INTRODUCTION

This paper is devoted to a comparative analysis of describing spin dynamics in the cylindrical and Frenet–Serret coordinate systems. The latter is necessary because of the importance of precisely measuring the evolution of particle and nuclei polarizations in accelerators and storage rings. The basic equation for spin motion in electromagnetic fields is a Thomas–Bargmann–Michel–Telegdi (T-BMT) one [1] given in Cartesian coordinates. It is very important to search for electric dipole moments (EDMs) of particles and nuclei in the experiments prepared for running at storage rings [2]. To calculate the spin dynamics in such experiments, it is necessary to use a generalization of the T-BMT equation, which takes into account the presence of EDM (see [3] and references therein).

The equations mentioned above determine spin motion in cartesian coordinates. However, polarized beams of particles and nuclei in accelerators and storage rings move along practically closed trajectories. In accelerator theory, a standard choice for the coordinate system is a Frenet–Serret one (FS), whose axis orientation is fixed by the particle motion. In this case the equation of spin motion describes the motion of a spin (pseudo)vector with respect to the momentum vector, i.e., the change in the relative orientation of these vectors. This fact complicates a description of the spin dynamics. In the real world, one measures spin orientation relative to the detectors, whose position is fixed in the cartesian coordinates rather than with respect to the momentum vector, whose projections onto all three axes of a given reference frame change. In [4] the authors found an alternative description and exact equations describing the motion of a particle and its spin in the cylindrical coordinate system. However, a detailed analysis of differences in the descriptions of spin dynamics in both coordinate systems was not carried out in [4]. Because the problem of particles and nuclei spin dynamics in accelerators and storage rings is vitally important, such an analysis must be done anyway.

Here we use the system of units \(c = 1 \).

COMPARISON OF CYLINDRICAL AND FRENET–SERRET REFERENCE FRAMES

In a cylindrical coordinate system the azimuthal angle \(\phi \) is given by the particle position. Upon changing a particle azimuth by the angle \(d \phi \), the horizontal axes of cylindrical and cartesian coordinate systems turn with respect to each other by the same angle; i.e., the cylindrical coordinate system rotates with respect to the cartesian one around the \(z \) axis with an instantaneous angular velocity \(d \phi / dt \) (see [4]).

The axes of the FS coordinate system are set by the particle trajectory. The orts of this reference frame are directed along the tangent to the trajectory (parallel to the velocity and momentum), in the trajectory plane along the normal to it (parallel to an acceleration vector), and along the binormal perpendicular to these two orts. Relative to the cartesian coordinate system, an FS one rotates about all three axes, not only around \(z \) axis as a cylindrical reference frame. The motion of particles and nuclei in the vertical direction is oscillatory in accelerators and storage rings.

The peculiar features of cylindrical and FS coordinate systems can be quantitatively described by setting unit vector evolution along the particle velocity and momentum vectors \(N = v / \gamma = p / m \). From the Lorentz equation

\[
\frac{dp}{dt} = e(E + \beta \times B), \quad \beta = \frac{v}{c} = \frac{p}{\gamma m}
\]

(1)
it follows that this vector rotates with an instantaneous angular velocity \([4]\)

\[
\omega = -\frac{e}{\gamma m} \left(\mathbf{B} - \frac{\mathbf{N} \times \mathbf{E}}{\beta} \right). \tag{2}
\]

The additional (with regard to the rotation of a cylindrical coordinate system) rotation of the FS reference frame relative to the cartesian one occurs in the presence of nonzero horizontal components of magnetic and/or quasimagnetic fields \(\mathbf{B}\) and \(\mathbf{N} \times \mathbf{E}\). The relationship between an angular velocity of \(\mathbf{N}\) vector rotation and relative motion of cylindrical and cartesian coordinate systems found in [4] is not trivial. Let us denote the projection of any vector onto a horizontal plane by symbol \(\parallel\). Since the vector \(\mathbf{N}\) is directed along the tangent to the trajectory, the change in the particle azimuth in this plane equals an angle between two horizontal projections of this vector, which will be denoted as \(N_x\) and \(N'_x\). An infinitesimal angle \(d\phi\) characterizing the change in the particle azimuth is given by the following expression:

\[
d\phi = \frac{(N_x \times N'_x) \cdot \mathbf{e}_z}{|N_x|},
\]

where \(dN_x = N'_x - N_x\) is an infinitesimal vector. The instantaneous rate of the azimuth change is found to be [4]

\[
\dot{\phi} = \frac{d\phi}{dt} = \frac{(N_x \times N'_x) \cdot \mathbf{e}_z}{|N_x|^2} = \omega_z - \alpha,
\]

where

\[
\alpha = \frac{(\omega_x N_x + \omega_y N_y) N'_z}{1 - N'_z^2} = \frac{(\omega_x N_x + \omega_x N_y) N'_z}{1 - N'_z^2}, \tag{4}
\]

The components of the \(\omega\) vector are fixed by Eq. (2).

