ON THE MASLOV CLASS RIGIDITY FOR COISOTROPIC
SUBMANIFOLDS

VIKTOR L. GINZBURG

Abstract. We define the Maslov index of a loop tangent to the characteristic
tetration of a coisotropic submanifold as the mean Conley–Zehnder index of
path in the group of linear symplectic transformations, incorporating the
“rotation” of the tangent space of the leaf – this is the standard Lagrangian
counterpart – and the holonomy of the characteristic foliation. Furthermore,
we show that, with this definition, the Maslov class rigidity extends to the
class of the so-called stable coisotropic submanifolds including Lagrangian tori
and stable hypersurfaces.

1. Introduction and main results

1.1. Introduction. As the title indicates, the main theme of the paper is the
Maslov class rigidity for coisotropic submanifolds. To be more specific, we define
the Maslov index of a loop tangent to the characteristic foliation in a coisotropic
submanifold and show that a displaceable, stable coisotropic submanifold carries a
loop with Maslov index in the range \([1, 2n + 1 - k]\), where \(2n\) is the dimension of
the ambient manifold and \(k\) is the codimension of the coisotropic submanifold.

Date: November 13, 2009.
2000 Mathematics Subject Classification. 53D40, 53D12, 37J45.
The work is partially supported by the NSF and by the faculty research funds of the University
of California, Santa Cruz.
The study of symplectic topology of coisotropic submanifolds can be traced back to Moser’s paper [Mo] followed by [Ba, EH, Ho] and by the work of Bolle, [Bo1, Bo2]. Recently, the field has entered a particularly active phase; see [AF1, AF2, Dr, Gi3, Gü2, Gü3, Ka, Ke1, To, Us, Zi1, Zi2]. Most of these papers, with the exception of [Zi2], concern such questions as generalizations to coisotropic submanifolds of the Lagrangian intersection property or of the existence of closed characteristics on stable hypersurfaces. The present work, which can be thought of as a follow-up to [Gi3], focuses mainly on the coisotropic version of the Maslov class rigidity, also considered in [Zi2].

The aspect of the Maslov class rigidity we are concerned with here is the fact that the Maslov class of a closed displaceable Lagrangian submanifold automatically satisfies certain restrictions. Namely, the minimal Maslov number of such a submanifold lies between 1 and $n + 1$. This phenomenon was originally studied in [Po1, Po2, Vi] and there are two methods of proving results of this type. One of these methods uses the holomorphic curves technique (see [ALP, Po1, Po2]) and at this moment it is not known how to directly apply it to coisotropic submanifolds due to the lack of Fredholm properties for the Cauchy–Riemann problem with coisotropic boundary conditions. The second approach, originating from [Vi], relies on Hamiltonian Floer homology (or its equivalent) and in combination with certain estimates from [Bo2] can be easily adapted to the coisotropic setting; see, e.g., [Gi3]. Here, we heavily draw from the modern interpretation of this method given in [Ke2, KS].

The Maslov index of a loop tangent to the characteristic foliation is the mean Conley–Zehnder index of a certain path in $\text{Sp}(2n)$ associated with the loop and comprising the “rotation” of the tangent space of the leaf, as the standard Lagrangian counterpart, and the holonomy of the characteristic foliation. Hence, the index can be an arbitrary real number. This definition, which can also be found in [Zi2] where it is treated in great detail, is of independent interest. Then, the proof of the Maslov class rigidity for coisotropic submanifolds follows the path of [Ke2, KS, Vi]. The main new element of the proof is that we circumvent relating the Conley–Zehnder and Morse indices as in [Du, Vi], but instead use the explicit expression for the geodesic flow of a metric, capitalizing on the fact that the submanifolds in question are stable and hence admit a leaf-wise flat metric.

1.2. Coisotropic Maslov index.

Let M be a coisotropic submanifold of a symplectic manifold (W^{2n}, ω). Denote by \mathcal{F} the characteristic foliation of M; see Section 2.1 for the definition. The normal bundle $T^\perp M$ to M is canonically isomorphic to the (leaf-wise) cotangent bundle $T^*\mathcal{F}$ to \mathcal{F} and the direct sum $TF \oplus T^\perp M$ is a symplectic vector bundle over M. Furthermore, we have a symplectic vector bundle decomposition

$$TW|_M = (TF \oplus T^\perp M) \oplus T^\perp \mathcal{F},$$

(1.1)

where $T^\perp \mathcal{F}$ is the normal bundle to \mathcal{F} in M. Note that $T^\perp \mathcal{F}$ carries a symplectic leaf-wise flat connection.

Consider a loop $\gamma: S^1 \to M$ tangent to \mathcal{F}, contractible in W and equipped with a capping $u: D^2 \to W$. The capping u gives rise to a symplectic trivialization ζ, unique up to homotopy, of the pull-back bundle γ^*TW. Let us assume first that $T\mathcal{F}$ is orientable along γ (i.e., the pull-back $\gamma^*T\mathcal{F}$ is orientable), and hence trivial, and fix a trivialization ξ of this vector bundle. Then the pull-back $\gamma^*(TF \oplus T^\perp M)$ receives a symplectic trivialization $\xi \oplus \xi^*$. This trivialization can be viewed as a
family of symplectic maps \(\Xi(t) : T_{\gamma(t)}(0)F \oplus T_{\gamma(t)}(0)M \to T_{\gamma(t)}F \oplus T_{\gamma(t)}M \) parametrized by \(t \in S^1 \). Combining the family \(\Xi(t) \) with the holonomy \(\Gamma(t) : T_{\gamma(t)}F \to T_{\gamma(t)}^\perp F \) along \(\gamma \), we obtain a family of symplectic maps \(\Xi(t) \oplus \Gamma(t) : T_{\gamma(t)}W \to T_{\gamma(t)}W \), which, using the trivialization \(\zeta \), we can regard as a path \(\Phi : [0, 1] \to \text{Sp}(2n) \).

Definition 1.1. The coisotropic Maslov index \(\mu(\gamma, u) \) of the capped loop \((\gamma, u)\) is the negative mean Conley–Zehnder index \(-\Delta(\Phi) \in \mathbb{R}\). (We refer the reader to [Lo, SZ] for a detailed discussion of the mean index; here we use the notation and conventions from [GG3]; see Section 2.2.) When \(T\mathcal{F} \) is not orientable along \(\gamma \), we set \(\mu(\gamma, u) := (\gamma^2, u^2)/2 \), where \((\gamma^2, u^2)\) stands for the double cover of \((\gamma, u)\).

The standard argument shows that the index \(\mu(\gamma, u) \) is well defined, i.e., independent of the choice of the trivializations \(\xi \) and \(\zeta \). Furthermore, it is also independent of the choice of splitting \((1.1)\): the normal bundle \(T^\perp \mathcal{F} \) is unambiguously defined only as the quotient \(TW/ TF \) while the splitting requires a choice of the complement to \(TF \) in \(TW \). To see that \(\Delta(\Phi) \) is independent of this choice, we argue as follows; cf. the proof of [GG3, Lemma 2.6]. Observe that the path \(\tilde{\Phi} \) resulting from a different splitting is homotopic to the concatenation of the path \(\Phi \) with a path \(\Psi \) of the form \(\Psi(t) = I + A(t) \), where \(I \) is the identity map and \(A(t) : T^\perp \mathcal{F} \to (TF \oplus T^\perp M) \).

Thus, all eigenvalues of \(\Psi(t) \) are equal to one and, as a consequence, \(\Delta(\tilde{\Psi}) = 0 \). Hence, by the additivity and homotopy invariance of the mean index (see, e.g., [GG3, Lo, SZ]), we have \(\Delta(\Phi) = \Delta(\tilde{\Phi}) \).

It is worth emphasizing that, in contrast with the ordinary Lagrangian Maslov index, the coisotropic Maslov index is not, in general, an integer and that this index is different from the one considered in [Oh]. The negative sign in the definition of the coisotropic Maslov index is, of course, a matter of conventions: this is the price we have to pay to match the sign of the standard Maslov index for Lagrangian submanifolds (Example 1.2) while using the conventions from [GG3]; see Section 2.2.

It is easy to see that the coisotropic Maslov index has the following properties.

