Exposure of Mesenchymal Stem Cells to an Alzheimer’s Disease Environment Enhances Therapeutic Effects

Sang eon Park
ENCell https://orcid.org/0000-0003-3315-6426

Hyeong Seop Kim
ENCell

Soo Jin Kwon
ENCell

Min-Jeong Kim
Samsung Medical Center

Suk-joo Choi
Samsung Medical Center

Soo-young Oh
Samsung Medical Center

Gyu Ha Ryu
Samsung Medical Center

Hong Bae Jeon
ENCell

Duk L. Na
Samsung Medical Center

Jong Wook Chang (📧 jongwook.chang@samsung.com)
Samsung Medical Center

Research

Keywords: WJ-MSC, Alzheimer's disease, Primed MSC, TGF-β, Serglycin

DOI: https://doi.org/10.21203/rs.3.rs-89815/v1

License: ☑️ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background

Mesenchymal stem cells (MSCs) have emerged as a promising tool for the treatment of Alzheimer's disease (AD). Previous studies suggested that the co-culture of human MSCs with AD in an *in vitro* model reduced the expression of amyloid-beta 42 (Aβ42) in the medium as well as the overexpression of amyloid-beta (Aβ)-degrading enzymes such as neprilysin (NEP).

Methods

In this study, we focused on the role of primed MSCs (human Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) exposed to an AD cell line via a co-culture system) in reducing the levels of Aβ and inhibiting cell death.

Results

We demonstrated that mouse groups treated with naïve MSCs and primed MSCs showed significant reductions in cell death, ubiquitin conjugate levels, and Aβ levels, but the effects were greater in primed MSCs. Also, mRNA sequencing data analysis indicated that high levels of TGF-β induced primed-MSCs. Furthermore, treatment with TGF-β reduced Aβ expression in an AD transgenic mouse model.

Conclusion

AD environmental preconditioning is a promising strategy to reduce cell death and ubiquitin conjugate levels and maintain the stemness of MSCs. Further, these data suggest that human WJ-MSCs exposed to an AD environment may represent a promising and novel therapy for AD.

1. Introduction

Alzheimer's disease (AD) is a widespread cause of dementia and is an age-related [1, 2], progressive, and irreversible neurodegenerative disease [3, 4] for which no disease-modifying therapy exists [5, 6]. Most of the drugs being developed target Aβ alone [7, 8]. The development of a multi-target drug, however, may be more effective given the multiple pathogenic mechanisms involved in AD [9, 10].

Prior studies including those reported by our group suggest that mesenchymal stem cells (MSCs) may be a potential treatment for AD [11–16]. MSCs secrete proteins that inhibit apoptosis and inflammation, modulate the immune response in damaged tissues, and promote endogenous neurogenesis and neuroprotection. Based on the specific mechanisms induced and the improved therapeutic outcomes, MSCs show considerable promise [17]. When used to treat AD, MSCs expressed genes related to enhanced extracellular transport and secretion [11–13, 15, 16], which indicates an increase in paracrine activity. These genes are known to exhibit neuroprotective and neurotrophic features such as the inhibition of apoptosis, the regulation of cell proliferation, and the regulation of neurogenesis. Further, our
previous study demonstrated that MSCs exposed to cerebrospinal fluid (CSF) of AD patients upregulated the genes related to AD treatment while maintaining stemness [18]. Therefore, AD-exposed MSCs enhanced the overall efficacy of MSCs in AD therapy.

In this study, we investigated whether the therapeutic potency of MSCs could be enhanced by exposing them to an AD environment. Therefore, we generated AD-exposed MSCs using a co-culture of MSCs and the APP695-Swedish mutant (K595N/M596L)-expressing H4 cell (H4SW cell) line, which provided an AD environment characterized by high levels of secreted toxic forms of Aβ, such as Aβ1–40 and Aβ1–42 [19, 20]. We then analyzed the therapeutic effects of the MSCs following exposure to the AD environment. Furthermore, to identify the genes expressed by conditioned MSCs, which were therapeutically effective in AD, we performed mRNA sequencing analysis of both the naïve and conditioned MSCs.

2. Materials And Methods

2.1 Wharton’s jelly-derived mesenchymal stem cell culture

Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) were isolated according to the procedure described by Kwon [21]. The WJ-MSCs were cultured according to the standard operating procedures (SOPs) of the Good Manufacturing Practice facility at Samsung Medical Center. Prior to co-culturing with H4SW cells, the WJ-MSCs were detached using a 0.25% trypsin-EDTA solution (Gibco-Invitrogen).

2.2 H4 and H4SW cell line culture

Human glioblastoma H4 cells and APP695-Swedish mutant (K595N/M596L)-expressing H4 cells (H4SW) were kindly provided by Jung-Hyuck Ahn's lab (Ewha Woman's University School of Medicine, Republic of Korea) and cultured according to the procedure reported previously [19, 20]. H4 and H4SW cells were cultured in Dulbecco's modified Eagle media (DMEM; Gibco/BRL) containing 10% fetal bovine serum (FBS; Gibco/BRL), 100 U/mL penicillin (Gibco/BRL), 100 µg/mL streptomycin (Gibco/BRL), and 2 mM L-glutamine (Gibco/BRL) as described previously. The H4SW cell cultures were maintained by adding 500 µg/mL geneticin (Gibco/BRL) to the growth media.

2.3 Pre-conditioning MSCs under an AD environment

H4SW cells were cultured and maintained on a 6-well plate compatible with insert wells. Upon reaching 70% confluency, the H4SW cells were co-cultured with 1 × 10^5 WJ-MSCs on 6-well transwell inserts (BD Falcon, USA) for 24 h in serum-free medium at 37 °C with 5% CO₂.

2.4 Flow-cytometry analysis for validating re-conditioned WJ-MSCs

After co-culture, the pre-conditioned WJ-MSCs at passage five were detached using a 0.25% trypsin-EDTA solution and harvested in a 15 mL conical tube. After centrifugation, the WJ-MSCs were washed and resuspended in phosphate-buffered saline (PBS) with 2% FBS to block nonspecific binding sites.
Immunophenotypic analysis of the pre-conditioned WJ-MSCs was performed according to the MSC criteria of the International Society for Cell Therapy (ISCT) [22] via ow cytometry to determine the expression of the following markers: CD44, CD73, CD90, CD105, CD14, CD11b, HLA-DR (MHC-II), CD34, CD45, and CD19 (BD Biosciences, USA). At least 10,000 events were acquired on a BD FACSVerse (BD Biosciences, NJ, USA), and the results were analyzed with BD FACSuite software version 10 (BD Biosciences, USA). The differentiation of pre-conditioned WJ-MSCs was analyzed according to the procedure outlined in a previous report [21].

