Evolution of spirorbin brooding: a phylogenetic analysis and a test of an oxygen limitation hypothesis

A.V. Rzhavsky†, E.K. Kupriyanova

1, 2 A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Leninskiy Prospekt 33, Moscow, 119071, Russia.
2 Australian Museum Research Institute, Australian Museum, 1 William Street, Sydney NSW 2010 Australia. E-mail: elena.kupriyanova@austmus.gov.au

ABSTRACT: Spirorbinae is a group of small calcareous tubeworms (family Serpulidae) living in flat coiled tubes and incubating their embryos either in tubes or in opercular chambers. The controversy whether tube or opercular incubation is ancestral is unresolved and the costs and benefits of the two incubation types are not understood. The oxygen limitation hypothesis (Harris, 1972) suggests that as opercular incubators predominantly live in tropical waters and opercular incubation evolved as an adaptation to lower oxygen content experienced by embryos of tube incubators. The hypothesis implies that tube incubation is ancestral and opercular incubation evolved as spirorbins penetrated into lower latitudes. The aim of this study was to examine the evolution of brooding in spirorbins. The phylogenetic analysis of morphological characters was used to determine whether the opercular incubation is derived and whether types of opercular incubation evolved independently. We also tested for a relationship between the type of brooding and the geographical distribution in relation to the dissolved oxygen content. The results confirmed that opercular brooding is derived and that two types of opercular brooding originated independently. Tube brooders inhabit waters with higher oxygen content that opercular brooders do. We re-formulated the oxygen limitation hypothesis suggesting that the constraints imposed on tube incubation in warmer waters are related to the increased energetic costs of parental brood ventilation.

How to cite this article: Rzhavsky A.V., Kupriyanova E.K. 2019. Evolution of spirorbin brooding: a phylogenetic analysis and a test of an oxygen limitation hypothesis // Invert. Zool. Vol.16. No.4. P.409–430. doi: 10.15298/invertzool.16.4.09

KEY WORDS: Serpulidae, Polychaeta, tube brooding, opercular brooding, oxygen consumption.

Эволюция инкубации у спирорбин: филогенетический анализ и проверка гипотезы «кислородного ограничения»

А.В. Ржавский1†, Е.К. Куприянова2

1 Институт проблем экологии и эволюции им. А.Н. Северцова РАН, Ленинский пр., 33, 119071, Россия.
2 Australian Museum Research Institute, Australian Museum, 1 William Street, Sydney NSW 2010 Australia. E-mail: elena.kupriyanova@austmus.gov.au
Introduction

Many marine invertebrates brood embryos on the body or inside specialised brooding structures and brooding is commonly associated with small body size (e.g., Chia, 1974; Menge, 1975; Knight-Jones, Bowden, 1979). Several hypotheses have been proposed to explain such a relationship. The most intuitive hypothesis of Chia (1974) states that brooding should be advantageous in small organisms with low energy reserves for gamete production because planktonic mortality is high. Low fecundity (of small species) means there is a high probability that no embryos exposed to the hazards of planktonic life will survive.

According to the recruitment hypothesis (Strathmann, Strathmann, 1982), predictable recruitment typical for brooding species is more important for small-bodied than for large-bodied species. If recruitment is unpredictable, and larval or juvenile survival is more variable than survival of adults, selection may favour greater adult longevity with ensuring higher fecundity. Thus, varying survival may link absence of brooding to higher longevity and therefore, larger body size. The dispersal hypothesis (Strathmann, Strathmann, 1982) states that the advantages of brooding for smaller species exceed potential advantages provided by greater dispersal. Given that small spirorbins can disperse considerable distances using rafting, drifting and floating, any disadvantages of limited larval dispersal in brooders may be compensated. Long-term dispersal may be disadvantageous and Bhaud & Duchene (1996) even suggested...
that brooding evolved as an adaptation for reduced dispersal to ensure fertilisation in a dispersive environment. However, their hypothesis does not suggest that brooding is more beneficial for small species. The allometry hypothesis (Strathmann, Strathmann, 1982) states that with increased body size, the capacity for egg production increases faster than space for brooding. While Hess (1993) found no evidence that scaling limits brood size in spirorbins, her test may not be decisive because she compared four spirorbins with *Pseudochitinopoma occidentalis* (Bush, 1905), the small-bodied serpulin that may provide early embryos with short-term parental care (Kupriyanova et al., 2012). Because the validity of the allometry hypothesis depends on the type and geometry of the brood space, it may be only applicable to certain types of internal brooding. While this hypothesis explains why brooding is not a beneficial strategy for larger organisms, it does not necessarily imply that brooding should be a preferred mode for small species. The model of Havenhand (1993), which stresses the selective pressures toward reduction of development time to metamorphosis, indirectly emphasises the importance of brooding in small organisms, because brooders are normally lecithotrophic and tend to have shorter development time than planktotrophs.

All the hypotheses above are not mutually exclusive and some of them emphasise the association of large body size with absence of brooding more than the association of small size with brooding. In serpulimorph polychaetes (Serpulidae, Annelida) brooding is typical for all spirorbins and small (usually < 10 mm in length) serpulids, whereas larger serpulids with a body size of > 20 mm tend to be broadcasters (Kupriyanova et al., 2001). Spirorbin show two major types of incubation: in the operculum and in the tube. Tube incubation is morphologically simple but is not uniform and its methods vary markedly according to the types of embryo anchorage inside the tube.

The evolution of brooding in spirorbins attracted attention of a number of researchers. It has been argued based on morphological complexity of structures involved in opercular brooding, that this method is an evolutionary novelty in the Spirorbinae. Gee (1964) proposed a hypothetical evolutionary scheme according to which tube incubation precedes all other types of brood protection in spirorbins. The idea of ancestral tube incubation was widely accepted (Thorpe, 1975; Knight-Jones, Thorp, 1984; Nishi, 1993). The incubating cups of the Pileolarini are considered to be derived, as they are structurally more complex and exhibit a wider range of forms. The interrelationships of romanchellin, pileolarin and januin brood chambers and possible sequences of their evolution have been considered in Thorp (1975) and Knight-Jones & Thorp (1984). Nishi (1993) proposed only a slight modification of Thorp (1975), suggesting that the tube brooding is ancestral type for the tubular thoracic-stalk brooding of Romancheliinae. An alternative hypothesis by Thorp & Segrove (1975) suggested that the opercular incubation is ancestral and the tube incubation is derived.

The origin of the opercular brooding method appears to have been an important transition in evolution of spirorbins because it resulted in significant diversification of the group and wide geographical distribution of opercular brooders. However, the costs and benefits of tube vs. opercular incubation are not clearly understood. Opercular brooding appears to have some obvious disadvantages. The larvae could be susceptible to predation because opercula in serpulimorph polychaetes can be easily bitten off (Kupriyanova et al., 2001), whereas tube incubation offers better protection for embryos. Opercular incubation may result in decreased fecundity because brooding space of the opercular brooding chamber is less than that of the tube. The brooding space limitation can result in reduced number of young per brood, although no studies analyzed the relative fecundity of opercular and tube brooders.

