Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Post-COVID-19 acute disseminated encephalomyelitis: Case report and review of the literature

Masoud Etemadifara,2, Amir Reza Mansourib,, Hosein Nourib,c, Nahad Sedaghatb,c, Mehri Salarid, Milad Maghsoudib, Narges Heydarib,*

aDepartment of Neurosurgery, Isfahan University of Medical Sciences, Isfahan, Iran
bAlzahra Research Institute, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
cNetwork of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Isfahan, Iran
dFunctional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

\textbf{A R T I C L E I N F O}

\textbf{Keywords:}
COVID-19
SARS-CoV-2
Post-infectious
Acute disseminated encephalomyelitis
ADEM

\textbf{A B S T R A C T}

\textbf{Background:} Our understanding of the spectrum of neurological manifestations associated with COVID-19 keeps evolving. Reports of life-threatening neurological complications, such as acute disseminated encephalomyelitis (ADEM), are alarmingly growing in number.

\textbf{Case presentation:} We report a 42 years old previously healthy man who presented with left visual loss and cognition deterioration, manifesting at least ten days after infection with SARS-CoV-2. Serological work-up for potential immunological markers (i.e., antibodies against aquaporin-4 and myelin oligodendrocyte glycoprotein) were negative. Magnetic resonance imaging revealed multiple bilateral and asymmetrical lesions in the brainstem, cortical, juxtacortical, and periventricular regions, with surrounding edema. Post-contrast sequences demonstrated punctate, ring, and open ring enhancement patterns. Methylprednisolone pulse therapy was initiated for the patient, and he was placed on rituximab. After one month, his clinical symptoms had resolved, and his cognitive function was normal.

\textbf{Conclusions:} We conducted an extensive literature search, and COVID-19-associated ADEM cases reported thus far were identified and reviewed. ADEM often occurs in a post-infectious fashion; however, it is unclear how SARS-CoV-2 infection can trigger such rapidly progressive episodes of encephalopathy and demyelination. Nevertheless, considering the alarming number of cases of ADEM developing after SARS-CoV-2 infection, neurologists should consider this severe phenotype of COVID-19 neurological complication in mind, enabling prompt therapeutic interventions to be made.

\textbf{Introduction}

With the ongoing pandemic of Coronavirus disease 2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, significant concerns were raised regarding the spectrum of neurological manifestations associated with this infection. A wide variety of such complications can occur in COVID-19 patients, with various pathologies and degrees of severity, due to either direct or indirect involvement of the central nervous system (CNS) \citep{Al-Sarraja}. There are numerous reports of CNS immune-mediated conditions; the underlying pathogenesis is not clear yet.

Several cases of acute disseminated encephalomyelitis (ADEM; an immune-mediated demyelinating disorder of the CNS) after infection with SARS-CoV-2 have been reported (reviewed in Table 1). ADEM is more frequently observed in children, especially after infection and reports have shown that ADEM might be associated with vaccination challenges. Although ADEM and AE have similar presentations, symptoms develop more rapidly in ADEM \citep{McGetricka}.

We describe the case of a adult patient who developed an ADEM episode shortly after he was infected with SARS-CoV-2. We conducted an extensive search of relevant literature and summarized the existing data on post-infectious ADEM in the context of COVID-19.

\textbf{Case presentation}

In early January 2021, a previously healthy 42-year-old man presented with visual loss in the left eye, bilateral ptosis, drowsiness, and declined cognition from three days before admission. He had been quarantined in a non-healthcare setting from 10 days before the onset of his neurological symptoms for a history of low-grade fever, dyspnea, cough, and myalgia. Nasopharyngeal swab polymerase chain reaction (PCR) was positive for SARS-CoV-2 and negative for influenza H1N1.
Table 1
Demographic, clinical, radiological of cases with acute disseminated encephalomyelitis associated with COVID-19, along with their treatments and outcomes.

