A BUILDING-THEORETIC APPROACH TO RELATIVE TAMAGAWA NUMBERS OF SEMISIMPLE GROUPS OVER GLOBAL FUNCTION FIELDS

RONY A. BITAN AND RALF KÖHL (NÉ GRAMLICH)

Abstract. Let G be a semisimple group defined over a global function field K of a rational curve, not anistropic of type A_n. We express the (relative) Tamagawa number of G in terms of local data including the number $t_\infty(G)$ of types in one orbit of a special vertex in the Bruhat–Tits building of $G_\infty(\hat{K}_\infty)$ for some place ∞ and the class number $h_\infty(G)$ of G at ∞.

1. Introduction

Let C be a smooth, projective and irreducible algebraic curve defined over the finite field \mathbb{F}_q and let $K = \mathbb{F}_q(C)$ be its function field. Let G be a (connected) semisimple group defined over K. The Tamagawa number $\tau(G)$ of G is defined as the covolume of the group $G(K)$ of K-rational points in the adelic group $G(\hat{\mathbb{A}})$ (embedded diagonally as a discrete subgroup) with respect to the volume induced by Tamagawa measure on $G(\hat{\mathbb{A}})$ (see [Weil], [Clo] and Section 4 below).

Let $\pi : G^{sc} \to G$ be the universal covering and let $F = \ker(\pi)$ be the fundamental group. We assume that G is not an almost direct product of anisotropic almost simple groups of type A_n and that $(\text{char}(K), |F|) = 1$. According to the Weil conjecture $\tau(G^{sc}) = 1$. By [Har1] the Weil conjecture is known to hold for split G. A geometric proof of Weil’s conjecture by Gaitsgory–Lurie has been announced in [Gai, 1.2.3], see also: [Lur].

In the present article we investigate the relative Tamagawa number $\frac{\tau(G)}{\tau(G^{sc})}$ from a building-theoretic point of view – in the situation that G is locally isotropic everywhere. Let ∞ be some closed point of K and let $\mathbb{A}_\infty := \hat{K}_\infty \times \prod_{p \neq \infty} \hat{\mathcal{O}}_p$ be the subring of $\{\infty\}$-integral ad` eles in the ad` ele ring \mathbb{A}. The double cosets set $\text{Cl}_\infty(G) := G(\mathbb{A}_\infty) \backslash G(\mathbb{A}) / G(K)$ is finite (1.9). This allows us to split off the class number $h_\infty(G) = |\text{Cl}_\infty(G)|$ and proceed by computing the co-volume of $G(K)$ in the trivial coset $G(\mathbb{A}_\infty)G(K)$ w.r.t. the Tamagawa measure by considering the natural action of $G(\mathbb{A}_\infty)$ on the Bruhat–Tits building of $G_\infty(\hat{K}_\infty)$, resulting in formula (13) below

$$\tau(G) = q^{-(g-1)\dim(G)} \cdot h_\infty(G) \cdot i_\infty(G) \cdot \prod_p \omega_p(\mathcal{C}_p^0(\hat{\mathcal{O}}_p))$$

where for each p, ω_p is some multiplicative local Haar-measure, \mathcal{C}_p^0 stands for the connected component of the Bruhat–Tits $\hat{\mathcal{O}}_p$-model at some special point and $i_\infty(G)$ is an arithmetic invariant.

Bitan was partially supported by the Hermann Minkowski Center for Geometry.
related to \(G_\infty := G \otimes_K \hat{K}_\infty \). The key obstruction for using this formula is to determine a fundamental domain for the action of \(\mathcal{G}^0(O_{\{\infty\}}) \) on a \(G_\infty(\hat{K}_\infty) \)-orbit of the Bruhat–Tits building of \(G_\infty(\hat{K}_\infty) \) where \(\mathcal{G}^0 \) is a flat connected smooth and finite type model of \(G \) defined over the ring \(O_{\{\infty\}} \) of \(\{\infty\} \)-integers in \(K \) w.r.t. the one of \(\mathcal{G}^{sc}(O_{\{\infty\}}) \) associated to \(G^{sc} \).

In Proposition 5.3 below we will see that for computing the relative local volumes \(\frac{t_\infty(G)}{t_\infty(G^0)} \) it suffices to compare orbits under \(G^{sc}_\infty(\hat{K}_\infty) \) and \(G_\infty(\hat{K}_\infty) \), whose behavior is controlled by the number \(j_\infty(G) \) of types in the \(G_\infty(\hat{K}_\infty) \)-orbit of the fundamental special vertex and by the number \(j_\infty(G) \) expressing the comparison between the discrete subgroups \(\mathcal{G}^{sc}(O_{\{\infty\}}) \) and \(\mathcal{G}^0(O_{\{\infty\}}) \).

