A NOTE ON TRANS-SASAKIAN MANIFOLDS

SHARIEF DESHMUKH* AND MUKUT MANI TRIPATHI**

Abstract. In this paper, we obtain some sufficient conditions for a 3-dimensional compact trans-Sasakian manifold of type (α, β) to be homothetic to a Sasakian manifold. A characterization of a 3-dimensional cosymplectic manifold is also obtained.

1. Introduction

Let $(M, \varphi, \xi, \eta, g)$ be a $(2n + 1)$-dimensional almost contact metric manifold (cf. [2]). Then the product $\overline{M} = M \times R$ has a natural almost complex structure J with the product metric G being Hermitian metric. The geometry of the almost Hermitian manifold (\overline{M}, J, G) dictates the geometry of the almost contact metric manifold $(M, \varphi, \xi, \eta, g)$ and gives different structures on M like Sasakian structure, quasi-Sasakian structure, Kenmotsu structure and others (cf. [2], [3], [8]). It is known that there are sixteen different types of structures on the almost Hermitian manifold (\overline{M}, J, G) (cf. [6]) and using the structure in the class W_4 on (\overline{M}, J, G), a structure $(\varphi, \xi, \eta, g, \alpha, \beta)$ on M called trans-Sasakian structure, was introduced (cf. [13]) that generalizes Sasakian and Kenmotsu structures on a contact metric manifold (cf. [3], [8]), where α, β are smooth functions defined on M. Since the introduction of trans-Sasakian manifolds, very important contributions of Blair and Oubiña [3] and Marrero [11] have appeared, studying the geometry of trans-Sasakian manifolds. In general a trans-Sasakian manifold $(M, \varphi, \xi, \eta, g, \alpha, \beta)$ is called a trans-Sasakian manifold of type (α, β), Trans-Sasakian manifolds of type $(0, 0)$, $(\alpha, 0)$ and $(0, \beta)$ are called cosymplectic, α-Sasakian, and β-Kenmotsu manifolds respectively. Marrero [11] has shown that a trans-Sasakian manifold of dimension ≥ 5 is either cosymplectic, or α-Sasakian, or β-Kenmotsu. Since then, there is a concentration on studying geometry of 3-dimensional trans-Sasakian manifolds only (cf. [11], [1], [3], [2], [10]),

2010 Mathematics Subject Classification. Primary 53C15; Secondary (optional) 53D10.

Key words and phrases. Almost contact metric manifold, Sasakian manifold, Trans-Sasakian manifold.

This work was supported by King Saud University, Deanship of Scientific Research, College of Science Research Center.
putting some restrictions on the smooth functions α, β appearing in the definition of trans-Sasakian manifolds. There are several examples of trans-Sasakian manifolds constructed mostly on 3-dimensional Riemannian manifolds (cf. [3], [11], [13]). Moreover, as the geometry of Sasakian manifolds is very rich, and is derived from contact geometry, the question of finding conditions under which a 3-dimensional trans-Sasakian manifold is homothetic to a Sasakian manifold becomes more interesting. In this paper we consider this question and obtain two different sufficient conditions for a trans-Sasakian manifold to be homothetic to a Sasakian manifold. One of them is expressed in terms of the smooth functions α, β and a bound on certain Ricci curvature, and the other requires that the Reeb vector should be an eigenvector of the Ricci operator (cf. Theorems 3.1, 3.2). We also find a characterization of cosymplectic manifolds (cf. Theorem 4.1).

Acknowledgement. The authors wish to express their sincere thanks to the referee for many corrections. The first author also wishes to thank the DST-CIMS at Banaras Hindu University, Varanasi for the hospitality during his visit to the center.

