Experimental Demonstration of Genuine Tripartite Nonlocality under Strict Locality Conditions

Liang Huang,1,2,3,* Xue-Mei Gu,1,2,3,* Yang-Fan Jiang,4,* Dian Wu,1,2,3 Bing Bai,1,2,3 Ming-Cheng Chen,1,2,3 Qi-Chao Sun,1,2,3 Jun Zhang,1,2,3 Sixia Yu,1 Qiang Zhang,1,2,3 Chao-Yang Lu,1,2,3 and Jian-Wei Pan1,2,3

1Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
2Shanghai Research Center for Quantum Science and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
3Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
4Jinan Institute of Quantum Technology, Jinan 250101, China

(Received 7 March 2022; revised 10 May 2022; accepted 11 July 2022; published 2 August 2022)

Nonlocality captures one of the counterintuitive features of nature that defies classical intuition. Recent investigations reveal that our physical world’s nonlocality is at least tripartite; i.e., genuinely tripartite nonlocal correlations in nature cannot be reproduced by any causal theory involving bipartite nonclassical resources and unlimited shared randomness. Here, by allowing the fair sampling assumption and postselection, we experimentally demonstrate such genuine tripartite nonlocality in a network under strict locality constraints that are ensured by spacelike separating all relevant events and employing fast quantum random number generators and high-speed polarization measurements. In particular, for a photonic quantum triangular network we observe a locality loophole-free violation of the Bell-type inequality by 7.57 standard deviations for a postselected tripartite Greenberger-Horne-Zeilinger state of fidelity (93.13 ± 0.24)%, which convincingly disproves the possibility of simulating genuine tripartite nonlocality by bipartite nonlocal resources with globally shared randomness.

DOI: 10.1103/PhysRevLett.129.060401

Quantum theory allows correlations between spatially separated systems that are incompatible with local realism [1]. The most well-known manifestation is the correlation in bipartite systems—Bell nonlocality [1,2] that originally lies in the nature of quantum entanglement. As confirmed via loophole-free violations of Bell inequalities [3–7], Bell nonlocality has found novel applications in many quantum information tasks such as device-independent quantum cryptography [8,9] and randomness certification [10,11].

In contrast to bipartite systems, multipartite systems display much richer and complex correlation structures [2,12]. Histrionically, multipartite entanglement conventionally understood as the property of nonseparability [13] was used to violate Bell-like inequalities (e.g., Mermin’s inequality [14]) for multipartite nonlocality [15,16]. However, one could reproduce such Bell-like violations by using entanglement of partial separability. This fact was first pointed out by Svetlichny in 1987 [17], who derived an inequality such that it is obeyed by three-particle biseparable states but its violation shows the states are truly three-particle nonseparable. This has motivated great interest in the study of the strongest form of multipartite nonlocality—genuine multipartite nonlocality (GMN).

In an effort to contribute to this line of research, Svetlichny’s genuine tripartite nonlocality has been experimentally verified [18,19] and generalized to scenarios featuring an arbitrary number of particles [20,21] as well as arbitrary dimensions [22,23]. However, Svetlichny’s GMN is relative to local operations and classical communication (LOCC) [24,25]. This is inconsistent with the situation involving spacelike separated parties that enforces a nonsignaling condition [25,26], which has already been shown in a tabletop experiment [27]. Notably, restricted by nonsignaling conditions, Svetlichny’s GMN can also be observed in any network built by sharing only bipartite nonlocal resources, e.g., bipartite entanglement [28]. Moreover, some correlations that display the forms of genuine tripartite nonlocality [17,26] can be replicated by bipartite systems [29]. Realistically, all parties can have access to a common source of shared randomness. Also, instead of quantum theory, one could exploit alternative physical theories such as boxworld [30] for nonclassical resources (e.g., Popescu-Rohrlich boxes [31]). Interestingly, it has been shown that boxworld theory cannot reproduce all quantum correlations even if we allow globally shared classical randomness [32,33]. Furthermore, bipartite resources are not enough to reproduce tripartite phenomena in a theory-independent analysis; however, shared randomness is not involved in the analysis [34]. Thus, it is interesting to study GMN relative to local operations and shared randomness (LOSR) [35] from a theory-agnostic perspective, i.e., whether there are correlations in nature...
irreproducible by sharing only fewer-partite nonlocal resources with LOSR (Fig. 1).

