The complete chloroplast genome of Lonicera hypoglauca Miq (Caprifoliaceae: Dipsacales) from Guangxi, China

Lei Gua, Qinghua Wub, Yin Yia and Zhengwen Yua

aSchool of Life Science, Guizhou Normal University, Guiyang, China; bGuangxi Botanical Garden of Medicinal Plants, Nanning, China

ABSTRACT

Lonicera hypoglauca Miq, which is widely distributed in south China, is an important Chinese plant used in traditional medicine. Here we report the first complete chloroplast (cp) genome sequence of this species. The circular cp genome is 154,581 bp in size, including a large single-copy (LSC) region of 88,379 bp and a small single-copy (SSC) region of 18,646 bp, which was separated by two inverted repeat (IR) regions (IRA and IRB, 23,778 bp each). A total of 121 genes were annotated, including 8 ribosomal RNAs (rRNAs), 33 transfer RNAs (tRNAs) and 80 protein-coding genes (PCGs). Phylogenetic analysis of 20 representative members within the Caprifoliaceae showed that *L. hypoglauca* is closely related to the *Lonicera macranthoides*. This study provides important genetic information for future systematic and evolutionary studies of *L. hypoglauca*.

CONTACT

Yin Yi
yiyin@gznu.edu.cn Zhengwen Yu
yuzhengwen2001@126.com School of Life Science, Guizhou Normal University, Guiyang 550025, China

ARTICLE HISTORY

Received 11 December 2020 Accepted 23 December 2020

KEYWORDS

Lonicera hypoglauca; Caprifoliaceae; complete chloroplast genome; phylogenetic
fully resolved in a clade with *L. macranthoides*, sister to two other species of *Lonicera*, *L. confusa* and *L. japonica* (Figure 1). Compared to other Flos Lonicerae members, *L. hypoglauca* was also fully resolved in a clade with *L. macranthoides* according to *rbcL* gene sequence analysis (Li et al. 2012). Because of the closely evolutionary relationship between *L. macranthoides* and *L. hypoglauca*, in comparison with other DNA barcodes, only the *psbA-trnH* intergenic spacer sequence had appropriate mutation sites to distinguish *L. macranthoides* and *L. hypoglauca* (Sun et al. 2011).

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This study was supported by the National Natural Science Foundation of China under Grant [No. U1812401, 32060068], and the Guizhou Provincial Science and Technology Foundation under Grant [No. 2020-1Y096].

Data availability statement

The complete chloroplast genome data that support the findings of this study are openly available in GenBank of NCBI at https://www.ncbi.nlm.nih.gov under the accession number MW186761. The associated BioProject, SRA, and Bio-Sample numbers are PRJNA674956, SRX9460983, and SAMN16684231, respectively.

References

Chien SC, Yang CW, Tseng YH, Tsay HS, Kuo YH, Wang SY. 2009. *Lonicera hypoglauca* inhibits xanthine oxidase and reduces serum uric acid in mice. *Planta Med.* 75(4):302–306.

Jin JJ, Yu WB, Yang JB, Song Y, dePamphilis CW, Yi T-S, Li D-Z. 2019. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. *bioRxiv*. 256479.

Li X, Tao Z, Wu Z, Lin X, Fan C. 2012. *RbcL* sequence analysis of *Lonicera* in the South of Zhejiang province. *J Wenzhou Med College*. 42: 549–552.

Li Y, Cai W, Weng X, Li Q, Wang Y, Chen Y, Zhang W, Yang Q, Guo Y, Zhu X, et al. 2015. *Lonicerae Japonicae Flos* and *Lonicerae Flos*: a systematic pharmacology review. *Evid Based Complement Alternat Med.* 2015:905063.

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. *Bioinformatics*. 30(9): 1312–1313.

Sun Z, Gao T, Yao H, Shi L, Zhu Y, Chen S. 2011. Identification of *Lonicera japonica* and its related species using the DNA barcoding method. *Planta Med.* 77(3):301–306.

Tillich M, Lehwark P, Pellizzer T, Ulbricht-Jones ES, Fischer A, Bock R, Greiner S. 2017. GeSeq – versatile and accurate annotation of organelle genomes. *Nucleic Acids Res.* 45(W1):W6–W11.

Wang SY, Tseng CP, Tsai KC, Lin CF, Wen CY, Tsay HS, Sakamoto N, Tseng CH, Cheng JC. 2009. Bioactivity-guided screening identifies pheophytin a as a potent anti-hepatitis C virus compound from *Lonicera hypoglauca* Miq. *Biochem Biophys Res Commun.* 385(2): 230–235.

Zhang B, Yang R, Zhao Y, Liu CZ. 2008. Separation of chlorogenic acid from honeysuckle crude extracts by macroporous resins. *J Chromatogr B Analyt Technol Biomed Life Sci.* 867(2):253–258.

Figure 1. Maximum likelihood tree based on the complete cp genome sequences of 20 species from the Caprifoliaceae. GenBank accession numbers follow the binomials included in the figure. Shown next to the nodes are bootstrap support values based on 1,000 replicates.