Abstract: The emergence of SARS-CoV-2, responsible for COVID-19 disease, has caused a substantial worldwide pandemic and has become a significant public health problem. World Health Organization (WHO) has declared COVID-19 as a devastating health emergency for all countries. Public health officials continue to monitor the situation closely to control this new virus-related outbreak. In order to continue to manage this pandemic, a fast and sensitive diagnosis of COVID-19 is attempted. Emerging tests have become an essential part of the management of the COVID-19 crisis. This review article aims to provide a detailed explanation of ongoing and new diagnostic technologies for SARS-CoV-2 and a summary of method principles. Examples of new diagnostic methods for providing efficient and rapid diagnostic tests for managing the SARS-CoV-2 outbreak are also mentioned.

Keywords: COVID-19; diagnosis; performance; SARS-CoV-2.

Introduction

Respiratory viruses threaten human life throughout centuries. The pandemic outcomes of RNA viruses generally occur because of changes in their molecular mechanisms. Emerging health threats of these viruses are originating from animals, with a 70% rate. After several mutations, pathogens become human viruses with subsequent spread in human populations [1].

Such a novel coronavirus (SARS-CoV-2) observed with acute respiratory illness emerged in Wuhan, China, in December 2019. By the end of March 2020, the virus has spread all over the world and caused the most prominent global outbreak [2]. This unpredictable pandemia indicated the necessity to develop readily available, accurate, fast, and reliable diagnostic test methods for the detection of viral pathogens [3].

In vitro diagnostic methods for human pathogens have changed significantly with the development of novel tests and the availability of updated methods. After the revelation of pandemia, these new tests are started to use in hospitals that facilitate to identify and treat the patients [3].

Currently, the tests used for COVID-19 can be divided into two groups. The first group contains tests for the detection of the presence of the virus RNA, antigen and antibody detection tests. They are used for the screening of infections in key target groups such a person who is infectious or recovering from COVID-19. The second group of tests detects the antibodies that occurred against SARS-CoV-2. The immunity gained by the antibodies is a very complex system and yet full of many unknowns. Once clarified, such antibody tests are going to be an essential

*Corresponding author: Assist. Prof. Ebru Saatçı, Biology Department, Faculty of Science, Erciyes University, Kayseri, Turkey, E-mail: saatci@erciyes.edu.tr
tool in developing emerging strategies along with direct virus detection [4].

Laboratory tests for COVID-19

Test materials

Different types of specimens are taken from suspected COVID-19 patients. Mostly these specimens are obtained with inevitable inaccuracy. Therefore, standardization of diagnostic accuracy of additional specimen types has crucial importance for laboratory diagnosis and monitoring of SARS-CoV-2 pandemic. Also, the clinical picture varied in various cases, and some patients only show asymptomatic infection, which is acutely endangering for control strategies [5, 6].

According to various available tests, urine, blood, stool, oropharyngeal swab, nasopharyngeal swap [6], sputum, bronchoalveolar lavage fluid [5], and saliva [7, 8] samples are collected from the COVID-19 patients.

Hematological laboratory testing

In the early stages of COVID-19, it is given that the total count of leukocytes decreased or remained as usual, with a reduced number of lymphocytes and with an increased or regular amount of monocytes. The number of CD4 and CD8 T cells is significantly reduced [9], and due to these changes, cytokine monitoring is getting crucial in the management of patients with severe symptoms. Cytokine Release Syndrome (CRS or Cytokine Storm) [10] activation in patients’ immune system causes an increase of inflammatory cytokines and chemokines in the circulation system, such as Granulocyte macrophage-colony stimulating factor (GM-CSF), Interferon-gamma (IFN-γ), macrophage inflammatory protein-1alpha (MIP-1α), tumor necrosis factor-alpha (TNF-α), Interleukin-2 (IL-2), IL-4, IL-6, IL-8, IL-10, IL-13, IL-22, and IL-17A [11]. In order to control the release of cytokines, the whole cytokine panel is investigated by researchers for COVID-19 patients.

Besides cytokine storm, macrophage activation syndrome (MAS) or secondary haemophagocytic lymphohistiocytosis (sHLH) is also seen in COVID-19 patients [12]. Inflammatory factors (IL-1, IL-6, IL-10, IL-18, IFNγ, and TNF-α) are monitored for the presence of MAS/sHLH syndrome [9, 12].

COVID-19 may cause severe adult respiratory distress syndrome (ARDS) with consequent release of pro-inflammatory cytokines IL-1β and IL-6. Due to their importance, IL-1β and IL-6 become the most studied cytokines in the panel [12, 13]. Also, monitoring of the suppression of IL-1β and IL-6 shows the therapeutic effect of treatments in COVID-19 disease [13].

Biochemical and other laboratory testings

Classical laboratory tests for SARS-CoV-2 infection, including blood gas analysis, liver and kidney function, myocardial enzyme, myoglobin, erythrocyte sedimentation rate (ESR), procalcitonin (PCT), lactate, D-dimer, CRP, ferritin amount, and others are performed in the hospital laboratories [9]. Especially highly elevated CRP and hyperferritinemia is found as the key to diagnosing MAS/HLH [12].

