Approximate Controllability for a Kind of Fractional Neutral Differential Equations with Damping

Jun Du, Dongling Cui, Yeguo Sun, and Jin Xu

Department of Applied Mathematics, Huainan Normal University, Huainan 232038, China

Correspondence should be addressed to Jun Du; djwlm@163.com

Received 20 August 2020; Revised 5 September 2020; Accepted 28 September 2020; Published 21 October 2020

Abstract

This paper gains several meaningful results on the mild solutions and approximate controllability for a kind of fractional neutral differential equations with damping (FNDED) and order belonging to \([1, 2]\) in Banach spaces. At first, a new expression for the mild solutions of FNDED via the \((p, q)\)-regularized operator family and the technique of Laplace transform is acquired. Then, we consider the approximate controllability of FNDED by means of the approximate sequence method, and simultaneously, some applicable sufficient conditions are obtained.

1. Introduction

The primary description of the fractional-order derivative was proposed by Riemann and Liouville toward the end of the nineteenth century, but the notion of the arbitrary derivative and integral which generalized the classical integer-order derivative and integral was presented by Leibniz and Liouville in 1695. However, until the late 1960s when many phenomena on physics, engineering technology, and economics were more accurately described by fractional differential equations (FDEs), scientists began to show great interest on fractional order calculus. For example, they are widely adopted for nonlinear oscillations of earthquakes and in the fluid-dynamic traffic model. In practice, FDEs are deemed to optimize the traditional differential equation model. About the elementary theory of fractional differential and evolution systems, one can refer to Podlubny [1], Kilbas et al. [2], Zhou [3, 4], and [5–10] and the references cited therein.

In the particles’ realistic movement, the resistance to motion is unavoidable, so it is suitable to add the damping character in mathematical models and control systems. Recently, a great deal of meaningful conclusions for the mathematical models with damping influence have been presented by the researchers [11–17].

As we all know, the controllability exerts a momentous effect on control theory and engineering technology. It lies in the fact that it is bound up with quadratic optimal control, observer design, and pole assignment. For this reason, the controllability has been actively investigated by many investigators, and an impressive progress has been made in recent years [7–12, 14–20]. Controllability of the deterministic systems in infinite dimensional spaces has been broadly investigated. In some results of the controllability for systems described by fractional differential models, the fixed-point and the approximate sequence method are felicitously used. Nonetheless, as demonstrated by Triggiani [21], for many parabolic partial differential systems, the conditions of complete controllability are very finite. The research to approximate controllability is more proper for the practical systems than to complete controllability. For the past few years, as regards differential dynamical systems in Banach spaces, several results are achieved about the approximate controllability [8, 19]. However, as far as we know, the approximate controllability of the fractional neutral differential equations with damping and order belonging to \([1, 2]\) is still relatively infrequent, so it is more interesting and necessary to study it.
2. Preliminaries and Notations

Inspired by the aforementioned analysis, the approximate controllability for a kind of fractional neutral differential equations with damping of order belonging to [1, 2] in the Banach space is studied in our work. We acquire several sufficient conditions to pledge the approximate controllability of the FNDED via the contraction mapping theory and approximate sequence method. The FNDED and order in [1, 2] is debated as follows:

\[
\begin{align*}
C^{D^p_q}f'(t) + q C^{D^p_q}[x(t) - h(t, x_t)] &= Ax(t) + f(t, x_t) + Bu(t), \quad t \in (0, b], \\
x(t) &= \varphi(t), \quad t \in [-\tau, 0], \\
x'(0) &= x_1,
\end{align*}
\]

where \(p \leq q \leq 1 \). \(C^{D^p_q} \) denotes the Caputo fractional derivative, \(q \geq 0 \), and the linear densely unbounded closed operator \(A: D(A) \subseteq E \rightarrow E \) is the \((p, q)\)-regularized family defined on the Banach space \(E \). Here, the state \(x(\cdot) \) is evaluated in Banach space \(E \). Let \(U \) be a Banach space of admissible control functions. The variable \(u(\cdot) \) takes a value in \(L_{2} (\{0, b]\}; U) \), \(B: U \rightarrow E \), which is linear and bounded. In addition, \(f: [0, b] \times C([-\tau, 0]; E) \rightarrow E \) is nonlinear, which will be explained in detail later; \(x_t \in L^2([-\tau, 0], E) \) and is denoted by \(x_t(\theta) = \{x(t + \theta)|-\tau \leq \theta \leq 0\} \). \(\varphi = \{\varphi(\theta)|-\tau \leq \theta \leq 0\} \in L^2([-\tau, 0], E) \). The relevant linear neutral system of FNDED (1) is

\[
\begin{align*}
C^{D^p_q}y'(t) + q C^{D^p_q}[y(t) - h(t, y_t)] &= Ay(t) + By(t), \quad t \in (0, b], \\
y(t) &= \varphi(t), \quad t \in [-\tau, 0], \\
y'(0) &= y_1.
\end{align*}
\]

