JANUS: an FPGA-based System for High Performance Scientific Computing

February 12, 2013

Abstract

This paper describes JANUS, a modular massively parallel and reconfigurable FPGA-based computing system. Each JANUS module has a computational core and a host. The computational core is a 4x4 array of FPGA-based processing elements with nearest-neighbor data links. Processors are also directly connected to an I/O node attached to the JANUS host, a conventional PC. JANUS is tailored for, but not limited to, the requirements of a class of hard scientific applications characterized by regular code structure, unconventional data manipulation instructions and not too large data-base size. We discuss the architecture of this configurable machine, and focus on its use on Monte Carlo simulations of statistical mechanics. On this class of application JANUS achieves impressive performances: in some cases one JANUS processing element outperforms high-end PCs by a factor ~ 1000. We also discuss the role of JANUS on other classes of scientific applications.

1 Overview

Several applications in computational physics, chemistry and biology are still far beyond the reach of state-of-the-art computers, whenever following the evolution of even simple dynamics equations responsible for very complex behavior requires inordinately long execution times. This is the case, for instance, of *Spin Glasses* [3] (see later, for details): integration over configuration space of a three-dimensional lattice system of 50^3 sites, requiring up to 10^{13} Monte Carlo steps, is still an untreatable task. One has to collect statistics for several copies of the system, say order 10^2, corresponding to about 10^{20} Monte Carlo spin updates (*spins* are the variables sitting at the lattice sites, see later).

Extensive use of parallelism is the main avenue to boost computer performance. The systems we are interested in do have a very large degree of available parallelism. *Embarassingly parallel* is the fact that several copies of the system have to be simulated independently. State-of-the-art implementations on traditional CPUs use this approach and reach average performances (usually measured in terms of the spin update time) of ~ 1 ns/spin when simulating > 100 copies at the same time, exploiting the SIMD features available in many processors. The simulation program outlined above would take $\sim 10^4$ years.

Even if we consider that simulations have to be performed for several values of the control parameters, it is impossible to usefully deploy more than several dozens of CPU’s on one large-scale simulation. What is needed is to exploit the intrinsic parallelism of the simulation of each copy of the system to shorten processing time.

This problem is solved by the JANUS system, described in this paper, that exploits parallelism up to the limits set by available hardware resources. Each processor within JANUS is able to perform the required 10^{13} Monte Carlo steps on one copy of the system in just several months, so the massive system of 256 JANUS processors that we plan to deploy in spring 2008 makes the simulation program outlined above possible in about one year time, a viable option on human timescales.

JANUS is based on FPGAs for implementation simplicity and added flexibility, so it is an example of a reconfigurable architecture on which a high-performance application has been succesfully configured. It also turns out that JANUS, once its processing elements are configured for spin-glass simulations, has several strong commonalities with *many*-core architectures (see e.g. [6]) that are clearly emerging as a new trend in computer systems. So, JANUS can be seen by the physicist as a powerful simulation engine and by the computer scientist as a succesful example of a *massively many*-core computing structure.

This paper is structured as follows: in section 2 we review the computing needs of typical algorithms of statistical mechanics simulations, deriving a set of architectural requirements. In section 3 we describe the structure of the JANUS system, that we have architected trying to match in the most flexible way the requirements of section 2 in section 4 we describe the programming environment available to
the JANUS user, while section [5] describes the JANUS implementation of some class of spin-models, showing aggressive exploitation of massive on-chip parallelism, enabled by high-bandwidth on-chip memory structures. The paper ends with a short concluding section.

