ABSTRACT

BACKGROUND AND PURPOSE: Most brain lesions are characterized by hyperintense signal on FLAIR. We sought to develop an automated deep learning–based method for segmentation of abnormalities on FLAIR and volumetric quantification on clinical brain MRIs across many pathologic entities and scanning parameters. We evaluated the performance of the algorithm compared with manual segmentation and existing automated methods.

MATERIALS AND METHODS: We adapted a U-Net convolutional neural network architecture for brain MRIs using 3D volumes. This network was retrospectively trained on 295 brain MRIs to perform automated FLAIR lesion segmentation. Performance was evaluated on 92 validation cases using Dice scores and voxelwise sensitivity and specificity, compared with radiologists’ manual segmentations. The algorithm was also evaluated on measuring total lesion volume.

RESULTS: Our model demonstrated accurate FLAIR lesion segmentation performance (median Dice score, 0.79) on the validation dataset across a large range of lesion characteristics. Across 19 neurologic diseases, performance was significantly higher than existing methods (Dice, 0.56 and 0.41) and approached human performance (Dice, 0.81). There was a strong correlation between the predictions of lesion volume of the algorithm compared with true lesion volume ($r = 0.99$). Lesion segmentations were accurate across a large range of image-acquisition parameters on $>$ 30 different MR imaging scanners.

CONCLUSIONS: A 3D convolutional neural network adapted from a U-Net architecture can achieve high automated FLAIR segmentation performance on clinical brain MR imaging across a variety of underlying pathologies and image acquisition parameters. The method provides accurate volumetric lesion data that can be incorporated into assessments of disease burden or into radiologic reports.

ABBREVIATIONS: BIANCA = Brain Intensity Abnormality Classification Algorithm; CNN = convolutional neural network; FDR = false discovery rate; LST = lesion segmentation tool; RMdSPE = root median squared percentage error; RMSPE = root mean squared percentage error; SVID = small-vessel ischemic disease
To this aim, machine learning structural cartilage The winner of the 20th International acute infarcts, There- multiple sclerosis, and white matter hyperintensities related to and left ventricular volume These solutions and existing automated tools. automated segmentations with those of manual lesion segmentation. CNN-based image segmentation on 19 different brain pathologies producing Our study was designed to test this automated FLAIR lesion-segmentation algorithm on 19 different brain pathologies for the task of disease-invariant FLAIR lesion segmentation. Therefore, we adopted a deep learning approach, adapting a U-Net for this high degree of image and lesion heterogeneity. Deep learning–based approaches have recently demonstrated success with a variety of other image-segmentation tasks, including intracranial hemorrhage segmentation on CT, structural neuroanatomy classification on brain MR imaging, cartilage segmentation on knee MR imaging, and left ventricular volume on cardiac MR imaging. The winner of the 20th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) 2017 challenge for white matter hyperintensity segmentation was based on a U-Net. Therefore, we adopted a deep learning approach, adapting a U-Net convolutional neural network (CNN) architecture for 3D imaging for the task of disease-invariant FLAIR lesion segmentation. Our study was designed to test this automated FLAIR lesion-segmentation algorithm on 19 different brain pathologies producing a wide range of lesion appearances and to compare CNN-based automated segmentations with those of manual lesion segmentations and existing automated tools.

MATERIALS AND METHODS

Subjects and Data

This retrospective study was approved by the institutional review board of the University of Pennsylvania, with a waiver for consent. A total of 387 study subjects (218 females and 169 males; age range, 14–95 years; median age, 53 years) were included, with 1 MRI (2 sequences: T1-weighted and FLAIR) per subject. Subjects were identified by searching the radiology archives of our tertiary care university hospital (Hospital of the University of Pennsylvania) for 19 pre-specified diagnoses, confirmed using the electronic medical record and procedures detailed in the On-line Appendix.

Diseases and Training/Validation Assignment

The 19 diseases included in the validation sample are listed in the On-line Appendix (see also Fig. 1). These diseases encompass a large range that cause FLAIR abnormalities on brain MR imaging. They were also specifically chosen to represent a very heterogeneous sample, including wide ranges of individual lesion and total lesion volumes and heterogeneity in lesion shape and internal signal characteristics.

Assignments resulted in 295 training cases and 92 validation cases. Because no hyperparameter optimization was performed (see
CNN Model Architecture (U-Net) below), this study did not require separate test and validation sets. The model was trained with only the training dataset and was separately tested on the validation dataset.

MR Imaging Parameters and Ground Truth Segmentations

Imaging data stemmed from a wide range of imaging parameters (Table 1), typical of clinical imaging studies. Moreover, imaging was performed on >30 different MR imaging scanners and 16 different scanner models across all study subjects. Image-acquisition parameters for the training sample were similar to those on the validation sample (randomly assigned).

