Finished Genome Sequence of the Highly Multidrug-Resistant Human Urine Isolate \textit{Citrobacter freundii} Strain SL151

\textbf{Tomasz A. Leski, a} Chris R. Taitt, a Umaru Bangura, a Rashid Ansumana, a,b,c David A. Stenger, a Zheng Wang, a \textbf{Gary J. Vora}a \\
Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, District of Columbia, USA; a Department of Community Health Sciences and Clinical Studies, Njala University, Bo, Sierra Leone; b Department of Community Health Sciences and Clinical Studies, Njala University, Bo, Sierra Leone

\textit{Citrobacter freundii} is a Gram-negative opportunistic pathogen that is increasingly being recognized as a causative agent of hospital-acquired urinary tract infections and an important reservoir of antimicrobial resistance determinants. In this report, we describe the finished genome sequence of \textit{C. freundii} strain SL151, a highly multidrug-resistant human urine isolate.

\cite{Leski2016}

\textbf{REFERENCES}

1. Brenner DJ, Grimont PA, Steigerwalt AG, Fanning GR, Ageron E, Riddle CF. 1993. Classification of citrobacteria by DNA hybridization:
designation of *Citrobacter farmeri* sp. nov., *Citrobacter youngae* sp. nov., *Citrobacter braakii* sp. nov., *Citrobacter werkmanii* sp. nov., *Citrobacter sedlakii* sp. nov., and three unnamed *Citrobacter* genomospecies. Int J Syst Bacteriol 43:645–658. http://dx.doi.org/10.1099/00207713-43-4-645.

2. Joaquin A, Khan S, Russel N, al Fayez N. 1991–1992. Neonatal meningitis and bilateral cerebellar abscesses due to *Citrobacter freundii*. Pediatr Neurosurg 17:23–24.

3. Ranjan KP, Ranjan N. 2013. *Citrobacter*: an emerging health care associated urinary pathogen. Urol Ann 5:313–314.

4. Gupta N, Yadav A, Choudhary U, Arora DR. 2003. *Citrobacter* bactereemia in a tertiary care hospital. Scand J Infect Dis 35:765–768. http://dx.doi.org/10.1080/00365540310016376.

5. Nada T, Baba H, Kawamura K, Ohkura T, Torii K, Ohta M. 2004. A small outbreak of third generation cephem-resistant *Citrobacter freundii* infection on a surgical ward. Jpn J Infect Dis 57:181–182.

6. Pepperell C, Kus JV, Gardam MA, Humar A, Burrows LL. 2002. Low-virulence *Citrobacter* species encode resistance to multiple antimicrobials. Antimicrob Agents Chemother 46:3555–3560. http://dx.doi.org/10.1128/AAC.46.11.3555-3560.2002.

7. Feng J, Qiu Y, Yin Z, Chen W, Yang H, Yang W, Wang J, Gao Y, Zhou D. 2015. Coexistence of a novel KPC-2-encoding MDR plasmid and an NDM-1-encoding pNDM-HN380-like plasmid in a clinical isolate of *Citrobacter freundii*. J Antimicrob Chemother 70:2987–2991. http://dx.doi.org/10.1093/jac/dkv232.

8. Sheppard AE, Stoesser N, Wilson DJ, Sebra R, Kasarskis A, Anson LW, Giess A, Pankhurst LJ, Vaughan A, Grim HL, Yeh AJ, Modernising Medical Microbiology (MMM) Informatics Group, Sifri CD, Walker AS, Peto TE, Crook DW, Mathers AJ. 2016. Nested Russian-doll-like genetic mobility drives rapid dissemination of the carbapenem resistance gene *bla*_{KPC}. Antimicrob Agents Chemother 60:3767–3778. http://dx.doi.org/10.1128/AAC.00464-16.