Electrochemical \([^{11}\text{C}]\text{CO}_2\) to \([^{11}\text{C}]\text{CO}\) conversion for PET imaging†

David A. Anders,a,b Salvatore Bongarzone,b Robin Fortt,b Antony D. Gee*b and Nicholas J. Long*a

The development of a novel electrochemical methodology to generate carbon-11 carbon monoxide (\([^{11}\text{C}]\text{CO}\)) from cyclotron-produced carbon-11 carbon dioxide (\([^{11}\text{C}]\text{CO}_2\)) using \(\text{Ni}(\text{cyclam})\) and \(\text{Zn}(\text{cyclen})\) complexes is described. This methodology allows up to 10% yields of \([^{11}\text{C}]\text{CO}\) from \([^{11}\text{C}]\text{CO}_2\). Produced \([^{11}\text{C}]\text{CO}\) was subsequently converted to \([^{11}\text{C}]\text{N}-\text{benzylbenzamide}\) under mild conditions with a radiochemical purity (RCP) of >98%.

Electrochemical reduction of \(\text{CO}_2\) to \(\text{CO}\) has long been considered an important issue for tackling environmental sustainability. The challenge lies in converting the thermodynamically stable \(\text{CO}_2\) molecule into more energetic compounds. The largest thermodynamic barrier is the first electron addition to convert the linear \(\text{CO}_2\) molecule to a bent anion radical (\(\text{COO}^-\)) at \(E = -1.90\) V.1 So far, 2nd and 3rd row transition metal elements have dominated this area although only \(\text{Au}\) and \(\text{Ag}\) generate \(\text{CO}\) with Faradaic efficiencies (FE) above 80% and maintain high current densities.2,3 Their activities have been boosted by nanostructuring techniques controlling the surface morphology.4 Other cheaper metals such as \(\text{Sn}, \text{Sb}, \text{Pb}\) and \(\text{Bi}\) have been used to convert \(\text{CO}_2\) to \(\text{CO}\) with high current efficiencies using ionic liquids to stabilise the \(\text{COO}^-\) intermediate.5 Ionic liquids have been increasingly studied for their role in lowering thermodynamic barriers in \(\text{CO}_2\) reduction and so too have group 1 cations such as \(\text{K}^+\) and \(\text{Cs}^+\).6

Homogenous electrocatalysts for \(\text{CO}_2\) reduction, such as cathode materials, have previously been dominated by metals such as \(\text{Pd}, \text{Ru}, \text{Rh}\) and \(\text{Re}\).7 Over the last few decades, many complexes of the first row transition metal elements such as \(\text{Fe}, \text{Co}, \text{Cr}, \text{Cu}, \text{Mn}\) and \(\text{Ni}\) have been used as electrocatalysts. Most notably metal cyclams (metal = \(\text{Ni}\) and \(\text{Co}\)),8 metalloporphyrins (\(\text{Fe}, \text{Co}\) and \(\text{Ni}\)),9 metal polypyridines (\(\text{Cr}, \text{Fe}, \text{Co}\) and \(\text{Ni}\)), and metal phthalocyanines (\(\text{Ni}, \text{Co}, \text{Mn}, \text{Fe}\) and \(\text{Cu}\)).10 Most of these catalysts act as electron shuttles between the electrode and the \(\text{CO}_2\) molecule and so generally the metal is in a low oxidation state and the ligand stabilises the intermediates by some inner-sphere effect. Recently, several groups have also highlighted that the activity of these catalysts can be boosted by adding protons on addition of mild acids (\(\text{CF}_3\text{CH}_2\text{OH}\))11 and further increases in activity were realised when these acidic groups were added to the surrounding ligand.9

One of the most well-studied transition metal catalysts is \(\text{Ni}(\text{cyclam})\)12 which demonstrates very good \(\text{CO}\) selectivity at relatively low overpotentials in aqueous conditions. Most studies have been conducted at a \(\text{Hg}\) electrode due to the large negative potential window. Furthermore, \(\text{Ni}(\text{cyclam})\)12 has been shown to adsorb to the \(\text{Hg}\) electrode and increase its reactivity to \(\text{CO}_2\) as a result.12 Recent studies by Kubiak and co-workers have demonstrated effective \(\text{CO}_2\) reduction at a glassy carbon electrode13 with the catalyst efficiency boosted by a \(\text{CO}\) scavenger \([\text{Ni}(\text{tetramethylcyclam})]^{2+}\)14.