2. Preliminaries

Let $(M, \varphi, \xi, \eta, g)$ be a 3-dimensional contact metric manifold, where φ is a $(1, 1)$-tensor field, ξ a unit vector field and η a smooth 1-form dual to ξ with respect to the Riemannian metric g satisfying

$$\varphi^2 = -I + \eta \otimes \xi, \quad \varphi(\xi) = 0, \quad \eta \circ \varphi = 0, \quad g(\varphi X, \varphi Y) = g(X, Y) - \eta(X)\eta(Y),$$

(2.1)

$X, Y \in \mathfrak{X}(M)$, where $\mathfrak{X}(M)$ is the Lie algebra of smooth vector fields on M (cf. [2]). If there are smooth functions α, β on an almost contact metric manifold $(M, \varphi, \xi, \eta, g)$ satisfying

$$\nabla\varphi(X, Y) = \alpha (g(X, Y)\xi - \eta(Y)X) + \beta (g(\varphi X, Y)\xi - \eta(Y)\varphi X),$$

(2.2)

then this is said to be a trans-Sasakian manifold, where $(\nabla\varphi)(X, Y) = \nabla_X \varphi Y - \varphi(\nabla_X Y), \quad X, Y \in \mathfrak{X}(M)$ and ∇ is the Levi-Civita connection with respect to the metric g (cf. [3], [11], [13]). We shall denote this trans-Sasakian manifold by $(M, \varphi, \xi, \eta, g, \alpha, \beta)$ and it is called trans-Sasakian manifold of type (α, β). From equations (2.1) and (2.2), it follows that

$$\nabla_X \xi = -\alpha \varphi(X) + \beta(X - \eta(X)\xi), \quad X \in \mathfrak{X}(M).$$

(2.3)

It is clear that a trans-Sasakian manifold of type $(1, 0)$ is a Sasakian manifold (cf. [2]) and a trans-Sasakian manifold of type $(0, 1)$ is a Kenmotsu manifold (cf. [8]). A trans-Sasakian manifold of type $(0, 0)$ is called a cosymplectic manifold (cf. [7]).

Let Ric be the Ricci tensor of a Riemannian manifold (M, g). Then the Ricci operator Q is a symmetric tensor field of type $(1, 1)$ defined by $Ric(X, Y) = g(QX, Y), \quad X, Y \in \mathfrak{X}(M)$. We prepare some tools for trans-Sasakian manifolds.
Lemma 2.1. Let \((M, \varphi, \xi, \eta, g, \alpha, \beta)\) be a 3-dimensional trans-Sasakian manifold. Then \(\xi(\alpha) = -2\alpha\beta\).

Proof. Using (2.3), we get that
\[
d\eta(X, Y) = -2\alpha g(\varphi X, Y), \quad X, Y \in \mathfrak{X}(M)
\]
and as a consequence, the 2-form \(\Omega\) defined by \(\Omega(X, Y) = \alpha g(\varphi X, Y)\) is closed. Using (2.1), (2.2), and (2.3) in \(d\Omega = 0\) after some trivial calculations, we arrive at
\[
\varphi \{X(\alpha)Y - Y(\alpha)X - 2\alpha\beta \eta(Y)X + 2\alpha\beta \eta(X)Y\} + g(\varphi X, Y)(\nabla \alpha + 2\alpha\beta \xi) = 0
\]
for all \(X, Y \in \mathfrak{X}(M)\). Operating \(\varphi\) on the equation above, we get
\[
Y(\alpha)X - X(\alpha)Y + 2\alpha\beta \eta(Y)X - 2\alpha\beta \eta(X)Y + X(\alpha)\eta(Y)\xi - Y(\alpha)\eta(X)\xi + g(\varphi X, Y)\varphi(\nabla \alpha) = 0.
\]
For a local orthonormal frame \(\{e_1, e_2, e_3\}\) on \(M\), taking \(X = e_i\) in the equation above, taking the inner product with \(e_i\) and adding the resulting equations, we get
\[
(2\alpha\beta + \xi(\alpha)) \eta(Y) = 0, \quad Y \in \mathfrak{X}(M)
\]
which gives
\[
(2\alpha\beta + \xi(\alpha)) \xi = 0
\]
and we obtain the result. \(\square\)

Lemma 2.2. Let \((M, \varphi, \xi, \eta, g, \alpha, \beta)\) be a 3-dimensional trans-Sasakian manifold. Then its Ricci operator satisfies
\[
Q(\xi) = \varphi(\nabla \alpha) - \nabla \beta + 2(\alpha^2 - \beta^2)\xi - g(\nabla \beta, \xi)\xi
\]
where \(\nabla \alpha, \nabla \beta\) are gradients of the smooth functions \(\alpha, \beta\).

