Supplementary Online Content

Dursttenfeld MS, Sun K, Tahir P, et al. Use of cardiopulmonary exercise testing to evaluate long COVID-19 symptoms in adults: a systematic review and meta-analysis. JAMA Netw Open. 2022;5(10):e2236057. doi:10.1001/jamanetworkopen.2022.36057

eTable 1. Search Strategies for PubMed, Web of Science, and EMBASE

eTable 2. Quality Assessment and Potential Threats to Validity Among Studies Included in Comparison of Peak \(\dot{V}_{O2} \) Among Those With and Without Symptoms >3 Months After SARS-CoV-2 Infection

eTable 3. Quality Assessment and Potential Threats to Validity Among Studies Included in Assessment of Limitations of Exercise Capacity

eMethods. Study Protocol

eAppendix. Study Findings and Quality Form

eResults. Sensitivity Analyses and GRADE Assessment

eFigure. Funnel Plot of Studies Comparing Peak \(\dot{V}_{O2} \) Among People With and Without Symptoms

This supplementary material has been provided by the authors to give readers additional information about their work.
eTable 1. Search Strategies for PubMed, Web of Science, and EMBASE

DATABASE	SEARCH STRATEGY
PubMed	(“COVID-19”[Mesh] OR COVID OR “SARS-CoV-2”[Mesh] OR SARS-CoV-2) AND
	(“cardiopulmonary exercise test” OR CPET OR CPX OR CPEX OR exercise capacity OR VO2
	OR “Anaerobic Threshold”[Mesh] OR anaerobic threshold)
Web of Science	(COVID OR SARS-CoV-2) AND (“cardiopulmonary exercise test” OR CPET OR CPX OR
	CPEX OR exercise capacity OR VO2 OR anaerobic threshold)
EMBASE	(coronavirus disease 2019/exp OR 'coronavirus disease 2019') AND
	('cardiopulmonary exercise test'/exp OR 'cardiopulmonary exercise test' OR
	'cardiopulmonary exercise testing'/exp OR 'cardiopulmonary exercise testing'
	OR cpet OR cpx OR cpex OR 'exercise capacity'/exp OR
	'exercise capacity' OR vo2 OR 'anaerobic threshold'/exp OR 'anaerobic threshold')
eTable 2. Quality Assessment and Potential Threats to Validity Among Studies Included in Comparison of Peak VO₂ Among Those With and Without Symptoms >3 Months After SARS-CoV-2 Infection

First Author, Year	Study Participation	Study Attrition	CPET Protocol, Execution & Interpretation	Assessment of LC Symptoms	Confounding	Statistical Analysis & Reporting	Key Threats to Validity
Aparisi, et al, 51 2021	Moderate Mostly hospitalized	Moderate 53/522 (10%) of hospitalized and few non-hospitalized	Moderate Treadmill ramp Low average RER	Moderate Used standardized non-COVID tools for dyspnea	High Not addressed	High No adjusted models	• Selection Bias
• Low average RER suggests submaximal CPET							
• Confounding							
• Lack of interpretation of individual studies							
Barbagelata et al, 41 2021	High Retrospective EHR-based study without explanation for why individuals without LC underwent CPET	Moderate No information provided	High Treadmill with individualized Bruce/modified Bruce High proportion low RER studies	High Defined as dyspnea or fatigue >45 days after symptom onset but ascertained through chart review	Moderate Adjust for gender, cardiovascular history, and use of beta blockers	Moderate Data-driven variable selection	• Retrospective EHR-based study without clarity regarding comparison group of people without LC—why CPETS were performed on 88 individuals “without LC” at exactly the same time after COVID diagnosis is not explained
• High proportion of non-maximal studies							
Brown, et al, 47 2022	Moderate Only hospitalized	Moderate No information provided	Low Novel CPET-CMR protocol	Moderate Use of self-reported exercise capacity may not reflect LC	Low Use of restriction/exclusion	Moderate No adjusted models, but well-matched	• Only included hospitalized individuals
• Matched on key confounders, but no adjusted models							
Durstenfeld, et al, 28 2022	Moderate Mostly non-hospitalized convenience sample	Moderate Only 39/120 (33%) completed CPET although differences appear minimal	Low Cycle ergometer targeting 10 minute test, few stopped early, interpretation well-described	Low Defined as new symptoms consistent with WHO; sensitivity analyses performed	Low Did not assess pre-COVID fitness	Low Adjusted models with likely confounders	• Selection Bias
• Attrition							
• Confounding by pre-COVID fitness							
First Author, Year	Study Participation	Study Attrition	CPET Protocol, Execution & Interpretation	Assessment of LC Symptoms	Confounding	Statistical Analysis & Reporting	Key Threats to Validity
-------------------	---------------------	-----------------	---	--------------------------	-------------	---------------------------------	------------------------
Ladlow et al., 2022	Low Includes active duty military with appropriate controls	Low 113/150 (75%)	Low Cycle ergometer targeting 10 minute test	Moderate Presence of one or more symptoms may be overly sensitive and not specific	High Stratification by severity of illness; did not account for BMI differences	High No adjusted models	Even though all participants had prior exercise testing, these results are not reported or used to adjust for pre-COVID fitness • No adjustment for confounders (i.e. BMI)
Margalit et al., 2022	Moderate Mostly non-hospitalized individuals attending COVID recovery clinic	Moderate Included 113/462 (24%) of those randomly sampled	Moderate Treadmill Low average RER No individual interpretation of studies	Low Well described assessment of LC fatigue, included sensitivity analyses	Moderate Extensive measurement of possible confounders, but unclear if incorporate into models	Moderate No description of variables included in models	Selection bias: Most of the randomly sampled individuals from within the LC clinic were ineligible or did not agree to participate • Low average RER suggests submaximal CPET • Lack of description of statistical models
Schaeffer et al., 2021	Moderate Only hospitalized	Low 49/91 (54%) completed CPET	Low 15 W/min cycle ergometer	Low Binary fatigue variable does not account for pre-COVID fatigue	Moderate Excluded comorbidities, but higher BMI in fatigue group	High No adjusted models, but sensitivity analysis with % predicted	Selection bias (only hospitalized) • Did not account for confounders in analysis, but reported both absolute and percent predicted
Skjørten et al., 2021	Moderate Only hospitalized	Low 156/236 (66%) completed “adequate” CPET and not excluded	Moderate Treadmill, modified Bruce Low average RER Wasserman algorithm	Moderate Use mMRC dyspnea scale 0 vs 1-4	High Excluded comorbidities, but higher BMI in dyspnea group	High Only adjust for age & sex	Selection bias (only hospitalized) • Low average RER suggests submaximal CPET • Adjusted models only adjust for age and sex
Szekely et al., 2021	Moderate Emergency department during acute infection and attended LC Clinic	Low 71/165 (43%); flowchart, but differences between those	Low Semi-supine cycle ergometer targeting 10 minute test	Moderate No description of how dyspnea & fatigue were assessed	Moderate Forced age & sex into models, but did not include BMI, severity, and	High Stepwise multivariable analysis left out confounders and	Selection bias from only including those who sought care acutely and followed up in LC Clinic • Data-driven analysis left out important confounders (BMI, for example) and adjusted for likely
assessed and not	other confounders	adjusted for mediators	mediators (stroke volume, TAPSE, HR, A-Vo$_2$ difference)				
-----------------	-------------------	------------------------	--				

