How did lomustine become standard of care in recurrent glioblastoma?

Weller, Michael ; Le Rhun, Emilie

Abstract: Glioblastomas are the most common malignant primary intrinsic brain tumors. Their incidence increases with age, and males are more often affected. First-line management includes maximum safe surgical resection followed by involved-field radiotherapy plus concomitant and six cycles of maintenance temozolomide chemotherapy. Standards of care at recurrence are much less well defined. Minorities of patients are offered second surgery or re-irradiation, but data on a positive impact on survival from randomized trials are lacking. The majority of patients who are eligible for salvage therapy receive systemic treatment, mostly with nitrosourea-based regimens or, depending on availability, bevacizumab alone or in various combinations. In clinical trials, lomustine alone has been increasingly used as a control arm, assigning this drug a standard-of-care position in the setting of recurrent glioblastoma. Here we review the activity of lomustine in the treatment of diffuse gliomas of adulthood in various settings. The most compelling data for lomustine stem from three randomized trials when lomustine was combined with procarbazine and vincristine as the PCV regimen in the newly diagnosed setting together with radiotherapy; improved survival with PCV was restricted to patients with isocitrate dehydrogenase-mutant tumors. No other agent with the possible exception of regorafenib has shown superior activity to lomustine in recurrent glioblastoma, but activity is largely restricted to patients with O6-methylguanine DNA methyltransferase (MGMT) promoter methylation. Hematological toxicity, notably thrombocytopenia often limits adequate exposure.

DOI: https://doi.org/10.1016/j.ctrv.2020.102029

Originally published at:
Weller, Michael; Le Rhun, Emilie (2020). How did lomustine become standard of care in recurrent glioblastoma? Cancer Treatment Reviews, 87:102029.
DOI: https://doi.org/10.1016/j.ctrv.2020.102029
Anti-tumour Treatment

How did lomustine become standard of care in recurrent glioblastoma?

Michael Weller⁎, Emilie Le Rhun⁎,a,b,c,d

⁎ Corresponding author at: Department of Neurology, University Hospital and University of Zurich, Frauenklinikstrasse 26, CH-8091 Zurich, Switzerland.
E-mail address: michael.weller@usz.ch (M. Weller).

A R T I C L E I N F O

Keywords:
Alkylation
CCNU
DNA
MGMT
Repair

A B S T R A C T

Glioblastomas are the most common malignant primary intrinsic brain tumors. Their incidence increases with age, and males are more often affected. First-line management includes maximum safe surgical resection followed by involved-field radiotherapy plus concomitant and six cycles of maintenance temozolomide chemotherapy. Standards of care at recurrence are much less well defined. Minorities of patients are offered second surgery or re-irradiation, but data on a positive impact on survival from randomized trials are lacking. The majority of patients who are eligible for salvage therapy receive systemic treatment, mostly with nitrosourea-based regimens or, depending on availability, bevacizumab alone or in various combinations. In clinical trials, lomustine alone has been increasingly used as a control arm, assigning this drug a standard-of-care position in the setting of recurrent glioblastoma. Here we review the activity of lomustine in the treatment of diffuse gliomas of adulthood in various settings. The most compelling data for lomustine stem from three randomized trials when lomustine was combined with procarbazine and vincristine as the PCV regimen in the newly diagnosed setting together with radiotherapy; improved survival with PCV was restricted to patients with isocitrate dehydrogenase-mutant tumors. No other agent with the possible exception of regorafenib has shown superior activity to lomustine in recurrent glioblastoma, but activity is largely restricted to patients with O6-methylguanine DNA methyltransferase (MGMT) promoter methylation. Hematological toxicity, notably thrombocytopenia often limits adequate exposure.

