A Synthetic Superoxide Dismutase/Catalase Mimetic EUK-207 Mitigates Radiation Dermatitis and Promotes Wound Healing in Irradiated Rat Skin

Susan R. Doctrow1,4, Argelia Lopez2,4, Ashley M. Schock2, Nathan E. Duncan2, Megan M. Jourdan2, Edit B. Olasz2, John E. Moulder3, Brian L. Fish1, Marylou Mâder3, Jozef Lazar2 and Zelmira Lazarova2

In the event of a radionuclear attack or nuclear accident, the skin would be the first barrier exposed to radiation, though skin injury can progress over days to years following exposure. Chronic oxidative stress has been implicated as being a potential contributor to the progression of delayed radiation–induced injury to skin and other organs. To examine the causative role of oxidative stress in delayed radiation–induced skin injury, including impaired wound healing, we tested a synthetic superoxide dismutase (SOD)/catalase mimic, EUK-207, in a rat model of combined skin irradiation and wound injury. Administered systemically, beginning 48 hours after irradiation, EUK-207 mitigated radiation dermatitis, suppressed indicators of tissue oxidative stress, and enhanced wound healing. Evaluation of gene expression in irradiated skin at 30 days after exposure revealed a significant upregulation of several key genes involved in detoxication of reactive oxygen and nitrogen species. This gene expression pattern was primarily reversed by EUK-207 therapy. These results demonstrate that oxidative stress has a critical role in the progression of radiation-induced skin injury, and that the injury can be mitigated by appropriate antioxidant compounds administered 48 hours after exposure.

INTRODUCTION

Cutaneous radiation syndrome may occur after total or partial body exposure to γ-radiation, which penetrates deep into underlying tissue. It can also result from exposure to high-energy β-radiation that usually does not penetrate sufficiently deep to cause hematopoietic, gastrointestinal, or neurovascular injury. Cutaneous radiation syndrome is an important concern for subjects exposed during a radiological accident or terrorist attack (Peter, 2005). Experience following the Chernobyl nuclear plant accident showed the impact of skin injury on patient prognosis. Almost half of the exposed individuals suffered from cutaneous radiation syndrome and nearly 50% of them died with primary cause of death attributed to cutaneous radiation syndrome (Mettler et al., 2007). Moreover, radiation dermatitis is a common consequence of radiation cancer therapy and can be followed months later with atrophy, fibrosis, or telangiectasia (Ryan, 2012). It is well documented that cutaneous radiation exposure impairs wound healing (Schwentker et al., 1998; Liu et al., 2005; Riedel et al., 2005; Wang et al., 2006; Jourdan et al., 2011).

Growing evidence links oxidative stress to skin injury following acute radiation exposure (Robbins and Zhao, 2004; Zhao et al., 2007). We addressed the hypothesis that an antioxidant compound with appropriate properties would show benefits in both acute and chronic models of cutaneous radiation injury. We employed EUK-207, one of a class of synthetic compounds, salen Mn complexes, which mimic the antioxidant enzymes superoxide dismutase (SOD) and catalase, scavenging the reactive oxygen species (ROS) superoxide, O2−, and hydrogen peroxide, H2O2 (Doctrow et al., 2002, 2005), and reactive nitrogen species (Sharpe et al., 2002). Consistent with their catalase activity, salen Mn complexes are peroxidase mimetics (Doctrow et al., 2002), further broadening their potential to scavenge hydroperoxides and otherwise modulate the cellular redox environment. Such properties confer advantages over other antioxidants, such as noncatalytic or protein-based agents (Doctrow et al., 1997, 2003).

Prototype salen Mn complexes EUK-8, EUK-134, and EUK-189 are cytoprotective in various experimental systems (Doctrow et al., 2002, 2005; Halliwell and Gutteridge, 2007). EUK-207 is a newer-generation cyclized salen Mn complex that has catalytic properties equivalent to those
of EUK-134 and EUK-189, but greater stability and in vivo half-life (Liu et al., 2003; Doctrow et al., 2005; Rosenthal et al., 2011). The structure of EUK-207, with Mn bound to a polyether cyclized salen ligand, has been previously reported (Liu et al., 2003; Rosenthal et al., 2009). EUK-207 mitigates delayed radiation injury to the lung (Mahmood et al., 2011; Rosenthal et al., 2011) and kidney (Rosenthal et al., 2011) in rats, protects murine hearts from cardiac ischemia–reperfusion (Liesa et al., 2011), and improves age-associated cognitive impairment in mice (Liu et al., 2003; Clausen et al., 2010). In many of these efficacy models, salen Mn complexes are not only functionally protective, but also suppress oxidative modifications of proteins, lipids, and nucleic acids (Gonzalez et al., 1995; Rong et al., 1999; Jung et al., 2001; Liu et al., 2003; Zhang et al., 2004; Clausen et al., 2010; Liesa et al., 2011; Mahmood et al., 2011). Salen Mn complexes are of further interest, as compared with other synthetic antioxidants, because of their “mito-protective” properties in experimental models of mitochondrial injury (Melov et al., 2001; Doctrow et al., 2005; Liesa et al., 2011; Rosenthal et al., 2011).

