Spinor Operator Giving Both Angular Momentum and Parity

Takayuki Matsuki∗
Tokyo Kasei University, 1-18-1 Kaga, Itabashi, Tokyo 173, JAPAN

Kentarou Mawatari† and Toshiyuki Morii‡
Graduate School of Science and Technology, Kobe University,
Nada, Kobe 657-8501, JAPAN

Kazutaka Sudoh§
Radiation Laboratory,
RIKEN (The Institute of Physical and Chemical Research),
Wako, Saitama 351-0198, JAPAN

(Dated: August 28, 2004)

In heavy quark effective theory, heavy mesons which contain a heavy quark (or antiquark) are classified by \(s_\pi^\ell \), i.e., the total angular momentum \(s_\ell \) and the parity \(\pi_\ell \) of the light quark degrees of freedom around a static heavy quark. In this case, however, one needs to separately estimate the parity other than the angular momentum of a light quark to describe heavy mesons.

A new operator \(K \) was proposed some time ago by two of us (T.M. and T.M.). In this Letter, we show that the quantum number \(k \) of this operator is enough to describe both the total angular momentum of the light quark degrees of freedom and the parity of a heavy meson, and derive a simple relation between \(k \) and \(s_\pi^\ell \).

PACS numbers: 11.30.-j, 12.39.Hg
Keywords: heavy quark effective theory; spectroscopy; symmetry

Recent discovery of narrow meson states \(D_sJ(2317) \) and \(D_sJ(2460) \) by BaBar and the following confirmation by CLEO and Belle [1] has triggered a series of study on spectroscopy of heavy mesons again. Though \(D_sJ(2317) \) and \(D_sJ(2460) \) are assigned as \(j^P = 0^+ \) and \(1^+ \), respectively, their masses are significantly smaller than the predictions based on many of potential models [2]. To explain these masses, Bardeen, Eichten, Hill and others [3, 4] proposed an interesting idea of an effective Lagrangian with chiral symmetries of light quarks and heavy quark symmetry. The heavy meson states with the total angular momentum \(j = 0 \) and \(j = 1 \) related to \(s_\ell \) (the total angular momentum of the light quark degrees of freedom) = 1/2 make the parity doublets \((0^-,0^+)\) and \((1^-,1^+)\), respectively, and the members in these doublets degenerate in the limit of chiral symmetry. Furthermore, the two states \((0^-,1^-)\) degenerate in the limit of heavy quark symmetry, as well as \((0^+,1^+)\). These doublets are called the heavy spin multiplets.

These newly discovered states are well classified in heavy quark effective theory, i.e., in terms of \(s_\pi^\ell \), where \(s_\ell \) and \(\pi_\ell \) represent the total angular momentum and the parity of the light quark degrees of freedom around a static heavy quark, respectively. In this case, however, one has to separately estimate the parity and the angular momentum of a light quark for each heavy meson state.

Some time ago, two of the authors (T.M. and T.M.) proposed a new bound state equation for atomlike mesons, i.e., heavy mesons composed of a heavy quark and a light antiquark, and they also proposed a new operator \(K \) which can classify heavy mesons well [5]. In this Letter, we show that this operator \(K \), given by Eq. (5) below, has the information about not only \(s_\ell \) but also the parity of heavy mesons and naturally explains the heavy spin multiplets. That is, only the quantum number \(k \) corresponding to the operator \(K \) can reproduce both the total angular momentum of the light quark degrees of freedom and the parity of a heavy meson. We also discuss the relation between \(k \) and \(s_\pi^\ell \).

Let us consider a heavy meson composed of a heavy quark \(Q \) and a light antiquark \(\bar{q} \). The effective Hamiltonian of this system is obtained by applying the Foldy-Wouthuysen-Tani (FWT) transformation to the heavy quark \(Q \). One can formulate the equation so that we can cast the structure of the eigenvalue equation into a simple form and make the Dirac-like equation in the large limit of the heavy quark mass \(m_Q \) [5]. In order to show why we can introduce a new operator \(K \) for heavy mesons, we consider the equation with \(1/m_Q \) corrections neglected, whose contribution should be important in numerical analysis of spectroscopy.

