A SARS-CoV-2 Microscopic Image Dataset with Ground Truth Images and Visual Features

Chen Li1, Jiawei Zhang2*, Frank Kulwa1, Shouliang Qi1, and Ziyu Qi2

1 Microscopic Image and Medical Image Analysis Group, MBIE College, Northeastern University, Shenyang, 110169, China
lichen201096@hotmail.com, 1971087@stu.neu.edu.cn, frank.kulwa@gmail.com, qisl@bmie.neu.edu.cn

2 School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
qi.ziyu@outlook.com

Abstract. SARS-CoV-2 has characteristics of wide contagion and quick velocity of propagation. To analysis the visual information of it, we build a SARS-CoV-2 image dataset with 48 electron microscopic images and also prepare their ground truth images. Furthermore, we extract multiple classical features and novel deep learning features to describe the visual information of SARS-CoV-2. Finally, it is proved that the visual features of the SARS-CoV-2 images which are observed under the electron microscopic can be extracted and analysed.

Keywords: SARS-CoV-2 · Image Dataset · Visual Features · Ground Truth Image · Classical Feature Extraction · Deep Learning Feature Extraction

1 Introduction

It is reported that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) breaks out since the end of December in 2019[8]. More than 2,100,000 people have been infected around the world till April 17th, 2020[17], which becomes a global malignant epidemic.

A novel coronavirus was detected for the first time in the laboratory in January 7th, 2020, and the whole genome sequence of the virus was obtained. The first 15 positive cases of novel coronavirus were detected by nucleic acid detection and the virus was separated from one positive patient and observed under an electron microscope. The detection of pathogenic nucleic acid was completed in January 10th, 2020. The first novel coronavirus with the electron microscopic images in China were successfully separated from the Center for Disease Control and Prevention (CDC) in January 24th, 2020. Novel coronavirus nucleic acids were detected in 33 samples from China’s CDC in January 26th, 2020, and

* Cofirst author: Jiawei Zhang.
virus was successfully separated from positive environmental samples. SARS-CoV-2 outbreak was announced as a public health emergency of international concern (PHEIC) by the World Health Organization (WHO) in January 30th, 2020. It was officially named as COVID-19 (corona virus disease 2019) by WHO in February 11th, 2020. The International Committee on Taxonomy of Viruses (ICTV) has named the virus as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) [6].

Coronavirus is a kind of plus-strand RNA virus, which can infect many mammals including human beings and can cause cold and some other serious diseases such as Middle East Respiratory Syndrome (MERS) and Severe Acute Respiratory Syndrome (SARS) [4]. The SARS-CoV-2 is a novel coronavirus that has never been found in human body. The SARS-CoV-2 is highly infectious and mainly transmitted through close contact and respiratory droplets. Besides, the severe patients may die [15]. The main symptom of human infection is respiratory disease, accompanied by fever, cough and may cause viral pneumonia [1]. There is no effective medicine developed up to now. Because of the rapid mutation of RNA coronavirus and lack of efficient medicine, there are mainly two methods to confirm the case, the first is detecting the positive nucleic acid of coronavirus by using RT-PCR, the other one is the high homology between the results of the virus gene sequence and the known SARS-CoV-2 [3]. Both of the methods above need professional medical equipments and personnel. So the process is time consuming and expensive. Microscopic image analysis provides a new method for rapid coronavirus screening [10–14], thus, several visual features are extracted in the experiments below.

2 SARS-CoV-2 Microscopic Image Dataset

2.1 SARS-CoV-2 Visual Properties and Ground Truth Image Preparation

SARS-CoV-2 is a type of β coronavirus, which has envelope with spinous process. The shape of the virus particle is circular or oval, which seems as a solar corona. The tubular inclusions can be detected in the cell which is infected with coronavirus. The spinous process of different coronaviruses has significant difference. The SARS-CoV-2 has a diameter of 60-140nm. It also has largest genome as a RNA virus. The microscopic image of SARS-CoV-2 is shown in Fig. 1.

