Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
A new subunit vaccine based on nucleoprotein nanoparticles confers partial clinical and virological protection in calves against bovine respiratory syncytial virus

Sabine Riffault, Gilles Meyer, Martine Deplanche, Catherine Dubuquoy, Guillaume Durand, Marion Soulestin, Nathalie Castagné, Julie Bernard, Philippe Bernardet, Virginie Dubosclard, Florence Bernex, Agnès Petit-Camurda, Sébastien Deville, Isabelle Schwartz-Cornil, Jean-François Eléouët

UR892 INRA, 78350 Jouy-en-Josas, France
UMR1225 INRA-ENVT, Ecole Nationale Vétérinaire, 31076 Toulouse, France
UE1277 INRA, 37380 Nouzilly, France
UMR955 INRA-ENV Alfort, Ecole Nationale Vétérinaire d’Alfort, 94704 Maisons-Alfort, France
SEPPIC, Inc., 22 terasse Bellini, 92800 Puteaux, France

Article info
Article history:
Received 19 January 2010
Received in revised form 1 March 2010
Accepted 5 March 2010
Available online 20 March 2010

Keywords:
Respiratory syncytial virus
Nucleoprotein
Calves
Bronchopneumonia

Abstract
Human and bovine respiratory syncytial viruses (HRSV and BRSV) are two closely related, worldwide prevalent viruses that are the leading cause of severe airway disease in children and calves, respectively. Efficacy of commercial bovine vaccines needs improvement and no human vaccine is licensed yet. We reported that nasal vaccination with the HRSV nucleoprotein produced as recombinant ring-shaped nanoparticles (NRS) protects mice against a viral challenge with HRSV. The aim of this work was to evaluate this new vaccine that uses a conserved viral antigen, in calves, natural hosts for BRSV. Calves, free of colostral or natural anti-BRSV antibodies, were vaccinated with NRS either intramuscularly, or both intramuscularly and intranasally using MontanideTM ISA71 and IMS4132 as adjuvants and challenged with BRSV. All vaccinated calves developed anti-N antibodies in blood and nasal secretions and N-specific cellular immunity in local lymph nodes. Clinical monitoring post-challenge demonstrated moderate respiratory pathology with local lung tissue consolidations for the non-vaccinated calves that were significantly reduced in the vaccinated calves. Vaccinated calves had lower viral loads than the non-vaccinated control calves. Thus NRS vaccination in calves provided cross-protective immunity against BRSV infection without adverse inflammatory reaction.

1. Introduction

Human and bovine respiratory syncytial viruses (HRSV and BRSV) are two closely related, highly infectious, worldwide prevalent viruses that are the leading cause of acute lower respiratory tract disease in children and calves, respectively [1]. RSV is a negative strand RNA virus that belongs to the Pneumovirus genus within the Paramyxoviridae family. The frequency and seriousness of BRSV diseases are regarded as the principal health problem in calf rearing worldwide and are responsible for large economic losses in dairy and beef farming. The frequency of BRSV infections is very high in calf less than 1-year-old and the virus may be responsible for more than 60% of the epizootic respiratory diseases observed in dairy herds and up to 70% in beef herds [2]. Mortality caused by BRSV infections ranges generally between 0.5% and 3% but can reach up to 20% in some outbreaks [3]. The control of BRSV infections is a high priority for animal health and farming organizations, not only for economic reasons, but also due to the impact on animal welfare. Several commercial BRSV vaccines, including modified-live virus and inactivated single fraction are available for use in cattle. Their efficacy needs improvement in terms of duration of protection, clinical and virological protection. Even though the commercial bovine vaccines probably have reduced the prevalence of infection, BRSV continues to circulate in cattle populations.

No commercial vaccine is available against HRSV, a pathogen of major importance in infants. HRSV induced-bronchiolitis is the most common cause of infant hospitalization in industrialized countries and is a suspected risk factor of recurrent wheeze and asthma in later life [4]. The main reason for the lack of human
vaccine is the dramatic failure in the late sixties of a formalin inactivated HRSV vaccine that not only failed to protect against subsequent infection but also induced exacerbated disease in children [5]. Vaccine augmented disease has also been described in calves and some commercial BRSV vaccines were withdrawn from the market for that reason [6,7]. Other obstacles to vaccination exist, such as the need to immunize immunologically immature young infants and the presence of maternal antibodies that can have a strong suppressive effect on the outcome of vaccination, both in animals and humans.

Experimental models in rodents have been developed to find out the immune correlates of protection versus disease exacerbation and help the conception of safe RSV vaccines. Altogether these studies highlight the delicate tuning between cytotoxic anti-viral CD8 T cells and RSV-specific antibodies, which, although generally protective against RSV infection, may both have deleterious effect [8]. For instance, poorly neutralizing antibodies with low avidity for the protective RSV epitopes can lead to enhanced respiratory syncytial virus disease [9]. The RSV-F and G glycoproteins, which are situated at the surface of the virions, are the targets of neutralizing antibodies. Research on HRSV subunit vaccines has essentially focused on these two proteins, by using chimeric FG glycoprotein, full-length F proteins or a recombinant protein containing the central antigenic domain of the HRSV G protein fused to the C-terminal end of the albumin-binding domain of the streptococcal G protein [10]. However, recombinant G and F or chimeric FG were often found to cause enhancement of lung pathology upon RSV challenge, in association with the priming of Th2 cells [1,11].

In addition to the risk of disease exacerbation by vaccination, another critical issue for human or bovine RSV vaccination is the variability of the viral isolates circulating worldwide. An effective bovine or human vaccine should protect against all of them. The nucleoprotein (N) that covers the viral RNA genome, forming the viral nucleocapsid, is the most conserved of RSV proteins and is a major target of the cellular immune response against RSV [12–14]. Thus, contrary to F or G antigens, N-based vaccines offer the possibility of T-cell-mediated cross-protective immunity against circulating RSV. Strategies aimed at using N in a vaccine to stimulate T-cell immunity have focused on live-attenuated virus vector and on DNA vaccine. Vaccination of mice with recombinant vaccinia virus encoding the HRSV N protein induced partial protection [15,16]. Similarly, immunization of young calves with a recombinant vaccinia virus expressing the BRSV N protein induced non-neutralizing antibodies and primed BRSV-specific proliferative T response and IFN-γ production that resulted in reduction of viral replication in the upper and lower respiratory tract [17]. DNA immunization by two administrations of plasmids encoding BRSV-F and N proteins primed a strong cell-mediated immunity in calves, which drastically reduced viral replication, clinical signs and pulmonary lesions after a highly virulent challenge [18]. More recently a nucleocapsid-based DNA prime–protein boost vaccination was shown to confer protection against BRSV replication and lung pathology [19].

