Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company’s public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Cepheid Xpert Xpress Flu/RSV evaluation performed by minimally trained non-laboratory operators in a CLIA-waived environment

Bashar S. Shihabuddin a,*, Matthew L. Faron b, Ryan F. Relich c, Paul Van Heukelom d, Donna Mayne e, Mary Allen Staat f, Rangaraj Selvarangan g, Leslie A. Hueschen h, Donna M. Wolk i, Stacey House j, Glenn Harnett k, Kevin McGann l, Mark T. Steele m, Jose R. Romero n, Joe Arms o, Owen Lander p, Michael Loeffelholz q, Fiona Strouts q, Daniel Cohen n

a Division of Emergency Medicine, Nationwide Children’s Hospital, Columbus, OH, USA
b The Medical College of Wisconsin, Milwaukee, WI, USA
c Indiana University School of Medicine, Indianapolis, IN, USA
d University of Iowa Hospital and Clinics, Iowa City, IO, USA
e Ascension Sacred Heart Hospital, Pensacola, FL, USA
f Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
g Children’s Mercy Kansas City, Kansas City, MO, USA
h Children’s Mercy Kansas City, Kansas City, MO, USA
i University of Missouri-Kansas City School of Medicine, University of Kansas School of Medicine, Children’s Mercy Hospital, Kansas City, MO, USA
j Geisinger, Diagnostic Medicine Institute, Danville, PA, USA
k Department of Emergency Medicine, Washington University School of Medicine, St. Louis, MO, USA
l American Family Care, No Resistance Consulting Group, LLC, Birmingham, AL, USA
m Healthplex Family Clinic, Shreveport, LA, USA
n Truman Medical Center, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
o Arkansas Children’s Hospital, Little Rock, AR, USA
p Children’s Hospital of Minnesota, Minneapolis, MN, USA
q West Virginia School of Medicine, Morgantown, WV, USA
r Cepheid, Sunnyvale, CA, USA

ARTICLE INFO

Article history:
Received 9 February 2022
Revised in revised form 27 May 2022
Accepted 5 July 2022
Available online 10 July 2022

Keywords:
Multiplex real-time PCR test
CLIA-Waved Environment
RSV
Influenza

ABSTRACT

The COVID-19 pandemic highlighted the significance of readily available and easily performed viral testing for surveillance during future infectious pandemics. The objectives of this study were: to assess the performance of the Xpert Xpress Flu and/or RSV test, a multiplex PCR assay for detecting influenza A and B virus and respiratory syncytial virus nucleic acids in respiratory tract specimens, relative to the Quidel Lyra Influenza A+B assay and the Prodesse ProFlu+ assay, and the system’s ease of use by minimally trained operators. Overall, the Xpert Xpress Flu/RSV test demonstrated a high positive and negative percent agreement with the comparator assays, and was easy to use and interpret results, based on the operators’ feedback. We concluded that the Xpert Xpress Flu/RSV test is sensitive, specific, and easy to use for the diagnosis of influenza and RSV by minimally trained operators and can be a valuable tool in future infectious clusters or pandemics.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

It has been speculated, even before the current COVID-19 pandemic, that an influenza virus would result in a worldwide pandemic. After the 2009 H1N1 pandemic, there has been heightened anticipation and preparedness for the next influenza pandemic [1]. The burden of influenza viruses and respiratory syncytial virus (RSV) remains substantial, particularly in vulnerable populations. Influenza viruses are major contributors to hospitalizations among young children, and RSV is the most common pathogen identified in young children, particularly those under 5 years of age, with acute lower respiratory infections [2,3]. A recent study found that RSV may account for 10% of acute respiratory infections in adults, and up to 14% of acute respiratory infections in adults with chronic lung disease or history of transplantation [4]. Often, both influenza and RSV exhibit overlapping symptoms in adults. Therefore identification of both provides an opportunity for antiviral stewardship in an outpatient setting at a time when regulatory organizations are beginning to examine out-patient antimicrobial stewardship [5–7]. The rapid
detection of influenza viruses and RSV in acute care visits to clinics, urgent care centers and emergency departments, would improve patient throughput, aid provider decision-making, and lead to reduced transmission of those viruses [8]. Further, rapid detection is crucial during outbreaks and will be essential in any future pandemics, as evidenced by the COVID-19 pandemic.

