A comparison of rumen microbial profiles in dairy cows as retrieved by 454 Roche and Ion Torrent (PGM) sequencing platforms

Nagaraju Indugu, Kyle Bittinger, Sanjay Kumar, Bonnie Vecchiarelli, Dipti Pitta

Next generation sequencing (NGS) technology is a widely accepted tool used by microbial ecologists to explore complex microbial communities in different ecosystems. As new NGS platforms continue to become available, it becomes imperative to compare data obtained from different platforms and analyze their effect on microbial community structure. In the present study, we compared sequencing data from both the 454 and Ion Torrent (PGM) platforms on the same DNA samples obtained from the rumen of dairy cows during their transition period. Despite the substantial difference in the number of reads, error rate and length of reads among both platforms, we identified similar community composition between the two data sets. Procrustes analysis revealed similar correlations ($M^2 = 0.319; P = 0.001$) in the microbial community composition between the two platforms. Both platforms revealed the abundance of the same bacterial phyla which were Bacteroidetes, Firmicutes and Proteobacteria, however, PGM recovered an additional four phyla. Comparisons made at the genus level by each platforms revealed differences in only a few genera such as *Prevotella*, *Ruminococcus*, *Succiniclasticum* and *Treponema* ($p < 0.05$; chi square test). Collectively, we conclude that the output generated from PGM and 454 yielded concurrent results, provided stringent bioinformatics pipelines are employed.
A Comparison of rumen microbial profiles in dairy cows as retrieved by Roche 454 and Ion Torrent sequencing platforms

Nagaraju Indugu¹, Kyle Bittinger², Sanjay Kumar¹, Bonnie Vecchiarelli¹, Dipti W Pitta¹*

¹Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA 19348, United States
²Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States

Abstract

¹* Corresponding author: Dipti W Pitta, email: dpitta@vet.upenn.edu, Ph: +1-610-925-6165; Fax: +1-610-925-6823
Next generation sequencing (NGS) technology is a widely accepted tool used by microbial ecologists to explore complex microbial communities in different ecosystems. As new NGS platforms continue to become available, it becomes imperative to compare data obtained from different platforms and analyze their effect on microbial community structure. In the present study, we compared sequencing data from both the Roche 454 and Ion Torrent platforms on the same set of DNA samples, obtained from the rumen of dairy cows during their transition period. Despite the substantial difference in the number of reads, error rate, and length of reads, we identified similar community composition between the two data sets. Comparison of UniFrac distances between platforms showed a moderate but statistically significant agreement in the overall microbial community composition. The platforms yielded similar results for the abundance of the prominent bacterial phyla, Bacteroidetes and Firmicutes, although the Ion Torrent platform recovered three additional low-abundance phyla. Comparison of genus abundance data between samples for both platforms revealed no differences, with the exception of *Prevotella*, \(\text{P} < 0.05; \text{chi-square test} \). Collectively, we conclude that the output generated from Ion Torrent and Roche 454 yielded similar results, provided stringent bioinformatics pipelines are employed.

Keywords: Next generation sequencing, rumen microbiome, dairy cows, transition period
Introduction

Microbes are integral components of a diverse group of ecosystems and have co-evolved with their host/habitat in a mutually symbiotic relationship (Hobson & Stewart 1997). The foregut (rumen) of ruminants is comprised of a complex microbial genetic web (rumen microbiome) that plays a pivotal role in the host nutrition and ultimate wellbeing of the animals (Hobson & Stewart 1997). Bacteria are predominant in the rumen microbiome and are responsible for the conversion of indigestible plant biomass to energy and also aid in the formation of microbial protein; both processes drive the production efficiency of ruminants (Firkins 2010). Interactions between different microbial domains in the rumen play a significant role in determining the ruminal microbial ecology and their functional contribution to host metabolism (Kumar et al., 2015).

Rumen microbial dynamics are influenced by a number of factors including host specificity, diet, age and the environment (Edwards et al., 2004). Elucidation of the interactions among microbial domains particularly in dairy cows has the potential to improve production such as feed efficiency and milk fat synthesis (Weimer 2015). The transition period in dairy cows refers to a critical phase in the lactation cycle, lasting from three weeks before calving to three weeks post-calving, where the dairy cow experience stress due to changes in diet, metabolism and physiological status. Although the dynamics of rumen bacteria during the transition period has received attention in the recent past (Lima et al., 2014; Pitta et al., 2014; Wang et al., 2012), further studies are required to understand the rumen microbial dynamics during the different phases of lactation across a large group of dairy cows.