Recently, Coiteux-Roy et al. answered positively by taking into account all causal theories compatible with device replication [i.e., refer to generalized probabilistic theories (GPTs)], including classical theory, quantum theory, nonsignaling boxes, and any hypothetical causal theory [36,37]. In the framework of LOSR, they refined Svetlichny’s GMN to genuine LOSR multipartite nonlocality or GMN in network. With the inflation technique widely used in analyzing theory-independent correlations [38,39], they derived a device-independent Bell-type inequality that is satisfied by all multipartite correlations arising from sharing fewer-partite nonlocal resources and global randomness. From the violations to the Bell-type inequality by N-partite Greenberger-Horne-Zeilinger (GHZ) states for all finite N, they thus proved that nature’s nonlocality must be boundlessly multipartite in any causal GPTs.

In this Letter, we aim to show genuine LOSR tripartite nonlocality in a state-of-the-art photonic quantum network under strict locality constraints; i.e., all the parties involved are spacelike separated. This requirement is crucial in analyzing Bell-type inequality violation as potential locality loopholes might be exploited by adversaries and also enforces the nonsignaling conditions with classical communication between the parties being forbidden. In detail, we adopt postselection and prepare a triggered three-photon GHZ state from two independent entangled pair sources and distribute the state to three spacelike separated observers, Alice, Bob, and Charlie. The locality loophole is closed by spacelike separating relevant events and using fast quantum random number generators (QRNGs) and high-speed polarization analyzers. We require the fair sampling assumption and postselection in the experiment, and show that the produced tripartite correlations cannot be simulated by any bipartite nonlocal resources with LOSR; i.e., they are genuinely LOSR tripartite nonlocal. We expect our work will stimulate further experimental investigation of genuinely multipartite nonlocality to better understand nature.

The genuine LOSR tripartite nonlocality proposed by Coiteux-Roy et al. is guaranteed by violations to the device-independent inequality arising from combining two intertwined games [36,37], respectively detecting (1) some nonclassical resources albeit possibly bipartite and (2) some tripartite resource albeit possibly classical. For (1), the Bell game, they exploit the standard Clauser-Horne-Shimony-Holt (CHSH) Bell test between Alice and Bob, conditioned on Charlie’s output result $C_1 = 1$, which reads

$$I_{\text{Bell}}^{C_1=1} := \langle A_0 B_0 \rangle_{C_1=1} + \langle A_0 B_1 \rangle_{C_1=1} + \langle A_1 B_0 \rangle_{C_1=1} - \langle A_1 B_1 \rangle_{C_1=1},$$

where subscripts represent the observer’s setting choices and all observables take either ± 1. In a standard Bell game, $I_{\text{Bell}}^{C_1=1}$ can reach $2\sqrt{2}$, which necessitates nonclassical resources. For (2), all observers are required to give the same outputs, which can take either of the two values ± 1. In this tripartite consistency game (i.e., same game), the correlation is defined as [36]

$$I_{\text{same}} := \langle A_0 B_2 \rangle + \langle B_2 C_0 \rangle,$$

and the perfect score is $I_{\text{same}} = 2$.

We note that $A_0 := A_{x=0}$ appears in both games; thus, Alice cannot distinguish which of the two games she is participating in. This prevents her from playing the two games separately and she has to optimize Eqs. (1) and (2) simultaneously with her input $x = 0$. Actually, it is impossible for Alice to decouple the two games, which indicates that performing well at both games (1) and (2) would require dependence on a genuinely LOSR tripartite nonlocal resource [36].