The structure of this paper is given as follows. In Section 2, we review several fundamental concepts and provide a new form of the mild solution for FNDED (1). Then, in Sections 3 and 4, we acquire several meaningful results for the existence and uniqueness of the mild solution and, furthermore, the approximate controllability for FNDED (1).

Let \(E \) be a Banach space with norm \(\| \cdot \|_E \) and \(L(E) \) be the space of all linear bounded operators on \(E \). Let

\[
\| f \|_{L_m} = \left(\int_{0}^{b} \| f(t) \|^{m}_E \, dt \right)^{1/m}.
\]

In the following, we recall some definitions to be adopted in the entire work.

Definition 1. (see [1, 2]). The Riemann–Liouville fractional integral of a function \(z \) and order \(\alpha \) and from lower limit 0 can be denoted by

\[
I^\alpha_0 z(t) = \frac{1}{\Gamma(\alpha)} \int_{0}^{t} (t-s)^{\alpha-1} z(s) \, ds, \quad t > 0, \alpha > 0.
\]

Definition 2. (see [1, 2]). The Caputo derivative of order \(\alpha \) for a function \(z \in C([0, \infty), R) \) can be defined as

\[
C^{D^\alpha}_0 z(t) = \frac{1}{\Gamma(1-\alpha)} \int_{0}^{t} (t-s)^{-\alpha} z'(s) \, ds, \quad t > 0, 0 < \alpha < 1.
\]

Remark 1 (see [1, 2]). If \(z \in C([0, \infty), R) \), then

\[
C^{D^\alpha}_0 z(t) = \frac{1}{\Gamma(1-\alpha)} \int_{0}^{t} (t-s)^{-\alpha} z'(s) \, ds = I^{1-\alpha}_0 z'(t), \quad t > 0, 0 < \alpha < 1.
\]

Lemma 1. (see [2]). Let \(\alpha \in (n - 1, n] \). If \(z(\cdot) \in AC^n([a, b], E) \) or \(z(\cdot) \in C^n([a, b], E) \), then the Caputo derivative

\[
I^\alpha_0 D^n\alpha_0 z(t) = z(t) - \sum_{i=0}^{n-1} \frac{z^{(i)}(0)}{i!} t^i, \quad t > 0.
\]

Definition 3. (see [15, 16]). Let \(q \geq 0 \) and \(0 \leq p \leq 1 \). A is a linear closed operator, and its domain \(D(A) \) is in Banach space \(E \). We say that \(A \) is the generator of a \((p, q)\)-regularized operator family \(\{S^p_q(t)\}_{t \geq 0} \subseteq L(E) \) if the three formulas are established in the following:

(a) \(S^p_q(t) \) is strongly continuous on \(R_+ \), and \(S^p_q(0) = I \).
(b) \(S^p_q(t)D(A) \subseteq D(A) \) and \(AS^p_q(t)x = S^p_q(t)Ax \) for all \(x \in D(A), t \geq 0 \).
(c) For every \(x \in D(A) \), the following equation holds:

\[
S^p_q(t)x = e^{-\gamma t} \frac{1}{\Gamma(p)} \int_{0}^{t} \gamma^{(p-1)}(t-s)^{p-1}S^p_q(t-s)xds, \quad t \geq 0,
\]

where \(S^p_q(t) \) is the \((p, q)\)-regularized family generated by \(A \). On the basis of the operator \(S^p_q \), the two operators \(P^p_q, Q^p_q: R_+ \rightarrow L(E) \) are reminded:
\[P_p(t) = \int_0^t S_p(v)dv, \quad t \geq 0, \] (9)

\[Q_p(t) = \frac{1}{\Gamma(p)} \int_0^t (t-v)^{(p-1)}S_p(v)dv, \quad t \geq 0. \] (10)

The following basic statement is deduced from [22].

