A phylogeny of Cichlidogyrus spp. (Monogenea, Dactylogyridea) clarifies a host-switch between fish families and reveals an adaptive component to attachment organ morphology of this parasite genus
Françoise Messu Mandeng, Charles Bilong Bilong, Antoine Pariselle, Maarten Vanhove, Arnold Bitja Nyom, Jean-François Agnèse

To cite this version:
Françoise Messu Mandeng, Charles Bilong Bilong, Antoine Pariselle, Maarten Vanhove, Arnold Bitja Nyom, et al.. A phylogeny of Cichlidogyrus spp. (Monogenea, Dactylogyridae) clarifies a host-switch between fish families and reveals an adaptive component to attachment organ morphology of this parasite genus. Parasites and Vectors, BioMed Central, 2015, 8 (1), 10.1186/s13071-015-1181-y.
hal-01923290

HAL Id: hal-01923290
https://hal.archives-ouvertes.fr/hal-01923290
Submitted on 8 Dec 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
A phylogeny of *Cichlidogyrus* spp. (Monogenea, Dactylogyridae) clarifies a host-switch between fish families and reveals an adaptive component to attachment organ morphology of this parasite genus

Françoise D. Messu Mandeng¹, ⁷, Charles F. Bilong Bilong¹, Antoine Pariselle²⁸*, Maarten P. M. Vanhove³⁴⁵⁹, Arnold R. Bitja Nyom⁶ and Jean-François Agnèse²

Abstract

Background: Parasite switches to new host species are of fundamental scientific interest and may be considered an important speciation mechanism. For numerous monogenean fish parasites, infecting different hosts is associated with morphological adaptations, in particular of the attachment organ (haptor). However, haptoral morphology in *Cichlidogyrus* spp. (Monogenea, Dactylogyridae), parasites of African cichlids, has been mainly linked to phylogenetic rather than to host constraints. Here we determined the position of *Cichlidogyrus amieti*, a parasite of species of *Aphyosemion* (Cyprinodontiformes, Nothobranchiidae) in the phylogeny of its congeners in order to infer its origin and assess the morphological changes associated with host-switching events.

Methods: The DNA of specimens of *C. amieti* isolated from *Aphyosemion cameronense* in Cameroon was sequenced and analyzed together with that of *Cichlidogyrus* spp. from cichlid hosts. In order to highlight the influence of the lateral transfer of *C. amieti* on the haptoral sclerotised parts we performed a Principal Component Analysis (PCA) to compare the attachment organ structure of *C. amieti* to that of congeners infecting cichlids.

Results: *Cichlidogyrus amieti* was found to be nested within a strongly supported clade of species described from *Hemichromis* spp. (i.e. *C. longicirrus* and *C. dracolemma*). This clade is located at a derived position of the tree, suggesting that *C. amieti* transferred from cichlids to Cyprinodontiformes and not inversely. The morphological similarity between features of their copulatory organs suggested that *C. amieti* shares a recent ancestor with *C. dracolemma*. It also indicates that in this case, these organs do not seem subjected to strong divergent selection pressure. On the other hand, there are substantial differences in haptoral morphology between *C. amieti* and all of its closely related congeners described from *Hemichromis* spp.

(Continued on next page)
Conclusions: Our study provides new evidence supporting the hypothesis of the adaptive nature of haptor morphology. It demonstrates this adaptive component for the first time within Cichlidogyrus, the attachment organs of which were usually considered to be mainly phylogenetically constrained.

Keywords: Phylogeny, Lateral transfer, Cichlidogyrus amieti, Aphyosemion, Nothobranchiidae, Cichlidae, Cameroon, Africa

Background
Teleost fishes of the order Cyprinodontiformes, commonly called cyprinodonts, or rivulines, livebearers and killifishes [1–3], are well known ornamental fishes. American representatives like xiphos (Xiphophorus Heckel, 1848) and guppies (Poecilia Bloch & Schneider, 1801) have been adopted as model species featuring in an increasing number of laboratory studies [4–6]. This is also the case for some African representatives, such as species belonging to Nothobranchius Peters, 1868 [7–10]. They are also established models in ecology and evolutionary biology [11–16] and parasitology [17, 18]. Evolutionary-parasitological research on these fishes often deals with monogeneans, a species-rich clade of mostly ectoparasitic flatworms. Fish-monogenean systems are established models to study the evolution of host-parasite interactions (e.g. [19, 20]). A diverse fauna of gyrodactylid monogeneans has been described from cyprinodontiform hosts in both the Neotropics [21] and Africa [22]. The first dactylogyridean monogenean parasites from African cyprinodonts were described by Birgi and Euzet [23] on the gills of some species of Aphyosemion Myers, 1924 sampled in different localities [Kala, Zamakoe and Yaoundé (Central Region)] in Cameroon. Members of this fish genus in general inhabit narrow, shallow and slowly-flowing forest streams [3, 24]. One of these killifish monogenean species, Cichlidogyrus amieti Birgi & Euzet [23], was isolated from the gills of Aphyosemion cameronense (Boulenger, 1903) and Aphyosemion obscurum (Ahl, 1924), two related species [2]. This discovery raised questions regarding the specificity of species belonging to Cichlidogyrus Paperna [25]. Indeed, no representative of Cichlidogyrus had, at that time, ever been collected from a fish not belonging to Cichlidae [26]. Birgi and Euzet [23] therefore hypothesized that the presence of C. amieti on the above mentioned two African cyprinodonts was probably the result of a lateral transfer from cichlid fishes. Switches to new host species represent a substantial risk to, e.g., aquaculture and fisheries [27, 28]. They are also of fundamental scientific interest [20], e.g. in understanding disease transmission [29], host biogeography [30, 31] and the relationship between niche specialization and host range [32]. Several analyses on phylogeny and evolution of host specificity of the monogenean gill parasites of African cichlids have been conducted [33–36]. However, congeners infecting non-cichlids such as Cichlidogyrus amieti have not yet been included in these analyses. Hence the aspect of host-switching over larger phylogenetic distances was not looked into. Moreover, Pari selle et al. [19, 31] raised the question of the origin of Cichlidogyrus spp. described from cichlid hosts in Africa. Based on fossil, genetic and parasitic evidence, the authors hypothesized that cichlids may have originated from Madagascar [37, 38] after the Gondwanan split and subsequently dispersed over Africa, Central and South America, India and the Middle East across various marine pathways [31, 38–40]. In this case, these teleosts would have encountered salinities that resulted in the loss of their ectoparasitic monogeneans (probably representatives of Malagasy Insulacleidus Rakotofiringa & Euzet [41] or one of their ancestors) which show a poor tolerance to salinity and osmotic variations [31]. It is then likely that cichlids, after reaching the African continent, have been newly colonized by an ancestor of the species of Cichlidogyrus, presumably transferred from a currently unspecified African fish. From there, the ancestor of Cichlidogyrus evolved and specialized on members of Cichlidae [26], and became host-specific (i.e. oioxenous [42]). As C. amieti is known to infect representatives of Cyprinodontiformes, it could be possible that these fish represent the origin of the first host-switch to cichlids from which the present-day species-rich assemblage of Cichlidogyrus spp. on old world cichlids arose. Indeed, similar radiation episodes following a switch to a new host family have been identified in monogeneans, for example in Gyrodactylus [43]. In gyrodactylids, host-switching is even considered an important speciation mechanism [44]. It has been suggested for a range of monogeneans that colonization of different hosts is associated with morphological adaptations, in particular to the attachment organ ([45] and references therein). However, morphological analysis linked the structure of haptoral hard parts in Cichlidogyrus to phylogenetic rather than to host-related constraints [46]. Parasites belonging to Cichlidogyrus infecting non-cichlid hosts have never been taken into account in this context. Therefore, the influence of phylogenetically distant host-switches on haptoral morphology and speciation of Cichlidogyrus remains to be tested.
This paper therefore aims at determining the position of *C. amieti* in the phylogenetic tree of *Cichlidogyrus* spp. using molecular analyses. This will allow testing whether the putative switch between cyprinodonts and cichlids happened early in the history of *Cichlidogyrus*, seeding its radiation, or whether it rather represents a more recent event. If *C. amieti* is phylogenetically close to the species that first host-switched onto a cichlid, it should be situated close to the root of the tree of *Cichlidogyrus* spp. If *C. amieti* (or its ancestor) originated from a lateral transfer from a cichlid species, it should be closely related to a species of *Cichlidogyrus* found on that cichlid.