With the inflation techniques [38,39], Coiteux-Roy et al. then combine the two aforementioned games in one scenario. If each two parties from three spacelike separated observers Alice, Bob, and Charlie share a bipartite nonlocal resource and each party performs some local measurements, e.g., A_x, B_y, and C_z with random inputs $x \in \{0, 1\}$, $y \in \{0, 1, 2\}$, and $z \in \{0, 1\}$ [Fig. 2(a)], with outcomes $a, b, c = \pm 1$, then the resulting joint outcome probabilities $p(abc|xyz)$ satisfy the following device-independent Bell-type inequality (in slightly different but equivalent form):

FIG. 1. A triangular network features three observers (gray squares) A, B, and C for Alice, Bob, and Charlie, respectively, with (x, a), (y, b), and (z, c) being their inputs and outputs. The question of interest is whether or not the correlations $P_Q(abc|xyz)$ observed on the network on the left-hand side, in which each observer receives a particle from the tripartite-entangled quantum source (green starburst) and performs local measurements, can be simulated by the correlations obtained on the network on the right-hand side, in which the observers are connected by nonclassical bipartite resources (δ_{ij} with $i, j = A, B, C$) and shared randomness λ_{ABC}.
quantum strategy yields a maximum violation of Eq. (3) requires a fidelity of \(F > 0.93 \% \). Note that Eq. (3) can be directly generalized to the \(N \)-party GHZ state; however, the required state fidelity greatly increases with the system size \(N \) [37] (for details, see Ref. [40]).

Our setup is shown in Fig. 2. To violate Eq. (3), we first prepare the GHZ state that can be efficiently created by combining two Einstein-Podolsky-Rosen (EPR) sources (\(S_1 \) and \(S_2 \)) at a polarization beam splitter (PBS), as shown in Fig. 2(b). We use a pulse pattern generator (PPG) to send out 250 MHz trigger signals, and the PPG in source \(S_2 \) acts as the master clock to synchronize all operations. In each source, a distributed feedback (DFB) laser is triggered to emit a 2 ns, 1558 nm laser pulse, which is carved into 80 ps with an intensity modulator (IM). The laser pulses are frequency doubled in a PPMgLN crystal after passing through an erbium-doped fiber amplifier (EDFA). We then use the produced 779 nm pump laser to drive a type-0 spontaneous parametric down-conversion (SPDC) process in the second PPMgLN crystal in a polarization-based Sagnac loop. Each source produces pairs of photons in the Bell state \(\Phi^+ = (|HH\rangle + |VV\rangle)/\sqrt{2} \), where \(H \) and \(V \) denote horizontal and vertical polarization, respectively [see Fig. 2(c) and Ref. [42] for details]. By interfering two photons at a PBS at Charlie’s node, we get a four-photon GHZ state through the postselection of fourfold coincidences, which is used for creating the GHZ state when we measure the trigger photons in diagonal basis \(|+\rangle \).

The observers then perform local measurements on their photon from the produced GHZ state. Alice and Charlie perform one of two measurements \(A_x \) and \(C_z \), respectively, while Bob measures one of three bases \(B_y \). Their setting choices \(x \), \(z \), and \(y \) are decided in real time by a fast quantum random number generator situated there. The QRNG at each station randomly outputs a sequence of bits.

\[
F := \frac{1}{2} \sum_{i=1}^{4} \frac{4I_{same} - 8}{1 + \langle C_i \rangle} \leq 2, \quad (3)
\]

where \(F \) is the three-party correlation function; see calculations from \(p(abc|xyz) \) in Supplemental Material [40]. A violation to the above inequality indicates the genuine LOSR tripartite nonlocality.

There are quantum correlations that violate the Bell-type inequality above. For example, we distribute the tripartite GHZ state \(\text{GHZ}_3 = (|000\rangle + |111\rangle)/\sqrt{2} \) in a triangular network and set Alice’s, Bob’s, and Charlie’s measurements as \(A_x \in \{Z,X\}, \quad B_y \in \{(|Z + X\rangle/\sqrt{2},|(|Z - X\rangle/\sqrt{2}, Z)\), and \(C_z \in \{Z,X\} \), respectively. Here \(Z \) and \(X \) are standard Pauli operators. In this case, the tripartite quantum strategy yields a maximum violation of \(F = 2\sqrt{2} \). For a mixture of the GHZ state with white noise, violation of Eq. (3) requires a fidelity of \(\geq 0.93 \% \). Note that Eq. (3) can be directly generalized to the \(N \)-party GHZ state; however, the required state fidelity greatly increases with the system size \(N \) [37] (for details, see Ref. [40]).

