COMPACT SCHUR-WEYL DUALITY AND THE TYPE B/C VW-ALGEBRA

KIERAN CALVERT

Abstract. We define an extension of the VW-algebra, the type B/C VW-algebra. This new algebra contains the hyperoctahedral group and it naturally acts on $\text{End}_K(X \otimes V^\otimes k)$ for Orthogonal and Symplectic groups. Thus we obtain a compact analogue of Schur-Weyl duality. We study functors $F_{\mu,k}$ from the category of admissible $O(p,q)$ or $Sp_{2n}(\mathbb{R})$ modules to representations of the type B/C VW-algebra B^θ_k. Thus providing a Akawaka-Suzuki-esque link between $O(p,q)$ (or $Sp_{2n}(\mathbb{R})$) and B^θ_k. Furthermore these functors take non spherical principal series modules to principal series modules for the graded Hecke algebra of type D_k, C_{n-k} or B_{n-k}. With this we get a functorial correspondence between admissible simple $O(p,q)$ (or $Sp_{2n}(\mathbb{R})$) modules and graded Hecke algebra modules.

Contents

1. Introduction 2
2. Preliminaries 5
3. Brauer Algebras 6
4. Quotients of the type B/C Brauer algebra B^θ_k 11
5. Functors from $\mathcal{H}C(G)$-mod to B^θ_k-mod 14
6. Restricting functors to principal series modules 14
7. Images of principal series modules 18
8. Principal series modules map to principal series modules 24
9. Hermitian forms 32

Bibliography 41
References 41

Department of Mathematics, University of Manchester, kieran.calvert@manchester.ac.uk.
1. Introduction

Let G be an odd real orthogonal group or symplectic group, G is $O(p, q)$ for $p + q = 2n + 1$ or $Sp_{2n}(\mathbb{R})$. Let K denote a maximal compact subgroup of G. Let \mathfrak{g}_0 be the real Lie algebra of G. Define its complexification $\mathfrak{g} = \mathfrak{g}_0 \otimes \mathbb{C}$. Let X be an admissible G-module and let V be the defining matrix module of the linear group G. The papers [1, 23, 10, 6, 14, 13] study variants of the C-algebra $\text{End}_G(X \otimes V \otimes k)$ of operators on $X \otimes V \otimes k$ commuting with G. For $G = Sp_{2n}(\mathbb{R}), O(p, q)$ there is a homomorphism of the VW-algebra or degenerate BMW algebra [14, 11] to $\text{End}_G(X \otimes V \otimes k)$. In this paper we focus on the larger algebra of operators which commute with K:

$$\text{End}_K(X \otimes V \otimes k).$$

We define an extension of the VW-algebra, \mathfrak{B}_k^θ, by operators related to the Cartan involution θ of G. This new algebra \mathfrak{B}_k^θ acts on $X \otimes V \otimes k$ and commutes with the action of K. It is also an extension of the Cyclotomic Brauer algebra, which is unsurprising since the Author has shown [7] that the cyclotomic Brauer algebra acts on $\text{End}_K(V \otimes k)$. It is the analogue of the VW-algebra for operators commuting with K. The extension contains the Weyl group of type B/C, the hyperoctahedral group. This new algebra’s module category is a natural image for the functors defined by Ciubotaru and Trapa [9]:

$$F_{\mu,k}(X) = \text{Hom}_K(\mu, X \otimes V \otimes k).$$

We show that the functors $F_{\mu,k}$ take the category of admissible $O(p, q)$ or $Sp_{2n}(\mathbb{R})$-modules to \mathfrak{B}_k^θ-modules. Unlike previous functors, for $G = O(p, q)$ or $Sp_{2n}(\mathbb{R})$, both categories are related to the hyperoctahedral group. Let $G = KAN$ be the Iwasawa decomposition of G, and $P = MAN$ be the minimal parabolic subgroup. For characters δ of M and e^ν of A, the principal series representation X_δ^ν (Definition 6.1) is:

$$X_\delta^\nu = \text{Ind}_{MAN}^G(\delta \otimes e^\nu \otimes 1).$$

For split real orthogonal or symplectic groups this covers all of the principal series modules. When $G = O(p, q)$ or $Sp_{2n}(\mathbb{R})$ then $M = (\mathbb{Z}_2)^n$ or $O(p - q) \times (\mathbb{Z}_2)^q$. Denote the character of M which is $triv$ (or det) on $O(p - q)$, -1 on the first k generators and 1 on the remaining $n - k$ or $q - k$ by δ_{triv}^k (resp. δ_{det}^k). For $Sp_{2n}(\mathbb{R})$ we drop the subscript det and triv. The graded Hecke algebra $\mathbb{H}_k(c)$ (Definition 4.1) is the graded Hecke algebra associated to the hyperoctahedral group $W(B_k)$ with a certain parameter function related to $c \in \mathbb{R}$. For $G = Sp_{2n}(\mathbb{R})$, the functors $F_{triv,k}$ and $F_{det,n-k}$ take principal series modules X_{triv}^ν to principal series modules for the graded Hecke algebra $\mathbb{H}_k(0)$ and $\mathbb{H}_{n-k}(1)$.
respectively. For \(G = O(p, q) \) the functors \(F_{\text{triv} \otimes \det, k} \) and \(F_{\det \otimes \text{triv}, q-k} \) take principal series modules \(X_{\nu_k}^{\delta_{\text{triv}}} \) to principal series modules for the graded Hecke algebra \(\mathbb{H}_k(0) \) and \(\mathbb{H}_{q-k}(1) \) respectively. A similar result holds for \(X_{\nu_k}^{\delta_{\det}} \) and functors \(F_{\text{triv} \otimes \text{triv}, k} \) and \(F_{\det \otimes \det, q-k} \). Given a particular character \(\delta \) of \(M \) we associate to it \(K \)-characters \(\mu \), and \(\mu \) (Table 6.1) with scalars \(c_{\mu} \) and \(c_{\mu} \) (Table 7.1). We prove that functors related to \(\mu \) and \(c_{\mu} \) take principal series representations to principal series representations. Thus we have defined a link between principal series of split real orthogonal or symplectic groups with principal series of certain graded Hecke algebras.

Theorem 8.14. For \(G = Sp_{2n}(\mathbb{R}) \) or \(O(p, q) \), \(p+q = 2n+1 \), the module \(F_{\mu, k}(X_{\delta}^{\nu}) \) is isomorphic to the \(\mathbb{H}_k(c_{\mu}) \) principal series module

\[
X(\nu_k) = \text{Ind}_{S(\theta_{k})}^{\mathbb{H}_k(c_{\mu})} \nu_k.
\]

The module \(F_{\mu, n-k}(X_{\delta}^{\nu}) \) is isomorphic to the \(\mathbb{H}_{n-k}(c_{\mu}) \) principal series module

\[
X(\bar{\nu}_{n-k}) = \text{Ind}_{S(\theta_{k})}^{\mathbb{H}_{n-k}(c_{\mu})} \bar{\nu}_{n-k}.
\]

This extends the results of Ciubotaru and Trapa [9] to non-spherical principal series modules. Importantly, if \(G \) is a split real orthogonal or symplectic group, we can describe the Hecke algebra module of the image of every principal series modules resulting from functors \(F_{\mu, k} \) and \(F_{\mu, n-k} \). Furthermore using Casselman’s subrepresentation theorem, for these split groups we have a correspondence of irreducible Harish-Chandra modules of \(G \) and graded Hecke algebra modules.

Theorem 8.15. Let \(G = O(n+1, n) \) or \(Sp_{2n}(\mathbb{R}) \), then \(G \) is split. Let \(X \) be an irreducible \(G \)-module. Let \(X_{\delta}^{\nu} \) be a principal series representation that contains \(X \), then the \(B^0_k \) and \(B^0_{n-k} \)-modules

\[
F_{\mu, k}(X) \text{ and } F_{\mu, n-k}(X)
\]

are submodules of the \(\mathbb{H}_k(c_{\mu}) \) and \(\mathbb{H}_{n-k}(c_{\mu}) \)-modules

\[
X(\nu_k) \text{ and } X(\bar{\nu}_{n-k}).
\]

We define two anti-involutions on \(B^0_k \) which descend to the usual anti-involutions on the graded Hecke algebra [2]. Furthermore we show that if \(X \) is a Hermitian (resp. unitary) module of \(G = Sp_{2n}(\mathbb{R}) \) then the image of \(X \) under the functor \(F_{\mu, k} \) is a Hermitian (resp. unitary) module for \(B^0_k[m_0, m_1] \). We also show that the Langlands quotient is preserved.
Theorem 9.26. Let X^ν_δ be a principal series module for $G = O(p,q)$ or $Sp_{2n}(\mathbb{R})$. The Langlands quotient $\overline{X^\nu_\delta} = X^\nu_\delta / \text{rad}(\cdot)X^\nu_\delta$ is mapped by $F_{\mu,k}$ to the Langlands quotient of the $H_k(c_\mu)$-module, $\overline{X(\nu_k)} = X(\nu_k) / \text{rad}(\cdot)X(\nu_k)$. Similarly, X^ν_δ is mapped by $F_{\mu,n-k}$ to the $H_{n-k}(c_\mu)$-module $\overline{X(\nu_{n-k})}$.

We then give a non-unitary test for principal series modules.

Theorem 9.29. [Non-unitary test for principal series modules] If either $X(\nu_k)$ or $X(\nu_{n-k})$ are not unitary, as $H_k(c_\mu)$ and $H_{n-k}(c_\mu)$-modules, then the Langlands quotient of the minimal principal series module $\overline{X^\nu_\delta}$, for $G = O(p,q)$ or $Sp_{2n}(\mathbb{R})$ is not unitary.

This result gives a functorial result similar to the nonunitarity criterion proved by Barbasch, Pantano, Paul and Salamanca-Riba [3, 20] We also obtain a non-unitary test for any Harish Chandra module; in the split case one could check unitarity of Hecke algebra modules however in the non-split case one would have to work with type B/C Brauer algebra modules.

Theorem 9.30. [Non-unitary test for Harish-Chandra modules] Let X be a Harish Chandra module. For $G = Sp_{2n}(\mathbb{R})$ or $O(p,q)$, if for any character μ and $k = 1, \ldots, n$ the B_k^{μ}-module $F_{\mu,k}(X)$ is not unitary, then the Langlands quotient \overline{X} of X is not a unitary G-module.

In Section 3 we define the type B/C VW-algebra B_k^{μ} and show that it acts on $X \otimes V^\otimes k$ and commutes with the action of K. Section 4 defines particular quotients of B_k^{μ} isomorphic to the graded Hecke algebras $H_k(c)$. In Section 5 we introduce the functors, defined in [9], $F_{\mu,k} : \mathcal{HC}(G) \to B_n^{\mu}$-mod. These functors naturally create B_k^{μ}-modules. In Section 7 we show that the functors restricted to principal series modules define Hecke algebra modules. Section 8 describes the isomorphism classes of $F_{\mu,k}(X^\nu_\delta)$ and $F_{\mu,n-k}(X^\nu_\delta)$ as principal series modules of graded Hecke algebras $H_k(c_\mu)$ and $H_{n-k}(c_\mu)$. In Section 9 we prove that functors $F_{\mu,k}$ preserve unitarity and invariant Hermitian forms.
Throughout this paper we fix the following notation. Let G be $O(p, q)$, $p + q = 2n + 1$ or $Sp_{2n}(\mathbb{R})$. Let \mathfrak{g}_0 be its Lie algebra, with complexification $\mathfrak{g} = \mathfrak{g}_0 \otimes_{\mathbb{R}} \mathbb{C}$. We uniformly denote a real Lie algebra by \mathfrak{g}_0, for a complex Lie algebra we drop the subscript. We fix a Cartan involution θ of \mathfrak{g}_0 and extend to \mathfrak{g}, let Θ be the corresponding involution of G. A maximal compact subgroup of G is K, the fixed space of Θ. The Lie algebra \mathfrak{g}_0 decomposes as $\mathfrak{k}_0 \oplus \mathfrak{p}_0$. The subspace \mathfrak{p}_0 is the -1 eigenspace of θ, the subalgebra \mathfrak{k}_0 is the $+1$ eigenspace of θ and the Lie algebra of K. Similarly, $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$. Let \mathfrak{a}_0 be a maximal commutative Lie subalgebra of \mathfrak{p}_0. Let M be the centralizer of \mathfrak{a}_0 in K under the adjoint action. We have $\text{Lie}(M) = \mathfrak{m}_0$.

Definition 2.1. For G equal to $O(p, q)$ or $Sp_{2n}(\mathbb{R})$ write V_0 for the defining matrix module. That is $\rho : G \to GL(V_0)$ is the injection defining G as a linear group. Write $V = V_0 \otimes_{\mathbb{R}} \mathbb{C}$ for the complexification of V_0.

If $G = Sp_{2n}(\mathbb{R})$ then $V = \mathbb{C}^{2n}$ and if $G = O(p, q)$ then $V = \mathbb{C}^{2n+1}$. When $G = Sp_{2n}(\mathbb{R})$, let $e_1, ..., e_{2n}$ be the standard matrix basis of V, then define a new basis $f_i = e_i + e_{n+i}$ for $i = 1, ..., n$ and $f'_i = e_i - e_{n+i}$ for $i = 1, ..., n$. We also label f_i by f_i^1 and f'_i by f_i^{-1}. When $G = O(p, q)$ then V has basis $e_1, ..., e_{2n+1}$, we let $f_i = e_{p-i+1} + e_{p+i}$ and $f'_i = e_{p-i+1} - e_{p+i}$.

Following [19, Section 1.1], let $\{R, X, \hat{R}, \hat{X}, \Delta\}$ be root datum where R is the set of roots, \hat{R} is the set of coroots and X and \hat{X} are free groups that contain R and \hat{R} respectively. There is a perfect pairing \langle , \rangle between X and \hat{X} which defines a pairing between R and \hat{R}. The simple roots Δ are a subset of R. Let \mathfrak{t} equal the complexification of X, and similarly $\hat{\mathfrak{t}}$ is the complexification of \hat{X}.

The Lie algebra \mathfrak{g} decomposes as $\mathfrak{k} \oplus \mathfrak{p}$. Let \mathfrak{a} be a maximal abelian Lie subalgebra of \mathfrak{p}. The restricted roots Σ of \mathfrak{g} are given by the eigenvalues of \mathfrak{a} acting on \mathfrak{g}. The nilpotent Lie subalgebra \mathfrak{n} is the sum of positive root spaces of the restricted roots of \mathfrak{a}.

Definition 2.2. [17, Proposition 6.46], [16] The Iwasawa decomposition of the complex vector space \mathfrak{g} is

$$\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{a} \oplus \mathfrak{n}.$$

The Iwasawa decomposition of G [17, Theorem 6.46] is

$$G = KAN.$$
Let M be the centralizer of a in K and denote by $N_K(a)$ the normalizer of a in K. Let m_0 be the Lie algebra of M with complexification m. The Weyl group associated to G is the group

$$W_G = N_K(a)/M.$$

Example 2.3. For $G = Sp_{2n}(\mathbb{R})$, a maximal abelian subalgebra a of \mathfrak{p} is

$$a = \left\{ \begin{bmatrix} 0 & B \\ B & 0 \end{bmatrix} : B \text{ is diagonal}, B \in \mathfrak{gl}_n(\mathbb{C}) \right\}.$$

The algebra a has dimension n, this is the real rank of $Sp_{2n}(\mathbb{R})$. Let $E_{i,j}$ be the matrix with 1 in the (i, j) position and zero elsewhere. Let $k \in \{0, ..., n\}$ The subspace a_k is the span of $E_{i,n+i} + E_{n+i,i}$ for $i = 1, ..., k$. The subspace $\bar{a}_{n-k} \subset a$ is the span of the vectors $E_{k+i,n+k+i} + E_{n+k+i,k+i}$ for $i = 1, ..., n-k$. Note that

$$a = a_k \oplus \bar{a}_{n-k}.$$

For $G = SO(p,q)$ there is a similar decomposition of a into k dimensional and $q-k$ dimensional subspaces, which we label by a_k and \bar{a}_{q-k}.

Definition 2.4. Given a finite dimensional complex Lie algebra \mathfrak{g} with basis B and dual basis B^* with respect to the Killing form, we define the Casimir element in the enveloping algebra $U(\mathfrak{g})$ to be

$$C^g = \sum_{b \in B} bb^* \in U(\mathfrak{g}).$$

For a subalgebra $\mathfrak{h} \subset \mathfrak{g}$ we denote the Casimir element of \mathfrak{h} in \mathfrak{g} by $C^h = \sum_{b \in B \cap \mathfrak{h}} bb^*$ where the basis B is taken such that $B \cap \mathfrak{h}$ is a basis of \mathfrak{h}.

3. BRAUER ALGEBRAS

For a given \mathfrak{g}-module X and the matrix module V, the endomorphism ring $\text{End}_C(X \otimes V^{\otimes k})$ has been thoroughly studied. Most attention ([23, 10, 12, 6, 14]) has been on understanding the subalgebra commuting with G:

$$\text{End}_C(X \otimes V^{\otimes k}).$$

In the case of $\mathfrak{g} = \mathfrak{gl}_n$, $\text{End}_{\mathfrak{gl}_n}(X \otimes V^{\otimes k})$ has a map from the graded Hecke algebra associated to the symmetric group $[1]$. However, with $\mathfrak{g} = \mathfrak{so}_{2n+1}$, the relevant algebra is the VW-algebra with parameter n. With $\mathfrak{g} = \mathfrak{sp}_{2n}$, the corresponding algebra is the VW-algebra with parameter $-n$.