© 2022 Durstenfeld MS et al. *JAMA Network Open.*
eTable 3. Quality Assessment and Potential Threats to Validity Among Studies Included in Assessment of Limitations of Exercise Capacity

First Author, Year	Reduced Def.	Reduced Peak VO\(_2\), n (%)	Study Participation	Study Attrition	CPET Protocol, Execution & Interpretation	LC Symptoms	Confounding	Statistical Analysis & Reporting	Key Threats to Validity Pertinent to Classification
Abdallah/ Schaeffer et al, 48,69 2021	<85%	41/63 (65)	Moderate Prospective cohort of only hospitalized	Low 49/91 (54) completed CPET	Low Cycle ergometer fixed protocol 15 W/min step	Low Binary fatigue variable does not account for pre-COVID fatigue	Moderate Excluded comorbidities, but higher BMI in fatigue group	High No adjusted models, but sensitivity analysis with % predicted	• Selection bias
• Confounding (pre-existing medical comorbidities, beta blockers)									
• CPET interpretation not described									
Alba et al, 45 2021	<80%	6/18 (33)	High Retrospective cohort referred for CPET from LC Clinic	High Not reported	Low Upright cycle ergometer, excluded low RER	Moderate mMRC dyspnea scale	High Not addressed	High No adjusted models	• Small samples size
• Selection bias									
• High proportion with preexisting cardiopulmonary disease									
Ambrosino et al, 59 2022	<20 ml/kg/min	28/36 (78)	High Pulmonary rehab after severe COVID-19, mostly on long-term oxygen	Moderate 36/112 (32)	Low Cycle ergometer, no low RER (or excluded)	N/A	Low Adjusted	Low Adjusted models include most confounders	• Selection bias: all severe COVID mostly still on oxygen
• Unclear time after infection									
• Lack of interpretation of individual studies									
Aparisi, et al, 51 2021	NR	Moderate Prospective cohort mostly hospitalized	Moderate 53/522 (10) of hospitalized and few non-hospitalized	Moderate Treadmill ramp Low average RER	Moderate Used standardized non-COVID tools for dyspnea	High Not addressed	High No adjusted models		• Selection Bias
• Low average RER suggests submaximal CPET									
• Confounding									
• Lack of interpretation of individual studies									
Barbagelata et	<85%	39/112 (35)	High Retrospective EHR-	Moderate No	High Treadmill with individualized	High Dyspnea or fatigue >45	Moderate Adjust for gender,	Moderate	• High proportion of non-maximal studies (RER<1.1 for 47% of
First Author, Year	Reduc ed Def.	Reduced Peak VO₂, n (%)	Study Participation	Study Attrition	CPET Protocol, Execution & Interpretation	Study Attrition	LC Symptoms	Confounding	Statistical Analysis & Reporting
---	---	---	---	---	---	---	---	---	---
al, 41, 2021					Bruce/modified Bruce				
					High proportion low RER studies				
					days after symptom onset but ascertained				
					through chart review				
					cardiovas cular history, and use of beta				
					blockers				
					Data-driven variable selection				
					studies and 49% did not reach anaerobic				
					threshold)				
Borrego	<100 %	32/57 (56)		Not reported	Moderate Dyspnea on exertion				High Excluded structural heart
Rodriguez et al, 70					>3 months after infection				disease
									• Use of unconventional <100% cutoff
									• Interpretation not described (abstract only)
Brown, et al, 47	Self-reported	20/40 (50)	Moderate Prospective cohort of hospitalized without ICU stay, myocardial injury, or comorbidities	Moderate Not reported	Low Novel CPET-CMR protocol using supine cycle ergometer	Low Use of self-reported exercise capacity may not reflect LC	Low Use of restriction/exclusion	Moderate No adjusted models, but well-matched	Only included hospitalized individuals
	reduced reduced exercise capacity								
									• Only included hospitalized individuals
Cassar et al, 29, 71	<80%	6/31 (19)	Moderate Prospective cohort after COVID hospitalization	Moderate_CYCLE ergometer 10W/min ramp, 26% submaximal tests	Low Group matched controls	Low DETAILS of adjusted analyses are not provided	Only included hospitalized individuals	Confounding	
									• Only included hospitalized individuals
Clavario et al, 27	<85%	99/200 (50)	Moderate Prospective cohort after COVID	Low Cycle ergometer targeting 10 minute test	N/A	High Included patients with HF,	Moderate Data-driven variable selection	Only included hospitalized individuals	Confounding
				Low 200/225 (89)					
First Author, Year	Reduced Def.	Reduced Peak VO\textsubscript{2}, n (%)	Study Participation	Study Attrition	COPD, MI	Key Threats to Validity Pertinent to Classification			
-------------------------------------	--------------	--	---------------------	-----------------	----------	---			
de Boer et al,43 2021	<84%	16/50 (32)	High Retrospective case series of clinically referred CPETs for PASC	High Not reported	Low Cycle ergometer ramp	High No adjusted models			
Debeaumont et al,33 2021	<85%	12/23 (52)	High Retrospective case series of hospitalized COVID patients referred for CPET	High Not reported	Low Cycle ergometer customized to target	High No adjusted models			
Dorelli et al, 52,53 2021	NR	NR	High Prospective cohort post-hospitalization <65 years old without comorbidities	Moderate 28/130 (22)	Low Cycle ergometer targeting 8-12 minute test	Moderate Restricted patients with comorbidities including obesity	High Unclear why authors want to use models to predict ventilatory inefficiency and no justification for variables considered		
Durstenfeld, et al, 28 2022	<85%	15/39 (38)	Moderate Prospective cohort mostly non-hospitalized	Moderate Only 39/120 (33%) completed	Low Cycle ergometer targeting 10 minute test,	Low Did not assess pre-	Low Adjusted models with likely confounders		

