The efficacy of bentonite and zeolite in reducing aflatoxin B1 toxicity on production performance and intestinal and hepatic health of broiler chickens

Abdulrahman S. Alharthia, Ali R. Al Sulaimanb, Riyadh S. Aljumaahia, Abdulaziz A. Alabdullatifc, Giulia Ferronatoc, Abdulmohsen H. Alqhtanai, Maged A. Al-Garadid, Hussien Al-sornokha and Alaeldein M. Abudabos

aDepartment of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia; bNational Center for Environmental Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia; cDepartment of Civil Engineering, Architecture, Environment, Land Planning and Mathematics (DICATAM), Università degli Studi di Brescia, Brescia, Italy

ABSTRACT
This research aimed to assess the influences of bentonite (BN) and zeolite (ZE) on reducing toxic influences of aflatoxin B1 (AFB1) in broilers by examining growth performance, carcass characteristics, serum indices, ileum morphology, apparent nutrient digestibility, and liver AFB1 residues. In total, 360 11-d-old straight-run broilers (Ross 308) were randomly allocated into 6 dietary treatments, with 10 replications of 6 birds each, in a 20-d experiment. The treatments were as follows: standard basal diet (negative control, NC); NC + 0.25 mg/kg AFB1 (positive control, PC); NC + 0.4% BN; NC + 0.4% ZE; PC + 0.4% BN; PC + 0.4% ZE. Compared to the NC diet, feeding the PC diet decreased daily feed intake (DFI) during the grower and overall periods (p < .01), reduced daily weight gain (DWG) and production efficiency factor (PEF) and increased feed conversion ratio (FCR) during grower, finisher, and overall periods (p < .001), lowered breast meat yield (p < .01), diminished dressing percentage, serum concentrations of total protein (TP), albumin (ALB), glucose (GLU), total antioxidant capacity (T-AOC), and total superoxide dismutase (T-SOD), villus height (VH), villus surface area (VSA), apparent digestibility of crude protein (CP) and ether extract (EE), apparent metabolisable energy (AME), and nitrogen-corrected AME (AMEn) (p < .001), and raised proportional liver weight, serum activities of glutamic oxaloacetic transaminase (GOT) and glutamate pyruvate transaminase (GPT), and residues of AFB1 in the liver (p < .001). Compared to the PC diet, feeding the PC + 0.4% BN or PC + 0.4% ZE diets increased DWG and PEF and decreased FCR during finisher and overall periods, raised dressing percentage, serum levels of TP, GLU, T-AOC, and T-SOD, apparent CP digestibility, and reduced proportional liver weight and AFB1 residues in the liver (p < .001). Moreover, feeding the PC + 0.4% BN diet increased VH, VSA, apparent EE digestibility, AME, and AMEn, and decreased serum GOT and GPT activities when compared to the PC diet (p < .001). Whereas, feeding the PC + 0.4% ZE diet increased DFI during all experimental periods (p < .05) and DWG and PEF during the grower period (p < .001) as compared to the PC diet. To conclude, our findings demonstrate that dietary addition of 4 g/kg BN can deliver a better safeguard against the adverse influences of AFB1 in broiler chickens.

ARTICLE HISTORY
Received 31 March 2022
Revised 20 June 2022
Accepted 11 July 2022

KEYWORDS
Aflatoxin B1; bentonite; broilers; digestibility; performance; zeolite

Introduction
There are a considerable number of biological toxins existent in a natural environment, which would be hazardous for the well-being of farm animals. Mycotoxins, predominantly including aflatoxins, are presently regarded as amongst the most threatening ones in poultry (Murugesan et al. 2015). Aflatoxins are difuranocoumarin derivatives formed chiefly by strains of Aspergillus flavus - parasiticus and can infect plenty of different crops, especially corn, groundnut, and wheat (Abrar et al. 2013; Fountain et al. 2015). Crops contamination with these toxic metabolites adversely impacts the health status of humans and animals, the revenue of producers, and trading opportunities...
(Udomkun et al. 2017; Benkerroum 2020). Among the different kinds of aflatoxins, aflatoxin B1 (AFB1) is the most predominant and toxic one for poultry (Abudabos et al. 2017; Lauwers et al. 2019). The European Union has specified the maximum allowed concentration for AFB1 to be 0.02 mg/kg in the poultry feedingstuffs to safeguard these chickens from wellbeing dangers and to prohibit the transference of these toxic substances into their meat and egg products (Pappas et al. 2016).

Aflatoxin B1 is converted into secondary toxic metabolites chiefly in the liver, which can provoke liver injury via inducing apoptosis in hepatocytes and upsetting cellular enzymatic activity (Dohnal et al. 2014). Several studies have shown that the toxic metabolites of AFB1 are able to react adversely with various cell proteins, bringing about the suppression of carbohydrate and lipid metabolism and protein synthesis, and eventually cause apoptosis at a cellular and molecular level owing to elevated expression of death receptor-mediated pathways (Mughal et al. 2017; Wu et al. 2019). Numerous studies demonstrated the harmful influences of AFB1 in broiler chickens involving a decrease in growth responses (Liu et al. 2018a; Chen et al. 2022), changes in carcass quality (Bryden 2012), liver damage (Li et al. 2019), poor immune response (Li et al. 2014), enhanced susceptibility to infectious diseases (Ellakany et al. 2011), and augmented mortality (Pasha et al. 2007), causing considerable financial losses (Monson et al. 2015). Furthermore, AFB1 residue in the edible tissues is a possible risk to human health (Adegbeye et al. 2020).

