Atypical pathogens in hospitalized patients with community-acquired pneumonia: a worldwide perspective

Andrea Gramegna, Giovanni Sotgiu, Marta Di Pasquale, Dejan Radovanovic, Silvia Terraneo, Luis F. Reyes, Ester Vendrell, Joao Neves, Francesco Menzella, Francesco Blasi, Stefano Aliberti, Marcos I. Restrepo and on behalf of the GLIMP Study Group

Abstract

Background: Empirical antibiotic coverage for atypical pathogens in community-acquired pneumonia (CAP) has long been debated, mainly because of a lack of epidemiological data. We aimed to assess both testing for atypical pathogens and their prevalence in hospitalized patients with CAP worldwide, especially in relation with disease severity.

Methods: A secondary analysis of the GLIMP database, an international, multicentre, point-prevalence study of adult patients admitted for CAP in 222 hospitals across 6 continents in 2015, was performed. The study evaluated frequency of testing for atypical pathogens, including L. pneumophila, M. pneumoniae, C. pneumoniae, and their prevalence. Risk factors for testing and prevalence for atypical pathogens were assessed through univariate analysis.

Results: Among 3702 CAP patients 1250 (33.8%) underwent at least one test for atypical pathogens. Testing varies greatly among countries and its frequency was higher in Europe than elsewhere (46.0% vs. 12.7%, respectively, p < 0.0001). Detection of L. pneumophila urinary antigen was the most common test performed worldwide (32.0%). Patients with severe CAP were less likely to be tested for both atypical pathogens considered together (30.5% vs. 35.0%, p = 0.009) and specifically for legionellosis (28.3% vs. 33.5%, p = 0.003) than the rest of the population. Similarly, L. pneumophila testing was lower in ICU patients. At least one atypical pathogen was isolated in 62 patients (4.7%), including M. pneumoniae (26/251 patients, 10.3%), L. pneumophila (30/1186 patients, 2.5%), and C. pneumoniae (8/228 patients, 3.5%). Patients with CAP due to atypical pathogens were significantly younger, showed less cardiovascular, renal, and metabolic comorbidities in comparison to adult patients hospitalized due to non-atypical pathogen CAP.

Conclusions: Testing for atypical pathogens in patients admitted for CAP in poorly standardized in real life and does not mirror atypical prevalence in different settings. Further evidence on the impact of atypical pathogens, especially in the low-income countries, is needed to guidelines implementation.

Keywords: CAP, Atypical pathogens, Epidemiology
Background
Community-acquired pneumonia (CAP) is a leading cause of hospitalization and death worldwide [1]. The annual estimated CAP burden in the United States of America (USA) accounts for more than 1.5 million adult hospitalizations and one third of hospitalized patients die within 1 year [2]. The assessment of the epidemiology of CAP-related pathogens is crucial to target appropriate empiric therapy in order to improve patients’ outcomes. The empirical coverage for atypical pathogens, including *Mycoplasma pneumoniae*, *Chlamydia pneumoniae*, and *Legionella pneumophila*, is still a matter of debate [3].

Several Authors reported on an increased trend of atypical pathogens over the last 15 years, with prevalences ranging from 6 to 40% in both Europe and USA [4]. One study performed in China showed atypical pathogens as the most frequent cause of CAP with incidence rates far exceeding *Streptococcus pneumoniae* [5]. Other studies described similar prevalences of atypical pathogens [6].

Epidemiological data are mainly based on retrospective studies or secondary analyses of local or national datasets with key design limitations, such as: 1) cultures for atypicals are rarely performed and a standardized diagnostic approach has not been adopted; 2) serology for atypical pathogens could be prescribed for epidemiological studies according to international guidelines and an all-encompassing microbiological work-up should be carried out only for hospitalized patients with severe CAP [1, 7]; 3) information on testing frequency of atypical pathogens and which population subgroups are more likely to be investigated are missing. Finally, the only published description on atypical pathogens in CAP is a secondary analysis of a retrospective database [6].

The aim of this study was to provide a real-life description of both testing frequency and prevalence of atypical pathogens in hospitalized patients with CAP worldwide, along with the evaluation of predisposing conditions for testing and risk factors for CAP caused by atypical pathogens.

Methods

Study design and population
The present study is based on a secondary analysis of the Global Initiative for MRSA Pneumonia (GLIMP) international database [8]. This project was not funded and relied upon voluntary site and investigator participation. The GLIMP methodology has been already published elsewhere [8]. The coordinating center (University of Texas Health at San Antonio – UT Health, Texas, USA) received project approval by the Institutional Review Board (IRB# HSC20150184E). All participating centers followed their local law and regulations. Study participants were enrolled on a single day in the months of March, April, May, and June in 2015.

All adults (> 18 years old) hospitalized with CAP were screened for study selection. CAP was defined by the evidence of new radiological pulmonary infiltrates during the first 48 h of hospitalization and by ≥1 of the following criteria: 1) new or increased cough with/without sputum production and/or purulent respiratory secretions; 2) fever (documented rectal or oral temperature ≥ 37.8°C) or hypothermia (documented rectal or oral temperature < 36°C); 3) systemic inflammation (e.g., white blood cell count > 10,000/cm³ or < 4000/cm³, C-reactive protein or procalcitonin values above the local upper limit of normality). Patients hospitalized with a diagnosis of hospital-acquired and/or ventilator-associated pneumonia were excluded. Patients without any bacterial tests for atypical pathogens collected within 24 h after hospital admission were also excluded.

Data collection and microbiology for atypical pathogens
Data were collected using REDCap™ (Research Electronic Data Capture), an electronic data capture tool hosted on the UT Health server. After study enrolment, participating centers were allowed 7 days to complete electronic data entry and confirm microbiological results.

Physicians taking care of CAP patients decided the microbiological work-up according to local standard operating procedures. Serology for atypical pathogens and urinary antigen test for *L. pneumophila* were performed by local hospital laboratories according to standard techniques. Atypical pathogens were considered: *M. pneumoniae*, *C. pneumoniae*, and *L. pneumophila*.

Study groups
Definition of CAP caused by atypical pathogens was based on species-specific serology or urinary antigen positivity. Patients tested for atypical pathogens were defined as having at least one of the following tests: urinary antigen test for *L. pneumophila*, serology for *L. Pneumophila*, *C. pneumoniae*, and *M. pneumoniae*.

