On Krylov methods for large-scale CBCT reconstruction

Malena Sabaté Landman1,6, Ander Biguri1,6, Sepideh Hatamikia1,3, Richard Boardman3, John Aston5 and Carola-Bibiane Schönlieb1

1 Department of Applied Mathematics and Theoretical Physics (DAMTP), University of Cambridge, Cambridge, United Kingdom
2 Research center for Medical Image Analysis and Artificial Intelligence (MIAAI), Department of Medicine, Danube Private University, Krems, Austria
3 Austrian Center for Medical Innovation and Technology (ACMIT), Wiener Neustadt, Austria
4 Visx-ray Imaging Laboratory, University of Southampton, Southampton, United Kingdom
5 Department of Pure Mathematics and Mathematical Statistics (DPMMS), University of Cambridge, Cambridge, United Kingdom
6 These authors contributed equally to this work.

E-mail: m.sabate.landman@gmail.com and ander.biguri@gmail.com

Keywords: CBCT, Krylov methods, iterative reconstruction, total variation, inverse problems, CT, open source

Abstract

Krylov subspace methods are a powerful family of iterative solvers for linear systems of equations, which are commonly used for inverse problems due to their intrinsic regularization properties. Moreover, these methods are naturally suited to solve large-scale problems, as they only require matrix-vector products with the system matrix (and its adjoint) to compute approximate solutions, and they display a very fast convergence. Even if this class of methods has been widely researched and studied in the numerical linear algebra community, its use in applied medical physics and applied engineering is still very limited. e.g. in realistic large-scale computed tomography (CT) problems, and more specifically in cone beam CT (CBCT). This work attempts to breach this gap by providing a general framework for the most relevant Krylov subspace methods applied to 3D CT problems, including the most well-known Krylov solvers for non-square systems (CGLS, LSQR, LSRM), possibly in combination with Tikhonov regularization, and methods that incorporate total variation regularization. This is provided within an open source framework: the tomographic iterative GPU-based reconstruction toolbox, with the idea of promoting accessibility and reproducibility of the results for the algorithms presented. Finally, numerical results in synthetic and real-world 3D CT applications (medical CBCT and μ-CT datasets) are provided to showcase and compare the different Krylov subspace methods presented in the paper, as well as their suitability for different kinds of problems.

1. Introduction

Computed Tomography (CT) is a very popular imaging technique widely used in medical and scientific applications. In particular, cone beam CT (CBCT) has gained significant attention in the last decade, both for medicine, when low dose image guidance is required (e.g. dental imaging, image guided radiation therapy, image guided surgery), but also in scientific applications involving μ-CT, where higher doses are tolerated in favor of a better image reconstruction quality. Moreover, since many clinical applications require producing reliable images in real or near real time (Leeser et al 2014, Hansen and Sørensen 2018), there is a true need for faster available reconstruction methods. This is crucial in CBCT imaging during surgical procedures, where the long time required by most standard algorithms makes their use unfeasible in a standard clinical workflow. For example, this is the case in needle-based procedures, where fast CBCT imaging has the potential to accurately image intraoperative anatomy in close proximity to the needle (Kickuth et al 2015, Gulias-Soidan et al 2020) allowing for immediate adjustment in case of misplacement. Other examples can be found in image guided radiotherapy and online radiotherapy, and particularly in particle radiotherapy, where a CBCT image is taken on-site mere seconds before the radiation dose is delivered (MacKay 2018), with a very limited window for both
reconstruction and radiation dose planning. Finally, optimization of source-detector CBCT trajectories has recently shown great promise in interventional radiology, offering a variety of benefits, including image quality improvement, Field of View (FOV) expansion, radiation dose reduction, metal artifact reduction, and 3D imaging under kinematic constraints. This optimization process is highly dependent on the image reconstruction speed, so the clinical implementation of such methods can only be realized with the use of fast CBCT reconstruction techniques (Thies et al. 2020, Hatamikia et al. 2021).

In order to perform the CT reconstructions of an image from its measured x-ray projections, one needs to study and understand the properties its underlying numerical model. Mathematically, this can be formulated as finding a solution of a large-scale linear system of the form

\[Ax + e = b, \]

(1)

where \(A \in \mathbb{R}^{N \times M} \) is the system matrix describing the measurement process, \(b \in \mathbb{R}^N \) is the vector of measurements and \(e \in \mathbb{R}^N \) is the modeled additive noise. Note that \(N \) is the number of detector pixels multiplied by the number of projection angles, while \(M \) is the number of voxels in the image \(x \). For more information see, e.g. (Kak and Slaney 2001, Hansen 2010) and references therein. There are two main factors that make problem (1) very challenging to solve in practice. First, the problem is ill-posed, i.e. the matrix \(A \) has singular values that decay and cluster at zero, without an evident gap between two consecutive values. This means that the recovered solution is very sensitive with respect to small perturbations (e.g. noise) in the measurements, and therefore some regularization (replacing the original problem by a related more stable problem), needs to be applied to obtain a meaningful reconstruction. In the context of CT, the ill-posedness of the problem is related to \(A \) being a fine enough discretization of an integral operator (linear and compact) (Hansen et al. 2021), and it is accentuated when the data set is limited e.g. when only limited angle or sparse full-angle tomography measurements are available (Mueller and Siltanen 2012, Chapter 9). The methods described in this paper provide different forms of regularization that will be explained and compared in the following sections. Second, in real-world CT applications, equation (1) can be very large-scale, so it is unfeasible to work directly with the matrix \(A \) or, in most cases, even construct it and store it.

In practical CT applications, an approximation of the solution of (1) is frequently computed using a direct method commonly known as filtered backprojection (FBP), or as FDK in CBCT problems, and named after Feldkamp, Davis and Kress (Feldkamp et al. 1984). This produces good results for mildly ill-posed problem, e.g. for high doses and independent projections. However, these algorithms can produce heavy image artifacts due to noise amplification related to the ill-posedness of the problem and mismatches between the idealistic models for the x-ray behaviour and the real measurement sampling process, see, e.g. (Mueller and Siltanen 2012). An alternative to solve problem (1) is to use iterative methods that rely only on matrix-vector products with \(A \) and \(A^T \) to handle the large-scale nature of these matrices; hence these are also known as matrix-free methods. For mildly ill-posed problems one can expect the outcome of most used inversion algorithms to be similar (Mueller and Siltanen 2012, Chapter 9). However, iterative methods have shown to produce reconstructions of better quality (Desai et al. 2012, Kataria et al. 2018, Mao et al. 2019), particularly in the cases where there are less measurements, or they are noisier. This is especially relevant in medical applications, where reduced measurements lower the amount of damaging x-ray radiation that is given to the patient. Consequently, iterative methods are of practical relevance in clinical applications; progressively more commercial CT scanners come with iterative reconstructions due to their robust and improved image quality. Moreover, while in \(\mu \)-CT the radiation dose is not harmful for the imaged object, there are cases where a sparse or low dose sampling is still required. For example, for non destructive testing of manufacturing processes, the throughput of the scanning should align with the throughput of the production, so the measuring speed limits the amount of data that can be acquired (Rossides et al. 2022). However, one needs to mention that iterative methods are slow compared to FDK: this is because FDK is computed by a ramp filter and a back-projection; whereas all existing iterative method compute, at least, one forward projection and one back-projection per iteration, and therefore each iteration requires almost the same computation time than FDK. For this reason, it is critical to make fast iterative reconstruction algorithms available for CBCT.

