Early age at first sexual intercourse and early pregnancy are risk factors for cervical cancer in developing countries

KS Louie*,1, S de Sanjose1,2, M Diaz1, X Castellsague1,2, R Herrero3, CJ Meijer4, K Shah5, S Franceschi6, N Muñoz2 and FX Bosch1 for the International Agency for Research on Cancer Multicenter Cervical Cancer Study Group

1Unit of Infections and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology, Hospital de la Llobregat (Barcelona), Avda. Gran Via s/n Km 2.7, Barcelona 08907, Spain; 2CIBER en Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain; 3Proyecto Epidemiológico Guanacaste, Fundación INCIGENA, Torre La Sabana, 300 Oeste del ICE, Piso 7, Sabana Norte, San José, Costa Rica; 4Department of Pathology, VY University Medical Center, PO Box 7057, 1007 MB Amsterdam, The Netherlands; 5Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; 6International Agency for Research on Cancer, 150 cours Albert Thomas, 69372 Lyon cedex 08, France; 7Instituto Nacional de Cancerología, Bogotá, Colombia

Early age at first sexual intercourse (AFSI) has long been associated with an increased risk of invasive cervical carcinoma (ICC). Age at first pregnancy (AFP) and ICC have been investigated less, although AFSI and AFP are strongly interrelated in most developing countries. A pooled analysis of case–control studies on ICC from eight developing countries with 1864 cases and 1719 controls investigated the roles of AFSI, AFP, and ICC risk. Age at first sexual intercourse, AFP and age at first marriage (AFM) were highly interrelated and had similar ICC risk estimates. Compared with women with AFSI ≥ 21 years, the odds ratio (OR) of ICC was 1.80 (95% CI: 1.50–2.39) among women with AFSI 17–20 years and 2.31 (95% CI: 1.85–2.87) for AFSI ≤ 16 years (P-trend < 0.001). No statistical interaction was detected between AFSI and any established risk factors for ICC. The ICC risk was 2.4-fold among those who reported AFSI and AFP at ≤ 16 years compared with those with AFSI and AFP at ≥ 21 years. These data confirm AFSI and AFP as risk factors for ICC in eight developing countries, but any independent effects of these two events could not be distinguished.

British Journal of Cancer (2009) 100, 1191–1197. doi:10.1038/sj.bjc.6604974 www.bjcancer.com
Published online 10 March 2009 © 2009 Cancer Research UK

Keywords: cervical cancer; first sexual intercourse; pregnancy; sexual behaviour; child sexual abuse

Early age at first sexual intercourse (AFSI) has been associated with an increased risk of invasive cervical carcinoma (ICC). Age at first marriage (AFM) is often used as a proxy measure for AFSI, and those who engage in early sexual intercourse may also consequently become pregnant at an early age. Besides early AFSI, early childbearing has also been linked as a risk factor for cervical carcinogenesis and attributed to the cervical trauma experienced during early age at first pregnancy (AFP), or subsequently, by high-parity births (IARC, 2007). The interpretation of the mechanisms by which these sexual and reproductive events occurring early in life might affect ICC risk three or more decades later is not straightforward. The objective of this study is to further characterise and provide robust estimates of the risk of cervical cancer and its association with AFSI, interrelated characteristics such as AFP and AFM in a series of studies that fully considered the association of HPV with cervical cancer.

MATERIALS AND METHODS

The programme of HPV and cervical cancer studies has been coordinated by the International Agency for Research on Cancer (IARC) in Lyon, France and the Institut Catalá d’Oncologia (ICO) in Barcelona, Spain. They included a series of case-control studies on ICC from eight developing countries with a broad range of rates of incidence of cervical cancer that were pooled for analysis. Regions covered include Morocco (Chaouki et al, 1998) and Algeria (Hammouda et al, 2005) in Africa; the Philippines (Ngelangel et al, 1998), Thailand (Chichareon et al, 1998) and...
Madras in Asia; and Brazil (Eluf-Neto et al, 1994), Colombia (Munoz et al, 1993), Paraguay (Rolon et al, 2000) and Peru (Eluf-Neto et al, 1994) in South America. Although Spain (Munoz et al, 1993) was part of the series of case-control studies, the sexual and reproductive behaviour of this population was heterogeneous to the other countries (late AFSI and low parity) and the study site was therefore excluded from this analysis.

