WHICH MULTIPLIER ALGEBRAS ARE W^*-ALGEBRAS?

CHARLES A. AKEMANN, MASSOUD AMINI, AND MOHAMMAD B. ASADI

Abstract. We consider the question of when the multiplier algebra $M(A)$ of a C^*-algebra A is a W^*-algebra, and show that it holds for a stable C^*-algebra exactly when it is a C^*-algebra of compact operators. This implies that if for every Hilbert C^*-module E over a C^*-algebra A, the algebra $B(E)$ of adjointable operators on E is a W^*-algebra, then A is a C^*-algebra of compact operators.

Also we show that a unital C^*-algebra A which is Morita equivalent to a W^*-algebra must be a W^*-algebra.

1. Introduction

The main theme of this paper is around the question of when the multiplier algebra $M(A)$ of a C^*-algebra A is a W^*-algebra? For separable C^*-algebras, it holds exactly when A is a C^*-algebra of compact operators [2, Theorem 2.8]. For general C^*-algebras, we get two partial results in this direction. First we give an affirmative answer for stable C^*-algebras and deduce that if for every Hilbert C^*-module E over A, the algebra $B(E)$ of adjointable operators on E is a W^*-algebra, then A is a C^*-algebra of compact operators. This is related to our question (with a much stronger assumption) as for $E = A$ with its canonical Hilbert A-module structure, $B(E) = M(A)$. Second we show that if $M(A)$ is Morita equivalent to a W^*-algebra, then it is a W^*-algebra. This is also related to our question, as if A is a C^*-algebra of compact operators, then $M(A)$ is a W^*-algebra.

The two partial answers take into account the notions of Hilbert C^*-algebras and Morita equivalence which are somewhat historically related. In 1953, Kaplansky introduces Hilbert C^*-modules to prove that derivations of type I AW^*-algebras are inner. Twenty years later, Hilbert C^*-modules appeared in the pioneering work of Rieffel [19],

\[\text{2010 Mathematics Subject Classification. Primary 46L10, 47L30; Secondary 46L08.} \]

\[\text{Key words and phrases. Hilbert } C^*\text{-modules, Morita equivalence, multiplier algebras, operator algebras, } W^*\text{-algebras.} \]

\[\text{The second and third authors were in part supported by a grant from IPM (91430215 & 91470123).} \]
where he employed them to study (strong) Morita equivalence of C^*-algebras. Paschke studied Hilbert C^*-modules as a generalization of Hilbert spaces [16].

Hilbert C^*-modules and Hilbert spaces differ in many aspects, such as existence of orthogonal complements for submodules (subspaces), self duality, existence of orthogonal basis, adjointability of bounded operators, etc. However, when \mathcal{A} is a C^*-algebra of compact operators, then Hilbert \mathcal{A}-modules behave like Hilbert spaces in having the above properties. Indeed these properties characterize C^*-algebras of compact operators [5, 10, 14, 20].

2. C^*-algebras of compact operators

In this section we give some characterizations of C^*-algebras of compact operators using properties of multiplier algebras. We also show that these are characterized as C^*-algebras \mathcal{A} for which the algebra $\mathcal{B}(E)$ of all adjointable operators is a W^*-algebra, for any Hilbert \mathcal{A}-module E.

Definition 2.1. A C^*-algebra \mathcal{A} is called a C^*-algebra of compact operators if there exists a Hilbert space H and a (not necessarily surjective) $*$-isomorphism from \mathcal{A} to $K(H)$, where $K(H)$ denotes the space of compact operators on H.

This is exactly how Kaplansky characterized C^*-algebras that were dual rings [11, Theorem 2.1, p. 222] (see also [1]).

Theorem 2.2. For a C^*-algebra \mathcal{A}, the following are equivalent:

(i) \mathcal{A} is a C^*-algebra of compact operators.

(ii) The strict topology on the unit ball of $M(\mathcal{A})$ is the same as the strong*-topology (viewing $M(\mathcal{A}) \subseteq \mathcal{A}^{**}$, the second dual of \mathcal{A}).

