Rola czynników zapalnych i tkanki tłuszczowej w patogenezie reumatoidalnego zapalenia stawów i choroby zwyrodnieniowej stawów.

Część II: Zapalne tło choroby zwyrodnieniowej stawów

Role of inflammatory factors and adipose tissue in pathogenesis of rheumatoid arthritis and osteoarthritis.

Part II: Inflammatory background of osteoarthritis

Iwona Sudol-Szopińska¹,², Paweł Hrycaj³,

Monika Prohorec-Sobieszek⁴,⁵

¹ Zakład Radiologii, Instytut Reumatologii, Warszawa, Polska
² Zakład Diagnostyki Obrazowej, Warszawski Uniwersytet Medyczny, Warszawa, Polska
³ Zakład Reumatologii i Immunologii Klinicznej, Uniwersytet Medyczny im. Karola Marcinkowskiego w Poznaniu, Poznań, Polska
⁴ Zakład Patofizjologii, Immunologii i Anatomii Patologicznej, Instytut Reumatologii, Warszawa, Polska
⁵ Zakład Diagnostyki Hematologicznej, Instytut Hematologii i Transfuzjologii, Warszawa, Polska

Correspondence: Prof. dr hab. n. med. Iwona Sudol-Szopińska,
Zakład Radiologii, Instytut Reumatologii, ul. Spańska 1, 02-637 Warszawa,
e-mail: sudolszpinski@gmail.com; tel./faks: +48 22 844 42 41

Streszczenie

Choroba zwyrodnieniowa stawów jest najczęstszą chorobą reumatyczną. Może się rozwijać jako pierwotne schorzenie narządu ruchu lub wtórnie w przebiegu innych zapalnych chorób stawów. Podobnie jak w przypadku większości chorób reumatycznych patogeneza choroby zwyrodnieniowej stawów nie została w pełni wyjaśniona. O tym, że istotną rolę w jej rozwoju odgrywają adipocytokiny, czyli mediatory zapalne produkowane w tkance tłuszczowej, wiadomo od kilku lat, a procesy zapalne zachodzące w tkance tłuszczowej, prowadzące do rozwoju zmian zwyrodnieniowych, są wiodącym tematem badań wielu laboratoriów immunologicznych. Zmianom degeneracyjnym u chorych na chorobę zwyrodnieniową często towarzyszy wtórny proces zapalny z obecnością nacieków komórkowych w błonie maziowej. W wielu przypadkach duże nasilenie zmian zapalnych jest podobne jak w innych jednostkach chorobowych, zwłaszcza w reumatoidalnym zapaleniu stawów, co utrudnia różnicowanie przy użyciu badań obrazowych. Może to mieć znaczące implikacje kliniczne, np. w odniesieniu do ultrasonografii, która jest podstawowym badaniem obrazowym w diagnostyce, monitorowaniu skuteczności leczenia czy w potwierdzaniu remisji u chorych na reumatoidalne zapalenie stawów. W niniejszym artykule omówiono patogenezę trzech elementów obrazu chorobowego choroby zwyrodnieniowej stawów, tj. zapalenia błony maziowej, z uwagi na trudności różnicowania synovitis w przebiegu tej choroby i reumatoidalnego zapalenia stawów, oraz osteofitów i podchrzustnej sklerotyzacji, ze względu na istotne znaczenie czynnika zapalnego w ich powstawaniu.
Wstęp

Podobnie jak w przypadku reumatoidalnego zapalenia stawów (RZS) omówionego w I części tego artykułu(1) badania histopatologiczne i immunologiczne tkanki tłuszczowej uzyskanej od chorych na chorobę zwyrodnieniową stawów (ChZS) wykazują obecność nacieków komórkowych, w skład których wchodzą głównie makrofagi, limfocyty, komórki tneczne i komórki *natural killers – NK*(2). Wykazano ponadto, że tkanka tłuszczowa produkuję czynniki wzrostu oraz adipocytokiny, czyli różne czynniki rozpuszczalne, do których należą m.in. klasyczne adipocytokininy (tj. leptyna, adiponektyna i rezystyna, produkowane głównie przez adipocyt), cytokiny prozapalne i składowe dopełniające. Wszystkie mogą wpływać na metabolizm chrząstki i błony mazjowej. Na modelowym przykładzie tkanki tłuszczowej ciała Hoffy (*infrapatellar fat pad, IPFP*) obecność komórek zapalnych stwierdzono u 36% pacjentów z ChZS. W porównaniu z pacjentami z RZS nacieki te są mniej liczne i nie tworzą zorganizowanej ektopowej tkanki limfocytowej, niemniej mogą modulować czynność komórek drogą auto-, para- i endokryną* i wszystkie mogą wpływać na metabolizm chrząstki i błony mazjowej oraz podtrzymywać reakcję zapalną*(3–5)*.

Rola czynników zapalnych w etiopatogenezie ChZS

ChZS jest powszechną chorobą wieku podeszłego charakteryzującą się uszkodzeniem chrząstki szklistej i obecnością kostnych zmian proliferacyjnych. Patogeneza ChZS nie została do końca poznana, niemniej podkreśla się rolę czynników mechanicznych, genetycznych, hormonalnych, etiopatogenezis(2).

Abstract

Osteoarthritis is the most common rheumatic disease. It may develop as a primary disease of the motor organ or as a secondary one in the course of other inflammatory joint diseases. Similarly to the majority of rheumatic conditions, the pathogenesis of osteoarthritis has not been fully explained. The fact that its development is determined by adipocytokines, which are inflammatory mediators produced in the adipose tissue, has been known for several years. Additionally, inflammatory processes taking place in the adipose tissue that lead to degenerative changes are the main subject of studies conducted by various immunological laboratories. Degenerative changes in patients with osteoarthritis are frequently accompanied by secondary inflammation with cellular infiltrations in the synovial membrane. In numerous cases, the intensification of inflammatory lesions resembles changes seen in arthritis, particularly in rheumatoid arthritis, which inhibits the differential diagnosis by means of imaging examinations. This may have significant clinical implications, e.g. with respect to sonography, which is the basic imaging examination in diagnosing rheumatoid arthritis, monitoring the efficacy of implemented treatment or confirming remission. This article discusses the pathogenesis of three elements of osteoarthritis, i.e. synovitis (due to the difficulties in differentiation of synovitis in the course of osteoarthritis and in rheumatoid arthritis) as well as osteophytes and subchondral sclerosis (due to the significance of the inflammatory factor in their development).

