A LOWER BOUND FOR EIGENVALUES OF
A CLAMPED PLATE PROBLEM*

QING-MING CHENG AND GUOXIN WEI

Abstract. In this paper, we study eigenvalues of a clamped plate problem. We obtain a lower bound for eigenvalues, which gives an important improvement of results due to Levine and Protter.

1. Introduction

Let M be an n-dimensional complete Riemannian manifold. The following is called Dirichlet eigenvalue problem of Laplacian:

$$
\begin{align*}
\Delta u &= -\lambda u, & \text{in } \Omega, \\
u &= 0, & \text{on } \partial \Omega,
\end{align*}
$$

(1.1)

where Ω is a bounded domain in M with piecewise smooth boundary $\partial \Omega$ and Δ denotes the Laplacian on M. It is well known that the spectrum of this eigenvalue problem (1.1) is real and discrete.

$$
0 < \lambda_1 < \lambda_2 \leq \lambda_3 \leq \cdots \to \infty,
$$

where each λ_i has finite multiplicity which is repeated according to its multiplicity.

Let $V(\Omega)$ denotes the volume of Ω and B_n the volume of the unit ball in \mathbb{R}^n, then the following Weyl’s asymptotic formula holds

$$
\lambda_k \sim \frac{4\pi^2}{(B_n V(\Omega))^\frac{2}{n}} k^n, \quad k \to \infty.
$$

(1.2)

From this asymptotic formula, one can infer

$$
\frac{1}{k} \sum_{i=1}^{k} \lambda_i \sim \frac{n}{n + 2} \frac{4\pi^2}{(B_n V(\Omega))^\frac{2}{n}} k^n, \quad k \to \infty.
$$

(1.3)

In particular, when $M = \mathbb{R}^n$, Pólya [18] proved

$$
\lambda_k \geq \frac{4\pi^2}{(B_n V(\Omega))^\frac{2}{n}} k^n, \quad \text{for } k = 1, 2, \cdots,
$$

(1.4)

if Ω is a tiling domain in \mathbb{R}^n. Moreover, he conjectured for a general bounded domain,
Conjecture of Pólya. If Ω is a bounded domain in \mathbb{R}^n, then eigenvalue λ_k of the eigenvalue problem (1.1) satisfies

$$\lambda_k \geq \frac{4\pi^2}{(B_n V(\Omega))^{\frac{n}{2}}} k^{\frac{n}{2}}, \quad \text{for } k = 1, 2, \ldots. \quad (1.5)$$

On the conjecture of Pólya, Li and Yau [13] (cf. [4], [14]) proved

$$\frac{1}{k} \sum_{i=1}^{k} \lambda_i \geq \frac{n}{n + 2} \frac{4\pi^2}{(B_n V(\Omega))^{\frac{n}{2}}} k^{\frac{n}{2}}, \quad \text{for } k = 1, 2, \ldots. \quad (1.6)$$

It is sharp about the highest order term of k in the sense of average according to (1.3). From this formula, one can derive

$$\lambda_k \geq \frac{n}{n + 2} \frac{4\pi^2}{(B_n V(\Omega))^{\frac{n}{2}}} k^{\frac{n}{2}}, \quad \text{for } k = 1, 2, \ldots, \quad (1.7)$$

which gives a partial solution for the conjecture of Pólya with a factor $\frac{n}{n+2}$.

Furthermore, Melas [15] obtained the following estimate which is an improvement of (1.6).

$$\frac{1}{k} \sum_{i=1}^{k} \lambda_i \geq \frac{n}{n + 2} \frac{4\pi^2}{(B_n V(\Omega))^{\frac{n}{2}}} k^{\frac{n}{2}} + c_n \frac{V(\Omega)}{I(\Omega)}, \quad \text{for } k = 1, 2, \ldots, \quad (1.8)$$

where c_n is a constant depending only on the dimension n and

$$I(\Omega) = \min_{a \in \mathbb{R}^n} \int_{\Omega} |x - a|^2 dx$$

is called the moment of inertia of Ω.

For a bounded domain in an n-dimensional complete Riemannian manifold, Cheng and Yang [9] have also given a lower bound for eigenvalues, recently.

Our purpose in this paper is to study eigenvalues of the following clamped plate problem. Let Ω be a bounded domain in an n-dimensional complete Riemannian manifold M^n. The following is called a clamped plate problem, which describes characteristic vibrations of a clamped plate:

$$\begin{cases}
\Delta^2 u = \Gamma u, & \text{in } \Omega, \\
u = \frac{\partial u}{\partial \nu} = 0, & \text{on } \partial \Omega,
\end{cases} \quad (1.9)$$

where Δ is the Laplacian on M^n and ν denotes the outward unit normal to the boundary $\partial \Omega$. It is well known that this problem has a real and discrete spectrum

$$0 < \Gamma_1 \leq \Gamma_2 \leq \cdots \leq \Gamma_k \leq \cdots \to +\infty,$$

where each Γ_i has finite multiplicity which is repeated according to its multiplicity.

