Theory of Thermal Conductivity in High-T_c Superconductors below T_c: Comparison between Hole-Doped and Electron-Doped Systems

Hideyuki HARA and Hiroshi KONTANI
Department of Physics, Nagoya University, Furo-cho, Nagoya 464-8602, Japan.
(Dated: February 5, 2008)

In hole-doped high-T_c superconductors, thermal conductivity κ increases drastically just below T_c, which has been considered as a hallmark of a nodal gap. In contrast, such a coherence peak in κ is not visible in electron-doped compounds, which may indicate a full-gap state such as a $d + i s$-wave state. To settle this problem, we study κ in the Hubbard model using the fluctuation-exchange (FLEX) approximation, which predicts that the nodal d-wave state is realized in both hole-doped and electron-doped compounds. The contrasting behavior of κ in both compounds originates from the differences in the hot/cold spot structure. In general, a prominent coherence peak in κ appears in line-node superconductors only when the cold spot exists on the nodal line.

Keywords: spin fluctuation theory, thermal conductivity, unconventional superconductivity, FLEX approximation

In strongly correlated electron systems, transport phenomena give us significant information on the many-body electronic states. In high-T_c superconductors (HTSCs), for example, both the Hall coefficient R_H and the thermoelectric power S are positive in hole-doped compounds such as YBa$_2$Cu$_3$O$_{7-\delta}$ (YBCO) and La$_{2-x}$Sr$_x$CuO$_4$ (LSCO), whereas they are negative in electron-doped compounds like Nd$_{2-x}$Ce$_x$CuO$_4$ (NCCO) and Pr$_{2-x}$Ce$_x$CuO$_4$ (PCCO) [1]. These experimental facts originate from the difference in the “cold-spot,” which is the portion of the Fermi surface where the relaxation time of a quasiparticle (QP), τ_k, takes the maximum value [2–4]:

Below T_c, electronic thermal conductivity κ has been observed intensively since it gives us considerable information on the superconducting state; it is the only transport coefficient which remains finite below T_c. For example, the k-dependence of the SC gap can be determined by the angle resolved measurement of κ under the magnetic field [5, 6]. Also, one can detect the type of nodal gap structure (full-gap, line-node, or point-node) by measuring κ at low temperatures ($T \ll T_c$). For $T \gtrsim T_c$, κ also shows rich variety of behavior in various superconductors. In conventional full-gap s-wave superconductors, the opening of the SC gap rapidly decreases the density of thermally excited QPs, causing κ to decrease. On the other hand, κ shows “coherence peak” behavior just below T_c in several unconventional superconductors with line-node gaps, e.g., hole-doped HTSC [7–9], CeCoIn$_5$ [10, 11], and URu$_2$Si$_2$ [12]. A previous theoretical study based on a BCS model with d-wave pairing interaction [13] discussed that the coherence peak in YBCO originates from the steep reduction in τ below T_c.

In sharp contrast, no coherence peak in κ is observed in electron-doped HTSCs [14, 15], irrespective that a recent ARPES measurement [16] suggests that the $d_{x^2-y^2}$-wave state is realized. The observed k-dependence of the SC gap function in NCCO, which prominently deviates from $\cos k_x - \cos k_y$, is well reproduced by the fluctuation-exchange (FLEX) approximation [17], which is a self-consistent spin fluctuation theory. On the other hand, recent point-contact spectroscopy for PCCO [18] suggests that a full-gap SC state such as $d_{x^2-y^2} + is$ or $d_{x^2-y^2} + id_{xy}$ state is realized for $\delta = 0.15$ and 0.17. To find out the real SC state in electron-doped HTSC, we have to elucidate whether the “absence of coherence peak in κ” is a crucial hallmark of the full-gap SC state, or it can occur even in nodal gap superconductors.