This work focuses on Krylov subspace methods, a family of matrix-free algorithms that are very well-known and studied in the numerical linear algebra community but that have found limited use on real-world CT applications so far. This class of methods was first introduced in the 1950s (Hestenes and Stiefel 1952), but it is recently getting very popular for solving inverse problems (Gazzola and Sabaté Landman 2020, Chung and Gazzola 2021). Conjugate gradient least squares (CGLS) is the most commonly used Krylov method in applied x-ray CBCT, see, for example (Dabravolski et al. 2014, Pengpen and Soleimani 2015, Lohvithee et al. 2021). Moreover, it is sometimes also found in combination with Tikhonov regularization, or within more complex minimization schemes tackling different variational regularizers (Kazantsev et al. 2015). Mathematically equivalent to CGLS, the more stable algorithm LSQR, has also been used for CBCT (Flores et al. 2016, Chillaron et al. 2020), but is by far less popular than CGLS. Other minimal residual Krylov solvers, such as
modifications of the generalized minimal residual algorithm (GMRES), have been seldom used in CT (Coban and Lionheart 2014). In particular, we want to include in our comparisons recent developments building up from this algorithm, namely ABBA-GMRES (Sidky et al 2022, Hansen et al 2022), which support unmatched backprojectors: a very common problem in large-scale CT. In this same work LSMR is also used as a comparison. Recent developments in hybrid Krylov methods incorporating Tikhonov regularization and total variation (TV) regularization have not been used in real-world CT applications to the best of our knowledge. In terms of available (open source) software, some implementations of the described algorithms can be found along with the papers where they were presented, e.g. (Hansen et al 2022), or in the IR-tools toolbox (Gazzola et al 2017), which provides many algorithm implementations for large 2D problems. However, these implementations are not suitable for large-scale (5122 or bigger) CBCT problems. For this particular application, some Krylov methods have been implemented previously: the tomographic iterative GPU-based reconstruction (TIGRE) (Biguri et al 2016), CIL (Jørgensen et al 2021) and ASTRA (Van Aarle et al 2016) toolboxes provide CGLS implementations, and the authors in (Kulvait and Rose 2021) provide an implementation of CGLS and LSQR with limitations on image size when considering μ-CT scales.

The technical novelty of this paper is two-fold: (1) applying state-of-the-art Krylov subspace methods in real CT applications, some of them for the first time, (2) providing the relevant codes within an open source framework: the TIGRE toolbox (Biguri et al 2016), that can be seamlessly used in any GPU supported device for arbitrarily large images as long as they can be stored and processed in the available machines. Moreover, reproducible numerical experiments are provided in synthetic and real-world 3D CT applications (for medical CBCT and μ-CT datasets) that showcase and compare the different methods presented in the paper.

In the following sections the most relevant Krylov subspace methods for 3D CT problems are described including the most well-known Krylov solvers for non-square systems (CGLS, LSQR, LSMR), possibly in combination with Tikhonov regularization, and recently developed methods that incorporate total variation (TV) regularization. Note that section 2 (Methods) recalls the mathematical framework for the methods described in the paper. Reading this section is not necessary to use the algorithms as provided in the toolbox, so the authors suggest to anyone interested only in the direct applications of such methods to skip this section. Examples of results under different CT acquisition modes and samples are given in section 3 (Results), some general guidance on the use of the different algorithms is provided in section 4 (Discussion) and a list of the algorithms in the toolbox is provided in section 5 (Conclusions).

2. Methods

Krylov methods are projection methods, i.e. iterative methods that, at each iteration k, are defined to find the best solution x_k belonging to a Krylov subspace of increasing dimension according to different optimality criteria that define each particular Krylov solver. In particular, Krylov subspaces are generated by the linear combination of the first $k-1$ powers of a matrix acting on a vector. In this paper, we mainly focus on subspaces where $A A^T$ acts on $A^T b$, denoted as

$$K_k(A^T A, A^T b) = \text{span}\{ A^T b, (A^T A) A^T b, \ldots, (A^T A)^{k-1} A^T b\},$$

or in variations thereof. Unless explicitly stated otherwise, the computational cost of the presented Krylov methods is dominated by a matrix vector product by A and A^T per iteration.

2.1. Least squares problems

Note first that (1) might not be consistent, i.e. there might not exist a solution x^* such that $A x^* = b$, mainly due to the presence of the noise ϵ, but also due to small differences between the discretized model and the true underlying physical model governing the measurement process. Therefore, we consider instead the following least squares problem

$$\hat{x} = \arg\min_x \|A x - b\|_2.$$

Note that solving (3) corresponds to finding the best linear unbiased estimator for the solution assuming uncorrelated noise with equal variance and zero mean by the Gauss–Markov theorem, see e.g. (Vogel 2002). This is frequently taken as a reasonable approximation to the noise due to its computational convenience, see e.g. (Mueller and Siltanen 2012, Chapter 2.3.2), when the noise is not ‘too big’, e.g. far from the low photon count limit. This is the approach that will be used in the following of this paper. It is worth mentioning that, alternatively, a more accurate quadratic approximation of the noise can be computed starting from a Poisson distribution modeling the errors for the photon counts and using a second-order Taylor expansion, see (Hansen et al 2021, Example 12.6). This results in the variance not being the same across pixels, and can be tackled with a
The Krylov methods in this paper can be easily adapted to this case, e.g. (Calvetti 2007).

When A is ill-posed, problem (3) is very sensitive to small perturbation in the measurements, so the solution of (3) might still be a bad reconstruction of the original image. Krylov methods have inherent regularization properties when combined with early stopping, displaying a phenomena called semiconvergence, i.e. the relative error norm of the solution decreases on the first iterations but starts increasing again after the optimal stopping iteration, see e.g. (Hansen 2010, section 6.3). In the following subsections the most applicable Krylov methods to solve problem (3) in the context of CT reconstruction are described.

2.1.1. CGLS
Conjugate gradient least squares (CGLS), is the most used Krylov method in CT, and it dates back to (Hestenes and Stiefel 1952). It consists on applying the conjugate gradient method to the normal equations associated to (3): $A^T Ax = A^T b$. At each iteration k, the solution of

$$x_k = \arg \min_{x \in \mathbb{K}_k(A^T A, A^T b)} \|Ax - b\|_2,$$

is computed, such that the residual norm $\|r_k\|$, where $r_k = b - Ax_k$, decreases monotonically.

2.1.2. LSQR
The LSQR method is based on the construction of a Krylov subspace using the Golub–Kahan (GK) bidiagonalization process (Paige and Saunders 1982). This process results on a partial decomposition of A of the form $A V_k = U_k H_k$, where $H_k \in \mathbb{R}^{k+1 \times k}$ is bidiagonal, and such that the orthonormal columns of V_k span the Krylov subspace $\mathbb{K}_k(A^T A, A^T b)$, U_{k+1} has orthogonal columns and $U_{k+1} e_1 = \|b\| e_1$. Then, problem (4) can be reformulated as

$$x_k = V_k y_k \text{ where } y_k = \arg \min_{y \in \mathbb{R}^k} \|b - A V_k y\|_2 = \arg \min_{y \in \mathbb{R}^k} \|b\| - H_k y \|_2,$$

where e_1 is the canonical vector of appropriate dimension. Even if this method has been less used in applied CT papers compared to CGLS, these two methods are mathematically equivalent, and LSQR was originally designed to provide a more stable algorithm. A detailed implementation of this method based on short recursions can be found in the original paper (Paige and Saunders 1982).

