Commuting tuple of multiplication operators homogeneous under the unitary group

Soumitra Ghara1 | Surjit Kumar2 | Gadadhar Misra3,4 | Paramita Pramanick5

1Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur, India
2Department of Mathematics, Indian Institute of Technology Madras, Chennai, India
3Statistics and Mathematics Unit, Indian Statistical Institute, Bangalore, India
4Department of Mathematics, Indian Institute of Technology, Gandhinagar, India
5Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Kanpur, India

Correspondence
Surjit Kumar, Department of Mathematics, Indian Institute of Technology Madras, Chennai 600036, India.
Email: surjit@iitm.ac.in

Funding information
Fields-Laval; INSPIRE, Grant/Award Number: DST/INSPIRE/04/2021/002555; Department of Science and Technology (DST); IIT Madras; J C Bose National Fellowship; Harish-Chandra Research Institute; NBHM

Abstract
Let $U(d)$ be the group of $d \times d$ unitary matrices. We find conditions to ensure that a $U(d)$-homogeneous d-tuple T is unitarily equivalent to multiplication by the coordinate functions on some reproducing kernel Hilbert space $H_K(B_d, \mathbb{C}^n) \subseteq \text{Hol}(B_d, \mathbb{C}^n)$, $n = \dim \cap_{j=1}^{d} \ker T_j^*$. We describe this class of $U(d)$-homogeneous operators, equivalently, nonnegative kernels K quasi-invariant under the action of $U(d)$. We classify quasi-invariant kernels K transforming under $U(d)$ with two specific choice of multipliers. A crucial ingredient of the proof is that the group $SU(d)$ has exactly two inequivalent irreducible unitary representations of dimension d and none in dimensions $2, \ldots, d-1$, $d \geq 3$. We obtain explicit criterion for boundedness, reducibility, and mutual unitary equivalence among these operators.

MSC 2020
47A13, 47B32, 46E20 (primary), 22D10 (secondary)

1 | INTRODUCTION

Let Ω be an irreducible bounded symmetric domain of rank r in \mathbb{C}^d and $\text{Aut}(\Omega)$ be the group of biholomorphic automorphisms on Ω. Let G be the connected component of identity in $\text{Aut}(\Omega)$. It
is well known that G acts transitively on Ω. Let \mathbb{K} be the subgroup of linear automorphisms in G. By Cartan’s theorem [14, Proposition 2, pp. 67], $\mathbb{K} = \{ \phi \in G : \phi(0) = 0 \}$. The group \mathbb{K} is known to be a maximal compact subgroup of G and Ω is isomorphic to G/\mathbb{K}. There is a natural action of \mathbb{K} on Ω given by

$$k \cdot z := (k_1(z), \ldots, k_d(z)), \quad k \in \mathbb{K} \text{ and } z \in \Omega,$$

where $k_1(z), \ldots, k_d(z)$ are linear polynomials. The group \mathbb{K} also acts on a d-tuple $T = (T_1, \ldots, T_d)$ of commuting bounded linear operators defined on a complex separable Hilbert space H, naturally, via the map

$$k \cdot T := (k_1(T_1, \ldots, T_d), \ldots, k_d(T_1, \ldots, T_d)), \quad k \in \mathbb{K}.$$

Definition 1.1 ([10]). A d-tuple $T = (T_1, \ldots, T_d)$ of commuting bounded linear operators on H is said to be \mathbb{K}-homogeneous if for all k in \mathbb{K}, the operators T and $k \cdot T$ are unitarily equivalent, that is, for all k in \mathbb{K}, there exists a unitary operator $\Gamma(k)$ on H such that

$$T_j \Gamma(k) = \Gamma(k) k_j(T_1, \ldots, T_d), \quad j = 1, 2, \ldots, d.$$

In particular, when Ω is the Euclidean ball B_d in \mathbb{C}^d, then \mathbb{K} is the group of unitary linear transformations on \mathbb{C}^d and the spherical tuples defined in [5] are nothing but $U(d)$-homogeneous d-tuples. In this paper, we would be discussing $U(d)$-homogeneous commuting d-tuple M of multiplication by coordinate functions z_1, \ldots, z_d on a reproducing kernel Hilbert space $H_K(B_d, \mathbb{C}^n)$. This Hilbert space consists of holomorphic functions defined on B_d and taking values in \mathbb{C}^n. We consider in some detail the case of $n = d$. However, without any additional effort, we set up the machinery in the much more general context of a bounded symmetric domain Ω and the maximal compact subgroup \mathbb{K} of its biholomorphic automorphism group. A detailed study of \mathbb{K}-homogeneous operators is underway.

Now, let $D_T : H \to H \oplus \cdots \oplus H$ be the operator

$$D_T h := (T_1 h, \ldots, T_d h), \quad h \in H.$$

We note that $\ker D_T = \cap_{j=1}^d \ker T_j$ is the joint kernel and $\sigma_p(T) = \{ w \in \mathbb{C}^d : \ker D_{T-ww^*} \neq 0 \}$ is the joint point spectrum of the d-tuple T. The class $A_K(\Omega)$ consisting of \mathbb{K}-homogeneous d-tuples of operators with the property:

1. $\dim \ker D_{T^*} = 1$,
2. $\ker D_{T^*}$ is cyclic for T, and
3. $\Omega \subseteq \sigma_p(T^*)$;

was introduced in the recent paper [10], see also [19]. Among other things, it is shown in [10, Theorem 2.3] that any d-tuple T in $A_K(\Omega)$ must be unitarily equivalent to the d-tuple M of multiplication by the coordinate functions on a reproducing kernel Hilbert space $H_K(\Omega) \subseteq \text{Hol}(\Omega, \mathbb{C})$ for some \mathbb{K}-invariant kernel K. Recall that the Hilbert space $H_K(\Omega)$ has a direct sum decomposition $\bigoplus_{\bar{z} \in \mathbb{Z}_+^r} P_{\bar{z}}$, where \mathbb{Z}_+^r is the set of signatures: $\bar{z} := (s_1, \ldots, s_r) \in \mathbb{Z}_+^r$, $s_1 \geq s_2 \geq \cdots \geq s_r \geq 0$ and $P_{\bar{z}}$ are the irreducible components under the action of \mathbb{K}. The invariant kernel K is then of the form: $K_a(z, w) = \sum_{\bar{z} \in \mathbb{Z}_+^r} a_{\bar{z}} E_{\bar{z}}(z, w)$, where $E_{\bar{z}}$ is the reproducing kernel of $P_{\bar{z}}$ equipped with the
Fischer–Fock inner product defined by $\langle p, q \rangle_F := \frac{1}{\pi^d} \int_{C^d} p(z) \overline{q(z)} e^{-\|z\|^2} dm(z)$. Here, $dm(z)$ denotes the Lebesgue measure on C^d.

The results of [10] also show that the properties of M like boundedness, membership in the Cowen–Douglas class $B_1(\Omega)$, unitary and similarity orbit, and so on, can be determined from the properties of the sequence $a := \{a_{\lambda} \}_{\lambda \in \mathbb{Z}^+}$. It is therefore natural to investigate the much larger class of d-tuples of homogeneous operators by assuming only that $\dim \ker D_T$ is finite rather than 1, which is the main feature of the class defined below. As one might expect, we obtain a model theorem in this case also with the major difference that the kernel K need not be invariant under the action of the group \mathbb{K}, instead it is quasi-invariant!

Assume that $\ker D_T$ is a cyclic subspace for T of dimension n. Let $H^{(0)}$ be the linear space $\{p(T)\gamma | \gamma \in \ker D_T, p \in P\}$, where P is the space of complex-valued polynomials in d-variables. Fix an orthonormal basis $\{\gamma_1, \ldots, \gamma_n\}$ in $\ker D_T$. For $w \in C^d$, the point evaluation $ev_w : H^{(0)} \to C^n$ is defined to be the map

$$ev_w \left(\sum_{i=1}^{n} p_i(T)(\gamma_i) \right) := \sum_{i=1}^{n} p_i(w) e_i,$$

where p_1, \ldots, p_n are in P and e_1, \ldots, e_n are the standard unit vectors in C^n. Let $bpe(T)$ be the set $\{w \in C^d : ev_w \text{ is bounded}\}$ (see [17, Definition 2.1]).

Definition 1.2. Let Ω be an irreducible bounded symmetric domain. A \mathbb{K}-homogeneous d-tuple T possessing the following properties:

(i) $\dim \ker D_T = n$,
(ii) the space $\ker D_T$ is cyclic for T,
(iii) $\Omega \subseteq bpe(T)$, and the evaluation maps ev_w are locally uniformly bounded for $w \in \Omega$,

is said to be in the class $A_n \mathbb{K}(\Omega)$.

The local uniform boundedness of the evaluation functionals might appear to be a strong requirement but is necessary for constructing a model for d-tuples in $A_n \mathbb{K}(\Omega)$ with $n > 1$ (see proof of Theorem 2.1). This notion appears in the definition of quasi-free modules introduced in [8]. The notion of sharp kernels (see [2]) and generalized Bergman kernels (see [6]) occurring in the work of Agrawal–Salinas and Curto–Salinas are closely related to the kernels implicit in Definition 1.2.

It follows from [10, Theorem 2.3] that the d-tuples in the class $A\mathbb{K}(\Omega)$ introduced earlier in [10] coincide with to the class $A_1 \mathbb{K}(\Omega)$. It would be convenient for us to let $A\mathbb{K}(\Omega)$ denote the class $A_1 \mathbb{K}(\Omega)$. In this paper, we continue the investigation initiated in [10], now for the class $A_n \mathbb{K}(\Omega)$, $n > 1$.

Definition 1.3. Let $K : \Omega \times \Omega \to M_n(C)$ be a sesqui-analytic Hermitian function and $c : \mathbb{K} \times \Omega \to GL_1(C)$ be a function holomorphic in the second variable for each fixed $k \in \mathbb{K}$. The function K is said to be quasi-invariant under the group \mathbb{K} with multiplier c if

$$K(z, w) = c(k, z) K(k^{-1} \cdot z, k^{-1} \cdot w) c(k, w)^*, \ k \in \mathbb{K}.$$
We point out that if the function K is quasi-invariant and nonnegative definite, then the map $\Gamma(k), k \in \mathbb{K}$ defined by the rule: $\Gamma(k)(f) = c(k, z)f\circ k^{-1}$ is unitary on the reproducing kernel Hilbert space $H_k(\Omega, \mathbb{C}^n)$. Also, the map $k \rightarrow \Gamma(k)$ is a homomorphism if and only if c is a cocycle, that is,

$$c(k_1 k_2, z) = c(k_1, k_2 \cdot z)c(k_2, z), k_1, k_2 \in \mathbb{K}.$$

In the explicit examples we discuss, the map $c : \mathbb{K} \times \Omega \rightarrow GL_d(\mathbb{C})$ is constant in the second variable and therefore defines a unitary representation of the group \mathbb{K}. These examples consist of $\Omega = \mathbb{B}_d$ and $c(k) = k$ or $c(k) = \bar{k}$, $k \in \mathbb{K}$, which in this case is $U(d)$. Consequently, the intertwining operator $\Gamma(k)$ defines a unitary representation $k \rightarrow \Gamma(k)$ of the group \mathbb{K}. Indeed, if there is a unitary $\Gamma(k), k \in \mathbb{K}$, intertwining M and $k \cdot M$, then the reproducing kernel K must be quasi-invariant. A familiar argument using the very useful notion of “normalized kernel,” see Remark 2.2, then shows that the function c must be actually independent of z. What is more, it is also shown that $c(k)$ is unitary for each $k \in \mathbb{K}$.

If the d-tuple M on some Hilbert space $H_k(\Omega)$ is in $A(\mathbb{K})(\Omega)$, then the kernel K is invariant under the action of the group \mathbb{K}, that is, $K(z, w) = \sum_{z \in \mathbb{Z}^+} a_z E_z(z, w)$ with $a_0 = 1$, see [1, Proposition 3.4] and [10, Theorem 2.3]. But if $n > 1$ and the d-tuple M acting on $H_k(\Omega, \mathbb{C}^n)$ in $A_n(\mathbb{K})(\Omega)$, then we can only assume that the kernel K is merely quasi-invariant, not necessarily invariant. How do we construct, if there is any, an example of a kernel $K : \Omega \times \Omega \rightarrow \mathcal{M}_n(\mathbb{C})$, which is quasi-invariant but not invariant? Equivalently, we are asking: If M is in $A_d(\mathbb{K})(\Omega)$ acting on the Hilbert space $H_k(\Omega, \mathbb{C}^n)$ ($n > 1$), then does it follow that the quasi-invariant kernel K must be necessarily invariant? Consider, for example, the kernel

$$K_a(z, w) := \frac{\partial^2}{\partial w_i \partial \bar{w}_j} \log K_a(z, w)$$

where $K_a : \Omega \times \Omega \rightarrow \mathbb{C}$ is an invariant positive definite kernel of the form $K_a(z, w) = \sum_{z \in \mathbb{Z}^+} a_z E_z(z, w)$. It is known that K_a is not only a positive definite kernel but also quasi-invariant under \mathbb{K}, see [11, Proposition 2.3 and Proposition 6.2]. Indeed, K_a transforms according to the rule:

$$k^{-1} \mathcal{K}_a(k^{-1} \cdot z, k^{-1} \cdot w)k^{-1} = \mathcal{K}_a(z, w), k \in \mathbb{K},$$

where \dagger denotes the transpose of a matrix. The multiplier $c : \mathbb{K} \times \Omega \rightarrow GL_d(\mathbb{C})$ for the quasi-invariant kernel K_a is given by $c(k, z) = \bar{k}$, $k \in \mathbb{K}, z \in \Omega$. It is not hard to see that K_a is not invariant under \mathbb{K}, see Proposition 2.8. Thus, we have many examples of quasi-invariant kernels taking values in $\mathcal{M}_n(\mathbb{C})$ that are not invariant when $n = d$. We briefly describe below the results of this paper.

In Section 2, we find a concrete model for a d-tuple T in $A_n(\mathbb{K})(\Omega)$ as the d-tuple M of multiplication by the coordinate functions z_1, \ldots, z_d on some Hilbert space $H_k(\Omega, \mathbb{C}^n) \subseteq Hol(\Omega, \mathbb{C}^n)$ possessing a reproducing kernel $K : \Omega \times \Omega \rightarrow \mathcal{M}_n(\mathbb{C})$. This is Theorem 2.1. We prove, see Theorem 2.7, that a quasi-invariant kernel K is a sum (with positive coefficients) of certain quasi-invariant kernels in the Peter–Weyl decomposition of the Hilbert space $H_K(\Omega, \mathbb{C}^n)$ with respect to the action of the group \mathbb{K}.

In Section 3, we restrict to the case of the Euclidean ball \(\mathbb{B}_d \subseteq \mathbb{C}^d \). Designating \(\pi_\ell \) the natural action of \(U'(d) \) on the homogeneous polynomials of degree \(\ell \) in \(d \) variables equipped with the Fisher–Fock inner product. We prove that \(\pi_1 \otimes \pi_\ell \) is reducible and identify an irreducible component in the decomposition of \(\pi_1 \otimes \pi_\ell \). We obtain a similar result for \(\pi_1 \otimes \pi_\ell \), where \(\pi_1 \) is the contragredient of \(\pi_1 \). Choosing the cocycles \(c(u, z) = \pi_1(u) \), its contragredient \(\tilde{c}(u, z) = \tilde{\pi}_1(u) \), \(u \in U'(d) \), we describe all the sesqui-analytic Hermitian quasi-invariant function that transform as in Definition 1.3. Among these, the nonnegative definite functions are identified explicitly. We conclude by discussing two sets of examples of \(d \)-tuples in \(A_d U'(\mathbb{B}_d) \).

In the first half of Section 4, we find conditions for boundedness and irreducibility of the \(d \)-tuple \(M \). The second half is devoted to study of quasi-invariant diagonal kernels \(K : \mathbb{B}_d \times \mathbb{B}_d \to M_n(\mathbb{C}) \). In this case, such a kernel must be invariant, and we prove that it is of the form:
\[\sum_{\ell=0}^{\infty} A_\ell, z, w \ell, z, w \in \mathbb{B}_d, \] see Corollary 4.11.

In the concluding Section 5, first, we identify the two components in the decomposition of \(\pi_1 \otimes \pi_\ell \) (respectively, \(\tilde{\pi}_1 \otimes \pi_\ell \)) explicitly and show that these components themselves are irreducible. Second, we prove that if a kernel \(K \) is quasi-invariant under \(U'(d) \) taking values in \(M_d(\mathbb{C}) \), transforms as in Definition 1.3 with \(c : U'(d) \to GL_d(\mathbb{C}) \), and \(c \) is assumed to be an irreducible representation of \(U'(d) \), then these kernels fall into two classes explicitly described in Theorem 5.7. To prove this result, we first establish that, up to unitary equivalence, there are only two irreducible unitary representations of \(SU(d) \), the standard one and its contragredient. We also prove that \(SU(d) \) does not have any irreducible unitary representation of dimension \(\ell, 2 \leq \ell \leq d - 1 \). We were not able to locate these results that might be of independent interest. Therefore, we have included detailed proofs of these results.

For now, we have complete results only in the particular case of the cocycles \(c(u, z) = u \) or \(\tilde{u} \) of the group \(U'(d), d \in \mathbb{N} \). We are hopeful of obtaining similar results for an arbitrary cocycle in the case of the group \(U'(2) \).

2 DECOMPOSITION OF A QUASI-ININVARIANT KERNEL

We begin by providing a model for a \(d \)-tuple of operator \(T \) in the class \(A_n K(\Omega) \) acting on some Hilbert space \(H \). The proof involves transplanting the inner product of \(H \) on the subspace \(\mathbb{C}^n \otimes P \) of \(\mathbb{C}^n \)-valued polynomials in the space of holomorphic functions \(\text{Hol}(\Omega, \mathbb{C}^n) \). The proof amounts to constructing a unitary operator intertwining \(T \) and the \(d \)-tuple of multiplication operators defined on the completion of the subspace \(\mathbb{C}^n \otimes P \) in \(\text{Hol}(\Omega, \mathbb{C}^n) \).

