A classification of injective FI^m-modules

Duo Zeng

LCSM (Ministry of Education), School of Mathematics and Statistics, Hunan Normal University, Changsha, Hunan, China

ABSTRACT
In this paper we generalize a shift theorem, which plays a key role in studying representations of FI^m, the product category of the category of finite sets and injections, and classify finitely generated injective FI^m-modules over a field of characteristic 0.

KEYWORDS
FI^m-modules; injective modules; shift theorem

2020 MATHEMATICS SUBJECT CLASSIFICATION
18G05; 16D50

1. Introduction

1.1. Motivation

The representation theory of infinite combinatorial categories has attracted much attention. It is mainly concerned with how an infinite category acts on a category of modules as they have close relations to (co)homological groups of topological spaces, geometric groups, and algebraic varieties. Among quite a few frequently concerned examples, there is the infinite combinatorial category FI of finite sets and injections whose representation theoretic and homological properties are extensively studied; see [2, 4].

Due to the importance of the category FI, the structure of finitely generated injective FI-modules is of interest to many mathematicians. In [11], Sam and Snowden firstly classified all injective FI-modules over a field of characteristic 0, and proved that every finitely generated FI-module has finite injective dimension. In [6], Gan and Li give another proof of this fact by introducing the coinduction functor for FI-modules. These results give a deep homological explanation for the following crucial result established by Church, Ellenberg and Farb in [3]: a sequence of representations of symmetric groups over a field of characteristic 0 encoded by an FI-module is representation stable if and only if it is a finitely generated FI-module.

One natural generalization of the category FI is the product category FI^m whose representation theory has also been studied; see for instance [5, 8, 9]. However, the classification of the injective FI^m-modules is not covered in [9] and remains as an open problem at that time. In a recent work [13], by extending the method used in [6], the author showed the locally self-injective property of FI^m over fields of characteristic 0 and further found the external product of finitely generated injective FI-modules being necessarily injective as FI^m-module. In this paper, by generalizing certain concepts in [9] and utilizing an inductive method, the author successfully classifies all finitely generated injective FI^m-modules. Surprisingly, it turns out that the finitely generated indecomposable injective FI^m-modules are already found by the previous work [13], i.e. they are exactly the external tensor product of m many indecomposable injective FI-modules.
1.2. Main results

Before describing the main results of this paper, let us introduce a few notations. Throughout this paper let \(m \) be a positive integer and denote by \([m]\) the set \(\{1, \ldots, m\} \). Let \(\text{FI} \) be the category of finite sets and injections. For brevity, we denote by \(\mathcal{F} \) the full subcategory of \(\text{FI} \) consisting of objects \([n]\), \(n \in \mathbb{N} \) and by \(\mathcal{F}^m \) the product category of \(m \) copies of \(\mathcal{F} \). For any subset \(S \) of \([m]\), we may form a product category \(\mathcal{F}^S \) of \(\mathcal{F} \) indexed by \(S \).

Let \(k \) be a field of characteristic zero. For a locally small category \(C \), a representation of \(C \) or a \(C \)-module over \(k \) is a covariant functor from \(C \) to \(k \)-Mod, the category of vector spaces over \(k \). We denote by \(C \)-Mod the category of all representations of \(C \) over \(k \) and by \(C \)-mod the category of finitely generated representations, which are quotients of direct sums of finitely many representable functors.

Let \(C \) and \(D \) be two locally small categories. There is a way to construct a \(C \times D \)-module from a pair of \(C \)-modules and \(D \)-module. Explicitly, given a \(C \)-module \(V_1 \) and a \(D \)-module \(V_2 \), we define their external tensor product to be the \(C \times D \)-module, denoted by \(V_1 \boxtimes V_2 \), such that
\[(V_1 \boxtimes V_2)(c \times d) = V_1(c) \otimes_k V_2(d)\]
where \(c \in \text{Obj}(C) \) and \(d \in \text{Obj}(D) \). For more details, see [5, Definition 6.4]

Now we are ready to describe the main results of this paper. In [10], Nagpal firstly proved this theorem of \(\text{FI} \)-modules. In this paper, we generalize the shift theorem [9, Proposition 4.10] by taking \(S = [m] \), where \(\Sigma_i \) is the \(i \)-th shift functor. For more details, see Section 2.

Theorem 1.1. Let \(V \) be a finitely generated \(\mathcal{F}^m \)-module. Then there exists some positive integer \(N \) such that \((\prod_{i \in S} \Sigma_i)^N V \) is \(S \)-semi-induced for \(n \geq N \).

The classification of finitely generated injective \(\mathcal{F} \)-module was first accomplished by Sam and Snowden in [11]. Later, Gan and Li gave a new and independent proof for this result in [6], utilizing properties of the coinduction functor which is right adjoint to the shift functor. Extending Gan and Li’s method, we showed in [13] that finitely generated injective \(\mathcal{F}^m \)-module is injective, and furthermore, external tensor products of finitely generated injective \(\mathcal{F} \)-modules are injective \(\mathcal{F}^m \)-modules. The second main theorem strengthens this result.

Theorem 1.2. Any finitely generated indecomposable injective \(\mathcal{F}^m \)-module is isomorphic to \(I_1 \boxtimes \cdots \boxtimes I_m \) where each \(I_i \) is a finitely generated indecomposable injective \(\mathcal{F} \)-module for \(i = 1, \ldots, m \).

Since we already know from [11] that an indecomposable injective \(\mathcal{F} \)-module is either an indecomposable \(\mathcal{F} \)-module or a finite dimensional indecomposable injective \(\mathcal{F} \)-module, which can be explicitly constructed, the above theorem actually gives a complete classification of finitely generated injective \(\mathcal{F}^m \)-modules.

2. Preliminaries

In this section we give necessary notations, definitions, and some elementary results used throughout this paper. Since some results are generalizations of corresponded results described in [9] and can be established with the essentially same ideas or arguments, occasionally we omit detailed proofs and suggest the reader to see [9] for details.

2.1. Some notations

Recall that objects in \(\mathcal{F}^m \) are of the form \(n = ([n_1], \ldots, [n_m]) \). We denote by \(n + n' \) the object in \(\mathcal{F}^m \) whose \(i \)-th component is \([n_i + n'_i]\), and by \(1 \), the object whose \(i \)-th component is the singleton set \([1]\) and all other components are empty sets. The degree of an object \(n \), denoted by \(\deg(n) \), is defined to be the integer \(\sum_i n_i \). For a morphism \(\alpha : n \to n' \), we define \(\deg(\alpha) \) to be the integer \(\deg(n') - \deg(n) \).
deg(n). We also mention that there is a partial order \(\leq \) defined on Obj(\(F^m \)) by specifying \(n \preceq n' \) if \(F^m(n, n') \neq \emptyset \).

Let \(V \) be an \(F^m \)-module. We denote the value of \(V \) on an object \(n \) by \(V(n) \). For a morphism \(\alpha : n \to n' \) in \(F^m \) and an element \(v \in V(n) \), we denote by \(\alpha \cdot v \) the element \(V(\alpha)(v) \in V(n') \). Let \(F^m \)-Mod be the category of all \(F^m \)-modules. It is well known that this category is abelian and has enough projective objects. In particular, for an object \(n \) in \(F^m \), the \(k \)-linearization of the representable functor \(F^m(n, -) \) is a projective \(F^m \)-module. We denote it by \(M(n) \), and we say that an \(F^m \)-module is a free module if it is isomorphic to a direct sum of \(k \)-linearizations of representable functors.

A key technical tool for studying representations of \(F \) is an endofunctor on \(F \)-Mod, which is introduced in [3] and called shift functor. For convenience of the readers, we present here its definition and generalization. There is a self-embedding functor \(\iota \) on \(F \) such that \(\iota([n]) = [n + 1] \), and for a morphism \(f : [n] \to [t] \) in \(F \), \(\iota(f) \) is a morphism from \([n + 1]\) to \([t + 1]\) with

\[
\iota(f)(x) = \begin{cases} 1, & x = 1 \\ f(x - 1) + 1, & x \neq 1 \end{cases}
\]

for element \(x \in [n + 1] \). The shift functor \(\Sigma \) is defined to be the endofunctor on \(F \)-Mod sending an \(F \)-module \(V \) to the \(F \)-module \(V \circ \iota \). Furthermore, there is a natural transformation between the identity functor and the shift functor, so we get a natural homomorphism \(V \to \Sigma V \), and hence obtain the kernel functor \(K \) and the cokernel functor \(D \), which is called the derivative functor in [3].

