A linear dimensionless bound for the weighted Riesz vector

Komla Domelevoa Stefanie Petermichla,1,2 Janine Wittwerb

aUniversité Paul Sabatier, Institut de Mathématiques de Toulouse, 118 route de Narbonne, F-31062 Toulouse, France
bWestminster College, 1840 South 1300 East, Salt Lake City, UT 84105, USA

Abstract

We show that the norm of the vector of Riesz transforms as operator in the weighted Lebesgue space L^2_ω is bounded by a constant multiple of the first power of the Poisson-A_2 characteristic of ω. The bound is free of dimension. Extensions to L^p_ω for $1 < p < \infty$ are indicated. We also show that for $n > 1$, the Poisson-A_2 class is properly included in the classical A_2 class.

Key words: Bellman function, Riesz transforms, weighted estimates

1 Introduction

A weight is a positive L^1_{loc} function. Muckenhoupt proved in [15] that for $1 < p < \infty$ the maximal function is bounded on L^p_ω iff the weight ω belongs to the class A_p, where

$$\omega \in A_p \text{ iff } Q_p(\omega) := \sup_B \langle \omega \rangle_B \langle \omega^{-1/((p-1))} \rangle_B^{p-1} < \infty.$$
Here the notation $\langle \cdot \rangle_B$ denotes the average over the ball B and the supremum runs over all balls B. Hunt, Muckenhoupt, Wheeden proved in [7] that the A_p condition also characterizes the boundedness of the Hilbert transform

$$Hf(x) = \frac{1}{\pi} \int \frac{f(y)}{x-y} dy$$

in L^p_ω. The extension of this theory to general Calderón-Zygmund operators was done by Coifman and Fefferman in [1].

One often sees the restriction to $p = 2$ when working with weights. It stems from the availability of a theory of extrapolation initiated by Rubio de Francia [21].

Quantitative norm estimates for these operators in dependence on $Q_p(\omega)$ or $Q_2(\omega)$ in particular, have attracted considerable interest. The linear and optimal bound in terms of the classical A_2 characteristic $Q_2(\omega)$ has been established for the Hilbert transform by one of the authors in [17] and then in [18] for the higher dimensional case and Riesz transforms. In [2] it has been observed that linear, sharp estimates in the case $p = 2$ for operators such as Riesz transforms or Haar multipliers extrapolate via Rubio de Francia’s theorem to optimal constants for other p. The same upper estimates hold for all Calderón-Zygmund operators, which was first shown in [8]. See also [10]. This remarkable result has been reproven by Lerner [14] using a completely different approach. The bound depends upon the dimension in all these proofs.

The focus in this note is on the Riesz vector in weighted spaces L^2_ω and the norm dependence on dimension as well as quantities related to $Q_2(\omega)$. We are interested in a version of A_2 (and A_p) which is particularly well-suited for working with the Riesz transforms in \mathbb{R}^n, where we exploit the intimate connection of Riesz transforms and harmonic functions. Namely, we use the Poisson-A_2 class with characteristic $\tilde{Q}_2(\omega)$, which considers Poisson averages instead of box averages in the definition of A_2. This allows us to obtain a bound free of dimension for the Riesz vector \vec{R}:

$$\|\vec{R}\|_{L^2_\omega \to L^2_\omega} \lesssim \tilde{Q}_2(\omega).$$

This way of measuring the characteristic of the weight arises naturally when working with Bellman functions, when convexity is replaced by harmonicity. This was also the approach in [16] as well as [20] for the weighted Hilbert transform and [4] for unweighted Riesz transforms. From a probabilistic angle, the Poisson-A_2 characteristic also arises naturally from the viewpoint of martingales driven by space-time Brownian motion as in Gundy-Varopoulos [5].

Interestingly, one-dimensional Poisson extensions of weights made a reappear-
ance in the works concerned with the famous two-weight problem for the Hilbert transform, see [11], [12] and [9]. It enjoys its interpretation as a ‘tamed’ Hilbert transform, a feature that appears to be lost in higher dimensions. In the one-dimensional case, we see a quadratic relation between the Poisson characteristic and the classical characteristic, but the classes themselves are the same. Interestingly, these different A_2 classes are not identical when the dimension is larger. We will show examples of A_2 weights whose Poisson integral diverges when the dimension is at least two. Such weights belong to A_2 but not to Poisson-A_2. This shows that the Poisson characteristic used on a pair of weights such as for the two-weight problems, is not necessary in higher dimension. This is one of several obstacles when considering the two-weight question for the Riesz transforms, that is currently under investigation. We mention the recent advance [13] where the Poisson characteristic is modified.