2.5 H4SW cell co-culture with pre-conditioned WJ-MSCs

At 70% confluency, H4SW cells (in the lower chamber of the Transwell unit) were co-cultured with 1×10^5 pre-conditioned WJ-MSCs seeded on 6-well transwell inserts (BD Falcon) for 24 h under serum-free conditions at 37 °C with 5% CO$_2$. Naive WJ-MSCs were co-cultured with H4SW cells as a control group. After co-culture for 24 h, the H4SW cells were harvested and rapidly frozen for further analysis.

2.6 Intraventricular injection of WJ-MSCs and TGF β into 5XFAD mice

A 12-month-old transgenic mouse model of AD, 5xFAD (MMRC #04848) was used in this study. The mice were purchased from the Jackson Laboratory (Bar Harbor, ME, USA). Experimental animals were divided into five groups: wild-type (WT), 5xFAD (sham), + naïve MSC (naïve MSCs were injected into 5xFAD mice), + primed MSCs (primed MSCs were injected into 5xFAD mice), and + TGF β (recombinant TGF-β proteins were injected into 5xFAD mice). Before injecting WJ-MSCs, all the mice were anesthetized and maintained on 5% isoflurane with 2% isoflurane inhalation during the surgical procedure. After shaving and sterilizing the surgical site with povidone-iodine, a skin incision approximately 1 cm in length was made. Using a microdrill, a small burr hole was made at the following coordinates (right lateral ventricle): A/P-0.4 mm, M/L +1.0 mm, and D/V-2.3 mm from the bregma. WJ-MSCs (1×10^5 cells) suspended in 3 µL of phenol-red MEM-alpha or 3 µL of TGF-β (10 ng/mL) were injected into the right lateral ventricle at a rate of 1 µL per min with a 15 min delay using a Hamilton syringe (Hamilton Company, NV, USA). The needle was carefully removed after the injection was complete, and the skin was sutured, followed by sterilization of the area. All mice were euthanized one week after administration.

2.7 Brain tissue preparation

One week after the injection of WJ-MSCs, all mice were anesthetized with isoflurane, followed by cardiac perfusion. The brain tissue from the mice was harvested and divided in half along the longitudinal fissure. The harvested brain tissues were frozen in liquid nitrogen and stored at -80 °C for Western blots and enzyme-linked immunosorbent assay (ELISA) analysis, or fixed in 4% paraformaldehyde for histological analysis.

2.8 Western blots and ELISA

Tissue and cell extracts were prepared according to previously published methods [23]. Briefly, ultrasonication (Branson Ultrasonics, Slough, UK) was performed in a buffer containing 9.8 M urea, 4% 3-
((3-cholamidopropyl) dimethylammonio)-1-propanesulfonate (CHAPS), 130 mM dithiothreitol, 40 mM tris-
Cl, and 0.1% sodium dodecyl sulfate (SDS). The protein concentrations were measured using the
Bradford assay (Bio-Rad Laboratories, Inc., CA, USA). Protein extracts (20 µg/lane) were loaded onto SDS-
polyacrylamide gels for electrophoresis and then transferred to nitrocellulose membranes. NuPAGE 12%
(Invitrogen, CA, USA) gels were used for the immunoblot analysis. The membranes were incubated with
anti-ubiquitin antibodies (Ub, 1:1000; Santa Cruz, USA), anti-MOAB (1:200, Novus Biologicals, CO, USA),
and anti-β-actin (1:5,000; Sigma-Aldrich Co. MO, USA) at 4 °C overnight. Subsequently, the membranes
were incubated with a secondary antibody (goat anti-mouse IgG-HRP; Ab Frontier, USA) for 1 h at room
temperature (RT). The blots were developed using ECL solution (Advansta, USA), and the protein bands
were detected via exposure to X-ray film. Densitometric analysis was performed using ImageJ software
(NIH, USA).

The ELISA tests were performed with an Aβ42 ELISA kit (Wako, Cambridge, UK) and an SRGN ELISA kit
(LifeSpan BioSciences, Washington, USA) according to the manufacturers’ instructions.

2.9 Thioflavin-S staining

Fixed brain tissues were embedded in paraffin and 4-µm-thick coronal sections were prepared. To detect
Aβ, thioflavin-S staining was performed according to the manufacturer’s instructions. All slides were
deparaffinized by serial hydration using an graded ethanol series, followed by treatment of the slides with
1% filtered thioflavin-S (Sigma-Aldrich) and washing. The mounted slides were stored at 4 °C before
fluorescence microscopy imaging (Nikon, Shinagawa, Tokyo, Japan).

2.10 RNA isolation

Total RNA was isolated using TRIzol reagent (Invitrogen). The RNA quality was assessed by an Agilent
2100 bioanalyzer using the RNA 6000 Nano Chip (Agilent Technologies, Amstelveen, The Netherlands),
and RNA quantification was performed using an ND-2000 Spectrophotometer (Thermo Inc., DE, USA).

2.11 Library preparation and QuantSeq 3’ mRNA sequencing

Libraries were constructed from the control and test RNAs using a QuantSeq 3’ mRNA-Seq Library Prep
Kit (Lexogen, Inc., Austria) according to the manufacturer’s instructions. In brief, 500 ng of each total RNA
sample was prepared and an oligo-dT primer containing an Illumina-compatible sequence at its 5’ end
was hybridized to the RNA, and reverse transcription was performed. After degradation of the RNA
template, the second-strand synthesis was initiated by a random primer containing an Illumina-
compatible linker sequence at its 5’ end. The double-stranded library was purified by magnetic beads to
remove all reaction components. The library was amplified to add the complete adapter sequences
required for cluster generation. The finished library was purified from the PCR components. High-
throughput sequencing was performed via single-end 75 sequencing using NextSeq 500 (Illumina, Inc.,
USA).
2.12 QuantSeq 3’ mRNA sequencing data analysis

The QuantSeq 3’ mRNA-Seq reads were aligned using Bowtie2 [24]. Bowtie2 indices were either generated from the genome assembly sequence or the representative transcript sequences for aligning with the genome and transcriptome. The aligned file was used to assemble the transcripts, estimate their abundance, and detect the differential expression of genes. Differentially expressed genes were determined based on unique counts and multiple alignments using Bedtools [25]. The RT (read count) data were processed based on the quantile-quantile normalization method using EdgeR within R software [26] using Bioconductor [27]. Gene classification was based on searches conducted in the DAVID (http://david.abcc.ncifcrf.gov/) and Medline databases (http://www.ncbi.nlm.nih.gov/).