Compared to DNA, or live-attenuated vector vaccines, subunit vaccines are safer because they do not present the risk of replication/integration of genetically modified material. However subunit vaccines using the nucleoprotein (N) have been poorly investigated, in part because a recombinant N was difficult to produce as a soluble protein. We have set up an original technology to engineer circular nanoparticles composed of 10–11 recombinant N [20], the 3D structures of which have just been solved [21]. These nanoparticles are named N_{NR} for sub-nucleocapsid ring structures [20]. Intranasal vaccination of mice with HRSV N_{NR} nanoparticles primes N-specific CD4 and CD8 T cells and significantly reduces titers of RSV in the lungs of mice following HRSV challenge without signs of disease exacerbation [22]. One major limit of the mouse model is the absence of respiratory disease in response to RSV infection. Therefore the objectives of the present study were to evaluate the potency of N_{NR} as a vaccine in calves that are the natural host for BRSV and that display clinical respiratory symptoms and lung lesions upon infection. Because the N amino acid sequence is highly conserved between bovine and human RSV strains (~94% amino acid identity), we took it as an opportunity to test whether N_{NR} from HRSV strain Long would provide cross-protective immunity against viral challenge with a BRSV strain. The data presented in this study showed that vaccination with the nano-rings N_{NR} partially protected against both respiratory disease and virus replication upon BRSV challenge without signs of vaccine-mediated disease exacerbation.

2. Materials and methods

2.1. Plasmid constructions

The pGEX-PCT (coding for residues 161–241 of the C-terminal fragment of the phosphoprotein, named PCT, fused to glutathione-S-transferase) and pET-N plasmids which contain sequences from the HRSV Long strain have been described previously [20]. Random-primed cDNA synthesis was done using SuperscriptIII (GIBCO, Invitrogen Life Science, France) and 1 μg of total cytoplasmic RNA isolated from bovine Turbine cells infected with the A2Gelfi strain of BRSV [23,24]. The cDNAs were amplified by PCR with high fidelity Pfu Turbo Polymerase (5U, Stratagene, Agilent Technologies, France) and 100 ng of the following primers:

N-A2G+: 5′-GAGGAGGCATGGCTCTTTAGCAAGGTCAAACTAAATGG-3′;
N-A2G−: 5′-GAGGAGCTCGAGTCAAAATTCCACATCATTTATTTTGG-3′;
P-A2G+: 5′-GAGGGATCCATGCTGCTGCTGATGGTATAAGAGATGGC-3′;
P-A2G−: 5′-GAGGGATCCATGCTGCTGCTGATGGTATAAGAGATGCCAT-3′.

The amplified full-length cDNA coding for BRSV N protein was digested subsequently by Ncol and Xhol and cloned into pET-28a(+) vector (Novagen, Merck Chemicals products, Germany). The PCT coding for amino acid residues 161–241 of BRSV P protein was digested subsequently by BamHI and Xhol and inserted into the pGEX-4T3 expression vector (Pharmacia, France). Constructs were verified by sequencing.

2.2. Expression and purification of recombinant HRSV and BRSV proteins from E. coli

E. coli BL21(DE3) (Novagen, Merck Chemicals products, Germany) cells were co-transformed with the pGEX-PCT and pET-N plasmids coding for either BRSV or HRSV proteins. Recombinant protein expression was induced by IPTG and proteins were purified by glutathione–Sepharose affinity (Pharmacia, France). HRSV N + PCT complexes were separated from glutathione–Sepharose beads by biotinylated-thrombin cleavage in Tris 10 mM pH 8.5, NaCl 140 mM and thrombin was removed by the Thrombin Cleavage Capture kit according to manufacturer’s instructions (Novagen, Merck Chemicals products, Germany). This protocol allows the purification of recombinant HRSV N proteins via their capacity to interact with the C-terminal fragment of P fused to GST (named GST–PCT) as previously described [20]. According to this procedure, 10 to 11 N proteins assemble into ring-shaped structures containing RNA subsequently named N_{NR} for sub-nucleocapsid ring structures [20]. Two hundred and fifty milligrams of HRSV N_{NR} were produced.
2.3. Adjuvant and vaccine formulation

For i.m. injection, NRSRS was formulated in Montanide™ ISA71 VG (SEPPIC, Air Liquide, France) at a final concentration of 1 mg/ml. Montanide™ ISA 71 VG is a blend of an oil and an ester from mannnitol sugar and oleic fatty acid (anhydromannitil octadecenoate ether) with specific emulsifying properties due to its sugar polar head, its non-ionicity and the specificity of fatty acid chains of the surfactant system. The oleic acid and the sugar polar part used are from a vegetable origin. Experimental small scale vaccine emulsion was performed using silverson L4RT with tubular system mixer. The ratio of Montanide™ 71 VG/aqueous phase was 7 g of adjuvant/3 g antigenic phase. Montanide™ 71 VG was added first in a beaker and the head of the silverson was placed in the oil with agitation at 1000 rpm. The appropriate amount of antigenic phase (at the same temperature than the Montanide™ 71 VG) was then added progressively, and the rotation speed was increased to 5000 rpm for 3 min, with gentle moving of the beaker. To control that NRSRS were not denatured in emulsion with Montanide™ ISA71 VG, 0.1 ml of butanol was added to 1 ml of emulsion, resulting in separation of aqueous and organic phases. Proteins present in the aqueous phase were dosed and imaged by negative-stain microscopy with a Philips CM12 microscope operated at an accelerating voltage of 120 kV.

For i.n. administration, NRSRS was formulated in 25% (V/V) Montanide™ IMS 4132 VG (SEPPIC, Air Liquide, France) at a final concentration of 5 mg/ml. Montanide™ IMS 4132 VG is a ready to dilute water-soluble vaccine adjuvant. Montanide™ IMS are an association of apolar amphiphile nanoparticles combined with a soluble immunostimulant. All raw materials used in this formulation have monographs in different pharmacopoeia and/or are already used in injectables for human. This adjuvant has been specifically selected for the intranasal trial due to its high spreadability. Experimental vaccine formulation was done by a simple dilution of the antigenic media in the adjuvant under gentle magnetic steering.

2.4. Virus and inoculum preparation

BRSV isolate 3761 (BRSV-3761) was isolated from a nasal swab of a calf with distress respiratory syndrome in 2003 [1]. The virus was then replicated for five passages in Bovine Turbinate cells (American Type Culture Collection, CRL 1390) and was amplified by 3 passages in newborn calves to give the BRSV-3761 inoculum. Passages in newborn calves were performed as follows: a 2-days-old calf, deprived of colostrum and maternal antibodies, was inoculated by intranasal and intratracheal routes with 10\(^6\) PFU of BRSV-3761. Calf was euthanized under anesthesia 5 days later and bronchoalveolar lavage (BAL) was performed in the lung with 500 ml of MEM medium supplemented with enrofloxacin (0.02 \(\mu\)g/ml, Baytril 5%, Bayer, France) and fungizone (2.5 \(\mu\)g/ml, Invitrogen Life Science, France). This BAL was snap frozen at -180 °C. The same method was used to obtain and store BAL at the second and third passages. The challenge inoculum of the present study consisted of the BAL at the third passage and was free of the following bovine respiratory pathogens: Mannheimia haemolytica, Pasteurella multocida, Mycoplasma bovis, Bovine Viral diarrhea virus (BDV), bovine parainfluenza type 3, bovine Adenovirus 3, bovine coronavirus, and bovine herpesvirus 1. The titre of the challenge inoculum was 5 \(\times\) 10\(^8\) PFU/ml. Infectivity of the inoculum was controlled after challenge (3.8 \(\times\) 10\(^3\) PFU/ml, when tested 6 h after experimental infection).