At the current time, one of the more encouraging and functional techniques for averting or ameliorating the toxic influences of AFB1 is the usage of clay minerals or mineral adsorbents in animal feed such as aluminosilicate-based products involving phyllosilicates like bentonite (BN) and tectosilicates like zeolite (ZE) (Jard et al. 2011; Vila-Donat et al. 2018). These non-nutritive clay-based adsorbents, which originated from the decomposition of volcanic tuff, are capable to attach aflatoxin molecules in the alimentary canal of chickens, diminishing their bioavailability by forming non-resorbable complexes that are discarded via the excreta (Abidin et al. 2011; Fouad et al. 2019). The great surface area and the high ability to interchange cations give BN the potential to adsorb organic matters on the surface or within the interlayer space by penetrating the cations and polar molecules (Mil et al. 2015). In several in vitro and in vivo experiments, BN clays have demonstrated a significant capacity for absorption of AFB1 in broilers (Pappas et al. 2014; Shannon et al. 2017). Similarly, ZE with a great exterior surface area and a high cation-interchange ability can absorb polar molecules with elevated selectivity (Eroglu et al. 2017). Raj et al. (2021) showed that the inclusion of modified ZE into an AFB1-contaminated diet significantly heightened the production performance and diminished hepatic AFB1 residues in broilers. In addition, the efficiency of natural ZE in alleviating the impacts of aflatoxicosis has been reported in poultry feed under simulated gastric conditions (Moretti et al. 2018). Although several studies have been performed to determine the influences of supplementing these adsorbents on performance, biochemical indices, and residual levels of AFB1 in the liver, there is extremely limited information regarding their protective effects on intestinal morphology and nutrient digestibility in broiler chickens. Therefore, the current research was performed to evaluate the influences of dietary supplementation of BN and ZE on growth efficiency, carcass yields and visceral organs, serum biochemical parameters and enzyme activities, ileal histomorphology, apparent total tract digestibility of nutrients, and liver residual AFB1 level in broilers fed AFB1-contaminated diets.

Materials and methods

All practices utilised in this research were approved by the Animal Ethics Committee of King Saud University, Riyadh, Saudi Arabia.

Birds and trial design

A total of 360 one-day-old Ross 308 straight-run broiler chicks of similar weights were placed in battery cages (n = 6 chicks/cage; 30 kg BW/m²) in an environmentally controlled room and were fed a basal starter diet till 10 d of age. At 11 d of age, each cage was randomly assigned to 1 of 6 dietary treatments (10 replications each) in a completely randomised design. The treatments were as follows: standard basal diet (negative control, NC); NC + 0.25 mg/kg AFB1 (positive control, PC); NC + 0.4% BN; NC + 0.4% ZE; PC + 0.4% BN; PC + 0.4% ZE. The trial lasted for 20 d.

The PC diet was prepared using corn naturally contaminated with aflatoxins by replacing mycotoxin-free corn with naturally contaminated corn to provide the required AFB1 level as previously described by Yang et al. (2012). The contaminated diet was tested for the contents of AFB1 and other mycotoxins using a high-performance liquid chromatography system (Shimadzu Corp., Kyoto, Japan) with an appropriate method for
Table 1. Ingredients and nutrient composition of the basal starter (0-10 d) and grower-finisher (11-30 d) diets (% as-fed basis).

Ingredients	0-10 d	11-30 d
Yellow corn	48.0	60.5
Soybean meal	38.6	30.7
Wheat bran	7.00	2.00
Choline chloride 60%	0.05	0.00
Corn oil	2.50	3.50
Dicalcium Phosphate	1.94	1.58
Ground Limestone	0.92	0.77
Salt	0.30	0.40
DL-methionine	0.30	0.24
Lysine-HCL	0.16	0.11
Vitamin-Mineral premix	0.20	0.20
Total	100	100

Nutrient composition

- Metabolisable energy (kcal/kg): 3000 – 3200
- Crude protein: 23.0 – 20.0
- Available phosphorus: 0.48 – 0.40
- Calcium: 0.96 – 0.81
- Digestible lysine: 1.28 – 1.03
- Digestible sulfur amino acids: 0.95 – 0.80
- Digestible threonine: 0.86 – 0.70

Vitamin–mineral premix provided the following per kg of the diets: vitamin A, 12,000,000 IU; vitamin D3, 5,000,000 IU; vitamin E, 8,000 IU; vitamin K3, 3,200 mg; vitamin B1, 1,200 mg; vitamin B2, 8,600 mg; vitamin B3, 65,000 mg; pantothenic acid, 20,000 mg; vitamin B6, 4,300 mg; biotin, 220 mg; vitamin B9, 2,200 mg; vitamin B12, 17 mg; antioxidant (BHA + BHT), 50,000 mg; copper, 16,000 mg; iodine, 1,250 mg; iron, 20,000 mg; manganese, 120,000 mg; selenium, 300 mg; and zinc, 110,000 mg.

