Dimensional quantization effects in the thermodynamics of conductive filaments

D Niraula, C R Grice and V G Karpov

Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606, United States of America

E-mail: dipesh.niraula@rockets.utoledo.edu, corey.grice@rockets.utoledo.edu and victor.karpov@utoledo.edu

Received 26 February 2018, revised 10 April 2018
Accepted for publication 12 April 2018
Published 3 May 2018

Abstract
We consider the physical effects of dimensional quantization in conductive filaments that underlie operations of some modern electronic devices. We show that, as a result of quantization, a sufficiently thin filament acquires a positive charge. Several applications of this finding include the host material polarization, the stability of filament constrictions, the equilibrium filament radius, polarity in device switching, and quantization of conductance.

Keywords: nanofilament, RRAM, phase change memory, thermodynamics, dimensional quantization

1. Introduction

The role of conductive filaments (CFs) is critically important for functionality of such electronic devices as phase change memory (PCM) [1], resistive random access memory (RRAM) [2, 3], and related threshold switches; CFs are responsible for the breakdown phenomena in gate dielectrics and some other structures. It is customary to describe CFs as thin metallic cylinders with appropriate material parameters. That approach requires modifications for modern devices where CF radii \(R \) fall in the nanoscale domain, thus bringing up the phenomenon of dimensional quantization.

More specifically, the available numerical values estimated experimentally are: \(R \sim 2.3–5\, \text{ nm} \) [4], \(R \sim 1.3–2.5\, \text{ nm} \) [5], \(R \sim 0.5–1.5\, \text{ nm} \) [6], \(R \sim 5–10\, \text{ nm} \) [7], \(R \sim 3–8\, \text{ nm} \) [8], \(R \sim 5\, \text{ nm} \) [9]. Using \(\Delta = 2h^2/mR^2 \) as the energy scale for dimensional quantization (see equation (2) below) with \(R = 1\, \text{ nm} \) and the true electron mass \(m = m_0 \), one gets \(\Delta \sim 0.1\, \text{ eV} \), rather substantial on the thermal energy scale \(kT \sim 0.025\, \text{ eV} \) at room \(T \). \(\Delta \) can be much greater or smaller for the broad ranges of effective masses [10, 11] \(m/m_0 \sim 0.1–1 \) and \(R \sim 0.5–5\, \text{ nm} \).

Here we consider mostly the effects of dimensional quantization in CF thermodynamics. We show that such effects are responsible for CF equilibrium radius, nucleation barrier, and the instability of CF constrictions; in addition, we briefly revisit the concept of quantum point contacts (QPC) developed for constricted CFs [12–15]. Schematic representations of the types of objects dealt with here are illustrated in figure 1.

Note that the concept of dimensional quantization assumes long enough electron mean free path \(l \) exceeding the system linear dimensions [16], here, \(l \gg R \) (quantization along CF is not required). \(l \) can be estimated from the available data for mobility, \(\mu \sim 10–50\, \text{ cm}^2\, \text{V}^{-1}\, \text{s}^{-1} \) for various amorphous semiconductors [16–20]. Using [16] \(\mu \approx eL/(2\pi kTm) \) with \(\mu \sim 10–50\, \text{ cm}^2\, \text{V}^{-1}\, \text{s}^{-1} \) and \(m/m_0 \sim 0.1–1 \) where \(e \) is the electron charge, yields a broad range of \(l \sim 0.1–10\, \text{ nm} \). The required condition \(l \gg R \) can hold for a significant part of that range. (In the meantime, it is conceivable that the dimensional quantization will be suppressed for large radius CFs in materials with heavy effective masses and high degrees of disorder.)

Here, we will separately discuss the uniform (section 2) and constricted (section 3) CFs. Section 4 will present some applications of our findings. Conclusions are given in section 5.

2. Uniform filament

2.1. Density of states

Consider a uniform CF as a long (\(L \gg R \)) metal cylinder embedded in a dielectric and connected to the electrodes. As described in cylindrical coordinates, the 2D quantization in the radial direction produces discrete energy levels \(E_n \),
radius R, Fermi energy; E_{FR} with m_n Figure 2. Nanotechnology and without dimensional quantization.