2.13 Real-time polymerase chain reaction

Real-time polymerase chain reaction (PCR) was performed using the Step ONE Plus system (Applied Biosystems, CA, USA) with 2X power SYBR green master mix (AB, USA) under the following three-stage program parameters: 95 °C for 10 min, 95 °C for 15 sec, and 59 °C for 30 sec (40 cycles). Primers for ALU (human) and TGF-β (human) were purchased from Bioneer Corporation (Daejeon, Korea). All PCR reactions were performed in triplicate. The comparative quantification of each target gene was performed based on the cycle threshold (C_T), which was normalized to human GAPDH using the ΔΔCT method proposed by Livak and Schmittgen.

2.14 Statistical analyses

All values are presented as the mean ± standard error of the mean (S.E.M). One-way ANOVA was used to assess significance and a p-value of ≤ 0.05 was considered statistically significant. IBM SPSS software version 21.0 was used for all analyses.

3. Results

3.1 Primed MSCs show anti-apoptotic effects in the H4 Swedish cell line under serum starvation

To evaluate the therapeutic efficacy of primed-MSCs, H4 Swedish cells (H4SWs) were co-cultured with primed MSCs for 24 h (Fig. 1A). Apoptosis was observed when the H4SW cells were in the serum-starvation state for 24 h (H4SW only). However, when naïve MSCs or primed MSCs were co-cultured with H4SW cells, cell death was inhibited (Fig. 2A). Following co-culture, the number of viable cells was counted. Compared to the H4SW cells-only group, more viable cells were observed in the + naïve MSCs and + primed MSCs groups (Fig. 2B). The anti-apoptotic effects in the H4SW cell model were the highest in the + primed MSC group. Next, Western blot analysis was performed to confirm the anti-apoptotic
effect of naïve and primed MSCs. The expression of cell death markers, cleaved PARP, and cleaved caspase-3 was decreased when H4SW cells were co-cultured with naïve MSCs and primed MSCs (Fig. 2C, D). Based on the densitometric analysis, the levels of cleaved PARP and caspase-3 were significantly decreased in the + naïve MSC (2.2- and 1.4-fold changes, respectively) and + primed MSC groups (2.7- and 1.8-fold changes, respectively). From these results, we confirmed that primed MSCs exhibited stronger anti-apoptotic effects on H4SW AD cells than naïve MSCs in the in vitro model.

3.2 Primed MSCs show in vitro therapeutic effects against Alzheimer’s disease

Next, we performed Western blot analysis to confirm the therapeutic efficacy of primed MSCs on AD pathology, especially Aβ and ubiquitin conjugates. Aβ is the most well-known pathological hallmark of AD. Ubiquitin conjugates are negatively correlated with 26S proteasome activity, which means that impaired 26S proteasome activity results in the accumulation of Aβ, hyper-phosphorylated tau, and ubiquitin conjugates in the AD brain. Therefore, along with Aβ, the level of ubiquitin conjugates was measured in this study as another hallmark of AD.

Primed MSCs were co-cultured with H4SWs in vitro for 24 h to evaluate the therapeutic efficacy against AD symptoms (Fig. 3). Following co-culture, the level of Aβ in the conditioned media was measured by ELISA (Fig. 3A). Secreted Aβ was significantly reduced under the + primed MSC condition compared to the control H4SW cells (1.6-fold change). However, naïve MSCs did not show a statistically significant anti-Aβ effect. Next, the cumulative changes in the levels of ubiquitin conjugates were analyzed by Western blots (Fig. 3B) and the intensity of the bands was quantified (Fig. 3C). In the AD in vitro model (H4SW cells), more ubiquitin conjugates accumulated in the cytosol than in the normal cell line (H4). However, the level of ubiquitin conjugates was significantly attenuated in both + naïve MSCs (1.2-fold change) and + primed MSCs (1.4-fold change). In particular, primed MSCs showed enhanced therapeutic effects by attenuating ubiquitin conjugate accumulation. This demonstrated that primed MSCs successfully reduced the level of Aβ and ubiquitin conjugates in the AD in vitro model and that this effect was better than that of naïve MSCs.

In addition, the differences in gene expression (APP, BACE1, and IGFBP3) in H4 and H4SW cells co-cultured with naïve MSCs or primed MSCs were analyzed. The analysis revealed that the dysregulated genes in the H4SW AD in vitro model were altered toward normal conditions (H4 cells) after co-culture with naïve MSCs and primed MSCs. Between the two MSCs, primed MSCs showed better alteration (Supplementary Fig. 1).

3.3 Evaluation of therapeutic efficacy of primed MSCs in 5xFAD mice

To evaluate the efficacy of primed MSCs in AD, we performed an in vivo experiment using 5xFAD AD transgenic mouse. The experimental animals (12 months old) were divided into four groups: wild-type control (WT), transgenic control (sham), naïve-MSC, and primed MSC. We injected 1×10^5 WJ-MSCs into
the right lateral ventricle. One week after injection, the mice were euthanized and brain tissues were harvested. First, the anti-apoptotic effect of primed MSCs was assessed by cleaved caspase-3 Western blot analysis (Fig. 4A). When compared to the WT mice, the 5xFAD mice showed increases in cleaved caspase-3, indicating neuronal death in the brain, whereas both the naïve MSCs and primed MSCs significantly reduced cleaved caspase-3 levels in the brain. Next, Aβ accumulation in the brain was measured by Western blots and thioflavin-S staining (Fig. 4B). Compared to the WT control, the deposition of Aβ in the brain was observed in 5xFAD mice. The groups injected with naïve MSCs and primed MSCs showed decreases in Aβ accumulation. Primed MSCs, in particular, attenuated Aβ accumulation more effectively than naïve MSCs, which was confirmed by thioflavin-S staining. Thioflavin-S staining (Fig. 4C) revealed extensive Aβ (green) deposits in the cortex and hippocampal regions of the 5xFAD transgenic mouse control group (sham). Strikingly, the amount of Aβ in the cortex and hippocampus was reduced in the groups injected with naïve and primed MSCs, and the primed-MSC group showed better therapeutic efficacy.

