Joint statistics between velocity-gradient and fluctuating pressure in a turbulent planar jet

Mamoru TAKAHASHI*1, Koji IWANO*2, Yasuhiko SAKAI*3 and Yasumasa ITO*2

*1 Department of Mechanical Science and Engineering, Nagoya University
Furo-cho, Chikusa-ku, Nagoya-shi, Aichi 464-8603, Japan
*2,*3 Department of Mechanical Systems Engineering, Nagoya University
Furo-cho, Chikusa-ku, Nagoya-shi, Aichi 464-8603, Japan

Received: 25 September 2017; Revised: 27 November 2017; Accepted: 18 December 2017

Abstract
Joint statistics between velocity gradient and fluctuating static pressure in a turbulent planar jet are experimentally investigated. The experimental data was acquired by simultaneous measurements of velocity gradient ($\partial u'_1/\partial x_1$ and $\partial u'_2/\partial x_2$, where u'_1, u'_2, x_1, and x_2 are fluctuating streamwise velocity, fluctuating cross-streamwise velocity, streamwise coordinate, and cross-streamwise coordinate, respectively) and fluctuating pressure p' using two combined probes. One of the combined probe consists of an X-type hot-wire probe and a pressure probe and the other combined probe consists of two I-type hot-wire probes arranged in vertical direction and a pressure probe. In the time-series, it is shown that the events in which the instantaneous Reynolds stress, squared cross-streamwise velocity, and product of velocity gradient and pressure shows significantly large value (so-called “significant events”) occur intermittently with negative pressure fluctuation, this implies that the Reynolds stress transport phenomena are locally active with the large-scale vortex structures observed in a turbulent planar jet. It was also found that the standard deviation of $(p'/p)(\partial u'_2/\partial x_1)$ conditioned by the negative pressure fluctuation is 21% larger than the unconditioned standard deviation. The cospectra show that the correlation $(p'/p)(\partial u'_2/\partial x_1)$ greatly contributes the local isotropy of the flow field. On the other hand, we confirmed that $\partial u'_1/\partial x_2$ is almost unrelated to the pressure fluctuation in the present turbulent planar jet. The results show that there is little contribution on the Reynolds stress transport by the correlation $(p'/p)(\partial u'_1/\partial x_2)$.

Keywords: Turbulent jet, Hot-wire, Pressure measurement, Reynolds stress, Joint statistics

1. 緒 論
流れ場の中の一点における速度二成分の相関はレイノルズ応力と呼ばれ、乱流による運動量輸送を表す重要な量である。レイノルズ応力の輸送方程式には圧力-歪速度相関と呼ばれる、速度勾配と変動圧力の相関が出現する。圧力-歪速度相関は流れの等方化促進に関係する量であると理解されており、せん断乱流などにおいてはレイノルズ応力輸送方程式中での他の項よりも寄与が大きくなることが知られている (Everitt and Robins, 1978; Rogers and Moser, 1994 など)。そのため、レイノルズ応力の輸送方程式をモデル化して解く応力方程式モデルによって流れ

*1 正員, 名古屋大学大学院工学研究科機械理工学専攻（〒464-8603 愛知県名古屋市千種区不老町）
*2 正員, 名古屋大学大学院工学研究科機械システム工学専攻
*3 正員, フェロー, 名古屋大学大学院工学研究科機械システム工学専攻
E-mail of corresponding author: takahashi.mamoru@b.mbox.nagoya-u.ac.jp
Fig. 1 Schematic of the experimental apparatus. The height and the width of the skimmer exit are 12 mm and 236 mm, respectively. Two side walls are installed on the test section to assure two-dimensionality of the mean field.

場の数値計算を行う場合, 压力-歪速度相関のモデル精度が計算結果に大きく影響するとされ (Gibson and Launder, 1978; Jones and Musonge, 1988 など), 約半世紀にわたって多くの研究者によって注目されてきた。

乱流モデルは実際の乱流現象をよく反映したものであることが望まれる。速度勾配と変動圧力の結合統計量は、乱流構造がレイノルズ応力輸送における影響や、レイノルズ応力輸送の乱れのスケールに対する依存性などといった重要な情報が含まれるため、より高精度な乱流モデルを開発する大きな手掛かりとなることが考えられる。しかしながら、速度勾配と変動圧力の同時計測が非常に少なく、そのために速度勾配と変動圧力の結合統計量に対する検討が現在までほとんど行われていない。

現在まで行われてきた速度勾配-压力同時計測手法は大きく分けて 2 つである—1 つは熱線流速計と静圧プローブ (Kobashi et al., 1960; 白浜・豊田, 1993 など) を用いた同時測定、もう一つは PIV により面上の速度分布を取得し、面上の速度勾配分布を算出するともに、圧力をアソシ方程式を解いて得る方法である。前者は Naka et al.(2006) や Tsuji and Kaneda(2012) によって行われているが、Naka et al.(2006) は相関値、Tsuji and Kaneda(2012) は相関スペクトルを示したのみであり、速度勾配-圧力同時計測技術の精度に関する検証やその他の結合統計量に関する知識が不足していた。一方、後者の例として Kawata and Obi(2014) は円柱後流における速度勾配-圧力相関の分布を PIV により取得している。しかし、PIV はまだにデータ量の問題から統計のために多くのサンプルを取得することが困難である。さらにダイナミックレンジが広く、かつ高分解能な計測を行うには高価な実験装置と煩雑な処理が必要されるうえ、アソシ方程式の境界条件の与え方について任意性をどう排除するかという問題（辻他, 2006）も伴う。

