Potential Therapeutic Agents and Associated Bioassay Data for COVID-19 and Related Human Coronavirus Infections

Qiongqiong Angela Zhou,* Junko Kato-Weinstein,† Yingzhu Li, Yi Deng, Roger Granet, Linda Garner, Cynthia Liu, Dmitrii Polshakov, Chris Gessner, and Steven Watkins

Cite This: ACS Pharmacol. Transl. Sci. 2020, 3, 813−834

ABSTRACT: The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, has led to several million confirmed cases and hundreds of thousands of deaths worldwide. To support the ongoing research and development of COVID-19 therapeutics, this report provides an overview of protein targets and corresponding potential drug candidates with bioassay and structure−activity relationship data found in the scientific literature and patents for COVID-19 or related virus infections. Highlighted are several sets of small molecules and biologics that act on specific targets, including 3CLpro, PLpro, RdRp, S-protein−ACE2 interaction, helicase/ NTPase, TMPRSS2, and furin, which are involved in the viral life cycle or in other aspects of the disease pathophysiology. We hope this report will be valuable to the ongoing drug repurposing efforts and the discovery of new therapeutics with the potential for treating COVID-19.

KEYWORDS: COVID-19, SARS-CoV-2, structure−activity relationship (SAR), bioassay, protein target, drug candidate

1. INTRODUCTION

COVID-19, the infectious disease caused by the newly emerged human coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),† was declared a global pandemic by the World Health Organization (WHO) on March 11, 2020. As of June 24, 2020, there have been more than 9 million confirmed cases and over 475,000 deaths worldwide.‡ In order to combat this pandemic and prevent future recurrences, scientists around the world have been working tirelessly to elucidate the molecular basis for SARS-CoV-2 infection and to develop effective therapeutic agents and preventative vaccines.

SARS-CoV-2, a member of the Betacoronavirus genus, is an enveloped virus containing a single-stranded, positive-sense RNA genome.§ Two other members of this genus that also cause similar severe acute respiratory diseases in humans are severe acute respiratory syndrome coronavirus (SARS-CoV or SARS-CoV-1) and Middle East respiratory syndrome coronavirus (MERS-CoV). As RNA viruses, they use their RNA-dependent RNA polymerase (RdRp) to replicate their genomic RNA.¶ In particular, SARS-CoV-2 and SARS-CoV share high levels of sequence homology and protein structural similarities.¶ They both use cell membrane protein angiotensin-converting enzyme 2 (ACE2) as their receptor and need host serine protease TMPRSS2 to cleave or “prime” their spike (S) protein in order to fuse with the host cell membrane and enter the cells.¶† Once inside the host cells, the viral genome is translated by the host cell protein synthesis machinery and the resulting polyproteins are autoproteolytically cleaved by coronavirus proteases 3-chymotrypsin-like protease (3CLpro) and papain-like protease (PLpro) to release smaller functional proteins to continue the viral replication process.¶‡ In some cases, an excessive immune response called a cytokine storm may contribute to the further development of pulmonary edema, acute respiratory distress syndrome (ARDS), and systemic inflammation. Mean-
while, evidence is mounting that multiple organs may be damaged by SARS-CoV-2 infection in severe cases and that excessive blood coagulation may lead to life-threatening conditions.12–14

While there is no specific treatment for COVID-19, over the past few months, significant advances in discovering the molecular mechanisms of SARS-CoV-2 infection have been made, and numerous clinical trials have begun, with many more in the planning stages. For instance, several antiviral drugs or drug candidates already approved for other diseases, such as lopinavir/ritonavir and darunavir (anti-HIV), remdesivir (Ebola), chloroquine and its derivatives (antimalarial), as well as Arbidol and favipiravir (broad spectrum antiviral), were among the first drugs to be tested in multiple clinical trials across the world.15,16 Camostat mesilate and nafamostat, both TMPRSS2 inhibitors, were enlisted in clinical trials shortly after the indispensable function of TMPRSS2 in SARS-CoV-2 infection was discovered.7,17 Since the uncontrolled inflammatory response is one of the major contributing factors to disease severity, anti-inflammatory drugs, such as interferon β, baricitinib, tocilizumab, sarilumab, and acalabrutinib, are also being evaluated in clinical trials for usage either alone or in conjunction with another anti-SARS-CoV-2 agent.18–21 More recently, the potent anti-inflammatory effects of corticosteroids are being explored alone and/or in conjunction with other drugs. Initial reports showed that in patients hospitalized with COVID-19 dexamethasone resulted in a lower 28 day mortality among patients receiving respiratory support but not among those without respiratory support.22 In addition, several clinical trials are either underway or being planned that look at the effects of dexamethasone alone or in combination with other drugs.32

Although there are numerous ongoing clinical trials, only two drugs, remdesivir and favipiravir (avifavir), have so far been conditionally approved in a few countries for limited use,24–26 and these appear to show only modest effects. Moreover, the application of remdesivir is further limited because it can only be administered intravenously to hospitalized patients. Additionally, despite some conflicting results, multiple studies and meta-analyses have concluded that hydroxychloroquine offers either very small or no therapeutic effects in the treatment of COVID-19.27–30 The U.S. Food and Drug Administration (FDA) on June 15, 2020 revoked its Emergency Use Authorization for the use of hydroxychloroquine and chloroquine to treat COVID-1931 and issued cautions against its use due to the risk of incurring heart rhythm problems and other safety issues, including blood and lymph system disorders, kidney injuries, and liver damage and failure.31 However, clinical trials, including those on its use in prophylaxis, are continuing.29 As a result, there is still an urgent need to identify effective therapeutic agents for COVID-19 and possible future coronavirus-related diseases.

To support these efforts, we performed an analysis of the published journal articles and patents related to COVID-19 therapeutics. Herein, we review important viral and human targets and highlight target-based drug candidates with bioassay and structure–activity relationship (SAR) data from the Chemical Abstract Services (CAS)-indexed journal articles and patents.

2. TRENDS IN COVID-19 THERAPEUTIC RESEARCH

2.1. Journal Analysis. Since the beginning of the COVID-19 outbreak, the number of journal articles published on this topic has continued to increase as shown in Figure 1. Over the past 5 months, more than 16 000 articles have been published.

Figure 1. Monthly number of journal articles published related to COVID-19 in 2020.

This trend reflects the tremendous interest in the scientific community in understanding the new virus and in finding methods to combat the pandemic. A large number of publications are related to drug targets and the development of therapeutic agents. Due to the time requirements for de novo drug discovery, most efforts so far have focused on the repurposing of approved drugs, evaluation of investigational drugs (i.e., drugs in clinical trials for other purposes), molecular docking, and virtual screening studies.

Table 1 highlights some notable journal articles, published during this period, which focused on the development and identification of therapeutics against COVID-19. These were selected based on a number of factors, including journal impact factor, the number of citations/downloads, and the type of studies. Because our focus is on newly studied drug candidates, articles on well-known drugs such as remdesivir, hydroxychloroquine, and others that were presented in our earlier report are not included here.32 As shown in the table, both small molecules and biologics have been explored for the identification of COVID-19 therapeutics.

2.2. Patent Analysis. We also analyzed over 100 COVID-19-associated patents published in the first five months of 2020. These are categorized as follows: about 14% development of therapeutics including small molecules and biologics, 4% vaccines, 9% traditional Chinese medicines, and 56% the development of diagnostics.

Table 2 lists specific patent applications related to COVID-19 therapeutics. Patent application CN111135167A discloses that GC376 (CAS Registry Number (RN) 1416992-39-6), a 3CLpro inhibitor, significantly reduces SARS-CoV-2 replication in cells with an EC₅₀ of 3.133 μM. Patent application CN111135166A discloses a pharmaceutical composition, consisting of GC376 and a prodrug, GS-441524 (CAS RN 1191237-69-0), which has a synergistic effect for inhibiting SARS-CoV-2 replication in cells with an EC₅₀ of 1.0 μM. Due to the different examination processes at various patent offices, it is likely that a significant number of COVID-19 therapeutics related patents will be published later this year.

3. KEY PROTEINS INVOLVED IN SARS-COV-2 INFECTION

3.1. SARS-CoV-2 Proteins and Their Functions. SARS-CoV-2 contains a 30 kilobase long RNA genome, which encodes 16 nonstructural proteins (NSPs), 4 structural proteins, and 9
accessory proteins. The 16 NSPs are released by autoproteolysis of two large polyproteins by viral proteases, 3CLpro/NSP5 and P/NSP3.

Table 3 summarizes the functions of the SARS-CoV-2 proteins as well as their sequence similarities with those from SARS-CoV. The proteins are grouped based on their functions: (1) NSPs related to viral proteolysis, (2) NSPs related to viral RNA modification or polymerization, (3) structural proteins involved in viral particle assembly, and (4) accessory proteins with various functions. As indicated in the table, most of the SARS-CoV-2 proteins share high sequence similarities with those of SARS-CoV. So far, most attention has been focused on

Table 1. Notable Journal Articles Related to COVID-19 Therapeutics
title
Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketamide inhibitors
A human monoclonal antibody blocking SARS-CoV-2 infection
A SARS-CoV-2 protein interaction map reveals targets for drug repurposing
An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice
Computational design of ACE2-based peptide inhibitors of SARS-CoV-2
COVID-19: combining antiviral and anti-inflammatory treatments
COVID-19: immunopathology and its implications for therapy
Development of CRISPR as an Antiviral Strategy to Combat SARS-CoV-2 and Influenza
Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody
Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2
Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2
Rapid identification of potential inhibitors of SARS-CoV-2 main protease by deep docking of 1.3 billion compounds
Repurposing therapeutics for COVID-19: Supercomputer-based docking to the SARS-CoV-2 viral spike protein and viral spike protein-human ACE2 interface
Therapeutic options for the 2019 novel coronavirus (2019-nCoV)
Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients’ B cells

Table 2. Patents Related to COVID-19 Therapeutics
patent number
CN111184708A
CN111184707A
CN111150833A
CN111135184A
CN111135167A
CN111135166A
CN1111053909A
CN110960532A
CN111166768A
CN111172195A
CN111153991A
CN111139242A
CN111139241A
KR2020030205A
the S protein, 3CLpro/NSP5, PLpro/NSP3, and RdRp/NSP12 as potential drug targets. These proteins not only serve crucial functions in the viral lifecycle of SARS-CoV-2 but also have been well-studied in the related viruses SARS-CoV and MERS-CoV. Although less-studied, other proteins, such as NSP7/8/9/10/13/14/15/16, may also serve as drug targets. Conceivably, those that interfere with host immune regulation (e.g., NSP1 and Orf3b/6/9b) may also be potential targets for anticytokine storm drugs.3