- Focus on compromised mitochondrial function estimated from stoichiometric equations
- Selection bias
- Only included hospitalized individuals subsequently referred for CPET
- Primary comparison is between those with and without exercise ventilatory inefficiency
- Lack of interpretation of individual studies
- Selection Bias
- Confounding by pre-COVID fitness
| First Author, Year | Reduced Def. | Reduced Peak VO₂, n (%) | Study Participation | Study Attrition | CPET Protocol, Execution & Interpretation | LC Symptoms | Confounding | Statistical Analysis & Reporting | Key Threats to Validity Pertinent to Classification |
|-------------------|--------------|--------------------------|---------------------|---------------|--|-------------|------------|----------------------------------|--|
| Evers et al., 2022 | <100% predicted work | 11/30 (37) | High Retrospective case series of patients referred for post-COVID exercise limitation or dyspnea | NR 16/30 (53) underwent repeat CPET | Low Cycle ergometer targeting <12 minute test | Low mMRC dyspnea scale | High Not addressed | High No adjusted models | • Selection bias |
| Frésard et al., 2022 | >84% NR | NR | High Retrospective cohort of clinical CPETs referred for LC and persistent dyspnea | High Not reported | Low Cycle ergometer target 10 minute test | Moderate Use validated scales from non-COVID settings | High Not addressed | High No adjusted models | • Primary comparison is dysfunctional breathing (mostly mild-moderate COVID) compared to ventilatory limitation (mostly severe COVID) |
| Godinho et al., 2021 | NR | 5/10 (50) | High Case series of non-hospitalized patients with persistent exercise limitations referred for clinical CPET | High Not reported | High No information provided | N/A | High Not addressed | High No adjusted models | • Very small case series with lack of adequate details to assess quality from abstract and no preprint or manuscript available |
| First Author, Year | Reduced Def. | Reduced Peak VO₂, n (%) | Study Participation | Study Attrition | CPET Protocol, Execution & Interpretation | LC Symptoms | Confounding | Statistical Analysis & Reporting | Key Threats to Validity Pertinent to Classification |
|--------------------|--------------|-------------------------|---------------------|----------------|--|-------------|-------------|---------------------------------|---|
| Jahn et al, 2021 | | 19/35 (54%) | | | Semi-recumbent cycle ergometer, interpretation described | | | | Selection bias (severe COVID only) |
| | | | | | Use validated scales from non-COVID settings, but 60% missing | | | | Confounding |
| | | Low 35/44 (80) | | | High Not addressed, did not exclude prior disease | | | | |
| | | High | | | High No adjusted models | | | | |
| | | Moderate | | | Moderate Use validated scales from non-COVID settings, but 60% missing | | | | |
| | | Low | | | Low Semi-recumbent cycle ergometer, interpretation described | | | | |
| | | Moderate | | | Low Use validated scales from non-COVID settings, but 60% missing | | | | |
| | | Low 35/44 (80) | | | Low Not addressed, did not exclude prior disease | | | | |
| | | High | | | High No adjusted models | | | | |
| | | Moderate | | | Moderate Use validated scales from non-COVID settings, but 60% missing | | | | |
| | | Low | | | Low Use validated scales from non-COVID settings, but 60% missing | | | | |
| First Author, Year | Reduced Def. | Reduced Peak VO₂, n (%) | Study Participation | Study Attrition | CPET Protocol, Execution & Interpretation | LC Symptoms | Confounding | Statistical Analysis & Reporting | Key Threats to Validity Pertinent to Classification |
| Johnsen et al, 2021 | <84% | 16/31 (52) | | | High Case-series of post COVID clinic referrals for CPET to evaluate symptoms | | | | Focus of paper is clinically phenotyping LC; does not provide adequate detail about CPET |
| | | High | | | High 34/117 (29) + 23 outpatient s, but unclear which 31 were included for CPET | | | | |
| | | High | | | High Minimal information provided | | | | |
| | | Moderate | | | Moderate Detailed clinical phenotyping but not described for those who underwent CPET | | | | |
| | | High | | | High Not addressed for CPET | | | | |
| | | High | | | High Adjusted models for symptom variables for age and sex, but not for CPET | | | | |
| | | Moderate | | | Moderate Use validated scales from non-COVID settings, but 60% missing | | | | |
| | | Low 35/44 (80) | | | Low Semi-recumbent cycle ergometer, interpretation described | | | | |
| | | Low 35/44 (80) | | | Low Use validated scales from non-COVID settings, but 60% missing | | | | |
| Kersten et al, 2021 | NR | 17/35 (55) | | | High Case-series of post COVID clinic referrals for CPET if initial testing abnormal or not revealing | | | | Selection bias |
| | | High | | | High 36/231 (16) targeted for symptomatic | | | | High attrition |
| | | High | | | High Treadmill ramp, interpretation strategy not described and only summary CPET findings reported | | | | Those who underwent CPET are not well described |
| | | Moderate | | | Moderate Minimal information provided | | | | CPET data are not reported, only categorization of reason for limitation |
| | | High | | | High Not addressed | | | | |
| | | High | | | High Descriptive only | | | | |
| Ladow et al, 2022 | <85% | 4/61 (7) | | | Low Prospective cohort of active-duty military | | | | Selection bias: active military personnel |
| | | Low | | | Low Cycle ergometer targeting 10 minute test | | | | No description of interpretation |
| | | Low 113/150 (75) | | | Low Cycle ergometer targeting 10 minute test | | | | |
| | | Low | | | Low Use validated scales from non-COVID settings, but 60% missing | | | | |
| | | Moderate | | | Moderate Use validated scales from non-COVID settings, but 60% missing | | | | |
| | | Low | | | Low Cycle ergometer targeting 10 minute test | | | | |
| | | Moderate | | | Moderate Presence of one or more symptoms | | | | |
| | | Low | | | Low Cycle ergometer targeting 10 minute test | | | | |
| | | Moderate | | | Moderate Use validated scales from non-COVID settings, but 60% missing | | | | |
| | | Low | | | Low Cycle ergometer targeting 10 minute test | | | | |
| | | Moderate | | | Moderate Use validated scales from non-COVID settings, but 60% missing | | | | |
| | | Low | | | Low Cycle ergometer targeting 10 minute test | | | | |

