Hypothyroidism and Its Rapid Correction Alter Cardiac Remodeling

Georges Hajje1, Youakim Saliba1, Tarek Itani2, Majed Moubarak1, Georges Aftimos2, Nassim Fares1

1 Laboratoire de Recherche en Physiologie et Physiopathologie, Faculté de Médecine, Pôle Technologie Santé, Université Saint Joseph, Beirut, Lebanon, 2 Institut National de Pathologie, Baabda, Lebanon

Abstract

The cardiovascular effects of mild and overt thyroid disease include a vast array of pathological changes. As well, thyroid replacement therapy has been suggested for preserving cardiac function. However, the influence of thyroid hormones on cardiac remodeling has not been thoroughly investigated at the molecular and cellular levels. The purpose of this paper is to study the effect of hypothyroidism and thyroid replacement therapy on cardiac alterations. Thirty Wistar rats were divided into 2 groups: a control (n = 10) group and a group treated with 6-propyl-2-thiouracil (PTU) (n = 20) to induce hypothyroidism. Ten of the 20 rats in the PTU group were then treated with L-thyroxine to quickly re-establish euthyroidism. The serum levels of inflammatory markers, such as C-reactive protein (CRP), tumor necrosis factor alpha (TNF-α), interleukin 6 (IL6) and pro-fibrotic transforming growth factor beta 1 (TGF-β1), were significantly increased in hypothyroid rats; elevations in cardiac stress markers, brain natriuretic peptide (BNP) and cardiac troponin T (cTnT) were also noted. The expressions of cardiac remodeling genes were induced in hypothyroid rats in parallel with the development of fibrosis, and a decline in cardiac function with chamber dilation was measured by echocardiography. Rapidly reversing the hypothyroidism and restoring the euthyroid state improved cardiac function with a decrease in the levels of cardiac remodeling markers. However, this change further increased the levels of inflammatory and fibrotic markers in the plasma and heart and led to myocardial cellular infiltration. In conclusion, we showed that hypothyroidism is related to cardiac function decline, fibrosis and inflammation; most importantly, the rapid correction of hypothyroidism led to cardiac injuries. Our results might offer new insights for the management of hypothyroidism-induced heart disease.

Introduction

It is estimated that more than 12% of the US population will develop a thyroid condition during their lifetime, and an estimated 20 million Americans have already some form of thyroid disease [1]. Besides, some of the most prominent and common symptoms of thyroid disease are those that result from the effects of thyroid hormone on the heart and cardiovascular system [2,3,4,5,6,7,8,9,10,11]. Both hyperthyroidism and hypothyroidism produce changes in cardiac contractility, myocardial oxygen consumption, cardiac output, blood pressure, and systemic vascular resistance [12,13,14,15,16,17].

Several important cardiac structural and functional proteins are transcriptionally regulated by thyroid hormones. The proteins that are positively regulated by thyroid hormones include sarcoplasmic reticulum calcium ATPase (SERCA2) that uptakes calcium into the sarcoplasmic reticulum during diastole [4,18], α myosin heavy chain (α-MHC) the fast myosin with higher ATPase activity as well as beta adrenergic receptors, sodium/potassium ATPase and voltage-gated potassium channels Kv1.5, Kv4.2 and Kv4.3 which together coordinate the electrochemical responses of the myocardium [3,6,17,19,20,21,22,23,24,25]; cardiac stress markers atrial and brain natriuretic peptides (ANP and BNP) are also regulated by thyroid hormones [19,20]. Other cardiac proteins are negatively regulated by thyroid hormones such as β-MHC: the slow myosin, phospholamban the SERCA inhibitor and sodium/calcium exchanger [5,19,20,26,27]. Thus, changes in the amounts of these proteins account for the altered cardiac diastolic and systolic function induced by thyroid disease.

Non-genomic effects are also exerted by thyroid hormones on cardiac myocytes and ion transport [26,28]. In fact, triiodothyronine (T3) exerts effects on various sodium, potassium, and calcium channels in the heart, and thus changes in intracellular levels of calcium and potassium can increase inotropy and chronotropy [5,29,30].

Hypertrophied and, in particular, failing hearts are characterized by an accumulation of extracellular matrix elements and a corresponding increase in cardiac muscle stiffness [31,32,33,34,35,36,37,38,39,40]. Fibronectin and collagen types I and III are the

Citation: Hajje G, Saliba Y, Itani T, Moubarak M, Aftimos G, et al. (2014) Hypothyroidism and Its Rapid Correction Alter Cardiac Remodeling. PLoS ONE 9(10): e109753. doi:10.1371/journal.pone.0109753

Editor: Sudhiranjan Gupta, Texas A&M University Health Science Center, United States of America

Received July 1, 2014; Accepted September 6, 2014; Published October 15, 2014

Copyright: © 2014 Hajje et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its Supporting Information files.

Funding: This work was funded and supported by the Research Council of the Saint Joseph University - Faculty of Medicine. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: nassim.fares@usj.edu.lb

† GH and YS should be considered co-first authors on this work.
contributes to the decline in contractile performance in fibrosis observed during the transition to heart failure and genes encoding these components accounts, in part, for the increase thus, it has been hypothesized that the up-regulation of fibroblasts major components of the interstitial fibrillar network [41,42,43,44]; hypertrophied and failing hearts [63,64,65,66].

Materials and Methods

Ethical approval

The protocols of the present study were approved by the Ethical Review Committee of the Saint Joseph University, were performed in accordance with the Guiding Principles in the Care and Use of Animals approved by the Council of the American Physiological Society and adhered to the *Guide for the Care and Use of Laboratory Animals* published by the US National Research Council committee.

Animals and experimental design

Thirty adult male Wistar rats weighing 250±25 g were obtained from the “Centre d’Elevage R. Janvier” (Le Genest-Saint Isle, France). The animals were housed at a stable temperature (25°C) and humidity and were exposed to a 12:12 h light-dark cycle. The rats were fed ordinary rat chow, had free access to tap water and were acclimatized for at least one week under these conditions before the start of the study. Then, all animals were weighed once per week.

As shown in Figure S1, the animals were divided randomly into 2 groups: one group of 10 rats (control group) and a second group of 20 rats treated with PTU (Sigma-Aldrich, Germany); PTU was added to the drinking water for 6 weeks at a final concentration of 0.1 g/100 ml, as previously described [9,93,94,95,96,97,98,99,100]. In fact, PTU inhibits iodine and the thyroperoxidase enzyme from their normal interactions with the hormone precursor thyroglobulin to form T4 and T3. This action decreases production of thyroid hormone. In addition to these well recognized effects on intra-thyroidal iodide metabolism, PTU inhibits the peripheral deiodination and conversion of T4 into the more potent form T3 by inhibiting the 5’-deiodinase enzyme [101,102,103,104]. At the end of the 6 weeks, 10 rats from the PTU group were treated with a solution of 6 µg/ml of Euthyrox (L-thyroxine-LT4, Merck, Germany), which was added to the drinking water for one week to quickly reverse the hypothyroidism (reverse group) and recover the euthyroid state; these rats were then sacrificed five weeks later. This L-thyroxine dose was chosen as previously described to maximize left ventricular function and improve heart remodeling without the risk of possible thyrotoxicosis [105,106,107,108]. The rats of the control group and the remaining PTU-treated rats (n=10) that were not treated with LT4 were sacrificed at the same time as the reverse group. Prior to sacrifice, echocardiography and blood analysis (see below), all animals were anesthetized with a mixture of ketamine (Interchemie, Holland, 75 mg/kg) and xylazine (Rotex Medica, Germany, 10 mg/kg) and were completely non-responsive to toe pinching.

