Lefty Blocks a Subset of TGFβ Signals by Antagonizing EGF-CFC Coreceptors

Simon K. Cheng1, Felix Olale1, Ali H. Brivanlou2, Alexander F. Schier1*

1 Developmental Genetics Program, Skirball Institute of Biomolecular Medicine, and Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America, 2 Laboratory of Molecular Vertebrate Embryology, The Rockefeller University, New York, New York, United States of America

Members of the EGF-CFC family play essential roles in embryonic development and have been implicated in tumorigenesis. The TGFβ signals Nodal and Vg1/GDF1, but not Activin, require EGF-CFC coreceptors to activate Activin receptors. We report that the TGFβ signaling antagonist Lefty also acts through an EGF-CFC-dependent mechanism. Lefty inhibits Nodal and Vg1 signaling, but not Activin signaling. Lefty genetically interacts with EGF-CFC proteins and competes with Nodal for binding to these coreceptors. Chimeras between Activin and Nodal or Vg1 identify a 14 amino acid region that confers independence from EGF-CFC coreceptors and resistance to Lefty. These results indicate that coreceptors are targets for both TGFβ agonists and antagonists and suggest that subtle sequence variations in TGFβ signals result in greater ligand diversity.

Introduction

The analysis of whole-genome sequences has revealed that most signaling systems consist of multiple ligands that converge on a relatively small set of receptors and pathway-specific transcription factors. In the case of human transforming growth factor-β (TGFβ) signaling, 42 TGFβs converge on seven type I receptors, five type II receptors, and two classes of Smad signal transducers (reviewed in Shi and Massague 2003). This convergence has raised the question of how ligand diversity and signaling specificity among different signals can be achieved. If different TGFβs activate the same receptors, it is unclear how these ligands can vary in their function (diversity) or how a given signal can have a unique role (specificity). Biochemical studies have suggested that ligand diversity can be attained by differential stability and receptor affinity, leading to differences in signaling strength (reviewed in Pick et al. 1999; Shi and Massague 2003). An additional source of ligand variability stems from differential ligand movement through a field of cells, rendering related signals either short- or long-range (Chen and Schier 2001). Finally, specificity and diversity can also be determined by ligand-specific cofactors or inhibitors (Pick et al. 1999; Shi and Massague 2003). A prominent example involves epidermal growth factor–Cripto/FRL-1/Cryptic (EGF-CFC) coreceptors and the TGFβs Activin, Nodal, and Vg1/GDF1 (growth and differentiation factor-1). In this case, differential dependence on a coreceptor leads to ligand diversity and signaling specificity (reviewed in Schier 2003).

Members of the Nodal, Activin, and Vg1/GDF1 subfamilies display similar activities and are potent mesendoderm inducers in vertebrates (reviewed in Schier and Shen 2000). Genetic and biochemical studies have shown that EGF-CFC proteins are essential for signaling by Nodal and Vg1/GDF1 (Gritsman et al. 1999; Reissmann et al. 2001; Yeo and Whitman 2001; Bianco et al. 2002; Sakuma et al. 2002; Yan et al. 2002; Cheng et al. 2003). EGF-CFC proteins are extracellular glycosylphosphatidylinositol (GPI)-linked factors and include One-eyed pinhead (Oep) in zebrafish and mammalian Cripto and Cryptic (reviewed in Shen and Schier 2000; Minchiotti et al. 2002; Schier 2003). Genetic studies in zebrafish and mouse have shown that EGF-CFC proteins and Nodal are required for mesoderm and endoderm induction (Conlon et al. 1991, 1994; Zhou et al. 1993; Ding et al. 1998; Feldman et al. 1998; Gritsman et al. 1999). For example, zebrafish embryos lacking both the maternal and zygotic contribution of Oep (MZoep) lack all endoderm and most mesoderm, similar to the double mutants for the zebrafish Nodal-related genes cyclops and squint (sqf) (Feldman et al. 1998; Gritsman et al. 1999). Moreover, Nodal and Vg1/GDF1 are inactive in MZoep mutants (Gritsman et al. 1999; Cheng et al. 2003). During later stages of development, Oep, Cryptic, Nodal, and GDF1 are required for proper left–right axis formation (Gaio et al. 1999; Yan et al. 1999; Bamford et al. 2000; Rankin et al. 2000; Brennan et al. 2002; Long et al. 2003).

The EGF-CFC protein Cripto is highly overexpressed in human epithelial cancers, such as breast and colon carcinomas (reviewed in Salomon et al. 2000), and has been implicated in tumorigenesis (Ciardiello et al. 1991, 1994; Baldassarre et al. 1996; De Luca et al. 2000; Salomon et al. 2000; Adkins et al. 2003). The mechanism by which Cripto mediates tumorigenesis is not well understood. Several possibilities include mediating Nodal/GDF1 signaling (Gritsman et al. 1999; Reissmann et al. 2001; Yeo and Whitman 2001; Bianco et al. 2002; Sakuma et al. 2002; Yan et al. 2002; Cheng et al. 2003). Genetic studies in...
Lefty overexpression in zebrafish induces mers due to the lack of a cysteine residue involved in signaling (reviewed in Hamada et al. 2002; Schier 2003). Biochemically, EGF-CFC proteins can act as coreceptors for Nodal and Vg1/GDF1 to bind and activate the type I Activin receptor Alk4 and the type II Activin receptor ActRIIB (Reissmann et al. 2001; Yeo and Whitman 2001; Sakuma et al. 2002; Yan et al. 2002; Bianco et al. 2002; Cheng et al. 2003). In the absence of EGF-CFC proteins, these TGFβs cannot form a complex with Activin receptors. Strikingly, Activin utilizes the same receptors as Nodal and Vg1/GDF1, but does not require EGF-CFC coreceptors (Mathews and Vale 1991; Attisano et al. 1992, 1996; Hemmati-Brivanlou and Melton 1992; Mathews et al. 1992; ten Dijke et al. 1994; Chang et al. 1997). For instance, Activin can signal in MZoep mutants (Gritsman et al. 1999). This ligand diversity between Activin and Nodal or Vg1/GDF1 raises the question of which sequences confer coreceptor dependence or independence. Activin, Nodal, and Vg1/GDF1 are highly related and are thought to acquire very similar folds. Like other TGFβ ligands, Activin has four major structural features: a β-stranded Finger 1, an α-helical Heel, a β-stranded Finger 2, and three conserved disulfide bonds that form a cysteine knot (Shi and Massague 2003; Thompson et al. 2003). Sequence comparisons indicate that the highest divergence among Activin, Nodal, and Vg1/GDF1 is in the N-terminal segment of Finger 1, the central α-helix, and the loop of Finger 2 with approximately 10%, approximately 15%, and approximately 25% sequence identity, respectively. These regions are potential candidates to determine the specificity of receptor–coreceptor–ligand interactions.

