An overview on human serum lectins

S. Beulaja Manikandan a,*, R. Manikandan b, M. Arumugam b, P. Mullainadhan b

a Department of Biochemistry, Annai Veilankanni’s College for Women, Sattapet, Chennai, Tamilnadu, 600015, India
b Department of Zoology, University of Madras, Guindy Campus, Chennai, Tamilnadu, 600025, India

ARTICLE INFO
Keywords:
Biochemistry
Lectin
Human serum
Detection
Isolation
Function
Molecular characteristics

ABSTRACT
An extensive literature survey done on the various naturally occurring lectins in human serum upon its salient features such as methods of detection, level and sites of synthesis, binding specificity, cation dependency, modes of isolation, molecular and functional characterization way back from 1930s to till date was presented in a tabulated section. In addition, the generation of lectin and other immune molecules in vertebrates upon treatment with exogenous elicitors has also been framed in a tabular form. Furthermore, ANEW lectin induced in human serum for the very first time by an exogenous elicitor was detected, isolated and characterized by us whose features are also tabulated explicitly.

1. Introduction
1.1. Definition
Lectins or agglutinins are proteins/glycoproteins of non-immune origin with a unique ability to specifically and reversibly bind to carbohydrate structures present on cell surfaces, extracellular matrices or secreted glycoproteins (Goldstein et al., 1980; Barondes, 1988; Weis, 1997; Sharon, 2007). Each lectin molecule may possess mono-, di-, or multi-valent carbohydrate binding sites, whereas the lectin with agglutinating property, called agglutinin, necessarily contains more than two such sites per molecule.

1.2. Important discoveries
Lectin molecules was first discovered by Stillmark in 1888 (as cited in Goldstein and Hayes, 1978) in the castor-bean (Ricinus communis) extracts, which was named as ricin. Subsequently, Camus (1899) first reported the presence of agglutinins in the albumen gland from garden snail, Helix pomatia. Noguchi (1903) described the presence of natural agglutinins in sera of lobster (Homarus americanus) and horse-shoe crab (Limulus polyphemus) and these findings represent the first report on the occurrence of lectins in animals.

1.3. Distribution
Lectin molecules are seen in a wide range of living organisms such as microbes (Sasmal et al., 1992), plants (Goldstein and Hayes, 1978), animals and humans (Olden and Parent, 1987; Mullainadhan and Renwrantz, 1989; Turner, 1996; Kilpatrick, 2002). In humans, the lectin molecules were first detected in blood plasma/serum, and over 20 distinct types of lectins including selectins and galactins were subsequently reported to occur in a variety of cells, tissues, or organs (Baenziger and Maynard, 1980; Ikeda et al., 1987; Stamenkovic and Seed, 1990; Zanetta et al., 1992; Kanes, 1996; Yaron et al., 1997; Kilpatrick, 2000).

1.4. Classification of human serum lectins
Six distinct naturally occurring lectins have been detected in the serum or plasma obtained from human blood, namely, C-reactive protein (Tillett and Francis, 1930) serum amyloid protein (Cathcart et al., 1967), H-ficolin (Inaba and Okochi, 1978), mannan-binding lectin (Kawasaki et al., 1993), tetranectin (Clemmensen et al., 1986) and L-ficolin (Matsushita et al., 1996). On the basis of its structural and biochemical characteristics, the six humoral lectins have been classified into four families, namely, pentraxins (C-reactive protein and serum amyloid protein), collectin (mannan-binding lectin), ficolins (H-ficolin and L-ficolin) and tetranectin.

* Corresponding author.
E-mail address: beulaja@gmail.com (S. Beulaja Manikandan).

https://doi.org/10.1016/j.heliyon.2020.e04623
Received 16 April 2020; Received in revised form 16 July 2020; Accepted 31 July 2020
2405-8440/© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1.5. Binding specificity

Lectins primarily recognize and bind to specific carbohydrate structures present on the surface of target cells and molecules (Sharon, 2007). They exhibit great diversity in sugar binding specificity. Thus, the lectins are known to specifically recognize the whole sugar, a specific part of a sugar, a sequence of sugars, or their glycosidic linkages (Ravindranath et al., 1985; Murali et al., 1999). Besides, a few studies have demonstrated that the lectins especially from diverse animal sources can additionally recognize certain non-carbohydrate ligands including peptide motif and even simple chemicals containing appropriate determinant structures (Gabius, 1994; Kawagishi et al., 1994; Gokudan et al., 1999; Maheswari et al., 2002). Such lectins are likely to accomplish their reactivity through a common binding site (Maheswari et al., 2002) or two separate structural domains (Gabius, 1994).

Table 1. A summary of literature pertaining to methods employed to detect various lectins naturally occurring in human blood (plasma/serum).

S. No.	Name of Lectin (Family)	Methods of Detection	References
1.	C-reactive protein	Precipitation	Tillet and Francis (1930)
	(Pentraxin)		Kushner and Somerville (1970)
		Radial immunodiffusion	Kaplan and Volanakis (1974)
		Capillary precipitin test	Di Camelli et al. (1980)
		Immunoelctrophoresis	de Beer et al. (1982)
		Double immunodiffusion	Wadsworth et al. (1985)
		Nephelometry	Wadsworth et al. (1985)
		Crossed immunoelctrophoresis	Wadsworth et al. (1985)
		Spot immunoprecipitate assay	Wadsworth et al. (1985)
	Agglutination		
		Heat-killed pneumococci	Tillet and Francis (1930)
		Pneumococcal capsular polysaccharide-coated sheep RBC	Gal and Milténý (1955)
		Lipid emulsion	Rowe et al. (1986)
		Very low density lipoproteins	
		Antibody-coated latex particles	Das et al. (2004)
		Pneumococcal capsular swelling reaction	Hedlund (1947)
		Radioimmunoassay	Shiné et al. (1981)
		Immunoradiometric assay	Shapiro and Shenkin (1989)
		Enzyme-linked immunosorbent assay	Nunomura et al. (1990)
2.	Serum amyloid protein	Precipitation	Cathcart et al. (1967)
	(Pentraxin)		Pepys et al. (1977)
		Double immunodiffusion	Yae et al. (1991)
		Immunoelctrophoresis	Sörensen et al. (1995)
	Agglutination		
		Complement-coated sheep RBC	Hutchcraft et al. (1981)
		Rat & horse RBC	Hamazaki (1988)
3.	H-Ficolin	Precipitation	Inaba and Okochi (1978)
	(Ficolin)		Yae et al. (1991)
		Double immunodiffusion	Yae et al. (1991)
		Immunoelctrophoresis	
		Enzyme immunoassay (ELISA)	
	Agglutination		
		Bacterial lipopolysaccharide-coated human RBC	Sugimoto et al. (1998)
		Time resolved fluorimetry	Krarup et al. (2004)
4.	Mannan-binding lectin	Radiolabelled ligand binding assay	Kawasaki et al. (1983)
	(Collectin)		Summerfield and Taylor (1986)
		Enzyme-linked immunosorbent assay	Thiel et al. (1992)
5.	Tetranection	Precipitation	Clemmensen et al. (1986)
		Rocket immunoelctrophoresis	
		Crossed immunoelctrophoresis	
		Enzyme immunoassay (ELISA)	Thougaard et al. (2001)
6.	L-Ficolin	N-acetylgalactosamine elution from affinity matrix	Matsushita et al. (1996)
	(Ficolin)		Le et al. (1998)
		Enzyme-linked immunosorbent assay	
		Time resolved fluorimetry	Krarup et al. (2004)
et al., 1994; Arason, 1996). Lectins in mammalian systems have also been considered as key players of innate immunity and emerging as important components in the molecular mechanisms of invertebrates. Physiological functions such as removal of aged cells or modulation of internal host defence responses (Wang et al., 1998; Catalina et al., 1999; Ackerman et al., 1993; Wang et al., 1998). The actual physiological and immunological functions of many lectins remain to be precisely determined. However, in invertebrates their participation in various immuno-defense processes, namely, wound repair, clearance and opsono-phagocytosis of foreign targets are also well documented, and it is also, therefore, considered as a lectin (Kilpatrick, 2002). The chronological discovery of other five humoral lectins is as follows: serum amyloid protein (Cathcart et al., 1967), H-ficolin (Inaba and Okochi, 1978), mannann-binding lectin (Kawasaki et al., 1983), tetranectin (Clemmensen et al., 1986), and L-ficolin (Matsushita et al., 1996). Based on the structural and biochemical characteristics, the six humoral lectins have been classified into four families, namely, pentraxins (C-reactive protein and serum amyloid protein), collectin (mannann-binding lectin), ficolins (H- and L-ficolins) and tetranectin (Table 1).

1.6. Structure of humoral lectins in human serum

Molecular nature of all the six naturally occurring lectins isolated from human plasma/serum have been studied by estimating the native molecular weight using various methods including analytical ultracentrifugation, gel filtration, sucrose gradient centrifugation and polyacrylamide gradient gel electrophoresis. Accordingly, the native molecular weight estimates for various lectins are: 118–140 kDa for C-reactive protein (Gotschlich and Edelman, 1965; Siegel et al., 1974), 240–300 kDa for serum amyloid protein (Hamazaki, 1986; Binette et al., 1974), 520–688 kDa for H-ficolin (Yae et al., 1991), 200–700 kDa for mannan-binding lectin (Taylor and Summerfield, 1967; Thiel et al., 1992), 68 or 90 kDa for tetranectin (Clemmensen et al., 1986; Thougaard et al., 2001) and 320 or 650 kDa for L-ficolin (Matsushita et al., 1996; Krarup et al., 2004). The analysis of subunit characteristics mostly by SDS-PAGE under reducing conditions revealed that various isolated lectin molecules are composed of identical subunits, but the number of subunits in different lectins varied between 3 and 22 (Thougaard et al., 2001; Super et al., 1989) and each subunit with molecular mass ranging from 20 to 40 kDa (Gotschlich and Edelman, 1965; Le et al., 1997).

