Preparation of *Aspergillus niger* 426 naringinases for debittering citrus juice utilization of agro-industrial residues

Fernanda de Oliveira¹ · Tereza Cristina Luque Castellane² · Marcelo Rodrigues de Melo¹ · João Batista Buzato¹

Received: 22 March 2021 / Revised: 9 July 2021 / Accepted: 28 July 2021 / Published online: 7 August 2021
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021

Abstract

Naringin, considered as the main bitter component of grapefruit, requires the use of enzymes to reduce the level of this substance during juice processing. For this reason, it has been the focus of many studies. In this study, to increase the production of naringinase by *Aspergillus niger* cultivated in solid-state fermentation (SSF), a three-component simplex-centric mixing design along with a response surface methodology (RSM) was applied to generate statistical models and analyze the dataset. First, grapefruit peel, rice bran, and wheat bran were used for substrate selection for naringinase production and, finally, selected the best of the three inducers or their mixtures to remove the bitterness of grapefruit juice. Cultivation with 2.3 g of grapefruit peel, 2.5 g of rice bran, and 5.2 g of wheat bran and medium supplementation with a mixture of naringin, rutin, and hesperidin in the concentration of 2, 5, 4.5, and 3.0 g/L, respectively, resulted in a maximum activity of 28 U/mL. The results indicate that the sequencing procedure, which allowed the definition of an optimal mixture of components, is a new way for microorganisms to have a high naringinase yield, in particular by SSF, since our data showed a 96% increase in the production of naringinase. This dataset can help other researchers apply a mixing design to increase enzyme production.

Keywords Agro-industrial residues · *Aspergillus niger* · Experimental mixture design · Solid-state fermentation

Introduction

α-ʟ-ramnosidase (E. C. 3.2.1.2.3) and β-glucosidase (EC 3.2.1.21), in the first stage of hydrolysis, the catalysis of naringin (4,5,7-trihydroxy flavanone 7-rhamnoglucoside) occurs in rhamnose and prunin, being the prunin responsible for one-third of the bitterness of the naringin (Puri et al. 2011; Puri and Banerjee 2000). the second phase, prunin is hydrolyzed to tasteless naringenin (4,5,7-trihydroxy flavanone) and glucose (Purewal and Sandhu 2021). In the other stage, the enzyme β-glucosidase converts glucose from prunin and naringenin (4,5,7-trihydroxy flavanone) when releasing a D-glucose molecule (Awad et al. 2016; Srikantha et al. 2016). Many natural glycosides, like naringin, rutin, quercitrin, hesperidin, diosmin, and ter-phenyl glycosides, containing terminal α-rhamnose and β-glucose, can act as substrates of naringinase (Ribeiro 2011). The products — naringenin and prunin — of the hydrolysis of these substrates are the basic material for the synthesis of many substances, especially in the food and pharmaceutical industries (Ribeiro 2011; Bodakowska-Boczniewicz and Garnarek 2020).

In the food industry, naringinase is most commercially attractive due to its potential utility in citrus juice debittering, in the field of biotechnology, pharmaceuticals. There is a gradual increase in commercial interest as it has proved to be a biotechnologically attractive and important enzyme due to its applications in a variety of processes, such as reducing the bitterness of citrus juices, mainly in grapefruit, and in the wine industry, reducing the intensity of its bitter taste. Naringinase, an important enzyme complex, also finds applications in the field of biotechnology, pharmaceuticals, and other industries, such as biotransformation steroids, antibiotics, and mainly glycolide hydrolysis, glycopeptides, flavonoid deglycosylation, and gelane depolymerization (Puri et al. 2011; Puri and Banerjee 2000). Additionally, several
pharmacological activities such anti-inflammatory and anticancer have been described (Zhang et al. 2018).

Patil and collaborators (Patil et al. 2019) proposed a simple and effective method screening method for naringinase-producing microorganisms using a simple plaque assay. This new screening method for the potential production of naringinase by microorganisms does not just make it an effective and economical method, but also universal for the screening of naringinase producers, such as bacteria, fungi, and actinomycetes (Patil et al. 2019). Naringinase can be obtained by fermenting various microorganisms, including especially Aspergillus oryzae 11,250 (Zhu et al. 2017), Rhizopus stolonifer (Karuppaija et al. 2016), and Trichoderma longibrachiatum ATCC18648 (Housseiny and Aboelmagd 2019), among others. However, the fungus species A. niger is the preferred source of a variety of enzymes or expression systems for foreign proteins. This species, several of which have a long history of safe use in the fermentation industry, is one of the most important sources of naringinase industrial use, such as for food industrial use mainly due to its safety characteristics and viable culture processes (Ni et al. 2012).

Several publications describe the improvement in naringinase production, for example, using an inducer (Karuppaija et al. 2016), the presence of citrus peel, a source of naringin (Puri et al. 2011), or the optimization of the concentration of the substrates, carbon source, or nitrogen sources (Mukund et al. 2013) and temperature (Borkar et al. 2020).

