A Bird’s Eye View on Pharmacotherapeutic Progress of Indolizine-based Compounds in Context to Modern Scenario

Kishor R. Danao¹, Prajwal B. Kohadkar¹, Debarshi Kar Mahapatra¹, Ujwala N. Mahajan²
¹Department of Pharmaceutical Chemistry, Dadasaheb Balpande College of Pharmacy, Nagpur 440037, Maharashtra, India; ²Department of Quality Assurance, Dadasaheb Balpande College of Pharmacy, Nagpur 440037, Maharashtra, India.

ABSTRACT

Introduction: Indolizine (INDO) is a bicyclic heteroaromatic compound containing two fused rings (10 pi-electron system); pyridine and pyrrole via bridging N-atom at the centre of both the rings. This scaffold exists very rarely in nature and is an isomeric form of indole. It is analogous of indole (isoelectrically resembles indole system) which has marked potency in the biological activity. The scaffold is also related to the heterocyclic compound purine which is the base of cellular organisms. The structure of INDO is found in many natural products and is important in the pharmaceutical area because of prominent biological properties.

Aims: Highlighting the recent pharmacotherapeutic progress of indolizine-based compounds.

Methodology: In the preparation of this review article, a comprehensive scrutiny of the published literature in diverse pharmaceutical and medical databases such as Google Scholar, PubMed, etc. was successfully conducted and classified accordingly.

Results: The derivatives of INDO have various applications in drug design, biological area, and pharmaceutical research. INDO is a pharmacological active moiety and broadly displays biological activities such as anti-microbial, hypoglycemic, anti-inflammatory, analgesic, anti-oxidant, anti-depressant, anti-cancer activities, etc. The substituents on the INDO nucleus ring exhibit a wide range of biological activities such as anti-cancer, anti-bacterial, anti-fungal, anti-tubercular, anti-histamine, CNS-depressant activity, etc.

Conclusion: This imperative review article broadly highlighted the summary of the diverse pharmacotherapeutic potentials of INDO. This review will be a true inspiration for the medicinal chemists and pharmacologists in designing and screening low-molecular-weight inhibitors of the INDO scaffold.

Key Words: Indolizine, Derivatives, Pharmacology, Therapeutics, Targets, Inhibitors

INTRODUCTION

Indolizine (INDO) is a bicyclic heteroaromatic compound containing two fused rings (10 pi-electron system); pyridine and pyrrole via bridging N-atom at the centre of both the rings (Figure 1). This scaffold exists very rarely in nature and is an isomeric form of indole.¹ It is analogous of indole (isoelectrically resembles indole system) which has marked potency in the biological activity.² The scaffold is also related to the heterocyclic compound purine which is the base of cellular organisms.³ In this structure, various modifications, observations, and investigations have been reported over time.

Figure 1: Structure of Indolizine.

INDO is a pharmacological active moiety and broadly displays biological activities such as anti-microbial⁴, hypoglycemic⁵, anti-inflammatory⁶, analgesic⁷, anti-oxidant⁸, anti-depressant⁹, anti-cancer activities (Figure 2).¹⁰,¹¹ The structure of the INDO is found in many natural products and
is important in the pharmaceutical area because of prominent biological properties. The derivatives of INDO have various applications in drug design, biological area, and pharmaceutical research. Recently, the derivatization of INDO has been a core area of research due to the presence of the heterocyclic structure in several alkaloids extracted from neotropical frogs. Although, some methods have been published such as the racemic form of INDO derivatives, yet limited literature of enantiomeric selective has been reported.

Anti-tubercular activity
Tuberculosis is one of the dangerous respiratory diseases caused preliminary by *Mycobacterium tuberculosis* and is one of the primary reasons for both disability and death. According to the World Health Organization (WHO), more than 95% of people death is reported in a low and middle-income country. In addition to it, 0.4 million people expired from tuberculosis who are suffering from HIV infections. From the data, it was evidenced that more than 500 thousand people developed resistance against multi-drug and rifampicin drug therapy which required the need for the new anti-TB drugs with better pharmacokinetic attributes. INDO derivatives have been evaluated through in vitro assay for anti-TB properties against H37Rv and multidrug resistance strain. Gundersen et al. synthesized a series of 1-substituted INDO analogues and screened for the mycobacterial inhibitory activity where these compounds demonstrated effective minimum inhibitory activity (MIC, it is the minimal concentration at which the drug substance demonstrates no noticeable microbial growth over the Petri dish) at concentration 6.25 μg/mL.