Study definitions
CAP was deemed severe when patients were prescribed one of the following interventions: intensive care unit (ICU) admission, invasive or non-invasive mechanical ventilation, or vasoressor/inotrope administration during the first 24 h after hospital admission.

Definition of immunodepression was based on the diagnosis of ≥1 of the following medical conditions in the six-month period before hospital admission: hematological malignancy, asplenia, aplastic anemia, neutropenia, long-term exposure to biological drugs or steroids or chemotherapy or immuno-suppressive therapy for hematological/solid organ transplantation other than lung transplant, HIV/AIDS, and congenital or genetic immunodepression. All site investigators were
provided with a protocol including the above-mentioned clinical definitions.

Statistical analysis

Testing frequency of atypical pathogens was calculated on all CAP patients in the dataset. Prevalence of an atypical pathogen was computed based on positive results of serology and/or urinary antigen test for *L. pneumophila* performed during the first 24 h of hospital stay. Categorical variables, expressed as absolute frequencies and percentages, were compared between groups using the Chi-squared test. Regressions analyses were performed to compare prevalence and compute odds ratios (OR) with their 95% confidence interval (CI); furthermore, they were performed to assess the relationship between atypical pathogen-related pneumonia and demographic, epidemiological, and clinical variables. Circular relation analysis using the Chi-squared test was performed to compare the prevalence between countries and continents. Statistical significance when P was < 0.05. All statistical analyses were performed with IBM SPSS, Statistics for Mac, version 22.0, and STATA 13. Prevalence maps were created using Stat Planet software.

Results

Testing for atypical pathogens

A total of 3702 hospitalized CAP patients were recruited in 54 countries across 6 continents. Among them, 1250 (33.8%) patients were tested for atypical pathogens: 1186 (32.0%) for *L. pneumophila* (either urinary antigen or serology), 251 (6.8%) for *M. pneumoniae* (serology), and 228 (6.1%) for *C. pneumoniae* (serology). Distribution of testing frequencies across countries is showed in Fig. 1a.

The frequency of patients tested for atypicals was significantly higher in Europe in comparison with the rest of the world (46.0% VS. 12.7%, P < 0.0001). The lowest testing frequency was recorded in Africa and South America (5.8 and 5.0%, respectively). The highest frequencies of patients tested for atypicals in countries enrolling > 100 CAP patients were detected in Spain (70.8%), Italy (63.8%), Portugal (43.3%), Germany (23.1%), and USA (21.4%) (Table 1). Data on testing for *L. pneumophila*, *M. pneumoniae*, and *C. pneumoniae* are reported in the additional file (Additional file 1: Table A). Detection of *L. pneumophila* urinary antigen was the most prevalent test performed worldwide (32.0%).

The frequencies of patients tested for atypical pathogens were lower among those with severe CAP in comparison with those with non-severe CAP (30.5% VS. 35.0% for atypical pathogens other than *L. pneumophila*, P = 0.009; 28.3% VS. 33.5% for *L. pneumophila*, P = 0.003). *L. pneumophila* testing was lower in ICU patients. Univariate analysis comparing characteristics of tested and non-tested patients is reported in Table 3, column A.

Prevalence of atypical pathogens

At least one atypical pathogen was isolated in 63 (4.7%) patients out of those tested for atypicals. *L. pneumophila* was detected in 30 (2.5%), *M. pneumoniae* in 26 (10.3%), and *C. pneumoniae* in 8 (3.5%) patients. The prevalence of atypical pathogens ranged from 0.0 to 36.4% and from 0.0 to 66.7% across different continents and countries, see Fig. 1b. Italy showed the highest prevalence of atypical pathogens in comparison with the rest of the world (7.5% VS. 4.2%, P = 0.022), whereas Spain showed the lowest prevalence (2.2% VS. 6.5%, P = 0.001) (Table 2).

Patients with CAP caused by atypical pathogens were significantly younger, showed less cardiovascular, renal, and metabolic comorbidities in comparison with patients with CAP caused by other pathogens CAP (Table 3, column B and Table 4).

Discussion

This secondary analysis of the GLIMP database found that only a third of patients hospitalized for CAP were tested for atypical pathogens worldwide, with a large variability among continents and countries. Patients with severe CAP were less likely to be tested for all atypical pathogens. Furthermore, *L. pneumophila* testing frequency was lower in ICU patients. Among those tested for, the prevalence of CAP caused by atypical pathogens was low. Younger age, female gender, and having a less comorbidities (cardiovascular disease, chronic renal failure) were factors associated with CAP due to atypicals.

The most frequent test for atypical pathogens performed in hospitalized patients with CAP was the *Legionella* urinary antigen (32.0%), followed by *Legionella* serology, whereas frequency of serological testing for any atypical pathogens was very low (6.8 and 6.1% for *M. pneumoniae* and *C. pneumoniae*, respectively).

However, information on molecular biology was not retrieved in the GLIMP dataset based on missing recommendations by international guidelines [1, 7]. Although molecular techniques was found helpful in the diagnosis of CAP caused by *L. pneumophila*, findings from different studies showed that single available tests were not reliable for the detection of *M. pneumoniae* and *C. pneumoniae* in CAP patients [9–11]. In addition, molecular studies carried out in large population groups found financial limitations and lack of standardization [6, 12, 13]. Finally, these results are intended to be a real-life snapshot of what it is really done in different countries worldwide; we deem that it is unrealistic a worldwide shift to PCR techniques considering that data presented here suggest that even the most common and affordable test, the urinary antigen for *Legionella*, is not routinely prescribed.

One of the major implications of a poor standardized approach for atypical pathogen testing is the wide heterogeneity across continents and countries. In Europe,
almost half of the patients in the GLIMP database was investigated for atypical pathogens, thus resulting in the highest testing frequency. However, among European countries a significant variability was found. For example, the testing frequency was higher in the Mediterranean countries than in Northern Europe, ranging from 10.7% in United Kingdom to 70.8% in Spain. This significant difference may be caused by several factors, including the importance given to atypical pathogens in relation with national epidemiological reports and the lack of interest for this microbiological work-up in countries where extensive empirical therapy is routinely offered to patients. Interestingly, although large differences in frequencies of testing were found, prevalence of atypical pathogens seems to be quite similar in Europe, ranging from 1.6 to 6.5%, with the only exception of Italy and Spain.