Proof. Assume that (i) holds. Then $\mathcal{A} \cong c_0 \bigoplus \alpha K(H_\alpha)$. Let $a_\beta \to 0$ in the strict topology of the unit ball of $M(\mathcal{A}) \cong \ell^\infty \bigoplus \alpha B(H_\alpha)$. Without loss of generality, we may assume that $a_\beta \geq 0$, for all β. Let $\eta \in \bigoplus \alpha H_\alpha$ be a unit vector with $\eta_\alpha = 0$ except for finitely many α. Let p_α be the rank one projection onto the non-zero η_α and $p_\alpha = 0$, otherwise. Then $p = \sum p_\alpha \in \mathcal{A}$, thus $\|a_\beta p\| \to 0$. Therefore $\|a_\beta \eta\| \to 0$, and the same holds for any η in the unit ball of $\bigoplus \alpha H_\alpha$, as $\{a_\beta\}$ is norm bounded. Hence $a_\beta \to 0$ in the strong* topology.

Conversely if $a_\beta \geq 0$ and $a_\beta \to 0$ in the strong* topology. As above, for any rank one projection $p \in \mathcal{A}$, $\|a_\beta p\| = \|pa_\beta\| \to 0$. Thus p can be replaced by any finite linear combination of such minimal projections, and this set is dense in \mathcal{A}. Since $\{a_\beta\}$ is norm bounded, $a_\beta \to 0$ in the strict topology. This shows that (i) implies (ii).
Now assume that (ii) holds. By [2, Theorem 2.8], we need only to prove that $M(A) = A^{**}$. For any positive element b in the unit ball of A^{**}, there is a net $\{a_\beta\}$ in the unit ball of A that converges to b in strong* topology. Thus the net is strong* Cauchy, and hence convergent in the strict topology to an element of $M(A)$, as $M(A)$ is the completion of A in the strict topology [9, Theorem 3.6]. Therefore $b \in M(A)$, and we are done. □

Another characterization of C^*-algebras of compact operators could be obtained as a non unital version of the following result of J.A. Mingo in [15], where he investigates the multipliers of stable C^*-algebras.

Lemma 2.3. Suppose that H is a separable infinite dimensional Hilbert space and A is a unital C^*-algebra such that the multiplier algebra $M(A \otimes K(H))$ is a W^*-algebra. Then A is a finite dimensional C^*-algebra.

We recall that a projection p in a C^*-algebra A is called finite dimensional if pAp is a finite dimensional C^*-algebra. To prove a non unital version of Mingo’s result, we need some lemmas. The first lemma is well-known, see for instance [4, Corollary 1.2.37].

Lemma 2.4. If A is a C^*-algebra and p is a projection in the multiplier algebra $M(A)$, then $M(pAp) \cong pM(A)p$, as C^*-algebras.

Lemma 2.5. Let H be a Hilbert space and A be a C^*-algebra. If $A \otimes K(H)$ is C^*-algebra of compact operators, then so is A.

Proof. Suppose not. Then there is an element $b \in A^+$ such that the spectral projection $\xi_1(b)$ of b corresponding to $\{1\}$ is not finite dimensional in A. Let q be a one-dimensional projection in $K(H)$. Then $(b \otimes q)^n$ is a decreasing sequence in the unit ball of the C^*-algebra $A \otimes K(H)$ of compact operators. By Theorem 2.2 it converges strictly, hence (because it is decreasing) in norm to $\xi_1(b) \otimes q \in A$. Because $A \otimes K(H)$ is a C^*-algebra of compact operators, the projection $\xi_1(b) \otimes q$ must be finite rank, but

$$(\xi_1(b) \otimes q)(A \otimes K(H))(\xi_1(b) \otimes q) = \xi_1(b)A\xi_1(b) \otimes qK(H)q,$$

and the dimension of $\xi_1(b)A\xi_1(b)$ is not finite by our assumption about b. □

The next theorem is known for separable C^*-algebras [2], here we prove it with separability replaced by stability.

Theorem 2.6. If A is a stable C^*-algebra such that the multiplier algebra $M(A)$ is a W^*-algebra, then A is a C^*-algebra of compact operators.
Proof. In order for the C^*-algebra \mathcal{A} to be a C^*-algebra of compact operators, it is necessary and sufficient that every positive element in \mathcal{A} can be approximated by a finite linear combination of finite dimensional projections. Let a be a positive element in \mathcal{A} and $0 \leq a \leq 1$. Since the multiplier algebra $M(\mathcal{A})$ is a W^*-algebra, we can define $p \in M(\mathcal{A})$ as the spectral projection of a, corresponding to an interval of the form $[s, t]$ where $0 < s < t$. It suffices to show that $pA p$ is finite dimensional.

