Variational Hilbert-space-truncation approach to quantum Heisenberg antiferromagnets on frustrated clusters

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation	Modine, N. A., and Efthimios Kaxiras. 1996. “Variational Hilbert-Space-Truncation Approach to Quantum Heisenberg Antiferromagnets on Frustrated Clusters.” Physical Review B 53 (5): 2546–55. https://doi.org/10.1103/physrevb.53.2546.
Citable link	http://nrs.harvard.edu/urn-3:HUL.InstRepos:41384074
Terms of Use	This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Variational Hilbert space truncation approach to quantum Heisenberg antiferromagnets on frustrated clusters

N. A. Modine and Efthimios Kaxiras

Department of Physics, Harvard University, Cambridge MA 02138

(May 27, 2018)

Abstract

We study the spin-$\frac{1}{2}$ Heisenberg antiferromagnet on a series of finite-size clusters with features inspired by the fullerenes. Frustration due to the presence of pentagonal rings makes such structures challenging in the context of quantum Monte-Carlo methods. We use an exact diagonalization approach combined with a truncation method in which only the most important basis states of the Hilbert space are retained. We describe an efficient variational method for finding an optimal truncation of a given size which minimizes the error in the ground state energy. Ground state energies and spin-spin correlations are obtained for clusters with up to thirty-two sites without the need to restrict the symmetry of the structures. The results are compared to full-space calculations and to unfrustrated structures based on the honeycomb lattice.

PACS 75.10.Jm
I. INTRODUCTION

The spin-$\frac{1}{2}$ Heisenberg antiferromagnet (HAFM) has long been studied as a simple example of a strongly interacting quantum many-body system. Recently, it has attracted considerable attention in the context of the copper oxide high-temperature superconductors. The Hamiltonian of the HAFM is given by

$$H = J \sum_{\langle i,j \rangle} \vec{S}_i \cdot \vec{S}_j \equiv J \sum_{\langle i,j \rangle} S^z_i S^z_j + \frac{1}{2} \left(S^+_i S^-_j + S^-_i S^+_j \right)$$

(1)

where J takes positive values, $\langle i, j \rangle$ refers to nearest neighbor pairs, \vec{S}_i is the spin operator for a spin-$\frac{1}{2}$ located at site i, and S^+_i and S^-_i are the corresponding raising and lowering operators. The operator $S^+_i S^-_j + S^-_i S^+_j$ exchanges antiparallel spins, but vanishes when applied to a pair of parallel spins. The terms of this type produce off-diagonal matrix elements equal to $\frac{J}{2}$ between basis states (i.e. spin configurations) that are related by a single exchange of nearest neighbor spins. The terms of the form $S^z_i S^z_j$ combine to give a diagonal matrix element for each state equal to $\frac{J}{4}$ times the difference between the number of parallel nearest neighbor spins and the number of anti-parallel nearest neighbor spins in that configuration. Despite the simplicity of the model, no analytic solutions have been found for nontrivial structures except in one dimension.

Since the Hamiltonian is invariant under uniform rotations of the spins, one can choose its eigenstates to be simultaneous eigenstates of the operators \vec{S}_T^2 and S_T^z, where \vec{S}_T is the total spin. For a system containing an even number of spins n, whatever the ground state value of \vec{S}_T^2, there is always a ground state with $S_T^z = 0$. Therefore, a ground state can always be found in the subspace spanned by the

$$N_{total} = \frac{n!}{(n/2)! (n/2)!}$$

(2)

basis states with an equal number of up and down spins. The generalization to an odd number of spins is straightforward. Since the Hamiltonian is real, the ground state eigenvector can be chosen to be real.
In this paper, we solve this model for a series of structures that embody the basic structural features of the fullerenes, which are spherical shells of threefold coordinated carbon atoms arranged in pentagonal and hexagonal rings. It can be shown that every such structure must have twelve pentagonal faces. The total number of sites can be varied by changing the number of hexagons. The smallest such structure contains no hexagons and has 20 sites. Figure 1 shows several fullerene related structures that we discuss in this paper. We shall refer to the structures in Fig. 1 (a)–(e) as F-20, F-24, F-26, F-28, and F-32, respectively. For simplicity, we shall treat all of the bonds in these structures as equivalent even though in actual carbon clusters they may differ. On a pentagonal ring, it is impossible to arrange all spins in an antiferromagnetic pattern. This introduces frustration in the classical ground state where nearest neighbor spins would prefer to be antiparallel. For comparison, we also study several unfrustrated structures that are derived from the honeycomb lattice by applying periodic boundary conditions. These structures are shown in Fig. 2 (a)–(c). We refer to these structures as H-18, H-24, and H-26, respectively. These structures have toroidal topology rather than the spherical topology of the frustrated structures. Table I summarizes the geometrical features of the structures that we investigate.

