Logistic models and artificial intelligence in the sonographic assessment of adnexal masses – a systematic review of the literature

Mihaela Grigore¹, Razvan Popovici¹, Dumitru Gafitanu¹, Loredana Himiniuc², Mara Murarasu³, Romeo Micu⁴

¹Department of Obstetrics and Gynecology, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, ²PhD School, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, ³Cuza Voda” Hospital of Obstetrics and Gynecology, Iasi, ⁴Department of Obstetrics and Gynecology, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Romania

Abstract:
Adnexal masses are common, yet challenging, in gynecological practice. Making the differential diagnosis between their benign and malignant condition is essential for optimal surgical management, but reliable pre-surgical differentiation is sometimes difficult using clinical features, ultrasound examination, or tumor markers alone. A possible way to improve the diagnosis is using artificial intelligence (AI) or logistic models developed based on compiling and processing clinical, ultrasound, and tumor marker data together. Ample research has already been conducted in this regard that medical practitioners could benefit from. In this systematic review, we present logistic models and methods using AI, chosen based on their demonstrated high performance in clinical practice. Although some external validation of these models has been performed, further prospective studies are needed in order to select the best model or to create a new, more efficient, one for the pre-surgical evaluation of ovarian masses.

Keywords: artificial intelligence; deep learning; diagnosis; image interpretation; computer-assisted

Introduction
Ovarian tumors commonly present diagnostic challenges in gynecological practice. For instance, it is important to make the difference between a benign and a malignant ovarian tumor before surgery, especially in young patients who desire fertility. While benign masses can be treated conservatively [1] or by surgical removal thorough minimally invasive surgery [2], masses suspected of being malignant should be referred to a tertiary care center which may already be dealing with high numbers of ovarian cancer cases [3]. Therefore, accurate diagnosis is essential for planning appropriate patient management [4].

The diagnostic performance is in direct correlation with the experience of the physician [5]. The first imagistic step in evaluating an adnexal mass is ultrasonography (US), but US reports are sometimes misleading and confusing for the clinician [6]. To distinguish between benign and malignant tumors by means of US examination is not always easy because, for example, the imagistic features of borderline tumors overlap significantly with those of invasive epithelial cancers. In order to overcome such a difficulty, simple rules [7] or scoring systems were introduced with reportedly good results [8]. However, their application is not superior to the subjective impression of an experienced examiner [9], so further alternatives to improve imagistic diagnosis are still required.
One possible way to improve the accuracy of US diagnoses of ovarian tumors is to use logistic models and artificial intelligence (AI) [10]. In the literature, there is ample research with regard to the development of algorithms or AI technologies.

In recent years, imagistic assessment practices have been enhanced by the introduction of new software based on automated identification (computer-aided detection) and characterization (computer-aided diagnosis -CAD) with the aim to assist physicians in the diagnostic process [11,12].

Logistic models apply mathematical methods to reported incidence of events in order to create an algorithm, which, may be used to predict further occurrences. Logistic models are the most common method used to predict dichotomous outcomes, e.g. benignity versus malignancy.

Artificial neural networks (ANN) are computing systems based on a collection of connected units or nodes called artificial neurons inspired by the biological neural networks that constitute animal brains [13,14].

Artificial intelligence (AI) is represented by several algorithm-based applications that can solve problems by simulating human mental processes and intellectual activity such as learning from the data and experience [10]. Several subset technologies have been developed recently under the umbrella of AI: machine learning (ML) and deep-learning (DL). They both can be applied to solve human problems in many different ways. Machine learning as one form of artificial intelligence uses algorithms that learn from given data and then teach themselves to adapt to new circumstances and perform certain tasks. In this way, computers can adapt and handle new scenarios by analysis, self-training, observation, and experience. Machine-learning artificial neural networks adapt and learn best when large amounts of data are available [15]. Deep-learning is a subfield of machine learning that uses algorithms inspired by the structure and function of the brain, called artificial neural networks. This technology is modeled after the human brain, and so, each time new data is added, it increases the capabilities of the system. Because it has the capacity to analyze massive amounts of data, these algorithms are able to quickly find correlations that the human mind cannot [16].

A glossary of all these terms is presented in Table I.

The aim of this review was to perform a systematic review of the literature and to provide up-to-date information regarding the application of logistic models and AI in the pre-surgical differentiation of adnexal tumors. With this review, we hope to increase the awareness and comprehension of clinical practitioners regarding the usefulness of logistic models and AI-related clinical practices in this particular field of imagistic assessment.