Case	Age/ Sex	publication date	country of study	ADEM symptoms	MRI finding	Treatment	Outcome
1 Novi et al. (2020)	64/F	September 2020	Italy	Severe visual loss, Sensory deficit, Headache, Hyperreflexia, Babinski sign	Multiple T1 post-Gd enhancing lesions of the brain, associated with a single spinal cord lesion at the T8 level and with bilateral optic nerve enhancement	High-dose steroids, IVIG	Significant improvement in visual symptoms, Reduced number of Gd-enhancing lesions in follow-up brainMRI
2 Virhammar et al. (2020)	55/F	September 2020	Sweden	Stupor, Multifocal myoclonus	Symmetrical FLAIR hyperintensities signal symmetrically in central thalami, subinsular regions and thalami, medial temporal lobes, and brain stem	Acyclovir, IVIG, Plasma exchange	The patient clinically improved
3 Dixon et al. (2020)	59/F	September 2020	United Kingdom	Seizure (GTCS), Reduced level of consciousness, Unreactive left pupil	Brain stem swelling, symmetrical hemorrhagic lesions in the brain stem, amygdalae, putamina, and thalamic nuclei	High-dose steroids, Levetiracetam, Acyclovir, Ceftriaxone, Amoxicillin, Clarithromycin	Died
4 Parsons et al. (2020)	51/F	May 2020	USA	Unresponsiveness, Depressed deep tendon reflexes, Mute plantar responses, Flaccid muscle tone	Small Gd-enhancing lesion in the left frontal lobe at the gray-white interface and FLAIR hyperintensities in the deep hemispheric, periventricular and juxtacortical white matter	High-dose steroids, IVIG	Fully oriented
5 de Miranda Henriques-Souza et al. (2021)	12/F	October 2020	Brazil	Flaccid tetraplegia, Tingling and numbness in the inferior limbs	Extensive bilateral and symmetric restricted diffusion involving the subcortical and deep white matter of the brain, Focal hyperintense T2 FLAIR lesion in the splenium of the corpus callosum with restricted diffusion	High-dose steroids	Partial improvement
6 Langley et al. (2020)	53/M	November 2020	United Kingdom	Hypotonia, Agitation	Bilateral multiple hyperintense lesions within the subcortical and deep white matter of the brain, Small amount of ICH within the occipital horns of the lateral ventricles	High-dose steroids	The patient clinically improved
7 Lopes et al. (2020)	59/F	October 2020	Brazil	Reduced level of consciousness, Asymmetric flexor motor responses, Hyporeflexia	Multiple bilateral focal areas of signal abnormalities in the cerebral and cerebellar white matter	Hydroxychloroquine, Broad-spectrum antibiotics	Died

(continued on next page)
Case	Age/ Sex	publication date	country of study	ADEM symptoms	MRI finding	Treatment	Outcome		
8 Lopes et al. (2020)	41/M	October 2020	Brazil	Reduced level of consciousness	Focal lesions located in the centrum semiovale, bilaterally, right thalamus, globus pallidus bilaterally and anterior limb of internal capsule, characterized by hyperintensity on axial FLAIR images, high signal on DWI and apparent diffusion coefficient, representing diffusion facilitation	Not reported	Fully alert and cooperative patient, with mild attentional and executive dysfunction		
9 Hussein et al. (2020)	55/F	September 2020	USA	Reduced level of consciousness, Seizure, Generalized weakness	Mild asymmetric FLAIR hyperintensities in the left-right cerebral cortex, thalami, the left sub splenial region, the left subcortical optic radiations and the mid pons	Levetiracetam, Lacosamide, Topiramate, IVIG, High-dose steroids, Plasmapheresis	The patient clinically and electrographically improved		
10 Umapathi et al. (2020)	59/M	September 2020	Singapore	Drowsy, Roving eye movements, Transient ocular flutter	Multiple discrete hyperintense foci in the pereventricular and deep white matter bilaterally, with foci in the temporal region, subcortical white matter as well as the forceps minor	Convalescent plasma, IVIG	He was able to open eyes spontaneously, track visually and smile meaningfully. However, he had no coherent volitional motor and verbal response to the environment	Died	
11 Reichard et al. (2020)	71/M	May 2020	USA	Not reported	Not reported	High-dose steroids, Vasopressor, Hydroxychloroquine, Ceftriaxone, IVIG	The patient clinically improved		
12 Zhang et al. (2020)	40/F	April 2020	USA	Dysphagia, Dysarthria, Encephalopathy	Extensive patchy areas of abnormal signal involving bilateral frontoparietal white matter, anterior temporal lobes, basal ganglia, external capsules, and thalami	Ceftriaxone, IVIG	The patient clinically improved		
13 Shahmirzaei and Naser Moghadasi (2021)	30/M	January 2021	Iran	Ataxia, Confusion, Plegic in legs bilaterally, Symmetric weakness in the upper extremity	Multiple enhanced lesion	High-dose steroids, Rituximab, Decadron, Hydroxychloroquine Zinc, Convalescent plasma	The patient clinically improved	Partial improvement	
14 McCuddy et al. (2020)	37/F	2020	USA	Unresponsive, Eyes with leftward deviation, No spontaneous limb movements, Reflexes reduced severe diffuse weakness, Unresponsive to verbal stimuli	Several T2 hyperintense lesions with restricted diffusion involving the corpus callosum, bilateral cerebral white matter, right pons and in the bilateral ventral medulla	Solumedrol, IVIG, Convalescent plasma	Clinically, not opening eyes, unresponsive	Remains on ventilator with tracheostomy	
15 McCuddy et al. (2020)	56/M	2020	USA	Unresponsive, Eyes with leftward deviation, No spontaneous limb movements, Reflexes reduced severe diffuse weakness, Unresponsive to verbal stimuli, Withdraws to pain slightly	Several T2 hyperintense lesions, many with restricted diffusion, in cerebral white matter	Solumedrol, IVIG, Convalescent plasma	Clinically, not opening eyes, unresponsive	Remains on ventilator with tracheostomy	
16 McCuddy et al. (2020)	70/F	2020	USA	Unresponsive, Eyes with leftward deviation, No spontaneous limb movements, Reflexes reduced severe diffuse weakness, Unresponsive to verbal stimuli, Withdraws to pain slightly	Several T2 hyperintense lesions, most with restricted diffusion, in deep cerebral white matter	Solumedrol, IVIG, Convalescent plasma	Clinically, not opening eyes, unresponsive	Remains on ventilator with tracheostomy	Spontaneously opens eyes, decorticate posturing in upper extremity

