Abstract: Growth and survival of Pangasianodon hypophthalmus was assessed in relation to feeding of different feeds for a rearing period of 21 days. The experiment was designed with 3 treatments and 4 replications. The nursery ponds were stocked at a density of 0.6 million hatchling/ha with 3 days old P. hypophthalmus. The highest growth performance, survival and production of the fry was found in treatment T, in terms of length, weight and number, where sustainable nursery management was implemented and egg yolk, mustard oil cake, nursery feed and Tubifex Chop were supplied. Poor growth performance and survival was recorded in treatment T where nursery management was poor with insufficient food supply. The highest average growth was recorded at 5.66±0.55 g, SGR 12.24±0.68, FCR 0.68±0.01 and survival rate 52.15±0.78% in the treatment T. The treatment (T) also showed highest economic return (Bd Tk. 290543/ha) than that of treatment T and T. The physico-chemical factors were found to be in optimum level for fish culture.

Keywords: Food conversion rate, Hatchling, Stocking density, Supplementary feed, Survival rate.

INTRODUCTION

Pangasianodon hypophthalmus (Sauvage) is to be locally known in Bangladesh as pangas or Thai pangas. This species is an important fast-growing cat fish in the Asian region, particularly Vietnam, Myanmar, Thailand, India, Indonesia and Bangladesh (Phan et al., 2009). Commercial Thai punus production was first started in 1993 (Ali and Haque, 2011) and it has rapidly developed into an economically significant activity (Ali et al., 2013). The characteristics of this species are fast growth with high dense, large size and a high market demand (Sarker, 2000). So, pangas farming has rapidly extended as an important aquaculture industry in Bangladesh. The development of intensive pangasius farming has benefitted landless laborers by creating employment opportunities, particularly involving the provision of supporting goods and services in associated value chains (Belton and Azad, 2012; Ali et al., 2013). This industry provides many livelihood opportunities with long
backward and forward linkages for a wide range of value chain actors (Belton and Azad, 2012). The species has a significant local market demand and is mostly consumed domestically, providing a year round supply of animal protein to consumers in both rural and urban areas (Ali et al., 2013; Belton et al., 2014; Hernandez et al., 2018).

Hence, for sustainable aquaculture method for nursing and rearing of *P. hypophthalmus* seed (spawn) are very important to ensure reliable and regular supply of fry. Improper care and lack of understanding about the biotic and abiotic factors in the nurseries may results in mass mortality of fry (Jhingran and Pullin, 1985). Success in fry nursing depends on a scientific knowledge of nutritional requirement and optimum environmental factors for the growth and survival of spawn and fry in the open aquatic ecosystem (Mollah, 1985). In order to meet up the increasing dietary demand nursery feed was supplied at 5 to 20% of the total biomass per day (Chakraborty et al., 2019). Growth, survival and production of fry and fingerlings in nursery ponds depend on stocking density, fertilizers and supplementary feeds. The present experiment has been undertaken to develop a practical and economically viable methodology for mass seed production and rearing of *P. hypophthalmus* under controlled nursery management system.

MATERIALS AND METHODS

Study area and experimental design

The experiment was carried out for a period of 21 days from July to August, 2020 at the private nursery ponds (average area 0.08ha and depth 0.8m) of Fish Seed Farm, Sotota hatchery, Dhola, Thrisal (Treatment T_1), Rang Dhonu hatchery, Sadar (Treatment T_2), Rupali hatchery, Gouripur (Treatment T_3), Mymensingh, Bangladesh. The nursery ponds were having similar rectangular size, depth, basin conformation, contour and bottom type. Three treatments differing in different feeds of hatchlings were employed with two replicates each.