- Homotopy invariance: \(\mu(\gamma, u) \) is invariant, in the obvious sense, under a homotopy of \(\gamma \) in a leaf of \(\mathcal{F} \). In particular, \(\mu(\gamma, u) = 0 \) when \(u \) is homotopic (rel boundary) to a disc in the leaf of \(\mathcal{F} \) containing \(\gamma \).
- Recapping: \(\mu(\gamma, u\#v) = \mu(\gamma, u) - 2 \langle c_1(TW), v \rangle \), where the capping \(u\#v \) is obtained by attaching the sphere \(v \in \pi_2(W) \) to \(u \). In particular, \(\mu(\gamma) := \mu(\gamma, u) \) is independent of \(u \) when \(c_1(TW) \mid_{\pi_2(W)} = 0 \).
- Homogeneity: \(\mu(\gamma^k, u^k) = k\mu(\gamma, u) \), where \((\gamma^k, u^k)\) stands for the \(k \)-fold cover of \((\gamma, u)\). Moreover, when \(c_1(TW) \mid_{\pi_2(W)} = 0 \), the Maslov index gives rise to a homomorphism \(\pi_1(F) \to \mathbb{R} \) for any leaf \(F \) of \(\mathcal{F} \).

Example 1.2. When \(M \) is a Lagrangian submanifold of \(W \), the foliation \(\mathcal{F} \) has only one leaf, the manifold \(M \) itself, and the coisotropic Maslov index coincides with the ordinary Maslov index. Indeed, in this case, Definition 1.1 turns into one of the definitions of this index.

Example 1.3. When \(u \) is contained in \(M \), the index \(\mu(\gamma, u) \) is equal to the mean index of the holonomy along \(\gamma \) with respect to a symplectic trivialization of \(T^\perp \mathcal{F} \) associated with \(u \). For instance, when \(M \) is a regular level of a Hamiltonian and \(\gamma \) is a periodic orbit (and again \(u \) is contained in \(M \)), the Maslov index \(\mu(\gamma, u) \) is equal to the mean index of \(\gamma \) in \(M \).
Example 1.4. When all leaves of \mathcal{F} are closed and form a fibration, the path Φ is a loop and $\mu(\gamma, u)$ is equal to the Maslov index of this loop. (In particular, then $\mu(\gamma, u)$ is an integer.) In this setting, the coisotropic Maslov index is further investigated by Ziltener, [Zi2]. Moreover, one can express the coisotropic Maslov index via the Lagrangian Maslov index in the graph of \mathcal{F}; see [Zi1, Zi2] for details.

Now we are in a position to state the main result of the paper. A much more detailed discussion of the coisotropic Maslov index can be found in [Zi2].

1.3. Rigidity of the coisotropic Maslov index. Let W be a symplectically aspherical manifold, which we assume to be either closed or geometrically bounded and wide (e.g., convex at infinity) in the sense of [Gü1].

Theorem 1.5. Let W^{2n} be as above and let $M^{2n-k} \subset W$ be a closed, stable, displaceable coisotropic submanifold. (See Section 2.1 for the definitions.) Then, for any $\delta > 0$, there exists a loop η tangent to \mathcal{F} and contractible in W and such that

$$1 \leq \mu(\eta) \leq 2n + 1 - k \quad (1.2)$$

and

$$0 < \text{Area}(\eta) \leq e(M) + \delta, \quad (1.3)$$

where $\text{Area}(\eta)$ is the symplectic area bounded by η and $e(M)$ is the displacement energy of M.

Example 1.6. As in Example 1.2, assume that M is a stable Lagrangian submanifold (and hence a torus). Then $k = n$ and the theorem reduces to a particular case of the standard Lagrangian Maslov class rigidity. This version of rigidity is established in [Vi] for $W = \mathbb{R}^{2n}$ and in [Ke2, KS] for closed ambient manifolds; see also [ALP, Po1, Po2] for generalizations.

Example 1.7. Assume that M is a stable, displaceable, simply connected hypersurface. Then, by (1.2) and Example 1.3, M carries a closed characteristic η with $1 \leq \Delta(\gamma) \leq 2n$. This is apparently a new observation. However, if we replace the upper bound by $2n + 1$, the assertion becomes an easy consequence of the properties of the mean index and, for instance, the displacement or symplectic homology proof of the almost existence theorem; see, e.g., [FHW, Gi2, Gü1, HZ] and references therein.

Remark 1.8. A word on the hypotheses of the theorem is due now. The assumption that W be symplectically aspherical is imposed here only for the sake of simplicity and can be significantly relaxed along the lines of [Ke1, Us]. Hypothetically, a combination of our argument with the reasoning from these works should lead to a generalization of the theorem to the case where we only require the subgroup $\langle \omega, \pi_2(M) \rangle \subset \mathbb{R}$ to be discrete as in [Us, Theorem 1.6] or, at least, where W is monotone or negative monotone; see [Ke1]. (In such a generalization, the geodesic η is, of course, equipped with capping.)

The condition that M is stable cannot be entirely omitted due to the counterexamples to the Hamiltonian Seifert conjecture showing that there exist hypersurfaces in \mathbb{R}^{2n} (C^2 when $2n = 4$) without closed characteristics; see [Gi1, GG1] and references therein. However, this condition can possibly be relaxed as in [Us, Section 7].

Finally note that the existence of a loop η satisfying (1.3) is established in [Gi3, Theorem 2.7], where the second inequality (with $\delta = 0$) is proved under the additional hypothesis that M has restricted contact type. Thus, even when only the
area bounds are concerned, Theorem 1.5 is a generalization (up to the issue of δ) of the results from [Gi3], which became possible due to incorporating a technique from [Ke2, KS] into the proof.

Remark 1.9. It is tempting to conjecture that the Maslov class of M is still non-zero even when the stability assumption in Theorem 1.5 is dropped and all leaves of F may be contractible. However, it is not entirely clear how to define this Maslov class and what cohomology space this class should lie in. The situation contrasts sharply with a similar question for the Liouville class of M, which can always be defined, when W is exact, as the class $[\lambda|_F]$ of a global primitive λ of ω in the tangential de Rham cohomology $H^1(F)$; see [Gi3, Section 1.2].

Acknowledgments. The author is grateful to Başak Gürer and Ely Kerman for useful discussions and remarks. He would also like to thank Yaël Karshon and Fabian Ziltener for an inspiring discussion of the notion of the coisotropic Maslov index.

2. Preliminaries

We start this section by recalling the relevant definitions and basic results concerning coisotropic submanifolds. In Section 2.2, we set our conventions and notation.

2.1. Stable coisotropic submanifolds. Let, as above, (W^{2n}, ω) be a symplectic manifold and let $M \subset W$ be a closed, coisotropic submanifold of codimension k. Set $\omega_M = \omega|_M$. Then, as is well known, the distribution $\ker\omega_M$ has dimension k and is integrable. Denote by F the characteristic foliation on M, i.e., the k-dimensional foliation whose leaves are tangent to the distribution $\ker\omega_M$.

Definition 2.1. The coisotropic submanifold M is said to be stable if there exist one-forms $\alpha_1, \ldots, \alpha_k$ on M such that $\ker d\alpha_i \supset \ker\omega_M$ for all $i = 1, \ldots, k$ and

$$\alpha_1 \wedge \cdots \wedge \alpha_k \wedge \omega_M^{n-k} \neq 0$$

anywhere on M. We say that M has contact type if the forms α_i can be taken to be primitives of ω_M. Furthermore, M has restricted contact type if the forms α_i extend to global primitives of ω on W.

Stable and contact type coisotropic submanifolds were introduced by Bolle in [Bo1, Bo2] and considered in a more general setting in [Gi3] and also by Kerman, [Ke1], and Usher, [Us]. We refer the reader to [Gi3] for a discussion of the requirements of Definition 2.1 and examples. Here we only note that although Definition 2.1 is natural, it is quite restrictive. For example, a stable Lagrangian submanifold is necessarily a torus and a stable coisotropic submanifold is automatically orientable.

Assume henceforth that M is stable. Then the normal bundle $T^\perp M$ to M in W is trivial, since it is isomorphic to $T^* F$ and the latter bundle is trivial due to (2.1). From now on, we fix the trivialization $T^\perp M = T^* F \cong M \times \mathbb{R}^k$ given by the forms α_i and identify a small neighborhood of M in W with a neighborhood of M in $T^* F = M \times \mathbb{R}^k$. We will use the same symbols ω_M and α_i for differential forms on M and for their pullbacks to $M \times \mathbb{R}^k$. (In other words, we are suppressing the pullback notation π^*, where $\pi: M \times \mathbb{R}^k \to M$, unless its presence is absolutely necessary.) As a consequence of the Weinstein symplectic neighborhood theorem, we have
Proposition 2.2 ([Bo1, Bo2]). Let M be a closed, stable coisotropic submanifold of (W^{2n}, ω) with codim $M = k$. Then, for a sufficiently small $r > 0$, there exists a neighborhood of M in W, which is symplectomorphic to $U_r = \{(q,p) \in M \times \mathbb{R}^k \mid |p| < r\}$ equipped with the symplectic form $\omega = \omega_M + \sum_{j=1}^k d(p_j \alpha_j)$. Here (p_1, \ldots, p_k) are the coordinates on \mathbb{R}^k and $|p|$ is the Euclidean norm of p.