The self-embedding functor and associated shift functor on \(F \)-modules induce \(m \) distinct self-embedding functors and shift functors on \(F^m \)-modules. Explicitly, for \(i \in [m] \), the product category \(F^m \) can be viewed as product \(\mathcal{F}^m \times F \). The \(i \)-th self-embedding functor is defined to be the endofunctor \(\iota_i := \text{Id} \times \iota \) on \(F^m \) where \(\text{Id} \) is the identity functor on the category \(\mathcal{F}^m \). The \(i \)-th shift functor \(\Sigma_i \) is defined to be the endofunctor on \(F^m \)-Mod sending an \(F^m \)-module \(V \) to the \(F^m \)-module \(V \circ \iota_i \). There are also the \(i \)-th kernel functor \(K_i \) and the \(i \)-th derivative functor \(D_i \) defined on the category \(F^m \)-Mod; for their definitions and elementary properties, see [9, Section 2.2]. Remark that the kernel functor commutes with the shift functor, i.e. \(K_i \Sigma_j \cong \Sigma_j K_i \) for all \(i, j \in [m] \).

A main goal of this paper is to extend quite a few results in [9] from the full set \([m]\) to an arbitrary nonempty subset \(S \) of \([m]\), and denote \(-S \) the complement subset \([m] \setminus S \). Then \(F^m \) is the product category of \(F^S \) and \(F^{-S} \). Accordingly, an object \(n = ([n_1], \ldots, [n_m]) \in \text{Obj}(F^m) \) can be written as a product \(s \times t \) for some object \(s \in \text{Obj}(F^S) \) and object \(t \in \text{Obj}(F^{-S}) \). We define the \(S \)-degree of \(n \) to be the degree of \(s \) in the category \(F^S \) and denote it by \(\text{deg}_S(n) \), i.e. \(\text{deg}_S(n) = \sum_{i \in S} n_i \). For a morphism \(\alpha : n \to n' \) in \(F^m \), we define the \(S \)-degree of \(\alpha \), denoted by \(\text{deg}_S(\alpha) \), to be the integer \(\text{deg}_S(n') - \text{deg}_S(n) \). For brevity, we write \(\text{deg}_i \) for \(\text{deg}_{[i]} \) where \(i \in [m] \). We denote by \(\Sigma_S \) the endofunctor on \(F^m \)-Mod which is the direct sum of \(\Sigma_i \) for all \(i \in S \), i.e. \(\Sigma_S = \bigoplus_{i \in S} \Sigma_i \). The endofunctors \(K_S \) and \(D_S \) on the category \(F^m \)-Mod are defined similarly.

In the proofs of main results, we have to deal with the following categories which are generalizations of \(F^m \). Let \(G \) be a finite group, and view it as a category with a single object. We define \(F^m_G \) to be the category as follows: objects of \(F^m_G \) coincide with objects of \(F^m \), and morphisms of \(F^m_G \) are ordered pairs \((\alpha, g) \) where \(\alpha \in \text{Mor}(F^m) \) and \(g \in G \). Clearly, it is isomorphic to the product category of \(F^m \) and \(G \). The \(S \)-degree of morphism \((\alpha, g) \) is defined to be the integer \(\text{deg}_S(\alpha) \). Clearly, when \(G \) is the trivial group, then \(F^m_G \) is precisely \(F^m \). Furthermore, we remark that many results from [9] are still valid for \(F^m_G \), so we will restate some of them in this paper without providing detailed proofs. In particular, functors \(\Sigma_i, K_i, \) and \(D_i \) can be extended to the category \(F^m_G \)-Mod in a natural way and we keep the same notations. It is worthy to remark that the category \(F^m_G \) is also locally Noetherian over \(k \); that is, submodules of finitely generated \(F^m_G \)-modules are still finitely generated; see Lemma 4.4.
2.2. S-Torsion theory

In this subsection we introduce a torsion theory with respect to the nonempty subset \(S \subseteq [m] \), and give a few elementary results.

Definition 2.1. Let \(V \) be an \(\mathcal{F}_G^m \)-module and \(n \) an object in \(\mathcal{F}_G^m \). An element \(v \in V_n \) is called \(S \)-torsion if there exists a morphism \(\alpha : n \to V_n \) such that \(\deg_S(\alpha) > 0 \), \(\deg_{-S}(\alpha) = 0 \), and \(\alpha \cdot v = 0 \).

Suppose that \(\alpha : n \to n' \) is a morphism in the above definition. Then \(\deg_S(\alpha) > 0 \) means that there exists a certain \(i \in S \) such that \(n'_i > n_i \), and \(\deg_{-S}(\alpha) = 0 \) means that \(n'_i = n_j \) for all \(j \in -S \). Loosely speaking, this means that \(\alpha \) is a morphism along the \(-S \)-direction.

Let \(V \) be a non-zero \(\mathcal{F}_G^m \)-module. It is clear that all \(S \)-torsion elements in \(V \) form a submodule which is called the \(S \)-torsion part of \(V \) and denoted by \(V^S_T \). The \(S \)-torsion free part of \(V \) is defined to be the quotient module \(V/\mathcal{V}^S_T \) and denoted by \(V^S_F \). Then we have a short exact sequence \(0 \to V^S_T \to V \to V^S_F \to 0 \). We say that an \(\mathcal{F}_G^m \)-module is \(S \)-torsion (resp., \(S \)-torsion free) if and only if its torsion free part (resp., torsion part) is zero. We remark that when taking \(S = [m] \), these definitions coincide with the ones introduced in the paper [9].

There is another type of torsion submodule which is, in some sense, “stronger” than the above one. Let \(S \) be a subset of \([m]\), we denote by \(V^S_{Tor} \) the submodule

\[
V^S_{Tor} := \bigcap_{i \in S} V^{[i]}_T
\]

of \(V \). More transparently, one has

\[
V^S_{Tor} = \bigoplus_{n \in \text{Obj}(\mathcal{F}_G^m)} \{ v \in V(n) \mid \forall i \in S, \exists \alpha_i \in \text{Mor}(\mathcal{F}_G^m), \ deg_i(\alpha_i) > 0, \ deg_{-[m] \setminus [i]}(\alpha_i) = 0, \text{ and } \alpha_i \cdot v = 0 \}.
\]

Remark 2.2. Let \(v \) be an element in \(V(n) \) for a certain object \(n \) in \(\mathcal{F}_G^m \). Then \(v \) is contained in \(V^S_T \) if it eventually vanishes along the \(-i \)-direction for a certain \(i \in S \), and \(v \) is contained in \(V^S_{Tor} \) if it eventually vanishes along the \(i \)-th direction for all \(i \in S \). Keeping in mind this intuition, it is easy to see that the quotient module \(V^{[i-1]}_{Tor}/V^{[i]}_{Tor} \) is \([i] \)-torsion free. Furthermore, if \(V \) is finitely generated, then the submodule \(V^S_{Tor} \) is finite dimensional, a consequence of the locally Noetherian property of \(\mathcal{F}_G^m \) over \(k \).

In the rest of this subsection we state a few elementary results on \(S \)-torsion theory, which have been established in [9] for the special case that \(S = [m] \).

Lemma 2.3. Let \(V \) be an \(\mathcal{F}_G^m \)-module. Then:

1. \(V \) is \(S \)-torsion free if and only if \(K_S V = 0 \), or equivalently, \(K_i V = 0 \) for all \(i \in S \).

2. If \(V \) is \(S \)-torsion free, then so is \(\Sigma_i V \) for all \(i \in S \).

3. In a short exact sequence \(0 \to U \to V \to W \to 0 \), if both \(U \) and \(W \) are \(S \)-torsion free, so is \(V \).

4. In a short exact sequence \(0 \to U \to V \to W \to 0 \), if \(W \) is \(S \)-torsion free, then the sequence \(0 \to D_S U \to D_S V \to D_S W \to 0 \) is exact as well. In particular, \(0 \to D_i U \to D_i V \to D_i W \to 0 \) is exact for all \(i \in S \).