Digestibility trial

At 25 d, 10 birds per treatment (1 bird/replicate) were selected randomly and housed individually in metabolic cages. After acclimatisation for 3 d, excreta from each cage were collected for 48 h using the total collection method (Ravindran et al. 2014). Feed consumption was recorded during the collection period. Afterward, excreta were oven-dried to constant weight and ground to pass through a 0.5 mm sieve prior to chemical examination. The diets and excreta were analysed for crude protein (CP) by the Kjeldahl procedure (method 984.13; AOAC 2019) and ether extract (EE) by the Soxhlet extraction procedure (method 920.39; AOAC 2019). The gross energy of feeds and excreta were quantified employing a bomb calorimeter (IKA Works, Wilmington, NC, USA) standardised with benzoic acid. The apparent digestibility of CP and EE and apparent metabolisable energy (AME) and nitrogen-corrected AME (AMEn) of the experimental diets were calculated according to De Marco et al. (2015).

Sampling and measurements

At the end of the feeding trial (30 d), 10 birds per treatment (1 bird/replicate) were randomly picked and blood specimens were gathered from the brachial vein into serum-separating tubes, which were centrifuged to acquire serum. The serum levels of total protein (TP), albumin (ALB), glucose (GLU), glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), total antioxidant capacity (T-AOC), total superoxide dismutase (T-SOD), and glutathione reductase (GR) were quantified utilising commercial ELISA kits (MyBioSource, San Diego, CA, USA) following the manufacturer’s guidelines. Serum globulin (GLO) level was then calculated by subtracting ALB from TP.

After taking blood specimens, the birds were weighed, euthanized, plucked, processed, and eviscerated. The dressing was computed by dividing the hot carcase weight by pre-slaughter weight and expressed as a percentage. The weights of cut-up parts (breast muscles, leg quarters, and abdominal fat pad) and visceral organs (liver, spleen, bursa of Fabricius, and empty gizzard) were taken and expressed as a percentage of the pre-slaughter weight.

Approximately 2-cm long segments from the centre of the ileum were cut, flushed with phosphate buffer saline, and fixed in 10% neutral buffered formalin. Fixed sections were further dehydrated, cleared, embedded in paraffin, sectioned at 5-μm thickness, placed on glass slides, and stained with haematoxylin and eosin. The slides were photographed under a light microscope fitted with a digital camera (Olympus Corporation, Tokyo, Japan). Villus height (VH) and villus width (VW) based on at least 10 well-oriented villi per sample were measured utilising ImageJ software (National Institutes of Health, Bethesda, MD, USA). The villus surface area (VSA) was then computed from the VH and the VW at half-height (Al-Fataftah and Abdelqader 2014; Abudabos et al. 2019).
Residues of AFB1 in the liver tissues were extracted and purified following the procedure previously illustrated by Magnoli et al. (2011). A Shimadzu high-performance liquid chromatography system with fluorescence detection was used for the detection and mensuration of AFB1 in the final solution as formerly illustrated (Cui et al. 2017).

Statistical analysis

The experimental unit was the individual animal except for the performance measures where the pen of animals was the experimental unit. The data were checked for the homogeneity of variances with the Bartlett test and were analysed by one-way analysis of variance and Tukey test of multiple comparisons utilising SAS software (version 9.4, SAS Institute Inc., Cary, NC, USA). The statistical model involved treatment as a fixed factor and pen as a random factor. The significance level was specified at \(p < 0.05 \). Findings are presented as least square means with pooled standard error of the mean.

Results

Growth performance

The impacts of dietary treatments on broiler growth performance for grower (11–20 d), finisher (21–30 d), and overall (11–30 d) phases are summarised in Table 2. Broilers fed the PC diet had decreased DFI for the grower and overall phases \((p < 0.01)\) and reduced DWG and PEF and increased FCR in the grower, finisher, and overall phases \((p < 0.001)\) compared with those fed the NC diet.

In contrast, the inclusion of 0.4% BN or 0.4% ZE in the PC diet increased DWG and PEF and decreased FCR for the finisher and overall phases \((p < 0.001)\) compared to the PC diet. The increase in BWG has reached to the similar levels as in the NC groups. Moreover, adding 0.4% ZE to the PC diet increased DFI in all experimental phases \((p < 0.05)\) and DWG and PEF for the grower phase \((p < 0.001)\) compared to the PC diet.

Carcase parameters

The impacts of dietary treatments on carcase yield and components of broilers are summarised in Table 3. Broilers fed the PC diet had decreased breast meat yield \((p < 0.01)\) and reduced dressing percentage and increased proportional liver weight \((p < 0.001)\) compared with those fed the NC diet.

In comparison with the PC diet, the inclusion of 0.4% BN or 0.4% ZE in the PC diet increased dressing percentage and decreased proportional liver weight \((p < 0.001)\) to the similar levels as in the NC groups. No differences were detected in the relative weights of leg meat yield, abdominal fat, bursa, spleen, and empty gizzard among the treatments \((p > 0.05)\).

Blood constituents

The impacts of dietary treatments on serum analyses of broilers including biochemical indexes, liver function enzymes, and antioxidant status of broilers are given in Table 4. Broilers fed the PC diet had decreased levels of TP, ALB, GLU, T-AOC, and T-SOD \((p < 0.001)\) compared with those fed the NC diet.