In this section, we define the type B/C Brauer algebra as an extension of the VW-algebra. We endow it with a natural action on
$X \otimes V^{\otimes k}$ and prove that it commutes with the action of K. The degenerate BMW algebra is a quotient of the VW-algebra. We choose not to use the BMW algebra [11] as we are fundamentally interested in resulting graded Hecke algebra modules, the quotients to Hecke algebras defined in Section 4 annihilate the difference between the VW-algebra and the degenerated BMW algebra.

Definition 3.1. [5] The rank k Brauer algebra $B_k[m]$, with parameter $m \in \mathbb{C}$, is the associative \mathbb{C}-algebra generated by elements $t_{i,i+1}$ and $e_{i,i+1}$ for $i = 1, ..., k-1$, subject to the conditions:

- the subalgebra generated by $t_{i,i+1}$ is isomorphic to $\mathbb{C}[S_n]$, i.e., $e^2_{i,i+1} = me_{i,i+1}$,
- $t_{i,i+1}e_{i,i+1} = e_{i,i+1}t_{i,i+1} = e_{i,i+1}$,
- $t_{i,i+1}t_{i+1,i+2}e_{i,i+1}t_{i+1,i+2} = e_{i+1,i+2}$,
- $[t_{i,i+1}, e_{j,j+1}] = 0$ for $j \neq i, i+1$.

Definition 3.2. Let U be a vector space with basis $z_1, ..., z_k$. The rank k VW-algebra $B_k[m]$, with parameter $m \in \mathbb{C}$ is as a vector space equal to

$B_k[m] \cong B_k[m] \otimes S(U)$.

The multiplication satisfies the following conditions:

- $t_{i,i+1}z_i - z_{i+1}t_{i,i+1} = 1 + e_{i,i+1}$,
- $[t_{i,i+1}, z_j] = 0$, $j \neq i, i+1$,
- $e_{i,i+1}(z_i + z_{i+1}) = 0 = (z_i + z_{i+1})e_{i,i+1}$,
- $[e_{i,i+1}, z_j] = 0$, $j \neq i, i+1$,
- $[z_i, z_j] = 0$,
- $e_{12}z_i e_{12} = W_i e_{12}$ for constants $w_i \in \mathbb{C}$,

the subalgebra generated by $t_{i,i+1}$, $e_{i,i+1}$ is isomorphic to $B_k[m]$.

Let us consider X and V as $U(\mathfrak{g})$-modules then $X \otimes V^{\otimes k}$ has a $U(\mathfrak{g})^{\otimes k+1}$-module structure. We define operators that form the action of the Brauer algebra.

Definition 3.3. Given the action of $U(\mathfrak{g})^{\otimes k+1}$ on $X \otimes V^{\otimes k}$ we write $(g)_i$ for the action of g on the $i+1$st tensor in $U(\mathfrak{g})^{\otimes k+1}$,

$$(g)_i = \underbrace{id \otimes \cdots \otimes id}_{i \text{ times}} \otimes g \otimes \underbrace{id \otimes \cdots \otimes id}_{k-i \text{ times}}.$$

By construction we start counting from zero. Hence $(g)_0 = g \otimes id \otimes ... \otimes id \in U(\mathfrak{g})^{\otimes k+1}$.
Definition 3.4. Fix a basis B of \mathfrak{g} such that $B = (B \cap \mathfrak{k}) \cup (B \cap \mathfrak{p})$. Let B^* be the dual basis with respect to the Killing form of \mathfrak{g}. For $0 \leq i < j \leq k$, define Ω_{ij} to be the operator

$$\Omega_{ij} = \sum_{b \in B} (b)_i \otimes (b^*)_j \in U(\mathfrak{g})^{\otimes k+1}.$$

Similarly we define Ω^k_{ij} and Ω^p_{ij} as

$$\Omega^k_{ij} = \sum_{b \in B \cap \mathfrak{k}} (b)_i \otimes (b^*)_j \in U(\mathfrak{g})^{\otimes k+1},$$

$$\Omega^p_{ij} = \sum_{b \in B \cap \mathfrak{p}} (b)_i \otimes (b^*)_j \in U(\mathfrak{g})^{\otimes k+1}.$$

Lemma 3.5. The operators $\Omega_{ij}, \Omega^k_{ij}$ and Ω^p_{ij} are independent of the choice of basis of \mathfrak{g}, \mathfrak{k} and \mathfrak{p} respectively.

Proof. It is sufficient to prove the statement for $\Omega_{12} \in U(\mathfrak{g})^2$. Let $C^g = \sum_{b \in B} bb^* \in U(\mathfrak{g})$ be the Casimir element and $\Delta : U(\mathfrak{g}) \to U(\mathfrak{g}) \times U(\mathfrak{g})$ denote comultiplication. The operator Ω_{12} can be written as:

$$\Omega_{12} = \Delta(C^g) - C^g \otimes 1 - 1 \otimes C^g.$$

The Casimir element C^g is independent of the choice of basis therefore Ω_{12} is also independent. Similarly replacing \mathfrak{g} with the Lie subalgebra \mathfrak{k}, Ω^k_{12} is independent of choice of basis. Finally Ω^p_{12} is independent as it is the difference of the other two,

$$\Omega_{ij} - \Omega^k_{ij} = \Omega^p_{ij}.$$

Lemma 3.6. If $\mathfrak{g} = \mathfrak{sp}_{2n}$ or \mathfrak{so}_{2n+1} then $V \otimes V$ decomposes as

$$\Lambda^2 V \oplus S^2 V \oplus 1 \oplus 1$$

for \mathfrak{so}_{2n+1},

$$\Lambda^2 V \oplus S^2 V \oplus 1$$

for \mathfrak{sp}_{2n}.

Here 1 denotes the trivial module of \mathfrak{g}.

Let pr_1 be the projection of $V \otimes V$ onto the trivial submodule 1 in the decomposition above. Let $\text{pr}_{i,i+1}$ be the projection onto the trivial submodule of $V_i \otimes V_{i+1}$.
Lemma 3.7. [11, Theorem 2.2] Let G be $O(p,q)$ or $Sp_{2n}(\mathbb{R})$. Let X be a complex G-representation and V the defining matrix module of G. Then there exists $m \in \mathbb{N}$ such that there is a homomorphism $\pi : \mathfrak{B}_k[m] \to \text{End}(X \otimes V^\otimes k)$:

$$\pi(z_i) = \sum_{j<i} \Omega_{ji},$$

$$\pi(t_{i,i+1}) = s_{i,i+1},$$

$$\pi(e_{i,i+1}) = id \otimes ... \otimes id \otimes m \text{pr}_{i,i+1} \otimes id \otimes \otimes id.$$

For $G = Sp_{2n}(\mathbb{R})$ the parameter is $m = -n$ and if $G = O(p,q)$ then $m = \lfloor \frac{p+q}{2} \rfloor$.

Theorem 3.8. For $G = O(p,q)$ or $Sp_{2n}(\mathbb{R})$, the VW-algebra with the action on $X \otimes V^\otimes k$ defined in Lemma 3.7 commutes with the action of $U(g)$ on $X \otimes V^\otimes k$.

Lemma 3.9. [9, Lemma 2.3.1] Let $0 < i < j \leq k$ and $G = O(p,q)$ or $Sp_{2n}(\mathbb{R})$. As operators on $X \otimes V^\otimes k$

$$\Omega_{ij} = s_{ij} + m \text{pr}_{i,i+1}, \text{ for } 1 \leq i < j \leq k$$

where $m = \lfloor \frac{p+q}{2} \rfloor$ or $-n$ respectively.

Proof. One only needs to consider the operator Ω_{12} on $V \otimes V$. By Lemma 3.6 $V \otimes V$ decomposes as

$$\Lambda^2 V \oplus S^2 V/1 \oplus 1 \text{ for } \mathfrak{g}_C = \mathfrak{so}_{2n+1}(\mathbb{R}),$$

$$\Lambda^2 V/1 \oplus S^2 V \oplus 1 \text{ for } \mathfrak{g}_C = \mathfrak{sp}_{2n}(\mathbb{C}).$$

On $V \otimes V$ $s_{12} = pr_S V - pr_{\Lambda^2 V}$. Then using the fact that $\Omega_{12} = \Delta(C) - C \otimes 1 - 1 \otimes C$ we find the operators

$$\Omega_{12} \text{ and } s_{12} + me_{12},$$

act by the same scalars on the irreducible decomposition of $V \otimes V$. □

For $G = GL_n$ the commutator $\text{End}_{GL_n}(X \otimes V^\otimes k)$ contains the same type Weyl group, the symmetric group (11). One might expect that in type B and C this may be the case too. However $\text{End}_{Sp_{2n}(\mathbb{R})}(X \otimes V^\otimes k)$, $\text{End}_{O(p,q)}(X \otimes V^\otimes k)$ and the VW-algebra, do not contain a copy of the hyperoctahedral group. We look to establish a theory that has this type symmetry reflected in the commutator.

We introduce the type B/C VW-algebra which acts on $X \otimes V^\otimes k$ and commutes with the action of K for $G = Sp_{2n}(\mathbb{R})$ or $O(p,q)$. Crucially the type B/C VW-algebra contains the Weyl group of Type B/C, $W(B_k)$. Recall the hyperoctahedral group is generated by simple reflections $s_{e_i-e_{i+1}}$ and s_{e_k}.
Definition 3.10. The type B/C VW-algebra $B^\theta_k[m_0, m_1]$ is generated by the VW-algebra $B_k[m_0]$ and reflections θ_j, for $j = 1, \ldots, k$, such that the subalgebra generated by t_i, \ldots, k, and θ_j is isomorphic to the group algebra of the k^{th} hyperoctahedral group $\mathbb{C}[W(B_k)]$ and the following relations hold:

$$[e_{i,i+1}, \theta_j] = 0 \text{ for all } j,$$
$$e_{i,i+1}\theta_i\theta_{i+1} = e_{i,i+1} = \theta_i\theta_{i+1}e_{i,i+1} \text{ for } i = 1, \ldots, k - 1,$$
$$[\theta_n, x_j] = 0 \text{ for } j \neq k.$$

$$e_{i,i+1}\theta_i e_{i,i+1} = m_1 e_{i,i+1} \text{ for } i = 1, \ldots, k - 1,$$

The Lie algebra g decomposes as eigenspaces of a Cartan involution θ that is $g = \mathfrak{k} \oplus \mathfrak{p}$. For $G = O(p, q)$ or $Sp_{2n}(\mathbb{R})$ there is a semisimple involutive $\xi \in g$ such that θ is equal to conjugation by ξ.

Remark 3.11. The subalgebra of $B^\theta_k[m_0, m_1]$ generated by $e_{i,i+1}$, t_i, and θ_i is equal to the cyclotomic Brauer $Br_{k,2}[m_0, m_1]$, see [15, 4, 7] for the definition of the cyclotomic Brauer algebra, its representation theory and how it acts on $\text{End}_K(X \otimes V^{\otimes k})$.

Lemma 3.12. The type B/C VW-algebra $B^\theta_k[m]$ acts on $X \otimes V^{\otimes k}$. This action is defined by extending the action π of the VW-algebra to the extra generators θ_i. The generators θ_i act by $(\xi)_i \in U(\mathfrak{g})^{\otimes k+1}$. Extend π to $B^\theta_k[m]$ by $\pi(\theta_i) = (\xi)_i \in U(\mathfrak{g})^{\otimes k+1} \subset \text{End}(X \otimes V^{\otimes k})$. That is

$$\pi : B^\theta_k[m] \rightarrow \text{End}_K(X \otimes V^{\otimes k})$$

$$\pi(\theta_i) = (\xi)_i.$$

Explicitly, $(\xi)_i = \underbrace{id \otimes \ldots \otimes id}_{i} \otimes \underbrace{\xi \otimes id \otimes \ldots \otimes id}_{k-i} \in U(\mathfrak{g})^{\otimes k+1}$. The constants (m_0, m_1) equal $\left(\frac{p+q}{2}, p-q\right)$ when $G = O(p, q)$ and $(m_0, m_1) = (-n, 0)$ if $G = Sp_{2n}(\mathbb{R})$.

Proof. Since we know that the VW-algebra $B_k[m]$ acts on $X \otimes V^{\otimes k}$ and that the cyclotomic Brauer algebra $Br_{k,2}[m_0, m_1]$ acts on $\text{End}_K(V^{\otimes k})$ we only need to check the action of θ_j, and z_i and the relations involving them in Definition 3.10. This equates to checking $[z_i, \theta_k] = 0$ for all $i < n$.

If $i \neq j$, then $(g)_i$ and $(h)_j$ commute in $U(\mathfrak{g})^{k+1}$. Definition 3.7 states $\pi(z_i) = \sum_{j<i} \Omega_{ji}$, hence:

$$[z_i, (\xi)_k] = \sum_{j<i} [\Omega_{ji}, (\xi)_k] = 0 \text{ for } k < n.$$
Theorem 3.13. Let $G = O(p, q)$ or $Sp_{2n}(\mathbb{R})$ and X a Harish-Chandra module. The type B/C Brauer algebra $\mathfrak{B}_k^\theta[m]$ acts on $X \otimes V^\otimes_k$ and commutes with the action of K on $X \otimes V^\otimes_k$.

Proof. The action of $\mathfrak{B}_k^\theta[m]$ commutes with g and by restriction with K. The algebra $\mathfrak{B}_k^\theta[m] = \langle \mathfrak{B}_k^\theta[m], \theta_j : j = 1, \ldots, k \rangle$. Therefore, to verify that $\mathfrak{B}_k^\theta[m]$ commutes with the action of K, one only needs to check that $\pi(\theta_j) = (\xi)_j$ commutes with the action of K. Conjugation by ξ is the Cartan involution: $\xi^{-1} K \xi = \Theta(K)$. By definition, Θ is the identity on K. Hence $\xi_k - k \xi = 0$ for $k \in \mathfrak{k}$. Therefore:

$$[(\xi)_i, k] = \sum_{j=0}^{k+1} (\xi)_i - (k)_j (\xi)_i (k)_j = 0.$$

Hence the action of $(\xi)_i$ and K commute. □

4. Quotients of the type B/C Brauer algebra \mathfrak{B}_k^θ

In Section 5 we introduce functors, defined in [9], from the category $HC(G)$-mod to the category of $\mathfrak{B}_k^\theta[m]$ modules. However, we are aiming at graded Hecke algebra modules. In this section, we look at particular ideals and quotients of $\mathfrak{B}_k^\theta[m]$ which are isomorphic to graded Hecke algebras. This will set up Section 6 in which we focus on principal series modules and show that via the quotients defined in this section, the functors defined in Section 5 descend to take principal series modules to graded Hecke algebra modules.

Recall that $W(R)$ denotes the Weyl group associated to a root datum $(R, X, \hat{R}, \hat{X}, \Delta)$ and $\langle , \rangle : X \times \hat{X} \to \mathbb{C}$ is the pairing between dual spaces. Define the \mathbb{C}-spaces $t = X \otimes_\mathbb{Z} \mathbb{C}$, $t^* = \hat{X} \otimes_\mathbb{Z} \mathbb{C}$.

Definition 4.1. [19] The graded Hecke algebra $\mathbb{H}^R(c)$ associated to the root system $(R, X, \hat{R}, \hat{X}, \Delta)$ and parameter function c from Δ to \mathbb{C}, is as a vector space

$$\mathbb{H}^R(c) \cong S(t) \otimes \mathbb{C}[W(R)],$$

such that as an algebra $S(t)$ and $\mathbb{C}[W(R)]$ are subalgebras and the following cross relations hold,

$$s_\alpha \varepsilon - s_\alpha (\varepsilon)s_\alpha = c(\alpha)(\alpha, \varepsilon), \text{ for } \varepsilon \in t \text{ and } \alpha \in \Delta.$$

If the parameter function $c : \Delta \to \mathbb{C}$ is taken to uniformly be 1, then in this case the graded Hecke algebra is entirely defined by the root system (W, R, Δ). For a Hecke algebra determined by the uniform parameter we denote it by \mathbb{H}^{R_k} where R_k is the root system. For
example \mathbb{H}^{D_k} denotes the graded Hecke algebra associated to the root system D_k with the parameter function $c : \delta \rightarrow \mathbb{C}$ such that $c(\alpha) \equiv 1$.

We fix the set of simple reflections of the hyperoctahedral group $W(B_k)$ to be \(\{ s_{i,i+1}, \theta_k : i = 1, \ldots, k - 1 \} \). We also associate to the hyperoctahedral group a k dimensional vector space t with basis $\vartheta_1, \ldots, \vartheta_k$ and subset $\Delta = \{ \vartheta_i - \vartheta_{i+1} \text{ and } \vartheta_k : i = 1, \ldots, k - 1 \}$. Then for $c \in \mathbb{C}$ we define the parameter $c : \Delta \rightarrow \mathbb{C}$ as

$$c(\alpha) = \begin{cases} 1 & \text{if } \alpha = \vartheta_i - \vartheta_{i+1}, \\ c & \text{if } \alpha = \vartheta_k. \end{cases}$$

We denote the graded Hecke algebra associated to the Weyl group $W(B_k)$ with the parameter c as H^c_k.