Pond preparation, fertilization stocking and supplementary feeding

a. Nursery Practice 1 (Treatment T_1)

The ponds having a well designed system of inlet and outlet were dewatered and the bottom was exposed to full sunlight for three days. After drying, the bottom of the pond was ploughed and laddered. During nursery practice, the bottom of the ponds laddered regularly. Quicklime (CaCO_3, 250 kg/ha) was spread over the pond bottom. The initial doses of manuring by cow dung 494kg/ha were accomplished in the treatment T_1 after the next day of liming. Replenishment of water was done after three days of sun drying with liming. The second manuring was done by liming again (CaCO_3, 250 kg/ha) just after the subsequent day of replenishment Mustard oil cake (MOC) at the rate of 494kg/ha and cow dung in slurry form 247kg/ha were applied two days after liming. Murate of Potash (MP) in granule form was spread (200kg/ha) throughout the ponds just before the stocking. Seven days after manuring the pond water was sprayed with dipterex (1.0 ppm) to eradicate harmful insects and predatory zooplankton.

Egg yolk @ 0.31 kg/ha/twice in a day in first two days and milk power @9.88 kg/ha/twice in a day was provided for first three days. Supplementary feed was supplied only in the form of MOC @ 25g (dry weight)/ha/once in a day from 4th to 10th days, Soudi bangla nursery feed @ 55 kg/ha/fourth time in a day from 3th to 7th days, @75 kg/ha/thrice in a day from 8th to 14th days and @ 95 kg/ha/thrice in a day from 15th to 21th days. Tubifex Chop @74.1kg/ha/six times in a day from 4th to 7th day and @74.1kg/ha/thrice in a day from 7th to 14th days was provided as supplementary feed.

b. Nursery Practice 2 (Treatment T_2)

In this type of practice, just after the dewatering, the doses of quicklime (CaCO_3, 250 kg/ha) and cow dung (497kg/ha) was spread over the pond bottom. Replenishment of water was done after the subsequent day of bottom preparation. The
second manuring was done by liming again (CaCO₃, 247 kg/ha) just after three days of dewatering and mustard oil cake (MOC) 494 kg/ha and cowdung (CD) 247 kg/ha were applied two days after liming. Murate of Potash (MP) was applied (200 kg/ha) in the ponds just before the day of stocking.

Supplementary feed was provided in the form of MOC @ 247 kg/ha/once in a day from 4th to 10th days, Soudi bangla nursery feed @ 494 kg/ha/fourth time in a day from 4th to 8th days and @ 74.1 kg/ha/thrice in a day from 9th to 21st day. Tubifex Chop @ 37.05 kg/ha/six times in a day for first three days and @ 24.7 kg/ha/four times in a day from 4th to 8th days and 37.05 kg/ha/thrice in a day from 9th to 14th day and also the milk powder @ 4.94 kg/ha/twice in a day for first three days.

c. Nursery Practice 3 (Treatment T₃)
In this system, the ponds were poisoned by rotenone at a dose of 49.40 kg/ha and after three days water was replenished up to another 15 cm. Only after three days of liming at the rate of 247 kg/ha mustard oil cake (MOC) 370 kg/ha and cowdung (CD) in slurry form 173 kg/ha was applied. Murate of Potash (MP) was applied (124 kg/ha) throughout the ponds just before the stocking.

Supplementary feed was supplied in the form of MOC @ 49.4 kg (dry weight)/ha/twice in a day from 4th to 21th days, Soudi bangla nursery feed @ 49.4 kg/ha/fourth time in a day from 4th to 8th days and @ 74.1/ha/thrice in a day from 9th to 21st days. Tubifex Chop @ 61.75 kg/ha/six times in a day for first three days and Chop @ 61.75 kg/ha/four times in a day from 4th to 10th days.

Seven days after manuring the pond water was sprayed with dipterex (1.0 ppm) to eradicate harmful insects and predatory zooplankton. The experimental ponds were stocked at a density of 0.6 million hatchling/ha with 3 days old P. hypophthalmus having an initial length of 5.0±0.02 mm and weight of 0.11±0.001 mg, respectively.