The density of states in the CF $g(E)$ is calculated by summation of the 1D sub-band contributions $g_1(E - E_n) \Theta(E - E_n)$ for all the energy levels from 1 to $E_n = E$ and dividing the result by the filament volume $\pi R^2 L$. Here, $\Theta(x) = [1 \text{ when } x > 0; 0 \text{ when } x < 0]$ and $g_1(E) = (L/\hbar \pi) \sqrt{m/2E}$. Replacing the summation with integration yields the envelope density of states,

$$
g(E) = \frac{1}{\pi R^2} \sum_{n=1}^{E/\Delta} \Theta(E - E_n) \frac{m}{\sqrt{2 \pi \hbar}} \sqrt{E - E_n}$$

$$\approx \int_{E/\Delta}^{E/\Delta} \Theta(E - E_n) \sqrt{2 \pi \hbar}\sqrt{m} dn \frac{m}{\sqrt{2(E - E_n)}} = \frac{\sqrt{2} m^{3/2} \sqrt{E - \Delta}}{\pi^2 \hbar^3} \tag{3}$$

The latter result neglects g_1 spikes illustrated in figure 2 compared to the smooth envelope obtained by integration of many $g(E)$ tails. That approximation is justified when a spike value $g_1(E - E_n)$ corresponding to a thermal energy $E - E_n \sim kT$, is smaller than that of the envelope in equation (3), which reduces to the inequality,

$$kT \gg \pi \frac{\Delta^2}{16 E - \Delta} \tag{4}$$

Since $E - \Delta \approx E_F$, it is well obeyed for practical temperatures, say $T \gtrsim 300$ K.

Equation (3) naturally predicts the standard 3D density of states $g(E) \propto \sqrt{E}$ when the CF radius is large, i.e. $\Delta \to 0$. For finite Δ, it follows from equation (3) that dimensional quantization shifts the standard 3D energy spectrum up by energy Δ, as illustrated in figure 2 (right). That shift makes electron energy levels in a band Δ, and, in particular the Fermi level in CF, E_{FR} be raised in energy above the system Fermi energy E_{F0}. Such levels will thus lose their electrons to the lower energy states outside the CF, rendering it with a net positive charge (confined to its surface layer as always for metals).

2.2. Filament charging
The above positive charge induces an electric potential self-consistently shifting the electron energy levels in CF down, which eliminates the difference Δ between the CF E_{FR} and the system E_{F0} Fermi energies. That energy shift can be described in the terms of band bending caused by the above potential as illustrated in figure 3. The confinement related charging here is conceptually similar to the much earlier considered surface effects [23].

Denoting by Λ the CF’s linear charge density, the electric field and potential outside CF become respectively

$$\mathcal{E} = \frac{2\Lambda}{\kappa r} \quad \text{and} \quad \phi = (2\Lambda/\kappa) \ln(R/r) \tag{5}$$

at distances r smaller than the screening length, r_s, where κ is the dielectric permittivity. We approximately account for the screening by cutting off the electric potential perturbation at $r = r_s$, which provides the downward electron energy shift $(2\Lambda e/\kappa) \ln (r_s/R)$. Self-consistently setting the latter equal Δ...
Figure 3. Top: the energy band cross section of CF and its surrounding host. The difference $\Delta = E_{FR} - E_{F0}$ is balanced by the band bending shown for the conduction band edge E_c induced by CF charging. Bottom: a real space filament cross section with surface positive charges.

yields,

$$\Lambda = \frac{\kappa \Delta}{2e \ln(r_s/R)}.$$ \hspace{1cm} (6)

The screening radius $r_s \sim L \sim 10$ nm is determined by distance L between the metal electrodes due to their electron redistribution. The redistribution is dictated by the condition of tangential component of the electric field vanishing in the presence of charged CF [24]. That screening mechanism does not depend on material properties and should not be confused with the Debye screening. Of course, a degree of the dielectric host polarization remains (as discussed in section 4.1 below) providing some additional screening, but it will not have any significant effect on r_s.