2.1.3. LSMR
Similarly to LSQR, LSMR is also based on the construction of a Krylov subspace using the GK bidiagonalization process (Fong and Saunders 2011). However, at each iteration, LSMR seeks a solution $x_k \in \mathbb{K}_k(A^T A, A^T b)$ such that $\|A^T r_k\|$ is minimized, i.e.

$$x_k = V_k y_k \text{ where } y_k = \arg \min_{y \in \mathbb{R}^k} \left\|A^T r_k\right\|_2 = \arg \min_{y \in \mathbb{R}^k} \left\|A^T b\right\| - H_k^T H_k y \|_2,$$

where $H_k \in \mathbb{R}^{k \times k}$ corresponds to the first k rows of the matrix H. Although both LSQR and LSMR converge in exact arithmetic to the same solution, see e.g. (Fong and Saunders 2011), they produce slightly different solutions at each iteration. Moreover, LSMR is mathematically equivalent to GMRES (Saad and Schultz 1986) applied to the normal equations $A^T Ax = A^T b$, and since the system matrix for the normal equations is symmetric, this is also equivalent to using MINRES (Paige and Saunders 1975).

2.1.4. AB-GMRES and BA-GMRES
Due to how efficient implementations of the CBCT problems are coded for GPUs, the matrix B that represents the backprojection operator, i.e. the adjoint of A, is usually just an approximation of A^T (Biguri et al 2020). This mismatch can cause the standard simultaneous iterative reconstruction technique (SIRT) family of iterative solvers to diverge, unless specific perturbations are added to stabilize the convergence, see (Hansen et al 2022). Alternatively, the approximated transpose matrix B can be used as a right (resp. left) preconditioner for GMRES when solving problem (3), giving rise to AB-GMRES (resp. BA-GMRES) (Hansen et al 2022).

2.2. Tikhonov regularization
Another form of regularization is Tikhonov regularization, and it is perhaps the simplest and most well-known variational regularization method. It consists on computing the solution

$$\hat{x} = \arg \min_x \left\{ \|Ax - b\|_2^2 + \lambda^2 \|x\|_2^2 \right\},$$

where the regularization parameter λ balances the effect of the fit-to-data term $\|Ax - b\|_2^2$ (promoting consistency of the solution with the measurements) and the regularization term $\|x\|_2^2$ (promoting regularity of
the solution). If λ is chosen adequately, the semiconvergence behaviour can most times be alleviated, and the algorithms are less sensitive to early stopping; moreover, this allows for a bigger Krylov space to be built, sometimes leading to solutions of improved quality with respect to their non-Tikhonov-regularized counterparts. When λ is known, or fixed ahead of the iterations, one can apply any iterative solver (e.g. CGLS, LSQR or LSRM) to the augmented system:

$$\hat{x} = \arg \min_x \left\| \begin{bmatrix} A \\ A^T \end{bmatrix} x - \begin{bmatrix} b \\ 0 \end{bmatrix} \right\|_2.$$ \hfill (8)

For example, an LSRM implementation for fixed λ is given in the original paper (Fong and Saunders 2011) and compared in this study. An alternative approach is to use hybrid methods: which consist on adding Tikhonov regularization to the projected problem (5) or (6). In the case of LSQR, this is mathematically equivalent to projecting the regularized problem (8) (Hansen 2010, Chapter 6). However, this is not the case for LSRM (Chung and Palmer 2015). The big advantage of hybrid methods is that they provide a framework to estimate λ on-the-fly when it is not known a priori. Even if they display a very fast convergence, the drawback of these methods is that they come with the additional cost of having to store k additional (basis) vectors for computing the solution at iteration k. This makes them suited for small to medium problems, e.g. $x \in \mathbb{R}^{512 \times 512}$, $b \in \mathbb{R}^{512 \times 512 \times 360}$. In some cases, this could be alleviated by storing the coefficients and recomputing all the basis vectors at the end of the iterations requiring twice as many matrix-vector products with A and AT than their non-hybrid counterparts. We provide a version of hybrid LSQR to show the performance of these methods. For more information, a great review on hybrid methods can be found in (Chung and Gazzola 2021).

2.2.1. Hybrid LSQR

Using the same Krylov subspace described for LSQR and adding regularization to the projected problem (5), leads to solving, at each iteration k:

$$x_k = V_k y_k \quad \text{where} \quad y_k = \arg \min_y \{ ||b||_2 | c_1 - H_k y ||_2^2 + \lambda_k^2 \| y \|_2^2 \}. \hfill (9)$$

As already mentioned, and thanks to the shift invariance property of Krylov subspaces, for fixed λ_k problem (9) is equivalent to projecting problem (8) onto the Krylov subspace $K_k(A^T A, A^T b)$, see, originally (Paige and Saunders 1982), or (Hansen 2010) for a more detailed explanation. An interesting feature of formulation (9) is that λ_k can be computed on-the-fly at each iteration k according to a parameter choice criterion; examples of which can be found in the following section.

2.2.2. Parameter choice criteria

A good choice of the regularization parameters is crucial to obtain meaningful reconstructions when dealing with ill-posed problems. In this section we focus on choices for λ_k (but note that the total amount of iterations k can also be considered a regularization parameter for regularization by early-stopping). In the following, we provide the description of two of the most simple and commonly used regularization parameter choice criteria.

This is by no means an exhaustive list of the available options and we point the interested reader to the reviews in e.g. (Gazzola and Sabaté Landman 2020, Chung and Gazzola 2021).

If a good estimate of the norm of the error $||e||_2$ is available, a very popular and reliable parameter choice criterion is the discrepancy principle (DP) (Morozov 1966). This method is based on the idea that

$$||Ax^{exact} - b||_2^2 = ||Ax^{exact} - b^{exact} - e||_2^2 = ||e||_2^2 = \frac{||e||_2^2}{||b||_2^2} ||b||_2^2 = n \lambda_2 ||b||_2^2 \hfill (10)$$

so at each iteration, λ_k is chosen so that

$$\lambda_k = \arg \min_{\lambda} \{ ||Ax_{\lambda} - b||_2^2 - n \lambda_2 ||b||_2^2 \}. \hfill (11)$$

Alternatively, one can use parameter choice rules that do not use any information about the noise e, also known as ‘heuristic methods’. In particular, we provide an implementation of the generalized cross validation (GCV) parameter choice criterion, which relies on cross validation: a well known statistical tool used to predict possible missing data values. In this case, each of the components of the vector of measurements b is estimated using the rest of components, and the regularization parameter λ_k associated with the best predicted values is taken at each iteration. In practice, for hybrid LSQR, using GCV involves solving the following minimization:

$$\lambda_k = \arg \min_{\lambda} \frac{|| (I - H_k H_k^T) ||_2 ||b||_2 e_2^2}{\text{tr}(I - H_k H_k^T)} \quad \text{where} \quad H_k^T = (H_k^T H_k + \lambda_k^2 I)^{-1} H_k^T. \hfill (12)$$

Note that this can be generalized to other Krylov methods (e.g. LSRM) by replacing the projected matrix and right hand side by corresponding ones (see, e.g. (Chung and Palmer 2015)).
2.3. Total variation regularization