We developed an animal model of combined radiation and wound injury to the skin where radiation-induced skin injury affected ~10% of total body surface, radiation did not penetrate deep into the tissues, and radiation exposure was accompanied by two full-thickness skin wounds (Jourdan et al., 2011). Rats treated under this combined injury protocol developed, in a radiation dose-dependent manner, acute radiation dermatitis spanning in severity from transient erythema to nonhealing ulcers, as well as markedly impaired wound healing. Using this model, EUK-207 was tested as a potential mitigating drug on end points relevant to radiation dermatitis, skin wound healing, and chronic oxidative stress.

RESULTS

EUK-207 mitigates radiation dermatitis

For this study, we used a 30 Gy radiation dose that, without drug treatment, induced severe radiation dermatitis within 17–21 days after irradiation and ulcers that failed to heal over the 90-day observation period (Jourdan et al., 2011). Unanesthetized rats (n = 48) were randomly divided into two experimental groups, irradiated, and given full-thickness wounds as described in Materials and Methods. Control animals (n = 14) were sham-irradiated and wounded in the same manner. EUK-207 (1.8 mg kg⁻¹ per day) or vehicle (water) was given by subcutaneous infusion beginning 48 hours after irradiation and continuing for up to 90 days. This delayed time was selected because, in a mass casualty scenario, therapies might be unavailable until long after radiation exposure. Radiation dermatitis was scored weekly as described in Materials and Methods.

The EUK-207-treated group showed reduced radiation dermatitis severity by 30 days after irradiation (Figure 1a and b). Skin injury scores continued to improve, remaining significantly lower than in vehicle-treated rats (P < 0.01; Figure 1b). At 90 days after irradiation, EUK-207-treated rats had only mild alopecia with multiple hairs growing in the center of the radiation field. In contrast, vehicle-treated rats had permanent alopecia, persistent erythema, and nonhealing ulcers (Figure 1b).

EUK-207 improves wound healing and histological structure of irradiated skin

At 21 days after wounding, EUK-207-treated rats showed significantly smaller wounds than vehicle-treated rats (32% vs. 58% of original wound size; P < 0.05; Figure 2a). Wounds in the EUK-207-treated group became completely healed within 35 ± 4 days (data not shown). This is in contrast to

Figure 1. Mitigation of radiation dermatitis by EUK-207. (a) Macroscopic comparison of radiation dermatitis in representative rats with or without EUK-207 treatment at indicated radiation dose and time points. (b) Time course of skin injury scores; each point represents data from eight animals. The bars show the median values and the error bars are the ranges. All scores beyond 21 days (*) are significantly reduced versus age-matched vehicle-treated animals (P < 0.01). Severe radiation dermatitis persists in the vehicle-treated rats at 90 days and the puncture wounds are not healed. Dermatitis is still evident in EUK-207-treated rats at 30 days but puncture wounds were partially to fully closed by that time point, with complete wound healing, indicated by smooth circular scar, in the group by day 40 (35 ± 4 days).
the wounds in the vehicle-treated group that, like those in the originally described model (Jourdan et al., 2011), did not fully heal during the duration of the study.

As new blood vessels are an integral part of granulation tissue needed for the wound healing process, we evaluated blood vessel density as described in Materials and Methods. The number of blood vessels per optical field was decreased in irradiated skin, as early as 7 days following irradiation, as compared with nonirradiated control animals (9.8 ± 2.9 vs. 25.3 ± 4.6; P < 0.0001). The lower blood vessel density remained at the 14-day time point (9.4 ± 3.7) and was further declined (3.3 ± 2.3) at 30 days after irradiation. The blood vessel density in tissue samples taken from the wound edge 30 days after irradiation was markedly increased with EUK-207 treatment (29.8 ± 14.3 vs. 3.3 ± 2.3; P < 0.006; Figure 2b and c).

On the basis of several histological indicators, the skin in the EUK-207-treated group displayed reduced injury and a more normalized phenotype (Figure 3a). These included reduction of dermal thickness at 30 and 90 days (P < 0.005), increased epidermal thickness at 30 days (P < 0.005), and restoration of hair growth signified by the increased number of hair follicles (P < 0.03; Figure 3b).

EUK-207 normalizes the gene expression pattern in irradiated skin
Chronic oxidative stress has been implicated in the progression of radiation-induced late effects, potentially through the activation or repression of genes in important signaling pathways, but the specific genes involved in radiation-induced skin injury are ill defined. Therefore, we obtained gene expression data on skin samples taken 30 days after irradiation. To evaluate gene expression patterns relevant to oxidative stress, mRNA was prepared from unirradiated and irradiated (control and EUK-207-treated) rats and analyzed by microarray as described in Materials and Methods. The data indicated that irradiation caused upregulation of 15 genes, including those involved in generation or detoxification of ROS, and downregulation of genes involved in excisional DNA repair (Xpa) or innate immunity (Mpo) (Table 1a). These changes were abrogated in skin from irradiated rats receiving EUK-207. In these rats, there was upregulation of only three genes from the oxidative stress pathway, all changes distinct from those in the vehicle-treated group (Table 1b).

