Mesencephalic Dopaminergic Neurons in Primary Cultures Express Functional Neurotensin Receptors

Aline Brouard, Didier Pellegrat, Corinne Dana, Micheline Vial, Anne-Marie Lliaubet, and William Rostène

Institut National de la Santé et de la Recherche Médicale, Unité 339, Hôpital Saint Antoine, 75012 Paris, France

The cellular distribution and functional aspects of neurotensin (NT) binding sites in rat mesencephalic cells in primary culture were investigated by an original approach combining anatomical and biochemical studies. Using a double-labeling protocol combining "3H-NT receptor radioautography and tyrosine hydroxylase (TH) immunocytochemistry, we obtained the first direct visualization of NT binding sites on TH-immunoreactive neurons. Eighty percent of the TH neurons were endowed with NT binding sites, which can be observed on both cell bodies and processes. TH-immunoreactive neurons were characterized as dopaminergic neurons by their ability to take up dopamine in a benztrapine- and nonentensine-sensitive manner. In the mesencephalic cultures, NT increased potassium-evoked release of tritiated dopamine, and the relative potencies of various NT-related peptides to increase dopamine release were in good agreement with their abilities to bind to NT sites. These results show for the first time that cultured rat mesencephalic dopaminergic cells express functional NT receptors. Finally, the specificity and distribution of NT receptors on dopaminergic neurons in primary culture are quite similar to what was observed in the adult rat brain using pharmacological and radioautographic approaches. These data indicate that NT can influence the activity of dopaminergic neurons at very early stages of the rat brain development.

Mesencephalic dopaminergic (DAergic) neurons have raised a considerable interest during the past 30 years, and dysfunctions of these neurons have been demonstrated or suspected in pathological states such as Parkinson's disease (Ehringer and Hornikiewicz, 1960) or schizophrenia (Matthysse and Kety, 1975). A better knowledge of the various factors regulating DAergic transmission and the anatomical bases of these regulations might lead to new therapeutic approaches for the treatment of these diseases.

An increasing body of evidence supports the notion that neurotensin (NT), a tridecapeptide originally isolated from bovine hypothalamus (Carraway and Leeman, 1973), could modulate the activity of mesencephalic DAergic neurons by acting on DA cell bodies or terminals. For instance, NT enhances the firing of DAergic neurons (Pinnock, 1985; Seutin et al., 1989) and facilitates DA release (De Quidt and Emson, 1983; Hetier et al., 1988; Blaha et al., 1990), and injection of the peptide in the ventral tegmental area (VTA) induces an increase in locomotion (Kalivas et al., 1983, Cadot et al., 1985) and hypothermia (Kalivas, 1985). Moreover, recent anatomical data demonstrate that NT-immunoreactive fibers and terminals surrounding tyrosine hydroxylase (TH)-immunoreactive (TH-IR) perikarya and processes can be observed in rat VTA and substantia nigra (SN; Hökfelt et al., 1984; Woulfe and Beaudet, 1989).

The effects of NT on DAergic neurons suggest that these neurons possess NT receptors. This hypothesis has been indirectly supported by results of lesion studies showing that in the rat mesencephalon, densities of NT binding sites were greatly diminished after destruction of DAergic neurons with 6-hydroxydopamine (Palacios and Kuhar, 1981; Quirion et al., 1985; Hervé et al., 1986), and by a recent approach, using NT receptor radioautography and TH immunocytochemistry on adjacent brain sections (Szigethy and Beaudet, 1989). This association of NT binding sites with DA neurons seems also to occur in man, since decreases in nigral and striatal NT binding site densities have been reported in Parkinson's disease (Sadoul et al., 1984; Uhl et al., 1984; Rostène et al., 1988; Chinaglia et al., 1990).

In the aforementioned studies, the modulatory action of NT on DAergic neurons was investigated on adult brain, mainly in the rat. However, the presence of NT binding sites in the rat mesencephalon was detected very early during ontogeny (Palacios et al., 1988), as measurable amounts of NT sites could be observed in this region at prenatal day 18. The functional aspect of these sites, and particularly the existence of an effect of NT on DAergic neurons at an early developmental stage, is not known. Moreover, no evidence is available as to whether NT sites detected in the mesencephalon in the perinatal period are localized on DA neurons or on other types of cells.