3.2. Human Proteins Involved in SARS-CoV-2 Infection

Similar to other viruses, SARS-CoV-2 not only relies on its own proteins but also utilizes many proteins from host cells to achieve its attack on the host cells. These host proteins may also be potential drug targets, since they play crucial roles in one or more aspects of the disease, as shown in Tables 4 and S1. The proteins in Table 4 are grouped into very broad categories such as viral entrance, viral RNA/protein synthesis, host inflammatory response, and other functions. As an example of the human proteins involved in virus entrance, ACE2 functions as the main receptor for the S protein of SARS-CoV-2,7 although other membrane proteins such as CD147/basigin may also be involved.39,40 After binding to a host cell receptor, the S protein needs to be cleaved by human proteases such as TMPRSS2, furin, or endosomal cathepsin L (CTSL) to initiate membrane fusion.41 Additional host proteins involved in various steps of SARS-CoV-2 infection and abnormal host responses such as cytokine storm-mediated inflammation and excessive blood clotting32 are also listed in Tables 4 and S1.
Table 4. Selected Human Proteins Involved in SARS-CoV-2 Infection

protein target	acronym	role in SARS-CoV-2 infection	COVID-19 clinical trial?
angiotensin-converting enzyme 2	ACE2	cell surface receptor for S protein	yes
furin	FURIN	cleaves S protein to expose S2 domain needed for virus-plasma membrane fusion	no
transmembrane serine protease 2	TMPRSS2	cleaves S protein to expose S2 domain needed for virus-plasma membrane fusion	yes
CD147/basigin	BSG	alternative cell surface receptor for S protein	yes
cathepsin L	CTSL	cleaves S protein to expose S2 domain needed for virus-endosomal membrane fusion	no
phosphatidylinositol inositol	PIRFYVE	involved in phosphoinositide metabolism, regulates endosomal dynamics; may be involved in facilitating SARS-CoV-2 entry	no
kinase PIKfyve			

Host Cell Proteins Involved in Viral Entrance

- Angiotensin-converting enzyme 2 (ACE2)
- Furin
- Transmembrane serine protease 2 (TMPRSS2)
- CD147/basigin
- Cathepsin L
- Phosphatidylinositol inositol kinase (PIKfyve)

Host Proteins Involved in Viral RNA/Protein Synthesis Processes

- Inosine monophosphate dehydrogenase (IMPDH2)
- Translation initiation factor eIF-4A
- Translation initiation factor eIF-1A
- Translocon protein
- Splicing factor SF3B1

Host Proteins Involved in Host Proteins Involved in Inflammatory Response

- Protein kinase JAK1 and JAK2
- Interleukin 6 (IL6)
- Complement C3
- Chemokine receptor CCR1
- Chemokine CXCL10
- Neutrophil extracellular traps

Clinical trial data was obtained as of 5/21/2020 from www.ClinicalTrials.gov. "Yes" in the table includes trials with the following status: “Not Yet Recruiting”, “Recruiting”, “Enrolling”, “Active”, or “Completed”.

Figure 2. Distribution of SARS-, MERS-, and COVID-19-associated documents and potential therapeutic substances in relation to specific targets.
4. DISTRIBUTION OF DOCUMENTS ASSOCIATED WITH SARS, MERS, AND COVID-19 AND THERAPEUTIC SUBSTANCES RELATED TO SPECIFIC TARGETS

Sequence homology between SARS-CoV-2 and SARS-CoV indicates that their key enzymes and structural proteins have high similarity. Molecular docking studies have revealed that antiviral agents effective against MERS-CoV and SARS-CoV may have similar affinities to the binding pockets in SARS-CoV2. Repositioning of existing therapeutic candidates developed for SARS and MERS has become a common theme during the past few months in the development of anti-COVID-19 therapeutics. As a result, many studies have explored the effects of potential drug substances initially developed or tested to combat other coronavirus infections. To help facilitate the ongoing repurposing efforts, we analyzed information published from 2003 to May 2020 related to SARS, MERS, and COVID-19 using the CAS content collection.

Of the 20,000 journal articles and 2,200 patents found in our analysis, over 500 patents and more than 500 journal articles were identified that contain potential therapeutic substances against SARS-CoV, MERS-CoV, and SARS-CoV-2 infections. The associations of potential therapeutic substances with specific targets in these documents were determined by data mining of CAS-provided index entries followed by intellectual review of the results. Figure 2 shows some high-frequency document—potential therapeutic substance—protein target relationships. The protein targets are listed according to the number of documents associated with each target. As shown in the figure, the 20 targets include the structural proteins (S and N proteins), nonstructural proteins (3CLpro, RdRp, PLpro, and helicase/NTPase), and human host proteins (ACE2, DPP4, TMPRSS2, and furin). Most of these studies appeared to have focused on the identification and development of small molecule therapeutics, but some biologics (biosequences) have also been developed, including some targeting the S and N proteins. Detailed information about some selected anti-SARS-CoV-2, SARS-CoV, and MERS-CoV substances will be discussed in the subsequent section.

5. BIOASSAY AND STRUCTURE—ACTIVITY RELATIONSHIP DATA FOR SMALL MOLECULES AND BIOLOGICS AGAINST COVID-19 AND RELATED CORONAVIRUS INFECTIONS

5.1. Data Sources. In order to identify drug candidates for COVID-19, we extracted SARS-CoV-2-associated bioassay data related to the development of therapeutics from recently published journals. We also examined bioassay data related to human coronaviruses published in journals and patents from 2000 to 2019, which contain substance information, targets, activity measures (half maximal inhibitory concentration (IC50), half maximal effective concentration (EC50), inhibition constant (Ki), and dissociation constant (Kd)), and assay details. In this section, we focus on five viral proteins, 3CLpro, PLpro, RdRp, helicase/NTPase, and S protein, and two human proteases, TMPRSS2 and furin, that play a key role in S-protein-mediated cell entry of the virus. Selected substances with bioassay information toward these targets are presented in Tables 5–11 and in the Supporting Information. A high level view of the numbers of these substances associated with each protein target is found in Figure 3.

5.2. Small-Molecule Inhibitors of 3CLpro. Of all the SARS-CoV-2 proteins, 3CLpro has the richest history of research data from other coronaviruses. Since 3CLpro is highly conserved among SARS-CoV-2, SARS-CoV, MERS-CoV, and other coronaviruses, previous research on this enzyme can serve as an excellent foundation for drug design of inhibitors of SARS-CoV-2 3CLpro. Table 5 highlights some substances that are active against 3CLpro of SARS-CoV-2 or SARS-CoV. Compounds GC376 and GC373 were designed based on the structures of 3CLpro from other viruses, but these were later shown to be also effective against SARS-CoV-2. Compounds 11a, 11b, 13a, and 13b were designed based on the recently revealed SARS-CoV-2 3CLpro crystal structure. In particular, 13a and 13b displayed longer plasma half-lives, and 13b can be nebulized for potential inhalant formulation. As can be seen in the table, all these compounds share a common pyrrolidinyl structure. Some substances in Table 5 were initially identified in computer-based predictive modeling studies, which have greatly expedited the identification of potential 3CLpro inhibitors. For example, Li et al. performed molecular docking
Table 5. Small-Molecule Inhibitors of 3CLpro in SARS-CoV-2 or SARS-CoV15,57−69,77−79

Substance	CAS Registry Number	Molecular Structure	Bioassay Information	Activity Measure (µM)
GC37657,58	1416992-39-6	forming covalent modification on 3CLpro Cys145, inhibition of SARS-CoV-2 replication in Vero E6 cells	IC\textsubscript{50} = 0.19, EC\textsubscript{50} = 0.92	
GC37369	1333231-44-9	same as above	IC\textsubscript{50} = 0.40, EC\textsubscript{50} = 1.5	
13a59	2412965-58-1	irreversibly reacting with 3CLpro Cys145	IC\textsubscript{50} = 2.39	
13b70	2412965-59-2	irreversibly reacting with 3CLpro Cys145, inhibition of SARS-CoV-2 replication in human Calu-3 cells, being nebulized using an inhalation device	IC\textsubscript{50} = 0.67, EC\textsubscript{50} = 4.5	
11a50	2103278-86-8	covalently reacting with Cys145 of 3CLpro, inhibition of SARS-CoV-2 replication in Vero E6 cells	IC\textsubscript{50} = 0.05, EC\textsubscript{50} = 0.53	
11b50	2413716-71-7	covalently reacting with Cys145 of 3CLpro, inhibition of SARS-CoV-2 replication in Vero E6 cells	IC\textsubscript{50} = 0.04, EC\textsubscript{50} = 0.72	
dipyridamole51,62	58-32-2	binding to immobilized SARS-CoV-2 3CLpro, clinical study in patients	IC\textsubscript{50} = 0.55	
candesartan cilexir81	145040-37-5	binding to immobilized SARS-CoV-2 3CLpro	IC\textsubscript{50} = 2.78	
atazanavir81,83	198904-31-3	binding to immobilized SARS-CoV-2 3CLpro, inhibition of SARS-CoV-2 replication in Vero cells	IC\textsubscript{50} = 7.53, IC\textsubscript{90} = 2.0, CC\textsubscript{50} = 312	
nelfinavir84	159989-64-7	inhibition of SARS-CoV-2 replication in Vero E6/TMPRSS2 cells	EC\textsubscript{50} = 1.13	
boceprevir87	394730-60-0	inhibition of SARS-CoV-2 3CLpro in FRET based enzyme assay, inhibition of SARS-CoV-2 replication in Vero 76 cells	IC\textsubscript{50} = 4.13, K\textsubscript{i} = 1.18, EC\textsubscript{50} = 1.9, CC\textsubscript{50} > 100	
danoprevir85 (boosted by ritonavir)	850876-88-9	clinical study in patient	N.A.	
calpain inhibitor XII86	1333312-37-0	inhibition of SARS-CoV-2 3CLpro in FRET based enzyme assay, inhibition of SARS-CoV-2 replication in Vero 76 cells	IC\textsubscript{50} = 0.45, K\textsubscript{i} = 0.13, EC\textsubscript{50} = 0.49, CC\textsubscript{50} > 100	
baicalein78,79	491-67-8	inhibition of SARS-CoV-2 3CLpro activity in vitro and the replication of SARS-CoV-2 in Vero cells	IC\textsubscript{50} = 0.39, EC\textsubscript{50} = 2.7	
studies followed by free energy perturbation (FEP) calculations of FDA-approved drugs and identified 25 drugs, which were further evaluated for their effect on SARS-CoV-2 3CLpro. Out of these 25 drugs, 15 displayed significant inhibitory activity against SARS-CoV-2 3CLpro. Shown in Table 5 are three such drugs with relatively low IC₅₀ values, including dipyridamole, an anticoagulant currently in COVID-19 clinical trial, and atazanavir, an HIV protease inhibitor with both anti-3CLpro and anti-inflammation activities. Other clinically available protease inhibitors for other viruses, such as nefinavir, boceprevir, and danoprevir, were also found to be potent inhibitors of 3CLpro. In particular, danoprevir boosted by ritonavir showed promising results in COVID-19 patients. Ebselen, an investigational drug with anti-inflammatory, antioxidant, and cytoprotective activities, has also been identified as 3CLpro inhibitor for SARS-CoV-2. Other drug candidates that functioned as cysteine protease inhibitors and inhibited SARS-CoV-2 infection include MDL-28170 and ZLVG CHN2, as identified from a large-scale drug repositioning screening of 12,000 FDA-approved and investigational drugs. Carmofur, an antineoplastic drug, covalently binds to 3CLpro Cys145 (a critical residue in the catalytic site) and inhibits viral replication in Vero E6 cells.