∗E-mail: matsuki@tokyo-kasei.ac.jp
†E-mail: mawatari@radix.h.kobe-u.ac.jp
‡E-mail: morii@kobe-u.ac.jp
§E-mail: sudou@rarfaxp.riken.go.jp
The lowest energy for the \(Q\bar{q} \) bound state is given by \(m_Q + E_0^a \) after solving the equation [5]

\[
H_0 \otimes \psi_0^a = E_0^a \psi_0^a, \quad H_0 = \vec{a}_q \cdot \vec{p}_q + \beta_q (m_q + S(r)) + V(r),
\]

where \(a \) expresses all the quantum numbers and quantities with the subscript \(q \) mean those for a light antiquark. \(S(r) \) is a confining scalar potential and \(V(r) \) is a Coulombic vector potential at short distances. Both potentials have dependence only on \(r \), the relative distance between \(Q \) and \(\bar{q} \). With a symbol \(\otimes \), one should note that gamma matrices for a light antiquark be multiplied from left with the wave function while those for a heavy quark from right.

Using the \(2 \times 2 \) matrix eigenfunctions \(y_j^m \) of angular part defined below and the radial functions \(f_k \) and \(g_k \), the \(4 \times 4 \) matrix solution to Eq. (1) is given by [5]

\[
\psi_0^a = \begin{pmatrix} 0 & \Psi_{j m}^k (\vec{r}) \end{pmatrix},
\Psi_{j m}^k (\vec{r}) = \frac{1}{r} \begin{pmatrix} f_k (r) y_j^m & ig_k (r) \bar{y}_j^m \end{pmatrix},
\]

where \(j \) and \(m \) are the total angular momentum of a heavy meson and its z-component, respectively. The total angular momentum of a heavy meson is the sum of the total angular momentum of the light quark degrees of freedom \(\vec{S}_t \) and the heavy quark spin \(\frac{1}{2} \vec{\Sigma}_Q \):

\[
\vec{J} = \vec{S}_t + \frac{1}{2} \vec{\Sigma}_Q \quad \text{with} \quad \vec{S}_t = \vec{L} + \frac{1}{2} \vec{\Sigma}_q,
\]

where \(\frac{1}{2} \vec{\Sigma}_q \) (= \(\frac{1}{2} \vec{\gamma}_q 1_{2 \times 2} \)) and \(\vec{L} \) are the 4-component spin and the orbital angular momentum of a light antiquark, respectively. Furthermore, \(k \) is the quantum number of the spinor operator \(K \), which was introduced in Eq. (20) of Ref. [5], defined by

\[
K = -\beta_q \left(\vec{\Sigma}_q \cdot \vec{L} + 1 \right), \quad K \Psi_{j m}^k = k \Psi_{j m}^k.
\]

It is interesting to note that the same form of the operator \(K \) is defined in the case of a single Dirac particle in a central potential [6]. It is remarkable that in our approach \(K \) can be defined even for a heavy meson which is a two-body bound system composed of a heavy quark and a light antiquark.

Here we show that there is a relation between \(k \) and \(s_\ell \), being often used in heavy quark effective theory. Let us calculate the square of \(K \).

\[
K^2 = (\Sigma_q)_j (\Sigma_q)_j L_i L_j + 2 \vec{\Sigma}_q \cdot \vec{L} + 1 = \vec{L}^2 + \vec{\Sigma}_q \cdot \vec{L} + 1 = \vec{S}_t^2 + \frac{1}{4}.
\]

Therefore, the operator \(K^2 \) is equivalent to \(\vec{S}_t^2 \) and it holds

\[
k = \pm \left(s_\ell + \frac{1}{2} \right) \quad \text{or} \quad s_\ell = |k| - \frac{1}{2}.
\]

Now, let us briefly summarize the properties of the eigenfunctions \(y_j^m \), whose details are given in [5]. To begin with, we need to introduce the so-called vector spherical harmonics which are defined by [7]

\[
Y_{j m}^{(L)} = -i \vec{\sigma} \times \vec{Y}_{j m}^{(E)} = \frac{r}{\sqrt{j(j+1)}} \vec{\omega} Y_{j m}^{(E)}, \quad Y_{j m}^{(M)} = -i \vec{\sigma} \times \vec{Y}_{j m}^{(E)},
\]

where \(Y_j^m \) are the spherical polynomials and \(\vec{\omega} = \vec{r}/r \). These vector spherical harmonics are nothing but a set of eigenfunctions for a spin-1 particle. \(\vec{Y}_{j m}^{(A)} \) (A=L, M, E) are eigenfunctions of \(\vec{J}^2 \) and \(J_z \), having the eigenvalues \(j(j+1) \) and \(m \). The parities are assigned as \((-)^{j+1} \), \((-)^j \), \((-)^{j+1} \) for A=L, M, E, respectively, since \(Y_j^m \) has a parity \((-)^j \).

