Correlation of Gastric Cancer Cells with Seasonal Changes under Microscope

Qi Jin,1 Shuo Huang,1 Yuhong Sun,1 Yi Wang,1 Yaguang Xue,2 Mingming Hu,3 and Qiyong He1

1The First Affiliated Hospital of Jiamusi University, Jiamusi University, Jiamusi 154003, Heilongjiang, China
2School of Public Health, Jiamusi University, Jiamusi 154003, Heilongjiang, China
3Linqi County People’s Hospital, Weifang 262600, Shandong, China

Correspondence should be addressed to Shuo Huang; shuo.huang@jmsu.edu.cn

Received 13 January 2021; Revised 2 February 2021; Accepted 13 March 2021; Published 23 March 2021

1.Introduction

Gastric cancer [1–3] is one of the most common gastric tumours. According to global data on cancer circulated by the International Cancer Institute in 2012, the incidence and mortality of gastric cancer rank fifth and third in the world, respectively. However, the incidence rate of gastric cancer is still high in China. According to the statistics released in 2015, it is estimated that the number of new gastric cancer cases in the whole year is 679,000, ranking the second among all kinds of malignant tumors, and the number of deaths related to gastric cancer is 498,000, ranking the third. At present, radical surgery is the first choice for the treatment of gastric cancer. The five-year survival rate of early stomach cancer after radical surgery is over 90%. However, because the early symptoms of stomach cancer are not very obvious, the lack of public awareness of stomach cancer and cancer control and failed to create an effective early warning mechanism, most patients have entered the development stage before being diagnosed as stomach cancer. For some patients still have the opportunity to receive radical surgery in clinical stages II and III, although in the near future, the operation method has been improved and adjuvant treatment such as postoperative radiotherapy and chemotherapy has prolonged the survival time of patients. Due to the high recurrence rate and metastasis rate of gastric cancer, about 40%–70% of patients will have tumor recurrence; the 5-year survival rate is less than 30%. For patients with advanced gastric cancer, they have no chance to operate at all. For them, the main treatment is chemotherapy, but the median
survival time is usually less than 1 year. Therefore, from the above facts, on the one hand, gastric cancer has brought a great threat to the life and health of our people, and the treatment cost is expensive, which makes the patients, their families, and even the social economy bear a huge economic burden.

Nowadays, with the development of society, there are many factors that can lead to the occurrence of gastric cancer. The occurrence of gastric cancer is the result of multiple stages and factors. There are many research results on the influencing factors of gastric cancer, but the exact factors of gastric cancer have not been determined by the scholars engaged in epidemiological research. At present, the relatively determined factors are among the environmental factors and genetic factors. Environmental factors mainly include bad eating habits, smoking and drinking, and nitrite. However, after analyzing several cases of gastric cancer in a hospital, the incidence rate of gastric cancer is also related to the season. From the description of the current situation of gastric cancer, we get the information that gastric cancer has brought great threat to the life safety of Chinese residents. Because we Chinese like to eat bacon, the nitrite contained in bacon is very harmful to our life and health, and this eating habit also increases the risk of gastric cancer of Chinese residents. Therefore, it is very important to use the existing medical technology to explore as many factors as possible that lead to the occurrence of gastric cancer, so as to help us to formulate effective prevention and treatment measures for gastric cancer. After investigating several patients with gastric cancer in a hospital, we observed the growth rate of gastric cancer cells under microscope and found that the growth rate of gastric cancer cells in spring and summer was higher than that in other two seasons. This finding provides a method for the prevention and control of gastric cancer.