In contrast, the inclusion of 0.4% BN or 0.4% ZE in the PC diet increased levels of TP, GLU, T-AOC, and T-SOD \((p < 0.001)\) compared to the PC diet. The increase in the levels of TP, T-AOC, and T-SOD has reached to the similar levels as in the NC groups. Moreover, adding 0.4% BN to the PC diet decreased GOT and GPT activities \((p < 0.001)\) compared to the PC diet. No differences were observed in GLO and GR levels among the treatments \((p > 0.05)\).

Table 2. Effect of adding bentonite (BN) and zeolite (ZE) as aflatoxin adsorbents to aflatoxin B1 (AFB1)-contaminated diets on growth performance of broilers during grower (11–20 d), finisher (21–30 d), and overall (11–30 d) phases.

Treatments	11-20 d	21-30 d	11-30 d									
	DFI g	DWG g	FCR g	PEF g	DFI g	DWG g	FCR g	PEF g	DFI g	DWG g	FCR g	PEF g
NC	67.3a	49.4a	1.36b	282a	119ab	79.6a	1.49c	340a	92.0a	64.5a	1.44c	360a
NC + 0.4% BN	66.6a	48.4ab	1.38b	279a	121bc	79.8a	1.52bc	347a	93.5a	63.8a	1.47bc	343a
NC + 0.4% ZE	65.7ab	47.8ab	1.38b	279a	112b	64.3a	1.74a	257a	85.8a	51.6a	1.67a	287a
PC	59.9a	38.8a	1.55a	200b	123c	77.2a	1.57a	314a	91.7a	60.4a	1.52bc	324a
PC + 0.4% BN	62.5ab	43.8bc	1.44ab	233bc	123b	76.3a	1.61b	311b	94.6a	61.1a	1.55b	323b
PC + 0.4% ZE	66.4a	45.9ab	1.45ab	251ab	123b	76.3a	1.61b	311b	94.6a	61.1a	1.55b	323b
SEM	1.48	1.24	0.03	10.17	2.23	1.83	0.02	8.68	1.62	1.18	0.02	7.25
p Value	.008	.001	.001	.001	.001	.001	.001	.001	.001	.001	.001	.001

\(^a-c \)Means within the same column with different superscripts differ \((p < 0.05)\).

\(^b\)NC (negative control), standard basal diet; PC (positive control), NC + 0.25 mg/kg AFB1.

\(^c\)DFI: daily feed intake; DWG: daily weight gain; FCR: feed conversion ratio; PEF: production efficiency factor.
The impacts of dietary treatments on ileal histomorphometry, nutrient apparent digestibility, and AFB1 concentration in liver tissue of broilers are summarised in Table 5. Broilers fed the PC diet had decreased VH, VSA, apparent digestibility of CP and EE, AME, and increased AFB1 residues in the liver (p < .001) compared with those fed the NC diet. In contrast, the inclusion of 0.4% BN or 0.4% ZE in the PC diet increased apparent CP digestibility and decreased AFB1 residues in the liver (p < .001) compared to the PC diet. Moreover, adding 0.4% BN to the PC diet increased VH, VSA, apparent EE

Ileal morphology, nutrient digestibility, and hepatic AFB1 residues

The impacts of dietary treatments on ileal histomorphometry, nutrient apparent digestibility, and AFB1 concentration in liver tissue of broilers are summarised in Table 5. Broilers fed the PC diet had decreased VH, VSA, apparent digestibility of CP and EE, AME, and AFB1 residues in the liver (p < .001) compared with those fed the NC diet. In contrast, the inclusion of 0.4% BN or 0.4% ZE in the PC diet increased apparent CP digestibility and decreased AFB1 residues in the liver (p < .001) compared to the PC diet. Moreover, adding 0.4% BN to the PC diet increased VH, VSA, apparent EE
digestibility, AME, and AMEn ($p < .001$) compared to the PC diet. The increases in VH, VSA, EE digestibility, and AME have reached to the similar levels as in the NC groups. No differences were detected in VW between the treatments ($p > .05$).

Discussion

Aflatoxin B1 can lead to enormous financial losses in the broiler industry by lowering growth rate and feed efficiency and heightening the occurrence of diseases, therefore rising mortality (Rawal et al. 2010). The toxic influence of dietary AFB1 (0.25 mg/kg) and the ameliorative efficacy of dietary adsorbents (0.4% BN or 0.4% ZE) on the growth performance, carcase characteristics, ileum morphology, apparent nutrient digestibility, and liver AFB1 residues of broilers were evaluated. Several experiments have demonstrated the detrimental impact of AFB1 on growth performance (Sarker et al. 2021; Tavangar et al. 2021) and carcase characteristics (Arif et al. 2020; Mesgar et al. 2022) of broilers. Our results are in agreement with the aforementioned reports and showed that broilers fed diet naturally contaminated with AFB1 had significantly reduced FI, BWG, and EPEF and augmented FCR during the experimental period, along with lowered dressing and breast meat yields as compared to those provided with the un-contaminated diet. In addition, previous researchers revealed that AFB1 adversely influenced intestinal morphology (Sarker et al. 2021) and diminished the digestibility of nutrients (Liu et al. 2018b), bringing about lowered growth efficiency of broilers. Likewise, feeding the AFB1-contaminated diet in this study reduced VH and VSA in the ileal mucosa, apparent digestibility of CP and EE, AME, and AMEn. This decrease might be related to the impairments in epithelial cell proliferation and protein synthesis in the small intestine, which could, in turn, lower the nutrient digestibility (Han et al. 2008; Sarker et al. 2021).

