Research Note

Contagious Policies? Studying National Responses to a Global Pandemic in Europe

FROWIN RAUSIS\(^1\) and PAULA HOFFMEYER-ZLOTNIK\(^2\)

\(^1\)University of Lucerne
\(^2\)University of Geneva

Abstract: Not only Covid-19 has spread all over the world—the policies responding to this pandemic have also diffused rapidly across countries. In this research note, we present findings from an original dataset that features mobility restrictions in all EU/EFTA states as well as the United Kingdom during the first wave of the pandemic. We find that most countries adopted restrictions within a few days only and that restrictions on internal mobility had been introduced prior to restrictions on cross-border mobility, but that the latter have been more persistent. Furthermore, we observe an evolution from great variation of policy choices at the outset of the pandemic towards convergence. Analyzing the mobility restrictions through a policy diffusion lens, we find tentative evidence for interdependent policy-making especially in the temporal patterns of adoption. Our research note can serve a basis for future research on policy-making and policy diffusion in times of crisis.

Zusammenfassung: Nicht nur hat sich Covid-19 über die ganze Welt verbreitet – auch die politischen Massnahmen in Reaktion auf die Pandemie haben sich rasch über Landesgrenzen hinweg ausgebreitet. Im vorliegenden Forschungsbeitrag präsentieren wir Erkenntnisse aus einem neuen Datensatz zu Mobilitätsbeschränkungen in allen EU/EFTA-Staaten und Grossbritannien während der ersten Welle der Pandemie. Es zeigt sich, dass die meisten Staaten innerhalb von wenigen Tagen Beschränkungen beschlossen haben, wobei die Beschränkungen der internen Mobilität vor den Beschränkungen der grenzüberschreitenden Mobilität eingeführt wurden, letztere aber länger andauerten. Ausgehend von einer grossen Variation hinsichtlich der Mobilitätsbeschränkungen zu Beginn der Pandemie entwickelt sich eine Konvergenz der Massnahmen gegen Ende der ersten Welle. Wir analysieren die Mobilitätsbeschränkungen aus der Perspektive der Politikdiffusion und finden insbesondere in den zeitlichen Mustern der Einführung Hinweise auf Interdependenz politischer Entscheidungen. Unser Beitrag kann als Grundlage für künftige Forschung zur Politikgestaltung und Politikdiffusion in Krisenzeiten dienen.

Résumé: Non seulement la Covid-19 s’est propagée dans le monde entier, les politiques de lutte contre cette pandémie se sont aussi rapidement diffusées entre pays. Nous présentons ici les résultats de l’analyse d’une base de données originale qui fait état des restrictions de mobilité dans les États de l’UE/AELE ainsi qu’au Royaume-Uni lors de la première vague de la pandémie. Nos résultats indiquent que la plupart des pays ont adopté des restrictions en l’espace de quelques jours seulement et que les restrictions à la mobilité interne ont été introduites avant les restrictions à la mobilité transfrontalière, mais que ces dernières ont été plus persistantes. En outre, la grande variation de choix politiques au début de la pandémie a évolué vers une convergence des pratiques.

The authors have contributed equally to this work.
En analysant les restrictions à la mobilité selon une optique de diffusion des politiques, nous trouvons des indices suggérant une certaine interdépendance des politiques, notamment en ce qui concerne la chronologie d'adoption des mesures. Notre contribution peut inspirer de futures recherches sur l’élaboration et la diffusion des politiques en temps de crise.

KEYWORDS: Covid-19, European Politics, Mobility Restrictions, Policy Diffusion, Schengen

Introduction

In Europe, since February 2020 the outbreak of Covid-19 was no longer something that took place on another continent. Spreading rapidly across all European countries, the virus had come to fill the front pages of newspapers within days. Governments were not only confronted with a public health crisis demanding an effective response, but also with a lack of tried and tested policies at hand to face this pandemic. To curb the spread of Covid-19, governments have taken measures in various policy fields. Arguably, those with the most immediate impact on peoples’ lives were measures to limit human movement as a way to limit human contact and thus the spread of the virus. Yet, while academics have shed light on governmental responses to the pandemic in a wide array of policy fields (e.g. Capano et al. 2020; Cheng et al. 2020; Hale et al. 2020), we lack a systematic analysis of the spread and variation of policies that restrict the movement of people.

