Simulation Evaluation and Analysis of Heavy-load Train Maintenance Mode Based on Petri Net

Chunyi Li¹*, Yuguang Wei², Chen Li³, Bowen Ma⁴ and Anyu Wang⁵

School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China
*Corresponding author’s e-mail: 18120820@bjtu.edu.cn

Abstract. In China's comprehensive transportation system, railway is an important mode of transportation, and heavy-load railway is a large-capacity transportation channel, which can quickly improve efficiency and relieve the capacity of railway transportation. The efficiency and synergistic capability of each connecting point of heavy-haul railway determines the success or failure of the whole system. In this paper, two different maintenance modes, "planned repair" and "unit centralized repair", are used to discuss the turnround procedure of rolling stock and the empty wagon's operation procedure respectively. The Petri net model of the empty wagon’s operation procedure under different maintenance modes is established, and the simulation is completed by Visual Object Net++ software. The results show that "unit centralized repair" is beneficial to compress the operation time and accelerate the turnround of rolling stock.

1. Introduction
The heavy-load railway transport has the advantages of high load capacity, large capacity and low cost. The development of heavy-load railway transport can improve transport capacity, realize scale operation and improve transport efficiency. It is a way to achieve high-quality development of transport and provides a strong support to promote the increase of railway freight transport and improve transport support capacity. The heavy-load railway transport system can be seen as a series of the gathering subsystem, the channel subsystem and the distribution subsystem. The gathering subsystem is mainly composed of the loading station, the gathering line and the technical station. The technical station sends empty cars to the loading station, and after the empty cars are loaded at the loading station, they are assembled at the technical station and sent to the unloading station.

In this procedure, the problem of empty wagon maintenance is involved. At present, China's railways mostly adopt the mode of "planned repair", that is, the planned preventive repair is mainly based on "daily inspection and regular maintenance". With the continuous upgrading of vehicle technology and equipment, the service life and reliability of vehicle parts have been greatly improved. Moreover, due to the different use efficiency of trucks, the actual technical status of vehicles during regular maintenance is also different. The phenomenon of "cure without disease" is common, resulting in the waste of maintenance costs. For heavy-load transportation of ten thousand tons, especially for some vehicles with high turnover frequency and aggravated wear, unified maintenance is conducted according to the time cycle, which leads to some vehicles "running with illness" and causes hidden danger of operation safety. It has become the common goal of domestic railway freight car maintenance industry to find a more targeted and more economical maintenance way to avoid "excessive repair" and "insufficient repair".

The mode of "unit centralized repair" is a new mode of "fixed vehicle grouping, fixed train number, fixed cycle crossing, fixed running time and fixed maintenance cycle" for unit trains of heavy-load
railway. In this mode, the vehicle technology state is basically the same, can quickly and accurately locate the fault, fast maintenance and batch replacement of parts, fault disposal is more thorough. To realize the whole train maintenance into the train, the precise repair of the whole train, the whole train departure, improve the maintenance efficiency and accuracy of railway self-provided freight cars. In addition, through the comprehensive inspection and maintenance of vehicle faults by the listed unit, the amount of train inspection and temporary repair is reduced, the work pressure of train inspection is effectively relieved, the time of train technical inspection is compressed, and the transportation efficiency is greatly improved. In this mode, rolling stock maintenance does not require marshalling operation, which greatly releases the hump capability. Therefore, the adoption of the "unit centralized repair" mode is beneficial in reducing the turnaround time of the rolling stock and improving the efficiency of the vehicle operation.

2. Analysis of average rolling stock turnaround time of heavy-load train under different maintenance modes

2.1. Turnaround procedure of heavy-load train’s rolling stock under the "planned repair" mode
Under the condition of planned maintenance, different rolling stocks of the same heavy-load train have different requirements for maintenance in the same period of time due to different service efficiency of wagons. Therefore, when the empty heavy-load trains arrive at the combination station, there are still a large number of trains that need to be unpacked through the hump. The vehicles to be repaired are taken off for maintenance and sent to the loading station again through the departure yard after being reorganized. From the point of view of the train, the operation procedure that affects the rolling stock turnaround time is mainly the disintegration and marshalling operation of the combination station, so in the turnaround procedure of heavy-load train’s rolling stock under the "planned repair" mode, the maintenance operation time of the vehicles to be overhauled in the depot can be ignored.

