Rigid Ball-Polyhedra in Euclidean 3-Space *

Károly Bezdek† and Márton Naszódi‡

February 3, 2013

Abstract

A ball-polyhedron is the intersection with non-empty interior of finitely many (closed) unit balls in Euclidean 3-space. One can represent the boundary of a ball-polyhedron as the union of vertices, edges, and faces defined in a rather natural way. A ball-polyhedron is called a simple ball-polyhedron if at every vertex exactly three edges meet. Moreover, a ball-polyhedron is called a standard ball-polyhedron if its vertex-edge-face structure is a lattice (with respect to containment). To each edge of a ball-polyhedron one can assign an inner dihedral angle and say that the given ball-polyhedron is locally rigid with respect to its inner dihedral angles if the vertex-edge-face structure of the ball-polyhedron and its inner dihedral angles determine the ball-polyhedron up to congruence locally. The main result of this paper is a Cauchy-type rigidity theorem for ball-polyhedra stating that any simple and standard ball-polyhedron is locally rigid with respect to its inner dihedral angles.

1 Introduction

Let \(\mathbb{E}^3 \) denote the 3-dimensional Euclidean space. As in [3] and [4] a ball-polyhedron is the intersection with non-empty interior of finitely many closed congruent balls in \(\mathbb{E}^3 \). In fact, one may assume that the closed congruent 3-dimensional balls in question are of unit radius; that is, they are unit balls of \(\mathbb{E}^3 \). Also, it is natural to assume that removing any of the unit balls defining the intersection in question yields the intersection of the remaining unit balls becoming a larger set. (Equivalently, using the terminology introduced in [4], whenever we take a ball-polyhedron we always assume that it is generated by a reduced family of unit balls.) Furthermore, following [3] and [4] one can represent the boundary of a ball-polyhedron in \(\mathbb{E}^3 \) as the union of vertices, edges, and faces defined in a rather natural way. A standard ball-polyhedron is one whose boundary structure is not “pathological”, i.e., whose vertex-edge-face structure is a lattice (called the face lattice of the given standard

*Keywords: ball-polyhedron, dual ball-polyhedron, truncated Delaunay complex, (infinitesimally) rigid polyhedron, rigid ball-polyhedron. 2010 Mathematics Subject Classification: 52C25, 52B10, and 52A30.

†Partially supported by a Natural Sciences and Engineering Research Council of Canada Discovery Grant.

‡Partially supported by the Hung. Nat. Sci. Found. (OTKA) grants K72537 and PD104744.
ball-polyhedron). For the definitions of vertex, edge, face and standardness see Section 3. In order to get a more complete picture on ball-polyhedra, we refer the interested reader to [3], [4] as well as [8].

One of the best known results in the geometry of convex polyhedra is Cauchy’s rigidity theorem: If two convex polyhedra P and Q in \mathbb{E}^3 are combinatorially equivalent with the corresponding faces being congruent, then the angles between the corresponding pairs of adjacent faces are also equal and thus, P is congruent to Q. Putting it somewhat differently the combinatorics of an arbitrary convex polyhedron and its face angles completely determine its inner dihedral angles. For more details on Cauchy’s rigidity theorem and on its extensions we refer the interested reader to [5]. In our joint paper [3] we have been looking for analogues of Cauchy’s rigidity theorem for ball-polyhedra. In order to quote properly the relevant results from [3] we need to recall the following terminology. To each edge of a ball-polyhedron in \mathbb{E}^3 we can assign an inner dihedral angle. Namely, take any point p in the relative interior of the edge and take the two unit balls that contain the two faces of the ball-polyhedron meeting along that edge. Now, the inner dihedral angle along this edge is the angular measure of the intersection of the two half-spaces supporting the two unit balls at p. The angle in question is obviously independent of the choice of p. Moreover, at each vertex of a face of a ball-polyhedron there is a face angle formed by the two edges meeting at the given vertex (which is, in fact, the angle between the two tangent halflines of the two edges meeting at the given vertex). Finally, we say that the standard ball-polyhedron P in \mathbb{E}^3 is globally rigid with respect to its face angles (resp., its inner dihedral angles) if the following holds. If Q is another standard ball-polyhedron in \mathbb{E}^3 whose face lattice is isomorphic to that of P and whose face angles (resp., inner dihedral angles) are equal to the corresponding face angles (resp. inner dihedral angles) of P, then Q is congruent to P. We note that in [3], we used the word “rigid” for this notion. We change that terminology to “globally rigid” because in the present paper we consider a local version of the problem using the term “locally rigid”.