Determining the origin of *C. amieti* will also allow us to compare it morphologically to its closely related congers, hence assessing the changes associated with a host-switch between fish families.

Methods

Sample collection and PCR amplification

Specimens of *Aphyosemion* spp. from some forest streams of the central and southern plateau and the littoral plain of Cameroon were caught using a dipnet of 2 mm x 2 mm mesh size, and immediately transferred into an empty container for freezing or into 96° alcohol for fixation and conservation. In the laboratory, fishes were dissected; gills from both sides were removed, placed in glass Petri dishes and examined under a Wild dissecting microscope. Fish identifications were done following Amiet [2] and Sonnenberg [47]. The studied specimens of *Cichlidogyrus amieti* were collected from the gills of *A. obscurum* captured in the locality of Mbalong (03°33'54"N, 011°22'07"E, 695 m), *A. cameronense* from the localities of Oman II (03°37'45"N, 011°27'40"E, 720 m), Nkol Ngbwa (02°56'53"N, 011°50'07"E, 693 m) and Nkong (03°32'58"N, 011°25'00"E, 700 m) and *A. exiguum* from Nkong. They were individually placed in between slide and coverslip, in a drop of water and examined under a Leica DM2500 microscope equipped with a LEICA DFC425 video camera. Parasite identification was performed using the morphology and size of sclerotized parts of the attachment apparatus (haptor) and that of the genitalia (vagina and male copulatory organs) following the original description of Birgi and Euzet [23]. While some individuals were fixed and mounted in a mixture of glycerin and ammonium picrate [48] for further morphological study, three adult specimens (fixed alive together with the host and preserved in alcohol) were prepared for PCR amplification following the protocol of Marchiori et al. [49], i.e., directly without DNA extraction. Standard PCR was performed with two primers specific to the D1-D2 domain of the large subunit region (LSU) of the 28S ribosomal gene: C1 (forward; 5'-ACCCGCTGAATTTAAGCAT-3') and D2 (reverse; 5'-TGGTCCGTGTTTCAAGAC-3') [50]. The amplification protocol began with 2 min at 93 °C for initial denaturation followed by 40 cycles of 30 s at 93 °C, 30 s at 56 °C for annealing, 1 min 30 s at 72 °C for extension, with a final 5 min extension step at 72 °C. The different reagents’ final concentrations were as follows: GoTaq Flexibuffer (Promega) 1x, MgCl₂ 2.5 mM, PCR nucleotide mix, 0.2 nM of each DNTP, forward and reverse primers 1 μM each, GoTaq (Promega) DNA polymerase 2 U, template DNA 0.2 μg (between 1.6 and 3 μl depending on the DNA extract concentration), nuclease-free water to 20 μl. Sequencing was performed using the same primers as in initial PCR amplification: C1 and D2. Purification was performed with an Agencourt® AMPure® PCR purification kit following the manufacturer’s recommendations.

Sequence analyses

Sequences were aligned and improved manually using BioEdit version 5.09 [51]. Additional sequences obtained from GenBank were also included in the analysis (Table 1). Aligned sequences were analysed using Maximum Likelihood (ML), Maximum Parsimony (MP) and Minimum Evolution (ME) using MEGA (Molecular Evolutionary Genetics Analysis) version 5.1 [52]. Prior to analysis, an evolutionary model for ML and ME was selected by MEGA 5.1 using the Bayesian information criterion (BIC) [53]. Models with the lowest BIC scores are considered to describe the substitution pattern the best. Support for inferred clades was obtained in all three methods through non-parametric bootstrap [54] with 2000 replicates.

Principal Component Analysis (PCA)

A PCA, using Statistica 9, was performed with “standardised” measurements to avoid morphometrical differences possibly due to developmental stage of the examined parasite or the influence of temperature on the examined parasite or the influence of temperature on the size of the sclerites [55, 56]: i.e. the length of all sclerotized haptoral parts were divided by that of uncinuli pair II (= pair V sensu Mizelle [57]), which is supposed to keep its larval size (see [58]). The following characters were used in this analysis: total length of uncinuli I (I), III (VI), IV (VII), V (IV), VI (III), VII (II); dorsal transverse bar: total length, maximum width, distance between auricles and auricle length; ventral transverse bar: branch total length and maximum width; total length of (ventral and dorsal) anchor, and the length of their blade, shaft, guard and point. Ten specimens of each of the following species of *Cichlidogyrus* were considered: *C. cf. bychowskii* (Markevich [59]) (see remark below) collected on the gills of an *Hemichromis bimaculatus* Gill, 1862...
Table 1 List of monogenean species used in this study including their host species and accession numbers for the LSU 28S rDNA sequences