The methods of each study have been described elsewhere. Briefly, women with histologically confirmed incident invasive squamous cell carcinoma (SCC), adenocarcinoma or adenosquamous-cell carcinoma were recruited from reference hospitals before treatment. Written informed consent was obtained from those who agreed to participate. Hospital-based controls were frequency-matched to case patients by 5-year age groups.

A standardised questionnaire was administered to the participants by a trained interviewer, which included questions about sociodemographic factors, sexual and reproductive behaviour, smoking habits, pap screening history, hygienic practices, and history of sexually transmitted diseases.

Two samples of cervical exfoliated cells were collected with wooden spatulae and endocervical brushes. After preparation of one Papanicolaou smear, the remaining cells were eluded in saline, wooden spatulae and endocervical brushes. After preparation of history of sexually transmitted diseases.

Two samples of cervical exfoliated cells were collected with wooden spatulae and endocervical brushes. After preparation of one Papanicolaou smear, the remaining cells were eluded in saline, centrifuged and frozen at −70°C until shipment to the central laboratory for HPV DNA testing. A tumour-biopsy sample was obtained from cases and frozen. Cytology and histology diagnoses were reviewed and confirmed by a panel of expert pathologists that agreed on a diagnosis by consensus or majority.

Detailed descriptions of the polymerase-chain-reaction (PCR) assays used in these studies have been described elsewhere. HPV DNA detection was detected by PCR amplification of a small fragment of the L1 gene using MY09 and MY11 consensus primers for the study in Colombia (Hildesheim et al, 1994) and the GP5+/6+ general primer system for the other studies (Walboomers et al, 1992; Jacobs et al, 1995; Roda Husman et al, 1995). β-Globin primers were used to amplify the β-globin gene to assess the quality of the DNA in the specimen. HPV DNA in PCR products was analysed using a cocktail of HPV-specific probes and genotyped by hybridisation with type-specific probes for 33 HPV types. Samples that tested positive for HPV DNA but did not hybridise with any of the type-specific probes were labelled as HPV X.

Statistical analysis

Unconditional logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (95% CI). To assess the association of AFSI with the risk of ICC, three different statistical models to adjust for HPV DNA detection were computed and compared: (1) one model included all patients and controls, and it was not adjusted for HPV DNA status, (2) a second model included all patients and controls, and included a variable to adjust for HPV DNA status, and (3) a third model was restricted to HPV–DNA-positive cases and controls. To control for potential confounding, final models were adjusted for age (<40, ≥40), country, lifetime number of sexual partners (1, >1), parity (0, 1–4, ≥5), and educational level (never, primary, secondary or higher). Each variable included in the adjustment models was assessed for interaction with AFSI. Test for trend was carried out when appropriate, using the log-likelihood-ratio test. Only subjects who reported ever having been married and/or ever having had children were included in the analyses of AFM and AFP.

We evaluated other potential confounding factors such as smoking (never, ever), oral contraceptive use (never, 1–4 years, ≥5 years), history of pap smears excluding those in the 12 months before enrolment (never, ever), having had first sexual intercourse before menarche and the timing of first sexual intercourse relative to age at menarche (data not shown), but they were not adjusted for in the final analysis as they did not contribute any change to the OR estimates for AFSI in the adjusted models.

RESULTS

Table 1 describes some characteristics of the 1864 ICC cases and 1719 corresponding controls that entered the final analysis. Ninety-five percent of case patients and 17% of controls tested positive for HPV DNA. The majority of cases (92%) had SCC. Case patients were older than controls with a median age of 49 vs 48, respectively. Median AFSI was earlier in case patients (17 years) compared with controls (19 years), and this was found to be consistent in each country.

Table 2 shows the risk of ICC by AFSI according to the three different adjustment models. An increased risk of ICC was consistently observed with decreasing AFSI (P-trend <0.001). Compared with AFSI >21 years, the OR of ICC was 1.80 (95% CI: 1.50–2.16) for AFSI 17–20 years, and 2.31 (95% CI: 1.85–2.87) for AFSI ≤16 years, after adjusting for age, centre, lifetime number of partners, parity, and education level in the HPV-unadjusted model. According to the different model adjustments, women reporting AFSI ≤16 years of age had a 2.3–2.5-fold risk of ICC and 1.8–2.1-fold risk for AFSI 17–20 years of age (Table 2). Given the consistent association of AFSI and the risk of ICC across the different models, HPV-unadjusted models were used for the remainder of the results.