Water Quality Parameters
Physico-chemical parameters of pond water were monitored weekly between 9.00 and 10.00 am. Water temperature, transparency, dissolved oxygen and pH were measured at spot by using a Celsius thermometer, Secchi disc, digital electronic oxygen meter (YSI, Model 58, USA) and an electronic pH meter (Jenway, Model 3020, UK), respectively. Total alkalinity was determined by titrimetric method (Clesceri et al., 1989).

Estimation of growth, survival, production and feed utilization
Twenty five individuals from in each pond were sampled five days interval until they attained the fry stage. Growth in terms of length and weight, Average daily gain (ADG), Specific Growth Rate (SGR) and Food conversion rate (FCR) was estimated. SGR and FCR were calculated according to Brown (1957), Castell and Tiews (1980) and Gangadhara et al. (1997), respectively. After 21 days, the fingerlings were harvested by repeated netting, followed by drying the ponds. The fingerlings were counted and weighed. Survival (%) and production (number/ha) of fingerlings were then calculated and compared among the treatments.

Analysis of experimental data
The data were analyzed through one way analysis of variance (ANOVA) using MSTAT followed by Duncan’s New Multiple Range test to find out whether any significant difference existed among treatment means (Duncan, 1955; Zar, 1984). Standard deviation in each parameter and treatment was calculated and expressed as mean ± S.D.

RESULTS AND DISCUSSION

Water quality parameters
Mean level of physico-chemical parameters over the 21 days nursing of fry is presented in Table

1. The mean water temperatures in treatment T₁, T₂, and T₃ were not statistically significant (P>0.05). The temperature of the experimental
ponds was within the acceptable range for pangas nursery ponds that agrees well with the findings of Haque et al. (1993) and Bhagde et al. (2020). Mean transparency differed significantly ($P<0.05$) increasing from T_1 to T_3. Transparency was consistently higher in T_3, possibly due to the reduction of the plankton population (Haque et al., 1998). The mean dissolved oxygen (DO) obtained in the morning hours was significantly different ($P<0.05$), decreasing from T_1 to T_3. Fluctuation of dissolve oxygen concentration might be attributed to photosynthetic activity and variation in the rate of oxygen consumption by fish and other aquatic organisms (Boyd, 1982). pH decreased from T_1 to T_3 but did not differ significantly ($P>0.05$). pH value agrees well with the findings of Chakraborty et al. (2003) and Rahman and Rahman (2003). Total alkalinity was decreased from T_3 to T_1 but differ significantly ($P<0.05$). Alkalinity levels indicate productivity of the ponds was medium to high (Bhuiyan, 1970). Higher total alkalinity values might be due to higher amount of lime

Table 1: Physico-chemical characters of water in nursery pond during the experimental period.

Parameter	Treatment	T_1	T_2	T_3
Temperature (0C)		28.74±2.41	28.26±2.26	28.22±2.62
		(26.08-30.10)	(26.24-30.15)	(26.25-31.05)
Transparency (cm)		18.22±3.66	27.34±4.44	34.56±5.44
		(14.03-20.44)	(25.05-30.62)	(29.54-37.34)
pH		7.78±0.17	7.80±0.16	7.78±0.17
		(7.40-8.20)	(7.3-8.6)	(7.4-8.8)
Dissolved oxygen (mg/L)		5.22±0.52	4.94±0.68	4.08±0.68
		(5.02-5.48)	(4.22-5.15)	(3.80-4.18)
Total alkalinity (mg/L)		142.16±7.84	134.08±7.24	123.48±9.44
		(135.03-148.50)	(127.44-138.67)	(120.33-132.04)

Figure in the same row having the same superscript are not significantly different ($P>0.05$). Figure in the parenthesis indicates the range.