Let $g : [0, 1] \to [0, 1]$ be a continuous function vanishing at 0, such that $g(r) = 1$ for all $r \in [s, t]$. Then $g(a) \in A$ and $g(a)p = p$. Hence $p \in A$.

Now let H be a separable infinite dimensional Hilbert space. Since \mathcal{A} is a stable C^*-algebra, $M(\mathcal{A} \otimes K(H))$ is a W^*-algebra and by Lemma 2.4,

$$M(pAp \otimes K(H)) = M((p \otimes 1)(A \otimes K(H))(p \otimes 1)) = (p \otimes 1)M(A \otimes K(H))(p \otimes 1)$$

is a W^*-algebra. Therefore by Lemma 2.3, p is finite rank. □

The non unital version of the Mingo’s lemma follows.

Corollary 2.7. Suppose that H is a separable infinite dimensional Hilbert space and \mathcal{A} is a C^*-algebra such that the multiplier algebra $M(\mathcal{A} \otimes K(H))$ is a W^*-algebra, then \mathcal{A} is a C^*-algebra of compact operators.

Proof. Since $\mathcal{A} \otimes K(H)$ is stable, it is a C^*-algebra of compact operators, and so is \mathcal{A} by Lemma 2.5. □

It is well known that if \mathcal{A} is a W^*-algebra and E is a selfdual Hilbert \mathcal{A}-module, then $B(E)$ is a W^*-algebra. The converse is not true, as for $E = \mathcal{A} = c_0$, $B(E) = \ell^\infty$ is a W^*-algebra [10]. However, if \mathcal{A} is a C^*-algebra of compact operators on some Hilbert space, then $B(E)$ is a W^*-algebra, for every Hilbert \mathcal{A}-module E [6]. Here we show the converse.

Recall that the C^*-algebra $K(E)$ of compact operators on E is generated by rank one operators $\theta_{\xi, \eta}(\zeta) = \xi\langle \eta, \zeta \rangle$, for $\xi, \eta \in E$, and the multiplier algebra $M(K(E))$ is isomorphic to $B(E)$. Also, if H is a separable infinite dimensional Hilbert space, then $E = H \otimes \mathcal{A}$ is a Hilbert C^*-module over $\mathbb{C} \otimes \mathcal{A} = \mathcal{A}$, denoted by $H_\mathcal{A}$. It plays an important role in the theory of Hilbert C^*-modules.

Theorem 2.8. For any C^*-algebra \mathcal{A}, the following are equivalent:

(i) \mathcal{A} is a C^*-algebra of compact operators,

(ii) $B(E)$ is a W^*-algebra, for each Hilbert \mathcal{A}-module E,

(iii) $B(H_\mathcal{A})$ is a W^*-algebra.
Proof. It is enough to show that (iii) implies (i). Since
\[K(H_A) = K(H \otimes A) \cong K(H) \otimes K(A) = K(H) \otimes A \]
we have \(B(H_A) \cong M(K(H) \otimes A) \). By assumption, \(B(H_A) \) is a \(W^* \)-algebra and so \(A \) is a \(C^* \)-algebra of compact operators by Corollary 2.7.

\[\square \]

J. Schweizer in [20] remarked that for a \(C^* \)-algebra \(A \), some problems on Hilbert \(A \)-modules can be reformulated as problems on right ideals of \(A \), since submodules of a full Hilbert \(A \)-module are in a bijective correspondence with the closed right ideals of \(A \). Therefore, one may wonder if the previous result could be reformulated in the language of right ideals. Actually, if \(I \) is a (closed) right ideal of \(A \), then \(I \) is a right Hilbert \(A \)-module with inner product \(\langle a, b \rangle = a^* b \), for \(a, b \in I \), and in this case, \(K(E) \) equals to the hereditary \(C^* \)-algebra \(I \cap I^* \) and so \(B(E) = M(I \cap I^*) \). Therefore, one may expect that \(C^* \)-algebras of compact operators may be characterized by the property that for every hereditary \(C^* \)-subalgebra \(B \) of \(A \), \(M(B) \) is a \(W^* \)-algebra.

Unfortunately, this is not the case for non separable \(C^* \)-algebras, as the following counterexample shows. However, if \(A \) is separable and \(p \) is a projection as in the proof of Theorem 2.6, then \(pAp \) is a separable \(W^* \)-algebra, hence finite dimensional (also see Theorem 2.8 in [2]).

