Prevention of venous thromboembolism with aspirin following knee surgery: A systematic review and meta-analysis

Stephanie Marrannes1
Klaas Victor2
Nele Arnout1
Tine De Backer3
Jan Victor1
Thomas Tampere1

Venous thromboembolism (VTE) is a well-known complication following orthopaedic surgery. The incidence of this complication has decreased substantially since the introduction of routine thromboprophylaxis. However, concerns have been raised about increased bleeding complications caused by aggressive thromboprophylaxis.

Attention has grown for aspirin as a safer thromboprophylactic agent following orthopaedic surgery.

A systematic review using MEDLINE, Embase and Web of Science databases was undertaken to compare the effectiveness of aspirin prophylaxis following knee surgery with the current standard prophylactic agents (low molecular weight heparin [LMWH], vitamin K antagonists and factor Xa inhibitors).

No significant difference in effectiveness of VTE prevention was found between aspirin, LMWH and warfarin. Factor Xa inhibitors were more effective, but increased bleeding complications were reported.

As evidence is limited and of low quality with substantial heterogeneity, further research with high-quality, adequately powered trials is needed.

Keywords: aspirin; thromboprophylaxis; VTE

Cite this article: EORT Open Rev 2021;6:892-904.
DOI: 10.1302/2058-5241.6.200120

Introduction

Venous thromboembolism (VTE), including deep venous thrombosis (DVT) and pulmonary embolism (PE), is a well-known complication following orthopaedic surgery. In the absence of thromboprophylaxis, incidences up to 40% have been reported after major orthopaedic procedures. However, most of these events are asymptomatic. With the administration of chemical thromboprophylaxis, the incidence decreases considerably to 1–10%. For this reason, the use of thromboprophylaxis following major orthopaedic surgery is recommended by most guidelines and is widely accepted as the gold standard.8,9 The 2012 American College of Chest Physicians (ACCP) guideline suggests that low molecular weight heparin (LMWH), fondaparinux, vitamin K antagonists, non-vitamin K antagonist oral anticoagulants (NOACs), low dose unfractionated heparin and aspirin are valid options for thromboprophylaxis, with a preference for LMWH.8 The 2011 guideline by the American Academy of Orthopaedic Surgeons (AAOS) states that there is insufficient evidence to make recommendations for or against any specific prophylactic agent, and the more recent NICE guideline from 2018 recommends aspirin, LMWH or rivaroxaban.10,11 As there is no consensus on the optimal mode of thromboprophylaxis, with conflicting recommendations in different guidelines, the choice is often left up to the surgeon’s preference.

The objective of thromboprophylaxis is to prevent VTE events with a minimal risk of complications caused by the prophylactic agent itself, especially when used in low-risk patients. However, some concerns have been reported about possible drawbacks of the anticoagulants that are currently recommended for prophylaxis. A number of studies have reported increased haematoma formation and prolonged wound drainage, which could increase the risk of periprosthetic infection. Addition-
have been reported.1,2,17–19 With this in mind, the number of studies reporting on the prophylactic use of aspirin following orthopaedic surgery has increased since the recent endorsement of aspirin by the ACCP guideline.8 Possible advantages are its low cost and convenient, oral administration without need for routine blood monitoring.2,20–22 Several systematic reviews have attempted to summarize the evidence on aspirin thromboprophylaxis following lower limb orthopaedic surgery.1,23–27 However, these reviews focus on the use of aspirin following lower limb surgery in general, including studies about knee and hip surgery. There are no recent systematic reviews available focusing entirely on knee surgery. In our opinion, a distinction should be made between patients who have undergone hip arthroplasty versus knee surgery, including arthroplasty and arthroscopy.

The objective of this review was to compare the effectiveness of aspirin with other recommended anticoagulants in the prevention of VTE events following knee surgery.

Methods

This systematic review and meta-analysis was conducted in accordance with the recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement.28

Outcome measures

The primary outcomes of interest in this review were venous thromboembolisms (VTE), defined as deep venous thrombosis (DVT) and pulmonary embolism (PE). Bleeding events were a secondary outcome.

Search strategy

Regular electronic searches of the databases MEDLINE, Embase and Web of Science were conducted from August 2019 to February 2020. The last search was performed on 18 February 2020. A combination of controlled vocabulary and free text search terms were used (Table 1). Duplicate articles were removed and the remaining articles were screened by title and abstract. Potentially relevant articles underwent full-text review. Any disagreements were discussed between reviewers. The reference lists of all relevant articles were manually reviewed to identify additional relevant reports.

Inclusion and exclusion criteria

Studies were included if: (1) patients had undergone knee surgery, (2) PE or DVT outcomes were reported, (3) aspirin prophylaxis was compared to other prophylactic agents, no prophylaxis or if different dosages of aspirin were compared. Both observational studies and randomized controlled trials (RCTs) were included. Only articles published in the last 30 years were included in order to reflect the current practice. Only English-language articles were included.

Studies were excluded if: (1) aspirin was compared with multiple anticoagulants but results were not reported for each comparison separately, (2) < 2% of the study population received aspirin, (3) other anticoagulants were used