In this research note, we study the introduction of mobility restrictions in Europe through a policy diffusion lens and present findings from the original dataset “Mobility and Border Control in Response to the COVID-19 Outbreak” (Piccoli et al. 2020) that covers mobility restrictions adopted in all countries of the European Union (EU) and the European Free Trade Association (EFTA) as well as the United Kingdom from 1 March until 31 May 2020. By focusing on the early phase of the pandemic in Europe, we not only study a highly dynamic period of time, but also the one which, through path-dependency and policy learning, set the scene for longer-term policy developments that we are still witnessing. We specifically distinguish between internal and cross-border movement because limitations to these two follow different policy rationales and potentially also different policy diffusion mechanisms: internal restrictions affect the population as a whole and are decided on the national or regional level, whereas cross-border mobility is subject to Schengen rules for many European countries and affects the relation to other countries.

Based on a descriptive analysis, we present four key findings: First, we demonstrate that while the first cases were spread unevenly across time, substantial mobility restrictions were adopted within a short time frame in most countries. Second, we find that internal mobility restrictions were adopted first, but external restrictions have proven to be more persistent in most countries. Third, we see an evolution from great variation towards convergence of policy choices in both dimensions, but remarkably a higher degree of similarity in internal mobility restrictions. Fourth, the majority of countries in the dataset restricted cross-border mobility to a higher degree than internal mobility, but with great differences between countries. In the conclusion, we outline avenues for further research on policy-making and policy diffusion in times of crisis.

Policy Diffusion in Times of the Covid-19 Pandemic

Policy diffusion occurs when policy-making in one polity (country, or jurisdictions at the sub- or supranational level) affects policy-making in other polities (see e.g. Graham et al.
2013). Diffusion scholars study the temporal and spatial patterns as well as the processes and mechanisms of diffusion (e.g. Simmons et al. 2006). While policy convergence is not necessarily the result of policy diffusion as it may also derive from independent policy-making (Gilardi 2012), similarities in timing and substance of policies can be a first hint that policy-making is interdependent, rather than independent. In regard to policy-making during the Covid-19 pandemic, one could argue that governments have independently introduced similar mobility restrictions because they have been exposed to the same threat at (almost) the same time. In fact, measures such as the closing of schools, or bans on public and cultural events were laid out in national pandemic plans long before the outbreak of the Covid-19 pandemic whereas the closure of borders was not (see e.g. Bundesamt für Gesundheit 2018; Robert-Koch-Institut 2017). Recent research on policy-making during the Covid-19 pandemic has found evidence that governments have been influenced by the policy choices of other governments and have drawn lessons from each other. Yet these studies focus either on a single case study such as Cyprus (Petridou et al. 2020), on nationalist regimes in different world regions that have emulated each other (Givens and Mistur 2021), or on factors such as government capacity, societal trust, or party preferences that may have caused variety among national responses (Toshkov et al. 2020), rather than on the patterns and mechanisms of policy diffusion.

The history and political structures of Europe suggest that European governments may have been especially receptive to the policy choices taken by other governments. In contrast to countries in Asia that could draw lessons from the exposition to more recent experience with public health crises such as the SARS epidemic, European countries had not been exposed to a pandemic of similar extent since the so-called “Spanish flu” that lasted from 1918 to 1920. This lack of recent experience presumably made them watch out for what neighbors were doing when deciding on their own responses. Additionally, Sebatu et al. (2020), comparing all countries of the Organisation for Economic Co-Operation and Development (OECD), found that countries with strong democratic structures have proven to be especially receptive to policy choices taken by other governments during the pandemic.

