Bone marrow mesenchymal stem cells for tissue engineered pulmonary valves (TEPV)

Faizal Z. Asumda* and Victor Lamin1

*Correspondence: fza06@fsu.edu

1University of Science, Arts and Technology, Miami, Florida, USA.
2Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna Austria.

Abstract
Heart valve tissue engineering and regeneration represents a novel, and viable alternative treatment modality for valvular heart disease. Tissue-engineered pulmonary valves (TEPV) have been constructed from autologous cells grown on 3D biodegradable scaffolds or decellularized xeno- or homografts and surgically implanted in animal models. From a translational stand point, constructed valves must maintain regenerative competency in recipients, with minimum risk for stenosis over the long term. Stem cells are an attractive cell source for this proposed solution; candidate cells are expected to maintain robust differentiation and transdifferentiation capacity. Transplanted cells must persist, engraft, and couple electro-mechanically with endogenous tissue. Here, we present a discussion on the clinical applicability of bone marrow mesenchymal stem cells in TEPV.

Keywords: Tissue engineered heart valves, stem cells, mesenchymal stem cells, cardiomyoplasty

Introduction
Valvular heart disease is a significant cause of morbidity and mortality; annually, there are over 100,000 valve replacements in the US [1]. Heart valve tissue engineering has captured the popular imagination of investigators and patients alike. Expectation and hope is however countered by realistic and legitimate concerns [1-9]. The fundamental objective is extension of life expectancy. Traditional surgical replacement takes the form of mechanical or biological valves [3]. Thromboembolic complications, the need for anticoagulation therapy, sub-optimal hemodynamic performance and prosthetic endocarditis [1-11] are a drawback to mechanical valves. Durability, deterioration, and the absence of growth which necessitates re-placement is an issue for non-living biological valves [1-9]. Postoperative calcification which leads to valve degeneration is also a major issue for bioprosthetic heart valves. Glutaraldehyde fixation spurs cell devitalisation and facilitates the reaction of calcium-containing extracellular fluid with membrane-associated phosphorus to produce calcium phosphate mineral deposits [12-13]. Young recipient age, along with other factors such as mechanical stress is thought to enhance the calcification process [12-13]. As a result, there is a need for living autologous equivalents. This is especially true for congenital heart malformations in pediatric patients [14]. Tissue-engineered heart valves (TEHV) have emerged in recent years as a viable and logical treatment modality to meet this demand [1-11,13-14]. Tissue engineered pulmonary valves (TEPV) have been tested as a replacement valve in defective pulmonary valve (PV) outflow tract models [15-18]. The thin tricuspid structured PV is a semilunar valve. It lies between the pulmonary trunk and the right ventricle, and functions to prevent regurgitation of blood back into the right ventricle from the low-pressure pulmonary circulation [19-21]. The aortic and atroventricular valves supersede the PV in terms of importance [19-20].

Stem cells have been used in tissue engineering of all three cardiac valves. While the discussion here is focused on the PV, bone marrow mesenchymal stem cells (BM-MSCs) can certainly be used for tissue engineering of the other three heart valves with equal success. The clinical sequelae following impaired PV function is life threatening [19-21]. Right sided-volume overload, and dilatation, supraventricular or ventricular arrhythmias, hepatic congestion, peripheral edema and subsequent heart failure (HF) result from the excessive regurgitation seen with an impaired PV [19-21]. PV insufficiency, regurgitation, and dysfunction of implanted biologic valved conduits which are designed to establish continuity between the right ventricle and the pulmonary artery remain a chief reason for reoperations in pediatric congenital cardiac surgery [16,20-22]. TEPVs represent a viable alternative to the current percutaneous approach to PV replacement [22]. From a tissue engineering perspective, it is quite complex to simultaneously meet all functional requirements of the heart. The specific tissue components of the valve leaflet, sinus and root, and pulmonary artery conduit each play a vital role with unique tissue requirements. Beyond the anatomic requirements, there are neurological and vasoactive requirements which the proposed engineered valve must respond to and replicate [2,23]. We have to be realistic about what is possible. The specific in vivo physiological and
anatomical requirements present a formidable hurdle when scaling up in vitro models in terms of design and subsequent performance. Practical issues must be considered—ideal scaffold thickness, and leaflet shape based on native PV functionality [24-28]. In this review, we focus primarily on being able to develop a stem cell based living PV replacement from BM-MSCs.

Review

In vitro modeling and fabrication

The drive towards clinical application of a stem cell based heart valve technology requires a thorough understanding and control over the modeling and fabrication aspect. The primary modes of heart valve fabrication have been constructs made via polymerization of biosynthetic material, decellularized xeno and allografts, and biodegradable scaffolds [1,6,8,28-29]. In vitro design and fabrication of TEPVs should be done from a translational perspective. The optimum replacement valve should be autologous—both the scaffold material and the seeded cells. The traditional design is for the scaffold to degrade over a period of time in a bioreactor system as the seeded cells develop into viable valve tissue [29]. The TEHV bioreactor provides mechanical, physiological and biochemical conditioning akin to the hemodynamic milieu of the heart [30-31]. The in vitro bioreactor system is designed to control all relevant cardiac variables—pO$_2$ and pCO$_2$ concentration, pH, temperature, metabolic requirements, and simulation of in vivo physiological hemodynamics [30-31]. Mechanical and physiological stimuli with regard to cytokine and growth factor secretion are integral components of heart valve development. A mechanically active milieu is critical for the appropriate gene expression profile and tissue maturation [29-32]. The advent of pulsatile dynamic bioreactors suits the need for mechanical conditioning within the context of heart valve tissue engineering [29-34]. The typical dynamic bioreactor system provides mechanical stimuli in the form of shear stress and strain as well cardiac parameters (stroke volume and cycle number) [30-32]. Eliciting physiologically suitable tissue formation and maturation of the valve leaflets requires continuous perfusion. It also requires dynamic strain over the duration of in vitro culture [29-30]. Fabrication and design of the trileaflet heart valve should factor in the effects of both flow over, and strain within the leaflets [29-31,34,36]. Both factors are known to govern tissue formation and development [29,34,36].

