The longitudinal structure function F_L: perturbative QCD and k_T-factorization versus experimental data at fixed W

A.V. Kotikov

Institut für Theoretische Teilchenphysik
Universität Karlsruhe
D-76128 Karlsruhe, Germany

A.V. Lipatov

Department of Physics
Lomonosov Moscow State University
119899 Moscow, Russia

N.P. Zotov

Skobeltsyn Institute of Nuclear Physics
Lomonosov Moscow State University
119992 Moscow, Russia

Abstract

We use results for the structure function F_L for a gluon target having nonzero transverse momentum square at order α_s, obtained in our previous paper, to compare with recent H1 experimental data for F_L at fixed W values and with collinear GRV predictions at LO and NLO approximation.

PACS number(s): 13.60.Hb, 12.38.Bx, 13.15.Dk
The longitudinal structure function (SF) $F_L(x, Q^2)$ is a very sensitive QCD characteristic and is directly connected to the gluon content of the proton. It is equal to zero in the parton model with spin $-\frac{1}{2}$ partons and has got nonzero values in the framework of perturbative Quantum Chromodynamics. The perturbative QCD, however, leads to a quite controversial results. At the leading order (LO) approximation F_L amounts to about $10 \div 20\%$ of the corresponding F_2 values at large Q^2 range and, thus, it has got quite large contributions at low x range. The next-to-leading order (NLO) corrections to the longitudinal coefficient function are large and negative at small x [1]-[5] and can lead to negative F_L values at low x and low Q^2 values (see [5, 6]). Negative F_L values demonstrate a limitations of the applicability of perturbation theory and the necessity of a resummation procedure, that leads to coupling constant scale higher than Q^2 (see [5], [7]-[9]).

The experimental extraction of F_L data requires a rather cumbersome procedure, especially at small values of x (see [10], for example). Recently, however, there have been presented new precise preliminary H1 data [11] on the longitudinal SF F_L, which have probed the small-x region $10^{-5} \leq x \leq 10^{-2}$.

In this paper the standard perturbative QCD formulas and also the so called k_T-factorization approach [12] based on Balitsky-Fadin-Kuraev-Lipatov (BFKL) dynamics [13] (see also recent review [14] and references therein) is used for the analysis of the above data. The perturbative QCD approach is called hereafter as collinear approximation and applied at LO and NLO levels using GRV parameterizations for parton densities (see [15]). The corresponding coefficient functions are taken from the papers [3, 1].

In the framework of the k_T-factorization approach, which is of primary consideration in our paper, a study of the longitudinal SF F_L has been done firstly in Ref. [16], where the small x asymptotics of F_L has been obtained analytically using the BFKL results for the Mellin transform of the unintegrated gluon distribution and the longitudinal Wilson coefficient functions for the full perturbative series has been calculated at asymptotically small x values. In this note we follow a more phenomenological approach [18] where we analyzed F_L data in a broader range at small x and, thus, we use parameterizations of the unintegrated gluon distribution function $\Phi_g(x, k_T^2)$ (see Ref. [14]).

A similar study has been already done 2 in our paper [18] using previous H1 data [21]. The recent H1 preliminary experimental data [11] is essentially more precise, that stimulates the present additional study.

1. The unintegrated gluon distribution $\Phi_g(x, k_T^2)$ (f_g is the (integrated) gluon distribution in the proton multiplied by x and k_\perp is the transverse part of the gluon 4-momentum k^μ)

$$f_g(x, Q^2) = \int_{Q^2}^{\infty} dk_\perp^2 \Phi_g(x, k_\perp^2) \quad \text{(hereafter} \quad k^2 = -k_\perp^2) \quad (1)$$

is the basic dynamical quantity in the k_T-factorization approach 3. It satisfies the BFKL equation [13].

2Note that the studies of the F_L structure function in the framework of the k_T-factorization have been done also in [19, 20].