Criterion standard lesion segmentations were based on manual segmentations by a radiologist using ITK-SNAP (www.itksnap.org), further described in the On-line Appendix.

Image Preprocessing

Skull stripping of T1-weighted images was performed with Advanced Normalization Tools (ANTS; http://neuro.debian.net/pkgs/ants.html), which were then registered and applied to FLAIR images. Images were normalized by the mean and SD signal intensity to zero mean and unit SDs. Images were resampled to 1-mm³ isotropic resolution via linear interpolation. Despite most MR imaging acquisitions being 2D (Table 1), all 2D and 3D acquisitions were treated with the same preprocessing steps to produce common resolution 1-mm³ volumes suitable for use in a 3D-CNN architecture. Elastic transformations were applied to the images for data augmentation, which included small random rotations, translations, scaling, and free-form deformations. We split the full-resolution augmented imaging volume into 96-mm³ cubes (3D patches) as the network input to fit within graphic memory constraints. Note that these 3D regions encompass a large portion of the full-resolution imaging volume (Fig 2) and are created only to address memory constraints. The large patches, in comparison with the size of any lesion, ensure that the lesion transition zones are included within the patches. During training, the cubes were randomly sampled across the full-brain volumes. To prevent sample imbalance, we sampled the same number of patches that included lesion voxels as those that excluded lesions during training. A total of 80 patches were extracted from each training case, with 3 random augmentations per case, resulting in 240 patches per case or a total of 70,800 training patches. During testing, the brain volume was densely sampled with the cubes using a step size of 32 mm in each direction, resulting in a 64-mm overlap between cubes. The overlapped segmentation predictions were averaged.

CNN Model Architecture (U-Net)

We used a fine-tuned 3D U-Net to predict lesion segmentations on the FLAIR images because of the ability of the U-Net to provide pixelwise/voxelwise predictions, ideal for voxelwise segmentation problems. The network consists of 4 consecutive down-sampled blocks followed by 4 consecutive up-sampled blocks. We used the rectified linear unit for nonlinearity. For down-sampling, we used a stride-2 convolution; for up-sampling, we used a stride-2 deconvolution. We used the kernel size $3 \times 3 \times 3$ across the net-

Table 1: Heterogeneous scanning parameters used for FLAIR sequences in training and validation samples, showing the number of study subjects in each category

Summary	Training ($n = 295$)	Validation ($n = 92$)		
Field strength	1.5T	230 (78.0%)	57 (62.0%)	
	3T	65 (22.0%)	35 (38.0%)	
Dimension	2D	287 (97.3%)	81 (88.0%)	
	3D	8 (2.7%)	11 (12.0%)	
Manufacturer/model	GE Healthcare	4 (1.4%)	3 (3.3%)	
		Genesis Signa	20 (6.8%)	6 (6.5%)
		Optima MR450w	15 (5.1%)	1 (1.1%)
		Signa Excite	20 (6.8%)	7 (7.6%)
		Signa HDxt	14 (4.7%)	7 (7.6%)
	Philips	Intera	2 (0.7%)	1 (1.1%)
	Siemens			
	Magnetom Aera	15 (5.1%)	2 (2.2%)	
	Avanto	39 (13.2%)	8 (8.7%)	
	Magnetom Espree	83 (28.1%)	19 (20.1%)	
	Magnetom Essenza	9 (3.1%)	1 (1.1%)	
	Magnetom Skyla	8 (2.7%)	8 (8.7%)	
	Magnetom Symphony	4 (1.4%)	3 (3.3%)	
	Magnetom Symphony Tim	5 (1.7%)	1 (1.1%)	
	Tim Trio	37 (12.5%)	11 (12.0%)	
	Magnetom Verio	16 (5.4%)	13 (14.1%)	
Toshiba	Titan	4 (1.4%)	1 (1.1%)	
	TE (ms)	Minimum	86	82
		Median	136	136
		Maximum	396	398
	TR (ms)	Minimum	5000	5000
		Median	9000	9000
		Maximum	12,000	12,000

*The percentage of the total training or validation sample is in parentheses.

Milwaukee, Wisconsin.

Best, the Netherlands.

Erlangen, Germany.

Toshiba Medical Systems, Tokyo, Japan.