Emerging diagnostic tests for COVID-19

According to WHO, the first approach should be to develop and detect nucleic acid and protein tests at on-site for COVID-19 diagnostic research. In addition to nucleic acid tests, serological tests with proteins are required to improve monitoring efficiency. In contrast to nucleic acid tests, serological tests have the advantage of the detection of antibodies after recovery. These enable clinicians to follow both infected and cured patients and get a better prediction of the total SARS-CoV-2 infections. Point-of-care tests (POCT) are inexpensive portable devices for diagnosing patients. In order to increase the viability of diagnosis, the priority is to develop multiplex, fast, and portable test panels by designing novel methods, such as biosensors [14] (Figure 1).

Molecular diagnostic tests

SARS-CoV-2 is a single-stranded (+) RNA virus, which belongs to the genus Betacoronavirus. Phylogenetic analysis showed that SARS-CoV-2 is closely related to bat-derived SARS-like coronaviruses, namely Bat-SL-CoVZC45 and Bat-SL-CoVZXC21 with 88–89% similarity [15], and 96% identity with Bat-RaTG13-2013, suggesting that the virus spillover could come from a bat or through an animal secondary host [16]. Accurate RNA detection of SARS-CoV-2 is the “gold standard” test for the diagnosis of COVID-19, which is done by fluorescence-based quantitative PCR (qPCR) method [9].
Real-time detection of reverse transcriptase-PCR (RT-PCR) is the first preferred test for the Coronavirus, because of its better advantages, like being a specific quantitative assay. Besides, real-time RT-PCR is more sensitive than traditional qPCR assays, which is extremely helpful in diagnosing early infection. Therefore, RT-PCR assay is the most used method for the detection of SARS-CoV-2 [17–19].

Moreover, several non-PCR based molecular tests are developed for the detection of coronavirus RNA, such as isothermal nucleic acid amplification (loop-mediated isothermal amplification (LAMP) and nucleic acid sequence-based amplification) to improve both the specificity and sensitivity [17]. The LAMP is a novel isothermal nucleic acid (DNA and RNA) amplification method with high efficiency, sensitivity, and specificity [20, 21].

Specific High Sensitivity Enzymatic Reporter UnLOCKing (SHERLOCK) is a diagnostic platform that uses Cas13a ribonuclease for RNA sensing [22]. It is based on CRISPR (clustered regularly interspaced short palindromic repeats) technology. SHERLOCK is composed of nucleic acid pre-amplification with CRISPR-Cas enzymology to identify desired DNA or RNA sequences [23] accurately. It affords multiplexed, portable, and highly sensitive detection of RNA from COVID-19 patients samples [24]. Now, the technique is started to use in SARS-CoV-2 detection [25, 26].

A modified method of SHERLOCK technique was recently developed by Broughton et al., (2020) for the detection of SARS-CoV-2. The method is based on CRISPR–Cas12 detection, which can distinguish SARS-CoV-2 by using the N and E gene of the guide RNAs of the virus. Method includes RNA extraction, which can be used as an input to DETECTR (LAMP preamplification for E and N gene, RNase P, and Cas12 based detection) and visualized by LFIA [27].

Newly developed a single-step, ligation-dependent isothermal reaction cascade, called SENSitive Splint-based single-stage isothermal RNA detection (SENSR) is used to detect SARS-CoV-2 guideRNAs (gRNA). This method enables the fast detection of highly specific RNAs. SENSR is based on two simple enzymatic reactions. The first one is the ligation reaction of the SplintR ligase and is continued with the transcription by T7 RNA polymerase. The transcript produces an RNA aptamer, which is going to label with fluorogenic dye and gives fluorescence with the target RNA present in the sample [28].

Nucleic acid tests for viral RNA measures the current infection with SARS-CoV-2, and protein-based tests show the past exposure to SARS-CoV-2 [29].

Serological diagnostic tests

SARS-CoV-2 is a β family coronavirus, with a spike surface glycoprotein (S), a small envelope protein (E), matrix (membrane) protein (M), and nucleocapsid protein (N). Among these, N-protein is the mostly found and relatively conserved protein in coronaviruses. Therefore, it is the most used diagnostic antigen for the detection of neutralization antibodies [14, 30] (Figure 2). In coronaviruses, the S gene encodes the receptor binding spike protein, which ensures the virus infection. This spike protein ensures receptor binding and membrane fusion,
which determines the tropism. S protein is essential for binding to host cells, which is present on the surface of virus particles and highly immunogenic. Receptor-binding domain (RBD) of the S protein ensures the binding with angiotensin converting enzyme 2 (ACE2) and the virus itself [31, 32] (Figure 3).

In SARS-CoV-2, the S gene differs by <75% similarity of the nucleotide sequences compared to other SARS-related coronaviruses [14]. Other structural proteins are genetically more conserved than S protein and crucial for other essential functions [33].

M and E proteins are compulsory for virus assembly. N protein is related to transcription and replication of SARS-CoV-2 RNA, packaging of the encapsulated genome in virions. Besides, the N-protein has the most intense immunogenic activity during infection. Both S and N proteins are potential antigens for the serodiagnosis of COVID-19, and most of the diagnostic methods for SARS-CoV-2 immunoglobulin detection are based on S and/or N [30, 31].

