\textbf{ASP-Core-2 Input Language Format}

FRANCESCO CALIMERI
DeMaCS, Università della Calabria, Italy
(e-mail: calimeri@mat.unical.it)

WOLFGANG FABER, MARTIN GEBSER
Institut für Angewandte Informatik, Alpen-Adria-Universität, Klagenfurt, Austria
(e-mail: {Wolfgang.Faber,Martin.Gebser}@aau.at)

GIOVAMBATTISTA IANNI
DeMaCS, Università della Calabria, Italy
(e-mail: ianni@mat.unical.it)

ROLAND KAMINSKI
Institute of Computer Science, University of Potsdam, Germany
(e-mail: kaminski@cs.uni-potsdam.de)

THOMAS KRENNWALLNER
XIMES GmbH, Vienna, Austria
(e-mail: tk@postsubmeta.net)

NICOLA LEONE
DeMaCS, Università della Calabria, Italy
(e-mail: leone@mat.unical.it)

MARCO MARATEA
DIBRIS, University of Genova, Italy
(e-mail: marco@dibris.unige.it)

FRANCESCO RICCA
DeMaCS, Università della Calabria, Italy
(e-mail: ricca@mat.unical.it)

TORSTEN SCHAUB
Institute of Computer Science, University of Potsdam, Germany
(e-mail: schaub@cs.uni-potsdam.de)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

\textbf{Abstract}

Standardization of solver input languages has been a main driver for the growth of several areas within knowledge representation and reasoning, fostering the exploitation in actual applications. In this document we present the ASP-Core-2 standard input language for Answer Set Programming, which has been adopted in ASP Competition events since 2013.

\textit{KEYWORDS:} Answer Set Programming, Standard Language, Knowledge Representation and Reasoning, Standardization
1 Introduction

The process of standardizing the input languages of solvers for knowledge representation and reasoning research areas has been of utmost importance for the growth of the related research communities: this has been the case for, e.g., the CNF-DIMACS format for SAT, then extended to describe input formats for Max-SAT and QBF problems, the OPB format for pseudo-Boolean problems, somehow at the intersection between the CNF-DIMACS format and the LP format for Integer Linear Programming, the XCSP3 format for CP solving, SMT-LIB format for SMT solving, and the STRIPS/PDDL language for automatic planning. The availability of such common input languages have led to the development of efficient solvers in different KR communities, through a series of solver competitions that have pushed the adoption of these standards. The availability of efficient solvers, together with a presence of a common interface language, has helped the exploitation of these methodologies in applications.

The same has happened for Answer Set Programming (ASP) (Brewka et al. 2011), a well-known approach to knowledge representation and reasoning with roots in the areas of logic programming and non-monotonic reasoning (Gelfond and Lifschitz 1991), through the development of the ASP-Core language (Calimeri et al. 2011). The first ASP-Core version was a rule-based language whose syntax stems from plain Datalog and Prolog, and was a conservative extension to the non-ground case of the Core language adopted in the First ASP Competition held in 2002 during the Dagstuhl Seminar “Nonmonotonic Reasoning, Answer Set Programming and Constraints”[1]. It featured a restricted set of constructs, i.e. disjunction in the rule heads, both strong and negation-as-failure negation in rule bodies, as well as non-ground rules.

In this document we present the latest evolution of ASP-Core, namely ASP-Core-2, which currently constitutes the standard input language of ASP solvers adopted in the ASP Competition series since 2013 (Calimeri et al. 2014) (Calimeri et al. 2016) (Gebser et al. 2017b) (Gebser et al. 2017a). ASP-Core-2 substantially extends its predecessor by incorporating many language extensions that became mature and widely adopted over the years in the ASP community, such as aggregates, weak constraints, and function symbols. The ASP competition series pushed its adoption, and significantly contributed both to the availability of efficient solvers for ASP (Lierler et al. 2016) (Gebser et al. 2018) and to the exploitation of the ASP methodology in academic and in industrial applications (Erdem et al. 2016) (Leone and Ricca 2015) (Gebser et al. 2018). In the following, we first present syntax and semantics for the basic building blocks of the language, and then introduce more expressive constructs such as choice rules and aggregates, which help with obtaining compact problem formulations. Eventually, we present syntactic restrictions for the use of ASP-Core-2 in practice.

2 ASP-Core-2 Language Syntax

For the sake of readability, the language specification is herein given in the traditional mathematical notation. A lexical matching table from the following notation to the actual raw input format is provided in Section[6).

Terms. Terms are either constants, variables, arithmetic terms or functional terms. Constants can be either symbolic constants (strings starting with some lowercase letter), string constants (quoted strings) or integers. Variables are denoted by strings starting with some uppercase letter. An arithmetic term has form \(-t\) or \((t \diamond u)\) for terms \(t\) and \(u\) with \(\diamond \in \{\text{‘+’}, \text{‘-’}, \text{‘∗’}, \text{‘/’}\}\); parentheses can optionally be omitted in which case standard operator precedences apply. Given a functor \(f\) (the function name) and terms \(t_1, \ldots, t_n\), the expression \(f(t_1, \ldots, t_n)\) is a functional term if \(n > 0\), whereas \(f()\) is a synonym for the symbolic constant \(f\).

Atoms and Naf-Literals. A predicate atom has form \(p(t_1, \ldots, t_n)\), where \(p\) is a predicate name, \(t_1, \ldots, t_n\) are terms and \(n \geq 0\) is the arity of the predicate atom; a predicate atom \(p()\) of arity 0 is likewise represented

[1] https://www.dagstuhl.de/en/program/calendar/semhp/?semnr=02381
by its predicate name p without parentheses. Given a predicate atom q, q and $\neg q$ are classical atoms. A built-in atom has form $t < u$ for terms t and u with $< \in \{"<","\leq","=","\neq",">","\geq"\}$. Built-in atoms a as well as the expressions a and not a for a classical atom a are naf-literals.