Thus, a neighborhood of M in W is foliated by a family of coisotropic submanifolds $M_p = M \times \{p\}$ with $p \in B^k_r$, where B^k_r is the ball of radius r centered at the origin in \mathbb{R}^k. Moreover, a leaf of the characteristic foliation on M_p projects onto a leaf of the characteristic foliation on M.

Furthermore, we have

Proposition 2.3 ([Bo1, Bo2, Gi3]). Let M be a stable coisotropic submanifold.

(i) The leaf-wise metric $(\alpha_1)^2 + \cdots + (\alpha_k)^2$ on \mathcal{F} is leaf-wise flat.

(ii) The Hamiltonian flow of $\rho = (p_1^2 + \cdots + p_k^2)/2 = |p|^2/2$ is the leaf-wise geodesic flow of this metric.

We conclude this section by pointing out that the metric ρ extends to a true metric on M such that the leaves of \mathcal{F} are totally geodesic submanifolds and that the existence of such a metric is equivalent to the stability of M when M is a hypersurface; see [Su] and [Us, Section 7].

2.2. Conventions and notation. In this section we specify conventions and notation used throughout the paper.

2.2.1. Action functional and the Hamilton equation. Let (W^{2n}, ω) be a symplectically aspherical manifold, i.e., $\omega|_{\pi_2(W)} = c_1|_{\pi_2(W)} = 0$. Denote by $\mathcal{A}W$ the space of smooth contractible loops $\gamma: S^1 \to W$ and consider a time-dependent Hamiltonian $H: S^1 \times W \to \mathbb{R}$, where $S^1 = \mathbb{R}/\mathbb{Z}$. Setting $H_t = H(t, \cdot)$ for $t \in S^1$, we define the action functional $\mathcal{A}_H: \mathcal{A}W \to \mathbb{R}$ by

$$\mathcal{A}_{H_t}(\gamma) = \mathcal{A}(\gamma) + \int_{S^1} H_t(\gamma(t)) \, dt,$$

where $\mathcal{A}(\gamma) = -\text{Area}(\gamma)$ is the negative symplectic area bounded by γ. In other words,

$$\mathcal{A}(\gamma) = -\int_u \omega,$$

where $u: D^2 \to W$ is a capping of γ, i.e., $u|_{S^1} = \gamma$. The least action principle asserts that the critical points of \mathcal{A}_H are exactly the contractible one-periodic orbits of the time-dependent Hamiltonian flow φ^H_{t} of H, where the Hamiltonian vector field X_H of H is defined by the Hamilton equation $i_{X_H} \omega = -dH$.

2.2.2. Conley–Zehnder index. Consider a finite–dimensional symplectic vector space V. We denote by $\text{Sp}(V)$ the group of linear symplectic transformations of V and, as usual, set $\text{Sp}(2n) = \text{Sp}(\mathbb{R}^{2n})$. Furthermore, we let $\Delta(\Phi)$ stand for the mean index of a path $\Phi: [0, T] \to \text{Sp}(V)$ and, when Φ is non-degenerate (i.e., $\Phi(T)$ has no eigenvalues equal to one), we denote by $\mu_{cz}(\Phi)$ the Conley–Zehnder index of Φ.

We refer the reader to [Lo, Sa, SZ] and also [GG3] for the definitions and a detailed discussion of these notions. In this paper, we normalize these indices as in [GG3]. This normalization is different from the ones in [Lo, Sa, SZ]. For instance, our $\mu_{cz}(\Phi)$ is the negative of the Conley–Zehnder index as defined in [Sa]. For the flow
Consider a version of the "pinned" action selector introduced in (Gü1). When considering autonomous Hamiltonians, conventions and notation from CGK. In the definition of Floer homology, we adopt literally the filtered Floer homology. In the limit identity, we assume that $\Phi(t)$ is non-degenerate for all t and thus $\mu_{cz}(\Phi)$ is defined. Note that here we can replace Φ^k by the concatenation of the paths Φ, $\Phi(T)\Phi$, etc., up to $\Phi(T)^{k-1}\Phi$.

Let now x be a contractible periodic orbit of H on W^{2n}. Using a trivialization of x^*TW arising from a capping of x, we can interpret the linearized flow $d\phi_t$ along x as a path Φ in $Sp(2n)$. The mean index $\Delta(x)$ of x is by definition $\Delta(\Phi)$. When x is non-degenerate, we also set $\mu_{cz}(x) := \mu_{cz}(\Phi)$. Since $c_1(TW)|_{\pi_2(W)} = 0$, these indices are well-defined, i.e., independent of the capping. When we need to emphasize the role of H, we write $\Delta_H(x)$ and $\mu_{cz}(x, H)$. By (2.2), we have

$$|\Delta(x) - \mu_{cz}(x)| < n \quad \text{and} \quad \Delta(x) = \lim_{k \to \infty} \frac{\mu_{cz}(x^k)}{k}.$$

As in (2.2), we require here x to be non-degenerate for $\mu_{cz}(x)$ to be defined, and, in the limit identity, we assume that x is strongly non-degenerate, i.e., all iterated orbits x^k are non-degenerate. Finally note that with our normalizations $\Delta(x) > 0$ and $\mu_{cz}(x) = n$ when x is a non-degenerate maximum (with small Hessian) of an autonomous Hamiltonian.

2.2.3. Floer homology

In the definition of Floer homology, we adopt literally the conventions and notation from [Gi3]. All Hamiltonians considered in this paper are assumed to be compactly supported. The manifold W, in addition to being symplectically aspherical, is required to be either closed or geometrically bounded and wide in the sense of [Gü1]. (See, e.g., [ALP, CGK, Si] for the precise definition and a discussion of geometrically bounded manifolds.)

Examples of geometrically bounded manifolds include symplectic manifolds which are convex at infinity (e.g., \mathbb{R}^{2n} and cotangent bundles) as well as twisted cotangent bundles. Under the hypotheses that W is symplectically aspherical and geometrically bounded, the compactness theorem for Floer’s connecting trajectories holds (see [Si]) and the filtered \mathbb{Z}-graded Floer homology of a compactly supported Hamiltonian on W is defined for action intervals not containing zero; see, e.g., [CGK, GG2] and references therein. We use the wideness hypothesis in Section 3.2 when considering a version of the “pinned” action selector introduced in [Ke2]. This requirement is not restrictive, for, to the best of the author’s knowledge, no examples of geometrically bounded open manifolds that are not wide are known.

We use the notation $HF^a_*(a, b)(H)$ for the filtered Floer homology of H, graded by the Conley–Zehnder index. The end-points a and b are always assumed to be outside the action spectrum $S(H)$ of H and, if W is open, we require that $0 \not\in (a, b)$.

When W is closed, we have a canonical isomorphism $HF_*(H) = H_{s+n}(W; \mathbb{Z}_2)$, where as usual $HF_*(H) = HF(-\infty, \infty)(H)$. When all periodic orbits of H with action in (a, b) are non-degenerate, we let $\text{CF}^{(a, b)}_*(H)$ be the vector space generated over \mathbb{Z}_2 by such orbits, graded by the Conley–Zehnder index. The downward Floer differential $\partial: \text{CF}^{(a, b)}_* (H) \to \text{CF}^{(a, b)-1}_*(H)$ is then defined in the standard way and $HF^{(a, b)}_*(H)$ is the homology of the resulting Floer complex. The above non-degeneracy requirement is generic (as long as $0 \notin (a, b)$ if W is open) and, in general, we set $HF^{(a, b)}_*(H) := HF^{(a, b)}_*(\bar{H})$, where \bar{H} is a small perturbation of H having only non-degenerate orbits with action in (a, b). Since a and b are outside $S(H)$, the homology $HF^{(a, b)}_*(H)$ is independent of \bar{H} as long as \bar{H} is sufficiently close to H. We refer the reader to [CGK, Gi3, GG2] for the proofs and further details on the construction and properties of the Floer homology in this setting as well as for further references.

