Article

Existence Results for $p_1(x, \cdot)$ and $p_2(x, \cdot)$ Fractional Choquard–Kirchhoff Type Equations with Variable $s(x, \cdot)$-Order

Weichun Bu 1,2,*, Tianqing An 1, Guoju Ye 1 and Chengwen Jiao 2

1 College of Science, Hohai University, Nanjing 211100, China; antq@hhu.edu.cn (T.A.); yegj@hhu.edu.cn (G.Y.)
2 College of Science, Zhongyuan University of Technology, Zhengzhou 450007, China; 6460@zut.edu.cn
* Correspondence: 19021205002@hhu.edu.cn

Abstract: In this article, we study a class of Choquard–Kirchhoff type equations driven by the variable $s(x, \cdot)$-order fractional $p_1(x, \cdot)$ and $p_2(x, \cdot)$-Laplacian. Assuming some reasonable conditions and with the help of variational methods, we reach a positive energy solution and a negative energy solution in an appropriate space of functions. The main difficulties and innovations are the Choquard nonlinearities and Kirchhoff functions with the presence of double Laplace operators involving two variable parameters.

Keywords: Choquard–Kirchhoff type equations; fractional $p_1(x, \cdot)$ and $p_2(x, \cdot)$-Laplacian; variational methods; positive energy solutions; negative energy solutions

1. Introduction

In this paper, we study the existence of solutions for the following Choquard–Kirchhoff type equations

$$\begin{align*}
(P_\lambda): & \quad \sum_{i=1}^{2} M_i \left(\int_{\Omega \times \Omega} \frac{|v(x) - v(y)|^{p_i(x,y)}}{p_i(x,y)|x-y|^{N+\gamma_i(x,y)N_{p_i(x,y)}}} dxdy \right) (-\Delta)^{s(x,\cdot)}_{p_i(x,\cdot)} v \\
& = \lambda f(x) |v|^{\gamma(x)-2} v + \left(\int_{\Omega} \frac{G(y,v(y))}{|x-y|^{\mu(x,y)}} dy \right) g(x, v), \quad x \in \Omega, \\
v = 0, \quad x \in \partial \Omega,
\end{align*}$$

where $M_i(i = 1, 2)$ is a model of Kirchhoff coefficient, Ω is a bounded smooth domain in \mathbb{R}^N, λ is a real parameter, and f, g, μ, γ, N are generally continuous functions whose assumptions will be introduced in what follows. The operators $(-\Delta)^{s(x,\cdot)}_{p_i(x,\cdot)}$ are called variable $s(x, \cdot)$-order $p_i(x, \cdot)$-fractional Laplacian, given $p_i(x, \cdot): \overline{\Omega} \times \overline{\Omega} \rightarrow (1, +\infty)$ ($i = 1, 2$) and $s(x, \cdot): \overline{\Omega} \times \overline{\Omega} \rightarrow (0, 1)$ with $N > s(x, y)p_i(x, y)$ for all $(x, y) \in \Omega \times \Omega$, which can be defined as

$$(-\Delta)^{s(x,\cdot)}_{p_i(x,\cdot)} v(x) := P.V. \int_{\Omega} \frac{|v(x) - v(y)|^{p_i(x,y)-2} (v(x) - v(y))}{|x-y|^{N+s(x,y)p_i(x,y)}} dy, \quad x \in \Omega,$$

where $v \in C^0_0(\Omega)$ and $P.V.$ stands for the Cauchy principal value. Especially, when $s(x, \cdot) \equiv$ constant and $p_i(x, \cdot) \equiv$ constant, we observe that the operators $(-\Delta)^{s(x,\cdot)}_{p_i(x,\cdot)}$ in (P_λ) reduce to the fractional p-Laplace operators $(-\Delta)_p^\gamma$—see [1–6].

Throughout this paper, we assume that $s(x, y)$ is a continuous function and satisfies the following condition:

(S1): $s(x, y)$ is symmetric function, i.e., $s(x, y) = s(y, x)$, and $0 < s^- := \inf_{(x, y) \in \overline{\Omega} \times \overline{\Omega}} s(x, y) \leq s^+ := \sup_{(x, y) \in \Omega \times \Omega} s(x, y) < 1$ for all $(x, y) \in \overline{\Omega} \times \overline{\Omega}$ with $x = s(x, x)$.

Mathematics 2021, 9, 1973. https://doi.org/10.3390/math9161973
The variable exponents $p_i(x, y) (i = 1, 2)$, we assume the following assumption:

(P1): $p_i(x, y)$ are symmetric functions, i.e., $p_i(x, y) = p_i(y, x)$, $1 < p_i^- := \inf_{(x, y) \in \Omega} p_i(x, y) \leq p_i^+ := \sup_{(x, y) \in \Omega} p_i(x, y) < +\infty$. We denote $p_{max}(x, y) = \max\{p_1(x, y), p_2(x, y)\}$ and $p_{min}(x, y) = \min\{p_1(x, y), p_2(x, y)\}$ for all $(x, y) \in \Omega \times \Omega$ with $\Omega(x) = p_i(x, y)$.

The nonlinear Choquard equation was studied by Ph. Choquard in [7], in which he established a model as follows

$$-\Delta v(x) + v(x) = (I_2 * |v(x)|^2) v(x), \text{ in } \mathbb{R}^3, \quad (3)$$

this type of model is widely used in the field of physics, such as quantum physics, Newtonian gravity, self-field coupling, and it has been studied in depth by many scholars, we refer interested readers to [8–11].

On the other hand, many researchers gradually devoted themselves to the study of equations with nonlinear convolution terms, such as Hartree type and Choquard type nonlinearities. The nonlinear term in (P_i) is inspired by the following problem

$$-\Delta v + V(x)v = (|x|^{-\mu} * G(x, v))g(x, v), \text{ in } \mathbb{R}^N, \quad (4)$$

which has arisen in various fields of mathematical physics. Such kind of problems was elaborated by Pekar in his description of the quantum theory of stationary polarizons—see [12]. More recently, Penrose settled (4) as model of self-gravitating matter in [13]. More particularly, Moroz et al. in [14], surveyed the existing results and studied the existence and multiplicity of solutions for nonlinear Choquard equations, some of its variants and extensions. In this direction, D’Avenia et al. investigated, in [15], for the first time in the literature, a class of fractional Choquard equation, starting from this paper, a lot of people were interested in solving this class of equations and systems—see [16,17].

Especially, for Choquard–Kirchhoff equations with variable exponent in [18], Bahrouni et al. dealt with Strauss and Lions type theorems and studied the existence and multiplicity of weak solutions. Furthermore, for nonlocal Choquard–Kirchhoff problems in [19], Biswas et al. obtained the existence of ground state solution, and infinitely many weak solutions, which the conditions for nonlinear functions are weaker than the Ambrosetti–Rabinowitz conditions.

The so-called Kirchhoff model was introduced by Kirchhoff in [20], in which he established the following model:

$$\rho \frac{\partial^2 v(x)}{\partial t^2} - \left(\frac{p_0}{h} + \frac{E}{2L} \int_0^L \left| \frac{\partial v(x)}{\partial t} \right|^2 \, dx\right) \frac{\partial^2 v(x)}{\partial x^2} = 0, \quad (5)$$

where ρ, p_0, h, E, L are real constants that represent some specific physical meaning, respectively. From then on, the literature on Kirchhoff type equations and Kirchhoff systems are quite large, here we just list a few—for example, Refs. [21–25] for further details.

The Kirchhoff functions $M_i : R_0^+ \rightarrow R^+(i = 1, 2)$ are continuous, which satisfy the following assumptions:

(M1): There are positive constants $\theta_i \in [1, p_i^{+}(x, y) / p_{max}]$ and $\theta = \max\{\theta_1, \theta_2\}$ such that

$$t M_i(t) \leq \theta \tilde{M}_i(t), \text{ for any } t \in R_0^+, \text{ where } \tilde{M}_i(t) = \int_0^t M_i(\tau) \, d\tau.$$

(M2): There are $m_i = m_i(\tau) > 0$ for all $\tau > 0$ such that

$$M_i(t) \geq m_i, \text{ for any } t > \tau.$$
The evolution of the Laplace operator has been progressively deepened and has taken many forms so far. Many mathematical scholars have been devoted to the integer Laplace operators, fractional Laplace operators, and variable order fractional Laplace operators. For some important results of variable order fractional Laplace operators, we refer to [26–35]. Note that, in [31], Wang et al. investigated the existence and multiplicity of weak solutions by applying four kinds of different critical point theorems, and the difference with other studies was that Kirchhoff function is zero at zero. In particular, in [32], Xiang et al. studied the multiplicity results for a Schrödinger equation via variational methods. Most importantly, they obtained the embedding theorem for variable-order Sobolev spaces. Moreover, Chen et al. in [33], studied a variable order nonlinear reaction subdiffusion equation, Coimbra et al. in [34], investigated Mechanics with variable-order differential operators, and Birajdar et al. in [35], considered a class of variable-order time-fractional first initial boundary value problems.

Although many materials can be accurately modeled by the classical Lebesgue \(L^p \) and Sobolev spaces \(W^{k,p} \), where \(p \) is a fixed constant and \(s = 1 \), there are some nonhomogeneous materials, for which this is not adequate, for instance, the rheological fluids are characterized by their ability to drastically change their mechanical properties under the influence of an exterior electromagnetic field. Thus, it is necessary for the exponent \(p \) to be variable. The study of various physical and mathematical problems with variable exponent and variable-order has a wide range of applications, concerning elastic mechanics [36], electrorheological fluids [37], image restoration [38], dielectric breakdown and polycrystal plasticity [39], variable-order space-fractional diffusion equations [40].

In recent years, mathematicians began to gradually consider variable exponent Laplace operator \(\Delta_{p(x)} \) and \(\Delta_{p(x),r} \), see the literature [41–46]. It is worth mentioning that Kaufmann et al. in [46] extended the variable exponent Sobolev spaces to the fractional case and established the compact embedding theorem of variable exponent Sobolev spaces. As an application, the existence of weak solutions of a nonlocal problem was studied.