3In our previous analysis [17] we have shown that the property $k^2 = -k_\perp^2$ leads to the equality of the Bjorken x value in the standard renormalization-group approach and in the Sudakov one.
Then, in the k_T-factorization the SF $F_{2,L}(x, Q^2)$ are driven at small x primarily by gluons and are related in the following way to the unintegrated distribution $\Phi_g(x, k_T^2)$:

$$F_{2,L}(x, Q^2) = \int_x^1 \frac{dz}{z} \int Q^2 dk_T^2 \sum_{i=u,d,s,c} e_i^2 \cdot \tilde{C}^g_{2,L}(x/z, Q^2, m_i^2, k_T^2) \Phi_g(z, k_T^2),$$

(2)

where e_i^2 are charge squares of active quarks.

The functions $\tilde{C}^g_{2,L}(x, Q^2, m_i^2, k_T^2)$ can be regarded as SF of the off-shell gluons with virtuality k_T^2 (hereafter we call them hard structure functions by analogy with similar relations between cross-sections and hard cross-sections). They are described by the sum of the quark box (and crossed box) diagram contribution to the photon-gluon interaction (see, for example, Fig. 1 in [17] and [18]).

2. Notice that the k_T^2-integral in Eqs. (1) and (2) can be divergent at lower limit, at least for some parameterizations of $\Phi_g(x, k_T^2)$. To overcome the problem we change the low Q^2 asymptotics of the QCD coupling constant within hard structure functions. We apply here two models: the “freezing” procedure and Shirkov-Solovtsov analytization.

The “freezing” of the strong coupling constant is very popular phenomenological model for infrared behavior of $\alpha_s(Q^2)$. The “freezing” can be done in the hard way and in the soft way.

In the hard case (see [22], for example), the strong coupling constant itself is modified: it is taken to be constant at all Q^2 values less than some Q_0^2, i.e. $\alpha_s(Q^2) = \alpha_s(Q_0^2)$, if $Q^2 \leq Q_0^2$.

In the soft case (see [20], for example), the subject of the modification is the argument of the strong coupling constant. It contains the shift $Q^2 \rightarrow Q^2 + M^2$, where M is an additional scale, which strongly modifies the infrared α_s properties. For massless produced quarks, ρ-meson mass m_ρ is usually taken as the M value, i.e. $M = m_\rho$. In the case of massive quarks with mass m_i, the $M = 2m_i$ value is usually used. Below we will use the soft version of “freezing” procedure.

Shirkov and Solovtsov proposed [23] a procedure of analytization of the strong coupling constant $\alpha_s(Q^2)$, which leads to a new strong analytical coupling constant $a_{an}(Q^2)$ having nonstandard infrared properties. We are not in position to discuss here theoretical aspects of the procedure and use only the final formulae for the analytical coupling constant $a_{an}(Q^2)$. They have the following form

$$\frac{a_{an}(Q^2)}{4\pi} = \frac{1}{\beta_0} \left[\frac{1}{\ln(Q^2/\Lambda^2)} + \frac{\Lambda^2}{\Lambda^2 - Q^2} \right],$$

(3)

in the LO approximation and

$$\frac{a_{an}(Q^2)}{4\pi} = \frac{1}{\beta_0} \left[\frac{1}{\ln(Q^2/\Lambda^2) + b_1 \ln[1 + \ln(Q^2/\Lambda^2)/b_1]} + \frac{1}{2} \frac{\Lambda^2}{\Lambda^2 - Q^2} - \frac{\Lambda^2}{Q^2} C_1 \right],$$

(4)

in the NLO approximation, where β_0 and β_1 are the two first terms in the α_s-expansion of β-function and $b_1 = \beta_1/\beta_0^2$. The constant $C_1 = 0.0354$ is very small.
The first terms in the r.h.s. of Eqs. (3) and (4) are the standard LO and NLO representations for $\alpha_s(Q^2)$. The additional terms modify its infrared properties.

Note that numerically both infrared transformations, the “freezing” procedure and Shirkov-Solovtsov analytization, lead to very close results (see below Fig. 1 and also Ref. [24] and discussion therein).