3. Proof of the main theorem

3.1. Maslov index for stable coisotropic submanifolds. Let M be a stable coisotropic submanifold. In this section, we interpret the mean index $\Delta_\rho(x)$ of a periodic orbit x of the leaf-wise geodesic flow on M as, up to a sign, the coisotropic Maslov index of the projection γ of x to M. Furthermore, we establish certain bounds, going beyond (2.3), on the Conley–Zehnder index of a small non-degenerate perturbation of x. Throughout this subsection, we will use the notation from Section 2.1. In particular, we fix a neighborhood $U = M \times B$, where $B = B_r$, of M in W. Thus, let x be a non-trivial, contractible in W closed orbit of the Hamiltonian flow of ρ and let $\gamma = \pi(x)$. Then γ is also contractible in W.

Proposition 3.1. We have

$$\mu(\gamma) = -\Delta_\rho(x).$$

Proof. It is convenient to first extend the decomposition (1.1) from $TW|_M$ to $TW|_U$ as follows. Recall from Section 2.1 that the submanifolds $M_p = M \times \{p\} \subset M \times B$, with $p \in B$, are coisotropic and that the characteristic foliation F_p of M_p projects to F under π. Denote by \tilde{F} the resulting foliation of U, obtained as the union of foliations F_p. Furthermore, let TM be the horizontal tangent bundle in $M \times B$, i.e., $(TM)_{(q, p)} = T_{(q, p)}M_p$ where $(q, p) \in U = M \times B$, and likewise let TB denote the vertical bundle $\ker \pi_*$. Then the normal bundle $T_{\perp} \tilde{F}$ to $T \tilde{F}$ in TM can be realized as the sub-bundle $E = (\cap_i \ker \pi^* \alpha_i) \cap TM$. We have the symplectic decomposition

$$TW = (T \tilde{F} \oplus TB) \oplus E,$$

which turns into (1.1) once restricted to M.

The linearized projection π_* gives rise to an isomorphism between the fibers $(T \tilde{F})_{(q, p)}$ and T_qF, and $E_{(q, p)}$ and $T_q^\perp F$. Furthermore, $(TB)_{(q, p)}$ is naturally isomorphic to $T_0B = T_q^\perp M$. Thus, we have a (symplectic) linear isomorphism between the decomposition (3.2) along x and (1.1) along γ. In particular, we obtain an isomorphism between the bundles x^*TW and γ^*TW giving rise to a one-to-one correspondence between trivializations of TW along x and along γ. In what follows, we fix a trivialization arising from a capping of x.

Furthermore, recall that the flow of ρ on U can be identified with the geodesic flow of the leaf-wise metric ρ on M. Thus, we need to prove that the mean index
of the linearized geodesic flow $G(t)$ along x is equal to $\Delta(\Phi)$. The geodesic flow preserves the terms $T\tilde{F} \oplus TB$ and E in the decomposition (3.2). Indeed, the fact that the first term is conserved is clear: the geodesic flow is tangent to the leaves. To show that the second term is conserved, it suffices to recall that, as mentioned above, the flow is tangent to the manifolds M_ρ due to conservation of momenta and that the restrictions $\pi^*\alpha_j |_{M_\rho}$ are conserved since $L_{X_\gamma} \pi^*\alpha_j = dp_j$.

Next let us show that
\[G|_E = \Gamma, \tag{3.3} \]
where we identified x^*E and $\gamma^*T\perp F$. To this end, let us recall the definition of the holonomy Γ. Consider an element $[v]$ in $T^\perp_{\gamma(0)} F = T_{\gamma(0)} M / T_{\gamma(0)} F$ represented by a vector $v \in T_{\gamma(0)} M$. (Here and below, it is more convenient to think of E and $T^\perp F$ as quotient bundles rather than sub-bundles.) Let $\eta: [0, \delta) \to M$ be a smooth path with $\eta(0) = \gamma(0)$ and $\eta'(0) = v$. Let now γ be parametrized by, say, $[0, T]$ and let $\sigma: [0, T] \times [0, \delta) \to M$ be a map whose restriction to $[0, T] \times 0$ is γ, to $0 \times [0, \delta)$ is η and such that $\sigma|_{[0, T] \times s}$, for all $s \in [0, \delta)$, lies in a leaf of F. The class $[(\partial \sigma / \partial s)(t, 0)] \in T^\perp_{\gamma(t)} F$ is independent of the choice of σ and is the image $\Gamma(t)[v]$. Let now $w(s) \in \tilde{T}_{\eta(s)} F$ be a smooth family of vectors tangent to F and such that $w(0) = \gamma(0)$. Consider the parametrized surface σ defined by setting $\sigma|_{[0, T] \times s}$ to be the leaf-wise geodesic with the initial conditions $(\gamma(s), w(s))$. Then, in particular, $[(\partial \sigma / \partial s)(t, 0)]$ is independent of the choice of the curve η and the family w. Furthermore, on the one hand, this vector represents $G(t)[v]$ by the definition of the linearized geodesic flow and, on the other, it is $\Gamma(t)[v]$ due to the above description of the holonomy.

To complete the argument, it would be sufficient to show that $G|_{T\tilde{F} \oplus TB} = \Xi$, where we identified $x^*(T\tilde{F} \oplus TB)$ and $\gamma^*(T\tilde{F} \oplus T^\perp M)$, but this is not true. Let us fix a basis $\xi(0) \in T_{\gamma(0)} F$. Then, since the metric is flat, $G(t)\xi(0)$ is the basis $\xi(t)$ in $T_{\gamma(t)} F$ obtained from $\xi(0)$ by the parallel transport along γ. Let $\xi^*(0) \in T^*_{\gamma(0)} F = T^*_{\gamma(0)} F$ be the basis dual to $\xi(0)$. Then $G(t)\xi^*(0) = t\xi(t) + \xi^*(t) \in T^*_{\gamma(t)} F \oplus T^*_{\gamma(t)} F$ in obvious notation. We conclude that $G(t)|_{T\tilde{F} \oplus TB} = \Xi(t) + A(t)$, where $A(t): T^*_{\gamma(t)} F \to T_{\gamma(t)} F$.

To finish the proof, we argue as when showing in Section 1.2 that the coisotropic Maslov index is independent of the splitting (1.1). With a trivialization fixed, we can view G and $\Phi = \Xi \oplus \Gamma$ as paths in $Sp(2n)$. Then, G is homotopic with fixed end-points to the concatenation of Φ and the path $\Psi(t) = I + A(t)$. All eigenvalues of $\Psi(t)$ are equal to one and therefore $\Delta(\Psi) = 0$. Thus, by the additivity and homotopy invariance of the mean index (see, e.g., [GG3, Lo, SZ]), we have $\Delta(G) = \Delta(\Phi) = -\mu(\gamma)$. \hfill \square

Remark 3.2. Proposition 3.1 has the following hypothetical generalization. Assume that M admits a metric with respect to which F is totally geodesic. Referring the reader to [Us, Section 7] for a detailed discussion of this condition, we only mention here that it is satisfied when M is Lagrangian (for any metric on M) and when M is stable. In the latter case, F is totally geodesic with respect to ρ. Then, conjecturally, the mean Conley–Zehnder index of x is equal, up to a sign, to the sum of the mean Morse index of γ and $\mu(\gamma)$. When M is stable, the mean Morse index is zero since ρ is flat, and this conjecture reduces to Proposition 3.1. When M is Lagrangian and x is non-degenerate, the conjecture essentially reduces to a well-known relation between the Conley–Zehnder, Morse, and Maslov indices. The latter
is proved in [Vi] using the results from [Du] in the context of the finite-dimensional reduction. A proof relying on the Floer theory version of the Conley–Zehnder index can be found in, e.g., [We]; see also [KS] for a simple argument.

The next proposition is a substitute for the relation between the Conley–Zehnder and Maslov indices.

Proposition 3.3. Let K be a small perturbation of ρ and \tilde{x} be a non-degenerate periodic orbit of K close to a non-trivial, contractible periodic orbit x of ρ. Then

$$\Delta_\rho(x) - n \leq \mu_{CZ}(\tilde{x}) \leq \Delta_\rho(x) + (n - k)$$

(3.4)

Proof. Note that by the continuity of Δ and (2.3) we automatically have

$$\Delta_\rho(x) - n \leq \mu_{CZ}(\tilde{x}) \leq \Delta_\rho(x) + n,$$

regardless of the nature of the flow of ρ. Hence only the second inequality in (3.4) requires a proof.