After the sacrifice, the heart of the rats was excised, dry-weighted then cut in half; one half was kept in a 4% formalin solution (Sigma-Aldrich, St. Louis, Missouri, USA) for histopathology assessment, and the other half was stored at −80°C for the eventual RNA extraction.

Blood analysis

The levels of free triiodothyronine (fT3), free thyroxine (fT4), thyroid-stimulating hormone (TSH), BNP, CRP, IL6, TNF-α, TGF-β1, cTnT, adiponectin and leptin were measured in the serum of all the rats. Three blood samples (0.5 ml) were collected from each anesthetized rat at three distinct times: after 6 weeks of PTU treatment, after the 1 week of LT4 treatment to check for the rapid establishment of the euthyroid state and at the time of sacrifice (Figure S1).
Blood samples were collected in EDTA tubes via the jugular vein. The blood samples were immediately centrifuged at 3500 rpm for 10 min, and the serum was frozen at −80°C for subsequent analyses. The BNP, CRP, IL6, TNF-α, TGF-β1, adiponectin and leptin ELISA kit reagents were purchased from Abcam, Cambridge - UK, and the fT3, fT4, TSH and cTnT ELISA kit reagents were purchased from CusaBio, Hubei, China. All samples were run in triplicate, and the intra- and inter-assay variations were less than 10%.

Echocardiographic assessment

The animals were anesthetized by 1.5% isoflurane gas and placed on isothermal pads with their chests shaved. Trans-thoracic two-dimensional guided M-mode echocardiography was performed via the long axis of the left ventricle at the level of the papillary muscles using a SonoScape instrument equipped with a convex 8 MHz transducer. The surgeon and echocardiographer were blinded to the rats’ pre-treatments.

Histopathology

The formalin-fixed heart tissues were embedded in paraffin, and 4-µm thick sections were cut. Paraffin-embedded sections of the hearts were stained with either hematoxylin-eosin or Masson's trichrome (Sigma-Aldrich, St. Louis, Missouri, USA) for histopathological evaluation. After staining, the sections were dehydrated in ethanol/water baths with decreasing water content and finally rinsed in xylene before being mounted with a permanent mounting medium.

Gross examination and histological sections were analyzed by two independent pathologists in a blinded fashion. A semi-quantitative scoring system was used to assess the cardiac myocyte hypertrophy, tissue inflammation and fibrosis. Inflammation refers to the presence of aggregates of leukocytes in the heart muscle. Fibrosis analysis was performed using the ImageJ program by applying a threshold to the acquired pictures and creating selections of the fibrotic areas. Eight sections were analyzed for each rat in the three groups.

Real-time quantitative polymerase chain reaction

Hearts previously kept at −80°C were ground, and total cellular RNA was extracted from cells using TRIzol reagent (Life Technologies, Carlsbad, California, USA). The samples were then purified with 75% ethanol, and the purity and concentration of the RNA were determined by measuring the absorbance at 260 nm with an ND-1000 NanoDrop spectrophotometer (Thermo Scientific, Wilmington, Delaware, USA). Subsequently, the first-strand cDNA was synthesized using a Superscript III kit for RT-PCR (Life Technologies, Carlsbad, California, USA). The samples were then purified with 75% ethanol, and the purity and concentration of the RNA were determined by measuring the absorbance at 260 nm with an ND-1000 NanoDrop spectrophotometer (Thermo Scientific, Wilmington, Delaware, USA). Subsequently, the first-strand cDNA was synthesized using a Superscript III kit for RT-PCR (Life Technologies, Carlsbad, California, USA). Briefly, total RNA was denatured at 65°C for 5 min in the presence of 250 ng/µl random primers and 10 mM deoxynucleotide triphosphate. After the sample was chilled on ice for at least 1 min, reverse transcription was allowed to proceed at 25°C for 5 min in the presence of 1× first-strand buffer, 5 mM dithiothreitol, and 40 U of ribonuclease inhibitor. The reaction was then allowed to proceed at 50°C for another 60 min. The reaction was terminated by heat inactivation at 70°C for 10 min. Real-time PCR was conducted using a 7500 real-time PCR system (Applied Biosystems, USA) and SYBR Green PCR master mix (Life Technologies, Carlsbad, California, USA). Real-time Q-RT-PCR was performed in a 20-µl reaction mixture containing 250 nM forward and reverse primers, 1× SYBR Green reaction mix and various amounts of template. The reaction was performed with preliminary denaturation for 10 min at 95°C to activate Taq DNA polymerase, followed by 40 cycles of denaturation at 95°C for 15 sec and annealing/extension at 60°C for 1 min. The fluorescence emitted by SYBR Green was detected online by the ABI PRISM 7500 sequence detection system (Applied Biosystems). Melting curves were measured at the end of the amplification to confirm the specificity of the amplified products. All PCR was performed in triplicate on the same 96-well plate. Ribosomal protein L32 (Rpl32) was used as a housekeeping gene, and quantifications were conducted using the 2^ΔΔCt method. Studies have shown that the initial copy number can be quantitated during real-time PCR analysis based on the threshold cycle (Ct) [109,110]. The Ct is defined as the cycle at which fluorescence is determined to be significantly greater than the background. For quantification of the gene expression changes, the Ct method was used to calculate the relative fold changes normalized against the

Gene	Forward primer (5′-3′)	Reverse primer (5′-3′)
Anp	CTTCCCTCTCTTGCGCTTTGT	CGGACTGTATCGGATTTGC
Bnp	AAGTCCTACGAGTCCTCCAAACA	AGCCTCAAGCTCTGTCAT
α-Mhc	CTTCTGCTGATACCCGGTGACAG	TGGACCTTTCTCTTGGCCCTC
β-Mhc	CCAGGGAGTGCGCACTTGGCA	GAGTTTCCACCGGAGTTAGTGGTCT
α-Sma	AGAGTTGGAGAACCCCCAGCGATC	ATCACCCAGCAAAGCCCCCC
TGF-β1	ATGGTGACCCGCAACACGAACTC	CAGCGGACAGCAATGGGGTT
Col1	CAGCAGGGGACGAGGTAGTCCC	TGGACCATTTGCGAGTGGACA
TGF	CGGACCAAGTGGTATGAGATAGGAAG	GGATTTTTCCAGAAGGTAGGTCTCT
Col3	CCAGGAGACGGGGGTGCC	TCCACCGTGGCCGAGTAGGT
Rpl32	CCAGAGGAGATCGACAAACA	GCACCTTCAGCTGCTTGGTA

Forward and reverse primers used for quantitative real-time PCR. Abbreviations: Anp: Atrial natriuretic peptide; Bnp: Brain natriuretic peptide; α-Mhc: α-Myosin heavy chain; β-Mhc: β-Myosin heavy chain; α-Sma: α-Smooth muscle actin; Tgf-β1: Transforming growth factor beta 1; Tgf: Transforming growth factor; II: Interleukin; Mcp1: Monocyte chemoattractant protein 1; Col1: Collagen type I; Col3: Collagen type III; Rpl32: Ribosomal protein L32.

doi:10.1371/journal.pone.0109753.t001
Rpl32 gene. To check for genomic DNA contamination, parallel samples were run without the addition of the reverse transcriptase. The primers (Eurogentec, Seraing, Belgium) used are presented in Table 1.