The only hypothesis explaining a selective advantage of opercular incubation (Harris, 1972) links oxygen demands of spirorbid embryos and type of incubation based on geographic distribution of selected spirorbin species. The observation that opercular incubators predominantly
live in warm waters led Harris (1972) to suggest that oxygen may be limiting factor for tube incubators. Tube-incubating species should dominate in highly oxygenated waters of high latitudes, whereas opercular incubators should mainly inhabit predominantly warm (and thus, less oxygenated) waters of lower latitudes. Therefore, opercular incubation evolved as an adaptation to reduce oxygen limitation experienced by embryos of tube incubators in warm waters. Although the hypothesis does not address the direction of evolution of brooding, it implies that tube incubation is an ancestral method that had originally emerged in high altitudes and opercular incubation evolved as spirorbins penetrated into lower latitudes. The hypothesis predicts a relationship between the type of brooding in a spirorbin taxon and the geographical distribution of the taxon in relation to the dissolved oxygen in the water.

The aim of this paper is to study of evolution of tube and opercular brooding in spirorbins. The phylogenetic analysis of spirorbid morphological characters was used to determine whether the opercular incubation is derived relative to the tube incubation and whether methods of opercular incubation originated independently. We also tested the prediction of Harris (1972) about a relationship between type of spirorbin incubation and the average concentration of dissolved oxygen on the scale of world-wide distribution.

Material and methods

The material used in the cladistic analysis of morphological characters and in the analysis of geographical distribution was obtained from the literature (see Kupriyanova *et al.*, 2001) and unpublished data of Rzhavsky who had examined spirorbins deposited in museums worldwide (Rzhavsky, 1991a, b, 1992a, b, c, 1993, 1994, 1997, 1998; Rzhavsky *et al.*, 2018).

The data on average dissolved oxygen concentration corresponding to published and unpublished spirorbin distribution records (coordinates) were obtained from the public database of the National Oceanographic Data Center (NODC), USA at www.nodc.noaa.gov. Yearly-averaged data with 1-degree resolution in latitude and longitude and 33 depth points from 0 to 5500 m were used. The species used in the analysis were recorded in the depth range 0-650 m, and most of them were recorded from the depths below 200 m (Table 1). The coordinates and depths of the original spirorbid distribution were rounded to the nearest points of the 3D data grid. Data for some intertidal or shallow subtidal species did not include depth, therefore, because they all fell within the first 0-33-m grid, the depth of such records was assumed to be zero. Some of the obtained nearest points happened to be onshore or below the bottom due to round off errors and/or approximate reporting of the data coordinates in species distributions. Such data points were further rounded towards the nearest grid node within the water. Finally, NODC data were used for the nearest node as the measure of the oxygen contents at the spirorbin location. The distribution of 3 spirorbin genera (10 species, Table 2) was analysed.

A phylogenetic analysis of spirorbin genera was performed using two serpulin species as an outgroup. The list of morphological characters used in the analysis is summarised in Table 3. The 27 spirorbin genera used in the analysis are listed in Table 4. Only the genera were used in the analysis because spirorbins show remarkable uniformity of their brooding within each genus. All characters were unordered and had equal weight. Character 1 (type of incubation) was included in the data matrix. Cladograms were generated with PAUP 4.10 (Swofford, 1999). The size of the data matrix (27 taxa by 35 characters) did not allow the use of exhaustive search; therefore, heuristic search was performed. The search 2000 replications using random addition with tree-bisection-reconnection branch-swapping, with 10 trees being held at each step. Accelerated transformation (ACCTRAN) was used for character-state optimisation.

The hypothesis that spirorbin fecundity is related to the body size was tested using regression analysis. One-way ANOVA was used to
Table 1. Spirorbin records, average dissolved oxygen concentration data, and incubation type.

Species	Latitude	Longitude	Depth, m	Incubation	Oxygen, mg.L⁻¹	
Bushiella (J.) acuticostalis	45°49'N	55°34'W	70	operculum	6.9073	
	45°25'N	56°13'W	70	operculum	6.9441	
	44°26'N	50°50'W	72	operculum	6.993	
	69°19'N	33°52'W	170	operculum	7.0138	
	45°00'N	49°40'W	73	operculum	7.1935	
	54°52'N	167°26'E	10	operculum	7.4618	
	46°26'N	143°35'E	25	operculum	8.0292	
Bushiella (J.) granulata	54°06'N	4°48'W	16	operculum	5.75	
	50°21'N	4°10'W	5	operculum	6.1259	
	54°23'N	10°11'E	0	operculum	6.273	
	53°2'N	4°38'W	2	operculum	6.4777	
	66°18'N	33°17'E	23	operculum	7.5029	
	65°545N	38°15'E	90	operculum	7.6015	
Bushiella (J.) kofiadii	17°30'N	17°30'E	230	operculum	0.8426	
	78°05'N	149°30'E	58	operculum	6.1644	
	75°15'N	170°45'E	390	operculum	6.4025	
	70°26'N	17°56'E	120	operculum	6.4876	
	75°15'N	171°15'E	455	operculum	6.5842	
	69°2'N	33°32'E	280	operculum	6.656	
	78°15'N	15°52'W	165	operculum	6.8077	
	71°3'N	30°00'E	330	operculum	6.8269	
	74°3'N	32°30'E	387	operculum	6.8816	
	48°14'N	49°45'W	220	operculum	6.9043	
	81°04'N	53°32'E	422	operculum	6.9188	
	71°1'N	33°15'E	340	operculum	6.9793	
	54°00'N	54°47'E	220	operculum	6.9799	
	72°3'N	33°30'E	287	operculum	7.1269	
	81°11'N	75°20'E	124	operculum	7.1478	
	80°00'N	10°00'E	550	operculum	7.1821	
	79°1'N	40°30'E	380	operculum	7.192	
	77°03'N	13°24'E	420	operculum	7.2015	
	78°01'N	13°07'E	136	operculum	7.2094	
	78°08'N	73°47'E	426	operculum	7.3719	
	1	2	3	4	5	6
---	---	---	---	---	---	---
					operculum	7.4159
					operculum	7.4302
					operculum	7.4395
					operculum	7.5066
					operculum	4.6924
					operculum	4.9657
					operculum	5.0475
					operculum	6.1871
					operculum	6.4239
					operculum	6.5165
					operculum	6.5376
					operculum	6.5878
					operculum	6.6371
					operculum	6.6677
					operculum	6.7273
					operculum	6.8463
					operculum	6.8735
					operculum	6.9073
					operculum	6.9256
					operculum	6.9441
					operculum	6.9574
					operculum	6.9655
					operculum	6.993
					operculum	7.019
					operculum	7.0423
					operculum	7.0666
					operculum	7.0847
					operculum	7.0978
					operculum	7.1331
					operculum	7.2061
					operculum	7.2083
					operculum	7.2557
					operculum	7.3072
					operculum	7.3448

Bushiella (J.) kofiiadii

80°58’N	80°26’E	74	operculum
80°45’N	69°46’E	560	operculum
77°58’N	71°43’E	365	operculum
78°34’N	110°09’E	364	operculum