Table 1. Search strategies

No.	PubMed (279 hits)	Embase (534 hits)	Web of Science (326 hits)
1	Venous Thromboembolism [Mesh] OR Thromboembolism [Mesh] OR Venous thromboembolism [Title/Abstract] OR Thromboembolism [Title/Abstract] OR Thromboembol* [Title/Abstract]	venous thromboembolism/exp OR thromboembolism/exp OR venous thromboembolism:ab,ti OR thromboembolism:ab,ti OR thromboembol*:ab,ti	TS=Venous Thromboembolism OR TS=thromboembolism OR TS=VTE OR TS=thromboembol*
2	Pulmonary Embolism [Mesh] OR Embolism [Mesh] OR pulmonary embolism [Title/Abstract] OR PE [Title/Abstract] OR Pulmonary embol* [Title/Abstract] OR embol* [Title/Abstract]	lung embolism/exp OR embolism/exp OR pulmonary embolism:ab,ti OR pulmonary embol*:ab,ti OR embol*:ab,ti	TS=Pulmonary Embolism OR TS=embolism OR TS=PE OR TS=Embol*
3	Venous Thrombosis [Mesh] OR Thrombosis [Mesh] OR Deep vein thrombosis [Title/Abstract] OR DVT [Title/Abstract] OR Vein thrombosis [Title/Abstract] OR Venous thrombosis [Title/Abstract] OR Thrombosis [Title/Abstract] OR Thromboembol* [Title/Abstract]	vein thrombosis/exp OR thrombosis/exp OR deep vein thrombosis:ab,ti OR dvt:ab,ti OR vein thrombosis:ab,ti OR venous thrombosis:ab,ti OR thrombosis:ab,ti OR thromboembol*:ab,ti	TS=deep venous thrombosis OR TS=thrombosis OR TS=venous thrombosis
4	Aspirin [Mesh Terms] OR Aspirin [Title/Abstract] OR Acetylsalicylic acid [Title/Abstract]	acetylsalicylic acid/exp OR aspirin:ab,ti	TS=aspirin OR TS=acetylsalicylic acid
5	Postoperative Complications/prevention and control [Mesh] OR Thromboprophylaxis [Title/Abstract] OR thromboprophylaxis* [Title/Abstract] OR Propyla* [Title/Abstract] OR Prevention [Title/Abstract] OR Prevent* [Title/Abstract]	postoperative thrombosis/exp OR thromboprophylaxis:ab,ti OR thromboprophylaxis*:ab,ti OR propyla*:ab,ti OR prevention:ab,ti OR prevent*:ab,ti	TS=Thromboprophylaxis OR TS=propyla* OR TS=prevention
6	Knee joint [Mesh] OR Knee [Mesh] OR Knee [Text word] OR TKA [Text word]	knee/exp OR knee surgery/exp OR knee:ab,ti	TS=knee
7	1 OR 2 OR 3	review:it	1 OR 2 OR 3
8	7 AND 4 AND 5 AND 6	1 OR 2 OR 3	7 AND 4 AND 5 AND 6
9	No limits were used	8 AND 4 AND 5 AND 6 NOT 7	No limits were used
simultaneously with aspirin. Studies reporting on the sequential use of other prophylactic agents aside from aspirin during the same postoperative time period were not excluded. VTE outcomes in studies including mixed hip and knee populations were not reported separately per joint. Studies were not excluded based on number of patients, patient characteristics (age, body mass index [BMI], sex, ethnicity. . .) or duration of follow-up. Abstracts, supplements, conference proceedings, case reports, reviews etc. were excluded. Studies were excluded from the meta-analysis if the number of PE or DVT events was not reported and could not be calculated or if only compound VTE data were reported.

Data collection
Data were collected using a piloted data extraction form including the following parameters: author, publication year, study design, type of procedure, type of thrombo-prophylaxis, number of patients, number of events, duration and dosage of aspirin, duration of follow-up.

Quality appraisal
The quality of individual studies was scored by two authors independently using the Methodological Index for Non-Randomized Studies (MINORS) scoring system.29 As only comparative studies were included, all studies were scored on 12 items with a maximum of 24 points. Three quality subgroups were created around the mean MINORS score. The quality of the body of evidence for the outcomes ‘DVT’ and ‘PE’ was determined using the Grades of Recommendation, Assessment, Development, and Evaluation (GRADE) Working Group system.30

Data analysis
Statistical analysis was performed for our primary outcomes PE and DVT. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated. Heterogeneity between studies was assessed using the I² statistic.31 A random-effects model was used for meta-analysis in order to account for heterogeneity of design and interventions among the included studies. A priori defined subgroup analysis was planned for RCT vs. observational study designs, procedure type, dosage and duration of prophylaxis, risk stratification and quality appraisal. PE and DVT outcomes were stratified per comparator drug. Subgroup analyses were not stratified by prophylactic agent and for studies with multiple comparisons, the ‘comparator value’ is a compound value of the different comparator drugs included in that study. Potential for publication bias was assessed through visual inspection of the funnel plots. All analyses were conducted using Review Manager 5.3 (The Cochrane Collaboration, Copenhagen, Denmark). Statistical significance was defined as p < 0.05.

Results

Literature search
The details of the study identification and selection process are shown in Fig. 1. The electronic database search yielded 1139 articles. Following removal of duplicates and application of inclusion and exclusion criteria, 32 articles were included in this systematic review. Four studies were excluded from the meta-analysis for reasons stated above.16,17,32,33

Study characteristics
The study characteristics of all individual studies are described in Table 2 and summarized in Table 3. Thirty-two articles were included in this systematic review (nine RCTs and 23 observational studies). Studies were published between 1996 and 2020. Meta-analysis of PE results included 23 studies6,19,20,22,34–49,50,52 with 425,135 knee surgery patients (106,502 aspirin and 318,633 comparator) and meta-analysis of DVT included 24 studies6,19,20,22,34–38,43–56 with 377,875 knee patients (90,637 aspirin and 287,238 comparator). Aspirin was compared to LMWH (11 studies),6,19,34,36,42,44,48,50,53,55,56 factor Xa inhibitors (10 studies),35,36,38,41,45,48–51,56 warfarin (10 studies)3,36,37,39,40,42,43,46,50,54 and mechanical only prophylaxis (two studies).22,52 Two studies compared the effectiveness of different dosages of aspirin.18,20 Aspirin was studied as prophylaxis following TKA (n = 23), unicompartmen-tal knee arthroplasty (UKA, n = 2), patellofemoral arthroplasty (PFA, n = 2) and arthroscopy (n = 1). The mean daily dosage of aspirin was 390 mg (range 81–650 mg). The mean duration of aspirin prophylaxis was 25 days (range 5–42 days). Seven studies used risk stratification for determining appropriate prophylaxis.3,37,39,43,44,46,53 The criteria that were used to assign patients to a high-risk strategy in these articles are summarized in Table 4.

Primary outcomes

DVT and PE
Pooled data from 23 studies showed no difference in PE rate between LMWH and warfarin compared to aspirin (Fig. 2). There was a significantly lower incidence of PE with factor Xa inhibitors compared to aspirin (OR 2.05; 95% CI 1.45–2.88; P < 0.0001). A similar trend was noted for the DVT outcome, with lower DVT rates using factor Xa inhibitors compared to aspirin; however, this result was not significant (OR 1.39; 95% CI 0.98–1.98; P = 0.06). Pooled data of 24 studies showed no significant difference in DVT rates between LMWH, factor Xa inhibitors and warfarin compared to aspirin (Fig. 3). Low dose aspirin was not inferior to high dose aspirin in preventing PE and DVT (PE: OR 1.32; 95% CI 0.28–6.30; P = 0.73 and DVT: OR 0.22; 95% CI 0.08–0.58; P = 0.002). Meta-analysis could
not be performed for aspirin vs. mechanical only prophylaxis due to limited number of studies and events. However, one study showed significantly lower DVT and PE rates with aspirin compared to mechanical only prophylaxis.\(^{21}\) Significant heterogeneity was present within the warfarin group for PE and DVT comparisons (PE: \(I^2 = 91\%\) with \(P < 0.001\) and DVT: \(I^2 = 69\%\) with \(P = 0.006\)) and LMWH group for the DVT comparison (\(I^2 = 90\%\) with \(P < 0.001\)).