Proof. (1): If \(K_S V \neq 0 \), then there exists a certain \(i \in S \) such that \(K_i V \neq 0 \). By the definition of \(K_i \) and Definition 2.1, the \(\mathcal{F}_G^m \)-module \(V \) contains nonzero \(S \)-torsion elements, and hence is not \(S \)-torsion free. Conversely, if \(V \) is not \(S \)-torsion free, we can find a morphism \(f \in \mathcal{F}_G^m(n, t) \) satisfying the condition in Definition 2.1, and a nonzero element \(v \in V(n) \) such that \(f \cdot v = 0 \). By a simple induction on the degree
of morphisms one can assume that \(\text{deg}_S(f) = 1 \); that is, there is a certain \(i \in S \) such that \(\text{deg}_i(f) = 1 \). Clearly, \(v \in K_i V \), so \(K_S V \neq 0 \).

(2) Assume that \(\Sigma_i V \) is not \(S \)-torsion free; that is, there is some nonzero \(v \in \Sigma_i V(n) = V(n + 1_i) \) for a certain object \(n \) such that \(v \) is sent to 0 by some morphism \(\alpha \) satisfying the condition in Definition 2.1. By the definition of the \(i \)-th shift functor \(\Sigma_i \), \(v \) is sent to 0 by the morphism \(i_i(\alpha) \), which also satisfies the condition specified in Definition 2.1. Thus \(V \) is not \(S \)-torsion free, which is a contradiction.

(3): Applying the exact functor \(\Sigma_S \) one gets a commutative diagram where all vertical rows represent natural maps:

\[
\begin{array}{cccccc}
0 & \to & U & \to & V & \to & W & \to & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
0 & \to & \Sigma_S U & \to & \Sigma_S V & \to & \Sigma_S W & \to & 0.
\end{array}
\]

According to statement (1), the maps \(U \to \Sigma_S U \) and \(W \to \Sigma_S W \) are injective, so is the map \(V \to \Sigma_S V \) by the snake Lemma. Therefore, by the first statement, \(V \) is \(S \)-torsion free as well.

(4): Follows from the above commutative diagram and the snake Lemma.

We present some useful properties of the functors \(\Sigma_i \) and \(D_i \).

Lemma 2.4. [9, Lemma 2.3] For \(i, j \in [m] \), one has:

1. \(\Sigma_i M(n) \cong M(n) \oplus M(n - 1_i)^{\oplus n_i} \).
2. \(D_i M(n) \cong M(n - 1_i)^{\oplus n_i} \).
3. \(\Sigma_i \circ \Sigma_j = \Sigma_j \circ \Sigma_i \).
4. \(\Sigma_i \circ D_j = D_j \circ \Sigma_i \).

In the situation that \(V \) is finitely generated, one can apply the shift functors to eliminate its torsion part.

Lemma 2.5. [9, Lemma 4.8] Let \(V \) be a finitely generated \(\mathcal{T}_G^m \)-module over a field of characteristic 0 and \(i \in [m] \). Then \(K_i \Sigma_i^n V = 0 \) for \(n \) sufficiently large.

2.3. Slices and \(S \)-homology groups

In this subsection we introduce \(S \)-homology groups and \(S \)-homological degrees. As before, let \(S \) be a nonempty subset of \([m]\). The category \(\mathcal{T}_G^m \) is a product of the category \(\mathcal{T}_G^S \) and the category \(\mathcal{T}_G^{-S} \). We will see later that the study about the injectivity of any finitely generated \(\mathcal{T}_G^m \)-module can be reduced to that of modules over the subcategory \(\mathcal{R}_s = \text{Aut}(s) \times \mathcal{T}_G^{-S} \) of \(\mathcal{T}_G^m \) for certain object \(s \in \text{Obj}(\mathcal{T}_S) \). In view of this observation, it is necessary to introduce the functor \(\overline{M}(s) \otimes \mathcal{R}_s \) — that produces an \(\mathcal{T}_G^m \)-module from an \(\mathcal{R}_s \)-module.

Definition 2.6. For object \(s \in \text{Obj}(\mathcal{T}_S) \), let \(\mathcal{R}_s := \text{Aut}(s) \times \mathcal{T}_G^{-S} \) be the subcategory of \(\mathcal{T}_G^m \). There is a functor

\[
\overline{M}(s) \otimes \mathcal{R}_s : \mathcal{R}_s \cdot \text{Mod} \to \mathcal{T}_G^m \cdot \text{Mod}
\]

where \(\overline{M}(s) := M(s) \otimes k \mathcal{T}_G^{-S} \) is a \((\mathcal{T}_G^m, \mathcal{R}_s)\)-bimodule, \(M(s) \) is free as an \(\mathcal{T}_G^S \)-module, and the category algebra \(k \mathcal{T}_G^{-S} \) is a \((\mathcal{T}_G^m, \mathcal{T}_G^{-S})\)-bimodule. We will denote this functor by \(F_s \) throughout this paper.

In the above definition, the right \(\mathcal{R}_s \)-module structure of \(\overline{M}(s) \) follows from the right \(k \text{Aut}(s) \)-module structure of \(M(s) \) together with the right \(\mathcal{T}_G^{-S} \)-module structure of \(k \mathcal{T}_G^{-S} \). One has that \(\overline{M}(s) \) is free as
right \mathcal{R}_s-module since the \mathcal{S}^S-module $M(s)$ is free as right $k \text{Aut}(s)$-module. Therefore the functor F_s is exact and preserves projectives.

Definition 2.7. For an object $s \in \text{Obj}(\mathcal{S}^S)$ and an \mathcal{S}_G^m-module V, we define the slice of V on s to be the \mathcal{S}_G^m-module (which is also an \mathcal{R}_s-module)

$$V[[s]] = \bigoplus_{t \in \text{Obj}(\mathcal{S}^S)} V(s \times t).$$

Explicitly, the k-space $V[[s]](n)$ equals $V(n)$ if $n = s \times t$ for certain $t \in \text{Obj}(\mathcal{S}^S)$ and otherwise equals zero; the homomorphism $V[[s]](f)$ equals $V(f)$ if the domain and codomain of f are both of the form $s \times t$, and otherwise is zero homomorphism.

We present here an observation. For a finitely generated \mathcal{S}_G^m-module V, the slice $V[[s]]$ may not be a submodule of V. However, for the homology module $H_0^S(V)$ that is defined in the next paragraph, the slice $H_0^S(V)[[s]]$ is a direct summand of it and it is a direct sum of finitely many such summands. Also, for $i \in s$, the \mathcal{S}_G^m-module $K_i V$ is a direct sum of its slices on objects in the category \mathcal{S}^i.

Now we are ready to define S-homology groups for \mathcal{S}_G^m-modules. Let \mathcal{I}_S be the free k-module spanned by all morphisms α with $\deg_S(\alpha) > 0$. It is easy to see that \mathcal{I}_S is a two-sided ideal of the category algebra $k\mathcal{S}_G^m$. For $V \in \mathcal{S}_G^m$-Mod, define

$$H_0^S(V) = k\mathcal{S}_G^m/\mathcal{I}_S \otimes_{k\mathcal{S}_G^m} V.$$

Note that the module $H_0^S(V)$ is isomorphic to the quotient $V/\mathcal{I}_S V$. Further, for $i > 0$, we define the i-th S-homology functor to be the i-th left derived functor of H_0^S and denote it by H_i^S. The \mathcal{S}_G^m-module $H_i^S(V)$ is called the i-th S-homology group of V.

For $i \geq 0$, we define the i-th S-homological degree to be the integer

$$t_i^S(V) = \sup \{\deg(s) \mid H_i^S(V)[[s]] \neq 0, \ s \in \text{Obj}(\mathcal{S}^S)\}.$$

If the set on the right hand side is empty, we set $t_i^S(V) = -1$.

We collect some elementary results about S-homology groups in the following lemmas.

Lemma 2.8. For a short exact sequence of \mathcal{S}_G^m-module

$$0 \to V' \to V \to V'' \to 0,$$

we have

(1) $t_{i+1}^S(V'') \leq \max\{t_{i+1}^S(V'), t_i^S(V')\}$

(2) $t_i^S(V) \leq \max\{t_i^S(V'), t_i^S(V'')\}$

(3) $t_i^S(V') \leq \max\{t_i^S(V), t_{i+1}^S(V'')\}$

for $i \geq 0$.

Proof. The conclusion follows from the long exact sequence

$$\cdots \to H_i^S(V') \to H_i^S(V) \to H_i^S(V'') \to H_{i-1}^S(V') \to \cdots \to H_0^S(V') \to H_0^S(V) \to H_0^S(V'') \to 0.$$

□

Lemma 2.9. If $V \in \mathcal{S}_G^m$-Mod is nonzero, then $t_0^S(D_S V) = t_0^S(V) - 1$.