Anti-microbial activity
Srikanth et al. synthesized a series of 1-carboxyhydrazide INDO derivatives and screened against *Staphylococcus aureus, Escherichia coli*, and *P. aeruginosa*. The anti-bacterial activity (*Bacillus subtilis, S. aureus, S. faecalis, M. luteus*, and *E. coli*) of the new series of carbonitrile INDO derivative was screened by Hazra et al.

Anti-fungal activity
The frequency of fungal diseases has augmented significantly in the past 50 years. Fungal diseases have marked themselves differently including mycoses in the skin, hair, nails, but also as systemic mycoses. The last reason, systemic mycoses, remains the major medical issue due to amplification in the immunocompromised patient population. One of the most common fungal infections is candidiasis, caused primarily by *Candida albicans*, a diploid fungus that grows both as yeast and filamentous cells. This fungus can also inflate resistance to anti-mycotic drugs that already subsist in the market, which necessitates a constant search for new drugs and treatments. A newly synthesized series of 3-substituted INDO-1-carbonitrile derivatives have been screened for their antifungal activity and recently been recognized as phosphatase inhibitor.

Anti-cancer activity
Cancer is constantly rising health risk and mortality rate. About, 25% of patients show a familial history of the disease which causes responsible factors like genes and environment. INDO nucleus has been reported to exhibit potential anti-cancer activity. Recently, novel heterocyclic indozolyl glyoxylamide derivatives have been synthesized and screened against MDR cell lines of cancer where these compounds were found to be active. The researchers have reported derivatives which were effective as anti-cancer through the destabilization of microtubules in the cancer cell. The researchers also studied that these derivatives presented marked effectiveness against multidrug resistance (MDR) cell lines without any neurotoxicity.

Anti-histamine and Central Nervous System (CNS) depressant activities
Histamine exhibits allergic and hypersensitivity reactions by the action of antigen and antibodies. Depression is referred to an imbalance between neurotransmitters which leads to psychosis and ultimately death. Approximately, 5% of the worldwide populations are suffered from these conditions which emerged the development of newer drug therapy. Recently, synthesized alkyl INDO derivatives have been reported which expressed both anti-depressant and anti-histaminic activities.
Cellular Apoptosis

INDO is present in various natural products such as homocrepidine-A\(^48\), tashiromine\(^49\), swainsonine\(^50\), Pandalisines-A and Pandalisines-B\(^51\), Flueggedine\(^52\), etc. which expresses multifarious biological activities such as anti-herpes virus\(^53\), cyclooxygenase and lipoxygenase inhibitors\(^54\), anti-tuberculosis\(^55\), and acetylcholine receptor agonist.\(^56\) p53, a well-known component in apoptosis-inducer and tumor suppressor has been a bird’s eye for modern-day researchers.\(^57\)\(^58\) A recent study indicated that the tumor suppressor (p53) in the C3 cell induces apoptosis with different genotypic profiles like p53HepG2, p53 null Hep3B, and mutant p53 Huh-7.\(^39\) It was initiate that C3 presented a marked anti-proliferation of HepG2 cells as compared with other cell lines and activation of p53 is relate with the amplify of ROS production.\(^60\)\(^61\)

It was found that carboxylated derivatives of INDO have been markedly effective towards the induction of apoptosis through the mitochondria p53 pathway in HepG2 cell.\(^62\)\(^66\)

Anti-angogenesis effect

During the last decades, the investigation was carried out for decorated polyfunctional scaffold with fluorescent INDO derivatives bearing various orthogonal groups such as amines, esters, oximes, alkynes, etc. with the anti-angiogenic drug COB223 (ERK1/2 inhibitor) that was structurally similar to the INDO scaffold. This scaffold showed binding with the ribonucleic acid (RNA) protein which effectively inhibited the process of angiogenesis.\(^67\)\(^68\)