Aggregate Literals. An aggregate element has form

$$t_1,\ldots, t_m : l_1,\ldots, l_n$$

where t_1,\ldots, t_m are terms and l_1,\ldots, l_n are naf-literals for $m \geq 0$ and $n \geq 0$.

An aggregate atom has form

$$\#aggr \; E \prec u$$

where $\#aggr \in \{"\#count","\#sum","\#max","\#min"\}$ is an aggregate function name, $\prec \in \{"\lt","\leq","=","\neq",">",">=\}$ is an aggregate relation, u is a term and E is a (possibly infinite) collection of aggregate elements, which are syntactically separated by “;”. Given an aggregate atom a, the expressions a and not a are aggregate literals. In the following, we write atom (resp., literal) without further qualification to refer to some classical, built-in or aggregate atom (resp., naf- or aggregate literal).

We here allow for infinite collections of aggregate elements because the semantics in Section 3 is based on ground instantiation, which may map some non-ground aggregate element to infinitely many ground instances. The semantics of Abstract Gringo (Gebser et al. 2015) handles such cases by means of infinitary propositional formulas, while the Abstract Gringo language avoids infinite collections of aggregate elements in the input. As shown in (Harrison and Lifschitz 2019), the semantics by ground instantiation or infinitary propositional formulas, respectively, are equivalent on the common subset of Abstract Gringo and ASP-Core-2. Moreover, we note that the restrictions to ASP-Core-2 programs claimed in Section 5 require the existence of a finite equivalent ground instantiation for each input, so that infinite collections of aggregate elements do not show up in practice.

Rules. A rule has form

$$h_1 | \ldots | h_m \leftarrow b_1,\ldots, b_n.$$

where h_1,\ldots, h_m are classical atoms and b_1,\ldots, b_n are literals for $m \geq 0$ and $n \geq 0$. When $n = 0$, the rule is called a fact. When $m = 0$, the rule is referred to as a constraint.

Weak Constraints. A weak constraint has form

$$:\neg b_1,\ldots, b_n \; [w@l,t_1,\ldots, t_m]$$

where t_1,\ldots, t_m are terms and b_1,\ldots, b_n are literals for $m \geq 0$ and $n \geq 0$; w and l are terms standing for a weight and a level. Writing the part “@l” can optionally be omitted if $l = 0$; that is, a weak constraint has level 0 unless specified otherwise.

Queries. A query Q has form $a?$, where a is a classical atom.

Programs. An ASP-Core-2 program is a set of rules and weak constraints, possibly accompanied by a (single) query. A program (rule, weak constraint, query, literal, aggregate element, etc.) is ground if it contains no variables.

3 Semantics

We herein give the full model-theoretic semantics of ASP-Core-2. As for non-ground programs, the semantics extends the traditional notion of Herbrand interpretation, taking care of the fact that all integers are

2 Unions of conjunctive queries (and more) can be expressed by including appropriate rules in a program.
part of the Herbrand universe. The semantics of propositional programs is based on (Gelfond and Lifschitz 1991),
extended to aggregates according to (Fabers. et al. 2004; Fabers. et al. 2011). Choice atoms (Simons et al. 2002)
are treated in terms of the reduction given in Section 4.

We restrict the given semantics to programs containing non-recursive aggregates (see Section 5 for this
and further restrictions to the family of admissible programs), for which the general semantics presented
herein is in substantial agreement with a variety of proposals for adding aggregates to ASP (Kemp and Stuckey 1991;
Van Gelder 1992; Osorio and Jayaraman 1999; Ross and Sagiv 1997; Denecker et al. 2001; Gelfond 2002;
Simons et al. 2002; Dell’Armi et al. 2003; Pelov and Truszczynski 2004; Pelov et al. 2004; Ferraris 2005;
Pelov et al. 2007).

Herbrand Interpretation. Given a program P, the Herbrand universe of P, denoted by UP, consists of
all integers and (ground) terms constructible from constants and functors appearing in P. The Herbrand
base of P, denoted by BP, is the set of all (ground) classical atoms that can be built by combining predicate
names appearing in P with terms from UP as arguments. A (Herbrand) interpretation I for P is a subset of
BP.

Ground Instantiation. A substitution σ is a mapping from a set V of variables to the Herbrand universe UP of a given program P. For some object O (rule, weak constraint, query, literal, aggregate element,
etc.), we denote by Oσ the object obtained by replacing each occurrence of a variable v ∈ V by σ(v) in O.

A variable is global in a rule, weak constraint or query r if it appears outside of aggregate elements
in r. A substitution from the set of global variables in r is a global substitution for r; a substitution from
the set of variables in an aggregate element e is a (local) substitution for e. A global substitution σ for r
(or substitution σ for e) is well-formed if the arithmetic evaluation, performed in the standard way, of any
arithmetic subterm (−(t) or (t o u) with o ∈ {“+”, “−”, “∗”, “/”}) appearing outside of aggregate elements
in rσ (or appearing in eσ) is well-defined.

Given a collection E of aggregate elements, the instantiation of E is the following set of aggregate elements:

\[\text{inst}(E) = \bigcup_{e \in E} \{ e\sigma | \sigma \text{ is a well-formed substitution for } e \} \]

A ground instance of a rule, weak constraint or query r is obtained in two steps: (1) a well-formed global
substitution σ for r is applied to r; (2) for every aggregate atom #aggr E u appearing in rσ, E is replaced by
inst(E).