Furthermore, our data did not suggest significant clinical differences between patients who underwent testing for atypical pathogens and those who did not. The recent guidelines for the management of CAP published by the European Respiratory Society suggest a comprehensive microbiological work-up in severe patients [1]. However, we found that severe CAP was not a relevant driver for testing. Same results were obtained for other severity indicators, such as ICU admission, invasive/non-invasive mechanical ventilation, and administration of vasopressors. The low frequency testing may be explained by the

Fig. 1 a) Worldwide map on testing for atypical pathogens in hospitalized patients with community-acquired pneumonia (CAP) by country. Denominator: all CAP for each country. b) Worldwide map on prevalence of atypical pathogens in community-acquired pneumonia (CAP) in hospitalized patients by country. Denominator: all CAP tested for atypical pathogens for each country. Figure 1 is original and it was created using Stat Planet software with the information created from the study
recommendation of several guidelines on broad empirical coverage in severe patients [1, 14–16]. Notably, despite cost-effectiveness and ease of use of urinary antigen test, L. pneumophila testing frequency was also lower in ICU patients. These data are consistent with those showed by Singanayagam who demonstrated that pneumonia severity scores, such as PSI and CURB-65, are poor predictors of microbial etiology and that atypical pathogens are more prevalent in patients with less disease severity at their presentation [17].

The present study showed that the estimated prevalence of atypical pathogens in hospitalized CAP patients is low during a non-epidemic season (i.e., from March to June).

Table 1: Testing frequency for atypical pathogens (all) in hospitalized patients with community-acquired pneumonia across different continents and countries

Continent/Country	Tested/Total (%)	Rest of the world Tested/Total (%)	P
Europe	1078/2344 (46%)	172/1358 (12.7%)	< 0.0001
North America	105/529 (19.8%)	1145/3173 (36.1%)	< 0.0001
Asia	44/415 (10.6%)	1206/3287 (36.7%)	< 0.0001
Oceania	3/40 (7.5%)	1247/3662 (34.1%)	< 0.0001
Africa	9/156 (5.8%)	1241/3546 (35%)	< 0.0001
South America	11/218 (5%)	1239/3484 (35.6%)	< 0.0001
Spain	455/643 (70.8%)	795/3059 (26%)	< 0.0001
Italy	293/459 (63.8%)	957/3243 (29.5%)	< 0.0001
Greece	54/87 (62.1%)	1196/3615 (33.1%)	< 0.0001
France	40/66 (60.6%)	1210/3636 (33.3%)	< 0.0001
Portugal	58/134 (43.3%)	1192/3598 (33.4%)	0.018
Bulgaria	21/51 (41.2%)	1229/3651 (33.7%)	0.260
Denmark	26/89 (29.2%)	1224/3613 (33.9%)	0.358
Germany	40/173 (23.1%)	1210/3529 (34.3%)	0.002
US	102/477 (21.4%)	1148/3225 (35.6%)	< 0.0001
Serbia	10/56 (17.9%)	1240/3646 (34%)	0.011
Croatia	16/103 (15.5%)	1234/3599 (34.3%)	< 0.0001
UK	20/186 (10.8%)	1230/3516 (35%)	< 0.0001
Argentina	11/190 (5.8%)	1239/3512 (35.3%)	< 0.0001
Pakistan	6/109 (5.5%)	1244/3593 (34.6%)	< 0.0001

Table 2: Prevalence of atypical pathogens in hospitalized patients with community-acquired pneumonia across different continents

Continent	Tested/Total (%)	Rest of the world Tested/Total (%)	P
Africa	2/9 (22.2%)	60/1241 (4.8%)	0.070
Asia	2/4 (4.5%)	60/1206 (5%)	1
Europe	50/1078 (4.6%)	12/172 (7%)	0.091
North America	6/105 (5.7%)	56/1145 (4.9%)	0.922
Oceania	0/3 (0%)	62/1247 (5%)	1
South America	5/11 (45%)	57/1239 (4.6%)	0.001

The proportional distribution was heterogeneous and the majority of the reported cases were from Europe. Intercountry differences suggest that prevalence is lower in Africa and South America. L. pneumophila and M. pneumoniae seem to be the most frequent pathogens worldwide. The prevalence of M. pneumoniae is highest in South America, whereas L. pneumophila did show a homogeneous geographical distribution. L. pneumophila prevalence was similar to that recorded by Viasus (5.4% among 3934 immunocompetent hospitalized CAP patients after a 15-year study) [18]. Conversely, our data might underestimate the high incidence of legionellosis (12%) in the US population as previously reported by Vergis [19].

The CAPO database reported on a prevalence for atypical pathogens ranging from 20 to 28% across 21 countries over a five-year period (epidemic seasons included) [6]. The Authors performed a very comprehensive microbiological work-up including PCR for atypicals for the majority of CAP patients, but it is unclear the proportion of cases diagnosed by serological or molecular techniques. National and regional epidemiological reports showed a prevalence ranging from 9 to 50% [20–24]. Singanayagam and Coworkers recently published a secondary analysis of four independent prospective CAP datasets with atypical pathogens accounting for a global frequency of 14% in patients with identified microbiological positivity [17]. Interestingly, most of these
Table 3 Clinical characteristics of tested and non-tested patients for both all atypical pathogens and L. pneumophila (column A) and of patients with community-acquired pneumonia caused and not caused by atypical pathogen (column B)