Example 2.9. For the Stone-Cech compactification \(\beta \mathbb{N} \) of the natural numbers, the algebra of continuous functions \(C(\beta \mathbb{N}) \) is a \(W^* \)-algebra. Let \(x \) be any point of \(\beta \mathbb{N} \) that is not a natural number and let \(A \) be the \(C^* \)-subalgebra of \(C(\beta \mathbb{N}) \) consisting of those functions vanishing at \(x \). Let \(B \) be a hereditary \(C^* \)-subalgebra of \(A \) (which is an ideal, since \(A \) is abelian). Then there is an open subset \(U \) of \(\beta \mathbb{N} \) such that \(B \) consists of functions in \(A \) that vanish outside \(U \). Let \(V \) be the closure of \(U \). Then \(V \) is also open. For every \(c \in C(V) \) we may extend \(c \) by zero outside \(V \), and thereby view \(C(V) \) as a \(W^* \)-subalgebra of \(C(\beta \mathbb{N}) \). Observe that \(M(B) = C(V) \): clearly \(B \) is an ideal in \(C(V) \), so it suffices to note that for any \(0 \neq c \in C(V) \), \(cB \neq 0 \). To see this, we note that \(c \) is non-zero on a nonvoid open subset \(W \) of \(V \), hence \(W \cap U \setminus x \) is a nonvoid open set, hence there exists a non-zero continuous function \(b \) with support in \(W \cap U \setminus x \). Thus \(b \in B \) and \(cb \neq 0 \). Therefore \(M(B) = C(V) \) is a \(W^* \)-algebra, but \(A \) cannot be a \(C^* \)-algebra of compact operators.

3. Morita equivalence

The notion of (strong) Morita equivalence of \(C^* \)-algebras was introduced by M. Rieffel in [19]. Two \(C^* \)-algebras \(A \) and \(B \) are (strongly) Morita equivalent if there is an \(A-B \)-bimodule \(M \), which is a left full
Hilbert C^*-module over \mathcal{A}, and a right full Hilbert C^*-module over \mathcal{B}, such that the inner products $\langle \cdot, \cdot \rangle_\mathcal{A}$ and $\langle \cdot, \cdot \rangle_\mathcal{B}$ satisfy $\mathcal{A} \langle x, y \rangle z = x \langle y, z \rangle_\mathcal{B}$ for all $x, y, z \in \mathcal{M}$. Such a module \mathcal{M} is called an \mathcal{A}-\mathcal{B}-imprimitivity bimodule.

It would be interesting to investigate those properties of C^*-algebras which are preserved under Morita equivalence. These include, among other things nuclearity, being type I, and simplicity [3, 7, 12, 17, 18, 21, 22]. Now if one of the two Morita equivalent C^*-algebras is a W^*-algebra, it is natural to ask if so is the other. The answer to this question, as it posed is obviously negative, as Hilbert space H is a $K(H)$-C^*-imprimitivity bimodule, and so C^*-algebras $K(H)$ and C are Morita equivalent. However we may rephrase that question in the following less trivial form.

Question 3.1. Suppose that C^*-algebras \mathcal{A} and \mathcal{B} are Morita equivalent and the C^*-algebra $M(\mathcal{A})$ is a W^*-algebra, is it then true that $M(\mathcal{B})$ is a W^*-algebra?

By Theorem 2.8, we can show that the above property holds for C^*-algebra \mathcal{A} exactly when \mathcal{A} is a C^*-algebra of compact operators. In fact, we have the following result.

Theorem 3.2. Let \mathcal{A} be a C^*-algebra such that $M(\mathcal{B})$ is a W^*-algebra, for any C^*-algebra \mathcal{B} which is Morita equivalent to \mathcal{A}. Then \mathcal{A} is a C^*-algebra of compact operators.

Proof. Let $\mathcal{B} = K(H_\mathcal{A})$. Since $H_\mathcal{A}$ is a full Hilbert \mathcal{A}-module, then \mathcal{B} is Morita equivalent to \mathcal{A}. By assumption, $B(H_\mathcal{A}) \cong M(\mathcal{B})$ is a W^*-algebra, hence \mathcal{A} is a C^*-algebra of compact operators, by Theorem 2.8. \qed

However, we give an affirmative answer to the above question, when both C^*-algebras are unital.