Bushiella (J.) quadrangularis

22°29’N	56°40’W	0	operculum
52°53’N	160°09’E	176	operculum
56°45’N	145°50’E	218	operculum
57°45’N	159°55’E	115	operculum
60°07’N	160°46’E	100	operculum
71°30’N	171°54’W	58	operculum
48°24’N	45°59’W	92	operculum
54°19’N	140°22’E	60	operculum
55°34’N	161°18’W	46	operculum
63°4’N	10°50’E	100	operculum
43°20’N	50°15’W	65	operculum
48°00’N	139°46’E	58	operculum
58°41’N	151°09’E	89	operculum
69°12’N	36°10’E	114	operculum
45°49’N	55°34’W	70	operculum
42°38’N	130°45’E	10	operculum
45°25’N	56°13’W	70	operculum
69°34’N	32°12’E	70	operculum
70°47’N	47°15’E	150	operculum
44°26’N	50°50’W	72	operculum
68°55’N	37°37’E	167	operculum
74°35’N	75°26’E	32	operculum
74°3’N	20°1’E	90	operculum
62°05’N	179°19’E	72	operculum
70°07’N	37°12’E	172	operculum
80°19’N	34°33’E	115	operculum
77°07’N	13°37’E	200	operculum
71°06’N	42°40’E	127	operculum
54°14’N	160°29’E	80	operculum
69°12’N	35°47’E	30	operculum
66°18’N	33°17’E	12.5	operculum
Evolution of spirorbin brooding

Table 1 (continued).

	1	2	3	4	5	6
	Lat°N	Long°E	Operculum			
1	54°52’N	162°11’E	78	operculum	7.3544	
	44°5’N	50°20’W	46	operculum	7.3562	
	45°00’N	147°42’E	0	operculum	7.3615	
	43°5’N	146°42’E	0	operculum	7.3693	
	70°23’N	64°00’E	158	operculum	7.4077	
	43°44’N	145°32’E	13	operculum	7.4561	
	71°32’N	52°14’E	9	operculum	7.4618	
	77°07’N	156°37’E	30	operculum	7.4649	
	47°09’N	152°15’E	15	operculum	7.4714	
	57°33’N	156°37’E	38	operculum	7.5108	
	79°17’N	76°08’E	54	operculum	7.5324	
	79°17’N	76°08’E	54	operculum	7.5324	
	73°77’N	53°00’E	145	operculum	7.5487	
	47°03’N	56°07’W	70	operculum	7.5612	
	52°54’N	159°27’E	92	operculum	7.5941	
	78°3’N	50°00’E	230	operculum	7.6751	
	56°11’N	163°23’E	14.5	operculum	7.7053	
	75°54’N	92°59’E	16	operculum	7.7401	
	76°00’N	92°4’E	20	operculum	7.7401	
	57°5’N	162°25’E	13	operculum	7.7786	
	58°58’N	164°29’E	53	operculum	7.8253	
	50°52’N	156°40’E	13	operculum	7.8324	
	69°42’N	60°03’E	7	operculum	7.8722	
	46°44’N	142°42’E	35	operculum	7.8742	
	53°05’N	160°03’E	18	operculum	7.9267	
	69°46’N	60°35’E	20	operculum	7.9553	
	59°33’N	150°43’E	5	operculum	7.9602	
	59°31’N	150°34’E	10	operculum	7.963	
	69°42’N	170°16’E	7	operculum	8.0051	
	53°16’N	159°58’E	10	operculum	8.0503	
	80°41’N	78°37’E	32	operculum	8.076	
	52°57’N	158°29’E	6	operculum	8.1005	
	80°21’N	52°16’E	73	operculum	8.1636	
	71°24’N	156°29’W	50.4	operculum	8.2035	
	79°24’N	91°13’E	24	operculum	8.493	
	78°4’N	104°30’E	7	operculum	8.5248	

Bushiella (J.) quadrangularis
Table 1 (continued).

1	2	3	4	5	6
	56°00’N	149°29’E	397	operculum	3.0755
	56°1’N	149°23’E	284	operculum	3.2626
	46°14’N	138°33’E	630	operculum	5.5418
	37°41’N	122°18’W	28	operculum	5.6473
	54°19’N	140°22’E	60	operculum	6.5878
	59°31’N	156°29’E	42	operculum	6.628
	53°46’N	160°17’E	135	operculum	6.7168
	48°00’N	139°46’E	58	operculum	6.723
	45°49’N	55°34’W	70	operculum	6.9073
	52°53’N	159°39’E	125	operculum	7.3194
	43°44’N	145°32’E	0	operculum	7.3693
	80°26’N	85°36’E	313	operculum	7.3719
	78°22’N	15°05’E	20	operculum	7.5234
	59°33’N	150°43’E	27	operculum	7.5598
	47°03’N	56°08’W	70	operculum	7.5612
	53°16’N	159°58’E	19	operculum	7.9267
	52°57’N	158°29’E	6	operculum	8.1005
	80°21’N	52°16’E	73	operculum	8.1636

Bushiella (J.) similis

1	2	3	4	5	6
	42°50’N	132°35’E	0	operculum	6.6205
	42°54’N	132°44’E	2	operculum	6.6205
	42°39’N	130°45’E	1	operculum	6.7595
	42°50’N	132°35’E	10	operculum	6.7777
	42°54’N	132°44’E	8	operculum	6.7777
	43°01’N	144°50’E	?	operculum	7.2469
	42°39’N	130°45’E	22	operculum	7.2897
	43°44’N	145°32’E	3	operculum	7.3693
	43°37’N	146°19’E	6	operculum	7.4561
	43°44’N	145°32’E	9	operculum	7.4561

Neodexiospira alveolata

1	2	3	4	5	6
	19°37’N	37°14’E	4	operculum	4.2598
	17°24’S	177°43’E	2.5	operculum	4.7144
	25°50’N	80°10’W	0	operculum	4.7152
	21°10’S	175°09’W	0	operculum	4.7379
	16°45’N	169°32’W	3.5	operculum	4.7387
	21°10’S	175°09’W	16	operculum	4.7536
	21°24’N	158°11’W	8	operculum	4.8093
	34°17’N	136°49’E	1	operculum	5.1355

Neodexiospira foraminosa
Table 1 (continued).