In the framework of variable exponents involving fractional \(p(x,\cdot) \)-Laplace operator with variable \(s(x,\cdot) \)-order, such as Kirchhoff equations, Choquard equations, etc., there have been some papers on this topic—see [19,41,47–51]. We point out that very recently in [47], Biswas et al. firstly proved a embedding theorem for variable exponential Sobolev spaces and Hardy–Littlewood–Sobolev type result, and then they studied the existence of solutions for Choquard equations as follows

\[
\begin{cases}
(-\Delta)^{s(x,\cdot)}_{p(x)} v(x) \\
= \lambda |v(x)|^{\beta(x)-2}v(x) + \left(\int_{\Omega} \frac{G(y,v(y))}{|x-y|^{p(x)}} \, dy \right) g(x,v(x)), \quad x \in \Omega,
\end{cases}
\]

where \((-\Delta)^{s(x,\cdot)}_{p(x,\cdot)}\) is the \(p(x,\cdot) \)-fractional Laplacian with variable \(s(x,\cdot) \)-order. So far, there are already some work [41,47,48] to deal with problems involving variable fractional order \(s(x,\cdot) \) and variable exponent \(p(x,\cdot) \), but without a Kirchhoff coefficient \(M \). While combining this class of operators with Kirchhoff coefficients, Zuo et al. in [50], investigated the critical Kirchhoff type problem in bounded domains,

\[
\begin{cases}
M \left(\int_{\mathbb{R}^N} \frac{|v(x)|^{p(x)} - |v(y)|^{p(x)}}{|x-y|^{N+1}} \, dy \right) (-\Delta)^{s(x,\cdot)}_{p(x,\cdot)} v(x) \\
= |v(x)|^{\sigma(x)-2}v(x) + \lambda f(x,v(x)), \quad x \in \Omega,
\end{cases}
\]

where \(M \) is a model of Kirchhoff coefficient. With the help of variational methods, the authors proved the existence and asymptotic behavior of nontrivial solutions by using the Brézis and Lieb type lemma for fractional Sobolev spaces with variable-order and
variable exponent. In addition, in the whole space \mathbb{R}^N, a new variable-order fractional $p(x, \cdot)$-Kirchhoff type problem under two kinds of weaker conditions was studied in [51].

Problem (P_λ) comes from the following system:

$$v_i = \text{div}[Dv_i \nabla v_i] + c(x, v),$$

where $Dv = |\nabla v|^{p-2} + |\nabla v|^{q-2}$. Since the system had a wide range of applications in the field of physics and related sciences, this kind of problem has received much attention, we refer to [1,42,49,52–57]. Such as, in the integer order case, the authors in [54] used the constraint minimization to study the subcritical problem with p&q-Laplacian and proved the existence of this problem without the Ambrosetti–Rabinowitz condition. While concerning a fractional case, Ambrosio et al. in [1] showed the existence and asymptotic behavior of infinitely many solutions for a fractional p&q Laplace operator problem with critical Sobolev–Hardy exponents based on the concentration-compactness principle.

There are few papers [42,49] to consider the $p(x, \cdot)$&$q(x, \cdot)$-Laplacian. Problem for example, [42] studied the following problem

$$\left\{ \begin{aligned}
(-\Delta)^{s(x)}_{p_1(x)} v(x) + (-\Delta)^{s(x)}_{p_2(x)} v(x) + |v(x)|^{q_1(x)-2} v(x) \\
\quad = \lambda V_1(x) |v(x)|^{r_1(x)-2} v(x) - \lambda V_2(x) |v(x)|^{r_2(x)-2} v(x), \quad x \in \Omega,
\end{aligned} \right.$$ \hspace{1cm} (9)

where p_1, p_2, q, r_1 and r_2 are different continuous functions, while λ, μ are real parameters and V_1, V_2 are suitable weights. However, in the above problem (9), they considered a local version of the fractional operator, that is with integral set in Ω and not in the whole space \mathbb{R}^N.

Recently, in [49], Zuo et al. analysed a family of the Choquard type problems with $(-\Delta)^{(s(x))}_{p(x, \cdot)}$ and $(-\Delta)^{(s(x))}_{q(x, \cdot)}$ under some appropriate conditions.

$$\left\{ \begin{aligned}
(-\Delta)^{(s(x))}_{p(x, \cdot)} v(x) + (-\Delta)^{(s(x))}_{q(x, \cdot)} v(x) \\
\quad = \lambda |v(x)|^{\beta(x)-2} v(x) + \left(\int_{\Omega} \frac{G(y, \mu(x))}{|x-y|^{p(x)\cdot \cdot(\cdot)}} dy \right) g(x, v(x)) + k(x), \quad x \in \Omega,
\end{aligned} \right.$$ \hspace{1cm} (10)

where the operators $(-\Delta)^{(s(x))}_{p(x, \cdot)}$ and $(-\Delta)^{(s(x))}_{q(x, \cdot)}$ are two fractional Laplace operators with variable order $s(x, \cdot) : \mathbb{R}^{2N} \to (0, 1)$ and different variable exponents $p(x, \cdot), q(x, \cdot) : \mathbb{R}^{2N} \to (1, \infty)$. The results are different with single fractional Laplace operator.

Motivated by the above cited works, we find that there are no results for Choquard–Kirchhoff type equations involving a variable $s(x, \cdot)$-order fractional $p_1(x, \cdot)$&$p_2(x, \cdot)$-Laplacian. Therefore, we will investigate the existence solutions for this kind of equations, which is different from the work of [42,49] and more general than (9) and (10). Our study extends the previous results in some ways.

Throughout this article, $C_j (j = 1, 2, \ldots, N)$ denote distinct positive constants and $i = 1, 2$. For any real-valued function H defined on a domain \mathcal{D} we denote:

$$C_+ (\mathcal{D}) : = \{ H \in C(\mathcal{D}, \mathbb{R}) : 1 < H^- \leq H \leq H^+ < +\infty \},$$

where H^- := $\min_{\mathcal{D}} H \leq H$ and H^+ := $\max_{\mathcal{D}} H$ and $p_{\max}(x, y), p_{\min}(x, y) \in C_+ (\overline{\Omega} \times \overline{\Omega})$.

Concerning the continuous function μ, g and f, we assume the following hypothesis:

\textbf{(μ1)}: $\mu(x, y) : \overline{\Omega} \times \overline{\Omega} \to (0, N)$ is symmetric function, i.e., $\mu(x, y) = \mu(y, x)$, and $0 < \mu^- := \inf_{(x, y) \in \overline{\Omega} \times \overline{\Omega}} \mu(x, y) \leq \mu^+ := \sup_{(x, y) \in \overline{\Omega} \times \overline{\Omega}} \mu(x, y) < N$ for all $(x, y) \in \overline{\Omega} \times \overline{\Omega}$.

Furthermore, the nonlinearity $g : \Omega \times \mathbb{R} \to \mathbb{R}$ is a continuous Carathéodory function, satisfying:
(G1): There exist a positive constant C_0 and $q(x) \in C_+ (\overline{\Omega}) \cap \mathcal{N}$ with $p^+_\text{max} < q^- < p^*_\text{s(x_r)}(x)$ such that

$$|q(x,t)| \leq C_0|t|^q(x)^{-1}, \quad \text{for all } (x,t) \in \overline{\Omega} \times \mathbb{R},$$

where $\mathcal{N} = \{q(x) : \mathcal{P}_i(x) \leq q(x)r^- \leq q(x)r^+ < p^*_\text{s(x_r)}(x) \text{ for all } x \in \Omega \}$ with $r \in C_+ (\overline{\Omega} \times \overline{\Omega})$ such that

$$\frac{2}{r(x,y)} + \frac{\mu(x,y)}{N} = 2, \quad \text{for all } (x,y) \in \overline{\Omega} \times \overline{\Omega}.$$

(G2): There exists a positive constant $\theta \in (\theta p^+_\text{max}, +\infty)$ with θ is given by (M1) such that

$$0 < \theta G(x,t) \leq 2g(x,t)t, \quad \text{for all } t \in \mathbb{R} \setminus \{0\}, \quad \text{and for all } x \in \overline{\Omega}.$$

(F1): $1 < \gamma(x) < p_i(x,y) < \alpha(x)$ for all $(x,y) \in \overline{\Omega} \times \overline{\Omega}$, where $a(x) \in C_+ (\overline{\Omega})$, $f(x) > 0$ and $f(x) \in L^\infty(\Omega)$.

We need to present the corresponding definition and variational framework before stating our main results.

Definition 1. We say that $v \in W_0$ is a weak solution of problem (P_λ), if

$$\sum_{i=1}^{2} M_i (\delta_p_i (v)) \times (v, \varphi)_{p_i, W_0} = \lambda \int_{\Omega} f(x)|v|^\gamma(x) - 2v \varphi dx + \int_{\Omega \times \Omega} G(x, v(x))g(y, v(y))\varphi(y) \frac{dxdy}{|x-y|^\beta(x,y)}$$

for any $\varphi \in W_0$, where W_0 will be introduced in Section 2 and

$$\delta_p_i (v) = \int_{\Omega \times \Omega} \frac{|v(x) - v(y)|^{p_i(x,y)}}{|x-y|^{\beta(x,y)p_i(x,y)}} dxdy,$$

$$(v, \varphi)_{p_i, W_0} = \int_{\Omega \times \Omega} \frac{|v(x) - v(y)|^{p_i(x,y)-2}(v(x) - v(y))(\varphi(x) - \varphi(y))}{|x-y|^{\beta(x,y)p_i(x,y)}} dxdy.$$

The problem (P_λ) has a variational form with the Euler function $I : W_0 \to \mathbb{R}$, which is defined as follows:

$$I(v) := \sum_{i=1}^{2} M_i (\delta_p_i (v)) - \lambda \int_{\Omega} \frac{f(x)}{\gamma(x)}|v|^\gamma(x) dx - \frac{1}{2} \int_{\Omega \times \Omega} \frac{G(x, v(x))g(y, v(y))}{|x-y|^\beta(x,y)} dxdy \quad (11)$$

for all $v \in W_0$ and δ_p_i given in (M1). Moreover, the function I is well-defined on the Sobolev space W_0 and belongs to the class $C^1 (W_0, \mathbb{R})$, for which the argument is similar to Lemma 2.15 of [19], and

$$\langle I'(v), \varphi \rangle := \sum_{i=1}^{2} M_i (\delta_p_i (v)) \times (v, \varphi)_{p_i, W_0} - \lambda \int_{\Omega} f(x)|v|^\gamma(x) - 2v \varphi dx$$

$$- \int_{\Omega \times \Omega} \frac{G(x, v(x))g(y, v(y))\varphi(y)}{|x-y|^\beta(x,y)} dxdy \quad (12)$$

for any $\varphi \in W_0$. Thus, under our assumptions, the existence of weak solutions of problem (P_λ) is equivalent to the existence of critical points for the Euler function I.
Now, we are ready to state the first result of this paper as follows.