2 Computing Requirements

Spin models are ubiquitous in statistical mechanics, interesting both as description of the properties of several condensed-matter systems and as paradigm of complexity. They are defined in terms of (generalized)-spins, variables defined on sites i of a discrete hypercubic D-dimensional lattice of linear size L, taking only a finite (usually small) number of values. In the simplest case (the Ising-like models), spin variables take two values, $s_i = \pm 1$, $i = 1, \ldots, N = L^D$. The Monte Carlo dynamics of these systems is governed by simple Hamiltonian functions (energy functions). In the Ising model the energy function is

$$ E = -\sum_{\langle i,j \rangle} J_{ij} s_i s_j $$

(1)

The notation $\langle i,j \rangle$ means that summation is done only on nearest neighbors pairs of sites on the lattice, characterized by interaction parameters (couplings) J_{ij}. All symbols in eq. 1 are two valued parameters. A configuration C_k is a given set of spins $s^{(k)}_i$ for all sites on the lattice. If all J_{ij} are constant, the model describes the behaviour of a ferromagnetic material. A set of J_{ij} randomly extracted from a bimodal distribution $J_{ij} = \pm 1$ defines the Edwards-Anderson model [3]. Positive values of J_{ij} favor aligned spins $s_i = s_j$, while negative values favor misalignment ($s_i = -s_j$) (see Figure 1).

Potts models are a generalization of Ising spin models: the s_i are q-valued discrete variables. The energy function is

$$ E = -\sum_{\langle i,j \rangle} \delta_{s_i,s_j} $$

(2)

where $\delta_{x,y}$ is a Kronecker delta function. Another interesting variant is the Glassy Potts model [19]

$$ E = -\sum_{\langle i,j \rangle} \delta_{s_i,\pi_{i,j}(s_j)} $$

(3)

where $\pi_{i,j}$ is a random permutation of $(0,1,\ldots,q-1)$.

A good number of experimental systems are modeled as Potts systems with $q = 4$ [14]; among them magnetic materials and absorption of molecules on metallic substrates; the interested reader may find examples in [15, 16, 17, 18].

Surface growth problems in $D + 1$ dimensions are also directly mappable to chiral Potts models

$$ E = -\sum_{\langle i,j \rangle} \delta_{1+s_i,s_j} $$

(4)

on regular D-dimensional lattices [5]. Surface evolution maps onto a walk in the chiral ground states space through simple local moves, keeping the Solid on Solid constraint (no overhangs in the surface profile).

Potts models are relevant also in several heterogeneous fields, even far away from magnetic and glassy materials physics for which the above models are paradigms. Graph coloring [12, 13] is an example in the broad area of optimization. Given a graph, it consists in coloring adjacent vertices (or, alternatively, incident edges or both incident edges and adjacent vertices) in different colors chosen from a given set. To achieve this goal, one can define an antiferromagnetic Potts model on top of the graph’s topology, and then the Hamiltonian

$$ E = \sum_{ij \in J(G)} \delta_{s_i,s_j}, $$

(5)

where $J(G)$ is the set of the edges of the graph G, which describes the number of incorrectly coloured vertices, since the term δ_{s_i,s_j} is 1 if the adjacent vertices i and j are of the same color. Finding a coloring which has a null energy is therefore equivalent to a correct coloring of the graph. Complications arising due to the irregular structure of random graphs, will be discussed in Section 5.

For all the models described above, knowing the energy function determines the properties of the system. Spin configurations are distributed according to the Boltzmann distribution:

$$ P(C_k) \sim e^{-\beta E(C_k)} $$

(6)
Figure 1: Sketch of four neighboring nodes in a two dimensional square lattice (left). The two aligned spins on the topmost sites satisfy the positive coupling between them, as the two (misaligned) leftmost ones do with their negative coupling. The right-bottom spin cannot satisfy its couplings, due to a frustrated coupling configuration. The picture on the right shows a configuration of a two dimensional Ising model, showing large magnetized domains. The two colors represent opposite spin orientations.

where $\beta = 1/T$ is the inverse of the temperature, describing the probability distribution of the configurations of a system kept at constant temperature T [4]. Thermodynamic observables are defined as averages weighted by the Boltzmann distribution

$$A = \frac{\sum_k A(C_k) e^{-\beta E(C_k)}}{\sum_k e^{-\beta E(C_k)}}$$

where the sum runs over all configurations. Full enumeration of the right hand side of eq. 7 is impossible for any reasonable lattice size. A Monte Carlo procedure generates a sequence of configurations C_k asimptotically distributed as in 6 so estimates of thermodynamic quantities become simple arithmetic averages:

$$A = \frac{\sum_k A(C_k)}{N}$$

where N is the number of configuration in the sequence. The uncertainty in such estimate scales as $1/\sqrt{N}$.