A group of powerful techniques used to investigate quantum many-body systems such as the HAFM are based on quantum Monte-Carlo methods. In systems with frustration, these methods either require the summation of a very large number of terms with alternating signs (known as the sign problem) or depend on a “guiding” wavefunction which must be properly guessed. Here we use a different approach based on exact diagonalization of the Hamiltonian matrix. This approach has the advantage of not being affected by the sign problem, but is limited to rather small system sizes because the number of states in the Hilbert space grows exponentially with the size of the system. For example, in Table I we list the number of states in the $S_{TOT}^z = 0$ subspace for each cluster that we investigate. Thus, it takes a major increase in either computer power or efficiency of the algorithm to get a modest increase in the size of system that can be investigated.

Using exact diagonalization techniques, modern computers can handle systems with ≤ 36
spins. A 36 spin system has about 9 billion basis states in the subspace with $S_{TOT}^z = 0$. The Hamiltonian matrix is sparse and has only about 300 billion nonzero entries for this size system. Memory constraints make it difficult to store this matrix. The symmetries of the structure must be used to reduce the size of the basis space in order to make calculations tractable. The usefulness of symmetrization depends on how many mutually commuting symmetry operations can be found. Symmetry is most useful for lattices where all translations commute, such as the square lattice. Even noncommuting symmetries could be easily exploited if the ground state was known to transform according to the identity representation of the symmetry group. This can not be assumed to be the case for the frustrated HAFM. To our knowledge, the largest structure that has been solved using exact diagonalization and taking advantage of all of its symmetries is the 36-site square lattice. It would be very difficult to find the ground state of a structure with the same size and a lower number of commuting symmetries without approximation.

One way to manage larger systems is to restrict the wavefunction to the space spanned by a subset of the basis states. In this approach, the problem is transformed into finding a subspace that accurately approximates the full-space result, but that is small enough to be handled computationally. In this paper, we variationally optimize the truncation of the Hilbert space, and exactly diagonalize within the truncated space. The rest of the paper is organized as follows: section II contains a justification for our choice of optimal wavefunction and truncated space, section III discusses the ground state properties that we obtain with this approach for a series of frustrated and honeycomb clusters, and section IV summarizes our conclusions.

II. CHOICE OF TRUNCATION

Consider a truncation of the space to the basis states \{\ket{\alpha_1}, \ket{\alpha_2}, \ldots, \ket{\alpha_{N_{\text{trunc}}}}\} where $N_{\text{trunc}} < N_{\text{total}}$. Define a truncated Hamiltonian that consists of those elements of the original Hamiltonian that connect states retained in the truncated space. Let
\(E(\{\alpha_1, \alpha_2, \ldots, \alpha_{N_{\text{trunc}}}\}) \) denote the smallest eigenvalue of the truncated Hamiltonian. We define the optimal truncation as the one that minimizes \(E \) with respect to all sets with \(N_{\text{trunc}} \) basis states. By the variational principle, the ground state wavefunction of the corresponding truncated Hamiltonian is the wavefunction that, subject to the constraint of vanishing for all but \(N_{\text{trunc}} \) states, minimizes the expectation of the full Hamiltonian. Therefore, \(E \) for the optimal truncation is the smallest possible variational upper bound on the true ground state energy that can be obtained using trial wavefunctions that have no more than \(N_{\text{trunc}} \) nonzero components.

The minimization over sets of basis states is accomplished using a stochastic search: An initial truncation is chosen and the ground state energy of the corresponding truncated Hamiltonian is found using the Lanczos method. Moves in the stochastic search consist of adding states to the space and eliminating others while keeping the overall number of states fixed. The Lanczos method is used at each step to find the ground state energy for the new truncation, and the move is accepted or rejected according to a Metropolis algorithm. This procedure is repeated until all new moves are rejected, in which case a minimum of \(E(\{\alpha_1, \alpha_2, \ldots, \alpha_{N_{\text{trunc}}}\}) \) has been found. If this is the global minimum, the resulting truncation is the ideal truncation. We have found no evidence that the procedure gets trapped in local minima.

For systems that are small enough that the full problem can be solved, we have also applied an alternative truncation procedure for purposes of comparison with our variational scheme. This consists of keeping only the basis states that have the largest weights in the full-space ground state solution and varying the cutoff weight below which states are excluded from the basis. The energy obtained from this alternative procedure must be greater than or equal to the variational result, but the wavefunction from this alternative procedure is expected to be closer to the true ground state. Therefore, this alternative procedure might be expected to yield better results for correlation functions. A comparison of results obtained using these two independent methods helps to assure that the variational procedure is converging properly and shows that the procedure produces reasonable correlation
functions.