Our interest was to apply the electrochemical reduction to carbon-11 \(\text{CO}_2\) (\([^{11}\text{C}]\text{CO}_2\)) generating \([^{11}\text{C}]\text{CO}\). The range of functionalities that can be synthesised from \([^{11}\text{C}]\text{CO}\) make it an attractive precursor for positron emission tomography (PET) radiotracer development.15,16 However, the poor solubility of \([^{11}\text{C}]\text{CO}\) in organic solvents and low partial pressure, adds to the challenge of a short half-life (\(t_{1/2} = 20.4\) min). A number of methodologies have been developed to convert cyclotron-produced \([^{11}\text{C}]\text{CO}_2\) to \([^{11}\text{C}]\text{CO}\): (1) gas phase reduction method, which involves passing \([^{11}\text{C}]\text{CO}_2\) through a heated column of zinc or molybdenum at 400 °C or 850 °C respectively.17 Whilst molybdenum is preferred, both methods suffer reliability and repeatability issues making clinical production difficult from a regulatory stand-point; (2) chemical reduction methods that have been trialled use reactive silane lithium reagents that must be prepared beforehand.18

The aim of this work was to conduct a proof-of-principle study into the viability of electrochemical \([^{11}\text{C}]\text{CO}_2\) reduction to \([^{11}\text{C}]\text{CO}\) within a radiochemical setting. Trapping efficiencies...
represent decay-corrected trapped radioactivity as a percentage of dispensed radioactivity. RCY's are decay corrected and are estimated from dispensed 11C\textsubscript{2}O converted to 11C\textsubscript{12}N-benzylbenzamide (5).

A DropSens6 screen printed electrode with a carbon working electrode (WE), a counter electrode (CE) and a silver reference electrode (RE) was used for the electrochemical conversion (Fig. 1A). Fig. 1B and C show how the electrodes and electrode connector fit inside Vial A.

Initial experiments were conducted using a two vial set-up (set-up I – Vials A and B, Fig. 2). Vial A (used to convert 11C\textsubscript{2}O to 11C\textsubscript{12}C) contains the electrodes and the electrocatalysts Ni(cyclam)$^{2+}$ or Zn(cyclen)$^{2+}$ (1–2, Scheme 1) complexes in 0.1 M KCl (aq.) solution at 20 °C.19 Vial B (used to trap and fix 11C\textsubscript{12}C) containing the carboxylation reagents to produce 11C\textsubscript{12}C-N-benzylbenzamide (11C\textsubscript{12}C, Scheme 1).20 An ascarite trap was placed between the two vials to capture any untrapped 11C\textsubscript{2}O (Fig. 2).

Set-up I

![Diagram of the set-up](Fig. 2) Schematic of the two-vial, one-valve setup. (1) 11C\textsubscript{2}O delivered to Vial A with potentiostat switched on for 5 min (prior to and during delivery). (2) Helium sweep gas applied for 30 s through Vial B. (3) Carboxylation reaction in Vial B conducted for 10 min at 40 °C.

Radioactivity distribution for reduction of 11C\textsubscript{2}O to 11C\textsubscript{12}C and subsequent 11C\textsubscript{12}C capture conducted with 1 (50 mg, 227 mmol) or 2 (65 mg, 227 mmol) in 0.1 M KCl (aq.) (1 mL). Radiochemical purity (RCP) of 11C\textsubscript{12}C determined by analytical radio HPLC. b Decay corrected radiochemical yields (RCY) are based on the radioactivity of Vial B multiplied by the radiochemical purity of 11C\textsubscript{12}C compared to the total radioactivity measured at end of cyclotron target bombardment (EOB).

Entry	Complex	E_{app} (V)	Radioactivity Vial A remaining at EOS (%)	Radioactivity Vial B at EOS (%)	11C\textsubscript{3}C\textsubscript{4}RCP (%)	11C\textsubscript{3}C\textsubscript{4}RCY (%)
1	1	0	5.5	0.5	75	<1
2	1	−1.8	3.5	7.2	97	7
3	2	−1.8	1.2	9.8	98	10

The setup tested is shown in Fig. 2. As the first experiment, 11C\textsubscript{2}O was bubbled through the system with no potential applied to the electrodes. A low percentage (~1%) of 11C\textsubscript{12}C was detected and this was believed to be from cyclotron generated 11C\textsubscript{12}C. When a potential of −1.8 V vs. Ag/AgCl was applied (in non-radioactive experiments (see ESI†)) potentials of −1.4 and −1.6 V were used to allow full quantification of CO production, at −1.8 V, the detector was quickly saturated by CO. At more negative potentials H2 production was thought to become more favourable). 11C\textsubscript{12}C was produced with high RCP’s (>98%) but low RCY’s (Table 1, entries 2 and 3). The low RCY was thought to be due to the low trapping efficiency of 11C\textsubscript{2}O within Vial A. From these preliminary results it appeared that complex 2 performed marginally better than complex 1. The predicted trapping of 11C\textsubscript{2}O as an adduct of 114 [ESI, S2] was not observed in any usable quantity so experiments were conducted with 2.