Our setup is shown in Fig. 2. To violate Eq. (3), we first prepare the GHZ state that can be efficiently created by combining two Einstein-Podolsky-Rosen (EPR) sources (\(S_1 \) and \(S_2 \)) at a polarization beam splitter (PBS), as shown in Fig. 2(b). We use a pulse pattern generator (PPG) to send out 250 MHz trigger signals, and the PPG in source \(S_2 \) acts as the master clock to synchronize all operations. In each source, a distributed feedback (DFB) laser is triggered to emit a 2 ns, 1558 nm laser pulse, which is carved into 80 ps with an intensity modulator (IM). The laser pulses are frequency doubled in a PPMgLN crystal after passing through an erbium-doped fiber amplifier (EDFA). We then use the produced 779 nm pump laser to drive a type-0 spontaneous parametric down-conversion (SPDC) process in the second PPMgLN crystal in a polarization-based Sagnac loop. Each source produces pairs of photons in the Bell state \(\Phi^+ = (|HH\rangle + |VV\rangle)/\sqrt{2} \), where \(H \) and \(V \) denote horizontal and vertical polarization, respectively [see Fig. 2(c) and Ref. [42] for details]. By interfering two photons at a PBS at Charlie’s node, we get a four-photon GHZ state through the postselection of fourfold coincidences, which is used for creating the GHZ state when we measure the trigger photons in diagonal basis \(|+\rangle \).

The observers then perform local measurements on their photon from the produced GHZ state. Alice and Charlie perform one of two measurements \(A_x \) and \(C_z \), respectively, while Bob measures one of three bases \(B_y \). Their setting choices \(x \), \(z \), and \(y \) are decided in real time by a fast quantum random number generator situated there. The QRNG at each station randomly outputs a sequence of bits.
is 0.3 Hz and the fidelity is calculated to be few measurements. The average triggered three-photon rate perform a fidelity witness that can be evaluated with only a choices for the received photon are both QRNG the loop interferometer in the SPPM (Fig. 2) and the time (SNSPD) outputs a signal for of superconducting nanowire single-photon detector (SPPM), which consists of two fixed quarter-wave plates (QWPs), two Faraday rotators (FRs), and an electro-optical phase modulator (PM), shown in Fig. 2 (see Supplemental Material in Ref. [44] for details). The SPPM varied the photons’ polarization at a rate of 250 MHz with a fidelity of ∼99% with random inputs. For Charlie, his setting choices decided by his QRNG were recorded with a time-to-digital converter (TDC). All his photon detections were analyzed in time and recorded by a field-programmable gate array (FPGA). Alice’s and Bob’s photon detection and setting results from QRNGs were recorded by their TDC, respectively. All the data were locally collected at the remote ports and sent to a separate computer to evaluate the three-party correlation function F.

The timing and layout of the experiment are critical to close locality loopholes, such that, for example, any observer’s measurement results are causally independent from the other’s setting choices. Now considering Charlie and Alice, we spacelike separate the events of Charlie completing the QRNG for setting choices (QRNG$_C$) from the events of finishing single-photon detection by Alice (MA), and vice versa. In each trial, the time elapses of a QRNG to generate a random bit that determines the setting choices for the received photon are both 53 ± 2 ns for QRNG$_C$ and QRNG$_A$. The time elapse of measurement events is defined as the interval between a photon enters the loop interferometer in the SPPM (Fig. 2) and the time of superconducting nanowire single-photon detector (SNSPD) outputs a signal for M_C and M_A are 44.9 ± 0.5 and 44.6 ± 0.5 ns, respectively. Their analyses are described in the left-hand panel of Fig. 3(a), where MA is 156.3 ± 4 ns outside the light cone of QRNG$_C$ and M_C is 73.5 ± 4 ns outside the light cone of QRNG$_A$, satisfying the locality condition here. We summarize all relevant results for the other two slices in Fig. 3(a) (middle and right-hand panels), with the labels defined using the same conversion. All the time-space relations are drawn to scale. The analysis is summarized and detailed in the Supplemental Material [40].

