Effects of Berberine on Liver Cancer

Yiting Liu1,2,*, Ebuka-Olisaemeka Nwafor1,2,*, Ziwei Li1,2, Jilin Wang1,2, Xiaojiao Feng1,2, Huihui Li1,2, Bei Jia1,2, Hongfei Ma1,2, Jiachen He1,2, Jiaxin Pi1,2 and Zhidong Liu1,2

Abstract
Liver cancer, otherwise known as hepatocellular carcinoma, is a chronic disease condition with an excessive deposition and growth of malignant cells in the body. The high incidence and prevalence rates of liver cancer continue to be problems, as well as its poor prognosis and therapeutic limitations involving severe drug adverse reactions linked to the use of synthetic chemotherapeutic compounds. Continuous experimental studies, as well as utilization of pure herbal-based compounds, are essential towards finding more potent cures for liver cancer. Natural bioactive compounds, particularly alkaloids (eg, berberine), have been shown to be highly beneficial in the treatment of various diseases. Berberine (BBR), an isoquinoline alkaloid, is obtained from stem, bark, roots, rhizomes, and leaves of several medicinal plants, including Berberis species. It is commonly synthesized from the benzyltetrahydroisoquinoline system with the incorporation of an additional carbon atom as a bridge. The multiple attributes of BBR involving effective inhibitory and cytotoxic actions against the proliferation of cancer cells have been demonstrated. The use of BBR in experimental studies (in vivo and in vitro) for over a decade for liver cancer treatment has proven to be highly effective, safe, and potent. Until now, the poor solubility of BBR remains one of the contributing factors leading to its minimal clinical bioavailability. Therefore, BBR could serve as a prospective drug candidate in the future towards drug formulation for liver cancer treatment. The relevant information regarding this review was obtained electronically through the use of databases such as PubMed, Google Scholar, Springer, Hindawi, Embase, Web of Science, and China National Knowledge Infrastructure. All the aforementioned databases were searched from 1981 to 2020. This literature represents an update of previous review papers discussing the various positive pharmacological and mechanistic effects (oxidative stress regulation, inflammation reduction, apoptosis activation, overcoming drug resistance, and metastasis inhibition) of BBR for liver cancer treatment, which would be of great significance to drug development and clinical research.

Keywords
berberine, liver cancer, apoptosis, epithelial-mesenchymal transition, mechanistic effects

Received: August 26th, 2021; Accepted: April 29th, 2022.

Introduction
Liver cancer is termed a chronic disease with an excessive or uncontrolled deposition and proliferation of malignant cells in the body.1,2 It is normally accompanied by a manifestation of symptoms like swelling of the abdomen, weakness, weight loss, yellowish skin, and easy bruising and pains in the right side below the rib cage. The occurrence of liver cancer is associated with certain causative agents such as iron overload, obesity, hepatitis-B virus, diabetes, smoking, alcohol-related cirrhosis, liver flukes, hepatitis-C virus, nonalcoholic fatty liver disease (NAFLD), aflatoxin exposure, immunosuppression, and lupus (systemic lupus erythematosus).3-5 The prevalence of liver cancer is still rapidly on the rise worldwide, with a minimal survival rate.6,7 This, combined with poor prognosis and therapeutic shortcomings or limitations involving chronic drug adverse reactions to the synthetic chemotherapeutic...
components applied in drug formulation are causes of concern. The treatments often delay, but can potentiate the degree of disease progression. More experimental studies, as well as utilization of pure herbal-based compounds, are essential towards finding more potent curative agents to treat liver cancer.12

Natural bioactive compounds, particularly alkaloids (eg, Berberine; BBR), have been shown to be highly beneficial in the treatment of various diseases.6–14 BBR is commonly synthesized from the benzyltetrahydroisoquinoline system with the incorporation of an additional carbon atom as a bridge. Current evidence indicates the multiple attributes of BBR involving effective inhibitory and cytotoxic actions (oxidative stress regulation, inflammation reduction, apoptosis, and autophagy activation) against the proliferation of cancer cells.15–21 The use of BBR in experimental studies (in vivo and in vitro) for over a decade against liver cancer has proven to be highly effective, safe, and potent. However, until now, the poor solubility of BBR remains one of the contributing factors leading to its minimal clinical bioavailability. Therefore, BBR could serve as a prospective drug candidate for drug formulation against liver cancer. This work represents an update of previous review papers discussing the various positive pharmacological and mechanistic effects (oxidative stress regulation, inflammation reduction, apoptosis activation, overcoming drug resistance, and metastasis inhibition) of BBR for liver cancer treatment.

Methodology
The information shown in this review was obtained electronically through the use of databases such as PubMed, Google Scholar, Springer, Hindawi, Embase, Web of Science, and China National Knowledge Infrastructure by using keywords such as “Berberine,” “Berberine and Cancer,” “Berberine and Tumor,” “Berberine and Carcinoma,” “Berberine against liver cancer,” “Berberine against hepatocellular carcinoma,” “Hepatocellular carcinoma,” “Liver cancer,” and “Berberine effects on liver cancer.” All the aforementioned databases were searched from 1981 to 2020.

Botanical Sources, Pharmacological Activities, and Metabolism of BBR
The isoquinoline alkaloid, BBR (Figure 1) or 5,6-dihydro-9,10-dimethoxybenzo[g]-1,3-benzodioxolo[5,6-a] quinolizinium derivative, is a constituent of many different medicinal plants such as Berberis species (B. aspiformis, B. vulgaris, B. heterophylla, B. darwinii, B. petiolata, B. buainana, and B. aristata), and others (eg, Hydratis canadensis, Phelodendron chinense, Coptidis sp., Argyonome mexicana, Camellia japonica, Timospora cordifolia, Costinum forestatum, Xanthorrhiza simplicissima, Callosobruchus chinensis, and Phelodendron amurense).22–27 Table 1 lists the BBR containing species (family, botanical names) and their applications. Owing to their yellowish color, Berberis species are commonly utilized in dyeing leather, wood, and wool. BBR also has a wide-ranging history in Asia, being known for its low or poor lipid solubility alongside its remarkable biochemical and pharmacological activities.50–53 Traditionally, BBR, particularly BBR sulfate and hydrochloride, is extensively applied in traditional Chinese and Ayurvedic medicine.54,55

Recent analytical studies have shown that BBR could serve varying purposes, such as anti-obesity, anti-microbial, spatial memory enhancement, anti-diabetic, anti-cancer, anti-atherosclerotic, anti-hypertensive, anti-hyperlipidemic, anti-protozoal, anti-inflammatory, neuroprotective, hepatoprotective, and anti-oxidative agents,56–62 as well as being utilized clinically for the treatment of disease conditions involving polycystic ovary syndrome, NAFLD, CAD, and metabolic syndrome. Table 2 summarizes the numerous beneficial activities of BBR in animal models. The metabolism of BBR is considered mostly to take place in the liver via demethylation (phase I) and glucuronidation processes (phase II), and excreted in the bile.61 Excessive consumption or administration of BBR in large doses (4–6 weeks) results in liver overload. Also, its usage in pregnancy may lead to miscarriage and contraction of the uterus, as well as neonatal jaundice. Other possible toxicological effects or adverse reactions include gastric troubles, headache, digestive problems, stomach upset, constipation, diarrhea, and flatulence.

Potential Utilization of BBR for the Treatment of Liver Cancer
Over the past decade, diverse studies carried out by researchers regarding the medicinal effects of BBR in the treatment of liver cancer cells portrayed or indicated certain clinical outcomes through suppression of cellular proliferation, activation of apoptosis, halting the process of angiogenesis, and slowing down the onset of metastases. In this respect, we outline the prospective in vivo and in vitro actions of BBR in liver cancer (Table 3).