Introduction

Similarly to rheumatoid arthritis (RA) discussed in Part I of this article(1), histopathological and immunological examinations of the adipose tissue collected from patients with osteoarthritis (OA) reveal the presence of cellular infiltrations containing mainly macrophages, lymphocytes, mastocytes and natural killers (NK cells)(2). Furthermore, it has been shown that the adipose tissue produces growth factors and adipocytokines, i.e. various soluble factors, including: classic adipocytokines (such as leptin, adiponectin and resistin produced mainly by adipocytes), pro-inflammatory cytokines and components of the complement system. All of them may affect the metabolism of the cartilage and synovium. In the example of Hoffa’s body (*infrapatellar fat pad, IPFP*), the presence of inflammatory cells was observed in 36% of patients with OA. When compared with RA patients, such infiltrations are less numerous and do not form an organized ectopic lymphatic tissue. Nonetheless, they may modulate cellular function in auto-, para- and endocrine manners* and all of them may affect the metabolism of the cartilage and synovium as well as sustain the inflammatory reaction*(3–5)*.

Role of inflammatory factors in etiopathogenesis of OA

Osteoarthritis is a common disease of old age characterized by damage to the hyaline cartilage and presence of proliferative bone changes. The pathogenesis of OA is not fully understood but the role of mechanical, genetic, hormonal, metabolic and, finally, inflammatory and immunological factors is emphasized. Recently, the role of the adipose

* Cytokines are glycoproteins of low molecular mass, which are most frequently secreted out of the cells and affect their metabolism/ function by binding to specific cell surface receptors (of the same of different type).
Role of inflammatory factors and adipose tissue in pathogenesis of rheumatoid arthritis and osteoarthritis.
Part II: Inflammatory background of osteoarthritis

metabolic, wreszcie zapalnych i immunologicznych. W ostatnim okresie wskazuje się na istotną rolę tkanki tłuszczowej jako źródła zapalnych komórek immunologicznych(49).

W niniejszym artykule omówiono patogenezę trzech elementów obrazu chorobowego ChZS, tj. zapalenia błony maziowej (synovitis), z uwagi na trudności jej różnicowania w przebiegu ChZS i RZS, oraz osteofitów i podchrzężnej sklerotyzacji, z uwagi na istotne znaczenie czynnika zapalnego w ich powstawaniu.

Chrzastkę tworzą chondrocyty (2–10% objętości chrzastki) oraz macierz (matrix), w skład której wchodzą przede wszystkim woda (65–80%), kolagen (10–30%) i proteoglikany (5–10%), resztę stanowią białka nienkolenagowe i niewielka ilość lipidów. Proteoglikany są zbudowane z rdzenia białkowego i przyłączone do nich łańcuchów glikozamino- noglikanów (polisacharydów). Głównym proteoglikanem chrzastki jest aggrecan, zawierający łańcuchy siarkanu chondroitynu i siarczanu keratanu. Dominującym typem kolagenu jest typ II (w mniejszym stopniu m.in. IX i XI). Kolagen tworzy rusztowanie dla macierzy chrząstki, zapewnia chrząstce spoistość, wytrzymałość mechaniczną i nadaje jej kształt.

zmiany degradacyjne w chrząstce zaczynające kaskadę zmian destruktorycznych stawu są indukowane przede wszystkim przez czynniki zapalne produkowane przez błonę maziową, tkankę tłuszczową oraz aktywację mechanoreceptorów w chondrocytach i osteoblastach.

Patogeneza synovitis u pacjentów z ChZS

U większości chorych z ChZS w badaniu histopatologicznym wykrywa się cechy synovitis(7–10). O ile u chorych na RZS przypuszczalnym czynnikiem prowadzącym do rozrostu warstwy wyściółkowej i nacieku zapalnego warstwy podwyściółkowej są czynniki środowiskowe (palenie tytoniu i bakteria Porphyromonas gingivalis)(11,12), o tyle w przypadku ChZS punktem spustowym wydają się cząsteczki/produty uwalniane w wyniku uszkodzenia chrzastki, prawdopodobnie działające poprzez receptory układu odporności wrodzonej, tzw. receptory rozpoznające wzorce (pattern recognition receptors, PRRs), np. receptory Toll-podobne, a wówczas także poprzez inne czynniki prozapalne, np. cytokiny, które działają drażniając na błonę maziową, prowadząc do jej zeptania i indukcji odpowiedzi immunologicznej(13). PRRs oprócz wzorców związanych z patogenami mogą rozpoznawać wzorce związane z uszkodzeniem tkanki (tzw. damage-associated molecular patterns, DAMPs). Typowe dla ChZS DAMPs to uwolnione fragmenty chrząstki stawowej (biglykan, fibro- nektyna, fragmenty łańcuchów kwasu hialuronowego, tenascyna C), niektóre białka osocza (m.in. α₁-mikroglobulina, α₂-mikroglobulina lub fibrinogen), intracellular alarmins, as the source of inflammatory immune cells, has been taken into account(49).

This article discusses the pathogenesis of three elements of OA picture, i.e. synovitis (due to the difficulties in differentiation of synovitis in the course of OA and RA) as well as osteophytes and subchondral sclerosis (due to the significance of the inflammatory factor in their development).

The lesions in OA affect all structures of a joint i.e. articular cartilage, subchondral bone layers, synovium and periaricular structures(6). Irrespective of the etiological factor, in the first stadium, the damage involves the hyaline cartilage (fig. 1) and leads to the changes of phenotype/functions of chondrocytes and composition of the extracellular matrix.