Introduction

Lomustine, also known as CCNU (chloroethyl-cyclohexyl-nitrosourea), is an alkylating agent of the nitrosourea family [1–3] (Fig. 1). It is a monofunctional alkylating agent which alkylates DNA and RNA and can cross-link DNA and thus acts in a cell cycle-dependent and independent manner. One of the most relevant lesions induced by lomustine, the formation of O6-chloroethylguanine, can be reverted by O6-methylguanine DNA methyltransferase (MGMT). Lomustine may also inhibit enzymatic functions by carbamoylation of amino acids but the contribution of this activity to clinical activity remains unknown. As a lipid-soluble drug, it permeates the blood brain barrier well which a priori made it a reasonable candidate for the chemotherapy of intrinsic brain tumors. It is administered orally in six to eight weeks intervals, given its delayed myelosuppressive properties with nadirs at 5 weeks after administration.

Lomustine in recurrent glioblastoma

Table 1 summarizes data from all published randomized clinical trials in recurrent glioblastoma that used lomustine as a control arm [4–11]. These trials revealed a low objective response rate to lomustine in the range of 10% and a median progression-free survival that does not exceed 2 months. Progression-free survival at 6 months, a common endpoint in such trials, was in the range of 20% which today is considered a benchmark for planning randomized trials in this setting. The few trials that reported outcome by MGMT promoter methylation status [6,8,10] revealed low activity, if at all, in patients with tumors lacking MGMT promoter methylation.

Overall survival from randomization in all trials was in the range of 6–9 months and differences in overall survival between trials are probably largely driven by patient selection. None of the experimental agents was superior to lomustine with the possible exception of regorafenib, however, the REGOMA trial was a medium-sized phase II trial and several prognostic factor imbalances favored the regorafenib group:

https://doi.org/10.1016/j.ctrv.2020.102029

Received 18 April 2020; Received in revised form 28 April 2020; Accepted 30 April 2020

© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).
patients were on steroids less frequently, were younger, had more often MGMT promoter-methylated tumors, and had a longer progression-free survival with first-line therapy. Furthermore, cross-trial comparison indicates particularly poor outcome with lomustine in the REGOMA trial [10]. While this observation is held as an argument against the validity of the data from the REGOMA trial, it is still a randomized clinical trial, and enrollment of a poor prognosis patient population is probably a better explanation for this poorer outcome.

Quite obviously, the one trial that is missing is a simple comparison of lomustine with placebo or best standard of care to demonstrate that lomustine has indeed activity in recurrent glioblastoma. In that regard, a small Belgian trial on axitinib comes closest to such a design because the combination of lomustine with axitinib was compared with axitinib alone [9]. Somewhat unexpectedly, this trial indicated no additional activity of lomustine in this setting of combination with axitinib. One may speculate whether this even reflects partially antagonistic activity of axitinib and lomustine, either on a biochemical level or at the level of lomustine penetration to the tumor tissue. Anyhow, this trial has received very little attention, probably because of small sample size, because of the mixing of axitinib-treated patients from various stages of the trial, and because of a mixed population of patients with first and later recurrences of glioblastoma.

Fig. 1. Chemical structure and major mode of action of the nitrosourea lomustine (adapted from [2,3]). A. Chemical structure of lomustine (1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea). B-D. Mechanism of DNA crosslinking. Chloroethylation of guanine at the O^6_ site generates O^6_ -chloroethylguanine by the active metabolite diazohydroxide (B). Intramolecular rearrangement of O^6_chloroethylguanine to N^1_-O^6_ -ethenoguanine (C). Formation of a N^1_-guanine-N^3_-cytosine interstrand crosslink (D). Carbamoylation of lysine or arginine residues and thus inactivation of proteins via the active metabolite isocyanate (E).
Table 1
Clinical trials of CCNU in recurrent glioblastoma.

