Total endoscopic thyroidectomy versus conventional open thyroidectomy in thyroid cancer: a systematic review and meta-analysis

Background: Despite the considerable experience gained thus far using endoscopic technologies, the role of total endoscopic thyroidectomy (ET) for papillary thyroid cancer (PTC) remains controversial. We conducted a systematic review and meta-analysis to investigate the safety and effectiveness of total ET compared with conventional open thyroidectomy (OT) in PTC.

Methods: A systematic search was conducted using the PubMed, Embase and Cochrane Library electronic databases up to March 2018. The quality of included studies was evaluated using the Newcastle–Ottawa Scale. Review Manager software version 5.3 was used for the meta-analysis.

Results: Twelve studies including 2,672 patients were ultimately included in the systematic review and meta-analysis. ET was associated with longer operative time (P<0.0001), drainage time (P<0.00001) and hospital stay (P=0.03), higher transient recurrent laryngeal nerve (RLN) palsy rate (P=0.004) and a greater amount of drainage fluid (P<0.0001) compared with OT. Furthermore, no significant differences were detected between ET and OT in terms of retrieved lymph nodes (P=0.17), blood loss (P=0.22), transient hypocalcemia (P=0.84), permanent hypocalcemia (P=0.58), permanent RLN palsy (P=0.14), hematoma or bleeding (P=0.15) and seroma (P=0.54). In addition, the rates of tumor recurrence were comparable (P=0.18), whereas the proportions of stimulated thyroglobulin levels <1 ng/mL measured after completion of thyroidectomy and radioactive iodine therapy were less (P=0.02) in the ET than in the OT group.

Conclusion: ET is not superior to OT in terms of operation and drainage time, amount of drainage fluid, hospital stay or transient RLN palsy, but is comparable to OT in terms of retrieved lymph nodes and permanent complications. Despite the similar tumor recurrence rates between the two approaches, the level of surgical completeness in ET may not be as good as that for OT.

Keywords: endoscopic thyroidectomy, conventional open thyroidectomy, papillary thyroid carcinoma, meta-analysis

Background

Thyroid cancer is considered the most prevalent endocrine cancer, especially in women. Papillary thyroid cancer (PTC), the major histological subtype, constitutes approximately 85% of all thyroid malignancies. Although conventional open thyroidectomy (OT) is a standard surgery with low morbidity and minimal mortality for PTC, it requires a cervical incision in the neck. Nevertheless, the cosmetic outcome may be a particular concern, especially in young women.

The popularity of endoscopic technologies has allowed surgeons to complete resection and simultaneously deliver cosmetic results. In 1997, Hüscher et al first...
performed endoscopic thyroidectomy (ET).5 Since then, various ET approaches have evolved, such as breast,6 axillary,7 axillobreast,8 submental9 and oral cavity approaches.10 However, endoscopic techniques present some difficulties in obtaining adequate surgical views because of the small working space and two-dimensional operative views.11 In addition, surgical indications for ET remain ambiguous, and the benefits of ET are considered marginal for PTC.12,13 Some studies have even questioned the safety of ET for PTC and proposed that this method should be critically evaluated.14,15 Thus, it remains unsettled whether ET is effective and safe compared with OT.

To our knowledge, only one meta-analysis comparing outcomes between ET and OT has been published.16 However, the previous meta-analysis was conducted on five studies and focused on patients with papillary thyroid microcarcinoma (PTMC). Given the growing number of publications on this debatable subject and the extended indications for ET,7 it is necessary to perform a systematic meta-analysis to compare the effectiveness and safety of ET with OT in PTC patients.

Materials and methods

This systematic review and meta-analysis was conducted in accordance with the PRISMA statement.17

Search strategy

A systematic search was conducted using the PubMed, Embase and Cochrane Library electronic databases on 15 March 2018. We used the following keywords and Medical Subject Headings (MeSH) terms: “laparoscopy” or “endoscopy” or “minimally invasive surgery” or “video-assisted surgery” and “thyroidectomy” and “thyroid cancer”. We also reviewed the reference lists from the retrieved articles.

Study selection

Two independent authors (CC and SMH) reviewed study titles and abstracts to exclude irrelevant articles, and studies meeting the inclusion criteria were selected for full-text assessment. Any discrepancy was resolved by consensus. The inclusion criteria were as follows: 1) English language; 2) comparative studies between ET and OT for patients with PTC; 3) studies comparing at least one outcome of surgery; and 4) multiple studies from the same institution were assessed and the highest quality and most up-to-date of these was retained. The exclusion criteria were as follows: 1) studies that were reviews, case reports, letters, conferences, editorials, or expert opinions; 2) studies that focused on patients with thyroid cancer other than PTC; and 3) studies reporting on the pediatric population.

Data extraction and quality assessment

Data were extracted into prepared standardized forms by two independent reviewers.

The primary data extracted from each study included the first author, year of publication, geographical region, study type, number of patients, patient demographics, pathological characteristics of PTC, operative details (extent of thyroidectomy, surgical approach), intraoperative outcomes, postoperative outcomes and oncological outcomes (stimulated thyroglobulin [sTg], tumor recurrences). Intraoperative outcomes included operative time, blood loss and the number of retrieved lymph nodes. Postoperative outcomes included hospitalization period after the operation, volume and duration of drainage, postoperative complications (transient hypocalcemia, permanent hypocalcemia, transient recurrent laryngeal nerve [RLN] palsy, permanent RLN palsy, hematoma or bleeding, and seroma). Total thyroidectomy (TT) included near-TT and TT, whereas less than total thyroidectomy (LTT) included hemithyroidectomy and subtotal thyroidectomy. The sTg level was measured after total completion of thyroidectomy and radioactive iodine therapy and defined as <1.0 ng/mL as an indicator of surgical completeness. Any disagreement was resolved by discussion and consensus.

The quality assessment of nonrandomized studies was also performed by two independent reviewers using the Newcastle–Ottawa Scale, with some modifications to match the requirements of this study.18,19 The quality was assessed based on three aspects: patient selection, comparability of groups and outcome assessment. Only studies awarded six or more stars were considered as high-quality studies.