Lemma 2. (see [15, 16]). Let \(A \) be a densely linear closed operator in Banach space \(E \). Then, \(A \) is the generator of an \((p, q) \)-regularized operator family if and only if there is a strongly continuous operator \(S_p \) : \(\mathbb{R}_+ \to L(E) \) and constant \(\alpha \geq 0 \) satisfying \(\{ \eta^p(\eta + q) : \eta \geq \alpha \} \subset \rho(A) \) and

\[H(\eta)x = \eta^p(\eta + q)I - A)^{-1}x = \int_0^\infty e^{-\eta t}S_p(t)xdt, \quad \eta > \alpha, x \in E. \] (11)

In view of Lemma 2, from (9) and (11), we have

\[\eta^p(\eta + q)I - A)^{-1}x = \int_0^\infty e^{-\eta t}P_p(t)xdt, \quad \eta > \alpha, x \in E. \] (12)

Combining (9) and (10), we obtain

\[(\eta^p(\eta + q)I - A)^{-1}x = \int_0^\infty e^{-\eta t}Q_p(t)xdt, \quad \eta > \alpha, x \in E. \] (13)

At first, we put forward a new form of the mild solution for the system in the following.

Lemma 3. Let \(0 \leq p \leq 1 \) and \(g \in L_1(J, E) \); if \(x \) satisfies the equation

\[
\begin{cases}
\frac{\partial^p x(t)}{\partial t^p} + q \frac{\partial^p x(t)}{\partial t^p} \left[x(t) - h(t, x_t) \right] = Ax(t) + g(t), & t \in (0, b], \\
x(t) = \varphi(t), & t \in [-\tau, 0], \\
x(0) = x_1,
\end{cases}
\] (14)

then \(x \) is denoted by the integral equation

\[
x(t) = S_p(t)\varphi(0) + P_p(t)[x_1 + q\varphi(0) - qh(0, x_0)] + q\int_0^t S_p(t-v)h(v, x_v)dv + \int_0^t Q_p(t-v)g(v)dv.
\] (15)

Proof. Taking the Riemann–Liouville integral to both sides of the first equality of (14), we have

\[
I^p_t D^p_t x'(t) + qI^p_t D^p_t [x(t) - h(t, x_t)] = I^p_t [Ax(t) + g(t)].
\] (16)

From Lemma 1, we can get that

\[
x'(t) - x'(0) + q[x(t) - h(t, x_t) - x(0) + h(0, x_0)] = I^p_t [Ax(t) + g(t)].
\] (17)

That is,

\[
x'(t) + qX(t) = x'(0) + q\varphi(0) - qh(0, x_0) + qh(t, x_t) + I^p_t [Ax(t) + g(t)].
\] (18)

Let \(\eta > 0 \). Taking the Laplace transform for (18), we yield

\[
-\varphi(0) + \eta X(\eta) + qX(t) = \frac{1}{\eta} [x_1 + q\varphi(0) - qh(0, x_0)]
\]

\[+ qH(\eta) + \frac{1}{\eta^p} [Ax(\eta) + G(\eta)]. \] (19)

Hence, we obtain

\[
X(\eta) = \eta^p[\eta^p(\eta + q)I - A]^{-1}[\varphi(0) + \eta^{p-1}[\eta^p(\eta + q)I - A]^{-1}[x_1 + q\varphi(0) - qh(0, x_0)] + \eta^p[\eta^p(\eta + q)I - A]^{-1}qH(\eta) + [\eta^p(\eta + q)I - A]^{-1}G(\eta)].
\] (20)

Then, applying Laplace inverse transform on (20) and combining with the result of Lemma 2 and the Laplace transform of the convolution, we achieve

\[
x(t) = S_p(t)\varphi(0) + P_p(t)[x_1 + q\varphi(0) - qh(0, x_0)]
\]

\[+ q\int_0^t S_p(t-v)h(v, x_v)dv + \int_0^t Q_p(t-v)g(v)dv. \] (21)

This completes the proof.

Because of Lemma 3, we naturally deduce a new representation of the mild solution for (14).
namely, there exist two real numbers $M \geq 1$ and $\omega \geq 0$ satisfying
\[\|S_p(t)\| \leq Me^{\omega t}, \quad t \geq 0. \quad (23) \]

Remark 2. From hypothesis S(0) and formulas (9) and (10), we have
\begin{align*}
(i) \quad &\|S_p(t)\| \leq Me^{\omega b} M_p t \in [0, b], \\
(ii) \quad &\|P_p(t)\| = \int_0^t S_p(s)ds \leq Me^{\omega b} M_p t \in [0, b], \\
(iii) \quad &\|Q_p(t)\| = \int_0^t P_p(t-s)S_p(s)ds \leq Me^{\omega b} \|f\| (T(p+1)) \leq M_Q t \in [0, b].
\end{align*}

3. Existence and Uniqueness of Mild Solutions

In this segment, firstly, we consider the existence and uniqueness of mild solutions for FNDED (1). To this end, we impose the following conditions.