Subgroup analysis

The heterogeneity within the warfarin and LMWH groups could not be explained by any of the subgroup analyses. Subgroup analysis of RCTs showed significantly higher DVT rates and a trend for higher PE rates with aspirin compared to other anticoagulants (DVT: \(OR = 1.51; 95\% CI 1.04–2.18; P = 0.03\) (Fig. 4 and Fig. 5). Furthermore, aspirin was less effective than comparators in the prevention of DVT when used for < 2 weeks (OR 2.04; 95% CI 1.15–3.62; \(P = 0.02\)). The same trend was noted for prevention of PE. There was no significant difference between subgroups based on use of risk stratification, dosage of aspirin or quality appraisal of the studies. In the subgroup analysis based on procedure type, the number of studies on UKA, PFA and arthroscopy were too limited to generate valid conclusions.
Table 2. Study characteristics

Study	Study design	TKA patients (n)	Comparators	Procedure	Daily dosage aspirin (mg)	Duration aspirin prophylaxis	Risk stratification used? (Y/N)	Duration of follow-up (months)	MINORS score
Lotke 1996¹⁴	RCT	179	Warfarin	TKA	650	N	6	20	
Westrich 2006¹⁵	RCT	275	LMWH	TKA	650	4 w	N	1.5	17
Lombardi 2007¹⁴	R	423	LMWH, warfarin	UKA	650	6 w	Y	3	12
Callaghan 2008¹⁷	R	423	Warfarin	TKA	650	6 w	N	3	15
Cusie 2009¹³	R	2030	Warfarin	TKA	150	6 w	N	3	15
Bozic 2010¹⁷	R	93,840	LMWH, factor Xa, warfarin	TKA			N	1	14
Khatod 2012¹²	R	30,020	LMWH, warfarin	TKA	650	6 w	Y	3	18
Jameson 2012¹⁶	R	156,798	LMWH	TKA, UKA, PFA	100	2 w	N	1.5	18
Levack 2012¹⁴	R	131	Warfarin	PFA	325	2 w	Y	1.5	14
IJRCWC 2012¹¹	P	431	Warfarin	TKA	650	4 w	Y	3	21
Kulshrestha 2013¹¹	RCT	673	LMWH	TKA	650	4 w	Y	12	24
Gesell 2013¹⁹	R	2037	Warfarin	TKA	650	6 w	Y	3	16
Jiang 2014¹¹	R	120	Factor Xa	TKA	100	2 w	N	1.5	18
Zou 2014¹⁴	R	324	LMWH, factor Xa	TKA	100	14 d	N	1	19
Nam 2015¹⁶	R	96	Warfarin	TKA	650	6 w	Y	3	15
Kaye 2015²²	RCT	170	Mechanical only	Arthroscopy	325	14 d	N	1	18
Radzak 2016¹⁹	R	377	LMWH	TKA	650	4 w	N	1	11
Nielen 2016¹⁸	R	3191	LMWH, factor Xa	TKA			N	>12	14
Bala 2017¹³	R	18,288	LMWH, factor Xa, warfarin	TKA			N	3	14
Yhim 2017¹⁸	R	261,260	LMWH, factor Xa	TKA	100	14 d	N	1	19
Cafri 2017¹³	R	30,499	LMWH, Factor Xa, warfarin	TKA	325	14 d	N	1	16
Chung 2017¹⁸	RCT	268	Factor Xa	TKA	100	5 d	N	3	22
Parvizi 2017¹⁷	P	2356	Low-high dose	TKA	160/650	4 w	N	3	20
Anderson 2018¹³	RCT	1620	Factor Xa	TKA	81	9 d	N	3	24
Colleoni 2017¹³	RCT	32	Factor Xa	TKA	300	2 w	N	1	13
Goel 2018¹⁸	R	18,951	Warfarin	TKA	162/650	4 w	N	3	14
Faour 2018²⁰	R	5666	Low-high dose	TKA	81/325	4 w	N	3	17
Hood 2019¹²	R	41,537	Mechanical	TKA	325		N	3	17
Alamir 2018¹⁴	R	80	LMWH	TKA	325		N	1	17
Tan 2019¹⁴	R	32,752	LMWH, warfarin	TKA	162/650	4 w	N	3	17
McHale 2019¹⁵	R	218	Factor Xa	TKA	300	14 d	N	1.5	17
Yuenyongviwat 2019¹⁵	R	155	Factor Xa	TKA	300	14 d	N	3	17

Note. R, retrospective study; P, prospective study; RCT, randomized controlled trial; TKA, total knee arthroplasty; LMWH, low molecular weight heparin; UKA, unicompartmental knee arthroplasty; PFA, patellofemoral arthroplasty; MINORS, Methodological Index for Non-Randomized Studies.

Secondary outcome: bleeding events

Twenty-two studies included in this review reported on bleeding outcomes using aspirin thromboprophylaxis. However, the outcome measurements of these bleeding events were inconsistent between studies. Bleeding has been reported as incidence of major bleeding events (gastro-intestinal [GI] and cerebrovascular), decrease in haematocrit and haemoglobin levels, need for transfusion, wound drain output volume and prolonged drainage. Most studies found no significant difference in bleeding events between aspirin and comparators. Three studies reported increased bleeding events with LMWH compared to aspirin^{19,32,34} and three studies reported increased blood loss or higher transfusion rates with factor Xa inhibitors.^{41,48,56}

Publication bias

Visual inspection of the funnel plot of studies on PE suggested some degree of publication bias in which small studies were more likely to be published when a positive intervention effect was found. However, exclusion of these small studies in a sensitivity analysis resulted in little change to the overall results (Fig. 6).

Quality appraisal

The mean MINORS score was 17 (range 11–24). Three groups were created around the mean quality score, with low quality defined as a score < 15 (seven studies), moderate quality as a score 15–19 (15 studies) and high quality as scores ≥ 20 (six studies).

Discussion

This is the first systematic review and meta-analysis focusing on thromboprophylaxis after knee surgery. Previous studies have pooled patients following hip and knee surgery to evaluate the effectiveness of different thromboprophylactic agents and adverse events. In our opinion, a distinction should be made between both hip and knee patients as rehabilitation programmes after knee surgery...
might impose prolonged periods of immobilization, limited ambulation and weight bearing restrictions.

