Improving effectiveness of different deep learning-based models for detecting COVID-19 from computed tomography (CT) images

Erdi Acar¹ · Engin Şahin¹ · İhsan Yılmaz¹

Received: 26 May 2020 / Accepted: 18 July 2021 / Published online: 29 July 2021
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract
COVID-19 has caused a pandemic crisis that threatens the world in many areas, especially in public health. For the diagnosis of COVID-19, computed tomography has a prognostic role in the early diagnosis of COVID-19 as it provides both rapid and accurate results. This is crucial to assist clinicians in making decisions for rapid isolation and appropriate patient treatment. Therefore, many researchers have shown that the accuracy of COVID-19 patient detection from chest CT images using various deep learning systems is extremely optimistic. Deep learning networks such as convolutional neural networks (CNNs) require substantial training data. One of the biggest problems for researchers is accessing a significant amount of training data. In this work, we combine methods such as segmentation, data augmentation and generative adversarial network (GAN) to increase the effectiveness of deep learning models. We propose a method that generates synthetic chest CT images using the GAN method from a limited number of CT images. We test the performance of experiments (with and without GAN) on internal and external dataset. When the CNN is trained on real images and synthetic images, a slight increase in accuracy and other results are observed in the internal dataset, but between 3% and 9% in the external dataset. It is promising according to the performance results that the proposed method will accelerate the detection of COVID-19 and lead to more robust systems.

Keywords COVID-19 · Computed tomography · Deep learning · Generative adversarial network · Lung segmentation · Data augmentation

1 Introduction

COVID-19 is an infectious disease with a high mortality rate caused by the mutant SARS-CoV-2 virus. Following the identification of the first case in Wuhan, China, in December 2019, it quickly spread all over the world and was declared a pandemic by WHO on March 11, 2020. COVID-19 has caused major public health problems in the international community due to its rapid spread all over the world [1].

It is extremely important to be able to diagnose COVID-19 in an infected patient during the pandemic process. Although polymerase chain reaction (PCR) testing is the standard for confirming COVID-19 positive patients, medical imaging such as X-ray and non-contrast computed tomography (CT) plays an important role in the detection of COVID-19. Since COVID-19 can be detected in the early stages with the presence of lung ground-glass opacities in CT images, which are clearer and more accurate than X-ray images, the diagnosis of COVID-19 from CT will help clinicians make quick decisions for rapid isolation and appropriate patient treatment [2].

Recently, computer vision has led to extraordinary developments with the advancement of artificial intelligence technology and especially the development of convolutional neural networks (CNN). It is widely used in the medical field and provides support for medical diagnosis [3–5]. Additionally, due to the heavy workload of large numbers of infected patients and healthcare professionals...
during the pandemic crisis, the AI-based computer-aided system could speed up the diagnostic process. These systems can provide effective diagnosis of the disease in a shorter time in cases such as radiologist insufficiency and deficiency. It can also reduce the need for human surveillance and identify details invisible to the human eye. In this context, many deep learning models have also begun to be developed for the diagnosis of COVID-19.

There is currently a great deal of interest in data-driven approaches to diagnosing COVID-19. Many researchers have used deep convolutional neural networks (CNN) such as VGG, ResNet, Inception, Xception and DenseNet, with well-known and proven performance, to diagnose COVID-19. However, deep learning networks such as convolutional neural networks require large amounts of training data. In addition, because CNNs have a large number of parameters, overfitting can easily occur in small datasets. However, medical imaging data are scarce, expensive and fraught with legal concerns over patient privacy, so datasets are small in size. A quick and easy method, data augmentation, can be used to overcome this problem [6]. The dataset is artificially expanded using techniques such as image rotation, transformation, scaling, brightness or contrast enhancement. However, it cannot be said that completely different images are produced since the same data are displayed differently with this method. In addition, the dataset can be enlarged by generating unique data by producing synthetic data with GAN, which is an advanced technique [7, 8].

The main contributions of this article can be summarized as follows:

- It is difficult to identify COVID-19 as findings on CT images differ in both position and shape in different patients due to infections caused by COVID-19. In addition, we present a method for generating synthetic CT images by developing a GAN-based model to overcome the problem of overfitting in CNNs. In addition, we demonstrate the effectiveness of GAN-generated synthetic images in improving CNN’s generalization ability for COVID-19 detection in the context of performance criteria in internal and external datasets.
- We use a segmentation model based on ConvLSTMU-Net architecture and graph-cut image processing for segmentation of the relevant lung region from CT images.
- We use data enlargement techniques such as random distortion, rotation, flip and zoom with an in-place / on-the-fly augmentation approach to increase the effectiveness of the model during model training.

The rest of the paper is organized as follows. In Sect. 2, brief information about the studies related to our study is given. The materials and methods used in the study are presented in Sect. 3. Section 4 presents the results of different analyzes for different deep learning algorithms in the proposed frameworks on internal and external datasets. The comparisons with the other related studies and the discussion of the results are given in Sect. 5. Section 6 presents the conclusion of this study.

2 Related works

Recently, many studies have been conducted to perform data augmentation on medical images. Zhoe et al. [9] developed the forward and backward GAN (F&BGAN) method to create synthetic images of lung nodules in lung cancer and used the VGG16 network for benign and malignant classification. Chuquicusma et al. [10] produced realistic lung nodules using DCGAN for the training of radiologists. Frid-Adar et al. [11] proposed a magnification scheme for advanced liver lesion classification based on a combination of standard image perturbation and synthetic liver lesion generation using GAN. Guibas et al. [12] proposed a two-stage pipeline for generating synthetic medical images from a pair of GANs, which was tested in practice on retinal fundi images. Shin et al. [13] proposed a method to generate synthetic abnormal MRI images with brain tumors by training a GAN using two publicly available datasets of brain MRI.

Nowadays, there is intense interest in diagnosing COVID-19 using deep learning methods. Wu et al. [14] aimed to diagnose COVID-19 cases with the concept of multi-view fusion using the ResNet50 architecture. The datasets they used in their studies included 622 CT images collected from two different hospitals in China. They resized their images in the datasets to 256 × 256. The system they developed achieved 76% accuracy, 81.1% sensitivity and 61.5% specificity. Xu et al. [15] collected the data they used in their study from 3 different hospitals in China. It achieved 86.7% accuracy, 81.5% sensitivity, 80.8% accuracy and 81.1% F1-score with pretrained ResNet18 architecture using 618 CT images. Jin et al. [16] used pretrained CNN models such as DPN-92, Inceptionv3, ResNet50 and Attention ResNet50 with 3D U-Net++ for the diagnosis of COVID-19. The datasets contain 850 COVID-19 positives and 541 negative COVID-19 images and were collected from 5 different hospitals in China. According to the performance criteria, their system accepted the 3D U-Net++ResNet50 model as the best model with 97.4% accuracy, 92.2% sensitivity and 99.1% AUC values. Yousefzadeh et al. [17] introduced a deep learning framework using different CNN architectures DenseNet, ResNet, Xception and EfficientNetB0. The datasets contain a total of 2124 CT images. The system
they proposed resulted in 96.4% accuracy, 92.4% sensitivity, 98.3% specificity, 95.3% F1 score and 98.9% AUC. Ardakani et al. [18] proposed a system for detecting COVID-19 using CNN architectures such as AlexNet, VGG-16, VGG-19, SqueezeNet, GoogleNet, MobileNetv2, ResNet18, ResNet50, ResNet101 and Xception. The dataset they use contains 1020 CT images in total. Among the 10 networks, ResNet101 and Xception performed better than the others according to their performance values. Chen et al. [19] used the U-Net++ segmentation model together with the ResNet50 model to diagnose COVID-19 using a very large and non-public dataset of 106 patients from the Renmin Hospital of Wuhan University. The results of COVID-19 classification are 95.2% accuracy, 100% sensitivity and 93.6% specificity. The U-Net and 3D CNN models are used for lung segmentation and diagnosing of COVID-19, respectively, in Ref. [20]. The results of the model are 90.7% sensitivity, 91.1% specificity and 95.9% AUC. Most of the previous works on COVID-19 are given in Refs. [21–23].