3CLpro inhibitors discovered from SARS-CoV and MERS-CoV studies were also examined. A few of these compounds are shown in Table 5, and a more complete list is given in Table S2. Of these, both betulinic acid and savinin not only are 3CLpro inhibitors of SARS-CoV but also may act on other targets, with betulinic acid acting as a cannabinoid receptor (CB) modulator (CB1 antagonist/CB2 agonist) and savinin acting as a tumor necrosis factor α (TNF-α) antagonist. Activation of cannabinoid receptor 2 (CB2), mainly expressed in immune cells, is reportedly linked to inhibition of inflammation and cytokine storms. Thus, activation of CB2 and inhibition of TNF-α would lead to attenuation of cytokine storm commonly observed in severe cases of COVID-19. While seemingly attractive as potential drug candidates for COVID-19, the polypharmacological properties of betulinic acid (inhibition of 3CLpro and activation of CB2) and savinin (inhibition of both 3CLpro and TNF-α) remain to be confirmed. In addition, several oligopeptides with or without chemical modification have been identified as 3CLpro inhibitors. For example, the octapeptide AVLQSGFR inhibited SARS-CoV 3CLpro and yet exhibited no cytotoxicity in Vero cells, indicating its potential as a drug candidate with low toxicity.

5.3. Small-Molecule Inhibitors of PLpro. Besides its protease activity essential for viral replication, PLpro has the additional function of stripping ubiquitin and ISG15 from host-cell proteins to aid coronaviruses in escaping the host innate immune response. Therefore, inhibiting PLpro may be of use in not only inhibiting viral replication but also preventing the inhibition of innate immunity. Table 6 presents selected small molecules shown to inhibit PLpro from SARS-CoV-2 or SARS-CoV. In a study with SARS-CoV-2 PLpro, two clinically safe Zn²⁺ ejectors, disulfiram and ebselein (also inhibit 3CLpro as shown in Table 5), were shown to extract Zn²⁺ from the critical cysteine residues of PLpro and inhibit its enzyme activity. Tioguanine, also known as 6-thioguanine (6-TG), is a chemotherapy agent that is on the World Health Organization’s List of Essential Medicines and could potentially be used to treat COVID-19. A more complete list of substances active against PLpro can be found in Table S3.
undoubtedly help to guide the design of its inhibitors. Ideal RdRp inhibitors will not only terminate RNA synthesis catalyzed by RdRp but also have the potential to block its exonucleolytic proofreading activity. Because of these factors, RdRp inhibitors are often nucleotide analogs with modifications on the sugar or base.

Table 7 provides compounds recently identified as inhibitors of SARS-CoV-2 RdRp in various bioassays. Included in this table are some FDA-approved drugs, such as sofosbuvir (a key component of hepatitis C drug EPCLUSA), azidothymidine (an anti-HIV drug), tenofovir alafenamide (a drug for HIV and hepatitis B), and tenofovir and emtricitabine (two components in DESCOVY and TRUVADA, two anti-HIV drugs).88,89 In addition, previously discovered SARS-CoV RdRp inhibitor EIDD-1931 was tested in SARS-CoV-2 and exhibited a high potency for infection inhibition.91 Its oral form, EIDD-2801, was also tested in animal models.91 A complete list of substances active against other (+)ssRNA viruses is shown in Table S4.

5.5. Small Molecules and Biologics That Affect Viral Entry Mediated by S-Protein—ACE2 Interactions. Unlike the viral proteases and RdRp, which are more likely to be inhibited by small molecules, inhibitors of the interaction of S protein with receptor ACE2 are predominantly small peptides and recombinant proteins mimicking ACE2 or neutralizing antibodies against the S protein. Recently, many of these biological molecules have been tested with SARS-CoV-2, as shown in Table 8. For example, when EK1, a peptidic pan-coronavirus fusion inhibitor which targets the heptad repeat (HR)1 region of the S protein, was linked to cholesterol (EK1C and EK1C4) or palmitic acid (EK1P), they displayed more potent inhibition against SARS-CoV-2 S-protein-mediated membrane fusion.92 Another lipopeptide, IPB02, is designed based on HR2 sequence and also showed strong activity in inhibiting the SARS-CoV-2 S-protein-mediated viral−cell fusion.93 SBP1, derived from the α1 helix of ACE2 peptidase domain, showed high affinity to the SARS-CoV-2-RBD.94 Recombinant proteins ACE2-Fc and hrsACE2, which act as decoy receptors, also target the S-protein−ACE2 interaction and viral−host-cell membrane fusion.95,96 Furthermore, an increasing number of antibodies, immunoglobulin fragments, or

Table 6. Small-Molecule Inhibitors of PLpro

Substance	CAS Registry Number	Molecular Structure	Bioassay Information	Activity Measure (µM)
disulfiram	97-77-8	![Image]	ejecting Zn²⁺ from SARS-CoV-2 PLpro, inhibition of SARS-CoV-2 PLpro in enzyme assay	IC₅₀ = 7.52
eb sales	60940-34-3	![Image]	ejecting Zn²⁺ from SARS-CoV-2 PLpro, inhibition of SARS-CoV-2 PLpro in enzyme assay	IC₅₀ = 2.36
thioguanine (6TG)	154-42-7	![Image]	in vitro target assay of SARS-CoV PLpro 2 using ubiquitin-AMC as substrate	IC₅₀ = 5.0 ± 1.7
N-ethylmaleimide (NEM)	128-53-0	![Image]	same as above	IC₅₀ = 4.4 ± 1.0
bis(2-pyridinethiol-3-sulfonyl) 1-cysteine-zinc	1698050-37-1	![Image]	in vitro target assay of SARS-CoV PLpro	IC₅₀ = 3.3
5-(aminomethyl)-2-methyl-N-[1R]-1-[1-naphthalenyl]ethyl]-benzamide	1184301-69-6	![Image]	in vitro target assay of SARS-CoV PLpro expressed in E. coli using fluorogenic peptide RLRGGAMC as substrate	IC₅₀ = 0.46
N-[1,3-benzodioxol-5-(methyl)-(1S)-1-[1-naphthalenyl]ethyl]-4-piperidinocarboxamide	1233939-90-6	![Image]	in vitro function assay of SARS-CoV infected Vero E6 cells mediated by PLpro	EC₅₀ = 9.1
in vitro target assay of SARS-CoV PLpro using ubiquitin-AMC	IC₅₀ = 0.56			
5-amino-2-methyl-N-[1R]-1-[1-naphthalenyl]ethyl]benzamide	1093070-16-6	![Image]	in vitro target assay of SARS-CoV PLpro using ubiquitin-AMC	Kᵡ = 0.49
same as above	IC₅₀ = 0.6			
N-[1,3-benzodioxol-5-(methyl)-1-[1(R)]-1-[1-naphthalenyl]ethyl]-4-piperidinocarboxamide	1234198-91-5	![Image]	in vitro target assay of SARS-CoV PLpro using fluorogenic peptide RLRGGAMC as substrate	IC₅₀ = 0.32
even single-domain antibodies are being developed for this purpose, and their activities have been demonstrated in various assays.97−100,121,122

In addition to the inhibitors mentioned above that have been tested with SARS-CoV-2, we found more compounds from SARS-CoV experiments that could be valuable for SARS-CoV-2 treatment. For example, the small molecule VE607 inhibits both

Table 7. Small-Molecule Inhibitors of RdRp in SARS-CoV-2

Substance	CAS Registry Number	Molecular Structure	Bioassay Information	Activity Measure
sofosbuvir	1190307-88-0	![Molecular Structure](image1.png)	its triphosphate form inhibiting polymerase extension experiments with SARS-CoV-2 RdRp and cofactors NSP7/8	500 µM
azidothymidine	30516-87-1	![Molecular Structure](image2.png)	same as above	500 µM
tenofovir alofenamide	379270-37-8	![Molecular Structure](image3.png)	same as above	500 µM
tenofovir	147127-20-6	![Molecular Structure](image4.png)	same as above	500 µM
emtricitabine	143491-57-0	![Molecular Structure](image5.png)	same as above	500 µM
phosphoramidate-ganciclovir	2416990-53-7	![Molecular Structure](image6.png)	same as above	500 µM
phosphoramidate-carbovir	2410071-99-5	![Molecular Structure](image7.png)	same as above	500 µM
phosphoramidate-cidofovir	2416990-54-8	![Molecular Structure](image8.png)	same as above	500 µM
phosphoramidate-stavudine	2416990-55-9	![Molecular Structure](image9.png)	same as above	500 µM
phosphoramidate-entecavir	1610358-03-6	![Molecular Structure](image10.png)	same as above	500 µM
phosphoramidate-2’-OMe-uridine	2416990-56-0	![Molecular Structure](image11.png)	same as above	500 µM
phosphoramidate-3’-OMe-uridine	1678507-87-3	![Molecular Structure](image12.png)	same as above	500 µM
biotin-16-dUTP	86303-28-6	![Molecular Structure](image13.png)	inhibiting polymerase extension experiments with SARS-CoV-2 RdRp and cofactors NSP7/8	500 µM
undine, 4-oxime (EIDD-1931, NHC)	3258-02-4	![Molecular Structure](image14.png)	inhibition of SARS-CoV-2 replication in Vero cells, Calu-3 cells and human airway epithelial (HAE) cells	IC50 = 0.3 µM (Vero) CC50 > 10 µM (Vero) I50 = 0.08 µM (Calu-3) I50 = 0.14 µM (HAE)
undine, 4-oxime, 5’-(2-methylpropanoate) (EIDD-2801)	2349386-89-4	![Molecular Structure](image15.png)	animal model	500 mg/kg
Table 8. Small Molecules and Biologics That Affect Viral Entry Mediated by S-Protein—ACE2 Interactions 80,92−100,121,122,127,128