In order to study those different aspects, we thus decided to use primary cultures of dissociated brain cells. Indeed, numerous studies had shown that primary cultures of rat or mouse embryonic mesencephalic cells contained DAergic neurons that develop morphological and biochemical characteristics similar to those found in vivo (Berger et al., 1982; Barbin et al., 1985; Dal Tos et al., 1988; Engele et al., 1989). Furthermore, the presence of high-affinity NT binding sites was detected in primary cultures of embryonic mouse whole brain cells (Checler et al., 1986) and mouse mesencephalic cells (Chabry et al., 1990), and recently NT sites were also found in rat mesencephalic cells (Dana et al., 1991). Since primary cultures of embryonic brain cells have been used over the last 10 years to investigate various functional aspects of neurotransmission (Bockaert et al., 1986; Thomas, 1986), we hypothesized that such cultures might pro-
vide suitable models to study the cellular localization of brain NT binding sites and its functional consequences.

In the present work, we use an original double-labeling protocol combining 125I-NT high-resolution radioautography and TH immunocytochemistry to visualize directly the presence of NT binding sites on cultured rat mesencephalic DAergic neurons. Moreover, we show that these binding sites are functional NT receptors involved in the regulation of DA release.

Materials and Methods

Embryonic rat brain dissection and cell culture conditions. Mesencephalic cells in culture were prepared from embryonic day 15 Wistar rats, as previously described (Berger et al., 1982), with several modifications.

Mesencephalic tegmentum was dissected in phosphate-buffered saline (PBS, NaCl, 137 mM; KCl, 2.7 mM; NaHPO4, 21 mM; KH2PO4, 29 mM; KCl, 1.2 mM; pH 7.3). Cells were mechanically dissociated in serum-free medium (SFM) consisting of a mixture of Dulbecco's modified essential medium and Ham-F12 (1:1, v/v, both from GIBCO), supplemented with 14 mM glucose, 15 mM NaHCO3, 5 mM HEPES, 0.01% BSA, and 20 μg/ml of streptomycin (Seromed). Cells were then collected by centrifugation (500 × g, 5 min), resuspended in SFM complemented with 10% fetal calf serum (Boehringer) at a concentration of 1 million cells/ml, and plated at a density of 0.5 million cells per well, in 24 well Costar multiwell plastic culture plates previously coated with gelatin (250 μg/ml, 30 min, room temperature) and polyomithine (MW = 40,000, 1.5 pg/ml, overnight at room temperature). For radioautography and immunocytochemistry, cells were grown on glass slides added in the wells just before the coating procedure. For 3H-DA release experiments, the cultures were plated at a density of 1 million cells per well.

The cultures were incubated at 37°C in a water-saturated 95% air, 5% CO2 atmosphere. Medium was totally removed at day 5 and replaced in the wells just before the coating procedure. For 3H-DA release experiments, the cells were plated at a density of 1 million cells per well. The cultures were incubated at 37°C in a water-saturated 95% air, 5% CO2 atmosphere. Medium was totally removed at day 5 and replaced by fresh medium containing cytosine arabinoside (araC; 20 μM) to limit the proliferation of glial cells (Greene and Rein, 1976). Half of the medium was then replaced every day from day 6 by medium without araC, and cells were used after 9 d in culture.

Binding procedures. Cells were incubated 60 min at 37°C with 0.3 nM 125I-NT and 1 mM NT, 2000 Ci/mmol, prepared as previously described by Sadoul et al. (1984) in SFM supplemented with 0.2% BSA and containing 0.3 mM phenylmethylsulfonyl fluoride and 1 mM o-phenanthroline to prevent degradation of the ligand (Checler et al., 1986). Nonspecific binding, determined in the presence of 1 μM unlabeled NT, was typically represented less than 15% of the total binding. At the end of the incubation, the cells were rapidly washed twice with cold SFM/BSA. Cells were then scraped off in 0.1 N NaOH, and radioactivity was estimated with an LKB gamma counter. Competition experiments were performed by incubating 125I-NT (0.3 nM) in the presence of increasing amounts of unlabeled NT. Acetylated analogs NT, Acetyl-NT (AcNT), and neuromedin N were from Neosystem Laboratories (Strasbourg, France), and TH was donated by Dr. P. Kitabgi (Centre CNRS, Nice, France). Cultures were fixed with 4% paraformaldehyde and 0.08% glutaraldehyde in 0.1 M sodium phosphate buffer (pH 7.4) for 30 min (Dana et al., 1989). After fixation, tissues were washed with 0.1 N in the wells, and 3H-DA release in the basal and evoked fractions was expressed as a percentage of the total intracellular 3H-DA content at the beginning of the corresponding release period.

