Graph Variational Autoencoder for Detector Reconstruction and Fast Simulation in High-Energy Physics

Ali Hariri
American University of Beirut
Darya Dyachkova
Minerva Schools at KGI
Sergei Gleyzer
Department of Physics and Astronomy, University of Alabama
(Dated: August 26, 2021)

Accurate and fast simulation of particle physics processes is crucial for the high-energy physics community. Simulating particle interactions in the detector is both time consuming and computationally expensive. With a proton-proton collision energy of 13 TeV, the Large Hadron Collider is uniquely positioned to detect and measure the rare phenomena that can shape our knowledge of new interactions. The High-Luminosity Large Hadron Collider (HL-LHC) upgrade will put a significant strain on the computing infrastructure and budget due to increased event rate and levels of pile-up. Simulation of high-energy physics collisions needs to be significantly faster without sacrificing the physics accuracy. Machine learning approaches can offer faster solutions, while maintaining a high level of fidelity. We introduce a novel graph generative model that provides effective reconstruction of LHC events on the level of calorimeter deposits and tracks, paving the way for full detector level fast simulation.

I. INTRODUCTION

Accurate simulations of high-energy physics (HEP) experiments play an important role in various tasks, including optimization of detector geometry, optimization of physics analyses, and searches for new phenomena beyond the Standard Model (SM) [1–3]. Typically, billions of events are simulated by HEP experiments across the many SM processes and sought-after hypothetical signals to achieve the desired performance required by the Large Hadron Collider (LHC) experiments to test the SM predictions. The uncertainty in these various analyses is directly related to number of events in the simulated samples, which leads to considerable amount of computational budget spent on simulations, frequently on a scale comparable to data processing.

The next generation of HEP experiments, such as the High-Luminosity Large Hadron Collider (HL-LHC) [4] is projected to reach a peak instantaneous luminosity of up to $7.5 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$, a factor of four increase beyond LHC Run 2. The HL-LHC goal is to collect an integrated luminosity of at least 3000 fb^{-1} in ten years of operations. At HL-LHC, the number of independent proton-proton collisions per bunch crossing ("pileup") is expected to reach a mean value of 200, a very large increase above the Run 2 mean of ~ 40.

Advanced computational paradigms, including advanced machine learning techniques and dedicated hardware that accelerates their application for detector simulation and event reconstruction, will be necessary to attain the main physics goals of the HL-LHC due to significant challenges posed by increased levels of pile-up and the rarity of sought-after signals [5].

A typical approach to fast detector simulation involves either a simplified geometry or a simplified model of interactions of particle with the detector material [6]. This is adequate for basic simulation tasks that do not require high levels of fidelity. However, for LHC experiments that rely on detailed descriptions of modern calorimeters and tracker systems, the trade-off between speed and accuracy becomes too large for practical applications.

Frequently, fast simulation approaches parametrize the detector response [7, 8]. The idea behind such group of methods is to define a phase space based on the characteristics of the physical systems and then approximate the underlying probability by repeatedly sampling from that space. The simulation is constrained by the ground truth, while the quality of the samples depends on the definition of the phase space [9]. A technique of "frozen showers" is sometimes used in calorimetry simulations, where the detailed simulated calorimeter responses are stored in an offline library for subsequent use [6, 7]. Parametrized models, such as Delphes [8], are faster than full simulation, but again due to simplifying assumptions about the detectors suffer from a loss in fidelity compared to full simulation, and are not meant to be used for advanced detector studies and analyses.

Probabilistically, the reconstruction of particle collision events is modeled using the equation:

\[
p(\text{r-particles} | \theta) = \int R(\text{r-particles} | \text{particles}) H(\text{particles} | \text{partons}) \times P(\text{partons} | \theta) \, d\text{particles} \, d\text{partons}
\]

(1)
where \(P \) is the probability density of observing a set of reconstructed objects given a point in the parameter space, \(H \) refers to the hadronization process where mapping from the parton to the particle level occurs and \(R(\text{particles}) \) is the detector response [10]. The latter is estimated using Monte Carlo-based full simulation or parametric methods.