Lemma 4.2. The graded Hecke algebra of type B_k (resp. type C_k) is isomorphic to $\mathbb{H}_k(1)$ (resp. $\mathbb{H}_k(\frac{1}{2})$) and the algebra $\mathbb{H}_k(0)$ is isomorphic to an extension of the Hecke algebra of type D_k,

$$\mathbb{H}_k(0) \cong \mathbb{H}_k \rtimes \mathbb{Z}_2.$$

Proof. The isomorphism of $\mathbb{H}_k(1)$ and the graded Hecke algebra \mathbb{H}^{B_k} is apparent from the definitions. The space t_{D_k} is equal to the space t in $\mathbb{H}_k(0)$. The Weyl group $W(D_k)$ is naturally a subgroup of $W(B_k)$. The generator $t \in \mathbb{Z}_2$ acts on \mathbb{H}^{D_k} by interchanging roots $\vartheta_{k-1} - \vartheta_k$ and $\vartheta_{k-1} + \vartheta_k$ and acts by conjugation by $s_{\theta_k} \in W(B_k)$ on $W(D_k) \subset W(B_k)$. \qed

We define two ideals in the type B/C VW-algebra $\mathfrak{B}_k^\theta[m]$. We then show that the quotient of $\mathfrak{B}_k^\theta[m]$ by these ideals is isomorphic to a graded Hecke algebra.

Definition 4.3. Let I_e be the two sided ideal in $\mathfrak{B}_k^\theta[m]$ generated by the idempotents,

$$\{ e_{i,i+1} : \text{ for } i = 1, \ldots, k - 1 \}.$$

Let $c \in \mathbb{C}$ and $r \in \mathbb{Z}$, define I_c^r to be the two sided ideal,

$$I_c^r = \langle \theta_k \vartheta_k + \vartheta_k \theta_k - 2c + 2r \theta_k \rangle.$$

The ideal I_e can be generated by any idempotent since they are all in the same S_k conjugation orbit. By using $c \in \mathbb{C}$ we have abused notation; however the two occurrences of c will correspond to the same constant.

Lemma 4.4. The quotient of the algebra $\mathfrak{B}_k^\theta[m]$ by the ideal generated by I_e and I_e^r is isomorphic to the graded Hecke algebra

$$\mathfrak{B}_k^\theta[m_0, m_1]/(I_e, I_e^r) \cong H_k(c).$$
Proof. Consider the presentation in Definition 3.10 with generators $z_i, \theta_j, t_{i,i+1}, e_{i,i+1}$ and relations

$$\theta_j^2 = 1, s_{i,i+1}^2 = 1, (s_{i,i+1}s_{i+1,i+2})^3 = 1, (s_{k-1,k}\theta_k)^4 = 1,$$

$$t_{i,i+1}z_i - x_{i+1}t_{i,i+1} = 1 + e_{i,i+1},$$

$$[t_{i,i+1}, z_j] = 0, j \neq i, i + 1,$$

$$e_{i,i+1}(z_i + z_{i+1}) = 0 = (z_i + z_{i+1})e_{i,i+1},$$

$$[e_{i,i+1}, z_j] = 0, j \neq i, i + 1,$$

$$[z_i, z_j] = 0, j \neq i, i + 1,$$

$$[e_{i,i+1}, \theta_j] = 0 \text{ for all } j,$$

$$e_{i,i+1}\theta_i\theta_{i+1} = e_{i,i+1} = \theta_i\theta_{i+1}e_{i,i+1} \text{ for } i = 1, ..., k - 1,$$

$$[\theta_n, z_j] = 0 \text{ for } j \neq k,$$

$$e_{12}z_1^i e_{12} = w_1 e_{12}.$$

Under the quotient by I_e and I_r the generators $e_{i,i+1}$ and the relations $e_{i,i+1} = 0$ cancel out. Furthermore we add another relation: $z_k\theta_k + \theta_k z_k - 2c + 2r\theta_k$. Hence the presentation has generators $z_i, \theta_j, t_{i,i+1}$ with relations

$$\theta_j^2 = 1, s_{i,i+1}^2 = 1, (s_{i,i+1}s_{i+1,i+2})^3 = 1, (s_{k-1,k}\theta_k)^4 = 1,$$

$$t_{i,i+1}z_i - x_{i+1}t_{i,i+1} = 1,$$

$$[t_{i,i+1}, z_j] = 0, j \neq i, i + 1,$$

$$[z_i, z_j] = 0, j \neq i, i + 1,$$

$$[\theta_n, z_j] = 0 \text{ for } j \neq k,$$

$$z_k\theta_k + \theta_k z_k - 2c + 2r\theta_k.$$

This is a presentation of the Hecke algebra $\mathbb{H}_k(c)$; it is the modification of the presentation in Definition 4.1 by $\epsilon_i \mapsto z_i + r$. Since we have shown that the presentation of $\mathfrak{B}^+_k[p_0, m_1]/(I_e I_r^c)$ is identical to the presentation of $\mathbb{H}_k(c)$ then these algebras are isomorphic.

Remark 4.5. We could have chosen to quotient by the ideal generated by $\theta_k z_k + z_k \theta_k - c$ without the $2r\theta_k$ part. This quotient would also be isomorphic to $\mathbb{H}_k(c)$ with ϵ_i mapping to z_i. However, we need the modification of the affine parts by the scalar r to enable our results regarding images of principal series modules descending to Hecke algebra modules. One can think of this modification by r as an analogue of the ρ shift.
5. Functors from $\mathcal{HC}(G)$-mod to \mathfrak{B}_k^θ-mod

In this section, we introduce functors, defined in [9]. We show these functors take Harish-Chandra modules to modules of the \mathfrak{B}_k^θ algebra.

Definition 5.1. [9, (2.8)] Let n be the real rank of G. If $G = Sp_{2n}(\mathbb{R})$ the real rank is n. If $G = O(p,q)$ then $n = q = \min(p,q)$. Let μ be an irreducible K-module, fix an integer $k \leq n$. The space V is the matrix module of G. We define the functor $F_{\mu,k}$ to be:

$$F_{\mu,k} : \mathcal{HC}(G)\text{-mod} \rightarrow \mathfrak{B}_k^\theta\text{-mod}$$

$X \mapsto \text{Hom}_K(\mu, X \otimes V^\otimes k)$,

and on morphisms $f : X \rightarrow Y$ and $g \in \text{Hom}_k(\mu, X \otimes V^\otimes k)$,

$$F_{\mu,k}f(g) : \mu \rightarrow Y \otimes V^\otimes k,$$

$$F_{\mu,k}f(g)(\mu) = f \otimes \text{id}^\otimes g(\mu).$$

Remark 5.2. Lemma 3.12 gives an action of \mathfrak{B}_k^θ on $X \otimes V^\otimes k$. Since this action commutes with the action of K then \mathfrak{B}_k^θ naturally acts on $\text{Hom}_K(\mu, X \otimes V^\otimes k)$ from the inherited action on $X \otimes V^\otimes k$.

Lemma 5.3. For any irreducible K-module μ and $k \leq n$, the functor $F_{\mu,k}$ defined in Definition 5.1 is exact.

Proof. Tensoring with a finite dimensional module is exact. The module $V^\otimes k$ is finite dimensional hence the functor taking X to $X \otimes V^\otimes k$ is exact. Furthermore, μ is an irreducible K-module. Therefore the functor which takes Y to $\text{Hom}_K(\mu, Y)$ is exact. The functor $F_{\mu,k}$ is the composition of these two exact functors, hence the result follows. \qed

6. Restricting functors to principal series modules

The functors (Definition 5.1) take any Harish-Chandra module to a \mathfrak{B}_k^θ-module. In this section, given a principal series module we give a basis for the image of the functors $F_{\mu,k}$ and $F_{\mu,n-k}$ for particular characters μ, μ depending on the principal series modules.

Let $G = Sp_{2n}(\mathbb{R})$ then $K \cong U(n), M \cong (\mathbb{Z}_2)^n$. The Cartan involution θ is equal to conjugation by the matrix

$$\xi = \begin{bmatrix} 0 & \text{Id}_n \\ -i \text{Id}_n & 0 \end{bmatrix}.$$

The subspace \mathfrak{a} has dimension n with basis ε_i and corresponds to the subgroup A under the exponential map. We label a character of \mathfrak{a} by $\nu \in \mathfrak{a}^*$ and characters of A by e^ν. The matrix module $V \cong \mathbb{C}^{2n}$ has two bases: $\{e_1, \ldots, e_{2n}\}$ and $\{f_1, \ldots, f_n, f_1^{-1}, \ldots, f_n^{-1}\}$, where $f_i^n = e_i + \eta e_{n+i}$.
Recall that the Iwasawa decomposition of G is

$$G = KAN,$$

also, that M is the centraliser of a_0 in K, which is isomorphic to \mathbb{Z}_2^n. The character δ^k is defined to be the character of M which takes the first k generators of \mathbb{Z}_2^n to -1 and the last $n - k$ to 1. We write 1 for the trivial character of N.

If $G = O(p, q)$ then $K \cong O(p) \times O(q)$, $M = O(p - q) \times O(1)^q$ embedded into $O(p, q)$ as the block matrix

$$(O(p - q), x_1, x_2, ..., x_q, x_q, ..., x_1)$$

where $x_i \in O(1)$. We denote characters of M, δ^k_{triv} and δ^k_{det} to be

$$\delta^k_{\text{triv}} = \text{triv} \otimes (\text{sgn}^k) \otimes \text{triv}^{q-k}$$
$$\delta^k_{\text{det}} = \text{det} \otimes (\text{sgn}^k) \otimes \text{triv}^{q-k}$$

on $O(p - q) \otimes O(1)^q$.

The Cartan involution θ is equal to conjugation by the matrix

$$\xi = \begin{bmatrix} \text{Id}_p & 0 \\ 0 & -\text{Id}_q \end{bmatrix}.$$

Definition 6.1. [22] Let $G = KAN$ (resp. $g_0 = \mathfrak{t}_0 \oplus \mathfrak{a}_0 \oplus \mathfrak{n}_0$) be the Iwasawa decomposition of G (resp. g_0) and let M be the centraliser of a_0 in K. Given a character e^ν of A and the character δ of M we define the minimal principal series representation;

$$X_{e^\nu}^\delta = \text{Ind}_{MAN}^G (\delta \otimes e^\nu \otimes 1).$$

In the non-split case principal series representations may be induced from irreducible representations of M which are not one dimensional. In this chapter we will only study principal series modules that are induced from a character of M. We write 1^e_δ for the vector spanning the representation space of the character $\delta \otimes e^\nu \otimes 1$. Hence

$$X_{e^\nu}^\delta = \text{Ind}_{MAN}^G 1^e_\delta.$$

For $G = Sp_{2n}(\mathbb{R})$, we can calculate the dimension of $F_{\text{triv},k}(X_{e^\nu}^\delta)$ and $F_{\text{det},n-k}(X_{e^\nu}^\delta)$. Note that if we want to describe the trivial isotypic component we must take $F_{\text{triv},k}$ and if we wish to look at the det isotypic component then we must take the functor $F_{\text{det},n-k}$.

For $G = O(p, q)$, we can calculate the dimension of $F_{\text{triv} \otimes \text{sgn},k}$ and $F_{\text{triv} \otimes \text{triv},q-k}$. Similarly for $X_{e^\nu}^\delta_{\text{det}}$, we take the functors $F_{\text{sgn} \otimes \text{triv},k}$ and $F_{\text{sgn} \otimes \text{sgn},q-k}$.

To enable us to succinctly discuss all of the above cases we will associate a character μ and μ to each principal series modules. Note δ is a K-character and μ, μ are characters of M.

$G = \text{Sp}_{2n}(\mathbb{R})$ \quad $X'_{\delta}, \delta = (\text{triv})^k \otimes (\text{sgn})^{n-k}$ \quad $\mu = \text{triv}$ \quad $\mu = \text{det}$

$G = \text{O}(p,q)$ \quad $X'_{\delta}, \delta = \text{triv}_{p-q} \otimes (\text{triv})^k \otimes (\text{sgn})^{q-k}$ \quad $\mu = \text{triv} \otimes \text{det}$ \quad $\mu = \text{triv} \otimes \text{triv}$

$G = \text{O}(p,q)$ \quad $X'_{\delta}, \delta = \text{det}_{p-q} \otimes (\text{triv})^k \otimes (\text{sgn})^{q-k}$ \quad $\mu = \text{det} \otimes \text{triv}$ \quad $\mu = \text{sgn} \otimes \text{sgn}$

| Table 6.1. Characters μ, μ associated to particular principal series module. |

Lemma 6.2. Let $G = \text{Sp}_{2n}(\mathbb{R})$ or $G = \text{O}(p,q)$. If X'_{δ} is a minimal principal series module, then $F_{\mu,k}(X'_{\delta})$ and $F_{\mu,n-k}(X'_{\delta})$ are finite dimensional. with dimensions:

$$\dim(F_{\mu,k}(X'_{\delta})) = k!2^k = |W(B_k)|,$$

Similarly,

$$\dim(F_{\mu,n-k}(X'_{\delta})) = (n-k)!2^{n-k} = |W(B_{n-k})|.$$

This is an extension of [9, Lemma 2.5.1] to non-spherical principal series modules and we use the same arguments.

Proof. We explicitly calculate a basis for

$$F_{\mu,k}(X'_{\delta}) = \text{Hom}_K(\mu, X'_{\delta} \otimes V^{\otimes k}).$$

Since X'_{δ} is an induced module from 1_{δ} and K is a compact group, by Frobenius reciprocity this is equal to,

$$F_{\mu,k}(X'_{\delta}) = \text{Hom}_M(\mu|_M, 1_{\delta}^{\otimes k} \otimes V_{|_M}^{\otimes k}).$$

One can tensor by μ^* to get a space fixed by M, hence

$$F_{\mu,k}(X'_{\delta}) = (\mu^* \otimes 1_{\delta}^{\otimes k} \otimes V^{\otimes k})^M.$$

We first prove the result for $G = \text{Sp}_{2n}(\mathbb{R})$. The module V has basis

$\{f_i^{n_i} : i = 1, ... , n$ and $n_i = \pm 1\}$ and the j^{th} generator of M acts by -1^δ_{ij} on $f_i^{n_i}$. Therefore if we require M to act trivially on $u \in X'_{\delta} \otimes V^{\otimes k}$ the generators $M_1, ..., M_k$ must act by 1. Let us first calculate all of the elementary tensors in $X'_{\delta} \otimes V^{\otimes k}$ which are fixed by M. The generators $M_1, ..., M_k$ act by -1 on $1_{\delta}^{\otimes k}$, hence must act by -1 on the tensor part contributed by $V^{\otimes k}$. To satisfy this we need to have f_i^1 or f_i^{-1} feature in the tensor of u, for every $i = 1, ..., k$. Since there can only be k elements tensored together in $V^{\otimes k}$ then the contribution of u from $V^{\otimes k}$ must be $f_1^{n_1}, ..., f_k^{n_k}$ in some order. The set of elementary tensors in $V^{\otimes k}$ which feature all the required f_i is the S_k orbit of $f_1 \otimes ... \otimes f_k$. Considering not necessarily elementary tensors in $u \in X'_{\delta} \otimes V^{\otimes k}$,

$$v = \sum x_0 \otimes v_1 \otimes ... \otimes v_k,$$
where $v_i \in \{f_{li}^n : l = 1, \ldots, n \text{ and } n_l = \pm 1\}$. The j^{th} generator of M, M_j, acts by -1^{dj} on f_l. Since every elementary tensor in this basis is an eigenvector of the action of M then if M fixes $v = \sum x_0 \otimes v_1 \otimes \ldots \otimes v_k$ then M fixes each elementary tensor in v. Hence every M fixed vector in $X_{\delta k}^\nu \otimes V^\otimes k$ is in the subspace

$$\text{span} \left\{ \sum_{w \in S_k} 1_{\delta k} \otimes f_{w(1)}^{n_1} \otimes \ldots \otimes f_{w(k)}^{n_k} : n_i = \pm 1 \right\}.$$

The size of the basis is $|S_k| \times 2^k = k!2^k = |W(B_k)|$. The proof is almost identical for $\text{dim}(F_{\det, n-k}(X_{\delta k}^\nu))$. One needs to note that all of the generators of M must act by -1 on the det isotypic space, since $\det |_M = \text{sgn}$.

Using Frobenius reciprocity one can show,

$$F_{\det, n-k}(X_{\delta k}^\nu) = \text{Hom}_M(\text{sgn}, \delta_k \otimes V^\otimes n-k),$$

which has a basis:

$$F_{\det, n-k}(X_{\delta k}^\nu) = \text{span} \left\{ \sum_{w \in S_{n-k}} 1_{\delta k} \otimes f_{w(i+1)}^{n_{i+1}} \otimes \ldots \otimes f_{w(n)}^{n_n} : n_i = \pm 1 \right\}.$$

For $G = O(p, q)$ note that $V|_M = V_{p-q} \bigoplus_{i=1}^q \text{triv} \otimes \ldots \otimes \text{sgn} \otimes \ldots \otimes \text{triv}$ and $\mu|_M = \text{triv}_{p-q} \otimes \text{sgn}^q$. Recall the notation $f_i^{n_{i+1}} = e_{p-i+1} + n_ie_{p+i}$, the vectors f_i^1 and f_i^{-1} are the two eigenvectors of M with character $\text{triv} \otimes \text{triv} \ldots \otimes \text{sgn} \otimes \ldots \otimes \text{triv}$.

i.e. the i^{th} generator of $O(1)^q$ in M acts by -1.