以上のような、長時間計測に適した速度勾配-圧力同時計測手法の不成熟、および速度勾配と圧力の結合統計量に関する知識の不足という 2 つの背景から、著者らは既報 (高橋他, 2017) にて、熱線流速計と静圧プローブを組み合わせた複合プローブを使用し、二次元乱流シュールにおいて速度勾配と変動圧力の同時計測を行った。そして、速度、速度勾配、および変動圧力の単独統計量、複合プローブを用いて直接計測された圧力-歪速度相関の関係から、二次元乱流シュールの平均速度分布の半値幅より内側において高精度な同時計測が実現されたことを確認した。

本報では、速度勾配と変動圧力の結合統計量に関する知見の充実を目的とし、速度勾配と変動圧力の同時計測によって得られた時系列、確率密度関数、結合確率密度関数、コスベクトル、コヒーレンス、およびフェイズを評価した。
Fig. 2 Schematic of the combined probes. (a) The combined probe A and (b) the combined probe B. The red lines in (a) indicate tungsten wire, whose length is 1.0 mm and diameter is 5.0 μm. The blue lines in (b) indicate platinum wire, whose length is 0.2 mm and diameter is 1.0 μm.

2. 実験装置および実験条件

本研究で使用した実験装置と実験条件は既報 (高橋他, 2017) と同一であり、ここでは簡単な説明にとどめる。

2.1 二次元乱流噴流発生装置

図1に本研究で使用した二次元乱流噴流発生装置の外観を示す。風洞装置のプロック部から空気が取り込まれ、ノズルから噴出されることで噴流を形成する。空気が風洞装置を通過する過程では空気の温度変化は生じないことを確認している。装置にはノズル出口から 1.0 mm 離れた場所にスキマー (Skimmer) を設置し、これにより噴流の吹出口においてトップハット状に近い流速分布を実現している。スキマー出口の高さ d は 12 mm であり、出口のアスペクト比は 19.7 である。座標系は噴流軸方向 (主流方向) を x_1、垂直方向を x_2、スパン方向を x_3 とした。また、テストセクションにはアクリルの側壁が 2 枚設置されており、これによりスパン方向からのエントレイメントが防がれ、噴流の二次元性が確保されている。

[DOI: 10.1299/transjsme.17-00430] © 2018 The Japan Society of Mechanical Engineers
2.2 複合プローブ
図2(a)に示す流速2成分-変動圧力同時計測プローブ（以下，複合プローブAと称する）を示す。複合プローブAはX型熱線プローブと静圧プローブから構成されている。X型熱線プローブの受感部は直径50μm、長さ1.0mmのタンクステン線を採用し、プローブ先端にスポット溶接した。X型熱線プローブを構成する2本の熱線はスパン方向に0.7mmの間隔をおいて配置されている。主流に対し熱線プローブの下流側に静圧プローブを配置した。静圧プローブはコンデンサマイクロフォンと静圧管により構成されており、静圧管の外径は0.3mm、内径は0.2mm、静圧孔の直径は0.1mmである。静圧孔は静圧管の先端から0.65mm、1.15mmの位置にそれぞれ4孔ずつ交互に配置されている。熱線の交点と静圧プローブ先端の距離は大西他（2013）と同様2.0mmに設定した。
図2(b)に流速垂直方向勾配-変動圧力同時計測プローブ（以下、複合プローブBと称する）を示す。複合プローブBはDouble-I型熱線プローブと静圧プローブから構成されている。Double-I型熱線プローブの受感部は直径1.0μm、長さ0.2mmの白金線を採用した。白金線はプローブにはんだ付けされたウォルスタロシ線の銀コーディングをエッチングにより受感部のみ除去して製作した。プローブと受感部の間における支持部（スタブ）の長さは片側が0.2mmである。主流に対し上流側にDouble-I型熱線プローブを、その下流側に静圧プローブを配置した。熱線の配置位置と静圧プローブ先端の距離は複合プローブAと同様2.0mmである。