Cultivation-independent approaches have greatly enhanced our knowledge on microbial diversity and also enabled us to assess their functional contribution to the host metabolism (Stahl et al., 1988). Particularly, next-generation sequencing (NGS) technology has enabled the sequencing of human and microbial genomes in a relatively short period of time (Caporaso et al., 2011). The
most widely used high-throughput sequencing platforms available in the market include Roche 454 pyrosequencing, Ion Torrent Personal Genome Machine (PGM), and Illumina HiSeq (Liu et al., 2012). Although these platforms were originally tailored for large-scale operations such as whole genome sequencing, their bench-top versions (454 Jr, PGM, and MiSeq, respectively) have evolved since 2011 and have been extensively applied to bacterial genome sequencing (Loman et al., 2012). Since 2011, both MiSeq and PGM platforms have undergone improvements, including longer read lengths, more reads per unit cost, faster turn-around time, and a reduction in error rates (Salipante et al., 2014). Although a general comparison between these platforms has been reported (Lam et al., 2012; Quail et al., 2012), studies comparing the efficacy of these platforms on the same samples are limited (Salipante et al., 2014; Scott & Ely 2015). As the Roche 454 platform phases out (Fordyce et al., 2015), there is a need for comparative studies that can aid in the transition from Roche 454 to other platforms.

The use of next generation platforms has greatly enhanced our knowledge of rumen microbes, their genes and enzymes (Brulc et al., 2009; Hess et al., 2011; Jami et al., 2014). To date, there are nearly 55 research articles (based on Pubmed, 28 Jan, 2015) related to bacterial diversity from the rumen environment using Roche 454 while only 2 from MiSeq and 3 were reported based on Ion Torrent platforms. In an attempt to find a suitable alternative to the Roche 454 platform in relation to our microbial genomic work, we evaluated the use of Ion Torrent as an alternative to the 454 platform for the study of rumen microbial composition via 16S tag sequencing.

Materials and methods

Sample collection

Dairy cows that were donors of rumen fluid were maintained at Marshak farm and were maintained according to the ethics committee and IACUC standards for the University of
Pennsylvania (approval #804302). Four primiparous and four multiparous cows were sampled at four weeks prior to the anticipated calving date (S1), and again at 1 to 3 days post-calving (S2). Details of the animal experiment design, sampling protocol, and type of diet are described in a previous study (Pitta et al., 2014). Two samples were removed from the analysis due to a low number of reads in the Roche 454 sequencing run: one each from the primiparous and multiparous group in the pre-calving period. Thus, we analyzed a total of 14 samples, with six samples from pre-calving period and eight samples from post-calving period (Supplementary Table S1).

DNA extraction, PCR amplification, and 16S rRNA sequencing

The genomic DNA was extracted from all the rumen samples employing PSP Spin Stool DNA Plus Kit (Invitek, Berlin, Germany) using the protocol of McKenna et al. (2008). The genomic DNA was amplified using the specific primers (27F) and BSR357, targeting the V1-V2 region of the 16S rRNA bacterial gene. The primer sequences and PCR conditions for Roche 454 are described in Pitta et al. (2014). Though the primer sequences for Ion Torrent were similar to Roche 454, the forward primer carried the Ion Torrent trP1 (5’-CCTCTCTATGGGCAGTCGGTGAT-3’) and the reverse primer carried the A adapter (5’-CCATCTCATCCCTGCCTGTTCTCCGACTCAG-3’), followed by a 10 to 12 nucleotide sample-specific barcode sequence and a GAT barcode adapter. The PCR mix was prepared using the Platinum PCR SuperMix High Fidelity kit (Invitrogen, Carlsbad, CA). PCR conditions were the same for Roche 454 and Ion Torrent, as given by Pitta et al. (2014). Amplicons of 16S rDNA were purified using 1:1 volume of Agentcourt AmPure XP beads (Beckman-Coulter, Brea, CA). The purified PCR products from the rumen samples were pooled in equal concentration prior to sequencing in Roche 454 (Roche 454 Life Sciences, Branford, CT) and Ion Torrent platforms.

Bioinformatics and statistical analysis
To evaluate the similarities and dissimilarities between Roche 454 and Ion Torrent, we analyzed the 16S pyrosequence reads using the QIIME pipeline (version 1.8.0) (Caporaso et al., 2010) and a small number of custom python scripts, followed by statistical analysis in R (Team 2013). Reads from both platforms were discarded if they did not match the expected sample-specific barcode and 16S primer sequences (forward and reverse primers), or if they were shorter than 50 bp or longer than 480 bp, or if they contained one or more ambiguous base calls. Reads were also discarded if a long homopolymer sequence was present; the threshold used was 5 bp for both the platforms. Operational taxonomic units (OTUs) were formed at 97% similarity using UCLUST (Edgar, 2010). Taxonomic assignments within the GreenGenes taxonomy (12/10 release, McDonald et al., 2012) were generated using the RDP Classifier version 2.2 (Wang et al., 2007). We randomly sub-sampled (rarified) the resulting OTUs to 1,212 sequence per sample for both Roche 454 and Ion Torrent. Representative sequences for each were aligned to 16S reference sequences with PyNAST (Caporaso et al., 2010b). The resultant multiple sequence alignment was used to infer a phylogenetic tree with FastTree (Price et al., 2010). To find shared OTUs between Roche 454 and Ion Torrent, we used a “closed reference” OTU picking approach. To identify Roche 454 OTUs that were shared between platforms, representative sequences from Roche 454 were compared to a reference database consisting of the Ion Torrent representative sequences. The same approach was adopted to identify shared OTUs in the Ion Torrent data. In this step, a sequence was considered a “hit” if it matched a sequence in the reference database at greater than 97% sequence identity.