Theorem 2.1. Suppose that \(T \) is a \(d \)-tuple of operators in \(A_n K(\Omega) \). Then \(T \) is unitarily equivalent to the \(d \)-tuple \(M \) of multiplication by the coordinate functions \(z_1, ..., z_d \) on a reproducing kernel Hilbert space \(H_K(\Omega, \mathbb{C}^n) \subset \text{Hol}(\Omega, \mathbb{C}^n) \), for some kernel function \(K \) quasi-invariant under \(K \).

Proof. Since \(T \) is \(K \)-homogeneous, for each \(k \in K \), there exists a unitary operator \(\Gamma(k) \) on \(H \) such that
\[T_j \Gamma(k) = \Gamma(k) T_j(k), \quad j = 1, ..., d. \]

Pick an orthonormal basis \(\{ \xi_1, ..., \xi_n \} \subseteq \ker D^{*} \). Let \(\iota : \ker D^{*} \to \mathbb{C}^n \) be a unitary identifying \(\xi = \sum_{i=1}^{n} x_i \xi_i \), with the vector \(x = \sum_{i=1}^{n} x_i e_i \), where \(e_1, ..., e_n \) are the standard unit vectors in \(\mathbb{C}^n \).
We define a semi-inner product on $\mathbb{C}^n \otimes \mathcal{P}$ by extending
\[
\langle e_i \otimes p, e_j \otimes q \rangle := \langle p(T)\xi_i, q(T)\xi_j \rangle_H, \quad p, q \in \mathcal{P},
\] (2.1)
to $\mathbb{C}^n \otimes \mathcal{P}$ by linearity. Suppose that $\| \sum_{i=1}^n e_i \otimes p_i \| = 0$, then we claim that $\sum_{i=1}^n e_i \otimes p_i = 0$. Pick any $w \in \Omega \subseteq \text{bpe}(T)$ and note that
\[
\left\| \sum_{i=1}^n p_i(w)e_i \right\|_2 \leq C_w \left\| \sum_{i=1}^n p_i(T)\xi_i \right\|_H = 0.
\]
For $1 \leq i \leq n$, it follows that $p_i(w) = 0$ for all $w \in \Omega$. Consequently, each p_i, $1 \leq i \leq n$, is the zero polynomial. Therefore, the semi-inner product given by the formula (2.1) defines an inner product on $\mathbb{C}^n \otimes \mathcal{P}$.

Let \mathcal{H} be the completion of $\mathbb{C}^n \otimes \mathcal{P}$ with respect to this inner product. Since we have assumed that the set $\text{bpe}(T)$ contains Ω, it follows that the Hilbert space \mathcal{H} is a reproducing kernel Hilbert space consisting of functions defined on Ω. Let $K : \Omega \times \Omega \to \mathcal{M}_n(\mathbb{C})$ be the kernel function given by $K(z, w) = ev_z ev^*_w$, that is,

1. $K(\cdot, w)x$ is in \mathcal{H} for every vector $x \in \mathbb{C}^n$ and every point $w \in \Omega$,
2. $\langle f, K(\cdot, w)x \rangle_\mathcal{H} = \langle f(w), x \rangle_2$.

Given any function $f \in \mathcal{H}$, we can find polynomials $p_j \in \mathbb{C}^n \otimes \mathcal{P}$ such that $\| f - p_j \|_\mathcal{H} \to 0$ as $j \to \infty$ by assumption. Moreover, since the point evaluations are assumed to be locally uniformly bounded on Ω, it follows that for any fixed but arbitrary $w \in \Omega$, there is an open set $\Theta \subseteq \Omega$ containing w such that $\sup_{z \in \Theta} \| K(z, z) \| = N_{\Theta, w} < \infty$. For any compact set $X \subseteq \Theta$ and $z \in X$, we have
\[
|\langle f(z) - p_j(z), e_i \rangle| \leq \| f(z) - p_j(z) \|_2 \leq N_{\Theta, w}^{1/2} \| f - p_j \|_\mathcal{H},
\] (2.2)
proving that f is holomorphic at w. Consequently, K is holomorphic in the first variable and antiholomorphic in the second.

Now for any $k \in \mathbb{K}$, since $\ker D_T^*$ is invariant under the unitary map $\Gamma(k)^*$, we have
\[
\langle e_i \otimes p, e_j \otimes q \rangle_{\mathbb{C}^n \otimes \mathcal{P}} = \langle p(T)\xi_i, q(T)\xi_j \rangle_H
= \langle \Gamma(k)p(k \cdot T)\Gamma(k)^*\xi_i, \Gamma(k)q(k \cdot T)\Gamma(k)^*\xi_j \rangle_H
= \langle p(k \cdot T)\Gamma(k)^*\xi_i, q(k \cdot T)\Gamma(k)^*\xi_j \rangle_H
= \langle \iota\Gamma(k)^*\iota^*e_i \otimes p \circ k, \iota\Gamma(k)^*\iota^*e_j \otimes q \circ k \rangle_{\mathbb{C}^n \otimes \mathcal{P}}.
\]
Therefore, the reproducing kernel K of the Hilbert space \mathcal{H} is quasi-invariant under \mathbb{K} with multiplier $\iota\Gamma(k)^*\iota^*$. Finally, the unitary taking $e_i \otimes p$ to $p(T)\xi_i$ extends to a unitary from the Hilbert space \mathcal{H} to the Hilbert space H. This unitary intertwines the commuting d-tuple T on H with the d-tuple M of multiplication by the coordinate functions z_i, $1 \leq i \leq d$, on \mathcal{H}. □

Now we gather a few properties of d-tuples in the class $A_p(\mathbb{K}(\Omega))$. In particular, we prove that if the d-tuple M on $H_{\mathbb{K}}(\mathbb{C}^n)$ is in $A_p(\mathbb{K}(\Omega))$, then the intertwining unitary between M and $k \cdot M$ for each $k \in \mathbb{K}$ must be of the form $f \to c(k)(f \circ k^{-1})$, $c(k) \in U(n)$.
Remark 2.2. We recall that any nonnegative definite kernel $K : \Omega \times \Omega \to M_n(\mathbb{C})$ admits a normalization K_0 at $w_0 \in \Omega$. The normalized kernel K_0 is characterized by the requirement $K_0(z, w_0) = \text{Id}_n$ for all $z \in \Omega$. The point w_0 is arbitrary but fixed. The first two of the three statements below can be found in [6] and the last one is from [7, p. 285, Remark].

1. The d-tuple M on $H_{K}(\Omega, \mathbb{C}^n)$ and $H_{K_0}(\Omega, \mathbb{C}^n)$ are unitarily equivalent.
2. If K_1 and K_2 be the kernels normalized at some fixed $w_0 \in \Omega$, then the multiplication d-tuples on $H_{K_1}(\Omega, \mathbb{C}^n)$ and $H_{K_2}(\Omega, \mathbb{C}^n)$ are unitarily equivalent if and only if there is a unitary $U \in U(n)$ such that $U^* K_1(z, w) U = K_2(z, w)$ for all $z, w \in \Omega$.
3. Suppose that $\mathbb{C}^n \otimes P$ is densely contained in $H_{K}(\Omega, \mathbb{C}^n)$ and that the multiplication by the coordinate functions are bounded on $H_{K}(\Omega, \mathbb{C}^n)$. Then

$$\bigcap_{i=1}^n \ker (M_i - w_i)^* = \{K(\cdot, w)x : x \in \mathbb{C}^n \}.$$

Moreover, the dimension of the joint kernel at w is n for all $w \in \Omega$.

Lemma 2.3. Let $H_{K}(\Omega, \mathbb{C}^n)$ be a reproducing kernel Hilbert space consisting of holomorphic functions on Ω taking values in \mathbb{C}^n. Assume that $\mathbb{C}^n \otimes P$ is densely contained in $H_{K}(\Omega, \mathbb{C}^n)$, the d-tuple M on $H_{K}(\Omega, \mathbb{C}^n)$ is bounded and the kernel K is normalized at 0. Then, the following statements are equivalent.

1. The d-tuple M is \mathbb{K}-homogeneous, that is, there is a unitary operator $\Gamma(k) : H_{K}(\Omega, \mathbb{C}^n)$ with

$$\Gamma(k)(k \cdot M)\Gamma(k)^* = M, \ k \in \mathbb{K}.$$

2. The kernel K is quasi-invariant under \mathbb{K} with multiplier $c : \mathbb{K} \times \Omega \to U(n)$, $c(k, z)$ is independent of z.

3. There is a map $c : \mathbb{K} \to U(n)$ such that $(\Gamma(k)f)(z) := c(k)f(k^{-1} \cdot z)$, is unitary on $H_{K}(\Omega, \mathbb{C}^n)$.

Proof. Since $\mathbb{C}^n \otimes P$ is densely contained in $H_{K}(\Omega, \mathbb{C}^n)$, it follows that the dimension of the joint kernel $\ker D_{(M - w)^*}$, $w \in \Omega$, as shown in [7, p. 285, Remark], is n. Therefore, the methods of [6] apply.

First, it is not hard to see that the d-tuple of operators $k \cdot M$ acting on the Hilbert space $H_{K}(\Omega, \mathbb{C}^n)$ is unitarily equivalent to the d-tuple M acting on $H_{\hat{K}}(\Omega, \mathbb{C}^n)$, where $\hat{K}(z, w) := K(k^{-1} \cdot z, k^{-1} \cdot w)$ via the unitary operator $f \mapsto f \circ k^{-1}$, $f \in H_{K}(\Omega, \mathbb{C}^n)$. Since K is assumed to be normalized at 0 and k is linear, it follows that \hat{K} is also normalized at 0. Second, for a fixed $k \in \mathbb{K}$, any intertwining unitary operator between the d-tuple M on $H_{\hat{K}}(\Omega, \mathbb{C}^n)$ and $H_{K}(\Omega, \mathbb{C}^n)$ must be of the form $\hat{f} \mapsto c(k)\hat{f}$, where $(c(k)\hat{f})(z) = c(k)\hat{f}(z)$ for some unitary $c(k) \in U(n)$. Finally, these two unitaries combine to give a unitary operator $\Gamma(k) : H_{\hat{K}}(\Omega, \mathbb{C}^n) \to H_{K}(\Omega, \mathbb{C}^n)$ of the form: $\Gamma(k)f(z) = c(k)(f \circ k^{-1})(z)$. Thus, we have proved that the statement (1) implies (3).

Moreover, the unitarity of the map Γ in the statement (3) is equivalent to the quasi-invariance of the kernel K, namely, $K(z, w) = c(k)K(k^{-1} \cdot z, k^{-1} \cdot w)c(k)^*$. This proves the equivalence of the statements (2) and (3).

The statement (3) clearly implies (1) completing the proof.
Remark 2.4. Choosing the multiplier \(c : \mathbb{K} \to \text{GL}_n(\mathbb{C}) \) to be unitary without loss of generality and assuming that \(c \) is a homomorphism, we see that the map \(f \to c(k)(f \circ k^{-1}) \) is a unitary representation of \(\mathbb{K} \) on the Hilbert space \(H_k(\Omega, \mathbb{C}^n) \).

The group \(\mathbb{K} \) acts on \(P \) naturally by the rule \(p \to p \circ k^{-1} \). This action, as is well known, decomposes into irreducible components \(P_s \) parameterized by the signatures \(s \) in \(\mathbb{Z}^r_+ \). It is pointed out in [1, Proposition 3.4] that any \(\mathbb{K} \)-invariant inner product on \(\mathcal{P} \) must be of the form

\[
\langle p, q \rangle = \sum_{\varepsilon = 0}^{\deg p} \sum_{|s| = \varepsilon, s \in \mathbb{Z}^r_+} a_s \langle p_{s}, q_{s} \rangle_{\varepsilon},
\]

where \(\deg p \) is the degree of \(p \) and \(p_{s}, q_{s} \) are the components of \(p, q \in \mathcal{P} \) in the Peter–Weyl decomposition of \(\mathcal{P} \) into irreducible subspaces \(P_{s} \). In this paper, what we study amounts to finding \(\mathbb{K} \)-quasi-invariant inner products on the space \(\mathbb{C}^n \otimes \mathcal{P} \). We do this by obtaining a generalization of the description of an invariant inner product from the scalar case given above. This is Proposition 2.6. For the proof, we need the following elementary lemma (compare with Lemma 2.8 of [5]).

Lemma 2.5. Let \(\mathcal{H}_1 := (\mathcal{H}, \langle \cdot, \cdot \rangle_1) \) and \(\mathcal{H}_2 := (\mathcal{H}, \langle \cdot, \cdot \rangle_2) \) be two Hilbert spaces. Let \(\rho : \mathbb{K} \to \mathcal{U}(\mathcal{H}_i) \) be an irreducible unitary representation for \(i = 1, 2 \). Then there exists a positive scalar \(\delta \) such that \(\langle \cdot, \cdot \rangle_1 = \delta \langle \cdot, \cdot \rangle_2 \).

Proof. Let \(A \) be the linear map from \(\mathcal{H} \) to \(\mathcal{H} \) such that \(\langle f, g \rangle_{\mathcal{H}_1} = \langle Af, g \rangle_{\mathcal{H}_2} \). Now, note that

\[
\langle \rho(k)A f, g \rangle_{\mathcal{H}_2} = \langle Af, \rho(k^{-1})g \rangle_{\mathcal{H}_2}
= \langle f, \rho(k^{-1})g \rangle_{\mathcal{H}_1}
= \langle \rho(k)f, g \rangle_{\mathcal{H}_1}
= \langle A \rho(k)f, g \rangle_{\mathcal{H}_2}.
\]

Thus, it follows that \(\rho(k)A = A \rho(k) \). An application of Schur’s lemma completes the proof. \(\square \)

Let \(\pi \) be a unitary representation of the compact group \(\mathbb{K} \) on a Hilbert space \(\mathcal{H} \) containing \(\mathbb{C}^n \otimes P \) as a dense subspace. By the Peter–Weyl theorem, \(\mathcal{H} \) is the direct sum of irreducible representations of \(\mathbb{K} \) acting on finite dimensional subspaces \(H_\lambda, \lambda \in \Lambda \). Let \(\pi_\lambda \) be the restriction of \(\pi \) to \(H_\lambda \), that is, \(\pi = \bigoplus_{\lambda \in \Lambda} \pi_\lambda \) is the Peter–Weyl decomposition relative to the direct sum \(\mathcal{H} = \bigoplus_{\lambda \in \Lambda} H_\lambda \) into reducing subspaces of \(\pi \). For the complete statement of the Peter–Weyl theorem, one may consult [12, Theorem, 1.12, p. 17].

Let us transplant the Fischer–Fock inner product on \(P \) and the Euclidean inner product on \(\mathbb{C}^n \) to the tensor product \(\mathbb{C}^n \otimes P \). We let \(\langle \cdot, \cdot \rangle_P \) denote the inner product on this tensor product space by a slight abuse of notation. Let \(P_\lambda \) be the linear subspace of \(\mathbb{C}^n \otimes P \) identified with \(H_\lambda \). Now, each of the subspaces \(P_\lambda \subset \mathbb{C}^n \otimes P \) inherits the inner product from that of \(\mathbb{C}^n \otimes P, \langle \cdot, \cdot \rangle_P \) to be denoted by \(\langle P_\lambda, \cdot, \cdot \rangle_{P_\lambda} \), \(\lambda \in \Lambda \). The hypothesis in the following proposition might appear to be restrictive but for the applications in this paper, they appear naturally.
Proposition 2.6. Fix an action \(\pi\) of the compact group \(\mathbb{K}\) on a Hilbert space \(\mathcal{H}\). Let \([\cdot, \cdot]\) denote the inner product of \(\mathcal{H}\). Assume that \(\mathbb{C}^n \otimes P\) is a dense subspace of \(\mathcal{H}\). Furthermore, we assume that (a) \([p, q] = [\pi(k)p, \pi(k)q]\), that is, \(\pi\) is a unitary representation of \(\mathbb{K}\) on \(\mathcal{H}\) (b) \(\langle p\lambda, q\lambda \rangle_{F_{\lambda}} = \langle \pi_{\lambda}(k)p\lambda, \pi_{\lambda}(k)q\lambda \rangle_{F_{\lambda}}, k \in \mathbb{K}\), (c) \(\pi_{\lambda}\) and \(\pi_{\lambda'}\) are inequivalent whenever \(\lambda \neq \lambda'\). Then, there exists positive scalars \(a_\lambda\) such that \([p, q] = \sum_{\lambda \in \Lambda} a_\lambda \langle p\lambda, q\lambda \rangle_{F_{\lambda}}, p, q \in \mathbb{C}^n \otimes P\).

Proof. Let \(p, q \in \mathbb{C}^n \otimes P\) be of the form \(\sum_{\lambda \in \Lambda} p\lambda, p\lambda \in P_{\lambda}\), and \(\sum_{\lambda \in \Lambda} q\lambda, q\lambda \in P_{\lambda}\), respectively. For any pair \(\lambda \neq \lambda'\), by hypothesis, \(\pi_{\lambda}\) and \(\pi_{\lambda'}\) are inequivalent; therefore, the subspaces \(P_{\lambda}\) and \(P_{\lambda'}\) of the inner product space \((\mathbb{C}^n \otimes P, [\cdot, \cdot])\) are orthogonal. Therefore, we have

\([p, q] = \sum_{\lambda \in \Lambda} [p\lambda, q\lambda].\)

The representation \(\pi_{\lambda}\) of \(\mathbb{K}\) on \((P_{\lambda}, [\cdot, \cdot])\) is unitary and irreducible. It is also unitary and irreducible on the space \((P_{\lambda}, \langle \cdot, \cdot \rangle_{F_{\lambda}})\). The proof of the theorem is completed by applying Lemma 2.5.

As an application of Proposition 2.6, we obtain a description of all the quasi-invariant kernels \(K\) with a multiplier \(c\), assuming that \(c\) is a unitary representation of \(\mathbb{K}\).