Proof. We use (2.1), (2.2), and (2.3) to calculate
\[
R(X, Y)\xi = \nabla_X \nabla_Y \xi - \nabla_Y \nabla_X \xi - \nabla_{[X,Y]} \xi
\]
and after some easy computations we arrive at
\[
R(X, Y)\xi = Y(\alpha)\varphi X - X(\alpha)\varphi Y + X(\beta)(Y - \eta(Y))\xi - Y(\beta)(X - \eta(X))\xi + (\alpha^2 - \beta^2)(\eta(Y)X - \eta(X)Y) + 2\alpha\beta \eta(Y)\varphi X - \eta(X)\varphi Y).
\]
The above equation gives
\[
\text{Ric}(Y, \xi) = g(\varphi(\nabla \alpha), Y) - g(\nabla \beta, Y) - g(\nabla \beta, \xi)\eta(Y) + 2(\alpha^2 - \beta^2)\eta(Y),
\]
which proves the result. \(\square\)

Next, we state the following result of [12], which we shall use in the sequel.
Theorem 2.1. Let \((M, g)\) be a Riemannian manifold. If \(M\) admits a Killing vector field \(\xi\) of constant length satisfying
\[
k^2 (\nabla_X \nabla_Y \xi - \nabla_{\nabla_X Y} \xi) = g(Y, \xi) X - g(X, Y) \xi
\]
for a nonzero constant \(k\) and any vector fields \(X\) and \(Y\), then \(M\) is homothetic to a Sasakian manifold.

3. Trans-Sasakian manifolds homothetic to Sasakian manifolds

In this section we study compact and connected 3-dimensional trans-Sasakian manifolds and obtain conditions under which they are homothetic to Sasakian manifolds. Our first result uses a bound on the Ricci curvature of the trans-Sasakian manifold in the direction of the vector field \(\xi\).

Theorem 3.1. Let \((M, \phi, \xi, \eta, g, \alpha, \beta)\) be a 3-dimensional compact and connected trans-Sasakian manifold. If the Ricci curvature \(\text{Ric}(\xi, \xi)\) satisfies
\[
0 < \text{Ric}(\xi, \xi) \leq 2 (\alpha^2 + \beta^2),
\]
then \(M\) is homothetic to a Sasakian manifold.

Proof. Using (2.3) we immediately compute
\[
\delta \eta = \text{div} \xi = 2 \beta. \tag{3.1}
\]
Also, since \(d\eta(X, Y) = -2\alpha g(\phi X, Y)\), we obtain
\[
\|d\eta\|^2 = 8 \alpha^2. \tag{3.2}
\]
Now using (2.3), after some obvious calculations, we get
\[
\|\nabla \xi\|^2 = 2(\alpha^2 + \beta^2). \tag{3.3}
\]
Now, using (3.1)-(3.3) in the integral formula (cf. [14])
\[
\int_M \left(\text{Ric}(\xi, \xi) - \frac{1}{2} \|d\eta\|^2 + \|\nabla \xi\|^2 - (\delta \eta)^2 \right) = 0
\]
and the hypothesis of the theorem, we deduce that
\[
\text{Ric}(\xi, \xi) = 2 (\alpha^2 + \beta^2). \tag{3.4}
\]
Using Lemma [12], we have
\[
\text{Ric}(\xi, \xi) = -2\xi(\beta) + 2(\alpha^2 - \beta^2)
\]
which together with (3.4) gives
\[
\xi(\beta) = -2\beta^2. \tag{3.5}
\]
We claim that \(\beta\) must be a constant. If \(\beta\) is not a constant, then on the compact \(M\) it has a local maximum at some \(p \in M\). We have \((\nabla \beta)(p) = 0\) and the Hessian \(H_\beta\) is negative definite at this point \(p\). However, using the equation (3.5), we have \(\xi(\beta)(p) = -2 (\beta(p))^2 = 0\) and \(H_\beta(\xi, \xi)(p) = \xi(\beta)(p) = 0\).
A NOTE ON TRANS-SASAKIAN MANIFOLDS