Altogether we then arrive at the following main result of our article. By \(K^s_\infty \) we denote the separable closure of \(\hat{K}_\infty \) with Galois group \(g_\infty = \text{Gal}(K^s_\infty/\hat{K}_\infty) \) and inertia subgroup \(I_\infty = \text{Gal}(K^s_\infty/K^{un}_\infty) \). Moreover, \(\sigma_\infty \) denotes a generator of \(g_\infty/I_\infty \), i.e., the map \(\sigma_\infty : x \mapsto x^{[k_\infty]} \) where \(k_\infty \) is the residue field of \(\hat{K}_\infty \). Let \(F_\infty := \ker[G^s_\infty \to G_\infty] \) and \(\hat{F}_\infty := \text{Hom}(F_\infty \otimes K^s_\infty, G_{m,K^s_\infty}) \).

Main Theorem. With these notations and assuming the Weil conjecture validity one has

\[
\tau(G) = h_\infty(G) \cdot \frac{t_\infty(G)}{j_\infty(G)}.
\]

The number \(t_\infty(G) \) satisfies

\[
t_\infty(G) = |H^1(I_\infty, F_\infty(\hat{K}_\infty^{s}))|_{|\sigma_\infty|} = |\hat{F}_\infty^{g_\infty}|.
\]

and:

\[
j_\infty(G) = \frac{|H^1_{\text{ét}}(O_{\{\infty\}}, \mathcal{F})|}{|\mathcal{F}(O_{\{\infty\}})|}
\]

where \(\mathcal{F} := \ker[\mathcal{G}^{sc} \to \mathcal{G}^0] \).

If in particular \(G \) is quasi-split and the genus \(g \) of the curve \(C \) is 0 then \(j_\infty(G) = 1 \) and so

\[
\tau(G) = h_\infty(G) \cdot t_\infty(G) = h_\infty(G) \cdot |\hat{F}_\infty^{g_\infty}|.
\]

Corollary 1.1. (Cor. 7.10 below) If \(G \) is split and \(g = 0 \) then \(h_\infty(G) = 1 \) and \(\tau(G) = t_\infty(G) = |F| \).

Corollary 1.2. (Cor. 7.12 below) If \(G \) is adjoint (not necessarily split) and \(g = 0 \) then \(h_\infty(G) = 1 \) and \(\tau(G) = t_\infty(G) = |\hat{F}| \), where \(\hat{F} := \text{Hom}(F(K^s), G_{m,K^s}) \) and \(g := \text{Gal}(K^s/K) \).

Our method of proof is a combination of geometric group theory and cohomology. Our approach is independent of Prasad’s covolume formula described in [Pra2], but it is likely that with some effort it can be used to deduce our Main Theorem.

As an application in case the group \(G \) is quasi-split and the genus \(g \) of \(C \) is 0, we combine our result with [Ono1, Formula (3.9.1’)] and the techniques from [PR, § 8.2] in order to relate the cokernels of Bourqui’s degree maps \(\deg_{T^{sc}} \) and \(\deg_{T^T} \) from [Bou, Section 2.2], where \(T^{sc} \) and \(T \)
denote suitable Cartan subgroups of G^{sc} and G respectively; cf. Proposition 7.8. These concrete computations allow us to also provide a wealth of examples in Section 6 for which we compute the relative Tamagawa numbers. We also demonstrate the result in a case of a split group defined over the function field of an elliptic curve (Remark 7.11).

This article is organized as follows: In the preliminary Section 2 we fix the relevant notions from Bruhat–Tits theory. In Section 3 we compute volumes of parahoric subgroups over local fields, their maximal unramified extensions, and their valuation rings. In Section 4 we revise the definition of the Tamagawa number of semisimple K-groups and establish a decomposition of $G(\mathbb{A})/G(K)$ enabling us to express $\tau(G)$ in terms of a global invariant and a local one. In Section 5 we compute cohomology groups over rings of S-integers with $|S| = 1$, use Bruhat–Tits theory and Serre’s formula ([Ser1, p. 84], [BL, Corollary 1.6]) in order to derive the above-mentioned formula (13) for computing the Tamagawa number. In Section 6 we express the number $t_\infty(G)$ of types in the orbit of a special point in terms of F_∞, accomplishing the proof of our Main Theorem. The final Section 7 addresses the above-mentioned application and examples.

Acknowledgements: The authors thank M. Borovoi, D. Bourqui, B. Conrad, P. Gille, C. D. González-Avilés, B. Kunyavskiǐ, Q. Liu, G. McNinch, G. Prasad and R. Weissand for valuable discussions concerning the topics of the present article. They also thank A. Rapinchuk and an anonymous referee for helpful comments on an earlier version of this article.

