16S rRNA metagenomic analysis of the bacterial community associated with turf grass seeds from low moisture and high moisture climates

Qiang Chen¹, William A. Meyer¹, Qiuwei Zhang¹, James F White*¹

¹Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States

Corresponding Author: James F White
Email address: jwhite3728@gmail.com

Turfgrass investigators have observed that plantings of grass seeds produced in moist climates produce seedling stands that show greater stand evenness with reduced disease compared to those grown from seeds produced in dry climates. Grass seeds carry microbes on their surfaces that become endophytic in seedlings and promote seedling growth. We hypothesize that incomplete development of the microbiome associated with the surface of seeds produced in dry climates reduces the performance of seeds. Little is known about the influence of moisture on the structure of this microbial community. We conducted metagenomic analysis of the bacterial communities associated with seeds of three turf species (Festuca rubra, Lolium arundinacea, and Lolium perenne) from low moisture (LM) and high moisture (HM) climates. The bacterial communities were characterized by Illumina high-throughput sequencing of 16S rRNA V3-V4 regions. We performed seed germination tests and analyzed the correlations between the abundance of different bacterial groups and seed germination at different taxonomy ranks. Climate appeared to structure the bacterial communities associated with seeds. LM seeds vectored mainly Proteobacteria (89%). HM seeds vectored a denser and more diverse bacterial community that included Proteobacteria (50 %) and Bacteroides (39%). At the genus level, Pedobacter (20%), Sphingomonas (13%), Massilia (12%), Pantoea (12%), and Pseudomonas (11%) were the major genera in the bacterial communities regardless of climate conditions. Massilia, Pantoea and Pseudomonas dominated LM seeds, while Pedobacter and Sphingomonas dominated HM seeds. The species of turf seeds did not appear to influence bacterial community composition. The seeds of the three turf species showed a core microbiome consisting of 27 genera from phyla Actinobacteria, Bacteroidetes, Patescibacteria and Proteobacteria. Differences in seed-vectored microbes, in terms of diversity and density between high and low moisture climates, may result from effects of moisture level on the colonization of microbes and the development of microbe community on seed surface tissues (adherent paleas and lemmas). The greater diversity
and density of seed vectored microbes in high moisture climates may benefit seedlings by helping them tolerate stress and fight disease organisms, but this dense microbial community may also compete with seedlings for nutrients, slowing or modulating seed germination and seedling growth.
16S rRNA Metagenomic Analysis of the Bacterial Community Associated with Turf Grass Seeds from Low Moisture and High Moisture Climates

Qiang Chen¹, William A. Meyer¹, Qiuwei Zhang¹, James F. White Jr.¹

¹ Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA

Corresponding Author:
James F. White Jr.¹
59 Dudley Road, New Brunswick, NJ, 08901, USA
Email address: jwhite3728@gmail.com

Abstract

Turfgrass investigators have observed that plantings of grass seeds produced in moist climates produce seedling stands that show greater stand evenness with reduced disease compared to those grown from seeds produced in dry climates. Grass seeds carry microbes on their surfaces that become endophytic in seedlings and promote seedling growth. We hypothesize that incomplete development of the microbiome associated with the surface of seeds produced in dry climates reduces the performance of seeds. Little is known about the influence of moisture on the structure of this microbial community. We conducted metagenomic analysis of the bacterial communities associated with seeds of three turf species (Festuca rubra, Lolium arundinacea, and Lolium perenne) from low moisture (LM) and high moisture (HM) climates. The bacterial communities were characterized by Illumina high-throughput sequencing of 16S rRNA V3-V4 regions. We performed seed germination tests and analyzed the correlations between the abundance of different bacterial groups and seed germination at different taxonomy.
ranks. Climate appeared to structure the bacterial communities associated with seeds. LM seeds vectored mainly Proteobacteria (89%). HM seeds vectored a denser and more diverse bacterial community that included Proteobacteria (50%) and Bacteroides (39%). At the genus level, Pedobacter (20%), Sphingomonas (13%), Massilia (12%), Pantoea (12%), and Pseudomonas (11%) were the major genera in the bacterial communities regardless of climate conditions. Massilia, Pantoea and Pseudomonas dominated LM seeds, while Pedobacter and Sphingomonas dominated HM seeds. The species of turf seeds did not appear to influence bacterial community composition. The seeds of the three turf species showed a core microbiome consisting of 27 genera from phyla Actinobacteria, Bacteroidetes, Patescibacteria and Proteobacteria. Differences in seed-vectored microbes, in terms of diversity and density between high and low moisture climates, may result from effects of moisture level on the colonization of microbes and the development of microbe community on seed surface tissues (adherent paleas and lemmas). The greater diversity and density of seed vectored microbes in high moisture climates may benefit seedlings by helping them tolerate stress and fight disease organisms, but this dense microbial community may also compete with seedlings for nutrients, slowing or modulating seed germination and seedling growth.

Introduction

Plants bear numerous microbes that influence their nutrition, development, stress responses and phenotypes (Henning et al., 2016; White et al., 2014; White et al., 2018). Plant-associated microbes generally come from the surrounding environment; however, Johnston-Monje and Rhizada (2011) showed that corn seeds vectored a diverse array of microbes. Further, Johnston-Monje et al. (2016) found that the rhizospheres of corn seedlings were composed of
microbes that originated both from seeds and bacteria recruited from soils. These seed-vectored bacteria can influence germination and share a mutualistic association with the host seedlings (Cruz et al., 2014; Shaid & Thomas, 2019; Somova et al., 2001; Zhu et al., 2017). Without seed-vectored bacteria, seedlings may lose gravitropic response of roots, fail to develop root hairs, and are more susceptible to soil-borne pathogens (Verma et al. 2017, 2018).

Some turf grasses possess fungal endophytes of ascomycete genus *Epichloë* that provide resistance to pathogens and insects, and increase abiotic stress tolerance in the host (Bultman & Bell, 2003; Clay, 1990; Meyer et al., 2012; White, 1987). Turf breeders have long been employing these environmentally safe endophytes to enhance turfgrass performance and stress tolerance (Meyer et al., 2012). Another important microbe resource, the seed-transmitted bacterial communities of turf grasses, are yet to be fully explored. Many of these bacteria are vectored on the surfaces of seeds and embedded within dried plant tissues (paleas and lemmas) that adhere tightly to seed surfaces (White et al., 2019). During seed germination some of these seed-surface microbes are activated and they externally and internally colonize seedling roots at the root tip meristems, becoming intercellular and intracellular endophytes in the emergent seedling roots (Verma et al., 2017, 2018; White et al., 2018). In this study, we employed Illumina HTS and 16S metagenomic analysis to investigate the bacterial community associated with cool-season turfgrass seeds produced in low moisture (LM) and high moisture (HM) climates. We also evaluated the potential influence of the bacterial community on seed germination rates and seedling growth rates. The results showed that HM seeds vectored a denser and more diverse bacterial community than LM seeds. Also, bacterial groups at different taxonomic ranks correlated with the seed germination rate and time.