In addition to coreceptors, antagonists represent another class of extracellular factors that control ligand access to receptors (reviewed in Piek et al. 1999; Freeman 2000; De Robertis et al. 2001; Shi and Massague 2003). For example, the divergent TGFβ class of Lefty proteins antagonizes Nodal signaling (reviewed in Hamada et al. 2002; Schier 2003). Unlike other TGFβs, Lefty proteins may function as monomers due to the lack of a cysteine residue involved in dimerization (Meno et al. 1996; Thisse and Thisse 1999; Sakuma et al. 2002). Lefty overexpression in zebrafish induces phenotypes identical to cyclopsqt double mutants and MZoep mutants (Bisgrove et al. 1999; Meno et al. 1999; Thisse and Thibes 1999). Furthermore, the loss of Lefty activity leads to enhanced Nodal signaling during mesoderm induction and left–right axis determination (Meno et al. 1999, 2001; Agathon et al. 2001; Branford and Yost 2002; Chen and Schier 2002; Feldman et al. 2002). Although it has not been determined whether Lefty directly blocks Vg1/GDF1 signaling (Branford et al. 2000), it has been proposed that Lefty inhibits signaling by Activin. Misexpression of Activin or ActRIIB can overcome the inhibitory effects of Lefty (Meno et al. 1999; Thisse and Thibes 1999; Cheng et al. 2000; Tanegashima et al. 2000; Sakuma et al. 2002). Hence, some members of the Lefty family have been called Antivins for their anti-Activin properties (Thisse and Thisse 1999; Cheng et al. 2000; Ishimaru et al. 2000; Tanegashima et al. 2000). However, it has been elusive how Lefty functions at the molecular level.

Here we present genetic and biochemical studies in zebrafish and *Xenopus* that indicate that Lefty is an in vivo antagonist of EGF-CFC coreceptors. We find that Lefty can antagonize signaling by the coreceptor-dependent ligands Nodal and Vg1/GDF1, but not Activin. Lefty genetically interacts with Cripto and Oep and competes with Nodal for binding to Cripto, representing a novel mechanism for antagonizing TGFβ signaling. We identify a short region in Finger 2 of Activin, Nodal, and Vg1 that determines EGF-CFC coreceptor-dependent or coreceptor-independent signaling and governs susceptibility to Lefty. These results indicate that subtle sequence variations in TGFβ ligands can dramatically expand signaling diversity by determining interactions with coreceptors and their antagonists.

Results

Lefty Antagonizes Nodal and Vg1 Signaling, but Not Activin Signaling

TGFβ ligands that activate Activin receptors can be categorized into two classes. The Activin class activates Activin receptors in an EGF-CFC coreceptor-independent manner, whereas the Nodal and Vg1/GDF1 classes require EGF-CFC proteins for receptor activation (Gritsman et al. 1999; Cheng et al. 2003). To determine whether these classes are also differentially susceptible to inhibition by the TGFβ antagonist Lefty, we coexpressed zebrafish Lefty1 with *Xenopus* ActivinβB, *Xenopus* ActivinβA, Sqt (a zebrafish Nodal-related protein), or zebrafish Vg1 (a chimeric molecule containing the *Xenopus* ActivinβB prodomain fused to the mature domain of zebrafish Vg1) in zebrafish embryos (Smith et al. 1990; Thomsen et al. 1990; van den Eijnden-Van Raaij et al. 1990; Helde and Grunwald 1993; Erter et al. 1998; Feldman et al. 1998; Thisse and Thibes 1999). As a readout for active signaling, we analyzed the ectopic induction of the Nodal downstream gene *goosecoid* (*gsc*). ActivinβB, ActivinβA, Sqt, and Vg1-induced ectopic *gsc* expression in wild-type embryos (Figure 1D, 1G, 1J, and 1M; Gritsman et al. 1999; Cheng et al. 2003). Coexpression of Lefty1 efficiently inhibited *gsc* induction by Sqt (Figure 1K and 1L; Gritsman et al. 1999; Meno et al. 1999; Thisse et al. 2000) and Vg1 (Figure 1N and 1O), but not ActivinβB or ActivinβA (Figure 1E, 1F, 1H, and 1I). To examine whether Lefty1 can antagonize the induction of a gene that responds to very low levels of Activin signaling, we titrated ActivinβB levels so that no tail (*ntl*; also known as *brachyury/T*) expression was only weakly induced (see arrowhead in Figure 1A). The coexpression of Lefty1 did not inhibit *ntl* induction by ActivinβB (Figure 1B and 1C), but inhibited the dorsal margin expression of *ntl* that is dependent on endogenous Nodal signaling (see asterisks in Figure 1B and 1C; Feldman et al. 1998). In a more quantitative assay, we overexpressed Lefty1, ActivinβB, Sqt, and Vg1 in zebrafish embryos in the presence of the luciferase reporter A3-luc, which contains FoxH1/β-Smad2 response elements (Chen et al. 1996). Consistent with the *gsc* and *ntl* induction assays, Sqt and Vg1 signaling, but not ActivinβB signaling, is inhibited by Lefty1 (Figure 1P). These results indicate that Lefty1 efficiently antagonizes Nodal and Vg1/GDF1 signaling, but not Activin signaling.
expression in activin βB and activin βA mRNA-injected embryos was not inhibited by Lefty1 (E and F and H and I, respectively). In contrast, ectopic gsc expression in sqt and Vg1 mRNA-injected embryos was inhibited by both levels of Lefty expression (K and L and N and O, respectively). Wild-type embryos (P) were injected with 10 pg (low) and 20 pg (high) of gsc mRNA, 100 pg of Lefty1, and 400 pg of LacZ mRNA. Smad2 pathway activation was measured by an Activin response element luciferase reporter, A3-luc. Values are folds over wild-type control injected with 500 pg of LacZ mRNA and A3-luc reporter. An asterisk indicates a significant difference from the level of activation with ligand and LacZ expression alone (Student's t-test, p < 0.05).

DOE: 10.1371/journal.pbio.0020030.g001

EGF-CFC Proteins Genetically Interact with Lefty

The molecular mechanism of Lefty action has been unresolved. Lefty seems to act upstream of the Activin receptors, as Lefty cannot block signaling from ligand-independent constitutively activated receptors (Thisse and Thisse 1999). Our finding that Lefty blocks Nodal and Vg1 signaling, but not Activin signaling, suggests that Lefty blocks extracellular components specific to the Nodal and Vg1 pathways. The only such factors identified to date are the EGF-CFC coreceptors. We therefore examined whether the EGF-CFC genes zebrafish oep and mouse Cripto genetically interact with Lefty1. Overexpression of Lefty1 in wild-type zebrafish resulted in embryos lacking head and trunk mesendoderm due to inhibition of endogenous Nodal signaling (Figure 2A1 and 2A2; Bisgrove et al. 1999; Meno et al. 1999; Thisse and Thisse 1999). Coexpression of Cripto or Oep partially suppressed Lefty-induced defects (Figure 2B1–2B3; data not shown), restoring trunk and head mesoderm, including the notochord, and resulting in the separation of the eye field into two eyes. These results indicate an antagonistic relationship between EGF-CFC coreceptors and Lefty1.