In order to obtain the accurate image and extract the visual features of SARS-CoV-2, a dataset is constructed and one of the example images with its GT (ground truth) image are shown in Fig. 2. Geometric features and texture features of SARS-CoV-2 are extracted by combining both the original image and GT image.

Based on the visual properties of SARS-CoV-2 images, we prepare the GT images according to the rules as follows:
The GT images in dataset are generated in pixel level. The foreground of GT images is the SARS-CoV-2 and the pixel value is "1" which represents white. The pixel value of the background is zero ("0") which represented as black.

Then all part of SARS-CoV-2 is drawn with the observation by naked eyes.

When the spinous region of SARS-CoV-2 is not clear, the GT image is drawn following the value of particle region. If the SARS-CoV-2 particle is bright part, then the bright region around the particle will be drawn as spinous part of SARS-CoV-2, and vice versa.
2.2 Dataset Construction

Most of the SARS-CoV-2 images are kept by National Health Commission at present. One of the images with scale is shown in Fig. (a) and the corresponding GT image is shown in Fig. (b). The scale of Fig. (a) is labelled in the image precisely and can be used to calculate the real size of the SARS-CoV-2.

The dataset we built has 17 electron microscopic SARS-CoV-2 images which are separated to 48 single SARS-CoV-2 images. The horizontal axes of images are roughly to be the same length with the length of scale in Fig. (a) which has length of 100nm. The other images are resized and cut based on the scale of Fig. (a). The image names with their data sources are shown in Table 1.

ImageName	Source
IMG-001 - IMG-004	https://www.infectiousdiseaseadvisor.com/home/topics/gi-illness/covid-19-symptoms-may-need-to-be-extended-to-include-gi-symptoms/
IMG-005 - IMG-008	https://wired.jp/2020/03/08/what-is-a-coronavirus/
IMG-009 - IMG-014	https://www.genengnews.com/news/sars-cov-2-insists-on-making-a-name-for-itself/
IMG-015 - IMG-018	https://www.h-brs.de/en/information-on-coronavirus
IMG-019 - IMG-022	https://www.medicalnewstoday.com/articles/why-does-sars-cov-2-spread-so-easily
IMG-023 - IMG-028	https://www.upwr.edu.pl/news/51004/coronavirus-sars-cov-2-messages.html
IMG-029 - IMG-032	https://www.infectiousdiseaseadvisor.com/home/topics/gi-illness/covid-19-symptoms-may-need-to-be-extended-to-include-gi-symptoms/
IMG-033 - IMG-035	https://www.dzif.de/en/sars-cov-2-dzif-scientists-and-development-vaccines
IMG-036 - IMG-038	https://www.charite.de/en/clinical-center/themes-hospital/faqs-on-sars-cov-2/
IMG-039 - IMG-041	https://news.harvard.edu/gazette/story/2020/03/in-creating-a-coronavirus-vaccine-researchers-prepare-for-future/
IMG-042	https://newsbash.ru/society/health/17116-kak-vyglyadit-koronavirus-pod-mikroskopom-rossijskie-uchenye-sdelali-foto.html
IMG-043	https://www.rbc.ru/rbcfree/5e735f5893fd47be392f2bec
IMG-044	http://www.ellegirl.ru/articles/foto-dnya-kak-vyglyadit-koronavirus/
IMG-045 - IMG-046	https://mp.weixin.qq.com/s/xO8rW8W2TgzN2o6JEKcLnaQ
IMG-047 - IMG-048	https://br.sputniknews.com/asia-oceania/2020012415043397-china-publica-foto-do-coronavirus-visto-por-microscopio-eletronico/
The database of SARS-CoV-2 is built which contains 48 electron microscopic images. The corresponding GT images are also made and shown in Fig. 3.

Fig. 3: The database of gray images and GT images of SARS-CoV-2.