Trial/reference	Response rate	Progression-free survival (PFS) (months)	HR at 6 months (%)	HR at 12 months (%)	Overall survival (OS) (months)	HR	
STEERING							
Wick et al. 2010 [4]							
Randomized phase III, open label							
Enzastaurin (266)	5 responses	1.5	1.28 (0.97–1.70)	11	6.6	1.20 (0.88–1.65)	
Lomustine (92)	4 responses	1.6		19		7.1	
REGAL							
Batchelor et al. 2013 [5]							
Randomized phase III, partially blinded							
Cediranib (131)	1 CR, 17 PR	3.1 (2.7–4.3)	105 (0.74–1.50), p = 0.90	16	8	1.43 (0.96–2.13), p = 0.10	
Lomustine (65)	5 PR	2.7 (1.4–5.6)		25		9.8	
BELOB							
Taal et al. 2014 [6]							
Randomized phase II, open label							
Bevacizumab (50)	38 (24–53)	3 (3–4)	16 (7–27)	8	6–9		
Bevacizumab plus lomustine (90 mg/m²) (44)	34 (20–51) 4 (3–8)	41 (26–55)	11 (8–12)				
Lomustine (46)	5 (1–17)	1 (1–3)	13 (5–24)	8	6–11		
BELOB							
Taal et al. 2014 [6]							
Randomized phase II, open label							
Bevacizumab MGMT unmethylated (24)	8 (1–23)	33 (14–55)	0.43				
Bevacizumab MGMT methylated (18)							
Lomustine (65)	5 PR	2.7 (1.4–5.6)		25		9.8	
Brandes et al. 2016 [7]							
Randomized phase II, partially blinded							
Galunisertib (40)	2 PR	1.8 (1.6–3.0)	15 (5–28)	8	5.7–11.7	0.93 (0.58–1.49)	
Galunisertib plus lomustine (79)	1 CR	1.8 (1.7–1.8)	6 (2–13)	6.7 (5.3–8.5)		1.13 (0.78–1.65)	
Lomustine plus placebo (39)	None	1.9 (1.7–1.9)	6 (1–18)	7.5 (5.6–10.3)			
Wick et al. 2017 [8]							
Randomized phase III, open label							
Bevacizumab plus lomustine (288)	5 CR, 103 PR 4.2 (3.7–4.3)	4.2 (3.7–4.3)	0.49 (0.39–0.61), p < 0.001	9.1 (8.1–10.1)	0.95 (0.74–1.21), p = 0.65		
Lomustine (149)	1 CR, 18 PR	1.5 (1.5–2.5)	8.6 (7.6–10.4)				
BELOB							
Taal et al. 2014 [6]							
Randomized phase II, open label							
Bevacizumab MGMT unmethylated (102)	3.0 (2.8–3.7)	12.7 (7.1–19.9)	8.0 (6.9–9.1)				
Bevacizumab MGMT methylated (78)	6.9 (5.6–8.3)	58.4 (46.9–68.7)	12.6 (10.6–16.1)				
Lomustine							
Duerrinck et al. 2018 [9]							
Randomized phase II, open label, glioblastoma at first or later relapses							
Axitinib (50)	3 CR, 11 PR	2.9 (2.6–2.8)	26 (13–38)	12.4 (4.7–16.3)			
Axitinib plus lomustine (29)	11 PR	3 (1.4–4.7)	24 (8–39)	11.7 (7.9–15.6)			
REGOMA							
Lombardi et al. 2018 [10]							
Randomized phase II, open label							
Regorafenib (59)	1 CR, 2 PR	2 (1.9–3.6)	0.65 (0.45–0.95)	16.9 (8.7–27.5)	7.4 (5.8–12.0)	0.50 (0.33–0.75), p = 0.0069	
Lomustine (60)	1 CR, 1 PR	1.9 (1.8–2.1)	8.3 (3.1–17.0)	5.6 (4.7–7.3)			
(continued on next page)							
Lomustine in newly diagnosed glioblastoma?

No contemporary trial has explored whether the addition of lomustine to standard of care radiotherapy would improve outcome in subsets of gliomas of adulthood. One might speculate that similar results as obtained with temozolomide in glioblastoma should also possibly be achieved with a nitrosourea compound. Yet, the disappointing results with lomustine as part of the PCV regimen in a historical United Kingdom trial do not support this expectation (see below) [12]. Conversely, the CeTeG trial renewed interest in lomustine as part of the management in the first-line setting (see below) [13].