Then, we quantified the number of naïve MSCs or primed MSCs in the 5xFAD brains via real-time quantitative PCR analysis using a human-specific ALU primer (Fig. 4E). The absolute number of MSCs was determined based on the standard curve (linear regression $R^2 = 0.992$, Fig. 4D). Approximately 2000 remaining cells were found in the mice injected with naïve MSCs, whereas increased numbers of primed MSCs were detected (2.4-fold change). Based on these results, the primed MSCs showed both enhanced therapeutic effects and increased cell survival in vivo.

3.4 Primed MSCs differ from naïve MSCs in mRNA expression

An RNA microarray was performed to identify the changes in mRNA expression in the primed MSCs (Fig. 5) and a scatterplot was derived from the raw data (Fig. 5A). In Fig. 5A, the upregulated genes in the primed MSCs were compared to the naïve MSCs and are shown in red and the downregulated genes are shown in blue. The Euclidean distance clustering of the significant genes analyzed by MeV software is presented as log-transformed data in Fig. 5B. The 38 upregulated genes were clustered as upregulated. Among these genes, we screened TGF-β, whose expression was increased over 3.0-fold in primed MSCs compared to the levels in naïve MSCs. Furthermore, the upregulation of TGF-β expression in primed MSC was confirmed via quantitative real-time PCR. The results showed that the primed MSCs expressed TGF-β at levels 3.2-fold higher than those in naïve MSCs (Fig. 5C).

These results demonstrated that TGF-β, which is highly secreted by primed MSC, could be a key molecule for therapeutic efficacy on AD.

3.5 Therapeutic efficacy of TGF-β in 5xFAD mice

To determine the role of TGF-β, especially in anti-apoptosis and anti-Aβ, recombinant protein was injected into the lateral ventricle of 5xFAD mice followed by euthanasia one-week later (Fig. 6). Western blot analysis revealed that cleaved caspase-3 was increased in the 5xFAD mice compared to the WT controls.
but was significantly decreased in the TGF-β group (Fig. 6A). Next, the anti-Aβ effect of TGF-β was measured by Aβ Western blot analysis and thioflavin-S staining (Figs. 6B and C). The deposition of Aβ in 5xFAD mice was reduced following treatment with TGF-β (Fig. 6B). However, this observation was not replicated and no statistical significance was observed in the histological analysis of thioflavin-S staining (Fig. 6C).

3.6 SRGN secretion by H4SW cells: A potential preconditioning factor inducing AD

Next, which molecule caused primed MSCs to secrete TGF-β was investigated. To identify the potential candidates responsible for priming the MSCs, the gene expression profiles of H4 and H4SW cells were analyzed (Fig. 7). The red dots in the figure denote increased mRNA expression of the H4SW cells compared to the H4 cells, and the green dots indicate decreased expression (Fig. 7A). A total of six genes highly upregulated in the H4SW cells were selected and clustering using the Euclidean distance measurements of significant genes was conducted (Fig. 7B). Next, the amount of secreted serglycin (SGRN) proteins was measured in the conditioned media. In the H4SW cells, the level of SGRN protein was significantly elevated compared to the H4 cells, suggesting that the SGRN protein may represent the AD microenvironment and potentially act as the main inducer of primed MSCs.

3.7 SGRN is the main effector of primed MSCs

To confirm whether SGRN was the main inducer of primed MSCs, various concentrations of SGRN protein were used to treat naïve MSCs (Fig. 8). After the treatment of the naïve MSCs with SGRN for 24 h, the TGF-β mRNA expression in naïve MSCs was measured via quantitative real-time PCR analysis. Significant increases in TGF-β mRNA expression were observed, except at 10 ng/mL (Fig. 8A). The peak was observed at 2 mg/mL SGRN treatment. Next, the therapeutic potential of SGRN-treated MSCs (SGRN MSCs) was briefly assessed (Fig. 8B). H4SW cells were co-cultured with naïve MSCs or SGRN MSCs for 24 h and then the CCK assay was conducted to confirm the anti-apoptotic effect of naïve and SGRN MSCs on H4SW cells. Cell death was significantly inhibited when H4SW cells were co-cultured with naïve MSCs and SGRN MSCs. This suggests that SGRN secreted by H4SW cells or the AD microenvironment is an inducer of primed MSCs.

4. Discussion

Recent advances have demonstrated the promising therapeutic role of MSCs in AD [12, 17]. Because AD remains a major cause of morbidity and mortality, significant effort has been directed toward Aβ removal via stem cell transplantation [13, 28]. The therapeutic properties of MSCs are largely related to their anti-apoptotic and anti-inflammatory abilities, which have been confirmed both *in vivo* and *in vitro* [13, 29, 30]. However, the low survival rates of MSCs *in vivo* are a challenge and the benefits of MSCs are mediated by undefined mechanisms [31–33].
Various modifications of MSCs have been attempted to improve their survival rates and therapeutic efficacy [31, 32, 34, 35]. Attempts to improve stem cell survival, metabolism, or migration ability have focused on genetic modifications to knock-out or knock-in specific genes [36–38]. However, the clinical application of genetically-modified MSCs is associated with the risk of unexpected genetic mutations resulting in tumor formation [39]. In another approach, biocompatible scaffolds as an alternative to encapsulated MSCs have been developed to improve the survival and engraftment rates [40]. This method facilitated clinical application but did not improve the efficacy of MSCs.

In recent years, pre-conditioning methods that attempted to improve the efficacy of MSCs have also been in the spotlight [41–43]. Pre-conditioning aims to promote cell proliferation [43], improve migratory ability [43], and enhance protein secretion [44]. Unlike genetic modifications, pre-conditioning can be achieved by exposing MSCs to specific microenvironments. Compared with genetic modifications, pre-conditioning enhanced therapeutic efficacy while maintaining the genotype of the cells [45]. A number of approaches have been proposed to make pre-conditioned MSCs. Pre-conditioning by hypoxia [46], inflammatory stimuli [42, 45], or other factors [42] are strategies designed to enhance the survival and effectiveness of MSCs post-transplantation. In this study, we pre-conditioned MSCs using Aβ, the most important hallmark of Alzheimer's disease and used H4SW cells for pre-conditioning through endogenous Aβ.