The industrial application of enzymes is growing exponentially, together with its wide application; thereby it is necessary to increase the production of naringinase, in this case, by optimizing the culture conditions especially by adding enzyme inducers. This work aimed to define the concentration of three agro-industrial residues, among them grapefruit rind as a specific inducer, and three known inducers of naringinase (naringin, rutin, and hesperidin) by experimental mixture design (EMD) using solid-state fermentation (SSF). This methodology is attractive because it can be applied to study the proportion of the components in a given culture medium and can aid with the identification of relationships among these components during naringinase production.

Materials and methods

Materials

Orange rind, grapefruit rind, rice bran, and wheat bran were used as solid substrates. The residues were provided by local agroindustry, then dried to 2% (w/w) humidity in an oven at 70 °C for 24 h, and milled in a mill Wiley type at a particle size of approximately 2 mm.

Naringin, rutin, hesperidin, quercetin, citric acid, glucose, sucrose, xylose, and raffinose were purchased from Sigma-Aldrich (St. Louis, MO). HPLC-grade methanol and acetonitrile were products from Tedia Co. Inc. (Fairfield, OH). All other reagents were from analytical grade.

Microorganism

Aspergillus niger strain 426 was isolated from dried prunes and identified by the Institute of Food Technology (UNICAMP, Brazil). Stock cultures were stored at 4 °C on potato dextrose agar (PDA) slants. Microorganism activation was carried out in PDA plates at 28 °C for 3 days. The inoculum was prepared by harvesting the spores from 3-day-old cultures by adding 0.1% (v/v) Tween-80 and diluted to the desired spore concentration (1 × 10^9 spores/g substrate). The pour plate technique was used to calculate the number of spores.

Fermentation conditions

All cultivations were carried out in 250-mL Erlenmeyer flasks at a fixed total of 10 g of dry substrate. The substrate was moistened with a nutrient solution containing the following ingredients (g/L): (NH₄)₂H₂PO₄ (5.0), K₂HPO₄ (1.5), MgSO₄·7H₂O (0.5), KCl (0.5), yeast extract (5.0), and inducer (10.0). The pH was adjusted to 4.5 before sterilization. A volume equal to 10% (v/v) of inoculum was transferred to previously sterilized Erlenmeyer flasks containing 10 mL of nutrient solution with different components under investigation (orange rind, grapefruit rind, rice bran, and wheat bran) and incubated for 5 days at 28 °C with 97% (v/v) controlled atmospheric humidity. The moisture content was adjusted to 75% (v/v) by the addition of distilled water into the 250-mL Erlenmeyer flasks. With the fermentation flasks placed in an iced bath, the cell-free enzymatic extracts were recovered by adding 5 mL of sodium acetate buffer 50 mM, pH 4, and further mixing using a glass rod. Subsequently, the suspension was filtered under vacuum with the aid of a Büchner funnel and Millipore membrane filter (45 µm pore). The filtrate was centrifuged at 9000 g for 15 min at 4 °C. The supernatant containing the extract was used for subsequent analysis or could be frozen at −20 °C for future use.

Substrate and inducer selection for naringinase production

In a first step, cultures were carried out in a 250-mL Erlenmeyer flask with 10 g of orange or grapefruit rind moistened with nutrient solution, but without the addition of inducers, to evaluate, between these two inducer substrates, which one was the best for naringinase production.

It was set up two EMD as a simplex centroid design (Supplementary Fig. 1 and Table 1), with 2^−1 combinations of mixtures, where q, the number of components or variables whose sum is 1 or 100%, to 3 components. First, grapefruit
Table 1 Summary of naringinase maximum values for the A. niger according to EMD, using components grapefruit rind, rice bran, and wheat bran at a total amount of 10 g for EMD 1 and inducers (g/L) naringin, rutin, and hesperidin at a total concentration of 10 g/L for EMD 2. EMD 2 was performed based on the best condition selected from EMD 1. Experiments were run using SSF for 5 days at 28 °C, with initial pH 4.5

Run number	Coded mixture (x1; x2; x3)***	Original mixture* (x1; x2; x3)***	EMD 1 naringinase activity (U/mL)	EMD 2 naringinase activity (U/mL)
1	(1; 0; 0)	(10.0; 0; 0)	1.60	23.56
2	(0; 1; 0)	(0; 10.0; 0)	17.40	25.5
3	(0; 0; 1)	(0; 0; 10.0)	18.30	26.82
4	(½; ½; 0)	(5.0; 5.0; 0)	8.70	24.56
5	(½; 0; ½)	(5.0; 0; 5.0)	20.60	25.95
6	(0; ½; ½)	(5.0; 5.0; 0)	20.10	24.89
7	(1/3; 1/3; 1/3)	(3.3; 3.3; 3.3)	22.60	28.16
8	(1/3; 1/3; 1/3)	(3.3; 3.3; 3.3)	22.00	27.67
9	(1/3; 1/3; 1/3)	(3.3; 3.3; 3.3)	22.30	27.92