Materials & Methods

Total DNA extraction from seeds of cool-season turfgrasses

Seeds of twenty-seven cool-season turf cultivars were obtained from DLF Pickseed USA (Table S1). All varieties were produced from 2011 to 2015 at either Store Hedinge, Denmark or Les Alleuds, France. Based on the precipitation data collected from The National Oceanic and Atmospheric Administration (NOAA), the seeds were classified into LM seeds (annual precipitation < 750 mm) and HM seeds (annual precipitation >750 mm). With this classification, five samples were classified as LM seeds while twenty-two samples as HM seeds. 100mg of seeds of each turf cultivar were weighed out and washed with water for 3 times, 30 seconds each time to remove the dirt. The cleaned seeds were then ground into powder with a sterilized mortar and pestle for total DNA extraction. The DNA extraction was conducted with DNeasy® PowerSoil® Kit (QIAGEN, Hilden, Germany) following the manufacturer’s instructions. This PowerSoil® Kit was chosen due to its versatility with diverse sample types. The concentration of extracted DNA was measured with The NanoDrop® ND-1000 Spectrophotometer and normalized to 5ng/µl for the library preparation.

Library preparation and sequencing

The preparation of DNA libraries for each sample followed the Illumina guidelines. By using 12.5ng of the normalized DNA from turf seeds as the template, V3-V4 hypervariable regions of bacterial 16S rRNA gene were amplified with the primer pair, S-D-Bact-0341-b-S-17 (5’-CCTACGGGNGGCWGCAG-3’) and S-D-Bact-0785-a-A-21 (5’-GACTACHVGGGTATCTAATCC-3’) fused with Illumina overhang forward adapters (5’-TCGTCGGCAGCGTGATGTATAAGACAG-3’) and reverse adapter (5’-
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-3’), respectively (Klindworth et al., 2013). PCR clean-ups were conducted to purify the 16S V3-V4 amplicons away from free primers and primer dimers. Nextera XT index primers were then used for the index PCR and PCR clean-ups were performed again to generate the final library. The generated 16S V3-V4 region library was paired-end sequenced (2 x 300bp) on an Illumina MiSeq platform in the Genome Cooperative Sequencing Facility, School of Environmental and Biological Sciences at Rutgers.

**Bacterial community structure analysis**

The collected sequencing data in FASTQ format was processed and analyzed with the QIIME2 software suite (Caporaso et al., 2010). The raw Illumina reads were imported into QIIME2 with “Casava 1.8 paired-end demultiplexed fastq” method, and then denoised and filtered with dada2 pipeline to remove noisy and chimeric sequences, construct denoised paired-end sequences, and dereplicate them (Callahan et al., 2016). *de novo* clustering was then carried out with VSEARCH plugin at 99% identity to generate Operational Taxonomic Units (OTUs) (Rognes et al. 2016). The taxonomy assignment of OTUs was performed by using feature-classifier against the SILVA 1.28 database (Released September 29, 2016). After removing mitochondria and chloroplast sequences, the filtered data were aligned with maffi program and fasttree method to generate rooted and unrooted phylogenetic trees (Price et al., 2010). All core metrics used in alpha and beta diversity analysis were computed based on the rooted phylogenetic tree. Alpha diversity (intra group diversity) was calculated with the observed OTUs and Faith’s Phylogenetic Diversity (Faith, 1992) at the sample depth of 1000 reads to normalize the variance and this excluded 4 samples (3 HM samples and 1 LM sample), leaving 4 LM
samples and 19 HM samples. The Kruskal-Wallis (pairwise) test was utilized to assess the statistical significance of alpha diversity. Beta diversity was performed with both qualitative (Jaccard and unweighted UniFrac) and quantitative (Bray-Curtis and weighted UniFrac) distance metrics at sample depth of 1000 reads. In this process, QIIME2 diversity plugin was employed.

Statistical significance among different groups was evaluated by permutation-based ANOVA (PerMANOVA) test (Anderson, 2005) with 999 permutations (beta-group-significance command in diversity plugin). Principal coordinates analysis plots (PCoA) were generated by Emperor tool of QIIME2 to explore the bacterial community structure. The bar plots showing taxonomy levels were generated by QIIME2 taxa plugin. The metagenomic analysis workflow is shown in Fig. 1.

The Venn diagram was generated with a WWW-based tool to calculate the intersection(s) of the list of elements that in this study was represented by the list of genera of bacteria found in each climate condition and species. The graphical output is in the form of a Venn/Euler diagram.

Seed germination test

Seeds of 19 cool-season cultivars were placed in Petri dishes containing 25ml 1.5% agar. All Petri dishes were kept in a growth chamber at 28°C. Seed germination was observed every 24 hours until no more seed germinated. Seed germination rates and time for each sample were calculated and correlation analysis was performed and visualized with python-based libraries SciPy (V0.19.1), pandas (V0.22.0), seaborn (V0.9.0) and matplotlib (V2.2.3).

Results

Sequence analysis
In total, 7,405,226 sequences (about 274,368 sequences per sample) were generated by Illumina MiSeq sequencing and imported into QIIME2 pipeline suite for analysis. After being denoised and dereplicated with dada2 pipeline, the remaining high-quality sequences were clustered into 310 OTUs that had an average length of 427 bp, ranging from 267 bp to 440 bp. After the removal of mitochondrial and chloroplast genomes, a total of 247 OTUs were used to represent the bacterial profile of turf seeds samples (Table S2).

Diversity of bacterial endophytes associated with turf seeds from LM and HM climates

The bacterial community associated with turf seed samples was composed of 5 phyla, 8 classes, 21 orders, 37 families and 69 genera. The bacterial community vectored by seeds produced in HM climates covered all discovered taxonomies, with 6644 sequences/sample. However, seeds from LM climate only hosted part of them, 4 phyla, 8 classes, 9 orders, 10 families and 15 genera, with 2821 sequences/sample.

