Discovery and whole genome sequencing of a human clinical isolate of the novel species

Klebsiella quasivariicola sp. nov.

Running Head: Discovery of Klebsiella quasivariicola sp. nov.

S. Wesley Long¹,²,#, Sarah E. Linson¹, Matthew Ojeda Saavedra¹, Concepcion Cantu¹, James J. Davis³,⁴, Thomas Brettin³,⁴, Randall J. Olsen¹,².

¹Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA

²Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York USA

³Computing, Environment and Life Sciences, Argonne National Laboratory, Argonne IL, 60439, USA

⁴Computation Institute, University of Chicago, Chicago, Illinois, 60637, USA

#Address correspondence to: S. Wesley Long, M.D., Ph.D., Department of Pathology and Genomic Medicine, Houston Methodist Hospital, 6565 Fannin St., B250, Houston, Texas 77030.

Abstract word count:160

Text word count: 1,130
ABSTRACT

Originally thought to be a single species, *Klebsiella pneumoniae* has been divided into three distinct species: *K. pneumoniae*, *K. quasipneumoniae* and *K. variicola*. In a recent study of 1,777 extended-spectrum beta-lactamase (ESBL)-producing *Klebsiella* strains recovered from human infections in Houston, we discovered one strain (KPN1705) causing a wound infection that was phylogenetically distinct from all currently recognized *Klebsiella* species. Whole genome sequencing of strain KPN1705 revealed that it was single locus variant of the multilocus sequence type ST-1155. This sequence type was reported only once previously. To further investigate the phylogeny of these two organisms, we sequenced the genome of strain KPN1705 to closure and compared its genetic features to *Klebsiella* reference strains. Results demonstrated strain KPN1705 extensively shares core gene content, antimicrobial resistance genes, and plasmids with *K. pneumoniae*, *K. quasipneumoniae* and *K. variicola*. Since strain KPN1705 and the previously reported novel strain are phylogenetically most closely related to *K. variicola*, we propose the name *K. quasivariicola* sp. nov.
K. pneumoniae, K. quasipnuemoniae and K. variicola are serious human pathogens that are increasingly associated with multidrug resistance and high morbidity and mortality. In a recent study of a large, comprehensive, population-based collection of antibiotic resistant Klebsiella isolates recovered from human patients, we discovered a novel species that is related to but distinct from K. variicola. This clonal group has been reported only once previously. We sequenced the genome of this clinical isolate and compared its genetic features to other Klebsiella strains. We propose the name K. quasivariicola sp. nov. for this new species.
OBSERVATION

Members of the genus *Klebsiella* are a common cause of human morbidity and mortality (1, 2). Many community-acquired and healthcare-associated outbreaks of invasive *K. pneumoniae* disease have been reported (3, 4). Over the past two decades, related *Klebsiella* species have been identified as distinct from *K. pneumoniae* and classified (5-8). In a recent large, comprehensive, population based study of 1,777 extended-spectrum beta-lactamase (ESBL) producing *Klebsiella* strains recovered in our clinical microbiology laboratory, we discovered a unique isolate KPN1705 (9, 10). It was genetically related to, but distinct from, *K. variicola*. We sequenced the genome of this strain, which belongs to a new species herein termed *Klebsiella quasivariicola* sp. nov., to closure and compared its genetic features to other *Klebsiella* reference strains.
RESULTS

Whole genome sequencing reveals *Klebsiella quasivariicola* sp. nov., a novel *Klebsiella* pathogenic to humans

In a recent study of 1,777 ESBL-producing *K. pneumoniae* isolates recovered from patients in our health care system, we unexpectedly discovered that 28 strains were phylogenetically allied with *K. variicola* (13 strains) and *K. quasipneumoniae* (15 strains)(10). We identified strain KPN1705 as a distinct outlier in the phylogenetic analysis. It shared a common branch with the *K. variicola*, yet was as distant from the *K. pneumoniae, K. quasipneumoniae*, and *K. variicola* reference genomes as they were from each other (Figure 1).

To determine if strains similar to KPN1705 had been previously reported, we determined its multilocus sequence type (MLST). Results revealed that it is a single locus variant of ST-1155, with three SNPs in the *infB* _110_ allele. A search of publicly available databases found one previous report of an ST-1155 *Klebsiella*, which was a description of a novel *Klebsiella* dubbed Strain 10982 (11). Strain 10982 was recovered from a perianal swab collected on an ICU patient in Maryland in 2005, as part of a study of AmpC-mediated antimicrobial resistance (11).