Lomustine as part of the PCV regimen

Undoubtedly the most convincing efficacy data for lomustine have been generated when the drug was used in combination with another alkylating agent, procarbazine, and the antimitotic agent, vincristine, as the PCV protocol. This protocol was first used in unselected brain tumor patients in 1975, based on single agent and preclinical data, and was not felt to be superior to carmustine at the time [14]. The most commonly used version of PCV today includes lomustine given at 110 mg/m² p.o. on day 1, procarbazine given at 60 mg/m² p.o. on days 8–21, and vincristine given at 1.4 mg/m² at days 8 and 29 of a six-to-eight week cycle. Of note, two negative clinical trials conducted in the United Kingdom used a different regimen that uses lomustine at 100 mg/m² p.o. on day 1, procarbazine at 100 mg/m² p.o. on days 1–10, and vincristine at 1.5 mg/m² on day 1 of a six week cycle [12,15]. Vincristine is commonly capped at a total dose of 2 mg.

The PCV regimen has demonstrated superiority when combined with radiotherapy over radiotherapy alone in three randomized clinical trials of lower (II/III) WHO grade gliomas (Table 2) [12,15–18]. Subgroup analyses from these trials allowed to conclude that PCV is most active in 1p19q-codeleted tumors (oligodendrogliomas) followed by isocitrate dehydrogenase (IDH) mutant astrocytomas whereas activity in IDH wild-type tumors remains uncertain. This is because the latter tumors were underrepresented in the three clinical trials and because prior studies of PCV in the newly diagnosed or recurrent setting of mostly IDH wild-type (presumably) gliomas in the United Kingdom had not demonstrated superiority when PCV was combined with radiotherapy over radiotherapy alone in the newly diagnosed setting, or over temozolomide alone in the recurrent setting (Table 2). It has remained an area of controversy to date to what extent procarbazine and vincristine contribute to the efficacy of the PCV regimen.

Vincristine does not cross the blood brain barrier, accordingly, it has been repeatedly proposed to omit this drug from the PCV regimen, assuming that it cannot reach its target, and also because of significant toxicity in terms of peripheral neuropathy upon prolonged use. No clinical trial has compared PCV with a PC regimen, that has e.g., been used in large tumors then referred to as gliomatosis cerebri [19] and the patient numbers required to demonstrate that vincristine can be safely omitted would probably be enormous. Yet, two retrospective case series have not reported inferior outcome with a PC regimen as opposed to PCV in oligodendrogial tumors [20,21].

Procarbazine is another alkylating agent chemically related to temozolomide that has inferior activity in recurrent glioblastoma as a single agent compared with temozolomide [22]. Accordingly, there was a rationale to improve PCV by replacing procarbazine by temozolomide and by omitting vincristine to design a novel alkylator combination for newly diagnosed glioblastoma [23,24]. UKT-03 was a small phase II trial that was in part designed to overcome MGMT-mediated chemoresistance, assuming that exposure to temozolomide for five days directly after lomustine intake might deplete MGMT and thus improve the efficacy of lomustine. However, compared with historical controls, this small trial appeared to indicate no benefit in MGMT promoter unmethylated glioblastoma, but rather a strong survival signal in patients with MGMT promoter methylated glioblastoma. Accordingly, this combination was taken forward to a randomized phase III trial, CeTeG, in this subset of patients. While patient numbers were small and while there were imbalances of prognostic factors of patients at three sites, there was still overall a signal of prolonged survival for the temozolomide-lomustine combination over standard of care [13].

The idea of combining temozolomide with lomustine has also been adopted for pediatric malignant gliomas [25,26].

The efficacy signal with combining temozolomide and lomustine in the CeTeG trial [13] suggests that there may be true synergistic activities of different alkylating agents that warrant further study [3,27]. This is because simply doubling the dose of temozolomide in the newly diagnosed setting, as explored in the RTOG 0525 trial, had no effect at all on progression-free or overall survival [28].

Tolerability and safety of lomustine

Lomustine is an emetogenic chemotherapeutic agent that requires standard antiemetic agent prophylaxis which is commonly sufficiently active. The clinically most relevant toxicities documented in clinical trials are summarized in Table 3 [4–11]. Thrombocytopenia emerges as the most important toxicity overall and often requires dose reductions, delays of cycles or even discontinuation of treatment. Neutropenia and lymphocytopenia are comparably less frequent and less severe. Despite this toxicity profile, myelodysplastic syndromes and leukemia are rare as sequelae of lomustine chemotherapy presumably because the limited life expectancy of glioma patients reduces the risk of complications that may occur years after exposure [29], yet, given the increasing use of the PCV regimen in patients with lower WHO grade tumors with a median survival of 15–20 years, the incidence of such delayed haematological complications may increase.