Collagen and elastin are key load-bearing proteins critical for mechanical and tensile strength of the valve leaflet [29-31,34-38]. Proteoglycans and hyaluronan in particular, form the greater portion of ground substance in the valve extracellular matrix (ECM) [29,34-38]. From a structural standpoint, glycosaminoglycans play an important role along with elastin with regard to stabilization of the valve cusps [39-40]. Hyaluronic acid, chondroitin and dermanat sulfates contribute to the mechanical behaviour of the extracellular matrix of native valve cusps [39-40]. Their inherently large concentration of negative charges and subsequent hydrophilicity enables absorption of water [39-40]. They are therefore able to hydrate the spongiosa layer of the valve leaflet and decrease the stress associated with cuspal flexure [39-40]. Endocardial cushion formation in the cardiac outflow (OFT) tract initiates morphogenesis of the pulmonary and aortic valves [35-38]. Endocardial-mesenchymal transition leads to invasion of the trileaflet ECM by transformed atrioventricular (AV) canal cushion cells [35-38]. The AV cushion mesenchyme, under the influence of a variety of cytokine signals forms the basis for restructuring and elongation of the primitive valve structure into mature leaflets [35-38]. The exact mechanistic detail of leaflet elongation (refinement of leaflet shape, thinning, and tapering of the edges) [36] is not clear. Presumably, it involves proliferative and apoptotic events along with interactions between myocardial, endocardial and mesenchymal cells [35-38]. Fabrication must also take into consideration the differences in the shearing effects of flow. For example, the ventricular aspect of the valve leaflet is composed primarily of flattened endothelial cells due to the shearing effect of ventricular ejection [36]. In contrast, the arterial aspect consists primarily of cuboidal endothelial cells [36]. The prominent elastic lamellae of the ventricular aspect are also consistent with its continued exposure to the dynamic tension of systole [36]. On the other hand, the stagnant tension of diastole necessitates a primarily, collagenous plate on the arterial side of the valve leaflet [36]. TEPVs are expected to persist, remodel and attain a degree of homeostasis in recipient hearts post transplantation. Design should therefore factor in anatomical and physiological determinants of valve growth. For example, a fundamental physical constraint on leaflet growth and elongation will be the diameter of the valve orifice [36].

Interestingly, Maron et al., [36] report the absence of capillaries or blood vessels and nerve fibres in developing embryonic and fetal valve leaflets which suggests that the leaflets and cusps can be nourished via diffusion. But adult human heart valves are known to have interlinking muscle and nerve fibres, and blood vessels [41-47]. The larger proportion of leaflet vasculature and innervation is situated close to the base and annular region of the valve leaflet [42,44-47]. Valve nerve fibres are a mix of thin non-myelinated and thick myelinated fibres [46-47]. The key question here is how to overcome the seemingly complex and specialized nature of the heart valve in our attempt to accurately recapitulate its structure and function. Decellularized PV scaffolds have emerged as a promising alternative to overcome the inherent microstructural complexity of the trileaflet valve [13,24,49-51]. Fundamentally, the technique of decellularization removes the cellular and antigenic components, leaving an intact ECM scaffold that can be repopulated with autologous cells [49-51]. The advantage to the decellularized PV scaffold is that it closely mimics the native valve in structure and function. It also enables regeneration, growth and potential endothelialisation by endogenous...

doi: 10.7243/2050-1218-3-2
cells [49-51]. Decellularized xenografts can however be problematic [52-55]. The main issues with transplanted decellularized TEVPs derived from xenogenous tissue are fibrosis, distal obstruction, inflammation, thrombogenicity, and immunogenicity, resulting in aneurysm, stenosis and regurgitation [52-54]. The vast majority of problems associated with transplanted decellularized PVs appear to be associated with the clinical introduction aspect. Issues associated with surgical implantation in terms of sizing, placement, anatomic and physiological dynamics and the valve’s ability to merge harmoniously with the endogenous micro-milieu from a biochemical and hemodynamic stand point [52-55]. Not with standing, decellularized pulmonary valves such as the CryoValve SG pulmonary human valve have been previously cleared and are currently being studied prospectively to determine mortality, reoperation, structural deterioration, thromboembolism, conduit failure, calcification among other adverse events [56-58]. Replacement TEVPs developed from biodegradable scaffolds seeded with autologous cells have proven successful in large animal and human models [29,31,59-61]. From a fabrication stand point, the scaffold design is critical; the 3D structure guides cellular migration, attachment and growth [62-64]. Ideal synthetic biodegradable scaffolds are typically porous and are designed to enable diffusion of both nutrients and waste products [29,59,65]. The ideal scaffold should be optimally biodegradable—the timing of absorption into endogenous tissue should match tissue formation. Scaffolds have been developed from polyglycolic acid (PGA), polylactic acid (PLA), combined PGA-PLA and polyhydroxyoctanoate (PHO) [29,59-65]. The advantage with these materials is thermoplasticity, biodegradability and biocompatibility [29,60-65]. Irrespective of the chosen in vitro modelling and fabrication system, the overarching question is the degree of in vivo persistence, homeostasis and remodelling. Specifically, we ought to have a clear picture of the time course of TEVP cell remodelling into the 3D biodegradable scaffold material following transplantation. Also of consequence are the specific morphological and molecular level changes associated with remodelling TEVP in recipients.

Bone marrow mesenchymal stem cells
Barring the determination of an ideal cell type, the concept of isolating a patient’s own stem and progenitor cells, expanding them in vitro and creating a viable living valve replacement is feasible [66-67]. The ideal cell type need not be pluripotent; but must maintain multi-differentiation capacity with minimal risk for immunogenicity. The fundamental question with regard to determining the appropriate stem cell population is its ability to recapitulate the individual cell types of the pulmonary valve leaflet. Della Rocca et al., [68] showed that the largest density of cells in the PV leaflet is located in the anterior, posterior and septal cusps. The three layers of the valve leaflet (fibrosa, spongiosa and ventricularis) each express varying amounts of vimentin and non-muscle myosin which suggest the presence of mesenchymal cell, smooth muscle (SM) and non-muscle cell phenotypes [68-69]. Overall, the PV leaflet consists primarily of SM cells, myofibroblasts and fibroblasts [68]. Myofibroblasts and SM cells take up the bulk of the fibrosa which is consistent with the pressure differences [29,68-71]. Fibroblasts localize predominantly to the ventricularis [68] and are chiefly responsible for the maintenance of the ECM [29,68-70]. In thinking about optimal seeding and layering methods, it should be noted that cell alignment and patterning in the valve leaflet is perpendicular to the direction of flow [29]. Seeded cells must quickly adhere, spread out, proliferate and subsequently develop into tissue [73]. From a structural standpoint, it is important to note that valve leaflet myofibroblasts express varying amounts of skeletal and cardiac muscle proteins (myosin heavy chain, SM myosin heavy chain, desmin, calponin, and α-smooth muscle actinin) [68,71]. Based on this cell phenotype, the traditional approach has been to isolate endothelial cells and myofibroblast-like cells from vascular tissue [66-67]. This cell population is however limited with regard to atherosclerotic and diabetic risk and the need to sacrifice intact healthy human vascular tissue [66,72]. There is therefore a need to determine an alternative and optimum cell source. A variety of different stem cell types have been tested—umbilical cord, choricron villi, amniotic fluid, and bone marrow stem cells [66-67]. We make a case here for bone marrow derived mesenchymal stem cells (BM-MSCs).