© 2022 Durstenfeld MS et al. JAMA Network Open.
personnel with appropriate controls may be overly sensitive and not specific not account for sex, age, BMI

First Author, Year	Reduc ed Def.	Reduced Peak VO₂, n (%	Study Participation	Study Attrition	CPET Protocol, Execution & Interpretation	LC Symptoms	Confound- ing	Statistical Analysis & Reporting	Key Threats to Validity Pertinent to Classification
Liu et al, 56 2021	NR	NR	Moderate Prospective post-hospitalization cohort	High Not reported	Moderate Treadmill, interpretation not described or reported	N/A	High Not addressed	High Adjusted models to predict pulmonary fibrosis at 7 months; does not provide adequate detail about CPET findings or interpretation or classify participants by symptoms	
First Author, Year	Reduced Def.	Reduced Peak VO₂, n (%	Study Participation	Study Attrition	CPET Protocol, Execution & Interpretation	LC Symptoms	Confound- ing	Statistical Analysis & Reporting	Key Threats to Validity Pertinent to Classification
Mancin i et al, 46 2021	<80%	24/41 (59)	High Case-series of LC clinic referrals for CPET for dyspnea with normal cardiopulmonary testing	High Not reported	Low Cycle ergometer 25 W/3 minute step, subset with invasive ("hemodynamic") CPET; classification well described	Low Interview for ME/CFS symptoms	Moderate Used % predicted; excluded known cardiopulmonary disease; high proportion on beta blockers, not held; other confounders not addressed	• Selection bias (LC Clinic referrals) • Confounding (ie beta blocker use)	
Margali t et	NR	Moderate Nested case-control	Moderate 113/462 (24)	Moderate Treadmill with low average	Low Well described	Low Extensive measurement	Moderate No description	• Selection bias: All sampled individuals were from LC Clinic; most of	
First Author, Year	Reduced Def.	Reduced Peak VO₂, n (%)	Study Participation	Study Attrition	CPET Protocol, Execution & Interpretation	LC Symptoms	Confounding	Statistical Analysis & Reporting	Key Threats to Validity Pertinent to Classification
-------------------	-------------	------------------------	---------------------	----------------	--	-------------	------------	-----------------------------	--
Mohr et al., 2021	<85%	8/10 (80)	High	High	High CPET methods and interpretation not described	High	High	High Descriptive only; no adjusted models	• Small sample size
• Selection bias									
• Inadequate description of CPET methods and interpretation									
• Heterogeneity within sample without addressing likely confounders									
Motiejunaite et al, 2021	<85%	86/114 (75)	High	High	Moderate Cycle ergometer, interpretation well described	High	High	High Compared reduced to preserved diffusing capacity; no adjusted models	• Analytic focus is comparing those with reduced vs. preserved diffusing capacity
Moulson et al, 2022	<80%	3/21 (14)	High	Moderate	Moderate Treadmill or cycle ergometer, protocols & interpretation well described	Low	Low	High Descriptive only; no adjusted models for symptoms	• Selection bias: only included symptomatic athletes
• Attrition for longitudinal CPET									
First Author, Year	Reduced Def.	Study Participation	Study Attrition	CPET Protocol, Execution & Interpretation	LC Symptoms	Confounding	Statistical Analysis & Reporting	Key Threats to Validity Pertinent to Classification	
---	---	---	---	---	---	---	---	---	---
Parkes et al, 2021	<85%	10/12 (83)	High	Retrospective cohort of clinical CPETs	High	Not described	High Not described	High No adjusted models	
				Not described; sub-max tests are hinted at	High	Not described	High Not addressed	Small sample size, Selection bias, Inadequate description of CPET methods and interpretation	
Pleguezuelos, et al, 2021	NR		High	Case series of survivors of ARDS from COVID pneumonia requiring mechanical ventilation & tracheostomy	High	Not reported	Low Cycle ergometer targeting 6-12 minute test	High No adjusted models	
				Not described	High	Not described	High Not addressed	Focus is comparing mechanical efficiency among those with severe COVID to those with COPD, ischemic heart disease, and healthy controls, Selection bias: only included patients requiring prolonged ICU care, Confounding	
First Author, Year	Reduced Def.	Reduced Peak VO\textsubscript{2}, n (%)	Study Participation	Study Attrition	CPET Protocol, Execution & Interpretation	LC Symptoms	Confounding	Statistical Analysis & Reporting	Key Threats to Validity Pertinent to Classification
Ribeiro Baptist a, et al, 2022	<80%	37/105 (35)	Moderate	Prospective cohort of severe COVID requiring hospitalization >7 days and oxygen (43% ICU)	Moderate	105/220 (48)	Moderate Cycle ergometer 10-20 W/min; interpretation not described	Moderate Stepwise backward selection for models to assess associations with reduced VO\textsubscript{2}	
					Moderate	mMRC dyspnea scale	High Not addressed	Selection bias: only included patients with severe COVID, Confounding	
Rinaldo, et al, 2021	<85%	41/75 (55)	Moderate	Prospective cohort post-	Moderate	Cycle ergometer with	Moderate mMRC dyspnea scale	High No adjusted models	
					Moderate	mMRC dyspnea scale	High Not addressed	Selection bias, Overly simplistic interpretation of abnormal studies	
First Author, Year	Reduced Def.	Reduced Peak VO₂, n (%)	Study Participation	Study Attrition	CPET Protocol, Execution & Interpretation	LC Symptoms	Confounding	Statistical Analysis & Reporting	Key Threats to Validity Pertinent to Classification
-------------------	--------------	-------------------------	--------------------	----------------	--	-------------	--------------	-------------------------------	--
Singh et al.42 2021	<80%	NR	High Prospective cohort of patients referred for CPET from LC Clinic for unexplained exercise intolerance with negative initial workup	High Not reported	Moderate Invasive CPET including pulmonary artery and radial artery lines with cycle ergometer with individualized protocol, but tests terminated at RER>1.1 or HR>85% predicted	N/A	High Matching by age and sex but not other potential confounders (ie BMI higher in COVID than controls)	High No adjusted models	• Confounding not addressed
First Author, Year	Reduced Def.	Reduced Peak VO₂, n (%)	Study Participation	Study Attrition	CPET Protocol, Execution & Interpretation	LC Symptoms	Confounding	Statistical Analysis & Reporting	Key Threats to Validity Pertinent to Classification
Skjørten et al.36 2021,	<80%	49/156 (31)	Moderate Multicenter prospective cohort only hospitalized	Low 156/236 (66%) completed “adequate” CPET and were not excluded for	Moderate Treadmill, modified Bruce Low average RER Wasserman algorithm	Moderate Use mMRC dyspnea scale 0 vs 1-4	High Excluded comorbidities, but higher BMI in dyspnea group	High Only adjust for age & sex	• Low average RER suggests submaximal CPET
First Author, Year	Reduced Def.	Study Participation	Study Attrition	CPET Protocol, Execution & Interpretation	LC Symptoms	Confounding	Statistical Analysis & Reporting	Key Threats to Validity Pertinent to Classification	
---------------------	--------------	---------------------	-----------------	--	-------------	------------	---------------------------------	---	
Szekely et al.2021	<85%	49/71 (69)	Moderate	Low 71/165 (43%) with clear flowchart, but with some differences between those assessed and those not assessed	Low Semi-supine cycle ergometer targeting 10 minute test	Moderate	Forced age & sex into models, but did not include BMI, severity, and other confounders	Moderate	Selection bias, Interpretation of individual studies not described
First Author, Year	Reduced Def.	Study Participation	Study Attrition	CPET Protocol, Execution & Interpretation	LC Symptoms	Confounding	Statistical Analysis & Reporting	Key Threats to Validity Pertinent to Classification	
Vannini et al.2021	<80%	19/41 (46)	Moderate	High Not reported	Moderate	Cycle ergometer 10W/min ramp; interpretation not described	N/A	High Stratification by severity of acute COVID; other confounders not addressed	High
von Gruenewaldt et al.2022	<80%	2/20 (10)	High Retrospective cohort of clinical CPETs	High Not reported	Moderate	Cycle ergometer 10 or 20W/min ramp targeting 10 minute test; interpretation focused on dysfunctional breathing	High Symptoms assessed through records; participants without PCR verified diagnosis	High Not addressed	High
© 2022 Durstenfeld MS et al. JAMA Network Open.									
Study	NR	Exercise Capacity	Functional Outcomes	Methodological Qualities	Interpretation				
---	---	---	---	---	---	---			
Vonbank et al.37 2021	NR	Low Prospective cohort including full spectrum of acute SARS-CoV-2 infection	High Not reported	Moderate Cycle ergometer targeting 8-12 minute test; no interpretation of individual studies	N/A Moderate Addressed through adjusted model, but not all included	High Stepwise multivariable analysis left out confounders and adjusted for mediators			