Proof. As explained in [7, Lemma 1.5], we only need to deal with the case that \(t_0^S(V) \) is finite. If \(t_0^S(V) = 0 \), then an argument similar to the following one will yield \(D_5P = 0 \) hence \(D_5V = 0 \), as required. Now we assume that \(t_0^S(V) > 0 \). Since \(V \) is finitely generated, we may find a surjection \(P \to V \) where \(P \) is a finitely generated projective \(\mathcal{F}_G^m \)-modules with \(t_0^S(P) = t_0^S(V) \). Since the functor \(D_5 \) is right exact, the map \(D_5P \to D_5V \) is surjective. By Lemma 2.4, we have that \(t_0^S(D_5P) = t_0^S(P) - 1 \). Then one can deduce that \(t_0^S(D_5V) \leq t_0^S(D_5P) = t_0^S(P) - 1 = t_0^S(V) - 1 \).

On the other hand, there is an object \(s \in \text{Obj}(\mathcal{F}_G) \) such that \(\deg(s) = t_0^S(V) \geq 1 \) and \(H_0^S(V)([s]) \neq 0 \). Now let \(V' \) be the submodule of \(V \) generated by \(V[[t]] \) such that \(s \nleq t \) and \(t \in \text{Obj}(\mathcal{F}_G) \). Then \(V([s]) \nsubseteq V' \) since otherwise one should have \(H_0^S(V)([s]) = 0 \). The surjection \(V \to V/V' \to 0 \) induces a surjection \(D_5V \to D_5V/V' \to 0 \), and hence \(t_0^S(D_5V) = t_0^S(D_5(V/V')) \). Note that \((V/V')[[t]] \neq 0 \) implies \(s \nleq t \) for \(t \in \text{Obj}(\mathcal{F}_G) \). Thus, for \(i \in S \), we have that \(\Sigma^i(V/V')[[t]] \neq 0 \) implies \(t \nleq s - 1 \) and that \(D_i(V/V')[[t]] \neq 0 \) implies \(t \nleq s - 1 \). As a result, we have \(t_0^S(D_i(V/V')) \geq \deg(s) - 1 = t_0^S(V) - 1 \) and so is \(t_0^S(D_5(V/V')) \). Combining the two inequalities, one obtains that \(t_0^S(D_5(V)) \geq t_0^S(D_5(V/V')) \geq t_0^S(V) - 1 \), as required. \(\square \)

3. S-induced modules and S-semi-induced modules

In this section we consider \(S \)-induced modules and \(S \)-semi-induced modules, which are generalizations of induced modules and semi-induced modules considered in [9]. All modules considered in the rest of this paper are finitely generated unless otherwise specified.

Definition 3.1. A finitely generated \(\mathcal{F}_G^m \)-module \(V \) is said to be \(S \)-induced if \(V \cong F_s(W) \) for certain object \(s \) in \(\mathcal{F}_G \) and some \(R_k \)-module \(W \).

The \(S \)-induced module \(V \) has the following universal property. Let \(W \) be an \(R_k \)-module (also viewed as an \(\mathcal{F}_G^m \)-module) and \(N \) an \(\mathcal{F}_G^m \)-module. Then a homomorphism \(W \to N \) as \(\mathcal{F}_G^m \)-module uniquely extends to a homomorphism \(F_s(W) \to N \) as \(\mathcal{F}_G^m \)-module.

Definition 3.2. An \(\mathcal{F}_G^m \)-module \(V \) is said to be \(S \)-semi-induced if it has a finite filtration

\[
0 = V^0 \subseteq V^1 \subseteq \cdots \subseteq V^n = V
\]

such that for each \(i \), the quotient module \(V^{i+1}/V^i \) is \(S \)-induced.

We remark that when \(S = \{m\} \), \(S \)-semi-induced modules coincide with relative projective modules defined in [9]. Further, over a field of characteristic zero, relative projective modules coincide with projective modules.

Lemma 3.3. Let \(V \) be an \(\mathcal{F}_G^m \)-module generated by its slice \(V[[s]] \) for a certain object \(s \in \text{Obj}(\mathcal{F}_G) \). One has:

(1) The following are equivalent:

- \(V \) is an \(S \)-induced module;
- \(H_i^S(V) = 0 \) for all \(i \geq 1 \);
- \(H_1^S(V) = 0 \).

(2) If \(V \) is \(S \)-induced, then it is \(S \)-torsion free.

(3) If \(t_0^S(V) \leq t_0^S(P) \), then \(V \) is \(S \)-induced.

(4) If \(V \) is \(S \)-induced, then \(\Sigma_i V \) is \(S \)-semi-induced and \(D_i V \) is \(S \)-induced for all \(i \in S \).
Proof. (1): Suppose that \(V \) is an \(S \)-induced module. Then one has \(V \cong M(s) \otimes_{R_s} V[[s]] \) where \(R_s \) is defined as in Definition 2.6. Take a projective presentation \(0 \to W \to P \to V[[s]] \to 0 \) of the \(R_s \)-module \(V[[s]] \). Applying the functor \(M(s) \otimes_{R_s} - \), we get a projective presentation of the \(\mathcal{F}^m_G \)-module \(V \) as follows

\[
0 \to M(s) \otimes_{R_s} W \to M(s) \otimes_{R_s} P \to (M(s) \otimes_{R_s} V[[s]]) \cong V \to 0.
\]

Applying the functor \(k^{\mathcal{F}^m/m} / S \otimes k^{\mathcal{F}^m/m} \) we recover the original short exact sequence. That is, \(H_S^0(V) = 0 \). Replacing \(V \) by \(V' = M(s) \otimes_{R_s} W \) we deduce that \(H_S^0(V) = 0 \). Recursively, for every \(i \geq 1 \), one gets \(H_S^i(V) = 0 \).

Conversely, suppose that \(H_S^0(V) = 0 \). Since \(V \) is generated by \(V[[s]] \), there is a short exact sequence of \(\mathcal{F}^m_G \)-module

\[
0 \to K \to N \to V \to 0.
\]

where \(N = M(s) \otimes_{R_s} V[[s]] \). The long exact sequence of \(\mathcal{F}^m \)-modules

\[
\cdots \to H_S^0(V) \to H_S^0(K) \to H_S^0(N) = V[[s]] \to H_S^0(V) = V[[s]] \to 0
\]

implies that \(H_S^0(K) = 0 \). That is, \(K = 0 \), and hence \(V \cong N \) is \(S \)-induced.

(2): By definition, we have that \(V \cong M(s) \otimes_{R_s} V[[s]] \). Let \(s' \) and \(s'' \) be objects in \(\mathcal{F}^S \) with \(s < s' \leq s'' \), \(t \) an object in \(\mathcal{F}^{S'}_G \), and \(f : s' \times t \to s'' \times t \) a morphism in \(\mathcal{F}^m_G \). By an argument similar to the proof of [9, Lemma 4.2(2)], we have that \(f \cdot v \neq 0 \) for non-zero element \(v \in V(s' \times t) \). Therefore, \(V \) is \(S \)-torsion free.

(3): Again, consider exact sequences (3.1) and (3.2). Since \(t_{S}^0(V) \leq t_{S}^0(V) \), by Lemma 2.8 we know that \(t_{S}^0(K) \leq \max\{t_{S}^0(V), t_{S}^0(N) = t_{S}^0(V)\} = t_{S}^0(V) = \deg(s) \), which means that \(H_{S}^0(K)[[t]] \neq 0 \) only if \(\deg(t) \leq \deg(s) \) for \(t \in \text{Obj}(\mathcal{F}^S) \). The sequence (3.1) yields a short exact sequence of \(R_s \)-modules

\[
0 \to K[[s]] \to N[[s]] \to V[[s]] \to 0.
\]

So \(K[[s]] = 0 \) since \(N[[s]] = V[[s]] \). We have that \(N[[s']] \neq 0 \) only if \(s' \succ s \) by our construction of \(N \), so \(N \) is the submodule \(K \) of \(N \). Putting the established results together we obtain that \(H_{S}^0(K) = 0 \), so \(K = 0 \). Therefore, \(V \cong N \) is \(S \)-induced.