Microscope [6, 7] is actually an optical refraction imaging system, which is composed of two groups of condensing lenses. It is an optical instrument that uses the optical principle to magnify the image of the small object which cannot be recognized by the naked eye, so as to extract the microstructure information of the material. The lens group with short focal length, close to the observation object and real image, is called objective lens, while the lens group with long focal length, close to the eye and virtual image, is called eyepiece. We put the object to be observed in front of the objective lens. After being magnified by the objective lens in the first stage, it becomes the true image of handstand. In the second stage, the real image is magnified by eyepiece, and the inverted virtual image with the largest magnified effect is obtained, which is located at the distance of human eyes. In medical research, microscopes can be used to observe DNA morphology, and microscopes can also be used to scan the electron microscope images of chondrocytes. With microscopes, we can observe cells and conduct biomedical research from macro to micro. In this paper, we analyzed many cases of gastric cancer, analyzed the possible factors related to seasons in gastric cancer patients by single factor method, analyzed the main factors related to seasons in gastric cancer patients by logistic regression analysis and the degree of correlation, and observed gastric cancer cells in different seasons by using the microscope.

The results showed that the 69.61% of patients with stomach cancer were men, 58.03% in spring and summer. The results of a factor analysis showed that there were significant differences in all aspects of patients with stomach cancer at different times, such as number, age, the profession, dietary habits, and other factors \(P < 0.05 \). The multifactorial analysis showed that age, city, and average length of stay were negatively correlated with seasons \(P < 0.05 \), and age was negatively correlated with seasons. Among them, farmers and diabetics are more likely to go to hospital because of gastric cancer than other residents in the historical spring and summer, and the main complaints are highly correlated with seasons. \(B \) values of fever, anorexia, and emaciation were 1.584, 1.596, and 1.371, respectively \(P < 0.05 \). The incidence rate of gastric cancer is related to season, age is small, and the characteristics of onset are not obvious. Farmers and patients with a history of diabetes are more likely to develop gastric cancer in spring and summer. It is of positive significance to prevent and control gastric cancer to strengthen the investigation of life and diet style of farmers and patients with diabetes history, to promote healthy life style to residents, and to pay attention to the nonobvious characteristics of the disease. Under the microscope, gastric cancer cells showed different growth trends in different seasons. In spring and summer, the growth rate of cancer cells was significantly higher than the other two seasons. This discovery will help us to prevent and control the occurrence of gastric cancer.

2. Microscopes and Gastric Cancer

2.1. History of Microscopes. A microscope is a visual instrument consisting of one or more lenses. It is a symbol of man entering the atomic age. It is mainly used to enlarge small objects into tools that can appear with the naked eye. Microscopes can be divided into two categories: optical and electronic microscopes. Optical microscopes were established by Jason and his son in the Netherlands in the 1590’s. Now, the optical microscope can help us enlarge the object 1600 times, and the minimum resolution limit is 1/2 of the wavelength. The length of mechanical cylinder of microscope in China is generally 160 mm; Lewenhoek has made great contribution to the development of microscope and microbiology. The principle of electron microscope is to use electron flow as a new light source to image objects. Ruska invented the first transmission electron microscope in 1938, in addition to the continuous improvement of the performance of the transmission electron microscope itself. Many other types of electron microscope have also been developed, such as scanning electron microscope, analysis electron microscope, and ultrahigh pressure electron microscope. Combined with a variety of electron microscopes, we use the current technology to make samples; we can study the structure of samples or the relationship between structure and function. A microscope is used to observe images of small objects. It is often used to observe biology, medicine, and microscopes. The electronic microscope can help us
magnify objects a million times. For the time being, the electronic microscope is increasingly important in the field of medicine. Now with the development of science and technology, the electronic microscope is more scientific and accurate. The electronic microscope helps us complete one medical experiment after another.