FIG 2. Schematic of the CNN U-net architecture. The architecture uses a 3D region-based approach for training and validation. The sample MR FLAIR images are from a patient with progressive multifocal leukoencephalopathy. Max indicates maximum.
work. We applied a dilation factor of 2 in all convolutional layers. Other than the standard cross-link between corresponding up-sampling and down-sampling blocks, we also added a residual connection between subsequent layers, with a number of features matched by a plain $1/H_{11003}/1$ convolution. After the final up-sampling block, 3 additional convolutional, rectified linear unit, batched-normalized layers were added before the final normalized exponential (softmax) head function (Fig 2). A batch consisted of six 3D patches.

We used standard cross-entropy loss and an Adam optimizer with a learning rate of 10^{-5}. The network was trained for 50 epochs. The network was implemented using TensorFlow (https://www.tensorflow.org/), a deep learning module within the Python programming language. Implementation was on a Titan Xp GPU (NVIDIA, Santa Clara, California).

Comparison Algorithms

We compared CNN performance against that of previously published automated algorithms designed for FLAIR lesion identification: lesion segmentation tool (LST; https://www.applied-statistics.de/lst.html) and Brain Intensity Abnormality Classification Algorithm (BIANCA; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BIANCA). We also compared the performance with a second independent radiologist’s manual segmentations, which we refer to as “human performance.” These methods were all applied to the same validation dataset. Refer to the On-line Appendix for additional information on comparison methods.

Statistical Analysis

The performance of our U-Net architecture neural network was validated against the manual-segmentation criterion standard on 92 cases (ie, FLAIR volumes) representing 19 different diseases, after being trained on 295 FLAIR volumes. Although acquisition parameters included 2D and 3D methods (Table 1), we refer to all cases as FLAIR volumes, given that we resampled all images to a 1-mm3 resolution (ie, a 3D volume) for CNN training and validation, before resampling back into native space for comparison with native space manual segmentations. All analyses were performed in subject native space. Segmentation performance of all methods was compared using Dice coefficients, the most commonly used similarity measure for evaluating segmentation performance, with manual lesion segmentations as the ground truth. Voxelwise performance measures compared with manual segmentation were also calculated. Comparisons of performance across methods was accomplished using paired 2-tailed t tests. Additional statistical comparisons are discussed in the On-line Appendix.

RESULTS

CNN-Based FLAIR Lesion Segmentation Accuracy

The CNN segments brain MR lesions qualitatively with a high degree of accuracy. Representative comparisons of CNN-based automatic segmentations and criterion standard manual segmentations are shown in Fig 3 (see also On-line Fig 2 and the On-line Appendix).

We quantified CNN segmentation performance across all val-
and with a second independent radiologist, which was also true of the independent human performance (Fig 1A). This performance was significantly higher than the Dice scores of LST (median, 0.562; mean, 0.533 ± 0.026) and BIANCA (median, 0.410; mean, 0.395 ± 0.027) (ANOVA and paired 2-tailed t tests compared with CNN; P < .001). Similarly, among the algorithms tested, other voxelwise measures of performance were highest for the CNN (Table 2). Human performance (median Dice, 0.805; mean, 0.759 ± 0.017) was very slightly-but-consistently better than CNN performance (P < .01, paired 2-tailed t test).

Effect of Disease Pathology

Next, we examined how segmentation performance varies as a function of underlying disease pathology. The CNN had significantly higher mean Dice scores than at least 1 of the other methods in 16/19 diagnoses and significantly higher than those in both other methods in 5/19 diagnoses (paired 2-tailed t tests, P < .05; false discovery rate [FDR]-corrected for multiple comparisons). Segmentation performance was not statistically different from the performance of the independent radiologist’s manual segmentations in 15/19 diagnoses. Note that low sample sizes within each diagnosis group limit statistical power, but the median Dice was numerically higher for the CNN than the other methods in all diseases except Susac syndrome (Fig 1B). Even for those diseases for which LST and BIANCA were specifically designed (multiple sclerosis and small-vessel ischemic disease [SVID], respectively), the CNN produced segmentations that were better than those for SVID (P < .05, paired t test comparing CNN and BIANCA) or not significantly different from those for MS (P > .05, paired t test comparing CNN and LST), the comparison algorithms. Performance was consistently low for Susac syndrome across all methods, likely due to a combination of factors, including the following: a large amount of noise and imaging artifacts, only 2 cases total available (none in the training data), and very small and limited extent of lesions in these 2 cases. Note the low performance of the independent radiologist for these cases as well. Heterogeneity of FLAIR signal within a lesion did not prove a barrier to accurate segmentation; performance on 16 validation cases with heterogeneous FLAIR lesions was excellent, with a median Dice score of 0.87 (range, 0.80–0.92; On-line Fig 2).