*total amount of 10 g of substrate for EMD 1 and total concentration of 10 g/L for EMD 2
**x1 grapefruit rind, x2 rice bran, x3 wheat bran for EMD 1 and x1 naringin, x2 rutin, x3 hesperidin for EMD 2
***x1 grapefruit rind, x2 rice bran, x3 wheat bran for EMD 1

rind, rice bran, and wheat bran were used for substrate selection for naringinase production (EMD 1). Because the mixture space is a simplex, all design points must be at the vertices, on the edges or faces, or in the interior of a simplex (Cornell 2002). Thus, runs with a single substrate, called linear blending (100%), 10 g of grapefruit rind, 10 g of rice bran, and 10 g of wheat bran were used. A special cubic model was used to represent the mean of the response variable as a function of the factors described in Eq. 1:

\[Y = \sum_{1 \leq i \leq q} \gamma_i^{0} x_i + \sum_{1 \leq i < j \leq q} \gamma_{ij}^{0} x_i x_j + \gamma_{123}^{0} x_1 x_2 x_3 \]

(1)

where \(Y \) is the naringinase activity (U/mL), \(\gamma \) the estimated parameters, and \(x_i \) is the level of the independent variable. The statistical significance of the regression coefficients was determined by Fischer’s test for analysis of variance (ANOVA) at a significance level of \(p \leq 0.05 \), and the extent of variance explained by each model was given by the determination coefficient \(R^2 \). To minimize the error of ANOVA, the tests corresponding to the central point were repeated three times. Experimental and predicted values were compared to determine the validity of the models. The best mixture of substrates was used to study the ideal concentration of inducers naringin, rutin, and hesperidin from 5 to 25 g/L added in a nutrient solution.

In a second step, EMD 2 was also set up as a simplex centroid design (Table 1) and the components studied were naringin, rutin, and hesperidin at a fixed total concentration of 10 g/L. Control of each condition was conducted without the addition of spores to the nutrient solution for the subsequent quantification of residual inducers. The remaining culture solution components were always the same, and the culture conditions were as described above. All the EMD design and analysis were performed using STATISTICA 7.0 software (Statsoft 2007).

Naringinase activity

The assay to assess naringinase activity was conducted according to the protocol described by Thammawat et al. (Thammawat et al. 2008) with minor modifications. In summary, 1 mL of enzyme extract was added to 1 mL of 1% naringin (w/v) in a 0.1 M acetate buffer (pH 4.0). The mixture was incubated at 50 °C for 60 min. After this time, an aliquot of 0.1 ml was mixed in 3.0 ml of diethylene glycol (90%, v/v) and 0.1 ml of NaOH (4.0 N). This solution was incubated for 10 min at room temperature. In this assay, the standard used was the reaction solution substrate (naringin) and the control substrates (residual naringin contained in the enzyme extract plus buffer absorbance at 420 nm), as described in Supplementary Table 1. The absorbance of residual naringin within the alkaline mixture was measured at 420 nm.

Determination of naringinase activity (U)

A unit of naringinase activity is defined as the amount of enzyme required to hydrolyze 1 μmol of naringin per mL per minute, as shown in Eq. 2:

\[[Y = 23.56 * x_1 + 26.82 * x_2 + 25.5 * x_3 + 3.04x_1x_2 + 0.12x_1x_3 - 5.08x_2x_3 + 76.59 * x_1 * x_2 * x_3] \]

(2)

where Abs = Abs (EE naringin residual + buffer control) - (Abs reaction); \(E = 0.00802 \); \(EE = \) volume used in the reaction (1 mL).
Quantification of sugars

The extraction of soluble sugars from defatted substrates was performed according to the methodology proposed by Saravitz et al. (Saravitz et al. 1987) and filtrated through 0.45 μm filter (Millipore). When finished, the filtrate collects in the attached 1-mL Eppendorf tube. For the analysis of sugars, aliquots of 20-μL extracted samples were injected to HPLC (Model: Hitachi L-5000) using an Supelcosil LC NH2 column (300×7.8 mm) and eluted in a mobile phase of acetonitrile:water (75:25, v/v) in the following chromatographic conditions: 35 °C injection temperature, a flow rate of 1 mL/min in an HPLC system equipped with a refractive index detector (RID) (Shimadzu model RID—10A). Each analysis was performed in triplicate. The total sugar level in each culture was determined using the phenol–sulfuric method described by Dubois et al. (Dubois et al. 1956).