We calculated the risk of ICC for each country study, and, in general, each study showed an increasing risk of ICC with decreasing AFSI (data not shown). There was no evidence of heterogeneity with respect to study country (P = 0.58).

Country	Cases	Controls	Cases	%	Controls	%	Age a	Cases	Controls	Age at sexual debut a	Cases	Controls
Country	1864	1719	1769	94.9	285	16.6	49	48	17	19	49	48
Algeria	142	145	132	93.0	18	12.4	53.5	52	16	18	49	40
Morocco	188	176	182	96.8	38	21.6	48	46.5	17	18	49	40
Madras (India)	187	184	180	96.3	51	27.7	47.5	47	19	21	49.5	50
Philippines	364	380	349	95.9	35	9.2	51	52	18	20	46	45.5
Thailand	378	259	363	96.0	41	15.8	46	45.5	17	18	48	48
Brazil	187	190	181	96.8	32	16.8	51	52	18	19	48	48
Colombia	110	124	87	79.1	21	16.9	48.5	45.5	16	19	48	48
Paraguay	112	86	109	97.3	18	20.9	48	48	16	18	48	48

Abbreviation: HPV = human papillomavirus. aMedian.
We stratified the analysis according to the established risk factors for ICC and the positive association of ICC with decreasing AFSI, remained at each level of exposure for each of these characteristics (Table 3). Similar associations were observed for AFP. No interaction was observed between any of the examined risk factors and AFSI. Although not statistically significant, the risk linked to AFSI seemed to be stronger among parous women compared with nulliparous women.

Age at first pregnancy and AFSI were both directly correlated with AFSI in these populations (Pearson correlation coefficient, r = 0.29). Approximately, 92% of women reported AFSI to be the same as APM, One-quarter of women reported AFP to be the same as AFSI. Cumulatively, 62.4% of women reported AFSI and AFP to be the same as AFSI and AFP. Among women with AFSI <16 years, 52.4% were pregnant within the first year of sexual intercourse. Figure 1 shows the high correlation between AFSI and AFP, and the similar decreasing risk of ICC with increasing age of AFSI. Given the high correlation between the two variables, we did not adjust for AFSI or AFP in the AFSI final model and vice versa.

We further evaluated the combined effect of AFSI and AFP on the risk of cervical cancer (Table 4). An increased risk emerged in subsequent strata of decreasing AFP with decreasing AFSI. Given this combined effect, we assessed the latency period (AFP–AFSI) between these two events to clarify whether it affected the cervical cancer risk. Although there was no statistical difference across strata, the data suggested that within each AFSI strata, women with a latency period for a subsequent pregnancy of <2 years may be at a slightly increased risk compared with women with a larger time gap (data not shown).

DISCUSSION

The IARC/ICO series of case–control studies remain the largest set of aetiological investigations on ICC that fully addresses the role of HPV DNA and of the independent established cofactors. This is probably also the largest dataset reporting on ICC in the developing world in which early AFSI, AFP and high parity are prevalent phenomenons. The results show that early AFSI and early AFP are risk factors for cervical cancer, irrespective of other known risk factors for the birth. The data presented show a possible additional increase in risk when the early event of first sexual intercourse is shortly followed by a pregnancy.

The mechanism by which the early experience of first sexual intercourse and first pregnancy could influence the risk of cervical carcinogenesis may be explained by the steroid hormonal influence on HPV infection and on the host's immune response to HPV during pre-adolescence and adolescence. The transformation zone of the cervical epithelium has been recognised as the site in which HPV infection tends to cause cancer, and the susceptibility of this area is believed to be related to its denudation of the stratified epithelium, thus facilitating exposure of the basal layer to HPV with minimal trauma. Biological immaturity during adoles-

Table 2 Effect of different strategies of multivariate model adjustments on the association between age at first sexual intercourse and risk of ICC (from IARC case–control studies)

Sexual debut	Cases n (%)	Controls n (%)	Age and centre adjusted Odds ratio (95% CI)	HPV unadjusted*	HPV adjusted*	HPV-positive only*
≥21 years	341 (16.9)	656 (35.4)	1.00	1.00	1.00	1.00
17–20 years	83 (40.2)	667 (35.0)	2.44 (1.07–2.87)	1.80 (1.50–2.16)	1.78 (1.32–2.39)	2.10 (1.49–2.97)
≤16 years	710 (35.1)	396 (21.4)	4.09 (3.38–4.94)	2.31 (1.85–2.87)	2.09 (1.48–2.96)	2.48 (1.65–3.73)

*Adjusted for age, study country, lifetime number of partners (1), parity (0, 1–4, 5), and education (never, primary, secondary).