Monte Carlo procedures come in several variants. One such variant is the Heat Bath sequential update scheme: in the simple case of Ising models one visits each site i of the lattice and assigns $s_i = 1$ with probability $P(s_i = +1)$ defined as follows:

$$P(s_i = +1) = f(+1)/[f(+1) + f(-1)] ,$$

$$f(s_i) = \exp \{-\beta E(s_i)\} ,$$

$$E(s_i) = - \sum_{j=\text{neigh}(i)} J_{ij} s_i s_j - h \epsilon_i s_i$$

where $E(s_i)$ is the local energy at site i.

At zero temperature ($\beta \to \infty$) only energy lowering local moves are accepted. At very high temperatures ($\beta \to 0$) we have $P(s_i = +1) \to 1/2$ independent of the local energy and all spin configurations C_k are equally probable. In the intermediate (generally more interesting) situation - finite temperature - the algorithm samples configurations whose energies fluctuate around a value which is a function of the temperature itself.

The Metropolis algorithm is a different Monte Carlo procedure, more efficient than Heat-Bath for the Potts model. The local move to update a Potts variable s_i at site i is made up of three steps:

1. Pick up a new random value for s_i'
2. compute $\Delta E = E(s_i') - E(s_i)$
3. accept the change with probability $P = \min \{1, \exp[-\beta \Delta E] \}$
for (k=0; k<SIZE; k++) {
 for (j =0; j<SIZE; j++) {
 for (i =0; i<SIZE; i++) {
 nbs = spin[(i+1)%SIZE][j][k] * Jx[(i+1)%SIZE][j][k] +
 spin[(i-1)%SIZE][j][k] * Jx[(i-1)%SIZE][j][k] +
 spin[i][(j+1)%SIZE][k] * Jy[i][(j+1)%SIZE][k] +
 spin[i][(j-1)%SIZE][k] * Jy[i][(j-1)%SIZE][k] +
 spin[i][j][(k+1)%SIZE] * Jz[i][j][(k+1)%SIZE] +
 spin[i][j][(k-1)%SIZE] * Jz[i][j][(k-1)%SIZE];
 if (rand() < HBT(nbs)) { spin[i][j][k] = +1 }
 else { spin[i][j][k] = -1 }
 }
 }
}

Listing 1: A sample non-optimized kernel of the Heat-Bath Monte Carlo simulation algorithm for the Edwards-Anderson model. Variables s are defined at all lattice sites, while J couplings are defined at all nearest neighbor link. In this case the lattice side is SIZE (i.e. the total number of spins is SIZE^3). HBT is a constant look-up table with 7 entries.

For any chosen Monte Carlo procedure, the values of the couplings J_{ij} determine the properties of the system. A small ferromagnetic Ising system at zero temperature will run into one of the two fully magnetized states (all spins aligned in the same direction). At finite temperature it still has two opposite (partially) magnetized states corresponding to (free) energy minima, and can eventually transition between them [4]. The case of the Edwards-Anderson model (randomly selected $J_{ij} = \pm 1$) is much more complex: due to concurrent couplings the energy landscape becomes rugged, and the time needed to overcome barriers between minima grows exponentially with system size [3]; this is the main reason why simulations are so time consuming in these cases.

The Heat-bath algorithm for an Ising spin system is captured by the simple (and non-optimized) code of Listing 1. A crucial observation is that the procedure has a very large amount of available parallelism, since $E(s_i)$ for up to one half of all spins (arranged in a checkerboard scheme) can be computed at the same time. Up to one half of all operations implied by Listing 1 can be executed in parallel, so all operations can be scheduled in two steps, if sufficient computing resources are available. This is also true when considering other Monte Carlo update scheme, as, for instance, in the Metropolis algorithm.