For eigenvalues of the clamped plate problem, Agmon [1] and Pleijel [17] gave the following asymptotic formula, which is a generalization of Weyl’s asymptotic formula,

$$\Gamma_k \sim \frac{16\pi^4}{(B_n V(\Omega))^{\frac{n}{2}}} k^{\frac{n}{2}}, \quad k \to \infty. \quad (1.10)$$
The average of the eigenvalues satisfies
\[\frac{1}{k} \sum_{j=1}^{k} \Gamma_j \sim \frac{n}{n+4} \frac{16\pi^4}{(B_n V(\Omega))^\frac{4}{n}} k^\frac{4}{n}, \quad k \to \infty. \quad (1.11) \]

Furthermore, Levine and Protter \[12\] proved that eigenvalues of the clamped plate problem satisfy
\[\frac{1}{k} \sum_{j=1}^{k} \Gamma_j \geq \frac{n}{n+4} \frac{16\pi^4}{(B_n V(\Omega))^\frac{4}{n}} k^\frac{4}{n}. \quad (1.12) \]

The inequality (1.12) is sharp about the highest order term of \(k \) according to (1.11).

In this paper, we give an important improvement of the result due to Levine and Protter \[12\] by adding to its right hand side two terms of the lower order terms of \(k \). In fact, we prove the following:

Theorem. Let \(\Omega \) be a bounded domain in an \(n \)-dimensional Euclidean space \(\mathbb{R}^n \). Eigenvalues of the clamped plate problem satisfy
\[
\frac{1}{k} \sum_{j=1}^{k} \Gamma_j \geq \frac{n}{n+4} \frac{16\pi^4}{(B_n V(\Omega))^\frac{4}{n}} k^\frac{4}{n} \\
+ \left(\frac{n+2}{12n(n+4)} - \frac{1}{1152n^2(n+4)} \right) \frac{V(\Omega)}{I(\Omega)} \frac{n}{n+2} \frac{4\pi^2}{(B_n V(\Omega))^\frac{4}{n}} k^\frac{4}{n} \\
+ \left(\frac{1}{576n(n+4)} - \frac{1}{27648n^2(n+2)(n+4)} \right) \left(\frac{V(\Omega)}{I(\Omega)} \right)^2,
\]
where \(I(\Omega) \) is the moment of inertia of \(\Omega \).

Corollary. Let \(\Omega \) be a bounded domain in an \(n \)-dimensional Euclidean space \(\mathbb{R}^n \). Then eigenvalues \(\Gamma_j \)'s of the clamped plate problem satisfy
\[
\frac{1}{k} \sum_{j=1}^{k} \Gamma_j \geq \frac{n}{n+4} \frac{16\pi^4}{(B_n V(\Omega))^\frac{4}{n}} k^\frac{4}{n} \\
+ \left(\frac{n+2}{12n(n+4)} - \frac{1}{1152n^2(n+4)} \right) \frac{1}{\sum_{i=1}^{n} \mu_i^{-1}} \frac{n}{n+2} \frac{4\pi^2}{(B_n V(\Omega))^\frac{4}{n}} k^\frac{4}{n} \\
+ \left(\frac{1}{576n(n+4)} - \frac{1}{27648n^2(n+2)(n+4)} \right) \left(\frac{1}{\sum_{i=1}^{n} \mu_i^{-1}} \right)^2,
\]
where \(\mu_1, \cdots, \mu_n \) are the first \(n \) nonzero eigenvalues of the Neumann eigenvalue problem of Laplacian
\[
\begin{aligned}
\Delta v &= -\mu v, \quad \text{in } \Omega, \\
\frac{\partial v}{\partial \nu} &= 0, \quad \text{on } \partial \Omega.
\end{aligned}
\]
Remark 1. On universal estimates for eigenvalues of the clamped plate problem, one can see [6], [7], [8], [10] and [20].

2. Proof of results

For a bounded domain Ω, the moment of inertia of Ω is defined by

$$I(\Omega) = \min_{a \in \mathbb{R}^n} \int_{\Omega} |x - a|^2 dx.$$

By a translation of the origin and a suitable rotation of axes, we can assume that the center of mass is the origin and

$$I(\Omega) = \int_{\Omega} |x|^2 dx.$$

For reader’s convenience, we first review the definition and several properties of the symmetric decreasing rearrangements. Let $\Omega \subset \mathbb{R}^n$ be a bounded domain. Its symmetric rearrangement Ω^* is the open ball with the same volume as Ω,

$$\Omega^* = \{ x \in \mathbb{R}^n \mid |x| < \left(\frac{\text{Vol}(\Omega)}{B_n} \right)^{\frac{1}{n}} \}.$$

