Competing spreading processes and immunization in multiplex networks

Bo Gaoa, Dawei Zhaob

aSchool of Computer Information management, Inner Mongolia University of Finance and Economics, Hohhot 010051, China
bShandong Provincial Key Laboratory of Computer Networks, Shandong Computer Science Center (National Supercomputer Center in Jinan), Jinan 250014, China

Abstract

Epidemic spreading on physical contact network will naturally introduce the human awareness information diffusion on virtual contact network, and the awareness diffusion will in turn depress the epidemic spreading, thus forming the competing spreading processes of epidemic and awareness in a multiplex networks. In this paper, we study the competing dynamics of epidemic and awareness, both of which follow the SIR process, in a two-layer networks based on microscopic Markov chain approach and numerical simulations. We find that strong capacities of awareness diffusion and self-protection of individuals could lead to a much higher epidemic threshold and a smaller outbreak size. However, the self-awareness of individuals has no obvious effect on the epidemic threshold and outbreak size. In addition, the immunization of the physical contact network under the interplay between of epidemic and awareness spreading is also investigated. The targeted immunization is found performs much better than random immunization, and the awareness diffusion could reduce the immunization threshold for both type of random and targeted immunization significantly.

Keywords: competing spreading, immunization, multiplex network, threshold, outbreak size

Email addresses: gaobonmghhht@gmail.com (Bo Gao), zhaodw@sdas.org (Dawei Zhao)
1. Introduction

In the past years, complex network approach has proven to be a successful tool in describing a large variety of real-world complex systems, ranging from biological, technological, social to information, engineering, and physical systems [1, 2, 3, 4, 5, 6, 7, 8, 9]. However, most of previous works are mainly concentrated to the case of single network which treats all the network’s links on an equivalent footing [1, 2, 3]. Such network modeling methods may occasionally result in not fully capturing the details present in some real-life problems, leading even to incorrect descriptions of some phenomena that are taking place on real-world systems. Recently, with the development of human cognition and “big data”, the focus on complex networks has been extended from single network to multiplex network which is composed of several network layers constructed by same nodes but with different topologies and dynamics [10, 11, 12, 13, 14, 15, 16, 17]. Multiplex network explicitly captures the authentic and natural characteristics of real world systems: the same node may have different kinds of interactions and each channel of connectivity is represented by a layer. Thus far, the topological and dynamical characteristics of multiplex networks and various of dynamical process (such as epidemic spreading [12, 18, 19, 20, 21], evolutionary game [22, 23, 24, 25, 26, 11] and synchronization [27, 28, 29, 30]) upon them have attracted great attention in both theoretical and empirical areas, and a lot of remarkable results have been achieved.

As one of the hottest research topics of complex network science, epidemic spreading dynamic has centered on the modeling of different type of spreading processes and their control strategies [1, 2, 31, 32, 33, 34, 35, 36, 37, 38, 39]. The most successful epidemiology models include susceptible-infected (SI) model, susceptible-infected-susceptible (SIS) model, and susceptible-infected-recovered (SIR) model, both of which are good proxies for many real spreading processes involving disease in human contact networks, information and rumor in social networks, and virus in computer or communication networks, etc [1, 2, 31, 32, 33]. Correspondingly, many mitigation and prevention strategies of epidemics are also proposed, one of the most popular and effective methods is network immunization, such as random immunization, targeted immunization and acquaintance immunization, etc. [31, 34, 35, 36, 37, 38], where certain nodes in a network acquire immunity, and are thus no longer able to transmit the disease to their neighbors.