2.2. Turnaround procedure of heavy-load train’s rolling stock under the "unit centralized repair" mode
In the mode of "unit centralized repair", after the completion of a certain amount of transportation mileage, the whole train is overhauled without disintegration and marshalling operation. However, due to the maintenance of the whole train, the average rolling stock turnaround time is mainly affected by the maintenance time, so the overhauling operation procedure should be considered in the turnaround procedure of the heavy-load train’s rolling stock under the mode of "unit centralized repair". The turnaround procedure of heavy-load train rolling stock under the mode of "unit centralized repair".
2.3. Comparative analysis of turnround procedure of heavy-load train’s rolling stock under different maintenance modes

Comparing and analyzing the above two maintenance modes, it is found that the heavy-load vehicles are not overhauled under the heavy-load condition, so the two procedures are basically the same during the operation of the heavy-load vehicles. This paper mainly discusses the influence of different maintenance modes on the turnround time of rolling stock heavy-load train, and focuses on the empty train operation procedure for the differences between ordinary heavy-load trains and whole train heavy-load trains. In the procedure of empty wagons running, the main difference lies in the disintegration and marshalling operation and maintenance operation.

At the same time, for the whole train with heavy load, its vehicles are fixed, so its rolling stock’s turnround procedure is periodic, with a cycle from the end of one overhaul to the end of the next overhaul. For ordinary heavy-load trains, because the combined vehicles are not fixed and the maintenance time is not fixed, there is no obvious periodicity. Operation cycle pairs of heavy-load trains under different maintenance modes are shown in the following figure. In this paper, the influence of different maintenance modes on the average turnround time of heavy-load trains is analyzed based on the operation cycle of the whole train.
4th International Conference on Civil, Architecture and Environment Research
IOP Conf. Series: Earth and Environmental Science 676 (2021) 012132
doi:10.1088/1755-1315/676/1/012132

Figure 2 Comparison of operation cycle of heavy-load trains under different maintenance modes.

3. Modeling of empty wagon’s operation procedure of heavy-load train under different maintenance modes

Combined with the characteristics of empty train operation procedure, the empty wagon’s operation procedure model of heavy-load train is established based on Petri net theory, and the simulation is completed by using Visual Object Net++ software.

3.1. Modeling of empty wagon’s operation procedure of heavy-load trains under "Planned Repair" mode

The empty operation procedure model of heavy-load train under the mode of "planned repair" is shown in the following figure. From left to right are unloading station, loading station and combination station.

Figure 3 Empty wagon’s operation procedure model of heavy-load train under "planned repair" mode.

In the above model, the explanation of each place and transition is shown in the following table:

Place	meaning	Transition	meaning
S1	Unloading station	C1	Departure operation
S2	Combination station	C2	Arrival operation
S3	Determine whether to disintegration and marshalling	C3	Disintegration and marshalling
P1	Prepare for disintegration and marshalling operation	C4	No disintegration and marshalling
P11	Prepare for departure	C5	Disintegration and marshalling operation
S4	Loading station	C6	Departure operation
S5	End	C7	Arrival operation

Further model the sub-procedure C5 of disintegration and marshalling operation, as shown in the following figure. From left to right are empty wagon arrival yard, hump, shunting track, lead line and combination station.
In the above model, the explanation of each place and transition is shown in the following table:

Table.2 Description of variables in the sub-procedure model of disintegration and marshalling operations.

Place	meaning	Transition	meaning
P2	Throat area occupied	T1	Start disintegration and marshalling operation
P3	Throat area unoccupied	T2	Throat area occupied to unoccupied
P4	Hump occupied	T3	Wagon coupling operation
P5	Hump unoccupied	T4	Hump occupied to unoccupied
P6	Shunting track	T5	disintegration operation
P7	shunting engine occupied	T6	wagon detention
P8	shunting engine unoccupied	T7	shunting engine occupied to unoccupied
P9	Lead line occupied	T8	Wagon coupling operation
P10	Lead line unoccupied	T9	Lead line occupied to unoccupied
		T10	The train is running on the lead line

3.2. Modeling of empty wagon’s operation procedure of heavy-load trains under "unit centralized repair" mode

The empty wagon’s operation procedure model of heavy-load train under the mode of "unit centralized repair" is shown in the following figure. From left to right are unloading station, loading station and combination station.