By using a symmetric rearrangement of Ω, we have

$$I(\Omega) = \int_{\Omega} |x|^2 dx \geq \int_{\Omega^*} |x|^2 dx = \frac{n}{n + 2} V(\Omega) \left(\frac{V(\Omega)}{B_n} \right)^{\frac{2}{n}}.$$ \hspace{1cm} (2.1)

Let h be a nonnegative bounded continuous function on Ω, we can consider its distribution function $\mu_h(t)$ defined by

$$\mu_h(t) = \text{Vol}(\{ x \in \Omega \mid h(x) > t \}).$$

The distribution function can be viewed as a function from $[0, \infty)$ to $[0, V(\Omega)]$. The symmetric decreasing rearrangement h^* of h is defined by

$$h^*(x) = \inf\{ t \geq 0 \mid \mu_h(t) < B_n |x|^n \}$$

for $x \in \Omega^*$. By definition, we know that $\text{Vol}(\{ x \in \Omega \mid h(x) > t \}) = \text{Vol}(\{ x \in \Omega^* \mid h^*(x) > t \})$, $\forall t > 0$ and $h^*(x)$ is a radially symmetric function.

Putting $g(|x|) := h^*(x)$, one gets that $g : [0, +\infty) \to [0, \sup h]$ is a non-increasing function of $|x|$. Using the well known properties of the symmetric decreasing rearrangement, we obtain

$$\int_{\mathbb{R}^n} h(x) dx = \int_{\mathbb{R}^n} h^*(x) dx = n B_n \int_0^\infty s^{n-1} g(s) ds$$ \hspace{1cm} (2.2)

and

$$\int_{\mathbb{R}^n} |x|^4 h(x) dx \geq \int_{\mathbb{R}^n} |x|^4 h^*(x) dx = n B_n \int_0^\infty s^{n+3} g(s) ds.$$ \hspace{1cm} (2.3)

Good sources of further information on rearrangements are [3], [19].

One gets from the coarea formula that

$$\mu_h(t) = \int_t^{\sup h} \int_{\{h=s\}} |\nabla h|^{-1} d\sigma_s ds.$$
Since h^* is radial, we have
\[
\mu_h(g(s)) = \text{Vol}\{x \in \Omega | h(x) > g(s)\} = \text{Vol}\{x \in \Omega^* | h^*(x) > g(s)\} = \text{Vol}\{x \in \Omega^* | g(|x|) > g(s)\} = B_n s^n.
\]

It follows that
\[
nB_n s^{n-1} = \mu_h'(g(s))g'(s)
\]
for almost every s. Putting $\tau := \sup |\nabla h|$, we obtain from the above equations and the isoperimetric inequality that
\[
-\mu_h'(g(s))g'(s) = \int_{\{h = g(s)\}} |\nabla h|^{-1}d\sigma_{g(s)} \geq \tau^{-1}\text{Vol}_{n-1}\{h = g(s)\}
\]
\[
\geq \tau^{-1}nB_n s^{n-1}.
\]

Therefore, one obtains
\[
-\tau \leq g'(s) \leq 0 \quad (2.4)
\]
for almost every s.

Next, we prepare the following lemma in order to prove of our theorem.

Lemma 2.1. Let $b \geq 1$, $\eta > 0$ and $\psi : [0, +\infty) \to [0, +\infty)$ be a decreasing smooth function such that
\[
-\eta \leq \psi'(s) \leq 0
\]
and, for a constant $d < 1$,
\[
\frac{\psi(0)^{2b+2}}{6b\eta^2(bA)^{\frac{4}{b}}} < d
\]
with
\[
A := \int_0^\infty s^{b-1}\psi(s)ds > 0.
\]

Then, we have
\[
\int_0^\infty s^{b+3}\psi(s)ds \geq \frac{1}{b+4}(bA)^{\frac{b+4}{b}}\psi(0)^{-\frac{4}{b}}
\]
\[
+ \left(\frac{1}{3b(b+4)\eta^2} - \frac{d}{6(b+2)^2(b+4)\eta^2} \right) (bA)^{\frac{b+2}{b}}\psi(0)^{\frac{2b-2}{b}} \quad (2.5)
\]
\[
+ \left(\frac{1}{36b(b+4)\eta^4} - \frac{d}{36(b+2)^2(b+4)\eta^4} \right) A\psi(0)^4.
\]

