The continued spectral and temporal evolution of RX J0720.4-3125
Hohle, M. M.; Haberl, F.; Vink, J.; de Vries, C. P.; Turolla, R.; Zane, S.; Mendez, Raúl

Published in:
Monthly Notices of the Royal Astronomical Society

DOI:
10.1111/j.1365-2966.2012.20946.x

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2012

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Hohle, M. M., Haberl, F., Vink, J., de Vries, C. P., Turolla, R., Zane, S., & Mendez, M. (2012). The continued spectral and temporal evolution of RX J0720.4-3125. Monthly Notices of the Royal Astronomical Society, 423(2), 1194-1199. DOI: 10.1111/j.1365-2966.2012.20946.x

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
The continued spectral and temporal evolution of RX J0720.4–3125

M. M. Hohle,1⋆ F. Haberl,2 J. Vink,3 C. P. de Vries,4 R. Turolla,5,6 S. Zane6 and M. Méndez7

1Astrophysikalisches Institut und Universitäts-Sternwarte Jena, Schillergässchen 2-3, 07745 Jena, Germany
2Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraße, 85741 Garching, Germany
3Astronomical Institute Anton Pannekoek, University of Amsterdam, PO Box 94249, 1090 GE, Amsterdam, the Netherlands
4SRON, Netherlands Institute of Space Research, Sorbonnelaan 2, 3584 CA, Utrecht, the Netherlands
5Department of Physics and Astronomy, University of Padua, via Marzolo 8, 35131 Padova, Italy
6Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey RH5 6NT
7Kapteyn Astronomical Institute, University of Groningen, PO Box 800, 9700 AV, Groningen, the Netherlands

Accepted 2012 March 16. Received 2012 March 13; in original form 2012 February 24

ABSTRACT
RX J0720.4–3125 is the most peculiar object among a group of seven isolated X-ray pulsars (the so-called Magnificent Seven), since it shows long-term variations of its spectral and temporal properties on time-scales of years. This behaviour was explained by different authors either by free precession (with a 7 or 14 yr period) or possibly a glitch that occurred around MJD = 528.66 ± 73 d.

We analysed our most recent XMM–Newton and Chandra observations in order to further monitor the behaviour of this neutron star. With the new data sets, the timing behaviour of RX J0720.4–3125 suggests a single (sudden) event (e.g. a glitch) rather than a cyclic pattern as expected by free precession. The spectral parameters changed significantly around the proposed glitch time, but more gradual variations occurred already before the (putative) event. Since MJD ≈ 530 000 the spectra indicate a very slow cooling by ~2 eV over 7 yr.

Key words: stars: neutron – pulsars: individual: RX J0720.4–3125.

1 INTRODUCTION
The isolated neutron star (NS) RX J0720.4–3125 (RX J0720) belongs to a group of seven nearby (≤500 pc) radio-quiet X-ray pulsars, the so-called Magnificent Seven (M7), discovered as bright X-ray sources in the ROSAT all-sky survey data. The M7 exhibit soft (Teff ≈ 40–100 eV) blackbody-like X-ray spectra, in some cases with one or more broad absorption features that are interpreted as proton–cyclotron resonances or atomic transitions of bound species in a strong magnetic field, B ≈ 1013–1014 G. Assuming magnetic dipole braking, similar magnetic field strengths can be derived from the standard spin-down formula for those sources for which pulse periods (all in the 3–12 s interval) and period derivatives are measured (see van Kerkwijk & Kaplan 2008; Kaplan & van Kerkwijk 2009a,b). The M7 have ages of 0.3–3 Myr, as inferred by cooling curves or kinematics (Kaplan, van Kerkwijk & Anderson 2002; Tetzlaff et al. 2010), while the characteristic ages are larger (2–5 Myr). For a detailed review of the M7, we refer to Haberl (2007) and Kaplan & van Kerkwijk (2009a).
RX J0720 is the second brightest member of the M7 and it was identified as a pulsating X-ray source with an 8.39 s spin period in Haberl et al. (1997). Cropper et al. (2001) discovered a hardness ratio variation with pulse phase and a phase shift between the flux and the hardness ratio in the XMM–Newton data of RX J0720. Based on XMM–Newton RGS data, de Vries et al. (2004) showed that the energy-dependent change in the pulse profile is accompanied by a long-term change of the X-ray spectrum.1 The spectral changes were soon confirmed using XMM–Newton EPIC (Haberl et al. 2004) and Chandra LETG-Sdata (Vink et al. 2004). Furthermore, Haberl et al. (2006) found a phase lag between soft (0.12–0.40 keV) and hard (0.40–1.00 keV) photons, which changed over years. The XMM–Newton spectra of RX J0720 are best modelled with a blackbody plus a broad absorption feature at ~0.3 keV (Haberl et al. 2004). Haberl et al. (2006) reported variations of the blackbody temperature, the equivalent width (EW) of the absorption feature and the blackbody normalization of RX J0720 compatible with a periodic behaviour with a long-term period of Plong ≈ 7.1 yr. However, the data used in Haberl et al. (2006) spanned only 4.5 yr, i.e. not the complete cycle of the tentative period.