BBR and Liver Cancer
Liver cancer, otherwise known as primary hepatic cancer or hepatocellular carcinoma (HCC), is considered one of the most prevalent and deadliest types of cancer universally, causing deaths with a significant percentage of humans annually.63–66 In 2018, according to World Health Organization
No	Family	Botanical name	Application	References
1	Menispermaceae	*Tinospora sinensis* (Lour.) Merr (ex *Tinospora cordifolia* (Willd.) Miers)	Utilized as anti-spasmodic, anti-stress, anti-allergic, anti-malarial, tonic, anti-diabetic, anti-arthritis, anti-inflammatory and anti-periodic agents.	28,29
2	Rutaceae	*Zanthoxylum monophyllum* Tul. *Phellodendron amurense* Rupr. (ex *Phellodendron wilsonii* Hayata & Kaneh.). *Phellodendron chinense* var. *glabriusculum* C. K. Schneid.	Treats dark vomitus and ophthalmic inflammation Used in treating cancer, diarrhea, abdominal pain, gastroenteritis and possesses immunostimulating and anti-inflammatory activities Treats night sweats, vaginal infections, conjunctivitis, skin diseases, jaundice, meningitis, boils, dysentery, acute urinary tract infection, and diarrhea. Serves as vasodilator, aphrodisiac, and expectorant Used as anti-rheumatic and anti-malarial agents, and detoxicant for hot damps related conditions to the kidney.	30, 31, 32
3	Annonaceae	*Annickia polycarpa* (DC.) Setten & Maas ex I.M.Turner (ex-*Enantia polycarpa* (DC.) Engl. & Diel)	Treats intestinal problems, jaundice, feverish conditions associated with malaria, ophthalmic problems, skin infections, sores, cuts, and improves wound healing.	32, 33
		Annickia chlorantha (Oliv.) Setten & Maas (ex *Enantia chlorantha* Oliv.)	Treats typhoid and yellow fever, boils, diabetes, vomiting, hypertension, urinary tract infections, malaria, cough, sexual asthma, intestinal worms, tuberculosis, wounds, aches, syphilis, sores, conjunctivitis, jaundice, intestinal spasm, rheumatism, rickettsia fever, prostate cancer, hepatitis A, B, C, and D, dysentery, leishmaniosis, fatigue, sleeping sickness and improves conception.	32, 34–36
		Xylopia polycarpa (DC.) Oliv.	Promotes conception and utilized in treating malaria, leprosy, sleeping disorders, ulcer, diarrhea, ophthalmic diseases, rheumatism, fever, gall bladder, and stomach problems.	32
		Annickia pilosa (Exell) Setten & Maas (ex *Enantia pilosa* Exell)	Applied in the treatment of cuts	32
4	Papaveraceae	*Papaver hybridum* L.	Serve as diuretic, sedative, anti-infective and anti-tussive agents Applied in the treatment of dermatological diseases	32
		Glaucium corniculatum (L.) Rud. subsp. *corniculatum*	Treats central nervous system disturbances Used as anti-tussive, laxative, and sedative agents	37, 38
		Papaver rhoas L. var. *chelidoniiodes*	Treats nervous digestive disorders, jaundice, fever, bronchial coughs, insomnia, painful conditions. Applied as sedative, emollient, narcotic, and anticancer agents.	32
		Papaver dubium L., *Papaver dubium* var. *lecoquii*	Serves as expectorant, ophthalmic, sudorifac, and diuretic agents	32
		Macleaya microcarpa (Maxim.) Fedde *Macleaya cordata* (Willd.) R.Br.	Treats inflammation and some skin disorders Treats ringworm, and insect bites Utilized as diuretic, analgesic, and anti-edemic agents	32, 39
		Eschscholzia californica Cham.	Applied in the treatment of insomnia, pain, urinary incontinence, anxiety, spasms, nervous tension, and toothache Promotes perspiration and reduces the flow of milk in lactating mothers.	32
		Bocconia frutescens L.	Treats respiratory tract infections (tuberculosis and bronchitis), and skin conditions (ulcers)	32
		Argemone platyceras L.	Used in treating pneumonia, asthma, bronchitis, and cough	32
		Argemone albiflora Hornem (ex-*Argemone alba* F. Lestib.)	Serves as emetic, purgative and diuretic agents Applied in the treatment of wounds, colds, jaundice, and skin ailments	32
		Argemone mexicana L.	Utilized as antidote for snake poisoning, sedative,	32

(Continued)
No	Family	Botanical name	Application	References
1		*Corydalis solida* subsp. *brachylova*	Treats cataract, warts, chronic skin disease, cough, itching, and cold sores.	40, 41
		Corydalis solida subsp. *Slivenensis* (Velen.) Hayek (ex-*Corydalis slivenensis* Velen.); *Corydalis solida* subsp. *taurica*; *Corydalis turtsehaninovii* Besser (ex-*Corydalis ternata* (Nakai) Nakai)	Treats traumatic injury, lumbago, dysmenorrhea, hallucinogenic, rheumatism, cardiac arrhythmia disease, memory dysfunction, duodenal and gastric ulcers; serves as antibacterial, CNS stimulant, antispasmodics, and sedative for insomnia; lowers blood pressure, and calms the nerves.	
		Chelidonium majus L.	Treat gastric and duodenal ulcers, memory dysfunction, dysmenorrhea, rheumatism, and cardiac arrhythmia disease.	32
2		*Chelidonium majus* L.	Treats traumatic injury, lumbago, dysmenorrhea, hallucinogenic, rheumatism, cardiac arrhythmia disease, memory dysfunction, duodenal and gastric ulcers; serves as antibacterial, CNS stimulant, antispasmodics, and sedative for insomnia; lowers blood pressure, and calms the nerves.	
3		*Chelidonium majus* L.	Treats traumatic injury, lumbago, dysmenorrhea, hallucinogenic, rheumatism, cardiac arrhythmia disease, memory dysfunction, duodenal and gastric ulcers; serves as antibacterial, CNS stimulant, antispasmodics, and sedative for insomnia; lowers blood pressure, and calms the nerves.	
4		*Chelidonium majus* L.	Treats traumatic injury, lumbago, dysmenorrhea, hallucinogenic, rheumatism, cardiac arrhythmia disease, memory dysfunction, duodenal and gastric ulcers; serves as antibacterial, CNS stimulant, antispasmodics, and sedative for insomnia; lowers blood pressure, and calms the nerves.	
5	Berberidaceae	*Sinopodophyllum hexandrum* (Royle) T. S. Ying	Improves the circulation of blood and modulates menstruation.	42
		Caellidophyllum thalictroides (L.) Michaux	Applied in the treatment of cramps, rheumatism, colic, hysteria, and menstrual cramps.	32
		Mahonia napaulensis DC.	Used in treating eyes-related inflammation, and dysentery. Used as demulcent and diuretics agents.	32
		Jeffersonia diphylla (L.) Pers.	Treats ulcers, sores, urinary problems, and diarrhea. Utilized as emetic, antispasmodic, diuretic, and expectorant in coughs.	32
		Nandina domestica Thunb.	Used in treating fever in influenza, indigestion, acute bronchitis, muscles and traumatic injuries, tooth abscess, whooping cough, and pain in the bones. Serves as anti-rheumatic, astringent, and anti-tussive.	32
		Mahonia fortunei (Lindl.) Fedde	Applied as anti-odontalgic, anticancer, and treating arthritic pain and testicular swelling or inflammation.	43
		Berberis aquifolium Pursh	Utilized in the treatment of jaundice, hemorhaghes, fungal infections, eczema, dysentery, cirrhosis, acne, herpes, hepatitis, sore wound following menstruation or childbirth, psoriasis, digestive problems, conjunctivitis, gall bladder diseases, constipation, stomach problems, skin conditions, and few forms of cancer. Stimulates bile flow, intestinal secretion, and promotes blood flow to the liver.	44
		Berberis asiatica Roxb. ex DC.	Treats ear and eye diseases, rheumatism, hyperpigmentation, headache, diabetes mellitus, malarial fever, asthma, jaundice, toothache, wounds, pneumococcal infections, stomach disorders, inflammation, and ulcers.	32
		Berberis actinacantha Mart.	Anti-pyretic.	45
		Berberis pseudumbellata R. Parker	Treats ulcer, sore throat, jaundice, stomach problems, eye diseases, and intestinal disorders.	46
		Berberis vulgaris L.	Serves as antiarrhythmic, sedative, and anticancer agents.	47
Table 1. Continued.

No	Family	Botanical name	Application	References
1		Berberis microphylla G. Forst. (ex Berberis heterophylla Juss. ex Poir.)	Used in treating fever, sore throat, internal injuries, and kidney stones	32
2		Berberis thunbergii DC.	Applied in the treatment of diarrhea, inflammation, and febrifuge	48
3		Berberis oblonga (Regel) C. K. Schneid	Anti-inflammatory	32
4		Berberis tinctoria Lesch.	Treats arthralgia, diarrhea, pyrexia, back pain, jaundice, eye diseases, stomach ache, and mouth-related wounds	32
5		Berberis petiolata Wall. ex G. Don	Treats jaundice, conjunctivitis, diarrhea, and malarial fever	49
6		Berberis umbellata Wall. ex G. Don	Utilized in the treatment of skin problems, eye disorders, fever, nausea, and jaundice	32
7		Berberis darwinii Hook.	Treats fever, stomach pains, colitis, and indigestion	32
8		Berberis jaeschkeana C. K. Schneid.	Treats eye-related diseases	32
9		Berberis lycium Royle	Used in the treatment of skin problems, eye disorders, fever, nausea, and jaundice	32
10		Berberis empetrifolia Lam.	Treats cold, complications during post-natal period, and serves as antipyretic	32
11		Berberis lycium Royle	Serves as antipyretic	32
12		Berberis helianthoides Ehrenb. ex C. K. Schneid.	Treats arthritis, neuralgic diseases, rheumatic, and muscular pain	32
13		Berberis integerrima Bunge.	Treats chest pain, diabetes, headaches, bone fractures, constipation, rheumatism, tuberculosis, wound, heart pain, kidney stones, and stomach aches	32
14		Berberis leichnhautii Wall. ex Wight & Arn.	Treats cold, complications during post-natal period, and serves as antipyretic	32
15		Berberis koroliana Palib.	Serves as antipyretic	32
16		Berberis chitra Buch.-Ham. ex-Lindl.	Treats cold, complications during post-natal period, and serves as antipyretic	32
17		Berberis aristata DC.	Used in treating infections	32
18		Berberis buxifolia Lam.	Treats ophthalmic conditions, skin disease, ulcers, jaundice, rheumatism, ulcers, enlarged liver, and spleen	32
19		Berberis buxifolia Lam.	Treats dysentery, osteoporosis, jaundice, urinary tract infections, eye condition, allergies, cholera, metabolic disorders, fever, diarrhea, malaria, skin related diseases, piles, and menorrhagia	32
20	Ranunculaceae	Hydrastis canadensis L.	Used in treating infections	32
21		Coptis chinensis Franch.	Treats disorders of the digestive system and mucous membranes, constipation, disorders affecting the ears, eyes, throat, nose, stomach, intestines, and vagina	32
22		Coptis teeta Wall.	Control of bacterial and viral infections, relax spasms, and lower fevers	32
23		Xanthorrhiza simplicissima Marshall	Treats jaundice, mouth ulcers, digestive disorders, stomach ulcers, piles, and cold	32
24		Coptis teeta Wall.	Applied in the treatment of pectoral diseases, ophthalmic conditions, spasms, dysentery, and fevers. Controls bacterial and viral infections, and stimulates circulation	32