3 SARS-CoV-2 Visual Feature Extraction

Visual features extraction is one of the important parts of computer vision. We extract several shape features including basic geometric feature and Hu invariant moment. We also extract several texture features including Histogram of Oriented Gradient (HOG) and Gray-Level Co-occurrence Matrix (GLCM). And we use deep learning such as Vgg-16, Xception and DenseNet121 to get the feature map of images. All the features above can be extracted for the dataset we constructed. An example result of feature extraction is shown as follows.
3.1 Shape Feature Extraction

Shape feature extraction is one of the most important research topics in describing the true nature of images. The original shape of an object can be precisely stored by using shape features, which is significant for computer vision and image recognition.

Basic Geometric Features: Perimeter refers to the boundary length of the object in the image. The perimeter of the image is composed of several discrete pixel points, which is calculated as the sum of pixel points of the target edge.

The area of an object in an image is usually represented by calculating the sum of pixel points of the target object. The GT image is used to calculate the area of SARS-CoV-2 in the original image. The SARS-CoV-2 in GT image is shown as white which is represented by 1, and the background is shown as black which is represented by 0. Scan the GT image and sum the number of pixel points that the value is 1. The process is defined as bellow:

\[
A = \sum_{x=1}^{N} \sum_{y=1}^{M} f(x, y),
\]

(1)

The area of SARS-CoV-2 is represented by the sum of the pixels that \(f(x, y) = 1 \).

The major axis and the minor axis are the longest length and the shortest length while linking two random points of an oval. They are usually represented as the major axis and minor axis of the smallest oval which can contain all of the object for an irregular figure. The major axis and minor axis are defined as bellow:

\[
l_a = \max \sqrt{(i_m - i_n)^2 + (j_m - j_n)^2},
\]

(2)

where \(l_a \) is the length of major axis, \(i_m, i_n, j_m, j_n \) are boundary points of the connected region in four directions.

\[
s_a = \frac{p}{t} - l_a,
\]

(3)

where \(s_a \) is the length of minor axis, \(p \) is the perimeter, \(t \) is the ovality factor defined by \(s_a/l_a \).

From Fig. 2 we segment the image scale and match it to pixels. The pixels of part of scale are black and the rest pixels of the image are white. So it is easy to calculate the length of scale and calculate the proportion of the image size to true size. And then the proportion can be used to calculate the values of the shape features. The length of scale consists of 206 pixels which means 100nm for real size, so the proportion is about 0.4854 nm/pixels.

The shape features of SARS-CoV-2 are extracted by combining the GT image and original image, and the true size of these features are calculated by using the proportion above and the values are shown in Table 2. The eccentricity is the ratio of the major axis to the minor axis.
Table 2: The shape feature values of SARS-CoV-2.

Feature	Value	Unit
Area	2808.98	nm²
Perimeter	477.4689	nm
MajorAxis	71.5500	nm
MinorAxis	56.8100	nm
Eccentricity	1.2595	–

Hu Invariant Moment: Hu invariant moment creates seven invariant moment functions by using the normalized second and third order center distance. The central moment is defined as bellow:

\[
\mu_{pq} = \sum_{x=1}^{M} \sum_{y=1}^{N} (x - x_0)^p (y - y_0)^q f(x, y),
\]

where \((x_0, y_0)\) is the center of gravity coordinates of the image.

HU is used to describe the properties of images. The Hu invariant moment is widely used because of its high stability while changing the geometric characteristics of the images, which is invariant to translation, rotation and scale transformation. Hu invariant moment is generally used to identify large objects in an image, which can describe the shape of objects well and recognize them quickly. The seven values of Hu invariant moment for Fig. 2 are shown in Table 3.

Table 3: The Hu invariant moment values of SARS-CoV-2.

Value	
0.9584	
0.1854	
0.0270	
0.0125	
-0.0004	
-0.0021	
-0.0002	

The geometric values are roughly consistent with the morphology of virus when observed by the naked eyes. It is much more accurate to obtain the geometric values of virus through the GT image. The geometric values are all objective values obtained by computer, but the conclusion is a little more subjective.