This study found that there was no statistically significant difference in the effectiveness of aspirin compared with LMWH and warfarin for prevention of VTE, including PE and DVT, following knee surgery. However, factor Xa inhibitors (rivaroxaban and fondaparinux) were found to be more effective than aspirin in preventing PE. Regarding adverse effects, only a few studies reported a significant difference in bleeding events, with three studies finding a higher bleeding risk with LMWH compared to aspirin and three studies reporting increased bleeding with factor Xa inhibitors. The number of studies focusing on knee surgery (UKA, PFA and arthroscopic procedures) was too limited to generate valid conclusions. Based on this meta-analysis, aspirin appeared to be less effective when used for a duration shorter than two weeks. Furthermore, there was insufficient evidence for a significant difference in effectiveness between high or low dosages of aspirin. Subgroup analysis showed no advantage of risk stratification.

A high level of heterogeneity was present between the studies included. There was a considerable variability in the patients included in studies (age, sex, comorbidities...), dosages and duration of aspirin and comparators. Furthermore, there was a high level of inconsistency in the outcome measurements used in these studies. All studies assessed DVT, PE or combined VTE events as outcomes, which are objectively defined endpoints. However, some studies systematically screened all patients with radiographic examination or ultrasound on a set date, whereas other studies performed imaging based on clinical suspicion. This caused large discrepancies in reported VTE incidences between studies screening for asymptomatic or symptomatic DVTs. This heterogeneity was most notable for the DVT outcome, as radiographic examination for PE was almost always performed based on clinical suspicion. The clinical importance of asymptomatic DVT is still unclear, and both the ACCP and AAOS guidelines recommend against systematic screening.

Our findings of a similar effectiveness of aspirin, LMWH and warfarin in VTE prevention are consistent with the conclusions of previous systematic reviews including both hip and knee surgery populations. Increased bleeding with factor Xa inhibitors compared to aspirin and LMWH was also reported by Lindquist et al, and a meta-analysis by Venker et al reported a significantly higher risk of major bleeding events with factor Xa inhibitors compared to LMWH. However, this is the first systematic review in which factor Xa inhibitors were found to be more effective than aspirin. This finding is also in contrast with a recent high-quality study by Anderson et al, in which no significant difference in VTE events between aspirin and rivaroxaban was found. A possible explanation could be that this review included both RCTs and observational studies, while other reviews only included RCTs. This increased the number of patients in this study and power to detect differences substantially, especially since the incidence of VTE events is low. The number of adequately powered, high-quality RCTs on this topic is limited. Two large trials are currently being conducted: the CRISTAL trial, comparing VTE between aspirin and LMWH following hip and knee arthroplasty, and the PEPPER trial, comparing warfarin, rivaroxaban and aspirin following hip and knee arthroplasty. Both studies aim to enrol > 15,000 patients and will be the largest prospective trials on aspirin prophylaxis including knee surgery patients.

Our subgroup analysis showed no advantage of risk stratification. However, due to uneven covariate distribution...
between subgroups and moderate heterogeneity within subgroups, these findings should be interpreted with caution.61 Risk stratification for determining thromboprophylaxis has been recommended by guidelines.8,62 Several studies have attempted to identify risk factors for VTE in orthopaedic surgery.15,63–67 However, no risk stratification protocol specifically for orthopaedic surgery has been validated yet.52,63,68,69 The Caprini score, which has already been validated in other surgical disciplines, has been used in arthroplasty patients in multiple studies.70,71 Bateman et al found no significant difference in scores between patients with and without VTE, and concluded that the Caprini

Study or Subgroup	Aspirin Events	Control Events	Odds Ratio M-H, Random, 95% CI	Year
1.1.1 Aspirin vs. LMWH				
Lombardi 2007	0	35	1.11 [0.94, 1.31]	2007
Jameson 2012	179	36159	539	12669
Khatod 2012	16	3777	55	10662
Radzak 2016	3	198	3	179
Caih 2017	37	5124	82	13318
Yhim 2017	195	24612	552	55181
Bala 2017	12	1016	69	6096
Alamiri 2018	0	58	1	22
Subtotal (95% CI)	71299	206102	99773	100.0%
Total events	442	1301		
Heterogeneity: Tau^2 = 0.02; Chi^2 = 11.06, df = 6 (P = 0.09); I^2 = 46%				
Test for overall effect: Z = 0.42 (P = 0.67)				

1.1.2 Aspirin vs. Factor Xa Inhibitors
Jang 2014
Yhim 2017
Caih 2017
Bala 2017
Chung 2018
Anderson 2018
Yuenyongviwat 2019
Mchale 2019
Subtotal (95% CI)
Total events
Heterogeneity: Tau^2 = 0.06; Chi^2 = 9.14, df = 6 (P = 0.17); I^2 = 34%
Test for overall effect: Z = 4.10 (P < 0.0001)

1.1.3 Aspirin vs. Warfarin
Callaghan 2008
IRCWC 2012
Levack 2012
Khatod 2012
Gesell 2013
Nam 2015
Caih 2017
Bala 2017
Goel 2018
Subtotal (95% CI)
Total events
Heterogeneity: Tau^2 = 1.18; Chi^2 = 78.58, df = 7 (P < 0.00001); I^2 = 91%
Test for overall effect: Z = 4.10 (P < 0.0001)

1.1.4 Aspirin vs. Mechanical only
Kaye 2015
Hood 2018
Subtotal (95% CI)
Total events
Heterogeneity: Not applicable
Test for overall effect: Z = 5.68 (P < 0.00001)

1.1.5 Low dose vs. high dose aspirin
Parvizi 2017
Faour 2018
Subtotal (95% CI)
Total events
Heterogeneity: Tau^2 = 0.63; Chi^2 = 1.81, df = 1 (P = 0.18); I^2 = 45%
Test for overall effect: Z = 0.35 (P = 0.73)

Fig. 2. Forest plot of pooled PE rates of aspirin vs. comparators. Note. PE, pulmonary embolism; LMWH, low molecular weight heparin.
score is not clinically useful in arthroplasty patients. Tafur et al and Krauss et al found that the score was accurate in predicting VTE events following arthroplasty. Most of the studies included in this review used own risk stratification models. Risk factors that were used in most stratification strategies were active cancer, hypercoagulable state, history of VTE or stroke, heart disease (such as congestive heart failure [CHF], atrial fibrillation), other important comorbidities (such as pulmonary disease or diabetes), obesity and age > 70 years.