Theorem 1. Assume that (M1) and (M2), (µ1), (G1) and (G2) and (F1) are satisfied. Let Ω be a bounded smooth domain of \(\mathbb{R}^N \) with \(N > s(x,y)p(x,y) \) for any \((x,y) \in \bar{\Omega} \times \bar{\Omega} \), where \(s(x,\cdot) \) and \(p(x,\cdot) \) verify (S1) and (P1). Then, there exists \(\lambda > 0 \) such that for any \(0 < \lambda \leq \Lambda \), the problem \((P_\lambda)\) admits at least one positive energy solution \(v_1 \) in \(W_0 \).

In order to obtain our other result, we need the following assumption.

(M3): For any \(\tau > 0 \), there are two positive constants \(m_i \) and \(m_i' = m_i(\tau) > 0 \) such that

\[
m_i' \geq M_i(t) \geq m_i, \quad \text{for all } t > \tau,
\]

where \(m_i \) come from (M2) and \(m_i' > m_i \).

Theorem 2. Assume that (M1), (M3), (µ1), (G1) and (G2) and (F1) are satisfied. Let Ω be a bounded smooth domain of \(\mathbb{R}^N \) with \(N > s(x,y)p(x,y) \) for any \((x,y) \in \bar{\Omega} \times \bar{\Omega} \), where \(s(x,\cdot) \) and \(p(x,\cdot) \) verify (S1) and (P1). Then, there exists \(\lambda > 0 \) such that for any \(0 < \lambda \leq \Lambda \), the problem \((P_\lambda)\) admits at least one negative energy solution \(v_2 \) in \(W_0 \).

Remark 1. The main idea to overcome these difficulties lies on the \((-\Delta)^s(x,\cdot)\) and \((-\Delta)^p(x,\cdot)\) Laplace operators developed in [42,49] recently. By using the mountain pass theorem [58], we prove Theorem 1; then, by means of the Ekeland’s variational principle [59], we give the Proof of Theorem 2.

Remark 2. Our work is different from the previous papers [1,42,49,54] in the sense because of Kirchhoff terms and the presence of the more complicated operator and Choquard type nonlinearities, which makes our analysis more complicated. The work of this paper is to be of great importance in the development of the \((-\Delta)^s(x,\cdot)\) and \((-\Delta)^\phi(x,\cdot)\)-Laplace operators theory.

The remainder of this paper is organized as follows. Some preliminary results about the fractional Lebesgue spaces and Sobolev spaces are given in Section 2. Theorems 1 and 2 are proved in Section 3. In Section 4, we make a conclusion.

2. Preliminary Results

2.1. Variable Exponents Lebesgue Spaces

In this subsection, we recall some knowledge of generalized variable exponents Lebesgue spaces and give some important lemmas and propositions, which will be used later. For a more detailed information, the reader is invited to consult [43,44,46,60–62].

Let \(\theta(x) \in C_+(\bar{\Omega}) \) and \(v \) be a real-valued function, we introduce the variable exponents Lebesgue spaces as

\[
L^{\theta(x)}(\Omega) := \left\{ v : v \text{ is a measurable and } \int_{\Omega} |v|^{\theta(x)} \, dx < \infty \right\},
\]

with the norm

\[
\|v\|_{\theta(x)} := \inf \left\{ \chi > 0 : \int_{\Omega} \frac{|v|^{\theta(x)}}{\chi} \, dx \leq 1 \right\},
\]

then \((L^{\theta(x)}(\Omega), \| \cdot \|_{\theta(x)})\) is a separable and reflexive Banach space, see [44,62], called generalized Lebesgue spaces.

Let \(\hat{\theta}(x) \) be the conjugate exponent of \(\theta(x) \), that is

\[
\frac{1}{\theta(x)} + \frac{1}{\hat{\theta}(x)} = 1, \text{ for all } x \in \bar{\Omega}.
\]
Lemma 1 (Theorem 2.1 of [62] (Hölder inequality)). Suppose that \(v \in L^{\theta(x)}(\Omega) \) and \(u \in L^{\theta(x)}(\Omega) \), then

\[
\left| \int_{\Omega} v u \, dx \right| \leq \left(\frac{1}{\theta} + \frac{1}{1-\theta} \right) \| v \|_{\theta(x)} \| u \|_{\theta(x)} \leq 2 \| v \|_{\theta(x)} \| u \|_{\theta(x)}.
\]

The modular of \(L^{\theta(x)}(\Omega) \), which is the mapping \(\rho_{\theta(x)} : L^{\theta(x)}(\Omega) \to \mathbb{R} \), is defined by \(\rho_{\theta(x)}(v) := \int_{\Omega} |v|^{\theta(x)} \, dx \). The relation between the modular and Luxemburg norm has the following important properties, given in [44,61].

Proposition 1. Suppose that \(v_n, v \in L^{\theta(x)}(\Omega) \); then, the following properties hold

\(1 \) \(\| v \|_{\theta(x)} > 1 \Rightarrow \| v \|_{\theta(x)} \leq \rho_{\theta(x)}(v) \leq \| v \|_{\theta(x)}' \),
\(2 \) \(\| v \|_{\theta(x)} < 1 \Rightarrow \| v \|_{\theta(x)} \leq \rho_{\theta(x)}(v) \leq \| v \|_{\theta(x)}' \),
\(3 \) \(\| v \|_{\theta(x)} < 1 \) (resp. \(= 1, > 1 \)) \(\Leftrightarrow \rho_{\theta(x)}(v) < 1 \) (resp. \(= 1, > 1 \)),
\(4 \) \(\| v_n \|_{\theta(x)} \to 0 \) (resp. \(\to +\infty \)) \(\Leftrightarrow \rho_{\theta(x)}(v_n) \to 0 \) (resp. \(\to +\infty \)),
\(5 \) \(\lim_{n \to \infty} |v_n - v|_{\theta(x)} = 0 \Leftrightarrow \lim_{n \to \infty} \rho_{\theta(x)}(v_n - v) = 0 \).

Remark 3. Note that for any functions \(\theta_1(x), \theta_2(x) \in C_+((\Omega)) \) and \(\theta_1(x) < \theta_2(x) \), there is an embedding \(L^{\theta_1(x)}(\Omega) \hookrightarrow L^{\theta_2(x)}(\Omega) \) for any \(x \in \Omega \). Especially, when \(\theta(x) \equiv \text{constant} \), the results of Proposition 1 still hold.

Lemma 2. Lemma A.1 of [45] Assume that \(\theta_1(x) \in L^\infty(\Omega) \) such that \(\theta_1(x) \geq 0 \) and \(\theta_1(x) \neq 0 \) a.e. in \(\Omega \). Let \(\theta_2(x) : \Omega \to \mathbb{R} \) be a measurable function such that \(\theta_1(x) \theta_2(x) \geq 1 \) a.e. in \(\Omega \). Then, for any \(v \in L^{\theta_1(x)}(\Omega) \),

\[
\left\| v \right\|_{\theta_2(x)} \leq \left\| v \right\|_{\theta_1(x) \theta_2(x)} + \left\| v \right\|_{\theta_1(x) \theta_2(x)'}.
\]

For variable exponents Lebesgue spaces, we state the following propositions given in [43], which is imperative in this paper.

Proposition 2. Let \(\theta_1(x) \) and \(\theta_2(x) \) be measurable functions such that \(\theta_1(x) \in L^\infty(\mathbb{R}) \) and \(1 \leq \theta_1(x) \theta_2(x) \leq \infty \), for a.e. \(x \in \Omega \). Let \(v \in L^{\theta_2(x)}(\Omega) \), \(v \neq 0 \). Then,

\(1 \) \(\| v \|_{\theta_1(x) \theta_2(x)} \leq 1 \Rightarrow \| v \|_{\theta_1(x) \theta_2(x)'} \leq \| v \|_{\theta_1(x) \theta_2(x)}, \)
\(2 \) \(\| v \|_{\theta_1(x) \theta_2(x)'} \geq 1 \Rightarrow \| v \|_{\theta_1(x) \theta_2(x)'} \leq \| v \|_{\theta_1(x) \theta_2(x)} \)

In particular, if \(\theta_1(x) = \theta_1 \) is constant, we have \(\| v \|_{\theta_2(x)} = \| v \|_{\theta_2(x)'} \).

Now, we review a suitable estimate result, given in Proposition 4.1 of [47] and in Proposition 2.4 of [63].

Proposition 3. \(\mu(x,y) \) satisfies (\(\mu 1 \)). Set \(\theta_1'(x,y), \theta_2'(x,y) \in C_+((\Omega) \times \Omega) \) verify

\[
\frac{1}{\theta_1'(x,y)} + \frac{\mu(x,y)}{N} + \frac{1}{\theta_2'(x,y)} = 2, \text{ for any } (x,y) \in \Omega \times \Omega.
\]

Then, for \(u \in L^{\theta_1'(x)}(\Omega) \cap L^{\theta_1'(x)}(\Omega) \) and \(v \in L^{\theta_2'(x)}(\Omega) \cap L^{\theta_2'(x)}(\Omega) \), we have

\[
\left| \int_{\Omega \times \Omega} \frac{u(x)v(x)}{|x-y|^{\mu(x,y)}} \, dx \, dy \right| \leq C \left(\| u \|_{L^{\theta_1'(x)}(\Omega)} \| v \|_{L^{\theta_1'(x)}(\Omega)} + \| u \|_{L^{\theta_2'(x)}(\Omega)} \| v \|_{L^{\theta_2'(x)}(\Omega)} \right)
\]
for a suitable positive constant C_1, independent of u and v.