Material and methods

We systematically searched articles published between January 1990 and January 2020 in the following databases: Scopus, PubMed, Web of Science and Cochrane Library, and we also screened for relevant publications in the grey literature. We used the following search words and phrases: artificial intelligence, deep learning, diagnostic imaging, logistic regression analyses, logistic models, ovarian tumors and adnexal masses.

Results

Following the systematic search process, 153 citations were retrieved from the mentioned databases. Of these, 117 articles were excluded based on analyzing their titles and abstracts, resulting in 36 articles to be appraised in detail. We excluded general reviews and papers not related to our aim and, finally, 17 studies made the subject of this review.

For proposed logistic models, we analyzed 9 articles summarized in Table II.

For AI, deep and machine learning we analyzed 9 articles summarized in Table III.

Discussion

Logistic models and AI applications are being introduced in many medical fields and are marked demonstrable, valuable contributions in early detections, disease diagnoses, and therapeutic developments [10]. Several authors have proposed and published various logistic models to support less experienced sonographers predict adnexal malignancy. One of the first scoring systems, proposed in 1990 by Jacob et al, was the Risk of Malignancy Index (RMI) based on CA 125, ultrasound and menopausal status. The authors reported sensitivity for cancer of 85% and a specificity of 97%. Although MRI
was recommended by many national guidelines, the external validation of this model yielded poor performance results [34].

Several years later, Tailor et al [19], Alcazar et al [20] and Timmerman et al [21] developed and put forth new logistic models to classify adnexal masses based on different ultrasound parameters, demographic data and markers (Table II). Unfortunately, most of these logistic regression models, when subjected to external validation, did not retain their original performance [35]. The key weakness of all these logistic models was the number of cases used to obtain the results. Hsieh FY et al. stated that a logistic model should be developed on the basis of several hundreds of cases and none of the mentioned studies fulfilled this requirement [36].

The International Ovarian TumorAnalysis (IOTA) study was established to develop robust rules and prediction models that can be used by different examiners in various clinical settings. The IOTA authors developed simple ultrasound-based rules (‘simple rules’) and IOTA Logistic Regression models (LR) for ovarian tumors. The simple rules consist of five ultrasound features of

Author, year	No of patients	Variables analyzed	Performance
Jacobs, 1990 [17]	143	CA 125, ultrasound findings, menopausal status	Sn 85%
			Sp 97% for cut-off level of 200
Prompeler, 1997 [18]	754	Ascites, solid areas without acoustic shadows, masses with at least 30% solid area, tumor diameter, multilocular structures, surface of the cyst	For premenopausal women:
			Sn 85.6%
			Sp 92.6%
		For postmenopausal patients:	
			Sn 93%
			Sp 82.7%
		Cut-off level of 10%	
Tailor, 1997 [19]	67	Age, maximum tumor diameter, tumor volume, unilocularity, papillary projections, random echogenicity, highest peak systolic velocity, time-averaged maximum velocity, pulsatility index, resistance index	Sn 90.4%
			Sp 93.3%
		Cut-off value of 25 for malignancy	
Alcazar, 1998 [20]	79	Menopausal status, color Doppler findings, ultrasound morphology	Sn 84.6% (95% CI, 59 to 98%);
			Sp100% (95% CI, 92 to 100%);
			PPV 100% (95% CI, 92 to 100%);
			NPV 95.7% (95% CI, 85.5 to 99.5%)
Timmerman, 1999 [21]	191	Menopausal status, CA 125 level, the papillary growth (>3 mm in length), color score indicative of tumor vascularity blood flow	Sn 95.9%
			Sp 87.1%
Alcazar, 2001 [23]	377	Menopausal status, tumor blood flow location, papillary projections, CA 125, Lowest RI	Sn 96.9 (83.8–99.9)
			Sp 94.2 (87.7–93.8)
			PPV 83.8 (67.9–93.8)
			NPV 98.9 (94.4–99.9)
Maret, 2002 [24]	130	Gray scale, RI < 0.53, flow location	Sn 83%
			Sp 93%
Timmerman, 2005 [7]	754	LR1 - 12 predictors: personal history of ovarian cancer, current hormonal therapy, age of the patient, maximum diameter of the lesion, pain during examination, ascites, blood flow within a solid papillary projection, a purely solid tumor, the maximum diameter of the solid component, irregular internal cyst walls, acoustic shadows, color score	Sn 93%
			Sp 77%
			Cut-off 10%
Meys, 2017 [22]	851	Age, serum CA125 level, type of center (oncology center/other hospital), diameter of the lesion (mm), proportion of solid tissue, papillary projections more than 10 cyst, locules, acoustic shadow, ascites	Sn 0.98 (95% CI, 0.93-1.00)
			Sp 0.62 (95% CI, 0.55-0.68)
			Cut-off of ≥10%