2 Notation

The Riesz transforms R_k in \mathbb{R}^n are the component operators of the Riesz vector \vec{R}, defined on the Schwartz class by

$$(\hat{R}_kf)(\xi) = i\frac{\xi_k}{\|\xi\|} \hat{f}(\xi).$$

We consider the space L^2_ω, where ω is a positive scalar valued L_{loc}^1 function, called a weight. More specifically, the space $L^2_\omega(\mathbb{R}^n; \mathbb{C})$ consists of all measurable functions $f : \mathbb{R}^n \to \mathbb{C}$ so that the quantity

$$\|f\|_\omega := \left(\int_{\mathbb{R}^n} |f(x)|^2 \omega(x) dx \right)^{1/2}$$

is finite, where dx denotes the Lebesgue measure on \mathbb{R}^n. For the space of vector valued functions $L^2_\omega(\mathbb{R}^n; \mathbb{C}^n)$, we replace $| \cdot |$ by the ℓ^2 norm $\| \cdot \|$.

We are concerned with a special class of weights, called Poisson-A_2. We say $\omega \in \tilde{A}_2$ if

$$\tilde{Q}_2(\omega) := \sup_{(x,t) \in \mathbb{R}^n \times \mathbb{R}_+} P_t(\omega)(x) P_t(\omega^{-1})(x) < \infty$$

where P_t denotes the Poisson extension operator into the upper half space defined by

$$P_t = e^{-tA}$$

where we define $A := \sqrt{-\Delta}$ and where Δ is the Laplacian in \mathbb{R}^n. The scalar Riesz transforms can be written as

$$R_k = \partial_k \circ A^{-1}.$$
The Poisson kernel has the form
\[P_t(y) = c_n \frac{t}{(t^2 + |y|^2)^{\frac{n+1}{2}}} \]
where \(c_n \) is its normalizing factor. The extension operator becomes
\[P_t f(x) = c_n \int_{\mathbb{R}^n} f(y) P_t(x - y) dy. \]

3 Main results

The main purpose of this text is to provide the dimensionless estimate:

Theorem 3.1 There exists a constant \(c \) that does not depend on the dimension \(n \) or on the weight \(\omega \) so that for all weights \(\omega \in \tilde{A}_2 \) the Riesz vector as an operator in weighted space \(L^2_\omega \to L^2_\omega \) has operator norm \(\|\vec{R}\|_{L^2_\omega \to L^2_\omega} \leq c\tilde{Q}_2(\omega) \).

A similar estimate holds for other \(p \) and can be found in section 6.

We also investigate the relationship between different Muckenhoupt classes. Notably, their relation changes with dimension:

Theorem 3.2 Poisson-\(A_2 \) and classical \(A_2 \) only define the same classes of weights when the dimension is one: \(\tilde{A}_2 = A_2 \) if and only if \(n = 1 \). Otherwise \(\tilde{A}_2 \) is properly included in \(A_2 \).

4 The dimension-free estimate

Since
\[\|\vec{R}\|_{L^2_\omega(\mathbb{R}^n; \mathbb{C}) \to L^2_\omega(\mathbb{R}^n; \mathbb{C}^n)} = \|\omega^{1/2} \vec{R}\omega^{-1/2}\|_{L^2(\mathbb{R}^n; \mathbb{C}) \to L^2(\mathbb{R}^n; \mathbb{C}^n)} \]
where the outer multiplication by \(\omega^{1/2} \) is a scalar multiplication. We can estimate \(\|\vec{R}\|_{L^2_\omega \to L^2_\omega} \) via \(L^2 \) duality. It is sufficient to estimate
\[|(\vec{g}, \omega^{1/2} \vec{R}\omega^{-1/2} f)| \leq c\tilde{Q}_2(\omega)\|f\|\|\vec{g}\| \]
for test functions (smooth and compactly supported) \(f, \vec{g} \), where \(f \) is scalar valued and \(\vec{g} \) vector valued. Or (considering \(\omega^{-1/2} f \) instead of \(f \) and \(\omega^{1/2} \vec{g} \) instead of \(\vec{g} \)):
\[|(\vec{g}, \vec{R} f)| \leq c\tilde{Q}_2(\omega)\|\vec{g}\|_{\omega^{-1}}\|f\|_\omega. \]

To prove this estimate, we prove the following theorem:
Theorem 4.1 For test functions f, \vec{g} and $\omega \in \tilde{A}_2$ we have the following estimate:

$$|\langle \vec{g}, \vec{R}f \rangle| \leq cQ_2(\omega)(\|\vec{g}\|_{\omega^{-1}}^2 + \|f\|_{\omega}^2);$$

(2)

here c does not depend on f, \vec{g}, n, k or ω.

Considering λf and $\lambda^{-1}\vec{g}$ for appropriate λ, with the considerations above yields Theorem 3.1.

Before we turn to the proof of Theorem 4.1, let us formulate several useful lemmata.