EUK-207 reduces oxidation of proteins and nucleic acids
As the gene expression data demonstrated radiation-induced dysregulation of genes responsive to oxidative stress, we examined oxidative modifications of proteins and nucleic acids to confirm the occurrence of chronic oxidative stress in irradiated skin. Protein carbonylation is a commonly used biomarker of irreversible oxidative damage to proteins (Levine, 2002). Skin extracts from the irradiated rats showed increased protein carbonyls at 30 and 90 days after irradiation, with one
prominent band (molecular weight ~68 Kd) likely corresponding to albumin, which, because of abundance, frequently appears as a major carbonylated band (Levine et al., 1994). The cumulative density of all carbonylated bands was significantly attenuated by EUK-207 treatment ($P<0.05$; Figure 4a and b). Along with chronic oxidative damage to proteins, skin from irradiated rats also exhibited evidence for nucleic acid injury. Staining for oxidized 8-hydroxyguanosine, a marker for DNA oxidation, was evident in irradiated skin even at 90 days after irradiation, and substantially decreased with EUK-207 treatment (Figure 4c and d).

DISCUSSION

It is well known that irradiation causes the immediate generation of short-lived ROS, but the role of chronically generated ROS in longer-term damage, although hypothesized and increasingly implicated (Zhao et al., 2007; Zhao and Robbins, 2009), is not well documented. Our study demonstrates that chronic oxidative stress occurs in irradiated skin, even a month or more after exposure. Furthermore, the marked reduction of skin injury by a synthetic SOD/catalase mimic, EUK-207, concomitant with its abrogation of oxidative stress indicators, demonstrates that oxidative stress is causative in both chronic radiation dermatitis and impaired wound healing in irradiated skin. Because EUK-207 was initiated 48 hours after exposure, there is no question that the ROS targeted in our study are those generated well after the initial radiation insult.

Increased localized expression of known antioxidant proteins was shown to decrease cutaneous radiation injury (Yan et al., 2008; Zhang et al., 2012). We further demonstrate, through mitigation by a synthetic antioxidant agent, that oxidative stress causes both the dermatitis and wound healing impairments characteristic of delayed radiation injury. Possibly, previously tested antioxidants lacked the appropriate ROS specificity, or did not have adequate bioavailability to the skin, or both. The required bioavailability may include access to the mitochondria, as mitochondrial dysfunction has been implicated in cellular sensitivity to radiation injury (Greenberger and Epperly, 2004; Jiang et al., 2009; Aykin-Bums et al., 2011). Although we have not directly tested the role of “mito-protection” in this study, salen Mn complexes suppress oxidative mitochondrial injury in other experimental models (Melov et al., 2001; Doctrow et al., 2005; Liesa et al., 2011). Among the oxidative stress-responsive genes we found to be upregulated in irradiated vehicle-treated skin is Sod2, for the mitochondrial antioxidant enzyme, manganese SOD (Table 1a). Sod2 is also upregulated in other models for radiation exposure, and increased SOD expression in the mitochondria is radioprotective (Wong et al., 1996; Epperly et al., 2007; Greenberger and Epperly, 2007). Our data also showed upregulation of genes for glutathione peroxidase 1 (Gpx1) and peroxiredoxin 5 (Prdx5). Prdx5 has been found in the mitochondria and is regarded as a potentially important scavenger of mitochondrial ROS, particularly hydroperoxides (Cox et al., 2010). Gpx1, a cytosolic enzyme, has been reported to have a role in modulating the mitochondria, through redox changes, and its upregulation has been implicated in mitochondrial dysfunction (Handy et al., 2009). Overall, an upregulation of such mitochondrially associated antioxidant enzymes is potentially indicative of oxidative mitochondrial injury. If so, then prevention of their upregulation by EUK-207 (Table 1b) is consistent with a hypothesis that the compound’s mitigating effects on cutaneous radiation injury are, at least in part, related to its ability to protect the mitochondria. However, its suppression of nearly all the changes in oxidative stress-responsive genes in irradiated skin indicates that EUK-207 is not acting exclusively at the mitochondria. This agrees with previous reports showing the suppression of both mitochondrial (Melov et al., 2001; Liu et al., 2003; Hinerfeld et al., 2004; Liesa et al., 2011) and nonmitochondrial (Rong et al., 1999; Zhang et al., 2004; Peng et al., 2005; Liesa et al., 2011) oxidative modifications by salen Mn complexes. Indeed, unlike MitoQ and certain other antioxidants (Murphy and Smith, 2007; Demianenko et al., 2010), the salen Mn complexes were not designed for specific mitochondrial targeting. It is interesting to note that, in the irradiated rat skin, the gene for Gpx2 was downregulated with vehicle, yet upregulated with EUK-207 treatment. The significance of this reversal in Gpx2 expression by EUK-207 is not yet apparent, but should be studied further. Although there is little literature to address its potential role in radiation injury or wound healing, Gpx2 has been reported to have both a cytoplasmic

Figure 3. Histological evaluation of irradiated skin. (a) Hematoxylin and eosin staining of irradiated skin from rats with or without EUK-207 treatment at indicated time points after irradiation. (b) Evaluation of epidermal and dermal thickness (μm) and number of hair follicles in the skin of experimental and control animals at 30 and 90 days after irradiation. *P<0.005, **P<0.03. Bar = 200μm.
and a mitochondrial location in yeast (Ukai et al., 2011). In a recent study using diabetic mice (Tie et al., 2012), GI-PS, a polysaccharide derived from the medicinal fungi *Ganoderma lucidum*, accelerated wound healing while increasing total Gpx activity in the skin. This enzymatic activity, of course, likely represents a combination of Gpx1, Gpx2, and perhaps other forms. The GI-PS also increased skin manganese SOD activity, not by changing the protein’s expression but, instead, by suppressing its nitration, a known mechanism of its inactivation during oxidative stress. On the basis of the latter finding, Tie et al. (2012) attributed the wound healing properties of GI-PS to its known antioxidant properties and, in particular, to an inhibition of mitochondrial oxidative stress.