Proof. Defining
\[
D := \int_0^\infty s^{b+1}\psi(s)ds,
\]
one can prove from the same assertions as in the lemma 1 of [15],
\[
D = \int_0^\infty s^{b+1}\psi(s)ds \geq \frac{1}{b+2}(bA)^{\frac{b+2}{b}}\psi(0)^{-\frac{2}{b}} + \frac{A\psi(0)^2}{6(b+2)\eta^2}. \quad (2.6)
\]
Since the formula (2.6) holds for any constant $b \geq 1$, we have
\[
\int_0^\infty s^{b+3} \psi(s) ds \\
\geq \frac{1}{b+4} \left((b+2) D \right)^\frac{1}{b+4} \psi(0)^{-\frac{2}{b+2}} + \frac{D \psi(0)^2}{6(b+4) \eta^2} \\
\geq \frac{1}{b+4} \left[(bA)^\frac{b+2}{b} \psi(0)^{-\frac{2}{b}} + \frac{A \psi(0)^2}{6\eta^2} \right]^{\frac{1}{b+4}} \psi(0)^{-\frac{2}{b+2}} \\
+ \frac{\psi(0)^2}{6(b+4) \eta^2} \left[\frac{1}{b+2} (bA)^\frac{b+2}{b} \psi(0)^{-\frac{2}{b}} + \frac{A \psi(0)^2}{6(b+2) \eta^2} \right] \\
= \frac{1}{b+4} \left[(bA)^\frac{b+2}{b} \psi(0)^{-\frac{2}{b}} + \frac{A \psi(0)^2}{6\eta^2} \right]^{\frac{1}{b+4}} \psi(0)^{-\frac{2}{b+2}} \\
\times \left(1 + \frac{A \psi(0)^\frac{b}{b+2}}{6(bA)^\frac{b}{b+2} \eta^2} \left\{ 2 - \frac{b}{b+2} \frac{A \psi(0)^\frac{b}{b+2}}{6(bA)^\frac{b}{b+2} \eta^2} \right\} \right) \psi(0)^{-\frac{2}{b+2}} \\
\times \left(\text{from the Taylor formula} \right) \\
+ \frac{1}{6(b+2)(b+4) \eta^2} (bA)^\frac{b+2}{b} \psi(0)^\frac{2b-2}{b} + \frac{A \psi(0)^4}{36(b+2)(b+4) \eta^4} \\
\geq \frac{1}{b+4} \left[(bA)^\frac{b+2}{b} \psi(0)^{-\frac{2}{b}} + \frac{A \psi(0)^2}{6\eta^2} \right]^{\frac{1}{b+4}} \psi(0)^{-\frac{2}{b+2}} \\
\times \left\{ 1 + \frac{1}{b+2} \frac{A \psi(0)^\frac{b}{b+2}}{6(bA)^\frac{b}{b+2} \eta^2} \left(2 - \frac{b}{b+2} \frac{A \psi(0)^\frac{b}{b+2}}{6(bA)^\frac{b}{b+2} \eta^2} \right) \right\} \psi(0)^{-\frac{2}{b+2}} \\
+ \frac{1}{6(b+2)(b+4) \eta^2} (bA)^\frac{b+2}{b} \psi(0)^\frac{2b-2}{b} + \frac{A \psi(0)^4}{36(b+2)(b+4) \eta^4} \\
= \frac{1}{b+4} (bA)^\frac{b+4}{b} \psi(0)^{-\frac{4}{b}} \\\n+ \left(\frac{1}{3b(b+4) \eta^2} - \frac{d}{6(b+2)^2(b+4) \eta^2} \right) (bA)^\frac{b+2}{b} \psi(0)^\frac{2b-2}{b} \\
+ \left(\frac{1}{36b(b+4) \eta^4} - \frac{d}{36(b+2)^2(b+4) \eta^4} \right) A \psi(0)^4.
\]
This completes the proof of the lemma.
Proof of Theorem. Let \(u_j \) be an orthonormal eigenfunction corresponding to the eigenvalue \(\Gamma_j \), that is, \(u_j \) satisfies

\[
\begin{aligned}
\Delta^2 u_j &= \Gamma_j u_j, & \text{in } \Omega, \\
u_j &= \frac{\partial u_j}{\partial \nu} = 0, & \text{on } \partial \Omega, \\
\int u_i u_j &= \delta_{ij}, & \text{for any } i, j.
\end{aligned}
\] (2.7)

Thus, \(\{u_j\}_{j=1}^\infty \) forms an orthonormal basis of \(L^2(\Omega) \). We define a function \(\varphi_j \) by

\[
\varphi_j(x) = \begin{cases}
 u_j(x), & x \in \Omega, \\
 0, & x \in \mathbb{R}^n \setminus \Omega.
\end{cases}
\]

Denote by \(\hat{\varphi}_j(z) \) the Fourier transform of \(\varphi_j(x) \). For any \(z \in \mathbb{R}^n \), we have by definition that

\[
\hat{\varphi}_j(z) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} \varphi_j(x)e^{ix \cdot z} dx = (2\pi)^{-n/2} \int_{\Omega} u_j(x)e^{ix \cdot z} dx. \quad (2.8)
\]