The cartilage is composed of chondrocytes (2–10% of the cartilage) and matrix which is primarily composed of water (65–80%) as well as collagen (10–30%) and proteoglycans (5–10%), the remaining elements are non-collagen proteins and low number of lipids. Proteoglycans are composed of protein core with attached glycosaminoglycan chains (polysaccharides). The main proteoglycan of the cartilage is aggrecan which contains chains of chondroitin sulfate and keratan sulfate. The dominant collagen type is type II (and to a lesser degree, types IX and XI). Collagen forms a scaffold for the cartilage matrix. It is also responsible for the cohesiveness and mechanical resistance of the cartilage and gives it shape.

Degenerative lesions in the cartilage, which begin the cascade of destructive changes, are primarily induced by inflammatory factors produced by the synovium, adipose tissue and activation of mechanoreceptors in chondrocytes and osteoblasts.

Pathogenesis of synovitis in patients with OA

The majority of OA patients manifest features of synovitis on histopathological examination(7–10). In RA patients, presumable factors responsible for the proliferation of the lining layer and inflammatory infiltration of the sublining are environmental factors such as smoking and Porphyromonas gingivalis bacteria(11,12). In the case of OA, however, the trigger points appear to be the molecules/products which are released when cartilage is damaged and which probably operate through the receptors of innate immune system, so-called, pattern recognition receptors (PRRs), e.g. Toll-like receptors, and secondarily, also through other proinflammatory factors, such as cytokines, which irritate the synovial membrane causing its inflammation and inducing immune response(13). Apart from the pathogen-associated patterns, PRRs also recognize damage-associated molecular patterns (DAMPs). DAMPs that are typical of OA are released fragments of the articular cartilage (biglycans, fibronectin, fragments of hyaluronic acid chains or tenascin C), some plasma proteins (such as α₁-microglobulin, α₂-microglobulin or fibrinogen), intracellular alarmins.
α₂-makroglobulina, fibrynogen), wewnątrzkomórkowe alarminy (m.in. high-mobility group box 1, HMGB1) i kryształy uwalniane z podchrzęstnych warstw kości. DAMPs przyłącza się do PRRs na powierzchni makrofagów, fibroblastów błony mazioiowej i chondrocytów, prowadząc do ich aktywacji i produkcji mediatorów zapalenia\(^2\).

Aktywowane makrofagi produkują różne czynniki wzrostu, cytokiny i enzymy, które przyczyniają się do rozrostu błony (among others high-mobility group box 1, HMGB1) and crystals released from subchondral bone layers. DAMPs attach to PRRs on the surface of macrophages, fibroblasts of the synovial membrane and chondrocytes. This leads to their activation and production of inflammatory mediators\(^3\).

Activated macrophages produce various growth factors, cytokines and enzymes which contribute to the

Ryc. 1. Chrząstka szklista od chorego na ChZS. Widoczne liczne zmiany zwyrodnieniowe w postaci pęknięć i szczelin (długi strzałki) i obecność złożów włóknika na powierzchni (krótkie strzałki). Pow. 400×, barwienie hematoksyliną i eozyną (H&E)

Fig. 1. Hyaline cartilage of OA patient. Numerous degenerative lesions in the forms of ruptures and fissures (long arrows) and presence of fibrin collections on the surface (short arrows). 400× magnification; hematoxylin and eosin stain (H&E)

Ryc. 2. CIAło tłuszczowe Hoffy w ChZS: A. cechy angiogenezy (strzałki); B. niewielkie nacieki zapalne z limfocytów i komórek plazmatycznych (cienka strzałka) oraz cechy angiogenezy (guba strzałka); C. pogłoskowy naciek zapalny z limfocytów (strzałka). Pow. 200×, barwienie H&E

Fig. 2. Hoffa’s fat pad in OA: A. angiogenesis in the adipose tissue (arrows); B. slight inflammatory infiltration by lymphocytes and plasma cells (thin arrow) and features of angiogenesis (thick arrow); C. focal inflammatory infiltration by lymphocytes (arrow). 200× magnification; H&E stain
mazowym, indukują wstęgę w stavie poprzez rozszerzenie naczyn, wpływając na tworzenie się osteofitów oraz prawdopodobnie mogą wpływać na metabolizm tkanki podchłonnjej (o czym w dalszej części tekstu). Neutrofile potępują niszczenie chrzatk i prowadzą do martwicy stavie mazowej poprzez produkcję cytokin IL-6, IL-8 i metaloproteinazy MMP8(5). Eozynofile i basofile uwazają histaminę, zwiększającą produkcję enzymów i przerazalnych mediatorów w fibroblastach synowlowych i chrząstki, które degruują macierzy(5). Limfocity pomocnicze Th1 u chorych na ChZS wykazują typową dla tej linii komórkowej ekspresję IL-2, IL-3, IFN-γ i GM-CSF oraz mogą niszczyć chrząstkę bezpośrednio lub pośrednio przez aktywację makrofagów(5).

W rozwoju synovitis istotną rolę odgrywa także tkanka mazowalna(1). Zarówno naciekające ją komórki immunologiczne (ryc. 2), jak i wydzielane przez tkankę mazowalną adipokiny mogą stymulować makrofagi do indukowania rozrostu błony mazowej.

Obraz histopatologiczny błony mazowej chorych na ChZS jest zwykle heterogeny: w obrębie jednego stavu obserwuje się cechy włóknina, tuż obok aktywnych zmian zapalnych przypominających synovitis w przebiegu RZS, czyli hiperplazję (rozrost) komórki warstwy wyciosłkowej błony mazowej, nacieki zapalne złożone głównie z limfocytów T i monocytyów w warstwie podwyciosłkowej, a także nowoawalizacyjne cytokiny (2,10,11,13,14) (ryc. 3). W przeciwieństwie do synovitis w przebiegu RZS, w ChZS nie powstaje ektropowa tkanka limfatyczna.