Statistical analysis
All quantitative data are reported as the mean ± SEM. n = 10 animals for each group. Statistical analysis was performed with the SigmaPlot (v11.0) software. Kruskal-Wallis One-way ANOVA on rank tests were performed for multiple comparisons of the values because the normal distribution verified with the Shapiro-Wilk test was not met. Post hoc analysis was performed with the Dunn’s multiple comparison tests to identify the group differences that accounted for the overall ANOVA results. When two independent variables were present, two-way ANOVA tests were performed, followed by post hoc Tukey’s multiple comparison tests. All values with $p < 0.05$ were considered significant.

Results
Serum levels of fT3, fT4 and TSH
Administration of PTU for 6 weeks resulted in significant decreases in fT3 and fT4 compared with the levels in the control rat group, confirming the establishment of hypothyroidism. Treatment with LT4 for 1 week raised fT3 and fT4 to levels comparable to those of the control rats, verifying the rapid reversibility of hypothyroidism (Figure 1A). After 12 weeks, at the time of sacrifice, the PTU group still presented relatively low levels of fT3 and fT4, whereas the reverse group retained levels comparable to those of the control rats (Figure 1A).

The TSH levels significantly increased under the PTU treatment, which also confirmed the hypothyroid state, and remained elevated at 12 weeks even with the discontinuation of PTU (Figure 1A). After 12 weeks, at the time of sacrifice, the PTU group still presented relatively low levels of fT3 and fT4, whereas the reverse group retained levels comparable to those of the control rats (Figure 1A).

The TSH levels significantly increased under the PTU treatment, which also confirmed the hypothyroid state, and remained elevated at 12 weeks even with the discontinuation of PTU (Figure 1A). After 12 weeks, at the time of sacrifice, the PTU group still presented relatively low levels of fT3 and fT4, whereas the reverse group retained levels comparable to those of the control rats (Figure 1A).
Plasma markers of inflammation, fibrosis and cardiac hypertrophy

Hypothyroidism resulted in significant increases in the plasma inflammatory markers CRP and TNF-α, whereas reversing the hypothyroid state further increased these levels (Figure 2A–2C). The level of adiponectin, a cardioprotective adipocyte-derived cytokine, did increase in the PTU-treated rats; however, this increase was not significant. The mean plasma levels of adiponectin returned to normal after the LT4 treatment (Figure 3A). The mean plasma level of pro-fibrotic TGF-β1 increased in the PTU rats and drastically increased after the hypothyroidism reversal (Figure 3B). Similarly, there was a significant increase in the plasma cardiac stress marker BNP in the PTU group, and this level returned to normal under LT4 treatment (Figure 4A). In addition, the cTnT levels dramatically increased in the PTU group compared with the levels in the control group and were further induced after the hypothyroidism reversal (Figure 4B).

Gene expression of cardiac remodeling markers

Hypothyroidism induced the expression of the fetal genes for atrial and brain natriuretic peptides (Anp and Bnp, respectively) in the heart, whereas LT4 treatment abolished these expressions (Figure 5A). The expression of the cardiac muscle-specific protein α-Mhc, which is involved in active force generation, decreased in the hypothyroid rats, whereas the LT4 treatment returned this gene expression to levels comparable to those in the control rats (Figure 5B). In contrast, the slow-twitch β-Mhc isoform expression drastically increased in the hypothyroid rats and then returned to normal under LT4 treatment (Figure 5B).

The cardiac fibroblast to myofibroblast differentiation, as shown by α-Sma expression, increased in the hypothyroid rats and then returned to normal after the euthyroid state was established (Figure 5C), whereas the cardiac extracellular matrix components Col1 and Col3 presented the same gene expression profile (Figure 5D).

Interestingly, the pro-fibrotic markers Tgf-β1 and ctTgf and the inflammatory markers Il1 and Mcp1 presented expression profiles...
that were opposite to those of the other cardiac stress markers. In fact, Tgf-β1 and cTgf and II1 and Mcp1 were induced by PTU and further increased under LT4 treatment (Figure 5E and 5F).

Echocardiography and cardiac hypertrophy assessment
Significant decreases in heart mass were present during the PTU treatment (Table 2) along with a reduction of the ratio of the heart weight to tibia length (Figure 6A). This heart weight loss was abolished by the LT4 treatment (Table 2, Figure 6A). In addition, the growth rate was significantly inhibited in the rats treated with PTU compared with that in the control group (Table 2), although the PTU-treated animals appeared to be reasonably healthy, with no changes in water intake and food consumption. This effect was observed very early after the beginning of the treatment. Furthermore, it was reversed after the re-establishment of a

Figure 4. Effects of hypothyroidism and LT4 treatment on the plasma levels of cardiac stress markers. Changes in the BNP (A) and cTnT (B) levels in the different groups. Data are represented as the mean ± SEM. n = 10 animals for each group. Statistical analysis was performed with Kruskal-Wallis One-way ANOVA on rank tests followed by post hoc Dunn’s multiple comparison tests. *p<0.05 vs. control; †p<0.01 vs. PTU.

doi:10.1371/journal.pone.0109753.g004

Figure 5. Effects of hypothyroidism and LT4 treatment on hypertrophic, fibrotic and inflammatory gene markers in the rat heart. Anp, Bnp (A), α-Mhc, β-Mhc (B), α-Sma (C), Tgf-β1, cTgf (D), II1, Mcp1 (E) and Col1, Col3 (F) gene expressions relative to the housekeeping gene Rpl32. Data are represented as the mean ± SEM. n = 10 animals for each group. Statistical analysis was performed with Kruskal-Wallis One-way ANOVA on rank tests followed by post hoc Dunn’s multiple comparison tests. a.u.: arbitrary units. *p<0.01 vs. control; †p<0.01 vs. PTU.

doi:10.1371/journal.pone.0109753.g005
euthyroid state. At the end of the study, there was no significant
difference in the mean body weight between the reverse group and
the control group (Table 2). Concordantly, the “satiety hormone”
leptin showed significant plasma elevations under the PTU
treatment, and these elevations regressed to normal levels after
hypothyroidism reversal (Figure S2). This reduction in body mass
with PTU treatment affected the heart weight to body weight ratio
of the rats in an opposite way as compared to the heart weight to
tibia length ratio (Table 2).