4(β(p))³ = 0, (where we used ∇ξξ = 0), which yields a contradiction (as the Hessian is negative definite at p). Hence, β is a constant and this, combined with Stokes’ theorem applied to div(ξ) = 2β, proves that β = 0.

Since β = 0, the Lemma 2.1 gives ξ(α) = 0. We claim that α is a constant. If not, on compact M the smooth function α attains a local maximum at some point p ∈ M. At this point, the Hessian Hα is negative definite. However, for the unit vector field ξ, we have Hα(ξ, ξ) = 0, which fails to be negative definite at point p, which is a contradiction. Now, that α is a non-zero constant follows from the condition in the hypothesis. Thus, using (2.3), we compute

\[α^{-2}(∇X∇Yξ - ∇∇XYξ) = g(Y, ξ)X - g(X, Y)ξ, \]

and this implies by Theorem 2.1 that M is homothetic to a Sasakian manifold.

□

As a direct consequence of the above theorem we have the following result, which has motivation from the fact that on a (2n + 1)-dimensional Sasakian manifold (M, ϕ, ξ, η, g) the Ricci operator satisfies Q(ξ) = 2nξ.

Corollary 3.1. Let (M, ϕ, ξ, η, g, α, β) be a 3-dimensional compact and connected trans-Sasakian manifold. If the vector field ξ satisfies Q(ξ) = 2α²ξ ≠ 0, then M is homothetic to a Sasakian manifold.

As pointed out earlier, on a (2n+1)-dimensional Sasakian manifold (M, ϕ, ξ, η, g), the Ricci operator satisfies Q(ξ) = 2nξ, that is, the Reeb vector field ξ is an eigenvector of the Ricci operator. This motivates the question of whether a 3-dimensional trans-Sasakian manifold (M, ϕ, ξ, η, g, α, β) satisfying Q(ξ) = λξ for a non-zero constant λ, is necessarily homothetic to a Sasakian manifold. We answer this question for compact connected 3-dimensional trans-Sasakian manifolds and show that they are homothetic to Sasakian manifolds.

Theorem 3.2. Let (M, ϕ, ξ, η, g, α, β) be a 3-dimensional compact and connected trans-Sasakian manifold. Then M is homothetic to a Sasakian manifold if and only if the vector field ξ satisfies Q(ξ) = λξ for a non-zero constant λ.

Proof. Using Q(ξ) = λξ in Lemma 2.1 we have

\[ϕ(∇α) - ∇β = (λ + ξ(β) - 2(α² - β²))ξ. \] (3.7)

Taking the inner product with ξ in the above equation, we obtain

\[ξ(β) = -\frac{λ}{2} + (α² - β²). \] (3.8)

Inserting this value in (3.7), we have

\[ϕ(∇α) - ∇β = \left(\frac{λ}{2} - (α² - β²)\right)ξ \] (3.9)
and applying φ to the above equation, we obtain
\[\nabla \alpha = -2\alpha \beta \xi - \varphi(\nabla \beta). \tag{3.10} \]

If A is a symmetric operator on the trans-Sasakian manifold M, we can choose a local orthonormal frame that diagonalizes A and consequently, we have
\[\sum g(\varphi(A e_i), e_i) = 0. \tag{3.11} \]