Furthermore, by arguing as in the proof of Proposition 3.1, it is not hard to reduce the proposition to the following linear algebra result. Namely, consider a finite–dimensional symplectic vector space V split as a symplectic direct sum $V = (L \oplus L^*) \oplus E$, where E and $(L \oplus L^*)$ are symplectic spaces, and L and L^* are Lagrangian in $L \oplus L^*$; cf. (1.1) and (3.2). Set $\dim V = 2n$ and $\dim L = k$. Consider a path $G: [0, 1] \to \text{Sp}(V)$ of the form $G = A \oplus \Gamma$, where Γ is a path in $\text{Sp}(E)$ beginning at I and A is the block–diagonal path

$$A = \begin{bmatrix} I & tI \\ 0 & I \end{bmatrix},$$

in $\text{Sp}(L \oplus L^*)$.

Lemma 3.4. Let $\tilde{G}: [0, 1] \to \text{Sp}(V)$ be a small non-degenerate perturbation of G, also beginning at I. Then

$$\Delta(G) - n \leq \mu_{CZ}(\tilde{G}) \leq \Delta(G) + (n - k)$$

(3.5)

Proof of the lemma. Again, by (2.2), we have

$$\Delta(G) - n \leq \mu_{CZ}(\tilde{G}) \leq \Delta(G) + n,$$

for any path G. Hence, only the second inequality in (3.5) requires a proof.

Next observe that, once the end-point $\Gamma(1)$ is fixed, the path Γ is immaterial for the assertion of the lemma. In other words, if the lemma holds for one path with a given end-point, it also holds for every path with the same end-point. This follows from the facts that a homotopy of G can be traced by a homotopy of \tilde{G} (both with fixed end-points) and that μ_{CZ} and Δ are invariant under such homotopy and change in the same way when a loop is attached to a path.

As the first step of the proof, let us assume that all eigenvalues of $\Gamma(1)$ are equal to one. Then $\Gamma(1)$ is in the image of the exponential mapping \exp for $\text{Sp}(E)$. Indeed, $\Gamma(1)$ is conjugate to a symplectic linear map which can be chosen to be arbitrarily close to I; see, e.g., [Gi4, Lemma 5.5]. Since \exp is onto a neighborhood of the identity and commutes with conjugation, $\Gamma(1)$ is in the image of \exp. Furthermore, since 0 is a regular point of \exp and the set of regular points is open, we can write $\Gamma(1) = \exp(Q)$, where Q is a regular point of \exp and all eigenvalues of Q are equal to zero.
Here we identify the Lie algebra of the symplectic group with the space of quadratic Hamiltonians. As is customary in symplectic geometry, the eigenvalues of Q are, by definition, the eigenvalues of the linear Hamiltonian vector field X_Q generated by Q. Also note that if we identified $Sp(E)$ with $Sp(2(n-k))$ and used the matrix exponential map, we would write $X_Q = JQ$ and $\Gamma(1) = \exp(JQ)$.

Furthermore, we have $A(1) = \exp(\rho)$ in $Sp(L \oplus L^*)$, where ρ is a positive definite form on L^* and zero on L. Arguing as above, it is not hard to show that ρ is a regular point of \exp for $Sp(L \oplus L^*)$ and that, moreover, $\rho + Q$ is a regular point of the exponential mapping for $Sp(V)$. Now we have $\tilde{G}(1) = \exp(K)$ in $Sp(V)$, where the quadratic form K is close to $\rho + Q$. In particular, K is also positive definite on L^* and all eigenvalues of K are close to those of $\rho + Q$, i.e., close to zero. As has been pointed out above, we can set $\tilde{G}(t) = \exp(tK)$ and $\Gamma(t) = \exp(tQ)$. As a consequence, with our conventions, $\mu_{cz}(\tilde{G}) = -\text{sgn}(K)/2 \leq n - k$, where $\text{sgn}(K)$ stands for the signature of K (i.e., the number of positive eigenvalues minus the number of negative eigenvalues); see [Sa, Section 2.4]. In addition, $\Delta(G) = 0$, and we obtain the second inequality of (3.5) in this case. To summarize, we have proved (3.5) when all eigenvalues of $\Gamma(1)$ are equal to one.

To treat the general case, consider the symplectic direct sum decomposition $E = E_0 \oplus E_1$, where E_0 is spanned by the generalized eigenvectors of $\Gamma(1)$ with eigenvalue one and E_1 is the symplectic orthogonal complement of E_0 in E. Clearly, $\Gamma(1)$ preserves this decomposition and, after altering if necessary the path Γ, we may assume that so do all maps $\Gamma(t)$. When $\tilde{G}(1)$ is sufficiently close to $G(1)$, we have the decomposition $V = V_0 \oplus V_1$ preserved by $\tilde{G}(1)$, where V_0 is close to $(L \oplus L^*) \oplus E_0$ and V_1 is close to E_1. Applying a time-dependent, close to the identity conjugation to $\tilde{G}(t)$, we reduce the problem to the case where $V_0 = (L \oplus L^*) \oplus E_0$ and $V_1 = E_1$. Consider now the paths G and \tilde{G}. Both paths begin and end in $Sp(V_0) \times Sp(V_1)$, the first path is contained in this subgroup, and the path \tilde{G} is close to G. In particular, G is in a tubular neighborhood of the subgroup. Projecting \tilde{G} to $Sp(V_0) \times Sp(V_1)$, we can further reduce the question to the case where \tilde{G} is a path in $Sp(V_0) \times Sp(V_1)$, just as G is. Denote by $G = (G_0, G_1)$ and $\tilde{G} = (\tilde{G}_0, \tilde{G}_1)$ the corresponding decompositions of the paths. The E_0-component of $G_0(1)$ is the map $\Gamma(1)|_{E_0}$ with all eigenvalues equal to one, and hence (3.5) has already been proved for G_0:

$$\Delta(G_0) - \dim V_0/2 \leq \mu_{cz}(\tilde{G}_0) \leq \Delta(G_0) + (\dim V_0/2 - k).$$

On the other hand, the path \tilde{G}_1 is a small perturbation of the path $\Gamma|_{E_1}$. Thus, we have

$$\Delta(G_1) - \dim V_1/2 \leq \mu_{cz}(\tilde{G}_1) \leq \Delta(G_1) + \dim V_1/2.$$

Recall that $\Delta(G) = \Delta(G_0) + \Delta(G_1)$ and $\mu_{cz}(\tilde{G}) = \mu_{cz}(\tilde{G}_0) + \mu_{cz}(\tilde{G}_1)$ and that $\dim V_0 + \dim V_1 = \dim V = 2n$. Thus, adding up these inequalities, we obtain (3.5), which completes the proof of the lemma and hence the proof of the proposition. □

3.2. Action selector for “pinned” Hamiltonians, following E. Kerman. Our goal in this section is to describe a construction of an action selector for “pinned” Hamiltonians, which was introduced in [Ke2, KS]. Although the class of Hamiltonians and manifolds we work with is somewhat different from those in [Ke2, KS], the action selector is essentially the same as the one considered there. As far as the proofs are concerned, we adopt here the line of reasoning from [Gi3] rather
than following the Hofer-geometric approach from [Ke2]. Since the arguments are quite standard, for the sake of brevity, we just outline the proofs.

Let M^{2n-k} be a closed submanifold, not-necessarily coisotropic, of a symplectic manifold W^{2n}. As before, we require W to be symplectically aspherical and either closed or a geometrically bounded and wide. We assume that M is displaceable and fix a displaceable open set U containing M. Denote by \mathcal{H} the collection of non-negative, autonomous Hamiltonians $H: W \to \mathbb{R}$ supported in U, constant on a small tubular neighborhood of M and attaining the absolute maximum $C := \max H$, depending on H, on this neighborhood. Let us require furthermore that $C > e(U)$, where $e(U)$ is the displacement energy of U.

It is easy to see that $HF^{(C-\delta,C+\delta)}(H) = \mathbb{Z}_2$ once $H \in \mathcal{H}$ and $\delta > 0$ is sufficiently small. In fact, $HF^{(C-\delta,C+\delta)}(H) = H_{n-k}(M; \mathbb{Z}_2)$. Furthermore, when $a > C$ is large enough (namely, if $a > C + e(U)$), the inclusion map

$$i_a: \mathbb{Z}_2 \cong HF^{(C-\delta,C+\delta)}(H) \to HF^{(C-\delta,a)}(H)$$

is zero. The proof of this fact is, for example, contained in the proof of [Gi3, Proposition 4.1]; see also [Ke2] for the case of closed manifolds. This is the main point of the argument where we need to assume that W is wide (see [Gi1]), unless W is closed. For $H \in \mathcal{H}$, set

$$c(H) = \inf\{a > C \mid i_a = 0\}.$$

(Strictly speaking, here we have to require $a > C + \delta$ and then also take infimum over all sufficiently small $\delta > 0$.) This is a version of the action selector for “pinned” Hamiltonians, introduced in [Ke2].