II. RELATED WORK

The current forward simulation models, such as Geant [11] are accurate but difficult to parallelize and do not scale well with the rising computational complexity. Recent developments and successes of machine learning in high-energy physics (HEP) [5] [12] [17] have opened new possibilities for fast simulation. An active area of current research is fast detector simulation based on generative models [15], in particular Generative Adversarial Networks (GANs) [19] and Variational Autoencoders (VAEs) [20]. For example, the use of GANs for fast simulation was first proposed in [21] and further developed for many other applications [22] [25]. Similarly, VAEs have been proposed as another alternative to for fast simulation [25]. In [20], a combination of VAEs and GANs was used to simulate electromagnetic showers. These deep learning-based approaches allow a faster inference as only a forward pass through a neural network is required, while the fidelity levels have improved over time [20].

Graph neural networks have been recently applied to a number of applications in high-energy physics [27]. In contrast to other machine learning methods, graph representation learning is able to handle non-Euclidean geometry and irregular grids [28], introduce relational inductive bias into data-driven learning systems [29] and encode physics knowledge in graph construction. Particle collision events can be described by point clouds mapped into graphs. In [30], a deep learning architecture with similar properties as DGCNN in [31], ParticleNet, is applied to the challenges of top jet tagging [32] and quark/gluon tagging [33]. Other applications of graph neural networks in high-energy physics include pileup mitigation [34], particle reconstruction [35] [36] and particle tracking [37]. The Gated Graph Neural Network (GGNN) architecture for pile-up mitigation [34] has achieved good results compared to baselines, such as PUPPI [37], GRU [38] and the SoftKiller algorithm [39]. Interaction Networks from [40] have also been applied to particle track reconstruction [41]. The data from the barrel region of the detector is pre-processed by assigning cylindrical coordinates \((r, \phi, z)\) as node features and the differences between them \((\Delta \eta, \Delta \phi)\) as edge features. The model resulted in an overall relative efficiency of 95% for track finding.

In this study, we propose a novel Graph Variational Autoencoder model that combines elements of VAEs and geometric deep learning [42] in order to accurately learn a compressed representation of the data for reconstruction of high-energy physics events. More specifically, we develop a novel generative model to learn the representations of events in high dimensional space to embed such generative models into a full simulator. We further develop spatial graph convolutional layers [43] to learn the properties of the graph-like structures and spectral clustering layers to compress these graphs into smaller, more representative nodes.

III. GEOMETRIC DEEP LEARNING

A. Definition

We briefly introduce the basics of geometric deep learning relevant to this study. A graph is denoted by \(G = (V, E, A) \) where \(V \) is the set of vertices composing the graph, \(E \) the set of edges connecting these vertices, and \(A \) being an \(N \times N \) adjacency matrix, where \(N \) is the total number of nodes in the graph. Associated with each vertex \(V \) is a set of features describing it. These are given in a feature vector \(X \in \mathbb{R}^{N \times D} \) with \(D \) being the number of features per node.Let \(v_i \in V \) denote a vertex and \(e_{ij} = (v_i, v_j) \in E \) an edge connecting this vertex to a neighbor \(v_j \). \(A_{ij} \) then denotes the value \(w_{ij} \) at the \(j^{th} \) column of the \(i^{th} \) row of the adjacency matrix. In the case of a weighted adjacency matrix, \(w_{ij} \) represents the weight of an edge connecting two vertices, indicating the effect presented by \(v_j \) on \(v_i \)'s features as compared to other neighbors. An un-weighted adjacency matrix is characterized by a \(w_{ij} \) value equal to 1 if a connection exists between two vertices, and a value of 0 otherwise. The total sum of neighbors for a node \(v_i \) represents the degree of this node and is given by \(\sum_{j=0}^{n} w_{ij} \) where \(n \) is the number of neighbors. At this stage, we distinguish two types of graphs: A directed graph is one where the edges unidirectionally point from one vertex to the neighboring one. As a result, it is likely that \(w_{ij} \neq w_{ji} \) in such a case. In contrast, connectivity and edge features go both ways in an un-directed graph hence \(w_{ij} = w_{ji} \) [21].

