Regulated gene expression is an important mechanism for controlling cell cycle progression in yeast and mammals, and genes involved in cell division-related processes often show transcriptional regulation dependent on cell cycle position. Analysis of cell cycle processes in plants has been hampered by the lack of synchronizable cell suspensions for Arabidopsis, and few cell cycle-regulated genes are known. Using a recently described synchrony system, we have analyzed RNA from sequential samples of Arabidopsis cells progressing through the cell cycle using Affymetrix Genearrays. We identify nearly 500 genes that robustly display significant fluctuation in expression, representing the first genomic analysis of cell cycle-regulated gene expression in any plant. In addition to the limited number of genes previously identified as cell cycle-regulated in plants, we also find specific patterns of regulation for genes known or suspected to be involved in signal transduction, transcriptional regulation, and hormonal regulation, including key genes of cytokinin response. Genes identified represent pathways that are cell cycle-regulated in other organisms and those involved in plant-specific processes. The range and number of cell cycle-regulated genes show the close integration of the plant cell cycle into a variety of cellular control and response pathways.

Cell division is a fundamental biological process and shares conserved features and controls in all eukaryotes (1–3). However, plants have a number of special features that give the control of cell division particular importance, including an indeterminate mode of development, the absence of cell migration, and responsiveness of growth rate and development to changes in environmental conditions. Cell division therefore plays a role both in the developmental processes that create plant architecture and in the modulation of plant growth rate in response to the environment (4, 5). It is therefore not unexpected that plant cell cycle control shows a novel number of aspects, together with conservation of the types of key regulators of cell cycle transitions such as cyclin-dependent kinases (CDKs), CDK inhibitor genes, cyclins, retinoblastoma (Rb) protein homologs, and E2F (6–16). However, important differences include the absence of direct CDC25 protein phosphatase homologs and the presence of cell cycle-regulated CDKs known as CDKB (17–22). As well as the presence of such novel regulators of the cell cycle, cell division control in plants might also show interactions with plant hormones and developmental regulators as well as with plant-specific processes such as cell wall metabolism.

Regulation of gene expression in different phases is proposed to be an important mechanism for control of progression through the cell cycle in yeast and mammalian cells, and around 800 genes have been identified using microarray analysis in both systems as potentially cell cycle-regulated (23–27). The wide scale analysis of cell cycle-regulated expression in plants has been hampered to date by the lack of a suitable system for the synchronization of cells from a sequenced species, and rather few genes are documented as cell cycle-regulated (28). Almost all of these genes are directly involved in cell cycle progression, thereby giving few clues as to mechanisms by which cell cycle control may intersect with other cellular processes (22, 29–35). Using a recently developed cell synchrony system for Arabidopsis cells (22), we have carried out an analysis of gene expression on high density Affymetrix microarrays (36).2 Cell cycle progression was reversibly blocked using the DNA polymerase inhibitor aphidicolin, and sequential RNA samples taken at two hourly intervals over a 19-h period were analyzed for gene expression. Expression of 4010 genes was detected and tested for statistically significant cell cycle regulation above the variation shown by a randomized data set, resulting in the identification of 463 candidate cell cycle-regulated genes, showing that cell cycle regulation of expression is found for a significant number of genes in plants. A close match was found for known regulated genes between the microarray expression analysis and RNA gel blots. Systematic analysis of their expression revealed common patterns of expression following release, suggesting coordinate regulation of a number of genes. Genes regulated in this experiment represent both processes known or suspected to be cell cycle-regulated in plants or other organisms and genes involved in a number of other cellular processes including hormone response, signal transduction, transcription control, and metabolic regulation (37–47). The insights provided by the first wide scale analysis and identification of cell cycle-modulated gene expression in plants reflect the central role of cell division in plant development and responses and forms an important foundation for future studies in plant cell biology.

*This work was supported by BBSRC Grant 8C15792 (to J. A. H. M.) and funding from the ETH (to W. G.). We also thank the Functional Genomics Center Zürich for technical and financial support. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

¶ Supported by the Deutsche Forschungsgemeinschaft.

‖ To whom correspondence should be addressed: Institute of Biotechnology, University of Cambridge, Tennis Court Rd., Cambridge CB2 1QT, United Kingdom. Tel.: 44-1223-334165; Fax: 44-1223-334162; E-mail: j.murray@biotech.cam.ac.uk.

1 The abbreviations used are: CDK, cyclin-dependent kinase; PVE, plant cell cycle into a variety of cellular control and cycle-regulated genes show the close integration of the plant-specific processes. The range and number of cell regu-

2 Microsoft Excel spreadsheets with the full data set and the analyzed regulated genes will be made available on the World Wide Web at www.biot.cam.ac.uk/jahm/cellcycle.
Experimental Procedures

Arabidopsis Cell Suspension Culture—A suspension culture of the fast growing cell line MM2d was maintained as described (22). Briefly, cells were grown at 27°C in continuous darkness in a 300-ml flask, rotated at 130 rpm and were diluted by adding 3.5–100 ml of fresh MSS medium (Murashige and Skoog salt, 3% sucrose, 0.5 mg/liter 1-naphthaleneacetic acid, 0.05 mg/liter kinetin) every 7 days.

Synchronization by Aphidicolin Block/Release—MM2d cells were reversibly blocked in late G1/early S phase with aphidicolin as described (22). With the exception that 20 ml of early stationary phase cell suspension was transferred into 100 ml of fresh MSS medium. After incubation for 24 h under conditions as described above in the presence of 4 μg/ml aphidicolin (Sigma), cells were gently washed with 1 liter of MSS medium through a nylon net, followed by centrifugation, 357 × g for 1 min, no brake applied) to remove the drug. Cells were resuspended in a total volume of 120 ml of fresh MSS medium and incubated as above, and samples were taken hourly for analysis.

Cell Cycle Analysis—To determine cell cycle distribution, a sample of frozen cell pellet was treated to release nuclei and analyzed as described (22). On average, 10,000 particles were counted with a flow cytometer (PASII; Partec GmbH, Munster, Germany), and the cell cycle phases were analyzed using Multicycle for Windows (Phoenix Flow Systems, San Diego, CA). Cells actively replicating DNA were determined using bromodeoxyuridine (BrdUrd) labeling and subsequent immunocytochemical detection of the incorporated BrdUrd as described previously (22). Metaphase and anaphase cells were counted in the same samples by 4’,6-diamidino-2-phenylindole staining to determine the metaphase/anaphase index. Total RNA was extracted as described previously (33, 48). For Northern blot analysis, prezeEY markers genes were used for hybridization as described previously (22). Hybridized membranes were exposed to autoradiography film, scanned, and quantified using NIH Image 1.62 (available on the World Wide Web at rsb.info.nih.gov/nih-image/index.html). Equal loading was controlled by methylene blue staining of the membranes. The level of expression (in arbitrary units) was first corrected against the quantified loading control and then normalized by expressing each value as a proportion (percentage) of the maximum found expression.

High Density Oligonucleotide Array Expression Analysis—Preparation of cDNA and biotin-labeled cRNA were performed as recommended by Affymetrix (Santa Clara, CA). Hybridization to Arabidopsis Gene-Chips, detection of labeled cRNA using streptavidin-phycoerythrin, and reading of the arrays using a confocal scanner (Affymetrix) were performed according to the manufacturer's instructions. Raw data were processed with Affymetrix MicroarraySuite 5.0.

Bioinformatic Analysis—Based on results of the statistical algorithm of the MASuite 5.0 analysis software (Affymetrix), genes were selected for further analysis if they (i) were called at least once present (“present” call) in one of the 10 different experimental time points and (ii) were at least once changed among the samples (“difference” call) after comparative analysis of each experiment against the sample directly taken after release of the block (T0).

Numerical Characterization of Sinusoidal Expression—Analysis was performed as described by Shedden and Cooper (49). Briefly, data in the time series were compared with the first measurement to obtain relative expression values and were log-transformed. The measurements for each gene were centered across the chips. Suppose Yi(t) denotes the expression of gene i at time t. For all genes, the vector Yi(t) was fit with least squares to Yi(t) = a0 + b0C(t) + R(t), where S(t) = sin(2πT/T) and C(t) = cos(2πT/T) with T = 22 h being the time required for one entire cell cycle. Yi(t) can be decomposed into a periodic component Z(t) = a0 + b0C(t) with T = 22 h and a component R(t) that is aperiodic or has a period substantially different from 22 h. The proportion of variance explained by the Fourier basis (Fourier proportion of variance explained (PVE)) is the ratio m0 = var(Z(t))var(Yi(t)), which can range from 0 to 1. Values closer to 1 indicate greater sinusoidal expression with a period of 22 h, whereas values closer to 0 indicate a lack of periodicity or periodicity with a period that is substantially different. The fitted waveform Z(t) resembles a sine wave. For each gene, the phase of Z(t) (equal to time of maximal expression) was determined. Based on flow cytometric and cytological data, expression maxima between 0 and 5 h were considered as S phase, maxima between 5 and 10 h were considered G2, maxima between 10 and 17 h were considered M, and maxima between 17 and 22 were considered G1 phase. Because randomly distributed data will also show a certain tendency for periodicity, a random data set was constructed from the experimental data in which the variance for all time series Y(t) was conserved but not the order of the measurements. Data resampling was performed by allowing permutations of measurements for each gene. Subsequently, PVE values m0 were calculated for all vectors Yi(t) in the artificial control data set.