Several other features of Listing 1 are shared by the applications we have in mind and are relevant in this context:

- The code kernel has a regular structure, associated to regular loops. At each iteration the same set of operations is performed on data stored at locations whose addresses can be predicted in advance.
- Data processing is associated to simple logical operations performed on bit-variables defining the spin variables, rather than on standard integer or floating-point arithmetics on long data words.
- The data base associated to the computation is of the order of just a few bytes for each site (e.g., ≈ 100 KBytes for a grid of 48^3 sites).

We are interested in a parallel processing system able to deliver very high performance (order of magnitudes more than possible with current PCs). This can be done if we are able to deploy a very large fraction of the available parallelism available and to leverage on the other features discussed above. The structure has to be implemented using readily available technologies. From the architectural point of view, our goal translates into two key features:

1. the processor must be configurable to perform exactly (and only) the subset of functions required by the algorithm (and poorly supported by traditional architecture) so, for a given silicon budget, the largest possible number of operations, exploiting the parallelism offered by the algorithm, can be performed.
2. the performance made in principle possible by the previous point must be sustained by sufficient memory bandwidth (as we will see later, in our target application we move from/to memory ≈ 4000 bits per clock cycle). This dictates the use of fine grained on-chip memory structures.
We make the choice of using latest generation FPGAs as the basic block of our system. Their reconfigurable structure matches point 1 above, and the availability of a large number of on-board RAM blocks matches point 2. The system that we have defined and built is described next.

3 The JANUS architecture

JANUS builds on previous attempts made several years ago within the SUE project \[8\], with a much wider application focus and much higher expected performances, made possible by a more flexible design and by recent progress in FPGA technology (for early ideas on JANUS, see \[7\]).

3.1 Overall structure

JANUS is based on modules containing a computational core (the JANUS core) loosely connected to a host system (the JANUS host) of one or more networked PCs (see Figure 2).

The JANUS core is based on:

- a 4×4 2-D grid of processing elements (each called SP) with nearest-neighbor links in both axis (and periodic boundary conditions), making up the number-crunching kernel of the system;
- an IO-Processor (IOP) connected with all SPs and to the host.

Both the SPs and the IOP are Xilinx Virtex4-LX200 FPGAs.

Each SP processor contains uncommitted logic that can be configured at will by the IOP. Once configured, the SP is the main computational engine of the system. Number crunching kernels are allocated to one or more SPs. They run either as independent threads, ultimately reporting to the JANUS host through the IOP or they run concurrently, sharing data, as appropriate, across the nearest-neighbor links (in the current implementation each full-duplex link transfers four bytes per clock cycle with negligible latency, i.e. one or two clock cycles). A single task may execute on the complete core, or up to 16 independent tasks may be allocated on the system. A major design decision has been that the SPs have no memory apart from the one available on-chip (of the order of ≈ 0.5 MByte per processing element). This choice constrains the class of problem that JANUS can handle. On the other hand, in their quest for performance, applications can rely on the huge bandwidth and low latency made possible by on-chip memory to feed all the cores configured onto the FPGA.

The IOP module controls the operation of all available SPs, merges and moves data to/from the JANUS host on full-duplex IOP-SP point-to-point link transferring 2 bytes of data every clock cycle. A bank of staging memory is available, and the main communication channel uses 2 Gigabit-Ethernet links (an USB port and a serial interface are available for debugging and test).

The IOP FPGA is configured as a relatively stable control and I/O interface for the SPs. However close to 70% of the available logical resources are left over, so more complex roles within large, multi-SP applications are possible. The IOP might act as a cross-bar switch for the array of SPs, supporting complex patterns of data transfers or perform global operations on aggregated data sets. We also plan to embed a standard microprocessor (e.g. MicroBlazeTM) in order to support more complex data handling. In principle a slim Linux-like operating system might be supported, making the JANUS unit an independent computer.
3.2 IOP firmware

The current firmware configuration of the Input/Output Processor (IOP) focuses on the implementation of an interface between the SPs and the host. The IOP is not a programmable processor with a standard architecture: it basically allows streaming of data from the host to the appropriate destination (and back), under the complete control of the JANUS host.

