An average of generalized Dedekind sums

Travis Dillon1 & Stephanie Gaston2
23 July 2019

1Lawrence University
2California State University Dominguez Hills
Classical Dedekind Sum

Generalized Dedekind Sum

A Different View

Bounds on the Second Moment
 Upper Bound
 Lower Bound

Conclusion
Classical Dedekind Sum
Definition

\[B_1(x) = \begin{cases}
0 & \text{if } x \in \mathbb{Z} \\
x - \lfloor x \rfloor - \frac{1}{2} & \text{otherwise.}
\end{cases} \]
Definition

\[B_1(x) = \begin{cases}
0 & \text{if } x \in \mathbb{Z} \\
x - \lfloor x \rfloor - \frac{1}{2} & \text{otherwise.}
\end{cases} \]

\[s(a, c) = \sum_{j \mod c} B_1\left(\frac{j}{c}\right) B_1\left(\frac{aj}{c}\right) \]
Definition

\[B_1(x) = \begin{cases}
0 & \text{if } x \in \mathbb{Z} \\
x - \lfloor x \rfloor - \frac{1}{2} & \text{otherwise.}
\end{cases} \]

\[s(a, c) = \sum_{j \mod c} B_1\left(\frac{j}{c}\right) B_1\left(\frac{aj}{c}\right) \]

... one of its many guises:

\[s(a, c) = \frac{1}{4c} \sum_{j \mod c} \cot\left(\frac{\pi j}{c}\right) \cot\left(\frac{\pi aj}{c}\right) \]
Dirichlet Characters

A Dirichlet character modulo q is a function $\chi : \mathbb{Z} \rightarrow \mathbb{C}$ that has

1. period q
2. $\chi(mn) = \chi(m)\chi(n)$
3. $\chi(n) = 0$ if and only if $\gcd(n, q) > 1$
4. $\chi(1) = 1$
A Dirichlet character modulo q is a function $\chi : \mathbb{Z} \to \mathbb{C}$ that has

1. period q
2. $\chi(mn) = \chi(m)\chi(n)$
3. $\chi(n) = 0$ if and only if $\gcd(n, q) > 1$
4. $\chi(1) = 1$

n	0	1	2	3	4
$\chi(n)$	0	1	$-i$	i	-1
The function
defined by:
\[
\chi_{0,m}(n) = \begin{cases}
1 & \text{if } \gcd(n, m) = 1 \\
0 & \text{otherwise.}
\end{cases}
\]
is the principal character modulo \(m \).
The function

\[\chi_{0,m}(n) = \begin{cases} 1 & \text{if } \gcd(n, m) = 1 \\ 0 & \text{otherwise.} \end{cases} \]

is the \textbf{principal character} modulo \(m \).

Given \(\psi \) modulo \(q \), we can \textbf{induce} a character modulo \(mq \) by \(\psi \chi_{0,m} \).
The function
\[\chi_{0,m}(n) = \begin{cases} 1 & \text{if } \gcd(n, m) = 1 \\ 0 & \text{otherwise.} \end{cases} \]
is the principal character modulo \(m \).

Given \(\psi \) modulo \(q \), we can induce a character modulo \(mq \) by \(\psi \chi_{0,m} \).

\(n \)	0	1	2	3	4
\(\psi(n) \)	0	1	\(i \)	\(-i \)	\(-1\)

\(n \)	0	1	2	3	4	5	6	7	8	9
\(\psi \chi_{0,2}(n) \)	0	1	0	\(-i \)	0	0	0	\(i \)	0	\(-1\)
The function

\[\chi_{0,m}(n) = \begin{cases}
1 & \text{if } \gcd(n, m) = 1 \\
0 & \text{otherwise.}
\end{cases} \]

is the **principal character** modulo \(m \).

Given \(\psi \) modulo \(q \), we can **induce** a character modulo \(mq \) by \(\psi \chi_{0,m} \).