2.5. Experimental design (Table 1)

Twenty-four Normandy x Holstein breed male calves were selected at birth, reared in isolation unit (A2 level of bio safety, INRA Experimental Platform of Infectiology, Nouzilly, France) from birth to euthanasia and allocated to specific units, according to experimental groups. Animals were housed in biocontainment facilities as prescribed by the guidelines of the European Community Council on Animal Care (86/609/CEE) and under the authority of licence issued by the Direction des Services Vétérinaires (accreditation number 31–234). Calves were colostrum deprived until 3 days after birth and then received a substitute of colostrum (CER Marloie, Belgium) by oral route for 4 days to protect them against enteric pathogens. They were fed with commercial milk for first age (Sanders Ouest SAS, Champagne, France). Antibiotics (1 mg/kg ceftiofur, Cobactan, Schering-Plough Intervet, France) were administrated from birth to 7 days. Absence of maternal antibodies against BRSV was confirmed by IgG detection (indirect BRSV ELISA, LSI, Lissieu, France) in blood of calves at 7 days after birth. BRSV ELISA was also performed each week before inoculation, to rule out natural BRSV infection during rearing. Absence of BVDV in calves was assessed at birth and one week before challenge by negative detection of the BVDV p80-125 antigen (Sereslia BVDV-BD, Synbiotics, Lyon, France) and by negative RT-PCR [25]. All calves remained healthy during the 3-month period before challenge. At the end of the experiment all calves were found seronegatives for bovine parainfluenza type 3.

Calves were randomly allocated in three groups. They were 1-month-old ±10 days at day of vaccination (considered as day 0). The first group (8 calves) was vaccinated twice at 3 weeks interval with 2 mg of NRSRS protein with Montanide™ ISA71 VG adjuvant by the intramuscular route (2 ml, left flank). The second group (8 calves) received twice at 3 weeks interval 2 mg of NRSRS protein with Montanide™ ISA71 VG adjuvant by the intramuscular route (2 ml, left flank) and 10 mg of NRSRS protein with Montanide™ IMS 4132 VG adjuvant by the intranasal route (1 ml per nostril, using a nebulizer device for medical use, MADgic700, Wolfe Tory Medical, Utah, USA). The doses of antigen were defined according to one preliminary experiment done in calf to test the safety and immunogenicity of the NRSRS/adjuvant formulations (not shown). The last group (8 calves) was untreated and served as negative control for the two vaccination regimen. Three weeks after the final vaccination, all calves were challenged with 10\(^5\) PFU of the BRSV-3761 inoculum by intranasal nebulization (10 ml, tracheine IBR vaccine nebulizator) and intratracheal route (10 ml, Intraflon 2 catheter, Vycon, France). Two calves per group were euthanized under general anesthesia overdose (5 mg/kg ketamine followed by 15 mg/kg pentobarbital sodium) 6 days post-challenge (day 48), the remaining being euthanized 20 days post-challenge (day 62).

2.6. Clinical examination

Calves were observed for clinical signs of respiratory tract disease from 3 days prior infection to 20 days post-infection. Clinical assessments were made at the same time twice a day by the same veterinarian. Calves were examined for body temperature, nasal discharge, coughing, decrease appetite, general state, abnormal breathing, respiratory rate and abnormal lung sounds. Clinical scores were done for each calf as already described [26] with slight modifications. Rectal temperatures and respiratory frequencies were evaluated separately. Scores for respiratory rates (RR/min) were 0 (RR < 35), 1 (35 < RR < 45), 2 (45 < RR < 60) and 4 (RR > 60). A score between 0 (normal), 1 (mild) or 2 (severe) was attributed for nasal discharge, coughing, decrease appetite, general state, dyspnoea, and abnormal lung sound parameters, respectively. A fold coefficient of 3, 1, 3, 2, 2, 3 and 3 was subsequently attributed for respiratory rate, nasal discharge, coughing, decrease appetite, general state, dyspnoea, and abnormal lung sound parameters, respectively.
Table 1
Study design.

Group label (no.)	Vaccination (s)	Challenge	No. of euthanized calves
	Day 0		
No vaccine (n=8)	N²RS i.m. (n=8)	N²RS i.m.	
N²RS i.m. i.n. (n=8)	N²RS i.m.	N²RS i.m.	
	Day 21		
	N²RS i.m.	N²RS i.m.	
	N²RS i.m. i.n.	N²RS i.m. i.n.	

2.7. Fluid and tissue samples collected

To follow antigen-specific antibody responses, nasal swabs in PBS 0.1% Tween and anti-proteases (Complete Mini, Roche Applied Science, Indianapolis, USA) and blood samples were collected at days 0, 20, 41 and 62. To monitor virus detection after challenge, nasal swabs were collected daily from days 39 to 62 from each animal in 1 ml of RTL-buffer (Qiagen S.A., France) for real time RT-PCR or in 1 ml PBS buffer for commercial EIA assay (Speed® ReSpiVB VTT, La Seyne-sur-Mer, France).

Complete necropsies of calves were performed immediately after euthanasia at days 48 and 62. Lymphatic nodes (prescapular, tracheo-bronchial and mediastinal) were dissected out and processed for subsequent T cell assays. Lung macroscopic lesions were recorded on a standard lung diagram and expressed as % pneumatic consolidation of the cranial lobes (photographs were taken). BAL was performed with 500 ml D-MEM supplemented with antibiotics. After cell enumeration, 2 × 10⁵ BAL cells were cyto-centrifuged (Cytospin 4, Shandon, Thermo Scientific, France) on Superfrost plus slides (SFPLUS-42, Milan, France) for May-Grünwald-Giemsa (Cytospin 4, Shandon, Thermo Scientific, France) staining. Binding of primary Ab was revealed by adding HRP-matched mouse Ab was used as a control for non-specific binding. After cell numeration, 2 × 10⁵ cells were fixed in Cyto-Chex (Streck, NE, USA) for flow cytometry analysis. The left-over BAL cells were lysed in RTL-buffer (RNasey Mini, Qiagen S.A., France) for RNA extraction. Microscopic analysis was performed on tissue samples from the right cranial lobes of lungs, fixed in formaldehyde, embedded in paraffin, 4-μm sectioned, deparaffinized and counterstained with hematoxylin/eosin/safran, analyzed and photographed. Examination for bacterial infection was performed on the same tissue samples after Gram staining. Samples of cranial lobe of the lungs were also collected in RNAlater (Qiagen S.A., France) for subsequent BRSV quantification by real time RT-PCR.