Substance	CAS Registry Number	Type of Molecule (Sequence/Structure)	Bioassay Information	Activity Measure
EK1C52	2418703-14-5	cholesterol conjugated lipopeptide with PEG4 linkers AA sequence: SLDOINVFLFDLEYEMKKLEAIKLE ESVYDLKEL	inhibition of SARS-CoV-2 S-mediated cell−cell fusion	IC50 = 48.0 nM
EK1C452	2428532-99-2	cholesterol conjugated lipopeptide with GSGSG-PEG4 linkers AA sequence: SLDOINVFLFDLEYEMKKLEAIKLE ESVYDLKEL	same as above	IC50 = 1.3 nM
EK1F52	2418703-13-4	palmitic acid conjugated lipopeptide with PEG4 linkers AA sequence: SLDOINVFLFDLEYEMKKLEAIKLE ESVYDLKEL	same as above	IC50 = 69.00 nM
IPB0255	2415902-12-2	cholesterol linked small lipopeptide AA sequence: ISGINASVVRQIKREIDRLNEVAKNLNE SLIDQLEK	inhibition of dual split-protein (DSP)-based fusion cell−cell assay in 293T cells	IC50 = 0.025 μM
SBP194	2416761-69-6	IEEQAKTFDLKFHNEDAELFLYQS	using bio-layer interferometry to test its binding affinity to glycylated SARS-CoV-2-RBD	Kd = 47.00 nM
RBD-Fc55	2428540-01-4	recombinant protein	inhibition of SARS-CoV-2 pseudovirus infection of 293T cells expressing ACE2 orthologs	EC50 = 0.5 μg/ml
ACE2-Fc55	2428549-36-2	recombinant protein	same as above	EC50 = 0.3 μg/ml
hrsACE2/APN0156	328404-18-8	recombinant protein	inhibition of SARS-CoV-2 infections of Vero-E6	26 μg/ml
RBD-specific F(ab')2 55	2428610-91-5	immunoglobulin fragment	human capillary organs and kidney organoids	50 - 200 μg/ml
BD-368-256	2428617-22-3	neutralizing antibody	binding to RBD of SARS-CoV-2 S protein measured by surface plasmon resonance (SPR) assay	Kd = 0.82 nM
sdAbs 1E255	2418703-15-6	neutralizing single domain antibody	inhibition of SARS-CoV-2 infection in neutralization assay of Calu-3 cells	IC50 = 0.51 μg/ml
sdAbs 2F255	2418703-16-7	neutralizing single domain antibody	same as above	IC50 = 0.41 μg/ml
sdAbs 3F1150	2418703-17-8	neutralizing single domain antibody	same as above	IC50 = 0.43 μg/ml
sdAbs 4D855	2418703-18-9	neutralizing single domain antibody	same as above	IC50 = 0.45 μg/ml
sdAbs 5F855	2418703-19-0	neutralizing single domain antibody	same as above	IC50 = 0.24 μg/ml
mAb 47D11102	2418702-72-2	neutralizing antibody	inhibition SARS-CoV-2 infection in Vero E6 cells in neutralization assay	IC50 = 0.57 μg/ml
IgG1 ab1121	2418702-71-1	neutralizing antibody	neutralization activity assessed in luciferase reporter gene assay	IC50 = 200 ng/ml
S309122	2418702-70-0	neutralizing antibody	neutralization assay of SARS-CoV-2 infection in Vero E6 cells	IC50 = 79 ng/ml
S-protein–ACE2 interaction-mediated SARS-CoV entry and SARS-CoV plaque formation. The flavonoid luteolin has been reported to bind to the S protein and inhibit SARS-CoV entry into host cells. It also has anti-inflammatory and 3CLpro inhibition activities.

5.6. Small-Molecule Inhibitors of SARS-CoV Helicase/NTPase. As mentioned earlier in this report, NSP13 displays both helicase and NTPase activities and initiates the first step in viral mRNA capping. As part of a complex with NSP14 and NSP16, it installs the cap structure onto viral RNA in the cytoplasm. Since the sequence of SARS-CoV-2 helicase/NTPase is almost identical (100% in sequence similarity) to that of SARS-CoV, inhibitors of SARS-CoV helicase/NTPase will most likely work for SARS-CoV-2 as well. Specific examples of such inhibitors are shown in Table 9, and a more complete list is given in Table S5. Some trioxaadamantanetriol compounds, such as bananin and vanillinbananin, inhibited replication of SARS-CoV in cultured cells with low cytotoxicity. Unlike the above mentioned inhibitors, SSYA10–001 demonstrated helicase inhibition without affecting the cellular ATPase activity.

5.7. Small-Molecule Inhibitors of Human Protease TMPRSS2. Human serine protease TMPRSS2 is involved in S protein priming needed for the S2 segment of the S protein to mediate fusion of the viral envelope with the host cell membrane. Selected inhibitors are shown in Table 10, and a more complete list is given in Table S6. In addition to their inhibitory effect on TMPRSS2, these selected inhibitors are known to have other functions that may be beneficial in treating COVID-19. For example, bicalutamide, enzalutamide, dimethycurcin, and CAS RN 2031161−35−8 are nonsteroidal antiandrogen drugs that were shown to inhibit TMPRSS2 expression. Since TMPRSS2 is an androgen-regulated gene that is overexpressed in prostate cancer, speculation has arisen that higher androgen levels could be the reason for more severe outcomes in men with COVID-19. In addition, inhibitors of androgen signaling have been shown to reduce ACE2 levels; therefore, these inhibitors may have dual functions affecting both ACE2 and TMPRSS2. Finally, compounds MI460 and CAS RN 944925−37−5 may also inhibit proinflammatory cytokines and block blood coagulation-related factors, respectively.

5.8. Small-Molecule and Peptide Inhibitors of Human Protease Furin. The human protease furin is a ubiquitously expressed subtilisin/kexin-like proprotein convertase (PC) that...
cleaves the multibasic motif (RX(K/R)R↓) and activates/inactivates a variety of proteins including hormones, cytokines, and enzymes. Similar to TMPRSS2, furin is involved in priming viral S protein to mediate viral fusion with the host cell membrane and subsequent viral entry. Its cleavage site (RRAR↓) at the S1/S2 boundary of the SARS-CoV-2 and MERS-CoV S protein matches the minimal requirement of furin substrate sequence. Many furin inhibitors have been reported in the literature. Selected substances are shown in Table 11, and a more complete list is given in Table S7. The vast majority of furin inhibitors are peptides or peptidomimetics containing polyarginine or their derived analogs that bind to the catalytic site of furin. For instance, phenylacetyl-Arg-Val-Arg-4-amidinobenzylamide is one such substrate analog furin inhibitor. Further modification of this compound with additions of tert-leucine and a basic group, as represented by CAS RN 922732-52-3, improved the potency of furin inhibition. Other examples are peptide inhibitors and peptidomimetics that were synthesized based on the RARRKKRT inhibitory scaffold and the potent furin inhibitor Dec-RVKR-CMK that was shown to inhibit cleavage and viral replication in Vero cells. There are also nonpeptidic furin inhibitors, such as the guanidinylated aryl 2,5-dideoxystreptamine-derived compound represented by CAS RN 922732-52-3. This substance inhibited not only furin but also other PC family members (PC6B, PACE4, and PC7) without significant cytotoxicity to cells. Another inhibitor, oroxylin A, an O-methylated flavone natural product extracted from Scutellaria roots, has anti-inflammatory and anticoagulation activities, which may also be beneficial in treating COVID-19. Baicalein, a flavone from the roots of Scutellaria baicalensis, has been shown to inhibit Dengue virus replication in Vero cells and has also been reported recently to inhibit SARS-CoV-2 3CLpro. In addition, baicalein has antibacterial and anti-inflammatory activities. Although these inhibitors may be used to treat COVID-19 and its associated complications, more study is needed to ensure the safety of these compounds.

Table 9. Small-Molecule Inhibitors of Helicase/NTPase

Substance	CAS Registry Number	Molecular Structure	Bioassay Information	Activity Measure (µM)
myristicin	529-44-2	![Molecular Structure](image1.png)	ATPase activity	IC50 = 2.71
scutellarein	529-53-3	![Molecular Structure](image2.png)	ATPase activity	IC50 = 0.86
HE6022	353488-07-0	![Molecular Structure](image3.png)	ATPase activity	IC50 = 6.9
SSY10-001	675104-49-1	![Molecular Structure](image4.png)	dsDNA unwinding activity	IC50 = 5.3
banarin	665026-57-3	![Molecular Structure](image5.png)	RNA unwinding activity	IC50 = 5.7
banilinbanani	858956-96-4	![Molecular Structure](image6.png)	SARS-CoV rep licon assay	EC50 = 8.95
			cytotoxicity assay	CC50 => 250
			ATPase activity	IC50 = 2.3*
			cytotoxicity assay in Vero cells	CC50 = 765.0
			helicase FRET assay	IC50 = 3*
			ATPase activity	IC50 = 0.66
			helicase FRET assay	IC50 = 2

Multiple activity measure values for one substance are from multiple references.

5.9. Small Molecules and Biologics Targeting Other Human Proteins Involved in SARS-CoV-2 Infection

In addition to TMPRSS2 and furin, there are many other human proteins as listed in Table 4 which have been shown to be involved in COVID-19. Table 12 lists several small molecules or biologics targeting these human proteins involved in different steps of SARS-CoV-2 infection. A number of these, including...
meplazumab, merimepodib, plitidepsin, niclosamide, dornase alfa, and AMY-101 are currently in COVID-19 clinical trials.

6. SUMMARY AND PERSPECTIVES

In light of the enormous amount of published information and rapidly evolving knowledge about COVID-19, this report systematically assembles and curates a large amount of data into one resource to support the ongoing research and development of COVID-19 therapeutics. Highlighted are notable journal articles and patents related to COVID-19, important viral and human protein targets, a high-level view of target–substance relationship in documents related to COVID-19, SARS, and MERS, as well as rich lists of target-based potential drug candidates for COVID-19 and related coronavirus infections. The potential drug candidates include both small- and large-molecule biologics. The small molecules are comprised of a wide variety of organic compounds, nucleotide analogs, and peptides, while the biologics are mainly antibodies along with a few recombinant proteins. More importantly, we report bioassay data with detailed structure–activity relationship information extracted from published studies. We hope this report will be valuable to the ongoing drug repurposing efforts and the discovery of new therapeutics with the potential for treating COVID-19. It is worth mentioning that although these preclinical studies provide important information the utility of the listed substances as drugs for COVID-19 or related coronavirus infections would ultimately rely on successful clinical trials.