S(1): $h: [0, b] \times E \rightarrow E$ is continuous and satisfies
\[\|h(t, x) - h(t, y)\|_E \leq n_h(\|x - y\|), \quad (24) \]

for every $t \in [0, b]$, and $x, y \in L^2([-\tau, 0]; E)$, $n_h(\cdot) \in L_1(J, \mathbb{R}^r)$, and $n_h(\cdot) \leq N_h \in \mathbb{R}^r$.

S(2): for almost every $t \in [0, b]$, the nonlinear item $f(t, \cdot): E \rightarrow E$ is continuous, and there is $n_f(\cdot) \in L_1(J, \mathbb{R}^r)$ satisfying
\[\|f(t, x) - f(t, y)\|_E \leq n_f(\|x - y\|), \quad (25) \]

for all $x, y \in L^2([-\tau, 0]; E)$ and $n_f(t) \leq N_f \in \mathbb{R}^r$.

Theorem 1. Under conditions S(0)--S(2), the fractional neutral differential equations with damping (1) has one and only one mild solution belonging to the space $C([-\tau, b], E)$ with $x(t) = \varphi(t), t \in [-\tau, b]$, and $x'(t) = x_1$ for every control item $u(\cdot) \in L_2([0, b]; U)$, provided that
\[b(b + r)(qM_s N_h + M_Q N_f) < 1. \quad (26) \]

Proof. Define the mapping $\Omega: C([-\tau, b], E) \rightarrow C([-\tau, b], E)$ by
\[\Omega(x)(t) = S_p(t)\varphi(0) + P_p(t)[x_1 + q\varphi(0) - qh(0, x_0)] + q \int_0^t S_p(t-s)h(v, x_s) ds \\
+ \int_0^t Q_p(t-s)[Bu(v) + f(v, x_s)] dv, \quad t \in [0, b], \quad (27) \]

Let $M_h = \max_{0 \leq s \leq b} \|h(t, 0)\|_E, \quad M_f = \max_{0 \leq s \leq b} \|f(t, 0)\|_E, \quad \|B\|_E \leq M_B, \quad r = 1 - (qM_s N_h + M_Q N_f)b(b + r)^{-1}, \quad (27) \]

$\|B\|_E \leq M_B, \quad r = 1 - (qM_s N_h + M_Q N_f)b(b + r)^{-1}, \quad (27) \]

and $B_e = \{x(\cdot) \in C([-\tau, b]; E): \|x\|_E \leq r, x(t) = \varphi(t), t \in [-\tau, 0]\}$, which is a closed and bounded subset of $C([-\tau, b]; E)$. For each $\gamma \in B_e$, we prove Ω has a fixed point in $C([-\tau, b]; E)$. Firstly, we prove that Ω maps B_e into itself. Obviously, $\Omega x_0 \in B_e$. For $t \in (0, b]$, we achieve
\[\|\Omega(x)(t)\| \leq \|S_p(t)\| \|\varphi\| + \|P_p(t)[x_1 + q\varphi(0) - qh(0, x_0)]\| + q \int_0^t \|S_p(t-s)h(v, x_s)\| dv \\
+ \int_0^t \|Q_p(t-s)[Bu(v) + f(v, x_s)]\| dv \leq M_h \|\varphi\| + M_p \|x_1\| + q \|\varphi\| + q \|h(0, x_0) - h(0, 0) + h(0, 0)\| \\
+ qM_s \int_0^t \|h(v, x_s) - h(v, 0) + h(0, 0)\| dv \\
+ qM_f \int_0^t \|Bu(v)\| dv + M_Q \int_0^t \|f(v, x_s) - f(0, 0) + f(0, 0)\| dv \leq (M_h + qM_p + qM_p N_h) \|\varphi\| + M_p \|x_1\| + q(M_s b + M_p) M_h + bM_Q M_f + b^{1/2} M_Q M_p \|u\|_L_2 + (qM_s N_h + M_Q N_f) b(b + r) \\
= r. \quad (28) \]
This is because
\[
\int_0^t \|x_v\| dv \leq \int_0^b \int_{-\tau}^\tau \|x(v+\delta)\| d\delta dv
= \int_0^b \int_{-\tau}^\tau \|x(\omega)\| d\omega dv
\leq b(b + \tau) \sup_{\tau \in [-\tau, \tau]} \|x(\omega)\|
= b(b + \tau)|x|,
\]
which means \(\|x(t)\| \leq r\), \(x \in B_r\).