The Xpert Xpress Flu/RSV test is a rapid multiplex real-time PCR test capable of detecting and differentiating influenza A (FLUAV), influenza B (FLUBV), and RSV nucleic acids from nasal (NS) swabs and nasopharyngeal (NP) swabs [9]. This test was designed for use by non-laboratory personnel in a Clinical Laboratory Improvement Amendments (CLIA)-Waived (CW) setting. The primary objective of this study was to assess the performance of the Xpert Xpress Flu/RSV test relative to the Quidel Lyfia Influenza A+B assay (Quidel Corporation, San Diego, CA, USA) and the Prodesse ProFlu+ (Hologic, Inc., Marlborough, MA, USA) assays. The Lyra assay was Food and Drug Administration (FDA) cleared for the qualitative detection and differentiation of FLUAV and FLUBV RNA in NS and NP swabs. The Prodesse assay is cleared for the detection of RSV in NP swabs; therefore, a separate validation study was conducted in order to use it as a comparator assay for NS specimens.

The second objective of this study was to assess the usability and ease of result interpretation of the GeneXpert Xpress system in a CW setting by minimally trained, non-laboratory operators. This would evaluate the system’s applicability for use in settings where a rapid diagnosis of RSV or influenza would improve patient throughput and aid in clinical and therapeutic decision-making.

After the comparison study, we analyzed cycle threshold (Ct) values obtained from Xpert Xpress Flu/RSV positive tests to evaluate whether differences exist among specimen types, patient ages, patient sex, and health care settings.

2. Materials and methods

2.1. Study design

During the 2016-2017 respiratory virus season (October 2016-March 2017), a study was conducted in CW-intended user environments, including emergency departments, urgent care centers, and walk-in clinics in the United States. A total of 16 sites participated: 13 were specimen collection and GeneXpert Xpress testing sites; 2 sites served solely as reference laboratories for comparator method testing; and 1 site collected specimens and performed both GeneXpert Xpress and comparator method testing. Institutional Review Board (IRB) approval or waiver was obtained at collection sites prior to study initiation.

The Xpert Xpress Flu/RSV test was performed by non-laboratory health care personnel, who had no prior experience using the GeneXpert or other moderately complex testing methods. The CW operators were not specifically trained on the operation of the GeneXpert Xpress System or the Xpert Xpress Flu/RSV test. The operators were instead provided with the reference guides that were included with the testing systems and test kits. The operators were responsible for setting up the Xpert Xpress Flu/RSV tests, testing the assay’s controls and proceeding with study testing on their own. Additionally, operators were instructed not to discuss the test with any other operators or otherwise train or supervise each other.

Quality control assays for the Xpert Xpress Flu/RSV test consisted of 1 negative and 1 positive external control sample with all the targets for each FLUAV, FLUBV, and RSV sample (Zeptometrix, Buffalo, NY, USA). Study specimens were not tested until the correct control results were determined to be acceptable. Controls were tested on each instrument daily, by the operator performing the testing that day, and were required when a new lot of Xpert Xpress Flu/RSV test reagents were used.

2.2. Assay comparison

Nasal and NP swab specimens were prospectively collected from consented study participants who presented with signs or symptoms of respiratory infection. Each participant provided either a NS or NP swab. Study inclusion criteria consisted of signs or symptoms of respiratory infection (e.g., rhinorrhea, cough, etc.), documentation of informed consent from patients (or from a parent or legal guardian for minors younger than 18 years of age, who also provided assent based on IRB requirements). The patient or guardians were provided their Bill of Rights where applicable. Patients previously enrolled in the study were excluded. Nasal swabs were collected from both nostrils of the participant and NP swabs were collected through 1 nostril. Specimens were stored at 2-8°C following collection until all Xpert Xpress Flu/RSV testing was completed. Xpert Xpress Flu/RSV testing, including repeat testing, was performed within 24 hours of specimen collection. If the initial Xpert Xpress Flu/RSV test result was indeterminate, a single retest was performed using a new aliquot from the original specimen tube and a new Xpert Xpress Flu/RSV cartridge. If another indeterminate result was obtained by the repeat testing, no additional testing was performed, and the result was reported as “indeterminate” and excluded from the final analysis.