4.1 Three useful Lemmata

The following is a well known fact. It is, for example, stated in [5].

Lemma 4.2

$$(g, R_kf) = 4 \int_0^\infty (\frac{d}{dt}P_t g, \partial_k P_t f)tdt.$$

The proof using semigroups is very simple and concise, so we include it for the convenience of the reader. Instead of using semigroups, the same result can be obtained by the use of the Fourier transform. Proof. Observe that $F(0) = \int_0^\infty F''(t)tdt$ for sufficiently fast decaying F. So

$$(g, R_kf) = (P_0g, P_0 R_k f) = \int_0^\infty \frac{d^2}{dt^2} (P_t g, P_t R_k f) tdt.$$

The right hand side becomes

$$\int_0^\infty \left(\frac{d^2}{dt^2} P_t g, P_t R_k f \right) + 2 \left(\frac{d}{dt} P_t g, \frac{d}{dt} P_t R_k f \right) + \left(P_t g, \frac{d^2}{dt^2} P_t R_k f \right) tdt.$$

Now we use the fact that $\frac{d}{dt} P_t = -AP_t$ and $\frac{d^2}{dt^2} P_t = A^2 P_t$ and symmetry of A to see that the above equals

$$4 \int_0^\infty (AP_t g, AP_t R_k f) tdt.$$

Observing that A commutes with P_t and ∂_k, that $R_k = \partial_k \circ A^{-1}$, and using $\frac{d}{dt} P_t = -AP_t$, we obtain

$$(g, R_k f) = 4 \int_0^\infty \frac{d}{dt} P_t g, \partial_k P_t f) tdt.$$

For function f and vector function \vec{g} this becomes

$$(\vec{g}, \vec{R}f) = 4 \int_0^\infty \frac{d}{dt} P_t \vec{g}, \nabla P_t f) tdt.$$
Our final estimate is based on a sharp weighted estimate for a dyadic model operator in one dimension that we now describe. Let $\mathcal{D} = \{2^k[n; n+1) : n, k \in \mathbb{Z}\}$ denote the standard dyadic grid in \mathbb{R}. Let for $I \in \mathcal{D}$ denote $I_+ \in \mathcal{D}$ the respective right and left halves of the interval I. Then, $h_I = |I|^{-1/2}(h_{I_+} - h_{I_-})$ form the Haar basis normalized in L^2. Let σ denote a sequence $\sigma_I = \pm 1$. By T_σ we mean

$$T_\sigma f = \sum_{I \in \mathcal{D}} \sigma_I(f, h_I)h_I.$$

Wittwer’s estimate from [22], is

$$\sup_\sigma \|T_\sigma\|_{L^2 \rightarrow L^2} \leq cQ^2(\omega)$$

with c independent of the weight. Finally the Lemma below can be seen as consequence of this estimate and has been proven in [19].

Lemma 4.3 For any $Q > 1$ let \mathcal{D} be a subset of $\mathbb{R} \times \mathbb{R} \times \mathbb{C} \times \mathbb{C}^n \times \mathbb{R} \times \mathbb{R}$$

$$\mathcal{D}_Q = \{(X, Y, x, y, r, s) : |x|^2 < Xs, \|y\|^2 < Yr, 1 < rs < Q\}.$$

For any compact $K \subset \mathcal{D}_Q$ there exists an infinitely differentiable function $B_{K,Q}$ defined in a small neighborhood of K that still lies inside \mathcal{D}_Q so that the following estimates hold in K.

$$0 \leq B_{K,Q} \leq 5Q(X + Y),$$

$$-d^2B_{K,Q} \geq 2|dxdy|.$$ (3) (4)

The last inequality describes an operator inequality where the left hand side is the negative Hessian of B. This estimate on the Hessian is not quite enough for us. We will need the following form of a Lemma that has been proven in [4] and generalised in [3], the so-called ‘ellipse lemma’.

Lemma 4.4 Let $m, l, k \in \mathbb{N}$. Denote $d = m + l + k$. For arbitrary $u \in \mathbb{R}^{m+l+k}$ write $u = u_m \oplus u_l \oplus u_k$, where $u_i \in \mathbb{R}^i$ for $i = m, l, k$. Let $r_m = \|u_m\|, r_l = \|u_l\|$. Suppose the matrix $A \in \mathbb{R}^{d \times d}$ is such that

$$(Au, u) \geq 2r_mr_l$$

for all $u \in \mathbb{R}^d$. Then there exists $\tau > 0$ so that

$$(Au, u) \geq \tau r_m^2 + \tau^{-1}r_l^2$$

for all $u \in \mathbb{R}^d$.

We will be using this lemma for $m = 2, l = 2n$ and $k = 4$.