Parasite Species	Host Species	GenBank Accession Number
Cichlidogyrus aegypticus Ergens, 1981	Tilapia guineensis (Günther, 1862)	HQ010037
Cichlidogyrus amieti Birgi & Euzet, 1983	Aphyosemion cameronense (Boulenger, 1903)	KT945076
Cichlidogyrus amphoratus Pariselle & Euzet, 1996	Tilapia guineensis (Bleeker, 1862)	HE792272
Cichlidogyrus atranchanus Paperna, 1960	Tilapia guineensis (Günther, 1862)	HQ010022
Cichlidogyrus cinctus Paperna, 1964	Oreochromis niloticus (Linnaeus, 1758)	HE792277
Cichlidogyrus cubitus Dossou, 1982	Tilapia guineensis (Günther, 1862)	HQ010037
Cichlidogyrus digitatus Dossou, 1982	Tilapia guineensis (Günther, 1862)	HQ010023
Cichlidogyrus douelouae Pariselle, Bilong & Euzet, 2003	Sarotherodon galilaeus (Linnaeus, 1758)	HE792274
Cichlidogyrus dracolemma Rehulková, Mendlová & Šimková, 2013	Hemichromis letoumeusi Sauvage, 1880	HQ010027
Cichlidogyrus ergensi Dossou, 1982	Tilapia guineensis (Günther, 1862)	HQ010038
Cichlidogyrus falceifer Dossou & Birgi, 1984	Hemichromis fasciatus Peters, 1857	HQ010024
Cichlidogyrus halii (Price & Kirk, 1967)	Sarotherodon galilaeus (Linnaeus, 1758)	HQ010025
Cichlidogyrus longicirrus Paperna, 1965	Hemichromis fasciatus Peters, 1857	HQ010026
Cichlidogyrus njinei Pariselle, Bilong Bilong & Euzet, 2003	Sarotherodon galilaeus (Linnaeus, 1758)	HE792275
Cichlidogyrus pouyaudi Pariselle & Euzet, 1994	Tylochlamis intermedius (Boulenger, 1916)	HQ010039
Cichlidogyrus sclerosus Paperna & Thurston, 1969	Oreochromis niloticus (Linnaeus, 1758)	DQ157660
Cichlidogyrus tiberianus Paperna, 1960	Tilapia guineensis (Bleeker, 1862)	HE792276
Cichlidogyrus yanni Pariselle & Euzet, 1996	Tilapia guineensis (Bleeker, 1862)	HE792277
Haliotrema cromileptis Young, 1968	Epinephelus coioides (Hamilton, 1822)	EU523146.1
Haliotrema johnstoni Bychowsky & Nagibina, 1970	Upeneus luzonius Jordan & Seale, 1907	DQ157664.1
Ligophorus chabaudi Euzet & Souriau, 1977	Mugil cephalus Linnaeus, 1758	JN996833.1
Ligophorus cephalis Rubtsova et al., 2006	Mugil cephalus Linnaeus, 1758	JN996830.1
Tharacoleidus asoti (Yamaguti, 1937)	Parasilurus asotus (Linnaeus, 1758)	DQ157669.1
Tetrancistrum sp.	Siganus fuscescens (Houttuyn, 1782)	AF026114

(MRAC 74155-63 voucher specimen) from the Congo River at Bokalakala (2°08′00″S, 16°22′00″E) in the Democratic Republic of Congo; C. euzeti Dossou & Birgi [60] and C. longicirrus Paperna [61] on H. cf. elongatus from a small stream near Idenao (4°13′24″N, 8°59′18″E) (both) and Soo River on the road between Abang and Adja (3°19′21″N, 11°28′55″E) and Ossa Lake near Dizangué (3°46′43″N, 10°00′02″E) (respectively) in Cameroon; C. falcefer Dossou & Birgi [60] on H. fasciatus Peters, 1852 from Banjul on the Casamance River in the Gambia (13°26′51″N, 16°35′09″W); C. sanseoi Pariselle & Euzet [62] and C. teugelsi Pariselle & Euzet [62] both on H. fasciatus from a small stream near Kounoukou (4°49′37″N, 6°24′04″W) (misspelled Kounougou in the original description) in Ivory Coast. The voucher specimen of C. amieti we deposited in the invertebrate collection of the Royal Museum for Central Africa (Tervuren, Belgium) (MRAC 37784, host: A. cameronense, locality: Nkol Ngbwa) was used for supplementary observations.

Ethical approval

Fish were handled in respect with the Cameroon National Ethical Committee Reg. Num. FWAIRD 0001954.

Remark

Paperna [61] found and re-described on *Hemichromis bimaculatus* in southern Ghana, a species of *Cichlidogyrus* he named *C. bychowskii* only based on haptoral sclerotized parts morphology. Due to the fact that this was the only species already described on this cichlid, that Paperna did not know the morphology of its copulatory organ (no drawing in the original description and description done in Russian [59]), that the haptoral sclerotized parts are quite similar in all *Cichlidogyrus* spp. from hosts belonging to *Hemichromis*, and according to Rehulková et al. [63], we think that Paperna [61] confused the species of *Cichlidogyrus* living in Africa (Ghana) on *H. bimaculatus* with *C. bychowskii* described from a dead fish from the Leningrad aquarium [59]. The
latter parasite, which possesses a spirally coiled copulatory organ [63], has never been recovered from *H. bimaculatus* nor on the closely related *H. letourneuxi* in the wild in Africa. Then we consider that either Markevich’s identification of the host was wrong, or the parasite he described was laterally transferred from another cichlid host present in that aquarium. Consequently, *C. bychowskii*, of which neither type nor voucher specimens have been deposited in any museum, should be considered as a *numen nudum*. In this study the parasite species collected from *H. bimaculatus*, although morphologically related to *C. dracolemma* Řehulková et al. [63], does not necessarily belong to the latter parasite species which was described from *H. letourneuxi*. Pending genetic comparison, we therefore used *C. cf. bychowskii* to designate the parasites we collected from *H. bimaculatus* from the Congo River basin.

Results

Eleven species of *Aphyosemion* Myers, 1924 (Cyprinodontiformes, Nothobranchiidae) were captured: *Aphyosemion loennbergii* (Boulenger, 1903) (266 specimens), *A. koungueense* (Sonnenberg, 2007) (5 specimens), *A. omega* (Sonnenberg, 2007) (85 specimens), *A. riggenbachi* (Ahl, 1924) (18 specimens), *A. ahli* Myers, 1933 (86 specimens), *A. raddai* Scheel, 1975 (83 specimens), *A. exiguum* (Boulenger, 1911) (100 specimens), *A. amoenum* Radda & Pürzl, 1976 (71 specimens), *A. obscurum* (46 specimens), *A. cameronense* (133 specimens) and *A. batesii* (Boulenger, 1911) (61 specimens). The parasite *Cichlidogyrus amieti* was recovered from the gills of only three of them: *A. obscurum* captured in the locality of Mbalelon (2 worms), *A. cameronense* from the localities of Oman II (2 worms) and Nkol Ngbwa (23 worms), and *A. exiguum* from Nkong (3 worms). This is the first record of *C. amieti* on *A. exiguum*.

