Space–time wiring specificity supports direction selectivity in the retina

Jinseop S. Kim1*, Matthew J. Greene2*, Aleksandar Zlateski3, Kisuk Lee1, Mark Richardson4, Srinivas C. Turaga1, Michael Purcaro1, Matthew Balkam1, Amy Robinson1, Bardia F. Behabadi1, Michael Campos3, Winfried Denk4, H. Sebastian Seung1† & the EyeWires5

How does the mammalian retina detect motion? This classic problem in visual neuroscience has remained unsolved for 50 years. In search of clues, here we reconstruct Off–type starburst amacrine cells (SACs) and bipolar cells (BCs) in serial electron microscopic images with help from EyeWire, an online community of ‘citizen neuroscientists’. On the basis of quantitative analyses of contact area and branch depth in the retina, we find evidence that one BC type prefers to wire with a SAC dendrite near the SAC soma, whereas another BC type prefers to wire far from the soma. The near type is known to lag the far type in time of visual response. A mathematical model shows how such ‘space–time wiring specificity’ could endow SAC dendrites with receptive fields that are oriented in space–time and therefore respond selectively to stimuli that move in the outward direction from the soma.

Compared to cognitive functions such as language, the visual detection of motion may seem trivial, yet the underlying neural mechanisms have remained elusive for half a century1,2. Some retinal outputs (ganglion cells) respond selectively to visual stimuli moving in particular directions, whereas retinal inputs (photoreceptors) lack direction selectivity (DS). How does DS emerge from the microcircuitry connecting inputs to outputs?

Research on this question has converged upon the SAC (Fig. 1a, b). A SAC dendrite is more strongly activated by motion outward from the cell body to the tip of the dendrite, than by motion in the opposite direction3. Therefore a SAC dendrite exhibits DS, and outward motion is said to be its ‘preferred direction’. Note that it is incorrect to assign a single such direction to a SAC, because each of the cell’s dendrites has its own preferred direction (Fig. 1a). DS persists after blocking inhibitory synaptic transmission4, when the only remaining inputs to SACs are BCs, which are excitatory. As the SAC exhibits DS but its BC inputs exhibit little or none5, DS appears to emerge from the BC–SAC circuit.

Mouse BCs have been classified into multiple types6, with different time lags in visual response6,8. Motion is a spatiotemporal phenomenon: an object at one location appears somewhere else after a time delay. Accordingly, DS might arise because different locations on the SAC dendrite are wired to BC types with different time lags. More specifically, we propose that the proximal BCs (wired near the SAC soma) lag the distal BCs (wired far from the soma).

Such ‘space–time wiring specificity’ could lead to DS as follows (Fig. 1c). Motion outward from the soma will activate the proximal BCs followed by the distal BCs. If the stimulus speed is appropriate for the time lag, signals from both BC groups will reach the SAC dendrite simultaneously, summing to produce a large depolarization. For motion inward towards the soma, BC signals will reach the SAC dendrite asynchronously, causing only small depolarizations. Therefore the dendrite will ‘prefer’ outward motion, as observed experimentally6.

Three-dimensional reconstruction by crowd and machine

We tested our hypothesis by reconstructing Off BC–SAC circuitry using e2198, an existing data set of mouse retinal images from serial block-face scanning electron microscopy (SBEM)7,8. The e2198 data set was over-segmented by an artificial intelligence into groups of neighbouring voxels that were subsets of individual neurons. These ‘supervoxels’ were assembled by humans into accurate three-dimensional (3D) reconstructions of neurons. For this activity, we hired and trained a small number of workers in the laboratory, and also transformed work into play by mobilizing volunteers through EyeWire, a website that turns 3D reconstruction of neurons into a game of colouring serial electron microscopy images.

Through EyeWire, we wanted to enable anyone, anywhere, to participate in our research. The approach is potentially scalable to extremely large numbers of ‘citizen scientists’9,10. More importantly, the 3D reconstruction of neurons requires highly developed visuospatial abilities, and we wondered whether a game could be more effective11 than traditional methods of recruiting and creating experts.

In gameplay mode, EyeWire shows a 2D slice through a ‘cube’, an e2198 subvolume of 256 × 256 × 256 greyscale voxels (Fig. 2a). Gameplay consists of two activities: colouring the image near a location, or searching for a new location to colour. Colouring is done by clicking at any location in the 2D slice, which causes the supervoxel containing that location to turn blue. Searching is done by translating and orienting the slice within the cube, and interacting with a 3D rendering of the coloured supervoxels.

When the player first receives a cube, it already comes with a ‘seed’, a contiguous set of coloured supervoxels. The challenge is to colour all the rest of the supervoxels that belong to the same neuron, and avoid colouring other neurons. Gameplay for a cube terminates when the player clicks ‘submit’, receives a numerical score (Extended Data Fig. 1a), and proceeds to the next cube. Because our artificial intelligence is sufficiently accurate, colouring supervoxels is faster than manually colouring voxels, an older approach to 3D reconstruction12.