2.3 実験条件
レイノルズ数はRe = Ujd/ν（Uj：噴流出口速度、ν：動粘性係数）と定義し、実験はRe = 10,000で行った。各計測装置から出力された電圧信号をA/D変換器（National Insulments製USB-6361、分解能16bit）によりデジタル変換され、実験用パソコンコンピュータに記録した。計測のサンプリング周波数は50kHz、サンプリング点数は1,048,576点（約20秒）と設定した。実験の繰り返し試行回数は5回であり、以降示す実験結果はそれらのアンサンブル平均結果である。なお、各実験において計測中の気温変化は±0.2℃以内であった。
計測はx1/d = 40において、垂直方向に測定点を設定して行った。既報（橋本他、2017）において、|x2/bn| ≲ 1.0の領域（ここで、bnは噴流の平均速度分布の半価幅である）では複合プローブAおよびBによる同時計測が良好に行われることが確認された。压力-変動速度相関（(p'/p)(dU2/dX1) + (p'/p)(dU2/dX2)）、ここで()は平均操作を表す）の垂直方向分布はx2/bn ≈ 0.8で極小値をとることが確認された。そこで本研究では、二次元乱流喷流のx1/d = 40、0.4 ≤ x2/bn ≤ 0.8における速度勾配と圧力の結合統計量に注目することとする。
ここで、複合プローブの空間分解能について記す。x1/d = 40でのコルモゴロフマクロスケールηは、x2/bn = 0において0.15mm、x2/bn = 0.8において0.16mmである。すなわち、以上の複合プローブAおよびBはコルモゴロフスケールほどの空間分解能を有さない。しかし、複合プローブAが解像できるスケールの乱れが速度勾配と圧力の相関に対して大きく寄与することが確認されており（橋本他、2017）、速度勾配-圧力結合統計量は高い精度で得られていると考えられる。

3. 実験結果
3.1 時系列
図3にx2/bn = 0.8において複合プローブAにより得られた時系列を示す。(a)は瞬時レイノルズ応力u'2u'2、(b)は垂直方向流速の二乗u'22、(c)は圧力と速度勾配の積(p'/p)(dU'2/dX1)、(d)は変動圧力p'/pである。縦軸は(a)(t1rms,t2rms)、(b)u'22rms、(c)P(rms)(dU'2/dX1)rms、(d)(p'/p)rmsで無次元化されている。添え字rmsは変動R.M.S.値を表す。図3(a)、(b)、および(c)より、u'2u'2、u'22および(p'/p)(dU'2/dX1)の変動が間欠的に激しくなる現象（“Significant event”と呼ばれる）が発生していることがわかる。ここで、境界層近似されたレイノルズ応力送信方程式の生産項をなくさないモデルはこれに対応するが、図3(b)においてu'22の値が大きくならないのはレイノルズ応力が発生に生産されていることを表す。つまり図3(a)、(b)、および(c)から、レイノルズ応力による運動量送信とレイノルズ応力送信は時間的に局所的に発生していることがわかる。さらに図3(d)より、このSignificant eventの発生と同時に変動圧力が現れているように見える。
図4にx2/bn = 0.8において複合プローブBにより得られた時系列を示す。(a)は圧力-速度勾配の積(p'/p)(dU'2/dX2)、(b)は変動圧力p'/pである。縦軸は(a)(p'/p)rms(dU'2/dX2)rms、(b)(p'/p)rmsで無次元化されて

[DOI: 10.1299/transjsme.17-00430] © 2018 The Japan Society of Mechanical Engineers 4
Fig. 3 Timeseries of (a) $u'_1 u'_2 / (u_{1, rms} u_{2, rms})$, (b) $u'_2^2 / u_{2, rms}^2$, (c) $(p'/p)(\partial u'_2 / \partial x_1) / \{(p'/p)_{rms}(\partial u'_2 / \partial x_1)_{rms}\}$, (d) $(p'/p) / (p'/p)_{rms}$. Timeseries in (a), (b), and (c) are intermittent. The black arrows show typical significant events associated with negative pressure fluctuation.

Fig. 4 Timeseries of (a) $(p'/p)(\partial u'_1 / \partial x_2) / \{(p'/p)_{rms}(\partial u'_1 / \partial x_2)_{rms}\}$, (b) $(p'/p) / (p'/p)_{rms}$, Little relation between the $(p'/p)(\partial u'_1 / \partial x_2)$ and the negative pressure fluctuation can be found.

Katul et al. (2006) is "internal" and "external" are used to distinguish between intermittency buildup originating from the mean turbulent kinetic energy...
Fig. 5 Schematic of large-scale coherent vortex structure in a turbulent planar jet (Brown et al., 1984). Counter-rotating vortices staggered with respect to the jet centerline can be observed in downstream region.

significant events

3.2 確率密度関数
図6(a) に \(\langle p'/p \rangle (\partial u'/\partial x_1) \) の確率密度関数の \(x_2 \) 方向変化を、(b) に \(\langle p'/p \rangle (\partial u'/\partial x_2) \) 確率密度関数の同じく \(x_2 \) 方向変化を示す。確率密度関数分布が大きくとっていて、大きな変動が正規分布よりも高い確率で発生することがわかる。このような確率密度関数分布をとる量の統計は標準誤差が非常に大きい外れた結果が得られる。

1このうち、乱流状態/非乱流状態の混在による間欠性のないを指して外部間欠性と称した研究も多く存在し、一貫していない。一方、内部間欠性といえば散逸にかかわる間欠性を指すことは共通認識のようである。本研究では広く受け入れられている内部間欠性という用語の使用と対比して、乱流状態/非乱流状態の混在による間欠性をせん断の影響によって生じた乱流構造による間欠性をまとめて外部間欠性と呼ぶことが適当だと考え、Kato et al. (2006) に従うこととした。

11本研究では一度に1点における物理量しか取得していないため、厳密に大規模ホーレント構造の発生を検出するのは困難である。これについては寺島他 (2012a) のように中心軸を挟んで対称な位置 2 点の相関を条件として統計処理を行うこと、または数値計算による多点同時時系列の取得が有効である。
Fig. 6 Distribution of probability density function of (a) \((p'/p)(\partial u'_y/\partial x) \) and (b) \((p'/p)(\partial u'_x/\partial x) \). The distributions are nearly symmetric, which indicates that both of active increase and decrease of the Reynolds stress occurs at almost the same probability.