Phylogenetic analysis

A 827 base pair alignment for the 28S rDNA region of the nuclear genome was obtained after trimming the ends of each sequence. The three newly sequenced specimens of *C. amieti* have the same haplotype (GenBank accession number KT945076). This unique sequence was then aligned and compared to 17 other *Cichlidogyrus* sequences available in GenBank (Table 1). Sequences from other dactylogyridean representatives, namely *Tetrancistrum* sp., *Haliotrema cromileptis* Young [64], *H. johnstoni* Bychowsky & Nagibina [65], *Ligophorus chabaudi* Euzet & Suriano [66], *L. cephalii* Rubtsova et al. [67] and *Thaparocleidus asoti* (Yamaguti [68]) (Table 1), were used to root the tree.

A total of 445 variable sites were identified in the dataset, 327 of which were parsimony informative (i.e. shared
by at least two different sequences). The optimal model of sequence evolution was TN93 + G [69]. The G parameter indicates that non-uniformity of evolutionary rates among sites is modeled by using a discrete Gamma distribution. This model was used for the subsequent analysis. The three different methods used gave congruent results summarized in Fig. 1.

Relative to the outgroup taxa, all the species of *Cichlidogyrus* appeared grouped in a monophyletic assemblage supported by high bootstrap values (100, 86 and 99 % for ME, MP and ML respectively). *Cichlidogyrus pouyaudi* Pariselle & Euzet [70] occupied a basal position in this group (bootstrap values, 75, 71 and 67 %) being the sister species of all the other species of *Cichlidogyrus* as already observed by Mendlová et al. [35].

Four clusters with high bootstrap support were apparent. One cluster was made up of *C. ergensi* Dossou [71], *C. tiberianus* Paperna [25], *C. douellouae* Pariselle, Bilong & Euzet, [72], *C. aegypticus* Ergens [73], *C. arthracanthus* Paperna [25] and *C. cubitus* Dossou [71] (bootstrap values 81, 88 and 73 %). Another cluster was made up of *C. yanni* Pariselle & Euzet [74] and *C. digitatus* Dossou [71] (78, 79 and 77 %), a third one of *C. amphoratus* Pariselle & Euzet [74] and *C. sclerosus* Paperna & Thurston, [75] (98, 96 and 93 %) and the last one of *C. falcifer*, *C. longicirrus*, *C. dracolemma* and *C. amieti*. Within this last cluster, *C. falcifer* was the sister species of *C. longicirrus*, *C. dracolemma* and *C. amieti* (99, 96 and 94 %) while *C. longicirrus* was sister to *C. dracolemma* and *C. amieti* (98, 94 and 97 %). These four clusters were not supported by high bootstrap values. Three other species: *C. cirratus* Paperna [76], *C. njinei* Pariselle, Bilong & Euzet [72] and *C. halli* Price & Kirk [77] did not appear related to any group or species.

Principal Component Analysis (PCA)

The PCA analysis shows a well-defined clustering (64 % of variance on axes 1 and 2) of parasite individuals according to their respective host species (Fig. 2). The specimens of *C. cf. bychowskii* from *H. bimaculatus* are closer to those from *H. fasciatus s. l.* (*C. euzeti*, *C. falcifer*, *C. longicirrus*, *C. sanseoi* and *C. teugelsi*) than to the one collected from *Aphyosemion cameronense* (*C. amieti*), the latter been set apart regarding the two axes. The most represented variables and their coordinates on axis 1 are DA a (–0.95), DA b (–0.93), VA a (–0.93), VB x (–0.92) and I (–0.87); and VII [II] (–0.82), VI [III] (–0.75), III [VI] (–0.70) on factor axis 2 (Table 2).

![Fig. 2](image-url) **Fig. 2** Principal component analysis scatterplot of 10 *Cichlidogyrus* specimens of each of the following species. (euz) *C. euzeti* and (lon) *C. longicirrus* both from *Hemichromis cf. fasciatus* in Cameroon; (fal) *C. falcifer*, (san) *C. sanseoi* and (teu) *C. teugelsi* all from *H. fasciatus* in Senegal (fal) or Ivory Coast (san and teu); (byc) *C. cf. bychowskii* from *H. bimaculatus* in DRC; (ami) one specimen of *C. amieti* from *Aphyosemion cameronense* in Cameroon was used for supplementary observations.
Table 2 Loadings and explained variance of the first two PC of
the PCA conducted on the "standardized" size of sclerites

	Fact. 1	Fact. 2
Variance (%)	47.85	15.94
I (I)	−0.873132	−0.389889
III (VI)	−0.535295	−0.709933
IV (VII)	−0.352651	−0.638280
V (IV)	0.032798	−0.186986
VI (III)	−0.242397	−0.753181
VII (II)	−0.383708	−0.825743
DB L	−0.805421	−0.199626
DB y	−0.705113	−0.021445
DB w	−0.838653	0.044545
DB h	−0.797425	0.231792
DA a	−0.954211	0.212423
b	−0.935548	0.165900
c	−0.700350	0.015457
d	−0.864610	0.324455
e	−0.416238	0.547829
VB x	−0.926706	0.077698
VB w	−0.790515	0.033730
VA a	−0.931174	−0.004236
b	−0.933118	0.063475
c	−0.532477	−0.117323
d	−0.720919	0.190484
e	−0.586523	0.488463

Discussion

Origin and host range of Cichlidogyrus amieti

Cichlidogyrus is the most species-rich ectoparasitic dactylogyrid ean monogenean genus known to parasitize African cichlid fishes. Species are distributed among a wide range of cichlid hosts [33, 58, 78]. The description of C. amieti from the gills of representatives of Cynopo-dontiformes by Birgi and Euzet [23] raises the question whether a species from this fish order could have been the source host at the origin of the Cichlidogyrus radiation in cichlids (see theories on cichlid biogeography above). An alternative explanation is lateral parasite transfer from a cichlid to a killifish host.

Our phylogenetic reconstruction indicates that C. amieti is phylogenetically nested within the parasites from species of Hemichromis Peters, 1857 at a derived position of the tree. Although we cannot rule out incomplete taxon coverage of Central West African Cichlidogyrus, the present results suggest that C. amieti results from a recent transfer from cichlids to nothobranchiids. That is in accordance with the Birgi and Euzet [23] hypothesis. Such lateral transfer or host-switch can occur between related host species [31, 33, 79], but even between phylogenetically distant host species, both in artificial and natural conditions [19, 20, 80–84].

Aphyosemion spp. inhabit small forest streams [2, 3] where they live in sympatry with Hemichromis spp., Bilong Bilong [85], based on morphological features, already hypothesized that C. amieti could derive from Hemichromis' monogenes.

Birgi and Euzet [23] reported that C. amieti was restricted to A. cameronense and A. obscurum, two species belonging to the same lineage (i.e. the A. cameronense group), but differing from one another by their biology and the fact that they are never found together in the same biotope [2]. In this study, C. amieti was also collected from A. exiguum, a species that does not belong to the A. cameronense group. This new host record can be explained by the sympatry of A. exiguum and A. cameronense or A. obscurum and by the relative phylogenetic proximity of these fish species (compared to the phylogenetic distance between species of Aphyosemion and Hemichromis).