- Focus is comparing exercise capacity by severity of acute illness to healthy controls
- Interpretation not described
eMethods. Study Protocol

The full, pre-registered Protocol is available at https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021299842.

This review was conducted according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines and was registered prospectively on PROSPERO prior to beginning the search.

Condition being studied: post-acute sequelae of COVID-19, also known as Long COVID, which according to the WHO definition is >3 months after acute infection with SARS-CoV-2.

Inclusion criteria: all studies of adults with confirmed COVID-19 at least 3 months after onset that include cardiopulmonary exercise testing with measurement of peak VO\(_2\) published since 2020 will be included. Baseline cardiopulmonary exercise testing from interventional or randomized controlled trials will also be included if they meet the other inclusion criteria.

Exclusion criteria: studies of children, studies of conditions other than COVID-19/SARS-CoV-2, studies in the acute or early post-acute phase (<3 months after infection), review articles, case reports.

Intervention/exposure: Cardiopulmonary exercise testing, which includes measurement of metabolic gases with either treadmill or cycle ergometer exercise.

Participants/population: We are interested in all adults with COVID without respect to hospitalization status or severity of acute illness.

Inclusion/Exclusion criteria: adults with confirmed COVID-19 at least 3 months after onset that include cardiopulmonary exercise testing with measurement of peak VO\(_2\) will be included. We excluded studies of children, studies of conditions other than COVID-19/SARS-CoV-2, studies in the acute phase (<3 months after infection).

Comparators/control: We will include case series without controls, as well as studies with healthy controls, control participants with unexplained dyspnea, or that compare those who have fully recovered from COVID compared to those reporting ongoing symptoms.

Types of studies to be included: We will include observational studies including case series, cross-sectional studies, case-control studies, and cohort studies. We will also include randomized trials of interventions, in which case we will use baseline CPET data. We will exclude case reports and review articles.

Context: We will include studies that include the full spectrum of COVID-19; specifically, we will not restrict to only studies of those requiring ICU or hospitalization during acute infection.

Main Outcomes: The primary outcome will be peak VO\(_2\) (in ml/kg/min and % predicted). If meta-analysis is possible, studies that do not include this measure will be excluded from meta-analysis. We will report the difference in peak VO\(_2\) between those with and without COVID and among those with COVID between those with and without post-acute sequelae.

Additional outcomes: Additional outcomes will include the proportion with exercise limitation <80 or 85% of predicted (different studies use different cutoffs), difference in exercise capacity between those with and without cardiopulmonary symptoms (absolute and relative difference with 95% confidence intervals and p value), common features among those with limitations (i.e., reduced oxygen pulse pressure, reduced chronotropic response). We will likely report these effect measures in odds-ratios as we expect that many of the studies may be case-control studies.