Furthermore, a ball-polyhedron of \mathbb{E}^3 is called simplicial if all its faces are bounded by three edges. It is not hard to see that any simplicial ball-polyhedron is, in fact, a standard one. Now, we are ready to state the main (rigidity) result of [3]: The face lattice and the face angles determine the inner dihedral angles of any standard ball-polyhedron in \mathbb{E}^3. In particular, if P is a simplicial ball-polyhedron in \mathbb{E}^3, then P is globally rigid with respect to its face angles. The following fundamental analogue question is still an open problem (see [2], p. 63).

Problem 1.1 Prove or disprove that the face lattice and the inner dihedral angles determine the face angles of any standard ball-polyhedron in \mathbb{E}^3.

One can regard this problem as an extension of the (still unresolved) conjecture of Stoker [12] according to which for convex polyhedra the face lattice and the inner dihedral angles determine the face angles. For an overview on the status of the Stoker conjecture and in particular, for the recent remarkable result of Mazzeo and Montcouquiol on proving the infinitesimal version of the Stoker conjecture see [10]. The following special case of Problem 1.1 has already been put forward as a conjecture in [3]. For this we need to recall that
a ball-polyhedron is called a simple ball-polyhedron, if at every vertex exactly three edges meet. Now, based on our terminology introduced above the conjecture in question (\cite{3}, p. 257) can be phrased as follows.

Conjecture 1.2 Let P be a simple and standard ball-polyhedron of \mathbb{E}^3. Then P is globally rigid with respect to its inner dihedral angles.

We do not know whether the conditions of Conjecture 1.2 are necessary. However, if the ball-polyhedron Q fails to be a standard ball-polyhedron because it possesses a pair of faces sharing more than one edge, then Q is flexible (and so, it is not globally rigid) as shown in Section 4 of \cite{3}.

The main result of the present paper, Theorem 2.1 is a local version of Conjecture 1.2.

2 Main Result

We say that the standard ball-polyhedron P of \mathbb{E}^3 is locally rigid with respect to its inner dihedral angles, if there is an $\varepsilon > 0$ with the following property. If Q is another standard ball-polyhedron of \mathbb{E}^3 whose face lattice is isomorphic to that of P and whose inner dihedral angles are equal to the corresponding inner dihedral angles of P such that the corresponding faces of P and Q lie at Hausdorff distance at most ε from each other, then P and Q are congruent.

Now, we are ready to state the main result of this paper.

Theorem 2.1 Let P be a simple and standard ball-polyhedron of \mathbb{E}^3. Then P is locally rigid with respect to its inner dihedral angles.

Also, it is natural to say that the standard ball-polyhedron P of \mathbb{E}^3 is locally rigid with respect to its face angles, if there is an $\varepsilon > 0$ with the following property. If Q is another standard ball-polyhedron of \mathbb{E}^3 whose face lattice is isomorphic to that of P and whose face angles are equal to the corresponding face angles of P such that the corresponding faces of P and Q lie at Hausdorff distance at most ε from each other, then P and Q are congruent. As according to \cite{3} the face lattice and the face angles determine the inner dihedral angles of any standard ball-polyhedron in \mathbb{E}^3 therefore Theorem 2.1 implies the following claim in a straightforward way.

Corollary 2.2 Let P be a simple and standard ball-polyhedron of \mathbb{E}^3. Then P is locally rigid with respect to its face angles.

In the rest of this paper we give a proof of Theorem 2.1.
3 The Combinatorial Structure of a Ball-Polyhedron

Let P be a ball-polyhedron in \mathbb{E}^3 given (as throughout the paper) by a reduced family of generating balls. A boundary point is called a vertex if it belongs to at least three of the closed unit balls defining the ball-polyhedron. A face of the ball-polyhedron is the intersection of one of the generating closed unit balls with the boundary of the ball-polyhedron. We say that the face of P corresponds to the center of the generating ball. Finally, if the intersection of two faces is non-empty, then it is the union of (possibly degenerate) circular arcs. The non-degenerate arcs are called edges of the ball-polyhedron. Obviously, if a ball-polyhedron in \mathbb{E}^3 is generated by at least three unit balls, then it possesses vertices, edges, and faces. Clearly, the vertices, edges and faces of a ball-polyhedron (including the empty set and the ball-polyhedron itself) are partially ordered by inclusion forming the vertex-edge-face structure of the given ball-polyhedron.

We note that in [3] the vertex-edge-face structure of an arbitrary ball-polyhedron is incorrectly referred to as a face lattice. Indeed, Figure 4.1 of [3] shows an example of a ball-polyhedron whose vertex-edge-face structure is not a lattice (with respect to inclusion). Thus, it is natural to define the following fundamental family of ball-polyhedra: a ball-polyhedron in \mathbb{E}^3 is a standard ball-polyhedron if its vertex-edge-face structure is a lattice (with respect to inclusion). This is the case if, and only if, the intersection of any two faces is either empty, or one vertex or one edge, and every two edges share at most one vertex. In this case, we simply call the vertex-edge-face structure in question the face lattice of the standard ball-polyhedron. This definition implies that any standard ball-polyhedron of \mathbb{E}^3 is generated by at least four unit balls.