1.7. Salient functional features

The actual physiological and immunological functions of many lectins remain to be precisely determined. However, in invertebrates physiological functions have been demonstrated for lectins such as feeding, larval settlement, embryonic development and metamorphosis. Further, their participation in various immuno-defense processes, namely, wound repair, clearance and opsono-phagocytosis of foreign targets are also well established (Coome et al., 1984; Mullainathan and Renwantz, 1986; Olafsen, 1988; Smith and Chisholm, 1991; Cooper et al., 1992; Beck et al., 1994; Arason, 1996). Lectins in mammalian systems have also been suggested to play diverse roles in physiology, development and pathological states (Varki, 1993). In humans, the lectins detected within various cells, tissues or organs have been reported to mediate diverse physiological functions such as removal of aged cells or modified plasma glycoproteins, cell adhesion and signal transduction. Furthermore, they are involved in various immunological processes, namely, receptors for pathogens, opsono-phagocytosis and developmental regulation of different immune cells (Baenziger and Maynard, 1980; Lennartz et al., 1987; Catalina et al., 1999; Ackerman et al., 1993; Wang et al., 1998). Humoral lectins detected in human blood has been mainly focussed towards elucidation of their role in immune processes, because they are considered as key players of innate immunity and emerging as important components in the molecular mechanisms of inflammation and initiation of internal host defence responses (Wang et al., 1998; Catalina et al., 1999; Sharon and Lis, 2004).

1.8. Survey of literature on humoral lectins in human plasma/serum

Six distinct naturally occurring lectins have been detected in the serum or plasma obtained from human blood. As presented in Table 1, these humoral lectins include C-reactive protein, serum amyloid protein, H-ficolin, mannan-binding lectin, tetranectin, and L-ficolin. Among these molecules, C-reactive protein was first discovered in 1930 by Tillett & Francis, which is commonly known as an acute phase protein. However, this protein was later found to bind additionally specific carbohydrates (Gotschlich and Liu, 1967; Soelter and Uhlenbruck, 1986), and it is also, therefore, considered as a lectin (Kilpatrick, 2002). The chronological discovery of other five humoral lectins is as follows: serum amyloid protein (Cathcart et al., 1967), H-ficolin (Inaba and Okochi, 1978), mannan-binding lectin (Kawasaki et al., 1983), tetranectin (Clemmensen et al., 1986), and L-ficolin (Matsushita et al., 1996). Based on the structural and biochemical characteristics, the six humoral lectins have been classified into four families, namely, pentraxins (C-reactive protein and serum amyloid protein), collectin (mannan-binding lectin), ficolins (H- and L-ficolins) and tetranectin (Table 1).

1.9. Methods employed for detection of humoral lectins

As presented in Table 1, various methods were employed to detect the presence of lectins in human serum or plasma. These include mainly precipitation, agglutination, antibody-based immunoneutralisation and fluorimetry. Hemagglutination assay is relatively a simpler method for detection of lectins or agglutinins (Sharon and Lis, 1989). But it appears that none of the humoral lectins were detectable by this assay using native vertebrate RBC. However, C-reactive protein, serum amyloid protein and H-ficolin have been detected by their ability to agglutinate, respectively, pneumococcal capsular polysaccharide-coated sheep RBC (Gal and Matté, 1955), complement-coated sheep RBC (Hutchcroft et al., 1981) and bacterial lipopolysaccharide-coated human RBC (Sugimoto et al., 1998). Exceptionally, Hamazaki (1988) has reported the ability of serum amyloid protein isolated from human serum to cause agglutination of horse and rat RBC.

1.10. Levels and site of synthesis of humoral lectins

The levels and site of synthesis of various lectins naturally occurring in plasma or serum of normal human blood have been presented in Table 2. Among various lectins, serum amyloid protein is most abundantly present in systemic blood circulation (20–40 μg/ml), whereas mannan-binding lectin appears to occur at the lowest concentration (0.01–6.40 μg/ml). Liver has been invariably identified as the site of synthesis for all the humoral lectins so far described. However, additional sites such as lungs for H-ficolin, and lungs as well as other multiple tissues and organs for tetranectin have been documented.

S. No.	Name of Lectin	Concentration (μg/ml)	References	Site of Synthesis	
1.	C - reactive protein	0.5–2	Pepys and Baltz (1983)	Liver	
			Dan et al. (2004)		
2.	Serum amyloid protein	20–40	Pepys and Baltz (1983)	Liver	
			Pepys and Baltz (1983)		
3.	H – Ficolin	7–23	Yae et al. (1991)	Liver & lungs	
			Akaiwa et al. (1999)		
4.	Mannan - binding lectin	0.01–6.40	Terni et al. (1993)	Liver	
			Summerfield and Taylor (1986)		
5.	Tetranectin	8–17	Thougaard et al. (2001)	Lungs, spleen, heart,	Berglund and Petersen (1992)
				skeletal muscle, liver & brain	
6.	L – Ficolin	1.1–12.8	Kilpatrick et al. (1987)	Liver	
			Matsushita et al. (1996)		

Table 2. A profile of levels and site of synthesis of various lectins naturally occurring in human plasma/serum.
Table 3. Binding specificity and divalent cation dependency of various lectins detected in human blood (plasma/serum) and other sources.

S. No.	Binding Specificity	Best Ligand(s)	Cations tested	Dependency	References
1.	C-reactive protein (Source: serum/plasma, pleural, peritoneal or ascitic fluids)				
1.	Precipitation assay	Pneumococcal CPS	Not tested	Not relevant	Tillett and Francis (1930)
2.	Pneumococcal CPS	Pneumococcal CPS	Ca^{2+}	Ca^{2+}	Abernathy and Avery (1941)
3.	Pneumococcal CPS, polymer of	Pneumococcal CPS, polymer of N-acetylgalactosamine - phosphate	Not tested	Not relevant	Gotschlich and Liu (1967)
4.	Poly - L - lysine, poly - L - arginine, protamine sulphate, poly - L - ornithine	Protamine sulphate	Ca^{2+}	Not dependent	Di Camelli et al. (1980)
5.	Galactan	Galactan	Ca^{2+}		Soelter and Uhlenbruck (1986)
6.	Inhibition of CRP - CPS precipitation assay				
7.	L - α - Glycerophosphorylcholine	L - α - Glycerophosphorylcholine	Not tested	Not relevant	Kaplan and Volanakis (1974)
8.	Polybrene, phosphorylcholine, tetra - L - lysine	Polybrene	Not tested	Not relevant	Siegel et al. (1975)
9.	Glucosamine - 6 - phosphate	N - acetylgalactosamine - phosphate	Not tested	Not relevant	Gotschlich and Liu (1967)
10.	Phosphorylcholine	Phosphorylcholine	Not tested	Not relevant	Kaplan and Volanakis (1974)
11.	Complement activation				

(continued on next page)
S. No.	Binding Specificity	Best Ligand(s)	Divalent Cation Dependency	References	
12.	Protamine sulphate	Protamine sulphate	Ca$^{2+}$	Siegel et al. (1974)	
13.	Protamine, poly-L-lysine, histone, myelin basic protein, poly-L-arginine	Protamine, poly-L-lysine, histone, myelin basic protein	Not tested	Siegel et al. (1975)	
14.	Low density lipoprotein	Low density lipoprotein	Ca$^{2+}$	de Beer et al. (1982)	
15.	Fibronectin	Fibronectin	Ca$^{2+}$	Salonen et al. (1984)	
16.	Phosphorylcholine	β-D-Gal-(1-3)-D-GalNAc, with terminal galactose: (1-4) - D - GlcNAc	Not tested	Köttgen et al. (1992)	
17.	Phosphorylcholine	Phosphorylcholine	Ca$^{2+}$	Culley et al. (2000)	
18.	Protein A from Streptococcus pyogenes	Protein A	Ca$^{2+}$	Not dependent	Dax et al. (2004)
19.	Lipophosphoglycan	Lipophosphoglycan	Ca$^{2+}$	Culley et al. (1996)	
20.	Native and modified low density lipoprotein, cholesterol, Phosphorylcholine	Cholesterol, Phosphorylcholine	Ca$^{2+}$	Tarkinen et al. (2002)	

