Contextualized Perturbation for Textual Adversarial Attack

Dianqi Li♠ Yizhe Zhang♦ Hao Peng♠ Liqun Chen♠
Chris Brockett♣ Ming-Ting Sun♠ Bill Dolan♦
♠University of Washington ♦Microsoft Research ♣Duke University
{dianqili, mts}@uw.edu, hapeng@cs.uw.edu, liqun.chen@duke.edu
{Yizhe.Zhang, Chris.Brockett, billdol}@microsoft.com

Abstract

Adversarial examples expose the vulnerabilities of natural language processing (NLP) models, and can be used to evaluate and improve their robustness. Existing techniques of generating such examples are typically driven by local heuristic rules that are agnostic to the context, often resulting in unnatural and ungrammatical outputs. This paper presents CLARE, a Contextualized Adversarial Example generation model that produces fluent and grammatical outputs through a mask-then-infill procedure. CLARE builds on a pre-trained masked language model and modifies the inputs in a context-aware manner. We propose three contextualized perturbations, Replace, Insert and Merge, allowing for generating outputs of varied lengths. With a richer range of available strategies, CLARE is able to attack a victim model more efficiently with fewer edits. Extensive experiments and human evaluation demonstrate that CLARE outperforms the baselines in terms of attack success rate, textual similarity, fluency and grammaticality.

1 Introduction

Adversarial example generation for natural language processing (NLP) tasks aims to perturb input text to trigger errors in machine learning models, while keeping the output close to the original. Besides exposing system vulnerabilities and helping improve their robustness and security (Zhao et al., 2018; Wallace et al., 2019; Cheng et al., 2019; Jia et al., 2019, inter alia), adversarial examples are also used to analyze and interpret the models’ decisions (Jia and Liang, 2017; Ribeiro et al., 2018).

Generating adversarial examples for NLP tasks can be challenging, in part due to the discrete nature of natural language text. Recent efforts have explored heuristic rules, such as replacing tokens with their synonyms (Samanta and Mehta, 2017; Liang et al., 2019; Alzantot et al., 2018; Ren et al., 2019; Jin et al., 2020, inter alia). Despite some empirical success, rule-based methods are agnostic to context, limiting their ability to produce natural, fluent, and grammatical outputs (Wang et al., 2019c; Morris et al., 2020; Kurita et al., 2020, inter alia).

This work presents CLARE, a Contextualized Adversarial Example generation model for text. CLARE perturbs the input with a mask-then-infill procedure: it first detects the vulnerabilities of a model and deploys masks to the inputs to indicate missing text, then fills in an alternative token using a pre-trained masked language model (e.g., RoBERTa; Liu et al., 2019). CLARE features three contextualized perturbing actions: Replace, Insert and Merge, which respectively replace a token, insert a new token, and merge a bigram (Figure 1). As a result, it can generate outputs of varied lengths.
in contrast to token replacement based methods that only produce outputs of the same lengths as the inputs (Alzantot et al., 2018; Ren et al., 2019; Jin et al., 2020). Further, CLARE searches over a wider range of attack strategies, and is thus able to attack the victim model more efficiently with fewer edits. Building on a masked language model, CLARE maximally preserves textual similarity, fluency, and grammaticality of the outputs.

We evaluate CLARE on text classification, natural language inference, and sentence paraphrase tasks, by attacking finetuned BERT models (Devlin et al., 2019). Extensive experiments and human evaluation show that CLARE outperforms baselines in terms of attack success rate, textual similarity, fluency, and grammaticality, and strikes a better balance between attack success rate and preserving input-output similarity. Our analysis further suggests that the CLARE can be used to improve the robustness of the downstream models, and improve their accuracy when the available training data is limited. We release our code and models at https://github.com/cookielee77/CLARE.

2 CLARE

At a high level, CLARE applies a sequence of contextualized perturbation actions to the input. Each can be seen as a local mask-then-infill procedure: it first applies a mask to the input around a given position, and then fills it in using a pretrained masked language model (§2.1). To produce the output, CLARE scores and descendingly ranks the actions, which are then iteratively applied to the input (§2.2). We begin with a brief background review and laying out of necessary notation.

Background. Adversarial example generation centers around a victim model \(f \), which we assume is a text classifier. We focus on the black-box setting, allowing access to \(f \)'s outputs but not its configurations such as parameters. Given an input sequence \(x = x_1 x_2 \ldots x_n \) and its label \(y \), assume \(f(x) = y \), an adversarial example \(x' \) is supposed to modify \(x \) to trigger an error in the victim model: \(f(x') \neq f(x) \). At the same time, textual modifications should be minimal, such that \(x' \) is close to \(x \) and the human predictions on \(x' \) stay the same.\(^1\)

This is achieved by requiring the similarity between \(x' \) and \(x \) to be larger than a threshold: \(\text{sim}(x', x) > \ell \). A common choice of \(\text{sim}(\cdot, \cdot) \) is to encode sentences using neural networks, and calculate their cosine similarity in the embedding space (Jin et al., 2020).

2.1 Masking and Contextualized Infilling

At a given position of the input sequence, CLARE can execute three perturbation actions: Replace, Insert, and Merge, which we introduce in this section. These apply masks at the given position with different strategies, and then fill in the missing text based on the unmasked context.

Replace: A Replace action substitutes the token at a given position \(i \) with an alternative (e.g., changing “fantastic” to “amazing” in “The movie is fantastic.”). It first replaces \(x_i \) with a mask, and then selects a token \(z \) from a candidate set \(Z \) to fill in:

\[
\tilde{x} = x_1 \ldots x_{i-1} [\text{MASK}] x_{i+1} \ldots x_n,
\]

replace \((x, i) = x_1 \ldots x_{i-1} z x_{i+1} \ldots x_n\).

For clarity, we denote replace \((x, i)\) by \(\tilde{x}_z \). To produce an adversarial example,\(^2\)

- \(z \) should fit into the unmasked context;
- \(\tilde{x}_z \) should be similar to \(x \);
- \(\til(\tilde{x}_z \) should trigger an error in \(f \).

These can be achieved by selecting a \(z \) such that

- \(z \) receives a high probability from a masked language model: \(p_{\text{MLM}}(z | \tilde{x}) > k \);
- \(\tilde{x}_z \) is similar to \(x \): \(\text{sim}(x, \tilde{x}_z) > \ell \);
- \(f \) predicts low probability for the gold label given \(\tilde{x}_z \), i.e., \(p_f(y | \tilde{x}_z) \) is small.

\(p_{\text{MLM}} \) denotes a pretrained masked language model (e.g., RoBERTa; Liu et al., 2019). Using higher \(k, \ell \) thresholds produces outputs that are more fluent and closer to the original. However, this can undermine the success rate of the attack. We choose \(k, \ell \) to trade-off between these two aspects.\(^2\)

The first two requirements can be met by the construction of the candidate set: \(Z = \{ z' \in \mathcal{V} \mid p_{\text{MLM}}(z' | \tilde{x}) > k, \text{sim}(x, \tilde{x}_{z'}) > \ell \} \).