©2014 Macmillan Publishers Limited. All rights reserved
The scoring system is designed to reward accurate colouring. This is nontrivial because EyeWire does not know the correct colouring. Each cube is assigned to multiple players (typically 5 to 10), and high scores are earned by players who colour supervoxels that other players also colour. In other words, the scoring system rewards agreement between players, which tends to be the same as rewarding accuracy.

Consensus is used not only to incentivize individual players, but also to enhance the accuracy of the entire system. Any player’s colouring is equivalent to a set of supervoxels. Given the colourings of multiple players starting from the same seed in the same cube, a consensus can be computed by voting on each supervoxel. EyeWirer consensus was much more accurate than any individual EyeWirer (Fig. 2b, c).

Colouring a neuron is more challenging than it sounds. Images are corrupted by noise and other artefacts. Neurites take paths that are difficult to predict, and can branch without warning. Careless errors result from lapses in attention. Extensive practice is required to achieve accuracy. The most accurate EyeWirers (Fig. 2c, top right corner) often had experience with thousands of cubes. Improvements in accuracy were observed over the course of hundreds of cubes, corresponding to tens of hours of practice (Fig. 2d). According to subjective reports of EyeWirers, learning continues for much longer than that. By contrast, previous successes at ‘crowdsourcing’ image analysis involved tasks that did not require such extensive training10,13.

Reconstructing an entire neuron requires tracing its branches through thousands of cubes. This process is coordinated by an automatic spawner, which inspects each consensus cube for branches that exit the cube. Each exit generates a new cube and seed, which are added to a queue. EyeWirers are automatically assigned to cubes by an algorithm that attempts to balance the number of plays for each cube.

Over 100,000 registered EyeWirers have been recruited by news reports, social media and the EyeWire blog. Players span a broad range of ages and educational levels, come from over 130 countries, and the...
Contact analysis

We reconstructed 195 Off BC axons and 79 Off SACs from e2198 (Fig. 4b). The e2198 retina was stained in an unconventional way that did not mark intracellular structures such as neurotransmitter vesicles, and reliable morphological criteria for identification of BC presynaptic terminals are unknown. As an indirect measure of connectivity, contact areas were computed for all BC–SAC pairs. The resulting contact matrix was analysed through two subsequent steps.

In the first step, Off BC axons were classified into five cell types, following structural criteria established to correspond with previous molecular definitions (Methods and Extended Data Fig. 5). BC types stratify at characteristic depths in the inner plexiform layer (IPL), and vary in size (Fig. 4a). The BCs of each type formed a ‘mosaic’, meaning that cells were spaced roughly periodically (Extended Data Fig. 6a–e). This is generally accepted as an important defining property of a retinal cell type. Type densities (Extended Data Fig. 6f) were roughly consistent with previous reports. When the columns of the contact matrix were sorted by BC type (Fig. 4b), it became evident that BC2 and BC3a contact SACs more than other BC types.

Co-stratification analysis

Off SACs stratify at a particular depth in the IPL (Fig. 4b). Why this depth and not some other? From Fig. 4a, it is obvious that this depth is appropriate for wiring with BC2 and BC3a, as required by our model of DS emergence. Following this logic one step further, we wondered whether the observed dependence of contact on distance from the SAC soma might be reflected in fine aspects of SAC morphology. We hypothesized that SAC dendrites are ‘tilted’, moving deeper into the IPL with distance from the SAC soma. Such a change in depth would be compatible with more overlap with BC2 near the soma, and more overlap with BC3a far from the soma, as BC3a is deeper in the IPL than BC2 (Fig. 4a and Supplementary Video 1).

The hypothesized tilt turns out to exist (Fig. 5a). Very close to the SAC soma, the dendrites dive sharply into the IPL from the inner nuclear layer (INL). Surprisingly, IPL depth continues to increase as distance from the SAC soma in the tangential plane ranges from 20 to 80 µm. The slight increase is not evident in a single dendrite (Fig. 1b), but emerges from statistical averaging.

Could dendritic tilt be the cause of the observed variation in BC–SAC contact with distance (Fig. 4d)? We cannot address causality on the basis of our data, but we can test how well the tilt predicts contact variation. We computed the stratification profiles of BC types (Fig. 5a), defined as the one-dimensional density of BC surface area along the depth of the IPL. We also computed the stratification profile of SAC dendrites at various distances from the SAC soma (quartiles, Fig. 5a). Assuming that BC and SAC arborizations are statistically independent of each other, we estimated contact from ‘co-stratification’, defined as the integral over IPL depth of the product of BC and SAC stratification profiles (Methods).