In addition to the various wet-laboratory-based approaches, computational drug repurposing for COVID-19 also plays a significant role in accelerating therapeutic development for this and other diseases. In this approach, a variety of computational and clinical data are often used and analyzed together for drug repurposing. This approach can help to overcome the challenge of translating basic scientific findings to human applications, because these drugs have passed clinical safety and bioavailability testing, thereby increasing their chances for final approval. For example, in a high-throughput docking approach, after screening a chemical library built from FDA-approved drugs and compounds undergoing clinical trials, Cavasotto and Di Filippo identified several structurally diverse compounds that each displayed antiviral activity against SARS-CoV-2. Another structure-based virtual study suggested that toremifene, an FDA-approved estrogen receptor modulator for treating advanced breast cancer, may inhibit the SARS-CoV-2 S protein and methyltransferase/NSP14. Moreover, melatonin was identified by the network medicine approach as showing a

Table 10. Small-Molecule Inhibitors of Human Protease TMPRSS2

Substance	CAS Registry Number	Molecular Structure	Bioassay Information	Activity Measure (µM)
bicalutamide	90357-06-5	function assay/expression of TMPRSS2 gene in LNCaP cell	IC₅₀ = 0.831	
enzalutamide	915087-33-1	same as above	IC₅₀ = 0.072	
dimethylcurcin	52328-98-0	same as above	IC₅₀ > 10	
(αS)-N-[4-cyano-3-[(trifluoromethyl)phenyl]-5-fluoro-o-hydroxy-o-methyl]-1H-indole-1-propanamide	2031161-35-8	same as above	IC₅₀ = 0.013	
MI460	1420977-03-2	recombinant TMPRSS2 expressed in E. coli BL21 (DE3) with D-cyclohexylalanine-PRO-ARG-AMC as substrate	Kᵢ = 0.001	
N2-[(phenyl(methyl)sulfonyl)]-D-arginyln-N-[4-(aminomethyl)phenyl](methyl)-L-prolinamide	944925-37-5	TMPRSS2 expressed in E.coli using D-CHA-GLY-ARG-pNA substrate	Kᵢ = 0.003	
significant association with reduced likelihood of SARS-CoV-2-positive test results. In addition, Zeng et al. demonstrated that deep learning is a powerful methodology to prioritize existing drugs for further investigation. Using a library of commercially available compounds, Elmezayen et al. discovered several potential inhibitors against 3CLpro or TMPRSS2 with virtual screening and further evaluated their absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiles. It can be expected that computer-screening of compounds and modeling will be increasingly used in the discovery of drugs for COVID-19 and other viral infections to expedite the drug development process and lower its cost. Nevertheless, experimental evaluation of drug candidates’ efficacy in cell-based assays and animal model studies is still needed to confirm the suggested drug effects of these virtually selected molecules.

Although this paper focuses on individual therapeutics, therapy regimes that combine various drugs to target multiple pathological processes and/or molecular targets have been evaluated and may play an important role in treating COVID-19. Over 600 documents covered drug combination approaches for COVID-19 in the CAS scientific literature collection. These include studies on the well-publicized hydroxychloroquine and azithromycin combination and on remdesivir with numerous other drugs. Of the latter, one interesting paper that combined in silico and in vitro methods highlighted the combination of remdesivir with nitazoxanide. Since COVID-19 is often characterized by exaggerated inflammatory responses, anti-

Table 11. Small-Molecule and Peptide Inhibitors of Human Protease Furin

Substance	CAS Registry Number	Molecular Structure	Bioassay Information	Activity Measure (µM)
oroxylin A	480-11-5	![Molecule Image](image)	recombinant soluble human furin with Boc-RVRR-MCA as substrate	$K_i = 3.3$
				$IC_{50} = 4.8$
baicalein	491-67-8	![Molecule Image](image)	recombinant soluble human furin using Boc-RVRR-MCA as substrate	$K_i = 6.2$
				$IC_{50} = 13.36$
rel-N.N"-[[1R,3S,4S,6R]-4,6-bis(aminominoethyl)amino]-1,3-cyclohexanediyli[bis(oxy-4,1-phenylene)]bis[guanidine]	922732-52-3	![Molecule Image](image)	recombinant vaccinia expressed furin using fluorescent substrate Pyr-RTKR-MCA	$K_i = 0.012$
				$CC_{50} > 250$
phenylacetyl-Arg-Val-Arg-4-amidinobenzamide	1206473-15-5	![Molecule Image](image)	human recombinant furin with pyroGlu-Arg-Thr-Lys-Arg-AMC as substrate	$K_i = 0.001$
N2-[2-[4-[[aminominoethyl](aminomethyl)phenyl]acetyl]-L-arginyl-3-methyl-L-valyl-N-[4-(aminominoethyl)phenyl)methyl]-L-argininamide	1788032-54-1	![Molecule Image](image)	same as above	$K_i = 0.006$
decanoyl-Arg-Val-Lys-Arg-chloromethylketone (Dec-RVKR-CMK)	150113-99-8	![Molecule Image](image)	inhibition of human furin using Boc-RVRR-AMC as a substrate	$K_i = 0.002$
				$CC_{50} = 712.9$
RARRKKKR	1104196-79-3	![Molecule Image](image)	human recombinant furin with Pyr-RTKR-AMC as substrate	$K_i = 0.011$

https://dx.doi.org/10.1021/acspcs.0c00074
ACS Pharmacol. Transl. Sci. 2020, 3, 813–834
inflammatory treatments are often combined with antiviral agents. For example, Zhou et al. found that the mercaptopurine/melatonin and toremifene/emodin combinations were potentially of value in a computational network pharmacology study.

Table 12. Small Molecules and Biologics Targeting Other Human Proteins Involved in SARS-CoV-2 Infection5,15,40,49,52,53,159−164

Substance	CAS Registry Number	Molecular Structure	Known Protein Target	Bioassay Information	Activity Measure
Ticlopidin159	61036-62-2	N.A.	Cathepsin L	Luciferase assay	IC50 = 1.66 μM
E624159	88321-09-9	Thiols, protease and cathepsin B, H and L	Cell infection assay	N.A.	
Aplimost160,161	541500-19-0	PI3Kγ	Cell infection assay	EC50 = 0.023 μM	
Viciusin-1161	35196-65-1	PI3Kγ	Cell infection assay	N.A.	
VBY-82515	131034-58-9	Cathepsin A	Cell infection assay	EC50 = 0.3 μM	
ONO-533415	868273-90-9	Cathepsin K	Cell infection assay	EC50 = 0.5 μM	
Meplazumab162	2413715-21-4	Antibody CD147	Cell infection assay	EC50 = 24.88 μg/ml	

Drug or drug candidate inhibiting host inflammatory response

Substance	CAS Registry Number	Molecular Structure	Known Protein Target	Bioassay Information	Activity Measure
AMY-101163	2108782-47-2	N.A.	Complement C3	Clinical study in patients	N.A.
Ofepramine164	481-49-2	Anti-inflammatory/viral attachment	Cell infection assay	IC50 = 0.35 μM	
MLN-389715	1010731-97-1	CCR1	Cell infection assay	EC50 = 0.14 μM	
99mTc-MDPe165	121524-79-6	Anti-inflammatory	Clinical study in patients	N.A.	
Domase alfa164	143831-71-4	N.A.	Neutrophil extracellular traps	Clinical study in patients	N.A.

Drug or drug candidate inhibiting viral RNA/mRNA/protein synthesis processes

Substance	CAS Registry Number	Molecular Structure	Known Protein Target	Bioassay Information	Activity Measure
Merimepide15	198821-22-6	IMPDH	Cell infection assay	Inhibition 10 μM	
Zotatin13	2088191-53-6	Efr4A1	Enzyme activity assay	IC50 = 1.5 nM	
Pifidip91	137219-37-5	Efr1AX	Clinical study in patients	N.A.	
Emotina15	483-18-1	40S ribosome protein S14	Cell infection assay	IC50 = 0.52 μm	
Pladienclidate16	445493-23-2	Splicing factor SF3B1	Cell infection assay	IC50 = 0.007 μm	

https://dx.doi.org/10.1021/acsptsci.0c00074
ACS Pharmacol. Transl. Sci. 2020, 3, 813−834
Since COVID-19 patients with an underlying condition, such as cardiovascular disease or diabetes, are more likely to be hospitalized and have life-threatening conditions, it is very likely that COVID-19 patients receiving antiviral drugs are simultaneously on other medications for their pre-existing conditions. Therefore, it is also crucial that COVID-19 drugs given should be compatible with those medications that the patient is already taking in order to prevent undesirable drug–drug interactions.

Currently, it is unknown how long the COVID-19 crisis will last. As different parts of the world become increasingly interconnected, it seems likely that there will be additional pandemics in the years to come, and many of these will be of viral origin. We hope the current focus on antiviral agent research will lead to major breakthroughs and help us to be better prepared for future outbreaks.

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsptsci.0c00074.

Table S1: A more complete list of human protein targets involved in COVID-19, Table S2: inhibitors of 3CLpro in SARS-CoV and MERS-CoV, Table S3: inhibitors of PLpro in SARS-CoV, Table S4: inhibitors of RdRp in SARS-CoV, Table S5: inhibitors of RdRp in positive-stranded ssRNA viruses, Table S6: inhibitors of helicase/NTPase in SARS-CoV, Table S7: inhibitors of human protease TMPRSS2, Table S8: inhibitors of human protease furin (XLSX).

AUTHOR INFORMATION

Corresponding Author
Qiongqiong Angela Zhou — CAS, a division of the American Chemical Society, Columbus, Ohio 43210-3012, United States; orcid.org/0000-0001-6711-369X; Email: qzhou@cas.org

Authors
Junko Kato-Weinstein — CAS, a division of the American Chemical Society, Columbus, Ohio 43210-3012, United States
Yingzhu Li — CAS, a division of the American Chemical Society, Columbus, Ohio 43210-3012, United States
Yi Deng — CAS, a division of the American Chemical Society, Columbus, Ohio 43210-3012, United States
Roger Granet — CAS, a division of the American Chemical Society, Columbus, Ohio 43210-3012, United States
Linda Garner — CAS, a division of the American Chemical Society, Columbus, Ohio 43210-3012, United States
Cynthia Liu — CAS, a division of the American Chemical Society, Columbus, Ohio 43210-3012, United States; orcid.org/0000-0003-3858-1501
Dmitrii Polshakov — CAS, a division of the American Chemical Society, Columbus, Ohio 43210-3012, United States
Chris Gessner — CAS, a division of the American Chemical Society, Columbus, Ohio 43210-3012, United States
Steven Watkins — CAS, a division of the American Chemical Society, Columbus, Ohio 43210-3012, United States

Complete contact information is available at: https://pubs.acs.org/10.1021/acsptsci.0c00074

Author Contributions
Q.A.Z. and J.K.-W. contributed equally to this paper.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We sincerely appreciate Jeffrey Smoot, Mark Johnson, Lihua Nie, David Leybman, Ilya Utkin, ChunAn Chen, and Philip Trinity for their technical assistance during preparation of this paper. We thank Susan Jervey for her careful editing. We are also very grateful to Manuel Guzman, Gilles George, Dana Albaui, and Jeffrey Wilson for their encouragement and support.