H4SW cells are a stable cell line whereby the amyloid precursor protein (APP) Swedish mutation was introduced into a human glioblastoma cell line. APP is an integral membrane protein of neuronal cells involved in synaptic formation, synaptic plasticity, and ion export. APP, expressed in cell membranes, is usually cleaved by α-secretase. However, mutations in APP protein or PSEN1/PSEN2 increases the change for APP to be cleaved by β-, and γ-secretase, resulting in high levels of Aβ production in the brain. The Aβ produced is considered the causative substance of Alzheimer's disease, as it forms oligomer aggregates and Aβ plaques, resulting in neuronal toxicity and ultimately, the death of neuronal cells. APP Swedish, which is adjacent to the β-secretase site in APP, is one of the well-known genetic mutations in familial Alzheimer's disease, resulting in increased total Aβ production [47–49]. Therefore, the research model for AD with an APP Swedish mutation is now widely used [50–53], and the H4SW cell line is called the AD in vitro model [20]. Moreover, Aβ accumulated in the brain of AD patients activates glia cells, which are known to eliminate Aβ and have neuroprotective effects [54–57]. MSCs do not remove Aβ itself when exposed to AD but secrete proteins that can stimulate neurons or glial cells through paracrine action [58]. Therefore, we propose that the H4SW cell line was suitable for this study because the therapeutic efficacy of MSCs can be evaluated by measuring the reduction in Aβ deposits by stimulated H4SW cells.

When H4SW cells were co-cultured with primed MSCs, decreases in the level of Aβ and ubiquitin conjugates were observed in the H4SW cells (Figs. 2 and 3). In addition, when primed MSCs were administered directly into the brain of 5xFAD mice, an AD in vivo model, primed MSCs showed the therapeutic effects of suppressing neuronal death and promoting Aβ clearance (Fig. 4). Messenger RNA sequencing confirmed that SGRN secreted by H4SW cells promoted TGF-β secretion by MSCs, TGF-β protein had the same anti-cell death and anti-Aβ effects as primed MSCs, and SRGN-treated MSCs
showed anti-cell death effects (Figs. 5, 6, 7, 8). It is known that the secretion of SRGN is increased when an inflammatory reaction occurs [59]. Heparin sulfate proteoglycan, which contains SRGN, was responsible for promoting the fibrillization of Aβ and tau proteins [60]. Interestingly, it was also reported that SRGN gene expression and protein expression were significantly increased in AD patients compared to normal controls [61]. Thus, SRGN may be thought of as a possible biomarker for AD, suggesting that the pre-conditioning of SRGN in MSCs may be a possible to generate enhance MSC for AD treatment. Additionally, TGF-β is highly expressed in primed MSCs or SRGN-treated MSCs, and the signaling pathway associated with TGF-β is impaired in AD [62] and TGF-β itself showed neuroprotective effects [63]. Therefore, the results of this and previous studies suggest that TGF-β, highly secreted by primed MSCs, can have therapeutic efficacy in AD.

A particularly noteworthy finding is that when MSCs were exposed to an AD microenvironment, SRGN secreted locally in the Alzheimer’s brain was recognized by the MSCs, which were induced to increase the expression of TGF-β, promoting therapeutic efficacy. As far as we know, this is the first study to generate pre-conditioned MSC using a possible biomarker for the target disease. Like the concept of vaccination, we can make MSCs in a ready-to-fight state, promoting the secretion of effective proteins by exposing them to the target disease microenvironment in advance.

Our study had several limitations. First of all, the exact mechanism of action of SGRN, MSC, and TGF-β was not elucidated. Second, the recovery of cognition in the AD in vivo model was not studied. After the injection of primed MSCs, TGF-β, or SRGN MSCs, a long-term follow-up must be observed. Finally, the optimization of signaling factors and their combinations used in MSC preconditioning requires further investigation. Studies based on preconditioned MSCs should be conducted to enhance the therapeutic capacity of MSCs and expand the platform developed in this study.

5. Conclusions

In summary, we report that AD environmental preconditioning is a promising strategy to reduce cell death and ubiquitin levels while maintaining the stemness and characteristics of MSCs. Further, these data suggest that human WJ-MSCs exposed to an AD cell model in vitro may represent a promising and novel therapy for AD.

Abbreviations

AD: Alzheimer's disease; MSCs: mesenchymal stem cells; WJ-MSCs: Wharton's jelly-derived mesenchymal stem cells; NEP: neprilysin; Aβ: amyloid-beta; BACE1: beta-secretase 1; H4SW: APP695-Swedish mutant (K595N/M596L)-expressing H4; CSF: cerebrospinal fluid; TGF-β: transforming growth factor-beta; SRGN: serglycin; MEM: Minimum essential media; PCR: polymerase chain reaction; ELISA: enzyme-linked immunosorbent assay; GMP: good manufacturing practice; FBS: fetal bovine serum; PBS: phosphate-buffered saline; ISCT: International Society for Cell and Gene Therapy; S.E.M.: Standard error of the mean; ALU: Arthrobacter luteus element; ANOVA: analysis of variance.
Declarations

Acknowledgments

Not applicable.

Author Contributions

JWC, DLN, SEP, and HSK conceived of and supervised the project. SEP, HSK, and SJK conducted the experiments. SJC, SYO, GHR, and MJK provided resources. SEP, HSK, and JHB analyzed the data. JWC, DLN, SEP, and HSK wrote the manuscript. All authors discussed the results and commented on the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by the National Research Foundation of Korea grants (2017R1D1A1B03033239 to P.S.E. and 2018R1D1A1B07046902 to J.W.C.) funded by the Korean government (MSIP). The study was also supported by grants awarded by the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI) (grant number: HI14C3484 to J.W.C.), and funded by the Ministry of Health & Welfare, Republic of Korea.

Availability of data and materials

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Ethics approval and consent to participate

This study was approved by the Institutional Animal Care and Use Committee (IACUC) of the Samsung Biomedical Research Institute (SBRI) at Samsung Medical Center (SMC). SBRI is an accredited facility of the Association for the Assessment and Accreditation of Laboratory Animal Care International (AAALAC International), and abides by the Institute of Laboratory Animal Resources (ILAR) guidelines. In accordance with the guidelines approved by the Institutional Review Board (IRB) of Samsung Medical Center, umbilical cords were collected with informed consent from pregnant mothers (IRB#2016-07-102).