Cervical cancer in developing countries

KS Louie et al

© 2009 Cancer Research UK

British Journal of Cancer (2009) 100(7), 1191–1197
Table 3 Age at first sexual intercourse and risk of cervical cancer according to various characteristics

Characteristics	Number of cases/controls	Odds ratio (95% CI)a	Odds ratio (95% CI)b	P-trend
Parity				
Nulliparous				
≥ 21 years	14/40	1.00	1.00	
17–20 years	7/14	1.88 (0.53 – 6.66)	1.61 (0.40 – 6.57)	
≤ 16 years	7/6	3.60 (0.83 – 15.52)	1.50 (0.17 – 13.55)	0.56
Ever parous				
≥ 21 years	327/614	1.00	1.00	
17–20 years	804/645	2.47 (2.07 – 2.94)	1.97 (1.63 – 2.36)	
≤ 16 years	703/387	4.10 (3.36 – 4.99)	2.59 (2.08 – 3.21)	<0.001
P-heterogeneity between AFSI and ever parous	= 0.64			
Parity (1–4 births)				
≥ 21 years	171/399	1.00	1.00	
17–20 years	273/287	2.58 (1.98 – 3.35)	1.99 (1.51 – 2.62)	
≤ 16 years	169/115	4.72 (3.41 – 6.54)	2.71 (1.89 – 3.87)	<0.001
Parity (> 5 births)				
≥ 21 years	156/215	1.00	1.00	
17–20 years	531/358	2.01 (1.57 – 2.59)	1.71 (1.32 – 2.23)	
≤ 16 years	534/272	2.88 (2.19 – 3.78)	2.08 (1.55 – 2.78)	<0.001
P-heterogeneity between AFSI and parous groups (nulliparous, 1–4 births, and > 5 births)	= 0.90			
Oral contraceptive use				
Never				
≥ 21 years	218/400	1.00	1.00	
17–20 years	453/364	2.33 (1.87 – 2.90)	1.77 (1.40 – 2.25)	
≤ 16 years	376/184	4.28 (3.29 – 5.35)	2.45 (1.82 – 3.29)	<0.001
1–4 years				
≥ 21 years	64/162	1.00	1.00	
17–20 years	117/114	2.64 (1.76 – 3.94)	1.67 (1.07 – 2.61)	
≤ 16 years	111/89	3.94 (2.53 – 6.13)	1.95 (1.15 – 3.30)	0.01
≥ 5 years				
≥ 21 years	36/52	1.00	1.00	
17–20 years	124/72	3.26 (1.85 – 5.72)	2.46 (1.36 – 4.46)	
≤ 16 years	96/49	4.48 (2.39 – 8.40)	2.80 (1.38 – 5.65)	0.006
Smoking				
Never				
≥ 21 years	272/569	1.00	1.00	
17–20 years	587/552	2.34 (1.93 – 2.83)	1.68 (1.36 – 2.06)	
≤ 16 years	550/548	3.76 (3.03 – 4.67)	2.06 (1.61 – 2.64)	<0.001
1–4 years				
≥ 21 years	67/85	1.00	1.00	
17–20 years	221/113	2.73 (1.81 – 4.13)	2.32 (1.50 – 3.60)	
≤ 16 years	152/43	3.63 (3.42 – 9.27)	3.62 (2.10 – 6.26)	<0.001
Lifetime number of sexual partners				
Monogamous				
≥ 21 years	270/569	1.00	1.00	
17–20 years	529/499	2.33 (1.92 – 2.83)	1.80 (1.46 – 2.22)	
≤ 16 years	349/214	3.89 (3.05 – 4.96)	2.38 (1.83 – 3.11)	<0.001
Partners > 1				
≥ 21 years	69/74	1.00	1.00	
17–20 years	280/151	2.03 (1.37 – 3.01)	1.74 (1.15 – 2.63)	
≤ 16 years	352/156	2.75 (1.84 – 4.11)	2.14 (1.39 – 3.28)	0.001
P-heterogeneity = 0.36				
Education				
Never go to school				
≥ 21 years	54/57	1.00	1.00	
17–20 years	255/155	1.68 (1.09 – 2.60)	1.46 (0.93 – 2.30)	
≤ 16 years	402/173	2.41 (1.55 – 3.75)	2.09 (1.31 – 3.35)	0.001
Primary school				
≥ 21 years	164/238	1.00	1.00	
17–20 years	404/311	1.99 (1.54 – 2.56)	1.62 (1.24 – 2.12)	
≤ 16 years	236/167	2.51 (1.87 – 3.39)	1.71 (1.24 – 2.36)	0.001
Secondary school				
≥ 21 years	118/359	1.00	1.00	
17–20 years	150/198	2.68 (1.95 – 3.68)	2.29 (1.65 – 3.20)	
≤ 16 years	72/55	4.79 (3.07 – 7.47)	3.36 (2.07 – 5.47)	<0.001
P-heterogeneity = 0.08				
and experience high parity, making their effects difficult to distinguish from one another. In contrast, results of studies in more developed countries where there is a longer latency period between sexual initiation and AFP, as in Spain, the US (Brinton et al., 1987) or Italy (Parazzini et al., 1989) tend to show an increased risk with early AFSI but not with AFP as first pregnancies tend to occur much later. It is interesting that, in countries like the UK, where the rates of teenage pregnancies are high, women with AFSI of ≤ 17 years had a 2–3-fold increased risk for cervical cancer compared with those with AFSI ≥ 20 years (Green et al., 2003). Consistently, women with an early AFP of 15–19 years had a two-fold increased risk for cervical cancer compared with those with AFP ≥ 25 years (Green et al., 2003). These observations merit further exploration but, in aggregate, tend to indicate a significant increase in risk of neoplastic disease when early AFSI occurs (surrogate of early HPV exposure and a period of increased cervical susceptibility) and is followed closely by an early pregnancy (surrogate of early exposure to high oestrogen levels).