Statistical analysis

Review Manager software version 5.3 (The Nordic Cochrane Centre, The Cochrane Collaboration, Copenhagen, 2014) was used for data analysis. For continuous outcomes, the weighted mean differences (WMDs) with corresponding 95% CIs were calculated. For dichotomous outcomes, the ORs with corresponding 95% CIs were examined. The quality was assessed by the Cochran Q test and evaluated the extent of inconsistency by the I^2 statistic, which was divided into three degrees including low (25%–49%), moderate (50%–74%) and high (≥75%) levels.20 When $P>0.1$
and $I^2<50\%$, a fixed-effects model was used; otherwise, a random-effects model was applied. We used the following methods to explore sources of heterogeneity: 1) subgroup analysis (TT and LTT) and 2) sensitivity analysis conducted by excluding each of the included studies to identify which studies influenced the degree of heterogeneity. The possible presence of publication bias was estimated by Egger’s test and Begg’s test, investigated using STATA version 12.0 (Stata Corporation, College Station, TX, USA). P-values <0.05 were considered statistically significant.

Results

Study selection

The initial search yielded 2,633 potentially relevant articles. Seventeen potential articles were identified after screening titles and abstracts. After full-text review, an additional five articles were excluded for the following reasons: including cases of follicular thyroid cancer ($n=1$), 21 cohorts may have overlapped ($n=2$) $22,23$ and some conflicts in articles ($n=2$). $24,25$ Finally, 12 observational articles were obtained for final analysis (Figure 1). $7,26–36$

Study and patient characteristics

Table 1 shows the total number of 2,672 PTC patients included, of whom 799 underwent ET and 1,873 underwent OT. Eight studies $26–30,32–34$ were performed in the Republic of Korea and four studies $7,31,35,36$ in China. All 12 studies were retrospective. In terms of surgical approach, in six studies the axillobreast approach (ABA) was performed, $26–28,32–34$ in three studies the bilateral breast approach (BBA) was performed, $31,35,36$ in two studies the transaxillary approach (TAA) was performed, 30 and in the remaining study either ABA or TAA was performed for thyroidectomy. 29

The pathological details of each study are summarized in Table 2.

Meta-analysis of intraoperative outcomes

Eleven studies calculated operative times for ET vs OT, $7,26–32,34–36$ and the operation time in the ET group was significantly longer than that in the OT group ($WMD=50.46$, $95\% CI$ 40.50 to 60.42, $P<0.00001$). However, there was a high level of heterogeneity among the studies ($I^2=87\%$, $P<0.00001$). The meta-analysis results remained unaffected when each individual study was removed from the data set.

Ten studies presented the number of retrieved lymph nodes, $7,27–35$ and the pooled data showed no significant differences between groups ($WMD=0.53$, $95\% CI$ –1.29 to 0.22, $P=0.17$). Furthermore, there was a high level of heterogeneity among the studies ($I^2=80\%$, $P<0.00001$). After excluding the study by Lee et al, 33 there were still no significant differences between groups ($WMD=0.14$, $95\% CI$ –0.47 to 0.20, $P=0.42$), but no heterogeneity was observed among the studies ($I^2=0\%$).

Four studies $7,31,34,36$ compared intraoperative blood loss and the pooled data showed no significant differences between groups ($WMD=4.37$, $95\% CI$ –2.62 to 11.36, $P=0.22$). In addition, there was a moderate level of heterogeneity.

Figure 1 Flow diagram for study selection.

Abbreviation: FTC, follicular thyroid cancer.
Table I: General characteristics of studies included in the meta-analysis

Study (first author, year)	Region	Study type	No of patients	Age (years), mean ± SD	Gender, M/F	Extent of thyroidectomy, TT/LTT	Surgical approach	Matching²	Quality score
Chung 2007²⁶	Korea	RS	103 (16–44)	38.0 ± 2.2	1/102	88/15	BABA	4, 9	6
Hong 2011²⁷	Korea	RS	57	39.0 ± 2.2	11/49	0/57	BABA/UABA	1, 2, 4, 7, 9	7
Kim 2011²⁸	Korea	RS	95	39.0 ± 2.2	2/93	95/0	BABA	6	7
Tae 2011²⁹	Korea	RS	31	36.2 ± 2.2	1/102	88/15	BABA	6	7
Lee 2012³⁰	Korea	RS	37	42.3 ± 2.2	11/49	0/57	BABA	6	7
Tan 2015³¹	China	RS	34	30 (16–44)	11/49	0/57	BABA	6	7
Huang 2016³²	China	RS	75	38.0 ± 2.2	11/49	0/57	BABA	6	7
Kim 2016³³	Korea	RS	173	38.9 (17–57)	11/49	0/57	BABA	6	7
Lee 2016³⁴	Korea	RS	75	42.2 ± 2.2	11/49	0/57	BABA	6	7
Park 2016³⁵	Korea	RS	50	38.0 ± 2.2	11/49	0/57	BABA	6	7
Xiang 2016³⁶	China	RS	49	34.2 ± 2.2	11/49	0/57	BABA	6	7
Ren 2017³⁷	China	RS	20	36.0 ± 2.2	11/49	0/57	BABA	6	7

Notes: ¹Features matching ET and OT: 1 = age; 2 = gender; 3 = body mass index; 4 = tumor size; 5 = multiplicity; 6 = bilaterality; 7 = extrathyroidal extension; 8 = tumor stage; 9 = extent of thyroidectomy. ²Median (range).

Abbreviations: BABA, bilateral axillobreast approach; BBa, bilateral breast approach; ET, endoscopic thyroidectomy; F, female; LTT, less than total thyroidectomy; M, male; OT, open thyroidectomy; RS, retrospective study; TAA, transaxillary approach; TT, total thyroidectomy; UABA, unilateral axillobreast approach.