Lefty Binds to Cripto, but Not to ActRIIB or Alk4

Because Lefty and EGF-CFC proteins interact genetically, we examined whether Lefty interacts biochemically with Cripto and/or ActRIIB/Alk4 receptor complexes. We expressed and immunoprecipitated epitope-tagged ligands (zebrafish Lefty1/HA [hemagglutinin], zebrafish Lefty1/Glu, or zebrafish Sqt/HA), receptors (mouse ActRIIB[KR]/Myc and human Alk4[KR]/Flag), and a coreceptor (mouse Cripto/Flag) in Xenopus embryos (Yeo and Whitman 2001; Cheng et al. 2003). Similar to other Nodal-related proteins (Reissmann et al. 2001; Yeo and Whitman 2001; Bianco et al. 2002; Sakuma et al. 2002; Yan et al. 2002), Sqt formed a complex with the type II receptor ActRIIB, type I receptor Alk4, and Cripto (Figure 3A). In contrast, Lefty1 coimmunoprecipitated Cripto, but not ActRIIB or Alk4 (Figure 3A). Since Cripto is bound to Alk4 even in the absence of ligand (Reissmann et al. 2001; Yeo and Whitman 2001; Bianco et al. 2002; Yan et al. 2002), Lefty seemed to disrupt the Cripto–Alk4 interaction. In reverse experiments, Cripto efficiently coimmunoprecipitated Lefty1 (Figure 3B). Since Sqt and Lefty1 can both bind to Cripto (Figure 3C; Reissmann et al. 2001; Yeo and Whitman 2001; Bianco et al. 2002; Sakuma et al. 2002; Yan et al. 2002), these two ligands might compete for binding to Cripto. Indeed, the coexpression of Lefty1 led to decreased interactions between Cripto and Sqt (Figure 3C). To determine whether Cripto can directly interact with Lefty, we immunoprecipitated purified mouse Lefty1 protein (mLefty1) in the presence of either purified mouse Cripto protein or a control cysteine-rich protein, mouse vascular endothelial growth factor-D (VEGF-D). mLefty1 protein directly interacted with Cripto, but not with VEGF-D. Together, these results suggest that Lefty inhibits Nodal signaling by associating with Cripto and blocking it from interacting with Nodal.

Activin Loop-βB Region Confers EGF-CFC Coreceptor Independence to Sqt

The finding that TGFβ ligands that activate Activin receptors can be grouped into a EGF-CFC coreceptor-dependent class that is susceptible to inhibition by Lefty (Nodal and Vg1) and a class that is independent of EGF-CFC proteins and resistant to Lefty (Activin) prompted us to examine which sequences underlie this ligand diversity. We therefore generated chimeras between Activins (EGF-CFC-independent) and Sqt or Vg1 (EGF-CFC-dependent) (Figures
As a readout for active signaling, we injected mRNAs encoding these chimeric ligands into wild-type and MZoep zebrafish embryos and analyzed the ectopic induction of the downstream genes ntl and gsc. Sqt, Vg1, and Activins induced these genes in wild-type embryos, allowing us to determine which chimeric ligands were active. Activins, but not Sqt or Vg1, were active in MZoep mutants, allowing us to test which sequences conferred EGF-CFC coreceptor dependence or independence.

Initially, swaps of the Finger 1, Heel, or Finger 2 domains of Sqt and ActivinB were generated. As shown in Figure 4, the Finger 2 region of ActivinB contains sequence determinants...
that conferred EGF-CFC-independent activity on chimeric ligands. Chimeric SSA, ASA, and SAA that contain the Finger 2 region of ActivinβB were active in both wild-type and MZoep embryos (Figure 4A). To further delineate this region, we generated additional chimeras (Figure 5B). Short stretches of full-length Sqt were replaced by the corresponding region of ActivinβB, including the β6β7, loop, β8, or β9 subregions (Figure 5A and 5B; data not shown). Analysis of these chimeras revealed that the 14 amino acids encoding the loop and β8 region of ActivinβB (Sqt^{Act}β8^{loop}ββ_B; the bracketed region in superscript denotes substituted domains) were sufficient to confer EGF-CFC independence. Further dissection of this region into loop alone (Sqt^{Act}β8^{loop}ββ_B) yielded no or much weaker activity in MZoep mutants as compared with wild-type embryos (Figure 5B and 5C). These results suggest that a 14 amino acid region in Activin is sufficient to confer EGF-CFC independence when placed into Sqt.

Activin Loop-β8 Region Confers EGF-CFC Coreceptor Independence to Vg1

To determine whether the loop-β8 region has a wider role in conferring coreceptor independence, we generated additional chimeras using ActivinβA (another EGF-CFC-independent ligand) and Vg1. Sqt^{Actβ8^{loop}ββ_B} (full-length Sqt with an ActivinβA loop-β8 region) and Vg1^{Actβ8^{loop}ββ_B} (Vg1 with an ActivinβB loop-β8 region) both induced gsc expression in MZoep mutants with similar efficiencies as in wild-type embryos (Figure 5D). These results were also corroborated using the A3-luc reporter assay (Figure 5E) and suggest that the loop-β8 region has a general role in conferring EGF-CFC coreceptor independence.

Activin Loop-β8 Region Confers Binding to Activin Receptors in the Absence of EGF-CFC Coreceptors

Sqt^{Actβ8^{loop}ββ_B} can signal in an EGF-CFC-independent manner in vivo, suggesting that this chimeric protein might bind to ActRIIB and Alk4 receptors in the absence of EGF-CFC coreceptors. To test this idea, we coexpressed and immunoprecipitated epitope-tagged ligands (ActivinβB/HA, Sqt/HA, Sqt^{Actβ8^{loop}ββ_B}/HA), receptors (ActRIIB[KR]/Myc and Alk4[KR]/Flag), and a coreceptor (Cripto/Flag) in Xenopus embryos (Yeo and Whitman 2001; Cheng et al. 2003). We found that Sqt binding to the ActRIIB and Alk4 receptor complex required Cripto (Figure 5F). In contrast, ActivinβB and Sqt^{Actβ8^{loop}ββ_B} can bind to Activin receptors in the absence of Cripto. Moreover, Cripto did not significantly increase Sqt^{Actβ8^{loop}ββ_B} ligand–receptor complex formation. These results indicate that the loop-β8 region is a determinant of TGFβ ligand binding to Activin receptors independent of EGF-CFC coreceptors.

Multiple Residues in the Loop-β8 Region Contribute to Coreceptor Independence

An alignment of the loop-β8 region of EGF-CFC-dependent and EGF-CFC-independent TGFβs (Figure 5A) reveals the

![Figure 4. Chimera Analysis to Identify TGFβ Sequence Determinants Conferring EGF-CFC Coreceptor Dependence or Independence](image-url)
Figure 5. Sequence Determinants Conferring Independence from EGF-CFC Coreceptors

(A) Sequence alignment of Finger 2 region of EGF-CFC-dependent and EGF-CFC-independent TGFβ ligands. Location of secondary structure elements, β-sheets (β6–β9) and loop, are shown (Kirsch et al. 2000). Residue numbering is from mouse Activin B.

(B–E) Synthetic mRNAs (200 pg) encoding chimeras of Finger 2 subregions between *Xenopus* Activin B or Activin A and zebrafish Sqt or Vg1
were injected into wild-type and MZoep embryos. Schematic is not drawn to scale. gsc and ntl mRNA expression is at shield stage; animal pole views are dorsal to the right.

(B) Sqt\(^{\text{AcB}}\)[loop\(^{\text{B1B2P1B2}}\)] and Sqt\(^{\text{Vg}}\)[loop\(^{\text{B1B2P1B2}}\)] can induce gsc and ntl expression in both wild-type and MZoep embryos.

(C) Sqt\(^{\text{Vg}}\)[loop\(^{\text{B1B2P1B2}}\)] can weakly expand ntl expression in MZoep mutants. ntl mRNA expression in MZoep mutants is at shield stage; lateral view.

(D) Other TGF\(\beta\)s conform to loop-B8 EGF-CFC-independent determinant. Note that Xenopus Activin\(\beta\)A can induce ectopic gsc in both wild-type and MZoep embryos. In contrast, Vg1 can only induce gsc in wild-type embryos. Similar to Activins, chimeric Sqt\(^{\text{Vg}}\)[loop\(^{\text{B1B2P1B2}}\)] and Vg1\(^{\text{AcB}}\)[loop\(^{\text{B1B2P1B2}}\)] can induce ectopic gsc in both wild-type and MZoep embryos.