Mesenchymal stem cells (MSCs) are a multipotent fibroblast-like non-hematopoietic stem cell isolated from a number of different tissue sources. BM-MSCs have been extensively studied and are currently being tested in several on-going clinical trials [74-76]. Positive expression of non-hematopoietic surface makers such as (CD105, CD90, CD106, CD73, CD44, CD29, etc) and null expression of hematopoietic cell surface markers (CD45, CD34, CD11b, CD14, etc) is a hallmark of MSCs [77-78]. Irrespective of tissue source, MSCs maintain extensive differentiation, proliferative and clonogenic capacity in vitro [78-79]. They differentiate into adipocytes, chondrocytes, cardiomyogenic cells (Figure 1), neurogenic cells, endothelial cells and have demonstrated angiogenic capacity [78-81]. Data shown in (Figure 1) demonstrates the ability of BM-MSCs to form mesodermal tissue—specifically mesenchymal, cartilaginous, ECM components, SM and non-smooth muscle which makes them a viable cell source for heart valve engineering. In terms of valve engineering, BM-MSCs are well fitted for this purpose. Isolation, purification and expansion to obtain clinically applicable numbers can be done in a matter of days (Figure 2) [78-80]. BM-MSCs are a heterogeneous population, very responsive to external stimuli, and easy to direct in terms of lineage specification [77-83]. Their ability to secrete an array of cytokines [80-81], and ECM proteins (collagen I, IV, fibronectin and laminin) [82] which drive the formation of an underlying framework for tissue shape and formation makes them a viable option
Figure 1. Illustration of multilineage differentiation capacity of bone marrow mesenchymal stem cells (BM-MSCs). Representative Phase contrast Micrographs illustrate BM-MSC cardiomyogenesis, adipogenesis, chondrogenesis and osteogenesis, respectively (First Row). Differentiated BM-MSCs stain positive for cardiac structural proteins (anti-cTnI and anti-cTnC) following induction with differentiation media (Second Row). BM-MSCs induced with adipogenic, chondrogenic and osteogenic differentiation media stain positive for the adipocyte binding protein (anti-FABP4), cartilage-specific proteoglycan core protein (anti-Aggreca) and gamma-carboxyglutamic acid-containing protein (anti-Osteocalcin) (Second Row).

Figure 2. Representative Micrographs show bone marrow mesenchymal stem cells (BM-MSCs) at 24 hours (24h), 48 hours (48h), 72 hours (72h), 5 days (D5) and 7 days (D7) post primary isolation. BM-MSCs expand to over 90% confluency one week post isolation. BM-MSCs were isolated from Sprague Dawley rats (4 months).

BM-MSCs have a demonstrated ability to differentiate into each of the mesodermal lineages (mesenchymal, SM and non-muscle) [67-71] that constitute the valve leaflet [77-81].

BM-MSCs maintain a selective advantage in terms of genetic stability [86-87] and immunosuppression [88-89]. In determining an ideal stem cell source, we have to be mindful of the tumorigenic potential of stem cells [86-87]. The risk of spontaneous transformation by BM-MSCs to cause oncologic issues in the clinical setting has so far been negligible. The data for human BM-MSC tumorigenesis is murky and questionable at best. Uncontaminated, low passage BM-MSCs isolated from an appropriate source, expressing the appropriate panel of surface markers do not pose an oncologic risk [86-87]. The need for living tissue autologous equivalents in pediatric valve replacement necessitates a cell with extensive long term expansion capacity and stable growth kinetics [6,14]. Fibrosis, inflammation, and immunogenicity with potential for aneurysm and stenosis are a major hurdle for valve engineering [8]. Vascular tissue derived endothelial and myofibroblast-like cells which have been traditionally employed pose an atherosclerotic and diabetic risk [72]. By virtue of their unique immune privilege and immunosuppressive ability [88-89], BM-MSCs might be the key to overcoming these barriers. They suppress the proliferation of T-lymphocytes, and express negligible and high levels of immunogenic MHC-Ia, and immunosuppressive MHC-Ib, respectively [88-89]. BM-MSC based engineered functional living heart valves have been developed and tested in large animal models [84-86].
preliminary studies show that, BM-MSCs pose no inflammatory risk. BM-MSCs are particularly responsive to mechanical and biophysical stimuli [83,90-91] which are crucial for in vitro structural valve design and patterning. Stress and geometrical variables (flow, flexure, and stretch), scaffold materials, and the mechanically active milieu of the bioreactor system each play distinct but interdependent roles that drive the growth process [84-86]. In scaling up from an in vitro system, BM-MSC engineered valves will have to respond to hemodynamic conditions in a way that ensures efficient opening and closure. This, along with differences in collagen levels, ECM patterns, and trileaflet stiffness are greatly influenced by mechanotransduction [83,90-91]. Central to this process are fundamental questions about BM-MSC differentiation into myofibroblasts and endothelial cells, and cell distribution within the leaflet structure. Also of importance is the ability of BM-MSCs to survive, proliferate, instigate angiogenesis and ultimately differentiate into functional valve tissue capable of withstanding in vivo mechanical and hemodynamic stress. The key to this is their collagen and elastin forming ability [4-7,82] which will determine long term survivability. Questions about cell seeding density, vessel type, and in vitro morphology are easily addressed during the in vitro culture phase using pre-validated methods based on other adult stem cells.

A major challenge to the use of TEPVs in the clinical setting has been the need to answer questions pertaining to valve persistence, homeostasis and remodelling post implantation. There are still unanswered questions in terms of the trans-differentiation of BM-MSCs following transplantation. Elucidating the specific mechanistic details of BM-MSC biology on TEPVs following implantation is an even more important proposition. Addressing these issues requires a detailed mechanistic look at cells once the valve has been transplanted. There is a need to determine the exact location of BM-MSCs over time to ascertain whether they remain on the scaffold. Also of importance is the long-term quantification of seeded BM-MSCs to determine differentiation, survival and their interaction with the microenvironment. These are fundamental but critical questions; the advantage to BM-MSCs is that enough is known to enable detailed mechanistic studies of this sort. As with cellular cardiomyoplasty where great strides have been made with regard to modes and routes of cell application, the engineering aspect of valve development with stem cells can be efficiently controlled. But a potentially limiting factor is longitudinally studying the BM-MSCs once the valve has been implanted in a living recipient. One option is to transfect cells with a reporter gene before valve implantation [92] and subsequently track the cells with positron emission tomography camera [93]. This can also be accomplished via visualization and cell tracking by MRI [94-95]. It is important to assess and quantify matrix elements such as collagen, elastin and glycosaminoglycans following transplantation. For example a comparison of native normal pulmonary valves to implanted equivalents should reveal degree of SM cell differentiation, macrophages, progenitor cells and monocyte formation. Basic mechanistic studies such as these are necessary; a determination of endothelisation with CD31 and eNOS (nitric oxide), von Willbrand factor, and determination of levels of immune cell invasion by staining for neutrophils, monocytes and T cells with NIMP-1, Mac-1 and CD3 respectively [98].

