FTO, RNA epigenetics and epilepsy

Joie Rowles,1 Morgan Wong,2 Ryan Powers2 and Mark Olsen1,*

1Department of Pharmaceutical Sciences; College of Pharmacy, Glendale; Midwestern University; Glendale, AZ USA;

2Arizona College of Osteopathic Medicine; Midwestern University; Glendale, AZ USA

Several recent landmark papers describing N6-methyladenosine (m6A) RNA modifications have provided valuable new insights as to the importance of m6A in the RNA transcriptome and in furthering the understanding of RNA epigenetics. One endogenous enzyme responsible for demethylating RNA m6A, *FTO*, is highly expressed in the CNS and is likely involved in mRNA metabolism, splicing or other nuclear RNA processing events. microRNAs (miRNAs), a family of small, non-coding transcripts that bind to target mRNAs and inhibit subsequent translation, are highly expressed in the CNS and are associated with several neurological disorders, including epilepsy. miRNAs frequently bind to recognition sequences in the 3'UTR, a region that is also enriched for m6A. Certain specific miRNAs are upregulated by neuronal activity and are coupled to epileptogenesis; these miRNAs contain a consensus m6A site that if methylated could possibly regulate miRNA processing or function. This Point-of-View highlights aspects from recent papers to propose a functional association between *FTO*, RNA epigenetics and epilepsy.

FTO is Important in the CNS

The gene fat mass and obesity-associated (*FTO*) was first identified in mice as one of the genes encoded by the 1.6 Mb deletion that produced a phenotype with partial syndactyly of forelimbs and extensive thymic hyperplasia.1 Subsequently, a common variant in the *FTO* gene was identified as a risk allele for type 2 diabetes and increased body mass,2 and many studies of *FTO* have focused on the association with diabetes, obesity and metabolism.3 In the course of conducting these large scale genotyping studies, the role of *FTO* in human disorders was expanded to include the central nervous system (CNS). Variants have been found to be associated with neurological disease conditions including depression4 and Alzheimer disease.5 *FTO* is highly expressed in brain tissue and is essential for normal development of the CNS in human.7 The generation of mice that were specifically deleted only for neuronal *FTO* had a similar phenotype of growth retardation as the whole body *FTO* deletion, suggesting that a major function of *FTO* occurs in the brain.8 The obesity-associated risk allele has been shown to have a potential pathological effect on brain volume: healthy elderly subjects with the risk allele had brain volume deficits (average differences of 8% in frontal lobes and 12% in occipital lobes) compared with non-carriers.9 Recently, brain derived neurotrophic factor (BDNF) was identified as a candidate gene for functional coupling to *FTO*, leading the authors to speculate on a role of *FTO* in neuronal plasticity possibly via interaction with CCAAT/enhancer binding protein β.10 These data provide strong evidence that *FTO* has a functional role in the CNS and, by implication, to CNS disorders.

Fto Demethylates m6A RNA

Most studies involving *FTO* have focused at the genome level and on correlation of variants with phenotypes. Evidence for the molecular action of the expressed protein (Fto) is more limited. Fto has been shown to localize to the nucleus and to catalyze
the Fe(II) and 2-oxoglutarate-dependent demethylation of 3-methylthymine in ssDNA.11 One year later it was shown to catalyze the demethylation of 3-methyluracil in ssRNA with slightly higher efficiency over that of 3-methylthymine in ssDNA.12 However, a recent article provides the strongest evidence to date on the enzymatic activity of Fto. Jia et al.13 provide evidence that Fto strongly prefers to demethylate \(N^6 \)-methyladenosine (m\(^6\)A) in ssRNA (Fig. 1). By direct comparison with other substrates these authors conclude that m\(^6\)A in ssRNA is the best substrate discovered so far for Fto, having a greater than 50-fold preference for m\(^6\)A over 3-methyluracil.13 Expected changes in levels of m\(^6\)A in mRNA were found when human cells were manipulated to either overexpress Fto (which caused a decreased level of m\(^6\)A) or underexpress Fto (which caused an increased level of m\(^6\)A). These authors further showed that Fto partially co-localizes with nuclear splicing speckle factors (SART1 and SC35) and with RNA polymerase II phosphorylated at Ser2, but not with markers for other nuclear subregions such as telomeres, replication site, Cajal body, cleavage body or P-body.13