Meta-analysis of postoperative outcomes

Eleven studies reported the transient postoperative RLN palsy rate. The cumulative transient postoperative RLN palsy rate, 7.3% (95% CI 1.46 to 15.11, P = 0.004), was significantly lower in the ET group (6.48, 95% CI 1.46 to 11.15, P = 0.004) compared to the OT group. The proportion of transient RLN palsy in the ET group (7.3%) was significantly lower than that in the OT group (9.9%, P = 0.04). The cumulative permanent postoperative RLN palsy rate, 2.8% (95% CI 0.15 to 0.51, P = 0.0003) (Table 3 and Figure 3A–C).

Eight studies described the duration of drainage and reported a larger amount of drainage in the ET group (WMD 11.16, 95% CI 1.09 to 21.26, P = 0.0001). In addition, the duration of drainage after removal of drainage was analyzed (WMD 0.65, 95% CI 0.06 to 1.24, P = 0.03) and the result was associated with significant heterogeneity (94.9%, P = 0.00001). After removing the study by Kim et al., the previously high heterogeneity drastically declined (57.3%, P = 0.19), but the significance of the result was unchanged (WMD 0.65, 95% CI 0.06 to 1.24, P = 0.03). After removing the study by Kong et al., the significance of the result was unaltered (WMD 0.65, 95% CI 0.06 to 1.24, P = 0.03). In addition, the duration of drainage was also analyzed (WMD 1.16, 95% CI 1.09 to 21.26, P = 0.0001). After removing the study by Park et al., the significance of the result was unchanged (WMD 1.16, 95% CI 1.09 to 21.26, P = 0.0001). Furthermore, this study by Huang et al. showed a higher level of heterogeneity as well (74.9%, P = 0.0001). After removing the study by Kong et al., the significance of the result was unaltered (WMD 1.16, 95% CI 1.09 to 21.26, P = 0.0001). In addition, the duration of drainage was also analyzed (WMD 1.16, 95% CI 1.09 to 21.26, P = 0.0001). After removing the study by Park et al., the significance of the result was unchanged (WMD 1.16, 95% CI 1.09 to 21.26, P = 0.0001). Furthermore, this study by Huang et al. showed a higher level of heterogeneity as well (74.9%, P = 0.0001). After removing the study by Kong et al., the significance of the result was unaltered (WMD 1.16, 95% CI 1.09 to 21.26, P = 0.0001).
Table 2 Pathological characteristics of studies included in the meta-analysis

Study (first author, year)	Tumor size (mm)	Multiplicity (n/N)	Bilaterality (n/N)	Extrathyroidal extension (n/N)	Positive LNs (n/N)	No of metastatic LNs
Chung 2007²⁶	<10	NR	NR	NR	NR	NR
Hong 2011²⁷	7.2±±2.30	NR	NR	10/57	NR	NR
Kim 2011²⁸	6.0±±2.0	NR	NR	NR	NR	NR
Tan 2011²⁹	7.6±±4.9	6.4±±2.3	2/31	0/31	2/31	NR
Lee 2012³⁰	5.0±±2.31	4.1±±2.64	3/37	5/41	NR	NR
Tan 2015³¹	7.0±±3.0	8.0±±4.0	NR	NR	NR	NR
Huang 2017³²	4.8±±1.9	4.9±±2.3	5/75	9/123	NR	NR
Kim 2016³³	NR	NR	NR	NR	NR	NR
Lee 2016³⁴	5.8±±3.5	6.2±±3.7	12/75	30/233	NR	NR
Park 2016³⁵	8.0±±3.7	7.6±±1.9	7/50	19/102	10/50	NR
Xiang 2016³⁶	7.7±±4.2	12.4±±7.9	26/49	37/47	4/173	8/47
Ren 2017³⁷	<10	<10	NR	NR	NR	NR
Overall	6.4±±3.2	6.7±±3.7	55/317	102/582	10/81	18/138

Abbreviations: ET, endoscopic thyroidectomy; LN, lymph node; NR, not reported; OT, open thyroidectomy.

95% CI 0.80 to 5.23, \(P = 0.14 \), and no heterogeneity existed \(I^2 = 0 \% \).

Eight studies reported the transient postoperative hypocalcemia rate \(26,28,29,31,32,34–36 \) whereas seven reported permanent postoperative hypocalcemia rates \(26,28,29,32,34–36 \). No significant differences were observed between the two groups in terms of transient hypocalcemia (OR 0.93, 95% CI 0.46 to 1.87, \(P = 0.84 \)), but high heterogeneity existed \(I^2 = 81\% , P = 0.0001 \). The meta-analysis results remained unchanged (OR 1.26, 95% CI 0.74 to 2.16, \(P = 0.40 \)) but a moderate decline in the heterogeneity \(I^2 = 53\% , P = 0.06 \) was observed when the study by Kim et al was removed. \(32 \) In the case of permanent postoperative hypocalcemia, neither significant differences (OR 0.82, 95% CI 0.39 to 1.69, \(P = 0.58 \)) nor heterogeneity \(I^2 = 0\% \) were detected.

Regarding other complications, such as postoperative hematoma or bleeding (OR 1.76, 95% CI 0.81 to 3.81, \(P = 0.15 \)) and postoperative seroma (OR 1.33, 95% CI 0.53

Table 3 Outcomes of meta-analysis comparing ET vs OT

Outcomes	No of studies	No of patients	OR/WMD	95% CI	P-value	\(I^2 \) (%)		
Intraoperative outcomes								
Operative time	11	724	1,640	50.46	40.50	60.42	<0.00001	87
No of retrieved LNs	10	676	1,640	–0.53	–1.29	0.22	0.17	80
Blood loss	4	179	290	4.37	–2.62	11.36	0.22	72
Postoperative outcomes								
Duration of drainage	3	104	167	1.88	1.22	2.54	<0.00001	76
Volume of drainage	5	230	341	111.96	61.66	162.26	<0.00001	95
Hospitalization period	8	566	1,440	0.65	0.06	1.24	0.03	90
Transient RLN palsy	11	762	1,832	2.64	1.36	5.11	0.004	48
Permanent RLN palsy	9	653	1,679	2.04	0.80	5.23	0.14	0
Transient hypocalcemia	8	555	1,416	0.93	0.46	1.87	0.84	81
Permanent hypocalcemia	7	521	1,386	0.82	0.39	1.69	0.58	0
Hematoma or bleeding	10	674	1,538	1.76	0.81	3.81	0.15	0
Seroma	4	258	357	1.33	0.53	3.34	0.54	0
Oncological outcomes								
sTg < 1.0 ng/mL	2	29	343	0.33	0.13	0.81	0.02	0
Tumor recurrences	6	398	1,170	0.54	0.22	1.32	0.18	0

Abbreviations: ET, endoscopic thyroidectomy; LN, lymph node; OT, open thyroidectomy; RLN, recurrent laryngeal nerve; sTg, stimulated thyroglobulin; WMD, weighted mean difference.
to 3.34, \(P=0.54\), no heterogeneity existed across studies \((I^2=0\%)\), and no significant differences between the ET and OT groups were observed (Table 3 and Figure 4A–F).