QED
4.2 Proof of the main theorem

Recall the inequality of theorem \((4.1)\). We want to show for test functions \(f\) and \(g\) and \(\omega \in \tilde{\mathcal{A}}_2\):

\[
|(\tilde{g}, \tilde{R}f)| \leq c\tilde{Q}_2(\omega)(\|\tilde{g}\|_{\omega^{-1}}^2 + \|f\|_{\omega}^2).
\]

For a fixed weight \(\omega\) we let \(Q = \tilde{Q}_2(\omega)\). This gives rise to the set \(\mathcal{D}_Q\). We define

\[
b_{K,Q}(x,t) = B_{K,Q}(v(x,t))\]

where

\[
v(x,t) = (P_t(|f|^2\omega), P_t(\|\tilde{g}\|^2\omega^{-1}), P_t(f), P_t(\tilde{g}), P_t(\omega), P_t(\omega^{-1}))(x)
\]

Here \(K\) is a compact subset of \(\mathcal{D}_Q\) to be chosen later.

Note that the vector \(v \in \mathcal{D}_Q\) for any choice of \((x,t)\). This is ensured by \(Q = \tilde{Q}_2(\omega)\) and several applications of Jensen’s inequality. Notice also that the vector \(v\) takes compacts inside the interior of \(\mathbb{R}^{n+1}_+\) to compacts \(K\) inside \(\mathcal{D}_Q\) for fixed \(f, \tilde{g}, \omega\). By elementary application of the chain rule (using harmonicity of the components of \(v\)) one shows that

\[
\Delta_{x,t}b(x,t) = \sum_{i=1}^n (d^2B(v)\frac{\partial}{\partial x_i}v, \frac{\partial}{\partial x_i}v) + (d^2B(v)\frac{\partial}{\partial t}v, \frac{\partial}{\partial t}v).
\]

Here \(\Delta_{x,t}\) is the full Laplacian in the upper half space

\[
\Delta_{x,t} = \sum_{i=1}^n \partial_{x_i}^2 + \partial_t^2.
\]

Notice that condition \((4)\) in Lemma \((4.3)\) means that at any \(v = (X, Y, x, y, r, s)\) in \(K \subset \mathcal{D}_Q\) we have the operator inequality for any \(u \in \mathbb{R} \times \mathbb{C} \times \mathbb{C}^n \times \mathbb{R} \times \mathbb{R}\)

\[
(-d^2B_{K,Q}(v)u, u) \geq 2(|dx||dy|u, u) = 2|u_3||u_4|.
\]

In our situation, \(f, \tilde{g}, \omega\) and \(Q\) are fixed, but we have varying \(K, x, t\). So Lemma \((4.4)\) guarantees the existence of \(\tau_{x,t,K}\) so that

\[
(-d^2B(v)\frac{\partial}{\partial x_i}v, \frac{\partial}{\partial x_i}v) \geq \tau_{x,t,K}\frac{\partial}{\partial x_i}P_t|f|^2 + \tau_{x,t,K}^{-1}\frac{\partial}{\partial x_i}P_t\tilde{g}||^2.
\]

for all \(i\) and

\[
(-d^2B(v)\frac{\partial}{\partial t}v, \frac{\partial}{\partial t}v) \geq \tau_{x,t,K}\frac{\partial}{\partial t}P_t|f|^2 + \tau_{x,t,K}^{-1}\frac{\partial}{\partial t}P_t\tilde{g}||^2.
\]

So
\[-\Delta_{x,t}b_{K,Q}(x,t)\]
\[\geq \tau_{x,t,K} \left(\sum_{i=1}^{n} \left| \frac{\partial}{\partial x_i} P_{t,f} \right|^2 + \left| \frac{\partial}{\partial t} P_{t,f} \right|^2 \right) \]
\[+ \tau_{x,t,K}^{-1} \left(\sum_{i=1}^{n} \left\| \frac{\partial}{\partial x_i} P_{t,\tilde{g}} \right\|^2 + \left\| \frac{\partial}{\partial t} P_{t,\tilde{g}} \right\|^2 \right) \]
\[\geq 2 \left(\sum_{i=1}^{n} \left| \frac{\partial}{\partial x_i} P_{t,f} \right|^2 + \left| \frac{\partial}{\partial t} P_{t,f} \right|^2 \right)^{1/2} \left(\sum_{i=1}^{n} \left\| \frac{\partial}{\partial x_i} P_{t,\tilde{g}} \right\|^2 + \left\| \frac{\partial}{\partial t} P_{t,\tilde{g}} \right\|^2 \right)^{1/2} \]
\[\geq 2 \left(\sum_{i=1}^{n} \left| \frac{\partial}{\partial x_i} P_{t,f} \right|^2 \right)^{1/2} \left\| \frac{\partial}{\partial t} P_{t,\tilde{g}} \right\| \]
\[= 2 \left\| \nabla P_{t,f} \right\| \left\| \frac{\partial}{\partial t} P_{t,\tilde{g}} \right\| \]