m\(^6\)A and RNA Epigenetics

m\(^6\)A is the most common mRNA modification in eukaryotes and also in the RNA of viruses that replicate in eukaryotes. The modification is catalyzed by the methyltransferase like 3 (METTL3) enzyme, which is thought to be one component of a multi-component complex.14 A degenerate methylation consensus sequence, purine-purine-m\(^6\)A-C-[A/C/U], has been known for many years.13 The presence of this consensus sequence does not guarantee methylation, suggesting that this process is regulated. There is also a report of another m\(^6\)A methylase activity (toward U6 snRNA) that does not utilize this consensus sequence and appears to be a separate enzyme.16 Two recent independent studies utilizing m\(^6\)A-specific antibodies and next generation sequencing provide a transcriptome-wide assessment of mRNA m\(^6\)A methylation, substantially increasing knowledge of this modification.17,18 These papers clearly demonstrated that m\(^6\)A methylation is a very prominent mRNA modification, identifying more than 7,000 genes that contain m\(^6\)A. They were in general agreement on a recognition consensus sequence for the adenosine that is methylated, the overall distribution of m\(^6\)A sites along the length of the transcripts and in the high conservation between human and mouse of major elements of this common RNA modification. These papers provide valuable new insights of m\(^6\)A in the RNA transcriptome and further the understanding of RNA epigenetics.19 One of these studies identified potential m\(^6\)A-specific binding proteins, which may have functional significance.17 Evidence was also presented that m\(^6\)A affects RNA splicing. Using conditions that focused on differentially expressed isoforms, a positive relationship was seen between m\(^6\)A and isoform switching. Further, differentially spliced exons and introns were significantly enriched with m\(^6\)A.17 These data indicate a role for m\(^6\)A in splicing, further supporting the role of the m\(^6\)A demethylase, Fto, in this process.

miRNA and Epilepsy

Recently, a connection has been made between RNA processing and epilepsy. MicroRNA (miRNA) is a major RNA regulatory gene family in eukaryotes of which hundreds have been identified. Mature miRNA forms base pairs with mRNA, often in the 3’UTR, to induce mRNA degradation, translational repression, or both. Since a single miRNA can target multiple mRNAs, and multiple miRNAs can act on a single mRNA, miRNAs are thought to operate highly complex regulatory networks that silence targeted genes.20 A recent review highlights the functions of miRNAs in CNS development and provides multiple examples in which misregulation of CNS miRNAs is associated with neurological disorders, including epilepsy.21 Specific miRNAs are also being investigated in the context of epilepsy. miRNA-146a has been shown to be upregulated in an animal model of temporal lobe epilepsy (TLE), as well as in hippocampal tissue from patients with TLE and hippocampal sclerosis.22 Similarly, miRNA-134 has been shown to be upregulated in an experimental model of epilepsy involving status epilepticus and also in temporal neocortex tissue from patients with TLE.23 These reports suggest that these miRNAs are neuronally activated and are coupled to epileptogenesis. Upregulation of miRNA-134 had a suppressive effect on a known target, LIM kinase 1 (Limk1). Antagomir silencing of miRNA-134 after status epilepticus caused a substantial reduction in the number of subsequent seizures, and the rescue of Limk1 was implicated in this protection.24 While the mechanism of this dramatic seizure suppression could not be absolutely defined, an antiepileptogenic effect was a considered possibility. This paper clearly shows that silencing miRNA-134 has a neuroprotective and seizure-suppressive effect and provides another avenue in which to study epileptogenesis.

miRNA and m\(^6\)A

The methylation status of miRNA has been shown to affect stability and turnover.24 As mentioned above, the location
of m^6A residues in the 3'UTR of the transcriptome has been linked with miRNA binding sites. These authors found that 67% of 3'UTRs that contain m^6A peaks also contained at least one predicted miRNA binding site, significantly greater than expected by chance alone. They also showed that highly expressed brain miRNAs had a significantly greater percentage of target transcripts that contain m^6A than those of lowly expressed miRNAs, further supporting a link between the CNS, miRNAs, and m^6A. Based on the evidence that miRNA-134 and miRNA-146a are involved in the pathogenesis of epilepsy, we searched the sequence of these miRNAs for a m^6A consensus site. We found that both miRNA-134 and miRNA-146a contain a potential m^6A site in the seed region, which is thought to play an important role in miRNA recognition of target mRNA (Fig. 2). This suggests that m^6A methylation of miRNAs could interfere with binding to target miRNAs, in a manner analogous to that which is known for m^6A DNA methylation to inhibit the binding of certain restriction endonucleases. The occurrence of m^6A in dsRNA is also known to lower melting temperature and destabilize base-paired duplex structures: a single m^6A modification of an octamer is estimated to increase (destabilize) ΔG by about +1 to 1.2 kcal/mol. m^6A modification of miRNAs may therefore affect the processing of primary miRNAs to mature miRNAs, which involves duplex formation, and/or the binding of miRNA to mRNA, which also involves a dsRNA component. The confirmation of the m^6A modification on these miRNAs remains to be determined, although m^6A is known to occur in 3'UTRs of target mRNA. The presence of m^6A in either the miRNA or in the 3'UTR in mRNA would affect the subsequent interactions, likely via destabilization of duplexes. Furthermore, the presence of m^6A in miRNA or mRNA may affect the interaction with RNA-binding proteins. These effects suggest an important additional layer of control over miRNA actions to impact neurologic development and disease states.

