WERNER’S MEASURE ON SELF-AVOIDING LOOPS, AND WELDING

ANGEL CHAVEZ AND DOUG PICKRELL

ABSTRACT. Werner’s conformally invariant family of measures on self-avoiding loops on Riemann surfaces is determined by a single measure on loops in \(\mathbb{C} \setminus \{0\} \) which surround 0. Our objective, which we fall far short of achieving, is to calculate this measure in terms of conformal welding. Our basic technique is to use infinitesimal conformal invariance.

1. Introduction

Given a topological space \(S \), let \(\text{Comp}(S) \) denote the set of all compact subsets of \(S \) with the Vietoris topology, and let

\[
\text{Loop}(S) := \{ \gamma \in \text{Comp}(S) : \gamma \text{ is homeomorphic to } S^1 \}
\]

with the induced topology (see Appendix C). Suppose that for each Riemann surface \(S \), \(\mu_S \) is a positive Borel measure on \(\text{Loop}(S) \). Following Werner, this family of measures is said to satisfy conformal restriction if for each conformal embedding \(S_1 \to S_2 \), the restriction of \(\mu_{S_2} \) to \(\text{Loop}(S_1) \) equals \(\mu_{S_1} \); the family is nontrivial if the measure of the set

\[
\{ \gamma \in \text{Loop}(\{0 < |z| < A\}) \setminus \text{Loop}(\{|z| < a\}) : \gamma \text{ surrounds } 0 \}
\]

is finite and positive, for some \(0 < a < A \). In [16] Werner proved the following remarkable result.

Theorem 1.1. There exists a nontrivial family of measures \(\{\mu_S\} \) on self-avoiding loops on Riemann surfaces which satisfies conformal restriction. This family is unique up to multiplication by an overall positive constant.

Below we will introduce a normalization which will uniquely determine this family of measures (see (1.5)).

Essentially because any self-avoiding loop on a Riemann surface is contained in an embedded annulus, the family \(\{\mu_S\} \) is (in principle) uniquely determined by

\[
\mu_0 := \mu|_{\text{Loop}^1(\{0\})}
\]

the restriction of \(\mu \) to loops in the plane which surround 0. The measure \(\mu_0 \) is determined, up to a constant, by the following formula of Werner (see Proposition 3 of [16]):

Theorem 1.2. Suppose that \(0 \in U \subset V \), where \(U \) and \(V \) are bounded simply connected domains in \(\mathbb{C} \). Then

\[
\mu_0(\text{Loop}^1(V \setminus \{0\}) \setminus \text{Loop}(U)) = c_W \log(|\phi'(0)|)
\]

where \(\phi : (U,0) \to (V,0) \) is a conformal isomorphism.
We will refer to c_W as Werner’s constant, which depends on the normalization below. At the present time we can only say that $c_W \geq 1$.

Our purpose is to explore other possible explicit formulas for μ_0, especially in terms of welding. To put this in perspective, it is convenient to slightly digress and recall the “Fundamental Theorem of Welding”, and some associated terminology.

Theorem 1.3. Suppose that $\sigma \in QS(S^1)$, the group of quasisymmetric homeomorphisms of S^1. Then

\begin{equation}
\sigma = l \circ ma \circ u
\end{equation}

where

$$u = z(1 + \sum_{n \geq 1} u_n z^n)$$

is a univalent holomorphic function in the open unit disk Δ, with quasiconformal extension to $\mathbb{C} \cup \{\infty\}$, $m \in S^1$ is a rotation, $0 < a \leq 1$ is a dilation, the mapping inverse to l,

$$L(z) = z(1 + \sum_{m \geq 1} b_m z^{-m})$$

is a univalent holomorphic function on the open unit disk about infinity, Δ^*, with quasiconformal extension to $\mathbb{C} \cup \{\infty\}$, and the compatibility condition

$$mau(S^1) = L(S^1)$$

holds. This factorization is unique.

Definition. A homeomorphism σ of S^1 has a triangular factorization (or admits a conformal welding) if $\sigma = l \circ ma \circ u$ where

$$u(z) = z(1 + \sum_{n \geq 1} u_n z^n)$$

is a holomorphic function in Δ with a continuous extension to a homeomorphism on $D := \text{closure}(\Delta)$, $m \in S^1$ is a rotation, $0 < a \leq 1$ is a dilation, the mapping inverse to l,

$$L(z) = z(1 + \sum_{m \geq 1} b_m z^{-m})$$

is a holomorphic function on Δ^* with a continuous extension to a homeomorphism on $D^* = \text{closure}(\Delta^*)$, and the compatibility condition $mau(S^1) = L(S^1)$ holds.

Quasisymmetric homeomorphisms have unique weldings. For less regular homeomorphisms, there are additional sufficient conditions for the existence of weldings (see [2] and references), but there are many examples of homeomorphisms which do not admit weldings, and weldings which are not unique (see [3]).

Suppose that $\gamma \in \text{Loop}^1(\mathbb{C} \setminus \{0\})$. By the Jordan curve theorem the complement of γ in $\mathbb{C} \cup \{\infty\}$ has two connected components, U_{\pm}, so that

$$\mathbb{C} \cup \{\infty\} = U_+ \sqcup \gamma \sqcup U_-$$

where $0 \in U_+$ and $\infty \in U_-$. There are based conformal isomorphisms

$$\phi_+: (\Delta, 0) \to (U_+, 0), \quad \phi_-: (\Delta^*, \infty) \to (U_-, \infty)$$
The map ϕ can be uniquely determined by normalizing the Laurent expansion in |z| > 1 to be of the form

\begin{equation}
ϕ_-(z) = ρ_∞(γ)L(z), \quad L(z) = z(1 + \sum_{n \geq 1} b_n z^{-n})
\end{equation}

where ρ_∞(γ) > 0 is the transfinite diameter (see chapters 16 and 17 of [6] for numerous formulas for ρ_∞). The map ϕ_+ can be similarly uniquely determined by normalizing its Taylor expansion to be of the form

\begin{equation}
ϕ_+(z) = ρ_0(γ)u(z), \quad u(z) = z(1 + \sum_{n \geq 1} u_n z^n)
\end{equation}

where ρ_0(γ) > 0 is called the conformal radius with respect to 0. By a theorem of Caratheodory (see Theorem 17.5.3 of [6]), both ϕ± extend uniquely to topological isomorphisms of the closures of their domain and target. This implies that the restrictions ϕ± : S^1 → γ are topological isomorphisms. Thus there is a well-defined welding map

\begin{equation}
W : \text{Loop}^1(C \setminus \{0\}) \to \{σ ∈ Homeo^+(S^1) : σ = lau\} × \mathbb{R}^+ : γ \to (σ(γ), ρ_∞(γ))
\end{equation}

where

σ(γ, z) := ϕ_−^−1(ϕ_+(z)) = lau, \quad a(γ) = \frac{ρ_0(γ)}{ρ_∞(γ)}

and l is the inverse mapping for L.

Remarks.

(a) To clarify (1.4), the σ image of W is by definition the set of homeomorphisms which admit a triangular factorization with rotation m = 1.

(b) The map W is not 1–1 because triangular factorization fails (in a dramatic way) to be unique (The source of nonuniqueness: there exist homeomorphisms of the 2-sphere which are conformal off of a Jordan curve, and which are not linear fractional transformations).

The ideal goal of this paper is to calculate, in some explicit way, the image measure W_∗μ_0, and to show that we can recover μ_0 from this image. As we will see in Section 2, conformal invariance implies that

\begin{equation}
d(W_∗μ_0)(σ, ρ_∞) = dν_0(σ) × \frac{dρ_∞}{ρ_∞}
\end{equation}

where ν_0 is an inversion invariant finite measure, which we normalize to have unit mass. This reduces the task of computing W_∗μ_0 to computing the inversion invariant probability measure ν_0.

A lofty goal is to compute the joint distribution for the coefficients of u (A sufficiently explicit calculation would yield a probabilistic proof of the Bieberbach Conjecture/de Branges Theorem). Since these coefficients are bounded, it in principle suffices to compute their joint moments. We will show that there is an algorithm for doing this, although it is rather unwieldy. We can explicitly calculate some low order moments, for example:

Theorem 1.4. \(\int |u_n|^2 dν_0 = \frac{1}{n+1}. \)

For various reasons it is of special interest to calculate the “diagonal distribution” for the welding homeomorphism.
Conjecture. If ν_0 is normalized to be a probability measure, then

$$\nu_0(\{\sigma : \exp(-x) \leq a(\sigma) \leq 1\}) = \exp\left(-\frac{\beta_0}{x}\right), \quad x > 0$$

for some constant $\beta_0 < \frac{5\pi^2}{4}$.

This conjecture is closely related to Proposition 18 in [16]. This is discussed in Section 7. There is a generalization of this conjecture to a natural deformation of Werner’s measure which is conjectured to exist in [10]; in fact our hope is that this extended conjecture might be useful in proving existence of this deformation.

1.1. Outline of the Paper. In Section 2 we prove some basic facts about the welding map W. The idea of the proof of the diagonal distribution conjecture is to show that the Laplace transform of the diagonal distribution for ν_0 satisfies a differential equation, using the infinitesimal conformal invariance of μ_0. For this purpose in Section 3 we recall some classical variational formulas of Duren and Schiffer. In Section 4 we discuss the infinitesimal action from a representation theoretic point of view, and we recast the Duren-Schiffer formulas in terms of generating functions, using a stress-energy tensor formulation common in conformal field theory. In Section 5 we establish the version of infinitesimal conformal invariance of μ_0 needed for our purposes. In Section 6 we apply this to compute moments of the coefficients of u. In Section 7 we discuss the relation between the diagonal distribution conjecture and Proposition 18 of [10], and outline a strategy for a proof; we also briefly indicate how the conjecture generalizes to the deformation which is conjectured by Kontsevich and Suhov to exist in [10].

1.2. Notation and Conventions. Given a complex number z, we often write z^* for the complex conjugate, especially when z is represented by a complicated expression.

Given a Laurent expansion $f(z) = \sum f_n z^n$, we write $f^*(z) = \sum (f_n)^* z^{-n}$ (for $z \in S^1$, $f^*(z) = f(z)^*$). We also write $f_-(z) = \sum_{n<0} f_n z^n$, $f_+(z) = \sum_{n\geq 0} f_n z^n$, $f_{+-}(z) = \sum_{n>0} f_n z^n$, and $f_{-1} = \text{Res}(f(z), z = 0)$.

Throughout this paper, we view vector fields on a manifold as the Lie algebra of diffeomorphisms of the manifold; the induced bracket is the negative of the usual bracket obtained by viewing vector fields as derivations of functions on the manifold.

2. The Welding Map

In this section we consider the welding map W.

Lemma 1. (a) The distributions for ρ_0 and ρ_∞ are invariant with respect to dilation, i.e. equivalent to Haar measure for \mathbb{R}^+.

(b) $$d(W_* \mu_0)(\sigma, \rho_\infty) = d\nu_0(\sigma) \times \frac{d\rho_\infty}{\rho_\infty}$$

where ν_0 is a finite measure (which we will normalize to have unit mass).

(c) The measure $d\nu_0(\sigma)$ is inversion invariant and invariant with respect to conjugation by $C : z \rightarrow z^*$.

(d) The measure $d\nu_0(\sigma)$ is supported on σ having triangular factorization $\sigma = \text{lau}$, i.e. $m = 1$.
(e) For any $\gamma \in \text{Loop}^1(\mathbb{C} \setminus \{0\})$,

$$a(\sigma(\gamma)) = \left(\frac{1 - \sum_{m=1}^{\infty} (m-1)|b_m|^2}{1 + \sum_{n=1}^{\infty} (n+1)|u_n|^2} \right)^{1/2}$$

where u and L are written as in Definition 1.

(f) The welding map is equivariant with respect to rotations in the sense that

$$\sigma(\text{Rot}(\theta)(\gamma)) = \text{Rot}(\theta) \circ \sigma(\gamma) \circ \text{Rot}(\theta)^{-1}$$

Proof. We first claim that

$$\{ \gamma \in \text{Loop}^1(\mathbb{C} \setminus \{0\}) : r < \rho(\gamma) < R \} \subset \text{Loop}^1(\{ |z| < 4R \}) \setminus \text{Loop}^1(\{ |z| < R \})$$

The inequality $r < \rho(\gamma)$ implies that γ cannot be contained in $\{ |z| < r \}$. In general $\rho(\gamma) = \rho_0(\frac{1}{\gamma})^{-1}$. Thus if $\rho(\gamma) < R$, then $\frac{1}{R} < \rho_0(\frac{1}{\gamma})$. The Koebe One-Quarter Theorem implies that $\frac{1}{\gamma} \in \{ |z| < 4R \}$. Thus γ is in the ball of radius $4R$. This proves the claim.

By conformal invariance and the nontriviality assumption of Werner, the set of loops (surrounding zero) with $r < \rho(\gamma) < R$ has μ_0 finite measure, for any $r < R$. This implies that there is a essentially unique disintegration of μ_0 of the form

$$d\mu_0(\gamma) = \int_{\rho_\infty = 0}^{\infty} d\mu_{\rho_\infty}(\gamma)d\rho(\rho_\infty)$$

where the fiber measures are probability measures.

The invariance of μ_0 with respect to dilation, $\gamma \to \rho \gamma$, implies that the $\rho(\gamma)$ distribution ω is also dilation invariant, i.e. it is a Haar measure for \mathbb{R}^+. The invariance of μ_0 with respect to $z \to \frac{1}{z}$ implies that the same is true for $\rho(\gamma)$. This proves (a).

Since μ_0 is determined up to multiplication by a constant, we can suppose that

$$d\omega(\rho_\infty) = \frac{d\rho_\infty}{\rho_\infty}$$

The action by dilation transports one fiber to another. Hence dilation invariance also implies that all the fiber measures are the same. This implies that $W_*\mu_0$ is a product measure, as claimed in part (b).