Another finding based on subgroup analysis was that aspirin is less effective when used for less than

Study or Subgroup

Study or Subgroup	Aspirin Events	Control Events	Total Events	Total Weight	M-H, Random, 95% CI	Odds Ratio M-H, Random, 95% CI	Year
1.2.1 Aspirin vs. LMWH							
Westrich 2006	23	19	135	12.1%	1.32 [0.68, 2.57]	2006	
Lombardi 2007	0	35	0	35	Not estimable	2007	
Jameson 2012	239	36159	762	12069	16.5%	1.05 [0.90, 1.21]	2012
Kuhlthrekat 2013	4	194	15	706	8.0%	0.97 [0.32, 2.96]	2013
Zou 2014	18	110	14	112	11.2%	1.37 [0.64, 2.91]	2014
Radzak 2016	4	198	2	179	4.7%	1.82 [0.33, 10.08]	2016
Bala 2017	30	1016	216	6096	14.9%	0.83 [0.56, 1.22]	2017
Yhim 2017	190	24612	1010	55181	16.5%	0.42 [0.36, 0.49]	2019
Cafi 2017	27	5124	68	13318	14.3%	1.03 [0.66, 1.61]	2017
Alamir 2018	1	58	0	22	1.6%	1.17 [0.05, 29.90]	2018
Total (95% CI)	67955	196423	100.0%				

Heterogeneity: Tau² = 0.29; Chi² = 84.09, df = 8 (P < 0.00001); I² = 90%
Test for overall effect: Z = 0.28 (P = 0.78)

1.2.2 Aspirin vs. Factor Xa Inhibitors

Study or Subgroup	Aspirin Events	Control Events	Total Events	Total Weight	M-H, Random, 95% CI	Odds Ratio M-H, Random, 95% CI	Year
Anderson 2018	33	805	815	4.3%	1.01 [0.20, 5.03]	2018	
Colleoni 2018	211	41	8	1.9%	0.62 [0.05, 7.57]	2018	
Chung 2018	35	110	220	4.7%	3.44 [0.81, 14.69]	2018	
Zou 2014	318	110	102	6.46 [1.84, 22.64]	2014		
Cafri 2017	1627	5124	3225	17.9%	1.06 [0.57, 1.97]	2017	
Total (95% CI)	31965	74518	100.0%				

Heterogeneity: Tau² = 0.08; Chi² = 12.40, df = 7 (P = 0.09); I² = 44%
Test for overall effect: Z = 1.85 (P = 0.06)

1.2.3 Aspirin vs. Warfarin

Study or Subgroup	Aspirin Events	Control Events	Total Events	Total Weight	M-H, Random, 95% CI	Odds Ratio M-H, Random, 95% CI	Year	
Cafri 2017	6127	5124	8832	27.3%	0.76 [0.48, 1.20]	2017		
Nam 2015	104	74	9	3.5%	0.34 [0.01, 8.57]	2015		
Bala 2017	149	30	1016	149	5080	26.6%	1.01 [0.68, 1.50]	2017
Yhim 2017	190	24612	331	64859	36.4%	1.52 [1.27, 1.81]	2017	
Cafri 2017	27	5124	68	13318	14.3%	1.03 [0.66, 1.61]	2017	
Total (95% CI)	6803	15525	100.0%					

Heterogeneity: Tau² = 0.34; Chi² = 16.19, df = 5 (P = 0.06); I² = 69%
Test for overall effect: Z = 0.41 (P = 0.68)

1.2.4 Aspirin vs. Mechanical only

Study or Subgroup	Aspirin Events	Control Events	Total Events	Total Weight	M-H, Random, 95% CI	Odds Ratio M-H, Random, 95% CI	Year	
Kaye 1996	13	104	8	75	19.0%	1.20 [0.47, 3.05]	1996	
Callaghan 2008	8	312	1	111	7.3%	2.89 [0.36, 23.41]	2008	
!RCWC 2012	7	91	4	340	14.4%	7.00 [2.00, 24.47]	2012	
Levack 2012	0	109	0	22	Not estimable	2012		
Nam 2015	0	47	0	1	49	3.5%	0.34 [0.01, 8.57]	2015
Bala 2017	30	1016	294	6096	28.5%	0.60 [0.41, 0.88]	2017	
Cafri 2017	27	5124	61	8832	27.3%	0.76 [0.48, 1.20]	2017	
Total (95% CI)	6803	15525	100.0%					

Heterogeneity: Tau² = 0.00; Chi² = 0.07, df = 1 (P = 0.79); I² = 0%
Test for overall effect: Z = 0.00 (P = 0.002)

1.2.5 Low dose vs. High dose aspirin

Study or Subgroup	Aspirin Events	Control Events	Total Events	Total Weight	M-H, Random, 95% CI	Odds Ratio M-H, Random, 95% CI	Year
Parvizi 2017	0	722	3	1634	10.5%	0.32 [0.02, 6.25]	2017
Fasour 2018	4	1327	61	4339	89.5%	0.21 [0.08, 0.58]	2018
Total (95% CI)	2049	5973	100.0%				

Heterogeneity: Tau² = 0.00; Chi² = 0.07, df = 1 (P = 0.79); I² = 0%
Test for overall effect: Z = 3.08 (P = 0.002)

Fig. 3 Forest plot of pooled DVT rates of aspirin vs. comparators.

Note. DVT, deep venous thrombosis; LMWH, low molecular weight heparin.
two weeks. The duration of aspirin prophylaxis in the studies included in this review ranged from five days to six weeks. The ideal duration of prophylaxis following knee surgery is still unclear. In a recent study by Mula et al, the mean time to presentation of symptomatic PE following TKA was nine days. Given the low cost of aspirin, further research should compare the effectiveness of different durations of prophylaxis and determine the cost effectiveness of extending prophylaxis up to six weeks.

Fig. 4 Pooled results subgroup analyses PE.

Note. PE, pulmonary embolism; TKA, total knee arthroplasty; UKA, unicompartmental knee arthroplasty; PFA, patellofemoral arthroplasty; RCT, randomized controlled trial.

Fig. 5 Pooled results subgroup analyses DVT.