Immuoassay-based diagnostic tests

Testing specific antibodies for SARS-CoV-2 present in a patient’s blood is the right choice to detect seroconversion of COVID-19 [34]. As it is known, IgM is the first released antibody against viral infections before high-affinity adaptive IgG responses are produced. IgG is essential for long-term immunity and immunological memory. It is seen that after SARS infection, IgM antibodies are detected in the patient’s blood after six days and IgG after 10 days, and persists for 2–3 years [35, 36]. The detection of IgM antibodies indicates recent exposure to SARS-CoV-2, while the detection of COVID-19 IgG antibodies allows to determine contact tracing and surveillance. Rapid detection of IgM and IgG antibodies is valuable for the diagnosis and treatment of COVID-19 disease [37].

Detection of IgA in SARS-CoV infected patients serum is another way to provide information on the virus infection status over time [37]. IgM and IgG antibodies are mostly produced against N protein of SARS and SARS-CoV-2 [38, 39], and IgA is also produced against S1 protein of the virus [40]. When the immune response of the patients against SARS coronaviruses is compared to produce the immunoglobulins, it is shown that IgA response starts earlier than IgG response. On the other hand, the presence of IgG in serum continues during the infection time and shows past infections [41].

Point-of-care tests: POCT

POCT devices, based on lateral flow immunoassays (LFIA), are the most used techniques for qualitative and semi-quantitative analysis. LFIA is carried out over a strip, of which various parts are mounted on a plastic carrier. Strip parts are composed of conjugate adsorption and sample application pads, and nitrocellulose membrane. By immobilizing biorecognition elements on nitrocellulose membrane, the test strip is divided into test and control lines. When liquid samples put on the cassette and flow through the membrane, the analyte of interest binds to the
test line, and the line becomes visible. LFIA combines the unique advantages of biorecognition elements and liquid chromatography [41]. For labeling detection antibodies, several types of materials are used in LFIA systems, including gold nanoparticles, colored latex beads, magnetic particles, carbon nanoparticles, quantum dots, and others. Different materials can be used as a label to detect the analyte concentration and retain their properties when conjugated with bioreceptor molecules [41].

Usage of POC tests are common in the clinical field, where the purpose of the test is to develop a portable, integrated system for testing biomarkers using for different samples. It is used as a rapid medical test at the patient’s location. Another advantage is no need for sample pretreatment or the need for trained personnel and a fully designed laboratory. The user only needs a drop of sample, and the capillary force controls the process for dispensing without fluid power and/or external energy [42].

The same as the other coronavirus immunoglobulin release timeline, IgM is the first antibody, synthesized by the patient against the virus infection. When both IgM and IgG tests are positive for SARS-CoV-2, this means that the patient is infected with SARS-CoV-2 recently, or he/she is at the early stage of infection. If only the IgG line is positive, this means that the patient had an infection in the past, or he/she is at the late stage of a viral infection. The combined detection of IgG and IgM antibodies is recommended to monitor different stages of COVID-19 [43].

SARS-CoV-2 rapid POC tests generally are based on commercial applications of colloidal gold-based LFIA [44–46]. Mainly, IgM, IgG, and IgA are detected by the indirect LFIA strip method, which means that N-protein of SARS-CoV-2 is used as an antigen on the surface of the strip membrane. In this way, the presence of neutralizer antibodies in the patient’s blood sample is visualized on the strips, and positive and negative results could be detected. [40, 45]. Test durations are changing in 5–15 min [30, 40]. Although strip assays are rapid and sensitive detection methods against SARS-CoV-2, there are some disadvantages of these tests. The specificity analysis of the tests shows that the sensitivity is lower than other methods. This disadvantage will affect the accurate evaluation of SARS-CoV-2 infection [44]. After a certain time of the onset of the infection, RT-PCR tests for SARS-CoV-2 may become negative, but the antibodies can still be detected in the serum of COVID-19 patients [44].

For a colloidal gold LFIA system, a COVID-19 Quick Touch Point CE-IVD test can be given as an example for the visualization of COVID-109 IgG and an IgM. The anti-human IgG is located the G test line region and the anti-human IgM is located the M test line region. During the test, the sample reacts with SARS-CoV-2 antigen-coated gold nanoparticles (AuNP) on the conjugation pad. Any antibody that recognizes the SARS-CoV-2 antigen in the patient sample binds to the Antigen-AuNP complex. As these human antibody / antigen / AuNP complexes move along the test lines, they are captured in the anti-human IgM ‘M’ Line, the anti-human IgG ‘G’ Line, or both, depending on the antibody content. If the sample contains IgM antibodies against SARS-CoV-2, a colored line will appear in the M test line region. If a sample contains IgG antibodies to SARS-CoV-2, the conjugate sample complex reacts with anti-human IgG. As a result, a colored line appears in the G test line region. Rabbit IgG-AuNP complexes are captured by the control line (containing anti-rabbit-IgG) [47].