Now for $X \in \mathfrak{X}(M)$, we compute
\[\nabla_X (\varphi(\nabla \beta) + 2\alpha \beta \xi) = (\nabla_X \varphi)(\nabla \beta) + \varphi(A \beta X) + 2X(\alpha \beta) \xi + 2\alpha \beta \nabla_X \xi \]
where $A \beta X = \nabla_X \nabla \beta$ is a symmetric operator $A \beta : \mathfrak{X}(M) \to \mathfrak{X}(M)$. Taking the inner product with X in above equation and using equations (2.2) and (2.3), after some easy calculations we arrive at
\[g(\nabla_X (\varphi(\nabla \beta) + 2\alpha \beta \xi), X) = \alpha X(\beta) \eta(X) - \alpha \xi(\beta) g(X, X) + \beta g(\varphi(A \beta X), X) + 2X(\alpha \beta) \eta(X) + 2\alpha \beta^2 g(X, X) \]

Taking trace in the equation above, in view of the equation (3.11), we get
\[\text{div} (\varphi(\nabla \beta) + 2\alpha \beta \xi) = -2\alpha \xi(\beta) + 2\xi(\alpha \beta) + 4\alpha \beta^2 = 0, \tag{3.12} \]
where we used the fact that $\xi(\alpha) = -2\alpha \beta$. Thus using (3.12) in the equation (3.10), we conclude that $\Delta \alpha = \text{div}(\nabla \alpha) = 0$ on compact M, which proves that α is a constant. Using the constant α in the equation (3.9), we get
\[-\nabla \beta = \left(\frac{\lambda}{2} - (\alpha^2 - \beta^2) \right) \xi \]
which together with the equation (3.8) gives
\[\Delta \beta = -2\beta \xi(\beta) - \left(\frac{\lambda}{2} - (\alpha^2 - \beta^2) \right) \text{div} \xi \]
\[= -2\beta \left(\frac{\lambda}{2} + (\alpha^2 - \beta^2) \right) - 2\beta \left(\frac{\lambda}{2} - (\alpha^2 - \beta^2) \right) \]
\[= 0. \]

Here we used the fact that $\text{div} \xi = 2\beta$. Thus β is a constant, which together with Stokes’ theorem and $\text{div} \xi = 2\beta$ proves that $\beta = 0$. If $\alpha = 0$, then (3.7) would imply $\lambda = 0$, which is a contradiction. Consequently, α is a non-zero constant which by the equation (3.1) satisfies
\[\alpha^{-2} (\nabla_X \nabla_Y \xi - \nabla_{\nabla_X Y} \xi) = g(Y, \xi) - g(X, Y) \xi. \]
This proves that M is homothetic to a Sasakian manifold. The converse is obvious. \[\square \]
4. A CHARACTERIZATION OF COSYMPLECTIC MANIFOLDS

In this section, we study 3-dimensional compact trans-Sasakian manifolds, and obtain a characterization of cosymplectic manifolds. Let \((M, \varphi, \xi, \eta, g, \alpha, \beta)\) be a 3-dimensional trans-Sasakian manifold. Then for each point \(p \in M\) there is a neighbourhood \(U\) of \(p\), where we have a local orthonormal frame \(\{e, \varphi e, \xi\}\) for a unit vector field \(e\) on \(U\) called an adapted frame. Using the equations (2.1), (2.2) and (2.3), we obtain the following local structure equations defined on \(U\):

\[
\nabla_e \xi = \beta e - \alpha \varphi e, \quad \nabla_{\varphi e} \xi = \alpha e + \beta \varphi e, \quad \nabla_\xi \xi = 0, \quad (4.1)
\]

\[
\nabla_e e = \gamma \varphi e - \beta \xi, \quad \nabla_{\varphi e} e = -\delta \varphi e - \alpha \xi, \quad \nabla_\xi e = \lambda \varphi e, \quad (4.2)
\]

\[
\nabla_e \varphi e = -\gamma e + \alpha \xi, \quad \nabla_{\varphi e} \varphi e = \delta e - \beta \xi, \quad \nabla_\xi \varphi e = -\lambda e, \quad (4.3)
\]

where \(\gamma, \delta, \lambda\) are smooth functions defined on \(U\). Using the above equations, we compute