Figure.5 Empty wagon’s operation procedure model of heavy-load train under "unit centralized repair" mode.

In the above model, the explanation of each place and transition is shown in the following table:

Table.3 Variable description of empty wagon’s operation procedure model of heavy-load trains under "unit centralized repair" mode.

Place	meaning	Transition	meaning
R1	Unloading station	B1	Departure operation in unloading station
R2	Combination station	B2	Arrival operation in combination station
Further model the sub-procedure B5 of disintegration and marshalling operation, as shown in the following figure. From left to right are empty wagon arrival yard, lead line, car depot, lead line and empty wagon departure yard.

![Figure 6: Sub-procedure model of maintenance operation.](image)

In the above model, the explanation of each place and transition is shown in the following table:

Place meaning	Transition meaning
Q2 Throat area occupied	K1 Start maintenance operation
Q3 Throat area unoccupied	K2 Throat area occupied to unoccupied
Q4 Lead line occupied	K3 Wagon coupling operation
Q5 Lead line unoccupied	K4 Lead line occupied to unoccupied
Q6 Car depot	K5 The train is running on the lead line
Q7 Shunting engine occupied	K6 Maintenance operation of the whole train
Q8 Shunting engine unoccupied	K7 Shunting engine occupied to unoccupied
Q9 Lead line occupied	K8 Wagon coupling operation
Q10 Lead line unoccupied	K9 Lead line occupied to unoccupied
	K10 The train is running on the lead line

4. Model analysis and simulation of the empty wagon’s operation procedure of heavy-load trains under different maintenance modes

4.1. Analysis of the empty wagon’s operation procedure model of heavy-load trains under different maintenance modes

After the Petri net model is established, the rationality of the model needs to be analyzed. Based on the mathematical properties of Petri nets, the rationality of the model structure and whether there are potential problems are analyzed. In the Petri net model, the connection of elements can only exist between the place and the transition. If there is a connection between the place and the place, there is a connection between the transition and the transition, or there are isolated elements, redundant and incomplete information are regarded as model errors. Using this as a standard to check the model. After inspection, the models established in the previous section meet the specifications.

Then, use the analysis method based on the incidence matrix to analyze the mathematical characteristics of the model established in the previous section. T-invariant refers to the procedure of a set of transitions from a certain mark to the original mark through enabling, that is, a cyclic procedure.
There is no cyclic structure in the above Petri net model, and the T-invariant is 0. The S-invariant is used to study the activity and boundedness of Petri nets, etc., and represents the weighted conservation of token numbers in some positions. The following study analyzes the mathematical properties of the Petri net model of the port station operation procedure, and obtains the S-invariant of each model. According to the calculation results, the nature of the Petri net model is judged.

An association matrix is established for the empty wagon’s operation procedure model of a heavy-load train in the "planned repair" mode, and the S-invariant is solved to obtain the association matrix as:

\[
A = \begin{pmatrix}
-1 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & -1
\end{pmatrix}
\]

According to \(A^T X = 0 \), S-invariant is:

\[
X_1 = (1,1,1,1,1,1)^T \\
X_2 = (1,1,1,0,1,1)^T
\]

In the S-invariant, the component of token flowing through this place is 1, otherwise it is 0. As long as the token distribution satisfies the conditions, the model is bounded and conserved in structure. At the same time, the number of S-invariants is fixed, which is equal to the number of free variables in the linear equation. The S-invariant can also be transformed into the following form here:

\[
X_1 = (S1,C1,S2,C2,S3,C3,P1,C5,P11,C6,S4,C7,S5)^T \\
X_2 = (S1,C1,S2,C2,S3,C4,P11,C6,S4,C7,S5)^T
\]

Therefore, the route taken by Token in the empty wagon’s operation procedure model of the heavy-load train in the "planned repair" mode may be:

1. S1,C1,S2,C2,S3,C3,P1,C5,P11,C6,S4,C7,S5.
2. S1,C1,S2,C2,S3,C4,P11,C6,S4,C7,S5.

According to the definition of Petri net model activity, boundedness and accessibility, the empty wagon’s operation procedure model of heavy-load trains in the "planned repair" mode is active, bounded and reachable. Similarly, analysis of other models shows that the model is reasonable.