Cluster Analysis of Cell Cycle Expression Patterns—Expression patterns of genes defined as having a statistically significantly (p < 0.05) greater periodic expression in the experiment than the randomized data set were imported into GeneMaths (version 1.50; Applied Maths). Of the 4010 genes identified that passed the variation filter, a total of 493 gene expression profiles met the periodic fluctuation conditions (p < 0.05). All of the processed values for signal log ratios after comparative analysis against the sample directly taken after release block (T0) were subjected to principal component analysis (PCA) and self-organizing map (SOM) algorithms using GeneMaths 1.50 (50). Prior PCA and SOM analysis genes were labeled (GeneMaths) according to the annotated peak of expression found after statistical analysis for each phase as

Fig. 1. Aphidicolin block/release of Arabidopsis cell line MM2d. A, flow cytometry analysis of MM2d cells after release of aphidicolin block in late G1/early S phase, showing the coherent population of cells progressing through S phase. Each histogram represents a sample taken at 1-h intervals from T0 (time of release) to T19 (19 h later). B, DNA histogram of flow analysis results in A. C, LI determination of S phase (●) and metaphase/anaphase index determination of metaphase and anaphase cells (□). D, comparative mRNA analysis of gene expression by Northern blot and microarray analysis. Expression was normalized for microarray analysis by dividing the absolute detected signal through the maximum of expression (●). Signals after Northern blot analysis were quantified using NIH Image 1.62. The level of expression (in arbitrary units) was normalized by correcting against a loading control and expressing as a proportion of the maximum signal (□).
follows: S phase peak (blue), G2 (yellow), M phase (red), and G1 (green). Both the expression values of different genes (493 values) and different experiments (nine) were used as variables to calculate the PCA. Data were normalized across genes and experiments. SOM analysis was performed choosing as map (or matrix) the dimension 4×4. A dendrogram was created after the absolute expression pattern of each gene was normalized across the experiment by dividing the absolute signal at each time point by the maximum value for the same gene independently of whether it was called present or absent by MASuite. The hierarchical clustering analysis was performed by using as clustering algorithm the unweighted pair group method using arithmetic averages (large Nip) (51).

Data Base Search to Identify Regulatory Elements within the Promoter Region—The data base tool patmatch (available on the World Wide Web at www.arabidopsis.org/cgi-bin/patmatch/nph-patmatch.pl) was used to search the promoter region 1 kb upstream of each open reading frame of the selected 493 genes. The following consensus sequences were used to search for regulatory motifs: E2F (TTTTYCGGY), mitotic-specific activation (YCYAACGGYY), Oct (CGCGGATC), and Hox (CCACGTCA).

RESULTS

Cell Cycle Progression after Aphidicolin-induced Synchrony—Analysis of gene expression during the cell cycle is predicated on effective synchronization and analysis of cell cycle progression. In many plant systems, the fungal toxin aphidicolin has been found to be an effective method of reversibly blocking cell cycle progression (22, 53). It inhibits both DNA polymerase α and δ (54) and therefore blocks cell cycle progression in early S phase. Removal of the inhibitor by washing leads to release of the block and the synchronous resumption of S phase and progression through the cell cycle. However, Arabidopsis cell culture systems have proven remarkably recalcitrant to efficient synchronization using this or other methods (29, 55, 56). We recently developed techniques for aphidicolin synchronization of the Arabidopsis Landsberg erecta cell line MM2d (22), which was used for the synchronization experiments reported here.

After treatment of MM2d cells with aphidicolin for 24 h and subsequent washing to remove the block, cell cycle progression was followed by flow cytometry over a 19-h period (Fig. 1A, and B). The majority of cells are arrested in G1/early S phase (G1/S, G1 = 1N) directly after release of the block. Within 1 h of removal of aphidicolin, a peak corresponding to a progressive increase in DNA content of S phase cells indicated that the majority of cells proceed synchronous through S phase (Fig. 1A). The DNA content of this S phase peak constantly increased in size before reaching the G2 phase DNA content (2N) after 5 h. Peak analysis of the flow cytometry data shows that 77% of the cell population is in S phase 1 h after block release, and a maximum of more than 90% is found in G2 after 7–8 h (Fig. 1B). At 8 h, a rapid increase in the number of metaphase cells is observed.

Synchrony was also monitored by pulse labeling with BrdUrd and detection of newly synthesized BrdUrd-containing DNA using immunocytochemistry and indirect immunofluorescence to identify S phase cells actively synthesizing DNA (22). The proportion of BrdUrd-positive cells observed is defined as the labeling index. Independent labeling index determination of the same samples confirmed the level of S phase synchrony measured by flow cytometry showing a labeling index peak of 76% observed 2 h after release (Fig. 1C). The metaphase/ anaphase index of cells in metaphase/anaphase reaches a peak value of around 11%, 11–12 h after release of the block. It should be noted that only cells in metaphase and anaphase were scored for the metaphase/anaphase index, which represents only around 35–40% of the total duration of mitosis, since it is difficult to score routinely other mitotic phases due to the small genome size and late condensation of Arabidopsis chromosomes in prophase (57).

Differential Analysis of Gene Expression—RNA was prepared from samples taken immediately after washing to remove aphidicolin (0 h) and at two hourly intervals until 16 h, followed by a final sample at 19 h. RNA was labeled and hybridized to high density Affymetrix GeneChip DNA arrays that contain ~8250 gene sequences and expressed sequence tags according to the manufacturer's instructions (Affymetrix). The hybridized chips were then analyzed, and genes were filtered as described under “Experimental Procedures.” Of the ~8250 genes and expressed sequence tags represented on the chip, 4010 passed the biological variation filter, indicating that they were both reliably detected on at least one chip (“present” call), and showing a change from the expression level at time 0 (“difference” call).

New analysis of microarray data has found that random variation can produce apparently systematic patterns of expression (49), throwing doubt on earlier identification of cell cycle-regulated genes in human fibroblasts (24). We therefore confirmed the existence of periodicity in our data set by creating a control set of randomized data (see “Experimental Procedures”) for the 4010 genes passing the first filter. Fourier-PVE values, indicating the degree of cyclicity in the data and phase of expression were determined. Fig. 2A shows a plot of the PVE values of the 1000 strongest expressed genes (highest mean expression; mean selection, left) or of the 1000 genes with the largest standard variation in expression (S.D. selection, right) against the similarly ranked genes from the random set. In such a plot, points close to or above the diagonal show that there is similar or even less
periodicity in the experimental data than in the random data. In contrast, points below the diagonal indicate periodic expression. Fig. 2A demonstrates considerable periodicity in the experimental data. Thus, the successful synchronization of the cell culture was confirmed and that indeed many genes are expressed in a cell cycle-dependent manner. Similar to observations of Shedden and Cooper (49), we observe stronger periodic expression among the genes with the highest S.D. than among the genes with highest mean expression (Fig. 2A, compare left and right). Similar observations were made with a plot of PVE values of the entire set of 4010 selected genes (data not shown).

Subsequently, we compared the distribution of phases between experimental and randomized data. Data in Fig. 2B show that the timing of maximal expression of the randomized data is relatively evenly distributed throughout the period of the experiment, as expected for effectively randomized data. In contrast, the distribution of phases in the experimental data strongly deviates from that of the random data. In particular, very few genes had expression maxima in G2 phase (Fig. 2C).

We then used the distribution of PVE values of the control data set to select those genes showing statistically significant higher periodic expression in the experiment than expected from the random data ($p < 0.05$), resulting in the definition of 493 (12%) gene signals of the total expressed (4010) as having a high probability of exhibiting significant regulation during the duration of the experiment. These included 213 gene signals with a peak of expression during S phase, nine genes peaking in G1, 135 in mitosis, and 136 in G2. The distribution of phases for the 493 selected signals was similar to that of the entire set of 4010 genes (data not shown). Although these genes were characterized by a low probability that their cyclical behavior was due to chance fluctuations, Fig. 2, B and C, demonstrates that a proportion of other genes among the set of 4010 is also likely to be expressed in a cell cycle-dependent manner. A number of the 493 gene signals identified as significantly regulated are represented by independent oligonucleotide sets on the array. 26 genes have duplicated oligonucleotide sets, and two have triplicated sets, resulting in a total of 463 different genes identified.