2.2. Imaging Principle of AFM. The atomic force microscope [8, 9] is called AFM for short. The AFM principle is relatively simple. The core of the instrument is a microprojector about 100–250 m long, which is very sensitive to power. The free end of the microresistor, i.e., the end of the lower surface, is equipped with a needle edge, which is quite small in length and diameter smaller than 100 Angstroms. When the probe touches the surface of the sample gently, it will bend the microcantilever and transfer or change the amplitude due to the interaction between extremely weak atoms and the tip probe, and the surface atoms of the sample and the microc
cantilever with deformation information will be converted into a measurable signal. Now, there are many methods that can be used for information conversion and detection, such as optical reflection method, optical interference method, and tunnel current method. At present, the laser reflection detection system is commonly used in the AFM system. The laser beam is emitted to the microcantilever. When the cantilever is deflected or bent, the optical path of the laser beam reflected to the photodetector will also change. After the light spot displacement signal is converted and amplified by the photodetector, the weak change signal of the interatomic force is obtained, and the detection and imaging are completed by this method.

Atomic force microscopy is mainly used to describe neural circuits and observe DNA morphology and eukaryotic organelles in medicine. Micro-objects of nanometer scale were observed by electron microscope. It can be used to distinguish the shape and size of various viruses, measure the force between molecules, and operate controllable molecules. The electron microscope can develop biomedical research from macroscopic to microcosmic. It turns out that people can see the cells of animals and plants and many microorganisms through the optical microscope, but due to the limitation of natural wavelength, its resolution is difficult to meet the needs of people to uncover the mystery. Some scholars have studied the most relevant diseases of ultrastructure and accumulated a large number of data through the application of electron microscope. The application of electron microscope has laid a good foundation for the pathological diagnosis and pathological research of various clinical diseases to a new level. At present, electron microscopy has been widely used in clinical pathological diagnosis, especially in the traditional clinical diagnosis methods. For the primary cases that cannot be diagnosed before medical technology, atomic force microscopy can play an important role in helping us to diagnose.

2.3. Gastric Cancer. Gastric cancer (GC) is a kind of cancer in the stomach. It usually originates from gastric epithelial cells and is a common malignant tumor in the gastrointestinal system. The collective cause of stomach cancer has not been fully identified, but genetic factors, age, sex, Helicobacter pylori infection, tobacco and alcohol, and many other factors will increase the risk of stomach cancer. The first symptoms of patients are often not obvious. However, with the gradual worsening of the disease, symptoms such as dilution, anorexia, nausea, vomiting, diarrhoea, blood smear, and black faeces may occur. In early patients with stomach cancer, if they cooperate actively with treatment, the rate of treatment is high, but overall, the therapeutic effect of osteoarthritsis system is low.

Most of the patients with early gastric cancer have no obvious symptoms, and a few have nausea, vomiting, or upper gastrointestinal symptoms similar to ulcers. It is difficult to pay attention to these symptoms. With the gradual deterioration of the disease, the symptoms are more obvious when the gastric function is affected, but these symptoms are lack of specificity. The most common clinical symptoms of advanced gastric cancer are pain and wasting. Patients often have more obvious upper gastrointestinal symptoms, such as abdominal discomfort and fullness after eating. With the deterioration of the disease, upper abdominal pain increases, appetite decreases, and fatigue occurs. The location of the tumor is different, and there will be different diseases. Gastric cancer may have pain in the sternum or dysphagia. Gastric cancer near the pylorus may have pylorus obstruction. There may be gastrointestinal bleeding symptoms, such as hematemesis and black stool. If the tumor invades the pancreatic capsule, it may show persistent pain, radiating to the back of the waist; if the tumor ulcer is perforated, it may cause severe pain or even peritoneal stimulation; if the tumor has hilar lymph node metastasis or bile duct compression, jaundice may occur; if the distant lymph node metastasis occurs, it may touch the left clavicular swollen lymph node. Anemia, emaciation, malnutrition, these bad diseases often extremely appears in patients with advanced gastric cancer.