In order to evaluate and improve the trapping of 11C\textsubscript{2}O in Vial A we designed a two-vial, one-valve set-up (set-up II) shown in Fig. 3. During 11C\textsubscript{2}O delivery, Vial A was connected to ascarite 1 (Eckert & Ziegler Modular-Lab). By placing ascarite 1 after Vial A, the amount of 11C\textsubscript{2}O trapped in Vial A before starting the electrolysis step could be assessed. At end of
delivery (EOD) electrolysis would begin at −1.8 V and on completion of electrolysis, the valve was moved to divert gases ([11C]CO2 and [11C]CO) to Vial B by Helium purge. Ascariate 2 was placed after Vial B so that relative amounts of [11C]CO2 and [11C]CO (the latter assumed to be converted to [11C]5) in Vial B could be established by radio HPLC (see ESI†).

The performance of set-up II was evaluated using complex 2 at 150 and 15 mM (Table 2, entries 1 and 2). Increasing the concentration of 2 from 15 to 150 mM resulted in higher trapping (56% and 66% respectively) and conversion (<1% and 4% RCY, respectively). The improvements in trapping [11C]CO2 have been previously achieved using bases such as diazabicyclo[5.4.0]undecene (DBU), 2-tert-butyllimino-2-diethylamino-1,3-dimethylperhydro-1,3,2-diazaphosphorine (BEMP), tetramethylethlyenediamine (TMEDA)21 and triethanolamine (TEA).22 For our study we chose the strong base DBU and a weaker base TEA.

The next experiments were performed using 150 mM of 2. To improve [14C]CO2 trapping, DBU was added. A high concentration of base was used initially to improve the trapping of [14C]CO2 and subsequently promote the formation of [14C]5. Although 75 mM of bases increased the trapping of [14C]CO2 (Table 2, entry 1 versus entry 3) the high concentration appeared to prevent the formation of [14C]CO. No conversion was observed until HCl was added (0.2 mL of 0.1 N HCl, Table 2, entry 4). This was thought to be due to a change of pH from 6.5 to 12–13 from using DBU in water solution. The resultant acidification of Vial A (on addition of HCl) released the trapped [14C]CO2 so it was free to be converted to [14C]CO.

On addition of HCl, entry 4 showed a RCY of 3%. A lower concentration of base (7.5 mM) was used to investigate if the concentration of 2 and the concentration of base had an optimum combination, perhaps acting through the base binding with 2. Substitution of DBU for TEA was added as a more moderate base (pH 9–10) and the trapping efficiency varying from 23–65% in Vial A (Table 2, entries 6–10). Table 2, entries 7 and 8, showed trapping efficiencies of ~60%. On reducing the concentration of 2 to 15 mM, the trapping efficiency is halved (~30%) irrespective of the concentration of TEA suggesting that the concentration of 2 plays a larger role than TEA in trapping [14C]CO2. This variety of trapping efficiencies shown in Table 2 was thought to be a consequence of the high flow rate (50 ml min⁻¹) of [14C]CO2 into an aqueous solution.23

The optimum RCY achieved (Set-up II, Fig. 3) was 5% (Table 2, entry 8) which was obtained when 7.5 mM of TEA was used. These results appeared to show that a compromise of a milder base would still facilitate reasonable trapping whilst not hindering [14C]CO2 reduction. In order to simplify the reaction set-up and increase electrode surface area, a 2-electrode set-up was used in Vial A. This involved using just the working electrode (WE) and the counter electrode (CE) (Table 2, entries 11–13). The optimum conversion achieved by the 2-electrode cell was 6% (Table 2, entry 13) with 52% of [14C]CO2 initially trapped in Vial A.

In conclusion, the first electrochemical [14C]CO2 to [14C]CO reduction has been achieved with a 2-vial set-up to incorporate the [14C]CO product into [14C]N-benzylbenzamide in a proof-of-principle study. 2 showed good [14C]CO2 trapping and conversion to [14C]CO. The effectiveness of 2 compared to 1 for [14C]CO2 reduction was surprising and further studies are needed to investigate this fully although we believe that ZnO nanoparticles are being generated at the electrode. Improvements in the performance of 1 could come from binding the catalyst to the electrode.8,25 Furthermore, the application of a two-electrode design of Vial A was shown to be viable. We believe that a pre-concentration step of [14C]CO2 prior to vial A would lead to better performance both in trapping of [14C]CO2 and conversion.