Arguably, the interdependence of policy measures in Europe has become most evident in the adoption of tit-for-tat strategies regarding border controls. In light of the rules imposed by the EU and the Schengen governance framework, Schengen states also run the risk of violating EU law when adopting restrictions on external mobility (Hruschka 2020). So at least in legal and political terms, we would expect the EU to have some influence on national responses in terms of “vertical diffusion.” However, there seems to be little indication that supranational organizations have been especially relevant in shaping or hindering the adoption of external mobility restrictions by governments during the first wave of the pandemic in Europe. In March 2020, the European Commission first tried to keep Schengen borders open, in line with the World Health Organization’s (WHO) standpoint that was still to advise against international travel or trade restrictions as of late February (WHO 2020). By mid-March a number of Schengen countries went ahead

1 For instance, a French presidential official announced on 14 May that France would impose a 14-day quarantine period for travelers from Spain in the moment that Spain would impose such a quarantine on France on the basis of reciprocity (RFI 2020a) and on 8 June France’s Foreign Ministry announced that all travelers arriving from United Kingdom would be forced to quarantine themselves, only hours after the British authorities put France on a quarantine list (RFI 2020b).

2 Some researchers define diffusion as “horizontal interdependence” (e.g. Braun and Gilardi 2006: 309) and do not regard asymmetric or vertical processes as processes of policy diffusion.
and introduced border controls nonetheless. The Commission then “invited” governments to “introduce a temporary restriction on non-essential travel” from outside the EU on 16 March (European Commission 2020a). On the same day it issued guidelines on health-related controls at the EU’s internal and external borders with a view of adopting a coordinated approach across Schengen countries (European Commission 2020b). These guidelines were described as a mere reaction to justify ex-post the actions that some Member States had already taken, rather than an instance of the Commission taking things in its own hand (Hruschka 2020). Arguably, a similar dynamic was behind the reopening of borders from May onwards (EURACTIV 2020).

From the first findings in the literature on policy-making during the pandemic, it is clear that the timing of restrictions, on the one hand, and their nature on the other hand are crucial factors to establish whether policy diffusion occurred in European countries’ responses to the Covid-19 pandemic. The empirical analysis in this research note will thus focus first on the timing of internal and external restrictions and second on the severity of restrictions in both dimensions.

The Mobility and Border Control Dataset

The dataset “Mobility and Border Control in Response to the COVID-19 Outbreak” (Piccoli et al. 2020) encompasses information on national responses that affect the movement of people adopted in all EU/EFTA states as well as United Kingdom from 1 March until 31 May 2020. In comparison to other datasets on policy responses to the pandemic that list measures in various policy fields (e.g. CoronaNet Research Project, see Cheng et al. 2020; or Oxford COVID-19 Government Response Tracker, see Hale et al. 2020), this dataset has a more focused approach in that it concentrates on policies affecting the movement of people and presents them in an aggregated manner to allow for an overall assessment of the severity of measures. By differentiating restrictions of movement within and across national borders, the dataset allows to compare the level of severity of the respective restrictions. For the level of severity, a four-point scale from 0 to 3 applies. Thereby, the level of restriction does not necessarily correspond to the individual measure announced on a specific day, but to the overall level of severity of the restrictions adopted at this point in time.

The restrictions on internal mobility comprise both direct mobility restrictions such as mandatory stay-at-home orders and measures that take away the reasons for people to move, such as the closure of schools and shops or the interdiction of cultural events. Level 0 indicates that no significant restrictions have been introduced (“unrestricted mobility”). Level 1 means that some businesses and educational institutions are closed and some public or private events are facing limitations (“limited mobility”). Level 2 refers to a situation in which most businesses and educational institutions are closed and public and private gatherings are severely restricted (“minimal mobility”). Level 3 corresponds to a lockdown with prohibition to leave one’s own home other than in narrowly defined exceptional cases, in addition to the measures listed under level 2 (“lockdown”). When lockdowns are in force in some regions or cities only, this corresponds to level 2 for the country as a whole when it does not affect the majority of the population, as is the case for all regional measures identified in the dataset.

