THE STUDY OF THE ORGANIC ACIDS IN DRY EXTRACT OF LEDUM PALUSTRE SHOOTS

Labrador tea shoots (Ledum palustre, Erisaseae family) – evergreen, squat shrub that has a significant area in northern Ukraine. The infusion and decoction of the young shoots of the plant has long been used in folk medicine as an antitussive, bactericidal and diaphoretic remedy in treatment of acute and chronic bronchitis, pneumonia, tuberculosis, whooping cough and other diseases that accompanied by cough. And also in treatment of spastic enterocolitis, endometritis and liver disease. Antiinflammatory properties of labrador tea used in arthritis treatment. The wide spectrum of pharmacological activities is due to the presence of terpenoids 1.6-4.6 %, phenolic compounds – 4.9 %, tannins – 1.6-4.6 % and other biologically active compounds [1]. "Ledin" was the only one medicine that was produced from this raw material. It based on the essential oil and used as antitussive remedy in tablet form in dose for 0.5 g. But for now, just only packed raw materials remain on drugstores shelves. We have already studied phenolic compounds [4], essential oil [3], amino acids [2] and polysaccharides [9] in this plant. So the next step of our research was to investigate the composition of organic acids in dry extract of Labrador tea shoots.

So the aim of our research was to investigate the composition of organic acids in dry extract of Labrador tea shoots.

MATERIALS AND METHODS

The object of our research was a dry extract from Labrador tea shoots. 500 g of chopped by way of rolling raw material was placed in 5000 ml flask and 1000 ml of 50 % ethyl alcohol was added. Extraction was carried out at room temperature for one day. Extraction was performed four times with a new portion of extractant. Then extracts were combined, filtered and evaporated in the vacuum-circulation apparatus at 100 °C and 340 mmHg till the dry extract was obtained.

Primary research of organic acids was carried out by paper chromatography (PC) method with use as the solvent system ethylacetate – formic acid – water (3 : 1 : 1) and presence of the reference solutions of organic acids. The dried chromatograms was processed with bromphenol blue and methyl red reagents (0.3 g of bromphenol blue and 0.1 g of methyl red dissolved in 100 ml of methanol) [5, 6].

Determination of qualitative and quantitative composition of organic acids in dry extract was carried out by chromatography-mass spectrometry method on Agilent Technologies 6890 chromatograph with mass spectrometric detector 5973 and chromatography column - DB-5 with diameter 0.25 mm and a length of 30 m. As methylating agent 14 % BCl3 in methanol was used. Methylation carried out during 8 hours at 65 °C [7]. The analysis was carried out at the following conditions: thermostat temperature was programmed from 50 to 250 °C with
a speed of 4 °C/min; the rate of carrier gas (helium): 1 ml/min; transfer from GC to MS carried out till 230 °C; source temperature maintained at 200 °C; electron ionization conducted at 70 eV. For components identification, library of mass spectra NIST05 and WILEY 2007 with a total number of spectra more than 470,000 in conjunction with AMDIS and NIST programs were used [7, 8].

RESULTS AND DISCUSSION

The yield of extractable substances from labrador tea shoots in calculation on dry raw material was 13.7 %. By PC method the malonic, malic and citric acids were identified in dry extract.

The results of the chromatography-mass spectrometry analysis of dry extract are presented in the Table and Figure. Total content of organic acids in dry extract of labrador tea shoots was 296.16 g/kg. 26 organic acids were identified: 2 monocarboxylic acids, 7 dicarboxylic acids, 1 tricarboxylic acids, 9 aromatic acids and 7 fatty acids. The dominant compounds were levulinic acid (9.62 %), malic acid (4.48 %), citric acid (8.46 %) and 4-oksy benzoic acid (2.03 %).

CONCLUSIONS

Obtained results of the investigations of the qualitative composition and quantitative content of organic acids in dry extract from Ledum palustre shoots show prospects for further research and the possibility of developing new drugs and will be used for future standardization of the extract.
REFERENCES

1. Растительные ресурсы СССР: Цветковые растения, их химический состав, использование; семейства Paeoniaceae – Thymeliaceae. – Л.: Наука, 1985 – 336 с.

2. Упир Т. В. Изучение аминокислотного состава жидкого экстракта из побегов багульника болотного / Т. В. Упир, О. М. Кошовий // Вестник пермской гос. фармац. академии. – 2015. – № 15. – С. 235-236.

3. Упир Т. В. Терпеноїдний склад ефірної олії трави Ledum palustre / Т. В. Упир, А. М. Комісаренко, О. М. Кошовий. // Зб. наук. праць співробіт. НМАПО ім. П. Л. Шупика. – 2014. – Вип. 23, кн. 4. – С. 408-412.

4. Упир Т. В. Фенольний склад рідкого екстракту з пагонів Ledum palustre / Т. В. Упир, Г. П. Зайцев, О. М. Кошовий, А. М. Комісаренко // Зб. наук. праць співробіт. НМАПО ім. П. Л. Шупика. – 2015. – Вип. 24, кн. 5. – С. 239-243.