Figure 1: Q^2 dependence of $F_L(x, Q^2)$ (at fixed $W = 276$ GeV). The H1 preliminary, e^+p and e^-p experimental data are shown as the black points, black and white squares, respectively (see [11]). Theoretical curves obtained in the k_T–factorization approach with the JB unintegrated gluon distribution: solid curve corresponds to ”frozen” coupling constant, dashed curve - analytical coupling constant, dash-dotted - ”frozen” argument of the unintegrated gluon distribution function.

3. As it was already noted above, the purpose of the paper is to describe new preliminary H1 experimental data for the longitudinal SF $F_L(x, Q^2)$ using our calculations of the hard SF $\hat{C}_{2tL}^g(x, Q^2, m^2, k_{\perp}^2)$ given in our previous study [17] and infrared modifications of $\alpha_s(Q^2)$, explained above. For the unintegrated gluon distribution $\Phi(x, k_{\perp}^2, Q_0^2)$ we use the so called Blumlein’s parametrization (JB) [25]. Note that there are also several other popu-
lar parameterizations, which give quite similar results excepting, perhaps, the contributions from the small k_\perp^2-range: $k_\perp^2 \leq 1 \text{ GeV}^2$ (see Ref. [14] and references therein).

The JB form depends strongly on the Pomeron intercept value. In different models the Pomeron intercept has different values (see [26]). So, in our calculations we apply the H1 parameterization [27] based on the corresponding H1 data, which are in good agreement with perturbative QCD (see Refs. [27, 28]).

We calculate the SF F_L as the sum of two types of contributions: the charm quark one F_L^c and the light quark one F_L^l:

$$F_L = F_L^l + F_L^c$$ \hspace{1cm} (5)

For the F_L^l part we use the massless limit of hard SF (see [17, 18]). We always use $f = 4$ in our fits, because our results depend very weakly on the exact f value (for similar results see fits of experimental data in [29] and discussions therein). The weak dependence comes from two basic properties. Firstly, the charm part of F_L, F_L^c, is quite small at the considered Q^2 values (see Ref. [18] for the F_L^c study). Secondly, the strong coupling constant very weakly depends on f because of the corresponding relations between Λ values at different f (see [30]).

In Fig. 1 we show the SF F_L with “frozen” and analytical coupling constants, respectively, as a function of Q^2 for fixed W in comparison with H1 experimental data sets (see [11]). The results are mostly coincide with each other. They are presented as bold and dashed curves, which cannot be really resolved in the figure.

The dash-dotted curve shows the results obtained with “frozen” argument of the unintegrated gluon density. The difference between the bold and dash-dotted lines is not so big, that demonstrates the unimportance of the infrared modifications of the density argument. Below we only restrict ourselves only to the modification of the argument in the strong coupling constant entering the hard structure function.

Fig. 2 contains the same bold curve as Fig. 1 and shows also the collinear results for F_L values. We use the popular GRV parameterizations [15] at LO and NLO approximations. The k_T-factorization results lie between the collinear ones, that demonstrates clearly the particular resummation of high-order collinear contributions at small x values in the k_T-factorization approach.

We also see excellent agreement between the experimental data and collinear approach with GRV parton densities at NLO approximation. The NLO corrections are large and negative and decrease the F_L value by an approximate factor of 2 at $Q^2 < 10 \text{ GeV}^2$.

In Figs. 1 and 2, our k_T-factorization results are in good agreement with the data for large and small parts of the Q^2 range. We have, however, some disagreement between the data and theoretical predictions at $Q^2 \sim 3 \text{ GeV}^2$. The disagreement exists in both cases: for collinear QCD approach at the LO approximation and for k_T-factorization.

Comparing these results with Fig. 4 of Lobodzinska’s talk in Ref. [11] we conclude that the disagreement comes from the usage of the LO approximation. Unfortunately, at the moment in the k_T-factorization approach only the LO terms are available. The calculation of the NLO corrections is a very complicated problem (see [31] and discussion therein).