2.8. Real time RT-PCR

Virus shedding in nasal swabs was quantitatively determined by a real time RT-PCR assay according to Boxus et al. [27] except that quantitative analysis of BRSV RNA was performed relative to the bovine glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expressed housekeeping gene [28]. The same RT-PCR was used for quantification of BRSV in BAL and lung tissues.

2.9. Immunostaining of BRSV antigens in lung tissue sections

Paraffin-embedded lung tissue sections were deparaffinized, rehydrated in Tris 0.05 M pH 7.4 with 0.2 CaCl₂ and then permeabilized with 0.02% Saponin (Sigma–Aldrich, France). BRSV antigens were detected using MoAb IgG2b anti RSV-F (clone B016, AbD Serotec, Germany) diluted 1:100 in Tris 0.05 M pH 7.4. 0.2% CaCl₂ and 0.02% Saponin. An irrelevant isotype-matched mouse Ab was used as a control for non-specific staining. Binding of primary Ab was revealed by adding HRP-conjugated anti-mouse IgG followed by the insoluble peroxidase substrate 3,3’-Diaminobenzidine (SigmaFast™, Sigma–Aldrich, France). The tissue sections were then counterstained with hematoxylin.

2.10. Flow cytometry analysis of BAL lymphocytes

One million BAL cells were incubated for 20 min in RPMI containing 10% horse serum (RPMI-HS) on ice. BAL cells were then stained for 30 min on ice with mouse MoAbs anti-bovine CD4 (IgG2a, clone ILA11, VMRD, WA, USA), CD8 (IgM, clone B-109, VMRD, WA, USA) and CD45RO (IgG3, clone ILA116, VMRD, WA, USA), or matching isotype control mouse antibodies, all diluted 1:500 in RPMI-HS. BAL cells were washed and then incubated for another 30 min with anti-isotype antibodies conjugated to fluorochromes (FITC anti-IgG3, PE anti-IgG2a, Cy5 anti-IgM, Invitorgen Life Science, France). Cells were then fixed in 10% CellFIX (BD Biosciences, France). All samples were analyzed on a FACScalibur (BD Biosciences, France) collecting data on at least 20,000 lymphocytes gated according to their forward and side scatter features.

2.11. Preparation of lymph node cells

Lymph nodes were mechanically disrupted for cell dissociation in sterile RPMI-1640 medium plus 10% fetal calf serum (FCS) at 4 °C. The recovered cells were filtered through a sterile 100 μm cell strainer (BD Biosciences, France) and washed twice in RPMI-1640 medium plus 10% FCS, PBMC and lymph node cells were finally suspended in X-vivo 15 medium (BioWhittaker, Lonza, Switzerland) supplemented with 1% FCS, 2 mM l-glutamine, 100 U/ml Penicillin and 0.1 mg/ml Streptomycin and cultivated in vitro for T cell proliferation or IFN-γ detection assays.

2.12. Antigen-specific lymphoproliferation assays

Proliferation assays were carried out in 96-well flat-bottomed plates. Isolated lymph node cells were seeded in triplicate at 3 × 10⁵ cells per well with or without N²RS (10 μg/ml final concentration). Plates were incubated at 37 °C in 5% CO₂ for 96 h, then pulsed overnight with 1 μCi [³H]-thymidine per well. Cells were then collected on filter mats using a cell harvester (Filtermate, PerkinElmer, France) and radioactivity was measured in a liquid scintillation luminescence counter (MicroBeta Trilux, Wallac Inc., Gaithersburg, MD, USA). Results were expressed as stimulation indexes (cpm of stimulated cells over cpm of unstimulated control cells).

2.13. IFN-γ production

Lymph node cells were plated in 96-well plates (Falcon 3072) in triplicates at 3 × 10⁵ cells per well and incubated at 37 °C, in 5% CO₂, with or without N²RS (10 μg/ml final concentration). Supernatants were harvested at 72 h and the IFN-γ content was tested using a specific ELISA test (Bovigam, Biocor, Melbourne, Australia), according to manufacturer’s instructions. Results were expressed as stimulation indexes (OD₄₅₀ nm of N²RS-stimulated cells over OD of unstimulated control cells).

2.14. Detection of N²RS-specific bovine antibody by ELISA

Individual sera and nasal secretions were assayed for N-specific antibodies (total Ig, IgG1 and IgA) by ELISA. Microtiter plates (Immulon 2HB, Thermo Labsystems, France) were coated
3.1. Nano-rings were obtained with N from HRSV Long strain, formulated with Montanide™ adjuvants and tested for their immunogenicity

We have previously shown that soluble RNA-nucleoprotein complexes forming nano-rings (N_{NRS}) can be purified from bacteria expressing recombinant N and the C-terminal region (residues 161–241) of P protein (PCT) from the HRSV Long strain [20]. The same protocol was used in order to purify BRSV N proteins. The BRSV N protein was co-expressed with PCT from either HRSV or BRSV origin. As shown in Fig. 1a, the BRSV N protein (strain A2Gelfi) was only recovered in the unsoluble fraction of bacterial lysates, and attempts to purify it by co-expression with GST-PCT were unsuccessful, either using PCT from BRSV or HRSV origin. On the other hand, the HRSV N protein was soluble and efficiently purified by BRSV PCT fused to GST (Fig. 1a).

The N proteins of human strain Long and bovine strain 3761 are highly conserved since they share 93.6% of sequence amino acid identity and 99.2% of amino acid sequence similarity (Fig. 1b). Thus we used the N_{NRS} nano-rings derived from the HRSV Long strain as a vaccine candidate against BRSV infection. To control that N_{NRS} were not degraded after emulsification with Montanide™ ISA71 VG or MontanideTM IMS4132 VG, the proteins present in the two formulations were analyzed by SDS-PAGE native gel electrophoresis and electron microscopy as described previously [20]. In both cases, the N protein was recovered as SRS (data not shown).

Intramuscular injection is the classical way to vaccinate bovine. Our previous data in mice showed that nasal vaccination with the nano-rings N_{NRS} was the most efficient immunization route for preventing HRSV replication in lung [22]. Thus we decided to administer the N_{NRS} vaccine via both intramuscular and intranasal route at the same time (group N_{NRS} i.m. + i.n.) and test the benefit of nasal vaccination by comparison with a group of calves receiving the vaccine by intramuscular injection only (group N_{NRS} i.m.). All calves were vaccinated twice at 3 weeks interval. A third group of calves was left untreated (group "no vaccine"). No adverse clinical reactions were observed after the first or second immunizations.

To monitor the immunogenicity of the vaccine regimen, N-specific antibodies were investigated in serum samples and nasal secretions (Fig. 2). Calves vaccinated with N_{NRS} either i.m. or i.m. + i.n. displayed anti-N Ab in serum and in nasal secretions, detectable after the first immunization and increasing after the booster immunization (Fig. 2a and b). Anti-N Ab titers were not different between the two vaccinated groups. The nasal anti-N Ab response was of IgG1 isotype (Fig. 2c), with lower anti-N IgA titers arising mostly after the booster immunization (Fig. 2d).