Wynika z tego, że w badaniach obrazowych nie będziemy potrafili zróżnicować synovitis w przebiegu RZS i ChZS. Dotyczy to zresztą wszystkich postaci zapalenia stavów, gdzie obraz zapalenia błony mazowej na obecnym etapie wiedzy immunologicznej i histopatologicznej jest bardzo podobny. Jedynym wyróżnikiem jest obecność ektropowej tkanki limfatycznej w RZS. Ma to poważne implikacje kliniczne, nie tylko pod kątem możliwości różnicowania zapalenia stavów, w tym m.in. postaci nierozróżnianych, ale także pod kątem monitorowania skuteczności leczenia czy decydowania o remisji – pewien element synovitis niekoniecznie będzie wskazywał na utrzymywanie się zapalenia na tle choroby zaradniczej, ale będzie wyrazem zmian degeneracyjnych.

Spektakularnym przykładem współistnienia zmian proliferacyjnych/osteofitów oraz zapalenia błony mazowej jest zwyrodnienie stavu nadgarstkowo-śródręcznego kciuka (rhirhathrosis) (ryc. 4). Z uwagi na jego częste zajęcie przez ChZS Larsen (twórca jednej z bardziej popularnych skal oceny zaawansowania zmian w RZS) wyłłacił go ze swojej klasyfikacji w 1995 roku. Nikt jednak nie zgwarantuje, że u pacjenta z klinicznym podejrzeniem RZS cechy synovitis w tym stavie, nawet przy obecności osteofitów, będą świadczyły tylko o procesie zwyrodnieniowym. Stąd też przypuszczał stav czworoboczo-śródręczny kciuka w większości klasyfikacji radiologicznych, mimo ich modyfikacji, został jednym z elementów oceny nadgarstków i rąk w diagnostyce RZS (m.in. w klasyfikacji Sharpa/van der Heijde czy SENS(15-18). Problem różnicowania zmian zwyrodnieniowych i procesu reumatycznego może dotyczyć także innych stavów (ryc. 5).

proliferation of the synovium, induce joint effusion by dilating vessels, affect the formation of osteophytes and probably have an effect on the metabolism of the subchondral tissue (see below). Neutrophils enhance cartilage degradation and lead to necrosis of the adipose tissue by producing IL-6 and IL-8 cytokines and metalloproteinase MMP8(5). Eosinophils and basophils release histamine as well as enhance the production of enzymes and proinflammatory mediators in synovial fibroblasts and cartilage, which degrades the matrix(8). In OA patients, T-helper cells (lymphocytes Th1) show expression of IL-2, IL-3, IFNs, and GM-CSF, which is typical of this cell line, and may degrade the cartilage directly or indirectly by macrophage activation(5).

Another significant factor in the development of synovitis is the adipose tissue(5). Both immune cells that infiltrate it (fig. 2) and adipocytokines secreted by the adipose tissue may stimulate macrophages to induce the proliferation of the synovial membrane.

The histopathological picture of the synovium in patients with OA is usually heterogeneous: within one joint, one may observe fibrosis next to active inflammatory lesions resembling RA synovitis, i.e. hyperplasia (proliferation) of the synovial lining cells, inflammatory infiltrations consisting mainly of T-cells and monocytes in the sublining as well as neovascularization(2,10,11,13,14) (fig. 3). Contrary to synovitis in the course RA, in OA, there is no ectopic lymphatic tissue.

Therefore, in imaging examinations, the differentiation of RA and OA synovitis is not feasible. This refers to all types of arthritis in which, based on current immunological and histopathological knowledge, the presentation of synovitis is very similar. One of the distinguishing features is the presence of ectopic lymphatic tissue in RA. This has serious clinical implications not only in terms of differential diagnosis of arthritis types, including undifferentiated types, but also in terms of treatment monitoring or stating the remission – a certain element of synovitis will not necessarily indicate persisting inflammation connected with the underlying disease but may be a manifestation of degenerative changes.

A particular example of the coexistence of proliferative changes/osteophytes and synovitis is degeneration of the carpometacarpal joint of the thumb (rhirhathrosis) (fig. 4). Due to its frequent involvement by OA, Larsen (the author of one of the most popular scales of RA advancement) excluded it from his classification in 1995. No one, however, will guarantee that in a patient with a clinical suspicion of synovitis, this feature of synovitis in this joint attest to degenerative process, even when osteophytes are observed. Hence, the carpometacarpal joint of the thumb remains one of the elements of wrist and hand assessment in RA diagnosis in most of radiological classifications, despite their modifications (e.g. in Sharp/van der Heijde score or SENS(15-18). The problem in differentiating between degenerative changes and rheumatoid process may also concern other joints (fig. 5).
Rola czynników zapalnych w powstawaniu osteofitów

Czynnik zapalny ma, obok czynników genetycznych, znaczenie w powstawaniu osteofitów, co szczególnie dotyczy pacjentów reumatycznych (ryc. 6). W osteofitach stwierdzono obecność czynnika wzrostu TGF-β oraz leptyny. Rodzina czynników wzrostu TGF-β odgrywa podstawową rolę w indukowaniu aktywności osteoblastów poprzez promowanie różnicowania komórek mierzystych szpiku w obrębie linii osteoblastycznej (osteoblastogenezes), jest też mitogenem ludzkich prekursorów osteoblastów. Wstrzyknięcie dostawowe TGF-β szczurom indukowało powstanie dużych osteofitów[18]. Ważnym pośrednim czynnikiem w procesie tworzenia osteofitów są także makrofagi warstwy wyściółkowej blony maziowej, które są istotnym producentem cytokin prozapalnych (TNF-α i IL-1β), chemotaktycznych (chemokin) oraz czynników wzrostu regulujących chondrogenację, które obok białka macierzy pozakomórkowej wpływają na różnicowanie się komórek moczynkowych w zakresie linii chondrocytarnej w nową chrząstkę i kość[19,20]. Niektóre z tych związków są zdolne indukować zapalenie blony maziowej.