3 The data were compiled by a team of researchers at the nccr – on the move, who collected information from government websites, supplemented by information from online newspapers where appropriate.
The restrictions on cross-border mobility encompass both entry and exit restrictions in the form of measures such as travel warnings and exit bans, border controls, quarantine rules for persons entering the country, or entry restrictions for certain nationalities. Level 0 corresponds to a situation in which no border restrictions exist and where at most minimal measures such as health checks or a non-binding advice not to travel to a certain region have been adopted (“open border”). Level 1 reflects controls at entry points or restrictions for some countries as well as mandatory quarantine rules for persons returning from a specific country (“mostly open border”). Level 2 corresponds to entry restrictions for citizens of a high number of countries, including—and most importantly in the European context—when non-EU nationals are banned from entry (“mostly closed borders”). Level 3 applies when borders are closed with almost no exceptions other than for nationals and residents and at most a few countries (“closed borders”). This means that the dataset captures the orders in place, but not actual compliance in the population. While the dataset contains both the date when a certain policy decision took place and the date of its entry into force, we only include the decision date in the present analysis, because we are interested in the sequence and patterns of decision-making. The dataset and codebook are publicly available online.4

In addition to the data from the mobility and border control dataset, we use the WHO Covid-19 dashboard to derive the time from the first identified Covid-19 case until the adoption of mobility restrictions and the weekly average of new reported infection numbers per day and per 100'000 inhabitants.5 Obviously, reported infection rates are influenced by a number of factors such as the availability of testing and reporting differences. However, as we are interested in policy decisions, the level of infections as it was reported and publicly discussed is arguably a better indicator of the pressure under which governments were to act and thus of the perceived level of exposure than a more accurate number of severity for the disease, such as death counts. This applies especially in the first phase of the pandemic in Europe. Figure 1 provides an overview of the data used for the descriptive analysis and indicates the level of severity for both types of restrictions as well as the weekly average of daily new infections per 100,000 inhabitants.6

Patterns and Timing of Restrictions on Mobility

The overview of the national policy responses (Figure 1) already gives an indication of the variation in both reported infections and policies adopted across countries. By comparing the time lag between the identification of the first Covid-19 case and the introduction of mobility restrictions on at least level 1 (Figure 2), we find that the vast majority of European countries only took measures to restrict the movement of people after positive

4 The dataset and codebook can be accessed through the Repository Cadmus (https://cadmus.eui.eu/handle/1814/68358). An interactive visualization of the dataset can be found under the public Tableau profile of nccr – on the move (https://public.tableau.com/profile/nccr.on.the.move#!/vizhome/MobilityandBorders_15859014059040/MobilityandBorder).

5 The advantage of using weekly average allows us to compensate strong differences that are caused by day-to-day variations due to testing and communication differences in the countries.

6 In some cases, the weekly average of infections is below 0, which is why the graph is interrupted for Lithuania. This is due to the reporting of countries, which may report negative values to account for over counting in previous reporting.
Figure 1: Mobility Restrictions and Infection Rates by Country during First Wave of Covid-19 Pandemic. [Colour figure can be viewed at wileyonlinelibrary.com]

Source: Mobility and border control dataset and WHO Covid-19 dashboard.
More precisely, this is the case for all countries in the dataset with regard to internal mobility, whereas Bulgaria and Hungary introduced restrictions on cross-border movement already before they had identified cases of Covid-19 infections.

Overall, we find a rather great divergence in terms of speed in the adoption of restrictions, with Bulgaria, Cyprus, Hungary, and Slovakia among the most rapid adopters, whereas Finland, France, Germany, and the United Kingdom were among the slowest countries to introduce restrictions. In terms of geographical patterns, countries in Central and Eastern Europe have introduced restrictions in shorter time than West European countries. Quite strikingly, the timespan during which the first cases were identified in Europe is much larger than the one in which the first substantial restrictions on mobility were adopted: whereas we see first cases identified between mid-January and early March, the vast majority of countries started to adopt severe restrictions on mobility during the first half of March. This is a hint that decisions were not taken independently depending on the situation in each country, but were rather based on developments happening in other European countries and reactions to them.

Figure 3 illustrates the evolution of the mobility restrictions and zooms into the highly dynamic phase between 9 and 13 March during which almost half of the countries adopted restrictions on mobility.

7 Lichtenstein is not listed in the figure that shows the time span between the first Covid-19 infection and the adoption of external mobility restrictions, because it has not adopted such measures during the first wave of the pandemic.

8 Bulgaria, however, had closed schools already at the time the first case of Covid-19 was identified. Yet these measures had been taken in response to a rapid increase in the number of people infected with type B flu (Reuters 2020) and are therefore not coded as mobility restriction in face of the Covid-19 pandemic.