To confirm the reliability and sensitivity of the results obtained from the microarray analysis, the expression patterns of several genes known to be cell cycle-regulated (22) were determined by RNA gel (Northern) blot and compared with the normalized expression data from the microarray analysis (Fig. 1D). Cell cycle regulation of histone H4, CYCD2.1, CYCD3.1, CDKA, CDKB1, and CDKB2 could be readily detected both by Northern blot and among the 4010 expressed genes on the microarray. These comparative analyses clearly demonstrate that the expression profiles obtained by both methods show strikingly similar timing of their peak values and overall pattern, although small variations may be seen for individual time points. Striking is the clear difference between the timing of expression of CDKB1 and CDKB2 detected by both methods.

Principle Component Analysis—PCA was performed to analyze the extent to which the variation in expression seen among the 493 gene signals can be attributed to a limited number of variable components (58). Briefly, PCA can simplify the analysis and visualization of multidimensional data sets by determining key variables that explain the differences in the observation. The matrix to be analyzed using our data set has 493 rows of genes and nine columns of conditions corresponding to each of the measured time points. Fig. 3A is a plot of the observed variances in all nine principal components. The first two principal components account for 72% of the total variability observed in our data. Plotting all 493 genes onto the first and second principal component showed that all labeled genes fall into distinct quadrants (Fig. 3B). In addition, the position of known cell cycle-regulated genes, such as histones, mitotic
cyclins, and CDKs was identified. This result clearly demonstrates that annotated S phase and M phase genes have strikingly different locations in space after PCA. Thus, PCA confirms that the simple assignment of phase specificity by peak value is indicative of co-regulated genes and that the majority of variation observed can be explained by two principle variables.

Cluster Analysis of Gene Expression—Since PCA analysis demonstrated considerable structure in the expression data, clustering tools based on hierarchical neighbor joining and self-organizing maps were used to identify groups of co-regulated genes.

The relatedness of expression patterns of the 493 gene signals identified as differentially expressed was assessed by creating a dendrogram based on normalized expression levels of the absolute detected signal. This hierarchical cluster analysis clearly shows that different groups of genes show peaks of expression at specific time points throughout the time course (Fig. 4A, dark red). Abridged branch analysis resulted in the creation of sub-branches or nodes (Fig. 4A, A–G), which reflect differences in expression pattern and timing.

The hierarchical cluster analysis is based on consecutive pairwise comparisons, and although it is useful for grouping genes based on similarity of expression timing, it may not reflect the diversity of different regulatory patterns. The data set was therefore also clustered using SOMs, a neural network useful for clustering large data sets by classifying entries in a two-dimensional space or map. For this data set, SOM analysis using a 4 × 4 matrix resulted in the optimal classification of duplicated and triplicated genes between different cell cycle phases (S, G2, M, G1), based on peak expression time, between different nodes on the hierarchical cluster and different SOM clusters. Of the 28 replicated genes, only five pairs were not assigned to the same phase by peak expression, seven pairs were not assigned to the same branch node by hierarchical clustering, and, using the most stringent clustering assessment, 19 gene pairs were assigned to the same cluster group. Of the remaining nine pairs, all but one pair were assigned to groups showing very similar trends (groups 15 and 16, 2 and 3, 8–12, 8–16, and 1–6). Taken together with the comparison of signals with Northern data above, the analysis of duplicates shows highly reproducible detection and assignment of expression patterns. We also conclude that the SOM cluster analysis reliably assigns duplicate signals for the same gene to the same expression pattern in >65% of cases and to very similar patterns in >96% of cases observed.

Known Cell Cycle-regulated Genes—Although rather few genes are known to be cell cycle-regulated in Arabidopsis, there is direct evidence for regulation of histones (53, 59), mitotic cyclins (19, 60–63), and B-type CDKs (20, 22), proliferating cell nuclear antigen, and the CDC6 protein involved in initiation of DNA replication (16, 64). We examined the extent to which two classes of likely co-regulated genes were identified as cell cycle-regulated and whether known co-regulated genes were assigned to the same or similar clusters. The majority of histone genes are expressed primarily in S phase. 14 histone genes are represented on the Affymetrix array, of which 14 were detected as expressed and 10 different genes were identified within the set of cell cycle-regulated genes. All 10 regulated histones fall into the very similar clusters 12 (two genes), 15 (one duplicated gene signal whose pair is in 16) and 16 (eight gene signals), indicating high frequency of identification of histones and ro-
Gene locus	Description	Tree	SOM	E2F	MSA
At4g12560	Putative protein	C	c16		
At1g14900	Linker histone protein, putative	C	c16	1	
At4g30860	Putative protein	B	c8		
At2g43590	Putative endochitinase	B	c16		
At3g54640	Tryptophan synthase α chain	C	c12		
At1g02920	Glutathione S-transferase, putative	C	c16		
At3g23340	Putative casein kinase	C	c8		
At2g43510	Putative trypsin inhibitor	C	c12	2	
At4g22690	Cytochrome P450-like protein	B	c16		
At1g14900	Linker histone protein, putative	C	c15	1	
At2g43570	Endochitinase isolog	B	c12		
At4g36990	Heat shock transcription factor HSF4	B	c8		
At4g25900	Possible apospory-associated-like	B	c12		
At3g54560	Histone H2A	A	c12	1	
At1g21000	Unknown protein	B	c16	1	
At2g45300	(EPSP) synthase	C	c12		
At1g07640	Metallothionein-like protein	B	c4	1	
At2g47730	Glutathione S-transferase (GST6)	B	c8		
At5g61790	Calnexin-like protein	C	c7		
At2g21480	Putative cytochrome P450	B	c12		
At2g44890	Putative cytochrome P450	B	c8		
At2g02930	Putative glutathione S-transferase	B	c16		
At2g30620	Histone H1	C	c16	1	
At1g78830	Hypothetical protein	B	c16		
At4g35450	Monoxygenase 2 (MO2)	B	c16		
At2g51640	Putative PHD-type zinc finger	C	c12		
At3g14940	Phosphoepinephrulic acid carboxylase	B	c4	1	
At4g32400	Adenylate translocator-like	C	c7		
At5g54160	O-Methyltransferase	C	c11		
At3g02520	Putative 4-3-3 protein	C	c8		
At5g22880	Histone H2B like (emb CA69025.1)	B	c16		
At1g89850	Nitrate transporter (NTL1)	C	c15		
At2g28760	Putative nucleotide-sugar dehydratase	B	c8		
At4g29520	Putative protein	B	c8		
At1g05460	Hypothetical protein, 5’ partial	B	c7		
At2g39420	Putative phospholipase	B	c7		
At5g41660	DNA (cytosine-5)-methyltransferase	A	c12		
At2g27730	Glutathione S-transferase (GST6)	C	c8		
At3g31570	Putative glutathione peroxidase	C	c8		
At3g54660	Protein disulfide-isomerase-like	C	c7		
At4g23460	Putative potassium transport protein (TRH1)	C	c11	1	
At5g06730	Peroxidase	B	c8		
At4g01020	Pome.PID:1439562	B	c8		
At4g19420	Putative pectinacetylesterase	B	c7	1	
At5g47220	EREBP 2	B	c12	1	
At3g45980	Histone H2B	B	c16		
At3g51030	Thioredoxin	A	c12		
At4g36640	Putative protein	C	c8	1	
At2g45300	(EPSP) synthase	C	c8		
At4g34230	Cinnamyl alcohol dehydrogenase-like	B	c7		
At3g16530	Putative lectin	B	c16		
At1g20690	HMG1, putative	B	c16		
At4g34550	Caffeoyl-CoA O-methyltransferase-like	C	c12	1	
At1g51950	Auxin-regulated protein IAA18, putative	B	c12		
At4g17500	EREBP1	B	c8		
At3g05840	ASK-GAMMA	B	c16		
At1g78830	Hypothetical protein	B	c16		
At2g48990	Putative cytochrome P450	C	c12	1	
At4g02110	Unknown protein	B	c16	1	
At4g39540	Shikimate kinase-like protein	B	c8	1	
At2g22250	Putative asparagine aminotransferase	C	c12	1	
At1g09430	Unknown protein	B	c8		
At2g46350	Hypothetical protein	C	c11	1	
At2g44160	Putative methylenetetrahydrofolate reductase	C	c7	1	
At2g29420	Putative glutathione S-transferase	C	c11		
At5g46640	Heat shock protein 17.6-II	C	c12		
At4g24020	Putative protein	B	c16		
At4g22770	Putative DNA-binding protein	C	c16		
At1g79450	Hypothetical protein	B	c4		
At1g21750	Putative protein-disulfide isomerase precursor	C	c11		
At1g05250	S-Adenosylmethionine synthetase	C	c6	1	
At2g24240	Putative peroxidase	C	c11		
At2g24990	Putative replication protein A1	A	c8		
At2g33630	Putative steroid dehydrogenase	B	c8		
At4g26910	Putative dihydrolylipoamide succinyltransferase	C	c8		
At2g20980	Hypothetical protein	C	c7		
At4g27220	Histone H2A-like protein	B	c16		
Gene locus	Description	Tree	SOM	E2F	MSA
---------------	--	------	-----	-----	-----
At1g78380	Glutathione transferase, putative	A	c11		
At2g30490	Cinnamate-4-hydroxylase	C	e8		
At3g09010	Putative receptor set	B	c8		
At3g13790	β-Fructofuranosidase 1	C	c8		1
At4g21810	Putative protein	D	c16		
At2g42790	Putative citrate synthase	C	c15		
At1g21760	Unknown protein	A	c16		1
At1g47710	Serpin, putative	B	c4		
At1g08780	Histone H1, putative	B	c16		
At1g05470	Hypothetical protein	B	c4		
At1g30720	Putative reticuline oxidase-like	B	c4		
At3g12500	Basic chitinase	A	c15		
At4g35520	Putative protein	A	c7		1
At2g29570	PCNA	A	c11		
At2g35610	Unknown protein	B	c4		
At2g43020	Putative amine oxidase	B	c4		
At2g28740	Histone H4	C	c16		
At4g22140	Putative protein	B	c4		
At2g42750	Unknown protein	D	c8		
At4g21810	Putative protein	A	c8		
At5g26340	Hexose transporter-like	B	c16		
At2g30490	Cinnamate-4-hydroxylase	C	c8		
At4g24520	ATRI	D	c7		
At4g01700	Putative chitinase	B	c8		
At2g01680	Unknown protein	C	c12		
At3g59970	MTHFRI	C	c11		
At4g21910	Putative protein	B	c8		
At2g38860	Unknown protein	B	c8		
At4g16370	Isp4 like protein	C	c12		
At1g59740	Oligopeptide transporter, putative	C	c16		
At3g13790	β-Fructofuranosidase 1	C	c8		1
At2g38810	Histone H2A	C	c12		
At2g45330	Unknown protein	A	c12		
At2g36320	Unknown protein	C	c15		
At2g45500	Hypothetical protein	B	c4		
At6g07380	Putative amidase	C	c11		
At4g03920	Putative WD-repeat protein	B	c11		
At2g22430	ATRIB	C	c15		
At2g21710	Putative chromosome assoc. protein	C	c11		
At1g75750	Unknown protein	C	c15		
At4g17890	Putative protein	B	c16		
At1g23560	Hypothetical protein	B	c4		
At5g51440	IAA-aminio acid hydroxase homolog ILL3	C	c16		1
At2g22420	Putative peroxidase	C	c11		
At4g35220	Putative protein	C	c12		
At5g08910	DnaJ homologue (gb AAB91418.1)	A	c8		
At3g52060	Putative protein	C	c15		
At2g22480	Putative pyrophosphate-fructose-6-phantase	A	c12		
At4g18710	Shaggy-like protein kinase etha	C	c12		
At4g34100	Putative protein	C	c12		
At4g21070	Putative protein (fragment)	B	c16		
At5g05730	Anthranilate synthase component I-1	B	c4		
At4g17900	Putative protein	B	c4		1
At2g24470	Unknown protein	A	c8		
At2g37110	Unknown protein	C	c12		
At2g02390	Putative glutathione S-transferase	B	c4		
At4g14630	Germin precursor oxalate oxidase	B	c8		
At2g27190	Purple acid phosphatase precursor	C	c15		
At1g53540	17.6-kDa heat shock protein (AA 1–156)	C	c8		
At3g29200	Chorismate mutase	B	c4		
At2g29500	Putative small heat shock protein	A	c12		
At4g21070	Putative protein (fragment)	D	c16		
At1g60420	Unknown protein	B	c4		
At5g19530	Spermine synthase (ACL5)	A	c4		
At5g47040	Mitochondrial Lon protease homolog 1	B	c7		1
At2g33700	Putative protein phosphatase 2C	B	c4		
At4g00300	Awaiting functional assignment	B	c4		
At4g15070	Hypothetical protein	C	c15		
At2g48340	Putative photomorphogenesis repressor	D	c15		1
At2g13870	Root hair-defective 3 (RHD3)	B	c8		
At4g32160	Putative protein	D	c4		1
At1g55530	Putative protein	B	c4		
At3g52850	Spot 3 protein and vacular sorting	A	c15		1
At2g22860	Unknown protein	B	c4		
At2g39550	Putative geranylgeranyl transferase type	B	c4		
At1g54110	Unknown protein	B	c4		
At3g50780	Putative protein	C	c11		
At2g27650	Putative SCARECROW gene regulator	A	c7		1
At2g41790	Putative zinc protease	B	c4		
bust assignment to clusters. All histone signals are within branches A–C of the hierarchical tree. Interestingly, the only two H2A genes are both assigned to cluster 12, suggesting differential regulation compared with other histones. In contrast, CDC6, also previously reported as S phase-regulated (16, 64), shows clearly different expression in branch D and cluster 7, indicating that it is down-regulated in mitosis and up-regulated during G1 of the second cycle.