For part (c), we first use the invariance of μ_0 with respect to $z \to \frac{1}{\gamma}$, which maps γ to $\frac{1}{\gamma}$:

$$\phi_+(\frac{1}{\gamma^*})(z) = \frac{1}{\phi_-(\gamma)(\frac{1}{\gamma^*})^*}, \quad |z| < 1$$

$$\phi_-(\frac{1}{\gamma^*})(z) = \frac{1}{\phi_+(\gamma)(\frac{1}{\gamma^*})^*}, \quad |z| > 1$$

and

$$\phi_-(\frac{1}{\gamma^*})^{-1}(w) = \frac{1}{(\phi_+(\gamma)^{-1}(\frac{1}{\gamma^*})^*)^*}$$

Thus

$$\sigma(\frac{1}{\gamma})(z) = \phi_-(\frac{1}{\gamma^*})^{-1} \circ \phi_+(\frac{1}{\gamma^*})(z) = \phi_-(\frac{1}{\gamma^*})^{-1}(\frac{1}{\phi_-(\gamma)(\frac{1}{\gamma^*})^*})$$

$$\frac{1}{(\phi_+(\gamma)^{-1}(\phi_-(\gamma)(\frac{1}{\gamma^*})^*)^*)^*} = \frac{1}{\sigma^{-1}(\gamma)(\frac{1}{\gamma^*})^*} = \sigma(\gamma)^{-1}(z)$$

This implies the invariance of μ_0 with respect to inversion.
The measure μ_0 is also invariant with respect to $C : z \to z^*$. In this case
$$\phi_{\pm}(\gamma^*) = C \circ \phi_{\pm}(\gamma) \circ C$$
This implies that ν_0 is invariant with respect to conjugation by C. This proves (c).
Part (d) is obvious.
For part (e) (essentially the well-known area theorem from the theory of univalent functions), the main point is that
$$au(\Delta) = C \setminus L(D^*)$$
For sufficiently smooth γ
$$\text{Area}(u(\Delta)) = \frac{1}{2i} \int_\gamma d\bar{t} \wedge dt = \frac{1}{2i} \int_{S^1} \bar{u} du$$
$$= \pi(1 + \sum_{n=1}^{\infty} (n + 1)|u_n|^2)$$
and
$$\text{Area}(C \setminus L(\Delta^*)) = \frac{1}{2i} \int_\gamma \bar{t} dt = \frac{1}{2i} \int_{S^1} \bar{t} d\bar{t}$$
$$= \pi(1 - \sum_{m=1}^{\infty} (m - 1)|b_m|^2)$$
By continuity of measure, these formulas hold for all γ. This implies part (e).
Part (f) follows from
$$\phi_{\pm}(\text{Rot}(\theta)(\gamma)) = \text{Rot}(\theta) \circ \phi_{\pm} \circ \text{Rot}(\theta)^{-1}$$
□

Remarks. (a) In connection with part (c), in general, if a homeomorphism σ has a triangular factorization linar, then σ^{-1} has a triangular factorization with
$$u(\sigma^{-1})(z) = \frac{1}{L(\frac{1}{z^*})^*}, \quad l(\sigma^{-1})(z) = \frac{1}{U(\frac{1}{z^*})^*}, \quad m(\sigma^{-1}) = m(\sigma)^*, \quad a(\sigma^{-1}) = a(\sigma)$$
In particular inversion stabilizes the set of σ having triangular factorization with $m = 1$.
(b) In connection with part (f), equivariance with respect to rotations, see Subsection 2.2 below.

2.1. Unresolved Foundational Issues. Theorem 1.3 implies that W induces a bijection
$$W : \text{QuasiCircles}^1(\mathbb{C} \setminus \{0\}) \leftrightarrow \{\sigma \in \text{QS}(S^1) : \sigma = \text{linar} \} \times \mathbb{R}^+$$
where a quasicircle is a Jordan curve which admits a parameterization by the restriction to S^1 of a quasiconformal homeomorphism of $\mathbb{C} \cup \{\infty\}$.

Conjecture. (a) μ_0 has measure zero on quasicircles.
(b) W is $1 - 1$ on a set of full μ_0 measure.
(c) Almost surely with respect to ν_0, σ has a unique triangular factorization (with $m = 1$).

This is suggested by [2].
3. Variational Formulas

Since the measure μ_0 has a local form of conformal invariance, it is natural to suspect that there are senses in which the measure is infinitesimally conformally invariant. For this reason we need to consider how ϕ^\pm vary when the curve γ is varied by a local deformation $z \to z + \epsilon v(z)$, where $v(z)$ is holomorphic in $\mathbb{C} \setminus \{0\}$. This deformation corresponds to a real vector field

$$\vec{v} = v_1 \frac{\partial}{\partial x} + v_2 \frac{\partial}{\partial y}$$

where $v = v_1 + iv_2$. Let \mathbb{W} denote the real Lie algebra of all such vector fields, where $v(z)$ has a finite Laurent expansion.

For technical reasons, we distinguish \mathbb{W} from the Witt algebra W, which consists of holomorphic vector fields $v(z) \frac{\partial}{\partial z}$, where again $v(z)$ has a finite Laurent expansion. The Witt algebra is a complex Lie algebra. It is spanned over \mathbb{C} by the vector fields

$$L_n = -z^{n+1} \frac{\partial}{\partial z}, \quad n \in \mathbb{Z}$$

with bracket

$$[L_n, L_m] = (m-n)L_{n+m}$$

W^* consists of antiholomorphic vector fields. It is spanned by $\{T_n : n \in \mathbb{Z}\}$.

The precise relationship between \mathbb{W} and W is that there is a real embedding

$$(3.1) \quad \mathbb{W} \to W \oplus W^* : \vec{v} = v_1 \frac{\partial}{\partial x} + v_2 \frac{\partial}{\partial y} \to v(z) \frac{\partial}{\partial z} + v^*(z) \frac{\partial}{\partial \bar{z}}$$

Loosely speaking, \mathbb{W} is the Witt algebra considered as a real Lie algebra (see page 115 of [3]). The reason for maintaining a distinction is that the variational formulas below will naturally define a real representation of the real Lie algebra \mathbb{W}. However it is convenient to express this representation in terms of an associated complex representation of W. We will write the map (3.1) as

$$(3.2) \quad \vec{L} \leftrightarrow (L, \bar{L})$$

In particular

$$\vec{L}_n \leftrightarrow (L_n, \bar{T}_n), \quad \text{and} \quad i\vec{L}_n \leftrightarrow (iL_n, i\bar{T}_n) = (iL_n, -i\bar{T}_n)$$

3.1. Variational Formulas, I. \mathbb{W} can be viewed as a Lie algebra of vector fields on $\text{Loop}^1(\mathbb{C} \setminus \{0\})$, where by definition a vector field on a self-avoiding loop is simply a \mathbb{R}^2-valued vector field along the loop (the degree of smoothness of a loop is not relevant here). In particular

$$\vec{L}_n|_\gamma = \frac{d}{dt}\exp(t\vec{L}_n)(\gamma)|_{t=0}$$

and similarly for $i\vec{L}_n$. The corresponding actions on a function of γ are given by

$$\vec{L}_n \cdot F(\gamma) = \frac{d}{dt}|_{t=0}F(\exp(-t\vec{L}_n)(\gamma)) = \frac{d}{dt}|_{t=0}F(\gamma + t\gamma^{n+1})$$

where in the last line we have implicitly chosen a parameterization for γ, and similarly for $i\vec{L}_n$.

When \(n \geq -1 \), \(L_n = -z^{n+1} \frac{\partial}{\partial z} \) is regular at \(z = 0 \). In this case it is very easy to find the variations of \(\phi_+ \) with respect to \(\overrightarrow{L}_n \) and \(\overrightarrow{iL}_n \).

Proposition 1. (a) For \(n \geq 0 \), \(\overrightarrow{L}_n \phi_+ = \phi_+^{n+1} \). In particular
\[
\overrightarrow{L}_0 \rho_0 = \rho_0, \quad \text{and} \quad \overrightarrow{L}_0 u_k = 0, \quad k \geq 1
\]
and for \(n > 0 \)
\[
\overrightarrow{L}_n \rho_0 = 0, \quad \overrightarrow{L}_n u_k = 0 \quad k < n, \quad \overrightarrow{L}_n u_n = \rho_0^n
\]
and for \(n < k \)
\[
\overrightarrow{L}_n u_k = \rho_0^n p_{k-n}^{(n+1)}(u_1, \ldots, u_{k-n})
\]
where
\[
(1 + u_1 z + u_2 z^2 + \ldots)^{n+1} = \sum_{l=0}^{\infty} p_l^{(n+1)}(u_1, \ldots, u_l) z^l
\]
(b) \(\overrightarrow{L}_{-1} \phi_+ = 1 + u'(z)(-1 + (u_1 - u_1^*) z + z^2) \).
(c) For \(n > 0 \), \((iL_n) \phi_+ = i\phi_+^{n+1} \), and \((iL_0) \phi_+ = i(\phi_+-z\phi_+) \).
(d) \((iL_{-1}) \phi_+ = i(1 + u'(z)(-1 + (u_1 + u_1^*) z - z^2)) \).

Proof. \(\overrightarrow{L}_0 \) is infinitesimal dilation. In this case the formulas in part (a) are obvious, because \(\sigma(\gamma) \) is unchanged when \(\gamma \) is dilated.

For \(n \geq -1 \) and \(\epsilon \) sufficiently small, a uniformization for the region inside \(\gamma + \epsilon \gamma^{n+1} \) is the composition
\[
\phi_+ + \epsilon(\phi_+)^{n+1}
\]
This uniformization has to be composed with a linear fractional transformation to obtain the correct normalization. Consequently

\[
\phi_+(\gamma + \epsilon \gamma^{n+1})(z) = (\phi_+ + \epsilon(\phi_+)^{n+1})\left(\frac{\lambda(\epsilon) z + \omega(\epsilon)}{1 + \omega(\epsilon) \lambda(\epsilon) z} \right)
\]
where \(\lambda \) (having unit norm) and \(\omega \) are determined by the conditions that this uniformization vanishes at \(z = 0 \) and has positive derivative at \(z = 0 \).

Suppose \(n \geq 0 \). In this case the linear fractional transformation is the identity for all \(\epsilon \). This implies part (a).

Part (b), when \(n + 1 = 0 \), is slightly more involved. In this case
\[
(\overrightarrow{L}_{-1} \phi_+) = \frac{d}{d\epsilon}_{\epsilon = 0}(\phi_+\left(\frac{\lambda(\epsilon) z + \omega(\epsilon)}{1 + \omega(\epsilon) \lambda(\epsilon) z} + \epsilon \right))
\]
\[
= \phi_+'(z)\left(\hat{\lambda}(0) z + \hat{\omega}(0) - z\hat{\omega}(0) \lambda(\epsilon) z \right) + 1
\]
To calculate the derivatives at zero, we use the normalizations for the mapping \(\phi_+^\epsilon \). Because 0 is mapped to zero,
\[
\epsilon + \phi_+(\omega(\epsilon)) = 0
\]
This implies
\[
\omega(\epsilon) = \phi_+^{-1}(-\epsilon) \quad \text{and} \quad \hat{\omega}(0) = -\rho_0^{-1}
\]
Secondly the derivative of the map \(\phi_+^\epsilon \) at \(z = 0 \) must be positive. Thus
\[
\phi_+'(\omega(\epsilon))\lambda(\epsilon)(1 - |\omega(\epsilon)|^2) > 0
\]
and \(\lambda \) has unit norm
\[
\lambda(e)^{-1} = \exp(i \text{Im}(\log(\phi'_+(\omega(e)))))
\]
This implies
\[
\dot{\lambda}(0) = -i \text{Im}\left(\frac{\phi''(\omega(0))\dot{\omega}(0)}{\phi'_+(\omega(0))}\right) = -2i \text{Im}\left(\frac{u_1}{\rho_0}\right)
\]
Plugging these derivatives into (3.4) yields
\[
\vec{L}_{-1}\dot{\phi}_+ = 1 + \rho_0(1 + 2u_1 z + 3u_2 z^2 + \ldots)(\frac{u_1 - u_2^*}{\rho_0} - \frac{1}{\rho_0} + \frac{1}{\rho_0} z^2)
\]
This implies part (b).
Parts (c) and (d) are similar. For part (c), when \(n = 0 \), note that
\[
(\exp(i \theta \vec{L}_0) \phi_+)(z) = e^{i \theta} \phi_+(e^{-i \theta} z)
\]
so that
\[
(3.5) \quad \exp(i \theta \vec{L}_0) \rho_0 = \rho_0, \text{ and } \exp(i \theta \vec{L}_0) u_k = e^{-ik\theta} u_k
\]
For part (d), when \(n + 1 = 0 \),
\[
(3.6) \quad \phi_+(\gamma + i \epsilon) \rightarrow \phi_+(\frac{\lambda(e)z + \omega(e)}{1 + \omega(e)\lambda(e)z}) + i \epsilon
\]
and
\[
(3.7) \quad (i \vec{L}_{-1}\dot{\phi}_+)(z) = \frac{d}{de} \bigg|_{e=0} \phi_+\left(\frac{\lambda(e)z + \omega(e)}{1 + \omega(e)\lambda(e)z}\right) + i \epsilon
\]
\[
= \phi'_+(z) \left(\dot{\lambda}(0)z + \dot{\omega}(0) - z\dot{\omega}(0)^* z\right) + i
\]
To calculate the derivatives at zero, we use the normalizations for the mapping (3.3). Because 0 is mapped to zero,
\[
i \epsilon + \phi_+(\omega(e)) = 0
\]
This implies
\[
\omega(e) = \phi_+^{-1}(-i \epsilon) \quad \text{and} \quad \dot{\omega}(0) = -i \rho_0^{-1}
\]
Secondly the derivative of the map (3.3) at \(z = 0 \) must be positive. Thus
\[
\phi'_+(\omega(e))\lambda(e)(1 - |\omega(e)|^2) > 0
\]
and (because \(\lambda \) has unit norm)
\[
\lambda(e)^{-1} = \exp(i \text{Im}(\log(\phi'_+(\omega(e)))))
\]
This implies
\[
\dot{\lambda}(0) = -i \text{Im}\left(\frac{\phi''(\omega(0))\dot{\omega}(0)}{\phi'_+(\omega(0))}\right) = 2i \text{Im}\left(\frac{iu_1}{\rho_0}\right) = i \frac{u_1 + u_2^*}{\rho_0}
\]
Plugging these derivatives into (3.7) yields
\[
\vec{L}_{-1}\dot{\phi}_+ = i + \rho_0(1 + 2u_1 z + 3u_2 z^2 + \ldots)(\frac{u_1 - u_2^*}{\rho_0} - \frac{i}{\rho_0} - \frac{i}{\rho_0} z^2)
\]
This implies part (d).
3.2. (Lack of) Equivariance for W. We have already observed that the welding map is equivariant with respect to the actions of rotation of loops and conjugation of homeomorphisms; see (f) of Lemma 1. Given $|w| < 1$, define $\phi_1(w) \in PSU(1,1)$ (viewed as the group of automorphisms of the Riemann sphere which stabilize the circle) by

$$\phi_1(w; z) = \frac{z + w}{1 + wz}$$

Proposition 2. Suppose that $\gamma \in \text{Loop}^1(\mathbb{C} \setminus \{0\})$ such that $\phi_1(\epsilon, \gamma) \in \text{Loop}^1(\mathbb{C} \setminus \{0\})$. Then to first order in ϵ

(a) $\phi_+(\phi_1(\epsilon, \gamma)) = \phi_1(\epsilon) \circ \phi_+(\gamma) \circ \phi_1(-\epsilon/\rho_0) \circ \exp(2i\text{Im}(u_1\bar{\epsilon})/\rho_0)$

(b) $\phi_-(\phi_1(\epsilon, \gamma)) = \phi_1(\epsilon) \circ \phi_-(\gamma) \circ \phi_1(-\rho_\infty \epsilon) \circ \exp(2i\rho_\infty \text{Im}(b_1\epsilon))$

and

(c) $\sigma(\phi_1(\epsilon, \gamma)) = \exp(-2i\rho_\infty \text{Im}(b_1\epsilon)) \circ \phi_1(\rho_\infty \epsilon) \circ \sigma(\gamma) \circ \phi_1(-\epsilon/\rho_0) \circ \exp(2i\text{Im}(u_1\bar{\epsilon})/\rho_0)$

Remark. The formula in (c) illustrates how the welding map is trying, with limited success, to intertwine the action of $PSU(1,1)$ on loops with its action by conjugation on the welding homeomorphism.