Search Strategy & Information Sources: A comprehensive, electronic search strategy will be used to identify studies published since 2020 and indexed in PubMed, EMBASE, and Web of Science by a research librarian (PT) with extensive experience in systematic reviews. Unpublished abstracts from conference proceedings and indexed preprints will be included as part of our gray literature search. We will also review references from studies selected for data extraction. The search strategy will include terms and synonyms for the following: (COVID or SARS-CoV-
2) AND (“cardiopulmonary exercise test*” OR (CPET or CPX or CPEX) OR exercise capacity OR VO2 OR anaerobic threshold). Searches will be tailored to each database depending on indexing terminology. Searches were conducted on December 20, 2021, and rerun prior to the final analysis on May 24, 2022; pre-prints were searched through June 9, 2022. Abstracts were reviewed for inclusion by two independent reviewers (MSD & KS); if there is disagreement after consensus discussion, a third reviewer will be consulted. All data extraction was done independently, in duplicate, using REDCap for data entry.

Gray literature plan: see search strategy for details; we will review conference abstracts, pre-prints, and references from studies that meet the inclusion criteria.

Data Extraction (Selection & Coding): Data including authors, title, date of study, location of study, sample size (including total with COVID, total with Cardiopulmonary Long COVID, and COVID-negative controls, if included), median time since acute infection and interquartile range, inclusion criteria (with particular attention to inclusion of hospitalized/ICU/ambulatory during acute illness and those with specific comorbidities or populations of interest), comparator group, exercise modality (treadmill or cycle ergometer), peak VO2 (in ml/kg/min and % predicted), proportion with exercise limitation <85% of predicted, difference in exercise capacity between those with and without cardiopulmonary symptoms (absolute and relative difference with 95% confidence intervals and p value), common features among those with limitations (i.e., reduced oxygen pulse pressure, reduced chronotropic response). If available, other cardiopulmonary parameters will be recorded including echocardiographic, pulmonary function tests, chest computed tomography, and cardiac magnetic resonance imaging.

Data Management: Studies identified through the searches will be managed using Covidence. Data extracted will be recorded using REDCap.

Quality Assessment: We will use Cochrane’s Quality in Prognostic Studies (QUIPS) tool to assess for bias of included studies. We will assess study populations (especially choice of control groups), study attrition for non-cross-sectional studies, peak VO2 assessment quality, outcome measurement, study confounding, and statistical analysis and reporting. We will use Cochrane’s Quality in Prognostic Studies (QUIPS) tool to assess for bias of included studies.

Data synthesis: Overall findings of each study will be summarized in a table. If possible, a meta-analysis will be performed to compare the peak VO2 among those with and without COVID. An odds ratio of having reduced exercise capacity may also be estimated if possible. Heterogeneity will be assessed using I^2. The primary subgroup we plan to investigate is to compare peak VO2 (and the other explanatory variables for reduced exercise capacity) among those with and without PASC/Long COVID. If possible, we may also compare those with severe acute infection requiring hospitalization and/or ICU care with those who were asymptomatic or had mild acute infection. Lastly, we may compare the early post-acute period (3-6 months), medium term (6-12 months), and long term (>12 months). Analyses will be performed using STATA version 17.

Analysis of subgroups: The primary subgroup we plan to investigate is to compare peak VO2 (and the other explanatory variables for reduced exercise capacity) among those with and without PASC/Long COVID. If possible, we may also compare those with severe acute infection requiring hospitalization and/or ICU care with those who were asymptomatic or had mild acute infection. Lastly, we may compare the early post-acute period (3-6 months), medium term (6-12 months), and long term (>12 months).

Risk of Bias/Quality Assessment: Risk of bias will be assessed at both the study and the outcome level for each included study. Publication bias will be assessed using a Funnel Plot. The strength of the body of evidence will be assessed using the GRADE (Grading of Recommendations, Assessment, Development, and Evaluations) framework.
eAppendix. Study Findings and Quality Form

Record ID	__
Extractor	○ Matt 〇 Kevin
First author's last name	__
all authors	__
Title	__
year	○ 2020 〇 2021 〇 2022
Journal	__
Type of Publication	○ Full Manuscript 〇 Research Letter 〇 Abstract/Conference Proceedings 〇 Non-English Full Manuscript 〇 Review 〇 Other (comments)
Duplicate with (enter other 1st author/Journal)	__
study type	○ prospective cohort (research CPETs) 〇 retrospective cohort 〇 case-control 〇 case-series (ie patients referred for clinically ordered CPETs) 〇 other
study type comments	__

© 2022 Durstenfeld MS et al. JAMA Network Open.
Study Location (City/State/Country/Region)
Start date of study
End date of study
total sample size who underwent CPET
Median time since acute infection (days)
- if reported in months multiply by 30
- if reported in weeks multiply by 7
Interquartile Range time since acute infection (days)
- if reported in months multiply by 30
- if reported in weeks multiply by 7
If median/IQR time since infection not reported, then put mean and standard deviation here

Inclusion Criteria
Inclusion Criterion
How was COVID diagnosed?
Other testing

Inclusion Criteria:
age

Mean or median age

age standard deviation

number female
Inclusion

hospitalization
Included patients irrespective of hospitalization
Included only patients hospitalized for acute disease
INcluded only

Primary comparison

Sample Size of control group WITHOUT COVID

Peak VO2 (ml/kg/min) among controls WITHOUT COVID

Peak VO2 (% predicted) among controls WITHOUT COVID

Among those without COVID, proportion with exercise limitation (0 to 1.00)

Sample Size who had COVID
Description	Value
Peak VO2 (ml/kg/min) among all WITH COVID	
Peak VO2 (% predicted) among all WITH COVID	
Among those WITH COVID, proportion with exercise limitation (0 to 1.00)	
Sample Size with COVID but without PASC/Long COVID	
Peak VO2 (ml/kg/min) WITH COVID but without PASC	
Peak VO2 (% predicted) WITH COVID but WITHOUT PASC	
Sample Size with PASC/Long COVID	
Peak VO2 (ml/kg/min) among those WITH PASC/Long COVID	
Peak VO2 (% predicted) among those WITH PASC/Long COVID	
Number with reduced exercise capacity	
Among those WITH PASC/LONG COVID, proportion with exercise limitation (0 to 1.00)	