2. Serum amyloid protein (Source: plasma/serum or ascitic fluid)

Solid phase direct binding assay

S. No.	Binding Specificity	Best Ligand(s)	Divalent Cation Dependency	References		
1.	Agarose, agar, sulphated polyacrylamide	Agarose	Ca$^{2+}$	Pepys et al. (1977)		
2.	Heparin, agarose	Heparin	Ca$^{2+}$	Thompson and Enfield (1978)		
3.	Cyclic and non-cyclic 4, 6 pyruvate acetal of galactose	Cyclic 4, 6 pyruvate acetal of galactose	Ca$^{2+}$	Hind et al. (1984)		
S. No.	Binding Specificity	Ligands recognized	Best Ligand (s)	Cations tested	Dependency	References
-------	---------------------	--------------------	----------------	---------------	------------	------------
4.	Fibronectin, C4 - binding protein	Not reported	Ca²⁺	Ca²⁺		de Beer et al. (1981)
5.	DNA, chromatin	DNA	Ca²⁺	Ca²⁺		Pepys and Butler (1987)
6.	C4 - binding protein	C4 - binding protein	Ca²⁺	Ca²⁺		Frutos et al. (1995)
7.	Laminin	Laminin	Ca²⁺, Mg²⁺, Mn²⁺, Zn²⁺	Ca²⁺		Zahedi (1997)
8.	Agglutination of complement - coated sheep RBC	C3b	Ca²⁺	Ca²⁺		Hutchcraft et al. (1981)
9.	Radiolabelled fluid phase binding assay	Zymosan	Ca²⁺, Cu²⁺, Mg²⁺, Mn²⁺, Ni²⁺, Zn²⁺, Cd²⁺, Ba²⁺, Co²⁺, Zn²⁺	Ca²⁺, Cu²⁺, Cd²⁺, Cu²⁺, Cd²⁺, Zn²⁺		Potempa et al. (1985)
10.	Inhibition of radiolabelled lectin binding assay	Galactose	Ca²⁺, Mg²⁺	Ca²⁺		Hamazaki (1986)
11.	Inhibition of rabbit RBC agglutination	Simple substances:	Not tested	Not relevant		
	Non - acetylated and N – acetylated 2 - O - α - D - glucopyranosyl - O - β - D - galactopyranosyl hydroxylysine Stachyose		Not tested	Not relevant		
	Glycoconjugates:	Orosomucoid, desialylated orosomucoid, human glycophorin	Not tested	Not relevant		
	Desialylated glycophorin	Desialylated bovine erythrocyte glycoprotein	Not tested	Not relevant		
	Bovine erythrocyte glycoprotein					
	Desialylated bovine erythrocyte					
	Glycoprotein					
12.	Radiolabelled ligand binding and inhibition assays	Glycosaminoglycans:				
	Heparan, dermatan sulphate, Heparin	Heparin	Ca²⁺, Ba²⁺, Cd²⁺, Cu²⁺	Ca²⁺, Cd²⁺		Hamazaki (1987)
	Heparin, chondroitin - 4 - sulphate, Chondroitin - 6 - sulphate		Mg²⁺, Mn²⁺, Sr²⁺, Zn²⁺			
	Hyaluronic acid					
	Inhibition of radiolabelled lectin binding assay					Hamazaki (1988)
13.	Glycosaminoglycans:	Chondroitin - 4 - sulphate	Hyaluronic acid	Not tested	Not relevant	
	Dermatan sulphate					
	Chondroitin - 6 - sulphate					
	Heparan sulphate					
	Hyaluronic acid					
	Keratan sulphate					
	Chondroitin					
14.	Inhibition of rabbit RBC agglutination	Dermatan sulphate	Hyaluronic acid	Not tested	Not relevant	
	Heparan sulphate					
	Hyaluronic acid					
Table 3 (continued)

S. No.	Binding Specificity	Best Ligand (s)	Divalent Cation Dependency	References
	Enzyme - linked fluorescent immunoassay			
15.	Zymosan, ovalbumin, porcine thyroglobulin C3bi, β-glucuronidase	Zymosan	Ca²⁺	Kubak et al. (1988)
16.	Heparin, heparan sulphate, Dextran sulphate	Dextran sulphate	Not tested	Hamazaki (1989)
17.	Heparin, heparan sulphate, Dextran sulphate	Heparin, Dextran sulphate	Ca²⁺	Danielsen et al. (1997)
	H-Ficolin (Source: serum/plasma)			
1.	Solid phase direct binding assay	N-acetylgalactosamine	N-acetylgalactosamine	Sugimoto et al. (1998)
2.	Agglutination of LPS - sensitised human O RBC	LPS from Salmonella typhimurium	Ca²⁺	
	Mannan - binding lectin (Source: serum/plasma)			
1.	Inhibition of radiolabelled ligand binding assay	N-acetylmannosamine	N-acetylmannosamine	Kawasaki et al. (1983)
2.	Electroblot analysis	D-glucose, D-galactose	Invertase, mannan	Summerfield and Taylor (1986)
	MBP1: N-acetylgalactosamine			
	MBP2: N-acetylmannosamine, mannose, fucose, glucose, mannan, invertase, orosomucoid			

(continued on next page)
Table 3 (continued)

S. No.	Binding Specificity	Best Ligand(s)	Divalent Cation Dependency	References		
4.	Phospholipids:	Phosphatidylinositol	Not tested	Not relevant	Kilpatrick (1998)	
	Phosphatidylserine					
	Phosphatidylinositol					
	Phosphatidylcholine					
	Complement activation					
5.	Zymosan	Zymosan	Ca$^{2+}$			
	Enzyme - linked lectin immunosorbent assay			Lu et al. (1990)		
6.	Mannose, N-acetylgalactosamine, N-acetylgalactosamine	Mannose, N-acetylgalactosamine	Ca$^{2+}$	Ca$^{2+}$	Thiel et al., 1992	
	Enzyme - linked lectin binding assay					
7.	Mannose, glucose, L-fucose, maltose, N-acetylmannosamine, N-acetylgalactosamine	N-acetylgalactosamine	Ca$^{2+}$	Ca$^{2+}$	Haurum et al. (1993)	
	Inhibition of phospholipid binding assay					
8.	Mannose, fucose, glucose, m-inositol, maltose, N-acetylmannosamine, N-acetylgalactosamine	N-acetylgalactosamine	Not tested	Not relevant	Kilpatrick (1998)	
	Enzyme - linked lectin binding assay					
5.	Serum/amniotic fluid					
1.	Plasminogen	Not reported	Ca$^{2+}$	Ca$^{2+}$	Clemmensen et al. (1986)	
	Heparin			Ca$^{2+}$	Not dependent	
	Crossed immunoelectrophoresis					
2.	Chondroitin sulphate A, B & C	Not reported	Not tested	Not relevant	Clemmensen (1989)	
	Heparan sulphate					
	Fucoidan					
3.	Lipoprotein (a)	Lipoprotein (a)	Not tested	Not relevant	Kluft et al. (1989a)	
	Clot lysate analysis					
4.	Fibrin	Fibrin	Ca$^{2+}$	Ca$^{2+}$	Kluft et al. (1989b)	
5.	Ligand blot analysis					
	Plasminogen	Plasminogen	Not tested	Not relevant	Westergaard et al. (2003)	
	Hepatocyte growth factor					
	Tissue type plasminogen					
	Urokinase type plasminogen					
	Prothrombin					
6.	Ficolin (Source: serum/plasma)	Dot blot with radiolabelled lectin/solid phase direct binding assay				
1.	N-acetylgalactosamine	Not reported	Ca$^{2+}$	Ca$^{2+}$	Matsushita et al. (1996)	
	Asialofetuin					
	Elution from affinity gel matrix					
2.	N-acetylgalactosamine	N-acetylgalactosamine	Ca$^{2+}$	Not dependent	Le et al. (1997)	
3.	N-acetylgalactosamine	Not reported	Not tested	Not relevant	Le et al. (1998)	
	N-acetylgalactosamine					
	Glutathione					
1.11. Ligand-binding specificity

The ability of humoral lectins to recognize and bind specifically to various ligands has been examined using a variety of assays (Table 3). These include mainly the inhibition of lectin-mediated precipitation or agglutination reactions, complement fixation, solid phase binding assays, radiolabelled lectin binding assays, and antibody-based immunoassays such as ELISA and crossed-immunoelectrophoresis. Accordingly, phosphoryl choline, heparin, N-acetylglactosamine, mannan, plasminogen and N-acetylgalactosamine can be considered to be the best ligands, respectively, for C-reactive protein, serum amyloid protein, H-ficolin, mannan-binding lectin, tetranectin and L-ficolin (Kaplan and Volanakis, 1974; Thompson and Enfeld, 1978; Summerfield and Taylor, 1986; Danielsen et al., 1997; Le et al., 1997; Sugimoto et al., 1998; Westergaard et al., 2003).

1.12. Divalent cation dependency

Most lectins, in general, require divalent cations which apparently stabilize the tertiary conformation of lectin polymers as well as help to structure their reactive sites (Marchalonis and Edelman, 1968; Reeke et al., 1974). As presented in Table 3, all six humoral lectins were analysed for divalent cation dependency by using various assay conditions. But these studies were restricted only with calcium ions and the only exception being serum amyloid protein tested with different divalent cations (Potempa et al., 1985; Hamazaki, 1987; Zahedi, 1997). However, it is notable that all the humoral lectins, with an exception of H-ficolin (Sugimoto et al., 1998), require Ca$^{2+}$ to bind various appropriate ligands. In the case of serum amyloid protein, Cu$^{2+}$, Cd$^{2+}$, or Zn$^{2+}$ could substitute for Ca$^{2+}$. However, a few conflicting reports indicate the divalent cation independent activity of C-reactive protein (Di Camelli et al., 1980; Das et al., 2004), tetranectin (Clemmensen et al., 1986) and L-ficolin (Le et al., 1997; Krarup et al., 2004). Indeed, all these humoral lectins naturally occurring in human blood have been isolated and purified to the desired level and then extensively studied for their physico-chemical and functional properties.