Regardless of the climate and turf species, bacterial communities at phylum level were dominated by Proteobacteria (51%) and Bacteroidetes (40%). Proteobacteria took 89% and 50% of the bacterial community on HM and LM climates seeds, respectively. Bacteroidetes was abundant in HM climate seeds (39%) but not LM climate seeds (2%). Actinobacteria (6%) and Firmicutes (3%) also comprised a portion of the bacterial community and exhibited no significant difference between the two climate types.

Both HM and LM seeds shared some of the most abundant bacterial classes, i.e. Actinobacteria, Bacteroidia, Bacilli, Alphaproteobacteria and Gammaproteobacteria (Fig. 2). Compared to LM seeds, seeds from HM environment was richer in terms of Faith’s Phylogenetic diversity (Fig. 3 & Table S3). At class level, Actinobacteria, Bacteroidia and Bacilli had the same
portion as phyla Actinobacteria, Bacteroidetes and Firmicutes, respectively (*Table 1*).

Alphaproteobacteria and Gammaproteobacteria were the two classes within phylum Proteobacteria. Alphaproteobacteria took 6% and 18% of the bacterial community of LM and HM climate seeds, respectively. Gammaproteobacteria was 83% and 32% for LM and HM climate, respectively.

At genus level, LM seeds harbored a significantly higher percentage of *Massilia* (*p* = 0.013), *Pantoea* (*p* = 0.060), and *Pseudomonas* (*p* = 0.045) compared to HM seeds (*Table 1*). In contrast, HM seeds harbored more of *Flavobacterium* (*p* < 0.001), *Chryseobacterium* (*p* < 0.001), *Pedobacter* (*p* < 0.001), *Sphingomonas* (*p* = 0.035) and *Erwinia* (*p* = 0.122) (*Table 1*).

PCoA separated bacterial communities associated with turf seeds by climate (*Fig. 4*). Also, the PERMANOVA test showed a significant difference between the two groups (*p* = 0.002, *Table S4*). However, no significant correlation was detected between different species of turf seeds and their bacterial profile (*F. rubra* vs *L. arundinacea*, *p* = 0.101; *F. rubra* vs *L. perenne*, *p* = 0.109; *L. arundinacea* vs *L. perenne*, *p* = 0.204, *Table S4*).

LM seeds didn’t bear any unique bacteria genus that HM seed didn’t (*Fig. 5A & Table S5*). However, HM seeds harbored 55 genera that LM seeds didn’t. Seeds of three turf species shared 4 phyla and 27 genera, including five genera that were uncultured or unknown species from either Bacterioidetes or Patescibacteria (*Fig.5B & Table 2*).

**Correlation of seed germination and bacterial endophyte composition associated with turf seeds**

Bacterial groups at different taxonomic ranks correlated with the seed germination rate and time (*Fig. 6 & Fig. 7*). Among the 5 phyla that we discovered through diversity analysis,
Proteobacteria correlated positively with the seed germination rate (p=0.028) and negatively with the seed germination time (p=0.016). Phylum Actinobacteria also showed a negative correlation with the seed germination time (p=0.040) but not a significant correlation with germination rate (p=0.120). Another phylum, Firmicutes, showed correlation with germination (p=0.109) rate and germination time (p=0.069), but this was not statistically significant. However, the abundance of Bacteroidetes was negatively associated with the seed germination rate (p=0.008), and positively associated with the seed germination time (p=0.002).

At class level, Bacilli and Gammaproteobacteria were groups showing exactly the same correlation as phyla Firmicutes and Proteobacteria, respectively (Fig. 6 & Fig. 7). Also, the abundance of Bacteroidia and Gammaproteobacteria showed a similar correlation to phylum Bacteroidetes and Proteobacteria.

At family level, seed germination rate was positively related to the abundance of bacteria from families Microbacteriaceae (p=0.090), Paneibacillaceae (p=0.109) and Pseudomonadaceae (p=0.138), and negatively associated with the abundance of bacteria from Rhizobiaceae (p=0.014), Sphingobacteriaceae (p=0.005), and Weeksellaceae (p=0.033). As expected, seed germination time also correlated negatively with the abundance of these bacterial families. Seed germination time was positively associated with Rhizobiaceae (p=0.004), Sphingobacteriaceae (p=0.002), and Weeksellaceae (p=0.008), but negatively with Microbacteriaceae (p=0.032) and Paneibacillaceae (0.069) and Pseudomonadaceae (p=0.049).

At genus level, the abundance of Rhizobium, Chryseobacterium and Pedobacter was negatively associated with germination rate (p-value 0.041, 0.033, and 0.004, respectively) but positively with germination time (p-value 0.015, 0.008, and 0.001, respectively). But the abundance of Pseudomonas was positively related with germination rate (p = 0.138) but
negatively associated with the germination time (p = 0.049), although the correlation was not significant.

Discussion

A complex bacterial community associated with turf seeds

Compared to LM seeds, HM seeds harbored a more diverse bacterial community with many more bacterial cells (i.e., a higher bacterial load), as there were more sequences associated with HM seeds. The More Individuals Hypothesis, which predicts that communities with more individuals will have more species (Storch, Bohdalková & Okie, 2018), can explain the higher diversity associated with HM seeds. This result is similar to previous studies on soils indicating that moisture controls the structure and function of the soil microbial community (Brockett et al., 2012; Griffiths et al., 2003; Steven et al., 2013). Water availability in soil controls bacterial composition (Zeglin et al., 2011). Similarly, relatively high moisture will favor growth and replication of bacteria on seeds, while low moisture conditions will suppress development of the bacterial community associated with seeds.

Both LM and HM seeds vectored a large number of bacteria and shared some groups. For example, the abundance of *Curtobacterium* spp. was similar in both LM and HM seeds (LM 2%, HM 2%). *Curtobacterium* is a Gram-positive endophytic bacterial genus in rice seeds (*Oryza sativa*), field-grown tall fescue (*Lolium arundinacea*) and *Noccaea goesingensis* (de los Santos et al., 2015; Mano et al., 2006; Ruiz et al., 2011). Some *Curtobacterium* strains provide host growth promotion and pathogen antagonistic effects (de los Santos et al., 2015; Ruiz et al., 2011). *Paenibacillus* was the only genus from phylum Firmicutes in both LM and HM seeds.
(LM 3%, HM 4%). *Paenibacillus* have been isolated from many plants and shown to produce IAA, solubilize phosphate, and inhibit the growth of phytopathogens (Aswathy et al., 2013; Diaz Herrera et al., 2016; Ruiz et al., 2011; Rybakova et al., 2015).