\(n \)	0	1	2	3	4
\(\psi(n) \)	0	1	\(i \)	\(-i \)	\(-1 \)

\(n \)	0	1	2	3	4	5	6	7	8	9
\(\psi \chi_{0,2}(n) \)	0	1	0	\(-i \)	0	0	0	\(i \)	0	\(-1 \)

A **primitive** character is not induced by any other character.
n	0	1	2	3	4	5	6	7	8	9	10	11
$\psi(n)$	0	1	0	0	0	-1	0	1	0	0	0	-1
n	0	1	2	3	4	5	6	7	8	9	10	11
-----	----	---	---	---	---	---	---	---	---	---	----	----
$\psi(n)$	0	1	0	0	0	-1	0	1	0	0	0	-1
n	$\psi(n)$	$\psi^*(n)$										
-----	-----------	-------------										
0	0	0										
1	1	1										
2	0	-1										
3	0	0										
4	0	-1										
5	-1	0										
6	0	1										
7	1	-1										
8	0	0										
9	0	0										
10	0	-1										
11	-1	0										

n	$\psi^*(n)$
0	0
1	1
2	-1
The Dirichlet L-function associated with the character χ is

$$L(s, \chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}$$
The **Dirichlet L-function** associated with the character χ is

$$L(s, \chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}$$

Dirichlet used $L(1, \chi)$ to study primes in arithmetic progressions.
Walum’s Result

Walum evaluated

\[\sum_{\chi \mod p} |L(1, \chi)|^2. \]
\[\chi \mod p \]
\[\chi(-1) = -1 \]

In principle, his technique works for all even powers.
Walum’s Result

Walum evaluated

\[\sum_{\chi \mod p \chi(-1)=-1} |L(1, \chi)|^2. \]

In principle, his technique works for all even powers.

Theorem (Walum, 1982)

\[\sum_{\chi \mod p \chi(-1)=-1} |L(1, \chi)|^4 = \frac{\pi^4(p - 1)}{p^2} \sum_{a \mod p} |s(a, c)|^2. \]
Walum’s Result

Walum evaluated

$$\sum_{\chi \mod p \atop \chi(-1)=-1} |L(1, \chi)|^2.$$

In principle, his technique works for all even powers.

Theorem (Walum, 1982)

$$\sum_{\chi \mod p \atop \chi(-1)=-1} |L(1, \chi)|^4 = \frac{\pi^4(p - 1)}{p^2} \sum_{a \mod p} |s(a, c)|^2.$$

Rearranging, we have an average of Dedekind sums:

$$\sum_{a \mod p} |s(a, p)|^2 = \frac{p^2}{\pi^4(p - 1)} \sum_{\chi \mod p \atop \chi(-1)=-1} |L(1, \chi)|^4.$$
Generalized Dedekind Sum
Let $\chi_1 \mod q_1$ and $\chi_2 \mod q_2$ be non-trivial primitive Dirichlet characters. The **generalized Dedekind sum** is

$$S_{\chi_1, \chi_2}(a, c) = \sum_{j \mod c} \sum_{n \mod q_1} \overline{\chi_2}(j) \overline{\chi_1}(n) B_1\left(\frac{j}{c}\right) B_1\left(\frac{n}{q_1} + \frac{aj}{c}\right)$$
Definition

Let $\chi_1 \mod q_1$ and $\chi_2 \mod q_2$ be non-trivial primitive Dirichlet characters. The generalized Dedekind sum is

$$S_{\chi_1,\chi_2}(a, c) = \sum_{j \mod c} \sum_{n \mod q_1} \chi_2(j) \chi_1(n) B_1\left(\frac{j}{c}\right) B_1\left(\frac{n}{q_1} + \frac{aj}{c}\right)$$

... one of its many guises:

$$S_{\chi_1,\chi_2}(a, c) = K \sum_{s \mod c} \sum_{r \mod q_2} \chi_1(s) \chi_2(r) \cot\left(\pi \left(\frac{r}{q_2} - \frac{as}{c}\right)\right) \cot\left(\frac{\pi S}{c}\right)$$
The Second Moment

Theorem (D. and G., 2019)

Let χ_1 and χ_2 be nontrivial primitive characters such that $\chi_1 \chi_2(-1) = 1$, and let $q_1 q_2 \mid c$. Then

$$\sum_{a \mod c \atop (a,c)=1} |S_{\chi_1, \chi_2}(a, c)|^2 = \frac{\varphi(c)}{\pi^4} \sum_{\psi \mod c \atop \psi \chi_1(-1) = -1} |L(1, \overline{\psi}^* \chi_1)|^2 |L(1, (\psi \chi_2)^*)|^2 |g_{\chi_1, \chi_2}(\psi; c)|^2.$$
The Second Moment

Theorem (D. and G., 2019)