1 Note that initially the changes at longer wavelengths were overestimated, as the XMM–Newton RGS instrument suffers from a decline in sensitivity in the long-wavelength band.
Table 1. The three new XMM–Newton observations (all with a thin filter) performed after Hohle et al. (2010). We list the net counts in soft band (0.1–0.4 keV) and hard band (0.4–1.0 keV). The soft photons from the EPIC-MOS data are not used in this work.

MJD (d)/ Observation ID	EPIC/setup	effective exposure (ks)	Net counts (soft)	Net counts (hard)
55 662/ 0650920101	pn/FF	14.41	53 014	38 114
	MOS1/SW	20.47	–	10 429
	MOS2/SW	19.86	–	10 260
55 684/ 06707000201	pn/FF	13.10	48 680	35 436
	MOS1/SW	22.02	–	11 934
	MOS2/SW	23.20	–	12 224
55 835/ 06707000301	pn/FF	22.18	86 713	58 888
	MOS1/SW	25.82	–	12 975
	MOS2/SW	25.83	–	13 042

The period derivative of RX J0720 was first estimated by Zane et al. (2002) and subsequently further constrained by Cropper et al. (2004) and Kaplan & van Kerkwijk (2005) as new observations became available. Haberl et al. (2006) found that periodical phase residuals were possibly present (again with $P_{\text{long}} \approx 7.5$ yr) in the timing solution of RX J0720 with a constant value of $P = 0.698(2) \times 10^{-13}$ s$^{-1}$ (Kaplan & van Kerkwijk 2005).

The spectral and temporal variations of RX J0720 are unique among the M7 and were explained either by free precession (Haberl et al. 2006; Haberl 2007; Hohle et al. 2009), or a glitch that occurred at MJD = 528 66 ± 73 d (van Kerkwijk et al. 2007). Both scenarios, free precession and the glitch event, have their drawbacks, as discussed in van Kerkwijk et al. (2007) and Hohle et al. (2009, 2010).

The most recent overview of the spectral evolution of RX J0720 was given in Hohle et al. (2009). Since then, our team performed five further XMM–Newton observations. Moreover, three Chandra observations were obtained after the last update of the timing solution (Hohle et al. 2010). Here, we present our analysis and results for these more recent data sets in connection with further spectral and temporal evolution of RX J0720.