\(\mathcal{V} \) is the vocabulary of the masked language model. To meet the third, we select from \(Z \) the token that,

\(^1\) In computer vision applications, minor perturbations to continuous pixels can be barely perceptible to humans, thus it can be hard for one to distinguish \(x \) and \(x' \) (Goodfellow et al., 2015). It is not the case for text, however, since changes to the discrete tokens are more likely to be noticed by humans.

\(^2\) \(k \) and \(\ell \) are empirically set as \(5 \times 10^{-3} \) and 0.7, respectively. This also reduces the computation overhead: in our experiments |\(Z \) is 42 on average, much smaller than the vocabulary size (|\(\mathcal{V} \) = 50,265).
if filled in, will cause most “confusion” to f:

$$z = \arg \min_{z' \in \mathcal{Z}} p_f(y \mid \tilde{x}_{z'}).$$

The Insert and Merge actions differ from Replace in terms of masking strategies. The alternative token z is selected analogously to that in a Replace action.

Insert: This aims to add extra information to the input (e.g., changing “I recommend ...” to “I highly recommend ...”). It inserts a mask after x_i and then fills it. Slightly overloading the notations,

$$\tilde{x} = x_1 \ldots x_i [\text{Mask}] x_{i+1} \ldots x_n,$$

$$\text{insert}(x, i) = x_1 \ldots x_i z x_{i+1} \ldots x_n.$$ This increases the sequence length by 1.

Merge: This masks out a bigram x_ix_{i+1} with a single mask and then fills it, reducing the sequence length by 1:

$$\tilde{x} = x_1 \ldots x_{i-1} [\text{Mask}] x_{i+2} \ldots x_n,$$

$$\text{merge}(x, i) = x_1 \ldots x_{i-1} z x_{i+2} \ldots x_n.$$ z can be the same as one of the masked tokens (e.g., masking out “New York” and then filling in “York”). This can be seen as deleting a token from the input.

For Insert and Merge, z is chosen in the same manner as replace action. 3

In sum, at each position i of an input sequence, CLARE first: (1) replaces x_i with a mask; (2) or inserts a mask after x_i; (3) or merges x_ix_{i+1} into a mask. Then a set of candidate tokens is constructed with a masked language model and a textual similarity function; the token minimizing the gold label’s probability is chosen as the alternative token.

CLARE first constructs the local actions for all positions in parallel, i.e., the actions at position i do not affect those at other positions. Then, to produce the adversarial example, CLARE gathers the local actions and selects an order to execute them.

2.2 Sequentially Applying the Perturbations

Given an input pair (x, y), let n denote the length of x. CLARE chooses from $3n$ actions to produce the output: 3 actions for each position, assuming the candidate token sets are not empty. We aim to generate an adversarial example with minimum modifications to the input. To achieve this, we iteratively apply the actions, and first select those minimizing the probability of outputting the gold label y from f.

Each action is associated with a score, measuring how likely it can “confuse” f: denote by $a(x)$ the output of applying action a to x. The score is then the negative probability of predicting the gold label from f, using $a(x)$ as the input:

$$s_{(x,y)}(a) = -p_f(y \mid a(x)).$$

Only one of the three actions can be applied at each position, and we select the one with the highest score. This constraint aims to avoid multiple modifications around the same position, e.g., merging “New York” into “Seattle” and then replacing it with “Boston”.4

Actions are iteratively applied to the input, until an adversarial example is found or a limit of actions T is reached. Each step selects the highest-scoring action from the remaining ones. Algorithm 1 summarizes the above procedure.5

Algorithm 1 Adversarial Attack by CLARE
1: Input: Text-label pair (x, y); Victim model f
2: Output: An adversarial example
3: Initialization: $x^{(0)} = x$
4: $A \leftarrow \emptyset$
5: for $1 \leq i \leq
6: $a \leftarrow$ highest-scoring action from $\{\text{replace}(x, i), \text{insert}(x, i), \text{merge}(x, i)\}$
7: $A \leftarrow A \cup \{a\}$
8: end for
9: for $1 \leq t \leq T$ do
10: $a \leftarrow$ highest-scoring action from A
11: $A \leftarrow A \setminus \{a\}$
12: $x^{(t)} \leftarrow \text{Apply } a \text{ on } x^{(t-1)}$
13: if $f(x^{(t)}) \neq y$ then return $x^{(t)}$
14: end if
15: end for
16: return None

Discussion. A key technique of CLARE is the local mask-then-infill perturbation. This comes with several advantages. First, it allows attacking any position of the input sequence, whereas 4 Multiple actions at the same position can be replaced by one. In preliminary experiments, we found that constraining one action per position yields better performance in terms of fluency and grammaticality.

5 Insert and Merge actions change the text length. When any of them is applied, we accordingly change the text indices of affected actions remaining in A. 3 A perturbation will not be considered if its candidate token set is empty.
existing synonym replacement approaches can generally only attack tokens in a predefined vocabulary (Alzantot et al., 2018; Jin et al., 2020; Ren et al., 2019, *inter alia*). Second, as we will show in the experiments (§3.3), contextualized infilling produces more fluent and grammatical outputs compared to the context-agnostic counterparts, especially when using masked language models trained on large-scale data. In addition, by using Merge and Insert actions, CLARE can produce adversarial examples whose lengths are different from the inputs.

Generating adversarial examples with masked language models is also explored by a concurrent work (Li et al., 2020). Their method is similar to a CLARE model except that it only uses the Replace action. As shown in our ablation study (§4.1), using all three actions helps CLARE achieve a better attack performance.

3 Experiments

We evaluate CLARE on text classification, natural language inference, and sentence paraphrase tasks. We begin by describing the implementation details of CLARE and the baselines (§3.1). §3.2 introduces the datasets we experiment with and the evaluation metrics; the results are summarized in §3.3.

3.1 Setup

- We experiment with a distilled version of RoBERTa (RoBERTadistill; Sanh et al., 2019) as the masked language model for contextualized infilling. We also compare to base sized RoBERTa (RoBERTabase; Liu et al., 2019) and base sized BERT (BERTbase; Devlin et al., 2019) in the ablation study (§4.1).
- The similarity function builds on the universal sentence encoder (USE; Cer et al., 2018).
- The victim model is an MLP classifier on top of BERTbase. It takes as input the first token’s contextualized representation. We finetune BERT when training the victim model.
- Merge perturbation can only merge noun phrases, extracted with the NLTK toolkit. We find that this helps produce more grammatical outputs.

Baselines. We compare CLARE with recent state-of-the-art word-level black-box adversarial attack models, including:

- **PWWS:** a recent model by Ren et al. (2019). Based on word saliency (Li et al., 2016), it greedily replaces tokens with their synonyms from WordNet (Miller, 1995).
- **TextFooler:** a state-of-the-art model by Jin et al. (2020). This replaces tokens with their synonyms derived from counter-fitting word embeddings (Mrkšić et al., 2016), and uses the same text similarity function as our work.
- **TextFooler+LM:** an improved variant of TextFooler we implemented based on Alzantot et al. (2018) and Cheng et al. (2019). This inherits token replacement from TextFooler, but uses an additional small sized GPT-2 language model (Radford et al., 2019) to filter out those candidate tokens that do not fit in the context with calculated perplexity.