2.2. Variable-Order Fractional Sobolev Spaces

From now on, we briefly review some basic properties about fractional Sobolev spaces with variable-order and introduce some important lemmas and propositions, which will be used as tools to prove our main results. We refer to [41,47,48,51] and the references therein for the important knowledge on this subject.

Let $p(x,\cdot) \in C_+ (\overline{\Omega} \times \overline{\Omega})$, $s(x,\cdot) : \overline{\Omega} \times \overline{\Omega} \to (0,1)$ be continuous functions with $N > s(x,y)p(x,y)$ for all $(x,y) \in \overline{\Omega} \times \overline{\Omega}$, and define the Gagliardo seminorm by

$$[v]_{s(x,\cdot),p(x,\cdot)} := \inf \left\{ \chi > 0 : \int_{\Omega \times \Omega} \frac{|v(x) - v(y)|^{p(x,y)}}{\chi^{p(x,y)}} |x-y|^{N+p(x,y)s(x,y)} \, dx \, dy < 1 \right\},$$

where $v : \Omega \to \mathbb{R}$ is continuous. Now, the variable-order fractional Sobolev spaces with variable exponents is denoted as

$$W = W^{s(x,\cdot),p(x,\cdot)}(\Omega) := \left\{ v \in L_{\mathcal{P}(\cdot)}(\Omega) : v \text{ is measurable and } [v]_{s(x,\cdot),p(x,\cdot)} < \infty \right\},$$

endowed with the norm

$$\|v\|_W := \|v\|_{\mathcal{P}(\cdot)} + [v]_{s(x,\cdot),p(x,\cdot)}.$$

Let W_0 be the linear space of Lebesgue measurable functions from Ω to \mathbb{R} such that any function $u = 0$ on $\partial \Omega$ and belongs to $L_{\mathcal{P}(\cdot)}(\Omega)$, and endowed W_0 with the norm

$$\|v\|_{W_0} := [v]_{s(x,\cdot),p(x,\cdot)}.$$

then, $(W_0, \| \cdot \|_{W_0})$ is also a reflexive Banach space, see [47]. W_0' denotes the dual spaces of W_0.

Define the modular function $\rho_{p(x,\cdot)}^{s(x,\cdot)} : W_0 \to \mathbb{R}$ by

$$\rho_{p(x,\cdot)}^{s(x,\cdot)}(v) = \int_{\Omega \times \Omega} \frac{|v(x) - v(y)|^{p(x,y)}}{|x-y|^{N+p(x,y)s(x,y)}} \, dx \, dy.$$

Proposition 4. Lemmas 2.2 and 2.3 of [41] Let $v \in W_0$ and $\{v_n\} \subset W_0$, then

1. $\|v\|_{W_0} < 1$ (resp. $= 1$, > 1) $\Leftrightarrow \rho_{p(x,\cdot)}^{s(x,\cdot)}(v) < 1$ (resp. $= 1$, > 1),

2. $\|v\|_{W_0} < 1 \Rightarrow \rho_{p(x,\cdot)}^{s(x,\cdot)}(v) \leq \rho_{p(x,\cdot)}^{s(x,\cdot)}(v) \leq \|v\|_{W_0}$,

3. $\|v\|_{W_0} > 1 \Rightarrow \rho_{p(x,\cdot)}^{s(x,\cdot)}(v) \leq \rho_{p(x,\cdot)}^{s(x,\cdot)}(v) \leq \|v\|_{W_0}$,

4. $\lim_{n \to \infty} \|v_n\|_{W_0} = 0$ (resp. $\to +\infty$) $\Leftrightarrow \lim_{n \to \infty} \rho_{p(x,\cdot)}^{s(x,\cdot)}(v_n) = 0$ (resp. $\to +\infty$),

5. $\lim_{n \to \infty} \|v_n - v\|_{W_0} = 0$ $\Leftrightarrow \lim_{n \to \infty} \rho_{p(x,\cdot)}^{s(x,\cdot)}(v_n - v) = 0$.

We now introduce a compact embedding theorem for W_0, whose proof can be inspired by Theorem 3.1 of [47] and adapted in a $p_1(x,\cdot) \& p_2(x,\cdot)$ setting.

Lemma 3. Assume that $s(x,\cdot)$, $p(x,\cdot)$ fulfill (S1), (P1) with $N > p(x,y)s(x,y)$ for any $(x,y) \in \overline{\Omega} \times \overline{\Omega}$. Set $\phi(x) \in C_+ (\overline{\Omega})$ fulfill

$$1 < \phi^- = \min_{x \in \overline{\Omega}} \phi(x) \leq \phi(x) < \phi^+(x), \text{ for any } x \in \overline{\Omega},$$

for a suitable positive constant C_1, independent of u and v.
where \(p^s_{\xi} (x) = \frac{Np(x)}{N - p(x) s(x)}, \) \(p(x) = p(x,x) \) and \(s(x) = s(x,x). \) Then, there exists \(C_\phi = C_\phi(N,s,p,\phi,\Omega) > 0 \) such that
\[
\|v\|_{\phi(\cdot)} \leq C_\phi \|v\|_{W_0}
\]
for any \(v \in W_0. \) Moreover, the embedding \(W_0 \hookrightarrow L^p(\Omega) \) is compact.

Proposition 5 (Theorem 2.1 of \([47]\) (Hardy–Littlewood–Sobolev type inequality)). Let \(s(x, \cdot), \mu(x, y), \) and \(p(x, \cdot) \) satisfy (S1), (\(\mu_1 \)), and (P1) with \(N > p^+ s^+. \) Let \(r \in C_+ (\overline{\Omega} \times \overline{\Omega}) \) be as in (F1). \(q \in C_+ (\overline{\Omega}) \cap \mathcal{N} \) where \(\mathcal{N} \) is defined in (G1). Then, for any \(v \in W_0 \) we have \(|v|^q(\cdot) \in L^{r+}(\Omega) \cap L^{r-}(\Omega) \) with
\[
\left(\int_{\Omega \times \Omega} \frac{|v(x)|^q(x)|v(y)|^q(y)}{|x - y|^{p(x,y)}} \, dx \, dy \right)^{1/q(x)} \leq C_2 \left(\left(\int_{\Omega} |v|^q(\cdot) \right)^{r+} + \left(\int_{\Omega} |v|^q(\cdot) \right)^{r-} \right).
\]
for a suitable positive constant \(C_2, \) independent of \(v. \)

3. The Proof of the Main Results

3.1. Palais–Smale Compactness Condition

Let \(W_0 \) be a Banach space, \(I \in C^1(W_0, \mathbb{R}). \) We say that \(I \) satisfies the Palais–Smale condition, if any (PS)_c sequence \(\{v_n\}_{n \in \mathbb{N}} \subset W_0 \) with
\[
I(v_n) \to c, \quad I'(v_n) \to 0 \quad \text{in} \quad W_0^* \quad \text{as} \quad n \to \infty,
\]
possesses a convergent subsequence in \(W_0. \)

Lemma 4. Suppose that (P1), (M1) and (M2), (G2) and (F1) are satisfied, moreover, \(I(v_n) \) is bounded and \(I'(v_n) \to 0 \) as \(n \to \infty. \) Then, the sequence \(\{v_n\}_{n \in \mathbb{N}} \) is bounded in \(W_0. \)

Proof. We show that the sequence \(\{v_n\}_{n \in \mathbb{N}} \) is bounded in \(W_0. \) There exists a sequence \(\{v_n\}_{n \in \mathbb{N}} \subset W_0, \) such that \(\{I(v_n)\}_{n \in \mathbb{N}} \) is bounded and \(I'(v_n) \to 0 \) as \(n \to \infty. \) Then, there is a positive constant \(c \) such that
\[
|I(v_n)| \leq c \quad \text{and} \quad \langle I'(v_n), v_n \rangle = o_n(1)
\]
for every \(n \in \mathbb{N}. \) We prove this by contrary arguments. Assume that
\[
\|v_n\|_{W_0} \to \infty, \quad \text{as} \quad n \to \infty.
\]
Indeed, from (P1), we can easily derive the following inequality for any \(v \) and \((x,y) \in \overline{\Omega} \times \overline{\Omega}
\[
\frac{|v(x) - v(y)|^{p_1(x,y)}}{|x - y|^{N + p_1(x,y)s(x,y)}} + \frac{|v(x) - v(y)|^{p_2(x,y)}}{|x - y|^{N + p_2(x,y)s(x,y)}} + \frac{|v(x) - v(y)|^{p_{\max}(x,y)}}{|x - y|^{N + p_{\max}(x,y)s(x,y)}} \geq \frac{|v(x) - v(y)|^{p_{\max}(x,y)}}{|x - y|^{N + p_{\max}(x,y)s(x,y)}}.
\]

According to Proposition 2 and Hölder’s inequality, we obtain that for all v

$$\left| \int_{\Omega} \frac{f(x)}{\gamma(x)} \vert v \vert^{\gamma(x)} \, dx \right|$$

$$\leq \frac{1}{\gamma} \int_{\Omega} |f(x)|_{a(x)} \|v\|^\gamma(x) \, dx$$

$$= \begin{cases} \frac{1}{\gamma} \int_{\Omega} |f(x)|_{a(x)} \|v\|^\gamma(x) \, dx & \text{if } |v|_{a(x)} \leq 1, \\ \frac{1}{\gamma} \int_{\Omega} |f(x)|_{a(x)} \|v\|^\gamma(x) \, dx & \text{if } |v|_{a(x)} > 1. \end{cases}$$

(17)

Now, letting $h(x) = \frac{a(x) \gamma(x)}{a(x) - 1}$ and $k(x) = \frac{a(x) \gamma(x)}{a(x) - \gamma(x)}$, from the condition (F1), we have $h(x) < p^*(x, x')$ and $k(x) < p^*(x, x')$ for all $x \in \Omega$. Therefore, under the conditions (P1) and (F1), the embeddings $W_0 \hookrightarrow L^{h(x)}(\Omega)$ and $W_0 \hookrightarrow L^{k(x)}(\Omega)$ are continuous and compact. Thus, there exists $C_{13} > 0$ such that

$$\|v\|_{h(x)} \leq C_{13} \|v\|_{W_0}, \text{ for any } v \in W_0.$$

(18)