Mitotic cyclins of both A and B classes are primarily expressed during G2 and M in Arabidopsis and in other plants (31, 32, 65). Nine mitotic cyclins are present on the chip, of which all nine are detected as expressed, and eight gene signals (representing seven distinct genes) are defined as cell cycle-regulated in this experiment. All fall into branch E and the very similar cluster 9, 13, or 14. Expression of CDKB1 and CDKB2 also peak in mitosis (Fig. 1D) (22), with CDKB1 showing earlier expression (branch D, cluster 15) than CDKB2 (branch E, cluster 13), which is thus co-regulated with mitotic cyclins. The robust identification of mitosis-specific genes validates the synchrony of the culture used, despite the relatively low metaphase/anaphase index recorded for the reasons discussed above.

Novel Regulated Genes—The genes identified as regulated fall into a wide range of cellular processes as defined by MIPS based on collapsed automatically derived functional categories (available on the World Wide Web at mips.gsf.de/proj/thal/db/ tables/tables_func_frame.html; Fig. 5). Genes that are highest expressed at the time of aphidicolin removal (t/H11005) are grouped in sub-branch A (31 genes). The application of aphidicolin for 24 h and the treatment of cells with fresh medium during washing, are likely to induce stress responses. It is therefore not surprising that we identify potential stress-associated genes within this cluster including chitinases, peroxidase, glutathione transferase, proteolysis (F-box protein, serine carboxypeptidase), and heat shock-related proteins (see Tables I–IV for details). Nevertheless, we also observe expression of genes likely to be involved in S phase, such as histone H2A.F/Z already known to be cell cycle-regulated at the G1/S boundary.

Gene locus	Description	Tree	SOM	E2F	MSA
At5g39950	Thioredoxin	C	c12		
At2g32720	Putative cytochrome b$_{5}$	C	c12		
At1g23020	Putative NADPH oxidase	C	c12		
At1g59820	Chromaffin granule ATPase II homolog	C	c11		
At2g71630	Putative SET-domain transcript regulator	B	c4		
At1g10410	Unknown protein	B	c4		
At1g20690	High mobility group protein, putative	B	c16		
At2g91310	Unknown protein	C	c8	2	
At1g05530	Unknown protein	C	e8		
At2g47130	Putative alcohol dehydrogenase	B	e8		
At1g09560	Germin-like protein	B	e8	1	
At4g16660	HSP-like protein	C	c7		
At2g31570	Putative glutathione peroxidase	C	c12		
At5g40780	Glucose-6-phosphate dehydrogenase	C	c8		
At1g67480	Unknown protein	D	c15		
At2g17720	Putative prolly 4-hydroxylase, α subunit	B	e8		
At1g55920	Serine acetyltransferase	A	c12		
At1g20690	High mobility group protein, putative	B	c8		
At4g02050	Putative hexose transporter	B	c16		
At5g44790	ATP-dependent copper transporter	C	c16		
At2g44790	Phytocyanin	B	c4	1	
At5g17980	Anthranilate phosphoribosyltransferase	B	c13		
At2g30140	Putative glucosyltransferase	B	c12		
At3g49120	Peroxidase	B	c8	2	
At4g38540	Monoxygenase 2 (MO2)	B	c16		
At3g51030	Thioredoxin h	A	c12		
At4g38140	Putative disease resistance protein	B	c4		
At1g09200	Histone H3	C	c16		
At4g35110	Putative protein	B	e8		
At2g27350	Unknown protein	C	c16	1	
At5g63570	Glutamate-1-semialdehyde2,1-aminomut, 1	B	c4		
At1g70250	Receptor serine	B	c4		
At4g11600	Phospholipid hydroperoxide glutathione peroxide	A	c16		
At2g45290	Putative transketolase precursor	C	c12	1	
At2g36310	Hypothetical protein	A	c11		
At2g37520	Unknown protein	B	c7	1	
At2g34970	Putative translation initiation factor cIF-2B	C	c11		
At2g33530	Putative serine carboxypeptidase II	A	c16		
At4g39270	Receptor protein kinase-like protein	B	c4		
At1g77220	Unknown protein	A	c11		
At2g27200	Putative nucleotide-binding protein	D	e4		
At4g02390	NAD+ ADP-riboosyltransferase	C	c16		
At5g39950	Thioredoxin	C	c12		
At2g37480	Unknown protein	A	c4		
At4g16850	Growth regulator-like protein	C	c11		
At1g74310	Heat shock protein 101	B	c8		
At3g08760	Putative protein kinase	D	c4		
At4g01870	Predicted protein of unknown function	B	c4		
At3g12500	Basic chitinase	A	c15		
At2g43260	Hypothetical protein	C	c11		
At2g34400	Hypothetical protein	B	c12		
At4g39230	NAD(P)H oxidoreduct isoflavonereduct-like	B	c4		
At5g10180	Sulfate transporter	C	c15		
At4g27910	Putative protein	B	c12	1	
in Arabidopsis suspension cultures (29), proliferating cell nuclear antigen (cluster 11), and a DNA cytosine methyltransferase (cluster 12), which these results suggest are regulated genes. In sub-branch B, a large group of genes (147 genes) is found showing a peak of expression at 2 h after the block is released, corresponding to early to mid-S phase, including several genes involved in DNA metabolism and replication such as histones, a CDC50 homologue, and FAS1, which shows strong periodic regulation in cluster 4 (67). Also in node B/cluster 4 are found the mitogen-activated protein kinase AtMPK6, which is known to be involved in signaling of abiotic stress (68), as well as the mitogen-activated protein kinase kinase AtMPK2. In addition, a large group of genes are annotated as oxidative stress-responsive genes, such as peroxidases (3), chitinases (4), glutathione transferases (six total, all in nodes B/C), superoxide dismutase, and ethylene-responsive element-binding factors (2).