This work was supported by the Medical Research Council through financial support (MRC-1527506 and MR/K022733/1) and the Institute of Chemical Biology at Imperial College London. The authors acknowledge financial support from the

Table 2 Conditions and results using Set-up II for the reduction of [14C]CO2 to [14C]CO by 2 and subsequent [14C]CO capture as [14C]5

Entry	Base (mM)	HCl added (0.1 N, 0.2 mL)	Est. [14C]CO2 trapping in Vial A at EODa (%)	RCPb [%]	RCY [%]
1	150	—	66	7	4
2	15	—	56	3	1
3	150	DBU (75)	80	—	—
4	150	DBU (75)	48	3	3
5	150	DBU (7.5)	18	—	—
6	150	TEA (7.5)	23	—	—
7	150	TEA (7.5)	65	29	1
8	150	TEA (7.5)	60	7	5
9	150	TEA (7.5)	32	10	<1
10	15	TEA (7.5)	35	8	2
11a	150	—	12	8	3
12d	150	TEA (7.5)	64	5	<1
13d	15	TEA (7.5)	52	20	6

Reaction conditions: 2 (15–150 mmol), base (7.5–75 mM) in 0.1 M KCl(aq) (1 mL). The acid was added after peak [11C]CO2 trapping in Vial A was achieved. a Trapping in A = % radioactivity in Vial A versus total radioactivity released by the cyclotron. b RCP determined by analytical radio-HPLC. c Radiochemical yield (RCY) = [(Radioactivity in Vial B × RCP [14C]5)/Radioactivity in Vial A at EOD] × 100. d Only WE and CE used.
Notes and references

1. J. Schneider, H. Jia, J. T. Muckerman and E. Fujita, *Chem. Soc. Rev.*, 2012, 41, 2036.

2. Y. Hori, A. Murata, K. Kikuchi and S. Suzuki, *J. Chem. Soc., Chem. Commun.*, 1987, 728.

3. N. Hoshi, M. Kato and Y. Hori, *J. Electroanal. Chem.*, 1997, 440, 283.

4. Y. Chen, C. W. Li and M. W. Kanan, *J. Am. Chem. Soc.*, 2012, 134, 19969; A. Salehi-Khojin, H.-R. M. Jhong, B. A. Rosen, W. Zhu, S. Ma, P. J. A. Kenis and R. I. Masel, *J. Phys. Chem. C*, 2013, 117, 1627; Q. Lu, J. Rosen, Y. Zhou, G. S. Hutchings, Y. C. Kimmel, J. G. Chen and F. Jiao, *Nat. Commun.*, 2014, 5, 4242.

5. J. Medina-Ramos, R. C. Pupillo, T. P. Keane, J. L. Dimeglio and J. Rosenthal, *J. Am. Chem. Soc.*, 2015, 137, 5021.

6. M. Liu, Y. Pang, B. Zhang, P. De Luna, O. Voznyy, J. Xu, X. Zheng, C. T. Dinh, F. Fan, C. Cao, F. P. G. de Arquer, T. S. Safaei, A. Mepham, A. Klinkova, E. Kumacheva, T. Filletter, D. Sinton, S. O. Kelley and E. H. Sargent, *Nature*, 2016, 537, 382.

7. J. Hawecker, J.-M. Lehnh and R. Zieselas, *J. Chem. Soc., Chem. Commun.*, 1984, 328; J. W. Raebiger, J. W. Turner, B. C. Noll, C. J. Curtis, A. Miedaner, B. Cox and D. L. DuBois, *Organometallics*, 2006, 25, 3345; K. Tanaka and D. Ooyama, *Coord. Chem. Rev.*, 2002, 226, 211–218; S. Slater and J. H. Wagenknecht, *J. Am. Chem. Soc.*, 1984, 106, 5367; J. M. Smieja and C. P. Kubiak, *Inorg. Chem.*, 2010, 49, 9283.

8. M. Beley, J. P. Collin, R. Ruppert and J. P. Sauvage, *J. Am. Chem. Soc.*, 1986, 108, 7461; J. L. Karn and D. H. Busch, *Inorg. Chem.*, 1969, 8, 1149; G. Neri, J. J. Walsh, C. Wilson, A. Reynal, J. C. Lim, X. Li, A. P. White, N. J. Long, J. R. Durrant and A. J. Cowan, *Phys. Chem. Chem. Phys.*, 2015, 17, 1562.