(Continued)
(WHO), liver cancer reportedly claimed about 782,000 human lives worldwide. It has greater predominance in males than in females, as well as high regional (Western and Middle Africa, Southeast and East Asia), and low regional (Eastern and Northern Europe, Western and South-Central Asia) incidence rates. Nowadays, lung transplantation, surgery, and radiation therapies provide possible treatments for individuals with early detection. Regardless of the therapeutic advancement, the treatment of liver cancer still remains burdensome due to the tendency of recurrence, even after curative treatment. Varied experimental studies have shown that BBR demonstrates enormous anti-cancer actions.

Effects of BBR on Overcoming Drug Resistance in Liver Cancer Treatment

BBR has demonstrated significant characteristics for overcome multidrug resistance, thus exhibiting its capacity in tumor chemotherapy. BBR regulates the neutrophil phenotype to maintain the sensitivity of cancer cells to doxorubicin, synergistically sensitizes human liver cancer cells to sorafenib, and promotes the radio-sensitivity of hepatoma cells by inhibiting the Nrf2 pathway. Also, BBR and the Janus nanocarrier-based co-delivery of doxorubicin impairs chemotherapy-exacerbated HCC recurrence via inhibition of caspase-3-iPLA2-COX-2 signaling pathways. BBR combined with irradiation promotes anti-cancer actions through activation of the p38 MAPK pathway and ROS generation in human hepatoma cells. Additionally, the combination of BBR and vincristine significantly impaired the growth and apoptotic induction in hepatoma cells.

Effects of BBR on Liver Cancer Metastasis Inhibition

BBR has been proven to possess positive attributes in the inhibition of tumor metastasis. Matrix metalloproteinases (MMPs) break down the matrix tissue, thereby enabling the malignant cells to advance to the barrier of normal tissues and occupy the surrounding normal tissues and distant organs. BBR suppresses Id-1 expression and inhibits the growth and development of lung metastases in HCC. BBR exerts a strong suppression on the invasion and migration of HCC cells through promoting PAI-1 and decreasing urokinase-type plasminogen activator (uPA).

Table 1. Continued.

No	Family	Botanical name	Application	References
6	Natural Product Communications	*Coptis japonica* (Thunb.) Makino	Treats intestinal catarrh, conjunctivitis, dysentery, high fevers, enteritis, inflamed tongue, and mouth. Stimulates circulation, relaxes spasms, and controls bacterial and viral infections	32

Mechanistic Effects of BBR on Liver Cancer

Oxidative Stress Regulation

Oxidative stress is a harmful process that can be an essential mediator of either impairment or destruction of cell structures and thus activates different disease conditions, namely cancer, diabetes, and neurological and cardiovascular diseases. Shukia et al demonstrated that BBR regulates oxidative stress through the promotion of reactive oxygen species (ROSs), and lipid peroxidation alongside the down-regulation of the actions of glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD) expressions via the JUK signaling pathway. A traditional herbal medicine, *Lagerstroemia speciosa* (L.) Pers., containing of BBR, Gallic acid, and Corosolic acid, induces oxidative stress-mediated apoptosis associated with HepG2 cells through intrinsic and mitochondrial mechanisms.

Inflammation Reduction

Inflammation represents a common cause of different chronic diseases. BBR reduces the proliferation of liver cancer through an anti-inflammatory pathway. BBR reduces the protein expression levels of cytosolic phospholipase A2 (cPLA2) and cyclooxygenase (COX)-2, and up-regulates the content ratio of arachidonic acid to prostaglandin E2 in the human hepatocarcinoma (HepG2) cells. BBR suppresses the phosphorylation of Akt, mTOR, and ERK, indicating inhibition of cell growth through the PI3K/Akt/mTOR and ERK/MAPK signal pathways. BBR induces G1-phase arrest accompanied by a decrease in cyclin D1, cyclin E, and cdc2 expressions. It inhibits cell growth through cell cycle arrest. In addition, BBR mediates proliferation and migration in HCC via the Wnt/β-catenin signaling pathway, represses progression or growth of liver cancer cells via inhibiting glutamine uptake, and β-catenin translation involving 4E-binding protein. BBR also exerts anti-proliferative effects against mitochondrial dysfunction-mediated apoptosis in HepG2 cells through down-modulation of the PI3K/Akt/mTOR mechanism, and impairs cell proliferation and migration in HCC via regulation of the Wnt signaling pathway. A traditional herbal remedy, known as DaHuangWan, constituted of BBR and costunolide, suppresses the proliferation of hepatoma cells through modulating the epithelial growth factor (EGF) mechanism. Moreover, BBR can hamper cell proliferation of HepG2, Hep3B, and SNU-182 via promoting protein expression of tumor suppressor genes, like activating transcription factor 3 (ATF3).
Table 2. In Vivo Beneficial Activities Associated With Berberine.

No	Condition	Details of assay (animal model)	Experimental effects	Ref.
1	Intestinal inflammation and gut microbiome	db/db mice	Diminishes body weight, food intake, blood glucose, intestinal inflammation, serum LPS, and HbA1c levels. Restores intestinal SCFA content and barrier structure. Promotes the number of SCFA-producing bacteria and reduces opportunistic pathogens.	63
2	Hypertension	Spontaneously hypertensive rats	Down-regulates the elevated levels of aldosterone, collagen IV, angiotensin II, collagen III, IL-23, IL-6, IL-17, albumin, osteopontin, and KIM-1.	64
3	Diabetic retinopathy	STZ induced diabetic retinopathy in male Sprague-Dawley mice	Hinders cell apoptosis, ganglion cell layer, oxidative stress, and deactivates NF-kB signaling pathway	65
4	Diabetic nephropathy	HFD and STZ induced diabetic nephropathy rats	Inhibits elevated levels of biochemical indicators, and effectively potentiates the abnormal expression of phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), and phosphorylated Akt.	66
		STZ induced diabetic nephropathy rats	Inhibits renal injury, fasting blood glucose, ratio of kidney weight to body weight, 24-h urinary protein, serum creatinine, blood urine nitrogen, systemic and renal cortex inflammatory response, and TLR4/NF-kB pathway.	67
5	Diabetic encephalopathy	db/db and C57BL/6j-db/m mice	Enhances lipid metabolism, synapse and nerve-related protein expression (NGF, SYN, and PSD95), and protein expression of SIRT1. Downregulates fasting blood glucose, protein expression of inflammatory factors (NF-kB and TNF-α), and ER stress-associated proteins (IRE-1α, CHOP, PDI, PERK, and eIF-2α).	68
6	Axonopathy and diabetic encephalopathy	HFD and STZ induced diabetic rats	Decreases blood glucose, tau hyperphosphorylation, axonopathy, memory impairment, insulin level, insulin resistance, and restores PI3K/Akt/GSK3β signaling pathway	69
7	Diabetes	STZ induced diabetic albino Wistar mice	Significantly suppresses hepatic markers, lipid peroxidation markers (LOOH and TBARS), pro-inflammatory mediators (TNF-α, phospho-NF-kB p65, COX-2, and iNOS), and pro-apoptotic mediators (Bax and cytochrome c). Potentiates hexokinase, glucose-6-phosphate dehydrogenase, enzymatic antioxidant (SOD, CAT, and GPx), non-enzymatic antioxidants (GSH, vitamin E, and vitamin C), and anti-apoptotic protein (Bcl).	70,71
		Alloxan and HFD induced diabetic Wistar mice	Represses the fasting blood glucose level, serum content of LDL-c, TG, and TC. Improves HDL-c, NO, SOD, and GSH-px. Obstructs the increase of MDA and restored the damage to pancreas tissues.	72
		HFD and STZ induced diabetic mice	Down-regulates the levels of fasting blood glucose, LDL-c, total cholesterol, hypothalamic orexin-A, OX2R receptor, corticotropin-releasing hormone, pituitary and plasma adrenocorticotropic hormone, serum and urine corticosterone. Promotes the insulin sensitivity index, abnormalities of HDL-c, insulin resistance index, insulin levels, glucagon, mRNA, and protein expressions of GLUT4 in skeletal muscles.	73
8	Alzheimer’s disease and type-2 diabetes mellitus	STZ and Aβ25–35 induced Alzheimer’s diabetic mice	Attenuates memory deficits, ER stress, and the increased levels of triglyceride, total cholesterol, fasting blood glucose, and glycosylated serum protein. Restores the disordered arrangements of nerve cells and up-regulates TUNEL-positive cells.	74
9	Alzheimer’s disease	APP/PS1 transgenic rats	Enhances learning and memory, and glutathione (GSH) activity. Reduces hyperphosphorylated tau protein, lipid peroxidation, and NF-kB activity.	75
		APP/PS1 transgenic rats	Inhibits the levels of Aβ, sAPP-β, BACE1, PS1, Pen-2, and Aph-1α. Promotes the levels of ADAM17, sAPPα, ADAM10, learning, and memory.	76
10	Anxiety	Male Wistar mice	Alleviates locomotor activity, relapse, and anxiety-related behaviors. Increases TLR4, Sirt1, and α-actin activation.	77
11	Ulcerative colitis	DSS-induced mice	Diminishes the expression of IL-12, IL-6, IFN-γ, IL-1, IL-1β,	78