We found that actual BC2 contact depends more strongly on distance than predicted; the slight change in IPL depth after the initial plunge appears too small to account for the large change in actual BC2 contact. In other failures of contact prediction, BC3a, BC3b and BC4 stratify at the same IPL depths (Fig. 5a), yet BC3a makes much more contact than BC3b or BC4. Also, actual BC3a contact plummet near the tips of SAC dendrites (Fig. 4d), whereas predicted contact does not change at all because the IPL depth of SAC dendrites is constant in this region (Fig. 5b). Overall, the total contact from all BC types seems low in this region (Extended Data Fig. 7d), suggesting that BCs avoid making synaptic inputs to the most distal SAC dendrites. This runs counter to the conventional belief that input synapses are uniformly distributed over the entire length of SAC dendrites. The unreliability of inferring contact from co-stratification is illustrated by numerous samples of SAC dendrites that pass through BC axonal arborizations without making any contact at all (Extended Data Fig. 8).

Model of the BC–SAC circuit

We mentioned previously that BC2 lags BC3a in visual response. There is another important difference: BC3a responds more transiently to step changes in illumination, whereas BC2 exhibits more sustained responses. The implications of the sustained–transient distinction for DS can be understood using a mathematical model. The activity of a retinal neuron is often approximated as a linear spatiotemporal filtering of the visual...
stimulus followed by a nonlinearity16,17. Such a ‘linear–nonlinear’ model for the output $O(t)$ of the SAC dendrite can be written as

$$O(t) = \left[\int dx dt' W(x,t-t')I(x,t') \right]^+$$ \hspace{1cm} (1)

For simplicity, the dendrite and visual stimulus $I(x,t)$ are restricted to a single spatial dimension x, and the nonlinearity is a half-wave rectification, $[x]^+ = \max(x,0)$. We interpret the integral in equation (1) as the summed input from the BCs presynaptic to the SAC. The nonlinearity could arise from various biophysical mechanisms, such as synaptic transmission from SACs to other neurons. The spatiotemporal filter $W(x,t)$ is a sum of two functions,

$$W(x,t) = U_1(x)v_1(t) + U_2(x)v_2(t)$$ \hspace{1cm} (2)

corresponding to contributions from BC2 and BC3a. The sustained temporal filter $v_1(t)$ is monophasic, whereas the transient filter $v_2(t)$ is biphasic (Fig. 6a). The spatial filter $U_1(x)$ represents the entire set of all BC2 inputs to the dendrite, and can be estimated from the BC2 contact area graph in Fig. 4d. Similarly, $U_2(x)$ can be estimated from the BC3a contact area graph. The two spatial filters are displaced relative to each other (Fig. 6a), because BC3a tends to contact SAC dendrites at more distal locations than BC2.

Each of the terms in the sum of equation (2) is said to be ‘space–time separable’, because it is the product of a function of space and a function of time. It was previously observed that a spatiotemporal filter $W(x,t)$ of this form can endow a model like equation (1) with DS18,19. This is illustrated by Fig. 6 using the fact that the convolution in equation (1) is equivalent to ‘sliding’ the spatiotemporal filter W in time over the stimulus I, and computing the overlap at each time. The filter $W(x,t)$ is oriented in space–time (Fig. 6a), and so also is a moving stimulus $I(x,t)$ (Fig. 6g, h). The overlap with a rightward-moving stimulus (Fig. 6h) is greater than for a leftward one (Fig. 6g), so the model exhibits DS with a rightward preferred direction.

How is DS affected by the biphasic shape of the transient temporal filter, $v_2(t)$? If we remove the negative lobe (Fig. 6c), then $v_2(t)$ will become monophasic like $v_1(t)$ and their relation closer to a simple time lag (Fig. 6d). We will refer to this model as a ‘Reichardt detector’, in honour of the pioneering researcher Werner Reichardt, although it more closely resembles a subunit of his model20. On the other hand, removing the positive lobe of $v_2(t)$ makes it monophasic but with inverted sign relative to the sustained filter (Fig. 6e). The result (Fig. 6f) resembles a DS model originally proposed by Barlow and Levick21.

Both modified models (Fig. 6d, f) exhibit DS. In the Reichardt detector, the inputs from the two arms enhance each other for motion in the preferred direction. In the Barlow–Levick detector, the two inputs cancel each other for motion in the null direction. As our sustained–transient model (Fig. 6b) uses both mechanisms, it should exhibit more DS than either detector. Our model is related to versions of the Reichardt detector with low-pass and high-pass filters on the two arms22.

In the original Barlow–Levick model, the negative filter corresponded to synaptic inhibition. As BCs are believed to be excitatory, negative BC input in our model represents a reduction of excitation relative to the resting level, rather than true inhibition. Signalling by reduced excitation may be possible, at least for low-contrast stimuli, as BC ribbon synapses may have a significant resting rate of transmitter release23.