Alternatively and more explicitly, the action selector c can be defined as follows. Let \hat{H} be a C^2-small, non-degenerate perturbation of H, also supported in U (or, to be more precise, in $S^1 \times U$) and such that $\hat{H} \geq H$. Let us also assume that \hat{H} is autonomous on a small neighborhood of M and that $\max \hat{H} = C = \max H$ is attained at $p \in M$. (In what follows, we will have p fixed and independent of H.) Then p, viewed as an element of the Floer complex $CF^{(C-\delta,\infty)}(\hat{H})$, is exact and there exists a chain in $CF^{(C-\delta,\infty)}(\hat{H})$ mapped to p by the Floer differential; see the proof of [Gi3, Proposition 4.1]. Let us consider all such chains and, within every chain, pick an orbit with the largest action and then among the resulting orbits we choose an orbit \hat{x} with the least action. In other words, to obtain \hat{x}, we first maximize the action within every chain and then minimize the result among all chains which are primitives of p. Clearly, the orbit \hat{x} is in general not unique, but the action $A_{\hat{H}}(\hat{x})$ is defined unambiguously. Furthermore, \hat{x} is connected to p by a Floer downward trajectory and with a little more effort one can show that in fact $\partial \hat{x} = p$. (Again, we refer the reader to [Gi3] and, in particular, to the proof of Proposition 4.1 therein for the proofs of these facts; note also that \hat{x} is the orbit denoted by γ in [Gi3, Proposition 4.1].) Let us now set $c(\hat{H}) = A_{\hat{H}}(\hat{x})$. Then $c(H)$ is the infimum or the limit (in the obvious sense) of $c(\hat{H})$ over all such perturbations \hat{H} of H. (It is clear that $c(H)$ is less than or equal to the limit; the fact that $c(H)$ is greater than or equal to the limit is a consequence of the definition of the Floer homology for degenerate Hamiltonians such as H.)

It follows from this description that there exists an orbit x of H, referred to in what follows as a special one-periodic orbit of H, obtained as a limit point of the
orbits \(\tilde{x} \) in the space of loops as \(\tilde{H} \to H \), such that
\[
C < A_H(x) = c(H) < C + e(U) \quad \text{and} \quad 1 \leq \Delta(x) \leq 2n + 1. \tag{3.6}
\]
Here the first inequalities can be proved by the continuity of the action (with a little extra argument showing that the inequalities are strict) and the second ones follow from the continuity of the mean index and (2.3). Note that, in general, the special orbit \(x \) is not unique.

We refer the reader to [Ke2] for a detailed investigation of the properties of the action selector \(c \). One of these is particularly important for our argument.

Proposition 3.5 ([Ke2]). The action selector \(c \) is Lipschitz, with Lipschitz constant equal to one, on \(H \) equipped with the sup-norm.

As an immediate consequence of the proposition, the selector \(c \) extends from \(H \) to the \(C^0 \)-closure of \(H \) in the space of continuous functions supported in \(U \) and this extension is again Lipschitz with Lipschitz constant equal to one. For the sake of completeness, we touch upon a proof of the proposition.

Outline of the proof. Let \(H \) and \(K \) be two Hamiltonians in \(H \). Consider the perturbations \(\tilde{H} \) and \(\tilde{K} \) as above. Clearly, it suffices to show that
\[
|c(\tilde{H}) - c(\tilde{K})| \leq \|\tilde{H} - \tilde{K}\|_H, \tag{3.7}
\]
where
\[
\|F\|_H := \int_0^1 \left(\max_W F_t - \min_W F_t \right) dt
\]
stands for the Hofer norm of \(F \).

Furthermore, denote by \(\tilde{x} \) again a least action primitive of \(p \) in \(\text{CF}^{(C-\delta, \infty)}_*(\tilde{H}) \) described above. In particular, \(c(\tilde{H}) = A_{\tilde{H}}(\tilde{x}) \). It is not hard to see that under the linear homotopy from \(H \) to \(K \), the orbit \(\tilde{x} \) is mapped to a primitive \(\tilde{y} = \sum_j \tilde{y}_j \) of \(p \) in the complex \(\text{CF}^{(C-\delta, \infty)}_*(\tilde{K}) \), but not necessarily to a least action primitive. In any case, \(c(\tilde{K}) \leq A_{\tilde{K}}(\tilde{y}) := \max A_{\tilde{K}}(\tilde{y}_j) \). On the other hand, a standard calculation yields that
\[
A_{\tilde{K}}(\tilde{y}) - A_{\tilde{H}}(\tilde{x}) \leq \|\tilde{H} - \tilde{K}\|_H.
\]
Hence, we also have \(c(\tilde{K}) - c(\tilde{H}) \leq \|\tilde{H} - \tilde{K}\|_H \). A similar argument, but using the homotopy from \(\tilde{K} \) to \(\tilde{H} \), shows that \(c(\tilde{H}) - c(\tilde{K}) \leq \|\tilde{H} - \tilde{K}\|_H \), and (3.7) follows. \(\square \)

Remark 3.6. It is worth pointing out that the main advantage of using the action selector for pinned Hamiltonians in the proof of the main theorem over the ordinary action selector is that the former enables us to determine the location of the special orbit \(x \) via Lemma 3.7 without additional requirements on \(M \) such as that \(M \) has restricted contact type. This results in sharper index and energy bounds that we would have otherwise, cf. [Gi3].

3.3. **Proof of Theorem 1.5.** Throughout the proof, as in Section 2.1, a neighborhood of \(M \) in \(W \) is identified with a neighborhood of \(M \) in \(M \times \mathbb{R}^k \) equipped with the symplectic form \(\omega = \omega_M + \sum_{j=1}^k d(p_j \alpha_j) \). Using this identification, we denote by \(U_R \) or just \(U \), with \(R > 0 \) sufficiently small, the neighborhood of \(M \) in \(W \) corresponding to \(M \times B_R^2 \). (Thus, \(U_R = \{ p < R^2 / 2 \} \).) Also set \(|p| := \sqrt{2p} \).

The proof of the theorem relies on a method, by now quite standard, developed in [Vi]. The first, albeit technical, step is to specify the class of “test” Hamiltonians.
3.3.1. The Hamiltonians. Fix two real constants \(r > 0 \) and \(\epsilon > 0 \) with \(\epsilon < r < R \) and a constant \(C > \epsilon(U) \). Let \(H : [0, R] \rightarrow \mathbb{R} \) be a smooth, non-negative, (non-strictly) decreasing function such that

- on \([0, \epsilon]\) the function \(H \) is a positive constant \(C \),
- on \([\epsilon, 2\epsilon]\) the function \(H \) is concave (i.e., \(H'' \leq 0 \)),
- on \([2\epsilon, r - \epsilon]\) the function \(H \) is linear decreasing from \(C - \epsilon \) to \(\epsilon \),
- on \([r - \epsilon, r]\) the function \(H \) is convex (i.e., \(H'' \geq 0 \)),
- on \([r, R]\) the function \(H \) is identically zero.

Abusing notation, we also denote by \(H \) the function equal to \(H(|p|) \) on \(U \) and equal to zero outside \(U \). Let us fix the value of the parameter \(r \), which is not essential for what follows. The parameters \(C \) and \(\epsilon \) will vary and we consider the family of functions \(H = H_{C, \epsilon} \) parametrized by \(C \) and \(\epsilon \) and depending smoothly on these parameters.

Clearly, \(H \in \mathcal{H} \) for any choice of \(\epsilon \) and \(C \). As \(\epsilon \rightarrow 0 \), the functions \(H_{C, \epsilon} \) converge uniformly to the continuous functions \(H_{C, 0} \) equal to \(C \) on \(M \), zero outside \(U_r \), and depending linearly of \(|p| \) on \(U_r \). It is clear that the limit functions \(H_{C, 0} \) are continuous in \(C \). Thus, by Proposition 3.5, \(\epsilon \) is a continuous function of \(C \) and \(\epsilon \) including the limit value \(\epsilon = 0 \). Moreover, the function \(C \mapsto \epsilon \) is Lipschitz constant equal to one.