Sp - specificity, Sn - Sensitivity, PPV - positive predictive value, NPN - negative predictive value
Logistic models and artificial intelligence in the sonographic assessment of adnexal masses

Malignancy (M-features) and five ultrasound features suggestive of a benign mass (B-features). A mass is classified as malignant if at least one M-feature and none of the B-features are present, and vice versa. If no B- or M-features are present, or if both B- and M-features are present, then the rules are considered inconclusive (unclassifiable mass) and a different diagnostic method should be used [37].

In the case of inconclusive results using the IOTA ‘simple rules’, two logistic regression models may present a viable alternative. Logistic Regression model 1 (LR1) uses 12 demographic and ultrasound variables, while Logistic Regression model 2 (LR2) uses six demographic and ultrasound variables. Both regression models showed excellent diagnostic performance. For LR1 at cut-off level of 10%, the sensitivity and specificity of this model reached 92% and 75%, respectively. For LR2, at cut-off level of 10%, the sensitivity and specificity of this model reached 92% and 75%, respectively. The results of these models match those of experienced sonographers.

Another model with good reported performance is the Assessment of Different Neoplasias in the Adnexa (ADNEX) [38]. This model is based on serum CA125 levels, two clinical parameters, and six ultrasound parameters (Table II). This method can predict the probability of malignancy in five main categories (benign, borderline, stage I malignant disease, stage II–IV malignant disease and metastases), enabling clinicians to optimize the surgical treatment.

However, logistic models are not useful in all cases. About 7% of adnexal masses that are considered appropriate for surgical removal cannot be accurately classified even by the more experienced ultrasound examiners using subjective assessment. Valentin et al showed that logistic regression models to estimate the risk of malignancy, CA 125 measurements and the RMI are not helpful in these cases [39].

Nowadays, AI technology promised to provide a viable alternative to logistic regression. According to Tu et al, it has several advantages over logistic models. ANN require less formal statistical training, less ability to implicitly detect complex nonlinear relationships between dependent and independent variables, and the possibility to detect all interactions between variables [40]. In 1999, Timmerman et al introduced the first variant of ANN (ANN1) that used the following parameters: papillary projections, blood flow, CA125 level and the menopausal status. According to calculations using sophisticated mathematical models, the probability of malignancy >45% revealed a sensitivity and specificity of 87.5% and 92.7%, respectively. Thereafter, a second version was created (ANN2) based on papillary projections, smooth
surface, unilocular cyst, ascites, bilateral lesions, tumor marker CA125 and the menopausal status. The probability of malignancy > 60% resulted in the sensitivity and specificity of 93.8% and 95.1%, respectively [41].

In 2012, Acharya et al developed an adjunct CAD technique that uses both images of the ovary acquired by 3D sonography and data mining algorithms to differentiate accurately benign from malignant tumors. They used 1,000 benign and 1,000 malignant images obtained from 10 patients with benign and 10 with malignant disease, respectively, and based on these images they developed a decision tree classifier. This yielded a sensitivity of 92.5% and specificity of 97.7%. However, the small number of patients whose imagistic findings were used represents a notable weakness of this study [26].

In the same year, Acharya et al reported using a support vector machine (SVM) classifier together with a radial basis function to automatically classify benign and malignant ovarian tumor images. They obtained high performance (accuracy of 99.9%) due to the combination of the 16 texture features that quantify the subtle changes in the images belonging to both classes. Moreover, in order to help physicians with their diagnoses, the team developed a novel integrated index called the Ovarian Cancer Index, essentially a combination of the texture features. However, this study was also restricted to 20 patients. Also, the system is not completely automatic and depends on the operator’s experience, since a gynecologist and radiologist still need to delineate a region of interest to enclose the suspicious portion of the image [27].

Two years later, Achraya et al developed an automatic CAD system for ovarian tumor classification. In order to improve lower heterogeneity from the previous algorithms, they used 3-D color Doppler images. This probabilistic neural network classifier obtained an accuracy of 99.8% on a database of 2,600 images on 20 patients [28].