Quantification of citric acid from grapefruit rind

After extraction of soluble sugars from grapefruit rind, the material was resuspended in 500 μL of methanol. Citric acid was analyzed by reversed-phase high-performance liquid chromatography (RP-HPLC) system equipped with a model SPD-M10A VP photodiode-array (PDA) detector (Shimadzu Scientific Instruments, Kyoto, Japan). The culture supernatant was filtered through 0.22-μm nylon filter. Citric acid was separated using RP-18 column. The mobile phase consisted of 0.1% (w/v) phosphoric acid with a flow rate of 1 mL/min. The detection was at 210 nm. It was identified and quantitated by comparing the retention time and peak area with solutions of pure citric acid.

Quantification of flavonoids

An aliquot (2 mL) of fermentation extracts was filtered through 0.45-μm Teflon membranes. Before the injection into the chromatographer column, 400 μL of the samples were added to 600 μL of methanol. An HPLC (Model: Hitachi L-5000) coupled with a Symmetry C18 reverse-phase column (bonded C18 ligands on high-purity base-deactivated silica) (4.6×150 mm, 3.5 μm) and a 2487 UV detector (Waters Corp., Milford, MA) was used to determine the concentrations of residual flavonoids. Following an injection of 20 μL of the reaction mixture, the column was eluted using a gradient elution at 35 °C and 0.4 mL/min. The mobile phase was composed of 11.4% methanol, 22.4% acetonitrile, and 62% purified deionized water. The target compounds were captured by a 2487 UV detector at 280 nm. The same methodology was used to quantify flavonoids impregnated in defatted grapefruit rind resuspended in 500 μL of methanol.

Effect of substrate on naringinase production

The effect of the inclusion of naringin (10 g/L) was investigated. Since the variation in pH and temperature of the initial medium can have significant effects on the growth and production of naringinase by species of different fungi, including Aspergillus, we chose the acid pH 4.5, below or higher than this pH range; there was the result in a drastic reduction in naringinase activity. Since the molecular charges and consequently the molecular interactions and functions are directly related to the pH of the medium, so any change in average pH affects many biological functions. Therefore, at 28° C and pH 4.5, the time of 24 and 120 h of SSF by A. niger showed greater production of naringinase, 22.4 ± 0.73 U/mL, respectively (Fig. 1). The central point was composed of a ternary mixture of 33.33% of each support substrate (grapefruit peel, rice bran, and wheat bran). After 120 h, 97% of the carbon source consumed in 5 mL of fermentation extract had been consumed.
and the enzyme formation was reduced. In this way, all of the following crops were carried out for only 5 days.

Table 1 summarizes the different combinations of grapefruit peel, rice bran, and wheat bran used for A. niger crops and the maximum activities, in terms of naringinase for EMD 1. The maximum values of naringinase obtained in the experiments varied from 1.6 (run 1) to 22.6 U/mL (run 7) (Table 1).

The special cubic model was determined to estimate naringinase titers in terms of the concentrations of the components grapefruit rind (x₁), rice bran (x₂), and wheat bran (x₃) in the cultivation medium, as described by Eq. (3), in which terms with an asterisk are significant (p < 0.05).

\[Y = 1.6 * x_1 + 17.4 * x_2 + 18.3 * x_3 - 3.2x_1x_2 + 42.6 * x_1 * x_3 + 9 * x_2 * x_3 + 121.2 * x_1 * x_2 * x_3 \]

A preliminary analysis of this data revealed the significance of the agro-industrial residues used as substrates for naringinase production. All linear blendings showed a statistically significant positive influence on naringinase activity titers since p-values were smaller than 0.05 for each of the components. As linear blending, wheat bran was significant in the highest level, which means that an increase of this substrate in the culture medium could improve the results. However, the quadratic term \(x_1x_3 \) (grapefruit rind and rice bran) was not significant, with \(p > 0.05 \). The most significant effect on naringinase activity was composed of a ternary mixture of each supporting substrate \((x_1x_2x_3) \), followed by the quadratic term \((x_1x_3) \). The determination coefficient for naringinase production was 99.96% for EMD 1. According to Silva et al. (Silva et al. 2009), values of \(R^2 > 90\% \) are very good in the experimental design of bioprocesses.

Since the least favorable condition was grapefruit rind as a sole substrate (1.6 U/mL, Table 1) and due to the presence of citric acid in grapefruit juice, it was decided to study the effect of citric acid and sugars on naringinase activity. Norouzian et al. (Norouzian et al. 2000) reported that citric acid at 0.02 M non-competitively inhibited naringinase activity. Repression of naringinase activity by glucose and sucrose was also reported by Puri et al. (Ribeiro 2011), although these carbon sources supported excellent growth.

A quantitative HPLC analysis of substrate sugars found that grapefruit rind presented high amounts of glucose and sucrose (625.3 and 4.28 mg/g of dry substrate, respectively) (Table 2). Unlike wheat bran that presented the lowest amount of glucose (12.2 mg/g of dry substrate). The number of sugars present in grapefruit rind presented high amounts of glucose and sucrose was also reported by Puri et al. (Ribeiro 2011), although these carbon sources supported excellent growth.