3 Material and methods

3.1 Dataset

We use two different datasets in our study:

1. The dataset, which was collected from different open sources [24], contains 1607 COVID-19 and 1667 normal CT images. We randomly allocate 80% of the dataset for training and 20% for testing. We will refer to this dataset as the internal dataset throughout the study.

2. The external dataset in Ref. [25] contains 4001 COVID-19 and 9575 normal CT images. We use this dataset to evaluate the performance of the trained models.

3.2 Preprocessing

Since the internal dataset is collected from different sources, it contains CT images with a resolution of min 220 × 200 - max 623 × 421. For these reasons, the images in the internal dataset were resized to 224 × 224 resolution. In the external dataset, all CT images are 512 × 512 high-resolution images. We also reduce the size of the CT images in this dataset to 224 × 224 to be standard and perform central zooming.

3.3 Lung segmentation

Since distinctive information is in the lungs on CT images, we apply lung segmentation to obtain only the lung area. For segmentation, we applied a similar approach to BidirectionalConvLSTMU-Net (BDCU-Net) [26] architecture. A total of 1667 normal CT data and masks in the internal dataset were used for training the lung segmentation architecture. We reserve 80% of the dataset for training and 20% of the dataset for validation.

We initially started with $1e−4$ learning rate and training epochs of 30. We dynamically reduced the learning rate when there was no improvement in validation error for 4 consecutive training periods. When there is no improvement in validation error for 8 consecutive training epochs, it is taken as the criterion for early stopping of training. The Adam stochastic optimization algorithm, which was developed as a solution to the disappearing gradient problem, was used for parameter optimization. At the end of the 26th epoch, an early stop occurs, and accuracy: 0.9675 is obtained. The architecture of obtaining the mask images from the CT images by using lung segmentation model is given in Fig. 1. The sample images and obtained mask images by using the lung segmentation model are given in Fig. 2. The example images for the relevant region obtained as a result of Graphcut image processing [27] are given in Fig. 3.

3.4 Generating synthetic images

3.4.1 Generative adversarial network (GAN)

The GAN framework is a widely used modern method for generating synthetic data from many domains [28, 29]. Examples of data generation with GANs include text-to-image synthesis, superimage resolution, style transfer and symbolic music production [30].

The working principle of GANs is simply; GAN is a min-max game between two hostile networks, generator $G(z)$ and discriminator $D(x)$. The generator tries to convert the random noise into observations that appear to be sampled from the original dataset, and the discriminator tries to guess whether an observation comes from the original dataset or is one of the generator’s fakes. At the start of the process, generator $G(z)$ takes a z-point (random noise) from a latent space and outputs noisy images and tries to fool the discriminator $D(x)$. If the discriminator is $D(x)$, the generator tries to distinguish whether the images from $G(z) = x$ are real or fake. The key of GANs lies in how we change the training of the two networks so that as the generator becomes more adept at deceiving the discriminator, the discriminator must adapt to maintain its
ability to accurately identify which observations are fake. Thus, the generator tries to find new ways to fool the discriminator so that the loop continues between the two networks. The purpose of $G(z)$ is to minimize the cost function $V(D, G)$ and to maximize the $D(x)$ by training both $G(z)$ and $D(x)$ at the same time:

$$
\min_G \max_D V(D, G) = \mathbb{E}_{x \sim p_{data}(x)} \left[\log D(x) \right] + \mathbb{E}_{z \sim p_{z}(z)} \left[\log (1 - D(G(z))) \right]
$$

The architecture of GAN applied in the study is given in Fig. 4.

3.4.2 GAN Train Procedure

Initially, the parameters of the discriminator network are set to non-trainable. The output of the generator network feeds the discriminator and the generator is updated through the discriminator, so the generator is stacked on the discriminator. The hyperparameter of LeakyReLu...
The layers used in discriminator and generator networks is $alpha = 0.2$, and momentum value of batch normalization layer used in generator is 0.8. The detailed designs of the discriminator and generator network used in the study are given in Fig. 5.

80% of the internal dataset reserved for training is used in GAN training, i.e., 1286 COVID-19 and 1333 normal CT images. Test data are not included in the training. The pixel values of the CT images are normalized from $[0, 255]$ to $[1/C_0, 1/C_1]$ as a preprocessing. In the training of both networks, Adam optimization algorithm with learning rate $= 0.0001$ and momentum value $beta = 0.9$ is used as hyperparameters. The least-squares function is used as the loss function. In addition, the number of training periods is determined as 40000 and the batch size is 64. The latent space dimension where the generator is fed, is taken as 100.

A total of 2314 normal and 2267 COVID-19 synthetic images are generated by GAN. The samples of the COVID-19 and normal synthetic images produced after the GAN training are given in Fig. 6.

3.5 CNN architectures

Deep CNN architectures pretrained on 9 well-known ImageNet [31] datasets were used in this study: VGG16, VGG19, Xception, ResNet50, ResNet50v2, Inceptionv3, InceptionResNetv2, DenseNet121 and DenseNet169.
VGG16 was developed to win the ILSVRC2014 (Large Scale Visual Recognition Challenge 2014) in 2014 [32]. VGG16 is a convolutional neural network architecture named after the Visual Geometry Group of Oxford developed. VGG-16 is a convolutional neural network with a depth of 16 layers. The model loads a pretrained set of weights on ImageNet and reaches 90% accuracy on ImageNet, a dataset of more than 14 million images belonging to 1000 classes. VGG-19 is the version of VGG with a depth of 19 layers. VGG16 has 138,357,544 parameters while VGG19 has 143,667,240 parameters.

He et al. [33] developed the architecture called residual network (ResNet) to solve the vanishing/exploding gradient problem. ResNet is created by adding the blocks that feed the residual values to the next layers into the model. This is also called residual learning. ResNet-50 has 16 residual blocks. The main difference between ResNet50 and ResNet50v2 is now the arrangement of layers in blocks. ResNet50 and ResNet50v2 achieved 92.1% and 93% accuracy on the ImageNet dataset, respectively.

Inception [34] and InceptionResNet [35] are developed by Google. The concept of Inception represents Inception modules within the network. This is a simple and powerful architectural unit that also allows the model to learn parallel filters of different sizes and multiple scales. The main difference between Inception and InceptionResNet is that InceptionResNet uses residual layers. Inceptionv3 using the Inception modules has 23,851,784 while InceptionResNet has 55,873,736. Inceptionv3 and InceptionResNetv2 achieved 93.7% and 95.3% accuracy on the ImageNet dataset, respectively.
Xception [36] is a deep convolutional neural network architecture that includes deeply separable convolutions and developed by Google researchers. Google presented an interpretation of the Initiation modules in convolutional neural networks as an intermediate step between regular convolution and deeply separable convolution processing. Xception has 22,910,480 parameters and achieved 94.5% accuracy on the ImageNet dataset.