Meta-analysis of oncological results

The sTg levels were available in two studies.\(^{26,32}\) The ET group had lower proportions of having sTg <1.0 ng/mL (OR 0.33, 95% CI 0.13 to 0.81, \(P=0.02\)). No heterogeneity among studies existed \((I^2=0\%)\).

Six studies recorded tumor recurrences,\(^{26,29–32,36}\) and three studies reported no tumor recurrences during the follow-up period. Analysis of the pooled data showed that the two groups did not differ significantly (OR 0.54, 95% CI 0.22 to 1.32, \(P=0.18\)). No heterogeneity among studies was observed \((I^2=0\%)\) (Table 3 and Figure 5).

Subgroup analysis

We conducted a subgroup analysis according to the extent of thyroidectomy. The results of the subgroup analysis were roughly consistent with the previous outcomes. However, the volume of drainage (WMD 100.31, 95% CI –33.67 to 234.29, \(P=0.14\)) and transient RLN palsy (OR 1.58, 95% CI 0.66 to 3.79, \(P=0.31\)) were comparable between the ET and OT groups in TT. In addition, the hospitalization period

Table 3

Study or subgroup	ET	Mean (95% CI)	SD	Total	Mean (95% CI)	SD	Total	Weight (%)	Mean difference IV, random, 95% CI	Year	Mean difference IV, random, 95% CI
Chung 2007	165.1	0	103	111.4	0	198	12.8	50.12 (40.92, 59.32)	2007	-	
Hong 2011	121.65	20.78	57	71.53	29.43	60	12.8	55.00 (46.22, 61.78)	2011	-	
Kim 2011	136	31	95	81	16	138	13.4	55.00 (46.22, 61.78)	2011	-	
Tae 2011	192.4	56.3	31	101.6	33.3	36	8.2	90.80 (68.10, 113.50)	2011	-	
Lee 2012	138.4	36.9	37	112.3	14	41	11.6	26.10 (13.46, 38.74)	2012	-	
Park 2016	123.9	39.3	50	70.7	22.3	102	12.0	53.20 (41.48, 64.92)	2016	-	
Kim 2016	139.56	0	173	119.67	0	830	-	-	2016	-	
Tan 2015	95	15	34	33	5	30	13.8	62.00 (56.65, 67.35)	2015	-	
Huang 2016	142.5	36.9	75	111.5	21.2	123	12.8	31.00 (21.85, 40.15)	2016	-	
Xiang 2016	187	51	49	135	53	47	8.8	52.00 (31.18, 72.82)	2016	-	
Ren 2017	169	56.489	20	127.74	42.051	35	6.6	41.26 (12.85, 69.67)	2017	-	

Figure 2

Forest plot and meta-analysis of (A) operative time; (B) number of retrieved lymph nodes; (C) blood loss. Abbreviations: ET, endoscopic thyroidectomy; OT, open thyroidectomy.
was comparable between the two groups in LTT (OR 0.81, 95% CI –0.19 to 1.82, \(P = 0.11 \)). The concrete results of the subgroup analysis are summarized in Table 4.

Pooled surgical outcomes
Table 5 shows the pooled surgical outcomes of patients between ET and OT groups from all eligible studies.

Publication bias
Figure 6 shows a funnel plot of the studies reporting on transient RLN palsy. Begg’s test (\(P = 0.276 \)) and Egger’s test (\(P = 0.753 \)) showed no statistical publication bias in the studies reporting on transient RLN palsy.

Discussion
PTC is a subtype of differentiated thyroid cancer and surgery remains the primary therapeutic method for thyroid cancer. However, an obvious scar on the neck left after conventional OT causes psychological concerns in patients. With the popularity of endoscopic instruments, ET has been an attractive alternative to open surgery for the treatment of PTC. Owing to the limited number of studies comparing the outcomes between ET and OT, the general application of ET for PTC remains controversial. Unlike the previous meta-analysis, which included patients with PTMC only, our study also recruited patients with tumor sizes larger than PTMC. Furthermore, many new studies with a greater number of patients have been published in recent years. Therefore, we aimed to perform a comprehensive systematic review and meta-analysis to identify the clinical value of ET in adult patients with PTC.

The results of our meta-analysis showed that the operative time in the ET group was longer than that in the OT group. This may be attributed to three reasons. First, more time is...
needed to create the skin flap.31,32 Second, the meticulous bleeding control and careful lymph-node dissection require longer operation times.7,30 Third, surgeon experience and skills affect the operation times.19,29,37 The volume of fluid drainage and the time taken to remove the drainage tube in the ET group were much greater than in the OT group. It has been suggested that more dissection is needed to achieve the necessary working space.28 Furthermore, the longer postoperative hospitalization period in ET suggests a longer recovery period than for OT, especially when performing TT.