The model of equations (1) and (2) is a useful starting point for many theoretical investigations that are outside the scope of this article. For example, DS dependency on the spatial and temporal frequencies of a sinusoidal travelling wave stimulus is calculated in Supplementary Equations, and DS dependence on stimulus speed is graphed in Extended Data Fig. 9.

Discussion

In our DS model, SAC dendrites are wired to BC types with different time lags. A previous model did not distinguish between BC types, and instead relied on the time lag of signal conduction within the SAC dendrite itself24.
Figure 6 | Mathematical model of the BC–SAC circuit. a. Spatiotemporal filter of equation (2). Green is positive, red is negative, and grey is zero. b. The transient pathway effectively combines a positive channel that leads the sustained pathway by \(t \) and a negative channel that lags by \(\tau \). Removing the negative channel yields a Reichardt detector (d, e). Removing the positive channel yields a Barlow–Levick detector (f). A moving visual stimulus \(I(x,t) \) is oriented in space–time (g, h), and so are the spatiotemporal filters (a, c, e).

Leftward motion

Rightward motion

ARTICLE

The idea that contact (or connectivity) can be inferred from co-stratification is sometimes known as Peters’ rule, and has also been applied to estimate neocortical connectivity. The present work shows that fairly subtle violations of Peters’ rule may be important for visual function. Previous research suggests that On–Off direction-selective ganglion cells inherit their DS from SAC inputs owing to a strong violation of Peters’ rule. Our findings were made possible by using artificial intelligence to reduce the amount of human effort required for 3D reconstruction of neurons. Even after the labor savings, our research required great human effort.

The EyeWire artificial intelligence was based on a deep convolutional network. Similar networks have been successfully applied to serial electron microscopy images obtained by using conventional staining techniques that mark intracellular organelles. Extending EyeWire to such images, in which synapses are clearly visible, would enable a true connection analysis that goes beyond the contact and co-stratification analyses used here.

Our work demonstrates that reconstructing a neural circuit can provide surprising insights into its function. Much more will be learned as reconstruction speed grows. The combination of crowd and artificial intelligence promises a continuous upward path of improvement, as human input from the crowd is not only useful for generating neuroscience.
discoveries, but also for making the artificial intelligence more capable through machine learning.

Note added in proof: Further evidence that BC axons exhibit little or no DS appeared while this paper was in press.

METHODS SUMMARY

A convolutional network was trained to detect neural boundaries via the MALIS procedure\(^4\) and CNPKG (https://github.com/srinivutarag/cnpgk/), which is based on Cortical Network Simulator\(^4\). The convolutional network was applied to the 21298 data set, which was then segmented into supervoxels by a modified version of the watershed algorithm. Paid workers and volunteer EyeWriters reconstructed neurons in 3D by assembling supervoxels. The retina was computationally flattened, reconstructed neurons were classified by their structural properties, and contact co-stratification were analysed by custom Matlab and C++ code.

Online Content Any additional Methods, Extended Data display items and Source Data are available in the online version of the paper; references unique to these sections appear only in the online paper.

Received 13 October 2013; accepted 10 March 2014. Published online 4 May 2014.

1. Borst, A. & Euler, T. Seeing things in motion: models, circuits, and mechanisms. _Neuron_ 71, 974–994 (2011).
2. Vaney, D. I., Vogt, B. A. & Taylor, W. R. Direction selectivity in the retina: symmetry and asymmetry in structure and function. _Nature Rev. Neurosci._ 13, 194–208 (2012).
3. Euler, T., Detwiler, P. B. & Denk, W. Directional selectivity in the retina. _Neuron_ 71, 974–994 (2011).
4. Hausselt, S. E., Euler, T., Detwiler, P. B. & Denk, W. A dendrite- autonomous mechanism for direction selectivity in retinal starburst amacrine cells. _Proc. Nat. Acad. Sci._ 105, 15216–15221 (2008).
5. Borst, A., Reisenman, C. & Haag, J. Adaptation of response transients in fly motion vision. I. Model studies. _Vision Res._ 43, 1311–1324 (2003).
6. Lagano, L., Gornis, A. & Job, C. Continuous vesicle cycling in the synaptic terminal of retinal bipolar cells. _Neuron_ 17, 957–967 (1996).
7. Mar, S. J., Kim, I.-J., Looger, L. L. & Demb, J. B. Excitatory synaptic inputs to mouse on-off direction selective retinal ganglion cells lack direction tuning. _J. Neurosci._ 34, 3976–3981 (2014).
8. Mutch, J., Knoblich, U. & Poggio, T. A GPU-Based Framework for Simulating Cortically Organized Networks. Tech. Rep. MIT-CSAIL-TR-2010-013/CBL-286 (M.I.T., 2010).

Supplementary Information is available in the online version of the paper.

