Taxonomic and phylogenetic characterizations reveal four new species of *Simplicillium* (Cordycipitaceae, Hypocreales) from Guizhou, China

Wan-Hao Chen1, Yan-Feng Han2*, Jian-Dong Liang1 & Zong-Qi Liang2

Simplicillium species are commonly found from soil, seawater, rock surface, decayed wood, air and as symbiotic, endophytic, entomopathogenic and mycoparasitic fungi. Minority insect-associated species was reported. *Simplicillium coccinellidae*, *S. hymenopterorum*, *S. neolepidopterorum* and *S. scarabaeoidea* were introduced as the newly insect-associated species. The phylogenetic analyses of two combined datasets (LSU + RPB1 + TEF and SSU + ITS + LSU) revealed that *S. coccinellidae* and *S. hymenopterorum* were both nested in an independent clade. *S. neolepidopterorum* and *S. scarabaeoidea* have a close relationship with *S. formicidae* and *S. lepodopterorum*, respectively. *S. neolepidopterorum* can be easily distinguished from *S. formicidae* by ellipsoidal to cylindrical, solitary conidia which occasionally gather in short imbricate chains. *S. scarabaeoidea* could be easily distinguished from *S. lepodopterorum* by having longer phialides and larger conidia. Based on the morphological and phylogenetic conclusion, we determine the four newly generated isolates as new species of *Simplicillium* and a new combination is proposed in the genus *Leptobacillium*.

The genus *Simplicillium* was established for the typical species *S. lanosoniveum* (J.F.H. Beyma) Zare & W. Gams and three other species *S. obclavatum* (W. Gams) Zare & W. Gams, *S. lamellicola* (F.E.V. Sm.) Zare & W. Gams and *S. wallacei* H.C. Evans1. The typical characteristic of *Simplicillium* is its solitary phialides, which could be easily distinguished from its closely genus *Lecanicillium* W. Gams & Zare. *S. wallacei* was transferred to the genus *Lecanicillium* based on the phylogenetic analysis by Zare & Gams2. Fourteen species were reported later. Okane et al.3 transferred *S. chinense* F. Liu & L. Cai and *S. coffeaeum* A.A.M. Gomes & O.L. Pereira to the genus *Leptobacillium* and this transfer was confirmed by Wang et al.4. *Simplicillium* species have diverse ecology, but most species are known from few strains impeding to define their habitat and ecology accurately. Species were found from soil (e.g., *S. cylindrosporum*, *S. minutensis*, *S. subtropicum*, and *S. symphyophorum*), as plant endophyte (e.g. *S. coffeaum* and *S. filiforme* isolated from Coffea arabica and *Citralis lanatus*), from decaying wood or rock (*S. calcicola* and *S. chinense*), or from multiple sources. *Simplicillium obclavatum* was isolated from air, soil, bark, human nail, and seawater1,10, whereas *S. aogashimaense* was isolated from soil, seawater, and as symbiotic fungi from Nilaparvata lugens Stål11,12. *Simplicillium lamellicola* was isolated as endophytic, entomopathogenic, and mycoparasitic fungi13–15. *Simplicillium lanosoniveum* was isolated as cyanobacterium-symbiotic, endophytic, entomopathogenic, and mycoparasitic fungi16–19. Among those *Simplicillium* species, six species viz. *S. cicadellidae*, *S. formicae*, *S. formicidae*, *S. lamellicola*, *S. lanosoniveum* and *S. lepidopterorum*, were found associated with insects.

In the present study, four novel insect-associated species viz. *Simplicillium coccinellidae*, *S. hymenopterorum*, *S. neolepidopterorum* and *S. scarabaeoidea*, were introduced based on morphological comparison and molecular phylogenetic analyses, and this may contribute to the control of insect pest and the discovery of useful novel compounds.

1Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, People's Republic of China. 2Department of Ecology, Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou, People's Republic of China. *email: swallow1128@126.com
Result

Phylogenetic analyses. In the phylogenetic tree, *Purpureocillium lilacinum* (Thom) Luangsard, Houbraken, Hywel-Jones & Samson (CBS 284.36 and CBS 431.87) and *Pochonia chlamydosporia* (Goddard) Zare & W. Gams (CBS 103.63) were used as the outgroup in analysis 1 and analysis 2, respectively. The concatenated sequences of analysis 1 and analysis 2 included 46 and 22 taxa, and consisted of 1,729 (LSU: 497, RPB1: 550 and TEF: 682) and 1,904 (SSU: 845, ITS: 541 and LSU: 518) characters with gaps, respectively.

Analysis 1: The P-value of PAUP4.0b10 using the command “hompart” is 0.01, and indicated the dataset SSU + RPB1 + TEF is not suitable for the combined analysis. The selected model for LSU, RPB1 and TEF were SYM + G4, SYM + G4 and GTR + F + I + G4, respectively. The final value of the highest scoring tree was –17,856.725706, which was obtained from the ML analysis of the dataset (LSU + RPB1 + TEF). The parameters of GTR model to analysis of the dataset were estimated base frequencies; $A_{0} = 0.235757, C_{0} = 0.286704, G_{0} = 0.270379$, $T = 0.207160$; substitution rates $AC = 0.874437, AG = 2.344268, AT = 0.877112, CG = 0.872563, CT = 6.144163$, $GT = 1.000000$; gamma distribution shape parameter $\alpha = 0.441982$. In the phylogenetic tree (Fig. 1), both analyses of ML and BI trees were largely congruent, and strongly supported in most branches. All *Simplicillium* species were nested in an independent clade, which was the earliest diverging lineage in Cordycipitaceae. The four new species, *S. coccinelldae*, *S. hymenopterorum*, *S. neolepidopterorum* and *S. scarabaeoidae* were both formed an independent branch and clustered with *S. cicadellidae*, *S. formicidae* and *S. lepidopterorum* in a subclade.