(continued on next page)
Case	Age/ Sex	publication date	country of study	ADEM symptoms	MRI finding	Treatment	Outcome
17 AHL	33/M	September 2020	India	Four-limb weakness, Seizure (GTCS), DTR: absent, Babinski sign	Symmetrical FLAIR hyperintensities involving bilateral subcortical fronto-parietal lobes, splenium of corpus callosum, medulla and visualised cervical cord with petechial haemorrhages and evidence of diffusion restriction involving splenium of corpus callosum	Acyclovir, Ceftriaxone, Lacosamide, High-dose steroids	Died
18 Manzo et al. (2021)	6/M	May 2021	Italy	Seizure (GTCS)	T2-FLAIR hyperintense lesions in the right cerebellar hemisphere, cortical-subcortical cuneus gyrus of the right parietal lobe, left side of the corpus callosum and corona radiata, cortical-subcortical inferior left parietal gyrus	High-dose steroids	The patient clinically improved
19 AHL	46/M	February 2021	India	Headache, Reduced level of consciousness, Loss of power in the left limbs, Left facial nerve palsy	Hyperintense white matter lesions in bilateral frontal, parietal lobes, left thalamus, left cerebral peduncle, and medulla T2W and FLAIR, hypointense onT1W Pre and postcontrast of lesions show patchy, rim enhancement with central nonenhancing component	High-dose steroids	Died
20 McLendon et al. (2021)	17-month /F	March 2021	USA	Irritability, Weakness of upper extremities, Ataxia, Neck stiffness, Brudzinski’s sign	Revealed multifocal hyperintense FLAIR signals in bilateral subcortical and periventricular white matter without contrast enhancement	IVIG, High-dose steroids	The patient clinically improved
21 ANHLE	59/M	June 2021	Saudi Arabia	Reduced level of consciousness, Absence of some brainstem reflexes	Extensive brain abnormality predominantly involving the deep white matter with micro haemorrhages	Health guidelines of Saudi Ministry	Died
22 ANHLE	47/F	June 2021	Saudi Arabia	Reduced level of consciousness, Blurred vision, Abnormal movement of the right upper limb and left lower limb	Diffuse petechial hemorrhages especially in the basal ganglia that is compatible with diffuse necrotizing leukoencephalitis	Not reported	Goma