Consent for publication

Not applicable.
Competing interests

The authors declare no potential conflicts of interest.

Author details

1 Stem Cell Institute, ENCell Co. Ltd, Seoul 06072, Republic of Korea. 2 Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul 06351, South Korea. 3 Department of Medical Device Management and Research, SAIHST, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea. 4 The Office of R&D Strategy & Planning, Samsung Medical Center, Seoul 06351, Republic of Korea. 5 Department of Neurology, Samsung Medical Center, Seoul 06351, South Korea. 6 Department of Obstetrics and Gynecology, Samsung Medical Center, Seoul 06351, South Korea. 7 Samsung Alzheimer Research Center, Samsung Medical Center, Seoul 06351, South Korea.

References

1. Querfurth HW, LaFerla FM. Alzheimer's disease. New England Journal of Medicine. 2010;362(4):329-44.
2. Hardy JA, Higgins GA. Alzheimer's disease: the amyloid cascade hypothesis. Science. 1992;256(5054):184-5.
3. Selkoe DJ. Alzheimer's disease: genes, proteins, and therapy. Physiol Rev. 2001;81(2):741-66.
4. Apostolova LG. Alzheimer Disease. Continuum (Minneap Minn). 2016;22(2 Dementia):419-34.
5. Swerdlow RH. Pathogenesis of Alzheimer's disease. Clin Interv Aging. 2007;2(3):347-59.
6. Anbari F, Khalili MA, Bahrami AR, Khoradmehr A, Sadeghian F, Fesahat F, et al. Intravenous transplantation of bone marrow mesenchymal stem cells promotes neural regeneration after traumatic brain injury. Neural Regen Res. 2014;9(9):919-23.
7. Zheng H, Fridkin M, Youdim M. From single target to multitarget/network therapeutics in Alzheimer's therapy. Pharmaceuticals (Basel). 2014;7(2):113-35.
8. Miller G. Pharmacology. The puzzling rise and fall of a dark-horse Alzheimer's drug. Science. 2010;327(5971):1309.
9. Benek O, Korabecny J, Soukup O. A Perspective on Multi-target Drugs for Alzheimer's Disease. Trends Pharmacol Sci. 2020;41(7):434-45.
10. Ibrahim MM, Gabr MT. Multitarget therapeutic strategies for Alzheimer's disease. Neural Regen Res. 2019;14(3):437-40.
11. Kim DH, Lee D, Chang EH, Kim JH, Hwang JW, Kim JY, et al. GDF-15 Secreted from Human Umbilical Cord Blood Mesenchymal Stem Cells Delivered via CSF Promote Hippocampal Neurogenesis and Synaptic Activity in an Alzheimer's Disease Model. Stem Cells Dev. 2015.
12. Kim JY, Kim DH, Kim DS, Kim JH, Jeong SY, Jeon HB, et al. Galectin-3 secreted by human umbilical cord blood-derived mesenchymal stem cells reduces amyloid-beta42 neurotoxicity in vitro. FEBS Letters. 2010;584(16):3601-8.

13. Kim JY, Kim DH, Kim JH, Lee D, Jeon HB, Kwon SJ, et al. Soluble intracellular adhesion molecule-1 secreted by human umbilical cord blood-derived mesenchymal stem cell reduces amyloid-beta plaques. Cell Death and Differentiation. 2012;19(4):680-91.

14. Kim JY, Kim DH, Kim JH, Yang YS, Oh W, Lee EH, et al. Umbilical cord blood mesenchymal stem cells protect amyloid-beta42 neurotoxicity via paracrine. World J Stem Cells. 2012;4(11):110-6.

15. Lee NK, Park SE, Kwon SJ, Shim S, Byeon Y, Kim JH, et al. Agouti Related Peptide Secreted Via Human Mesenchymal Stem Cells Upregulates Proteasome Activity in an Alzheimer's Disease Model. Sci Rep. 2017;7:39340.

16. Park SE, Lee J, Chang EH, Kim JH, Sung JH, Na DL, et al. Activin A secreted by human mesenchymal stem cells induces neuronal development and neurite outgrowth in an in vitro model of Alzheimer's disease: neurogenesis induced by MSCs via activin A. Arch Pharm Res. 2016;39(8):1171-9.

17. Lee NK, Na DL, Chang JW. Killing two birds with one stone: The multifunctional roles of mesenchymal stem cells in the treatment of neurodegenerative and muscle diseases. Histol Histopathol. 2018;33(7):629-38.

18. Lee J, Kwon SJ, Kim JH, Jang H, Lee NK, Hwang JW, et al. Cerebrospinal fluid from Alzheimer's disease patients as an optimal formulation for therapeutic application of mesenchymal stem cells in Alzheimer's disease. Sci Rep. 2019;9(1):564.

19. Sung HY, Choi EN, Lyu D, Mook-Jung I, Ahn JH. Amyloid beta-mediated epigenetic alteration of insulin-like growth factor binding protein 3 controls cell survival in Alzheimer's disease. PLoS One. 2014;9(6):e99047.

20. Shin J, Yu SB, Yu UY, Jo SA, Ahn JH. Swedish mutation within amyloid precursor protein modulates global gene expression towards the pathogenesis of Alzheimer's disease. BMB Rep. 2010;43(10):704-9.

21. Kwon S, Ki SM, Park SE, Kim MJ, Hyung B, Lee NK, et al. Anti-apoptotic Effects of Human Wharton's Jelly-derived Mesenchymal Stem Cells on Skeletal Muscle Cells Mediated via Secretion of XCL1. Mol Ther. 2016;24(9):1550-60.

22. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315-7.

23. Park SE, Lee NK, Lee J, Hwang JW, Choi SJ, Hwang H, et al. Distribution of human umbilical cord blood-derived mesenchymal stem cells in the Alzheimer's disease transgenic mouse after a single intravenous injection. Neureport. 2016;27(4):235-41.

24. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357-9.

25. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841-2.
26. Team RDC. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. 2016.

27. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004;5(10):R80.

28. Yokokawa K, Iwahara N, Hisahara S, Emoto MC, Saito T, Suzuki H, et al. Transplantation of Mesenchymal Stem Cells Improves Amyloid-beta Pathology by Modifying Microglial Function and Suppressing Oxidative Stress. J Alzheimers Dis. 2019;72(3):867-84.