From the Plancherel formula, we have

\[
\int_{\mathbb{R}^n} \hat{\varphi}_i(z)\hat{\varphi}_j(z) dz = \delta_{ij}
\]

for any \(i, j \). Since \(\{u_j\}_{j=1}^\infty \) is an orthonormal basis in \(L^2(\Omega) \), the Bessel inequality implies that

\[
\sum_{j=1}^k |\hat{\varphi}_j(z)|^2 \leq (2\pi)^{-n} \int_{\Omega} |e^{ix \cdot z}|^2 dx = (2\pi)^{-n}V(\Omega). \quad (2.9)
\]

For each \(q = 1, \ldots, n, \ j = 1, \ldots, k \), we deduce from the divergence theorem and \(u_j|_{\partial \Omega} = \frac{\partial u_j}{\partial \nu}|_{\partial \Omega} = 0 \) that

\[
\begin{aligned}
z_q^2 \hat{\varphi}_j(z) &= (2\pi)^{-n/2} \int_{\mathbb{R}^n} \varphi_j(x)(-i)^2 \frac{\partial^2 e^{ix \cdot z}}{\partial x_q^2} dx \\
&= -(2\pi)^{-n/2} \int_{\mathbb{R}^n} \frac{\partial^2 \varphi_j(x)}{\partial x_q^2} e^{ix \cdot z} dx \\
&= -\frac{\partial^2 \varphi_j}{\partial x_q^2}(z).
\end{aligned}
\] (2.10)
It follows from the Parseval’s identity that
\[
\int_{\mathbb{R}^n} |z|^4 |\hat{\varphi}_j(z)|^2 dz = \int_{\mathbb{R}^n} |z|^2 |\hat{\varphi}_j(z)|^2 dz \\
= \int_{\mathbb{R}^n} \left| \sum_{q=1}^n \frac{\partial^2 \varphi_j}{\partial x_q^2}(z) \right|^2 dz \\
= \int_{\Omega} \left(\sum_{q=1}^n \frac{\partial^2 u_j}{\partial x_q^2} \right)^2 dx \\
= \int_{\Omega} |u_j(x)|^2 dx \\
= \int_{\Omega} \Delta u_j(x) dx \\
= \int_{\Omega} \text{Γ}_j u_j^2(x) dx \\
= \text{Γ}_j. \tag{2.11}
\]

Since
\[
\nabla \hat{\varphi}_j(z) = (2\pi)^{-n/2} \int_{\Omega} ixu_j(x) e^{i<x,z>} dx, \tag{2.12}
\]
we obtain
\[
\sum_{j=1}^k |\nabla \hat{\varphi}_j(z)|^2 \leq (2\pi)^{-n} \int_{\Omega} |ixe^{i<x,z>}|^2 dx = (2\pi)^{-n} I(\Omega). \tag{2.13}
\]

Putting
\[
h(z) := \sum_{j=1}^k |\hat{\varphi}_j(z)|^2,
\]
one derives from (2.9) that \(0 \leq h(z) \leq (2\pi)^{-n} V(\Omega)\), it follows from (2.13) and the Cauchy-Schwarz inequality that
\[
|\nabla h(z)| \leq 2 \left(\sum_{j=1}^k |\hat{\varphi}_j(z)|^2 \right)^{1/2} \left(\sum_{j=1}^k |\nabla \hat{\varphi}_j(z)|^2 \right)^{1/2} \leq 2(2\pi)^{-n} \sqrt{V(\Omega) I(\Omega)} \tag{2.14}
\]
for every \(z \in \mathbb{R}^n\). From the Parseval’s identity, we derive
\[
\int_{\mathbb{R}^n} h(z) dz = \sum_{j=1}^k \int_{\Omega} |u_j(x)|^2 dx = k. \tag{2.15}
\]

Applying the symmetric decreasing rearrangement to \(h\) and noting that \(\tau = \sup |\nabla h| \leq 2(2\pi)^{-n} \sqrt{V(\Omega) I(\Omega)} := \eta\), we obtain, from (2.4),
\[
-\eta \leq -\tau \leq g'(s) \leq 0 \tag{2.16}
\]
for almost every \(s \). According to (2.2) and (2.15), we infer
\[
k = \int_{\mathbb{R}^n} h(z)dz = \int_{\mathbb{R}^n} h^*(z)dz = nB_n \int_0^\infty s^{n-1}g(s)ds.
\] (2.17)

From (2.3) and (2.11), we obtain
\[
\sum_{j=1}^k \Gamma_j = \int_{\mathbb{R}^n} |z|^4 h(z)dz \\
\geq \int_{\mathbb{R}^n} |z|^4 h^*(z)dz \\
= nB_n \int_0^\infty s^{n+3}g(s)ds.
\] (2.18)