2 DATA AND DATA REDUCTION

In addition to Hohle et al. (2009) we analyse here five new XMM–Newton observations, two of which (revolutions 1700 and 1792) were already used for the timing in Hohle et al. (2010), but not for investigating the spectral behaviour. We reduced all available XMM–Newton data of RX J0720 with the standard XMM–Newton Science Analysis System version 11.0 using the EPCHAIN and EMCHAIN tasks for EPIC-pn (Strüder et al. 2001) and EPIC-MOS (Turner et al. 2001), respectively. For details on the analysis of the XMM–Newton data (i.e. data extraction and good time interval filtering) we refer to Hohle et al. (2009, 2010, 2012). We list the three new data sets (neither used for timing, nor for spectroscopy so far) in Table 1. EPIC-MOS was always used in small window (SW) mode with a time resolution of 0.3 s, whereas EPIC-pn was used in full frame (FF) mode (time resolution of 73.4 ms).

We analysed the Chandra HRC-S/LETG (Juda 1996) data with EMCHAIN and referred to Hohle et al. (2010, 2012) for details, both on the data reduction and the most recent Chandra HRC-S/LETG observations (SRON and MPE guaranteed time data) of RX J0720.

Table 2. Effective temperature (kT) and radiation radius (both measured at infinity), flux and EW of the broad absorption feature derived from XMM–Newton EPIC-pn spectra (see also Fig. 1). All observations were performed in FF mode with a thin filter, except revolution 0175 (medium filter) and revolution 0711 (SW mode with a medium filter), which are highlighted in italic. All errors denote 90 per cent confidence level.

Revolution No.	MJD (d)	kT (eV)	Radius (km)	EW (eV)	Flux 0.12–1.0 keV $(10^{-11}$ ergs cm$^{-2}$ s$^{-1}$)
0078	516 77	84.74 ± 0.43	5.33 ±0.10	−8.9 ±3.8	1.090 ±0.094
0175	518 70	84.32 ± 0.57	5.38 ±0.13	−7.9 ±2.7	1.061 ±0.083
0533	525 85	87.01 ± 0.57	5.08 ±0.11	−17.2 ±5.0	1.091 ±0.029
0534	525 87	86.63 ± 0.48	5.13 ±0.10	−20.7 ±4.0	1.080 ±0.090
0711	529 40	92.12 ± 0.56	5.01 ±0.09	−22.5 ±5.0	1.263 ±0.028
0815	531 48	93.80 ± 0.51	4.50 ±0.08	−25.8 ±3.1	1.100 ±0.047
0986	534 89	93.14 ± 0.45	4.51 ±0.07	−23.5 ±4.0	1.083 ±0.026
1060	536 36	93.97 ± 0.47	4.56 ±0.08	−49.2 ±3.8	1.102 ±0.054
1086	536 87	92.24 ± 0.41	4.61 ±0.07	−63.3 ±3.8	1.086 ±0.061
1181	538 77	92.11 ± 0.59	4.68 ±0.07	−46.3 ±3.8	1.091 ±0.080
1265	540 45	92.35 ± 0.58	4.65 ±0.08	−46.1 ±3.7	1.106 ±0.033
1356	542 26	91.35 ± 0.71	4.76 ±0.09	−44.4 ±3.3	1.110 ±0.048
1454	544 21	91.17 ± 0.54	4.71 ±0.10	−40.9 ±2.6	1.090 ±0.074

Observations since Hohle et al. (2009)

1700	549 12	91.05 ± 0.75	4.76 ±0.14	−41.6 ±3.6	1.104 ±0.089
1792	550 96	90.08 ± 0.96	4.87 ±0.18	−39.1 ±2.8	1.067 ±0.078
2076	556 62	89.69 ± 0.65	4.80 ±0.11	−29.1 ±3.8	1.084 ±0.049
2087	556 84	89.80 ± 0.71	4.84 ±0.13	−32.4 ±5.5	1.099 ±0.040
2163	558 35	89.34 ± 0.54	4.87 ±0.11	−35.3 ±4.9	1.077 ±0.012

© 2012 The Authors, MNRAS 423, 1194–1199
Monthly Notices of the Royal Astronomical Society © 2012 RAS

Downloaded from http://academic.oup.com/mnras/article-abstract/423/2/1194/561185 on 16 April 2018 by Groningen University user
Due to the lack of a sufficient amount of photons for the individual spectra, we used the Chandra data for timing analysis only.