It is instructive to estimate the ratio of additional charge caused by quantization over the total electron charge in a neutral CF. That ratio is given by

$$\frac{\Lambda}{n_0 \pi R^2} = \frac{a_B}{R} \left[\frac{1}{n_0 R^3 \pi \ln(r_s/R)} \right]$$

with $a_B = \frac{\hbar^2 \kappa}{me^2}$, \hspace{1cm} (7)

where n_0 is the intrinsic electron concentration in CF and a_B is the effective Bohr radius. Our numerical estimates utilize the parameters characteristic of CFs in HfO$_2$ based RRAM: $R \sim 1$ nm [5, 9], the effective electron mass [10] $m \sim (0.1-1)n_0$, and $\kappa \sim 25$. Also, we assume $n_0 \sim 10^{21}$ cm$^{-3}$ corresponding to the typical moderate metal conductivity. With these parameters, equation (6) yields the number of electrons in a single CF, $\Lambda L/e \sim 5-50$ and $n_0 \pi R^2 \sim 3$. Two conclusions can be made: (1) the relative change of electron concentration in CF due to dimensional quantization may be not small, $\Delta Q/Q \sim 2-20$ for a 1 nm radius CF, and (2) it is likely that at least several electrons are present within the CF, so charge quantization is not important.

One additional condition of CF charging is that its related decrease in electronic energy,

$$F_\Delta = g(E_F)(\Delta^2/2)\pi R^2L$$ \hspace{1cm} (8)

exceeds the electric field energy

$$F_e = \int \frac{\kappa E^2}{8\pi} d^3r = \frac{\Delta^2 \kappa L}{4e^2 \ln(r_s/R)},$$ \hspace{1cm} (9)

where we have used Λ from equation (6) and treated the logarithm in the integrand as a constant. The resulting inequality,

$$2\pi g(E_F)(\kappa/\kappa)R^2 \ln(r_s/R) > 1$$ \hspace{1cm} (10)

obeys for all practical parameters.

Note that CFs can be charged regardless of dimensional quantization due to the difference δE_F between CF and the host material Fermi energies. That additional linear charge density, Λ', related to the CF electric capacitance [25] is given by equation (6) with δE_F instead of $\kappa \Delta$. While typically insignificant in high-κ materials, Λ' can be easily accounted for by redefining $\Lambda \rightarrow \Lambda + \Lambda'$.

3. Constricted filament

If the CF radius R varies along the CF z-axis forming a hourglass or truncated cone shape, an analytical description is possible when the dependence $R(z)$ is gradual, $|dR/dz| \ll 1$. In that case, the adiabatic approximation can be employed [26] making the transversal quantization z-dependent, $\Delta(z) = 2h^2/mR^2(z)$. The longitudinal (along z) dynamic is then described by the Schrödinger equation with the effective potential $\Delta(z)$ forming an approximately parabolic barrier at the constriction, which provides settings for QPC [26] and is illustrated in figure 4 (left). The negative curvature of QPC parabolas can be estimated as

$$K_{QPC} = -8h^2/(mR^2L^2)$$ \hspace{1cm} (11)

assuming that R decreases by $\sim 50\%$ over length $L/2$.

In the same approximation, CF charging becomes z-dependent through equation (6) with $\Delta = \Delta(z)$, hence, a greater positive charge density around constriction. Along such non-uniformly positively charged CF, electron energy will decrease towards the constriction. It is illustrated in figure 4 (right) with positive curvature parabolas. Using
standard electrostatics and Λ from equation (6), the curvature can be estimated as

$$K_{\text{CHARGE}} = 4\kappa h^2/[\ln R^2 L^2 \ln(r_i/R)].$$

(12)

It follows that K_{QPC} and K_{CHARGE} are more or less comparable in absolute value. However, their mutual cancelation would be a sheer coincidence: either negative or positive curvature will dominate.

We conclude that linear charge density increasing towards the constriction is a characteristic feature of non-uniform CF. While the analysis here was carried out in the adiabatic approximation, $dR/dz \ll 1$, its results should remain valid qualitatively even when the latter inequality is not strong.