In order to optimize the variational search, it is necessary to bias the selection of the states to be added to, or eliminated from, the truncated basis during each step. The procedure proposed here is analogous to force-bias Monte Carlo. In our case, the equivalent of the force in a particular direction is the difference between the energy when a particular state $|\beta\rangle$ is included in a truncation and the energy when the state is not included in the truncation:

$$\nabla_\beta E(\{\alpha_1, \alpha_2, \ldots, \alpha_{N_{\text{trunc}}}\}) \equiv E(\{\alpha_1, \alpha_2, \ldots, \alpha_{N_{\text{trunc}}}, \beta\}) - E(\{\alpha_1, \alpha_2, \ldots, \alpha_{N_{\text{trunc}}}\}).$$ \hspace{1cm} (3)

In force-bias Monte Carlo, the force is a function of the configuration of the system, and correspondingly $\nabla_\beta E$ is a function of the set of states included in the truncation. In our case, since each state is either included or not included, we must take

$$\nabla_\beta E(\{\alpha_1, \alpha_2, \ldots, \alpha_{N_{\text{trunc}}}, \beta\}) \equiv \nabla_\beta E(\{\alpha_1, \alpha_2, \ldots, \alpha_{N_{\text{trunc}}}\}).$$ \hspace{1cm} (4)

$\nabla_\beta E$ can be estimated easily for each β using the solution from the previous truncation: We denote the states that are included in the previous truncation as internal states, and the remaining states of the full Hilbert space as external states. The internal states are the states that could be eliminated from the previous truncation in the process of forming the new truncation, while the external states are the states that could be added. For each internal state, we wish to calculate the change in the variational energy caused by eliminating it from the previous truncation. Let the ground state wavefunction for the previous truncation be $|\Psi_0\rangle$ and let $\psi_\beta = \langle \beta | \Psi_0 \rangle$. We approximate the ground state of the truncation with the state $|\beta\rangle$ eliminated by assuming that the rest of the wavefunction remains unchanged except for an overall normalization factor,

$$|\Psi_{0-\beta}\rangle = \frac{|\Psi_0\rangle - \psi_\beta |\beta\rangle}{\sqrt{1 - |\psi_\beta|^2}}.$$ \hspace{1cm} (5)

To first order in $|\psi_\beta|^2$ this approximation gives,

$$\nabla_\beta E = E_0 - \langle \Psi_{0-\beta} | H | \Psi_{0-\beta} \rangle = |\psi_\beta|^2 (E_0 - H_{\beta\beta})$$ \hspace{1cm} (6)
where $H|\Psi_0\rangle = E_0|\Psi_0\rangle$ and $H_{\beta\beta} = \langle\beta|H|\beta\rangle$. Similarly, the effect of adding an external state is approximated using second order perturbation theory as:

$$\nabla_\beta E = \frac{|\langle\beta|H|\Psi_0\rangle|^2}{E_0 - H_{\beta\beta}}.$$ \hspace{1cm} (7)

Note that $\nabla_\beta E$ will be zero if $|\beta\rangle$ is neither an internal state nor an external state that is connected by the Hamiltonian to an internal state. Depending on the stage of the variational procedure, a set of trial states is chosen which either contains all of the states for which $\nabla_\beta E$ is nonzero, or a randomly chosen subset of such states. $\nabla_\beta E$ is calculated for this set, and the new truncation is formed by taking the states with the largest values. Choosing a random subset of trial states introduces a stochastic element into the computation and effectively reduces the variational step size. During a minimization procedure where the full set of trial states is used at every step, a move will eventually be rejected in the Monte-Carlo evaluation. Further iterations beyond this point will simply generate the same move. This is similar to a gradient minimization with a fixed step size where the step overshoots the minimum. Here, since each state is either included or not included, it is impossible to reduce the step size in the usual sense. Instead, the step size can be effectively reduced by using a randomly chosen subset of the components of the gradient. The fastest minimization is achieved by using all of the trial states until the first move is rejected, and then considering a random subset which is gradually reduced in size. For the HAFM model considered in this paper, we found that our move selection algorithm was so effective that additional moves after the first rejected move produced minimal improvements in the energy. Accordingly, we stop the variational procedure when the first move is rejected.

The idea of iterative improvement of a Hilbert space truncation using perturbative estimates of the importance of new states has a long history in the quantum chemistry literature. In addition, for this class of problems, the final truncated results are typically corrected with a perturbative treatment of the remaining states. Extrapolation methods are also frequently used. Such methods would likely be a useful addition to our method, but since the emphasis of this paper is on a variational approach, we have avoided such cor-
rections. Iterative improvement of a Hilbert space truncation has also been studied in the context of quantum lattice models. De Raedt and von der Linden estimated the importance of a new basis state by means of the energy lowering obtained from a Jacobi rotation involving the state. Riera and Dagotto added basis states that are connected by the Hamiltonian to states with a large weight in the current truncated solution. In this previous work, the basis is expanded by adding selected new states until either the desired quantities converge or computational limits are reached. In contrast, our emphasis is on finding the optimal basis of a given size. Working with a constant size basis has two advantages:

1. It allows us to define the optimal basis in an unambiguous manner and to express the problem of finding this optimal basis as a minimization problem. This makes it possible to harness the full power of the Metropolis algorithm and the simulated annealing approach.