Growth, feed utilization and production of fish

Growths (length and weight) of fry are shown in figures 1 and 2. The increase in length and weight was the highest in treatment T_1 followed by treatment T_2 and T_3. Growth and production parameters of fingerlings are shown in Table 2. The fish in T_1 treatment showed the highest gain in both length and weight over treatment T_2 and T_3 treatment, where sustainable nursery management and rich feed (egg yolk, mustard oil cake, nursery feed and Tubifex Chop) were supplied. However, the mean final length and weight of fry in different treatments were significantly different ($P<0.05$). The highest weight gain was in treatment T_1, SGR in treatment T_1 was significantly higher than treatment T_2 and T_3. The initial length and weight of spawn stocked in all the ponds was the same, 0.06±0.02 cm and 0.11±0.001 mg. It is evident from the data that the fry attained an average size of 6.06±0.09 cm in length and 5.77±0.56 g in weight in treatment T_1 with sustainable nursery management and rich feed were supplied. The fry attained an average size of, 5.11±0.06 cm in length and 4.98±0.47 g in weight in treatment T_2 where mustard oil cake, nursery feed and Tubifex Chop were supplied and achieved 3.90±0.04 cm in length, 3.97±0.8g in treatment T_3 where poor nursery management and below standard feed and lower amount of mustard oil cake, nursery feed and Tubifex Chop were supplied.
supplied. Maximum growth in length and weight in treatment T1 was attained at the rich sustainable nursery management and quality feed supplied. Thus growth in terms of length, weight, weight gain and SGR of *P. hypophthalmus* fry was significantly higher in T1 where sustainable nursery management and rich ingredients were supplied compared to those of T2 and T3 treatments. The causes might include competition for food, space and habitat of fry (Islam *et al*., 1999; Islam, 2002; Rahman and Rahman, 2003; Chakraborty *et al*., 2006 and 2019).

Fig.1: Length gain (cm) of fry *P. hypophthalmus* under different feeds.

Fig. 2: Weight (g) gain of fry *P. hypophthalmus* under different feeds.
The FCR value of treatment T_1 is significantly lower than those of treatment T_2 and T_3. The FCR values reported in the present study are lower than the values reported by Das and Ray (1989) and Islam (2002). De Silva and Davy (1992) stated that digestibility plays an important role in lowering the FCR value by efficient utilization of food. Digestibility, in turn, depends on daily feeding rate, frequency of feeding, and type of feed used (Chiu et al., 1987). However, the lower FCR value in the present study indicates better food utilization efficiency.

The highest survival rate was also observed in treatment T_1, and the lowest in treatment T_3. There was a significant variation ($P<0.05$) in the survival rate of $P.\, hypophthalmus$ fry among different treatments. Fingerlings of $P.\, hypophthalmus$ had significantly higher survival in T_1, where the stocking density was same in the treatment T_2 and T_3. The reason for reduced survival rate in the treatments T_2 and T_3 was due to poor sustainable nursery management and supplying various poor quality feeds as well as competition for food and space, and cannibalistic characteristics in the experimental ponds. This is clearly indicated that maximum growth in length and weight was attained at the rich sustainable nursery management and supplying various rich qualities feeds supplied, showing a negative correlation between nursery management and feed, and growth. Similar results were obtained by Tripathi et al. (1979), Rahman and Rahman (2003), Chakraborty et al. (2006) and Phuong et al. (2007) for fry of various pangas, carp and barb species.

Table 2: Growth performance, survival and production of $P.\, hypophthalmus$ fry after 21 days of rearing.

Parameter	T_1	T_2	T_3
Initial length (cm)	0.06±0.02 (0.02-0.06)	0.06±0.02 (0.02-0.06)	0.06±0.02 (0.02-0.06)
Final length (cm)	6.06±0.09* (5.12-6.88)	5.11±0.06* (4.88-5.67)	3.90±0.04* (3.50-4.16)
Initial weight (g)	0.11±0.001 (0.01-0.15)	0.11±0.001 (0.01-0.15)	0.11±0.001 (0.01-0.15)
Final weight (g)	5.77±0.56* (5.10-7.07)	4.58±0.47* (3.80-5.24)	3.97±0.81* (2.77-4.28)
Net weight gain (g)	5.66±0.55* (5.05-7.06)	4.47±0.32* (4.11-5.22)	3.86±0.44* (3.10-4.48)
Average daily gain(g)	0.27±0.01* (0.22-0.32)	0.21±0.01* (0.17-0.25)	0.18±0.01* (0.15-0.21)
Specific growth rate	12.24±0.68 (12.21-12.25)	12.03±0.66 (12.01-12.05)	11.89±0.67 (11.87-11.90)
Survival rate (%)	52.15±0.78* (40.61-47.22)	44.60±0.61* (29.28-35.17)	29.84±0.46* (18.22-24.18)
FCR	0.68±0.01* (0.66-0.71)	0.74±0.01* (0.71-0.76)	0.83±0.01* (0.80-0.84)
Production# (Number)	311952±150.02* (311805-312100)	267853±471.77* (267405-268302)	179805±584.58* (179509-180202)