(E) Wild-type and MZoep embryos were injected with 5 pg of activin\(\beta\)B, 100 pg of sqt, 100 pg of Vg1, 125 pg of Sqt\(^{\text{AcB}}\)[loop\(^{\text{B1B2P1B2}}\)], 250 pg of Sqt\(^{\text{AcB}}\)[loop\(^{\text{B1B2P1B2}}\)], or 100 pg of Vg1\(^{\text{AcB}}\)[loop\(^{\text{B1B2P1B2}}\)] mRNA. Smad2 pathway activation was measured by an Activin response element luciferase reporter, A3-luc. Luciferase units are relative to wild-type or MZoep control injected with the A3-luc reporter alone.

(F) Sqt\(^{\text{AcB}}\)[loop\(^{\text{B1B2P1B2}}\)] can bind to ActRIIB and Alk4 in the absence of EGF-CFC coreceptors. RNAs (1 ng each) encoding ActRIIB(KR)/Myc, Alk4(KR)/Flag, Cripto/Flag, Activin\(\beta\)B/HA, Sqt/HA, or Sqt\(^{\text{AcB}}\)[loop\(^{\text{B1B2P1B2}}\)]/HA were injected into Xenopus embryos. Proteins in the coimmunoprecipitates and total extracts were probed in Western blot analysis with the indicated antibodies: ActRIIB(KR)/Myc (approximately 120 kDa; anti-Myc), Alk4(KR)/Flag (approximately 70 kDa; anti-Flag), Cripto/Flag (approximately 30 kDa; anti-Flag), Activin\(\beta\)B/HA (mature ligand, approximately 16 kDa; anti-HA), Sqt/HA (mature ligand, approximately 22 kDa; anti-HA), and Sqt\(^{\text{AcB}}\)[loop\(^{\text{B1B2P1B2}}\)]/HA (mature ligand, approximately 22 kDa; anti-HA).

DOI: 10.1371/journal.pbio.0020030.g005

presence of several residues unique to Activins. These include (i) a Lys102-X-Asp104 motif (numbering from Activin\(\beta\)A) that forms a significant binding interface with the type II receptor ActRII (Wuytens et al. 1999; Greenwald et al. 2003; Thompson et al. 2003); (ii) Gin/Pro106 and Asn107, which contribute to the dimerization interface responsible for conformational arrangement (Thompson et al. 2003); and (iii) an Asn insertion at position 99. We therefore mutated the corresponding residues in Sqt, individually or in combination, to the Activin\(\beta\)B sequence and tested them in the gsc induction assay (Figure 6). All constructs were active in wild-type embryos. The Sqt3 and Sqt5 constructs containing the Lys102-X-Asp104 motif and Asn99 insertion showed weak expansion of ntl expression and dorsally in MZoep mutants. The incorporation of Pro106–Asn107 (Sqt2, Sqt4, and Sqt5) in Sqt did not enhance activity in MZoep mutants. These results suggest that multiple residues contribute to coreceptor independence, with the type II receptor-binding interface being an essential determinant.

The Loop-B8 Region in Sqt Is Inhibitory

The results described above identified the loop-B8 region of Activin as a region that confers coreceptor-independent signaling to ligands that are normally EGF-CFC-dependent. In a reverse set of experiments, we asked which regions confer dependence on EGF-CFC coreceptors. To identify domains that confer EGF-CFC dependence, chimeras between Activin\(\beta\)B and Sqt (see Figures 4 and 7) were analyzed for their inability to signal in MZoep mutants. Chimeras containing the Sqt Finger 2 domain (AAS and ASS; see Figure 4) or only the Sqt loop-B8 region (Act\(^{\text{Sqt\[loop\]B8}}\), Figure 7) were inactive in both wild-type and MZoep embryos. Western blot analysis demonstrated that these chimeras generate stable ligands (data not shown). The addition of Finger 1 in SAS or Act\(^{\text{Sqt(Finger1-loopB8)}}\) relieved the inhibitory effect of the loop-B8 region of Sqt in wild-type embryos (Figure 7). These chimeras were inactive in MZoep mutants. These results indicate that the loop-B8 region in Sqt acts as an inhibitory domain and that Finger 1 relieves this inhibition by conferring dependence on EGF-CFC coreceptors.

Specificity of Antagonism by Lefty Is Determined by EGF-CFC Coreceptor Dependence

Our genetic and biochemical studies suggested that Lefty blocks Nodal and Vg1 signaling via EGF-CFC coreceptors. In contrast, the coreceptor-independent signaling by Activins cannot be blocked by Lefty. This finding predicts that the EGF-CFC-independent chimeric ligands Sqt\(^{\text{AcB}}\)[loop\(^{\text{B1B2P1B2}}\)], Sqt\(^{\text{Vg}}\)[loop\(^{\text{B1B2P1B2}}\)], and Vg1\(^{\text{AcB}}\)[loop\(^{\text{B1B2P1B2}}\)] should also be resistant to Lefty. Conversely, the coreceptor-dependent chimera Act\(^{\text{Sqt(Finger1-loopB8)}}\) should be susceptible to inhibition by Lefty. To test this hypothesis, we coexpressed chimeric ligands and Lefty1 and analyzed gsc expression and A3-luc reporter induction (Figure 8A–8M). As predicted, Lefty1 did not inhibit signaling by Sqt\(^{\text{AcB}}\)[loop\(^{\text{B1B2P1B2}}\)] (Figure 8B and 8C), Sqt\(^{\text{AcB}}\)[loop\(^{\text{B1B2P1B2}}\)] (Figure 8E and 8F), or Vg1\(^{\text{AcB}}\)[loop\(^{\text{B1B2P1B2}}\)] (Figure 8H and 8I), but antagonized Act\(^{\text{Sqt(Finger1-loopB8)}}\) (Figure 8K and 8L). These results indicate that the incorporation of the Activin loop-B8 region into Nodal and Vg1 can render these ligands EGF-CFC-independent and therefore resistant to Lefty.

Discussion

Lefty Antagonizes EGF-CFC Coreceptors

Lefty molecules are key regulators of mesendoderm development and left–right axis determination, but the molecular basis of Lefty-mediated antagonism of Activin-like pathways has been elusive (Hamada et al. 2002; Schier 2003). Our genetic and biochemical studies provide three lines of evidence that Lefty blocks EGF-CFC coreceptors. First, Lefty only inhibits EGF-CFC-dependent TGF\(\beta\) ligands such as Nodal and Vg1, but not EGF-CFC-independent ligands such as Activins. A striking example of this coreceptor-specific interaction is the finding that changing only 14 amino acids in Nodal or Vg1 to the corresponding residues in Activins renders the resulting TGF\(\beta\) ligands independent of EGF-CFC coreceptors and resistant to Lefty. Second, the EGF-CFC proteins mouse Cripto and zebrafish Oep can partially suppress the effects of Lefty overexpression in zebrafish. Third, Leftys can bind to EGF-CFC coreceptors and block the coreceptors from interacting with Nodal. Furthermore, Lefty EGF-CFC complexes seem to exclude interactions with type I and type II Activin receptors. Taken together, these results indicate that Lefty blocks a subset of TGF\(\beta\) signals by the novel mechanism of blocking pathway-specific coreceptors (Figure 9A–9D).

