On the Classification of Finite Semigroups and RA-loops with the Hyperbolic Property

S. O. Juriaansa A. C. Souza Filhob

\textit{Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal 66281, São Paulo, CEP 05315-970 - Brazil}

email addresses: aostanley@ime.usp.br bcalixto@ime.usp.br

Abstract

We classify the finite semigroups S, for which all \mathbb{Z}-orders Γ of $\mathbb{Q}S$, the unit group $\mathcal{U}(\Gamma)$ is hyperbolic. We also classify the RA-loops L for which the unit loop of its integral loop ring does not contain any free abelian subgroup of rank two.

1 Introduction

Initially we classify finite dimensional algebras \mathcal{A} over \mathbb{Q} such that if $\Gamma \subset \mathcal{A}$ is a \mathbb{Z}-order then $\mathcal{U}(\Gamma)$ is hyperbolic. If \mathcal{A} is such an algebra, we say that \mathcal{A} has the hyperbolic property.

In [7], are classified the semigroups Σ with $\mathcal{U}(\mathbb{Z}\Sigma)$ finite. Therefore, for this class of semigroups the algebra $\mathbb{Q}\Sigma$ has the hyperbolic property.

First we classify the semisimple algebras $\mathbb{Q}S$ which are nilpotent free. If $\mathbb{Q}S$ has nilpotent elements there are two possibilities: either S contains nilpotent elements, or not. In the latter case S is a disjoint union of groups of certain types. In the former, S is a union of groups and a subsemigroup of order five. We also give the structure of S when $\mathbb{Q}S$ is non-semisimple and has the hyperbolic property. For the proofs of the results of section two see [5].

In the last section we classify the RA-loops L, such that, $\mathbb{Z}^2 \not\rightarrow \mathcal{U}(\mathbb{Z}L)$.

2 Semigroup Algebras

We will consider \mathcal{A} a unitary finitely generated \mathbb{Q}-algebra and denote by $\mathcal{S}(\mathcal{A})$, respectively $J(\mathcal{A})$, the semisimple subalgebra, respectively the Jacobson radical, of \mathcal{A} and by $E(\mathcal{A}) = \{E_1, \cdots, E_N\}, N \in \mathbb{Z}^+$, the set of the central primitive
idempotents of the semisimple algebra $S(A)$. A classical result of Wedderburn-Malcev states that
\[A \cong S(A) \oplus J(A), \]
as a vector space. As a result, we have that A is a artinian algebra and thus its radical is a nilpotent ideal. We denote $T_2(Q) := \begin{pmatrix} Q & Q \\ 0 & Q \end{pmatrix}$ the 2×2 upper triangular matrices over Q, with the usual matrix multiplication.

Definition 2.1 Let A be a finite dimensional algebra over Q and Γ be a \mathbb{Z}-order of A. If
\[\mathbb{Z} \not\hookrightarrow U(\Gamma), \]
we say A has the hyperbolic property.

Theorem 2.2 Let A be a finite dimensional Q-algebra. If A_i is a simple epimorphic image of A, denote by F_i a maximal subfield of A_i and $\Gamma_i \subset A_i$ a \mathbb{Z}-order. The following conditions hold:

1. The algebra A has the hyperbolic property, it is semisimple and it has no nilpotent element if, and only if,
\[A = \oplus A_i, \]
whereof A_i is a division ring and there exists at most one index i_0 such that $U(\Gamma_{i_0})$ is hyperbolic and infinite.

2. The algebra A has the hyperbolic property and it is semisimple with nilpotent elements if, and only if,
\[A = (\oplus A_i) \oplus M_2(Q). \]

3. The algebra A has the hyperbolic property and it is non semisimple with central radical if, and only if,
\[A = (\oplus A_i) \oplus J. \]

4. The algebra A has the hyperbolic property and it is non semisimple with non central radical if, and only if,
\[A = (\oplus A_i) \oplus T_2(Q). \]

For each item above, F_i is an imaginary quadratic field and A_i is either an imaginary quadratic field or a totally definite quaternion algebra. Furthermore, every simple epimorphic image of A in the direct sum is an ideal of A.