2. It allows us to tackle problems with no clear hierarchy of importance among the basis states. In quantum chemistry, there is a hierarchy of states in which higher excitations are progressively less important. In contrast, the frustrated HAFM lacks any clear a priori hierarchy among the basis states. As a result, truncation can induce level crossings and change the character (e.g. the symmetry) of the ground state. If a basis selection process were to start with an incorrect ground state, augmentation of the truncation runs the risk of not selecting the basis states that are important for the true ground state. This makes it likely that the true ground state would never be found. By working with a basis of a constant size, which is variationally optimized, we avoid this problem.

The effectiveness of the variational Hilbert space truncation procedure can be demonstrated by comparing its results to those obtained from the full-space solution. Define the fractional error in the energy for a given truncation by

\[
\delta \epsilon \left(\{ \alpha_1, \alpha_2, \ldots, \alpha_{N_{\text{trunc}}} \} \right) = \frac{E \left(\{ \alpha_1, \alpha_2, \ldots, \alpha_{N_{\text{trunc}}} \} \right) - E_{N_{\text{total}}}}{E_{N_{\text{total}}}}, \tag{8}
\]

where \(E_{N_{\text{total}}} \) is the full-space ground state energy. Figure 3 shows \(\delta \epsilon \) for the truncation resulting from the variational truncation procedure and the truncation resulting from keeping the states with the largest weights in the full-space solution. The energies found using the
variational procedure are just slightly below those found by truncating based on the full-space solution. The fact that the variational energies are the lowest energies indicates that the variational minimization is converging properly. The closeness of the two results indicates that our definition of a best truncation is successful in capturing the most important parts of the full-space wavefunction. The difference between the two results grows as the retained fraction of the space diminishes and as the physical system gets smaller, but it stays relatively insignificant except for the smallest truncation size of the smallest structure. For example, retaining only $\frac{1}{6}$ of the basis states of the F-20 structure results in only about 1 percent error in the energy. Note that in order to get the same fractional error, a smaller fraction of the basis vectors is required for the larger systems. As a result, the number of states that must be retained in the truncated space grows more slowly than the number of states in the full-space. Therefore, larger systems make truncation increasingly useful. The curves resulting from the frustrated structures have a different shape than the curves resulting from the unfrustrated structures. The error falls more slowly for the unfrustrated structures than for the frustrated structures as the retained fraction of space increases. This suggests that the method is more useful for frustrated structures.

Figure 4 shows the correlations for the honeycomb lattice structures as a function of the fraction of space retained in the truncation. Since for these structures the nearest neighbor correlation function is proportional to the energy, it is not included. The multiple lines are due to the fact that the 24 and 26 site structures each have two inequivalent 3rd neighbor correlations, and the 24 site structure has two inequivalent 4th neighbor correlations. Again, both the results of the variational truncation method and the results of truncating the Hilbert space based on the weights of states in the full-space solution are shown. The truncation based on the full-space solution is expected to give a better approximation to correlation functions than the variational method, but for the correlations considered here, the results of two methods are almost indistinguishable. Furthermore, truncation down to a few percent of the space by either of these methods introduces only a few percent error in the correlations. Since the HAFM on the honeycomb lattice has long range order, all of the correlations are
fairly large in magnitude. This causes our truncation methods to give particularly good results for these correlations.

In contrast, correlations between sites that are far apart on the frustrated structures are a worst case situation. Correlations on the frustrated structures usually become very small at long distances. As a result, the fractional error in these correlations is quite large. Figure 5 shows the fractional error in the correlation that is smallest in magnitude for the 20, 24, and 26 site frustrated structures. The full-space values of these correlations are 3.31×10^{-2}, -3.43×10^{-3}, and 2.02×10^{-3}, respectively. With less than half of the space retained, the fractional error introduced in these correlations becomes substantial. The error resulting from the variational truncation method is rather similar to the error introduced by truncating the Hilbert space based on the weights of states in the full-space solution. The fractional error in a correlation seems to grow with the inverse of the magnitude of the correlation.

Since we are interested in the most accurate approximation to the full-space properties of the system, it is desirable to make the size of the truncation as large as possible. As mentioned above, memory is the primary constraint on the size of the system that can be handled using exact diagonalization techniques. Thus, effective implementation of this algorithm requires careful treatment of memory usage. The requirement of maximizing speed while minimizing memory usage provides a particular programming challenge to implementing the variational Hilbert space truncation method. We have implemented the method on the Naval Research Laboratory’s 256 node Thinking Machines Corporation CM-5E supercomputer. In the Appendix we provide an outline of technical issues related to our implementation of the algorithm on this massively parallel architecture.