Intranasal vaccination reduced clinical symptoms and extension of lung lesions upon BRSV challenge

After challenge, all calves showed mild clinical signs of upper respiratory tract infection that were essentially characterized by slight mucous nasal discharge, except for one calf of group N_{NRS} i.m. which remained healthy. Cough was observed in two non-vaccinated calves for 2–3 days. Moderate hyperthermia was observed in all calves with no statistical differences between the 3 groups (data not shown). Respiratory signs consisted of moderate to high increased respiratory rates and mild dyspnoea with increasing lung sounds. Dyspnoea was also associated with wheezes and crackles in some calves. Among the 6 calves of the non-vaccinated control group, one calf was slightly affected, 4 calves were moderately ill and one calf developed a marked dyspnoea, with abnormal breathing, discordance, surrounding lung sounds of the cranial lobe, wheezes and crackles. For the six calves of group N_{NRS} i.m., one calf showed no clinical signs, 2 calves developed very mild respiratory symptoms and 3 calves developed a moderate dyspnoea. Finally, 3 calves of the group N_{NRS} i.m. + i.n. developed very mild respiratory signs and the other 3 showed a moderate dyspnoea. The mean clinical scores are shown in Fig. 3. Statistical analyses (three-factor
Fig. 1. Production of soluble N from HRSV or BRSV origin. (a) Coomassie blue-stained SDS-PAGE analysis of GST-PCT and N proteins from HRSV (strain Long) and BRSV (strain A2Gelfi) expressed in E. coli. Cell lysates (L) were centrifuged and the soluble (S) or unsoluble (P) fractions were run on a 12% polyacrylamide gel. Proteins were purified by glutathione–Sepharose affinity from the cell lysates and the proteins pulled-down with the sepharose beads (B) were analyzed on the same gel. GST-PCT from HRSV or BRSV together with the HRSV N protein were soluble, while BRSV N was only found in the unsoluble fraction. The HRSV N protein was efficiently purified by the BRSV PCT fragment.

(b) N protein sequence comparison between HRSV Long strain and BRSV 3761 strain with the ClustalW2 sequence alignment program. Stars and points indicate amino acid identities and similarities (two dots indicate strong similarity, one dot weak similarity), respectively.

Table 2
Clinical signs and lung lesions post-BRSV challenge.

	Clinical signs (days)	Lung lesions at day 6		
	Onset (n = 6)	Peak (n = 6)	Duration (n = 6)	Extent (%) of consolidation in cranial left/right lobes per calf
No vaccine				
	4.1 ± 0.3	6.2 ± 0.7	18.2 ± 0.6	10/10; 20/15
NLPS i.m.				
NLPS i.m. + i.n.	2.5 ± 0.3	7.5 ± 0.6	13.5 ± 2.5	5/5; 5/5

a Data (onset, peak, duration) are given as mean ± SEM.

b Stars indicate significant differences using the non-parametric Mann–Whitney U-test (p one-tailed) between the vaccinated groups (NLPS i.m. or NLPS i.m. + i.n.) and the non-vaccinated group. Onset, peak and duration were not significantly different between the NLPS i.m. and NLPS i.m. + i.n. vaccinated groups.
Fig. 2. N-specific antibody responses elicited in serum and nasal secretion upon \(N^{\text{SRS}} \) vaccination and BRSV challenge. Calves were vaccinated twice with \(N^{\text{SRS}} \) i.m. or i.m. + i.n. (day 0 and 21) followed by challenge with BRSV (day 42). (a) Serum Ig(H + L) and (b) nasal Ig(H + L) titers to N were measured by an ELISA endpoint assay. N-specific IgG1 and Iga Ab were quantified in nasal secretions (c and d). Data are expressed as mean ± SEM and plotted with a logarithmic scale. Stars indicate significant differences between the two vaccinated group (\(N^{\text{SRS}} \) i.m. and i.m. + i.n.) and the non-vaccinated one.

split-plot ANOVA test) indicated group and time effects between the non-vaccinated group and the groups \(N^{\text{SRS}} \) i.m. or \(N^{\text{SRS}} \) i.m. + i.n. No differences were found between the two vaccinated groups (\(N^{\text{SRS}} \) i.m. and \(N^{\text{SRS}} \) i.m. + i.n.). Significant reduction of mean clinical scores (Bonferroni’s test among contrast, \(p < 0.05 \)) was found for the group \(N^{\text{SRS}} \) i.m. at days 5 and 6, for the group \(N^{\text{SRS}} \) i.m. + i.n. at days 5–7 post-infection when compared to the non-vaccinated group (Fig. 3). Onset, peak and duration of clinical scores were calculated for each group (Table 2), showing delayed onset, peak and shorter duration of clinical symptoms in the two vaccinated groups. Thus the calves vaccinated with \(N^{\text{SRS}} \), either i.m. only or i.m. + i.n., were partly protected against the respiratory disease caused by virus challenge.

Two out of 8 calves of each group were euthanized on day 6 after challenge. The lungs were examined and the extent of macroscopic lesions was recorded. For all animals gross lesions were restricted to the cranial lobes except for one non-vaccinated calf showing lesions also in the middle and accessory lobes. Some patchy areas were atelectatic, collapsed, deep red and rubbery in texture. Extension of the lung lesions of calves is detailed in Table 2 for the right and the left cranial lobes respectively. To summarize, the extension of consolidation lesions varied between 10% (Fig. 4a, right cranial lobe) and 20% for unvaccinated calves while it was estimated to be 5% for the vaccinated calves (Fig. 4b, right cranial lobe). No macroscopic lesions were found for calves euthanized on day 20 post-challenge.

Histological examination of lung tissue sections (sample from right cranial lobe, taken at the site of macroscopic lesions) revealed typical bronchointerstitial pneumonia (Fig. 4c and e) characterized by necrotizing bronchiolitis, formation of bronchiolar epithelial syncitia and proliferative alveolitis in 2 calves from the non-vaccinated group. In contrast, lung tissue sections from 3 out of 4 vaccinated calves (2/2 \(N^{\text{SRS}} \) i.m. + i.n. and 1/2 \(N^{\text{SRS}} \) i.m.) showed limited cellular infiltration in the peribronchiolar and bronchiolar areas, with minimal densification of the alveolar areas (shown of one \(N^{\text{SRS}} \) i.m. + i.n. calve, Fig. 4d). Besides, most of the bronchiolar lumina were clear of cellular debris (Fig. 4f). The presence of BRSV-infected cells was revealed by immunostaining on the same lung tissue sections. BRSV-specific staining was found in the epithelial cells of the bronchioles from either vaccinated or non-vaccinated calves (Fig. 4g and h, brown staining).