In terms of the number of lymph nodes dissected, our meta-analysis demonstrated that there was no significant

\begin{table}[h]
\centering
\begin{tabular}{llllllll}
\hline
Study or subgroup & ET Events & Total & OT Events & Total & Weight (\%) & Odds ratio M–H, random, 95\% CI & Year & Odds ratio M–H, random, 95\% CI \\
\hline
Chung 2007 & 26 & 103 & 5 & 198 & 14.8 & 13.03 (4.83, 35.18) & 2017 & \\
Kim 2011 & 2 & 95 & 1 & 138 & 5.6 & 2.95 (0.26, 32.96) & 2011 & \\
Hong 2011 & 2 & 57 & 2 & 60 & 7.3 & 1.05 (0.14, 7.75) & 2011 & \\
Tae 2011 & 2 & 31 & 1 & 36 & 5.5 & 2.41 (0.21, 27.98) & 2011 & \\
Lee 2016 & 9 & 75 & 4 & 233 & 12.7 & 7.81 (2.33, 26.16) & 2016 & \\
Park 2016 & 4 & 50 & 7 & 102 & 12.1 & 1.18 (0.33, 4.24) & 2016 & \\
Kim 2016 & 12 & 173 & 33 & 830 & 17.9 & 1.80 (0.91, 3.56) & 2016 & \\
Tan 2015 & 1 & 34 & 0 & 30 & 3.5 & 2.73 (0.11, 69.60) & 2015 & \\
Huang 2016 & 2 & 75 & 3 & 123 & 8.3 & 1.10 (0.18, 6.71) & 2016 & \\
Xiang 2016 & 2 & 49 & 0 & 47 & 3.8 & 5.00 (0.23, 106.95) & 2016 & \\
Ren 2017 & 2 & 20 & 4 & 35 & 8.4 & 0.96 (0.14, 5.18) & 2017 & \\
\hline
Total (95\% CI) & 762 & 1,832 & 100 & 2.64 (1.36, 5.11) & & & & \\
\end{tabular}
\caption{Table A}
\end{table}

\begin{table}[h]
\centering
\begin{tabular}{llllllll}
\hline
Study or subgroup & ET Events & Total & OT Events & Total & Weight (\%) & Odds ratio M–H, fixed, 95\% CI & Year & Odds ratio M–H, fixed, 95\% CI \\
\hline
Chung 2007 & 0 & 103 & 1 & 198 & 18.0 & 0.64 (0.03, 15.75) & 2007 & \\
Tae 2011 & 0 & 31 & 0 & 36 & Not estimable & & & \\
Kim 2011 & 2 & 95 & 0 & 138 & 7.0 & 7.41 (0.35, 156.03) & 2011 & \\
Hong 2011 & 1 & 57 & 0 & 60 & 8.3 & 3.21 (0.13, 80.49) & 2011 & \\
Park 2016 & 2 & 50 & 4 & 102 & 44.4 & 1.02 (0.18, 5.77) & 2016 & \\
Lee 2016 & 1 & 75 & 0 & 233 & 4.2 & 9.40 (0.38, 233.27) & 2016 & \\
Kim 2016 & 1 & 173 & 3 & 830 & 18.1 & 1.60 (0.17, 15.50) & 2016 & \\
Xiang 2016 & 0 & 49 & 0 & 47 & Not estimable & & & \\
Ren 2017 & 0 & 20 & 0 & 35 & Not estimable & & & \\
\hline
Total (95\% CI) & 653 & 1,679 & 100 & 2.04 (0.80, 5.23) & & & & \\
\end{tabular}
\caption{Table B}
\end{table}

\begin{table}[h]
\centering
\begin{tabular}{llllllll}
\hline
Study or subgroup & ET Events & Total & OT Events & Total & Weight (\%) & Odds ratio M–H, random, 95\% CI & Year & Odds ratio M–H, random, 95\% CI \\
\hline
Chung 2007 & 26 & 103 & 35 & 198 & 18.0 & 1.57 (0.88, 2.80) & 2007 & \\
Tae 2011 & 0 & 31 & 0 & 36 & Not estimable & & & \\
Kim 2011 & 24 & 95 & 38 & 138 & 17.8 & 0.89 (0.49, 1.61) & 2011 & \\
Tan 2015 & 0 & 34 & 1 & 30 & 3.8 & 0.29 (0.01, 7.26) & 2015 & \\
Park 2016 & 13 & 50 & 23 & 102 & 16.3 & 1.21 (0.55, 2.64) & 2016 & \\
Kim 2016 & 22 & 173 & 246 & 830 & 18.7 & 0.35 (0.22, 0.55) & 2016 & \\
Xiang 2016 & 29 & 49 & 14 & 47 & 15.8 & 3.42 (1.47, 7.96) & 2016 & \\
Ren 2017 & 2 & 20 & 9 & 35 & 9.6 & 0.32 (0.06, 1.66) & 2017 & \\
\hline
Total (95\% CI) & 555 & 1,416 & 100 & 0.93 (0.46, 1.87) & & & & \\
\end{tabular}
\caption{Table C}
\end{table}
Figure 4 Forest plot and meta-analysis of (A) transient RLN palsy; (B) permanent RLN palsy; (C) transient hypocalcemia; (D) permanent hypocalcemia; (E) hematoma or bleeding; (F) seroma.

Abbreviations: ET, endoscopic thyroidectomy; M–h, Mantel–Haenszel; OT, open thyroidectomy; RLN, recurrent laryngeal nerve.

difference between the ET and OT groups. This finding may indicate that the clearance of lymph nodes is comparable between the two groups. The previous meta-analysis showed that the number of lymph nodes dissected is less in the ET group, but no significant difference existed in the subgroup analysis, which is in concordance with our result.

RLN palsy and hypocalcemia are the major complications of thyroid surgery. Our meta-analysis showed that ET was associated with a significantly greater risk of transient RLN palsy than OT, which was not consistent with the previous meta-analysis. In the sensitivity analysis, the significant difference still existed. It is worth noting that endoscopic magnification with high-definition monitors is better for detecting the RLN. However, the similar or even worse risk of transient RLN palsy in ET relative to OT remains disappointing. Chung et al reported that 25.2% (26/103) of patients experienced transient RLN palsy and proposed that thermal damage caused by the ultrasonic scalpel may injure the RLN. Tan et al adopted the same viewpoint. Another reason may be that ET represents a different anatomic surgery approach, which is not familiar to traditional thyroid surgeons. Sun and Dionigi proposed that surgeons must have an excellent understanding of the RLN in terms of identification and suggested that intraoperative neural
monitoring may be a good choice to avoid RLN palsy.41 It was an interesting finding that in the subgroup analysis, transient RLN palsy was comparable between the two groups in TT, but not in LTT. We consider that the risk of transient RLN palsy can be greatly reduced as long as the surgeon is experienced in ET, and good exposure and protection of the RLN are achieved during surgery. In addition, there were no significant differences between the two groups in terms of

![Figure 5](image_url) Forest plot and meta-analysis of (A) number of sTg < 1 ng/mL; (B) number of tumor recurrences.