The arithmetic evaluation of a ground instance r of some rule, weak constraint or query is obtained by
replacing any maximal arithmetic subterm appearing in r by its integer value, which is calculated in the
standard way.3 The ground instantiation of a program P, denoted by grnd(P), is the set of arithmetically
evaluated ground instances of rules and weak constraints in P.

Term Ordering and Satisfaction of Naf-Literals. A classical atom a ∈ BP is true w.r.t. a interpretation I if a ∈ I. A Naf-Literal of the form not a, where a is a classical atom, is true w.r.t. I if a ∉ I,
and it is false otherwise.

To determine whether a built-in atom t < u (with t ∈ {“<”,”≤”,”=”,”#”,”>”,”≥”}) holds, we rely on a
total order ≤ on terms in UP defined as follows:

- t ≤ u for integers t and u if t ≤ u;
- t ≤ u for any integer t and any symbolic constant u;
- t ≤ u for symbolic constants t and u if t is lexicographically smaller than or equal to u;
- t ≤ u for any symbolic constant t and any string constant u;
- t ≤ u for string constants t and u if t is lexicographically smaller than or equal to u;

3 Note that the outcomes of arithmetic evaluation are well-defined relative to well-formed substitutions.
• \(t \leq u \) for any string constant \(t \) and any functional term \(u \);
• \(t \leq u \) for functional terms \(t = f(t_1, \ldots, t_m) \) and \(u = g(u_1, \ldots, u_n) \) if
 - \(m < n \) (the arity of \(t \) is smaller than the arity of \(u \)),
 - \(m \leq n \) and \(g \neq f \) (the functor of \(t \) is smaller than the one of \(u \), while arities coincide) or
 - \(m \leq n \), \(f \leq g \) and, for any \(1 \leq j \leq m \) such that \(t_j \neq u_j \), there is some \(1 \leq i < j \) such that \(u_i \neq t_i \) (the tuple of arguments of \(t \) is smaller than or equal to the arguments of \(u \)).

Then, \(t < u \) is true w.r.t. \(I \) if \(t \leq u \) for \(\leq \) or \(= \); \(u \geq t \) for \(< \); \(t \leq u \) and \(t \neq u \) for \(\neq \); \(t \leq u \) and \(u \leq t \) for \(= \); \(t \neq u \) or \(u \neq t \) for \(\neq \). A positive naf-literal \(a \) is true w.r.t. \(I \) if \(a \) is a classical or built-in atom that is true w.r.t. \(I \); otherwise, \(a \) is false w.r.t. \(I \). A negative naf-literal \(\text{not} \ a \) is true (or false) w.r.t. \(I \) if \(a \) is false (or true) w.r.t. \(I \).

Satisfaction of Aggregate Literals. An aggregate function is a mapping from sets of tuples of terms to terms, \(+\infty\) or \(-\infty \). The aggregate functions associated with aggregate function names introduced in Section 2 map a set \(T \) of tuples of terms to a term, \(+\infty\) or \(-\infty \) as follows:

- \(\#\text{count}(T) = \begin{cases} |T| & \text{if } T \text{ is finite} \\ +\infty & \text{if } T \text{ is infinite}; \end{cases} \)
- \(\#\text{sum}(T) = \begin{cases} \sum_{(t_1, \ldots, t_m) \in T, t_1 \text{ is an integer}} t_1 & \text{if } [(t_1, \ldots, t_m) \in T \mid t_1 \text{ is a non-zero integer}] \text{ is finite} \\ 0 & \text{if } [(t_1, \ldots, t_m) \in T \mid t_1 \text{ is a non-zero integer}] \text{ is infinite}; \end{cases} \)
- \(\#\text{max}(T) = \begin{cases} \max_{(t_1, \ldots, t_m) \in T} |(t_1, \ldots, t_m)| & \text{if } T \neq \emptyset \text{ is finite} \\ +\infty & \text{if } T \text{ is infinite} \\ -\infty & \text{if } T = \emptyset; \end{cases} \)
- \(\#\text{min}(T) = \begin{cases} \min_{(t_1, \ldots, t_m) \in T} |(t_1, \ldots, t_m)| & \text{if } T \neq \emptyset \text{ is finite} \\ -\infty & \text{if } T \text{ is infinite} \\ +\infty & \text{if } T = \emptyset. \end{cases} \)

The terms selected by \(\#\text{max}(T) \) and \(\#\text{min}(T) \) for finite sets \(T \neq \emptyset \) are determined relative to the total order \(\leq \) on terms in \(U_P \). In the special cases that \(\#\text{aggr}(T) = +\infty \) or \(\#\text{aggr}(T) = -\infty \), we adopt the convention that \(-\infty \leq u \) and \(u \leq +\infty \) for every term \(u \in U_P \). An expression \(\#\text{aggr}(T) < u \) is true (or false) for \(\#\text{aggr} \in \{\"\text{count}\", \"\text{sum}\", \"\text{max}\", \"\text{min}\"\} \), an aggregate relation \(< \in \{\"\leq\", \"<\", \"=\", \"\neq\", \">\", \"\geq\"\} \) and a term \(u \) if \(\#\text{aggr}(T) < u \) is true (or false) according to the corresponding definition for built-in atoms, given previously, extended to the values \(+\infty\) and \(-\infty\) for \(\#\text{aggr}(T) \).