(continued on next page)
Case	Age/ Sex	publication date	country of study	ADEM symptoms	MRI finding	Treatment	Outcome
23	35/F	September 2020	USA	Gait instability	Hemispheric white matter signal in juxtacortical regions extending to anteromedial temporal lobes	High-dose steroids	She had not improved, and was transferred to a long term care facility
				Symmetric distal neuropathy	Symmetric periventricular white matter FLAIR hyperintensities involving bilateral cerebral peduncles with mild diffusion restriction	IVIG plasma exchange	
				Reduced level of consciousness	Extensive symmetrical FLAIR abnormal signal throughout the white matter bilaterally with hemorrhage compatible with haemorrhagic leukoencephalitis		
					She had symptomatic distal neuropathy and was transferred to a long term care facility		
24 AHL	56/F	January 2021	United Kingdom	Reduced level of consciousness	Symmetric periventricular white matter FLAIR hyperintensities involving bilateral cerebral peduncles with mild diffusion restriction	Antiocoagulation	The patient neurological condition has remained stable
	Haqiqi et al. (2021)				Extensive symmetrical FLAIR hyperintensities involving bilateral cerebral peduncles with mild diffusion restriction	Antihypertensive	He discharged to a neurorehabilitation center.
25 AHL	61/M	July 2020	Singapore	Flaccid tetraplegia	Asymmetrical, multifocal lesions in the subcortical white matter of bilateral cerebral hemispheres, cortex, Bilateral thalami, and cerebellar hemispheres, petechial hemorrhage and vasogenic edema within the lesions	Remdesivir	The patient clinically improved
	Yong et al. (2020)			Absent plantar reflexes	Reduced level of consciousness in the left-side without prominent enhancement on T1	Plasma exchange	
					Diffuse confluent white matter hyperintensity on FLAIR, particularly at the left-side without prominent enhancement on T1	IVIG	
26	58/M	June 2020	Iran	Reduced level of consciousness	Concentric demyelination pattern	High-dose steroids	Died
	Abdi et al. (2020)			Inability to walk	Symmetric periventricular white matter FLAIR hyperintensities involving bilateral cerebral peduncles with mild diffusion restriction		
				Status epilepticus	Extensive symmetrical FLAIR abnormal signal throughout the white matter bilaterally with hemorrhage compatible with haemorrhagic leukoencephalitis		
27	51/F	April 2021	USA	Increased seizure activity	Diffuse hyperintense lesions on FLAIR images without Gd-enhanced lesions	Remdesivir	Died
	Walker et al. (2021)			Incontinence		Remdesivir	
				Aphasia		Convalescent plasma	
28	64/M	April 2021	USA	Nonresponsive with a fixed and dilated right pupil	Not reported	Remdesivir	Died
	Walker et al. (2021)					Corticosteroids	
						Remdesivir	
29	51/M	September 2020	France	Unresponsive coma	Diffuse hyperintense lesions on FLAIR images without Gd-enhanced lesions	Remdesivir	Died
	Delamarre et al. (2020)			Pyramidal syndrome		High-dose steroids IVIG	The patient showed complete motor recovery
				Right-sided sixth nerve palsy			
				No corneal reflex			
30	57/M	October 2020	Greece	Reduced level of consciousness	Concentric demyelination pattern	Azithromycin	The patient recovered, and 1 month later, he only had moderate tetraparesis
	Karapanayiotides et al. (2020)			Hyperreflexia		Hydroxychloroquine	
				Blunted vestibulo-ocular reflexes		Ritonavir Interleukin-1 antagonist	
31	?/F	March 2020	USA	Altered mental status	Hemorrhagic rim enhancing lesions within the bilateral thalami, medial temporal lobes, and subinsular regions	IVIG	Not reported
	Poyiadji et al. (2020)						

Abbreviations: Gd, Gadolinium; ANE, Acute necrotizing encephalopathy; AHL, Acute hemorrhagic leukoencephalitis/leukoencephalomyelitis; ANHLE, Acute necrotic hemorrhagic leukoencephalitis; GTCS, Generalized tonic-clonic seizure; IVIG, intravenous immunoglobulin G; IVH, Intraventricular hemorrhage; DWI, Diffusion weighted imaging.
Upon physical examination, he was not febrile, and his vital signs were stable. The patient was lethargic and irritable. His left visual acuity was 20/50; reflex afferent papillary defect in the corresponding eye was 3+. Bilateral ptosis, more prominent in the left side, was detected. There was mild paraparesis in the lower extremities (4/5). Sensory and cerebellar functions, deep tendon reflexes, and plantar reflexes were normal. Results from optical coherence tomography (OCT) performed by an ophthalmologist were normal.