Analysis 2: The P-value of PAUP4.0b10 using the command “hompart” is 0.99, and indicated the dataset SSU + ITS + LSU is suitable for the combined analysis. The selected model was JC for SSU and K2P + G4 for ITS + LSU. The final value of the highest scoring tree was –6,637.139922, which was obtained from the ML analysis of the dataset (SSU + ITS + LSU). The parameters of GTR model to analysis of the dataset were estimated base frequencies; $A_{0} = 0.251177, C_{0} = 0.239762, G_{0} = 0.263036, T = 0.246025$; substitution rates $AC = 1.301732, AG = 2.440073, AT = 0.844382, CG = 1.306407, CT = 3.262235, GT = 1.000000$; gamma distribution shape parameter $\alpha = 0.552466$. In the phylogenetic tree (Fig. 2), both analyses of ML and BI trees were largely congruent, and strongly supported in most branches. Four well-supported clades representing four new novel species *S. coccinelldae*, *S. hymenopterorum*, *S. neolepidopterorum* and *S. scarabaeoidae* were obtained. These new species clustered with *S. cicadellidae*, *S. formicidae* and *S. lepidopterorum* in a well-supported subclade within the *Simplicillium* lineage. *S. coccinelldae* and *S. hymenopterorum* were both nested in an independent clade. *S. neolepidopterorum* and *S. scarabaeoidae* have a close relationship with *S. formicidae* and *S. lepidopterorum*, respectively.

Taxonomy

Simplicillium coccinelldae W.H. Chen, Y.F. Han, Z.Q. Liang sp. nov. (Fig. 3).

Mycobank: MB 835583.

Etymology: referring to its insect host, family Coccinellidae.

Description: The colonies were moderate-growing on PDA medium, reaching a diameter of 31–36 mm, in 14 days at 25 °C, convex, with white velutinate aerial mycelium, reverse yellowish to pale brown, especially in the middle, margin entire, soluble pigment not produced. *Vegetative hyphae* branched, hyaline, smooth-walled, septate, 1.1–1.9 μm wide. *Phialides* produced on aerial hyphae, always solitary, asceptate, hyaline, smooth-walled, relatively slender, and tapering toward the tip, 24.9–62.1 × 1.0–1.5 μm. *Conidia* in small subglobose slimy heads at the apex of the phialides, hyaline, cylindrical to globose, asceptate, smooth-walled, 1-celled, 2.0–3.4 × 1.6–2.0 μm, Octahedral crystals absent.

Material examined: CHINA, Guizhou, Guiyang, Duyun City (26°21′27″ N, 107°22′48″ E). On dead scarab (Coccinellidae), 1 October 2019, Wanhao Chen, DY10179 (GZAC DY10179, holotype), was deposited at the Institute of Fungus Resources, Guizhou University (formally Herbarium of Guizhou Agricultural College; code, GZAC), Guiyang City, Guizhou, China; ex-type living cultures, DY101791, DY101792. Sequences at the Institute of Fungus Resources, Guizhou University (formally Herbarium of Guizhou Agricultural College; code, GZAC), Guiyang City, Guizhou, China; ex-type living cultures, DY101791, DY101792. Sequences from isolated strain DY101791 has been deposited in GenBank with accession numbers: ITS = MT453861, LSU = MT453862 and TEF = MT471341.

Know distribution: China, Guizhou Province, Duyun City (26°21′27″ N, 107°22′48″ E).

Notes: *S. coccinelldae* share some similar conidial and phialide morphologies with the related species (Table 1). However, the pairwise dissimilarities of ITS sequences show 30, 127, 31, 29, 45, 33 bp difference within 584 bp between *S. coccinelldae* and *S. cicadellidae*, *S. formicidae*, *S. lepidopterorum*, *S. hymenopterorum*, *S. lepidopterorum*, *S. scarabaeoidae* respectively. Jeewan & Hyde recommended that a minimum of >1.5% nucleotide differences in the ITS regions may be indicative of a new species. Besides, based on the analysis of the combined dataset LSU + RPB1 + TEF and SSU + ITS + LSU, *S. coccinelldae* was nested in a separate group in both phylogenetic trees. Thus, the molecular phylogenetic results supported that *S. coccinelldae* was a new species in the genus *Simplicillium*.

Simplicillium hymenopterorum W.H. Chen, Y.F. Han, Z.Q. Liang sp. nov. (Fig. 4).

Mycobank: MB 835581.

Etymology: referring to its insect host, family Hymenoptera.

Description: The colonies were rapid-growing on PDA medium, reaching a diameter of 40–42 mm, in 14 days at 25 °C, convex, with white velutinate aerial mycelium, reverse pale yellow, especially in the middle, margin entire, soluble pigment not produced. *Phialides* produced on prostrate aerial hyphae, mainly solitary, asceptate, hyaline, smooth-walled, relatively slender, and tapering toward the tip, 19.3–46.2 × 1.1–2.3 μm. *Conidia* in small subglobose slimy heads at the apex of the phialides, hyaline, cylindrical to subellipsoidal, asceptate, smooth-walled, 1-celled, 2.1–2.8 × 1.3–1.9 μm, Octahedral crystals absent.