The Lyra comparator testing was performed within 72 hours of specimen collection. The Prodesse comparator testing was performed on specimens with sufficient volume which had been frozen after Xpert Xpress Flu/RSV testing was completed. Prodesse testing was initiated within 72 hours of the specimen thawing. For specimens with discordant results between the Xpert Xpress Flu/RSV test and Lyra and Prodesse assays, bi-directional gene sequencing was performed. Sequencing was performed using different primers from those used in the Xpert Xpress Flu/RSV test (AGCT, Inc., Wheeling, IL, USA), which target the FLUAV matrix gene, polymerase B2, and polymerase A gene; FLUBV matrix, and non-structural genes; and RSV nucleocapsid gene. While the Lyra assay used FLUAV matrix gene and FLUBV neuraminidase gene, and Prodesse used RSV polymerase gene.

Positive percent agreement (PPA) and negative percent agreement (NPA) of the Xpert Xpress Flu/RSV test was determined relative to the Lyra and Prodesse assays. Positive and negative agreement for influenza was defined as both the Xpert Xpress Flu/RSV and Lyra assay yielding the same positive or negative over the total number of results. Classification of a positive result was based solely on the comparator assay. The positive and negative agreements were similar for RSV using Prodesse assay. Any results for influenza reported on the Prodesse assay were neither collected nor analyzed. We used PPA and NPA to report the analysis results based on the FDA guidance for reporting results from studies evaluating diagnostics tests [10]. Based on the same guidance, we used a Wilson Score to determine the 95% CI.

2.3. Ct values analysis

Ct values are the number of cycles needed to yield a positive value in qualitative real-time PCR assays and are inversely proportional to the relative amount of target present in a given sample. A positive reaction is triggered by accumulation of a fluorescent signal. Ct values can be used to infer viral load, and previous studies have demonstrated that several factors, including age and disease severity may influence influenza virus and RSV viral loads [11–14]. As of this writing, the Xpert Xpress Flu/RSV test is not cleared by the U.S. Food and Drug Administration or any other regulatory agency for quantitative use or estimation of viral load.

Ct values were obtained from 1192 positive test result from the Xpert Xpress Flu/RSV test. For detection of FLUAV, the assay uses 2 fluorescence channels, Flu A1, and Flu A2, with primers targeting multiple regions of the FLUAV genome to improve coverage across virus strains. In this analysis, the Ct values from Flu
3. Results

3.1. Assay comparison analysis

Most patients were enrolled in emergency departments (~79%) and were under the age of 21 years (~55%). A total of 3265 patients from 6 categories of health care settings were included in the FLUAV and FLUBV comparisons relative to the Lyra assay. A total of 3103 patients, from 6 categories of health care settings, were included in the RSV comparisons relative to the Prodesse assay. The distribution of patients by age, along with the number and percentage of positive cases using the Xpert Xpress Flu/RSV test, Lyra and Prodesse are shown in Table 1. Five subjects had multi-infections by the Xpert Xpress Flu/RSV assay and are therefore counted more than once for influenza results. Of the 5 subjects with Xpert multi-infections, 1 sample was Flu A and Flu B positive by comparator method; 1 sample was Flu A positive by comparator method; 1 sample was Flu B positive by comparator method; 2 samples were negative for both Flu A and Flu B targets by comparator method.

For FLUAV detection, the Xpert Xpress Flu/RSV test yielded a PPA of 98.9% (95% CI: 96.2%-99.7%) and an NPA of 97.5% (95% CI: 96.6%-98.2%) with the Lyra assay using nasal swab specimens (n = 1598). Using NP swab, (n = 1667), specimens for FLUAV detection, the Xpert Xpress Flu/RSV assay demonstrated a PPA of 97.6% (95% CI: 94.4%-99.0%) and an NPA of 98.2% (95% CI: 97.4%-98.8%) with the Lyra assay. Using the nasal and NP swab specimens combined dataset, the Xpert Xpress Flu/RSV test yielded a PPA and NPA with the Lyra comparator method of 98.2% (95% CI: 96.4%-99.1%) and 97.9% (95% CI: 97.3%-98.3%) respectively for FLUAV (Table 2).