With the advent of multiplex networks, the traditional epidemic models
and control methods were extended to incorporate the structure of multiplex networks. The most interesting topics are the multiple routes spreading processes \cite{12,18,19,20,21}, and their immunization \cite{21,40,41,42}. In addition, another rapidly evolving research, the competing spreading on multiplex networks, has recently attracted considerable attentions \cite{43,44,45,46,47,48,49,50,51,52}. The most representative example is that disease spreading on physical contact network will naturally introduce the human awareness information diffusion on virtual contact network, and the awareness diffusion will in turn depress the epidemic spreading, thus forming the competing spreading processes of epidemic and awareness in a two-layers networks. Granell et al. study the dynamical interplay between epidemic and awareness, both of which follow the SIS models, in multiplex networks. They found the critical onsets of both dynamics get intertwined and the onset of the epidemic starts depending on the incidence of aware individuals \cite{43,44}. Wang et al. also investigate these two type of spreading dynamics where the disease obeys the SIRV model and the awareness the SIR model, and find epidemic outbreak on the contact layer can induce an outbreak on the communication layer, and information spreading can effectively raise the epidemic threshold \cite{46}.

In this paper, we study the competing dynamics of epidemic and awareness, both of which follow the SIR process and the self-protection and the self-awareness of individual are also incorporated, in a two-layer networks based on microscopic Markov chain approach and numerical simulations. We will investigate the impacts of awareness diffusion and the capacities of self-protection and self-awareness of individuals on the epidemic threshold and the final outbreak size of the epidemic. Furthermore, the efficiency of random and targeted immunizations of multiplex network under the interplay between of epidemic and awareness spreading will be studied.

2. Models and Analysis

The proposed model consists of a multiplex networks coupled by two network layers and two spreading processes proliferated by each layer. As shown in Fig. 1 the up layer and below layer indicate the virtual contact network and physical contact network respectively, denoted by A and B. Both of them have the same N nodes with different intra-layer topologies. $(a_{ij})_{N \times N}$ and $(b_{ij})_{N \times N}$ are defined as the adjacency matrices of A and B respectively, where $a_{ij} = 1$ indicates there is a link from node i to node j in layer A, otherwise $a_{ij} = 0$, and a similar definition applies to b_{ij}.
For the spreading processes of awareness and epidemic, we assume both of them follow the SIR epidemiology models. In the SIR model, each node can be in one of the three states: susceptible state (S) in which the individual is free of the epidemic but can be infected via contacts with infected individuals; infected state (I), where the individual carries the disease and can transmit it to susceptible individuals; and recovered state (R), in which the individuals recovered from the disease and cannot pass the disease to other nodes or be infected again. The classic SIR model uses discrete time step for its evolution and at each time step, the infected node can infect its susceptible neighbors with transmissibility β, and then becomes recovered or removed node with probability δ. Here, we denote β_A (β_B) and δ_A (δ_B) as the transmissibility and recover rate of the nodes in layer A (B). Moreover, we assume the R state nodes in layer A still have the knowledge of risk information, but just have no willing to pass the information.

In our model, the awareness diffusion in layer A and the epidemic spreading in layer B are not two irrelevant processes, they are dynamic interplay and influence with each other: a node that is aware (I state) in layer A will take measures for preventing infection which is called the self-protection of the individual, this behavior can be reflected by the reduction of individual’s own infectivity with a factor γ ($0 \leq \gamma \leq 1$) in layer B; a node that is infected in layer B will become aware in layer A with probability κ ($0 \leq \kappa \leq 1$), which indicates the self-awareness ability of individual due to the infection of the epidemic.

Figure 1: A multiplex networks composed of two network layers interrelated with each other, nodes are the same in both layers and the connectivity inter-layer is from each node to itself.

Summing up, in our proposed model, every node of the multiplex network falls into the following nine states: $S_A S_B$, $S_A I_B$, $S_A R_B$, $I_A S_B$, $I_A I_B$, $I_A R_B$, $R_A S_B$, $R_A I_B$ and $R_A R_B$, where $X_A Y_B$ refers to node is X state in layer A and Y state in layer B respectively. Fig. 2 shows the possible transitions
Figure 2: Transitions between states of nodes, the arrow out from a given state of node at time step t points to its possible successor state at time step $t+1$.