DenseNet [37] is a type of convolutional neural network that uses dense connections between layers through dense blocks that connect all layers directly. Each layer receives additional inputs from all previous layers and transmits its own feature maps to all subsequent layers. The difference between DenseNet121 and DenseNet169 is the number of layers. DenseNet121 has 8,062,504 parameters while DenseNet169 has 14,307,880 parameters. DenseNet121 and DenseNet169 achieved 92.3% and 93.2% accuracy on the ImageNet dataset, respectively.

3.6 Training of models and implementation details

In this study, two types of experimental studies (with GAN and without GAN) are conducted using the real images from the internal dataset and incorporating synthetic images generated by the GAN into the internal dataset. Details of the dataset used in the two studies are given in Table 1. The 1667 normal class images in the internal dataset used in the training of models are the same as the images used in the BConvLSTM U-Net training.

All networks in both frameworks, the pixel values of the CT images, were normalized from [0, 255] to [0, 1] as a preprocessing. In both experiments, Adam optimization algorithm with learning rate $\alpha = 0.001$ and momentum value $\beta = 0.9$ was used as hyperparameter. Binary cross-entropy function is used as loss function. In addition, the number of training epochs is determined as 40 and the batch size was 16. The learning rate is reduced when there is no improvement in validation error for 5 consecutive training periods. It was taken as the criterion for early discontinuation of training when there is no improvement in validation error for 10 consecutive training periods. A fivefold cross-validation is performed and tested on a randomly selected 20% of the internal dataset and the external dataset.

In both experiments, pretrained deep CNN models VGG16, VGG19, Xception, ResNet50, ResNet50V2, DenseNet121, DenseNet169, InceptionV3 and InceptionResNetV2 were used and fine-tuned. Dense(512, relu), BatchNormalization (0.9), Dense(256, relu), Dense (1, Sigmoid) layers are used, respectively, in the fully connected layer for classification. The working principle of this study is given in Fig. 7.

3.6.1 Data augmentation

The performance of deep learning neural networks is generally directly proportional to the amount of data available. Data augmentation is referred to as a technique of artificially deriving data from existing training data through much more image processing such as rotating, panning, zooming, flipping [6]. The aim is to increase the generalization performance of the model while expanding the training dataset with new examples. Thus, the trained model constantly sees new, different versions of the input data, and the model can learn more robust features.

There are three types of data augmentation methods: first, expanding the existing dataset. The problem with this approach is that it does not fully increase the generalization ability of the model. The second is in-place/on-the-fly data augmentation. The network is trained to see new variations of the data in each epoch by using this type of data augmentation. This method increases the generalization ability of the model. Finally, a hybrid approach combines the first and the second approaches.

In our study, we use only in-place/on-the-fly augmentation approach in models trained with real data; in the second experiment, we increase the size of the dataset with synthetic data produced with GAN, and we adopt a hybrid approach with in-place/on-the-fly augmentation during the training of models. The applied data augmentation processes and sample images are given in Table 2 and Fig. 8, respectively. Random distortion allows you to distort the image while maintaining elastically the image aspect ratio. The magnitude parameter determines how much it degrades. Flip left-right acts as a mirror on images. Rotation was used to rotate left and right a certain degree. Zoom was used to enlarge and reduce the image centrally.

Framework	Types	Training size	Test size
Real images	COVID-19	1286	321
Without GAN	Normal	1333	334
Real+synthetic images	COVID-19	3600	321
Produced with GAN	Normal	3600	334
All training and testing processes are performed using AMD Ryzen 3970X CPU with 128GB RAM and Nvidia RTX 3080 GPU with 10GB memory. The Keras [38] deep learning library is used for processes.

Estimation performances of the methods in this study are measured with metrics such as accuracy, precision, recall and F1-score. The confusion matrix used to explain the performance of the classification model consists of true positive (T_P), true negative (T_N), false positive (F_P) and false negatives (F_N).

Dividing the number of correctly classified cases into the total number of test images shows the accuracy and is calculated as follows.

$$\text{Accuracy} = \frac{T_P + T_N}{T_P + T_N + F_P + F_N} \quad (2)$$

where T_P is the number of instances that correctly predicted, T_P is the number of instances that incorrectly predicted, T_N is the number of negative instances that correctly predicted, T_N is the number of negative instances that incorrectly predicted.

The recall is used to measure correctly classified COVID-19 cases. Recall is calculated as follows.

$$\text{Recall} = \frac{T_P}{T_P + F_N} \quad (3)$$

The percentage of correctly classified labels in truly positive patients is defined as the precision and is calculated as follows.

$$\text{Precision} = \frac{T_P}{T_P + F_P} \quad (4)$$

Specificity is the proportion of people who test negatively among those who actually do not have the disease and is defined as:
Specificity = \frac{T_N}{T_N + F_P} \tag{5}

The F1-score is defined as the weighted average of precision and recall combining both precision and recall and is calculated as follows.

\[F1-score = 2 \times \frac{Recall \times Precision}{Recall + Precision}\] \tag{6}

The same real images are used in the tests of both experiments on both internal and external datasets. Information on test sets size is given in Table 3. The comparison of performance results in internal and external datasets for both experiments is given in Tables 4 and 5, respectively. Confusion values and performance results for each model are given in Section Appendix.

5 Discussion

In this paper, two experiments with and without GAN were tested on two different datasets (655 internal and 14545 external) with different deep learning methods.

Table 4 analyzes the performance results of models with and without GAN on internal dataset. We clearly see that in all deep learning models with GAN, a slightly better performance ratio is achieved in all of the accuracy, precision, recall, specificity and F1-score values compared to the models without GAN. The best detection accuracy rate obtained in the InceptionV3 model with GAN on the internal dataset is 99.51% and the F1-score rate is 99.5%.

Table 5 analyzes the performance results of models with and without GAN on different external dataset that the system has never seen before. We clearly see that in all deep learning models with GAN, a better performance rate of 3% to 9% is achieved in all of the accuracy, precision, recall, specificity and F1-score values compared to the models without GAN. The best detection accuracy rate obtained in the InceptionV3 model with GAN on the external dataset is 94.98% and the F1-score rate is 91.73%.

The results of this study reveal that synthetic augments produced with GAN make an important contribution to the improvement of generalization performance, especially in external dataset.

6 Conclusion

In this research, we developed a GAN-based model to overcome the overfitting problem in CNNs and improve their generalization performance and proposed a model in which the dataset can be artificially amplified with synthetic CT images.

An internal dataset containing 3274 CT images was used for training two different experiments (with and without GAN). The improvement in the generalization ability of CNN models was investigated using synthetic data augmentation technique with GAN on this limited dataset. Both experiments were tested on an external dataset.
This study uses two classes (COVID-19 and normal) for classification. Synthetic data augmentation with GAN expands the dataset, providing more variability. When the CNN is trained on real images and synthetic images, a slight increase in accuracy and the other results is observed in the internal dataset, but between 3% and 9% in the external dataset. Performance results show that synthetic images produced with GAN make a significant contribution to the detection of COVID-19, especially in external dataset that the system has not seen before.

In conclusion, we proposed a method to increase the accuracy of COVID-19 detection with minimal dataset by producing synthetic images of CT images. The proposed method will improve the generalization performance of CNNs and lead to more robust systems.

