Is there a future for artisanal fishing in the Amazon? The case of *Arapaima gigas*

Carolina Rodrigues da Costa Doria1,*, Dayana Tamiris Brito dos Santos Catâneo1, Gislene Torrente-Vilara2 and Jean Ricardo Simões Vitule3

1Laboratory of Ichthyology and Fisheries, Department of Biology, Graduate Program of Regional development. Federal University of Rondônia, Brazil
2Marine Institute, Federal University of São Paulo, Campus Baixada Santista. Santos, São Paulo, Brazil
3Laboratory of Ecology and Conservation, Department of Environmental Engineer, Federal University of Paraná, Curitiba, Brazil

*Corresponding author
E-mail: carolinarcdoria@unir.br

Abstract

In the last ten years *Araipama gigas*, commonly known as pirarucu, expanded its distribution upstream into the Madeira River rapids where it is not a native species. The invasion was favored by escapes from Peruvian fish farms upstream in the Madeira River Basin, where they have been raising pirarucu since the 1970s. Although the Madeira River rapids had formerly represented a geographical barrier to this invasion by limiting floodplain habitats, the construction of the Santo Antônio and Jirau dams in 2011 flooded the two most important falls, replacing the rapids stretch with a lentic or semi-lentic habitat favoring the invasion of *A. gigas*. Since construction of the dams, fisheries reports have been marked by the decrease of traditional commercial species, coupled with the presence of invasive populations of *A. gigas*. This example highlights a major emergent threat to artisanal fishing in the Amazonian freshwater system: government policies favoring dam construction and the consequent spread of native fish species used in aquaculture to new regions upstream of waterfalls where they are not native.

Key words: fisheries, freshwater impacts, biological change, aquaculture, dam impact

Introduction

The future of traditional artisanal fisheries in the Amazon is threatened by large infrastructural development projects such as roads, piers, waterways, mining, and hydroelectric dams (Castello and Macedo 2016), as well as by the expansion of aquaculture (Pauly 2018). The cumulative and synergistic effects of these threats can lead to unpredictable impacts on artisanal fisheries (Lima-Junior et al. 2018). These threats are directly related to governmental policies in developing countries, such as Brazil, designed to foster economic growth.

In the Amazon, aquaculture competes with artisanal fisheries. However, aquaculture may offer fish of lower economic value than those traditionally caught in artisanal fisheries and promotes invasions or extirpations of fish species and genetic homogenization through introgression resulting from the introduction of non-native populations or genes. On the other hand,
The invasion of *Arapaima gigas* in the Amazon

The invasion of *Arapaima gigas* (Schinz, 1822), known locally as *pirarucu*, is widely distributed in the Amazon River basin, with the exception of a few regions where it was not known to occur previously, including the Bolivian portion of the Amazon River and the Madeira River. However, *A. gigas* invaded Bolivian rivers during the 1970s (Miranda-Chumacero et al. 2012; Carvajal-Vallejos et al. 2011) and, more recently, the Madeira River, with serious deleterious effects on traditional fishing.

A biological invasion from a purely ecological perspective occurs when a population of a species acquires a competitive advantage following the disappearance of natural obstacles hindering its proliferation. This allows it to spread rapidly and to conquer novel areas in the recipient ecosystem, where it may become a dominant component of the system (e.g. Valéry et al. 2008; Simberloff and Vitule 2014). In general, an organism is considered native to a given region if its presence is the product of natural processes. It is also expected that some organisms found in places where they are not expected to occur naturally will do so because they derive some benefit from human activities (Bezerra et al. 2019a, b). Often, non-native species, defined as organisms that have been introduced to a new area by human activities, become invasive species resulting in high economic costs related to the efforts taken to control and manage them (GB NNSS 2015; Eiswerth and Johnson 2002; Leung et al. 2002; Pimentel et al. 2005).

Arapaima gigas is among the largest living fish species in the Amazon, reaching about 3 m in length and more than 200 kg in weight. *Arapaima gigas* is naturally distributed in most Amazon River Basins with the notable exception of the upstream section of the Madeira River Basin in Bolivia and Peru (Queiroz et al. 2013), where a series of rapids probably acted as a geographical barrier to its upstream dispersal (Torrente-Vilara et al. 2011). On the other hand, a century of exploitation in the floodplain areas in central Amazônia has depleted the natural populations of *A. gigas* (Hrbek et al. 2005), justifying its inclusion in the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES II). However, human introduction of *A. gigas* in Peru in the 1970s (Miranda-Chumacero et al. 2012) demonstrated its ability to colonize habitats in the Madre de Dios and Mamoré floodplains upstream of the Madeira River rapids. Considering that *A. gigas* usually feeds on insects, shrimp, and crabs during the early stages of its life, and feeds on more than 10 abundant commercial Amazon fish species as an adult (Fontenele 1952; Romero 1960; Lüling 1964), the species has the potential to colonize and impact a large area of the Amazon basin. The progressive spread of *A. gigas* over most of the Amazon Basin has been predicted due to increases in the mean temperature associated with climate change, limited only by altitude and