Fig. 7 Distribution of probability density function conditioned by the sign of the fluctuating pressure, (a) \((p'/p)(\partial u'_y/\partial x) \) and (b) \((p'/p)(\partial u'_x/\partial x) \). The negative pressure leads large fluctuation of \((p'/p)(\partial u'_y/\partial x) \).

Fig. 8 Standard deviation of \((p'/p)(\partial u'_y/\partial x) \) conditioned by the sign of the fluctuating pressure. The standard deviation of \((p'/p)(\partial u'_x/\partial x) \) increases by 21% when the pressure fluctuation is negative.
Fig. 9 分布の関係を示す。図9(a)はp'/ρ および $\partial u'_x/\partial x_1$ と図9(b)はp'/ρ および $\partial u'_x/\partial x_2$。両者の分布において$p'>0$ が示されている。

Fig. 10 計算上はレイノルズ応力の減少を示している。時間的に変動する応力の積分はレイノルズ応力の増加及び減少の双方の作用が結合していることを表している。

次に、速度変動と圧力の積の大小の値の変動量と対応関係を定量的に評価するため、速度変動と圧力の積の変動を変動圧力の正負で条件付けして確率密度関数を算出する。図7(a)に$(p'/\rho)(\partial u'_x/\partial x_1)$の条件付き確率密度関数を、図7(b)に$(p'/\rho)(\partial u'_z/\partial x_2)$の条件付き確率密度関数を示す。図7(a)より、変動が負の場合は$(p'/\rho)(\partial u'_x/\partial x_1)$の大きな変動が発生する確率が高く、逆に圧力が正の場合は発生確率が低くなっていることがわかる。一方、図7(b)の確率密度関数分布の変化は(a)に比べて小さく、負の圧力が$(p'/\rho)(\partial u'_z/\partial x_2)$の大きな変動を引き起こしているのでないことがわかる。

また、変動圧力の正負で条件付けした$(p'/\rho)(\partial u'_x/\partial x_1)$の標準偏差を図8に示す。値は条件付けなしの場合の標準偏差の$1/2$である。図8より、負の圧力を条件とすると標準偏差は21%増加することが示されている。この結果からも圧力が負の場合に$(p'/\rho)(\partial u'_z/\partial x_2)$の変動が大きくなっていることが確認できる。

3.3 結合法密度関数
　図9に$x_2/a_n=0.8$における速度変動と変動圧力の合計確率密度関数分布を示す。図9(a)はp'/ρ および $\partial u'_x/\partial x_1$の確率密度関数、図9(b)は$p'/\rho$ および $\partial u'_z/\partial x_2$の確率密度関数である。どちらの確率密度関数も頂点が$p'>0$ へずれているが、これは圧力の単独確率密度関数の負の裾野が大きい値をとり、相対的に頂点が正の方向へ偏るためである。

[DOI: 10.1299/transjsm.17-00430] © 2018 The Japan Society of Mechanical Engineers
Fig. 11 Cospectra of (a) p'/ρ and $\partial u'_1/\partial x_1$ and (b) p'/ρ and $\partial u'_2/\partial x_2$. The peaks of Cospectra of p'/ρ and $\partial u'_1/\partial x_1$ appear around the dashed lines. What the dashed lines indicate is explained in the caption of Fig. 12. On the other hand, (b) shows that there is little contribution on the Reynolds stress transport by the correlation $(p'/\rho)(\partial u_1/\partial x_2)$ over the entire turbulence scale.

Fig. 12 (a) Cospectra of u'_1 and u'_2 and (b) Coherence between u'_1 and u'_2. The dashed lines indicate the criterion of local isotropy proposed by Saddoughi and Veeravalli (1994), $k_1L_S = 3.0$, where $L_S = \varepsilon^{1/2}S^{-3/2} = \varepsilon^{1/2}(\partial U_1/\partial x_2)^{-3/2}$, ε is the dissipation rate of turbulent kinetic energy. In $k_1L_S > 3.0$, the cospectra and coherence are much small, which indicates the locally isotropic region.