3.3. \(N^{\text{SRS}} \) vaccination reduced BRSV loads in nasal secretions

The replication of BRSV in the respiratory tract of infected calves was further investigated by real time RT-PCR on BAL cells and...
Fig. 4. Macroscopic and microscopic lung lesions following BRSV challenge. On day 6 post-BRSV challenge (peak of clinical scores), two calves per group were euthanized and their lungs dissected out for macroscopic analysis of lesions (a and b). Lung pieces were sampled in the right cranial lobe at the border between red atelectatic collapsed pulmonary areas and healthy tissue, fixed in formalin and embedded in paraffin. Histological examination of sections counterstained with hematoxylin/eosin/safran showed areas of bronchointerstitial pneumonia with proliferative alveolitis in non-vaccinated calves. This marked infiltration of inflammatory cells was observed in the alveolar, peribronchiolar and bronchiolar areas (c) and was associated to a necrotizing bronchiolitis (e). Bronchiolar lumen contained sloughed necrotic epithelial cells and sometimes multinucleate syncytial cells closely associated with the bronchiolar epithelium, and few inflammatory cells infiltrating the bronchiolar epithelium. Similar sections in vaccinated calves showed alveolar functional areas with minimal thickening of alveolar septa (d) and bronchiolar lumen clear of cellular debris (f). The same lung tissue sections were stained for BRSV antigens with an anti-F monoclonal antibody (brown staining) and counterstained with hematoxylin (pale blue staining). The control immunohistochemical reaction with an isotype-matched irrelevant mouse IgG was negative (data not shown). Immunohistochemical staining of BRSV-F revealed virus-infected bronchiolar epithelial cells (g and h) with viral antigens among the necrotic cells sloughed the bronchiole lumen (g). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

lung samples (right cranial lobe). At day 6 post-infection, viral RNA was detected in BAL cells and lung tissue of the two euthanized calves of each group with no significant differences between groups (Fig. 5a). These data are in agreement with the finding of BRSV-infected cells in lung tissue sections by immunostaining. No virus could be detected at day 20 post-infection in BAL and lung of any calves.

The kinetic and amount of virus shedding was monitored in nasal secretions on a daily basis post-challenge. BRSV RNA was detected in nasal secretions of all infected calves (Fig. 5b and c) with
Fig. 5. BRSV RNA detection and viral load following challenge. The viral loads were examined by performing quantitative real time RT-PCR on total RNA extracted from BAL cells and lung pieces collected on two calves per group euthanized on day 6 after challenge (a) and from the nasal swabs sampled daily from the day of challenge up to 19 days after (b and c). Viral load is expressed as the log of BRSV copies per 10^7 GAPDH cDNA (mean ± SEM, n = 6). Stars indicate significant differences between the two vaccinated group (NSRS i.m. and i.m. + i.n.) and the non-vaccinated one. The daily percentage of positive calves per group is shown (c).

A peak of virus shedding at day 5 post-challenge (10^{3.6±1.1}, 10^{3.9±0.7} and 10^{3.8±1.2} copies/10^7 copies of GAPDH for groups no vaccine, NSRS i.m., and NSRS i.m. + i.n., respectively). No significant differences were found between the two vaccinated groups and the non-vaccinated group. Lower amounts of viral RNA were found in group NSRS i.m. at days 4 (p = 0.06) and 11 (p < 0.05) and in group NSRS i.m. + i.n. at days 2, 3 and 11 (p < 0.05, Fig. 5b). Importantly the duration of viral excretion in nasal swabs was reduced in the vaccinated groups, BRSV being detected in swabs from days 1 to 17 post-infection in non-vaccinated calves versus days 1–8 in group NSRS i.m., and days 1–11 in group NSRS i.m. + i.n. (Fig. 5c). In addition, the detection of BRSV proteins in nasal secretions by EIA assay on five calves of each group at days −1, 0, 2 to 7, 9, 11, 13 and 15 post-infection showed that less calves were found positives on a daily basis in the two vaccinated groups compared to the non-vaccinated group (data not shown).

3.4. NSRS vaccination and BRSV challenge was associated with few granulocytes and mixed T cell subsets in BAL

Respiratory infection is usually accompanied by an influx of lymphocytes and granulocytes into the lungs. BAL cells were collected from calves euthanized on days 6 (n = 2) and 20 (n = 6) after challenge and the percentages of macrophages, lymphocytes, neutrophils and eosinophils were determined after May-Grünwald-Giemsa staining. Six days after infection, we observed neutrophils in all BAL whether or not the calves had been vaccinated (18 ± 4%, n = 6, Fig. 6a, black bars). Twenty days post-challenge, the percentages of neutrophils in BAL ranged between 0.1 and 2.5%, without any significant differences between the three groups (no vaccine, NSRS i.m. and NSRS i.m. + i.n.). No eosinophils were found in BAL at 6 and 20 days post-challenge (Fig. 6a).

To get an insight into the pattern of T cell responses in the lung upon challenge, CD4 and CD8 T lymphocytes in BAL were monitored by flow cytometry analysis (Fig. 6b). Lymphocytes were gated according to their low FSC/SSC features and memory/activated lymphocytes were subsequently gated on the basis of CD45RO expression. The proportion of CD4^+ and CD8^+ cells within gated CD45RO^+ lymphocytes was determined. For the non-vaccinated calves experiencing a primary BRSV infection, CD8^+ effector lymphocytes were found rapidly and more abundantly than their CD4^+ counterpart into the airways (Fig. 6b, day 6). The same pattern of T cell subsets on day 6 post-challenge (% CD8^+ > CD4^+ mem-
only (mock). Results are expressed as SI and data displayed individually as in (a).

... incorporated after NSRS or mock antigenic restimulation for 96 h and values were 3.5. NSRS vaccination and BRSV challenge primed N-specific T-mediated immunity[29]. Thus we tested whether NSRS vaccination cells in calves i.m. + i.n. respectively, versus 1.1...ory/effector cells) was observed for the NSRS i.m. vaccinated calves (Fig. 7a). In vitro lymphocyte proliferation was evaluated by measuring [3H]thymidine incorporation after NSRS or mock antigenic restimulation for 96 h and values were expressed as stimulation index (SI). Individual SI is plotted for each group (square, circle, triangle) and the mean is shown next (black line). (b) IFN-γ was measured in the supernatant of lymph node cells cultivated for 72 h with NSRS. No vaccine and NSRS i.m. = 0.07 between no vaccine and NSRS i.m. + i.n. respectively, p = 0.07 between no vaccine and NSRS i.m. and p = 0.06 between no vaccine and NSRS i.m. + i.n.). Thus the IFN-γ response in the lymph nodes draining the airways was suggestive of memory T cells primed by NSRS vaccination and boosted upon BRSV challenge.

4. Discussion

No RSV vaccine is yet licensed for human use and the inactivated or attenuated vaccines commercialized for bovine have a limited efficacy and a short duration of protective immunity. Difficulties of RSV vaccine development include the lack of a relevant animal model for human, the need to immunize immunologically immature young infants or calves with maternal RSV antibodies, the impact of RSV variability on vaccination and the risk of vaccine-associated disease enhancement. We were the first to publish an efficient and safe vaccination strategy against RSV using the nucleocapsid protein alone as a vaccine antigen, under the form of soluble nanoparticles referred to as NSRS[22]. In this previous study done in mice we have demonstrated that NSRS is highly immunogenic when delivered via the nasal route and that the immune response primed upon vaccination is protective against an HRSV challenge[22]. In the present study, we investigated the potency of NSRS as a vaccine in calves that are the natural hosts for BRSV and display clinical respiratory symptoms and lung lesions upon infection.