We use the open source implementation of the above baselines provided by the authors. More details are included in Appendix §A.1.

3.2 Datasets and Evaluation

Datasets. We evaluate CLARE with the following datasets:

- **Yelp Reviews** (Zhang et al., 2015): a binary sentiment classification dataset based on restaurant reviews.
- **AG News** (Zhang et al., 2015): a collection of news articles with four categories: World, Sports, Business and Science & Technology.
- **MNLI** (Williams et al., 2018): a natural language inference dataset. Each instance consists of a premise-hypothesis pair, and the model is supposed to determine the relation between them from a label set of entailment, neutral, and contradiction. It covers text from a variety of domains.
- **QNLI** (Wang et al., 2019a): a binary classification dataset converted from the Stanford

Dataset	Avg. Length	# Classes	Train	Test	Acc
Yelp	130	2	560K	38K	95.9%
AG News	46	4	120K	7.6K	95.0%
MNLI	23/11	3	392K	9.8K	84.3%
QNLI	11/31	2	105K	5.4K	91.4%

Table 1: Some statistics of datasets. The last column indicates the victim model’s accuracy on the original test set without adversarial attack.

- **PWWS:** a recent model by Ren et al. (2019). Based on word saliency (Li et al., 2016), it greedily replaces tokens with their synonyms from WordNet (Miller, 1995).
- **TextFooler:** a state-of-the-art model by Jin et al. (2020). This replaces tokens with their synonyms derived from counter-fitting word embeddings (Mrkšić et al., 2016), and uses the same text similarity function as our work.
- **TextFooler+LM:** an improved variant of TextFooler we implemented based on Alzantot et al. (2018) and Cheng et al. (2019). This inherits token replacement from TextFooler, but uses an additional small sized GPT-2 language model (Radford et al., 2019) to filter out those candidate tokens that do not fit in the context with calculated perplexity.

We use the open source implementation of the above baselines provided by the authors. More details are included in Appendix §A.1.

6https://www.nltk.org/
Table 2: Adversarial example generation performance in attack success rate (A-rate), modification rate (Mod), perplexity (PPL), number of increased grammar errors (GErr), and textual similarity (Sim). The perplexity of the original inputs is indicated in parentheses for each dataset. Bold font indicates the best performance for each metric.

Dataset	PWWS	TextFooler	+ LM	CLARE						
Yelp (PPL = 51.5)	A-rate↑	Mod↓	PPL↓	GErr↓	Sim↑	A-rate↑	Mod↓	PPL↓	GErr↓	Sim↑
A-rate↑	35.3	8.2	98.8	0.33	0.64	14.2	7.9	114.8	0.56	0.71
Mod↓	16.6	16.6	163.3	1.23	0.70	56.1	23.3	331.3	1.43	0.69
PPL↓	34.0	17.4	90.0	1.21	0.73	23.1	21.9	144.6	1.07	0.74
GErr↓	79.1	10.3	83.5	0.25	0.78	65.3	5.9	82.9	0.15	0.76
Sim↑	8.2	6.4	101.3	0.30	0.70	8.8	8.0	88.4	0.32	0.71
QNLI (PPL = 46.0)	A-rate↑	Mod↓	PPL↓	GErr↓	Sim↑	A-rate↑	Mod↓	PPL↓	GErr↓	Sim↑
A-rate↑	59.8	13.8	161.5	0.63	0.73	57.8	16.9	164.4	0.62	0.72
Mod↓	32.3	12.4	91.9	0.50	0.77	29.2	17.3	85.0	0.42	0.75
PPL↓	88.1	7.5	82.7	0.02	0.82	83.8	11.8	76.7	0.01	0.78

Table 2: Adversarial example generation performance in attack success rate (A-rate), modification rate (Mod), perplexity (PPL), number of increased grammar errors (GErr), and textual similarity (Sim). The perplexity of the original inputs is indicated in parentheses for each dataset. Bold font indicates the best performance for each metric.

question answering dataset (Rajpurkar et al., 2016). The task is to determine whether the context contains the answer to a question. It is mainly based on English Wikipedia articles.

Table 1 summarizes some statistics of the datasets. In addition to the above four datasets, we experiment with DBpedia ontology dataset (Zhang et al., 2015), Stanford sentiment treebank (Socher et al., 2013), Microsoft Research Paraphrase Corpus (Dolan and Brockett, 2005), and Quora Question Pairs from the GLUE benchmark. The results on these datasets are summarized in Appendix A.2.

Following previous practice (Alzantot et al., 2018), we tune CLARE on training data, and evaluate with 1,000 randomly sampled test instances of lengths \(\leq 100 \). In the sentence-pair tasks (e.g., MNLI, QNLI), we attack the longer sentence excluding the tokens that appear in both.

Evaluation metrics. We follow previous works (Jin et al., 2020; Zang et al., 2020), and evaluate the models with the following automatic metrics:

- **Attack success rate (A-rate):** the percentage of adversarial examples that can successfully attack the victim model.
- **Modification rate (Mod):** the percentage of modified tokens. Each Replace or Insert action accounts for one token modified; a Merge action is considered modifying one token if one of the two merged tokens is kept (e.g., merging bigram \(ab \) into \(a \)), and two otherwise (e.g., merging bigram \(ab \) into \(c \)).
- **Perplexity (PPL):** a metric used to evaluate the fluency of adversaries (Kann et al., 2018; Zang et al., 2020). The perplexity is calculated using small sized GPT-2 with a 50K-sized vocabulary (Radford et al., 2019).
- **Grammar error (GErr):** the number of increased grammatical errors in the successful adversarial example, compared to the original text. Following (Zang et al., 2020; Morris et al., 2020), we calculate this by the LanguageTool (Naber et al., 2003).
- **Textual similarity (Sim):** the similarity between the input and its adversary. Following (Jin et al., 2020; Morris et al., 2020), we calculate this using the universal sentence encoder (USE; Cer et al., 2018).

The last four metrics are averaged across those adversarial examples that successfully attack the victim model.

3.3 Results

Table 2 summarizes the results. Although PWWS achieves the best modification rate on 3 out of the 4 datasets, it underperforms CLARE in terms of other metrics. With a very limited set of synonym candidates from WordNet, PWWS fails to attack a BERT model on most of inputs. Using word embeddings to find synonyms, TextFooler achieves a higher success rate, but tends to produce less grammatical and less natural outputs. Equipped with a language model, TextFooler+LM does better in terms of perplexity, yet this brings little grammaticality improvement and comes at a cost to attack success rate. With contextualized perturbations,

8https://www.languagetool.org/
CLARE achieves the best performance on attack success rate, perplexity, grammaticality and similarity. For AG News, CLARE outperforms TextFooler by 9% on success rate and by a huge 245 on perplexity, and cuts average number of grammatical errors by 1.3. We observe similar trends on other datasets.