Theorem 2.7. Let \(H_k(\Omega, \mathbb{C}^n)\) be a reproducing kernel Hilbert space densely containing \(\mathbb{C}^n \otimes P\) as subspace. Assume that \(K\) is quasi-invariant with multiplier \(c\), where \(c : \mathbb{K} \to U(n)\) is a representation of the group \(\mathbb{K}\). Let \(\pi\) denote the action of the group \(\mathbb{K}\) on \(H_k(\Omega, \mathbb{C}^n)\) given by the rule \(\pi(k)f = c(k)(f \circ k^{-1})\). In the Peter–Weyl decomposition \(\pi = \bigoplus_{\lambda \in \Lambda} \pi_{\lambda}\), assume that the unitary representations \(\pi_{\lambda}\) are inequivalent. Then there exists positive scalars \(b_\lambda, \lambda \in \Lambda\), such that

\(K(z, w) = \sum_{\lambda \in \Lambda} b_\lambda K_\lambda(z, w), z, w \in \Omega,\)

where \(K_\lambda\) is the reproducing kernel of \((P_{\lambda}, \langle \cdot, \cdot \rangle_{F_{\lambda}})\), and \(H_k(\Omega, \mathbb{C}^n) = \bigoplus_{\lambda \in \Lambda} P_{\lambda}\).

Proof. From Lemma 2.3, it follows that the action \(\pi\) of the group \(\mathbb{K}\) on \(H_k(\Omega, \mathbb{C}^n)\) is unitary. This verifies the assumption (a) of Proposition 2.6. The inner product space \((\mathbb{C}^n \otimes P, [\cdot, \cdot], \langle \cdot, \cdot \rangle_{F})\) is the tensor product \((\mathbb{C}^n, \langle \cdot, \cdot \rangle_2) \otimes (P, \langle \cdot, \cdot \rangle_{F})\). Consequently, \(c(k)\) is unitary for each \(k \in \mathbb{K}\) which verifies assumption (b) of Proposition 2.6. Finally, the assumption that \(\pi_{\lambda}, \lambda \in \Lambda\), are inequivalent is the assumption (c) of Proposition 2.6. Therefore, the proof is completed by applying Proposition 2.6.

We show that a nonscalar kernel \(K\), quasi-invariant under \(\mathbb{K}\) associated with a multiplier \(c\) that is irreducible, cannot be invariant.

Proposition 2.8. Let \(K : \Omega \times \Omega \to M_n(\mathbb{C})\) be a nonnegative definite kernel. Suppose that \(c : \mathbb{K} \to M_n(\mathbb{C})\) is an irreducible unitary representation and \(K\) is quasi-invariant under \(\mathbb{K}\) with multiplier \(c\). If the kernel \(K\) is also invariant under \(\mathbb{K}\), then there exists a nonnegative definite scalar valued kernel \(\kappa\) on \(\Omega \times \Omega\) invariant under \(\mathbb{K}\) such that \(K(z, w) = \kappa(z, w)I_n, z, w \in \Omega\).
Proof. Suppose that K is quasi-invariant with multiplier $c : \mathbb{K} \to \mathcal{M}_n(\mathbb{C})$, that is,

$$K(z, w) = c(k)K(k^{-1} \cdot z, k^{-1} \cdot w)c(k)^*, \ k \in \mathbb{K}, \ z, w \in \Omega,$$

where c is an irreducible unitary representation. If the kernel K is also invariant under \mathbb{K}, it follows that, $K(z, w) = c(k)K(z, w)c(k)^*$, that is, $K(z, w)c(k) = c(k)K(z, w)$ for all $k \in \mathbb{K}$. By Schur's lemma, $K(z, w) = \psi(z, w)I_n$ for some scalar $\psi(z, w)$. The kernel $K(z, w)$ is nonnegative definite; therefore, $\psi(z, w)$ is nonnegative definite also. Moreover, since $K(z, w)$ is invariant under \mathbb{K}, it follows that $\psi(z, w)$ is invariant under \mathbb{K} as well. This completes the proof. □

Remark 2.9. As we have pointed out earlier, under some additional assumptions, any scalar-valued nonnegative definite kernel K on $\Omega \times \Omega$ quasi-invariant under \mathbb{K} can be shown to be of the form $\sum_{\ell \in \mathbb{Z}^+} a_{\ell} E_{\ell}$ for some sequence $\{a_{\ell}\}_{\ell \in \mathbb{Z}^+}$ of nonnegative real numbers.

3 A CLASS OF QUASI-INVARIANT KERNELS

Let $(\mathcal{P}, \langle \cdot, \cdot \rangle_{\mathcal{P}})$ denote the linear space of all polynomials in d-variables equipped with the Fischer–Fock inner product and let $(\mathbb{C}^d, \langle \cdot, \cdot \rangle_2)$ denote the Euclidean inner product space. We have

$$(\mathbb{C}^d, \langle \cdot, \cdot \rangle_2) \otimes (\mathcal{P}, \langle \cdot, \cdot \rangle_{\mathcal{P}}) = \bigoplus_{\ell = 0}^{\infty} (\mathbb{C}^d \otimes P_{\ell}, \langle \cdot, \cdot \rangle_{P_{\ell}}),$$

where the linear space $(\mathbb{C}^d \otimes P_{\ell}, \langle \cdot, \cdot \rangle_{P_{\ell}})$ denotes the subspace of $(\mathbb{C}^d, \langle \cdot, \cdot \rangle_2) \otimes (\mathcal{P}, \langle \cdot, \cdot \rangle_{\mathcal{P}})$ consisting of homogeneous polynomials of degree ℓ. Thus, the reproducing kernel of $(\mathbb{C}^d \otimes P_{\ell}, \langle \cdot, \cdot \rangle_{P_{\ell}})$ is of the form $\langle z, w \rangle_\ell I_d$.

Recall that the unitary group $U(d)$ acts on \mathcal{P} by $(\pi(u)(p))(z) = p(u^{-1} \cdot z)$, $p \in \mathcal{P}$. Therefore, the map given by the formula:

$$(\hat{\pi}(u)(p))(z) := u(p(u^{-1} \cdot z)), \ p \in \mathbb{C}^d \otimes P, \ u \in U(d) \quad (3.1)$$

is an unitary homomorphism. Let $\pi_{\ell}(u)$ denote the restriction of $\pi(u)$ to P_{ℓ} and $\hat{\pi}_{\ell}(u)$ be the restriction of $\hat{\pi}(u)$ to $\mathbb{C}^d \otimes P_{\ell}$. Evidently, the subspaces $\mathbb{C}^d \otimes P_{\ell}$, $\ell \in \mathbb{Z}^+$, are not only invariant under the action $\hat{\pi}$ of $U(d)$ but also the restriction of $\hat{\pi}$ to these subspaces is unitary.

There is a second action $\tilde{\pi}$ of the unitary group $U(d)$ on $\mathbb{C}^d \otimes P$ given by the formula:

$$(\tilde{\pi}(u)(p))(z) = \bar{u}(p(u^{-1} \cdot z)), \ p \in \mathbb{C}^d \otimes P. \quad (3.2)$$

Like before, the restriction $\tilde{\pi}_{\ell}(u)$ of $\tilde{\pi}(u)$ to the space $\mathbb{C}^d \otimes P_{\ell}$ is unitary.

3.1 Decomposition of $\tilde{\pi}_{\ell}$

Let $A = (A_1, \ldots, A_n)$ be an n-tuple of bounded linear operators (not necessarily commuting) $A_i : H_1 \to H_2$, $1 \leq i \leq n$, where the Hilbert space H_1 is possibly different from H_2. The operators D_A :
\(H_1 \to H_2 \oplus \cdots \oplus H_2\) and \(D^A : H_1 \oplus \cdots \oplus H_1 \to H_2\) are defined by the rule
\[
D_A(h) = (A_1h, \ldots, A_nh), h \in H_1\] and
\[
D^A(h_1, \ldots, h_n) = A_1h_1 + \cdots + A_nh_n, h_1, \ldots, h_n \in H_1.
\]
It is easy to verify that \((D^A)^* = D_A^*\).

For any \(u \in U(d), f = \left(f_1, \ldots, f_d \right) \in \mathbb{C}^d \otimes P_{\ell}\) and \(z \in \mathbb{C}^d\), we have
\[
\sum_{i=1}^d z_i (u^T (f \circ u))_i(z) = \langle u^T (f \circ u)(z), \overline{z} \rangle_{\mathbb{C}^d} = \langle (f \circ u)(z), u \cdot z \rangle_{\mathbb{C}^d} = \sum_{i=1}^d (u \cdot z)_i f_i(u \cdot z).
\]
Thus, \(\pi\) leaves the subspace \(\mathcal{V}_{\ell} \subseteq (\mathbb{C}^d \otimes P_{\ell}, \langle \cdot, \cdot \rangle_{\mathbb{C}^d})\) invariant, where
\[
\mathcal{V}_{\ell} = \left\{ \left(f_1, \ldots, f_d \right) \in \mathbb{C}^d \otimes P_{\ell} : z_1 f_1 + \cdots + z_d f_d = 0 \right\}.
\]
We claim that the subspace \(\mathcal{V}_{\ell}^\perp \subseteq (\mathbb{C}^d \otimes P_{\ell+1}, \langle \cdot, \cdot \rangle_{\mathbb{C}^d})\) is \(\left\{ \left(\delta_1, \ldots, \delta_d \right) : g \in P_{\ell+1} \right\} \).
To verify the claim, let \(M_{z_i}^{(\ell)} : P_{\ell} \to P_{\ell+1}, 1 \leq i \leq d\), be the linear map \(M_{z_i}^{(\ell)}(p) = z_i p, p \in P_{\ell}\). Setting \(M^{(\ell)} = (M_{z_1}^{(\ell)}, \ldots, M_{z_d}^{(\ell)})\), we have \(\mathcal{V}_{\ell}^\perp = \ker D^{M^{(\ell)}}\). Thus, \(\mathcal{V}_{\ell}^\perp = \text{ran} \left(D^{M^{(\ell)}} \right)^* = \text{ran} D^{M^{(\ell)}}^*\). From the identity \(\langle p, z, q \rangle_{\ell} = \langle \partial_i p, q \rangle_{\ell}\) for any pair of polynomials proved in [18], Proposition 4.11.36, it follows that \(M_{z_i}^{(\ell)^*} = \partial_i\) completing the verification of the claim.

Lemma 3.1. The reproducing kernel \(\tilde{K}_\ell\) of the inner product space \(\mathcal{V}_{\ell}\) is given by the formula:
\[
\tilde{K}_\ell(z, w) = \frac{\ell}{(\ell+1)\ell!} \langle z, w \rangle^{\ell-1} \left(\langle z, w \rangle I_d - \overline{w} z^\dagger \right).
\]
The reproducing kernel \(\tilde{K}_\ell^\perp\) of \(\mathcal{V}_{\ell}^\perp\) is given by the formula:
\[
\tilde{K}_\ell^\perp(z, w) = \frac{\langle z, w \rangle^{\ell-1}}{(\ell+1)\ell!} \left(\langle z, w \rangle I_d + \overline{w} z^\dagger \right).
\]
Here, \(\overline{w} z^\dagger\) is the matrix product of the column vector \(\overline{w}\) and the row vector \(z^\dagger\).

Proof. Let \(\zeta = (\zeta_1, \ldots, \zeta_d)\) be an arbitrary vector in \(\mathbb{C}^d\). First, note that
\[
\sum_{i=1}^d z_i \langle \tilde{K}_\ell(z, w) \zeta, e_i \rangle = \frac{\ell}{(\ell+1)\ell!} \langle z, w \rangle^{\ell-1} \left(\sum_{i=1}^d z_i \langle \langle z, w \rangle \zeta - \overline{w(z, \zeta)}, e_i \rangle \right) = \frac{\ell}{(\ell+1)\ell!} \langle z, w \rangle^{\ell-1} \sum_{i=1}^d \langle \langle z, w \rangle z_i \zeta_i - z_i \overline{w(z, \zeta)} \rangle.
\]
\[
\begin{align*}
\ell! \langle z, w \rangle^{\ell-1} & \left(\langle z, w \rangle \langle z, \tilde{z} \rangle - \langle z, w \rangle \langle z, \tilde{z} \rangle \right) \\
& = 0.
\end{align*}
\]

It follows that the vector \(\tilde{K}_\ell(\cdot, w)\tilde{z} \in \tilde{V}_\ell \). In order to complete the proof of the first part, it suffices to show that for any \(f \) in \(\tilde{V}_\ell \), \(w, \xi \in \mathbb{C}^d \), and \(i = 1, \ldots, d \), \(\langle f, \tilde{K}_\ell(\cdot, w)e_i \rangle_{\tilde{V}_\ell} = \langle f(w), e_i \rangle_{\mathbb{C}^d} \). Note that

\[
\langle f, \langle z, w \rangle^{\ell-1} w z^\dagger e_i \rangle_{\tilde{V}_\ell} = \sum_{j=1}^d \langle f_j, \langle z, w \rangle^{\ell-1} w_j z_i \rangle_{\tilde{V}_\ell}
\]

\[
= \sum_{j=1}^d w_j \langle \partial_i f_j, \langle z, w \rangle^{\ell-1} \rangle_{\tilde{V}_\ell}
\]

\[
= (\ell - 1)! \sum_{j=1}^d w_j (\partial_i f_j)(w)
\]

\[
= (\ell - 1)! \left(\partial_i \left(\sum_{j=1}^d z_j f_j \right)(w) - f_i(w) \right)
\]

\[
= -(\ell - 1)! f_i(w).
\]

Hence, we have

\[
\langle f, \langle z, w \rangle^{\ell-1} w z^\dagger e_i \rangle_{\tilde{V}_\ell} = -(\ell - 1)! \langle f(w), e_i \rangle_{\mathbb{C}^d}.
\] (3.3)

Here, the second equality follows since \(\langle p, z, q \rangle_{\tilde{V}_\ell} = \langle \partial_i p, q \rangle_{\tilde{V}_\ell} \) for any pair of polynomials \(p, q \) (see [18, Proposition 4.11.36]), and the third equality follows from the reproducing property of the kernel function of \(P_{\ell-1} \). Now, using (3.3), we see that

\[
\langle f, \tilde{K}_\ell(\cdot, w)e_i \rangle_{\tilde{V}_\ell} = \frac{\ell}{(\ell + 1)!} \langle f, \langle z, w \rangle^{\ell-1} (\langle z, w \rangle e_i - w z^\dagger e_i) \rangle_{\tilde{V}_\ell}
\]

\[
= \frac{\ell}{(\ell + 1)!} \left(1 + \frac{1}{\ell} \right) \langle f(w), e_i \rangle
\]

\[
= \langle f(w), e_i \rangle.
\]

This verifies the formula for \(\tilde{K}_\ell \).

We note that the reproducing kernel of \((\mathbb{C}^d \otimes P_\ell, \langle \cdot, \cdot \rangle_{\tilde{V}_\ell})\) is \(\frac{\langle z, w \rangle^\ell}{\ell!} I_d \). Now, the verification of the formula for \(\tilde{K}_\ell \) follows from part (1) and the equality:

\[
\frac{\langle z, w \rangle^\ell}{\ell!} I_d = K_\ell(z, w) + \tilde{K}_\ell(z, w),
\]

which follows from general theory of reproducing kernel Hilbert spaces. \(\square \)
The proof of Proposition 3.6 giving an explicit description of a quasi-invariant kernel under $U(d)$ transforming as in Definition (1.3) with $c(u) = \bar{u}$ is facilitated by the set of three lemmas proved below.

Lemma 3.2. Let A be a $d \times d$ complex matrix such that $uA = Au$ for all unitary matrices u with $u(e_1) = e_1$. Then A is of the form \[
\begin{pmatrix}
a_1 & 0 \\
0 & a_2 I_{d-1}
\end{pmatrix}
\] for some complex numbers a_1 and a_2.

Proof. Let $A = \begin{pmatrix} A_1 & A_4 \\ A_3 & A_2 \end{pmatrix}$, where A_3 and A_4 are column vectors in \mathbb{C}^{d-1} and A_2 is in $\mathcal{M}_{d-1}(\mathbb{C})$. By hypothesis, we get $A_3 = A_4 = 0$ and $uA_2 = A_2 u$ for all $u \in U(d-1)$. Now the conclusion follows by an application of the Schur’s lemma. □

Lemma 3.3. Suppose that $K : \mathbb{B}_d \times \mathbb{B}_d \to \mathcal{M}_n(\mathbb{C})$ is a sesqui-analytic Hermitian function satisfying the rule $K(\lambda \cdot z, \lambda \cdot w) = K(z, w)$ for all λ on the unit circle \mathbb{T}. Then $K(z, w)$ is of the form
\[
\sum_{\ell = 0}^{\infty} \sum_{\alpha, \beta \in \mathbb{Z}^d_+} A_{\alpha, \beta} z^\alpha \bar{w}^\beta, z, w \in \mathbb{B}_d,
\]
where $A_{\alpha, \beta}$ are $n \times n$ complex matrices.

Proof. Let $K(z, w) = \sum_{\alpha, \beta \in \mathbb{Z}^d_+} A_{\alpha, \beta} z^\alpha \bar{w}^\beta$, $z, w \in \mathbb{B}_d$. By hypothesis, we have
\[
\sum_{\alpha, \beta \in \mathbb{Z}^d_+} A_{\alpha, \beta} z^\alpha \bar{w}^\beta = \sum_{\alpha, \beta \in \mathbb{Z}^d_+} A_{\alpha, \beta} |\alpha| - |\beta| z^\alpha \bar{w}^\beta, z, w \in \mathbb{B}_d, \lambda \in \mathbb{T}.
\]
Comparing coefficients in both sides, we get $A_{\alpha, \beta} (1 - \lambda |\alpha| - |\beta|) = 0$ for all $\lambda \in \mathbb{T}$. Hence, it follows that $A_{\alpha, \beta} = 0$ if $|\alpha| \neq |\beta|$. This completes the proof. □

For any $z \in \mathbb{B}_d$, $|z| = r$, there is a $u_z \in U(d)$ with the property: $u_z(z) = re_1$. The unitary u_z can be determined explicitly, namely, $u_z^* = \left(\begin{array}{c} \frac{z}{r} \\ \star \end{array} \right)$, where z is the column vector with components z_1, \ldots, z_d. For any choice of two sets of complex numbers, $\{a_{m,1} : m \in \mathbb{Z}_+\}$ and $\{a_{m,2} : m \in \mathbb{Z}_+\}$ with $a_{0,1} = a_{0,2}$, set
\[
D_i(r, r) := \sum_{m=0}^{\infty} a_{m,i} r^{2m}, r \in [0, 1), i = 1, 2.
\]
Also, for any fixed $z \in \mathbb{B}_d$ with $|z| = r$, let U_z' be the set $\{u_z \in U(d) : u_z(z) = |z|e_1\}$.