Equations (3) and (4) are exact. This is shown in [4] by considering an example of a particle running the loop whose normal is deviated from the \(z\) axis by some angle. Taking into account a correction due to quantity \(\alpha\) allows an exact description of the particle motion projected onto a horizontal plane. However, in most cases the quantity \(\alpha\) is rather small. If a horizontal plane coincides with that of unperturbed particle motion it can usually be neglected (see analysis in [4]).

SPIN EQUATION OF MOTION

In all reference frames considered so far, the spin motion is precessional. The effects due to a spin–tensor interaction (see [7–10] and references therein) are considered in the present paper. Let the particle with electric and magnetic dipole moments move in the electromagnetic field. The equation describing the motion of its spin in the cartesian coordinate system looks as follows [3]:

\[
\frac{ds}{dt} = \Omega \times s, \quad \Omega = \Omega_{MDM} + \Omega_{EDM},
\]

\[
\Omega_{MDM} = -\frac{e}{m} \left(a + \frac{1}{\gamma} \right) \mathbf{B} - \frac{a\gamma}{\gamma + 1} \mathbf{B} (\mathbf{B} \cdot \mathbf{B}) - \left(a + \frac{1}{\gamma + 1} \right) (\mathbf{B} \times \mathbf{E}),
\]

\[
\Omega_{EDM} = -\frac{en}{2m} \left(\mathbf{E} \times \mathbf{B} \right) + \left(\frac{1}{\gamma + 1} - \frac{1}{\gamma} \right) \mathbf{B} (\mathbf{B} \cdot \mathbf{E}) + \mathbf{B} \times \mathbf{B},
\]

where the quantities \(\Omega_{MDM}\) and \(\Omega_{EDM}\) make contributions of electric and magnetic dipole moments, respectively. The same look is acquired by the quantum mechanical equations of spin motion for particles with spins 1/2 [5] and 1 [6] after transition to the classical limit.

An angular velocity of spin rotation in the cylindrical coordinate system is obtained by subtracting the quantity \(\dot{\phi} \mathbf{e}_z\) from \(\Omega\). Upon neglecting the correction \(\alpha\), it is given by the expression

\[
\Omega^{(cy)} = \frac{e}{m} \left\{ a \mathbf{B} - \frac{a\gamma}{\gamma + 1} \mathbf{B} (\mathbf{B} \cdot \mathbf{B}) + \left(\frac{1}{\gamma^2 - 1} - a \right) (\mathbf{B} \times \mathbf{E}) + \left(\frac{1}{\gamma} \mathbf{B} \mathbf{E} \right) \right\},
\]

where \(a = (g - 2)/2\). A comparison of Eqs. (5) and (6) shows that the horizontal projections of vectors \(\Omega\) and \(\Omega^{(cy)}\) coincide.

To find the angular velocity of spin motion in FS coordinate system, it is necessary to subtract an angular velocity of \(\mathbf{N}\) vector rotation from \(\Omega\). This way, in this reference frame, an angular velocity of spin rotation is found to be [3]

\[
\Omega^{(FS)} = \left(-\frac{e}{m} \right) \left[a \mathbf{B} - \frac{a\gamma}{\gamma + 1} \mathbf{B} (\mathbf{B} \cdot \mathbf{B}) + \left(\frac{1}{\gamma^2 - 1} - a \right) \right.
\]

\[
\times (\mathbf{B} \times \mathbf{E}) + \left(\frac{1}{2} \mathbf{B} (\mathbf{B} \cdot \mathbf{E}) + \mathbf{B} \times \mathbf{B} \right),
\]

Equation (7) is commonly used in the literature to describe a spin motion in accelerators and storage rings.

Of course, Eq. (7) is more compact. However, this compactness is achieved owing to the fact that the deviation angles from the vertical line for FS coordinate system axes change with time, while the radial and azimuthal axes of cylindrical coordinate system...
always belong to a horizontal plane. Therefore, Eq. (7)
can in particular create the illusion that, under regular
conditions (\(\mathbf{\Omega} \cdot \mathbf{B} = 0 \)), the efficiency of impact of vertical
and radial fields on a spin is identical. However, in
reality, at \(\mathbf{E} = 0 \) and neglecting EDM, the ratios
\(\Omega_z^{(cy)} / B_z \) and \(\Omega_z^{(cy)} / B_\rho \) differ by \((\alpha_\gamma + 1) / (\alpha_\gamma) \) times.
For leptons (an electron and a muon) this ratio can be
very large. The reason is that, to determine an observa-
table effect, the motion of tangential and normal axes
of the FS frame should be added to the spin motion in
that same coordinate system. Once this factor is taken
into account, both coordinate systems give an equiv-
alent description of the spin motion.