Available stem cell sources for TEPV (Table 1) A variety of stem cells derived from different sources have been used in TEPVs. The ideal stem cell need not be pluripotent but must maintain extensive differentiation and proliferative capacity which has been demonstrated in BM-MSCs (Figure 1). The prototypical cell source must also be well characterized; it has to be easily accessible and easy to culture to obtain clinically relevant numbers. BM-MSCs are particularly advan-tageous in this regard (Figure 2) [98-100]. From the standpoint of cardiac tissue specificity, cardiovascular progenitor cells taken from vascular structures have been extensively used for valve engineering [5-8,10,66-67,94]. The disadvantage with this cell source is that the population is mixed and extensive cell sorting and purification has to be carried out [10]. Furthermore, tissue source for vascular derived endothelial cells is scarce—more often than not, whole vessels must be sacrificed to obtain a large enough cell population [10]. The immunogenicity of this cell source means there is an increased risk of immune-rejection and possible thromboembolic events following transplantation.
[5-8,54,96-97]. In the presence of atherosclerotic and vascular disease, this cell source cannot be used, since vessels would have undergone atherosclerotic damage. A number of different stem cells derived from amniotic fluid have also been employed for heart valve engineering. Majority are of an endothelial-like progenitor lineage [5-8,10,66-67,101-103]. Typical amniotic fluid stem cells express CD29, CD166, CD44 and SSE4 along with a number of stemness genes such as NANOG, OCT-4 and SOX-2 [67,101]. Amniotic fluid stem cells also maintain extensive differentiation capacity [67,102-103]. This cell source appears to be the most ideal for pediatric heart valve engineering but unfortunately they are not well characterized and isolation requires invasive surgical intervention [67,102-103]. The issue of phenotypic characterization is critical because within amniotic fluid, mesenchymal stem cells, cells of endothelial-like progenitor lineage and mature endothelial cells can be isolated [67,102-103]. Cryo-preserved amniotic fluid stem cells have been tested in TEPV as a possible life-long cell source [66-67]. While amniotic fluid stem cells hold great potential for TEPVs, there are still unanswered questions about their growth kinetics, the effects of long term passaging and carcinogenicity [66-67]. Mesenchymal stem cells have also been isolated from foetal chorionic villi for heart valve engineering. The isolation process typically involves prenatal chorionic villus sampling and serial passaging to obtain a large enough cell population [5-8,66-67,104]. This cell population is also not well characterized and has been shown to contain foetal capillary endothelial cells [10,66-67]. Umbilical cord blood stem cells with fibroblast like features, expressing CD105, CD73, CD29 and CD13 and null expression of CD45 have also been isolated and used in heart valve engineering [10,66-67,105-108]. This cell source has properties akin to BM-MSCs and has thus been extensively employed in autologous valve engineering. The key barrier to the use of these cells in the clinical setting has been the issue of purification and in vitro culture expansion of the adherent cell population as opposed to the mononuclear population [66-67,105-109]. Endothelial progenitor cells have also been isolated from umbilical cord blood [66-67,105-113]. This particular cell source has shown tremendous promise for surface endothelialisation and covering of the valve leaflet during in vitro fabrication [10,66-67]. Despite their ease of isolation and expansion, it is still unclear if umbilical cord blood endothelial progenitor cells transdifferentiate into a bona fide mesenchymal-myo-fibroblast-like phenotype which is critical for heart valve tissue engineering [66-67,105-113]. The main drawback to stem cells derived from amniotic fluid, chorionic villi and umbilical cord is that accessibility is potentially invasive and dependent on pregnancy. Isolated stem cells must be cryo-preserved for long term use which is also predicated on the assumption that they will remain viable over the long term. Induced pluripotent stem cells (iPS) [114] are also a possible alternative but their inherent genome instability and risk of tumorigenesis makes BM-MSCs a superior choice from a clinical standpoint.

The key issue with each of the outlined cell sources in comparison to BM-MSCs is accessibility for primary isolation and in vitro culture, and availability in clinically relevant numbers. Accessing tissue for cell isolation requires potentially invasive clinical procedures which pose a risk to the developing foetus and mother. If the goal is to develop an autologous valve for pediatric patients, then isolation can only be carried out at birth or during pregnancy in the case of cells derived from amniotic fluid, chorionic villi and umbilical cord blood [66-67]. Phenotyping is also an issue—exactly what markers define the majority of these cell populations is still unclear and there is no definitive differentiation protocol to test multi-lineage differentiation capacity in most cases. The advantage that BM-MSCs have over these other stem cell sources is that they have been extensively and rigorously tested through the pre-clinical and now the clinical stages. Overall, our knowledge of these stem cells at the mechanistic level is still patchy, but we know enough about BM-MSCs that their use in the clinical setting for heart valve engineering makes sense. In general, stem cells are a very sensitive cell population and the risk of uncontrolled growth along with genetic alterations should make us wary of using untested cells. There is a need to increase our knowledge of how these cells behave specifically when applied to biodegradable or decellularized scaffolds in terms of inflammation, toxicity and interaction with the specific components of the scaffold [5-8,10,66-67]. As discussed, BM-MSCs are not without issues—oncogenesis, and questions surrounding transdifferentiation post transplantation are the key issues from a clinical standpoint. But in terms of our understanding of their basic cell biology and mechanism of action, more is known about BM-MSCs which makes their use in this technology practical. BM-MSCs are currently being tested in several on-going clinical trials for their ability to restore function and regenerate tissue post myocardial infarction. The drive towards their clinical application in heart valve tissue engineering is therefore a realistic goal that could occur in the next five to ten years.

Conclusion
Clearly, congenital heart valve disease in pediatric patients is an issue [1-15]. For example left and right heart failure resulting from pulmonary and aortic stenosis and ventricular dysfunction post pulmonary valve regurgitation in conditions such as tetralogy of Fallot [16-22]. Transitioning from in vitro development and fabrication of replacement TEPVs to their clinical application will require a realistic and thoughtful approach. One that takes into consideration the potential in vivo risks—in the case of MSCs, calcification, ectopic tissue formation, and aging, transdifferentiation into the appropriate cell type, survival and engraftment are potential issues. There is still a major question mark on the issue of BM-MSC transdifferentiation into viable and functional valve tissue [96]. An alternative to in vitro fabrication in the bioreactor
model as demonstrated by Vincentelli and colleagues [85] is direct injection of BM-MSCs into decellularized scaffolds prior to implantation. The idea here is that pre-seeding just before implantation will enable valve tissue formation under the appropriate physiological conditions [85]. Additionally genetic engineering and growth factor based systems can be used to enhance BM-MSC formation of valve tissue [85]. Overall, fabrication of PV leaflets using BM-MSCs as the prime cell source is feasible; the clinical application of such valves as autologous replacements both in pediatric and adult patients is a practical therapeutic option.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

Authors’ contributions	FZA	VL
Research concept and design	✓	✓
Collection and/or assembly of data	✓	--
Data analysis and interpretation	✓	--
Writing the article	✓	--
Critical revision of the article	✓	✓
Final approval of article	✓	✓
Statistical analysis	✓	--

Acknowledgement
FAZ thanks Dr. Bryant Chase for supporting his research during his time at Florida State University. VL thanks Ass. Prof. Univ. Doz. Dr. Mariann Gyöngyosi for her support during his time at the Division of Cardiology in the Vienna General Hospital in the EU-Life Valve project.