Lemma 3.4. For any $u_z \in U_z'$, we have
\[
u_z^* \begin{pmatrix} D_1(r, r) & 0 \\
0 & D_2(r, r) I_{d-1} \end{pmatrix} u_z = (D_1(r, r) - D_2(r, r) \frac{zz^*}{r^2}) + D_2(r, r) I_d.
\]
Proof. For any $u_z \in U_z$, we have
\[
u_z^* \begin{pmatrix} D_1(r, r) & 0 \\
0 & D_2(r, r)I_{d-1} \end{pmatrix} \overline{u_z} = u_z^* \begin{pmatrix} D_1(r, r) - D_2(r, r) & 0 \\
0 & 0 \end{pmatrix} \overline{u_z} + u_z^* D_2(r, r) I_d \overline{u_z}
= D_1(r, r) - D_2(r, r) u_z^* E_{11} \overline{u_z} + D_2(r, r) I_d u_z^* \overline{u_z}.
\]
Since $u_z(z) = \|z\| e_1$, we get that $u_z^* e_1 = \frac{z}{r}$. Thus,
\[
u_z^* E_{11} \overline{u_z} = u_z^* e_1 \overline{e_1} = \frac{zz^\dagger}{r^2}.
\]
This completes the proof. □

Remark 3.5. An unitary $u_z \in U_z$ such that $u_z(z) = \|z\| e_1$ is not uniquely determined. However, if $z \neq 0$, we see that
\[u_z^* \begin{pmatrix} D_1(r, r) & 0 \\
0 & D_2(r, r)I_{d-1} \end{pmatrix} \overline{u_z}
\]
is independent of the choice of u_z by Lemma 3.4.

Proposition 3.6. Suppose that $K : B_d \times B_d \rightarrow M_d(\mathbb{C})$ is a sesqui-analytic Hermitian function satisfying the transformation rule with the multiplier $c(u) = \overline{u}$:
\[
u^* K(u \cdot z, u \cdot w) \overline{u} = K(z, w), u \in U(d).
\] (*)

Then, K must be of the form
\[
K(z, z) = u_z^* \begin{pmatrix} D_1(r, r) & 0 \\
0 & D_2(r, r)I_{d-1} \end{pmatrix} \overline{u_z}, u_z \in U_z,
\]
where $D_i(r, r), i = 1, 2$ are real analytic function on $(0, 1)$ of the form $\sum_{m=0}^\infty a_{m,i} r^{2m}$ with $a_{0,1} = a_{0,2}$.

Proof. Note that $u_z^* K(0, 0) \overline{u} = K(0, 0)$ implying $K(0, 0)$ must be a scalar times I_d. Let $z \in B_d$ and $z \neq 0$. Putting $w = z$ and $u = u_z \in U_z$ in (*), we get that
\[
K(z, z) = u_z^* K(u_z(z), u_z(z)) \overline{u_z}
= u_z^* K(\|z\| e_1, \|z\| e_1) \overline{u_z}.
\]
(3.4)

Using this expression of $K(z, z)$ in (*), we see that
\[
u_z^* K(\|z\| e_1, \|z\| e_1) \overline{u_z} = u_z^* u_z^* K(\|u \cdot z\| e_1, \|u \cdot z\| e_1) \overline{u_{u \cdot z}} \overline{u}.
\]
(3.5)
Equivalently, we have
\[\overline{u_{u \cdot z}} \overline{u_{z}^\dagger} K(||z||e_1, ||z||e_1) = K(||z||e_1, ||z||e_1) \overline{u_{u \cdot z}} \overline{u_{z}^\dagger}, \] for all \(u \in U(d), u_z \in U_z \). \hspace{1cm} (3.6)

Note that \(\overline{u_{u \cdot z}} \overline{u_{z}^\dagger} \) is a unitary and
\[\overline{u_{u \cdot z}} \overline{u_{z}^\dagger}(e_1) = u_{u \cdot z} \left(\frac{z}{||z||} \right) = \frac{u_{u \cdot z}(u \cdot z)}{||z||} = e_1. \]

Moreover, if \(v \) is a unitary in \(U(d) \) with \(v(e_1) = e_1 \), then \(v \) can be written as \(\overline{u_1} \overline{u_2}^\dagger \), where \(u = \overline{v_{u \cdot z}}, u_2 = u_z \) and \(u_1 = I_d \). Since \(\overline{v_{u \cdot z}}(z) = ||z|| \overline{v_1}(e_1) = ||z||e_1 \), we see that \(u_1 = I_d \in U_{u \cdot z}^\dagger \). Consequently, it follows that the set \(\{u_{u \cdot z} \overline{u_{z}^\dagger} : u \in U(d), u_z \in U_z, u_{u \cdot z} \in U_{u \cdot z} \} \) coincides with the set \(\{v \in U(d) : v(e_1) = e_1\} \). This together with \((3.6) \) gives
\[vK(||z||e_1, ||z||e_1) = K(||z||e_1, ||z||e_1) v, \] \hspace{1cm} (3.7)

for all \(v \in U(d) \) with \(v(e_1) = e_1 \). Hence, by Lemma 3.2, we get that
\[K(||z||e_1, ||z||e_1) = \begin{pmatrix} K_1(||z||e_1, ||z||e_1) & 0 \\ 0 & K_2(||z||e_1, ||z||e_1)I_{d-1} \end{pmatrix} \] \hspace{1cm} (3.8)
where \(K_1 \) and \(K_2 \) are two scalar-valued sesqui-analytic Hermitian functions on \(B_d \times B_d \). Applying Lemma 3.3, we infer that
\[K(z, z) = \sum_{\ell=0}^{\infty} \sum_{|\alpha| = |\beta| = \ell} a_{\alpha, \beta} z^\alpha \overline{z}^\beta, \quad a_{\alpha, \beta} \in M_d(C). \]

Consequently, we have the equality
\[K(||z||e_1, ||z||e_1) = \sum_{\ell=0}^{\infty} a_{\ell \epsilon_1, \ell \epsilon_1} ||z||^{2\ell}. \] \hspace{1cm} (3.9)

Combining Equation \((3.9) \) with the Equations \((3.4) \) and \((3.8) \) completes the verification claimed for the kernel \(K \). \hspace{1cm} \square

Now, we obtain a characterization of the nonnegative definite quasi-invariant kernels.

Theorem 3.7. Any sesqui-analytic Hermitian function quasi-invariant with multiplier \(c(u) = \overline{u} \) is of the form
\[K^{(\alpha, \beta)}(z, w) = \sum_{j=1}^{\infty} \alpha_j K_j(z, w) + \sum_{j=0}^{\infty} \beta_j K_{1,j}^{\perp}(z, w), \quad \alpha_j, \beta_j \in C. \]

Proof. First, since any sesqui-analytic Hermitian function quasi-invariant with multiplier \(c(u) = \overline{u} \), it must be of the form prescribed in Proposition 3.6. Applying Lemma 3.4 to it, and then
polarizing the result, we see that it must be of the form

\[
\tilde{K}(z, w) = \sum_{\ell=1}^{\infty} (a_{\ell,1} - a_{\ell,2}) (z, w)^{\ell-1} \overline{w}^\dagger + \sum_{\ell=0}^{\infty} a_{\ell,2} (z, w)^{\ell} I_d, \quad z, w \in \mathbb{B}_d, \quad \#(1)
\]

for some choice of complex numbers \(a_{\ell,1}, \ell \in \mathbb{N} \), and \(a_{\ell,2}, \ell \in \mathbb{Z}^+ \). For any \(\ell \geq 1 \), by Lemma 3.1, we have

\[
(a_{\ell,1} - a_{\ell,2}) (z, w)^{\ell} I_d
\]

Thus, we have

\[
\tilde{K}(z, w) = a_{0,2} I_d + \sum_{\ell=1}^{\infty} (a_{\ell,1} \ell! \tilde{K}_\ell^\perp + ((\ell + 1) a_{\ell,2} - a_{\ell,1}) (\ell - 1)! \tilde{K}_\ell)
\]

\[
= \sum_{j=1}^{\infty} \alpha_j \tilde{K}_j(z, w) + \sum_{j=0}^{\infty} \beta_j \tilde{K}_j^\perp(z, w),
\]

where \(\alpha_j = ((j + 1) a_{j,2} - a_{j,1}) (j - 1)! \), \(\beta_j = a_{j,1} j! \).

\[\square\]

3.2 Decomposition of \(\hat{\pi} \)

Consider the two subspaces \(\hat{\mathcal{V}}_\ell \) and \(\hat{\mathcal{W}}_\ell \) of \((\mathbb{C}^d \otimes \mathcal{P}_\ell, \langle \cdot, \cdot \rangle_{\mathcal{P}_\ell})\):

\[
\hat{\mathcal{V}}_\ell = \left\{ f : \begin{pmatrix} f_1 \\ \vdots \\ f_d \end{pmatrix} \in \mathbb{C}^d \otimes \mathcal{P}_\ell : \partial_1 f_1 + \cdots + \partial_d f_d = 0 \right\}
\]

and

\[
\hat{\mathcal{W}}_\ell = \left\{ \begin{pmatrix} z_1 g \\ \vdots \\ z_d g \end{pmatrix} : g \in \mathcal{P}_{\ell-1} \right\}.
\]

Evidently, the subspace \(\hat{\mathcal{W}}_\ell \) is invariant under the unitary representation \(\hat{\pi} \). Also, we check that the subspace \(\hat{\mathcal{V}}_\ell^\perp \subseteq (\mathbb{C}^d \otimes \mathcal{P}_\ell, \langle \cdot, \cdot \rangle_{\mathcal{P}_\ell}) \) is \(\hat{\mathcal{W}}_\ell \).

To verify this, let \(M_{z_i}^{(\ell)} : \mathcal{P}_{\ell-1} \to \mathcal{P}_\ell \) be the linear map \(M_{z_i}^{(\ell)}(p) = z_i p, \ p \in \mathcal{P}_\ell \). Clearly, setting \(M^{(\ell)} = (M_{z_1}^{(\ell)}, \ldots, M_{z_d}^{(\ell)}) \), we see that \(\hat{\mathcal{W}}_\ell = \text{ran}(D^{M^{(\ell)}}) \). Note that for any \(\alpha, \beta \in \mathbb{Z}_+^{d+2}, (z^{\alpha+\beta}, z^{\beta})_{\mathcal{P}_\ell} = 0 \)
Thus, we have
\[
\langle z_i p, q \rangle_F = \langle p, \delta_i q \rangle_F, \quad p, q \in P.
\]
Hence it follows that \(M^{(\ell)}_z = \partial_i \). Therefore, \(\hat{V}_\ell = \ker D^{M^{(\ell)}} \). Since \(\left(D^{M^{(\ell)}} \right)^* = D^{M^{(\ell)}} \), we conclude that
\[
\hat{V}^\perp_\ell = \text{ran} \ D^{M^{(\ell)}} = \hat{W}_\ell.
\]
Therefore, \(\hat{V}_\ell \) is also invariant under the representation \(\hat{\pi} \).

Lemma 3.8. Consider the inner product space \((C^d \otimes P_\ell, \langle \cdot, \cdot \rangle_P)\). Then

1. The reproducing kernel \(\hat{K}_\ell \) of \(\hat{V}_\ell \) is

\[
\hat{K}_\ell(z, w) := \frac{1}{(\ell + d - 1)(\ell - 1)!} \langle z, w \rangle^{\ell-1} \left(\frac{\ell + d - 1}{\ell} \langle z, w \rangle I_d - z \overline{w}^\dagger \right),
\]

where \(z \overline{w}^\dagger \) is the matrix product of the column vector \(z \) and the row vector \(\overline{w}^\dagger \).

2. The reproducing kernel \(\hat{K}^\perp_\ell \) of \(\hat{V}^\perp_\ell \) is

\[
\frac{1}{(\ell + d - 1)(\ell - 1)!} \langle z, w \rangle^{\ell-1} z \overline{w}^\dagger.
\]

Proof. Clearly, part (2) is a direct consequence of part (1) of the lemma. Therefore, we will prove only part (1), which is similar to the proof of part (1) of Lemma 3.1. Let \(\xi = (\xi_1, \ldots, \xi_d) \) be any vector in \(C^d \). As before, we note that

\[
\langle \hat{K}_\ell(z, w) \xi, e_j \rangle = \frac{1}{(\ell + d - 1)(\ell - 1)!} \langle z, w \rangle^{\ell-1} \left(\frac{\ell + d - 1}{\ell} \langle z, w \rangle \langle \xi, e_j \rangle - \langle z, e_j \rangle \langle \xi, w \rangle \right).
\]

A direct verification shows that

\[
\sum_{j=1}^d \vartheta_j \langle \hat{K}_\ell(z, w) \xi, e_j \rangle = 0,
\]

therefore, it follows that \(\hat{K}_\ell(\cdot, w) \xi \in \hat{V}_\ell \). Also,

\[
\langle f, \langle z, w \rangle^{\ell-1} z \overline{w}^\dagger e_j \rangle_{P_\ell} = \sum_{j=1}^d \langle f_j, \langle z, w \rangle^{\ell-1} \overline{w} z_j \rangle_{P_\ell} = \sum_{j=1}^d w_i \langle f_j, \langle z, w \rangle^{\ell-1} z_j \rangle_{P_\ell} = \sum_{j=1}^d w_i \langle \vartheta_j f_j, \langle z, w \rangle^{\ell-1} \rangle_{P_\ell} = (\ell - 1)! w_i \sum_{j=1}^d (\vartheta_j f_j)(w) = 0.
\]

Thus, \(\langle f, \hat{K}_\ell(\cdot, w)e_j \rangle_{P_\ell} = \langle f(w), e_j \rangle \).
The proposition below matching with Proposition 3.6 obtained by replacing \(c(u) = \bar{u} \) by \(c(u) = u \) is proved as before.

Proposition 3.9. Suppose that \(K : \mathbb{B}_d \times \mathbb{B}_d \to \mathcal{M}_d(\mathbb{C}) \) is a sesqui-analytic Hermitian function satisfying the transformation rule with the multiplier \(c(u) = u \):

\[
u K(u^{-1} \cdot z, u^{-1} \cdot w) \bar{u}^\dagger = K(z, w).
\]

\((**)
\)

Then \(K \) must be of the form

\[
K(z, z) = u_z \begin{pmatrix} D_1(r, r) & 0 \\ 0 & D_2(r, r)I_{d-1} \end{pmatrix} u_z^*, \quad u_z \in U'_z,
\]

where \(D_i(r, r), i = 1, 2 \) are real analytic functions on \([0,1)\) of the form \(\sum_{m=0}^{\infty} \bar{a}_{m,i}r^{2m} \) with \(\bar{a}_{0,1} = \bar{a}_{0,2} \).

We need the following lemma similar to Lemma 3.4 to prove the main theorem describing sesqui-analytic Hermitian function quasi-invariant with multiplier \(c(u) = u \).

Lemma 3.10. For any \(u_z \in U'_z \), we have

\[
\overline{u_z}^\dagger \begin{pmatrix} D_1(r, r) & 0 \\ 0 & D_2(r, r)I_{d-1} \end{pmatrix} u_z = (D_1(r, r) - D_2(r, r)) z z^\dagger r^2 + D_2(r, r)I_d.
\]

Proof. The proof is similar to the proof of Lemma 3.4 except that we have to use the equality:

\[
\overline{u_z}^\dagger E_{11} u_z = \frac{z z^\dagger}{r^2}.
\]

Theorem 3.11. Any sesqui-analytic Hermitian function quasi-invariant with multiplier \(c(u) = u \) is of the form

\[
\hat{K}^{(\alpha, \beta)}(z, w) = \sum_{j=0}^{\infty} \alpha_j \hat{K}_j(z, w) + \sum_{j=1}^{\infty} \beta_j \hat{K}_j^\perp(z, w), \quad \alpha_j, \beta_j \in \mathbb{C}.
\]

Proof. As before, since the kernel \(\hat{K} \) is sesqui-analytic Hermitian function quasi-invariant with multiplier \(c(u) = u \), it must be of the form prescribed in Proposition 3.9. Now, appealing to Lemma 3.10, we obtain

\[
\hat{K}(z, w) = \sum_{\ell=1}^{\infty} (\bar{a}_{\ell,1} - \bar{a}_{\ell,2}) (z, w)^{\ell-1} z w^\dagger + \sum_{\ell=0}^{\infty} \bar{a}_{\ell,2} (z, w)^{\ell} I_d.
\]

\((##)
\)

The remaining portion of the proof is similar to that of Theorem 3.7, where \(\alpha_j = \bar{a}_{j,1,j}! \) and \(\beta_j = (\bar{a}_{j,1}(j + d - 1) - \bar{a}_{j,2}(d - 1))(j - 1)! \) for all \(j \).

To determine among the kernels described in Theorem 3.7 (respectively, Theorem 3.11), the ones that are nonnegative definite, we recall a slight generalization of the criterion for nonnegative definiteness of Farut–Koranyi [9, Lemma 5.4]:
Lemma 3.12 (Lemma 5.1 of [4]). Let Ω be a domain in \mathbb{C}^d. Let $K : \Omega \times \Omega \to \mathcal{M}_n(\mathbb{C})$ be a nonnegative definite kernel and $H_K(\Omega, \mathbb{C}^n)$ be the reproducing kernel Hilbert space determined by K. Suppose that $H_K(\Omega, \mathbb{C}^n)$ can be decomposed as an orthogonal direct sum $\bigoplus_{\ell=0}^{\infty} H_{\epsilon, \ell}$, where $H_{\epsilon, \ell}$ is the reproducing kernel of H_{ϵ}. Further assume that $\{c_{\ell, \ell} \}_{\ell \in \mathbb{Z}^+}$ is any sequence of complex numbers such that the sum $\sum_{\ell=0}^{\infty} c_{\ell, \ell} K_{\epsilon}(z, w)$ converges on $\Omega \times \Omega$. Then $\sum_{\ell=0}^{\infty} c_{\ell, \ell} K_{\epsilon}(z, w)$ is nonnegative definite if and only if $c_{\ell, \ell} \geq 0$ for all $\ell \in \mathbb{Z}^+$.

Combining Faraut–Koranyi lemma with Theorem 3.7 and Theorem 3.11, we obtain a condition for a sesqui-analytic Hermitian function to be nonnegative.

