LETTER TO THE EDITOR

Response to letter to the editor from Dr. Bernardi regarding suitability of residual vital ratio for prediction of local regrowth following radiofrequency ablation for benign thyroid nodules

We thank Dr. Bernardi et al. [1] for their comments and efforts on our work about the prediction of regrowth after radiofrequency ablation (RFA) for benign thyroid nodules. Since RFA has been considered as an alternative to surgery, the long-term efficacy has attracted research attention.

In our previous study, residual vital ratio (RVR) was determined to early predict nodule regrowth after RFA for benign thyroid nodules. It was the initial ratio of residual vital volume to the total volume after RFA. Because the total volume of nodule after ablation could be divided into the ablate volume and vital volume (Vv) [2], the equation of RVR were as follows: RVR = Vv/Vt × 100% = (Vt – Va)/Vt × 100%. Our results showed that RVR was the independent factor associated with regrowth by multivariate logistic regression analysis. The AUC for RVR to predict regrowth was 0.819 with a cutoff value of 44.5%. Dr. Bernardi et al. further evaluated RVR predictive value for clinical outcomes after five-year RFA. The results showed that RVR had a moderate accuracy in predicting technique inefficacy and a good accuracy in predicting retreatment, but no discriminative value for regrowth.

There were several reasons to explain the different results from two studies. The most important one was that the measurement methods of RVR in the two studies were different. In our study, Vt was measured by conventional US and Va by contrast-enhanced ultrasound (CEUS). After reading the study of Dr. Bernardi et al. [3], we found that only conventional US was used for the measurements. However, the margin between the ablated area and incomplete vital area was ill-defined or irregular on conventional US [4]. Schiaffino et al. [5] showed that CEUS had higher reproducibility and inter- and intra-observer agreement compared to conventional US in the assessment of Va measurement after RFA for benign thyroid nodules. Our recent study also observed similar results [6]. The results found that Va measured by conventional US was significantly larger than measured by CEUS. The intra- and inter-observer reliability and agreement between conventional US and CEUS in measuring Va decreased over the follow-up period. The best agreement was found at 1 month with a mean difference of 1.156±1.156 and LOA of 0.453 to 2.948. It means that compared with CEUS, the measurements of Va were overestimated by conventional US. Meanwhile, for about 95% of cases, the measurements by conventional US were between 0.453 and 2.948 times the measurements by CEUS, which was much larger than the clinical criteria (0.5–1.5) [7–10]. These results indicated that conventional US could be neither reliable nor provide equivalent results compared to CEUS in the measurement of Va. Because of the larger Va measured by conventional US, RVR could be underestimated. It could have an impact on the evaluation of regrowth and explain the different results from these two studies.

Second, we agree with Dr. Bernardi that the discrepancy could also be related to the heterogeneous follow-up length. Sim et al. [2] found that there were two peaks of nodule regrowth after ablation. First peak began at 12 months after ablation and tended to be prominent at 2 years, and the second one appeared later than 5 years. However, the follow-up period in our study was only 22.50±13.29 months, the value of RVR on the second peak of regrowth is further prospective investigation.

Third, both studies were respective, and the clinical characteristics were different. In their study [3], 66% of the nodules were nonfunctioning and 34% of the nodules were autonomously functioning. The nodule structure was solid in 44% of cases, predominantly solid in 35% and predominantly cystic in 21% of cases. However, in our study, the nodules were all nonfunctioning and structure was solid and predominantly solid nodules. No predominantly cystic nor autonomously functioning thyroid nodules were included.

In conclusion, accurate detection and measurements of the true volume was essential for successful evaluation [11]. Compared with conventional US, CEUS was a superior method for detection of microvasculature circulation dynamics and is useful for precise definition of the size and margins of the necrotic zone induced by thermal ablation [12,13]. For precise prediction of regrowth after RFA, CEUS needed be used for the measurement and calculation of RVR.

Disclosure statement
No potential conflict of interest was reported by the author(s).

ORCID
Lin Yan http://orcid.org/0000-0002-3338-3015

References
[1] Bernardi S, Giudici F, Colombin G, et al. Residual vital ratio predicts 5-year volume reduction and retreatment after radiofrequency ablation of benign thyroid nodules but not regrowth. Int J Hyperthermia. 2021;38(1):111–113.
[2] Sim JS, Baek JH, Lee J, et al. Radiofrequency ablation of benign thyroid nodules: depicting early sign of regrowth by calculating vital volume. Int J Hyperthermia. 2017;33(8):905–910.
[3] Bernardi S, Cavallaro M, Colombin G, et al. Initial ablation ratio predicts volume reduction and retreatment after 5 years from
radiofrequency ablation of benign thyroid nodules. Front Endocrinol. 2021. [ahead of print].

[4] Sim JS, Baek JH, Cho W. Initial ablation ratio: quantitative value predicting the therapeutic success of thyroid radiofrequency ablation. Thyroid. 2018;28(11):1443–1449.

[5] Schiaffino S, Serpi F, Rossi D, et al. Reproducibility of ablated volume measurement is higher with contrast-enhanced ultrasound than with B-mode ultrasound after benign thyroid nodule radiofrequency ablation—a preliminary study. J Clin Med. 2020;9(5):1504.

[6] Yan L, Luo Y, Xiao J, et al. Non-enhanced ultrasound is not a satisfactory modality for measuring necrotic ablated volume after radiofrequency ablation of benign thyroid nodules: a comparison with contrast-enhanced ultrasound. Eur Radiol. 2020.

[7] Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association Management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26(1):1–133.

[8] Lee HJ, Yoon DY, Seo YL, et al. Intraobserver and interobserver variability in ultrasound measurements of thyroid nodules. J Ultrasound Med. 2018;37(1):173–178.

[9] Choi YJ, Baek JH, Hong MJ, et al. Inter-observer variation in ultrasound measurement of the volume and diameter of thyroid nodules. Korean J Radiol. 2015;16(3):560–565.

[10] Brauer VFH, Eder P, Miehle K, et al. Interobserver variation for ultrasound determination of thyroid nodule volumes. Thyroid. 2005;15(10):1169–1175.

[11] Albrecht T, Blomley M, Bolondi L, et al. Guidelines for the use of contrast agents in ultrasound. January 2004. Ultraschall Med. 2004;25(4):249–256.

[12] Ma JJ, Ding H, Xu BH, et al. Diagnostic performances of various gray-scale, color Doppler, and contrast-enhanced ultrasonography findings in predicting malignant thyroid nodules. Thyroid. 2014;24(2):355–363.

[13] Sidhu PS, Cantisani V, Dietrich CF, et al. The EFSUMB guidelines and recommendations for the clinical practice of Contrast-Enhanced Ultrasound (CEUS) in non-hepatic applications: update 2017 (short version). Ultraschall Med. 2018;39(2):154–180.

Lin Yan and Yukun Luo

Department of Ultrasound, First Medical Center, Chinese PLA General Hospital, Beijing, China

lyk301@163.com

Received 15 January 2021; revised 24 January 2021; accepted 25 January 2021

© 2021 The Author(s). Published with license by Taylor & Francis Group, LLC

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.