A rough estimation of the NLO corrections in the k_T-factorization approach can be done in the following way. Consider first the BFKL approach. A popular resummation of the NLO corrections is done in [8] at some approximation. Ref. [8] demonstrates, that is the
Figure 2: Q^2 dependence of $F_L(x, Q^2)$ (at fixed $W = 276$ GeV). The experimental points are as in Fig. 1. Solid curve is the result of the k_T–factorization approach with the JB unintegrated gluon distribution and “frozen” coupling constant, dashed curve - the GRV LO calculations, dash-dotted curve - the GRV NLO calculations, dotted curve - the result of the GRV LO calculations with $\mu^2 = 127Q^2$.

The basic effect of the NLO corrections, that is the strong rise of the α_s argument from Q^2 to $Q_{eff}^2 = K \cdot Q^2$, where $K = 127$, i.e. $K \gg 1$, which is in agreement with [5], [7] and [9]. The use of the effective argument Q_{eff}^2 in the DGLAP approach at LO approximation leads to results which are very close to the ones obtained in the case of NLO approximation: see the dot-dashed and dotted curves in Fig. 2. Thus, we hope that the effective argument represents the basic effect of the NLO corrections in the framework of the k_T–factorization, which in some sense lies between the DGLAP and BFKL approaches as it was noted above already.

The necessity of large effective arguments is also demonstrated in Fig. 3, where we show the k_T–factorization and collinear results for nonrunning coupling constant. Its argument is fixed at $Q^2 = M_Z^2$ giving $\alpha_s \approx 0.118$ (see [32]), i.e. the considered argument is larger than...
Figure 3: Q^2 dependence of $F_L(x, Q^2)$ (at fixed $W = 276$ GeV). The experimental points are as in Fig. 1. Solid curve is the result of the k_T-factorization approach with the JB unintegrated gluon distribution and $\mu^2 = M_Z^2$, dashed curve - the GRV LO calculations at $\mu^2 = M_Z^2$.

the most part of the Q^2-values of the considered experimental data.

The results obtained in the k_T-factorization and collinear approaches based on Q^2_{eff} argument are presented in Fig. 4. In comparison with the ones shown in Fig. 1, they are close to each other because the effective argument is essentially larger than the Q^2 value. There is very good agreement between the experimental data and both theoretical approaches.

Moreover, we also present in Fig.4 the F_L results based on the R_{world}-parameterization for the $R = \sigma_L/\sigma_T$ ratio (see [33]) (because $F_L = F_2R/(1 + R)$), improved in [34, 35] for low Q^2 values and the parameterization of F_2 data used in the our previous paper [18]. The results are in good agreement with other theoretical predictions as well as with experimental data.

4The study is also initiated by conversation with L.Lönnblad, we thank him.
Figure 4: Q^2 dependence of $F_L(x, Q^2)$ (at fixed $W = 276 \text{ GeV}$). The experimental points are as in Fig. 1. Solid curve is the result of the k_T–factorization approach with the JB unintegrated gluon distribution and at $\mu^2 = 127Q^2$; dashed curve - the GRV LO calculations at $\mu^2 = 127Q^2$, dash-dotted curve - from the R_{world}-parametrization.

4. Resume. In the framework of k_T–factorization we have applied the results of the calculation of the perturbative parts for the structure functions F_L and F_L^c for a gluon target, having nonzero momentum square, in the process of photon-gluon fusion [17, 18] to the analysis of recent H1 preliminary data. The perturbative QCD predictions are presented also at LO and NLO approximations.

We have found very good agreement between the experimental data and collinear results based on GRV parameterization at NLO approximation. The LO collinear and k_T–factorization results show disagreement with the data at some Q^2 values. We argued that the disagreement comes from the absence of the NLO corrections in the framework of the k_T–factorization. We modeled these NLO corrections by choosing large effective argument of the strong coupling constant and argued for our choice. The effective corrections signifi-
cantly improve the agreement with the H1 data under consideration.