Total variation is a very common variational regularization scheme that promotes piecewise-constant reconstructions by favouring solutions with a sparse gradient. This is very popular in imaging problems as it contributes to preserve edges in the reconstructed image. In this paper the discrete isotropic TV in 3D is considered:

$$TV(x) = \sum_{i} \sqrt{|D_x x_i^2| + |D_y x_i^2| + |D_z x_i^2|} = \left\| \sqrt{|D_x x_i^2| + |D_y x_i^2| + |D_z x_i^2|} \right\|_1,$$

where D_x, D_y, D_z refer to the finite difference approximations of the three directional derivatives for the 3D image x. A popular approach to solve the TV problem using Krylov methods is to re-write the TV regularization term using a weighted 2-norm:

$$\hat{x} = \arg \min_{x} \{ \|Ax - b\|_2^2 + \lambda^2 TV(x) \} = \arg \min_{x} \{ \|Ax - b\|_2^2 + \lambda^2 \|W(Dx)\|_2^2 \},$$

where D is the 3D discrete derivative operator and $W(Dx)$ is a (diagonal) weighting matrix that depends on Dx. Then, the functional in (14) can be approximated locally by a sequence of quadratic functionals, giving rise to a sequence of problems of the form:

$$x^{(k)} = \arg \min_{x} \{ \|Ax - b\|_2^2 + \lambda^2 \|L^{(k)} Dx\|_2^2 \},$$

where $L^{(k)}$ are approximations of $W(Dx)$ of improving quality. This scheme is called iteratively reweighted norm and was first used in combination with TV in (Wohlberg and Rodriguez 2008) for 2D imaging problems. In the following, two algorithms that (partially) solve the problems in (15) to approximate TV regularization are described.

2.3.1. CGSL-TV

The sequence of problems (15) can be solved in an inner–outer scheme where, at each outer iteration, the computed solution $x^{(k)}$ is used to update the weights $L^{(k+1)} = W(Dx^{(k)})$. Following (Wohlberg and Rodriguez 2008), an adaptation of this method for 3D using CGLS in the inner iterations, is provided in this paper. This scheme has provable convergence guarantees, but requires λ to be known a priori and can be very computationally expensive due to its inner–outer scheme nature. Other variations of this method have been implemented using other Krylov methods for the inner iterations, e.g. in combination with LSQR (Arridge et al 2014).

2.3.2. Hybrid fLSQR

An equivalent formulation to (15), dropping the (k) upper-script to ease the notation so that $L = L^{(k)}$, is to solve

$$\hat{x} = L^+_A \bar{y}_L + x_0, \quad \bar{y}_L = \arg \min_{\bar{y}} \{ \|AL_A \bar{y} - \bar{b}\|_2^2 + \lambda^2 \|\bar{y}\|_2^2 \},$$

where L^+_A is the A-weighted pseudoinverse of L, defined as $L^+_A = [I - (A(I - L^L) \ d A)] L^L$ (denotes the Moore-Penrose pseudoinverse of L); x_0 is the component of the solution \hat{x} in the null space of $L^{(0)}$ and $\bar{b} = b - Ax_0$. The matrix L^+_A can now be considered as an (iteration dependent) right preconditioner and incorporated into the space of the solutions using flexible Krylov methods, see, e.g. (Calvetti 2007, Gazzola and Sabaté Landman 2019, Gazzola et al 2021). This strategy circumvents the need for an inner–outer scheme, and provides a much faster convergence than TV-CGSL. Moreover, in a hybrid fashion, it allows for the regularization parameter $\lambda = \lambda_k$ to be computed on-the-fly throughout the iterations. However, flexible Krylov methods require storing all the computed basis vectors so that the memory requirements increase with the number of iterations. The algorithm provided in this paper is an adaptation from (Gazzola et al 2021), using different boundary conditions for the discrete derivative operator approximation and extending it to 3D.

3. Numerical experiments

In this section, three representative numerical experiments are presented and discussed to illustrate different aspects of the Krylov subspace methods described in this paper. The aim of this section is to provide greater depth in the understanding of the behaviour of the described algorithms in practice, which can be used as a blueprint for ‘what to expect’ when using them in other data-sets, rather than producing and exhaustive evaluation of Krylov methods against the entire reconstruction literature. Due to the large number of reconstruction algorithms, the difficulty of obtaining real datasets, and the task-specific nature of the quality metrics, this is beyond the scope of this paper.

The first presented example consists of synthetic CT data, where the true image is known and the results can be analyzed and discussed in detail: providing a comprehensive comparison including relative error and residual
norm histories. The second experiment has the aim of showing the typical performance of these methods on real data: it consists of a scan of the Alderson head phantom obtained in a Philips Allura medical CT scanner that is reconstructed with full sampling and under-sampled projections. Finally, a bumblebee image obtained with an industrial Nikon CT scanner is reconstructed for some of the algorithms, in a real large-scale problem. Note that the large-scale nature of the CBCT image reconstruction problems means that the implementations are often in single precision floating point arithmetic.

The first two experiments were carried out in a laptop with a Intel Core i7-7700HQ with 16 GB of RAM and a GTX 1070 NVIDIA GPU. The μ-CT reconstruction was performed in a machine with an AMD EPYC 7352 with 126 GB of RAM and 4 NVIDIA Quadro RTX 6000.

3.1. Comprehensive convergence comparison on synthetic data

In this experiment we explore the behaviour of the algorithms presented in this paper in the context of 3D CBCT, using the available implementation in the TIGRE toolbox. Since this is a simulated toy example, both the relative residual norms, i.e. $||Ax_i - b||/||b||$, and relative error norms $||x_i - x_{gt}||/||x_{gt}||$ (for a given iteration number i and a ground truth image x_{gt}) can be computed. Relative residual norms are a natural metric to understand the behaviour of the presented algorithms, as they are the values, at each iteration, of the model fit, rescaled to ease comparison. For methods without further regularization, this coincides with the value of the objective functional (3) that we are minimizing, so this is a good indicator of the convergence of the algorithm to the minimizer of the objective functional. However, for ill-posed problems, this might be a bad indicator of the problem converging to a good approximation of the solution of the original problem (1). The relative error norm is used in this case as a standard application-agnostic metric to understand how close the reconstruction is to the true solution, along with a qualitative inspection of the results.

The data presented in this example concerns the measurements of a synthetic dataset of a human head of size $64 \times 64 \times 64$ with a detector of size 128×128 pixels, using TIGRE’s default geometry mimicking a medical CT scanner. The results for this experiment are presented an analyzed in three different subsections. First, the results for LSQR and hybrid LSQR (using different regularization parameter choices) are displayed to illustrate the typical behaviour of Krylov methods for CT problems, and can be observed in figures 1 and 2. Second, the Krylov methods presented in this paper for the least squares problems with and without Tikhonov regularization are shown in figures 3 and 4. Finally, a sparse-view version of the same simulation is used to showcase the Krylov methods that enforce TV regularization.

3.1.1. Illustration of Krylov methods’ typical behaviour

In this experiment, 60 equidistant angles spanning the full circular range are simulated, with added Poisson noise (assuming an air photon count of $I_0 = 1 \times 10^5$ in each pixel) and Gaussian noise (with standard deviation of $\sigma = 0.5$) which model both the photon and electronic noise expected in a CT scanner (Xu and Tsui 2009, Liu et al 2012). The reconstructions can be observed in figure 1, while relative residual and error norms are displayed in figure 2.

Figure 1. Reconstruction of phantom head data using different LSQR versions and parameter selection procedures. (top row) slice of final images, shown in range [0, 1] mm$^{-1}$ (bottom row) difference images w.r.t. the ground truth, shown in range $[-0.1, 0.1]$ mm$^{-1}$.