5. Хефтман Э., Кастер Т., Нидервизер А. и др. Хроматография. Практическое приложение метода. В 2-х ч. Ч. 1 / Пер. с анг.; под ред. Э. Хефтмана. – М.: Мир, 1986. – 422 с.

6. Carrapiso A. Lipids, Development in lipid analysis: some new extraction techniques and in situ transesterification / A. Carrapiso, C. Garcia // Lipids. – 2000. – Vol. 35 (11). – P. 1167-77.

7. Lenchyk L. V. Study of organic acids in peach leaves / L. V. Lenchyk. – New trends in the ecological and biological research: International scientific conference (9-11, September, 2015). – University of Presov, Slovak Republic. – Р. 34.

8. Lenchyk L. V. Study of organic acids in almond leaves / L. V. Lenchyk, Bayat Samaneh, V. S. Kyslichenko // Аннал Мечниковського інституту. – 2015. – № 2. – С. 47-50.

9. Упир Т. В. The study of the chemical composition and the pharmacological activity of the polysaccharide complex obtained from ledum palustre / [T. V. Upir, K. S. Tolmacheva, O. M. Koshovyi et al.] // Вісник Фармації. – 2016. – № 3 (87). – С. 32-35.
Т. В. Упир

ИЗУЧЕНИЕ СОСТАВА ОРГАНИЧЕСКИХ КИСЛОТ СУХОГО ЭКСТРАКТА ИЗ ПОБЕГОВ БАГУЛЬНИКА БОЛОТНОГО

Побеги багульника болотного издавна использовались в народной медицине как противокашлевое, бактерицидное, потогонное и противовоспалительное средство, что обусловлено широким спектром биологически активного действия веществ, среди которых терпеноиды, фенольные соединения, дубильные вещества и др. С использованием данного растительного сырья выпускался только один препарат «Ледин» на базе эфирного масла, который применялся как противокашлевое средство. Но сегодня на аптекарских прилавках осталось только фасованное сырье. Ввиду этого целесообразно получить стандартизованный сухой экстракт из данного сырья. Ранее нами было проведено исследование фенольных соединений, эфирного масла, аминоацилт и полисахаридов данного растительного сырья. Продолжая эти исследования, следующим этапом нашей работы мы исследовали состав органических кислот в сухом экстракте из побегов багульника болотного. Методом БХ в сухом экстракте было идентифицировано малоновую, яблочную и лимонную кислоты. Методом хроматомасс-спектрометрии в сухом экстракте было обнаружено 26 органических кислот, их общее содержание составило 296,16 г/кг. Основными компонентами экстракта являются: левулевая кислота (9,62 %), яблочная кислота (4,48 %), лимонная кислота (8,46 %) и 4-оксибензойная кислота (2,03 %). Полученные результаты изучения качественного состава и количественного содержания органических кислот в сухом экстракте из побегов багульника болотного свидетельствуют о возможности создания на его основе новых лекарственных средств с его дальнейшей стандартизацией.

Ключевые слова: Вересковые; багульник болотный; органические кислоты; сухой экстракт

Т. В. Упир

ВИВЧЕННЯ СКЛАДУ ОРГАНИЧНИХ КИСЛОТ СУХОГО ЕКСТРАКТУ З ПАГОНІВ БАГНА ЗВІЧАЙНОГО

Пагони бага звичайного здавна використовувались в народній медицині як протикашльовий, бактерицидний, потогінний та протизапальний засіб, що обумовлено широким спектром біологічно активної дії речовин, серед яких є терпеноїди, фенольні сполукі, дубильні речовини тощо. З цієї рослиниї сировини випускалось лише один препарат «Ледин» на базі ефірної олії, який застосовувався як протикашльовий засіб. На теперішній час на аптечних полицях залишилася лише фасованя сировина. Зважаючи на це, доцільно одержати стандартизований сухий екстракт з даної сировини. Раніше нами було проведено дослідження фенольних сполук, ефірної олії, аміноциклот та полісахаридів даної рослиниї сировини. Продовжуючи ці дослідження, наступним етапом нашої роботи стало дослідження складу органічних кислот у сухому екстракті з пагонів бага звичайного. Методом ПХ в сухому екстракті було виявлено 26 органічних кислот, загальний вміст яких склав 296,16 г/кг. Основними компонентами екстракту є: левулевовава кислота (9,62 %), яблочна кислота (4,48 %), лимонна кислота (8,46 %) та 4-оксибензойная кислота (2,03 %). Одержані результати вивчення якісного складу та кількісного вмісту органічних кислот у сухому екстракті з пагонів бага на звичайного свідчать про можливість створення на його основі нових лікарських засобів з його подальшою стандартизацією.

Ключові слова: Верескові; бага звичайне; органічні кислоти; сухий екстракт

Адреса для листування: 61168, м. Харків, вул. Валентинівська, 4. E-mail: tarik.dom@rambler.ru.

Національний фармацевтичний університет

Надійшла до редакції 21.10.2016 р.