An interpretation \(I \subseteq B_P \) maps a collection \(E \) of aggregate elements to the following set of tuples of terms:

\[
\text{eval}(E, I) = \{(t_1, \ldots, t_m) \mid t_1, \ldots, t_m \text{ occur in } E \text{ and } l_1, \ldots, l_n \text{ are true w.r.t. } I\}
\]

A positive aggregate literal \(a = \#\text{aggr} E < u \) is true (or false) w.r.t. \(I \) if \(\#\text{aggr}(\text{eval}(E, I)) < u \) is true (or false) w.r.t. \(I \); \text{not} \(a \) is true (or false) w.r.t. \(I \) if \(a \) is false (or true) w.r.t. \(I \).

Answer Sets. Given a program \(P \) and a (consistent) interpretation \(I \subseteq B_P \), a rule \(h_1 \mid \ldots \mid h_m \leftarrow b_1, \ldots, b_n \) in \(\text{grnd}(P) \) is satisfied w.r.t. \(I \) if some \(h \in \{h_1, \ldots, h_m\} \) is true w.r.t. \(I \) when \(b_1, \ldots, b_n \) are true w.r.t. \(I \); \(I \) is a model of \(P \) if every rule in \(\text{grnd}(P) \) is satisfied w.r.t. \(I \). The reduce of \(P \) w.r.t. \(I \), denoted by \(P^I \), consists of the rules \(h_1 \mid \ldots \mid h_m \leftarrow b_1, \ldots, b_n \) in \(\text{grnd}(P) \) such that \(b_1, \ldots, b_n \) are true w.r.t. \(I \); \(I \) is an answer set of \(P \) if \(I \) is a \(\subseteq \)-minimal model of \(P^I \). In other words, an answer set \(I \) of \(P \) is a model of \(P \) such that no proper subset of \(I \) is a model of \(P^I \).

The semantics of \(P \) is given by the collection of its answer sets, denoted by \(\text{AS}(P) \).

4 The special cases in which \(\#\text{aggr}(T) = +\infty \), \(\#\text{aggr}(T) = -\infty \) or \(\#\text{sum}(T) = 0 \) for an infinite set \([(t_1, \ldots, t_m) \in T \mid t_1 \text{ is a non-zero integer}] \) are adopted from Abstract Gringo (Gebser et al. 2015).
Optimal Answer Sets. To select optimal members of $AS(P)$, we map an interpretation I for P to a set of tuples as follows:

$$\text{weak}(P, I) = \{(w@l, t_1, \ldots, t_m) \mid \vdash b_1, \ldots, b_n. [w@l, t_1, \ldots, t_m] \text{ occurs in } \text{grnd}(P) \text{ and } b_1, \ldots, b_n \text{ are true w.r.t. } I\}$$

For any integer l, let

$$P^l_I = \begin{cases} \sum_{(w@l, t_1, \ldots, t_m) \in \text{weak}(P, I)} w & \text{if } \{(w@l, t_1, \ldots, t_m) \in \text{weak}(P, I) \mid w \text{ is a non-zero integer} \} \text{ is finite} \\
0 & \text{if } \{(w@l, t_1, \ldots, t_m) \in \text{weak}(P, I) \mid w \text{ is a non-zero integer} \} \text{ is infinite} \\
\end{cases}$$

denote the sum of integers w over tuples with $w@l$ in $\text{weak}(P, I)$. Then, an answer set $I \in AS(P)$ is dominated by $I' \in AS(P)$ if there is some integer l such that $P^l_I < P^l_{I'}$ and $P^l_{I'} = P^l_I$ for all integers $l' > l$. An answer set $I \in AS(P)$ is optimal if there is no $I' \in AS(P)$ such that I is dominated by I'. Note that P has some (and possibly more than one) optimal answer sets if $AS(P) \neq \emptyset$.

Queries. Given a ground query $Q = q \Phi$ of a program P. Q is true if $q \in I$ for all $I \in AS(P)$. Otherwise, Q is false. Note that, if $AS(P) = \emptyset$, all queries are true. In presence of variables one is interested in substitutions that make the query true. Given the non-ground query $Q = q(t_1, \ldots, t_n)$ of a program P, let $\text{Ans}(Q, P)$ be the set of all substitutions σ for Q such that $Q\sigma$ is true. The set $\text{Ans}(Q, P)$ constitutes the set of answers to Q. Note that, if $AS(P) = \emptyset$, $\text{Ans}(Q, P)$ contains all possible substitutions for Q.

Note that query answering, according to the definitions above, corresponds to cautious (skeptical) reasoning as defined in, e.g., (Abiteboul et al. 1995).

4 Syntactic Shortcuts

This section specifies additional constructs by reduction to the language introduced in Section 2.

Anonymous Variables. An anonymous variable in a rule, weak constraint or query is denoted by “_” (character underscore). Each occurrence of “_” stands for a fresh variable in the respective context (i.e., different occurrences of anonymous variables represent distinct variables).

Choice Rules. A choice element has form

$$a : l_1, \ldots, l_k$$

where a is a classical atom and l_1, \ldots, l_k are naf-literals for $k \geq 0$.

A choice atom has form

$$C < u$$

where C is a collection of choice elements, which are syntactically separated by “_”, $<$ is an aggregate relation (see Section 2) and u is a term. The part “$< u$” can optionally be omitted if $<$ is “\geq” and $u = 0$.

A choice rule has form

$$C < u \leftrightarrow b_1, \ldots, b_n.$$

where $C < u$ is a choice atom and b_1, \ldots, b_n are literals for $n \geq 0$.

Intuitively, a choice rule means that, if the body of the rule is true, an arbitrary subset of the classical atoms a such that l_1, \ldots, l_k are true can be chosen as true in order to comply with the aggregate relation $<$ between C and u. In the following, this intuition is captured by means of a proper mapping of choice rules to rules without choice atoms (in the head).