Variables	Column A	Column B	P	Column A	Column B	P
	Tested patients (N = 1250)	Non-tested patients (N = 2452)		Atypical pathogen CAP (N = 63)	Non-atypical pathogen CAP (N = 1187)	
Demographic characteristics						
Age, years	68 (46–75)	70 (51–81)	0.43	62 (43–72)	71 (56–81)	0.015
Male, n (%)	714 (57)	1459 (59)	0.83	27 (43)	687 (58)	0.027
Underweight, n (%)	56 (4.5)	110 (4.5)	0.36	3 (4.8)	53 (4.5)	1
Obesity, n (%)	208 (16.6)	369 (15)	0.21	11 (17.4)	197 (16.6)	0.811
Respiratory past medical history						
Active lung cancer, s (%)	27 (2.2)	82 (3.3)	0.50	0 (0)	27 (2.3)	0.64
Asthma, n (%)	85 (6.8)	176 (7.2)	0.73	3 (4.8)	82 (6.9)	0.79
Bronchiectasis, n (%)	61 (4.9)	117 (4.6)	0.87	1 (1.6)	60 (5)	0.36
Chronic aspiration, n (%)	71 (5.7)	186 (7.6)	0.03	0 (0)	71 (6)	0.45
COPD, n (%)	327 (26.2)	609 (24.8)	0.38	14 (22.2)	313 (26.3)	0.51
FEV1 ≤ 30%, n (%)	27 (2.2)	73 (3)	0.16	0 (0)	27 (2.2)	0.64
Current/former smoker, n (%)	427 (34.2)	818 (33.4)	0.63	18 (28.5)	409 (34.4)	0.382
Interstitial lung disease, n (%)	34 (2.7)	61 (2.5)	0.66	1 (1.6)	33 (2.8)	1
Obstructive sleep apnea, n (%)	51 (4.1)	79 (3.2)	0.19	0 (0)	51 (4.3)	0.17
Oxygen therapy at home, n (%)	83 (6.6)	141 (5.7)	0.30	4 (6.4)	79 (6.6)	1
Lung transplantation, n (%)	1 (0.8)	6 (0.2)	0.44	0 (0)	1 (0.8)	1
Tracheostomy, n (%)	15 (1)	38 (1.5)	0.45	0 (0)	15 (1.3)	1
Cardiovascular past medical history						
Anrhymia, n (%)	218 (17.4)	309 (12.6)	<0.001	11 (17.7)	207 (17.4)	0.947
Coronary artery disease, n (%)	178 (14.2)	345 (14.1)	0.88	3 (4.8)	175 (14.7)	0.030
Heart failure, n (%)	88 (7)	210 (8.2)	0.26	2 (3.2)	86 (7.2)	0.312
Hypertension, n (%)	183 (14.6)	323 (13)	0.14	4 (6.5)	179 (14.4)	0.790
Chronic medications						
Inhaled corticosteroids use, n (%)	207 (16.6)	383 (15.6)	0.47	4 (6.5)	203 (17.1)	0.028
Proton Pump Inhibitor use, n (%)	401 (32)	627 (25.6)	<0.001	17 (27.4)	384 (32.3)	0.423
Statins use, n (%)	285 (22.8)	470 (19.2)	0.011	9 (14.5)	276 (23.2)	0.111
Steroids use, n (%)	86 (6.8)	208 (8.5)	0.09	4 (6.5)	82 (6.9)	1
Chronic interventions						
Enteric tube feeding, n (%)	11 (0.88)	41 (1.7)	0.05	0 (0)	11 (1)	1
Haemodialysis, n (%)	12 (1)	40 (1.6)	0.11	0 (0)	12 (1)	1
Indwelling catheter, n (%)	18 (1.4)	61 (2.5)	0.04	2 (3.2)	16 (1.4)	0.22
Immunosuppressive conditions						
Active solid tumour, n (%)	88 (7)	199 (8.1)	0.27	1 (1.6)	87 (7.3)	0.12
HIV infection, n (%)	28 (2.24)	95 (3.9)	0.009	2 (3.2)	26 (2.2)	0.64
AIDS, n (%)	15 (1.2)	50 (2)	0.08	2 (3.2)	13 (1.1)	0.16
Aplastic anaemia, n (%)	6 (0.3)	8 (0.3)	0.57	0 (0)	6 (0.5)	1
Asplenia, n (%)	6 (0.3)	6 (0.2)	0.24	0 (0)	6 (0.5)	1
Biological drug use, n (%)	14 (1.1)	23 (0.9)	0.60	0 (0)	14 (1.2)	1
Chemotherapy in the last 3 months, n (%)	48 (3.8)	97 (3.8)	0.92	1 (1.6)	47 (4)	0.51
Haematological malignancy, n (%)	73 (5.8)	89 (3.6)	=0.003	2 (3.2)	71 (6)	0.57
Immunocompromised patients, n (%)	230 (18.4)	435 (17.7)	0.62	12 (19.4)	218 (18.4)	0.84
studies suggested that atypical pathogens are more relevant in the outpatient population [17, 20–24].

The prevalence estimates on atypical microorganisms might be limited. Even if the combination of serology and molecular techniques was suggested to increase sensitivity, diagnostic tools only accounted on serology for atypical pathogens and urinary antigen for Legionella [1, 25]. Then, prevalence estimation can depend on frequency and comprehensiveness of the microbiological work-up.

Second, since patients have been enrolled on a single day in the months of March, April and May, most of data come from non-epidemic season in northern hemisphere, thus biasing a plausible estimation of atypical pathogen epidemiology.

However, the low testing frequency underscores the poor emphasis given by physicians or local health authorities to the role of atypicals. Therefore, the controversy on empiric coverage for atypical pathogens should be addressed after a more adequate description of the epidemiological burden and a sensitization of attending physicians.

Potential risk factors for atypical pathogens were also investigated. In this analysis cardiovascular disease as well as chronic renal failure act as protective factors for atypical etiology. Our understanding is that these results

