Influence of source displacement on the features of subwavelength imaging of a photonic crystal slab

Pi-Gang Luan, Chen-Yu Chiang and Hsiao-Yu Yeh

Wave Engineering Laboratory, Department of Optics and Photonics, National Central University, Jhungli 320, Taiwan

Received 7 October 2010, in final form 28 November 2010
Published 21 December 2010
Online at stacks.iop.org/JPhysCM/23/035301

Abstract
In this paper we study the characteristics of subwavelength imaging of a photonic crystal (PhC) superlens under the influence of source displacement. For square and triangular lattice photonic crystal lenses, we investigate the influence of changing the lateral position of a single point source on imaging uniformity and stability. We also study the effect of changing the geometrical center of a pair of sources on the resolution of the double image. Both properties are found to be sensitive to the displacement, which implies that a PhC slab cannot be treated seriously as a flat lens. We also show that by introducing material absorption into the dielectric cylinders of the PhC slab and widening the lateral width of the slab, the imaging uniformity and stability can be substantially improved. This study helps us to clarify the underlying mechanisms of some recently found phenomena concerning imaging instability.

(Some figures in this article are in colour only in the electronic version)

1. Introduction
Since Pendry [1] proposed that a perfect lens can, in principle, be designed to overcome the diffraction limit [2], issues concerning subwavelength imaging have become very important and popular [3–20]. A device that can focus the light from a point source into a spot of subwavelength width is called a superlens. Two kinds of superlens have been studied most. The first is a slab of left-handed metamaterial with appropriate negative permittivity and permeability, both close to \(-1\) [1, 3–6]. The second is a slab of photonic crystal (PhC) with properly chosen band structure and equal-frequency contour (EFC) [8–17]. Both structures are recognized by most researchers as examples of flat lenses, which means they have the advantage of having no optical axis. In fact, there are also structures which fall between the above categories, namely, the Mie-resonance based artificial structures operating in the subwavelength regime [21, 22]. However, in this paper we will focus our attention only on the previous two categories. The transmission characteristics of the metamaterial slab can be explained with the effective theory of the metamaterial medium, whereas the electromagnetic behaviors of the PhC slab can only be understood through a detailed analysis of the PhC band structure. The comparison between them reveals that, although these two kinds of superlens have similar functions in focusing light, and both consist of periodically arranged elements such as resonators and dielectric rods, they are in fact belonging to two different categories and should be distinguished carefully. One main difference might be that for a specific operating wavelength of subwavelength imaging, the corresponding lattice constant in the former structure is usually smaller than in the latter. Typically the operation wavelength of a PhC slab lens is about three to five times the lattice constant. This indicates that a PhC slab is not rigorously a flat lens, and the non-uniformity of the structure should be considered carefully because it may have observable effects on the subwavelength imaging phenomena.

Previous studies have revealed that the surface waves decaying away from the PhC surface usually play an important role in the subwavelength imaging [16, 17]. Since surface waves are transversely localized Bloch waves guided along a PhC surface, they must carry information that manifests the surface structure (i.e., the arrangement of rods or holes and the way of termination) of the PhC. Now, if subwavelength images are located near the PhC surface, then both the surface structure and the source position can influence the features of the images. The influence of surface termination has already been studied in [13, 16]. Recently, the effects of source
displacement on the subwavelength imaging have also been found in the studies concerning the subwavelength imaging in phononic crystal lenses [18] and photonic quasicrystal lenses [19]. According to these studies, researchers found that the lateral displacement of the source can influence the image performance substantially. In fact, a similar effect in an acoustic imaging system had already been reported previously [20].

In this paper, we further study the influence of the source position on the subwavelength imaging of a PhC lens. For square lattice and triangular lattice PhCs consisting of dielectric cylinders, we first investigate the influence of changing the lateral position of a point source on the uniformity and stability of the single image. We then study the effects of moving the geometrical center of a pair of sources on the resolution of the double image. We also discuss how to improve imaging quality by including absorption effects into the dielectric cylinders constituting the PhC superlens.