Note. DVT, deep venous thrombosis; TKA, total knee arthroplasty; UKA, unicompartmental knee arthroplasty; PFA, patellofemoral arthroplasty; RCT, randomized controlled trial.
Furthermore, there was insufficient evidence for a difference in effectiveness of a low vs. high dosage of aspirin. This is accordance with a review by Azboy et al, in which low dose aspirin was found to be non-inferior to high dose aspirin for VTE prevention following total joint arthroplasty.77

The findings of this review must be interpreted in light of some limitations. First, as this is a pooled analysis of the existing literature, our study is inherently limited by the quality of the included studies. As most of the included studies are level 3 studies with a few level 2 studies, the quality of evidence of this review is moderate to low according to the GRADE scale.30

Second, we chose to include observational studies in this review in order to give a more complete summary of the current literature and to increase power of this study. This could have caused part of the heterogeneity between studies (for PE, $I^2 = 45\%, P = 0.16$ in RCTs and $I^2 = 91\%$, $P < 0.00001$ in observational studies; for DVT, $I^2 = 0\%$, $P = 0.64$ in RCTs and $I^2 = 74\%$, $P < 0.0001$ in observational studies). However, a significant level of heterogeneity was also noted in systematic reviews that included only RCTs.1,25,27 In addition, with the inclusion of observational studies comes an inherent risk of selection bias. As some of the observational studies state that prophylaxis was selected based on the surgeon’s preference, aspirin (which is perceived as a less potent prophylactic agent) could have been administered to patients who were perceived to be at a lower VTE risk.

Current evidence suggests that there is no statistically significant difference between the effectiveness of aspirin and LMWH or warfarin in preventing VTE. Factor Xa inhibitors may be more effective than aspirin in VTE prevention, but could increase bleeding following surgery. Current evidence is incomplete and further research is needed to strengthen recommendations.

Conclusion

Aspirin thromboprophylaxis following knee surgery seems promising because of the low cost and convenient administration without the need for routine blood monitoring. Evidence suggests a similar effectiveness of aspirin, LMWH and warfarin in preventing VTE. Factor Xa inhibitors may be more effective than aspirin in VTE prevention, but could increase bleeding following surgery. Current evidence is incomplete and further research is needed to strengthen recommendations.
Aspirin as thromboprophylaxis in hip and knee arthroplasty: a systematic review and meta-analysis. J Arthroplasty 2016;31:2608–2616.

2. Azboy I, Barrack R, Thomas AM, Haddad FS, Parvizi J. Aspirin and the prevention of venous thromboembolism following total joint arthroplasty: commonly asked questions. J Bone Joint Surg [Br] 2017;99-B:1420–1430.

3. Intermountain Joint Replacement Center Writing Committee. A prospective comparison of warfarin to aspirin for thromboprophylaxis in total hip and total knee arthroplasty. J Arthroplasty 2012;27:1–9.e2.

4. Geerts WH, Bergqvist D, Pineo GF, Heit JA, Samama CM, Lassen MR, et al. Prevention of venous thromboembolism: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th edition). Chest 2008;133:815–435.

5. Flevas DA, Megaloikonomos PD, Dimopoulos L, Mitsiokapa E, Koulouvaris P, Mavrogenis AF. Thromboembolism prophylaxis in orthopaedics: an update. EFORT Open Rev 2018;3:136–148.

6. Jameson SS, Baker PN, Charman SC, et al. The effect of aspirin and low-molecular-weight heparin on venous thromboembolism after knee replacement: a non-randomised comparison using National Joint Registry Data. J Bone Joint Surg [Br] 2012;94-A:894–918.

7. Struijk-Mulder MC, Ettema HB, Verheyen CC, Büller HR. Comparing consensus guidelines on thromboprophylaxis in orthopedic surgery. J Thromb Haemost 2010;8:678–683.

8. Falck-Ytter Y, Francis CW, Johanson NA, Curley C, Dahl OE, Schulman S, et al. Prevention of VTE in orthopedic surgery patients: Anesthetic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2012;141:e278S–e325S.

9. Jacobs JJ, Mont MA, Bovik JJ, et al. American Academy of Orthopaedic Surgeons clinical practice guideline on: preventing venous thromboembolic disease in patients undergoing elective hip and knee arthroplasty. J Bone Joint Surg [Am] 2012;94-A:746–747.

10. Mont MA, Jacobs JJ, Boggio LN, et al; AAOS. Preventing venous thromboembolic disease in patients undergoing elective hip and knee arthroplasty. J Am Acad Orthop Surg 2011;19:768–776.

11. National Guideline C. National Institute for Health and Care Excellence: Clinical Guidelines. Venous thromboembolism in over 16s: reducing the risk of hospital-acquired deep vein thrombosis or pulmonary embolism. London: National Institute for Health and Care Excellence (UK), 2018.

12. Box RN, Shahrestani S, Huo MH. Venous thromboembolism prophylaxis after total knee arthroplasty. J Knee Surg 2018;31:605–609.

13. Bloch BV, Patel V, Best AJ. Thromboprophylaxis with dabigatran leads to an increased incidence of wound leakage and an increased length of stay after total joint replacement. J Bone Joint Surg [Br] 2014;96-B:122–126.

14. Garfinkel JH, Gladnick BP, Roland N, Romness DW. Increased incidence of bleeding and wound complications with factor-Xa inhibitors after total joint arthroplasty. J Arthroplasty 2018;33:533–536.

15. Huang R, Buckley PS, Scott B, Parvizi J, Purtill JJ. Administration of aspirin as a prophylaxis agent against venous thromboembolism results in lower incidence of periprosthetic joint infection. J Arthroplasty 2015;30:39–41.

16. Tan TL, Foltz C, Huang R, et al. Potent anticoagulation does not reduce venous thromboembolism in high-risk patients. J Bone Joint Surg [Am] 2019;101-A:589–599.

17. Bozic KJ, Vail TP, Pekow PS, Maselli JH, Lindenauer PK, Auerbach AD. Does aspirin have a role in venous thromboembolism prophylaxis in total knee arthroplasty patients? J Arthroplasty 2010;25:1053–1060.

18. Parvizi J, Huang R, Restrepo C, et al. Low-dose aspirin is effective chemoprophylaxis against clinically important venous thromboembolism following total joint arthroplasty: a preliminary analysis. J Bone Joint Surg [Am] 2017;99-A:91–98.

19. Radzak KN, Wages JJ, Hall KE, Nakasone CK. Rate of transfusions after total knee arthroplasty in patients receiving lovenox or high-dose aspirin. J Arthroplasty 2016;31:2447–2451.

20. Faour M, Piuzzzi NS, Brigati DP, et al. Low-dose aspirin is safe and effective for venous thromboembolism prophylaxis following total knee arthroplasty. J Arthroplasty 2018;33:531–535.

21. Schousboe JT, Brown GA. Cost-effectiveness of low-molecular-weight heparin compared with aspirin for prophylaxis against venous thromboembolism after total joint arthroplasty. J Bone Joint Surg [Am] 2013;95-A:1256–1264.

22. Hood BR, Cowen ME, Zheng HT, Hughes RE, Singal B, Hallstrom BR. Association of aspirin with prevention of venous thromboembolism in patients after total knee arthroplasty compared with other anticoagulants: a noninferiority analysis. JAMA Surg 2019;154:65–72.