Variables	Column A	Column B				
Neutropenia, n (%)	Tested patients (N = 1250)	Non-tested patients (N = 2452)	P	Atypical pathogen CAP (N = 63)	Non-atypical pathogen CAP (N = 1187)	P
Chronic renal failure, n (%)	144 (11.5)	256 (10.4)	0.31	2 (3.2)	142 (12)	0.036
Dementia, n (%)	136 (18.9)	272 (11.1)	0.87	5 (8.1)	131 (11)	0.46
Diabetes mellitus, n (%)	266 (21.3)	516 (21)	0.86	7 (11.3)	259 (21.8)	0.049
Liver disease, n (%)	59 (4.72)	81 (3.03)	0.36	4 (6.5)	55 (4.6)	0.53
Malnutrition, n (%)	95 (7.6)	0 (0)	0.08	4 (6.5)	91 (7.7)	1
Mental illness, n (%)	83 (6.6)	0 (0)	0.73	4 (6.5)	79 (6.6)	1
Prosthetic material, n (%)	41 (3.3)	75 (3)	0.76	1 (1.6)	40 (3.4)	0.71
Recurrent skin infections, n (%)	14 (1.1)	44 (1.8)	0.13	1 (1.6)	13 (1.1)	0.51
Bedridden, n (%)	110 (8.8)	305 (12.4)	0.001	3 (4.8)	86 (7.2)	0.61
Contact sport, n (%)	1 (0.1)	5	0.67	0 (0)	1 (1)	1.0
Healthcare worker, n (%)	20 (1.6)	27 (1.1)	0.21	5 (7.9)	15 (1.3)	0.002
Homeless, n (%)	12 (1.8)	23 (0.9)	1.0	0 (0)	12 (1)	1
Living in crowded conditions, n (%)	236 (18.9)	485 (19.8)	0.54	0 (0)	9 (0.8)	1
Nursing home resident, n (%)	86 (6.88)	216 (8.8)	0.042	11 (17.7)	225 (18.9)	0.81
Chronic aspiration, n (%)	71 (5.7)	186 (7.6)	0.034	0 (0)	62 (5.3)	0.047
Prior mycobacterial diseases, n (%)	31 (2.5)	65 (2.6)	0.82	3 (4.8)	28 (2.4)	0.19
Prior MRSA infection/colonisation, n (%)	30 (2.4)	56 (2.3)	0.82	0 (0)	30 (2.5)	0.39
Prior ESBL-producing bacterial infection, n (%)	21 (1.7)	34 (1.4)	0.48	1 (1.6)	20 (1.7)	1
Prior Pseudomonas spp. infection, n (%)	30 (2.4)	71 (2.9)	0.45	1 (1.6)	29 (2.4)	1
Severe CAP, n (%)	314 (25.1)	716 (29.2)	0.009	21 (33)	293 (24.7)	0.103
ICU or HDU admission, n (%)	277 (22.2)	619 (25.2)	=0.039	18 (28)	259 (22)	0.181
Either invasive or non-invasive ventilation, n (%)	206 (16.5)	456 (17.9)	0.11	12 (19)	194 (16.3)	0.531
Invasive ventilation, n (%)	114 (9.1)	240 (9.4)	0.55	3 (4.8)	111 (9.3)	0.230
Non-invasive ventilation, n (%)	118 (9.4)	231 (9)	1	9 (14.3)	109 (9.1)	0.161

CAP; Community-acquired pneumonia, MRSA; Methicillin resistant Staphylococcus aureus, COPD; Chronic obstructive pulmonary disease, FEV1; Forced expiratory volume during the first second, CAD; Coronary artery disease, ESBL; extended-spectrum beta-lactamases, LRTI; lower respiratory tract infections
might be a function of age, being patients with atypical pneumonia younger than others.

Conclusions
In conclusion, this real-life study demonstrates that testing for atypical pathogens in hospitalized patients with CAP is not routinely performed worldwide.

Testing for atypical pathogens is poorly standardized and a wide inter-country heterogeneity was found. Testing rates could not appropriately describe prevalence of atypicals in different settings. Further studies are needed to better assess the epidemiological burden and the utility of the current microbiological and clinical recommendations.

Additional file

Additional file 1: Table A: Tables with testing frequencies for specific atypical pathogens across continents (A1: Testing frequencies for *C. pneumoniae* across continents; A2: Testing frequencies for *M. pneumoniae* across continents; A3: Testing frequencies for *L. pneumophila* across continents). Brief description of the data: a table in three parts reporting data about frequency of testing for different atypical pathogens across different continents. (DOC 50 kb)

Abbreviations
CAP: Community-acquired pneumonia; GLIMP: Global Initiative for MRSA Pneumonia; ICU: Intensive care unit

