Salivary Cortisol Levels and Burning Symptoms in Patients with Burning Mouth Syndrome before and after Low Level Laser Therapy: a Double Blind Controlled Randomized Clinical Trial

Razina kortizola i simptomi žarenja kod bolesnika sa sindromom pekućih usta prije i nakon liječenja niskoenergijskim laserom: dvostruko slijepa, kontrolirana i randomizirana klinička studija

Abstract
Objectives: Burning mouth syndrome (BMS) is a disorder which is described as burning sensation of the oral mucosa without pathological changes. Most of the patients have some underlying stressful conditions. Stress induces an increase in secretion of different endocrine glands resulting in higher levels of glucocorticoids. One of the options for treatment of BMS includes low level laser therapy (LLLT). The aim of this research was to determine salivary cortisol levels and intensity of burning symptoms in BMS patients before and after LLLT. Material and Methods: Twenty-three participants were allocated by randomization in two groups: 12 patients in the study group and 11 patients in the placebo group. Cortisol levels in all patients were analyzed from the sample of saliva collected without stimulation. In both groups, the LLLT was performed once a day for ten consecutive days (excluding weekend) with Ga-Al-As light-emitting diode type of laser, with a wavelength of 685nm. In the control group, LLLT was done with inactive laser probe which was only emitting audio signal. The intensity of burning symptoms was measured by a visual analogue scale (VAS). The VAS and unstimulated saliva were measured at baseline and on the last day of the LLLT. A quantitative analysis of saliva was performed using competitive commercial ELISA-kit. Results: VAS scores and salivary cortisol levels were significantly lower in both groups after LLLT. Conclusions: LLLT can be useful in patients with BMS for reducing burning symptoms and salivary cortisol level. Future studies on a larger number of patients should clarify whether the positive results are an outcome of laser effectiveness or of placebo effect.

Received: August 26, 2019
Accepted: February 3, 2020

Address for correspondence
Božana Lončar Brzak
University of Zagreb
School of Dental Medicine
Department of Oral Medicine
Gundulićeva 5, 10 000 Zagreb, Croatia
Phone: 0038514802124
Fax: 0038514830819
loncar@sfzg.hr

Key words
Burning Mouth Syndrome; Saliva; Hydrocortisone; Low-Level Light Therapy

Introduction
Burning mouth syndrome (BMS) is a disorder which is described as burning sensation of oral mucosa without pathological changes (1). The etiology of BMS is unclear, although disorders of the central (2) or peripheral nervous system are possible causes. The most frequently affected sites are the anterior two thirds of the tongue although the BMS can affect any other intraoral site (3). Peri-menopausal and post – me-
nopausal women are the most affected patients. It is hard to estimate the real epidemiology of BMS because of non-universal diagnostic criteria and, also, because of a low awareness about BMS among dentists and general health practitioners. Some studies from the literature have shown some nonspecific health problems in BMS patients, such as irritable bowel syndrome, headaches, temporomandibular joint pain, dermatological, musculoskeletal and psychiatric disorders (4) as well as higher level of catastrophizing is some patients (5). The majority of the patients have some underlying stressful conditions. Also, the burning symptoms itself could increase the level of stress in patients with BMS.

Stress induces an increase in secretion of different endocrine glands resulting in higher levels of glucocorticoids (6). Cortisol is a glucocorticoid which is secreted from the adrenal cortex. It is involved in the metabolism of carbohydrates, proteins and fats. In addition, it has a role in water metabolism, affects the sensitivity of the nervous system and affects the human stress response (3). Results from the literature point out that cortisol levels in saliva are increased in BMS patients as indicator of stress conditions (3, 7). However, Nosratzehi et al. (8) and de Souza et al. (9) have shown that differences between salivary cortisol levels among BMS patients and control were not significant.

The estimation of cortisol in saliva is a non-invasive procedure as opposed to blood collection which induces stress in some patients leading to an increase in cortisol levels (10). Due to an advance in analytical methods, the levels of cortisol and cortisone in saliva can be measured with high reliability. The reference interval is determined by the manufacturer of the specific kit.