(Continued)
Table 2. Continued.

No	Condition	Details of assay (animal model)	Experimental effects	Ref.
12	Myocardial infarction	Male wild-type (C57BL6) rats	TNF-α, MPO, iNOS, MDA and TGF-β. Up-regulates the expression of IL-10, IL-4 and SlgA.	79
			Promotes miR-29b expression level, angiogenesis, and heart functions. Reduces infarct size.	
13	Myocardial hypertrophy	CAA induced myocardial hypertrophy mice	Decreases the expression of β myosin heavy chain, atrial natriuretic peptide, and myocardial infarction associated transcript. Halts up-regulation of mRNA expression and downregulation of bedlin 1 and autophagy-related 5.	80

Table 3. Mechanistic Actions of Berberine on Liver Cancer.

No	Condition	Assay model (animal/cell/tissues)	Experimental effects	Ref.
1	Liver cancer	SMMC-7721 and HepG2 cells	Up-regulates the expression levels of cleaved caspase-3 and cleaved poly (ADP-ribose) polymerase, and reduces vascular endothelial growth factor and anti-apoptotic protein B-cell lymphoma. 2	82
		Huh7 and HepG2 cells	Down-regulates the expression of Nrf2 signaling-related protein (Nrf2, HO-1, and NQO-1). Potentiates the radiation-induced oxidative stress and apoptosis.	83
		Human hepatoma HepG2 cell	Potentiates the levels of nitric oxide and reactive oxygen species	84
		MHCC-97L cell	Decreases cellular proliferation, invasiveness, and HIF-1α/VEGF signaling pathway. Decrease the transcription level of Id-1 via suppressing its promoter activity.	85
		Bel-7402 and SMMC-7721 cells	Decreases the expression of cyclooxygenase-2 (COX-2), nuclear factor kappa B (NF-kB), urokinase-type plasminogen activator, and matrix metalloproteinase-9 (MMP-9). Inactivates p38 and Erk1/2 signaling pathway.	86
		Human hepatocarcinoma (HepG2) cell	Increases the mRNA expression of FoxO1 and FoxO3a. Improves JNK phosphorylation, ROS generation, and lipid peroxidation. Reduces level of catalase, superoxide dismutase, and glutathione.	87
		H22, HepG2, and Bel-7404 cells	Reduces the protein expression levels of cytosolic phospholipase A2 (cPLA2) and cyclooxygenase (COX)-2. Up-regulates the content ratio of arachidonic acid to prostaglandin E2.	88
		HepG2, Bel-7402, and SMMC-7721	Hampers the expression of cyclin D1, cyclin E, and cdc 2 and reduces the phosphorylation of Akt, mTOR, and ERK.	89
		BALB/c nude mice, Hep3B, and BEL-7404 cells	Suppresses the growth of HCC cells in vitro. Inhibits the glutamine uptake by diminishing SLC1A5. Decreases the proliferation of tumor xenografts, and the expression of SLC1A5 and c-Myc in-vivo.	90
		Hep3B, HepG2, HEK293, and Huh7 cells	Modulates β-catechin pathway independent of AMPK. Antagonizes β-catechin pathway via targeting Cap-dependent translation. Regulates β-catechin expression at the level of translation. Inhibits mTOR pathway and Cap-dependent translation. Activates HCC cell apoptosis via antagonizing Cap-dependent translation and β-catechin axis.	91
		Human hepatocarcinoma (HepG2) cell	Triggers the activation of caspase-8 and caspase-3, release of cytochrome c and PARP (poly ADP-ribose polymerase) cleavage, and down-regulates expression of Bid and anti-apoptosis factor BelXL.	92
		HepG2, SMMC-7721, and Bel-7402 cell	Significantly elevates phosphorylated AMP-activated protein kinase, phosphorylated Akt level, and Bax/Bcl-2 ratio in a dose-dependent manner.	93
		Human hepatoma WRL68 cells	Improves the expression of Bax. Regulates the protein expression of Bcl-2 associated with caspase -3/7 activities.	94
		Human hepatoma HepG2 cell	Diminishes the expressions of Bcl-2 protein and pro-caspase-3, and promotes Bax protein.	95
		Human hepatocarcinoma (HepG2) cell	Down-regulates the NF-kB p65 level.	96
		Human hepatocarcinoma (HepG2) cell	Reverses the adhesion and migration of HepG2 cells via suppressing the expression of LOX-5 and decreasing the LTβ4 production in the tumor microenvironment.	97
		HepG2 and MHCC97-L cells	Enhances Bax expression, formation of permeable transition pores, cytochrome C release to cytosol, and activation of the caspases 3 and 9 execution pathway.	98
Apoptosis Activation
BBR potentiates the mitochondria-dependent pathway to activate apoptosis in human hepatocarcinoma (HepG2) cells. BBR restores the activation of caspase-3 and caspase-8 and releases mitochondrial membrane potential, cytochrome c, and cleavage of poly ADP-ribose polymerase (PARP), resulting in a decrease in the expression level of Bid and anti-apoptosis factor Bcl-XL. BBR remarkably activates the mRNA level or expression of FoxO1 and FoxO3 and inhibits their breakdown. Hence, BBR promotes the transcriptional effect of FoxO that is related to the anti-proliferation of tumors. Elevating FoxO transcriptional factors vigorously activates the level of the BH3-only protein Bim and induces the pro-apoptotic protein Bax and caspases, leading to mitochondria-mediated apoptosis. In addition, BBR activates apoptosis in liver cancer cells via inhibition of the AMPK-mediated mitochondrial/caspase pathway, Akt-ASK1-P38MAPKs linked cascade, NF-kB p65 pathway, and the iPLA2/LOX-5/LTB4 signaling pathway. The combined use of BBR and evodiamine also improves the apoptosis of human HCC SMMC-7721 cells. Furthermore, the use of Berberis lycium Royle in the apoptotic treatment of HepG2 cells, revealed a decrease in Bcl-2, independent of p53 Mrna, and an increase in CDK1 while suppressing CDK5, CDK9, and CDK10 mRNA expressions.

Autophagy
Autophagy is described as a natural, conserved catabolic pathway, through which eukaryotic cells degrade or recycle internal components via a membrane trafficking mechanism. It also serves as a source of sustainable energy and biomolecules to the cells for proper maintenance of intracellular homeostasis during stressful conditions like a tumor microenvironment.

BBR activates autophagic cell death in HepG2 and MHCC97-L cells through suppression of the mTOR mechanism and Beclin-1 activation by increasing P38 MAPK and decreasing the activities of Akt signaling. BBR also induces the glucose-regulated protein 78 (GRP78) level via down-regulation of proteasomal and ubiquitination degradation, and activation of ATF6 cleavage, thereby resulting in cancer cell death and autophagy. BBR, obtained from Coptidis Rhizoma, triggered autophagic cell death via suppression of the PI3K/Akt/mTOR mechanism and elevation of ROS-mediated mitochondrial dysfunction in HCC Hep3B cells. In addition, BBR sensitized human HCC to ionizing radiation by obstructing cell cycle arrest and autophagy, resulting in senescence, triggered autophagic and apoptotic death in HepG2 cells through the activation of AMPK mechanism, and activated cell death in human hepatoma carcinoma cell line HepG2 through inhibiting the expression of CD147. Finally, BBR suppressed the viability, migration, and invasion capacity of HepG2.
Table 4. Formulation Techniques Designed to Promote the Bioavailability and Effectiveness of Berberine as an Anti-Cancer Agent.