2
In what follows, S denotes a finite semigroup, $\mathbb{Q}S$ denotes a unitary semigroup algebra over \mathbb{Q}, $\mathcal{M}^0(G; n, n; P)$ denotes the Rees semigroup with structural group G and P denotes an $n \times n$ sandwich matrix.

Theorem 2.3 The algebra $\mathbb{Q}S$ has no nilpotent element and it has the hyperbolic property if, and only if, S is an inverse semi-group and it admits a principal series, whose principal factors are isomorphic to groups G and at most a unique K, listed below:

1. G is an abelian group of exponent dividing 4 or 6;
2. G is a hamiltonian 2-group;
3. $K \in \{C_5, C_8, C_{12}\}$.

Theorem 2.4 Let $\mathbb{Q}S$ be an algebra with nilpotent elements. The algebra $\mathbb{Q}S$ is semisimple and it has the hyperbolic property if, and only if, S admits a principal series whose principal factors are isomorphic to groups G and a unique semigroup K, listed below:

1. G is an abelian group of exponent dividing 4 or 6.
2. G is a hamiltonian 2-group.
3. K is a group of the set $\{S_3, D_4, Q_{12}, C_4 \rtimes C_4\}$.
4. K is one of the Rees semigroups:
 \[\mathcal{M}^0(\{1\}; 2, 2; I_d) = M \quad \text{or} \quad \mathcal{M}^0(\{1\}; 2, 2; \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}) = M_{12}, \]

which is an ideal of S.

In particular, S is the disjoint union of the groups G and the semigroup K.

Theorem 2.5 The algebra $\mathbb{Q}S$ is non semisimple and it has the hyperbolic property if, and only if, there exists a unique nilpotent element $j_0 \in S$, such that, the subsemigroup $\mathfrak{I} = \{\theta, j_0\}$ is an ideal of S, and $S \setminus \mathfrak{I}$ admits a principal series whose principal factors are isomorphic to abelian groups of exponent dividing 4 or 6, or a hamiltonian 2-group. In particular S/\mathfrak{I} is the disjoint union of its maximal subgroups such that if $e_1 \in G_1$, and $e_N \in G_N$ are the respective group identity element, then $e_1 j_0 = j_0 e_N = j_0$. Writing
\[
e_1 = \sum E_{e_1} + E_1 + \lambda j_0, \lambda \in \mathbb{Q} \\
e_N = \sum E_{e_N} + E_N + \mu j_0, \mu \in \mathbb{Q}
\]

then only one of the following holds:
1.

\[e_1e_N = 0 \Leftrightarrow e_Ne_1 = e_3 = e_1 \quad \text{and} \quad \lambda + \mu = 0; \]

\[T_2 \cong \{e_1, e_N, j_0, \theta\} \quad \text{is such that} \quad QT_2 \cong T_2(Q). \]

2.

If \(e_Ne_1 \neq 0 \) then \(e_1e_N = e_Ne_1 = e_3 \) and \(\lambda + \mu = 0; \)

\[T'_2 = \{e_1, e_2, e_3, j_0, \theta\} \quad \text{is a subsemigroup of} \quad S \quad \text{and} \quad QT'_2 \cong Q \oplus Q \oplus T_2(Q). \]

3.

\[e_Ne_1 = 0 \Leftrightarrow e_1e_N = j_0 \Leftrightarrow \lambda + \mu = 1; \]

\[\hat{T}_2 = \{e_1, e_N, j_0, \theta\}, \quad \text{and} \quad Q\hat{T}_2 \cong T_2(Q). \]

The semigroups \(T_2, T'_2 \) and \(\hat{T}_2 \) are non isomorphic.