Proof. A uniformization for the region inside $\gamma(\epsilon)$ is the composition

$$\phi_1(\epsilon, \phi_+(\gamma)(z))$$

This uniformization has to be precomposed with a linear fractional transformation to obtain the correct normalization. Consequently

$$\phi_+(\gamma(\epsilon)) = \phi_1(\epsilon) \circ \phi_+(\gamma) \circ \Phi_1(\epsilon)$$

where

$$\Phi_1(\epsilon, z) = \frac{\lambda(\epsilon)z + \overline{\gamma}(\epsilon)}{1 + \omega(\epsilon)\lambda(\epsilon)z}$$

and λ (having unit norm) and ω are determined by the conditions that this uniformization vanishes at $z = 0$ and has positive derivative at $z = 0$.

The first condition implies

$$\Phi_1(\epsilon, 0) = \overline{\gamma}(\epsilon) = \phi_+^{-1}(-\epsilon) = -\frac{\epsilon}{\rho_0} + O(\epsilon^2)$$

in particular $\omega'(0) = -\rho_0^{-1}$. Note that for Φ_1 to exist, $-\epsilon$ must be in U_+. The second condition

$$\phi_1(\epsilon)'[\phi_+ \circ \Phi_1(0)]\phi_+'[\Phi_1(0)]\Phi_1'(0) > 0$$

is equivalent to

$$\phi_1(\epsilon)'[\phi_+(\overline{\gamma}(\epsilon))]\phi_+'[\overline{\gamma}(\epsilon)]\lambda(1 - |\omega|^2) > 0$$

or

$$\overline{\lambda}(\epsilon) = \frac{\phi_1(\epsilon)'[\phi_+(\overline{\gamma}(\epsilon))]\phi_+'[\overline{\gamma}(\epsilon)]}{|\phi_1(\epsilon)'[\phi_+(\overline{\gamma}(\epsilon))]\phi_+'[\overline{\gamma}(\epsilon)]|}$$

Use
\[
\phi_1(\epsilon)'(z) = \frac{1 - |\epsilon|^2}{(1 + \epsilon z)^2}
\]

\[
\phi_1(\epsilon)'(\phi_1(\epsilon)) = \frac{1 - |\epsilon|^2}{(1 + \epsilon(-\frac{\epsilon}{\rho_0} + O(\epsilon^2)))^2} = 1 + O(\epsilon^2)
\]

\[
\phi_1(\epsilon)'(\epsilon) = \rho_0 + 2\rho_0 u_1 \epsilon = \rho_0 - 2u_1\epsilon + O(\epsilon^2)
\]

Putting everything together

\[
\lambda(\epsilon) = \frac{(1 + \epsilon^2 + ..)(\rho_0 - 2u_1\epsilon + ..)}{[(1 + \epsilon^2 + ..)(\rho_0 - 2u_1\epsilon + ..)]} = 1 - 2 \frac{(u_1 - \overline{u_1})\epsilon}{\rho_0} + O(\epsilon^2)
\]

This implies the formula in (a).

In a similar way

\[
\phi_-(\phi_1(\epsilon; \gamma)) = \phi(\epsilon) \circ \phi_-(\gamma) \Psi_1
\]

and one precedes as before. This leads to (b) and (c).

3.3. Variational Formulas, II. It is far more difficult to calculate \(\overrightarrow{L}_{-n} \phi_+ \) for \(n > 1 \). In this case \(z^{-n+1} \) is regular at \(z = \infty \). This is the situation considered in [5], with slight modifications. In the following statement, let \(U \) denote the mapping inverse to \(u \).

Proposition 3. Suppose that \(n \geq 1 \). Then

(a) \(\overrightarrow{L}_{-n} \rho_0 = \rho_0^{-n+1} Re(P_n(u_1, .., u_n)) \), where

\[
P_n(u_1, .., u_n) = \text{Res}(\frac{U'(t)}{U(t)})^2 t^{-n+1}, t = 0
\]

If degree(\(u_j \)) = \(j \), then \(P_n \) is a homogeneous polynomial of degree \(n \).

(b) For \(k \geq 1 \)

\[
\overrightarrow{L}_{-n} u_k = \rho_0^{-n} \left(k u_k Re(B_0) + \sum_{m=1}^{k} (k + 1 - m) u_{k-m} (B_{-m} + B_m) \right)
\]

where

\[
B_m = \text{Res}(\frac{U'(t)}{U(t)})^2 U(t)^{m} t^{-n+1}, t = 0 = \text{Res}(\frac{u(z)^{-n+1}}{u'(z)} z^{m-2}, z = 0)
\]

(c) \(i\overrightarrow{L}_{-n} \rho_0 = -\rho_0^{-n+1} Im(P_n(u_1, .., u_n)) \).

(b) For \(k \geq 1 \)

\[
\overrightarrow{iL}_{-n} u_k = -\rho_0^{-n} \left(k u_k Im(B_0) + \sum_{m=1}^{k} (k + 1 - m) u_{k-m} i(-B_{-m} + B_m) \right)
\]
Remarks. (a) It is natural to restate the relationship between the P_n and U in terms of quadratic differentials

$$(\partial \ln(U(t)))^2 = \sum_{n=0}^{\infty} P_n(u) t^n \left(\frac{dt}{t}\right)^2$$

(where $t = u(z)$, $z = U(t)$) In Section 7 it will be convenient to rewrite this as

$$(\partial \ln(\phi^{-1}(t)))^2 = \sum_{n=0}^{\infty} \rho_0^{-n} P_n(u) t^n \left(\frac{dt}{t}\right)^2$$

and to set $P_n(\phi_+) = \rho_0^{-n} P_n(u)$. Hopefully this will not cause any confusion.

(b) Similarly the residue formula for B_m is naturally understood as the integral over γ of the natural pairing of the holomorphic vector field $-v(t) \frac{dt}{dt}$ and the holomorphic quadratic differential $U(t)^m (\partial \ln(U(t)))^2$.

For later reference we note some elementary properties of the polynomials P_n.

Proposition 4. (a) $P_n(u)$ is a homogeneous polynomial in $u_1, ..., u_n$ of degree n, where $\text{degree}(u_j) = j$, with integer coefficients.

(b) $P_n(u) = -2nu_n + \text{terms involving } u_1, ..., u_{n-1}$

(c) u_n is a homogeneous polynomial in $P_1, ..., P_n$ of degree n, where $\text{degree}(P_j) = j$, with rational coefficients.

(d) $u_n = -\frac{1}{2n}P_n + \text{terms involving } P_1, ..., P_{n-1}$

Thus $\mathbb{Z}[P_1, ..., P_n] \subset \mathbb{Z}[u_1, ..., u_n]$ with proper containment, but over \mathbb{Q} they are the same.

At this point we have formulas for the action of the real Witt algebra on the coefficients of ϕ_+. If we write

$$(3.9) \quad \frac{1}{\phi_-(\frac{1}{z})} = \frac{1}{\rho_\infty} w(1 + \sum_{n \geq 4} l_n w^n)$$

where $w = \frac{1}{z}$ is the standard coordinate at infinity, then we can also write down formulas for the action of the real Witt algebra on the coefficients of ϕ_-. We will postpone this until the next section.

4. Reformulation of the Variational Formulas

4.1. Preliminary Comments on Representations. Above we have considered a representation of the real Lie algebra $\overrightarrow{\mathfrak{W}}$ by real derivations on a space of complex-valued functions on $\text{Loop}^1(\mathbb{C} \setminus \{0\})$. This representation is real, in the sense that the set of real functions is stable, or equivalently that the action commutes with complex conjugation of functions.

To be precise, fix $\lambda \in \mathbb{C}$. The Duren-Schiffer formulas imply that there is a real representation of the real Lie algebra $\overrightarrow{\mathfrak{W}}$ by real derivations on the spaces of complex-valued functions

$$\mathbb{C}[u_1, \overline{u}_1, u_2, \ldots, \rho_0, \rho_0^{-1}] \rho_0^\lambda$$
\[C[l_1, l_2, \ldots; \rho_\infty, \rho^{-1}_\infty] \rho^\lambda \]

and

\[C[u_1, u_2, \ldots; l_1, l_2, \ldots; \rho_0, \rho^{-1}_0; \rho_\infty, \rho^{-1}_\infty] u^\lambda \]

Denote this real action of \(\mathcal{W} \) by \(\pi_0 \). By abstract nonsense there is an associated complex representation of \(\mathcal{W} \) by complex derivations of the algebra of complex-valued functions of self-avoiding loops, defined by

\[\pi(L) = \frac{1}{2}(\pi_0(L) - i\pi_0(iL)) \]

There is also a representation

\[\pi(L) = \frac{1}{2}(\pi_0(L) + i\pi_0(iL)) \]

This is a complex representation of \(\mathcal{W} = \mathcal{W}^* \) by complex derivations.

In turn, in terms of the real embedding (3.1)

\[\pi_0(L) = \pi(L) + \pi(L) \]

The point of this translation is that the complex representations \(\pi \) and \(\pi \) are easier to analyze. In fact (on proper domains) they can be expressed in terms of highest weight representations, and this allows us to access well-known results from the theory of highest weight representations of the Virasoro algebra (at the moment the central charge \(c = 0 \), so that we are only considering the Witt algebra).

4.2. Formulas for the Representation \(\pi \).

Proposition 5. (a) \(\pi(L_0)\phi_+ = \phi_+(z) - \frac{1}{2}z\phi_+'(z) \). In particular

\[\pi(L_0)\rho_0 = \frac{1}{2}\rho_0, \quad \text{and} \quad \pi(L_0)u_k = -\frac{1}{2}ku_k, \quad k \geq 1 \]

(b) For \(n > 0 \), \(\pi(L_n)\phi_+ = \phi_+^{n+1} \). In particular

\[\pi(L_n)\rho_0 = 0, \quad \pi(L_n)u_k = 0 \quad k < n, \quad \pi(L_n)u_n = \rho_0^n \]

and in general

\[\pi(L_n)u_k = \rho_0^n p_{k-n}^{(n+1)}(u_1, u_2, \ldots) \]

where

\[(1 + u_1 z + u_2 z^2 + \ldots)^{n+1} = \sum_{l=0}^{\infty} p_l^{(n+1)} z^l \]

(c) \(\pi(L_{-1})\phi_+ = 1 + u'(z)(-1 + u_1 z) \). In particular

\[\pi(L_{-1})\rho_0 = -u_1, \]

\[\pi(L_{-1})(\rho_0 u_1) = -3u_2 + 2u_1^2 \]

and in general

\[\pi(L_{-1})(\rho_0 u_n) = -(n + 2)u_{n+1} + (n + 1)u_n u_1 \]

Hence

\[\pi(L_{-1})u_n = \frac{n + 2}{\rho_0}(u_1 u_n - u_{n+1}) \]

For \(n > 1 \)
(d) $\pi(L_{-n})\rho_0 = \frac{1}{2}\rho_0^{-n+1} P_n(u_1, \ldots, u_n)$, where

$$P_n(u_1, \ldots, u_n) = B_0(n) = \text{Res}((U'(t))^{2}t^{-n+1}, t = 0)$$

If degree$(u_j) = j$, then P_n is a homogeneous polynomial of degree n.

(e) For $k \geq 1$

$$\pi(L_{-n})u_k = \rho_0^{-n} \left(\frac{k}{2} u_k B_0(n) + \sum_{m=1}^{k} (k+1-m) u_{k-m} B_{-m}(n) \right)$$

Equivalently

$$\pi(L_{-n})(\rho_0 u_k) = \rho_0^{-n+1} \sum_{m=0}^{k} (k+1-m) u_{k-m} B_{-m}(n) - \rho_0^{-n+1} \frac{k+1}{2} u_k B_0(n)$$

where

$$B_m(n) = \text{Res}((U'(t))^{2}U(t)^m t^{-n+1}, t = 0) = \text{Res}(\frac{u(z)^{-n+1}}{u'(z)} z^{m-2}, z = 0)$$

Using the Lemma below, this can be restated in the following way.

Proposition 6. For $n \in \mathbb{Z}$

(a)

$$\pi(L_n)\rho_0 = \frac{1}{2}\rho_0 \text{Res}(\phi_+^{n+1}(z), z = 0)$$

(b) For $k \geq 1$

$$\pi(L_n)u_k = \frac{k}{2} u_k \tilde{B}_0(n) + \sum_{m=1}^{k} (k+1-m) u_{k-m} \tilde{B}_{-m}(n)$$

Equivalently

$$L_n(\rho_0 u_k) = \rho_0^{n+1} \sum_{m=0}^{k} (k+1-m) u_{k-m} B_{-m}(n) - \rho_0^{n+1} \frac{k+1}{2} u_k B_0(n)$$

where

$$\tilde{B}_m(n) = \text{Res}(\frac{\phi_+(z)^{n+1}}{\phi_+'(z)} z^{m-2}, z = 0)$$

Remark. This second statement seems more clean than the first. However, as we will see when we introduce the energy-momentum tensor, the first statement has the advantage of being stated in terms of the inverse of ϕ_+. Which is the better point of view remains to be sorted out.