No	Preparation Attributes	Experimental model and effects	Ref
1	Nano-sized carbon nanocarrier-C₆₀ fulleren (C₆₀)	Water dispersions of noncovalent C₆₀-Ber nano-complexes in 1:2, 1:1, and 2:1 molar ratios	Improves the intracellular uptake of BBR; higher anti-proliferative potential towards CCRF-CEM cells free—Berberine < 1:2 < 1:1 < 2:1 molar ratio preparations; induce caspase 3/7; cell cycle arrest at sub-G1 phase; activate apoptosis.
2	Cationic and anionic vitamin E-TPGS mixed polymeric phospholipid micellar vehicles	Lipid-based nanoparticles, amphiphilic mixed micelles composed of polymeric phospholipid conjugates and PEG-succinate ester of tocopherol.	Human prostate cancer cell lines (PC3 and LNPc) promote apoptosis activation with a 30-fold potential improvement of pharmacokinetics.
3	Novel mitochondria targeting surface charge-reversal polymeric nanocarrier	Vitamin B6-oligomeric hyaluronic acid (OHA)-dithiodipropionic acid-BBR preparation; BBR conjugated with OHA and OHA further conjugated to B6. Micelles of 172.9 nm are formed by formulating conjugates with Cur-loaded nanoparticles.	Triggers cytotoxicity in vitro against PANC-1 cells and tumor proliferation in nude rats bearing PANC-1 cells xenograft; subcellular drug distribution indicates mitochondria as a target.
4	Planar side arm-tethered β-cyclodextrin encapsulation	Fluorenyl derivative of β-cyclodextrin used to encapsulate BBR.	Actively binds with duplex and G-quadruplex DNAs although its association with the cavity of β-cyclodextrin reduces the strength of binding.
5	Cationic γ-cyclodextrin derivative	A cationic derivative of γ-cyclodextrin synthesized via modification with propylenediamine; mucoadhesive with resistance to digestion by α-amylase.	Localized in lysosomes with cytotoxicity twice higher than BBR in murine melanoma (B16-F10) and 4T1 cells.
6	PLGA nanocarrier	PLGA-doxorubicin conjugate utilized in BBR encapsulation.	Anti-proliferative against MDA-MB-231 and T47D breast cancer cell lines were observed with IC₅₀ of 1.94 ± 0.22 and 1.02 ± 0.36 μM; changes mitochondrial permeability and arrest cell cycle at sub G1 phase; 14-fold up-regulates in the half-life of BBR in rats.
7	Self-carried berberine microrods	Particles prepared through mixing trimethylamine with BBR hydrochloride in DMSO to form about 20–100 μm in length and 5–20 μm width irregular size product.	With about 40 μg/mL IC₅₀ value, about twice more selective than BBR in cancer cells.
8	Polyethyleneimine (PEI)-cholesterol (PC) berberine nanocarrier complexed with miR-122	BBR incorporated to PC with further electrostatic complex with miR-122; good drug loading (8.4%) and release (63.0) capacity of nanoparticles of about 146 nm.	Downregulates OSCC cells invasion and migration in transwell studies when compared with single-drug therapeutics.
9	BBR with PEGylated liposomal doxorubicin (PEG-lip-DOX)	BBR merged with polyethylene glycolated liposomal doxorubicin.	Suppresses the vascular endothelial growth factor (VEGF) expression in human umbilical vein endothelial cells (HUVECs); reduces (via i.v.) tumor proliferation in Meth A sarcoma-transplanted mice; effect stronger than BBR or PEG-lip-DOX alone.
10	Zinc oxide-based nanocarrier	BBR and zinc oxide (ZnO) combined through facile blending at the ratio of 39:61 to form 200–300 nm size nanoparticles.	Promotes anti-growth activity in A549 (human lung adenocarcinoma) cells; no obvious severe hepatotoxicity, hemotoxicity, and renal toxicity in rats by i.v.
11	Folic acid- and BBR-loaded silver nanomaterial (FA-PEG@BBR-AgNPs)	Encapsulating BBR on citrate-capped silver nanoparticles (AgNPs) through electrostatic interactions (BBR-AgNPs) followed through conjugation with polyethylene glycol-functionalized folic acid by hydrogen bonding interactions	Improves apoptosis in MDA-MB-231 breast cancer cells; activates ROS; regulates P3K, AKT, Ras, Raf, ERK, VEGF, HIF1α, Bel-2, Bax, cytochrome-c, caspase-9, and caspase-3; triggers tumor proliferation in vivo when (Continued)
HepG2 cells via the activation of pyroptosis (caspase-1 dependent programmed cell death) both in vitro and in vivo, which was impaired by caspase-1 inhibitor Ac-YVAD-CMK.28

In summary, BBR prevents cellular growth, proliferation, migration, autophagy, apoptosis, and cell cycle arrest processes in HCC cells via the inhibition of AMPK-mediated mitochondrial/caspase, arachidonic acid metabolic, NF-κB-mediated mitochon-
drional/nuclear pathways. Figure 2 indicates the schematic illustration of BBR effects and mechanisms on liver cancer.

The Enhancement of BBR Effects Through New Drug Formulation

Table 4 shows several formulation techniques particularly designed for tackling the limitations (poor intestinal absorption, poor pharmacokinetic, or poor bioavailability) associated with BBR administration, thereby promoting its anti-cancer efficacy.29–45 These involve nanocarriers or nanoparticles of different surface charges and size with few targeting subcellular organelles like mitochondria. For instance, the experimental studies carried out by Khan et al, demonstrated a 14-fold elevation in the half-life of BBR in a mice model through poly (lactic-co-glycolic acid) (PLGA) nanoparticle BBR carriers, while the charged vitamin E-based amphiphilic mixed micellar vehicles provided a 30-fold enhancement in BBR pharmacokinetics in mice with about 2-fold advancement in half-life ($t_{1/2}$).

Conclusion and Future Perspectives

In this review, we aimed to collect all information with regards to the various positive pharmacological and mechanistic effects
of BBR for liver cancer treatment. The highlighted in vivo and in vitro experimental studies carried out for over a decade with the use of BBR for liver cancer treatment has proven the compound to be highly effective, safe, and a potent natural product, which could serve as a prospective choice as an herbal remedy in treating liver cancer. It also known to possess a wide spectrum of clinical usage against various diseases, such as polycystic ovary syndrome, NAFLD, CAD, and metabolic syndrome. However, a significant drawback is its hydrophilicity, known to be associated with the use of BBR in malignant or tumor treatment, thereby leading to poor bioavailability and low effective concentration. However, it has been proven that complexes of iron-oxide nanoparticles and the hypoxic cell sensitizer sanazole, in conjunction with BBR, represent a highly efficient improvement in the therapeutic specificity and bioavailability of BBR. However, more studies are required regarding the activities of BBR in preventing cellular growth, proliferation, migration, autophagy, apoptosis, and cell cycle arrest processes in HCC cells via different signaling pathways or mechanisms, so as to provide extensive analytical data to aid the conduction of clinical research in the future.

Acknowledgements
This study was financially supported by the National Natural Science Foundation of China (grant no. 81803739).

Declaration of Conflicting Interests
The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was financially supported by the National Natural Science Foundation of China (grant no. 81803739).

ORCID iDs
Yiting Liu https://orcid.org/0000-0001-8190-0649
Jiaxin Pi https://orcid.org/0000-0003-0815-5165