In order to apply Lemma 2.1, from (2.17) and the definition of \(A \), we take
\[
\psi(s) = g(s), \quad A = \frac{k}{nB_n}, \quad \eta = 2(2\pi)^{-\frac{n}{2}}\sqrt{V(\Omega)I(\Omega)},
\] (2.19)

from (2.1), we deduce that
\[
\eta \geq 2(2\pi)^{-\frac{n}{2}} \left(\frac{n}{n+2} \right)^{\frac{1}{2}} B_n^{-\frac{n}{2}} V(\Omega)^{-\frac{n+1}{n}}.
\] (2.20)

On the other hand, \(0 < g(0) \leq \sup h^*(z) = \sup h(z) \leq (2\pi)^{-n}V(\Omega) \), we have from (2.1), (2.19) and (2.20) that
\[
\frac{g(0)^{\frac{2n+2}{n}}}{6n\eta^2(nA)\frac{2}{n}} \leq \frac{(\frac{n}{n+2})^{\frac{1}{2}}}{6n(2\pi)^{-\frac{n}{2}}(\frac{n}{n+2})^{\frac{n}{2}}} B_n^{-\frac{n}{2}} V(\Omega)\frac{n+1}{n} \left(\frac{k}{n} \right)^{\frac{n}{2}}
\]
\[
= \frac{n+2}{24n^2(2\pi)^2k} B_n^{\frac{4}{n}} \leq \frac{n+2}{24n^2(2\pi)^2} B_n^{\frac{4}{n}}.
\]

By a direct calculation, one sees from \(B_n = \frac{2\pi^{\frac{n}{2}}}{n\Gamma(\frac{n}{2})} \) that
\[
\frac{B_n^{\frac{4}{n}}}{(2\pi)^2} < \frac{1}{2},
\] (2.21)

where \(\Gamma(\frac{n}{2}) \) is the Gamma function. From the above arguments, one has
\[
\frac{g(0)^{\frac{2n+2}{n}}}{6n\eta^2(nA)\frac{2}{n}} \leq \frac{n+2}{48n^2} < 1.
\] (2.22)

Hence we know that the function \(\psi(s) = g(s) \) satisfies the conditions in Lemma 2.1 with \(b = n \) and
\[
\eta = 2(2\pi)^{-\frac{n}{2}}\sqrt{V(\Omega)I(\Omega)}, \quad d = \frac{n+2}{48n^2}.
\]
From Lemma 2.1 and (2.18), we conclude

\[
\sum_{j=1}^{k} \Gamma_j \geq nB_n \int_{0}^{\infty} s^{n+3} g(s) ds \\
\geq \frac{n}{n+4} (B_n)^{-\frac{4}{n+4}} k^{\frac{n+2}{n+4}} g(0)^{-\frac{4}{n+4}} \\
+ \left(\frac{1}{3(n+4)\eta^2} - \frac{1}{288n(n+2)(n+4)\eta^2} \right) k^{\frac{n+2}{n}} (B_n)^{-\frac{2}{n}} g(0)^{\frac{2n-2}{n}} \\
+ \left(\frac{1}{36n(n+4)\eta^4} - \frac{1}{1728n^2(n+2)(n+4)\eta^4} \right) k g(0)^4.
\]

(2.23)

Defining a function \(F \) by

\[
F(t) = \frac{n}{n+4} (B_n)^{-\frac{4}{n+4}} k^{\frac{n+2}{n+4}} t^{-\frac{4}{n+4}} \\
+ \left(\frac{1}{3(n+4)\eta^2} - \frac{1}{288n(n+2)(n+4)\eta^2} \right) k^{\frac{n+2}{n}} (B_n)^{-\frac{2}{n}} t^{\frac{2n-2}{n}} \\
+ \left(\frac{1}{36n(n+4)\eta^4} - \frac{1}{1728n^2(n+2)(n+4)\eta^4} \right) k t^4.
\]

(2.24)

It is not hard to prove from (2.20) that \(\eta \geq (2\pi)^{-n} B_n^{-\frac{1}{n}} V(\Omega)^{-\frac{n+1}{n}} \). Furthermore, it follows from (2.24) that

\[
F'(t) \\
\leq -\frac{4}{n+4} (B_n)^{-\frac{4}{n+4}} k^{\frac{n+2}{n+4}} t^{-\frac{4}{n+4}} \\
+ \left(\frac{2(n-1)}{3n(n+4)} - \frac{(n-1)}{144n^2(n+2)(n+4)} \right) k^{\frac{n+2}{n}} (2\pi)^{2n} V(\Omega)^{-\frac{2(n+1)}{n}} t^{\frac{2n-2}{n}} \\
+ \left(\frac{1}{9n(n+4)} - \frac{1}{432n^2(n+2)(n+4)} \right) k t^3 (2\pi)^{4n}(B_n)^{\frac{4}{n}} V(\Omega)^{-\frac{4(n+1)}{n}} \\
= -\frac{k}{n+4} t^{-\frac{n+2}{n}} \times \left\{ \left(\frac{2(n-1)}{3n} - \frac{(n-1)}{144n^2(n+2)} \right)(2\pi)^{2n} k^{\frac{4}{n}} V(\Omega)^{-\frac{2(n+1)}{n}} t^{\frac{2n-2}{n}} \\
- 4(B_n)^{-\frac{4}{n}} k^{\frac{4}{n}} + \left(\frac{1}{9n} - \frac{1}{432n^2(n+2)} \right)(2\pi)^{4n}(B_n)^{\frac{4}{n}} V(\Omega)^{-\frac{4(n+1)}{n}} t^{\frac{4n-2}{n}} \right\}.
\]