Acknowledgments
GLIMP investigators
Argentina—Patricia Karina Aruj (Department of Internal Medicine, University Hospital Alfredo Lanari, Buenos Aires, Argentina); Silvia Attorri (Hospital Luis Lagomaggiore, Mendoza, Argentina); Enrique Barimboim (Hospital Central de Mendoza, Argentina); Juan Pablo Caeiro, Maria I Garzón (Hospital Privado Universitario, Córdoba, Argentina); Victor Hugo Cambursano (V H Dr Cazaux A Servicio de Neumología, Hospital Rawson, Córdoba, Argentina); Adrian Ceccato (Hospital Nacional Prof Alejandro Posadas, Argentina); Julio Chertoff , Florencia Lasca, Fernando Di Tullio (Critical Care Unit and Respiratory Medicine, Buenos Aires British Hospital, Buenos Aires, Argentina); Ariel Cordon Díaz (Hospital General Alvear, Ciudad, Mendoza, Argentina); Lautaro de Vedia (Respiratory Intensive Care Unit, Hospital Muñiz, Buenos Aires, Argentina); Maria Cristina Ganaña (Infectious Diseases Ward, Hospital Intercional General de Agudos, Vicente Lopez y Planes from General Rodríguez, Buenos Aires, Argentina); Sandra Lambert (Hospital El Cruce - Alta Complejidad en Red, Argentina); Gustavo Lopardo, Hospital Bernardo Houssay, Vicente López, Argentina); Carlos M Luna (Pulmonary Medicine Division, Department of Medicine, Hospital de Clinicas, Universidad de Buenos Aires, Argentina); Alessio Gerardo Malberti (Hospital Nuestra Señora del Carmen, Argentina); Nora Morcillo and Silvina Tartara (Hospital Zonal Especializado de Agudos y Crónicos Dr Antonio A Cetrangolo, Argentina); Claudia Pensotti (Infectious Diseases and Infection Control Department, Buenos Aires, Clínica Privada Monte Grande, Argentina); Betiana Pereyra (Hospital San Roque, Córdoba, Argentina); Pablo Gustavo Scapellato (Infectious Diseases Department, Hospital D F. Santogarai, Argentina); Juan Pablo Stagnaro (HESA MI Pueblo, Florencio Varela, Argentina); — Sonali Shah (Department of General Medicine, Austin Hospital, Heidelberg, Australia); Austria—Felix Lötsch, Florian Thalhammer (Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Medical University of Vienna, Austria); Belgium—Jean Louis Vincent (Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium); Kurt Anseeuw (ZNA Campus Stuivenberg, Antwerp, Belgium); Camille A Francois (Anesthesiology and critical care department, Erasme University Hospital, Brussels, Belgium); Eva Van Braeckel (Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium); Benin—Marcel Zannou Djimon, Jules Bash, Dodo Roger (Centre Hospitalier Universitaire HKM of Cotonou, Benin); Brazil—Simone Arana Nouer (Federal University of Rio de Janeiro, Rio de Janeiro, Brazil); Bulgaria—Peter Chipov, Milena Encheva (Clinical of Pulmonary Diseases, Military Medical Academy, Sofia, Bulgaria); Darina Mitova (UMHAT “St. Marina”, Varna, Bulgaria); Diana Petkova (University Hospital Varna, Bulgaria; Cameroon—Balkissou Adamou Dodo (Yaounde Jarot Hospital, Yaounde, Cameroon); Mbtouchou Ngalane Bertrand Hugo (Douala General Hospital, Doula, Cameroon); China—Ning Shen (Respiratory Medicine, Peking University Third Hospital, Beijing, China); Jin-fu Xu (Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University, China); Colombia—Carlos Andres Bustamante Rico, Ricardo Buitrago (Clinica Shaio, Bogota, Colombia); Fernando Jose Pereira Paternina (Las Americas Clinic, Medellin, Colombia); Congo—Kayembe Nutumba Jean-Marie (Cliniques Universitaires de Kinshasa, DR Congo); Croatia—Vesna Vladić Carevic (Interna Medicine, Dubrovnik, Croatia); Marko Jakopic (Medical School, University of Zagreb, Department for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, Zagreb, Croatia); Mateja Jankovic (University Hospital Center Zagreb, Department for Respiratory Diseases, Zagreb, Croatia); Zinka Matkovic (University Hospital Dubrava, Zagreb, Croatia); Ivan Mitric (Karlovac general hospital, Karlovac, Croatia). Denmark—Marie-Laure Bouchy Jacobsson (Emergency Department in North Zealand Hospital – Hillerød, Denmark); Anette Bro Christensen (Department of Anaesthesiology, Viborg Region Hospital, Denmark); Ulf e Christian HeitmannBedtger (Department of Pulmonology, Naestved Hospital, Denmark); Christian Niels Meyer (Department of Internal Medicine, Roskilde Hospital, Copenhagen University Hospital, Roskilde, Denmark); Andreas Vestergaard Jensen, Gertrud Baunbaek-Krudslen, Pelle Trier Petersen and Stine Andersen (Department of Lung and Infectious Diseases, Nordjylland’s Hospital-Hillerød, Denmark); Egypt—Ibrahim El-Said Abd El-Wahhab (Thoracic Medicine, Faculty of Medicine, Mansoura University, Egypt); Nesreen Elsaid Elmary (Pulmonary, Critical Care and Sleep Medicine, Faculty of Medicine, Mansoura University, Mansoura, Egypt); Hanaa Shafi ek (Chest diseases department, Faculty of Medicine, Alexandria University, Egypt); Eman Sobh (Chest Diseases Department, Al-Azhar University, Cairo, Egypt); France—Fabrice Bertrand (Critical care Unit, Robert Ballanger Hospital, Aulnay sous Bois, France); Christian Brun- Buisson (Univ Hospital Henn Mondor, 94000 Créteil, France); Etienne de Montmollin (Intensive care unit, Hôpital Delafontaine, Centre hospitalier de Saint-Denis, Saint-Denis, France); Muriel Faroukh (Unité de réanimation médico-chirurgicale, Pôle Thorax Voies aériennes, Hôpital Tenon, Groupe Hospitalier Est Parisien, France); Jonathan Messika (Publique-Hôpital de Paris, Service de Réanimation Médicochirurgicale, Hôpital Louis Mourier, Colombes, France, and University Parris Diderot, IAME, UMR 1137, Sorbonne Paris Cité, Paris, France); Pierre Tattevin (Infectious Diseases & ICU, Pontchaillou University Hospital, Rennes, France). Germany—Michael Dreher (Department of Cardiology, Pneumology, Vascular Medicine and Intensive Care Medicine, University Hospital Aachen, Aachen, Germany); Martin Kolditz (Division of Pulmonology, Medical Department I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany); Matthias Meisinger (Klinikum Niederlausitz GmbH, Klinik für Innere Medizin und Intensivmedizin, Senftenberg, Germany); Mathias W Petz and Stefan Hagel (Center for Infectious Diseases and Infection Control, Jena University Hospital, Germany); Jan Rupp (Department of Molecular and Infectious Diseases, University of Lübeck, Lübeck, Germany); Tom

Table 4 Protective factors for atypical pathogens in hospitalized patients with community-acquired pneumonia	OR (95% CI)	P
Age	0.583 (0.350–0.973)	0.039
Cardiovascular disease	> 0.0001	< 0.0001
Diabetes mellitus	0.464 (0.207–1.043)	0.063
Chronic renal failure	0.203 (0.480–0.865)	0.031
Severe CAP	1.769 (0.516–3.073)	0.364
Mechanical ventilation	0.288 (0.810–1.031)	0.056
ICU admission	1.156 (0.311–4.294)	0.826