3 RESULTS

3.1 Spectral behaviour

To investigate the spectral evolution of RX J0720 we first fitted all 16 EPIC-pn spectra obtained in FF mode with a thin filter in one session using XSPEC12. We used the model phabs*(bbodyrad+gaussian), as also used in Haberl et al. (2004, 2006), Haberl (2007), Hohle et al. (2009) and Hohle et al. (2012), where gaussian is used to account for the broad absorption feature at 0.3 keV. The simultaneous fit of the 16 EPIC-pn data sets resulted in \(\chi^2/\text{d.o.f} = 1.23 \) with 2374 degrees of freedom. We obtained \(N_H = 0.984 \pm 0.050 \times 10^{20} \text{ cm}^{-2} \) for interstellar absorption, \(E_{\text{line}} = 311.9 \pm 5.0 \text{ eV} \) for the central energy and \(\sigma = 64.4 \pm 3.5 \text{ eV} \) for the line width of the broad absorption feature (all errors denote 90 per cent confidence level). These three parameters were assumed to be constant for all observations, as in previous works (Haberl et al. 2004, 2006; Haberl 2007; Hohle et al. 2009). The blackbody temperature \((kT) \), emitting radius \((R) \), computed assuming a distance of \(D = 300 \text{ pc} \), see Kaplan, van Kerkwijk & Anderson 2007; Eisenbeiss 2011) and the line EW were allowed to vary between the observations.

Due to cross-calibration and pile-up issues for the normalization (see Haberl et al. 2004 for a detailed discussion), the data obtained with other instrument setups (revolution 0175 with a medium filter and revolution 0711 in SW mode and medium filter) were fitted separately, but fixing \(N_H \), \(E_{\text{line}} \) and \(\sigma \) at the values obtained from the simultaneous fit of the 16 EPIC-pn spectra performed in FF mode with a thin filter, see Table 2 and Fig. 1.

As reported already in Haberl et al. (2006), the temperature, size of the emitting area and EW underwent major changes around MJD = 530 000 d, but since then (i.e. over the last seven years), all three parameters changed only gradually. XMM–Newton observations cover now a time-span of almost 12 yr; hence, a 7.5 yr period can be excluded. A 14 yr period seems unlikely, since if one extrapolates the spectral evolution (Fig. 1) for two further years,

![Figure 1. Spectral properties of RX J0720, as listed in Table 2.](https://example.com/figure1.png)
Figure 2. Phase residuals of RX J0720 after applying the phase coherent ‘all data’ timing solution in Hohle et al. (2010, H10) with constant spin-down (upper two panels). The top panel illustrates the variable phase shift between soft (0.12–0.40 keV) and hard (0.40–1.00 keV) photons seen in the EPIC-pn data. The glitch solution proposed by van Kerkwijk et al. (2007, vK07) fits well the data available at this time (MJD = 535 00 d), but poorly represents the data at later epochs (third panel). The later (deviant) points require an additional quadratic term (shown with its 1σ uncertainty) to be explained; this corresponds to a modification of the spin-down parameter \dot{f} for $t > t_g$ (Hohle et al. 2010). The phase residuals from the most recent observations (after MJD = 551 00 d) are consistent with the modified glitch solution (lower panel). The glitch time t_g at MJD = 528.66 ± 73 d is indicated by the solid vertical line in the lower two panels. All error bars correspond to 1σ confidence.
the spectral properties are still significantly different to their initial values.