Denote by \(X \) the Hamiltonian vector field of the function \(|p| \) on \(U \). By Proposition 2.3, the integral curves of \(X \) project to the geodesics of the leaf-wise metric \(\rho \) on \(M \), parametrized by arc length. The Hamiltonian vector field of \(H \) is

\[
X_H = H'X,
\]

where \(H' \) stands for the derivative of \(H \) with respect to \(|p| \). Note that even though \(X \) is defined only on \(U \setminus M \), the vector field \(X_H \) is defined everywhere, for \(H \) is constant near \(M \) and outside \(U_r \). Thus, non-trivial one-periodic orbits of \(X_H \) lie on the levels \(|p| = \text{const} \) with \(H'(|p|) \) in the length spectrum \(S \) of the metric \(\rho \). (Recall that, by definition, \(S \) is formed by the lengths of non-trivial closed leaf-wise geodesics of \(\rho \). Here, we may restrict our attention only to the geodesics contractible in \(W \).) Furthermore, observe that the “coordinates” \(p_i \) are constant along the orbits of the flow of \(X_H \). In other words, every trajectory starting in \(U \) lies on a coisotropic submanifold \(M \times p \subset U \). This is a particular case of conservation of momentum.

Let \(x \) be a non-trivial one-periodic orbit of \(H \). A direct calculation relying on Proposition 2.2 shows that

\[
\mathcal{A}_H(x) = H(x) + \mathcal{A}(x) = H(x) + \mathcal{A}(\pi(x)) - |p(x)|l(\pi(x)),
\]

where \(l \) and \(\mathcal{A} \) stand for the length of the curve and, respectively, the negative symplectic area bounded by the curve.

Assume that the slope of \(H \) (on the interval \([2\epsilon, r - \epsilon]\)) is outside \(S \). (This is a generic condition.) Then the orbit \(x \) lies on the level where \(|p(x)|\) is either in the range \([\epsilon, 2\epsilon]\) or in the range \([r - \epsilon, r]\). Let now \(x \) be a special one-periodic orbit from Section 3.2 such that, in particular, (3.6) holds. The key to the proof is the following lemma, which specifies the location of \(x \) for, at least, some sequence of the Hamiltonians \(H \).

Lemma 3.7. There exists a sequence \(C_j \rightarrow \infty \) such that the slopes of all functions \(H_{C_j, \epsilon} \), with \(\epsilon > 0 \) sufficiently small, are outside \(S \) and \(|p(x)| \in [\epsilon, 2\epsilon]|.\)
In the Lagrangian case this observation can be traced back to the original work of Viterbo, [Vi]. Here we follow the treatment from [Ke2] with several modifications resulting from our somewhat different conventions and more importantly from the fact that M is now coisotropic.

Proof of Lemma 3.7. The slope of the function $H_{C,0}$ is C/r. This slope is in S if and only if $C \in rS$ in the obvious notation. The set S (and hence rS) is closed, and the slope of $H_{C,\epsilon}$ is close to the slope of $H_{C,0}$ when $\epsilon > 0$ is small. As a consequence, the slope of $H_{C,\epsilon}$ is outside S whenever $C \notin rS$ and $\epsilon > 0$ is small.

Pick $C \notin rS$ and a positive sequence $\epsilon_i \to 0$. Without loss of generality, we may require all ϵ_i to be sufficiently close to zero to ensure that the slope of H_i is not in S. Let x_i be a special orbit of $H_i := H_{C,\epsilon_i}$. Since the norms of the differentials dH_i are bounded from above, the norms of the derivatives \dot{x}_i are point-wise bounded. By the Arzela–Ascoli theorem, we may assume, after passing if necessary to a subsequence, that the orbits x_i converge to a curve y lying on a level $|p| = \text{const}$ including possibly the submanifold M. It is clear that y is smooth and projects to a closed, leaf-wise geodesic on M. Furthermore,

$$\mathcal{A}_{H_i}(x_i) = c(H_i) \to H_{C,0}(y) + \mathcal{A}(y) = c(H_{C,0}),$$

by the continuity of the action functional and of the action selector c.

If $|p(x_i)|$ is in the range $[r - \epsilon_i, r]$ for all i, the orbit y is on the level $|p| = r$ and $H_{C,0}(y) = 0$. Thus, we then have

$$c(H_{C,0}) = \mathcal{A}(y) \in \Sigma,$$

where Σ is the action spectrum or, to be more precise, the symplectic area spectrum of the level $|p| = r$, i.e., the collection of symplectic areas bounded by contractible closed characteristics on this level.

Arguing by contradiction, assume now that the lemma fails, i.e., for every sufficiently large C, say $C > a$, which is not in rS, there exists such a sequence ϵ_i with $|p(x_i)|$ in the range $[r - \epsilon_i, r]$. Consider the function $f(C) := c(H_{C,0})$ on the interval $[a, \infty)$. By (3.8), f sends the set $[a, \infty) \setminus rS$ to Σ. Recall that rS is not only closed, but also has zero measure; see [Gi3, Lemma 6.6]. Furthermore, by Proposition 3.5, f is a Lipschitz function and, as is well known (see, e.g., [HZ]), Σ has measure zero. To summarize, f is a Lipschitz function sending a full measure set to a zero measure set. Such a function is necessarily constant. This is impossible, for $f(C) \geq C$ by (3.6).

Let us fix one of the constants $C = C_j$ from Lemma 3.7 and let $H_i = H_{C_j,\epsilon_i}$. Denote by x_i, or just x, its one-periodic orbit such as in the lemma. (For the proof of the theorem we do not need the entire double sequence, but only one family of Hamiltonians $H_{C_j,\epsilon}$ parametrized by ϵ_i.) Clearly, $\gamma_i = \pi(x_i)$ is a leaf-wise geodesic on M. Since the slopes of Hamiltonians H_i are bounded from above (by, say, $2C/j/r$), it is easy to prove using the Arzela–Ascoli theorem that the geodesics γ_i converge as $i \to \infty$ after if necessary passing to a subsequence. Denote the limit geodesic (traversed in the opposite direction) by η. Our goal is to show that η has the required properties (1.2) and (1.3). The fact that, by Lemma 3.7, $|p(x_i)| \in [\epsilon_i, 2\epsilon_i]$ (i.e., x_i lies in the region where H_i is concave) will be essential for proving this.
3.3.2. Index bounds. Consider a perturbation \tilde{H} of $H = H_1$ as in Section 3.2. This Hamiltonian has a one-periodic orbit \tilde{x}, a perturbation of $x = x_i$, with index $n + 1$. After reparametrizing x and reversing its orientation, we can view x as a periodic orbit x^- of ρ. Likewise, \tilde{x} can be viewed as a periodic orbit \tilde{x}^- of a non-degenerate perturbation K of ρ. Denote by $\gamma^- = \pi(x^-)$ the geodesic $\gamma = \gamma_i$ with reversed orientation.

By Proposition 3.1, we have
\[\mu(\gamma^-) = -\Delta_\rho(x^-), \]
and thus, by Proposition (3.3),
\[-\mu(\gamma^-) - n \leq \mu_{cz}(\tilde{x}^-) \leq -\mu(\gamma^-) + (n - k). \]

It is not hard to show that $\mu_{cz}(\tilde{x}^-) = -\mu_{cz}(\tilde{x}) = -(n + 1)$ using the fact that x is in the region where H is concave (i.e., $|p(x)| \in [\epsilon_i, 2\epsilon_i]$) by Lemma 3.7. As a consequence,
\[n + 1 \leq \mu(\gamma^-) + n \text{ and } \mu(\gamma^-) - n + k \leq n + 1. \]

Hence,
\[1 \leq \mu(\gamma^-) \leq 2n + 1 - k. \]

Passing to the limit and using the continuity of the mean index, we conclude that the same holds for η, the limit of the curves γ^-. This proves (1.2).

Remark 3.8. Note that if we have used here just the second inequality of (3.6) rather than Proposition (3.3), we would have the weaker bound $1 \leq \mu(\gamma^-) \leq 2n + 1$.

3.3.3. Action bounds. By the first inequality in (3.6), we have
\[C < A_H(x) = H(x) + A(\gamma) - |p(x)|l(\gamma) < C + e(U). \]

Here, by the definition of H and Lemma 3.7, $|p(x)| \in [\epsilon_i, 2\epsilon_i]$ and $H(x) \in [C, C - \epsilon_i]$. Note that the sequence $l(\gamma)$ with $\gamma = \gamma_i$ is bounded as $i \to \infty$ due the fact that the slope of H_i is bounded. Thus, passing to the limit (for a subsequence if necessary), we have $0 \leq -A(\eta) \leq e(U)$. Here, the negative sign comes from the fact that η is the limit of γ^-, i.e., the geodesics γ with reversed orientation. Taking $r > 0$ sufficiently small, we obtain
\[0 \leq \text{Area}(\eta) \leq e(M) + \delta \]
for any given $\delta > 0$, where $\text{Area}(\eta) = -A(\eta)$ is the symplectic area bounded by η.