1.13. Methods adopted for isolation of humoral lectins

A perusal of literature presented in Table 4 reveals that several investigators have successfully attempted to isolate and purify each of the six lectins from human plasma or serum by employing various methods of their choice. Such chromatographic techniques include gel filtration, ion-exchange, hydrophobic interaction chromatography, and most frequently various types of affinity chromatography such as ligand-coupled, metal-affinity, immuno-affinity and lectin-affinity chromatography. It is notable from such studies presented in Table 4, that sequential multi-step procedures were employed for the isolation of these humoral lectins with the desired degree of purity. In general, affinity chromatography with versatile protocols has emerged as an ideal method for isolation of diverse kinds of biomolecules in native form and high degree of recovery from the starting crude samples (Heftmann, 2001). The humoral lectins in human plasma or serum adsorbed to the affinity gel matrix were recovered using various kinds of eluants (Table 4). These include simple carbohydrates as free ligands, divalent cation chelators (EDTA or sodium citrate), buffers at low or high pH and ionic strength.

1.14. Molecular nature of the isolated lectins

Molecular nature of all the six naturally occurring lectins isolated from human plasma/serum or pleural and peritoneal fluid as in the case of C-reactive protein (Table 5). They have estimated the native molecular weight of the lectins using various methods including analytical ultracentrifugation, gel filtration, sucrose gradient centrifugation and polyacrylamide gradient gel electrophoresis. On the other hand, the subunit characteristics of the isolated lectin molecules were examined frequently.
Table 4. A summary of literature pertaining to methods adopted for isolation of various lectins from human blood (plasma/serum).

S. No.	Methods of isolation	Matrix used	Eluants used in adsorption chromatography	References
1.	C-reactive protein			
1.	Precipitation with ammonium sulphate (x2)	Not relevant	Not relevant	MacLeod and Avery (1941)
2.	Precipitation by dialysis against water	Not relevant	Not relevant	
	Precipitation with sodium sulphate (x2)	Not relevant	Not relevant	
	Precipitation by dialysis against water	Not relevant	Not relevant	
	Precipitation with ammonium sulphate	Not relevant	Not relevant	
	Gel adsorption	Reinagar	10 mM EDTA	
2.	Precipitation with barium sulphate	Not relevant	Not relevant	Ganrot and Kindmark (1969)
	Precipitation with ammonium sulphate	Not relevant	Not relevant	
	GF Sephadex G - 200	Not relevant	Not relevant	Kushner and Somerville (1970)
4.	Density gradient centrifugation	Not relevant	Not relevant	
5.	Precipitation with sodium sulphate	Not relevant	Not relevant	Siegel et al. (1974)
	Precipitation with ammonium sulphate (x2)	Not relevant	Not relevant	Kaplan and Volanakis (1974)
	GF Sephadex G - 200	Not relevant	Not relevant	Nunomura et al. (1990)
6.	Precipitation with ammonium sulphate (x2)	Not relevant	Not relevant	Hokama et al. (1974)
	IEC DEAE - cellulose	Not relevant	1.5 M NaCl	
	IEC DEAE - cellulose	Not relevant	NaCl & pH gradient	
7.	Precipitation with L-α - lecithin	Not relevant	Not relevant	
	Precipitation with dialysis against calcium chloride	Not relevant	Not relevant	Hokama et al. (1974)
	Precipitation with chloroform	Not relevant	Not relevant	
	GF Sephadex G - 200	Not relevant	Not relevant	
	IEC DEAE - cellulose	Not relevant	NaCl gradient	
8.	IEC DEAE - cellulose (x2)	Not relevant	EDTA & NaCl	Johnson and Prellner (1977)
9.	AC CPS – Sepharose	Not relevant	10 mM EDTA	de Beer et al. (1982)
	GF Ulgroel AcA44	Not relevant	Effluent used	
	IAC Anti NHS - Sepharose	Not relevant	Effluent used	
10.	AC Sephacryl S – 300	Not relevant	10 mM EDTA	de Beer and Pepys (1982)
	AC Blue Sepharose	Effluent used	Effluent used	
10.	GF Sephacryl S – 300	Effluent used	Effluent used	

(continued on next page)
S. No.	Methods of isolation	Matrix used	Eluants used in adsorption chromatography	References
11.	AC	CH-Sepharose 4B	2 mM EGTA	Hashimoto and Tatsumi (1989)
12.	IAC	Anti CRP-Sepharose 4B	1.5 M NaCl	Ninomura et al. (1990)
13.	AC	Sepharose 4B	Effluent used	Köttgen et al. (1992)
	AC	Phosphorylcholine-agarose	2 mM EDTA	
	AC	Phosphorylcholine-agarose	1 mM phosphorylcholine	
14.	AC	Phosphorylcholine-Sepharose 4B	2 mM EDTA	Culley et al. (1996)
	IEC	DEAE-Sepharose 4B	NaCl gradient	
	GF	Sephacryl S-300	Not relevant	Das et al. (2004)
	AC	Agarose beads	Effluent used	
	AC	Phosphorylcholine-Sepharose 4B	10 mM EDTA	
	AC	Phosphorylcholine-Sepharose 4B	2 mM phosphorylcholine	

2. Serum amyloid protein

1. Precipitation by dialysis against water
 - Not relevant
 - Not relevant
 - Rinette et al. (1974)

2. AC
 - Sepharose 4B
 - 50 mM sodium citrate
 - Pepys et al. (1977)

3. Precipitation with barium chloride
 - Not relevant
 - Not relevant
 - Thompson and Enfield (1978)

 - Precipitation with ammonium sulphate (x2)
 - Not relevant
 - Not relevant

 - GF
 - Sephadex G-25
 - Not relevant

 - IEC
 - DEAE-Sephadex G-25
 - 1 mM benzamidine in sodium citrate buffer gradient

 - Precipitation with ammonium sulphate
 - Not relevant
 - Not relevant

 - AC
 - Heparin-agarose
 - 150 mM sodium citrate
| S. No. | Methods of isolation | Matrix used | Eluants used in adsorption chromatography | References |
|-------|----------------------|-------------|--|------------|
| 4. | AC | Sepharose 4B| 25 mM EDTA | Painter et al. (1982) |
| | IEC | DEAE - cellulose| 200 mM NaCl | |
| 5. | AC | CPS - Sepharose 4B| 10 mM EDTA | Hind et al. (1984) |
| | GF | Ultrogel AcA44| Not relevant | |
| | IAC | Mixture of Anti NHS - Sepharose 4B| Effluent used | |
| | AC | Blue Sepharose| Effluent used | |
| | LAC | Con A – Sepharose| Effluent used | |
| | GF | Sephacryl S – 300| Not relevant | |
| 6. | AC | Biogel A - 0.5 m| 10 mM EDTA | Potempa et al. (1985) |
| | GF | Ultrogel AcA34| Not relevant | |
| | GF | Sephacryl S – 300| Not relevant | |
| 7. | AC | Gelatin-Sepharose 4B| Effluent used | Hamazaki (1986) |
| | AC | Lysine-Sepharose 4B| Effluent used | |
| | AC | Glc - Gal - Hyl - CH Sepharose 4B| 5 mM EDTA | Hamazaki (1987) |
| 8. | AC | Sepharose 4B| 5 mM EDTA | |
| | GF | TSK - GEL HW - 65S| Not relevant | |
| 9. | AC | Phosphocholine - Sepharose 4B| Effluent used | Colley et al. (1988) |
| | AC | Mannan - Sepharose CL - 4B| 2 mM EDTA | |
| 10. | Precipitation with calcium chloride (x2) | Not relevant| Not relevant | Urbányi and Medzihradszky (1992) |
| | AC | Sepharose 6B| 4 mM EDTA | |
| | IEC | Sepabeads FP - DA05| NaCl gradient | |
| 11. | AC | Sepharose CL - 4B| 10 mM EDTA | Danielsen et al. (1997) |
| | IEC | Mono – Q| NaCl gradient | |
| 12. | Precipitation with ethanol | Not relevant| Not relevant | Kilpatrick (1997b) |
| | Precipitation with ammonium sulphate | Not relevant| Not relevant | |
| | AC | Emphaze - mannan (x2)| 10 mM EDTA | |
| S. No. | Methods of isolation | Matrix used | Eluants used in adsorption chromatography | References |
|-------|---------------------------|-------------|---|-----------------------------|
| 3. H - Ficolin | | | | |
| 1. | Ioelectric precipitation | Not relevant| Not relevant | Yae et al. (1991) |
| | HIC | Hydroxylapatite - Bio - Gel HTP | Phosphate buffer gradient | |
| | Precipitation with ammonium sulphate | Not relevant | Not relevant | |
| | GF | Sephadex G – 200 | Not relevant | |
| | Preparative electrophoresis | Not relevant | Not relevant | |
| | LAC | Lentil lectin – agarose | 200 mM α-methyl-D-mannoside | |
| | IAC | Anti IgG - Sepharose 4B | Effluent used | Sugimoto et al. (1998) |
| 2. | IAC | Anti Hakata antigen - Sepharose 4B | Effluent used | |
| | IAC | Hitrap Protein G | Effluent used | |
| | MAC | Zinc column | Glycine - HCl buffer gradient | |
| | LAC | Lentil lectin – agarose | 200 mM α-methyl-D-mannoside | |
| 3. | Precipitation with ethanol | Not relevant | Not relevant | Matsuhashi et al. (2002) |
| | Precipitation with polyethylene glycol | Not relevant | Not relevant | |
| | AC | GlcNAc – agarose | Effluent used | |
| | IAC | Anti H - Ficolin – Sepharose | 100 mM glycine - HCl buffer | |
| | LAC | Lentil - lectin – Sepharose | 200 mM α - methyl - mannopyranoside | |
| | IAC | Anti IgM – Sepharose | Effluent used | |
| | AC | Protein A – Sepharose | Effluent used | |
| | IAC | Anti MBL – Sepharose | Effluent used | |
| | IAC | Anti L - Ficolin – Sepharose | Effluent used | |
| 4. Mannan - binding lectin | | | | |
| 1. | AC | Mannan - Sepharose 4B (x3) | 2mM EDTA | Kawasaki et al. (1983) |
| | GF | Sepharose CL - 6B | Not relevant | |