Influence of host-switching on haptoral and reproductive morphology

While the morphology and size of the sclerotized parts of the haptor and copulatory organs of species of Dactylogyrus Diesing, 1850 [86], Anacanthorhys Mizelle & Price, 1965 [87] or other genera are subject to distinct selective constraints [88–90], for Cichlidogyrus spp. these sclerotized parts seem to be mostly shaped by phylogenetic constraints [33, 35, 46]. In this case, the haptoral sclerite morphology is more suitable for inferring phylogenetic relationships, while the morphology of the reproductive organs is more useful for species-level identification, probably because of its faster evolutionary change [33, 35, 46]. In fact, for a given host species, the constraints on the haptor sclerites aim to harmonize their morphologies (adapted to attach to the specific host's gills), when those on the reproductive organs aim to make their morphologies mechanically incompatible, so profoundly different (leading to their reproductive isolation) (see Figs. 3 and 4).

Working on species of Dactylogyrus, Šimková et al. [91] stated that congeneric monogenean species occupying similar niches tend to have similar attachment organs. This resemblance is due to the fact that they are subject to the same considerable selective pressure imposed by the microhabitat within the host, possibly the Gill morphology...
When these parasites occur on different host species, their attachment organs tend to differ from each other in their morphology and/or size, because different host species may have different gill structures. As pointed out by Šimková et al. [91], the morphology of the haptor is therefore an important adaptation of parasites to their hosts (host specificity) and to specific sites within their hosts (niche preference).

The phylogenetic tree obtained in this study (Fig. 1) suggests that *C. amieti* clusters within the monophyletic group already proposed by Mendlová et al. [34] and Řehulková et al. [63], made up of *C. longicirrus*, *C. dracolemna* and *C. falcifer*, all of them parasitizing *Hemichromis* spp.. The *Cichlidogyrus* spp. that parasitize *Hemichromis* spp. have a highly homogenous configuration of their haptoral sclerotized parts (group B in Vignon et al. [46]): very large first pair and small pairs III to VII of marginal hooks (= pairs II-III-IV and VI-VII sensu Mizelle [57]) combined with short auricles that are continuous with the dorsal surface of the dorsal transverse bar (Fig. 3a, b, c and d); this morphological relationship is also well supported by the PCA analysis (Fig. 2). In contrast, in *C. amieti* all marginal hooks are of similar small size including pair I (group A in Vignon et al. [46]) (Fig. 3e); this difference is also highlighted by our PCA results where this species is set apart regarding the two axes from all the other ones parasitizing *Hemichromis* spp. (Fig. 2). Therefore we hypothesize that, as soon as the ancestor of *C. amieti* (with group B morphology of its haptoral sclerites) colonized a species of

![Fig. 3](image-url)
Aphyosemion, selective pressures lead to a substantial morphological change in the haptoral sclerites, the most visible being the drastic reduction of the size of marginal hook pair I (Fig. 3 arrows). Vignon et al. [46], focusing on the same monogenean genus, did not find any evidence of host-related adaptation of the haptor morphology. However, these authors only considered Cichlidogyrus spp. infecting cichlids. The present study, considering also a more distant host-switch, provides new evidence supporting the hypothesis of the adaptive nature of haptor morphology also within Cichlidogyrus in accordance with studies on other monogeneans by Morand et al. [97, 98], Huyse and Volckaert [99] and Bush et al. [100].

Rohde and Hobbs [101] and Šimková et al. [91] showed that congeneric parasite species living in the same niche presented differences in the morphology or size of their reproductive organs, as a result of random differentiation, which made possible their coexistence according to the hypothesis of reinforcement of reproductive barriers by mate discrimination [102–104]. This is the case for Cichlidogyrus spp. harbored by Hemichromis spp., which are well differentiated from each other by the morphology or size of their reproductive organs (Fig. 4a, b, c and d). Regarding the male copulatory organ (MCO) of C. amieti, we notice that it presents a tubular filiform single-looped penis without swollen portion and with a well-developed heel, and a sharply curved accessory piece with rounded ending [23, 58] (Fig. 4e). It resembles C. dracolemma (Fig. 4e) as pointed out by Řehulková et al. [63]. Therefore we may assume that C. dracolemma or a close relative was transferred from a species of Hemichromis to an Aphyosemion. This suggestion is strongly supported by the close phylogenetic relationship between these two parasite species (Fig. 1). Finally, the specialization of these two parasite species on phylogenetically distant hosts (i.e. cichlid and killifish species) prevented their hybridization, thus explaining why their MCO morphologies have not been affected by selective pressure and thus did not substantially diverge.

Conclusion

Phylogenetic analysis suggests that C. amieti results from a recent host-switch from a cichlid species belonging to Hemichromis. The fact that the haptoral hard parts of C. amieti are of a different morphotype than those of its closely related congeners infecting Hemichromis spp., is the first proof, within Cichlidogyrus, of an adaptive component to haptoral morphology influenced by transfer to a new host. Previously, haptoral morphology of Cichlidogyrus was considered to be mainly phylogenetically constrained. The changes in the haptoral elements after the host-switching event are in stark contrast to the similarity in male genital morphology to the parasites of representatives of Hemichromis. As genital differentiation between monogenean species is thought to be linked to reinforcement of parasite genetic isolation within the same host species, we suggest this similarity is a consequence of C. amieti having speciated as a result of host-switching. This study underscores the potential of Cichlidogyrus as a model to test the influence of ecology and evolution on parasite speciation [19, 78]. The fact that the adaptive component of haptoral morphology of Cichlidogyrus was not
inferred when including only species infesting cichlids, also demonstrates the importance of including the full phylogenetic or host range of a parasite clade to reconstruct its speciation mechanisms.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Conceived and designed the experiments: FMM CBB AP JFA. Performed the experiments: FMM CBB AP JFA. Analyzed the data: FMM CBB AP JFA MP MV ARBN. Contributed reagents/materials/analysis tools: FMM AP JFA ARBN. Wrote the paper: FMM CBB AP JFA MP MV ARBN. All authors read and approved the final version of the manuscript.

Acknowledgements
This work was partially funded (2013) by the representation of IRD (Institut de Recherche pour le Développement) in Cameroon through the project « Programme Pilote Régional: Forêt Tropicale Humide d’Afrique Centrale » (PPR FT4-AO). MP MV is supported by the Czech Science Foundation, Project no. P505/12/G112 (European Centre of Ichthyoparasitology (ECIP) – Centre of excellence). Sequences were produced through the technical facilities of the Centre Méditerranéen Environnement Biodiversité (CeMEB). Authors want to thank W. Boeger and the two anonymous referees for their input to the revised version of the manuscript. This is publication 15-2013 SUD.