B. Graph Networks

Early work on graph analytics used Fourier transforms and other mathematical operations to transfer to graph-based signals as shown in [44]. For instance, convolution operations that have shown great success with CNNs have been combined with spectral graph theory as a first attempt to convolve non-structured data [45]. In [46], spectral graph convolution, a graph-based convolution operation with origins in graph signal processing and graph theory is introduced. An \(N \times N \) adjacency matrix \(A \) defines the topology of the graph, i.e. the edge connections between the nodes. A feature vector \(X \) of shape \(N \times F \) represents the node features of dimension \(F \). Spectral graph convolution is performed by first obtaining
the normalized graph Laplacian whose eigenvectors form the basis of the orthonormal space to which the graph Fourier-transformed input signals are projected. Next, the graph convolution operation is defined as a dot product between the transformed graph signals and a spectral kernel with trainable parameters \[47\]. The latter can be expressed as a truncated expansion of Chebyshev polynomials as done in \[48\].

\[
g_\theta(\Lambda) = \sum_{k=0}^{K-1} \theta_k T_k(\hat{\Lambda})
\]

where \(\hat{\Lambda} = \frac{2}{\lambda_{max}} - \Lambda - I_n\), \(\lambda_{max}\) being the largest eigenvalue in \(\Lambda\).

The kernel \(g_\theta\) is applied to the diagonal matrix of eigenvalues. \(\Theta\) is a vector containing Chebyshev coefficients to reduce the number of parameters, \(T\) contains Chebyshev polynomials and \(K\) is the order of neighborhood away from a given node to be covered.

C. Spatial graph convolution

Spectral-based graph convolution architectures such as GCN \[46\] and CayleyNets \[49\] have shown notable success in several tasks such as image classification and citation networks. Nevertheless, these models are associated with high computational cost with relatively high time and memory complexity due to operations such as the computation of the diagonal degree matrix. More recent approaches consider spatial-based convolution operations whereby the node features are updated with message passing between the neighbouring nodes over k neighborhoods. In \[50\], Message Passing Neural Networks (MPNNs) operate on the QM9 dataset for chemical properties prediction, achieving low mean absolute error. Interaction Networks were also used to study more dynamic phenomena in simulation scenarios \[40\]. Such methods require message passing between the nodes over K iterations in order to map the initial node features \(h_0\) at timestep 0 to \(h_t\) at timestep t. A general formulation of a message passing process is given by:

\[
h^k_u = U_k(h^{(k-1)}_v, \sum_{u \in N(v)} M_k(h^{(k-1)}_v, h^{(k-1)}_u, x_{vu}))
\]

where \(U_k(.)\) and \(M_k(.)\) are functions with trainable parameters \[47\]. By comparison, spatial convolution architectures are more efficient in time and memory complexity than spectral-based convolution as shown in \[47\]. A wide variety of message passing GNNs exist, some of which perform random neighbourhood sampling for faster operations on smaller neighbor samples such as GraphSAGE \[51\] while others add attention mechanisms to the architecture resulting in better accuracy \[52\].
Input arrays

SAGE

MINCUT

POOLING

Non-zeros

{'X', 'A'}

X

A

SAGE

\(\mu \)

\(\sigma \)

LINEAR

LINEAR

Reparametrize

Reconstructed Jets

(Batch size, 1000, 3)

MinCut spectral pooling approach defined in [58].

\[
X^{\text{rec}} = SX^{\text{Pooled}}; A^{\text{rec}} = SA^{\text{Pooled}} S^T
\]

where S is a learned cluster assignment matrix similar to the one defined in [58]. A pictorial representation of the GVAE model is given in Figure 2.

VI. RESULTS

We trained the Graph Variational Autoencoder model on a Tesla T4 GPU on Google Colaboratory [59] to learn the representations of top quark-initiated jets. Figure 3 provides a visual comparison between the original fully-simulated events in the top row and the GVAE reconstructed events in the bottom row. A visual assessment shows a high degree of similarity between the GVAE reconstruction and the original simulation. Using the Earth Mover Distance metric [60] to quantify the cost of displacing the point clouds of the original events to the reconstructed events (Figure 4) we visualize the performance of the sample. The EMD metric refers to the "work" required to convert one event \(\varepsilon \) into another \(\varepsilon' \) by moving energy between particles \(i \) and \(j \) in the two events. It is described by the following equation:

\[
EMD(\varepsilon, \varepsilon') = \min_{\{f_{ij}\}} \sum_{ij} f_{ij} \frac{\theta_{ij}}{R} + \sum_i E_i - \sum_j E'_j
\]

\[
f_{ij} \geq 0, \quad \sum_j f_{ij} \leq E_i, \quad \sum_i f_{ij} \leq E'_j, \quad \sum_{ij} f_{ij} = E_{\text{min}}
\]

The EMD distribution indicates good agreement across the full sample of events. The model achieves an average inference time of 0.13088 seconds over several runs on a batch size of 64, which is an order of magnitude below full reconstruction times for simulation of top quark pair events, typically of the order of tens of seconds, while maintaining a very high level of fidelity.