We will prove that $F_{\text{triv} \otimes \text{sgn}, k}(X_{\delta \text{triv}}^\nu)$ has basis

$$\left\{ \sum_{w \in S_k} 1_{\delta k} \otimes f_{w(1)}^{n_1} \otimes \ldots \otimes f_{w(k)}^{n_k} : n_i = \pm 1 \right\}.$$

The other four calculations are almost identical. Note that this is equivalent to giving a basis for

$$((\text{triv} \otimes \text{sgn})|_M \otimes 1_{\delta \text{triv}}^\nu \otimes V^k)^M$$

which is equal to, as a vector space,

$$(1_{\text{triv}_{p-q} \otimes \text{sgn}^q} \otimes 1_{\delta \text{triv}}^\nu \otimes (V_{p-q} \bigoplus \text{triv} \otimes \ldots \otimes \text{sgn} \otimes \ldots \text{sgn})^k)_M.$$

The vector $1_{\text{triv}_{p-q} \otimes \text{sgn}^q} \otimes 1_{\delta \text{triv}}^\nu \otimes f_1 \otimes \ldots \otimes f_q$ is fixed by M since $O(p-q)$ acts trivially on each tensor. Furthermore for $i = 1, \ldots, k$ the i^{th} generator of $O(1)^q$ in M acts by -1 on $1_{\text{triv}_{p-q} \otimes \text{sgn}^q}$, 1 on $1_{\delta \text{triv}}^\nu$, and
−1 on $f_1 \otimes ... \otimes f_q$. For $i = k + 1, ... q$ the i^{th} generator of $O(1)^q$ in M acts by $−1$ on $1_{\text{triv}}^{\nu} \otimes \text{sgn}^\mu$ −1 on $1_{\text{triv}}^{\nu} \otimes 1_{\text{triv}}^{\delta}$ and 1 on $f_1 \otimes ... \otimes f_q$. Hence every generator of M acts by 1. An identical argument shows that the orbit of $1_{\text{triv}}^{\nu} \otimes \text{sgn}^\mu \otimes 1_{\text{triv}}^{\nu} \otimes f_1 \otimes ... \otimes f_q$ by $W(B_q)$ is also fixed. Any elementary tensor fixed by M must be of this form; if it is not, one of the generators will act by $−1$. Finally suppose that another vector v is fixed by M, then v is a sum of elementary tensors which are all eigenvalues for $O(1)^q$, hence every elementary tensor involved must be fixed. This concludes that v is in the span of the vectors

$$\left\{ \sum_{w \in S_k} 1_{\text{triv}}^{\nu} \otimes f_{w(1)}^{n_1} \otimes ... f_{w(k)}^{n_k} : n_i = \pm 1 \right\}.$$

We state the basis for $F_{\mu,k}$ and $F_{\mu,n-k}$ Let $G = O(p,q)$

$$F_{\text{triv} \otimes \text{det},k}(X_{\delta_{\text{triv}}}^{\nu}) = \text{span} \left\{ \sum_{w \in S_k} 1_{\delta_{\text{triv}}}^{\nu} \otimes f_{w(1)}^{n_1} \otimes ... f_{w(k)}^{n_k} : n_i = \pm 1 \right\},$$

$$F_{\text{triv} \otimes \text{triv},q-k}(X_{\delta_{\text{triv}}}^{\nu}) = \text{span} \left\{ \sum_{w \in S_{q-k}} 1_{\delta_{\text{triv}}}^{\nu} \otimes f_{w(k)}^{n_k} : n_i = \pm 1 \right\},$$

$$F_{\text{det} \otimes \text{triv},k}(X_{\delta_{\text{det}}}^{\nu}) = \text{span} \left\{ \sum_{w \in S_k} 1_{\delta_{\text{det}}}^{\nu} \otimes f_{w(1)}^{n_1} \otimes ... f_{w(k)}^{n_k} : n_i = \pm 1 \right\},$$

$$F_{\text{det} \otimes \text{det},q-k}(X_{\delta_{\text{det}}}^{\nu}) = \text{span} \left\{ \sum_{w \in S_{q-k}} 1_{\delta_{\text{det}}}^{\nu} \otimes f_{w(1)}^{n_1} \otimes ... f_{w(q)}^{n_q} : n_i = \pm 1 \right\}.$$

\[\square\]

7. Images of principal series modules

We write the Type B/C VW-algebra as \mathcal{B}_k^q and omit m.

We show that on minimal principal series representations the functors (Definition 5.1) which take admissible $O(p,q)$ or Sp_{2m}-modules to \mathcal{B}_k^q-modules naturally descend to graded Hecke algebra $H_k(c)$-modules, for c equal to 0, 1 or $\frac{p-q}{2}$.

In Section 4 Lemma 4.4, we proved that the type B/C VW-algebra has quotients isomorphic to the Hecke algebra $H_k(c)$ with parameter $c \in \mathbb{R}$. This quotient was defined by the relations $e_i, e_{i+1} = 0$ and $\theta_k x_k + x_k \theta_k = 2c - 2r \theta_k$. Hence to show that $F_{\mu,k}(X_{\nu}^{\nu})$ descends to an $H_k(c)$-module we must prove $e_i, e_{i+1} = 0$ and $\theta_k x_k + x_k \theta_k = 2c - 2r \theta_k$ as operators on $F_{\mu,k}(X_{\nu}^{\nu})$. Similarly to show $F_{\mu,n-k}(X_{\nu}^{\nu})$ is an $H_{k-n}(r_{\mu})$-module then we must show $e_i, e_{i+1} = 0$ and $\theta_{n-k} x_{n-k} + x_{n-k} \theta_{n-k} = 2c - 2r \theta_{n-k}$ on $F_{\mu,n-k}(X_{\nu}^{\nu})$. The scalars r_{μ} and c_{μ} will be defined in Table 5.1. The arguments of this section are inspired and very similar to [9] Proposition 2.4.5, Lemma 2.7.2. We extend these results to non-spherical principal series modules. We also utilise an approach from the Brauer algebra perspective not used in [9].
Lemma 7.1. c.f. [9, 2.4.5] On the \mathfrak{B}_k^θ (resp. $\mathfrak{B}_{n-k}^\theta$) module $F_{\mu,k}(X_\theta^\nu)$ (resp. $F_{\mu,n-k}(X_\theta^\nu)$) the idempotents $e_{i,i+1}$ uniformly act by zero.

Proof. Lemma 6.2 states that the basis of $F_{\mu,k}(X_\theta^\nu)$ is given by $1_{\theta}^\nu \otimes f_{w(1)} \otimes \cdots \otimes f_{w[k]}$ for $w \in S_k$. The idempotents $e_{i,i+1}$ act by the projection onto the trivial component of $V_i \otimes V_{i+1}$. The trivial component of $V \otimes V$ is one dimensional with spanning vector $\sum_{n=1}^n f_i \wedge f_i'$. The vector $1_{\theta}^\nu \otimes f_{w(1)}^\nu \otimes \cdots \otimes f_{w(k)}^\nu$ is in the subspace perpendicular to $\sum_{n=1}^n f_i \wedge f_i'$ given in Lemma 3.6. Therefore it is in the kernel of the projection $pr_{i,i+1}$.

Recall Definition 3.4, $\Omega_{i,j} = \sum_{b \in B} (b)_i \otimes (b^*)_j \in U(g)^{k+1}$, and $\Omega_{i,j}^\theta = \sum_{b \in B^{\theta,k}} (b)_i \otimes (b^*)_j$. Lemma 3.7 gives $x_k = \Omega_{0,k}^\theta + \Omega_{1,k}^\theta + \cdots + \Omega_{k-1,k}^\theta$.

As operators on $F_{\mu,k}(X_\theta^\nu)$:
\[
\theta_k x_k + x_k \theta_k = \theta_k \sum_{i<k} \Omega_{i,k}^\theta + \sum_{i<k} \Omega_{i,k}^\theta \theta_k
\]
\[
= (\xi)^k \sum_{i<k} \sum_{b \in B} (b)_i \otimes (b^*)_k + \sum_{i<k} \sum_{b \in B} (b)_i \otimes (b^*)_k (\xi)_k
\]
\[
= \sum_{i<k} \sum_{b \in B} (b)_i \otimes (\xi b^* + b^* \xi)_k.
\]

Conjugating by ξ is the Cartan involution. Therefore
\[
\xi b^* + b^* \xi = \begin{cases} 0 & \text{if } b \in p, \\ 2\xi b^* & \text{if } b \in \mathfrak{k}. \end{cases}
\]

Hence,
\[
\theta_k x_k + x_k \theta_k = 2 \sum_{i<k} \sum_{b \in B^{\theta,k}} (b)_i \otimes (\xi b)_k
\]
\[
= 2 \theta_n \sum_{i<k} \Omega_{i,k}^\theta.
\]

As operators on $F_{\mu,k}(X_\theta^\nu)$
\[
\theta_k x_k + x_k \theta_k = 2\theta_k \sum_{i<k} \Omega_{i,k}^\theta.
\]

Similarly on $F_{\mu,n-k}(X_\theta^\nu)$
\[
\theta_{n-k} x_{n-k} + x_{n-k} \theta_{n-k} = 2 \theta_{n-k} \sum_{i<n-k} \Omega_{i,n-k}^\theta.
\]

Lemma 7.2. c.f. [9, 2.7.2] On the \mathfrak{B}_k^θ-module $F_{\mu,k}(X_\theta^\nu)$,
\[
\theta_k x_k + x_k \theta_k = 2\xi \left(\sum_{b \in B^{\theta,k}} \mu(b) b^* - C^{\mathfrak{g}}_k \right),
\]
where \mathfrak{g} is the centre of \mathfrak{g}.
Proof. Recall Definition \[3.4\] \(\Omega_{ij} = \sum_{b \in B \cap k} (b_i \otimes (\xi b)_k). \) Writing \(\theta_k x_k + x_k \theta_k \) as operators on \(F_{\mu,k}(X^\nu_k) \),

\[
\theta_k x_k + x_k \theta_k = 2\theta_k \sum_{i<k} \Omega_{i,k}^k = 2 \sum_{i<k} \sum_{b \in B \cap k} (b_i \otimes (\xi b)_k).
\]

An element \(g \in g \) acts on the tensor of two modules, \(U \otimes W \), as \(g \otimes 1 + 1 \otimes g \). Extending this, we can write the action of \(b \in U(g) \) as \(\sum_{j=1}^{k+1} (b)_j \) on \(X \otimes V^{\otimes k} \). This gives

\[
\theta_k x_k + x_k \theta_k = 2\theta_k \sum_{b \in B \cap k} (b^*)_k b - \sum_{b \in B \cap k} (bb^*)_k.
\]

By definition \(F_{\mu,k}(X^\nu_k) \) is the \(\mu \) isotypic component of \(X^\nu_k \), hence

\[
\theta_k x_k + x_k \theta_k = 2\theta_k \sum_{b \in B \cap k} (b^*)_k \mu(b) - \sum_{b \in B \cap k} (bb^*)_k.
\]

The operator \(\sum_{b \in B} (bb^*)_k \) is the Casimir operator \(C^t \) on the \(k \)th tensor \(V \). We have \(\mu(b) = 0 \) unless \(b \) is in the centre of \(U(\mathfrak{t}) \) for any character \(\mu \). Let \(\mathfrak{z} \) denote the centre of \(g \). Therefore,

\[
\theta_k x_k + x_k \theta_k = 2\theta_k \left(\sum_{b \in B \cap \mathfrak{z}} \mu(b)(b^*)_k - (C^t)_k \right),
\]

\[
= 2 \left(\xi \left(\sum_{b \in B \cap \mathfrak{z}} \mu(b)b^* - C^t \right) \right)_k.
\]

□

In order to calculate the action of \(\theta_k x_k + x_k \theta_k \) we must understand the operator \(Q_{\mu} = 2\xi \left(\sum_{b \in B \cap \mathfrak{z}} \mu(b)b^* - C^t \right) \) acting on the \(k \)th tensor of \(V \).

Lemma 7.3. On the \(\mathfrak{B}^\theta_{n-k} \)-module \(F_{\mu,n-k}(X^\nu_k) \);

\[
\theta_{n-k} x_{n-k} + x_{n-k} \theta_{n-k} = 2 \left(\xi \left(\sum_{b \in B \cap \mathfrak{z}} \mu(b)b^* - C^t \right) \right)_{n-k}.
\]

Replacing \(\mu \) with \(\mu \), this follows the same way as Lemma 7.2.

Lemma 7.4. On the module \(V \) the operator \(Q_{\mu} = 2\xi \left(\sum_{b \in B \cap \mathfrak{z}} \mu(b)b^* - C^t \right) \) (resp. \(Q_{\mu} = 2\xi \left(\sum_{b \in B \cap \mathfrak{z}} \mu(b)b^* - C^t \right) \)) is equal to \(2r_{\mu} + 2c_{\mu} \xi \) (resp. \(2r_{\mu} + 2c_{\mu} \xi \)), where \(r_{\mu} \) and \(c_{\mu} \) are scalars given below. In fact for \(G = O(p,q) \), \(r_{\mu} \) and \(c_{\mu} \) are independent of \(\mu \).
Recall Lemma 4.2, we have isomorphisms: $H_k(1) \cong H_k$ and $H_k(\frac{1}{2}) \cong H^{Cl}$ and $H_k(0)$ is congruent to an extension of the type D graded Hecke algebra H^{Dk}. Hence when G is split, that is $G = O(n+1,n)$ or $Sp_{2n}(\mathbb{R})$ then $c_\mu = 1, \frac{1}{2}$ or 0 and we obtain correspondences between principal series modules of split real orthogonal Lie groups with graded Hecke algebras of type C and split real symplectic groups with graded Hecke algebras of type B and D.

Proof. We prove the result first for $G = Sp_{2n}(\mathbb{R})$, in this case $g = sp_{2n}$ and $\mathfrak{k} = gl_n$. The Casimir C acts by the scalar n on V. The character triv is zero uniformly on \mathfrak{k} hence $\text{triv}(b) = 0$ for all b and there is no contribution from $\sum_{b \in B \cap \mathfrak{z}} \text{triv}(b)b^*$. For the operator $\sum_{b \in B \cap \mathfrak{z}} \text{det}(b)b^*$, we note that the centre of $\mathfrak{k} = gl_n(\mathbb{C})$ is the span of the identity matrix, also the character det of $U(n)$ differentiated to \mathfrak{k} is the trace character of gl_n. Taking the spanning vector Id_n of the centre \mathfrak{z} of gl_n then on V, $\sum_{b \in B \cap \mathfrak{z}} \text{det}(b)b^*$ is equal to

$$\sum_{b \in B \cap \mathfrak{z}} \text{det}(b)b^* = \text{trace}(Id_n) Id_n^* \quad = n^{\frac{1}{2}} Id_n \quad = Id_n.$$

Since Id_n is symmetric, the identity matrix in $U(\mathfrak{k})$ embedded into \mathfrak{g} is

$$\begin{bmatrix} 0 & i Id_n \\ -i Id_n & 0 \end{bmatrix}.$$

The matrix ξ, defined by the Cartan involution of $Sp_{2n}(\mathbb{R})$ is equal to

$$\xi = \begin{bmatrix} 0 & i Id_n \\ -i Id_n & 0 \end{bmatrix}.$$

Hence

$$\sum_{b \in B \cap \mathfrak{z}} \text{det}(b)b^* = \xi,$$
as operators on V.

Now let $G = O(p, q)$, $p + q = 2n + 1$, then $\mathfrak{g} = \mathfrak{so}_{2n+1}$ and $\mathfrak{k} = \mathfrak{so}_p \oplus \mathfrak{so}_q$.

Any character μ of K differentiated and then restricted to \mathfrak{z} is zero. Hence for any μ,

$$\sum_{b \in \mathfrak{z}} \mu(b) b^* = 0.$$

We are left to calculate $C^\mathfrak{k}$ on V. $C^\mathfrak{k}$ acts by

$$[p \text{Id}_p \ 0 \ \ 0 \ q \text{Id}_q].$$

For $G = O(p, q)$ the semisimple element defining θ is

$$\xi = \begin{bmatrix} \text{Id}_p & 0 \\ 0 & -\text{Id}_q \end{bmatrix}.$$

Hence for $G = O(p, q)$

$$Q_\mu = 2\xi (\sum_{b \in \mathfrak{z}} \mu(b) b^* - C^\mathfrak{k}) = 2\xi \left(-\frac{p+q}{2} \text{Id} - \frac{p-q}{2} \xi\right) = (q-p) \text{Id}_n - (p+q)\xi.$$

Corollary 7.5. For $G = O(p, q)$ or Sp_{2n}, consider the principal series module X^μ_ν for particular μ and μ' given in Table 6.1. On the \mathfrak{H}_k^μ-module $F_{\mu,k}(X^\mu_\nu)$, the following equality holds:

$$\theta_{n-k} x_{n-k} + x_{n-k} \theta_{n-k} = 2r_\mu - 2c_\mu \theta_{n-k}.$$

Hence by Lemma 4.4, $F_{\mu,k}(X^\mu_\nu)$ is an $\mathfrak{H}_k(c_\mu)$-module via the quotient defined by the relations $e_{i,i+1} = 0$ and $\theta_{n-k} x_{n-k} + x_{n-k} \theta_{n-k} = 2r_\mu + 2c_\mu \theta_{n-k}$. Similarly $F_{\mu,n-k}(X^\mu_{\nu})$ is an $\mathfrak{H}_{n-k}(c_\mu)$-module.

We have shown that the image of X^μ_ν under the function $F_{\mu,k}$ naturally descends to a module of the graded Hecke algebra $\mathfrak{H}_k(c_\mu)$.