Two of the genera, *Mucilaginibacter* and *Rhizobium*, were found in HM seeds but not LM seeds. *Mucilaginibacter* spp. can promote plant growth and produce extracellular polysaccharides (An et al., 2009; Lee et al., 2013; Madhaiyan et al., 2010; Mannisto et al., 2010). *Rhizobium* together with *Allorhizobium*, *Neorhizobium*, and *Pararhizobium*, composed 2% of the bacterial community on HM seeds. These genera comprise well-studied bacteria that promote growth of plants and nodulate legumes to fix nitrogen (Gutierrez-Zamora & Martinez-Romero, 2001; Kiers et al., 2003; Yanni et al., 1997).

At the phylum level, LM seeds hosted more Gammaproteobacteria than HM seeds. Several genera within Gammaproteobacteria contributed to these results, i.e. *Duganella*, *Massilia*, *Pantoea*, and *Pseudomonas*. However, these bacteria were still found on a large portion of the HM seeds. *Duganella* spp. can suppress the growth of plant pathogens (Cretoiu et al., 2013; Haack et al., 2016). *Massilia* is a root-colonizing bacterial genus with the ability to degrade chitin (Adrangi et al., 2010; Faramarzi et al., 2009; Ofek et al., 2012). *Pantoea* spp. promote plant growth and tolerance of environmental stresses (Chen et al., 2017; Feng et al., 2006; Ferreira et al., 2008; Gond et al., 2015b). *Pseudomonas* contains many endophytic bacterial strains that benefit hosts by producing IAA, producing biocontrol lipopeptides, and solubilizing phosphate (Oteino et al., 2015; Prieto & Mercado-Blanco, 2008; Suzuki et al., 2003).

Some bacterial genera were more abundant in HM seeds than LM seeds, including *Flavobacterium*, *Chryseobacterium*, *Pedobacter*, *Sphingomonas*, and *Erwinia*. Most of the
bacteria comprised a very small portion of the bacterial community of LM seeds, but
*Sphingomonas* made up 6%. *Flavobacterium* sp. has been found to promote plant growth and
provide biocontrol activity to the hosts (Kolton et al., 2016; Soltani et al., 2010).
*Chryseobacterium* spp. were also shown to be plant growth promoting bacteria (Dardanelli et al.,
2009; Gutiérrez Mañero et al., 2003). Although *Pedobacter* has not been found to promote
growth of plants, it can induce the production of antimicrobial compounds by *Pseudomonas
fluorescens* Pf0-1 (Garbeva et al., 2011). *Sphingomonas* is an alphaproteobacterial genus
containing strains that produce IAA and provide nutrients to hosts (Okunishi et al., 2005; Ruiz et
al., 2011). *Erwinia* spp. have also been identified as endophytes in some plant species (Verma,
2019). However, genus *Erwinia* is well-known to contain many plant pathogenic species.
In total, the above genera together comprised 89% and 95% in HM and LM seeds,
respectively. Some of the bacterial genera include plant pathogens, e.g. *Erwinia* and
*Pseudomonas*. However, most of the bacteria are known to contain mainly plant growth
promoting rhizobacteria (PGPR), e.g. *Paenibacillus, Pseudomonas, Rhizobium, Pantoea*. The
seed microbes are important because they stimulate seedling development, increase stress
tolerance in seedlings and protect seedlings from disease (Verma et al., 2017, 2018; White et al.,
2018, 2019). Thus, a more diverse bacterial community on HM seeds may provide hosts with
more microbial resources to utilize for plant development and stress tolerance.
In the study, the samples of LM and HM seeds had unequal sizes (LM: 4; HM: 19),
which could create a bias in our final result. However, HM seeds vectored a more diverse
bacterial community with significantly more bacteria cells (*Fig. 3 & Table S3*). Also, the
different abundances between bacterial groups were statistically significant.
The bacterial community affected seed germination and growth

Seeds from HM climates tended to show slower germination and reduced seedling growth rates. These seeds vectored a denser and more diverse community of bacteria, which may benefit seedlings but not without a cost. We hypothesize that the higher microbial load competes with seedlings, which slows germination and development of the host. This nutritional cost may result in slower seed germination and seedling development rates. Seed growers have observed that seed from high moisture climates seems to establish better with reduced damping-off disease compared to seed from low moisture climates (W. Meyer, Unpublished data). While, seeds with richer and denser microbiomes grow slower initially, they may be better protected from soil borne pathogens than seeds with less developed microbiomes.

Seeds that have formed in low moisture situations, or where the natural microbiome has otherwise been damaged, could be remediated through application of microbes in seed coatings (Pedrini et al., 2017). Coating formulations with the correct microbes at the optimal concentrations could result in better fitness of seeds and seedlings.

Conclusions

We surveyed the bacterial community associated with seeds of several species of cool-season turfgrasses and identified the dominant bacterial groups of the communities at different taxonomic levels. Regardless of the moisture level during seed production and species of seeds, the core bacterial community included many PGPB strains. Seeds produced in high moisture conditions maintained a denser and more diverse bacterial community than seeds produced in low moisture conditions. This seed microbiome may help seedlings tolerate stress but may also compete with seedlings for nutrients and slow early seedling growth.
Acknowledgements

The authors appreciate the support of Steve Reid (DLF Pickseed USA) for providing the seed resources. The authors also thank the Department of Plant Biology, Rutgers University, NJ for research facilities.

References

Adrangi S, Faramarzi MA, Shahverdi AR, Sepehrizadeh Z. 2010. Purification and characterization of two extracellular endochitinases from Massilia timonae. Carbohydrate Research 345:402-407. DOI 10.1016/j.carres.2009.11.015

An DS, Yin CR, Lee ST, Cho CH. 2009. Mucilaginibacter daejeonensis sp. nov., isolated from dried rice straw. International Journal of Systematic and Evolutionary Microbiology 59:1122-1125. DOI 10.1099/ijs.0.003384-0

Anderson MJ. 2005. PERMANOVA: a FORTRAN computer program for permutational multivariate analysis of variance. Department of Statistics, University of Auckland, New Zealand 24.