Table 1 (continued)

Trial/reference	Response rate	Progression-free survival (PFS) (months)	HR PFS at 6 months	HR	Overall survival (OS) (months)	HR
Lomustine						
MGMT unmethylated (32)						
MGMT methylated (27)						
van den Bent et al. 2019 [11]	Randomized phase II, open label, EGFR-amplified glioblastoma					
ART-414 (86)	2 PR	1.9	7.9	1.04 (0.73–1.49, p = 0.83)	1.04 (0.73–1.49, p = 0.83)	
ART-414 plus temozolomide (88)	5 PR	2.7	9.6	0.71 (0.50–1.02, p = 0.62)	0.71 (0.50–1.02, p = 0.62)	
Lomustine or temozolomide (86)	1 PR	1.9				

Abbreviations: ND no data, OS overall survival, PFS progression-free survival, TMZ temozolomide.
Study	Randomized, open label, phase III, newly diagnosed/ recurrent glioma	Progression-free survival (PFS) [years]	Overall survival (OS) [years]
BR05	MRC Brain Tumor Working Party 2001 [12]	RT (339) → PCV (335)	RT (339) → PCV (335)
	Randomized, open label, phase III, newly diagnosed WHO grade III/IV astrocytoma	No data	9.5
	Brada et al. 2010 [15]	PCV (224) → TMZ 5/23 (112) or TMZ 21/7 (111)	HR (95% CI) P
	Randomized, open label, phase III, recurrent high-grade glioma	3.6	0.89 (0.73–1.08) 0.23
	RTOG 9402	All patients (291)	4.7
	Cairncross et al. 2013 [16]	RT (143) → PCV (148)	HR (95% CI) P
	Randomized, open label, phase III, newly diagnosed anaplastic oligodendroglioma or oligoastrocytoma	No update in 2013	4.7
	1p/19q-codeleted (126)	2.9	0.47 (0.3–0.72) 7.3
	1p/19q-non-codeleted (137)	1	0.81 (0.56–1.16) 2.7
	EORTC 26951	All patients (368)	1.1
	Van den Bent et al. 2013 [17]	RT (183) → PCV (185)	HR (95% CI)
	Randomized, open label, phase III, newly diagnosed anaplastic oligodendroglioma or oligoastrocytoma	No update in 2013	2.0
	1p/19q-codeleted (80)	4.2	0.42 (0.24–0.74) 9.3
	1p/19q-non-codeleted (236)	0.7	0.73 (0.56–0.97) 1.8
	RTOG 9802	All patients (251)	4 (3.1–5.5)
	Buckner et al. 2016 [18]	RT (126) → PCV (125)	HR (95% CI) P
	Randomized, open label, phase III, WHO grade II oligodendroglioma, astrocytoma	10.4 (6.1–not reached)	0.50 (0.36–0.68) < 0.001
	All patients with IDH1 R132H-mutant tumors (71)	4 (3.1–5.5)	0.32 (0.17–0.62) < 0.001

Table 2
Randomized clinical trials of PCV polychemotherapy in patients with diffuse gliomas of WHO grades II-IV.
Table 3
Toxicity of lomustine in clinical trials in recurrent glioblastoma.