4. Applications

Here we consider several applications of the above theory, though it is not intended to provide any complete explanation of RRAM or other device functionality (for which we refer to our recent work [25]). Our consideration below is limited solely to possible effects of dimensional quantization and its related CF charging.

4.1. CF field, polarization, and instability

For a 1 nm radius CF, the lateral field strength at its surface is estimated as $\mathcal{E} = 2\Lambda/(\kappa R) \sim 1$–10 MV cm$^{-1}$ given the above $\Lambda L/e \sim 5$–50. That strong electric field can lead to certain effects through (i) the surrounding material polarization and (ii) significant increase of the system free energy.

(i) Far enough from the electrodes, the radial field of CF can polarize the host by aligning ferroelectric domains (e.g. in doped HfO$_2$ films [27]) or moving charged defects (say, charged vacancies in HfO$_2$). Such a polarization will affect the nonvolatile memory resistance by contributing to the electric potential around CF and altering its charge Λ (see figure 3). That effect is described as the decrease $\delta \mu$ of CF screening radius, which, through equation (6), translates into the relative decrease in resistance estimated as $\delta r_S/\bar{r}_S$. The polarization can be changed by external bias [25] or Joule heat in writing cycles. Assuming the initial polarization is partially destroyed, our analysis then predicts gradual increase in resistance in the course of endurance cycling, consistent with some observations [28, 29].

(ii) According to equation (9), the field strength and energy increase, respectively, as R^{-2} and R^{-4} with filament thinning. That points at the fundamental instability of CF constrictions (where R is a minimum), tending to break or heal in order to decrease the energy. In other words, the CF neck charge creates the highest electric field energy conducive of eliminating that neck.

4.2. Equilibrium radius

While the field energy of equation (9) favors CF radius increase, its surface energy $2\pi RL\sigma$ has the opposite trend, where σ is the interfacial energy. The sum of these two contributions in CF free energy F has a minimum, $dF/dR = 0$, that determines the equilibrium radius R_0 of CF through the relation,

$$R_0 = \left[\frac{2h^4\kappa}{\sigma e^2 m^2 \ln(r_i/R_0)} \right]^{1/5}.$$

(13)

Given a relatively small exponent of 1/5 on the right hand side, R_0 under the logarithm can be approximated by any ‘reasonable’ value of the order of 1–10 nm. With that in mind, calculations using the typical $[30] \sigma \sim 100$ dyn cm$^{-1}$ and other relevant parameters mentioned above yields $R_0 \sim 1$ nm, which is consistent with the smallest of the observed CF radii listed in section 1 above. Also, due to the small exponent of 1/5, the latter estimate is not very sensitive to the material parameters; hence, R_0 not varying significantly between different materials. Therefore, R_0 can serve as an estimate of the ultimate size limit of filamentary RRAM devices: thinner CFs would increase electric field energy enough to overcome the surface tension and expand the radius. Along the same lines, R_0 can be interpreted as an estimate for the ultimate minimum radius of CF constrictions.

Note that F_Δ from equation (8) does not contribute to the above free energy because of the cancelation with the increase of electron energies illustrated in figures 2 (right) and 3. Also, taking into account the contribution from the chemical potential differentials $\delta \mu$ between the CF and host bulk material does not have a significant effect on the estimate in equation (13) for the typical $\delta \mu$ estimated in [25].

4.3. Field induced nucleation

Consider the nucleation of metallic needle-shaped particles in the electric field of high strength \mathcal{E}_0. The nucleus free energy is given by,

$$F = F_\mathcal{E} + 2\pi RL\sigma - L^3 \kappa \mathcal{E}_0^2,$$

(14)

where $F_\mathcal{E}$ is given by equation (9) and the last term represents the polarization electrostatic energy gain written here to the accuracy of insignificant multipliers [31, 32]. The term $F_\mathcal{E}$ distinguishes our analysis from the preceding work. The critical nucleus dimensions R_0 and L_0 are obtained from $dF/dR = dF/dL = 0$. It is straightforward to see that R_0 is the same as in equation (13), while L_0 and the nucleation barrier are a factor of $\sqrt{2}$ smaller than that of preceding theory. We conclude that through CF charging the dimensional quantization will exponentially increase the field induced nucleation rate.