Theorem 3.13. Suppose that $\breve{K}(\alpha, \beta) : \mathbb{B}_d \times \mathbb{B}_d \to \mathcal{M}_d(\mathbb{C})$ is a sesqui-analytic Hermitian function as in Theorem 3.7 (respectively, $\hat{K}(\alpha, \beta)$ as in Theorem 3.11). Then the kernel $\breve{K}(\alpha, \beta)$ (respectively, $\hat{K}(\alpha, \beta)$) is nonnegative definite if and only if $\alpha_j \geq 0, \beta_j \geq 0$.

Proof. In the expansion of $\breve{K}(\alpha, \beta)$ obtained in Theorem 3.7, the kernels \breve{K}_j and $\breve{K}_{\perp j}$ are nonnegative definite. Therefore, by Lemma 3.12, we conclude that \breve{K} is nonnegative definite if and only if $\alpha_j \geq 0, \beta_j \geq 0$. The proof for $\hat{K}(\alpha, \beta)$ is similar and therefore omitted.

As a corollary of Theorem 3.7 (respectively, Theorem 3.11), we prove that the restriction of the representation $\breve{\pi}_\epsilon$ to \breve{V}_ϵ (respectively, restriction of $\hat{\pi}_\epsilon$ to \hat{V}_ϵ) is irreducible.

Corollary 3.14.

1. The restriction $\breve{\pi}_\epsilon |_{\breve{V}_\epsilon}$ of $\breve{\pi}_\epsilon$ to the linear subspace \breve{V}_ϵ equipped with the restriction of the inner product $\langle \cdot, \cdot \rangle_{\epsilon, \breve{V}_\epsilon}$ from $\mathbb{C}^d \otimes P_\epsilon$ is irreducible.

2. The restriction $\hat{\pi}_\epsilon |_{\hat{V}_\epsilon}$ of $\hat{\pi}_\epsilon$ to the linear subspace \hat{V}_ϵ equipped with the restriction of the inner product $\langle \cdot, \cdot \rangle_{\epsilon, \hat{V}_\epsilon}$ from $\mathbb{C}^d \otimes P_\epsilon$ is irreducible.

Proof. To prove part (1) of the corollary, suppose that there is a decomposition $\breve{V}_\epsilon = V_{\epsilon, 1} \oplus V_{\epsilon, 2}$, where $V_{\epsilon, 1}$ and $V_{\epsilon, 2}$ are reducing subspaces for $\breve{\pi}_\epsilon$. Let $K_{\epsilon, 1}$ and $K_{\epsilon, 2}$ be the kernel functions of $V_{\epsilon, 1}$ and $V_{\epsilon, 2}$, respectively. Evidently, both $K_{\epsilon, 1}$ and $K_{\epsilon, 2}$ are quasi-invariant with respect to the same multiplier \breve{u}. It follows that $\breve{K}_{\epsilon} = K_{\epsilon, 1} \oplus K_{\epsilon, 2}$. If $\ell = 0$, then $\breve{V}_0 = \{0\}$ and there is nothing to prove. Fix $\ell \in \mathbb{N}$, it follows from Theorem 3.7 that $K_{\epsilon, 1}^{\perp}$ must be of the form $\sum_j \alpha_j K_j + \beta_j K_j^{\perp}$ for some choice of a set of nonnegative numbers $\{\alpha_j\}$ and $\{\beta_j\}$. The Hilbert space determined by $\alpha_j K_j + \beta_j K_j^{\perp}$ contains the Hilbert space determined by $\alpha_j K_j$ as well as the one determined by $\beta_j K_j^{\perp}$. Now, if there is a nonzero α_j with $j \neq \ell$, then \breve{V}_j must be a subspace of $V_{\epsilon, 1}$. Therefore, $\alpha_j = 0$ except for $j = \ell$. A similar argument shows that $\beta_j = 0$ for all j. In consequence, if $\alpha_\ell > 0$, then $V_{\epsilon, 1} = \breve{V}_\epsilon$, otherwise $V_{\epsilon, 1} = \{0\}$.

The proof of part (2) of the corollary is obtained exactly as in the proof of part (1) using Theorem 3.11.

3.3 Examples

The examples discussed below show that there are many quasi-invariant kernels K on \mathbb{B}_d with multiplier of the form $c(u) = \breve{u}$ (resp. $c(u) = u$). In these examples, the monomials $\{z^{\alpha} \otimes \xi : \alpha \in \mathbb{Z}_+^d, \xi \in \mathbb{C}^d\}$ are no longer orthogonal.
Let \(d \geq 2 \). Recall that the Bergman kernel \(B \) of the unit ball \(\mathbb{B} \) is given by
\[
B(z, \omega) = \frac{1}{(1- \langle z, \omega \rangle)^{d+1}}.
\]
For \(t \in \mathbb{R} \), we set
\[
B^{(t)}(z, \omega) = B \left(\left(\frac{\partial^2}{\partial z_i \partial \omega_j} - \log B \right)_{i,j=1}^d \right)^t (z, \omega).
\]
Clearly \(B^{(t)} \) is a sesqui-analytic hermitian function for any real number \(t \). It follows from [11, Lemma 6.1] that \(B^{(t)} \) is quasi-invariant with the multiplier \(c(u) = \|u\| \). A direct computation shows that
\[
B^{(t)}(z, \omega) = \frac{d+1}{(1- \langle z, \omega \rangle)^{(d+1)+2}} \begin{pmatrix}
1 - \sum_{j \neq 1} z_j \bar{\omega}_j & z_2 \bar{\omega}_1 & \cdots & z_d \bar{\omega}_1 \\
z_1 \bar{\omega}_2 & 1 - \sum_{j \neq 2} z_j \bar{\omega}_j & \cdots & z_d \bar{\omega}_2 \\
\vdots & \vdots & \ddots & \vdots \\
z_1 \bar{\omega}_d & z_2 \bar{\omega}_d & \cdots & 1 - \sum_{j \neq d} z_j \bar{\omega}_j
\end{pmatrix}.
\]
Thus,
\[
B^{(t)}(re_1, re_1) = \frac{d+1}{(1-r^2)^{(d+1)+2}} \begin{pmatrix}
1 & 0 \\
0 & (1-r^2)I_{d-1}
\end{pmatrix}, 0 \leq r < 1.
\]
Note that \(B^{(t)}(0,0) = (d+1)I_d \). Thus, by Proposition 3.6, we have \(B^{(t)}(z,z) = u_z^* B^{(t)}(re_1, re_1) \bar{u}_z \), where \(r = \|z\| \) and \(u_z \) is a unitary of the form \(u_z^* = \begin{pmatrix} \frac{z}{r} & * \end{pmatrix} \). Equivalently,
\[
B^{(t)}(z, \omega) = \sum_{\ell=0}^{\infty} \left(a_{\ell,1} - a_{\ell,2} \right) \langle z, \omega \rangle^{\ell-1} \bar{w}_z + \sum_{\ell=0}^{\infty} a_{\ell,2} \langle z, \omega \rangle^\ell I_d,
\]
where \(a_{\ell,1} = (d+1) \frac{(\ell+1)!}{\ell!} \) and \(a_{\ell,2} = (d+1) \frac{(\ell+1)!}{\ell!} \) for all \(\ell \in \mathbb{Z}_+ \). In this case, it is easy to verify that \(a_{\ell,1} \leq (\ell+1) a_{\ell,2} \) if and only if \(t \geq 0 \). Therefore, by Theorem 3.13, it follows that \(B^{(t)} \) is a nonnegative definite kernel if and only if \(t \geq 0 \).

Since \(B^{(t)} \) is quasi-invariant with respect to the multiplier \(c(u) = \bar{u} \), it is easy to see that \(B^{(t)} \) is quasi-invariant with respect to the multiplier \(c(u) = u \). Further, using (3.12) and the identity \(\frac{z}{\ell!} I_d = K_\ell + K_{\ell}^\perp \), we obtain
\[
B^{(t)}(z, \omega) = \sum_{\ell=0}^{\infty} \left((a_{\ell,1} - a_{\ell,2}) (\ell + d - 1)(\ell - 1)! + a_{\ell,2} \ell! \right) K_\ell(z, \omega) + \sum_{\ell=0}^{\infty} a_{\ell,2} \ell! K_{\ell}^\perp(z, \omega).
\]
Hence it follows from Theorem 3.13 that the transpose \(B^{(t)} \) of the kernel \(B^{(t)} \) is a nonnegative definite kernel if and only if \(t(d+1) + 1 \geq 0 \).

Since \(B^{(t)} \), \(t \geq 0 \), as well as \(B^{(t)} \), \(t(d+1) + 1 \geq 0 \), are nonnegative definite, it follows from Proposition 2.8 that these kernels are quasi-invariant but not invariant.
4 | \(U(d)\) HOMOGENEOUS OPERATORS

4.1 | Boundedness and irreducibility

In this subsection, we derive explicit criterion for \(U(d)\)-homogeneous \(d\)-tuple of multiplication operator \(M\) to be (a) bounded and (b) irreducible. This is done separately for the class of kernels of the form appearing in Theorem 3.7 and Theorem 3.11.

Theorem 4.1. Suppose that \(K : B_d \times B_d \to M_d(C)\) is a nonnegative definite kernel of the form (♯). Then the \(d\)-tuple \(M\) on the Hilbert space \(H_K(B_d, C^d)\) is bounded if and only if

\[
\sup_{\ell} \left\{ \left(\ell + 1\right) a_{\ell-1,2} - a_{\ell-1,1}, \frac{a_{\ell-1,1}}{a_{\ell,1}} \right\} < \infty.
\]

Proof. The multiplication \(d\)-tuple \(M\) on the Hilbert space \(H_K(B_d, C^d)\) is bounded if and only if there exists \(c > 0\) such that \((c^2 - \langle z, w \rangle)K(z, w)\) is nonnegative definite [11, Lemma 2.7(ii)].

\[
(c^2 - \langle z, w \rangle)K(z, w)|_{\text{res} C^d \otimes p_{\ell}} = \left\{ c^2(a_{\ell,1} - a_{\ell,2}) - (a_{\ell-1,1} - a_{\ell-1,2}) \right\}\langle z, w \rangle^{l-1} \bar{w}z^* + (c^2a_{\ell,2} - a_{\ell-1,2})\langle z, w \rangle^l I_d = \left\{ c^2((\ell + 1)a_{\ell,2} - a_{\ell,1}) - ((\ell + 1)a_{\ell-1,2} - a_{\ell-1,1}) \right\}(\ell - 1)!K_{\ell}^l + (c^2a_{\ell,1} - a_{\ell-1,1})\ell!K_{\ell}^l.
\]

Hence, by Lemma 3.12 \((c^2 - \langle z, w \rangle)K(z, w)\) is nonnegative definite if and only if for all \(l \in \mathbb{N}\),

\[
c^2((\ell + 1)a_{\ell,2} - a_{\ell,1}) - ((\ell + 1)a_{\ell-1,2} - a_{\ell-1,1}) \geq 0
\]

and

\[
c^2a_{\ell,1} - a_{\ell-1,1} \geq 0.
\]

The claim of the theorem is clearly equivalent to these two positivity conditions completing the proof. \(\Box\)

Theorem 4.2. Suppose that \(K : B_d \times B_d \to M_d(C)\) is a nonnegative definite kernel function of the form (♯♯). Then, the \(d\)-tuple \(M\) on the Hilbert space \(H_K(B_d, C^d)\) is bounded if and only if

\[
\sup_{\ell} \left\{ \left(\ell + d - 1\right) a_{\ell-1,1} - (d - 1)a_{\ell-1,2}, \frac{a_{\ell-1,2}}{a_{\ell,2}} \right\} < \infty.
\]

Corollary 4.3. Let \(K\) be a nonnegative definite kernel function either of the form (♯) or (♯♯). Assume that the \(d\)-tuple \(M\) on the Hilbert space \(H_K(B_d, C^d)\) is bounded. Then, it is \(U(d)\)-homogeneous.

Proof. Since \(K\) is quasi-invariant under \(U(d)\), the conclusion follows from Lemma 2.3. \(\Box\)
Theorem 4.4. Let \(d \geq 2 \). Let \(K \) be a nonnegative definite kernel function either of the form \((\#)\) or \((\#\#)\). Assume that the \(d \)-tuple \(M \) on the Hilbert space \(H_K(\mathbb{B}_d, \mathbb{C}^d) \) is bounded. Then \(M \) is reducible if and only if \(a_{\ell,1} = a_{\ell,2} \) or \(\bar{a}_{\ell,1} = \bar{a}_{\ell,2} \) according as \(K \) is of the form \((\#)\) or of the form \((\#\#)\), \(\ell \in \mathbb{N} \).

Proof. First, let us consider the case of a kernel of the form \((\#)\). Assume that \(a_{\ell,1} = a_{\ell,2} \), \(\ell \in \mathbb{N} \).

Then \(K(z, w) = \sum_{\ell=0}^{\infty} a_{\ell,2} \langle z, w \rangle^\ell I_d \). Since \(d \geq 2 \), it is evident that the multiplication \(d \)-tuple \(M \) on \(H_K(\mathbb{B}_d, \mathbb{C}^d) \) is reducible. Conversely, assume that \(M \) on \(H_K(\mathbb{B}_d, \mathbb{C}^d) \) is reducible. Since \(K(z, 0) \) is constant and \(M \) is bounded, by the discussion following Lemma 5.1 of [13], there exists a nontrivial projection \(P \) on \(\mathbb{C}^d \) such that \(PK(z, w) = K(z, w)P \). In case, \(K \) is of the form \((\#)\), this is equivalent to

\[
P \left(\sum_{\ell=1}^{\infty} (a_{\ell,1} - a_{\ell,2}) \langle z, w \rangle^{\ell-1} \bar{w} \right) = \left(\sum_{\ell=1}^{\infty} (a_{\ell,1} - a_{\ell,2}) \langle z, w \rangle^{\ell-1} \bar{w} \right) P. \tag{4.1}
\]

Rewriting Equation (4.1), we have

\[
0 = \sum_{\ell=1}^{\infty} (a_{\ell,1} - a_{\ell,2}) \langle z, w \rangle^{\ell-1} (P \bar{w} - \bar{w} P)
= \sum_{\ell=1}^{\infty} (a_{\ell,1} - a_{\ell,2}) \sum_{|\alpha|=\ell-1} |\alpha|! \sum_{i,j=1}^d (PE_{i,j} - E_{i,j} P) z^{\alpha+\varepsilon_j} \bar{w}^{\alpha+\varepsilon_i}.
\]

Let \(\ell \geq 1 \) be fixed and choose \(\alpha = (\ell - 1)\varepsilon_i \), \(1 \leq i \leq d \). Then \(\alpha + \varepsilon_j \) and \(\alpha + \varepsilon_i \) are of the form

\[
(\ell - 1)\varepsilon_i + \varepsilon_j, \quad \ell \varepsilon_i, \quad 1 \leq j \leq d,
\]

respectively. If we choose any other multi-index \(\beta \neq \alpha \) with \(|\beta| = \ell - 1 \) and a pair of natural numbers \(m, n \), \(1 \leq m, n \leq d \), then we cannot have \(\beta + \varepsilon_m = \ell \varepsilon_i \) and \(\beta + \varepsilon_n = (\ell - 1)\varepsilon_i + \varepsilon_j \). It follows that the coefficients of \(z^{\ell-1} z_i \bar{w}^{\ell} \) must be zero. This means that \(P \) must commute with all the elementary matrices \(E_{i,j}, 1 \leq i, j \leq d \). Hence, \(P \) cannot be a nontrivial projection contrary to our hypothesis unless \(a_{\ell,1} = a_{\ell,2} \).

If \(K \) is of the form \((\#\#)\), we have

\[
P \left(\sum_{\ell=1}^{\infty} (\bar{a}_{\ell,1} - \bar{a}_{\ell,2}) \langle z, w \rangle^{\ell-1} \bar{w} \right) = \left(\sum_{\ell=1}^{\infty} (\bar{a}_{\ell,1} - \bar{a}_{\ell,2}) \langle z, w \rangle^{\ell-1} \bar{w} \right) P. \tag{4.2}
\]

Again, rewriting Equation (4.2), we have

\[
0 = \sum_{\ell=1}^{\infty} (\bar{a}_{\ell,1} - \bar{a}_{\ell,2}) \langle z, w \rangle^{\ell-1} (P \bar{w} - \bar{w} P)
= \sum_{\ell=1}^{\infty} (\bar{a}_{\ell,1} - \bar{a}_{\ell,2}) \sum_{|\alpha|=\ell-1} |\alpha|! \sum_{i,j=1}^d (PE_{i,j} - E_{i,j} P) z^{\alpha+\varepsilon_i} \bar{w}^{\alpha+\varepsilon_j}.
\]

Choosing \(\alpha = (\ell - 1)\varepsilon_i \), as before, we see that \(P \) cannot be a nontrivial projection contrary to our hypothesis unless \(\bar{a}_{\ell,1} = \bar{a}_{\ell,2} \). This completes the proof. \(\square \)
4.2 Computation of matrix coefficients and unitary equivalence

We wish to determine when the d-tuple M on the reproducing kernel Hilbert space $H_K(\mathbb{B}_d, \mathbb{C}^d)$, where K is given by either $\langle \# \rangle$ or $\langle \#\# \rangle$, are unitarily equivalent. For this, we rewrite the kernel K in the form $K(z, w) = \sum_{\alpha, \beta} A_{\alpha, \beta} z^\alpha \bar{w}^\beta$, where $\alpha, \beta \in \mathbb{Z}_+^d$ and $A_{\alpha, \beta}$ are $d \times d$ complex matrices. Since the kernels K given in $\langle \# \rangle$ and $\langle \#\# \rangle$ are normalized, any two d-tuple M acting on $H_K(\mathbb{B}_d, \mathbb{C}^d)$ and $H_K'(\mathbb{B}_d, \mathbb{C}^d)$ are unitarily equivalent if and only if for all α, β, $A_{\alpha, \beta}$ is unitarily equivalent to $A'_{\alpha, \beta}$ by a fixed unitary U. Here, we have taken $K'(z, w) = \sum_{\alpha, \beta} A'_{\alpha, \beta} z^\alpha \bar{w}^\beta$. Therefore, we proceed to find the matrix coefficients $A_{\alpha, \beta}$.