In this letter, we present a theoretical study of the electronic thermal conductivity κ in HTSCs using the FLEX approximation. This is the first numerical study of transport properties in the SC state based on the repulsive Hubbard model. In deriving the relaxation time τ_k, both the strong inelastic scattering due to Coulomb interaction and weak elastic impurity scattering are taken into consideration, which corresponds to optimally-doped YBCO and NCCO samples, respectively. We find that a sizable coherence peak of κ in YBCO originates from the reduction in inelastic scattering. In contrast, the coherence peak is absent in NCCO in spite of that $d_{x^2-y^2}$-wave SC state is realized, since the nodal point does not coincide with the cold spot in the normal state. Thus, contrasting behaviors of κ in YBCO and NCCO are explained on the same footing as $d_{x^2-y^2}$-wave superconductors. This result was not derived in the BCS model [13].

Here, we study the following repulsive Hubbard model:

$$\mathcal{H} = \sum_{k,\sigma} c_{k\sigma}^\dagger c_{k\sigma} + \frac{U}{N} \sum_{k, k', q} c_{k+q\uparrow}^\dagger c_{k' - q\downarrow}^\dagger c_{k' \downarrow} c_{k\uparrow}$$ (1)

where U is the Coulomb interaction and $c_{k\sigma} = 2t_0(\cos(k_x) + \cos(k_y)) + 4t_1 \cos(k_x) \cos(k_y) + 2t_2(\cos(2k_x) + \cos(2k_y))$ is the kinetic energy of free electrons. Hereafter, we put $t_0 = -1.0$, $t_1 = 0.167$, and $t_2 = -0.2$ [2] to reproduce the Fermi surface of YBCO and NCCO. We also put $U = 8.0$ for YBCO and $U = 5.4$ for NCCO. Here, no phenomenological fitting parameters are introduced except for U.

arXiv:0705.3988v1 [cond-mat.supr-con] 28 May 2007
In the FLEX approximation, the normal and anomalous self-energies are given by

\[
\Sigma^n(k, i\epsilon_n) = \frac{U^2 T}{N} \sum_{k,l} G_{q+k}(i\epsilon_n + i\omega_l) \\
\times \left(\frac{3}{2} \chi_s + \frac{1}{2} \chi_c - \chi_0 \right) q,\omega_l
\]

(2)

\[
\Sigma^a(k, i\epsilon_n) = -\frac{U^2 T}{N} \sum_{k,l} F^+_{q+k}(i\epsilon_n + i\omega_l) \\
\times \left(\frac{3}{2} \chi_s - \frac{1}{2} \chi_c - \phi_0 \right) q,\omega_l
\]

(3)

where \(\epsilon_n = \pi T(2n+1) \) and \(\omega_l = 2\pi T l \) are the Matsubara frequencies for fermions and bosons, respectively. \(\chi_s \) and \(\chi_c \) are the dynamical spin and charge susceptibilities, which are given by

\[
\chi_s(q, i\omega_l) = \frac{\chi_0 + \phi_0}{1 - U(\chi_0 + \phi_0)}
\]

(4)

\[
\chi_c(q, i\omega_l) = \frac{\chi_0 - \phi_0}{1 - U(\chi_0 - \phi_0)}
\]

(5)

\[
\chi_0(q, i\omega_l) = -\frac{T}{N} \sum_{k,n} G_{k+q}(i\epsilon_n + i\omega_l) G^*_k(i\epsilon_n)
\]

(6)

\[
\phi_0(q, i\omega_l) = -\frac{T}{N} \sum_{k,n} F^+_{k+q}(i\epsilon_n + i\omega_l) F_k(i\epsilon_n)
\]

(7)

where \(G \) and \(F \) are the normal and anomalous Green function, respectively. They are given by

\[
G(i\epsilon_n) = (i\epsilon_n + \tilde{e}_k + \Sigma^n(-i\epsilon_n))D(\epsilon_n)^{-1}
\]

(8)

\[
F(i\epsilon_n) = \Sigma^a(-i\epsilon_n)D(\epsilon_n)^{-1}
\]

(9)

\[
D(\epsilon_n) = (-\epsilon_n - \tilde{e}_k + \Sigma^n(-i\epsilon_n))(-\epsilon_n + \tilde{e}_k + \Sigma^n(i\epsilon_n))
\]

\[-(\Sigma^n(-i\epsilon_n))^2
\]

(10)

where \(\tilde{e}_k = e_k - \mu \); \(\mu \) is the chemical potential. In the FLEX approximation, we solve eqs. (2)-(10) self-consistently by choosing \(\mu \) to adjust the electron filling \(n \).