	2	3	4	5	6
Neodexiospira lamellosa					
	34°05’S	151°08’E	?	operculum	5.0714
	35°01’S	138°30’E	?	operculum	5.6582
Neodexiospira mannarensis					
	08°58’N	79°55’E	0.5	operculum	4.522
	22°45’N	41°35’W	1	operculum	4.797
	22°59’S	43°03’W	1	operculum	4.8842
	38°35’S	58°40’W	1	operculum	6.3667
Neodexiospira preacuta					
	19°37’N	37°14’E	40	operculum	4.2666
	17°24’S	177°43’E	15	operculum	4.6816
	21°10’S	175°09’W	3	operculum	4.7379
	19°44’N	155°05’W	0	operculum	4.9549
Paradexiospora (S.) violacea					
	55°34’N	161°18’W	72	tube	6.1184
	45°20’N	53°17’W	88	tube	6.6811
	56°24’N	143°22’E	50	tube	6.689
	55°34’N	161°18’W	27	tube	6.8248
	45°49’N	55°34’W	70	tube	6.9073
	69°35’N	31°18’E	0	tube	7.0461
	60°35’N	147°25’W	?	tube	7.0478
	69°06’N	36°03’E	0	tube	7.0764
	62°05’N	179°19’E	72	tube	7.0847
	76°26’N	25°30’E	110	tube	7.0874
	59°06’N	163°31’E	1	tube	7.1035
	75°30’N	23°30’E	70	tube	7.156
	69°06’N	36°03’E	55	tube	7.2261
	51°54’N	177°24’E	18	tube	7.2348
	59°09’N	163°16’E	9	tube	7.4404
	59°09’N	163°16’E	15	tube	7.4404
	54°45’N	167°43’E	0	tube	7.4408
	58°50’N	170°22’E	75	tube	7.5034
	50°51’N	155°41’E	40	tube	7.5047
	55°11’N	165°56’E	0	tube	7.5149
	78°22’N	15°05’E	25	tube	7.5234
	78°22’N	15°05’E	3	tube	7.5725
	55°11’N	165°56’E	30	tube	7.6484
	50°51’N	155°41’E	12	tube	7.6678
	46°47’N	56°16’W	55	tube	7.7106
Table 1 (continued).
Таблица 1 (продолжение).

1	2	3	4	5	6
Paradexiospira (S.) violacea					
60°06’N	165°10’E	3	tube	7.7808	
65°54’N	169°41’W	48	tube	7.8076	
50°44’N	156°10’E	14	tube	7.8324	
50°52’N	156°40’E	10	tube	7.8324	
50°52’N	156°40’E	15	tube	7.8324	
50°44’N	156°10’E	3	tube	7.8559	
53°05’N	160°03’E	18	tube	7.9267	
52°49’N	158°38’E	10	tube	8.1005	
52°49’N	158°38’E	12	tube	8.1005	
72°57’N	55°54’E	25	tube	8.2805	
Paradexiospira (S.) cancellata					
45°49’N	55°34’E	70	tube	3.8231	
56°11’N	163°23’E	118	tube	5.4482	
49°43’N	156°16’E	172.5	tube	6.3014	
56°24’N	143°22’E	76	tube	6.5351	
57°50’N	162°25’E	120	tube	6.5559	
45°20’N	53°17’W	88	tube	6.6811	
56°24’N	143°22’E	50	tube	6.689	
59°04’N	154°01’E	62	tube	6.8908	
57°46’N	156°48’E	76	tube	7.0372	
62°95’N	179°19’E	72	tube	7.0847	
61°50’N	170°30’E	72	tube	7.0915	
59°09’N	163°16’E	3	tube	7.1035	
46°42’N	56°10’W	90	tube	7.2165	
69°06’N	36°03’E	61	tube	7.2261	
59°55’N	172°25’E	75	tube	7.2998	
60°55’N	172°25’E	60	tube	7.3001	
59°09’N	163°16’E	15	tube	7.4404	
54°49’N	167°33’E	20	tube	7.4851	
66°18’N	33°17’E	25	tube	7.5029	
47°03’N	56°07’W	70	tube	7.5612	
78°22’N	15°05’E	?	tube	7.5725	
66°18’N	33°17’E	28	tube	7.5768	
53°16’N	159°58’E	25	tube	7.9267	
69°46’N	60°35’E	20	tube	7.9553	
Paradexiospira (S.) vitrea					
50°41’N	157°30’E	217	tube	5.3666	
56°06’N	137°34’E	62	tube	5.797	
Table 1 (continued).
Таблица 1 (продолжение).

1	2	3	4	5	6
59°00'N	142°35'E	62 tube	5.8186		
43°38'N	146°58'E	150 tube	5.9227		
49°28'N	02°31'W	25 tube	5.9652		
35°25'N	120°53'W	0 tube	6.0217		
50°09'N	155°01'E	242 tube	6.0398		
49°55'N	06°17'W	25 tube	6.0676		
50°22'N	04°09'W	15 tube	6.0751		
49°55'N	06°17'W	0 tube	6.0842		
36°38'N	121°56'W	0 tube	6.1164		
50°22'N	04°09'W	0 tube	6.1259		
49°28'N	02°31'W	0 tube	6.1738		
49°53'N	155°38'E	140 tube	6.2859		
49°43'N	156°16'E	172.5 tube	6.3014		
49°51'N	156°18'E	151 tube	6.3014		
44°37'N	124°5'W	0 tube	6.4075		
54°33'N	142°40'E	67 tube	6.6084		
59°16'N	10°36'E	40 tube	6.6115		
56°24'N	143°22'E	50 tube	6.689		
42°18'N	141°00'E	0 tube	6.7034		
42°18'N	141°00'E	15 tube	6.7343		
42°27'N	130°56'E	5 tube	6.7595		
42°38'N	130°45'E	5 tube	6.7595		
48°00'N	123°00'E	0 tube	6.7595		
42°27'N	130°56'E	10 tube	6.9256		
42°38'N	130°45'E	10 tube	6.9256		
68°55'N	37°37'E	167 tube	7.019		
49°52'N	155°56'E	106 tube	7.0434		
60°35'N	147°25'W	? tube	7.0478		
69°06'N	36°03'E	3 tube	7.0764		
62°05'N	179°19'E	72 tube	7.0847		
59°09'N	163°16'E	2 tube	7.1035		
58°59'N	154°01'E	36 tube	7.1448		
71°06'N	42°40'E	127.5 tube	7.2083		
69°06'N	36°03'E	55 tube	7.2261		
50°06'N	140°33'E	20 tube	7.2391		
43°01'N	144°50'E	0 tube	7.2469		
Table 1 (continued).
Таблица 1 (продолжение).

1	2	3	4	5	6
53°32'N	160°03'E	80	tube	7.2557	
43°01'N	144°50'E	15	tube	7.3171	
52°50'N	172°45'E	11	tube	7.3291	
43°44'N	145°32'E	3	tube	7.3693	
72°00'N	48°10'E	95	tube	7.44	
59°09'N	163°16'E	6	tube	7.4404	
43°46'N	145°54'E	26	tube	7.446	
47°09'N	152°15'E	0	tube	7.4598	
47°09'N	152°15'E	20	tube	7.4614	
66°18'N	33°17'E	25	tube	7.5029	
50°51'N	155°41'E	40	tube	7.5047	
57°33'N	156°37'E	38	tube	7.5108	
55°11'N	165°56'E	0	tube	7.5149	
78°22'N	15°05'E	25	tube	7.5234	
73°77'N	53°00'E	145	tube	7.5487	
54°46'N	137°14'E	40	tube	7.5501	
78°22'N	15°05'E	2	tube	7.5725	
53°16'N	159°58'E	1	tube	7.5795	
55°11'N	165°56'E	20	tube	7.6612	
50°51'N	155°41'E	10	tube	7.6678	
56°11'N	163°23'E	14.5	tube	7.7053	
50°52'N	156°40'E	40	tube	7.7069	
52°57'N	158°29'E	4	tube	7.7705	
60°06'N	165°10'E	3	tube	7.7808	
65°54'N	169°14'W	48	tube	7.8076	
54°46'N	137°14'E	8	tube	7.8133	
50°52'N	156°40'E	15	tube	7.8324	
60°21'N	167°04'E	2.5	tube	7.8738	
56°06'N	137°34'E	10	tube	7.9463	
59°31'N	150°44'E	0	tube	7.9602	
59°31'N	150°44'E	10	tube	7.963	
64°21'N	173°22'W	8	tube	8.0382	
53°16'N	159°58'E	10	tube	8.0503	
64°21'N	173°22'W	4	tube	8.0905	
52°57'N	158°29'E	10	tube	8.1005	
72°57'N	55°54'E	25	tube	8.2805	
Table 1 (continued).
Таблица 1 (продолжение).