(continued on next page)
Table 4 (continued)

S. No.	Methods of isolation	Matrix used	Eluants used in adsorption chromatography	References
2.	AC	Sepharose 4B	Effluent used	Summerfield and Taylor (1986)
3.	AC	Mannan - Sepharose 4B	2 mM EDTA	Summerfield and Taylor (1986)
4.	AC	Mannan - oxirane acrylic beads	10 mM EDTA	Summerfield and Taylor (1986)
5.	AC	Sepharose CL - 6B	Not relevant	Super et al. (1989)
6.	AC	Mannan - Sepharose	5 mM EDTA	Super et al. (1989)
7.	AC	Sephaeryl - S300	Effluent used	Super et al. (1989)
8.	AC	Mannan - Sepharose 4B	2 mM EDTA	Kuhlman et al. (1989)
9.	AC	Mannan - Sepharose 4B	10 mM EDTA	Lu et al. (1990)
S. No.	Methods of isolation	Matrix used	Eluants used in adsorption chromatography	References
-------	--------------------------------------	-------------	--	------------
10.	AC Mannose - Sepharose 6B	10 mM EDTA	Kyogashima et al. (1990)	
	↓			
11.	AC Sepharose 6B	10 mM mannose		
	↓			
11.	Precipitation with polyethylene glycol	Not relevant	Not relevant	Matsushita and Fujita (1992)
	↓			
	AC Mannan - Sepharose 4B	300 mM mannose		
	↓			
	IAC Anti IgM - Sepharose 4B	Effluent used		
	↓			
	IAC Anti MBP - Sepharose 4B (x2)	100 mM glycine - HCl buffer		
12.	AC Mannose - Sepharose 6B (x2)	10 mM EDTA	Terai et al. (1993)	
	↓			
	AC Sepharose 6B	50 mM mannose		
	↓			
	GF Superose 6	Not relevant		
	↓			
	IEC Mono – Q	NaCl gradient		
13.	Precipitation with polyethylene glycol	Not relevant	Not relevant	Tan et al. (1996)
	↓			
	AC Mannose - Sepharose 4B	10 mM EDTA		
	↓			
	AC Maltose - Sepharose 4B	100 mM N-acetylglucosamine		
	↓			
	IEC Mono – Q (HR5/5)	NaCl gradient		
	↓			
	AC Mannose-Sepharose 4B	10 mM EDTA		
	↓			
	GF Superose 6	Not relevant		
14.	Precipitation with ethanol	Not relevant	Not relevant	Kilpatrick (1997a)
	↓			
	Precipitation with ammonium sulphate	Not relevant	Not relevant	
	↓			
	AC Emphaze – mannan	10 mM EDTA		
	↓			
	AC Emphaze – mannan	100 mM mannose		
15.	AC Mannan - Sepharose 4B (x2)	20 mM EDTA	Suankratay et al. (1998)	
	↓			
	AC Protein A – Sepharose	Effluent used		
	↓			
	AC Anti IgM – Sepharose	Effluent used		
16.	AC Mannan - Sepharose 4B (x2)	20 mM EDTA	Saifuddin et al. (2000)	
	↓			
	AC Protein G – Sepharose	Effluent used		
	↓			
	IAC Anti IgM – Sepharose	Effluent used		
S. No.	Methods of isolation	Matrix used	Eluants used in adsorption chromatography	References
-------	----------------------	-------------	--	------------
17.	Precipitation with polyethylene glycol	Not relevant	Not relevant	Matsushita et al. (2000)
	AC	GlcNAc – agarose	300 mM mannose	
	IAC	Anit MBL - Sepharose 4B	100 mM glycine - HCl buffer	
18.	Precipitation with polyethylene glycol	Not relevant	Not relevant	Muto et al. (2001)
	AC	Mannan – agarose	10 mM EDTA	
	IAC	Mannan – agarose	50 mM mannose	
	GF	Sephacryl S – 300	Not relevant	
	IAC	Anit IgM – Sepharose	Effluent used	
	AC	Protein G – Sepharose	Effluent used	
19.	Precipitation with ethanol	Not relevant	Not relevant	Neth et al. (2002)
	AC	Mannan – agarose	10 mM EDTA	
	AC	Mannan – agarose	100 mM mannose	
20.	AC	Mannanose - Sepharose 4B	10 mM EDTA	Butler et al. (2002)
	AC	Maltose - Sepharose 4B	100 mM N - acetylglucosamine	
	GF	Sephacryl S – 300	Not relevant	
	IAC	Anit α2 - macroglobulin - Sepharose 4B	Effluent used	
21.	Precipitation with ethanol	Not relevant	Not relevant	Matsushita et al. (2002)
	AC	GlcNAc – agarose	300 mM mannose	
	IAC	Anit MBL - Sepharose 4B	100 mM glycine - HCl buffer	
22.	Precipitation with ethanol	Not relevant	Not relevant	Valdimarsson et al. (2003)
	AC	Agarose	30 mM mannose	
	IEC	Q-Sepharose	NaCl	
	GF	Superose 6	Not relevant	

(continued on next page)
S. No.	Methods of isolation	Matrix used	Eluants used in adsorption chromatography	References	
23.	AC	Sepharose CL - 4B	30 mM mannose	Laursen, 2003	
		IEC	NaCl		
		GF	Not relevant		
24.	Precipitation with polyethylene glycol	Not relevant	Not relevant	Ma et al. (2004)	
		AC	Peptidoglycan - Sepharose 4B	300 mM mannose	
		IAC	Anti IgM - Sepharose 4B	Effluent used	
		GF	Ultrogel AcA34	Not relevant	
5.	Tetranectin				
1.	Precipitation with barium citrate	Not relevant	Not relevant	Clemmensen et al. (1986)	
		AC	Lysine - Sepharose 4B	Effluent used	
		IAC	Antitetranectin - Sepharose 4B	3 M MgCl₂	
		GF	Ultrogel AcA34	Not relevant	
2.	Cryoprecipitate depletion	Not relevant	Not relevant	Fuhlendorff et al. (1987)	
		IAC	Antihuman plasma protein column	Effluent used	
		GF	Ultrogel AcA34	Not relevant	
3.	AC	Hitrap Heparin - Sepharose	Phosphate buffer gradient	Thougaard et al. (2001)	
6. L - Ficolin					
1.	Polyethylene glycol precipitation	Not relevant	Not relevant	Matsushita et al. (1996)	
		AC	Mannan - Sepharose 4B	150 mM N - acetylglucosamine	
		IEC	Mono – Q	NaCl gradient	
2.	AC	Sepharose 4B	Effluent used	Le et al. (1997)	
		IAC	GlcNAc - Sepharose 4B	100 mM N - acetylglucosamine	
		IEC	Q - Sepharose 4B	Effluent used	
		IEC	Mono – Q	NaCl gradient	
		AC	Tris - blocked CNBr - activated Sepharose 4B	100 mM N - acetylglucosamine	
S. No.	Methods of isolation	Matrix used[^2]	Eluants used in adsorption chromatography	References	
-------	---------------------	-----------------	--	-------------	
3.	AC	Sepharose 4B	Effluent used	Le et al. (1998)	
		GlcNAc-Sepharose 4B	200 mM N-acetylglucosamine		
		Mono - Q (x2) NaCl gradient			
	AC	Tris-blocked CNBr-activated Sepharose 4B	200 mM N-acetylglucosamine		
4.	Precipitation with polyethylene glycol	Not relevant	Not relevant	Matsushita et al., 2000	
		GlcNAc-agarose	150 mM N-acetylglucosamine		
		Mono - Q NaCl gradient			
5.	Precipitation with ethanol	Not relevant	Not relevant	Matsushita et al. (2002)	
		GlcNAc-agarose	150 mM N-acetylglucosamine		
		Mono - Q NaCl gradient			
6.	Precipitation with ethanol	Not relevant	Not relevant	Cseh et al. (2002)	
		GlcNAc-agarose	300 mM N-acetylglucosamine		
		Anti MBL-Sepharose 4B	Effluent used		
		Anti H-ficolin-Sepharose 4B	Effluent used		
7.	Polyethylene glycol precipitation	Not relevant	Not relevant	Ma et al. (2004)	
		1, 3-β-D-glucan-Toyopearl	300 mM N-acetylglucosamine		
8.	Polyethylene glycol precipitation	Not relevant	Not relevant	Kranup et al. (2004)	
		N-acetylcysteine-Sepharose CL-4B	Lower ionic strength buffer		
		Mono - Q NaCl gradient			

Number given in parenthesis indicates the successive repetition of the same method employed.