2. Phenomena and discussion

We first study the imaging characteristics of a square lattice slab consisting of dielectric cylinders in air background. In this paper only the TM (E-polarized) wave will be studied. The dielectric permittivity of the cylinders is $\epsilon = 14$, and the cylinder radius is $r_0 = 0.3a$, where a is the lattice constant. The slab has 8 layers in the x direction and 21 layers in the y (lateral) direction. The orientation of the air–PhC interfaces (slab surfaces) are ΓM. The dimensionless frequency $\omega a/2\pi c$ of the source is 0.192, which is in the all-angle negative refraction frequency range [8]. At the beginning, the x-coordinate of the source is $0.5a$ away from the front (left) surface of the slab, located on x axis ($y = 0$), which is the symmetric axis of the slab. Note that the source–slab distance ($0.5a$) is only about one-tenth of the wavelength ($5.2a$), thus any kind of near field effect caused by the evanescent waves may play important role in the imaging process [17]. Figure 1(a) is the electric field pattern (absolute value) of the image behind the back surface of the slab before we move the source. Now we keep the distance between the source and the front surface of the slab fixed, and move the source along the lateral direction. We notice that the image peak is not always located on the original image plane, especially in the cases (b) and (c). Even when the source has been moved one lateral period of distance $\sqrt{2}a$, the image field pattern does not recover its original form. In the second case we consider a triangular lattice PhC slab. The results of this case are shown in figures 1(e)–(h). Again, the dielectric cylinders are embedded in the air background and the cylinder parameters are the same as in the square lattice case, except that now the PhC–air interfaces are along the ΓK direction and the dimensionless source frequency is 0.335, in the negative refraction range of the frequency [13]. The source is located $3.7a$ from the front interface, longer than one wavelength ($2.99a$). This means that the evanescent waves do not contribute much to the focused image. In figures 1(e)–(h), we find that the image peak always stays on the same image plane and the symmetrical field pattern around the peak is almost uninfluenced when the source position changes.

When changing the source position along the lateral direction, two interesting features are found. The first concerns the periodicity of the image strength curve and the other concerns the homogeneity of the peak strength under the source movement. For a specific position of the source, the
corresponding position and the strength of the image peak (maximum) is recorded and designated as, for example, an O sign. We then move the source laterally to a nearby point and record the new position and strength of the peak. By doing this operation many times, we collect a great deal of data about the strength and position of the image peak. We can then fit these data with a smooth curve, and this curve is defined as the image strength curve. Figure 2(a) shows the results for the square lattice case having 21 cylinders along the y-direction. The peak intensity with respect to the source position reveals a non-periodic and non-periodic behavior (the blue O curve). We found that the periodicity of the peak strength can be improved slightly by increasing the slab width (31 cylinders along y), the periodicity becomes more obvious (the green * curve). The periodicity can be further improved by including the absorption effect into the cylinders of the slab, as can be easily observed (the red × curve). This can be easily understood as follows. The absorption leads to a ‘finite zone’ that defines the space region in which the fields around the cylinders are coupled together. If the zone is much smaller than the slab width then the ‘finite slab width effect’ becomes unimportant, and the periodicity recovers. This ‘periodic behavior’ implies that evanescent waves still play an important role in the subwavelength imaging process even when the absorption effect has been included. According to figure 2(b), the peak strength homogeneity is much better in the triangular lattice case then in the square lattice case. However, the periodicity of the image strength is still not obvious. The difference implies that evanescent waves are not essential in forming the image in the triangular lattice case.