In connection with the above definition we note that the family of standard ball-polyhedra was introduced and investigated in the more general, n-dimensional setting in [4]. The 3-dimensional case of that definition (Definition 6.4 in [4]) coincides with the definition given above. (See also Remark 9.1 and the paragraph preceding it in [4].) For more insight on the vertex-edge-face structure of ball-polyhedra in \mathbb{E}^3 we refer the interested reader to [8].

4 Infinitesimally Rigid Polyhedra, Dual Ball-Polyhedron, Truncated Delaunay Complex

In this section we introduce the notations and the main tools that are needed for our proof of Theorem 2.1.

Recall that a convex polyhedron of \mathbb{E}^3 is a bounded intersection of finitely many closed halfspaces in \mathbb{E}^3. A polyhedral complex in \mathbb{E}^3 is a finite family of convex polyhedra such that any vertex, edge, and face of a member of the family is again a member of the family, and the intersection of any two members is empty or a vertex or an edge or a face of both members. In this paper a polyhedron of \mathbb{E}^3 means the union of all members of a three-dimensional polyhedral complex in \mathbb{E}^3 possessing the additional property that its (topological) boundary in \mathbb{E}^3 is a surface in \mathbb{E}^3 (i.e., a 2-dimensional topological manifold embedded in \mathbb{E}^3).
We denote the convex hull of a set C by $[C]$. Following [7], we call a polyhedron Q in \mathbb{E}^3

- **weakly convex** if its vertices are in convex position (i.e., if its vertices are the vertices of a convex polyhedron);

- **co-decomposable** if its complement in $[Q]$ can be triangulated (i.e., obtained as a simplicial complex) without adding new vertices;

- **weakly co-decomposable** if it is contained in a convex polyhedron \tilde{Q} such that all vertices of Q are vertices of \tilde{Q}, and the complement of Q in \tilde{Q} can be triangulated without adding new vertices.

The boundary of every polyhedron in \mathbb{E}^3 is the disjoint union of planar convex polygons and hence, it can be triangulated without adding new vertices. Now, let P be a polyhedron in \mathbb{E}^3 and let T be a triangulation of its boundary without adding new vertices. We call the 1-skeleton $G(T)$ of T the *edge graph* of T. By an *infinitesimal flex* of the edge graph $G(T)$ in \mathbb{E}^3 we mean an assignment of vectors to the vertices of $G(T)$ (i.e., to the vertices of P) such that the displacements of the vertices in the assigned directions induce a zero first-order change of the edge lengths: $(p_i - p_j) \cdot (q_i - q_j) = 0$ for every edge p_ip_j of $G(T)$, where q_i is the vector assigned to the vertex p_i. An infinitesimal flex is called trivial if it is the restriction of an infinitesimal rigid motion of \mathbb{E}^3. Finally, we say that the polyhedron P is *infinitesimally rigid* if every infinitesimal flex of the edge graph $G(T)$ of T is trivial. (It is not hard to see that the infinitesimal rigidity of a polyhedron is a well-defined notion i.e., independent of the triangulation T. For more details on this as well as for an overview on the theory of rigidity we refer the interested reader to [5].) We need the following remarkable rigidity theorem of Izmestiev and Schlenker [7] for the proof of Theorem 2.1.

Theorem 4.1 (Izmestiev-Schlenker, [7])

Every weakly co-decomposable polyhedron of \mathbb{E}^3 is infinitesimally rigid.

We note that Izmestiev and Schlenker [7] give a different definition of a polyhedron than ours, which yields a somewhat wider class of sets in \mathbb{E}^3. Their theorem in its original form contains the additional restriction that the polyhedron is “decomposable” (i.e., it can be triangulated without new vertices), which automatically holds for sets satisfying our narrower definition of a polyhedron. Last but not least, one of the referees of our paper noted that by definition every weakly co-decomposable polyhedron is in fact, a weakly convex one and therefore it is natural to state Theorem 4.1 in the above form (i.e., not mentioning weakly convexity among the conditions).

The closed ball of radius ρ centered at p in \mathbb{E}^3 is denoted by $B(p, \rho)$. Also, it is convenient to use the notation $B(p) := B(p, 1)$. For a set $C \subseteq \mathbb{E}^3$ we denote the intersection of closed unit balls with centers in C by $B(C) := \bigcap\{B(c) : c \in C\}$. Recall that every ball-polyhedron $P = B(C)$ can be generated such that $B(C \setminus \{c\}) \neq B(C)$ holds for any $c \in C$. Therefore whenever we take a ball-polyhedron $P = B(C)$ we always assume the above mentioned reduced property of C. The following duality theorem has been proved in [3] and it is also needed for our proof of Theorem 2.1.
Theorem 4.2 (Bezdek-Naszódi, [3]) Let \(P \) be a standard ball-polyhedron of \(\mathbb{E}^3 \). Then the intersection \(P^* \) of the closed unit balls centered at the vertices of \(P \) is another standard ball-polyhedron whose face lattice is dual to that of \(P \) (i.e., there exists an order reversing bijection between the face lattices of \(P \) and \(P^* \)).