Within the next node (C), 91 genes are clustered, which are highly expressed over multiple time points mainly in S phase including further histone genes. A few genes in sub-branches C and D show high expression in S phase (2–6 h) and then decrease, with higher expression again seen in the last experiment after 19 h. This expression profile is found, for example, for the CDC6 gene, which is specifically expressed in G1 and S phases (16, 64), and the mitogen-activated protein kinase kinase kinase kinase ATN1. ATN1 is related to mammalian transforming protein kinases, but no biological role is known in plants (68). Two casein kinase I genes are also found in clusters B and C.

In node E, 102 genes are grouped together, which are assigned as M phase-specific, belonging to clusters 9, 10, 13, and 14. In addition to mitotic cyclins and CDKs (see above), the Arabidopsis homolog of budding yeast CDC20 is within this node and cluster 13 and is one of the most highly regulated genes detected. CDC20 is one of two proteins required to activate the anaphase-promoting complex. Other genes with clear mitotic associations are three genes for kinesin heavy chain, two kinesin-like potential spindle proteins (At2g28620, At4g14330), a homolog of an extragenic suppressor of bin1D61 involved in chromosome structure and segregation (69), a homolog of human TOG that targets CDK activity to microtubules in mitosis (70), a fimbrial involved in F-actin filament cross-linking (71), and two helicases. Putative regulatory proteins include a protein phosphatase 2C (At2g30020), MYB70, an AP2 domain protein (At3g16280), and an FCA-like protein (At2g47310).

Node F includes 71 gene signals whose expression peaks at the M/G1 boundary, and node G includes a further 27 genes expressed during G1 phase. Some genes in these nodes are also expressed in the early stages of the experiment and are hence in clusters 1 and 2. Notable in node F are the very highly regulated histidine kinases (HKs) encoding the cytokinin receptor CRE1 (AtHK4) and the osmosensor AthK1 as well as the response regulators ARR4 and ARR7. Two MCM proteins required for prereplication complex assembly, CDC21 (72) and MCM5, which has an E2F site in its promoter as does human MCM5 (73), are both expressed at this time in cluster 5, as is the DNA mismatch repair protein MSH2, which associates with p53 in S phase in mammalian cells (74). In node G, the SKP1 homolog At2g03160 is found in cluster 3, indicating a G1/S expression pattern in both cycles. SKP1 functions as part of the SCF complex and regulates the destruction of G1 cell cycle regulators at the onset of S phase. The D-type cyclin CYCD4;1 (75) not previously known to be expressed or regulated in cell suspension cultures is also found in this node.

Links to Other Cellular Processes—In addition to processes likely to be cell cycle-regulated based on studies in other organisms, the data hold clues to novel plant-specific processes that may be integrated with cell division control.

Plants coordinate nuclear division with mitochondrial and plastid duplication and segregation. Two genes related to yeast ABF2, a high mobility group protein involved in mitochondrial DNA segregation (76), both have very strong regulation in the mitosis peak node E/cluster 13. Since both ABF2 homologs (At4g23800, At4g11080) are predicted to be plastid-targeted (data not shown), this could provide a link between nuclear and plastid division. Moreover, the only gene in Arabidopsis for organelle methionyl-tRNA synthetase that provides both mitochondrial and chloroplastic activity (77) is also regulated in node E/cluster 5, suggesting a link to organelle protein synthesis.

The data set includes a number of genes suggesting links to hormone perception, biosynthesis, and response, including cytokinin, brassinosteroids, auxin, ethylene, and jasmonate. One of the most highly regulated genes detected is the cytokinin receptor AtHK4 (CRE1, WOL1), which shows strong periodic expression in G1 (node F, cluster 1). It is thus expressed in early time points, decreases, and then increases in later time points. Interestingly, ATHK4 is co-regulated in the cell cycle with its downstream transcriptional targets ARR4 and ARR7, negative regulators of the cytokinin response presumably involved in a feedback mechanism (78, 79). Since ARR4 is also linked to phytochrome and light signaling, it could provide a link between cytokinin, other signals, and cell cycle (79, 80). The coordinate response of AtHK4, ARR4, and ARR7 cytokinin regulatory genes is consistent with the requirement for cytokinins for the G1/S transition through the regulation of CYCD3;1 expression (81) and suggests that roles for cytokinin at the G2/M transition (82) may be regulated by different genes.

Dwarf1 encodes the enzyme that converts 24-methylenecholesterol to campesterol in brassinosteroid biosynthesis and is found in node F, cluster 5 with a G1 maximum. Brassinosteroid controls both cell growth and cell division (83) and regulates expression of the D-type cyclin CYCD3;1 (84, 85), and the up-regulation of DWARF1 during G1 phase suggests a mechanism by which this may be mediated.

Auxin is essential for cell division and cell cycle progression (86–88), although rather little is known of its precise molecular interaction with the cell cycle. The auxin-induced transcript-
TABLE III

Potential cell cycle-regulated genes showing significant fluctuation and a peak in expression in M phase