Echocardiography showed significant bradycardia after the
hypothyroidism induction at 6 weeks, and these decreases in heart
rate were still noticeable at 12 weeks (Table 3). In the PTU group,
the end-diastolic and end-systolic interventricular septum thick-
nesses (IVSTd and IVSTs, respectively) were significantly reduced
compared with those in the control animals, whereas the end-

Table 2. Body and heart weights in the different rat groups.

Groups	n	Body weight (BW), g	Heart weight (HW), mg	HW/BW (mg/g)
Control	10	404 ± 17.6	1582.8 ± 124	3.92 ± 0.3
PTU	10	248 ± 37.6*	1212.4 ± 95*	4.88 ± 0.38*
Reverse	10	406 ± 19.2	1566.6 ± 156*	3.86 ± 0.38*

Data are represented as the mean ± SEM. Statistical analysis was performed with Kruskal-Wallis one-way ANOVA on rank tests followed by post hoc Dunn’s multiple comparison tests. *p<0.001 vs. control; **p<0.001 vs. PTU.

doi:10.1371/journal.pone.0109753.t002
Table 3. Echocardiographic parameters of the rats at different time periods after hypothyroidism induction and LT4 treatment.

HR (bpm)	IVSTd (cm)	LVIDd (cm)	LVPWd (cm)	IVSTs (cm)	LVIDs (cm)	LVPWs (cm)
475	6	12	0.14	6	0.02	0.65
335	6	10*	0.11	6	0.01*	0.87
490	6	11*	0.1	6	0.02	0.68
411	6	17	0.13	6	0.01*	0.85
465	6	22*	0.15	6	0.1*	0.72

HR: heart rate; IVSTd: end-diastolic interventricular septum thickness; LVIDd: end-diastolic left ventricular diameter; LVPWd: end-diastolic posterior wall thickness; IVSTs: end-systolic interventricular septum thickness; LVIDs: end-systolic left ventricular diameter; LVPWs: end-systolic posterior wall thickness. Data are represented as the mean ± SEM. Statistical analysis was performed with two-way ANOVA followed by post hoc Tukey’s multiple comparison tests. n = 10 rats in each group. *

Discussion

Histopathology

Hypothyroidism resulted in a significant increase in the nucleus size of the myocardial cells as well as the development of myocardial hypertrophy (Figure 7A, 7B and 7G) and focal fibrosis lesions (Figure 7D, 7E and 7H), compared with the control group. There was no inflammatory cell infiltration and no signs of myocardial lesions or myocarditis (Figure 7A, 7B and 7I).

However, in the reverse group, the myocardial hypertrophy and fibrosis regressed (Figure 7C and 7F). Most importantly, there was massive infiltration of inflammatory cells more specifically macrophages and lymphocytes, whereas signs of myocardial lesions and myocarditis were clearly developed (Figure 7C and 7I).

Discussion

Our study showed that hypothyroidism in rats is related to the development of cardiac fibrosis and inflammation along with chamber dilation and function decline. Interestingly, the rapid re-establishment of euthyroidism resulted in aggravated cardiac inflammation and injury, although the fibrosis and function were contradictorily ameliorated. Thyroid replacement therapy in hypothyroid patients has been shown to improve their prognosis and reduce their cardiovascular risk [5,108,111,112,113,114,115]. However, some hypothyroid patients might remain at an increased risk for the morbidity associated with circulatory diseases and ischemic heart disease as well as other systemic manifestations despite treatment with LT4 [81,116,117,118,119].

After 6 weeks of PTU treatment, the fT3 and fT4 levels were depressed, whereas the TSH level drastically increased, indicating the establishment of hypothyroidism. The normal levels of fT3 and fT4 following the one week treatment with LT4 confirmed the rapid reversal of hypothyroidism. Intriguingly, the levels of fT3 and fT4 rose but still remained significantly low with high TSH 6 weeks after the PTU treatment was stopped in the animals that did not receive LT4. This apparent discrepancy in the levels of thyroid hormones and TSH has been described in the literature; in fact, the usual reverse relationship between the serum levels of TSH and T4 might not be maintained in hypothyroid patients [120]. Patients with severe or long-standing primary hypothyroidism may require three to six months of hormone replacement before the TSH levels are fully suppressed [121,122,123]. Conversely, the serum TSH concentration may remain low or normal for up to five weeks after the withdrawal of thyroid hormone replacement when the serum levels of T4 and T3 have already declined to values well below the lower range of normal [120,123,124].

Hypothyroidism significantly reduced body weight and elevated the plasma leptin concentration. These findings may be contradictory to the data in human subjects with thyroid disorders, where the majority of the hypothyroid patients suffer from an
increased body weight. However, these findings are in agreement with previously reported data on rats [125,126,127,128,129,130,131]; those studies showed that, in hypothyroid rats, the body weight gain per week was very low (approximately one-sixth as high as the weight gain of euthyroid rats) and the body growth was strongly restricted. Additionally, the hypothyroid state was found to increase the serum leptin level; the “satiety hormone” leptin suppresses food intake in hypothyroid rats and may reduce the level of metabolism and body growth gain [132,133,134]. Treatment with LT4 decreased the leptin levels and re-established normal body weights.

The association of hypothyroidism with plasma pro-inflammatory markers such as TNF-α and CRP has been demonstrated in some studies [135,136,137,138]. However, a few studies have reported the effect of thyroid hormone therapy on these markers with contradictory results [139,140]. Our data clearly demonstrate the induction of inflammatory and fibrotic markers in hypothyroid rats; most importantly, this inflammation state was aggravated by the LT4 treatment. Adiponectin levels did not change during hypothyroidism or after LT4 treatment, which is consistent with previous studies [141].

In contrast, hypothyroidism stimulated the secretion of the cardiac stress markers BNP and cTnT in parallel with a global decline in cardiac function along with the development of chamber dilation. The reduced heart weight as well as septum and wall thicknesses in hypothyroid rats seemed contradictory to the cardiomyocyte hypertrophy noticed in histopathology. In fact, hypothyroidism can produce changes that resemble heart failure in many aspects [142,143]. Indeed, studies have showed that hypothyroidism can lead to chamber dilatation from series addition of sarcomeres despite a reduction in cardiac mass [144,145,146,147]. These cellular changes are recognized as components of heart failure. Furthermore, increased chamber diameter/wall thickness ratio during the decompensated phase of heart failure is reflected by a similar increase in myocyte length/width ratio [145,148,149]. This occurs by myocyte lengthening without a change in myocyte cross-sectional area during the transition phase [149,150]. Similarly, early loss of cardiac mass in rats treated with PTU for 4 weeks was due to a reduction in myocyte cross-sectional area [9,143]. Apoptosis might be another possible contributor to this cardiac mass loss since T3 treatment has been shown to inhibit cardiomyocyte apoptosis in infarcted myocardium [151]. This cardiac phenotype change was also supported by the up-regulation of hypertrophy markers, myofi-broblast differentiation, extracellular matrix components, and pro-fibrotic and pro-inflammatory genes that contribute to tissue stiffness and defects in the structure and contractility of the myocardium. Nonetheless, treatment with LT4 enhanced the global cardiac function and abolished the hypertrophy and extracellular matrix markers. However, deleterious effects of this rapid reversal of hypothyroidism were noticed with the induction of the TGF-β1, IL1 and MCP1 expressions in the myocardium.