To avoid cumbersome notation, we will often identify L_n with its corresponding operator, $\pi(L_n)$. Suppose that we write $u_0 = 1$ and $a_k = \rho_0 u_k$, so that

$$\phi_+(z) = \sum_{k=0}^{\infty} a_k z^{k+1}$$

If $n > 0$ and $k \geq 1$, then according to (e)

$$L_{-n}(a_k) = \sum_{m=0}^{k} (k+1-m) a_{k-m} \text{Res}(\frac{(\phi_+^{-1})'(t)}{\phi_+^{-1}(t)}) \phi_+^{-1}(t)^{-m} t^{-n+1}, t = 0)$$
Lemma 3.

Proof. Fix a small circle surrounding 0 in the t plane. Then

$$
\int_{C} \left(\frac{\phi^{-1}_n(t)}{m} \right)^2 \phi^{-1}_n(t) \frac{m}{m-1} dt = \int_{\phi^{-1}_n(C)} \left((\phi^{-1}_n(t) - \phi^{-1}_n) \right)^2 \frac{\phi(s) - s^m}{m} ds
$$

This can be restated more cleanly in the following way.

Lemma 4.

Using the Lemma we can write

$$
L_{-n}(\phi_+) = \sum_{k=0}^{\infty} \left(\sum_{m=0}^{k} (k+1-m) a_{k-m} Res \left(\frac{\phi(s) - s^m}{m} ds, s = 0 \right) \right)
$$

and

$$
\rho_0^{-n} B_m(n) = Res \left(\frac{\phi_n(s)}{\phi_n(s)^2}, z^{m-2}, z = 0 \right)
$$

We can write

$$
L_{-n}(\phi_+) = \sum_{k=0}^{\infty} \left(\sum_{m=0}^{k} (k+1-m) a_{k-m} Res \left(\frac{\phi(s) - s^m}{m} ds, s = 0 \right) \right)
$$

The mild surprise is that this expression leads to a formula which is valid for all n.

Theorem 4.1. For any $n \in \mathbb{Z}$

$$
L_n(\phi_+)(z) = \phi'_+(z) \left(\frac{\phi(s) + s^m}{\phi(s)} \right)_{++} - \frac{1}{2} z \phi'_+(z) Res \left(\frac{\phi(s) + s^m}{\phi(s)^2}, s = 0 \right)
$$

and

$$
L_n(u)(z) = \rho_0^n (u(z)) \left(\frac{u(z) + s^m}{u(z)} \right)_{++} - \frac{1}{2} (z u(z) + u(z)) Res \left(\frac{u(s) + s^m}{u(s)^2}, s = 0 \right)
$$
Proof. We just need to check that this formula agrees with our previous calculations when \(n \geq 0 \). This is straightforward. \(\square \)

4.3. Formulas for \(\pi \).

Proposition 7. (a) \(\pi(\mathcal{L}_0)\phi_+ = \frac{1}{2}z\phi_+^*(z) \). In particular

\[
\pi(\mathcal{L}_0)\rho_0 = \frac{1}{2}\rho_0, \quad \text{and} \quad \pi(\mathcal{L}_0)u_k = \frac{k-1}{2}u_k, \quad k \geq 1
\]

(b) For \(n > 0 \), \(\pi(\mathcal{L}_n)\phi_+ = 0 \).

(c) \(\pi(\mathcal{L}_{-1})\phi_+ = u'(z)(-u_1^* z + z^2) \). In particular

\[
\pi(\mathcal{L}_{-1})\rho_0 = -u_1^*
\]

\[
\pi(\mathcal{L}_{-1})u_1 = \rho_0^{-1}(1-u_1u_1^*)
\]

In general

\[
\pi(\mathcal{L}_{-1})u_n = \rho_0^{-1}(u_{n-1} - u_1u_n)
\]

For \(n > 1 \)

(d) \(\pi(\mathcal{L}_{-n})\rho_0 = \frac{1}{2}\rho_0^{-n+1}P_n(u_1, \ldots, u_n)^* \)

(e) For \(k \geq 1 \)

\[
\mathcal{L}_{-n}u_k = \rho_0^{-n}\left(\frac{k}{2}u_kB_0(n)^* + \sum_{m=1}^{k}(k+1-m)u_{k-m}B_m(n)^* \right)
\]

Equivalently

\[
\mathcal{L}_{-n}(\rho_0 u_k) = \rho_0^{-n+1} \sum_{m=0}^{k}(k+1-m)u_{k-m}B_m(n)^* - \rho_0^{-n+1}\frac{k+1}{2}u_kB_0(n)^*
\]

Now we want to add things up as in the preceding section. As before we write \(\phi_+(z) = \sum a_k z^{k+1} \), where \(a_k = \rho_0 u_k \) and it is understood that \(u_0 = 1 \). By part (e)

\[
\mathcal{L}_{-n}(a_k) = \rho_0^{-n} \sum_{m=0}^{k}(k+1-m)a_{k-m}B_m(n)^* - \rho_0^{-n}\frac{k+1}{2}a_kB_0(n)^*
\]

By the change of variable lemma of the preceding subsection

\[
\rho_0^{-n}B_m(n) = \text{Res}(\frac{\phi_+(z)^{-n+1}}{\phi_+^*(z)}z^{m-2}, z = 0)
\]

Therefore

\[
\mathcal{L}_{-n}\phi_+ = \phi_+^*(z) \sum_{m=0}^{\infty} \left(\frac{\phi_+(z)^{-n+1}}{\phi_+(z)} \right)^* z^{m+1} - \frac{1}{2}z\phi_+^*(z) \left(\frac{\phi_+(z)^{-n+1}}{\phi_+(z)} \right)_1^*
\]

where the notation \((\ldots)_k \) denotes the \(k \)th Fourier coefficient. This equals

\[
\phi_+^*(z) \sum_{m=0}^{\infty} \left[\left(\frac{\phi_+(z)^{-n+1}}{\phi_+(z)} \right)^* z^{m+1} - \frac{1}{2}z\phi_+^*(z) \left(\frac{\phi_+(z)^{-n+1}}{\phi_+(z)} \right)_1^* \right]
\]

As in the preceding subsection, we obtain the following uniform formula.
Theorem 4.2. For any $n \in \mathbb{Z}$

$$\mathcal{T}_n \phi_+(z) = \phi'_+(z)([\left(z^{-2} \frac{\phi^{n+1}_+(z)}{\phi'_+(z)}\right]^*_{++} + \frac{1}{2} z \left(\frac{\phi^{n+1}_+(z)}{\phi'_+(z)}_{1}\right)^*])$$

Proof. We just need to check that this formula agrees with the formulas in Proposition 7. This is again straightforward. \qed

4.4. Formulas for π_0, Revisited. We can use Theorems 4.1 and 4.2 to recast the Duren-Schiffer variational formulas in the following form.

Corollary 1. For all $n \in \mathbb{Z}$, \(\mathcal{T}_n \phi_+ \) equals

$$\phi'_+(z)(\frac{\phi^{n+1}_+(z)}{\phi'_+(z)} + \left(z^{-2} \frac{\phi^{n+1}_+(z)}{\phi'_+(z)}\right)^*_{++} - \frac{1}{2} z(\text{Res}(\frac{\phi^{n+1}_+(s)}{\phi'_+(s)}_{s^2}, s = 0) + \text{Res}(\frac{\phi^{n+1}_+(s)}{\phi'_+(s)s^2}, s = 0)^*)$$

where

$$\frac{\phi^{n+1}_+(z)}{\phi'_+(z)} = \sum_{k=n+1}^{+\infty} c_k z^k$$

Proof. By definition

$$\mathcal{T}_n \phi_+ = \mathcal{T}_n \phi_+ + \mathcal{T}_n \phi_+$$

Theorems 4.1 and 4.2 imply that this equals

$$\phi'_+(z)\left[\frac{\phi^{n+1}_+(z)}{\phi'_+(z)}\right]_{++} - \frac{1}{2} z \phi'_+(z)\text{Res}(\frac{\phi^{n+1}_+(s)}{\phi'_+(s)}_{s^2}, s = 0)$$

$$+ \phi'_+(z) \left[z^{-2} \frac{\phi^{n+1}_+(z)}{\phi'_+(z)}\right]^*_{++} - \frac{1}{2} z \phi'_+(z) \left((\frac{\phi^{n+1}_+(z)}{\phi'_+(z)}_{1}\right)^*$$

\qed

It is obviously desirable to find a direct proof of these formulas which reflects their structure.

4.5. Calculations with ϕ_-. On the one hand, in the standard w coordinate at $\infty \in \mathbb{P}^1$,

$$\frac{1}{\phi_-(\frac{1}{w})} = \frac{1}{\rho_\infty w(1 + \sum_{n=1}^{\infty} l_n w_n)}$$

The l_n coordinates for ϕ_- are analogous to the u_n coordinates for ϕ_+, and variational formulas for ϕ_- essentially arise from substituting l_j's for u_j's in our earlier formulas. On the other hand, in the standard z coordinate,

$$\phi_-(z) = \rho_\infty L(z) = \rho_\infty (1 + \sum_{m=1}^{\infty} b_m z^{-m})$$

and it is occasionally useful to employ the b_m coordinates. The relation between the two sets of coordinates is standard.
Lemma 4.

\[\mathbb{C}[l_1, l_2, \ldots] = \mathbb{C}[b_1, b_2, \ldots] \]

In fact for each \(M \)

\[\mathbb{C}[l_1, l_2, \ldots, l_M] = \mathbb{C}[b_1, b_2, \ldots, b_M] \]

Proof.

\[w(1 + \sum_{n=1}^{\infty} l_n w^n) = \frac{1}{w(1 + \sum_{m=1}^{\infty} b_m w^m)} \]

or

\[(1 + \sum_{n=1}^{\infty} l_n w^n) = \frac{1}{1 + \sum_{m=1}^{\infty} b_m w^m} \]

implies

\[l_1 = -b_1, \quad l_2 = -b_2 + b_1^2, \ldots \]

\[\square \]

The \(\phi_- \) analog of Theorem 4.1 and Theorem 4.2 is the following theorem. In the statement, for a Laurent expansion convergent in an annulus \(R < |z| < \infty \), we use the notation \(\text{Res}(\sum g_m z^m, z = \infty) = -g_{-1} \) (This is actually the residue of the differential \(g(z)dz \) at \(z = \infty \) in the Riemann sphere).

Theorem 4.3. Let \(n \in \mathbb{Z} \).

(a) \(L_n(\phi_-(z)) = -z^2 \phi'_-(z) \left(\frac{\phi_-(z)^{n+1}}{z^2 \phi'_-(z)} \right) - \frac{z^{-1}}{2} \text{Res} \left(\frac{\phi_-(t)^{n+1}}{t^2 \phi'_-(t)}, t = \infty \right) \) and

\[L_n(L(z)) = -\rho_0^n \frac{1}{2} \text{Res} \left(\frac{L(t)^{n+1}}{t^2 L'(t)}, t = \infty \right) \frac{L(z)^{n+1}}{z^2 L'(z)} + \frac{z^{-1}}{2} \text{Res} \left(\frac{L(t)^{n+1}}{t^2 L'(t)}, t = \infty \right) \frac{L(z)^{n+1}}{z^2 L'(z)} \]

(b) \(T_n(\phi_-(z)) = -z^2 \phi'_-(z) \left(\frac{z^{-1}}{2} \text{Res} \left(\frac{\phi_-(t)^{n+1}}{t^2 \phi'_-(t)}, \infty \right) \phi_-(z)^{n+1} \phi'_-(z) \right) - \frac{z^{-1}}{2} \text{Res} \left(\frac{\phi_-(t)^{n+1}}{t^2 \phi'_-(t)}, t = \infty \right) \phi'_-(z)^{n+1} \phi_-(z) \) and

\[T_n(L(z)) = -\rho_0^n \left(\frac{1}{2} (L(z) + z L'(z)) \text{Res} \left(\frac{L(t)^{n+1}}{t^2 L'(t)}, t = \infty \right) - \frac{z^n}{2} L'(z) \left(\frac{L(z)^{n+1}}{L'(z)} \right) \right. \]

4.6. Representation-Theoretic Consequences. The formulas of the preceding section imply that \(\pi \) is a complex representation of the Witt algebra \(W \) by derivations of the algebra \(\Omega^0(\rho_0) \otimes \mathbb{C}[u_1, u_2, \ldots] \), where \(\Omega^0(\rho_0) \) denotes any algebra of smooth functions of \(\rho_0 \).

Consider the action of \(W \) on the vector space

\[\mathbb{C}[\rho_0^\lambda, \rho_0, \rho_0^{-1}, u_1, u_2, \ldots] \]

where \(\lambda \) is a fixed complex number. For \(n > 0 \) the operators \(L_n \) kill \(\rho_0^\lambda \), and the spectrum of \(L_0 \) on the \(W \)-module generated by \(\rho_0^\lambda \) is \(\{ \lambda/2 + n : n = 0, 1, \ldots \} \).

We will refer to this as a lowest weight module (admittedly there are conflicting conventions). The following proposition follows from well-known facts about such representations (see [1]).
Proposition 8. For any \(\lambda \in \mathbb{C} \),

(a) the representation generated by the \(\pi \) action of \(\mathcal{W} \) on \(\rho_0^\lambda \) is a realization of the unique irreducible lowest weight representation of the Virasoro algebra with central charge \(c = 0 \) and \(h = \frac{1}{2} \lambda \).

If \(\lambda \neq -\frac{m^2-1}{12} \), then

\[
\pi(\mathcal{U}(\mathcal{W}))\rho_0^\lambda = \bigoplus_{n=0}^{\infty} \rho_0^{\lambda-n} \mathbb{C}[u_1, u_2, ..]^{(n)}
\]

where \(u_j \) has degree \(j \). Otherwise there is a proper containment.

(b) Similarly, the representation generated by the \(\pi \) action of \(\mathcal{W} \) on \(\rho_\infty^{-\lambda} \) is a realization of the highest weight representation of the Virasoro algebra with central charge \(c = 0 \) and \(h = -\frac{\lambda}{2} \).

If \(\lambda \neq -\frac{m^2-1}{12} \), then

\[
\pi(\mathcal{U}(\mathcal{W}))\rho_\infty^{-\lambda} = \bigoplus_{n=0}^{\infty} \rho_\infty^{-\lambda-n} \mathbb{C}[l_1, l_2, ..]^{(n)}
\]

where \(l_j \) has degree \(j \). Otherwise there is a proper containment.