Definition of Exercise Limitation

© 2022 Durstenfeld MS et al. *JAMA Network Open.*
Exercise modality cycle ergometer	○	○ treadmill other (list in comments)	
Difference in peak VO2 (ml/kg/min) Cardiopulmonary PASC vs no PASC			
Confidence interval of Difference in peak VO2 (ml/kg/min) Cardiopulmonary PASC vs no PASC			
Difference in peak VO2 (% predicted) Cardiopulmonary PASC vs no PASC			
Confidence interval of Difference in peak VO2 (% predicted) Cardiopulmonary PASC vs no PASC			
Relative exercise capacity (RR) among those with PASC vs no PASC			
Confidence interval of relative exercise capacity Cardiopulmonary PASC vs no PASC			
Primary etiology of reduced exercise capacity in PASCNo	○ primary etiology Deconditioning	○ Ventilatory Limitation	
	○ Cardiac Limitation	○ Chronotropic	
	○ Multifactorial	○ Other	
	○ Peripheral		
Proportion with PASC with deconditioning			
Proportion with PASC with ventilatory limitation			
Proportion with PASC with cardiac limitation			

© 2022 Durstenfeld MS et al. JAMA Network Open.
Proportion with PASC with peripheral limitation (oxygen extraction/utilization)

Proportion with PASC with chronotropic incompetence

Other reason for limitation reported

Proportion with PASC with Other Limitation

Other objective data available

- None
- Rest echo
- Stress echo
- Chest CT
- CMR
- Inflammatory markers
- Cardiac biomarkers
- Right heart cath
- PFTs
- 1st pass ventriculography
- Lactate/arterial blood gas

Primary analytic comparison reported

Study Quality Assessment

1. Study Participation

Goal: To judge the risk of selection bias (likelihood that relationship between PF and outcome is different for participants and eligible non-participants).
Summary Study Participation

Low risk
The study sample represents the population of interest on key characteristics, sufficient to limit potential bias of the observed relationship between PF and outcome.

Moderate risk
The study sample does not adequately represent the population of interest on key characteristics, sufficient to limit potential bias of the observed relationship between PF and outcome.

High risk
The study sample does not represent the population of interest on key characteristics, sufficient to limit potential bias of the observed relationship between PF and outcome.

Source of target population

The source population or population of interest is adequately described for key characteristics (age, sex, hosp/ICU, time since COVID, special populations comorbidities, precovid fitness).

- **No**
- **Partial**
- **Yes**
- **Unsure**

Method used to identify population:

The sampling frame and recruitment are adequately described, including methods to identify the sample sufficient to limit potential bias (number and type used, e.g., referral patterns in health care).

- **No**
- **Partial**
- **Yes**
- **Unsure**

Period of recruitment is adequately described

- **No**
- **Partial**
- **Yes**
- **Unsure**

Place of recruitment (setting and geographic location) are adequately described

- **No**
- **Partial**
- **Yes**
- **Unsure**

Inclusion and exclusion criteria are adequately described (e.g., including explicit diagnostic criteria or "zero time" description).

- **No**
- **Partial**
- **Yes**
- **Unsure**

Adequate study participation

- **No**
- **Partial**
- **Yes**
- **Unsure**

The baseline study sample (i.e., individuals entering the study) is adequately described for key characteristics:

(age, sex, hosp/ICU, time since COVID, special populations comorbidities, precovid fitness).

Overall comments on study populations

Overall comments on control groups?

Low risk
The study sample represents the population of interest on key characteristics, sufficient to limit potential bias of the observed relationship between PF and outcome.

Moderate risk
The study sample does not adequately represent the population of interest on key characteristics, sufficient to limit potential bias of the observed relationship between PF and outcome.

High risk
The study sample does not represent the population of interest on key characteristics, sufficient to limit potential bias of the observed relationship between PF and outcome.

2. Study Attrition

Goal: To judge the risk of attrition bias (likelihood that relationship between PF and outcome are different for completing and non-completing participants).

© 2022 Durstenfeld MS et al. *JAMA Network Open.*
Study Attrition Summary

Loss to follow-up (from baseline sample to study population analyzed) is not associated with key characteristics (i.e., the study data adequately represent the sample) sufficient to limit potential bias to the observed relationship between PF and outcome.

Overall comments on Study Attrition
3. Prognostic Factor Measurement

Goal: To judge the risk of measurement bias related to how PF was measured (differential measurement of PF related to the level of outcome).

Definition of the PF (CPET)	No	Partial	Yes	Unsure
A clear definition or description of CPET is provided (e.g., including exercise modality & protocol, stopping criteria, assessment of submaximal tests (ie RER, Borg, HR, double product), and clear specification of the method of measurement and classification of limitations)				

Valid and Reliable Measurement of PF (CPET)	No	Partial	Yes	Unsure
Method of PF measurement is adequately valid and reliable to limit misclassification bias (e.g., may include relevant outside sources of information on measurement properties, also characteristics, such as blind measurement and limited reliance on recall) Especially how tests are interpreted, how anaerobic threshold is identified				

Continuous variables are reported or appropriate cut-points (i.e., not data-dependent) are used.	No	Partial	Yes	Unsure

The method and setting of measurement of PF is the same for all study participants	No	Partial	Yes	Unsure

Adequate proportion of the study sample has complete data for PF variable.	No	Partial	Yes	Unsure

Appropriate methods of imputation are used for missing 'PF' data.	No	Partial	Yes	Unsure

PF (CPET) Measurement Summary

PF is adequately measured in study participants to sufficiently limit potential bias. Overall comments on CPET quality	Low risk	Moderate risk	High risk

© 2022 Durstenfeld MS et al. *JAMA Network Open.*
4. Outcome Measurement

Goal: To judge the risk of bias related to the measurement of outcome (differential measurement of outcome related to the baseline level of PF).

Outcome Measurement	Response
A clear definition of outcome (PASC/Long COVID/Symptoms) is provided, including duration of follow-up and level and extent of the outcome construct	No, Partial, Yes, Unsure

Valid and Reliable Measurement of Outcome

- The method of outcome measurement used is adequate (e.g., may include relevant outside sources of information on measurement properties, also characteristics, such as blind measurement and confirmation of outcome with valid and reliable test).