Model	Method	Accuracy	Precision	Recall	Specificity	F1-score
VGG16	without GAN	0.9814	0.9898	0.9720	0.9904	0.9808
	with GAN	0.9872	0.9949	0.9788	0.9952	0.9868
VGG19	without GAN	0.9841	0.9924	0.9751	0.9928	0.9837
	with GAN	0.9875	0.9894	0.9850	0.9898	0.9872
Xception	without GAN	0.9902	0.9900	0.9900	0.9900	0.9900
	with GAN	0.9927	0.9913	0.9938	0.9916	0.9925
ResNet50	without GAN	0.9798	0.9819	0.9769	0.9826	0.9794
	with GAN	0.9911	0.9969	0.9850	0.9970	0.9909
ResNet50v2	without GAN	0.9860	0.9931	0.9782	0.9934	0.9856
	with GAN	0.9942	0.9975	0.9907	0.9976	0.9941
InceptionV3	without GAN	0.9881	0.9949	0.9807	0.9952	0.9878
	with GAN	0.9951	0.9949	0.9913	0.9952	0.9950
InceptionResNetV2	without GAN	0.9893	0.9931	0.9850	0.9934	0.9890
	with GAN	0.9983	0.9962	0.9913	0.9964	0.9938
DenseNet121	without GAN	0.9893	0.9919	0.9863	0.9922	0.9891
	with GAN	0.9921	0.9919	0.9919	0.9922	0.9919
DenseNet169	without GAN	0.9911	0.9944	0.9875	0.9946	0.9909
	with GAN	0.9927	0.9956	0.9894	0.9958	0.9925

Model	Method	Accuracy	Precision	Recall	Specificity	F1-score
VGG16	without GAN	0.8670	0.7447	0.8364	0.8799	0.7879
	with GAN	0.9023	0.8024	0.8877	0.9083	0.8429
VGG19	without GAN	0.8836	0.7646	0.8758	0.8868	0.8194
	with GAN	0.9086	0.8086	0.9048	0.9102	0.8540
Xception	without GAN	0.9145	0.8039	0.9399	0.9039	0.8666
	with GAN	0.9486	0.8779	0.9593	0.9440	0.9168
ResNet50	without GAN	0.8978	0.7900	0.8906	0.9007	0.8373
	with GAN	0.9303	0.8644	0.9061	0.9404	0.8847
ResNet50v2	without GAN	0.8914	0.7755	0.8902	0.8919	0.8289
	with GAN	0.9167	0.8272	0.9077	0.9205	0.8656
InceptionV3	without GAN	0.9061	0.8075	0.8955	0.9105	0.8492
	with GAN	0.9498	0.8936	0.9423	0.9530	0.9173
InceptionResNetV2	without GAN	0.8983	0.7928	0.8875	0.9028	0.8374
	with GAN	0.9373	0.8682	0.9287	0.9409	0.8974
DenseNet121	without GAN	0.9000	0.7953	0.8907	0.9039	0.8403
	with GAN	0.9346	0.8673	0.9203	0.9407	0.8930
DenseNet169	without GAN	0.9032	0.7982	0.8997	0.9046	0.8459
	with GAN	0.9319	0.8624	0.9156	0.9388	0.8882
Confusion values and performance results for each model

Confusion values and performance results for each model are given in Tables 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 and 41.

Table 6 Confusion values of VGG16 on internal dataset

KFold	TP	FN	TN	FP	
Without GAN	Fold1	311	10	331	3
Fold2	314	7	332	2	
Fold3	313	8	330	4	
Fold4	310	11	331	3	
Fold5	312	9	331	3	
With GAN	Fold1	315	6	331	3
Fold2	314	7	332	2	
Fold3	313	7	332	1	
Fold4	312	7	332	1	
Fold5	312	7	331	1	

Table 7 Performance results of VGG16 on internal dataset

KFold	Accuracy	Precision	Recall	Specificity	F1-score	
Without GAN	Fold1	0.9787	0.9873	0.9688	0.9881	0.9780
Fold2	0.9863	0.9937	0.9782	0.9940	0.9859	
Fold3	0.9817	0.9874	0.9751	0.9880	0.9812	
Fold4	0.9789	0.9904	0.9657	0.9910	0.9779	
Fold5	0.9817	0.9905	0.9720	0.9910	0.9811	
Overall	0.9844	0.9898	0.9720	0.9904	0.9808	
With GAN	Fold1	0.9863	0.9906	0.9813	0.9910	0.9859
Fold2	0.9863	0.9937	0.9782	0.9940	0.9859	
Fold3	0.9878	0.9968	0.9782	0.9970	0.9874	
Fold4	0.9878	0.9968	0.9782	0.9970	0.9874	
Fold5	0.9878	0.9968	0.9782	0.9970	0.9874	
Overall	0.9872	0.9949	0.9788	0.9952	0.9868	

Table 8 Confusion values of VGG19 on internal dataset

KFold	TP	FN	TN	FP	
Without GAN	Fold1	312	9	333	1
Fold2	313	8	332	2	
Fold3	314	7	332	2	
Fold4	316	5	331	3	
Fold5	315	6	331	3	
With GAN	Fold1	315	6	330	4
Fold2	315	6	330	4	
Fold3	317	4	331	3	
Fold4	317	4	331	3	
Fold5	317	4	331	3	

Table 9 Performance results of VGG19 on internal dataset

KFold	Accuracy	Precision	Recall	Specificity	F1-score	
Without GAN	Fold1	0.9847	0.9968	0.9720	0.9970	0.9842
Fold2	0.9847	0.9937	0.9751	0.9940	0.9843	
Fold3	0.9863	0.9937	0.9782	0.9940	0.9859	
Fold4	0.9878	0.9906	0.9844	0.9910	0.9875	
Fold5	0.9878	0.9937	0.9813	0.9940	0.9875	
Overall	0.9863	0.9937	0.9782	0.9940	0.9859	
With GAN	Fold1	0.9847	0.9875	0.9813	0.9880	0.9844
Fold2	0.9847	0.9875	0.9813	0.9880	0.9844	
Fold3	0.9893	0.9906	0.9875	0.9910	0.9891	
Fold4	0.9893	0.9906	0.9875	0.9910	0.9891	
Fold5	0.9893	0.9906	0.9875	0.9910	0.9891	
Overall	0.9893	0.9906	0.9875	0.9910	0.9891	

Table 10 Confusion values of Xception on internal dataset

KFold	TP	FN	TN	FP	
Without GAN	Fold1	317	4	332	2
Fold2	318	3	331	3	
Fold3	318	3	330	4	
Fold4	318	3	330	4	
Fold5	318	3	331	3	
With GAN	Fold1	319	2	332	2
Fold2	319	2	331	3	
Fold3	319	2	331	3	
Fold4	319	2	331	3	
Fold5	319	2	331	3	
Table 11 Performance results of Xception without GAN on internal dataset

KFold	Accuracy	Precision	Recall	Specificity	F1-score
Without GAN					
Fold1	0.9908	0.9937	0.9875	0.9940	0.9906
Fold2	0.9908	0.9907	0.9907	0.9910	0.9907
Fold3	0.9893	0.9876	0.9907	0.9880	0.9891
Fold4	0.9893	0.9876	0.9907	0.9880	0.9891
Fold5	0.9908	0.9907	0.9907	0.9910	0.9907
Overall	0.9902	0.9900	0.9900	0.9904	0.9900
With GAN					
Fold1	0.9939	0.9938	0.9938	0.9940	0.9938
Fold2	0.9924	0.9907	0.9938	0.9910	0.9922
Fold3	0.9924	0.9907	0.9938	0.9910	0.9922
Fold4	0.9924	0.9907	0.9938	0.9910	0.9922
Fold5	0.9924	0.9907	0.9938	0.9910	0.9922
Overall	0.9927	0.9913	0.9938	0.9916	0.9925