7 Source detector distance of 1536 mm, source axis of rotation distance of 1000 mm, detector size of 409.6 \times 409.6 mm and an image spanning 256 \times 256 \times 256 mm.
Figure 2. (a) Implicit relative residual norms, (b) computed relative residual norms and (c) relative error norms for the algorithms of interest, per iteration.

Figure 3. Reconstruction of phantom head data using several Krylov methods (top) slice of final images, shown in range \([0, 1] \text{ mm}^{-1}\) (bottom) difference images w.r.t. the ground truth, shown in range \([-0.1, 0.1] \text{ mm}^{-1}\).
First, we can observe that LSQR undergoes semiconvergence. As briefly mentioned in section 2.1, this is characterized by the decrease of the relative error norm in the first iterations until it reaches a minima after which it starts increasing (see figure 2(c)); while the residual norm is in exact arithmetic minimized at each iteration and therefore decreases monotonically throughout the iterations (see figure 2(a)). This phenomenon is the reason why early stopping is crucial to obtain a good reconstruction in inverse problems with noisy measurements when using an iterative solver that acts directly on the least squares problem (3).

Second, we want to illustrate how the choice of a good regularization parameter is crucial to obtain a meaningful reconstruction when solving the Tikhonov problem (7). As can be observed in both the reconstructions (figure 1) and the relative error norm histories (figure 2(c)), the semi-automatic parameter choice criteria provided in this implementation find appropriate parameters λ_k at each iteration to obtain a good reconstruction without fine tuning. Alternatively, one can choose a parameter λ ahead of the iterations. In this case, note that an under-regularized problem (see figure 1 for $\lambda = 2$) will produce a noisy-looking image (in which case one should re-run the algorithms using a higher value for the parameter λ); while an over-regularized problem (see figure 1 for $\lambda = 200$), will produce an overly smooth reconstruction (in which case one should use a smaller value for λ).

Last, a very interesting thing to note is the mismatch between the theoretical or implicit residuals in figure 2(a), i.e. computed using $\|Ax_1 - b\| / \|b\|$ or mathematical recurrences (see (Paige and Saunders 1982) for LSQR), and the residuals computed explicitly throughout the iterations in figure 2(b), i.e. using $\|Ax_k - b\| / \|b\|$ directly. This can be due to loss of orthogonality (mainly attributed to the mismatched backprojector) or to an accumulation of numerical errors and precision loss (most objects are stored in single precision floating point arithmetic, with large differences in the order of magnitude of the parameters). Note that this happens both for the algorithms that incorporate re-orthogonalization and for the ones that do not. As this mismatch flags a deviation of the algorithm from its expected behaviour in exact arithmetic, TIGRE explicitly computes the residual norms at each iteration and stops the algorithm once they increase.

3.1.2. (hybrid) Krylov methods for least squares problems

This experiment concerns a dataset with 180 equidistant angular projections with the same noise distribution used in the previous section ($t_0 = 1 \times 10^5, \sigma = 0.5$). The results for all the algorithms presented in this work for the least squares problem with or without Tikhonov regularization, are shown for a maximum of 60 iterations. As a baseline, the results are compared to the solutions computed with SIRT: a particular choice from the most commonly used family of algorithms in CT, the SIRT-like family (SIRT, OS-SART, SART, etc) (Kak and Slaney 2001), which is computationally equivalent to the Krylov methods used in this example (i.e. they have an equivalent amount of flops per iteration). Figure 2 shows a slice of the reconstructed image obtained using the different methods on top of its corresponding error (difference between the reconstructed slice and the ground truth). Figure 4 shows the relative residual norm and relative error norm histories for all the algorithms against the number of iterations.

In figure 4 one can observe the very fast convergence of Krylov methods: both in terms of the relative residual norm and of the relative error norm. In this particular experiment, between 10 and 20 iterations of the compared Krylov subspace methods are sufficient to obtain a good reconstruction of the original image while, after
60 iterations, SIRT has still not converged and has failed to compute meaningful reconstruction. It can also be observed that the different Krylov methods perform similarly, with LSQR producing results of slightly better quality than CGLS in terms of error norm.

For this particular example, the iterations are stopped early if the norm of the explicit residual increases between two consecutive iterations, as this is a sign of loss of orthogonality in the basis vectors or of the accumulation of computational errors. This happens for most compared Krylov subspace algorithms, and note that for CGLS, LSMR and LSQR, as a side-effect, this leads to regularization by early stopping and avoids the semiconverge behaviour. However, for these algorithms, one should stop the iterations early even when the explicit residual norm does not increase (for example, by monitoring the stabilization of the residual norm or using other stopping criteria). It is also remarkable to observe that the AB/BA-GMRES algorithms less commonly display increasing residuals, as they alleviate the problems associated with mismatched backprojectors.

3.1.3. Krylov methods for total variation regularization

For this experiment, the simulated CT measurements of the dataset described in the previous section are reduced and correspond to 60 equidistant projections: generating a more ill-posed problem (Mueller and Siltanen 2012, Chapter 9). Moreover, the Poisson noise for this problem is increased so that $I_0 = 1 \times 10^4$ in each pixel. In this case, more prior information on the solution is needed to obtain a good reconstruction of the original image, and therefore the described methods involving TV regularization become more meaningful. In particular, CGLS, CLGS with TV regularization and hybrid fLSQR with TV regularization are showcased in this experiment. The reconstructions obtained by these methods after 60 iterations can be seen in figure 5, where the smoothing but edge preserving behaviour of the TV regularization is visibly clear.

Figure 6 shows the relative residual norms and the relative error norms throughout the iterations for the compared methods. In this example it can be clearly observed that CGLS semiconverges due to the ill-posedness of the problem and the noise in the data. It is also important to explain that the behaviour of CGLS-TV in terms or relative residual and error norms is expected. Here, the ‘peaks’ correspond to the starts of each new cycle of inner iterations, also known as cold restarts. For this particular experiment, the number of inner iterations in each cycle is chosen a priori to be 12 iterations, but this could also be set adaptively using a stopping criterion for the inner iterations. As long as the number of inner iterations is sufficiently large, this algorithm produces very good reconstructions with the properties expected of TV regularized solutions (this is especially desirable for highly noisy datasets). The experiment shows that likely three outer iterations (36 iterations in total) would be sufficient for this particular example. Finally, even if hybrid fLSQR-TV displays a slower decay of the residual norm, it still produces fastly decreasing error norms compared to CGLS-TV, and does not exhibit semiconvergence. Note that this method does not require to set a number of inner iterations, and the regularization parameter can be chosen semi-automatically on-the-fly. However, it requires storing all the

![Figure 5. Reconstruction of phantom head data using CGLS and TV regularized Krylov methods. (top row) slice of final images, shown in range [0, 1] mm$^{-1}$ (bottom row) difference images w.r.t. the ground truth, shown in range $[-0.1, 0.1]$ mm$^{-1}$.](image)
generated basis vectors and has the additional cost of an (approximated) matrix-vector product with L^T at each iteration (in the codes provided, this is done efficiently using an iterative method).

3.2. Medical CT experiments

This experiment concerns a medical imaging application and has the aim to highlight the performance of Krylov subspace methods on real data. In particular, the computational times for the different algorithms are given in this example to highlight the fast convergence of Krylov methods. Since there is no ‘ground-truth’ for this experiment we assess the reconstructions based on a qualitative inspection of the results compared to FDK, and on the evaluation of the relative residual norm history (i.e. the relative residual norm stabilizing close to convergence).