As an example demonstrating the necessity of cor-
rectly taking into account spin rotation around hori-
zontal coordinate axes, let us mention the experiment
that measures the anomalous magnetic moment of a
muon \([11]\). In this experiment the muon momenta
satisfied the condition \(\frac{1}{\gamma^2 - 1} = a \). The presence of
a weak radial magnetic field and vertical electric one,
which compensates for the impact of the former on the
particle motion, leads to a certain increase in the
angular velocity of spin rotation: \(\sqrt{\Omega_2^2 + \Omega_3^2} \) instead of
\(\Omega_2 \). A naive usage of Eq. (7) for calculating \(\Omega_2 \) without
taking into account the motion of tangential and nor-
mal axes of the FS coordinate system leads to an
expression that substantially differs from the correct
result given by Eq. (6). Note that a thorough elimina-
tion of magnetic field inhomogeneities in the experi-
ment \([11]\) allowed a significant reduction in the radial
magnetic field; its contribution to the final angular
velocity of spin rotation in this latter experiment was
negligible.

CONCLUSIONS

The comparative analysis of a description of spin
dynamics in the cylindrical and Frenet–Serret coordi-
nate systems carried out in this paper demonstrates
that it is possible to use both reference frames. One
advantage of the FS coordinate system is a mathemat-
ical apparatus thoroughly developed on its basis for
describing spin evolution for particles and nuclei in
accelerators and storage rings. However, the cylindri-
cal coordinate system may as well be efficiently used
for that purpose. Its advantage is in the absence of
motion of the coordinate axes relative to the plane of
unperturbed motion of particles and, consequently,
with respect to the stationary detectors.

ACKNOWLEDGMENTS

This work was supported by the Belarusian Repub-
lican Foundation for Fundamental Research, project
no. F14D-007.

REFERENCES

1. L. H. Thomas, “The motion of the spinning electron,”
Nature 117 (2945), 514 (1926); “The kinematics of an
electron with an axis,” Philos. Mag. 3 (13), 1 (1927); V.
Bargmann, L. Michel, and V. L. Telegdi, “Precession of
the polarization of particles moving in a homogeneous
electromagnetic field,” Phys. Rev. Lett. 2 (10), 435
(1959).

2. T. Fukuyama, “Searching for new physics beyond the
Standard Model in electric dipole moment,” Int. J.
Mod. Phys. A 27 (16), 1230015 (2012).

3. T. Fukuyama, A. J. Silenko, “Derivation of generalized
Thomas–Bargmann–Michel–Telegdi equation for a
particle with electric dipole moment,” Int. J. Mod.
Phys. A 29 (29), 1530147 (2013).

4. A. J. Silenko, “Equation of spin motion in storage rings
in the cylindrical coordinate system,” Phys. Rev. ST
Accel. Beams 9 (3), 034003 (2006).

5. A. Ya. Silenko, “Quantum-mechanical description of
the electromagnetic interaction of relativistic particles
with electric and magnetic dipole moments,” Russ.
Phys. J. 48 (8), 788 (2005).

6. A. J. Silenko, “Quantum-mechanical description of
spin-1 particles with electric dipole moments,” Phys.
Rev. D 87 (7), 073015 (2013).

7. A. J. Silenko, “Tensor electric polarizability of the deu-
teron in storage-ring experiments,” Phys. Rev. C 75 (1),
014003 (2007).

8. A. J. Silenko, “Potential for measurement of the tensor
polarizabilities of nuclei in storage rings by the frozen
spin method,” Phys. Rev. C 80 (4), 044315 (2009).

9. V. G. Baryshevsky, A. J. Silenko, “Potential for the
measurement of the tensor electric and magnetic polar-
izabilities of the deuteron in storage-ring experiments
with polarized beams,” J. Phys. (Conf. Ser.) 295 (1),
012034 (2011).

10. A. J. Silenko, “High precision description and new
properties of a spin-1 particle in a magnetic field,”
Phys. Rev. D 89 (12), 121701 (2014).

11. G. W. Bennett, et al. (Muon G-2 Collaboration),
“Final report of the E821 muon anomalous magnetic
moment measurement at BNL,” Phys. Rev. D 73 (7),
072003 (2006).