Two measures of alpha diversity were calculated: Shannon entropy, an indicator of evenness in community structure, and richness, the number of OTUs observed. Analyses of community similarity (β-diversity) were performed for both the platforms separately by calculating pairwise distances using the phylogenetic metric UniFrac (Lozupone & Knight 2005) on platform specific
OTUs. We ran a Procrustes analysis of weighted UniFrac distance, comparing the principal coordinate matrices from Roche 454 and Ion Torrent. The goodness of fit (M^2 value) was measured by summing over the residuals, and significance was assessed by the Monte Carlo label permutation method (Gower 1975).

Representative sequences from each OTU were chosen and taxonomy was assigned using the default methods in QIIME. To test for differences in taxon abundance, we normalized the abundances to the total number of reads in each sample (relative abundance). We considered the phyla appearing in at least 75% of samples. A generalized linear mixed-effects model was constructed with the lme4 package for R (Bates et al., 2013). The model used a binomial link function and included a random effect term for each animal. Study day was modeled as a continuous longitudinal variable with the following values: $S1= -3$ weeks, $S2=0.285$ weeks.

Results
Analysis of 16S sequence clusters
A total of 39,592 and 280,284 raw sequences were obtained from Roche 454 and Ion Torrent respectively, across a total of 14 samples on each platform. To minimize differences between the two platforms, we employed similar quality control protocols, including quality filtering, primer detection, and read demultiplexing. The number of reads recovered after quality filtering the reads of the 14 samples was 29,057 (73.39%) from Roche 454 and 203,910 (72.75%) from Ion Torrent (Supplementary Table S1). Clustering with ULCUST generated 6,471 and 30,322 OTUs in Roche 454 and Ion Torrent, respectively. We randomly subsampled (rarified) the OTUs to 1,212 sequences per sample. Following the random subsampling step, we identified 2,824 shared OTUs from a total of 7,142 (40%) in the Roche 454 data. In the Ion Torrent data, we identified 3,118 shared OTUs from 9,813 OTUs (32%).
Taxonomic comparisons

Taxonomic assignment of the OTUs identified 15 (Roche 454) and 18 (Ion Torrent) phyla in the rumen of cows used in this study. The three bacterial phyla that were recovered by Ion Torrent platform alone were Acidobacteria, GN02, and Verrucomicrobia (Supplementary Table S2), which accounted for a very low abundance (0.01%) and were detected only in a few samples. The most abundant phyla in both the platforms were Bacteroidetes followed by Firmicutes, which together constituted over 90% of each sample in Roche 454 and over 86% in Ion Torrent (Figure 1, Supplementary Table S2). The influence of study day (before and after calving) and study group (primiparous and multiparous cows) on the abundance of Bacteroidetes and Firmicutes appears to be similar for both Roche 454 and Ion Torrent data sets (Table 1). However, the influences of study group and study day in lower abundant phyla were different, for example the influence of study group and study day on Fibrobacteres is significant in Roche 454 whereas it is insignificant in Ion Torrent datasets.

We further compared the Roche 454 and Ion Torrent datasets at the genus level for the two major phyla observed (Bacteroidetes and Firmicutes). Genera with a proportion exceeding 1% in at least one sample were included in the analysis. In Roche 454, three genera from the Bacteroidetes group and one genus among Firmicutes showed differences by study group, whereas three genera from Bacteroidetes and four genera from Firmicutes showed differences by study day. In contrast, a similar analysis of Ion Torrent data revealed no differences within Bacteroidetes group and revealed differences among three genera in the Firmicutes with study group. With regard to study day, two genera in Bacteroidetes group and one genus in Firmicutes showed differences (Table 2). Notably, we found that BF311 (an uncultured genus of Bacteroidetes), Mogibacteriaceae (Firmicutes), and Selenomonas (Firmicutes) were detected only in the Ion Torrent platform.
Among Bacteroidetes members, the single most abundant genus in both the platforms was *Prevotella* (Roche 454: 81% and Ion Torrent: 75%; Figure 4, Supplementary Table S2). The influence of study day on microbial composition of *Prevotella* was similar for both Roche 454 and Ion Torrent data sets, whereas, the influence of study group was observed only in Roche 454.