To estimate the fidelity of our prepared state after postselection with respect to the ideal state $|GHZ_3\rangle$, we perform a fidelity witness that can be evaluated with only a few measurements. The average triggered three-photon rate is 0.3 Hz and the fidelity is calculated to be $93.13 \pm 0.24\%$. We also perform a quantum state tomography to additionally characterize our prepared state (see Ref. [40]). We then evaluate the experimental violation of the inequality given by Eq. (3) and record 33770 fourfold coincidence detection events over 171725 s. As shown in Fig. 3(b), we obtain the correlation of $F = 2.338 \pm 0.044$, which is beyond the bipartite GPT bound by 7.57 standard deviations. That means the observed correlations via the three-photon GHZ state cannot be reproduced by any two-way GPT resources with local operations and unlimited shared randomness; i.e., it is genuinely LOSR tripartite nonlocal [36,37].

Based on an optical quantum network under strict locality constraints, we have experimentally demonstrated that nature’s tripartite nonlocality cannot be simulated from any bipartite nonlocal causal theories. In our experiment,
the locality loophole between the three parties is addressed by spacelike separating relevant events and employing fast QRNGs and high-speed polarization analyzers. In this way, no information is exchanged among the three parties in each trail, leading to the LOSR paradigm [36,37]. Our demonstration requires fair-sampling assumptions and admits the postselection loophole as well as the detection loopholes. To analyze Eq. (3), we exclusively consider postselection of the cases where the detectors click results in an unbiased sample under fair-sampling assumptions, which usually relates to detection loopholes [45] that may be closed in the future with high-efficiency photon sources [46] and detectors.

Another important issue is the postselection for the entanglement generation process [47], as our \(|\text{GHZ}_3\rangle\) state depends on postselecting a four-photon GHZ state, wherein one photon as a trigger colocated with Charlie’s photon. With fair-sampling assumptions in each trail, we only consider performing postselection on each port such that every party receives exactly one photon, although there are multiphoton events present that could decrease the prepared state fidelity. In the presence of postselection, one could have selection bias that arises due to conditioning or restricting the data generated in the experiment [47], which might lead to correlations breaking Bell-like inequality without necessarily claiming the genuine LOSR tripartite nonlocality. For example, if we use three independent bipartite-entangled states shared by Alice, Bob, and Charlie, and allow them measuring local parity operators, only postselection on the interested events in the outcomes will lead to the statistics that show genuinely tripartite nonlocal features [48,49]. However, one could potentially close the postselection loophole at the sources by preparing states in a heralded event-ready manner such as using cascaded SPDC sources [19,50] or using on-demand single-photon sources with fusion gates [51] in the future. Beyond the tripartite scenarios, a future interesting direction is to explore genuinely LOSR multipartite nonlocality in more complex networks, albeit it is experimentally challenging.

We thank Chang Liu and Quantum Ctek for providing the Anhui Initiative in Quantum Information Technologies. This work was supported by the National Natural Sciences, the National Fundamental Research Program, and Science Foundation of China, the Chinese Academy of Scientists. This work was supported by the National Natural

Note added.—Recently, we became aware of two similar optical tabletop experimental works without closing locality loopholes [49,52].

These authors contributed equally to this work.
[1] John S. Bell, On the Einstein Podolsky Rosen paradox, Physics 1, 195 (1964).
L. K. Shalm et al., Experimental three-photon quantum nonlocality under strict locality conditions, Nat. Photonics 8, 292 (2014).

[17] George Svetlichny, Distinguishing three-body from two-body nonseparability by a Bell-type inequality, Phys. Rev. D 35, 3066 (1987).