(4): As shown in the proof of statement (1), there is a short exact sequence \(0 \to K \to P \to V \to 0 \) such that \(P \) is a projective \(\mathcal{F}^m_G \)-module generated by \(P[[s]] \). By the previous arguments we know that all terms in this sequence are \(S \)-induced modules generated by their slice on the object \(s \), and hence are \(S \)-torsion free. By Statement (4) of Lemma 2.3, for each \(i \in S \), we get a short exact sequence \(0 \to D_iK \to D_iP \to D_iV \to 0 \). Since \(D_iV = 0 \) whenever \(s_i \), the \(i \)-th component of \(s \), is zero, without loss of generality we assume that \(s_i > 0 \). Then \(D_iV \) is generated by its slice on the object \(s - 1_i \) since so is \(D_iP \). Replacing \(V \) by \(K \) one knows that \(D_iK \) is also generated by its slice on \(s - 1_i \). The module \(D_iP \) being projective implies that \(H_{S}^0(D_iP) = 0 \), the long exact sequence of homology groups induced by \(0 \to D_iK \to D_iP \to D_iV \to 0 \) tells us that \(t_{S}^0(D_iV) = t_{S}^0(D_iP) \geq t_{S}^0(D_iK) \geq t_{S}^0(D_iV) \). By statement (3), \(D_iV \) is \(S \)-induced. But \(D_iV \cong \Sigma_i V / V \), so \(\Sigma_i V \) is \(S \)-semi-induced since \(V \) is \(S \)-induced.

In the following proposition we describe two homological characterizations of \(S \)-semi-induced modules.

Proposition 3.4. For \(V \in \mathcal{F}^m_G \)-mod, the following are equivalent:

1. \(V \) is an \(S \)-semi-induced module;
2. \(H_S^i(V) = 0 \) for all \(i \geq 1 \);
3. \(H_S^1(V) = 0 \).

Proof. (1) \(\Rightarrow \) (2): Let

\[
0 = V^0 \subseteq V^1 \subseteq \cdots \subseteq V^m = V
\]
be the filtration described in Definition 3.2. We prove by making induction on the superscripts of modules in this filtration. By statement (1) of Lemma 3.3 we have that \(H_i^S(V^k) = 0 \). Assume that \(H_i^S(V^k) = 0 \). We have a short exact sequence

\[
0 \to V^k \to V^{k+1} \to V^{k+1}/V^k \to 0
\]

where \(V^{k+1}/V^k \) is S-induced. Again, by statement (1) of Lemma 3.3, we have that \(H_i^S(V^{k+1}/V^k) = 0 \) for \(i \geq 1 \). The long exact sequence

\[
\cdots \to H^S_i(V^k) = 0 \to H^S_i(V^{k+1}) \to H^S_i(V^{k+1}/V^k) = 0 \to \cdots
\]

tells us that \(H^S_i(V^{k+1}) = 0 \). The conclusion then follows by induction.

(2) \(\Rightarrow \) (3): trivial.

(3) \(\Rightarrow \) (1): On the one hand, the comment following Definition 2.7 says that the \(F^m_G \)-module \(H_0^S(V) \) is a direct sum of \(F^m_G \)-modules \(W_j \), where \(W_j = H_0^S(V)[[s_j]] \) is an \(R_s \)-module (also an \(F^m_G \)-module) for a set of objects \(s_j \) in \(F^S \) and \(1 \leq j \leq l \) for some positive integer \(l \). In other words, \(H_0^S(V) \cong \bigoplus_{j=1}^l W_j \).

On the other hand, we obtain a short exact sequence of \(F^m_G \)-modules

\[
0 \to K \to N \to V \to 0.
\]

where \(N := \bigoplus_{j=1}^l F_s(W_j) \) and \(K \) is the kernel of the natural surjection \(N \to V \). Since \(H_0^S(V) = 0 \) and \(H_0^S(N) = \bigoplus_{j=1}^l W_j \), we have the long exact sequence

\[
\cdots \to H^S_0(V) = 0 \to H^S_0(K) \to \bigoplus_{j=1}^l W_j \to H^S_0(V) \to 0.
\]

Since \(H^S_0(V) \cong \bigoplus_{j=1}^l W_j \), the kernel \(H^S_0(K) \) is zero hence \(K = 0 \). Therefore \(V \cong N \) is S-semi-induced.

\[\square\]

Corollary 3.5. If \(V \) is S-semi-induced, then it is S-torsion free, and \(\Sigma_i V \) and \(D_i V \) are S-semi-induced as well for all \(i \in S \).

Proof. Suppose that \(V \) admits a filtration

\[
0 = V^0 \subseteq V^1 \subseteq \cdots \subseteq V^m = V
\]

with each factor S-induced. The first part of the statement follows from statement (2) of Lemma 3.3 and the fact that S-torsion free modules are closed under extension. Now we prove the second part of the statement. For \(i \in S \), applying the exact functor \(\Sigma_i \) to this filtration we get a filtration of \(\Sigma_i V \) with factor

\[
\Sigma_i V^k / \Sigma_i V^{k-1} \cong \Sigma_i (V^k / V^{k-1})
\]

which is S-semi-induced by statement (4) of Lemma 3.3. Therefore, \(\Sigma_i V \) is S-semi-induced. A similar argument together with statement (4) of Lemma 2.3 shows that \(D_i V \) is S-semi-induced.

\[\square\]

The following lemma is crucial for us to prove the first main result of this paper.

Lemma 3.6. Let \(V \) be an S-torsion free \(F^m_G \)-module. If \(D_S V \) is S-semi-induced, so is \(V \).

Proof. The conclusion holds for \(V = 0 \) trivially, so we may assume that \(V \neq 0 \). Since \(V \) is finitely generated, the set

\[
O = \{ s \in \text{Obj}(F^S) \mid H_0^S(V)[[s]] \neq 0 \}
\]

is finite. We prove by an induction on the cardinality of \(O \). The conclusion holds clearly if \(|O| = 0 \). For \(|O| \geq 1 \), we choose an object \(s \in O \) such that \(\deg(s) \) is maximal; that is, \(\deg(s) = t_0^S(V) \) (of course, this
Let V be a finitely generated module. Consider the short exact sequence $0 \rightarrow V' \rightarrow V \rightarrow V'' \rightarrow 0$. We claim that V'' is an S-induced \mathcal{F}_G^m-module. To see this, from the long exact sequence of homology groups one has

$$t_0^S(V') \leq \max\{t_0^S(V'), t_0^S(V)\} \leq \max\{t_0^S(V), t_0^S(V')\},$$

where the second inequality follows from $t_0^S(V') \leq t_0^S(V)$ by our construction of V'. Furthermore, let $0 \rightarrow W \rightarrow P \rightarrow V \rightarrow 0$ be a short exact sequence of \mathcal{F}_G^m-modules such that P is a free \mathcal{F}_G^m-module satisfying $t_0^S(V) = t_0^S(P)$. Applying D_S we get another short exact sequence $0 \rightarrow D_SW \rightarrow D_SP \rightarrow D_SV \rightarrow 0$ such that D_SP is also free and satisfies $t_0^S(D_SP) = t_0^S(D_SV)$ by Lemma 2.9. Then one has

$$t_0^S(V) \leq t_0^S(W) = t_0^S(D_SW) + 1 \leq \max\{t_0^S(D_SV), t_0^S(D_SW)\} + 1 = t_0^S(D_SV) + 1 = t_0^S(D_SV),$$

where the third inequality follows from $H^0_1(D_SV) = 0$ by Proposition 3.4. Putting the above two inequalities together we conclude that $t_0^S(V'') \leq t_0^S(V) = t_0^S(V'')$. By statement (3) of Lemma 3.3, V'' is S-induced as claimed.

The conclusion follows after we show that V' is S-semi-induced. By the induction hypothesis, it suffices to show that D_SV' is S-semi-induced. Since V'' is S-induced, so is D_SV'' by statement (4) of Lemma 3.3 and it is S-torsion free by statement (2) of Lemma 3.3. By statement (4) of Lemma 2.3, we get a short exact sequence $0 \rightarrow D_SV' \rightarrow D_SV \rightarrow D_SV'' \rightarrow 0$. The long exact sequence of homology groups tells us that $H^0_1(D_SV') = 0$, so D_SV' is S-semi-induced by Proposition 3.4.

Now we are ready to prove the first theorem in the Introduction of this paper.