between states of nodes, the arrow out from a given state of node at time step t points to its possible successor state at time step $t+1$. The transition probability $p_{i}^{X_{A}Y_{B} \rightarrow X'_{A}Y'_{B}}(t)$ from state $X_{A}Y_{B}$ to its successor $X'_{A}Y'_{B}$ of node i at time step t is given as follows:
where $q_i(t)$, $q_i^{S_A}(t)$ and $q_i^{I_A}(t)$ indicate the probabilities of node i at time step t not being informed by any neighbors, not being infected by any neighbors if i was unaware, and not being infected by any neighbors if i was aware, respectively. They are given by
\[q_i(t) = \prod_{j=1}^{N} (1 - a_{ij}p_j^I(t)\beta_A), \]
\[q_i^{SA}(t) = \prod_{j=1}^{N} (1 - b_{ij}p_j^I(t)\beta_B), \tag{2} \]
\[q_i^{IA}(t) = \prod_{j=1}^{N} (1 - b_{ij}p_j^I(t)\gamma\beta_B), \]

where \(p_j^I(t) \) refers to the probability of node \(j \) is \(I \) state at time step \(t \) in layer \(Z \). Therefore, if we use \(p_i^{XAYB}(t) \) denotes the probability of node \(i \) is \(X \) state in layer \(A \) and \(Y \) state in layer \(B \) at time step \(t \), we have

\[p_i^{IA}(t) = p_i^{IA\bar{A}}(t) + p_i^{IA\bar{B}}(t) + p_i^{IA\bar{B}}(t), \]
\[p_i^{IB}(t) = p_i^{SAB}(t) + p_i^{ABA}(t) + p_i^{RA\bar{B}}(t). \tag{3} \]

Based on above statements, the evolution of our proposed model can be expressed by the microscopic Markov chain approach equations which read as
Due to the complicated interaction between the disease and awareness spreading processes, the numerical calculation method is used to obtain the approximate threshold β_{Bc} and outbreak size s_B of the epidemic in layer B based on Eq.(4) which replaces the direct derivation. For all subsequent numerical simulations, we assume there is only one node carries the disease (I state) in layer B at the initial time stage which will be transferred in layer B and introduces the awareness diffusion in layer A. Fig.3 features the relationship between the epidemic threshold β_{Bc} and the transmissibility β_A of the awareness. It is obviously found that β_{Bc} increases with β_A irrespective
of the average degrees of multiplex networks (panel a) and the recover rates of the epidemic and the awareness (panel b). In addition, Fig. 4 gives values of final outbreak size s_B of the disease under different combinations of β_A and β_B. One sees that s_B decreases with the increase of β_A. Both of Fig. 3 and 4 indicate that the epidemic spreading on physical contact network induces the risk awareness diffusion on virtual contact network, and the awareness diffusion in turn depress the epidemic spreading.

The impacts of the capacities of self-protection γ and self-awareness κ of individuals on the epidemic threshold β_{Bc} and the outbreak size s_B are also investigated. From Fig. 5 one sees that the β_{Bc} decreases with the increase of γ irrespective of the average degrees of multiplex networks (panel a) and the transmissibility β_A of the awareness (panel b). Since the smaller the γ, the stronger the capacities of self-protection of individuals are, and thus the larger the epidemic threshold will be. The values of final outbreak size of the disease under different combinations of β_B and γ is given in Fig. 6. It can be found that the outbreak size s_B increases with both of the β_B and γ. Moreover, we further uncover that β_B and s_B are not affected by the ability of the self-awareness κ of individuals. As shown in Fig. 7 and 8 we observe β_B and s_B are irrelevant to the values of κ except the case of $\kappa = 0$ which means no risk awareness diffusion in layer A. Together with the results of Fig. 3 and 4, we conclude that the strong capacities of awareness diffusion and self-protection of individuals could lead to a much higher epidemic threshold and a smaller outbreak size. However, the self-awareness of individuals has no obvious effect on the epidemic threshold and outbreak size.