[18] Jonathan Lavoie, Rainer Kaltenbaek, and Kevin J. Resch, Experimental violation of Svetlichny’s inequality, New J. Phys. 11, 073051 (2009).

[19] Deny R. Hamel, Lynden K. Shalm, Hannes Hübel, Aaron J. Miller, Francesco Marsili, Varun B. Verma, Richard P. Mirin, Sae Woo Nam, Kevin J. Resch, and Thomas Jennewein, Direct generation of three-photon polarization entanglement, Nat. Photonics 8, 801 (2014).

[20] Daniel Collins, Nicolas Gisin, Sandu Popescu, David Roberts, and Valerio Scarani, Bell-Type Inequalities to Detect True n-Body Nonseparability, Phys. Rev. Lett. 88, 170405 (2002).

[21] Michael Seevinck and George Svetlichny, Bell-Type Inequalities for Partial Separability in n-Particle Systems and Quantum Mechanical Violations, Phys. Rev. Lett. 89, 060401 (2002).

[22] Jean-Daniel Bancal, Nicolas Brunner, Nicolas Gisin, and Yeong-Cherng Liang, Detecting Genuine Multipartite Quantum Nonlocality: A Simple Approach and Generalization to Arbitrary Dimensions, Phys. Rev. Lett. 106, 020405 (2011).

[23] Jing-Ling Chen, Dong-Ling Deng, Hong-Yi Su, Chunfeng Wu, and C. H. Oh, Detecting full n-particle entanglement in arbitrarily-high-dimensional systems with Bell-type inequalities, Phys. Rev. A 83, 022316 (2011).

[24] Eric Chitambar, Debbie Leung, Laura Mančinska, Maris Ozols, and Andreas Winter, Everything you always wanted to know about LOCC (but were afraid to ask), Commun. Math. Phys. 328, 303 (2014).

[25] Rodrigo Gallego, Lars Erik Würflinger, Antonio Acín, and Miguel Navascués, Operational Framework for Nonlocality, Phys. Rev. Lett. 109, 070401 (2012).

[26] Jean-Daniel Bancal, Jonathan Barrett, Nicolas Gisin, and Stefano Pironio, Definitions of multipartite nonlocality, Phys. Rev. A 88, 014102 (2013).

[27] Chao Zhang, Cheng-Jie Zhang, Yun-Feng Huang, Zhi-Bo Hou, Bi-Heng Liu, Chuan-Feng Li, and Guang-Can Guo, Experimental test of genuine multipartite nonlocality under the no-signalling principle, Sci. Rep. 6, 1 (2016).

[28] Patricia Contreras-Tejada, Carlos Palazuelos, and Julio I. de Vicente, Genuine Multipartite Nonlocality is Intrinsic to Quantum Networks, Phys. Rev. Lett. 126, 040501 (2021).

[29] Jonathan Barrett, Noah Linden, Serge Massar, Stefano Pironio, Sandu Popescu, and David Roberts, Nonlocal correlations as an information-theoretic resource, Phys. Rev. A 71, 022101 (2005).

[30] Peter Janotta, Generalizations of boxworld, Electron. Proc. Comput. Sci. 95, 183 (2012).

[31] Sandu Popescu and Daniel Rohrlich, Quantum nonlocality as an axiom, Found. Phys. 24, 379 (1994).

[32] Rui Chao and Ben W. Reichardt, Test to separate quantum theory from non-signaling theories, arXiv:1706.02008.

[33] Peter Bierhorst, Ruling out bipartite nonsignaling nonlocal models for tripartite correlations, Phys. Rev. A 104, 012210 (2021).

[34] Joe Henson, Raymond Lal, and Matthew F. Pusey, Theory-independent limits on correlations from generalized Bayesian networks, New J. Phys. 16, 113043 (2014).

[35] David Schmid, Thomas C. Fraser, Ravi Kunjwal, Ana Belen Sainz, Elie Wolfe, and Robert W. Spekkens, Understanding the interplay of entanglement and nonlocality: Motivating and developing a new branch of entanglement theory, arXiv:2004.09194.