Note that the source E field around the 2D point source is proportional to the Hankel function $H_0^{(1)}(k|r - r_s|)$, where r and r_s are the observation point and source point, respectively, and $k = \omega/c$ is the wavenumber. The Hankel function $H_0^{(1)}(\xi)$ behaves differently for $\xi \ll 1$ and $\xi \gg 1$ (see, for example, [23]), thus we can define the near field zone as the region satisfying $k|r - r_s| < 1$. In the near field zone the source E field has the form $A(\ln(k|r - r_s|)/2 + \gamma)$, whereas beyond this zone the source field is approximated by $A'e^{i(k|r - r_s|)/\sqrt{k|r - r_s|}}$. Here A and A' are two complex constants and $\gamma \approx 0.5772$ is the Euler–Mascheroni constant. If we choose the source–slab distance (which is also the shortest distance between a cylinder and the source) as $|r - r_s|$ then in the square lattice case we have $k|r - r_s| = 0.6032 < 1$, whereas in the triangular lattice case we have $k|r - r_s| = 7.788 > 1$. It is interesting to note that for the square lattice case, although the nearest cylinder of the slab is indeed within the near field zone around the source, the other cylinders are outside of this zone. This clearly explains why the image in this case is very sensitive to the displacement of the source. For the triangular lattice case, however, all the cylinders of the slab are outside of the near field zone, thus the displacement of the source does not influence the imaging much. We conclude that the superior imaging performance of the triangular lattice PhC slab lens is a result of the weak contribution of the near field compared to the square lattice case.

Numerical simulation results in figure 3 can further demonstrate the above mentioned ‘finite slab width effect’ for the square lattice structure and the ‘finite zone effect’ for the absorptive case. Figure 3(a) is the field pattern for the (non-absorptive) 21-layer wide superlens structure, and the source is located at $y = 0$. When we move the source to $y = \sqrt{2a}$, the field pattern becomes that in figure 3(b). It is clear that the image strength reduces and the image pattern become asymmetrical after the displacement. The ‘finite slab width effect’ can be easily observed in figure 3(b). For the absorptive superlens, the original dielectric cylinders are replaced by absorptive cylinders with permittivity $\epsilon = 14 + 0.2i$, and the results are shown in figures 3(c) and (d). The ‘finite zone effect’ can be observed clearly.

Next, we consider two point sources separated by the smallest distance for which distinguishable images are maintained at the image plane. We keep this internal source separation fixed and shift them together along the lateral direction. In the square lattice case, the smallest distance is about $0.66a$, or $2/3$ of the wavelength. The solid curve in figure 4(a) shows the double-image strength on the image plane before we shift the source pair. After shifting the sources...
Figure 3. The field patterns (the absolute value of the E fields) for a 21-layer wide slab lens. Plots (a) and (b) are for the square lattice structure without source displacement and with a $\sqrt{2}a$ lateral displacement of the source position, respectively. Plots (c) and (d) are for the same structure and situations, but the original permittivity of the dielectric cylinders are replaced by $\epsilon = 14 + 0.2i$.

Figure 4. Intensity distribution on the image plane for the double source case when the center of the source-pair is shifted by zero (solid line), one lateral period (dotted line), and two lateral periods (dashed line). Results in (a) are for the square lattice case and results in (b) are for the triangular lattice case.

Laterally to $y = \sqrt{2}a$ (one lateral period), the two images become indistinguishable (dotted line), but distinguishable images reappear when we shift the sources to $y = 2\sqrt{2}a$ (dashed line). The subwavelength double-image resolution stability in the triangular lattices is better, as indicated in figure 4(b). Because in this case the sources and images are far from the slab, we can be sure that evanescent waves do not contribute much to the subwavelength imaging.

All the results discussed above refer to point sources. However, in realistic applications, the sources must be of finite size. We have implemented numerical simulations to explore the influence of the source size on the imaging features. The finite size source in the simulations is mimicked by uniformly arranging many (about 31 or so) point sources within a disc of small radius. When the source radius is smaller than one lattice constant, the conclusions concerning the single source imaging features still hold. For the situation of two sources, things become more complicated, and we have not yet got conclusive results. However, we believe this issue is worth studying because it may provide practical knowledge for designing useful devices.

3. Conclusion

In this paper we discuss the image quality stability of square lattice and triangular lattice PhC slab lenses under the influence of source movement. For square lattice slab, we found that the imaging pattern and the image peak strength are very unstable under source movement. Coupling between evanescent waves is helpful in the subwavelength imaging, but the image is sensitive to the relative position between the source and the cylinders in the front interface of the slab [17–20]. A more
ideal slab lens seems to be the triangular lattice slab, in which evanescent waves do not play an essential role in forming the subwavelength image, and the image quality is more stable. Thus the triangular lattice PhC slab might be a better choice for real applications. We also found that the wider the slab in the lateral direction, the better the image periodicity. Also the inclusion of slight absorption can help to reduce the boundary effects of the PhC lens. We conclude that a PhC slab cannot be rigorously treated as a flat lens. We believe that a clearer understanding of these affecting factors on imaging can provide some valuable references for designing new subwavelength imaging devices.