Figure 7. Representative microphotographs of histological slices of hearts from the different rat groups. A and D: Heart of the control group stained with hematoxylin-eosin (A) and Masson’s trichrome (D) showing a well-organized lamellar arrangement of cardiomyocytes without signs of fibrosis. B and E: Heart of the PTU group stained with hematoxylin-eosin (B) and Masson’s trichrome (E) showing cardiomyocyte hypertrophy with increased size of the nuclei and presenting zones of fibrosis (blue in E). C and F: Heart of the reverse group stained with hematoxylin-eosin (C) and Masson’s trichrome (F) showing a massive infiltration of lymphocytes and macrophages (arrows in C) and diminished fibrotic lesions (blue in F). G–I: Quantitative analysis of cardiomyocyte size, fibrotic areas and cellular infiltration in each of the different animal groups. Fibrosis analysis was performed using the ImageJ program by thresholding the acquired pictures and then creating selections of the fibrotic areas. Scale bars: 75 μm. Data are represented as the mean ± SEM. n = 10 animals for each group. Eight sections were analyzed for each rat in the three groups. Statistical analysis was performed with Kruskal-Wallis One-way ANOVA on rank tests followed by post hoc Dunn’s multiple comparison tests. *p<0.01 vs. control and reverse; **p<0.01 vs. control and PTU. doi:10.1371/journal.pone.0109753.g007
Indeed, the cardiovascular effects of hypothyroidism include changes in the expression of both structural and regulatory myocyte genes [6,20,152]. Thyroid hormones were shown to have opposite effects on collagen synthesis and the induction of TGF-β1. In fact, thyroid hormones induced this pro-fibrotic marker in cardiomyocyte and fibroblast cultures, whereas they decreased the expression of the collagen I gene. Similarly, cardiac hypertrophy was induced by thyroid hormones without any signs of myocardial fibrosis [40,50,153,154,155,156,157].

Finally, when rapidly reversing hypothyroidism, we observed the development of cardiac injury with a net elevation of the serum cTnT level; leukocyte infiltration was also noted, confirming the presence of myocarditis. This phenomenon may be explained by a direct deleterious effect of the hormone on the heart [89]. Indeed, the induction of the inflammatory IL1 and MCP1 as well as the direct deleterious effect of the hormone on the heart [89].

In conclusion, we showed that hypothyroidism is related to the development of cardiac fibrosis and inflammation. Most importantly, the rapid correction of hypothyroidism led to cardiac injuries. This study might offer new insights for the management of hypothyroidism-induced heart disease.

Supporting Information

Figure S1 Experimental protocol with different measured parameters. (TIF)

Figure S2 Plasma leptin levels in the different groups of rat treatments at the time of sacrifice. Data are represented as the mean ± SEM. n = 10 animals for each group. Statistical analysis was performed with Kruskal-Wallis One-way ANOVA on rank tests followed by post hoc Dunn’s multiple comparison tests. *p<0.01 vs. control and reverse. (TIF)

Author Contributions

Conceived and designed the experiments: GH YS NF. Performed the experiments: GH YS TI MM. Analyzed the data: GH YS MM GA NF. Wrote the paper: GH YS MM NF.