A recent study (11) has shown that women with temporomandibular disorders and salivary cortisol above 10 ng/ml reported higher pain scores. This result points out the involvement of stress in other painful conditions in the orofacial region.

The treatment of BMS is difficult and represents a serious clinical problem. Various treatment possibilities have been suggested but with limited success. According to a recent systematic review, a certain intervention for patient with BMS has not been proposed (12).

Low level laser therapy (LLLT) as a treatment option includes the use of light to a biologic system in order to promote tissue regeneration, reduce inflammation and relieve pain (13). The results regarding LLLT in BMS patients are controversial and require further investigation.

The aim of this research was to determine the salivary cortisol levels and intensity of burning symptoms in BMS patients before and after LLLT. To our knowledge, this is the first study evaluating the effect of LLLT on salivary cortisol levels in BMS patients.

Material and methods

This was a double-blinded randomized clinical trial approved by the Ethics Committee of the School of Dental Medicine, University of Zagreb, Croatia. The written consent form was signed by each patient consistent with the Decla-
ration of Helsinki. There were 12 patients in the study group and 11 patients in the control group. Sample size was calculated according to previously published data (14) by power analysis with significance level \(\alpha=0.05\) and power \(\beta=0.8\). Participants were randomly allocated into two groups by random number generator.

Inclusion criteria were patients with burning sensations for at least three months before the treatment and with normal appearance of the oral mucosa. Burning sensations were present on only one intraoral site – the tongue, lip or hard palate. The patients with BMS came to our Department for the first time and they had not had any previous treatments for BMS. Excluding criteria were patients with diabetes, serum iron and vitamin B deficiency, previous head and neck radiotherapy, patients with autoimmune diseases and those taking antidepressants, anxiolytics, anticonvulsants and hormonal therapy which could affect cortisol level.

Primary outcome measure was a patient's subjective complaint of burning sensation detected by a visual analogue scale (VAS) grading 0 to 10, with level 10 representing the strongest level of symptoms.

The secondary outcome measure was the salivary cortisol level in unstimulated saliva. Saliva was collected between 9AM and 10AM by spitting into grading tubes which were immediately frozen. Teeth brushing and eating or drinking was not allowed for 60 minutes before saliva sampling.

VAS scale and unstimulated saliva were measured at baseline and last day of the LLLT.

On the assay day, saliva samples were defrosted and concentrations of cortisol were determined by manufacturer's instructions for Salimetrics commercial ELISA-kit (Salimetrics, LCC, State College, PA, USA). The range of manufacturer's reference values was from 0.007-0.115 µg/dL.

In the study group, the LLLT was done daily for ten consecutive days (excluding weekend) (15) with Ga-Al-As light-emitting diode type of laser by a third person – nurse from our clinical Department in a way that no patient could hear the laser. Laser wavelength was 685nm and treatment was performed on three reported burning sites. LLLT parameters are shown in Table 1.

Parameter (unit)	Parametar (jedinica)	Value • Vrijednost
Wavelength (nm)	Valna duljina (nm)	685
Dose (J/cm²)	Doza (J/cm²)	2.00
Power (mW)	Snaga (mW)	30
Power density (W/cm²)	Gustoća snage (W/cm²)	0.003
Number of treatments	Broj tretmana	10
Single treatment duration (sec)	Trajanje pojedinačnog tretmana (sek.)	381
Treated surface area (cm²)	Tretirana površina (cm²)	3
Distance (cm)	Udaljenost (cm)	0.5
Frequency (Hz)	Frekvencija (Hz)	5.20
Cumulative dose (J/cm²)	Kumulativna doza (J/cm²)	60

Primary outcome was the patients' subjective complaint of burning sensation detected by a visual analogue scale (VAS) grading 0 to 10, with level 10 representing the strongest level of symptoms.

The secondary outcome measure was the salivary cortisol level in unstimulated saliva. Saliva was collected between 9AM and 10AM by spitting into grading tubes which were immediately frozen. Teeth brushing and eating or drinking was not allowed for 60 minutes before saliva sampling.