Theorem 7.6. Let X^μ_ν be a minimal principal series module of $G = Sp_{2n}(\mathbb{R})$ or $O(p, q)$. Let μ and μ' be the particular characters in Table 6.1 and r_μ, c_μ be particular scalars in Table 7.1. Let π denote the homomorphism from $\mathfrak{H}_k^\mu(|m_0, m_1|)$ to $\text{End}(F_{\mu,k}(X^\mu_\nu))$ in Lemmas 3.7 and 3.12. The graded Hecke algebra $\mathfrak{H}_k(c_\mu)$ acts on $F_{\mu,k}(X^\mu_\nu)$, by the homomorphism,

$$\psi : \mathfrak{H}_k(c_\mu) \to \text{End}(F_{\mu,k}(X^\mu_\nu)),$$

$$e_i \mapsto \pi(x_i - r_\mu),$$

$$s_{i,i+1} \mapsto \pi(s_{i,i+1}),$$

$$s_{\epsilon_i} \mapsto \pi(\theta_i).$$

Hence $F_{\mu,k}(X^\mu_\nu)$, can be considered as an $\mathfrak{H}_k(c_\mu)$-module.
Let π denote the homomorphism from $\mathfrak{B}^\theta_{n-k}[m]$ to $\text{End}(F_{\mu, n-k}(X_\delta^\nu))$. The graded Hecke algebra $\mathbb{H}_{n-k}(c_{\mu})$ acts on $F_{\mu, n-k}(X_\delta^\nu)$, by the homomorphism,

$$\psi : \mathbb{H}_{n-k}(c_{\mu}) \rightarrow \text{End}(F_{\mu, n-k}(X_\delta^\nu)), $$

$$\epsilon_i \mapsto \pi(x_i - r_{\mu}),$$

$$s_{i,i+1} \mapsto \pi(s_{i,i+1}),$$

$$s_{\epsilon_i} \mapsto \pi(\theta_i).$$

Hence $F_{\mu, n-k}(X_\delta^\nu)$, can be considered an $\mathbb{H}_{n-k}(c_{\mu})$-module.

It should also be noted that as a \mathfrak{B}^θ_k-module $F_{\mu,k}(X_\delta^\nu)$ is essentially an $\mathbb{H}_k(c_{\mu})$-module. That is, there is no element in \mathfrak{B}^θ_k that has a non-trivial action on $F_{\text{triv},k}(X_\delta^\nu)$ that does not correspond to an element in the Hecke algebra.

For $G = O(n+1, n)$ or $Sp_{2n}(\mathbb{R})$, every principal series module is induced from a character on M. Therefore for split real orthogonal or symplectic groups we can entirely describe the Hecke algebra modules resulting from functors $F_{\mu,k}$ and $F_{\mu, n-k}$ on principal series modules. Casselman [8] states that every irreducible representation in $\mathcal{HC}(G)$ is a subrepresentation of a principal series module. Therefore if X is a subrepresentation of X_δ^ν then $F_{\mu,k}(X)$ also descends to a Hecke algebra module.

Theorem 7.7. Let G be a split real Lie group of type B or C. Let X be an irreducible Harish-Chandra G-module. Hence X is a subrepresentation of a principal series module X_δ^ν, then the \mathfrak{B}^θ_k and $\mathfrak{B}^\theta_{n-k}$-modules $F_{\mu,k}(X)$ and $F_{\mu, n-k}(X)$ naturally descend to \mathbb{H}_k and \mathbb{H}_{n-k}-modules.

Proof. Let X be an irreducible Harish-Chandra module. Casselman’s theorem shows that X is a submodule of some principal series module, let X_δ^ν be such a principal series modules containing X as a submodule. Note that this principal series module may not be unique. Then since $F_{\mu,k}(X)$ is exact and X is a submodule of X_δ^ν then $F_{\mu,k}(X)$ is a submodule of $F_{\mu,k}(X_\delta^\nu)$ which is a \mathbb{H}_k module. Therefore $F_{\mu,k}(X)$ is a \mathbb{H}_k module. Similarly for μ and $n - k$.

Therefore for every Harish Chandra module of $O(n+1, n)$ and $Sp_{2n}(\mathbb{R})$ we can define two corresponding Hecke algebra modules.
8. Principal series modules map to principal series modules

In this section we take a closer look at the $\mathbb{H}(c_{\mu})$-modules obtained from X_δ^ν under the functors $F_{\mu,k}$ and $F_{\mu,n-k}$. We fully classify these as graded Hecke algebra principal series representations related to ν.

Recall that $\mathbb{H}_k(c)$, defined in 4.1, is the graded Hecke algebra associated to $W(B_k)$ with parameter function $c : \Delta \to \mathbb{C}$ such that

$$c_{\epsilon_i - \epsilon_{i+1}} = 1 \text{ and } c_{2\epsilon_i} = 2c.$$

The algebra $\mathbb{H}_k(c)$ contains the group algebra, $\mathbb{C}[W(B_k)]$, of the hyperoctahedral group. Recall the labeling of vectors in $X \otimes V^{\otimes k}$; we label the tensor product starting at zero. A general elementary tensor in $X \otimes V^{\otimes k}$ would be written $x_0 \otimes v_1 \otimes v_2 \otimes \ldots \otimes v_k$. We begin by restricting to the action of the Weyl group $W(B_k)$ inside $\mathbb{H}(c)$ and computing the resulting $\mathbb{C}[W(B_k)]$-modules isomorphism class. Fix a M-character δ and recall the K-characters μ and μ' depending on δ from Table 6.1.

Lemma 8.1. As a $\mathbb{C}[W(B_k)]$-module

$$F_{\mu,k}(X_\delta^\nu) \cong \mathbb{C}[W(B_k)],$$

and as a $\mathbb{C}[W(B_{n-k})]$-module

$$F_{\mu,n-k}(X_\delta^\nu) \cong \mathbb{C}[W(B_{n-k})].$$

Proof. From Lemma 6.2 we have an explicit basis of $F_{\mu,k}(X_\delta^\nu)$;

$$\text{Hom}_K(\mu, X_{\delta^k} \otimes V^{\otimes k}) = \text{span}\{ \sum_{w \in S_k} 1_\delta \otimes f_{w(1)}^{n_1} \otimes \ldots \otimes f_{w(k)}^{n_k} \}.$$

The symmetric group $\mathbb{C}[S_k] \subset \mathbb{C}[W(B_k)]$ acts by permuting the tensor product. The reflections in $\mathbb{C}[W(B_k)]$ related to $2\epsilon_i$ act by $id \otimes \ldots \otimes \theta_i \otimes \ldots \otimes id$. They take f_i to f_i' on the ith factor of the tensor product.

Take the vector $1_\delta^\nu \otimes f_1 \otimes \ldots \otimes f_k$, the $\mathbb{C}[W(B_k)]$ submodule of $F_{\text{triv},k}(X_{\delta^k})$ generated by $1_\delta \otimes f_1 \otimes \ldots \otimes f_k$ is the subspace spanned by

$$\{ 1_\delta^\nu \otimes f_{w(1)}^{n_1} \otimes \ldots \otimes f_{w(k)}^{n_k} : w \in \mathbb{C}[S_k] \},$$

The only group element of $\mathbb{C}[W(B_k)]$ that fixes $1_\delta^\nu \otimes f_1 \otimes \ldots \otimes f_k$ is the identity, hence this module has dimension equal to $k! 2^k$, the dimension of $\mathbb{C}[W(B_k)]$. The dimension is equal to the dimension of $F_{\text{triv},k}(X_{\delta^k})$, therefore we have equality. An isomorphism between the $\mathbb{C}[W(B_k)]$-module $\mathbb{C}[W(B_k)]$ and $F_{\text{triv},k}(X_{\delta^k})$ can be defined by sending the identity element $e \in \mathbb{C}[W(B_k)]$ to $1_\delta^\nu \otimes f_1 \otimes \ldots \otimes f_k$.

The decomposition of $F_{\mu,n-k}(X_\delta^\nu)$ follows in exactly the same way, sending $e \in \mathbb{C}[W(B_{n-k})]$ to $1_\delta^\nu \otimes f_{k+1} \otimes \ldots \otimes f_n$.

We have a description of \(F_{\mu,k}(X^\nu_\delta) \) as a \(C[W(B_k)] \)-module. We would like to describe it as an \(H(c_\mu) \)-module. The algebra \(H(c_\mu) \) is generated by \(C[W(B_k)] \) and the affine operators \(\epsilon_1, \ldots, \epsilon_k \). Our calculation reduces to calculating the action of the affine operators \(\epsilon_i \). The operators \(\epsilon_i \in S(a_k) \) act on \(X^\nu_\delta \otimes V^\otimes k \) by

\[
\sum_{0<j<i\leq n} \Omega_{ji} + r_\mu.
\]

We define principal series representations for \(\mathbb{H}_k(c) \). Then we show that the image of \(X^\nu_\delta \) is isomorphic to a principal series representation defined by a particular character.

The subspace \(a_k \subset a \) defined in Example 2.3 is a dimension \(k \)-subspace of \(a \).

Definition 8.2. [18] Let \(\lambda \) be a character for \(S(a_k) \subset H_k(c_\mu) \), we define a principal series representation \(X(\lambda) \) for \(H_k(c_\mu) \):

\[
X(\lambda) = \text{Ind}_{S(a_k)}^{\mathbb{H}_k(c)} \lambda.
\]

We write \(1_\lambda \) for a fixed vector in the image of the character \(\lambda : S(a) \to \mathbb{C} \). The symmetric algebra \(S(a_k) \) is generated by the affine operators \(\epsilon_1, \ldots, \epsilon_k \). The principal series representation can be described as a representation generated by, \(1_\lambda \), a \(C[W(B_k)] \)-cyclic vector on which \(\epsilon_i \) acts by the scalar \(\lambda(\epsilon_i) \). We prove that the \(C[W(B_k)] \)-module, \(F_{\mu,k}(X^\nu_\delta) \) is as a \(\mathbb{H}_k(c_\mu) \)-module isomorphic to a principal series module for the correct character \(\lambda \).

We fix a specific basis for \(\mathfrak{sp}_{2n} \) and \(\mathfrak{so}(p,q) \). Since the operators \(\Omega_{ij} \in U(\mathfrak{g})^{k+1} \) are defined in terms of, although independent of, a basis for \(\mathfrak{g} \). This basis allows us to explicitly calculate \(\Omega_{0j} \). It should be emphasized that the following basis is a decomposition of \(\mathfrak{g} \) into reduced root spaces under the adjoint action of \(a \). Recall that \(a \subset \mathfrak{sp}_{2n}(\mathbb{R}) \) is

\[
\left\{ \begin{bmatrix} 0 & B \\ B & 0 \end{bmatrix} : B \text{ is diagonal} \right\}.
\]

Definition 8.3. Recall the decomposition of the Lie algebra \(\mathfrak{g}_0 \) as

\[
\mathfrak{g}_0 = \mathfrak{n}_0^+ \oplus \mathfrak{a}_0 \oplus \mathfrak{n}_0^-,
\]

where \(\mathfrak{a}_0 \) is the maximal abelian subalgebra of \(\mathfrak{p}_0 \) and \(\mathfrak{n}_0^+ \) is the span of the positive root spaces with respect to the restricted root decomposition. Let \(B_0^+ , B_0^- , B_0 \) be fixed bases for \(\mathfrak{n}_0^+ , \mathfrak{n}_0^- \) and \(\mathfrak{a}_0 \). The restricted roots \(\Sigma \) are \(\pm \epsilon_i , \pm \epsilon_j , \pm \epsilon_j \). We will denote a vector in the positive root space \(\lambda \in \Sigma^+ \) by \(n_\lambda \) and the negative root space will be \(\hat{n}_\lambda \). For example \(n_{\epsilon_i - \epsilon_j} \) for \(i < j \) is in \(\mathfrak{n}^+ \). And \(\hat{n}_{\epsilon_i - \epsilon_j} \in \mathfrak{n}_0^- \). We will scale \(\hat{n}_\lambda \) such that

\[
\hat{n}_\lambda = n_{-\lambda} = \theta(n_\lambda).
\]
Hence $n_\lambda + \hat{n}_\lambda$ is θ-invariant and hence in \mathfrak{k}.

Definition 8.4. For $1 \leq s, t \leq n$, the matrix $E_{s,t}$ is the matrix with a 1 in the s, t position and zero elsewhere. Let $i < j$. Set

\[
\begin{align*}
E_{s,t} &= E_{i,j} + E_{i,n+j} - E_{j,i} + E_{j,n+i} + E_{n+i,n+j} + E_{n+j,i} - E_{n+j,n+i}, \\
\hat{E}_{s,t} &= -E_{i,j} + E_{i,n+j} + E_{j,i} + E_{j,n+i} - E_{n+i,n+j} + E_{n+j,i} + E_{n+j,n+i}, \\
\tilde{E}_{s,t} &= E_{i,j} + E_{i,n+j} - E_{j,i} + E_{j,n+i} - E_{n+i,n+j} - E_{n+j,i} - E_{n+j,n+i}, \\
\hat{\tilde{E}}_{s,t} &= -E_{i,j} - E_{i,n+i} + E_{n+i,i} - E_{n+i,n+i}, \\
\tilde{E}_{s,t} &= -E_{i,j} - E_{i,n+i} + E_{n+i,i} + E_{n+i,n+i}, \\
\alpha_{s,t} &= E_{i,n+1} + E_{n+i,i}.
\end{align*}
\]

These vectors give a reduced root space decomposition for $\mathfrak{sp}_{2n}(\mathbb{R}) = n_0^+ \oplus a_0 \oplus n_0^-$ where $\alpha_{ei} \in a_0$, $n \in n_0^+$ and $\hat{n} \in n_0$.

Example 8.5. Let $\mathfrak{g} = \mathfrak{sp}_4$. We give the basis given in Definition 8.4 for n^+,

\[
\begin{align*}
n_{\epsilon_1 - \epsilon_2} &= \begin{bmatrix} 0 & 1 & 0 & 1 \\ -1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \end{bmatrix}, \\
n_{\epsilon_1 + \epsilon_2} &= \begin{bmatrix} 0 & -1 & 0 & 1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ -1 & 0 & 1 & 0 \end{bmatrix}, \\
n_{\epsilon_1} &= \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \\
n_{\epsilon_2} &= \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & -1 \end{bmatrix}.
\end{align*}
\]

Definition 8.6. Let $\mathfrak{g}_0 = \mathfrak{so}(p, q)$ we follow [17], VI, pg. 371 Example $\mathfrak{so}(p, q)$.
\[
\begin{align*}
n_{\epsilon_i - \epsilon_j} &= E_{p-j+1,p-i+1} + E_{p-j+1,p+i} - E_{p-i+1,p-j+1} + E_{p-i+1,p+j} \\
&- E_{p+i,p-j+1} - E_{p+i,p+j} - E_{p+j,p-i+1} + E_{p+j,p+i}, \\
n_{\epsilon_i + \epsilon_j} &= E_{p-j+1,p-i+1} - E_{p-j+1,p+i} - E_{p-i+1,p-j+1} + E_{p-i+1,p+j} \\
&- E_{p+i,p-j+1} + E_{p+i,p+j} + E_{p+j,p-i+1} - E_{p+j,p+i}, \\
\hat{n}_{\epsilon_i - \epsilon_j} &= E_{p-j+1,p-i+1} - E_{p-j+1,p+i} - E_{p-i+1,p-j+1} - E_{p-i+1,p+j} \\
&+ E_{p+i,p-j+1} - E_{p+i,p+j} + E_{p+j,p-i+1} + E_{p+j,p+i}, \\
n_{\epsilon_i + \epsilon_j} &= E_{p-j+1,p-i+1} + E_{p-j+1,p+i} - E_{p-i+1,p-j+1} - E_{p-i+1,p+j} \\
&+ E_{p+i,p-j+1} + E_{p+i,p+j} - E_{p+j,p-i+1} - E_{p+j,p+i}.
\end{align*}
\]

The root space for \(\epsilon_i \) is \(p - q \) dimensional. Let \(l = 1, \ldots, p - q \) then

\[
n_{\epsilon_i}^l = E_{l,p-i+1} - E_{l,p+i} - E_{p-i+1,l} - E_{p+i,l}.
\]

Finally

\[
a_{\epsilon_i} = E_{p-i+1,p+i} + E_{p+i,p-i+1}.
\]

Example 8.7. Let \(\mathfrak{g}_0 = \mathfrak{so}(3, 2) \). We give the basis given in Definition 8.6 for \(\mathfrak{n}_0^+ \).
Lemma 8.8. For $G = Sp_{2n}$, recall the basis $f_i = e_i + e_{n+i}$, $f'_i = e_i - e_{n+i}$ of $V = \mathbb{C}^{2n}$. For $G = O(p,q)$ we recall that $f_i = e_{p-i+1} + e_{p+i}$, $f'_i = e_{p-i+1} - e_{p+i}$. Then by left multiplication of the given matrix in Definitions 8.4 and 8.6 we can calculate the following actions on f_i:

\[
\begin{align*}
n_{\epsilon_i - \epsilon_j}(f_k) &= 0 \text{ for all } k, \\
n_{\epsilon_i + \epsilon_j}(f'_k) &= \begin{cases} 2f'_j & \text{if } f'_k = f'_j, \\ 0 & \text{otherwise}. \end{cases} \\
n_{\epsilon_i}(f_k) &= 0 \text{ for all } k, \\
n_{\epsilon_i}(f'_k) &= \begin{cases} 2f_k & \text{if } f'_k = f'_i, \\ 0 & \text{otherwise}, \end{cases} \\
n_{\epsilon_i - \epsilon_j}(f_k) &= \begin{cases} 2f_i & \text{if } f_k = f_j, \\ 0 & \text{otherwise}, \end{cases}
\end{align*}
\]
\[n_{\epsilon_i-\epsilon_j}(f'_k) = \begin{cases} 2f'_j & \text{if } f'_k = f_i, \\ 0 & \text{otherwise}, \end{cases} \]

\[(n_{\epsilon_i-\epsilon_j} + \hat{n}_{\epsilon_i-\epsilon_j})(f_k) = \begin{cases} f_i & \text{if } f_k = f_j, \\ -f_j & \text{if } f_k = f_i, \\ 0 & \text{otherwise}. \end{cases} \]

Proof. This follows from left multiplication of the elements of \(\mathfrak{sp}_{2n} \) and \(\mathfrak{so}(p, q) \) on the defining module \(V \) with elements \(f_i \) and \(f'_i \) in the basis of \(V \).