Figure 2 compares trade-off curves between attack success rate and textual similarity. For each model, we tune the thresholds for constructing the candidate token sets, and plot textual similarity against attack success rate. CLARE strikes the best balance, showing a clear advantage in achieving a success rate with least similarity drop. We observe similar trends for attack success rate and perplexity trade off.

Human evaluation. We further conduct human evaluation on the AG News dataset. We randomly sample 300 instances which both CLARE and TextFooler successfully attack. For each input, we pair the adversarial examples from the two models, and present them to crowd-sourced judges along with the original input and the gold label. We ask them which they prefer in terms of (1) having a meaning that is closer to the original input (similarity), and (2) being more fluent and grammatical (fluency and grammaticality). We also provide a neutral option, for when the judges consider the two indistinguishable. Additionally, we ask the judges to annotate adversarial examples, and compare their annotations against the gold labels (label consistency). We collect 5 responses for each pair on every evaluated aspect. Further details are provided in Appendix A.4.

As shown in Table 3, CLARE has a significant advantage over TextFooler: in terms of similarity 56% responses prefer CLARE, while 16% prefer TextFooler. The trend is similar for fluency & grammaticality (42% vs. 9%). On label consistency, CLARE slightly underperforms TextFooler at 68% with a 95% confidence interval (CI) (66%, 70%), versus 70% with a 95% CI (68%, 73%). We attribute this to an inherent overlap of some categories in the AG News dataset, e.g., Science & Technology and Business, as evidenced by a 71% label consistency for original inputs.

Closing this section, Table 8 compares the adversarial examples generated by TextFooler and CLARE. More samples can be found in Appendix A.5.

4 Analysis
This section first conducts an ablation study (§4.1). We then explore CLARE’s potential to be used to improve downstream models’ robustness and accuracy in §4.2. In §4.3, we empirically observe that CLARE tends to attack noun and noun phrases.

4.1 Ablation Study
We ablate each component of CLARE to study its effectiveness. We evaluate on the 1,000 randomly selected AG news instances (§3.2). The results are summarized in Table 4.

Table 3: Human evaluation performance in percentage on the AG News dataset. ± indicates confidence intervals with a 95% confidence level.

Metric	CLARE	Neutral	TextFooler
Similarity	56.1±2.5	28.1	15.8±2.1
Fluency & Grammaticality	42.5±2.5	48.6	8.9±1.5
Label Consistency	68.0±2.4	-	70.1±2.5

As shown in Table 3, CLARE has a significant advantage over TextFooler: in terms of similarity 56% responses prefer CLARE, while 16% prefer TextFooler. The trend is similar for fluency & grammaticality (42% vs. 9%). On label consistency, CLARE slightly underperforms TextFooler at 68% with a 95% confidence interval (CI) (66%, 70%), versus 70% with a 95% CI (68%, 73%). We attribute this to an inherent overlap of some categories in the AG News dataset, e.g., Science & Technology and Business, as evidenced by a 71% label consistency for original inputs.

4.1 Ablation Study
We ablate each component of CLARE to study its effectiveness. We evaluate on the 1,000 randomly selected AG news instances (§3.2). The results are summarized in Table 4.

We first investigate the performance of three perturbations when applied individually. Among three editing strategies, using INSERTONLY achieves the best performance, with REPLACEONLY coming in a close second. MERGEONLY underperforms
we conjecture that it is less efficient to attack a
when constructing the candidate token set. Per-
we compare R
This section explores CLARE’s potential in improv-
Table 5: Results of CLARE implemented with different
w/o sim > ℓ" ablates the textual similarity constraint when constructing
the other two, partly due to that the attacks are re-
the other two, partly due to that the attacks are re-
stric
ted to bigram noun phrases (§3.1). Combining all three perturbations, CLARE achieves the best
performance with the least modifications.
To examine the effect of contextualized infilling, we compare REPLACEONLY against TextFooler, a context-agnostic model based on token replacement. REPLACEONLY outperforms TextFooler across the board, suggesting that contextualized infilling helps generate better adversarial examples.
We now turn to the two constraints imposed when constructing the candidate token set. Perhaps not surprisingly, ablating the textual similarity constraint (w/o sim) decreases the textual similarity performance, but increases others. Ablating the masked language model yields a better success rate, but much worse perplexity, grammaticality, and textual similarity.
Finally, we compare CLARE implemented with different masked language models. Table 5 summarizes the results. Overall, distilled RoBERTa performs the best, and BERT underperforms the others. Since the victim model is based on BERT, we conjecture that it is less efficient to attack a model using its own information.

Module	A-rate↑	Mod↓	PPL↓	GErr↓	Sim↑
TextFooler	56.1	23.3	331.3	1.43	0.69
CLARE	65.3	5.9	82.3	0.15	0.76
REPLACEONLY	58.8	7.9	85.6	0.11	0.75
INSERTONLY	59.4	6.9	94.8	0.20	0.76
MERGEONLY	21.0	6.2	95.2	0.01	0.79
w/o sim > ℓ	70.0	5.4	80.9	0.11	0.72
w/o pMLM > k	89.5	5.1	194.1	0.94	0.64

Table 5: Ablation study results. "w/o sim > ℓ" ablates the textual similarity constraint when constructing the candidate token set, while "w/o pMLM > k" ablates the masked language model probability constraint.

Table 4: Results of CLARE implemented with different masked language models (MLM).

MLM	A-rate↑	Mod↓	PPL↓	GErr↓	Sim↑
RoBERTadistill	65.3	5.9	82.3	0.15	0.76
RoBERTabase	64.9	5.8	81.3	0.11	0.76
BERTbase	63.9	6.4	95.7	0.96	0.74

4.2 Adversarial Training
This section explores CLARE’s potential in improving downstream models’ accuracy and robustness. Following the adversarial training setup (Tsipras et al., 2018), we use CLARE to generate adversarial examples for AG news training instances, and include them as additional training data. We consider two settings: training with (1) full training data and full adversarial data and (2) 10% randomly-sampled training data and its adversarial data, to simulate the low-resource scenario. For both settings, we compare a BERT-based MLP classifier and a TextCNN (Kim, 2014) classifier without any pretrained embedding.

We first examine whether adversarial examples, as data augmentation, can help achieve better test accuracy. As shown in Table 6, when the full training data is available, adversarial training slightly decreases the test accuracy by 0.2% and 0.4% respectively. This aligns with previous observations (Jia et al., 2019). When less training data is available, the BERT-based classifier has a similar accuracy drop. Interestingly, under the low-data scenario, TextCNN with adversarial training achieves better accuracy, with a 1.4% absolute improvement. This suggests that a model with less capacity can benefit more from silver data.