A. Multi-GPU Scaling

We also investigate how the GVAE model scales on multiple GPU devices. We first profile the code to monitor the process load taking place in CPUs and GPUs. To avoid a potential data-loading bottleneck, we generate batches of graphs on the spot in the CPU prior to sending them to the GPU. This change has reduced the training time by 50%. After performing baseline training on a single Tesla V100 GPU, we scaled the model with Horovod [61], a deep learning library for distributed training of deep learning models that supports PyTorch [62], TensorFlow [63] and MXNet [64]. This framework facilitates distributed training across multiple GPUs using the Message Passing Interface (MPI) and takes as input the size parameter referring to the number of processes P in training, followed by the Rank parameter.
unique to process and numerated from 0 to P-1. Finally, LocalRank indicates the unique process ID within each device (0 to NGPUS).

We used NVIDIA’s Automatic Mixed Precision (AMP) library [65] that enables mixed precision training of deep learning models with support to distributed parallel training. This approach has the potential to boost the speedup of model training by enabling the support of FP16 operations throughout the model’s layers. This step offers several benefits such as the reduction in required memory for FP16 as compared to 32-bit floating points, faster data transfer and linear algebra operations with lower precision formats. Using multi-GPU scaling methods allows us to additionally speed-up the performance during training and inference, something that is very challenging to accomplish with present simulation methods.

We train the GVAE model on a cluster using Volta V100 GPUs with 16 GB of RAM. Following profiling and code optimization for enhanced CPU performance, the training is scaled on multiple GPUs using the Horovod library. We compare the results to the training on a single GPU with a batch size of 32 for 100 iterations, i.e a total of 3200 graph samples (Figure 5).

We would like to thank Michael Andrews, Bjorn Burkle and Daria Morozova for useful discussions. We additionally thank Mozhgan Kabiri Chimeh from NVIDIA in addition to Giuseppe Fiameni and Christian Hundt from the NVIDIA AI Technology Center (NVAITC) for support during a GPU hackathon that enabled us to study multi-GPU scaling. S. G. has conceived the overall idea, contributed to algorithmic design and co-wrote the manuscript. A. H. developed the non-graph autoencoder that has informed the group regarding the specificity of the latent space of the data features, as well as wrote the dataloading, partial preprocessing, and Earth Mover Distance evaluation scripts. A. H. was partially supported by an IRIS-HEP fellowship through the U.S. National Science Foundation (NSF) under Cooperative Agreement OAC-1836650. A. H. is also a participant in the Google Summer of Code 2021 Program. S. G. is supported by U.S. Department of Energy (DOE) under Award No. DESC0012447.

VII. CONCLUSION

In this work we explore a novel graph-based generative architecture for learning the representation of high-energy collision events. The use of graph representation aligns well with the sparsity of the particle detectors hits. Through spatial convolution the GVAE model was able to learn the interactions between hits in the detector, while mincut pooling sequentially compressed it, preserving the most representative nodes in latent space. Finally, a trained decoder can be used to upsample the compressed vectors to generate new events for fast detector simulation. We additionally benchmarked the GVAE model on single and multiple GPUs, obtaining low latency and efficient multi-GPU scaling performance.

VIII. ACKNOWLEDGMENTS

We train the GVAE model on a cluster using Volta V100 GPUs with 16 GB of RAM. Following profiling and code optimization for enhanced CPU performance, the training is scaled on multiple GPUs using the Horovod library. We compare the results to the training on a single GPU with a batch size of 32 for 100 iterations, i.e a total of 3200 graph samples (Figure 5).

We notice an increase in the performance with an increase in the GPU devices used. To calculate the resulting speedup, we take as reference the Mean Execution Time (MET) resulting from training on one GPU. For NGPUS = 2, MET is 85.48 seconds. Bearing in mind that we are training twice the amount of data overall, we get MET per GPU = 42.74 seconds. The resulting speedup for NGPUS = 2 is given by

\[
\frac{MET_{single\,GPU}}{MET_{per\,GPU\,using\,NGPUS}} = \frac{69.34}{42.74} = 1.62 \quad (7)
\]

Applying the same speedup calculation, going from 2 to 4 GPUs, we obtain a speedup factor of 1.62, 2.19 and 2.73, respectively. We conclude that the GVAE model scales well on multiple GPUs using Horovod, a useful result for future work and similar graph generative models. However, there is still some loss in scaling performance due to parallelization efficiency that can be explained by inefficient communication between the GPUs once parallel batch training has been done. This can be overcome by programming the kernel directly. Further optimization is deferred to future work.
[1] António P Morais, Stefano Moretti, and Roman Pasechnik. Phenomena beyond the standard model: What do we expect for new physics to look like? *Frontiers in Physics*, 8:209, 2020.