We will first consider a nonnegative definite kernel of the form $\langle \# \rangle$, that is,

$$K(z, w) = \sum_{\ell=1}^\infty (a_{\ell,1} - a_{\ell,2}) \langle z, w \rangle^\ell \bar{w}^\ell + \sum_{\ell=0}^\infty a_{\ell,2} \langle z, w \rangle^\ell I_d,$$

$$= \sum_{\ell=0}^\infty \sum_{|\alpha| = \ell} \binom{\ell}{\alpha} \left(\sum_{i,j=1}^d P_{i,j}(\ell + 1) z_j \bar{w}_i \right) z^\alpha \bar{w}^\alpha,$$

$$= \sum_{\alpha \in \mathbb{Z}_+^d} \left(\binom{|\alpha|}{\alpha} \right) P_0(|\alpha|) z^\alpha \bar{w}^\alpha + \sum_{\alpha \in \mathbb{Z}_+^d} \sum_{i,j} (|\alpha|) P_{i,j}(|\alpha| + 1) z^\alpha \bar{w}^\alpha,$$

where $P_0(|\alpha|) = a_{|\alpha|,2} I_d$ and $P_{i,j}(|\alpha|) = (a_{|\alpha|,1} - a_{|\alpha|,2}) E_{i,j}$. The only monomials that occur in the kernel K are of the form $z^\alpha \bar{w}^\beta$ with $\alpha - \beta = \varepsilon_j - \varepsilon_i$. To find the coefficient of such a monomial, we consider two cases, namely, $i \neq j$ and $i = j$. If $i \neq j$, then the coefficient $A_{\alpha+\varepsilon_j, \alpha+\varepsilon_i}$ of the monomial $z^{\alpha+\varepsilon_j} \bar{w}^{\alpha+\varepsilon_i}$ is

$$A_{\alpha+\varepsilon_j, \alpha+\varepsilon_i} = \left(\binom{|\alpha|}{\alpha} \right) P_{i,j}(|\alpha| + 1), \quad i \neq j. \quad (4.3)$$

On the other hand, if $i = j$, we have

$$A_{\alpha, \alpha} = \left(\binom{|\alpha|}{\alpha} \right) P_0(|\alpha|) + \sum_{i=1}^d \left(\binom{|\alpha| - 1}{\alpha - \varepsilon_i} \right) P_{i,i}(|\alpha|). \quad (4.4)$$

Replacing $P_0(|\alpha|)$ by $\tilde{P}_0(|\alpha|) := \tilde{a}_{|\alpha|,2} I_d$ and $P_{i,j}(|\alpha|)$ by $\tilde{P}_{i,j}(|\alpha|) := \tilde{a}_{|\alpha|,1} - \tilde{a}_{|\alpha|,2} E_{i,j}$, we get the matrix coefficients for the kernel K of the form $\langle \#\# \rangle$.

Theorem 4.5. Let K and K' be two nonnegative definite kernel functions either of the form $\langle \# \rangle$ or of the form $\langle \#\# \rangle$. Assume that the d-tuples M on the Hilbert space $H_K(\mathbb{B}_d, \mathbb{C}^d)$ and $H_K'(\mathbb{B}_d, \mathbb{C}^d)$ are bounded. Then, these two d-tuples are unitarily equivalent if and only if the two kernels K and K' are equal.

Proof. Since the kernels K and K' are normalized at 0, it follows that the d-tuples M on two of these spaces are unitarily equivalent if and only if the matrix coefficients in the expansion of these kernels, as above, are unitarily equivalent via a fixed unitary U of size $d \times d$, see [6, Lemma 4.8]
(c)] To prove the theorem, we first consider two kernels K and K' of the form (\(\sharp\)), that is,

$$K(z, w) = \sum_{\ell = 1}^{\infty} (a_{\ell,1} - a_{\ell,2}) (z, w)^{\ell - 1} \overline{w} z + \sum_{\ell = 0}^{\infty} a_{\ell,2} (z, w)^{\ell} I_d$$

and

$$K'(z, w) = \sum_{\ell = 1}^{\infty} (a'_{\ell,1} - a'_{\ell,2}) (z, w)^{\ell - 1} \overline{w} z + \sum_{\ell = 0}^{\infty} a'_{\ell,2} (z, w)^{\ell} I_d.$$

Assume that the d-tuples M on the Hilbert spaces $H_K(\mathbb{B}_d, \mathbb{C}^d)$ and $H_{K'}(\mathbb{B}_d, \mathbb{C}^d)$ are unitarily equivalent. For fixed $\ell \in \mathbb{Z}_+$, set $a_\ell := a_{\ell,1} - a_{\ell,2}$ and $a'_\ell := a'_{\ell,1} - a'_{\ell,2}$. It follows from Equation (4.3) that $a_\ell U E_{i,j} = a'_\ell E_{i,j} U$ for every $i \neq j$, $1 \leq i, j \leq d$. Therefore, we conclude that a_ℓ and a'_ℓ are simultaneously zero or non-zero. If a_ℓ and a'_ℓ are both zero for all ℓ, then the two kernels K and K' are invariant kernels of the form $\sum_\ell a_\ell I_d (z, w)^{\ell}$ and $\sum_\ell a'_\ell I_d (z, w)^{\ell}$, respectively. Hence, the d-tuples M acting on K and K' are unitarily equivalent if and only if $a_{\ell,2} = a'_{\ell,2}$ for all ℓ.

Assume that $a_{\ell,1} \neq a_{\ell,2}$ for some $\ell \in \mathbb{N}$. Fix one such ℓ and evaluate Equation (4.3) for a fixed pair i, j with $i \neq j$. We then see that every column of the $d \times d$ matrix $a_\ell U E_{i,j}$ is zero except for the jth column. This non-zero column is a_ℓ times the ith column of U. On the other hand, each row of $d \times d$ matrix $a'_\ell E_{i,j} U$ is zero except for the ith one, which is a'_ℓ times the jth row of U. Since neither a_ℓ nor a'_ℓ is zero, it follows that $U_{k,j} = 0, 1 \leq k \neq i \leq d$, similarly, $U_{j,p} = 0, 1 \leq p \neq j \leq d$. Hence, U must be a diagonal matrix. Moreover, we have that $a_\ell U_{i,i} = a'_\ell U_{i,i}$ for $1 \leq i \neq j \leq d$. We claim $a_\ell = a'_\ell$. For the proof, start with $a_\ell^2 U_{i,i} = a_\ell (a'_\ell U_{i,j}) = a'_\ell^2 U_{i,i}$ and conclude that $a_\ell = a'_\ell$. Hence, $U_{i,i} = U_{j,j}$ for $i \neq j$ and it follows that $U_{1,1} = U_{2,2} = U_{3,3} = \cdots = U_{d,d}$. In consequence, U must be a unimodular scalar times identity.

If the kernels K and K' are of the form (\(\sharp\)), then the proof is similar and therefore omitted. \(\Box\)

The theorem below answers the question of unitary equivalence between two $U(d)$-homogeneous multiplication tuples acting on $H_{K^1}(\mathbb{B}_d, \mathbb{C}^d)$ and $H_{K^{\sharp\sharp}}(\mathbb{B}_d, \mathbb{C}^d)$.

Theorem 4.6. Let K^1 be a kernel of the form (\(\sharp\)) and $K^{\sharp\sharp}$ be a kernel of the form (\(\sharp\sharp\)). Assume that the d-tuples M on the Hilbert space $H_{K^1}(\mathbb{B}_d, \mathbb{C}^d)$ and $H_{K^{\sharp\sharp}}(\mathbb{B}_d, \mathbb{C}^d)$ are bounded. Then

1. if $d > 2$, these two d-tuples are unitarily equivalent if and only if $a_{\ell,1} = a_{\ell,2} = \tilde{a}_{\ell,1} = \tilde{a}_{\ell,2}$, $\ell \in \mathbb{N}$.
2. if $d = 2$, these two d-tuples are unitarily equivalent if and only if $a_{\ell,1} = \tilde{a}_{\ell,2}$ and $a_{\ell,2} = \tilde{a}_{\ell,1}$, $\ell \in \mathbb{N}$.

Proof. The idea of the proof of part (1) is the same as that of the proof for Theorem 4.5. As in that proof, expanding K^1 and $K^{\sharp\sharp}$ and assume that there is a unitary U intertwining all the coefficients described in (4.3) and (4.4) with the ones described in the comments following these two equations. Assume that $\tilde{a}_{m,1} \neq \tilde{a}_{m,2}$ (and therefore $\tilde{a}_{m,1} \neq \tilde{a}_{m,2}$) for some $m \in \mathbb{N}$. For every fixed but arbitrary pair (i, j), we must have

$$(a_{m,1} - a_{m,2}) \left(\sum_{k, \ell = 1}^{d} U_{k,\ell} E_{k,\ell} \right) E_{i,j} = (\tilde{a}_{m,1} - \tilde{a}_{m,2}) E_{i,j} \left(\sum_{k, \ell = 1}^{d} U_{k,\ell} E_{k,\ell} \right).$$
Since $E_{k,\ell}E_{i,j} = \delta_{\ell,i}E_{k,j}$, it follows that $\sum_{k,l} U_{k,\ell}E_{i,j} = \sum_{k} U_{k,i}E_{k,j}$. Similarly, $E_{i,j}^{\dagger} \sum_{k,l} U_{k,\ell} = \sum_{\ell} U_{i,j}E_{j,\ell}$. Thus, for $j \neq i$, we have that $U_{i,j} = \lambda U_{j,i}$, $|\lambda| = 1$. Now, assume that $d > 2$. Moreover, for a fixed $k \neq i$, we have $U_{k,\ell} = 0 = U_{j,\ell}$, and for fixed $\ell \neq j$, we have $U_{j,\ell} = 0 = U_{k,\ell}$. Therefore, for $d > 2$, we arrive at a contradiction unless $a_{\ell,1} = a_{\ell,2}$ and $\tilde{a}_{\ell,1} \neq \tilde{a}_{\ell,2}$ for all $\ell \in \mathbb{N}$, or that there is no unitary intertwiner.

The proof of part (2) involves verifying that the unitary $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ intertwines the two kernels whenever $a_{\ell,1} = \tilde{a}_{\ell,2}$ and $a_{\ell,2} = \tilde{a}_{\ell,1}$, $\ell \in \mathbb{N}$. \hfill \[\square \]

4.3 Quasi-invariant diagonal kernels are invariant

While there might be a characterization of all the invariant kernels on an arbitrary bounded symmetric domain Ω, unfortunately, we have not been able to find one. Therefore, we have decided to include a description of all the $U'(d)$-invariant kernels for the special case of $\Omega = B_d$, the only case that we are able to resolve. We begin by describing the kernels invariant under the group $U'(d)$.

Proposition 4.7. Let $K : B_d \times B_d \to \mathcal{M}_n(\mathbb{C})$ be a nonnegative definite kernel. Suppose that K is invariant under $U'(d)$. Then K must be of the form $K(z, w) = \sum_{\ell=0}^{\infty} A_{\ell}(z, w)^{\ell}$, for some sequence $\{A_{\ell}\}_{\ell \in \mathbb{Z}_+}$ of positive definite $n \times n$ matrices.

Proof. Let $K(z, w) = \sum_{\alpha, \beta \in \mathbb{Z}_+^d} A_{\alpha, \beta} z^{\alpha} \overline{w}^{\beta}$, $z, w \in B_d$. Suppose that K is invariant under $U'(d)$, that is, $K(u \cdot z, u \cdot w) = K(z, w)$, for all $z, w \in B_d$ and $u \in U'(d)$. Choosing u to be the diagonal unitary matrices $\text{diag}(e^{i\theta_1}, \ldots, e^{i\theta_d})$, $\theta := (\theta_1, \ldots, \theta_d) \in \mathbb{R}^d$, we get that

$$\sum_{\alpha, \beta \in \mathbb{Z}_+^d} A_{\alpha, \beta} z^{\alpha} \overline{w}^{\beta} e^{i(\alpha - \beta) \cdot \theta} = \sum_{\alpha, \beta \in \mathbb{Z}_+^d} A_{\alpha, \beta} z^{\alpha} \overline{w}^{\beta}, z, w \in B_d,$$

where $(\alpha - \beta) \cdot \theta := (\alpha_1 - \beta_1)\theta_1 + \cdots + (\alpha_d - \beta_d)\theta_d$. Therefore, we have

$$A_{\alpha, \beta} e^{i((\alpha - \beta) \cdot \theta) - 1} = 0, \text{ for all } \alpha, \beta \in \mathbb{Z}_+^d, \theta \in \mathbb{R}^d. \quad (4.5)$$

Let $\alpha, \beta \in \mathbb{Z}_+^d$ and $\alpha \neq \beta$. Then there exists $m, 1 \leq m \leq d$, such that $\alpha_m \neq \beta_m$. Choosing $\theta_j = 0$ for all $j \neq m$ in (4.5), we obtain that $A_{\alpha, \beta} = 0$. Hence, $K(z, w)$ is of the form $\sum_{\alpha \in \mathbb{Z}_+^d} A_{\alpha} z^{\alpha} \overline{w}^{\alpha}$. Now choosing u to be u_z, we see that

$$K(z, z) = K(u_z \cdot z, u_z \cdot z) = K(\|z\|e_1, \|z\|e_1) = \sum_{\ell=0}^{\infty} A_{\ell} \|z\|^{2\ell}.$$

By polarization, we get that $K(z, w) = \sum_{\ell=0}^{\infty} A_{\ell} \langle z, w \rangle^{\ell} = \sum_{\ell=0}^{\infty} \tilde{A}_{\ell} \langle z, w \rangle^{\ell}$, where $\tilde{A}_{\ell} = A_{\ell} e^{i\ell \theta}$. Since K is nonnegative definite, by [6, Lemma 4.1 (c)], it follows that \tilde{A}_{ℓ} is positive definite, completing the proof. \hfill \[\square \]
For any u in $U(d)$ and $\alpha \in \mathbb{Z}^d_+$ with $|\alpha| = \ell$, let $X^u_{\alpha, \beta} \in \mathbb{Z}^d_+$, $|\beta| = \ell$, be the complex numbers given by

$$ (u \cdot z)^\alpha = \sum_{|\beta| = \ell} X^u_{\alpha, \beta} z^\beta. \quad (4.6) $$

We arrive at the same conclusion as that of Proposition 4.5 even if we assume that K is merely a quasi-invariant diagonal kernel. For the proof, we begin by proving a couple of preparatory lemmas.

Lemma 4.8. For any $u \in U(d)$, the matrix $\left(\left(\frac{\ell!}{\alpha!} X^u_{\alpha, \beta}\right)\right)_{|\alpha| = |\beta| = \ell}$ is unitary.

Proof. Consider the space of homogeneous polynomials P_ℓ endowed with the Fischer–Fock inner product. Note that $\left\{\frac{z^\gamma}{(\gamma!)^{1/2}}\right\}_{|\gamma| = \ell}$ forms an orthonormal basis of P_ℓ and $\left(\left(\frac{\ell!}{\alpha!} X^u_{\alpha, \beta}\right)\right)_{|\alpha| = |\beta| = \ell}$ is the matrix representation of the unitary map $p \mapsto p \circ u$ with respect to this orthonormal basis. \square

Lemma 4.9. There exists a unitary $u \in U(d)$ such that $X^u_{\ell \epsilon_1, \alpha} \neq 0$ for all $\alpha \in \mathbb{Z}^d_+$ with $|\alpha| = \ell$.

Proof. Choose a unitary $u = (u_{ij})_{i,j=1}^d$ in $U(d)$ such that $u_{1j} \neq 0$ for $j = 1, \ldots, d$. Since

$$ (u \cdot z)^{\ell \epsilon_1} = (u_{11}z_1 + \cdots + u_{1d}z_d)^{\ell \epsilon} = \sum_{|\alpha| = \ell} \frac{\ell!}{\alpha!} u_{11}^{\alpha_1} \cdots u_{1d}^{\alpha_d} z^\alpha, \quad \alpha = (\alpha_1, \ldots, \alpha_d) \in \mathbb{Z}^d_+, $$

we get that $X^u_{\ell \epsilon_1, \alpha} = \frac{\ell!}{\alpha!} u_{11}^{\alpha_1} \cdots u_{1d}^{\alpha_d}$, which is certainly nonzero by our choice of u. \square

We now prove the main theorem of this section stated below using Lemma 4.8 and Lemma 4.9.