Doria et al. (2020), Management of Biological Invasions 11(1): 1–8, https://doi.org/10.3391/mbi.2020.11.1.01
the absence of floodplain environments (Oberdorff et al. 2015). However, these predictions did not consider the introduction of *A. gigas* as non-native populations in a set of sub-basins upstream of the Madeira River rapids where large floodplains (natural habitats in Madre de Dios and Mamoré rivers) and reservoirs have been established (Doria et al. 2018) thereby enhancing its potential for invasion.

In 2011, two large hydropower dams were constructed in the Madeira River Basin, flooding the two most important falls along the rapids, which had previously acted as natural geographic barriers to the spread of *A. gigas* (Cella-Ribeiro et al. 2017). At the same time, Carvajal-Vallejos et al. 2011 detected a drastic change in landings by artisanal fisheries, showing that *A. gigas* reached approximately 40% and 50% of the catch in the most important fish markets in Bolivia (Riberalta and Porto Rico, respectively). These were believed to be aquaculture escapes from Peru (Miranda-Chumacero et al. 2012). Since then, *A. gigas* has spread its distribution upstream in the Madeira River Basin, thereby increasing its abundance in the fish market on the Brazil-Bolivia border. This has resulted in a drastic change in the fish production chain over the last 30 years (Carvajal-Vallejos et al. 2011; Lizarro et al. 2017).

In order to obtain information concerning the first occurrence of *A. gigas* in fish markets on the Brazil-Bolivia border and information about the fish’s origin and increasing abundance, interviews were conducted through a semi-structured questionnaire with local fishermen.

Results and discussion

The results indicate that *A. gigas* was absent from the study area before the 1990s (Figure 1A) and suggest its invasion originated with escapes from fish farms in Bolivia (45%), Peru (21%), and/or Brazil (14%) (Figure 1B; Supplementary material Table S1). Moreover, according to the fishermen, the invasion and the increasing abundance of *A. gigas* could be seen in Brazil since 2000, with an emphasis on 2014 (70% of interviewers), a year when there was a historic atypical flood along the Madeira River (Fearnside 2014). Our results suggest that *A. gigas* has expanded its distribution from the Mamoré River to the Madeira River to at least the Brazil-Bolivia border during the last 10 years, reinforced by the atypical flood of 2014, and presently extends to the reservoir of the Santo Antônio Dam, a semi-lentic habitat (Figures 2, 3).

As the largest Amazonian piscivorous fish species, the *A. gigas* invasion poses a major threat to native species that are already vulnerable to environmental change and habitat destruction. Because of the *A. gigas* invasion, native fish now have to coexist with an invasive apex predator as well as the parasites, microorganisms, and diseases that potentially accompany *A. gigas*, leading to increased mortality and loss of the genetic variability in the natural populations (Waples and Drake 2004; Villanúa et al. 2008; Laikre et al. 2010).
The invasion of *Arapaima gigas* in the Amazon

Figure 1. A) First sightings of *Arapaima gigas* (pirarucu) by fishermen in the area of the Santo Antônio reservoir (Madeira River) by decade; B) the possible origin of *Arapaima gigas* (pirarucu) in the Brazil-Bolivia border fish market and in the Santo Antônio Reservoir, where new occurrences are reported. Legend: Pisci = Fish farming.

Further downstream, the genetic integrity of a native population of *A. gigas* in a stretch of the Madeira River close to central Amazonia (about 500 km from the Brazil-Bolivia border) is threatened by *A. gigas* introduced into the upper Madeira River Basin (in Peru) through aquaculture escapes. These fish have an unknown stock origin.

The invasion of *A. gigas* over a large area (about 350,000 km²; Doria et al. 2018), where it was never recognized as a native species, is associated with its increasing abundance in the artisanal fishery (42%) harvest on the Brazil-Bolivia border in the last decade (Figure 1; data from: Fisher Association of the Guajará Mirim/Brazil). This represents almost half of the artisanal fishery production, ample evidence to consider *A. gigas* as an invasive species upstream of the Santo Antônio Dam, and therefore it should be urgently monitored and controlled.