9 At least at first glance, it also appears that these observations confirm the findings of Sebhatu et al. (2020) that especially countries with strong democratic structures have been comparably slow to respond to the pandemic.
On 1 March, only four countries had taken measures to restrict mobility in order to stop the spread of Covid-19. On 9 March, more than one third of all countries had adopted restrictions, while the majority still did not restrict mobility. Then, after only four days, on 13 March all EU/EFTA countries had adopted mobility restrictions, with only the late adopters Finland, France, and the United Kingdom still not restricting movement. On that day, we also find a remarkable convergence in the severity of internal restrictions.

Figure 3: Evolution of Mobility Restriction during First Wave Covid-19 Pandemic. [Colour figure can be viewed at wileyonlinelibrary.com]
adopted, while the variation is greater regarding restrictions on cross-border mobility. On 31 May, most countries had eased the restrictions on internal mobility to a low level again, providing for an even higher level of convergence towards the end of the first wave. In terms of restrictions on cross-border movement, in contrast, we find that the general level of restriction increased between 13 March and 31 May and that the variation in levels was higher. This hints to the fact that vertical diffusion was less pronounced than one could have expected from the Schengen governance framework, while a horizontal diffusion of policies between countries seems more likely.

When looking at the overall evolution of restrictions of internal and external mobility over time, we find a steep increase in restrictions during a short time span, before the curves flatten (see Figure 4).

In terms of sequence, the restrictions on internal mobility were generally introduced prior to the restrictions on external mobility in most European countries, but only slightly so. However, the restrictions on external mobility prove to be more persistent. Whereas states started to significantly reduce the more severe restrictions on internal mobility from the first week of April, it took one more month until the restrictions on cross-border movements started to be reduced in May. In addition, the decrease in restrictions on cross-border movement was more gradual and less steep than the decrease in restrictions on internal mobility.

Figure 4: Mean Level of Mobility Restrictions over Time. [Colour figure can be viewed at wileyonlinelibrary.com]

Source: Mobility and border control dataset.
Severity and Dominant Sphere of Restrictions

In addition to the temporal patterns of policy adoption, we are interested in the substance of the mobility restrictions adopted by European countries in response to the outbreak of Covid-19. We measure the overall severity of the responses through the mean level of restrictions on internal and external mobility between 1 March and 31 May. The dominant type of restriction shows on which dimension the mean level of restriction over the whole period was higher. We set the strength of the response in relation to the affectedness of the country, measured by the cumulative count of cases per 100'000 inhabitants (see Figure 5). These are of course very aggregated measures that do not allow us to see differences over time. Rather, they represent a summary of both affectedness and severity in the response of each country during the first wave, during which almost all countries studied here experienced an increase and then a decrease in infections.

We find that most countries have a higher score for the average severity of restrictions on cross-border mobility than on internal mobility. Among the more severely affected countries, the proportion of countries who adopted more severe restrictions internally is higher. This group comprises countries that were highly affected at a certain point during the first wave – such as Italy, France or Luxembourg – but also the non-Schengen member states Ireland and the United Kingdom. Similar to the timing, we also find divergence in how strongly countries responded in relation to how severely they were affected. By way of illustration, most Central and Eastern European countries have restricted mobility...
drastically, with comparably few positive cases identified over the period studied. Belgium and Spain, in contrast, have taken similar measures, but in face of a much higher rate of identified positive cases. Countries that have restricted mobility only to a smaller extent, such as Iceland, Sweden, and United Kingdom, are among the more severely affected countries. Obviously, these examples are only a starting point, and it would need more thorough analysis to clarify the relationship between infection numbers and the severity of adopted measures.

Discussion and Conclusion

Our analysis has found some indications that policy diffusion has occurred during the first wave of the Covid-19 pandemic in Europe. We found that the timespan during which the first cases were identified in Europe is much larger than the one in which the first substantial restrictions on mobility were adopted. In fact, almost half of all countries in the dataset restricted mobility within only four days. Furthermore, we observe an evolution from great variation of policy choices at the outset of the pandemic towards convergence, but a higher degree of similarity between internal mobility restrictions at the end of the first wave. The remarkable evolution towards convergence is likely to derive at least partially from the fact that governments have drawn lessons from the policy choices of each other, even if it is not necessarily caused by policy diffusion. Yet, especially the timing of the introduction of restrictions on mobility can be viewed as an indication that the mobility restrictions have been indeed contagious during the first wave of the pandemic in Europe.