Next, we demonstrate that \(\Omega\) is a contraction mapping on \(B_r\). In fact, for \(x(t), y(t) \in B_r\),
\[
\|x(t) - y(t)\| \leq q \int_0^t S_p(t - \nu) \|h(v, x_v) - h(v, y_v)\| d\nu
+ \int_0^t Q_p(t - s) \|f(s, x_s) - f(s, y_s)\| ds
\leq qM_s \int_0^t n_h(v) \|x_v - y_v\| dv + M_Q \int_0^t n_f(v) \|x_v - y_v\| dv
\leq b(b + \tau) \left(qM_s N_h + M_Q N_f \right) |x - y|.
\]
Since
\[
\int_0^t \|x_v - y_v\| dv \leq \int_0^b \int_{-\tau}^\tau \|x(v+\delta) - y(v+\delta)\| d\delta dv
= \int_0^b \int_{-\tau}^\tau \|x(\omega) - y(\omega)\| d\omega dv
\leq b(b + \tau) \sup_{\tau \in [-\tau, \tau]} \|x(\omega) - y(\omega)\|
= b(b + \tau)|x - y|,
\]
due to \(b(b + \tau) (qM_s N_h + M_Q N_f) < 1\), \(\Omega\) is a contraction mapping. Consequently, \(\Omega\) has the unique fixed point belonging to the space \(C([-\tau, b]; E)\). (27) is the unique mild solution of FNDED (1). □

4. Approximate Controllability

In this segment, we acquire several appropriate sufficient conditions of the approximate controllability for FNDED (1) by virtue of the approximate technique and the iterative approach.

Define two continuous linear operators \(L\) and \(S\) from \(L_2([0, b], E)\) to \(E\) by
\[
L \nu = \int_0^b P_p(b - \nu) \nu \nu dv, \quad \nu(.) \in L_2([0, b], E),
\]
\[
S \nu = q \int_0^b S_p(b - \nu) \nu \nu dv, \quad \nu(.) \in L_2([0, b], E).
\]

If we let the combination \((x, u)\) be the mild solution for FNDED (1) with \(u \in L_2([0, b], U)\), then we represent it as \(x(t) = x(t; x_0, x_1, u)\), and the terminal item \(x(b)\) can be written as
\[
\begin{align*}
x(b) = x(b; x_0, x_1, u) &= S_p(b)\varphi(0) + P_p(b)[x_1 + q \varphi(0) - qh(0, x_0)] \\
&+ q \int_0^b S_p(b - \nu) \cdot h(\nu, x_v(Bu)) d\nu + \int_0^b Q_p(b - \nu) [Bu(\nu) + f(\nu, x_v(Bu))] d\nu \\
&\triangleq H(b, \varphi, x_1) + S \nu (h(\nu, x_v(Bu)) + S \nu (f(\nu, x_v(Bu))) + L \nu (Bu(\nu)),
\end{align*}
\]
where \(H(b, \varphi, x_1) = S_p(b)\varphi(0) + P_p(b)[x_1 + q \varphi(0) - qh(0, x_0)]\).

So, the reachable set \(K_n(f)\) which is composed of all possible final states at time \(b\) is
\[K_b (f) = \{ x (b, x_0, x_1, u) : u \in U \}. \] (34)

Thus, the approximate controllability for FNDED (1) means the set \(K_b (f) \) is dense on space \(E \). That is to say, the definition of approximate controllability is acquired.

Definition 5. Let \(x_0, x_1 \in E \). We called the fractional neutral differential equations with damping (1) is approximately controllable on \([0, b]\) if, for any \(\varepsilon > 0 \) and \(x_b \in E \), there is a control function \(u_{N_\varepsilon} \in U \) satisfying

\[\| x_b - H (b, \varphi, x_1) - J (v, x, (Bu_{N_\varepsilon})) - D f (v, x, (Bu_{N_\varepsilon})) - D f (v, x, (Bu_{N_\varepsilon})) \| < \varepsilon. \] (35)

And we add some of the postulated conditions.