There are many causes of gastric cancer, such as living environment, eating habits, heredity, and genes of Helicobacter pylori (HP) infection. The incidence rate of China’s gastric cancer has been significantly different from that of other regions. The incidence rate of gastric cancer in China’s northwest and eastern coastal areas is obviously higher than that in other regions. Because people in these areas like to smoke and consume salty food, the incidence of gastric cancer tends to be higher. There are the high content of nitrite, mycotoxin, polycyclic aromatic hydrocarbons, and other carcinogens in these foods; these carcinogens are an important cause of gastric cancer. Smoking is also an important factor in gastric cancer. According to the data, the risk of gastric cancer in smokers is 50% higher than that in nonsmokers. The HP infection rate of adults in the high incidence area of gastric cancer in China is more than 60%. Helicobacter pylori can promote the transformation of nitrate into nitrite and nitrosamine, which increases the probability of gastric cancer; HP infection causes chronic inflammation of gastric mucosa; environmental factors accelerate the excessive proliferation of mucosal epithelial
cells, leading to abnormalities; CagA and VacA are toxic products of Helicobacter pylori, which may promote cancer. The detection rate of anti-CagA antibody in gastric cancer patients is significantly higher than that in the general population. Related research shows that the incidence rate of blood relationship with gastric cancer patients is 4 times that of the ordinary people. The gastric cancer is more complex, and there are many factors that cause gastric cancer. The deterioration of gastric cancer is related to the change of oncogene, tumor suppressor gene, apoptosis-related gene, and metastasis-related gene. There are many ways of gene change. Through the case study and microscopic observation of gastric cancer cells, we found that there was a certain relationship between gastric cancer and seasonal changes.

3. Observation of Cell Treatment

3.1. Single-Factor Analysis on the Relationship between Hospitalization and Season of Gastric Cancer Inpatients in 2014–2019. In our survey, 69.61% (607/872) of gastric cancer patients were men, more than women, 58.03% (506/872) in spring and summer. The number of inpatients, age, gender, address, average length of stay, discharge conditions, smoking and drinking habits, occupation, past medical history, eating habits, western medicine costs, and complaints vary with seasons. In spring and summer, male patients accounted for 37.61% (328/872), 33.03% (148 + 140/872), 45.76% (399/872), 46.22% (403/872), 17.78% (155/872), and 15–21 days in average; 25.23% (220/872) patients had no habit of smoking and drinking, 9.72% (172/872) employees in spring and summer, and 25.0% (218/872) patients had other medical history. 30.85% of gastric cancer patients (269/872) like to eat meat. Most patients with gastric cancer had anorexia, accounting for 35.44% (309/872). The difference was statistically significant (P < 0.05).

3.2. Logistic Multiple Factor Regression Analysis of Hospitalized and Season-Related Gastric Cancer Patients in 2014–2019. From Table 1, it appears that age, city, and average length of stay are negatively correlated with seasons, indicating that patients of 40-year-old age are more likely to be treated in spring and summer than those with average residence time 14 days in this city, and age is strongly correlated negatively (value b = −1423), which is a protective factor for the seasonal onset. The number of patients, gender, profession, past medical history, dietary habits, and the cost of western medicine are largely related to the times. It is observed that locals, men, and vegetarians below 40-years of age are more likely to develop gastric cancer in spring and summer. They are hospitalized for the first time. The cost of western medicine is less than or equal to the median, while the average stay time is less than or equal to 14 days. In terms of occupational classification, farmers are more likely to get sick in spring and summer than those in other industries. However, the differences among workers, cadres, and retirees in gastric cancer are not obvious, indicating that there is a seasonal relationship between farmers and gastric cancer. We studied the history of gastric cancer patients and found that gastrointestinal system diseases, diabetes, and cardiovascular and cerebrovascular diseases were highly correlated with seasons. The correlation of diabetes mellitus was greater than that of the gastrointestinal system disease and cardiovascular and cerebrovascular diseases (P < 0.05). The b values of fever, anorexia, and emaciation were 1.584, 1.596, and 1.371, respectively.