To begin assessing the genetic relationship between strain KPN1705 and other *Klebsiella*, we sequenced the genome of KPN1705 to closure. The KPN1705 chromosome is 5,540,188 bp, and three plasmids were identified (described below). Strain 10982 was previously sequenced by Hazen et al. and the assembled 218 contigs are published (11). SNPs were called for reference genomes of *K. pneumoniae* (NJST258_2), *K. quasipneumoniae* (700603), *K. variicola* (At-22), and Strain 10982, using our closed KPN1705 as a reference. The pairwise distance between *K. pneumoniae* and *K. variicola* compared to KPN1705 was 250,000 and 251,939 SNPs, respectively. Similarly, the pairwise distance between *K. pneumoniae* and *K. variicola* and
Strain 10982 was 253,227 and 253,864 SNPs. This level of difference between the novel strains
and other *Klebsiella* clades is similar to the distance separating the *K. pneumoniae*, *K. variicola*
and *K. quasipneumoniae* from one another (mean: 269,799 SNPs, range: 247,050-287,991 SNPs)
(Figure 2A). In comparison, KPN1705 and Strain 10982 were closely related, differing from one
another by only 34,455 SNPs (Figure 1). This level of difference is similar to the average
pairwise distance between any two *K. variicola* strains (average: 38,056 SNPs, range: 31,777 –
45,299) (10). Together, these whole genome sequence data suggest that KPN1705 and Strain
10982 represent a novel *Klebsiella* species, and we propose the name *Klebsiella quasivariicola*
sp. nov.

Plasmid and phage content in *Klebsiella quasivariicola* sp. nov. strain KPN1705

Next, we characterized the plasmids carried by strain KPN1705. Using our assembled whole
genome data, we identified three plasmids, pKPN1705-1 (240,771bp), pKPN1705-2 (97,896bp),
and pKPN1705-3 (67,851bp). These plasmids were similar to others found in *Klebsiella* species
and carried a diverse array of replicons and antimicrobial resistance genes. Six intact phage
regions were predicted in the core chromosome, consisting of 359 coding sequences in 322.7 kb
of core chromosomal sequence (Table S1 Phage).

Antimicrobial gene content in *Klebsiella quasivariicola* sp. nov.

The SHV-LEN-OKP beta-lactamases are core chromosomal genes of *Klebsiella* that are usually
segregated by *Klebsiella* species: *K. pneumoniae* (SHV restricted), *K. quasipneumoniae* (OKP
restricted), and *K. variicola* (LEN restricted) (8, 12, 13). SHV beta-lactamase genes can also be
carried on plasmids (14). We assessed the antimicrobial gene content of KPN1705 and
determined it carries the LEN-24 beta-lactamase on its chromosome, similar to what is
commonly found in *K. variicola*. This further contributed to our suggestion to call this novel
species *K. quasivariicola* sp. nov. KPN1705 also carried the gene encoding the SHV-30 ESBL
enzyme on plasmid pKPN1705-3. Genes encoding KPC, OXA, CTX-M, TEM and NDM-1 were
not detected.

Gene content comparison between *K. pneumoniae*, *K. variicola*, *K. quasipneumoniae* and *K. quasivariicola*

We compared the gene content between our ESBL-producing *K. pneumoniae*, *K. variicola*, *K. quasipneumoniae* and *K. quasivariicola* sp. nov.. We identified a total of 8,184 unique genes
present in the pangenome of all four species (Figure 2B). A *Klebsiella* core genome consisted of
3,357 unique genes that were present in the reference genome of each clade. A bidirectional
BLAST comparing the 4 reference genomes to KPN1705 shows the distance between each is
similar, with gaps present in the regions corresponding to 6 predicted phage regions (Figure 2A).
A table of the gene presence or absence is included in the supplemental (Table S2 Gene
Content).
K. pneumoniae is a well-known cause of human morbidity and mortality. Although less common, the closely related organisms K. variicola and K. quasipneumoniae also cause life-threatening infections (5, 7, 10, 15). The difficulty that conventional clinical microbiology laboratories have in distinguishing K. variicola and K. quasipneumoniae from K. pneumoniae may contribute to our underestimation of their potential as human pathogens (10, 16). The discovery of this novel clade of Klebsiella, the K. quasivariicola sp. nov., represents yet another Klebsiella species capable of causing serious human infections. Importantly, when novel strain 10982 was first described, the investigators questioned whether it had simply colonized the gastrointestinal tract or if it was potentially pathogenic. Our novel strain KPN1705 was recovered from a wound culture, strongly suggesting a causative role for the abscess. In addition, the detection of multiple antimicrobial resistance genes, including a SHV ESBL enzyme, increases its virulence potential.