In the present study, birds in the AFB1 group had a higher liver relative weight that is similar to the results of other investigators who reported that relative liver weights were significantly augmented in broilers after exposure to AFB1 (Fowler et al. 2015; Rajput et al. 2017). Furthermore, feeding AFB1 to the PC group significantly reduced the contents of serum TP, ALB, and GLU, which is in agreement with the results of Bagherzadeh Kasmani et al. (2012) and Chen et al. (2014). The toxicity of AFB1 has been demonstrated to trigger suppression of hepatic protein, carbohydrate, and lipid metabolism and might therefore lead to liver enlargement and serum biochemical changes (Sakamoto et al. 2018; Zabiulla et al. 2021). The present study showed that serum activities of GOT and GPT and residual levels of AFB1 in the liver were significantly elevated in broilers fed with the AFB1-contaminated diet. These findings are in accordance with former studies on broiler chickens regarding transaminase enzyme activities (Liu et al. 2018b; Elwan et al. 2021) and AFB1 accumulation in the liver (Salem et al. 2018; Śliżewska et al. 2019), illustrating that the accumulation of AFB1 in the liver could trigger apoptosis and inflammation in broiler hepatocytes. During aflatoxicosis, AFB1 is chiefly metabolised in the liver and transformed to its reactive metabolite (AFB1-8,9-epoxiodeoxyfuroladin) that can attach to cellular macromolecules like proteins, lipids, and nucleic acids, bringing about hepatocyte cancerisation and liver damage thereafter (Ismail et al. 2020). When hepatocyte permeability increased following liver injury, transaminases could be liberated from the infected hepatocyte into the bloodstream and resulted in elevated serum activity of transaminases, including GOT and GPT (Rashidi et al. 2020). Similar to the results of Rajput et al. (2017), our results also showed that broilers given the AFB1-contaminated diet had significantly lower levels of T-AOC and T-SOD in the serum than those provided with the uncontaminated feed. Reduced protein biosynthesis can be accountable for lowering the activity of antioxidant enzymes (Elwan et al. 2021). Besides, the metabolites of AFB1 induce cellular oxidative stress through increasing lipid peroxidation reactions, possibly leading to a disturbance in the antioxidant/oxidant system balance (Muhammad et al. 2018). Comprehensive, AFB1-induced impairments in both liver function and intestinal integrity are probably responsible for the reduced growth rate and carcase yield of broilers.

A variety of mineral clay products have been experimented and shown to have the potential for sequestering aflatoxins by reducing their absorption from the gastrointestinal tract, hence evading the toxic influences on animals and the transmission of toxins into their products (Di Gregorio et al. 2014). Among these adsorbents, BN and ZE that are derived from the weathering of volcanic ash have been tested due to their adsorptive properties, high availability, and low cost (Elliott et al. 2020). Based on our findings, dietary supplementation of 0.4% BN was more efficient in mitigating the toxic influences of AFB1 on growth efficiency by improving BWG, FCR, and EPEF during the finisher and overall periods, dressing yield, biochemical metabolites by increasing TP and GLU levels, antioxidant capacity by increasing the activities of T-AOC and
T-SOD, liver health by lowering relative liver weight, GOT and GPT activities, and AFB1 residues, ileal morphometry by improving VH and VSA, and apparent nutrient digestibility by enhancing CP, EE, AME, and AMEn retentions of broilers, showing its high binding capacity to AFB1 molecules. The high adsorption capability of this clay for binding AFB1 could be attributed to its high surface area, ion exchange capacity, and swelling or water-holding capacity (Manafi 2012). In addition, silicate clay mineral has been reported to decline the rate of feed passage across the intestinal canal and might subsequently result in improved nutrient metabolism (Safaeikatouli et al. 2012). These results are in accordance with the former research reports. Zabiulla et al. (2021) concluded that the addition of smectite clay to broilers’ diet that was contaminated with AFB1 heightened growth performance and lowered toxicological influences on the liver, indicating its protecting impact against aflatoxicosis. Amer et al. (2018) found that BN supplementation enhanced growth efficiency and nutrient digestibilities and reduced liver weight and histopathological lesions in rabbits provoked by AFB1-contaminated feed.

Conclusion

In conclusion, our results indicate that dietary AFB1 at a dose of 0.25 mg/kg gave rise to lowered growth efficiency, deteriorated carcass yield, altered serum biochemical metabolites, liver injury, depressed antioxidant capacity, impaired ileal architecture, and diminished nutrient digestibility of broilers. On the other hand, dietary supplementation of 4 g/kg BN provided better protection against the detrimental influences of AFB1 on the productive and health indicators of the birds. Therefore, BN can be considered as a safe and cost-effective feed additive in poultry nutrition and can be employed as an effective aflatoxin adsorbent to improve the production performance and health status of broilers. Accordingly, we can recommend using it as a feed additive for assisting in the prevention of aflatoxicosis in broiler flocks.