The observation that Lefty does not block signaling by Activin seems in apparent contrast to previous studies that led to naming some Lefty family members Antivins, for their anti-Activin properties (Thisseth and Thissie 1999; Cheng et al. 2000; Ishimaru et al. 2000; Tanegashima et al. 2000). In particular, it has been found that misexpression of Activin can suppress the defects caused by Lefty misexpression in vivo (Thisseth and Thissie 1999). Our results do not undermine this finding, but suggest an alternative explanation. Previous studies have shown that Activin can suppress the loss of EGF-
CFC activity in MZoep mutants (Gritsman et al. 1999; Cheng et al. 2003). Analogously, we suggest that the blocking of EGF-CFC activity by Lefty can be bypassed by Activin, because this ligand can activate Activin receptors independent of coreceptors. A similar scenario can also account for the suppression of Lefty gain-of-function phenotypes by misexpression and activation of Activin receptors (Meno et al. 1999; Thistle and Thistle 1999; Sakuma et al. 2002). Hence, Activin and Activin receptors bypass the loss of EGF-CFC coreceptor function that is caused either by mutations in oep or by overexpression of Lefty. Conversely, Lefty cannot block Activin signals and Activin receptors because of their independence from EGF-CFC coreceptors.

Is the block of EGF-CFC coreceptors by Lefty a general and conserved mechanism? Although we have only analyzed a representative subset of these protein families (zebrafish and mouse Lefty1; zebrafish Oep; mouse Cripto; zebrafish Sqt), previous studies have suggested that heterologous Nodal, Lefty, and EGF-CFC proteins have similar activities in zebrafish (Schier 2003). For example, mouse Nodal, mouse Lefty2, and mouse Cripto are active in zebrafish, despite less than 30% overall sequence conservation with their zebrafish counterparts (Toyama et al. 1995; Meno et al. 1999; Gritsman et al. 1999). These studies suggest that the molecular mechanisms described here apply to most, if not all, Nodall/Lefty/EGF-CFC interactions. This does not exclude the possibility that Lefty has additional means of blocking TGFβ signaling. First, Leftys might block the processing of Nodals. However, Sqt is processed normally at levels of Lefty that block Nodal signaling (unpublished data). Second, Leftys might bind Nodal signals. This could result in blocking receptor interactions or antagonizing TGFβ dimerization. However, Sqt is not bound by Lefty at Lefty levels that block Nodal signaling and lead to complex formation with Cripto (unpublished data). Moreover, a Sqt protein containing the loop-β8 region of Activin is resistant to Lefty, whereas changing only the dimerization residues in this region does not confer resistance. Third, Leftys might interact with additional extracellular factors. Indeed, the overexpression of the extracellular domain of the type II receptor ActRIIB has been shown to suppress Lefty activity (Meno et al. 1999). Although zebrafish Lefty1 does not appear to bind to ActRIIB, it is conceivable that overexpression of soluble ActRIIB might protect EGF-CFC coreceptors or another yet-to-be-identified protein from antagonism by Lefty. In addition, overexpression of EGF-CFC proteins in zebrafish does not induce dominant phenotypes (Gritsman et al. 1999). It is therefore possible that an additional factor would be required to completely block Lefty in these experiments. Alternatively, overexpression levels of EGF-CFC coreceptors might not be high enough to block Lefty at blastula stages. It is also possible that coreceptor overexpression might block Nodal signals, because it has been shown that EGF-CFC proteins and Nodals can directly interact. The complex feedback interactions between Lefty and Nodal might also overcome an initial reduction of Lefty activity by increasing Lefty transcription. These considerations and the data presented here therefore suggest that a major, but perhaps not exclusive, role of Leftys is to block a subset of TGFβ signals by interaction with EGF-CFC coreceptors.

Implications for the Role of Lefty during Development

Our finding that Leftys can block Vg1 signaling also has important implications for the developmental control of TGFβ signaling. Based on previous studies revealing that Lefty proteins inhibit Nodal signaling, the mouse Lefty mutant phenotypes have been interpreted as a consequence of increased or sustained Nodal signaling (Hamada et al. 2002; Schier 2003). For example, loss of mouse Lefty2 has been thought to increase Nodal signaling, resulting in an enlarged primitive streak (Meno et al. 1999). Similarly, the left–right defects observed in mouse Lefty1 and left–side-specific Lefty2 (Lefty2ΔASX) mutants have been thought to be caused by inappropriate spread of Nodal signaling (Meno et al. 1998, 2001). Our finding that Vg1/GDF1 signaling can also be blocked by Lefty suggests a more complex scenario. In particular, GDF1 (the mouse homologue of Vg1) is required for proper left–right axis determination (Rankin et al. 2000). GDF1 mutants appear to have the opposite phenotypes as Lefty1 and Lefty2ΔASX mutants. While GDF1 promotes the expression of left-side-specific genes such as Pitx2 on the left, Leftys appear to block Pitx2 expression on the right (Meno et al. 1998, 2001; Rankin et al. 2000). In light of our findings, we suggest that during left–right axis formation, Leftys act as antagonists of not only Nodal, but also GDF1. In this scenario, loss of Lefty1 or Lefty2 would lead to ectopic and sustained expression of left-side-specific genes such as Pitx2.
inactive in both wild-type and MZoep embryos. In AcSqt(loop8), the additional substitution of Sqt Finger 1 region relieves the inhibitory presence of the Sqt loop-B8 region. Similar to Sqt, AcSqt(loop8) can induce ectopic gsc and ntl in wild-type, but not in MZoep embryos. Western blot analysis indicates that these chimeric constructs produce stable ligands (data not shown).

DOI: 10.1371/journal.pbio.0020030.g007

GDF1 signaling. This model is particularly attractive when one considers the expression patterns of Lefty1, Lefty2, the EGF-CFC gene Cryptic, Nodal, and GDF1. Lefty 1 and GDF1 are coexpressed in the developing midline (Meno et al. 1996, 1997; Rankin et al. 2000), whereas Lefty2 and Nodal are coexpressed in left-lateral plate mesoderm (Conlon et al. 1994; Meno et al. 1997). Cryptic is expressed in both the lateral plate and midline (Shen et al. 1997). It is therefore conceivable that GDF1 signaling is restricted by Lefty1-mediated inhibition of Cryptic in the midline and its progenitors, whereas Nodal signaling is antagonized by Lefty2-mediated block of Cryptic in the lateral plate.

Our results might also have implications for the role of Cripto in tumorigenesis. Cripto is highly overexpressed in human epithelial cancers, such as breast and colon carcinomas (Salomon et al. 2000), and has been implicated in tumor formation (Ciardiello et al. 1991, 1994; Baldassarre et al. 1996; De Luca et al. 2000; Salomon et al. 2000; Adkins et al. 2003). Although the mechanisms by which Cripto acts in these circumstances are unclear, inhibition of Cripto by antisense or antibody blockade can inhibit tumor cell proliferation (Ciardiello et al. 1994; Baldassarre et al. 1996; De Luca et al. 2000; Adkins et al. 2003; reviewed by Shen 2003). Since Lefty is an in vivo antagonist of EGF-CFC activity, it might also serve as a therapeutic agent to block Cripto.

Subtle Sequence Differences Determine the Interaction with Coreceptors and Inhibitors

The finding that the highly related ligands Activin, Nodal, and Vg1/GDF1 activate the same receptors but differ in their dependence on coreceptors allowed us to determine how ligand diversity and signaling specificity can be achieved. We have identified the loop-B8 region as a 14 amino acid domain, a mere 4% of the entire TGFβ8 signal, that contributes to coreceptor dependence or independence. Sqt and Vg1 incorporating the loop-B8 region of Activin can bind to the Activin receptors in the absence of EGF-CFC proteins. Conversely, Activin incorporating the loop-B8 region of Sqt is inactive, suggesting that the Nodal/Vg1 loop-B8 region might be inhibitory. This inhibition can be relieved by the Finger 1 domain of Sqt, which results in the dependence on EGF-CFC coreceptors (Figure 9D). These results indicate that rather subtle sequence variations can lead to striking changes in ligand diversity.