S (3): for each given \(\varepsilon > 0 \) and \(v (\cdot), u (\cdot) \in L_2 ([0, b]; E) \), there is \(u (\cdot) \in U \) satisfying

\[\| J w - D v - D Bu \| _2 < \varepsilon, \] (36)

where \(\| Bu (\cdot) \| _2 \leq M_1 v (\cdot) \| _2, \) and \(M_1 \) is a positive real number irrelevant of \(v (\cdot) \) and holds

\[(qM_3N_h + MQN_f + M_2MQN_f) (b + r) < 1. \] (37)

Because condition (37) implies (26), the existence is still met when inequality (26) is changed into (37) in Theorem 1. Next, to demonstrate the conclusion of the approximate controllability remains true for (1), we give the following two lemmas.

Lemma 4. Let \((x_1, u_1), (x_2, u_2) \) be two pairs relevant to FNDED (1). Then, in terms of conditions S(0)–S(3), the following result holds:

\[|x_i (Bu_i) - x_i (Bu_i)| \leq \frac{M_2b^{1/2}}{1 - (qM_3N_h + MQN_f)(b + r)} \| Bu_i - Bu_i \| _2. \] (38)

Proof. The mild solution \(x (t) = x (t; x_0, x_1, u) \) of FNDED (1) in \(E \) satisfies

\[x_i (Bu_i) = \begin{cases} \varphi (t), & t \in [-r, 0], \\ S_p (t, \varphi (0) + P_p (t) [x_1 + q \varphi (0) - qh (0, x_0)]) \\ + \frac{1}{p} \int_0^t S_p (t, \varphi (0) + P_p (t) [x_1 + q \varphi (0) - qh (0, x_0)]) g (\nu) d \nu, & t \in [0, b]. \end{cases} \] (39)

We define \(y (\cdot, \varphi) : [-r, b] \rightarrow E \) as

\[y (t, \varphi) = \begin{cases} \varphi (t), & t \in [-r, 0], \\ S_p (t, \varphi (0) + P_p (t) [x_1 + q \varphi (0) - qh (0, x_0)]), & t \in [0, b]. \end{cases} \] (40)

Let \(x_i = y_i + z_i, t \in [-r, b] \). Apparently, \(x (\cdot) \) meets (1) if and only if \(z_0 = 0 \) and \(t \in [-r, 0] \), and for each \(t \in [0, b] \), we acquire

\[z_i (t) = \int_0^t S_p (t, -v) h (v, x_i) d v + \int_0^t Q_p (t, -v) [(Bu_i (v) + f (v, x_i))] d v \] (41)

Now, let us take \(x_i (Bu_i), x_i (Bu_i) \in E \) and \(u_1 (\cdot), u_2 (\cdot) \in U \); then,

\[|x_i (Bu_i) - x_i (Bu_i)| = |z_i (Bu_i) + x_i (Bu_i) - z_i (Bu_i) + y_i| \]
\[= |z_i (Bu_i) - z_i (Bu_i)| \]
\[\leq \int_0^t S_p (t, -v) \| h (v, x_i (Bu_i)) - h (v, x_i (Bu_i)) \| d v \]
\[+ \int_0^t Q_p (t, -v) \| Bu_i (v) - Bu_i (v) \| d v \]
\[+ \int_0^t Q_p (t, -v) \| f (v, x_i (Bu_i)) - f (v, x_i (Bu_i)) \| d v \]
\[\leq qM_3N_h \int_0^t \| x_i (Bu_i) - x_i (Bu_i) \| d v + b^{1/2} M_2 \| Bu_i (v) - Bu_i (v) \| _2 \]
\[+ MQN_f \int_0^t \| x_i (Bu_i) - x_i (Bu_i) \| d v \]
\[= M_2b^{1/2} \| Bu_i (v) - Bu_i (v) \| _2 + (qM_3N_h + MQN_f) \int_0^t \| z_i (Bu_i) - z_i (Bu_i) \| d v \]
\[\leq M_2b^{1/2} \| Bu_i (v) - Bu_i (v) \| _2 + (qM_3N_h + MQN_f)(b + r) \| z_i (Bu_i) - z_i (Bu_i) \|. \] (42)
Recombining the formula, we get
\[|x_t(Bu_t) - x_t(Bu_0)| \leq (qM_1N_1 + M_2N_2)b(b + \tau) \|Bu_t - Bu_0\|_{L^2}. \]
This completes the proof. \(\Box\)

where \(x_v(t) = x(t; x_0, u_{N_1}, v)\) satisfies
\[x_v(t) = H(t; v, x_0) + \int_0^t S_v(t - s)h(s, x_v(s))\,ds + \int_0^t Q_v(t - s)\left[Bu_v(s) + f(s, x_v(s))\right]\,ds, \quad t \in [0, b]. \]