References
1. Siegel RL, Miller KD. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7-34. doi: 10.3322/caac.21551.
2. Anwanwan D, Singh SK, Singh S, Saikam V, Singh R. Challenges in liver cancer and possible treatment approaches. Biochim Biophys Acta Rev Cancer. 2020;1873(1):188314. doi: 10.1016/j.bbcan.2019.188314.
3. Yang WS, Zeng XF, Liu ZN, et al. Diet and liver cancer risk: a narrative review of epidemiological evidence. Br J Nutr. 2020;124(3):330-340. doi: 10.1017/S0007114520001208.
4. Massarweh NN, El-Serag HB. Epidemiology of hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Cancer control. 2017;24(3):1073274817729245. doi: 10.1177/1073274817729245.
5. Yang JD, Hainaut P, Gores GJ. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol. 2019;16(10):589-604. doi: 10.1038/s41575-019-0186-y.
6. Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet. 2018;391(10127):1301-1314. doi: 10.1016/S0140-6736(18)30010-2.
7. Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet. 2003;362(9399):1907-1917. doi: 10.1016/S0140-6736(03)14964-1.
8. Di Tommaso L, Spadaccini M, Donadon M, et al. Role of liver biopsy in hepatocellular carcinoma. World J Gastroenterol. 2019;25(10):6041-6052. doi: 10.3748/wjg.v25.i40.6041.
9. Hou Q, He WJ, Wu YS, et al. Berberine: a traditional natural product with novel biological activities. Altern Ther Health Med. 2020;26(2):20-27.
10. Li J, Zou Y, Pei M, Zhang Y, Jiang Y. Berberine inhibits the Warburg effect through TET3/miR-145/HK2 pathways in ovarian cancer cells. J Cancer. 2021;12(1):207-216. doi: 10.7150/jca.48896.
11. Waltańska D, Piotrowski M, Pituch H. The effect of berberine chloride and/or its combination with vancomycin on the growth, biofilm formation, and motility of Clostridium difficile. Eur J Clin Microbiol Infect Dis. 2020;39(7):1391-1399. doi: 10.1007/s10096-020-03857-0.
12. Ke X, Huang Y, Li L, et al. Berberine attenuates arterial plaque formation in atherosclerotic rats with damp-heat syndrome via regulating autophagy. Drug Des Devel Ther. 2020;14:2449-2460. doi: 10.2147/DDDT.S250524.
13. Wande Y, Jie L, Aikai Z, et al. Berberine alleviates pulmonary hypertension through TLR3 and β-catenin signaling pathways in pulmonary artery smooth muscle cells. Exp Cell Res. 2020;390(1):111910. doi: 10.1016/j.yexcr.2020.111910.
14. Cacero AF, Baggioni A. Berberine and its role in chronic disease. Adv Exp Med Biol. 2016;828:27-45. doi: 10.1007/978-3-319-41334-1_2.
15. Ayati SH, Fazeli B, Montamzi-Boroujeni AA, et al. Regulatory effects of berberine on microRNome in cancer and other conditions. Curr Rev Oncol Hematol. 2017;11:147-158. doi: 10.1016/j.critrevonc.2017.05.008.
16. Mortazavi H, Nikfar B, Esmaeili SA, et al. Potential cytotoxic and anti-metastatic effects of berberine on gynaecological cancers with drug-associated resistance. Eur J Med Chem. 2020;187:111951. doi: 10.1016/j.ejmech.2019.111951.
17. Wang Y, Liu Y, Du X, Ma H, Yao J. The anti-cancer mechanisms of berberine: a review. Cancer Manag Res. 2020;12:695-702. doi: 10.2147/CMAR.S24329.
18. Samadi P, Sarvarian P, Gholipour E, et al. Berberine: a novel therapeutic strategy for cancer. IUBMB Life. 2020;72(10):2065-2079. doi: 10.1002/iub.2350.
19. Zhang C, Sheng J, Li G, et al. Effects of berberine and its derivatives on cancer: a systems pharmacology review. Front Pharmacol. 2019;10:1461. doi: 10.3389/fphar.2019.01461.
20. Wen C, Wu L, Fu L, Zhang X, Zhou H. Berberine enhances the anti-tumor activity of tamoxifen in drug-sensitive MCF-7 and drug-resistant MCF-7/TAM cells. Med Med Rep. 2016;14(3):2250-2256. doi: 10.3892/mmr.2016.5490.
21. Zou K, Li Z, Zhang Y, et al. Advances in the study of berberine and its derivatives: a focus on anti-inflammatory and anti-tumor effects in the digestive system. *Acta Pharmacol Sin*. 2017;38(2):157-167. doi: 10.1038/aps.2016.125

22. Potdar D, Hirwani RR, Dhalup S. Phyto-chemical and pharmacological applications of *Berberis aristata*. *Fitoterapia*. 2012;83(5):817-830. doi: 10.1016/j.fitote.2012.04.012

23. Singh A, Bajpai V, Srivastava M, Arya KR, Kumar B. Rapid screening and distribution of bioactive compounds in different parts of *Berberis pintoniarii* using direct analysis in real time mass spectrometry. *J Pharm Anal*. 2015;5(5):332-335. doi: 10.1016/j.jpha.2015.05.002

24. Suau R, Rico R, López-Romero JM, Nájera F, Cuevas A. Isoquinoline alkaloids from *Berberis vulgaris* subsp. *australis*. *Phytochemistry*. 1998;49:2545-2549.

25. Rojsanga P, Gritsanapan W, Suntornsvuk L. Determination of berberine content in the stem extracts of *Coixsenium frutetorum* by TLC densitometry. *Med Princ Pract*. 2006;15(5):373-378. doi: 10.1159/000094272

26. Imanshahidi M, Hosseinazadeh H. Pharmacological and therapeutic effects of *Berberis vulgaris* and its active constituent, berberine. *Phytother Res*. 2008;22(8):999-1012. doi: 10.1002/ptr.2399

27. Khan MI, Harsha PS, Giridhar P, Ravishankar GA. Pigment and anticancer drug using PLGA nanoparticles: Exploration of better anticancer activity and in vivo kinetics. *Biofactors*. 2018;44(5):496-502. doi: 10.1002/biof.1450

28. Chu Q, Jiang Y, Zhang W, et al. Pyroptosis is involved in the toxicity and improving in vivo pharmacokinetics. *AAPS PharmSciTech*. 2014;15(4):834-844. doi: 10.1007/s12249-014-0112-0

29. Grebinyk A, Prylutska S, Buchelnikov A, et al. C(60) Fullerene as a multifunctional surface charge-reversal polymeric nanoparticles for field-enhanced therapy against hepato-lucent cells. *Chem Biol Drug Des*. 2017;89(3):464-469. doi: 10.1111/cbdd.12866

30. Yu D, Ruan P, Meng Z, et al. The structure-dependent electric release and enhanced oxidation of drug in graphene oxide-based nanocarrier loaded with anticancer herbal drug berberine. *J Pharm Sci*. 2015;104(8):2489-2500. doi: 10.1016/j.jsps.2014.07.073

31. Fang L, Fan H, Guo C, et al. Novel mitochondrial targeting multifunctional charge-reversal polymeric nanoparticles for cancer treatment. *J Biomed Nanotechnol*. 2019;15(11):2151-2163. doi: 10.1166/jbn.2019.2854

32. Suganthi S, Sivraj R, Selvakumar PM, et al. Supramolecular complex binding to G-quadruplex DNA: Berberine encapsulated by a planar side arm-tethered β-cyclodextrin. *J Biomed Struct Dyn*. 2019;37(3):3305-3313. doi: 10.1007/s10731-017-9124-0

33. Poppolek I, Niziońska K, Kamiński K, et al. Cellular delivery and enhanced anticancer activity of berberine complexed with a cationic derivative of γ-cyclodextrin. *Bioorg Med Chem*. 2019;27(7):1414-1420. doi: 10.1016/j.bmc.2019.02.042

34. Khan I, Joshi G, Nakhte KT, et al. Nano-co-delivery of berberine and anticancer drug using PLGA nanoparticles: Exploration of better anticancer activity and in vivo kinetics. *Pharm Res*. 2019;36(10):149. doi: 10.1007/s11095-019-2677-5

35. Zheng X, Zhang F, Shao D, et al. Gram-scale production of carrier-free fluorescent berberine microrods for selective liver cancer therapy. *Biofactors*. 2018;44(5):496-502. doi: 10.1002/biof.1450

36. Li L, Li X, Huang X, et al. Synergistic anticancer effects of nanocarrier loaded with berberine and miR-122. *Biosci Rep*. 2018;38(3). doi: 10.1042/BSR20180311

37. Yaluafai J, Asai T, Oku N, et al. Anticancer efficacy of the combination of berberine and PEGylated liposomal doxorubicin in Ehrlich ascites tumor-bearing mice. *Biosci Rep*. 2018;41(7):1103-1106. doi: 10.1248/bpsb.17-00989

38. Kim S, Lee SY, Cho HJ. Berberine and zinc oxide-based nanoparticles for the chemo-radiotherapy of lung adenocarcinoma. *Biochem Biophys Res Commun*. 2018;501(3):765-770. doi: 10.1016/j.bbrc.2018.05.063

39. Bhanumathi R, Manivannan M, Thangaraj R, et al. Drug-carrying capacity and anticancer effect of the folic acid- and berberine-loaded silver nanomaterial to regulate the ACT-ERK pathway in breast cancer. *ACS Omega*. 2018;3(7):8317-8328. doi: 10.1021/acsomega.7b01347

40. Sreeja S, Krishnan Nair CK. Tumor control by hypoxia-specific chemotargeting of iron-oxide nanoparticle—Berberine complexes in a mouse model. *Life Sci*. 2018;195:71-80. doi: 10.1016/j.lfs.2017.12.036

41. Wang Z, Yang YS, Chang ZM, et al. Berberine-loaded Janus nanocarriers for magnetic field-enhanced therapy against hepatocellular carcinoma. *Chem Biol Drug Des*. 2017;89(3):464-469. doi: 10.1111/cbld.12866

42. Gupta L, Sharma AK, Gohwal A, et al. Dendrimer encapsulated and conjugated delivery of berberine: a novel approach mitigating toxicity and improving in vivo pharmacokinetics. *Int J Pharm*. 2017;528(1-2):88-99. doi: 10.1016/j.ijpharm.2017.04.073

43. Dziedzic A, Kubina R, Balak R, et al. Silver nanoparticles exhibit the dose-dependent anti-proliferative effect against human squamous carcinoma cells attenuated in the presence of berberine. *Molecules*. 2016;21(3):365. doi: 10.3390/molecules2103365