Lesion Volume Quantification

We found that the CNN performs well in estimating total lesion volume, with a Spearman correlation ρ = 0.985 and a best fit line slope β = 0.958 when comparing predicted with true total lesion volume across all cases, indicating a very high degree of fidelity between the predicted and true total lesion volumes on an individual subject basis (Fig 4A). The comparison methods, meanwhile, had lower Spearman correlations (LST ρ = 0.862, BIANCA ρ = 0.655) and lower best fit line slopes (LST β = 0.490, BIANCA β = 0.277), with both methods tending to overestimate smaller lesion volumes and underestimate larger lesion volumes. We also analyzed the degree of error in the predicted lesion volume on a subject-specific basis using the root mean squared percentage error (RMdSPE) and the root mean squared percentage error (RMSPE), which measure the average percentage error from true lesion volume. The CNN generated lesion volumes with lower errors (RMdSPE = 1.4%, RMSPE = 4.8%) compared with LST (RMdSPE = 3.8%, RMSPE = 72.3%) and BIANCA (RMdSPE = 6.6%, RMSPE = 433.8%) (Table 2).

Table 2: Summary measures of accuracy (Dice, voxelwise sensitivity, specificity, FDR, PPV/NPV) and comparisons of true and predicted lesion volumes by forecasting RMdSPE and Spearman correlation r of methods

	Human	CNN	LST	BIANCA
Dice	0.805	0.789	0.562	0.410
SEM	0.017	0.022	0.026	0.027
Sensitivity (1-FNR)	0.800	0.767	0.599	0.556
SEM	0.017	0.025	0.026	0.020
Specificity (1-FPR)	0.999	0.999	0.999	0.997
SEM	0.000	0.000	0.000	0.000
PPV	0.824	0.769	0.690	0.335
SEM	0.018	0.018	0.030	0.034
NPV	0.999	0.999	0.999	0.999
SEM	0.000	0.000	0.001	0.001
RMdSPE	0.97%	1.38%	3.80%	6.56%
Spearman r	0.991	0.985	0.862	0.655

Note:—PPV indicates positive predictive value; NPV, negative predictive value; FNR, false negative rate; FPR, false positive rate; SEM, standard error of the mean.

Table 2

	Human	CNN	LST	BIANCA
Spearman r	0.991	0.985	0.862	0.655

- **Human**, **CNN**, **LST**, and **BIANCA**

- **Diagnostic cases using Dice scores, and we compared its performance with existing state-of-the-art automated FLAIR segmentation methods, LST and BIANCA**31,32 and with a second independent radiologist. Across the validation sample, the CNN demonstrated a median Dice score of 0.789 (mean, 0.699 ± 0.022), which approached human performance (Fig 1A). This performance was significantly higher than the Dice scores of LST (median, 0.562; mean, 0.533 ± 0.026) and BIANCA (median, 0.410; mean, 0.395 ± 0.027) (ANOVA and paired 2-tailed t tests compared with CNN; P < .001). Similarly, among the algorithms tested, other voxelwise measures of performance were highest for the CNN (Table 2). Human performance (median Dice, 0.805; mean, 0.759 ± 0.017) was very slightly-but-consistently better than CNN performance (P < .01, paired 2-tailed t test).

- **Effect of Disease Pathology**

- **Next, we examined how segmentation performance varies as a function of underlying disease pathology. The CNN had significantly higher mean Dice scores than at least 1 of the other methods in 16/19 diagnoses and significantly higher than those in both other methods in 5/19 diagnoses (paired 2-tailed t tests, P < .05; false discovery rate [FDR]-corrected for multiple comparisons). Segmentation performance was not statistically different from the performance of the independent radiologist’s manual segmentations in 15/19 diagnoses. Note that low sample sizes within each diagnosis group limit statistical power, but the median Dice was numerically higher for the CNN than the other methods in all diseases except Susac syndrome (Fig 1B). Even for those diseases for which LST and BIANCA were specifically designed (multiple sclerosis and small-vessel ischemic disease [SVID], respectively), the CNN produced segmentations that were better than those for SVID (P < .05, paired t test comparing CNN and BIANCA) or not significantly different from those for MS (P > .05, paired t test comparing CNN and LST), the comparison algorithms. Performance was consistently low for Susac syndrome across all methods, likely due to a combination of factors, including the following: a large amount of noise and imaging artifacts, only 2 cases total available (none in the training data), and very small and limited extent of lesions in these 2 cases. Note the low performance of the independent radiologist for these cases as well. Heterogeneity of FLAIR signal within a lesion did not prove a barrier to accurate segmentation; performance on 16 validation cases with heterogeneous FLAIR lesions was excellent, with a median Dice score of 0.87 (range, 0.80–0.92; On-line Fig 2).