Thus, using (G2), (M1) and (M2), (14), (16), (18), Propositions 1 and 2, Lemma 3, and Hölder’s inequality, there exists $c_{13} > 0$ such that

$$c + c_{13} \|v_n\|_{W_0} + o_\theta(1)$$

$$\geq \theta I(v_n) - \langle I'(v_n), v_n \rangle$$

$$\geq \theta \sum_{i=1}^{2} M_i(\delta_{p_i}(v_n)) - \theta \lambda \int_{\Omega} f(x) |v_n|^{\gamma(x)} \, dx$$

$$- \frac{\theta}{2} \int_{\Omega \times \Omega} \frac{G(x, v_n(x)) G(y, v_n(y))}{|x - y|^{\theta(x,y)}} \, dxdy$$

$$- \sum_{i=1}^{2} M_i(\delta_{p_i}(v_n)) \times (v_n, v_n)_{p_i, W_0} + \lambda \int_{\Omega} f(x) |v_n|^{\gamma(x)} \, dx$$

$$+ \int_{\Omega \times \Omega} \frac{G(x, v_n(x)) G(y, v_n(y)) v_n(y)}{|x - y|^{\theta(x,y)}} \, dxdy$$

$$\geq \left(- \frac{\theta}{\theta p_{max}} - 1 \right) \sum_{i=1}^{2} M_i(\delta_{p_i}(v_n)) \times (v_n, v_n)_{p_i, W_0}$$

$$- \lambda \int_{\Omega} \left(- \frac{\theta}{\theta p_{max}} - 1 \right) f(x) |v_n|^{\gamma(x)} \, dx$$

$$- \int_{\Omega \times \Omega} \frac{G(x, v_n(x)) |\theta G(y, v_n(y)) - G(y, v_n(y))| v_n(y)}{|x - y|^{\theta(x,y)}} \, dxdy$$

$$\geq \left(- \frac{\theta}{\theta p_{max}} - 1 \right) \sum_{i=1}^{2} M_i(\delta_{p_i}(v_n)) \times (v_n, v_n)_{p_i, W_0}$$

$$- \lambda \int_{\Omega} \left(- \frac{\theta}{\theta p_{max}} - 1 \right) f(x) |v_n|^{\gamma(x)} \, dx$$

$$\geq \left(- \frac{\theta}{\theta p_{max}} - 1 \right) \min\{1, m_1, m_2\} \int_{\Omega \times \Omega} \frac{|v(x) - v(y)|^{p_{max}(x,y)} \, dxdy}{|x - y|^{N + p_{max}(x,y)s(x,y)}}$$

$$- \lambda \left(- \frac{\theta}{\theta} - 1 \right) \int_{\Omega} f(x) |v_n|^{\gamma(x)} \, dx$$

$$\geq \left(- \frac{\theta}{\theta p_{max}} - 1 \right) \min\{1, m_1, m_2\} \|v_n\|_{W_0}^{p_{max}}$$

$$- \lambda \left(- \frac{\theta}{\theta} - 1 \right) \|f(x)\|_{a(x)} C_{13}^{p_{max}} \|v_n\|_{W_0}^{p_{max}}$$
Since \(\theta > \theta_{p_{\text{max}}}^+ \) and \(1 < \gamma^+ < p_{\text{max}}^+ \) we immediately get a contradiction from the above estimate. Hence, the sequence \(\{v_n\}_{n \in \mathbb{N}} \) is bounded in \(W_0 \).

Lemma 5. Assume that (P1), (M1), (M3), (G1) and (F1) hold. Suppose that \(I(v_n) \) is bounded and \(I'(v_n) \rightarrow 0 \) as \(n \rightarrow \infty \). Then, the sequence \(v_n \in W_0 \) is bounded.

Proof. We follow the proof of Lemma 4, it is easy to obtain the conclusion.

Lemma 6. Assume that (M2), (G1) and (F1) hold, and \(\lambda \in \mathbb{R} \). If the sequence \(\{v_n\}_{n \in \mathbb{N}} \subset W_0 \) is a (PS) sequence of \(I \), then \(\{v_n\}_{n \in \mathbb{N}} \) has a strong convergent subsequence.

Proof. If the sequence \(\{v_n\}_{n \in \mathbb{N}} \subset W_0 \) is a Palais–Smale sequence of \(I \), then \(\{I(v_n)\}_{n \in \mathbb{N}} \) is bounded and \(I'(v_n) \rightarrow 0 \) as \(n \rightarrow \infty \), and we infer from Lemma 4 that \(\{v_n\}_{n \in \mathbb{N}} \) is bounded in \(W_0 \). Thus, there exists \(v \in W_0 \), and we can extract a subsequence, still denoted by \(\{v_n\}_{n \in \mathbb{N}} \), satisfying

\[
v_n \rightharpoonup v \text{ in } W_0, \quad v_n \rightarrow v \text{ in } L^{\theta(x)}(\Omega), \quad v_n \rightarrow v \text{ a.e. in } \Omega.
\]

Furthermore, we have as \(n \rightarrow \infty \)

\[
|\langle I'(v_n), v_n - v \rangle| \leq \|I'(v_n)\| \left(\|v_n\|_{W_0} + \|v\|_{W_0}\right) \rightarrow 0.
\]

Since \(v_n \) is bounded in \(W_0 \) and \(I'(v_n) \rightarrow 0 \), it follows that

\[
\langle I'(v_n), v_n - v \rangle \rightarrow 0, \text{ as } n \rightarrow \infty.
\]

We derive that

\[
\alpha_n(1) = \langle I'(v_n), v_n - v \rangle \\
= M_1(\delta_{p_1}(v_n)) \times \langle v_n, v_n - v \rangle_{L^p_{\Omega}, W_0} \\
+ M_2(\delta_{p_2}(v_n)) \times \langle v_n, v_n - v \rangle_{L^p_{\Omega}, W_0} \tag{20}
- \int_{\Omega} \lambda f(x)|v_n|^{\gamma(x)-2}v_n(v_n - v) \, dx \\
- \int_{\Omega \times \Omega} \frac{G(x, v_n(x))g(y, v_n(y))(v_n - v)(y)}{|x - y|^{\mu(x,y)}} \, dx \, dy.
\]

Therefore, from (G1), Proposition 1 and Lemma 3, we obtain

\[
\|G(\cdot, v_n)\|_{r^+} \leq C_3 \left(\int_{\Omega} |v_n|^{q(x)r^+} \, dx \right)^{\frac{1}{r^+}} \\
\leq C_3 \max \left\{ \|v_n\|_{q(x)r^+}^{q(x)r^+}, \|v_n\|_{q(x)r^+}^{q(x)r^+} \right\} \tag{21}
\]

that is \(G(\cdot, v_n) \in L^{r^+}(\Omega) \). Similarly, we have

\[
\|G(\cdot, v_n)\|_{r^-} \leq C_3 \max \left\{ C_{q(x)r^-}^-, \|v_n\|_{W_0}^{q(x)r^-}, C_{q(x)r^-}^+, \|v_n\|_{W_0}^{q(x)r^-} \right\}.
\]
Thus, combined with (21) and (22) and Proposition 3, we obtain
\[
\left| \int_{\Omega \times \Omega} \frac{G(x, v_n(x))g(y, v_n(y))(v_n - v)(y)}{|x - y|^p(x,y)} \, dx \, dy \right| \\
\leq C_4 \left(\|G(x, v_n(x))\|_{r+} \|g(y, v_n(y))\|_r \right)_{r+} + \|G(x, v_n(x))\|_{r-} \|g(y, v_n(y))\|_r_{r-} \\
\leq C_5 \max \left\{ C_{q(x)r+}^\delta \|v_n\|_{W_0}^q, C_{q(x)r-}^\delta \|v_n\|_{W_0}^q \right\} \\
\times \|g(y, v_n(y))\|_{r+} \|v_n - v\|_r \|v_n - v\|_{r-} \\
+ C_5 \max \left\{ C_{q(x)r+}^\delta \|v_n\|_{W_0}^q, C_{q(x)r-}^\delta \|v_n\|_{W_0}^q \right\} \\
\times \|g(y, v_n(y))\|_{r-} \|v_n - v\|_r \|v_n - v\|_{r+}.
\]

(23)

Next, using (G1), Lemmas 1 and 2, and (19), we obtain as \(n \to \infty \),
\[
\|g(y, v_n(y))(v_n - v)(y)\|_{r+}^r \leq C_6 \int_{\Omega} |v_n|^{(q(x)-1)r+} |v_n - v| r+ \, dx \\
\leq C_7 \|v_n^{q(x)-1r+} \|_{q(x)}^r \|v_n - v\|_{q(x)}^r \\
\leq C_8 \left(\|v_n^{q(x)-1r+} \|_{q(x)}^r + \|v_n^{q(x)-1r+} \|_{q(x)}^r \right) \|v_n - v\|_{q(x)}^r \\
\leq C_9 \left(\|v_n^{q(x)-1r+} \|_{W_0}^r + \|v_n^{q(x)-1r+} \|_{W_0}^r \right) \|v_n - v\|_{q(x)}^r \\
\leq C_{10} \|v_n - v\|_{q(x)r+}^r = o_n(1).
\]

(24)

Similarly, we have as \(n \to \infty \),
\[
\|g(y, v_n(y))(v_n - v)(y)\|_{r-}^r = o_n(1).
\]

(25)

Hence, combining with (23) and (25), we derive
\[
\lim_{n \to \infty} \int_{\Omega \times \Omega} \frac{G(x, v_n(x))g(y, v_n(y))(v_n - v)(y)}{|x - y|^p(x,y)} \, dx \, dy = 0.
\]

(26)

Since \(\{v_n\} \) is bounded in \(W_0 \). Thus, there exists a subsequence \(\{v_{n_k}\} \) converges weakly to \(v \) in \(W_0 \). As \(k(x) = \frac{a(x)\gamma(x)}{a(x) - \gamma(x)} < p_s^*(x) \) for all \(x \in \Omega \), so we deduce that there exists a compact embedding \(W_0 \to L^{k(x)}(\Omega) \); hence, the sequence \(\{v_n\} \) converges strongly to \(v \) in \(L^{k(x)}(\Omega) \).