References

1. ATA (2014) Prevalence and Impact of Thyroid Disease. Available: http://www.thyroid.org/. Accessed 2014 September 29.
2. Biondi B, Klein I (2004) Hypothyroidism as a risk factor for cardiovascular disease. Endocrine 24: 1–13.
3. Danzi S, Klein I (2004) Thyroid hormone and the cardiovascular system. Minerva Endocrinol 29: 139–150.
4. Dillmann WH (2002) Cellular action of thyroid hormone on the heart. Thyroid 12: 447–452.
5. Klein I, Danzi S (2007) Thyroid disease and the heart. Circulation 116: 1725–1730.
6. Klein I, Ojamaa K (2001) Thyroid hormone and the cardiovascular system. N Engl J Med 344: 501–509.
7. Rhee SS, Pearce EN (2011) Update: Systemic Diseases and the Cardiovascular System [II]. The endocrine system and the heart: a review. Rev Esp Cardiol 64: 220–231.
8. Savinova OV, Liu Y, Asken GA, Mao K, Weltman NY, et al. (2011) Thyroid hormone promotes remodeling of coronary resistance vessels. PLoS One 6: e25054.
9. Tang YD, Kuzman JA, Said S, Anderson BE, Wang X, et al. (2005) Low thyroid function leads to cardiac atrophy with chamber dilation, impaired myocardial blood flow, loss of arterioles, and severe systolic dysfunction. Circulation 112: 3122–3130.
10. Zhang Y, Post WS, Cheng A, Blasco-Columbres E, Tomaselli GF, et al. (2013) Thyroid hormones and electrophysiologic parameters: findings from the third national health and nutrition examination survey. PLoS One 8: e59489.
11. Mitchell JE, Hellkamp AS, Mark DB, Anderson J, Johnson GW, et al. (2013) Thyroid function in heart failure and impact on mortality. JACC Heart Fail 1: 48–55.
12. Weltman NY, Wang D, Redetzke RA, Gerdes AM (2012) Longstanding hypothyroidism is associated with normal or enhanced intrinsic cardiomyocyte function despite decline in global cardiac function. PLoS One 7: e66655.
13. Biondi B (2012) Mechanisms in endocrinology: Heart failure and thyroid dysfunction. Eur J Endocrinol 167: 609–618.
14. Gencer B, Collet TH, Vinigi V, Bauer DC, Gusselkoó J, et al. (2012) Subclinical thyroid dysfunction and the risk of heart failure events: an individual participant data analysis from 6 prospective cohorts. Circulation 126: 1040–1049.
15. Biondi B, Wartofsky L (2014) Treatment with thyroid hormone. Endocr Rev 35: 433–512.
16. Biondi B, Palmieri EA, Lombardi G, Fazio S (2002) Effects of thyroid hormone on cardiac function: the relative importance of heart rate, loading conditions, and myocardial contractility in the regulation of cardiac performance in human hyperthyroidism. J Clin Endocrinol Metab 87: 968–974.
17. Kehaly GJ, Dillmann WH (2003) Thyroid hormone action in the heart. Endocr Rev 24: 704–728.
18. Kiss E, Jakab G, Kránias EG, Edes I (1994) Thyroid hormone-induced alterations in phospholamban protein expression. Regulatory effects on sarcoplasmic reticulum Ca2+ transport and myocardial relaxation. Circ Res 75: 243–251.
19. Schwartz K, Lompre AM, Bouweret P, Wniewosky C, Whalen RG (1982) Comparisons of rat cardiac myosins at fetal stages in young animals and in hypothyroid adults. J Biol Chem 257: 14412–14418.
20. Lompre AM, Nadal-Ginard B, Mahler V (1984) Expression of the cardiac ventricular alpha- and beta-myosin heavy chain genes is developmentally and hormonally regulated. J Biol Chem 259: 6437–6446.
21. Bahouth SW, Cui X, Beauchamp MJ, Park EA (1997) Thyroid hormone induces beta-adrenergic receptor gene transcription through a direct repeat separated by five nucleotides. J Mol Cell Cardiol 29: 3223–3237.
22. Gick GG, Melikhjan J, Ismailli-Beigi F (1990) Thyroidal enhancement of rat myocardial Na,K-ATPase: preferential expression of alpha 2 activity and mRNA abundance. J Membr Biol 115: 273–292.
23. Ojamaa K, Kenevesy A, Shenoy R, Klein I (2000) Thyroid hormone metabolism and cardiac gene expression after acute myocardial infarction in the rat. Am J Physiol Endocrinol Metab 278: E1139–1342.
24. Shao Y, Ojamaa K, Klein I, Ismailli-Beigi F (2000) Thyroid hormone stimulates Na,K-ATPase gene expression in the hemodynamically unloaded heterotopically transplanted rat heart. Thyroid 10: 753–759.
25. Ojamaa K, Sabet A, Kenevesy A, Shenoy R, Klein I (1999) Regulation of rat cardiac Kv1.5 gene expression by thyroid hormone is rapid and chamber specific. Endocrinology 149: 3170–3176.
26. Dillmann W (2010) Cardio hypertrophy and thyroid hormone signaling. Heart Fail Rev 15: 125–132.
27. Fazio S, Palmieri EA, Lombardi G, Biondi B (2004) Effects of thyroid hormone on the cardiovascular system. Recent Prog Horm Res 59: 31–50.
28. Davis PJ, Leonard JL, Davis FB (2008) Mechanisms of nongenomic actions of thyroid hormone. Front Neuroendocrinol 29: 211–218.
29. Walker JD, Crawford FA, Kato S, Spinale FG (1994) The novel effects of 3,3’-Iodo-L-thyronine on myocardocyte contractile function and beta-adrenergic responsiveness in dilated cardiomyopathy. J Thorac Cardiovasc Surg 108: 672–679.
30. Davis PJ, Davis FB (1993) Acute cellular actions of thyroid hormone and myocardial function. Am Thorac Surg 56: S16–23.
31. Schelbert EB, Fonarow GC, Bonow RO, Butler J, Gheorghiade M (2014) Therapeutic Targets in Heart Failure: Refocusing on the Myocardial Interstitium. J Am Coll Cardiol 63: 2188–2198.
32. Bieracka A, Frangogiannis NG (2011) Aging and Cardiac Fibrosis. Aging Dis 2: 150–173.
33. Wong TC, Piehler K, Meier CG, Testa SM, Klock AM, et al. (2012) Association between extracellular matrix expansion quantified by cardiovascular magnetic resonance and short-term mortality. Circulation 126: 1206–1216.
34. Wong TC (2014) Cardiovascular Magnetic Resonance Imaging of Myocardial Interstitial Expansion in Hypertrophic Cardiomyopathy. Curr Cardiovasc Imaging Rep 7: 9267.
35. Wong TC, Piehler KM, Kang IA, Kadakkal A, Kellman P, et al. (2014) Myocardial extracellular volume fraction quantified by cardiovascular magnetic resonance is increased in diabetes and associated with mortality and incident heart failure admission. Eur Heart J 35: 657–664.
36. Venkatesh BA, Volpe GJ, Donekal S, Mewton N, Liu CY, et al. (2014) Thyroid function in heart failure and impact on mortality. JACC Heart Fail 12: 447–452.
37. Schelbert EB, Fonarow GC, Bonow RO, Butler J, Gheorghiade M (2014) Therapeutic Targets in Heart Failure: Refocusing on the Myocardial Interstitium. J Am Coll Cardiol 63: 2188–2198.
38. Bieracka A, Frangogiannis NG (2011) Aging and Cardiac Fibrosis. Aging Dis 2: 150–173.
39. Wong TC, Piehler K, Meier CG, Testa SM, Klock AM, et al. (2012) Association between extracellular matrix expansion quantified by cardiovascular magnetic resonance and short-term mortality. Circulation 126: 1206–1216.
40. Wong TC (2014) Cardiovascular Magnetic Resonance Imaging of Myocardial Interstitial Expansion in Hypertrophic Cardiomyopathy. Curr Cardiovasc Imaging Rep 7: 9267.
68. Schwartz K, Packer SE, Parker TG, Michael LH, Roberts R, et al. (1991) The vascular smooth muscle alpha-actin gene is reactivated during cardiac hypertrophy provoked by load. J Clin Invest 88: 1501–1508.

69. Januzzi JL, Troughton R (2013) Are serial BNP measurements useful in heart failure management? Serial natriuretic peptide measurements are useful in heart failure management. Circulation 127: 500–507; discussion 508.

70. Savarese G, Trimarco B, Dellegrottaglie S, Prastaro M, Gambardella F, et al. (2013) Natriuretic peptide-guided therapy in chronic heart failure: a meta-analysis of 2,686 patients. J Am Coll Cardiol 62: randomized trials. PLoS One 8: e58287.

71. Januzzi JL, Troughton R (2013) Are serial BNP measurements useful in heart failure management? Serial natriuretic peptide measurements are useful in heart failure management. Circulation 127: 500–507; discussion 508.

72. Lupon J, de Antonio M, Vila J, Penaljel J, Galan A, et al. (2014) Development of a novel heart failure risk tool: the barcelonia bio-heart failure risk calculator (BCN bio-HF calculator). PLoS One 9: e85466.

73. Hedayat M, Mahmoudi MJ, Rezaei N, (2009) Proinflammatory cytokines in heart failure: double-edged swords. Heart Fail Rev 15: 543–562.

74. McBride K, Nemer M (2001) Regulation of the ANF and BNP promoters by thyroid hormone, amiodarone therapy, and prognosis in left ventricular systolic dysfunction. J Endocrinol Invest 34: e14–e18.

75. Galli E, Pigatto P, Iervasi G (2010) The role of thyroid hormone in the fibroelastic system of heart and vessel walls. Cardiovasc Res 87: 743–753.

76. Guillo D, Latina A, Frasca F, Le Moli R, Pellegrini G, et al. (2011) Levothyroxine monotherapy cannot guarantee euthyroidism in all athyreotic patients. PLoS One 6: e22552.

77. Akasaka T, Nishioka K, Kuroiwa A, Mihara Y, Nomura S, et al. (2005) Comparison of myocardial injury markers and inflammatory cytokines in patients with hyperthyroidism: new pathophysiological and therapeutic perspectives. Thyroid 15: 1–8.

78. Virdis A, De Caterina R, Pappalardo G, et al. (2001) Proinflammatory cytokines and vascular remodeling in patients with hyperthyroidism. J Am Coll Cardiol 38: 1021–1026.

79. Lison D, Liang CF, Vogt M, et al. (2006) Circulating levels of the beta human chorionic gonadotropin subunit in hyperthyroidism. Thyroid 16: 5–10.