By the theory of the fractional resolvent, we deduce that \(H(b; v, x_0) \in D(A)\) for \(v(t), x_0 \in E\), which implies that \(x_b \in D(A)\) for \(x_0 \in D(A)\). It is evident that there is one \(v \in L_1(\{0, b\}, E)\) such that

\[\|x_b - H(b; v, x_0) - \mathcal{J}h(v, x_v(Bu_0(v))) - \mathcal{J}f(v, x_v(Bu_0(v)))\| < \varepsilon, \]

Condition (S3) suggests for each \(\varepsilon > 0\) and \(u_1 \in U\), there is \(u_2 \in U\) such that

\[\|x_b - H(b; v, x_0) - \mathcal{J}h(v, x_v(Bu_2)) - \mathcal{J}f(v, x_v(Bu_2)) - \mathcal{J}Bu_2\| < \frac{\varepsilon}{3}. \]

Furthermore, for \(u_2 \in U\), we determine \(u_3 = u_2 - \omega_2\) in \(U\) and derive the following two properties:

\[\|x(b; H(b; v, x_0) - \mathcal{J}h(v, x_v(Bu_2)) - \mathcal{J}f(v, x_v(Bu_2)) - \mathcal{J}Bu_2\| \leq \frac{\varepsilon}{3^2} + \frac{\varepsilon}{3^2}. \]

Thus, we may define \(u_3 = u_2 - \omega_2\) in \(U\) and derive the following inequality:

\[\left\| x(b; H(b; v, x_0) - \mathcal{J}h(v, x_v(Bu_2)) - \mathcal{J}f(v, x_v(Bu_2)) - \mathcal{J}Bu_2\right\| \leq \frac{\varepsilon}{3^2} + \frac{\varepsilon}{3^2}. \]
Proof. Because hypothesis S(3) holds, we can acquire that the sequence \(\{ B_{n_0} \}_{n \geq 1} \) is a Cauchy sequence in \(L_2([0,b],E) \), and in this way, we can gain a function item \(v \in L_2([0,b],E) \) satisfying
\[
\lim_{n \to \infty} B_{n_0} = v.
\] (51)

Thus, from (50), we have
\[
\| B_u - j(\cdot) \|_{L_2([0,b],E)} < \| j(\cdot) \|_{L_2([0,b],E)}.
\] (54)

Now, we have
\[
\| \mathcal{L}p - \mathcal{L}Bu \| \leq M_Q \int_0^b \| j(s) - Bu(s) \| ds
\leq M_Q b^{1/2} \| j(\cdot) - Bu(\cdot) \|_{L_2([0,b],E)}
\leq M_Q b^{1/2} \| j(\cdot) \|_{L_2([0,b],E)}
< \varepsilon.
\] (55)

Thus, from (50), we have
\[
\| B_u(\cdot) \|_{L_2([0,b],E)} = \| B_u(\cdot) - j(\cdot) + j(\cdot) \|_{L_2([0,b],E)}
\leq \| B_u(\cdot) - j(\cdot) \|_{L_2([0,b],E)} + \| j(\cdot) \|_{L_2([0,b],E)}
\leq \| j(\cdot) \|_{L_2([0,b],E)} + \| j(\cdot) \|_{L_2([0,b],E)}
= (i + 1) \| j(\cdot) \|_{L_2([0,b],E)}.
\] (56)

It indicates that condition S(3) holds if we select \(i > 0 \). Therefore, FNDED (1) is approximately controllable on \([0,b]\) by using Theorem 2. □

Data Availability
The data used to support the findings of this study are included within the article.

Conflicts of Interest
The authors declare that they have no conflicts of interest.

Acknowledgments
This research was funded by Program for Innovative Research Team in Huainan Normal University (No.
XJTD202008); Natural Science Foundation of Anhui Province (Nos. 2008085MF200 and 2008085QA19); Natural Science Fund of Colleges and Universities in Anhui Province (Nos. KJ2018A0470 and KJ2019A0696); Humanities and Social Sciences Fund of Colleges and Universities in Anhui Province (No. SK2018A0522).

References

[1] I. Podlubny, *Fractional Differential Equations*, Academic Press, San Diego, CA, USA, 1999.

[2] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, “Theory and applications of fractional differential equations,” in *North-Holland Mathematics Studies* Vol. 204, Elsevier, Amsterdam, Netherlands, 2006.

[3] Y. Zhou, *Basic Theory of Fractional Differential Equations*, World Scientific, Singapore, 2014.