Material examined: CHINA, Guizhou, Guiyang, Duyun City (26°21′27″ N, 107°22′48″ E). On dead ant (Hymenoptera), 1 October 2019, Wanhao Chen, DY10169 (GZAC DY10169, holotype), was deposited at the Institute of Fungus Resources, Guizhou University (formally Herbarium of Guizhou Agricultural College; code,
GZAC), Guiyang City, Guizhou, China; ex-type living cultures, DY101691, DY101692. Sequences from isolated strain DY101691 has been deposited in GenBank with accession numbers: ITS = MT453848, SSU = MT453849, LSU = MT453850, RPB1 = MT471344 and TEF = MT471337.

Notes: Based on the analysis of the combined dataset LSU + RPB1 + TEF and SSU + ITS + LSU, *S. hymenopterorum* was nested in a separate group in two phylogenetic trees. The pairwise dissimilarities of ITS sequences show 105, 24, 31, 17 bp difference within 582 bp between *S. hymenopterorum* and *S. formicidae*, *S. lepodopterorum*, *S. lepidopterorum* and *S. hymenopterorum*.

![Figure 1. Phylogenetic relationships among the genus *Simplicillium* and closely-related species in Cordycipitaceae based on multigene dataset (LSU, RPB1 and TEF). Statistical support values (≥ 70%/0.7) are shown at the nodes for ML bootstrap support/BI posterior probabilities.](image-url)
coccinellidae, S. neolepidopterorum, respectively. The pairwise dissimilarities of RPB1 sequences show 25, 16 bp difference within 737 bp between S. hymenopterorum and S. cicadellidae, S. scarabaeoidea respectively. When compared with the typical characteristics of S. cicadellidae and S. scarabaeoidea (Table 1), S. hymenopterorum could be easily distinguished from S. cicadellidae and S. scarabaeoidea by having subglobose slimy heads of conidia, cylindrical to subellipsoidal conidia, 2.1–2.8 × 1.3–1.9 μm and phialides, 19.3–46.2 × 1.1–2.3 μm. Thus, morphologically based conclusion supported the molecular phylogenetic results that S. hymenopterorum was a new species in the genus Simplicillium.

Simplicillium neolepidopterorum W.H. Chen, Y.F. Han, Z.Q. Liang sp. nov. (Fig. 5).

MycoBank No.: MB 835582.

Etymology: referring to its insect host, order Lepidoptera.

Description: Insect host was completely covered by white to yellowish, loosely mycelium. Conidiophore mononematous. The colonies were slow-growing on PDA medium, reaching a diameter of 28–31 mm, in 14 days at 25 °C, convex, with white velutinate aerial mycelium, reverse yellowish to pale brown, especially in the middle, margin entire, soluble pigment not produced. Vegetative hyphae branched, hyaline, septate, smooth-walled, 1.3–1.4 μm wide. Phialides produced on aerial hyphae, always solitary and rather long and narrow, aseptate, hyaline, smooth-walled, relatively slender, and tapering toward the tip, 34.1–44.3 × 1.0–1.7 μm. Conidia solitary,
occasionally in short imbricate chains, hyaline, ellipsoidal to cylindrical, aseptate, smooth-walled, 1-celled, 2.5–3.8 × 1.5–2.1 μm, Octahedral crystals absent.

Material examined: CHINA, Guizhou, Guiyang, Duyun City (26°21′27.96″ N, 107°22′48.22″ E). On dead insect (Lepidoptera), 1 October 2019, Wanhao Chen, DY10175 (GZAC DY10175, holotype), was deposited at the Institute of Fungus Resources, Guizhou University (formally Herbarium of Guizhou Agricultural College; code, GZAC), Guiyang City, Guizhou, China; ex-type living cultures, DY101751, DY101752. Sequences from isolated strain DY101751 has been deposited in GenBank with accession numbers: ITS = MT453854, SSU = MT453856, LSU = MT453855 and TEF = MT471339.

Notes: Based on the analysis of the combined dataset SSU + ITS + LSU, S. neolepidopterorum is phylogenetically close to S. formicidae. Besides, the pairwise dissimilarities of ITS sequences show 153 bp difference within 580 bp between S. neolepidopterorum and S. formicidae. When compared with the typical characteristics of S. formicidae (Table 1), S. neolepidopterorum could easily distinguished from S. formicidae by having solitary conidia, occasionally in short imbricate chains, and ellipsoidal to cylindrical conidia. Thus, molecular phylogenetic results and morphologically based conclusion were supported S. neolepidopterorum was a new species in the genus Simplicillium.

Simplicillium scarabaeoidea W.H. Chen, Y.F. Han, Z.Q. Liang sp. nov. (Fig. 6).

MycoBank No.: MB 835580.

Etymology: referring to its insect host, family Scarabaeoidea.

Distribution: Insect host was completely covered by white, yellowish to pinkish, densely mycelium. Conidiophore monomorphous. The colonies were rapid-growing on PDA medium, reaching a diameter of 44–47 mm, in 14 days at 25 °C, convex, with white velutinate aerial mycelium; reverse pale yellow, margin entire, soluble pigment not produced. Phialides produced on prostrate aerial hyphae, mainly solitary, aseptate, hyaline, smooth-walled,
relatively slender, and tapering toward the tip, 18.5–63.4 × 1.1–1.4 μm. Conidia in small globose heads at the apex of the phialides, hyaline, ellipsoidal, aseptate, smooth-walled, 1-celled, 1.9–2.9 × 1.4–2.0 μm. Octahedral crystals absent.

Material examined: CHINA, Guizhou, Guiyang, Duyun City (26°21’27.96” N, 107°22’48.22” E). On dead insect (Lepidoptera), 1 October 2019, Wanhao Chen, DY10139 (GZAC DY10139, holotype), was deposited at the Institute of Fungus Resources, Guizhou University (formerly Herbarium of Guizhou Agricultural College; code, GZAC), Guiyang City, Guizhou, China; ex-type living cultures, DY101391, DY101392. Sequences from isolated strain DY101391 has been deposited in GenBank with accession numbers: ITS = MT453842, SSU = MT453843, LSU = MT453844, RPB1 = MT471343 and TEF = MT471335.