Enzyme-linked immunosorbent assay (ELISA)

ELISA-based antibody detection tests with recombinant antigens are mostly used tests in indirect point-of-care assays. These tests offer high reproducibility and user-friendly detection protocols [48]. Also, serological analysis is crucial to understand the epidemiology of SARS-CoV-2, including the role of asymptomatic infections [3]. Recently, researchers have used the recombinant SARS-CoV-2 nucleocapsid and spike protein for designing ELISA-based IgM and IgG antibody tests [30, 49].

Diagnosis of COVID-19 can be based on the combination of the patient’s medical history, laboratory, and CT images. However, the final decision mainly depends on the detection of nucleic acids. However, there is a remarkable point that many new patients cannot be diagnosed due to negative nucleic acid tests. For example, qPCR test may give false-negative results if the sample is taken from the throat. Because the viral load in the upper respiratory tract samples is generally lower than in the lower respiratory tract samples, and the viral load of patients varies at different stages of the disease [46]. A combination of the IgM-IgG ELISA test with nucleic acid qPCR can give a more precise diagnosis of SARS-CoV-2 infection. [3]. Although ELISA tests also provide quantitative analysis for SARS-CoV-2 load, the similarity between SARS-CoV-2 and the other virus infection might cause cross-reactivity [50].

In the literature, in addition to the SARS IgG and IgMs direct measurement ELISA methods, various screening kits are also available. They are called inhibitor screening ELISA kits. These tests are designed to facilitate the identification and characterization of SARS-CoV-2 inhibitors. The assay stands on a simple colorimetric ELISA platform, which measures the binding between immobilized SARS-CoV-2 S protein RBD (receptor binding domain) and Human ACE2 protein [51]. The tests can be used in the
screening of inhibitors in SARS-CoV-2 binding tests or drug development against spike glycoprotein of SARS-CoV-2 [52], and a potential to develop a screening kit for the SARS-CoV-2 main protein (M protein) exists [53].

Electrochemiluminescence methods are also known to be used in COVID-19 IgG and IgM detection. Rosch SARS-CoV-2 Elecsys immunoassay system is a valuable example of this kind of method. In this system, the patient sample is incubated with a mix of biotinylated and ruthenylated nucleocapsid (N) antigen. Double-antigen sandwich immune complexes (DAGS) are formed in the presence of related antibodies. After the addition of streptavidin-coated magnetic-microparticles, the DAGS complexes bind to the particles via interaction of biotin and streptavidin. The mixture is transferred to the measuring cell, and magnetically captured onto the surface of the electrode. Electrochemiluminescence is then induced by applying a voltage and measured with a photomultiplier. The signal yield increases with the antibody titer [54].

Biosensors and other novel methods for SARS-CoV-2 testing

The popularization of POCT is getting an increase of interest in healthcare diagnostics. However, there are significant challenges that exist in the development of simple, fast, easy to use, highly specific, and sensitive biosensors for POC testing [55]. Therefore, more attention should be given to developing analytical devices as well as biosensors.

Devices or kits containing various material-based electrochemical (EC) sensors (such as paper- and screen-printed electrode-based) are in high demand for analysis because of their ease of use, portability, and higher sensitivity with short analysis times. In recent years, EC sensors have been widely applied to POCT in various fields, including healthcare monitoring [56].

In the last 25 years, for the detection of pathogens, biosensors, competed with PCR and ELISA, have appeared in the market. Biosensors are based on several selective and sensitive biological recognition elements and various transformation elements, and via this way, they became a complementary system to PCR and ELISA for the identification and quantification of pathogens [57].

A biosensor provides quantitative or semi-quantitative analytical performance. While a biosensor can be integrated into a portable device, the measurement method can change into a drop to continuous flow types. By using biosensors, precise and selective real-time detection of pathogens can be achieved on-site without the need for sample pretreatment [57]. Currently, biosensor systems are in the process of development for SARS-CoV-2 detection.

Nunez-Bajo and his co-workers (2020) developed a silicon-based integrated Point-of-Need (PoN) transducer (TriSilix) that can detect SARS-CoV-2-specific sequences of nucleic acids quantitatively in real-time [58].

A new LAMP-based test for simple, fast, and reliable diagnosis of COVID-19 is reported as COVID-19 RT-LAMP-NBS. The technique is a combination of LAMP amplification, reverse transcription, and multiplex analysis with a nanoparticle-based biosensor, which is done in a one-step single-tube reaction and finished with LFIA strip measurement. Rabbit anti-fluorescein antibody (anti-FITC), sheep anti-digoxigenin antibody (Anti-Dig), and biotinylated bovine serum albumin (biotin-BSA) are immobilized as test line 1 (TL1), test line 2 (TL2) and control line (CL), respectively. Dyed streptavidin-coated polymer nanoparticles (SA-DNPs) are immobilized in the conjugated regions. In the detection phase, the working buffer with the sample moves through the strip with the capillary action and re-hydrates the SA-DNPs fixed on the conjugate pad. F1ab-RT-LAMP products labeled with FITC are captured by the anti-FITC antibody in the TL1 region, and np-RT-LAMP products with Dig are captured by the anti-Dig antibody in the TL2 region. The other ends of the F1ab and np-RT-LAMP products, labeled with biotin, bind streptavidin-conjugated colored nanoparticles for imaging. Colored nanoparticles conjugated with streptavidin remaining unbound are captured by biotinylated bovine serum albumin immobilized in CL (Control line) [59].