A proof of Theorem 1.1. By Lemma 2.5, there exists a positive integer c such that $K_S(\prod_{i \in S} \Sigma_i)^cV = 0$. Therefore $(\prod_{i \in S} \Sigma_i)^cV$ is S-torsion free by statement (1) of Lemma 2.3. Now we make induction on $t_0^S(V)$. Assume that the conclusion holds for any $W \in \mathcal{F}_G^m$-mod with $t_0^S(W) < t_0^S(V)$. By Lemma 2.9, we have that $t_0^S(D_SW) < t_0^S(V)$. By the induction hypothesis, there exists some integer $l > 0$ such that $(\prod_{i \in S} \Sigma_i)^lD_SW$ is S-semi-induced. Set $n := \max\{c, l\}$. By Corollary 3.5 and the statement (4) of Lemma 2.4, we have that

$$D_S\left(\prod_{i \in S} \Sigma_i\right)^nV \cong \left(\prod_{i \in S} \Sigma_i\right)^nD_SV = \left(\prod_{i \in S} \Sigma_i\right)^{n-l}\left(\prod_{i \in S} \Sigma_i\right)^lD_SV,$$

is S-semi-induced. By statement (2) of Lemma 2.3, we have that

$$\left(\prod_{i \in S} \Sigma_i\right)^nV = \left(\prod_{i \in S} \Sigma_i\right)^{n-c}\left(\prod_{i \in S} \Sigma_i\right)^cV$$

is S-torsion free. By Lemma 3.6, we have that $(\prod_{i \in S} \Sigma_i)^nV$ is S-semi-induced.

An immediate corollary is:

Corollary 3.7. Let V be a finitely generated \mathcal{F}_G^m-module. If V is S-torsion free then V can be embedded into some finitely generated S-semi-induced \mathcal{F}_G^m-module.

Proof. This follows from Theorem 1.1, statements (1) and (2) of Lemma 2.3 and the fact that the functor Σ_i preserves finitely generated modules. Explicitly, there is an injective homomorphism $V \rightarrow (\prod_{i \in S} \Sigma_i)^nV$.

4. A classification of indecomposable injective \mathcal{F}_G^m-modules

In this section we classify all indecomposable injective \mathcal{F}_G^m-modules. For this purpose, we firstly construct a class of modules that finitely cogenerates the category \mathcal{F}_G^m-mod and show that they are
injective. Consequently, any finitely generated injective \mathcal{F}_G^m-module is isomorphic to a direct summand of a finite direct sum of modules in this class.

Let us introduce a few necessary notions. Let \mathcal{C} be a small category. We denote by $\mathcal{C} \text{-} \text{inj}$ the category of all finitely generated injective \mathcal{C}-modules. For a \mathcal{C}-module V and a class \mathcal{U} of \mathcal{C}-modules, we say that V is finitely cogenerated by \mathcal{U} if there exists a finite set X and a map $f : X \to \mathcal{U}$ such that the \mathcal{C}-module V can be embedded into the \mathcal{C}-module $\bigoplus_{x \in X} f(x)$.

As before, let S be a nonempty subset of $[m]$. We denote by \mathcal{U}_G^S the class of \mathcal{F}_G^m-modules

\[U_G^S := \{(\bigotimes_{I \in S} I) \otimes kG \mid I \in \mathcal{F}_G^{m}\} \]

We usually omit the subscript G of U_G^S when there is no ambiguity. For brevity, we denote by \mathcal{U}^n the class $\mathcal{U}^{[m]}$ for $1 \leq n \leq m$.

Definition 4.1. Let $j : \mathcal{F}_G^m \rightarrow \mathcal{F}_G^m, \alpha \mapsto (\alpha, 1)$ be the embedding functor where $\alpha \in \text{Mor}(\mathcal{F}_G^m)$. It induces a pair (Ind, Res) of functors

\[
\text{Res} : \mathcal{F}_G^m \text{-Mod} \rightarrow \mathcal{F}_G^m \text{-Mod}; \quad \text{Ind} : \mathcal{F}_G^m \text{-Mod} \rightarrow \mathcal{F}_G^m \text{-Mod}
\]

as follows: The functor Res sends an \mathcal{F}_G^m-module W to the \mathcal{F}_G^m-module $W \circ j$, and the functor Ind sends an \mathcal{F}_G^m-module V to the \mathcal{F}_G^m-module $W \otimes kG = k \mathcal{F}_G^m \otimes_{\mathcal{F}_G^m} V$ and sends an \mathcal{F}_G^m-morphism $\varphi : V \rightarrow V'$ to \mathcal{F}_G^m-morphism $\varphi \otimes \text{Id} : V \otimes kG \rightarrow V' \otimes kG$.

We will show in Lemma 4.2 that (Ind, Res) is an adjoint pair. Moreover, the functors Res and Ind are both exact functors, so Ind preserves projectives and Res preserves injectives.

Lemma 4.2. The functor Res is right adjoint to Ind.

Proof. We prove by constructing the adjunction directly. For an \mathcal{F}_G^m-module V and an \mathcal{F}_G^m-module W, let

\[
\theta_{VW} : \text{Hom}_{\mathcal{F}_G^m}(\text{Ind}(V), W) \rightarrow \text{Hom}_{\mathcal{F}_G^m}(V, \text{Res}(W))
\]

be the map such that for an \mathcal{F}_G^m-module homomorphism $\varphi : V \otimes kG \rightarrow W$ we have that

\[
\theta_{VW}(\varphi)(v) = \varphi(v \otimes 1_G)
\]

for $v \in V$. Conversely, one can define a map

\[
\theta_{VW}^{-1} : \text{Hom}_{\mathcal{F}_G^m}(V, \text{Res}(W)) \rightarrow \text{Hom}_{\mathcal{F}_G^m}(\text{Ind}(V), W)
\]

such that for an \mathcal{F}_G^m-module homomorphism $f : V \rightarrow W$,

\[
\theta_{VW}^{-1}(f)(v \otimes k g) = (e_n, g) \cdot f(v)
\]

for $v \in V(n), g \in G$, and e_n is the identity morphism on the object $n \in \text{Obj}(\mathcal{F}_G^m)$. It is routine to check that the homomorphisms $\theta_{VW}(\varphi)$ and $\theta_{VW}^{-1}(f)$ are well-defined, that the map θ_{VW} is a bijection with inverse θ_{VW}^{-1}, and that $\theta : \text{Hom}_{\mathcal{F}_G^m}(\text{Ind}(-), -) \rightarrow \text{Hom}_{\mathcal{F}_G^m}(-, \text{Res}(-))$ is a natural equivalence. \qed

The following lemma says that the functor Res preserves finitely generated modules.

Lemma 4.3. An \mathcal{F}_G^m-module V is finitely generated if and only if $\text{Res}(V)$ is finitely generated as \mathcal{F}_G^m-module.

Proof. The if part is trivial. For the only if part, suppose that the \mathcal{F}_G^m-module V has a finite set X of generators. Then the set

\[
X' := \{(1, g) \cdot x \mid g \in G, x \in X\}
\]

is a finite set since G is finite. Moreover, X' is a set of generators of the \mathcal{F}_G^m-module $\text{Res}(V)$ since any morphism (α, g) in the category \mathcal{F}_G^m can be decomposed as $(\alpha, 1) \circ (1, g)$. Therefore, the \mathcal{F}_G^m-module $\text{Res}(V)$ is finitely generated. \qed
As we mentioned before, the category \mathcal{F}_G^m is locally Noetherian over k. Here we give a new proof using the functors Ind and Res.

Lemma 4.4. The category \mathcal{F}_G^m is locally Noetherian over a commutative Noetherian ring. That is, any \mathcal{F}_G^m-submodule of finitely generated \mathcal{F}_G^m-module is still finitely generated.

Proof. Suppose that U is an \mathcal{F}_G^m-submodule of some finitely generated \mathcal{F}_G^m-module V. Since the functor Res is exact, $\text{Res}(U)$ is a submodule of $\text{Res}(V)$ as \mathcal{F}_G^m-module. By Lemma 4.3, $\text{Res}(V)$ is finitely generated. By the Noetherian property of \mathcal{F}_G^m, see [9, Theorem 1.1], $\text{Res}(U)$ is finitely generated. Again, by Lemma 4.3, the \mathcal{F}_G^m-module U is finitely generated as desired. □

In classical group representation theory, it is well known that for a finite group inclusion $H \leq G$, any H-projective kG-module V is a direct summand of the kG-module $V \downarrow^G_H \oplus \uparrow^G_H$ where \downarrow^G_H is the restriction functor and \uparrow^G_H is the induction functor; see [12, Proposition 11.3.4]. We have the following similar result.

Lemma 4.5. Let V be an \mathcal{F}_G^m-module. Then V is isomorphic to a direct summand of the \mathcal{F}_G^m-module $W = \text{Ind}(\text{Res}(V))$.

