Solar powered highly efficient Seven-level inverter with switched capacitors

Dr. A. Nazar Ali 1 R. Jai Ganesh2 D. Sivamani3 D. Shyam4
1 Associate Professor, Department of Electrical and Electronics Engineering, Rajalakshmi Engineering College, Rajalakshmi Nagar, Thandalam, Tamil nadu
2 Assistant Professor, Department of Electrical and Electronics Engineering, K. Ramakrishnan College of Technology, Trichy, Tamilnadu.
3 Assistant Professor, Department of Electrical and Electronics Engineering, Rajalakshmi Engineering College, Rajalakshmi Nagar, Thandalam, Tamil nadu
4 Assistant Professor, Department of Electrical and Electronics Engineering, Rajalakshmi Engineering College, Rajalakshmi Nagar, Thandalam, Tamil nadu
E-mail: nazarali.a@rajalashmi.edu.in

Abstract. In this article, a seven-level inverter powered by solar has been proposed to achieve a sinusoidal output voltage with high efficiency and enhanced power quality. This system consists of active inverter and flipped condenser clamping. It gives output voltage level of 2/3. By connecting the switched condenser branch in the front or back end series to the inverter output a seven-level output voltage wave shape can be obtained with ample non-work switching states to match the voltage of switching condensers. The consequence of the proposed method is validated using MATLAB SIMULINK for simulation. Comparing with conventional seven-level inverter topology, the proposed design used a minimal number of switches using a basic modulation process.

1. Introduction

Given the low capacity, high performance and high strength quality, staggered inverters have been widely used in renewable power source transition applications. There's a generating resources for phased inverter exams and their topologies and regulatory techniques [1,2]. In a way of saying, the five-level inverter has been condensed and can usually be divided into three get-togethers: a diode-cinched inverter, a moving capacitor inverter, and an H-connect inverter that drops. The higher yield voltage is a big stress that affects staggered inverter execution. As these topologies of five levels are difficult to loosen to topologies of up to seven levels confined by length, size, effectiveness and strength of action. In this way, discovering an modified topological configuration to reach seven-level yield voltage is justifiable and alluring.

Relevant tests were carried out on the seven stage inverter. A seven-level inverter topology containing two unsymmetrical DC power sources has been shown which in actual and dynamic conditions cannot guarantee clapsed condenser voltage stability. A felling configuration of the 7L inverter topology with a lone source that involves specific force switches regardless of everything. Another type of seven-level dynamic unbiased point clapped inverter topology that uses half-connected PEBB is seen, and it encounters colossal number of DC sources. Seven-level cross breed inverter topology with a single DC is in, whereas topology includes complex capacitor voltage balance calculation. If the topology of the staggered inverter is shown, a fitting tweak technique is crucial, which selects yield execution, such as consistency and efficacy of the waveform. Regulation strategies were planned, for example, for staggered inverters for space vector beat width tweak (PWM), transporter attitude balance, and bearer stage step balance. More precisely, for space vector PWM invention, as yield voltage levels increase, the sum of fundamental vector and the dreary states' decision are usually multifaceted, and are not ideal for seven-level inverter[3].

In the control technique for stage resistance aura is used to boost the complex, neutral point cinched inverter of seven stages. Despite the fact that the problem of multistep bounce in yield voltage is known, additionally raises the yield voltage symphony material. In the sine PWM technique with a sole bearer is used to accomplish modification of the seven-level inverter blended drop[4,5].
2. Seven Level Inverter Topology and Operating Principles:
The altered topology comprises of a working cinching inverter and swapped capacitor component and the past is liable for the staggered voltage, whereas the present is liable for redundancy growth. The shared part of the capacitor contains three switches S9, S10, and S11 as well as two clipped C3 and C4 condensers seen in the Fig. 1, capable of providing two voltages ranges (E and 2E) with the C3 and C4 voltages E tested. As the states of the switches S9, S10, and S11, C3 and C4 are in game plan or identical association, the shared portion of the condenser is configured to make the voltage levels E and 2E[6].