Electrolytes, white blood cells, hemoglobin, C-reactive protein, transaminases, Serum creatinine levels were within the normal range, as were his TSH, T3, and FT4 levels.

Additional tests showed negative neuromyelitis Optica antibody (NMO-IgG) and negative myelin oligodendrocyte glycoprotein antibody (MOG-IgG) results.

Brain magnetic resonance imaging (MRI) sequences were obtained. Multiple bilateral and asymmetrical lesions were observed in the brainstem, cortical, juxtacortical, and periventricular regions, appearing as hyperintensities with surrounding edema on T2-weighted and Fluid-attenuated inversion recovery (FLAIR) images. Post-contrast T1-weighted sequences revealed punctate, ring, and open ring enhancement patterns. Electroencephalogram (EEG) showed generalized slowing with no epileptiform discharge.

The patient underwent methylprednisolone pulse therapy for five days (1 g/day), followed by two doses of rituximab infusion (1 g/infusion; with a two-week interval). After one month, the patient’s clinical symptoms resolved, visual acuity was normal (10/10), ptosis and mental status evaluation were also normal.

Discussion

Adding to the growing body of evidence, we reported a case of post-COVID-19 ADEM with manifestations of cognitive deficits and visual loss in a 42-year-old man. Although this demyelinating disorder of the CNS tends to occur after infections, an exact, causal relationship between infections and ADEM is yet to be determined (Pohl et al., 2016). The absence of NMO-IgG and MOG-IgG excluded the probability of Neuromyelitis optica spectrum disorder and MOG-associated Disease, resulting in ADEM diagnosis. Unlike the predominance of ADEM occurrence in children, our patient, similar to most reported cases of COVID-19-associated ADEM, was a middle-aged individual.

Our extensive search of the existing literature on COVID-19 and associated ADEM yielded 31 cases; data extracted from those cases are presented in Table 1. As interpreted from Table 1, there was no gender predominance among the cases (16 females, 15 males). Most patients (90.3%; 28/31) were adults with an average age of 52.3 years. Only a few patients had severe COVID-19-associated symptoms and required intensive care. 55.8% (17/31) had reduced levels of consciousness and a decreased GCS. Muscle weakness or decreased muscle tone was observed in 35.4% (11/31); 4 patients (Novi et al., 2020, Langley et al., 2020, Shahmirzaii and Naser Moghadas, 2021, McCuddy et al., 2020) developed seizures, and the frequency of seizures was increased in one patient who had seizures before COVID-19 infection (Yong et al., 2020). In addition to our case, visual impairments were reported in two patients (Tenembaum et al., 2002, Varadan et al., 2021). MRI findings of these patients showed multiple lesions in various regions of the CNS.

Different outcomes ensued with the treatments applied in the reported cases. In 58% (18/31) of cases, symptoms improvement and MRI lesions reduction were achieved. Unfortunately, 25% died. Others showed no progression of their symptoms. One patient’s treatment outcome was not mentioned (Karapanayiotides et al., 2020). The neurological manifestations associated with ADEM after the COVID-19 course can significantly increase morbidity and mortality and can multiply the hospitalization time. Although corticosteroids can be beneficial in the resolution of symptoms in ADEM patients, prescription of corticosteroids should be done with caution as it can increase the risk of increased viral replication (McCuddy et al., 2020).

It is notable that while COVID-19-associated ADEM patients predominantly presented with reduced level of consciousness and muscle weakness, a review shows that the most common symptoms in patients with COVID-19-associated autoimmune encephalitis are altered mental status, seizures and ataxia (Payus et al., 2021).

In conclusion, given the significant number of ADEM cases associated with SARS-CoV-2 infection reviewed above, neurologists should bear in mind severe neurological complications that might occur after an unfortunate COVID-19 infection and promptly take action to prevent further potential damages.

References

Al-Sarraj, S., Troakes, C., Hanley, B., Osborn, M., Richardson, M.P., Hotopf, M., Bullmore, E., Everall, I.P., 2021. Invited review: the spectrum of neuropsychology in COVID-19. Neuropsychol. Appl. Neurobiol. 47 (1), 3–16.