CONCLUSION

This imperative review article broadly highlighted the summary of the diverse pharmacotherapeutic potentials (hypoglycemic, anti-inflammatory, analgesic, anti-oxidant, anti-depressant, anti-cancer, anti-bacterial, anti-fungal, anti-tubercular, anti-histamine, etc.) of numerous Indolizine derivatives. This interesting reviewed literature content will be a true inspiration for the modern-day medicinal chemists and motivated pharmacologists in rationally designing and in vivo / in vitro screening of low-molecular-weight inhibitors bearing Indolizine scaffold. The comprehensive study opened new avenues of research and application perspectives in identifying the potential leads.

ACKNOWLEDGEMENT

The authors acknowledge the college management for kind support and research aids.

Conflict of Interest

Authors declare no conflict of interest regarding the publication of this article.

Funding Information

No funding agency or sources acknowledged.

Authors’ Contribution

KRD: Physically authored the whole manuscript

PK: Complete literature survey performed

DKM: Made Figures, Wrote Structured Abstract, Drawn Graphical Abstract, Set References

UNM: Final reviewing of this manuscript, provided suggestions, and corrected few errors

REFERENCES

1. William HB, Doerge RF. Mannich bases from 2-Phenyl Indolizine-II. J Pharm Sci 1967;56(9):1200-2.
2. Gupta RR, Kumar M, Gupta V. Benzo-Fused Five-Membered Heterocycles with One Heteroatom. In: Heterocyclic Chemistry. Berlin: Springer; 1999.
3. Belal A, Gouda AM, Ahmed AS, Gawad NM. Synthesis of novel INDO, diazepino Indolizine and Pyrimido Indolizine derivatives as potent and selective anticancer agents. Res Chem Intermed 2015;41(12):9687-701.
4. Gundersen LL, Negussie AH, Rise F, Oestby OB. Antimycobacterial Activity of 1-Substituted Indolizine. Arch Pharm 2003;336(3):191-5.
5. De AU, Saha BP. Indolizines II: search for potential oral hypoglycemic agents. J Pharm Sci 1975;64(2):249-52.
6. Kallay KR, Doerge RF. p-Substituted 1, 2-diphenyl Indolizine as anti-inflammatory agents. J Pharm Sci 1972;61(6):949-51.
7. Som S, Das AK. Synthesis and evaluation of some 3-benzoyl Indolizine-1-carboxamides as possible anti-inflammatory and analgesic agents. Oriental J Chem 2006;22(2):415-20.
8. Østby OB, Dalhus B, Gundersen LL, Rise F, Bast A, Haenen GR. Synthesis of 1-Substituted 7-Cyano-2, 3-diphenyl Indolizines and Evaluation of Antioxidant Properties. Eur J Org Chem 2000;2000(22):3763-70.
9. Siddiqui N, Andalip SB, Ali R, Afzal O, Akhtar MJ, Azad B, et al. Antidepressant potential of nitrogen-containing heterocyclic moieties: an updated review. J Pharm Bioallied Sci. 2011;3(2):194-212.
10. Olejnikova P, Birošová L, Švorc L. Antimicrobial and antimutagenic properties of newly synthesized derivatives of Indolizine. Sci Pharm 2009;77(7):216.
11. Wani MC, Nicholas AW, Wall ME. Plant antitumor agents. 28. Resolution of a key tricyclic synthon, 5′-(RS)-1, 5-dioxo-5′-hydroxy-2′H, 5′H, 6′H-6′-oxopyrano [3′, 4′-f]. delta. 6, 8-etrahydro Indolizine: total synthesis and antitumor activity of 20 (S)-and 20 (R)-camptothecin. J Med Chem 1987;30(12):2317-9.
12. Venugopala KN, Khedr MA, Attimard M, Padmasahi B, Kulkarni RS, Venugopala R, et al. Review on chemistry of natural and synthetic Indolizines with their chemical and pharmacological properties. J Basic Clin Pharm 2017;8(2):51-9.
13. Flitsch W. In: Comprehensive Heterocyclic Chemistry. Katritzky AR; Rees CW, Eds. Oxford: Pergamon Press; 1984.
14. Daly JW, Spande TF, Garaffo HM. Alkaloids from amphibian skin: a tabulation of over eight-hundred compounds. J Nat Prod 2005;68(10):1556-75.
15. Daly JW, Spande TF. Alkaloids Chemical and Biological Perspectives. New York: Wiley Science; 1986.
Int J Cur Res Rev | Vol 12 • Issue 23 • December 2020