![Fig. 1 Kinetics of the central point of EMD 1 for naringinase production by A. niger at 28 °C, pH 4.5 and naringin (10 g/L) as inducer. Each data point represents the mean of triplicate determinations ± SD](image)

Table 2 Quantitative HPLC analysis for quantification of sugars, citric acid and flavonoids

Compound	Grapefruit rind (mg/g of dry substrate)	Rice bran (mg/g of dry substrate)	Wheat bran (mg/g of dry substrate)
Glucose	625.299 ± 4.202	64.126 ± 8.741	12.173 ± 0.565
Sucrose	4.273 ± 0.046	0.275 ± 0.033	0.267 ± 0.021
Xylose	ND	45.039 ± 4.504	ND
Raffinose	ND	*	*
Citric acid	305.55 ± 0.172	ND	ND
Naringin	8.884 ± 0.464	ND	ND
Rutin	5.503 ± 0.65	ND	ND

All procedures were performed in triplicate. Mean values (± standard deviation)

* Values below the limit of the method

\(\text{ND} \) not detected

acid amount 305.55 ± 0.17 mg/g of dry substrate, which represents 1.59 M present in 10 g of grapefruit rind, and could cause inhibition of naringinase biosynthesis. Although grapefruit rind has a high content of naringin and rutin, 8.89±0.46 and 5.50±0.65 mg/g of dry substrate, respectively, which act as flavonoids inducers for naringinase production, it can’t be discarded as a substrate in the mixture.

The models used to describe the effects of each component on naringinase production (Eq. (3)) were used to generate the contour plots shown in Fig. 2a. These results revealed a broad region of elevated naringinase production. Using our data, a predictive analysis estimated the maximum naringinase activity to be 23.94 U/mL in cultures that contained 2.3 g of grapefruit rind, 2.5 g of rice bran, and 5.2 g of wheat bran. Additional cultivation was performed to validate the proposed model and yielded a mean naringinase activity of 23.2±0.02 U/mL. This result corresponded to
Comparison of different inducers on naringinase production

For a variety of applications, to increase the production of naringinase, an inducible enzyme, optimize the culture conditions, especially by performing the continuous or gradual addition of a type of inducer (Mateles et al. 1965). For the production of naringinase, the inducers reported are generally natural substrates or substrate analogs for the enzyme, such as naringin (Puri et al. 2009), rutin (Kumar 2010), and hesperidin (Fukumoto and Okado 1973).

To evaluate the effect of flavonoid concentration on the production of naringinase by *A. niger*, the addition of naringin, rutin, and hesperidin in various concentrations was performed based on the best-selected condition of the EMD 1 culture. Naringinase activity was observed in all media (Fig. 3), maximum naringinase was produced with rutin (27.48 ± 1.23 U/mL) followed by naringin (23.45 ± 0.96 U/mL) and hesperidin (23.22 ± 1.12 U/mL) at a concentration of 10 g/L. The increase in the concentration of the inducers had no significant effect on the production of the enzyme. Custodio et al. (Custodio et al. 1996) also reported that rutin (0.5%, w/v) was considered the most effective inducer of α-L-ramnosidase production among quercitrin, naringin, naringenin, hesperitin, and hesperidin. On the other hand, Kumar et al. (Kumar 2010) reported a naringinase activity in different five media, which the enzyme naringinase had maximum production in naringin (7.48 IU/ml) while rutin (3.71 IU/ml). It is also worth mentioning that our products obtained in this work were much higher than the findings by Kumar et al. (Kumar 2010). These same authors observed that with rutin and naringenin, naringinase was produced on the 8th day, but the enzyme activities were not distinguished on the 11th day.

To improve naringinase yield using citrus residues, Borkar et al. (Borkar et al. 2020) studying the fermentative production of naringinase from *A. niger* van Tieghem MTCC 2425 with an inducer concentration of 14.9 g L⁻¹ verified an ideal naringinase activity of 545.2 IU g⁻¹ and concluded that the pH and the medium temperature act synergistically for the production of the enzyme, while the antagonistic behavior of the temperature and the concentration of the inducer at higher levels leads to a decrease in enzyme activity (Borkar et al. 2020). On the other hand, they obtained the activity of the enzyme can be completely reserved for up to 5 months at 4 °C, same in the literature, naringinase from this species favored

Fig. 2 Contour plots of naringinase responses for *A. niger* cultivation using the culture medium components, a (10 g) grapefruit rind, rice bran, and wheat bran and b (10 g/L) naringin, rutin, and hesperidin. Fermentation experiments were run using SSF for 5 days at 28 °C, with initial pH 4.5.

Fig. 3 Effect of different inducers (black-shaded square, naringin; gray-shaded square, hesperidin; and unshaded square, rutin) on naringinase produced by *A. niger* 426 using SSF for 5 days at 28 °C, with initial pH 4.5. Fermentation experiments were performed based on the best condition selected from the first EMD cultivation. Each data point represents the mean of triplicate determinations ± SD.
was statistically significant \((p < 0.05)\). The high value of the coefficient of determination \((R^2 = 0.99)\) indicates that 99.4% of the variability of the responses can be explained by the model. The value of the adjusted determination coefficient (adjusted \(R^2 = 0.98\)) is also high, showing a high significance of the model.