Does adversarial training help the models defend against adversarial attacks? To evaluate this, we use CLARE to attack the classifiers trained with and without adversarial examples. A higher success rate and fewer modifications indicate a victim classifier is more vulnerable to adversarial attacks. As shown in Table 6, in 3 out of the 4 cases, adversarial training helps to decrease the attack success rate by more than 10.2%, and to increase the number of modifications needed by more than 0.7. The only exception is the TextCNN model trained with 10% data. A possible reason could be that it is trained with few data and thus generalizes less well.

These results suggest that CLARE can be used to improve downstream models’ robustness, with a negligible accuracy drop.

4.3 Perturbations by Part-of-speech Tags
In this section, we break down the adversarial attacks by part-of-speech (POS) tags. We find that most of the adversarial attacks happen to nouns or noun phrases. As shown in Table 7, 64% of the Replace actions are applied to nouns. Insert actions tend to insert tokens into noun phrase bigram: two of the most frequent POS bigrams are noun phrases. In fact, around 48% of the Insert actions

9 In preliminary experiments, we found that it is more difficult to use other models to attack a victim model trained with the adversarial examples generated by CLARE, than to use CLARE itself.
Table 6: Adversarial training results on AG news test set. “Acc” indicates accuracy.

Victim Model	Acc	A-rate	Mod
BERT (100% data)	95.0	65.3	5.9
BERT (100% adversarial)	-0.2	-23.4	+2.7
TextCNN (100% data)	91.2	93.8	6.5
TextCNN (100% adversarial)	-0.4	-10.2	+0.7

Table 7: Top-3 POS tags (or POS tag bigrams) and their percentages for each perturbation type. (a, b): a token between a and b. a-b: merge a and b into a token. Bottom: An AG news sample, where CLARE perturbs token “cybersecurity.” Neither PWWS nor TextFooler is able to attack this token since it is out of their vocabularies.

Table 8: Adversarial examples produced by different models. The gold label of the original is shown below the (bolded) dataset name. Replace, Insert and Merge are highlighted in italic red, bold blue and sans serif yellow, respectively. (Best viewed in color).

5 Related Work

Textual adversarial attack. An increasing amount of effort is being devoted to generating better textual adversarial examples with various attack models. Character-based models (Liang et al., 2019; Ebrahimi et al., 2018; Li et al., 2018; Gao et al., 2018, inter alia) use misspellings to attack the victim systems; however, these attacks can often be defended by a spell checker (Pruthi et al., 2019; Vijayaraghavan and Roy, 2019; Zhou et al., 2019b; Jones et al., 2020). Many sentence-level models (Iyyer et al., 2018; Wang et al., 2019b; Zou et al., 2020, inter alia) have been developed to introduce more sophisticated token/phrase perturbations. These, however, generally have difficulty maintaining semantic similarity with original inputs (Zhang et al., 2020a). Recent word-level models explore synonym substitution rules to enhance semantic meaning preservation (Alzantot et al., 2018; Jin et al., 2020; Ren et al., 2019; Zhang et al., 2019; Zang et al., 2020, inter alia). Our work differs in that CLARE uses three contextualized perturbations that can produce more fluent and grammatical outputs.

Text generation with BERT. Generation with masked language models has been widely studied in various natural language tasks, ranging from lexical substitution (Wu et al., 2019a; Zhou et al., 2019a; Qiang et al., 2020; Wu et al., 2019b, inter alia) to non-autoregressive generation (Gu et al., 2018; Lee et al., 2018; Ghazvininejad et al., 2019; Ma et al., 2019; Sun et al., 2019; Ren et al., 2020; Zhang et al., 2020b, inter alia). However, little work has explored using these models to generate adversarial examples for text.

6 Conclusion

We have presented CLARE, a contextualized adversarial example generation model for text. It
uses contextualized knowledge from pretrained masked language models, and can generate adversarial examples that are natural, fluent and grammatical. With three contextualized perturbation patterns, Replace, Insert and Merge in our arsenal, CLARE can produce outputs of varied lengths and achieves a higher attack success rate than baselines and with fewer edits. Human evaluation shows significant advantages of CLARE in terms of textual similarity, fluency and grammaticality. We release our code and models at https://github.com/cookielee77/CLARE.

References

Moustafa Alzantot, Yash Sharma, Ahmed Elgohary, Bo-Jhang Ho, Mani Srivastava, and Kai-Wei Chang. 2018. Generating natural language adversarial examples. In Proc. of EMNLP.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhami St John, Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, et al. 2018. Universal sentence encoder. arXiv preprint arXiv:1803.11175.

Yong Cheng, Lu Jiang, and Wolfgang Macherey. 2019. Robust neural machine translation with doubly adversarial inputs. In Proc. of ACL.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pre-training of deep bidirectional transformers for language understanding. In Proc. of NAACL.

William B Dolan and Chris Brockett. 2005. Automatically constructing a corpus of sentential paraphrases. In Proceedings of the Third International Workshop on Paraphrasing.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing Dou. 2018. Hotflip: White-box adversarial examples for text classification. In Proc. of ACL.

Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yanjun Qi. 2018. Black-box generation of adversarial text sequences to evade deep learning classifiers. In IEEE Security and Privacy Workshops (SPW).

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer. 2019. Mask-predict: Parallel decoding of conditional masked language models. In Proc. of EMNLP.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and harnessing adversarial examples. In Proc. of ICLR.

Jiatao Gu, James Bradbury, Caiming Xiong, Victor OK Li, and Richard Socher. 2018. Non-autoregressive neural machine translation. In Proc. of ICLR.

Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke Zettlemoyer. 2018. Adversarial example generation with syntactically controlled paraphrase networks. In Proc. of NAACL.

Robin Jia and Percy Liang. 2017. Adversarial examples for evaluating reading comprehension systems. In Proc. of EMNLP.

Robin Jia, Aditi Raghunathan, Kerem Göksel, and Percy Liang. 2019. Certified robustness to adversarial word substitutions. In Proc. of EMNLP.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter Szolovits. 2020. Is bert really robust? natural language attack on text classification and entailment. In Proc. of AAAI.

Erik Jones, Robin Jia, Aditi Raghunathan, and Percy Liang. 2020. Robust encodings: A framework for combating adversarial typos. In Proc. of ACL.

Katharina Kann, Sascha Rothe, and Katja Filippova. 2018. Sentence-level fluency evaluation: References help, but can be spared! In Proc. of CNLP, pages 313–323.

Yoon Kim. 2014. Convolutional neural networks for sentence classification. In Proc. of EMNLP.

Keita Kurita, Paul Michel, and Graham Neubig. 2020. Weight poisoning attacks on pre-trained models. arXiv preprint arXiv:2004.06660.

Jason Lee, Elman Mansimov, and Kyunghyun Cho. 2018. Deterministic non-autoregressive neural sequence modeling by iterative refinement. In Proc. of EMNLP.

Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting Wang. 2018. Textbugger: Generating adversarial text against real-world applications. arXiv preprint arXiv:1812.05271.

Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky. 2016. Visualizing and understanding neural models in nlp. In Proc. of NAACL, pages 681–691.

Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue, and Xipeng Qiu. 2020. Bert-attack: Adversarial attack against bert using bert. arXiv preprint arXiv:2004.09984.

Bin Liang, Hongcheng Li, Miaoliang Su, Pan Bian, Xirong Li, and Wenchang Shi. 2019. Deep text classification can be fooled. In Proc. of IJCAI.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.

Xuezhe Ma, Chunting Zhou, Xian Li, Graham Neubig, and Eduard Hovy. 2019. Flowseq: Non-autoregressive conditional sequence generation with generative flow. In Proc. of EMNLP.
Ga Miller. 1995. Wordnet: A lexical database for English communications of the acm vol. 38.

John X Morris, Eli Lifland, Jack Lanchantin, Yangfeng Ji, and Yanjun Qi. 2020. Reevaluating adversarial examples in natural language. arXiv preprint arXiv:2004.14174.

Nikola Mrkšić, Diarmuid O Séaghdha, Blaise Thomson, Milica Gasic, Lina M Rojas Barahona, Pei-Hao Su, David Vandyke, Tsung-Hsien Wen, and Steve Young. 2016. Counter-fitting word vectors to linguistic constraints. In Proc. of NAACL.

Daniel Naber et al. 2003. A rule-based style and grammar checker. Citeseer.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chang, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019. Pytorch: An imperative style, high-performance deep learning library. In Proc. of NeurIPS.

Danish Pruthi, Bhuwan Dhingra, and Zachary C Lippton. 2019. Combating adversarial misspellings with robust word recognition. In Proc. of ACL.

Jipeng Qiang, Yun Li, Yi Zhu, and Yunhao Yuan. 2020. A simple bert-based approach for lexical simplification. In Proc. of AAAI.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language models are unsupervised multitask learners. OpenAI Blog, 1(8):9.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016. Squad: 100,000+ questions for machine comprehension of text. In Proc. of EMNLP.

Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang Che. 2019. Generating natural language adversarial examples through probability weighted word saliency. In Proc. of ACL.

Yi Ren, Jinglin Liu, Xu Tan, Sheng Zhao, Zhou Zhao, and Tie-Yan Liu. 2020. A study of non-autoregressive model for sequence generation. arXiv preprint arXiv:2004.10454.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2018. Semantically equivalent adversarial rules for debugging nlp models. In Proc. of ACL.

Adina Williams, Nikita Nangia, and Samuel Bowman. 2018. A broad-coverage challenge corpus for sentence understanding through inference. In Proc. of NAACL.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, R’emi Louf, Morgan Funtowicz, and Jamie Brew. 2019. Huggingface’s transformers: State-of-the-art natural language processing. ArXiv, abs/1910.03771.

Xing Wu, Shangwen Lv, Liangjun Zang, Jizhong Han, and Songlin Hu. 2019a. Conditional bert contextual augmentation. In Proc. of IJCAI.

Yuan Zang, Fanchao Qi, Chenghao Yang, Zhiyuan Liu, Meng Zhang, Qin Liu, and Maosong Sun. 2020. Word-level textual adversarial attacking as combinatorial optimization. In Proc. of ACL.
Huangzhao Zhang, Hao Zhou, Ning Miao, and Lei Li. 2019. Generating fluent adversarial examples for natural languages. In Proc. of ACL.

Wei Emma Zhang, Quan Z. Sheng, Ahoud Alhazmi, and Chenliang Li. 2020a. Adversarial attacks on deep-learning models in natural language processing: A survey. ACM Transactions on Intelligent Systems and Technology (TIST), 11(3):1–41.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. Character-level convolutional networks for text classification. In Proc. of NeurIPS.

Yizhe Zhang, Guoyin Wang, Chunyuan Li, Zhe Gan, Chris Brockett, and Bill Dolan. 2020b. Pointer: Constrained text generation via insertion-based generative pre-training. arXiv preprint arXiv:2005.00558.

Zhengli Zhao, Dheeru Dua, and Sameer Singh. 2018. Generating natural adversarial examples. In Proc. of ICLR.

Wangchunshu Zhou, Tao Ge, Ke Xu, Furu Wei, and Ming Zhou. 2019a. Bert-based lexical substitution. In Proc. of ACL.

Yichao Zhou, Jyun-Yu Jiang, Kai-Wei Chang, and Wei Wang. 2019b. Learning to discriminate perturbations for blocking adversarial attacks in text classification. In Proc. of EMNLP.

Wei Zou, Shujian Huang, Jun Xie, Xinyu Dai, and Jiajun Chen. 2020. A reinforced generation of adversarial samples for neural machine translation. In Proc. of ACL.
A Appendix

A.1 Additional Experiment Details

Model Implementation. All pretrained models and victim models based on RoBERTa and BERT\textsubscript{base} are implemented with Hugging Face transformers10 (Wolf et al., 2019) based on PyTorch (Paszke et al., 2019). RoBERTa\textsubscript{distill}, RoBERTa\textsubscript{base} and uncase BERT\textsubscript{base} models have 82M, 125M and 110M parameters, respectively. We use RoBERTa\textsubscript{distill} as our main backbone for fast inference purpose. PWWS11 and TextFooler12 are built with their open source implementation provided by the authors. In the implementation of TextFooler+LM, we use small sized GPT-2 language model (Radford et al., 2019) to further select those candidate tokens that have top 20\% perplexity in the candidate token set. In the adversarial training (§4.2), the small TextCNN victim model (Kim, 2014) has 128 embedding size and 100 filters for 3, 4, 5 window size with 0.5 dropout, resulting in 7M parameters.

During the implementation of w/o p\textsubscript{MLM} \(> k \) in the ablation study (§4.1), we randomly sample 200 tokens and then apply the similarity constraint to construct candidate set, as exhausting the vocabulary is computationally expensive.

Evaluation Metric. The similarity function \(\text{sim} \) builds on the universal sentence encoder (USE; Cer et al., 2018) to measure a local similarity at the perturbation position with window size 15 between the original input and its adversary. All baselines are equipped this \(\text{sim} \) when constructing the vocabulary. The evaluation metric \(\text{Sim} \) uses USE to calculate a global similarity between two texts. These procedures are typically following Jin et al. (2020). We mostly rely on human evaluation (§3.3) to conclude the significant advantage of preserving textual similarity on CLARE compared with TextFooler.

Data Processing. When processing the data, we keep all punctuation in texts for both victim model training and attacking. Since GLUE benchmark (Wang et al., 2019a) does not provide the label for test set, we instead use its dev set as the the test set for the included datasets (MNLI, QNLI, QQP, MRPC, SST-2) in the evaluation. For the sentence-pair tasks (e.g., MNLI, QNLI, QQP, MRPC), we attack the longer one excluding the tokens appearing in both sentences. This is because inference tasks usually require entailed data to have the same keywords, e.g., numbers, name entities, etc. All experiments are conducted on one Nvidia GTX 1080Ti GPU.