For detecting SARS-CoV-2, various other technologies are also used. A luminescent immunoassay for the detection of the SARS-CoV-2 antibody, based on using synthetic peptide antigens as the immunosorbent, is developed for IgM and IgG detections. Researchers synthesized different peptides as antigens from the S and N proteins and purified them with streptavidin-coated magnetic beads, and perform luminescent immunoassay for the detection of SARS-CoV-2 IgG and IgM antibodies [60].

On the other hand, an engineered cell-based portable biosensor is developed for the direct detection of SARS-CoV-2. The biosensor is based on membrane engineered fibroblast cells with the human spike S1 antibody. Signal (Volts) is received with a membrane potential difference, measured by binding of the viral protein to the membrane-bound antibodies with a detection limit of 1 fg/mL. It can be used with a ready-to-use platform, including a portable reading device powered by smartphone/tablet [61].

SARS-CoV-2 proteome microarray is also performed to analyze antibody interactions at amino acid residues on the virus. Such biomarkers can also give information about
Table 1: Company and method examples of molecular and serological tests used in the detection of SARS-CoV-2 [65, 66].

Company/test name	Target	Specimen	Test method	Test time	Clinical performance	Authorization
Abbott diagnostics Scarborough, Inc./ID NOW COVID-19	RdRP gene	Nasopharyngeal, nasal and throat swaps	Isothermal nucleic acid amplification	15 min	LoD: 125 copies/mL Sensitivity: ≥95% No significant cross-reactivity	US (FDA)
Cepheid/Xpert xpress SARS-CoV-2 test	N1 and E genes	Nasopharyngeal and throat swaps	RT-PCR	45 min	LoD: 250 copies/mL Sensitivity: ≥95% No potential unintended cross-reactivity	US (FDA)
Cepheid Sherlock Biosciences/Sherlock™ CRISPR SARS-CoV-2 DETECTR	ORF1ab and nucleocapsid (N) genes	Respiratory samples	Sherlock’s Cas12 and Cas13 enzymes for nucleic acid detection	1 h	LoD: 6.75 copies/µL Sensitivity: 100% No significant cross-reactivity	US (FDA)
Mammoth biosciences/SARS-CoV-2 DETECTR	N and E genes	Respiratory samples	CRISPR-based lateral flow assay isothermal amplification	40 min	LoD: 10–50 copies/µL Sensitivity: 100% No significant cross-reactivity	US (FDA)
Abbott core Laboratory/m2000 SARS-CoV-2 assay	IgG	Serum, plasma, whole blood (heparin, EDTA, citrate)	Chemiluminescent microparticle immunoassay	470 patient samples /24 h 2–10 min	Sensitivity: 99.6% Specificity: 99% Cross-reactivity: Cytomegalovirus (CMV) IgG IgG sensitivity 96.7% IgM sensitivity 86.7% IgG specificity 98.0% IgM specificity 99.0%	USA, Australia
Aytu biosciences/COVID-19 IgG/IgM point of care rapid tests	IgG/IgM	Serum, plasma, whole blood	Lateral flow immunoassay	–	–	China, USA
Bioscience diagnostic technology co., Ltd./IgG antibody test kit for novel coronavirus 2019-nCoV	IgG	Serum	Magnetic particle-based chemiluminescence immunoassay	–	–	China
Cellex Inc./qSARS-CoV-2 IgG/IgM rapid test	IgG/IgM (specific for N protein)	Serum, plasma, whole blood	Lateral flow immunoassay	15–20 min	Sensitivity: 93.8% Specificity: 96% Cross-reactivity: none reported Sensitivity: 93.3% Specificity: 100%	Australia, US, Belgium
Creative diagnostics/DEI-ASL019/020 SARS-CoV-2 IgG ELISA kit	IgG (specific for N protein)	Serum, plasma	ELISA	1 h	Sensitivity: 93.3% Specificity: 100%	Australia, US
Rosche/Elecsys anti-SARS-CoV-2	Total ab	Serum, plasma	Electrochemiluminescence immunoassay	18 min	Sensitivity: 100% Specificity: 99.8% Cross-reactivity: none reported Sensitivity: 60% Specificity: 100% Cross-reactivity: none reported	US (FDA)
Coris biocconcept/COVID-19 Ag Respi-strip	Viral antigen	Nasal mucus swaps	Lateral flow immunoassay (dipstick)	15 min	–	Belgium
potential targets for diagnosis and vaccine development [62]. Another newly developed surface plasmon resonance (SPR)-based biosensor and artificial intelligence (AI) assisted is also used for the diagnosis of COVID-19 [63].