\[
R(e, \varphi e) \xi = (e(\alpha) - \varphi e(\beta)) e + (e(\beta) + \varphi e(\alpha)) \varphi e
\]

\[
R(\varphi e, \xi) e = (\varphi e(\lambda) + \xi(\delta) + \beta \delta - \gamma \alpha - \gamma \lambda) \varphi e + (\xi(\alpha) + 2\alpha \beta) \xi
\]

\[
R(\xi, e) \varphi e = (e(\lambda) - \xi(\gamma) - \beta \gamma - \delta \alpha - \delta \lambda) e + (\xi(\alpha) + 2\alpha \beta) \xi.
\]

Adding these three equations, we conclude that

\[
e(\alpha) - \varphi e(\beta) + e(\lambda) - \xi(\gamma) = \beta \gamma + \delta \alpha + \delta \lambda, \quad (4.4)
\]

\[
e(\beta) + \varphi e(\alpha) + \varphi e(\lambda) + \xi(\delta) = \gamma \alpha + \gamma \lambda - \beta \delta, \quad (4.5)
\]

and the third component gives the result in the Lemma [2.1]. Also, we have

\[
R(\xi, \varphi e) e = (\xi(\gamma) - e(\lambda) + \beta \gamma + \alpha \delta + \lambda \delta) \varphi e + (-\xi(\beta) + \alpha^2 - \beta^2) \xi
\]

and

\[
R(\xi, \varphi e) \varphi e = (\xi(\delta) + \varphi e(\lambda) + \beta \delta - \alpha \gamma - \lambda \gamma) e + (-\xi(\beta) + \alpha^2 - \beta^2) \xi
\]

Using the two equations above in \(Q(\xi) = R(\xi, e)e + R(\xi, \varphi e)\varphi e\), we obtain

\[
Q(\xi) = (\xi(\delta) + \varphi e(\lambda) + \beta \delta - \alpha \gamma - \lambda \gamma) e
\]

\[
+ (\xi(\gamma) - e(\lambda) + \beta \gamma + \alpha \delta + \lambda \delta) \varphi e
\]

\[
+ 2 (-\xi(\beta) + \alpha^2 - \beta^2) \xi.
\]

This together with the equations (4.4) and (4.5) gives

\[
Q(\xi) = - (e(\beta) + \varphi e(\alpha)) e + (e(\alpha) - \varphi e(\beta)) \varphi e + 2 (-\xi(\beta) + \alpha^2 - \beta^2) \xi. \quad (4.6)
\]

Recall that in Theorem [3.2] the vector field \(\xi\) being an eigenvector of the Ricci operator corresponding to a non-zero eigenvalue makes the trans-Sasakian manifold homothetic to a Sasakian manifold. Similarly, we have the following characterization of cosymplectic manifolds.
Theorem 4.1. Let \((M, \varphi, \xi, \eta, g, \alpha, \beta)\) be a 3-dimensional compact and connected trans-Sasakian manifold. Then \(M\) is a cosymplectic manifold if and only if the Ricci operator \(Q\) annihilates the vector field \(\xi\).