Let χ_1 and χ_2 be nontrivial primitive characters such that $\chi_1 \chi_2(-1) = 1$, and let $q_1q_2 | c$. Then

$$\sum_{a \mod c \atop (a,c)=1} |S_{\chi_1,\chi_2}(a,c)|^2 = \frac{\varphi(c)}{\pi^4} \sum_{\psi \mod c \atop \psi \chi_1(-1)=-1} |L(1, \overline{\psi}^* \chi_1)|^2 |L(1, (\psi \chi_2)^*)|^2 |g_{\chi_1,\chi_2}(\psi; c)|^2.$$

$$g_{\chi_1,\chi_2}(\psi; c) = K(\psi) \sum_{d | c \atop d \equiv 0 \mod q(\psi)} \frac{\overline{\chi_2}(c/d)}{\varphi(d)} ((\overline{\psi} \chi_2)^* \mu * 1)(d) (\chi_1 * \mu \psi^*) \left(\frac{d}{q(\psi)} \right)$$
Theorem (D. and G., 2019)

Let χ_1 and χ_2 be nontrivial primitive characters modulo q_1 and q_2, respectively, such that $\chi_1\chi_2(-1) = 1$, and let $q_1q_2 \mid c$. For every $\varepsilon > 0$, there exist positive A_ε and B_ε such that

$$A_\varepsilon c^{2-\varepsilon} \leq \sum_{a \mod c \atop (a,c)=1} |S_{\chi_1,\chi_2}(a, c)|^2 \leq B_\varepsilon c^{2+\varepsilon}.$$

Corollary

For all $c > 0$, $S_{\chi_1,\chi_2}(a, c)$ does not vanish.
A Different View
Definition

The special linear group $\text{SL}_2(\mathbb{Z})$ is the set of 2×2 matrices \[
\begin{pmatrix}
 a & b \\
 c & d
\end{pmatrix}
\] such that $ad - bc = 1$.

The Dedekind sum is a map from $\mathcal{O}(q_1; q_2)$ to \mathbb{C} by $S(q_1; q_2)(a; c)$.

Dillon & Gaston

An average of generalized Dedekind sums
Definition

The special linear group $\text{SL}_2(\mathbb{Z})$ is the set of 2×2 matrices
\[
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}
\]
such that $ad - bc = 1$.

Definition

For $N \in \mathbb{N}^+$, the subgroup of $\text{SL}_2(\mathbb{Z})$ such that N divides c is denoted $\Gamma_0(N)$.

Dillon & Gaston

An average of generalized Dedekind sums
Definition

The special linear group $\text{SL}_2(\mathbb{Z})$ is the set of 2×2 matrices \[
\begin{pmatrix}
 a & b \\
 c & d
\end{pmatrix}
\] such that $ad - bc = 1$.

Definition

For $N \in \mathbb{N}^+$, the subgroup of $\text{SL}_2(\mathbb{Z})$ such that N divides c is denoted $\Gamma_0(N)$.

The Dedekind sum is a map from $\Gamma_0(q_1q_2)$ to \mathbb{C} by

$$S_{\chi_1, \chi_2}(\gamma) = S_{\chi_1, \chi_2}(a, c).$$
Let $\chi(\gamma) = \chi(d)$. Then

$$S_{\chi_1, \chi_2}(\gamma_1 \gamma_2) = S_{\chi_1, \chi_2}(\gamma_1) + \chi_1 \overline{\chi_2}(\gamma_1) S_{\chi_1, \chi_2}(\gamma_2).$$

If $\chi_1 = \chi_2$, then $\chi_1 \overline{\chi_2}(\gamma_1) = 1$, so $S_{\chi_1, \chi_2}(\gamma)$ is a homomorphism.
Let $\chi(\gamma) = \chi(d)$. Then

$$S_{\chi_1, \chi_2}(\gamma_1 \gamma_2) = S_{\chi_1, \chi_2}(\gamma_1) + \chi_1 \overline{\chi_2}(\gamma_1) S_{\chi_1, \chi_2}(\gamma_2).$$

If $\chi_1 = \chi_2$, then $\chi_1 \overline{\chi_2}(\gamma_1) = 1$, so $S_{\chi_1, \chi_2}(\gamma)$ is a homomorphism.