Acknowledgment

The authors gratefully acknowledge financial support from the National Science Council (Grant No. NSC 98-2112-M-008-114-MY3) of the Republic of China, Taiwan.

References

[1] Pendry J B 2000 Negative refraction makes a perfect lens Phys. Rev. Lett. 85 3966
[2] Zhang X and Liu Z 2008 Superlenses to overcome the diffraction limit Nat. Mater. 7 435–41
[3] Shen L and He S 2003 Studies of imaging characteristics for a slab of a lossy left-handed material Phys. Lett. A 309 298
[4] Luan P-G, Chien H-D, Chen C-C and Tang C-S 2004 Analysis on the imaging properties of a left-handed material slab arXiv:physics/0311122v2
[5] Lagarkov A N and Kissel V N 2004 Near-perfect imaging in a focusing system based on a left-handed-material plate Phys. Rev. Lett. 92 077401
[6] Aydin K, Bulu I and Ozbay E 2007 Subwavelength resolution with a negative-index metamaterial superlens Appl. Phys. Lett. 90 254102
[7] Casse B D F, Lu W T, Huang Y J, Guitepe E, Menon L and Sridhara S 2010 Super-resolution imaging using a three-dimensional metamaterials nanolens Appl. Phys. Lett. 96 023114
[8] Luo C, Johnson S G, Joannopoulos J D and Pendry J B 2002 All-angle negative refraction without negative effective index Phys. Rev. B 65 201104
[9] Cubukcu E, Aydin K, Ozbay E, Foteinopolou S and Soukoulis C M 2003 Subwavelength resolution in a two-dimensional photonic-crystal-based superlens Phys. Rev. Lett. 91 207401
[10] Parimi P V, Lu W T, Vodo P and Sridhar S 2003 Imaging by flat lens using negative refraction Nature 426 404
[11] Li Z-Y and Lin L-L 2003 Evaluation of lensing in photonic crystal slabs exhibiting negative refraction Phys. Rev. B 68 245110
[12] He S, Ruan Z, Chen L and Shen J 2004 Focusing properties of a photonic crystal slab with negative refraction Phys. Rev. B 70 115113
[13] Xiao S, Qiu M, Ruan Z and He S 2004 Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction Appl. Phys. Lett. 85 4269
[14] Wang X, Ren Z and Kempa K 2004 Unrestricted superlensing in a triangular two-dimensional photonic crystal Opt. Express 12 2919–24
[15] Belhadj W, Gamra D, AbdelMalek F and Bouchriha H 2005 Design of photonic crystal superlens with improved image resolution Opt. Quantum Electron. 37 575–86
[16] Moussa R, Koschny Th and Soukoulis C M 2006 Excitation of surface waves in a photonic crystal with negative refraction: the role of surface termination Phys. Rev. B 74 115113
[17] Luan P-G and Chang K-D 2007 Superlensing effect without obvious negative refraction J. Nanophoton. 01 013518
[18] Sukhovich A et al 2009 Experimental and theoretical evidence for subwavelength imaging in phononic crystal Phys. Rev. Lett. 102 154301
[19] Di Gennaro E et al 2008 Evidence of local effects in anomalous refraction and focusing properties of dodecagonal photonic quasicrystal Phys. Rev. B 77 193104
[20] Chen L-S, Kuo C-H and Ye Z 2004 Acoustic imaging and collimating by slabs of sonic crystals made from arrays of rigid cylinders in air Appl. Phys. Lett. 85 1072
[21] Yannopapas V 2008 J. Phys.: Condens. Matter 20 255201
[22] Yannopapas V and Vitanov N V 2008 Phys. Status Solidi (RRL) 2 287
[23] Arfken G B, Weber H J and Harris F 2000 Mathematical Methods for Physicists 5th edn (New York: Academic)