Abbreviations used: AC = Affinity chromatography; CPS = Capsular polysaccharide; Con A = Concanavalin A; CNBr = Cyanogen bromide; CRP = C-reactive protein; DEAE = Diethylaminoethyl; EDTA = Ethylenediaminetetraacetic acid disodium salt; EGTA = Ethylene glycol-bis-β-aminoethyl ether) N, N, N, N-tetraacetic acid; GF = Gel filtration; Glc-Gal-Hyl = 2-O-α-D-glucopyranosyl-O-β-D-galactopyranosyl hydroxylysine; HIC = Hydrophobic interaction chromatography; IAC = Immunoaffinity chromatography; IEC = Ion exchange chromatography; IgG = Immunoglobulin G; Immunoglobulin M = IgM; LAC = Lectin affinity chromatography; MAC = Metal affinity chromatography; MBL = Mannan-binding lectin; MBP = Mannan-binding protein; NHS = Normal human serum; SAP = Serum amyloid protein.

[^2]: The gel type of the matrix is given as reported by the investigators.
by SDS-PAGE under reducing conditions. As evident from these earlier investigations, different types of the isolated lectins showed considerable variations in their native molecular weight as well as subunit structures. Accordingly, the native molecular weight estimates for various lectins are: 118–140 kDa for C-reactive protein, 240–300 kDa for serum amyloid protein, 520–688 kDa for H-ficolin, 200–700 kDa for mannan-binding lectin, 68 or 90 kDa for tetranection and 320 or 650 kDa for L-ficolin. The variations notable in these molecular weight estimates could be apparently due to the methods employed for both isolation of the lectins and estimation of their molecular mass. The analysis of subunit characteristics mostly by SDS-PAGE under reducing conditions revealed that various isolated lectin molecules are composed of identical subunits, but the number of subunits in different lectins varied between 3 and 22 and each subunit with molecular mass ranging from 20 to 40 kDa.

Table 5. Molecular characteristics of various lectins isolated from human blood (plasma/serum).

S. No.	Native molecular mass	Method of estimation	Subunit molecular weight	Subunit characteristics	References
1. C-reactive protein	118–140 kDa	Analytical ultracentrifugation	20/24	6	Gotschlich and Edelman (1965)
2.	Gel filtration	115–120	23	6	Kushner and Somerville (1970)
3.	Sucrose density gradient centrifugation	135–140	Not tested	Not relevant	Siegel et al. (1974)
4.	Not tested	Not tested	Not relevant	Not reported	Kötgen et al. (1992)
5.	Not tested	Not tested	24	Not reported	Nunomura et al. (1990)
6.	Not tested	Not relevant	27–31	Not reported	Das et al. (2004)
2. Serum amyloid protein	300	Gel filtration	Not tested	Not relevant	Binette et al. (1974)
3.	Analytical ultracentrifugation	255.3	23/30	11/8	Painter et al. (1982)
4.	Polyacrylamide gradient gel electrophoresis	240	29.5	8	Hamazaki (1986)
5.	Polyacrylamide gradient gel electrophoresis	250	25	10	Hamazaki (1987)
6.	Gel filtration	255	25	10	Kubak et al. (1988)
7.	Not tested	Not relevant	25	Not reported	Hamazaki (1989)
8.	Polyacrylamide gradient gel electrophoresis	250	24	10	Urbaný and Medzihradsky (1992)
9.	Not tested	Not relevant	23	Not reported	Kilpatrick (1997b)
2. H - Ficolin	650/688	Gel filtration	35	–20	Yae et al. (1991)
1.	Analytical ultracentrifugation	520			
4. Mannan-binding lectin	600	Gel filtration	31	19	Kawazaki et al. (1983)
2.	Gel filtration	700 (MBP1)	32	22	Taylor and Summerfield (1987)
3.	Gel filtration	200 (MBP2)	28	7	
4.	Gel filtration	700	32	22	Super et al. (1989)
5.	Gel filtration	700	Not tested	Not relevant	Thiel et al. (1992)
6.	Gel filtration	400–700	Not tested	Not relevant	Matsushita and Fujita (1992)
7.	Not tested	Not relevant	32	Not reported	Terai et al. (1993)
8.	Not tested	Not relevant	32	Not reported	Tan et al. (1996)
9.	Not tested	Not relevant	28	Not reported	Kilpatrick (1997a)
10.	Not tested	Not relevant	31	Not reported	Butler et al. (2002)
11.	Not tested	Not relevant	30	Not reported	Ma et al. (2004)
5. Tetranection	68	Gel filtration	17	4	Clemmensen et al. (1986)
2.	Gel filtration	80	Not tested	Not relevant	Clemmensen (1989)
3.	Gel filtration	90	30	3	Thougaard et al. (2001)
6. L - Ficolin	SDS-PAGE under non-reducing conditions	320	35	9	Matsushita et al. (1996)
2.	SDS-PAGE under non-reducing conditions	320	40	8	Le et al. (1997)
3.	Gel filtration	320			
4.	Gel filtration	650	35	18/19	Krarup et al. (2004)

* CRP isolated from pooled pleural and peritoneal fluids and subunit characteristics examined by gel filtration and starch gel electrophoresis.

* Analysed by SDS-PAGE under reducing conditions.
1.15. Functions of humoral lectins

The six major types of humoral lectins have also been examined for their biological functions, especially their role in mediating various immune processes (Table 6). All the lectins, except H-ficolin, were reported to activate complement system as well as mediate opsonophagocytosis by macrophages and/or neutrophils. On the other hand, H-ficolin has been shown to activate complement system and inhibit bacterial growth. The latter functional feature implicates the ability of H-ficolin to interact directly with pathogenic bacteria and effectively abrogate their growth.

Table 6. A summary of literature pertaining to various immune functions demonstrated for the lectins naturally occurring in human blood (plasma/serum).

S. No.	Immune function	Action	References
1.	C-Reactive protein	Enhancement	Hokama et al. (1962); Ganrot and Kindmark (1969); Mortensen et al. (1976); Mortensen and Duskiewiez (1977); Zahedi et al. (1989); Culley et al. (1996); Mortensen and Duskiewiez (1977); Zahedi et al. (1989); Culley et al. (1996)
2.	Phagocytic response of neutrophils	Enhancement	Kindmark (1971); Kilpatrick and Volanakis (1985); Kilpatrick et al. (1987); Edwards et al. (1982); Richardson et al. (1991); Mold et al. (2001)
3.	Lymphocyte blast transformation	Induction	Hornung and Fritchi (1971)
4.	Inhibition of growth of melanoma cells by T-lymphocytes	Enhancement	Hornung (1972)
5.	Complement system	Activation	Kaplan and Volanakis (1974); Siegel et al. (1975); Claus et al. (1977); Volanakis (1982); Jiang et al. (1992); Gewurz et al. (1995); Volanakis (1982); Jiang et al. (1992); Gewurz et al. (1995); Volanakis (1982); Jiang et al. (1992); Gewurz et al. (1995)
6.	Response of T lymphocytes to allogeneic cells	Inhibition	Mortensen et al., 1975
7.	Antitumour activity of macrophages	Induction	Deodhar et al. (1982); Zahedi and Mortensen (1986); Zahedi and Mortensen (1986); Tebo and Mortensen (1991)
8.	Colony formation of B lymphocytes	Modulation	Whisler et al. (1986)
9.	Respiratory burst in peripheral blood monocytes	Enhancement	Zeller et al. (1986)
10.	Migration of peritoneal macrophages	Enhancement	Miyazawa et al. (1989)
11.	Superoxide production and granule secretion by neutrophils	Inhibition	Bachta et al. (1988); Dohring and Spagnuolo (1991)
12.	Neutrophil chemotaxis	Inhibition	Kew et al. (1986); Zhong et al. (1998)
13.	Production of hydrogen peroxide by neutrophils	Induction	Tebo and Mortensen (1991)
14.	Production of pro-inflammatory cytokines from alveolar macrophages	Stimulation	Rochmentteix et al. (1993)
15.	MBL-initiated complement-mediated cytolysis	Inhibition	Suankratay et al. (1998)
16.	Complement activation by alternative pathway	Regulation	Mold et al. (1999)

2. Serum amyloid protein

S. No.	Immune function	Action	References
1.	C3b/C3bi-mediated phagocytosis by monocytes	Enhancement	Wright et al. (1983)
2.	Complement system	Activation	Bristow and Boackle (1986); Ying et al. (1993); Emsley et al. (1994)
3.	Factor I-mediated inactivation of C4b	Prevention	Schwalbe et al. (1992); Frutos et al. (1995)