REFERENCES

(1) Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F., and Tan, W. (2020) A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 382, 727–733.
(2) WHO Coronavirus Disease (COVID-19) Dashboard, covid19.who.int (accessed on 6/25/2020).
(3) Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y., Ma, X., Zhan, F., Wang, L., Hu, T., Zhou, H., Hu, Z., Zhou, W., Zhao, L., Chen, J., Meng, Y., Wang, J., Lin, Y., Yuan, J., Xie, Z., Ma, J., Liu, W. J., Wang, D., Xu, W., Holmes, E. C., Gao, G. F., Wu, G., Chen, W., Shi, W., and Tan, W. (2020) Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395, 565–74.
(4) Khan, S., Siddiqui, R., Shereen, M. A., Ali, A., Liu, J., Bai, Q., Bashir, N., and Xue, M. (2020) Emergence of a Novel Coronavirus, Severe Acute Respiratory Coronavirus 2: Biology and Therapeutic Options. J. Clin. Microbiol. 58 (5), No. e00187-20.
(5) Gordon, D. E., Jang, G. M., Bouhaddou, M., Xu, J., Obernier, K., White, K. M., O’Meara, M. J., Rezely, V. V., Guo, J. Z., Swaney, D. L., et al. (2020) A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 583, 459–468.
(6) Shang, J., Ye, G., Shi, K., Wan, Y., Luo, C., Aiha, H., Geng, Q., Auerbach, A., and Li, F. (2020) Structural basis of receptor recognition by SARS-CoV-2. Nature 581, 221–224.
(7) Hoffmann, M., Kleine-Weber, H., Schroeder, S., Kruger, N., Herrler, T., Eriechsen, S., Schiergens, T. S., Herrler, G., Wu, N. H., Nitsche, A., Muller, M. A., Drosten, C., and Pohlmann, S. (2020) SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 is Blocked by a Clinically Proven Protease Inhibitor. Cell 181 (2), 271–280.
(8) Li, G., and De Clercq, E. (2020) Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat. Rev. Drug Discovery 19, 149–150.
(9) Morse, J. S., Lalonde, T., Xu, S., and Liu, W. R. (2020) Learning from the Past: Possible Urgent Prevention and Treatment Options for Severe Acute Respiratory Infections Caused by 2019-nCoV. Chem-BioChem 21 (5), 730–738.
(10) Baer-Santos, Y. M., St. John, S. E., and Mesecar, A. D. (2015) The SARS-coronavirus papain-like protease: Structure, function and inhibition by designed antiviral compounds. Antiviral Res. 115, 21–38.
(11) Dong, N., Yang, X., Ye, L., Chen, K., Chan, E. W.-C., Yang, M., and Chen, S. (2020) Genomic and protein structure modelling analysis depicts the origin and infectivity of 2019-nCoV, a new coronavirus which caused a pneumonia outbreak in Wuhan, China. bioRxiv, DOI: 10.1101/2020.01.20.913368.
(12) Tay, M. Z., Poh, C. M., Renia, L., MacArly, P. A., and Ng, L. F. P. (2020) The Trinity of COVID-19: immunity, inflammation and intervention. Nat. Rev. Immunol. 20, 363–374.
(13) Moore, J. B., and June, C. H. (2020) Cytokine release syndrome in severe COVID-19. Science (Washington, DC, U. S.) 368 (6490), 473–474.
(14) Bikkeli, B., Madhavan, M. V., Jimenez, D., Chuich, T., Dreyfus, I., Driggin, E., Der Nigoghossian, C., Ageno, W., Madjid, M., Guo, Y., et al. (2020) COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-Up. J. Am. Coll. Cardiol. 75 (23), 2950–2973.
(15) Riva, L., Yuan, S., Yin, X., Martin-Sanchez, L., Matsunaga, N., Pache, L., Burgstaller-Muehlbacher, S., De Jesus, P. P., Teriete, P., Hull, M. V., et al. (2020) Discovery of SARS-CoV-2 antiviral drugs through large-scale compound repurposing. Nature, DOI: 10.1038/s41586-020-2577-1.
(16) Wang, X., Cao, R., Zhang, H., Liu, J., Xu, M., Hu, H., Li, Y., Zhao, L., Li, W., Sun, X., Yang, X., Shi, Z., Deng, F., Hu, Z., Zhong, W., and Wang, M. (2020) The anti-influenza virus drug, Arbidol is an efficient inhibitor of SARS-CoV-2 in vitro. Cell Discovery 6, 28.

(17) Yamamoto, M., Matsuyama, S., Li, X., Takeda, M., Kawaguchi, Y., Inoue, J.-I., and Matsuda, Z. (2016) Identification of nafamostat as a potent inhibitor of Middle East respiratory syndrome coronavirus S-mediated membrane fusion using the split-protein-based cell-cell fusion assay. Antimicrob. Agents Chemother. 60 (11), 6532–6539.

(18) Trial of Inhaled anti-viral (SNG001) for SARS-CoV-2 (COVID-19) Infection. Clinical Trial no. NCT04385095, https://clinicaltrials.gov/ct2/show/NCT04385095 (accessed on 6/17/2020).

(19) Efficacy and Safety of Novel Treatment Options for Adults With COVID-19 Pneumonia. Clinical Trial no. NCT04345289, https://clinicaltrials.gov/ct2/show/NCT04345289 (accessed on 6/17/2020).

(20) Effect of Treatments in Patients Hospitalized for Severe COVID-19 Pneumonia: A Multicenter Cohort Study. Clinical Trial no. NCT04365764, https://clinicaltrials.gov/ct2/show/NCT04365764 (accessed on 6/6/2020).

(21) Roschewski, M., Lionakis, M. S., Sharman, J. P., Roswarski, J., Goy, A., Montecilli, M. A., Roshon, M., Wresinski, S. H., Desai, J. V., Zare, M. A., Collen, P. K., Rose, K., Jham, G., Chung, K. K., Baselage, J., Stautd, L. M., and Wilson, W. H. (2020) Inhibition of Bruton tyrosine kinase in patients with severe COVID-19. Sci. Immunol. 5 (48), eabd0110.

(22) Horby, P., Lim, W. S., Emberson, J. R., Mafham, M., Bell, J. L., Linsell, L., Staplin, N., Brightling, C., Ustianowski, A., and Elmahdi, E. et al. Dexamethasone in Hospitalized Patients with Covid-19. Clinical Trial no. NCT04385095, https://clinicaltrials.gov/ct2/show/NCT04385095 (accessed on 6/17/2020).

(23) Randomised Evaluation of COVID-19 Therapy (RECOVERY). Clinical Trial no. NCT04381936, https://clinicaltrials.gov/ct2/show/NCT04381936 (accessed on 7/18/2020).

(24) U.S. Food & Drug Administration. (2020) Fact Sheet for Health Care Providers Emergency Use Authorization (EUA) of Remdesivir for COVID-19 Patients in India. https://www.covid-19-patients-in-india-800133083.html.

(25) Investment Fund News release 5220/.

(26) Russian Ministry of Health approves the first COVID-19 drug Avifavir produced by JV of RDIF and ChemRar. Russian Direct Investment Fund News release, May 30, 2020. rdif.ru/Eng_fullNews/5220/.

(27) Geleris, J., Sun, Y., Platt, J., Zucker, J., Baldwin, M., Hripcsak, G., Labelia, A., Manson, D., Kubin, C., Barr, G., Sobieszczyk, M., and Schluger, N. (2020) Observational Study of Hydroxychloroquine in Hospitalized Patients with Covid-19. N. Engl. J. Med. 382, 2411–2418.

(28) Smoot, J., Gregg, A. C., Daniels, A. D., Jervey, S., and Albaiu, D. (2020) Hydroxychloroquine for Early Treatment of Adults with Mild Covid-19: A Randomized Controlled Trial. Clin. Infect. Dis., ciaa1009.

(29) Kashour, Z. T., Riaz, M., Garbati, M., Aldosary, O., Tlayjeh, H., U. S. A. 117 (21), 11727–11734.

(30) Tuttle, K. D., Minter, R., Waugh, K. A., Araya, P., Ludwig, M., Sempeck, C., Smith, K., Andryszik, Z., Burchill, M. A., and Tamburini, B. A. J. et al. (2020) JAK1 inhibition blocks lethal sterile immune responses: implications for COVID-19 therapy. bioRxiv, DOI: 10.1101/2020.04.07.024455.

(31) Chen, F., Niccoli, L., Matarrrese, D., Nicastri, E., Stobbione, P., and Goletti, D. (2020) Baricitinib therapy in COVID-19: A pilot study on safety and clinical impact. J. Infect. 81, 318.

(32) Ou, X., Liu, Y., Lei, X., Li, P., Mi, D., Ren, L., Guo, L., Guo, R., Chen, H., Ju, X., Xiang, Z., Mu, Z., Chen, X., Chen, J., Hu, K., Jin, Q., Wang, J., and Qian, Z. (2020) Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat. Commun. 11 (1), 1620.

(33) Baricitinib therapy in COVID-19: A pilot study on safety and clinical impact. J. Infect. 81, 318.

(34) Perricone, C., Triggianese, P., Bartoloni, E., Cafaro, G., Bonifacio, P., and Goletti, D. (2020) The role of Neutrophil Extracellular Traps in Covid-19: Only an Hypothesis or a Potential new field of research? Thromb. Res. 191, 26–27.

(35) U.S. Food & Drug Administration. (2020) Bioinformatic characterization of angiotensin-converting enzyme 2, the entry receptor for SARS-CoV-2. bioRxiv, DOI: 10.1101/2020.04.13.038752.

(36) Barker, H., and Parkkila, S. (2020) Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. U. S. A. 117 (21), 11727–11734.
case of COVID-19 treated with the complement C3 inhibitor AMY-101. *Clin. Immunol. (Amsterdam, Neth.)* 215, 108450.

(50) Yang, Y., Shen, C., Li, J., Yuan, J., Yang, M., Wang, F., Li, G., Li, Y., Xing, L., and Peng, L. et al. (2020) Exuberant elevation of IP-10, MCP-3 and IL-1ra during SARS-CoV-2 infection is associated with disease severity and fatal outcome. *medRxiv*, DOI: 10.1101/2020.03.02.20029975.

(51) Zuo, Y., Yalavarthi, S., Shi, H., Gockman, K., Zuo, M., Madison, J. A., Blair, C., Weber, A., Barnes, B. J., and Egeblad, M. et al. (2020) Neutrophil extracellular traps (NETs) as markers of disease severity in COVID-19. *medRxiv*, DOI: 10.1101/2020.04.09.20059626.

(52) Bukreyeva, N., Mantlo, E. K., Sattler, R. A., Huang, C., Paessler, S., and Zeldis, J. (2020) The IMPDH inhibitor merimepib suppresses SARS-CoV-2 replication in vitro. *bioRxiv*, DOI: 10.1101/2020.04.07.2028589.

(53) Müller, C., Schulte, F. W., Lange-Grünweller, K., Obermann, W., Madhugiri, R., Pleschka, S., Ziebuhr, J., Hartmann, R. K., and Grünweller, A. (2018) Broad-spectrum antiviral activity of the eIF4A inhibitor silvestrol against corona- and picornaviruses. *Antiviral Res.* 150, 123–129.