To prove that the \(\mathbb{C}[W(B_k)] \)-module is in fact isomorphic to a principal series \(\mathbb{H}_k(c_\mu) \)-module we need to find a \(\mathbb{C}[W(B_k)] \) cyclic vector such that the \(\epsilon_i \) act by scalars on this cyclic vector. The cyclic vector is \(1^\nu \otimes f_1 \otimes \ldots \otimes f_k \).

Lemma 8.9. On the vector \(1^\nu \otimes f_1 \otimes \ldots \otimes f_k \) the operator \(\Omega_{0l} \) acts by

\[\nu(\epsilon_l) - \sum_{i<l}(s_{il} + id) - \sum_{i>l} id. \]

Proof. Recall that \(\Omega_{0l} \) is defined to be \(\sum_{b \in B}(b)_0 \otimes (b^*)_l \) for a given basis \(B \) of \(\mathfrak{g}_0 \). We choose to use the fixed basis defined in Definition 8.3.

The subspace \(\mathfrak{a} \) is the Lie algebra of the subgroup \(A \subset G \). The basis of \(\mathfrak{a} \) defined in 8.4 and 8.6 is such that \(a_{\epsilon_i}(f_j) = \delta_{ij}f_j \). Furthermore \(a_{\epsilon_i} \) acts on the cyclic vector \(1^\nu \) of \(X^\nu_k \) by \(\nu(x_i) \). Therefore the contribution from \(\mathfrak{a} \subset \mathfrak{g} \) is

\[(a_{\epsilon_i})_0 \otimes (a_{\epsilon_i})_l = \delta_{il} \nu(x_i). \]

The module \(X^\nu_k \) is induced from the character \(\delta \otimes e^\nu \otimes 1 \) of \(MAN \), which is the trivial character on \(N \). The space \(\mathfrak{n}_0^+ \) is the Lie algebra of \(N \). The differential of the trivial character to \(\mathfrak{n}_0^+ \) is zero. Therefore \((n)_0 \) acts by zero on \(1^\nu \) for all \(n \in \mathfrak{n}_0^+ \). Hence the contribution from \(\mathfrak{n}^+ \) is:

\[(n)_0 \otimes (n)_l^* = 0, \text{ for } n \in \mathfrak{n}^+. \]

Since \(n \in \mathfrak{n}_0^+ \) annihilates \(1^\nu \) then \((n)_0 \otimes (b)_l = 0 \) for any \(b \in \mathfrak{g}_{2n}, n \in \mathfrak{n}^+ \), a fact we will use later in this proof. The operator \(\hat{n}_{\epsilon_i-\epsilon_j} \) is equal to \(\frac{1}{2}(n_{\epsilon_i-\epsilon_j})_l \) which is zero on any \(f_k \) hence;

\[(\hat{n}_{\epsilon_i-\epsilon_j})_0 \otimes (\hat{n}_{\epsilon_i-\epsilon_j})_l^* = 0. \]

Similarly \(n_{\epsilon_i} \) is zero on any \(f_k \) therefore;

\[(\hat{n}_{\epsilon_i})_0 \otimes (\hat{n}_{\epsilon_i})_l = 0. \]

The only remaining basis elements to consider are those of the form \(n_{\epsilon_i-\epsilon_j} \) from \(\mathfrak{n}_0^- \subset \mathfrak{g}_0 \). We utilise the trick that as a \(K \)-module \(F_{\mu,k}(X^\nu_{\delta k}) \)
is just the μ isotypic component of $X^\nu_{\delta^k} \otimes V^{\otimes k}$. The contribution from $
hat_{\nu_{l_1-l_j}}$ is:

$$(\nhat_{\nu_{l_1-l_j}})_0 \otimes (\nhat^*_{\nu_{l_1-l_j}})_t.$$ We can add the operator $(n_{\nu_{l_1-l_j}})_0 \otimes (\nhat^*_{\nu_{l_1-l_j}})_t$ which since $n_{\nu_{l_1-l_j}} \in \mathfrak{n}^+$, by above, acts by zero. Therefore we are not modifying the original operator,

$$(\nhat_{\nu_{l_1-l_j}})_0 \otimes (\nhat^*_{\nu_{l_1-l_j}})_t = \frac{1}{2} (\nhat_{\nu_{l_1-l_j}} + n_{\nu_{l_1-l_j}})_0 \otimes (n_{\nu_{l_1-l_j}})_t.$$ The vector $\nhat_{\nu_{l_1-l_j}} + n_{\nu_{l_1-l_j}}$ is θ-invariant, hence is in \mathfrak{f}. Recall that for $k \in \mathfrak{f}$ acting on the tensor $X \otimes V^{\otimes k}$ that $k = \sum_{i=0}^k (k)_i$. Since we are working with the μ-isotypic space, we replace $\nhat_{\nu_{l_1-l_j}} + n_{\nu_{l_1-l_j}} \in \mathfrak{f}$ by $\mu(\nhat_{\nu_{l_1-l_j}} + n_{\nu_{l_1-l_j}})$ and subtract the difference to find,

$$(\nhat_{\nu_{l_1-l_j}})_0 \otimes (\nhat^*_{\nu_{l_1-l_j}})_t = \frac{1}{2} (\nhat_{\nu_{l_1-l_j}} - n_{\nu_{l_1-l_j}}) \otimes (n_{\nu_{l_1-l_j}})_t - \frac{1}{2} \sum_{m>0} (\nhat_{\nu_{l_1-l_j}} - n_{\nu_{l_1-l_j}})_m \otimes (n_{\nu_{l_1-l_j}})_t.$$ The character μ (or μ) differentiated to \mathfrak{a} is zero (or the trace character) hence $\mu(\nhat_{\nu_{l_1-l_j}} + n_{\nu_{l_1-l_j}}) = 0$. Lemma 8.8 gives the explicit action of $n_{\nu_{l_1-l_j}}$ on f_k, using this one can determine the action;

$$(\nhat_{\nu_{l_1-l_j}})_0 \otimes (\nhat^*_{\nu_{l_1-l_j}})_t = \begin{cases} -s_{tt} - id & \text{if } f_{tt} = f_i \text{ and } f_{ti} = f_j, \\ -id & \text{if } f_{tt} = f_i, \\ 0 & \text{otherwise}. \end{cases}$$

The only non-zero terms are contributed by $a_{\nu_{l_1}}$, and $\nhat_{\nu_{l_1-l_i}}$ and $\nhat_{l_1-l_i}$. Which act, on the cyclic vector, by $\nu(\epsilon_l), -s_{tt} - id$ and $-id$ respectively. Summing these up gives,

$$\Omega_{tt} = \nu(\epsilon_l) - \sum_{t<l} (s_{tt} + id) - \sum_{t>l} id,$$ on the $\mathbb{C}[W(B_k)]$ cyclic vector $1^n_{\delta^k} \otimes f_1 \otimes \ldots \otimes f_k$. □

The equivalent statement for $F_{\mu,n-k}(X^\nu_{\delta})$ is below. It follows from the proof of Lemma 8.9

Lemma 8.10. On the vector $1^n_{\delta^k} \otimes f_{k+1} \otimes \ldots \otimes f_n$ the operator Ω_{tt} acts by

$$\nu(\epsilon_{k+t}) - \sum_{t<l} (s_{k+t,k+t} + id) - \sum_{t>l} id,$$ for $l = 1, \ldots, n-k$.
Corollary 8.11. The operator \(\varepsilon_i = \sum_{i<l} \Omega_{ul} + n \) acts by the scalar \(\nu(\varepsilon_i) \) on the vector \(1^\nu_\delta \otimes f_1 \otimes ... \otimes f_k \).

Proof. This follows from the fact that \(\Omega_{ul} \) acts by \(\nu(\varepsilon_i) - n - \sum_{t<l} s_{ul} \) and, by Lemma 3.9, \(\sum_{i=1}^{l-1} \Omega_{ul} \) acts by \(\sum_{t<l} s_{ul} \) on \(1^\nu_\delta \otimes f_1 \otimes ... \otimes f_k \). \(\square \)

Corollary 8.12. The operator \(\varepsilon_i = \sum_{i<l} \Omega_{ul} + n \) acts by the scalar \(\nu(\varepsilon_{k+1}) \) on the vector \(1^\nu_\delta \otimes f_{k+1} \otimes ... \otimes f_n \).

Definition 8.13. Example 2.3 defines subspaces \(a_k \) and \(\bar{a}_{n-k} \) of \(a \) such that
\[
a = a_k \oplus \bar{a}_{n-k}.
\]
Let \(\nu \) be a character of \(a \). Define \(\nu_k \) to be the restricted character
\[
\nu|_{a_k}
\]
and \(\bar{\nu}_{n-k} \) to be \(\nu|_{\bar{a}_{n-k}} \).

For a principal series module \(X_\delta^\nu \) we have shown that as a \(W(B_k) \)-module \(F_{\mu,k}(X_\delta^\nu) \) is isomorphic to \(C[W(B_k)] \) and as a Hecke algebra module it is a principal series module induced from a character of \(S(V) \subset \mathbb{H}(c_\mu) \).

Theorem 8.14. For \(G = Sp_{2n}(\mathbb{R}) \) or \(O(p,q) \) \(p+q = 2n+1 \), the module \(F_{\mu,k}(X_\delta^\nu) \) is isomorphic to the \(\mathbb{H}(c_\mu) \) principal series module
\[
X(\nu_k) = \text{Ind}_{S(a_k)}^{\mathbb{H}(c_\mu)} \nu_k.
\]
The module \(F_{\mu,n-k}(X_\delta^\nu) \) is isomorphic to the \(\mathbb{H}_{n-k}(c_\mu) \) principal series module
\[
X(\bar{\nu}_{n-k}) = \text{Ind}_{S(\bar{a}_{n-k})}^{\mathbb{H}_{n-k}(c_\mu)} \bar{\nu}_{n-k}.
\]

For spherical principal series representations, this recovers the results of [9, Theorem 3.0.4].

Proof. One defines an isomorphism by taking the given cyclic vector \(1^\nu_\delta \otimes f_1 \otimes ... \otimes f_k \in F_{\text{triv},k}(X_\delta^\nu) \) to the cyclic vector \(1_{\nu_k} \) of \(X(\nu_k) \). Both vectors are \(C[W(B_k)] \) cyclic. By Corollary 8.11 the affine operators \(\varepsilon_i \) act on both vectors by \(\nu_k(\varepsilon_i) \), therefore this is a well-defined isomorphism.

Lemma 6.12 gives a basis of \(F_{\text{det},n-k}(X_\delta^\nu) \):
\[
\{ 1^\nu_\delta \otimes f_{w(1)+k}^{n_1} \otimes ... \otimes f_{w(n-k)+k}^{n_{n-k}} : w \in S_{n-k} \}.
\]
For \(F_{\mu,k}(X_\delta^\nu) \) and \(X(\bar{\nu}_{n-k}) \), both modules are \(C[W(B_{n-k})] \) cyclic, and Corollary 8.12 shows that the affine operators \(\varepsilon_i \) for \(i = 1, ..., n-k \), act on the same scalar on the cyclic vector \(1^\nu_\delta \otimes f_{k+1} \otimes ... \otimes f_n \) and \(1_{\bar{\nu}_{n-k}} \), respectively. \(\square \)
Casselman’s theorem [8] states that every irreducible representation in \(\mathcal{HC}(G) \) is a subrepresentation of a principal series module. If \(G \) is a split real orthogonal or symplectic group then \(M \) is abelian and every principal series module is induced from a character.

Theorem 8.15. Let \(G \) be \(O(n+1,n) \) or \(Sp_{2n}(\mathbb{R}) \), then \(G \) is split. Let \(X \) be an irreducible \(G \)-module. Let \(X^\theta \) be a principal series representation that contains \(X \), then the \(\mathfrak{B}_{k}^\theta \) and \(\mathfrak{B}_{n-k}^\theta \)-modules

\[
F_{\mu,k}(X) \quad \text{and} \quad F_{\nu,n-k}(X)
\]

are submodules of the \(\mathbb{H}_{k}(c_\mu) \) and \(\mathbb{H}_{n-k}(c_\mu) \)-modules

\[
X(\nu_k) \quad \text{and} \quad X(\bar{\nu}_{n-k}).
\]

9. Hermitian forms

In this section we define two star operations on \(\mathfrak{B}_{k}^\theta \). Through the quotients defined in Lemma 4.4 these star operations descend to the usual star operations on the graded Hecke algebras \(\mathbb{H}_{k}(c) \) [2]. We then show that a Harish-Chandra module \(X \in \mathcal{HC}(G) \) with invariant Hermitian form gets mapped, by \(F_{\mu,k} \), to a \(\mathfrak{B}_{k}^\theta \)-module with invariant Hermitian form. This extends the results in [9] to any Harish-Chandra module. Furthermore, if \(X \) is a unitary module, then it maps to a unitary module for \(\mathfrak{B}_{k}^\theta \). In this section we assume that \(\mu \) is a character of \(K \).

Definition 9.1. Let \(G \) be \(O(p,q) \) \(p+q=2n+1 \) or \(Sp_{2n}(\mathbb{R}) \), let \(\mathfrak{g}_0 \) be its Lie algebra, with complexification \(\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p} \). Conjugation \(\bar{\mathfrak{g}} : \mathfrak{g} \to \mathfrak{g} \) is defined by the real form \(\mathfrak{g}_0 \). Define the star operation as the conjugate linear map \(\ast : \mathfrak{g} \to \mathfrak{g} \) such that:

\[
g^\ast = -\bar{g} \quad \text{for all} \quad g \in \mathfrak{g}.
\]

Define the operation \(\cdot : \mathfrak{g} \to \mathfrak{g} \) by:

\[
p^\cdot = \bar{p} \quad \text{for all} \quad p \in \mathfrak{p}.
\]

\[
k^\cdot = -\bar{k} \quad \text{for all} \quad k \in \mathfrak{k}.
\]

Recall Definition 4.1 of the Hecke algebra \(\mathbb{H}_{k}(c) \). We define the Drinfeld presentation of \(\mathbb{H}_{k}(c) \).

Definition 9.2. Let \(R \) be a root system with pairing \(\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C} \), simple roots \(\delta \), and a parameter function \(c : \Delta \to \mathbb{C} \). Denote the Weyl group of \(R \) by \(W(R) \). The Drinfeld Hecke algebra \(\mathfrak{H}_R(c) \) is a quotient of the algebra

\[
\mathbb{C}[W(R)] \rtimes T(V),
\]
by the relations
\[w\tilde{\alpha}w^{-1} = \tilde{w}(\alpha) \text{ for all } w \in W(R), \alpha \in V, \]
\[[\tilde{\alpha}, \tilde{\beta}] = \sum_{\gamma, \delta \in \Delta} c(\gamma)c(\delta)(\langle \tilde{\alpha}, \gamma \rangle \langle \tilde{\beta}, \delta \rangle - \langle \tilde{\beta}, \gamma \rangle \langle \tilde{\alpha}, \delta \rangle)s_\gamma s_\delta. \]

Lemma 9.3. The Drinfeld Hecke algebra and the graded Hecke algebra are defined by a root system and a parameter on simple roots. If the defining root systems and parameters are equal then these algebras are isomorphic.

Proof. One defines an isomorphism \(\phi : \mathbb{H}_R(c) \to \mathcal{H}_R(c) \) by
\[\phi(\alpha - \frac{1}{2} \sum_{\gamma \in \Delta} c(\gamma)\langle \gamma, \alpha \rangle s_\gamma) = \tilde{\alpha}, \]
\[\phi(w) = w, \quad \forall w \in W(R). \]

\[\square \]

Given that the graded Hecke algebra and the Drinfeld Hecke algebra are isomorphic we omit the different notation and denote the graded Hecke algebra by \(\mathbb{H}_R(c) \). We uniformly denote a generator in the Drinfeld presentation by \(\tilde{\alpha} \) and \(\alpha \) denotes a generator in the Lusztig presentation (Definition 4.1).

Definition 9.4. Let \(* : \mathbb{H}_k(c) \to \mathbb{H}_k(c) \) be the antihomomorphism such that:
\[\tilde{\alpha}^* = -\overline{\alpha} \text{ for all } \alpha \in \tilde{t}, \]
\[g^* = g^{-1} \text{ for all } g \in W(B_k). \]

Let \(\cdot : \mathbb{H}_k(c) \to \mathbb{H}_k(c) \) be the antihomomorphism such that:
\[\alpha^* = \overline{\alpha} \text{ for all } \alpha \in t \text{ (equivalently } \tilde{\alpha}^* = \overline{\alpha}), \]
\[g^* = g^{-1} \text{ for all } g \in W(B_k). \]

Here \(v \) is the complex conjugate of \(v \).