For a more recent reader discussion on the above duality theorem and its generalizations we refer the interested reader to [8].

Let us give a detailed construction of the so-called truncated Delaunay complex of an arbitrary ball-polyhedron, which is going to be the underlying polyhedral complex of the given ball-polyhedron playing a central role in our proof of Theorem 2.1. We leave some of the proofs of the claims mentioned in the rest of this section to the reader partly because they are straightforward and partly because they are also well known (see [1], [11], and in particular, [6]).

The farthest-point Voronoi tiling corresponding to a finite set \(C := \{c_1, \ldots, c_n\} \) in \(\mathbb{E}^3 \) is the family \(\mathcal{V} := \{V_1, \ldots, V_n\} \) of closed convex polyhedral sets \(V_i := \{x \in \mathbb{E}^3 : |x - c_i| \geq |x - c_j| \text{ for all } j \neq i, 1 \leq j \leq n\}, 1 \leq i \leq n. \) (Here a closed convex polyhedral set means a not necessarily bounded intersection of finitely many closed halfspaces in \(\mathbb{E}^3 \).) We call the elements of \(\mathcal{V} \) farthest-point Voronoi cells. In the sequel we omit the words “farthest-point” as we do not use the other (more popular) Voronoi tiling: the one capturing closest points.

It is known that \(\mathcal{V} \) is a tiling of \(\mathbb{E}^3 \). We call the vertices, (possibly unbounded) edges and (possibly unbounded) faces of the Voronoi cells of \(\mathcal{V} \) simply the vertices, edges and faces of \(\mathcal{V} \).

The truncated Voronoi tiling corresponding to \(C \) is the family \(\mathcal{V}^t \) of closed convex sets \(\{V_i \cap B(c_1), \ldots, V_n \cap B(c_n)\} \). From the definition it follows that \(\mathcal{V}^t = \{V_1 \cap P, \ldots, V_n \cap P\} \) where \(P = B(C) \). We call elements of \(\mathcal{V}^t \) truncated Voronoi cells.

Next, we define the (farthest-point) Delaunay complex \(\mathcal{D} \) assigned to the finite set \(C = \{c_1, \ldots, c_n\} \subset \mathbb{E}^3 \). It is a polyhedral complex on the vertex set \(C \). For an index set \(I \subseteq \{1, \ldots, n\} \), the convex polyhedron \([c_i : i \in I] \) is a member of \(\mathcal{D} \) if, and only if, there is a point \(p \) in \(\bigcap \{V_i : i \in I\} \) which is not contained in any other Voronoi cell. In other words, \([c_i : i \in I] \) is a member of \(\mathcal{D} \) if, and only if, there is a point \(p \in \mathbb{E}^3 \) and a radius \(\rho \geq 0 \) such that \(\{c_i : i \in I\} \subset \text{bd} B(p, \rho) \) and \(\{c_i : i \notin I\} \subset \text{int} B(p, \rho) \). It is known that \(\mathcal{D} \) is a polyhedral complex, in fact, it is a tiling of \([C] \) by convex polyhedra.

Lemma 4.3 Let \(C = \{c_1, \ldots, c_n\} \subset \mathbb{E}^3 \) be a finite set, and \(\mathcal{V} = \{V_1, \ldots, V_n\} \) be the corresponding Voronoi tiling of \(\mathbb{E}^3 \). Then

\((V) \) For any vertex \(p \) of \(\mathcal{V} \), there is an index set \(I \subseteq \{1, \ldots, n\} \) with \(\dim [c_i : i \in I] = 3 \) such that \([c_i : i \in I] \in \mathcal{D} \) and \(p = \bigcap \{V_i : i \in I\} \).

And vice versa: if \(I \subseteq \{1, \ldots, n\} \) with \(\dim [c_i : i \in I] = 3 \) is such that \([c_i : i \in I] \in \mathcal{D} \), then \(\bigcap \{V_i : i \in I\} \) is a vertex of \(\mathcal{V} \).

\((E) \) For any edge \(\ell \) of \(\mathcal{V} \), there is an index set \(I \subseteq \{1, \ldots, n\} \) with \(\dim [c_i : i \in I] = 2 \) such that \([c_i : i \in I] \in \mathcal{D} \) and \(\ell = \bigcap \{V_i : i \in I\} \).