III. RESULTS

Table 1 summarizes some of the ground state properties of the HAFM on the structures we considered. The expectation of \vec{S}_{TOT}^2 can be calculated by summing the correlation
functions between all pairs of sites. Since each structure considered has an even number of spins, the possible exact eigenvalues are \(s(s + 1) \) where \(s \) is an integer. Deviation from these values can be expected for truncated solutions because the truncation procedure breaks the invariance of the model under global spin rotation. For each of our full-space solutions (which includes all structures studied except F-32), the expectation of \(\vec{S}^2_{\text{TOT}} \) is 0 to the accuracy of the solution. Thus, for every system except F-32, the calculated ground state is a spin singlet. For the truncated solution of the F-32 system, this expectation is \(\approx 0.5 \). This value is between the values expected for a spin singlet \((s(s + 1) = 0) \) and a spin triplet \((s(s+1) = 2) \). It is much closer to the value of the spin singlet than to the triplet. Moreover, we have found that the variational procedure tends to decrease this value, indicating that the ground state of F-32 is also a spin singlet. Table II contains two entries for the F-28 structure because its ground state is a rotational doublet. The rest of the states are rotational singlets. The two F-28 states are distinguished by considering their transformation properties under improper rotation about the symmetry axis through the center of the bond between site 19 and site 20 (see Fig. II (d)). Under this transformation, the F-28A state has eigenvalue 1, while the F-28B state has eigenvalue \(-1\).

The first column of Table II contains the ground state energy per site. As expected, frustration raises the ground state energy. The energies per site of the structures based on the honeycomb lattice reveal the expected finite size effects for the HAFM on a lattice: the energy per site increases as the size of the system increases. Finite size effects are not as clearly evident in the frustrated structures, but the trend from F-24 to F-26 to F-28 is rather similar to what could be expected from finite size effects. The trend is reversed in F-32. These clusters are not especially similar to each other except for overall topology, so it is reasonable that finite size effects are obscured by effects due to details of the structure. Furthermore, as the size of the frustrated structures increases, the hexagonal rings become more plentiful and closer together. Thus, these systems should behave more like the unfrustrated structures at larger sizes. Eventually, the energy must decrease toward the unfrustrated value. It is likely that the drop in energy between F-28 and F-32 indicates
the beginning of this trend. Note that this drop in energy can not be a result of using a truncated solution for the F-32 system since the energy resulting from the truncation must be greater than the full-space energy.

The rest of the columns in Table II show the nearest neighbor spin-spin correlations. The correlation between site \(i \) and site \(j \) is defined by

\[
C_{i,j} = \langle \Psi_0 | \vec{S}_i \cdot \vec{S}_j | \Psi_0 \rangle
\]

where \(\Psi_0 \) is the ground state wavefunction. The sum of all of the nearest neighbor correlations for a particular structure gives the ground state energy. Even though the ground state energies vary relatively little, the nearest neighbor correlation functions vary dramatically (see Table II). The nearest neighbor correlations are divided into four columns. The column labeled \(H - H \) contains correlations between sites that are both located on the same hexagonal ring. The column labeled \(H - H' \) contains correlations between sites that are located on two different hexagonal rings. The column labeled \(H - P \) contains correlations between a site located on a hexagonal ring and a site that is not located on any hexagonal ring. The column labeled \(P - P \) contains correlations between two sites neither of which is on a hexagonal ring. Fig. 1 and Fig. 2 serve as keys to the labeling of the sites.

All of the nearest neighbor correlation functions are negative, which is not surprising since the ground state wavefunction is chosen to minimize the sum over these correlations. In order to provide physical insight into the results, we consider the following argument: it is possible to solve the HAFM analytically on a structure consisting of a central site and its three neighbors. The sum of the three correlations for this system is \(-5/4\). The variational principle can then be used to show that for a general structure, the sum of the three correlations between a given site and its neighbors can not be less than \(-5/4\). This sum is reduced in magnitude by frustration and by quantum fluctuations when additional sites are included in the structure. However, the existence of the strict bound discussed above suggests that a strong correlation between a site and one of its neighbors will reduce the correlations to the rest of its neighbors. This behavior is exemplified by the correlations
in Table II. The strongest correlations, those in the $H - H$ column, are for the bonds between two sites that are on the same hexagonal ring. Furthermore, the strongest of these correlations are found on the frustrated structures where the bonds that form the hexagonal ring do not have to compete with two other identical bonds. The drop in energy between F-28 and F-32 can be attributed to an increase in the number of bonds of this type. The weakest nearest neighbor correlations are found between sites that are located on different hexagonal rings. These bonds are frustrated and also suffer from strong competition from the bonds on each of the hexagonal rings. To illustrate these arguments in a specific example, consider the F-26 structure. The $C_{1,9}$ and $C_{11,12}$ correlations are both frustrated since each of these bonds is included in two pentagonal rings. The $C_{1,9}$ correlation is much weaker (-0.103) than the $C_{11,12}$ correlation (-0.332) because the $C_{1,9}$ correlation has competition from four strong (-0.424) correlations of the $C_{1,2}$ type (correlations between sites that are on the same hexagon but not on any other hexagons). For similar reasons, the $H - P$ correlations are weaker than the $P - P$ correlations.