![Figure 1: 7L inverter with switched capacitors](image)

Just where the existing iC of the braced condenser component flows through dynamic responsiveness with respect to c and flows out point d, the traded condenser portion is going along with the dynamic clamping inverter, and literally, The traded condenser component would be in reverse association with the dynamic clamping inverter if iC runs out point c and streams to point d. The seven-level voltage from −3E to 3E can be formed with the interim E by associating exchanged condenser component in forward or backward arrangement to the dynamic bracing inverter. The DC controller comprises two condensers in scheme collaboration with the appraised C1 and C2 voltages3E. It is likely to agree that the unbiased point b is zero potential and yield current io when streaming out of point a.

![Figure 2: Switching States of switched capacitor part (a) Parallel state, (b) Series state](image)
When switching conditions of switches S9, S10, and S11, C3 and C4 are in arrangement or equivalent association, the exchanged capacitor part produces voltages E and 2E. While, there is an rise in unregulated exchange states at E and 2E levels, which is beneficial to balance the voltage of the C3 and C4 condensers. Operation requirements for the exchanged condenser portion appear in Fig. 2. By Fig. 2a, during the switches S9 and S11 the ON and S10 are blocked, the C3 and C4 condensers are attached in equal proportions, within hence the shared capacitor component yield voltage is E. Out of Fig. 2b, the S9 and S11 switches are blocked and the S10 is ON, the C3 and C4 braced capacitors are attached in arrangement and the shared capacitor component yield voltage is 2E. In all cases, the dynamic cinching inverter is connected forward in spite of the fact that the current stream between the clipped capacitor C3 and C4 and out of them is aligned with the dynamic bracing inverter while they are in backwards[7,8].

Working standards of dynamic cinching inverter
The component of the exchanged condenser can be considered as a clasped condenser C all around, where the voltage is both E and 2E levels. Fig. 3 shows the current way and the exchange rates of seven level inverter yield voltages for the 2E level. By Fig. 3a, when the voltage of the reciprocal clasped capacitor C is E and the S1, S3, S5, and S8 switches are ON. If the current io yield is positive, the exchanged condenser portion is in forward association with the circuit, and the present way is S1 to S5 to D8 to a b to C1; if the current io yield is negative, the exchanged condenser portion is in rearward association with the circuit and the present way is a to S8 to C to D5 to D1 to C1 to b. By Fig. 3b, while the reciprocal clasped capacitor voltage C is 2E and the S1, S3, S6, and S7 switches are ON[9]. Whenever the current io yield is positive, the exchanged part of the condenser is in rear association with the circuit and the present way is S3 to D6 to C to S7 to a b; whenever the current io yield is negative, the exchanged part of the condenser is in forward association with the circuit and the present way is D7 to C to S6 to D3 to b.

Working standards of novel seven level inverter with exchanged capacitors
Considering the course of action of voltages obtained from the DC link capacitors and shared capacitors, the stronger yield waveforms of seven stages produce. In Table 1 the courses of voltage operation were listed based on their state. In table 1 the word uab upn, ucd means seven-level inverter yield voltage, DC link yield voltage, capacitor voltage exchanged. The gift"/" is circumvented to the clipped condenser; io > 0 reveals that the yield current streams point an out, and io < 0 reveals that the yielding current streams point a. ‘+’ speaks to charging the clasped condenser, while ‘−’ speaks to free the clipped condenser[10]. At E and 2E stages of yield voltage, there are two excess exchange states, separately, so the cinched
condensers are in charge and release states accordingly. Choosing exchange states under various current headings is important, resulting in a waveform of seven stages of yield voltage. For the planned 7L inverter, there are absolute 12 moving states from 1 to 12. Exchanging states at level 2E are explored in depth, for example.

Switching state 2: The switches S1, S3, S5, S8, S9 and S11 are followed, and the positive cathodes of the DC-link capacitor C1 and the clamped capacitor C3 and C4 are paired in similar association with C3 and C4. Also, the voltage over C1 is 3E, C3 and C4 are all E, so 2E degree of output voltage is gained after 3E short E. As shown by this condition of trade, the present manner appears in Fig. 4a. A. The present ways are represented as S1 to S5 to S9 to C4 to D8 to a to b to C1 and S1 to S5 to S11 to D8 to a to b to C1, C3 and C4 both charge during this process, whenever the performance current io is certain. Where the current io production is negative, the present forms are shown a to S8 to C4 to D9 to D5 to D1 to C1 to b and a to S8 to D11 to D3 to D5 to D1 to C1, C3 and C4 all release along those lines[11,12].