In this way, the mathematical model representing naringinase production by adding inducers naringin \((x_1)\), rutin \((x_2)\), and hesperidin \((x_3)\) in the experimental region considered here can be expressed as:

\[
Y = 23.56 \times x_1 + 26.82 \times x_2 + 25.5 \times x_3 + 3.04 x_1 x_2 + 0.12 x_1 x_3 - 5.08 x_2 x_3 + 76.59 \times x_1 \times x_2 \times x_3
\]

Effect of a mixture of inducers

To select the best mixture of inducers, fermentation experiments were performed based on the best condition selected from EMD 1 cultivation using 10 g/L of inducers concentration (Table 1, EMD 2). Maximum naringinase activities can be found in the central points that are composed of a ternary mixture of each inducer. According to the analysis of variance (ANOVA), the regression was statistically significant \((p < 0.05)\). The high value of the coefficient of determination \((R^2 = 0.99)\) indicates that 99.4% of the variability of the responses can be explained by the model. The value of the adjusted determination coefficient (adjusted \(R^2 = 0.98\)) is also high, showing a high significance of the model.

In this way, the mathematical model representing naringinase production by adding inducers naringin \((x_1)\), rutin \((x_2)\), and hesperidin \((x_3)\) in the experimental region considered here can be expressed as:

\[
Y = 23.56 \times x_1 + 26.82 \times x_2 + 25.5 \times x_3 + 3.04 x_1 x_2 + 0.12 x_1 x_3 - 5.08 x_2 x_3 + 76.59 \times x_1 \times x_2 \times x_3
\]

Similar to Eq. (3), Eq. (4) indicated that the most significant effect on naringinase activity was composed of a ternary mixture of each inducer, resulting in a naringinase activity of 28.16 U/mL (Table 1). Because \(x_2 > x_3 > x_1\), we would conclude that rutin \((x_2)\) increases naringinase production. Although all the linear terms, as well as the cubic term, had significant effects on the maximum attainable value of naringinase production, it can be seen that the effect of the quadratic term was not significant \((p > 0.05)\). Furthermore, because \(x_2 x_3\) is negative, blending rutin and hesperidin would have an antagonistic effect, which means that the proportion of rutin in the blending should be greater than hesperidin. These results can provide a reference for inducer selection for similar studies in the future. To our knowledge, this is the first time that a mixture of inducers combined with the analysis of responses by response surface methodology and optimization through a desirability function is used for producing naringinase.

According to Bokkenheurser et al. (Bokkenheurser et al. 1987), rutin can be hydrolyzed to the monosaccharide 3-glucosylquercetin, which could be further hydrolyzed to the aglycone, quercetin by the β-D-glucosidase portion of naringinase.

A quantitative HPLC analysis of the fermentation broth revealed the presence of the inducer rutin in Controls 4–7, which represents cultivations without inoculation, and its aglycone quercetin in Runs 4–7 of the EMD 2 (Table 3). This indicates that \(A.\ niger\) successfully metabolized rutin. Additionally, rutin was detected at a concentration of 2.44 ± 0.42 mg/mL in Control 5 of EMD 2 even though it was not added. A possible explanation could be that rutin is coming from grapefruit rind, which has a rutin concentration of 5.50 ± 0.65 mg/g of the dry substrate (Table 2). This highlights the importance of agro-industrial residues application since this reduces the costs of production by the addition of flavonoids. This is advantageous on two levels, first because grapefruit rind is an inexpensive carbon source compared to other carbon sources and second its application on naringinase production could solve environmental problems resulting from grapefruit waste.

For better industry usage of this waste, it could be done a pre-treatment for monosaccharides inhibitor removal, but costs have to be taken into account so the process would remain financially advantageous.

The graph of the response surface (Fig. 2b) showed that maximum naringinase production could be achieved with a mixture of naringin, rutin, and hesperidin at a concentration of 2.5, 4.5, and 3.0 g/L, respectively; furthermore, the inducer rutin would increase enzyme activity. The

Table 3 Quantitative HPLC analysis for quantification of flavonoids in tests of EMD 2 (Table 1)

Run number	Original mixture \((x_1; x_2; x_3)\)	Rutin (mg/mL)	Quercetin (mg/mL)
Control 4	(5.0; 5.0; 0)	4.071 ± 0.784	ND
Control 5	(5.0; 0; 5.0)	2.435 ± 0.422	ND
Control 6	(0; 5.0; 5.0)	5.080 ± 1.427	ND
Control 7	(3.3; 3.3; 3.3)	2.499 ± 0.472	ND
Run 4	(5.0; 5.0; 0) *	1.873 ± 4.950	
Run 5	(5.0; 0; 5.0) *	1.578 ± 10.382	
Run 6	(0; 5.0; 5.0) *	2.634 ± 0.017	
Run 7	(3.3; 3.3; 3.3) *	1.905 ± 1.208	