2. Basic notions from Bruhat–Tits theory

We retain the notation from Section 11 only we assume G to be quasi-split. In Section 3 however, this assumption will be dropped. Since K is a function field the valuations defined on K are non-Archimedean. For any prime p of K, let K_p be the localization of K at p, let \hat{K}_p be its completion there and let \mathcal{O}_p and $\hat{\mathcal{O}}_p$ be their ring of integers respectively. Let $k_p = \hat{\mathcal{O}}_p/p$ be the corresponding (finite) residue field. Then $G_p = G \otimes_K \hat{K}_p$ is semisimple. The second assumption ($\text{char}(K), |F| = 1$ says that π is separable. $T_p = T \otimes_K \hat{K}_p$ is a Cartan subgroup in G_p. Let $(X^*(T_p), \Phi, X_*(T_p), \Phi^\vee)$ be the root datum of (G_p, T_p) and let W be the associated constant Weyl group. Let B_p be the Bruhat–Tits building associated to the adjoint group of G_p (cf. [BT1, Section 7], also [AB, Chapter 11]) and let A be the apartment in B_p corresponding to T_p.

We fix a special vertex $x \in A$, i.e., a vertex whose isotropy group in the setwise stabilizer of A is isomorphic to W. Since the Bruhat–Tits building B_p is locally finite, the stabilizer P_x of x in $G_p(\hat{K}_p)$ is a compact subgroup of $G_p(\hat{K}_p)$. Let $G_{\mathfrak{p}}$ be the Bruhat–Tits model associated to P_x,
i.e., such that $G_x(\hat{\mathcal{O}}_p) = P_x$. Denote by \overline{G}_x the reduction modulo p of G_x and by \overline{G}_x^0 the open subscheme of \overline{G}_x whose reduction is the identity component G_x^0 of \overline{G}_x. Let T_p be the Néron–Raynaud $\hat{\mathcal{O}}_p$-model (shortly referred as NR-model) of T_p which is of finite type, i.e., such that $T_p(\hat{\mathcal{O}}_p)$ is the maximal compact subgroup of $T_p(\hat{K}_p)$ (see Theorem 2 in [BLR] § 10.2 and [CY] § 3.2] for an explicit construction). Denote by T_p^0 its subscheme having a connected special fiber. $T_p^0(\hat{\mathcal{O}}_p)$ is the pointwise stabilizer of A and is a subgroup of $G_p^0(\hat{\mathcal{O}}_p)$. Since G_p is semisimple and the residue field k_p is finite, the adjoint group of $G_p(\hat{K}_p)$ permutes transitively the special vertices (see [Tit, § 2.5]). If Φ is not reduced, we adapt the convention of Prasad in [Pra2, § 1.2] and Gross in [Gro] § 4 which is the following: for each component of the local Dynkin diagram of the type

```
\ldots \Rightarrow \bullet \leftarrow \bullet \ldots
```

we choose the special vertex at the right end of the diagram. Now G_x is well defined up to isomorphism and would be denoted from now on by G_p. x is called the fundamental special vertex of B_p.

Remark 2.1. If G is either simply connected or adjoint, it is a finite product of restriction of scalars $R_{K_i/K}(G_i)$ where each K_i is a separable extension of K and G_i is split and simple. If G is also quasi-split, its Cartan subgroup T being the product of the centralizers of the split tori of the G_i’s, is a maximal torus (see in the proof of [Spr, Prop. 16.2.2.]) being quasi-trivial, i.e. a finite product of Weil’s tori $R_{K_i/K}(\mathbb{G}_m)$. In this case T_p is connected at any p (see [NX, Prop. 2.4]).

3. Volumes of parahoric subgroups

We retain our restriction of G to be an almost direct product of anisotropic almost simple groups of type A_n, implying that G_p is K_p-isotropic (see [BT3] 4.3 and 4.4]). As \hat{K}_p is locally compact its underlying additive group admits a Haar measure which is unique up to a scalar multiple. As in [Weil] § 2.1 we normalize such a measure dx_p by $dx_p(\hat{\mathcal{O}}_p) = 1$. This induces a multiplicative Haar measure ϖ_p on the locally compact group $G_p(\hat{K}_p)$, see [Weil] § 2.2]. Our choice of the Bruhat–Tits model in the preceding section allows us to easily compute the volume of the fundamental parahoric subgroup with respect to this Haar measure.

Proposition 3.1. Up to a multiplication by a scalar of K_p^\times, which is uniquely determined by the normalization of a multiplicative Haar measure on $G_p(\hat{K}_p)$, the volume of $G_p^0(\hat{\mathcal{O}}_p)$ w.r.t. this measure is $|G_p^0(k_p)| \cdot |k_p|^{-\dim G_p}$.
Proof. Assume first that G_p is quasi-split over \hat{K}_p. As G_p^{0} is smooth and \hat{O}_p is Henselian and therefore complete, the reduction of its group of \hat{O}_p-points is surjective (see [BLR] Proposition 2.3/5). Consider the exact sequence

$$1 \to G_p^0(\hat{O}_p) \to G_p^0(\hat{O}_p) \xrightarrow{\text{red}} G_p^0(k_p) \to 1.$$