- **Lesion Volume Quantification**

- We found that the CNN performs well in estimating total lesion volume, with a Spearman correlation ρ = 0.985 and a best fit line slope β = 0.958 when comparing predicted with true total lesion volume across all cases, indicating a very high degree of fidelity between the predicted and true total lesion volumes on an individual subject basis (Fig 4A). The comparison methods, meanwhile, had lower Spearman correlations (LST ρ = 0.862, BIANCA ρ = 0.655) and lower best fit line slopes (LST β = 0.490, BIANCA β = 0.277), with both methods tending to overestimate smaller lesion volumes and underestimate larger lesion volumes. We also analyzed the degree of error in the predicted lesion volume on a subject-specific basis using the root mean squared percentage error (RMdSPE) and the root mean squared percentage error (RMSPE), which measure the average percentage error from true lesion volume. The CNN generated lesion volumes with lower errors (RMdSPE = 1.4%, RMSPE = 4.8%) compared with LST (RMdSPE = 3.8%, RMSPE = 72.3%) and BIANCA (RMdSPE = 6.6%, RMSPE = 433.8%) (Table 2).

- **Effect of Lesion Volume**

- We investigated how each method performed as a function of lesion volume (Fig 4B). As expected, all methods performed better with larger total lesion volumes, which is partially inherent in the Dice similarity index31,34 and was also true of the independent radiologist’s performance. However, the CNN performed the best of the 3 automated methods at all lesion volumes (ANOVA and paired 2-sample t tests compared with CNN P < .01), and performance did not degrade even at the highest lesion volumes (≥100 cm³), whereas performance did degrade slightly at the highest lesion volumes for the other methods (Fig 4B). Even at very low total lesion volumes, the CNN produced reasonable estimates, with Dice scores of ~0.55 and accurate estimates of lesion volume (Fig 3, inactive case of MS, as an example), whereas the other methods performed poorly in these cases. Similarly, false-positive voxels were most common for all methods in cases with low lesion volumes, but this effect was much less pronounced with the CNN and with a second radiologist (Fig 4C).

- **When we categorized diseases by median CNN Dice and true lesion volume, no apparent clusters arose on the basis of etiology (Fig 4D), noting that the lowest Dice scores were for diseases in which the total lesion volume and individual lesion sizes tend to be small (migraine, multiple sclerosis, neuromyelitis optica, and Susac syndrome). Indeed, Dice scores for all methods including human segmentation depend on individual lesion sizes, with poorer performance in cases with small lesions (Fig 4E) due to a higher number of false-positive and false-negative voxels in these cases (On-line Fig 1). In summary, Dice scores within each disease...
are driven mainly by lesion size/volume but are otherwise independent of pathology, demonstrating the broad utility of the CNN for a range of diseases.

Effect of Technical Factors

We investigated whether CNN performance depends on technical acquisition factors such as MR imaging scanner models or acquisition parameters (Fig 5). We found no significant differences in CNN performance with respect to different scanner models (1-way ANOVA of Dice across 16 scanner types, $F_{11005} = 0.655, P = .84$). We also found no correlation between the number of training cases and validation performance across scanner types ($r^2 = 0.015, P = .65$, Fig 5B). Thus, the CNN generalizes well across scanner types. Similarly, there was no effect of field strength on performance (2-sample t test, $P = .22$). There was a trend toward better performance with 2D acquisition sequences ($P = .06$), noting an inherent bias in that patients with small lesions (in particular those with MS) more commonly undergo 3D acquisitions at our institution. Finally, we tested whether performance decreased when the CNN is applied to imaging from outside hospitals. In contrast, we found slightly better Dice scores on those scans obtained at outside hospitals ($P < .05$), but with no significant difference after accounting for mean lesion size ($P = .83$), which was overall larger in cases from outside hospitals.

Inference Time

One advantage of automated methods over manual lesion segmentation is processing speed. The mean inference time of the CNN on a single FLAIR volume is 28.2 ± 1.48 seconds, which includes all preprocessing steps (brain extraction, interpolation, patches, and so forth), model loading, and model application. The average inference of BIANCA for a single subject was fastest at 4.6 ± 1.35 seconds, also including relevant preprocessing steps. LST was the slowest, with a mean inference time of 1.8 minutes ± 34.0 seconds. All of these times compare favorably with those of manual lesion segmentations, which take, on average, approximately 15–20 minutes for a single FLAIR volume by an experienced individual.