In the following numerical study, we use \(64 \times 64 \) \(k \)-meshes and 2048 Matsubara frequencies. Figure 1 represents the density of states (DOS); \(\rho(\omega) = \frac{1}{N} \sum_k G^R_k(\omega) \). Here, the advanced (retarded) Green function \(G^R_k(\omega) (G^A_k(\omega)) \) is given by the numerical analytic continuation of the Matsubara Green function from the lower (upper) half plane in the complex \(\omega \) space.

Figure 2 shows the location of the hot/cold spots for both YBCO and NCCO in the normal state. The transport phenomena are governed by QPs around the cold spot, where the QP damping rate \(\gamma_k = \text{Im}\Sigma_k(-i\delta) \) takes the minimum value. According to the FLEX approximation, the cold-spot in hole-doped [electron-doped] systems is around \((\pi/2, \pi/2) \) \([(\pi, 0)] \) [2]. The position of the cold-spot in electron-doped systems was confirmed by ARPES measurements [19, 20] after the theoretical prediction [2].

Hereafter, we derive the electric thermal conductivity \(\kappa \). According to the linear response theory [21–23],

\[
\kappa = \frac{-1}{T} \int_0^\beta d\tau \sum_{k_1,k_2} \frac{1}{i\omega_l} \langle Q_{k_1}(\tau)Q_{k_2}(0) \rangle e^{i\omega_l \tau} |_{\omega \to 0}
\]

(11)

\[
\hat{Q}_{kxz}(\tau) = \hat{q}_{kxz}^x + \hat{q}_{kxz}^z + \hat{q}_{kxz}^\sigma + \hat{q}_{kxz}^\sigma
\]

(12)

where \(\hat{Q}_{kxz} \) is the heat current operator in the superconducting state: \(\hat{q}_{kxz}^x \) and \(\hat{q}_{kxz}^\sigma \) are given by

\[
\hat{q}_{kxz}^x = \omega \hat{v}_{kxz}^x, \quad \hat{q}_{kxz}^\sigma = \omega \hat{v}_{kxz}^\sigma
\]

(13)

where \(\hat{v}_{kxz}^x \) represents the “Fermi velocity” and \(\hat{v}_{kxz}^\sigma \) is the “gap velocity” [21]:

\[
\hat{v}_{kxz}^x = v_{kxz}^x c_{kxz}^\sigma, \quad \hat{v}_{kxz}^\sigma = v_{kxz}^\sigma c_{kxz}^\sigma
\]

(14)

where \(v_{kxz}^x = \frac{\partial q^{\sigma}}{\partial k_x} \frac{\partial q^{\sigma}}{\partial k_y} \) and \(v_{kxz}^\sigma = \frac{\partial q^{\sigma}}{\partial k_z} \).

As a result, the expression for \(\kappa \) in the SC state with dropping the current vertex correction (CVC) is given by
\[\kappa = \frac{1}{2T} \sum_{k} \int dz \left(-\frac{\partial f(z)}{\partial z} \right) \{ 2q_{kx}^{2}(G_{k}^{R}(z)G_{k}^{A}(z) - F_{k}^{R}(z)F_{k}^{A}(z)) \\
- 4q_{kx}q_{kz}G_{k}^{A}(z) - 2F_{k}^{R}(z)F_{k}^{A}(z) \} \]
(15)
where \(f(z) = (e^{z/T} + 1)^{-1} \). In the normal state, heat CVC due to Coulomb interaction is small, as shown in the second-order perturbation theory with respect to \(U \) [23], and in the FLEX approximation [25]. This fact will also be true below \(T_{c} \) since the particle-nonconserving four point vertex is much smaller than the particle-conserving one [26]. Therefore, we neglect the heat CVC in the present numerical study. We find that the first term in eq. (15), which is proportional to \(\{ q_{kx} \}^{2} \), is predominant, and the other terms which contain the gap velocity, \(q_{kz} \), are negligibly small. On the other hand, the charge CVC gives anomalous transport properties for \(R_{H} \) [2], \(S \) [3], magnetoresistance [24] and Nernst coefficient [25] both in hole-doped and electron-doped systems. Anomalous transport phenomena due to charge CVC are also observed in CeMIn \((M=Co,Rh)\) [27] and in \(\kappa \)-(BEDT-TTF)\(_{2}X \) [28].