ICU: intensive care unit; OR: Odds ratio; CI: confidence interval
Pujol (Intensive Care Medicine, Hospital de Mataró, Spain); South Canaria, Spain); Ane Uranga (Pulmology Department, Hospital of Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain); Jordi Solé-Violan Rello and Silvia Moyano (Critical Care Department, Hospital Vall d’Hebron, Barcelona, Spain); Francisco Sanz (Service of Neuromedical, Consorci Hospital General Universitari de València, Valencia, Spain); Oriol Sibila and Ana Rodrigo-Troyano (Servei de Pneumologia, Hospital de la Santa Creu i Sant Pau, Hbb-Sant Pau, Barcelona, Spain); Jordi Solé-Violan (Hospital Universitari de Gran Canaria Dr Negrín, Las Palmas de Gran Canaria, Spain); Ane Uranga (Pulmology Department, Hospital of Galdakao-Usansolo, Spain); Job FM van Boven (Hospital Universitari Son Espases, Palma de Mallorca, Spain); Estev Vendrell Torra and Jordi Almirall Pujol (Intensive Care Medicine, Hospital de Mataró, Spain); South Africa—Charles Feldman (Division of Pulmonology, Department of Internal Medicine, Charlotte Maxeke Johannesburg Academic Hospital, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa); South Korea—Hong Yoon (Inje Univ. Seoul Paik Hospital, South Korea). Togo—Ardouln Aittanne Fiegbie (Pulmonology and Infectious Diseases Service/University hospital of Sylvanus Olympio, Lomé, Togo). Tunisia—Ferdaous Yangui (Department of Pneumology, Hospital of Internal Forces Security (F.S.), Marsa, Tunis, Tunisia). Turkey—Semra Bilaceroglu (Izmır Dr Suat Seren Training and Research Hospital for Thoracic Medicine and Surgery, Izmir, Turkey). Levent Dalar (Pulmonary Medicine, Istanbul Bilim University, Istanbul, Turkey). Turkey—Ufuk Yilmaz (Suat Seren Chest Disease and Surgery Training and Research Hospital, Izmir, Turkey). Ukraine—Artemii Bogomolov (Vinnytsa National Pirogov Memorial Medical University, Vinnytsa regional antituberculosis hospital, Vinnytsia, Ukraine). United Arab Emirates—Naheed Elahi (Dubai Hospital, UAE); UK—Devesh J Dhansma (Victoria Hospital, Kirkcaldy, NHS Fife, UK); Rhianneon Ions, and Gerritt Wolmann (University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK); Carole Hancock (Royal Respiratory Research Team, Royal Liverpool University Hospital, Liverpool, UK); Adam T Hill (Royal Infirmary and University of Edinburgh, UK); Banu Rudran (The Royal London Hospital, Barts Health Trust, London, UK); Silvia Ruiz-Buitrago and Marion Campbell (Hairymyres Hospital, Eaglesham Road, East Kilbride, UK); Paul Whittaker (Department of Respiratory Medicine, St James’s Hospital, Leeds, UK). USA—Karen A Allen (University of Oklahoma Health Sciences Center, OK, USA); Veronika Brito (Texas A&M Health Science Center, Division of Pulmonary, Critical Care and Sleep Medicine Baylor Scott & White Health, TX, USA); Jessica Dietz (Fargo VA Health Care System, Fargo, ND, USA); Claire E Dystan and Susan M Kellie (Clement J Zablocki VA Medical Center, Milwaukee, WI, USA), USA, Division of Infectious Diseases, University of New Mexico School of Medicine, Raymond G Murphy VA Medical Center, Albuquerque, NM, USA); Ricardo A Franco-Sadud and Garnet Meier (Department of Pulmonary Medicine, Cook County Hospital, Chicago, IL, USA); Mina Gana (7H Resp Med Dept and Asthma Center, Athens Chest Hospital, USA); Thomas L Holland and Stephen P Bergin (Department of Medicine, Duke University Medical Center and School of Medicine, Duke Clinical Research Institute, NC, USA); Fayez Kheir (Department Pulmonary Diseases, Critical Care & Environmental Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA); Mark Landmeier (Division of Pulmonary and Critical Care Medicine, Northwestern Memorial Hospital, Chicago, IL, USA); Manuel Lois (John Peter Smith Hospital, Fort Worth, TX, USA); Girish B Nair (Intestinal Lung Disease Program and Pulmonary Rehabilitation, SUNY Stony Brook Winthrop University Hospital, Mineola, NY, USA); Hemali Patel (Department of Medicine, Division of General Internal Medicine, Hospital Medicine Group, University of Colorado, USA); Katherine Reyes (Henry Ford Hospital, Detroit, IL, USA); William Rodriguez-Cintron (Pulmonary/Critical Care Medicine VA Caribbean Healthcare System, USA); Shigeki Saito (Tulane University, New Orleans, USA); Nilam J Soni, Julio Noda, Cecilia I Hinojosoa, Stephanie M Levine, Luis F Angel, and Antonio Anzueto (Divisions of Hospital Medicine & Pulmonary/Critical Care Medicine, South Texas Veterans Health Care System, University of Texas Health Science Center San Antonio, San Antonio, TX, USA); K Scott Whitlow, John Hipskind, and Kunal Sukhija (Kaweah Delta Health Care District, Department of Emergency Medicine, Visalia, CA, USA); Richard G. Wunderink and Ray D Shah (Northwestern University Feinberg School of Medicine, Chicago, IL, USA). Zambia—Kondwelani John Mateyo (Department of Internal Medicine, University Teaching Hospital, Lusaka, Zambia).

Ethics approval and consent to participate
The coordinating center (University of Texas Health at San Antonio -UT Health-Texas, USA) received project approval by the Institutional Review Board (IRB# HSC20150184E). All participating centers followed their local law and regulations.

Availability of data and materials
The database used for the study is not public but it is available from the corresponding author on reasonable request.

Funding
The authors did not receive any funding for this study.

Authors' contributions
AG, SA and GS analyzed the dataset. AG, SA, GS, MDP, DR and ST interpreted the patient data. LFR took charge of Figs. EV, JN, FM, FB and MIR along with all the authors and approved the final manuscript.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests for this study.

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1Department of Pathophysiology and Transplantation, University of Milan, Internal Medicine Department, Respiratory unit and Adult Cystic Fibrosis Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy. 2Clinical Epidemiology and Medical Statistics Unit, Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy. 3Department of Biomedical and Clinical Medicine (DIBIC), University of Milan, Section of Respiratory Diseases, Ospedale L. Sacco, ASST Fatebenefratelli-Sacco, Milan, Italy. 4Respiratory Unit, San Paolo Hospital, Department of Medical Sciences, University of Milan, Milan, Italy. 5Division of Pulmonary Diseases and Critical Care Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA. 6Intensive Care Unit, Hospital de Mataró, Consorci Sanitari del Maresme, Carretera de Llobregat a Mataró, Barcelona, Spain. 7Internal Medicine Department, Centro Hospitalar do Porto, Porto, Portugal. 8Department of Medical Specialties, Pneumology Unit, IRCCS Arcispedale Santa Maria Nuova, Azienda USL Reggio Emilia, Italy.

Received: 28 May 2018 Accepted: 28 November 2018
Published online: 18 December 2018