$G_p^0(\hat{O}_p)$ is the reduction preimage of 1_d in $G_p^0(k_p)$, where $d = \dim G_p^0 = \dim G_p$. Since T_p is maximal and G_p is quasi-split, by [BT2] Corollary 4.6.7 $G_p^0(\hat{O}_p) = T_p^0(\hat{O}_p) \mathcal{X}(\hat{O}_p)$ where $\mathcal{X}(\hat{O}_p)$ is the group generated by the root subgroups each fixing an half apartment containing x. The preimage of 1_d in $G_p^0(\hat{O}_p)/T_p^0(\hat{O}_p)$ is isomorphic to $(1 + \mathfrak{p})^{\dim T_p}$, being homeomorphic to $\mathfrak{p}^{\dim T_p}$. Together, $\text{Lie}(G_p^0(\hat{O}_p)) \cong \mathfrak{p}^{\dim T_p} \cdot |\Phi| = \mathfrak{p}^d$. The normalization condition $dx_p(\hat{O}_p) = 1$ is equivalent to $dx_p(\mathfrak{p}) = |k_p|^{-1}$ implying that

$$\varpi_p(G_p^0(\hat{O}_p)) = \bigwedge_{i=1}^d dx_p(\mathfrak{p}^d) = |k_p|^{-d}.$$

Now from the exactness of the sequence we deduce

$$\varpi_p(G_p^0(\hat{O}_p)) = [G_p^0(\hat{O}_p) : G_p^0(\hat{O}_p)] \cdot \varpi_p(G_p^0(\hat{O}_p)) = [G_p^0(k_p)] \cdot |k_p|^{-d}.$$

If G_p is not quasi-split this computation needs to be applied to an inner form of G_p that is quasi-split, w.r.t. the twisted measure of ϖ_p, being again some scalar multiple of ϖ_p (see [Gro] Prop. 4.7).

Remark 3.2. [BT2] 4.6.22 [If G_p splits over an unramified extension, then $G_p^0(\hat{O}_p) = G_p^0(\hat{O}_p)$.]

Let $\pi_p : G_p^{sc} \to G_p$ be the universal covering of G_p. According to [BT2] 4.4.18(VI), the cover π_p restricted to T_p^{sc} extends to a homomorphism $T_p^{sc} \to T_p$ over Spec \hat{O}_p. Together with the associated root subgroups \hat{O}_p-scheme \mathcal{X}, which is equal for both G_p^{sc} and G_p, this homomorphism over Spec \hat{O}_p extends to a homomorphism $G_p^{sc} \to G_p$ of the Bruhat–Tits schemes. Let $E_p := \ker[G_p^{sc} \to G_p]$. It is finite, flat and its generic fiber is F_p. As F_p is central, so is E_p, thus embedded in T_p^{sc}.

Let \hat{K}_p^{un} be the maximal unramified extension of \hat{K}_p, i.e., the strict henselization of \hat{K}_p with ring of integers \hat{O}_p^{sh} and algebraically closed residue field k_p^s. Let \hat{K}_p^s be a separable closure of \hat{K}_p containing \hat{K}_p^{un} and let $I_p = \text{Gal}(\hat{K}_p^s/\hat{K}_p^{un})$ be the inertia subgroup of $\mathfrak{g}_p = \text{Gal}(\hat{K}_p^s/\hat{K}_p)$. Let σ_p be a generator of \mathfrak{g}_p/I_p, i.e., the map $\sigma_p : x \mapsto x^{1/k_p^s}$ where as above k_p is the residue field of \hat{K}_p.

Proposition 3.3. Any separable isogeny $\pi_p : T_p \to T_p'$ of \hat{K}_p-tori can be extended to an isogeny $\Pi : T_p^{un} \to (T_p')^{un}$ over \hat{O}_p^{sh}, inducing a surjection $T_p^{un}(\hat{O}_p^{sh}) \to (T_p')^{un}(\hat{O}_p^{sh})$.

Proof. Any \hat{K}_p^{un}-torus T_p admits a decomposition, i.e., an exact sequence of \hat{K}_p^{un}-tori

$$1 \to T_{I,p} \to T_p \to T_{\alpha,p} \to 1$$

(1)
on which $T_{I,p}$ is the maximal subtorus of T_p splitting over K_{p}^{un} and $T_{a,p}$ is I_p-anisotropic, i.e., such that $X^*(T_{a,p})^{I_p} = \{0\}$.

We denote by \mathcal{T}_{lft}^I the locally of finite type (lft) NR-model of T_p defined over Spec \hat{O}_{sh} (see [2]). Let j_* be the functor taking algebraic K_{p}^{un}-tori to their lft-Néron models. Since T_{un}^I is K_{p}^{un}-split, we have $R^1j_* = 0$ (cf. the beginning of the proof of III.C.10 in [Mil2]). Thus the exact sequence (1) can be extended to

$$1 \rightarrow \mathcal{T}_{lft}^I \rightarrow \mathcal{T}_{lft}^p \rightarrow \mathcal{T}_{lft}^a \rightarrow 1.$$ (2)

According to [LL, Proposition 4.2(b)] the groups of k_{p}^{s}-points of the connected components of the reductions of these models fit into the exact sequence

$$1 \rightarrow T_{I,p}^0(k_{p}^{s}) \rightarrow T_{p}^0(k_{p}^{s}) \rightarrow T_{a,p}^0(k_{p}^{s}) \rightarrow 1.$$ (3)