In both platforms, most of the remaining sequences in the phylum Bacteroidetes were assigned either at the family or order level to unidentified unnamed species of the Prevotellaceae family or Bacteroidales order (Table 2; Supplementary Figure S1; Supplementary Figure S2). Genera in the Firmicutes phylum were also similar between the two platforms. The OTUs assigned to Firmicutes represented a substantial number of genera from Clostridiales, along with the Lachnospiraceae, Ruminococcaceae and Veillonellaceae families (Table 2; Supplementary Figure S4; Supplementary Figure S5).

Comparison between Roche 454 and Ion Torrent platforms

Alpha diversity

The number of observed species per sample was higher for the Ion Torrent method, compared to Roche 454 (Figure 2). The Shannon index value was similar between the two platforms at various sequencing depths, indicating a similar number of highly abundant species in both platforms.

Beta diversity

We then quantified the resemblance between bacterial communities measured by Roche 454 and Ion Torrent. Weighted UniFrac distances for both communities were plotted using principal coordinate analysis (PCoA), and then the two PCoA plots were aligned using generalized Procrustes analysis (Gower 1975). The aligned PCoA plot is visualized in Figure 3. A comparison of pairwise sample distances by Procrustes analysis revealed moderate but
statistically significant agreement in the microbial community composition between the two platforms ($M^2 = 0.36; P = 0.001$).

Taxonomic comparison at genus level

A sample-to-sample to comparison at the genus level between the two platforms was performed using chi square test (Supplementary Table S3). For this analysis, twenty nine genera were compared by sample for both platforms (Supplementary Table S3). Of these, only *Prevotella* from Bacteroidetes phylum, and one unclassified bacterial lineage were found to be different between the two platforms in more that 50% of samples ($p < 0.05$; chi square test). A majority of the remaining genera were found to be different between only one or two samples. Thus, the composition of bacterial communities was generally consistent between platforms, with two notable exceptions.

Discussion

The introduction of NGS technology has had a dramatic effect on researchers’ ability to study bacterial communities via DNA sequencing. The throughput has increased by 500,000-fold and the number of reads per genome is increasing 100-fold every year, yet the cost of sequencing is reducing by half every 5 months (Baker, 2010). The rumen microbiome of herbivores is a classic example that has been explored in detail using different NGS approaches (de la Fuente *et al*., 2014; Jami *et al*., 2014; Peng *et al*., 2015; Pitta *et al*., 2014; Pitta *et al*., 2010), but several inconsistencies among these reports prevail, some of which may be attributed to differences in the approach employed. In this study, we attempted to account for biases that could be introduced due to different NGS platforms while making comparisons between 16S rDNA bacterial profiles in the rumen of dairy cows. We concluded that, although the percentage of common sequences was low between the platforms, the microbial fingerprints and phylogenetic composition retrieved by both Roche 454 and Ion Torrent platforms are comparable, with minor exceptions.
Ion Torrent vs. Roche 454 Roche platforms

Considering the limitations such as low quality reads, variations in read length, and higher number of homopolymer sequences associated with Ion Torrent (Loman et al., 2012), we leveraged to extract more number of sequences per sample in Ion Torrent platform with the result that throughput was several fold higher in magnitude as compared to Roche 454 datasets. High quality reads with greater read lengths despite lower throughout from Roche 454 platform is the most preferred and desirable feature for microbial diversity studies (Brulc et al., 2009). Both the platforms delivered long reads, but the read length of Ion Torrent had a wider range compared to Roche 454 (Roche 454; 53-492, Ion Torrent; 8-559). In our study, we observed that a greater proportion of sequences were eliminated at 3 and 4 homopolymer length while a greater proportion of sequences were retained at 5 homopolymer length. For downstream analysis, we recovered 29,057 (73.39%) from a total of 39,592 raw reads in Roche 454 platform and 203,910 (72.75%) from a total of 280,284 raw reads in Ion Torrent platform at 5 homopolymer length. To account for unequal distribution of reads per sample between platforms, (1,212 to 3,036 in Roche 454 vs. 5,653 to 27,336 in Ion Torrent), we adopted normalization through subsampling of reads at the minimum sequencing depth for both platforms. This additional step was performed to avoid the influence of this differential distribution of reads on the bacterial composition.

Ruminal Bacterial diversity dynamics

The effect of diet and age on the community composition, evident in our previous study using Roche 454 platforms (Pitta et al., 2014), was reproduced when the same set of DNA samples were sequenced on Ion Torrent. This increases confidence that the two platforms will yield similar results in future studies of bacterial communities in the rumen. The finding is reinforced by Procrustes analysis, which showed that overall community composition was similar between
both platforms. Though the overall level of similarity was not great enough to combine data from
two platforms in a single analysis of UniFrac distance, we determined that independent distance
analyses were reproducible between platforms. Further, we were able to infer that increasing the
sequence depth did not unduly influence community profiles when analyzed by UniFrac distance,
reinforcing the findings of Caporaso et al., (2011).