Gene locus	Description	Tree	SOM	E2F	MSA
At5g38410	Ribulose bisphosphate carboxylase small	E	c9		
At3g23890	Topoisomerase II	E	c13	1	
At5g08150	Mitosis-specific cyclin 1b	E	c13	2	
At1g18250	Pathogenesis-related group 5 protein, putative	E	c13		
At2g26760	Putative cyclin	E	c13	2	
At1g03780	Hypothetical protein	E	c9	1	
At4g32380	WD-repeat protein-like protein	E	c13	1	
At4g38230	Putative protein	E	c13		
At3g48230	Cytochrome P450-like protein	F	c5		
At4g15570	SEN1-like protein	E	c13		
At2g26180	Putative SF16 protein (Helianthus annuus)	E	c14	1	
At4g03100	Putative rac GTPase-activating protein	E	c13		
At4g23800	98b-like protein	E	c13		
At4g35620	Cyclin 2b protein	E	c9	1	
At1g04250	Putative auxin-induced protein, IAA17	F	c5		
At1g23790	Hypothetical protein	E	c13		
At1g20620	Hypothetical protein	E	c9		
At4g18140	Putative protein	E	c13		
At2g25060	Similar to early nodulins	E	c13	1	2
At1g77390	Mitotic cyclin a2-type, putative	E	c13	2	
At2g25060	Similar to early nodulins	E	c13	1	2
At5g51280	MS5-like protein	E	c13		
At1g01620	Plasma membrane intrinsic protein 1c, putative	E	c13	1	
At4g35730	Putative protein	E	c13		
At2g20590	Hypothetical protein	E	c14	1	
At1g09680	Unknown protein	E	c9	1	
At1g03470	Hypothetical protein	E	c14		
At1g04680	Putative pectate lyase A11	F	c5	1	
At2g42960	Putative protein kinase	G	c9		
At2g46890	Putative auxin-regulated protein	E	c14	1	
At2g02250	Lectin-like protein	F	c1		
At5g01600	Ferritin 1 precursor	E	c13	1	
At4g17980	NAM (no apical meristem)-like protein	F	c9		
At4g37570	Phosphoenolpyruvate carboxykinase (ATP)-like	E	c9		
At4g36360	β-Galactosidase-like protein	F	c5		
At1g15540	Unknown protein	E	c9	1	
At3g09390	Metallothionein-like protein	E	c14		
At1g77490	Thylakoid-bound ascorbate peroxidase	E	c10		
At4g18560	Hypothetical protein	E	c14		
At4g27280	Putative protein	F	c10		
At3g47840	Putative protein	E	c14		
At4g01730	Hypothetical protein	E	c14		
At2g21330	Putative fructose bisphosphate aldolase	F	c9		
At4g39090	Drought-inducible cysteine proteinase RD19A	F	c1		
At4g29940	Pathogenesis related homodomain protein (PRHA)	F	c9		
At2g35550	Hypothetical protein	F	c5		
At3g46090	Zinc finger protein ZAT7	G	c9		
At2g25350	Unknown protein	F	c9		
At4g12800	Probable photosystem I chain XI precursor	E	c10		
At4g24780	Putative pectate lyase	F	c5		
At2g39220	Similar to latex allergen from Hevea brasiliensis	F	c5		
At5g66570	33-kDa polypeptide of oxygen-evolving complex	E	c9		
At4g00430	Probable plasma membrane intrinsic protein 1c	E	c14		
At3g49120	Peroxidase	E	c10	2	
At5g01530	Chlorophyll a	E	c9	1	
At2g21300	Putative kinesin heavy chain	E	c9		
At4g11080	98b-like protein	E	c13		
At2g35740	Putative sugar transporter	E	c10		
At2g41800	Unknown protein	F	c5	1	
At2g28620	Putative kinesin-like spindle protein	E	c13		
At4g14330	Kinesin like protein	E	c14		
At5g04590	Sulfitreductase	F	c5	1	
At4g33120	Putative protein	E	c13		
At4g22860	Hypothetical protein	E	c13		
At2g03090	Putative expansin	F	c5		
At2g25880	Putative protein kinase	E	c13		
At3g48280	Cytochrome P450-like protein	F	c5		
At4g13460	Putative protein	E	c13		
At4g22120	Putative protein	E	c13	1	
At2g18520	Unknown protein	E	c13		
At4g37330	Cytochrome P450-like protein	E	c13		
At4g02800	Hypothetical protein	E	c13	1	
At1g70210	Cyclin, putative	E	c14		
At1g04030	Unknown protein	E	c13	1	
At2g47500	Putative kinesin heavy chain	E	c13	1	
At2g40300	Putative ferritin	F	c5	1	
At3g48280	Cytochrome P450-like protein	E	c5		
At3g48280	Putative AP2 domain transcription factor	E	c13	1	
regulator AXR3 (IAA17) (89) is strongly regulated (node F, cluster 5), showing continuously up-regulated expression, whereas IAA18 shows an S phase peak (B/12). A further putative auxin-regulated gene shows a mitotic peak, suggesting that differential regulation of auxin response genes could explain some of auxin’s multiple effects on all stages of the cycle.

Allene-oxide synthase is critical for the biosynthesis of all biologically active jasmonates, which is involved in wound and other pathogen responses and blocks cell cycle progression during G1 (90). Duplicated gene signals for allene-oxide synthase show both in node G and the similar clusters 1 and 6, suggesting possible roles in G1 control.

A unique aspect of cell division in plants is close coordination required between cell wall synthesis and the cell cycle. It is therefore interesting to note at least 23 genes identified that have known or putative links to cell wall or biosynthesis of cell wall components that are found in several clusters. For example, expansins are a group of extracellular proteins that directly modify the mechanical properties of plant cell walls, leading to turgor-driven cell extension (91). Three expansin genes are detected as regulated, of which two are expressed in G1 (F, 5), whereas the third is expressed in both S and G1 phases (B, 2). Extensins are abundant proteins presumed to determine physical characteristics of the plant cell wall, and expression of one is found with a G1 peak (G, 3).

TABLE III—continued

Gene locus	Description	Tree	SOM	E2F	MSA
At2g40230	Putative anthranilate N-hydroxycinnamoyl	E	c13		
At1g31970	p68 RNA helicase, putative	E	c10		
At1g16330	Putative mitotic cyclin	E	c9		
At1g55490	Rubisco subunit binding-protein θ subunit	E	c9	1	
At2g17620	Putative cyclin 2	E	c13	1	1
At2g33110	Putative protein	E	c13		
At2g22610	Putative kinesin heavy chain	E	c13		
At1g52110	Putative protein	E	c4		
At2g26570	Phosphate transporter, putative	E	c14	1	
At2g07690	Putative DNA replication licensing factor, Mem5	F	c5	1	
At4g33400	Dem-like protein	E	c14	2	
At4g16020	Probable ribosomal protein	E	c5		
At2g24990	Similar to extragenic suppressor of binD6 mutation	E	c10		
At2g53880	Hypothetical protein	E	c13		
At2g16440	Putative CDC21 protein	F	c5		
At2g17620	Putative cyclin 2	E	c13	1	1
At2g35630	Similar to ch-TOG protein from Homo sapiens	E	c14		
At1g73550	Hypothetical protein	E	c14		
At2g48420	Unknown protein	E	c14		
At5g02500	DnaK-type molecular chaperone hsc70.1	F	c1		
At1g47500	DNA binding protein, putative	E	c10	1	
At2g44540	Putative ethylene response element-binding protein	E	c9		
At4g37110	Putative protein	E	c13		
At2g11910	Unknown protein	E	c9		
At1g77050	RNA helicase, putative	F	c10		
At3g47860	Putative peptide transporter	F	c1		
At2g01290	Putative ribose 5-phosphate isomerase	E	c10	1	
At3g54890	Chlorophyll A	E	c9		
At2g38750	Putative annexin	F	c1		
At5g48460	Fimbrin 2 (gb AAB97844.1)	F	c14		
At1g26800	Hypothetical protein	D	c1		
At1g20930	Putative cell division control protein, Cdc2 kinase	E	c13	1	
At2g40330	Unknown protein	D	c14		
At4g39530	Putative protein	E	c13	1	
At2g47310	Putative PCA-related protein	E	c14		
At4g06620	Putative tetrahydrofolate synthase	E	c10	1	
At1g74470	Geranylgeranyl reductase	E	c14	1	
At1g15820	Chlorophyll-binding protein, putative	E	c10	1	
At2g20800	Putative NADH-ubiquinone oxireductase	F	c5		
At3g50060	R2R3-MYB transcription factor	F	c1	1	
At1g94210	Unknown protein	E	c14		
At4g12420	Putative pollen-specific protein	F	c9		
At2g19090	Hypothetical protein	E	c14		
At4g33570	Putative protein	E	c14	1	
At4g02150	AtKAP α	E	c13		
At5g23300	Dihydroorotate dehydrogenase precursor	E	c10		
At4g19710	Aspartate kinase-homoserine dehydrogenase-like protein	E	c9		
At4g31290	Predicted protein	F	c9		
At5g25380	Cyclin 3a	E	c14		
At2g02020	Putative peptide	E	c10		
At2g30020	Putative protein phosphatase 2C	E	c13		
At2g23290	Putative MYB family transcription factor	E	c13		
At3g56940	Leucine zipper-containing protein AT103	E	c10		
At1g42970	Glyceraldehyde-3-phosphate dehydrogenase	E	c10		
At2g44630	Hypothetical protein	E	c10		
At4g25730	Putative protein	E	c10		
At4g38680	Glycine-rich protein 2 (GRP2)	F	c9		
TABLE IV
Potential cell cycle-regulated genes showing significant fluctuation and a peak in expression in G1 phase