[2] Yoshitaka Kuno and Yasuhiro Okada. Muon decay and physics beyond the standard model. *Reviews of Modern Physics*, 73(1):151, 2001.

[3] James Beacham, Clare Burrage, David Curtin, Albert De Roeck, J Evans, Jonathan L Feng, Corrado Gatto, S Gninenko, Anthony Hartin, Igor Istratorza, et al. Physics beyond colliders at cern: beyond the standard model working group report. *Journal of Physics G: Nuclear and Particle Physics*, 47(1):010501, 2019.

[4] G Apollinari, I Béjar Alonso, O Brüning, M Lamont, and L Rossi. High-Luminosity Large Hadron Collider (HL-LHC) : Preliminary Design Report. *CERN-2015-005, FERMILAB-DESIGN-2015-02*, 2015.

[5] K. Albertsson et al. Machine Learning in High Energy Physics Community White Paper. *arXiv e-prints*, Jul 2018.

[6] Lukas Wolfgang. Fast simulation for atlas: Atlfast-ii and isf. *Journal of Physics: Conference Series*, 396(2), 2012.

[7] Takashi Yamanaka and. The ATLAS calorimeter simulation FastCaloSim. *Journal of Physics: Conference Series*, 331(3):032053, dec 2011.

[8] J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemaitre, A. Mertens, and M. Selvaggi. Delphes 3, 331(3):032053, dec 2011.

[9] Jonathan L Feng, Corrado Gatto, S Gninenko, Anthony Hartin, Igor Istratorza, et al. Physics beyond colliders at cern: beyond the standard model working group report. *Journal of Physics G: Nuclear and Particle Physics*, 47(1):010501, 2019.

[10] G Brooijmans et al. Les Houches 2015: Physics at TeV Colliders. *9th Les Houches Workshop on Physics at TeV Colliders*, 5 2016.

[11] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally connected networks on graphs. 2013.

[12] Patrick T. Komiske, Eric M. Metodiev, and Jesse Thaler. Energy flow networks: deep sets for particle jets. *Journal of High Energy Physics*, 120(4), Jan 2018.

[13] Daniel Guest, Kyle Cranmer, and Daniel Whiteson. Deep learning and its application to lhc physics. *Annual Review of Nuclear and Particle Science*, 68(1):161–181, 2018.

[14] Aishik Ghosh. Deep generative models for fast shower simulation in ATLAS. *POWHEG-BOX*, 2017.

[15] Riccardo Di Sipio, Michele Faucci Giannelli, Sana Ketabchi Haghighat, and Serena Palazzo. DijetGAN: a Generative-Adversarial Network approach for the simulation of QCD dijet events at the LHC. *Journal of High Energy Physics*, 2019(8), Aug 2019.

[16] Michela Pagani, Luke de Oliveira, and Benjamin Nachman. CaloGAN: Simulating 3D high energy particle showers in multilayer electromagnetic calorimeters with generative adversarial networks. *Physical Review D*, 97(1), Jan 2018.

[17] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Huilin Qu and Loukas Gouskos. Jet tagging via particle classification, energy regression, and simulation for high-energy physics beyond the standard model. *Reviews of Modern Physics*, 2018.

[18] Anja Butter and Tilman Plehn. Generative networks for lhc events, 2020.

[19] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversarial Networks, 2014.

[20] D. Kingma and M. Welling. An introduction to variational autoencoders. *Foundations and Trends in Machine Learning*, Vol. 12 (2019) No. 4:pp 307–392, 2019.

[21] Gregor Kasieczka, Tilman Plehn, Jennifer Thompson, and Michael Russel. Top quark tagging reference dataset, 2019.

[22] Dhruv Batra, Jeff Donahue, and Agata Lapedriza. Deloading image datasets. *arXiv preprint arXiv:1603.08278*, 2016.