The taxonomic composition of bacterial communities at the phylum level recovered by Ion
Torrent is congruent with the Roche 454 data. The most abundant phyla were Bacteroidetes
followed by Firmicutes, which together constituted over 90% of each sample in Roche 454 and
over 86% in Ion Torrent. The phylum-level abundance observed here agrees with other reports
that have employed Roche 454 (Pitta et al., 2014; Pitta et al., 2010) and also Ion Torrent (de la
Fuente et al., 2014). In addition to these phyla, Fibrobacteres, Proteobacteria and Tenericutes,
Actinobacteria and Spirochaetes are commonly reported in rumen samples from dairy cows, but
contribute to a very low abundance. This observation was also recapitulated in our findings for
both platforms. Additionally, the 16S rDNA-based taxonomic composition of bacterial
communities retrieved here is in accordance with other shotgun metagenomic datasets sequenced
on the Ion Torrent platform (Patel et al., 2014; unpublished data Pitta; Singh et al., 2014).

Differences between datasets from the two platforms were evident in phyla that contributed to
less than 5% of the populations. A sample-to-sample comparison revealed differences in
phylogenetic composition from family and beyond. For example, at the genus level, although
Prevotella was abundant in both platforms, the lower abundance of Prevotella observed in Ion
Torrent compared to Roche 454 may be due to an increase in number (14) of several genera that
were not detected in the Roche 454 data. Despite these differences at the genus level, the effect
of age and diet on different bacterial genera in the rumen of dairy cows was consistent between
the two platforms.

Conclusions
It has become evident in the recent past that the rumen microbiome plays a significant role in improving the production efficiencies of dairy cows. As next-generation sequencing platforms and chemistries continue to expand and improve, we expect that major advancements in sequencing may contribute to significant improvements in dairy production through improving nutrition and management that support a production efficient microbiome. While different sequencing platforms are applied to explore the rumen microbiome, it is imperative that studies should also compare and contrast findings from different platforms to avoid discrepancies across rumen microbiome studies. The results presented here show that major conclusions based on Roche 454 data are also reproduced on the Ion Torrent platform. Thus, we found that the Ion Torrent platform is a suitable option for future rumen microbiology studies, provided that researchers are consistent in DNA extraction methods, PCR protocols, and bioinformatics pipelines.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

DWP designed experiments; BV executed experiments; NI, KB and DWP analyzed the data. DWP, NI, KB and SK contributed to the paper, with input from all authors. All authors read and approved the final manuscript.

Acknowledgements

We are thankful to Biomedical Research Core Facilities, University of Pennsylvania, for sequencing services.

References

Baker M. 2010. Next-generation sequencing: adjusting to data overload. *Nature Methods* 7:495-499.
Bates D, Maechler M, Bolker B, and Walker S. 2013. lme4: Linear mixed-effects models using Eigen and S4. *R package version 1.*

Brulc JM, Antonopoulos DA, Miller MEB, Wilson MK, Yannarell AC, Dinsdale EA, Edwards RE, Frank ED, Emerson JB, and Wacklin P. 2009. Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. *Proceedings of the National Academy of Sciences* 106:1948-1953.

Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, and Gordon JI. 2010. QIIME allows analysis of high-throughput community sequencing data. *Nature Methods* 7:335-336.

Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, and Knight R. 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. *Proceedings of the National Academy of Sciences* 108:4516-4522.

de la Fuente G, Belanche A, Girwood SE, Pinloche E, Wilkinson T, and Newbold CJ. 2014. Pros and cons of ion-torrent next generation sequencing versus terminal restriction fragment length polymorphism T-RFLP for studying the rumen bacterial community. e101435

Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. *Bioinformatics* 26:2460-2461.

Edwards JE, McEwan NR, Travis AJ, and Wallace RJ. 2004. 16S rDNA library-based analysis of ruminal bacterial diversity. *Antonie Van Leeuwenhoek* 86:263-281.

Firkins JL. 2010. Reconsidering rumen microbial consortia to enhance feed efficiency and reduce environmental impact of ruminant livestock production systems. *Revista Brasileira de Zootecnia* 39:445-457.

Fordyce SL, Mogensen HS, Børsting C, Lagacé RE, Chang C-W, Rajagopalan N, and Morling N. 2015. Second-generation sequencing of forensic STRs using the Ion Torrent™ HID STR 10-plex and the Ion PGM™. *Forensic Science International: Genetics* 14:132-140.
Gower JC. 1975. Generalized procrustes analysis. Psychometrika 40:33-51.