Aswathy AJ, Jasim B, Jyothis M, Radhakrishnan EK. 2013. Identification of two strains of Paenibacillus sp. as indole 3 acetic acid-producing rhizome-associated endophytic bacteria from Curcuma longa. 3 Biotech 3:219-224. DOI 10.1007/s13205-012-0086-0
Brady SM, Sarkar SF, Bonetta D, McCourt P. 2003. The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in *Arabidopsis*. *The Plant Journal* 34:67-75. DOI 10.1046/j.1365-313X.2003.01707.x

Brockett BFT, Prescott CE, Grayston SJ. 2012. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. *Soil Biology and Biochemistry* 44:9-20. DOI 10.1016/j.soilbio.2011.09.003

Bultman TL, Bell GD. 2003. Interaction between fungal endophytes and environmental stressors influences plant resistance to insects. *Oikos* 103:182-90. DOI 10.1034/j.1600-0706.2003.11574.x

Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. 2016. DADA2: High-resolution sample inference from Illumina amplicon data. *Nature Methods* 13, 581–583. DOI 10.1038/nmeth.3869

Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI. 2010. QIIME allows analysis of high-throughput community sequencing data. *Nature Methods* 7:335-336. DOI 10.1038/nmeth.f.303

Chen C, Xin K, Liu H, Cheng J, Shen X, Wang Y, Zhang L. 2017. *Pantoea alhagi*, a novel endophytic bacterium with ability to improve growth and drought tolerance in wheat. *Scientific Reports* 7:41564. DOI 10.1038/srep41564
Clay K. 1990. Fungal endophytes of grasses. *Annual Review of Ecology and Systematics* 21:275-297.

Cretoiu MS, Korthals GW, Visser JH, van Elsas JD. 2013. Chitin amendment increases soil suppressiveness toward plant pathogens and modulates the actinobacterial and oxalobacteraceal communities in an experimental agricultural field. *Applied and Environmental Microbiology* 79:5291-5301. DOI 10.1128/AEM.01361-13

Cruz RS, Yañez-Ocampo G, Wong-Villarreal A. 2014. Effect of nodulating bacteria on the seed germination of *Capsicum* spp. *African Journal of Microbiology Research* 8:659-663. DOI 10.5897/AJMR2013.6494

Dardanelli MS, Manyani H, González-Barroso S, Rodriguez-Carvajal MA, Gil-Serrano AM, Espuny MR, López-Baena FJ, Bellogín RA, Megías M, Ollero FJ. 2009. Effect of the presence of the plant growth promoting rhizobacterium (PGPR) *Chryseobacterium balustinum* Aur9 and salt stress in the pattern of flavonoids exuded by soybean roots. *Plant and Soil* 328:483-493. DOI 10.1007/s11104-009-0127-6

Datta C, Basu PS. 2000. Indole acetic acid production by a *Rhizobium* species from root nodules of a leguminous shrub, *Cajanus cajan*. *Microbiological Research* 155:123-127. DOI 10.1016/s0944-5013(00)80047-6
de los Santos MC, Taulé C, Mareque C, Beracochea M, Battistoni F. 2015. Identification and characterization of the part of the bacterial community associated with field-grown tall fescue (Festuca arundinacea) cv. SFRO Don Tomás in Uruguay. Annals of Microbiology 66:329-342. DOI 10.1007/s13213-015-1113-2

Diaz Herrera S, Grossi C, Zawoznik M, Groppa MD. 2016. Wheat seeds harbour bacterial endophytes with potential as plant growth promoters and biocontrol agents of Fusarium graminearum. Microbiological Research 186-187:37-43. DOI 10.1016/j.micres.2016.03.002

Faith DP. 1992. Conservation evaluation and phylogenetic diversity. Biological Conservation 61:1-10. DOI 10.1016/0006-3207(92)91201-3

Faramarzi M, Fazeli M, Yazdi MT, Adrangi S, Al-Ahmadi KJ, Tasharrofi N, Mohseni FA. 2009. Optimization of cultural conditions for production of chitinase by a soil isolate of Massilia timonae. Biotechnology 8:93-99. DOI 10.3923/biotech.2009.93.99

Feng Y, Shen D, Song W. 2006. Rice endophyte Pantoea agglomerans YS19 promotes host plant growth and affects allocations of host photosynthates. Journal of Applied Microbiology 100:938-945. DOI 10.1111/j.1365-2672.2006.02843.x

Ferreira A, Quecine MC, Lacava PT, Oda S, Azevedo JL, Araujo WL. 2008. Diversity of endophytic bacteria from Eucalyptus species seeds and colonization of seedlings by Pantoea agglomerans. FEMS Microbiology Letters 287:8-14. DOI 10.1111/j.1574-6968.2008.01258.x
Garbeva P, Silby MW, Raaijmakers JM, Levy SB, Boer W. 2011. Transcriptional and antagonistic responses of *Pseudomonas fluorescens* Pf0-1 to phylogenetically different bacterial competitors. *ISME J* 5:973-985. DOI 10.1038/ismej.2010.196

Gond SK, Bergen MS, Torres MS, White JF, Kharwar RN. 2015a. Effect of bacterial endophyte on expression of defense genes in Indian popcorn against *Fusarium moniliforme*. *Symbiosis* 66:133-140. DOI 10.1007/s13199-015-0348-9

Gond SK, Torres MS, Bergen MS, Helsel Z, White JF, Jr. 2015b. Induction of salt tolerance and up-regulation of aquaporin genes in tropical corn by rhizobacterium *Pantoea agglomerans*. *Letters in Applied Microbiology* 60:392-399. DOI 10.1111/lam.12385

Griffiths RI, Whiteley AS, O'Donnell AG, Bailey MJ. 2003. Physiological and community responses of established grassland bacterial populations to water stress. *Applied and Environmental Microbiology* 69:6961-6968. DOI 10.1128/aem.69.12.6961-6968.2003

Gutiérrez Mañero FJ, Probanza A, Ramos B, Colón Flores JJ, Lucas García JA. 2003. Effects of culture filtrates of rhizobacteria isolated from wild lupine on germination, growth, and biological nitrogen fixation of lupine seedlings. *Journal of Plant Nutrition* 26:1101-1115. DOI 10.1081/PLN-120020078
Gutierrez-Zamora M, Martinez-Romero E. 2001. Natural endophytic association between *Rhizobium etli* and maize (*Zea mays* L.). *Journal of Biotechnology* 91:117-126. DOI 10.1016/S0168-1656(01)00332-7

Haack FS, Poehlein A, Kroger C, Voigt CA, Piepenbring M, Bode HB, Daniel R, Schafer W, Streit WR. 2016. Molecular keys to the *Janthinobacterium* and *Duganella* spp. interaction with the plant pathogen *Fusarium graminearum*. *Frontiers in Microbiology* 7:1668. DOI 10.3389/fmicb.2016.01668