Acknowledgements This research was made possible by funding from the Gatsby Charitable Foundation, the Howard Hughes Medical Institute, the Human Frontier Science Program, an anonymous donor, and the National Institutes of Health, K.L. was supported by a Samsung Scholarship. Support from the AWS Research Grants Program gave EyeWire global reach through Amazon Cloudfront. We thank K. Bhriggman for providing the e2198 data set, J. Mutch created the CNS framework on which EyeWire is based, B. Braitenberg and A. Boustani for helpful discussions of the computational framework, and W. Silversmith with recent modifications. R. Prentki, L. Trawinski, M. Sorek, A. Ostojic, C. David, R. Avery, S. Temple, A. Bost, M. Greenstein and M. Evans worked in the laboratory to reconstruct neurons, and the first six also served as GrimReaper and hosted EyeWire competitions. Additional reconstructions were provided by R. Han, M. Gavrin, G. Lu, A. Ortiz and D. Udvary. All were trained by R. Prentki, who also created training videos for EyeWriters. We are grateful to A. Norton for 3D renderings, and to E. Almeida for EyeWire graphics. We acknowledge discussions with T. Baden, M. Berry, B. Borghuis, A. Bost, E. J. Chichilnisky, D. Chklovskii, D. Clark, J. Demb, T. Euler, M. Helmsmaedt, A. Huberman, S. Lee, R. Masland, J. Sanes and Z. Zhou.

Author Contributions J.S.K. created algorithms, software and procedures for crowd intelligence and learning, and applied them to generate neuron reconstructions. J.S.K. and M.J.G. classified bipolar cells. M.J.G. analysed contact and co-stratification, aided by code from A.Z. and input from W.D. H.S.S. devised the model with help from M.E.C. and M.C.S. T.C. trained the convolutional network, M.P. and M.B. implemented software and algorithms created by A.Z. for interactive segmentation and 3D visualization, with guidance from S.C.T. M.R. created the EyeWire game and M.B. its data infrastructure. K.L. quantified EyeWiker accuracy and learning. A.R. mobilized and the EyeWire community. EyeWirers reconstructed neurons and built extensions to EyeWire. K.L. supervised the project and coordinated all efforts. All author correspondence should be addressed to K.L. (klaus@innsbruck.at).
METHODS

We worked with the e2198 data set rather than the e2006 data set because e2198 is large enough to encompass entire SAC dendrites (~150 µm). All dimensions are uncorrected for tissue shrinkage, which was previously estimated at 14% by comparison of two-photon and serial electron microscopy images.

Machine learning. The boundaries between neurons in subvolumes of the e2198 and e2006 data sets were manually traced. Using this as ground truth, a convolutional network was trained to detect boundaries between neurons using the MALIS method. The convolutional network had the same architecture as one used previously, and produced as output an affinity graph connecting nearest-neighbor voxels. Any subvolume of e2198 could be oversegmented by applying a modified watershed algorithm to the appropriate subgraph. The regions of the oversegmentation are called supervoxels.

Reconstruction by workers. A team of part-time workers, numbering about half a dozen at any given time, reconstructed neurons using a more sophisticated version of the EyeWire interface. Workers were hired on the basis of an interview and a test of software use passed by three-quarters of the applicants. They were trained for 40–50h before generating reconstructions used for research. Their skills typically improved for months or even years after the initial training period, and were superior to those of professional neuroscientists without reconstruction experience.

As with EyeWire, the task of reconstructing an entire neuron was divided into subtasks, each of which involved reconstructing the neuron within a subvolume starting from a supervoxel ‘seed’. However, the subvolumes were roughly 100 times larger than EyeWire cubes, and only two workers were assigned to each subvolume.

In the first stage of error correction, disagreements were detected by computer, and resolved by one of the two workers, or a third worker. The third occasionally detected and corrected errors that were not disagreements between the first two. Most disagreements were the result of careless errors, and were easily resolved. More rarely, there were disagreements caused by fundamental ambiguities in the image. These locations were noted for later examination in a further stage of error correction.

This second stage relied on 3D reconstructions of entire neurons assembled from multiple subvolumes and inspected by one of the authors (J.S.K.). Suspicious branches or terminations, as well as overlaps between reconstructions of different neurons, were detected. The original image was re-examined at these locations to check for errors. The process was repeated until no further errors could be detected.

The precision of our final reconstruction relative to the truth is probably comparable to the precision of the penultimate reconstruction relative to the final reconstruction, 0.99 for SACs and 0.96 for BCs. Recall is probably somewhat poorer, because missing branches are more difficult to detect than superfluous branches. Recall must be reasonably good for SACs, as missing branches would be detected by deviations from the typical SAC shape and radius.

Reconstruction by EyeWirers. Some reconstruction errors slip past the consensus mechanism. These are detected through visual inspection of an ‘overview’ mode, which displays 3D renderings of entire neurons currently under reconstruction. Branches and darkening, which could falsely appear like cellular boundaries. (The reason for the darkening is unclear, as the extracellular staining procedure contained irregular darkenings, which could falsely appear like cellular boundaries.