44. Yu D, Ruan P, Meng Z, et al. The structure-dependent electric release and enhanced oxidation of drug in graphene oxide-based nanocarrier loaded with anticancer herbal drug berberine. *J Pharm Sci*. 2015;104(8):2489-2500. doi: 10.1016/j.jsps.2014.07.073

45. Wang L, Li H, Wang S, et al. Enhancing the antitumor activity of berberine hydrochloride by solid lipid nanoparticle encapsulation. *AAPS PharmSciTech*. 2014;15(4):834-844. doi: 10.1208/s12249-014-0112-0

46. Lin YC, Kuo JY, Hsu CC, et al. Optimizing manufacture of liposomal berberine with evaluation of its antitumor effects in a murine xenograft model. *Int J Pharm*. 2013;441(1-2):381-388. doi: 10.1016/j.ijpharm.2012.11.017

47. Upadhyay K, Kumar K, Kumar A, Mishra HS. *Tinospora cordifolia* (Willd.) hook. F & Thoms. (Guduchi) — validation of the ayurvedic pharmacology through experimental and clinical studies. *Int J Ayurveda Res*. 2010;1(2):112-121. doi: 10.4103/0974-7788.64405

48. Singh D, Chaudhuri PK. Chemistry and pharmacology of *Tinospora cordifolia*. *Nat Prod Commun*. 2017;12(2):299-308.

49. Hirschhorn HH. Botanical remedies of south and Central America, and the Caribbean: an archival analysis. Part I.
14

Natural Product Communications

J Ethnopharmacol. 1981;4(2):129-158. doi: 10.1016/0378-8741(81)90032-5

50. Singh IP, Mahajan S. Berberine and its derivatives: a patent review (2009–2012). Expert Opin Ther Pat. 2013;23(2):215-231. doi: 10.1517/13543776.2013.746314

51. Xiao D, Liu Z, Zhang S, et al. Berberine derivatives with different pharmacological activities via structural modifications. Mini Rev Med Chem. 2018;18(17):1424-1441. doi: 10.2174/138955751766170321103139

52. Caliceti C, Franco P, Spinozzi S, Roda A, Cicero AF. Berberine: new insights from pharmacological aspects to clinical evidences in the management of metabolic disorders. Curr Med Chem. 2016;23(14):1460-1476. doi: 10.2174/0929867323666160411143314

53. Kumar A, Ekavali, Chopra K, et al. Current knowledge and pharmacological profile of berberine: an update. Eur J Pharmocol. 2015;761:288-297. doi: 10.1016/j.ejphar.2015.05.068

54. Aloola RN, Fan Y, Chen Z, et al. Significant pharmacokinetic differences of berberine are attributable to variations in gut microbiota between Africans and Chinese. Sci Rep. 2016;6:27671. doi: 10.1038/step27671

55. Li T, Wang P, Guo W, et al. Natural berberine-based Chinese herb medicine assembled nanostructures with modified antibacterial application. ACS Nano. 2019;13(6):6770-6781. doi: 10.1021/acsnano.9b01346

56. Kim DG, Choi JW, Jo IJ, et al. Berberine ameliorates lipopolysaccharide-induced inflammatory responses in mouse inner medullary collecting ducr-3 cells by downregulation of NF-kB pathway. Mol Med Rep. 2020;21(1):258-266. doi: 10.3892/mmr.2019.10823

57. Takahara M, Takaki A, Hiraoka S, et al. Berberine improved experimental chronic colitis in rats by regulating interferon-γ and IL-17A-producing lamina propria CD4(+) T cells through AMPK activation. Sci Rep. 2019;9(1):11934. doi: 10.1038/s41598-019-48331-w

58. Gong C, Hu X, Xu Y, et al. Berberine inhibits proliferation and migration of colorectal cancer cells by downregulation of GRP78. Anticancer Drugs. 2020;31(2):141-149. doi: 10.1097/CAD.000000000000083

59. Sadrzadeh S, Kiasalari Z, Razavian M, et al. Berberine ameliorates lipopolysaccharide-induced learning and memory deficit in the rat: insights into underlying molecular mechanisms. Metab Brain Dis. 2019;34(1):245-255. doi: 10.1007/s11011-018-0349-5

60. Liu Y, Hua W, Li Y, et al. Berberine suppresses colon cancer cell proliferation by inhibiting the SCAP/SREBP-1 signaling pathway-mediated lipogenesis. Biochem Pharmaco. 2020;174:113776. doi: 10.1016/j.biopharm.2019.113776

61. Li W, Kuang H, Feng X, et al. Berberine increases glucose uptake and intracellular ROS levels by promoting Sirtuin 3 ubiquitination. Biomed Pharmacother. 2020;121:109563. doi: 10.1016/j.biopha.2019.109563

62. Zhou M, Deng Y, Liu M, et al. The pharmacological activity of berberine, a review for liver protection. Eur J Pharmocol. 2021;890:173655. doi: 10.1016/j.ejphar.2020.173655

63. Park JI, Shim JK, Do JW, et al. Immune-stimulating properties of polysaccharides from Phellodendri cortex (Hwangbeuk). Glycoconj J. 1999;16(3):247-252. doi: 10.1023/a:1007084506071

64. Neag MA, Mocean A, Echeverria J, et al. Berberine: botanical occurrence, traditional uses, extraction methods, and relevance in cardiovascular, metabolic, hepatic, and renal disorders. Front Pharmacol. 2018;9:557-557. doi: 10.3389/fphar.2018.00557

65. Ajali U. Antibacterial activity of Eunasia polyarpa bark. Fintterapia. 2000;71(3):315-316. doi: 10.1016/s0367-326x(99)00153-7

66. Tsang N, Tsou Folou PV, Yamthe Tchokoua L R, et al. Ethnopharmacological survey of Annonaceae medicinal plants used to treat malaria in four areas of Cameroon. J Ethnopharmacol. 2012;139(1):171-180. doi: 10.1016/j.jep.2011.10.035

67. Musuyu Muganza D, I Fruth B, Nzuuzu Lami J, et al. In vitro antipROTOzoal and cytotoxic activity of 33 ethnopharmacologically selected medicinal plants from Democratic Republic of Congo. J Ethnopharmacol. 2012;141(1):301-308. doi: 10.1016/j.jep.2012.02.035

68. Gbolade A. Ethnobotanical study of plants used in treating hypertension in Edo State of Nigeria. J Ethnopharmacol. 2012;144(1):1-10. doi: 10.1016/j.jep.2012.07.018

69. Hayta S, Polat R, Selvi S. Traditional uses of medicinal plants in Elazığ (Turkey). J Ethnopharmacol. 2014;154(3):613-623. doi: 10.1016/j.jep.2014.04.026

70. Al-Qura’s S. Ethnopharmacological survey of wild medicinal plants in Showbak, Jordan. J Ethnopharmacol. 2009;123(1):45-50. doi: 10.1016/j.jep.2009.02.031

71. Deng AJ, Qin HL. Cytotoxic dihydro benzophenanthridine alkaloids from the roots of Macleaya microcarpa. Phytochemistry. 2010;71(7):816-822. doi: 10.1016/j.phytochem.2010.02.007

72. Houghton PJ, Ren Y, Howes MJ. Acetylcysteinol esterase inhibitors from plants and fungi. Nat Prod Rep. 2006;23(2):181-199. doi: 10.1039/b508966m

73. Orhan I, Sener B, Choudhary MI, Khalid A. Acetylcysteinol esterase and butyrylcholinesterase inhibitor activity of some Turkish medicinal plants. J Ethnopharmacol. 2004;91(1):57-60. doi: 10.1016/j.jep.2003.11.016

74. Kong Y, Xiao JJ, Meng SC, et al. A new cytotoxic flavonoid from the fruit of Sinopodophyllum hexaspermum. Fitoterapia. 2010;81(5):367-370. doi: 10.1016/j.fitote.2009.11.003

75. He JM, Mu Q. The medicinal uses of the genus Mahonia: an ethnopharmacological, phytochemical and pharmacological review. J Ethnopharmacol. 2015;175:668-683. doi: 10.1016/j.jep.2015.09.013

76. Ritch-Kre EM, Thomas S, Turner NJ, Towers GH. Carrier medicinal plants: traditional and contemporary plant use. J Ethnopharmacol. 1996;52(2):85-94. doi: 10.1016/0378-8741(96)01392-x

77. José San MA. Medicinal plants in central Chile. Econ Bot. 1983;37:216-227.

78. Mohi-Ud-Din R, Mir RH, Mir PA, et al. Ethno medicinal uses, phytochemistry and pharmacological aspects of the genus Berberis Linn: a comprehensive review. Comb Chem High Throughput Screen. 2021;24(5):624-644. doi: 10.2174/138620732399201102141206
Liu et al.