Proof. For brevity, we write $g \cdot v$ for $(id_n, g) \cdot v$ where $n \in \text{Obj}(\mathcal{F}_G^m)$, $v \in V(n)$, and $g \in G$. We prove by constructing a pair of \mathcal{F}_G^m-module homomorphisms $\varphi : V \to W$ and $\epsilon : W \to V$ such that $\epsilon \varphi = \text{Id}_V$. For an object $n \in \text{Obj}(\mathcal{F}_G^m)$, the components of φ and ϵ on n are given by

$$
\varphi_n : V(n) \to \text{Res}(V)(n) \otimes_k kG, \quad v \mapsto \frac{1}{|G|} \sum_{g \in G} g^{-1} \cdot v \otimes_k g
$$

for $v \in V(n)$ and

$$
\epsilon_n : \text{Res}(V)(n) \otimes_k kG \to V(n), \quad u \otimes_k g \mapsto g \cdot u
$$

for $u \in \text{Res}(V)(n)$ and $g \in G$. It remains to check that $\epsilon_n \varphi_n = 1$ and that both φ and ϵ are \mathcal{F}_G^m-module homomorphisms, which are routine. □

The functor Ind preserves injective modules. That is:

Lemma 4.6. Suppose that I is an injective \mathcal{F}_G^m-module. Then $\text{Ind}(I) = I \boxtimes kG$ is an injective \mathcal{F}_G^m-module.

Proof. Let V be any \mathcal{F}_G^m-module. We have that

$$
\text{Ext}_{\mathcal{F}_G^m}(V, \text{Ind}(I)) \subseteq \text{Ext}_{\mathcal{F}_G^m}(\text{Ind} \circ \text{Res}(V), \text{Ind}(I))
$$

$$
= \text{Ext}_{\mathcal{F}_G^m}(\text{Res}(V), \text{Ind}(kG))
$$

$$
\cong \text{Ext}_{\mathcal{F}_G^m}(\text{Res}(V), \bigoplus_{g \in G} I)
$$

$$
\cong \bigoplus_{g \in G} \text{Ext}_{\mathcal{F}_G^m}(\text{Res}(V), I)
$$

$$
= 0.
$$

where the first inclusion follows from Lemma 4.5 together with the fact that the functor Ext is additive and the first identity follows from the Eckmann Shapiro’s Lemma. Therefore, the \mathcal{F}_G^m-module $\text{Ind}(I)$ is injective. □

An immediate corollary is:
Corollary 4.7. Every module in the class \(\mathcal{U}^S \) is a finitely generated injective \(\mathcal{F}_G^S \)-module.

Proof. This follows immediately by Lemma 4.6 and [13, Theorem 1.1].

In the following lemma we prove the main result of this section for the special case that \(m = 1 \).

Lemma 4.8. Every finitely generated \(\mathcal{F}_G \)-module \(V \) is finitely cogenerated by \(\mathcal{U}^1 \).

Proof. There is a short exact sequence

\[
0 \to V_T \to V \to V_F \to 0
\]

where \(V_T \) is the torsion part and \(V_F \) is the torsion free part of \(V \). By Lemma 4.4, the torsion part \(V_T \) is finitely generated, and hence finite dimensional. Therefore \(V_T \) can be embedded into a finite dimensional injective \(\mathcal{F}_G \)-modules which lies in \(\mathcal{U}^1 \). The module \(V_F \) is \([1]\)-torsion free, so by Proposition 3.7 it can be embedded into some finitely generated \([1]\)-semi-induced \(\mathcal{F}_G \)-module which is projective by the comment following Definition 3.2. But any finitely generated projective \(\mathcal{F}_G \)-module is a direct summand of a finite direct sum of \(\mathcal{F}_G \)-modules of the form \(M(n) \otimes kG \) which lies in \(\mathcal{U}^1 \). The conclusion then follows.

Lemma 4.9. Notation as before. Let \(s \) be an object in \(\mathcal{F}^S \) and \(W \) an \(\mathcal{R}_s \)-module. If \(W \cong W' \otimes k \text{Aut}(s) \) for some \(\mathcal{F}_G^S \)-module \(W' \), then \(F_s(W) \cong M(s) \otimes W' \) as \(\mathcal{F}_G^m \)-modules. In other words, there is an isomorphism of \(\mathcal{F}_G^m \)-modules

\[
\theta : \overline{M}(s) \otimes_{k(\mathcal{F}^{-S} \times G \times \text{Aut}(s))} W \cong M(s) \otimes W'
\]

where \(M(s) \) is a free \(\mathcal{F}^S \)-module and \(\overline{M}(s) = k\mathcal{F}^{-S} \otimes kG \otimes M(s) \) is an \((\mathcal{F}_G^m, \mathcal{R}_s)\)-bimodule.

Proof. For an object \(n = n_S \times n_T \in \text{Obj}(\mathcal{F}_G^m) \) where \(n_S \in \text{Obj}(\mathcal{F}^S) \) with \(n_S \simeq s \) and \(n_T \in \text{Obj}(\mathcal{F}^{-S}) \), the map \(\theta_n \), which is the component of \(\theta \) on \(n \), is given by

\[
\theta_n : (\alpha \otimes_k g \otimes_k \beta) \otimes_{k(\mathcal{F}^{-S} \times G \times \text{Aut}(s))} (w' \otimes_k \sigma) \mapsto (\alpha, g) \cdot w' \otimes_k \beta \sigma
\]

where \(\alpha \) is a morphism in \(\mathcal{F}^{-S} \) with codomain \(n_T, g \in G, \beta \in \mathcal{F}^S(s, n_S), w' \in W' \), and \(\sigma \in \text{Aut}(s) \). Since

\[
(\alpha \otimes_k g \otimes_k \beta) \otimes_{k(\mathcal{F}^{-S} \times G \times \text{Aut}(s))} (w' \otimes_k \sigma) = (id_{n_T} \otimes 1_G \otimes_k \beta \sigma) \otimes_{k(\mathcal{F}^{-S} \times G \times \text{Aut}(s))} ((\alpha, g) \cdot w' \otimes_k id_s)
\]

with \(\beta \sigma \in \mathcal{F}^S(s, n_S) \) and \((\alpha, g) \cdot w' \in W'(n_T) \), the map \(\theta_n \) can be simplified as

\[
\theta_n : (id_{n_T} \otimes 1_G \otimes_k \beta) \otimes_{k(\mathcal{F}^{-S} \times G \times \text{Aut}(s))} (w' \otimes_k id_s) \mapsto \beta \otimes_k w'
\]

for \(\beta \in \mathcal{F}^S(s, n_S) \) and \(w' \in W'(n_T) \). The map \(\theta_n \) is easily seen to be bijective. It is routine to check that \(\theta \) is an \(\mathcal{F}_G^m \)-module homomorphism.

The following result shows that the category \(\mathcal{F}_G^m \)-mod has enough injectives, and furthermore gives a classification of finitely generated injective \(\mathcal{F}_G^m \)-modules.

Theorem 4.10. Any finitely generated \(\mathcal{F}_G^m \)-module is finitely cogenerated by \(\mathcal{U}_G^m \).

Proof. We prove by an induction on \(m \). By Lemma 4.8, the conclusion holds for \(m = 1 \). Suppose that the conclusion holds for all \(n \) with \(1 \leq n < m \), and let \(V \) be a finitely generated \(\mathcal{F}_G^m \)-module. Then \(V \) admits a finite filtration

\[
0 \subseteq V_{tor}^m \subseteq \cdots \subseteq V_{tor}^i \subseteq \cdots \subseteq V_{tor}^1 \subseteq V
\]

By Corollary 4.7 and the horseshoe Lemma, it suffices to show the conclusion for each quotient \(V_{tor}^{i+1} / V_{tor}^i \) and \(V_{tor}^m \). But \(V_{tor}^m \) is finite dimensional, so can be embedded into a certain finite dimensional injective module, which lies in \(\mathcal{U}_G^m \). Therefore, we only need to show the conclusion for the
quotient modules $V^{[i-1]}_{tor}/V^{[i]}_{tor}$, which is $[i]$-torsion free. Instead, we prove a stronger result; that is, we prove the conclusion for any nonempty subset S of $[m]$ and any S-torsion free \mathcal{F}^m_G-modules. By Corollary 3.7, S-torsion free modules can be embedded into S-semi-induced modules, so it suffices to show that S-semi-induced modules is finitely cogenerated by U^m_G. By Definition 3.2, it turns out to show the conclusion for S-induced \mathcal{F}^m_G-modules.