2つの確率変数 α と β が互いに独立であった場合，α と β それぞれの確率密度関数を $P(\alpha)$, $P(\beta)$ とすると，その結合確率密度関数 $P(\alpha, \beta)$ は

$$P(\alpha, \beta) = P(\alpha)P(\beta)$$

となる。したがって，$P(p'/\rho, \partial u'_2/\partial x_1) = P(p'/\rho)P(\partial u'_2/\partial x_1)$ および $P(p'/\rho, \partial u'_1/\partial x_2) = P(p'/\rho)P(\partial u'_1/\partial x_2)$ を計算することで，速度勾配と圧力の独立/従属の程度を評価することができる。図10に計算結果を示す。図10(a)は p'/ρ と $\partial u'_2/\partial x_1$ について，図10(b)は p'/ρ と $\partial u'_1/\partial x_2$ についての計算結果である。図10(a)において，$p' > 0$, $\partial u'_2/\partial x_1 \sim 0$ の領域および $p' < 0$, $\partial u'_2/\partial x_1 \sim 0$ の領域において独立な分布からわずかが見られる。一方，図10(b)では図10(a)に比べて小さい値が分布していることから（比較のために色の範囲を統一している），p' と $\partial u'_1/\partial x_2$ はほぼ独立な関係にあることがわかる。

3.4 コスペクトル

図11に p'/ρ と $\partial u'_2/\partial x_1$ のコスペクトル $K_{p'/\rho}(\partial u'_2/\partial x_1)$ の x_2 方向変化を，(b)に p'/ρ と $\partial u'_1/\partial x_2$ のコスペクトル $K_{p'/\rho}(\partial u'_1/\partial x_2)$ の同じく x_2 方向変化を示す。これらの圧力と速度勾配のコスペクトルは，正の値であればレインズ応力の増加に，負の値であれば減少に寄与していることを表す。図中の破線については後述する。
11(a) より，$K(p'/p)(\partial u'_i / \partial x_1)$ は低波数領域で値が小さく，噴流の中心軸から半価幅に向かうにつれ $k_1 \eta \sim 0.001$ から $k_1 \eta \sim 0.5$ の成分の値が負に大きくなくなっていることが確認できる．一方，$K(p'/p)(\partial u'_i / \partial x_3)$ の値は 0 を中心に正負両方に分布しており，また噴流の垂直方向位置に対する依存性は見られない．このことから，統計的には p'/p と $\partial u'_i / \partial x_2$ の相関が特定のスケールの変動によるレイノルズ応力を増減させることはないことがわかる．

ここで，$K(p'/p)(\partial u'_i / \partial x_1)$ の分布と流れのスケールの対応について検討する．一般にスケールの流れの成分は等方性が高いことはよく知られている（局所等方性）．Saddoughi and Veeravalli(1994) では，流動境界層における実験より，等方的であるとなめなすスケールについて以下の基準を提案した．

$$k_1 L_s > 3 \quad (2)$$

ここで L_s は $L_s = e^{1/2} S^{-3/2} = e^{1/2} (|\partial U_1 / \partial x_2|)^{-3/2}$ で定義される長いスケール，U_1 は主流方向平均速度，e は単位質量あたりの流れエネルギーの散逸率である．図 12 に $x_2 / b_u = 0.2, 0.4, 0.8$ における u'_1 と u'_2 のスペクトル (a) およびコヒーレンス (b) を示す．図にそれぞれの位置において $k_1 L_s = 3.0$ となるスケールを各曲線と対応する色の破線で示した．破線の位置の値は $x_2 / b_u = 0.2, 0.4, 0.8$ それぞれにおいて 0.015, 0.030, および 0.033 である．$x_2 / b_u = 0.2, 0.4, 0.8$ におけるスペクトルおよびコヒーレンスは，各破線よりも高波数の領域において十分小さくなっている．すなわち $k_1 L_s > 3$ となるスケールの成分は等方性が高いことが示されており，Saddoughi and Veeravalli(1994) の基準が本研究においても有効であることがわかる．

再び図 11(a) を確認する．図 11(a) の破線は図 12 と同様，$x_2 / b_u = 0.2, 0.4, 0.8$ において $k_1 L_s = 3.0$ となるスケールを表す．図 11(a) においてスペクトルのピークは破線の位置ともほぼ同じであることがわかる．これらの結果から，$k_1 L_s < 3.0$ において，波数が大きくなるにしたがって速度勾配と圧力の変動による相関 $(p'/p)(\partial u'_i / \partial x_2)$ に対する寄与が小さくなり，$k_1 L_s = 3.0$ の成分によるレイノルズ応力の消失，すなわち流れの等方性が最も活発であることがわかる．このように，相関 $(p'/p)(\partial u'_i / \partial x_2)$ が局所等方性の実現に大きく寄与していることがわかる．

3.5 コヒーレンスおよびフェイズ

図 13(a) に p'/p と $\partial u'_2 / \partial x_1$ のコヒーレンスの x_2 方向変化を，(b) に p'/p と $\partial u'_2 / \partial x_2$ のコヒーレンスの同じく x_2 方向変化を示す．図 13(a) より，$x_2 / b_u = 0.2, 0.4, 0.8$ におけるコヒーレンスは 0.002 $\leq k_1 \eta \leq 0.003$ にてピークをとり，波数が高くなるにつれて小さくなる．一方，図 13(b) より，p'/p と $\partial u'_2 / \partial x_2$ のコヒーレンスは広い波数領域にわたってその値が小さい傾向です．すなわち，p'/p と $\partial u'_2 / \partial x_3$ はいかなるスケールの変動成分も無関係であることがわかる．

p'/p と $\partial u'_2 / \partial x_1$ のコヒーレンスがピークをとるスケールについて考察する．3.1 節では，$(p'/p)(\partial u'_2 / \partial x_1)$ の Significant events が二次元乱流噴流の大規模コヒーレンス構造によって引き起こされる可能性を挙げた．大规模コヒーレンスが二次元乱流噴流の大規模コヒーレンス構造によって引き起こされる可能性を示すために，(p'/p)(\partial u'_2 / \partial x_1) の Significant events のピークが現れる条件について考察する．