6
And vica versa: if \(I \subseteq \{1, \ldots, n\} \) with \(\dim[c_i : i \in I] = 2 \) is such that \([c_i : i \in I] \in \mathcal{D} \), then \(\cap \{ V_i : i \in I \} \) is an edge of \(\mathcal{V} \).

(F) For any face \(f \) of \(\mathcal{V} \), there is an index set \(I \subseteq \{1, \ldots, n\} \) with \(|I| = 2 \) such that \([c_i : i \in I] \in \mathcal{D} \) and \(f = \cap \{ V_i : i \in I \} \).

And vica versa: if \(I \subseteq \{1, \ldots, n\} \) with \(|I| = 2 \) is such that \([c_i : i \in I] \in \mathcal{D} \), then \(\cap \{ V_i : i \in I \} \) is a face of \(\mathcal{V} \).

Proof: We outline the proof of (V) as the rest follows the same argument. Let \(p \) be a vertex of \(\mathcal{V} \), and let \(I = \{ i \in \{1, \ldots, n\} : p \in V_i \} \). Now \(p \) lies on the boundary of some Voronoi cells. The centers corresponding to these Voronoi cells are \(\{ c_i : i \in I \} \). Since \(p \) is shared by their Voronoi cells, these centers are at an equal distance from \(p \), in other words, they lie on a sphere around \(p \). Now, suppose that these centers are co-planar. Then, they lie on a circle such that the line through the center of the circle, and perpendicular to the plane of the circle, passes through \(p \). Then all the Voronoi cells \(\{ V_i : i \in I \} \) contain a relative neighborhood of \(p \) within this line. Thus, \(p \) is not a vertex, a contradiction.

For the reverse statement: Let \(I \) be such that \([c_i : i \in I] \in \mathcal{D} \) and \(\dim[c_i : i \in I] = 3 \). It follows from the first condition on \(I \) that \(\cap \{ V_i : i \in I \} \neq \emptyset \), and from that second condition that \(\cap \{ V_i : i \in I \} \) is a singleton, say \(\{ p \} \). Clearly, \(p \) is a vertex of \(\mathcal{V} \).

![Figure 1](image_url)

Figure 1: Given four points, \(c_1, \ldots, c_4 \). The bold solid lines bound the four Voronoi cells, \(V_1, \ldots, V_4 \). The bold dashed circular arcs bound the planar ball-polyhedron – a disk-polygon. The part of each Voronoi cell inside the disk-polygon is the corresponding truncated Voronoi cell. On the first example, \([c_1, c_3, c_4]\) and \([c_1, c_3, c_2]\) are the two-dimensional Delaunay cells, and \([c_1, c_2], [c_1, c_3], [c_1, c_4], [c_2, c_3], [c_3, c_4]\) are the one-dimensional Delaunay cells. The truncated Delaunay complex coincides with the non-truncated one. On the second example, the Voronoi and the Delaunay complexes are the same as on the first, but the truncated Delaunay complex is different. The only two-dimensional truncated Delaunay cell is \([c_1, c_3, c_4]\). The one-dimensional truncated Delaunay cells are \([c_1, c_3], [c_1, c_4], [c_3, c_4]\).

We define the **truncated Delaunay complex** \(\mathcal{D}^t \) corresponding to \(\mathcal{C} \) similarly to \(\mathcal{D} \): For an index set \(I \subseteq \{1, \ldots, n\} \), the convex polyhedron \([c_i : i \in I] \) is a member of \(\mathcal{D}^t \) if, and only
if, there is a point \(p \) in \(\cap \{ V_i \cap B(c_i) : i \in I \} \) which is not contained in any other truncated Voronoi cell. Note that the truncated Voronoi cells are contained in the ball-polyhedron \(B(C) \). Thus, \(\{ c_i : i \in I \} \in \mathcal{D}^t \) if, and only if, there is a point \(p \in B(C) \) and a radius \(\rho \geq 0 \) such that \(\{ c_i : i \in I \} \subset \partial B(p, \rho) \) and \(\{ c_i : i \notin I \} \subset \text{int} B(p, \rho) \).

5 Proof of Theorem 2.1

Lemma 5.1 Let \(P = B(C) \) be a simple ball-polyhedron in \(\mathbb{E}^3 \). Then no vertex of the Voronoi tiling \(V \) corresponding to \(C \) is on \(\partial P \), and no edge of \(V \) is tangent to \(P \).

Proof: By (V) of Lemma 4.3, at least four Voronoi cells meet in any vertex of \(V \). Moreover, the intersection of each Voronoi cell with \(\partial P \) is a face of \(P \), since \(P \) is generated by a reduced set of centers. Hence, if a vertex of \(V \) were on \(\partial P \) then at least four faces of \(P \) would meet at a point, contradicting the assumption that \(P \) is simple.