29. Wei Y, Xie Z, Bi J, Zhu Z. Anti-inflammatory effects of bone marrow mesenchymal stem cells on mice with Alzheimer's disease. Exp Ther Med. 2018;16(6):5015-20.

30. Lee JK, Jin HK, Bae JS. Bone marrow-derived mesenchymal stem cells attenuate amyloid beta-induced memory impairment and apoptosis by inhibiting neuronal cell death. Curr Alzheimer Res. 2010;7(6):540-8.

31. Silva LHA, Antunes MA, Dos Santos CC, Weiss DJ, Cruz FF, Rocco PRM. Strategies to improve the therapeutic effects of mesenchymal stromal cells in respiratory diseases. Stem Cell Res Ther. 2018;9(1):45.

32. Li L, Chen X, Wang WE, Zeng C. How to Improve the Survival of Transplanted Mesenchymal Stem Cell in Ischemic Heart? Stem Cells Int. 2016;2016:9682757.

33. Vasic V, Barth K, Schmidt MHH. Neurodegeneration and Neuro-Regeneration-Alzheimer's Disease and Stem Cell Therapy. Int J Mol Sci. 2019;20(17).

34. Zhao L, Hu C, Zhang P, Jiang H, Chen J. Preconditioning strategies for improving the survival rate and paracrine ability of mesenchymal stem cells in acute kidney injury. J Cell Mol Med. 2019;23(2):720-30.

35. Hodgkinson CP, Gomez JA, Mirotou M, Dzau VJ. Genetic engineering of mesenchymal stem cells and its application in human disease therapy. Hum Gene Ther. 2010;21(11):1513-26.

36. Kim N, Cho SG. New strategies for overcoming limitations of mesenchymal stem cell-based immune modulation. Int J Stem Cells. 2015;8(1):54-68.

37. Han J, Liu Y, Liu H, Li Y. Genetically modified mesenchymal stem cell therapy for acute respiratory distress syndrome. Stem Cell Res Ther. 2019;10(1):386.

38. Yin X, Hu L, Zhang Y, Zhu C, Cheng H, Xie X, et al. PDGFB-expressing mesenchymal stem cells improve human hematopoietic stem cell engraftment in immunodeficient mice. Bone Marrow Transplant. 2020;55(6):1029-40.

39. Neri S. Genetic Stability of Mesenchymal Stromal Cells for Regenerative Medicine Applications: A Fundamental Biosafety Aspect. Int J Mol Sci. 2019;20(10).

40. Forte G, Franzese O, Pagliari S, Pagliari F, Di Francesco AM, Cossa P, et al. Interfacing Sca-1(pos) mesenchymal stem cells with biocompatible scaffolds with different chemical composition and geometry. J Biomed Biotechnol. 2009;2009:910610.
41. Philipp D, Suhr L, Wahlers T, Choi YH, Paunel-Gorgulu A. Preconditioning of bone marrow-derived mesenchymal stem cells highly strengthens their potential to promote IL-6-dependent M2b polarization. Stem Cell Res Ther. 2018;9(1):286.

42. Saparov A, Ogay V, Nurgozhin T, Jumabay M, Chen WC. Preconditioning of Human Mesenchymal Stem Cells to Enhance Their Regulation of the Immune Response. Stem Cells Int. 2016;2016:3924858.

43. Hu C, Li L. Preconditioning influences mesenchymal stem cell properties in vitro and in vivo. J Cell Mol Med. 2018;22(3):1428-42.

44. Ferreira JR, Teixeira GQ, Santos SG, Barbosa MA, Almeida-Porada G, Goncalves RM. Mesenchymal Stromal Cell Secretome: Influencing Therapeutic Potential by Cellular Pre-conditioning. Front Immunol. 2018;9:2837.

45. Noronha NC, Mizukami A, Caliari-Oliveira C, Cominal JG, Rocha JLM, Covas DT, et al. Priming approaches to improve the efficacy of mesenchymal stromal cell-based therapies. Stem Cell Res Ther. 2019;10(1):131.

46. Hu X, Yu SP, Fraser JL, Lu Z, Ogle ME, Wang JA, et al. Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. J Thorac Cardiovasc Surg. 2008;135(4):799-808.

47. Scheuner D, Eckman C, Jensen M, Song X, Citron M, Suzuki N, et al. Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. Nat Med. 1996;2(8):864-70.

48. Cai XD, Golde TE, Younkin SG. Release of excess amyloid beta protein from a mutant amyloid beta protein precursor. Science. 1993;259(5094):514-6.

49. Nilsberth C, Westlind-Danielsson A, Eckman CB, Condron MM, Axelman K, Forsell C, et al. The ‘Arctic’ APP mutation (E693G) causes Alzheimer's disease by enhanced Abeta protofibril formation. Nat Neurosci. 2001;4(9):887-93.

50. Wang YP, Wang ZF, Zhang YC, Tian Q, Wang JZ. Effect of amyloid peptides on serum withdrawal-induced cell differentiation and cell viability. Cell Res. 2004;14(6):467-72.

51. Richard BC, Kurdakova A, Baches S, Bayer TA, Weggen S, Wirths O. Gene Dosage Dependent Aggravation of the Neurological Phenotype in the 5XFAD Mouse Model of Alzheimer's Disease. J Alzheimers Dis. 2015;45(4):1223-36.

52. Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, et al. Triple-Transgenic Model of Alzheimer's Disease with Plaques and Tangles. Neuron. 2003;39(3):409-21.

53. Pahrudin Arrozi A, Shukri SNS, Wan Ngah WZ, Mohd Yusof YA, Ahmad Damanhuri MH, Makpol S. Evaluation of the Expression of Amyloid Precursor Protein and the Ratio of Secreted Amyloid Beta 42 to Amyloid Beta 40 in SH-SY5Y Cells Stably Transfected with Wild-Type, Single-Mutant and Double-Mutant Forms of the APP Gene for the Study of Alzheimer's Disease Pathology. Appl Biochem Biotechnol. 2017;183(3):853-66.
54. Dickson DW, Lee SC, Mattiace LA, Yen SH, Brosnan C. Microglia and cytokines in neurological disease, with special reference to AIDS and Alzheimer's disease. Glia. 1993;7(1):75-83.