The dataset used in this experiments consists of the Alderson head phantom measurements, acquired on a Philips Allura FD20 Xper C-arm with source settings of 80 kV and an exposure of 350 mAs, spanning a 210° angular range. Projections of size 512×512 have been used to reconstruct an image of size $256 \times 256 \times 200$ voxels. Figure 7 shows two views of the image reconstructions given by different algorithms. The following explanations and comparisons are applied to both the sagittal plane (figure 7(a)) and the transversal plane (figure 7(b)) of the different reconstructions. The first row shows images reconstructed by FDK (considered clinical standard) and SIRT with 30 and 150 iterations, respectively. Note that the choice of 30 iterations for SIRT is taken to match the computational time required for Krylov methods to obtain a meaningful reconstruction (it can be observed that the quality of the reconstruction using SIRT in this case is not very good), while the choice of 150 iterations is taken so that SIRT displays an equivalent quality of the reconstructions than Krylov methods (taking 3 min and 50 s, almost 8 times slower than Krylov methods). In the first column of the second row, OS-SART (the ordered subset version of SIRT), is shown after 60 iterations (chosen to reach a reasonable convergence). Albeit the number of required iterations is smaller than for SIRT, OS-SART takes 6 min 30 s to reconstruct this image.8 In the second and third columns of the second row, the reconstructions obtained using CGLS and LSQR are shown after 30 iterations (corresponding to 30 s of run-time). The third row, from left to right, shows the reconstructions obtained using LSNR (with $\lambda = 0$), LSNR (with $\lambda = 30$) and hybrid LSQR, all of them after 30 iterations and 30 s of run-time. The reconstructions obtained with the studied iterative methods look less grainy than the baseline reconstruction obtained using FDK.

In this experiment one can observe that iterative methods produce image reconstructions of similar or higher quality than the clinical standard FDK. Moreover, Krylov subspace methods are able to do so in significantly less computational time compared to other classic iterative reconstruction methods. This is of particular use in clinical CT, where lower reconstruction time is needed to maximize throughput (i.e. the number of images and actions over them that can be processed per unit of time).

In the following, the reconstruction results for the same example with a fifth of the projection data are shown to simulate a sparse sampling CT scan. Figure 8 displays the results in the same order and for the same number of iterations already described for figure 7. In this scenario, the Krylov subspace methods produce a good

8 This is specific for the particular TIGRE implementation. Faster subset algorithms can be developed using specific implementations that minimize CPU ⇔ GPU memory transfers. However, they require a larger amount of computations per iteration than other iterative methods, so they will still be slower than the other algorithms shown in this paper.
reconstruction in less than 15 s. Note that using SIRT in a comparable time (30 iterations) produces overly smooth reconstructions, i.e. they appear less noisy but the lack of sharpness in the edges might lead to the loss of important features in the image.

Figure 7. Reconstruction of the Alderson head phantom acquired on a Phillips Allura FD20 Xper C-arm, using 289 projections. Image shown in range $[0, 3]$ mm$^{-1}$ for the (left) sagittal plane, (right) transversal plane. SIRT 30 iterations and the Krylov subspace algorithms terminate within 35 s, while SIRT 150 iteration takes 3 min 50 s and OS-SART 6 min 30 s to converge to a solution of comparable quality.

Figure 8. Reconstruction of the Alderson head phantom acquired on a Phillips Allura FD20 Xper C-arm, using 58 projections. Image shown in range $[0, 3]$ mm$^{-1}$ for the (left) sagittal plane, (right) transversal plane. SIRT 30 iterations and the Krylov subspace algorithms terminate within 15 s, while SIRT 150 iteration takes 1 min 30 s and OS-SART 1 min 50 s to converge to a solution of comparable quality.
Finally, TV regularized Krylov algorithms are used in this experiment with under-sampled projections to showcase the impact of this type of regularization on challenging CT scans. Figure 9 shows, for comparison, the reconstructions obtained using LSQR after 30 iterations (same as in figure 8), OS-ASD-POCS, an ordered subset version of a well known TV regularized algorithm in tomography (Sidky and Pan 2008) after 60 iterations; and CGLS with TV regularization (2 outer and 15 inner iterations). For this experiment, the running time for CGLS-TV is 1 min, while the running time for OS-ASD-POCS is 2 min. It is not straightforward to establish a fair comparison purely between these two algorithms in terms of reconstruction quality, as they require the choice of different regularization hyperparameters (and there is no direct translation between the parameters for both of these algorithms). These will have a great influence in the reconstruction, balancing a closer reproduction of the fine detail features and a general smoother piece-wise constant appearance of the images. However, the results show that CGLS-TV produces good results (relatively smooth with sharp edges), while preserving the finer details of the image structures. Note that the hybrid fLSQR algorithm was not used in this experiment because the high memory needs of this algorithm were too big for the machine in which the experiments were run: this algorithm, in its current state, may not be suitable for a medical-size dataset.

3.3. μ-CT scan
This experiment showcases the use of the methods presented in this work in very large-scale problems where the radiation dose is not an issue. The scanned object is a wild buff-tailed bumblebee (Bombus terrestris), scanned on a Nikon HMX 225 kVp CT scanner at 40 kVp with a molybdenum target. The detector was a Perkin Elmer 1621 with a gadolinium oxysulphide scintillator. The detector is of size 2000 × 2000 and we used 256 projections uniformly distributed around the circle. The reconstructed image is 1400 × 1400 × 2000 with a resolution of 11.8 μm per voxel. Figure 10 shows the FDK reconstruction and LSQR reconstruction with 20 iterations (15 min of computational time). The different nature of the reconstructed images can be seen. In particular, the attenuation values of the tissue of the bumblebee are more uniform in LSQR (uniformity in the tissues is the expected result) and some features are better distinguished from the noise, particularly noticeable in the middle thin string-like structure in the zoomed-in area. However, this reconstruction also highlights one potential issue with iterative methods when mismatches in data consistency are present in the measurements. In particular, for some acquisitions where the edges of the projections might have errors due to e.g. photon starvation, or partial views of samples, iterative algorithms might produce artifacts that propagate through the image, as one can see in the stripe artifacts arising near the head (right part) of the Bumblebee, to the point where some features are considerably worse, or missing. In particular, the acquisition process for this dataset: highly sampled but with limited field of view (not the entire sample is in the imaging domain) favors FDK reconstructions over iterative methods. Therefore, while it is important to remark that some of the artifacts produced with Krylov methods

9 The unfortunate individual was found dead in the x-ray CT laboratory after getting trapped inside and became an essential part of the laboratory as an independent research dataset.
can be easily alleviated using data acquisition techniques that are tailored for iterative algorithms, it is also important to note that the acquisition process is a very important factor to consider when reconstructing already available datasets. However, we have shown that it is feasible to use Krylov subspace methods in really large-scale settings, so exploring different data acquisition techniques becomes a relevant problem.

4. Discussion

This section provides a discussion on some aspects reported in the numerical experiments, as well as some guidance on how to use some of these methods, with the aim of explaining potential issues that one might encounter when applying these algorithms to other datasets.