Structural considerations suggest that the loop-B8 region determines coreceptor independence or dependence at least in part by its interactions with type II receptors. The
conserved Lys102–X–Asp104 motif in the Activin loop-β8 region has been shown to be important for high-affinity binding to the ActRII receptor (Wuytens et al. 1999; Greenwald et al. 2003; Thompson et al. 2003). In the crystal structure of the ActivinB–ActRIIB complex, Lys102–X–Asp104 forms an intramolecular salt bridge that interacts with a hydrophobic interface on ActRIIB (Thompson et al. 2003). Mutational analysis has shown that substituting Lys102 with a neutral charge (Ala) significantly reduces receptor binding affinity and signaling (Wuytens et al. 1999). In contrast to Activin, EGF-CFC-dependent ligands such as Nodal and Vg1/GDF1 have the differentially charged residues Met/Leu102 and His104 at the corresponding positions (numbering according to ActivinB). Similarly, in BMP7 the corresponding residues are Leu102 and Lys104. It has been shown that modeling Lys onto the aligned 102 residue in BMP7 positions it within hydrogen-bonding distance to Gln29 of ActRII and may allow for greater hydrophobic packing at the interface (Greenwald et al. 2003). Analogously, we propose that SqtAct[loop8], SqtAct[loop8], SqtAct[loop8], and SqtAct[loop8] are co-receptor-independent because of their favorable binding to ActRIIB receptors. Conversely, the corresponding region in Sqt and Vg1 might be inhibitory because of inefficient interaction with ActRIIB receptors. Detailed structural studies should reveal whether EGF-CFC proteins overcome this inhibition by changing the conformation of Nodal and Vg1 or by providing an additional interaction surface that allows the assembly of receptor complexes.

In summary, our results lead to two major conclusions. First, Lefty inhibits a subset of TGFβ signals by using the novel mechanism of blocking pathway-specific coreceptors belonging to the EGF-CFC family. Second, subtle sequence changes in TGFβs determine their signaling specificity and dependence on coreceptors. Although Drosophila has an Activin signaling pathway, Nodals, Leftys, and EGF-CFC proteins seem to be restricted to chordates (Brummel et al. 1999; Schier 2003). The evolution of Activin-like signaling pathways therefore represents a remarkable example of how a simple signaling pathway consisting of ligand and receptors can be diversified by subtle sequence changes that modulate the interaction with coreceptors and their inhibitors.

Materials and Methods

Strains and embryos. Adult homozygous fish for oep57 were generated as described previously (Zhang et al. 1998; Grisman et al. 1999). Xenopus embryos were obtained as described in Hemmati-Briand et al. (1992).

Generation of constructs. Epitope-tagged and chimeric constructs were made using PCR-based methods and confirmed by sequencing. pCS2-zebrafish Lefty1/HA and Lefty1/Glu constructs were generated by inserting three tandem copies of HA-epitope or Glu-epitope, respectively, after Val145. The initial three-lettered (XXX) Sqt/ActivinB chimeras were generated by subcloning the prodomain of Xenopus ActivinB (codons Met1 to Gly256) fused to an HA-epitope/Nhol fragment (YPPKGPDYALE) and followed by the mature chimeric ligand into pcDNA3 vector. S denotes Sqt; A denotes ActivinB. The boundaries for Sqt mature ligand domains are as indicated: Finger 1 (Asn263 to Cys325), Heel (Pro306 to Cys355), and Finger 2 (Ile336 to Ala370). Full-length chimeras were generated by incorporating the indicated regions into Sqt, ActivinB, or zebrafish Vg1, which were then subcloned into the pET-Tet vector (Ekker et al. 1995). The boundaries for Sqt Finger 2 structural subregions are as indicated: β6β7 (Val339 to Try370), loop (Try371 to Met376), β8 (Val377 to Gly383), and β9 (Met384 to His392). The boundaries for Xenopus ActivinB Finger 2 structural subregions are as indicated: β6β7 (Ile336 to Try370), loop (Ph337 to Ile354), β8 (Val355 to Asn356), and β9 (Met357 to Ala370). The Xenopus ActivinB loop-β8 region sequence is FDRNNVLTLD (also identical in Xenopus ActivinB). The zebrafish Vg1 loop-β8 region is from Try339 to Asp345, pcDNA3-zebrafish Vg1/HA, pcDNA3-Squit/HA, pcCS2-Alk4(KR)/Flag (a kinase-defective mutant of human Alk4 with Lys234 to Arg234 substitution), pcCS2-ActRIIB(KR)/Myc (a kinase-defective mutant of mouse ActRIIB with Lys217 to Arg217 substitution), and pcCS2-Cripto/Flag have been described elsewhere (Voe and Whitman 2001; Cheng et al. 2005).

Embryo microinjection. Plasmids were linearized and sense-stranded mRNA was synthesized using the mMESSAGE mMACHINE system (Ambion, Austin, Texas, United States). Zebrafish embryos were dechorionated by pronase treatment and injected between the one- and four-cell stage. Xenopus embryos at the one- to two-cell stage were used for injections into the animal pole.

Phenotypic analysis. Zebrafish embryos at 24 h were mounted in 2% methylcellulose and photographed using a Zeiss (Oberkochen, Germany) M2Bio dissecting microscope. In situ hybridization was
performed as described previously (Thise et al. 1993), using RNA probes to gsc and ntl (Stachel et al. 1993; Schulte-Merker et al. 1994).

Luciferase reporter assay. Luciferase assays were performed with three to six samples and five embryos in each sample. Results are representative of three independent experiments. The injection mixture was equalized with respect to total mRNA amount with Larz RNA. The control reporter DNA construct (25 pg) (Chen et al. 1996) was also coinjected. Whole zebrafish embryos were harvested at shield stage. Luciferase activity was analyzed using the Luciferase Reporter Assay System (Promega, Madison, Wisconsin, United States) according to the manufacturer’s instruction in a Lumat LB9501 (Berthold Technologies, Bad Wildbad, Germany). Owing to the technical aspects of microinjections, in rare circumstances, a single outlier was statistically removed from a population using Grubbs’ test/exclusion studentized deviate method. Inclusion of outliers into the experiment does not change the statistical significance of the p values; that is, p remains < 0.05, where indicated.