Ethical approval

The study was conducted in accordance with the Declaration of Helsinki, and approved by the Ethics Committee of King Saud University, Riyadh, Saudi Arabia (KSUSE-20-22).

Disclosure statement

No potential conflict of interest was reported by the author(s).
harmful effects of mycotoxin contaminated diets on broiler performance, immunity status, and carcass characteristics. Animals. 10(2):238.

Aviagen Group 2018. Ross broiler management handbook. Huntsville, AL: Aviagen Group. https://en.aviagen.com/brands/ross/products/ross-308

Aviagen Group 2019. Ross broiler nutrition specifications. Huntsville, AL: Aviagen Group. https://en.aviagen.com/brands/ross/products/ross-308

Bagherzadeh Kasmani F, Karimi Torshizi MA, Allameh A, Shariatmadari F. 2012. A novel aflatoxin-binding Bacillus probiotic: performance, serum biochemistry, and immunological parameters in Japanese quail. Poult Sci. 91(8):1846–1853.

Benkerroum N. 2020. Aflatoxins: producing-molds, structure, health issues and incidence in Southeast Asian and Sub-Saharan African Countries. JERPH. 17(4):1215.

Bryden WL. 2012. Mycotoxin contamination of the feed supply chain: implications for animal productivity and feed security. Anim Feed Sci Technol. 173(1-2):134–158.

Chen X, Horn N, Applegate TJ. 2014. Efficiency of hydrated sodium calcium aluminosilicate to ameliorate the adverse effects of graded levels of aflatoxin B1 in broiler chicks. Poult Sci. 93(8):2037–2047.

Chen X, Ishfaq M, Wang J. 2022. Effects of Lactobacillus salivarius supplementation on the growth performance, liver function, meat quality, immune responses and Salmonella Pullorum infection resistance of broilers challenged with Aflatoxin B1. Poult Sci. 101(3):101651.

Cui X, Muhammad I, Li R, Jin H, Guo Z, Yang Y, Hamid S, Li J, Cheng P, Zhang X. 2017. Development of a UPLC-FLD method for detection of aflatoxin B1 and M1 in animal tissue to study the effect of curcumin on mycotoxin clearance Rates. Front Pharmacol. 8:650.

De Marco M, Martinez S, Hernandez F, Madrid J, Gai F, Rotolo L, Belforti M, Bergero D, Katz H, Dabbou S, et al. 2015. Nutritional value of two insect larval meals (Tenebrio molitor and Hermetia Illucens) for broiler chickens: apparent nutrient digestibility, apparent ileal amino acid digestibility and apparent metabolizable energy. Anim Feed Sci Technol. 209:211–218.

Di Gregorio MC, Neeff DD, Jager AV, Corassin CH, Carão ÁCDP, Albuquerque RD, Azevedo AD, Oliveira CAF. 2014. Mineral adsorbents for prevention of mycotoxins in animal feeds. Toxins Rev. 33(3):125–135.

Dohnal N, Wu Q, Kucä K. 2014. Metabolism of aflatoxins: key enzymes and interindividual as well as interspecies differences. Arch Toxicol. 88(9):1635–1644.

Ellakany HF, Abuakkada SS, Oda SS, El-Sayed YS. 2011. Influence of low levels of dietary aflatoxins on Eimeria tenella infections in broilers. Trop Anim Health Prod. 43(1):249–257.

Elliott CT, Connolly L, Kolaowole O. 2020. Potential adverse effects on animal health and performance caused by the addition of mineral adsorbents to feeds to reduce mycotoxin exposure. Mycotoxin Res. 36(1):115–126.

Elwan H, Xie C, Miao LP, Dong X, Zou X, Mohany M, Ahmed MM, Al-Rejaie SS, Elnesr SS. 2021. Methionine alleviates aflatoxin-induced broiler chicks embryotoxicity through inhibition of caspase-dependent apoptosis and enhancement of cellular antioxidant status. Poult Sci. 100(8):101103.

Eroglu N, Emekci M, Athanassiu CI. 2017. Applications of natural zeolites on agriculture and food production. J Sci Food Agric. 97(11):3487–3499.

Foud AM, Ruan D, El Senousey HAK, Chen W, Jiang S, Zheng C. 2019. Harmful effects and control strategies of aflatoxin B1 produced by aspergillus flavus and aspergillus parasiticusstrains on poultry: review. Toxins. 11(3):176.

Fountain JC, Khera P, Yang L, Nayak SN, Scully BT, Lee RD, Chen ZY, Kemerait RC, Varshney RK, Guo B. 2015. Resistance to Aspergillus flavus in maize and peanut: molecular biology, breeding, environmental stress, and future perspectives. Crop J. 3(3):229–237.

Fowler J, Li W, Bailey C. 2015. Effects of a calcium bentonite clay in diets containing aflatoxin when measuring liver residues of aflatoxin B1 in starter broiler chicks. Toxins. 7(9):3455–3464.