A.2 Additional Results

We include the results of DBpedia ontology dataset (DBpedia; Zhang et al., 2015), Stanford sentiment treebank (SST-2; Socher et al., 2013), Microsoft Research Paraphrase Corpus (MRPC; Dolan and Brockett, 2005), and Quora Question Pairs (QQP) from the GLUE benchmark in this section. Table 9 summarizes some statistics of these datasets. The results of different models on these datasets are summarized Table 10. Compared with all baselines, CLARE achieves the best performance on attack success rate, perplexity, grammaticality, and similarity. It is consistent with our observation in §3.3.

A.3 Running Time

We conduct speed experiment with one Nvidia GTX 1080Ti GPU in Table 11. By searching more possible perturbation actions and constructing the contextualized candidate vocabulary, CLARE achieves better performance on attack success and modification rate with a cost of inference speed (0.11 vs 0.39 sample/s).

A.4 Human Evaluation Details

For each human evaluation on AG News dataset, we randomly sampled 300 sentences from the test set combining the corresponding adversarial examples from CLARE and TextFooler (We only consider sentences can be attacked by both models). In order to make the task less abstract, we pair the adversarial examples by the two models, and present them to the participants along with the original input and its gold label. We ask them which

Dataset	Avg. Length	# Classes	Train	Test	Acc
SST-2	10	2	67K	0.9K	92.3%
DBpedia	55	14	560K	70K	99.3%
QQP	13/13	2	363K	40K	91.4%
MRPC	23/23	2	3.6K	1.7K	81.4%

Table 9: Some statistics of datasets. The last column indicates the victim model’s accuracy on the original test set without adversarial attack.
Model	A-rate†	Mod↓	PPL↓	GErr↑	Sim↑	A-rate†	Mod↓	PPL↓	GErr↑	Sim↑
PWWS	31.4	9.93	168.3	0.31	0.62	7.6	8.3	57.6	0.54	0.68
TextFooler	89.8	14.9	227.7	0.53	0.69	56.2	24.9	182.5	1.88	0.68
+ LM	51.7	18.3	137.5	0.50	0.69	20.1	22.4	84.0	1.22	0.70
CLARE	97.8	7.5	137.4	0.01	0.75	65.8	7.02	53.3	-0.03	0.73

Model	A-rate†	Mod↓	PPL↓	GErr↑	Sim↑	A-rate†	Mod↓	PPL↓	GErr↑	Sim↑
PWWS	6.0	7.8	86.5	0.31	0.69	5.8	6.5	82.6	0.31	0.68
TextFooler	16.2	12.7	145.2	0.01	0.77	24.5	10.6	118.8	0.35	0.75
+ LM	7.8	12.9	75.8	0.21	0.77	12.9	9.5	71.0	0.29	0.79
CLARE	27.7	10.2	74.8	0.14	0.76	34.8	9.1	69.5	0.02	0.83

Table 10: Adversarial example generation performance in attack success rate (A-rate), modification rate (Mod), perplexity (PPL), number of increased grammar errors (GErr), and text similarity (Sim). The perplexity of the original inputs is indicated in parentheses for each dataset. Bold indicates the best performance on each metric.

Model	A-rate (%)	Mod (%)	Speed (sample/s)
TextFooler	56.1	23.3	0.39
CLARE	65.3	5.9	0.11

Table 11: Speed experiment with different attack models.

One they prefer in terms of (1) having more similar a meaning to the original input (similarity), and (2) being more fluent and grammatical (fluency and grammaticality). We also provide them with a neutral option, when the participants consider the two indistinguishable. Additionally, we ask the participants to annotate the adversarial examples, and compare their annotations against the gold labels (label consistency). Higher label consistency indicates the model is better at causing the victim model to make errors while preserving human predictions.

Each pair of system outputs was randomly presented to 5 crowd-sourced judges, who indicated their preference for similarity, fluency, and grammaticality using the form shown in Figure 3. The labelling task is illustrated in Figure 4. To minimize the impact of spamming, we employed the top-ranked 30% of U.S. workers provided by the crowd-sourcing service. Detailed task descriptions and examples were also provided to guide the judges. We calculate p-value based on 95% confidence intervals by using 10K paired bootstrap replications, implemented using the R Boot statistical package.

A.5 Qualitative Samples

We include generated adversarial examples by CLARE and TextFooler on AG News, DBpedia, Yelp, MNLI, and QNLI datasets in Table 12 and Table 13.
AG (Business)	TECH BUZZ: Yahoo, Adobe team up for new Web services. Stepping up the battle of online search and services, Yahoo Inc. and Adobe Systems Inc. have joined forces to tap each other’s customers and put Web search features into Adobe’s popular Acrobat Reader software.
TextFooler (Sci&Tech)	TECH BUZZ: Yahoo, Adobe team up for *roman* Cyberspace utilities. Stepping up the battle of online *locating* and services, Yahoo Inc. and Adobe Systems Inc. have joined forces to tap each other’s customers and put Web search features into Adobe’s popular Acrobat Reader software.
CLARE (Sci&Tech)	TECH BUZZ: Yahoo, Adobe team up for new Web *Explorer*. Stepping up the battle of online search and services, Yahoo Inc. and Adobe Systems Inc. have joined forces to tap each other’s customers and put Web search features into Adobe’s popular Acrobat Reader software.
AG (Sport)	Padres Blank Dodgers 3 - 0. LOS ANGELES - Adam Eaton allowed five hits over seven innings for his career-high 10th victory, Brian Giles homered for the second straight game, and the San Diego Padres beat the Los Angeles Dodgers 3 - 0 Thursday night. The NL West - leading Dodgers’ lead was cut to 2 1/2 games over San Francisco - their smallest since July 31 ...
TextFooler (World)	Dodgers Blank *Yanks* 3 - 0. *Loos* ANGELES - Adams *Parades* enabling five hits over seven *slugging* for his career-high 10th *victoria*, Brian Giles homered for the second straight *matching*, and the *Tome Jos Dodger* beat the Los Angeles *Dodger* 3 - 0 *Thursday* blackness. The *NL Westerner* - *eminent Dodger*’ lead was cut to 2 1/2 games over *San San* - *their tiny as janvier* 31 ...
CLARE (World)	Padres Blank Dodgers 3 - 0. *Milwaukee NEXT* - Adam Eaton allowed five hits over seven innings for his career-high 10th victory, Brian Giles homered for the second straight game, and the San Diego Padres beat the Los Angeles Dodgers 3 - 0 *Thursday* night. The NL West - leading Dodgers’ lead was cut to 2 1/2 games over San Francisco - their smallest since July 31 ...
Yelp (Positive)	The food at this chain has always been consistently good. Our server in downtown (where we spent New Year’s) was new, but that did not impact our service at all. She was prompt and attentive to our needs.
TextFooler (Negative)	The food at this chain has always been *necessarily ok*. Our server in downtown (where we spent New Year’s) was new, but that did not impact our service at all. She was *early* and attentive to our needs.
CLARE (Negative)	The food at this chain has always been *looking* consistently good. Our server in downtown (where we spent New Year’s) was new, but that did not *enhance* our service at all. She was prompt and attentive to our needs.
Yelp (Positive)	The pho broth is actually flavorful and doesn’t just taste like hot water with beef and noodles. I usually do take out and the order comes out fast during dinner which should be expected with pho, it’s not hard to soak noodles, slice beef and pour broth.
TextFooler (Negative)	The pho broth is actually flavorful and doesn’t just *taste* like *torrid waters* with *slaughter* and *salads*, I repeatedly *pose* out fast during dinner which should be expected with *pho*, it’s not *strenuous* to soak *noodles*, *severing* beef and pour broth.
CLARE (Negative)	The pho broth is actually flavorful and doesn’t just *taste bland* like hot water with beef and noodles. I usually do take out and the order comes out *awfully* fast during dinner which should be expected with pho, it’s not hard to soak noodles, slice beef and pour broth.
MNLI (Neutral)	**Premise:** Thebes held onto power until the 12th Dynasty, when its first king, Amenemhet I who reigned between 1980 1951 b.c. established a capital near Memphis. **Hypothesis:** The capital near Memphis lasted only half a century before its inhabitants abandoned it for the next capital.
TextFooler (Contradiction)	**Premise:** Thebes apprehended *pour powers* until the 12th *Familial*, when its *earliest king*, Amenemhet I who reigned between 1980 1951 *c.e.* established a capital near Memphis. **Hypothesis:** The capital near Memphis lasted only half a century before its inhabitants abandoned it for the next capital.
CLARE (Contradiction)	**Premise:** Thebes held onto power until the 12th Dynasty, when its first king, Amenemhet I who reigned between 1980 1951 b.c. *thereafter* established a capital near Memphis. **Hypothesis:** The capital near Memphis lasted only half a century before its inhabitants abandoned it for the next capital.
MNLI (Entailment)	**Premise:** Hopefully, Wall Street will take voluntary steps to address these issues before it is forced to act. **Hypothesis:** Wall Street is facing issues, that need to be addressed.
TextFooler (Neutral)	**Premise:** Hopefully, Wall Street will take voluntary steps to *treatment* these issues before it is forced to act. **Hypothesis:** Wall Street is facing issues, that need to be addressed.
CLARE (Neutral)	**Premise:** Hopefully, Wall Street will take voluntary steps to *eliminate* these issues before it is forced to act. **Hypothesis:** Wall Street is facing issues, that need to be addressed.