Irrespective of their lifetime number of sexual partners, women have a similar increased risk of ICC with early AFSI as shown by the 2.4-fold risk among monogamous women with AFSI ≤ 16 years as compared with the 2.2-fold risk among women with > 1 lifetime number of sexual partners. It has long been suggested that a cervical cancer risk will also depend on the sexual history of the woman’s male partner in addition to her own behaviour (Skegg et al., 1982). This is particularly relevant in societies where most women are virgins at marriage and monogamous thereafter, where the incidence of cervical cancer for a population may vary depending on the behaviour of the male partner. Of our study women, 70% were monogamous. In several studies among monogamous women, the risk of cervical cancer was reported to be two to eight times for women with husbands who had multiple partners (Pridan and Lilienfeld, 1971; Buckley et al., 1981; Brinton et al., 1989). The sexual history of the male partner was not evaluated in this analysis; however, promiscuity, history of other STIS, and lack of male circumcision are factors that have been associated with the male role in cervical carcinogenesis (Castellsague et al., 2003).

In interpreting our results, we must emphasise the difficulty in fully disentangling a woman’s sexual and reproductive profile in relation to her cancer risk (Schoroder et al., 2003). We cannot exclude misclassification bias if AFSI and the number of sexual partners were inaccurately reported, leading to some residual confounding. However, the presence of established risk factors for ICC, use of oral contraceptives, smoking, and pap smear history did not seem to significantly affect the strength of the association between AFSI, AFP, and risk of ICC.

We examined the different stratified methodologies (unadjusted, HPV-adjusted, and HPV-positive restricted) used to evaluate the association between AFSI and risk of ICC traditionally employed in the literature. This was done to exclude any spurious association related to statistical adjustment and to clarify inconsistent findings of the association found in earlier studies. Although in strict terms restriction of analyses to HPV-positive cases and controls seemed preferable, the consistency of the results across the three different methods provides convincing evidence of the risk associated with AFSI. Furthermore, these results indicate that for the evaluation of other risk factors, adjusting for HPV status is not necessary as the adjustments do not contribute to remove any confounding effect.

Sexual practices in the world indicate that very early intercourse might be occurring in adolescents with 44, 45 and 52% of girls between the ages of 13–19 years reporting being sexually experienced in Argentina, Botswana and Nigeria, respectively.
incidence of cervical cancer; additional efforts are required in family planning and sexual education adapted to the extremely variable sociocultural contexts in the world.