3.3. Analysis of Gastric Cancer Cells under Microscope. Disinfect the super-clean working table with 70% alcohol [10], put the reagents and equipment required for the experimental operation in order, sterilize with ultraviolet radiation for 30 minutes, use the gastric cancer cells extracted by the gastric cancer patients in the hospital, change the experimental work clothes, wear masks, hats, and sterile gloves, and then enter the super-clean working table to start the experimental operation. The gastric cancer cells were identified by hematoxylin eosin (HE) staining [11, 12] and immunohistochemistry. Gastric cancer cells were fixed with 2% formaldehyde, hematoxylin eosin (HE) staining, and immunohistochemistry (CD3, CD20, and CD30). Cut the fixed tissue into several pieces with a thickness of about 3 mm. Wash the slices repeatedly with distilled water to keep the surface clean. Press the clean slide on the surface of the tissue slide to form a cell imprint. Wash the cell marks with distilled water and dry in a clean space. The cut sections were made into paraffin sections, and gastric cancer cells were labeled by HE staining and immunohistochemistry. Record the number of cells. Gastric cancer cells were divided into four equal parts. Gently blow the cell suspension with a straw for 3–5 times, then slowly suck it out, transfer it into a 15 ml centrifuge tube, add 10 ml RPMI-1640 culture medium, mix it fully, centrifuge it at 1000 rpm for 5 min, discard the supernatant, add a proper amount of RPMI-1640 culture medium, and then gently blow it for 10 times, so that the culture medium and cell sedimentation are fully mixed. Adjust the concentration of cell suspension, inoculate it into culture bottle, and put it into constant temperature incubator for culture. Adjust the temperature and humidity of incubator to simulate spring, summer, autumn, and winter. After 24 hours, change the solution once and then change it once a day according to the cell growth. Gastric cancer cells were cultured for one week and the number of cells was observed under atomic force microscope. The results showed that the number of gastric cancer cells increased more in spring and summer.

4. Result Analysis

In this paper, we first sort out and analyze some basic information of gastric cancer inpatients and establish excel tables for statistical data, use statistical software to analyze the collected data, and use the collected data to analyze the factors that cause gastric cancer, which are related to seasons. The chi-square test and logistic regression analysis were used to analyze single factor and multiple factors respectively. P < 0.05 indicated that the significant difference was significant. It can be seen from Table 2 that there are...
more patients in spring and summer in our hospital. On the other hand, the number of gastric cancer cells in spring and summer is significantly more than that in other two seasons.

Other factors, such as eating habits, age, region, genetic factors, and occupation, are ignored in this paper. These factors will affect gastric cancer, but only the patients’ wish seasons were investigated. The results are shown in Figure 1. It can be seen from Figure 1 that the proportion of admission in spring and summer is significantly higher than that in other two seasons. On the other hand, the growth rate of gastric cancer cells in spring and summer is higher than that in autumn and winter.

This paper also makes some simple investigations on some bad habits of the patients. The investigation results are shown in Figure 2. It is found that many female patients use excessive diet to lose weight, resulting in overeating, making their stomach too hungry and full, leading to gastric cancer. Of course, male patients also have related problems. In the future eating habits, we must not overeat. Of course, there are other bad eating habits, such as eating too salty, not eating breakfast, eating pickled food, and eating too fast; these habits are also the factors inducing gastric cancer.