Proof. Suppose that \(Q(\xi) = 0\) holds. Then (4.6) gives
\[
e(\beta) = -\varphi e(\alpha), \quad e(\alpha) = \varphi e(\beta), \text{ and } \xi(\beta) = \alpha^2 - \beta^2.
\] (4.7)
Applying Lemma 2.1 and the equations (2.2), (2.3), (4.1)-(4.3) and (4.7), we obtain
\[
\Delta \alpha = ee(\alpha) + \varphi \varphi e(\alpha) + \xi \xi(\alpha) - \nabla e(\alpha) - \nabla \varphi \varphi e(\alpha) - \nabla \xi \xi(\alpha)
\]
\[
= [e, \varphi e](\beta) - 2(\alpha \beta) + \gamma e(\beta) - \delta \varphi \varphi e(\beta) - 4\alpha \beta^2
\]
\[
= -\beta(\gamma e + \alpha \xi)(\beta) - (\delta \varphi \varphi e)(\beta) - 2\xi(\alpha \beta) + \gamma e(\beta) - \delta \varphi \varphi e(\beta) - 4\alpha \beta^2
\]
\[
= 2\alpha \xi(\beta) - 2\xi(\alpha \beta) - 4\alpha \beta^2 = 0.
\]
Thus thanks to compactness of \(M\) we have proved that \(\alpha\) is a constant. If \(\alpha \neq 0\), then Lemma 2.1 implies that \(\beta = 0\) and consequently the equation (4.7) gives \(\alpha = 0\), which is a contradiction. Hence \(\alpha = 0\) and the equation (4.7) gives \(\xi(\beta) = -\beta^2\), that is, \(\text{div}(\beta \xi) = \beta^2\), where we used \(\text{div} \xi = 2\beta\), which follows from the equation (2.3). Using Stokes’ theorem in \(\text{div}(\beta \xi) = \beta^2\), we obtain \(\beta = 0\). That is, \(M\) is a cosymplectic manifold. Conversely, if \(M\) is a cosymplectic manifold, then the equation (4.6) gives that \(Q(\xi) = 0\). □

References
[1] AL-SOLAMY, F. R.—KIM, J.-S.—TRIPATHI, M. M.: On \(\eta\)-Einstein trans-Sasakian manifolds, An. Stiint. Univ. “Al.I.Cuza” din Iasi 57 (2011), no. 2, 417–440.
[2] BLAIR, D. E.: Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics 509, Springer (1976).
AARTS, J. M.—LUTZER, D. J.: Pseudo-completeness and the product of Baire spaces, Pacific J. Math. 48 (1973), 1–10.
[3] BLAIR, D. E.—OUBINA, J. A.: Conformal and related changes of metric on the product of two almost contact metric manifolds, Publ. Mat. 34 (1990), no. 1, 199–207.
[4] DE, U. C.—SARKAR, A.: On three-dimensional trans-Sasakian manifolds, Extracta Math. 23 (2008), no. 3, 265–277.
[5] DE, U. C.—TRIPATHI, M. M.: Ricci tensor in 3-dimensional trans-Sasakian manifolds, Kyungpook Math. J. 43 (2003), no. 2, 247–255.
[6] GRAY, A.—HERVELLA, L. M.: The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. (4) 123 (1980), 35–58.
[7] FUJIMOTO, A.—MUTO, H.: On cosymplectic manifolds, Tensor 28 (1974), 43–52.
[8] KENMOTSU, K.: A class of almost contact Riemannian manifolds, Tohoku Math. J. 24 (1972), 93-103.
[9] KIM, J.-S.—PRASAD, R.—TRIPATHI, M. M.: On generalized Ricci-recurrent trans-Sasakian manifolds, J. Korean Math. Soc. 39 (2002), no. 6, 953–961.
[10] KIRICHENKO, V. F.: On the geometry of nearly trans-Sasakian manifolds, (Russian) Dokl. Akad. Nauk 397 (2004), no. 6, 733–736.
[11] MARRERO, J. C.: *The local structure of trans-Sasakian manifolds*, Ann. Mat. Pura Appl. (4) 162 (1992), 77–86.

[12] OKUMURA, M.: *Certain almost contact hypersurfaces in Kaehlerian manifolds of constant holomorphic sectional curvatures*, Tôhoku Math. J. (2) 16 (1964) 270–284.

[13] OUBINA, J. A.: *New classes of almost contact metric structures*, Publ. Math. Debrecen 32 (1985), no. 3-4, 187–193.

[14] YANO, K.: *Integral formulas in Riemannian Geometry*, Marcel Dekker (1970).

* Department of Mathematics
College of Science
King Saud University
P.O. Box 2455, Riyadh 11451
SAUDI ARABIA
E-mail address: shariefd@ksu.edu.sa

** Department of Mathematics and DST-CIMS
Faculty of Science
Banaras Hindu University
Varanasi 221005
INDIA
E-mail address: mmtripathi66@yahoo.com