[23] Michela Paganini, Luke de Oliveira, and Benjamin Nachman. Accelerating science with generative adversarial networks: An application to 3d particle showers in multilayer calorimeters. *Physical Review Letters*, 2018.

[24] Antoine P Morais, Stefano Moretti, and Roman Pasechnik. Phenomena beyond the standard model: What do we expect for new physics to look like? *Frontiers in Physics*, 8:209, 2020.

[25] E. Buhmann, S. Diefenbacher, E. Eren, F. Gaede, G. Kasieczka, A. Korol, and K. Krüger. Getting high: High fidelity simulation of high granularity calorimeters with high speed. *arXiv preprint arXiv:2005.05334*, 2020.

[26] Ingrid Monroy, C. Delaere, P. Demin, A. Giammanco, V. Lemaitre, A. Mertens, and M. Selvaggi. Delphes 3, 2018.

[27] Anna K. Buonincontri, E. Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally connected networks on graphs. 2013.

[28] Patrick T. Komiske, Eric M. Metodiev, and Jesse Thaler. Energy flow networks: deep sets for particle jets. *Journal of High Energy Physics*, 120(4), Jan 2018.

[29] IJ Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversarial Networks, 2014.

[30] D. Kingma and M. Welling. An introduction to variational autoencoders. *Foundations and Trends in Machine Learning*, Vol. 12 (2019) No. 4:pp 307–392, 2019.

[31] Michela Pagani, Luke de Oliveira, and Benjamin Nachman. Accelerating science with generative adversarial networks: An application to 3d particle showers in multilayer calorimeters. *Physical Review Letters*, 2018.

[32] Aishik Ghosh. Deep generative models for fast shower simulation in ATLAS. Technical report, CERN, Geneva, Jun 2019.

[33] E. Buhmann, S. Diefenbacher, E. Eren, F. Gaede, G. Kasieczka, A. Korol, and K. Krüger. Getting high: High fidelity simulation of high granularity calorimeters with high speed. *arXiv preprint arXiv:2005.05334*, 2020.

[34] J. Shlomi, P. Battaglia, and J. R Vlimant. Graph neural networks in particle physics. *Machine Learning: Science and Technology*, 2(2), 021001, 2020.

[35] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally connected networks on graphs. 2013.

[36] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, and Ryan Faulkner. Relational inductive biases, deep learning, and graph networks. 2018.

[37] Huilin Qu and Loukas Gouskos. Jet tagging via particle clouds. *Physical Review D*, 101(5), Mar 2020.

[38] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M. Solomon. Dynamic graph cnn for learning on point clouds, 2019.

[39] Gregor Kasieczka, Tilman Plehn, Jennifer Thompson, and Michael Russel. Top quark tagging reference dataset, 2019.

[40] Patrick T. Komiske, Eric M. Metodiev, and Jesse Thaler. Energy flow networks: deep sets for particle jets. *Journal of High Energy Physics*, 2019(1), Jan 2019.