Trial/reference	Hematological toxicity	Non-hematological toxicity									
	Thrombocytopenia Grades 1–2	Thrombocytopenia Grades 3–4	Neutropenia Grades 1–2	Neutropenia Grades 3–4	Lymphopenia Grades 1–2	Lymphopenia Grades 3–4	Liver enzymes Grades 1–2	Liver enzymes Grades 3–4	Respiratory toxicity Grades 1–2	Respiratory toxicity Grades 3–4	Comments
STEERING											
Wick et al. 2010 [4]											
Enzastaurin (167)	Grade 2 only 1 (1)	Grade 2 only 1 (1)	Grade 2 only 0	Grade 2 only 0							
Lomustine (84)	9 (11)	21 (25)	4 (5)	17 (20)	2 (2)						
REGAL											
Batchelor et al. 2013 [5]											
Cediranib (128)	2 (2)	1 (1)	3 (2)	4 (3)	4 (3) PE						
Cediranib plus lomustine (123)	47 (38)	25 (20)	5 (4)	14 (11)	6 (5) PE						
Lomustine (64)	14 (22)	2 (3)	5 (8)	0	4 (6) PE						
BELOR											
Taal et al. 2014 [6]											
Randomized phase II, open label	Bevacizumab (50)	49 (98)	1 (2)	50 (100)	0	5 (10)	2 (4)				
Galunisertib (40)	2 (5)	0	2 (8)	0	0	1 (3)					
Galunisertib plus lomustine (78)	16 (21)	6 (8)	4 (5)	6 (8)	2 (3)	7 (9)					
Lomustine (44)	37 (81)	9 (19)	38 (82)	8 (17%)	1 (2)	0					
Brandes et al. 2016 [7]											
Randomized phase II, partially blinded	Galunisertib (40)	2 (5)	0	2 (8)	0	1 (3)					
Galunisertib plus lomustine (78)	16 (21)	6 (8)	4 (5)	6 (8)	2 (3)	7 (9)					
Lomustine (39)	10 (26)	5 (13)	4 (10)	2 (5)	2 (5)	0					
Duerinck et al. 2018 [9]											
Randomized phase II, open label, glioblastoma at first or later relapses	Axitinib	0	3 (6)	0	3 (6)						
Axitinib plus lomustine	10 (34)	9 (31)	6 (21)	3 (10)							
REGOMA											
Lombardi et al. 2018 [10]											
Randomized phase II, open label	Regorafenib (59)	12 (20)	1 (2)	1 (2)	2 (3)	3 (5)	6 (10)	2 (4)			
Lomustine (60)	18 (30)	8 (13)	4 (7)	7 (12)	2 (3)	8 (13)	1 (2)	2 (3)			
van den Bent et al. 2019 [11]											
Randomized phase II, open label, EGFR-amplified glioblastoma	ABT-414 (84)	0	1 (1)	5 (6)	0	0	10 (12)	33 (39)	6 (7)	0	
ABT-414 plus temozolomide (88)	54 (61)	7 (8)	14 (16)	3 (3)	35 (40)	26 (30)	49 (56)	0	15 (17)	5 (6) (2 PE)	
Lomustine (56)	36 (64)	14 (25)	14 (25)	10 (18)	25 (45)	18 (32)	19 (34)	2 (4)	9 (16)	3 (5) (all PE)	

Abbreviations: ND no data, OS overall survival, PFS progression-free survival, TMZ temozolomide.
Non-haematological toxicities are of less concern, although liver toxicity remains an issue notably in combination with other potentially hepatotoxic drugs. Pulmonary fibrosis, a potentially life threatening toxicity associated with nitrosourea treatment, has not been documented to be a toxicity of concern in clinical trials where toxicity was carefully documented. The absence of relevant rates of severe pulmonary toxicity does not justify to monitor lung function in otherwise asymptomatic patients when planning clinical trials with lomustine.

Conclusions

Lomustine probably remains the most widely used drug second only to temozolomide in the treatment of gliomas. Despite all limitations summarized above, it is defined as the main standard of care for recurrent glioblastoma in Europe, where bevacizumab is not approved, in summary above, it is documented to be a toxicity of concern in clinical trials where toxicity was associated with nitrosourea treatment, has not been documented to be a toxicity of concern in clinical trials where toxicity was carefully documented. The absence of relevant rates of severe pulmonary toxicity does not justify to monitor lung function in otherwise asymptomatic patients when planning clinical trials with lomustine.

plus lomustine in patients with recurrent glioblastoma (BELOB trial): a randomised controlled phase 2 trial. Lancet Oncol 2014;15:943–53. https://doi.org/10.1016/S1470-2045(14)70314-6.