Let \(\ell \) be an edge of \(V \), and assume that it contains a point \(p \in \partial P \). By the previous paragraph, \(p \in \text{relint} \ell \). From Lemma 4.3 (E) it follows that \(p \) is in the intersection of some Voronoi cells \(\{ V_i : i \in I \} \) with \(\dim \{ c_i : i \in I \} = 2 \). Clearly, \(\ell \) is orthogonal to the plane \(\text{aff} \{ c_i : i \in I \} \). Finally, there is an \(\varepsilon > 0 \) such that \(P \cap B(p, \varepsilon) = B(\{ c_i : i \in I \}) \cap B(p, \varepsilon) \) and hence, \(\ell \) must intersect \(\text{int} P \), as \(\ell \) intersects \(\{ B(\{ c_i : i \in I \}) \cap B(p, \varepsilon) \} \).

Lemma 5.2 Let \(P = B(C) \) be a simple ball-polyhedron in \(\mathbb{E}^3 \). Then \(\mathcal{D}^t \) is a sub-polyhedral complex of \(\mathcal{D} \), that is \(\mathcal{D}^t \subseteq \mathcal{D} \), and faces, edges, and vertices of members of \(\mathcal{D}^t \) are again members of \(\mathcal{D}^t \).

Proof: Clearly, \(\mathcal{D}^t \subseteq \mathcal{D} \), and their vertex sets are identical (both are \(C \)).

First, we show that a (2-dimensional) face of a 3-dimensional member of \(\mathcal{D}^t \) is again a member of \(\mathcal{D}^t \). Let \(\{ c_i : i \in I \} \in \mathcal{D}^t \) be a 3-dimensional member of \(\mathcal{D}^t \). Then, the corresponding vertex (Lemma 4.3 (V)) \(v \) of \(V \) is in \(P \) by Lemma 5.1. For a given face of \(\{ c_i : i \in I \} \), there is a corresponding edge (Lemma 4.3 (E)) \(\ell \) of \(V \). Clearly, \(v \) is an endpoint of \(\ell \). Now, \(\text{relint} \ell \cap P \neq \emptyset \), and thus the face \(\{ c_i : i \in I \} \) of \(V \) corresponding to \(\ell \) is in \(\mathcal{D}^t \).

Next, let \(\{ c_i : i \in I \} \in \mathcal{D}^t \) be a 2-dimensional member of \(\mathcal{D}^t \) and let \([c_i, c_j] \) be one of its edges. Then, for the corresponding edge \(\ell \) of \(V \) we have \(\text{relint} \ell \cap P \neq \emptyset \). By Lemma 5.1, \(\ell \) is not tangent to \(P \), thus \(\text{relint} \ell \cap \text{int} P \neq \emptyset \). Now, \([c_i, c_j] \) corresponds to a face (Lemma 4.3 (F)) \(f \) of \(V \). Clearly, \(\ell \) is an edge of \(f \). Since an edge of \(f \) intersects \(\text{int} P \), we have \(\text{relint} f \cap \text{int} P \neq \emptyset \) and hence, \(f \cap P \) is a two-dimensional face of the truncated Voronoi tiling. It follows that \([c_i, c_j] \) is in \(\mathcal{D}^t \).

The following lemma helps to understand the 2-dimensional members of \(\mathcal{D}^t \).

Let \(P = B(C) \) be a simple and standard ball-polyhedron in \(\mathbb{E}^3 \). Denote by \(Q \) the polyhedral complex formed by the 3-dimensional members of \(\mathcal{D}^t \) and all of their faces, edges and vertices (i.e., we drop “hanging” faces/edges/vertices of \(\mathcal{D}^t \), that is, those faces/edges/vertices that do not belong to a 3-dimensional member). Clearly, \(\cup Q \) is a subset of \(\mathbb{E}^3 \) and thus, its
boundary is defined. We equip this boundary with a polyhedral complex structure in the obvious way as follows: we define the boundary of Q as the collection of those faces, edges and vertices of Q that lie on the boundary of $\bigcup Q$. We denote this polyhedral complex by $\text{bd} Q$.

Lemma 5.3 Let $P = B(C)$ be a simple and standard ball-polyhedron in \mathbb{E}^3, and Q be defined as above. Then the 2-dimensional members of $\text{bd} Q$ are triangles, and a triangle $[c_1, c_2, c_3]$ is in $\text{bd} Q$ if, and only if, the corresponding faces F_1, F_2, F_3 of P meet (at a vertex of P).