Hardoim PR, van Overbeek LS, Berg G, Pirttila AM, Compant S, Campisano A, Doring M, Sessitsch A. 2015. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. *Microbiology and Molecular Biology Reviews* 79:293-320. DOI 10.1128/MMBR.00050-14

Henning JA, Weston DJ, Pelletier DA, Timm CM, Jawdy SS, Classen AT. 2016. Root bacterial endophytes alter plant phenotype, but not physiology. *PeerJ* 4:e2606 DOI 10.7717/peerj.2606

Irizarry I, White JF. 2017. Application of bacteria from non-cultivated plants to promote growth, alter root architecture and alleviate salt stress of cotton. *Journal of Applied Microbiology* 122:1110-1120. DOI 10.1111/jam.13414
Johnston-Monje D, Lundberg DS, Lazarovits G, Reis VM, Raizada MN. 2016. Bacterial populations in juvenile maize rhizospheres originate from both seed and soil. *Plant and Soil* 405:337-355. DOI 10.1007/s11104-016-2826-0

Johnston-Monje D, Raizada MN. 2011. Conservation and diversity of seed associated endophyes in *Zea* across boundaries of evolution, ethnography and ecology. *PLoS ONE* 6:e20396. DOI 10.1371/journal.pone.0020396

Kiers ET, Rousseau RA, West SA, Denison RF. 2003. Host sanctions and the legume–rhizobium mutualism. *Nature* 425:78-81. DOI 10.1038/nature01931

Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO. 2013 Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. *Nucleic Acids Research* 41(1):e1-e1. DOI doi.org/10.1093/nar/gks808

Kolton M, Erlacher A, Berg G, Cytryn E. 2016. The *Flavobacterium* genus in the plant holobiont: ecological, physiological, and applicative insights. In: Castro-Sowinski S, ed. *Microbial Models: From Environmental to Industrial Sustainability*: Springer, 189-207.
Lee HR, Han SI, Rhee KH, Whang KS. 2013. *Mucilaginibacter herbaticus* sp. nov., isolated from the rhizosphere of the medicinal plant *Angelica sinensis*. *International Journal of Systematic and Evolutionary Microbiology* 63:2787-2793. DOI 10.1099/ijs.0.038398-0

Liu PP, Montgomery TA, Fahlgren N, Kasschau KD, Nonogaki H, Carrington JC. 2007. Repression of *AUXIN RESPONSE FACTOR10* by microRNA160 is critical for seed germination and post-germination stages. *The Plant Journal* 52:133-146. DOI 10.1111/j.1365-313X.2007.03218.x

Madhaiyan M, Poonguzhali S, Lee JS, Senthilkumar M, Lee KC, Sundaram S. 2010. *Mucilaginibacter gossypii* sp. nov. and *Mucilaginibacter gossypiicola* sp. nov., plant-growth-promoting bacteria isolated from cotton rhizosphere soils. *International Journal of Systematic and Evolutionary Microbiology* 60:2451-2457. DOI 10.1099/ijs.0.018713-0

Mannisto MK, Tiirola M, McConnell J, Haggblom MM. 2010. *Mucilaginibacter frigoritolerans* sp. nov., *Mucilaginibacter lappiensis* sp. nov. and *Mucilaginibacter mallensis* sp. nov., isolated from soil and lichen samples. *International Journal of Systematic and Evolutionary Microbiology* 60:2849-2856. DOI 10.1099/ijs.0.019364-0

Mano H, Tanaka F, Watanabe A, Kaga H, Okunishi S, Morisaki H. 2006. Culturable surface and endophytic bacterial flora of the maturing seeds of rice plants (*Oryza sativa*) cultivated in a paddy field. *Microbes and Environments* 21:86-100. DOI 10.1264/jsme2.21.86
Meyer WA, Torres MS, White JF. 2012. Biology and applications of fungal endophytes in turfgrasses. In: Stier J, Horgan B, Bonos S, ed. Turfgrass: Biology, Use and Management. Madison: American Society of Agronomy, 713-731.

Miransari M, Smith DL. 2014. Plant hormones and seed germination. *Environmental and Experimental Botany* 99:110-121. DOI 10.1016/j.envexpbot.2013.11.005

Ofek M, Hadar Y, Minz D. 2012. Ecology of root colonizing Massilia (Oxalobacteraceae). *PLoS One* 7:e40117. DOI 10.1371/journal.pone.0040117

Okunishi S, Sako K, Mano H, Imamura A, Morisaki H. 2005. Bacterial flora of endophytes in the maturing seed of cultivated rice (*Oryza sativa*). *Microbes and Environments* 20:168-177. DOI 10.1264/jsme2.20.168

Oteino N, Lally RD, Kiwanuka S, Lloyd A, Ryan D, Germaine KJ, Dowling DN. 2015. Plant growth promotion induced by phosphate solubilizing endophytic *Pseudomonas* isolates. *Frontiers in Microbiology* 6:745. DOI 10.3389/fmicb.2015.00745

Pace NR, Stahl DA, Lane DJ, Olsen GJ. 1986. The analysis of natural microbial populations by ribosomal RNA sequences. In: Marshall KC, ed. *Advances in Microbial Ecology*. Berlin: Springer, 1-55.
Pedrini S, Merritt DJ, Stevens J, Dixon K. 2017. Seed coating: science or marketing spin? *Trends in Plant Science* 22:106-116. DOI: [10.1016/j.tplants.2016.11.002](https://doi.org/10.1016/j.tplants.2016.11.002)

Poinar HN, Schwarz C, Qi J, Shapiro B, MacPhee RDE, Buigues B, Tikhonov A, Huson DH, Tomsho LP, Auch A. 2006. Metagenomics to paleogenomics: large-scale sequencing of mammoth DNA. *Science* 311:392-394. DOI [10.1126/science.1123360](https://doi.org/10.1126/science.1123360)

Price MN, Dehal PS, Arkin AP. 2010. FastTree 2 – Approximately maximum-likelihood trees for large alignments. *PLoS ONE* 5:e9490. DOI [10.1371/journal.pone.0009490](https://doi.org/10.1371/journal.pone.0009490)

Prieto P, and Mercado-Blanco J. 2008. Endophytic colonization of olive roots by the biocontrol strain *Pseudomonas fluorescens* PICF7. *FEMS Microbiology Ecology* 64:297-306. DOI [10.1111/j.1574-6941.2008.00450.x](https://doi.org/10.1111/j.1574-6941.2008.00450.x)