Role of inflammatory factors in the formation of osteophytes

The inflammatory factor, next to genetic factors, has its role in osteophyte formation, which particularly concerns rheumatoid patients (fig. 6). Osteophytes reveal the presence of growth factor TGF-β, IGF-1 and leptin. The TGF-β family plays a vital role in inducing osteoblast activity by promoting stem cell differentiation in the bone marrow within the osteoblastic cell line (osteoblastogenesis). It is also a mitogen of human precursors of osteoblasts. Intra-articular administration of TGF-β to rats induced the formation of large osteophytes[18]. What is more, macrophages of the synovium lining layer constitute an important secondary factor in osteophyte formation. They are significant producers of proinflammatory cytokines (TNF-α and IL-1β), chemokines (chemotactic cytokines) and growth factors regulating chondrogenesis, which, next to the extracellular matrix protein, affect mesenchymal cell differentiation within chondrocyte cell line into a new cartilage and bone[19,20]. Some of these compounds are capable of inducing synovitis in animal studies[21].
Role of inflammatory factors and adipose tissue in pathogenesis of rheumatoid arthritis and osteoarthritis.
Part II: Inflammatory background of osteoarthritis

In badanach na modelach zwierzęcych\(^{21}\). W badanach immunologicznych potwierdzono, iż osteofity powstają z tych komórek mezenchymalnych, które są zlokalizowane w okostnej lub w jej pobliżu\(^{19,20}\).

Niektróre działania makrofałg, takie jak wytwarzanie przez nie cytokiny TNF-\(\alpha\), są hamowane przez obwodowe współczulne neurotransmitery – norepinefrynę, neuroneptid Y (NPY) i adenozynę\(^{22}\). W synovitis oraz w tkance tłuszczowej u pacjentów z RZS i ChZS gęstość włókien nerwowych współczulnych jest dramatycznie zredukowana, zaś gęstość prozapiłnych włókien nerwowych czucjoowych peptyder-
gicznych C wydzielających substancję P ulega zwiększeniu\(^{5,23}\). Substancja P, podobnie jak TNF-\(\alpha\) i IL-1\(\beta\), indukuje tlenek azotu, który jest mediatorem zapalenia w synovio-
cytach reumatoidalnych oraz w eksperymentalnych mode-
lach zapalenia\(^{5,23}\). Aktywuje komórki zapalne i synowiocyty, stymuluje produkcję IL-1 i zwiększa jej efekty tkankowe\(^6\). Sędzenie substancji P w tkankach stawowych chorych kore-
luje z aktywnością IL-6\(^6\). Ponadto stymuluje ona (i kilka innych neurotransmiterów, np. noradrenalina) syntezę IL-6 i IL-8 w synoviocytach błony maziowej \textit{in vitro} i w wielu tkankach zwiększa produkcję: IL-6, TNF-\(\alpha\), czynnika jądro-
wego kappa B i anionu ponadtenkowego \(0_\text{z}^{\text{2-}}\). Ponadto ma silne działanie aktywizujące fibroblasty i produkcję macierz pozakomórkowej\(^5\). Powoduje także rozszerzenie naczyń, co prowadzi do wyczerpania komórek układu immunologicznego, a następnie do obrzęku ciała tłuszczowego Hoffy – IPFP. Obraz IPFP z kolei często prowadzi do klinowania ciała tłuszczowego, to zaś może prowadzić do jego niedokrwienia i martwicy\(^5\). Niedokrwienie indukuje uwalnianie neurotropiny – naturalnego czynnika wzrostu, który aktywuje uwalnianie substancji P. Tak powstaje błędne

Immunological research confirmed that osteophytes are formed from the mezenchymal cells that are localized in the periosteum or its vicinity\(^{19,20}\).

Some of the activities of macrophages, such as producing TNF-\(\alpha\) cytokines, are inhibited by peripheral sympathetic neurotransmitters – norepinephrine, neuropeptide Y (NPY) and adenosine\(^{22}\). In synovitis and in the adipose tissue of patients with RA and OA, the density of sympathetic nerve fibers is dramatically reduced but the density of proinflammatory peptidergic C sensory fibers that secrete substance P is increased\(^{5,23}\). Similarly to TNF-\(\alpha\) and IL-1\(\beta\), substance P induces nitric oxide which is an inflammatory mediator in rheumatoid synoviocytes and in experimental models of the inflammation\(^{5,23}\). It activates inflammatory cells and synoviocytes, stimulates IL-1 production and enhances its effects on tissues\(^6\). The concentration of substance P in articular tissues of patients is correlated with IL-6 activity\(^6\). What is more, together with several other neurotransmitters (e.g. noradrenaline), it stimulates IL-6 and IL-8 \textit{in vitro} synthesis in synoviocytes. Moreover, in numerous tissues, it enhances the production of: IL-1\(\beta\), TNF-\(\alpha\), nuclear factor kappa B and superoxide anion \(O_2^{\text{-}}\). Furthermore, it exerts strong activ-
vating effects on fibroblasts and on the production of extra-
cellular matrix\(^5\). It also causes dilation of vessels which leads to the extravasation of the immune system cells and, subsequently, to edema of the Hoffa’s fat pad – IPFP. IPFP edema frequently results in jamming of the fat pad which, in turn, may lead to its ischemia and necrosis\(^5\). Ischemia induces neurotropin release – a natural growth factor that activates substance P release. This is how a vicious circle is created which is probably responsible for persisting

\[\text{Fig. 6. Lateral X-ray of the knee: subchondral sclerosis} \]

\[\text{Fig. 7. Maximal enhancement of the synovium following contrast i.v. injection in MR study of the knee in patients with RA (A) and OA (B)} \]

\[\text{Fig. 6. Zdjęcie rentgenowskie boczne stawów kolanowych: pod-} \]
\[\text{chrzęstna sklerotyzacja} \]
koło prawdopodobnie odpowiedzialne za utrzymywanie się przewlekłego stanu zapalnego ciała Hoffy(5). IPFP u osób z ChZS zawiera więcej nerwów o małej średnicy zawierających substancję P niż średnich czy dużych, co oznacza, że IPFP zawiera część zakończeń czuciwych stawu kołowego i może być źródłem silnego bólu u pacjentów z ChZS(6). U osób z bólem w przednim przedsiezcze kołana i u pacjentów z RZS liczba włókien wydzielających substancję P jest nawet 8-krotnie większa niż włókien nerwowych współczulnych wydzielających przeciwzapalną norepinefrynę i endogenne opioidy, które hamują percepję bólu na drodze antagony-
stycznej względem substancji P(5).