Accuracy is monitored on a weekly basis by computing the precision and recall of each EyeWirer with respect to the truth, defined as neuron reconstructions based on EyeWire consensus followed by GrimReaper corrections. Less accurate EyeWirers are given less weight in the vote.

Players’ daily, weekly and monthly scores are publicly displayed on a leaderboard (Extended Data Fig. 1b, right), motivating players to excel through competition. Players communicate with each other through online ‘chat’ (Extended Data Fig. 1b, left) and discussion forums.

A data test version of EyeWire was deployed in February 2012 and attracted a small group of users, who helped guide software development. EyeWire officially launched in December 2012.

Reconstruction of Off SACs. Off SACs were recognized by their somata in the INL, narrow IPL stratification at roughly one third of the depth from the INL to the ganglion cell layer, and characteristic ‘starburst’ appearance (Fig. 1a).

Off SACs were reconstructed by: (1) forward tracing from the soma to dendritic tips; and (2) backward tracing from varicosities on candidate SAC dendrites to the soma. In the forward method, a candidate SAC soma was identified as a supervoxel with a characteristic pattern of dendritic stubs bearing spiny protrusions. By the time reconstruction progressed to approximately half of the average SAC radius, an Off SAC could be conclusively recognized by its starburst shape and narrow stratification at the appropriate IPL depth. More than 90% of candidates turned out to be SACs.

In the backward method, we located a thin dendrite with varicosities at the appropriate IPL depth. This was reconstructed back to the soma, and then the rest of the dendrites were reconstructed from the soma to the tips. The cell could be discarded at any point during this process, if its dendrites escaped from the appropriate IPL depth or failed to exhibit the proper morphological characteristics. Less than 25% of initial candidates ended up confirmed as SACs.

In total, 79 Off SACs were reconstructed, 39 by forward tracing and 52 by backward tracing. This is more than half the entire population in e2198, judging from the published density. After candidates were identified by one of the authors (J.S.K.), reconstructions were performed by laboratory workers (59 cells) or by EyeWirers (29 cells). Both pairs of numbers sum to more than 79, because the sets overlapped (12 for forward/backward, 9 for workers/EyeWirers).

In March 2012, laboratory workers began reconstruction of SACs. In March 2013, EyeWirers were invited to the ‘Starburst Challenge’, a sequence of tutorial cubes drawn from SACs. Those who passed with sufficient accuracy were an elite group allowed to reconstruct SACs (Supplementary Information). EyeWirers essentially shouldered most of the burden of SAC reconstruction, with only 8% of SAC cubes needing correction by GrimReaper. This enabled laboratory workers to shift their focus to BCs, as described below.

Reconstruction of Off BCs. The somata of Off BCs were generally outside e2198, which extended only partially into the INL (Fig. 1 of ref. 9). The trunks of candidate BC axons were located in the interstices of the INL, and followed into the IPL. If the axons arborized in the Off region of the INL, they were fully reconstructed. Cells that violated known BC structures were identified as amacrine cells and discarded.

BC axons were difficult to reconstruct owing to poor staining, and their highly irregular shapes. They could not be accurately reconstructed (either by online volunteers or laboratory experts) within the 256 × 256 × 256 cubes of EyeWire, which were too small to provide sufficient spatial context. Therefore BCs were reconstructed only by laboratory workers using the large subvolumes mentioned above.

Coordinate system. For more precise quantification of structural properties, a new coordinate system was defined by applying a nonlinear transformation to neurons so as to flatten the IPL and make it perpendicular to one of the coordinate axes. The nonlinear transformation was found by the following steps. First a global planar approximation to the Off SAC surface was computed. Then the centroid of all the SACs was projected onto this global plane to define the origin of the coordinate system. The coordinate system was then placed along the coordinate axis of the e2198 volume closest in direction to the light axis.

To correct for curvature, an azimuthal equidistant projection of the Off SAC surface onto the global plane was made about the origin. Then local planar approximations to the SAC surface were computed in the neighbourhoods of every node in a triangular lattice. At each point in a triangle, the SAC surface was approximated by computing the mean of the planar approximations (as quaternions with yaw constrained to be zero) for the triangle’s vertices, weighted by distance of the point from the vertices.

The Off SACs were defined as 32% IPL depth. We also reconstructed a few On SACs, and defined them as 62%. These choices placed the edge of the INL at 0%. Structural properties of all cells were computed on the basis of locations of their surface voxels after transformation into the new coordinates.