Riesenfeld CS, Schloss PD, Handelsman J. 2004. Metagenomics: genomic analysis of microbial communities. *Annual Review of Genetics* 38:525-552. DOI [10.1146/annurev.genet.38.072902.091216](https://doi.org/10.1146/annurev.genet.38.072902.091216)

Rognes T, Flouri T, Nichols B, Quince C, Mahé F. 2016. VSEARCH: a versatile open source tool for metagenomics. *PeerJ* 4:e258 [10.7717/peerj.2584](https://doi.org/10.7717/peerj.2584)
Ruiz D, Agaras B, de Werra P, Wall LG, Valverde C. 2011. Characterization and screening of plant probiotic traits of bacteria isolated from rice seeds cultivated in Argentina. *Journal of Microbiology* 49:902-912. DOI 10.1007/s12275-011-1073-6

Rybakova D, Cernava T, Köberl M, Liebminger S, Etemadi M, Berg G. 2015. Endophytes-assisted biocontrol: novel insights in ecology and the mode of action of *Paenibacillus*. *Plant and Soil* 405:125-140. DOI 10.1007/s11104-015-2526-1

Schmidt TM, DeLong EF, Pace NR. 1991. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. *Journal of Bacteriology* 173:4371-4378. DOI 10.1128/jb.173.14.4371-4378.1991

Shaik SP, Thomas P. 2019. *In vitro* activation of seed-transmitted cultivation-recalcitrant endophytic bacteria in tomato and host–endophyte mutualism. *Microorganisms* 7:132. DOI 10.3390/microorganisms7050132

Soltani A-A, Khavazi K, Asadi-Rahmani H, Omidvari M, Abaszadeh Dahaji P, Mirhoseyni H. 2010. Plant growth promoting characteristics in some *Flavobacterium* spp. isolated from soils of Iran. *Journal of Agricultural Science* 2:106. DOI 10.5539/jas.v2n4p106

Somova L, Pechurkin N, Sarangova A, Pisman T. 2001. Effect of bacterial population density on germination wheat seeds and dynamics of simple artificial ecosystems. *Advances in Space Research* 27:1611-1615. DOI 10.1016/S0273-1177(01)00257-5
Steven B, Lionard M, Kuske CR, Vincent WF. 2013. High bacterial diversity of biological soil crusts in water tracks over permafrost in the high arctic polar desert. *PLoS One* 8:e71489. DOI 10.1371/journal.pone.0071489

Storch D, Bohdalková E, Okie J. 2018. The more-individuals hypothesis revisited: the role of community abundance in species richness regulation and the productivity-diversity relationship. *Ecology Letters* 21:920-937.

Suzuki S, He Y, Oyaizu H. 2003. Indole-3-acetic acid production in *Pseudomonas fluorescens* HP72 and its association with suppression of creeping bentgrass brown patch. *Current Microbiology* 47:138-143. DOI 10.1007/s00284-002-3968-2

Tsavkelova EA, Cherdyntseva TA, Botina SG, Netrusov AI. 2007. Bacteria associated with orchid roots and microbial production of auxin. *Microbiological Research* 162:69-76. DOI 10.1016/j.micres.2006.07.014

Verma P. 2019. Seed endophytes in crop plants: metagenomic approaches to study the functional roles and interactions. In: Verma SK, White, JF, ed. *Seed Endophytes*. Berlin: Springer, 483-507.

Verma S, Kingsley K, Irizarry I, Bergen M, Kharwar R, White JF. 2017. Seed vectored endophytic bacteria modulate development of rice seedlings. *Journal of Applied Microbiology*. 122: 1680–1691. DOI 10.1111/jam.13463
Verma SK, Kingsley K, Bergen M, English C, Elmore M, Kharwar RN, White JF. 2018. Bacterial endophytes from rice cut grass (*Leersia oryzoides* L.) increase growth, promote root gravitropic response, stimulate root hair formation, and protect rice seedlings from disease. *Plant Soil* 422: 223–238. DOI 10.1007/s11104-017-3339-1

White JF, Kingsley KL, Butterworth S, Brindisi L, Gatei JW, Elmore MT, Verma SK, Yao X, Kowalski KP. 2019. Seed-vectored microbes: their roles in improving seedling fitness and competitor plant suppression. In: Verma SK, White, JF, ed. *Seed Endophytes*. Berlin: Springer, 3-20.

White JF, Kingsley KL, Verma SK, Kowalski KP. 2018. Rhizophagy cycle: An oxidative process in plants for nutrient extraction from symbiotic microbes. *Microorganisms* 6: 95. DOI 10.3390/microorganisms6030095

White JF, Torres MS, Johnson H, Irizarry I, Tadych M. 2014. A functional view of plant microbiomes: endosymbiotic systems that enhance plant growth and survival. In: Verma VC, Gange AC, ed. *Advances in Endophytic Research*. Berlin: Springer, 425-439.

White Jr J. 1987. Widespread distribution of endophytes in the Poaceae. *Plant Disease* 71:340-342. DOI 10.1094/PD-71-0340
Yanni YG, Rizk R, Corich V, Squartini A, Ninke K, Philip-Hollingsworth S, Orgambide G, De Bruijn F, Stoltzfus J, Buckley D. 1997. Natural endophytic association between *Rhizobium leguminosarum* bv. *trifolii* and rice roots and assessment of its potential to promote rice growth. *Plant and Soil* 194:99-114. DOI [10.1023/A:1004269902246](http://dx.doi.org/10.1023/A:1004269902246)

Yuan CL, Mou CX, Wu WL, Guo YB. 2010. Effect of different fertilization treatments on indole-3-acetic acid producing bacteria in soil. *Journal of Soils and Sediments* 11:322-329. DOI [10.1007/s11368-010-0315-2](http://dx.doi.org/10.1007/s11368-010-0315-2)

Zeglin LH, Dahm CN, Barrett JE, Gooseff MN, Fitpatrick SK, Takacs-Vesbach CD. 2011. Bacterial community structure along moisture gradients in the parafuvial sediments of two ephemeral desert streams. *Microbial Ecology* 61:543-556. DOI [10.1007/s00248-010-9782-7](http://dx.doi.org/10.1007/s00248-010-9782-7)

Zhu YL, She XP, Wang JS, Lv HY. 2017. Endophytic bacterial effects on seed germination and mobilization of reserves in *Ammodendron biofolium*. *Pakistan Journal of Botany* 49:2029-2035.
Figure 1

Graphical workflow of metagenomic analysis in our study.
Figure 2

Bar plot analysis illustrating the relative abundance and distribution of the OTUs assigned to class-level taxonomy.