Method and Setting of Outcome Measurement	Response
The method and setting of outcome measurement is the same for all study participants	No, Partial, Yes, Unsure

Outcome (Symptoms) Measurement Summary

| Outcome of interest is adequately measured in study participants to sufficiently limit potential bias | Low risk, Moderate risk, High risk |

Overall comments on assessment of PASC/Long COVID/symptoms

5. Study Confounding

Goal: To judge the risk of bias due to confounding (i.e. the effect of PF is distorted by another factor that is related to PF and outcome).

Important Confounders Measured

- All important confounders, including treatments (key variables in conceptual model: LST), are measured.

Important Confounders Measured	Response
All important confounders, including treatments (key variables in conceptual model: LST), are measured	No, Partial, Yes, Unsure

Definition of the confounding factor

- Clear definitions of the important confounders measured are provided (e.g., including dose, level, and duration of exposures).

Definition of the confounding factor	Response
Clear definitions of the important confounders measured are provided (e.g., including dose, level, and duration of exposures)	No, Partial, Yes, Unsure

Valid and Reliable Measurement of Confounders

- Measurement of all important confounders is adequately valid and reliable (e.g., may include relevant outside sources of information on measurement properties, also characteristics, such as blind measurement and limited reliance on recall).

Valid and Reliable Measurement of Confounders	Response
Measurement of all important confounders is adequately valid and reliable (e.g., may include relevant outside sources of information on measurement properties, also characteristics, such as blind measurement and limited reliance on recall)	No, Partial, Yes, Unsure

© 2022 Durstenfeld MS et al. *JAMA Network Open.*
Method and Setting of Confounding Measurement
The method and setting of confounding measurement are the same for all study participants.

	No	Partial	Yes	Unsure

Method used for missing data
Appropriate methods are used if imputation is used for missing confounder data.

	No	Partial	Yes	Unsure

Appropriate Accounting for Confounding
Important potential confounders are accounted for in the study design (e.g., matching for key variables, stratification, or initial assembly of comparable groups).

	No	Partial	Yes	Unsure

Important potential confounders are accounted for in the analysis (i.e., appropriate adjustment).

	No	Partial	Yes	Unsure

Study Confounding Summary
Important potential confounders are appropriately accounted for, limiting potential bias with respect to the relationship between PF and outcome.

	Low risk	Moderate risk	High risk

Overall comments for confounding

6. Statistical Analysis and Reporting Goal: To judge the risk of bias related to the statistical analysis and presentation of results

Presentation of analytical strategy
There is sufficient presentation of data to assess the adequacy of the analysis.

	No	Partial	Yes	Unsure

Model development strategy
The strategy for model building (i.e., inclusion of variables in the statistical model) is appropriate and is based on a conceptual framework or model.

	No	Partial	Yes	Unsure

The selected statistical model is adequate for the design of the study.

	No	Partial	Yes	Unsure

Reporting of results
There is no selective reporting of results.

	No	Partial	Yes	Unsure

© 2022 Durstenfeld MS et al. JAMA Network Open.
Statistical Analysis and Presentation Summary

The statistical analysis is appropriate for the design of the study, limiting potential for presentation of invalid or spurious results.

Overall comments regarding statistical analysis & reporting

Low Risk
Moderate Risk
High Risk
eResults. Sensitivity Analyses and GRADE Assessment

Post-hoc Sensitivity Analyses
Although peak VO$_2$ was higher among non-hospitalized individuals, subgroup analysis suggested that the mean difference by symptom status did not vary by the proportion hospitalized (more hospitalized: -4.7; 95%CI -6.5 to -3.0 versus fewer hospitalized: -4.6; 95%CI -7.3 to -2.0; p=0.95). Similarly, subgroup analysis comparing studies by median time after SARS-CoV-2 infection suggested that time since infection was not a major cause of heterogeneity (<6 months: -5.0; 95%CI -7.1 to -3.0; ≥6 months: -4.5; 95%CI -6.4 to -3.4; p=0.73).

Leave One Out Analysis

Omitted study	Mean diff (95%CI)
Abdallah	-4.94 (-6.58 – -3.30)
Aparisi	-4.90 (-6.62 – -3.17)
Barbagelata	-5.18 (-6.81 – -3.56)
Brown	-5.01 (-6.71 – -3.30)
Durstenfeld	-4.69 (-6.22 – -3.16)
Ladlow	-5.44 (5.93 – -3.07)
Margalit	-5.18 (-6.81 – -3.56)
Skjørtén	-4.25 (-5.44 – -3.05)
Szekely	-5.18 (-6.76 – -3.60)
Overall	-4.87 (-6.36 – -3.39)

Summary of GRADE Assessment Discussion for Aim 1
Starting for Observational Data: Low
Risk of bias: Downgrade for issues with selection bias and confounding
Imprecision: No change for precision; whether the average effect is -6 ml/kg/min or -3 ml/kg/min would not dramatically change our interpretation (although the greater estimate suggests a higher prevalence, which we were not able to estimate).
Inconsistency: Upgrade for consistency: in the subgroup analyses and leave one out analyses the effects were fairly consistent.
Indirectness: Downgrade for indirectness in measuring Long COVID symptoms.
Publication bias: Uncertain. Two studies (Clavario et al & Cassar et al) that did find a statistically significant result and therefore did not report peak VO$_2$ by symptom status, so it is possible that there are other negative studies that have not been published. We attempted to find these through preprints or conference abstracts in case they are having a difficult time being published.
Overall team impression: Low Certainty

Summary of GRADE Assessment Discussion for Aim 2
Starting for Observational Data: Low
Risk of bias: Downgrade for issues with selection bias and confounding
Imprecision: Downgrade for lack of precision especially with regards to classification of deconditioning vs muscular/peripheral issues, issues with not excluding submaximal tests.
Inconsistency: Downgrade for inconsistency; the patterns observed across different studies are not at all consistent, and some studies report negative findings that are the most common pattern observed in other studies.
Indirectness: Downgrade for indirectness in measuring “Long COVID”
Publication bias: Uncertain
Overall team impression: Very Low Certainty
eFigure. Funnel Plot of Studies Comparing Peak $\dot{V}O_2$ Among People With and Without Symptoms

eFigure 1 Legend: Funnel plot of studies included for Aim 1 (With vs without LC Symptoms) using inverse variance.