4.2. Time parameters of the empty wagon’s operation procedure model of heavy-load trains under different maintenance modes

4.2.1. Petri net model time parameters of the empty wagon’s operation procedure of heavy-load train in "planned repair" mode

① Top model

The operation time and proportion results of each link in the empty wagon’s operation procedure of heavy-load trains under the mode of "planned repair" are shown in the following table.

Place	Procedure	Time(min)	Proportion
Unloading station	Departure operation	25	
Combination station	Arrival operation	35	
	Disintegration and marshalling	0	7%
② Disintegration and marshalling job sub-procedure model

The operation time and proportion results of each link in the disassembly sub-procedure are shown in the following table:

Table 6. Operation time of each link in marshalling sub-procedure

Place	Procedure	Time(min)
Empty wagon arrival yard	Start disintegration and marshalling operation	30
	Throat area occupied turn to unoccupied	0-240
	Wagon coupling operation	30
Hump	Hump occupied turn to unoccupied	0-180
	Disintegration operation	90
Shunting track	Wagon detention	280
	Shunting engine occupied to unoccupied	0-90
Shunting track	Wagon coupling operation	30
Lead line	Lead line occupied to unoccupied	0-20
	The train is running on the lead line	20

③ Average initiation velocity of each time transition of the model

After the delay of time transition in the model, it is necessary to obtain the average induced velocity λ of transition according to the delay time of transition. Since the average induced velocity λ represents the average initiation times of transition in unit time, it can be assumed that the unit time is "1". At the same time, because in the above model, part of the transition time obeys the uniform distribution in the $\{t_{\min}, t_{\max}\}$, in order to obtain the average induced velocity of transition λ, the expected value is selected as the transition time. Then the average triggering rate table of each time transition in the model can be obtained, as shown in the following two tables:

Table 7. Numerical table of average induced velocity of each transition in top-level model.

Transition(T)	Delay of the time(min)	Induced velocity(λ)
C1	25	0.0400
C2	35	0.0286
C6	40	0.0250
C7	35	0.0286

Table 8. Numerical table of average induced velocity of disintegration and marshalling operation sub-procedure model.

Transition(T)	Delay of the time(min)	Induced velocity(λ)
P1	10	0.0100
P2	40	0.0250
P3	20	0.0500
P4	5	0.2000
P5	30	0.0333
P6	90	0.0111
P7	12.5	0.0800
P8	20	0.0500
P9	5	0.2000
P10	20	0.0500

4.2.2. Petri net model time parameters of the empty wagon’s operation procedure of heavy-load trains in "unit centralized repair" mode
① Top model
The operation time and proportion results of each link in the empty operation procedure of heavy-load trains under the mode of "unit centralized repair" are shown in the following table:

Operation place	Operation	Operation time (min)	proportion
Unloading station	Departure	25	
	operation		
Combination station	Arrival	35	
	operation		
	Maintenance	0	0.3%
	No maintenance	0	99.7%
	Departure	40	
	operation		
Loading station	Arrival	35	
	operation		

② Disintegration and marshalling job sub-procedure model
The operation time and proportion results of each link in the disassembly sub-procedure are shown in the following table:

Operation place	Operation	Operation time (min)
Empty wagon arrival yard	Start maintenance operation	10
	Throat area occupied to unoccupied	0-240
	Wagon coupling operation	30
Lead line	Lead line occupied to unoccupied	0-20
	The train is running on the lead line	20
Car depot	Maintenance operation of the whole train	720
	Shunting engine occupied to unoccupied	0-80
	Wagon coupling operation	30
Lead line	Lead line occupied to unoccupied	0-20
	The train is running on the lead line	20

③ Average induced velocity of each time transition of the model
Similarly, the average induced velocity table of each time transition in the model can be obtained, as shown in the following two tables:
Table.11 Numerical table of average initiation rate of each transition in top-level model.

Transition(T)	Delay of the time(min)	Induced velocity(λ)
B1	25	0.0400
B2	35	0.0286
B6	40	0.0250
B7	35	0.0286

Table.12 Numerical table of average initiation rate of disintegration and marshalling operation sub-procedure model.