Proof: By Lemma 5.2, the 2-dimensional members of $\text{bd} Q$ are 2-dimensional members of \mathcal{D}^t. Let $[c_i : i \in I] \in \mathcal{D}^t$ with $\dim [c_i : i \in I] = 2$. Then, clearly, $[c_i : i \in I] \in \mathcal{D}$ and, by Lemma 4.3 (V), it corresponds to an edge ℓ of \mathcal{V} which intersects P. Now, ℓ is a closed line segment, or a closed ray, or a line. By Lemma 5.1, ℓ is not tangent to P, and (by Lemma 5.1) ℓ has no endpoint on $\text{bd} P$. Thus, ℓ intersects the interior of P. We claim that ℓ has at least one endpoint in $\text{int} P$. Suppose, it does not. Then $\ell \cap \text{bd} P$ is a pair of points and so, the faces of P corresponding to indices in I meet at more than one point. Since $|I| \geq 3$, it contradicts the assumption that P is standard. We remark that this is a crucial point where we used the standardness of P. So, ℓ has either one or two endpoints in $\text{int} P$. If it has two, then the two distinct 3-dimensional Delaunay cells corresponding to those endpoints (as in Lemma 4.3 (E)) are both members of \mathcal{D}^t and contain the planar convex polygon $[c_i : i \in I]$, and thus, $[c_i : i \in I]$ is not on the boundary of Q. If ℓ has one endpoint in $\text{int} P$, then there is a unique 3-dimensional polyhedron in \mathcal{D}^t (the one corresponding to that endpoint of ℓ) that contains the planar convex polygon $[c_i : i \in I]$. Moreover, in this case ℓ intersects $\text{bd} P$ at a vertex of P. Since P is simple, that vertex is contained in exactly three faces of P, and hence, $[c_i : i \in I]$ is a triangle.

Next, working in the reverse direction, assume that $F_1, F_2,$ and F_3 are faces of P that meet at a vertex v of P. Then v is in exactly three Voronoi cells, V_1, V_2 and V_3. Thus, $[c_1, c_2, c_3] \in \mathcal{D}$, and $\ell := V_1 \cap V_2 \cap V_3$ is an edge of \mathcal{V}. By the above argument, ℓ has one endpoint in P and so, $[c_1, c_2, c_3]$ is a member of \mathcal{D}^t, and has the property that exactly one 3-dimensional member of \mathcal{D}^t contains it. It follows that $[c_1, c_2, c_3]$ is in $\text{bd} Q$. \hfill \square

From the last paragraph of the proof and the fact that P has at least one vertex, we can deduce the following

Remark 5.4 With the notations and the assumptions of Lemma 5.3, \mathcal{D}^t contains at least one 3-dimensional cell, and the vertex set of Q is C.

We recall that the nerve of a set family \mathcal{G} is the abstract simplicial complex

$$\mathcal{N}(\mathcal{G}) := \{\{G_i \in \mathcal{G} : i \in I\} : \bigcap_{i \in I} G_i \neq \emptyset\}.$$

Now, let $P = B(C)$ be a simple and standard ball-polyhedron in \mathbb{E}^3 and let \mathcal{F} denote the set of its faces. Let \mathcal{S} be the abstract simplicial complex on the vertex set C generated by the 2-dimensional members of $\text{bd} Q$ (for the definition of $\text{bd} Q$, see the paragraph preceding Lemma 5.3), which are, according to Lemma 5.3 certain triples of points in C. Both \mathcal{S} and
the nerve \(\mathcal{N}(\mathcal{F}) \) of \(\mathcal{F} \) are 2-dimensional abstract simplicial complexes. For the definition of an abstract simplicial complex and its geometric realization, see [9].

We claim that they both have the following “edge property”: any edge is contained in a 2-dimensional simplex. Indeed, \(\mathcal{S} \) has this property by definition, since it is a simplicial complex generated by a family of 2-dimensional simplices. On the other hand, \(\mathcal{N}(\mathcal{F}) \) also has this property, because \(\mathcal{P} \) is simple and standard, and hence any edge of \(\mathcal{P} \) has a vertex as an endpoint which is a point of intersection of three faces of \(\mathcal{P} \).

Consider the mapping \(\phi : c_i \mapsto F_i \) that maps each center point in \(\mathcal{C} \) to the corresponding face of \(\mathcal{P} \). This is a bijection between the 0-dimensional members of \(\mathcal{S} \) and the 0-dimensional members of \(\mathcal{N}(\mathcal{F}) \). By Lemma 5.3, the 2-dimensional members of \(\mathcal{S} \) correspond via \(\phi \) to the 2-dimensional members of \(\mathcal{N}(\mathcal{F}) \). By the “edge property” in the previous paragraph, it follows that \(\phi \) is an isomorphism of the two abstract simplicial complexes, \(\mathcal{S} \) and \(\mathcal{N}(\mathcal{F}) \).