Rola czynników zapalnych w powstawaniu podchrząstkiej sklerotyzacji

Procesy zapalne indukują także zmiany w tkance podchrząstkiej (ryc. 6). Jeszcze do niedawna uważano, że obserwowane w przebiegu ChZS pogrubienie i sklerotyzacja podchrząstowych warstw kości są zjawiskiem wtórnym(6). Od kilku lat wiadomo jednak, że zmiany w podchrząstnych warstwach kości przebiegają równolegle, a czasem wyprze-
dają zmiany w chrząstce (analogicznie do zmian w szpiku kostnym w przebiegu RZS czy w spondyloarthropatiach osiowej/zapaleniu stawów krzyżowo-biodrowych)(24). Produkowane w podchrząstnej cytokiny i czynniki wzrostu prowadzą do niszczenia chrząstki poprzez stymulowanie chondrocytów do produkcji zwiększonych ilości metalloproteinaz macierzy i hamowanie syntezy agrekanu(25). Ponadto mogą indukuwać hipertroficzne różnicowanie się chondrocytów lub stymulować chondrocyty w sposób parakryny(5). W rezul-
tacie dochodzi do postępującej sklerotyzacji i korzecującego z nią usztywnienia kości, co może sprzyjać powstawaniu nowych uszkodzeń chrząstki stawowej w wyniku niepra-
widłowego rozkładu napięć mechanicznych lub mikrozała-
ńią. Co więcej, postępowi sklerotyzacji nie towarzyszy adekwatny wzrost mineralizacji, co może wskazywać na zaburzenia procesu przebudowy kości w ChZS(5). Szereg danych potwierdza istnienie zaburzeń czynności osteo-
blastów pochodzących z podchrząstnych warstw kości chorych. Wykryto m.in. niewystarczającą odporność na stymu-
lację parathormonem, witaminą D3, prostaglandyną E2 i niektóрыmi czynnikami wzrostu, w efekcie czego dochodzi do zaburzeń produkcji białek kolagenowych i nolokageno-
nych, w tym osteokalcyny(26–29).

Podsumowanie

Wykładowcą dokładności metody diagnostycznej jest jej zdolność do identyfikowania przypadków fałszywie dodatnich. Niestety, badania histologiczne i immunologiczne wskazują, że badania obrazowe, w tym przypadku USG i rezonans magnetyczny (MR), nie pozwalają na pewnym etapie chorób na różnicowanie zapalenia błony maziowej reumatycznego i synovitis w przebiegu ChZS. Wyjątkiem jest wczesna faza RZS, przed wdrożeniem leczenia, w któ-
jej wszystkie komponenty zapalenia, a zwłaszcza widoczne w badaniach obrazowych przekwienie, są bardziej nasi-
lone niż w innych jednostkach reumatycznych, w tym

inflammation of the Hoffa’s body(5). IPFP in patients with OA contains more nerves with low diameters, where sub-
stance P is present, than with medium or large ones. This means that IPFP contains a part of sensory endings of the
knee and may be the source of severe pain in patients with OA(6). In persons experiencing pain in the anterior aspect
of the knee and in RA patients, the number of fibers secret-
ing substance P is even 8 times greater than the number of
sympathetic nerve fibers secreting anti-inflammatory
norepinephrine and endogenous opioids which inhibit the
perception of pain by acting on substance P in an antago-
nistic manner(5).

Role of inflammatory factors in the formation of subchondral sclerosis

Inflammatory processes also cause changes in the subchond-
ral tissue (fig. 6). Until recently, it was thought that the
thickening and sclerosis of subchondral layers, which are
observed in the course of OA, are a secondary phenome-
non(6). For several years, however, it has been known that
the lesions in the subchondral layers occur simultaneously
and sometimes, even precede the development of cartilage
lesions (analogically to the changes in the bone marrow in the
course of RA or in spondyloarthropathy/sacroiliac arthritis)(24). Cytokines and growth factors produced in the
subchondral tissue lead to cartilage degradation by stimulating chondro-
cytes to produce increased amounts of matrix metallopro-
teinase and inhibiting aggrecan synthesis(25). Furthermore,
they may induce hypertrophic differentiation of chondrocytes
or stimulate chondrocytes in a paracrine manner(5). This
entails progressive sclerosis and correlated bone ankylosis,
which may be conductive to the development of new articu-
rative cartilage damage resulting from improper distribution
of mechanical tension or microfractures(6). What is more, pro-
gressive sclerosis is not accompanied by adequate increase
in mineralization, which may indicate the disorder in the
process of bone remodeling in the course of OA(6). A range
of data confirm the existence of malfunctions of osteoblasts
originating from the subchondral layers of involved bones.
The presence of, among others, improper response to the
stimulation with parathormone, vitamin D3, prostaglandin
E2, and certain growth factors has been noticed. As a result,
there are disorders in the production of collagen and non-
collagen proteins, including osteocalcin(26–29).