All procedures were performed in triplicate. Mean values ± standard deviation

ND not detected

* \(x_1\) naringin, \(x_2\) rutin and \(x_3\) hesperidin

* Values below the limit of the method

45 °C for naringinase activity (Puri and Banerjee 2000). However, researchers noted that scaling parameters vary significantly about microbial types, such as bacteria or fungi. About the fungus \(Aspergillus\ niger\), studies that identify the most influential factors among the different media and process parameters during fermentation to produce naringinase are still scarce.
maximum predicted value was 27.86 U/mL. The mean value of the experimental validation of the optimized condition (28.10 ± 0.45 U/mL) was in excellent correlation with the predicted value, confirming the validity of the model. This activity is comparatively higher than those obtained by Petri et al. (Petri et al. 2014). After medium optimization, these authors found a final α-L-rhamnosidase activity of 3.02 U/mL contained in 5 mL of enzymatic extract from SSF by A. niger 426.

Conclusions

As an agro-industrial waste, rich in nutrient composition and bioactive compounds, present variability in composition (such as sugars, minerals, and proteins), firstly the best result of the mixture of substrates was selected, to later be used as solid support in the second SSF process step for enzyme production. According to a statistical mixing project, the ternary mixture of each solid substrate (grapefruit peel, rice bran, and wheat bran) was also combined with a ternary mixture of inductors (naringin, rutin, and hesperidin) obtained better activity values of naringinase. This sequential procedure allowed the definition of an optimal mixture of components resulting in a 96% increase in the production of naringinase concerning the orange peel as a tested substrate without the addition of inductors. The results suggest that the proportion of these components can be applied for further investigation, as a lower-cost alternative, adding economic value to waste and by-products and, on the other hand, solving the problem of its disposal, in the production of enzymes, specifically naringenase. Although the grapefruit peel decreases the production of naringinase, it cannot be discarded as a carbon source, due to the large number of flavonoids impregnated in this substrate.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s10123-021-00199-5.

Acknowledgements The authors would like to extend their sincere appreciation to the UEL and UNESP for their support and CAPES for funding this work and scholarships. We would like to thank the coordinated Plant Molecular Biology Laboratory of FCAV/UNESP by Eliana G.M. Lemos.

Author contribution Fernanda de Oliveira: research conceptualization, data curation, investigation and methodology, writing. Tereza Cristina Luque Castellane: HPLC investigation and methodology, review and editing. Marcelo Rodrigues de Melo and João Batista Buzato: research conceptualization and supervision.

Funding The authors would like to extend their sincere appreciation to the CAPES for funding this work.

Data availability Not applicable.

Declarations

Conflict of interest The authors declare no competing interests.

References

Puri M, Kaur A, Barrow CJ, Singh RS (2011) Citrus peel influences the production of an extracellular naringinase by Staphylococcus xylosus MAK 2. App Microbiol Biotechnol 89:715–722
Puri M, Banerjee U (2000) Production, purification, and characterization of the debittering enzyme naringinase. Biotech Adv 3:207–217
Purewal SS, Sandhu KS (2021) Debittering of citrus juice by different processing methods: a novel approach for the food industry and agro-industrial sector. Scientia Horticulturae 276:109750. https://doi.org/10.1016/j.scienta.2020.109750
Awad GEA, Abd El Aty AA, Shehata AN, Hassan ME, Elnashar MM (2016) Covalent immobilization of microbial naringinase using novel thermally stable biopolymer for hydrolysis of naringin. BioTech 6:14. https://doi.org/10.1007/s13205-015-0338-x
Srikantha K, Kapilan R, Seevaratnam V (2016) Optimization of naringinase production from Aspergillus flavus in solid-state fermentation media using citrus peel as support. Scholars Acad J Biosci 4(6):535–543. https://doi.org/10.21276/sajb.2016.4.6.16
Ribeiro MH (2011) Naringinases: occurrence, characteristics, and applications. Appl Microbiol Biotechnol 90(6):1883–1895. https://doi.org/10.1007/s00253-011-3176-8
Bodakowska-Boczniewicz J, Garncarek Z (2020) Immobilization of naringinase from Aspergillus niger on a magnetic polysaccharide carrier. Molecules 25(12):2731. https://doi.org/10.3390/molecules25122731
Zhang L, Xu X, Jiang T, Wu K, Ding C, Liu Z, Zhang X, Yu T, and Song C (2018) Citrus aurantium naringenin prevents osteosarcoma progression and recurrence in the patients who underwent osteosarcoma surgery by improving antioxidant capability. Oxid Med Cell Longev 1–16. https://doi.org/10.1155/2018/8713263
Patil SV, Koli SH, Mohite BV, Patil RP, Patil RR, Borase HP, Patil VS (2019) A novel screening method for potential naringinase-producing microorganisms. Biotechnol Appl Biochem 66(3):323–327
Zhu Y, Jia H, Xi M, Li J, Yang L, Li X (2017) Characterization of a naringinase from Aspergillus oryzae 11250 and its application in the debitterization of orange juice. Process Biochem 62:114–121. https://doi.org/10.1016/j.procbio.2017.07.012
Karuppaija S, Kapilan R, Seevaratnam V (2016) Optimization of naringinase production by Rhizopus stolonifer in solid state fermentation media using paddy husk as support. Scholars Acad J Biosci 4(6):507–514
Houssein MM, Abouelmagd HI (2019) Nano-encapsulation of naringinase produced by Trichoderma longibrachiatum ATCC18648 on thermally stable biopolymers for citrus juice debittering. J Microbiol 57(6):521–531. https://doi.org/10.1007/s12275-019-8528-6
Ni H, Chen F, Cai H, Xiao A, You Q, Lu Y (2012) Characterization and preparation of Aspergillus niger naringinase for debittering citrus juice. J Food Sci 77:1–7. https://doi.org/10.1111/j.1750-3841.2011.02471.x
Mukund P, Belur PD, Saidutta MB (2013) Production of naringinase from a new soil isolate, Bacillus methylotrophicus: isolation, optimization and scale-up studies. Prep Biochem Biotechnol 44(2):146–163. https://doi.org/10.1080/10826068.2013.797910
Borkar V, Chakraborty S, Gokhale JS (2020) Fermentative production of naringinase from *Aspergillus niger* van Tieghem MTCC 2425 using citrus wastes: process optimization, partial purification, and characterization. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-020-03385-9