Classification of Off bipolar cells. BC stratification profiles were computed by dividing surface voxels into 100 bins spanning 0 to 100% IPL depth. Classification
into cell types was done by using methods similar to those described previously. The BCs were split into shallow (BC1/2) and deep (BC3/4) clusters using the 75th percentile depth of the stratification profile. The BC1/2 cluster was further subdivided into two clusters by stratification width, defined as the difference between 75th and 25th percentile depths. On the basis of cells per square millimetre (Extended Data Fig. 6f), we inferred that the wider cluster was BC2 and the narrower cluster was BC1. These two types were originally defined by molecular criteria, and our inferred correspondence with structural definitions is transposed relative to a previous report. The BC3/4 cluster was subdivided into BC4 and BC3 by the 10th percentile depth, because the molecularly defined BC4 stratifies closer to the INL. Finally, BC3 was subdivided into BC3a and BC3b on the basis of axonal arborization volume, with BC3a having the larger axonal volume. Each of the above subdivision steps was based on a feature with a roughly bimodal histogram (Extended Data Fig. 5).

The result still contained a small number of classification errors, detected when adjacent BCs of the same type overlapped enough to violate the mosaic property. Corrections were made by an automatic algorithm that greedily swapped cells from one cluster to another such that the total overlap between convex hulls of cells of a given type was minimized. Two swaps were vetoed by an expert (J.S.K.) on the basis of morphological features. In all, six cells were swapped within BC1/2 and 13 within BC3/4. In the final classification, 41, 56, 29, 35 and 34 BCs were identified as types 1, 2, 3a, 3b and 4, respectively (Extended Data Fig. 6). Cells that violated the mosaic of all types (7) or had irregular stratification profiles (9) were discarded as possible reconstruction errors or amacrine cells.

Contact analysis. Edges of the affinity graph connecting BC with SAC voxels were defined as BC–SAC contact edges. For each pair, the sum of the edges yielded an estimate of contact area. The Euclidean distance separating each BC–SAC pair was computed after projecting their centres onto the SAC plane. Centres of SAC somata were manually annotated, and centres of BC arborizations were computed as the centroids of their surface voxels. The pairs were binned by distance of the BC from the SAC soma. For every pair in a bin, the fraction of SAC surface area devoted to BC–SAC contact within the convex hull of the BC was computed as the ratio of BC–SAC contact edges to SAC surface edges within the convex hull. The latter was estimated by the number of SAC surface voxels multiplied by a geometric conversion factor of 1.4 SAC surface edges per surface voxel. (This factor was estimated by the number of SAC surface voxels multiplied by a geometric conversion factor.) BC–SAC pairs with fewer than 10,000 SAC surface voxels inside the hull were excluded from the computation to reduce the effect of fluctuations. The ratios for BCs of the same type were averaged for each distance bin and multiplied by a mosaic overlap factor to yield the values in Fig. 4d. The mosaic overlap factor represents the extent to which neighbouring convex hulls overlap one another, which varies by cell type. This factor was computed by dividing the sum of the hull areas for each cell by the area of the union of hulls for each cell type. For absolute rather than fractional areas, edges in the affinity graph were converted to area in μm², using the conversion factor of 291.5 μm² per edge. This factor averages over the different edge orientations and compensates for voxelization effects. A result very similar to Fig. 4d can also be obtained by an alternative method that is simpler but does not yield error bars (Extended Data Fig. 7c).

Co-stratification analysis. All SAC surface voxels were binned by distance from the soma centre in the SAC plane. Within each bin, the stratification profile was computed as for the BCs. The quartiles (median and 25th and 75th percentiles) are graphed in Fig. 5a. The prediction of contact from co-stratification is based on the following formalism.

We define the arborization density \(\rho_a(r) \) as the surface area per unit volume at location \(r \) of a type \(a \) cell with soma centred at the origin. Its integral \(\int dxdydz\rho_a(r) \) is the total surface area of the arborization. We assume that the contact density received by one cell of type \(a \) from all cells of type \(b \) is equal to

\[
\rho_{ab}(r) = \rho_a(r) \sum_i \rho_b(r - r_i)
\]

(3)

The sum over the \(b \) mosaic can be approximated by a function that is independent of \(x \) and \(y \),

\[
\sum_i \rho_b(r - r_i) = \sigma_b(s_b(z))
\]

(4)

where \(\sigma_b \) is the number of type \(b \) neurons per retinal area and

\[
s_b(z) = \int dxdy\rho_b(x,y,z)
\]

(5)

is the stratification profile of a cell of type \(b \). The SAC arborization density is assumed radially symmetric,

\[
\rho_{SAC}(r) = \rho_{SAC}(\sqrt{x^2 + y^2}),
\]

where \(\rho_{SAC}(r) \) can be regarded (up to normalization) as the SAC stratification profile as a function of distance \(r = \sqrt{x^2 + y^2} \) from the SAC soma. Integrating the contact density (3) and normalizing yields the fraction \(\phi_b(r) \) of SAC area contacted by cell type \(b \) as a function of \(r \),

\[
\phi_b(r) = \sigma_b \int dxdy\rho_{SAC}(r,z)s_b(z)
\]