Results

Characterization and visualization of high-affinity NT binding sites in mesencephalic cultures

As shown in Figure 1, an apparent single class of high-affinity 125I-NT binding sites was detected in rat mesencephalic cells grown for 9 d in primary culture (Fig. 1A). The apparent dissociation constant (Kd) was 0.07 ± 0.02 nM (n = 10), and the maximal number of sites (Bmax) was 2.84 ± 0.03 fmol/mg protein (n = 6). NT, NE, and neuromedin N were potent competitors of 125I-NT binding, while NT-1-1 and levocabastine were inactive (Fig. 1B).

Radioautograms taken from cells incubated with 125I-NT showed that some individual cells were labeled (Fig. 2A-D). Silver grains were found on both cell bodies and their proximal processes. The number of cells labeled by 125I-NT was 687 ± 30 cells/well (n = 8), which represented 0.14% of the initial number of cells. Such a cellular accumulation of grains was not observed on cells incubated with the radioligand in the presence of 1 μM unlabeled NT, where only scarce silver grains were found (nonspecific binding; Fig. 2C).

Characterization and visualization of DAergic neurons

In a second series of experiments, TH immunocytochemistry revealed the presence, in the mesencephalic cultures, of TH-IR cells (Fig. 3). These cells were bi- or multipolar, with various perikaryal shapes, and endowed with long processes bearing varicosities (Fig. 3A–C). The number of TH-IR cells was 407 ± 13 cells/well (n = 8). The neurochemical identity of these TH-IR cells was further investigated in 3H-DA uptake experiments. Double-labeling experiments confirmed that TH-IR cells were able to take up 3H-DA (data not shown). As illustrated in Figure 4, the DA uptake inhibitors benztporepine (5 μM) and nomifensine (5 μM) dramatically reduced 3H-DA uptake levels to 5% (4.92 ± 0.49%, n = 4, and 4.26 ± 0.47%, n = 4, respectively).
of the control values, while 84% (84.01 ± 4.23%, n = 4) of the
'3H-DA uptake was still observed in the presence of the nor-
adrenaline uptake inhibitor desipramine (5 μM). Similarly, 86%
of the '3H-DA uptake remained in the presence of the 5-HT
uptake inhibitor fluoxetine (1 μM, data not shown). These data
demonstrated that the majority of TH-IR cells in these cultures
represented DA neurons.

Combined 125I-NT radioautography and TH
immunocytochemistry

The relationship between 125I-NT-labeled cells and DAergic
neurons was then investigated in double-labeling experiments
combining 125I-NT radioautography and TH immunocyto-
chemistry. Unfortunately, we observed that the high aldehyde
concentration (3.5% glutaraldehyde) previously used in radioau-
tography to cross-link 125I-NT destroyed the immunocyto-
chemical signal for TH. It was therefore necessary to find com-
patible fixation conditions. Decreasing the glutaraldehyde
concentration from 3.5% to 1% significantly decreased neither
the amount of cross-linked 125I-NT (50.1 ± 1.3%, n = 6, and
47.5 ± 1.7%, n = 6, respectively), nor the number of 125I-NT-
labeled cells (682 ± 45 vs. 711 ± 62 cells/well, n = 6). Similarly,
the number of TH-IR cells was not modified when 4% para-
formaldehyde, 0.08% glutaraldehyde was replaced by 1% glu-
taraldehyde alone (430 ± 26, n = 6, and 417 ± 34 cells/well,
respectively) in the immunocytochemical procedure. Thus,
1% glutaraldehyde was used in the double-labeling protocol to
cross-link 125I-NT to its binding sites.