The correlation functions for the 28 site frustrated structure are constrained by the symmetries of the wavefunction, and this results in several anomalously small correlations, especially $C_{3,13}$ for the A wavefunction. Although the original structure is tetrahedral, the process of resolving the two degenerate states breaks this symmetry by singling out the symmetry axis through the bond between sites 19 and 20. There is an approximate equivalence of correlations between the results for the two wavefunctions. The role of $C_{1,2}$ is switched with $C_{2,3}$, the role of $C_{1,9}$ is switched with $C_{3,13}$, and the role of $C_{2,11}$ is switched with $C_{6,7}$. Roughly speaking, the correlations that are closest to the axis through the bond between sites 19 and 20 switch places with the correlations that are furthest away form this axis. The F-28 structure has unusually strong long range correlations between the sites labeled as 7, 11, 15, and 28 in Fig. II (d). These sites form the corners of a tetrahedron. For the F-28A state, the correlations of this type perpendicular to the symmetry breaking axis ($C_{7,28}$ and $C_{11,15}$) are 0.141 and the other correlations of this type ($C_{7,11}$, $C_{7,15}$, $C_{11,28}$, and $C_{15,28}$) are 0.136. For the F-28B state, these correlations are 0.134 and 0.139 respectively.
This result is interesting because it suggests strong ferromagnetic correlations between the spins on the four apex sites that form the corners of a tetrahedron in F-28. This is consistent with quantum mechanical calculations of the electronic structure of the C$_{28}$ molecule, which is believed to have the same structure as the F-28 cluster: in those calculations, the molecule is found to have an $s = 2$ ground state, with the spins in the four apex sites aligned [2].

IV. CONCLUSION

The variational Hilbert space truncation approach provides an effective way to extend the range of structures for which exact diagonalization of the HAFM is feasible. Substantial reductions in memory can be obtained with less than a 1% error in the ground state energy. A few percent error is introduced in most correlations. The exception is very weak correlations for which the method will give a rough idea at best. For system sizes that are at the current leading edge of computational capabilities, a reduction of the Hilbert space by a factor of thirty can be achieved. For the HAFM, a factor of thirty reduction in memory use allows structures with about 5 additional sites to be handled. Our method is compatible with symmetrization techniques, which, depending on the structure under consideration, can achieve a similar reduction in memory requirements. Finally, our method should be useful for models other than the HAFM. In fact, much larger reductions in the size of the Hilbert space can be expected for systems where the ground state is dominated by a few of the basis states used in the expansion of the wavefunction. For such systems, the method should be capable of identifying the important basis states, and thus the important physics of the ground state.

Using this variational approach, we have successfully determined the ground state properties of the HAFM on a series of frustrated and unfrustrated structures. An interesting and unexpected result is the doublet nature of the ground state of the 28 site frustrated structure. The 32 site frustrated structure seems to be a rotational singlet, but it would be interesting to know whether other larger structures of this type also break structural
symmetries.

ACKNOWLEDGEMENT

This work was supported by ONR Contract #N00014-93-1-0190. The computations were performed on the NRL 256-node CM-5 supercomputer. We acknowledge helpful input during the initial stages of this project from Prof. L. Johnsson.

APPENDIX: IMPLEMENTATION OF THE METHOD IN A MASSIVELY PARALLEL ARCHITECTURE

The largest size truncation that we solved consisted of 20 million states, which is 3.33% of the full-space of the F-32 structure. The diagonalization of such matrices is a time consuming process. Our implementation on the CM5 massively parallel architecture provided a vivid demonstration of the conflict between efficient use of memory and efficient use of CPU time. The Hamiltonian matrix can either be stored in core memory or generated during each matrix-vector multiply required by the Lanczos method. Storing the Hamiltonian reduces the time by about a factor of ten at the expense of a factor of four increase in the memory. A third possibility would be to store the Hamiltonian on an external device with fast access, such as the Scalable Disk Array (SDA). Because the SDA’s total capacity is only about three times that of the core memory, we have not implemented this option.

Multiplication of the wavefunction by the unstructured, sparse Hamiltonian matrix requires general communication between sections of memory distributed to different processors, and therefore it is not expected to parallelize efficiently. Such multiplications form the core of the Lanczos algorithm. Careful implementation of these multiplications as well as the generation of the new truncations and Hamiltonians is essential to good parallel performance. We separate the techniques used to obtain reasonable efficiency, while avoiding excessive memory use, into three categories: the use of previous results during the generation of new
results, the balanced division of work over both processors and time (load balancing), and the usage of sorting instead of searching. These are discussed in order:

1. Use of previous results: There are three tasks that must be accomplished during each iteration of the variational Hilbert space truncation method: generation of the truncated space that will be investigated during the iteration, generation of the corresponding Hamiltonian, and diagonalization of the Hamiltonian. Since each truncation is a variation of the previous truncation, it is possible to use results from the previous iteration to speed up the calculation considerably. The most important gain in efficiency is obtained by initializing the Lanczos routine with a guess wavefunction derived from the results for the previous iteration by using first order perturbation theory. This requires very little extra work since all of the expensive steps of the perturbation theory are already carried out as part of the generation of each new truncation. This procedure can reduce the time required to find the ground state by a factor of 100.