Danao et al.: A bird's eye view on pharmacotherapeutic progress of indolizine-based compounds in context to modern scenario

16. Elattar KM, Youssef I, Fadda AA. Reactivity of Indolizines in organic synthesis. Synth Commun 2016;46(9):719-44.

17. Occhiato EG, Guarna A, Spinetti LM. Enantioselective synthesis of Indolizine derivatives by rearrangement-cyclization of isoaxazine-5-spirocyclopropanes. Tetrahedron 1993;49(46):10629-42.

18. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010;127(12):2893-917.

19. Gundersen LL, Negussie AH, Rise F, Oestby OB. Antimycobacterial activity of 1-Substituted Indolizines. Arch Pharm 2003;336(3):191-5.

20. Faghih-Mirzaei E, Seifi M, Absazadeh M, Zomorodian K, Helahi H. Design, synthesis, biological evaluation and molecular modeling study of novel Indolizine-1-carbonitrile derivatives as potential anti-microbial agents. Iranian J Pharm Res 2018;17(3):883-95.

21. Dye C, Williams BG. The population dynamics and control of tuberculosis. Science. 2010;328(5980):856-61.

22. Jose B, Fake CS, JoineKF, Miner WD. SHT 3 receptor antagonists, indazole and INDO-3 carboxylic acid derivatives. J Med Chem 1987;30:2317-9.

23. Ippolito A, Claudi F, Gulini U, Micossi L. Indolizine derivatives with biological activity for 3-(2-aminoethyl)-2-methylINDOL and their N-alkyl derivatives. J Pharm Sci 1979;68:321-4.

24. Ma Z, Lienhardt C, McIlreren H, Nunn AJ, Wang X. Global tuberculosis drug development pipeline: the need and the reality. Lancet 2010;375(9731):2100-9.

25. Crabb C. Global Alliance at full steam for new TB drugs. Bull World Health Org 2002;80:517.

26. Johnson TO, Ermolieff J, Jirousek MR. Protein tyrosine phosphate 1B inhibitors for diabetes. Nature Rev Drug Discov 2002;1(9):696-709.

27. Dulla B, Wan B, Franzblau SG, Kapavarapu R, Reiser O, Iqbal J, et al. Construction and functionalization of fused pyridine ring leading to novel compounds as potential antitubercular agents. Bioorg Med Chem Lett 2012;22(14):4629-35.

28. Moraski GC, Markley LD, Chang M, Cho S, Franzblau SG, Hwang CH, et al. Generation and exploration of new classes of antitubercular agents: the optimization of oxazolines, oxazoles, thiazoles and imidazoles [1, 2-a] pyridines and isomeric 5, 6-fused scaffolds. Bioorg Med Chem 2012;20(7):2214-20.

29. Gundersen LL, Charnock C, Negussie AH, Rise F, Teklu S. Synthesis of INDOs, pyrrolo [1, 2-a] quinolines and isoquinolines: An assessment, antidepressant activity and docking studies of some novel indole bearing azetidinone derivatives. Drugs 2018;52(1):110-21.

30. Lingala S, Nerella R, Chenukupally R, Das AK. Synthesis and comparative antibacterial activity of INDO derivatives of isoniazid/pyrazinamide/ethionamide. Int J Pharm Sci Res Rev 2011;6:128-31.

31. Hazra A, Mondal S, Maity A, Naskar S, Saha P, Paria R, et al. Amberlite–IRA-402 (OH) ion exchange resin mediated synthesis of INDOs, pyrrolo [1, 2-a] quinolines and isoquinoines: Antibacterial and antifungal evaluation of the products. Eur J Med Chem 2011;46(6):2132-40.