For any predicate atom $q = p(t_1, \ldots, t_n)$, let $\overline{q} = \hat{p}(1, t_1, \ldots, t_n)$ and $\overline{\overline{q}} = \hat{p}(0, t_1, \ldots, t_n)$, where $\hat{p} \neq p$ is an
The first group of rules expresses that the classical atom \(a \) in a choice element \(a : l_1, \ldots, l_k \) in \(C \) along with the constraint
\[
\leftarrow b_1, \ldots, b_n, \text{not} \#\text{count}(\tilde{a} : a, l_1, \ldots, l_k \mid (a : l_1, \ldots, l_k) \in C) < u.
\]
The first group of rules expresses that the classical atom \(a \) in a choice element \(a : l_1, \ldots, l_k \) in \(C \) along with the constraint
\[
\leftarrow b_1, \ldots, b_n, \text{not} \#\text{count}(\tilde{a} : a, l_1, \ldots, l_k \mid (a : l_1, \ldots, l_k) \in C) < u.
\]
For illustration, consider the choice rule
\[
[p(a) : q(2); \neg p(a) : q(3)] \leq 1 \leftarrow q(1).
\]
Using the fresh predicate and function name \(\hat{p} \), the choice rule is mapped to three rules as follows:
\[
\begin{align*}
\hat{p}(a, 1, a) & \leftarrow q(1), q(2). \\
\neg p(a) & \leftarrow q(1), q(3).
\end{align*}
\]
Note that the three rules are satisfied w.r.t. an interpretation \(I \) such that \(\{q(1), q(2), q(3), \hat{p}(1, a), \hat{p}(0, a)\} \subseteq I \) and \(\{p(a), \neg p(a)\} \cap I = \emptyset \). In fact, when \(q(1), q(2), \) and \(q(3) \) are true, the choice of none or one of the atoms \(p(a) \) and \(\neg p(a) \) complies with the aggregate relation “\(\leq \)” to 1.

Aggregate Relations. An aggregate or choice atom
\[
\#\text{aggr} \ E < u \quad \text{or} \quad C < u
\]
may be written as
\[
\underbrace{u <^{-1} \#\text{aggr} \ E} \quad \text{or} \quad u <^{-1} C
\]
where “\(<^{-1} = "\)”; “\(\leq^{-1} = "\)”; “\(=^{-1} = "\)”; “\(\neq^{-1} = "\)”; “\(>^{-1} = "\)”; “\(\geq^{-1} = "\)”.

The left and right notation of aggregate relations may be combined in expressions as follows:
\[
u_1 <_1 \#\text{aggr} \ E \leq_2 u_2 \quad \text{or} \quad u_1 <_1 C \leq_2 u_2
\]
Such expressions are mapped to available constructs according to the following transformations:
\[
\begin{align*}
\diamond u_1 <_1 C \leq_2 u_2 & \leftarrow b_1, \ldots, b_n. \quad \text{stands for} \\
\quad u_1 <_1 C & \leftarrow b_1, \ldots, b_n. \\
\quad C \leq_2 u_2 & \leftarrow b_1, \ldots, b_n.
\end{align*}
\]
\[
\begin{align*}
\diamond h_1 | \ldots | h_k & \leftarrow b_1, \ldots, b_{i-1}, u_1 <_1 \#\text{aggr} \ E \leq_2 u_2, b_{i+1}, \ldots, b_n. \quad \text{stands for} \\
\quad h_1 | \ldots | h_k & \leftarrow b_1, \ldots, b_{i-1}, u_1 <_1 \#\text{aggr} \ E, \#\text{aggr} \ E \leq_2 u_2, b_{i+1}, \ldots, b_n.
\end{align*}
\]
\[\text{footnote text}\]

\[\footnote{\text{footnote text}}\]
Calimeri et al.

\(h_1 | \ldots | h_k \leftarrow b_1, \ldots, b_{i-1}, \texttt{not } u_1 <_1 \#\texttt{aggr } E <_2 u_2, b_{i+1}, \ldots, b_n \). stands for

\(h_1 | \ldots | h_k \leftarrow b_1, \ldots, b_{i-1}, \texttt{not } u_1 <_1 \#\texttt{aggr } E, b_{i+1} \ldots, b_n \).

\(h_1 | \ldots | h_k \leftarrow b_1, \ldots, b_{i-1}, \texttt{not } \#\texttt{aggr } E <_2 u_2, b_{i+1} \ldots, b_n \).

\(\triangleright \diamond \ldots \triangleright \)

5 Using ASP-Core-2 in Practice – Restrictions

To promote declarative programming as well as practical system implementation, ASP-Core-2 programs are supposed to comply with the restrictions listed in this section. This particularly applies to input programs starting from the System Track of the 4th Answer Set Programming Competition (Calimeri et al. 2014).

Safety. Any rule, weak constraint or query is required to be safe; to this end, for a set \(V \) of variables and literals \(b_1, \ldots, b_n \), we inductively (starting from an empty set of bound variables) define \(v \in V \) as bound by \(b_1, \ldots, b_n \) if \(v \) occurs outside of arithmetic terms in some \(b_i \) for \(1 \leq i \leq n \) such that \(b_i \) is

- (i) a classical atom,
- (ii) a built-in atom \(t = u \) or \(u = t \) and any member of \(V \) occurring in \(t \) is bound by \(\{ b_1, \ldots, b_n \} \setminus b_i \) or
- (iii) an aggregate atom \(\#\texttt{aggr } E = u \) and any member of \(V \) occurring in \(E \) is bound by \(\{ b_1, \ldots, b_n \} \setminus b_i \).