Table 12 Confusion values of ResNet50 on internal dataset

KFold	TP	FN	TN	FP
Without GAN				
Fold1	311	10	325	9
Fold2	314	7	326	8
Fold3	315	6	329	5
Fold4	313	8	330	4
Fold5	315	6	331	3
With GAN				
Fold1	317	4	333	1
Fold2	317	4	333	1
Fold3	317	4	334	0
Fold4	315	6	333	1
Fold5	315	6	333	1

Table 13 Performance results of ResNet50 on internal dataset

KFold	Accuracy	Precision	Recall	Specificity	F1-score
Without GAN					
Fold1	0.9710	0.9719	0.9688	0.9731	0.9704
Fold2	0.9771	0.9752	0.9782	0.9760	0.9767
Fold3	0.9832	0.9844	0.9813	0.9850	0.9828
Fold4	0.9817	0.9874	0.9751	0.9880	0.9812
Fold5	0.9863	0.9906	0.9813	0.9910	0.9859
Overall	0.9798	0.9819	0.9769	0.9826	0.9794
With GAN					
Fold1	0.9908	0.9937	0.9875	0.9940	0.9906
Fold2	0.9924	0.9969	0.9875	0.9970	0.9922
Fold3	0.9939	1.0000	0.9875	1.0000	0.9937
Fold4	0.9893	0.9968	0.9813	0.9970	0.9890
Fold5	0.9893	0.9968	0.9813	0.9970	0.9890
Overall	0.9911	0.9969	0.9850	0.9970	0.9909

Table 14 Confusion values of ResNet50v2 on internal dataset

KFold	TP	FN	TN	FP
Without GAN				
Fold1	312	9	333	1
Fold2	312	9	333	1
Fold3	315	6	331	3
Fold4	314	7	331	3
Fold5	317	4	331	3
With GAN				
Fold1	317	4	332	2
Fold2	317	4	333	1
Fold3	319	2	333	1
Fold4	318	3	334	0
Fold5	319	2	334	0
Table 15	Performance results of ResNet50v2 on internal dataset					
	KFold	Accuracy	Precision	Recall (Sensitivity)	Specificity	F1-score
Without GAN	Fold1	0.9847	0.9968	0.9720	0.9970	0.9842
	Fold2	0.9847	0.9968	0.9720	0.9970	0.9842
	Fold3	0.9863	0.9906	0.9813	0.9910	0.9859
	Fold4	0.9847	0.9905	0.9782	0.9910	0.9843
	Fold5	0.9893	0.9906	0.9875	0.9910	0.9891
	Overall	0.9860	0.9931	0.9782	0.9934	0.9856
With GAN	Fold1	0.9908	0.9937	0.9875	0.9940	0.9906
	Fold2	0.9924	0.9969	0.9875	0.9970	0.9922
	Fold3	0.9954	0.9969	0.9938	0.9970	0.9953
	Fold4	0.9954	1.0000	0.9907	1.0000	0.9953
	Fold5	0.9969	1.0000	0.9938	1.0000	0.9969
	Overall	0.9942	0.9975	0.9907	0.9976	0.9941

Table 16	Confusion values of InceptionV3 on internal dataset				
	KFold	TP	FN	TN	FP
Without GAN	Fold1	315	6	334	0
	Fold2	315	6	332	2
	Fold3	315	6	332	2
	Fold4	315	6	332	2
	Fold5	314	7	332	2
With GAN	Fold1	321	0	333	1
	Fold2	318	3	333	1
	Fold3	318	3	334	0
	Fold4	316	5	334	0
	Fold5	318	3	334	0

Table 17	Performance results of InceptionV3 on internal dataset					
	KFold	Accuracy	Precision	Recall (Sensitivity)	Specificity	F1-score
Without GAN	Fold1	0.9908	1.0000	0.9813	1.0000	0.9906
	Fold2	0.9878	0.9937	0.9813	0.9940	0.9875
	Fold3	0.9878	0.9937	0.9813	0.9940	0.9875
	Fold4	0.9878	0.9937	0.9813	0.9940	0.9875
	Fold5	0.9863	0.9937	0.9782	0.9940	0.9859
	Overall	0.9881	0.9949	0.9807	0.9952	0.9878
With GAN	Fold1	0.9985	0.9969	1.0000	0.9970	0.9984
	Fold2	0.9939	0.9969	0.9907	0.9970	0.9938
	Fold3	0.9954	1.0000	0.9907	1.0000	0.9953
	Fold4	0.9924	1.0000	0.9844	1.0000	0.9922
	Fold5	0.9954	1.0000	0.9907	1.0000	0.9953
	Overall	0.9951	0.9949	0.9913	0.9952	0.9950

Table 18	Confusion values of InceptionResNetV2 on internal dataset				
	KFold	TP	FN	TN	FP
Without GAN	Fold1	313	8	334	0
	Fold2	318	3	331	3
	Fold3	317	4	332	2
	Fold4	316	5	331	3
	Fold5	317	4	331	3
With GAN	Fold1	319	2	332	2
	Fold2	318	3	333	1
	Fold3	318	3	333	1
	Fold4	318	3	333	1
	Fold5	318	3	333	1
Table 19 Performance results of InceptionResNetV2 on internal dataset

KFold	Accuracy	Precision	Recall (Sensitivity)	Specificity	F1-score
Without GAN					
Fold1	0.9878	1.0000	0.9751	1.0000	0.9874
Fold2	0.9908	0.9907	0.9907	0.9910	0.9907
Fold3	0.9908	0.9937	0.9875	0.9940	0.9906
Fold4	0.9878	0.9906	0.9844	0.9910	0.9875
Fold5	0.9893	0.9906	0.9875	0.9910	0.9891
Overall	0.9893	0.9931	0.9850	0.9934	0.9890
With GAN					
Fold1	0.9939	0.9938	0.9938	0.9940	0.9938
Fold2	0.9939	0.9969	0.9969	0.9970	0.9938
Fold3	0.9939	0.9969	0.9969	0.9970	0.9938
Fold4	0.9939	0.9969	0.9969	0.9970	0.9938
Fold5	0.9939	0.9969	0.9970	0.9970	0.9938
Overall	0.9893	0.9962	0.9913	0.9964	0.9938

Table 20 Confusion values of DenseNet121 on internal dataset

KFold	TP	FN	TN	FP
Without GAN				
Fold1	316	5	331	3
Fold2	317	4	332	2
Fold3	317	4	332	2
Fold4	317	4	331	3
Fold5	316	5	331	3
With GAN				
Fold1	318	3	331	3
Fold2	317	4	331	3
Fold3	319	2	332	2
Fold4	319	2	331	3
Fold5	319	2	332	2

Table 21 Performance results of DenseNet121 on internal dataset

KFold	Accuracy	Precision	Recall (Sensitivity)	Specificity	F1-score
Without GAN					
Fold1	0.9878	0.9906	0.9844	0.9910	0.9875
Fold2	0.9908	0.9937	0.9875	0.9940	0.9906
Fold3	0.9908	0.9937	0.9875	0.9940	0.9906
Fold4	0.9893	0.9906	0.9875	0.9910	0.9891
Fold5	0.9878	0.9906	0.9844	0.9910	0.9875
Overall	0.9893	0.9919	0.9919	0.9922	0.9919
With GAN					
Fold1	0.9908	0.9907	0.9907	0.9910	0.9907
Fold2	0.9893	0.9906	0.9875	0.9910	0.9891
Fold3	0.9939	0.9938	0.9938	0.9940	0.9938
Fold4	0.9924	0.9907	0.9938	0.9940	0.9922
Fold5	0.9939	0.9938	0.9938	0.9940	0.9938
Overall	0.9921	0.9919	0.9919	0.9922	0.9919