VAS scale and unstimulated saliva were measured at baseline and last day of the LLLT.

On the assay day, saliva samples were defrosted and concentrations of cortisol were determined by manufacturer's instructions for Salimetrics commercial ELISA-kit (Salimetrics, LCC, State College, PA, USA). The range of manufacturer's reference values was from 0.007-0.115 µg/dL.

In the study group, the LLLT was done daily for ten consecutive days (excluding weekend) (15) with Ga-Al-As light-emitting diode type of laser by a third person – nurse from our clinical Department in a way that no patient could hear the laser. Laser wavelength was 685nm and treatment was performed on three reported burning sites. LLLT parameters are shown in Table 1.

The treatment protocol was identical for the control group, but LLLT was done with inactive laser probe which was only emitting the audio signal.

Ispitnoj skupini bilo je dvanaestero, a u kontrolnoj jedanestero bolesnika. Veličina uzorka izračunata je prema prije objavljenim podatcima (14) s pomoću analize snage s razinom značajnosti \(\alpha=0.05\) i snagom \(\beta=0.8\). Ispitnici su raspodijeljeni u dvije skupine s pomoću generatora slučajnih brojeva.

Kriteriji za sudjelovanje bili su simptomižarenja baram tri mjeseca priorije liječenja i uredan nalaz sluznice usta. Simptomižarenja bili su na samo jednom intraoralnom mjestu – na jeziku, usnici ili tvgdom neprcu. Bolesnici sa SPU-om došli su u naš zavod prvi put i prije toga nisu bili liječeni zbog tog sindroma. Kriteriji za nesudjelovanje bili su šećerna bolest, manjak hemoglobina i vitamin B. Uzroci liječenja zrećenjem glave i vrata, autoimune bolesti te uzimanje antidepresiva, antikonvulziva i hormona, što je moglo utjecati na razinu kortizola.

Primarna mjera ishoda bila je subjektivni osjećaj žarenja izmjerjen vizualno analognom ljestvicom bole (VAS-om) gradiranim od 0 do 10, s time da je 10 pokazatelj najjače bolesti.

Sekundarna mjera ishoda bila je razina kortizola u nestimuliranoj slini. Slika se skupljala između 9 i 10 sati pljuvenjem u građanom epruvetu, a uzorci su odmah zamrznuti. Šezdeset minuta prije toga bolesnici nisu prali zube, te nisu jeli, niti pili.

Razina simptoma na VAS ljestvicu i nestimulirana slina mjerni su na početku liječenja i posljednjeg dana tretmana niskoenergijskim laserom.

Na dan testa uzorci sline su odmrznuti te su koncentracije kortizola određene prema uputama proizvođača komercijalnog kita Salimetrics ELISA (Salimetrics, LCC, State College, PA, SAD). Raspon referentnih vrijednosti proizvođača bio je od 0,007 do 0,115 µg/dL.

U ispitnoj skupini liječenja niskoenergijskim laserom obavljalo se deset dana (isključujući vikend) (15) s Ga-Al-As svjetlosno emitirajućim diodom lasera s pomoću treće osobe – medicinske sestre iz našeg zavoda te se na taj način omogućila randomizacija. Valna duljina lasera bila je 685 nm, a liječenje je provedeno na trima mjestima. Parametri niskoenergijskog lasera nalaze se u tablici 1.

Protokol liječenja bio je isti i u kontrolnoj skupini, ali je liječenje obavljeno inaktivnom laserskom sondom emitirajući samo zvučni signal.
Statistical analysis

Statistical analysis was performed by MedCalc statistical software, version 18.10.2. (Ostend, Belgium). Differences between groups regarding age and sex were tested by the Mann-Whitney and Fisher-exact test respectively. The Wilcoxon signed-rank test for related samples was used to compare the differences between VAS scores and salivary cortisol level before and after LLLT. The level of significance was set at 0.05 (p<0.05).