Our findings indicate that calves vaccinated with NSRS were partially protected against the respiratory disease caused by a virus challenge. Significantly lower clinical scores were observed for two to three days in the vaccinated calves compared to the non-vaccinated calves and the duration of clinical signs was reduced in the vaccinated calves. At the precise site of virus-induced lesions, in the cranial lobe of the lungs, the vaccination with NSRS reduced the extent of local inflammatory consolidation. The vaccination with NSRS reduced the duration of viral shedding and the frequency of virus-secreting calves on a daily basis but it did not prevent viral shedding in nasal secretion, nor viral replication in lung. There was no difference between the two vaccination regimen (i.m. only or i.m. + i.n.) for their capacity to reduce clinical scores and viral load.

Importantly the degree of protection conferred by vaccination with NSRS was not associated with markers of disease exacerbation (like eosinophilia) as is reported when vaccinating calves with FI-BRSV or live-BRSV[6]. Indeed no eosinophils and very few neutrophils were found in broncho-alveolar lavages of calves autopsied 3 weeks after challenge.

Several points of discussion could explain the partial protection of calves by vaccination with NSRS, whatever the protocol used. Clear respiratory symptoms and lung lesions were induced upon BRSV challenge but they were not severe. As frequently published with BRSV challenge models[30–32], it is difficult to reproduce the severe clinical signs or lesions observed upon natural infections.
In calves normally bred in farms and not in isolation units like in the present study, bacterial or virus co-infections complicate the classical BRSV disease. The bovine parainfluenza virus 3 (BPIV-3), which is widespread in 2–8-month-old cattle, reduces pulmonary defences [33,34] and thus may enhance the severity of the BRSV pathogenicity. Both viruses, BRSV and BPIV-3, are important predisposing factors in the development of bacterial bronchopneumonia in cattle. In addition intrinsic host parameters seem to control the severity of the disease since severe pathology is associated with dysfunctions of the host’s response [8]. In this study, we used a BRSV 3761 inoculum which was previously shown successful in reproducing severe respiratory signs after intranasal and intratracheal injections of 1 and 3-month-old Prim’Holstein calves (G. Meyer, unpublished results; [18]). This inoculum contained BRSV with few passages in cell cultures and with 3 cycles of amplification in newborn calves, a condition also shown by others to induce severe respiratory disease in calves [35,36]. By comparison with previous successful experiments, failure to reproduce respiratory distress syndrome in this study could be related to host intrinsic parameters. Indeed, another study, using the same inoculum and crossed Prim’Holstein/Normandy calves of same origin, also failed to reproduce respiratory distress [19].

The nucleoprotein subunits (NNSRS) used in this study were from HRSV origin. The gene encoding the nucleoprotein is shown to be one of the most conserved between BRSV and HRSV with an average of 94% amino acid identity. The nucleoprotein from BRSV is recognized by bovine CD8 T cells but the precise CTL epitopes have not been defined yet [29]. In human, HLA-B07, HLA-B08 and HLA-A02 restricted epitopes were mapped in the nucleoprotein [12,14] and interestingly their amino acid sequence is fully conserved among various HRV field isolates and with BRSV strains [14]. The mechanisms of CTL cross-reactivity have been recently investigated with well-characterized CTL epitopes from HIV showing that biochemically similar amino acid substitutions do not drastically affect recognition by TCR [37]. Some level of cross-protection between BRSV and HRSV has been demonstrated in the cotton rat model in which BRSV was tested as a possible Jennerian vaccine against HRSV [38]. Among the viral antigens that may be cross protective between BRSV and HRSV, the BRSV-F (81% amino acid identity with HRSV-F), delivered as DNA vaccine, was shown to protect mice against an HRSV challenge [39]. The present study brings new data to support the hypothesis of common B or T epitopes between BRSV and HRSV nucleoproteins. Indeed, in our study, primary BRSV infection resulted in antibody and cellular immunity that could be revealed with an NNSRS coated ELISA assay or following an in vitro boost with NNSRS, respectively. Conversely serum Ab from NNSRS vaccinated calves reacted against a BRSV-infected cell lysate. This indicates that recombinant N from HRSV origin assembling into nano-rings and the nucleocapsid protein N from BRSV strain 3761 displayed at least some common epitopes and that vaccinia into nano-rings and the nucleocapsid protein N from BRSV strain inactivated vaccines. As it is true for live virus, intranasal vaccination with live-BRSV or modified-live-BRSV vaccine has been shown to be more efficacious in reducing viral shedding than intramuscular administration in young calves [40,41]. Moreover, a single intranasal vaccination has previously been shown to prime calves in the face of maternal antibodies [41]. Commercially available modified-live-BRSV vaccines that were formulated and licensed for parenteral use were shown to induce partial protection when administered intranasally [42]. Recently a single intranasal dose of a bivalent modified-live vaccine was shown to reduce nasal shedding of BRSV after challenge at 10 or 21 days post-vaccination, despite low BRSV neutralizing antibody titers detected after vaccination [32].

Thus we have chosen the two vaccination regimen used in the present study based on the hypothesis that administration of NNSRS via the nasal route would strengthen any level of protection conferred by the intramuscular vaccination. However no differences in clinical and viral protection were observed between calves vaccinated intramuscularly only, versus intramuscularly plus intranasally. This could be explained by a weak response to the intranasal vaccination or a masking of the immune response induced after intranasal vaccination by those obtained after intramuscular vaccination. Unfortunately, due to a restricted number of BRSV seronegative calves, it was not possible to have a supplementary group of calves vaccinated only by the intranasal route.

By itself, the intramuscular administration of NNSRS powerfully stimulated mucosal and systemic Ab responses and cellular immunity. The intranasal administration of NNSRS given with the i.m. immunization increased some immune responses at the level of the upper respiratory tract: memory T cells producing IFN-γ in tracheo-bronchial lymph node and antigen-specific IgA in nasal secretion.

The expression of CD45RO is considered a reliable marker to monitor activated CD4 and CD8 T cells in bovine [43,44]. In the context of primary infection with BRSV, CD8 T cells are the predominant subset recruited to the airways [45] and prior vaccination with inactivated or live-attenuated virus can modify the pattern of T cell responses [46]. We had reported previously a preferential priming of CD4 responses following challenge with HRSV-A2 of mice vaccinated intranasally with NNSRS [22]. Thus it is possible that the intranasal delivery of NNSRS was responsible for the early presence of CD45RO+CD4+ T cell in bovine airways post-challenge of the i.m. + i.n. vaccinated calves.

However, the nasal vaccination might not have been efficient enough to prime protective local anti-viral immunity. This could be related to the type of adjuvant used, the delivery device/route, the antigen itself. Additional studies will be necessary to improve intranasal vaccination with NNSRS by testing several doses of antigen in association with adjuvants used for intranasal delivery and to compare results with those obtained after intramuscular vaccination.