[DOI: 10.1299/transjsme.17-00430] © 2018 The Japan Society of Mechanical Engineers
Fig. 14 Power spectra of \(u'_k \), \(E_{22} \). The black dashed line shows \(k_1 \eta \sim 0.003 \), at which the peaks of \(E_{22} \) are. This scale corresponds to the large scale fluctuation due to the coherent structure observed in a turbulent plane jet.

Fig. 15 Phase between (a) \(p'/\rho \) and \(\partial u'_2/\partial x_1 \) and (b) \(p'/\rho \) and \(\partial u'_1/\partial x_2 \). in (a), The phase at \(x_2/b_0 = 0.2, 0.4 \) and 0.8 gatherings around \(\pm \pi \) at \(k_1 \eta \sim 0.03 \). On the other hand, the phase distribution in (b) is almost uniform regardless of the wavenumber and measurement point.

ヒーレント構造の渦列の通過周波数は，垂直方向速度 \(u'_2 \) のパワースペクトル \(E_{22} \) がピークとなる周波数に対応する（Antonia et al., 1983; 寺島他, 2012a）。図14に \(x_2/b_0 = 0.2, 0.4 \) および 0.8における垂直方向速度 \(u'_2 \) のパワースペクトル \(E_{22} \) を示す。図14より，\(E_{22} \) は \(k_1 \eta \sim 0.003 \) においてピークとなることがわかり，この位置は \(p'/\rho \) と \(\partial u'_2/\partial x_1 \) のコヒーレンスのピークが存在する波数に近い。すなわち，\(p'/\rho \) と \(\partial u'_2/\partial x_1 \) のコヒーレンスがピークとなる波数は二次元乱流噴流のヒーレント構造による渦列の通過による大規模変動のスケールを表していると考えられ，これは3.1節での考察を支持するものである。

図15(a)に \(p'/\rho \) と \(\partial u'_2/\partial x_1 \) のフェイズの \(x_2 \) 方向変化を，(b)に \(p'/\rho \) と \(\partial u'_1/\partial x_2 \) のフェイズの同じく \(x_2 \) 方向変化を示す。これらの図は，ある波数帯においてフェイズ \(\phi \) が \(\phi \sim 0 \) ならばそのスケールの乱れの成分が正の相関に寄与することを表す。また，\(\phi \sim \pm \pi \) ならば負の相関，\(\phi \sim \pm \pi/2 \) あるいは \(-\pi \leq \phi < \pi \) に一様に分布しているなら無相関となる。まず図15(a)において，\(x_2/b_0 = 0 \) におけるフェイズは \(\phi = 0 \) のまわりに分布しており，波数が大きくなるに従い分布の一様性が高くなっている。しかしこれ中心軸から離れた \(x_2/b_0 = 0.2, 0.4 \) および 0.8 の結果は，低波数領域では \(\pi/2 \) に近く，波数が大きくなるにつれ \(\pm \pi \) に近づき，\(k_1 \eta \sim 0.03 \) あたりで最も \(\pm \pi \) のまわりに集中する（図中に矢印で表記）。この \(\pm \pi \) のまわりの集中は中心軸から離れた位置での結果ほど顕著である。さらに高い波数に移るにつれ，分布の一様性が高くなっている。すなわち低波数の変動はフェイズが \(\pi/2 \) に近いために相関 \((p'/\rho)(\partial u'_2/\partial x_1) \) に寄与せず，また \(k_1 \eta \sim 0.03 \) (\(k_1 L_3 = 3.0 \) に対応）ではほぼ逆位相であるためにコヒーレンスが負に大きくなっていることがある。一方，図15(b)において，すべての位置においてフェイズは \(-\pi \leq \phi < \pi \)
に一様に分布しており、あらゆるスケールの p'/p と $\partial u'_i/\partial x_2$ の変動成分それぞれがほぼ独立であることが示されている。このように、ヒプーレンスおよびフェイズにおいて速度勾配 $\partial u'_i/\partial x_2$ と圧力の対応関係がほとんど見られなかったことは、確率密度関数および結合確率密度関数の結果とも矛盾しない。しかしながら、乱流場ごとに速度勾配と圧力の結合統計量特性が異なると予想されるため、より多くの乱流場において結合統計量の知見が深められるのが望ましい。

4. 結 論

本研究では速度勾配と変動圧力の同時計測により得られた速度勾配-圧力結合統計量を評価した。以下に得られた知見をまとめる。

1. 複合プローブ A により得られた $u'_i u'_j$, u'_2, および $(p'/p)(\partial u'_2/\partial x_1)$ の時系列に間欠性が観測された。これら
の信号の変動が激しくなる現象（Significant events）と、変動圧力が負になる時刻が対応していることが確認された。この Significant event は二次元乱流噴流の大规模ヒプーレンス構造によるものだと考えられ、大規模
コーレント構造の発生により時間空間的に局所的にレイノルズ応力輸送が活発になることがわかった。