As k_{p}^{s} is algebraically closed, this sequence implies the corresponding exact sequence of k_{p}^{s}-schemes

$$1 \rightarrow T_{I,p}^0 \rightarrow T_{p}^0 \rightarrow T_{a,p}^0 \rightarrow 1.$$ (4)

Now let $\pi_p : T_p \rightarrow T'_p$ be an isogeny of \hat{K}_p-tori. Denote by T_{p}^{un} and $(T'_p)^{un}$ these tori tensored with K_{p}^{un}. Then applying the decomposition (3) on both T_{p}^{un} and $(T'_p)^{un}$ results in the exact sequences

$$1 \rightarrow T_{I,p}^{un0} \rightarrow T_{p}^{un0} \rightarrow T_{a,p}^{un0} \rightarrow 1,$$

$$1 \rightarrow (T'_I)^{un0} \rightarrow (T'_p)^{un0} \rightarrow (T'_a)^{un0} \rightarrow 1.$$ (4)

If we show that the left-hand and right-hand groups in the upper sequence surject onto the corresponding groups in the lower one, then surjection of the middle groups will follow. On the left hand side $T_{I,p}^{un}$ and $(T'_I)^{un}$ are isogenous and \hat{K}_p^{un}-split. Then $\pi_I := \ker[T_I^{un} \rightarrow (T'_I)^{un}]$ is a finite \hat{K}_p^{un}-split group of multiplicative type. Thus the Kummer exact sequence of \hat{K}_p^{un}-schemes

$$1 \rightarrow \pi_I \rightarrow T_{I,p}^{un} \rightarrow (T'_I)^{un} \rightarrow 1$$

extends to the exact sequence of corresponding schemes over \hat{O}_{p}^{sh}

$$1 \rightarrow \pi_I \rightarrow \mathcal{T}_{I,p}^{un} \rightarrow (\mathcal{T}'_I)^{un} \rightarrow 1$$

showing the desired surjection on the left-hand side (notice that both $\mathcal{T}_{I,p}^{un}$ and $(\mathcal{T}'_I)^{un}$ split over \hat{O}_{p}^{sh} thus connected, i.e. coincide with their identity component (see Remark 3.2).
Both groups $T^\text{un}_{a,p}$ and $(T'_{a,p})^\text{un}$ on the right-hand side of sequences (1) are I_p-anisotropic. Therefore their NR-models coincide with the finite type (classical) Néron model. In that case, according to [BLR, Section 7.3, Proposition 6], the \hat{K}_p^un-isogeny $T^\text{un}_{a,p} \to (T'_{a,p})^\text{un}$ extends to a \hat{O}_p^sh-isogeny $\overline{T^\text{un}}_{a,p} \to (\overline{T'}_{a,p})^\text{un}$, such that the surjection holds for the identity components, see Definition 4 of loc. cit. Hence we deduce the surjection $T^\text{un0}_p \to (\overline{T'}_{a,p})^\text{un0}$.

Further, as the degree of the latter \hat{O}_p^sh-isogeny is prime to char(\hat{K}_p) (see [1]), its kernel \overline{F}^un_p has a smooth reduction as well. Thus the exact sequence of the reduction groups over the algebraically closed residue field k_p

$$1 \to \overline{T^\text{un}}_{a,p}(k_p^a) \to \overline{T^\text{un0}}_{a,p}(k_p^a) \to (\overline{T'}_{a,p})^\text{un0}(k_p^a) \to 1$$

implies the exactness of the reduction preimage groups of \hat{O}_p^sh-points

$$1 \to \overline{F}^\text{un}_p(\hat{O}_p^\text{sh}) \to \overline{T^\text{un0}}_{a,p}(\hat{O}_p^\text{sh}) \to (\overline{T'}_{a,p})^\text{un0}(\hat{O}_p^\text{sh}) \to 1.$$

\[\square\]

Corollary 3.4. The homomorphism of \hat{O}_p-schemes $G^\text{sc}_p \to \hat{O}_p^0$ is surjective.

Proof. Our assumption (char(K), F) = 1 in Section [1] implies that the isogeny $\pi_p : T^\text{sc}_p \to T_p$ is separable at any p. As $G^0_p(\hat{O}_p^\text{sh}) = T^0_p(\hat{O}_p^\text{sh})\hat{X}(\hat{O}_p^\text{sh})$, the surjection of groups of \hat{O}_p^sh-points in Proposition 3.3 can be extended to $\overline{\pi} : \overline{G}^\text{sc}_p(\hat{O}_p^\text{sh}) \to \overline{G}_p^0(\hat{O}_p^\text{sh})$. As G^sc_p is simply connected, \overline{G}^sc_p has a connected special fiber (see [T], § 3.5.2). By [BT2], Proposition 1.7.6, we know that the coordinate ring representing G^sc_p is

$$\hat{O}_p[G^\text{sc}_p] = \left\{ f \in \hat{K}_p[G_p] : f(G_p(\hat{O}_p^\text{sh})) \subset \hat{O}_p^\text{sh} \right\} \subset \hat{K}_p[G_p].$$