[7] Brandes AA, Carpenter AF, Kenari S, Sepulveda-Sanchez JM, Wheeler HB, Chiotis O, et al. A phase II randomized study of galunisertib monotherapy or galunisertib plus lomustine compared with lomustine monotherapy in patients with recurrent glioblastoma. Neuro-Oncology 2016;18:1146–56. https://doi.org/10.1093/neuonc/now089.

[8] Wick W, Gortia T, Bendzau M, Taphoorn M, Sahm F, Harting J, et al. Lomustine and bevacizumab in progressive glioblastoma. N Engl J Med 2017;377:1954–63. https://doi.org/10.1056/NEJMoa1705388.

[9] Duerrnick J, Du Four S, Bouttens F, Andre C, Verscheure V, Van Freygenhoven P, et al. Randomized phase II trial comparing astinib with lomustine in patients with relapsed glioblastoma (REGOMA): a multicentre, open-label, randomised, controlled, phase 2 trial. Lancet 2019;394:2110–9. https://doi.org/10.1016/S0140-6736(19)30675-2.

[10] van den Bent M, Eloi M, Elst J, Delattre J-Y, Smidt M, van den Heuvel M, Frenzel J-S, et al. INTELLANCE 2/ORTC 1410 randomized phase II study of Deputax-M alone and with temozolomide vs temozolomide or lomustine in recurrent EGFRamplified glioblastoma. Neuro-oncology 2019. https://doi.org/10.1093/neuonc/noz222.

[11] Medical Research Council Brain Tumor Working Party. Randomized trial of procarbazine, lomustine, and vincristine in the adjuvant treatment of high-grade astrocytoma: a Medical Research Council trial. J Clin Oncol 2001;19:509–18. https://doi.org/10.1200/JCO.2001.19.2.509.

[12] Heidinger U, Tezidis T, Mack F, Steinbach JP, Schlegel U, Sabel M, et al. Lomustine-temozolomide combination therapy versus standard temozolomide therapy in patients with newly diagnosed glioblastoma with methylated MGMT promoter (Critec/NOA-09): a randomised, open-label, phase 3 trial. Lancet 2019;393:678–88. https://doi.org/10.1016/S0140-6736(19)31791-4.

[13] Gutin PH, Wilson CB, Kumar AR, Boldrey EB, Levin V, Powell M, et al. Phase II study of procarbazine, CCNU, and vincristine combination chemotherapy in the treatment of malignant brain tumors. Cancer 1975;35:1398–404. https://doi.org/10.1002/1097-0142(197505)35:5<1398::aid-cncr2820350524>3.0.co;2-c.

[14] Brada M, Stennings S, Gabe R, Thompson LC, Levy D, Rampling R, et al. Temozolomide versus procarbazine, lomustine, and vincristine in high-grade glioma. J Clin Oncol 2010;28:4601–8. https://doi.org/10.1002/jco.2010.43.2229.

[15] Cairncross G, Wang M, Shaw E, Jenkins R, Brachman D, Buckner J, et al. Phase III trial of chemo-radiotherapy for anaplastic oligodendroglioma: long-term results of RTOG 9402. J Clin Oncol 2013;31:3377–43. https://doi.org/10.1200/JCO.2012.43.2274.

[16] van den Bent MJ, Brandes AA, Taphoorn MJ, Kros JM, Kuwonhoven MCM, Delattre J-Y, et al. Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: long-term follow-up of EORTC brain tumor group study 26951. J Clin Oncol 2011;29:344–50. https://doi.org/10.1200/JCO.2011.34.2229.

[17] Buckner JC, Shaw EG, Pugh SL, Chakravarti A, Gilbert MR, Berger ER, et al. Radiation plus procarbazine, CCNU, and vincristine in low-grade glioma. N Engl J Med 2009;361:1344–50. https://doi.org/10.1056/NEJMoa0810925.