2. $x_b/a = 0.4$ および 0.8 における p'/p と $\partial u'_2/\partial x_1$ のスベクトルは、Saddoughi and Veeravalli(1994) が提案した
$k_2 L_2 = 3.0$ となるスケールにおいて負のピークを示した。このことから、$(p'/p)(\partial u'_2/\partial x_1)$ は乱流場の局所
等方性の実現に大きく寄与していることが明らかになった。

3. 本研究で検討した結合統計量（時系列、時々値確率密度関数、結合確率密度関数、スペクトル、ヒプーレ
ンス、およびフェイズ）のいずれにおいても、速度勾配 $\partial u'_i/\partial x_2$ と圧力の相関によるレイノルズ応力の増減
に対する統計的な寄与が見られなかった。

謝 辞

実験の遂行にあたり、中村悟氏（名古屋大学）から多大な協力を頂いた。本研究は部分的に科学研究費補助金
(15K17969) の援助を受けた。記して各位に謝意を表す。

文 献

Antonia, R. A., Browne, W. B., Rajagopalan, S. and Chambers, A. J., On the organized motion of a turbulent plane jet, Journal of Fluid Mechanics, Vol. 134(1983), pp. 49-66.

Browne, L. W. B., Antonia, R. A. and Chambers, A. J., The interaction region of a turbulent plane jet, Journal of Fluid Mechanics, Vol. 149(1984), pp. 355-373.

Everitt, K. W. and Robins, A. G., The development and structure of turbulent plane jets, Journal of Fluid Mechanics, Vol. 88, Part 3(1978), pp. 563-583.

Gibson, M. M. and Launder, B. E., Ground effects on pressure fluctuations in the atmospheric boundary layer, Journal of Fluid Mechanics, Vol. 86, Part 3(1978), pp. 491-511.

Hedley, T. B. and Keffer, J. F., Turbulent/non-turbulent decisions in an intermittent flow, Journal of Fluid Mechanics, Vol. 64, No. 4(1974), pp. 645678.

平元理峰, 豊田国昭, 長方形噴流中の三次元渦構造に関する研究, 日本機械学会論文集 B 輯, Vol. 62, No. 598(1996), pp. 2202-2207.

Jones, W. P. and Musonge, P., Closure of the Reynolds stress and scalar flux equations, Physics of Fluids, Vol. 31, No. 12(1988), pp. 3589-3604.

Kasagi, N., Sumitani, Y., Suzuki, Y. and Iida, O., Kinematics of the quasi-coherent vortical structure in near-wall turbulence, International Journal of Heat and Fluid Flow, Vol. 16, Issue 2(1995), pp. 2-10.

Katul, G., Porporato, A., Cava, D. and Siqueira, M., An analysis of intermittency, scaling, and surface renewal in atmospheric surface layer turbulence, Physica D, 215(2006), pp. 117-026.

Kawata, T. and Obi, S., Velocitopressure correlation measurement based on planar PIV and miniature static pressure probes, Experiments in Fluids, Vol. 55, No. 1776(2014), DOI:10.1007/s00348-014-1776-7.
Kobashi, Y., Kono, N. and Nishi, T., Improvement of a pressure pickup for the measurements of turbulence characteristics, Journal of the Aerospace Sciences, Vol. 27, No. 2(1960), pp. 149-151.

Nagano, Y. and Tagawa, M., Coherent motions and heat transfer in a wall turbulent shear flow, Journal of Fluid Mechanics, Vol. 305(1995), pp. 127-157.

Naka, Y., Omori, T., Obi, S. and Masuda, S., Simultaneous measurement of fluctuating velocity and pressure in a turbulent mixing layer, International Journal of Heat and Fluid Flow, Vol. 27(2006), pp. 737-746.

Rogers, M. M. and Moser, R. D., Direct simulation of a self-similar turbulent mixing layer, Physics of Fluids, Vol. 6, No. 2(1994), pp. 903-923.

Saddoughi, S. G. and Veeravalli, S. V., Local isotropy in turbulent boundary layers at high Reynolds number, Journal of Fluid Mechanics, Vol. 268(1994), pp. 333-372.

Tsuji, Y. and Kaneda, Y., Anisotropic pressure correlation spectra in turbulent shear flow, Journal of Fluid Mechanics, Vol. 694(2012), pp. 50-77.

References

Antonia, R. A., Browne, W. B., Rajagopalan, S. and Chambers, A. J., On the organized motion of a turbulent plane jet, Journal of Fluid Mechanics, Vol. 134(1983), pp. 49-66.

Browne, L. W. B., Antonia, R. A. and Chambers, A. J., The interaction region of a turbulent plane jet, Journal of Fluid Mechanics, Vol. 149(1984), pp. 355-373.

Everitt, K. W. and Robins, A. G., The development and structure of turbulent plane jets, Journal of Fluid Mechanics, Vol. 88, Part 3(1978), pp. 563-583.