It is beyond the scope of this research note to provide detailed explanations for each of the observations made above. By way of example, on the relation between affectedness and severity of measures one could assume that countries tended to be highly affected because they did not adopt severe restrictions early on, or else that the highly affected countries did not adopt severe restrictions on cross-border mobility because they did not promise to have any substantial effect once case numbers were already high. Our data imply a further limitation to a more extensive analysis of the measures, because the severity of restrictions in itself does not reflect the level of compliance in the population, which is however crucial if one wants to establish the effectiveness of a measure. Compliance arguably depends on more than just the legal nature and enforceability of a rule—factors such as general levels of mobility, trust in the government, and cohesiveness in societies might play a role (see Plümper and Neumayer 2020). Hence our findings do not provide insights on the effectiveness of specific measures, which is being investigated by an ever-growing number of analyses (e.g. Koopmans 2020; Plümper and Neumayer 2020; Wells et al. 2020).

Our analysis can, however, provide a basis for future research on diffusion mechanisms and policy-making in times of crisis. Studies looking at the “politics of policy diffusion” (Gilardi and Wasserfallen 2019) could analyze the role of technocratic considerations versus political learning in decision-making in different countries. The fact that restrictions on internal mobility were reduced once infection rates fell while cross-border movement remained limited in most countries, for instance, could be perceived as an indication that border closures resemble symbolic policies or are driven by foreign policy considerations rather than by efficacy concerns (see Donzé 2020). Based on the typological theory of policy diffusion by Blatter et al. (2021), researchers could further investigate the mechanisms and pathways of policy diffusion by studying whether decision-makers were driven by interests, ideology or the will to be recognized as a responsible or responsive
problem-solver in the domestic and international arena. Yet, since the effectiveness of policies could not be sufficiently evaluated during the first wave of the pandemic, the policy responses could also be studied through the lens of norm emergence and cascade (see e.g. Finnemore and Sikkink 1998) to understand and explain the adoption of policies that have led to a change from a norm of mobility to a norm of immobility in Europe.

In addition, the apparent lack of vertical diffusion regarding cross-border restrictions should be investigated further. While one could have expected a more unified response among Schengen countries, Wolff et al. (2020) argue that the principle of free movement was already fragile at the start of the pandemic due to previous crises in the Schengen area, thus facilitating unilateral responses and tit-for-tat strategies. However, the persistence of border controls and entry bans for non-EU nationals even as infection rates were going down significantly and the fact that most countries adopted more severe restrictions on the external dimension might also point to a convergence within the Schengen area towards closing off to the outside. In contrast to the Commission’s early call to keep internal borders open, the call for an entry ban on non-EU nationals seems to have caught on with the Member States.

To sum up, our findings as well as the suggestions for further research show that political science research is needed to understand and compare the patterns, motivations, and consequences of national responses to this pandemic. The suggested avenues for further research can help explain why this global pandemic provoked nationally focused responses at the start, and what factors contribute to successful European and international cooperation in the face of Covid-19.

Funding Information

This research was supported by the National Centre of Competence in Research nccr – on the move, funded by the Swiss National Science Foundation (grant number: 51NF40-182897).

Acknowledgments

We would like to thank Lorenzo Piccoli who has initiated the dataset used in this research note for great support and advice. We thank Tina Freyburg, Victoria Finn, Philipp Lutz, Simon Noori, Dominik Schraff, and the two anonymous reviewers for their valuable comments and suggestions on earlier drafts, and Sebastian Torkisz for excellent research assistance.

Data Availability Statement

The dataset and codebook can be accessed through the Repository Cadmus (https://cadmus.eui.eu/handle/1814/68358). An interactive visualization of the dataset can be found under the public Tableau profile of nccr – on the move (https://public.tableau.com/profile/nccr.on.the.move#!/vizhome/MobilityandBorders_15859014059040/MobilityandBorder).