Publication history
Editor: Aline M. Betancourt, Tulane University School of Medicine, USA.
EIC: W. Scott Argraves, Medical University of South Carolina, USA.
Received: 13-Jun-2013 Revised: 27-Oct-2013
Accepted: 30-Dec-2013 Published: 09-Jan-2014

References
1. Vesely I. Heart valve tissue engineering. *Circ Res.* 2005; 97:743-55. | Article | PubMed
2. Yacoub MH and Takkenberg JJ. Will heart valve tissue engineering change the world? *Nat Clin Pract Cardiovasc Med.* 2005; 2:60-1. | Article | PubMed
3. Hammermeister K, Sethi GK, Henderson WG, Grover FL, Oprian C and Rahimtoola SH. Outcomes 15 years after valve replacement with a mechanical versus a bioprosthetic valve: final report of the Veterans Affairs randomized trial. *J Am Coll Cardiol.* 2000; 36:1152-8. | Article | PubMed
4. Mol A, Rutten MC, Driessen NJ, Bouten CV, Zund G, Baaijens FP and Hoorstorp SP. Autologous human tissue-engineered heart valves: prospects for systemic application. *Circulation.* 2006; 114:152-8. | Article | PubMed
5. Mol A, Smits AI, Bouten CV and Baaijens FP. Tissue engineering of heart valves: advances and current challenges. *Expert Rev Med Devices.* 2009; 6:259-75. | Article | PubMed
6. Schoen FJ and Levy RJ. Founder’s Award, 25th Annual Meeting of the Society for Biomaterials, perspectives. Providence, RI, April 28-May 2, 1999. Tissue heart valves: current challenges and future research perspectives. *J Biomed Mater Res.* 1999; 47:439-65. | Article | PubMed
7. di Marco F and Gerossa G. Heart valve tissue engineering: research should proceed along validated routes. *J Thorac Cardiovasc Surg.* 2008; 135:1406-7; author reply 1407. | Article | PubMed
8. Mendelson K and Schoen FJ. Heart valve tissue engineering: concepts, approaches, progress, and challenges. *Ann Biomed Eng.* 2008; 36:1799-819. | Article | PubMed Abstract | PubMed Full Text
9. Neuschwander S and Hoerstrup SP. Heart valve tissue engineering. *Transpl Immunol.* 2004; 12:359-65. | Article | PubMed
10. Migone F, Hollister SJ and Bilia RK. Tissue-engineered heart valve prostheses: ‘state of the heart’. *Regen Med.* 2008; 3:399-419. | Article | PubMed
11. Vongpatanasin W, Hillis LD and Lange RA. Prosthetic heart valves. *N Engl J Med.* 1996; 335:407-16. | Article | PubMed
12. Iyer A, Malik P, Prabha R, Kugathasan G, Kutey O, Marney L and Larbalestier R. Early postoperative bioprosthetic valve calcification. *Heart Lung Circ.* 2013; 22:873-4. | Article | PubMed
13. Schoen FJ and Levy RJ. Calcification of tissue heart valve substitutes: progress toward understanding and prevention. *Ann Thorac Surg.* 2005; 79:1072-80. | Article | PubMed
14. Henaine R, Rouberte F, Vergnat M and Ninet J. Valve replacement in children: a challenge for a whole life. *Arch Cardiovasc Dis.* 2012; 105:517-28. | Article | PubMed
15. Dohmen PM, Lembbcke A, Holinski S, Kivelitz D, Braun JP, Pruss A and Konertz W. Mid-term clinical results using a tissue-engineered pulmonary valve to reconstruct the right ventricular outflow tract during the Ross procedure. *Ann Thorac Surg.* 2007; 84:729-36. | Article | PubMed
16. Metzner A, Stock UA, Iino K, Fischer G, Huebme J, Boldt J, Braesen HJ, Bein B, Renner J, Cremer J and Lutter G. Percutaneous pulmonary valve replacement: autologous tissue-engineered valve stents. *Cardiosurg.* 2010; 88:453-61. | Article | PubMed
17. Boldt J, Lutter G, Pohanke J, Fischer G, Schoettler J, Cremer J and Metzner A. Percutaneous tissue-engineered pulmonary valve stent implantation: comparison of bone marrow-derived CD133+ cells and cells obtained from carotid artery. *Tissue Eng Part C Methods.* 2013; 19:363-74. | Article | PubMed
18. Dijkman PE, Driessen-Mol A, de Heer LM, Kuin J, van Herwerden LA, Odermatt B, Baaajens FP and Hoorstorp SP. Trans-apical versus surgical implantation of autologous ovine tissue-engineered heart valves. *J Heart Valve Dis.* 2012; 21:670-8. | Article | PubMed
19. Bove EL, Byrum CJ, Thomas FD, Kavey RE, Sondheimer HM, Blackman MS and Parker FB, Jr. The influence of pulmonary insufficiency on ventricular function following repair of tetralogy of Fallot. Evaluation using radionuclide ventriculography. *J Thorac Cardiovasc Surg.* 1983; 85:691-6. | Article | PubMed
20. Jones EL, Conti CR, Neil Ca, Gott VL, Brawley RK and Haller JA, Jr. Long-term evaluation of tetralogy patients with pulmonary valvular insufficiency resulting from outflow-patch connection across the pulmonic annulus. *Circulation.* 1973; 48:Iii11-8. | Article | PubMed
21. Piazza L, Chessa M, Giamberti A, Bussadori CM, Butera G, Negura DG, Michelelli A, Callus E and Carminati M. Timing of pulmonary valve replacement after tetralogy of Fallot repair. *Expert Rev Cardiovasc Ther.* 2012; 10:917-23. | Article | PubMed
22. Huber CH, Hurni M, Tsang V and von Segesser LK. Valved stents for transapical pulmonary valve replacement. *J Thorac Cardiovasc Surg.* 2009; 137:914-8. | Article | PubMed
23. Kershaw JD, Misfeld M, Sievers HH, Yacoub MH and Chester AH. Specific regional and directional contractile responses of aortic cusp tissue. *J Heart Valve Dis.* 2004; 13:798-803. | Article | PubMed
24. Dohmen PM, Lembbcke A, Holinski S, Pruss A and Konertz W. Ten years of clinical results with a tissue-engineered pulmonary valve. *Ann Thorac Surg.* 2011; 92:1308-14. | Article | PubMed
25. Stock UA, Nagashima M, Khalil PN, Nollert GD, Herden T, Sperling JS, Moran A, Lien J, Martin DP, Schoen FJ, Vacanti JP and Mayer JE, Jr.
Tissue-engineered valved conduits in the pulmonary circulation. J Thorac Cardiovasc Surg. 2000; 119:732-40. | Article | PubMed

26. Fan R, Bayoumi AS, Chen P, Hobson CM, Wagner WR, Mayer JE, Jr. and Sacks MS. Optimal elastomeric scaffold leaflet shape for pulmonary heart valve leaflet replacement. J Biomech. 2013; 46:662-9. | Article | PubMed

27. Huber CH, Hurni M, Tsang V and von Segesser LK. Valved stents for transapical pulmonary valve replacement. J Thorac Cardiovasc Surg. 2009; 137:914-8. | Article | PubMed

28. Thierfelder N, Koeing F, Bomblen R, Fano C, Reichart B, Wintemantel E, Schmitz C and Akra B. In vitro comparison of novel polyurethane aortic valve and homografts after seeding and conditioning. ASAIO J. 2013; 59:309-16. | Article | PubMed

29. Mol Anita. Functional tissue engineering of human heart valve leaflets. Eindhoven: Technische Universiteit Eindhoven. 2005. | PDF