	1	2	3	4	5	6
	Paradexiospora (S.) vitrea					
	79°24'N	91°13'E	24	tube	8.493	
	Spirorbis tridentatus					
	79°34'N	10°595'E	44	tube	7.3089	
	42°39'N	130°47'E	0	operculum	6.7595	
	42°39'N	130°47'E	4	operculum	6.7595	
	47°08'N	130°47'E	0.5	operculum	6.8488	
	47°08'N	130°47'E	0	operculum	6.8488	
	47°08'N	130°47'E	3	operculum	6.8488	
	47°08'N	130°47'E	0	operculum	6.8488	
	47°08'N	130°47'E	4	operculum	6.8488	
	42°27'N	130°56'E	7	operculum	6.9256	
	42°27'N	130°56'E	17	operculum	7.2897	
	43°27'N	145°54'E	9	operculum	7.4561	
	33°145'N	118°10'W	1	operculum	5.6744	
	36°19'S	174°48'E	0	operculum	5.5975	
	Neodexiospira brasiliensis					
	33°05'N	138°50'E	20	operculum	5.0568	
	43°12'N	140°51'E	0	operculum	6.3087	
	42°20'N	141°02'E	0	operculum	6.7034	
	33°56'S	25°37'E	0	operculum	5.0501	
	33°54'S	18°29'E	0	operculum	5.7905	
	11°25'N	162°22'E	0	operculum	4.4933	
	30°23'N	88°54'W	1	operculum	4.8049	
	19°39'N	37°14'E	1	operculum	4.2598	
	50°49'N	01°07'W	1	operculum	6.3038	
	27°37'S	48°33'W	1	operculum	4.7628	
	19°07'S	146°51'E	?	operculum	4.5635	
	43°09'S	147°51'E	?	operculum	5.7379	
	33°57'S	151°10'E	?	operculum	5.0714	
	Neodexiospira formosa					
	22°29'N	56°40'W	0	operculum	4.6924	
	24°46'N	48°08'W	0	operculum	4.7735	
	39°07'N	70°24'W	0	operculum	5.8926	
	03°22'S	39°58'E	0.5	operculum	4.6705	
	09°41'N	80°00'E	1	operculum	4.522	
	08°00'N	79°49'E	1	operculum	4.3906	
	34°01'N	76°05'W	0	operculum	4.7193	
	12°10'N	68°18'W	1	operculum	4.4731	
	33°51'S	151°17'E	0	operculum	5.0714	
	1	2	3	4	5	6
---	----	----------------------	----	----	------------------	------------------
	Neodexiospira kayi					
1	03°22'S	39°58'E	2	operculum	4.6705	
	08°00'N	79°49'E	1	operculum	4.3906	
	29°43’N	47°44'E	0	operculum	5.048	
2	42°38’N	130°45'E	10	operculum	6.9256	
	36°38’N	121°56’W	0	operculum	6.1164	
	33°24’N	118°21’W	0	operculum	5.6744	
	21°08’S	176°09’W	1	operculum	4.7376	
	21°08’S	176°09’W	7	operculum	4.7427	
	44°38’N	33°33’E	3	operculum	6.4392	
	44°50’N	34°59’E	4	operculum	6.4288	
	44°50’N	34°59’E	12	operculum	6.6237	
	33°51’S	151°17’E	0	operculum	5.0714	
	36°03’S	136°42’E	0	operculum	5.5984	
	14°41’S	145°27’E	0	operculum	4.6827	
	19°07’S	146°51’E	0	operculum	4.5635	
	23°31’S	152°05’E	0	operculum	4.8571	
	27°30’S	153°24’E	0	operculum	4.8485	
	30°02’S	153°12’E	0	operculum	4.9201	
	30°02’S	152°04’E	0	operculum	4.9201	
	35°12’S	150°41’E	0	operculum	5.1145	
	37°16’S	150°03’E	0	operculum	5.3425	
	38°29’S	145.18’E	0	operculum	5.629	
	40°58’S	145°44’E	0	operculum	5.7052	
	43°09’S	147°51’E	0	operculum	5.7379	
	43°12’N	140°51’E	0	operculum	6.3087	
	42°20’N	41°02’E	0	operculum	6.2105	
	32°38’N	16°55’W	0	operculum	5.1635	
	32°38’N	16°55’W	15	operculum	5.1528	
	25°43’N	79°18’W	1	operculum	4.7152	
	10°30’N	61°02’W	1	operculum	4.7185	
	50°21’N	4°10’W	12	operculum	6.0751	
	49°55’N	06°19’W	5	operculum	6.0842	
	49°55’N	06°19’W	20	operculum	6.0676	
	53°09’N	09°07’W	0	operculum	6.1176	
	48°43’N	04°00’W	0	operculum	6.0992	

	Neodexiospira pseudocorugata					
1	48°43’N	04°00’W	0	operculum	6.0992	
Table 1 (continued).

Subset	Species (incubation type)	N	1	2	3	5	6
	Neodexiospira pseudocorugata						
	49°11’N	4.80060					
	23°41’S	5.52796					
	33°56’S	5.98453					

Table 2. Results of Tukey HSD test for 10 spirorbin species.

Species (incubation type)	N	1	2	3
Neodexiospira pseudocorugata	35	5.52796	5.52796	
N. brasiliensis (opercular)	25	5.98453		
B. similis (opercular)	20		6.74617	
P. cancellata (tube)	24		6.97104	
N. alveolata (opercular)	11		7.00704	
B. kofiadii (opercular)	24		7.06628	
P. vitrea (tube)	75		7.11541	
B. quadrangularis (opercular)	72		7.22555	
P. violacea (tube)	35		7.41715	

Table 3. The list of morphological characters used in the phylogenetic analysis.