4.4. Bias polarity effects

A new feature in field induced nucleation arises when we add the term, $E_0 AL^2/2$, for the energy of a linear charge Λ in the external field. Because the sign of Λ is predetermined, that term will make CF nucleation dependent on the field polarity. It was observed indeed that PCM operations are bias polarity dependent [33–35], although other explanations are possible, such as the Thomson effect or polarity dependent elemental segregation [35].
We note another polarity effect for the bias induced CF charge. It was shown [25] that many RRAM related observations can be explained by accounting for CF charging and the related radial electric field in response to an external bias. In particular, it was shown that when SET and RESET voltages across the device are determined by the condition that the atomic motility becomes respectively frozen and unfrozen, then the absolute values of those voltages will be equal. (While beyond the scope of this paper, we note parenthetically that the latter equality takes place only for bipolar, but not the unipolar RRAM where SET and RESET processes are physically different.) Here, we add that taking into account \(\triangle \) from equation (6) will increase or decrease the absolute value of CF charge corresponding to a given external bias depending on bias polarity; CF thinness will aggravate the asymmetry. That can result in somewhat unequal absolute values of SET and RESET voltages for bipolar RRAM devices. Furthermore, based on the discussion in section 4.1, one can expect lower SET and RESET voltages for constricted CFs compared to the uniform CFs of the same average radius.

4.5. Quantum conductance

In the QPC model [26], the CF has a constriction; hence \(R = R(\zeta) \) as is depicted in figure 1 and \(\triangle(z) = 2k^2/mR^2(z) \) adiabatically depends on the CF’s longitudinal coordinate \(z \). The transverse quantization is approximated by \(E_n = n\Delta(0) - \alpha z^2 \) presenting a set of parabolic barriers in figure 4(left) where \(\Delta(0) \) and \(\alpha \) are two constants. When the electric bias \(V = |E_F1 - E_F2|/e \) between the contacts with Fermi levels \(E_F1 \) and \(E_F2 \) changes, so does the number of conductive channels \(N_{\text{ch}} = [eV/\Delta(0)] \) where \([X] \) means the greatest integer in \(X \). Assuming ballistic electron transport, the CF’s conductance is given by \(G_0N_{\text{ch}}t \) where \(G_0 \equiv 2e^2/\pi\hbar \approx (12.9 \text{ k}^2 \text{f}^{-1}) \) is the quantum conductance and \(t \) is the barrier transparency due to tunneling or activation. Recent work [12–15] attributed some RRAM observations to QPC model.

When the positive curvature dominates, the conductance quantization takes place as long as the transport remains ballistic. Indeed, in spite of the energy modulation, the product of electron velocity \(v = \sqrt{2E/m} \) times \(g(E) \propto 1/\sqrt{E} \) is energy independent, as required by the derivation [36, 37]. If the transport is diffusive inside the classically allowed region of CF in figure 4 (right), then two triangular barriers by the channel edges exhibit additive QPCs [36, 37].

The triangular barrier transparency \(t \) is due to thermally assisted tunneling [38]. Omitting the details, our analysis yields such a CF conductance

\[
G = G_0N_{\text{ch}} \exp\left[-\frac{\Delta}{kT} + \frac{\hbar^2k^2L^2}{96m^2(\alpha kT)^3}\right]
\]

(15)

exponentially decreasing with CF length and increasing with its radius; non-Ohmicity can be introduced with non-ideal contacts. Equation (15) predicts the stepwise changes in conductance and shows that quantum conductance can be explained when size dependent quantization takes place even without the constriction feature.

4.6. Variability

Dimensional quantization will contribute to variability of filamentary nano-devices, with amorphous structure. Equation (1) predicts that random deviations from a perfect circular cross section will create variability in the quantization energy \(\Delta \) and its related effects. As an example, the number of conductive channels and the observed steps in conductance of equation (15) will vary between different samples.