3. Immunization and Analysis

It can be found that, in the proposed model, the competing spreading of awareness and epidemic is free of external forces. Therefore, if the risk awareness diffusion cannot depress the epidemic spreading completely, the other mitigation and prevention methods of epidemics are needed. To date, one of the most popular and effective methods is network immunization, where certain nodes in network acquire immunity, and are thus no longer able to transmit the disease to their neighbors. In this section, the random and targeted immunizations of the physical contact network under the interplay between of epidemic and awareness spreading are investigated. In this case, the SIR epidemiology model takes place on layer B is extended to the $SIRI'$
Figure 3: The relationship between epidemic threshold β_{Bc} and transmissibility β_A of the awareness.

Figure 4: The final outbreak size s under different combinations of β_A and β_B. The average degrees of the used networks are $\langle k_A \rangle = \langle k_B \rangle = 4$, and $\delta_A = \delta_B = 1$ and $\gamma = \kappa = 0.5$.

model in which the immunized state (I') is added. Furthermore, the nodes of multiplex network have three more of new states including $S_A I_B'$, $I_A I_B'$ and $R_A I_B'$. The transitions between them are as follows

$$S_A I_B' \rightarrow I_A I_B' \rightarrow R_A I_B'.$$

However, these three states cannot transit to the other nine states mentioned in above section, and vice versa, since the immunizations are performed at the initial stage.

Based on above statements, the competing processes of awareness and
epidemic incorporated with immunization can also be expressed by the microscopic Markov chain approach equations, parts of which are given by

\begin{align}
& p_i^{S_AI_B}(t+1) = p_i^{S_AI_B}(t)q_i(t), \\
& p_i^{I_AI_B}(t+1) = p_i^{S_AI_B}(t)(1-g_i(t)) + p_i^{I_AI_B}(t)(1-\delta_A), \\
& p_i^{R_AI_B}(t+1) = p_i^{I_AI_B}(t)\delta_A + p_i^{R_AI_B}(t).
\end{align}

And the other nine items including \(p_i^{XAY_B}(t) \) where \(\{X, Y\} = \{S, I, R\} \), are
Figure 7: The relationship between epidemic threshold β_{Bc} and the capacity of self-awareness κ of individual.

Figure 8: The final outbreak size s under different combinations of κ and β_B. The average degrees of the used networks are $\langle k_A \rangle = \langle k_B \rangle = 4$, and $\delta_A = \delta_B = 1$ and $\beta_A = \gamma = 0.5$.

defined as that in Eq.4, except the used parameter $p_i^{IA}(t)$ becomes

$$p_i^{IA}(t) = p_i^{ISA}(t) + p_i^{IAB}(t) + p_i^{IAR}(t) + p_i^{IAR'}(t).$$

In the initial stage of the model evaluation, v fraction of nodes of layer B are selected as immunized nodes. For the random immunization, the immunized nodes are selected uniformly at random. While for the targeted immunization, we focus on the degree-based strategy in which the immunized nodes are the first v fraction of largest degree nodes of layer B. Based on Eq. 5, we can calculate the threshold of random and targeted immu-
nizations, above which the final outbreak size of the epidemic is null, via the numerical simulation. Fig. 9 show the result of immunization threshold v_c under different combination of β_A and β_B. It can be found that the threshold of targeted immunization (panel b) is much smaller than that of the random case (panel a) under same conditions, which means targeted immunization performs much better than random immunization for epidemic under the competing spreading of epidemic and awareness. We also find the threshold decreases with the increase of β_A for both type of random and targeted immunizations, which indicates the awareness diffusion could reduce the immunization threshold effectively. These results are enlightening in that the self protection of individual inspired by the risk awareness diffusion and the immunization from outside could help with each other to depress the epidemic spreading completely.

4. Summary

In this paper, we study the competing processes of epidemic spreading and awareness diffusion in a two-layer networks, and the capacities of the self-protection and self-awareness of individuals are also considered. An Markov chain functions are proposed to represent the evolution of the model, and numerical simulations are used to calculate the approximate epidemic threshold and the final outbreak size. We find the awareness diffusion and self-protection capacity of individuals could lead to a much higher epidemic
threshold and a smaller outbreak size. However, the self-awareness of individuals has no obvious effect on the epidemic threshold and outbreak size. In addition, the immunization of the physical contact network under the interplay between of epidemic and awareness spreading is also investigated. The targeted immunization is found performs much better than random immunization, and the awareness diffusion could reduce the immunization threshold for both type of random and targeted immunization significantly.