Recall that a Hilbert C^*-module E on a C^*-algebra \mathcal{A} is called self dual if for every bounded linear \mathcal{A}-module map $\varphi : E \to \mathcal{A}$ there is an element $y \in E$ such that $\varphi(\cdot) = \langle y, \cdot \rangle$.

Lemma 3.3. Let E be a right Hilbert C^*-module over a C^*-algebra \mathcal{A} such that $K(E)$ is unital. then

(i) E is self dual.
(ii) $B(E)$ is a W^*-algebra, whenever \mathcal{A} is a W^*-algebra.

Proof. By hypothesis there are elements x_1, \cdots, x_n and y_1, \cdots, y_n in E such that $\sum_{i=1}^n \theta_{x_i, y_i} = 1 \in K(E)$. Thus, for every bounded linear
\(\mathcal{A}\)-module map \(\varphi : E \to \mathcal{A}\) and \(x \in E\) we have
\[
\varphi(x) = \varphi\left(\sum_{i=1}^{n} \theta_{x_i, y_i} x x\right) = \varphi\left(\sum_{i=1}^{n} x_i (y_i, x)\right) = \sum_{i=1}^{n} \varphi(x_i) \langle y_i, x \rangle = \sum_{i=1}^{n} \langle y_i \varphi(x_i)^*, x \rangle = \langle \sum_{i=1}^{n} y_i \varphi(x_i)^*, x \rangle.
\]

Therefore \(\varphi(x) = \langle y, x \rangle\), where \(y = \sum_{i=1}^{n} y_i \varphi(x_i)^*\). Hence \(E\) is selfdual.

Now \((ii)\) follows from \((i)\) and [10, Proposition 3.10]. \(\square\)

Now if \(E\) is an \(\mathcal{A}\)-\(\mathcal{B}\)-imprimitivity bimodule, then \(\mathcal{A} \cong K_{\mathcal{B}}(E)\) and \(\mathcal{B} \cong K_{\mathcal{A}}(E)\). Therefore, the following partial answer to the above question follows from the above lemma.

Theorem 3.4. Suppose that unital \(C^*\)-algebras \(\mathcal{A}\) and \(\mathcal{B}\) are Morita equivalent. Then \(\mathcal{A}\) is a \(W^*\)-algebra if and only if \(\mathcal{B}\) is a \(W^*\)-algebra.

A similar result can be proved for operator algebras. Let \(\mathcal{A}\) and \(\mathcal{B}\) be operator algebras. We say that \(\mathcal{A}\) and \(\mathcal{B}\) are (strongly) Morita equivalent if they are Morita equivalent in the sense of Blecher, Muhly, Paulsen [8]. In [8], it is proved that two \(C^*\)-algebras are (strongly) Morita equivalent (as operator algebras) if and only if they are Morita equivalent in the sense of Rieffel.

Theorem 3.5. Suppose that unital operator algebras \(\mathcal{A}\) and \(\mathcal{B}\) are Morita equivalent. Then \(\mathcal{A}\) is a dual operator algebra if and only if \(\mathcal{B}\) is a dual operator algebra.

Proof. Let \(\pi : \mathcal{A} \to B(H)\) be a completely isometric normal representation of \(\mathcal{A}\) on some Hilbert space \(H\). Then there exist a completely isometric representation \(\rho : \mathcal{B} \to B(K)\) of \(\mathcal{B}\) on a Hilbert spaces \(K\) and subspaces \(X \subseteq B(K, H), Y \subseteq B(H, K)\) such that
\[
\pi(\mathcal{A}) X \rho(\mathcal{B}) \subseteq X, \quad \rho(\mathcal{B}) Y \pi(\mathcal{A}) \subseteq Y, \quad \pi(\mathcal{A}) = \overline{XY}^{\|\|}, \quad \rho(\mathcal{B}) = \overline{YX}^{\|\|}
\]

Since \(\pi\) is normal, we have \(\pi(\mathcal{A}) = \overline{\pi(\mathcal{A})}^{\text{w*}}\). Now \(X \rho(\mathcal{B}) Y \subseteq \pi(\mathcal{A})\) implies that \(X \rho(\mathcal{B})^{\text{w*}} Y \subseteq \pi(\mathcal{A})\). Therefore
\[
Y X \rho(\mathcal{B})^{\text{w*}} Y X \subseteq Y \pi(\mathcal{A}) X \subseteq \rho(\mathcal{B}),
\]
and so \(\rho(\mathcal{B})^{\text{w*}} \subseteq \rho(\mathcal{B})\). Since \(\rho(\mathcal{B})\) is a unital algebra we have \(\overline{\rho(\mathcal{B})}^{\text{w*}} \subseteq \rho(\mathcal{B})\), hence \(\rho(\mathcal{B})^{\text{w*}} = \rho(\mathcal{B})\). Therefore \(\mathcal{B}\) is a dual operator algebra. \(\square\)
Acknowledgment. The authors would like to thank Professor G. Eleftherakis, who suggested the proof of Theorem 3.5, and Professor J. Tomiyama for helpful comments.