Remark. The realization of the lowest weight representation in part (a) is related in a relatively simple way to the realization, using geometric quantization techniques, due to Kirillov and Yuriev in [9]. In [9] \(\mathcal{W} \) acts on a space of sections of a line bundle (parameterized by \(c = 0 \) and \(h = \lambda/2 \)) over (a somewhat imprecisely defined) space of Schlicht functions \(u \in S \) (normalized univalent functions on the disk, viewed as a homogeneous space for \(\text{Diff}(S^1) \)). In coordinates (by trivializing the line bundle) this vector space is identified with \(\mathbb{C}[u_1, u_2, ..] \), polynomials in the coefficients of the univalent function \(u \), and the formulas for the action appear in (8) of [9] (with \(c = 0 \), and one takes the negative of the operators, because we consider the opposite of the bracket in [9]). The intertwining operator from Kirillov and Yuriev’s realization to our realization in (a) is given by the map

\[
\mathbb{C}[u_1, u_2, ..] \to \mathbb{C}[\rho_0^\lambda, \rho_0^{-1}, u_1, u_2, ..] : P(u_1, u_2, ..) \to P(U_1/\rho_0, U_2/\rho_0^2, ..)\rho_0^\lambda
\]

where \(U = t(1 + \sum_{n>0} u_n z^n) \) is the inverse to the univalent function \(u = z(1 + \sum_{n>0} u_n z^n) \). An advantage of our realization is that the operators are derivations of an algebra, which makes them more amenable to calculations. This will appear in the first author’s dissertation.

4.7. Stress-Energy Formulation. Consider the standard holomorphic coordinate \(z = x + iy \). In real coordinates the symmetric stress tensor has the form

\[
\mathcal{T} = \begin{pmatrix} dx & dy \\ T_{11} & T_{12} \\ T_{21} & T_{22} \end{pmatrix} \begin{pmatrix} dx \\ dy \end{pmatrix}
\]

where \(T_{12} = T_{21} \). In complex coordinates

\[
T = \begin{pmatrix} dz & d\bar{z} \\ T_{11} & T_{12} - 2iT_{12} \\ T_{11} - 2iT_{12} + i(T_{12} - T_{21}) & T_{22} + i(T_{12} - T_{21}) \\ T_{11} - 2iT_{12} - i(T_{12} - T_{21}) & T_{22} + 2iT_{12} \end{pmatrix} \begin{pmatrix} dz \\ d\bar{z} \end{pmatrix}
\]

Conformal invariance is implied by the trace condition

\[
\text{trace}(T) = T_{11} + T_{22} = 0
\]

(see pages 101 and 103 of [4]). In complex coordinates this implies that \(T \) is diagonal.
In a conformal field theory with central charge $c = 0$

\[T(z) := (T_{11} - T_{22} - 2iT_{12})dz^2 = \sum_{n=-\infty}^{\infty} L_n z^{-n} \left(\frac{dz}{z} \right)^2 \]

is a holomorphic quadratic differential (See page 155 of [4]. Note: for $c \neq 0$, the stress energy "tensor" is actually a holomorphic projective connection; see page 136 of [4] or page 532 of [14]).

We are seeking a completely natural formulation for the action of the Witt algebra

Proposition 9.

\[T(t)\rho_0 = \frac{\rho_0}{2} (\partial \ln(\phi_+^{-1}(t)))^2 \]

\[T(t)\rho_\infty = -\frac{\rho_\infty}{2} (\partial \ln(\phi_-^{-1}(t)))^2 \]

Proof. By definition

\[T(t)\rho_0 = \sum_{n=-\infty}^{\infty} L_{-n}(\rho_0)t^n \left(\frac{dt}{t} \right)^2 \]

By part (a) of Proposition 6, this equals

\[\frac{1}{2}\rho_0 \sum_{n=0}^{\infty} \text{Res}((\phi_+^{-1}(t))^{2t-n+1}, t = 0)t^n \left(\frac{dt}{t} \right)^2 = \frac{\rho_0}{2} (\partial \ln(\phi_+^{-1}(t)))^2 \]

This proves the first statement. The proof of the second statement is similar. \(\square\)

Corollary 2. In the sense of hyperfunctions

\[T(t)a^\lambda = \frac{\lambda}{2} ((\partial \ln(\phi_+^{-1}(t)))^2 + (\partial \ln(\phi_-^{-1}(t)))^2) a^\lambda \]

Proof. From a formal power series point of view, this follows immediately from the proposition. From the point of view of analysis, this equality has to be interpreted in a hyperfunction sense, because the first term is holomorphic in U_+ and the second term is holomorphic in U_-. \(\square\)

5. Infinitesimal Invariance

Suppose that $\gamma \in \text{Loop}^1(\mathbb{C} \setminus \{0\})$. In terms of the standard coordinate z,

\[\phi_+(z) = \rho_0(\gamma) u(z), \quad u(z) = z(1 + \sum_{n \geq 1} u_n z^n) \]

In terms of the coordinate $w = \frac{1}{z}$,

\[\frac{1}{\phi_-(\frac{1}{w})} = \frac{1}{\rho_\infty} w(1 + \sum_{n \geq 1} l_n w^n) \]

The variational formulas of the preceding section imply that the vector space of functions of the form

\[p(u_1, \ldots, u_n; \rho_0) f(\rho_0) \]

where p is a polynomial of any number of variables, and f has compact support in \mathbb{R}^+, is stable with respect to the action of the Witt algebra (this applies both to
the real action and the complexified actions). Since the Witt algebra is stable with respect to \(z \to w = \frac{1}{z} \), the vector space of functions of the form
\[
p(l_1, \ldots, l_n, \bar{l}_1, \ldots, \bar{l}_n) f(\rho_{\infty})
\]
where \(p \) is a polynomial of any number of variables, and \(f \) has compact support in \(\mathbb{R}^+ \), is also stable with respect to the action of the Witt algebra. Consequently the vector space of “test functions” spanned by functions of the form
\[
F = p(u_1, \ldots, u_1, \ldots, l_1, \ldots, l_1, \ldots) f(\rho_0, \rho_{\infty})
\]
where \(p \) is a polynomial and \(f \) has compact support in \(\mathbb{R}^+ \times \mathbb{R}^+ \), is stable with respect to the Witt algebra (for the real or complexified actions). In reference to \(F \), since \(u_n \) and \(l_n \) are bounded (by constants depending only on \(n \)), \(p \) is bounded. The compact support condition on \(f \) implies that \(F \) is supported on Loop \(1 \) of a fixed finite type annulus. Since \(\mu_0 \) has finite measure on loops in a finite type annulus, \(F \) is integrable.

Proposition 10. The measure \(\mu_0 \) is infinitesimally conformally invariant, in the sense that for any \(L \in \mathcal{W} \times \overline{\mathcal{W}} \)
\[
\int L(F) d\mu_0(\gamma) = 0
\]
for any test function \(F \) as in (5.3).

Proof. It suffices to prove the proposition for \(\overrightarrow{L} \in \overrightarrow{\mathcal{W}} \).

By Koebe’s theorem, a test function \(F \) as in (5.3) is supported on Loop \(1 \) \(\{ \delta < |z| < \delta^{-1} \} \) for some \(\delta \). Let \(A_0 \) denote a finite type annulus containing \(\{ \delta \leq |z| \leq \delta^{-1} \} \). For some positive \(t_0 \), for all \(|t| < t_0 \), the flow \(\exp(t\overrightarrow{L}) \) is defined on \(A_0 \), and \(\{ \delta \leq |z| \leq \delta^{-1} \} \) will be contained in \(\cap_{t < t_0} A_t \), where \(A_t := \exp(t\overrightarrow{L})A_0 \). By local conformal invariance
\[
\int F d\mu_0 = \int F d\mu_{A_0} = \int (\exp(t\overrightarrow{L}))_* F d\mu_{A_t} = \int (\exp(t\overrightarrow{L}))_* F d\mu_0
\]
To complete the proof we need to justify taking the derivative with respect to \(t \) at \(t = 0 \) under the last integral. The derivative \(\overrightarrow{L} F \) is another test function, necessarily bounded. The translates
\[
(\exp(t\overrightarrow{L}))_*(\overrightarrow{L} F), \quad |t| < t_0
\]
are also uniformly bounded by the same constant. Moreover the translates (5.4) are all supported on Loop \(1 \) of some finite type annulus, for which the \(\mu_0 \) measure is finite. Thus a multiple of the characteristic function of Loop \(1 \) for this fixed finite type annulus is integrable and dominates all of the translates (5.3). Hence by dominated convergence we can differentiate under the integral sign.

Kontsevich and Suhov have conjectured that there is a converse of this result which holds generally for their conjectural family of measures \(\mu_c \) deforming \(\mu_0 \) (see section 2.5.2 of [10]).

For the purposes of this paper, we need to be able to apply integration by parts to functions which involve the bounded function \(a^\lambda (\lambda > 0) \), rather than a function having compact support in \(\rho_0, \rho_{\infty} \). One complication is that for \(\overrightarrow{L} \in \overrightarrow{W} \),
\[
\overrightarrow{L} a^\lambda = \lambda a^{\lambda-1} \overrightarrow{L}(a)
\]
is not necessarily bounded.

Lemma 5. Suppose that

\[F = p(u, \bar{u}, l, \bar{l}) f(\rho_{\infty}) a^{\lambda} \]

where \(p \) is a polynomial and \(f \) has compact support in \(\mathbb{R}^+ \). Then for any \(L \in \mathcal{W} \times \mathcal{W} \), for \(\text{Re}(\lambda) \) sufficiently large,

\[\int L(F) \, d\mu_0(\gamma) = 0 \]

The same conclusion applies if we replace \(f(\rho_{\infty}) \) by \(f(\rho_0) \).

Proof. Fix a smooth positive function \(g(\rho_0) \) having compact support for \(\rho_0 \in \mathbb{R}^+ \) and identically 1 in a neighborhood of \(\rho = 1 \). By Proposition 10, for each \(\delta > 0 \),

\[\int L(F g(\delta \rho_0)) \, d\mu_0(\gamma) = 0 \]

or

\[\delta \int g'(\delta \rho_0) L(\rho_0) F \, d\mu_0 + \int g(\delta \rho_0) L(F) \, d\mu_0(\gamma) = 0 \]

Since \(g \) is fixed, the first term goes to zero as \(\delta \to 0 \). We can apply dominated convergence to the second term, for sufficiently large \(\lambda \) (so that the part of the integrand not involving \(g \) is bounded, and hence the integral is well-defined). This implies the Lemma.

\[\square \]

Proposition 11. Suppose that

\[F = a^{\lambda} p(u, \bar{u}, l, \bar{l}) \]

where \(p \) is a polynomial.

(a) If \(L = L_n \) or \(\bar{L}_n \) with \(n \leq 0 \), then for sufficiently large \(\text{Re}(\lambda) \)

\[\int L(F) |_{\rho_{\infty} = 1} \, d\nu_0 = 0 \]

(b) If \(L = L_n \) or \(\bar{L}_n \) with \(n \geq 0 \), then for sufficiently large \(\text{Re}(\lambda) \)

\[\int L(F) |_{\rho_0 = 1} \, d\nu_0 = 0 \]

Proof. Suppose that \(L = L_n \) or \(\bar{L}_n \) with \(n < 0 \). Fix a smooth family of functions \(g_{\delta}(\rho_{\infty}) \) which converges to the \(\delta \) function at \(\rho_{\infty} = 1 \). Using \(L_n(\rho_{\infty}) = 0 \) and Lemma 5,

\[\int L(F g_{\delta}(\rho_{\infty})) \, d\mu_0 = \int L(F) g_{\delta}(\rho_{\infty}) \, d\mu_0 = 0 \]

Since \(L(F) \) is bounded for sufficiently large \(\text{Re}(\lambda) \), the left hand side of the last equality converges to \(\int L(F) \, d\nu_0 \) as \(\delta \to 0 \). This implies part (a).

If \(L = L_n \) or \(\bar{L}_n \) with \(n > 0 \), the same argument applies with \(g_{\delta}(\rho_0) \) in place of \(g_{\delta}(\rho_{\infty}) \).

If \(L = \bar{L}_0 \), then \(L(F) = 0 \). We have previously observed that if \(L = \bar{iL}_0 \), then \(L \) exponentiates to rotational symmetry of \(\mathbb{C} \setminus \{0\} \), and this corresponds to invariance of \(\nu_0 \) with respect to the conjugation action of rotations on homeomorphisms.

\[\square \]
In the sections below, we will repeatedly apply a variation of the preceding proof in the following way. Suppose that \(n > 0 \) and \(L = L_n \) or \(L = \bar{L}_n \). Then as in the proof

\[
\int L(\rho^{-n}Fg_{\delta}(\rho_0))d\mu_0 = \int L(F)\rho_0^{-n}g_{\delta}(\rho_0)d\mu_0 = 0
\]

We can take the limit as \(\delta \to 0 \), because the support of \(g_\delta \) remains bounded, and \(\rho_0^{-n} \) will be bounded in this support region. This implies

\[
\int L(F)\rho_0^{-n}d\nu_0 = 0
\]

which can be written heuristically as

\[
\int L(F)\rho_0^{-n}\delta_1(\rho_0)d\mu_0 = 0
\]

where \(\delta_1 \) denotes the Dirac delta function at 1. There are similar integral formulas involving \(L_{-n} \), but then we must use an approximation to \(\delta_1(\rho_\infty) \).

6. Calculating Moments

Throughout this section, to simplify notation, we will write \(E(\cdot) = \int (\cdot)d\nu_0 \).

6.1. The Basic Idea. Suppose that \(n > 0 \). The basic observation is that if \(p(u) \) is homogeneous of degree \(n \), where \(\text{degree}(u_j) = j \), then

\[
L_{-n}(\rho_0^n p(u))
\]

does not depend upon \(\rho_0 \). Recall also that \(L_{-n}(\rho_\infty) = 0 \). We can now apply infinitesimal invariance to obtain

\[
E(L_{-n}(\rho_0^n p(u))) = \int L_{-n}(\rho_0^n p(u))\delta_1(\rho_\infty)d\mu_0 = 0,
\]

which gives rise to an integral formula.