32. Bongomin F, Gago S, Oladele RO, Denning DW. Global and multi-national prevalence of fungal diseases-estimate precision. J Fungi 2017;3(4):57.

33. Kabir MA, Hussain MA, Ahmad Z. Candida albicans: a model organism for studying fungal pathogens. ISRN Microbiol 2012;2012:538694.

34. Sangamwar AT, Deshpande UD, Pekamwar SS. Antifungals: need to search for a new molecular target. Ind J Pharm Sci 2008;70(4):423-30.
Indolizine derivatives as dual cyclooxygenase and lipoxygenase inhibitor for anti-inflammatory activity. Bioorg Med Chem 2017;25(16):4424-32.
55. Gundersen LL, Charnock C, Negussie AH, Rise F, Teklu S. Synthesis of Indolizine derivatives with selective antibacterial activity against Mycobacterium tuberculosis. Eur J Pharm Sci 2007;30(1):26-35.
56. Xue Y, Tang J, Ma X, Li Q, Xie B, Hao Y, et al. Synthesis and biological activities of INDO derivatives as alpha-7 nAChR agonists. Eur J Med Chem 2016;115:94-108.
57. Wickramasekera NT, Das GM. Tumour suppressor p53 and estrogen receptors in nuclear–mitochondrial communication. Mitochondrion 2014;16:26-37.
58. Wang K. Molecular mechanisms of hepatic apoptosis regulated by nuclear factors. Cellular Signal 2015;27(4):729-38.
59. Müller M, Strand S, Hug H, Heinemann EM, Walczak H, Hofmann WJ, et al. Drug-induced apoptosis in hepatoma cells is mediated by the CD95 (APO-1/Fas) receptor/ligand system and involves the activation of wild-type p53. J Clin Investig 1997;99(3):403-13.
60. Yin M, Ren X, Zhang X, Luo Y, Wang G, Huang K, et al. Selective killing of lung cancer cells by miRNA-506 molecule through inhibiting NF-κB p65 to evoke reactive oxygen species generation and p53 activation. Oncogene 2015;34(6):691-703.
61. Chen P, Luo X, Nie P, Wu B, Xu W, Shi X, et al. CQ synergistically sensitizes human colorectal cancer cells to SN-38/CPT-11 through lysosomal and mitochondrial apoptotic pathway via p53-ROS cross-talk. Free Radical Biol Med 2017;104:280-97.
62. Li W, Laskar A, Sultana N, Osman E, Ghosh M, Li Q, et al. Cell death induced by 7-oxysterols via lysosomal and mitochondrial pathways is p53-dependent. Free Radical Biol Med 2012;53(11):2054-61.
63. Zhou Y, Wei L, Zhang H, Dai Q, Li Z, Yu B, et al. FV-429 induced apoptosis through ROS-mediated ERK2 nuclear translocation and p53 activation in gastric cancer cells. J Cell Biochem 2015;116(8):1624-37.
64. Tu W, Zhang Q, Liu Y, Han L, Wang Q, Chen P, et al. Fluoride induces apoptosis via inhibiting SIRT1 activity to activate mitochondrial p53 pathway in human neuroblastoma SH-SY5Y cells. Toxicol Appl Pharmacol 2018;347:60-9.
65. Dashzeveg N, Yoshida K. Cell death decision by p53 via control of the mitochondrial membrane. Cancer Lett 2015;367(2):108-12.
66. Kruiswijk F, Labuschagne CF, Vousden KH. p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nature Rev Mol Cell Biol 2015;16(7):393-405.
67. Vanek V, Picha J, Fabre B, Budesinsky M, Lepsik M, Jiracek J. The development of a versatile trifunctional scaffold for biological applications. Eur J Org Chem 2015;2015:3689-701.
68. Engelen M, Lombardi A, Vitale R, Lista L, Maglio O, Pavone V, Nastri F. Branched porphyrins as functional scaffolds for multisite bioconjugation. Biotechnol Appl Biochem 2015;62(3):383-92.