By Theorem 4.2, \(\mathcal{N}(\mathcal{F}) \) is isomorphic to the face-lattice of another standard ball-polyhedron: \(\mathcal{P}^* \). Since \(\mathcal{P}^* \) is a convex body in \(\mathbb{E}^3 \) (i.e., a compact convex set with non-empty interior in \(\mathbb{E}^3 \)), the union of its faces is homeomorphic to the 2-sphere. Thus, \(\mathcal{S} \) as an abstract simplicial complex is homeomorphic to the 2-sphere. On the other hand, \(\text{bd} \mathcal{Q} \) is a geometric realization of \(\mathcal{S} \). Thus, we have obtained that \(\text{bd} \mathcal{Q} \) is a geometric simplicial complex which is homeomorphic to the 2-sphere. It follows that \(\mathcal{Q} \) is homeomorphic to the 3-ball. So, we have that \(\mathcal{Q} \) is a polyhedron (the point being: it is topologically nice, that is, its boundary is a surface, as required by the definition of a polyhedron in Section 4).

Clearly, \(\mathcal{Q} \) is a weakly convex polyhedron as \(\mathcal{C} \) is in convex position. Furthermore, \(\mathcal{Q} \) is co-decomposable (and hence, weakly co-decomposable), as \(\mathcal{D}^\ell \) is a sub-polyhedral complex of \(\mathcal{D} \) (by Lemma 5.2), which is a family of convex polyhedra the union of which is \(|\mathcal{Q}| = |\mathcal{C}| \).

So far, we have proved that \(\mathcal{Q} \) is a weakly convex and co-decomposable polyhedron with triangular faces in \(\mathbb{E}^3 \). By Theorem 4.1, \(\mathcal{Q} \) is infinitesimally rigid. Since \(\text{bd} \mathcal{Q} \) itself is a geometric simplicial complex therefore its edge graph is rigid because infinitesimal rigidity implies rigidity (for more details on that see [5]). Finally, we recall that the edges of the polyhedron \(\mathcal{Q} \) correspond to the edges of the ball-polyhedron \(\mathcal{P} \), and the lengths of the edges of \(\mathcal{Q} \) determine (via a one-to-one mapping) the corresponding inner dihedral angles of \(\mathcal{P} \). It follows that \(\mathcal{P} \) is locally rigid with respect to its inner dihedral angles.

Acknowledgements. The authors wish to thank the anonymous referees for a number of helpful comments and suggestions.

References

[1] F. Aurenhammer and R. Klein, Voronoi diagrams, Handbook of computational geometry, North-Holland, Amsterdam, 2000, 201–290.

[2] K. Bezdek, Classical Topics in Discrete Geometry, CMS Books in Mathematics, Springer, New York, 2010.
[3] K. Bezdek and M. Naszódi, *Rigidity of ball-polyhedra in Euclidean 3-space*, European J. Combin. 27/2 (2005), 255–268.

[4] K. Bezdek, Zs. Lángi, M. Naszódi and P. Papez, *Ball-polyhedra*, Discrete Comput. Geom. 38/2 (2007), 201–230.

[5] R. Connelly, *Rigidity*, in *Handbook of Convex Geometry*, North Holland, Amsterdam, 1993, 223–271.

[6] H. Edelsbrunner, D. G. Kirkpatrick, and R. Seidel, *On the shape of a set of points in the plane*, IEEE Trans. Inform. Theory 29/4 (1983), 551-559.

[7] I. Izmestiev and J.-M. Schlenker, *Infinitesimal rigidity of polyhedra with vertices in convex position*, Pacific J. Math. 248/1 (2010), 171-190.

[8] Y. S. Kupitz, H. Martini, M. A. Perles, *Ball polytopes and the Vázsonyi problem*, Acta Math. Hungar. 126/1-2 (2010), 99–163.

[9] J. Matoušek, *Lectures on discrete geometry*, Graduate Texts in Mathematics, Vol. 212, Springer-Verlag, New York, 2002.

[10] R. Mazzeo and G. Montcouquiol, *Infinitesimal rigidity of cone-manifolds and the Stoker problem for hyperbolic and Euclidean polyhedra*, J. Differential Geom. 87/3 (2011), 525–576.

[11] R. Seidel, *Exact upper bounds for the number of faces in d-dimensional Voronoi diagrams*, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., Amer. Math. Soc., Applied geometry and discrete mathematics, 4 (1991), 517–529.

[12] J. J. Stoker, *Geometric problems concerning polyhedra in the large*, Com. Pure and Applied Math. 21 (1968), 119–168.

Károly Bezdek
Department of Mathematics and Statistics, University of Calgary, Canada,
Department of Mathematics, University of Pannonia, Veszprém, Hungary,
Institute of Mathematics, Eötvös University, Budapest, Hungary,
E-mail: bezdek@math.ucalgary.ca

and

Márton Naszódi
Institute of Mathematics, Eötvös University, Budapest, Hungary,
E-mail: nmarci@math.elte.hu