Our whole genome sequence data provides clues to the relationships between the Klebsiella clades. The core genome content of K. quasivariicola sp. nov., is similar to K. pneumoniae, K. variicola and K. quasipneumoniae, despite the extensive diversity that has been reported to occur within and between clades (6, 9, 10). Also, consistent with previous reports, (6) we observed the plasmids present in KPN1705 to be similar to those found in other Klebsiella species. Importantly, these plasmids carry multiple genes encoding virulence factors and antimicrobial resistance genes (17).

These data provide new insight to the natural history and pathogenesis of Klebsiella organisms. Additional strains of Klebsiella quasivariicola sp. nov. are needed to better characterize this new species. Improved diagnostic methods or widespread use of whole genome
sequencing of clinical isolates may be necessary to ensure timely and appropriate identification of these pathogens.
MATERIALS AND METHODS

Whole genome sequencing of Klebsiella

The genome of strain KPN1705 was previously described using Illumina short read data (9). To obtain long reads to close the genome, we sequenced the genome of strain KPN1705 to closure using the 1D Ligation sequencing kit, R9.4 flow cell, and Oxford Nanopore Technologies MinION Mk-Ib sequencer.

Bioinformatics analysis of strains

The single nucleotide polymorphism calling pipeline and additional bioinformatics pipelines were described previously (9). BLAST was performed using the NCBI BLAST toolkit and CLC Genomics Workbench v.10.1. Visualization of SNP distribution was performed using CLC Genomics Workbench v.10.1. FASTQ files were assembled into contigs using Spades v3.10.1, and contigs were annotated using Prokka v1.12 (18, 19). Unicycler v0.4.0 was used for hybrid assembly and polishing of short reads and long reads into a closed genome for KPN1705 (20). Gene content analysis was performed using Roary v3.6.1 (21). Bidirectional BLAST and circos visualization were performed using PATRIC (www.patricbrc.org). Assembly of SNPs into phylogenetic trees was accomplished with the scripts prephix v3.3.0, phrecon v4.6.0, and FastTreeMP v2.1 (22). Phage regions were predicted using PHASTER (23). Prephix and phrecon are available from https://github.com/codinghedgehog. The Venn diagram was made in RStudio 1.0.136 using R 3.3.2 and the VennDiagram package v1.6.17 (24).

MALDI-TOF Identification

KPN1705 was isolated by the Houston Methodist Diagnostic Microbiology Laboratory as described previously (25).

Accession Numbers
The genomes of the strain sequenced for this study have been deposited in the NCBI database under BioProject PRJNA376414 and BioSample SAMN06438648. The accession numbers for the KPN1705 closed genome and plasmids are CP022823-CP022826. Reference genome Genbank accession numbers are as follows: NJST258_2 (CP006918.1), 700603 (CP014696.2), At-22 (CP001891.1), and Strain 10982 (GCA_000523395.1).

ACKNOWLEDGEMENTS

This work was supported by funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Service (contract HHSN272201400027C). We acknowledge Dr. J. Kristie Johnson for helpful discussions regarding Strain 10982, and Kathryn Stockbauer for help in preparing this manuscript.
REFERENCES

1. Wyres KL, Holt KE. 2016. Klebsiella pneumoniae population genomics and antimicrobial-resistant clones. Trends Microbiol 24:944-956.

2. Li B, Zhao Y, Liu C, Chen Z, Zhou D. 2014. Molecular pathogenesis of Klebsiella pneumoniae. Future Microbiol 9:1071-1081.

3. Snitkin ES, Zelazny AM, Thomas PJ, Stock F, Group NCSP, Henderson DK, Palmore TN, Segre JA. 2012. Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. Sci Transl Med 4:148ra116.