According to the research results of scholars, we found that 5–10% of cancers are genetically related, and the rest are closely related to the environment and living habits of patients. In 1993, the research results of the scholars who studied the gastric cancer patients in Harbin that is a big city of east-north of China showed that the lack of vegetables and bad eating habits in winter were important causes of gastric cancer. Scholars believe that cabbage, potato, and pickle are the main vegetables in winter in Harbin, which lead to a large number of NO3⁻ and NO2⁻ production, leading to malignant transformation of gastric epithelial cells. However, in this study, there is a trend of frequent occurrence in spring and summer. In the near future, edible vegetables in winter are not limited to cabbage and potatoes. At the same time, it was found that vegetarianism can also cause gastric cancer in spring and summer. In recent years, the living standard of residents has been improved continuously. In recent 20 years, the dietary structure of residents in China has changed a lot compared with that before. Although the variety of food is rich, the food that residents eat does not achieve nutrition balance; absolute vegetarianism does not represent health, which has become one of the inducing factors of gastric cancer. In 2010, it was listed as the “Mediterranean diet” of “world cultural heritage,” which is characterized by balanced food nutrition and a perfect balance combination of appropriate amount of red wine. The incidence rate of cancer in the Mediterranean is lower than that in Nordic or American countries. This may be due to healthy eating habits. In the spring and summer of Heilongjiang Province, the climate warms rapidly and the sunshine grows longer. Young and middle-aged people under the age of 40 have changed their way of life too fast. Irregular work and rest, improper diet, and other unhealthy lifestyle may be the main reason for the rapid induction of gastric cancer. Therefore, balanced nutrition and healthy life are of great significance for the prevention and treatment of gastric cancer and other tumors.

In addition to the investigation of patients, we have also effectively used the modern advanced medical equipment and atomic force microscope. We made sections of the extracted gastric cancer cells and observed them with atomic force microscope first and then cultured them in different seasons. The other variables were the same. Only one variable of the environment was retained by the control variable method, and the gastric cancer cells cultured at the same time were observed. In seven days, we observed four times and counted the four times, respectively. The number of gastric cancer cell lines is shown in Figure 3. The number of gastric cancer cells cultured in spring and summer was significantly higher than that in autumn and winter.

We also made a rough statistics on the number of gastric cancer cells cultured for seven days. When the cells accounted for more than 80% of the bottom area of the culture bottle, subculture was carried out. Regularly sterilize the ultraclean working table with alcohol, put the equipment required for the experiment in order, and irradiate it with ultraviolet light for 30 minutes, so as to complete the sterilization. RPMI-1640 culture medium, 0.25% trypsin, and PBS buffer solution were taken out of the refrigerator in advance and put into the greenhouse, and the bottle mouth and body were sterilized with alcohol and then put into the ultraclean workbench. The gastric cancer cell culture bottle was taken out of the incubator, and the culture of gastric cancer cells was observed by microscope. Whether the cells were contaminated or the cells occupied 80% of the bottom area of the bottle, spray the disinfectant bottle mouth with

Project	B	Standard error	Wald	df	Significant level	Exp (B)
Number of hospitalizations	0.396	0.170	5.409	1	0.020	1.489
Gender	0.414	0.167	6.146	1	0.013	1.513
Age	−1.423	0.473	9.064	1	0.003	0.241
Outside the city	−0.437	0.175	6.256	1	0.012	0.646
Average length of stay	−0.847	0.295	8.241	1	0.004	0.429
Occupation	0.720	0.277	6.766	1	0.009	2.054
Past medical history	1.029	0.324	10.093	1	0.001	2.799
Eating habits	0.445	0.148	9.050	1	0.003	1.561
Western medicine expenses	0.535	0.236	5.133	1	0.023	1.707
Chief complaint	1.584	0.487	10.578	1	0.001	4.873
Table 2: X2 test results of gastric cancer inpatients and season-related factors in our hospital from 2014 to 2019.