Transition(T)	Delay of the time(min)	Induced velocity(λ)
Q1	10	0.0100
Q2	40	0.0250
Q3	20	0.0500
Q4	5	0.2000
Q5	20	0.0500
Q6	720	0.0014
Q7	12.5	0.0800
Q8	20	0.0500
Q9	5	0.2000
Q10	20	0.0500

4.3. Average operating time of empty wagon’s operation procedure of heavy-load trains under different inspection modes

According to the simulation results, the average operation time of the empty wagon’s operation procedure under different maintenance modes of heavy-load trains can be obtained, as shown in the following table:

Table.13 Average operation time of empty wagon’s operation procedure under different maintenance methods for heavy-load trains.

Mode	Name	Average operation time(min)
planned repair	marshalling	745
	The operation of empty wagon	187.15
unit centralized repair	maintenance	1010
	The operation of empty wagon	138.03

4.4. Average turnaround time of heavy-load train under different maintenance modes

The above model calculates the average operation time of the empty train operation procedure of heavy-load trains under different maintenance modes, and the average turnaround time of the train rolling stock is composed of the heavy-load train operation time, empty operation time and train in transit time.

Taking the Datong-Qinhuangdao Railway as an example, the average turnaround time of the rolling stock of heavy-load trains under different maintenance methods is obtained, as shown in the following table.

Table.14 Description of variables in the sub-procedure model of maintenance operations.

Mode	Average operation time for loaded wagon(min)	Average operation time for empty wagon(min)	Average travel time of the train(min)	Average turnaround time for rolling stock(min)
Planned repair	130	187	4050	4333
Unit centralized repair	130	138	4050	4318
Average shorten time(min)	--	--	--	49
Compared with the "planned repair" mode, the "unit centralized repair" mode can compress 49 minutes per train during a turnaround procedure. Taking Hudong Railway Station of Datong-Qinhuangdao Railway as an example, it can compress 114.3 train hours per day on average.

5. Conclusion
This paper mainly studies the influence of different maintenance modes on the train turnaround time and vehicle operating efficiency of heavy-load trains. The results show that compared with the current maintenance mode of "planned repair", the "unit centralized repair" mode can achieve an average compression of 0.82 vehicle-hours per train and 115 vehicle-hours per day in terms of the train turnaround time of heavy-load trains. In terms of vehicle operating efficiency, due to the significant compression of maintenance time, the vehicle operating efficiency can be greatly improved. Therefore, the implementation of the mode of "unit centralized repair" is of great significance to the capacity improvement of heavy-haul transportation and other heavy-haul rail track in the future.

References
[1] Li, C., Wei, Y.G., (2020) Operation Flow Analysis and Optimization of Port Station Based on Petri Net Model. Railway Transport and Economy, 42: 93-102.
[2] Ye, J.Q., (2012) Research on the Synergic Problem in Collection and Distribution System of Heavy Haul Railway. Doctor Degree. Central South University, 55-58.
[3] Zhang, J.CH., (2008) Study on key technology of transportation organization of semi-closed heavy haul railway. Doctor Degree. Beijing Jiaotong University, 24-27.
[4] Dong, S.X., Wei, Y.G., Zhang, J.CH., (2020) Stochastic Chance Programming Model and Algorithm for Train Combination Scheme of Heavy-haul Combination Station. Journal of the China Railway Society, 42: 8-14.
[5] Suo, Y.H., (2012) Study on Several Key Issues of Special Line for Cargo and Passenger Traffic. Master Degree. Southwest Jiaotong University, 43-48.
[6] Cheng, X.T., (2018) Optimization analysis of warehouse business procedure based on Petri net. Electronic Component and Information Technology, 10: 23-26.
[7] ARGALANT, A., (2017) Study on Process Optimization of Import Freight Transportation at Zamin-Uud Station of Mongolia. Master Degree. Beijing Jiaotong University, 62-68.
[8] Fu, R.M., (2012) Research on Coal Railway Planning and Evaluation under the background of Collection and distribution System. Doctor Degree. Central South University, 42-53.
[9] Su. Y., Wei, Y.G., (2016) Application research of new type combination depot of combination station. Railway Computer Application, 25:12-16.
[10] Hao, D.H., (2011) A Study on the Organization of Wagon Flow in Heavy Loading Area with 450million in Da-Qin railway. Master Degree. TsingHua University, 25-29.