Comparison of SARS-CoV-2 test methods

Among all tests, qPCR shows a lower limit of detection, high sensitivity, and accuracy. In PCR tests, CRISPR is tested only on plasmid-positive controls or spiked human samples. LAMP is often used for point-of-care testing (POCT) due to its high sensitivity, fast response, and ease of use. It is a highly specific technique with the combined detection of three coronavirus genes [4].

For comparison of quick strip and ELISA tests, it seems that ELISA tests give better results than LFIA tests. While the latter is faster and more suitable for POC tests, the first seems more sensitive and reliable. The sensitivity and specificity of the serology tests are variable in the range of 81–98% [4]. Although there is not enough study about biosensors to make a comparison between the others, biosensors should be more sensitive, selective, and specific to anti-viral antibodies and virus itself, because of their analytical performance criteria for other viral tests [64]. The comparison of the analytical performance criteria of some companies commercial tests is given in Table 1.

Table 1: (continued)

Company/test name	Target	Specimen	Test method	Test time	Clinical performance	Authorization
SD biosensor/Standard Q COVID-19 Ag	Viral antigen	Nasopharyngeal swaps	Chromatographic immunoassay	30 min	Sensitivity: 84.38%, Specificity: 100%	South Korea

* Emergency Use Authorization by US FDA and other authorities.
** PFU: plaques in semisolid media; CRISPR (clustered regularly interspaced short palindromic repeats); DETECTR (DNA Endonuclease-Targeted CRISPR Trans Reporter).

Identification and improvement of SARS-CoV-2 outbreak. On the other hand, for sufficient and fast identification and treatment of SARS-CoV-2 infections, new tests containing recent technologies and approaches should be developed and provided to health care workers.

Remarkably, data on COVID-19 is developing rapidly. Some of the information in this review may change as further studies emerge. Some of the referenced articles are pre-printed and have not been reviewed by experts.

Research funding: None declared.

Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

Conflict of interest statement: The author declares that there is no conflict of interest regarding the publication of this article.

Çıkar çatışması bildirimi: Yazar, bu makalenin yayılmamasına ilişkin bir çikar çatışması olmadığını beyan eder.

References

1. Çelik İ, Saatçi E, Eyüboğlu FÖ. Emerging and reemerging respiratory viral infections up to COVID-19. Turk J Med Sci 2020;50:557–62.
2. Peiris JSM. Chapter 57 – coronaviruses. In: Greenwood D, editor. Medical microbiology, a guide to microbial infections: pathogenesis, immunity, laboratory diagnosis and control, 18th ed. Nottingham, UK: Elsevier; 2012:587–93 pp.
3. Loeffelholz MJ, Tang Y. Laboratory diagnosis of emerging human coronavirus infections – the state of the art. Emerg Microb Infect 2020;9:747–56.
4. EU Working document of Commission services. Current performance of COVID-19 test methods and devices and proposed performance criteria 2020;16:1–32.
5. Yang Y, Yang M, Shen C, Wang F, Yuan J, Li J, et al. Evaluating the accuracy of different respiratory specimens in the laboratory diagnosis and monitoring the viral shedding of 2019-nCoV infections. 2020, Preprint from medRxiv. https://doi.org/10.1101/2020.02.11.20021493. (Last accessed May 2020).
6. Lin LP, Liu J, Gao Z. Novel coronavirus can be detected in urine, blood, anal swabs and oropharyngeal swabs samples. Preprint from medRxiv, 2019. https://doi.org/10.1101/2020.02.21.20026179. (Last accessed May 2020).

7. To KK, Tsang OT, Yip CC, Chan K. Consistent detection of 2019 novel coronavirus in saliva. Clin Infect Dis 2020. https://doi.org/10.1093/cid/ciaa149.

8. To KK, Tsang OT, Leung W, Tam A, Wu T, Lung DC, et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect Dis 2020. https://doi.org/10.1016/S1473-3099(20)30196-1.

9. Jin Y, Cai L, Cheng Z, Cheng H, Deng T, Fan YP, et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version) military medical research. Military Med Res 2020;7:4.

10. Tay MZ, Poh CM, Rénia L, MacArv PA, Ng LFP. The trinity of COVID19. Clinics 2020;75:102537.

11. Safavi A, Robbie LA. COVID-19: testing for the cytokine release syndrome, CRS. www.bioagilytix.com/from-the-stage/COVID-2020. https://doi.org/10.1038/s41577-020-0311-8.

12. Lai C, Shih T, Ko W, Tang H, Hsueh P. Severe acute respiratory syndrome, CRS. www.bioagilytix.com/from-the-stage/COVID-2020. https://doi.org/10.1038/s41577-020-0311-8.

13. Conti P, Ronconi G, Al C, Ce G, Ross R, Frydas I, et al. Induction of pro-inflammatory cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease autoimmunity. Review 2020. https://doi.org/10.1016/j.autrev.2020.102537.

14. Safavi A, Robbie LA. COVID-19: testing for the cytokine release syndrome, CRS. www.bioagilytix.com/from-the-stage/COVID-2020. https://doi.org/10.1038/s41577-020-0311-8.