According to the hypothesis (F1), using Hölder's inequality, we infer
\[
\int_{\Omega} f(x)|v_n|^{\gamma(x)} - 2v_n(v_n - v) \, dx \\
\leq |f(x)|_{a(x)} \|v_n|^{\gamma(x)} - 2v_n(v_n - v)\|_{h(x)} \\
\leq |f(x)|_{a(x)} \|v_n|^{\gamma(x)} - 2v_n\|_{\frac{\gamma(x)}{\gamma(x)-1}} \|v_n - v\|_{a(x)}.
\]

(27)

Now, if \(\|v_n\|^{\gamma(x)} - 2v_n\|_{\frac{\gamma(x)}{\gamma(x)-1}} > 1 \) then we obtain \(\|v_n\|^{\gamma(x)} - 2v_n\|_{\frac{\gamma(x)}{\gamma(x)-1}} \leq |v_n|^{\gamma(x)} \). The compact embedding \(W_0 \to L^{\gamma(x)}(\Omega) \) helps us to show that
\[
\lim_{n \to \infty} \int_{\Omega} f(x)|v_n|^{\gamma(x)} - 2v_n(v_n - v) \, dx = 0.
\]

(28)
Therefore, from (26) and (28), we obtain
\[
\lim_{n \to \infty} \langle I'(v_n), v_n - v \rangle = \lim_{n \to \infty} \left[M_1(\delta_{p_1}(v_n)) \times \langle v_n, v_n - v \rangle_{p_1, W_0} + M_2(\delta_{p_2}(v_n)) \times \langle v_n, v_n - v \rangle_{p_2, W_0} \right] = 0,
\]
combining this with relations (16) and (M2), it follows that as \(n \to \infty \)
\[
o(1) = M_1(\delta_{p_1}(v_n)) \times \langle v_n, v_n - v \rangle_{p_1, W_0} + M_2(\delta_{p_2}(v_n)) \times \langle v_n, v_n - v \rangle_{p_2, W_0} \geq \min\{1, m_1, m_2\} \langle v_n, v_n - v \rangle_{p_{\max}, W_0}.
\]
Fixed \((x, y) \in (\Omega \times \Omega)\), by the Young inequality and direct calculations, we obtain
\[
|v_n(x) - v_n(y)|^{p_{\max}(x, y)} \leq \frac{1}{p'(x, y)} |v_n(x) - v_n(y)|^{p_{\max}(x, y)} + \frac{1}{p(x, y)} \langle v(x) - v(y) \rangle_{p_{\max}(x, y)}
\]
(30)
such that
\[
\min\{1, m_1, m_2\} \langle v_n, v_n - v \rangle_{p_{\max}, W_0} \geq C_{11} \left(\int_{\Omega \times \Omega} \frac{|v_n(x) - v_n(y)|^{p_{\max}(x, y)}}{|x - y|^{N + p_{\max}(x, y)}} dxdy \right)^{\frac{1}{p_{\max}(x, y)}} - \int_{\Omega \times \Omega} \frac{|v_n(x) - v_n(y)|^{p_{\max}(x, y)} - 1}{|x - y|^{N + p_{\max}(x, y)}} dxdy \geq C_{12} \left(\int_{\Omega \times \Omega} \frac{|v_n(x) - v_n(y)|^{p_{\max}(x, y)}}{|x - y|^{N + p_{\max}(x, y)}} dxdy \right)^{\frac{1}{p_{\max}(x, y)}} - \int_{\Omega \times \Omega} \frac{|v(x) - v(y)|^{p_{\max}(x, y)}}{|x - y|^{N + p_{\max}(x, y)}} dxdy.
\]
From (19) and the Fatou lemma,
\[
\liminf_{n \to \infty} \int_{\Omega \times \Omega} \frac{|v_n(x) - v_n(y)|^{p_{\max}(x, y)}}{|x - y|^{N + p_{\max}(x, y)}} dxdy \geq \int_{\Omega \times \Omega} \frac{|v(x) - v(y)|^{p_{\max}(x, y)}}{|x - y|^{N + p_{\max}(x, y)}} dxdy,
\]
which combined with (29) and (31) yields
\[
\lim_{n \to \infty} \int_{\Omega} \frac{|v_n(x) - v_n(y)|^{p_{\max}(x,y)}}{|x - y|^{N + p_{\max}(x,y)/s(x,y)}} \, dx \, dy
= \int_{\Omega} \frac{|v(x) - v(y)|^{p_{\max}(x,y)}}{|x - y|^{N + p_{\max}(x,y)/s(x,y)}} \, dx \, dy.
\tag{32}
\]

However, using (19) and the Brézis–Lieb type lemma for variable exponent in Lemma 2.4 of [50], we obtain
\[
\int_{\Omega} \frac{|v_n(x) - v_n(y)|^{p_{\max}(x,y)}}{|x - y|^{N + p_{\max}(x,y)/s(x,y)}} \, dx \, dy - \int_{\Omega} \frac{|v(x) - v(y)|^{p_{\max}(x,y)}}{|x - y|^{N + p_{\max}(x,y)/s(x,y)}} \, dx \, dy
= \int_{\Omega} \frac{|v_n(x) - v_n(y) - v(x) + v(y)|^{p_{\max}(x,y)}}{|x - y|^{N + p_{\max}(x,y)/s(x,y)}} \, dx \, dy + o_n(1),
\]
which joint with (32), we obtain
\[
\lim_{n \to \infty} \int_{\Omega} \frac{|v_n(x) - v_n(y) - v(x) + v(y)|^{p_{\max}(x,y)}}{|x - y|^{N + p_{\max}(x,y)/s(x,y)}} \, dx \, dy
= \lim_{n \to \infty} p_{\max}(\cdot)(v_n - v)
= 0,
\]
according to Proposition 4, we finally achieve the strong convergence of \(v_n \to v \) as \(n \to \infty \) in \(W_0 \). \(\square \)

Lemma 7. Assume that (M3), (G1) and (F1) hold, and \(\lambda \in \mathbb{R} \). If the sequence \(\{v_n\}_{n \in \mathbb{N}} \subset W_0 \) is a (PS) sequence of \(I \), then \(\{v_n\}_{n \in \mathbb{N}} \) has a strong convergent subsequence.

Proof. The proof is a slight modification of Lemma 6 and is omitted. \(\square \)

3.2. Proof of Theorem 1

In what follows, we prove Theorem 1 by applying the mountain pass theorem [58].

Lemma 8. Assume that (S1), (P1), (M1) and (M2), (G1), and (F1) satisfy. Then, for all \(\rho_0 \in (0, \min\{1, 1/C_{\rho}\}) \), there exists positive constants \(\lambda \) and \(\alpha_0 = \alpha_0(\rho_0) \) such that for all \(\lambda \in (0, \lambda] \) we have the function \(I \geq \alpha_0(\rho_0) \) for all \(v \in W_0 \) with \(\|v\|_{W_0} = \rho_0 \).

Proof. Let \(\rho \in W_0 \) be such that
\[
\|v\|_{W_0} = \min\{1, 1/C_{\rho}\},
\]
where \(C_{\rho} \) is given by Lemma 3. Hence, using the definition of the function \(I \), conditions (M1) and (M2), relations (16), (18), (21), (22), Hölder’s inequality, Lemma 3, and Proposition 1, 2, 4, 5, we deduce that for any \(v \in W_0 \) with \(\|v\|_{W_0} = \rho_0 \in (0, \min\{1, 1/C_{\rho}\}) \),
with (34), we obtain
\[M(35), \text{there exists a constant} \]
\[\lambda \text{for any } t > 0 \in \mathbb{R}. \]

Therefore, putting \(\lambda = \rho_0^{p_{\max}^- - \gamma} M_{\min} \gamma^- / 4 \rho_0^{p_{\max}^+} \| f(x) \|_{\alpha(x)} C_{13}^{-\gamma} \) \(= 0 \) and combining with (34), we obtain
\[I(v) \geq \rho_0^{p_{\max}^+} \left(\frac{M_{\min}}{2 \rho_0^{p_{\max}^+}} \right) = \alpha(\rho_0) \] **Lemma 9.** Assume that (S1), (P1), (μ1), (M1), (G2), and (F1) satisfy. Then, for all \(\lambda \in \mathbb{R}, \) there exists \(\varphi_0 \in W_0 \) with \(\| \varphi_0 \|_{W_0} > \rho_0, \) where \(\rho_0 \) is given in Lemma 8, such that \(I(\varphi_0) < 0 \) for all \(t > 0 \) sufficient large.
Proof. Set \(\lambda \in \mathbb{R} \), from (G2), there exist two positive numbers \(L_1, L_2 \) such that
\[
G(x, t) \geq L_1 |t|^{\theta/2}, \text{ for any } x \in \Omega \text{ and } |t| \geq L_2. \tag{36}
\]

Using the condition (M1), we have
\[
\overline{M}_i(t) \leq M_i(1)t^\theta, \text{ for any } t \geq 1. \tag{37}
\]

Take \(\varphi_0 \in C_0^\infty(\Omega) \) with \(\varphi_0 > 0 \) and let \(t \in \mathbb{R} \) such that \(t\varphi_0^- \geq L_2 \). Combining with (36) and (37), we obtain
\[
I(t\varphi_0) = \sum_{i=1}^2 \overline{M}_i(\delta_{p_i}(t\varphi_0)) - \lambda \int_{\Omega} \frac{f(x)|\varphi_0|^\gamma(x)}{|x-y|^{\mu(x,y)}} dx
- \frac{1}{2} \int_{\Omega \times \Omega} G(x, t\varphi_0(x))G(y, t\varphi_0(y))
\]
\[
\leq \sum_{i=1}^2 \overline{M}_i(1)\left(\delta_{p_i}(t\varphi_0)\right)^\theta - \lambda \int_{\Omega} \frac{f(x)|\varphi_0|^\gamma(x)}{|x-y|^{\mu(x,y)}} dx
- \frac{1}{2} \int_{\Omega \times \Omega} L_1|\varphi_0(x)|^{\theta/2}L_1|\varphi_0(y)|^{\theta/2}
\]
\[
\leq \frac{1}{(p_{\text{min}})^\theta} \max \{1, \overline{M}_1(1), \overline{M}_2(1)\}
\times \sum_{i=1}^2 \left(\int_{\Omega \times \Omega} \frac{|t\varphi_0(x) - t\varphi_0(y)|^{p_i(x,y)}}{|x-y|^{N+\tau(x,y)p_i(x,y)}} dx \right)^\theta
\]
\[
- \frac{\lambda}{\gamma} \int_{\Omega} f(x)|\varphi_0|^\gamma(x) dx
- \frac{L_1^2}{2} \int_{\Omega \times \Omega} \frac{|\varphi_0(x)|^{\theta/2}|\varphi_0(y)|^{\theta/2}}{|x-y|^{\mu(x,y)}} dx. \tag{38}
\]

Since \(\theta > \theta_{p_{\text{max}}}^+ \), we deduce that \(I(t\varphi_0) \to -\infty \) as \(t \to \infty \). Then, for all \(\lambda \in \mathbb{R} \), there exists \(\varphi_0 \in W_0 \) with \(\|\varphi_0\|_{W_0} > \rho_0 \), where \(\rho_0 \) is given in Lemma 8, such that \(I(t\varphi_0) < 0 \) for all \(t > 0 \) sufficiently large.