Table 22 Confusion values of DenseNet169 on internal dataset

KFold	TP	FN	TN	FP
Without GAN				
Fold1	317	4	334	0
Fold2	318	3	332	2
Fold3	317	4	333	1
Fold4	317	4	331	3
Fold5	316	5	331	3
With GAN				
Fold1	318	3	333	1
Fold2	319	2	332	2
Fold3	318	3	333	1
Fold4	318	3	333	1
Fold5	317	4	332	2
Table 23 Performance results of DenseNet169 on internal dataset

KFold	Accuracy	Precision	Recall (Sensitivity)	Specificity	F1-score
Without GAN					
Fold1	0.9939	1.0000	0.9875	1.0000	0.9937
Fold2	0.9924	0.9938	0.9907	0.9940	0.9922
Fold3	0.9924	0.9969	0.9875	0.9970	0.9922
Fold4	0.9893	0.9906	0.9875	0.9910	0.9891
Fold5	0.9878	0.9906	0.9844	0.9910	0.9875
Overall	0.9911	0.9944	0.9875	0.9946	0.9909
With GAN					
Fold1	0.9939	1.0000	0.9875	1.0000	0.9937
Fold2	0.9939	0.9938	0.9938	0.9940	0.9938
Fold3	0.9939	0.9969	0.9907	0.9970	0.9938
Fold4	0.9939	0.9969	0.9907	0.9970	0.9938
Fold5	0.9908	0.9937	0.9875	0.9940	0.9906
Overall	0.9933	0.9962	0.9900	0.9964	0.9931

Table 24 Confusion values of VGG16 on external dataset

KFold	TP	FN	TN	FP
Without GAN				
Fold1	3396	605	8467	1108
Fold2	3323	678	8366	1179
Fold3	3296	705	8443	1102
Fold4	3412	589	8316	1229
Fold5	3305	696	8427	1118
With GAN				
Fold1	3555	446	8703	842
Fold2	3581	420	8640	905
Fold3	3499	502	8650	895
Fold4	3588	413	8629	916
Fold5	3536	465	8729	916

Table 25 Performance results of VGG16 on external dataset

KFold	Accuracy	Precision	Recall	Specificity	F1-score
Without GAN					
Fold1	0.8738	0.7540	0.8488	0.8843	0.7986
Fold2	0.8629	0.7381	0.8305	0.8765	0.7816
Fold3	0.8666	0.7494	0.8238	0.8845	0.7849
Fold4	0.8658	0.7352	0.8528	0.8712	0.7896
Fold5	0.8661	0.7472	0.8260	0.	0.7847
Overall	0.8670	0.7448	0.8364	0.8799	0.7879
With GAN					
Fold1	0.9049	0.8085	0.8885	0.9118	0.8466
Fold2	0.9022	0.7983	0.8950	0.9052	0.8439
Fold3	0.8969	0.7963	0.8745	0.9062	0.8336
Fold4	0.9019	0.7966	0.8968	0.9040	0.8437
Fold5	0.9054	0.8125	0.8838	0.9145	0.8466
Overall	0.9023	0.8024	0.8877	0.9083	0.8429

Table 26 Confusion values VGG19 on external dataset

KFold	TP	FN	TN	FP
Without GAN				
Fold1	3489	512	8348	1197
Fold2	3506	495	8502	1042
Fold3	3501	500	8581	964
Fold4	3505	496	8392	1153
Fold5	3520	481	8498	1047
With GAN				
Fold1	3599	402	8658	887
Fold2	3612	389	8669	876
Fold3	3627	374	8721	824
Fold4	3653	348	8749	796
Fold5	3609	392	8642	903
Table 27 Performance results of VGG19 on external dataset

KFold	Accuracy	Precision	Recall	Specificity	F1-score
Without GAN					
Fold1	0.8738	0.7446	0.8720	0.8746	0.8033
Fold2	0.8865	0.7709	0.8763	0.8908	0.8202
Fold3	0.8919	0.7841	0.8750	0.8990	0.8271
Fold4	0.8783	0.7525	0.8760	0.8792	0.8096
Fold5	0.8872	0.7707	0.8798	0.8903	0.8217
Overall	0.8836	0.7646	0.8758	0.8868	0.8164
With GAN					
Fold1	0.9048	0.8023	0.9071	0.9071	0.8401
Fold2	0.9066	0.8048	0.9028	0.9082	0.8510
Fold3	0.9116	0.8149	0.9065	0.9137	0.8583
Fold4	0.9155	0.8211	0.9130	0.9166	0.8646
Fold5	0.9044	0.7999	0.9020	0.9054	0.8479
Overall	0.9086	0.8086	0.9048	0.9102	0.8540

Table 28 Confusion values of Xception on external dataset

KFold	TP	FN	TN	FP
Without GAN				
Fold1	3757	244	8575	970
Fold2	3786	215	8522	912
Fold3	3773	228	8684	861
Fold4	3725	276	8616	929
Fold5	3761	240	8631	914
With GAN				
Fold1	3828	173	8989	556
Fold2	3836	165	9033	512
Fold3	3829	172	9008	537
Fold4	3853	148	9026	513
Fold5	3845	156	8993	552

Table 29 Performance results of Xception on external dataset

KFold	Accuracy	Precision	Recall	Specificity	F1-score
Without GAN					
Fold1	0.9104	0.7948	0.9390	0.8984	0.8609
Fold2	0.9168	0.8059	0.9463	0.9045	0.8704
Fold3	0.9196	0.8142	0.9430	0.9094	0.8739
Fold4	0.9110	0.8004	0.9310	0.9027	0.8608
Fold5	0.9148	0.8045	0.9400	0.9042	0.8670
Overall	0.9145	0.8039	0.9399	0.9039	0.8666
With GAN					
Fold1	0.9462	0.8732	0.9568	0.9417	0.9131
Fold2	0.9500	0.8822	0.9588	0.9464	0.9189
Fold3	0.9477	0.8770	0.9570	0.9437	0.9153
Fold4	0.9512	0.8825	0.9630	0.9462	0.9210
Fold5	0.9477	0.8745	0.9610	0.9422	0.9157
Overall	0.9486	0.8779	0.9593	0.9440	0.9168

Table 30 Confusion values of ResNet50 on external dataset

KFold	TP	FN	TN	FP
Without GAN				
Fold1	3557	444	8639	906
Fold2	3578	423	8600	945
Fold3	3611	390	8570	975
Fold4	3607	494	8578	967
Fold5	3645	437	8610	944
With GAN				
Fold1	3651	350	9026	519
Fold2	3612	389	9009	536
Fold3	3623	378	8925	620
Fold4	3602	399	8953	592
Fold5	3639	362	8966	579
Table 31 Performance results of ResNet50 on external dataset

KFold	Accuracy	Precision	Recall	Specificity	F1-score
Without GAN					
Fold1	0.9003	0.7970	0.8890	0.9051	0.9404
Fold2	0.8990	0.7911	0.8943	0.9010	0.8395
Fold3	0.8992	0.7874	0.9025	0.8979	0.8410
Fold4	0.8921	0.7839	0.8765	0.8987	0.8276
Fold5	0.8981	0.7906	0.8908	0.9011	0.8377
Overall	0.8978	0.7900	0.8906	0.9007	0.8373
With GAN					
Fold1	0.9358	0.8755	0.9125	0.9456	0.8936
Fold2	0.9317	0.8708	0.9028	0.9438	0.8865
Fold3	0.9263	0.8539	0.9055	0.9350	0.8789
Fold4	0.9268	0.8588	0.9003	0.9380	0.8791
Fold5	0.9305	0.8627	0.9095	0.9393	0.8855
Overall	0.9303	0.8644	0.9061	0.9404	0.8847