To prove Theorem 1.4, we use the identity

\[
(6.1) \quad \mathcal{L}_{-1}(\rho_0 u_{n+1} \bar{u}_n) = -(n+2)u_{n+1} \bar{u}_{n+1} + (n+1)u_n \bar{u}_n.
\]

Theorem 6.1.

\[
\int u_n u_n^* d\nu_0 = \frac{1}{n+1}
\]

Proof. Formula (6.1), together with infinitesimal invariance, implies the recursion relation

\[-(n+2)E(u_{n+1} \bar{u}_{n+1}) + (n+1)E(u_n \bar{u}_n) = 0\]

with the initial condition \(E(u_0 \bar{u}_0) = E(1) = 1 \). \(\Box \)

We will use the following notation throughout this section.

Definition. (a)

\[
\mathbb{C}[u]^{(n)} := \text{span}\{ \prod_{k \geq 1} u_k^{p_k} : \sum_{k \geq 1} kp_k = n\}
\]

i.e. the \(e^n \) eigenspace for the action of rotations; \(\mathbb{C}[\bar{u}]^{(n)} \) is defined similarly.

(b) For each \(n \geq 1 \) we denote

\[
\mathbb{C}[u, \bar{u}]^{(n,n)} := \text{span}\{ \prod_{k \geq 1} u_k^{p_k} \bar{u}_k^{q_k} : \sum_{k \geq 1} kp_k = \sum_{k \geq 1} kq_k = n\}
\]
or in other words \(\mathbb{C}[u, \bar{u}]^{\langle n,n \rangle} \cong \mathbb{C}[u]^{(n)} \otimes \mathbb{C}[\bar{u}]^{(n)} \). We will refer to elements in the vector space \(\mathbb{C}[u, \bar{u}]^{\langle n,n \rangle} \) as being of level \(n \).

The rationale for the notation is the following. The outer tensor product, \(\mathcal{W} \times \bar{\mathcal{W}} \), acts on the tensor product \(\mathbb{C}[u] \otimes \mathbb{C}[\bar{u}] \). The product of the corresponding rotation groups acts, and induces a bigrading. In (b) we are considering the 0-eigenspace for the real embedded rotation group.

If \(x \in \mathbb{C}[u, \bar{u}]^{\langle n,n' \rangle} \), then one may verify

\[
E(x) = e^{(n-n')}E(x)
\]

using the rotational invariance of Werner’s measure. Therefore, we restrict ourselves by Theorem 1.4. On one hand, for the real embedded rotation group.

Proposition 12. Equation (6.3) can now be used to obtain the following.

\[
E(u_2\bar{u}_2) = \frac{1}{3},
\]

\[
E(u_2\bar{u}_1^2) = E(\bar{u}_2u_1^2) = \frac{1}{3},
\]

\[
E(|u_1|^4) = \frac{17}{42}.
\]

6.2. Expressions for \(L_{-1} \). Consider (6.2) in the case \(m = 1 \). The first expression we derive for this operator is purely algebraic.

Lemma 6. Suppose that \(\sum kp_k = n \) and \(\sum kq_k = n-1 \) and let \(u^p \bar{u}^q := \prod_k u_k^{p_k} \bar{u}_k^{q_k} \).

Then

\[
L_{-1}(u^p \bar{u}^q) = \left(\sum_{j \geq 1} jp_j u_j^{-1}u_{j-1}u^p \bar{u}^q \right) + \left(2 \sum_{j \geq 1} q_j - 2 \right) \bar{u}_1u^p \bar{u}^q - \left(\sum_{j \geq 1} (j+2)q_j u_j^{-1}\bar{u}_{j+1}u^p \bar{u}^q \right)
\]

The first sum of terms are of level \(n-1 \), and the other terms are of level \(n \).
Proof. We calculate
\[
\mathcal{T}_{-1}(\rho_0 u^p \bar{u}^q) = -\bar{u}_1 u^p \bar{u}^q + \sum_{j \geq 1} \left(p_j u_j^{p_j-1} j(u_{j-1} - u_j) \prod_{k \neq j} u_k^{p_k} \prod_{k \geq 1} \bar{u}_k^{q_k} + q_j \bar{u}_j^{q_j-1} (j + 2)(u_{j-1} - u_j - u_{j+1}) \prod_{k \geq 1} u_k^{p_k} \prod_{k \neq j} \bar{u}_k^{q_k} \right)
\]

This simplifies to the expression in the statement of the lemma. \qed

The second expression is in terms of divergence-type differential operators. We also note that the homogeneity condition on the domains can be expressed in terms of divergence-type operators.

Proposition 13. Let \(n \geq 1 \).

(a) \(\mathbb{C}[u]^{(n)} = \{ P \in \mathbb{C}[u] : \sum_{j \geq 1} j u_j \frac{\partial P}{\partial u_j} = n P \} \).

(b) Suppressing \(\rho_0 \), the map

\[
\mathbb{C}[u]^{(n)} \otimes \mathbb{C}[\bar{u}]^{(n-1)} \xrightarrow{\text{proj}_{\mathcal{T}_{-1}}} \mathbb{C}[u]^{(n)} \otimes \mathbb{C}[\bar{u}]^{(n)}
\]

is of the form \(1 \otimes \overline{R}_1 \), where

\[
\overline{R}_1 = \sum_{k \geq 1} (2 \bar{u}_1 \bar{u}_k - (k + 2) \bar{u}_{k+1}) \frac{\partial}{\partial \bar{u}_k} - 2 \bar{u}_1
\]

(b') The linear map \(\overline{R}_1 \) is injective.

(c) Similarly,

\[
\mathbb{C}[u]^{(n)} \otimes \mathbb{C}[\bar{u}]^{(n-1)} \xrightarrow{\text{proj}_{\mathcal{T}_{-1}}} \mathbb{C}[u]^{(n-1)} \otimes \mathbb{C}[\bar{u}]^{(n-1)}
\]

is of the form \(N_1 \otimes 1 \), where

\[
N_1 = \sum_{j \geq 1} j u_j \frac{\partial}{\partial u_j}
\]

Proof. We will prove (b'): If \(n = 1 \), then \(\overline{R}_1 : \mathbb{C} \to \mathbb{C}[\bar{u}]^{(1)} \) is injective by dimension considerations. If \(n \geq 2 \), then consider the representation \(\overline{\mathcal{V}} \) of \(\mathcal{V} \) on \(\mathbb{C}[\rho_0, u] \). For the lowest-weight representation generated by \(\rho_0^{n-1} \), we have \(c = 0 \) and \(h = -\frac{(n-1)}{2} \) (see Section 4.6). This is a reducible Verma module if and only if

\[
-(n - 1) = \frac{m^2 - 1}{12}
\]

When the Verma module is irreducible, the creation operator \(\overline{L}_{-1} \) is injective at each level, i.e. \(\overline{R}_1 \) is injective. Notice that the same thing would be true for \(\overline{L}_{-k} \) for any \(k > 0 \). \qed

Remark. For \(u^p \bar{u}^Q \in \mathbb{C}[u]^{(n)} \otimes \mathbb{C}[\bar{u}]^{(n)} \) such that \(\bar{u}^Q \) is in the image of \(\overline{R}_1 \), there is a recursion formula

\[
E(u^p \bar{u}^Q) = E \left((N_1 \otimes 1)(u^p \overline{R}_1^{-1}(\bar{u}^Q)) \right) = E \left(N_1 (u^p \overline{R}_1^{-1}(\bar{u}^Q)) \right)
\]

where we are denoting a partial inverse to \(\overline{R}_1 \) by \(\overline{R}_1^{-1} \). Unfortunately this does not make any sense for most \(Q \).
Definition. For a single complex variable z, we define $\frac{1}{\sqrt{k!}}z^k$ to be an orthonormal basis for $\mathbb{C}[z]$. For a tensor product such as $\mathbb{C}[u] = \mathbb{C}[u_1] \otimes \mathbb{C}[u_2] \otimes \ldots$ we take the tensor product Hilbert space structure, meaning that $\frac{1}{\sqrt{p!}}u^p$ is an orthonormal basis, where $$p! := p_1!p_2!\ldots$$

Proposition 14. (a) The adjoint of
$$\mathbb{C}[\bar{u}]^{(n-1)} \xrightarrow{\mathcal{R}_1} \mathbb{C}[\bar{u}]^{(n)},$$
where
$$\mathcal{R}_1 = \sum_{k \geq 1} (2\bar{u}_1\bar{u}_k - (k + 2)\bar{u}_{k+1}) \frac{\partial}{\partial \bar{u}_k} - 2\bar{u}_1$$
is given by
$$\mathcal{R}_1' = \sum_{k \geq 1} \left(2\bar{u}_k \frac{\partial}{\partial \bar{u}_1} \frac{\partial}{\partial \bar{u}_k} - (k + 2)\bar{u}_k \frac{\partial}{\partial \bar{u}_{k+1}} \right) - 2 \frac{\partial}{\partial \bar{u}_1}$$

(b) Let K denote the kernel of \mathcal{R}_1', i.e. the cokernel of \mathcal{R}_1 (or the orthogonal complement of the image of \mathcal{R}_1). Then
$$0 \longleftarrow \mathbb{C}[\bar{u}]^{(n-1)} \xleftarrow{\mathcal{R}_1'} \mathbb{C}[\bar{u}]^{(n)} \longleftarrow K \longleftarrow 0$$
i.e., \mathcal{R}_1' is surjective.

(c)
$$(\text{Image}(1 \otimes \mathcal{R}_1) + \text{Image}(\mathcal{R}_1 \otimes 1))^\perp = \text{kernel}(1 \otimes \mathcal{R}_1' \otimes 1) = \mathbb{C}[\bar{u}]^{(n)} \otimes \overline{K} \cap K \otimes \mathbb{C}[\bar{u}]^{(n)} = K \otimes \overline{K},$$
which has dimension $(p(n) - p(n-1))^2 > 0$ for $n > 1$.

Proof. Because of the normalization for the Hermitian inner product, the adjoint for multiplication by z on $\mathbb{C}[z]$ is $\frac{\partial}{\partial z}$ on the $\mathbb{C}[z]$, and vice versa. This leads to the formula for \mathcal{R}_1'.

Part (b) follows from the injectivity of \mathcal{R}_1 (see (b’) of Proposition 13).

Part (c) is elementary linear algebra: for the sum of two subspaces, the annihilators is the intersection of the annihilators.

\[\Box\]

Examples. When $n = 2$,
$$\text{kernel}(\mathcal{R}_1') = \mathbb{C}\{u_2^2\},$$

When $n = 3$,
$$\text{kernel}(\mathcal{R}_1') = \mathbb{C}\{u_1^3 + 2u_1u_2\}.$$

Note $p(3) - p(2) = 3 - 2 = 1$.

When $n = 4$,
$$\text{kernel}(\mathcal{R}_1') = \mathbb{C}\{4u_2^2 - 6u_1u_3, 3u_2^2 + 16u_1^2u_2 + 16u_1u_3\}.$$

Note $p(4) - p(3) = 5 - 3 = 2$.

We will now give a slight generalization of Theorem 1.3 using the algebraic expression for T_{-1}.

Corollary 3. Suppose that \(\text{weight}(p) = n \). Then

\[
E(u^n \bar{u}_n) = \frac{1}{n+1}.
\]

Proof. The formula in Lemma 6 implies

\[
\bar{L}_{-1}(\rho_0 u^n \bar{u}_{n-1}) = \sum_{j \geq 1} j p_j u_j^{-1} u_{j-1} u^n \bar{u}_{n-1} - (n + 1) u^n \bar{u}_n.
\]

Thus we obtain a recursion relation

\[
(n + 1)E(u^n \bar{u}_n) = \sum_{j \geq 1} j p_j E(u_j^{-1} u_{j-1} u^n \bar{u}_{n-1})
\]

The terms on the right hand side of the same form with \(\text{weight} = n - 1 \). Since \(\sum_{j \geq 1} j p_j = n \), induction implies the right hand side equals 1. This implies the corollary.

\[
\square
\]

6.3. **Expressions for \bar{L}_{-2}**. We now consider the operator \(\bar{L}_{-2} \) in the case \(m = 2 \), which is substantially more complicated than in the \(m = 1 \) case. Recall that \(p_k^{(-1)} \) denotes the Laurent coefficient of \(\frac{1}{u(z)} \) and \(P_2 = 7u_1^2 - 4u_2 \).

Proposition 15. Let \(n \geq 2 \). (a) Suppressing \(\rho_0^2 \), the map

\[
\mathbb{C}[u]^{(n)} \otimes \mathbb{C}[\bar{u}]^{(n-2)} \xrightarrow{\text{proj}_{\bar{L}_{-2}}} \mathbb{C}[u]^{(n)} \otimes \mathbb{C}[\bar{u}]^{(n)}
\]

is of the form \(1 \otimes \bar{R}_2 \), where

\[
\bar{R}_2 = 2P_2 - \sum_{j=1}^{\infty} \left(\bar{P}_2 \bar{u}_j - 3(j + 2)\bar{u}_j \bar{u}_{j+1} + (j + 3)\bar{u}_{j+2} - \bar{p}_j^{(-1)} \right) \frac{\partial}{\partial \bar{u}_j}
\]

(a') The linear map \(\bar{R}_2 \) is injective.

(b) Similarly,

\[
\mathbb{C}[u]^{(n)} \otimes \mathbb{C}[\bar{u}]^{(n-2)} \xrightarrow{\text{proj}_{\bar{L}_{-2}}} \bigoplus_{j=1}^{2} \mathbb{C}[u, \bar{u}]^{(n-j, n-j)}
\]

is of the form \(N_2 \otimes 1 - 3N_1 \otimes \bar{u}_1 \) where

\[
N_2 = \sum_{j \geq 2} (j - 1)u_{j-2} \frac{\partial}{\partial u_j},
\]

(c) If \(u^p \otimes \bar{u}^Q \in \mathbb{C}[u, \bar{u}]^{(n,n)} \) such that \(\bar{u}^Q \) lies in the image of \(\bar{R}_2 \), then

\[
E(u^p \bar{u}^Q) = E\left(N_2(u^p)\bar{R}_2^{-1}(\bar{u}^Q) \right) - 3E\left(N_1(u^p)\bar{u}_1 \bar{R}_2^{-1}(\bar{u}^Q) \right).
\]

Proof. The proof of (a') is the same as (b') of Proposition 13. Parts (a) and (b) follow by the formulas

\[
\bar{p}(L_{-2})(\rho_0^2) = \bar{P}_2,
\]

\[
\rho_0^2 \bar{p}(L_{-2})(u_j) = \frac{j}{2} u_j \bar{P}_2 - 3ju_{j-1} \bar{u}_1 + (j - 1)u_{j-2},
\]
and
\[\rho_0^2 \pi(L_{-2})(u(z)) = \frac{1}{u(z)} - \left(\frac{1}{z} - 3u_1 \right)u'(z) - \frac{1}{2} P_2(zu'(z) + u(z)), \]
which we then expand to obtain \(\rho_0^2 \pi(L_{-2})(u_j) \).