Notes: Based on the analysis of the combined dataset SSU + ITS + LSU, S. scarabaeoidea is phylogenetically close to S. lepodopterorum. However, the pairwise dissimilarities of RPB1 sequences show 31 bp difference within 760 bp between S. scarabaeoidea and S. lepodopterorum. When comparing with the typical characteristics of S. lepodopterorum (Table 1), S. scarabaeoidea could be easily distinguished from S. lepodopterorum by having longer phialides and larger conidia. Thus, molecular phylogenetic results and morphologically based conclusion were supported S. scarabaeoidea was a new species in the genus Simplicillium.

Figure 4. Simplicillium hymenopterorum (A) infected ant (Hymenoptera) (B,C) culture plate, showing the front (B) and the reverse (C) of the colony, cultured on PDA medium (D–I), (K) phialides solitary, conidia adhering ellipsoidal slimy head and conidia (J) conidia. Scale bars: 10 mm (B,C), 10 μm (D–K).

Figure 5. Simplicillium neolepidopterorum (A) infected moth (Lepidoptera) (B,C) culture plate, showing the front (B) and the reverse (C) of the colony, cultured on PDA medium (D–I) phialides solitary, conidia adhering ellipsoidal slimy head and conidia (J) conidia. Scale bars: 10 mm (B,C), 10 μm (D–J).
Leptobacillium filiform (R.M.F. Silva, R.J.V. Oliveira, Souza-Motta, J.L. Bezerra & G.A. Silva) W.H. Chen, Y.F. Han J.D. Liang & Z.Q. Liang, comb. nov.

Mycobank No.: MB839923.

Basionym: Simplicillium filiform R.M.F. Silva, R.J.V. Oliveira, Souza-Motta, J.L. Bezerra & G.A. Silva, Persoonia 41: 403 (2018).

Notes: Okane et al.3 transferred Simplicillium chinense and S. coffeanum to the genus Leptobacillium. In the present study, S. chinense, S. coffeanum and S. filiform were clustered into an independent clade (Fig. 2), and supported by Crous et al.7, Chen et al.20 and Wei et al.28. Thus, L. filiform is proposed as a new combination.

Discussion

Sung et al.40 refined the classification of Cordyceps and the Clavicipitaceae; the genus Simplicillium thus belongs to the Cordycipitaceae sensu stricto. The result of phylogenetic analysis of the combined dataset (SSU, LSU, RPB1, RPB2 and TEF) showed that Simplicillium species were all clustered in an independent group and as the most ancient lineage in the phylogenetic tree41. In this study, all Simplicillium species were also clustered into a clade at the end of the tree (Fig. 1) based on the analysis of the concentrated dataset (LSU, RPB1 and TEF). The four newly identified species, S. scarabaeoidea, S. hymenopterorum, S. neolepidopterorum and S. coccinellidae, were all clustered in a separate subclade. Liu & Cai36 reported a new species based on the morphological comparison and phylogenetic analysis of ITS and LSU sequences, which was the earliest application for the identification of Simplicillium species. Kondo et al.29 added the loci SSU in the analysis of Simplicillum species. Thus, three loci (ITS, LSU and SSU) were applied in the analysis of the relationship among Simplicillium species in this study.

The nutritional mode from plant to animals and fungi is the evolutionary characteristics of Hypocreales42. Plants associated fungi, which including living plants and plant residues were the common ancestor in the families Hypocreaceae and Clavicipitaceae41. The animal pathogenic fungi are likely inherited from the plant associated fungi by a series of interkingdom host jumps43. In the phylogenetic tree of analysis 2 (Fig. 2), S. chinense, S. filiforme and S. coffeanum were nested in a clade and at the end of the tree. The substrates of S. chinense, S. coffeanum and S. filiforme were decaying wood, branches of Coffea arabica and leaves of Citrullus lanatus44,45. All of them were belongs to plants associated fungi, and might reflect the initial state of Simplicillium species, which then underwent a host jump or transferred their nutritional preference. Simplicillium species have rich diversity.

Figure 6. Simplicillium scarabaeoidea (A) infected scarab (Scarabaeoidea) (B,C) culture plate, showing the front (B) and the reverse (C) of the colony, cultured on PDA medium (D–I) phialides solitary, conidia adhering ellipsoidal slimy head and conidia (J) conidia. Scale bars: 10 mm (B,C), 10 μm (D–J).
Numerous new secondary metabolites were found from *Simplicillium* species, such as alkaloids, diketopiperazines, and anthraquinones, especially aogacillin A, B and Simpotentin, which have antibacterial and antifungal activities and shown great potential applications in medicine. In addition, some *Simplicillium* species were isolated as symbiotic, entomopathogenic, and mycoparasitic fungi, and could be used to biocontrol of insect pest, nematode and microbial diseases. Thus, it is expected that useful novel compounds will be discovered from the newly-reported *Simplicillium* species described here and be a natural resource for the application in biocontrol, medicine and health.

Materials and methods

Specimen collection and identification. Four infected insect specimens (DY10139, DY10169, DY10175 and DY10179) were collected from Duyun City (26°21′24.71″ N, 107°22′48.22″ E), Guizhou Province, on 1 October, 2019. Isolation of strains was conducted as described by Chen et al. Fungal colonies emerging from specimens were isolated and cultured at 25 °C for 14 days under 12 h light/12 h dark conditions following protocols described by Zou et al. Accordingly, strains were obtained. The specimens and the isolated strains were deposited in the Institute of Fungus Resources, Guizhou University (formally Herbarium of Guizhou Agricultural College; code, GZAC), Guiyang City, Guizhou, China.