Hess M, Sczyrba A, Egan R, Kim T-W, Chokhawala H, Schroth G, Luo S, Clark DS, Chen F, and Zhang T. 2011. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331:463-467.

Hobson PN, and Stewart CS. 1997. The rumen microbial ecosystem: Springer Science & Business Media.

Jami E, White BA, and Mizrahi I. 2014. Potential role of the bovine rumen microbiome in modulating milk composition and feed efficiency. PLoS One 9(1):e85423

Kumar S, Indugu N, Vecchiarelli B, and Pitta D. 2015. Associative patterns among anaerobic fungi, methanogenic archaea and bacterial communities in response to changes in diet and age in the rumen of dairy cows. Frontiers in Microbiology 6:781.

Lam HY, Clark MJ, Chen R, Chen R, Natsoulis G, O'Haullachain M, Dewey FE, Habegger L, Ashley EA, and Gerstein MB. 2012. Performance comparison of whole-genome sequencing platforms. Nature Biotechnology 30:78-82.

Lima FS, Oikonomou G, Lima SF, Bicalho ML, Ganda EK, Oliveira Filho JC, Lorenzo G, Trojacanec P, and Bicalho RC. 2014. Characterization of prepartum and postpartum rumen fluid microbiomes and its correlation with production traits in dairy cows. Applied and Environmental Microbiology:AEM. 03138-03114.

Liu L, Li Y, Li S, Hu N, He Y, Pong R, Lin D, Lu L, and Law M. 2012. Comparison of next-generation sequencing systems. BioMed Research International 2012.

Loman NJ, Misra RV, Dallman TJ, Constantinidou C, Gharbia SE, Wain J, and Pallen MJ. 2012. Performance comparison of benchtop high-throughput sequencing platforms. Nature Biotechnology 30:434-439.

Lozupone C, and Knight R. 2005. UniFrac: a new phylogenetic method for comparing microbial communities. Applied and Environmental Microbiology 71:8228-8235.
McKenna P, Hoffmann C, Minkah N, Aye PP, Lackner A, Liu Z, Lozupone CA, Hamady M, Knight R, and Bushman FD. 2008. The macaque gut microbiome in health, lentiviral infection, and chronic enterocolitis. *PLoS Pathog* 4:e20.

Patel DD, Patel AK, Parmar NR, Shah TM, Patel JB, Pandya PR, and Joshi CG. 2014. Microbial and Carbohydrate Active Enzyme profile of buffalo rumen metagenome and their alteration in response to variation in the diet. *Gene* 545:88-94.

Peng S, Yin J, Liu X, Jia B, Chang Z, Lu H, Jiang N, and Chen Q. 2015. First insights into the microbial diversity in the omasum and reticulum of bovine using Illumina sequencing. *Journal of Applied Genetics*:1-9.

Pitta D, Kumar S, Vecchiarelli B, Shirley D, Bittinger K, Baker L, Ferguson J, and Thomsen N. 2014. Temporal dynamics in the ruminal microbiome of dairy cows during the transition period. *Journal of Animal Science* 92:4014-4022.

Pitta DW, Pinchak WE, Dowd SE, Osterstock J, Gontcharova V, Youn E, Dorton K, Yoon I, Min BR, and Fulford J. 2010. Rumen bacterial diversity dynamics associated with changing from bermudagrass hay to grazed winter wheat diets. *Microbial ecology* 59:511-522.

Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, Bertoni A, Swerdlow HP, and Gu Y. 2012. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. *BMC Genomics* 13:341.

Salipante SJ, Kawashima T, Rosenthal C, Hoogestraat DR, Cummings LA, Sengupta DJ, Harkins TT, Cookson BT, and Hoffman NG. 2014. Performance comparison of Illumina and ion torrent next-generation sequencing platforms for 16S rRNA-based bacterial community profiling. *Applied and Environmental Microbiology* 80:7583-7591.

Scott D, and Ely B. 2015. Comparison of Genome Sequencing Technology and Assembly Methods for the Analysis of a GC-Rich Bacterial Genome. *Current Microbiology* 70:338-344.
Singh K, Reddy B, Patel A, Panchasara H, Parmar N, Patel A, Shah T, Bhatt V, and Joshi C. 2014. Metagenomic analysis of buffalo rumen microbiome: effect of roughage diet on Dormancy and Sporulation genes. *Meta Gene* 2:252-268.

Stahl DA, Flesher B, Mansfield HR, and Montgomery L. 1988. Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. *Applied and Environmental Microbiology* 54:1079-1084.

Team RC. 2013. R, A Language and Environment for Statistical Computing, version 2.15. 0; R Foundation for Statistical Computing: Vienna, Austria.

Wang X, Li X, Zhao C, Hu P, Chen H, Liu Z, Liu G, and Wang Z. 2012. Correlation between composition of the bacterial community and concentration of volatile fatty acids in the rumen during the transition period and ketosis in dairy cows. *Applied and Environmental Microbiology* 78:2386-2392.