Gene locus	Description	Tree	SOM	E2F	MSA
At2g01830	Putative histidine kinase	F	c1		
At2g04100	Hypothetical protein	B	c2	1	
At1g70710	Endo-1,4-β-glucanase	F	c1		
At2g17820	Putative histidine kinase	F	c1		
At2g02810	Unknown protein	B	c3		
At2g25110	Unknown protein	C	c7		
At4g38940	Putative protein	F	c6		
At2g04100	Hypothetical protein	B	c3		
At2g17500	Unknown protein	B	c2		
At2g17120	Predicted GPI-anchored protein	B	c3		
At1g14010	Unknown protein	B	c7	1	
At4g39980	2-Dehydro-3-deoxyphosphoheptonate aldolase	B	c3		
At1g01530	MADS-box transcription factor, putative	F	c6		
At2g40300	Putative ferritin	F	c5		
At2g30810	Putative gibberellin-regulated protein	F	c1		
At2g44160	Putative methylenetetrahydrofolate reductase	C	c7		
At1g67110	Cytochrome P450, putative	F	c1		
At1g05520	Transport protein, putative	F	c3		
At2g44460	Putative β-glucosidase	B	c2		
At2g47000	Putative ABC transporter	G	c2		
At1g71695	Peroxidase ATP4a	B	c3		
At4g16150	Transcription factor-like protein	F	c2		
At1g18890	Calcium-dependent protein kinase, putative	B	c3		
At2g29120	Putative ligand-gated ion channel protein	B	c2		
At5g42650	Allene oxide synthase (emb CAA73184.1)	G	c1		
At2g31410	Unknown protein	E	c5		
At1g54580	Acyl-carrier protein (ACP), putative	F	c5		
At1g70410	Carbonic anhydrase, putative	B	c3		
At4g28540	Protein kinase ADK1-like protein	B	c3		
At2g28830	Hypothetical protein	B	c1		
At2g20370	Unknown protein	D	c1		
At1g08830	Superoxide dismutase	B	c2		
At1g23800	Putative aldehyde dehydrogenase	A	c7		
At4g20840	Reticuline oxidase-like protein	G	c7		
At3g01540	RNA helicase, DRH1	D	c1		
At1g01470	Hypothetical protein	B	c3	1	
At2g39700	Putative expansin	B	c2		
At1g65530	Hypothetical protein	G	c2		
At4g22470	Extensin-like protein	G	c3		
At3g48340	Cysteine endopeptidase-like	G	c1		
At4g36210	Putative protein	F	c2	1	
At1g01480	1-Aminocyclopropane-1-carboxylate synthase (ACC2)	B	c2		
At4g21120	Amino acid transport protein AAT1	B	c3		
At2g39710	Unknown protein	F	c5		
At2g25970	Unknown protein	G	c6		
At4g17490	Ethylene responsive element binding-like	F	c1		
At2g17130	Putative NAD⁺ dependent isocitrate dehydrogenase	D	c8		
At1g78780	Hypothetical protein	G	c6	1	
At2g25670	Unknown protein	D	c2	3	
At4g39980	2-Dehydro-3-deoxyphosphoheptonate aldolase	B	c2		
At1g03020	Putative glutaredoxin	G	c7		
At2g43790	MAP kinase (ATMPK6)	B	c4		
At4g27110	DNA-directed RNA polymerase (EC 2.7.7.6) II	F	c6		
At1g01480	1-Aminocyclopropane-1-carboxylate synthase (ACC2)	B	c2		
At1g01070	Putative response regulator 3	F	c2	1	
At4g30100	Putative protein	F	c1		
At2g45740	Unknown protein	G	c7		
At4g16830	Nuclear antigen homolog	C	c7		
At1g07480	Transcription factor HA large subunit	B	c3	2	
At4g13710	Putative pectate lyase A11	F	c5		
At2g28950	Expansion AtEx6	F	c5		
At5g65420	D-type cyclin (emb CAB41347.1)	G	c6		
At4g27070	Tryptophan synthase β-subunit (TSB2)	F	c6		
At4g25690	Hypothetical protein	D	c3		
At2g26920	Unknown protein	B	c3		
At1g30750	Unknown protein	B	c3		
At2g33600	Putative cinnamoyl-CoA reductase	F	c2	1	
At1g21450	Scarecrow-like 1	B	c3	1	
At4g19050	Putative protein	B	c7		
At4g31820	Putative protein	F	c2		
At1g30040	Unknown protein	B	c2		
At3g50930	BCS1 protein-like protein	B	c2		
At3g46920	Protein kinase-like protein	D	c1	1	
At4g02330	Awaiting functional assignment	F	c5		
At3g19820	Cell elongation protein, Dwarf1	F	c5	1	
At2g29060	Putative SCARECROW gene regulator	B	c2		
At4g32250	Putative protein kinase	B	c3		
At2g03180	Putative kinetochore (Skplp-like) protein	G	c3		
(93), both present on the array, the latter being represented by duplicate oligonucleotide sets. Both MTHFR genes are found in node C and in the closely related periodic clusters 7 and 11, which show a sharp decrease in mitosis. Both genes also carry E2F sites in their upstream regions. These results suggest that MTHFR transcription is S phase-regulated in Arabidopsis. Since lignin biosynthesis is a major utilizer of methionine via S-adenosyl methionine (94), this may be linked to cell wall synthesis or alternatively reflect the control of methionine pools for protein synthesis.

A number of genes identified provide clues to possible links with developmental and differentiation processes through genes previously identified as having developmental phenotypes when mutated. These include genes for an Argonaute (AGO1)-like protein (F, 5) possibly involved in RNA turnover processes (95), a homolog of tomato DEM1 (defective embryo and meristem) (96), which is mitosis-regulated and FCA-related (E, 14), and a NAM (no apical meristem)-like protein (F, 9) (97) as well as four scarecrow-like transcription factors (98), three of which are in nodes A or B.

Cell Cycle-regulated Promoter Elements— Three main groups of regulatory elements have been described in plants that control cell cycle expression. E2F binding sites regulate expression by binding to activating or inhibitory E2F factors, which are themselves regulated by the recruitment of hypophosphorylated Rb to E2F sites, which inactivates expression (99). Phosphorylation of Rb in late G1 results in activation of E2F-regulated genes including ribonucleotide reductase (100) and CDC6 (16, 64). Expression of mitotic cyclins has been shown to depend on specific elements conferring mitotic-specific activation.
in tobacco and Arabidopsis (61), whereas histone gene expression depends on octamer (Oct) and hexamer (Hex) elements (59).

We searched the regions 1 kb upstream of each open reading frame within the regulated gene set for the E2F (TTTYYCGYY), mitotic-specific activation (YCYAACGGYY), Oct (CGCGGATC), and Hex (CCACGTCA) consensus sequences. Oct and Hex sequences were found in only a few genes, mostly histones. The relatively loose E2F and mitotic-specific activation consensus sequences identified a relatively large number of genes, not all of which are likely to be regulated by these factors. However, when we examined the distribution of detected sites between different clusters (Table V), we found that clusters contained either relatively few or relatively frequent sites. In all cases except cluster 13, the clusters with frequent E2F sites are distinct from those with larger numbers of genes with mitotic-specific activation sites, suggesting that these generally confer regulation at different times in the cell cycle. Cluster 13 represents mitotic peaking genes and may suggest a role for E2F in regulating expression of genes peaking in G2/mitosis as previously found for mammalian E2F-regulated genes (39).

DISCUSSION

Here we present for the first time the results of a wide scale analysis of regulated gene expression in a plant cell cycle synchronized culture. The results demonstrate that a large number of plant genes are likely to show cell cycle-dependent regulation of their expression. The identified genes are involved in a wide range of cellular processes including cell cycle control, cytoskeleton, transcription, proteolysis, phosphorylation, signal transduction, biosynthesis, carbon and amino acid metabolism, hormone response, and organelle function (Fig. 5 and Tables I–IV).

Shedden and Cooper (49) have shown that microarray analysis is prone to random fluctuations, which can be interpreted as consistent regulation. We show that the data from this experiment show significantly greater regulation than a control randomized data set. We have applied statistical analysis to identify 463 genes among 4010 passing initial filters with a high probability of showing significant regulation (p < 0.05), and over 200 of these are significant (p < 0.01).

Shedden and Cooper (49, 66) have also criticized analysis of cell cycle expression because of the perturbations caused by synchronization methods. It is clear that the synchronization carried out here does indeed cause induction of some stress-related genes. However, the procedure was developed to minimize stress, and indeed Arabidopsis cells readily arrest division. Moreover, we have identified almost all Arabidopsis genes previously known to be cell cycle-regulated, including genes whose cell cycle regulation has been demonstrated in situ hybridization and are therefore independent of synchronization procedures (30). A large number of genes also fall into clusters not consistent with a simple stress response due to their periodic response to cell cycle position, and in particular clusters indicative of roles in G2/M or G1/S processes.

It is interesting to note that, compared with the analysis in mammalian cells, we identify large numbers of genes regulated during G1 phase (136 genes). This may reflect a greater role for transcriptional control in G1 in plants. It is also likely that G1 control in plants must integrate a larger number of potential
signals due to the multiple developmental and environmental influences on commitment to cell division.

We conclude that the analysis has not only successfully identified known cell-cycle-regulated genes but also identified as cell-cycle-regulated a number of other genes involved in cell cycle progression, DNA replication, and its control, and cytokinetic processes that might be suspected to be regulated but have not previously existed. In addition, a number of novel controlling genes including kinases, phosphatases, and transcription factors have been identified, as well as links to genes previously known for their role in differentiation or developmental processes.

Acknowledgments—J. A. H. M. and M. M. are very grateful to Klaus Herbermann and Bart den Boer for assistance and discussions regarding bioinformatic analysis. We also thank the Functional Genomics Center Zürich for technical support.