3.2 Timing

Applying the ‘all data’ solution with constant spin-down, Hohle et al. (2010) found that the phase residuals of RX J0720 have shown a long-term behaviour with a possible periodic pattern yielding a 7–9 yr or a 14–16 yr period (depending on assumptions) until summer 2010 (MJD ≈ 554 00 d). Therefore, it was expected that the phase residuals (which were negative at the time of the previous investigation) will approach zero for the next observations. However, the phase residuals still reach large and negative values, if the ‘all data’ solution in Hohle et al. (2010) is applied (Fig. 2, upper two panels) to the new data. Also the variable phase shift between soft and hard photons (Fig. 2, upper panel) stays constant since the last observations, whereas it was expected that the phase shift will reverse sign again, as occurred around MJD = 530 00 d, if RX J0720 precesses. van Kerkwijk et al. (2007) proposed a ‘glitch solution’ to explain the timing behaviour of RX J0720, which fits well the data available at that time (see Fig. 2, third panel), but does not represent the data after MJD = 535 00 d. Hohle et al. (2010) modified the ‘glitch solution’ of van Kerkwijk et al. (2007) by including a change in spin-down f_c, valid for $t > t_g$ (Table 3). This term corrects the drift of the phase residuals in Fig. 2 (third panel), since the time-span available for van Kerkwijk et al. (2007) was too short for a more accurate extrapolation of the phase. Including f_c, even the phase residuals of the data that were not available to Hohle et al. (2010, i.e. after MJD = 551 00 d) are consistent with zero (Fig. 2, lowest panel). Hence, the ‘glitch solution’ of van Kerkwijk et al. (2007) with the update of Hohle et al. (2010) models the timing behaviour of RX J0720 much better than a timing solution with constant spin-down.

4 DISCUSSION

The present data of RX J0720 do not support a cyclic behaviour with a period in the 7–14 yr range in the spectral and timing properties of the source. However, the measured blackbody temperature is still declining and, by extrapolating the linear trend (since the proposed glitch time $t_g = 528 66 \pm 73$ d), RX J0720 will reach its initial state in autumn 2019. It is of interest to follow this decline and assessing whether the temperature will finally stabilize at the pre-2003 value. This requires a monitoring for at least 20 yr in total (out of which 11 yr have been already covered) to reveal any long-term periodicity.

Table 3. The timing parameters of the glitch solution (van Kerkwijk et al. 2007) for RX J0720 with f_c for $t > t_g$. The numbers in parentheses indicate the 2σ errors. The phase is determined by $\Phi(t) = \Phi(t_c) + f(t - t_c) + 0.5 f_c(t - t_c)^2 - 0.5 f_c(t_c)^2 + 0.1 f_c(t_t - t_c)^2 + 0.1 f_c(t - t_c)^2$ and $\Delta \Phi(t) = \Phi(t) - \Phi(t_c)$, with $f_c = 0$ for $t > t_g$.

t_g (MJD)	f (Hz)	f_c $(10^{-15}$ Hz s$^{-1}$)	Δf (nHz)	Δf_c $(10^{-17}$ Hz s$^{-1}$)
530 10.263 5667(10)	0.119 173 6716(9)	-1.04(3)	4.1(12)	-4(3)
t_g (MJD)	528 66(73)	-1.11(20)		

It is not possible to explain both the spectral and temporal changes of RX J0720 by precession with a self-consistent model similar to that discussed in Haberl et al. (2006), fig. 5 therein. This might reflect the lack of knowledge regarding the exact emission geometry (spot shape, temperature distribution, atmospheric effects, etc.) of this NS.

The ‘glitch solution’ of van Kerkwijk et al. (2007) fits well the phase residuals, if the modification by Hohle et al. (2010) is applied. The jump in frequency at MJD = 528 66 ± 73 d would correspond to the gain of angular momentum imparted by a mass of $10^{20}–10^{23}$ g accreted by the NS (van Kerkwijk et al. 2007). Hence, the glitch might have been caused by an accretion event e.g. the impact of an asteroid. Recently, some evidence for a disc or a dense ($n_\text{H} = 10–10^{15}$ cm$^{-3}$) ambient medium around RX J0720 was discussed (Hambaryan et al. 2009; Hohle et al. 2012). This (still) hypothetic disc may host material for such an impact (see discussion in Hohle et al. 2012). However, as illustrated in Fig. 1, the spectral changes occurred already before MJD = 528 66 ± 73 d and this would point rather to a slow change than a sudden event. Also, the variable phase lag between soft and hard photons is difficult to reconcile with an impact. Moreover, the total flux ($120–1000$ eV, Table 2) of RX J0720 remained almost constant, but the fluxes in the soft and the hard band changed significantly (the spectrum became harder until MJD ≈ 530 00 d and now it is softening again, see Fig. 3, suggesting the existence of at least two emission regions with different temperatures). The best-fitting blackbody temperature and size of the emitting area show changes of $\approx 10–20$ per cent. However, it is remarkable that these changes somehow conspire to keep the flux within 10 per cent variation, showing that the changes cannot be caused by a sudden heating alone.