Here, we include the QP damping due to impurity scattering \(\gamma_{\text{imp}} \) by replacing \(\Sigma^{nR}(\mathbf{k},\omega) \rightarrow \Sigma^{nR}(\mathbf{k},\omega) - \gamma_{\text{imp}}. \) Then, the total QP damping rate is \(\gamma_{\mathbf{k}} =\gamma_{\mathbf{k}}^{\text{FLEX}} + \gamma_{\text{imp}} \) [13, 29], where \(\gamma_{\mathbf{k}}^{\text{FLEX}} = \text{Im}\Sigma^{nR}(\mathbf{k},\omega)\). In the t-matrix approximation, \(\gamma_{\text{imp}} = n_{\text{imp}}\text{Im}\{ -1/(I^{-1} - g_{0}) \}|_{\omega=0} \), where \(n_{\text{imp}} \) is the impurity concentration, \(I \) is the impurity potential, and \(g_{0} \equiv \frac{1}{N} \sum_{\mathbf{k}} G_{k}^{R} \) is the local Green function. Hereafter, we consider the nearly unitary limit case \(I \sim \infty \) where \(\gamma_{\text{imp}}(T = 0) \) takes a constant value in the self-consistent calculation [13, 29], and assume that \(\gamma_{\text{imp}} \ll \gamma_{\mathbf{k}} \) at \(T > T_{c} \). In this case, we are allowed to put \(\gamma_{\text{imp}}(T = 0) = \gamma_{\text{imp}}(T = 0) \) since the \(T \)-dependence of \(\gamma_{\text{imp}} \) affects \(\kappa \) near \(T_{c} \) only slightly. A schematic \(T \)-dependences of \(\gamma_{\mathbf{k}}^{\text{FLEX}} \) and \(\gamma_{\text{imp}} \) are shown in Fig. 3.

Figure 4 represents the temperature-dependence of \(\kappa \) given by eq. (15). In YBCO, \(\kappa \) increases drastically below \(T_{c} \) since the AF fluctuations, which are the origin of inelastic scattering, are reduced due to the SC gap. Since \(\gamma_{\mathbf{k}} \) is much larger than \(\gamma_{\text{imp}} \) at \(T > T_{c} \), \(\kappa \) in the normal state is affected by \(\gamma_{\text{imp}} \) only slightly. For \(T \ll T_{c} \), the other hand, \(\kappa \) is suppressed by \(\gamma_{\text{imp}} \); \(\kappa \) shows the maximum when \(\gamma_{\mathbf{k}}^{\text{FLEX}} \sim \gamma_{\text{imp}} \) is satisfied at the nodal point. The obtained result is consistent with experiments [7–9]. In strong contrast, in NCCO, “coherence peak” in \(\kappa \) is very small even for \(\gamma_{\text{imp}} = 0 \), which is also consistent with experiments [14, 15].

Here, we discuss the reason why the coherence peak in \(\kappa \) is present in YBCO whereas it is absent in NCCO. Below \(T_{c} \), only thermally excited QPs above the SC gap can contribute to \(\kappa \), except at the nodal point. According to eq. (15), thermal conductivities in the normal state (\(\kappa_{n} \)) and in the line-node SC state (\(\kappa_{s} \)), where \(\rho(\epsilon) \propto |\epsilon| \), are approximately given by

\[\kappa_{n} \propto \frac{T}{\gamma_{\text{cold}}} \]
(16)
\[\kappa_{s} \propto \frac{T^{2}}{\gamma_{\text{node}}} \]
(17)
FLEX approximation. In YBCO, both γ SC when the cold spot and the nodal point are different. In summary, the coherence peak in temperature drops, γ T. In under-doped systems, however, the t-matrix approximation is not sufficient since the radius of “effective impurity potential” is enlarged due to electron-electron correlation, which can be described by the GV'-method in Ref. [31]. For a reliable study of κ in under-doped systems, it will be necessary to take account of residual disorders using the GV'-method.