5. Acknowledgments

This paper was supported by the Inner Mongolia Colleges and Universities Scientific and Technological Research Projects (Grant no. NJZY132), the National Natural Science Foundation of China (No.31560622, No.31260538, No.30960246), the Shandong Province Outstanding Young Scientists Research Award Fund Project (Grant No. BS2015DX006) and the Shandong Academy of Sciences Youth Fund Project (Grant No. 2016QN003).

References

[1] Mark Newman. *Networks: an introduction*. Oxford university press, 2010.

[2] Alain Barrat, Marc Barthelemy, and Alessandro Vespignani. *Dynamical processes on complex networks*. Cambridge University Press, 2008.

[3] Reuven Cohen and Shlomo Havlin. *Complex networks: structure, robustness and function*. Cambridge University Press, 2010.

[4] Mark EJ Newman. The structure and function of complex networks. *SIAM review*, 45(2):167–256, 2003.

[5] Steven H Strogatz. Exploring complex networks. *Nature*, 410(6825):268–276, 2001.

[6] Stefano Boccaletti, Vito Latora, Yamir Moreno, Martin Chavez, and D-U Hwang. Complex networks: Structure and dynamics. *Physics reports*, 424(4):175–308, 2006.

[7] Réka Albert, Hawoong Jeong, and Albert-László Barabási. Error and attack tolerance of complex networks. *Nature*, 406(6794):378–382, 2000.
[8] Bo Gao, Lixiang Li, Haipeng Peng, Jürgen Kurths, Wenguang Zhang, and Yixian Yang. Principle for performing attractor transits with single control in boolean networks. *Physical Review E*, 88(6):062706, 2013.

[9] Bo Gao, Haipeng Peng, Dawei Zhao, Wenguang Zhang, and Yixian Yang. Attractor transformation by impulsive control in boolean control network. *Mathematical Problems in Engineering*, 2013, 2013.

[10] Sergio Gomez, Albert Diaz-Guilera, Jesus Gomez-Gardenes, Conrad J Perez-Vicente, Yamir Moreno, and Alex Arenas. Diffusion dynamics on multiplex networks. *Physical review letters*, 110(2):028701, 2013.

[11] Jesús Gómez-Gardenes, Irene Reinares, Alex Arenas, and Luis Mario Floría. Evolution of cooperation in multiplex networks. *Scientific reports*, 2, 2012.

[12] Dawei Zhao, Lixiang Li, Haipeng Peng, Qun Luo, and Yixian Yang. Multiple routes transmitted epidemics on multiplex networks. *Physics Letters A*, 378(10):770–776, 2014.

[13] Albert Solé-Ribalta, Manlio De Domenico, Sergio Gómez, and Alex Arenas. Centrality rankings in multiplex networks. In *Proceedings of the 2014 ACM conference on Web science*, pages 149–155. ACM, 2014.

[14] Byungjoon Min, Sangchul Lee, Kyu-Min Lee, and K-I Goh. Link overlap, viability, and mutual percolation in multiplex networks. *Chaos, Solitons & Fractals*, 72:49–58, 2015.

[15] Luis Solá, Miguel Romance, Regino Criado, Julio Flores, Alejandro García del Amo, and Stefano Boccaletti. Eigenvector centrality of nodes in multiplex networks. *Chaos: An Interdisciplinary Journal of Nonlinear Science*, 23(3):033131, 2013.

[16] Luca Rossi and Matteo Magnani. Towards effective visual analytics on multiplex and multilayer networks. *Chaos, Solitons & Fractals*, 72:68–76, 2015.