Table 32 Confusion values of ResNet50v2 on external dataset

KFold	TP	FN	TN	FP
Without GAN				
Fold1	3548	453	8508	1037
Fold2	3584	417	8523	1022
Fold3	3559	442	8581	964
Fold4	3540	461	8459	1086
Fold5	3578	423	8497	1048
With GAN				
Fold1	3626	375	8822	723
Fold2	3656	342	8797	748
Fold3	3612	389	8756	789
Fold4	3642	359	8787	758
Fold5	3619	382	8771	774

Table 33 Performance results of ResNet50v2 on external dataset

KFold	Accuracy	Precision	Recall	Specificity	F1-score
Without GAN					
Fold1	0.8900	0.7738	0.8868	0.8914	0.8265
Fold2	0.8938	0.7781	0.8958	0.8929	0.8328
Fold3	0.8962	0.7869	0.8995	0.8990	0.8351
Fold4	0.8858	0.7652	0.8848	0.8862	0.8207
Fold5	0.8914	0.7735	0.8943	0.8902	0.8295
Overall	0.8914	0.7735	0.8902	0.8919	0.8289
With GAN					
Fold1	0.9189	0.8338	0.9063	0.9243	0.8685
Fold2	0.9195	0.8302	0.9145	0.9216	0.8703
Fold3	0.9130	0.8207	0.9028	0.9173	0.8598
Fold4	0.9175	0.8277	0.9103	0.9206	0.8670
Fold5	0.9147	0.8238	0.9045	0.9189	0.8623
Overall	0.9167	0.8272	0.9077	0.9205	0.8656

Table 34 Confusion values of Inceptionv3 on external dataset

KFold	TP	FN	TN	FP
Without GAN				
Fold1	3601	400	8691	854
Fold2	3533	468	8699	846
Fold3	3570	431	8697	848
Fold4	3598	403	8651	894
Fold5	3613	388	8716	829
With GAN				
Fold1	3800	201	9093	452
Fold2	3769	232	9102	443
Fold3	3793	208	9096	449
Fold4	3776	225	9083	462
Fold5	3712	285	9106	439
Table 35 Performance results of Inceptionv3 on external dataset

KFold	Accuracy	Precision	Recall	Specificity	F1-score	
Without GAN	Fold1	0.9074	0.8083	0.9000	0.9105	0.8517
	Fold2	0.9030	0.8068	0.8830	0.9114	0.8432
	Fold3	0.9056	0.8061	0.8923	0.9112	0.8481
	Fold4	0.9043	0.8010	0.8993	0.9063	0.8473
	Fold5	0.9102	0.8134	0.9030	0.9131	0.8559
	Overall	0.9061	0.8075	0.8955	0.9105	0.8492
With GAN	Fold1	0.9518	0.8937	0.9498	0.9526	0.9209
	Fold2	0.9502	0.8948	0.9420	0.9536	0.9178
	Fold3	0.9515	0.8942	0.9480	0.9530	0.9203
	Fold4	0.9493	0.8910	0.9438	0.9516	0.9166
	Fold5	0.9493	0.8942	0.9278	0.9540	0.9107
	Overall	0.9494	0.8936	0.9423	0.9530	0.9173

Table 36 Confusion values of InceptionResNetv2 on external dataset

KFold	TP	FN	TN	FP	
Without GAN	Fold1	3414	587	8589	956
	Fold2	3505	496	8572	973
	Fold3	3669	332	8656	889
	Fold4	3545	456	8596	949
	Fold5	3621	380	8674	871
With GAN	Fold1	3713	288	9017	528
	Fold2	3709	292	8935	610
	Fold3	3725	276	8952	593
	Fold4	3732	269	9046	599
	Fold5	3700	301	8953	592

Table 37 Performance results of InceptionResNetv2 on external dataset

KFold	Accuracy	Precision	Recall	Specificity	F1-score	
Without GAN	Fold1	0.8861	0.7812	0.8533	0.8998	0.8157
	Fold2	0.8916	0.7827	0.8760	0.8981	0.8267
	Fold3	0.9099	0.8050	0.9170	0.9069	0.8573
	Fold4	0.8963	0.7888	0.8860	0.9006	0.8346
	Fold5	0.9076	0.8061	0.9050	0.9087	0.8527
	Overall	0.8983	0.7928	0.8875	0.9028	0.8374
With GAN	Fold1	0.9398	0.8755	0.9280	0.9447	0.9010
	Fold2	0.9334	0.8588	0.9270	0.9361	0.8916
	Fold3	0.9358	0.8627	0.9310	0.9379	0.8955
	Fold4	0.9433	0.8821	0.9328	0.9477	0.9067
	Fold5	0.9341	0.8621	0.9248	0.9380	0.8923
	Overall	0.9373	0.8682	0.9287	0.9409	0.8974

Table 38 Confusion values of DenseNet121 on external dataset

KFold	TP	FN	TN	FP	
Without GAN	Fold1	3544	457	8649	896
	Fold2	3533	468	8643	902
	Fold3	3587	414	8588	957
	Fold4	3581	420	8658	887
	Fold5	3573	428	8600	945
With GAN	Fold1	3700	301	8767	579
	Fold2	3712	289	8983	562
	Fold3	3677	324	9002	543
	Fold4	3659	342	8958	587
	Fold5	3662	339	8997	548
Acknowledgements We would like to thank referees for valuable suggestions.

Author Contributions All authors contributed to the study conception and design. Erdi Acar, Engin Şahin and Ihsan Yılmaz contributed to conceptualization; Erdi Acar contributed to data curation; Erdi Acar and Engin Şahin contributed to formal analysis; Erdi Acar, Engin Şahin and Ihsan Yılmaz contributed to investigation; Erdi Acar and Ihsan Yılmaz contributed to methodology; Erdi Acar contributed to resources and software; Ihsan Yılmaz supervised the study; Engin Şahin contributed to visualization, writing–original draft preparation.

Table 39 Performance results of DenseNet121 on external dataset

KFold	Accuracy	Precision	Recall	Specificity	F1-score	
Without GAN	Fold1	0.9001	0.7982	0.8858	0.9061	0.8397
	Fold2	0.8989	0.7966	0.8830	0.9055	0.8376
	Fold3	0.8988	0.7894	0.8965	0.8997	0.8396
	Fold4	0.9035	0.8015	0.8950	0.9071	0.8457
	Fold5	0.8986	0.7908	0.8930	0.9010	0.8388
	Overall	0.9000	0.7953	0.8907	0.9039	0.8403
With GAN	Fold1	0.9341	0.8649	0.9248	0.9381	0.8938
	Fold2	0.9372	0.8685	0.9278	0.9411	0.8972
	Fold3	0.9360	0.8713	0.9190	0.9431	0.8945
	Fold4	0.9314	0.8618	0.9145	0.9385	0.8874
	Fold5	0.9345	0.8698	0.9153	0.9426	0.8920
	Overall	0.9346	0.8673	0.9203	0.9407	0.8930

Table 40 Confusion values of DenseNet169 on external dataset

KFold	TP	FN	TN	FP	
Without GAN	Fold1	3667	334	8621	924
	Fold2	3650	351	8656	886
	Fold3	3585	416	8628	917
	Fold4	3542	459	8603	942
	Fold5	3555	446	8666	879
With GAN	Fold1	3704	297	8951	594
	Fold2	3710	291	8973	572
	Fold3	3653	348	8953	592
	Fold4	3644	357	8956	589
	Fold5	3606	395	8969	576