Let \(w_0 \) be the longest element in \(W(B_k) \), it is an involution and is generated by \(k^2 \) simple reflections. It is in the centre of \(W(B_k) \). On the space of roots \(w_0 \) acts by \(-1\).

Lemma 9.5. The longest element \(w_0 \) can be written as
\[w_0 = \theta_1\theta_2...\theta_k. \]

It is well known that the longest element \(w_0 \) relates the two star operations \(* \) and \(\cdot \) in \(\mathbb{H}_k(c) \).
Lemma 9.6.

\[h^* = w_0h^\bullet w_0 \text{ for all } h \in \mathbb{H}(c). \]

Lemma 9.7. The longest element \(w_0 \) is central in the finite Brauer algebra \(Br_k[m] \).

Proof. The element \(w_0 \) is central in \(W(B_k) \), therefore it is sufficient to prove that \(w_0 \) commutes with the idempotents \(e_{i,i+1} \). The reflections \(\theta_l \) commute with \(e_{i,j} \).

\[[e_{i,j}, \theta_l] = 0 \text{ for all } i, j, l. \]

We have,

\[w_0 e_{i,j} w_0 = \theta_1 \theta_2 \ldots \theta_k e_{i,j} \theta_k \ldots \theta_1 = e_{i,j}. \]

Hence \(w_0 \) is central in the finite Brauer algebra. \(\square \)

Since \(w_0 = \theta_1 \theta_2 \ldots \theta_k \) then as an operator on \(X \otimes V^\otimes k \)

\[\pi(w_0) = (\xi)_1(\xi)_2 \ldots (\xi)_k = id \otimes \xi \otimes \xi \ldots \otimes \xi. \]

We calculate how \(w_0 \) and \(\Omega_{ij}, \Omega_{ij}^t, \Omega_{ij}^p \) interact.

Lemma 9.8. As operators on \(X \otimes V^\otimes k \),

\[w_0(\Omega_{ij}^t)w_0 = \Omega_{ij}^t \text{ for all } 0 \leq i < j \leq n, \]

\[w_0(\Omega_{ij}^p)w_0 = \begin{cases} \Omega_{ij}^p & \text{for all } 0 < i < j \leq n, \\ -\Omega_{ij}^p & \text{when } i = 0. \end{cases} \]

Proof. Recall \(\xi g \xi = \begin{cases} g & \text{if } g \in \mathfrak{t}, \\ -g & \text{if } g \in \mathfrak{p}. \end{cases} \) Therefore one finds that \(\pi(w_0) = id \otimes \xi \otimes \ldots \xi \) commutes with \(\Omega_{ij} = \sum_{b \in B \cap \mathfrak{p}}(b)_i \otimes (b^*)_j. \) For \(\Omega_{ij}^p \) we have:

\[w_0(\Omega_{ij}^p)w_0 = (id \otimes \xi \otimes \ldots \otimes \xi) \Omega_{ij}^p (id \otimes \xi \otimes \ldots \otimes \xi), \]

\[= (id \otimes \xi \otimes \ldots \otimes \xi) \sum_{b \in B \cap \mathfrak{p}} (b)_i \otimes (b^*)_j (id \otimes \xi \otimes \ldots \otimes \xi), \]

\[= \begin{cases} \sum_{b \in B \cap \mathfrak{p}} (b)_i \otimes (\xi b)_j & \text{if } i = 0, \\ \sum_{b \in B \cap \mathfrak{p}} (\xi b)_i \otimes (b)_j & \text{if } i \neq 0, \end{cases} \]

\[= \begin{cases} \sum_{b \in B \cap \mathfrak{p}} (b)_i \otimes (-b)_j & \text{if } i = 0, \\ \sum_{b \in B \cap \mathfrak{p}} (-b)_i \otimes (b)_j & \text{if } i \neq 0, \end{cases} \]

\[= \begin{cases} -\sum_{b \in B \cap \mathfrak{p}} (b)_i \otimes (b)_j & \text{if } i = 0, \\ \sum_{b \in B \cap \mathfrak{p}} (b)_i \otimes (b)_j & \text{if } i \neq 0. \end{cases} \]

\(\square \)
Definition 9.9. Let $\cdot : B_k^\theta \to B_k^\theta$ be the conjugate linear antihomomorphism defined on the generators as follows:

$$z_i^\cdot = z_i$$

$$g^\cdot = g^{-1} \text{ for } g \in W(B_k)$$

$$e_{i,i+1}^\cdot = e_{i,i+1}.$$

Remark 9.10. To check this antihomomorphism is well defined one must just check that the relations in Definition 3.10 are fixed.

Definition 9.11. Let $^* : B_k^\theta \to B_k^\theta$ by the antihomomorphism such that,

$$b^* = w_0 b^\cdot w_0.$$

Remark 9.12. Since w_0 is central in the finite Brauer algebra then

$$g^* = g^{-1} \text{ for } g \in W(B_k) \text{ and } e_{i,j}^* = e_{i,j}.$$

Lemma 9.13. Under the quotients in Lemma 4.14 the antihomomorphisms $^* : B_k^\theta \to B_k^\theta$ and $\cdot : B_k^\theta \to B_k^\theta$ descend to the antihomomorphisms $^* : \mathbb{H}_k(c) \to \mathbb{H}_k(c)$ and $\cdot : \mathbb{H}_k(c) \to \mathbb{H}_k(c)$ respectively.

Proof. The operation \cdot fixes $e_{i,i+1}$ and

$$\theta_k z_k + z_k \theta_k = 2c - 2r \theta_k.$$

Therefore \cdot on B_k^θ descends to $\mathbb{H}_k(c)$. On the generators of $\mathbb{H}_k(c)$ it fixes the affine generators and is the inverse antihomomorphism on the group $W(B_k)$. Hence the operation \cdot on B_k^θ descends to the antihomomorphism \cdot on $\mathbb{H}_k(c)$. Since

$$h^* = w_0 h^\cdot w_0,$$

in both B_k^θ and $\mathbb{H}_k(c)$ then the star operation * on B_k^θ descends to * on $\mathbb{H}_k(c)$. \hfill \Box

We give a new set of generators for B_k^θ.

Definition 9.14. Define

$$\tilde{z}_i = \frac{z_i - w_0 z_i w_0}{2}, \text{ for } i = 1, \ldots, k,$$

then

$$B_k^\theta \cong \langle \tilde{z}_i, s_{j,j+1}, e_{j,j+1}, \theta_i \rangle.$$
The operators \(\tilde{z}_i \) form a Drinfeld type presentation for \(\mathfrak{B}^\theta_k \), they descend to the Drinfeld presentation of \(\mathbb{H}_k(c) \) under the quotients defined in [4.4] As operators on \(X \otimes V^\otimes k \):

\[
\pi(\tilde{z}_i) = \frac{1}{2} \pi(z_i - w_0 z_i w_0) \\
= \frac{1}{2} \left(\sum_{j<i} \Omega_{ij} - (\xi)_1(\xi)_2(\xi)_3(\xi)_k \sum_{j<i} \Omega_{ij} (\xi)_1(\xi)_2(\xi)_3(\xi)_k \right),
\]

\[
= \frac{1}{2} \left(\sum_{j<i} \Omega_{ij}^l + \Omega_{ij}^p - (\xi)_1(\xi)_2(\xi)_3(\xi)_k \sum_{j<i} \Omega_{ij}^l + \Omega_{ij}^p \Omega_{ij} (\xi)_1(\xi)_2(\xi)_3(\xi)_k \right),
\]

\[
= \frac{1}{2} \left(\sum_{j<i} \Omega_{ij}^l + \Omega_{ij}^p + \Omega_{0i} - \Omega_{0i} \sum_{0<j<i} \Omega_{ij}^l + \Omega_{ij}^p \right),
\]

\[
= \Omega_{0i}^p.
\]

Remark 9.15. With this presentation of \(\mathfrak{B}^\theta_k \) the operation \(* \) is defined as

\[
\tilde{z}_i^* = -\tilde{z}_i,
\]

\[
g^* = g^{-1} \text{ for all } g \in w(B_k),
\]

\[
e_{i,i+1}^* = e_{i,i+1}.
\]

Definition 9.16. Let \(X \) be a complex vector space, a Hermitian form \(\langle \cdot, \cdot \rangle_X \) on \(X \) is a map \(\langle \cdot, \cdot \rangle_X : X \times X \rightarrow \mathbb{C} \) such that

\[
\langle \lambda_1 x_1 + \lambda_2 x_2, x' \rangle_X = \lambda_1 \langle x_1, x' \rangle_X + \lambda_2 \langle x_2, x' \rangle_X \text{ for all } x_1, x_2, x' \in X, \lambda_1, \lambda_2 \in \mathbb{C},
\]

\[
\langle x, \lambda_1 x_1' + \lambda_2 x_2' \rangle_X = \lambda_1 \langle x, x_1' \rangle_X + \lambda_2 \langle x, x_2' \rangle_X \text{ for all } x_1', x_2', x \in X, \lambda_1, \lambda_2 \in \mathbb{C}.
\]

Definition 9.17. Let \(X \) be a \(\mathcal{HC}(G) \)-module. A Hermitian form \(\langle \cdot, \cdot \rangle_X \) is \(* \)-invariant if:

\[
\langle g(x_1), x_2 \rangle_X = \langle x_1, g^*(x_2) \rangle, \text{ for all } x_1, x_2 \in X \text{ and } g \in \mathfrak{g}.
\]

Definition 9.18. Let \(U \) be an \(\mathbb{H}_k(c) \)-module. A Hermitian form \(\langle \cdot, \cdot \rangle_U \) on \(U \) is \(* \)-invariant with respect to \(\ast \) if:

\[
\langle h(x_1), x_2 \rangle_U = \langle x_1, h^*(x_2) \rangle, \text{ for all } x_1, x_2 \in U \text{ and } h \in \mathbb{H}_k(c).
\]

Similarly for \(U \) a \(\mathfrak{B}^\theta_k \)-module, a Hermitian form \(\langle \cdot, \cdot \rangle_U \) on \(U \) is \(* \)-invariant if

\[
\langle b(x_1), x_2 \rangle_U = \langle x_1, b^*(x_2) \rangle, \text{ for all } x_1, x_2 \in U \text{ and } b \in \mathfrak{B}^\theta_k.
\]

Definition 9.19. A \(\mathcal{HC}(G) \)-module \(X \) is unitary if there exists a positive definite invariant Hermitian form on \(X \).

Similarly, an \(\mathbb{H}_k(c) \)-module \(U \) is unitary if \(U \) has an invariant positive definite Hermitian form and a \(\mathfrak{B}^\theta_k \)-module is unitary if it has a positive definite invariant Hermitian form.
Recall V is the defining matrix module of G. Let $\langle \cdot, \cdot \rangle_V$ be a non-degenerate Hermitian form on V such that

$$\langle kv_1, v_2 \rangle = \langle v_1, k^{-1}v_2 \rangle \text{ for all } v_1, v_2 \in V, k \in K,$$

$$\langle pv_1, v_2 \rangle = \langle v_1, pv_2 \rangle \text{ for all } v_1, v_2 \in V, p \in p.$$

This makes V unitary with respect to \cdot.

Definition 9.20. c.f. [9, (4.4)] Let X be in $HC(G)$ with a \ast-invariant Hermitian form $\langle \cdot, \cdot \rangle_X$ then we endow $X \otimes V^\otimes k$ with a Hermitian form defined on elementary tensors by

$$\langle x_0 \otimes v_1 \otimes \ldots \otimes v_k, x'_0 \otimes v'_1 \otimes \ldots \otimes v'_k \rangle_{X \otimes V^\otimes k} = \langle x_0, x'_0 \rangle_X \langle v_1, v'_1 \rangle_V \ldots \langle v_k, v'_k \rangle_V,$$

then extended to a Hermitian form. For μ a character of K, define a Hermitian form on $F_{\mu,k}(X) = \text{Hom}_K(\mu, X \otimes V^\otimes k)$ by:

$$\langle \phi, \psi \rangle_{F_{\mu,k}} = \langle \phi(1), \psi(1) \rangle_{X \otimes V^\otimes k}, \text{ for all } \phi, \psi \in \text{Hom}_K(\mu, X \otimes V^\otimes k).$$

Remark 9.21. If X is a unitary space then $\langle \cdot, \cdot \rangle_{X \otimes V^\otimes k}$ endows $X \otimes V^k$ as a unitary space.

Lemma 9.22. Let V be the complex matrix module of $G = O(p,q)$ or $Sp_{2n}(\mathbb{R})$ and pr_{12} be the projection of $V \otimes V$ onto its trivial G submodule. Define $\langle \cdot, \cdot \rangle_{V \otimes V}$ on $V \otimes V$ by

$$\langle v_1 \otimes v_2, v'_1 \otimes v'_2 \rangle_{V \otimes V} = \langle v_1, v'_1 \rangle_V \langle v_2, v'_2 \rangle_V,$$

and extend to a Hermitian form. Then

$$\langle pr_{12}(v_1 \otimes v_2), v'_1 \otimes v'_2 \rangle_{V \otimes V} = \langle v_1 \otimes v_2, pr_{12}(v'_1 \otimes v'_2) \rangle_{V \otimes V}.$$

Proof. It is sufficient to prove that the trivial submodule in $V \otimes V$ and its complement are orthogonal with the form $\langle \cdot, \cdot \rangle_{V \otimes V}$. The Peter-Weyl Theorem [21, Theorem 1.12] states that a unitary module of a compact group decomposes as an orthogonal direct sum of irreducibles. Considering $V \otimes V$ as a \cdot unitary K-module, we have that the trivial submodule of $V \otimes V$ is orthogonal to its complement with respect to $\langle \cdot, \cdot \rangle_{V}$. □

Lemma 9.23. Suppose $X \in HC(G)$ with a \ast-invariant Hermitian form $\langle \cdot, \cdot \rangle_X$ then $F_{\mu,k}(X) \in \mathcal{B}_k^\theta$-mod has a \ast-invariant Hermitian form $\langle \cdot, \cdot \rangle_{F_{\mu,k}}$. Furthermore if X is unitary then $F_{\mu,k}(X)$ is unitary.

Ciubotaru and Trapa [9] prove this result for spherical principal series modules mapping to graded Hecke algebras. We extend this to any Harish-Chandra module which requires considering the image as a Type B/C VW-algebra module.
Proof. We show that the Hermitian form is invariant under the generators \(\tilde{z}_j, s_{i,i+1}, \theta_j \) and \(e_{i,i+1} \). For \(\tilde{z}_j, \tilde{z}_j^* = -\tilde{z}_j \) and \(\pi(\tilde{z}_j) = \Omega_{0i}^p \). The form \(\langle \cdot, \cdot \rangle_X \) is a \(* \)-invariant form on \(X \) and \(\langle \cdot, \cdot \rangle_V \) is a \(\cdot \)-invariant form on \(V \). Let \(\phi, \psi \in F_{\mu,k}(X) = \text{Hom}_K(\mu, X \otimes V \otimes k) \), then

\[
\langle \pi \tilde{z}_i(\phi), \psi \rangle_{F_{\mu,k}(X)} = \langle \pi(\tilde{z}_i)(\phi(1)), \psi(1) \rangle_{X \otimes V \otimes k}.
\]

Since \(\pi(\tilde{z}_i) = \Omega_{0i}^p = \sum_{b \in p}(b)_0 \otimes (b^*)_i \),

\[
\langle \pi \tilde{z}_i^*(\phi), \psi \rangle_{F_{\mu,k}(X)} = \langle ((\Omega_{0i}^p)^* \phi(1), \psi(1)) \rangle_{X \otimes V \otimes k},
\]

\[
= -\langle \Omega_{0i}^p \phi(1), \psi(1) \rangle_{X \otimes V \otimes k},
\]

Denote \(\phi(1) \) by \(\sum x_0 \otimes v_1 \otimes \ldots \otimes v_k \) and \(\psi(1) \) by \(\sum x'_0 \otimes v'_1 \otimes \ldots \otimes v'_k \) substituting in the definition of \(\langle \cdot, \cdot \rangle_{X \otimes V \otimes k} \) then

\[
\langle \pi \tilde{z}_i(\phi), \psi \rangle_{F_{\mu,k}(X)} = \sum_{b \in p} \sum \langle -(b)_0(x_0), x'_0 \rangle_x \langle v_1, v'_1 \rangle_v \ldots \langle (b)_i v_i, v'_i \rangle_v \ldots \langle v_k, v'_k \rangle_v.
\]

The form \(\langle \cdot, \cdot \rangle_X \) is \(* \)-invariant for \(g \) and \(\langle \cdot, \cdot \rangle_V \) is \(\cdot \)-invariant for \(g \), hence

\[
-\langle bx_0, x'_0 \rangle_x = \langle x_0, bx'_0 \rangle_x \text{ and } \langle bv_i, v'_i \rangle_V = \langle v_i, bv'_i \rangle_V \text{ for all } b \in p:
\]

\[
\langle \pi \tilde{z}_i(\phi), \psi \rangle_{F_{\mu,k}(X)} = \sum_{b \in p} \sum \langle (x_0), (b)_0 x'_0 \rangle_x \langle v_1, v'_1 \rangle_v \ldots \langle v_i, (b)_i v'_i \rangle_v \ldots \langle v_k, v'_k \rangle_v.
\]