References

Bundesamt für Gesundheit (BAG) (2018). *Influenza-Pandemieplan Schweiz. Strategien und Massnahmen zur Vorbereitung auf eine Influenza-Pandemie*. Bern: Bundesamt für Gesundheit.

Blatter, J., L. Portmann and F. Rausis (2021). *Theorizing Policy Diffusion: From a Patchy Set of Mechanisms to a Paradigmatic Typology*. *Journal of European Public Policy* 1–21. Online: https://www.tandfonline.com/doi/full/10.1080/13501763.2021.1892801 [accessed: 25.03.2021].
Braun, D. and F. Gilardi (2006). Taking ‘Galton’s Problem’ Seriously: Towards a Theory of Policy Diffusion. *Journal of Theoretical Politics* 18(3): 298–322.

Capano, G., M. Howlett, D.S.L. Jarvis, M. Ramesh and N. Goyal (2020). Mobilizing Policy (In) Capacity to Fight COVID-19: Understanding Variations in State Responses. *Policy and Society* 39(3): 285–308.

Cheng, C., J. Barceló, A.S. Hartnett, R. Kubinec and L. Messerschmidt (2020). COVID-19 Government Response Event Dataset (CoronaNet vol 1.0). *Nature Human. Behaviour* 4(7): 756–768.

Donzé, R. (2020). „Reisequarantäne: Bund wusste um geringen Effekt“. *NZZ am Sonntag*, 31.10.2020. Online: https://nzzas.nzz.ch/schweiz/reisequarantaene-bund-wusste-um-geringen-effekt-ld.1584652 [accessed: 26.01.2021].

EURACTIV (2020). *Commission Calls for Full Reopening of Borders within EU*. Issued on 05.06.2020. Online: https://www.euractiv.com/section/justice-home-affairs/news/commission-calls-for-full-reopening-of-borders-within-eu/ [accessed: 02.02.2021].

European Commission (2020a). *Communication from the Commission to the European Parliament, the European Council and the Council. COVID-19: Temporary Restriction on Non-Essential Travel to the EU*. No. COM(2020) 115 final. Brussels: European Commission.

European Commission (2020b). *COVID-19. Guidelines for border management measures to protect health and ensure the availability of goods and essential services*. C(2020) 1753 final. Brussels: European Commission.

Finnemore, M. and K. Sikkink (1998). International Norm Dynamics and Political Change. *International Organization* 52(4): 887–917.

Gilardi, F. (2012). Transnational Diffusion: Norms, Ideas, and Policies. In Carlsnaes, W., T. Risse and B. Simmons (eds.), *Handbook of International Relations*. London: SAGE Publications (453–477).

Gilardi, F. and F. Wasserfallen (2019). The Politics of Policy Diffusion. *European Journal of Political Research* 58(4): 1245–1256.

Givens, J.W. and E. Mistur (2021). The Sincerest Form of Flattery: Nationalist Emulation during the COVID-19 Pandemic. *Journal of Chinese Political Science* 26: 213–234.

Graham, E.R., C.R. Shipan and C. Volden (2013). The Diffusion of Policy Diffusion Research in Political Science. *British Journal of Political Science* 43(3): 673–701.

Hale, T., N. Angrist, E. Cameron-Blake, L. Hallas, B. Kira, S. Majumdar, A. Petherick, et al. (2020). *Oxford COVID-19 Government Response Tracker*. Oxford: Blavatnik School of Government. http://www.bsg.ox.ac.uk/covidtracker [accessed: 08.02.2021].

Hruschka, C. (2020). *The Pandemic Kills Also the European Solidarity*. Nccr – on the Move Blog. Online: https://blog.nccr-onthemove.ch/the-pandemic-kills-also-the-european-solidarity/ [accessed: 06.10.2020].

Koopmans, R. (2020). *A Virus That Knows No Borders? Exposure to and Restrictions of International Travel and the Global Diffusion of COVID-19*. WZB Discussion Paper SP VI 2020-103. Berlin: WZB Berlin Social Science Center. Online: https://www.econstor.eu/handle/10419/225533 [accessed: 25.03.2021].