In our study, it is also of interest that EUK-207 appeared to upregulate expression of Prdx6. Studies with Prdx6 knockout mice have indicated that Prdx6 is essential for blood vessel integrity during skin wound healing, with vascular endothelial cells appearing to be highly sensitive to the loss of this new peroxiredoxin (Kumin et al., 2007). Thus, in our model, the ability of EUK-207 to increase Prdx6 expression may relate to the compound’s beneficial effects on wound healing and angiogenesis. From our perspective, these changes in gene expression are of interest as preliminary leads for future study, including a more detailed analysis of whether EUK-207 modulates protein levels or enzymatic activities of any of these potentially key antioxidant proteins during wound healing in irradiated skin.

On the basis of its other reported *in vivo* effects in radiation injury models (Mahmood et al., 2011; Rosenthal et al., 2011), mitigation of radiation dermatitis severity by EUK-207 was not unexpected. However, improved wound healing by a ROS scavenger was not necessarily predicted from literature describing a very complex association between ROS and normal skin wound healing. ROS, particularly H$_2$O$_2$, are believed to have key signaling roles to promote wound healing, and localized transfection of catalase delays healing in rodents (Roy et al., 2006; Sen and Roy, 2008). Yet, excess H$_2$O$_2$ impairs (Roy et al., 2006) and transfection with Sod2

UniGene ID	Reference sequence	Gene symbol	Gene name	Fold change
Rn.162331	XM_344156	Ncf2	Neutrophil cytosolic factor 2	70.07
Rn.3928	NM_144737	Fmo2	Flavin containing monoxygenase 2	29.61
Rn.38575	NM_053734	Ncf1	Neutrophil cytosolic factor 1	19.20
Rn.10488	NM_017051	Sod2	Superoxide dismutase 2, mitochondrial	17.54
Rn.32351	NM_138828	ApoE	Apolipoprotein E	12.34
Rn.2710	NM_031140	Vim	Vimentin	10.35
Rn.55542	NM_024141	Duox2	Dual oxidase 2	10.02
Rn.137930	XM_225268	RGD1560658	Similar to serine (or cysteine) proteinase inhibitor, clade B, member 1b	7.58
Rn.40511	NM_021588	Mb	Myogobin	6.23
Rn.27588	XM_236702	Xirp1	Xin actin-binding repeat containing 1	5.70
Rn.2944	NM_053610	Prdx5	Peroxiredoxin 5	4.50
Rn.11323	NM_030826	Gpx1	Glutathione peroxidase 1	4.42
Rn.19721	NM_053906	Gsr	Glutathione reductase	3.61
Rn.105938	NM_130744	Cygb	Cytoglobin	3.40
Rn.11234	NM_017000	Nop1	NADP/H dehydrogenase, quinone 1	3.01
Rn.12469	XM_216403	Xpa	Xeroderma pigmentosum, complementation group A	-3.03
Rn.3503	NM_183403	Gpx2	Glutathione peroxidase 2	-3.80
Rn.25565	XM_214130	Zmynd17	Zinc finger, MYND-type containing 17	-3.81
Rn.47782	XM_220830	Mpo	Myeloperoxidase	-4.17
Rn.1023	NM_139192	Scd1	Stearyl-Coenzyme A desaturase 1	-5.18
Rn.9470	XM_216452	Dhcr24	24-dehydrocholesterol reductase	-14.96

The list of differentially expressed genes in irradiated skin at 30 days following irradiation, from rats treated with (a) vehicle or (b) EUK-207 as described in Materials and Methods.
improves wound healing (Luo et al., 2004), as does chronic administration of a mitochondrially targeted antioxidant (Demianenko et al., 2010). Our observation that EUK-207 treatment resulted in increased angiogenesis in the irradiated wounded skin is particularly intriguing. ROS are believed to mediate mitogenesis stimulated by growth factors including the angiogenic factor, vascular endothelial growth factor (Ushio-Fukai and Alexander, 2004; Roy et al., 2006). Interestingly, an endogenously generated oxidized lipid product promotes angiogenesis and wound healing in a vascular endothelial growth factor–independent manner (West et al., 2010). Thus, one might expect an antioxidant to impair rather than, as we observe, facilitate angiogenesis. It is conceivable that in our combined injury model, by promoting a more normalized skin phenotype (e.g., Figures 1 and 3), EUK-207 is inducing a microenvironment that facilitates more normal wound healing, enabling tissue remodeling processes, including new blood vessel growth (Gurtner et al., 2008). In support of this, the basement membrane deposition of laminin 332 is impaired in our model (Jourdan et al., 2011) and is improved with EUK-207 treatment (data not shown). More broadly, EUK-207 may modify the microenvironment through suppression of oxidation-dependent events that might otherwise destroy microvasculature in irradiated tissue. Consistent with this, EUK-207 treatment preserves the microvasculature after lung irradiation. Thus, overall, the role of ROS, particularly H_2O_2, and of redox regulation in cutaneous wound healing and its associated angiogenesis is highly complex. Despite this complexity, our study supports the concept that selected ROS-scavenging agents such as EUK-207, having the appropriate specificity and given under the right circumstances, can mitigate radiation-induced skin injury, including facilitating wound healing.