As $\overline{\pi}(\overline{G}^\text{sc}_p(\hat{O}_p^\text{sh})) = \overline{G}_p^0(\hat{O}_p^\text{sh})$, any function $f \in \hat{O}_p[\overline{G}^\text{sc}_p]$ satisfies

$$f \circ \overline{\pi}(\overline{G}^\text{sc}_p(\hat{O}_p^\text{sh})) \subset f(G_p(\hat{O}_p^\text{sh})) \subset \hat{O}_p^\text{sh},$$

thus $f \circ \overline{\pi} \in \hat{O}_p[\overline{G}^\text{sc}_p]$ yielding the surjection of the contravariant functor of schemes. \[\square\]

Lemma 3.5. $\overline{\pi}_p(\overline{G}^\text{sc}_p(\hat{O}_p)) = \overline{\pi}_p(\overline{G}_p^0(\hat{O}_p))$.

Proof. Consider the following exact sequences, obtained by the reduction of groups of points

$$1 \to \overline{G}^\text{sc1}_p(\hat{O}_p) \to \overline{G}^\text{sc0}_p(\hat{O}_p) \xrightarrow{\text{red}} \overline{G}_p^0(k_p) \to 1,$$

$$1 \to \overline{G}^1_p(\hat{O}_p) \to \overline{G}_p^0(\hat{O}_p) \xrightarrow{\text{red}} \overline{G}_p^0(k_p) \to 1.$$

Both kernels are homeomorphic to $p^{\dim G_p}$ (cf. the proof of Proposition 3.1) thus sharing both the same volume with respect to $\overline{\pi}_p$, namely $q^{-\dim G_p}$. Further, as the residue field k_p is finite and the reductions $\overline{G}^\text{sc0}_p = \overline{G}^\text{sc0}_p$ and \overline{G}_p^0 are connected and k_p-isogeneous, they share the same number of rational k_p-points (see [Bor, § 16.8]). Now the claim follows from Proposition 3.1. \[\square\]
4. The Tamagawa number of semisimple groups

We return to the definition of G over the global field K as introduced in Section 1. Let ω be a differential K-form on G of highest degree. It induces a Haar measure on the adelic group $G(\hat{A})$ of G, which is unique up to a scalar multiplication. Let ω_p be the multiplicative Haar measure induced locally by ω at p. The Tamagawa measure on $G(\hat{A})$ is defined as

$$\tau = q^{-(g-1)\dim G} \prod_p \omega_p$$

where g is the genus of C.

Remark 4.1. Since the multiplicative Haar measure on $G_p(\hat{K}_p)$ at any p is unique up to a scalar multiplication, there exists $\lambda_p \in \hat{K}_p^\times$ such that $\omega_p = \lambda_p \varpi_p$ (see notation in Section 3) and so Lemma 3.5 remains true after replacing ϖ_p with ω_p.

Due to the product formula the measure τ does not depend on the choice of ω, i.e., for each $\lambda \in K^\times$ the volume forms ω and $\lambda \omega$ yield identical Haar measures (cf. [Weil, 2.3.1]). Therefore τ is well defined and the following quantity is meaningful. Identifying K with its diagonal embedding in \mathbb{A} and consequently $G(K)$ with its diagonal embedding in $G(\hat{A})$, we consider the following arithmetic invariant of G:

Definition 4.2. The Tamagawa number $\tau(G)$ of G is the volume of $G(\hat{A})/G(K)$ with respect to the Tamagawa measure τ.

Recall that all discrete valuations of K are non-archimedean. For any finite set S of primes of K, the ring of S-adeles is:

$$\mathbb{A}_S := \left\{ (x_p)_{p \notin S} : x_p \in \hat{O}_p \text{ for almost all } p \right\} \subset \prod_{p \notin S} \hat{K}_p.$$

We also define:

$$\mathbb{A}(S) := \prod_{p \in S} \hat{K}_p \times \prod_{p \notin S} \hat{O}_p.$$

For any prime p let $G_p(\hat{O}_p)$ be the maximal subgroup of $G_p(\hat{K}_p)$ w.r.t. some special point x as defined in [2]. With the notation as in Section 1 we set

$$G_S := \prod_{p \in S} G_p(\hat{K}_p), \quad G(\mathbb{A}(S)) := G_S \times \prod_{p \notin S} G_p(\hat{O}_p).$$

Definition 4.3 ([Kne, p. 187], [Pla]). We say that G satisfies the strong approximation property w.r.t. a finite set of primes S, if the diagonal embedding $G(K) \hookrightarrow G(\mathbb{A}_S)$ is dense, or, equivalently, if $G_S \cdot G(K)$ is dense in $G(\hat{A})$. If $|S| = 1$ we call it the absolute strong approximation property.
Theorem 4.4 ([Pra1 Theorem A]). Let G be a simply connected K-group. If the topological group G_S is non-compact w.r.t. to a finite set of primes S, then $G_S \cdot G(K)$ is dense in $G(\mathbb{A})$.