3.2 Texture Feature Extraction

HOG Feature Extraction: HOG is a classical method to recognize the object and extract the texture features [5]. The local HOG can describe the texture features of particular part in an image. The principle of HOG is selecting the gradient of image edge area and extracting the density distribution coefficient. The first step is dividing the global image into several sub-images based on pixels. Then calculate the oriented gradient values and save them into a matrix. Finally integrate the matrix based on initial image.
Because of the rich information and high diversity of image, the dimensions of extracted HOG feature are different. So it is necessary to normalize the HOG feature into a 36 dimensional vector, which has 4 blocks in a region with 9 dimensions per block. We extract the HOG feature of SARS-CoV-2 by combining the GT and original images. The normalized histogram with 36 dimensional vector is shown in Fig. 4.

![Fig. 4: HOG histogram of SARS-CoV-2.](image)

The vector graph of HOG feature is shown in Fig. 5. The red arrows describe the change of oriented gradient precisely. The vector graph shows good ability in describing the HOG feature of the part of SARS-CoV-2.

GLCM Feature Extraction: GLCM is one of the general methods to describe the texture features of images. The principle is measuring the spatial information between two pixels to describe the texture features. The texture feature refers to the gray-scale relationship between two pixels. Find the corresponding relationship between the pixel and the pixels in eight directions. The GLCM is to combine the co-occurrence matrix between every two pixels in the image. There are four kinds of eigenvalues in GLCM, which are contrast, homogeneity, correlation and energy. Every feature above has 4 dimensional vectors. The normalized histogram with 16 dimensional vector is shown in Fig. 6.

The edge feature of the image can be well extracted without losing much local details, and the feature of low sensitivity for local geometry and optical transformation can be acquired by HOG and GLCM feature extraction, which can express the texture feature of SARS-CoV-2 effectively.

3.3 Deep Learning Feature Extraction

Convolution neural networks (CNN) have the ability to learn deep features which are substitute to hand crafted features such as corners, edges, blobs and ridges. These features are very robust and invariant to image translational changes.
CNN use multiple convolution layers to progressively extract high and low level features from raw input images. They use convolution matrix (kernel) for blurring, sharpening, embossing and edge detection. The lower layers identify general features such as corners and edges, while deep layers extract features specific to the organisms. Example of the CNN is shown in figure 7 which shows deep layers of Vgg-16 model. With such high extraction power of CNNs, we can use them to extract deep learning features which can be used for detection and classification of SARS-CoV-2. Additionally, the scarcity of SARS-CoV-2 dataset on training CNN can be overcome by the use of transfer learning. Thus, we extract deep learning features from SARS-CoV-2 image using Vgg-16 [16], Xception [2] and DenseNet [7] which have been pre-trained on ImageNet dataset. The feature maps extracted from different layers are shown in figure 8.

3.4 Analysis

The SARS-CoV-2 has strong texture heterogeneity by combining the HOG feature and GLCM feature. The shape features and texture features can be extracted for the images in dataset and can be combined and used as eigenvectors in image classification. The combination of texture and geometric features can describe the surface features of virus precisely, which contains much more abundant information that can help for better classification accuracy in image classification.

Moreover, we can leverage strong feature leaning power of deep learning networks (CNN) by extracting deep learning features from SARS-CoV-2 which
are robust, invariant to translation changes, do not need image pre-processing and can reduce the need of hand crafted features in segmentation, detection and classification of SARS-CoV-2.

4 Conclusion and Future Work

The SARS-CoV-2 has some recognizable visual information which can be represented by visual features, such as texture and shape features, providing a possibility to describe the morphological property of SARS-CoV-2 for medical workers.

We may get more electron microscopic images in the future to enlarge our dataset. We will extract more visual features for classification in future work. The dataset can be used to help medical workers to identify and classify the SARS-CoV-2.
Fig. 8: From left to right (a) Extraction of edge features from the original image of SARS-CoV-2 using Xception CNN. (b) Blurring of the original image of SARS-CoV-2 using DenseNet 121. (c) Corner and edge feature learning by Vgg-16.