DISCUSSION

This study is the first demonstration of a quantitative, automated FLAIR lesion evaluation algorithm that applies to a multitude of clinically distinct and radiologically unique pathologies. The CNN, specifically a U-Net, functions on clinical-grade images from...
a PACS. We demonstrate that this CNN performs high-quality lesion segmentations despite a number of heterogeneous scanners, image acquisition parameters, lesion sizes, and underlying diagnoses, even with modest training data (≤5 cases per diagnosis).

The CNN performs well at FLAIR lesion segmentation across these variables because of the basic commonality that all these disease pathologies share: hyperintense FLAIR signal. Our 3D-U-Net method is specifically designed for and trained on noisy real-world clinical images to identify hyperintense FLAIR signal while avoiding artifacts. The utility of an algorithm that is broadly trained on hyperintense FLAIR signal, as opposed to specific diseases, is that it can be used in clinical situations even when the diagnosis is unknown. Thus, the CNN can provide accurate lesion-volume estimates on any disease with hyperintense FLAIR signal without being extensively trained with any particular pathology, noting that specific training with 1 disease may boost performance for that disease at the detriment of others. In contrast to using disease-specific methods, we also intentionally avoided inclusion of other MR images beyond FLAIR, such as T1, in the training model because those sequences do not consistently show abnormalities across the wide range of pathologies included in the study or in neuroimaging generally.

As a result, the CNN estimates true total lesion volumes with very high fidelity across a range of 19 diseases tested here, thereby making the algorithm clinically applicable to quantitatively measuring lesion volume. The CNN outperforms current state-of-the-art algorithms in brain FLAIR lesion segmentation, as measured by Dice overlap coefficients, false-positives, false-negatives, and predictions of lesion volume. On clinical imaging, it outperforms or is equivalent to these algorithms both on those diseases for which those algorithms are designed (MS for LST and SVID for BIANCA), as well as for diseases (eg, adrenoleukodystrophy) for which no algorithms currently exist. For high-grade glioma whole-tumor segmentation, it functions at a level comparable with the winning algorithms from the Brain Tumor Image Segmentation (BraTS 2017) challenge. Overall, it functions nearly at the level of a human expert.

Another strength of the current method is that it generates accurate lesion segmentations despite a very heterogeneous array of imaging-acquisition parameters. This particular feature allows the methodology to be easily integrated into the clinical workflow because it has no specific requirements for FLAIR image acquisition. In addition to supporting the clinical workflow, the method has strong potential to be applied retrospectively in extracting quantitative lesion data from the massive amount of clinical data available in PACS storage across radiology departments. When used in combination with natural language processing on radiology reports or other diagnostic data from electronic medical records, these measures may support the association of quantitative lesion characteristics with various neurologic diseases on a large scale.

There is room for further improvement in the methodology. From a technical standpoint, we found that the most difficult cases for the CNN, as with any method, are cases with a small extent of lesions and small lesion sizes. Further developments in the neural network model architecture and training, including hyperparameter optimization, additional training cases, and/or the use of specialized techniques such as a second object localization network, may continue to boost performance in such situations. Specific training methods have been developed for avoiding false-positives, such as fine-tuning the network with more representative baseline lesion distributions or using the Dice score as the loss function.
Furthermore, while the current results are promising, there are limitations to the conclusions we can draw from this cross-sectional retrospective study. Prospective use of the technology may encounter a different typical range of lesion appearances than in our study. However, we expect the CNN to iteratively improve in such situations, further learning from the cases at an institution. The algorithm already appears to generalize well across multiple MR imaging scanners, even from outside institutions. Finally, a critically important test of the system for future clinical implementation will be to test the longitudinal precision of the methodology, to evaluate changes in lesion volume with time. Current studies are underway to address these important questions.

CONCLUSIONS

Our findings indicate that a fully-automated deep learning algorithm can achieve high performance on brain MR imaging (FLAIR) lesion segmentation across an array of different diseases and image acquisitions. It outperforms current state-of-the-art FLAIR lesion segmentation algorithms in detecting lesions and quantifying their volume, and it approaches near-human performance. We anticipate that such a system may be useful for descriptions of brain lesions in the clinical setting, replacing subjective, qualitative assessments with objective quantitative metrics, an essential component of a modern and efficient neuroradiologic workflow.