Theorem 4.5 ([Tha Thm. 3.2 3], [PR Prop. 8.8] in the number field case). Let G be a connected reductive K-group such that the simply connected covering of the derived subgroup of G has the strong approximation property w.r.t. a finite set of primes S. Then $G(\mathbb{A}(S))G(K)$ is a normal subgroup of $G(\mathbb{A})$ with finite abelian quotient, the S-class group $\text{Cl}_S(G) = G(\mathbb{A})/G(\mathbb{A}(S))G(K)$ of cardinality $h_S(G) = |\text{Cl}_S(G)|$.

We choose an arbitrary closed point ∞ of C to be the point at infinity, and define:

$\mathbb{A}_\infty := \mathbb{A}(\{\infty\})$, $G(\mathbb{A}_\infty) := G(\mathbb{A}_\infty)(\hat{K}_\infty) \times \prod_{p \neq \infty} G_p(\hat{O}_p)$.

The following facts are now deduced from the preceding Theorems in the case of $S = \{\infty\}$:

Definition 4.6. There exists a finite set $\{x_1, ..., x_h\} \subset G(\mathbb{A})$ such that

$$G(\mathbb{A}) = \bigoplus_{i=1}^{h} G(\mathbb{A}_\infty)x_iG(K).$$

The finite number $h = h_\infty(G)$ is called the class number of G (see [Beh Satz 7], [BP Prop. 3.9], also [BW proof of Theorem 2.1]).

Remark 4.7. As our group G is assumed to be locally isotropic everywhere, by Theorem 4.4 in the case of $S = \{\infty\}$, G^{sc} admits the absolute strong approximation property implying $h_\infty(G^{sc}) = 1$.

According to Theorem 4.5 together with Remark 4.7 $G(\mathbb{A}_\infty)G(K)$ is a normal subgroup of $G(\mathbb{A})$ and we may consider the natural epimorphism:

$$\varphi : G(\mathbb{A})/G(K) \twoheadrightarrow G(\mathbb{A})/G(\mathbb{A}_\infty)G(K) : \forall x \in G(\mathbb{A}) : xG(K) \mapsto xG(\mathbb{A}_\infty)G(K)$$

for which

$$\text{ker}(\varphi) = \{xG(K) : x \in G(\mathbb{A}_\infty)G(K)\} = G(\mathbb{A}_\infty)G(K)/G(K) \cong G(\mathbb{A}_\infty)/G(\mathbb{A}_\infty) \cap G(K).$$

Since all fibers of φ are isomorphic to $\text{ker}(\varphi)$ we get a bijection of measure spaces

$$G(\mathbb{A})/G(K) \cong \text{im}(\varphi) \times \text{ker}(\varphi) \cong (G(\mathbb{A})/G(\mathbb{A}_\infty)G(K)) \times (G(\mathbb{A}_\infty)/G(\mathbb{A}_\infty) \cap G(K)) \cong \text{Cl}_\infty(G) \times (G(\mathbb{A}_\infty)/\Gamma)$$

on which the first factor cardinality is $h_\infty(G)$ and $\Gamma := G(\mathbb{A}_\infty) \cap G(K)$. We will next study the volume of the second factor.
5. On the cohomology of $\mathcal{O}_{\{\infty\}}$-schemes and relative local covolumes

The discrete group $\Gamma = G(K) \cap G(\mathbb{A}_\infty)$ consists only of elements over the ring of $\{\infty\}$-integers of K, namely:

$$\mathcal{O}_{\{\infty\}} = \{a \in K \mid v_p(a) \geq 0 \ \forall p \neq \infty\}.$$

So it would be natural to describe it using an $\mathcal{O}_{\{\infty\}}$-scheme. Consider its following construction:

For any p let \tilde{G}_p be the Bruhat-Tits model of G_p defined over \mathcal{O}_p, i.e. such that:

(a) $\tilde{G}_p \otimes_{\mathcal{O}_p} \hat{K}_p = G_p$, and:

(b) $\tilde{G}_p \otimes_{\mathcal{O}_p} \mathcal{O}_p = G_p$.