Gibson, M. M. and Launder, B. E., Ground effects on pressure fluctuations in the atmospheric boundary layer, Journal of Fluid Mechanics, Vol. 86, Part 3(1978), pp. 491-511.

Hedley, T. B. and Keffer, J. F., Turbulent/non-turbulent decisions in an intermittent flow, Journal of Fluid Mechanics, Vol. 64, No. 4(1974), pp. 645-676.

Hiramoto, R. and Toyoda, K., Three-dimentional vortical structures in a rectangular jet, Transactions of the Japan Society of Mechanical Engineers, Series B, Vol. 62, No. 598(1996), pp. 2202-2207(in Japanese).

Jones, W. P. and Musonge, P., Closure of the Reynolds stress and scalar flux equations, Physics of Fluids, Vol. 31, No. 12(1988), pp. 3589-3604.

Kasagi, N., Sumitani, Y., Suzuki, Y. and Iida, O., Kinematics of the quasi-coherent vortical structure in near-wall turbulence, International Journal of Heat and Fluid Flow, Vol. 16, Issue 2(1995), pp. 2-10.

[DOI: 10.1299/transjsme.17-00430] © 2018 The Japan Society of Mechanical Engineers
Katul, G., Porporato, A., Cava, D. and Siqueira, M., An analysis of intermittency, scaling, and surface renewal in atmospheric surface layer turbulence, Physica D, 215(2006), pp. 117-026.

Kawata, T. and Obi, S., Velocity-pressure correlation measurement based on planar PIV and miniature static pressure probes, Experiments in Fluids, Vol. 55, No. 1776(2014), DOI:10.1007/s00348-014-1776-7.

Kobashi, Y., Kono, N. and Nishi, T., Improvement of a pressure pickup for the measurements of turbulence characteristics, Journal of the Aerospace Sciences, Vol. 27, No. 2(1960), pp. 149-151.

Koso, T. and Hayami, H., Study on the nature of turbulent intermittency in a coflowing turbulent free jet, The report of Institute of Advanced Material Study Kyushu University, Vol. 5, No. 2(1991), pp. 175-188(in Japanese).

Nagano, Y. and Tagawa, M., Coherent motions and heat transfer in a wall turbulent shear flow, Journal of Fluid Mechanics, Vol. 305(1995), pp. 127-157.

Naka, Y., Omori, T., Obi, S. and Masuda, S., Simultaneous measurement of fluctuating velocity and pressure in a turbulent mixing layer, International Journal of Heat and Fluid Flow, Vol. 27(2006), pp. 737-746.

Onishi, K., Terashima, O., Sakai, Y., Nagata, K. and Ito, Y., Simultaneous measurement of three velocity components and static pressure in turbulent flows, Transactions of the Japan Society of Mechanical Engineers, Series B, Vol. 79, No. 800(2013), pp. 541-554(in Japanese).

Onishi, K., Terashima, O., Sakai, Y., Nagata, K. and Ito, Y., Investigation of the turbulent energy transport in a plane turbulent jet by applying POD-LSE complementary method, Transactions of the JSME(in Japanese), Vol. 80, No. 809(2014), DOI:10.1299/transjsme.2014fe0010.

Rogers, M. M. and Moser, R. D., Direct simulation of a self-similar turbulent mixing layer, Physics of Fluids, Vol. 6, No. 2(1994), pp. 903-923.

Saddoughi, S. G. and Veeravalli, S. V., Local isotropy in turbulent boundary layers at high Reynolds number, Journal of Fluid Mechanics, Vol. 268(1994), pp. 333-372.

Shirahama, Y. and Toyoda, K., Development of the probe to measure static-pressure fluctuations : application to the measurements of jets, Transactions of the Japan Society of Mechanical Engineers, Series B, Vol. 59, No. 567(1993), pp. 3381-3387(in Japanese).

Takahashi, M., Iwano, K., Sakai, Y. and Ito, Y., Simultaneous measurement of velocity-gradient and fluctuating static pressure in a turbulent plane jet, Transactions of the JSME (in Japanese), Vol. 83, No. 850(2017), DOI:10.1299/transjsme.17-00004.

Terashima, O., Sakai, Y. and Nagata, K., Characteristics of two-dimensional turbulent jet in flapping motion, Transactions of the Japan Society of Mechanical Engineers, Series B, Vol. 78, No. 787(2012a), pp. 541-552(in Japanese).

Terashima, O., Sakai, Y., Nagata, K., Shouji, Y. and Onishi, K., Study on the interfacial layer between the turbulent/nonturbulent region in a two-dimensional turbulent jet, Transactions of the Japan Society of Mechanical Engineers, Series B, Vol. 78, No. 790(2012b), pp. 1235-1247(in Japanese).

Tsuji, Y., Imaiida, J. and Abe, H., Pressure measurement in fully developed turbulence, Transactions of the Japan Society of Mechanical Engineers, Series B, Vol. 72, No. 719(2006), pp. 1710-1717(in Japanese).

Tsuji, Y. and Kaneda, Y., Anisotropic pressure correlation spectra in turbulent shear flow, Journal of Fluid Mechanics, Vol. 694(2012), pp. 50-77.