Author details
1Laboratory of Parasitology and Ecology, Faculty of Sciences, University of Yaoundé 1, BP 812 Yaoundé, Cameroon. 2Institut des Sciences de l’Évolution, IRD UMR 226, CNRS UMR 5554, Université de Montpellier, CC 63, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France. 3Biological Department, Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080 Tervuren, Belgium. 4Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37 Brno, Czech Republic. 5Department of Biology, Laboratory of Biodiversity and Evolutionary Genomics, University of Leuven, Charles Debießrotsaart 32, B-3000 Leuven, Belgium. 6Department of Biological Sciences, University of Ngaoundéré, BP 454 Ngaoundéré, Cameroon. 7Present address: Department of Biological Sciences, Higher Teacher Training College, University of Yaoundé 1, P.O. Box 47, Yaoundé, Cameroon. 8Present address: Department of Botany, Zoology, Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37 Brno, Czech Republic. 9Present address: Higher Teacher Training College, University of Yaoundé 1, P.O. Box 47, Yaoundé, Cameroon. 10Present address: Capacities for Biodiversity and Sustainable Development, Operational Directorate Natural Environment, Royal Belgium Institute of Natural Sciences, Vautierstraat 29, B-1000 Brussels, Belgium.

Received: 18 May 2015 Accepted: 29 October 2015

Published online: 10 November 2015

References
1. Parenti LR. A phylogenetic and biogeographic analysis of cyprinodontiform fishes (Teleostei, Atherinomorpha). Bull American Mus Nat Hist. 1981;68:335–557.
2. Amiet JL, Faune du Cameroun, 2: Le genre Aphyosemion Myers (Pisces, Teleostei, Cyprinodontiformes). Complègne Sciences Nat, 1987.
3. Stiassny MLJ, Teugels GG, Hopkins CD. Poissons d’eaux douces et eaux saumâtres de basse Guinée, ouest de l’Afrique centrale. vol. 2. Paris: IRD, MNHN, MRAC; 2007.
4. Basilio AL, Wagner JR WE. Covariation between predation risk, body size and fin elaboration in the green swordtail, Xiphophorus helleri, Biol J. Linn Soc. 2000;68:83–100.
5. Reznick D, Bryan M, Holmes D. The evolution of senescence and post-reproductive lifespan in Guppies (Poecilia reticulata). PLoS Biol. 2006;4:136–43.
6. Dargent F, Scott ME, Hendry AP, Fussmann GF. Experimental elimination of parasites in nature leads to the evolution of increased resistance in hosts. Proc Roy Soc B. 2013;280:20132371.
7. Genade T, Benedetti M, Terzibasi E, Foncaglia P, Valenzano DR, Cattaneo A, et al. Annual fishes of the genus Nothobranchius as a model system for aging research. Aging Cell. 2005;4:223–33.
8. Valenzano DR, Terzibasi E, Cattaneo A, Domencic L, Cellerino A. Temperature affects longevity and age-related locomotor and cognitive decay in the short-lived fish Nothobranchius furzeri. Aging Cell, 2006;5:275–8.
9. Terzibasi E, Lefrancia C, Domencic P, Hartmann N, Graf M, Cellerino A. Effects of dietary restriction on mortality and age-related phenotypes in the short-lived fish Nothobranchius furzeri. Aging Cell, 2009;8:88–99.
10. Cellerino A, Valenzano DR, Reichard M. From the bush to the bench: the annual Nothobranchius fishes as a new model system in Biology, Bioi. Rev. 2015;doi: 10.1111/bvr.12183.
11. Reznick DN, Endler JA. The impact of predation on life history evolution in Trinidadian guppies (Poecilia reticulata). Evolution. 1982;36:125–48.
12. Reznick DN, Shaw FH, Rodd FH, Shaw RG. Evaluation of the rate of evolution in natural populations of guppies (Poecilia reticulata). Science. 1997;275:1934–7.
13. van Oosterhout C, Trigg RE, Carvalho GR, Maguran AE, Hauser L, Shaw PV. Inbreeding depression and genetic load of sexually selected traits: how the guppy lost its spots. J Evol Biol. 2003;16:273–81.
14. van Oosterhout C, Joyce DA, Cummings SM. Evolution of MHC class IIB in the genome of wild and ornamental guppies, Poecilia reticulata. Heredity. 2006;97:111–8.
15. Bartáková V, Reichard M, Jankó K, Poláčik M, Blázk K, Reichwald K, et al. Strong population genetic structuring in an annual fish, Nothobranchius furzeri, suggests multiple savannah refugia in southern Mozambique. BMC Evol Biol. 2013;13:196.
16. Pirceel T, Vanschoenwinkel B, Deckers P, Grégoir A, Ver Eecke T, Barends L. Early and late developmental arrest as complementary embryonic beth-hedging strategies in African killifish. Biol. J. Linn. Soc. 2015;doi: 10.1111/bij.12474.
17. Cable J, van Oosterhout C. The role of innate and acquired resistance in two natural populations of guppies (Poecilia reticulata) infected with the ectoparasite Gyrodactylus tumbull. Biol J Linn Soc. 2007;90:547–55.
18. King TA, van Oosterhout C, Cable J. Experimental infections with the tropical monogenean, Gyrodactylus bulliustioudi potential invader or experimental fluke? Parasitol Int. 2009;58:249–54.
19. Parisselle A, Morand S, Deveney M, Pouyaud L. Species richness of closely related hosts: historical scenario and “genetic” hypothesis. In: Combes C, Jourdane J, editors. Taxonomy, Ecology and Evolution of Meta zoan Parasites. Peripignan: Presses de l’Université de Perpignan; 2003. p. 147–66.
20. Vanhove MPN, Huyse T. Host-specificity and species-jumps in fish-parasite systems. In: Morand S, Krasnov B, Littlewood DTJ, editors. Parasite diversity and diversification: evolutionary ecology meets phylogenetics. Cambridge: Cambridge University Press; 2015. p. 401–19.
21. Cable J, van Oosterhout C, Baron N, Harris PD. Gyrodactylus pictor n. sp. (Monogenea: Gyrodactylidae) from the Trinidadian swamp guppy Poecilia pictor Regan, with a discussion on species of Gyrodactylus from von Nordmann, 1832 and their poeciliid hosts. Syst Parasitol. 2005;60:156–73.
22. Birgi E, Euzet L. Monogélines parasites des poissons des eaux douces du Cameroun. Présence des genres Cichlagonius et Dactylogyrus chez Aphyosemion (Cyprinodontidae). Bull Soc Zool Fr. 1982;108:1–6.
23. Broset A. Le peuplement des Cypripodontes du bassin de l’Indrion. Gabon Rev Ecol (Terre Vie). 1982;26:233–92.
24. Paperna I. Studies on Monogenean Trematodes in Israel. 2 Monogenean Trematodes of Cichlids. Bamidgeh. Bull Fish Cult Israel. 1960;8:220–33.
25. Paperna I. Monogenea of inland water fish in Africa. Ann Mus Roy Afri Cent – Sci Zool. 1979;22:131–131. Serie en 8°.
26. Bauer GN. Spread of parasites and diseases of aquatic organism by acclimatization: a short review. J Fish Biol. 1991;39:679–86.
27. Bakke T, Harris P, Cable J. The biology of gyrodactylid monogeneans: the “Russian-doll Killers”. Adv Parasitol. 2007;64:161–376.
28. Cooper N, Griffin R, Franz M, Omotayo M, Nunn CL. Phylogenetic host specificity and understanding parasite sharing in primates. Ecol Lett. 2012;15:1370–7.
29. Barson M, Pikrylová I, Vanhove MPN, Huyse T. Parasite hybridization in African Macronogo dactylus spp. (Monogenea, Platyhelminthes) signals historical host distribution. Parasitology. 2010;137:1585–95.
30. Pariisse A, Boeger WA, Sneeks J, Bilong Bilong CF, Morand S, Vanhove MPN. The monogenean parasite fauna of Cichlids: a potential tool for host biogeography. Int. J. Evol. Biol. 2011;doi:10.4061/2011/471480.
Paperna, 1960