Table 41 Performance results of DenseNet169 without GAN on external dataset

KFold	Accuracy	Precision	Recall	Specificity	F1-score	
Without GAN	Fold1	0.9071	0.7987	0.9165	0.9032	0.8536
	Fold2	0.9085	0.8041	0.9123	0.9069	0.8548
	Fold3	0.9016	0.7963	0.8960	0.9039	0.8432
	Fold4	0.8966	0.7899	0.8853	0.9013	0.8349
	Fold5	0.9022	0.8018	0.8885	0.9079	0.8429
	Overall	0.9032	0.7982	0.8997	0.9046	0.8459
With GAN	Fold1	0.9342	0.8618	0.9258	0.9378	0.8926
	Fold2	0.9363	0.8664	0.9273	0.9401	0.8958
	Fold3	0.9306	0.8605	0.9130	0.9380	0.8860
	Fold4	0.9302	0.8609	0.9108	0.9383	0.8851
	Fold5	0.9283	0.8623	0.9013	0.9397	0.8813
	Overall	0.9319	0.8624	0.9156	0.9388	0.8882
and writing–review and editing; all authors read and approved the final manuscript.

Declarations

Conflicts of interest The authors declare that they have no conflict of interest.

Funding Not applicable.

References

1. Verity R, Okell LC, Dorigatti I, Winskill P, Whittaker C, Imai N et al (2020) Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infect Dis 20(6):669–677
2. He K, Zhao W, Xie X, Ji W, Liu M, Tang Z et al (2021) Synergistic learning of lung lobe segmentation and hierarchical multi-instance classification for automated severity assessment of COVID-19 in CT images. Pattern Recognit 113:107828
3. Esteva A, Chou K, Yeung S, Naik N, Mottaghi A et al (2021) Deep learning-enabled medical computer vision. NPJ Digital Med 4(1):1–9
4. Bakator M, Radosav D (2018) Deep learning and medical diagnosis: a review of literature. Multimodal Technol Interact 2(3):47
5. Liu Y, Liu G, Zhang Q (2019) Deep learning and medical diagnosis. Lancet 394(10121):1709–1710
6. Shorten C, Khoshgoftaar TM (2019) A survey on image data augmentation for deep learning. J Big Data 6(1):1–48
7. Liang G, Fouladvand S, Zhang J, Brooks MA, Jacobs N, Chen J (2019) Ganai: Standardizing ct images using generative adversarial network with alternative improvement. In: 2019 IEEE International Conference on Healthcare Informatics (ICHI), IEEE, pp 1–11
8. Sandfort V, Yan K, Pickhardt PJ, Summers RM (2019) Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks. Sci Rep 9(1):1–9
9. Zhao D, Zhu D, Lu J, Luo Y, Zhang G (2018) Synthetic medical images using. Symmetry 10(10):519
10. Chauquismua MJ, Hussein S, Burt J, Bagei U (2018) How to fool radiologists with generative adversarial networks? a visual tuning test for lung cancer diagnosis. In: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018), IEEE, pp 240–244
11. Frid-Adar M, Klang E, Amitai M, Goldberger J, Greenspan H (2018) Synthetic data augmentation using GAN for improved liver lesion classification. In: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018), IEEE, pp 289–293
12. Guibas JT, Vardi TS, Li PS (2017) Synthetic medical images from dual generative adversarial networks. arXiv preprint arXiv:1709.01872
13. Shin HC, Tenenholz NA, Rogers JK, Schwarz CG, Senjem ML, Gunter JL et al (2018) Medical image synthesis for data augmentation and anonymization using generative adversarial networks. In: International workshop on simulation and synthesis in medical imaging. Springer, Cham, pp 1–11
14. Wu X, Hui H, Niu M, Li L, Wang L, He B (2020) Deep learning-based multi-view fusion model for screening 2019 novel coronavirus pneumonia: a multicentre study. Europ J Radiol 128:109041
15. Xu X, Jiang X, Ma C, Du P, Li X, Lv S et al (2020) A deep learning system to screen novel coronavirus disease 2019 pneumonia. Engineering 6(10):1122–1129
16. Wang B, Jin S, Yan Q, Xu H, Luo C, Wei L et al (2021) AI-assisted CT imaging analysis for COVID-19 screening: building and deploying a medical AI system. Appl Soft Comput 98:106897
17. Yousefzadeh M, Esfahanian P, Movahed SMS, Gorgin S, Rahmati D, Abedini A et al (2021) Ai-corona: radiologist-assistant deep learning framework for covid-19 diagnosis in chest ct scans. PloS one 16(5):e0250952
18. Ardanaki AA, Kanafi AR, Acharya UR, Khadem N, Mohammad A (2020) Application of deep learning technique to manage COVID-19 in routine clinical practice using CT images: Results of 10 convolutional neural networks. Comput Biol Med 121:103795
19. Chen J, Wu L, Zhang J, Zhang L, Gong D, Zhao Y et al (2020) Deep learning-based model for detecting 2019 novel coronavirus pneumonia on high-resolution computed tomography. Sci Rep 10(1):1–11
20. Zhang C, Deng X, Fu Q, Zhou Q, Feng J, Ma H et al (2020) Deep learning-based detection for COVID-19 from chest CT using weak label. medRxiv:2020.12.02.2027185
21. Shi F, Wang J, Shi J, Wu Z, Wang Q, Tang Z, Shen D (2020) Review of artificial intelligence techniques in imaging data acquisition, segmentation and diagnosis for covid-19. IEEE Rev Biomed Eng
22. Roberts M, Driggs D, Thorpe M, Gilbey J, Yeung M, Ursprung S et al (2021) Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans. Nat Mach Intell 3(3):199–217
23. Tayarani-N MH (2020) Applications of artificial intelligence in battling against Covid-19: a literature review. Chaos, Solitons & Fractals, p 110338
24. Kalkreuth R, Kaufmann P (2020) COVID-19: a survey on public medical imaging data resources. arXiv preprint arXiv:2004.04569
25. Ning W, Lei S, Yang J, Cao Y, Jiang P, Yang Q et al (2020) Open resource of clinical data from patients with pneumonia for the prediction of COVID-19 outcomes via deep learning. Nat Biomed Eng 4(12):1197–1207
26. Azad R, Asadi-Aghbolaghi M, Fathy M, Escalera S (2019) Bi-directional ConvLSTM U-Net with densely connected convolutions. arXiv:1909.00166
27. Rother C, Kolmogorov V, Blake A (2004) GrabCut interactive foreground extraction using iterated graph cuts. ACM Trans Graph 23(3):309–314
28. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S et al (2014) Generative adversarial networks. arXiv preprint arXiv:1406.2661
29. Creswell A, White T, Dumoulin V, Arulmugam K, Sengupta B, Bharath AA (2018) Generative adversarial networks: an overview. IEEE Signal Process Magazine 35(1):53–65
30. Gui J, Sun Z, Wen Y, Tao D, Ye J (2020) A review on generative adversarial networks: Algorithms, theory, and applications. arXiv preprint arXiv:2001.06937
31. Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) Imagenet: A large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition, IEEE, pp 248–255
32. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556
33. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778
34. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2818–2826
35. Szegedy C, Ioffe S, Vanhoucke V, Alemi A (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Proceedings of the AAAI conference on artificial intelligence, Vol 31, No 1
36. Chollet F (2017) Xception: Deep learning with depthwise separable convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1251–1258
37. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4700–4708
38. Chollet F (2015) Keras: Deep Learning for Humans. [Online]. Available: https://keras.io/

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.