Corollary

*The crossed homomorphism S_{χ_1, χ_2} is nontrivial. In fact, for each $c > 0$, there exists some $a \in \mathbb{Z}$ so that $S_{\chi_1, \chi_2}(a, c) \neq 0$.***
Questions?
Bounds on the Second Moment
Recall that:

\[A_\varepsilon c^{2-\varepsilon} \leq \sum_{\substack{a \mod c \quad (a,c)=1}} |S_{\chi_1,\chi_2}(a, c)|^2 \leq B_\varepsilon c^{2+\varepsilon} \]
Sketchy Outline: Upper bound

\[\sum_{a \mod c \atop (a,c)=1} |S_{\chi_1,\chi_2}(a,c)|^2 = \frac{\varphi(c)}{\pi^4} \sum_{\psi \mod c \atop \psi\chi_1(-1)=-1} |L(1, \overline{\psi}\chi_1)|^2 |L(1, (\psi\chi_2)^*)|^2 |g_{\chi_1,\chi_2}(\psi; c)|^2 \]
Bound the L-functions:

- For χ modulo q, there exists $K > 0$ so that $|L(1, \chi)| \leq K \log q$
\[\sum_{a \mod c \atop (a,c)=1} |S_{\chi_1,\chi_2}(a, c)|^2 = \frac{\varphi(c)}{\pi^4} \sum_{\psi \mod c \atop \psi \chi_1(-1)=-1} |L(1, \overline{\psi} \chi_1)|^2 |L(1, (\psi \chi_2)^*)|^2 |g_{\chi_1,\chi_2}(\psi; c)|^2 \]

Bound the L-functions:

- For χ modulo q, there exists $K > 0$ so that $|L(1, \chi)| \leq K \log q$

Bound g:

- Use the triangle inequality
Sketchy Outline: Upper bound

\[\sum_{a \mod c \atop (a,c)=1} |S_{\chi_1,\chi_2}(a,c)|^2 = \frac{\varphi(c)}{\pi^4} \sum_{\psi \mod c \atop \psi\chi_1(-1)=-1} |L(1, \overline{\psi}\chi_1)|^2 |L(1, (\psi\chi_2)^*)|^2 |g_{\chi_1,\chi_2}(\psi; c)|^2 \]

Bound the \(L \)-functions:

\begin{itemize}
 \item For \(\chi \) modulo \(q \), there exists \(K > 0 \) so that \(|L(1, \chi)| \leq K \log q \)
\end{itemize}

Bound \(g \):

\begin{itemize}
 \item Use the triangle inequality
 \item Terms inside sum become 1
\end{itemize}
Sketchy Outline: Upper bound

\[
\sum_{a \mod c, (a, c)=1} |S_{\chi_1, \chi_2}(a, c)|^2 = \frac{\varphi(c)}{\pi^4} \sum_{\psi \mod c} |L(1, \overline{\psi} \chi_1)|^2 |L(1, (\psi \chi_2)^*)|^2 |g_{\chi_1, \chi_2}(\psi; c)|^2
\]

Bound the \(L\)-functions:

- For \(\chi\) modulo \(q\), there exists \(K > 0\) so that \(|L(1, \chi)| \leq K \log q\)

Bound \(g\):

- Use the triangle inequality
- Terms inside sum become 1
- Bound by divisor function
Definition

\[d(n) \] is the number of positive divisors of \(n \).

Example: The divisors of 12 are \(\{1, 2, 3, 4, 6, 12\} \), so \(d(12) = 6 \).
Divisor Function

Definition

d(n) is the number of positive divisors of n.

Example: The divisors of 12 are \{1, 2, 3, 4, 6, 12\}, so \(d(12) = 6\).

Claim

For all \(\varepsilon > 0\) there exists \(K_\varepsilon > 0\) such that \(d(n) \leq K_\varepsilon n^\varepsilon\).
Definition

\(d(n) \) is the number of positive divisors of \(n \).

Example: The divisors of 12 are \(\{1, 2, 3, 4, 6, 12\} \), so \(d(12) = 6 \).

Claim

For all \(\varepsilon > 0 \) there exists \(K_\varepsilon > 0 \) such that \(d(n) \leq K_\varepsilon n^\varepsilon \).

Property

If \(\gcd(m, n) = 1 \), then \(d(mn) = d(m)d(n) \).