Reversing through the definitions, we show

\[
\langle \pi \tilde{z}_i^*(\phi), \psi \rangle_{F_{\mu,k}} = \langle \phi, \pi(\tilde{z}_i) \psi \rangle_{F_{\mu,k}}.
\]

The element \(\theta_j \) acts by \(\langle \xi \rangle_j \) where \(\xi \in \mathfrak{k} \), hence \(\langle \xi v, v' \rangle_V = \langle v, \xi v' \rangle_V \). Therefore

\[
\langle x_0, x'_0 \rangle_x \langle v_1, v'_1 \rangle_v \ldots \langle (\xi) v_j, v'_j \rangle_v \ldots \langle v_k, v'_k \rangle_v = \langle x_0, x'_0 \rangle_x \langle v_1, v'_1 \rangle_v \ldots \langle v_j, (\xi) v'_j \rangle_v \ldots \langle v_k, v'_k \rangle_v.
\]

Similarly for \(s_{i,i+1} \)

\[
\langle s_{i,i+1}(x_0 \otimes v_1 \otimes \ldots v_k), x'_0 \otimes v'_1 \otimes \ldots v'_k \rangle_{X \otimes V \otimes k}
\]

\[
= \langle x_0 \otimes v_1 \otimes \ldots \otimes v_{i+1} \otimes v_i \otimes \ldots \otimes v_k, x'_0 \otimes v'_1 \otimes \ldots \otimes v'_k \rangle_{X \otimes V \otimes k}
\]

\[
= \langle x'_0 \otimes v_1 \otimes \ldots \otimes v_k, x_0 \otimes v'_1 \otimes \ldots \otimes v'_{i+1} \otimes v'_i \otimes \ldots \otimes v'_k \rangle_{X \otimes V \otimes k}
\]

\[
= \langle x_0 \otimes v_1 \otimes \ldots v_k, s_{i,i+1}(x'_0 \otimes v'_1 \otimes \ldots v'_k) \rangle_{X \otimes V \otimes k}.
\]

The projection \(e_{i,i+1} \) acts on elementary tensors \(x_0 \otimes v_1 \otimes \ldots \otimes v_k \) by

\[
e_{i,i+1}(x_0 \otimes v_1 \otimes \ldots \otimes v_k) = mx_0 \otimes v_1 \otimes \ldots \otimes v_{i-1} \otimes \text{pr}_{12}(v_i \otimes v_{i+1}) \otimes \ldots \otimes v_k.
\]
Then
\[\langle e_{i,i+1}(x_0 \otimes v_1 \otimes \ldots \otimes v_k), x'_0 \otimes v'_1 \otimes \ldots \otimes v'_k \rangle_{X \otimes V^{\otimes k}}, \]
\[= m(x_0 \otimes v_1 \otimes \ldots \otimes v_{i-1} \otimes \text{pr}_{12}(v_i \otimes v_{i+1}) \otimes \ldots \otimes v_k, x'_0 \otimes v'_1 \otimes \ldots \otimes v'_k)_{X \otimes V^{\otimes k}}, \]
\[= \langle x_0, x'_0 \rangle_{X}(v_1, v'_1)_{V} \ldots \langle \text{pr}_{12}(v_i \otimes v_{i+1}), v'_i \otimes v'_{i+1} \rangle_{V} \otimes \ldots \langle v_k, v'_k \rangle_{V}. \]

Using Lemma 9.22,
\[= \langle x_0 \otimes v_1 \otimes \ldots \otimes v_k, x'_0 \otimes v'_1 \otimes \ldots \otimes v'_{i-1} \otimes \text{pr}_{12}(v'_i \otimes v'_{i+1}) \otimes \ldots \otimes v'_k \rangle_{X \otimes V^{\otimes k}}, \]
Therefore
\[\langle e_{i,i+1}(\phi), \psi \rangle_{F_{\mu,k}} = \langle \phi, e_{i,i+1}(\psi) \rangle_{F_{\mu,k}}. \]

The module \(F_{\mu,k}(X) \) has induced Hermitian form \(\langle \cdot, \cdot \rangle_{F_{\mu,k}} \) which is *-invariant on the generators of \(\mathfrak{B}_k^{\theta} \). Hence \(\langle \cdot, \cdot \rangle_{F_{\mu,k}} \) is a *-invariant form. If \(X \) is unitary then \(\langle \cdot, \cdot \rangle_{X \otimes V^{\otimes k}} \) is positive definite. Hence \(\langle \cdot, \cdot \rangle_{F_{\mu,k}} \) is a positive definite invariant Hermitian form and \(F_{\mu,k}(X) \) is unitary.

\[\square \]

Definition 9.24. Let \(X \in \mathcal{HC}(G), \mathfrak{B}_k^{\theta}\)-mod or \(\mathbb{H}_k(c)\)-mod module with invariant Hermitian form \(\langle \cdot, \cdot \rangle_X \). We define the Langlands quotient \(\overline{X} \) to be:
\[\overline{X} = X/\text{rad} \langle \cdot, \cdot \rangle_X, \]
where \(\text{rad} \langle \cdot, \cdot \rangle \) is the radical of the form \(\langle \cdot, \cdot \rangle \).

Lemma 9.25. Let \(X \) be in \(\mathcal{HC}(G)\)-mod with Hermitian invariant form \(\langle \cdot, \cdot \rangle_X \) and Langlands quotient \(\overline{X} \). The form \(\langle \cdot, \cdot \rangle_{F_{\mu,k}} \) is the endowed hermitian form of \(F_{\mu,k}(X) \) from Definition 9.20 then
\[F_{\mu,k}(\overline{X}) = \overline{F_{\mu,k}(X)} = F_{\mu,k}(X)/\text{rad} \langle \cdot, \cdot \rangle_{F_{\mu,k}}. \]

Proof. One can construct an exact sequence:
\[0 \longrightarrow \text{rad} \langle \cdot, \cdot \rangle_X \longrightarrow X \longrightarrow \overline{X} \longrightarrow 0. \]

Exactness of the functors \(F_{\mu,k} \) is given by Lemma 5.3. Hence there is an exact sequence:
\[0 \longrightarrow F_{\mu,k}(\text{rad} \langle \cdot, \cdot \rangle_X) \longrightarrow F_{\mu,k}(X) \longrightarrow F_{\mu,k}(\overline{X}) \longrightarrow 0. \]

For the result it is sufficient to prove that \(F_{\mu,k}(\text{rad} \langle \cdot, \cdot \rangle_X) = \text{rad} \langle \cdot, \cdot \rangle_{F_{\mu,k}} \).

Since \(\langle \cdot, \cdot \rangle_{F_{\mu,k}} \) is an invariant form on \(F_{\mu,k}(X) \) and a non-degenerate form on \(F_{\mu,k}(\overline{X}) \) then \(F_{\mu,k} \text{rad} \langle \cdot, \cdot \rangle_X = \text{rad} \langle \cdot, \cdot \rangle_{F_{\mu,k}}. \)

\[\square \]

Theorem 9.26. Let \(X^\nu_k \) be a principal series module for \(G = O(p,q) \) or \(Sp_{2n}(\mathbb{R}) \). The Langlands quotient \(\overline{X^\nu_k} = X^\nu_k/\text{rad} \langle \cdot, \cdot \rangle_{X^\nu_k} \) is mapped by \(F_{\mu,k} \), to the Langlands quotient of the \(\mathbb{H}_k(c_\mu)\)-module, \(\overline{X(v_k)} = \).
$X(\nu_k) / \text{rad}(.)_{X(\nu_k)}$. Similarly, X^ν_δ is mapped by $F_{\mu,n-k}$, to the $\mathbb{H}_{n-k}(c_\mu)$-module $\overline{X(\nu_{n-k})}$.

Definition 9.27. We define subsets of \mathfrak{a}^*:

$$U_\delta = \{ \nu \in \mathfrak{a}^* : X^\nu_\delta \text{ is a unitary Harish-Chandra module} \}.$$

Similarly define

$$U_k(1) = \{ \lambda \in \mathfrak{a}_k^* : X_\lambda \text{ is a unitary } \mathbb{H}_k(c_\mu) \text{ module} \}$$

and

$$U_{n-k}(1) = \{ \bar{\lambda} \in \bar{\mathfrak{a}}_{n-k}^* : X(\bar{\lambda}) \text{ is a unitary } \mathbb{H}_{n-k}(c_\mu) \text{ module} \}.$$

Since $\mathfrak{a} = \mathfrak{a}_k \oplus \bar{\mathfrak{a}}_{n-k}$ we can associate a pair $(\lambda_k, \bar{\lambda}_{n-k}) \in \mathfrak{a}^* \times \bar{\mathfrak{a}}_{n-k}^*$ to a character of \mathfrak{a} via:

$$(\lambda_k, \bar{\lambda}_{n-k}) : \mathfrak{a} \rightarrow \mathbb{C}$$

$$(\lambda_k, \bar{\lambda}_{n-k})(\mathfrak{a}_k) = \lambda_k(\mathfrak{a}_k),$$

$$(\lambda_k, \bar{\lambda}_{n-k})(\bar{\mathfrak{a}}_{n-k}) = \bar{\lambda}_{n-k}(\bar{\mathfrak{a}}_{n-k}).$$

Theorem 9.26 shows that the Langlands quotients of X^ν_δ map under $F_{\mu,k}$ and $F_{\mu,n-k}$ to Langlands quotients of principal series modules for $\mathbb{H}_k(c_\mu)$ and $\mathbb{H}_{n-k}(c_\mu)$ hence we can formulate the following non-unitary test.

Lemma 9.28. We have an inclusion of sets:

$$U_\delta \subseteq U_k(1) \times U_{n-k}(1).$$

This inclusion of sets states that if we take a minimal principal series module X and find that, under the functor $F_{\mu,k}$, the Langlands quotient of the image is not unitary then the Langlands quotient of X is not unitary.

Theorem 9.29. [Non-unitary test for principal series modules] If either $\overline{X(\nu_k)}$ or $\overline{X(\nu_{n-k})}$ are not unitary, as $\mathbb{H}_k(c_\mu)$ and $\mathbb{H}_{n-k}(c_\mu)$-modules, then the Langlands quotient of the minimal principal series module $\overline{X^\nu_\delta}$, for $G = O(p,q)$ or $Sp_{2n}(\mathbb{R})$ is not unitary.

The above working does not require the image to be a Hecke algebra module. Therefore, we have also proved the following theorem.

Theorem 9.30. [Non-unitary test for Harish-Chandra modules] Let X be a Harish Chandra module. For $G = Sp_{2n}(\mathbb{R})$ or $O(p,q)$, $p+q = 2n+1$, if for any character μ and $k = 1, \ldots, n$ the \mathfrak{g}_k^θ-module $\overline{F_{\mu,k}(X)}$ is not unitary, then the Langlands quotient \overline{X} of X is not a unitary G-module.

In the case when G is split then X is a subrepresentation of X^ν_δ and
$F_{\mu,k}(X)$, $F_{\mu,n-k}(X)$ are Hecke algebra modules. In this case, if either $F_{\mu,k}(X)$, $F_{\mu,n-k}(X)$ is not unitary as a Hecke algebra module then X is not unitary as a G-module.

We finish with a toy example.

Example 9.31. Let $G = Sp_2(\mathbb{R}) \cong SL_2(\mathbb{R})$. Then principal series modules are labelled by $\delta = \pm 1$ and $\nu \in \mathbb{C}$. The principal series modules X_ν^δ are unitary exactly when $\nu = ib$ for $b \in \mathbb{R}$, that is ν is entirely imaginary.

In this case all principal series modules are spherical principal series modules. The root system associated to Sp_2 has one root ϵ and the Weyl group is \mathbb{Z}_2 which acts by -1 on ϵ. Here $\mathbb{H}(c)$ will be the graded Hecke algebra associated to type B_1 with parameter c. The algebra $\mathbb{H}(c)$ is generated by ϵ and $s \in \mathbb{Z}_2$ such that $se = -s\epsilon + c$. We note that $s^* = s$ and $\epsilon^* = -\epsilon + cs$.

Our theorem gives that $F_{triv,1}(X_1^\nu) \cong \text{Ind}_{\mathbb{C}}^{\mathbb{H}(c)} 1_\nu$.

Note that $\text{Ind}_{\mathbb{C}}^{\mathbb{H}(c)} 1_\nu$ is two dimensional with basis $\{1_\nu, s1_\nu\}$ we will denote the module $\text{Ind}_{\mathbb{C}}^{\mathbb{H}(c)} 1_\nu$ by Y_ν. Let \langle , \rangle be a hermitian form on Y_ν, for Y_ν to be unitary we require

$$\langle s(u), v \rangle = \langle u, s^*(v) \rangle = \langle u, s(v) \rangle$$

and

$$\langle \epsilon(u), v \rangle = \langle u, \epsilon^*(v) \rangle = \langle u, [-\epsilon + cs](v) \rangle.$$

Letting $u = 1_\nu$ and $v = 1_\nu$, then the above requirement implies

$$\nu(1_\nu, 1_\nu) = \langle \epsilon(1_\nu), 1_\nu \rangle = \langle 1_\nu, [-\epsilon + cs]1_\nu \rangle = -\bar{\nu}(1_\nu, 1_\nu) + \langle 1_\nu, s1_\nu \rangle.$$

For the above equation to hold $\nu = -\bar{\nu}$ and $\langle 1_\nu, s1_\nu \rangle = 0$. Hence for Y_ν to be unitary ν must be purely imaginary. Furthermore if ν is purely imaginary then we can construct a Hermitian non-degenerate form on Y_ν such that it is a unitary form. Therefore in the case of $Sp_2(\mathbb{R})$ our non-unitary test becomes an equivalence:

X_ν^δ is unitary if and only if $F_{triv,1}(X_\nu^\delta) \cong \text{Ind}_{\mathbb{C}}^{\mathbb{H}(c)} 1_\nu$ is unitary.

References

[1] T. Arakawa and T. Suzuki. Duality between $sl_n(\mathbb{C})$ and the degenerate affine Hecke algebra. *Journal of Algebra*, 209(1):288 – 304, 1998.

[2] D. Barbasch and D. M. Ciubotaru. Star oprations for affine Hecke algebras. *arXiv preprint ArXiv:1504.04361*, 2015.
[3] D. Barbasch and A. Pantano. Petite K-types for nonspherical minimal principal series. *preprint*, 2004.

[4] C. Bowman, A. Cox, and M. De Visscher. Decomposition numbers for the cyclotomic brauer algebras in characteristic zero. *Journal of Algebra*, 378:80–102, 2013.

[5] R. Brauer. On algebras which are connected with the semisimple continuous groups. *Annals of Mathematics*, 38(4):857–872, 1937.

[6] J. Brundan and C. Stroppel. Gradings on walled brauer algebras and khovanovs arc algebra. *Advances in Mathematics*, 231(2):709–773, 2012.

[7] K. Calvert. Compact Schur-Weyl duality: real lie groups and the cyclotomic Brauer algebra. *ArXiv*, 2020.

[8] W. Casselman. Jacquet modules for real reductive groups. In *Proceedings of the International Congress of Mathematicians (Helsinki, 1978)*, volume 557563, 1978.

[9] D. Ciubotaru and P. E. Trapa. Functors for unitary representations of classical real groups and affine Hecke algebras. *Advances in Mathematics*, 227(4):1585–1611, 2011.

[10] A. Cox, M. Visscher, and P. Martin. The blocks of the brauer algebra in characteristic zero. *Represent. Theory*, 13, 02 2006.

[11] Z. Daugherty, A. Ram, and R. Virk. Affine and degenerate affine bmw algebras: Actions on tensor space. *Selecta Mathematica*, 19, 05 2012.

[12] R. Dipper, S. Doty, and J. Hu. Brauer algebras, symplectic Schur algebras and Schur-Weyl duality. *Transactions of the American Mathematical Society*, 360(1):189–213, 2008.

[13] M. Ehrig and C. Stroppel. Schur–weyl duality for the brauer algebra and the ortho-symplectic lie superalgebra. *Mathematische Zeitschrift*, 284(1-2):595–613, 2016.

[14] M. Ehrig and C. Stroppel. Nazarov–wenzl algebras, coideal subalgebras and categorified skew howe duality. *Advances in Mathematics*, 331:58–142, 2018.

[15] R. Häring-Oldenburg. Cyclotomic birman–murakami–wenzl algebras. *Journal of Pure and Applied Algebra*, 161(1-2):113–144, 2001.

[16] K. Iwasawa. On some types of topological groups. *Annals of Mathematics*, 50(3):507–558, 1949.

[17] A. Knapp. Lie groups beyond an introduction. 1996.

[18] C. Kriloff and A. Ram. Representations of graded Hecke algebras. *Representation Theory of the American Mathematical Society*, 6(2):31–69, 2002.

[19] G. Lusztig. Affine Hecke algebras and their graded version. *Journal of the American Mathematical Society*, 2(3):599–635, 1989.

[20] A. Pantano, A. Paul, and S. Salamanca-Riba. Unitary genuine principal series of the metaplectic group. *Representation Theory of the American Mathematical Society*, 14(5):201–248, 2010.

[21] F. Peter and H. Weyl. Die vollständigkeit der primitiven darstellungen einer geschlossenen kontinuierlichen gruppe. *Mathematische Annalen*, 97(1):737–755, Dec 1927.

[22] D. Vogan. *Linear and projective representations of the symmetric group*. Birkhuser Basel, 2015.

[23] H. Wenzl. On the structure of Brauer’s centralizer algebras. *Annals of Mathematics*, 128(1):173–193, 1988.