References

1. Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., Qiu, Y., Wang, J., Liu, Y., Wei, Y., Xia, J., Yu, T., Zhang, X., Zhang, L.: Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in wuhan, china: a descriptive study. The Lancet 395(10223), 507–513 (2020)
2. Chollet, F.: Xception: Deep learning with depthwise separable convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 1251–1258 (2017)
3. Chu, D., Pan, Y., Cheng, S., Hui, S., Krishnan, P., Liu, Y., Ng, D., Wan, C., Yang, P., Wang, Q., Peiris, M., Poon, L.: Molecular Diagnosis of a Novel Coronavirus (2019-nCoV) Causing an Outbreak of Pneumonia. Clinical Chemistry (01 2020)
4. Cui, J., Li, F., Shi, Z.: Origin and evolution of pathogenic coronaviruses. Nature Reviews. Microbiology 17(3), 181–192 (2019)
5. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proc. of ICPR 2005. pp. 886–893 (2005)
6. Gorbalenya, A., Baker, S., Baric, R., Groot, R., Drosten, C., Gulyaeva, A., Haangmans, B., Lauber, C., Leontovich, A., Neuman, B., Pena, D., Perlman, S., Poon, L., Samborskiy, D., Sidorov, I., Soli, I., Ziebuhr, J.: Severe acute respiratory syndrome-related coronavirus: The species and its viruses – a statement of the coronavirus study group. bioRxiv (2020)
7. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 4700–4708 (2017)
8. Hui, D., Azhar, E., Madani, T., Ntoumi, F., Kock, R., Dar, O., Ippolito, G., Mchugh, Z., Memish, Z., Drosten, C., Zumla, A., Petersen, E.: The continuing 2019-ncov epidemic threat of novel coronaviruses to global health the latest 2019 novel coronavirus outbreak in wuhan, china. International Journal of Infectious Diseases 91, 264–266 (2020)
9. Image, B.: The electron microscopic image of SARS-CoV-2. Available at: https://baike.baidu.com/item/2019%E6%96%B0%E7%8A%B6%E7%97%85%E6%AF%92/24267858?fromtitle=%E6%96%B0%E7%8A%B6%E7%97%85%E6%AF%92&fromid=7904360&fr=aladdin
10. Kulwa, F., Li, C., Zhao, X., Cai, B., Xu, N., Qi, S., Chen, S., Teng, Y.: A State-of-the-art Survey for Microorganism Image Segmentation Methods and Future Potential. IEEE Access 7(1), 100243–100269 (2019)
11. Li, C.: Content-based Microscopic Image Analysis. Logos Verlag Berlin GmbH, Gubener Str. 47, Berlin, Germany (2016)
12. Li, C., Kulwa, F., Zhang, J., Li, Z., Xu, H., Zhao, X.: A Review of Clustering Methods in Microorganism Image Analysis. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds.) Advances in Intelligent Systems and Computing xxxxxx, p. Accepted for publication. Springer, Germany (2020)
13. Li, C., Wang, K., Xu, N.: A Survey for the Applications of Content-based Microscopic Image Analysis in Microorganism Classification Domains. Artificial Intelligence Review 51(4), 577–646 (2019)
14. Li, C., Xu, N., Jiang, T., Qi, S., Han, F., Qian, W., Zhao, X.: A Brief Review for Content-based Miroorganism Image Analysis Using Classical and Deep Neural Networks. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds.) Advances in Intelligent Systems and Computing 762, pp. 3–14. Springer, Germany (2018)
15. Malik, Y., Sircar, S., Bhat, S., Sharun, K., Dhamia, K., Dadar, M., Tiwari, R., Chaicumpa, W.: Emerging novel coronavirus (2019-ncov)-current scenario, evolutionairy perspective based on genome analysis and recent developments. The Veterinary Quarterly 40(1), 68–76 (12 2020)
16. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
17. University, J.H.: Coronavirus covid-19 global cases by the center for systems science and engineering (csse) at johns hopkins university (jhu). Available at: https://coronavirus.jhu.edu/map.html