Macroscopic and microscopic morphological characteristics of the fungi were examined and the growth rates were determined from PDA cultures incubated at 25 °C for 14 days. Hyphae and conidiogenous structures were mounted in lactophenol cotton blue or 20% lactate solution and observed with an optical microscope (OM, DM4 B, Leica, Germany).

DNA extraction, polymerase chain reaction amplification and nucleotide sequencing.

DNA extraction was carried out by Fungal genomic DNA Extraction Kit (DP2033, BioTeke Corporation) in accordance with Liang et al. The extracted DNA was stored at −20 °C. The amplification of internal transcribed spacer (ITS) region, small subunit ribosomal RNA (SSU), large subunit ribosomal RNA (LSU) gene, RNA polymerase II largest subunit 1 (RPB1) and translation elongation factor 1 alpha (TEF) were amplified by PCR as described by White et al., Rakotonirainy et al., Castlebury et al. and van den Brink et al., respectively. PCR products were purified and sequenced at Sangon Biotech (Shanghai) Co. The generated sequences were submitted to GenBank.

Sequence alignment and phylogenetic analyses. Lasergene software (version 6.0, DNASTAR) was applied for the assembling and editing of DNA sequence in this study. The ITS, SSU, LSU, RPB1 and TEF sequences were downloaded from GenBank, based on Nonaka et al., Zhang et al., Gomes et al., Crous et al., Mongkolsamrit et al., Chen et al., Wei et al., Kondo et al. and others selected on the basis of BLAST algorithm-based searches in GenBank (Table 2). The Multiple datasets of ITS, LSU, SSU, RPB1 and TEF were aligned and edited by MAFFT v7.037b and MEGA6. Assembling of the combined datasets (LSU + RPB1 + TEF and SSU + ITS + LSU) were performed by SequenceMatrix v.1.7.8. The partition homogeneity test was conducted in PAUP4.0b10 by using the command “hompart”.