References
1. Mandell LA, Wunderink RG, Anzueto A, et al. Infectious Diseases Society of America American Thoracic Society. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis. 2007;44(suppl 2):S27–72.
2. Ramírez JA, Wiemken TL, Peyrani P, Arnold FW, Kelley R, Mattingly WA, Nakamatsu R, Pena S, Guinn BE, Furmanek SP, Persaud AK, Raghuram A, Fernandez F, Beavin L, Bosson R, Fernandez-Botran R, Cavallazzi R, Bordon J, Valdivieso C, Schulte J, Carrico RM. University of Louisville Pneumonia Study
Group. Adults hospitalized with pneumonia in the United States: incidence, epidemiology, and mortality. Clin Infect Dis. 2017 Nov 13;65(11):1806–12.
3. Eliakim-Raz N, Robenshtok E, Shefet D, Gaftor-Gvili A, Vidal L, Paul M, Leibovici L. Empiric antibiotic coverage of atypical pathogens for community-acquired pneumonia in hospitalized adults. Cochrane Database of Systematic Reviews 2012, Issue 9. Art. No.: CD004418.
4. Arnold FW, Summenggill JT, Ramirez JA. Role of atypical pathogens in the etiology of community-acquired pneumonia. Semin Respir Crit Care Med. 2016 Dec;37(6):819–29 Epub 2016 Dec 13.
5. Tao LL, Hu BJ, He LX, Wei L, Xie HM, Wang BQ, Li HY, Chen XH, Zhou CM, Deng WW. Etiology and antimicrobial resistance of community-acquired pneumonia in adult patients in China. Chin Med J. 2012 Sep;125(17):2967–72.
6. Arnold FW, Summenggill JT, Lajoie AS, Peyrani P, Marrie TJ, Ross P, Blasi F, Fernandez P, File TM Jr, Rello J, Menendez R, Marzorati J, Luna CM, Ramirez JA. Community-acquired pneumonia organization (CAPO) investigators. A worldwide perspective of atypical pathogens in community-acquired pneumonia. Am J Respir Crit Care Med. 2007 May 15;175(10):1086–93.
7. Woodhead M, Blasi F, Ewig S, Garau J, Huchon G, Leven M, Otqviq A, Schaberg T, Tones A, van der Heijden G, Read R, Verheij TJ. Joint taskforce of the European Respiratory Society and European Society for Clinical Microbiology and Infectious Diseases. Guidelines for the management of adult lower respiratory tract infections—full version. Clin Microbiol Infect. 2011 Nov;17(Suppl 6):E1–59. https://doi.org/10.1111/j.1469-0691.2011.03672.x.
8. Alberti S, Reyes LF, Faverio P, Sotgiu G, Dore S, Rodriguez AH, Soni NJ, Restrepo MI, investigators GLIMP. Global initiative for meticillin-resistant Staphylococcus aureus pneumonia (GLIMP): an international, observational cohort study. Lancet Infect Dis. 2016 Dec 16;16(12):1364–76. https://doi.org/10.1016/S1473-3099(16)30267-5.
9. Martinez MA, Ruiz M, Zunino E, Luchinger V, Avendano LF. Detection of mycoplasma pneumoniae in adult community-acquired pneumonia by PCR and serology. J Med Microbiol. 2008;57(Pt 12):1491–5.
10. von BH, Welte T, Marre R, Suttorp N, Luck C, Ewig S. Mycoplasma pneumoniae pneumonia revisited within the German competence network for community-acquired pneumonia (CAPNETZ). BMC Infect Dis. 2009;9:62.
11. Thurman KA, Walter ND, Schwartz SB, et al. Comparison of laboratory diagnostic procedures for detection of mycoplasma pneumoniae in community outbreaks. Clin Infect Dis. 2009;48:1244–9.
12. Welte T, Suttorp N, Marre R. CAPNETZ: community-acquired pneumonia competence network. Infection. 2004;32:234–8.
13. Raaben VM, Spoorenberg SM, Boersma WG, van de Garde EM, Cannegieter SC, Voom GP, Bos WJ, van Steenbergen JE, Alkmaar study group, OxiDisk study group. Atypical etiology in patients hospitalized with community-acquired pneumonia is associated with age, gender and season; a data-analysis on four Dutch cohorts. BMC Infect Dis. 2016 Jun 17;16:299. https://doi.org/10.1186/s12879-016-1561-9.
14. Lim WS, Baudouin SV, George RC, et al. BTS guidelines for the management of community acquired pneumonia in adults: update 2009. Thorax 2009; 64: Suppl. 3, iii1–iii5.
15. Yanagihara K, Kohno S, Matusima T. Japanese guidelines for the management of community-acquired pneumonia. Int J Antimicrob Agents. 2003;18(Suppl. 1): S4–8.
16. Working Group of the South African Thoracic Society. Management of community-acquired pneumonia in adults. S Afr Med J. 2007;97:1296–306.
17. Singanayagam A, Alberti S, Cillóniz C, et al. Evaluation of severity score-guided approaches to macrolide use in community-acquired pneumonia. Eur Respir J. 2017;50:1602306.
18. Vivas D, Di Yacovo S, Garcia-Vidal C, Verdaguer R, Manresa F, Dorca J, Gudiol F, Canatalla J. Community- acquired legionella pneumonia pneumonia in single- center experience with 214 hospitalized sporadic cases over 15 years. Medicine. 2012;91:51–60.
19. Vergis EN, Indorf A, File TM Jr, Phillips J, Bates J, Tan J, Sarosi GA, Grayston JT, Summenggill JT, Yu VL. Azithromycin vs ceftriaxone plus erythromycin for empirical treatment of community-acquired pneumonia in hospitalized patients: a prospective, randomized, multicenter trial. Arch Intern Med. 2000 May 8;160(9):1294–300.
20. Luchinger V, Ruiz M, Zunino E, Martínez MA, Machado C, Piedra PA, Fasce R, Ulloa MT, Fink MC, Lara P, Gebauer M, Chávez F, Avendaño LF. Community- acquired pneumonia in Chile: the clinical relevance in the detection of viruses and atypical bacteria. Thorax. 2013;68:1000–6.
21. Spoorenberg SM, Bos WJ, Heijligenberg R, Voom PG, Grutters JC, Rijkers GT, van de Garde EM. Microbiol aetiology, outcomes, and costs of hospitalisation for community-acquired pneumonia; an observational analysis. BMC Infect Dis. 2014;14:335–43.
22. Shibli F, Chazan B, Nitzan O, Platou E, Edelstein H, Blondheim O, Raz R, Golodner R. Etiology of community-acquired pneumonia in hospitalized patients in northern Israel. Isr Med Assoc J. 2010;12:477–82.
23. Chen X, Jia R, Li J, Yang C, Shi Y. The aetiology of community associated pneumonia in children in Nanjing, China and aetiological pattern associated with age and season. BMC Public Health. 2015;15:113–8.
24. Arancibia F, Cortes CP, Valdés M, Cerda J, Hernández A, Soto L, Torres A. Importance of legionella pneumophila in the etiology of severe community-acquired pneumonia in Santiago, Chile. Chest. 2014;145:290–6.
25. Templeton KE, Scheltinga SA, van den Eeden WC, Graffelman AW, van den Broek PJ, Claas EC. Improved diagnosis of the etiology of community-acquired pneumonia with real-time polymerase chain reaction. Clin Infect Dis. 2005;41:345–51.