(6)
Extended Data Figure 1 | EyeWire screenshots. a, Numerical score after gameplay of a cube, with leaderboard below. b, Overview mode with neuron under reconstruction (centre), global chat (bottom left), progress bar for neuron (top left), leaderboard (right), settings and help (bottom right). c, Tutorial play.
Username* (free text)
Gender*
 Male/Female
Age* (free text)
Location*
 City, State/Province
 Country
Are you...
 White or Caucasian
 Asian
 African American or Black
 American Indian or Alaska Native
 Hispanic
 Pacific Islander
Education*
 Middle School
 High School - current student
 High School
 Some College - current student
 Some College - not currently a student
 Finished College (Undergrad)
 Some Graduate School - current Masters student
 Masters -- Finished Degree
 Some Graduate School - current PhD student
 PhD -- Finished Degree
 MD/DO
Occupation* (free text)
Do you have prior experience in neuroscience??
 Yes/No
 If yes, please explain.^^
How long do you play EyeWire each week?*
 Less than 1 hour/More than 1 hour
If you play for more than 1 hour per week, how long do you play?
 1 to 2 hours
 3 to 5 hours
 6 to 10 hours
 11 to 20 hours
 21 to 30 hours
 31 to 40 hours
 41 to 50 hours
 More than 50 hours
What scientific purpose does EyeWire serve? (free text)
Why do you play EyeWire? (free text)
How did you discover EyeWire? (free text)
If you could add one feature to EyeWire, what would it be? (free text)
Anything else you would like to add? (free text)

Survey launch date: April 14, 2013. *required question, ^question added on 7/7/2013
Extended Data Figure 3 | EyeWire demographics. a, b, Data based on 729 responses to the questionnaire in Extended Data Fig. 2. Age distribution of (a) all respondents and (b) those among the top 100 players ranked by number of cubes submitted. c, Gender distribution of all respondents and those among the top 100 players. d, Distribution of educational levels.
Extended Data Figure 4 | Entirety of reconstructed SACs. Only the central region of this plexus of SAC dendrites is portrayed in Fig. 3b. Scale bar, 50 μm.
Extended Data Figure 5 | Clustering procedure for BCs. a, Cells were divided by the 75th percentile of their stratification profiles. b, The shallow cluster BC1/2 was separated into BC1 and BC2 using stratification width, defined as the difference between 75th and 25th percentiles. c, The deep cluster BC3/4 was divided by 10th percentile into BC4 and BC3. d, BC3 was divided by axonal volume to yield BC3a and BC3b. Scatter plots of the BC1/2 (e) and BC3/4 (f) divisions show swaps made to eliminate mosaic violations. No swaps between BC1/2 and BC3/4 were needed.
Extended Data Figure 6 | Mosaics of Off BC types. a–e, Reconstructed BCs of types 1, 2, 3a, 3b and 4 (a through e, respectively). BC1/2 mosaics appear complete. BC3/4 mosaics show some gaps, probably because some thin axons were missed in the INL (Methods). Scale bar, 50 μm. f, Statistics of BC types. Means and standard deviation of the hull area (area of the convex hull around the cell) are in μm². Type densities are the number of cells (n) divided by the area of the union of hulls of that cell type, and are in cells per mm² without compensation for tissue shrinkage (Methods). Our densities resemble those of Wäsle et al., who found 2,233, 3,212, 1,866, 3,254 and 3,005 cells per mm².
Extended Data Figure 7 | Alternative contact analysis. Analysis based on summing over BC–SAC pairs rather than averaging as in the main text. a, Total BC–SAC contact versus distance from the SAC soma. b, Total SAC area within the union of convex hulls of each BC type versus distance. The peak at 80 μm is the location of maximum dendritic branching. The sharp decrease at larger distances is due to thinning and termination of branches. The graphs differ across BC types, which in our sample do not cover exactly the same retinal areas. c, Fraction of SAC area in contact with BC types, estimated by dividing contact area (a) by SAC area (b). This estimate is similar to that of Fig. 4d, but lacks error bars. d, Fraction of SAC area contacted by all BC types, the sum of the contact fractions in c. Also plotted is the contact predicted by co-stratification, the sum of the curves from Fig. 5b.
Extended Data Figure 8 | Proximity versus contact. Neurons that intermingle may or may not contact each other. a, b, Type 2 (a) and 3a BCs (b) contacting SACs. The cells are roughly 24 and 21 μm wide, respectively. c, d, Other SACs are well within the arborizations of the same two BCs, yet make no contact at all.
Extended Data Figure 9 | Model direction selectivity index (DSI) versus stimulus speed. The graphs are for travelling sine waves of various wavelengths λ (units of Δx). Speed is in units of $\Delta x / t$. The preferred speed (horizontal location of each peak) is $\lambda / (2\pi)$. Note that responses are cut off at high speeds by the temporal filters of the model, but the DSI can decay more slowly.