The datasets (LSU + RPB1 + TEF and SSU + ITS + LSU) were analysis by Bayesian inference (BI) and maximum likelihood (ML) methods and aimed to analysis of the relationship among *Simplicillium* species and its related species in the family Cordycipitaceae (analysis 1) and the relationship among *Simplicillium* spp. (analysis 2), respectively. For BI, a Markov Chain Monte Carlo (MCMC) algorithm was used to generate phylogenetic trees with Bayesian probabilities using MrBayes v.3.2.6 for the combined sequence datasets. The model for BI analysis was selected by ModelFinder in the software PhyloSuite. The Bayesian analysis resulted in 20,001 trees after 10,000,000 generations. The first 4000 trees, representing the burn-in phase of the analyses, were discarded, while the remaining 16,001 trees were used for calculating posterior probabilities in the majority rule consensus tree. After the analysis was finished, each run was examined using the program Tracer v1.5 to determine burn-in and confirm that both runs had converged. ML analyses were constructed with RAXMLGUI. The GTR+GAMMA model was used for all partitions, in accordance with recommendations in the RAXML manual against the use of invariant sites. The final alignment is available from TreeBASE under submission ID: 26290 (http://www.treebase.org).
Species	Strain no.	GenBank accession no.				
		ITS	SSU	LSU	RPB1	TEF
Akanthomyces aculeatus	HUA 772	KC519370				
A. attenuatus	CBS 402.78	AF339565	EF468888	EF468782		
A. coccidiopticercusclatus	NHJ 6709	EU369042	EU369067	EU369025		
A. farinosa	CBS 541.81	IJQ425686				
A. kanyawimiae	TBRC 7242	MF140718	MF140784	MF140838		
A. kanyawimiae	TBRC 7243	MF140717	MF140783	MF140837		
A. kanyawimiae	TBRC 7244	MF140716	MF140836			
A. lecanii	CBS 101247	AF339555	DQS22407	DQS22359		
A. sulphureus	TBRC 7247	MF140720	MF140841			
A. sulphureus	TBRC 7248	MF140722	MF140787	MF140843		
A. sulphureus	TBRC 7249	MF140721	MF140786	MF140842		
A. thailandicus	TBRC 7245	MF140719	MF140840			
A. tuberculatus	BCC 16819	GQ249987				
A. tuberculatus	OSC 6355	AY886544	DQS27324	DQS27350		
Blackwellomyces cardinalis	OSC 93609	AY184962	DQS223270	DQS223325		
B. cardinalis	OSC 93610	AY184963	EF469088	EF469039		
B. pseudomilitaris	NBRC 10140	JN941393	JN992482			
Cordyceps bifussispora	EFCC 5690	EF468806	EF468854	EF468746		
C. bifussispora	EFCC 8260	EF468807	EF468855	EF468747		
C. blackwelliae	TBRC 7253	MF140705	MF140774	MF140825		
C. blackwelliae	TBRC 7254	MF140704	MF140773	MF140824		
C. blackwelliae	TBRC 7255	MF140703	MF140772	MF140823		
C. blackwelliae	TBRC 7256	MF140702	MF140771	MF140822		
C. blackwelliae	TBRC 7257	MF140701	MF140770	MF140821		
C. ninchakispora	EFCC 5197	EF468820	EF468868	EF468760		
C. ninchakispora	EFCC 5693	EF468821	EF468869	EF468762		
C. ninchakispora	EG5 38.165	EF468846	EF468900	EF468795		
C. ninchakispora	EG5 38.166	EF468847	EF468901	EF468794		
C. ninchakispora	NHJ 10627	EF468822	EF468870	EF468763		
C. ninchakispora	NHJ 10684	EF468823	EF468871	EF468761		
Engyodontium aranearum	CBS 309.85	AF339526	DQS22387	DQS22341		
Gibellula longispora	NHJ 12014	EU369055	EU369017			
G. pulchra	NHJ 10808	EU369035	EU369056	EU369018		
G. ratticaudata	ARSEF 1915	DQS18777	DQS22408	DQS22360		
Gibellula sp.	NHJ 5401	EU369059				
Gibellula sp.	NHJ 10788	EU369036	EU369058	EU369019		
Gibellula sp.	NHJ 13158	EU369037	EU369057	EU369020		
Hevansia arachnophila	NHJ 10469	EU369031	EU369047	EU369008		
H. cinerea	NHJ 3510	EU369048	EU369009			
H. novoguineensis	NHJ 4314	EU369051	EU369012			
H. novoguineensis	NHJ 11923	EU369032	EU369052	EU369013		
H. novoguineensis	NHJ 13117	EU369049	EU369010			
H. novoguineensis	NHJ 13161	EU369050	EU369011			
Hyperdermium pulvinatum	PC. 602	AF242353	DQS27327	DQS18746		
Lecanicillium aranearum	CBS 726.73a	AF339537	EF468887	EF468781		
L. antillanum	CBS 350.85	AF339536	DQS22336	DQS22350		
L. fusiforme	CBS 164.70	AF339549	EF468889	EF468783		
L. psalliotae	CBS 563.86	AF339559	EF468890	EF468784		
Continued						
Species	Strain no.	GenBank accession no.				
-------------------------------	------------	-----------------------				
		ITS	SSU	LSU	RPB1	TEF
L. psalliotae	CBS 532.81	AF339560	EF469096	EF469067		
	CBS 101270	EF469081	EF469095	EF469066		
Pochonia chlamydosporia	CBS 103.65	MH858504				
Purpureocillium lilacinum	CBS 284.36	FR775484	EF468898	EF468792		
P. lilacinum	CBS 431.87	EF468844	EF468897	EF468791		
Samsoniella alboaurantium	CBS 240.32	JF415979	JN049895	JF416019		
S. alboaurantium	CBS 262.58	MG665232	QJ425685			
S. aurantia	TBRC 7271	MF140728	MF140791	MF140846		
	TBRC 7272	MF140727	MF140817	MF140845		
S. inthanonensis	TBRC 7915	MF140725	MF140790	MF140849		
	TBRC 7916	MF140724	MF140789	MF140848		
Pochonia chlamydosporia	CBS 103.65	MH858504				
Purpureocillium lilacinum	CBS 284.36	FR775484	EF468898	EF468792		
P. lilacinum	CBS 431.87	EF468844	EF468897	EF468791		
Samsoniella alboaurantium	CBS 240.32	JF415979	JN049895	JF416019		
S. alboaurantium	CBS 262.58	MG665232	QJ425685			
S. aurantia	TBRC 7271	MF140728	MF140791	MF140846		
	TBRC 7272	MF140727	MF140817	MF140845		
S. inthanonensis	TBRC 7915	MF140725	MF140790	MF140849		
	TBRC 7916	MF140724	MF140789	MF140848		
S. inthanonensis	TBRC 7270	MF140723	MF140788	MF140847		
Simplicillium aogashimaense	JCM 18167	AB604002				
S. aogashimaense	JCM 18168	AB604004				
S. calcicola	LC5371	KU746705	KU74675			
	LC5586	KU746706	KU746752			
S. chilense	LC1342	QJ410323	QJ410321			
S. chinense	LC1345	NR 155782	QJ410322			
S. cicadellidae	FY11011	MN006243	MN022271	MN022263		
S. cicadellidae	FY11012	MN006244	MN022272	MN022264		
S. coffeae	COAD 2057	MF066034	MF066032			
	COAD 2061	MF066035	MF066033			
S. cylindrosporum	JCM 18169	AB603989				
S. cylindrosporum	JCM 18170	AB603994				
	JCM 18171	AB603997				
	JCM 18172	AB603998				
	JCM 18173	AB603999				
	JCM 18174	AB604005				
	JCM 18175	AB604006				
S. filiforme	URM 7918	MH979338	MH979399			
S. formicicola	MFLUCC 18–1379	MK766511	MK765046	MK82623	MK926451	
	DL10041	MN006241	MN022269			
S. formicicola	DL10042	MN006242	MN022270			
S. lameliella	CBS 116.25	AJ292393	AF339552	DQ522404	DQ522356	
	KY00006	AS78533				
S. lameliella	UAMH 2055	AF108471				
	UAMH 4785	AF108480				
S. lanosoniveum	CBS 101267	AJ292395	AF339553	DQ522406	DQ522358	
S. lanosoniveum	CBS 704.86	AJ292396	AF339554	DQ522405	DQ522357	
S. leptidoperorum	GY29131	MN006246	MN022273	MN022265		
	GY29132	MN006245	MN022274	MN022266		
S. minatense	JCM 18176	AB603992	LC496893			
S. minatense	JCM 18177	AB603991				
S. minatense	JCM 18178	AB603993	LC496894			
S. obclavatum	CBS 31174	AJ292394	AF339517	EF468798		
S. obclavatum	JCM 18179	AB604000				
S. spumae	JCM 39050	LC496869	LC496888	LC496913		
S. spumae	JCM 39051	LC496870	LC496884	LC496914		
S. spumae	JCM 39054	LC496871	LC496902	LC496877	LC496917	
S. subtropicum	JCM 18180	AB603990	LC496895			
S. subtropicum	JCM 18181	AB603995	LC496896			
S. subtropicum	JCM 18182	AB603996				
S. subtropicum	JCM 18183	AB604001				
S. symposiophorum	JCM 18184	AB604003	LC496897			
Continued						
Table 2. Taxa included in the phylogenetic analyses. Sequences generated in this study are shown in bold.