30. Carrier RL, Papadaki M, Rupnick M, Schoen FJ, Bursac N, Langer R, Freed LE and Vunjak-Novakovic G. Cardiac tissue engineering: cell seeding, cultivation parameters, and tissue construct characterization. Biotechnol Bioeng. 1999; 64:580-91. | Article | PubMed

31. Gandaglia A, Bagno A, Noso F, Spina M and Gerosa G. Cells, scaffolds and bioreactors for tissue-engineered heart valves: a journey from basic concepts to contemporary developmental innovations. Eur J Cardiothorac Surg. 2011; 39:523-31. | Article | PubMed

32. Kitamura T, Affeld K and Mohnhaupt A. A model of a new pulsatile duplicator system for prosthetic heart valves. J Biomech Eng. 1987; 109:43-7. | PubMed

33. Dumont K, Yperman J, Verbeken E, Segers P, Meuris B, Vandenberghe and Bayne-Jones S. The cryovalve SG: a biomimetic in vitro model for heart valve tissue engineering. Biomater. 2003; 24:3974-88. | Article | PubMed

34. Kalluri R and Zeisberg E. Controlling angiogenesis in heart valves. Circulation. 2006; 114:1694-6. | Article | PubMed

35. Bayne-Jones S. Blood vessels of the heart. Am J Anat. 1917; 21:449-463. | Article | PubMed

36. Yoshikawa J and Lee RT. Vascularization as a potential enemy in valvular heart disease. Circulation. 2008; 118:1694-6. | Article | PubMed

37. Millington-Sanders C, Meir A, Lawrence L and Stolinski C. Structure of chordae tendineae in the left ventricle of the human heart. J Anat. 1998; 192 (Pt 4):573-81. | Article | PubMed

38. Shah SR and Vyasahare NR. The effect of glycosaminoglycan stabilization on tissue buckling in bioprosthetic heart valves. Biomaterials. 2008; 29:1645-53. | Article | PubMed

39. Millington-Sanders C, Meir A, Lawrence L and Stolinski C. Structure of chordae tendineae in the left ventricle of the human heart. J Anat. 1998; 192 (Pt 4):573-81. | Article | PubMed

40. Yoshikawa J and Lee RT. Vascularization as a potential enemy in valvular heart disease. Circulation. 2008; 118:1694-6. | Article | PubMed

41. Kalluri R and Zeisberg E. Controlling angiogenesis in heart valves. Nat Med. 2006; 12:1119-9. | Article | PubMed

42. Swanson JC, Davis LR, Arata K, Briones EP, Bothe W, Itoh A, Ingels NB and Miller DC. Characterization of mitral valve anterior leaflet perfusion patterns. J Heart Valve Dis. 2009; 18:488-95. | PubMed Abstract | PubMed Full Text

43. Sokolov VV and Gorun GG. [Vascular-nervous relationships in the valves of the heart]. Arkh Anat Gistol Embriol. 1976; 70:103-6. | Article | PubMed

44. Brown J, Elkins RC, Clarke DR, Tweddell JS, Huddleston CB, Doty JR, Fehrenbacher JW and Takkenberg JJ. Performance of the CryoValve SG human decellularized pulmonary valve in 342 patients relative to the conventional CryoValve at a mean follow-up of four years. J Thorac Cardiovasc Surg. 2010; 139:339-48. | Article | PubMed

45. Konuma T, Devaney EJ, Bove EL, Gelehrter S, Hirsch JC, Tavakkol Z and Wolner E. Tissue-engineered valved conduits in the pulmonary circulation. J Thorac Cardiovasc Surg. 2011; 142:1694-6. | Article | PubMed

46. Konuma T, Devaney EJ, Bove EL, Gelehrter S, Hirsch JC, Tavakkol Z and Wolner E. Tissue-engineered valved conduits in the pulmonary circulation. J Thorac Cardiovasc Surg. 2011; 142:1694-6. | Article | PubMed

47. Swanson JC, Davis LR, Arata K, Briones EP, Bothe W, Itoh A, Ingels NB and Miller DC. Characterization of mitral valve anterior leaflet perfusion patterns. J Heart Valve Dis. 2009; 18:488-95. | PubMed Abstract | PubMed Full Text

48. Konuma T, Devaney EJ, Bove EL, Gelehrter S, Hirsch JC, Tavakkol Z and Wolner E. Tissue-engineered valved conduits in the pulmonary circulation. J Thorac Cardiovasc Surg. 2011; 142:1694-6. | Article | PubMed

49. Konuma T, Devaney EJ, Bove EL, Gelehrter S, Hirsch JC, Tavakkol Z and Wolner E. Tissue-engineered valved conduits in the pulmonary circulation. J Thorac Cardiovasc Surg. 2011; 142:1694-6. | Article | PubMed

50. Konuma T, Devaney EJ, Bove EL, Gelehrter S, Hirsch JC, Tavakkol Z and Wolner E. Tissue-engineered valved conduits in the pulmonary circulation. J Thorac Cardiovasc Surg. 2011; 142:1694-6. | Article | PubMed
tissues. Ann Biomed Eng. 2011; 39:205-22. | Article | PubMed Abstract | PubMed Full Text

63. Yang C, Sodin R, Fu P, Luders C, Lemke T, Du J, Hubler M, Weng Y, Meyer R and Hetzer R. In vitro fabrication of a tissue engineered human cardiovascular patch for future use in cardiovascular surgery. Ann Thorac Surg. 2006; 81:57-63. | Article | PubMed

64. de Heer LM, Busde RP, vonken EJ, Bajiaiens FP, Grundeman PF, van Herwerden LA, Hoerstrup SP and Klijn J. Computer tomography detects tissue formation in a stented engineered heart valve. Ann Thorac Surg. 2011; 92:344-5. | Article | PubMed

65. Shum-Tim D, Stock U, Hrkach J, Shinoka T, Lien J, Moses MA, Stamp A, Taylor G, Moran AM, Landis W, Langer R, Vacanti JP and Mayer JE, Jr. Tissue engineering of autologous aorta using a new biodegradable polymer. Ann Thorac Surg. 1999; 68:2298-304. | Article | PubMed

66. Weber B, Emmert MY and Hoerstrup SP. Stem cells for heart valve regeneration. Swiss Med Wkly. 2012; 142:w13622. | Article | PubMed

67. Schmidt D and Hoerstrup SP. Tissue engineered heart valves based on human cells. Swiss Med Wkly. 2006; 136:618-23. | Article | PubMed

68. Della Rocca F, Sartore S, Guidolin D, Bertiplaglia B, Gerosa G, Casarotto D and Pauletto P. Cell composition of the human pulmonary valve: a comparative study with the aortic valve—the VESALIO Project. Vitalitate Exoromatum Succedentium Aorticum laboro Ingegnosos Obtinebitur. Ann Thorac Surg. 2000; 70:1594-600. | Article | PubMed

69. Tomasek JJ, Gabbanini G, Hinz B, Chapponnier C and Brown RA. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol. 2002; 3:349-63. | Article | PubMed

70. Taylor PM, Batten BR, Brand NJ, Thomas PS and Yacoub MH. The cardiac valve interstitial cell. Int J Biochem Cell Biol. 2003; 35:113-8. | Article | PubMed