	Autumn and winter 1 (366)	Spring and summer 2 (506)	Total (person time)	Chi-squared value	\(p \)
Number of hospitalizations					
Once = 1	251	300	551	7.88	<0.05
More than or equal to 2 times = 2	115	206	321		
Gender					
Male	279	328	607	9.13	<0.05
Female	87	178	265		
Age					
\(\leq 40 \text{ years} = 1 \)	7	37	44	13.73	<0.05
41–50 years = 2	60	76	136		
51–60 years = 3	104	148	252		
61–70 years = 4	115	140	255		
\(\geq 71 \text{ years} = 5 \)	80	105	185		
Address					
Local	258	399	657	7.99	<0.05
Field	108	107	215		
Average length of stay					
\(\leq 7 \text{ days} = 1 \)	84	140	224	8.95	<0.05
8–14 days = 2	62	108	170		
15–21 days = 3	119	155	274		
\(\geq 22 \text{ days} = 5 \)	101	103	204		
Discharge					
To heal or improve (1)	311	403	714	4.06	<0.05
Not cured or dead (2)	55	103	158		
Smoking and drinking					
Never smoke or drink (1)	178	220	398	51.51	<0.05
Occasional smoking or drinking (2)	52	87	139		
Occupation					
Worker (1)	98	172	270	11.64	<0.05
Farmer (2)	48	36	84		
Cadre (3)	78	107	185		
Retire (4)	36	46	82		
Others (5)	106	145	251		
Past medical history					
Diseases of gastrointestinal system (1)	91	103	194		
Diabetes (2)	24	28	52	12.27	<0.05
Respiratory diseases (3)	30	25	55		
Cardiovascular and cerebrovascular diseases (4)	102	132	234		
Others (5)	119	218	337		
Eating habits					
Vegetarianism or vegetarianism (1)	204	237	441	6.73	<0.05
Mainly meat (2)	162	269	431		
Western medicine expenses					
\(\leq \text{median = 1} \)	160	274	434	4.40	<0.05
\(> \text{median = 2} \)	192	246	438		
alcohol and then put it on the ultraclean worktable. Use the outer flame of alcohol lamp to sterilize the cell culture bottle mouth, open the bottle cap, pour out the culture liquid in the bottle, use a straw to suck a proper amount of PBS buffer into the culture bottle, gently shake the culture bottle for three times, then pour out, then add 2 mL of 0.25% trypsin digestion solution into the cell culture bottle, cover the bottle cap, put it on the super-clean table, and then use a microscope to check the cell elimination degree of metaplasia, when the cell shape becomes round and the cell gap becomes large, indicates that the cell digestion is almost completed. Then, pour out the liquid in the bottle gently, add a proper amount of culture medium to stop digestion, and use a straw to gently move the bottom and around the bottle; in this way, all cells in the bottle are suspended in the culture medium, thus becoming a cell suspension. Count with the counting board of novice, first wipe and disinfect the counting board with alcohol cotton ball, and then put the clean cover glass on the small hole. The coverslide is slightly inclined to the left, so that the surface of the counting plate can be exposed a little, and the drop pool can be suspended. Gently blow the cell suspension with a pipette to make it fully mixed. Use a pipette to take a proper amount of cell suspension (pay attention to the appropriate amount of suspension, so as to avoid overflow due to too much suspension or bubbles due to too little suspension, resulting in counting failure). Gently place it in the space next to the cover glass and allow standing for 3 minutes on the super-clean bench. Turn on the inverted microscope, first turn to the low power mirror, find the counting chamber, then aim the field of vision at the center of the large square, and then turn to the high power mirror.

The statistical results are shown in Figure 4. After statistics, we also found that the growth of gastric cancer cells was significantly faster in spring and summer, especially in summer. So, in these two seasons, we should pay more attention to cultivate good eating habits and actively prevent gastric cancer.
5. Conclusions