The results of the double-labeling experiments are presented
in Figure 5 and Table 1. Using this approach, 125I-NT binding
sites could be shown on TH-IR cells (Fig. 5A, B). Grain
accumulation was present on both cell bodies and processes. Cell
counting revealed that, over a total number of 400 ± 39 TH-
IR cells/well, 322 ± 30 TH-IR cells were labeled with 125I-NT
(Table 1). In the mesencephalic cultures, 80% of the TH-IR cells
thus expressed 125I-NT binding sites. The remaining 20% of TH-

Figure 1. Specific binding of 125I-NT to rat mesencephalic cells in culture. A. Scatchard plot of saturation data of one representative experiment.
Cells were incubated as described in Materials and Methods with increasing concentrations (0.05–1.5 nM) of 125I-NT. Specific binding was calculated
as the difference between binding in the absence (total binding) and in the presence (nonspecific binding) of 1 μM unlabeled NT. B. Competition
data. Each curve illustrates one representative experiment performed with the corresponding competitor. Cells were incubated with 0.3 nM 125I-
NT in the presence of increasing concentrations of competitors. Specific binding was defined as described in A. m, B, Binding in the absence
and in the presence of competitor, respectively. •, AcNT; •, NT; •, neuromedin N; •, NT, •, levocabastine. Each point was the mean
of four determinations, and the experiments were done three times. M, competitor concentration.

Figure 2. Radioautographs of 125I-NT total (A, B) and nonspecific (C) binding to rat mesencephalic cells in culture. Cells were counterstained
with cresyl violet. Note the cell-like appearance of the silver grain accumulation in A and B, and the lack of such an image in C. Scale bar, 10 μm.
IR cells appeared to be devoid of silver grain accumulation (Fig. 5C). According to our previous experiments with single labeling in which the number of 125I-NT-labeled cells exceeded that of TH-IR cells, 125I-NT sites were also detected on TH-negative cells (Fig. 5D). These cells represented 54% of the total number of cells (701 ± 67 cells/well) labeled by the radioligand (Table 1).

Effect of NT and related peptides on 3H-DA release from mesencephalic cultures

The previous anatomical studies clearly demonstrated the presence of 125I-NT sites on TH-IR cells characterized as DAergic neurons. In order to check whether these binding sites represented physiologically functional NT receptors, the effect of NT on DA release was tested. As shown in Figure 6, NT was able to increase potassium-evoked release of previously uptaken 3H-DA. The minimal effective concentration was 10^{-10} M, and the maximal effect was obtained at 10^{-7} M. This maximal effect represented a 54% increase (54.0 ± 5.0%, p < 0.01, n = 22) of the potassium-induced DA release. AcNT,-,- (EC_{50} = 0.28 nM) was as potent as NT (EC_{50} = 0.35 nM), while NT,,-,- was inactive up to 10^{-5} M (Fig. 6). When the potency of several NT fragments or analogs to stimulate DA release was compared with their ability to displace 125I-NT binding in these cultures, a linear relationship (r = 0.989) was found between the two sets of data (Fig. 7). No effect of NT or related peptides (10^{-10} to 10^{-5} M) on basal DA release could be observed under these conditions.

Discussion

We show in this article that rat embryonic DAergic neurons in primary cultures express functional NT receptors. This demonstration was achieved by the combination of (1) an original double-labeling protocol, combining both 125I-NT receptor radioautography and TH immunocytochemistry, which provided the first direct visualization of NT binding sites on TH-IR neurons; (2) the identification of the TH-IR neurons present in the mesencephalic cultures as DAergic neurons; and (3) pharmacological experiments showing the ability of NT and its analogs to increase potassium-evoked release of 3H-DA.

We have shown previously that postfixation of 125I-NT-labeled tissue sections with high concentrations of glutaraldehyde ensured irreversible cross-linking of the radioligand to, or nearby, its binding sites (Moyse et al., 1987). We thus applied this approach for the electron microscopic localization of 125I-NT binding sites in the rat mesencephalon (Dana et al., 1989). In the present work, we demonstrate that this procedure can be used on cells in culture to identify the cell populations expressing 125I-NT binding sites.

The technical difficulties encountered on tissue sections by others (Szigethy and Beaudet, 1989) to combine, in the same biological sample, NT receptor radioautography and TH immunocytochemistry were overcome in cultured cells. Indeed,
Figure 5. Double-labeling experiments associating both 125I-NT receptor radioautography and TH immunocytochemistry. Some TH-IR cells possessed silver grain accumulations (A, B) indicating expression of NT binding sites by these cells, while some other TH-IR cells were devoid of silver grains (C). On the other hand, NT binding sites could be observed in some TH-negative cells (D). Scale bar, 10 μm.