So look at \(d(p^k) \) for primes \(p \).
Want to show that $d(p^k) \leq K_\varepsilon p^{k\varepsilon}$, so consider

$$\frac{d(p^k)}{p^{k\varepsilon}}.$$
Want to show that $d(p^k) \leq K_\varepsilon p^{k\varepsilon}$, so consider

$$\frac{d(p^k)}{p^{k\varepsilon}}.$$

Calculate: $d(p^k) = k + 1$.

$$\frac{k + 1}{(p^\varepsilon)^k}.$$
Want to show that \(d(p^k) \leq K_\varepsilon p^{k\varepsilon} \), so consider

\[
\frac{d(p^k)}{p^{k\varepsilon}}.
\]

Calculate: \(d(p^k) = k + 1 \).

\[
\frac{k + 1}{(p^\varepsilon)^k} \leq K_\varepsilon
\]

Therefore \(d(n) \leq K_\varepsilon n^\varepsilon \).
Sketchy Outline: Lower bound

\[\sum_{a \mod c \ (a,c)=1} |S_{\chi_1,\chi_2}(a, c)|^2 \geq A_\varepsilon c^{2-\varepsilon} \]
Sketchy Outline: Lower bound

\[
\sum_{\substack{a \mod c \ (a,c)=1}} |S_{\chi_1, \chi_2}(a, c)|^2 = \frac{\varphi(c)}{\pi^4} \sum_{\substack{\psi \mod c \ \psi \chi_1(-1) = -1}} |L(1, \overline{\psi} \chi_1)|^2 |L(1, (\psi \chi_2)^*)|^2 |g_{\chi_1, \chi_2}(\psi; c)|^2
\]

Bound the \(L\)-functions:

- For \(\chi\) modulo \(q\), there exists \(K_\varepsilon > 0\) so that
 \[|L(1, \chi)| \geq K_\varepsilon q^{-\varepsilon}\]
\[
\sum_{\substack{a \mod c \\
(a, c) = 1}} |S_{\chi_1, \chi_2}(a, c)|^2 = \frac{\varphi(c)}{\pi^4} \sum_{\substack{\psi \mod c \\
\psi \chi_1(-1) = -1}} |L(1, \overline{\psi} \chi_1)|^2 |L(1, (\psi \chi_2)^*)|^2 |g_{\chi_1, \chi_2}(\psi; c)|^2
\]

Bound the \(L\)-functions:

- For \(\chi\) modulo \(q\), there exists \(K_{\varepsilon} > 0\) so that
 \[|L(1, \chi)| \geq K_{\varepsilon} q^{-\varepsilon}\]

Bound \(g\):

- Restrict the sum
Bound the L-functions:

- For χ modulo q, there exists $K_\varepsilon > 0$ so that
 \[|L(1, \chi)| \geq K_\varepsilon q^{-\varepsilon} \]

Bound g:

- Restrict the sum
- All the terms are 1!

\[\sum_{\substack{a \mod c \\ (a,c)=1}} |S_{\chi_1, \chi_2}(a, c)|^2 = \frac{\varphi(c)}{\pi^4} \sum_{\substack{\psi \mod c \\ \psi \chi_1(-1)=-1}} |L(1, \psi^* \chi_1)|^2 |L(1, (\psi \chi_2)^*)|^2 |g_{\chi_1, \chi_2}(\psi; c)|^2 \]
\[\sum_{a \mod c, (a,c)=1} |S_{\chi_1, \chi_2}(a, c)|^2 = \frac{\varphi(c)}{\pi^4} \sum_{\psi \mod c, \psi\chi_1(-1)=-1} |L(1, \overline{\psi} \chi_1)|^2 |L(1, (\psi \chi_2)^*)|^2 |g_{\chi_1, \chi_2}(\psi; c)|^2 \]

Bound the L-functions:

- For χ modulo q, there exists $K_\varepsilon > 0$ so that
 \[|L(1, \chi)| \geq K_\varepsilon q^{-\varepsilon} \]

Bound g:

- Restrict the sum
- All the terms are 1!
- Clever counting
A lemma that counts I

Question

How many primitive characters modulo q are there?

Recall that a primitive character is **not** induced by a character of lower modulus.

Let $\varphi^*(q)$ be the number of primitive characters modulo q.
Look at characters modulo p^n.

Idea: count the opposite.
Pick a prime . . .

Look at characters modulo p^n.

Idea: count the opposite.