Using Lemma 4.2 and the estimate for the Laplacian we just proved, we have:

\[|\langle \tilde{g}, \tilde{R}f \rangle| \]
\[\leq 4 \int_{0}^{\infty} |\left(\frac{\partial}{\partial t} P_{t,\tilde{g}}, \nabla P_{t,f} \right)| dt \]
\[\leq 4 \int_{0}^{\infty} \int_{\mathbb{R}^{n}} \left\| \frac{\partial}{\partial t} P_{t,\tilde{g}} \right\| \left\| \nabla P_{t,f} \right\| dx dt \]
\[\leq 2 \int_{0}^{\infty} \int_{\mathbb{R}^{n}} \Delta_{x,t}b_{K,Q}(x,t) dx dt. \]

It remains to see that

\[-\int_{0}^{\infty} \int_{\mathbb{R}^{n}} \Delta_{x,t}b_{K,Q}(x,t) dx dt \leq C \tilde{Q}_{2}(\left\| f \right\|_{r-1}^{2} + \left\| \tilde{g} \right\|_{r}^{2}) \quad (5)\]

with C independent of n. In order to obtain this last estimate, we will apply Green’s formula as well as some properties of our Bellman function. We are going to pass through values of the function b.

Recall the statement of Green’s formula:

Theorem 4.5

\[\int_{\Omega} f(x) \Delta g(x) - g(x) \Delta f(x) dA(x) = \int_{\partial\Omega} \left(f(t) \frac{\partial g}{\partial n}(t) - g(t) \frac{\partial f}{\partial n}(t) \right) dS(t) \]

where n is the outward normal and dS surface measure on $\partial\Omega$.

In order to be accurate, we are obliged to take care of a few technicalities first.

Let T_{R} be a cylinder with square base in upper half space $[-R, R]^{n} \times [0, 2R]$. For R not too small, the point $(0, 1)$ lies inside T_{R}. Let $T_{R,\epsilon} = T_{R} + (0, \epsilon)$. For
any interior point \((\xi, \tau)\), let \(G_{R,\epsilon}^\epsilon[(x, t), (\xi, \tau)]\) be its Green’s function, meaning that
\[
\Delta_{x,t}G_{R,\epsilon}^\epsilon[(x, t), (\xi, \tau)] = -\delta(\xi, \tau) \quad \text{and} \quad G_{R,\epsilon}^\epsilon = 0 \quad \text{on} \quad \partial T_{R,\epsilon}.
\]
Notice that \(RT_{1,0} = T_{R,\epsilon} - (0, \epsilon)\) and the Green’s functions relate as follows:

Lemma 4.6 The Green’s function has the following scaling property:
\[
R^{n-1}G_{R,\epsilon}^\epsilon[(x, t), (\xi, \tau)] = G_{1,0}^\epsilon[(R^{-1}(x, t - \epsilon), R^{-1}(\xi, \tau - \epsilon))].
\]

Proof. By uniqueness it suffices to see that \(R^{-n+1}G_{1,0}^\epsilon[(R^{-1}(x, t - \epsilon), R^{-1}(\xi, \tau - \epsilon))]\) is indeed the Green function for the region \(T_{R,\epsilon}\) at the point \((\xi, \tau)\). It is clear that it equals zero on \(\partial T_{R,\epsilon}\). Furthermore for any test function \(f\) we have

\[
\int \int_{T_{R,\epsilon}} \Delta_{x,t}R^{-(n-1)}G_{1,0}^\epsilon[(R^{-1}(x, t - \epsilon), R^{-1}(\xi, \tau - \epsilon))]f(x, t)dxdt = \int \int_{T_{1,0}} \Delta_{y,s}G_{1,0}^\epsilon[(y, s), R^{-1}(\xi, \tau - \epsilon)]f(Ry, Rs + \epsilon)dyds
\]

We did a substitution \((x, t) = (Ry, Rs + \epsilon)\). Note that there is a \(R^{-2}\) factor arising from the switch of \(\Delta_{x,t}\) to \(\Delta_{y,s}\) and a \(R^{n+1}\) factor arising from the determinant. QED

Recall that the vector \(v\) maps each \(T_{R,\epsilon}\) into a compact \(K = K_{R,\epsilon} \subset D_Q\). For technical reasons we have to exhaust the upper half space by compacts denoted by \(M\). For that, first fix any compact set \(M\) in the open upper half space and consider \(R\) large enough and \(\epsilon\) small enough so that \(M \subset T_{R,\epsilon}\).