23. Drescher FS, Sirovich BE, Lee A, Morrison DH, Chiang WH, Larson RJ. Aspirin versus anticoagulation for prevention of venous thromboembolism major lower extremity orthopedic surgery: a systematic review and meta-analysis. J Hosp Med 2014;9:579–585.

24. Haykal T, Kheiri B, Zayed Y, et al. Aspirin for venous thromboembolism prophylaxis after hip or knee arthroplasty: an updated meta-analysis of randomized controlled trials. J Orthop 2019;16:312–319.

25. Matharu GS, Kunutsor SK, Judge A, Blom AW, Whitehouse MR. Clinical effectiveness and safety of aspirin for venous thromboembolism prophylaxis after total hip and knee replacement: a systematic review and meta-analysis of randomized clinical trials. JAMA Intern Med 2020;180:376–384.

26. Mistry DA, Chandratreya A, Lee PFY. A systematic review on the use of aspirin in the prevention of deep vein thrombosis in major elective lower limb orthopedic surgery: an update from the past 3 years. Surg J (NY) 2017;3:e191–e196.

27. Wilson DG, Poole WE, Chauhan SK, Rogers BA. Systematic review of aspirin for thromboprophylaxis in modern elective total hip and knee arthroplasty. J Bone Joint Surg [Br] 2016;98-B:1056–1061.

28. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 2009;339:b2535.

29. Slim K, Nini E, Forestier D, Kwiatkowski F, Panis Y, Chipponi J. Methodological Index for Non-Randomized Studies (MINORS): development and validation of a new instrument. ANZ J Surg 2003;73:712–716.

30. Guyatt G, Oxman AD, Akl EA, et al. GRADE guidelines: 1. Introduction—GRADE evidence profiles and summary of findings tables. J Clin Epidemiol 2011;64:383–394.

31. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003;327:557–560.
32. Nielen JT, Dagnelie PC, Emans PJ, et al. Safety and efficacy of new oral anticoagulants and low-molecular-weight heparins compared with aspirin in patients undergoing total knee and hip replacements. *Pharmacoepidemiol Drug Saf* 2016;25:1245–1252.

33. Cusick LA, Beverland DE. The incidence of fatal pulmonary embolism after primary hip and knee replacement in a consecutive series of 4253 patients. *J Bone Joint Surg [Br]* 2009;91-B:645–648.

34. Alamir J, Alsoule-Younes AM, Al-Ajlouni J, Sulaiman SAB. Comparison between aspirin 325 mg and enoxaparin 40 mg as extended thromboembolic prophylaxis following major orthopedic surgery in Jordan University Hospital. *Drs Ther Perspect* 2018;35:36–42.

35. Anderson DR, Dunbar M, Murnaghan J, et al. Aspirin or rivaroxaban for VTE prophylaxis after hip or knee arthroplasty. *N Engl J Med* 2018;378:699–707.

36. Cafri G, Paxton EW, Chen Y, et al. Comparative effectiveness and safety of drug prophylaxis for prevention of venous thromboembolism after total knee arthroplasty. *J Arthroplasty* 2017;32:3524–3528.

37. Callaghan JJ, Varth LC, Hoballah JJ, Liu SS, Wells CW. Evaluation of deep venous thrombosis prophylaxis in low-risk patients undergoing total knee arthroplasty. *J Arthroplasty* 2008;23:20–24.

38. Chung KS, Shin TY, Park SH, Kim H, Choi CH. Rivaroxaban and acetylsalicylic acid for prevention of venous thromboembolism following total knee arthroplasty in Korean patients. *Knee Surg Relat Res* 2018;30:247–254.

39. Gesell MW, Gonzalez Della Valle A, Bartolomé García S, et al. Safety and efficacy of multimodal thromboembolic prophylaxis following total knee arthroplasty: a comparative study of preferential aspirin vs. routine coumadin chemoprophylaxis. *J Arthroplasty* 2013;28:575–579.

40. Goel R, Fleischman AN, Tan T, Sterbis E, Huang R, Higuera C, et al. Venous thromboembolic prophylaxis after simultaneous bilateral total knee arthroplasty: aspirin versus warfarin. *J Bone Joint Surg [Br]* 2018;100-8:68–75.

41. Jiang Y, Du H, Liu J, Zhou Y. Aspirin combined with mechanical measures to prevent venous thromboembolism after total knee arthroplasty: a randomized controlled trial. *Clin Med (Lond)* 2014;14:2200–2205.

42. Khodadadi M, Inacio MC, Bini SA, Paxton EW. Pulmonary embolism prophylaxis in more than 30,000 total knee arthroplasty patients: is there a best choice? *J Arthroplasty* 2012;27:167–172.

43. Levack A, Kamath AF, Loner JH. Incidence of symptomatic thromboembolic disease after patellofemoral arthroplasty. *Am J Med* 2012;124:456–460.

44. Lombardi AV Jr, Berend KR, Tucker TL. The incidence and prevention of symptomatic thromboembolic disease following unicompartmental knee arthroplasty. *Orthopedics* 2007;30:46–48.

45. McLoughlin S, Williams M, O’Mahony C, Hockings M. Should we use dabigatran or aspirin thromboprophylaxis in total hip and knee arthroplasty? A natural experiment. *J Orthop 2019;16:563–568.

46. Nam D, Nunley RM, Johnson SR, Keeney JA, Barrack RL. Mobile compression devices and aspirin for VTE prophylaxis following simultaneous bilateral total knee arthroplasty. *J Arthroplasty* 2015;30:447–450.

47. Parvizi J, Ceylan HH, Kucukdurmaz F, Merli G, Tuncay I, Beverland D. Venous thromboembolism following hip and knee arthroplasty: the role of aspirin. *J Bone Joint Surg [Am]* 2017;99-A:961–972.

48. Yhim HY, Lee J, Lee JY, Lee JO, Bang SM. Pharmacological thromboprophylaxis and its impact on venous thromboembolism following total knee and hip arthroplasty in Korea: a nationwide population-based study. *PloS One* 2017;12:e0178214.

49. Yuwongyuvat V, Tuntarattanapong P, Chuaychoosakoon C, Iemsaengchairat C, Iamthanaporn K, Hongnaparak T. Aspirin versus rivaroxaban in postoperative bleeding after total knee arthroplasty: a retrospective case-matched study. *Eur J Orthop Surg Traumatol* 2019;29:877–881.

50. Bala A, Huddleston JJ III, Goodman SB, Maloney WJ, Amanatullah DF. Venous thromboembolism prophylaxis after TKA: aspirin, warfarin, enoxaparin, or factor Xa inhibitors? *Clin Orthop Relat Res* 2017;475:2205–2213.