A character is **not** primitive if it is induced by a character modulo p^{n-1}.

So we just need to find the number of characters modulo p^{n-1}.
A Dirichlet Digression

Definition

Let $n \in \mathbb{N}^+$. The set

$$\left(\mathbb{Z}/n\mathbb{Z} \right)^* := \{ a \in \mathbb{Z}/n\mathbb{Z} : \gcd(a, n) = 1 \}$$

is a group under multiplication.
A Dirichlet Digression

Definition

Let \(n \in \mathbb{N}^+ \). The set

\[
(\mathbb{Z}/n\mathbb{Z})^* \:= \{ a \in \mathbb{Z}/n\mathbb{Z} : \gcd(a, n) = 1 \}
\]

is a group under multiplication.

We can also define a Dirichlet character \(\chi \mod q \) as a homomorphism \((\mathbb{Z}/q\mathbb{Z})^* \rightarrow \mathbb{C}^*\). (This means that \(\chi(1) = 1 \) and \(\chi(mn) = \chi(m)\chi(n) \).)
A Dirichlet Digression

Definition

Let $n \in \mathbb{N}^+$. The set

$$(\mathbb{Z}/n\mathbb{Z})^* := \{a \in \mathbb{Z}/n\mathbb{Z} : \gcd(a, n) = 1\}$$

is a group under multiplication.

We can also define a Dirichlet character $\chi \mod q$ as a homomorphism $(\mathbb{Z}/q\mathbb{Z})^* \to \mathbb{C}^*$. (This means that $\chi(1) = 1$ and $\chi(mn) = \chi(m)\chi(n)$.)

Then extend χ to \mathbb{Z} by setting

$$\chi(n) = \begin{cases}
\chi(n \mod q) & \text{if } \gcd(n, q) = 1 \\
0 & \text{otherwise.}
\end{cases}$$
Fact
The number of characters modulo q is equal to the number of elements of $(\mathbb{Z}/q\mathbb{Z})^*$.

Definition
The number of positive integers less than q that are relatively prime to q is denoted $\varphi(q)$.

So there are $\varphi(p^{n-1})$ characters modulo p^{n-1}.

Dillon & Gaston
An average of generalized Dedekind sums
Modulo p^n, there are

1. $\varphi(p^n)$ characters
2. $\varphi(p^{n-1})$ imprimitive characters
3. $\varphi(p^n) - \varphi(p^{n-1})$ primitive characters.
Modulo p^n, there are

1. $\varphi(p^n)$ characters
2. $\varphi(p^{n-1})$ imprimitive characters
3. $\varphi(p^n) - \varphi(p^{n-1})$ primitive characters.

Claim: $\varphi(p^n) = p^n - p^{n-1}$.
A lemma that counts II

Modulo p^n, there are

1. $\varphi(p^n)$ characters
2. $\varphi(p^{n-1})$ imprimitive characters
3. $\varphi(p^n) - \varphi(p^{n-1})$ primitive characters.

Claim: $\varphi(p^n) = p^n - p^{n-1}$.

Proposition

$$\varphi^*(p^n) = p^n - 2p^{n-1} + p^{n-2}.$$
Conclusion
Conclusion, being the Place in which we Recapitulate the High Points previously stated to you Fine Folk, and including a Small Sampling of the Exceedingly Excellent Problems related thereto

- S_{X_1,X_2} is a generalization of Dedekind sum
- $S_{X_1,X_2} : \Gamma_0(q_1q_2) \to \mathbb{C}$
- Exact formula and bounds for second moment
- Proved that S_{X_1,X_2} is always a nontrivial map into \mathbb{C}.

Future work

Find formula for or asymptotics of higher moments
Thank You!

Special thanks to Dr. Matthew Young,

Texas A&M University, and the NSF.
References

Hugh Montgomery and Robert Vaughan. *Multiplicative Number Theory I. Classical theory*. Vol. 97. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2007.

Hans Rademacher and Emil Grosswald. *Dedekind Sums*. Carus Mathematical Monographs 16. MAA, 1972.

Tristie Stucker, Amy Vennos, and Matthew Young. “Dedekind sums arising from newform Eisenstein series”. In: *arXiv preprint:1907.01524* (2019).

Herbert Walum. “An exact formula for an average of L-series”. In: *Illinois Journal of Mathematics* 26.1 (1982), pp. 1–3.