Summary

Based on recent evidence, we have provided a possible link between Fto, RNA epigenetics and epilepsy. Fto is highly expressed in the CNS and demethylates m^6A in ssRNA. Two recent, independent studies provide ample evidence that m^6A is a prevalent and important RNA epigenetic mark, thus implicating Fto in the regulation of these RNA epigenetic events. Reversible RNA methylation involving Fto suggests that dynamic methylation states of mRNA or miRNA may modulate protein expression and cell status, analogous to reversible DNA and histone methylations. miRNAs play important roles in CNS physiology and pathology, including epilepsy, and several have been implicated in epileptogenesis. Certain m^6A sites may play a role in miRNA stability, processing or regulation. Thus, the recently discovered m^6A RNA demethylation activity of Fto places it in the heart of RNA epigenetics with subsequent regulatory roles on critical CNS processes.

Acknowledgments

J.R. and M.O. received financial support from the Department of Pharmaceutical Sciences, College of Pharmacy-Glendale, Midwestern University. R.P. was supported by a Midwestern University Kenneth Suarez Summer Fellowship.

References

1. Peters T, Ausmeier K, Rüther U. Cloning of Fatso (Fto), a novel gene deleted by the Fused toes (Ft) mouse mutation. Mamm Genome 1999; 10:983-6; PMID:10501967; http://dx.doi.org/10.1007/s003359901144.
2. Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 2007; 316:849-94; PMID:17434869; http://dx.doi.org/10.1126/science.1141634.
3. Larder R, Cheung MK, Tung YC, Yeo GS, Call AP. Where to go with FTO? Trends Endocrinol Metab 2011; 22:53-9; PMID:21312121; http://dx.doi.org/10.1016/j.tem.2010.11.001.
4. Rivera M, Cohen-Woods S, Kapur K, Bren G, Ng MY, Butler AW, et al. Depressive disorder moderates the effect of the FTO gene on body mass index. Mol Psychiatry 2012; 17:604-11; PMID:22502950; http://dx.doi.org/10.1038/mp.2011.45.
5. Keller L, Xu W, Wang HX, Winblad B, Fratiglioni L, Graff C. The obesity related gene, FTO, interacts with APOE, and is associated with Alzheimer’s disease risk: a prospective cohort study. J Alzheimers Dis 2011; 23:461-9; PMID:21098976.
6. Yeo GSH. FTO and obesity: a problem for a billion people. J Neuroendocrinol 2012; 24:393-4; PMID:22248259; http://dx.doi.org/10.1111/j.1365-2826.2011.02254.x.

7. Boissel S, Reish O, Proulx K, Kawagoe-Takaki H, Sedgwick B, Yeo GS, et al. Loss-of-function mutation in the dioxygenase-encoding FTO gene causes severe growth retardation and multiple malformations. Am J Hum Genet 2009; 85:106-11; PMID:19559399; http://dx.doi.org/10.1016/j.ajhg.2009.06.002.

8. Gao X, Shin YH, Li M, Wang F, Tong Q, Zhang P. The fat mass and obesity associated gene FTO functions in the brain to regulate postnatal growth in mice. PLoS One 2010; 5:e14005; PMID:21103374; http://dx.doi.org/10.1371/journal.pone.0014005.

9. Ho AJ, Stein JL, Hua X, Lee S, Hibar DP, Leow AD, et al.; Alzheimer’s Disease Neuroimaging Initiative. A commonly carried allele of the obesity-related FTO gene causes severe FTO dysfunction in the di-oxygenase-encoding FTO gene. Nature 2010; 466:413-9; PMID:20404173; http://dx.doi.org/10.1038/nature09171.