The IOP configured structure is naturally split in 2 segments:

- the I0link block handles the I/O interfaces between IOP and the JANUS host (gigabit channels, serial and USB ports). Its supports the lower layers of the gigabit ethernet protocol, ensures data integrity and provides a bandwidth close to the theoretical limit.

- the multidev block contains a logical device associated to each hardware sub-system that may be reached for control and/or data transfer: there is a memory interface for the staging memory, a programming interface to configure the SPs, an SP interface to handle communication with the SPs (after they are configured) and several service/debug interfaces.

The link between these two segments is the Stream Router that forwards the streams coming from the I0link to the appropriate device within the multidev according to a mask encoded in the stream.

A block diagram of the IOP is shown in Figure 4.

As shown in Figure 4, the SP interface plays a special role in that it can be configured to perform computing functions common to all the SPs involved in a given computational thread.

The IOP supports a low-level interface mechanism between the host computer and any configured JANUS device flexible enough to adapt to a configurable computer: basically the IOP handles so-called...
data-worms: each worm is just a sequence of commands and data that is not interpreted by the IOP but simply delivered to the configured device.

3.3 System-level structure

The IOP and SP modules are engineered as small daughter-boards plugged onto a Processing Board (PB). This implementation will allow to upgrade each component independently. We are already considering mid-term upgrades such as newer generation FPGAs for the SPs and more performing core-host interfaces (using e.g. PCI-Express).

Several JANUS modules can be grouped into a larger system: each core is packed in one standard rack-mountable 19-inch box. Several cores and their associated hosts are placed in a standard rack. All JANUS hosts are networked and connected to a supervisor host. End-users log onto the supervisor and connect to one (or more) available JANUS modules.

After a test period using prototype boards with Virtex4 LX160 FPGAs, we are at the moment testing the first complete JANUS system: 16 JANUS cores with 8 JANUS hosts assembled in a standard 19” rack. Three more JANUS cores with two JANUS hosts are also available for less compute-intensive applications and for program development and test. Pictures of a JANUS module and of the large JANUS rack are shown in Figure 3.

We plan to start physics simulations on these systems in spring 2008.

4 Software Environment

Development of JANUS applications involves firmware design to configure the SPs, and the related host-based software development. Firmware development is performed by means of standard commercial design tools, starting from HDL codes. Handcrafting and optimizing a complex application for JANUS is admittedly a complex and time consuming investment, justified in the statistical physics community by huge rewards in term of performance. This trade-off is not necessarily applicable in general; at this stage, our project does not plans specific steps in the field of making reconfigurable computing more user friendly to the general users. We plan however to make available all the applications that will be developed by the JANUS community in the form of a collection of tested firmware modules.

We have developed a host-resident software environment able to cope with any SP-based firmware, as long as the latter adheres to a model in which JANUS is a memory based coprocessing engine of the host computer; user programs move their data onto the JANUS storage devices (FPGA embedded memories), activates JANUS processing and, at the end of the computation, retrieve processed data.

This model is supported by an host-resident execution and development environment that we call JOS (JANUS Operating System). JOS runs on any Linux based PC and builds on a low-level C library, based on standard Unix raw network sockets, implementing the protocol needed to communicate with the IOP firmware on the Gbit ethernet link.

For the application user, JOS consists of:

- A set of libraries with primitives to control IOP devices, written both in PERL and C (JOSlib)
- A multi-user environment for JANUS resource abstraction and concurrent jobs management (josd)
- A set of SP firmwares for several scientific applications and the C libraries needed to control them via the josd environment (jlib).

Josd is a background job running on the JANUS host, providing hardware abstraction and an easy interface to user applications. It hides all details of the underlying structure of JANUS, mapping it to the user as a simple grid of SPs. It interfaces to the user only via the Unix socket API, so high-level applications may be written in virtually any language.

For debugging and test, an interactive shell (JOSH), written in PERL and also based on (JOSlib) offers expert users complete access to all JANUS resources. The JOSH interactive shell provides direct access to JANUS resources, allowing to communicate with the IOP and drive all its internal devices. Whenever a new SP firmware is developed, new primitives to instruct the SP interface of the IOP are added in JOSlib.
5 Reconfiguring JANUS for spin-system simulations

SP configurations for the simulation of three dimensional Ising spin models, defined by a more general version of Eq. 1 (including the site-diluted case), as well as for the standard and glassy Potts model Eq. 5 have been already developed and tested and are discussed extensively in [11]. We present here just a few highlights.