(54) Knox, K., Swett-Tapia, C., van den Worm, S. H. E., et vel Thelhuis, A. J. W., Koster, A. J., Mommaas, A. M., Snijder, E. J., and Kikkert, M. (2010) Integrity of the Early Secretory Pathway promotes, but Is Not Required for, Severe Acute Respiratory Syndrome Coronavirus RNA Synthesis and Virus-Induced Remodeling of Endoplasmic Reticulum Membranes. *J. Virol.* 84 (2), 833–846.

(55) Bojkova, D., Klann, K., Koch, B., Widera, M., Krause, D., Ciesek, S., Cinatl, J., and Muench, C. (2020) Proteomics of SARS-CoV-2-infected host cells reveals therapy targets. *Nature* 583, 469.

(56) Srinivasan, S. Cui, H., Gao, Z., Liu, M., Lu, S., Mikandawire, W., Narykov, O., Sun, M., and Korkin, D. (2020) Structural Genomics of SARS-CoV-2 Indicates Evolutionary Conserved Functional Regions of Viral Proteins. *Viruses* 12 (4), 360.

(57) Ma, C., Burst, H., Yu, Y., Duan, X., Tarbet, B., and Wang, J. (2020) Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 main protease inhibition of SARS-CoV-2 main protease by antineoplastic drug camoherf. *Nat. Struct. Mol. Biol.* 27, 529–532.

(58) Wen, C.-C., Kuo, Y.-H., Jan, J.-T., Lai, H.-K., Wang, S.-Y., Liu, H.-G., Lee, C.-K., Chang, S.-T., Kuo, C.-J., Lee, S.-S., Hou, C.-C., Hsiao, P.-W., Chen, S.-C., Shyu, L.-F., and Yang, N.-S. (2007) Specific Plant Terpenoids and Lignoids Possess Potent Antiviral Activities against Severe Acute Respiratory Syndrome Coronavirus. *J. Med. Chem.* 50 (17), 4087–4095.

(59) Liu, X., Jutooru, I., Lee, P., Kim, K. H., Lee, S., Brents, L. K., Prather, P. L., and Safe, S. (2012) Betulinic acid targets Y1R and ErbB2 through cannabinoid receptor-dependent disruption of microRNA-27a:ZBTB10 in breast cancer. *Mol. Cancer Ther.* 11 (7), 1421–1431.

(60) Sharma, C., Sadek, B., Goyal, S. N., Sinha, S., Kamal, M. A., and Ojha, S. (2015) Small Molecules from Nature Targeting G-Protein Coupled Cannabinoid Receptors: Potential Leads for Drug Discovery and Development. *Evidence-Based Complementary Altern. Med.* 2015, No. 238482.

(61) Cho, J. Y., Park, J., Kim, J. S., Yoo, E. S., Baik, K. U., and Park, M. H. (2001) Savinin, a ligand from Pterocarpus santalinus inhibits tumor necrosis factor-α production and T cell proliferation. *Biol. Pharm. Bull.* 24 (2), 167–171.

(62) Rossi, F., Tortora, C., Argenziano, M., Di Paola, A., and Punzo, F. (2020) Cannabinoid Receptor Type 2: A Possible Target in SARS-CoV-2 (CoV-19) Infection? *Int. J. Mol. Sci.* 21 (11), 3809.

(63) Nagarkatti, P., Pandey, R., Rieder, S. A., Hegde, V. L., and Nagarkatti, M. (2009) Cannabinoids as novel anti-inflammatory drugs. *Future Med. Chem.* 1 (7), 1333–1349.

(64) Feldmann, M., Maini, R. N., Woody, J. N., Holgate, S. T., Winter, G., Rowland, M., Richards, D., and Russell, T. (2020) Trials of anti-tumour necrosis factor therapy for COVID-19 are urgently needed. *Lancet* 395 (10234), 1407–1409.

(65) Sirois, S., Zhang, R., Gao, W., Gao, H., Li, Y., Zheng, H., and Wei, D.-Q. (2007) Discovery of Potent Anti-SARS-CoV MPro Inhibitors. *Curr. Comput.-Aided Drug Des.* 3 (3), 191–200.

(66) Liu, H., Ye, F., Sun, Q., Liang, H., Li, C., Lu, R., Huang, B., Tan, W., and Lai, L. (2020) Scutellaria baicalensis extract and baicalein inhibit replication of SARS-CoV-2 and its 3CL protease in vitro. *bioRxiv*, DOI: 10.1101/2020.04.03.035824.

(67) Su, H., Yao, S., Zhao, W., Li, M., Liu, J., Shang, W., Xie, H., Ke, C., Gao, M., and Yu, K. et al. (2020) Discovery of baicalin and baicalein as novel, natural product inhibitors of SARS-CoV-2 3CL protease in vitro. *bioRxiv*, DOI: 10.1101/2020.04.13.036867.
Emerging Coronavirus With High Fusogenic Activity. J. Virol. 94, e00635-20.

(94) Zhang, G., Poplun, S., Lofitis, A. R., Loas, A., and Pentelute, B. L. (2020) Investigation of ACE2 N-terminal fragment binding to SARS-CoV-2 Spike RBD. bioRxiv, DOI: 10.1101/2020.03.19.999518.

(95) Li, Y., Wang, H., Tang, X., Ma, D., Du, C., Wang, Y., Pan, H., Zou, Q., Zheng, J., and Xu, L. et al. (2020) Potential host range of multiple SARS-like coronaviruses and an improved ACE2-Fc variant that is potent against both SARS-CoV-2 and SARS-CoV-1. bioRxiv, DOI: 10.1101/2020.03.23.23342.

(96) Montiel, V., Kwon, H., Prado, P., Hagelkruys, A., Wimmer, R. A., Stahl, M., Leopoldi, A., Garretta, E., Hurtado del Pozo, C., Prosper, F., Romero, J. P., Wirsnsberger, G., Zhang, H., Slutskey, A. S., Conder, R., Montserrat, N., Mirazami, A., and Penninger, J. M. (2020) Inhibition of SARS-CoV-2 Infections in Engineered Human Tissues Using Clinical-Grade Soluble Human ACE2. Cell 181 (4), 905–913.

(97) Pan, X., Zhou, P., Fan, T., Wu, Y., Zhang, J., Shi, X., Shang, W., Fang, L., Jiang, L., Ji, X., and Shi, J. et al. (2020) Immuglobulin fragment F(ab)‘2 against RBD potently neutralizes SARS-CoV-2 in vitro. bioRxiv, DOI: 10.1101/2020.04.07.299884.

(98) Cao, Y., Su, B., Guo, X., Sun, W., Deng, Y., Bao, L., Zhu, Q., Zhang, X., Zheng, Y., Geng, C., Chai, X., He, R., Li, X., Lv, Q., Zhu, H., Deng, W., Xu, Y., Wang, Y., Qiao, L., Tan, Y., Song, L., Wang, G., Du, X., Gao, N., Liu, J., Xiao, J., Su, X., Du, Z., Feng, Y., Qin, C., Qin, C., Jin, R., and Xie, X. S. (2020) Potent Neutralizing Antibodies against SARS-CoV-2 Identified by High-Throughput Single-Cell Sequencing of Convalescent Patients’ B Cells. Cell 178, 73.
(111) Peng, G., Liu, Z., Chen, X., and Tian, D. (2020) Application of GC376 in preparation of novel coronavirus SARS-CoV-2 inhibitor, CN111135167A, People’s Republic of China (in Chinese).

(112) Peng, G., Liu, Z., Chen, X., and Tian, D. (2020) Pharmaceutical composition consisting of GC376 and GS-441524 and application thereof in inhibiting novel coronavirus, CN111135166A, People’s Republic of China (in Chinese).

(113) Wang, Y., Zhou, J., Ye, L., Sun, Y., Jiang, Z., Li, X., Luo, Q., and Xu, L. (2020) Application of 2019-nCoV 3CL hydrolase inhibitor and IL-6 monoclonal antibody in preparing medicament or treating coronavirus disease 2019, CN111053909A, People’s Republic of China (in Chinese).

(114) Jin, X., Chen, P., and Cai, Y. (2020) Composition containing benzylisouquinoline alkaloid and trans-feresverrol for treating coronavirus infection, CN110960532A, People’s Republic of China (in Chinese).

(115) Chen, G., Wei, Z., Zhao, Y., Wang, X., and Gu, X. (2020) Overexpression ACE2 mesenchymal cell in the preparation of medicine for treating novel coronavirus application of drugs and preparation method thereof, CN111166768A, People’s Republic of China (in Chinese).

(116) Weng, B., and Li, L. (2020) Preparation method of gene therapy product for treating COVID-19, CN111172195A, People’s Republic of China (in Chinese).

(117) Zhao, F., Qin, L., Wu, J., Wang, D., Dong, B., Zhang, F., and Wu, X. (2020) A human SARS-CoV-2 monoclonal antibody and preparation method and application thereof, CN111153991A, People’s Republic of China (in Chinese).

(118) Hu, R., Dong, C., Zhang, P., Zhang, Z., Li, Q., Wang, X., Du, Y., and Du, H. (2020) SARS-CoV-2 Small-interfering nucleic acid, and its application for preparing pharmaceutical composition for preventing and/or treating new coronavirus pneumonia, CN111139242A, People’s Republic of China (in Chinese).

(119) Dong, C., Hu, R., Zhang, P., Du, Y., Wang, X., Zhang, Z., Li, Q., and Du, H. (2020) Small interfering nucleic acid for inhibiting newborn coronavirus and its composition and application, CN111132941A, People’s Republic of China (in Chinese).

(120) Kim, S. C. (2020) COVID-19 virus customized triple knockout DNA treatment, KR2020032050, Korea (in Korean).

(121) Li, W., Drelich, A., Martinez, D. R., Gralinski, L., Chen, C., Sun, Z., Schäfer, A., Leist, S. R., Liu, X., and Zhelev, D. et al. (2020) Rapid selection of a human monoclonal antibody that potently neutralizes SARS-CoV-2 in two animal models. bioRxiv, DOI: 10.1101/2020.05.13.093088.

(122) Pinto, D., Park, Y., Beltramello, M., Walls, A. C., Tortorici, M. A., Bianchi, S., Jaconi, S., Culap, K., Zatta, F., De Marco, A., Peter, A., 13.093088.

(123) Wang, Z., Zhou, J., Ye, L., Sun, Y., Jiang, Z., Li, X., Luo, Q., and Xu, L. (2020) Application of 2019-nCoV 3CL hydrolase inhibitor and IL-6 monoclonal antibody in preparing medicament or treating coronavirus disease 2019, CN111053909A, People’s Republic of China (in Chinese).