Cornell JA (2002) Experiments with mixtures: designs, models and the analysis of mixture data, 3rd edn. John Wiley and Sons, New York Statsoft, Inc. Statistica (data analysis software system), version 7. 2007. www.statsoft.com

Thammawat K, Pongtanya P, Juntharasri V, Wongvithoonyaporn P (2008) Isolation, preliminary enzyme characterization and optimization of culture parameters for production of naringinase isolated from *Aspergillus niger* BCC 25166. Nat Sci 42:61–72

Saravitz DM, Pharr DM, Carter TE (1987) Galactinol synthase activity and soluble sugars in developing seeds of four soybean genotypes. Plant Physiol 83:185–189

Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Analytical Chem 28:350–356

Mendoza-Cal A, Cuevas L, Lizama-Uc G, Ortiz-Vazquez E (2010) Naringinase production from filamentous fungi using grapefruit rind in solid state fermentation. African J Microbiol Res 4:1964–1969

Bram B, Solomons GL (1965) Production of the enzyme naringinase by *Aspergillus niger*. Applied Microbiol 13:842–845

Shanmugaprabhaksh M, Vinoth-Kumar V, Hemalatha M, Pothiyappan-Karthik VM (2011) Solid-state fermentation for the production of debittering enzyme naringinase using *Aspergillus niger* MTCC 1344. Eng Life Sci 11:322–325

Silva CS, Bovarotti E, Rodrigues MI, Hokka CO, Barboza M (2009) Evaluation of the effects of the parameters involved in the purification of clavulanic acid from fermentation broth by aqueous two-phase systems. Bioproc Biosys Eng 32:325–362

Norouzian D, Hosseinzadeh A, Inanlou DN, Moazami N (2000) Production and partial purification of naringinase by *Penicillium decumbens* MTCC 5248. W J Microbiol Biotechnol 16:471–473

Mateles RI, Perlman D, Humphery AE, Deindorfer FH (1965) Fermentation review. Biotechnol Bioen 7:54–58

Puri M, Kaur A, Singh RS, Singh A (2009) Response surface optimization of medium components for naringinase production from *Staphylococcus xylosus* MAK2. App Biochem Biotechnol 162:181–191

Kumar VV (2010) Comparative studies on inducers in the production of naringinase from *Aspergillus niger* MTCC 1344. African J Biotechnol 9:7683–7686

Fukumoto J, Okado S (1973) Naringinase production by fermentation. Japanese Patent 7306554

Custodio MVG, Otamendi FP, Vidal DR, Alventosa SV (1996) Production and characterization of an *Aspergillus terreus* α-L-rhamnosidase of oenological interest. Lebensm Unters Forsch 203:522–527

Bokkenheuser VD, Shackleton CHL, Winter J (1987) Hydrolysis of dietary flavonoid glycosides by strains of intestinal bacteroides from humans. Bioch J 248:953–956

Petri AC, Buzato JB, Celligoi MA, Borsato D (2014) Optimization of the production of α-L-rhamnosidase by *Aspergillus niger* in solid state fermentation using agro-industrial residues. Brit Microbiol Res J 4:1198–1210

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.