Khazendar et al proposed a new method using a support vector machine (SVM) for automatic ovarian tumor classification, based on two different types of features extracted from ultrasound images of the ovary: the histogram and local binary pattern. The system was implemented on 187 ultrasound images from 177 patients. Based on classification decisions of high, medium and low confidence, respectively, the method provided accuracies of 90%, 81% and 69% [29,30]. Although this model was developed using a relatively large cohort of patients, numerous images were considered ineligible for inclusion in the high-confidence range [32].

Lu et al developed and evaluated several SVM on 425 patients with adnexal masses and they achieved an accuracy of 84.38% [31]. Their results showed that Bayesian models have the potential to provide a reliable preoperative distinction between malignant and benign ovarian tumors, and to assist the clinician in making a correct diagnosis [31].

Aramendia-Vidaurreta et al described a new method for the automatic distinction of adnexal masses based on a neural networks approach. Their method combines the patient age with several features extracted from ultrasound images of the ovary (local binary pattern, fractal dimension, entropy, invariant moments, gray level co-occurrence matrix, law texture energy and Gabor wavelet). The performance of the method is very good, its accuracy being as high as 98.78%, with 98.50% sensitivity, 98.90% specificity, and an area under the curve of 0.997 [32].

Martinez-Mas et al used four machine-learning techniques (K-Nearest Neighbors (KNN), Linear Discriminant (LD), SVM and Extreme Learning Machine (ELM)) in order to provide automatic classification of the ovarian tumors with a high rate of accuracy. According to their results, the KNN classifier provides inaccurate predictions (less than 60% of accuracy) independently of the size of the local approximation, whereas the classifiers based on LD, SVM and ELM are robust in this biomedical classification (more than 85% of accuracy) [33].

One question that arises is “which is better: logistic models or artificial intelligence?” Several studies in the literature compared the performance of logistic models versus AI. Biagiotii et al compared the efficiency of ANN with that of multiple logistic regression (MLR) models on 226 patients with ovarian tumors (51 malignant and 175 benign cases). They developed a three-layer back-propagation network using the following variables: age, papillary projections, random echogenicity, peak systolic velocity, and resistance index. They showed that ANN had significantly higher sensitivity than MLR (96% vs 84%; McNemar test, P < 0.04) and could thus potentially help physicians differentiate between adnexal masses [25].

Holsbecke et al performed a comparison between logistic models and ANN models using data from 1,066 patients with ovarian tumors (800 patients with benign tumors and 266 patients with malignant tumors). Their results showed that the performance of the risk of malignancy index was similar to that of most logistic regression and artificial neural network models. The best result was obtained with a relevance vector machine with radial basis function kernel [42].

Obviously, there is a need for more prospective studies to compare and appraise the benefits of using logistic models and AI. Both methods show promising results in making the difference between benign and malignant ovarian masses. The integration of these techniques in
daily practice will allow timely and effective diagnosis, as well as proper management. An AI-assisted diagnosis could even allow non-specialists to confidently make decisions, which would normally require specialist input, such as, in emergency settings. Complete dependence on this technology is unlikely, but medical practitioners will eventually need to accept and to adapt to AI, changing the experience of clinical practice by contributing valuable opportunities for effective patient data analysis and informed decision making [43,44].

Conclusion

Both logistic models and AI can be efficiently used to distinguish between benign and malignant adnexal tumors. Both methods are suitable for analyzing massive amounts of data well in excess of what the human mind could. Both approaches have proved capable of providing automatic classification with a high rate of accuracy and, as such, they are expected to play an important role in future diagnostic procedures. These technologies, however, should not be viewed as a replacement, but rather as complementary tools for improved clinical practice.