Results

A total of 23 patients, 20 women and three men (one in the study group and two in the control group) participated in the study. Median age of the patients in the study group was 61 (47 - 70) years and in the control group 62 (50 - 69) years. Age and sex distribution did not differ between groups (Table 2). All participants have completed the study without any reported side effects of the therapy as evidenced by their subjective responses and control examination of the oral mucosa. The results have shown that VAS scores were significantly lower in both groups after LLLT (study group: median 5.5 (4-9) to median 4 (3-7); control group: median 5 (0-8) to median 3 (1.5-6.5)) (Table 3).

Our results have shown that all patients had elevated salivary cortisol levels prior to the LLLT (> 0.115 µg/dL). Decreased salivary cortisol levels were detected in both groups after LLLT (study group: median 0.337 (0.198-1.333) µg/dL to median 0.305 (0.122-0.831) µg/dL; control group: median 0.313 (0.137-0.85) µg/dL to median 0.222 (0.122-0.498) µg/dL (Table 3).

Table 2

Study group • Ispitna skupina	Control group • Kontrolna skupina	P
Male (N) • Muškarci (N)	1	
Female (N) • Žene (N)	11	
Total (N) • Ukupno (N)	12	>0.05*
Age • Godine		
Median (range)	61 (47-70)	62 (50-69)

* Fisher-exact test • Fisherov egzaktni test
** Mann-Whitney test • Mann-Whitneyjev test

Table 3

VAS scores before LLLT • VAS bodovi prije liječenja (median (raspon)) • (medijan (raspon))	VAS scores after LLLT • VAS bodovi nakon liječenja (median (raspon)) • (medijan (raspon))	p*	Salivary cortisol level before LLLT • Razina kortizola u slini prije liječenja (median (range) µg/dL) • (medijan (raspon) µg/dL)	Salivary cortisol level after LLLT • Razina kortizola u slini nakon liječenja (median (range) µg/dL) • (medijan (raspon) µg/dL)	p*
Laser probe turned on • Uključena laserska sonda • Laser probe turned on • Inključena laserska sonda	Laser probe turned off • Isključena laserska sonda • Laser probe turned off • Isključena laserska sonda		0.377 (0.198-1.333)	0.222 (0.122-0.498)	<0.05
5.5 (4-9)	4 (3-7)	<0.05	0.377 (0.198-1.333)	0.222 (0.122-0.498)	<0.05
5 (0-8)	3 (1.5-6.5)	<0.05	0.313 (0.137-0.85)	0.222 (0.122-0.498)	<0.05

* Wilcoxon signed rank test
Discussion

The results of scientific studies published so far regarding the treatment of BMS patients with LLLT are not consistent. Additionally, previous studies have shown controversial results regarding the salivary cortisol levels in BMS patients. Amenabar et al. (3) and Kim et al. (7) have shown elevated cortisol levels in BMS patients, which is in disagreement with Nosratzehi et al. (8) and de Souza et al. (9).

In our study, we have reported decreased salivary cortisol levels in BMS patients after the LLLT when the laser diode was switched on and when the laser diode was switched off. Bearing in mind the fact that the cortisol level increases in stress situations (6), we may assume that patients were less stressed after the therapy. The patients also had a smaller number of burning symptoms after the therapy, which was confirmed by decreased VAS scores that were significantly lower after the LLLT in both groups. Similar results were obtained by Sikora et al. (15) who also reported decreased VAS scores in BMS patients regardless of the laser probe being on or off.

A recent study of Spanemberg et al. (14) has shown that the effect of LLLT was satisfactory in a small number of BMS patients and that LLLT could be alternative to treatment with psychoactive drugs. Their study included 12 patients in the study group and 9 patients in the control group. This study differs from ours in the treatment protocol – 2 weekly sessions for 4 weeks (14) contrary to 5 weekly sessions for 2 weeks (ours) and laser wavelength – infrared (14) contrary to red (ours). A group of authors in 2015 (16) have reported a reduction of burning symptoms in BMS patients treated with three different laser treatment protocols including infrared and red diode and different weekly application. These data point out that different modality of LLLT could be effective in treatment of patients with BMS but also a need for defining a standard protocol for low level laser therapy in BMS patients.