The entire set \(V \) of variables is \textit{bound} by \(b_1, \ldots, b_n \) if each \(v \in V \) is bound by \(b_1, \ldots, b_n \).

A rule, weak constraint or query \(r \) is \textit{safe} if the set \(V \) of global variables in \(r \) is bound by \(b_1, \ldots, b_n \) (taking a query \(r \) to be of form \(b_1 \)?) and, for each aggregate element \(t_1, \ldots, t_k : l_1, \ldots, l_m \) in \(r \) with occurring variable set \(W \), the set \(W \setminus V \) of local variables is bound by \(l_1, \ldots, l_m \). For instance, the rule

\[p(X, Y) \leftarrow q(X), \#\text{sum}(S, X : r(T, X), S = (2 * T) - X) = Y. \]

is safe because all variables are bound by \(q(X), r(T, X) \), while

\[p(X, Y) \leftarrow q(X), \#\text{sum}(S, X : r(T, X), S + X = 2 * T) = Y. \]

is not safe because the expression \(S + X = 2 * T \) does not respect condition (ii) above.

Finiteness. Pragmatically, ASP programs solving real problems have a finite number of answer sets of finite size. As an example, a program including \(p(X + 1) \leftarrow p(X). \) or \(p(f(X)) \leftarrow p(X) \) along with a fact like \(p(0) \) is not an admissible input in ASP Competitions. There are pragmatic conditions that can be checked to ensure that a program admits finitely many answer sets (e.g., (Calimeri et al. 2011)); in alternative, finiteness can be witnessed by providing a known maximum integer and maximum function nesting level per problem instance, which correctly limit the absolute values of integers as well as the depths of functional terms occurring as arguments in the atoms of answer sets. The last option is the one adopted in ASP competitions since 2011.
Aggregates. For the sake of an uncontroversial semantics, we require aggregates to be non-recursive. To make this precise, for any predicate atom \(q = p(t_1, \ldots, t_n) \), let \(q' = p/n \) and \(\neg q' = \neg p/n \). We further define the directed predicate dependency graph \(D_P = (V, E) \) for a program \(P \) by

- the set \(V \) of vertices \(a' \) for all classical atoms \(a \) appearing in \(P \) and
- the set \(E \) of edges \((h_{i_1}', h_{i_1}), \ldots, (h_{i_m}', h_{i_m}')\) and \((h_{m_1}', a'), \ldots, (h_{m_n}', a')\) for all rules \(h_1 | \ldots | h_m \leftarrow b_1, \ldots, b_n \) in \(P \), \(1 \leq i \leq m \) and classical atoms \(a \) appearing in \(b_1, \ldots, b_n \).

The aggregates in \(P \) are non-recursive if, for any classical atom \(a \) appearing within aggregate elements in a rule \(h_1 | \ldots | h_m \leftarrow b_1, \ldots, b_n \) in \(P \), there is no path from \(a' \) to \(h_{i'}' \) in \(D_P \) for \(1 \leq i \leq m \).

Predicate Arities. The arity of atoms sharing some predicate name is not assumed to be fixed. However, system implementers are encouraged to issue proper warning messages if an input program includes classical atoms with the same predicate name but different arities.

Undefined Arithmetics. The semantics of ASP-Core-2 requires that substitutions that lead to undefined arithmetics subterms (and are thus not well-formed) are excluded by ground instantiation as specified in Section 3. In practice, this condition is not easy to meet and implement for a number of technical reasons; thus, it might cause problems to existing implementations, or even give rise to unexpected behaviors.

In order to avoid such complications, we require that a program \(P \) shall be invariant under undefined arithmetics; that is, \(grnd(P) \) is supposed to be equivalent to any ground program \(P' \) obtainable from \(P \) by freely replacing arithmetic subterms with undefined outcomes by arbitrary terms from \(U_P \). Intuitively, rules have to be written in such a way that the semantics of a program does not change, no matter the handling of substitutions that are not well-formed.

For instance, the program

\[
\begin{align*}
a(0). \\
p &\leftarrow a(X), \mathbf{not} \ q(X/X).
\end{align*}
\]

has the (single) answer set \(\{a(0)\} \). This program, however, is not invariant under undefined arithmetics. Indeed, a vanilla grounder that skips arithmetic evaluation (in view of no rule with atoms of predicate \(q \) in the head) might produce the (simplified) ground rule \(p \leftarrow a(0), \) and this would result in the wrong answer set \(\{a(0), p\} \).

In contrast to the previous program,

\[
\begin{align*}
a(0). \\
p &\leftarrow a(X), \mathbf{not} \ q(X/X), X \neq 0.
\end{align*}
\]

is invariant under undefined arithmetics, since substitutions that are not well-formed cannot yield applicable ground rules. Hence, a vanilla grounder as considered above may skip the arithmetic evaluation of ground terms obtained from \(X/X \) without risking wrong answer sets.
6 EBNF Grammar and Lexical Table