Conclusion

The ability of a diagnostic method to identify false positive
cases is a determinant of its accuracy. Unfortunately, histo-
logical and immunological studies reveal that in a certain
disease stadium, imaging examinations, in this case sono-
graphy and magnetic resonance imaging (MRI), preclude the
differentiation between rheumatic synovitis and synovitis
developing in the course of OA. The early stage of RA, prior
to the implementation of treatment, is an exception. In this
case, all elements of inflammation, particularly hyperemia
visualized by imaging examinations, are more intensified
than in other rheumatic entities, including OA. However,
Role of inflammatory factors and adipose tissue in pathogenesis of rheumatoid arthritis and osteoarthritis. Part II: Inflammatory background of osteoarthritis

w ChZS. Jednak już w trakcie leczenia utrzymujące się na pewnym poziomie pogrubienie i zwiększona unaczynienie synovium będą mogły wynikać bądź z przewlekającego się RZS, bądź z nakładających się zmian zwyrodniołowych, z obecnością zapalenia błony maziowej na skutek jej „drażnienia” przez drobiny uszkadaną chrząstki. Ma to istotne znaczenie kliniczne zwłaszcza w odniesieniu do ultrasonografi, która w praktyce klinicznej jest wiodącym badaniem radiologicznym w monitorowaniu skuteczności leczenia RZS pacjentów reumatycznych. Pewien element synovitis może mieć podłoże degeneracyjne i prawdopodobnie nie będziemy tego w stanie, na pewnym etapie tych chorób, zróżnicować. Obiegujące możliwości stwarzają dynamiczne badania MR (DCE-MR), które jak dotąd najpokładniej, spo- śród badań obrazowych, odzwierciedlają procesy zapalne toczące się w stawie i w szpiku kostnym oraz umożliwiają ich monitorowanie w trakcie leczenia, w sposób jakościowy i ilościowy(12,24) (ryc. 7). Wstępne wyniki Cimmino i wsp. (30) wskazują na możliwość różnicowania RZS i huzszycowego zapalenia stawów na podstawie różnic w lokalizacji zmian zapalnych pochepek prostowników, objętości zapalnie zmienionej błony maziowej i nasilenia jej procesu zapal- nego. Są to wstępne badania, wymagające potwierdzenia na większą liczbę pacjentów, niemniej obiegujące w kon- tekście diagnozy różnicowej wczesnych, a zwłaszcza nieskłasyfikowanych (niezróżnicowanych) zapaleń stawów.

following the commencement of treatment, a certain level of thickening and increased vascularity of the synovium may result either from chronic RA or from intensified degenera- tive lesions with the presence of synovitis which is caused by the "irritation" of the synovial membrane by fragments of damaged cartilage. This is of significant clinical importance with respect to sonography which in clinical practice, con- stitutes the fundamental imaging examination applied for the purposes of monitoring the efficacy of RA treatment or stating remission in rheumatoid patients. A certain element of synovitis may be of degenerative nature and probably it will not be feasible to identify it in certain stages of these dis- eases. Nevertheless, the application of dynamic MRI (DCE- MRI) shows promising possibilities. So far, out of imaging examinations, this method has proven to be the most accu- rate in visualizing the processes taking place in joints and in the bone marrow as well as in monitoring them during treat- ment in qualitative and quantitative manners(12,24) (fig. 7). The initial results of Cimmino et al. (30) indicate the possibility to differentiate between RA and psoriatic arthritis based on the differences in the localization of inflammatory lesions of the extensor sheaths, volume of inflamed synovium and exacer- bation of synovitis. These results are initial and require confirmation among a larger population. Nevertheless, they are promising in terms of differential diagnosis of early, and particularly, unclassified (undifferentiated) forms of arthritis.

Konflikt interesów

Autorzy nie zgłaszają żadnych finansowych ani osobistych powią- zań z innymi osobami lub organizacjami, które mogłyby negatywnie wpłynąć na treść publikacji oraz rozości sobie prawo do tej publikacji.

Conflict of interest

Authors do not report any financial or personal links with other per- sons or organizations, which might affect negatively the content of this publication and/or claim authorship rights to this publication.