DISCLOSURES: Jeffrey D. Rudie—RELATED: Grant: National Institutes of Health T32-EB004311-10 [Research Track Radiology Residents], Radiological Society of North America Resident Research Grant [RR0778*]. UNRELATED: Grants/Grants Pending: American Society for Neuroradiology, Radiological Society of North America. Comments: I have applied for additional grants to fund related work. *Suyash Mahan—UNRELATED: Grants/Grants Pending: Galileo Clinical Decision Support. Comments: research grant.* Andreas M. Rauschecker—RELATED: Grant: Radiological Society of North America Resident Research and Education Foundation, Comments: Resident Research Grant RR0778*. Other: National Institutes of Health, Comments: T32 Training Grants: T32-EB004311-10, T32-EB00631-14*. UNRELATED: Support for Travel to Meetings for the Study or Other Purposes: American College of Radiology—Association of University Radiologists Research Scholar Program. Comments: $1000 to support travel to and presentation at the Association of University Radiologists 2018 on this work.* James C. Gee—RELATED: Grant: National Institutes of Health, Comments: National Institutes of Health grants supported the contribution and participation of me and my lab members with respect to development, evaluation, and application of methods for neuroimaging processing and analysis.* UNRELATED: Employment: University of Electronic Science and Technology of China, Comments: I receive effort support for my role as Director of Center for Health Innovation at University of Pennsylvania—University of Electronic Science and Technology of China; Stock/Stock Options: mutual funds. Comments: as part of general retirement investment portfolio; Travel/Accommodations/Meeting Expenses Unrelated To Activities Listed: various scientific societies and academic institutions, Comments: for invited scientific lectures and presentations. *Money paid to the institution.

ACKNOWLEDGMENTS

We graciously acknowledge NVIDIA for the donation of 2 Titan Xp GPUs, through their GPU Grant Program, that were used for this research.

REFERENCES

1. OECD. Health at a glance 2017: OECD indicators. October 2018 https://doi.org/10.1787/health_glance-2017-en. Accessed December 24, 2018
2. Bydder GM, Young IR. MR imaging: clinical use of the inversion recovery sequence. J Comput Assist Tomogr 1985;9:659–75 CrossRef Medline
3. Bakshi R, Ariyaratana S, Benedict RH, et al. Fluid-attenuated inversion recovery magnetic resonance imaging detects cortical and juxtacortical multiple sclerosis lesions. Arch Neurol 2001;58:742–48 CrossRef Medline
4. Villanueva-Meyer JE, Mabray MC, Cha S. Current clinical brain tumor imaging. Neurosurgery 2017;81:397–415 CrossRef Medline
5. Busby LP, Courtier JL, Glastonbury CM. Bias in radiology: the how and why of misses and misinterpretations. Radiographics 2018;38:236–47 CrossRef Medline
6. Lee CS, Nagy PG, Weaver SJ, et al. Cognitive and system factors contributing to diagnostic errors in radiology. AJR Am J Roentgenol 2013;201:611–17 CrossRef Medline
7. Korfatis P, Kline TL, Erickson BJ. Automated segmentation of hyperintense regions in FLAIR MRI using deep learning. Tomography 2016;2:334–40 CrossRef Medline
8. Artzi M, Liberman G, Naday G, et al. Differentiation between treatment-related changes and progressive disease in patients with high grade brain tumors using support vector machine classification based on DCE MRI. J Neurooncol 2016;127:515–24 CrossRef Medline
9. Yoo Y, Tang LY, Borsch T, et al. Deep learning of joint myelin and T1w MRI features in normal-appearing brain tissue to distinguish between multiple sclerosis patients and healthy controls. Neuroimage Clin 2018;17:169–78 CrossRef Medline
10. Fattaria MJ, Bonnier G, Roche A, et al. Automated detection of white matter and cortical lesions in early stages of multiple sclerosis. J Magn Res Imaging 2016;43:1445–64 CrossRef Medline
11. Lao Z, Shen D, Liu D, et al. Computer-assisted segmentation of white matter lesions in 3D MR images using support vector machine. Acad Radiol 2008;15:300–13 CrossRef Medline
12. Guerrerero R, Qin C, Oktay O, et al. White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks. Neuroimage Clin 2018;17:918–34 CrossRef Medline
13. Tsai JZ, Peng SJ, Chen YW, et al. Automated segmentation and quantification of white matter hyperintensities in acute ischemic stroke patients with cerebral infarction. PLoS One 2014;9:e104011 CrossRef Medline
14. Stone JR, Wilde EA, Taylor BA, et al. Supervised learning technique for the automated identification of white matter hyperintensities in traumatic brain injury. Brain Inj 2016;30:1458–68 CrossRef Medline
15. Rachmadi MF, Valdés-Hernández MD, Agan ML, et al. Segmentation of white matter hyperintensities using convolutional neural networks with global spatial information in routine clinical brain MRI with none or mild vascular pathology. Comp Med Imaging Graph 2018;66:28–43 CrossRef Medline
16. Habes M, Ersus G, Toledo JB, et al. White matter hyperintensities and imaging patterns of brain ageing in the general population. Brain 2016;139:1164–79 CrossRef Medline
17. Bilello M, Doshi J, Nabavizadeh SA, et al. Correlating cognitive decline with white matter lesion and brain atrophy: magnetic resonance imaging measurements in Alzheimer’s disease. J Alzheimers Dis 2015;48:987–94 CrossRef Medline
18. Viera S, Pinaya WH, Mechelli A. Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders. Neurosci Biobehav Rev 2017;74:58–75 CrossRef Medline
19. Chang PD, Kuoy E, Grinband J, et al. Hybrid 3D/2D convolutional neural network for hemorrhage evaluation on head CT. AJNR Am J Neuroradiol 2018;39:1609–16 CrossRef Medline
20. Wachinger C, Reuter M, Klein T. DeepNAT: deep convolutional neural network for segmenting neuroanatomy. Neuroimage 2018;170:434–45 CrossRef Medline
21. Norman B, Pedia V, Majumdar S. Use of 2D U-Net convolutional neural networks for automated cartilage and meniscus segmentation of knee MR imaging data to determine laxometry and morphometry. Radiology 2018;288:177–85 CrossRef Medline
22. Tao Q, Yan W, Wang Y, et al. Deep learning–based method for fully automatic quantification of left ventricle function from cine MR images: a multivendor, multicenter study. *Radiology* 2019;290:81–88 CrossRef Medline