MATERIALS AND METHODS

Animals
A total of 62 syngeneic male WAG/RijCmcr 8-week-old rats bred and housed in a moderate security barrier were used for this study. Rats were monitored daily and maintained on a 12-hour light/dark cycle, with free food and water intake. At the times specified below, animals were killed using isoflurane inhalation. All animal research was approved by the Medical College of Wisconsin Institutional Animal Care and Use Committee.

Irradiation and wounding protocol
We used our previously published protocol (Jourdan et al., 2011). Unanesthetized rats were immobilized and irradiated with an X-ray beam with a steep dose gradient in the dorsoventral direction (without injury to the internal organs). The source-to-skin distance was 37 mm and the dose rate was 0.68 Gy per minute. The irradiated area of skin corresponded to 10% of the total body surface. Animals were randomly divided into two experimental groups and either sham-irradiated ($n=14$) or irradiated with a single dose of 30 Gy defined at the dermal layer ($n=48$). Within 1 hour after irradiation, all rats were anesthetized, and two full-thickness wounds were made on the back of each rat within the irradiation field using an 8-mm punch biopsy. The wounds were left uncovered and animals were housed individually to prevent damage to the wound site.
Implantation of osmotic pumps for drug delivery
The custom-synthesized EUK-207 (Liesa et al., 2011) was dissolved in ultrapure water, filter-sterilized, and administered by subcutaneous Alzet infusion pumps (DURECT, Cupertino, CA) at 1.8 mg kg\(^{-1}\) per day beginning 48 hours after irradiation and continuing for up to 90 days. Sham-irradiated or irradiated-only animals received pumps filled with vehicle. The EUK-207 dose was ~4-fold lower than doses used previously to mitigate radiation injury to rat lung (Mahmood et al., 2011) and kidney (Rosenthal et al., 2011). This lower dose was selected to eliminate the localized skin toxicities observed in those prior studies, while remaining well within the effective EUK-207 dose range reported in other rodent models (see, e.g., Liu et al., 2003).

Monitoring of radiation dermatitis and wound closure
Photographs of animals were taken three times per week and coded. The skin injury score was assessed from coded images by two investigators in a masked manner according to a previously published scoring system (Jourdan et al., 2011). Wound contraction was assessed at days 0, 3, 7, 14, and 21. Wound areas were not calculated at later time points because of heavy crusts covering the wounds and multiple erosions blending into the wound site. Wound area was determined as described (Jourdan et al., 2011) and wound contraction was calculated as follows:

\[
\text{Percentage wound contraction on } N^{th} \text{ day} = \frac{100 - \left(\frac{\text{wound area on } N^{th} \text{ day}}{\text{wound area on 1st day}} \right) }{100}
\]

Skin histological analysis
Skin samples from four animals per experimental group (group 1: irradiated and vehicle-treated; group 2: irradiated and EUK-207-treated) were harvested at 30 and 90 days after irradiation, fixed in 4% formaldehyde, and embedded in paraffin. Tissue sections were stained with hematoxylin and eosin. Epidermal thickness was determined by measuring the epidermal layer and dermal thickness was determined by measuring the dermis from dermoeipidermal junction to the top of fatty layer three times in three consecutive optical fields. The skin samples were then coded and scored by two investigators in a masked manner according to a previously published scoring system (Jourdan et al., 2011). The skin injury score was assessed from coded images by two investigators in a masked manner according to a previously published scoring system (Jourdan et al., 2011). Wound contraction was assessed at days 0, 3, 7, 14, and 21. Wound areas were not calculated at later time points because of heavy crusts covering the wounds and multiple erosions blending into the wound site. Wound area was determined as described (Jourdan et al., 2011) and wound contraction was calculated as follows:

\[
\text{Percentage wound contraction on } N^{th} \text{ day} = \frac{100 - \left(\frac{\text{wound area on } N^{th} \text{ day}}{\text{wound area on 1st day}} \right) }{100}
\]

Total RNA extraction and reverse transcription
Skin samples from five animals per experimental group (group 1: irradiated and vehicle-treated; group 2: irradiated and EUK-207-treated; group 3: sham-irradiated and vehicle-treated) were harvested at 30 days after irradiation. Samples were washed in ice-cold phosphate-buffered saline (Life Technologies, Carlsbad, CA) and immediately immersed in RNA Later (Life Technologies). Total RNA was prepared using RNeasy Fibrous tissue Mini Kit (Life Technologies), the RNA concentration was determined by 260:280 nm absorbance ratios, equal amounts of RNA from each sample in the experimental group were pooled, and complementary DNA was synthesized from 1 µg of total RNA.