Abbreviations: ET, endoscopic thyroidectomy; M–h, Mantel–Haenszel; OT, open thyroidectomy; sTg, stimulated thyroglobulin.

Table 4: Meta-analysis of the subgroups according to the extent of thyroidectomy

Outcomes	No of studies	No of patients	OR/ WMD	95% CI	P-value	I^2 (%)	
TT							
Operative time	4	269	410	47.40	34.18, 60.61	<0.00001	84
No of retrieved LNs	4	269	410	−0.10	−0.50, 0.30	0.63	0
Blood loss	2	125	225	2.35	−7.27, 11.97	0.63	79
Volume of drainage	2	145	240	100.31	−33.67, 234.29	0.14	94
Hospitalization period	2	145	240	0.33	0.10, 0.56	0.005	0
Transient RLN palsy	4	269	410	1.58	0.66, 3.79	0.31	0
Permanent RLN palsy	3	194	287	1.89	0.49, 7.33	0.36	20
Transient hypocalcemia	3	194	287	1.48	0.68, 3.20	0.32	70
Permanent hypocalcemia	3	194	287	1.35	0.46, 3.99	0.58	0
Hematoma or bleeding	3	219	308	2.93	0.61, 14.02	0.18	0
Seroma	2	170	261	0.67	0.10, 4.55	0.68	0
LTT							
Operative time	4	148	166	45.96	29.33, 62.59	<0.00001	90
No of retrieved LNs	4	203	364	−0.89	−2.48, 0.70	0.27	90
Blood loss	2	54	65	6.52	−0.72, 13.76	0.08	46
Duration of drainage	2	54	65	2.20	1.82, 2.59	<0.00001	0
Volume of drainage	2	54	65	114.99	99.74, 130.24	<0.00001	0
Hospitalization period	3	114	136	0.81	−0.19, 1.82	0.11	95
Transient RLN palsy	4	186	358	2.83	1.26, 6.36	0.01	44
Permanent RLN palsy	3	152	328	5.29	0.54, 52.22	0.15	0
Transient hypocalcemia	2	54	65	0.31	0.07, 1.36	0.12	0
Hematoma or bleeding	4	148	166	2.20	0.62, 7.84	0.22	0

Abbreviations: ET, endoscopic thyroidectomy; LN, lymph node; LTT, less than total thyroidectomy; OT, open thyroidectomy; RLN, recurrent laryngeal nerve; TT, total thyroidectomy; WMD, weighted mean difference.
Table 5 Pooled surgical outcomes between ET and OT groups from all eligible studies

Outcomes	ET	OT	References
Intraoperative outcomes			
Operative time (minutes)	142.0±45.9	92.3±36.6	7, 27–31, 34–36
No of retrieved LNs	4.3±4.1	4.7±4.0	7, 27–31, 33–35
Blood loss (mL)	19.6±24.5	14.5±9.8	7, 31, 34, 36
Postoperative outcomes			
Duration of drainage (days)	5.9±1.9	4.6±2.0	31, 34, 36
Volume of drainage (mL)	202.3±142.0	112.7±56.9	28, 29, 31, 34, 36
Hospitalization period (days)	5.3±2.5	4.8±2.9	27–30, 34, 36
Transient RLN palsy, n (%)	64 (8.3)	60 (3.3)	7, 26–29, 31–36
Permanent RLN palsy, n (%)	7 (1.1)	8 (0.5)	26–29, 32–36
Transient hypocalcemia, n (%)	116 (20.9)	366 (25.8)	26, 28, 29, 31, 32, 34–36
Permanent hypocalcemia, n (%)	10 (1.9)	31 (2.2)	26, 28, 29, 32, 34–36
Hematoma or bleeding, n (%)	13 (1.9)	17 (1.1)	7, 26–32, 35, 36
Seroma, n (%)	10 (3.9)	9 (2.5)	7, 27–29
Oncological outcomes			
sTg, 1.0 ng/ml, n (%)	9 (31.0)	176 (51.3)	26, 32
Tumor recurrences, n (%)	6 (1.5)	31 (2.6)	26, 29–32, 36

Abbreviations: ET, endoscopic thyroidectomy; LN, lymph node; OT, open thyroidectomy; RLN, recurrent laryngeal nerve; sTg, stimulated thyroglobulin.

permanent RLN palsy, transient hypocalcemia, permanent hypocalcemia, hematoma or seroma.

Oncological outcomes, such as tumor recurrences and completeness of thyroid resection, are highly valued by surgeons. According to the American Thyroid Association guidelines, sTg may be helpful in predicting disease status. Only two studies recorded the number of patients with sTg <1 ng/mL and our results demonstrated that the OT group may be associated with cleaner resection. Similarly, Kim et al found that the ET group showed higher postoperative thyroglobulin levels (2.4±6.3 ng/mL) than the OT group (0.8±2.0 ng/mL). This indicates that OT is superior to ET in sTg levels presenting completeness of thyroid resection. In contrast, Jeong et al enrolled 275 PTMC patients who underwent ET and reported that all thyroidectomized patients had <1 ng/mL of postoperative serum thyroglobulin. With regard to tumor recurrences, the results showed no significant differences between the two groups, and three studies reported no tumor recurrences during the follow-up period. However, the results should be interpreted with caution. This is because, first, there were still insufficient available data on sTg levels. Second, data on postoperative follow-up were lacking and follow-up times were too short, because most PTCs have a slow progression and a good prognosis, with a 10-year survival rate of more than 90%. Third, tumor characteristics such as tumor size were not well matched between the two groups. Thus, unlike surgical-related outcomes, oncological outcomes are difficult to compare. Randomized controlled trials with long-term follow-up assessment are needed to further evaluate oncological outcomes.