71. Cimini M, Rogers KA and Boughner DR. Smoothelin-positive cells in human and porcine semilunar valves. Histochem Cell Biol. 2003; 120:307-17. | Article | PubMed

72. De Vriese AS, Vermeulen TF, Van de Voorde J, Lameire NH and Vanhoutte PM. Endothelial dysfunction in diabetes. Br J Pharmacol. 2000; 130:963-74. | Article | PubMed Abstract | PubMed Full Text

73. Zund G, Ye Q, Hoerstrup SP, Schoeberlein A, Grunenfelder J, Vogt P and Turina M. Tissue engineering in cardiovascular surgery: MTT, a rapid and reliable quantitative method to assess the optimal human cell seeding on polymeric membranes. Eur J Cardiother Surg. 1999; 15:519-24. | Article | PubMed

74. Traverse JH, Henry TD, Pepine CJ, Willerson JT, Zhao DX, Ellis SG, Forder JR, Anderson RD, Hatzopoulos AK and Penn MS et al. Effect of the use and timing of bone marrow mononuclear cell delivery on left ventricular structure after acute myocardial infarction: the TIME randomized trial. JAMA. 2012; 308:2380-9. | Article | PubMed Abstract | PubMed Full Text

75. Hare JM, Fishman JG, Gershenblith G, Difede Velazquez DL, Zambrano JP, Suncion VY, Tracy M, Gherini E and Johnston PV et al. Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transcatheter delivery in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA. 2012; 308:2369-79. | Article | PubMed

76. Traverse JH, Henry TD, Vaughn DE, Ellis SG, Pepine CJ, Willerson JT, Zhao DX, Simpson LM, Penn MS and Byrne BL et al. LateTIME: a phase-II, randomized, double-blinded, placebo-controlled, pilot trial evaluating the safety and effect of administration of bone marrow mononuclear cells 2 to 3 weeks after acute myocardial infarction. Tex Heart Inst J. 2010; 37:412-20. | Article | PubMed Abstract | PubMed Full Text

77. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S and Marahan DK. Multilineage potential of adult human mesenchymal stem cells. Science. 1999; 284:143-7. | Article | PubMed

78. Deans RJ and Moseley AB. Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol. 2000; 28:875-84. | Article | PubMed

79. Asumda FZ and Chase PB. Nuclear cardiac troponin and tropomyosin are expressed early in cardiac differentiation of rat mesenchymal stem cells. Differentiation. 2012; 83:106-15. | Article | PubMed

80. Asumda FZ and Chase PB. Age-related changes in rat bone-marrow mesenchymal stem cell plasticity. BMC Biol. 2011; 12:44. | Article | PubMed Abstract | PubMed Full Text

81. Boomsma RA and Geenen DL. Mesenchymal stem cells secrete multiple cytokines that promote angiogenesis and have contrasting effects on chemotaxis and apoptosis. PLoS One. 2012; 7:e35685. | Article | PubMed Abstract | PubMed Full Text

82. Grayson WL, Ma T and Bunnell B. Human mesenchymal stem cells tissue development in 3D PET matrices. Biotechnol Prog. 2004; 20:505-12. | Article | PubMed

83. Li X, Huang Y, Zheng L, Liu H, Niu X, Huang J, Zhao F and Fan Y. Effect of substrate stiffness on the functions of rat bone marrow and adipose tissue derived mesenchymal stem cells in vitro. J Biomed Mater Res A. 2013. | Article | PubMed

84. Iop L, Renier V, Naso F, Piccoli M, Bonetti A, Gandaglia A, Pozzobon M, Paolin A, Ortolani F, Marchini M, Spina M, De Coppi P, Sartore S and Gerosa G. The influence of heart valve leaflet matrix characteristics on the interaction between human mesenchymal stem cells and decellularized scaffolds. Biomaterials. 2009; 30:4104-16. | Article | PubMed

85. Vincentelli A, Wautot F, Juthier F, Fouquet O, Corseaux D, Marechaux S, Le Tourneau T, Fabre O, Susen S, Van Belle E, Mouquet F, Decoeure C, Prat A and Jude B. In vivo autologous recellularization of a tissue-engineered heart valve: are bone marrow mesenchymal stem cells the best candidates? J Thorac Cardiovasc Surg. 2007; 134:424-32. | Article | PubMed

86. Hoerstrup SP, Kadner A, Melinchtouch S, Trojan A, Eid K, Tracy J, Sodin R, Visjager JR, Kolb SA, Grunenfelder J, Vogt P and Turina M. Tissue engineering of functional trileaflet heart valves from human marrow stromal cells. Circulation. 2002; 106:1143-50. | Article | PubMed

87. Hatizstergos KE, Blum A, Ince T, Grichnik JM and Hare JM. What is the oncologic risk of stem cell treatment for heart disease? Circ Res. 2011; 108:1300-3. | Article | PubMed Abstract | PubMed Full Text

88. Bernardo ME, Zaffaroni N, Novara F, Cometa AM, Avanzini MA, Moretta A, Montagna D, Maccario R, Villa R, Daidone MG, Zuffardi O and Locatelli F. Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Res. 2007; 67:9142-9. | Article | PubMed

89. Williams AR and Hare JM. Mesenchymal stem cells: biology, pathophysiologic, translational findings, and therapeutic implications for cardiac disease. Circ Res. 2011; 109:923-40. | Article | PubMed Abstract | PubMed Full Text

90. Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, Mcintosh K, Patil S, Hardy W, Devine S, Ucker D, Deans R, Moseley A and Hoffman R. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol. 2002; 30:42-8. | Article | PubMed

91. Kurpinski K, Chu J, Hashi C and Li S. Anisotropic mechanosensing by mesenchymal stem cells. Proc Natl Acad Sci U S A. 2006; 103:16095-100. | Article | PubMed Abstract | PubMed Full Text

92. Ku CH, Johnson PH, Batten P, Sarathchandra P, Chambers RC, Taylor PM, Yacoub MH and Chester AH. Collagen synthesis by mesenchymal stem cells and aortic valve interstitial cells in response to mechanical stretch. Cardiovasc Res. 2006; 71:548-56. | Article | PubMed

93. Gottlieb D, Kunal T, Emani S, Aikawa E, Brown DW, Powell AJ, Nedder A, Engellmayr GC, Jr., Meleo-Martin JM, Sacks MS and Mayer JE, Jr. In vivo monitoring of function of autologous engineered vascular valve. J Thorac Cardiovasc Surg. 2010; 139:723-31. | Article | PubMed

94. Gyongyosi M, Blanco J, Marian T, Tron L, Petnehazy O, Petrasi Z, Hemetsberger R, Rodriguez J, Font G, Pavo IJ, Kertesz I, Barkay L, Pavo GY, N, Posa A, Emri M, Galuska L, Kraitchman DL, Wojta J, Huber K and Glogar D. Serial noninvasive in vivo positron emission tomographic tracking of percutaneously intramyocardially injected autologous porcine mesenchymal stem cells modified for transgene reporter

95. doi: 10.7243/2050-1218-3-2
gene expression. Circ Cardiovasc Imaging. 2008; 1:94-103. | Article | PubMed Abstract | PubMed Full Text