[17] Stefano Boccaletti, Ginestra Bianconi, Regino Criado, Charo I Del Genio, Jesús Gómez-Gardeñes, Miguel Romance, Irene Sendiña-Nadal, Zhen Wang, and Massimiliano Zanin. The structure and dynamics of multilayer networks. *Physics Reports*, 544(1):1–122, 2014.
[18] Byungjoon Min and K-I Goh. Layer-crossing overhead and information spreading in multiplex social networks. *arXiv preprint arXiv:1307.2967*, 2013.

[19] Ting Liu, Ping Li, Yan Chen, and Jie Zhang. Community size effects on epidemic spreading in multiplex social networks. *PloS one*, 11(3):e0152021, 2016.

[20] Camila Buono, Lucila G Alvarez-Zuzek, Pablo A Macri, and Lidia A Braunstein. Epidemics in partially overlapped multiplex networks. *PloS one*, 9(3):e92200, 2014.

[21] Lucila G Alvarez Zuzek, Camila Buono, and Lidia A Braunstein. Epidemic spreading and immunization strategy in multiplex networks. In *Journal of Physics: Conference Series*, volume 640, page 012007. IOP Publishing, 2015.

[22] Yasuyuki Nakamura, Yusuke Nagashima, and Koichi Yasutake. Evolutionary games on multiplex networks: Effects of network structures on cooperation. In *2015 11th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)*, pages 444–447. IEEE, 2015.

[23] Matjaž Perc and Paolo Grigolini. Collective behavior and evolutionary games—an introduction. *Chaos, Solitons & Fractals*, 56:1–5, 2013.

[24] Joan T Matamalas, Julia Poncela-Casasnovas, Sergio Gómez, and Alex Arenas. Strategical incoherence regulates cooperation in social dilemmas on multiplex networks. *Scientific reports*, 5, 2015.

[25] Zhen Wang, Lin Wang, Attila Szolnoki, and Matjaž Perc. Evolutionary games on multilayer networks: a colloquium. *The European Physical Journal B*, 88(5):1–15, 2015.

[26] Alessandro Di Stefano, Marialisa Scatà, Aurelio La Corte, Pietro Liò, Emanuele Catania, Ermanno Guardo, and Salvatore Pagano. Quantifying the role of homophily in human cooperation using multiplex evolutionary game theory. *PloS one*, 10(10):e0140646, 2015.
[27] Lucia Valentina Gambuzza, Mattia Frasca, and Jesus Gomez-Gardeñes. Intra-layer synchronization in multiplex networks. *EPL (Europhysics Letters)*, 110(2):20010, 2015.

[28] Aleksandra Bogojeska, Sonja Filiposka, Igor Mishkovski, and Ljupco Kocarev. On opinion formation and synchronization in multiplex networks. In *Telecommunications Forum (TELFOR), 2013 21st*, pages 172–175. IEEE, 2013.

[29] Zhengzhong Yuan, Chen Zhao, Wen-Xu Wang, Zengru Di, and Ying-Cheng Lai. Exact controllability of multiplex networks. *New Journal of Physics*, 16(10):103036, 2014.

[30] Sanjiv K Dwivedi, Camellia Sarkar, and Sarika Jalan. Optimization of synchronizability in multiplex networks. *EPL (Europhysics Letters)*, 111(1):10005, 2015.

[31] Romualdo Pastor-Satorras, Claudio Castellano, Piet Van Mieghem, and Alessandro Vespignani. Epidemic processes in complex networks. *Reviews of modern physics*, 87(3):925, 2015.

[32] Romualdo Pastor-Satorras and Alessandro Vespignani. Epidemic spreading in scale-free networks. *Physical review letters*, 86(14):3200, 2001.

[33] Yamir Moreno, Maziar Nekovee, and Amalio F Pacheco. Dynamics of rumor spreading in complex networks. *Physical Review E*, 69(6):066130, 2004.

[34] Chao Gao, Jiming Liu, and Ning Zhong. Network immunization and virus propagation in email networks: experimental evaluation and analysis. *Knowledge and information systems*, 27(2):253–279, 2011.