There are several limitations in our meta-analysis. First, all studies included were non-randomized controlled trials, which could lead to a higher risk of potential selection and reporting bias than randomized controlled trials. Second, some heterogeneity was observed for certain results. This may be related to differences among patient and tumor characteristics, the surgeons’ experience and the surgical approaches. Third, transoral endoscopic thyroidectomy (TOET) has received attention in recent years, but no reports have compared OT with TOET in total thyroid cancer. Most patients who undergo TOET have benign lesions, and many reports are on initial experiences or robot-assisted surgery. In addition, cosmetic results and quality of life are difficult to assess because of the few well-accepted tools available to study such outcomes.
Conclusion
Compared with OT, ET is disappointing in terms of operation and drainage time, amount of drainage fluid, hospital stay and transient RLN palsy, whereas other complications appear comparable. In addition, despite the similar tumor recurrence rates, the level of surgical completeness in ET may not be as good as that in OT. Therefore, the application of ET for patients with PTC should be conducted carefully, and further prospective studies with longer follow-up are needed to evaluate the oncological effectiveness of ET.

Acknowledgments
This work is supported by the National Natural Science Foundation of China (numbers 81602471, 81672729 and 81672848), the Natural Science Foundation of Zhejiang Province (numbers LY19H160281, LY15H160020 and Q16H160010) and a grant from a sub-project of the China National Program on Key Basic Research Project (973 Program) (number 2014CB744505).

Author contributions
J Zhou and L Wang designed the study; J Zhou and C Chen wrote the manuscript; C Chen, S Huang, A Huang, Y Jia and J Wang analyzed the data and interpreted the results. All authors contributed to data analysis, drafting and revising the article, gave final approval of the version to be published, and agree to be accountable for all aspects of the work.

Disclosure
The authors report no conflicts of interest in this work.