Hence, we have

\[
\frac{n+4}{k} t^{\frac{n+4}{n}} F'(t) \\
\leq \left(\frac{2(n-1)}{3n} - \frac{(n-1)}{144n^2(n+2)} \right)(2\pi)^{2n} k^{\frac{4}{n}} V(\Omega)^{-\frac{2(n+1)}{n}} t^{\frac{2n-2}{n}} \\
- 4(B_n)^{-\frac{4}{n}} k^{\frac{4}{n}} + \left(\frac{1}{9n} - \frac{1}{432n^2(n+2)} \right)(2\pi)^{4n}(B_n)^{\frac{4}{n}} V(\Omega)^{-\frac{4(n+1)}{n}} t^{\frac{4n-2}{n}}.
\]

(2.25)
Since the right hand side of (2.25) is an increasing function of t, if it is not larger than 0 at $t = (2\pi)^{-n}V(\Omega)$, that is,
\[
\left(\frac{2(n-1)}{3n} - \frac{(n-1)}{144n^2(n+2)}\right)(2\pi)^{2n}k^{2n} V(\Omega)^{ \frac{2(n+1)}{n}} ((2\pi)^{-n}V(\Omega))^{\frac{2n+2}{n}} \\
+ \left(\frac{1}{9n} - \frac{1}{432n^2(n+2)}\right)(2\pi)^{4n}(B_n)^{\frac{4}{n}} V(\Omega)^{ \frac{4(n+1)}{n}} ((2\pi)^{-n}V(\Omega))^{\frac{4n+4}{n}}
\]
then one has from (2.25) that $F(t) \leq 0$ on $(0, (2\pi)^{-n}V(\Omega)]$. Hence, $F(t)$ is decreasing on $(0, (2\pi)^{-n}V(\Omega)]$. Indeed, by a direct calculation, we have that (2.26) is equivalent to
\[
\left(\frac{(n-1)}{6n} - \frac{(n-1)}{576n^2(n+2)}\right)(2\pi)^{-2}k^{\frac{2n}{n}} \\
+ \left(\frac{1}{36n} - \frac{1}{1728n^2(n+2)}\right)(2\pi)^{-4}(B_n)^{\frac{4}{n}} \leq (B_n)^{-\frac{4}{n}} k^{\frac{4}{n}}.
\]

From (2.21), we can prove that $(2\pi)^{-2}(B_n)^{\frac{4}{n}} < 1$ and
\[
\left(\frac{(n-1)}{6n} - \frac{(n-1)}{576n^2(n+2)}\right)(2\pi)^{-2}k^{\frac{2n}{n}} \\
+ \left(\frac{1}{36n} - \frac{1}{1728n^2(n+2)}\right)(2\pi)^{-4}(B_n)^{\frac{4}{n}} < \frac{1}{6}(2\pi)^{-2}k^{\frac{2n}{n}} + \frac{1}{36n}(2\pi)^{-2} \\
< (2\pi)^{-2}\left\{\frac{1}{6}k^{\frac{4}{n}} + \frac{1}{36n}\right\} < (2\pi)^{-2}k^{\frac{4}{n}} < (B_n)^{-\frac{4}{n}} k^{\frac{4}{n}},
\]
that is, $F(t)$ is a decreasing function on $(0, (2\pi)^{-n}V(\Omega)]$.

On the other hand, since $0 < g(0) \leq (2\pi)^{-n}V(\Omega)$ and the right hand side of the formula (2.23) is $F(g(0))$, which is a decreasing function of $g(0)$ on $(0, (2\pi)^{-n}V(\Omega)]$, then we can replace $g(0)$ by $(2\pi)^{-n}V(\Omega)$ in (2.23) which gives inequality
\[
\frac{1}{k} \sum_{j=1}^{k} \Gamma_j \geq \frac{n}{n+4} \frac{16\pi^4}{(B_n V(\Omega))^{\frac{4}{n}}} k^{\frac{4}{n}} \\
+ \left(\frac{n+2}{12n(n+4)} - \frac{1}{1152n^2(n+4)}\right)\frac{V(\Omega)}{I(\Omega)} n + 2 (B_n V(\Omega))^{\frac{4}{n}} k^{\frac{4}{n}} \\
+ \left(\frac{1}{576n(n+4)} - \frac{1}{27648n^2(n+4)}\right) \left(\frac{V(\Omega)}{I(\Omega)}\right)^2.
\]
This completes the proof of Theorem.
Proof of Corollary. Let \(v_1, \ldots, v_n \) be \(n \) orthonormal eigenfunctions corresponding to the first \(n \) eigenvalues \(\mu_1, \ldots, \mu_n \) of the Neumann eigenvalue problem of Laplacian, that is,