Cichlidogyrus

Tylochromis jentinki

(Pisces, Gadus (Teleostei) from the Mediterranean basin. J Parasitol.

Haliotrema

Johnston and Tiegs, 1922

Cichlidogyrus

(2015) 8:582

(Monogenea: Dactylogyridae) on Paperna, 1960

n. g. (Monogenea, Ancyrocephalidae)

L. in the Oslo Fjord, Norway. Syst Parasitol. 1996;33:199–207.

Mizelle JD. New species of trematodes from the gills of Illinois fishes. Am. Midl Nat. 1956;77:85–86.

Paperna A, Euzet L. Systematic revision of dactylogyridean parasites (Monogenea) from cichlid fishes in Africa, the Levant and Madagascar. Zoosys. 2009;31:849–98.

Markevich AP. Parasitic diseases of fish and their control. Publ. Keiz. Leningrad. 1934–100. in Russian.

Dossou C, Birgi E. Monogenes parasites d’Hémichromis fasciatus Peters, 1857 (Teleostei, Cichlidae). Ann Sci Nat Zool. 1986;1:101–9. Paris.

Paperna I. Monogenetic Trematodes collected from fresh water fish in southern Ghana. Samidge, Bull Fish Cult. 1965;17:107–15. Israel.

Paperna A, Euzet L. Two new species of Cichlidogyrus Paperna, 1960 (Monogenea, Ancyrocephalidae) parasite d’Hémichromis fasciatus Peters, 1858 in Africa, with remarks on parasite geographical distribution. Parasite. 2004;11:559–64.

Rehulka E, Mendlov M, Šmídková A. Two new species of Cichlidogyrus (Monogenea Dactylogyridae) parasitizing the gills of African cichlid fishes (Percomorpha) from Senegal. Morphometric and molecular characterization. Parasitol Res. 2013;112:1399–410.

Young PC. Ten new species of Halotrema Johnston and Tieg, 1922 (Monogenea Dactylogyridae) from Australian fishes and a revision of the genus. J Zool. 1968;154:41–75. London.

Bychowsky BE, Nagibina LF. Ancyrocephalinae (Monogenea, Dactylogyridae) from the sea fishes of the family Pomadasyidae. An Inst Biol Uni Naci Autón Méx Ser Zool. 1970;108:1–14.

Euzet L, Sunancio DM. Ligophorus n. g. (Monogenea, Ancyrocephalidae) parasite des Mugilid (Téleostéens) en Méditérranée. Bull Mus Nat Hist Nat. 1977;47:99–82. Paris.

Rubtsova NY, Balbuena JA, Sarabev VL, Blasco-Costa I, Euzet L. Description and morphological variability of a new species of Ligophorus and Ligophorus chabaudi (Monogenea: Dactylogyridae) from Mugil cephalus (Teleostei) from the Mediterranean basin. J Parasitol. 2006;92:486–95.

Yamaguti S. Studies on the helminth fauna of Japan. Part 19. Fourteen new ectoparasitic trematodes of fishes. Kyodo, Japan. Published by the author. 1937:1–28.

Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 1993;10:512–6.

Paperna A, Euzet L. Three new species of Cichlidogyrus Paperna, 1960 (Monogenea, Ancyrocephalidae) parasitic on Lycichromis jeniti (Steindachner, 1895) (Pisces, Cichlidae) in West Africa. Syst Parasitol. 1994;29:225–9. Paris.

Dossou C, Birgi E, Euzet L. Four new species of Cichlidogyrus Paperna, 1960 (Monogenea, Ancyrocephalidae) from Mugilidae) in southern Brazil. Folia Parasitol. 2015;62:024. doi:10.14411/fp.2015.024.

Wu XY, Chilton NB, Zhu XQ, Xie MQ, Li AX. Molecular and fossil evidence place the origin of cichlid fishes long after the Miocene-Pliocene boundary. Mol Phylogenet Evol. 2005;34:299–305.

Marchioni N, Paperna A, Euzet L. A new species of Cichlidogyrus (Monogenea, Ancyrocephalidae) from a species of Bathybatinae (Teleostei, Cichlidae). Acta Zool. 2013;94:215–22.

Marchioni N, Pariselle A, Bilong Bilong CF, Euzet L. Four new species of Cichlidogyrus (Monogenea, Ancyrocephalidae) from Mugilidae) in southern Brazil. Folia Parasitol. 2015;62:024. doi:10.14411/fp.2015.024.

Vignon M, Pariselle A, Vanhove MPM. Modularity in attachment organs of African Cichlidogyrus (Ancyrocephalidae): gill parasites from West African Cichlidae (Teleostei), with a redescription of Paperna, 1960 (Monogenea, Ancyrocephalidae). Evolution. 2005;59:444–58.

Boeger WA, Kritsky DC, Pie MR. Context of diversification of the Actinopterygi (Labeiformes). Bio Rev Soc. 2013;2820131373.

Rakotofinga S, Euzet L. Monogènes parasites de Cichlidae (Teleostei) en Madagascar. Bull Soc Zool Fr. 1981;108:1–14.

Euzet L, Combé C. Les problèmes de l’espèce chez les animaux parasites. Mém Soc Zool Fr. 1980;40:299–395.

Vences M, Freyhof J, Sonnenberg R, Kosuch J, Veith M. Reconciling fossils and molecules: Cenozoic divergence of cichlid fishes and the biogeography of Madagascar. J Biogeogr. 2001;28:1091–9.

Friedman M, Keck BP, Dornburg A, Eyta RI, Martin CH, Hulsey CD, et al. Evolution of the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 1993;10:512–6.