References
1. Davies L, Welch HG. Current thyroid cancer trends in the United States. JAMA Otolaryngol Head Neck Surg. 2014;140(4):317–322.
2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30.
3. Shore SL. Thyroid Cancer Pathology. In: Vinjamuri S, editor. PET/CT in Thyroid Cancer. Cham: Springer; 2018:9–13.
4. Tan CT, Cheah WK, Delbridge L. “Scarless” (in the neck) endoscopic thyroidectomy (SET): an evidence-based review of published techniques. World J Surg. 2008;32(7):1349–1357.
5. Hirschler CS, Chiodini S, Napolitano C, Recher A. Endoscopic right thyroid lobectomy. Surg Endosc. 1997;11(8):877.
6. Ohgami M, Ishii S, Arisawa Y, et al. Scarless endoscopic thyroidectomy: breast approach for better cosmesis. Surg Laparosc Endosc Percutan Tech. 2000;10(1):1–4.
7. Huang JK, Ma L, Song WH, Lu BY, Huang YB, Dong HM. Quality of life and cosmetic result of single-port access endoscopic thyroidectomy via axillary approach in patients with papillary thyroid carcinoma. Onco Targets Ther. 2016;9:4053–4059.
8. Shimazu K, Shiba E, Tamaki Y, et al. Endoscopic thyroid surgery through the axillo-bilateral-breast approach. Surg Laparosc Endosc Percutan Tech. 2003;13(3):196–201.
9. Ding Z, Deng X, Fan Y, Wu B. Single-port endoscopic thyroidectomy via a submental approach: report of an initial experience. Head Neck. 2014;36(7):E60–E64.
10. Yang J, Wang C, Li J, et al. Complete Endoscopic Thyroidectomy via Oral Vestibular Approach Versus Areola Approach for Treatment of Thyroid Diseases. J Laparoendosc Adv Surg Tech A. 2015;25(6):470–476.
11. Kandil EH, Noureldine SI, Yao L, Slavey DP. Robotic transaxillary thyroidectomy: an examination of the first one hundred cases. J Am Coll Surg. 2012;214(4):558–564.
12. Dionigi G, Boni L, Duran-Poveda M. Evolution of endoscopic thyroidectomy. Surg Endosc. 2011;25(12):3951–3952.
13. Lang BH, Lo CY. Technological innovations in surgical approach for thyroid cancer. J Oncol. 2010;4907–4912.
14. Terris DJ. Surgical Approaches to the Thyroid Gland. JAMA Otolaryngol Head Neck Surg. 2013;139(5):515–517.
15. Kim JH, Choi YJ, Kim JA, et al. Thyroid cancer that developed around the operative bed and subcutaneous tunnel after endoscopic thyroidectomy via a breast approach. Surg Laparosc Endosc Percutan Tech. 2008;18(2):197–201.
16. Wang Y, Liu K, Xiong J, Zhu J. Total endoscopic versus conventional open thyroidectomy for papillary thyroid microcarcinoma. J Craniofac Surg. 2015;26(2):464–468.
17. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PloS Med. 2009;6(7):e1000097.
18. Shen H, Shan C, Qiu M. Systematic review and meta-analysis of transcervical robotic thyroidectomy versus open thyroidectomy. Surg Laparosc Endosc Percutan Tech. 2014;24(3):199–206.
19. Wang YC, Liu K, Xiong JI, Zha Q. Robotic thyroidectomy versus conventional open thyroidectomy for differentiated thyroid cancer: meta-analysis. J Laryngol Otol. 2015;129(6):558–567.
20. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–560.
21. Cho MJ, Park KS, Cho MJ, Yoo YB, Yang JH. A comparative analysis of endoscopic thyroidectomy versus conventional thyroidectomy in clinically lymph node negative thyroid cancer. Ann Surg Treat Res. 2015;88(2):69–76.
22. Koh YW, Park JH, Kim JW, Lee SW, Choi EC. Endoscopic hemithyroidectomy with prophylactic ipsilateral central neck dissection via an unilateral axillo-breast approach without gas insufflation for unilateral micropapillary thyroid carcinoma: preliminary report. Surg Endosc. 2010;24(1):188–197.
23. Im HJ, Koo Doh, Paeng JC, et al. Evaluation of surgical completeness in endoscopic thyroidectomy compared with open thyroidectomy with regard to remnant ablation. Clin Nucl Med. 2012;37(2):148–151.
24. Jeong JJ, Kang SW, Yun JS, et al. Comparative study of endoscopic thyroidectomy versus conventional open thyroidectomy in papillary thyroid microcarcinoma (PTMC) patients. J Surg Oncol. 2009;100(6):477–480.
25. Kim EY, Lee KH, Park YL, et al. Single-incision, gasless, endoscopic trans-axillary total thyroidectomy: A feasible and oncologic safe surgery in patients with papillary thyroid carcinoma. J Laparoendosc Adv Surg Tech A. 2017;27(11):1158–1164.
26. Chung YS, Choe JH, Kang KH, et al. Endoscopic thyroidectomy for thyroid malignancies: comparison with conventional open thyroidectomy. World J Surg. 2007;31(12):2302–2306.
27. Hong HJ, Kim WS, Koh YW, et al. Endoscopic thyroidectomy via an axillo-breast approach without gas insufflation for benign thyroid nodules and micropapillary carcinomas: preliminary results. JAMA Otolaryngol Head Neck Surg. 2013;139(4):454–459.
28. Shimazu K, Shiba E, Tamaki Y, et al. Endoscopic thyroid surgery through the axillo-bilateral-breast approach. Surg Laparosc Endosc Percutan Tech. 2003;13(3):196–201.
29. Ding Z, Deng X, Fan Y, Wu B. Single-port endoscopic thyroidectomy via a submental approach: report of an initial experience. Head Neck. 2014;36(7):E60–E64.
30. Wang Y, Liu K, Xiong J, Zhu J. Total endoscopic versus conventional open thyroidectomy for papillary thyroid microcarcinoma. J Craniofac Surg. 2015;26(2):464–468.
31. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PloS Med. 2009;6(7):e1000097.
30. Lee H, Lee J, Sung KY. Comparative study comparing endoscopic thyroidectomy using the axillary approach and open thyroidectomy for papillary thyroid microcarcinoma. World J Surg Oncol. 2012;10:269.
31. Tan Z, Gu J, Han Q, et al. Comparison of conventional open thyroidectomy and endoscopic thyroidectomy via breast approach for papillary thyroid carcinoma. Int J Endocrinol. 2015;2015:1–5.
32. Kim SK, Kang SY, Youn HJ, Jung SH. Comparison of conventional thyroidectomy and endoscopic thyroidectomy via axillo-bilateral breast approach in papillary thyroid carcinoma patients. Surg Endosc. 2016;30(8):3419–3425.
33. Lee MC, Park H, Lee BC, Lee GH, Choi JJ. Comparison of quality of life between open and endoscopic thyroidectomy for papillary thyroid cancer. Head Neck. 2016;38:E827–E831.
34. Park KN, Jung CH, Mok JO, Kwak JJ, Lee SW. Prospective comparative study of endoscopic via unilateral axillobreast approach versus open conventional total thyroidectomy in patients with papillary thyroid carcinoma. Surg Endosc. 2016;30(9):3797–3801.
35. Xiang D, Xie L, Li Z, Wang P, Ye M, Zhu M. Endoscopic thyroidectomy along with bilateral central neck dissection (ETBC) increases the risk of transient hypoparathyroidism for patients with thyroid carcinoma. Endocrine. 2016;53(3):747–753.
36. Ren X, Dai Z, Sha H, Wu J, Hong X, Xiu Z. Comparative study of endoscopic thyroidectomy via a breast approach versus conventional open thyroidectomy in papillary thyroid microcarcinoma patients. Biomedical Research. 2017;28(12):5315–5320.
37. Lin S, Chen ZH, Jiang HG, Yu JR. Robotic thyroidectomy versus endoscopic thyroidectomy: a meta-analysis. World J Surg Oncol. 2012;10(1):239.
38. Dionigi G, Duran-Poveda M. New approaches in thyroid surgery: is there an increased risk of nerve injury? Ann Surg Oncol. 2011;18(3):252–253.
39. Anuwong A, Ketwong K, Jitpratoom P, Sasankietkul T, Duh QY. Safety and outcomes of the transoral endoscopic thyroidectomy vestibular approach. JAMA Surg. 2017;153(1):21–27.
40. Lang BH, Wong CK, Tsang JS, Wong KP, Wan KY. A systematic review and meta-analysis comparing surgically-related complications between robotic-assisted thyroidectomy and conventional open thyroidectomy. Ann Surg Oncol. 2014;21(3):850–861.
41. Sun H, Dionigi G. Endoscopic thyroid surgery requires surgeons, patient candidacy & neural monitoring. Int J Endocr Oncol. 2018;5(1):IJE02.
42. Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2016;26(1):1–133.
43. Yan S, Zhao W, Wang B, Zhang L. Standardization of simple auxiliary method beneficial to total endoscopic thyroidectomy on patients with PTC, based on retrospective study of 356 cases. Endocrine. 2018;61(1):51–57.
44. Anuwong A, Ketwong K, Jitpratoom P, Sasankietkul T, Duh QY. Safety and Outcomes of the Transoral Endoscopic Thyroidectomy Vestibular Approach. JAMA Surg. 2018;153(1):21.
45. Yi JW, Yoon SG, Kim HS, et al. Transoral endoscopic surgery for papillary thyroid carcinoma: initial experiences of a single surgeon in South Korea. Ann Surg Treat Res. 2018;95(2):73–79.
46. Müller V, Mogl M, Seika P, et al. How I do it: new dissector device allows for effective operative field in transoral endoscopic thyroid surgery using vestibular approach. Surg Innov. 2018;25(5):444–449.
47. Russell JO, Noureldine SI, Al Khadem MG, et al. Transoral robotic thyroidectomy: a preclinical feasibility study using the da Vinci Xi platform. J Robot Surg. 2017;11(3):341–346.
48. Aidan P, Arora A, Lorincz B, Tolley N, Garas G. Robotic thyroid surgery: current perspectives and future considerations. ORL J Otorhinolaryngol Relat Spec. Epub 2018 May 22.