Baxter, R., Lewis, E., Goodard, K., Fireman, B., Bakshi, N., DeStefano, F., Gee, J., Tseng, H.F., Nalwany, A.L., Klein, N.P., 2016. Acute demyelinating events following vaccines: a case-centered analysis. Clin. Infect. Dis. 63 (11), 1456–1462.

Pohl, D., Alper, G., Van Haren, K., Kornberg, A.J., Lucchinetti, C.F., Tenembaum, S., Belman, A.L., 2016. Acute disseminated encephalomyelitis: updates on an inflammatory CNS syndrome. Neurology 87 (9 Suppl 2), S38–S45.

Tenembaum, S., Chitnis, T., Ness, J., Hahn, J.S., 2007. International pediatric MS Study group. Acute disseminated encephalomyelitis. Neurology 68 (16 Suppl 2), S23–S36.

Tenembaum, S., Chamos, N., Feijerman, N., 2002. Acute disseminated encephalomyelitis: a long-term follow-up study of 84 pediatric patients. Neurology 59 (8), 1224–1231.

McGetrick, M.E., Varughese, N.A., Miles, D.K., Wang, C.X., McCreary, M., Monson, N.L., Greenberg, B.M., 2021. Clinical features, treatment strategies, and outcomes in hospitalized children with immune-mediated encephalopathies. Pediatr. Neurol. 116, 20–26.

Novi, G., Rossi, T., Pedemont, E., Saitta, L., Rolla, C., Roccatagliata, L., Inglese, M., Farinini, D., 2020. Acute disseminated encephalomyelitis after SARS-CoV-2 infection. Neurol. Neuroimmunol. Neuroinflamm. 7 (5), e977.

Virhammar, J., Kunin, E., Fallmar, D., Frithiof, R., Jackmann, S., Skold, M.K., et al., 2020. Acute necrotizing encephalopathy with SARS-CoV-2 RNA confirmed in cerebrospinal fluid. Neurology 95 (10), 445–449.
Dixon, L., Varley, J., Gontsarova, A., Mallon, D., Tona, F., Muir, D., et al., 2020. COVID-19-related acute necrotizing encephalopathy with brain stem involvement in a patient with aplastic anemia. Neurrol. Neuroimmunol. Neuroinflamm. 7 (5).

Parsons, T., Banks, S., Bae, C., Gelber, J., Alamhadi, H., Tichauer, M., 2020. COVID-19-associated acute disseminated encephalomyelitis (ADEM). J. Neurol. 267 (10), 2799–2802.

de Miranda Henriques-Souza, A.M., de Melo, A., de Aguiar Coelho Silva Madeiro, B., Freitas, L.F., Sampaio Rocha-Filho, P.A., Gonçalves, F.G., 2021. Acute disseminated encephalomyelitis in a COVID-19 pediatric patient. Neuroradiology 63 (1), 141–145.

Langley, L., Zeicu, C., Whitton, L., Pauls, M., 2020. Acute disseminated encephalomyelitis (ADEM) associated with COVID-19. BMJ Case Rep. 13 (12).

Lopes, C.C.B., Brucki, S.M.D., Passos Neto, C.E.B., Corazza, I.A., Baima, J.P.S., Fiorentino, M.D., et al., 2020. Acute disseminated encephalomyelitis in COVID-19: presentation of two cases and review of the literature. Arq. Neuropsiquiatr. 78 (12), 805–810.

Husein, O., Abi Elazim, A., Torhey, M.T., 2020. Covid-19 systemic infection exacerbates pre-existing acute disseminated encephalomyelitis (ADEM). J. Neuroimmunol. 349, 577405.

Umupathi T., Quiek W.M.J., Ren J.M., Rhin H.S.W., Mah Y.Y., Chan C.Y.J., et al. Encephalopathy in COVID-19 patients: viral, para-infectious, or both?. eNeurologicalSci. 2020;21:100275.

Reichard, R.R., Kashani, K.B., Boire, N.A., Constantopoulos, E., Guo, Y., Lucchinetti, C.F., 2020. Neuropathology of COVID-19: a spectrum of vascular and acute disseminated encephalomyelitis (ADEM)-like pathology. Acta Neuropathol. 140 (1), 1–6.

Zhang, T., Rodricks, M.B., Hirsh, E., 2020. COVID-19-associated acute disseminated encephalomyelitis-a case report. medRxiv 16, 20068148 04.