Consider the Metropolis Monte Carlo scheme discussed above. Steps 1 and 3, that consume random numbers, involve some 32-bit integer arithmetics (we choose the Parisi-Rapuano shift register generator [9]). Step 2 involves logical (model specific) bitwise operations for each site.

We divide the lattice in a checkerboard scheme, updating all black (white) spins simultaneously and independently. In addition, when simulating disordered systems one usually has to deal with two replicas (independent systems with same coupling configurations), so we can mix all black (white) sites of one lattice system with the (white) black ones of its replica: spins on sites of one of the two resulting artificial mixed replicas can be updated all simultaneously, with all their neighbors residing in the other one.

Computations involved in step 2 can be programmed very efficiently on the basic logical operators of the FPGA. Several updating cells may be instantiated to operate in parallel, provided that the needed bandwidth from and to spin and interaction configurations storage is guaranteed. FPGAs comes with many embedded configurable memories (known as Block RAMs). Each one has a natural 2D width \(\times \) depth structure and “stacking” some of them we arrange a 3D matrix of one bit variables. Taking \(z \) as the coordinate “inside” the memories, \(y \) as the index of “stacked” memories and \(x \) along their width, an entire \((xy)\) plane may be fetched and fed to update logic by simply addressing all memories with the same \(z \). The total number of these memory structures depends on the model: we instantiate two such structures (we have two checkerboard mixed replicas) for each bit needed to represent spin variables, and one structure for each bit needed to represent couplings (1 for the Edwards-Anderson and the disordered Potts models, 8 for random permutations in 4-states Glassy Potts model, and three directions in 3D lattices must be considered). Reminding the limit of two I/O operations on each Block RAM per clock cycle, processing rate in which an entire plane of one of the two mixed replicas can be updated at each clock cycle can be easily sustained, as to process the \(z \) plane we only need the same \(z \) plane of the interaction memory structure, together with planes \(z-1 \), \(z \) and \(z+1 \) of the neighbors mixed lattice. So, we end up with a pipeline in which we fetch \(z+1 \) from memory at the same time as we write \(z-1 \).

A number of update cells equal to the number of sites in a plane are implemented in configurable logic. Each cell receives an updating spin, its neighbors and a new random spin value as input, along with all needed couplings, and computes an integer representations of the energy change. The latter becomes the pointer to a small (tipically not more than 13 values) look-up table containing transition probabilities, also implemented in configurable logic as distributed RAM. Considering the limit of two I/O per clock, each look-up table can be shared by two update cells. Transition probabilities are represented as integers, so they can be immediately compared to random numbers to test for acceptance in the Metropolis procedure. As discussed in [11], we implement the Parisi-Rapuano shift register random number generator in a very effective way, allowing for the generation of hundreds of 32-bit random numbers at each clock cycle.

Available on-chip memory limits Ising models to lattice sizes not larger than \(96^3 \) and 4-states disordered Potts models to \(88^3 \). Available configurable logic limits the number of parallel updates to 1024 for Ising spin models and 512 for 4-states Potts models.

Table 1 summarize performances on one SP (in terms of the update time for a single spin) and compares with high-end PCs. We comment on these figures below.

Things are slightly more complicated for graph coloring. Remember that no adjacent vertices can be updated in parallel, using the Metropolis algorithm. One way to avoid this problem is to perform a preliminary reordering of the graph vertices in \(P \) subsets of non adjacent vertices, and then updating the elements of each \(P \) in parallel. It is possibile to do this in various ways, topological or not. This reordering is in principle also a hard problem. It is however not a bottleneck in our case as we mainly consider low-connectivity graphs, and we are only interested in reasonable (not necessarily optimal) solutions.