Table 12: Adversarial examples produced by different models. The gold label of the original is shown below the (bolded) dataset name. *Replace*, *Insert* and *Merge* are highlighted in *italic red*, *bold blue* and *sans serif yellow*, respectively. (Best viewed in color).
Dataset	Premise	Hypothesis
QNLI	Premise: What are the software testers aware of?	Hypothesis: Black-box testing treats the software as a black box, examining functionality without any knowledge of internal implementation, without seeing the source code.
TextFooler	Premise: What are the software testers aware of?	Hypothesis: Black-box testing treats the software as a black box, examining functionality without any knowledge of internal implementation, without seeing the source code.
CLARE	Premise: What are the software testers aware of?	Hypothesis: Black-box testing treats the software as a black box, examining functionality without awareness of internal implementation, without seeing the source code.
DBpedia	Honda Crossroad. The Honda Crossroad refers to two specific types of SUVs made by Honda. One of them is a rebadged Land Rover Discovery Series I SUV while the other is a completely different vehicle introduced in 2008.	Honda Crossroad. The Honda Crossroad refers to two specific types of SUVs made by Honda. One of them is a rebadged Land Rover Identify Series I LEXUS while the other is a completely different vehicle introduced in 2008.
TextFooler	Suzuki Crossroad refers to three accurate typing of prius posed by Isuzu. One of them is a rebadged Land Rover Identify Series I LEXUS while the other is a completely different vehicle introduced in 2008.	Honda Crossroad. The Honda Crossroad refers to two specific manufacturers of SUVs made by Honda. One of them is a rebadged Land Rover Discovery Series I SUV while the other is a completely different vehicle introduced in 2008.
CLARE	Premise: What are the software testers aware of?	Hypothesis: Black-box testing treats the software as a black box, examining functionality without awareness of internal implementation, without seeing the source code.
DBpedia	Yellow Rat Bastard. Yellow Rat Bastard is the flagship establishment in a chain of New York City retail clothing stores owned by Henry Ishay. It specializes in hip-hop-and alternative-style clothing and shoes.	Yellow Rat Bastard. Yellow Rat Bastard is the flagship establishment in a chain of New York City retail clothing stores owned by Henry Ishay. It specializes in hip-hop-and alternative-style clothing and shoes.
TextFooler	Yellowish Rats Schmuck : Yellowish Rats Dickwad is the flagship establishments in a chain of New York City retail uniforms stores owned by Henrik Ishay . It specialize in hip-hop-and alternative-style laundry and sneakers.	Yellow Rat Bastard. Yellow Rat Bastard Mall is the flagship establishment in a chain of New York City retail clothing stores owned by Henry Ishay. It specializes in hip-hop-and alternative-style clothing and shoes.
CLARE	Premise: What are the software testers aware of?	Hypothesis: Black-box testing treats the software as a black box, examining functionality without awareness of internal implementation, without seeing the source code.
MRPC	Premise: The Americas market will decline 2.1 percent to $30.6 billion in 2003, and then grow 15.7 percent to $35.4 billion in 2004.	Hypothesis: The US chip market is expected to decline 2.1 percent this year, then grow 15.7 percent in 2004,
TextFooler	Premise: The Americas market will decline 2.1 percent to $30.6 billion in 2003, and then grow 15.7 percent to $35.4 billion in 2004.	Hypothesis: The US chip market is expected to decline 2.1 percent this year, then grow 15.7 percent in 2004.
CLARE	Premise: The Americas market will decline 2.1 percent to $30.6 billion in 2003, and then grow 15.7 percent to $35.4 billion in 2004.	Hypothesis: The US chip market is expected to decline 2.1 percent this year, then grow 15.7 percent in 2004 yr.
MRPC	Premise: The Securities and Exchange Commission filed a civil fraud suit against the teen in Boston.	Hypothesis: The Securities and Exchange Commission brought a related civil case on Thursday.
TextFooler	Premise: The Securities and Exchange Commission filed a civil fraud suit against the teen in Boston.	Hypothesis: The Securities and Exchange Commission brought a connect civil case on Yesterday.
CLARE	Premise: The Securities and Exchange Commission filed a civil fraud suit against the teen in Boston.	Hypothesis: The Securities and Exchange Commission brought a Massachusetts civil lawsuit on Thursday.

Table 13: Adversarial examples produced by different models. The gold label of the original is shown below the (bolded) dataset name. Replace, Insert and Merge are highlighted in italic red, bold blue and sans serif yellow, respectively. (Best viewed in color).
Figure 3: Pair-wise comparison in terms of text similarity and fluency & grammaticality on human evaluation.
Figure 4: Label consistency task on human evaluation.