3. Mannan-binding lectin

S. No.	Immune function	Action	References
1.	Phagocytic response of neutrophils	Enhancement	Miller et al. (1968); Sotoho and Harvey (1976); Kuhlman et al. (1989); Malhotra et al. (1994); Turner (1996); Holmsoe et al. (2003)
2.	Complement system	Activation	Ikeda et al. (1987); Lu et al. (1990); Yakota et al. (1993); Neth et al. (2002); Fujita et al. (2004)
3.	Phagocytic response of macrophages	Enhancement	Kuhlman et al. (1989); Turner (1996); Holmsoe et al. (2003)
4.	Infection by human immunodeficiency virus	Inhibition	Ezekowitz et al. (1989)
5.	Neutrophil response against influenza A virus	Activation	Hartshorn et al. (1993); Malhotra et al. (1994)
6.	Complement-dependent cytotoxicity	Promotion	Ohita and Kawasaki (1994)
7.	Antitumour activity	Expression	Muto et al. (1999); Ma et al. (1999)
8.	Complement-independent cytotoxicity	Promotion	Andersen et al. (1994); Kase et al. (1999)
9.	Release of cytokines by monocytes	Regulation	Jack et al. (2001)
10.	Phagocytic uptake of apoptotic cells by macrophages	Initiation	Ogden et al. (2001)
11.	Inflammatory reactions and immunity	Modulation	Turner (2003); Terai et al. (1997)

4. H-ficolin

S. No.	Immune function	Action	References
1.	Complement system	Activation	Matsushita and Fujita (2001); Matsushita et al. (2002); Lu et al. (2002)
2.	Growth of Aerococcus viridians	Inhibition	Tsujimura et al. (2001)

5. L-ficolin

S. No.	Immune function	Action	References
1.	Phagocytic response of neutrophils	Enhancement	Matsushita et al. (1996); Lu et al. (2002)
2.	Complement system	Activation	Matsushita et al. (2002); Matsushita and Fujita (2001); Matsushita et al. (2002)
	of neutrophils	(= Opsonophagocytosis)	Matsushita et al. (2002); Lynch et al. (2004)
Table 7. Generation of diverse types of immunologically reactive molecules from various native biochemical constituents upon treatment with exogenous and endogenous substances.

S. No.	Source	Identity of target molecules	Treatment with exogenous/endogenous substances	Activity generated	References
1.	Bovine and human milk	Lactoferrin	Pepsin	Antibacterial	Bellamy et al. (1992)
2.	Hen eggs	Egg white lysozyme	Dimethyl suberimidate	Lectin-like	Mega and Hase (1994)
		Egg white lysozyme	Clostripain	Antibacterial	Pellegrini et al. (1997)
		Egg white lysozyme	Trypsin, chymotrypsin, pepsin	Antiviral	Overmann et al. (2003)
		Egg white lysozyme	Pepsin → trypsin	Antibacterial	Mine et al. (2004)
		Ovalbumin	Trypsin, chymotrypsin	Antibacterial	Pellegrini et al. (2004)
3.	Bovine milk	Casein	Trypsin, pronase, endoproteinase Glu C	Antibacterial	Zucht et al. (1995)
4.	Bovine milk	Casein	Chymosin	Antibacterial	Lahov and Regelson, 1996
		β-lactoglobulin	Trypsin	Antiviral	Pellegrini et al. (2001)
6.	Bovine serum	Albumin	Trypsin, chymotrypsin, pepsin	Antiviral	Overmann et al. (2003)
7.	Rabbit milk (Oryctolagus cuniculus)	Casein	Trypsin, chymotrypsin, pepsin, clostripain	Antibacterial	Borny et al. (2003)
8.	Human Serum	Human serum Albumin	Pronase	Hemagglutinating and Phenoloxidase activity	Beulaja and Manikandan (2012)

Table 8. Detection, Binding Specificity, Cation Dependency, Isolation, Molecular Characteristics and Immune function of a Pronase inducible lectin from human serum.

S. No.	Molecules Generated	Method of Detection	References
1.	Pronase inducible lectin	Hemagglutination	Beulaja and Manikandan (2012)
2.	Phenoloxidase	Oxidation of phenolic substrates	Beulaja and Manikandan (2012)

S. No.	Binding Specificity	Divalent Cation Dependency	References	
1.	Mannosamine, Glucosamine, Galactosamine	Ca²⁺, Mg²⁺, Mn²⁺, Sr²⁺	Independent	Beulaja and Manikandan (2012), Beulaja et al. (2017)

S. No.	Methods of isolation	Matrix used	Eluants used in adsorption chromatography	References
1.	Lectin-Affinity Chromatography	Concanavalin A-Sepharose 4B	Mannose	Beulaja et al. (2017)

S. No.	Native molecular mass	kDa	Subunit characteristics	Subunit molecular weight (kDa)	Number of subunits	References
1.	FPLC	6	3			Beulaja et al. (2017)
2.	MALDI-TOF	6.5			2	Beulaja et al. (2017)

S. No.	Immune function	Action	References
1.	Hemagglutination	Generation	Beulaja and Manikandan (2012)
2.	Phenoloxidase	Enhancement	Beulaja and Manikandan (2012)
1.16. Generation of defense molecules from native substances

The immune system utilizes naturally occurring defense molecules as well as synthesizes and releases certain specific molecules such as anti-bodies in order to accomplish effective immune reactions against the invaded pathogens. Apart from this well known aspect of humoral im-mune responses, the treatment of various native and non-immune biochemical constituents in vitro with different kinds of endogenous or exogenous substances has been found to result in generation of a variety of new immunologically relevant molecules. Such a phenomenon has attracted the attention of several researchers, apparently due to the fact that the generation of the defense molecules could augment the existing capacity of host immune responsiveness. A survey of the literature has been presented in Table 7. It is notable from these studies that the generation of immunologically reactive molecules appears to be a common phenomenon in vertebrates.

In vertebrates, many investigators have reported the generation of potent antibacterial or antiviral activity from lactoferrin (from bovine and human milk), caerin (from bovine and ovine milk) and albumin (from bovine serum) upon treatment with various exogenous proteases (Table 7). Similarly, the treatment of egg white lysozyme and ovalbumin with such proteases has been found to generate antimicrobial activity. It is also interesting to note that lectin-like activity could also be generated from egg white lysozyme after chemical treatment (Mega and Hase, 1994).

As evident from the interesting findings of the novel experimental studies listed in Table 7, such investigations aimed at exploring the possibility for generation of immunologically reactive molecules need to be extended to human system. Although the presence of phenoloxidase (Bullón et al., 1998) and many distinct lectins (Table 1) have been detected in normal human serum, the generation of these new multifunctional defense molecules in human serum after treatment with appropriate elicitors. Based on these data, the objectives were framed wherein, new pronase inducible lectin was detected, isolated and characterized, subsequently published and are included in the review table.

In Table 8, we have tabulated the generation and detection of hemagglutinating and phenoloxidase activities in human serum upon induction using an exogenous elicitor, namely pronase. The detected inducible lectin generated anew was successfully isolated by a single step using lectin-affinity chromatography with Concanavalin A-Sepharose as gel matrix. This lectin depicted specificity towards aminosugars, namely, mannosamine, glucosamine and galactosamine. This molecule has a native molecular weight of 6kDa and two sub units each of 3 kDa. Identification of the serum component involved in generation of neo-lectin with agglutinating and phenoloxidase activities in human serum was found to be human serum albumin (Beulaja et al., 2014) Further, exploration of study on this inducible lectin molecule or similar generation of such activities in human serum warrants further investigation.

Overall, it may be said that in this article, we have presented an explicit over view on the various human serum lectins and diverse activities that could be generated in vertebrates as review tables. We have discussed on various parameters like the mode of detection of human serum lectins, its isolation methodologies, structural and functional characteristics. In addition, we have tabulated our results on the pronase-inducible lectin isolated from human serum and its salient features. Over all this extensive review illustrates and demonstrates the massiveness of the enormous research work accomplished by eminent scientists worldwide on human serum lectins from 1930's till recent years.

Declarations

Author contribution statement

All authors listed have significantly contributed to the development and the writing of this article.

Funding statement

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Competing interest statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