Characters	Character states
1	2
1. Incubation	1 — embryo string attached by a filament to inside of tube, 2 — embryos adhering to tube, 3 — embryos attached to body, 4 — embryo in cup formed by invagination of operculum, 5 — embryos in cuticular cup outside of operculum, 6 — free in tube, 7 — no incubation
2. Tube white opaque	no — 0, yes — 1
3. Tube white porcellanous	no — 0, yes — 1
4. Tube semitransparent porcellanous	no — 0, yes — 1
5. Tube transparent vitreous	no — 0, yes — 1
6. Tube uncoiled	no — 0, yes — 1
7. Tube coiling dextral	no — 0, yes — 1
8. Tube coiling sinistral	no — 0, yes — 1
9. Number of thoracic chaetigers	3 — 3, 4 — 4, 5 — 5, about 7 — 7
---	---
10.	Thoracic membrane length to end of thorax, no apron — 0, up to 8th abdominal chaetiger on convex side — 1, to end of thorax forming apron — 3
11.	Thoracic membrane margins free — 0, fused — 1
12.	Opercular position in radiolar crown — 0, outside of radiolar crown — 1
13.	Crystalline patches present in thorax no — 0, yes — 1
14.	Crystalline patches absent no — 0, yes — 1
15.	Fin & blade collar chaetae absent — 0, present — 1
16.	Cross-striation of collar chaetae present no — 0, yes — 1
17.	Cross-striation of collar chaetae absent no — 0, yes — 1
18.	Typical geniculate collar chaetae absent — 0, present — 1
19.	Strong geniculate collar chaeta absent — 0, present — 1
20.	Sickle chaetae of 3rd chaetiger no — 0, yes — 1
21.	Simple chaetae of 3rd chaetiger no — 0, yes — 1
22.	Abdominal chaetae usual — 0, brush-type — 1, wide — 2
23.	Abdominal hooked chaeta on all chaetigers no — 0, yes — 1
24.	Abdominal hooked chaeta on last chaetigers no — 0, yes — 1
25.	Abdominal hooked chaeta absent no — 0, yes — 1
26.	Anterior fang of thoracic uncini blunt no — 0, yes — 1
27.	Anterior fang of thoracic uncini pointed no — 0, yes — 1
28.	Anterior peg of thoracic uncini trifurcate no — 0, yes — 1
29.	Anterior fang of thoracic uncini laterally pointed no — 0, yes — 1
30.	Anterior peg of thoracic uncini fluted no — 0, yes — 1
31.	Number teeth rows at largest thoracic uncini narrow 1-3 — 0, median 3-5 — 1, wide 4-8 — 2, very wide 6 and more, up to 15 — 3
32.	Abdominal uncini distribution fairly symmetrical — 0, asymmetrical — 1
33.	Larval abdominal glands absent no — 0, yes — 1
34.	Larval abdominal present no — 0, yes — 1
35.	Larval thoracic glands present no — 0, yes — 1
test whether significant differences exist among average oxygen contents in habitats of tube- and operculum-incubating spirorbids.

Results

Phylogenetic analysis

The heuristic searches yielded 8 equally parsimonious trees of 106 steps, with a consistency index (CI) of 0.425 (CI excluding uninformative characters is 0.419) and homoplasy index 0.575 (HI excluding uninformative characters is 0.581). The strict consensus of 8 trees (Fig. 1) shows a reasonably good resolution. Pileolarini is paraphyletic and includes Spirorbini. There is a polytomy in the Pileolarini-Spirorbini clade. An uncertainty in the positions of Amplicaria results in polytomy within this clade on the consensus tree. Romanchiellini is monophyletic and Paralaeospirini is its sister taxon. The consensus tree shows a dichotomy between Romanchiellini-Paralaeospirini and Pileolarini-Spirorbini clades. The positions of Crozetospira and Neomicrorbis are uncertain, resulting in unresolved polytomy. Januini is monophyletic and is located close to the tree base.

Brooding characters were optimized on all eight trees to infer the direction of their evolution.
Fig. 1. Strict consensus of 8 equally parsimonious trees of spirorbin genera showing the transformations in the character 1 (type of incubation). Three transitions from tube incubation to opercular incubation (6 → 5, 6 → 2, 6 → 3, 6 → 4) and one reversal to tube incubation (4 → 1) took place in the evolution of the group.

Fig. 1. Строгий консенсус 8 одинаково парсимонных деревьев родов спирорбин, показывающий трансформацию признака 1 (тип инкубации). Два перехода от трубочной к оперкулярной инкубации (6 → 5, 6 → 2, 6 → 3, 6 → 4) один обратный переход к трубочной инкубации (4 → 1) имели место в эволюции группы.

tion (Fig. 1). Character state = brooding free in tube is the most primitive mode and other brooding types originated from it. Two independent transitions from tube to opercular brooding occurred in the history of the group. One reversal is found in transition from the operculum brooding to the tube brooding with embryos attached to the body by a posterior filament.

Distribution in relation to water oxygen content

Comparison of distribution of all opercular and tube brooders combined showed that tube brooders inhabit waters with higher dissolved oxygen concentration (ANOVA, \(F = 63.94, P < 0.0001 \)). The similar results were obtained when distribution of the three genera (Neodexiospira, Bushiella, and Paradexiospira) was analysed independently (ANOVA, \(F = 106.87, P < 0.001 \)). The Tukey HSD test revealed two significantly different (\(P < 0.05 \)) homogeneous subsets of oxygen concentrations. The first subset included species of operculum-brooding genus Neodexiospira, and the second contained operculum-brooding Bushiella and tube-brooding Paradexiospira. More detailed multiple comparisons of 10 individual species (species with insufficient number of records were omitted) using ANOVA (\(F = 27.217, P < 0.001 \)) and Tukey HSD test showed three homogeneous subsets (Table 3). The first and second subsets consisted of operculum-brooders, while the third subset consisted of a mixture of both brooding types.

Discussion

The results of this study provide several important findings. First, the phylogenetic analysis of morphological characters confirmed the evolutionary schemes based on comparative morphology data (e.g., Gee, 1964; Thorp, 1975;
Knight-Jones, Thorp, 1984; Nishi, 1993) suggesting that opercular brooding is apomorphic and evolved from tube brooding. The results suggest that the two types of opercular brooding chambers (januin and pileolariin) originated independently from tube brooding. Brood chambers of Januini apparently originated early in the evolution of the group, whereas those of Pileolariini are very advanced and appeared much later. Such evolutionary scenario is well corroborated by observations that pileolariin brood chambers are structurally more complex and exhibit a wide range of forms (e.g., Thorp, 1975). The most doubtful result of the study is the reversal from the opercular brooding in Pileolariini to the tube brooding in Spirorbini.

The conclusion of evolutionary novelty of opercular brooding also agrees with those of another phylogenetic analysis of spirorbins (Macdonald, 2003). However, results of Macdonald (2003) suggest that the opercular brooding arose only once within the spirorbin clade, despite the dissimilar morphology that is exhibited by the two major opercular-brooding tribes. According to Macdonald (2003), the januin brood chamber represents a simplification of a more complex form of pileolariin one. From the evolution of development point of view, it is unclear how such evolutionary transformation could proceed, because pileolariin brooding opercula are not only more complex than, but are also very different morphogenetically from the januine operculum.

Both this study and Macdonald (2003) present preliminary, cladistics-based hypotheses of the evolution of brooding in Spirorbinae. Combined analyses of molecular and morphological data are clearly needed to resolve both the relationships within Spirorbinae as well as to address the evolution of brooding in this group. Despite the limitations of both phylogenetic analyses, these studies present an important step towards an understanding of the historical component in evolution of spirorbin brooding. However, even the best phylogeny provides little information on the mechanisms that drive evolutionary transitions in these characters.