23. Kuijf HJ, Biesbroek JM, de Bresser J, et al. Standardized assessment of automatic segmentation of white matter hyperintensities: results of the WMH segmentation challenge. *IEEE Trans Med Imaging* 2019 Mar 19. [Epub ahead of print] CrossRef Medline

24. Li H, Jiang G, Zhang J, et al. Fully convolutional network ensembles for white matter hyperintensities segmentation in MR images. *Neuroimage* 2018;183:650–65 CrossRef Medline

25. Yushkevich PA, Piven J, Hazlett HC, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. *Neuroimage* 2006;31:1116–28 CrossRef Medline

26. Avants BB, Epstein CL, Grossman M, et al. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. *Med Image Anal* 2008;12:26–41 CrossRef Medline

27. Simard PY, Steinkraus D, Platt JC. Best practices for convolutional neural networks applied to visual document analysis. Institute of Electrical and Electronic Engineers 2003;958. https://www.microsoft.com/en-us/research/publication/best-practices-for-convolutional-neural-networks-applied-to-visual-document-analysis/. Accessed April 15, 2018

28. Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. In: Navab N, Wells WM, Hornegger S, et al. Medical Imaging Computing and Computer Assisted Intervention—MICCAI. New York: Springer; 2015:234–41

29. Milletari F, Navab N, Ahmadi SA. V-net: fully convolutional neural networks for volumetric medical image segmentation. In: Stanford University. 3D Vision, 2016 Fourth International Conference, Institute of Electrical and Electronic Engineers. Los Alamitos: Conference Publishing Services, IEEE Computer Society; 2016:565–71

30. Abadi M, Agarwal A, Barham P, et al. TensorFlow: large-scale machine learning on heterogeneous systems. *arXiv* 2016;1603.04467v2. https://arxiv.org/abs/1603.04467. Accessed April 15, 2018

31. Schmidt P, Gaser C, Arsic M, et al. An automated tool for detection of FLAIR-hyperintense white-matter lesions in multiple sclerosis. *Neuroimage* 2012;59:3774–83 CrossRef Medline

32. Griffanti L, Zamboni G, Khan A, et al. BIANCA (Brain Intensity AbNormality Classification Algorithm): a new tool for automated segmentation of white matter hyperintensities. *Neuroimage* 2016;141:191–205 Medline

33. Dice LR. Measures of the amount of ecologic association between species. *Ecology* 1945;26:297–302 CrossRef

34. Taha AA, Hanbury A. Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. *BMC Med Imaging* 2015;15:29 CrossRef Medline

35. Wang G, Li W, Ourselin S, et al. Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks. *arXiv* 2017;00382. https://arxiv.org/abs/1709.00382, Accessed June 15, 2018

36. Kamnitsas K, Bai W, Ferrante E, et al. Ensembles of multiple models and architectures for robust brain tumour segmentation. *arXiv*:1711.01468. https://arxiv.org/abs/1711.01468. Accessed June 15, 2018

37. Isensee F, Kikingereder P,wick W, et al. Brain tumor segmentation and radiomics survival prediction: contribution to the BraTS 2017 challenge. February 2018. https://www.researchgate.net/publication/323471060_Brain_Tumor_Segmentation_and_Radiomics_Survival_Prediction_Contribution_to_the_BRATS_2017_Challenge. Accessed April 15, 2018