LM: low moisture; HM: high moisture.
Figure 3

Box plots depicting the Faith’s Phylogenetic Diversity for different climate conditions (A), different genera (B), and different species (C).
Figure 4

PCoA Emperor plots based on Bray-Curtis diversity matrix.

Samples are scattered concerning their bacterial community. Climates are represented by different colors: red – low moisture; blue – high moisture. Species were represented by different shapes: ring – *Loium arudinacea*; sphere – *Lolium perenne*; square – *Festuca rubra*. 
Figure 5

Venn diagrams showing the number of shared bacterial genera between different climate (A) and among different turf species (B).

LM: low moisture; HM: high moisture; Fr: Festuca rubra; Lp: Lolium perenne; La: Loium arudinacea.
Figure 6

Correlation of seed germination rate with abundance of bacteria groups at different taxonomy levels.

Phylum level: A and B; Class level: C; Order level: D and E; Family level: F – H; Genus level: I – K; Species level: L.
Figure 7

Correlation of average seed germination time with abundance of bacteria groups at different taxonomy levels.

Phylum level: A – C; Class level: D – F; Order level: G – K; Family level: L – P; Genus level: Q – T; Species level: U.
Table 1 (on next page)

Composition of bacterial community from LM and HM climate seeds.

*: *Rhizobium* group also includes *Allorhizobium*, *Neorhizobium*, and *Pararhizobium*.

**: Bacterial groups without significant difference between LM and HM.

†: Bacterial groups with significant difference between LM and HM.
| Taxa level | Taxa name                  | Ave. Percentage |
|------------|----------------------------|-----------------|
|            |                            | LM  | HM  | Combined |
| Phylum     | Actinobacteria **          | 6%  | 7%  | 6%       |
|            | Bacteroidetes †           | 2%  | 39% | 40%      |
|            | Firmicutes **             | 3%  | 4%  | 3%       |
|            | Patescibacteria           | —   | <1% | <1%      |
|            | Proteobacteria †          | 89% | 50% | 51%      |
| Class      | Actinobacteria **          | 6%  | 6%  | 6%       |
|            | Bacteroidia               | 2%  | 39% | 40%      |
|            | Bacilli **                | 3%  | 4%  | 3%       |
|            | Saccharimonadaceae        | —   | <1% | <1%      |
|            | Alphaproteobacteria †     | 6%  | 18% | 15%      |
|            | Gammaproteobacteria †     | 83% | 32% | 36%      |
| Order      | Micrococcales **          | 6%  | 5%  | 5%       |
|            | Cytophagales              | <1% | 2%  | 2%       |
|            | Flavobacteriales †        | <1% | 11% | 9%       |
|            | Sphingobacteriales †      | 1%  | 26% | 21%      |
|            | Bacillales **             | 3%  | 4%  | 4%       |
|            | Saccharimonadaceae        | —   | <1% | <1%      |
|            | Rhizobiales               | —   | 3%  | 2%       |
|            | Sphingomonadaceae †       | 6%  | 15% | 13%      |
|            | Betaproteobacteriales †   | 30% | 13% | 17%      |
|            | Enterobacteriales †       | 24% | 12% | 15%      |
|            | Pseudomonadaceae †        | 29% | 6%  | 11%      |
| Family     | Microbacteriaceae **      | 6%  | 5%  | 5%       |
|            | Hymenobacteriaceae       | <1% | 1%  | 1%       |
|            | Flavobacteriaceae †       | <1% | 3%  | 3%       |
|            | Weeksellaceae †           | <1% | 7%  | 6%       |
|            | Sphingobacteriaceae †     | 1%  | 26% | 21%      |
|            | Paenibacillaceae **       | 3%  | 4%  | 4%       |
|            | Rhizobiaceae †            | —   | 2%  | 1%       |
|            | Sphingomonadaceae †       | 6%  | 15% | 13%      |
|            | Burkholderiaceae †        | 30% | 13% | 17%      |
|            | Enterobacteriaceae †      | 24% | 12% | 15%      |
|            | Pseudomonadaceae †        | 29% | 6%  | 11%      |
| Genus      | Curtobacterium **         | 2%  | 2%  | 2%       |
|            | Hymenobacter              | <1% | 1%  | 1%       |
|            | Flavobacterium †          | <1% | 3%  | 3%       |
|            | Chryseobacterium †        | <1% | 7%  | 6%       |
|            | Mucilaginibacter          | —   | <1% | <1%      |
|            | Pedobacter †              | 1%  | 25% | 20%      |
|            | Paenibacillus **          | 3%  | 4%  | 4%       |
| Genus          | 2% | 1%  |
|---------------|----|-----|
| Rhizobium*    | —  | 2%  | 1%  |
| Sphingomonas †| 6% | 15% | 13% |
| Duganella †   | 5% | 3%  | 3%  |
| Massilia †    | 25%| 9%  | 12% |
| Erwinia †     | <1%| 3%  | 3%  |
| Pantoea †     | 23%| 9%  | 12% |
| Pseudomonas † | 29%| 6%  | 11% |
| Unassigned    | <1%| <1% | <1% |
Table 2 (on next page)

Seed-vectored bacterial genera shared *Loium arudinacea*, *Lolium perenne*, and *Festuca rubra*.

*: *Rhizobium* group also includes *Allorhizobium*, *Neorhizobium*, and *Pararhizobium*. 
| Phylum          | Genus                        |
|-----------------|------------------------------|
| Actinobacteria  | Curtobacterium              |
|                 | Sanguibacter                |
| Bacteroidetes   | Chryseobacterium            |
|                 | Dyadobacter                 |
|                 | Flavobacterium              |
|                 | Mucilaginibacter            |
|                 | Pedobacter                  |
|                 | Sphingobacterium            |
|                 | Spirosoma                   |
|                 | uncultured Sphingobacteriaceae |
|                 | unknown Sphingobacteriaceae |
| Patescibacteria | uncultured bacterium        |
|                 | uncultured *Sphingobium* sp.|
|                 | unknown Saccharimonadales   |
| Proteobacteria  | Rhizobium*                  |
|                 | Aureimonas                  |
|                 | Brevundimonas               |
|                 | Devosia                     |
|                 | Duganella                   |
|                 | Erwinia                     |
|                 | Massilia                    |
|                 | Novosphingobium             |
|                 | Pantoea                     |
|                 | Pigmentiphaga               |
|                 | Pseudomonas                 |
|                 | Sphingomonas                |
|                 | Verticia                    |