15. Shen M, Zhou Y, Ye J, Ahmed A, Al-maskri A, Kang Y, et al. Recent advances and perspectives of nucleic acid detection for Coronavirus, J Pharm Anal 2020, Preprint from medRxiv. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7044993/

16. Long Q, Liu B, Deng H, Wu G, Deng K, Chen YK, et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat Med 2020. https://doi.org/10.1038/s41591-020-0897-1.

17. Ying L, Yue-ping L, Bo D, Felfei R, Qianchuan H, Jinya D, et al. Diagnostic indexes of a rapid IgG/IgM combined antibody test for COVID-2019. VIEW 2020;1:4.

18. Zhang F, Abudayyeh OO, Gootenberg JS. A protocol for detection of COVID-19 using CRISPR diagnostics. Cambridge, MA: Broad Institute, MIT; 2020. 20200321.

19. Mustafa MI, Makhawi AM. SHERLOCK and DETECTR: CRISPR-Cas systems as potential rapid diagnostic tools for emerging infectious diseases and cancer-associated mutations. Preprint from medRxiv, 2020. https://doi.org/10.20944/preprints202004.0080.v. (Last accessed May 2020).

20. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Abiona O. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020;367:1260–3.

21. Butler R, de la Torre JC. The role of antibodies against the severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein in patients with pneumonia.

22. Ding Y, Deng X, Li Y, Liu T. Promising methods for detection of novel coronavirus SARS-CoV-2. VIEW 2020;1:4.

23. Broughton J, Deng X, Xu G, Fasching C, Singh J, Streithorst J, et al. Rapid detection of 2019 novel coronavirus SARS-CoV-2 using a CRISPR-based DETECTR lateral flow assay. 2020. https://doi.org/10.1101/2020.03.06.20032334.

24. Liu R, Fu A, Deng X, Li Y, Liu T. (Last accessed May 2020).

25. Patel R, Babady E, Theel ES, Storch GA, Pinsky BA, George KS, et al. Value of diagnostic testing for SARS-CoV-2/COVID-19. Report American Society for Microbio COVID-19 Int Summit 2020. https://doi.org/10.1128/mBio.00722-20. (Last accessed May 2020).

26. Zhang P, Gao Q, Wang T, Ye K, Mo F, Jia R, et al. Evaluation of recombinant nucleocapsid and spike proteins for serological diagnosis of novel coronavirus disease 2019 (COVID-19). Preprint from medRxiv, 2020. https://doi.org/10.1101/2020.03.17.20036954.

27. Liu W, Liu L, Kou G, Zheng Y, Ding Y. Evaluation of nucleocapsid and spike protein-based ELISAs for detecting antibodies against SARS-CoV-2. J Clin Microbiol 2020. https://doi.org/10.1128/JCM.00461-20.

28. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Abiona O. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020;367:1260–3.

29. Corum J, Zimmer C. Bad news wrapped in protein: inside the coronavirus genome. The New York Times Article 2020. Available from: https://www.nytimes.com/interactive/2020/04/03/science/coronavirus-genome-bad-news-wrapped-in-protein.html. (Last accessed May 2020).

30. Long Q, Liu B, Deng H, Wu G, Deng K, Chen YK, et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat Med 2020. https://doi.org/10.1038/s41591-020-0897-1.
due to the SARS coronavirus. Clin Diagn Lab Immunol 2004;11: 665–6.

38. Li Z, Yi Y, Luo X, Xiong N, Liu Y, Li S, et al. Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis. J Med Virol 2020;1–7. https://doi.org/10.1002/jmv.25727.

39. Hsueh PR, Huang LM, Chen PJ, Kao CL, Yang PC. Chronological evolution of IgM, IgA, IgG and neutralization antibodies after infection with SARS-associated coronavirus. Clin Microbiol Infect 2004;10:1062–6.

40. Okba NMA, Müller MA, Li W, Wang C, Geurts van Kessel CH, Pan Y, Li X, Yang G, Fan J, Tang Y, Zhao J, et al. Serological application of a rapid IgM-IgG combined antibody test for COVID-19 patients. Preprint from medRxiv, 2020. https://doi.org/10.1101/2020.03.18.20038059. (Last accessed May 2020).

41. Sajid M, Kawde A, Daud M. Designs, formats and applications of lateral flow assay: a literature review. J. Saudi Chem. Soc 2015;19: 689–705.

42. Wang K, Qin W, Hou Y, Xiao K. The application of lateral flow immunoassay in point of care testing: a review. Nano Biomed Eng 2016;8:172–83.

43. Liu Y, Liu Y, Diao B, Feifei R, Wang Y, Ding J, et al. Diagnostic indexes of a rapid IgG/IgM combined antibody test for SARS-CoV-2. Preprint from medRxiv, 2020. https://doi.org/10.1101/2020.03.26.20044883. (Last accessed May 2020).

44. Pan Y, Li X, Yang G, Fan J, Yang G, Zhao J, et al. Serological immunochromatographic approach in diagnosis with SARS-CoV-2 infected COVID-19 patients. J Infect 2020. https://doi.org/10.1016/j.jinf.2020.03.051.