Piśmiennictwo/References

1. Sudol-Szpoin ska I, Kontry E, Zaniewicz-Kaniewska K, Prohorec-Sobiesz ek M, Saied F, Maślinski W: Role of inflammatory factors and adi- pose tissue in pathogenesis of rheumatoid arthritis and osteoarthritis. Part I: Rheumatoid adipose tissue. J Ultrason 2013; 53: 192–201.
2. Sokolove J, Lepus CM: Role of inflammation in the pathogenesis of os- teoarthritis: latest findings and interpretations. Ther Adv Musculoskelet Dis 2013; 5; 77–94.
3. Ushiyama T, Chano T, Inoue K, Matsusue Y: Cytokine production In the infrapatellar fat pad: another source of cytokines in knee synovial fluids. Ann Rheum Dis 2003; 62: 108–112.
4. Kontry E, Plebanczyk M, Lisowska B, Olszewska M, Maldyk P, Maślinski W: Comparison of rheumatoid articulare adipose and synovial tissue reactivity to proinflammatory stimuli: contribution to adipocytokine network. Ann Rheum Dis 2012; 71: 262–267.
5. Clockaerts S, Bastiaensen-Jenniskens YM, Runhaar J, Van Osch GJVM, Van Offel JF, Verhaar JAN et al.: The infrapatellar fat pad should be considered as an active osteoarthritic joint tissue: a narrative review. Osteoarthritis Cartilage 2010; 18: 876–882.
6. Niozaj PZ, Łącki JK: Od zwrodnienia do zapalenia – współczesne poglądy na patogenezę choroby zwrodniołowej stawów. Nowa Med 2002: 9; 7–16.
7. Goldenberg DL, Egan MS, Cohen AS: Inflammatory synovitis in degener- ative joint disease. J Rheumatol 1982: 9; 204–209.
8. Lindblad S, Hedfors E: Arthroscopic and immunohistologic character- ization of knee joint synovitis in osteoarthritis. Arthritis Rheum 1987; 30: 1081–1088.
9. Haraux B, Pelletier JP, Cloutier JM, Faure MP, Martel-Pelletier J: Syno- vital membrane histology and immunopathology in rheumatoid arthri- tis and osteoarthritis. In vivo effects of antirheumatic drugs. Arthritis Rheum 1991; 34: 153–163.
10. Mika J: [Differentiation rheumatoid arthritis and osteoarthritis in US examination and X-ray examination of knees]. Ultrasonografia 2007; 7 (28): 26–32.
11. Sudol-Szpoin ska I, Kontry E, Maślinski W, Prohorec-Sobieszek M, Kwiatkowska B, Zaniewicz-Kaniewska K et al.: The pathogenesis of rheumatoid arthritis in radiological studies. Part I: Formation of in- flammatory infiltrates within the synovial membrane. J Ultrason 2012; 12: 202–213.
12. Sudol-Szpoin ska I, Zaniewicz-Kaniewska K, Warchynska A, Matusze- wska G, Saied F, Kunisz W: The pathogenesis of rheumatoid arthritis in radiological studies. Part II: Imaging studies in rheumatoid arthritis. J Ultrason 2012; 12: 319–328.
13. Lohmander LS: The role of molecular markers to monitor breakdown and repair. In: Reginster JY, Pelletier JP, Martel-Pelletier J, Henrotin Y, Crasborn L (eds.): Osteoarthritis: Clinical and Experimental Aspects. Springer-Verlag, Berlin, Heidelberg 1999: 296–311.
14. Adatia A, Rainsford KD, Kean WF: Osteoarthrosis of the knee and hip. Part I: aetiology and pathogenesis as a basis for pharmacotherapy. J Pharm Pharmacol 2012; 64: 617–625.
15. Ravindran V, Rachapalli S: An overview of commonly used radiograph- ic scoring methods in rheumatoid arthritis clinical trials. Clin Rheuma- tol 2011: 30; 1–6.
16. Guillemin F, Billot L, Boini S, Gerard N, Ødegaard S, Kvien TK: Re- producibility and sensitivity to change of 5 methods for scoring hand radiographic damage in patients with rheumatoid arthritis. J Rheuma- tol 2005; 32: 778–786.
17. van der Heijde DM: Radiographic imaging: the ‘gold standard’ for assessment of disease progression in rheumatoid arthritis. Rheumatology (Oxford) 2000; 39 Suppl 1: 9–16.
18. Boini S, Guillemin F: Radiographic scoring methods as outcome measures in rheumatoid arthritis: properties and advantages. Ann Rheum Dis 2001; 60: 817–827.
19. van Lent PLEM, Blom AB, van der Kraan P, Holthuysen AEM, Vitters E, van Rooijen N et al.: Crucial role of synovial lining macrophages in the promotion of transforming growth factor β-mediated osteophyte formation. Arthritis Rheum 2004; 50: 103–111.
20. Blom AB, van Lent PLEM, Holthuysen AEM, van der Kraan PM, Roth J, van Rooijen N et al.: Synovial lining macrophages mediate osteophyte formation during experimental osteoarthritis. Osteoarthritis Cartilage 2004; 12: 627–635.
21. Kraan MC, Patel DD, Haringman JJ, Smith MD, Weedon H, Ahern MJ et al.: The development of clinical signs of rheumatoid synovial inflammation is associated with increased synthesis of the chemokine CXCL8 (interleukin-8). Arthritis Res 2001; 3: 65–71.
22. Weidler C, Holzer C, Harbuz M, Hofbauer R, Angele P, Schölmerich J et al.: Low density of sympathetic nerve fibres and increased density of brain derived neurotrophic factor positive cells in RA synovium. Ann Rheum Dis 2005; 64: 13–20.
23. O’Shaughnessy MC, Vetsika EK, Inglis JJ, Carleson J, Haigh R, Kidd BL et al.: The effect of substance P on nitric oxide release in a rheumatoid arthritis model. Inflamm Res 2006; 55: 236–240.
24. Sudol-Szopińska I, Kontny E, Maśliński W, Prochorec-Sobieszek M, Warczyńska A, Kwiatkowska B: Significance of bone marrow edema in pathogenesis of rheumatoid arthritis. Pol J Radiol 2013; 78: 57–63.
25. Sanchez C, Deberg MA, Piccardi N, Muika P, Register JYL, Henrotin YE: Osteoblasts from the sclerotic subchondral bone downregulate aggrecan but upregulate metalloproteinases expression by chondrocytes. This effect is mimicked by interleukin-6, -1β and oncostatin M pretreated non-sclerotic osteoblasts. Osteoarthritis Cartilage 2005; 13: 979–987.
26. Hilal G, Martel-Pelletier J, Pelletier JP, Ranger P, Lajeunesse D: Osteoblast-like cells from human subchondral osteoarthritic bone demonstrate an altered phenotype in vitro: possible role in subchondral bone sclerosis. Arthritis Rheum 1998; 41: 891–899.
27. Westacott CI, Webb GR, Warnock MG, Sims JV, Elson CJ: Alteration of cartilage metabolism by cells from osteoarthritic bone. Arthritis Rheum 1997; 40: 1282–1291.
28. Hilal G, Massicotte F, Martel-Pelletier J, Fernandes JC, Pelletier JP, Lajeunesse D: Endogenous prostaglandin E2 and insulin-like growth factor 1 can modulate the levels of parathyroid hormone receptor in human osteoarthritic osteoblasts. J Bone Miner Res 2001; 16: 713–721.
29. Hilal G, Martel-Pelletier J, Pelletier JP, Duval N, Lajeunesse D: Abnormal regulation of urokinase plasminogen activator by insulin-like growth factor 1 in human osteoarthritic subchondral osteoblasts. Arthritis Rheum 1999; 42: 2112–2122.
30. Cicimino MA, Barbieri F, Boesen M, Paparo F, Parodi M, Kubassova O et al.: Dynamic contrast-enhanced magnetic resonance imaging of articular and extraarticular synovial structures of the hands in patients with psoriatic arthritis. J Rheumatol Suppl 2012; 89: 44–48.