Species	Strain no.	GenBank accession no.				
		ITS	SSU	LSU	RPB1	TEF
S. coccinellidae	DY101791	MT453861	MT453863	MT453862	MT471341	
S. coccinellidae	DY101792	MT453864	MT453861	MT457410	MT471342	
S. hymenopterorum	DY101691	MT453848	MT453849	MT453850	MT471344	MT471337
S. hymenopterorum	DY101692	MT453851	MT453852	MT453853	MT471338	
S. neolepidopterorum	DY101751	MT453854	MT453856	MT453855	MT471339	
S. neolepidopterorum	DY101752	MT453857	MT453859	MT453858	MT471340	
S. scarabaeoidea	DY101391	MT453842	MT453843	MT453844	MT471343	MT471335
S. scarabaeoida	DY101392	MT453845	MT453847	MT453846	MT471336	

Torriabulla wallacei | CBS 101237 | | | | | | 184967 | EF469102 | EF469073 |

Received: 2 June 2020; Accepted: 12 July 2021
Published online: 27 July 2021

References

1. Zare, R. & Gams, W. A revision of Verticillium section Prostrata. IV. The genera Lecaniiium and Simplicillium gen. nov. Nova Hedwigia 73, 1–50 (2001).
2. Zare, R. & Gams, W. A revision of the Verticillium fungicola species complex and its affinity with the genus Lecaniiium. Mycol. Res. 112, 811–824 (2008).
3. Okane, I., Nonaka, K., Kurihara, Y., Abe, J. P. & Yamaoka, Y. A new species of Leptobasclium, L. symbioticum, isolated from mites and sori of soybean rust. Mycoscience 61, 165–171 (2020).
4. Wang, Y. B. et al. Multigene phylogeny of the family Cordycipitaceae (Hypocreales): New taxa and the new systematic position of the Chinese cordycepid fungus Paecilomyces hepsilon. Fungal Divers. 103, 1–46 (2020).
5. Nonaka, K., Kasuchi, S., Omura, S. & Masuma, R. Five new Simplicillium species (Cordycipitaceae) from soils in Tokyo, Japan. Mycoscience 54, 42–53 (2013).
6. Gomes, A. A. et al. Simplicillium coffeanum, a new endophytic species from Brazilian coffee plants, emitting antimicrobial volatiles. Phyto taxa. 333, 188–198 (2018).
7. Crous, P. W. et al. Fungal Planet description sheets: 785–867. Persoonia 41, 238 (2018).
8. Zhang, Z. F. et al. Culture mycobacteria from Karst caves in China, with descriptions of 20 new species. Persoonia 39, 1 (2017).
9. Liu, F. & Cai, L. Morphological and molecular characterization of a novel species of Simplicillium from China. Cryptogam Mycol. 33, 137–145 (2012).
10. Liang, X. et al. Eight linear peptides from the deep-sea-derived fungus Simplicillium obclavatum EIODSF 020. Tetrahedron 72, 3092–3097 (2016).
11. Gonçalves, V. N. et al. Taxonomy, phylogeny and ecology of cultivable fungi present in seawater gradients across the Northern Antarctica Peninsula. Extremophiles 21, 1005–1015 (2017).
12. Shentu, X. P., Xiao, Y., Cao, Z. Y., Fan, J. X. & Yu, X. P. Comparative analysis of the diversity of the microbial communities between non-fertilized and fertilized eggs of brown planthopper, Nilaparvata lugens Stål. Appl. Environ. Microbiol. 82, 7313–7320 (2016).
13. Mew, T. J., Bruns, T., Lee, S. & Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications (eds Innis, M. A. et al.) 315–322 (Academic Press, 1990).
14. Gauthier, N. W. et al. Mycoparasitism of Phakopora pachyrhizii, the soybean rust pathogen, by Simplicillium lano soniveum. Appl. Environ. Microbiol. 76, 87–94 (2010).
15. Chen, W.-H., Liu, C., Han, Y.-F., Liang, J.-D. & Liang, Z.-Q. Three novel insect-associated species of Simplicillium (Cordycipitaceae, Hypocreales) from southwest china. Mycokeys 58, 83–102 (2019).
16. Zou, X., Liu, A. Y., Han, Y. F. & Yang, M. Hirsutella bhoenesis, a new entomopathogenic species affecting Cossidae (Lepidoptera) in China. Mycotaxon 111, 39–44 (2010).
17. Liang, J. D. et al. Optimal culture conditions for keratinase production by a novel thermophilic Myceliophthora thermophila strain GZUIPR H49-1. J. Appl. Microbiol. 110, 871–880 (2011).
18. White, T. J., Bruns, T., Lee, S. & Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications (eds Innis, M. A. et al.) 315–322 (Academic Press, 1990).
19. Mycol. Res. 108, 864–872 (2004).
20. van den Brink, J., Samson, R. A., Hagen, F., Boekhout, T. & de Vries, R. P. Phylogeny of the industrial relevant, thermophilic genera Myceliophthora and Corynascus. Fungal Divers. 52, 197–207 (2012).
21. M. Hirsutella bhoenesis, a new entomopathogenic species affecting Cossidae (Lepidoptera) in China. Mycotaxon 111, 39–44 (2010).
22. Liang, J. D. et al. Optimal culture conditions for keratinase production by a novel thermophilic Myceliophthora thermophila strain GZUIPR H49-1. J. Appl. Microbiol. 110, 871–880 (2011).
23. White, T. J., Bruns, T., Lee, S. & Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications (eds Innis, M. A. et al.) 315–322 (Academic Press, 1990).
24. Rakotoinainy, M. S., Cariou, M. L., Bryggo, Y. & Riba, G. Phylogenetic relationships within the genus Metarhizium based on 28S rRNA sequences and isozyme comparison. Mycol. Res. 98, 225–230 (1994).