Shahmirzadi, S., Naser Moghadasi, A., 2021. Association of COVID-19 and Acute Disseminated Encephalomyelitis (ADEM) in the absence of pulmonary involvement. Autoimmun. Rev. 20 (3), 102753.

McCuddy, M., Kelkar, P., Zhao, Y., Wicklund, D., 2020. Acute demyelinating encephalomyelitis (ADEM) in COVID-19 infection: a case series. Neurrol. India 68 (5), 1192–1195.

Handa, R., Nanda, S., Prasad, A., Anand, R., Zutshi, D., Dass, S.K., et al., 2020. Covid-19-associated acute haemorrhagic leukoencephalomyelitis. Neurrol. Sci. 41 (11), 2023–2026.

Manzo, M.L., Galati, C., Gallo, C., Santangelo, G., Marino, A., Guccione, F., et al., 2021. ADEM post-SARS-CoV-2 infection in a pediatric patient with Fisher-Evans syndrome. Neur. Sci..

Varadan, B., Shankar, A., Rajakumar, A., Subramanian, S., Sathya, A.C., Hakeem, A.R., et al., 2021. Acute hemorrhagic leukoencephalitis in a COVID-19 patient-a case report with literature review. Neuroloradiology 63 (5), 653–661.

McLendon, L.A., Rao, C.K., Da Hora, C.C., Islamicovic, F., Galan, F.N., 2021. Post-COVID-19 acute disseminated encephalomyelitis in a 17-month-old. Pediatrics 147 (6).

Alqahtani, A., Alkabi, A., Kristjansson, S., Alharthi, H., Aldhilan, S., Alam, H., 2021. Acute Necrotic Hemorrhagic Leukoencephalitis related to COVID-19: a report of two cases. Radiol. Case Rep.

Kumar, A., Olivera, A., Mueller, N., Howard, J., Lewis, A., 2020. Delayed SARS-COV-2 leucoencephalopathy without severe hypoxia. J. Neurol. Sci. 418, 117146.

Hasghi, A., Samuels, T.L., Lamb, F.J., Moharrum, T., Myers, A.E., 2021. Acute haemorrhagic leukoencephalitis (Hurst disease) in severe COVID-19 infection. Brain Behav. Immun. Health 12, 100208.

Yong, M.H., Chan, Y.F.Z., Liu, J., Sanamandra, S.K., Khrok, S.W., Lim, K.C., et al., 2020. A rare case of acute hemorrhagic leukoencephalitis in a COVID-19 patient. J Neurol Sci 416, 117035.

Abdi, S., Ghorbani, A., Fatehi, F., 2020. The association of SARS-CoV-2 infection and acute disseminated encephalomyelitis without prominent clinical pulmonary symptoms. J. Neurol. Sci. 416, 117001.

Walker, J.M., Gilbert, A.R., Bieniek, K.F., Richardson, T.E., 2021. COVID-19 patients with CNS complications and neuropathologic features of acute disseminated encephalomyelitis and acute hemorrhagic leucoencephalopathy. J. Neuropathol. Exp. Neurol. 80 (6), 628–631.

Delamarre, L., Gollion, C., Grouteau, G., Rousset, D., Jimena, G., Roustan, J., et al., 2020. COVID-19-associated acute necrotising encephalopathy successfully treated with steroids and polyclonal immunoglobulin with unusual IgG targeting the cerebral fibre network. J. Neurol. Neurosurg. Psychiatry 91 (9), 1004–1006.

Karapanayiotides, T., Geda, E., Prassopoulos, P., Koutrouliou, I., Kollaris, P., Koutzizeva, E., et al., 2020. Concentric demyelination pattern in COVID-19-associated acute haemorrhagic leukoencephalitis: a lurking catastrophe? Brain 143 (12), e1500.

Poyiadjji, N., Shabir, G., Noujaim, D., Stone, M., Patel, S., Griffith, B., 2020. COVID-19-associated acute hemorrhagic necrotizing encephalopathy: imaging features. Radiology 296 (2), E119–EE20.

Payas, A.O., Jeffere, M.S., Ohn, M.H., Tan, H.J., Ibrahim, A., Chia, Y.K., Raymond, A.A., 2021. Immune-mediated neurological syndrome in SARS-CoV-2 infection: a review of literature on autoimmune encephalitis in COVID-19. Neurol. Sci. 1–15.