Production	Grammar	
`<program>`	`::= [<statements>] [<query>]`	
`<statements>`	`::= [<statements>] <statement>`	
`<query>`	`::= <classical_literal> QUERY_MARK`	
`<statement>`	`::= CONS [<body>] DOT`	
	`	<head> [CONS [<body>]] DOT`
	`	WCONS [<body>] DOT`
	`SQUARE_OPEN <weight_at_level> SQUARE_CLOSE`	
`<head>`	`::= <disjunction>	<choice>`
`<body>`	`::= [<body> COMMA]`	
	`(naf_literal)	[NAF] <aggregate>)`
`<disjunction>`	`::= [<disjunction> OR] <classical_literal>`	
`<choice>`	`::= [<term> <binop>]`	
	`CURLY_OPEN [<choice_elements>]`	
	`CURLY_CLOSE [<binop> <term>]`	
`<choice_elements>`	`::= [<choice_elements> SEMICOLON]`	
`<choice_element>`	`::= <classical_literal> [COLOM [naf_literals]]`	
`<aggregate>`	`::= [<term> <binop>] <aggregate_function>`	
	`CURLY_OPEN [<aggregate_elements>]`	
	`CURLY_CLOSE [<binop> <term>]`	
`<aggregate_elements>`	`::= [<aggregate_elements> SEMICOLON]`	
`<aggregate_element>`	`::= [<basic_terms>] [COLOM [naf_literals]]`	
`<aggregate_function>`	`::= AGGREGATE_COUNT`	
	`	AGGREGATE_MAX`
	`	AGGREGATE_MIN`
	`	AGGREGATE_SUM`
`<weight_at_level>`	`::= <term> [AT <term>] [COMMA <terms>]`	
`<naf_literals>`	`::= [<naf_literals> COMMA] <naf_literal>`	
`<naf_literal>`	`::= [NAF] <classical_literal>	<builtin_atom>`
`<classical_literal>`	`::= [MINUS] ID [PAREN_OPEN [<terms>] PAREN_CLOSE]`	
`<builtin_atom>`	`::= <term> <binop> <term>`	
`<binop>`	`::= EQUAL`	
	`	UNEQUAL`
	`	LESS`
	`	GREATER`
LESS_OR_EQ		
GREATER_OR_EQ		

<terms> ::= [<terms> COMMA] <term>
<term> ::= ID [PAREN_OPEN [<terms>] PAREN_CLOSE]
| NUMBER
| STRING
| VARIABLE
| ANONYMOUS_VARIABLE
| PAREN_OPEN <term> PAREN_CLOSE
| MINUS <term>
| <term> <arithop> term

<basic_terms> ::= [<basic_terms> COMMA] <basic_term>
<basic_term> ::= <ground_term> |
<variable_term>
<ground_term> ::= SYMBOLIC_CONSTANT |
STRING | [MINUS] NUMBER
<variable_term> ::= VARIABLE |
ANONYMOUS_VARIABLE
<arithop> ::= PLUS |
MINUS |
TIMES |
DIV
Lexical values are given in Flex7 syntax. The COMMENT, MULTI_LINE_COMMENT and BLANK tokens can be freely interspersed amidst other tokens and have no syntactic or semantic meaning.

7 Conclusions

In this document we have presented the ASP-Core-2 standard language that defines syntax and semantics of a standard language to which ASP solvers have to adhere in order to enter the ASP Competitions series, since 2013. The standardization committee is still working on the evolution of the language in order to keep it aligned with the achievements of the ASP research community. Among the features that are currently under consideration we mention here a semantics for recursive aggregates, for which
several proposals are at the moment in place, e.g., Gelfond and Zhang 2014 [Alviano et al. 2015], and a standard for intermediate (Gebser et al. 2016) and output (Brain et al. 2007) [Krennwallner 2013] formats for ASP solvers.

References

Abiteboul, S., Hull, R., and Vianu, V. 1995. Foundations of Databases. Addison-Wesley.

Alviano, M., Calimeri, F., Faber, W., Leone, N., and Perri, S. 2011. Unfounded sets and well-founded semantics of answer set programs with aggregates. Journal of Artificial Intelligence Research 42, 487–527.

Alviano, M., Faber, W., and Gebser, M. 2015. Rewriting recursive aggregates in answer set programming: back to monotonicity. Theory and Practice of Logic Programming 15, 4-5, 559–573.

Brain, M., Faber, W., Maratea, M., Polleres, A., Schaub, T., and Schindlauer, R. 2007. What should an asp solver output? a multiple position paper. In Proc. of the First International SEA’07 Workshop. CEUR Workshop Proceedings, vol. 281.

Brewka, G., Eiter, T., and Truszczynski, M. 2011. Answer set programming at a glance. Commun. ACM 54, 12, 92–103.

Calimeri, F., Cozza, S., Ianni, G., and Leone, N. 2011. Finitely recursive programs: Decidability and bottom-up computation. AI Commun. 24, 4, 311–334.

Calimeri, F., Gebser, M., Maratea, M., and Ricca, F. 2016. Design and results of the Fifth Answer Set Programming Competition. Artificial Intelligence 231, 151–181.

Calimeri, F., Ianni, G., and Ricca, F. 2014. The third open answer set programming competition. TPLP 14, 1, 117–135.

Calimeri, F., Ianni, G., Ricca, F., and della Calabria Organizing Committee, T. U. 2011. Third ASP Competition, File and language formats. [http://www.mat.unical.it/aspcomp2011/files/LanguageSpecifications.pdf]

Dell’Armi, T., Faber, W., Ielpa, G., Leone, N., and Pfeifer, G. 2003. Aggregate Functions in DLV. In Proceedings ASP03 - Answer Set Programming: Advances in Theory and Implementation, M. de Vos and A. Provetti, Eds. Messina, Italy, 274–288. Online at [http://CEUR-WS.org/Vol-78/]

Denecker, M., Pelov, N., and Bruynooghe, M. 2001. Ultimate Well-Founded and Stable Model Semantics for Logic Programs with Aggregates. In Proceedings of the 17th International Conference on Logic Programming, P. Codognet, Ed. Springer Verlag, 212–226.

Erdem, E., Gelfond, M., and Leone, N. 2016. Applications of answer set programming. AI Magazine 37, 3, 53–68.