Petridou, E., N. Zahariadis and S. Ceccoli (2020). Averting Institutional Disasters? Drawing Lessons from China to Inform the Cypriot Response to the COVID-19 Pandemic. *European Policy Analysis* 6(2): 318–327.

Piccoli, L., L. Ader, P. Hoffmeyer, C. Mitmasser, O. Pedersen, A. Pont, F. Rausis and P. Siedler (2020). *Mobility and Border Control in Response to the COVID-19 Outbreak Dataset*. Florence: European University Institute. Online: https://hdl.handle.net/1814/68358 [accessed: 31.10.2020].
Plümper, T. and E. Neumayer (2020). Lockdown Policies and the Dynamics of the First Wave of the Sars-CoV-2 Pandemic in Europe. *Journal of European Public Policy* (ahead-of-print): 1–21. https://doi.org/10.1080/13501763.2020.1847170.

Reuters (2020). Bulgaria Declares Nationwide Flu Epidemic. Issued on 05.03.2020. Online: https://www.reuters.com/article/us-bulgaria-health-flu/bulgaria-declares-nationwide-flu-epidemic-id USKBN20S250 [accessed: 11.01.2021].

RFI (2020a). *France to Quarantine Travellers from Spain in Tit-for-Tat Covid Measure*. Issued on 15.05.2020. Online: https://www.rfi.fr/en/europe/20200515-france-to-quarantine-travellers-from-spain-in-tit-for-tat-covid-measure [accessed: 21.01.2021].

RFI (2020b). *France Announces Reciprocal Quarantine for UK Arrivals from 8 June*. Issued on 23.05.2020. Online: https://www.rfi.fr/en/europe/20200523-france-arrivals-from-united-kingdom-britain-coronavirus-travel-restrictions-quarantine-self-isolation-reciprocal-measure-spain-tourism [accessed: 21.01.2021].

Robert-Koch-Institut (2017). *Nationaler Pandemieplan Teil II. Wissenschaftliche Grundlagen*. Berlin: Robert-Koch-Institut.

Sebhatu, A., K. Wennberg, S. Arora-Jonsson and S.I. Lindberg (2020). Explaining the Homogenous Diffusion of COVID-19 Nonpharmaceutical Interventions across Heterogeneous Countries. *Proceedings of the National Academy of Sciences of the United States of America* 117(35): 21201–21208.

Simmons, B.A., F. Dobbin and G. Garrett (2006). Introduction: The International Diffusion of Liberalism. *International Organization* 60(4): 781–810.

Toshkov, D., K. Yesilkagit and B. Carroll (2020). Government Capacity, Societal Trust or Party Preferences? What Accounts for the Variety of National Policy Responses to the COVID-19 Pandemic in Europe? *OSF Preprints*: 1–32. Online: https://doi.org/10.31219/osf.io/7chpu [accessed: 09.03.21].

Wells, C.R., P. Sah, S.M. Moghadas, A. Pandey, A. Shoukat, Y. Wang, Z. Wang et al. (2020). Impact of International Travel and Border Control Measures on the Global Spread of the Novel 2019 Coronavirus Outbreak. *Proceedings of the National Academy of Sciences* 117(13): 7504–7509.

Wolff, S., A. Ripoll Servent and A. Piquet (2020). Framing Immobility: Schengen Governance in Times of Pandemics. *Journal of European Integration* 42(8): 1127–1144.

WHO (2020). *Updated WHO recommendations for international traffic in relation to COVID-19 outbreak*. Geneva: World Health Organization.

Frowin Rausis is a doctoral student at the University of Lucerne, Switzerland and a member of nccr – on the move, National Center of Competence in Research (NCCR) for migration and mobility studies, Neuchatel, Switzerland. E-mail: frowin.rausis@unilu.ch

Paula Hoffmeyer-Zlotnik is a doctoral student at the University of Geneva, Switzerland and a member of nccr – on the move, National Center of Competence in Research (NCCR) for migration and mobility studies, Neuchatel, Switzerland. E-mail: paula.hoffmeyer@unige.ch

Address for Correspondence: Paula Hoffmeyer-Zlotnik, University of Geneva, 40 Boulevard du Pont d’Arve, 1211 Genève 4, Switzerland. Email: paula.hoffmeyer@unige.ch