[4] Y. Zhou, *Fractional Evolution Equations and Inclusions: Analysis and Control*, Elsevier, Amsterdam, Netherlands, 2016.

[5] H. Liu, Y. Pan, J. Cao, Y. Zhou, and H. Wang, “Positivity and stability analysis for fractional-order delayed systems: A T-S fuzzy model approach,” *IEEE Transactions on Fuzzy Systems*, pp. 1, 2020.

[6] H. Liu, Y. Pan, J. Cao, H. Wang, and Y. Zhou, “Adaptive neural network backstepping control of fractional-order nonlinear systems with actuator faults,” *IEEE Transactions on Neural Networks and Learning Systems*, 2020.

[7] J. Du, W. Jiang, D. Pang, and A. U. K. Niazi, “Exact controllability for Hilfer fractional differential inclusions involving nonlocal initial conditions,” *Complexity*, vol. 2018, p. 1, Article ID 9472847, 2018.

[8] S. Kumar and N. Sukavanam, “Approximate controllability of fractional order semilinear systems with bounded delay,” *Journal of Differential Equations*, vol. 252, no. 11, pp. 6163–6174, 2012.

[9] K. X. Li and J. G. Peng, “Controllability of fractional neutral stochastic functional differential systems,” *Zeitschrift für Angewandte Mathematik und Physik*, vol. 65, no. 5, pp. 941–959, 2014.

[10] K. X. Li, J. G. Peng, and J. H. Gao, “Controllability of nonlocal fractional differential systems of order $\alpha \in (1,2]$ in Banach spaces,” *Reports on Mathematical Physics*, vol. 71, no. 1, pp. 33–43, 2013.

[11] K. Balachandran, V. Govindaraj, M. Rivero, and J. I. Trujillo, “Controllability of fractional damped dynamical systems,” *Applied Mathematics and Computation*, vol. 257, pp. 66–73, 2015.

[12] B.-B. He, H.-C. Zhou, and C.-H. Kou, “The controllability of fractional damped dynamical systems with control delay,” *Communications in Nonlinear Science and Numerical Simulation*, vol. 32, pp. 190–198, 2016.

[13] Z.-D. Mei and J.-G. Peng, “Riemann-Liouville abstract fractional Cauchy problem with damping,” *Indagationes Mathematicae*, vol. 25, no. 1, pp. 145–161, 2014.

[14] X. Ding and J. J. Nieto, “Controllability and optimality of linear time-invariant neutral control systems with different fractional orders,” *Acta Mathematica Scientia*, vol. 35, no. 5, pp. 1003–1013, 2015.

[15] X. Li, Z. Liu, and C. C. Tisdell, “Existence and exact controllability of fractional evolution inclusions with damping,” *Mathematical Methods in the Applied Sciences*, vol. 40, no. 12, pp. 4548–4559, 2017.

[16] X. Li, Z. Liu, J. Li, and C. Tisdell, “Existence and controllability for nonlinear fractional control systems with damping in Hilbert spaces,” *Acta Mathematica Scientia*, vol. 39, no. 1, pp. 229–242, 2019.

[17] G. Arthi, J. H. Park, and K. Suganya, “Controllability of fractional order damped dynamical systems with distributed delays,” *Mathematics and Computers in Simulation*, vol. 165, pp. 74–91, 2019.

[18] J. Wang, A. G. Ibrahim, M. Fečkan, and Y. Zhou, “Controllability of fractional non-instantaneous impulsive differential inclusions without compactness”, *IMA Journal of Mathematical Control and Information*, vol. 36, no. 2, pp. 443–460, 2019.

[19] Y. K. Chang, A. Pereira, and R. Ponce, “Approximate controllability for fractional differential equations of sobolev type via properties on resolvent operators,” *Fractional Calculus & Applied Analysis*, vol. 20, no. 4, pp. 963–987, 2017.

[20] V. Vijayakumar, R. Murugesu, R. Poongodi, and S. Dhanalakshmi, “Controllability of second-order impulsive nonlocal cauchy problem via measure of noncompactness,” *Mediterranean Journal of Mathematics*, vol. 14, no. 1, pp. 1–23, 2017.

[21] R. Triggiani, “A note on the lack of exact controllability for mild solutions in Banach spaces,” *SIAM Journal on Control and Optimization*, vol. 15, no. 3, pp. 407–411, 1977.

[22] C. Lizama, “An operator theoretical approach to a class of fractional order differential equations,” *Applied Mathematics Letters*, vol. 24, no. 2, pp. 184–190, 2011.