Proof of Theorem 1. According to Lemmas 4, 6, 8 and 9, we know that all conditions of the mountain pass lemma are fulfilled, and therefore there exists a Palais–Smale subsequence \(v_n \), such that \(v_n \to v_1 \) in \(W_0 \) as \(n \to \infty \). So, \(v_1 \) is a nontrivial solution of problem \((P_\lambda)\) with positive energy \(I(v_1) \geq \alpha_0(\rho_0) > 0 \). \(\square \)

3.3. Proof of Theorem 2

In what follows, we prove Theorem 2 by using Ekeland’s variational principle [59].
Lemma 10. Let (S1), (P1), (μ1), (M3), (G2), and (F1) hold. Then, for any \(\lambda \in (0, A] \), there exists \(\nu_0 \in W_0 \) such that
\[
-\infty < I(\nu_0) = \inf \{ I(v) : v \in B_{\rho_0} \} < 0,
\]
where \(A, \rho_0 \) are given by Lemma 8 and \(B_{\rho_0} := \{ v \in W_0 : \| v \|_{W_0} \leq \rho_0 \} \).

Proof. Choose \(\xi > 0 \) in \(W_0 \), for positive number \(t \) sufficiently small such that \(\| t\xi \|_{W_0} < 1 \). Thus, for any \(\lambda \in (0, A] \), from (36) and (M3), we obtain
\[
I(t\xi) = 2 \sum_{i=1}^{2} \frac{M_{i}(\xi)}{\gamma(x)} \int_{\Omega} \lambda f(x) |t\xi|^{\gamma(x)} dx
\]
\[
-\frac{1}{2} \int_{\Omega} \frac{\mathcal{G}(x, t\xi(x)) \mathcal{G}(y, t\xi(y))}{|x-y|^{\mu(x,y)}} dxdy
\]
\[
\leq 2 \sum_{i=1}^{2} m_{i}(\xi) \int_{\Omega} \lambda f(x) |t\xi|^{\gamma(x)} dx
\]
\[
-\frac{1}{2} \int_{\Omega} \frac{L_{1} |t\xi(x)|^{\beta/2} L_{1} |t\xi(y)|^{\beta/2}}{|x-y|^{\beta(x,y)}} dxdy
\]
\[
\leq \frac{M_{\max}}{p_{\min}} \sum_{i=1}^{2} \left(\int_{\Omega} \frac{|t\xi(x) - t\xi(y)|^{\mu(x,y)}}{|x-y|^{\mu(x,y)}} dxdy \right)
\]
\[
- \frac{L_{1}^{2} \lambda}{2} \int_{\Omega} \frac{|t\xi(x)|^{\beta/2} |t\xi(y)|^{\beta/2}}{|x-y|^{\beta(x,y)}} dxdy
\]
\[
\left(39 \right)
\]
where \(M_{\max} = \max\{1, m_{1}, m_{2}\} \). Since \(\gamma < p_{\min} \), we deduce that \(I(t\xi) < 0 \) as \(t \to 0^{+} \). Then, for \(t > 0 \) small enough, there exists \(\nu_{0} \in W_0 \) such that we obtain
\[
-\infty < I(\nu_{0}) = \inf \{ I(v) : v \in B_{\rho_0} \} < 0,
\]
where \(\rho_0 \) is given by Lemma 8 and \(B_{\rho_0} := \{ v \in W_0 : \| v \|_{W_0} \leq \rho_0 \} \).

Proof of Theorem 2. From Lemma 8, we know that
\[
0 < a_0 < \inf_{B_{\rho_0}} I(\nu),
\]
and from Lemma 10, we have
\[
-\infty < c = \inf_{B_{\rho_0}} I(\nu) < 0.
\]

Thus, we use the Ekeland’s variational principle [59], there exists \(\nu_{j} \in B_{\rho_0} \) such that
\[
c \leq I(\nu_{j}) \leq c + \frac{1}{j}
\]
\[
\text{and } I(\nu_{j}) \leq I(\nu) + \frac{1}{j} \| \nu_{j} - \nu \|_{W_0}
\]
\[
\left(40 \right)
\]
for all \(v \in \overline{B}_{\rho_0} \) and \(j \in \mathbb{N} \). Fixing \(j \in \mathbb{N} \) and for all \(u \in \partial B_0 \), where \(B_0 = \{ v \in W_0 : \|v\|_{W_0} = 1 \} \), taking \(\zeta > 0 \) small enough so that \(v_j + \zeta u \in \overline{B}_{\rho_0} \). By (40), we obtain

\[
I(v_j + \zeta u) - I(v_j) \geq -\frac{\zeta}{j}.
\]

Since \(I \) is Gâteaux differentiable in \(W_0 \), for all \(u \in B_0 \), we have

\[
\langle I'(v_j), u \rangle = \lim_{\zeta \to 0} \frac{I(v_j + \zeta u) - I(v_j)}{\zeta} \geq -\frac{1}{j}.
\]

Therefore, we obtain

\[
\|I'(v_j)\|_{W_0^*} \leq \frac{1}{j}.
\]

So, we conclude that there exists a sequence \(\{v_j\} \subset \overline{B}_{\rho_0} \) as \(j \to \infty \), such that

\[
I(v_j) \to c < 0 \quad \text{and} \quad \|I'(v_j)\|_{W_0^*} \to 0.
\]

According to Lemma 7 there exists a convergent sequence \(\{v_j\} \) such that \(v_j \to v_2 \) in \(W_0 \) as \(j \to \infty \). Therefore, we have that problem \((P_{1})\) has another nontrivial solution \(v_2 \) which satisfies \(I(v_2) < 0 \) and \(\|v_2\|_{W_0} \leq \rho_0 \). □

Remark 4. From the above argument, since \(v_1 \) obtained by mountain pass theorem is a solution of \((P_{1})\) with positive energy \(I(v_1) > 0 \), \(v_2 \) obtained by Ekeland’s variational principle is a solution of \((P_{1})\) with negative energy \(I(v_2) < 0 \); therefore, they are different.

4. Conclusions

In this article, we study a class of Choquard–Kirchhoff type problems involving a variable \(s(x, \cdot) \)-order fractional \(p_1(x, \cdot) \) and \(p_2(x, \cdot) \)-Laplacian. Under some reasonable assumptions of \(g \) and \(f \), we obtain the existence of two solutions for this problem by applying some analytical techniques. Several recent results of the literature are extended and improved.

Author Contributions: Writing—original draft preparation, W.B.; writing—review and editing, T.A., G.Y. and C.J. All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by the Natural Science Foundation of Jiangsu Province (BK20180500), National Key Research and Development Program of China (2018YFC1508100), Special Soft Science Project of Technological Innovation in Hubei Province (2019ADC146), and Natural Science Foundation of China (11701595).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ambrosio, V.; Isernia, T. On a fractional \(p&Q \) laplacian problem with critical sobolev-hardy exponents. *Mediterr. J. Math.* 2018, 15, 219.

2. Iannizzotto, A.; Liu, S.; Perera, K.; Squassina, M. Existence results for fractional \(p \)-Laplacian problems via Morse theory. *Adv. Calc. Var.* 2014, 9, 101–125. [CrossRef]

3. Mosconi, S.; Perera, K.; Squassina, M.; Yang, Y. The Brezis-Nirenberg problem for the fractional \(p \)-Laplacian. *Calc. Var. Part. Differ. Equ.* 2016, 55, 105. [CrossRef]

4. Nyamoradi, N.; Zaidan, L. Existence and multiplicity of solutions for fractional \(p \)-Laplacian Schrödinger-Kirchhoff type equations. *Complex Var. Elliptic Equ.* 2018, 63, 346–359. [CrossRef]

5. Pucci, P.; Xiang, M.; Zhang, B. Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional \(p \)-Laplacian in \(\mathbb{R}^N \). *Calc. Var. Part. Differ. Equ.* 2015, 54, 2785–2806. [CrossRef]
6. Xiang, M.; Zhang, B. Degenerate Kirchhoff problems involving the fractional p-Laplacian without the (AR) condition. *Complex Var. Elliptic Equ.* **2015**, *60*, 1277–1287. [CrossRef]

7. Lieb, E. Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. *Stud. Appl. Math.* **1977**, *57*, 93–105. [CrossRef]

8. Bahrami, M.; Großardt, A.; Donadi, S.; Bassi, A. The Schrödinger-Newton equation and its foundations. *New J. Phys.* **2014**, *16*, 115007. [CrossRef]

9. Giuliani, D.; Großardt, A. The Schrödinger-Newton equation as a non-relativistic limit of self-gravitating Klein-Gordon and Dirac fields. *Classical Quant. Grav.* **2012**, *29*, 215010. [CrossRef]

10. Manfredi, G. The Schrödinger-Newton equations beyond Newton. *Gen. Relat. Gravity* **2015**, *47*, 1–12. [CrossRef]

11. Franklin, J.; Guo, Y.; McNutt, A.; Morgan, A. The Schrödinger-Newton system with self-field coupling. *Classical Quant. Grav.* **2015**, *32*, 065010. [CrossRef]