Acknowledgements

We thank S.P. Baranov for careful reading of manuscript and useful remarks. The our study is supported in part by the RFBR grant. One of the authors (A.V.K.) is supported in part by Alexander von Humboldt fellowship. A.V.L. is supported in part by INTAS YSF-2002 grant N° 399 and ”Dinastiya” Fundation. N.P.Z. also acknowledge L. Jönsson for discussion of the H1 data [11] and the support of Crafoord Fundation (Sweden).

References

[1] W.L. van Neerven and E.B. Zijlstra, Phys. Lett. B272 (1991) 127; E.B. Zijlstra and W.L. van Neerven, Phys. Lett. B273 (1991) 476, Nucl. Phys. B383 (1992) 525.

[2] D.I. Kazakov and A.V. Kotikov, Theor.Math.Phys. 73 (1987) 1264; Nucl.Phys. B307 (1988) 721; E: B345 (1990) 299. Phys.Lett. B291 (1992) 171; D.I. Kazakov, A.V. Kotikov, G. Parente, O.A. Sampayo, and J. Sanchez Guillen, Phys. Rev. Lett. 65 (1990) 1535.

[3] J. Sanchez Guillen, J. Miramontes, M. Miramontes, G. Parente and O.A. Sampayo, Nucl. Phys. B353 (1991) 337.

[4] S. Keller, M. Miramontes, G. Parente, J. Sanchez-Guillen, and O.A. Sampayo, Phys.Lett. B270 (1990) 61; L.H. Orr and W.J. Stirling, Phys.Rev.Lett. B66 (1991) 1673; E. Berger and R. Meng, Phys.Lett. B304 (1993) 318.

[5] A.V. Kotikov, JETP Lett. 59 (1994) 1; Phys. Lett. B338 (1994) 349.

[6] A.D. Martin, R.G. Roberts, W.J. Stirling and R.S. Thorne, Eur. Phys. J. C 23 (2002) 73.

[7] Yu.L. Dokshitzer, D.V. Shirkov, Z. Phys. C67 (1995) 449; W.K. Wong, Phys. Rev. D54 (1996) 1094.

[8] S.J. Brodsky, V.S. Fadin, V.T. Kim, L.N. Lipatov and G.B. Pivovarov, JETP. Lett. 70 (1999) 155.

[9] M. Ciafaloni, D. Colferai and G.P. Salam, Phys. Rev. D60 (1999) 114036; JHEP 07 (2000) 054; R.S. Thorne, Phys. Lett. B474 (2000) 372; Phys. Rev. D60 (1999) 054031; D64 (2001) 074005; G. Altarelli, R.D. Ball and S. Forte, Nucl. Phys. B621 (2002) 359.

[10] A.M.Cooper-Sarkar, G.Ingelman, K.R.Long, R.G.Roberts and D.H.Saxon, Z.Phys. C39 (1988) 281; L. Bauerdick, A. Glazov and M.Klein, in Proc. of the Int. Workshop on Future Physics on HERA, Hamburg, DESY (1996), p.77 (hep-ex/9609017).

[11] E.M. Lobodzinska, hep-ph/0311180; P. Newman, hep-ex/0312018.
[12] S. Catani, M. Ciafaloni and F. Hautmann, Nucl. Phys. B366 (1991) 135; in Proceeding of the Workshop on Physics at HERA (Hamburg, 1991), v.2, p.690; J.C. Collins and R.K. Ellis, Nucl. Phys. B360 (1991) 3; E.M. Levin, M.G. Ryskin, Yu.M. Shabelskii and A.G. Shuvaev, Sov. J. Nucl. Phys. 53 (1991) 657.

[13] L.N. Lipatov, Sov. J. Nucl. Phys. 23 (1976) 338; E.A. Kuraev, L.N. Lipatov and V.S. Fadin, Sov. Phys. JETP 44 (1976) 443, 45 (1977) 199; Ya.Ya. Balitzki and L.N. Lipatov, Sov. J. Nucl. Phys. 28 (1978) 822; L.N. Lipatov, Sov. Phys. JETP 63 (1986) 904.