Han XY, Huang QC, Li WF, Jiang JF, Xu ZR. 2008. Changes in growth performance, digestive enzyme activities and nutrient digestibility of cherry valley ducks in response to aflatoxin B1 levels. Livest Sci. 119(1–3):216–220.

Ismail IE, Farag MR, Alagawany M, Mahmoud HK, Reda FM. 2020. Efficacy of some feed additives to attenuate the hepato-renal damage induced by aflatoxin B1 in rabbits. J Anim Physiol Anim Nutr. 104(5):1343–1350.

Jard G, Liboz T, Mathieu F, Guyonvarch A, Lebrihi A. 2011. Review of mycotoxin reduction in food and feed: from prevention in the field to detoxification by adsorption or transformation. Food Addit Contam Part A Chem Anal Cont Expo Risk Assess. 28(11):1590–1609.

Laures M, Croubels S, Leter B, Gougoulias C, Devreese M. 2019. Biomarkers for exposure as a tool for efficacy testing of a mycotoxin detoxifier in broiler chickens and pigs. Toxins. 11(4):187.

Li S, Muhammad I, Yu H, Sun X, Zhang X. 2019. Detection of Aflatoxin adds as potential markers and the role of curcumin in alleviating AFB1-induced liver damage in chickens. Ecotoxicol Environ Saf. 176:137–145.

Li Y, Ma QQ, Zhao LH, Wei H, Duan GX, Zhang JY, Ji C. 2014. Effects of lipoic acid on immune function, the antioxidant defense system, and inflammation-related genes expression of broiler chickens fed aflatoxin contaminated diets. Int J Mol Sci. 15(4):5649–5662.

Liu N, Ding K, Wang J, Deng Q, Gu K, Wang J. 2018b. Effects of lactic acid bacteria and smectite after aflatoxin B1 challenge on the growth performance, nutrient digestibility and blood parameters of broilers. J Anim Physiol Anim Nutr. 102(4):953–961.

Liu N, Wang JQ, Jia SC, Chen YK, Wang JP. 2018a. Effect of yeast cell wall on the growth performance and gut health of broilers challenged with aflatoxin B1 and necrotic enteritis. Poult Sci. 97(2):477–484.

Magnoli AP, Monge MP, Mazzetti CE, Cavaglieri LR, Magnoli CE, Merkis CI, Cristofolini AL, Dalcero AM, Chiacchiera SM. 2011. Effect of low levels of aflatoxin B1 on performance, biochemical parameters, and aflatoxin B1 in broiler liver tissues in the presence of monensin and sodium bentonite. Poult Sci. 90(1):48–58.

Manafi M. 2012. Counteracting effect of high grade sodium bentonite during aflatoxicosis in broilers. J Agric Sci Technol. 14(3):539–547.

Mesgar A, Shahryar HA, Bailey CA, Ebrahimnezhad Y, Mohan A. 2022. Effect of dietary L-threonine and toxin binder on...
performance, blood parameters, and immune response of broilers exposed to aflatoxin B1. Toxins. 14(3):192.

Mil TD, Devreesse M, Baere SD, Van Ranst E, Eeckhout M, Backer PD, Croubels S. 2015. Characterization of 27 mycotoxin binders and the relation with in vitro zearalenone adsorption at a single concentration. Toxins. 7(1):21–33.

Monson MS, Coulombe RA, Reed KM. 2015. Aflatoxicosis: lessons from toxicity and responses to aflatoxin B1 in poultry. Agriculture. 5(3):742–777.

Moretti AF, Gamba RR, Pupo J, Malo N, Gómez-Zavaglia A, Peláez ÁL, Golowczyc MA. 2018. Incorporation of Lactobacillus plantarum and zeolites in poultry feed can reduce aflatoxin B1 levels. J Food Sci Technol. 55(1):431–436.

Mughal MJ, Peng X, Zhou Y, Fang J. 2017. Aflatoxin B1 invokes apoptosis via death receptor pathway in hepatocytes. Oncotarget. 8(5):8239–8249.

Muhammad I, Wang H, Sun X, Wang X, Han M, Lu Z, Cheng P, Hussain MA, Zhang X. 2018. Dual role of dietary curcumin through attenuating AFB1-induced oxidative stress and liver injury via modulating liver phase-I and phase-II enzymes involved in AFB1 bioactivation and detoxification. Front. Pharmacol. 9:554.

Murugesan GR, Ledoux DR, Naehrker K, Berthiller F, Applegate TJ, Grenier B, Phillips TD, Schatzmayr G. 2015. Prevalence and effects of mycotoxins on poultry health and performance, and recent development in mycotoxin counteracting strategies. Poult Sci. 94(6):1298–1315.

Pappas AC, Tsiplakou E, Georgiadou M, Anagnostopoulos C, Markoglou AN, Liapis K, Zervas G. 2014. Bentonite binders in the presence of mycotoxins: results of in vitro preliminary tests and an in vivo broiler trial. Appl Clay Sci. 99:48–53.

Pappas AC, Tsiplakou E, Tsitsigiani DI, Georgiadou M, Iliadi MK, Sotirakoglou K, Zervas G. 2016. The role of bentonite binders in single or concomitant mycotoxin contamination of chicken diets. Br Poult Sci. 57(4):551–558.