Grönnov M, Skadhage H, Petersen N. Monogeneans associated with African Cichlidae (Teleostei, Cichlidae): reduced host-specificity in a fish parasite genus Gymodactylus (Monogenea, Ancyrocephalidae). Acta Zool. 2013;94:215–22.

Marchioni N, Pariselle A, Bilong Bilong CF, Euzet L. Four new species of Cichlidogyrus (Monogenea, Ancyrocephalidae) from Mugilidae) in southern Brazil. Folia Parasitol. 2015;62:024. doi:10.14411/fp.2015.024.

van der Meeren C, Euzet L. Three new species of Cichlidogyrus Paperna, 1960 (Monogenea, Ancyrocephalidae) from Mugilidae) in southern Brazil. Folia Parasitol. 2015;62:024. doi:10.14411/fp.2015.024.

Wu XY, Chilton NB, Zhu XQ, Xie MQ, Li AX. Molecular and fossil evidence place the origin of cichlid fishes long after the Miocene-Pliocene boundary. Mol Phylogenet Evol. 2005;34:299–305.

Marchioni N, Pariselle A, Bilong Bilong CF, Euzet L. Four new species of Cichlidogyrus Paperna, 1960 (Monogenea, Ancyrocephalidae) from Mugilidae) in southern Brazil. Folia Parasitol. 2015;62:024. doi:10.14411/fp.2015.024.

van der Meeren C, Euzet L. Three new species of Cichlidogyrus Paperna, 1960 (Monogenea, Ancyrocephalidae) from Mugilidae) in southern Brazil. Folia Parasitol. 2015;62:024. doi:10.14411/fp.2015.024.

Wu XY, Chilton NB, Zhu XQ, Xie MQ, Li AX. Molecular and fossil evidence place the origin of cichlid fishes long after the Miocene-Pliocene boundary. Mol Phylogenet Evol. 2005;34:299–305.
specificity in the deepwater realm? In: Koblmüller S, Albertson RC, Genner MJ, Seuf KM, Takashahi T, editors. Advances in cichlid research: Behavior, ecology and evolutionary biology. Hydrobiologia. 2015;748:99–119.

79. Bilong Bilong CF, Birgi E, Euzet L. Enteorganus barombiensis n. sp. (Monogenea, Ancyrocephalidae) parasite stomacal de trois Cichlidae endémiques du Lac du cratère Barombi Mbo (Cameroun). Ann Parasitol Hum Comp. 1991;6:105–8.

80. Kaneko II JJ, Yamada R, Brock JA, Nakamura RM. Infection of tilapia, Oreochromis mossambicus (Trevallus), by a marine monogenean, Neobenedenia mellenii (MacCallum, 1927) Yamaguti, 1963 in Kanohe Bay, Hawaii, USA, and its treatment. J Fish Dis. 1988;11:295–300.

81. Cable J, Scott ECG, Tinsley RC, Harris PD. Behavior favoring transmission in the viviparous monogenean Gyrodactylus turnbulli. J Parasitol. 2002;88:183–4.

82. Huyse T, Audenaert V, Volckaert FAM. Speciation and host-parasite relationships in the parasite genus Gyrodactylus (Monogenea, Platylemminthes) infecting gobies of the genus Pomatoschistus (Gobidae, Teleostei). Int J Parasitol. 2003;33:1679–89.

83. Parielle A, Bitja Nyom AR, Bilong Bilong CF. Checklist of the ancyrocephalids (Monogenea) parasitizing Tilapia species in Cameroon, with the description of three new species. Zootaxa. 2013;3599:78–86.

84. Pérez-Ponce de Léon G, Coudhury A. Biogeography of helminth parasites of freshwater fishes in Mexico: the search for patterns and processes. J Biogeogr. 2003;32:645–59.

85. Bilong Bilong CF. Les Monogènes parasites des poissons d’eau douce du Cameroun : biodiversité et spécificité; biologie des populations inféodées à Hemichromis fasciatus. Thèse de Doctorat d’État, Université de Yaoundé I, Yaoundé, Cameroun. 1995.

86. Diesing KM. Systema helminthum. Vol. 1. Vindobonae: Braumfiller W; 1850.

87. Mizelle JD, Price CE. Studies on monogenetic Trematodes. XXVIII. Gill parasites of the Piranha with proposal of Ancanthurus gen. n. J Parasitol. 1965;51:30–6.

88. Guégan JF, Lambert A. Twelve new species of dactylogyrids (Platylemminthes, Monogenea) from West African barbels (Teleostei, Cyprinidae), with some biogeographical implications. Syt Parasitol. 1990;17:153–81.

89. van Every LR, Kritsky DC. Neotropical Monogenoidea. 18. Analytical review: the family. J Parasitol. 1991;77:255–63.

90. El Gharbi S, Lambert A, Berrebi P. Le genre Dactylogyridae (Platyhelminthes) infecting gobies of the genus Hemichromis (Acanthuridae) in the northern and southern Mediterranean Sea. J Ethol. 1993;13:223–6.

91. Šimková A, Ondrašková M, Gelnar M, Morand S. Morphology and coexistence of congeneric ectoparasites: an example of a new species of Gyrodactylus (Monogenea: Gyrodactylidae) infesting goby fish. J Parasitol. 2004;90:1111–9.

92. Šimková A, Morand S. Co-evolutionary patterns in congeneric monogeneans: a review of Dactylogyridae species and their cyprioid hosts. J Fish Biol. 2008;73:2210–27.

93. Mancheva K, Karavaneva E, Atanasov G, Stoianovski S, Nedeva I. Analysis of the influence of the host body size on morphometrical characteristics of Ancylodiscoides silus and Ancylodiscoides vistulensis. Biotechnol Bioprocess Equip. 2009;23:375–41.

94. Poisot T, Desdevises Y. Putative speciation events in Lamellodiscus (Monogenea: Diplectanidae) assessed by a morphometric approach. Biol J Linn Soc. 2002;76:125–35.

95. Rohde K, Rohde P. The ecological niches of parasites. In: Rohde K, editor. The ecological niches of parasites. In: Rohde K, editor. In: Rohde K, Hobbs R. Species segregation: Competition of reinforcement of reproductive barriers? In: Cremin M, editor. Parasite lives. Papers on parasites, their hosts and their associations to honour JFA Sprent. St. Lucia: University of Queensland Press; 1986. p. 189–99.

96. Poisot T, Desdevises Y. Putative speciation events in congeneric ectoparasites: reinforcement of reproductive isolation? Biol J Linn Soc. 2002;76:125–35.

97. Rohde K, Malmberg G. Molecular and morphological comparisons between Gyrodactylus ostendicus n. sp. (Monogenea: Gyrodactylidae) on Pomatoschistus microps (Krøyer) and G. harengus harengus n. sp. (Gyrodactylidae, Monogenea). Int J Parasitol. 2002;32:907–19.