Let V be a finitely generated S-induced \mathcal{F}^m_G-module. Then it is isomorphic to $F_s(W)$ for some finitely generated \mathcal{R}_s-module W and $s \in \text{Obj}(\mathcal{F}^S)$. Put $G' = G \times \text{Aut}(s)$. Note that $\mathcal{R}_s = \mathcal{F}^{-S} \times G'$ and $|S| < m$. Then by the induction hypothesis, the module W is finitely cogenerated by U^m_G. Without loss of generality, assume that the \mathcal{R}_s-module W can be embedded as below

$$0 \to W \to E \boxtimes k\text{Aut}(s)$$

where $E \in U^S_G$. By the exactness of F_s, the S-induced module $V \cong F_s(W)$ can be embedded into $F_s(E \boxtimes k\text{Aut}(s))$. By Lemma 4.9, $F_s(E \boxtimes k\text{Aut}(s)) \cong M(s) \boxtimes E$ which lies in U^m_G. This finishes the proof.

From now on we focus on the category \mathcal{F}^m. By the above theorem, the class U^m_1 of injective \mathcal{F}^m-modules finitely cogenerates the category \mathcal{F}^m-mod, where 1 is the trivial group. Consequently, any finitely generated injective \mathcal{F}^m-module is a direct summand of a finite direct sum of modules in U^m_1. In the rest of this paper we give an explicit description of indecomposable injective \mathcal{F}^m-modules. It turns out that they coincide with external tensor products of indecomposable injective \mathcal{F}-modules, which are either indecomposable projective \mathcal{F}-modules or finite dimensional indecomposable injective \mathcal{F}-modules by [11] or [6].

Lemma 4.11. Let I_1, \ldots, I_m be indecomposable injective \mathcal{F}-module. Then $I_1 \boxtimes \cdots \boxtimes I_m$ is an indecomposable injective \mathcal{F}^m-module and admits a local endomorphism ring.

Proof. We only show the conclusion for $m = 2$ since the general case can be proved similarly. Since $I_1 \boxtimes I_2$ is injective by [13, Theorem 1.1], it remains to show that it is indecomposable. By the classification of indecomposable \mathcal{F}-modules in [11] or [6], we obtain three cases:

1. both I_1 and I_2 are indecomposable projective \mathcal{F}-modules;
2. both I_1 and I_2 are indecomposable finite dimensional injective \mathcal{F}-modules;
3. one of I_1 and I_2 is an indecomposable projective \mathcal{F}-module, and the other one is an indecomposable finite dimensional injective \mathcal{F}-module.

Furthermore, I_1 is an indecomposable finite dimensional injective module if and only if DI_1 is an indecomposable projective \mathcal{F}^{op}-module, where $D = \text{Hom}_k(-, k)$ is the usual dual functor and \mathcal{F}^{op} is the opposite category of \mathcal{F}.

In case (1), the \mathcal{F}^2-module $I_1 \boxtimes I_2$ is an indecomposable projective \mathcal{F}^2-module, so the conclusion holds. In case (2), $D(I_1)$ and $D(I_2)$ are indecomposable projective \mathcal{F}^{op}-modules, so $D(I_1 \boxtimes I_2) \cong D(I_1) \boxtimes D(I_2)$ is an indecomposable projective $(\mathcal{F}^2)^{\text{op}}$-module. Consequently, the \mathcal{F}^2-module $I_1 \boxtimes I_2$ is also indecomposable. Furthermore, it is easy to see that the endomorphism ring of $I_1 \boxtimes I_2$ is local in both cases by [1, Lemma 25.4].

Now we focus on case (3). Without loss of generality we can assume that I_1 is an indecomposable projective \mathcal{F}-module and I_2 is an indecomposable finite dimensional injective \mathcal{F}-module. We want to show that the endomorphism ring of $I_1 \boxtimes I_2$ is local. Suppose that I_1 is induced from an irreducible left $k\text{Aut}([n])$-module U (that is, $I_1 \cong k\mathcal{F} \otimes_{k\text{Aut}([n])} U$) and the \mathcal{F}^{op}-module $D(I_2)$ is induced from an irreducible right $k\text{Aut}([I])$-module W. Since $I_1 \boxtimes I_2 \cong F_s(U \boxtimes I_2)$ where $s = [n]$, by the universal property of S-induced module, we obtain a ring isomorphism $\text{End}_{\mathcal{F}^2}(I_1 \boxtimes I_2) \cong \text{End}_{\mathcal{R}_s}(U \boxtimes I_2)$. By
Lemma 4.6, the R_s-module $U \boxtimes I_2$ is injective. Moreover, it is indecomposable since the dual R_s^{op}-module $D(U \boxtimes I_2) \cong D(U) \boxtimes D(I_2)$ is induced from the irreducible right $k(\text{Aut}(\langle n \rangle) \times \text{Aut}(\langle l \rangle))$-module $D(U) \boxtimes W$. Therefore by [1, Lemma 25.4], the endomorphism ring $\text{End}_{R_s}(U \boxtimes I_2)$ is local as desired.

As a corollary, we have:

Corollary 4.12. Let $E_i = I_i^1 \boxtimes \cdots \boxtimes I_i^m$ be an F^m-module for $i \in [n]$, where each I_i^j is an indecomposable injective F-module for $j \in [m]$. Then any indecomposable direct summand of the F^m-module $\bigoplus_{i=1}^n E_i$ is isomorphic to certain E_i.

Proof. This follows from Lemma 4.11 and [1, Theorem 12.6(2)].

Now we are ready to prove the second theorem in the Introduction of this paper.

A proof of Theorem 1.2. By Theorem 4.10 and Corollary 4.7, any indecomposable injective F^m-module I is isomorphic to an indecomposable direct summand of a finite direct sum of modules in U^m. Since the external tensor product \boxtimes commutes with the direct sum \bigoplus, such a finite direct sum can be written as $\bigoplus_{i=1}^n E_i$ where E_i is described in Corollary 4.12. Thus, its indecomposable direct summand is isomorphic to a certain E_i, as desired.

Acknowledgments

The author would like to thank Prof. Li for leading him into this area, and for the numerous discussions and suggestions.

Funding

The author is partially supported by the National Natural Science Foundation of China (grant no. 11771135) of his advisor Liping Li.

References

[1] Anderson, F., Fuller, K. (1992). *Rings and Categories of Modules*, 2nd ed. New York: Springer.
[2] Church, T., Ellenberg, J. (2017). Homology of FI-modules. *Geom. Topol.* 21:2373–2418. arXiv:1506.01022.
[3] Church, T., Ellenberg, J., Farb, B. (2015). FI-modules and stability for representations of symmetric groups. *Duke Math. J.* 164:1833–1910. arXiv:1204.4533.
[4] Church, T., Ellenberg, J., Farb, B., Nagpal, R. (2014). FI-modules over Noetherian rings. *Geom. Topol.* 18:2951–2984. arXiv:1210.1854v2.
[5] Gadish, N. (2017). Categories of FI type: A unified approach to generalizing representation stability and character polynomials. *J. Algebra* 480:450–486. arXiv:1608.02664.
[6] Gan, W. L., Li, L. (2015). Coinduction functor in representation stability theory. *J. London Math. Soc.* 92:689–711. arXiv:1502.06989.
[7] Li, L. (2016). Two homological proofs of the Noetherianity of FI_G. Unpublished notes. arXiv:1603.04552.
[8] Li, L., Ramos, E. (2021). Local cohomology and the multigraded regularity of FI^m-modules. *J. Commut. Algebra* 13:235–252.
[9] Li, L., Yu, N. (2018). FI^m-modules over Noetherian rings. *J. Pure Appl. Algebra* 223:3436–3460. arXiv:1705.00876v2.
[10] Nagpal, R. (2015). FI^m-modules and the cohomology of modular representations of symmetric groups. arXiv:1505.04294.
[11] Sam, S., Snowden, A. (2016). GL-equivariant modules over polynomial rings in infinitely many variables. *Trans. Amer. Math. Soc.* 368:1097–1158.
[12] Webb, P. (2016). *A Course in Finite Group Representation Theory*. Cambridge, UK: Cambridge University Press.
[13] Zeng, D. (2021). Locally self-injective property of FI^m. *Algebra Colloq.*, in press. arXiv:2206.01902.