The threats and losses to Amazonian biodiversity, which presage the future of traditional artisanal fishing, are largely promoted by governmental policies aimed at fostering the expansion of infrastructure projects. The impacts of these projects have caused large disturbances in
The invasion of *Araipama gigas* in the Amazon

Doria et al. (2020), *Management of Biological Invasions* 11(1): 1–8, https://doi.org/10.3391/mbi.2020.11.1.01

Figure 2. Madeira River study area highlighting the locality (grey square) where the native pirarucu (*Araipama gigas*) populations exist, and the localities (asterisks) where non-native pirarucu have expanded since 2000 according to the reports of fishermen. Inserted graphs show the fishery production landed in the region of Guajará Mirim (Brazil) in 2016 (Source: present study) and Riberalta (Bolivia) in 2011 (Méndez et al. 2012).

Figure 3. Invasive *Arapaima gigas* (pirarucu) fished by a local angler in Mamoré River at Brazil-Bolivia border (Picture courtesy of: Fishers’ Association of Guajará Mirim).

pristine environments, facilitating biological invasions (Lima-Junior et al. 2018; Bezerra et al. 2019b). Aquaculture without adequate controls (e.g., without effective barriers to prevent dispersion of organisms) has the potential to spread alien species (Orsi and Agostinho 1999; Latini et al. 2016; Casimiro et al. 2018). Invasive species released from aquaculture projects generate significant ecological consequences, such as changes in
the structure of the native fish populations, loss of genetic variability (i.e. introgression and genetic homogenization), faunal homogenization, and the decline of native species and populations (Vitule et al. 2009; 2012; Bezerra et al. 2019a, b). Ultimately, invasive species cause changes in ecosystem interactions, affecting human activities such as fishing, and leading to social and economic consequences (Agostinho et al. 2008; Laikre et al. 2010; Attayde et al. 2011; Simberloff and Rejmánek 2011; Méndez et al. 2012).

Local fishermen suffer as a result of the changes in fisheries caused by dams. These changes include a drastic reduction the size of catches and increases in the abundance of invasive species. Despite the fact that fishermen are aware of the fact that catching A. gigas is illegal (Rondônia 2015) and that they may be arrested, the A. gigas fishery has become the only way to guarantee their income. Nevertheless, it was the fishermen that first called for an understanding of the ecological and social issues associated with A. gigas invasion. Based on this understanding and the new scenario, in regions where there are invasive populations fishermen, scholars, and other stakeholders have begun to call for urgent changes in the local fish regulations, including the revision of regulations regarding A. gigas, in order to give to the fishermen catch permits. These changes would allow the artisanal fishers to be part of the solution by contributing to control the spread of the invasive species.

Final considerations

The future of artisanal fisheries depends on improving our understanding of how changes in the aquatic environment facilitate the invasion of fish species and how interactions among these factors (biological invasions and environmental changes) influence fisheries outcomes, such as catches and fisher’s income. Finally, the development of effective participative management policies is fundamental if we wish to avoid the extinction of artisanal fisheries and native species in developing countries.

Acknowledgements

This research was supported by the Coordination of Improvement of Higher Level Personnel (CAPES). We are also grateful to the CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for research grants provided to J.R.S.V. (Process Numbers: 302367/2018-7 and 303776/2015-3). We thank the Guajará Mirim and Porto Velho Fisher’s Association and the fishers that contributed to this work; Dr. Joachim Carolsfeld and Dr. Caroline Arantes for their contributions in the revision of the language. Thanks also to editors and reviewers whose comments improved the manuscript.

References

Agostinho AA, Pelicice FM, Gomes LC (2008) Dams and the fish fauna of the Neotropical region: impacts and management related to diversity and fisheries. *Brazilian Journal of Biology* 68: 1119–1132, https://doi.org/10.1590/S1519-69842008000500019

Attayde JL, Brasil J, Menescal RA (2011) Impactos da introdução da tilápia do Nilo nas pescaarias de um reservatório tropical no nordeste do Brasil. *Gestão da Pesca e Ecologia* 18(6): 437–443
Bezerra, LAV, Ribeiro VM, Freitas MO, Kaufman L, Padial AA, Vitule, JRS (2019a) Bentification, biotic homogenization behind the trophic downgrading in altered ecosystems. *Ecosphere* 10: e02757, doi:10.1002/ecs2.2757

Bezerra LAV, Freitas MO, Daga VS, Occhi TVT, Faria L, Costa APL, Padial AA, Prodocimo V, Vitule JRS (2019b) A network meta-analysis of threats to South American fish biodiversity. *Fish and Fisheries*, doi:10.1111/faf.12365