Figure in the same row having the same superscript are not significantly different ($P>0.05$). Figure in the parenthesis indicates the range. # Total number of fry harvested after 21 days.
The mean productions (number/ha) of fry were 311952, 267853 and 179805 in treatment T₁, T₂ and T₃, respectively. Production was higher in treatment T₁, and lowest in treatment T₃. However, production of fry differ significantly ($P<0.05$) among the three treatments (Table 2). On the other hand, cost of production in treatment T₁ was consistently higher than those treatments T₂ and T₃ (Table 3). The cost of production in treatment T₁ was consistently higher than those treatments T₂ and T₃. Highest net benefit (Tk./ha) was obtained in treatment T₁ (290543) followed by (194079) and T₃ (34736) in that order, which is very similar study of Ahmed et al. (2010) and Belton et al. (2017).

Finally, it can be concluded that the survival, growth, production of *P. hypophthalmus* fry were inversely related to the different feeding ingredients and rich sustainable nursery management. Stocking density of 0.06 million hatchlings/ha feeding with egg yolk, mustard oil cake, nursery feed 1 US$ =Tk. 84.00; MAEP= Mymensingh Aquaculture Extension Project, BKB= Bangladesh Krishi Bank. Sale price of fry Tk. 1.60/piece (T₁), Tk. 1.50/piece (T₂) and Tk. 1.30/piece (T₃). and Tubifex Chop in treatment T₃ may be advisable for rearing of *P. hypophthalmus* fry for 21 days nursing. Production of adequate quality seeds through application of present findings might be extremely helpful towards the production and meet up daily dietary demand of general people.

Table 3: Cost and benefits from the nursing of thai pangas, *P. hypophthalmus* fry in 1 ha earthen ponds for a nursing period of 21 days.

Item	Amount TKha⁻¹day⁻¹	Remarks	
Total return (TR)	T₁	T₂	T₃
a. Variable cost:			
1. Price of hatchlings	120000	120000	120000
2. Feed (Tk. 100.00/kg)	55000	54000	46000
3. Fertilizer	2500	2500	2500
4. Human labour cost (Tk. 250.00/day)	5300	5300	5300
5. Chemicals	3000	3200	3300
6. Miscellaneous	2000	2000	2000
Total Variable cost (TVC)	187800	187000	179100
b. Fixed cost :			
1. Pond rental value	2000	2000	2000
2. Interest of operating capital	18780	18700	17910
Total fixed cost (TFC)	20780	20700	19910
Total cost (TC= TVC+TFC)	208580	207700	199010
Gross margin (GM= TR-TVC)	311323	214779	54646
Net return (TR-TC)	290543	194079	34736

Figures with different superscripts in the same row varied significantly ($P<0.05$). Figures in the parenthesis indicate range. 1 US$ =Tk. 84.00; MAEP= Mymensingh Aquaculture Extension Project, BKB= Bangladesh Krishi Bank. Sale price of fry Tk. 1.60/piece (T₁), Tk. 1.50/piece (T₂) and Tk. 1.30/piece (T₃).
ACKNOWLEDGEMENTS
The author acknowledges for the moral support of hatchery and nursery owners who help for successfully conducting the experiments.

REFERENCES
1. Ahmed N., Alam M. F. and Hasan M. R. (2010). The economics of sutchi catfish (Pangasianodon hypophthalmus) aquaculture under three different farming systems in rural Bangladesh. *Aquac. Res.* 41:1668-1683.