45. Xiang J, Yan M, Li H, Liu T, Lin C, Huang S, et al. Evaluation of enzyme-linked immunoassay and colloidal gold-immunochromatographic assay kit for detection of novel coronavirus (SARS-CoV-2) causing an outbreak of pneumonia (COVID-19). Preprint from medRxiv, 2020. https://doi.org/10.1101/2020.02.27.20028787. (Last accessed May 2020).

46. Liu Y, Liu Y, Diao B, Ren F, Wang Y, Ding J, et al. Diagnostic indexes of a rapid IgG/IgM combined antibody test for SARS-CoV-2. Preprint from medRxiv, 2020. https://doi.org/10.1101/2020.03.26.20044883. (Last accessed May 2020).

47. https://www.assaygenie.com/rapid-covid19-antibody-detection-tests-principles-and-methods (Last accessed June 2020).

48. Woo PCY, Lau SKP, Wong BHL, Tsoi H, Fung AMY, Chan KH, et al. Detection of specific antibodies to severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein for serodiagnosis of SARS coronavirus pneumonia. J Clin Microbiol 2004;42:2306–9.

49. Zhang W, Duo RH, Li B, Zheng XS, Yang XL, Hu B, et al. Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerg Microb Infect 2020;9:386–9.

50. Yong G, Yi Y, Tuantuan L, Xiaowu W, Xiuyong L, Ang L, et al. Evaluation of the auxiliary diagnosis value of antibodies assays for the detection of novel coronavirus (SARS-CoV-2). Preprint from medRxiv, 2020. https://doi.org/10.1101/2020.03.26.20042044. (Last accessed May 2020).

51. SARS-CoV-2 Inhibitor screening Kit. https://www.acrobiosystems.com/static/main/products/pdf/DS/EP-105.pdf (Last accessed May 2020).

52. Senathilake KS, Samarakoon SR, Tennekoon KH. Virtual screening of inhibitors against spike glycoprotein of SARS-CoV-2: a drug repurposing approach. www.preprints.org, 2020. https://doi.org/10.20944/preprints202003.0062.v2. (Last accessed May 2020).

53. Alméciga-Díaz CJ, Pimentel-Vera LN, Caro A, Mosquera A, Moreno CAR, Rojas JP, et al. Virtual screening of potential inhibitors for SARS-CoV-2 main protease. www.preprints.org, 2020. https://doi.org/10.20944/preprints202004.0166.v1. (Last accessed May 2020).

54. https://diagnostics.roche.com/global/en/products/params/electrosys-anti-sars-cov-2.html (Last accessed June 2020).

55. Liu D, Wang J, Wu L, Huang Y, Zhang Y, Zhu M, et al. Trends in miniaturized biosensors for point-of-care testing. Trend Anal Chem 2020;122:115701. https://doi.org/10.1016/j.trac.2019.115701.

56. Zhang W, Wang R, Luo F, Wang P, Lin Z. Miniaturized electrochemical sensors and their point-of-care applications. Chin Chem Lett 2020;31:589–600.

57. Cesewski E, Johnson BN. Electrochemical biosensors for pathogen detection. Biosens Bioelectron 2020. https://doi.org/10.1016/j.bios.2020.112214.

58. Nunez-Bajo E, Kasimatis M, Cotur Y, Asfour T, Collins A, Tanriverdi U, et al. Ultra-low-cost integrated silicon-based transducer for on-site, genetic detection of pathogens. BioRxiv preprint 2020. https://doi.org/10.1101/2020.03.23.002931. (Last accessed May 2020).

59. Zhu X, Wang X, Han L, Chen T, Wang L, Li H, et al. Reverse transcription loop-mediated isothermal amplification combined with nanoparticles-based biosensor for diagnosis of COVID-19. Preprint from medRxiv 2020. https://doi.org/10.1101/2020.03.17.20037796. (Last accessed May 2020).

60. Cai X, Chen J, Hu J, Long Q, Den H, Fan K, et al. A peptide-based magnetic chemiluminescence enzyme immunoassay for serological diagnosis of corona virus disease 2019 (COVID-19). Preprint from medRxiv 2020. https://doi.org/10.1101/2020.02.22.20026617. (Last accessed May 2020).

61. Mavrikou S, Moschopoulou G, Tsokouras V, Kintzios S. Development of a portable, ultra-rapid and ultra-sensitive cell-based biosensor for the direct detection of the SARS-CoV-2 S1 spike protein antigen. Sensors 2020;20:3121.

62. Wang H, Hou X, Wu X, Liang T, Zhang X, Wang D, et al. SARS-CoV-2 proteome microarray for mapping COVID-19 antibody interactions at amino acid resolution. Preprint from bioRxiv 2020. https://doi.org/10.1101/2020.03.26.994756. (Last accessed May 2020).

63. Cui F, Zhou HS. Diagnostic methods and potential portable biosensors for coronavirus disease 2019. Biosens Bioelectron 2020;165:112349. https://doi.org/10.1016/j.bios.2020.112349.

64. Huang JC, Chang Y, Chen K, Sud L, Leea C. Detection of severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein in human serum using a localized surface plasmon fluorescence ber-optic biosensor. Biosens Bioelectron 2020. https://doi.org/10.1016/j.bios.2020.112349.