Applying infinitesimal invariance to \(\overline{T}_{-2}(\rho_0^2 u^P \bar{u}^Q) \) gives part (c).

Proposition 16. Fix \(n \geq 2 \) and let \(K_m = \text{kernel}(R_m^t : \mathbb{C}[u]^{(n)} \to \mathbb{C}[u]^{(n-m)}) \) for \(m = 1, 2 \). Then
\[K_1 \cap K_2 = \{ 0 \} \]
or
\[\text{image}(R_1) + \text{image}(R_2) = \mathbb{C}[u]^{(n)}. \]
Therefore, in principle, we can determine all moments by using only \(\overline{T}_{-1} \) and \(\overline{T}_{-2} \).

Proof. Consider the cyclic \(\pi \)-representation generated by \(\rho_0^n \):
\[\pi(\mathcal{U}(\mathcal{W})) \rho_0^n = \bigoplus_{k=0}^{\infty} \rho_0^{-k} \mathbb{C}[u]^{(k)}, \]
which is an irreducible Verma module. Therefore, the \(n \)-th graded component, \(\mathbb{C}[u]^{(n)} \), has a basis consisting of elements of the form
\[L_{-i_1} \cdots L_{-i_j}(\rho_0^n), \]
where \(0 < i_1 \leq \cdots \leq i_j \) and \(i_1 + \cdots + i_j = n \). The claim follows since \(\mathcal{U}(\bigoplus_{k \geq 1} \mathcal{L}_{-k}) \) is generated by \(L_{-1} \) and \(L_{-2} \).

\[\square \]

6.4. The Recursion Relation

Consider \(u^P \otimes \bar{u}^Q \in \mathbb{C}[u]^{(n)} \otimes \mathbb{C}[\bar{u}]^{(n)} \). In principle, we can write
\[\bar{u}^Q = \overline{R}_1(\bar{f}_1) + \overline{R}_2(\bar{f}_2) \]
for some polynomials \(\bar{f}_j \in \mathbb{C}[\bar{u}]^{(n-j)} \). We can then compute
\[E(u^P \bar{u}^Q) = E(N_1(u^P)(\bar{f}_1 - 3\bar{u}_1 \bar{f}_2)) + E(N_2(u^P)\bar{f}_2). \]
The question now becomes how to divide \(\bar{u}^Q \) into two pieces. In theory, this can be done using the orthogonal decomposition
\[\mathbb{C}[\bar{u}]^{(n)} = \text{image}(\overline{R}_1) \oplus (\text{image}(\overline{R}_2) \oplus \text{image}(\overline{R}_1)). \]

This gives a recursion relation for moments. The drawback is that we have to find all of the moments at a given level (indexed by \(n \), which involves \(u_1, \ldots, u_n \)) to proceed. Because \(p(n) \) grows very rapidly, it has proven to difficult to numerically calculate enough moments to identify the distribution of, say, \(u_1 \).

7. The Diagonal Distribution

To determine the joint distribution for \((\rho_0, \rho_\infty) \), Lemma \[\square \] implies that it suffices to determine the distribution for \(H = -\log(a) \geq 0 \), which is a kind of height function for
\[\{ \sigma \in \text{Homeo}(S^1) : \exists \text{ unique welding } \sigma = lau \} \]
Conjecture. For some $\beta_0 < \frac{5\pi^2}{4}$, the ν_0 distribution for a is given by

$$\nu_0(\{\sigma : \exp(-x) \leq a(\sigma) \leq 1\}) = \exp(-\beta_0/x), \quad x > 0$$

Equivalently the Laplace transform

$$(7.2) \int a^\lambda d\nu_0(\sigma) = \int_0^{\infty} a^\lambda d\exp(-\beta_0/x) = 2\sqrt{\lambda \beta_0}K_1(2\sqrt{\lambda \beta_0})$$

for $\lambda > 0$, where K_1 is a modified Bessel function.

We will first explain how this conjecture is related to a remarkable calculation of Werner in Section 7 of [16]. We will then discuss some ideas which are hopefully (interesting and) relevant to a proof. Finally we will briefly indicate how the conjecture naturally generalizes to the deformation of Werner’s measure considered in [10].

7.1. A Formula of Werner. As in Section 7 of [16], consider the function $F(\rho) := \mu(\text{Loop}^1(\text{A}))$ where A is a finite type annulus with modulus $\rho = \rho(A)$, i.e. $\rho > 0$ is the unique number such that A is conformally equivalent to $\{1 < |z| < e^\rho\}$

As we will explain below in more detail

$$\text{Loop}^1(\{1 < |z| < e^\rho\}) \subset \{1 \leq \rho_0 \leq \rho_\infty \leq e^\rho\} \subset \text{Loop}^1(\{\frac{1}{4} < |z| < 4e^\rho\})$$

and as a consequence

$$(7.3) \quad F(\rho) \leq \int_0^\rho \nu_0(e^{-x} \leq a \leq 1)dx \leq F(\ln(16) + \rho)$$

Werner shows that $F(\rho)$ is asymptotic to $\text{constant} \cdot \exp(-\frac{\psi}{\rho})$ as $\rho \to 0$, where $\psi = \frac{5\pi^2}{4}$; see Proposition 18 of [16]. This leads to the constraint on β_0 in the diagonal distribution conjecture.

Lemma 7. Fix $x > 0$. If $\gamma \in \text{Loop}^1(\{1 < |z| < e^\rho\})$, then $1 \leq \rho_0(\gamma) \leq \rho_\infty(\gamma) \leq e^x$

Proof. The Cauchy integral formula implies, for sufficiently smooth γ,

$$\frac{1}{\rho_0} = (\phi_+^{-1})'(0) = \frac{1}{2\pi i} \int_\gamma \frac{\phi_+^{-1}(t)}{t^2}dt$$

Since γ is outside the unit disk and $\phi_+^{-1} : U_+ \to \Delta$. This implies

$$\frac{1}{\rho_0} \leq \frac{\text{length}(\gamma)}{2\pi} \leq 1$$

This implies the first inequality. The last inequality also follows from this.

We noted previously that the equality

$$a^2 = \frac{\rho_0^2}{\rho_\infty^2} = \frac{1 - \sum_{m=1}^{\infty}(m-1)|b_m|^2}{1 + \sum_{n=1}^{\infty}(n+1)|u_n|^2}$$

implies $a \leq 1$, i.e. $\rho_0 \leq \rho_\infty$. \qed
Lemma 8. (a)

\[\mu_0 \{ \gamma : 1 \leq \rho_0(\gamma) \leq \rho(\gamma) \leq e^x \} = \int_{y=0}^{e^x} \nu_0 \{ e^{-y} \leq a \leq 1 \} dy \leq x \nu_0 \{ e^{-x} \leq a \leq 1 \} \]

(b)

\[\int_0^x e^{-\beta_0/y} dy = xe^{-\beta_0/x} - \Gamma(0, \beta_0/x) = xe^{-\beta_0/x} - Ei(1, \beta_0/x) \]

\[= x - \beta_0 \log(x) + \beta_0(\log(\beta_0) + \gamma - 1) - \frac{1}{2} \beta_0^2 x^{-1} + ... \]

(c) There is an asymptotic expansion

\[\int_0^x e^{-\beta_0/y} dy = \frac{e^{-\beta_0/x}}{\beta_0} \sum_{n=0}^{\infty} (-1)^n n! \left(\frac{x}{\beta_0} \right)^n \]

\[= \frac{e^{-\beta_0/x}}{\beta_0} \left(1 - \frac{x}{\beta_0} + \frac{2x^2}{\beta_0^2} - ... \right) \text{ as } x \to 0 \]

Proof. (a) Using the factorization \(d\mu_0 = \frac{d\rho_\infty}{\rho_\infty} \times dv_0 \),

\[\mu_0 \{ \gamma : 1 \leq \rho_0(\gamma) \leq \rho(\gamma) \leq e^x \} = \int_{\rho_\infty=1}^{e^x} \nu_0 \{ \frac{1}{\rho_\infty} \leq a \leq 1 \} \frac{d\rho_\infty}{\rho_\infty} \]

By making the change of variables \(\rho_\infty = e^y \), we obtain the expression in part (a).

(b) There is a Laurent expansion

\[e^{-\beta_0/x} = 1 - \frac{\beta_0}{x} + \frac{1}{2} \left(\frac{\beta_0}{x} \right)^2 - ... \quad 0 < |x| < \infty \]

Therefore there is an expansion

\[\int_0^x e^{-\beta_0/y} dy = x - \beta_0 \log(x) + c_0 - \frac{1}{2} \beta_0^2 x^{-1} + \frac{\beta_0^3}{3!} x^{-2} - ... \]

where the divergence of the logarithm and the Laurent expansion at \(x = 0 \) perfectly cancel, allowing us to figure out \(c_0 \).

Corollary 4.

\[\mu_0(\text{Loop}^1(\{|z| < e^p\})) \leq \rho \nu_0 \{ e^{-p} \leq a \leq 1 \} \]

Proof. This follows from (b) of the first Lemma and (a) of the second Lemma.

Here is another approach, although not quite as sharp:

\[\text{Loop}^1(\{|z| < e^p\}) \subset \text{Loop}^1(\{|z| < e^p\}) \setminus \text{Loop}(\Delta) \]

Werner’s formula for the measure of the latter set is \(c_W \rho \), where \(c_W \) is Werner’s constant (see below).
7.2. Werner’s Constant. As in the rest of these notes, we assume ν_0 is a probability measure. We let c_W denote the constant such that if γ is a loop which surrounds Δ,

$$\mu_0(\text{Loop}^1(U_+ \setminus \{0\} \setminus \text{Loop}(\Delta)) = c_W \log(\rho_0(\gamma))$$

Proposition 17. $c_W \geq 1$.

Proof. On the one hand

$$\text{Loop}^1(\{1 < |z| < \rho_0\}) \subset \text{Loop}^1(\{|z| < \rho_0\}) \setminus \text{Loop}(\Delta)$$

Therefore by Werner’s formula for the measure of the latter set,

$$F(\rho) \leq c_W \rho$$

On the other hand

$$\text{Loop}^1(\{1 < |z| < \rho_0\}) \subset \{1 \leq \rho_0 \leq \rho_\infty \leq \rho \} \subset \text{Loop}^1(\{\frac{1}{4} < |z| < 4\rho_0\})$$

where the last inclusion uses Koebe’s Quarter Theorem. Therefore

$$F(\rho) \leq \int_0^\rho \nu_0(e^{-x} \leq a \leq 1) dx \leq F(\ln(16) + \rho)$$

Because $\nu_0(e^{-x} \leq a \leq 1) \uparrow 1$ as $x \uparrow 1$, it follows that $F(\rho)$ behaves like a linear function with slope one for $\rho \gg 1$. This behavior is compatible with the estimate above using Werner’s formula if and only if $c_W \geq 1$. This implies the proposition. □

7.3. Some Ideas. The conjectural Laplace transform (7.2) satisfies the ODE

$$(7.4) \lambda f''(\lambda) - \beta_0 f(\lambda) = 0,$$

Thus we need to show that

$$\int (\lambda \log(a)^2 - \beta_0) a^\lambda d\nu_0(\sigma) = 0, \quad \lambda > 0$$

for some constant β_0. Roughly speaking, we are trying to calculate the second moment for the distribution of $H = -\log(a)$. To calculate the second moment for a standard normal complex variable, one can apply $\partial \bar{\partial}$ to $\exp(-|z|^2/2)$ and use infinitesimal invariance of the background Lebesgue measure; our strategy is to do the same with the stress tensor $T(t)$ in place of ∂, a^λ in place of the Gaussian, and Werner’s measure in place of Lebesgue measure.

We will now list a number of formulas which are hopefully useful.

Lemma 9. (a) For $n > 0$

$$L_n L_{-n} a^\lambda = L_{-n} L_n a^\lambda = \frac{\lambda^2}{4} P_n(l_1, \ldots, l_n) P_n(u_1, \ldots, u_n) a^{\lambda-n} - n \lambda a^\lambda$$

(b) For $m > n \geq 0$

$$L_m L_{-n} a^\lambda = \frac{\lambda^2}{4} P_m(l_1, \ldots, l_m) P_n(u_1, \ldots, u_n) a^{\lambda-n} \rho_0^m \rho_0$$

(c) \begin{align*}
L_n \to L_{-n} a^\lambda &= L_{-n} L_n a^\lambda = \lambda^2 \text{Re}(P_n(l_1, \ldots, l_n)) \text{Re}(P_n(u_1, \ldots, u_n)) a^{\lambda-n} - 2n \lambda a^\lambda \\
&= \lambda^2 \text{Re}(P_n(u_1(\sigma^{-1}), \ldots, u_n(\sigma^{-1}))) \text{Re}(P_n(u_1, \ldots, u_n)) a^{\lambda-n} - 2n \lambda a^\lambda
\end{align*}
(d) For \(m > n \geq 0 \)
\[
\overrightarrow{L_m} \overrightarrow{L_{-n}} a^\lambda = \lambda^2 \text{Re}(P_m(l_1, \ldots, l_m)) \text{Re}(P_n(u_1, \ldots, u_n)) a^\lambda \frac{\rho_{0n}^2}{\rho_0^2}
\]

Proof. (a) The fact that \(L_n \) and \(L_{-n} \) commute when acting on \(a^\lambda \) follows from the fact that \(L_0 a = 0 \).