Let us start to use the size estimate of our Bellman function to obtain an estimate of the function value \(b_{K,Q}(0, R + \epsilon)\) from above:

\[
b_{K,Q}(0, R + \epsilon) \
\leq C \tilde{Q}_2(P_{R+\epsilon}[f]^2\omega^{-1}(0) + P_{R+\epsilon}\|\bar{g}\|^2\omega(0)) \
= c_nC \tilde{Q}_2 \int_{\mathbb{R}^n} |f|^2(y)\omega^{-1}(y) \frac{R + \epsilon}{((R + \epsilon)^2 + |y|^2)^{\frac{n+1}{2}}}dy \\
+ \int_{\mathbb{R}^n} \|\bar{g}\|^2(y)\omega(y) \frac{R + \epsilon}{((R + \epsilon)^2 + |y|^2)^{\frac{n+1}{2}}}dy \\
\leq c_n(R + \epsilon)^{-n}C \tilde{Q}_2(\|f\|^2\omega^{-1} + \|\bar{g}\|^2\omega).
\]

For an estimate from below, Green’s formula applied to our situation gives:
\[b_{K,Q}(0, R + \epsilon) \]
\[= - \int_{T_{R,\epsilon}} G^{R,\epsilon}((x, t), (0, R + \epsilon)) \Delta_{x,t} b_{K,Q}(x,t) dxdt \]
\[- \int_{\partial T_{R,\epsilon}} b_{K,Q}(x,t) \frac{\partial G^{R,\epsilon}((x, t), (0, R + \epsilon))}{\partial n} dxdt \]
\[+ \int_{\partial T_{R,\epsilon}} G^{R,\epsilon}((x, t), (0, R + \epsilon)) \frac{\partial b_{K,Q}(x,t)}{\partial n} dxdt \]

The first boundary term is negative because \(b \) is non-negative and the outward normal of the Green’s function is negative on the boundary of \(T_{R,\epsilon} \). The second boundary term vanishes because \(G^{R,\epsilon} = 0 \) on the boundary. So we have the following estimate:

\[b_{K,Q}(0, R + \epsilon) \geq - \int_{T_{R,\epsilon}} G^{R,\epsilon}((x, t), (0, R + \epsilon)) \Delta_{x,t} b_{K,Q}(x,t) dxdt. \]

since \(-\Delta b \geq 0\) and where we recall that \(M \subset T_{R,\epsilon} \). We continue the estimate using the scaling properties of the Green functions [6].

\[b_{K,Q}(0, R + \epsilon) \geq - \int_{M} R^{-(n-1)} G^{1,0}_{1,0}(R^{-1}(x, t - \epsilon), (0, 1)) \Delta_{x,t} b(x,t) dxdt. \]

Since \(G^{1,0}((R^{-1}x, 0), (0, 1)) = 0 \) we have

\[b_{K,Q}(0, R + \epsilon) \geq - \int_{M} R^{-(n-1)} \{ G^{1,0}_{1,0}((R^{-1}x, R^{-1}(t - \epsilon), (0, 1)) - \\
\quad G^{1,0}_{1,0}((R^{-1}x, 0), (0, 1)) \} \Delta_{x,t} b(x,t) dxdt \]
\[= \int_{M} R^{-(n-1)} \frac{\partial G^{1,0}_{1,0}}{\partial t}(R^{-1}x, \tau) R^{-1}(t - \epsilon) \Delta_{x,t} b_{K,Q}(x,t) dxdt \]
\[= - \int_{M} R^{n} \frac{\partial G^{1,0}_{1,0}}{\partial t}(R^{-1}x, \tau) \Delta_{x,t} b_{K,Q}(x,t) dx(t - \epsilon)dt, \]

where \(0 \leq \tau \leq R^{-1}(t - \epsilon) \). Pulling this all together with the estimate from above,

\[- \int_{M} R^{-n} \frac{\partial G^{1,0}_{1,0}}{\partial t}(R^{-1}x, \tau) \Delta_{x,t} b_{K,Q}(x,t) dx(t - \epsilon)dt \]
\[\leq b_{K,Q}(0, R + \epsilon) \leq c_{n}(R + \epsilon)^{-n} C \tilde{Q}_{2}(\| f \|^2_{-1} + \| \tilde{g} \|^2_{0}), \]
hence

\[- \int \int_M \frac{\partial G^{1,0}}{\partial t}(R^{-1} x, \tau) \Delta x, t b_{K,Q}(x, t) dx(t - \epsilon) dt \leq c_n \bar{Q}_2(\|f\|_{2, -1}^2 + \|\bar{g}\|_\omega^2)\]

uniformly with respect to R and ϵ, for all given M. When R goes to infinity, the normal derivative \(\frac{\partial G^{1,0}}{\partial t}(R^{-1} x, \tau) \) tends to \(\frac{\partial G^{1,0}}{\partial t}(0, 0) \) uniformly with respect to \((x, t) \in M\). But we know that the normal derivative \(\frac{\partial G^{1,0}}{\partial t}(0, 0) \) is exactly the normalizing factor \(c_n \) of the Poisson kernel (see [4] and the references therein Couhlon-Duong). Letting R go to infinity and ϵ go to zero yields for all compact M of the upper half space:

\[- \int \int_M \Delta x, t b_{K,Q}(x, t) dx dt \leq C \bar{Q}_2(\|f\|_{2, -1}^2 + \|\bar{g}\|_\omega^2).\]