5. Conclusions

In conclusion, we have shown that dimensional quantization results in charging of conductive nano-filaments. The linear charge density is inversely proportional to the square of filament radius. It is a maximum around the filament constriction (if any). The filament charging can exhibit itself in several effects of practical importance, such as strong polarization of the surrounding material, thermodynamic instability of filament constrictions, the notion of equilibrium filament radius and ultimate minimum size, polarity effects in field induced nucleation, and quantization of conductance without the feature of constriction.

Acknowledgments

This work was supported in part by the Semiconductor Research Corporation (SRC) under Contract No. 2016-LM-2654. We are grateful to I V Karpov and R Kotlyar for useful discussions.

ORCID iDs

V G Karpov @ https://orcid.org/0000-0003-2558-8368

References

[1] Redaelli A (ed) 2017 Phase Change Memory: Device Physics, Reliability and Applications (Berlin: Springer)
[2] Pan F, Gao S, Chen C, Song C and Zeng F 2014 Recent progress in resistive random access memories: materials, switching mechanisms, and performance Mater. Sci. Eng. R 83 1
[3] Ielmini D and Waser R (ed) 2016 Resistive Switching: From Fundamentals of Nanoionic Redox Processes to Memristive Device Applications (New York: Wiley)
[4] Kwon D-H et al 2010 Atomic structure of conducting nanofilaments in TiO2 resistive switching memory Nat. Nanotechnol. 5 148
[5] Privitera S, Bersuker G, Butcher B, Kalantarian A, Lombardo S, Bongiorno C, Geer R, Gilmer D C and Kirsch P D 2013 Microscopy study of the conductive
filament in HfO2 resistive switching memory devices

[6] Govoreanu B, Clima S, Radu I P, Chen Y-Y, Wouters D J and Jurczak M 2013 Complementary role of field and temperature in triggering ON/OFF switching mechanism in Hf/HfO2 resistive RAM cells IEEE Trans. Electron Devices 60 2471

[7] Wu X, Cha D, Bosman M, Raghavan N, Migas D B, Borisenko V E, Zhang X-X, Li K and Pey K-L 2013 Intrinsic nanofilamentation in resistive switching J. Appl. Phys. 113 114503

[8] Wei Z, Yasuhara R, Katayama K, Mikawa M, Raghavan N, Migas D B, Wu X, Cha D, Bosman M, Raghavan N, Migas D B, Borisenko V E, Zhang X-X, Li K and Pey K-L 2013 Intrinsic nanofilamentation in resistive switching J. Appl. Phys. 113 114503

[9] Celano U et al 2014 Three-dimensional observation of the conductive filament in nanoscaled resistive memory devices Nano Lett. 14 2401

[10] Monaghana S, Hurleya P K, Cherkouaia K, Negaraa M A and Schen A 2009 Determination of electron effective mass and electron affinity in HfO2 using MOS and MOSFET structures Solid-State Electron. 53 438

[11] Zhu W J, Ma T-P, Tamagawa T, Kim J and Di Y 2002 Current transport in metal/hafnium oxide/silicon structure IEEE Electron Device Lett. 23 97

[12] Degraeve R, Roussel P, Goux L, Wouters D, Kitl J, Altintine M, Jurczak M and Groeseneken G 2010 Generic learning of TDDB applied to RRAM for improved understanding of conduction and switching mechanism through multiple filaments 2010 Int. Electron Devices Meeting (San Francisco, CA) (https://doi.org/10.1109/IEDM.2010.5703438)

[13] Lian X, Cartoixa E, Miranda E, Periola L, Rulami R, Long S, Liu M and Sun J 2014 Multi-scale quantum point contact model for filamentary conduction in resistive random access memories devices J. Appl. Phys. 115 244507

[14] Miranda E, Falpo P, Nafria M and Crupi F 2008 Electron transport through electrically induced nanocoакс 枝 in HSiO2 gate stacks Appl. Phys. Lett. 92 253508

[15] Li Y, Long S, Liu Y, Hu C, Teng J, Liu Q, Lv H, Sune J and Liu M 2015 Conductance quantization in resistive random access memory Nanoscale Res. Lett. 10 420

[16] Raikh M E, Baranovskii S D and Shklovskii B I 1999 Dimensional quantization in a-Si:H quantum-well structures: the alloy model Phys. Rev. B 41 7101