3 The hyperbolicity of the RA-loop loop units

In this section we classify the RA-loops \(L \) such that \(\mathbb{Z}^2 \not\cong U(\mathbb{Z}L) \), the loop of units of \(\mathbb{Z}L \). A loop \(L \) is a nonempty set, with a closed binary operation \(\cdot \), such that the equation \(a \cdot b = c \) has a unique \(b \in L \) when \(a, c \in L \) are known, and a unique solution \(a \in L \) when \(b, c \in L \) are know, and with a two-side identity element 1. Denoting by \([x, y, z] = (xy)z - x(yz) \), recall that a ring \(A \) is alternative if \([x, x, y] = [y, x, x] = 0 \), for every \(x, y \in A \). An RA-loop is a loop whose loop ring \(RL \) over some commutative, associative and unitary ring \(R \) of characteristic not equal to 2 is alternative, but not associative. The basic reference is \([10]\).

For a theoretical group property \(P \), a group \(G \) is virtually \(P \) if it has a subgroup of finite index, \(H \) say, with property \(P \).

Theorem 3.1 ([12], Theorem 3.3.6) Let \(L \) be a RA-loop. \(U(\mathbb{Z}L) \) has the hyperbolic property if, and only if, \(L \) is a finite loop or a loop whose center is virtually cyclic, the torsion subloop \(T(L) \) of \(L \) is such that, if \(T(L) \) is a group, then it is an abelian group of exponent dividing 4 or 6 or a hamiltonian 2-group whose subgroups are all normal in \(L \) and if \(T(L) \) is a loop then it is a hamiltonian Moufang 2-loop whose subloops are all normal in \(L \). In this conditions we also have that \(U_1(\mathbb{Z}L) = L \).

Acknowledgements

This work is part of the second authors Ph.D thesis, \([12]\). He would like to thank his thesis supervisor Prof. Dr. Stanley Orlando Juriaans for his guidance during this work.
References

[1] L. G. X. de Barros, S. O. Juriaans, Units in Alternative Integral Loop Rings, Result. Math., 31 (1997), 266-281.
[2] A. Borel, H. Chandra, Arithmetic Subgroups of Algebraic Groups, Annals of Mathematics, 75(3), 1962.
[3] A. Dooms, E. Jespers, Generators for a subgroup of finite index in the unit group of an integral semigroup ring, J. Group Theory 7(2004), 543-553.
[4] M. Gromov, Hyperbolic Groups, in Essays in Group Theory, M. S. R. I. publ. 8, Springer, 1987, 75-263.
[5] E. Iwaki, S. O. Juriaans, A. C. Souza Filho, Hyperbolicity of Semigroup Algebras, www.arxiv.org.
[6] E. Jespers, Free Normal Complements and the Unit Group of Integral Group Rings, Proceedings of the American Mathematical Society, vol 122, number 1, 1994.
[7] E. Jespers, D. Wang, Units of Integral Semigroup Rings, Journal of Algebra, vol 181, pages 395-413, 1996.
[8] S. O. Juriaans, I. B. S. Passi, D. Prasad, Hyperbolic Unit Groups, Proceedings of the American Mathematical Society, vol 133(2), 2005, pages 415-423.
[9] A. H. Clifford, G. B. Preston, The Algebraic Theory of Semigroups, American Mathematical Society, Mathematical Surveys number 7, Rhode Island, 1961.
[10] E. G. Goodaire, E. Jespers, F. C. Polcino Milies, Alternative Loop Rings, Elsevier, Oxford, 1996.
[11] J. Okniński, Semigroup Algebras, Pure and Applied Mathematics, Dekker, USA, 1991.
[12] A.C. Souza Filho, Sobre uma Classificação dos Anéis de Inteiros, dos Semigrupos Finitos e dos RA-Loops com a Propriedade Hiperbólica (On a Classification of the Integral Rings, Finite Semigroups and RA-Loops with the Hyperbolic Property), PhD. Thesis, IME-USP, São Paulo, 2006, 108 pages.