\[
\begin{cases}
\Delta v_i = -\mu_i v_i, & \text{in } \Omega, \\
\frac{\partial v_i}{\partial \nu} = 0, & \text{on } \partial \Omega, \\
\int_\Omega v_i v_j = \delta_{ij}, & i, j = 1, \ldots, n.
\end{cases}
\]

It then follows from the inequality (2.8) in [2] that

\[
\sum_{i=1}^{n} \frac{1}{\mu_i} \geq \frac{\int_\Omega |x|^2 dx}{V(\Omega)}.
\]

(2.29)

Combining (1.13) and (2.29), we have the inequality (1.14).

\[\square \]

References

[1] S. Agmon, *On kernels, eigenvalues and eigenfunctions of operators related to elliptic problems*, Comm. Pure Appl. Math. 18 (1965), 627-663.

[2] M. S. Ashbaugh and R. D. Benguria, *Universal bounds for the low eigenvalues of Neumann Laplacian in N dimensions*, SIAM J. Math. Anal. 24 (1993), 557-570.

[3] C. Bandle, *Isoperimetric inequalities ans applications*, Pitman Monographs and Studies in Mathematics, vol. 7, Pitman, Boston, 1980.

[4] F. A. Berezin, *Covariant and contravariant symbols of operators*, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 1134-1167.

[5] I. Chavel, *Eigenvalues in Riemannian Geometry*, Academic Press, New York, 1984.

[6] Q. -M. Cheng, G. Huang and G. Wei, *Estimates for lower order eigenvalues of a clamped plate problem*, preprint.

[7] Q. -M. Cheng, T. Ichikawa and S. Mametsuka, *Estimates for eigenvalues of a clamped plate problem on Riemannian manifolds*, to appear in J. Math. Soc. Japan.

[8] Q. -M. Cheng and H. C. Yang, *Inequalities for eigenvalues of a clamped plate problem on Riemannian manifolds*, Trans. Amer. Math. Soc. 358 (2006), 2625-2635.

[9] Q. -M. Cheng and H. C. Yang, *Estimates for eigenvalues on Riemannian manifolds*, J. Differential Equations 247 (2009), 2270-2281.

[10] S. M. Hook, *Domain independent upper bounds for eigenvalues of elliptic operator*, Trans. Amer. Math. Soc., 318 (1990), 615-642.

[11] A. Laptev, *Dirichlet and Neumann eigenvalue problems on domains in Euclidean spaces*, J. Funct. Anal. 151 (1997), 531-545.

[12] H. A. Levine and M. H. Protter, *Unrestricted lower bounds for eigenvalues for classes of elliptic equations and systems of equations with applications to problems in elasticity*, Math. Methods Appl. Sci. 7 (1985), no. 2, 210-222.

[13] P. Li and S. T. Yau, *On the Schrödinger equations and the eigenvalue problem*, Comm. Math. Phys. 88 (1983), 309-318.

[14] E. Lieb, *The number of bound states of one-body Schrödinger operators and the Weyl problem*, Proc. Sym. Pure Math. 36 (1980), 241-252.

[15] A. D. Melas, *A lower bound for sums of eigenvalues of the Laplacian*, Proc. Amer. Math. Soc. 131 (2003), 631-636.

[16] L. E. Payne, G. Pólya and H. F. Weinberger, *On the ratio of consecutive eigenvalues*, J. Math. and Phys. 35 (1956), 289-298.
[17] A. Pleijel, *On the eigenvalues and eigenfunctions of elastic plates*, Comm. Pure Appl. Math., 3 (1950), 1-10.

[18] G. Pólya, *On the eigenvalues of vibrating membranes*, Proc. London Math. Soc., 11 (1961), 419-433.

[19] G. Pólya and G. Szegö, *Isoperimetric inequalities in mathematical physics*, Annals of mathematics studies, number 27, Princeton university press, Princeton, New Jersey, 1951.

[20] Q. L. Wang, C. Y. Xia, *Universal bounds for eigenvalues of the biharmonic operator on Riemannian manifolds*, J. Funct. Anal. 245 (2007), 334-352.

QING-MING CHENG, DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE AND ENGINEERING, SAGA UNIVERSITY, SAGA 840-8502, JAPAN, cheng@ms.saga-u.ac.jp

GUOXIN WEI, DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE AND ENGINEERING, SAGA UNIVERSITY, SAGA 840-8502, JAPAN, wei@ms.saga-u.ac.jp