Mathematical Problems in Quantum Physics

QMATH13: Mathematical Results in Quantum Physics
October 8–11, 2016
Georgia Institute of Technology, Atlanta, Georgia

Federico Bonetto
David Borthwick
Evans Harrell
Michael Loss
Editors
Contents

Preface v

A short proof of the ionization conjecture in Müller theory
Rupert L. Frank, Phan Thanh Nam, and Hanne Van Den Bosch 1

Mean field dynamics of interacting fermionic systems
Marcello Porta 13

Correlations in disordered quantum harmonic oscillator systems: The effects of excitations and quantum quenches
Houssam Abdul-Rahman, Robert Sims, and Günter Stolz 31

The lattice Anderson model with discrete disorder
John Z. Imbrie 49

Interacting fermions with quasi-random disorder
Vieri Mastroiangelo 65

Local density approximation for almost-bosonic anyons
M. Correggi, D. Lundholm, and N. Rougerie 77

Lieb-Robinson bounds, the spectral flow, and stability of the spectral gap for lattice fermion systems
Bruno Nachtergaele, Robert Sims, and Amanda Young 93

Solvable models of interacting n-particle systems on quantum graphs
Jens Bolte and George Garforth 117

Nonlinear Sturm oscillation: From the interval to a star
Ram Band and August J. Krueger 129

Existence of the ground state for the NLS with potential on graphs
Claudio Cacciapuoti 155

Fredholm theory of differential operators on periodic graphs
Vladimir Rabinovich 173

Optimization of the lowest eigenvalue for leaky star graphs
Pavel Exner and Vladimir Lotoreichik 187

Local eigenvalue asymptotics of the perturbed Krein Laplacian
Vincent Bruneau and Georgi Raikov 197
Singular spectrum and recent results on hierarchical operators
 Per von Soosten and Simone Warzel

On Parseval frames of exponentially decaying composite Wannier functions
 David Auckly and Peter Kuchment

Non-demolition measurements of observables with general spectra
 M. Ballesteros, N. Crawford, M. Fraas, J. Fröhlich, and B. Schubnel

Subfactors and quantum information theory
 Pieter Naaijkens

Dressing up for length gauge: Mathematical aspects of a debate in quantum optics
 Rainer Dick

Random phase infinite coherent states: Construction and dynamics
 Alain Joye and Marco Merkli

Effective evolution of open dimers
 Marco Merkli
Preface

In this volume are the proceedings of the 13th QMath conference, which was held at the Georgia Institute of Technology during October 8-11, 2016. The origins of this series date back to 1987 when Pavel Exner and Petr Šeba initiated the conference series “Mathematical Results in Quantum Theory” (or QMath). It is worth remembering that in those days Czechoslovakia, at that time the home country of Exner and Šeba, was still behind the Iron Curtain, and it took some courage to open scientific exchange between East and West.

The scientific aim of this conference series is not only to bring together people interested in the “quantum part” of mathematical physics, but also to stimulate a search for new quantum effects and a deeper understanding of quantum physics.

The proceedings can divided into essentially two topics. One is devoted to the many-body problem, in many ways the central problem in quantum physics and condensed matter physics. The mathematical questions there range from problems in atomic physics, e.g., the difficult problem of putting a bound on the excess charge an atom can hold, to the problem of deriving effective, i.e., simpler, equations for the behavior of large systems. A relatively new problem is ‘Many-Body Localization’. Localization, i.e., the mathematical theory of insulators, is well understood for single particle models. The new problem is to understand this localization in connection with the many-body problem, and these proceedings contain some articles devoted to this very difficult subject.

The second main topic in these proceedings concerns quantum graphs. Because of the obvious connection to quantum networks, this field has received considerable attention in recent years. It also furnishes a host of new problems that allow a sharpening of the techniques used in the field of Schrödinger operators. Interesting connections appear, e.g., to the non-linear Schrödinger equation and to one-dimensional exactly solvable models.

It has been the hallmark of mathematical physics that many of its contributions do not fit neatly into traditional categories. Either new fields get created or problems from other fields of science are brought in. In this volume we have some examples of that, such as a mathematical discussion of resonances of open dimers, a problem in chemistry, and a discussion of the measurement process in quantum mechanics. Another theme is quantum information theory which, with the possibility of quantum computers, is a very active subject nowadays.

We hope with this collection to entice researchers to take up the challenges posed by some of these problems. We gratefully acknowledge partial support from National Science Foundation Grant DMS 1643086 as well as support from the American Institute of Physics, the International Union of Physics and Applied Physics, and the International Association of Mathematical Physics.
This volume contains the proceedings of the QMATH13: Mathematical Results in Quantum Physics conference, held from October 8–11, 2016, at the Georgia Institute of Technology, Atlanta, Georgia.

In recent years, a number of new frontiers have opened in mathematical physics, such as many-body localization and Schrödinger operators on graphs. There has been progress in developing mathematical techniques as well, notably in renormalization group methods and the use of Lieb–Robinson bounds in various quantum models.

The aim of this volume is to provide an overview of some of these developments. Topics include random Schrödinger operators, many-body fermionic systems, atomic systems, effective equations, and applications to quantum field theory. A number of articles are devoted to the very active area of Schrödinger operators on graphs and general spectral theory of Schrödinger operators. Some of the articles are expository and can be read by an advanced graduate student.