Carvalhal-Vallejos FM, Van Damme PA, Cordova L, Coca C (2011) La introducción de *Arapaima gigas* (paiche) en la Amazonía boliviana. In: Van Damme PA, Carvalhal-Vallejos FM, Carpio JM (eds), Peces y Delfines de la Amazonía boliviana: Hábitats, potencialidades y amenazas. INIA: Cochabamba, pp 367–396

Casiimiro ACR, Garcia DAZ, Vidotto-Magnoni AP, Britton JR, Agostinho AA, Almeida FSD, Orsi ML (2018) Escapes of non-native fish from flooded aquaculture facilities: the case of Paranapanema River, southern Brazil. *Zoologia (Curitiba)* 35: e14638, doi:10.1007/s42308-2019.1463511

Castello L, Macedo MN (2016) Large-scale degradation of Amazonian freshwater ecosystems. *Global Change Biology* 22: 990–1007, doi:10.1111/gcb.13173

Cella-Ribeiro A, Doria CRC, Dutka-Gianelli J, Alves H, Torrente-Vilara G (2017) Temporal fish community responses to two cascade run-of-river dams in the Madeira River, Amazon basin. *Ecology and Hydrobiology* 10: e1889, doi:10.1002/eco.1889

Doria CRC, Duponchelle F, Lima MAL, Garcia A, Carvajal-Vallejos FM, Méndez CC, Catarino MF, Freitas CEC, Veja B, Miranda-Chumacero G, Van Damme PA (2018) Review of Fisheries Resource Use and Status in the Madeira River Basin (Brazil, Bolivia, and Peru) Before Hydroelectric Dam Completion. *Reviews in Fisheries Science & Aquaculture* 26: 494–514, doi:10.1080/23308249.2018.1463511

Eiswerth ME, Johnson WS (2002) Managing nonindigenous invasive species: insights from dynamic analysis. *Environmental and Resource Economics* 23: 319–342, doi:10.1023/A:1012275607224

Fearnside PM (2014) As barragens e as inundações no rio Madeira. *Ciência Hoje* 53:1314: 56–57

Fontenele O (1952) Hábitos de desova do pirarucu, *Arapaima gigas* (Cuvier), (pisces, Isospondyli, Arapaimidae) e evolução de sua larva. Ministério da Viação e Obras Públicas, Departamento Nacional de Obras contra as Sécas, Serviço de Piscicultura, 22 pp

GB NNSS (2015) Great Britain Non-native Species Secretariat. https://www.gov.uk/government/publications/the-great-britain-invasive-non-native-species-strategy (accessed 17 March 2008)

Hrbek T, Farias IP, Crossa M, Sampaio I, Porto JI, Meyer A (2005) Population genetic analysis of *Arapaima gigas* (paiche) in the Amazon. *Genetics and Molecular Biology* 28: 494–514, doi:10.1590/S0101-8175200500224

Laikre L, Schwartz MK, Waples RS, Ryman N, GeM Working Group (2010) Compromising genetic diversity in the wild: unmonitored large-scale Release of Plants and animals. *Trends in Ecology & Evolution* 25: 520–529, doi:10.1016/j.tree.2010.06.013

Lattin DA, Resende DC, Pombo VB, Coradit L (2016) Espécies exóticas invasoras de águas continentais no Brasil. Brasilia: MMA, 791 pp

Leung B, Lodge DM, Finhoff D, Shogren JF, Lewis MA, Lamberti G (2002) An ounce of prevention or a pound of cure: bioeconomic risk analysis of invasive species. *Animal Conservation* 5: 49–56, doi:10.1017/S1367943005002210

Lüling KH (1964) Zur biologte und ökologte von *Arapaima gigas* (paiche) in den rios do Brasil. *Zeitschrift für Morphologie und Ökologie der Tiere* 54: 436–530, doi:10.1007/BF00395889

Méndez CC, López GR, Peredo RS, Wojchichekowski JM, Van Damme PA (2012) La cadena de valor del pescado en el Norte Amazónico de Bolivia: Contribución de especies nativas y de una especie introducida (el paiche-*Arapaima gigas*). PIEB: La Paz, Bolivia, 150 pp

Miranda-Chumacero G, Wallace R, Calderón H, Calderón G, Willink P, Guerrero M, Chuqui D (2012) Distribution of arapaima (*Arapaima gigas*) in the Amazon, implications in the control and management of a non-native population. *BioInvasions Record* 1: 129–138, doi:10.1007/s13280-017-001-z