Theorem 4.10. Let $H \subset \text{Hol}(B_d, \mathbb{C}^n)$ be a reproducing kernel Hilbert space. Suppose that \mathbb{C}^n-valued polynomials are dense in H and $\langle z^\alpha \otimes \xi, z^\beta \otimes \eta \rangle = 0$, for all $\alpha \neq \beta$ in \mathbb{Z}^d_+ and ξ, η in \mathbb{C}^n. If the d-tuple M on H is $U(d)$-homogeneous, then there exists a sequence of positive definite $n \times n$ matrices $\{A_\ell\}_{\ell \in \mathbb{Z}_+}$ such that

$$ \|z^\alpha \otimes \xi\|^2 = \alpha! \langle A_{|\alpha|} \xi, \xi \rangle, \quad \alpha \in \mathbb{Z}^d_+, \xi \in \mathbb{C}^n. $$

Proof. Since M on H is $U(d)$-homogeneous, by Lemma 2.3, for each $u \in U(d)$, there exists a unitary $\Gamma(u)$ on H of the form

$$ \Gamma(u)(f) = c(u)f \circ u, \quad f \in H, $$

where $c(u) \in U(n)$ for all $u \in U(d)$. Let $\ell \in \mathbb{Z}_+$. For $\alpha, \beta \in \mathbb{Z}^d_+$ with $|\alpha| = |\beta| = \ell$, $\alpha \neq \beta$, and $\xi, \eta \in \mathbb{C}^n$, we have

$$ \langle \Gamma(u)(z^\alpha \otimes \xi), \Gamma(u)(z^\beta \otimes \eta) \rangle = \langle (u \cdot z)^\alpha \otimes c(u)\xi, (u \cdot z)^\beta \otimes c(u)\eta \rangle. $$
\[
\sum_{|\gamma|=\ell} X_{\alpha,\gamma}^{u} X_{\beta,\gamma}^{u}(z^\gamma \otimes c(u)\xi, z^\gamma \otimes c(u)\eta).
\]

Since \(\Gamma(u)\) is unitary and \(\langle z^\alpha \otimes \xi, z^\beta \otimes \eta \rangle = 0\), it follows that \(\langle \Gamma(u)(z^\alpha \otimes \xi), \Gamma(u)(z^\beta \otimes \eta) \rangle = 0\). Hence, from (4.7), we obtain

\[
\sum_{|\gamma|=\ell} X_{\alpha,\gamma}^{u} X_{\beta,\gamma}^{u}(z^\gamma \otimes c(u)\xi, z^\gamma \otimes c(u)\eta) = 0.
\]

Since \(c(u)\) is unitary and the above equality holds for all \(\xi, \eta \in \mathbb{C}^n\), we get

\[
\sum_{|\gamma|=\ell} X_{\alpha,\gamma}^{u} X_{\beta,\gamma}^{u}(z^\gamma \otimes \xi, z^\gamma \otimes \eta) = 0.
\]

By Lemma 4.9, there exists a unitary \(u_0 \in U(d)\) such that \(X_{\ell \varepsilon_1,\gamma}^{u_0} \neq 0\) for all \(\gamma\) with \(|\gamma| = \ell\). Choosing \(\alpha = \ell \varepsilon_1\) and \(u = u_0\) in (4.9), we get for all \(\beta \neq \ell \varepsilon_1\) with \(|\beta| = \ell\),

\[
\sum_{|\gamma|=\ell} X_{\ell \varepsilon_1,\gamma}^{u_0}(z^\gamma \otimes \xi, z^\gamma \otimes \eta) X_{\beta,\gamma}^{u_0} = 0.
\]

Hence, it follows from Lemma 4.8 that

\[
X_{\ell \varepsilon_1,\gamma}^{u_0}(z^\gamma \otimes \xi, z^\gamma \otimes \eta) = X_{\ell \varepsilon_1,\gamma}^{u_0} \gamma! X_{\beta,\gamma}^{u_0},
\]

that is, \(\langle z^\gamma \otimes \xi, z^\gamma \otimes \eta \rangle = X_{\ell \varepsilon_1,\gamma}^{u_0} \gamma!\), for all \(\gamma\) with \(|\gamma| = \ell\) and for some constant \(X_{\ell \varepsilon_1,\gamma}^{u_0}\). Clearly, there exists an \(n \times n\) positive definite matrix \(A_\ell\) such that

\[
\langle A_{\ell \varepsilon_1,\gamma}, \eta \rangle_{\mathbb{C}^n} = X_{\ell \varepsilon_1,\gamma}^{u_0} \gamma!, \xi, \eta \in \mathbb{C}^n.
\]

This completes the proof. \(\square\)

As a corollary, we conclude that a quasi-invariant nonnegative definite diagonal kernel defined on the Euclidean ball must necessarily be invariant.

Corollary 4.11. Let \(K : B_d \times B_d \to M_n(\mathbb{C})\) be a nonnegative definite kernel such that \(\partial^\alpha \overline{\partial}^\beta K(0,0) = 0\) whenever \(\alpha \neq \beta\). Suppose that \(\mathbb{C}^n\)-valued polynomials are dense in \(H_K(B_d, \mathbb{C}^n)\). If \(K\) is quasi-invariant under \(U(d)\), then it must be of the form \(K(z, w) = \sum_{\ell} A_{\ell}^{-1} z^{\alpha} A_{\ell}^{-1/2} \varepsilon_i : 1 \leq i \leq n, |\alpha| = \ell\)
forms an orthonormal basis for the space of \mathbb{C}^n-valued homogeneous polynomial $P_\ell \otimes \mathbb{C}^n$ in $H_K(\mathbb{B}_d, \mathbb{C}^n)$, where A_ℓ is a positive definite invertible $n \times n$ matrix for all $\ell \in \mathbb{Z}_+$. Equivalently, the reproducing kernel K_ℓ of the (finite dimensional) Hilbert space $P_\ell \otimes \mathbb{C}^n$ is given by the formula:

$$K_\ell(z, w) = A_\ell^{-1} \frac{(z, w)_{\ell}}{\ell !}.$$
Thus, the kernel K must be of the form $K(z, w) = \sum_{\ell} A_\ell^{-1} \frac{(z, w)_{\ell}}{\ell !}$ for all $z, w \in \mathbb{B}_d$. This proves the result.

There are several separate equivalent assertions that are implicit in the previous corollary. We list them below.

1. The inner product on $P_\ell \otimes \mathbb{C}^n$ is given by the usual Hilbert space tensor product of the two finite-dimensional Hilbert spaces, namely, $(P_\ell, \langle \cdot , \cdot \rangle_{P_\ell})$ and $(\mathbb{C}^n, \langle \cdot , \cdot \rangle_{A_\ell})$, where $\langle x, y \rangle_{A_\ell} = \langle A_\ell x, y \rangle_{\mathbb{C}^n}$.

2. The set $\left\{ \frac{1}{\sqrt{\alpha !}} z^\alpha A_\ell^{-1/2} \varepsilon_i : 1 \leq i \leq n, |\alpha| = \ell \right\}$ forms an orthonormal basis for $P_\ell \otimes \mathbb{C}^n$.

3. The kernel function K_ℓ on the (finite-dimensional) Hilbert space $(P_\ell, \langle \cdot , \cdot \rangle_{P_\ell}) \otimes (\mathbb{C}^n, \langle \cdot , \cdot \rangle_{A_\ell})$ is given by the formula:

$$K_\ell(z, w) = A_\ell^{-1} \frac{(z, w)_{\ell}}{\ell !}, \quad z, w \in \mathbb{B}_d.$$

4. The kernel function K of the Hilbert space $H_K(\mathbb{B}_d, \mathbb{C}^n)$ is of the form $K(z, w) = \sum_{\ell} A_\ell^{-1} \frac{(z, w)_{\ell}}{\ell !}$.

5 | CLASSIFICATION

Before we discuss the question of classification of $U'(d)$-homogeneous operators, we note that some of our results exist in the representation theory literature albeit somewhat disguised. We believe that unraveling this relationship would serve a useful purpose.

5.1 | Decomposition of tensor product of $\pi_1 \otimes \pi_\ell$ and $\bar{\pi}_1 \otimes \pi_\ell$

There is an alternative but equivalent description of the representations $\bar{\pi}_\ell$ and $\bar{\pi}_\ell$, given below, which is also useful. For this, we identify the space of linear polynomials P_1 as the dual of the linear space \mathbb{C}^d. We define $\phi : \mathbb{C}^d \otimes P_\ell \to P_1 \otimes P_\ell$ by setting

$$\phi \left(\sum_{i=1}^d e_i p_i^\ell \right)(z, w) = \sum_{i=1}^d z_i p_i^\ell(w), \quad z, w \in \mathbb{B}_d.$$

Therefore, we see that $\text{Im}(\phi)$ is the space $P_1 \otimes P_\ell$ of homogeneous polynomials of degree $\ell + 1$ in $2d$-variables. Since the monomials $z_1, ..., z_d$ form an orthonormal basis in P_1 with respect to
the Fisher–Fock inner product, it follows that ϕ is unitary. Hence, $\hat{\pi}_\ell$ is unitarily equivalent, via ϕ, with $\pi_1 \otimes \pi_\ell$, where

$$(\pi_1(u) \otimes \pi_\ell(u))p(z, w) = p(u^{-1} \cdot z, u^{-1} \cdot w), \quad p \in P_1 \otimes P_\ell.$$\

The contragredient of the representation π_1 is defined to be the representation $\pi_1(\bar{u})p_1(z) := p_1(u^\dagger \cdot z)$, $p_1 \in P_1$, we have

$$(\pi_1(\bar{u}) \otimes \pi_\ell(u))p(z, w) = p(u^\dagger \cdot z, u^{-1} \cdot w), \quad p \in P_1 \otimes P_\ell.$$\

Again, ϕ intertwines $\hat{\pi}_\ell$ and $\pi_1 \otimes \pi_\ell$:

$$(\phi \hat{\pi}_\ell(u))f(w) = \sum_{i=1}^d z_i(u(fu^{-1}))_i(w) = \langle u(fu^{-1})(w), z \rangle_{\mathbb{C}^d} = \langle (fu^{-1})(w), u^\dagger \cdot z \rangle_{\mathbb{C}^d} = \sum_{i=1}^d (u^\dagger \cdot z)f_i(u^{-1} \cdot w) = (\pi_1(u) \otimes \pi_\ell(u))\phi(f)(w),$$

where $u \in \mathcal{U}(d)$ and $f = \begin{pmatrix} f_1 \\ \vdots \\ f_d \end{pmatrix} \in \mathbb{C}^d \otimes P_\ell$.

Let $\overline{S}_\ell = (P_\ell, \pi_\ell)$ and $S_1 = (P_1, \pi_1)$. Note that in the standard terminology of representation theory, the representation $\hat{\pi}_\ell \sim_u \pi_1 \otimes \pi_\ell$ is $\hat{S}_1 \otimes \hat{S}_\ell$, where \sim_u stands for unitary equivalence of the two representations. Similarly, $\hat{\pi}_\ell \sim_u \pi_1 \otimes \pi_\ell$ is $S_1 \otimes \overline{S}_\ell$. From Equation (23.12) of [16], we see that

$$S_1 \otimes \overline{S}_\ell = D_{1,0,\ldots,0,\ell} \oplus D_{0,\ldots,0,1-\ell},$$

(5.1)

where $D_{(0,\ldots,0,1-\ell)} \sim_u \overline{S}_{\ell-1}$ and using Proposition 23.3 of [16], it follows that $D_{(1,0,\ldots,0,\ell)}$ is unitarily equivalent to the restriction of the representation $\hat{\pi}_\ell$ to the subspace $\overline{\mathcal{V}}_\ell \subset \mathbb{C}^d \otimes P_\ell$ via the map ϕ. Note that the restriction of $\hat{\pi}_\ell$ to $\overline{\mathcal{V}}_\ell$ is irreducible (refer to Corollary 3.14) and the representation $\hat{\pi}_\ell$ has exactly two irreducible components, see (5.1). Therefore, we have proved the following theorem.

Theorem 5.1. The subspaces $\overline{\mathcal{V}}_\ell$ and $\overline{\mathcal{V}}_\ell^\perp$ of $\mathbb{C}^d \otimes P_\ell$ are reducing for the representation $\hat{\pi}_\ell$; moreover, the restriction of $\hat{\pi}_\ell$ to these subspaces is irreducible.

One would like to obtain a similar decomposition of $\hat{\pi}_\ell$ into irreducible representations as in Theorem 5.1. However, such a decomposition appears to be not available in any explicit form. This, we provide below. Clearly,

$$\text{Im}(\phi) = \phi(\overline{\mathcal{V}}_\ell) \oplus \phi(\overline{\mathcal{V}}_\ell^\perp).$$
where

(1) $\phi(\tilde{V}_\epsilon) = \{ p(z, w) = \sum_{i=1}^d z_i p_i^j(w) \in P_1 \otimes P_\ell : p |_{\text{res} \Delta} = 0 \}$, where $\Delta := \{(z, z) : z \in B_d \},$

(2) $\phi(\tilde{V}_\perp) = \{ \sum_{i=1}^d z_i \delta_i q_{\ell+1}(w) \in P_1 \otimes P_\ell : q_{\ell+1} \in P_{\ell+1} \}.$

Also, we note that $\phi(\tilde{V}_\perp) = \{ p |_{\text{res} \Delta} : p \in P_1 \otimes P_\ell \}.$ Since \tilde{V}_ϵ is invariant under $\tilde{\pi}_\epsilon$ and ϕ is an intertwining map between $\tilde{\pi}_\epsilon$ and $\pi_1 \otimes \pi_\epsilon$, it follows that $\phi(\tilde{V}_\epsilon)$ is invariant under $\pi_1 \otimes \pi_\epsilon$. Let $R : P_1 \otimes P_\ell \to P_{\ell+1}$ be the restriction map, that is, $Rp(z, w) := p(z, z) = \sum_{i=1}^d z_i p_i^j(z).$ Thus, we have proved the lemma that follows.

Lemma 5.2. The map R on $\phi(\tilde{V}_\perp)$ is onto $P_{\ell+1}$ and is isometric when $P_{\ell+1}$ is equipped with the Fischer–Fock inner product. Moreover, $R(\pi_1(u) \otimes \pi_\epsilon(u))R^* = \pi_{\ell+1}(u).$

As before, since $\pi_{\ell+1}$ is an irreducible representation, the proof of the theorem stated below follows from Lemma 5.2.

Theorem 5.3. The subspaces \tilde{V}_ϵ and \tilde{V}_\perp of $\mathbb{C}^d \otimes P_\ell$ are reducing for the representation $\tilde{\pi}_\epsilon$; moreover, the restriction of $\tilde{\pi}_\epsilon$ to these subspaces is irreducible.

We point out that half of Theorems 5.1 and 5.3 have been already proved in Corollary 3.14. The remaining half can also be proved in a similar manner to that of the proof in Corollary 3.14. However, we believe that the proof we have given here is more revealing.

Recall the decomposition of $\tilde{K}^{(\alpha, \beta)}(z, w)$ given in Theorem 3.7. Let $\Lambda = \mathbb{Z}_+.$ For $\lambda \in \Lambda$, choosing

$$b_\lambda = \begin{cases} \alpha_j, & \text{if } \lambda = 2j + 1 \\ \beta_j, & \text{if } \lambda = 2j, \end{cases}$$

and setting

$$K_\lambda(z, w) = \begin{cases} \tilde{K}_j(z, w), & \text{if } \lambda = 2j + 1 \\ \tilde{K}_j(z, w)^\perp, & \text{if } \lambda = 2j, \end{cases}$$

we obtain a second decomposition of the kernel $\tilde{K}^{(\alpha, \beta)}$ from Theorem 2.7 that coincides with the previous one from Theorem 3.7. A similar statement can be made about the kernel $\check{K}^{(\alpha, \beta)}$ appearing in Theorem 3.11.

5.2 Classification

The natural action of the unitary group $U(d)$ on $\mathbb{C}^d \otimes P$ associated with the multiplier c is given by $p \to c(u)(p \circ u^{-1})$, $p \in \mathbb{C}^d \otimes P$ and $u \in U(d).$ We obtain two classes of $U(d)$-homogeneous d-tuple of operators with respect to two different multipliers $c(u) = \tilde{u}$ (see Theorem 3.7) and $c(u) = u$ (see Theorem 3.11). The map $u \mapsto \tilde{u}$ and $u \mapsto u$ are d-dimensional irreducible unitary representations of the group $U(d)$.

The classification of finite-dimensional irreducible unitary representations of the unitary group $U(n)$ is well studied. The result is summarized in [16, Proposition 22.2] and is reproduced below for ready reference.
Proposition 5.4. Each irreducible unitary representation of $U(n)$ restricts to an irreducible unitary representation of $SU(n)$, and all irreducible unitary representations of $SU(n)$ are obtained in this fashion. Furthermore, two irreducible unitary representations π_1 and π_2 of $U(n)$ restrict to the same representation of $SU(n)$ if and only if, for some $j \in \mathbb{Z}$,

$$\pi_2(g) = (\det g)^j \pi_1(g), \quad \forall g \in U(n).$$

Hence, the set of equivalence classes of irreducible unitary representations of $SU(n)$ is parametrized by

$$\{(d_1, \ldots, d_n, 0) \in \mathbb{Z}^n : d_1 \geq d_2 \geq \cdots \geq d_n \geq 0\}.$$

Also, recall the Weyl dimension formula for an irreducible unitary representation π of $SU(n)$ with weights: $w_1 \geq \cdots \geq w_n$, $w_i \in \mathbb{Z}$, [15, Theorem 11.4] (see also [3, Proposition 2.5]),

$$\dim \pi = \prod_{1 \leq j < k \leq n} \frac{w_j - w_k + k - j}{k - j}.$$

Combining Proposition 5.4 with the Weyl dimension formula, we find all the d-dimensional representations of $SU(d)$. The representations of $U(d)$ can be then made up from the ones for $SU(d)$ using the relationship between these representations prescribed in Proposition 5.4 as follows. The d-dimensional (inequivalent, irreducible, and unitary) representations of the group $U(d)$ are determined by weights of the form: $(\ell + 1, \ell, \ldots, \ell)$ and $(m, \ldots, m, m - 1)$, $\ell, m \in \mathbb{Z}$. As noted in [16, Proposition 22.2], the representation ρ_{ℓ} corresponding to the weight $(\ell + 1, \ell, \ldots, \ell)$ differs from ρ_0 by a power of the determinant: $\rho_{\ell}(u) = (\det(u))^\ell \rho_0(u)$, $u \in U(d)$. The representation $\tilde{\rho}_m$ corresponding to $(m, \ldots, m, m - 1)$ is similarly related to ρ_0. We also point out that $\tilde{\rho}_0$ is the contragredient of ρ_0. We claim that ρ_{ℓ} and $\tilde{\rho}_m$ are the only d-dimensional irreducible unitary representations of $U(d)$ up to unitary equivalence (Lemma 5.5). We also claim that $SU(d)$ has no irreducible unitary representation of dimension $2, \ldots, d - 1$ (Lemma 5.6).

It might be that both of these results are well known, although we are not able to locate them. However, A. Koranyi in private communication to one of the authors has provided a very short proof of Lemma 5.6 using Lie algebraic machinery. A little more effort gives a proof of Lemma 5.5 as well, thanks to A. Khare, E. K. Narayanan, and C. Varughese. However, here we give, what we consider to be an elementary proof of these assertions.

Lemma 5.5. Suppose that $c : U(d) \to GL_d(\mathbb{C})$ is an irreducible unitary representation of $U(d)$. Then, up to unitary equivalence, either $c(u) = \det(u)^\ell \bar{u}$ or $c(u) = \det(u)^m u$, $\ell, m \in \mathbb{Z}$.

Lemma 5.6. If $n \in \mathbb{N}$: $2 \leq n \leq d - 1$, then there is no n-dimensional irreducible unitary representation of $U(d)$, or that of $SU(d)$.

