Predictive power of word surprisal for reading times is a linear function of language model quality

Adam Goodkind & Klinton Bicknell
Northwestern University
Cognitive Modeling & Computational Linguistics Workshop
Don’t touch the wet ______

- paint
- cement
- bed

(Wlotko & Federmeier, 2012)
MOTIVATION
HOW WE USE PROBABILITY IN CONTEXT

• Studies of human sentence processing have shown that a word’s probability in context is strongly related to processing difficulty
• Do better estimates of word probability improve processing predictions?

ERP Response

Reading Times

(Wlotko & Federmeier, 2012)

(Hale, 2001)
SURPRISAL AND SURPRISAL THEORY

• From information theory (Shannon, 1948)
 • A theory of communication
 • The information content in a word = −log(p)

• More information is more difficult to process
• Difficulty (cognitive cost of processing a word) ≈ how predictable the word is in a given context

\[
difficulty \propto - \log P(w_i|w_1\ldots i-1, \text{CONTEXT})
\]

(Hale, 2001; Levy, 2008)

• Prior studies (e.g. Demberg & Keller, 2008) found that surprisal can predict reading times
LANGUAGE MODELS

CALCULATING WORD PROBABILITIES

- **Cloze task** (Taylor, 1953)
 - Count people’s responses to filling in a missing word
 - Inaccurate and labor intensive → need for computational models

- **Language models**
 - A probability distribution over sequences of words
 - Good language models assign a higher probability to word strings that occur more often
 - Quality (accuracy) of a language model is quantified as **perplexity**
 - Lower == Better
MANY TYPES OF LANGUAGE MODELS
DIFFERENT BUILDING BLOCKS

- **n-grams (fixed sequence length)**
 - Bigrams, trigrams, 4-grams, etc.
 - $p(w_n | w_{n-1})$
 - Fixed dependency length

- **Neural network**
 - Word probabilities use dependencies spanning arbitrary distances (number of words)
 - Usually use Long Short-Term Memory (LSTM) networks
 - Variable dependency length

- **Interpolated**
 - Combine multiple models

- **Recent neural network-based language models have significantly improved linguistic accuracy**
DEFINING “ACCURACY”

• Linguistic accuracy
 • How well language models predict unseen language
 • Measured by perplexity

• Psychological accuracy
 • How well language models predict psychological phenomena
 • E.g. eye gaze duration, ERP response amplitude
OUR STUDY

• Build a range of different types of language models
 • Different language models produce different estimates of surprisal
• Construct a regression model predicting gaze duration in an eye-tracking corpus from the surprisal of each language model
• Compare the regression models’ quality of predictions for the gaze durations
 • Understand the relationship between language model quality and predictions of processing difficulty
METHODS
CREATING A LANGUAGE MODEL

• Language models used Google One Billion Word Benchmark ("1b") Corpus
 • Collected from international English news services
 • ~900 million words, 800,000 word vocabulary size
• n-grams models created with kenlm
 • Kneser-Ney smoothing
• Neural network model created from Google’s pre-trained models
 • Long Short-Term Memory (LSTM) units in a Recurrent Neural Network (RNN)
• Interpolated models created by mixing LSTM and 5-gram estimates
OUR LANGUAGE MODELS

n-grams

Language Model	Perplexity
Bigram	291
Trigram	191
4-gram	172
5-gram	169
LSTM	113
Interpolated	76
Interpolated	73

NN

interpolated
METHODS
EYE-TRACKING DATA

- Dundee Corpus
 - 61,000 tokens from a British newspaper, read by 10 participants
 - ~300,000 total tokens, 37,000 word vocabulary size
- Extracted gaze durations: how long a word was fixated during first pass reading
- Exclusions
 - Words not fixated
 - Words at beginning/end of line
 - …and others
METHODS
PREDICTIVE REGRESSION MODELS

• Generalized Additive Models (GAMs)
 • Type of regression model
 • Allows for non-linear effects

• Predictors of interest
 • Surprisal of current and previous words
METHODS
PREDICTIVE REGRESSION MODELS

• We used Generalized Additive Mixed Models (GAMMs)
• Predict eye gaze duration given:
 • **Surprisal of current and previous word**
 • Non-linear effects of control covariates
 • The interaction of word frequency and length
 • Sequential word number
 • Whether the prior word was fixated
 • Random intercepts for each subject
METHODS
PREDICTIVE REGRESSION MODELS

• Linear versus non-linear GAMMs
 • First set of experiments forced surprisal to be a linear predictor
 • Second set of experiments allowed surprisal to make non-linear predictions
 • Other predictors remained non-linear
METHODS
PSYCHOLOGICAL ACCURACY

• Measured improvements in predictions from each language model

$$\Delta \text{LogLik}(\text{model}_m) = \text{LogLik}(\text{model}_m) - \text{LogLik} (\text{baseline_model})$$

• LogLik (Log Likelihood)
 • A measure of accuracy
• model$_m$
 • Includes language model m’s surprisal as a predictor
• baseline_model
 • Missing predictor of interest (surprisal)
 • Includes only control covariates
RESULTS
RELATIONSHIP BETWEEN LINGUISTIC AND PSYCHOLOGICAL ACCURACY

• Using a linear regression model, we investigate the relationship between language models and their psychological predictions

• What is the relationship between linguistic accuracy (perplexity) and psychological prediction quality (ΔLogLik)?
As the perplexity of a language model improves, the model makes more accurate predictions for reading times.

This relationship holds across model types.

Linear GAMMs
RESULTS
MAGNITUDE OF EFFECT

• As language models continue to improve and make better predictions, does the magnitude (size of effect) of surprisal change?
• Do better language models put more weight on the surprisal of current and previous words?
• We can compare coefficients of surprisal from each model to understand the magnitude of the effect
RESULTS
MAGNITUDE OF EFFECT

- The magnitude of the effect does not correlate with linguistic accuracy
- Effect size of surprisal does not seem to be biased for worse language models
RESULTS
SHAPE OF EFFECT

• Smith & Levy (2013) looked at the shape of the effect of surprisal
 • Found a linear relationship
 • Supports various derivations of surprisal theory
 (e.g., Hale, 2001; Levy, 2008; Bicknell & Levy, 2009; Smith & Levy, 2013)
 • Contra alternative probabilistic processing theories
 (e.g., Narayanan & Jurafsky, 2004; theories predicting UID optimality)

• Does this linear relationship hold for more sophisticated models, if we allow surprisal to be non-linear?
RESULTS
SHAPE OF EFFECT

• For both the current and previous word probability, gaze time changes at a linear rate, for all models

• Possibly even more linear as language model accuracy improves
RESULTS
RELATIONSHIP BETWEEN LINGUISTIC AND PSYCHOLOGICAL ACCURACY (PART II)

• If we allow for non-linear effects, not only does the relationship between models improve, but the relationship becomes more linear
TAKEAWAYS

- Strong relationship between linguistic model quality and its psychological predictive power
 - No privileged language model class: better perplexity improves psychological predictions
- The size of the surprisal effect was consistent across models
 - Estimates of the effect size of surprisal from worse language models appear to be relatively unbiased
- The effect of surprisal is linear across all models and distributions of word probabilities
 - Supports surprisal theory processing models even with state-of-the-art language models
THANK YOU!

Funding sources:

Adam Goodkind
a.goodkind@u.northwestern.edu