TH antigenicity could be retained in spite of the various histological procedures needed for NT cross-linking onto its binding sites. The main reason for it, in our opinion, is that slicing unfixed or only lightly fixed brain, as needed to retain NT receptor binding on brain sections (Moyse et al., 1987; Dana et al., 1989; Szigethy and Beaudet, 1989), damages the tissue and may favor the loss of intracellular antigens during the binding protocol. In the present case, the cells remained in a suitable medium until the fixation and no slicing step was required. These conditions may favor the maintenance of intracellular antigens.

In the rat mesencephalic cultures, 80% of the TH-IR cells

Figure 6. Effect of NT fragments on potassium-evoked 3H-DA release by rat mesencephalic cells in culture. Results are presented as percentage increase in 3H-DA release relative to control (release evoked by 20 mM K+ without any NT-related peptide). Each value is the mean ± SEM of four determinations, and statistical differences versus control were assessed using Dunnett's test. **, p < 0.01. M, peptide concentration.

![Figure 6](image)

Figure 7. Correlation between the potencies of NT-related peptides to increase 3H-DA release and their abilities to compete with 125I-NT binding. EC50, peptide concentration producing half the maximal increase in 3H-DA release. KI, inhibitory constant found in binding experiments. Correlation coefficient (r) was 0.989. ●, AcNT11; ▼, NT; ◆, neuromedian N; ▲, NT1-11.
possessed 125I-NT sites. These TH-IR cells may be identified as DAergic neurons since they were able to take up 3H-DA in a benztrpine- and nomifensine-sensitive manner (Prochiantz et al., 1979). The functional aspect of NT sites was attested by the ability of several NT-related peptides to increase the release of 3H-DA in this system and by the relationship found between the relative activities of these peptides and their affinities for the NT binding sites. Such an action of NT on the regulation of DA release has been observed in the adult brain (see Ervin and Nemeroff, 1989, and Faggin and Cubeddu, 1990, for references). Moreover, it should be noticed that the binding characteristics of these NT sites in cultured mesencephalic cells are similar to those previously obtained for the high-affinity NT sites in the adult rat brain (Granier et al., 1982; Sadoul et al., 1984; Kitabgi et al., 1987; Moyse et al., 1987). Taken together, these results clearly show that, even at this early developmental stage, NT binding sites detected on mesencephalic DAergic neurons are already under a mature form, and that binding of the ligand is coupled to a biological effect. These sites may therefore be considered as functional NT receptors. The presence of NT receptors on both cell bodies and processes suggests that the peptide may act at the level of these various elements of the DAergic neurons. We cannot, however, determine whether the NT-induced increase in DA release observed under our experimental conditions reflects an action of NT on dendrites, axon terminals, or both. It also remains possible that some of the binding sites visualized in this study represent sites in transport (Dana et al., 1989).

Interestingly, both the high percentage of DAergic neurons expressing NT receptors and the cellular distribution of these receptors on cell bodies and processes, found in this work, are quite similar to results obtained in previous autoradiographic studies performed on adult rat brain (Palacios and Kuhar, 1981; Quirion et al., 1985; Hervé et al., 1986; Szigethy and Beaudet, 1989). The presence of NT sites on both cell bodies and terminals of the DAergic neurons was indirectly suggested by the concomitant decreases of NT binding site densities observed after destruction of DAergic neurons by 6-hydroxydopamine, in mesencephalic regions such as SN or VTA and in DA projection areas such as striatum or nucleus accumbens (Palacios and Kuhar, 1981; Quirion et al., 1985; Hervé et al., 1986). Dendritic and perikaryal localizations of NT sites were also observed in SN and VTA by light microscopy (Moyse et al., 1987; Szigethy and Beaudet, 1989), and in VTA by means of electron microscopic determination (Dana et al., 1989). The good correspondence between the results of the present study and those obtained in the adult rat brain suggests that mesencephalic DA neurons in culture do not substantially differ from DA cells "in situ" in their ability to express NT receptors. Although obtained on primary cultures of embryonic cells, our data might thus also be considered to provide an anatomical support for the various effects of NT, observed in adult brain, on the different elements of DA neurons, that is, excitation of SN and VTA neurons (Pinnock, 1985; Seutin et al., 1989), alteration of dendritic nigral DA release (Myers and Lee, 1983) and of DA release in striatum or nucleus accumbens (De Quitt and Emson, 1983; Hétier et al., 1988; Blaha et al., 1990), as well as behavioral responses following intra-VTA injections (Kalivas et al., 1983; Cador et al., 1985).