One of the results that is mentioned in this paper is the fact that, in practice, the real residual norm can increase throughout the iterations due to a loss of orthogonality (this is not expected in exact arithmetic for the methods that theoretically minimize the residual at each iteration) or due to an accumulation numerical errors (this behaviour is also observed for the algorithms that incorporate re-orthogonalization). As described in the previous sections, this is mostly due to the use of an unmatched backprojector. The TIGRE toolbox provides an approximation of a matched backprojector (Jia et al 2011) that mitigates the diverging behaviour in the implicit and explicit residual norms for the Krylov methods. Similarly, this is also mitigated when using algorithms that incorporate re-orthogonalization (but these come with the added cost of having to store all the computed basis vectors). An even better solution would involve implementing matched projection/backprojection operators, such as the distance driven projectors (De Man and Basu 2004), or pixel driven matched projector approximations (Huber 2022). Further research on the impact of numerical precision on Krylov methods would also be beneficial.
A natural question that can arise from applied scientist is which algorithm is the ‘best’. First, this is an unanswerable question in general, as the algorithm choice (as well as the desired type and level of regularization) should heavily depend on the specific problem in mind and the purpose of the reconstruction. For example, if one would only want to have a general understanding of the structure of the internals of the Bumblebee in figure 10, FDK provides a sufficiently good image quality. Perhaps this would not hold if a quality segmentation of the image was required. Often the right algorithm choice for the reconstruction depends on what the image will be used for, instead of some arbitrary image quality metric. In fact, there is a nuanced discussion to have about the use of image quality metrics (such as SSIM, UQI, RMSE) to evaluate the results, as these are based on preconceptions on what natural images should look like, rather than, for example, clinical relevance (Girod 1991, Pambrun and Noumeir 2015). Following from this, we decided to avoid using these metrics in this paper to evaluate the performance of the algorithms. Instead, we opted for qualitative metrics for the quality of the reconstructions (choosing ‘meaningful reconstructions’ leveraging a small error norm and desirable observable properties such as smoothness of the background and sharpness of the edges) and standard quantitative metrics for the convergence of the algorithms across the iterations. As a matter of fact, the objective of this work is not to ‘rank’ the described algorithms, but to compare their properties and to supply easy to use and reproducible tools for exploration.

Some tips can be provided on the general use of these algorithms. It is recommended to use LSQR over CGLS, as it is a more stable algorithm but they are mathematically equivalent. In general, for severely undersampled CT measurements, especially with high noise levels, explicit regularization is recommended. In particular, TV regularization can be very beneficial to promote sharp edges (note that this is not only true for Krylov methods). Moreover, high regularization will produce less grainy reconstructions, but over-regularizing might lead to loosing tissue/material texture properties; this can be beneficial in some contexts, e.g. segmentation or classification, but a problem in other contexts, e.g. when the finer details are important and the noisy appearance of the reconstruction is not a problem. Finally, if enough memory is available (an image per iteration), algorithms with explicit re-orthogonalization are recommended, such as AB/BA-GMRES, to mitigate the problems derived from the loss of orthogonality.

It is also important to state that this is a representative but by all means not comprehensive list of all Krylov methods and their corresponding features; such as stopping criteria, see, e.g. (Hansen et al. 2021) or parameter selection criteria, see e.g. (Gazzola and Sabaté Landman 2020, Chung and Gazzola 2021). Similarly, many direct, variational, and more recently machine learning methods are being developed. The authors encourage the public to contribute to this work by submitting new algorithms or improving the ones available at the TIGRE toolbox.

Method	Description	Objective	Ref.
CGLS	Conjugate gradient method applied to the normal equations.	LS	(Hestenes and Stiefel 1952)
LSQR	Mathematically equivalent to CGLS, using GK bidiagonalization, implemented	LS	(Paige and Saunders 1982)
	with short recursions. Minimizes the residual norm.		
LSMR	Algorithm based on the GK bidiagonalization, minimizes the normal equations	LS ($\lambda = 0$)	(Fong and Saunders 2011)
	residual norm. The regularization parameter λ can be provided ahead		
	of the iterations.		
AB-GMRES BA-GMRES	Adaptations of GMRES (minimal residual method using Arnoldi decomposition)	LS	(Hansen et al. 2022)
	using a given approximation of the backprojector as either left or right		
	preconditioning. It is more robust for unmatched backprojectors.		
hybrid LSQR	Hybrid version of LSQR to solve Tikhonov regularized problems. The	hybrid	(Paige and Saunders 1982)
	regularization parameter λ can be chosen ahead of the iterations or		
	using a param. choice criteria (DP or GCV).		
TV-CGLS	Approximation of TV using a sequence of quadratic tangent majorants that	TV	(Wohlberg and Rodriguez 2008)*
	are solved with CGLS.		
TV-FLSQR	Approximation of TV using a sequence of quadratic tangent majorants that	TV	(Gazzola et al. 2021)*
	are partially solved throughout the iterations using FLSQR. It is faster		
	than TV-CGLS but has a high storage cost.		
5. Conclusions

This work describes and compares a variety of Krylov subspace methods for applied large-scale 3D CT and CBCT reconstruction, some of them used in this context for the first time. In particular, the methods included in this work are summarized in Table 1.

The considered Krylov methods are compared and discussed in the numerical experiments, see section 3, where it can be clearly observed that the main strength of Krylov subspace methods is their fast convergence compared to the most commonly used SIRT-like methods in iterative CT reconstruction. This is of crucial importance in medical applications, for example in image guided therapies where almost real time reconstructions are needed, but also in industrial applications where a high number of iterations is unfeasible due to the big dimensionality of the problems.

Finally, all the results shown in the paper are reproducible, and all the methods are provided as open source and freely accessible algorithms within the framework of the TIGRE toolbox. Some guidance on how to use these methods and a small discussion on potential results and issues one might encounter when using them on other datasets is given in the discussion, see section 4. All the methods presented in this work can be found at github.com/CERN/TIGRE under a permissive BSD-3 clause license.

Acknowledgments

MSL gratefully acknowledges support from the CMIH, University of Cambridge. AB acknowledges the support of EPSRC grant EP/W004445/1. CBS acknowledges support from the Philip Leverhulme Prize, the Royal Society Wolfson Fellowship, the EPSRC advanced career fellowship EP/V029428/1, EPSRC grants EP/S026045/1 and EP/T003553/1, EP/N014588/1, EP/T017961/1, the Wellcome Innovator Awards 215733/Z/19/Z and 221633/Z/20/Z, the European Union Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No. 777826 NoMADS, the Cantab Capital Institute for the Mathematics of Information and the Alan Turing Institute. The support from the personnel of the Institute of Diagnostic and Interventional Radiology and Nuclear Medicine, Wiener Neustadt, Austria, for the performance of measurements for the Alderson head phantom is gratefully appreciated.

Data availability statement

The data cannot be made publicly available upon publication because they are owned by a third party and the terms of use prevent public distribution. The data that support the findings of this study are available upon reasonable request from the authors.