For FLUBV detection, the Xpert Xpress Flu/RSV test yielded a PPA of 98.4% (95% CI: 91.7%-97.9%) and an NPA of 99.3% (95% CI: 98.7%-99.6%) with the Lyra assay using nasal swab specimens (n = 1598). Using the NP swab specimens (n = 1667) for FLUBV detection, Xpert Xpress Flu/RSV test yielded a PPA of 97.3% (95% CI: 90.6%-99.2%) and an NPA of 99.6% (95% CI: 99.1%-99.8%) with the Lyra assay. Using the nasal and NP swab specimens combined dataset, the Xpert Xpress Flu/RSV test yielded a PPA and NPA with the Lyra comparator method of 98.2% (95% CI: 96.4%-99.1%) and 97.9% (95% CI: 97.3%-98.3%) respectively for FLUBV (Table 2).

For detection of RSV, the Xpert Xpress Flu/RSV test for yield a PPA of 98.2% (95% CI: 95.8%-99.2%) and an NPA of 99.1% (95% CI: 98.4%-99.5%) with the Prodesse assay using nasal specimens (n = 1543). Using the NP swab specimens (n = 1560), the Xpert Xpress Flu/RSV test yielded a PPA of 98.2% (95% CI: 95.9%-99.2%) and an NPA...
of 98.5% (95% CI: 97.7%-99.0%) with the Prodesse assay. Using the nasal and NP swab specimens combined data set, the Xpert Xpress Flu/RSV test yielded a PPA and an NPA of 98.2% (95% CI: 96.7%-99.0%) and 98.8% (95% CI: 98.3%-99.1%), respectively, for detection of RSV with the Prodesse assay (Table 2).

3.3. Operators analysis

A total of 44 operators at 14 sample collection clinical study sites, 2 reference laboratory sites, and 3 reproducibility sites were included in the study. Most CW operators on the GeneXpert Xpress System were research assistants and clinical research coordinators and most had a bachelor’s degree. A total of 34 of the 35 operators at clinicals and 8 of 9s operators at the reference laboratory sites completed the questionnaire. Two of the operators left employment at the sites prior to completion of the study. Users included in this study had titles of Research Coordinator, Research Intern, Pharmacy Technician, Patient Care Technician, Clinical Research Coordinator, Associate Clinical Research Coordinator, Clinical Trials Coordinator, Specialty registered nurse (RN), Research Assistant, Patient Relations Coordinator, Laboratory Technician (Lab Tech), Medical Assistant (MA), Lab Tech/MA, Research Nurse Coordinator, and Program Assistant.

Twenty-six of the 44 operators (61.9%) had no prior experience working in any laboratory environment. Sixteen of the 44 operators (36.4%) had prior experience working in a laboratory environment; however, none had any experience working in a moderately complex laboratory environment. The average and median operator responses to questions regarding the Xpress system's set-up and use showed that the test system is easy to set up and operate (Table 4). All operators interpreted the 5 different screenshots of the Xpert Xpress Flu/RSV test results correctly (100%).
4. Discussion

Point-of-care testing should have a high degree of sensitivity, specificity and be easy to perform and interpret by non-laboratory personnel [15]. This study showed that Xpert Xpress Flu/RSV is an accurate test for detection of FLUAV, FLUBV, and RSV, and is easily performed and interpreted by minimally trained operators in a variety of CW environments. Our findings support the use of this system for point-of-care respiratory pathogen testing, which would be a critical tool during infectious clusters or pandemics.

Currently, antigen-based influenza tests are often used for the rapid diagnosis of Influenza and RSV infection [16]. In general, these tests suffer from poor performance in terms of analytical and clinical sensitivity and low negative predictive values compared to molecular detection methods. In a previous study, the pooled antigen test sensitivity for influenza was calculated to be 62.3% and the pooled specificity was 98.2% [15]. A previous meta-analysis on the sensitivity of RSV rapid antigen detection tests (RADT) in children found it to be 80% [17]. The Xpert Flu+RSV Xpress test has previously been compared to the Prodesse ProFlu+ and yielded high sensitivities and specificities for FLUAV and FLUBV, and RSV when used in the CW setting [18]. Therefore, a rapid molecular assay, such as the Xpert Xpress Flu/RSV, may have larger impact on patient care due to the improved sensitivity over rapid antigen assays.