We perform graph reordering on a standard pc and then run an optimized parallel update routine on JANUS. A challenging memory handling problem arises, as an irregular graph structure translates into irregular memory access patterns.

We assume that each vertex \(V \) has an index/address \(V_i \) (i.e. a “label” to localize it in the graph) and a color \(C_i \). We map the graph on two different structures: a topological structure (TM) containing
Figure 5: The graph coloring scheme on the JANUS’ SP: the graph topology is stored in the TOPO-memory (TM) while the color of each vertex is stored in another memory, called COLOR-memory (CM).

pointers to the neighbors of each vertex and a second structure (CM) storing current values for the vertex colors.

These structures are sketched in Figure 5, where each row represents one memory word. Inside CM a row stores the colors of P non-adjacent vertices. In the TM we store in the black rows the pointer to each P vertex and in the gray columns the pointer of each vertex that is neighbor of the vertex in the black row up. CM is replicated \(P/2 \) times so all needed accesses can be performed at each clock cycle.

In our preliminary tests we try to color with \(Q = 3 \) or 4 colors graphs of \(\approx 16000 \) vertices with average connectivity \(C_m = 4 \). A high-end PC (Intel Core 2 Duo, 64 bit, 4 MB cache) updates one vertex in 27\(\text{ns} \), while JANUS does the same in \(\approx 2.7\text{ns} \). Performances in this case are good but not so impressive as in the previous models: irregular memory access and small on-chip memory are the limiting factors.

We now come to a comparison with conventional systems. Traditional architectures have two bottlenecks: it is impossible to generate many random numbers at the same time while logical manipulations of independent bit-valued variables waste hardware resources. Hence, the common trick to resort to multi-spin coding (MSC) in which several (short) variables are mapped on one (long) machine word. In an asynchronous scheme (AMSC) the variables mapped on each word are associated to different copies of the system. In this case the same random number can be used to control all updates performed in parallel, boosting performance. On the other hand, as discussed earlier, we need to simulate efficiently one (or a relatively small number of) system. In order to do so, synchronous schemes (SMSC) code in each machine word more sites of the same system. In this case the bottleneck is the generation of many random numbers (one for each mapped site; in the Metropolis case, the management of the probability tables also becomes much more complex): performance is much lower.

Performance comparison for all models is done in Table 1. In most cases performance is outstanding. It is striking to note the difference in performance for traditional architectures between Ising and Potts models, i.e., between two different but vastly similar systems. This is due to the fact that one resorts to tricks to perform operations that are not supported by typical native instruction sets: in some cases effective tricks can be found in slightly different situation the same trick may not work.

This is the area where reconfigurability offers a dramatic performance boost, as we setup data-
paths that use all available resources to perform exactly the required mix of operations required by the algorithm. Our most effective handles are the limited complexity of the logic manipulation of the spin-variables and the possibility to instance massively parallel random number generators. Resources are assigned to the two main task in a well balanced way. The additional complexity of Potts models respect to the Ising spin ones results in increasing connectivity between FPGA internal devices, but it is completely taken up in increasing design flow run times (especially placing and routing), that may be considered equivalent to compilation time on standard computers.

The more impressive boost obtained in FPGA respect to PCs is in the Glassy Potts case, as the need of many bits to represent random permutations invalidates most of the benefits of multi-spin coding techniques.

Our level of performance is supported by the required memory access bandwidth, that we obtain by a judicious data layout, supported in hardware by the fine-grained memory structure within the FPGA. Irregular access patterns is the main reason that makes the comparison between JANUS and PCs less striking in the graph coloring problem. We try to escape this problem using multiple copies of the system, but this is resource greedy, so we are hit by limited on-board memory size. In general this is a reminder that memory bottlenecks are more and more a performance problem.

6 Conclusions

In this paper we have described the JANUS computer, a parallel system that explores the potential for performance of FPGAs on massively parallel algorithms.

We have tested JANUS performance on a class of applications relevant for statistical physics. Our results rest on instantiating available parallelism in an efficient way on the logical resources of the FPGA. Fine-grained memory structures in turn provide the huge memory bandwidth required to sustain performance.