Through this research, we have found that farmers are more vulnerable to stomach cancer than other occupations. China is a large agricultural country, limited by climatic conditions; the most tired period is spring and summer every year, where the degree of fatigue of farmers is significantly higher than in autumn and winter. This may increase the risk of stomach cancer in farmers in spring and summer. In this paper, we investigated and studied the patients with gastric cancer in our hospital. The results showed that the number of gastric cancer patients in spring and summer was higher than that in the first two seasons, indicating that the growth of gastric cancer cells was related to seasons. The occurrence and development of gastric cancer are related to seasons to a certain extent: local gastric cancer patients are less than 40 years old, male; vegetarians are easy to get sick in spring and summer, and mostly in spring and summer, the average stay time is less than or equal to 14 days, while the cost of western medicine is not high, reflecting that the economic burden of gastric cancer patients in this season is small and recovery is fast. In this profession, the history of gastrointestinal system disease, diabetes, cardiovascular and cerebrovascular diseases, fever, anorexia, and emaciation can all lead to gastric cancer in spring and summer. In addition, we also used modern medical equipment and atomic force microscope to observe gastric cancer cells and used control variable method to simulate four different seasons to culture and observe gastric cancer cells. The results showed that the growth rate of gastric cancer cells in spring and summer was significantly higher than that in other two seasons. Based on the investigation and research, we should pay attention to understanding the reasonable diet structure and healthy lifestyle and prevent and control diabetes, gastrointestinal system diseases, cardiovascular and cerebrovascular diseases, and so on, so as to reduce the incidence rate of gastric cancer in spring and summer. In short, developing good eating habits and living habits will be of great significance to the prevention and control of diseases, which is conducive to a healthy body.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] P. Antonio and F. Natale, “Screening for gastric cancer,” American Journal of Gastroenterology, vol. 20, no. 2, pp. 20–23, 2019.
[2] C. Ping, L. Yulan, K. Zheng et al., “Risk factors of gastric cancer in high-risk region of China: a population-based case-control study,” Asian Pacific Journal of Cancer Prevention: APJCP, vol. 8, no. 2, pp. 15–18, 2019.
[3] A. Shinozaki-Ushiku, A. Kunita, and M. Fukayama, “Update on Epstein-Barr virus and gastric cancer (review),” International Journal of Oncology, vol. 16, no. 3, pp. 55–58, 2018.
[4] Z. Li, H. Lei, M. Luo et al., “DNA methylation downregulated mir-10b acts as a tumor suppressor in gastric cancer,” Gastric Cancer Official Journal of the International Gastric Cancer Association & the Japanese Gastric Cancer Association, vol. 17, no. 8, pp. 29–40, 2016.
[5] M. Plummer, F. Silvia, J. Vignat, D. Forman, and C. De Martel, “Global burden of gastric cancer attributable to Helicobacter pylori,” Journal International Du Cancer, vol. 136, no. 2, pp. 487–490, 2015.
[6] S. Liu and Y. Zhou, “Perioperative standardized management under the guidance of fast track surgery in gastric cancer patients,” Zhonghua Wei Chang Wai Ke Za Zhi = Chinese Journal of Gastrointestinal Surgery, vol. 18, no. 2, pp. 116–120, 2016.
[7] J. Wang, J. Yu, J. Wu et al., “Experimental study of human bone marrow mesenchymal stem cells on regulating the biological characteristics of gastric cancer cells,” Chinese Journal of Gastrointestinal Surgery, vol. 18, no. 2, pp. 159–165, 2018.
[8] A. Okines, D. Cunningham, M. Verheij et al., “Gastric cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up,” Annals of Oncology Official Journal of the European Society for Medical Oncology, vol. 18, no. 2, pp. 11–19, 2016.

Figure 4: The number of gastric cancer cells after seven-day culture in simulated four-season environment.
[9] Department of Surgery, "Laparoscopic wedge resection of the stomach for early gastric cancer (lesion lifting method),” *Progress of Digestive Endoscopy* (1972), vol. 9, no. 7, pp. 12–18, 2016.

[10] T. Kinoshita, T. Kinoshita, A. Saiura et al., "Multicentre analysis of long-term outcome after surgical resection for gastric cancer liver metastases," *British Journal of Surgery*, vol. 102, no. 1, pp. 102–107, 2017.

[11] T. Kinoshita, A. Saiura, M. Esaki et al., "Multicentre analysis of long-term outcome after surgical resection for gastric cancer liver metastases," *British Journal of Surgery*, vol. 10, no. 18, pp. 9–18, 2016.

[12] H. J. Lee, W. Kim, H. H. Kim et al., "Decreased morbidity of laparoscopic distal gastrectomy compared to open distal gastrectomy for stage I gastric," *Cancer*, vol. 263, no. 1, pp. 19–28, 2017.