References

Abernathy, T.J., Avery, O.T., 1941. The occurrence during acute infections of a protein not normally present in the blood. J. Exp. Med. 73, 173–182.
Ackerman, S.J., Gorrette, S.E., Rosenberg, H.F., Bennett, J.C., MaStrimann, D.M., Nicholson-Weller, A., Weller, P.F., Chin, D.T., Tenen, D.G., 1995. Molecular cloning and characterization of human eosinophil Charol feeden crystal protein (lysophospholipase). J. Immunol. 155, 456–466.
Akiyama, M., Yae, Y., Sugimoto, R., Suzuki, S.O., 1999. Hakata antigen, a new member of the ficolin/oposin f35 family, is a novel human lectin secreted into bronchus/ alveolus and bile. J. Histochem. Cytochem. 47, 777–785.
Anders, E.M., Hartley, C.A., Reading, P.C., Ezekwuzi, R.A., 1994. Complement-dependent neutralization of virus by a serum mannos-binding lectin. J. Gen. Virol. 75, 615–622.
Arazon, G.J., 1996. Lectins as defense molecules in vertebrates and invertebrates. Fish Shellfish Immunol. 6, 277–289.
Baenziger, J.U., Maynard, Y., 1980. Human hepatic lectin. J. Biol. Chem. 255, 4607–4613.
Baranyi, M., Thomas, U., Pellegrini, A., 2003. Antibacterial activity of casein-derived peptides isolated from rabbit (Oryctolagus cuniculus) milk. Dairy Res. 70, 189–197.
Baroudes, S.H., 1988. Bifunctional properties of lectins: lectins redefined. Trends Biochem. Sci. 13, 721–726.
Beck, G., Cooper, E.L., Habicht, G.S., Marchalonsis, J.J., 1994. Primordial immunity: foundation for the vertebrate immune system. Ann. N. Y. Acad. Sci. 712, 276.
Bellamy, W., Takase, M., Yamauchi, K., Wakabayashi, H., 1992. Identification of the bactericidal domain of lactoferrin. Biochim. Biophys. Acta 1121, 130–136.
Berglund, L., Petersen, T.E., 1992. The gene structure of tetranectin, a plasminogen binding protein. FEBS Lett. 309, 15–19.
Beulaja, M., Manikandan, R., 2012a. Detection and characterisation of natural and inducible lectins in human serum. Res. Immunol. 2, 132–141.
Beulaja, M., Manikandan, R., 2012b. Detection of natural and induced phenoloxidase in human serum. Hum. Immunol. 73, 1005–1010.
Beulaja, M., Manikandan, R., Arumugam, M., 2014. Identification of serum component involved in generation of neo-lectin with agglutinating and phenoloxidase activities in human serum. Hum. Immunol. 75, 34–40.
Beulaja, M., Manikandan, R., Tahri, M., Malinadishan, P., Arumugam, M., 2017. Purification and characterisation of a pronase-inducible lectin isolated from human serum. Int. J. Biol. Macromol. 99, 443–453.
Betréce, M., Bagnière, M., Calkins, E., 1974. The isolation identification of the P-component of human plasma proteins. Biochem. J. 143, 253–254.
Bristow, C.L., Boackle, R.J., 1986. Evidence for the binding of human serum amyloid P-component to Clq and Fab. Mol. Immunol. 23, 1045–1052.
Buchta, R., Gennaro, R., Pontet, M., Fradkin, M., Romeo, D., 1988. C-reactive protein decreases protein phosphorylation in stimulated human neutrophils. FEBS Lett. 237, 173–177.
Bullón, M.R.R., Perdomo, P.S., Liarte, J.H.M., 1998. Serum tyrosine hydroxylase activity is increased in melanoma patients. An ROC curve analysis. Canc. Lett. 129, 151–155.
Butler, G., Sim, B., Tan, E., Devine, D., Orell, C.M., 2002. Mannose binding lectin (MBL) mutants are susceptible to matrix metalloproteinase proteolysis. J. Biol. Chem. 277, 17511–17519.
Camus, M.L., 1899. Recherches experimentales surune agglutinagrine produite par la glande de l'animal. Cir. R. Acad. 129, 337–345.
Catalina, M.D., Estes, P., Siegelman, M.H., 1999. Selective requirements for leukocyte adhesion molecules in models of acute and chronic inflammation participation of E- and P- but not L-selectin. Blood 93, 580–589.
Cathcart, E.S., Shirahama, T., Cohen, A.S., 1967. Isolation and identification of a plasma component of amyloid. Biochim. Biophys. Acta 140, 392–393.
Claus, D.R., Siegel, J., Petras, K., Osmand, A.P., Gewurz, H., 1977. Interaction of C-reactive protein with the first component of human complement. J. Immunol. 119, 187–192.
Clemmensen, I., Petersen, L.C., Kluft, C., 1986. Purification and characterization of a novel oligomeric plasminogen kringle 4 binding protein from human plasma: tetraneclin. Eur. J. Biochem. 156, 327–333.
Colley, K.J., Beranez, M.C., Baenziger, J.U., 1988. Purification and characterization of the core specific lectin from human serum and liver. Biochem. J. 256, 61–68.
S. Beulaja Manikandan et al. Heliyon 6 (2020) e04623

Rochemontex, B.G.d., Witktorowicz, K., Kushner, I., Dayer, J.-M., 1993. C-reactive protein increase production of IL-1α, IL-1β and TNFs and expression of mRNAs by acute alveolar macrophages. J. Immunol. 150, 445–455.
Rowe, I.R., Soutar, A.K., Pepys, M.B., 1986. Agglutination of intravenous lipid emulsion (‘Intralipid’) and plasma lipopolysaccharides by C-reactive protein. Clin. Exp. Immunol. 66, 241–246.

Saiful-Hamzi, M., Hart, M.L., Gewurz, H., Zhang, Y., Spear, G.T., 2000. Interaction of mannan-binding lectin with the somatic fraction of pneumococcus. J. Exp. Med. 52, 561–567.
Tsujimura, M., Ishida, C., Sagara, Y., Miyazaki, T., Shiraki, K., Okochi, K., Maeda, Y., 2001. Detection of a serum thermolabile α-2-macroglobulin (Hakata antigen) by enzyme-linked immunosorbent assay using polysaccharide produced by Aerococcus viridans. Clin. Diagn. Lab. Immunol. 8, 454–459.

Turner, M.W., 1996. Mannose-binding lectin: the plasminogen molecule of the innate immune system. Immunol. Today. 17, 532–540.

Varki, A., 1993. Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3, 97–130.

Volanakis, J.E., 1982. Complement activation by C-reactive protein complex. Ann. N. Y. Acad. Sci. 389, 235–250.

Wadsworth, C., Fath, A., Wadsworth, E., 1985. A critical analysis of commercially available latex particle reagents for C-reactive protein (CRP) slide agglutination tests. J. Immunol. Methods 83, 29–36.

Wang, J., Shiib, C., Joo, F., Lee, P.F., Lei, H.Y., Reid, K.B.M., 1998. Inhibitory effect of pulmonary surfactant proteins A and D on allergen-induced lymphocyte proliferation and histamine release in children with asthma. Am. J. Respir. Crit. Care Med. 158, 510–517.

Wex, W.L., 1997. Cell-surface carbohydrate recognition by animal and viral virions. Curr. Opin. Struct. Biol. 7, 624–630.

Westergaard, U.B., Andersen, M.H., Heegaard, C.W., Fedosov, S.N., 2003. Tetraxatin binds hepatic in factors and tissue-type plasminogen activator. Eur. J. Biochem. 270, 1850–1854.

Whiler, R.L., Newhouse, Y.G., Mortensen, R.F., 1986. C-reactive protein reduces the promotion of human B-cell colony formation by autoreactive T4 cells and T-cell proliferation during the autologous mixed lymphocyte reaction. Cell. Immunol. 102, 287–296.

Wolbink, G.J., Brouwer, M.C., Buysmann, S., Ten Berge, I.J.M., Hack, C.E., 1996. CRP-mediated activation of complement in vivo. J. Immunol. 157, 473–479.

Wright, S.D., Caughey, G.L., Silverstein, S.C., 1983. Fibronectin and serum amyloid P-component stimulates C3b and C3bi-mediated phagocytosis in human monocytes. J. Exp. Med. 158, 1338–1343.

Yae, Y., Inaba, S., Sato, H., Okochi, K., Tokunaga, F., Iwanaga, S., 1991. Isolation and characterization of a thermolabile α-2 macroglycoprotein (Hakata antigen) detected by precipitating (auto) antibody in sera of patients with systemic lupus erythematosus. Biochim. Biophys. Acta 1078, 369–376.

Yakota, Y., Arai, T., Kawasasaki, T., 1995. Oligomeric structure required for complement binding of a common human disease. Glycobiology 5, 119–127.

Yaron, H., Eisenstein, M., Zick, Y., 1997. Galectin-8: on the road from structure to function. Trends Glycosci. Glycotechnol. 9, 103–112.

Ying, S.C., Gewurz, A.T., Jiang, H., Gewurz, H., 1993. Human serum amyloid P-component oligomers bind to the classical complement pathway via residues 14-26 and 76–92 of the A chain collagen-like region of C1q. J. Immunol. 150, 169–176.

Zahedi, K., 1997. Characterization of the binding of serum amyloid P to laminin. J. Biol. Chem. 272, 2143–2148.

Zahedi, K., Mortensen, R.F., 1986. Macrophage tumoricidal activity induced by human C-reactive protein (CRP). Canc. Res. 46, 5077.

Zahedi, K., Tebo, J.M., Strippont, J., Klimo, G.F., Mortensen, R.F., 1989. Binding of human C-reactive protein to mouse macrophages is mediated by distinct receptors. J. Immunol. 142, 2384–2392.

Zanetta, J.P., Kucher, S., Lehmannabadsche, S., Maschke, S., Thomas, D., Dufourou, P., Vancendon, G., 1992. Glycoprotein and lectin in cell adhesion and cell recognition processes. Histochem. J. 24, 791–804.

Zeller, J.M., Landay, A.L., Ten Berge, I.J.M., Hack, C.E., 1996. CRP-mediated activation of complement in vivo. J. Immunol. 157, 473–479.

Zhang, Y., Shiib, C., Joo, F., Lee, P.F., Lei, H.Y., Reid, K.B.M., 1998. Inhibitory effect of pulmonary surfactant proteins A and D on allergen-induced lymphocyte proliferation and histamine release in children with asthma. Am. J. Respir. Crit. Care Med. 158, 510–517.

Zhong, W., Zen, Q., Tebo, J., Schlottmann, K., Coggeshall, M., Mortensen, R.F., 1998. Effect of human C-reactive protein on chemokine and chemotactic factor-induced human peripheral blood mononuclear cells. J. Immunol. 160 (4), 1343–1350.

Zucht, H.D., Radin, M., Ademser, K., Magert, H.J., Forsmann, W.G., 1995. Cassetto-I: a casein α2 derived peptide exhibits antibacterial activity. FEBS Lett. 372, 185–188.