Using \(L_{-n}(\rho_\infty) = 0 \) and (d) of Proposition 5,
\[
L_{-n} a^\lambda = \lambda a^{\lambda-1} L_{-n}(\rho_0) \frac{1}{\rho_\infty} = \frac{\lambda}{2 \rho_0^2} P_n(u) a^\lambda
\]
(where we have abbreviated \(P_n(u_1, \ldots, u_n) = P_n(u) \)). Therefore
\[
L_n L_{-n} a^\lambda = \frac{\lambda}{2 \rho_0^2} \left(\lambda a^{\lambda-1} \rho_0 L_n(\frac{1}{\rho_\infty}) P_n(u_1, \ldots, u_n) + a^\lambda L_n(P_n(u_1, \ldots, u_n)) \right)
\]
Recall that \(P_n(u_1, \ldots, u_n) = -2nu_n + \text{function}(u_1, \ldots, u_{n-1}) \) and \(L_n(u_n) = \rho_0^2 \). This implies
\[
L_n L_{-n} a^\lambda = \frac{\lambda}{2 \rho_0^2} \left(\lambda a^{\lambda-1} \rho_0 \frac{1}{2 \rho_\infty} \left(\frac{1}{\rho_\infty} \right)^{-n+1} P_n(l) P_n(u) + a^\lambda \left(-2n \rho_0^2 \right) \right)
\]
This simplifies to (a).

(b) This follows in a similar way, using the fact that \(L_m \) kills \(P_n(u_1, \ldots, u_n) \).

(c) and (d) are proven in a similar way, and will not be used.

□

Recall that
\[
(\partial \ln(\phi_+^{-1}))^2 = \left(\sum_{n=0}^{\infty} P_n(\phi_+ t^n) \left(\frac{dt}{t} \right)^2 \right)
\]
(this is a holomorphic quadratic differential which is well-defined in \(U_+ \)) and
\[
(\partial \ln(\phi_-^{-1}))^2 = \left(\sum_{n=0}^{\infty} P_n(\phi_- t^{-n}) \left(\frac{dt}{t} \right)^2 \right)
\]
(this is a holomorphic quadratic differential which is well-defined in \(U_- \); note that
\[
\left(\frac{dt}{t} \right)^2 = \left(\frac{dt^{-1}}{t^{-1}} \right)^2
\]
The fact that these two quadratic differentials do not have a common domain, or at the very best, are possibly defined on the rough loop \(\gamma \), is a crucial point.

Proposition 18.
\[
E((\lambda P_n(\phi_+) P_n(\phi_-) - 4n) a^\lambda) = E((\lambda P_n(u) P_n(l) a^{-n} - 4n) a^\lambda) = 0
\]

Proof. This follows from the Lemma and infinitesimal conformal invariance. □

The basic question now is whether there is a constant \(\beta_0 \) such that \(\lambda \log(a)^2 - \beta_0 \) is a limit, in an appropriate measure theoretic sense relative to \(\nu_0 \), of linear combinations of the functions \(\lambda P_n(\phi_+) P_n(\phi_-) - 2n \), as \(n \) varies.

Question. Do there exist constants \(c_n \) such that
\[
\sum_{n=1}^{N} c_n P_n(u) P_n(l) a^{-n} \rightarrow \log(a)^2 \quad \text{as} \quad N \rightarrow \infty
\]
in some measure-theoretic sense relative to \(\nu_0 \)?
This is definitely false for all \(\sigma \). To see this, suppose that
\[
\sigma = \phi_N(w_N, z) = z(1 + w_N z^{-N})^{1/N}
\]
In this case
\[
u(z) = z(1 + w_N z^{-N})^{-1/N}, \quad \frac{U'(t)}{U(t)} = \frac{1}{t(1 - w_N t^{-N})}
\]
and
\[
(\partial \ln u(t))^2 = (1 + 2w_N t^N + 3(w_N t^N)^2 + 4(w_N t^N)^3 + \ldots)(\frac{dt}{t})^2
\]
Thus for this particular \(u \)
\[
P_u(u) = (m + 1)w_N^m = -P_u(l), \quad n = mN
\]
and zero otherwise. Also
\[
l(t) = t(1 + w_N t^{-N}), \quad \partial \ln l(t) = \frac{1}{t(1 + w_N t^{-N})} dt = \frac{t^{N-1}}{t^N + w_N} dt
\]
so that
\[
\log(a)^2 = \frac{1}{N^2} \log(1 - |w_N|^2)^2
\]
If we actually have an identity, then for each \(N = 1, 2, \ldots \)
\[
\frac{1}{N^2} \log(1 - |w_N|^2)^2 = \sum_{m=0}^{\infty} c_{mN} \frac{(m + 1)^2 |w_N|^{2m}}{(1 - |w_N|^2)^m}
\]
If we set \(x = |w_N|^2 \), then this is equivalent to
\[
\log(1 - x)^2 = \sum_{m=0}^{\infty} N^2 c_{mN} (m + 1)^2 \left(\frac{x}{1-x} \right)^m
\]
This is clearly impossible: we cannot consistently solve for the constants. Furthermore the radius of convergence for the LHS is 1, and the radius of convergence for the RHS is \(\frac{1}{2} \).

A more promising approach seems to be to use the stress-energy tensor. Here is one heuristic calculation:
\[
E(T(t)T(s)a^\lambda) = \sum_{n,m} E \left(L_{-n}L_{-m}a^\lambda \right) t^n s^m \left(\frac{dt}{t} \right)^2 \left(\frac{ds}{s} \right)^2
\]
\[
= \sum_n E \left(L_{-n}L_n a^\lambda \right) t^n s^{-n} \left(\frac{dt}{t} \right)^2 \left(\frac{ds}{s} \right)^2
\]
\[
\lambda \sum_n E \left((\lambda P_n(\phi_+)P_n(\phi_-) - n)a^\lambda \right) t^n s^{-n} \left(\frac{dt}{t} \right)^2 \left(\frac{ds}{s} \right)^2
\]
\[
= \lambda E \left((\partial \ln(\phi_+^{-1}(t)))^2(\partial \ln(\phi_+^{-1}(s)))^2a^\lambda \right) - \sum n \left(\frac{t}{s} \right)^n \left(\frac{dt}{t} \right)^2 \left(\frac{ds}{s} \right)^2 E(a^\lambda)
\]
\[
= \lambda E \left((\partial \ln(\phi_+^{-1}(t)))^2(\partial \ln(\phi_+^{-1}(s)))^2a^\lambda \right) - \delta \left(\frac{t}{s} \right)^n \left(\frac{dt}{t} \right)^2 \left(\frac{ds}{s} \right)^2 E(a^\lambda)
\]
We now need to apply some kind of pairing for quadratic differentials.
7.4. KS Conjecture and Diagonal Distribution. In [10] Kontsevich and Suhov show that for each Riemann surface, there exists a continuous positive determinant line bundle $\text{Det} \rightarrow \text{Loop}(S)$, and these line bundles have a natural restriction property. They conjecture that for each “central charge” c (in some range), there exists a family of measures μ_S having values in the positive line bundle Det^c and satisfying a conformal restriction property. In the case $c = 0$, this family is the family of measures constructed by Werner.

There is a canonical trivialization of the determinant line bundle in genus zero, so that the conjectured KS measure can be viewed as a scalar measure which is invariant with respect to global conformal transformations; see Section 2.5 of [10]. We denote this measure restricted to $\text{Loop}^1(C \setminus \{0\})$ by μ_c; properly normalized, this is the Werner measure when $c = 0$.

Lemma 10. Assume that μ_c exists. Then

(a) The distributions for ρ_0 and ρ_∞ are scale invariant.

(b) $d(W_* \mu)(\sigma, \rho_\infty) = d\nu_c(\sigma) \times \frac{d\rho_\infty}{\rho_\infty}$

(c) The measure $d\nu_c(\sigma)$ is inversion invariant and invariant with respect to conjugation by $C : z \rightarrow z^*$.

(d) The measure $d\nu_c(\sigma)$ is supported on σ having triangular factorization $\sigma = \lambda u v$, i.e. $m = 1$.

This is a rigorous lemma (contingent on the existence of μ_c), because the various statements use only global conformal invariance of μ_c.

There is a natural conjecture for the diagonal distribution.

Conjecture. The ν_c distribution for $H = -\log(a)$ is the inverse gamma distribution with parameters $\alpha = 1 - c$ and some $\beta_c > 0$ (possibly proportional to $h^+(c)$, the larger value of two values of the conformal anomaly h corresponding to $c < 1$). In other words we are conjecturing that

$$\int a^\lambda d\nu_c(\sigma) = \frac{2(\beta_c \lambda)^{\frac{\alpha}{2}}}{\Gamma(\alpha)} K_\alpha(\sqrt{4\beta_c \lambda})$$

where K_α is a modified Bessel function. This function of λ satisfies the differential equation

$$\lambda f''(\lambda) + cf'(\lambda) - \beta_c f(\lambda) = 0$$

This differential equation obviously makes sense for values of the parameters which are not necessarily positive. But for example if $c = 1$, i.e. $\alpha = 0$, then the particular solution we are considering, K_0, is not finite at $\lambda = 0$, so that the probabilistic interpretation is lost (This is obvious by noting that the pdf is not integrable at ∞ when $\alpha = 0$). In terms of our conjecture this means that when $c = 1$, the σ distribution for the conjectured Kontsevich-Suhov measure is not finite, according to us.

To motivate this, in a heuristic way, we imagine that μ_c is absolutely continuous with respect to Werner’s measure μ_0: $\mu_c = \delta_c d\mu_0$. We then apply infinitesimal invariance in the following way. Suppose that $n > 0$. Then

$$L_n \left((L_{-n}(a^\lambda)) \delta^c \delta(\rho_0 = 1) d\mu_0 \right) = \left((L_n L_{-n}(a^\lambda)) \delta^c + L_{-n}(a^\lambda) L_n (\delta^c) \right) \delta(\rho_0 = 1) d\mu_0$$
\[
(\lambda^2 P_n(u) P_n(l) a^{-n} - 2n \lambda) + \lambda P_n(l) \rho_\infty^n c Q_n(u, l) \delta(\rho_0 = 1) a^\lambda \delta c d\mu_c
\]

where we have tentatively written

\[L_n(\delta_c) = c Q_n(u, l) \delta_c\]

(This should rigorously be expressed in terms of divergences, as proposed in section 2.5.2 of [10].) From this, by dividing by \(\lambda\), we can deduce that

\[
\int (\lambda P_n(u) P_n(l) a^{-n} + c P_n(l) Q_n(u, l) \rho_\infty^n - 2n) a^\lambda \nu_c = 0
\]

Now we would have to take linear combinations and limits, to \(log(a)^2\) from the first term, \(log(a)\) from the second term (involving \(c\)), and a constant \(\beta_c\) from the third term.

8. Appendix. The Vietoris Topology

Suppose that \(S\) is a topological space. The Vietoris topology on \(Comp(S)\) has a base consisting of sets of the form

\[\{ K \in Comp(S) : K \subset U, K \cap U_i \neq \phi, i = 1, \ldots, n\}\]

where \(U, U_1, \ldots, U_n\) are open subsets of \(S\). Given \(K_0 \in Comp(S)\), suppose we tightly cover \(K_0\) with open sets \(U_i, 1 \leq i \leq n\), and let \(U = \cup_i U_i\). Then “\(K\) is close to \(K_0\)” means that (i) \(K \subset U\), so every point in \(K\) is close to a point in \(K_0\), and (ii) for each point \(x_0 \in K_0, x_0 \in U_i\), for some \(i\), hence \(K \cap U_i \neq \phi\) implies \(x_0\) is close to some point in \(K\). If \(S\) is metrizable, with metric \(d\), then the Vietoris topology is compatible with the associated Hausdorff metric topology on \(Comp(S)\), where the Hausdorff metric is

\[\delta(K_1, K_2) = \max \{ \sup_{p_1 \in K_1} d(p_1, K_2), \sup_{p_2 \in K_2} d(K_1, p_2)\}\]

For most topological properties \(\tau\), ”\(S\) is \(\tau\)” if and only if ”\(Comp(S)\) is \(\tau\)” (see section 4 of [12]). In particular if \(S\) is second countable and locally compact, then \(Comp(S)\) is second countable and locally compact.

Suppose that \(S\) is a Riemann surface with a fixed compatible complete metric. The associated Hausdorff metric on \(Loop(S)\) is obviously not complete, since for example a small circle can pinch down to a point. Does there exist a complete separable metric on \(Loop(S)\) compatible with the Vietoris topology?

References

[1] H. Airault, P. Malliavin, and A. Thalmaier, Canonical Brownian motion on the space of univalent functions and resolution of Beltrami equations by a continuity method along stochastic flows, J. Math. Pures Appl. 83 (2004) 955-1018.

[2] K. Astala, P. Jones, A. Kupianen, and Saksman, Random curves by conformal welding, C. R. Math. Acad. Sci Paris 348 no. 5-6 (2010) 257-262.

[3] C. Bishop, Conformal welding and Koebe’s theorem, Ann. Math. 166, no. 3 (2007)613-656.

[4] P. DiFrancesco, P. Mathieu, and D. Senechal, Conformal Field Theory, Springer (1997).

[5] P. Duren and M. Schiffer, Second variation, J. Analyse Mat. 10 (1962-63) 193-252.

[6] E. Hille, Analytic Function Theory, Vol. II (1973).

[7] V. Kac and A. Raina, Bombay lectures on highest weight representations of infinite-dimensional Lie algebras. Advanced Series in Mathematical Physics, 2. World Scientific Publishing Co., Inc., Teaneck, NJ, (1987)

[8] A.A. Kirillov and D.V. Yuriev, Kahler geometry of the infinite dimensional homogeneous space Diff^+ (S^1)/Rot(S^1), Funk. Anal. Appl. 21 (1987) 35-46.
[9] Kirillov and Yuriev, Representations of the Virasoro algebra by the orbit method, J.G.P. Vol. 5, No.3 (1988)
[10] M. Kontsevich and Y. Suhov, On Malliavin measures, SLE, and CFT, Proc. Steklov Inst. Math. 258 (2007) 100-146.
[11] P. Malliavin and A. Thalmaier, Brownian measures on Jordan-Virasoro curves associated to Weil-Petersson metric, J. Funct. Anal. 259, no. 12 (2010) 3037-3079.
[12] E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951) 152-182.
[13] S. Nag and D. Sullivan, Teichmuller theory and the universal period mapping via quantum calculus and the $H^{3/2}$ space on the circle, Osaka J. Math. 32 (1995) 1-34.
[14] G. Segal, The Definition of Conformal Field Theory, in Topology, Geometry and Quantum Field Theory, edited by U.K. Tillmann, L.M.S. 308 (Oxford)
[15] B. Simon, OPUC on one foot, Bull. Amer. Math. Soc Vol. 42, No. 4 (2005) 431-460.
[16] W. Werner, The conformally invariant measure on self-avoiding loops, J. Amer. Math. Soc. 21, No. 1 (2008) 137-169.

E-mail address: achavez@math.arizona.edu
E-mail address: pickrell@math.arizona.edu