2. Ali H. and Haque M. M. (2011). Impacts of pangasius aquaculture on land use pattern in a selected area of Mymensingh district, Bangladesh. *J. Bangladesh Agric. Univ.* 169-178.

3. Ali H., Haque M. M. and Belton B. (2013). Striped catfish (Pangasianodon hypophthalmus, Sauvage, 1878) aquaculture in Bangladesh: an overview. *Aquac. Res.* 44:950-965.

4. Belton B. and Azad A. (2012). The characteristics and status of pond aquaculture in Bangladesh. *Aquaculture*. 196-204.

5. Belton B., Van Asseldonk I. J. M. and Thilsted S. H. (2014). Faltering fisheries and ascendant aquaculture: implications for food and nutrition security in Bangladesh. *Food Policy*. 44:77-87.

6. Belton B., Asseldonk I. J. M. V. and Bush S. (2017). Domestic crop booms, livelihood pathways and nested transitions: charting the implications of Bangladesh’s Pangasius boom. *J. Agrar. Chang.* 17(4):694-714.

7. Bhagde R. V., Pingle S. A., Bhoye M. R., Pansambal S. S. and Deshmukh D. R. (2020). A Comparative Study of Physico-Chemical Parameters of the Freshwater Ponds from Sangamner Taluka of Ahmednagar, Maharashtra, India. *International Journal of Biological Innovations*. 2(2): 137-142. https://doi.org/10.46505/IJBI.2020.2209.

8. Bhuiyan R. R. (1970). Physico-Chemical qualities of some ancient tanks of Sibsagar, *Assam. Environ. Health*. 12:129-134.

9. Boyd C. E. (1982). Water Quality Management for Pond Fish Culture. Elsevier, The Netherlands. 318p.

10. Brown M. E. (1957). Experimental studies on growth. In: *The physiology of fishes*. (Brown, M. E. ed), Vol. I: Academic Press, New York. 361-400 p.

11. Castell J. D. and Tiews K. (1980). A report of the EIFAC, IUNS and ICES Working Group on the Standardization of Methodology in Fish Nutrition Research, Hamburg, Federal Republic of Germany, 21-23 March, 1979, EIFAC Tech. Pap., 26p.

12. Chakraborty B. K., Miah M. I., Mirza M. J. A. and Habib M. A. B. (2006). Rearing and nursing of endangered sarpunti, *Puntius sarana* (Ham.) with tree supplementary feeds. *J. Asiat. Bangladesh, Sci.*, 32(1): 33-41.

13. Chakraborty B. K., Miah M. I., Mirza M. J. A. and Habib M. A. B. (2003). Rearing and nursing of local sarpunti, *Puntius sarana* (Hamilton) at different stocking densities. *Pakistan J. of Biological Sci.* 6(9): 797-800.

14. Chakraborty B .K., Shahroz M. H., Bhuiyan A. B., Bhattacharjee S. and Chattoraj S. (2019). Status of Indian major carps spawns in the Halda River along with marketing and economic condition of the Fishers and related collectors. *International Journal of Biological Innovations*. 1(2): 40 - 50 . https://doi.org/10.46505/IJBI.2019.1202.

15. Chiu Y. N., Sumagaysay N. S. and Sastrillo M. G. S. (1987). Effect of feeding frequency and feeding rate on the growth and feed efficiency of milk fish, *Chanos chaqnos* (Forskal) Juveniles. *Asian Fish. Sci.* 1: 27-31.