Microarray analysis of skin samples
To determine the relative expression of genes associated with oxidative stress, quantitative real-time reverse transcriptase–PCR analysis was performed with RT\(^2\) first-strand complementary DNA kit (SABiosciences, Frederick, MD) and Rat Oxidative Stress and Antioxidant Defense RT\(^2\) Profiler PCR Array (SABiosciences). The samples were diluted in qPCR master mix and pipetted into 96-well array plates to evaluate the expression of 84 oxidative stress–related genes. Quantitative–PCR was performed in technical duplicates using Applied Biosystems Step One Plus Real-Time PCR Systems (Applied Biosystems, Carlsbad, CA). Quality controls included in each plate confirmed the lack of DNA contamination and tested for successful PCR performance. For data analysis of PCR, the ΔΔCt method was used with algorithms provided by the manufacturer. Fold changes were then calculated and expressed as log-normalized ratios of values from irradiated and sham-irradiated tissues or irradiated and EUK-207-treated tissues.

Detection of carbonylated proteins in the skin extracts
To detect the carbonylated groups we used the Oxyblot Oxidized Protein Detection Kit (Chemicon International, Temecula, CA), which detects proteins containing 2,4-dinitrophenol–derivatized carbonyl groups by immunoblotting. Skin tissue samples were rapidly frozen in liquid nitrogen. Equal amounts (100 mg) of skin tissue were each homogenized in ice cold 20 mM Tris HCl buffer containing Protease Inhibitor Cocktail (Sigma-Aldrich, St Louis, MO), incubated for 30 minutes on ice, and then centrifuged at 10,000 rpm for 20 minutes at 4 °C. The supernatant was collected and protein concentration was determined by the Bio-Rad Protein Assay (Bio-Rad Laboratories, Hercules, CA). The 20 µg aliquots of protein extracts were analyzed according to the manufacturer’s protocol. Following the Oxyblot procedure, the polyvinylidene difluoride membrane was stripped and probed with specific anti-β-actin antibodies (Santa Cruz Biotechnology, Santa Cruz, CA). The protein bands on the membrane were detected using a chemiluminescence detection kit (Pierce, Rockford, IL). The intensity of the bands was quantified by densitometric analysis with ImageJ 1.43 (NIH, Bethesda, MD) and expressed as density relative to β-actin loading control.

Detection of DNA oxidation products
To further confirm the occurrence of oxidative stress in the irradiated skin at 90 days after irradiation, we evaluated DNA oxidation using immunohistochemistry. The paraffin-embedded skin sections were deparaffinized, rehydrated, and treated with sodium citrate buffer (10 mM sodium citrate, 0.05% Tween 20, pH 6.0) for 10 minutes at 95 °C. After washing, samples were incubated with mouse anti-8-hydroxyguanosine IgG (Abcam, Cambridge, MA) overnight at 4 °C after biotinylation and a blocking procedure, which followed the manufacturer’s protocol (Vector Laboratories, Burlingame, CA). Mouse IgG2a (Abcam) served as an isotype control. After development with diaminobenzidine, the sections were counterstained with hematoxylin for 4 minutes at 60 °C. The slides were dehydrated through graded ethanol and xylene, and mounted.

Blood vessel density
The skin and wound edge samples were embedded in optimal cutting temperature compound (Sakura, Japan) for immunofluorescence
studies. Skin sections (6 μm) were incubated with anti-CD31 IgG (BD Biosciences, San Jose, CA) overnight at 4 °C. The mouse IgG2a (Abcam) served as a negative control. The blood vessels were detected by FITC-conjugated goat F(ab')2 anti-mouse IgG (Santa Cruz Biotechnology). The slides were coded and evaluated under a fluorescent microscope. Blood vessels in five consecutive images from each slide were counted from four animals per experimental group.

Statistical analysis
For radiation dermatitis scores, differences in treatment group medians were assessed using Wilcoxon–Mann–Whitney rank-sum test. For histological analysis, all values were expressed as mean ± SD and differences assessed using two-tailed Student’s t-test. For all other data, differences among treatment group means were assessed using a one-way analysis of variance followed by Student–Newman–Keuls post hoc test and data expressed as mean ± SD. For all analyses, P<0.05 was considered to be statistically significant.

CONFLICT OF INTEREST
The authors state no conflict of interest. SRD is an inventor of patents describing EUK-207 and other salen Mn complexes, developed while she was employed at Eukarion. However, the company is no longer in business describing EUK-207 and other salen Mn complexes, developed while she was employed at Eukarion. However, the company is no longer in business. The authors state no conflict of interest. SRD is an inventor of patents describing EUK-207 and other salen Mn complexes, developed while she was employed at Eukarion. However, the company is no longer in business describing EUK-207 and other salen Mn complexes, developed while she was employed at Eukarion. However, the company is no longer in business.

ACKNOWLEDGMENTS
This work was funded by a pilot grant (to ZL) under AoU67734 (to JEM) and Froedtert Hospital Skin Cancer grant (to ZL). Development of EUK-207 was funded in part by GM57770 (to SRD).