To finish the proof, we need to ensure that the first inequality is strict: $\text{Area}(\eta) > 0$. This is an immediate consequence of the non-trivial fact that, by [Gi3, Theorem 6.1], $A_H(x) - C \geq \epsilon$ for some $\epsilon > 0$ independent of i. For then, by the first inequality in (3.9), $\text{Area}(\gamma^-) > \epsilon/2$ when i is large enough. This concludes the proof of (1.3), and thus the proof of the theorem.

References

[AF1] P. Albers, U. Frauenfelder, Leaf-wise intersections and Rabinowitz Floer homology, Preprint 2008, arXiv:0810.3845.

[AF2] P. Albers, U. Frauenfelder, Infinitely many leaf-wise intersection points on cotangent bundles, Preprint 2008, arXiv:0812.4426.

[ALP] M. Audin, F. Lalonde, L. Polterovich, Lagrangian submanifolds, in Holomorphic Curves in Symplectic Geometry, Eds: M. Audin, J. Lafontaine, Progress in Mathematics, 117, Birkhäuser Verlag, Basel, 1994, pp. 271–321.

[Ba] A. Banyaga, On fixed points of symplectic maps, Invent. Math., 56 (1980), 215–229.
[Bo1] P. Bolle, Une condition de contact pour les sous-variétés coisotropes d’une variété symplectique, C. R. Acad. Sci. Paris, Série I, 322 (1996), 83–86.

[Bo2] P. Bolle, A contact condition for p-dimensional submanifolds of a symplectic manifold \((2 \leq p \leq n)\), Math. Z., 227 (1998), 211–230.

[CGK] K. Cieliebak, V. Ginzburg, E. Kerman, Symplectic homology and periodic orbits near symplectic submanifolds, Comment. Math. Helv., 79 (2004), 554–581.

[Dr] D. Dragnev, Symplectic rigidity, symplectic fixed points and global perturbations of Hamiltonian systems, Comm. Pure Appl. Math. 61 (2008), 346–370.

[Du] J.J. Duistermaat, On the Morse index in variational calculus, Adv. Math., 21 (1984), 207-253.

[EH] I. Ekeland, H. Hofer, Two symplectic fixed-point theorems with applications to Hamiltonian dynamics, J. Math. Pures Appl. 68 (1989), 467–489.

[FHW] A. Floer, H. Hofer, K. Wysocki, Applications of symplectic homology, I. Math. Z., 217 (1994), 577–606.

[Gi1] V.L. Ginzburg, Hamiltonian dynamical systems without periodic orbits, in Northern California Symplectic Geometry Seminar, Eds: Y. Eliashberg, D. Fuchs, T. Ratiu, A. Weinstein, Amer. Math. Soc. Transl. Ser. 2, vol. 196, Amer. Math. Soc., Providence, RI, 1999, pp. 35–48.

[Gi2] V.L. Ginzburg, The Weinstein conjecture and the theorems of nearby and almost existence, in The Breadth of Symplectic and Poisson Geometry. Festschrift in Honor of Alan Weinstein; J.E. Marsden and T.S. Ratiu (Eds.), Birkhäuser, 2005, pp. 139–172.

[Gi3] V.L. Ginzburg, Coisotropic intersections, Duke Math. J., 140 (2007), 111–163.

[Gi4] V.L. Ginzburg, The Conley conjecture, Preprint 2006, math.SG/0610956; to appear in Ann. of Math.

[GG1] V.L. Ginzburg, B.Z. Gürel, A \(C^2\)-smooth counterexample to the Hamiltonian Seifert conjecture in \(\mathbb{R}^4\), Ann. of Math., 158 (2003), 953–976.

[GG2] V.L. Ginzburg, B.Z. Gürel, Relative Hofer–Zehnder capacity and periodic orbits in twisted cotangent bundles, Duke Math. J., 123 (2004), 1–47.

[GG3] V.L. Ginzburg, B.Z. Gürel, Periodic orbits of twisted geodesic flows and the Weinstein–Moser theorem, Comment. Math. Helv., 84 (2009), 865-907.

[Gü1] B.Z. Gürel, Totally non-coisotropic displacement and its applications to Hamiltonian dynamics, Comm. Contemp. Math. 10 (2008), 1103–1128.

[Gü2] B.Z. Gürel, Leafwise coisotropic intersections, Int. Math. Res. Not. IMRN, 2009; doi: 10.1093/imrn/rnp164.

[Gü3] B.Z. Gürel, Fragility of leafwise coisotropic intersections, in preparation.

[Ho] H. Hofer, On the topological properties of symplectic maps, Proc. Roy. Soc. Edinburgh Sect. A, 115 (1990), 25–38.

[HZ] H. Hofer, E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics, Birkhäuser, 1994.

[Ka] J. Kang, Existence of leafwise intersection points in the unrestricted case, Preprint 2009, arXiv:0910.2369.

[Ker1] E. Kerman, Displacement energy of coisotropic submanifolds and Hofer’s geometry, J. Mod. Dyn. 2 (2008), 471–497.

[Ker2] E. Kerman, Action selectors and Maslov class rigidity, Int. Math. Res. Not. IMRN, 2009; doi:10.1093/imrn/rnp093.

[KS] E. Kerman, N.I. Sirikci, Maslov class rigidity for Lagrangian submanifolds via Hofer’s geometry. Preprint 2008, arXiv:0808.1422. To appear in Comment. Math. Helv..

[Lo] Y. Long, Index Theory for Symplectic Paths with Applications, Progress in Mathematics, 207. Birkhäuser Verlag, Basel, 2002.

[Mo] J. Moser, A fixed point theorem in symplectic geometry, Acta Math., 141 (1978), 17–34.

[Oh] Y.-G. Oh, Geometry of coisotropic submanifolds in symplectic and Kähler manifolds, Preprint 2003, math.SG/0310482.

[Po1] L. Polterovich, The Maslov class of the Lagrange surfaces and Gromov’s pseudo-holomorphic curves, Trans. Amer. Math. Soc., 325 (1991), 241–248.

[Po2] L. Polterovich, Monotone Lagrange submanifolds of linear spaces and the Maslov class in cotangent bundles, Math. Z., 207 (1991), 217–222.

[Sa] D.A. Salamon, Lectures on Floer homology, in Symplectic Geometry and Topology, Eds: Y. Eliashberg and L. Traynor, IAS/Park City Mathematics series, 7, 1999, pp. 143–230.
[SZ] D. Salamon, E. Zehnder, Morse theory for periodic solutions of Hamiltonian systems and the Maslov index, *Comm. Pure Appl. Math.*, 45 (1992), 1303–1360.

[Si] J.-C. Sikorav, Some properties of holomorphic curves in almost complex manifolds, in *Holomorphic Curves in Symplectic Geometry*, Eds: M. Audin, J. Lafontaine, Progress in Mathematics, 117, Birkhäuser Verlag, Basel, 1994, pp. 165–189.

[Su] D. Sullivan, A foliation of geodesics is characterized by having no “tangent homologies”, *J. Pure Appl. Algebra*, 13 (1978), 101–104.

[To] B. Tonneler, in preparation.

[Us] M. Usher, Boundary depth in Floer theory and its applications to Hamiltonian dynamics and coisotropic submanifolds, Preprint 2009, arXiv:0903.0903; to appear in *Israel J. Math.*

[Vi] C. Viterbo, A new obstruction to embedding Lagrangian tori, *Invent. Math.*, 100 (1990), 301–320.

[We] J. Weber, Perturbed closed geodesics are periodic orbits: Index and transversality, *Math. Z.*, 241 (2002), 45–81.

[Zi1] F. Ziltener, Coisotropic Submanifolds, leaf wise fixed points, and symplectic embeddings, Preprint 2008, arXiv:0811.3715v2. To appear in the *J. Sympl. Geom.*

[Zi2] F. Ziltener, A Maslov map for coisotropic submanifolds, leaf-wise fixed points and presymplectic non-embeddings, Preprint 2009, arXiv:0911.1460

Department of Mathematics, University of California, Santa Cruz, CA 95064, USA

E-mail address: ginzburg@math.ucsc.edu