Valenzuela and Lopez-Jornet (17) reported that LLLT reduces symptoms slightly in BMS patients which they obtained by use of OHIP-14, VAS and Hospital anxiety and depression scale. Their results have shown that OHIP-14 and VAS scores were significantly lower after two weeks. However, no significant reduction was found from 2 to 4 weeks therapy.

Al-Maweri et al. (18) made a systemic meta-analysis of the published literature on BMS and LLLT and included results of five randomized clinical trials (16, 19–22), three uncontrolled clinical trials (23–25) and two case series (26, 27). Sugaya et al. (19) have found that LLLT has the same effect as placebo in BMS patients. Pezelj-Ribarič et al. (22) did not find any significant reductions of VAS scores after LLLT. Although the abovementioned studies have shown negative results, Al-Maweri et al. (18) concluded that LLLT could be effective for reducing pain in BMS patients. They pointed out that well-designed double-blinded randomized clinical trials are necessary to evaluate the role of LLLT in patients with BMS.

The results of previous studies have shown an association between pain intensity, salivary cortisol levels and psycho-
logical stress (28, 29). Also, the patients with chronic pain show greater improvement when they get treatment, whether or not it is a placebo, than without any therapy at all (30). Every possible treatment option is associated with beneficial cognitive effects such as stress reduction (31, 32). Although Vukoja et al. (33) suggest that positive effect of LLLT is probably the result of a placebo, previous data (30-32) justifies the use of LLLT despite possible placebo effects.

The advantages of our study are that, to our knowledge, this is the first study measuring salivary cortisol levels in patients with BMS before and after LLLT. The limitations of the study refer to cortisol measurement that may be affected by wake up-time and it cannot be influenced by the researcher (34).

Conclusion

Despite the limitations of the study, our results have shown that LLLT can be useful for reducing burning symptoms and the salivary cortisol level, thus reducing stress. However, further research on a larger number of BMS patients is needed to clarify whether the positive results are attributed to LLLT effectiveness or to placebo effect.

Conflict of Interest

None declared.

References

1. Grushka M, Epstein JB, Gorsky M. Burning mouth syndrome. Am Fam Physician. 2002 Feb 15;65(4):615-20.
2. Zavoreo I, Vučićević V, Boras, Zadravec D, Bašić V, Kes Cliga D, Gabric D. The Significance of Brain Transcranial Sonography in Burning Mouth Syndrome: a Pilot Study. Acta Stomatol Croat. 2017 Mar;51(1):48-59.
3. Amenábár JM, Pawlowski I, Hilgert JB, Hugo FN, Bandeira D, Lührer F, et al. Anxiety and salivary cortisol levels in patients with burning mouth syndrome: case-control study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008 Apr;105(4):460-5.
4. Klasser GD, Fischer DJ, Epstein JB. Burning mouth syndrome. Recognition, understanding and management. Oral Maxillofac Surg Clin North Am. 2008 May;20(2):255-71, vii.
5. Rogulj AA, Richter I, Brailo V, Krstevski I, Boras VV. Catastrophizing in patients with burning mouth syndrome. Acta Stomatol Croat. 2014 Jun;48(2):109-15.
6. Ranabir S, Reetu K. Stress and Hormones. Indian J Endocrinol Metab. 2011 Jan;15(1):18-22.
7. Kim HI, Kim YY, Chang JY, Ko JY, Kho HS. Salivary cortisol, 17β-estradiol, progesterone, dehydroepiandrosterone, and α-amylase in patients with burning mouth syndrome. Oral Dis. 2012 Sep;18(6):613-20.
8. Nosratzehi T, Salimi S. Parvaee A. Comparison of Salivary Cortisol and α-amylase Levels and Psychological Profile sin Patients with Burning Mouth Syndrome. Spec Care Dent. 2017;37(3):120-5.
9. de Souza FT, Kummer A, Silva ML, Amaral TM, Abdo EN, Abreu MH, et al. The association of openness personality trait with

Zaključak

Unatoč ograničenjima studije, naši su rezultati pokazali li da liječenje niskoenergijskim laserom može biti korisno za smanjenje simptoma pečenja i razinu kortizola u slini i tako smanjiti stres. No potrebne su studije na većem broju bolesnika sa SPU-om u kojima bi se trebalo razjasniti jesu li pozitivni rezultati ishod učinkovitosti lasera ili je placebo učinak.