Comparison of distribution in several selected operculum- and tube-brooding spirorbins relative to the dissolved oxygen concentration provided the second finding of this study. The results of this comparison partly support the idea that evolution of opercular brooding in spirorbids is related to the oxygen limitation experienced by tube brooders in poorly oxygenated waters. On average, tube brooders inhabit waters with higher oxygen content that operculum brooders do. That opercular brooders inhabit a wider range of oxygen concentrations suggests that they might be less restricted by oxygen content in their distribution.

However, the results do not allow any definite conclusion about validity of Harris (1972) hypothesis. Because of large interspecific variability and the large scale of this investigation, comparison of spirorbin distributions is not the best way to test the hypothesis. More importantly, the original formulation of the hypothesis is self-contradictory, thus not lending itself well to rigorous testing. Harris (1972) suggested that embryos of tube incubating species should have a low oxygen demand, whereas those of operculum incubating species should have high oxygen demand. However, at the same time, the hypothesis predicts that tube incubators (with low oxygen demand) species should inhabit highly-oxygenated waters, whereas operculum incubators (with high oxygen demand) should be found in low-oxygenated waters.

Oxygen demands referred to by Harris (1972) may be defined as oxygen consumption rates by embryos. These rates may differ between tube and operculum incubators if measured at the same temperature. However, oxygen consumption rates are temperature-dependent. An increase of oxygen consumption with increasing temperature has been well documented in marine invertebrates (e.g., Sedova, 2000: echinoderms; Pilditch, Grant, 1999: molluscs; Chen, Kou, 1996: crustaceans; Kupriyanova, Havannah, 2005; Fritzsche, von Oertzen, 1995: polychaetes). At the same time, dissolved oxygen concentration declines with increasing water temperature. The combined effect of the increase in respiration rate and decrease of avail-
able dissolved oxygen may result in oxygen limitation for embryos of both tube and opercular incubating species with increasing temperature even if the original oxygen consumption rates are the same.

Further studies are required to compare oxygen consumption rates by embryos of tube- and opercular-incubating spirorbins and to quantify the effect of temperature on oxygen consumption in both. However, such data may not be sufficient to explain the selective advantage of operculum brooding over tube brooding in low-oxygenated waters. An implicit assumption of this hypothesis is that the gradient between the ambient water oxygen concentration and that inside brooding structures is higher for tube incubators than for operculum incubators. This seems unlikely given the small size of spirorbins. Small size is believed to be adaptive for brooders because it helps to overcome oxygen limitation due to constraints in oxygen diffusion in packed embryos (Chaffe, Strathmann, 1984; Strathmann, Strathmann, 1985; Cohen, Strathmann, 1996). Besides, this suggestion does not take into account any active parental role in brood ventilation.

In addition to passively holding embryos in brooding structures, some invertebrates show active brood care (Dick et al., 1998, 2002; Fernandez et al., 2000). A direct link exists between active brood care and oxygen provision in marine invertebrates, since oxygen limitation has been reported for many taxa. For example, amphipods _Crangonyx pseudograci-lis_ Bousfield, 1985 show a highly responsive form of active brood care involving ventilation of the brood pouch and the “cycling” of eggs therein. Both increased temperature and decreased oxygen concentration result in increased levels of brooding behaviour in this species. Females of amphipod _Apherusa jurinei_ (H. Milne Edwards, 1830) show higher levels of brood care under lowered oxygen conditions, thus serving the changing metabolic demand of the brood (Dick et al., 1998, 2002). Female brachyuran crabs show an active brooding behaviour that helps to provide oxygen to the embryo mass (Fernandez et al., 2000). The simple physiological constraint of oxygen provision in marine invertebrates may have important ecological and evolutionary consequences (Baeza, Fernandez, 2002).

The interaction of embryonic development with temperature and dissolved oxygen regime allows us to re-formulate the hypothesis of the role that oxygen limitation plays in evolution of brooding in spirorbins. As temperature increases and dissolved oxygen concentration decreases, because of an increase in oxygen consumption by embryos, more active parental care is required to meet those demands. Brood ventilation is likely to be more energetically expensive for tube (internal) incubators than for opercular (external) incubators. Thus, the constraints that are imposed on tube incubation in warmer waters are related to the increased energetic costs of parental brood ventilation. Removal of the brood from inside the tube and its positioning in operculum at the end of feeding radioles is an adaptation that allows spirorbins to decrease costs of active parental care in warm-water habitats.

A disadvantage of spirorbin opercular brooding is that fecundity is limited by space in the operculum. However, a lowered number of embryos per brood and potential higher susceptibility to predation may be offset by higher developmental rates of embryos in warm waters. Hess (1993) suggested that extended development of brooded spirorbin embryos can serve as size-related constraint on brooding. Larger egg masses often take longer to develop and oxygen limitation increases development time. Good oxygenation allows larger numbers of eggs per clutch without a significant increase in development time; therefore, larger broods are more beneficial in highly-oxygenated temperate waters, as the example of tube-incubating spirorbins. If opercular brooding provides better oxygenation and is a cheaper ventilation method in oxygen-deficient warm waters, it should also offer the advantage of shorter development time. Therefore, in warmer waters opercular brooding would allow producing more broods per reproductive period, thus increasing total number of offspring and balancing the
effects of lowered fecundity per brood. Total fecundity may be even higher as reproductive period is extended in low latitudes.

The hypothesis proposed here can be tested by measuring the oxygen consumption rates by spirorbin embryos and by tube- and opercular-incubating adults at various temperatures. Studies of effects of temperature and oxygen concentration on development time in spirorbitns would allow testing whether lowered fecundity per brood in operculum incubators is indeed balanced by shorter generation time and increased number of broods per reproductive season.

Acknowledgements
We thank Dmitry Mikhin for his help with downloading oxygen concentration data.

References

Baeza J.A., Fernandez M. 2002. Active brood care in Cancer setosus (Crustacea: Decapoda): the relationship between female behaviour, embryo oxygen consumption and the cost of brooding // Funct. Ecol. Vol.16. P.241–251.

Bhaud M., Duchene J.C. 1996. Change from planktonic to benthic development: is life cycle evolution an adaptive answer to the constraints of dispersal? // Ocean. Acta. Vol.19. P.335–346.

Chaffee C., Strathmann R.R. 1984. Constraints on egg masses. 1. Retarded development within thick egg masses // J. Exp. Mar. Biol. Ecol. Vol.84. P.73–83.

Chia F.-S. 1974. Classification and adaptive significance of developmental patterns in marine invertebrates // Thalas. Jugosl. Vol.10. P.121–130.

Cohen C.S., Strathmann R.R. 1996. Embryos at the edge of tolerance: effects of environment and structure of egg masses on supply of oxygen to embryos // Biol. Bull. Vol.190. P.8–15.

Dick J.T., Faloone S.E., Elwood R.W. 1998. Active brood care in an amphipod: influences of embryonic development, temperature and oxygen // Anim. Behav. Vol.56. P.663–672.

Dick J.T.A., Bailey R.J.E., Elwood R.W. 2002. Maternal care in the rockpool amphipod Apherusa jurinei: developmental and environmental cues // Anim. Behav. Vol.63. P.707–713.