80. Akasaka T, Nishioka K, Kuroiwa A, Mihara Y, Nomura S, et al. (2005) Comparison of myocardial injury markers and inflammatory cytokines in patients with hyperthyroidism: new pathophysiological and therapeutic perspectives. Thyroid 15: 1–8.

81. Virdis A, De Caterina R, Pappalardo G, et al. (2001) Proinflammatory cytokines and vascular remodeling in patients with hyperthyroidism. J Am Coll Cardiol 38: 1021–1026.

82. Novitzky D, Fontanet H, Coblio N, Smith D, et al. (1996) Impact of triiodothyronine on the survival of high-risk patients undergoing open heart surgery. Cardiothorac Surg 17: 509–513.

83. Moruzzi P, Doria E, Agostoni PG, Capuano C, Sganga z et al. (1999) Usefulness of L-thyroxine to improve cardiac and exercise performance in ischaemic dilated cardiomyopathy. Am J Cardiol 73: 374–378.

84. Gullo D, Latina A, Frasca F, Le Moli R, Pellegrini G, et al. (2011) Levothyroxine monotherapy cannot guarantee euthyroidism in all athyreotic patients. PLoS One 6: e22552.

85. Nakamura H, Noji Y, Itok K, Futaka S, Miyashita A, et al. (2007) Comparison of methimazole and propylthiouracil in patients with hyperthyroidism caused by Graves’ disease. J Clin Endocrinol Metab 92: 2157–2162.

86. Boron WF, El, (2006) Medical Physiology, Edition 2: Elsevier Health Sciences.

87. Cooper DS, Kieffer JD, Halpern R, Saxe V, Mover H, et al. (1983) Improved triiodothyronine treatment of heart failure and improved cardiac function in patients with idiopathic hypothyroid cardiomyopathy. Circulation 96: 874–881.

88. Zeisberg EM, Tarnavski O, Zeisberg M, Dorfman AL, McMullen JR, et al. (2014) Micro ribonucleic acid-29b as a functional repressor of transformed cell growth. Nat Med 20: 952–961.

89. McBride K, Nemer M (2001) Regulation of the ANF and BNP promoters by thyroid hormone, amiodarone therapy, and prognosis in left ventricular systolic dysfunction. J Endocrinol Invest 34: e14–e18.

90. Winegrad S, Wisnewsky C, Schwartz K (1990) Effect of thyroid hormone on the myocardium. J Cardiovasc Transl Res 5: 837–847.

91. Gosteli-Peter MA, Harder BA, Eppenberger HM, Zapf J, Schaub MC (1996) Thyroid hormone, angiotensin, endothelin, CCN2, and PDGF, partners in fibroblast activation. Cardiovasc Res 37: 1963–1969.

92. Compston J, Ramakrishnan R, et al. (2007) Prophylactic use of L-thyroxine in heart failure. The BCN bio-HF calculator. PLoS One 9: e85466.

93. Black FM, Packer SE, Parker TG, Michael LH, Roberts R, et al. (1991) The vascular smooth muscle alpha-actin gene is reactivated during cardiac hypertrophy provoked by load. J Clin Invest 88: 1501–1508.

94. Plateroti M, Kress E, Mori JI, Samarut J (2006) Thyroid hormone receptors, ligands, receptors, transduction, and function. J Mol Cell Cardiol 27: 5–18.

95. Lompre AM, Schwartz K, d’Albis A, Lacombe G, Van Thiem N, et al. (1979) Myosin isoenzyme redistribution in chronic heart overload. Nature 282: 105–108.

96. Weltman NY, Ojamaa K, Savinova OV, Chen YF, Schlenker EH, et al. (2013) Propranolol significantly reduces muscle damage and improves cardiac performance in thyrotoxic heart failure. J Endocrinol 225: 325–330.

97. Lompre AM, Schwartz K, d’Albis A, Lacombe G, Van Thiem N, et al. (1979) Myosin isoenzyme redistribution in chronic heart overload. Nature 282: 105–108.
Thyroid Hormone and Cardiac Remodeling

hypothyroidism: a dose-response study in female rats. Endocrinology 134: 2542–2552.

97. Liu Y, Sherrer BA, Redekar RA, Gerdes AM (2010) Regulation of arteriolar density in adult myocardium during low thyroid conditions. Vascu Pharmacol 52: 146–150.

98. Chen J, Ortmeier SB, Savinova OV, Naredby VB, Beyr AJ, et al. (2012) Thyroid hormone induces sprouting angiogenesis in adult heart of hypothyroid mice through the PDGF-Akt pathway. J Cell Mol Med 16: 2726–2735.

99. Wang Y, Miettinen PJ, Liang L, Lin H, Zhu DN, et al. (2010) Up-regulation of type 2 iodothyronine deiodinase in dilated cardiomyopathy. Cardiovasc Res 87: 636–646.

100. Tschirgi ML, Rajapake I, Chandra M (2006) Functional consequence of mutations in the thyroperoxidase Tg is affected differently by myosin heavy chain isoforms. J Physiol 574: 263–273.

101. Oppenheimer JH, Schwartz HL, Slurs MK (1972) Propylthiouracil inhibits the conversion of L-thyroxine to L-triiodothyronine. An explanation of the antithyroid effect of propylthiouracil and evidence supporting the concept that L-triiodothyronine is the active thyroid hormone. J Clin Invest 51: 2493–2497.

102. Taurag A (1976) The mechanism of action of the thyreoglobulin antithyroid drugs. Endocrinology 90: 1031–1040.

103. Shirouzu A, Taurag A, Engler H, Dorris ML (1983) Mechanism of action of thyreoglobulin antithyroid drugs in the rat: possible inactivation of thyroid peroxidase by propylthiouracil. Endocrinology 113: 362–370.

104. Nakashima T, Taurag A, Riesco G (1976) Mechanism of action of thyreoglobulin antithyroid drugs: factors affecting intrathyroidal metabolism of propylthiouracil and methimazole in rats. Endocrinology 103: 2187–2197.

105. Johnson EO, Callejo AE, Konstand M, Kamilaris TC, Viguer SL, et al. (2013) Effects of experimentally induced hyperthyroidism on central hypothalamic-pituitary-adrenal axis function in rats in vitro and in situ. Pinnutry 16: 275–286.

106. Giannocco G, Dos Santos RA, Nunes MT (2004) Thyroid hormone stimulates myoglobin gene expression in rat cardiac muscle. Mol Cell Endocrinol 226: 19–26.

107. De Sibio MT, Luzziozzolo RA, Olimpio RM, Correa CR, Marin JR, et al. (2013) A comparative genotoxicity study of a supraphysiological dose of triiodothyronine (T3) in obese rats subjected to either calorie-restricted diet or hyperthyroidism. PLoS One 8: e56913.

108. Chen YF, Weltman NY, Li X, Youmans S, Krause D, et al. (2013) Thyroid hormone concentration after initiation of replacement therapy in myxedema. Ann Intern Med 158: 309–316.

