666, 716
Efstathiou, G. 1999, MNRAS, 310, 842
Eisenstein, D. J., et al. 2005, ApJ, 633, 560
Elgaröy, O., & Multamäki, T. 2007, A&A, 471, 65
Friedman, W. L., et al. 2001, ApJ, 535, 47
Gerke, B. F., & Efstathiou, G. 2002, MNRAS, 335, 33
Gong, Y. G. 2005a, Int. J. Mod. Phys. D, 14, 599
———. 2005b, Classical Quantum Gravity, 22, 2121
Gong, Y. G., & Wang, A. 2006, Phys. Rev. D, 73, 083506
———. 2007a, Phys. Rev. D, 75, 043520
———. 2007b, Phys. Lett. B, 652, 63
Gong, Y. G., Wang, A., Wu, Q., & Zhang, Y. Z. 2007, J. Cosmol. Astropart. Phys., 08, 018
Gong, Y. G., & Zhang, Y. Z. 2005, Phys. Rev. D, 72, 043518
Gu, Y. Q., & Khliplov, M. Y. 2007, preprint (gr-qc/0701050)
Huterer, D., & Cooray, A. 2005, Phys. Rev. D, 71, 023506
Huterer, D., & Turner, M. S. 2001, Phys. Rev. D, 64, 123527
Ichikawa, K., Kawasaki, M., Sekiguchi, T., & Takahashi, T. 2006, J. Cosmol. Astropart. Phys., 12, 005
Ichikawa, K., & Takahashi, T. 2006, Phys. Rev. D, 73, 083526
———. 2007, J. Cosmol. Astropart. Phys., 02, 001
Jassal, H. K., Bagla, J. S., & Padmanabhan, T. 2005, MNRAS, 356, L11
Jõnsson, J., Goobar, A., Amanullah, R., & Bergström, L. 2004, J. Cosmol. Astropart. Phys., 09, 007
Lee, S. 2005, Phys. Rev. D, 71, 123512
Lewis, A., & Bridle, S. 2002, Phys. Rev. D, 66, 103511
Linder, E. V. 2003, Phys. Rev. Lett., 90, 091301
Padmanabhan, T. 2003, Phys. Rep., 380, 235
Peebles, P. J. E., & Ratra, B. 2003, Rev. Mod. Phys., 75, 559
Perlmutter, S., et al. 1999, ApJ, 517, 565
Riess, A. G., et al. 1998, AJ, 116, 1009
———. 2007, ApJ, 659, 98
Sahni, V. 2005, in The Physics of the Early Universe, ed. E. Papantonopoulos (New York: Springer), 141
Sahni, V., & Starobinsky, A. A. 2000, Int. J. Mod. Phys. D, 9, 373
Setare, M. R., Zhang, J., & Zhang, X. 2007, J. Cosmol. Astropart. Phys., 03, 007
Spergel, D. N., et al. 2007, ApJS, 170, 377
Sullivan, S., Cooray, A., & Holz, D. E. 2007, J. Cosmol. Astropart. Phys., 09, 004
Wang, Y. 2000, ApJ, 536, 531
Wang, Y., & Mukherjee, P. 2004, ApJ, 606, 654
———. 2006, ApJ, 650, 1
———. 2007, Phys. Rev. D, 76, 103513
Wang, Y., & Tegmark, M. 2004, Phys. Rev. Lett., 92, 241302
Weller, J., & Albrecht, A. 2001, Phys. Rev. Lett., 86, 1939
———. 2002, Phys. Rev. D, 65, 103512
Wetterich, C. 2004, Phys. Lett. B, 594, 17
Wood-Vasey, W. M., et al. 2007, ApJ, 666, 694
Zhu, Z. H., Fujimoto, M. K., & He, X. T. 2004, A&A, 417, 833