B. Bagchi has observed that Lemma 5.5 and 5.6 can be combined into the following assertion.

Let $w_1 \geq \cdots \geq w_d = 0$ be integers. Then, either $w_1 = \cdots = w_d = 0$, or $\prod_{1 \leq j < k \leq d} \frac{1 + \frac{w_j - w_k}{k - j}}{w_{d+1} = 0} \geq d$. Equality holds in this inequality if and only if either $w_1 = \cdots = w_{d-1} = 1, w_d = 0$ or $w_1 = 1$ and $w_2 = \cdots = w_d = 0$. The proof is then by induction on the dimension d similar to the proofs we give below.
The first half of Theorem 5.7 below describing all the quasi-invariant kernels, which transform as in Definition 1.3 via an irreducible d-dimensional unitary representation c of $U(d)$, is an immediate consequence of Lemma 5.5 combined with Theorem 3.7 (resp. Theorem 3.11) and Theorem 3.13. The second half follows from Lemma 5.6. We would have liked to prove a similar classification theorem for all the $U(d)$-homogeneous operators in the class $A_d U^n(B_d)$. However, unfortunately, such a classification does not follow immediately from the theorem below and requires further investigation.

Theorem 5.7. Let $K : B_d \times B_d \to M_n(C)$ be a nonnegative definite kernel.

(a) Suppose that $n = d$, and K is quasi-invariant under $U(d)$ with respect to the multiplier c, where $c : U(d) \to GL_d(C)$ is an irreducible unitary representation. Then, there exists $U \in U(d)$ such that $UK(z, w)U^*$ is either of the form

$$
\sum_{\ell=1}^{\infty} (a_{\ell,1} - a_{\ell,2}) \langle z, w \rangle^{\ell-1} w z^\dagger + \sum_{\ell=0}^{\infty} a_{\ell,2} \langle z, w \rangle^\ell \text{Id}, \quad z, w \in B_d,
$$

where $a_{\ell,1} \geq 0$ and $a_{\ell,1} \leq (\ell + 1)a_{\ell,2}$ for all $\ell \in \mathbb{Z}_+$, or of the form

$$
\sum_{\ell=1}^{\infty} (\bar{a}_{\ell,1} - \bar{a}_{\ell,2}) \langle z, w \rangle^{\ell-1} z w^\dagger + \sum_{\ell=0}^{\infty} \bar{a}_{\ell,2} \langle z, w \rangle^\ell \text{Id}, \quad z, w \in B_d,
$$

where $\bar{a}_{\ell,2} \geq 0$ and $(d-1)\bar{a}_{\ell,2} \leq (\ell + d-1)\bar{a}_{\ell,1}$ for all $\ell \in \mathbb{Z}_+$.

(b) If $1 < n < d$, then there is no n-dimensional irreducible unitary representation c such that K is quasi-invariant under $U(d)$ with multiplier $c : U(d) \to GL_n(C)$.

5.3 Elementary proof of Lemma 5.5 and of Lemma 5.6

Proof of Lemma 5.5. We begin the proof with the claim that any irreducible unitary representation, up to unitary equivalence, of $SU(d)$ acting on C^d are the ones determined by the weights: $(1, 0, \ldots, 0)$ and $(1, \ldots, 1, 0)$. In other words, we have to show that the only (admissible) weights $w = (w_1, \ldots, w_{d-1}, 0)$ for which

$$
\prod_{1 \leq j < k \leq d} \frac{w_j - w_k + k - j}{k - j} = d \tag{5.2}
$$

are of the form: $(1, 0, \ldots, 0)$ or $(1, \ldots, 1, 0)$.

For $d = 2$, the claim is evident from the dimension formula. Assume that the claim is valid for $d-1$, that is, if

$$
\prod_{1 \leq j < k \leq d-1} \frac{w_j - w_k + k - j}{k - j} = d - 1,
$$

then there are only two alternatives for w, namely, either $w = (1, 0, \ldots, 0)$, or $w = (1, \ldots, 1, 0)$.
Let \(w = (w_1, \ldots, w_{d-1}, 0) \) be a weight satisfying the equality in the dimension formula (5.2). Splitting the product in (5.2), we have

\[
\prod_{\substack{1 \leq j < k \leq d \atop \omega_d = 0}} \frac{w_j - w_k + k - j}{k - j} = \prod_{1 \leq j < k \leq d-1} \frac{w_j - w_k + k - j}{k - j} \prod_{1 \leq j \leq d-1} \frac{w_j + d - j}{d - j}.
\]

(5.3)

We shall consider three possibilities, namely,

\[
\prod_{1 \leq j < k \leq d-1} \frac{w_j - w_k + k - j}{k - j} = d - 1
\]

and the two other possibilities of being strictly greater than \(d - 1 \) and less than \(d - 1 \). First, consider the case of equality. In this case, the weight \(\widehat{w} = (w_1, \ldots, w_{d-1}) \) determines an irreducible unitary representation of \(\mathbb{F}(d-1) \) of dimension \(d - 1 \). But this is also the dimension of the irreducible unitary representation of \(SU(d-1) \) determined by \((w_1 - w_{d-1}, w_2 - w_{d-2}, \ldots, w_{d-2} - w_{d-1}, 0)\). Then, by the induction hypothesis, we either have \(w_1 = w_{d-1} + 1, w_2 = \cdots = w_{d-2} = w_{d-1} \) or \(w_1 = w_2 = \cdots = w_{d-2} = w_{d-1} + 1 \). Therefore, the weight \(w \) of size \(d \) must be of the form \((m, m-1, \ldots, m-1, 0)\), or \((m, \ldots, m, m-1, 0)\), \(m \geq 1\). In case of the first alternative, to ensure validity of (5.2), we must also have

\[
\frac{d}{d-1} = \prod_{1 \leq j \leq d-1} \frac{w_j + d - j}{d - j} = \frac{(m + d - 1)(m + d - 3) \cdots (m + 2) \cdot (m + 1) \cdot m}{(d-1)(d-2) \cdots 2 \cdot 1}.
\]

This is possible only if \(m = 1 \) providing one of the two choices in the induction step. In case of the second alternative, \(w = (m, \ldots, m, m-1, 0) \), and we have

\[
\prod_{1 \leq j \leq d-1} \frac{w_j + d - j}{d - j} = \frac{(m + d - 1)(m + d - 2) \cdots (m + 2) \cdot m}{(d-1)(d-2) \cdots 2 \cdot 1}.
\]

Since \(m \geq 1 \), it follows that the smallest possible value of this product is \(\frac{d}{d-1} \), and it is achieved at \(m = 1 \). Thus, it cannot equal \(\frac{d}{d-1} \) unless \(d = 3 \). But if \(d = 3 \), and \(m = 1 \), the weight of size 2 from the induction hypothesis is of the form \((1,0)\). So, we get nothing new when \(d = 3 \).

Now, if possible, suppose that \(\prod_{1 \leq j < k \leq d-1} \frac{w_j - w_k + k - j}{k - j} \geq d \). Then, we must have

\[
\prod_{1 \leq j \leq d-1} \frac{w_j + d - j}{d - j} \leq 1,
\]

which is evidently false unless \(w_j = 0 \), \(1 \leq j \leq d - 1 \). But if we choose \(w = (0, \ldots, 0) \), then we cannot have equality in Equation (5.2); therefore, it is not an admissible choice.

Finally, let us suppose that \(1 \leq \prod_{1 \leq j < k \leq d-1} \frac{w_j - w_k + k - j}{k - j} = \ell \leq d - 2 \). First, if \(\ell = 1 \), the only possible choice of the weight \(w \) is \(w_1 = \cdots = w_{d-1} \). We must then ensure that

\[
\prod_{1 \leq j \leq d-1} \frac{w_j + d - j}{d - j} = d,
\]
which is possible only if \(w_1 = \cdots = w_{d-1} = 1 \). This, together with the choice \(w_d = 0 \) that we have made earlier, proves that \(w = (1, \ldots, 1, 0) \) providing the second choice in the induction step. In particular, the dimension of the representation determined by the weight \((1, 1, \ldots, 1, 0)\) is \(d \). Now, we must establish that there is no other choice of \(w \) satisfying (5.2). This follows from Lemma 5.6 proved below. It is also easy to verify directly: If \(d = 2 \) or \(3 \), there is nothing more to be done. If \(d > 3 \), then fix \(\ell : 2 \leq \ell \leq d-2 \), and pick \(w \) such that \(\prod_{1 \leq j < k \leq d-1} \frac{w_j - w_k + k - j}{k - j} = d - \ell \). Having picked \(w \), we also need

\[
\frac{d}{d - \ell} = \prod_{1 \leq j \leq d-1} \frac{w_j + d - j}{d - j},
\]

that is,

\[
d! = (w_1 + d - 1) \cdots (w_\ell + d - \ell)(d - \ell)(w_{\ell+1} + d - \ell - 1) \cdots (w_{d-1} + 1),
\]

which is valid only if \(w \) is of the form \((1, \ldots, 1, w_\ell = 1, 0, \ldots, 0)\). For this choice of \(w \), we see that

\[
\prod_{1 \leq j < k \leq d-1} \frac{w_j - w_k + k - j}{k - j} = \left(\frac{d-1}{\ell}\right),
\]

which cannot be equal to \(\ell \) for any \(d > 3 \). So, there are no more admissible weights in this case. This completes the verification of the induction step and therefore the proof of the claim. Now, the result follows directly from Proposition 5.4.

Proof of Lemma 5.6. The proof is by induction on the dimension \(d \). The base case of \(d = 3 \) is easily verified. Now, we assume by the induction hypothesis that there are no irreducible unitary representation such that

\[
2 \leq t := \prod_{1 \leq j < k \leq d-1} \frac{w_j - w_k + k - j}{k - j} \leq d - 2.
\]

Thus, the only choice for \(t \) is either \(t = 1 \), or \(t \geq d - 1 \). To complete the induction step, we have to show that there is no weight \(w = (w_1, \ldots, w_{d-1}, 0) \) such that

\[
2 \leq \ell := \prod_{1 \leq j < k \leq d} \frac{w_j - w_k + k - j}{k - j} \leq d - 1.
\]

If \(t = 1 \), then the only possible choice of the weight \(w \) is \(w_1 = \cdots = w_{d-1} \), say \(u \). From Equation (5.3), it follows that

\[
\prod_{1 \leq j \leq d-1} \frac{u + d - j}{d - j} = \ell.
\]

However, since the product on the left-hand side of the equation above is an increasing function of \(u \) and its smallest value is 1, the next possible value is \(d \), and it follows that the value \(\ell : 2 \leq \ell \leq d - 2 \).
\(\ell \leq d - 1 \) is not taken. Now, let \(t \geq d - 1 \) for some \(w \). Then, from Equation (5.3), we see that

\[
\frac{\ell}{t} = \prod_{1 \leq j \leq d - 1} \frac{w_j + d - j}{d - j}
\]

to ensure the existence of a \(\ell \)-dimensional representation. Since \(\frac{\ell}{t} \leq 1 \) while the product on the right-hand side of the equation above is greater or equal to 1, it follows that the two sides can be equal only if \(w_1 = \cdots = w_{d-1} = 0 \). But then \(t \) must be equal to 1 contrary to our hypothesis. \(\square\)

A. Koranyi has pointed out that \(SU(d) \) is a simple Lie group with discrete center and its Lie algebra \(su(d) \) is simple. Therefore, any nontrivial homomorphism of it can have at most a discrete null space, that is, has to be a local isomorphism. So, the image of a representation is a closed subgroup of \(U(n) \); therefore, must have the same dimension (as a Lie group) as \(SU(d) \). If \(d > n \), then this is not possible proving Lemma 5.6.

E. K. Narayanan observed that a proof of Lemma 5.5 follows from the description of the Lie algebra homomorphisms from \(su(d) \) to \(u(d) \), the Lie algebra of \(U(d) \). A. Khare and C. Varughese independently of each other have provided the following argument proving Lemma 5.5: Since \(su(d) \) is simple and \(u(d) = su(d) \oplus \mathbb{R} \), it follows that any Lie algebra homomorphism must map \(su(d) \) to itself isomorphically. Also, the inequivalent representations of \(su(d) \) are characterized by the outer automorphisms. These are in one-to-one correspondence with automorphisms of the corresponding Dynkin diagram. The Dynkin diagram of \(su(d) \) is \(A_{(d-1)} \) consisting of \(d - 1 \) dots connected by single lines. For \(d > 2 \), the (graph) automorphism group of \(A_{(d-1)} \) is of order 2 (identity and a reflection). It follows that there are at most two inequivalent irreducible unitary representations of \(SU(d) \), \(d \geq 2 \).

We believe that it will be interesting to find an answer to the two questions: (a) What possible values \(\dim \pi \) can take if \(d \) is fixed. (b) If \(d \) and \(n = \dim \pi \) are fixed, how many \(n \)-dimensional inequivalent irreducible unitary representations are there of the group \(SU(d) \).

Note added in proof

One of the reviewers has noted the following, and we quote: A.A. Johnson, in “The automorphisms of unitary groups over infinite fields,” Amer. J. Math. 95 (1973), has proved the following theorem: Let \(K \) be an infinite field and consider the unitary group \(U_d(K) \) with respect to some involution \(a \rightarrow \bar{a} \) of \(K \). Suppose that \(d \geq 3 \). Then any automorphism \(\pi : U_d(K) \rightarrow U_d(K) \) has the form

\[
\pi(u) = \chi(u)gu^{-1},
\]

where \(\chi \) is a character and \(g : K^d \rightarrow K^d \) is a semilinear automorphism. For \(K = \mathbb{C} \), the characters are \(\chi(u) = \det(u)^n \) for some \(n \in \mathbb{Z} \), and semilinear means \(\mathbb{C} \)-linear or \(\mathbb{C} \) antilinear. In the first case, \(g \in U_d(\mathbb{C}) \) and we are done. In the second case, define \(h := g\circ \tau \) where \(i\xi = \bar{\xi} \) for all \(\xi \in \mathbb{C}^d \) is the conjugation. Then, \(h \) is \(\mathbb{C} \)-linear and hence \(h \in U_d(\mathbb{C}) \). Moreover,

\[
gugu^{-1} = (h\circ \tau)ou\circ(i\circ h^{-1}) = h\circ(iou\circ)\circ h^{-1} = hou\circ h^{-1}.
\]
This yields the second case in Lemma 5.5. Johnson’s proof is in the spirit of projective geometry and is independent of Lie theory.

ACKNOWLEDGMENTS
The authors are grateful to E. K. Narayanan for several lectures explaining the parametrization and realization of the irreducible unitary representations of $U(n)$ and for going through some of the proofs carefully. We also thank Sameer Chavan for several comments on a preliminary draft of this paper. We also thank the anonymous reviewers for their comments indicating future direction of research based on the results of this paper.

Part of the work by S. Ghara was carried out at the Indian Institute of Technology Kanpur. Part of the work by S. Kumar, G. Misra, and P. Pramanick was carried out at the Department of Mathematics, Indian Institute of Science.

Support for the work of S. Ghara was provided by the Fields-Laval post-doctoral research Fellowship, Canada, and INSTEER Faculty Fellowship (DST/INSPIRE/04/2021/002555). Support for the work of S. Kumar was provided in the form of the Inspire Faculty Fellowship of the Department of Science and Technology (DST) and NFIG grant of IIT Madras. Support for the work of G. Misra was provided in the form of the J C Bose National Fellowship, (SERB). Support for the research of Paramita Pramanick was provided through a postdoctoral Fellowship of Harish-Chandra Research Institute and NBHM postdoctoral Fellowship.

JOURNAL INFORMATION
The Journal of the London Mathematical Society is wholly owned and managed by the London Mathematical Society, a not-for-profit Charity registered with the UK Charity Commission. All surplus income from its publishing programme is used to support mathematicians and mathematics research in the form of research grants, conference grants, prizes, initiatives for early career researchers and the promotion of mathematics.

ORCID
Surjit Kumar https://orcid.org/0009-0000-5903-0464

REFERENCES
1. J. Arazy, A survey of invariant Hilbert spaces of analytic functions on bounded symmetric domains, Contemp. Math. 185 (1995), 7–65.
2. O. P. Agrawal and N. Salinas, Sharp kernels and canonical subspaces, Amer. J. Math. 110 (1988), 23–47.
3. B. Bagchi and G. Misra, Homogeneous tuples of multiplication operators on twisted Bergman spaces, J. Funct. Anal. 136 (1996), 171–213.
4. B. Bagchi, S. Hazra, and G. Misra, A product formula for homogeneous characteristic functions, Integral Equations and Operator Theory 95 (2023), Paper No. 8.
5. S. Chavan and D. Yakubovich, Spherical tuples of Hilbert space operators, Indiana Univ. Math. J. 64 (2015), 577–612.
6. R. E. Curto and N. Salinas, Generalized Bergman kernels and the Cowen-Douglas theory, Amer. J. Math. 106 (1984), 447–488.
7. R. G. Douglas and G. Misra, Equivalence of quotient Hilbert modules, Proc. Indian Acad. Sci. Math. Sci. 113 (2003), 281–291.
8. R. G. Douglas and G. Misra, Quasi-free resolutions of Hilbert modules, Integral Equations and Operator Theory 47 (2003), 435–456.
9. J. Faraut and A. Korányi, Function spaces and reproducing kernels on bounded symmetric domains, J. Funct. Anal. 88 (1990), 64–89.
10. S. Ghara, S. Kumar, and P. Pramanick, *K*-homogeneous tuple of operators on bounded symmetric domains, Israel J. Math. **247** (2022), 331–360.

11. S. Ghara and G. Misra, *Decomposition of the tensor product of two Hilbert modules*, Operator theory, operator algebras and their interactions with geometry and topology – Ronald G. Douglas memorial volume, Birkhäuser/Springer, Cham, 2020, pp. 221–265.

12. A. W. Knapp, *Representation theory of semisimple groups: an overview based on examples*, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, 2001.

13. A. Korányi and G. Misra, *Homogeneous operators on Hilbert spaces of holomorphic functions*, J. Funct. Anal. **254** (2008), 2419–2436.

14. R. Narasimhan, *Several complex variables*, Chicago Lect. Math., The University of Chicago Press, Chicago, 1971.

15. A. Sengupta, *Representing finite groups. A semisimple introduction*, Springer, New York, NY, 2012.

16. M. Taylor, *Lectures on Lie groups*, AMS Open Math Notes, 2017.

17. S. Trivedi, *Bounded point evaluation for a finitely multicyclic commuting tuple of operators*, Bull. Sci. Math. **162** (2020), 102875. 20 pp.

18. H. Upmeier, *Toeplitz operators and index theory in several complex variables*, Operator theory: advances and applications, vol. 81, Birkhäuser Verlag, Basel, 1996.

19. H. Upmeier, *Eigenvalues of K-invariant Toeplitz operators on bounded symmetric domains*, Integral Equations and Operator Theory **93** (2021), Article no. 27.