Communoprecipitation analysis. *Xenopus* embryos were harvested at stage 10. For chemical cross-linking of proteins, animal halves were incubated in PBS with 10 mM 3,3′-dithiobis(sulfoucimimidyl propionate) (DTSSP) (Pierce Biotechnology, Rockford, Illinois, United States) and incubated for 2 h on ice. Communoprecipitation was performed as described previously (Yeo and Whitman 2001). Purified processed mouse Lefty1, soluble mouse Cripto, and mouse VEGF-D proteins were obtained from R&D Systems (Minneapolis, Minnesota, United States). Activity assays were performed by R&D Systems. The proteins were incubated in PBS with 1 mM DTSSP for 1 h on ice. Communoprecipitation was performed as described previously (Yeo and Whitman 2001). Samples were treated with 100 mM DTT to cleave DTSSP prior to SDS-PAGE analysis. The following antibodies were used for immunoprecipitation and Western blot analysis: anti-Lefty1, mouse monoclonal antibody (clone M2; Sigma, St. Louis, Missouri, United States), anti-HA mouse monoclonal antibody (clone 16B12; Covance, Princeton, New Jersey, United States), anti-HA rabbit polyclonal antibody (Y-11; Santa Cruz Biotechnology, Santa Cruz, California, United States), anti-c-Myc rabbit polyclonal antibody (A-14; Santa Cruz Biotechnology), anti-c-Myc mouse monoclonal antibody (clone Ab-1; Oncogene Science, Tarrytown, New York, United States), anti-His mouse monoclonal antibody (clone 6-His; Covance), anti-mLefty1 goat polyclonal antibody (R&D Systems), and anti-Glu mouse monoclonal antibody (clone Glu-Glu; Covance). Proteins were visualized using the Super Signal West Pico Chemiluminescent Substrate system (Pierce).

Supporting Information

Accession Numbers

The GenBank (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide) accession numbers for the sequences discussed in this paper are Actininβ (Q9W616), Actininβ (Q91350), human ActRIB (P08874), mouse ActRIB (P27040), rat ActRIB (P38445), ALK4 (Q22536), BMP7 (P23359), Cripto (P51865), Cryptic (P97760), cyclops (P87358), GDF1 (P20863), goosecoid (P35544), Lefty1 (Q9W616), Lefty2 (P57785), mLefty1 (Q54280), Nodal (P43201), no tail (Q57998), one-eyed pinhead (O57516), Pitx2 (P97747), squint (O13144), VEGF-D (P97590), and Vgl (P09534).

Acknowledgments

We thank members of the Schier, Brivanlou, and Yelon laboratories for discussions; Gord Fishell, Kathy Joubin, Alvaro Sagasti, and Will Talbot for comments on the manuscript; Steven Zimmerman, Trisha Bruno, and Nicole Dillon for fish care; Chang-Yeol Yeo and Malcolm Whitman for sharing of plasmids and protocols; and Matthieu Schapira for aiding with structural modeling. SKC was supported in part by National Institutes of Health (NIH) training grant T32HD075729. AHB is supported by the NIH. AF5 is a Scholar of the McKnight Endowment Fund for Neuroscience, a Irma T. Hirschl Trust Career Scientist, and an Established Investigator of the American Heart Association and is supported by grants from the NIH.

Conflicts of interest. The authors have declared that no conflicts of interest exist.

Author contributions. SKC, AHB, and AF5 conceived and designed the experiments. SKC and FO performed the experiments. SKC, FO, AHB, and AF5 contributed reagents/materials/analysis tools. SKC and AF5 wrote the paper.

References

Adkins HB, Bianco C, Schiffer SG, Rayhorn P, Zafigi M, et al. (2003) Antibody blockade of the Cripto CFC domain suppresses tumor cell growth in vivo. J Clin Invest 112: 573–587.

Agathon A, Thiese B, Thiese C (2001) Morpholino knock-down of antion1 and antion2 upregulates nodal signaling. Genesis 30: 178–182.

Attisano L, Wrana JL, Cheifetz S, Massague J (1992) Novel activin receptors: Distinct activin, TGF-β, and alternative mRNA oligomers generate a repertoire of serine/threonine kinase receptors. Cell 68: 97–108.

Attisano L, Wrana JL, Montalvo E, Massague J (1996) Activation of signaling by the activin receptor complex. Mol Cell Biol 16: 1066–1073.

Baldassarre G, Bianco C, Tortora G, Ruggiero A, Moasser M, et al. (1996) Transfection with a Cripto anti-sense plasmid suppresses endogenous CRITO expression and inhibits transformation in a human embryonal carcinoma cell line. Int J Cancer 66: 538–543.

Bamford RN, Roessler F, Burdine RD, Sapakoglu U, de la Cruz J, et al. (2000) Loss-of-function mutations in the EGF-CFC gene CFC1 are associated with human left–right asymmetry defects. Nat Genet 26: 365–369.

Bianco C, Adkins HB, Wechselberger C, Seno M, Normanno N, et al. (2002) Cripto-1, a novel member of the EGF-CFC family, also acts as a ligand for ALK-4 and -6. EMBO J 21: 2586–2597.

Bianco C, Strizzi L, Rehman A, Normanno N, Wechselberger C, et al. (2005) A Nodal- and ALK4-independent signaling pathway activated by Cripto-1 through Glypican-1 and c-Src. Cancer Res 65: 1192–1197.

Bisgrove BW, Esnser JJ, Yost HJ (1999) Regulation of midline development by antagonism of lefty and nodal signaling. Development 126: 3253–3262.

Branford WW, Yost HJ (2002) Lefty-dependent inhibition of nodal- and antivin1-mediated signaling is essential for normal gastrulation. Curr Biol 12: 2136–2141.

Branford WW, Esnser JJ, Yost HJ (2000) Regulation of gut and heart left–right asymmetry by context-dependent interactions between Xenopus lefty and BMP4 signaling. Dev Biol 232: 291–306.

Brennan J, Norris DP, Robertson Ej (2002) Nodal activity in the node governs formation of the anterior–posterior axis in the mouse embryo. Development 129: 1939–1928.

De Luca A, Arra C, D’Antonio A, Casamassima A, Losito S, et al. (2000) Simultaneous blockage of different EGF-like growth factors results in efficient growth inhibition of human colon cancer cells by antisense RNA and oligodeoxynucleotides. Oncogene 9: 291–298.

Conlon FL, Barth KS, Robertson Ej (1991) A novel extracellular matrix gene of the epidermal growth factor gene family, leads to misexpression of a normal mouse mammary epithelial cell line. Cancer Res 51: 1051–1054.

Conlon FL, Lyons KM, Takaesu N, Barth KS, Kispert A, et al. (1994) A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse. Development 120: 2087–2098.

De Luca A, Arra C, D’Antonio A, Casamassima A, Losito S, et al. (2000) Simultaneous blockage of different EGF-like growth factors results in efficient growth inhibition of human colon carcinoma xenografts. Oncogene 19: 5865–5871.

De Robertis EM, Wessely O, Oelgeschlager M, Brizuela B, Pera E, et al. (2001) Molecular mechanisms of cell–cell signaling by the Spemann–Mangold organizer. Int J Dev Biol 45: 189–197.

Ding J, Yang L, Yan YT, Chen A, Desai N, et al. (1998) Cripto is required for correct orientation of the anterior–posterior axis in the mouse embryo. Nature 395: 702–707.

Ebert AD, Wechselberger C, Frank S, Wallace-Jones B, Seno M, et al. (1999)
CRIPTO-1 induces phosphorylase b-kinase-dependent phosphorylation of AKT and glycogen synthase kinase 3β in human cervical carcinoma cells. Cancer Res 59: 4592–4595.

Ekker SC, Ungar AR, Greenstein P, von Kessler DP, Porter JA, et al. (1995) Patterning activities of vertebrate hedgehog proteins in the developing eye and brain. Curr Biol 5: 944–955.

Erter CE, Soluca-Krezel L, Wright CV (1998) Zebrafish nodal-related 2 encodes an early mesendodermal inducer signaling from the extraembryonic yolk syncytial layer. Dev Biol 204: 361–372.

Feldman B, Gates MA, Egan ES, Dougan ST, Renneckack G, et al. (1998) Zebrafish organizer development and germ-layer formation require nodal-related signals. Nature 395: 181–185.