Oberdorff T, Jézéquel C, Campero M, Carvajal-Vallejos F, Correa BF, Dias MS, Duponchelle F, Maldonado-Ocampo JÁ, Ortega H, Renno JF, Tedesco, PA (2015) Opinion Paper: how vulnerable are Amazonian freshwater fishes to ongoing climate change? *Journal of Applied Ichthyology* 31: 4–9, doi:10.1002/aji.12971

Orsi ML, Agostinho AA (1999) Introdução de espécies de peixes por escapes acidentais de tanques de cultivo em rios da Bacia do Rio Paraná, Brasil. *Revista brasileira de Zoologia* 16: 557–560, doi:10.1590/S0101-8175199900200020

Doria et al. (2020), *Management of Biological Invasions* 11(1): 1–8, doi:10.3391/mbi.2020.11.1.01
The invasion of *Araipama gigas* in the Amazon

Pauly D (2018) The future of artisanal fishing. *Science* 360: 161, https://doi.org/10.1126/science.aas9431

Pimentel D, Heppler P, Hanson J, Douds D, Seidel R (2005) Environmental, energetic, and economic comparisons of organic and conventional farming systems. *AIBS Bulletin* 55: 573–582, https://doi.org/10.1641/0006-3588(2005)055[0573:EEAOEC]2.0.CO;2

Queiroz LJ, Torrente-Vilara G, Ohara WM, Pires THS, Zuanon J, Doria CRC (2013) Peixes do Rio Madeira. 1 ed. São Paulo: Dialeto Latin American Documentary, vol. 2, 351 pp

Rondônia (2015) Decreto No.20.350, de 15 de Dezembro de 2015. Regulamenta artigo 27 da Lei de Pesca, Rondônia No.1.038 de 2002; http://www.diof.ro.gov.br/data/uploads/2015/12/Decr-08_12_20151.pdf (accessed 22 April 2018)

Romero JS (1960) El paiche, aspectos de su historia natural, ecología y aprovechamiento. Inf. Servicio Pesqueras y Caza. Ministerio de Agricultura. Lima-Perú, 63 pp

Simberloff D, Rejmánek, M (2011) Encyclopedia of Biological Invasions. University of California Press Books, 792 pp

Simberloff D, Vitule JRS (2014) A call for an end to calls for the end of invasion biology. *Oikos* 12: 408–413, https://doi.org/10.1111/j.1600-0706.2013.01228.x

Torrente-Vilara G, Zuanon J, Leprieur F, Oberdorff T, Tedesco PA (2011) Effects of natural rapids and waterfalls on fish assemblage structure in the Madeira River (Amazon Basin). *Ecology of Freshwater Fish* 20: 588–597, https://doi.org/10.1111/j.1600-0633.2011.00508.x

Valery L, Fritz H, Lefevre JC, Simberloff D (2008) In search of a real definition of the biological invasion phenomenon itself. *Biological Invasions* 10: 1345–1351, https://doi.org/10.1007/s10530-007-9209-7

Villanúa D, Pérez-Rodriguez L, Casas F, Alzaga V, Acevedo P, Viñuela J, Gortázar C (2008) Sanitary risks of red-legged partridge releases: introduction of parasites. *European Journal of Wildlife Research* 54: 199–204, https://doi.org/10.1007/s10344-007-0130-2

Vitule JRS, Freire CA, Simberloff D (2009) Introduction of non-native freshwater fish can certainly be bad. *Fish and Fisheries* 10: 98–108, https://doi.org/10.1111/j.1467-2979.2008.00312.x

Vitule JRS, Skóra F, Ablilhoa V (2012) Homogenization of freshwater fish faunas after the elimination of a natural barrier by a dam in Neotropics. *Diversity and Distributions* 18: 111–120, https://doi.org/10.1111/j.1472-4642.2011.00821.x

Waples RS, Drake J (2004) Risk/benefit considerations for marine stock enhancement: a Pacific salmon perspective. In: Leber KM, Kitada S, Blankenship HL, Svåsand T (eds), Stock Enhancement and Sea Ranching: Developments, Pitfalls and Opportunities, Second Edition, pp 260–306, https://doi.org/10.1002/9780470751329.ch22

Supplementary material

The following supplementary material is available for this article:

Table S1. Details of fishermen surveys conducted in 2017/2018 in Rondônia, Brazil: location name and coordinates, habitat features, presence of *Arapaima gigas* (pirarucu) near sites where the interviews were held.

This material is available as part of online article from:
http://www.reabic.net/journals/mbi/2020/Supplements/MBI_2020_Doria_etal_Table_S1.xlsx