[18] Glas M, Bähr O, Felsberg J, Rasch K, Wiewrodt D, Schabet M, et al. NOA-05 phase 2 trial of procarbazine and lomustine therapy in gliomatosis cerebri. Ann Neurol 2008;64:445–53. https://doi.org/10.1002/ana.21478.

[19] Vesper J, Graf E, Wille C, Tīglnjer J, Tripel M, Nīkkhāh G, et al. Retrospective analysis of treatment outcome in 315 patients with oligodendroglial brain tumors. BMC Neurol 2009;9:33. https://doi.org/10.1186/1471-2277-9-33.

[20] Vesper J, Chenka N, Smith L, Liu D, De Groot J. PC or PCY, that is the question: primary anaplastic oligodendrogliomas treated with procarbazine and CCNU with and without vincristine. Anticancer Res 2015;35:5467–72.

[21] Yung WK, Albright RE, Olson J, Fredericks R, Fink K, Prados MD, et al. A phase II study of temozolomide plus procarbazine in patients with glioblastoma multiforme at first relapse. Br J Cancer 2000;83:588–93. https://doi.org/10.1054/bjoc.2000.1316.

[22] Helferzinger U, Rieger J, Koch D, Loeser S, Blaschke B, Kortmann RD, et al. Phase II trial of temozolomide plus carboplatin chemotherapy in addition to radiotherapy in newly diagnosed glioblastoma: UOK-3. J Clin Oncol 2006;24:4412–7. https://doi.org/10.1200/JCO.2006.06.9104.

[23] Glas M, Hoppold C, Rieger J, Wiewrodt D, Bähr O, Steinbach JP, et al. Long-term survival of patients with glioblastoma treated with radiotherapy and lomustine plus temozolomide. J Clin Oncol 2009;27:1257–61. https://doi.org/10.1200/JCO.2008.19.2195.

[24] Jakacki RI, Yates A, Blaney SM, Zhou T, Timmerman R, Ingle AM, et al. A phase I trial of temozolomide plus procarbazine in newly diagnosed high-grade gliomas of childhood. Neuro-Oncology 2008;10:569–76. https://doi.org/10.1215/15228157-2008-019.

[25] Jakacki RI, Cohen KJ, Buxton A, Kraio MD, Burger PC, Rosenblum MK, et al. Phase 2 study of concurrent radiotherapy and temozolomide followed by temozolomide and lomustine in the treatment of children with high-grade gliomas: a report of the Children’s Oncology Group ACNS0232 study. Neuro-Oncology 2016;18:1442–50. https://doi.org/10.1093/neuonc/now038.

[26] Fu D, Calvo JA, Sanson LD. Balancing repair and tolerance of DNA damage caused by alkylating agents. Nat Rev Cancer 2012;12:404–12. https://doi.org/10.1038/nrc3185.
temozolomide for newly diagnosed glioblastoma: a randomized phase III clinical trial. J Clin Oncol 2013;31:4085–91. https://doi.org/10.1200/JCO.2013.49.6968.

[29] Baehring JM, Marks PW. Treatment-related myelodysplasia in patients with primary brain tumors. Neuro-Oncology 2012;14:529–40. https://doi.org/10.1093/neuonc/nos068.

[30] Weller M, van den Bent M, Tonn JC, Stupp R, Preusser M, Cohen-Jonathan-Moyal E, et al. European Association for Neuro-Oncology (EANO) guideline on the diagnosis and treatment of adult astrocytic and oligodendrogial gliomas. Lancet Oncol 2017;18:e315–29. https://doi.org/10.1016/S1470-2045(17)30194-8.

[31] Alexander BM, Ba S, Berger MS, Berry DA, Cavenee WK, Chang SM, et al. Adaptive global innovative learning environment for glioblastoma: GBM AGILE. Clin Cancer Res 2018;24:737–43. https://doi.org/10.1158/1078-0432.CCR-17-0764.

[32] Le Rhun E, Devos P, Houillier C, Cartalat S, Chinot O, Di Stefano AI, et al. Romiplostim for temozolomide-induced thrombocytopenia in glioblastoma: The PLATUM trial. Neurology 2019;93:e1799–806. https://doi.org/10.1212/WNL.0000000000008440.