109. Wacker MJ, Godard MP (2005) Analysis of one-step and two-step real-time RT-PCR using SuperScript III. J Biotechnol 16: 266–271.

110. Gerdes AM, Refetoff S (1980) Transient elevation of serum thyroid hormone concentration after initiation of replacement therapy in myxedema. J Clin Endocrinol Metab 78: 1550–1553.

111. Nicoloff JT, Spencer CA (1990) Clinical review 12: The use and misuse of the sensitive thyrotropin assays. J Clin Endocrinol Metab 71: 1231–1243.

112. Sanchez-Franco F, Garcia MD, Ciccioni L, Martin-Zarzo A, Escobar del Ros F, et al. (1974) Transient lack of thyrotropin (TSH) response to thyrotropin-releasing hormone (TRH) in treated hyperthyroid patients with normal or low serum thyroxine (T4) and triiodothyronine (T3). J Clin Endocrinol Metab 38: 1098–1102.

113. Diffre GM, Haddad F, Herrick RE, Baldwin KM (1991) Control of myosin heavy chain expression: interaction of hypothyroidism and hindlimb suspension. Am J Physiol 261: C809–1106.

114. Escharor-Morel F, Escobar del Rey F, Morrelle de Escobar G (1997) Thyroid hormones influence serum leptin concentrations in the rat. Endocrinology 138: 4465–4480.

115. Zoccai C, Tripepi G, Cutrupi S, Pizzini P, Tripepi G, et al. (1997) Subclinical hypothyroidism may be associated with elevated high-sensitive c-reactive protein (low grade inflammation) and fasting hyperinsulinaemia. Endoc J 36: 89–94.

116. Liu Z, Gerdes AM (1990) Influence of hypothyroidism and the reversal of hypothyroidism on hemodynamics and cell size in the adult rat heart. J Mol Carcell 22: 1231–1243.

117. Syed MA, Thompson MP, Pachucki J, Burmeister LA (1999) The effect of thyroid hormone on size of fat depots accounts for most of the changes in leptin mRNA and serum levels in the rat. Thyroid 9: 503–513.

118. Wang JI, Chinooskouwng N, Yin S, Shi QZ (2000) Calorigenic actions of leptin are additive to, but not dependent on, those of thyroid hormones. Am J Physiol Endocrinol Metab 278: E1278–1285.

119. Otsu S, Tan G, Dong X, Zhu Z, Li W, et al. (2013) Metabolic profiling provides a system understanding of hypothyroidism in rats and its application. PLoS One 8: e55599.

120. Cusin I, Rouru J, Visser T, Burger AG, Rohner-Jeanreneau F (2000) Improvement of thyroid hormones in the effect of intracerebroventricular leptin infusion on uncoupling-protein-3 expression in rat muscle. Diabetes 49: 1101–1105.

121. Samuels MH, Kolobova I, Smeraglio A, Peters D, Janowsky JS, et al. (2014) The effects of levothyroxine replacement or suppressive therapy on health status, mood, and cognition. J Clin Endocrinol Metab 99: 843–851.

122. Samuels MH, Schuff KG, Carlson NE, Carello P, Janowsky JS (2007) Health status, psychological symptoms, mood, and cognition in L-thyroxine-treated hypothyroid subjects. Thyroid 17: 249–258.

123. Gerdes AM, Kellerman SE, Moore JA, Muffly KE, Clark LC, et al. (1992) Influence of hypothyroidism and the reversal of hypothyroidism before and after normalization of thyroid function. Clin Endocrinol (Oxf) 37: 515–521.

124. Aksoy DY, Cinar N, Harunnic, Karkajaya Y, Vildos BL, et al. (2013) Serum resistin and high sensitive CRP levels in patients with subclinical hypothyroidism before and after L-thyroxine therapy. Med Sci Monit 19: 210–215.

125. Cinar N, Gurlek A (2013) Association between novel adipocytokines adiponectin, visfatin, and thyroid: An experimental and clinical update. Endocurj 2: R30–38.

126. Klein I (2002) Thyroid and the Heart. Thyroid 12: 439.

127. Liu Z, Gerdes AM (1990) Influence of hypothyroidism and the reversal of hypothyroidism on hemodynamics and cell size in the adult rat heart. J Mol Cell Cardiol 22: 1339–1348.

128. Gerdes AM, Capasso JM (1995) Structural remodeling and mechanical dysfunction of cardiac myocytes in heart failure. J Mol Cell Cardiol 27: 849–856.

129. Gerdes AM, Kefferman SE, Moore JA, Muffly KE, Clark LC, et al. (1992) Structural remodeling of cardiac myocytes in patients with ischemic cardiomyopathy. Circulation 86: 426–430.

130. Gravetinger JS, Maenster J, Checchia CS, Grissin RL, Campbell JA (1958) A correlation of clinical and hemodynamic studies in patients with hypothyroidism. J Clin Invest 37: 502–510.

131. Syed MA, Thompson MP, Pachucki J, Burmeister LA (1999) The effect of thyroid hormone on size of fat depots accounts for most of the changes in leptin mRNA and serum levels in the rat. Thyroid 9: 503–513.

132. Syed MA, Thompson MP, Pachucki J, Burmeister LA (1999) The effect of thyroid hormone on size of fat depots accounts for most of the changes in leptin mRNA and serum levels in the rat. Thyroid 9: 503–513.
152. Carr AN, Kranias EG (2002) Thyroid hormone regulation of calcium cycling proteins. Thyroid 12: 453–457.

153. Chen WJ, Lin KH, Lee YS (2000) Molecular characterization of myocardial fibrosis during hypothyroidism: evidence for negative regulation of the pro-alpha1(I) collagen gene expression by thyroid hormone receptor. Mol Cell Endocrinol 162: 45–55.

154. Weber KT, Sun Y, Campbell SE (1995) Structural remodelling of the heart by fibrous tissue: role of circulating hormones and locally produced peptides. Eur Heart J 16 Suppl N: 12–18.

155. Yao J, Eghbali M (1992) Decreased collagen gene expression and absence of fibrosis in thyroid hormone-induced myocardial hypertrophy. Response of cardiac fibroblasts to thyroid hormone in vitro. Circ Res 71: 831–839.

156. Diniz GP, Carneiro-Ramos MS, Barreto-Chaves ML (2007) Angiotensin type 1 (AT1) and type 2 (AT2) receptors mediate the increase in TGF-beta1 in thyroid hormone-induced cardiac hypertrophy. Pflugers Arch 454: 73–81.

157. Diniz GP, Carneiro-Ramos MS, Barreto-Chaves ML (2009) Angiotensin type 1 receptor mediates thyroid hormone-induced cardiomyocyte hypertrophy through the Akt/GSK-3beta/mTOR signaling pathway. Basic Res Cardiol 104: 653–667.

158. Kubiczkova L, Sedlarikova L, Hajek R, Sevcikova S (2012) TGF-beta - an excellent servant but a bad master. J Transl Med 10: 183.

159. Han G, Li F, Singh TP, Wolf P, Wang XJ (2012) The pro-inflammatory role of TGFbeta1: a paradox? Int J Biol Sci 8: 228–235.