Finally, letting M exhaust the upper half space establishes (5). This concludes the proof of Theorem 4.1 and therefore the proof of the main Theorem 3.1.

5 The comparison of classical and Poisson characteristic.

In this section we prove Theorem 3.2. We provide an example that demonstrates that $\hat{A}_2 \neq A_2$ if $n > 1$. For the case $n = 1$, it is known that the two classes are the same. In fact, for $n = 1$ the estimates

\[\hat{Q}_2(\omega) \lesssim Q_2(\omega) \lesssim \hat{Q}_2(\omega)^2 \]

are proven in [6]. If $n > 1$ however, an easy example shows that the Poisson integral of a simple power weight diverges, although the weight belongs to classical A_2. Consider $\omega_\alpha(x) = |x|^\alpha$. It is well known and straightforward to check that $\omega_\alpha \in A_2$ if and only if $|\alpha| < n$. Also $Q_2(\omega_\alpha) \sim \frac{1}{n^2 - \alpha^2}$. We show that the Poisson integral $P_t w_\alpha(0)$ diverges for $\alpha > 1$ and $n \geq 2$. Indeed,

\[
P_t(\omega_\alpha)(0) \\
\sim \int_{\mathbb{R}^n} \frac{t}{(t^2 + |x|^2)^{\frac{n+1}{2}}} |x|^\alpha dx \\
= |S| \int_0^\infty \frac{t}{(t^2 + r^2)^{\frac{n+1}{2}}} r^{\alpha+n-1} dr \\
= |S| \sum_{k=1}^\infty \int_{2^{k-1}t}^{2^k t} \frac{t}{(t^2 + r^2)^{\frac{n+1}{2}}} r^{\alpha+n-1} dr \\
\gtrsim |S| \sum_{k=1}^\infty 2^{k-1} t \frac{t}{(t^2 + 2^{2k} t^2)^{\frac{n+1}{2}}} (2^{k-1} t)^{\alpha+n-1} \\
\gtrsim t^\alpha |S| 2^{-\alpha-n-1} \sum_{k=1}^\infty 2^{(\alpha-1)k}
\]

11
We see that this sum converges if and only if $\alpha - 1 < 0$. If $n \geq 2$ we have $w_\alpha \in A_2$ if and only if $|\alpha| < n$ so we can easily pick a valid α for which the above sum diverges.

Thus not every weight in A_2 is in \tilde{A}_2. The converse is still true, though. Let $w \in \tilde{A}_2$, and let B be a ball with center a and radius r. Then for $y \in B$, $|a - y| < r$, and so

$$\frac{1}{r^n} \leq 2^{\frac{n+1}{2}} \frac{r}{(r^2 + |a - y|^2)^{\frac{n+1}{2}}}$$

and so

$$\langle \omega \rangle_B \leq C \int_B \frac{r w(y)}{(r^2 + |a - y|^2)^{\frac{n+1}{2}}} dy \leq C' P_r(\omega)(a),$$

and similarly for $\langle \omega^{-1} \rangle_B$. Thus $Q_2(\omega) \leq \tilde{C} \tilde{Q}_2(\omega)$. This concludes the proof of Theorem 3.2.

6 Remarks on L_p^ω

When defining the appropriate Poisson-A_p class \tilde{A}_p consisting of those weights so that

$$\tilde{Q}_p(\omega) := \sup_{(x,t) \in \mathbb{R}^n \times \mathbb{R}^+} P_t(\omega)(x)(P_t(\omega^{-1/(p-1)})(x))^{p-1} < \infty,$$

our dimension-free estimate holds for $1 < p < \infty$:

Theorem 6.1 There exists a constant c_p that does not depend on the dimension n or on the weight ω so that for all weights $\omega \in \tilde{A}_p$ the Riesz vector as an operator in weighted space $L^p_\omega \rightarrow L^p_\omega$ has operator norm $\|\tilde{R}\|_{L^p_\omega \rightarrow L^p_\omega} \leq c_p \tilde{Q}_p(\omega)$ with $r_p = 1$ when $p \geq 2$ and $r_p = 1/(p-1)$ for $1 < p < 2$.