12. Pekar, S. *Untersuchung über die Elektronentheorie der Kristalle*; Akademie Verlag: Berlin, Germany, 1954.

13. Penrose, R. Quantum computation, entanglement and state reduction. *Philos. Trans. R. Soc. Lond.* **1998**, *365*, 1–13. [CrossRef]

14. Moroz, V.; Van Schaftingen, J. A guide to the Choquard equation. *J. Fixed Point Theory Appl.* **2017**, *19*, 773–813. [CrossRef]

15. D’Avenia, P.; Siciliano, G.; Squassina, M. On fractional Choquard equations. *Math. Mod. Methods Appl. Sci.* **2015**, *25*, 1447–1476. [CrossRef]

16. Le, P. Symmetry of positive solutions to Choquard type equations involving the fractional p-laplacian. *Acta Appl. Math.* **2020**, *170*, 387–398. [CrossRef]

17. Le, P. Symmetry of solutions for a fractional p-laplacian equation of Choquard type. *Int. J. Math.* **2020**, *31*, 2050026. [CrossRef]

18. Bahrouni, S.; Ounaies, H. Strauss and Lions type theorems for the fractional Sobolev spaces with variable exponent and applications to nonlocal Kirchhoff-Choquard problem. *Mediterr. J. Math.* **2021**, *18*, 1–22. [CrossRef]

19. Biswas, R.; Tiwari, S. On a class of Kirchhoff-Choquard equations involving variable-order fractional $p(\cdot)$-Laplacian and without Ambrosetti-Rabinowitz type condition. *arXiv 2020*, arXiv:2005.09221.

20. Kirchhoff, G. *Vorlesungen über Mathematische Physik*; Band 1: Mechanik; B.G. Teubner: Leipzig, Germany, 1883.

21. Bisci, G.; Vilasi, L. On a fractional degenerate Kirchhoff-type problem. *Commun. Contemp. Math.* **2017**, *19*, 1550088. [CrossRef]

22. Ledesma, C. Multiplicity result for non-homogeneous fractional Schrödinger–Kirchhoff-type equations in \mathbb{R}^N. *Adv. Nonlinear Anal.* **2018**, *7*, 247–257. [CrossRef]

23. Fan, X.; Zhang, Q. Existence of solutions for $p(x)$-Laplacian Dirichlet problem. *Nonlinear Anal.* **2003**, *52*, 1843–1852. [CrossRef]

24. Nyamoradi, N. Existence of three solutions for Kirchhoff nonlocal operators of elliptic type. *Math. Commun.* **2013**, *18*, 489–502. [CrossRef]

25. Nyamoradi, N.; Chung, N. Existence of solutions to nonlocal Kirchhoff equations of elliptic type via genus theory. *Electron. J. Differ. Equ.* **2014**, *86*, 1–12.

26. Lorenzo, C.; Hartley, T. Initialized fractional calculus. *Int. J. Appl. Math.* **2000**, *3*, 249–265.

27. Lorenzo, C.; Hartley, T. Variable order and distributed order fractional operators. *Nonlinear Dynam.* **2002**, *29*, 57–98. [CrossRef]

28. Ruiz-Medina, M.; Anh, V.; Angulo, J. Fractional generalized random fields of variable order. *Stoch. Anal. Appl.* **2004**, *22*, 775–799. [CrossRef]

29. Samko, S.; Ross, B. Integration and differentiation to a variable fractional order. *Integ. Trans. Spec. Funct.* **1993**, *1*, 277–300. [CrossRef]

30. Samko, S. Fractional integration and differentiation of variable order. *Anal. Math.* **1995**, *21*, 213–236. [CrossRef]

31. Wang, L.; Zhang, B. Infinitely many solutions for Kirchhoff-type variable-order fractional Laplacian problems involving variable exponents. *Appl. Anal.* **2019**, *100*, 2418–2435. [CrossRef]

32. Xiang, M.; Zhang, B.; Yang, D. Multiplicity results for variable-order fractional Laplacian equations with variable growth. *Nonlinear Anal.* **2019**, *178*, 190–204. [CrossRef]

33. Chen, C.; Liu, F.; Turner, I.; Anh, V.; Chen, Y. Numerical approximation for a variable order non-linear reaction sub-diffusion equation. *Numer. Algorithm Vol.* **2013**, *62*, 265–290. [CrossRef]

34. Coimbra, C.F.M. Mechanics with variable-order differential operators. *Ann. Phys. Math. Sci.* **2003**, *12*, 692–703. [CrossRef]

35. Birajdar, G.A.; Rashidi, M.M. Finite Difference Schemes for Variable Order Time-Fractional First Initial Boundary Value Problems. *Appl. Math. Int. J.* **2017**, *12*, 112–135.

36. Zhikov, V. Averaging of functionals in the calculus of variations and elasticity. *Math. USSR Izv.* **1987**, *29*, 33–66. [CrossRef]

37. Ružička, M. *Electrorheological Fluids: Modeling and Mathematical Theory*; Springer: Berlin, Germany, 2002.

38. Chen, Y.; Levine, S.; Rao, R. Variable exponent, linear growth functionals in image restoration. *SIAM J. Appl. Math.* **2006**, *66*, 1383–1406. [CrossRef]

39. Bocea, M.; Mihăilescu, M.; Popovici, C. On the asymptotic behavior of variable exponent power-law functionals and applications. *Ric. Math.* **2010**, *59*, 207–238. [CrossRef]

40. Sun, H.; Chang, A.; Zhang, Y.; Chen, W. A review on variable-order fractional differential equations: Mathematical foundations, physical models, numerical methods and applications. *Fract. Calc. Appl. Anal.* **2019**, *22*, 27–59. [CrossRef]

41. Biswas, R.; Tiwari, S. Multiplicity and uniform estimate for a class of variable order fractional $p(x)$-Laplacian problems with concave-convex nonlinearities. *arXiv 2018*, arXiv:1810.12960.

42. Chung, N.; Toan, H. On a class of fractional Laplacian problems with variable exponents and indefinite weights. *Collect. Math.* **2020**, *71*, 223–237. [CrossRef]
43. Edmunds, D.; Rákosník, J. Sobolev embeddings with variable exponent. Stud. Math. 2000, 143, 267–293. [CrossRef]
44. Fan, X.; Zhao, D. On the spaces $L^{p(x)}(\Omega)$ and $W^{1,p(x)}(\Omega)$. J. Math. Anal. Appl. 2001, 263, 424–446. [CrossRef]
45. Giacomoni, J.; Tiwari, S.; Warnault, G. Quasilinear parabolic problem with $p(x)$-Laplacian: Existence, uniqueness of weak solutions and stabilization. Nonlinear Differ. Equ. Appl. NoDEA 2016, 23, 24. [CrossRef]
46. Kaufmann, U.; Rossi, J.; Vidal, R. Fractional Sobolev spaces with variable exponents and fractional $p(x)$-Laplacians. Electron. J. Qual. Theory Differ. Equ. 2017, 76, 1–10. [CrossRef]
47. Biswas, R.; Tiwari, S. Variable order nonlocal Choquard problem with variable exponents. Complex Var. Elliptic Equ. 2020, 66, 853–875. [CrossRef]
48. Cheng, Y.; Ge, B.; Agarwal, R. Variable-order fractional sobolev spaces and nonlinear elliptic equations with variable exponents. J. Math. Phys. 2020, 61, 071507. [CrossRef]
49. Zuo, J.; Fiscella, A.; Bahrouni, A. Existence and multiplicity results for $p(\cdot) \& q(\cdot)$ fractional Choquard problems with variable order. Complex Var. Elliptic Equ. 2020, 1–17. [CrossRef]
50. Zuo, J.; Yang, L.; Liang, S. A variable-order fractional $p(\cdot)$-Kirchhoff type problem in \mathbb{R}^N. Math. Methods Appl. Sci. 2020, 1–18. [CrossRef]
51. Cherfils, L.; Il’yasov, V. On the stationary solutions of generalized reaction diffusion equations with $p\&q$-Laplacian. Commun. Pur. Appl. Anal. 2004, 4, 9–22.
52. Figueiredo, G. Existence of positive solutions for a class of $p\&q$ elliptic problems with critical growth in \mathbb{R}^N. J. Math. Anal. Appl. 2011, 378, 507–518.
53. He, C.; Li, G. The existence of a nontrivial solution to the $p\&q$-Laplacian problem with nonlinearity asymptotic to u^{p-1} at infinity in \mathbb{R}^N. Nonlinear Anal. 2008, 68, 1100–1119.
54. Li, G.; Liang, X. The existence of nontrivial solutions to nonlinear elliptic equation of $p\&q$-Laplacian type on \mathbb{R}^N. Nonlinear Anal. 2009, 71, 2316–2334.
55. Li, G.; Guo, Z. Multiple solutions for the $p\&q$-Laplacian problem with critical exponent. Acta Math. Sci. 2009, 29, 903–918.
56. Wu, M.; Yang, Z. A class of $p\&q$-Laplacian type equation with potentials eigenvalue problem in \mathbb{R}^N. Bound. Value Probl. 2009, 2009, 1–19.
57. Willem, M. Minimax Theorems; Birkhäuser Boston, Inc.: Boston, MA, USA, 1996.
58. Ekeland, I. On the variational principle. J. Math. Anal. Appl. 1974, 47, 324–353. [CrossRef]
59. Bahrouni, A.; Rădulescu, V. On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent. Discrete Contin. Dyn. Syst. Ser. S 2018, 11, 379–389. [CrossRef]
60. Diening, L.; Harjulehto, P.; Hästö, P.; Ružička, M. Lebesgue and Sobolev Spaces with Variable Exponents; Lecture Notes in Mathematics; Springer: Heidelberg, Germany, 2011.
61. Kováčik, O.; Rákosník, J. On spaces $L^{p(x)}(\Omega)$ and $W^{1,p(x)}(\Omega)$. Czechoslovak Math. J. 1991, 41, 592–618.
62. Alves, C.; Tavares, L. A Hardy-Littlewood-Sobolev-type inequality for variable exponents and applications to quasilinear Choquard equations involving variable exponent. Mediterr. J. Math. 2019, 16, 55–81. [CrossRef]