ACKNOWLEDGEMENTS

We thank Margaret Stanley for her comments on this manuscript. This work was partially supported by Spanish public grants from the Instituto de Salud Carlos III (Grants FIS PI030240, FIS PI061246, RCESP C03/09, RTICESP C03/10, RTIC RD06/0020/0095 and CIBERESP), from the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR 2005SGR 00695), and from the Marató de TV3 Foundation (051530).

Conflict of interest

No conflict of interest is declared in relation to this manuscript.
cervical cancer in women with human papillomavirus infection: the IARC multicentric case-control study. *Lancet* 359: 1085 – 1092

Moscicki AB, Winkler B, Irwin Jr CE, Schachter J (1989) Differences in biologic maturation, sexual behavior, and sexually transmitted disease between adolescents with and without cervical intraepithelial neoplasia. *J Pediatr* 115: 487 – 493

Munoz N, Bosch FX, de Sanjose S, Vergara A, del Moral A, Munoz MT, Tafur L, Gill M, Izarrzugaza I, Viladiu P (1993) Risk factors for cervical intraepithelial neoplasia grade III/carcinoma *in situ* in Spain and Colombia. *Cancer Epidemiol Biomarkers Prev* 2: 423 – 431

Munoz N, Franceschi S, Bosetti C, Moreno V, Herrero R, Smith JS, Shah KV, Meijer CJ, Bosch FX (2002) Role of parity and human papillomavirus in cervical cancer: the IARC multicentric case-control study. *Lancet* 359: 1093 – 1101

Ngelangel C, Munoz N, Bosch FX, Limson GM, Festin MR, Deacon J, Jacobs MV, Santamaria M, Meijer CJ, Walboomers JM (1998) Causes of cervical cancer in the Philippines: a case-control study. *J Natl Cancer Inst* 90: 43 – 49

Parazzini F, La Vecchia C, Negri E, Cecchetti G, Fedele L (1989) Reproductive factors and the risk of invasive and intraepithelial cervical neoplasia. *Br J Cancer* 59: 805 – 809

Pridan H, Lilienfeld AM (1971) Carcinoma of the cervix in Jewish women in Israel, 1960 – 1967. An epidemiological study. *Isr J Med Sci* 7: 1465 – 1470

Roda Husman AM, Walboomers JM, van den Brule AJ, Meijer CJ, Snijders PJ (1995) The use of general primers GP5 and GP6 elongated at their Y’ ends with adjacent highly conserved sequences improves human papillomavirus detection by PCR. *J Gen Virol* 76(Part 4): 1057 – 1062

Rolon PA, Smith JS, Munoz N, Klug SJ, Herrero R, Bosch X, Llamosas F, Meijer CJ, Walboomers JM (2000) Human papillomavirus infection and invasive cervical cancer in Paraguay. *Int J Cancer* 85: 486 – 491

Scherodt KE, Carey MP, Vanable PA (2003) Methodological challenges in research on sexual risk behavior: II. Accuracy of self-reports. *Ann Behav Med* 26: 104 – 123

Shai A, Brace T, Somora A, Lambert PF (2007) The human papillomavirus E6 oncogene dysregulates the cell cycle and contributes to cervical carcinogenesis through two independent activities. *Cancer Res* 67: 1626 – 1635

Shai A, Pitot HC, Lambert PF (2008) p53 Loss synergizes with estrogen and papillomaviral oncogenes to induce cervical and breast cancers. *Cancer Res* 68: 2622 – 2631

Singer A, Monaghan J (2000) Colposcopy of the normal cervix: a prerequisite to establish the diagnosis of cervical precancer. In *Lower Genital Tract Precancer: Coloscopy, Pathology, and Treatment* Singer A, Monaghan J (eds) pp 43 – 70 Blackwell Sciences Ltd.: Oxford, UK

Skegg DC, Corwin PA, Paul C, Doll R (1982) Importance of the male factor in cancer of the cervix. *Lancet* 2: 581 – 583

Walboomers J, Melkert P, van de Brule A, Snijders P, Meijer C (1992) The polymerase chain reaction for human papillomavirus screening in diagnostic cytopathology of the cervix. In *Diagnostic Molecular Pathology: A Practical Approach*, Harrington CS, McGee OD, McGee Jo (eds) pp 152 – 172. Oxford University Press: Oxford

Wellings K, Collumbien M, Slaymaker E, Singh S, Hodges Z, Patel D, Bajos N (2006) Sexual behaviour in context: a global perspective. *Lancet* 368: 1706 – 1728