16. Clesceri L.S., Greenberg A.E. and Trussell R. R. (1989). Standard Methods of the Examination of Water and Wastewater (17th ed.). American Public Health Association, American Water Works Association and Water Pollution Control Federation, 1015 Washington D.C., USA 20036, 10-203.
17. Das I. and Ray A. K. (1989). Growth performance of Indian major carps *Labeo rohita* (Ham.) on duckweed incorporating pelleted feed: a preliminary study. *J. Inland Fish.* 21:1-6

18. De Silva S. S. and Davy F. B. (1992). Fish nutrition research system in Asia. *Asian Fish, Sci.* 5: 129-144.

19. Duncan D. B. (1955). Multiple range and multiple F-tests. *Biometrics.* 11: 1-42.

20. Gangadhara B., Nandeesha M. C., Varghese T. J. and Keshavanath P. (1997). Effect of varying protein and lipid levels on the growth of Rohu, *Labeo rohita*. *Asian Fish. Sci.* 2: 139-147.

21. Haque M. M., Rahman M. A. and Hossain M. M. (1993). Studies on the effect of stocking densities on the growth and survival of Mrigal (*Cirrhinus mirgala*) fry in rearing ponds. *Bangladesh J. Zool.* 21(1): 51-58.

22. Haque M. S., Wahab M. A., Wahid M. I. and Haq M. S. (1998). Impacts of a Thai silver barb (*Puntius gonionotus*, Bleeker) inclusion in the polyculture of carps. *Bangladesh J. Fish. Res.* 2: 15-22.

23. Hernandez R., Belton B., Reardon T., Hu C., Zhang X. and Ahmed A. (2018). The “quiet revolution” in the aquaculture value chain in Bangladesh. *Aquaculture.* 493: 456-468.

24. Islam A. K. M. S., Hossain M. M. M. and Chakraborty B. K. (1999). Growth performance of mirror carp fry fed on different supplementary diets. *Bangladesh J. Train. and Dev.* 12:161-165.

25. Islam M. S. (2002). Evaluation of supplementary feeds for semi-intensive pond culture of Mahaseer, *Tor putitora* (Hamilton). *Aquaculture.* 212: 263-276.

26. Jhingran V. G. (1991). Fish and Fisheries of India, 3rd edn. Hindustan Publishing Corporation, Delhi, India. 727p.

27. Jhingran V. G. and Pullin R. S. V. (1985). A hatchery manual for the common carp, Chinese and Indian majors carps. ICLARM studies and reviews, III. 191p.

28. Mollah M. F. A. (1985). Effects of stocking density and water depth on growth and survival of fresh water cat fish (*Clarias macrocephalus*) larvae. *Indian J. Fish.* 32: 1-17.

29. Phan L. T., Bui M. B., Nguyen T. T. T., Gooley G. J., Ingram B. A., Nguyen H. V., Nguyen P. T. and De Silva S. S. (2009). Current status of farming practices of striped catfish, *Pangasianodon hypophthalmus* in the Mekong Delta, Vietnam. *Aquaculture.* 296: 227-236.

30. Phuong N. T., Sinh L. X., Thinh N. Q., Chau H. H., Anh C. T. and Hau N. M. (2007). Economics of aquaculture feeding practices: Vietnam. In: Hasan, M.R. (Ed.), Economics of Aquaculture Feeding Practices in Selected Asian Countries, FAO Fisheries Technical Paper 505. Food and Agriculture Organization (FAO) of the United Nations, Rome, Italy. 183-205p.

31. Rahman M. R. and Rahman M. A. (2003). Studies on the growth, survival and production of calbasu (*Labeo calbasus* Ham.) at different stocking densities in primary nursing. *Bull. Fac. Sci., Univ. Ryuyus, Jpn.* 76: 245-255.

32. Sarker M. T. (2000). Pangus Chash Babastapan (Management of Pangus culture). A Fisheries Leaflet, Sheuli, Comilla Cantt., Comilla, Bangladesh (in Bengali).

33. Tripathi S. D., Dutta A., Sen Gupta K. K. and Pattra S. (1979). High density rearing of rohu spawns in village ponds. In: Symposium of Inland Aquaculture (Abstracts) February 12-13, 1979. CIFRI. Barrackpore, 14p.

34. Zar J. H. (1984). *Biostatistics.* Prentice-Hall, Inc. Englewood Cliffs, New Jersey, USA. 718 p.