2. Load balancing: In order to get a reasonable rate of performance out of a parallel computer, it is necessary to group sets of similar operations together. On the other hand, avoiding the use of large amounts of memory requires divying up similar operations over time so that the memory needed to perform each group of operations can be reused. Therefore, getting good utilization of both processors and memory requires groups of operations that are neither too big, nor too small. In general, the best performance is achieved by identifying the largest unavoidable use of memory, and then using groups of operations that are somewhat smaller. One example is the generation of the Hamiltonian, where the best compromise is to consider all of the elements resulting from exchanging one pair of nearest neighbor spins at the same time. Another example is provided by the selection of each new truncation. It is necessary to compute $\nabla_\beta E$ for each trial state $|\beta\rangle$ [see Eqs. (6) and (7)]. For most cases of interest, there are many more trial states than states in the truncation. Thus, if the Hamiltonian is not stored, it is efficient in terms of memory usage to divide the trial states into smaller sets and compute for one set at a time. This is possible since only the N_{trunc} states with the largest values of $\nabla_\beta E$ need to be retained at each step. This technique allows
sets of trial states of arbitrary size to be considered when generating each variational step.

3. Sorts instead of searches: A standard problem encountered during numerical calculations involving spin models is that information (in this case, the components of the wavefunction) about each of the spin configurations must be packed into memory in some manner that allows its quick retrieval. It is trivial to associate each spin configuration with a unique number, but the resulting set of numbers is not usually dense. Considerable research effort has been expended in developing efficient hashing routines for locating the memory addresses associated with a given spin configuration22, 23. Since the set of basis states changes stochastically during each iteration of our variational truncation process, the algorithm requires a flexible hashing procedure without substantial overhead for setup. For our implementation, we also needed a procedure that parallelizes efficiently. The radix sort algorithm, which consists of hashing on successive blocks of bits, sorts a list of N_{keys} in a time proportional to N_{keys}. This algorithm parallelizes ideally (it uses a time proportional to $N_{\text{keys}}/N_{\text{proc}}$ on a machine with N_{proc} processors) and is stable (if two entries are equal, the entry with the smaller initial subscript will be sorted to the location with the smaller final subscript). This points to combining many searching operations together and using sorts to do searching efficiently on a parallel machine. We implemented a procedure based on inter-sorting a list of states with unknown memory addresses with a list of all the states in the truncation. This procedure worked so well that we were able to generate the Hamiltonian during each matrix-vector multiply rather than storing it, thereby saving on memory usage and extending the size of the system that could be handled.
FIGURES

FIG. 1. (a) 20-site, (b) 24-site, (c) 26-site, (d) 28-site, (e) 32-site, and (f) 60-site fullerene-like frustrated structures with spherical topology. The 3-dimensional structures are shown projected on a plane, which introduces a distortion of relative distances. Therefore, the figures only indicate the connectivity of the structures, and the apparent lengths of the bonds are not to be interpreted literally.

FIG. 2. (a) 18-site, (b) 24-site, and (c) 26-site unfrustrated structures derived from the honeycomb lattice by applying periodic boundary conditions along the thinner solid lines.

FIG. 3. Error in the ground state energy resulting from truncation of the Hilbert space for (a) some frustrated structures and (b) some unfrustrated structures. Lines indicate the results of truncating the Hilbert space based on the weights of states in the full space solution. Individual points indicate results from the variational method and correspond to the same structure as the line immediately above them. The stars indicate results for the 28 site system, where results from truncating based on the full-space solution are unavailable.

FIG. 4. Spin-spin correlations for the unfrustrated structures based on the honeycomb lattice as a function of the fraction of states retained in the truncated Hilbert space. Lines indicate results from truncating the Hilbert space based on the weights of states in the full-space solution. Individual points indicate results from the variational method. The groups of lines are labeled by nearest neighbor distances. The points near zero abscissa correspond to small, but finite, truncations.

FIG. 5. Fractional error in the smallest spin-spin correlations on the frustrated structures as a function of the fraction of states retained in truncated Hilbert space. Lines indicate results from truncating the Hilbert space based on the weights of states in the full-space solution. Individual points indicate results from the variational method.
TABLES

TABLE I. Some properties of the structures considered in this paper.