10. Rask-Andersen M, Almén MS, Olausen HR, Olszewski PK, Eriksson J, Chaván RA, et al. Functional coupling analysis suggests link between the obesity gene FTO and the BDNF-NTRK2 signaling pathway. BMC Neurosci 2011; 12:117; PMID:22087873; http://dx.doi.org/10.1186/1471-2202-12-117.

11. Gerken T, Girard CA, Tung YC, Webb CJ, Saudek V, Hewitson KS, et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science 2007; 318:1469-72; PMID:17991826; http://dx.doi.org/10.1126/science.1151710.

12. Jia GF, Fu Y, Zhao X, Dai Q, Zheng GQ, Yang Y, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 2011; 7:885-7; PMID:22002720; http://dx.doi.org/10.1038/nchembio.687.

13. Bokar JA, Shambaugh ME, Polydyes D, Matera AG, Rottman FM. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNAS (N6-adenosine)-methyltransferase. RNA 1997; 3:1233-43; PMID:9490616.

14. Bokar JA, Shambaugh ME, Polayes D, Matera AG, Rottman FM, Salome-Dixon M, Unger L, Olsenberg S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 2012; 485:201-6; PMID:23030720; http://dx.doi.org/10.1038/nature10936.

15. Meyer KD, Saleatore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive analysis of mRNA methylation reveals enrichment in 3′UTRs and near stop codons. Cell 2012; 149:1635-46; PMID:22608085; http://dx.doi.org/10.1016/j.cell.2012.05.003.

16. He C. Grand challenge commentary: RNA epigenetics? Nat Chem Biol 2010; 6:863-5; PMID:2079590; http://dx.doi.org/10.1038/nchembio.482.

17. Rottman FM, Eriksson J, Chavan RA, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nature 2008; 453:1233-43; PMID:18775698; http://dx.doi.org/10.1016/j.ajhg.2009.06.002.

18. He C. Grand challenge commentary: RNA epigenetics? Nat Chem Biol 2010; 6:863-5; PMID:2079590; http://dx.doi.org/10.1038/nchembio.482.

19. Jia GF, Fu Y, Zhao X, Dai Q, Zheng GQ, Yang Y, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 2011; 7:885-7; PMID:22002720; http://dx.doi.org/10.1038/nchembio.687.

20. Bokar JA, Shambaugh ME, Polydyes D, Matera AG, Rottman FM. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNAS (N6-adenosine)-methyltransferase. RNA 1997; 3:1233-43; PMID:9490616.

21. Bokar JA, Shambaugh ME, Polydyes D, Matera AG, Rottman FM, Salome-Dixon M, Unger L, Olsenberg S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 2012; 149:1635-46; PMID:22608085; http://dx.doi.org/10.1016/j.cell.2012.05.003.

22. Aronica E, Fluiter K, Iyer A, Zurolo E, Vreijling J, van Vliet EA, et al. Expression patterns of miR-146a, an inflammation-associated microRNA, in experimental and human temporal lobe epilepsy. Eur J Neurosci 2010; 31:1100-7; PMID:20214679; http://dx.doi.org/10.1111/j.1460-9568.2010.07122.x.

23. Jimenez-Mateos EM, Engel T, Merino-Serrais P, McKiernan RC, Tanaka K, Mouri G, et al. Silencing microRNA-134 produces neuroprotective and prolonged seizure-suppressive effects. Nat Med 2012; 18:1087-94; PMID:22638779; http://dx.doi.org/10.1038/nm.2834.

24. J.L. Chen X. Regulation of small RNA stability: methylation and beyond. Cell Res 2012; 22:624-36; PMID:22410795; http://dx.doi.org/10.1038/cr.2012.36.

25. Kierzek E, Kierzek K. The thermodynamic stability of RNA duplexes and hairpins containing N6-alkyladenosines and 2-methylthio-N6-alkyladenosines. Nucleic Acids Res 2003; 31:4472-80; PMID:12888507; http://dx.doi.org/10.1093/nar/gkg633.

26. Callen BR. Transcription and processing of human microRNA precursors. Mol Cell 2004; 16:861-5; PMID:15610730; http://dx.doi.org/10.1016/j.molcel.2004.12.002.

27. Glisovic T, Bachorik JL, Yong J, Dreyfuss G. Functions of noncoding RNAs and the BDNF-NTRK2 signaling pathway. BMC Neurosci 2012; 3:1233-43; PMID:18775698; http://dx.doi.org/10.1016/j.ajhg.2009.06.002.