In summary, we studied thermal conductivity κ in HTSCs. In the hole-doped case, κ shows a prominent “coherence peak” below T_c, whereas it is absent in the electron-doped case. Based on the FLEX approximation, such a contrasting behavior of κ is well explained, although both YBCO and NCCO are pure $d_{x^2-y^2}$-wave superconductors. We do not have to assume a full-gap state in NCCO (such as $d+is$) to explain the absence of a coherence peak, which originates from the fact that the cold spot (line) in the normal state [$\sim (\pi,0)$] is not on the nodal point (line) of the SC gap. The present study will open the way for the theoretical study of κ in various interesting unconventional superconductors.

The authors acknowledge fruitful discussions with Y. Matsuda and K. Izawa. This work was supported by Grant-in-Aid from MEXT. Numerical calculations were performed at the supercomputer center, ISSP.

where γ_{cold} and γ_{node} represent γ_k at the cold spot above T_c and that at the nodal point below T_c, respectively.

Figure 5 shows the T-dependence of γ_k given by the FLEX approximation. In YBCO, both γ_{cold} and γ_{node} are given by γ_k at the same point; $k \approx (\pi/2, \pi/2)$. As the temperature drops, γ_{cold} decreases moderately in proportion to T in the normal state. Below T_c, γ_{node} quickly approaches zero since inelastic scattering is suppressed by the SC gap. As a result, κ shows a prominent coherence peak below T_c, as recognized by eqs. (16) and (17). In NCCO, on the other hand, γ_{cold} is given by γ_k at $k \approx (\pi,0)$, which is different from the nodal point of the SC gap; $k \approx (\pi/2, \pi/2)$. Since γ_{node} is much larger than γ_{cold} at $T = T_c$ in NCCO as shown in Fig. 5, κ is not enhanced in NCCO below T_c. Although the numerical accuracy becomes worse for NCCO below $T \sim 0.015$, the obtained result of κ will be qualitatively reliable. In summary, the coherence peak in κ is absent even in nodal SC when the cold spot and the nodal point are different.

Figure 6 shows the obtained doping dependence of κ in YBCO. In over-doped case ($n = 0.8$), the enhancement of κ is largest, and it decreases in optimally ($n = 0.85$) and under-doped ($n = 0.9$) cases since the cold spot approaches the AFBZ as $n \to 1$. This tendency is consistent with experiments [7]. Note that in real materials, T_c in under-doped case is smaller than that in optically-doped case. In the FLEX approximation, however, T_c monotonically increases as $n \to 1$ since the pseudo-gap state in under-doped region cannot be described. The characteristic pseudo-gap phenomena are well described by including the self-energy correction due to strong SC fluctuations into the FLEX approximation, which is called the FLEX+T-matrix approximation [25, 30].

In the present work, we assumed that the inelastic scattering is dominant, and neglected the temperature dependence of γ_{imp}. This assumption will be allowed for clean optimally-doped HTSCs. In dirty samples where elastic scattering is large, we should calculate the T-dependence of γ_{imp} using the self-consistent t-matrix approximation [13, 29]. In under-doped systems, however, the t-matrix approximation is not sufficient since the radius of “effective impurity potential” is enlarged due to electron-electron correlation, which can be described by the GV'-method in Ref. [31]. For a reliable study of κ in under-doped systems, it will be necessary to take account of residual disorders using the GV'-method.