Conflict of interest: none

References

1. Alcazar JL, Olartecoechea B, Guerriero S, Jurado M. Expectant management of adnexal masses in selected premenopausal women: A prospective observational study. Ultrasound Obstet Gynecol 2013;41:582-588.
2. Canis M, Rabischong B, Houlle C, et al. Laparoscopic management of adnexal masses: A gold standard? Curr Opin Obstet Gynecol 2002;14:423-428.
3. Engelen MJ, Kos HE, Willemse PH, et al. Surgery by consultant gynecologic oncologists improves survival in patients with ovarian carcinoma. Cancer 2006;106:589-598.
4. Grigore M. HDlive imaging of a serous borderline ovarian tumor. Ultrasound Obstet Gynecol 2013;41:598-599.
5. Van Holsbeke C, Daemen A, Yazbek J, et al. Ultrasound experience substantially impacts on diagnostic performance and confidence when adnexal masses are classified using pattern recognition. Gynecol Obstet Invest 2010;69:160-168.
6. Timor-Tritsch IE, Goldstein SR. The complexity of a “complex mass” and the simplicity of a “simple cyst”. J Ultrasound Med 2005;24:255-258.
7. Timmerman D, Testa AC, Bourne T, et al. Logistic regression model to distinguish between the benign and malignant adnexal mass before surgery: a multicenter study by the International Ovarian Tumor Analysis Group. J Clin Oncol 2005;23:8794-8801.
8. Alcazar JL, Merce LT, Laparte C, Jurado M, Lopez-Garcia G. A new scoring system to differentiate benign from malignant adnexal masses. Am J Obstet Gynecol 2003;188:685-692.
9. Valentin L, Ameye L, Savelli L, et al. Adnexal masses difficult to classify as benign or malignant using subjective assessment of gray-scale and Doppler ultrasound findings: Logistic regression models do not help. Ultrasound Obstet Gynecol 2011;38:456-465.
10. Shen J, Zhang CJP, Jiang B, et al. Artificial intelligence versus clinicians in disease diagnosis: Systematic review. JMRI Med Inform 2019;7:e10010.
11. Rajendra Acharya U, Vinitha Sree S, Rama Krishnan MM, Molinari F, Garberglio R, Suri JS. Non-invasive automated 3D thyroid lesion classification in ultrasound: a class of ThyroScan™ systems. Ultrasonics 2012;52:508-520.
12. Saba L, Gao H, Acharya UR, Sannia S, Ledda G, Suri JS. Analysis of carotid artery plaque and wall boundaries on CT images by using a semi-automatic method based on level set model. Neuroradiology 2012;54:1207-1214.
13. Theodoridis S, Koutroumbas K. Pattern recognition. 4th ed. London: Academic Press, 2009.
14. Duda RO, Hart PE, Stork DG. Pattern classification. 2nd ed. New York, NY: Wiley, 2001.
15. Lee JG, Jun S, Cho YW, et al. Deep learning in medical imaging: General overview. Korean J Radiol 2017;18:570-584.
16. Kabir M. Does artificial intelligence (AI) constitute an opportunity or a threat to the future of medicine as we know it? Future Healthc J 2019;6:190-191.
17. Jacobs I, Oram D, Fairbanks J, Turner J, Frost C, Grudzinskas JG. A risk of malignancy index incorporating CA 125, ultrasound and menopausal status for the accurate preoperative diagnosis of ovarian cancer. Br J Obstet Gynaecol 1990;97:922-929.
18. Prömpler HJ, Madjar H, Sauerbrei W. Classification of adnexal tumors by transvaginal color Doppler. Gynecol Oncol 1996;61:354-363.
19. Tailor A, Jurkovic D, Bourne TH, Collins WP, Campbell S. Sonographic prediction of malignancy in adnexal masses using multivariate logistic regression analysis. Ultrasound Obstet Gynecol 1997;10:41-47.
20. Alcázar JL, Jurado M. Using a logistic model to predict malignancy of adnexal masses based on menopausal status, ultrasonic and morphological characteristics. Gynecol Oncol 1998;69:146-150.
21. Timmerman D, Bourne TH, Tailor A, et al. A comparison of methods for preoperative discrimination between malignant and benign adnexal masses: the development of a new logistic regression model. Am J Obstet Gynecol 1999;181:57-65.
22. Meys EMJ, Jelool LS, Achten NMJ, et al. Estimating risk of malignancy in adnexal masses: external validation of the ADNEX model and comparison with other frequently used ultrasound methods. Ultrasound Obstet Gynecol 2017;49:784-792.
23. Alcázar JL, Errasti T, Laparte C, Jurado M, López-García G. Assessment of a new logistic model in the preoperative evaluation of adnexal masses. J Ultrasound Med 2001;20:841-848.
24. Marret H, Ecochard R, Giraudieu B, Golffier F, Raudrant D, Lansac J. Color Doppler energy prediction of malignancy in adnexal masses using logistic regression models. Ultrasound Obstet Gynecol 2002;20:597-604.

25. Biagiotti R, Desi C, Vanzi E, Gacci G. Predicting ovarian malignancy: application of artificial neural networks to transvaginal and S Doppler color flow US. Radiol 1999;210:399-403.