Switching state 3: Switches S1, S3, S6, S7, and S10 are guided, so in the scheme connection negative terminals of the clamped condenser C4 and zero potential point b are aligned with C3 and C4. Furthermore, as the measured voltages of the DC relation are zero, C3 and C4 are all E, after 0 contains 2E; 2E is then obtained. As shown by this condition of trade, the present manner appears in Fig. 4b. whenever the performance current io is definite, the current paths are defined as S3 to D6 to C4 to S10 to S7 to a to b, subsequently both C3 and C4 are in release state. Once again, if the output current io is negative, the present forms are as a to D7 to C3 to D10 to C4 to S6 to D3 to b, in C3 and C4 both charge.

S. no.	uab	upn	ucd	C3/C4 states	io>0	io<0
1	3E	3E	/	/	/	/
2	2E	3E	E	+	−	−
3	2E	0	2E	−	+	+
4	E	0	E	−	+	+
5	E	3E	2E	+	−	−
6	0	0	/	/	/	/
7	0	0	/	/	/	/
8	−E	0	E	+	−	−
9	−E	−3E	2E	−	+	+
10	−2E	−3E	E	−	+	+
11	−2E	0	2E	+	−	−
12	−3E	−3E	/	/	/	/

This is equivalent to researching the other ten moving states types. Table 2 displays seven current voltage ranges for different exchange states. In Table 2, '1' and '0' speak similarly to on and off switch conditions; '/’ speaks to switch state may be either 1 or 0. There are four sets of correlative switches (S1, S2), (S3, S4), (S5, S6), (S7, S8), and (S9, S10) and three sets of switches (S1, S3), (S2, S4), and (S9, S11) providing a common exchange signal for each pair, independently, such that S1, S5, S7, and S9 will work autonomously to dispose of illicit exchange states[13,14].
Figure 4: Switching states of 7L inverter with switched capacitors at 2E level (a) Switching state 2, (b) Switching state 3

3. Results and Discussion

The specifications for the suggested structures are listed in Table 2, where bearer recurrence f_s is 10 kHz, L and C5 speak separately to inductance and capacitance of the channel inducer and condenser, and R speaks to stack interference[15]. Fig. 5 shows the effects of seven-level output voltage, inductor current and independent output voltage on leisure. By Fig. 5a, a waveform of 7L yield voltage is acquired and its pinnacle estimate is 300 V, whereas the valley estimate is −300 V and each yield voltage stage is 200 V. Fig. 5b shows the present of the inductor with an excess of ~10 A. At Crucial recurrence of 50 Hz in Fig. 5c, the isolated output voltage is nearly sinusoidal. Figs. 7a and b display sun-oriented symphonic range with seven-level voltages and distinct output voltage, respectively. THD is 24.06, while THD is 0.53 channel yield voltage. The main abundance of output voltage is 300 V, which means that the strong value is 220 V. Fig. 6, shows the Matlab Simulink model of solar fed seven level inverter [16-18].

Table 2: Values of elements in simulations

Parameter	Value
upn	750 V
uab	300 V/50 Hz
f_s	10 kHz
L	300 μH
R	32.26 Ω
Figure 5: Simulation results of output voltage (a) 7L output voltage, (b) Inductor current, (c) Filtered output voltage
Figure 6: Simulation model of solar powered seven level inverter

![Simulation model diagram]

Fundamental (50Hz) = 310.7, THD = 24.06%
4. Conclusion

This paper proposed a novel operated seven-level inverter dependent on solar powered with exchanged capacitors. The arrangement uses the shared condenser component to create two degrees of voltage E and 2E and extends the excess states. The topology can also recognize seven output voltage ranges with reduced number of switch transistors and gate drivers resulting in ease. The seven-level inverter waveform solar driven THD and filtered output voltage are 24.06 percent and 0.53 percent respectively. Results of replication demonstrated the practicality of the planned seven stage inverter powered by the solar.