(124) Peng, G., Liu, Z., Chen, X., and Tian, D. (2020) Pharmaceutical composition consisting of GC376 and GS-441524 and application thereof in inhibiting novel coronavirus, CN111135166A, People’s Republic of China (in Chinese).

(125) Rane, J. S., Chatterjee, A., Kumar, A., and Ray, S. (2020) Targeting SARS-CoV-2 Spike Protein of COVID-19 with Naturally Occurring Phytochemicals: An in Silico Study for Drug Development. ChemRes, DOI: 10.26434/chemresv.12094203.v1.

(126) Jo, S., Kim, S., Shin, D. H., and Kim, M.-S. (2020) Inhibition of SARS-CoV 3CL protease by flavonoids. J. Enzyme Inhib. Med. Chem. 35 (1), 145.

(127) Liu, J.-J., Kao, C.-L., Hsieh, S.-C., Wey, M.-T., Kan, L.-S., and Wang, W.-K. (2009) Identification of a minimal peptide derived from heptad repeat (HR) 2 of spike protein of SARS-CoV and combination of HR1-derived peptides as fusion inhibitors. Antiviral Res. 81 (1), 82–87.

(128) Ho, T.-Y., Wu, S.-L., Chen, J.-C., Wei, Y.-C., Cheng, S.-E., Chang, Y.-H., Liu, H.-J., and Hsiang, C.-Y. (2006) Design and biological activities of novel inhibitory peptides for SARS-CoV spike protein and angiotensin-converting enzyme 2 interaction. Antiviral Res. 69 (2), 70–76.

(129) Yoshimoto, F. K. (2020) The Proteins of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS CoV2 or n-CoV19), the Cause of COVID 19. Protein J. 39, 198–216.

(130) Kesel, A. J. (2012) An update on the bananins: anti-RNA-viral agents with unique structural signature. Anti-Infect. Agents 11 (1), 1–21.

(131) Tanner, J. A., Zheng, B.-J., Zhou, J., Watt, R. M., Jiang, Q.-Q., Li, W., Drelich, A., Martinez, D. R., Gralinski, L., Chen, C., Sun, Z., Schäfer, A., Leist, S. R., Liu, X., and Zhelev, D. et al. (2020) Rapid selection of a human monoclonal antibody that potently neutralizes SARS-CoV-2 in two animal models. bioRxiv, DOI: 10.1101/2020.05.13.093088.

(132) Pinto, D., Park, Y., Beltramello, M., Walls, A. C., Tortorici, M. A., Bianchi, S., Jaconi, S., Culap, K., Zatta, F., De Marco, A., Peter, A., 13.093088.

(133) Yu, M. S., Lee, J., Lee, J. M., Kim, Y., Chin, Y.-W., Jee, J.-G., Keum, Y.-S., and Jeong, Y.-J. (2012) Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, npP31. Bioorg. Med. Chem. Lett. 22 (12), 4049–4054.

(134) Adegdeji, A. O., Singh, K., Calcaterra, N. E., DeDiego, M. L., Enjuanes, L., Weiss, S., and Safariranos, S. G. (2012) Severe acute respiratory syndrome coronavirus replication inhibitor that interferes with the nucleic acid unwinding of the viral helicase. Antimicrob. Agents Chemother. 56 (9), 4718–28.

(135) Safariranos, S. G., and Adegdeji, A. O. (2013) Suppression of SARS-CoV replication by SARS helicase inhibitors, WO2013188887A1, World Intellectual Property Organization.

(136) Kesel, A. J. (2006) The bananins: new anticoRona-RNA-viral agents with unique structural signature. Anti-Infect. Agents Med. Chem. 5 (2), 161–174.

(137) Narayanan, R., Müller, D. D., Ponnnusamy, T., Hwang, J.-D., Pagadala, J., Duke, C. B., Coss, C. C., Dalton, J. T., and He, Y. (2017) Select androgen receptor degrader (SARD) ligands and methods of use thereof, US20170029370A1 and US20170471812B, US Patent and Trademark Office, Washington, DC.

(138) Lucas, J. M., Heinlein, C., Kim, T., Hernandez, S. A., Malik, M. S., True, L. D., Morrissey, C., Corey, E., Montgomery, B., Mostaghel, E., Clegg, N., Coleman, I., Brown, C. M., Schneider, E. L., Craik, C., Simon, J. A., Bedalov, A., and Nelson, P. S. (2014) The Androgen-Regulated Protease TMPSRSS2 Activates a Proteolytic Cascade Involving Components of the Tor Microenvironment and Promotes Prostate Cancer Metastasis. Cancer Discovery 4 (11), 1310–1325.

(139) Wadman, M. (2020) Sex hormones signal why virus hits men harder. Science (Washington, DC, U. S.) 368 (6495), 1038–1039.

(140) Ghazizadeh, Z., Majid, S., Richter, M., Samuel, R., Zekavat, S. M., Asgharian, H., Farahvashi, S., Kalantari, A., Ramirez, J., and Zhao, H. et al. (2020) Androgen Regulates SARS-CoV Receptor Levels and Is Associated with Severe COVID-19 Symptoms in Men. bioRxiv, DOI: 10.1101/2020.05.12.091082.

(141) Pomothy, J., Szombath, G., Kornak, P., Mátis, G., Neogrédy, Z., Steinmetzer, T., and Pászti -Gere, E. (2016) The Impact of Acute Myeloid Leukemia Inhibition in Hepatic Inflammatory Model. BioMed Res Int. 2016, 1.

(142) Sielaff, F., Böttcher-Friebertshäuser, E., Meyer, D., Saue, S. M., Volk, I. M., Garten, W., and Steinmetzer, T. (2011) Development of substrate analogue inhibitors for the human airway trypsin-like protease HAT. Bioorg. Med. Chem. Lett. 21 (16), 4860–4864.
(143) Steinmetzer, T., Meyer, D., Hammami, M., Sielaff, F., Garten, W., and Boettcher-Friebertshaeuser, E. (2013) Use of TMPRSS2 inhibitors as medicaments, WO2013014074A1, World Intellectual Property Organization.

(144) Steinmetzer, T., Sielaff, F., Garten, W., Boettcher, E., Freuer, C., Matrosovich, M., and Matrosovich, T. (2010) Use of HAT inhibitors and TMPRSS2 inhibitors as medicaments, WO2010149459A1, World Intellectual Property Organization.

(145) Harkes, I., Ivanova, T., Thaa, B., McNerney, G. M., Klok, T. I., Sandvig, K., Kuenzel, S., Lindberg, I., and Steinmetzer, T. (2017) elongated and shortened peptidomimetic inhibitors of the proprotein convertase furin. ChemMedChem 12 (8), 613–620.

(146) Hoffmann, M., Kleine-Weber, H., and Pohlh, S. (2020) a multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol. Cell 78 (21), 779–784.

(147) Coutard, B., Valle, C., de Lamballerie, X., Canard, B., Seidah, N. G., and Decoly, E. (2020) The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res. 176, 104742.

(148) Couture, F., Kwiatkowska, A., Dory, Y. L., and Day, R. (2015) Therapeutic uses of furin and its inhibitors: a patent review. Expert Opin. Ther. Pat. 25 (4), 379–396.

(149) Imran, M., Saleemi, M. K., Chen, Z., Wang, X., Zhou, D., Li, Y., Zhao, Z., Zheng, B., Li, Q., Cao, S., and Ye, J. (2019) Decanoyl-Arg-Val-Lys-Arg-Chloromethylketone: An Antiviral Compound That Acts against flaviviruses through the inhibition of Furin-Mediated prM Cleavage. Viruses 11 (1011), 1011.

(150) Jiao, G.-S., Gregar, L., Wang, J., Millis, S. Z., Tang, C., O’Malley, S., Johnson, A. T., Sareth, S., Larson, J., and Thomas, G. (2006) Synthetic small molecule furin inhibitors derived from 2,5-dideoxysugar as potent inhibitors of the furin-like proteases targeted against SARS-CoV. Proc. Natl. Acad. Sci. U. S. A. 103 (52), 19707–19712.

(151) Lu, L., Guo, Q., and Zhao, L. (2016) Overview of oxorolyn: A promising flavonoid compound. Phytother. Res. 30, 1765–1774.

(152) Bie, B., Sun, J., Guo, Y., Li, J., Jiang, W., Yang, J., Huang, C., and Li, Z. (2017) Baicalin: A review of its anti-cancer effects and activities of flavonoids isolated from Oroxylum indicum. Curr. Med. Chem. 20 (52), 19707–19712.

(153) Lalou, C., Basak, A., Mishra, P., Mohanta, B. C., Banik, R., Dinda, B., and Khait, A. M. (2013) Inhibition of tumor cells proliferation and migration by the flavonoid furin inhibitor isolated from Oroxylum indicum. Phytother. Res. 27 (11), 1530–1535.

(154) Majumdar, S., Mohanta, B. C., Chowdhury, D. R., Banik, R., Dinda, B., and Basak, A. (2010) Proprotein convertase inhibitory activities of flavonoids isolated from Oroxylum indica. Curr. Med. Chem. 17 (19), 2049–2058.

(155) Worachartcheewan, A., Nantasenamat, C., Naenna, T., Isaranuraka-Na-Ayudhya, C., and Prachayasittikul, V. (2009) Modeling the activity of furin inhibitors using artificial neural network. Eur. J. Med. Chem. 44 (4), 1664–1673.

(156) Becker, G. L., Harkes, I., and Steinmetzer, T. (2011) New substrate analogue furin inhibitors derived from 4-amidinobenzylamide. Bioorg. Med. Chem. Lett. 21 (16), 4695–4697.

(157) Shiroya, S. A., Ratnikov, B. L., Chekanov, A. V., Sikora, S., Rozanov, D. V., Godzik, A., Wang, J., Smith, J. W., Huang, Z., Lindberg, I., Samuel, M. A., Diamond, M. S., and Strongin, A. Y. (2006) Cleavage targets and the D-arginine-based inhibitors of the West Nile virus NS3 processing protease. Biochem. J. 393 (2), 503–511.

(158) Strongin, A., Lebl, M., and Day, R. (2009) Targeting host proteinases as a therapeutic strategy against viral and bacterial pathogens, US8053553B2, U.S. Patent and Trademark Office, Washington, DC.

(159) Zhang, J., Ma, X., Yu, F., Liu, J., Zhou, F., Pan, T., and Zhang, H. (2020) Teliposide potently blocks the cell entry of 2019-nCoV. bioRxiv, DOI: 10.1101/2020.02.05.935387.

(160) Matsuyama, S., Kawase, M., Nao, N., Shirato, K., Ujike, M., Kamitani, W., Shimojima, M., and Fukushima, S. (2020) The inhibited corticosteroid ciclesonide blocks coronavirus RNA replication by targeting viral NSP15. bioRxiv, DOI: 10.1101/2020.03.11.987016.