[17] Fitting H-J and Friemann J-U 1982 Monte-Carlo studies of the electron mobility in SiO2 Phys. Status Solidi a 69 349

[18] Hughes R C 1973 Charge-carrier transport phenomena in amorphous SiO2: direct measurement of the drift mobility and lifetime Phys. Rev. Lett. 30 133–6

[19] Lee D-J, Kwon J-Y, Kim J, Kim K-J, Cho Y-H, Cho S-Y, Kim S-H, Xu J and Kim K-B 2014 Ultrasmooth, high electron mobility amorphous In2ZnO films grown by atomic layer deposition J. Phys. Chem. C 118 408

[20] Kamya T, Nomura K and Hosono H 2009 Origins of high mobility and low operation voltage of amorphous oxide TFTs: electronic structure, electron transport, defects and doping J. Disp. Technol. 5 273

[21] Landau L D and Lifshitz E M 1991 Quantum Mechanics. Nonrelativistic Theory 3rd edn (Oxford: Pergamon)

[22] Robinett R W 2003 Quantum mechanics of the two-dimensional circular billiard plus baffle system and half-integral angular momentum Eur. J. Phys. 24 231

[23] Konstantinov O V and Shik A Y 1970 Plasma surface states in semiconductors Zh. Eksp. Teor. Fiz. 58 1662

[24] Cooray M L C and Karpov V G 2007 Long-range random potential in thin-film structures Phys. Rev. B 75 155303

[25] Karpov V G, Niraula D, Karpov I V and Kotlyar R 2017 Thermodynamics of phase transitions and bipolar filamentary switching in resistive random-access memory Phys. Rev. Appl. 8 024028

[26] Glazman L I, Lesovik G B, Khmel'nikskii D E and Shekter R I 1988 Pis’ma Zh. Eksp. Teor. Fiz. 48 218

[27] Glazman L I, Lesovik G B, Khmel'nikskii D E and Shekter R I 1988 Sov. Phys.–JETP Lett. 48 239

[28] Fa Z, Chen J and Wang J 2016 Ferroelectric HfO2-based materials for next-generation ferroelectric memories J. Adv. Dielectr. 6 1630003

[29] Chen Y et al 2012 Understanding of the endurance failure in scaled HfO2-based 1T1R RRAM through vacancy mobility degradation 2012 IEEE Int. Electron Devices Meeting (IEDM) (https://doi.org/10.1109/IEDM.2012.6479079)

[30] Chen C Y, Fantini A, Goux L, Gorine G, Redolfi A, Groeseneken G and Jurczak M 2016 Novel flexible and cost-effective retention assessment method for TMO-based RRAM IEEE Electron Device Lett. 37 1112

[31] Jeurgens L P H, Wang Z and Mittemeijer E J 2009 Thermodynamic of reactions and phase tranformations at interfaces and surfaces Int. J. Mater. Res. 100 1281

[32] Karpov V G, Kryukov Y A, Karpov I V and Mitra M 2008 Field-induced nucleation in phase change memory Phys. Rev. B 78 052201

[33] Karpov I V, Mitra M, Kau D, Spadini G, Kryukov Y A and Karpov V G 2008 Evidence of field induced nucleation in phase change memory Appl. Phys. Lett. 92 173501

[34] Lee S, Jeong J, Lee T S, Kim W M and Cheong B 2008 Bias polarity dependence of a phase change memory with a Ge-doped SiTe: a method for multilevel programing Appl. Phys. Lett. 92 243507

[35] Padilla A et al 2011 Voltage polarity effects in GeSbTe2-based phase change memory devices J. Appl. Phys. 110 054501

[36] Burr G W et al 2010 Phase change memory technology J. Vac. Sci. Technol. B 28 223

[37] Imry Y 1997 Introduction to Mesoscopic Physics (New York: Oxford Press)

[38] Datta S 2005 Quantum Transport: Atom to Transistor (Cambridge: Cambridge University Press)

[39] Karbus V and Perel V I 1986 Zh. Eksp. Teor. Fiz. 91 2319

[40] Karbus V and Perel V I 1986 Sov. Phys.–JETP 64 1376