In order to diagonalize the leading Hamiltonian of Eq. (1) in the \(k \) space, it is necessary to make \(\vec{Y}_{j m}^{(A)} \) and \(Y_j^m \) into the spinor representation \(y_j^m \) by the following unitary transformation

\[
\begin{pmatrix} y_{j m}^{-(j+1)} \\ y_{j m}^{j+1} \\ \sigma_y Y_{j m}^{(L)} \\ \sigma_y Y_{j m}^{(M)} \end{pmatrix} = U \begin{pmatrix} Y_{j m}^m \\ \sigma \cdot \vec{Y}_{j m}^{(E)} \end{pmatrix}, \quad \begin{pmatrix} y_{j m}^m \\ y_{j m}^m \\ \sigma_y Y_{j m}^{(L)} \\ \sigma_y Y_{j m}^{(E)} \end{pmatrix} = U \begin{pmatrix} \sigma \cdot \vec{Y}_{j m}^{(L)} \\ \sigma \cdot \vec{Y}_{j m}^{(M)} \end{pmatrix},
\]
Thus, using the relations of Eqs. (13) and (15) and taking into account the intrinsic parity of the light antiquark, one can simply write the parity of a heavy meson as

\[P = -P' = \frac{k}{|k|} (-1)^{|k|+1} \]

Notice that the parity \(P \) of the whole system is equal to the parity \(\pi_\ell \) of the light quark degrees of freedom, as can be seen in TABLE I, since the intrinsic parity of a heavy quark is +1.

In heavy quark effective theory, heavy mesons are normally classified in terms of \(s_t^\ell \), since at the lowest order heavy quarks in these mesons are considered to be static, namely it stays rest at the center of a heavy meson system. In this work, we have found that (i) the parity of a heavy meson and (ii) the total angular momentum of the light quark degrees of freedom can be reproduced in terms of \(k \) alone as seen from Eqs. (16) and (7), respectively. We have also found that the degeneracy between members in each heavy spin multiplet, \((0^-, 1^-)\) and \((0^+, 1^+)\), is automatic in our approach [5], while the method using the effective Lagrangian with heavy-quark as well as chiral symmetries must force degeneracy among parity doublets to construct such a Lagrangian [3, 4]. These are the main results of this paper.

As our summary, several states are classified by various quantum numbers in TABLE I. The states with different \(j \) but with the same parity \(P \) make a heavy spin multiplet of heavy mesons, which corresponds to heavy quark symmetry in heavy quark effective theory. One can see that \(k \) naturally explains the heavy spin doublets.
Before closing our discussions, we comment about k from the phenomenological point of view. The lowest order solution satisfies degeneracy in k since the energy depends only on k, i.e., $j^P = 0^-$ and 1^- states have the same mass, so are the 0^+ and 1^+ states. This degeneracy is resolved by including higher order terms in $1/m_Q$ [5] and one can phenomenologically discuss mass spectra of these heavy mesons even though some objections [8] for using a potential model exist. A comprehensive analysis on mass spectra of heavy mesons including $D_{sJ}(2317)$ and $D_{sJ}(2460)$ is in progress.

[1] BaBar Collaboration, B. Aubert et al., Phys. Rev. Lett. 90, 242001 (2003); CLEO Collaboration, D. Besson et al., Phys. Rev. D 68, 032002 (2003); Belle Collaboration, P. Krokovny et al., Phys. Rev. Lett. 91, 262002 (2003); Y. Mikami et al., ibid. 92, 012002 (2004).
[2] See, for example, S. Godfrey and N. Isgur, Phys. Rev. D 32, 189 (1985); S. Godfrey and R. Kokoski, ibid. 43, 1679 (1991).
[3] W. A. Bardeen, E. J. Eichten, and C. T. Hill, Phys. Rev. D 68, 054024 (2003).
[4] W. A. Bardeen and C. T. Hill, Phys. Rev. D 49, 409 (1994); M. A. Nowak, M. Rho, and I. Zahed, ibid. 48, 4370 (1993); A. Deandrea, N. Di Barolomeo, R. Gatto, G. Nrdulli, and A. D. Plo sa, ibid. 58, 034004 (1998); A. Hiorth and J. O. Eeg, ibid. 66, 074001 (2002).
[5] T. Matsuki and T. Morii, Phys. Rev. D 56, 5646 (1997).
[6] M. E. Rose, Relativistic Electron Theory, John Wiley & Sons, 1961; J. J. Sakurai, Advanced Quantum Mechanics, Addison-Wesley, 1967.
[7] See, for example, J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics, John Wiley & Sons, 1952; A. Messiah, Quantum Mechanics, John Wiley & Sons, 1958.
[8] T. Barnes, F. E. Close, and H. J. Lipkin, Phys. Rev. D 68, 054006 (2003).