[41] Jesus Arjona Martinez, Olmo Cerri, Maurizio Pierini, Maria Spiropulu, and Jean-Roch Vlimant. Pileup mitigation at the large hadron collider with graph neural networks. *Machine Learning: Science and Technology*, 2021(3):1–50, 2021.
networks, 2019.
[35] Xiangyang Ju, Steven Farrell, Paolo Calaﬁura, Daniel Murnane, Prabhat, Lindsey Gray, Thomas Klijnsma, Kevin Pedrò, Giuseppe Cerati, Jim Kowalkowski, Gabriel Perdue, Panagiotis Spentzouris, Nhan Tran, Jean-Roch Vlimant, Alexander Zlokapa, Joosep Pata, Maria Spriopulu, Sitong An, Adam Aurisano, Jeremy Hewes, Aristeidis Tsaris, Kazuhiro Terao, and Tracy Usher. Graph neural networks for particle reconstruction in high energy physics detectors, 2020.
[36] Shah Rukh Qasim, Jan Kieseler, Yutaro Iiyama, and Maurizio Pierini. Learning representations of irregular particle-detector geometry with distance-weighted graph networks. *The European Physical Journal C*, 79(7), Jul 2019.
[37] Daniele Bertolini, Philip Harris, Matthew Low, and Nhan Tran. Pileup per particle identification. *Journal of High Energy Physics*, 2014(10), Oct 2014.
[38] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of gated recurrent neural networks on sequence modeling. *arXiv preprint arXiv:1412.3555*, 2014.
[39] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. Softkiller, a particle-level pileup removal method. *The European Physical Journal C*, 75(2), Feb 2015.
[40] Peter W. Battaglia, Razvan Pascanu, Matthew Lai, Danilo Rezende, and Koray Kavukcuoglu. Interaction networks for learning about objects, relations and physics, 2016.
[41] Gage DeZoort, Savannah Thais, Isobel Ojalvo, Peter Elmer, Vasel Razavimaleki, Javier Duarte, Markus Atkinson, and Mark Neubauer. Charged particle tracking via edge-classifying interaction networks, 2021.
[42] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng Li, and Maosong Sun. Graph Neural Networks: A Review of Methods and Applications. *arXiv e-prints*, page arXiv:1812.08434, December 2018.
[43] T. Danel, P. Spurek, J. Tabor, M. Smieja, L. Struski, A. Slowik, and L. Maziarka. Spatial graph convolutional networks. *arXiv e-prints*, arXiv-1909, 2019.
[44] Siheng Chen, Rohan Varma, Aliaksei Sandryhaila, and Jelena Kovacevic. Discrete signal processing on graphs: Sampling theory. *IEEE Transactions on Signal Processing*, 63(24):6510–6523, Dec 2015.
[45] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally connected networks on graphs, 2014.
[46] Thomas N. Kipf and Max Welling. Semi-supervised classiﬁcation with graph convolutional networks, 2017.
[47] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A comprehensive survey on graph neural networks. *IEEE Transactions on Neural Networks and Learning Systems*, 32(1):4–24, Jan 2021.
[48] David K Hammond, Pierre Vandergheynst, and Rémi Gribonval. Wavelets on graphs via spectral graph theory, 2009.
[49] Ron Levie, Federico Monti, Xavier Bresson, and Michael M. Bronstein. Cayleynets: Graph convolutional neural networks with complex rational spectral filters, 2018.
[50] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural message passing for quantum chemistry, 2017.
[51] W. Hamilton, R. Ying, and J. Leskovec. Inductive representation learning on large graphs. *Conference Notes from 31st Conference on Neural Information Processing Systems*, 2017.
[52] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio. Graph attention networks, 2018.
[53] CERN Open Data Portal. http://opendata.cern.ch.
[54] Torbjörn Sjöstrand, Stephen Mrenna, and Peter Skands. Pythia 6.4 physics and manual. *Journal of High Energy Physics*, 2006(05):026, 2006.
[55] M. Andrews, M. Paulini, S. Gleyzer, and B. Poczos. End-to-End Physics Event Classiﬁcation with the CMS Open Data: Applying Image-based Deep Learning on Detector Data to Directly Classify Collision Events at the LHC. *Computing and Software for Big Science*, 4(1):1–14, 2020.
[56] M. Andrews, J. Alison, S. An, B. Burkle, S. Gleyzer, M. Narain, M. Paulini, B. Poczos, and E. Usai. End-to-end jet classiﬁcation of quarks and gluons with the CMS Open Data. *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*, 977:164304, Oct 2020.
[57] T. Kipf and M. Welling. Variational graph auto-encoders. 2016.
[58] F. Bianchi, D. Grattarola, and C. Alippi. Spectral clustering with graph neural networks for graph pooling. *Proceedings of Machine Learning Research*, 2010.
[59] Ekaba Bisong. Google Colaboratory, pages 59–64. 09 2019.
[60] P. Komiske, E. Metodiev, and J. Thaler. The metric space of collider events. *Physical review letters*, 123(4), 041801, 2019.
[61] Alexander Sergeev and Mike Del Balso. Horovod: fast and easy distributed deep learning in tensorflow. *arXiv preprint arXiv:1802.05799*, 2018.
[62] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep learning library. *Advances in neural information processing systems*, 32:8026–8037, 2019.
[63] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-scale machine learning. In *12th {USENIX} symposium on operating systems design and implementation* (OSDI 16), pages 265–283, 2016.
[64] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. Mxnet: A ﬂexible and efﬁcient machine learning library for heterogeneous distributed systems. *arXiv preprint arXiv:1512.01274*, 2015.
[65] Automatic mixed precision for deep learning. http://https://developer.nvidia.com/automatic-mixed-precision