Weimer PJ. 2015. Redundancy, resilience, and host specificity of the ruminal microbiota: implications for engineering improved ruminal fermentations. *Frontiers in Microbiology* 6.

Figure Legends:

Figure 1. Bacteria phyla during pre-calving (S1) and post-calving (S2) in Primiparous (Pp) and multiparous (Mp) dairy cows, as retrieved by the Roche 454 (A) and Ion Torrent (B) platforms.

Figure 2. Alpha diversity of samples sequenced on the Roche 454 and Ion Torrent platforms. The rarefaction curves show the mean value for number of OTUs observed and Shannon diversity at various sequencing depths.

Figure 3. Procrustes analysis of samples Roche 454 and Ion Torrent. This analysis compares the principal coordinates analysis (PCoA) of UniFrac distance between samples for each platform,
showing the best superimposition of one plot on the other. Samples in Roche 454 (orange circle) and Ion Torrent (green circle) are connected by a line, the line blue end indicating the Roche 454 samples and red line end indicating the Ion Torrent sample. A lower distance between the circles indicates a higher degree of concordance between the plots.

Figure 4. Proportion of Prevotella among all Bacteroidetes in the rumen samples collected during the pre-calving (S1) and post-calving (S2) in both Primiparous (Pp) and multiparous (Mp) dairy cows, as retrieved by the Roche 454 (A) and Ion Torrent (B) platforms.

Supplementary Figure S1: Proportions of genera within the phylum Bacteroidetes in Roche 454.

Supplementary Figure S2: Proportions of genera within the phylum Bacteroidetes in Ion Torrent.

Supplementary Figure S3: Proportions of genera within the phylum Firmicutes in Roche 454.

Supplementary Figure S4: Proportions of genera within the phylum Firmicutes in Ion Torrent.

Supplementary Table S1: Sample and sequencing information for the 14 samples.

Supplementary Table S2: Phylum and Genus proportion table for Roche 454 and Ion Torrent.

Supplementary Table S3: P-values obtained from chi-squared tests at genus level between the two platforms (sample-to sample comparison).
Figure 1 (on next page)

Figure 1

The distribution of the number of reads in “common” OTUs for both 454 and Ion Torrent (PGM) platform
Study day

Percentage

Phylum
- Tenericutes
- Proteobacteria
- Firmicutes
- Fibrobacteres
- Bacteroidetes
- All others

Roche 454

Ion Torrent

Manuscript to be reviewed
Figure 2 (on next page)

Figure 2

Similarity to the nearest common OTU from each platform-specific OTU. Percent identity was calculated using blastn. X-axis shows the percentage identity between representative sequences from common OTUs and representative sequences from platform-specific OTUs. Y-axis shows the number reads counted at each percent identity.
Figure 3

Phylogenetic distribution of bacterial phyla during pre-calving (S1) and post-calving (S2) in both Primiparous (Pp) and multiparous (Mp) dairy cows as retrieved by 454 (Figure 3a) and PGM (Figure 3b) platform.
Figure 4

Procrustes analysis of samples 454 and PGM, Procrustes M2 value = 0.170 P = 0.001 based on 999 Monte Carlo iterations. This analysis is a visualization of a principal coordinates analysis (PCoA) of the Unifrac distances between samples, showing the best superimposition of one UniFrac plot on the other. Samples in 454 (orange circle) and PGM (green circle) are connected by a line, the line blue end indicating the 454 samples and red line end indicating the PGM sample. The lower the distance between the circles the higher Concordance.
Proportion of Prevotella among all Bacteroidetes

Roche 454

Ion Torrent

Study day
Table 1

Table 1

Mean sample proportion of bacterial phyla by study group (Pp: primiparous and Mp: multiparous) and study day (S1: 3 weeks prior to calving; S2: 1-3 days after calving) in 454 and Ion torrent (PGM) samples
Table 1 Mean sample proportion of bacterial phyla by study group (Pp: primiparous and Mp: multiparous) and study day (S1: 3 weeks prior to calving; S2: 1-3 days after calving) in Roche 454 and Ion Torrent samples.