[36] Xavier Coiteux-Roy, Elie Wolfe, and Marc-Olivier Renou, No Bipartite-Nonlocal Causal Theory Can Explain Nature’s Correlations, Phys. Rev. Lett. 127, 200401 (2021).

[37] Xavier Coiteux-Roy, Elie Wolfe, and Marc-Olivier Renou, Any physical theory of nature must be boundlessly multi-partite nonlocal, Phys. Rev. A 104, 052207 (2021).

[38] Elie Wolfe, Robert W. Spekkens, and Tobias Fritz, The inflation technique for causal inference with latent variables, J. Causal Infer. 7, 20170020 (2019).

[39] Elie Wolfe, Alejandro Pozas-Kerstjens, Matan Grinberg, Denis Rosset, Antonio Acín, and Miguel Navascués, Quantum Inflation: A General Approach to Quantum Causal Compatibility, Phys. Rev. X 11, 021043 (2021).

[40] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.129.060401 for N-party inequality, polarization measurement and experiment result, and details about the space-time diagram, which includes Refs. [37,41].

[41] Christian Schwemmer, Lukas Knips, Daniel Richart, Harald Weinfurter, Tobias Moroder, Matthias Kleinnmann, and Otfried Gühne, Systematic Errors in Current Quantum State Tomography Tools, Phys. Rev. Lett. 114, 080403 (2015).

[42] Qi-Chao Sun, Yang-Fan Jiang, Bing Bai, Weijun Zhang, Hao Li, Xiao Jiang, Jun Zhang, Lixing You, Xianfeng Chen, Zhen Wang et al., Experimental demonstration of non-bilocality with truly independent sources and strict locality constraints, Nat. Photonics 13, 687 (2019).

[43] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert et al., A statistical test suite for random and pseudorandom number generators for cryptographic applications—Special publication 800-22 rev1a, Technical Report, the institute is National Institute of Standards & Technology, April 2010.

[44] Dian Wu, Yang-Fan Jiang, Xue-Mei Gu, Liang Huang, Bing Bai, Qi-Chao Sun, Si-Qiu Gong, Yingqiu Mao, Han-Sen Zhong, Ming-Cheng Chen et al., Experimental refutation of real-valued quantum mechanics under strict locality conditions, arXiv:2201.04177.

[45] Jan-Åke Larsson, Loopholes in Bell inequality tests of local realism, J. Phys. A 47, 424003 (2014).

[46] Hui Wang, Yu-Ming He, T.-H. Chung, Hai Hu, Ying Yu, Si Chen, Xing Ding, M.-C. Chen, Jian Qin, Xiaoxia Yang et al., Towards optimal single-photon sources from polarized microwaves, Nat. Photonics 13, 770 (2019).

[47] Pawel Blasiak, Ewa Borsuk, and Marcin Markiewicz, On the interplay of entanglement and nonlocality: Motivating and developing a new branch of entanglement theory, arXiv:2004.09194.
[49] Huan Cao, Marc-Olivier Renou, Chao Zhang, Gaël Massé, Xavier Coiteux-Roy, Bi-Heng Liu, Yun-Feng Huang, Chuan-Feng Li, Guang-Can Guo, and Elie Wolfe, Experimental demonstration that no tripartite-nonlocal causal theory explains nature’s correlations, arXiv:2201.12754.

[50] Zachary M. E. Chaisson, Patrick F. Poitras, Micaël Richard, Yannick Castonguay-Page, Paul-Henry Glinel, Véronique Landry, and Deny R. Hamel, Phase-stable source of high-quality three-photon polarization entanglement by cascaded down-conversion, Phys. Rev. A 105, 063705 (2022).

[51] Michael Varnava, Daniel E. Browne, and Terry Rudolph, How Good Must Single Photon Sources and Detectors Be for Efficient Linear Optical Quantum Computation?, Phys. Rev. Lett. 100, 060502 (2008).

[52] Ya-Li Mao, Zheng-Da Li, Sixia Yu, and Jingyun Fan, Test of genuine multipartite nonlocality in network, arXiv:2201.12753.