[14] Bo Andersson et al. (Small x Collaboration), Eur. Phys. J. C 25, 77 (2002); J. Andersen et al. (Small x Collaboration), hep-ph/0312333.

[15] M. Gluck, E. Reya and A. Vogt, Z. Phys. C 67 (1995) 433.

[16] S. Catani and F. Hautmann, Nucl. Phys. B427 (1994) 475; S. Catani, Preprint DFF 254-7-96 (hep-ph/9608310).

[17] A.V. Kotikov, A. V. Lipatov, G. Parente and N.P. Zotov, Eur. Phys. J. C 26, 51 (2002); in Proc. of the XVth International Workshop “High Energy Physics and Quantum Field Theory“, Moscow, 2002, p.230 (hep-ph/0208195).

[18] A.V. Kotikov, A.V. Lipatov and N.P.Zotov, Eur. Phys. J. C 27 (2003) 219; A.V. Kotikov, A.V. Lipatov, G. Parente and N.P.Zotov, in Proc. of the International School “Heavy Quark Physics“ (2002), Dubna (hep-ph/0304078).

[19] J. Blumlein, J. Phys. G19 (1993) 1623.

[20] B.Badelek, J.Kwiecinski and A. Stasto, Z. Phys. C74 (1997) 297.

[21] H1 Collab.: S. Aid et al., Phys.Lett. B393 (1997) 452; N. Gogitidze, J. Phys. G28 (2002) 751 (hep-ph/0201047).

[22] N.N.Nikolaev and B.M. Zakharov, Z. Phys. C49 (1991) 607; C53 (1992) 331.

[23] D.V.Shirkov and L.I. Solovtsov, Phys. Rev. Lett 79 (1997) 1209; Theor. Math. Phys. 120 (1999) 1220.

[24] A.Yu. Illarionov and A.V. Kotikov, work in progress.

[25] J. Blumlein, Preprints DESY 95-121 (hep-ph/9506403).

[26] A.B. Kaidalov, In ‘At the frontier of particle physics’ ed. by M. Shifman, vol. 1, pp. 603-636 (hep-ph/0103011); A. Capella, A. Kaidalov, C. Merino and J. Tran Thanh Van, Phys. Lett. B337 (1994) 358.

[27] H1 Collab.: C. Adloff et al., Phys. Lett. B520 (2001) 183.

[28] A.V. Kotikov and G. Parente, JETP 97 (2003) 859.

[29] V.G. Krivokhijine and A.V. Kotikov, JINR preprint E2-2001-190 (hep-ph/0108224); Acta Phys. Slov. 52 (2002) 227.
[30] W. Marciano, Phys. Rev. D29 (1984) 580; K.G. Chetyrkin, B.A. Kniehl and M. Steinhauser, Phys. Rev. Lett. 79 (1997) 2184.

[31] H. Jung, Nucl. Phys. (Proc. Suppl.) 79 (1999) 429; hep-ph/9908497, hep-ph/0312066.

[32] S. Bethke, J. Phys. C26 (2000) R27.

[33] SLAC Collab., L.W. Whitlow et al., Phys. Lett. B250 (1990) 193.

[34] U.K. Yang et al., J. Phys. G22 (1996) 775; A. Bodek, in Proc. of the 4th Int. Workshop on Deep Inelastic Scattering, DIS96 (1996), Rome, p.213; A. Bodek, S. Rock, and U.K. Yang, Univ. Rochester preprint, UR-1355, 1995.

[35] CCFR/NuTeV Collab.: U.K. Yang et al., Phys.Rev.Lett. 87 (2001) 251802; CCFR/NuTeV Collab.: A. Bodek, in Proc. of the 9th Int. Workshop on Deep Inelastic Scattering, DIS 2001 (2001), Bologna (hep-ex/00105067).