55. Mizuno T, Doi Y, Mizoguchi H, Jin S, Noda M, Sonobe Y, et al. Interleukin-34 Selectively Enhances the Neuroprotective Effects of Microglia to Attenuate Oligomeric Amyloid-β Neurotoxicity. The American Journal of Pathology. 2011;179(4):2016-27.

56. Kim YS, Yoon BE. Altered GABAergic Signaling in Brain Disease at Various Stages of Life. Exp Neurobiol. 2017;26(3):122-31.

57. Wyss-Coray T, Loike JD, Brionne TC, Lu E, Anankov R, Yan F, et al. Adult mouse astrocytes degrade amyloid-beta in vitro and in situ. Nat Med. 2003;9(4):453-7.

58. Kim JY, Kim DH, Kim JH, Lee D, Jeon HB, Kwon SJ, et al. Soluble intracellular adhesion molecule-1 secreted by human umbilical cord blood-derived mesenchymal stem cell reduces amyloid-beta plaques. Cell Death Differ. 2012;19(4):680-91.

59. Reine TM, Vuong TT, Jenssen TG, Kolset SO. Serglycin secretion is part of the inflammatory response in activated primary human endothelial cells in vitro. Biochimica et Biophysica Acta (BBA) - General Subjects. 2014;1840(8):2498-505.

60. van Horssen J, Wesseling P, van den Heuvel LPWJ, de Waal RMW, Verbeek MM. Heparan sulphate proteoglycans in Alzheimer's disease and amyloid-related disorders. The Lancet Neurology. 2003;2(8):482-92.

61. Lorente-Gea L, Garcia B, Martin C, Ordiales H, Garcia-Suarez O, Pina-Batista KM, et al. Heparan Sulfate Proteoglycans Undergo Differential Expression Alterations in Alzheimer Disease Brains. J Neuropathol Exp Neurol. 2020;79(5):474-83.

62. Tesseur I, Zou K, Esposito L, Bard F, Berber E, Can JV, et al. Deficiency in neuronal TGF-beta signaling promotes neurodegeneration and Alzheimer's pathology. J Clin Invest. 2006;116(11):3060-9.

63. Diniz LP, Tortelli V, Matias I, Morgado J, Bergamo Araujo AP, Melo HM, et al. Astrocyte Transforming Growth Factor Beta 1 Protects Synapses against Abeta Oligomers in Alzheimer's Disease Model. J Neurosci. 2017;37(28):6797-809.

Supplemental Note

Supplementary figures 1-3 are missing from this version

Figures
Figure 1

The concept of primed MSCs (A) The procedure for pre-conditioning WJ-MSCs with H4SW cells to make primed MSCs. (B) After pre-conditioning, the therapeutic efficacy of primed MSC was evaluated in vitro and in vivo.
Figure 2

Anti-apoptotic effect of primed MSCs (A) Images of serum-starved H4SW cells co-cultured with naïve MSCs or primed MSCs for 24 h. Scale bar: 40 µm (B) The number of viable cells in different experimental groups was counted by the trypan blue staining method. (C) Western blot analysis of cell death markers, cleaved PARP and cleaved caspase-3. (D) The densitometry results are presented as fold-change compared to H4SW cells. The data were normalized to β-actin expression. The data are presented as the mean ± S.E.M. Three samples per experimental group were tested in each assay. *p < 0.05.
Figure 3

Therapeutic effect on Alzheimer’s disease in vitro (A) Secreted amyloid-beta levels in the conditioned media was measured by ELISA. *p < 0.05 (B) The degradation of ubiquitin (Ub) conjugates in H4SW cells with co-cultured MSCs was measured by Western blots. The percentage of Ub conjugates was calculated as a percentage of that in the H4SW cells. (C) Changes in mRNA expression were evaluated. The data are presented as the mean ± S.E.M. Three samples per experimental group were tested in each assay. *p < 0.05.
Figure 4

The therapeutic efficacy of primed MSCs in vivo. (A) The level of apoptosis was measured after the injection of naïve and primed MSCs into the lateral ventricle of mice brains and expressed as a percentage of the WT controls. (B) Secreted amyloid-beta levels were measured by Western blots and expressed as a percentage of the WT controls. (C) The deposition of amyloid-beta in the cortex and hippocampus was visualized by thioflavin-S staining, and the intensity was measured and plotted as a histogram. Scale bar: 100 µm (D) The standard curve was fitted to the linear regression for real-time quantitative PCR (qPCR) analysis (E) The absolute number of cells in the brains of mice in the naïve MSC and primed MSC groups was calculated. The data are presented as the mean ± S.E.M. N=3 per group. *p < 0.05.

Figure 5

Therapeutic efficacy of TGF-β in 5xFAD mice. (A) Changes in cleaved caspase-3 were measured in the experimental groups: WT, Sham, and TGF-β. (B) Secreted amyloid-beta levels in the brain was measured. (C) Thioflavin-S staining was performed and fluorescent images from the cortex and hippocampus of each group are shown. Scale bar: 100 µm. The data are presented as the mean ± S.E.M. *p < 0.05.
Figure 6

The mRNA expression patterns of primed MSCs. (A) Upregulated genes are represented in red and downregulated genes in blue. (B) Euclidean distance clustering of significant genes. (C) TGF-β expression in the naïve and primed MSCs analyzed by qPCR. The data are presented as the mean ± S.E.M. Three samples per experimental group were tested in each assay. *p < 0.05.

Figure 7

Identification of SGRN as a secretory protein of H4SW cells. The gene expression patterns of H4SW cells were upregulated compared to H4 cells. (A) Scatter plot and (B) Euclidean distance clustering of significant genes performed by MeV software are presented as log-transformed data. The green and red colors indicate decreased and increased gene expression, respectively. (C) ELISA assay of SRGN concentrations in H4 and H4SW cell cultures. Three samples per experimental group were tested in each assay. The data are presented as the mean ± S.E.M. *p < 0.05.
Figure 8

Effects of SRGN-primed MSCs. (A) The mRNA was extracted from SRGN-primed MSCs and analyzed by qPCR using a specific primer for human TGF-β. *p < 0.05, n = 3. (B) Viability of H4SW cells under serum-starved conditions analyzed by CCK-8 assays. Three samples per experimental group were tested in each assay. The data are presented as the mean ± S.E.M. *p < 0.05.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Graphicalabstract.pdf