Phylum	Platform	Study group (SG)	Study day (SD)	P-value				
		Pp	Mp	S1	S2	P_{SG}	P_{SD}	P_{SG*SD}
Bacteroidetes	Roche 454	0.8450	0.7700	0.7640	0.8400	**	***	***
	Ion Torrent	0.7613	0.7032	0.6940	0.7610	*	***	***
Cyanobacteria	Roche 454	0.0040	0.0030	0.0060	0.0020	***	**	
	Ion Torrent	0.0069	0.0050	0.0077	0.0047			
Fibrobacteres	Roche 454	0.0110	0.0150	0.0140	0.0110	**	***	***
	Ion Torrent	0.0082	0.0115	0.0086	0.0108		***	
Firmicutes	Roche 454	0.0800	0.1060	0.1200	0.0730	***	***	***
	Ion Torrent	0.1164	0.1420	0.1492	0.1142		***	
Proteobacteria	Roche 454	0.0080	0.0200	0.0150	0.0140	***	**	**
	Ion Torrent	0.0096	0.0097	0.0105	0.0090			
Spirochaetes	Roche 454	0.0010	0.0040	0.0030	0.0020	**		
	Ion Torrent	0.0035	0.0073	0.0067	0.0044			
Tenericutes	Roche 454	0.0050	0.0110	0.0120	0.0050	**		*
	Ion Torrent	0.0094	0.0109	0.0136	0.0076		**	
TM7	Roche 454	0.0030	0.0050	0.0050	0.0040	**	*	
	Ion Torrent	0.0050	0.0089	0.0093	0.0052	*	**	

The magnitude of the p-values for the effect of study group (P_{SG}), study day (P_{SD}), and the interaction term (P_{SG*SD}) are shown on the right (***: P<0.001; **: P<0.01; *: P<0.05).
Table 2

Mean sample proportion of bacterial genera by study group (Pp: primiparous and Mp: pluriparous) and study day (S1: 3 weeks prior to calving; S2: 1-3 days after calving) in 454 and Ion torrent (PGM) samples.
Table 2. Mean sample proportion of bacterial genera by study group (Pp: primiparous and Mp: pluriparous) and study day (S1: 3 weeks prior to calving; S2: 1-3 days after calving) in 454 and Ion torrent samples.

Taxon	Platform	Study group (SG)	Study day (SD)	P-value				
		Pp	Mp	S1	S2	P_{SG}	P_{SD}	P_{SG\times SD}
Bacteroidetes								
Paraprevotellaceae	Roche 454	0.0040	0.0080	0.0040	0.0070			
	Ion Torrent	0.0070	0.0070	0.0070	0.0070			
Bacteroidales	Roche 454	0.0420	0.0720	0.0620	0.0540	**	***	***
	Ion Torrent	0.0430	0.0630	0.0560	0.0500			
BF311	Roche 454	ND	ND	ND	ND			
	Ion Torrent	0.0020	0.0040	0.0040	0.0020			
CF231	Roche 454	0.0130	0.0180	0.0150	0.0150			
	Ion Torrent	0.0160	0.0170	0.0150	0.0170			
Prevotella	Roche 454	0.7200	0.5680	0.5820	0.6900	**	***	***
	Ion Torrent	0.6280	0.5270	0.5250	0.6170			
Prevotellaceae	Roche 454	0.0040	0.0060	0.0030	0.0070	*		
	Ion Torrent	0.0040	0.0050	0.0040	0.0040			
RF16	Roche 454	0.0350	0.0430	0.0610	0.0230	***		***
	Ion Torrent	0.0360	0.0420	0.0520	0.0290			***
S24-7	Roche 454	0.0150	0.0360	0.0140	0.0340	*		
	Ion Torrent	0.0120	0.0190	0.0090	0.0200			
YRC22	Roche 454	0.0100	0.0100	0.0130	0.0080			
	Ion Torrent	0.0110	0.0110	0.0110	0.0110			
Firmicutes								
Mogibacteriaceae	Roche 454	ND	ND	ND	ND			
	Ion Torrent	0.0020	0.0030	0.0030	0.0020			
Butyribvibrio	Roche 454	0.0040	0.0020	0.0030	0.0030			
	Ion Torrent	0.0070	0.0050	0.0060	0.0050			
Clostridiales	Roche 454	0.0240	0.0290	0.0370	0.0180	***		***
	Ion Torrent	0.0330	0.0380	0.0460	0.0270	*		***
Coprococcus	Roche 454	0.0020	0.0020	0.0030	0.0020			
	Ion Torrent	0.0060	0.0030	0.0040	0.0050			
Lachnospiraceae	Roche 454	0.0130	0.0140	0.0150	0.0120			
	Ion Torrent	0.0210	0.0190	0.0230	0.0180			
RFN20	Roche 454	0.0040	0.0150	0.0130	0.0060	**		**
Genus	Ion Torrent	Roche 454	Roche 454	Roche 454	Roche 454			
------------------	-------------	-----------	-----------	-----------	-----------			
Ruminococcaceae								
Ruminococcus								
Selenomonas								
Succiniclasticum								
Veillonellaceae								

4 ND: Not Detected; The magnitude of the p-values for the effect of study group (P_{SG}), study day (P_{SD}), and the interaction term (P_{SG*SD}) are shown on the right (***: P<0.001; **: P<0.01; *: P<0.05).