Feldman B, Concha ML, Saude L, Parsons MJ, Adams RJ, et al. (1999) Lefty antagonism of spuit is essential for normal gastrulation. Curr Biol 12: 2129–2135.

Freeman M (2000) Feedback control of intercellular signalling in development. Nat Rev Genet 1: 103–113.

Gaio U, Schweikert A, Fischer A, Garratt AN, Muller T, et al. (1999) A role of the cryptic gene in the correct establishment of the left–right axis. Curr Biol 9: 1339–1342.

Gray PC, Harrison CA, Vale W (2003) CRIPTO forms a complex with activin and type II activin receptors and can block activin signaling. Proc Natl Acad Sci U S A 100: 5193–5198.

Greenwald J, Gruppe J, Gray P, Waeter E, Kwiatkowski W, et al. (2003) The BMPArTII extracellular domain complex provides new insights into the cooperative nature of receptor assembly. Mol Cell 11: 605–617.

Gritsman K, Zhang J, Cheng S, Heckscher E, Talbot WS, et al. (1999) The EGF-CFC protein One-eyed pinhead is essential for nodal signaling. Cell 97: 121–132.

Hamada H, Meno C, Watahabe D, Saijoh Y (2002) Establishment of vertebrate left–right asymmetry. Nat Rev Genet 3: 103–113.

Helde KA, Grunwald DJ (1993) The DVR-1 (Vg1) transcript of zebrafish is expressed in the low-affinity binding epitope for receptor BMPR-II. EMBO J 19: 3314–3321.

Long S, Ahmad N, Rebagliati M (2003) The zebrafish nodal-related gene southpaw is required for visceral and diencephalic left–right symmetry. Development 130: 2303–2316.

Mathews LS, Vale WW (1991) Expression cloning of an activin receptor, a predicted transmembrane serine kinase. Cell 65: 973–982.

Mathews LS, Vale WW, Kintner CR (1992) Cloning of a second type of activin receptor and functional characterization in Xenopus embryos. Science 255: 1702–1705.

Meno C, Saijoh Y, Fujii H, Ikeda M, Yokoyama T, et al. (1996) Left-right asymmetric expression of the TGF beta-family member lefty in mouse embryos. Nature 381: 151–155.

Meno C, Ito Y, Saijoh Y, Matsuda Y, Tashiro K, et al. (1997) Two closely-related left–right asymmetrically expressed genes, lefty-1 and lefty-2. Their distinct expression domains, chromosomal linkage and direct neuralizing activity in Xenopus embryos. Genes Cells 2: 513–524.

Meno C, Shimono A, Saijoh Y, Tashiro K, Shioda K, et al. (1998) lefty-1 is required for left–right determination as a regulator of lefty-2. Cell 94: 543–547.

Meno C, Gritsman K, Ohishi S, Ohfuji Y, Heckscher E, et al. (2001) Mouse Cripto-1 encodes a mesoderm-inducing factor as a homologue of activin A. Nature 412: 739–741.

Reissmann E, Jornvall H, Bloxkrij A, Andersson O, Chang C, et al. (2001) The orphan receptor ALK7 and the Activin receptor ALK4 mediate signaling by Nodal proteins during vertebrate development. Genes Dev 15: 2010–2022.

Salomon DS, Bianco C, Ebert AD, Khan NJ, De Santis M, et al. (2000) The EGF-CFC family: Novel epidermal growth factor-related proteins in development and cancer. Endocr Relat Cancer 7: 199–226.

Schier AF (2003) Nodal signaling in vertebrate development. Annu Rev Cell Dev Biol 19: 589–621.

Schier AF, Shen MM (2000) Nodal signaling in vertebrate development. Nature 405: 385–388.

Shen MM, Schier AF (2000) The EGF-CFC gene family in vertebrate development. Trends Genet 16: 303–309.

Shen MM, Wang H, Leder P (1997) A differential display strategy identifies CRIPTO, a novel EGF-related gene expressed in the axial and lateral mesoderm during mouse gastrulation. Development 124: 429–442.

Sheng M, Price BM, Van Nimmen K, Huyvelnbroeck D (1990) Identification of a potent Xenopus mesodeming-inducing factor as a homologue of activin A. Nature 345: 732–734.

Stachel SE, Grunwald DJ, Myers PZ (1995) Lithium perturbation and goosecoid expression identify a dorsal specification pathway in the pragustrula zebrafish. Development 117: 1261–1274.

Tanegashima K, Yokota C, Takahashi S, Asashima M (2000) Expression cloning of Xanitcin, a Xenopus lefty1-related gene, involved in the regulation of activin signaling during mesoderm induction. Mech Dev 99: 3–14.

Ten Dijke P, Yamashita H, Ichijo H, Franzen P, Laiho M, et al. (1994) Characterization of type I receptors for transforming growth factor-beta and activin. Science 264: 101–104.

Thiis G, Thiese B (1999) Antivin, a novel and divergent member of the TGFβ superfamily, negatively regulates mesoderm induction. Development 126: 229–240.

Thiis G, Thiese B, Schilling TF, Postlethwait JH (1993) Structure of the zebrafish ncoll gene and its expression in wild-type, spadetail and no tail mutant embryos. Development 119: 1203–1215.

Thiis B, Wright CV, Thiis G (2000) Activin- and Nodal-related factors control antero-posterior patterning of the zebrafish embryo. Nature 403: 423–428.

Thompson TB, Woodruff TK, Jardetzky TS (2003) Structures of an ActRII- Bαctxin A complex reveal a novel binding mode for TGF-beta ligand-receptor interactions. EMBO J 22: 1555–1566.

Thomsen G, Woelfl T, Whitman M, Sokol S, Vaughan J, et al. (1999) Activins are expressed early in Xenopus embryogenesis and can induce axial mesoderm and anterior structures. Cell 95: 485–493.

Toyama R, O’Connell ML, Wright CV, Kuehn MR, Daob MR (1995) Nodal induces ectopic goosecoid and lim1 expression and axis duplication in zebrafish. Development 121: 385–391.

van den Eijnden-Van Raaij AJ, van Nimmen K, Koster CH, Snook GT, et al. (1999) Activin-like factor from a Xenopus laevis cell line responsible for mesoderm induction. Nature 345: 732–734.

Wuens G, Verschueren K, de Winter JP, Gajendran N, Beek L, et al. (1999) Identification of two amino acids in activin A that are important for biological activity and binding to the activin type II receptors. J Biol Chem 274: 9872–9877.

Yan YT, Gritsman K, Ding J, Burdine RD, Corrada JD, et al. (1999) Conserved requirement for EGF-CFC genes in vertebrate left–right axis formation. Genes Dev 13: 2527–2537.

Yan YT, Liu J, Luo Y, Chassol E, Haltiwanger RS, et al. (2002) Dual roles of CRIPTO as a ligand and coreceptor in the nodal signaling pathway. Mol Cell 22: 4439–4449.

Yeo C, Whitman M (2001) Nodal signals to Smads through Crito-dependent and Crito-independent mechanisms. Mol Cell 7: 949–957.

Zhang J, Talbot WS, Schier AF (1998) Positional cloning identifies zebrafish one-eyed pinhead as a permissive EGF-related ligand required during gastrulation. Cell 92: 241–251.

Zhou X, Sasaki H, Lowe L, Hogan BL, Kuehn MR (1993) Nodal is a novel TGF-beta-like gene expressed in the mouse node during gastrulation. Nature 361: 543–547.