95. Ramaswamy S, Schornack PA, Smelko AG, Boronyak SM, Ivanova J, Mayer JE, Jr. and Sacks MS. Superparamagnetic iron oxide (SPIO) labeling efficiency and subsequent MRI tracking of native cell populations pertinent to pulmonary heart valve tissue engineering studies. NMR Biomed. 2012; 25:410-7. | Article | PubMed

96. Terrovitis JV, Bolte JW, Sarvananthan S, Crowe LA, Sarathchandra P, Batten P, Sachlos E, Chester AH, Czernuszka JT, Firmin DN, Taylor PM and Yacoub MH. Magnetic resonance imaging of ferumoxide-labeled mesenchymal stem cells seeded on collagen scaffolds-relevance to tissue engineering. Tissue Eng. 2006; 12:2765-75. | Article | PubMed

97. Roh JD, Sawh-Martinez R, Brennan MP, Jay SM, Devine L, Rao DA, Yi T, Miresnyk TI, Naibandian A, Udelsman B, Hibino N, Shinoa T, Saltzman WM, Snyder E, Kyriakides TR, Pober JS and Breuer CK. Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling. Proc Natl Acad Sci U S A. 2010; 107:4669-74. | Article | PubMed Abstract | PubMed Full Text

98. Karabekian Z, Posnack NG and Sarvazyan N. Immunological barriers to stem-cell based cardiac repair. Stem Cell Rev. 2011; 7:315-25. | Article | PubMed Abstract | PubMed Full Text

99. Hilfiker A, Kasper C, Hass R and Haverich A. Mesenchymal stem cells and progenitor cells in connective tissue engineering and regenerative medicine: is there a future for transplantation? Langenbecks Arch Surg. 2011; 396:489-97. | Article | PubMed

100. Emani S, Mayer JE, Jr. and Emani SM. Gene regulation of extracellular matrix remodeling in human bone marrow stem cell-seeded tissue-engineered grafts. Tissue Eng Part A. 2011; 17:2379-88. | Article | PubMed

101. Emmert MW, Weber B, Behr L, Frauenfelder T, Brokopp CE, Grunenfelder J, Falk V and Hoerstrup SP. Transapical aortic implantation of autologous narrow stromal cell-based tissue-engineered heart valves: first experiences in the systemic circulation. JACC Cardiovasc Interv. 2011; 4:822-3. | Article | PubMed

102. Schmidt D, Achermann J, Odermatt B, Breymann C, Mol A, Genoni M, Zund G and Hoerstrup SP. Prenatally fabricated autologous human living heart valves based on amniotic fluid derived progenitor cells as single cell source. Circulation. 2007; 116:64-70. | Article | PubMed

103. Chiavegato A, Bollini S, Pozzobon M, Callegari A, Gasparotto L, Taiani J, Piccolli M, Lenzini E, Gerosa G, Vendramin I, Cozi E, Angelini A, Iop L, Zanon GF, Atala A, De Coppi P and Sartore S. Human amniotic fluid-derived stem cells are rejected after transplantation in the myocardium of normal, ischemic, immuno-suppressed or immuno-deficient rat. J Mol Cell Cardiol. 2007; 42:746-59. | Article | PubMed

104. Parolini O, Soncini M, Evangelista M and Schmidt D. Amniotic membrane and amniotic fluid-derived cells: potential tools for regenerative medicine? Regen Med. 2009; 4:275-91. | Article | PubMed

105. Castrochini NM, Murthi P, Gude NM, Erwich JJ, Gronthos S, Zannettino A, Brennecke SP and Kalionis B. Mesenchymal stem cells in human placental chorionic villi reside in a vascular niche. Placenta. 2010; 31:203-12. | Article | PubMed

106. Nishiyama N, Miyoshi S, Hida N, Uyama T, Okamoto K, Ikegami Y, Miyado K, Segawa K, Terai M, Sakamoto M, Ogawa S and Umezawa A. The significant cardiomyogenic potential of human umbilical cord blood-derived mesenchymal stem cells in vitro. Stem Cells. 2007; 25:2017-24. | Article | PubMed

107. Sodian R, Lueders C, Kraemer L, Kuebler WM, Shahkabi M, Reichart B, Daebritz S and Hetzer R. Tissue engineering of autologous human heart valves using cryopreserved vascular umbilical cord vessels. Stem Cells. 2006; 24:1220-7. | Article | PubMed

108. Sodian R, Schaefermeier P, Abeg-Zips S, Kuebler WM, Shahkabi M, Daebritz S, Ziegelmueller J, Schmitz C and Reichart B. Use of human umbilical cord blood-derived progenitor cells for tissue-engineered heart valves. Ann Thorac Surg. 2010; 89:819-28. | Article | PubMed

109. Weber B, Zeisberger SM and Hoerstrup SP. Prenatally harvested cells for cardiovascular tissue engineering: fabrication of autologous implants prior to birth. Placenta. 2011; 32 Suppl 4:S316-9. | Article | PubMed

110. Schmidt D, Dijkstra PE, Driessen-Mol A, Stenger R, Mariani C, Puolakka A, Rissanen M, Deichmann T, Odermatt B, Weber B, Emmert MY, Zund G, Baaijens FP and Hoerstrup SP. Minimally-invasive implantation of living tissue engineered heart valves: a comprehensive approach from autologous vascular cells to stem cells. J Am Coll Cardiol. 2010; 56:110-20. | Article | PubMed

111. Ha X, Zhao M, Zhao H, Peng J, Deng Z, Dong J, Yang X, Zhao Y and Ju J. Identification and clinical significance of circulating endothelial progenitor cells in gastric cancer. Biomarkers. 2013; 18:487-92. | Article | PubMed

112. Bayat H, Fathi F, Peyrovi H and Mowla SJ. Evaluating the expression of self-renewal genes in human endothelial progenitor cells. Cell J. 2013; 15:298-305. | PubMed Abstract | PubMed Full Text

113. Tondreau T, Meuleman N, Delforge A, Dejeneffe M, Leroy R, Massey M, Mortier C, Bron D and Lagneaux L. Mesenchymal stem cells derived from CD133-positive cells in mobilized peripheral blood and cord blood: proliferation, Oct4 expression, and plasticity. Stem Cells. 2005; 23:1105-12. | Article | PubMed

114. Schmidt D, Mol A, Breymann C, Achermann J, Odermatt B, Gossi M, Neuenschwander S, Pretre R, Genoni M, Zund G and Hoerstrup SP. Living autologous heart valves engineered from human prenatally harvested progenitors. Circulation. 2006; 114:i125-31. | Article | PubMed

115. Diekman BO, Christoforou N, Willard VP, Sun H, Sanchez-Adams J, Leong KW and Guilk F. Cartilage tissue engineering using differentiated and purified induced pluripotent stem cells. Proc Natl Acad Sci U S A. 2012; 109:19172-7. | Article | PubMed Abstract | PubMed Full Text

Citation:
Asumda FZ and Lamin V. Bone marrow mesenchymal stem cells for tissue engineered pulmonary valves (TEPV). J Regen Med Tissue Eng. 2014; 3:2. | PubMed | doi: 10.7243/2050-1218-3-2