4. Satlin MJ, Chen L, Patel G, Gomez-Simmonds A, Weston G, Kim AC, Seo SK, Rosenthal ME, Sperber SJ, Jenkins SG, Hamula CL, Uhlemann AC, Levi MH, Fries BC, Tang YW, Juretschko S, Rojtman AD, Hong T, Mathema B, Jacobs MR, Walsh TJ, Bonomo RA, Kreiswirth BN. 2017. Multicenter Clinical and Molecular Epidemiological Analysis of Bacteremia Due to Carbapenem-Resistant Enterobacteriaceae (CRE) in the CRE Epicenter of the United States. Antimicrob Agents Chemother 61.

5. Brisse S, Verhoef J. 2001. Phylogenetic diversity of Klebsiella pneumoniae and Klebsiella oxytoca clinical isolates revealed by randomly amplified polymorphic DNA, gyrA and parC genes sequencing and automated ribotyping. Int J Syst Evol Microbiol 51:915-924.

6. Holt KE, Wertheim H, Zadoks RN, Baker S, Whitehouse CA, Dance D, Jenney A, Connor TR, Hsu LY, Severin J, Brisse S, Cao H, Wilksch J, Gorrie C, Schultz MB, Edwards DJ, Nguyen KV, Nguyen TV, Dao TT, Mensink M, Minh VL, Nhu NT,
Schultsz C, Kuntaman K, Newton PN, Moore CE, Strugnell RA, Thomson NR. 2015. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in *Klebsiella pneumoniae*, an urgent threat to public health. Proc Natl Acad Sci U S A 112:E3574-3581.

Rosenblueth M, Martinez L, Silva J, Martinez-Romero E. 2004. *Klebsiella variicola*, a novel species with clinical and plant-associated isolates. Syst Appl Microbiol 27:27-35.

Brisse S, Passet V, Grimont PA. 2014. Description of *Klebsiella quasipneumoniae* sp. nov., isolated from human infections, with two subspecies, *Klebsiella quasipneumoniae* subsp. *quasipneumoniae* subsp. nov. and *Klebsiella quasipneumoniae* subsp. *similipneumoniae* subsp. nov., and demonstration that *Klebsiella singaporensis* is a junior heterotypic synonym of *Klebsiella variicola*. Int J Syst Evol Microbiol 64:3146-3152.

Long SW, Olsen RJ, Eagar TN, Beres SB, Zhao P, Davis JJ, Brettin T, Xia F, Musser JM. 2017. Population genomic analysis of 1,777 extended-spectrum beta-lactamase-producing *Klebsiella pneumoniae* isolates, Houston, Texas: Unexpected abundance of clonal group 307. mBio 8.

Long SW, Linson SE, Ojeda Saavedra M, Cantu C, Davis JJ, Brettin T, Olsen RJ. 2017. Whole-Genome Sequencing of Human Clinical *Klebsiella pneumoniae* Isolates Reveals Misidentification and Misunderstandings of *Klebsiella pneumoniae*, *Klebsiella variicola*, and *Klebsiella quasipneumoniae*. mSphere 2.

Hazen TH, Zhao L, Sahl JW, Robinson G, Harris AD, Rasko DA, Johnson JK. 2014. Characterization of *Klebsiella* sp. Strain 10982, a colonizer of humans that contains novel antibiotic resistance alleles and exhibits genetic similarities to plant and clinical *Klebsiella* isolates. Antimicrob Agents Chemother 58:1879-1888.
12. Tarnberg M, Nilsson LE, Monstein HJ. 2009. Molecular identification of (bla)SHV, (bla)LEN and (bla)OKP beta-lactamase genes in *Klebsiella pneumoniae* by bi-directional sequencing of universal SP6- and T7-sequence-tagged (bla)SHV-PCR amplicons. Mol Cell Probes **23**:195-200.

13. Fonseca EL, Ramos ND, Andrade BG, Morais LL, Marin MF, Vicente AC. 2017. A one-step multiplex PCR to identify *Klebsiella pneumoniae, Klebsiella variicola,* and *Klebsiella quasipneumoniae* in the clinical routine. Diagn Microbiol Infect Dis **87**:315-317.