In our cohort, the mean Xpert Xpress Flu/RSV Ct values were indicative of abundant genomic target detection across all viruses. For FLUAV, the mean Ct value in NP swabs was 1.7 cycles lower than nasal swabs, and the mean Ct value for FLUBV was approximately 2.2 cycles lower in NP swabs. While these represent significant differences between sample type, this corresponds to less than 10-fold difference in RNA concentration and did not translate into lower clinical sensitivity. Mean Ct values for RSV were similar in nasal and NP swabs, which was an unexpected and novel finding based on previous observations [19]. Ct values for RSV were significantly lower in

![Fig. 1. Distribution of cycle threshold values by specimen types, for FLUAV (A), FLUBV (B), and RSV (C). NP: nasopharyngeal swab; NS: nasal swab. NP swabs resulted in significantly lower Ct values for FLUAV and FLUBV, but not RSV. *P < 0.05; **P < 0.01; ***P < 0.001.](image-url)
patients ≤5 years, as well as patients ≥60 years, who are at high risk of complications [2,4]. The mean Ct value in patients ≤5 years was 3 cycles lower compared with those between the ages of 6 to 59 years for RSV, indicating an approximately 10-fold increase in RNA concentration in this youngest age group.

Importantly, the Xpress Flu/RSV test was easily used, and testing results were readily interpreted by operators with a wide range of backgrounds and minimal training. Successful rapid point-of-care testing by minimally trained operators would result in a more generalizable practice in multiple different clinical settings [20]. Considering staffing shortages during the current COVID-19 pandemic, the ability to have a test that could be performed rapidly by any available staff is crucial. The definition of an assay’s clinical utility is that the results lead to clinical decisions that improve patient outcomes [21]. Further, these results can lead to improved preventative care both in the health care settings, and for patients and families. If the need arises, it could also improve tracing efforts in the community [22].

Our study is not without limitations. There was no data available on alternate viral etiologies. As only symptomatic patients were included, we cannot comment on test characteristics in asymptomatic patients who may be asymptomatic carriers or have prolonged shedding after a recent acute illness. However, previous studies found that detection of respiratory viruses in asymptomatic patients by PCR is uncommon [23]. We did not assess disease severity; therefore, we cannot comment on the test results in patients with possibly variable viral loads. However, we were able to compare samples from patients in the Emergency Department to other hospitalized and outpatient clinics and observed no differences in mean Ct value or assay sensitivity between different testing environments. In the Ct analysis, the Flu A2 channel was chosen, as it has fewer primers. This may have missed any differences in Ct values in cases of coinfection, but the overall number of coinfections in our study was relatively small. Finally, we did not collect data on test turnaround times that would enable commentary on the potential impact on patient throughput. However, the Xpert Xpress Flu/RSV test was found in a previous study to have significantly shorter turnaround times compared to other molecular devices [24]. The limitations identified in this study could be included in further implementation studies of the Xpert Xpress Flu/RSV.

5. Conclusion

Our study found the Xpert Xpress Flu/RSV test to have a high clinical sensitivity and specificity for detection of FLUAV, FLUBV, and RSV in a CW setting by minimally trained operators. Xpert Xpress Flu/RSV Ct values indicate that the Xpert Xpress Flu/RSV assay is robust across health care settings, where sampling variability may exist, as well as between different sexes, sample types and age groups. The instrument was rated as easy to set-up, use, and interpret by minimally trained operators for diagnosis of influenza and RSV infections. The results and ease of use for point-of-care testing can improve patient throughput and inform clinical decision-making in diverse clinical environments.

Authors’ contributions

All authors contributed equally to all aspects of this study, as well as manuscript preparation and revision. I would like to acknowledge that 2 of the authors (Michael Loeffelholz and Fiona Strouts) are employees of Cepheid. All other authors have no conflicts of interest to disclose.