References

[1] A Nazar Ali, D Sivamani, R Jaiganesh M Pradeep, Solar powered air conditioner using BLDC motor, IOP Conference Series: Materials Science and Engineering, vol. 23, 2019
[2] V Venkatesh, A Nazar Ali., R Jaiganesh, V Indiragandhi, Extraction and conversion of exhaust heat from automobile engine in to electrical energy Energy, IOP Conference Series: Materials Science and Engineering, vol. 23, 2019.
[3] A Ali Nazar, R Jayabharath, M.D., Udayakumar, An ANFIS Based Advanced MPPT Control of a Wind-Solar Hybrid Power Generation System, International review of modelling and simulations. vol.7, no. 4, pp. 638–643, 2014.
[4] Shyam D, Premkumar K, Thamizhavel T, Nazar Ali A, Vishnu Priya M(2019), Symmetrically Modified Laddered H-Bridge Multilevel Inverter with Reduced Configurationally Parameters, International journal of engineering and advanced technology, Vol 9, issue 1, 2019
[5] A. Nazar Ali and R. Jayabharath, "Performance Enhancement of Hybrid Wind/Photo Voltaic System Using Z Source Inverter with Cuk-sepic Fused Converter." Research Journal of Applied Sciences, Engineering and Technology 7.19 pp. 3964-3970, 2014
[6] AT SankaraSubramanian, PSabarish, A Nazar Ali, A power factor correction based canonical switching cell converter for VSI fed BLDC motor by using voltage follower technique IEEE International Conference on Electrical, Instrumentation and Communication Engineering (ICEICE), pp.1-8, 2017
[7] C. Kalavalli, S.R. Paveethra, S. Murugesan, Dr. A. Nazar Ali, Design And Implementation Of High Efficiency H6 PV Inverter With Dual Axis Tracking, International Journal of Scientific & Technology Research, Vol 9, issue 02, pp. 4728-31, 2020
[8] R.Paveethra, C. Kalavalli, S. Vijayalakshmi, Dr. A. Nazar Ali, D. Shyam, Evaluation Of Voltage Stability of Transmission Line With Contingency Analysis, International Journal of Scientific & Technology Research, Vol 9, issue 02, pp. 4018-22, 2020
[9] Premkumar, Kamaraj et al. (2018), Antlion Algorithm Optimized Fuzzy PID Supervised On-line Recurrent Fuzzy Neural Network Based Controller for Brushless DC Motor, Electric Power Components and Systems, 45, 20, pages 2304-2317.
[10] Rajkumar, B. Karthikeyan and S. Senthil Kumar, Fuzzy Logic Control of Fast Transient Response DC-DC Converter, Middle-East J. Sci. Res., 23 (9): 2256-2263, 2015.
[11]K Premkumar et al. (2018), Novel bacterial foraging-based ANFIS for speed control of matrix converter-fed industrial BLDC motors operated under low speed and high torque, Neural Computing and Applications, 29, 12, pages.1411–1434.
[12]Premkumar et al. (2015), GA-PSO optimized online ANFIS based speed controller for Brushless DC motor, Journal of Intelligent & Fuzzy Systems, 28, 6, pages.2839-2850.
[13]A. Nazar Ali and R. Jayabharath. "Performance Enhancement of Hybrid Wind/Photo Voltaic System Using Z Source Inverter with Cuk-sepic Fused Converter." Research Journal of Applied Sciences, Engineering and Technology7.19 (2014): 3964-3970.
[14]S. S. Dobakhshari, J. Milimonfared, M. Taheri, and H. Moradisizkoohi, “A quasi-resonant current-fed converter with minimum switching losses,” IEEE Trans. Power. Electron., vol. 32, no. 7, pp. 353–362, Jan. 2017.
[15]A. Nazar Ali, Dr. R. Jayabharath, R. Shanthi Priyadharshini. —A Single phase high efficient transformer less inverter for PV Grid connected power system using ISPWM technique." International Journal of Applied Engineering Research (IJATER) Volume 10, No.9 (2015), pp.7489-7496
[16]A Nazar Ali, R Jeayabharath, MD Udayakumar. Cascaded Multilevel Inverters for Reduce Harmonic Distortions in Solar PV Applicationsl Asian Journal of Research in Social Sciences and Humanities, Vol 6,pp.703-715.
[17]A. Nazar Ali and R. Jayabharath. "Performance Enhancement of Hybrid Wind/Photo Voltaic System Using Z Source Inverter with Cuk-sepic Fused Converter." Research Journal of Applied Sciences, Engineering and Technology7.19 (2014): 3964-3970.
[18]M D Udayakumar et al 2019 IOP Conf. Ser.: Mater. Sci. Eng. 623 012018