ORCID iDs

Ander Biguri @ https://orcid.org/0000-0002-2636-3032
Carola-Bibiane Schönlieb @ https://orcid.org/0000-0003-0099-6306

References

Arridge S R, Betcke M M and Harhanen L 2014 Iterated preconditioned LSQR method for inverse problems on unstructured grids Inverse Prob. 30 075009
Biguri A, Dosanjh M, Hancock S and Soleimani M 2016 TIGRE: a MATLAB-GPU toolbox for CBCT image reconstruction Biomed. Phys. Eng. Express 2 055010
Biguri A et al 2020 Arbitrarily large tomography with iterative algorithms on multiple GPUs using the TIGRE toolbox J. Parallel Distrib. Comput. 146 52–63
Calvetti D 2007 Preconditioned iterative methods for linear discrete ill-posed problems from a bayesian inversion perspective J. Comput. Appl. Math. 198 378–95 Special Issue: Applied Computational Inverse Problems
Calvetti D 2007 Preconditioned iterative methods for linear discrete ill-posed problems from a Bayesian inversion perspective J. Comput. Appl. Math. 198 378–95
Chillaron M, Vidal V and Verdu G 2020 Evaluation of image filters for their integration with LSQR computerized tomography reconstruction method PLoS One 15 e0229113
Chung J and Gazzola S 2021 Computational methods for large-scale inverse problems: a survey on hybrid projection methods 2105.07221
Chung J and Palmer K 2015 A hybrid LSMR algorithm for large-scale Tikhonov regularization SIAM J. Sci. Comput. 37 S562–80
Coban S B and Lionheart W R B 2014 Regularised GMRES-type methods for x-ray computed tomography Technical Report University of Manchester
Dabravolski A, Batenburg K J and Sijbers J 2014 Dynamic angle selection in x-ray computed tomography Nucl. Instrum. Methods Phys. Res. B 324 17–24
De Man B and Raus S 2004 Distance-driven projection and backprojection in three dimensions Phys. Med. Biol. 49 2463
Desai G S, Upptom R N, Yu E W, Kambadakone A R and Sahani D V 2012 Impact of iterative reconstruction on image quality and radiation dose in multidetector CT of large body size adults Eur. Radiol. 22 1631–40
Feldkamp L A, Davis L C and Kress J W 1984 Practical cone-beam algorithm J. Opt. Soc. Am. A 1 612–9
Flores L, Vidal V, Parcero E and Verdú G 2016 Application of a modified LSQR method for CT imaging reconstruction with low doses to patient 2016 9th Int. Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISPM-BMEI) (IEEE) pp 1969–74
Fong D C L and Saunders M 2011 LSMR: An iterative algorithm for sparse least-squares problems SIAM J. Sci. Comput. 33 2950–71
Gazzola S, Hansen P C and Nagar J G 2017 Itk: a matlab package of iterative regularization methods and large-scale test problems arXiv:1712.09502
Gazzola S and Sabaté Landman M 2019 Flexible GMRES for total variation regularization Bit Numer. Math. 59 721–46
Gazzola S and Sabaté Landman M 2020 Krylov methods for inverse problems: Surveying classical, and introducing, new algorithmic approaches GAMM-Mitteilungen 43 e20200017
Gazzola S, Scott S J and Spence A 2021 Flexible Krylov methods for edge enhancement in imaging J. Imaging 7 43–71
Girod B 1991 Psychovisual aspects of image processing: What’s wrong with mean squared error? Proc. of the 7th Workshop on Multidimensional Signal Processing pp P.2–P.2
Gullas-Soidan D, Cruz-Sanchez N M, Fraga-Manteiga D, Cao-González J I, Balbous-Barreiro V and González-Martín C 2020 Cone-beam ct-guided lung biopsies: Results in 94 patients Diagnostics 10
Hansen D and Sørensen T S 2018 Fast 4d cone-beam ct from 60 s acquisitions Phys. Imaging Radiat. Oncol. 5 69–75
Hansen P C 2010 Discrete Inverse Problems (Philadelphia, PA: SIAM)
Hansen P C, Hayami K and Morikuni K 2022 GMRES methods for tomographic reconstruction with an unmatched back projector J. Comput. Appl. Math. 413 114352
Hansen P C, Jørgensen J and Lionheart W R B 2021 Computed Tomography: Algorithms, Insight, and Just Enough Theory (Philadelphia, PA: Society for Industrial and Applied Mathematics)
Hansen P C, Jørgensen J S and Rasmussen P W 2021 Stopping rules for algebraic iterative reconstruction methods in computed tomography 2021 21th Int. Conf. on Computational Science and Its Applications (ICCSA) pp 60–70
Hatamikia S, Bigari A, Kronreif G, Figl M, Russ T, Kettenbach J, Buschmann M and Birkfellner W 2021 Toward on-the-fly trajectory optimization for c-arm c-beam with soft kinematic constraints PLoS One 16 1–17
Hestenes M R and Stiefel E 1952 Methods of conjugate gradients for solving linear systems J. Res. Nat. Bur. Stand. 49 49–35
Huber R M 2022 Pixel-driven projection methods’ approximation properties and applications in image reconstruction PhD Thesis University of Graz
Jia X, Lou Y, Lewis J, Li R, Gu X, Men C, Song W Y and Jiang S B 2011 GPU-based fast low-dose cone-beam CT reconstruction via total variation X-Ray Sci. Technol. 19 139–54
Jørgensen J S et al 2021 Core imaging library-part ii: a versatile python framework for tomographic imaging Phil. Trans. R. Soc. A 379 20200192
Kak A C and Slaney M 2001 Principles of Computerized Tomographic Imaging (Philadelphia, PA: SIAM)
Kataria B, Althén J N, Smedby K et al 2019 Evaluation and clinical application of a commercially available iterative reconstruction algorithm for CBCT-based IGRT Phys. Imaging Radiat. Oncol. 68 155008
Kenny D C and Saunders M 1982 Algorithm 583: LSQR: Sparse linear equations and sparse least squares problems ACM Trans. Math. Softw. 8 223–89
Kenny D C and Saunders M A 1982 LSQR: An algorithm for sparse linear equations and sparse least squares ACM Trans. Math. Softw. 8 43–71
Pahunbrun J- F and Noumeir R 2015 Limitations of the SSIM quality metric in the context of diagnostic imaging 2015 IEEE Int. Conf. on Image Processing (ICIP) pp 2960–3
Pengpeng T and Soleimani M 2015 Motion-compensated cone beam computed tomography using a conjugate gradient least-squares algorithm and electrical impedance tomography imaging motion data Phil. Trans. R. Soc. A 373 20140389
Rossides C, Towsyfyan H, Bigari A, Dehyle H, Lindros S, Mavrogordato M, Boardman R, Saad Y and Schultz M H 1986 GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems SIAM J. Sci. Stat. Comput. 7 856–69
Sidky E Y, Hansen P C, Jørgensen J S and Pan X 2022 Iterative image reconstruction for CT with unmatched projection matrices using the generalized minimal residual algorithm 7th Int. Conf. on Image Formation in X-Ray Computed Tomography vol 12304 ed J W Stayman (International Society for Optics and Photonics, SPIE) p 1230406
Sidky E Y and Pan X 2008 Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization Phys. Med. Biol. 53 4777
Thies M, Zach J, N, Gao C, Taylor R H, Nassir N, Maier A K and Unberath M 2020 A learning-based method for online adjustment of c-arm cone-beam ct source trajectories for artifact avoidance Int. J. Comput. Assist. Radiol. Surg. 15 1787–96
Van Aarle W, Palenstijn W J, Cant J, Janssens E, Bleichrodt F, Dabravolski A, De Beenhouwer J, Batenburg K J and Sijbers J 2016 Fast and flexible x-ray tomography using the astra toolbox Opt. Express 24 25129–47
Vogel C R 2002 Computational Methods for Inverse Problems. (Philadelphia, PA, USA: SIAM)
Wohlberg B and Rodriguez P 2008 An iteratively reweighted norm algorithm for minimization of total variation functionals Signal Process. Lett., IEEE 14 948–51
Xu J and Tsui B M W 2009 Electronic noise modeling in statistical iterative reconstruction IEEE Trans. Image Process. 18 1228–38