25. Castlebury, L. A., Rosman, A. Y., Song, G. H., Hyten, A. S. & Spatafora, J. W. Multigene phylogeny reveals new lineages for Stachybotrys chartarum, the indoor air fungus. Mycol. Res. 108, 864–872 (2004).
26. van den Brink, J., Samson, R. A., Hagen, F., Boekhout, T. & de Vries, R. P. Phylogeny of the industrial relevant, thermophilic genera Myceliophthora and Corynascus. Fungal Divers. 52, 197–207 (2012).
27. Mongkolsamrit, S. et al. Disentangling cryptic species with Isaria-like morphs in Cordycipitaceae. Mycolologia 110, 230–257 (2018).
28. Wei, D. P., Watanasinghe, D. N., Hyde, K. D., Mortimer, P. E. & To-Anun, C. The genus Simplicillium. Mycokeys 60, 69–92 (2019).
29. Kondo, N., Iwasaki, H., Tokiwa, T., Omura, S. & Nonaka, K. Simplicillium spumae (Cordycipitaceae, Hypocreales), a new hyphomycetes from aquarium foam in Japan. Mycoscience 61, 116–121 (2020).
30. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
31. Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).
32. Vaidya, G., Lohman, D. J. & Meier, R. SequenceMatric: Concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27, 171–180 (2011).
33. Swoford, D. L. PAUP* 4b10: Phylogenetic Analysis Using Parsimony (and Other Methods). (Sinauer, 2002).
34. Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).
35. Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K., Von Haeseler, A. & Jерmiин, L. S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).
36. Zhang, D. et al. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 20, 348–355 (2020).
37. Drummond, A. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (2007).
38. Silvestro, D. & Michalak, I. raxmlGUI: A graphical front-end for RAxML. Org. Divers. Evol. 12, 335–337 (2012).
39. Jeewon, R. & Hyde, K. D. Establishing species boundaries and new taxa among fungi: Recommendations to resolve taxonomic ambiguities. Mycosphere 7, 1669–1677 (2016).
40. Sun, G. H. et al. Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Stud. Mycol. 57, 1–64 (2007).
41. Kepler, R. M. et al. A phylogenetically-based nomenclature for Cordycipitaceae (Hypocreales). IMA Fungus. 8, 335–353 (2017).
42. Spatafora, J. W., Sun, G. H., Sun, J. M., Hywel-Jones, N. L. & White, J. F. Phylogenetic evidence for an animal pathogen origin of ergot and the grass endophytes. Mol. Ecol. 16, 1701–1711 (2007).
43. Fukuda, T., Sudo, Y., Tsuchiya, Y., Okuda, T. & Igarashi, Y. Isolation and biosynthesis of preussin B, a pyrrolidine alkaloid from Simplicillium lanosonerveum. J. Nat. Prod. 77, 813–817 (2014).
44. Yan, B. et al. A new minor diketopiperazine from the sponge-derived fungus Simplicillium sp. YZ-11. Nat. Prod. Res. 29, 2013–2017 (2015).
45. Huang, Z., Yan, S. Z. & Chen, S. L. Optimization on fermentation conditions of Simplicillium obclavatum YX016 for the production of anthraquinones. Food Sci. Technol. 40, 12–17 (2015).
46. Takata, K. et al. Aogacillas A and B produced by Simplicillium sp. FKI-5985: New circumborin of Arbekacin resistance in MRSA. Org. Lett. 15, 4678–4681 (2013).
47. Uchida, R. et al. Simpotentin, a new potentiator of amphotericin B activity against Candida albicans, produced by Simplicillium minutissimum FKI-4981. J. Antibiot. 72, 134 (2019).
48. Ward, N. A., Robertson, C. L., Chanda, A. K. & Schneider, R. W. Effects of Simplicillium lanosonerveum on Phakopsora pachyrhizi, the soybean rust pathogen, and its use as a biological control agent. Phytopathology 102, 749–760 (2012).
49. Zhao, D. et al. Simplicillium chinesen: A biological control agent against plant parasitic nematodes. Biocontrol Sci. Technol. 23, 980–986 (2013).
50. Chen, R. S., Huang, C. C., Li, J. C. & Tsay, J. G. Evaluation of characteristics of Simplicillium lanosonerve on pathogenicity to aphids and in vitro antifungal potency against plant pathogenic fungi. Int. J. Environ. Agric. Res. 3, 55–61 (2017).

Acknowledgements
This work was supported by the National Natural Science Foundation of China (Grant No. 31860002), High-level Innovative Talents Training Object in Guizhou Province (No. Qiankehepingtaiyirencai [2020]6005), Science and Technology Foundation of Guizhou Province (No. Qiankehejichu [2020]1Y060), Program of Innovative Scientific and technological Talent Team of Guizhou Province(2020-5010) and Construction Program of Guizhou Engineering Research Center (Qian Fa Gai Gao Ji 2020–896) and National Survey of Traditional Chinese Medicine Resources (No. Caihe [2017]66, 216). We thank Catherine Dandie, PhD, from Liwen Bianji, Edanz Editing China (https://www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Author contributions
W.C.: resources, data curation, writing-review & editing. Y.H.: writing-review & editing. J.L.: resources, review & editing. Z.L.: review & editing. The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to Y.-F.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021