REFERENCES

1. Howard, A., and Pole, S. R. (1953) Heredity 6, suppl. (1953) 216–217
2. Van’t Hol, J. (1974) in Cell Cycle Controls (Padilla, G. M., Cameron, I. L., and Zimmerman, A., eds) pp. 77–86, Academic Press, Inc., New York
3. Nurse, P. (1994) Cell 79, 475–507
4. Cockcroft, C. F. R., den Boer, B. G., Healy, J. M., and Murray, J. A. H. (2000) Nature 405, 575–579
5. Beemster, G. T. S., de Tavernier, E., de Bock, K., and Inze, D. (2002) Plant Physiol. 27, 1385–1395
6. Ferreira, P. C. G., Hemery, A. S. V., Villarreal, R., van Montagu, M., and Inze, D. (1991) Plant Cell 3, 531–540
7. Son, R., Carmichael, J. P., Shah, Z. H., and Murray, J. A. H. (1995) Plant Cell 7, 85–103
8. Renaudin, J. P., Doonan, J. H., Freeman, D., Hashimoto, J., Hirt, H., Inze, D., Jacobs, T., Kochi, H., Rouze, P., Sauter, M., Savoure, A., Sorrell, D. A., Sundaresan, V., and Murray, J. A. H. (1998) Plant Mol. Biol. 37, 1003–1018
9. Wang, H. G., Q. G., Schr, P., Cutler, A. J., Crosby, W. L., and Fowke, L. C. (1998) Plant J. 15, 501–516
10. Lui, H., Wang, H., Delong, C., Fowke, L. C., Crosby, W. L., and Fobert, P. R. (2000) Plant J. 21, 379–385
11. de Veylder, L., Beckman, T., Beemster, G. T. S., Krol, L., Terras, P., Landrieu, I., van der Schueren, E., Maas, S., Maudes, M., and Isepe, D. (2001) Plant Cell 13, 1653–1667
12. Ramirez-Parras, E., Xie, Q., Boniotti, M. B., and Gutierrez, C. (1999) Nucleic Acids Res. 27, 3527–3533
13. Sekine, I., Ito, M., Umemaki, K., Maeda, Y., Nakagami, H., and Shinmyo, A. (1999) FEBS Lett. 460, 117–122
14. Joubes, J., Chevallier, C., Duditis, D., Heberle-Bors, E., Inze, D., Umeda, M., and Renaudin, J. P. (2000) Plant Mol. Biol. 43, 607–620
15. Kong, J. L., Orozco, B. M., Roe, J. L., Nagar, S., Ou, S., Feiler, H. S., Durfee, T., Miller, A. B., Gruissem, W., Robertson, D., and Hanley-Bowdoin, L. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 1084–1089
16. Hofte, M., C. J., Vanneste, S., van Montagu, M., and Inze, D. (2002) EMBO J. 21, 5966–5977
17. Tyers, M., Boone, C., and Friend, S. H. (2000) Trends Cell Biol. 10, 267–274
18. Cho, R. J., Huang, M. X., Campbell, M. J., Dong, H. L., Steinmetz, L., Sherman, F. A., Botstein, D., and Futcher, B. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 13674–13679
19. Li, C., van Montagu, M., and Inze, D. (2001) Plant Physiol. 125, 385–394
20. Breyne, P., and Zabeau, M. (2001) Curr. Opin. Plant Biol. 4, 138–142
21. Callard, D., and Mazzolini, L. (1997) FEBS Lett. 408, 1395–1398
22. Fobert, P. R., Coen, E. S., Murphy, G. J. P., and Doonan, J. H. (1994) EMBO J. 13, 616–624
23. Rios-Khamichi, C., Mena, C. H., Matsunaga, T., Inze, D., and Murray, J. A. H. (2000) Mol. Cell. Biol. 20, 4513–4521
24. Stals, H., Bauwens, S., Traas, J., van Montagu, M., Engler, G., and Inze, D. (1997) FEBS Lett. 418, 229–234
25. Mews, M., Sek, F. J., Volkmann, D., and John, P. C. L. (2000) Proteolysis 212, 236–249
26. Wodicka, L., Dong, H. L., Mittmann, M., Ho, M. H., and Lockhart, D. J. (1997) Nat. Biotechnol. 15, 1359–1366
27. White, K. P., Ritzkin, S. A., Huban, P., and Hoggins, D. S. (1999) Science 286, 1719–1724
28. Collier, H. A., Grandori, C., Tamayo, P., Colbert, T., Lander, E. S., Eisenman, R. N., and Golub, T. R. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 3260–3265
29. Ishida, S., Huang, E., Uzuan, H., Sapiag, R., Leone, G., West, M., and Nevin, R. (1999) Oncogene 18, 484–499
30. Harmer, S. L., Hugenes, L. B., Straume, M., Chang, H. S., Han, B., Zhu, W., Wang, X., Kreps, J. A., and Kay, S. A. (2000) Science 291, 2110–2113
31. Malek, K., Levine, A., Eulgem, T., Morgan, A., Schmid, J. Lawton, A. K., Dangel, J. L., and Briere, J. F. (2000) FEBS Lett. 484–489
32. Reynold, P., Weber, H., Damond, M., and Furse, E. (1990) Plant Cell 12, 107–119
33. Roberts, C. J., Nelson, B., Marton, M. J., Stoughton, R., Meyer, M. R., Bennett, H. A., Ye, D. D., Dai, H. Y., Walker, W. L., Hughes, T. R., Jr., Tyrer, M., Boone, C., and Friend, S. H. (2000) Science 287, 875–880
34. Schenk, P. M., Kesan, N., Wilson, I., Anderson, J. P., Richmond, T., Somerville, S. C., and Manners, J. M. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 11565–11600
35. Schnitter, L., Landgraf, J., Accardi, M., Simon, V., Larson, M., and Wiseman, E. (2001) Plant Cell 13, 113–123
78. Urao, T., Yakubov, B., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1998) *FEBS Lett.* 427, 175–178
79. Sheen, J. (2002) *Science* 296, 1650–1652
80. Sweere, U., Eichenberg, K., Lohrmann, J., Mira-Rodado, V., Baurle, I., Kudla, J., Nagy, F., Schafer, E., and Harter, K. (2001) *Science* 294, 1108–1111
81. Roux-Khamlichi, C., Huntley, R., Jacqmard, A., and Murray, J. A. H. (1999) *Science* 283, 1541–1544
82. Redig, P., Shaul, O., Inze, D., Vanmontagu, M., and Vanonckelen, H. (1996) *FEBS Lett.* 391, 175–180
83. Nakaya, M., Tsukaya, H., Murakami, N., and Kato, M. (2002) *Plant Cell Physiol.* 43, 239–244
84. Hu, Y., Bao, F., and Li, J. (2000) *Plant J.* 24, 693–701
85. Oakenfull, E. A., Roux-Khamlichi, C., and Murray, J. A. H. (2002) *Philos. Trans. R. Soc. Lond. Biol. Sci.* 357, 749–760
86. Meyer, Y., and Cooke, R. (1979) *Planta* 147, 181–185
87. Cooke, R., and Meyer, Y. (1981) *Planta* 152, 1–7
88. Walker, L., and Estelle, M. (1998) *Curr. Opin. Plant Biol.* 1, 434–439
89. Ouellet, F., Overvoorde, P. J., and Theologis, A. (2001) *Plant Cell* 13, 829–841
90. Swiatek, A., Lenjou, M., Van Bockstaele, D., Inze, D., and Van Onckelen, H. (2002) *Plant Physiol.* 128, 201–211
91. Li, Y., Darley, C. P., Ongaro, V., Fleming, A., Schipper, O., Baldauf, S. L., and McQueen-Mason, S. J. (2002) *Plant Physiol.* 128, 854–864
92. Wang, H., Lee, M. M., and Schiefelbein, J. W. (2002) *Plant Physiol.* 129, 638–649
93. Roe, S., Wang, H., Meisel, S. D., Raymond, R. K., Appling, D. R., Shachar-Hill, Y., Bohnert, H. J., and Hanson, A. D. (1999) *J. Biol. Chem.* 274, 36089–36096
94. Shen, B., Lie, C. J., and Tarczynski, M. C. (2002) *Plant J.* 29, 371–389
95. Morel, J. B., Godon, C., Mourrain, P., Beclin, C., Boutilier, S., Feuerbach, F., Pouzet, P., and Vaucheret, H. (2002) *Plant Cell* 14, 629–639
96. Keddie, J. S., Carroll, B. J., Thomas, C. M., Reyes, M. E. C., Klimyuk, V., Halsall, H., Gruissem, W., and Jones, J. D. G. (1996) *Plant Cell* 10, 877–887
97. Souer, E., Vanhouwelingen, A., Klos, D., Mol, J., and Koers, R. (1996) *Cell* 85, 159–170
98. Pysh, L. D., Wysecka-Diller, J. W., Camilleri, C., Bouchez, D., and Benfey, P. N. (1999) *Plant J.* 18, 111–119
99. Durfee, T., Feiler, H. S., and Gruissem, W. (2000) *Plant Mol. Biol.* 43, 635–642
100. Chaboute, M. E., Combettes, B., Clement, B., Gigot, C., and Philipps, G. (1998) *Plant Mol. Biol.* 38, 797–806