9. C. Costentin, M. Robert and J.-M. Savaënt, *Chem. Soc. Rev.*, 2013, 42, 2423; C. Costentin, S. Drouet, M. Robert and J.-M. Savaënt, *Science*, 2012, 338, 96; C. Costentin, G. Passard, M. Robert and J.-M. Savaënt, *Proc. Natl. Acad. Sci. U. S. A.*, 2014, 111, 14990.

10. J. L. Inglis, B. J. MacLean, M. T. Pryce and J. G. Vos, *Coord. Chem. Rev.*, 2012, 256, 2571.

11. I. Bhugun, D. Lexa and J. Savéant, *J. Am. Chem. Soc.*, 1996, 118, 1769; J. M. Smieja, M. D. Sampson, K. A. Grice, E. E. Benson, J. D. Froehlich and C. P. Kubiak, *Inorg. Chem.*, 2013, 52, 2484.

12. G. B. Balazs and F. C. Anson, *J. Electroanal. Chem.*, 1993, 361, 149; M. Beley, J.-P. Collin, R. Ruppert and J.-P. Sauvage, *J. Chem. Soc., Chem. Commun.*, 1984, 1315.

13. J. D. Froehlich and C. P. Kubiak, *Inorg. Chem.*, 2012, 51, 3932.

14. J. D. Froehlich and C. P. Kubiak, *J. Am. Chem. Soc.*, 2015, 137, 3565.

15. A. Brennführer, H. Neumann and M. Beller, *Angew. Chem., Int. Ed.*, 2009, 48, 4114.

16. S. Kealey, A. Gee and P. W. Miller, *J. Labelled Compd. Radiopharm.*, 2014, 57, 195; P. W. Miller, N. J. Long, R. Vilar and A. D. Gee, *Angew. Chem., Int. Ed.*, 2008, 47, 8998.

17. K. Dahl, O. Itsenko, O. Rahman, J. Ulin, C.-O. Sjöberg, P. Sandblom, L. A. Larsson, M. Schou and C. Halldin, *J. Labelled Compd. Radiopharm.*, 2015, 58, 226; J. Eriksson, J. Hoek and A. D. Windhorst, *J. Labelled Compd. Radiopharm.*, 2012, 55, 223; E. D. Hosteler and H. D. Burns, *Nucl. Med. Biol.*, 2002, 29, 845.

18. C. Taddei, S. Bongarzone, A. K. Haji Dheere and A. D. Gee, *Chem. Commun.*, 2015, 51, 11795; P. Nordeman, S. D. Friis, T. L. Andersen, H. Audrain, M. Larhed, T. Skydstrup and G. Antoni, *Chem. – Eur. J.*, 2015, 21, 17601.

19. The use of Zn(cyclen) was as a result of studies that suggested favourable 13C2O$_2$ binding could be expected. Experiments conducted in a non-radiochemical setting showed comparable CO$_2$ formation to that of the well-studied Ni(cyclam) complex.

20. K. Dahl, M. Schou, N. Amini and C. Halldin, *Eur. J. Org. Chem.*, 2013, 1228.

21. P. J. Riss, S. Lu, S. Telu, F. I. Aigbirhio and V. W. Pike, *Angew. Chem., Int. Ed.*, 2012, 51, 2698; J. M. Hooker, A. T. Reibel, S. M. Hill, M. J. Schueller and J. S. Fowler, *Angew. Chem., Int. Ed.*, 2009, 48, 3482; A. A. Wilson, A. Garcia, S. Houle and N. Vasdev, *Org. Biomol. Chem.*, 2010, 8, 428.

22. T. Morimoto, T. Nakajima, S. Sawa, R. Nakanishi, D. Immor and O. Ishijani, *J. Am. Chem. Soc.*, 2013, 135, 16825.

23. N. T. Vandehey and J. P. O’Neil, *Appl. Radiat. Isot.*, 2014, 90, 74.

24. L. Koziol, C. A. Valdez, S. E. Baker, E. Y. Lau, W. C. Floyd, S. E. Wong, J. H. Satcher, F. C. Lightstone and R. D. Aines, *Inorg. Chem.*, 2012, 51, 6803.

25. J. D. Blakemore, A. Gupta, J. J. Warren, B. S. Brunschwig and H. B. Gray, *J. Am. Chem. Soc.*, 2013, 135, 18288.