Sukob interesa

Autori nisu bili u sukobu interesa.

Zaprimjen: 26. kolovoza 2019.

Prihvacen: 3. veljače 2020.

Adresa za dopisivanje

Božana Lončar Brzak
Sveučilište u Zagrebu
Stomatološki fakultet
Gunduliceva 5,
10 000 Zagreb, Hrvatska
tel: 038514802124
faks: 038514830819
loncar@sfrz.hr

Ključne riječi

sindrome pekućih ust; slina; kortizol; liječenje niskoenergijskim laserom
stress-related salivary biomarkers in burning mouth syndrome. Neuroimmunomodulation. 2015;22(4):250-5.
10. Blair J, Adaway J, Xeevil B, Ross R. Salivary cortisol and cortisone in the clinical setting. Curr Opin Endocrinol Diabetes Obes. 2017 Jun;24(3):161-168.
11. Magri LV, Carvalho VA, Rodrigues FCC, Bataglion C, Leite-Panissi CRA. Non-specific effects and clusters of women with painful TMD responders and non-responders to LLLT: double blind randomized clinical trial. Lasers Med Sci. 2018 Feb;33(2):385-392.
12. McMillan R, Forssell H, Buchanan JAG, Glenny AM, Weldon JC, Zakrajsek BW. Interventions for treating burning mouth syndrome. Cochrane Database Syst Rev. 2016 Nov 18;11:CD002779.
13. Farivar S, Malekshahabi T, Shariati R. Biological Effects of Low Level Laser Therapy. J Lasers Med Sci. 2014 Spring;5(2):58-62.
14. Spanemberg JC, Segura-Egea JJ, Rodríguez-de Rivera-Campillo E, Jané-Salas E, Salum FG, López-López J. Low-level laser therapy in patients with Burning Mouth Syndrome: A double-blind, randomized, controlled clinical trial. J Clin Exp Dent. 2019 Feb;11(2):e162-e169.
15. Sikora M, Vče ̈v A, Sib er S, VučićRVaR, Botulović B, Ban žić V. Efficacy of Low-Level Laser Therapy in Burning Mouth Syndrome – A Pilot Study. Acta Clin Croat. 2018;57(2):312-5.
16. Spanemberg JC, Lopez JL, de Figueiredo MA, Cherubini K, Salum FG. Efficacy of low-level laser therapy for the treatment of burning mouth syndrome: a randomized, controlled trial. J Biomed Opt. 2015 Sep;20(9):098001.
17. Valenzuela S, Lopez-Jornet P. Effects of low-level laser therapy on burning mouth syndrome. J Oral Rehabil. 2017 Feb;44(2):125-132.
18. Al-Mawi RA, Yalab S, Al-Abed A, Al-Ansari N, Al-Shehhi M, Al-Kabakht S. A. Efficacy of low level laser therapy in the treatment of burning mouth syndrome: A systematic review. Photodiagnostics Photodyn Ther. 2017 Mar;17:188-193.
19. Sugaya NN, Silva EF, Kato IT, Prates R, Gallo CB, Pellegrini WD. Low Intensity Laser Therapy in patients with Burning Mouth Syndrome: randomized, placebo-controlled study. Braz Oral Res. 2016 Oct 10;30(1):e108.
20. Arbabi-Kalati F, Bakhshani NM, Rasti M. Evaluation of the efficacy of low-level laser in improving the symptoms of burning mouth syndrome. J Clin Exp Dent. 2015 Oct 1;7(4):e524-7.
21. Arduino PG, Cofaro A, Giarone M, Gambino A, Cabras M, Romagnoli E, et al. A randomized pilot study to assess the safety and the value of low-level laser versus clonazepam in patients with burning mouth syndrome. Lasers Med Sci. 2016 May;31(4):811-6.