We considered a large but limited class of applications for which a careful handcrafting of the kernel codes is required. Some more general lessons can be drawn:

- FPGAs can be configured to perform functions poorly done by traditional CPUs, with exceptional performance rewards.
- The main performance bottleneck is the amount of available on-chip memory: as long as the simulation database can be stored on internal RAM blocks, enough bandwidth can be provided to support performance. On the other hand, as soon as the database becomes so large that (lower-bandwidth) external memory is needed, performance drops significantly.
- The problem is made more serious when access patterns are irregular (for graph coloring in our case, but a common problem in many other cases). FPGA families oriented to high-performance computing, with larger memories (at the expense of configurable logic) might be a partial solution to the problem.

It would be interesting to compare the performances of JANUS with those obtainable on commercial multi-core chips, such as, for instance, the IBM Cell BE. In principle one could estimate that each SPE core has roughly the same performances as a traditional processors (clock frequencies are approximately the same and the level of parallelism associated to SIMD instructions is the same). More accurate evaluations require considerable additional studies, as in many cases it has been shown that actual performances depend critically on the size of the system to be mapped on each SPE and on the detailed pattern of communication among SPEs, between SPEs and their local storage and with external memory. [20] Work on this topic is in progress.

Acknowledgments

We thank M. Lena and S. Sialino for their outstanding support during the commissioning of the first JANUS system.
References

[1] D. P. Landau and K. Binder, “A Guide to Monte Carlo Simulations in Statistical Physics”, Cambridge University Press, (2005).

[2] see the papers contained in the special issue of Computing in Science and Engineering, vol 8, number 1, January/February 2006, (S. Gottlieb Guest Editor).

[3] see for instance P. Young, “Spin Glasses and Random Fields” World Scientific, (1998).

[4] K. Huang, ”Statistical Mechanics”, Wiley (1987).

[5] B. M. Forrest and L. H. Tang, J. Stat. Phys. 60, (1990) 181

[6] K. Asanovic et al., “The Landscape of Parallel Computing Research: A View from Berkeley”, Tech. Report UCB/EECS-2006-183, (2006).

[7] F. Belletti et al., “JANUS: An Adaptive FPGA Computer”, Computing in Science and Engineering, vol 8, number 1, January/February 2006, 41.

[8] A. Cruz, et al., Comp. Phys. Comm., 133, (2001) 165.

[9] G. Parisi and F. Rapuano, Phys. Lett. B 157, (1985) 301.

[10] S. Sumimoto et al., “The design and evaluation of high performance communication using a Gigabit Ethernet”, Proceedings of the 13th international conference on Supercomputing, (1999) 260.

[11] Belletti et al., “Simulating spin systems on JANUS, an FPGA-based computer”, Computer Physics Communications 178/3, pp. 208-216 (2008).

[12] R. L. Brooks, ”On colouring the nodes of a network”. Proc. Cambridge Phil. Soc. 37: 194-197 (1941)

[13] D. S. Johnson et al., “Optimization by Simulated Annealing: An Experimental Evaluation; Part II, Graph Coloring and Number Partitioning”, Operations Research, 39, 378-406 (1991)

[14] F.Y. Wu, Rev. Mod. Phys. 54, 235 (1982).

[15] E. Domany, M. Schick y J. S. Walker, Phys. Rev. Lett. 38, 1148 (1977).

[16] R. L. Park, T. L. Einstein, A. R. Kortan and L. D. Roelofs in Ordering in Two Dimensions, edited by S. K. Sinha (North-Holland, New York), p.17 (1980).

[17] L. Schwenger, K. Budde, C. Voges y H. Pfünir, Phys. Rev. Lett. 73, 296 (1994); Phys. Rev. B 52, 9275 (1995).

[18] E. Domany, Y. Shnidman y D. Mukamel, J. Phys. C. 15 L 495 (1982).

[19] E. Marinari, S. Mossa, G. Parisi, Phys. Rev. B 59 8401 (1999).

[20] F. Belletti et al., QCD on the Cell Broadband Engine, Proceedings of Science (PoS) (Lattice 2007) 039