In the case of a glitch or an impact, the total flux is expected to increase. The changes indicate a rearrangement of the flux, rather than heating by a glitch. The long-term changes in the absorption feature are also suggestive of some gradual, non-impulsive mechanism behind the timing behaviour of the source. This leads to the conclusion that the spectral and temporal evolution of RX J0720 might be caused by magnetospheric distortions, and hence a rearrangement of the magnetic field. Note that the broad-band luminosity remains constant in the X-rays, but the source was not monitored at optical frequencies.
and ultraviolet wavelengths (Motch & Haberl 1998; Kaplan et al. 2003; Motch, Zavlin & Haberl 2003; Eisenbeiss et al. 2010).

RX J0720 is close to magnetars in the $P - P$ diagram. In particular, evolutionary connections between the M7 and the soft gamma-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs) have been discussed by many authors (Heyl & Kulkarni 1998; Kaplan & van Kerkwijk 2009b; Popov et al. 2010). AXPs and SGRs have similar pulse periods and are younger (by a factor of 10–100) than the M7. Despite low statistics (only ≈ 10 objects in each group are observed) and the unsettled properties of some objects, Popov et al. (2010) have shown that the different families of NSs can be explained by one evolutionary model. A possibility, then, is that the M7 descend from SGRs/AXPs and are aged magnetars in which the magnetic dipole field decayed from the initial $\approx 10^{14}$ G to the present $\approx 10^{13}$ G. The decay of the surface field is actually triggered by the decay of the internal, toroidal and poloidal one. It is the progressive exhaustion of internal magnetic helicity that is responsible for the low-level activity of old magnetars (bursting/outbursting behaviour and non-thermal X-ray spectral components). The recent discovery of a low-field SGR (Rea et al. 2010) and its likely interpretation as an aged magnetar (Turolla et al. 2011) lends further support to this picture. It could be that, contrary to SGR 0418+5729, the initial internal toroidal field in RX J0720 was not strong enough to power an outburst in its late stages of evolution (Perna & Pons 2011) and the last hiccups of activity were seen as moderate changes in the spectral and timing properties. In this case, we should witness more erratic spectral and temporal irregularities in the future, if the monitoring of RX J0720 will be continued.

ACKNOWLEDGMENTS

The XMM–Newton project is supported by the Bundesministerium für Wirtschaft und Technologie/Deutsches Zentrum für Luft- und Raumfahrt (BMWi/DLR, FKZ 50 OX 0001) and the Max-Planck Society. MMH acknowledges support by the Deutsche Forschungsgemeinschaft (DFG) through SFB/TR 7 ‘Gravitationswellenastrophysik’. The work of RT is funded by INAF through the PRIN 2011 grant scheme. We are grateful to SRON and MPE for allowing us to observe RX J0720 as part of their Chandra guaranteed time programme.

REFERENCES

Cropper M., Zane S., Ramsay G., Haberl F., Motch C., 2001, A&A, 365, L302
Cropper M., Haberl F., Zane S., Zavlin V. E., 2004, MNRAS, 351, 1099
de Vries C. P., Vink J., Méndez M., Verbunt F., 2004, A&A, 415, L31

This paper has been typeset from a \LaTeX\ file prepared by the author.