References

[1] C. A. Akemann, Left ideal structure of C*-algebras, Journal of Functional Analysis 6 (1970), 305-317.
[2] C. A. Akemann, G.K. Pedersen, J. Tomiyama, Multipliers of C*-algebras, J. Func. Anal. 13 (1973), 277-301.
[3] P. Ara, Morita equivalence and Pedersen ideals, Proc. Amer. Math. Soc. 219 (2001), 1041-1049.
[4] P. Ara, M. Mathieu, Local multipliers of C*-algebras, Springer, Berlin, 2003.
[5] L. Arambasic, Another characterization of Hilbert C*-modules over compact operators, J. Math. Anal. Appl. 344 (2008), 735-740.
[6] D. Bakić, B. Guljaš, Hilbert C*-modules over C*-algebras of compact operators, Acta Sci. Math. 68 (2002), 249-269.
[7] W. Beer, On Morita equivalence of nuclear C*-algebras, J. Pure Appl. Algebra 26 (1982), 49-67.
[8] D.P. Blecher, P. S. Muhly and V. I. Paulsen, Categories of operator modules; Morita equivalence and projective modules, Memoirs Amer. Math. Soc., 681, 2000.
[9] R.C. Busby, Double centralizers and extensions of C*-algebras, Trans. Amer. Math. Soc. 132 (1968), 79-99.
[10] M. Frank, Characterizing C*-algebras of compact operators by generic categorical properties of Hilbert C*-modules, J. K-Theory 2 (2008), 453-462.
[11] I. Kaplansky, The structure of certain operator algebras, Trans. Amer. Math. Soc. 70 (1951), 215-255.
[12] M. Kusuda, Morita equivalence for C*-algebras with the weak Banach-Saks property, Quart. J. Math. 52 (2001), 455-461.
[13] E.C. Lance, Hilbert C*-modules, Camb. Univ. Press, Cambridge, 1995.
[14] B. Magajna, Hilbert C*-modules in which all closed submodules are complemented, Proc. Amer. Math. Soc. 125 (1997), 849-852.
[15] J.A. Mingo, K-Theory and multipliers of stable C*-algebras, Tran. Amer. Math. Soc. 299 (1987), 397-411.
[16] W. L. Paschke, Inner product modules over B*-algebras, Trans. Amer. Math. Soc. 182 (1973), 443-468.
[17] I. Raeburn, D. P. Williams, Morita equivalence and continuous-trace C*-algebras, Math. Surveys 60, Amer. Math. Soc., Providence, 1998.
[18] A. an Huef, I. Raeburn, and D. P. Williams, Properties preserved under Morita equivalence of C*-algebras, Proc. Amer. Math. Soc. 135 (2007), 1495-1503.
[19] M. A. Rieffel, Morita equivalence for C*-algebras and W*-algebras, J. Pure Appl. Alg. 5 (1974), 5196.
[20] J. Schweizer, A description of Hilbert C*-modules in which all closed submodules are orthogonally closed, Proc. Amer. Math. Soc. 127 (1999), 2123-2125.
[21] H.H. Zettl, Strong Morita equivalence of C*-algebras preserves nuclearity, Arch. Math. 38 (1982), 448452.
[22] H.H. Zettl, Ideals in Hilbert modules and invariants under strong Morita equivalence of C^*- algebras, Arch. Math. 39 (1982), 6977.

Department of Mathematics, University of California, Santa Barbara, CA 93106, USA
E-mail address: akemann@math.ucsb.edu

School of Mathematics, Tarbiat Modares University, Tehran 14115 134, Iran, and School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5746, Iran
E-mail address: mamini@modares.ac.ir

School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Enghelab Avenue, Tehran, Iran, and School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5746, Iran
E-mail address: mb.asadi@khayam.ut.ac.ir