Acknowledgments

bBrian Mesich; 1Indiana University School of Medicine Department of Pathology and Laboratory Medicine In Vitro Diagnostic and Clinical Trials Research Group; 2Cathy Fairfield, RN, BSN; 3Marilyn Rice; 4Chelsea Rohlf; 5Sarah McGee; 6Joe Sorter; 7Kevin Schmidt; 8Austin Voelker; 9Sahle Amsalu; 10Krista Doerfllein; 11Brittney Cassell; 12Monica Asman; 13Ferdaus Hassan, PhD; 14Neena Kanwar, PhD; 15Amanda Styer, BS; 16Lisa Kreischer, BS, RN; 17Amy M. Stubbs, MD; 18Laurie Kemble, BHSRT, CCRC; 19Danielle Beckham, RN, BSN, MSN, CRC; 20Lori Wilkerson, RN, BSN, CRC; 21Barbara Voss; 22Sarah Brown; 23Lizabeth Sauer; 24Jill Birkmeier; 25Rajesh Kaldate; 26Andrew Hiar; 27Kelley Tran

Declaration of competing interest

We would like to acknowledge that Dr. Strouts and Dr. Loeffelholz are employees of Cepheid.

References

[1] Harrington WN, Kackos CM, Webbby RJ. The evolution and future of influenza pandemic preparedness. Exp Mol Med 2021;53(5):737–49 Epub 2021/05/07PubMed PMID:33953324PMCID:PMC8099712. doi: 10.1038/s12276-021-00603-0.
[2] Shi T, McAllister DA, O’Brien KL, Sinoes EAF, Madhi SA, Gessner BD, et al. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015: a systematic review and modelling study. Lancet (London, England) 2017;390(10098):946–58 Epub 2017/07/12PubMed PMID:28689664PMCID:PMC5592248. doi: 10.1016/
[3] Wang X, Li Y, O’Brien KL, Madhi SA, Widdowson MA, Byas P, et al. Global burden of respiratory infections associated with seasonal influenza in children under
5 years in 2018: a systematic review and modelling study. The Lancet Glob Health 2020;8(4):e497–510 Epub 2020/02/24PubMed PMID:32087815; PMCID:PMC7083228. doi:10.1016/s2214-109x(19)30545-5.

[4] Tin Tin Htar M, Yerramalla MS, Moiss JC, Swerdlow DL. The burden of respiratory syncytial virus in adults: a systematic review and meta-analysis. Epidemiol Infect 2020;148 e48Epub 2020/02/14PubMed PMID:32052719; PMCID:PMC7078512. doi:10.1017/S0950268820000400.

[5] O’Callaghan K, Jones K. Rapid testing for respiratory viruses: impact on antibiotic use and time to patient discharge. Infect Dis Health 2019;24(3):147–51 Epub 2019/06/05PubMed PMID:31160245. doi:10.1016/j.jidh.2019.05.001.

[6] Hernandez DR, Pellitteri GP, Kimmich DJ, Heiter BJ, Smeal K, Wolk DM. Near point-of-care adoption of Cepheid Xpert Flu/RSV XC testing within an integrated health care delivery network. Diagn Microbiol Infect Dis 2019;94(1):28–9. doi:10.1016/j.diagmicrobio.2018.11.013.

[7] Core elements of antibiotic stewardship [cited 2021 April 20]. Available at: https://www.cdc.gov/antibiotic-use/core-elements/index.html.

[8] Ragan DT, Kochar MS, Yang S, Quinn J. Impact of rapid molecular respiratory virus testing on real-time decision making in a pediatric emergency department. J Mol Diagn 2017;19(3):460–7 Epub 2017/03/28PubMed PMID:28341587; PMCID:PMC547039. doi:10.1016/j.jmoldx.2017.01.009.

[9] Salez N, Nougairede A, Ninove L, Zandotti C, de Lamballerie X, Charrel RN. Prophylactic and symptomatic use of oseltamivir in adults with inpatient respiratory syncytial virus infection. J Clin Microbiol 2015;53(11):4337–40 Epub 2015/09/12PubMed PMID:26354816; PMCID:PMC4652120. doi:10.1128/jcm.01816-15.

[10] Institute of Medicine. Detection of influenza A/B and respiratory syncytial virus by use of Cepheid Xpert Flu/RSV xpress assay in point-of-care settings: comparison to prodesse ProFlu. J Clin Microbiol 2018;56(2) Epub 2017/11/17PubMed PMID:29142048; PMCID:PMC5786727. doi:10.1128/jcm.01237-17.