Chen J.C., Kou T.T. 1996. Effects of temperature on oxygen consumption and nitrogenous excretion of juvenile Macrobrachium rosenbergii // Aquaculture. Vol.145. P.295–303.

Fernandez M., Bock C., Portner H.O. 2000. The coast of being a caring mother: the ignored factor in the reproduction of marine invertebrates // Ecol. Lett. Vol.3. P.487–494.

Fritzsche D., von Oertzen J.A. 1995. Metabolic responses to changing environmental conditions in the brackish water polychaetes Marenzelleria viridis and Hediste diversicolor // Mar. Biol. Vol.121. P.693–699.

Gee J.M. 1964. The British Spiroribinae with a description of Spirorbis cuneatus sp. n., and a review of the genus Spirorbis // Proc. Zool. Soc., London. Vol.143. P.405–441.

Harris T. 1972. Some observations upon methods of incubation in the genus Spirorbis and their possible zoogeographic significance // Clark R.B., Wooton R.J. (eds.). Essays in Hydrobiology presented to Leslie Harvey. University of Exeter. P.107–118.

Havenhand J.N. 1993. Egg to juvenile period, generation time, and the evolution of larval type in marine invertebrates // Mar. Ecol. Prog. Ser. Vol.97. P.247–260.

Hess H. 1993. The evolution of parental care in brooding spirorbid polychaetes: the effect of scaling constraints // Am. Nat. Vol.141. P.577–596.

Knight-Jones P., Bowden N. 1979. Incubation and scissiparity in Sabelllidae (Polychaeta) // J. Mar. Biol. Ass. U. K. // Vol.64. P.809–818.

Knight-Jones P., Thorp C.H. 1984. The opercular brood chambers of Spirorbidae // Zool. J. Linn. Soc. Vol.80. P.121–133.

Kupriyanova E.K., Nishi E., ten Hove H.A., Rzhavsky A.V. 2001. Life-history patterns in Serpulimorph polychaetes: ecological and evolutionary perspectives // Ocean. Mar. Biol. Ann. Rev. Vol.39. P.1–101.

Kupriyanova E.K., Havenhand J.H. 2005. Effects of temperature on sperm swimming behaviour, respiration and fertilisation success in the serpulid polychaete Galeolaria caespitosa (Annelida: Serpulidae) // Invert. Reprod. Devel. Vol.48. P.7–17.

Kupriyanova E.K., ten Hove H.A., Nishi E. 2012. A taxonomic revision of the genus Pseudochitinopoma Zibrowius, 1969 (Serpulidae, Annelida) with descriptions of two new species // Zootaxa. Vol.3507. P.57–78.

Levin L., Bridges T.S. 1995. Pattern and diversity in reproduction and development // L.R. McEdward (ed.). Ecology of Marine Invertebrate Larvae. Florida, U.S.A.: CRC Press Inc. P.2–48.

Macdonald T.A. 2003. Phylogenetic relations among spirorbid subgenera and the evolution of opercular brooding // Hydrobiologia. Vol.496. P.125–143.

Menge B. 1975. Brood or broadcast? The adaptive significance of different reproductive strategies in two intertidal sea stars Leptasterias hexactis and Pisaster ochraceus // Mar. Biol. Vol.31. P.87–100.

Nishi E. 1993. On the origin of brooding characteristics in spirorbitns with the phylogeny of sabellids and serpulids (Annelida, Polychaeta, Sedentaria) // Proc. Jap. Soc. Syst. Zool. Vol.49. P.6–12.

Rzhavsky A.V. 1991a. Composition of the genus Apherusa (Annelida: Serpulidae) with description of a new species // Zool. Zhurn. Vol.70. No.3. P.5–11 [in Russian].
Rzhavsky A.V. 1991b. [Revision of Januinae (Polychaeta, Spirorbidae) from the seas of the USSR] // Zool. Zhurn. Vol.70. No.8. P.37–45 [in Russian].

Rzhavsky A.V. 1992a. [A review of Protoleodora and Pileolaria (Polychaeta, Spirorbidae) from the Seas of the USSR with the description of a new species Protoleodora gracilis.] // Zool. Zhurn. Vol.71. No.8. P.5–14 [in Russian].

Rzhavsky A.V. 1992b. [A review of Circeinae and Spirorbinae (Polychaeta, Spirorbidae) from the Russian Seas with description of a new species Circeis gurjanovae] // Zool. Zhurn. Vol.71. No.7. P.5–13 [in Russian].

Rzhavsky A.V. 1992c. Circeis vitreopsis sp. n. (Polychaeta, Spirorbidae) from the Japan Sea // Ophelia. Vol.36. P.167–170.

Rzhavsky A.V. 1993. Bushiella (Jugaria) beatlesi sp. n. (Polychaeta: Spirorbidae) from the Kurile islands with remarks on taxonomy, morphology and distribution of some other Bushiella species // Ophelia. Vol.38. P.89–96.

Rzhavsky A.V. 1994. On the morphoecology of spirorbid tubes (Polychaeta: Spirorbidae) Ophelia. Vol.39. P.177–182.

Rzhavsky A.V. 1997. Three new species and a new genus of Spirorbidae (Polychaeta) from the Southern Indian Ocean, with a brief description of two species incerta sedis from the southern Hemisphere // Ophelia. Vol.46. P.233–245.

Rzhavsky A.V. 1998. Circeis oshurkovi sp. n. (Polychaeta, Spirorbidae) from the North Pacific // Ophelia. Vol.48. P.207–210.

Rzhavsky A.V. Kupriyanova E.K., Sikorski A.V. 2018. Field guide to calcareous tubeworms (Polychaeta, Serpulidae) of the Arctic Ocean. Moscow: KMK Sci. Press. 184 p.

Sedova L.G. 2000. The effect of temperature on the rate of oxygen consumption in the sea urchin Strongylocentrotus intermedius // Russ. J. Mar. Biol. Vol.26. P.51–53.

Pilditch A.C., Grant J. 1999. Effect of temperature fluctuations and food supply on the growth and metabolism of juvenile sea scallops (Placopecten magellanicus) // Mar. Biol. Vol.134. P.235–248.

Strathmann R.R., Strathmann M.F. 1982. The relationship between adult size and brooding in marine invertebrates // Am. Nat. Vol.119. P.91–101.

Strathmann R.R., Strathmann M.F. 1985. Oxygen supply and limits on aggregation of embryos // J. Mar. Biol. Ass. UK. Vol.75. P.413–428.

Swofford D.L. 1999. PAUP*: Phylogenetic analysis using parsimony and other methods. Sinauer, Sunderland, MA.

Thorp C.H. 1975. The structure of the operculum in Pileolaria (Pileolaria) granulata (L.) (Polychaeta, Serpulidae) and related species // J. Exp. Mar. Biol. Ecol. Vol.20. P.215–235.

Thorp C.H., Sergove F. 1975. The opercular molt in Spirorbis spirorbis (L.) and S. pusilloides Bush (Polychaeta: Serpulidae) // J. Exp. Mar. Biol. Ecol. Vol.19. P.117–143.

Responsible editor I.A. Jirkov