Pasha TN, Farooq MU, Khattak FM, Jabbar MA, Khan AD. 2007. Effectiveness of sodium bentonite and two commercial products as aflatoxin adsorbents in diets for broiler chicks. Anim Feed Sci Technol. 132(1-2):103–110.

Peng H, Chang Y, Baker RC, Zhang G. 2020. Interference of mycotoxin binders with ELISA, HPLC and LC-MS/MS analysis of aflatoxins in maize and maize gluten. Food Addit Contam Part A. 37(3):496–506.

Raj J, Vasiljević M, Tassis P, Farkas H, Bosnjak-Neumüller J, Mäñner K. 2021. Effects of a modified clinoptilolite zeolite on growth performance, health status and detoxification of aflatoxin B1 and ochratoxin A in male broiler chickens. Br Poult Sci. 62(4):601–610.

Rajput SA, Sun L, Zhang N, Khalil MM, Gao X, Ling Z, Zhu L, Khan FA, Zhang J, Qi D. 2017. Ameliorative effects of grape seed proanthocyanidin extract on growth performance, immune function, antioxidant capacity, biochemical constituents, liver histopathology and aflatoxin residues in broilers exposed to aflatoxin B1. Toxins. 9(11):371.

Rashidi N, Khatibjoo A, Taherpour K, Akbari-Gharaei M, Shirzadi H. 2020. Effects of licorice extract, probiotic, toxin binder and poultry litter biochar on performance, immune function, blood indices and liver histopathology of broilers exposed to aflatoxin-B1. Poult Sci. 99(11):5896–5906.

Ravindran V, Abdollahi M, Bootwalla S. 2014. Nutrient analysis, apparent metabolisable energy and ileal amino acid digestibility of full fat soybean for broilers. Anim Feed Sci Technol. 197:233–240.

Rawal S, Kim JE, Coulombe R. 2010. Aflatoxin B1 in poultry: toxicology, metabolism and prevention. Res Vet Sci. 89(3):325–331.

Safaikakatolli M, Boldaji F, Dastar B, Hassani S. 2012. The effect of dietary silicate minerals supplementation on apparent ileal digestibility of energy and protein in broiler chickens. Int J Agric Biol. 14(2):299–302.

Sakamoto MI, Murakami AE, Fernandes AM, Ospina-Rojas IC, Nunes KC, Hirata AK. 2018. Performance and serum biochemical profile of Japanese quail supplemented with silymarin and contaminated with aflatoxin B1. Poult Sci. 97(1):159–166.

Salem R, El-Habashi N, Fadl SE, Sakr OA, Elbialy ZI. 2017. Effect of probiotic supplement on aflatoxicosis and gene expression in the liver of broiler chicken. Environ Toxicol Pharmacol. 60:118–127.

Sarker MT, Wang ZY, Yang H, Wan X, Emmanuel A. 2021. Evaluation of the protective effect of lycopene on growth performance, intestinal morphology, and digestive enzyme activities of aflatoxinB1 challenged broilers. Anim Sci J. 92(1):e13540.

Shannon TA, Ledoux DR, Rottinghaus GE, Shaw DP, Daković A, Marković M. 2017. The efficacy of raw and concentrated bentonite clay in reducing the toxic effects of aflatoxin in broiler chicks. Poult Sci. 96(6):1651–1658.

Sliżewska K, Cukrowska B, Smulikowska S, Cielecka-Kuszyk J. 2019. The Effect of Probiotic Supplementation on Performance and the Histopathological Changes in Liver and Kidneys in Broiler Chickens Fed Diets with Aflatoxin B1. Toxins. 11(2):112.

Tavangar P, Gharalhveysi S, Rezaeipour V, Irani M. 2021. Efficacy of phytobiotic and toxin binder feed additives individually or in combination on the growth performance, blood biochemical parameters, intestinal morphology, and microbial population in broiler chickens exposed to aflatoxin B1. Trop Anim Health Prod. 53(3):1–10.

Udomkun P, Wiredu AN, Ngle M, Müller J, Vanlauwe B, Bandypadhyay R. 2017. Innovative technologies to manage aflatoxins in foods and feeds and the profitability of application – A review. Food Control. 76:127–138.

Vila-Donat P, Marin S, Sanchis V, Ramos AJ. 2018. A review of the mycotoxin adsorbing agents, with an emphasis on their multi-binding capacity, for animal feed decontamination. Food Chem Toxicol. 114:246–259.

Wu B, Mughal MJ, Fang J, Peng X. 2019. The Protective Role of Selenium Against AFB1-Induced Liver Apoptosis by Death Receptor Pathway in Broilers. Biol Trace Elem Res. 191(2):453–463.

Yang J, Bai F, Zhang K, Bai S, Peng X, Ding X, Li Y, Zhang J, Zhao L. 2012. Effects of feeding corn naturally contaminated with aflatoxin B1 and B2 on hepatic functions of broilers. Poult Sci. 91(11):2792–2801.

Zabiulla I, Malathi V, Swamy HVLN, Naik J, Pineda L, Han Y. 2021. The Efficacy of a Smectite-Based Mycotoxin Binder in Reducing Aflatoxin B1 Toxicity on Performance, Health and Histopathology of Broiler Chickens. Toxins (Basel.). 13(12):856.