[11] Heikkinen T, Marttila J, Salmi AA, Ruuskanen O. Nasal swab versus nasopharyngeal aspirate for isolation of respiratory viruses. J Clin Microbiol 2002;40(11):3353–7 Epub 2002/11/12PubMed PMID:12179544; PMCID:PMC139631. doi:10.1128/jcm.40.11.3353-3357.2002.

[12] Kozel TR, Burnham-Marusich AR. Point-of-care testing for infectious diseases: past, present, and future. J Clin Microbiol 2017;55(8):2313–20 Epub 2017/05/26PubMed PMID:28533945; PMCID:PMC5527409. doi:10.1128/jcm.00476-17.

[13] Dunn JJ, Madej R. CLIA-waived molecular influenza testing in the emergency department and outpatient settings. J Clin Virol 2019;116:44-8 Epub 2019/05/19PubMed PMID:31102924; PMCID:PMC7059806. doi:10.1016/j.jcv.2019.05.002.

[14] Azar MM, Landry ML. Detection of influenza A and B viruses and respiratory syncytial virus by use of clinical laboratory improvement amendments of 1988 (CLIA)-waived point-of-care assays: a paradigm shift to molecular tests. J Clin Microbiol 2018;56(7) Epub 2018/04/27PubMed PMID:29595519; PMCID:PMC560183. doi:10.1128/jcm.00367-18.

[15] Chartrand C, Tremblay N, Renaud C, Papenburg J. Diagnostic accuracy of rapid antigen detection tests for respiratory syncytial virus infection: systematic review and meta-analysis. J Clin Microbiol 2015;53(12):3738–49 Epub 2015/09/12PubMed PMID:26354816; PMCID:PMC4652120. doi:10.1128/jcm.01816-15.

[16] Cohen DM, Kline J, May LS, Barnett GE, Gibson J, Liang SY, et al. Accurate PCR detection of Influenza A/B and respiratory syncytial viruses by use of Cepheid Xpert Flu/RSV xpress assay in point-of-care settings: comparison to prodesse ProFlu. J Clin Microbiol 2018;56(2) Epub 2017/11/17PubMed PMID:29142048; PMCID:PMC5786727. doi:10.1128/jcm.01237-17.

[17] Heikkinen T, Marttila J, Salmi AA, Ruuskanen O. Nasal swab versus nasopharyngeal aspirate for isolation of respiratory viruses. J Clin Microbiol 2002;40(11):3353–7 Epub 2002/11/12PubMed PMID:12179544; PMCID:PMC139631. doi:10.1128/jcm.40.11.3353-3357.2002.

[18] Kozel TR, Burnham-Marusich AR. Point-of-care testing for infectious diseases: past, present, and future. J Clin Microbiol 2017;55(8):2313–20 Epub 2017/05/26PubMed PMID:28533945; PMCID:PMC5527409. doi:10.1128/jcm.00476-17.

[19] Institute of Medicine. The National Academies Collection: Reports funded by National Institutes of Health. Genome-Based Diagnostics: Clarifying Pathways to Clinical Use: Workshop Summary. Washington (DC): National Academies Press (US) Copyright © 2012 National Academy of Sciences; 2012.

[20] Everitt ML, Tillery A, David MG, Singh N, Borison A, White IM. A critical review of point-of-care diagnostic technologies to combat viral pandemics. Anal Chim Acta 2021;1146 184-99Epub 2021/01/20PubMed PMID:33461715; PMCID:PMC50085829. doi:10.1016/j.aca.2020.10.009.

[21] Sundell N, Anderson L-M, Brittain-Long R, Sundvall P-D, Alsi H, Lindh M, et al. PCR detection of respiratory pathogens in asymptomatic and symptomatic adults. J Clin Microbiol 2019;57(1):e00716-8. doi:10.1128/jcm.00716-18.

[22] Ling L, Kaplan SE, Lopez JC, Stiles J, Lu X, Tang YW. Parallel validation of three molecular devices for simultaneous detection and identification of influenza A and B and respiratory syncytial viruses. J Clin Microbiol 2018;56(3) Epub 2017/12/22PubMed PMID:29263204; PMCID:PMC5824037. doi:10.1128/jcm.01691-17.