REFERENCES
Aykin-Burns N, Slane BG, Liu AT et al. (2011) Sensitivity to low-dose/low-LET ionizing radiation in mammalian cells harboring mutations in succinate dehydrogenase subunit C is governed by mitochondria-derived reactive oxygen species. Radiat Res 175:150–8
Clausen A, Doctrow S, Baudry M (2010) Prevention of cognitive deficits and brain oxidative stress with superoxide dismutase/catalase mimetics in aged mice. Neurobiol Aging 31:425–33
Cox AG, Winterbourn CC, Hampton MB (2010) Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling. Biochem J 425:313–25
Demianenko IA, Vasilieva TV, Domnina LV et al. (2010) Novel mitochondria-targeted antioxidants, “Skulachev-ion” derivatives, accelerate dermal wound healing in animals. Biochemistry 75:274–80
Doctrow SR, Adinolli C, Baudry M et al. (2003) Salen manganese complexes, combined superoxide dismutase/catalase mimetics demonstrate potential for treating neurodegenerative and other age-associated diseases. In: Rodriguez H, Cutler R, eds. Oxidative Stress and Aging: Advances in Basic Science, Diagnostics, and Intervention Vol. I, (Chapter 71), World Scientific Publishing Company: Singapore, London, New Jersey, 1324–42
Doctrow SR, Baudry M, Huffman K et al. (2005) Salen Mn complexes: multifunctional catalytic antioxidants protective in models for neurodegenerative disease and aging. In: Sessler J, Doctrow SR, McMurry T, Lippard S, eds. Medicinal Inorganic Chemistry. American Chemical Society and Oxford University Press: New York, 319–47
Doctrow SR, Huffman K, Marcus CB et al. (1997) Salen-manganese complexes combined superoxide dismutase/catalase mimics with broad pharmacological efficacy. In: Sies H ed. Antioxidants in Disease Mechanisms and Therapeutic Strategies Vol. 38. Academic Press: New York, 247–70
Doctrow SR, Huffman K, Marcus CB et al. (2002) Salen-manganese complexes as catalytic scavengers of hydrogen peroxide and cytoprotective agents: structure-activity relationship studies. J Med Chem 45:4549–58
Epperly MW, Wegner R, Kanai AJ et al. (2007) Effects of MnSOD-plasmid liposome gene therapy on antioxidant levels in irradiated murine oral cavity orthotopic tumors. Radiat Res 167:289–97
Gonzalez PK, Zhuang J, Doctrow SR et al. (1995) EUK-8, a synthetic superoxide dismutase and catalase mimetic, ameliorates acute lung injury in endotoxemic swine. J Pharmacol Exp Ther 275:798–806
Greenberger JS, Epperly MW (2004) Radioprotective antioxidant gene therapy: potential mechanisms of action. Gene Ther Mol Biol 8:31–44
Greenberger JS, Epperly MW (2007) Review. Antioxidant gene therapeutic approaches to normal tissue radioprotection and tumor radiosensitization. In Vivo 21:141–6
Gutman GC, Werner S, Barrandon Y et al. (2008) Wound repair and regeneration. Nature 453:314–21
Halliwell B, Gutteridge JMC (2007) Free Radicals in Biology and Medicine. 4th edn. Oxford University Press: Oxford, 704 pp
Handy DE, Lubos E, Yang Y et al. (2009) Glutathione peroxidase-1 regulates mitochondrial function to modulate redox-dependent cellular responses. J Biol Chem 284:11913–21
Hinerfeld D, Traini MD, Weinberger RP et al. (2004) Endogenous mitochondrial oxidative stress: neurodegeneration, proteomic analysis, specific respiratory chain defects, and efficacious antioxidant therapy in superoxide dismutase 2 null mice. J Neurochem 88:657–67
Jiang J, Stoyanovsky DA, Belikova NA et al. (2009) A mitochondria-targeted triphenylphosphonium-conjugated nitroxide functions as a radioprotector/mitigator. Radiat Res 172:706–17
Jourdan MM, Lopez A, Olasz EB et al. (2011) Laminin 332 deposition is diminished in irradiated skin in an animal model of combined radiation and wound skin injury. Radiat Res 176:636–48
Jung C, Rong Y, Doctrow S et al. (2001) Synthetic superoxide dismutase/catalase mimetics reduce oxidative stress and prolong survival in a mouse amyotrophic lateral sclerosis model. Neurosci Lett 304:157–60
Kumin A, Schafer M, Epp N et al. (2007) Peroxiredoxin 6 is required for blood vessel integrity in wounded skin. J Cell Biol 179:747–60
Levine RL (2002) Carboxyl modified proteins in cellular regulation, aging, and disease. Free Radic Biol Med 32:790–6
Levine RL, Williams JA, Stadman ER et al. (1994) Carboxyl assays for determination of oxidatively modified proteins. Methods Enzymol 233:346–57
Liesa M, Luptak I, Qin F et al. (2011) Mitochondrial transporter ATP binding cassette mitochondrial erythroid protein is a novel gene required for cardiac recovery after ischemia/reperfusion. Circulation 124:806–13
Liu R, Liu Y, Bi X et al. (2003) Reversal of age-related learning deficits and brain oxidative stress in mice with superoxide dismutase/catalase mimetics. Proc Natl Acad Sci USA 100:8526–31
Liu X, Liu JZ, Zhang E et al. (2005) Impaired wound healing after local soft x-ray irradiation in rat skin: time course study of pathology, proliferation, cell cycle, and apoptosis. J Trauma 59:682–90
Luo JD, Wang YY, Fu WL et al. (2004) Gene therapy of endothelial nitric oxide synthase and manganese superoxide dismutase restores delayed wound healing in type 1 diabetic mice. Circulation 110:2484–93
Mahmood J, Jelveh S, Calveley V et al. (2011) Mitigation of radiation-induced lung injury by genistein and EUK-207. Int J Radiat Biol 87:889–901
Melov S, Doctrow SR, Schneider JA et al. (2001) Lifespan extension and rescue of spongiform encephalopathy in superoxide dismutase 2 null mice treated with superoxide dismutase/catalase mimetics. J Neurosci 21:8348–53
Mettler FA Jr, Gus’kova AK, Gusev I (2007) Health effects in those with acute ionizing radiation in endotoxemic swine. Radiat Res 204:438–48
Murphy MP, Smith RA (2007) Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Ann Rev Pharmacol Toxicol 47:629–56
Peng J, Stevenson FF, Doctrow SR et al. (2005) Superoxide dismutase/catalase mimetics are neuroprotective against selective paraglutam-mediated dopaminergic neuron death in the substantia nigra: implications for Parkinson disease. J Biol Chem 280:29194–8
Peter RU (2005) Cutaneous radiation syndrome in multi-organ failure. BJR Suppl 27:180–4
Riedel F, Philipp K, Sadick H et al. (2005) Immunohistochemical analysis of radiation-induced non-healing dermal wounds of the head and neck. *In Vivo* 19:343–50