[1] J. Takeda, T. Nishikawa, and M. Sato: Physica C 231 (1994) 293.
[2] H. Kontani, K. Kanki and K. Ueda: Phys. Rev. B 59 (1999) 14723.
[3] H. Kontani: J. Phys. Soc. Jpn. 70 (2001) 2840.
[4] H. Kontani and K. Yamada: J. Phy. Soc. Jpn. 74 (2005) 155.
[5] K. Izawa, H. Yamaguchi, Y. Matsuda, H. Shishido, R. Settai and Y. Onuki: Phys. Rev. Lett. 87 (2001) 057002.
[6] Y. Matsuda, K. Izawa and I. Vekhter, J. Phys.: Condens. Matter 18 (2006) R705.
[7] C.P. Popoviciu and J.L. Cohn: Phys. Rev. B 55 (1997) 3155.
[8] K. Krishana, J. M. Harris, and N. P. Ong: Phys. Rev. Lett. 75 (1995) 3529
[9] Y. Zhang, N. P. Ong, P. W. Anderson, D. A. Bonn, R. Liang, and W. N. Hardy: Phys. Rev. Lett. 86 (2001) 890.
[10] R. Movshovich, M. Jaime, J.D. Thompson1, C. Petrovic, Z. Fisk, P.G. Pagliuso, and J.L. Sarrao: Phys. Rev. Lett. 86 (2001) 5152.
[11] Y. Kasahara, Y. Nakajima, K. Izawa, Y. Matsuda, K. Behnia, H. Shishido, R. Settai, and Y. Onuki: Phys. Rev. B 72 (2005) 214515.
[12] Y. Matsuda et al, preprint.
[13] P.J. Hirshfeld and W.O. Putikka: Phys. Rev. Lett. 77 (1996) 3909.
[14] J. L. Cohn, M.S. Ososky, J.L. Peng, Z. Y. Li, and R.L. Greene: Phys. Rev. B 46 (1992) 12053.
[15] H. Fujishiro, M. Ikeba, M. Yagi, M. Matsukawa, H. Ogasaawara and K. Noto: Physica B 219&220 (1996) 163.
[16] H. Matsui, K. Terashima, T. Sato, T. Takahashi, M. Fujita, and K. Yamada: Phys. Rev. Lett. 95 (2005) 017003.
[17] H. Yoshimura and D.S. Hirashima: J. Phys. Soc. Jpn 73 (2004) 2057.
[18] M.M. Qazilbash, A. Biswas, Y. Dagan, R.A. Ott, and R.L. Greene: Phys. Rev. B 68 (2003) 024502.
[19] N.P. Armitage, D.H. Lu, C. Kim, A. Damascelli, K.M. Shen, F. Ronning, D.L. Feng, P. Bogdanov, and Z.-X. Shen: Phys. Rev. Lett. 87 (2001) 147003.
[20] N. P. Armitage, F. Ronning, D. H. Lu, C. Kim, A. Damascelli, K. M. Shen, D. L. Feng, H. Eisaki, Z.-X. Shen, P. K. Mang, N. Kaneko, M. Greven, Y. Onose, Y. Taguchi, and Y. Tokura: Phys. Rev. Lett. 88, 257001 (2002).
[21] A.C. Durst and P.A. Lee: Phys. Rev. B 62 (2000) 1270.
[22] T. Jujo: J. Phy. Soc. Jpn. 70 (2000) 1349.
[23] H. Kontani, J. Phys. Rev. B 67 (2003) 014408.
[24] H. Kontani: Phys. Soc. Jpn. 70 (2001) 1873.
[25] H. Kontani, Phys. Rev. Lett. 89 (2002) 237003.
[26] A.J. Leggett: Phys. Rev. 146 (1965) A1869.
[27] Y. Nakajima, H. Shishido, H. Nakai, T. Shibata, K. Behnia, K. Izawa, M. Hedo, Y. Uwatoko, T. Matsumoto, R. Settai, Y. Onuki, H. Kontani, and Y. Matsuda: J. Phys. Soc. Jpn. 76 (2007) 027403.
[28] K. Katayama, T. Nagai, H. Taniguchi, K. Satoh, N. Tajima and R. Kato, to be published in J. Low Temp. Phys. (2006).
[29] T. Lofwander and M. Fogelstrom: Phys. Rev. Lett. 95 (2005) 107006.
[30] K. Yamada: Electron Correlation in Metals (Cambridge Univ. Press 2004).
[31] H. Kontani and M. Ohno: Phys. Rev. B 74, 014406 (2006).