[35] Yiping Chen, Gerald Paul, Shlomo Havlin, Fredrik Liljeros, and H Eugene Stanley. Finding a better immunization strategy. *Physical review letters*, 101(5):058701, 2008.

[36] Reuven Cohen, Shlomo Havlin, and Daniel Ben-Avraham. Efficient immunization strategies for computer networks and populations. *Physical review letters*, 91(24):247901, 2003.
[37] Romualdo Pastor-Satorras and Alessandro Vespignani. Immunization of complex networks. *Physical Review E*, 65(3):036104, 2002.

[38] Nilly Madar, Tomer Kalisky, Reuven Cohen, Daniel ben Avraham, and Shlomo Havlin. Immunization and epidemic dynamics in complex networks. *The European physical journal b-condensed matter and complex systems*, 38(2):269–276, 2004.

[39] Dawei Zhao, Haipeng Peng, Lixiang Li, Yixian Yang, and Shudong Li. An efficient patch dissemination strategy for mobile networks. *Mathematical Problems in Engineering*, 2013, 2013.

[40] Dawei Zhao, Lianhai Wang, Shudong Li, Zhen Wang, Lin Wang, and Bo Gao. Immunization of epidemics in multiplex networks. *PloS one*, 9(11):e112018, 2014.

[41] Zhen Wang, Da-Wei Zhao, Lin Wang, Gui-Quan Sun, and Zhen Jin. Immunity of multiplex networks via acquaintance vaccination. *EPL (Europhysics Letters)*, 112(4):48002, 2015.

[42] C Buono and Lidia A Braunstein. Immunization strategy for epidemic spreading on multilayer networks. *EPL (Europhysics Letters)*, 109(2):26001, 2015.

[43] Clara Granell, Sergio Gómez, and Alex Arenas. Dynamical interplay between awareness and epidemic spreading in multiplex networks. *Physical review letters*, 111(12):128701, 2013.

[44] Clara Granell, Sergio Gómez, and Alex Arenas. Competing spreading processes on multiplex networks: awareness and epidemics. *Physical Review E*, 90(1):012808, 2014.

[45] Xiang Wei, Shihua Chen, Xiaojun Wu, Jianwen Feng, and Jun-an Lu. A unified framework of interplay between two spreading processes in multiplex networks. *EPL (Europhysics Letters)*, 114(2):26006, 2016.

[46] Wei Wang, Ming Tang, Hui Yang, Younghae Do, Ying-Cheng Lai, and GyuWon Lee. Asymmetrically interacting spreading dynamics on complex layered networks. *arXiv preprint arXiv:1405.1905*, 2014.
[47] LG Alvarez-Zuzek, CE La Rocca, LA Braunstein, and F Vazquez. Competing dynamical processes on two interacting networks. *arXiv preprint arXiv:1604.07444*, 2016.

[48] Faryad Darabi Sahneh and Caterina Scoglio. Competitive epidemic spreading over arbitrary multilayer networks. *Physical Review E*, 89(6):062817, 2014.

[49] Xiang Wei, Shihua Chen, Xiaoqun Wu, Di Ning, and Jun-an Lu. Cooperative spreading processes in multiplex networks. *Chaos: An Interdisciplinary Journal of Nonlinear Science*, 26(6):065311, 2016.

[50] Chong-jun Fan, Yang Jin, Liang-an Huo, Chen Liu, Yun-peng Yang, and Ya-qiong Wang. Effect of individual behavior on the interplay between awareness and disease spreading in multiplex networks. *Physica A: Statistical Mechanics and its Applications*, 461:523–530, 2016.

[51] Emanuele Massaro and Franco Bagnoli. Epidemic spreading and risk perception in multiplex networks: a self-organized percolation method. *Physical Review E*, 90(5):052817, 2014.

[52] Wei Wang, Ming Tang, Shi-Min Cai, H Eugene Stanley, Quan-Hui Liu, and Lidia A Braunstein. Suppressing disease spreading by using information diffusion on multiplex networks. Technical report, 2016.