Faber, W., Leone, N., and Pfeifer, G. 2004. Recursive aggregates in disjunctive logic programs: Semantics and complexity. In Proceedings of the 9th European Conference on Artificial Intelligence (JELIA 2004), J. J. Alferes and J. Leite, Eds. Lecture Notes in AI (LNAI), vol. 3229. Springer Verlag, 200–212.

Faber, W., Leone, N., and Pfeifer, G. 2011. Semantics and complexity of recursive aggregates in answer set programming. Artificial Intelligence 175, 1, 278–298. Special Issue: John McCarthy’s Legacy.

Ferraris, P. 2005. Answer Sets for Propositional Theories. In Logic Programming and Nonmonotonic Reasoning — 8th International Conference, LPNMR’05, Diamante, Italy, September 2005, Proceedings, C. Baral, G. Greco, N. Leone, and G. Terracina, Eds. Lecture Notes in Computer Science, vol. 3662. Springer Verlag, 119–131.

Gebser, M., Harrison, A., Kaminski, R., Lifschitz, V., and Schaub, T. 2015. Abstract Gringo. Theory and Practice of Logic Programming 15, 4-5, 449–463.

Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., and Wanko, P. 2016. Theory solving made easy with clingo 5. In Technical Communications of the 32nd International Conference on Logic Programming (ICLP 2016 TCs), M. Carro, A. King, N. Saeedloei, and M. D. Vos, Eds. OASICS, vol. 52. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2:1–2:15.

Gebser, M., Leone, N., Maratea, M., Perri, S., Ricca, F., and Schaub, T. 2018. Evaluation techniques and systems for answer set programming: a survey. In Proceedings of the Twenty-Seven International Joint Conference on Artificial Intelligence (IJCAI 2018), J. Lang, Ed. ijcai.org, 5450–5456.

Gebser, M., Maratea, M., and Ricca, F. 2017a. The design of the seventh answer set programming competition. In Proceedings of the 14th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR 2017), M. Balduccini and T. Janhunen, Eds. Lecture Notes in Computer Science, vol. 10377. Springer, 3–9.

Gebser, M., Maratea, M., and Ricca, F. 2017b. The sixth answer set programming competition. Journal of Artificial Intelligence Research 60, 41–95.
Calimeri et al.

Gerber, M., Obermeier, P., Schaub, T., Ratsch-Heitmann, M., and Runge, M. 2018. Routing driverless transport vehicles in car assembly with answer set programming. TPLP 18, 3-4, 520–534.

Gelfond, M. 2002. Representing Knowledge in A-Prolog. In Computational Logic. Logic Programming and Beyond, A. C. Kakas and F. Sadri, Eds. LNCS, vol. 2408. Springer, 413–451.

Gelfond, M. and Lifschitz, V. 1991. Classical Negation in Logic Programs and Disjunctive Databases. New Generation Computing 9, 365–385.

Gelfond, M. and Zhang, Y. 2014. Vicious circle principle and logic programs with aggregates. Theory and Practice of Logic Programming 14, 4-5, 587–601.

Harrison, A. and Lifschitz, V. 2019. Relating two dialects of answer set programming. TPLP 19, 5-6, 1006–1020.

Kemp, D. B. and Stuckey, P. J. 1991. Semantics of Logic Programs with Aggregates. In Proceedings of the International Symposium on Logic Programming (ISLP ’91), V. A. Saraswat and K. Ueda, Eds. MIT Press, 387–401.

Krennwallner, T. 2013. ASP Competition, output format. https://www.mat.unical.it/aspcomp2013/files/aspoutput.txt.

Leone, N. and Ricca, F. 2015. Answer set programming: A tour from the basics to advanced development tools and industrial applications. In Web Logic Rules - 11th International Summer School on Reasoning Web, Tutorial Lectures, W. Faber and A. Paschke, Eds. Lecture Notes in Computer Science, vol. 9203. Springer, 308–326.

Lierler, Y., Maratela, M., and Ricca, F. 2016. Systems, engineering environments, and competitions. AI Magazine 37, 3, 45–52.

Osorio, M. and Jayaraman, B. 1999. Aggregation and Negation-As-Failure. New Generation Computing 17, 3, 255–284.

Pelov, N. 2004. Semantics of Logic Programs with Aggregates. Ph.D. thesis, Katholieke Universiteit Leuven, Leuven, Belgium.

Pelov, N., Denecker, M., and Bruynooghe, M. 2004. Partial stable models for logic programs with aggregates. In Proceedings of the 7th International Conference on Logic Programming and Non-Monotonic Reasoning (LPNMR-7). Lecture Notes in AI (LNAI), vol. 2923. Springer, 207–219.

Pelov, N., Denecker, M., and Bruynooghe, M. 2007. Well-founded and Stable Semantics of Logic Programs with Aggregates. Theory and Practice of Logic Programming 7, 3, 301–353.

Pelov, N. and Truszczynski, M. 2004. Semantics of disjunctive programs with monotone aggregates - an operator-based approach. In Proceedings of the 10th International Workshop on Non-monotonic Reasoning (NMR 2004), Whistler BC, Canada. 327–334.

Ross, K. A. and Sagiv, Y. 1997. Monotonic Aggregation in Deductive Databases. Journal of Computer and System Sciences 54, 1 (Feb.), 79–97.

Simons, P., Niemelä, I., and Soininen, T. 2002. Extending and Implementing the Stable Model Semantics. Artificial Intelligence 138, 181–234.

Van Gelder, A. 1992. The Well-Founded Semantics of Aggregation. In Proceedings of the Eleventh Symposium on Principles of Database Systems (PODS ’92). ACM Press, 127–138.