What are the immune correlates of the viral and clinical protection afforded by the NNSRS vaccination?

We have shown in our previous study in mice that the antibodies raised against N were not neutralizing and thus unlikely to be involved in the anti-viral protection. Cellular immunity mediated by virus-specific CD8 T cells is required to clear BRSV from the lungs of infected calves in a primary infection [47,48] and N is one of the main targets of CD8+ T cell responses to BRSV [29]. In the present study we have shown that NNSRS vaccination primed antigen-specific T cell memory responses, characterized by their capacity to proliferate and secrete IFN-γ. In other studies implying NNSRS vaccination in mouse or lamb animal models we have shown that N-specific memory CD8 and CD4 T cell are primed ([22] and S. Riffaut unpublished results). Recently a vaccination regimen using the nucleoprotein in a DNA prime–protein boost protocol was shown to be superior to DNA or protein vaccination alone to prime
antigen-specific CD8 memory T cells, to protect against BRSV replication and to reduce lung pathology [19]. However, because DNA vaccination is not authorized in humans, the use of N protein alone for vaccination of newborn children could be an interesting alternative approach. Moreover NRS can be produced in large amount in bacteria and their nanoring structure is very stable either at 4 °C or 20 °C (our unpublished observations), making their production and storage cheap and easy.

Setting up the right conditions for cross-protective cellular immunity against conserved antigens is a growing challenge in the vaccinology field nowadays (e.g. universal Influenza vaccine). The nucleoprotein subunit approach described in the present study is efficient for inducing cross-protective immunity against RSV. Interestingly the NRS structures are very potent at stimulating antibody responses both at the systemic and mucosal levels. We have recently obtained the X-ray 3D structure of the NRS [21] and have been able to map exposed sites on the nano-rings to which other antigenic motifs can be grafted. Our next goal will be to improve the degree of protection by using RSV nucleocapsid nanoparticles grafted with peptidic epitopes from the BRSV fusion-(F) and glyco(G)-proteins in order to trigger neutralizing antibody responses in addition to anti-N cellular responses.

Acknowledgements

We would like to thank Bernard Charley for critically discussing the manuscript, Nicolas Bertho for helping with the experiment, Faouzi Lyazrhi for performing statistical analysis, all the staff from the animal infectiology platform (PFIE, Nouzilly) and Stephane Ascarateil from SEPPIC for preparing the emulsion with adjuvant. This research was funded by the French funding agency ANR, grant ANR-05-EMPH-008. The first and the last authors of the present manuscript have a patent filed to protect the NRS fabrication process as well as their use as a vaccine against RSV (Patent WO 2006/117456).

Conflict of interest: None.

References

[1] Meyer G, Deplanche M, Schelcher F. Human and bovine respiratory syncytial virus vaccine: overview and development. Comp Immunol Microbiol Infect Dis 2008;31(2–3):191–225.
[2] Valarcher JF, Taylor G. Bovine respiratory syncytial virus infection. Vet Res 2007;38(2):153–80.
[3] Elvander M. Severe respiratory disease in dairy cows caused with infection with bovine respiratory syncytial virus. Vet Rec 1996;138(5):101–5.
[4] Openshaw PJ, Yamaguchi Y, Tregoning JS. Childhood infections, the developing immune system, and the origins of asthma. J Allergy Clin Immunol 2007;38(2):153–80.

Conflict of interest: None.

References

[1] Meyer G, Deplanche M, Schelcher F. Human and bovine respiratory syncytial virus vaccine: overview and development. Comp Immunol Microbiol Infect Dis 2008;31(2–3):191–225.
[2] Valarcher JF, Taylor G. Bovine respiratory syncytial virus infection. Vet Res 2007;38(2):153–80.
[3] Elvander M. Severe respiratory disease in dairy cows caused with infection with bovine respiratory syncytial virus. Vet Rec 1996;138(5):101–5.
[4] Openshaw PJ, Yamaguchi Y, Tregoning JS. Childhood infections, the developing immune system, and the origins of asthma. J Allergy Clin Immunol 2007;38(2):153–80.
[37] Frankild S, de Boer RJ, Lund O, Nielsen M, Kesmir C. Amino acid similarity accounts for T cell cross-reactivity and for “holes” in the T cell repertoire. PLoS One 2008;3(3):e1831.

[38] Piazza FM, Johnson SA, Darnell ME, Porter DD, Hemming VG, Prince GA. Bovine respiratory syncytial virus protects cotton rats against human respiratory syncytial virus infection. J Virol 1993;67(3):1503–10.

[39] Taylor G, Bruce C, Barbet AF, Wyld SG, Thomas LH. DNA vaccination against respiratory syncytial virus in young calves. Vaccine 2005;23(10):1242–50.

[40] Kimman TG, Westenbrink F, Straver PJ. Priming for local and systemic antibody memory responses to bovine respiratory syncytial virus: effect of amount of virus, virus replication, route of administration and maternal antibodies. Vet Immunol Immunopathol 1989;22(2):145–60.

[41] Woolums AR, Brown CC, Brown Jr JC, Cole DJ, Scott MA, Williams SM, et al. Effects of a single intranasal dose of modified-live bovine respiratory syncytial virus vaccine on resistance to subsequent viral challenge in calves. Am J Vet Res 2004;65(3):363–72.

[42] Ellis J, Gow S, West K, Waldner C, Rhodes C, Mutwiri G, et al. Response of calves to challenge exposure with virulent bovine respiratory syncytial virus following intranasal administration of vaccines formulated for parenteral administration. J Am Vet Med Assoc 2007;230(2):233–43.

[43] Bembridge GP, MacHugh ND, McKeever D, Awino E, Sopp P, Collins RA, et al. CD45RO expression on bovine T cells: relation to biological function. Immunology 1995;86(4):537–44.

[44] Hogg AE, Worth A, Beverley P, Howard CJ, Villarreal-Ramos B. The antigen-specific memory CD8+ T-cell response induced by BCG in cattle resides in the CD8+ gamma/deltaTCR-CD45RO+ T-cell population. Vaccine 2009;27(2):270–9.

[45] McIntunes E, Sopp P, Howard CJ, Taylor G. Phenotypic analysis of local cellular responses in calves infected with bovine respiratory syncytial virus. Immunology 1999;96(3):396–403.

[46] Antonis AF, Claassen EA, Hensen EJ, de Groot RJ, de Groot-Mijnes JD, Schrijver RS, et al. Kinetics of antiviral CD8 T cell responses during primary and post-vaccination secondary bovine respiratory syncytial virus infection. Vaccine 2006;24(10):1551–61.

[47] Taylor G, Thomas LH, Wyld SG, Furze J, Sopp P, Howard CJ. Role of T-lymphocyte subsets in recovery from respiratory syncytial virus infection in calves. J Virol 1995;69(11):6658–64.

[48] Gaddum RM, Cook RS, Thomas LH, Taylor G. Primary cytotoxic T-cell responses to bovine respiratory syncytial virus in calves. Immunology 1996;88(3):421–7.