Robbins ME, Zhao W (2004) Chronic oxidative stress and radiation-induced late normal tissue injury: a review. *Int J Radiat Biol* 80:251–9

Rong Y, Doctrow SR, Tocco G et al. (1999) EUK-134, a synthetic superoxide dismutase and catalase mimetic, prevents oxidative stress and attenuates kainate-induced neuropathology. *Proc Natl Acad Sci USA* 96:9897–902

Rosenthal RA, Huffman K, Fisette L et al. (2009) Orally available Mn porphyrins with superoxide dismutase and catalase activities. *J Biol Inorg Chem* 14:979–91

Rosenthal RA, Fish B, Hill RP et al. (2011) Salen Mn complexes mitigate radiation injury in normal tissues. *Anticancer Agents Med Chem* 11:359–72

Roy S, Khanna S, Nallu K et al. (2006) Dermal wound healing is subject to redox control. *Mol Ther* 13:211–20

Ryan JL (2012) Ionizing radiation: the good, the bad, and the ugly. *J Invest Dermatol* 132:983–93

Schwentker A, Evans SM, Partington M et al. (1998) A model of wound healing in chronically radiation-damaged rat skin. *Cancer Lett* 128:71–8

Sen CK, Roy S (2008) Redox signals in wound healing. *Biochim Biophys Acta* 1780:1348–61

Sharpe MA, Olsson R, Stewart VC et al. (2002) Oxidation of nitric oxide by oxomanganese salen complexes: a new mechanism for cellular protection by superoxide dismutase/catalase mimetics. *Biochem J* 366:97–107

Tie L, Yang HQ, An Y et al. (2012) *Ganoderma Lucidum* polysaccharide accelerates refractory wound healing by inhibition of mitochondrial oxidative stress in Type 1 diabetes. *Cell Physiol Biochem* 29:583–94

Ukai Y, Kishimoto T, Ohdate T et al. (2011) Glutathione peroxidase 2 in Saccharomyces cerevisiae is distributed in mitochondria and involved in sporation. *Biochem Biophys. Res Commun* 411:580–5

Ushio-Fukai M, Alexander RW (2004) Reactive oxygen species as mediators of angiogenesis signaling: role of NAD(P)H oxidase. *Mol Cell Biochem* 264:85–97

Wang J, Boerma M, Fu Q et al. (2006) Radiation responses in skin and connective tissues: effect on wound healing and surgical outcome. *Hernia* 10:502–6

West XZ, Malinin NL, Merkulova AA et al. (2010) Oxidative stress induces angiogenesis by activating TLR2 with novel endogenous ligands. *Nature* 467:972–6

Wong GH, Kaspar RL, Vehar G (1996) Tumor necrosis factor and lymphotoxin: protection against oxidative stress through induction of MnSOD. *EXS* 77:321–33

Yan S, Brown SL, Kolozsvary A et al. (2008) Mitigation of radiation-induced skin injury by AAV2-mediated MnSOD gene therapy. *J Gene Med* 10:1012–8

Zhang HJ, Doctrow SR, Xu L et al. (2004) Redox modulation of the liver with chronic antioxidant enzyme mimetic treatment prevents age-related oxidative damage associated with environmental stress. *FASEB J* 18:1547–9

Zhang S, Song C, Zhou J et al. (2012) Amelioration of radiation-induced skin injury by adenovirus-mediated heme oxygenase-1 (HO-1) overexpression in rats. *Radiat Oncol* 7:4

Zhao W, Diz DI, Robbins ME (2007) Oxidative damage pathways in relation to normal tissue injury. *Br J Radiol* 80(Spec No 1):S23–31

Zhao W, Robbins ME (2009) Inflammation and chronic oxidative stress in radiation-induced late normal tissue injury: therapeutic implications. *Curr Med Chem* 16:130–43