Finally, a small percentage (20%) of TH-IR neurons were unlabeled by 125I-NT. As there is no way to distinguish between mesolimbic, mesocortical, and nigrostriatal DA neurons in these cultures, we cannot conclude that DA neurons devoid of NT sites belong to one or another DAergic population. This percentage of unlabeled TH-IR neurons appears, however, to be quite similar to that of DA neurons exhibiting NT immunoreactivity in the adult rat brain (Hökfelt et al., 1984). It would thus be of interest to know whether these unlabeled TH-IR neurons represent colocalized DA-NT neurons. Similarly, further studies will be necessary to characterize the phenotype of the TH-negative cells that were labeled with 125I-NT in the mesencephalic cultures, and to elucidate the functional significance of this observation.

In conclusion, the present study clearly shows that mesencephalic DAergic neurons at early stages of development express functional NT receptors distributed both on cell bodies and processes of the neurons. These data thus enlighten the anatomical bases governing the regulation of the DAergic transmission by NT at the level of the DAergic neuron itself. Moreover, the original double-labeling approach developed in this study is applicable to other brain regions, other peptide receptors, and various types of cells, allowing the precise determination of the cells expressing a given receptor. Due to the complexity of the brain circuitry, this kind of approach could improve our understanding of the interactions between neuromediators and the physiological meaning of these interactions in brain functions or pathology.

References

Arluison M, Dielt M, Thibaud J (1984) Ultrastructural morphology of dopaminergic nerve terminals and synapses in the striatum of the rat using tyrosine hydroxylase immunocytochemistry. Topographical study. Brain Res Bull 13:269-285.

Barbin G, Mallat M, Prochiantz A (1985) In vitro studies on the maturation of mesencephalic dopaminergic neurons. Dev Neurosci 7:296-307.

Bergé B, Di Potuzi U, Daguet MC, Gay M, Viguié A, Oluwinski J, Prochiantz A (1982) Long-term development of mesencephalic dopaminergic neurons of mouse embryos in dissociated primary culture: morphological and histochemical characteristics. Neuroscience 1:193-205.

Blaha CD, Coury A, Fibiger HC, Phillips AG (1990) Effects of neurotransmitter dopamine release and metabolism in the rat striatum and nucleus accumbens: cross-validation using in vivo voltammetry and microdialysis. Neuroscience 34:699-705.

Bockaert J, Gabrion J, Sladecek F, Pin JP, Recasens M, Sebben M, Kemp D, Dumuis A, Weiss S (1986) Primary culture of striatal neurons: a model of choice for pharmacological and biochemical studies of neurotransmitter receptors. J Physiol (Paris) 81:219-227.

Cador M, Kelley AE, Le Moal M, Sinus L (1985) Behavioral analysis of the effect of neurotransmitter injection into the ventral mesencephalon on investigatory and spontaneous motor behavior in the rat. Psychopharmacology 85:187-196.

Carraway RK, Leeman SE (1973) The isolation of a new hypertensive peptide, neurotensin from bovine hypothalamus. J Biol Chem 248: 6851-6861.

Chabry J, Checcher F, Vincent JP, Mazella J (1990) Colocalization of neurotransmitter receptor sites and rapid proteolytic inactivation of neurotensin in primary cultured neurons. J Neurosci 10: 3916-3921.

Checcher F, Mazella J, Kitabgi P, Vincent JP (1986) High-affinity receptor sites and rapid proteolytic inactivation of neurotensin in primary cultured neurons. J Neurosci 4:1742-1748.

Cheng YC, Prusoff WH (1973) Relationship between the inhibition constant (K) and the concentration of inhibition which causes 50 percent inhibition (IC50) of an enzymatic reaction. Biochem Pharmacol 22:3099-3108.

Chinaglia G, Probst A, Palacios JM (1990) Neurotensin receptors in Parkinson's disease and progressive supranuclear palsy: an autoradiographic study in basal ganglia. Neurosciences 39:351-360.

Dal Toso R, Giorgi O, Soranzo C, Kirschner G, Ferrari G, Favaron M,