14. Matthew M, Hedges RW, Smith JT. 1979. Types of beta-lactamase determined by plasmids in gram-negative bacteria. J Bacteriol **138**:657-662.

15. Maatallah M, Vading M, Kabir MH, Bakhrouf A, Kalin M, Naucler P, Brisse S, Giske CG. 2014. *Klebsiella variicola* is a frequent cause of bloodstream infection in the Stockholm area, and associated with higher mortality compared to *K. pneumoniae*. PLoS One **9**:e113539.

16. Bowers JR, Lemmer D, Sahl JW, Pearson T, Driebe EM, Wojack B, Saubolle MA, Engelthaler DM, Keim P. 2016. KlebSeq, a diagnostic tool for surveillance, detection, and monitoring of *Klebsiella pneumoniae*. J Clin Microbiol **54**:2582-2596.

17. Zurfluh K, Poirel L, Nordmann P, Klumpp J, Stephan R. 2015. First detection of *Klebsiella variicola* producing OXA-181 carbapenemase in fresh vegetable imported from Asia to Switzerland. Antimicrob Resist Infect Control **4**:38.

18. Nurk S, Bankevich A, Antipov D, Gurevich A, Korobeynikov A, Lapidus A, Pribulsky A, Pyshkin A, Sirotkin A, Sirotkin Y, Stepanauskas R, McLean J, Lasken R, Clingenpeel SR, Woyke T, Tesler G, Alekseyev MA, Pevzner PA. 2013.
Assembling Genomes and Mini-metagenomes from Highly Chimeric Reads, p 158-170.

In Deng M, Jiang R, Sun F, Zhang X (ed), Research in Computational Molecular Biology: 17th Annual International Conference, RECOMB 2013, Beijing, China, April 7-10, 2013 Proceedings doi:10.1007/978-3-642-37195-0_13. Springer Berlin Heidelberg,

Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068-2069.

Wick RR, Judd LM, Gorrie CL, Holt KE. 2017. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 13:e1005595.

Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, Fookes M, Falush D, Keane JA, Parkhill J. 2015. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31:3691-3693.

Price MN, Dehal PS, Arkin AP. 2010. FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490.

Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, Wishart DS. 2016.

PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 44:W16-21.

Chen H, Boutros PC. 2011. VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics 12:35.

Wimmer JL, Long SW, Cernoch P, Land GA, Davis JR, Musser JM, Olsen RJ. 2012. Strategy for rapid identification and antibiotic susceptibility testing of gram-
negative bacteria directly recovered from positive blood cultures using the Bruker MALDI Biotyper and the BD Phoenix system. J Clin Microbiol 50:2452-2454.
Figure Legends

Fig 1. Genetic relationships among *Klebsiella quasivariicola* sp. nov. strains KPN1705 and Strain 10982 and reference strains of *K. pneumoniae* (NJST258_2), *K. variicola* (At-22), and *K. quasipneumoniae* (700603). Phylogenetic relationships were defined by the neighbor-joining method in FastTreeMP with double precision using the closed KPN1705 genome as a reference. The core genome was defined as the chromosomal sequence with the 6 predicted phage sequence regions excluded.

Fig 2. Gene content differences between the reference genomes *Klebsiella quasivariicola* sp. nov. (KPN1705), *K. pneumoniae* (NJST258_2), *K. variicola* (At-22), and *K. quasipneumoniae* (700603). A. Bidirectional BLAST was performed by using the PATRIC resource to illustrate the differences in gene content between these two reference genomes. The color indicates the percent identity of the BLAST hit for each gene, with darker shading indicating a bidirectional hit and lighter shading indicating a unidirectional hit. Outer-most ring is the KPN1705 chromosome reference, followed by *K. pneumoniae* NJST258_2, *K. quasipneumoniae* 700603, and *K. variicola* At-22 on the innermost ring. B. Venn diagram showing shared gene content between the *K. pneumoniae* NJST258_2 (Kp, red), *K. quasipneumoniae* 700603 (Kqp, yellow), *K. variicola* At-22 (Kv, blue), and *K. quasivariicola* sp. nov. (Kqv, green) as determined by Roary.
Figure 1

700603
K. quasipneumoniae

At-22
K. variicola

NJST258_2
K. pneumoniae

Strain 10982

KPN1705
Klebsiella quasivariicola
sp. nov.
Figure 2