92. Chuang TY, Wu HL, Min J, et al. Berberine regulates the protein and phenolic content of Berberis vulgaris L. and Berberis crispata Horvat. Food Chem Toxicol. 2010;48(8-9):2176-2180. doi: 10.1016/j.fct.2010.05.025
93. Küpeli E, Koşar M, Yeşilada E, Hünsü K, Bayar C. A comparative study on the anti-inflammatory, antioxidative and antiangiogenic effects of isouquinoline alkaloids from the roots of Turkish Berberis species. Life Sci. 2002;72(6):645-657. doi: 10.1016/s0024-3205(02)02305(02):0220-2
94. Huang Y, Wang K, Gu C, et al. Berberine, a natural plant alkaloid, induces apoptosis through the AMPK-mediated mitochondrial/caspase pathway in hepatocellular carcinoma. Mol Med Rep. 2013;8(2):505-510. doi: 10.3892/mmr.2013.1506
95. Yip NK, Ho WS. Berberine induces apoptosis via the mitochondrial pathway in liver cancer cells. Oncol Rep. 2013;30(3):1107-1112. doi: 10.3892/or.2013.2543
96. Hyun MS, Hur JM, Mun Y, Kim D, Woo WH. BBR induces apoptosis in HepG2 cell through an Akt-ASK1-ROS-p38MAPKs-linked cascade. J Cell Biochem. 2010;109(2):329-338. doi: 10.1002/jcb.22384
97. Li M, Zhang M, Zhang ZL, et al. Induction of apoptosis by berberine in hepatocellular carcinoma HepG2 cells via downregulation of NF-κB. Oncol Rep. 2017;25(2):233-239. doi: 10.3727/096541617X1474291049073
98. Mustafa K, Mohamed H, Shah AM, et al. In vitro anticancer potential of Berberis lyceum Royle extracts against human hepatocarcinoma (HepG2) cells. Biomed Res Int. 2020;2018:8256809. doi: 10.1155/2020/8256809
99. Messaoudi R, Jazini F, Mihba A, et al. Ontology-based approach for liver cancer diagnosis and treatment. J Digit Imaging. 2019;32(1):116-130. doi: 10.1007/s10278-018-0115-6
100. Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma. Lancet. 2012;379(9822):1245-1255. doi: 10.1016/S0140-6736(11)61347-0
101. Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69-90. doi: 10.3322/caac.20107
102. Wang C, Vegna S, Jin H, et al. Inducing and exploiting vulnerabilities for the treatment of liver cancer. Nature. 2019;574(7777):268-272. doi: 10.1038/s41586-019-1607-3
103. Gerard B, Bleiberg H. Treatment of hepatocarcinoma. Curr Oncol Rep. 2004;6(3):184-191. doi: 10.1007/s11912-004-0048-8
104. Sangro Gómez-Acebo B, Prieto Valtueña J. Hepatocarcinoma treatment. Rev Clin Esp. 2004;204(4):218-220. doi: 10.1117/10.30275.105. Liu CY, Chen K, Chen PJ. Treatment of liver cancer. Cold Spring Harb Perspect Med. 2015;5(9):a021535. doi: 10.1101/cshperspect.a021535
106. Bibok A, Doros A. Role of interventional radiological procedures in the treatment of liver cancer. Magy Onkol. 2018;62(1):45-52.
107. Zhu XD, Sun HC. The treatment of early-stage liver cancer. Zhonghua Gan Zang Bing Za Zhi. 2017;25(5):333-335. doi: 10.3760/cma.j.issn.1007-3418.2017.05.004
108. Grandhi MS, Kim AK, Ronnekleiv-Kelly SM, et al. Hepatocellular carcinoma: from diagnosis to treatment. Surg Oncol. 2016;25(2):74-85. doi: 10.1016/j.suronc.2016.03.002
109. Lin HJ, Ho JH, Tsai LC, et al. Synthesis and in vitro photocytotoxicity of 9-/13-lipophilic substituted berberine derivatives as potential anticancer agents. Molecules. 2020;25(3):677. doi: 10.3390/molecules25030677
110. Song L, Luo Y, Wang X, et al. Exploring the active mechanism of berberine against HCC by systematic pharmacology and experimental validation. Mol Med Rep. 2019;20(5):4654-4664. doi: 10.3892/mmr.2019.10698.

111. Zhang S, Zhou L, Zhang M, et al. Berberine maintains the neutrophil N1 phenotype to reverse cancer cell resistance to doxorubicin. Front Pharmacol. 2019;10:1658. doi: 10.3389/fphar.2019.01658

112. Zhang F, Jia Y, Zheng X, et al. Janus nanocarrier-based co-delivery of doxorubicin and berberine weakens chemotherapy-exacerbated hepatocellular carcinoma recurrence. Acta Biomater. 2019;100:352-364. doi: 10.1016/j.actbio.2019.09.034

113. Ma C, Tang K, Liu Q, Zhu R, Cao Z. Calmodulin as a potential target by which berberine induces cell cycle arrest in human hepatoma Bel7402 cells. Chem Biol Drug Des. 2013;81(6):775-783. doi: 10.1111/cbdd.12124

114. Wang L, Wei D, Han X, et al. The combinational effect of vincristine and berberine on growth inhibition and apoptosis induction in hepatoma cells. J Cell Biochem. 2014;115(4):721-730. doi: 10.1002/jcb.24715

115. Cai Y, Xia Q, Luo R, et al. Berberine inhibits the growth of human colorectal adenocarcinoma in vitro and in vivo. J Nat Med. 2014;68(1):53-62. doi: 10.1007/s11418-013-0766-z

116. Serafim TL, Oliveira PJ, Sardao VA, et al. Different concentrations of berberine result in distinct cellular localization patterns and cell cycle effects in a melanoma cell line. Cancer Chemother Pharmacol. 2008;61(6):1007-1018. doi: 10.1007/s00280-007-0558-9

117. Thakur RS, Devaraj E. Lagerstroemia speciosa (L.) Pers. Triggers oxidative stress mediated apoptosis via intrinsic mitochondrial pathway in HepG2 cells. Environ Toxicol. 2020;35(11):1225-1233. doi: 10.1002/tox.22987

118. Takigawa Y, Brown AM. Wnt signaling in liver cancer. Curr Drug Targets. 2008;9(11):1013-1024. doi: 10.2174/138945008786786127

119. Si H, Genna B, Zhuang X, et al. Dahuangwan targets EGF signaling to inhibit the proliferation of hepatoma cells. PLoS One. 2020;15(4):e0231466. doi: 10.1371/journal.pone.0231466

120. Zhao Y, He K, Zheng H, et al. Berberine inhibits the apoptosis-induced metastasis by suppressing the iPLA2/iLOX-5/LTB4 pathway in hepatocellular carcinoma. Onco Targets Ther. 2020;13:5223-5230. doi: 10.2147/OTT.243357

121. Wang XN, Han X, Xu LN, et al. Enhancement of apoptosis of human hepatocellular carcinoma SMMC-7721 cells through synergy of berberine and evodiamine. Phytochemistry. 2008;15(12):1062-1068. doi: 10.1016/j.phytochem.2008.05.002

122. Li Q, Zhang L, Zu Y, et al. Generation of reactive oxygen species by a novel berberine-bile acid analog mediates apoptosis in hepatocarcinoma SMMC-7721 cells. Biochem Biophys Res Commun. 2013;433(4):432-437. doi: 10.1016/j.bbrc.2013.02.104

123. Wang N, Feng Y, Zhu M, et al. Berberine induces autophagic cell death and mitochondrial apoptosis in liver cancer cells: the cellular mechanism. J Cell Biochem. 2010;111(6):1426-1436. doi: 10.1002/jcb.22869

124. La X, Zhang L, Li Z, Yang P, Wang Y. Berberine-induced autophagic cell death by elevating GRP78 levels in cancer cells. Oncotarget. 2017;8(13):20909-20924. doi: 10.18632/oncotarget.14959

125. Kim SY, Hwangbo H, Kim MY, et al. Coptisine induces autophagic cell death through down-regulation of PI3K/Akt/mTOR signaling pathway and up-regulation of ROS-mediated mitochondrial dysfunction in hepatocellular carcinoma Hep3B cells. Arch Biochem Biophys. 2021;697:108688. doi: 10.1016/j.abb.2020.108688

126. Ramesh G, Das S, Bola Sadashiva SR. Berberine, a natural alkaloid sensitizes human hepatocarcinoma to ionizing radiation by blocking autophagy and cell cycle arrest resulting in senescence. J Pharm Pharmacol. 2020;72(12):1893-1908. doi: 10.1111/jphp.13354

127. Yu R, Zhang ZQ, Wang B, et al. Berberine-induced apoptotic and autophagic death of HepG2 cells requires AMPK activation. Cancer Cell Int. 2014;14:49. doi: 10.1186/1475-2867-14-49

128. Hou Q, Tang X, Liu H, et al. Berberine induces cell death in human hepatoma cells in vitro by downregulating CD147. Cancer Sci. 2011;102(7):1287-1292. doi: 10.1111/j.1349-7006.2011.01933