26. Acharya UR, Sree VS, Saba L, Molinari F, Guerrero S, Suri JS. Ovarian tumor characterization and classification: a class of GynScan™ systems. Conf Proc IEEE Eng Med Biol Soc 2012;2012:4446-4449.

27. Acharya U, Sree SV, Rama Krishnan MM, et al. Ovarian tumor characterization using 3D ultrasound. Technol Cancer Res Treat 2012;11:543-552.

28. Acharya UR, Mookiah MRK, Vinitha Sree S, et al. Evolutionary algorithm-based classifier parameter tuning for automatic ovarian cancer tissue characterization and classification. Ultraschall Med 2014;35:237-45.

29. Khazendar S, Al-Assam H, Du H, et al. Automated classification of static ultrasound images of ovarian tumors based on decision level fusion. In: 2014 6th Computer Science and Electronic Engineering Conference (CEEC), Colchester 2014:148-153. doi:10.1109/CEEC.2014.6958571.

30. Khazendar S, Sayasneh A, Al-Assam H, et al. Automated characterization of ultrasound images of ovarian tumours: The diagnostic accuracy of a support vector machine and image processing with a local binary pattern operator. Facts Views Vis Obgyn 2015;7:7-15.

31. Lu C, Van-Gestel T, Suykens JAK, Van-Huffel S, Timmerman D, Verrelst H, Bourne TH, et al. Artificial neural network models for the preoperative discrimination between malignant and benign adnexal masses based on a neural network approach. Ultrasound Med Biol 2016;42:742-752.

32. Aramendía-Vidaurreta V, Cabeza R, Villanueva A, Navallas J, Alcázar JL. Ultrasound Image Discrimination between benign and malignant adnexal masses based on a neural network approach. Ultrasound Med Biol 2016;42:742-752.

33. Martínez-Más J, Bueno-Crespo A, Khazendar S, et al. Evaluation of machine learning methods with Fourier Transform features for classifying ovarian tumors based on ultrasound images. PLoS One 2019;14:e0219388.

34. Meys EMJ, Kajiser J, Kruitwagen RFPM, et al. Subjective assessment versus ultrasound models to diagnose ovarian cancer: A systematic review and meta-analysis. Eur J Cancer 2016;58:17-29.

35. Aslam N, Banerjee S, Carr JV, Savvas M, Hooper R, Jurkovic D. Prospective evaluation of logistic regression models for the diagnosis of ovarian cancer. Obstet Gynecol 2000;96:75-80.

36. Hsieh FY, Bloch DA, Larsen MD. A simple method of sample size calculation for linear and logistic regression. Stat Med 1998;17:1623-1634.

37. Kajiser J, Bourne T, Valentim L, et al. Improving strategies for diagnosing ovarian cancer: a summary of the International Ovarian Tumor Analysis (IOTA) studies. Ultrasound Obstet Gynecol 2013;41:9-20.

38. Van Calster B, Van Hoorde K, Valentim L, et al. International ovarian tumour analysis group. Evaluating the risk of ovarian cancer before surgery using the ADNEX model to differentiate between benign, borderline, early and advanced stage invasive, and secondary metastatic tumours: prospective multicentre diagnostic study. BMJ 2014;349:g5920.

39. Valentim L, Ameye L, Savelli L, et al. Adnexal masses difficult to classify as benign or malignant using subjective assessment of gray-scale and Doppler ultrasound findings: logistic regression models do not help. Ultrasound Obstet Gynecol 2011;38:456-65.

40. Tu JV. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J Clin Epidemiol 1996;49:1225-1231.

41. Timmerman D, Verrelst H, Bourne TH, et al. Artificial neural network models for the preoperative discrimination between malignant and benign adnexal masses. Ultrasound Obstet Gynecol 1999;13:17-25.

42. Van Holsbeke C, Van Calster B, Valentim L, et al. External validation of mathematical models to distinguish between benign and malignant adnexal tumors: A multicenter study by the International Ovarian Tumor Analysis Group. Clin Cancer Res 2007;13:4440-4447.

43. Desai GS. Artificial intelligence: the future of obstetrics and gynecology. J Obstet Gynaecol India 2018;68:326-327.

44. Kabir M. Does artificial intelligence (AI) constitute an opportunity or a threat to the future of medicine, as we know it? Future Healthc J 2019;6:190-191.