Structure	Point Group Symmetry	Pentagons	Hexagons	Dimension of Hilbert Space
F-20	I_h	12	0	184,756
F-24	D_{6d}	12	2	2,704,156
F-26	C_{3v}	12	3	10,400,600
F-28	T_d	12	4	40,116,600
F-30	C_{2v}	12	5	155,117,520
F-32	D_3	12	6	601,080,390
F-60	I_h	12	20	1.2×10^{17}
H-18	C_{3v}	0	9	48,620
H-24	C_{3v}	0	12	2,704,156
H-26	C_{3v}	0	13	10,400,600
TABLE II. Ground state energy and nearest neighbor correlation functions of each structure. Results for the F-32 structure are from a truncation retaining 20 million of the 601 million states. All other results are from full-space solutions.

Structure	E_0/Site	$H - H$	$H - H'$	$H - P$	$P - P$
F-20	-1.722219				
F-24	-1.726614	$C_{1,2} = -0.409$	$C_{1,9} = -0.203$	$C_{8,9} = -0.371$	
F-26	-1.719921	$C_{1,2} = -0.424$	$C_{1,9} = -0.103$	$C_{2,11} = -0.265$	$C_{11,12} = -0.332$
		$C_{2,3} = -0.339$			
F-28A	-1.719633	$C_{1,2} = -0.275$	$C_{1,9} = -0.327$	$C_{2,11} = -0.321$	
		$C_{1,6} = -0.362$	$C_{3,13} = -0.063$	$C_{6,7} = -0.269$	
		$C_{2,3} = -0.425$			
F-28B	-1.719633	$C_{1,2} = -0.433$	$C_{1,9} = -0.151$	$C_{2,11} = -0.286$	
		$C_{1,6} = -0.346$	$C_{3,13} = -0.415$	$C_{6,7} = -0.338$	
		$C_{2,3} = -0.283$			
F-32	-1.736	$C_{2,3} = -0.420$	$C_{3,4} = -0.101$	$C_{1,2} = -0.279$	$C_{12,13} = -0.333$
		$C_{2,10} = -0.352$			
		$C_{3,13} = -0.407$			
		$C_{4,15} = -0.509$			
		$C_{11,12} = -0.335$			
H-18	-1.871907	$C_{1,2} = -0.374$			
H-24	-1.860839	$C_{1,2} = -0.370$			
H-26	-1.858385	$C_{1,2} = -0.369$			
REFERENCES

1 For a review of work on the HAFM, see E. Manousakis, Rev. Mod. Phys. 63, 1 (1991).

2 P. W. Anderson, Science 235, 1196 (1987).

3 F. C. Zhang and T. M. Rice, Phys. Rev. B 37, 3759 (1988).

4 D. W. Thompson, On Growth and Form, 2nd ed. (Cambridge University Press, Cambridge, 1942), Vol. II, Chap. IX, pp. 737–738.

5 H. J. Schulz and T. A. L. Ziman, Europhys. Lett. 18, 355 (1992).

6 D. Sorensen, SIAM J. Matr. Anal. Appns. 13, 357 (1992).

7 N. Metropolis et al., Journal of Chemical Physics 21, 1087 (1953).

8 W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes, 2nd ed. (Cambridge University Press, New York, 1992), Chap. 10.9.

9 C. F. Bender and E. R. Davidson, Phys. Rev. 183, 23 (1969).

10 B. Huron, J. P. Malrieu, and P. Rancurel, J. Chem. Phys. 58, 5745 (1973).

11 S. Evangelisti, J.-P. Daudey, and J.-P. Malrieu, Chem. Phys. 75, 91 (1983).

12 D. Feller and E. R. Davidson, J. Chem. Phys. 90, 1024 (1989).

13 R. J. Harrison, J. Chem. Phys. 94, 5021 (1991).

14 D. Maynau and J.-L. Heully, Chem. Phys. Lett. 187, 295 (1991).

15 I. Shavitt, Chem. Phys. Lett. 192, 135 (1992).

16 W. Wenzel and K. G. Wilson, Phys. Rev. Lett. 69, 800 (1992).

17 M. M. Steiner, W. Wenzel, K. G. Wilson, and J. W. Wilkins, Chem. Phys. Lett. 231, 263 (1994).

18 R. J. Buenker and S. D. Peyerimhoff, Theoret. Chim. Acta 39, 217 (1975).
19 H. D. Raedt and W. von der Linden, Phys. Rev. B 45, 8787 (1992).

20 J. Riera and E. Dagotto, Phys. Rev. B 47, 15346 (1993).

21 M. R. Pederson and N. Laouini, Phys. Rev. B 48, 2733 (1993).

22 E. R. Gagliano, E. Dagotto, A. Moreo, and F. C. Alcaraz, Phys. Rev. B 34, 1677 (1986).

23 H. Q. Lin, Phys. Rev. B 42, 6561 (1990).
Fractional Error in Correlations

Fraction of Hilbert Space In Truncation

- -- F-20 C(1,19)
- -- F-24 C(1,23)
- F-26 C(13,20)