We make some remarks about the proof, because it is not possible to extrapolate directly the estimate from Theorem 3.1.

In [2] a sharp extrapolation theorem was proven. In particular, it supplies us with an L^p version of Wittwer’s estimate [22] in dimension 1 in terms of the classical A_p characteristic:

$$\sup_\sigma \|T_\sigma\|_{L^p_\omega \rightarrow L^p_\omega} \leq c_p Q_p(\omega)^{r_p}$$

where $r_p = 1$ when $p \geq 2$ and $r_p = 1/(p-1)$ for $1 < p < 2$. One derives from this estimate a Bellman function for the L^p case with slightly different variables. The remaining part of the argument is identical to the case $p = 2$. The resulting estimate is dimensionless and the powers of the respective characteristic of the weight is inherited from the dyadic case. As before, the
classical dyadic characteristic that matches a dyadic martingale is replaced by the Poisson characteristic for space time Brownian motion.

References

[1] R. Coifman, C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math., 51, (1974), pp. 241-250.

[2] O. Dragičević, L. Grafakos, M. Pereyra, S. Petermichl, Extrapolation and sharp norm estimates for classical operators on weighted Lebesgue spaces, Publ. Mat., 49, (2005), pp. 73-91.

[3] O. Dragičević, S. Treil, A. Volberg, A theorem about three quadratic forms. Int. Math. Res. Not. IMRN, (2008), pp. Art. ID rnn 072, 9

[4] O. Dragičević, A. Volberg, Bellman Functions and Dimensionless Estimates Of Littlewood-Paley Type. J. Operator Theory, 56, (2006), pp.167-198.

[5] R. Gundy, N. Varopoulos, Les transformations de Riesz et les intégrales stochastiques. C. R. Acad. Sci. Paris Sér. A-B, 289(1), (1979), pp. A13-A16.

[6] S. Huković, Thesis: Singular integral operators in weighted spaces and Bellman functions, Brown University, (1998).

[7] R. Hunt, B. Muckenhoupt, R. Wheeden, Weighted norm inequalities for the conjugate function and the Hilbert transform. Trans. Amer. Math. Soc., 176, (1973), pp. 227-251.

[8] T. Hytönen, The sharp weighted bound for general Calderón-Zygmund operators. Ann. Math. (2), 175, 3, (2012), pp. 1473-1506.

[9] T. Hytönen, The two-weight inequality for the Hilbert transform with general measures. preprint, http://arxiv.org/abs/1312.0843

[10] T. Hytönen, C. Pérez, S. Treil, A. Volberg, Sharp weighted estimates for dyadic shifts and the A2 conjecture. Reine Angew. Math. 687 (2014), 43-86.

[11] M. Lacey, Two weight inequality for the Hilbert transform: A real variable characterization, ii. preprint, http://arxiv.org/abs/1301.4663

[12] M. Lacey, E. Sawyer, C.-Y. Shen, I. Uriarte-Tuero, Two weight inequality for the Hilbert transform: A real variable characterization, i. preprint, http://arxiv.org/abs/1201.4319

[13] M. Lacey, B. Wick, Two weight inequalities for Riesz transforms: Uniformly full dimension weights. preprint, http://arxiv.org/abs/1312.6163

[14] A. Lerner, A simple proof of the A2 conjecture. Int. Math. Res. Not.,14, (2013), pp. 3159-3170.
[15] B. Muckenhoupt, *Weighted norm inequalities for the Hardy maximal function*. Trans. Amer. Math. Soc., 165, (1972), pp. 207-226.

[16] F. Nazarov, S. Treil, *The weighted norm inequalities for Hilbert transform are now trivial*. C. R. Acad. Sci. Paris, Ser. I, 323, (1996), pp. 717-722.

[17] S. Petermichl, *The sharp bound for the Hilbert transform on weighted Lebesgue spaces in terms of the classical A_p characteristic*, Amer. J. Math., 129, 5, (2007), pp. 1355-1375.

[18] S. Petermichl, *The sharp weighted bound for the Riesz transforms*. Proc. Amer. Math. Soc., 136, (2008), pp. 1237-1249.

[19] S. Petermichl, A. Volberg, *Heating of the Beurling operator: weakly quasiregular maps on the plane are quasiregular*. Duke Math. J., 112, 2, (2002), pp. 281-305.

[20] S. Petermichl, J. Wittwer, *A sharp estimate for the weighted Hilbert transform via Bellman functions*. Mich. Math. J., 50, (2002), pp. 71-87.

[21] J. Rubio de Francia, *Factorization theory and A_p weights*. Amer. J. Math., 106, 3, (1984), pp. 533-547.

[22] J. Wittwer, *A sharp estimate on the norm of the martingale transform*. Math. Res. Lett., 7, 1, (2000), pp. 1-12.