51. Colleoni J, Ribeiro FN, Mos PAC, Reis JP, Oliveira HR, Miura BK. Venous thromboembolism prophylaxis after total knee arthroplasty (TKA): aspirin vs. rivaroxaban. *Rev Bras Ortop* 2017;52:22–27.

52. Kaye ID, Patel DN, Strauss EJ, Alaia MJ, Garofolo G, Martinez A, et al. Prevention of venous thromboembolism after arthroscopic knee surgery in a low-risk population with the use of aspirin: a randomized trial. *Bull Hosp Jt Dis* 2015;75:243–248.

53. Kulshrestha V, Kumar S. DVT prophylaxis after TKA: routine anticoagulation vs risk screening approach – a randomized study. *J Arthroplasty* 2013;28:1868–1873.

54. Lotke PA, Palevsky H, Keenan AM, et al. Aspirin and warfarin for thromboembolic disease after total joint arthroplasty. *Clin Orthop Relat Res* 1996;324:251–258.

55. Westrich GH, Bottner F, Windsor RE, Laskin RS, Haas SB, Scollo TP. VenaFlow plus Lovenox vs VenaFlow plus aspirin for thromboembolic disease prophylaxis in total knee arthroplasty. *J Arthroplasty* 2006;21:139–143.

56. Zou Y, Tian S, Wang Y, Sun K. Administering aspirin, rivaroxaban and low-molecular-weight heparin to prevent deep vein thrombosis after total knee arthroplasty. *Blood Coagul Fibrinolysis* 2014;25:660–664.

57. Lindquist DE, Stewart DW, Brewster A, et al. Comparison of postoperative bleeding in total hip and knee arthroplasty patients receiving rivaroxaban, enoxaparin, or aspirin for thromboprophylaxis. *Clin Appl Thromb Hemost* 2018;24:1315–1321.

58. Venker BT, Ganti BR, Lin H, Lee ED, Nunley RM, Gage BF. Safety and efficacy of new anticoagulants for the prevention of venous thromboembolism after hip and knee arthroplasty: a meta-analysis. *J Arthroplasty* 2017;32:645–652.

59. Sidhu VS, Graves SE, Buchbinder R, et al. CRISTAL: protocol for a cluster randomised, crossover, non-inferiority trial of aspirin compared to low molecular weight heparin for venous thromboembolism prophylaxis in hip or knee arthroplasty, a registry nested study. *BMJ Open* 2019;9:e029167.

60. ClinicalTrials.gov. Comparative effectiveness of pulmonary embolism prevention after hip and knee replacement (PEPPER). https://clinicaltrials.gov/ct2/show/NCT02810704 (date last accessed 31 March 2020).

61. Richardson M, Garner P, Donegan S. Interpretation of subgroup analyses in systematic reviews: a tutorial. *Clin Epidemiol Glob Health* 2019;7:192–198.

62. Johanson NA, Lachiewicz PF, Lieberman JR, et al. Prevention of symptomatic pulmonary embolism in patients undergoing total hip or knee arthroplasty. *J Am Acad Orthop Surg* 2009;17:183–196.

63. Parvizi J, Huang R, Raphael UI, Arnold WV, Rothman RH. Symptomatic pulmonary embolus after joint arthroplasty: stratification of risk factors. *Clin Orthop Relat Res* 2014;472:903–912.

64. Shahi A, Bradbury TL, Gould GN III, Saleh UH, Ghanem E, Oliaishrazi A. What are the incidence and risk factors of in-hospital mortality after venous
65. Xu H, Zhang S, Xie J, et al. A nested case-control study on the risk factors of deep vein thrombosis for Chinese after total joint arthroplasty. *J Orthop Surg Res* 2019;14:188.

66. Zhang J, Chen Z, Zheng J, Breusch SJ, Tian J. Risk factors for venous thromboembolism after total hip and total knee arthroplasty: a meta-analysis. *Arch Orthop Trauma Surg* 2015;135:759–772.

67. Dai WL, Lin ZM, Shi ZJ, Wang J. Venous thromboembolic events after total knee arthroplasty: which patients are at a high risk? *J Knee Surg* 2020;33:947–957.

68. Eikelboom JW, Karthikeyan G, Fagel N, Hirsh J. American Association of Orthopedic Surgeons and American College of Chest Physicians guidelines for venous thromboembolism prevention in hip and knee arthroplasty differ: what are the implications for clinicians and patients? *Chest* 2009;135:513–520.

69. Nam D, Nunley RM, Johnson SR, Keeney JA, Clohisy JC, Barrack RL. The effectiveness of a risk stratification protocol for thromboembolism prophylaxis after hip and knee arthroplasty. *J Arthroplasty* 2016;31:1299–1306.

70. Bahl V, Hu HM, Henke PK, Wakefield TW, Campbell DA Jr, Caprini JA. A validation study of a retrospective venous thromboembolism risk scoring method. *Ann Surg* 2010;251:344–350.

71. Caprini JA, Arcelus JJ, Hasty JH, Tamhane AC, Fabrega F. Clinical assessment of venous thromboembolic risk in surgical patients. *Semin Thromb Hemost* 1997;23:304–312.

72. Bateman DW, Dow RW, Brezinski A, Bar-Eli HY, Kayiaros ST. Correlation of the Caprini Score and venous thromboembolism incidence following primary total joint arthroplasty: results of a single-institution protocol. *J Arthroplasty* 2017;32:3735–3741.

73. Tafur A, Fareed J. The risk of venous thromboembolism is not equal for all patients who undergo total joint replacement. *Clin Appl Thromb Hemost* 2019;25:1076029619838062.

74. Krauss ES, Segal A, Cronin M, et al. Implementation and validation of the 2013 Caprini Score for risk stratification of arthroplasty patients in the prevention of venous thrombosis. *Clin Appl Thromb Hemost* 2019;25:1076029619838066.

75. Parvizi J, Huang R, Rezapoorm, Bagheri B, Maltenfort MG. Individualized risk model for venous thromboembolism after total joint arthroplasty. *J Arthroplasty* 2016;31:180–186.

76. Mula V, Parikh S, Suresh S, Bottle A, Loeffler M, Alam M. Venous thromboembolism rates after hip and knee arthroplasty and hip fractures. *BMC Musculoskelet Disord* 2020;21:95.

77. Azboy I, Groff H, Goswami K, Vahedian M, Parvizi J. Low-dose aspirin is adequate for venous thromboembolism prevention following total joint arthroplasty: a systematic review. *J Arthroplasty* 2020;35:886–892.