According to Proposition D.4(a) in [BLR, § 6.2] the patch (G_p, G_p, τ), where τ is the canonical isomorphism $G_p \otimes_{\mathcal{O}_p} \hat{K}_p \cong G_p \otimes_{\mathcal{O}_p} \hat{K}_p$, corresponds uniquely to the \mathcal{O}_p-module \tilde{G}_p, in the sense that it covers it with a canonical descent datum. Now since C is one dimensional, for any two distinct primes p_1 and p_2, the product $\mathcal{O}_{p_1} \otimes \mathcal{O}_{p_2}$ is isomorphic to K. Thus we may Zariski-glue all geometric fibers $\{\text{Spec} \mathcal{O}_p : p \neq \infty\}$ along the generic point $\text{Spec} K$, resulting in $\text{Spec} \mathcal{O}_{\{\infty\}}$. Then the aforementioned patches cover (with descent datum) a unique group scheme G over $\text{Spec} \mathcal{O}_{\{\infty\}}$. Moreover, for any p, the localization $(\mathcal{O}_{\{\infty\}})_p$ is a base change of \mathcal{O}_p. Thus the bijection $\text{Spec} (\mathcal{O}_{\{\infty\}})_p \to \text{Spec} \mathcal{O}_p$ is faithfully flat (see [Liu, Thm. 3.16]). Hence G extended to $\text{Spec} \hat{\mathcal{O}}_p$ is smooth by construction so that G is smooth at p by faithfully flat descent, see [EGAIV, 17.7.3]. Its generic fiber is G and it satisfies:

$$G(\mathcal{O}_{\{\infty\}}) = G(K) \cap \prod_{p \neq \infty} G_p(\hat{\mathcal{O}}_p) = G(K) \cap G(\mathbb{A}_\infty).$$

We denote by G^0 the subscheme of G whose geometric fibers are G_p^0. The same construction for G^sc is denoted by G^sc. The surjectivity at the geometric fibers $G^\text{sc}_p \to G^0_p$ (see Lemma 3.4) leads to the surjection $\pi_{\mathcal{O}_{\{\infty\}}} : G^\text{sc} \to G^0$ over $\text{Spec} \mathcal{O}_{\{\infty\}}$ as étale sheaves. As we assumed $\text{char}(K)$ to be prime to $|F|$, $F := \ker[G^\text{sc} \to G^0]$ is smooth as well and we have an exact sequence of $\mathcal{O}_{\{\infty\}}$-models:

$$1 \to F \to G^\text{sc} \to G^0 \to 1.$$ (6)

Let \mathcal{T} be the subscheme of G whose generic fiber is T, let $\mathcal{T}^0 := \mathcal{T} \cap G^0$ and let \mathcal{T}^sc be its preimage under $\pi_{\mathcal{O}_{\{\infty\}}}$ in G^sc. Being central (as all its geometric fibers), F is equal to the kernel of the corresponding $\mathcal{O}_{\{\infty\}}$-tori-models, fitting into the following exact sequence of $\mathcal{O}_{\{\infty\}}$-schemes:

$$1 \to F \to \mathcal{T}^\text{sc} \to \mathcal{T}^0 \to 1.$$ (7)

Lemma 5.1. $H^1_{\text{ét}}(\mathcal{O}_{\{\infty\}}, G^\text{sc}) = 1$.

Recall that O_C words, since the curve stands for the integral closure of O_X. The sequence (7) gives rise to the following sequence of multiplicative groups of \mathbb{G}_m. Consequently, its O does not have poles at any place p. If in addition the curve p zero at some place p, then we have:

$$H^1_{\text{ét}}(O\{∞\}, G) \to H^1(K, G^\text{sc}(K^s))$$

This gives us the first assertion.

Proof. According to Nisnevitch ([Nis 3.6.2]) we have the following exact sequence

$$1 \to \text{Cl}_∞(G^\text{sc}) \to H^1_{\text{ét}}(O\{∞\}, G^\text{sc}) \to H^1(K, G^\text{sc}(K^s))$$

on which in our case $\text{Cl}_∞(G^\text{sc})$ is trivial (see Remark 4.7) and the latter group in the sequence is trivial as well due to Harder’s result (see [Har2, Satz A]). The claim follows. □

Lemma 5.2. Let $π_{O\{∞\}} : G^\text{sc}(O\{∞\}) \to G^0(O\{∞\})$. Then:

$$j_∞(G) := \frac{|\text{coker}(π_{O\{∞\}})|}{|\ker(π_{O\{∞\}})|} = \frac{|H^1_{\text{ét}}(O\{∞\}, F)|}{|F(O\{∞\})|}.$$

If in particular G is quasi-split and C is of genus $g = 0$, then $j_∞(G) = 1$ which means that the discrete groups $Γ^\text{sc}$ and $Γ^0$ are bijective.

Proof. Since F is smooth as well as its geometric fibers we have: $H^1_{\text{ét}}(O\{∞\}, F) = H^1_{\text{fppf}}(O\{∞\}, F)$. Due to Lemma 5.1, flat cohomology applied on sequence (9) gives rise to the following sequence of groups of $O\{∞\}$-points:

$$1 \to F(O\{∞\}) \to G^\text{sc}(O\{∞\}) \xrightarrow{π_{O\{∞\}}} G^0(O\{∞\}) \to H^1_{\text{ét}}(O\{∞\}, F) \to 1. \quad (8)$$

This gives us the first assertion.

If G is quasi-split, then T^sc is quasi-trivial, i.e. isomorphic to a finite product of Weil’s tori $R_{K_i/K}(\mathbb{G}_m) \times \cdots \times R_{K_n/K}(\mathbb{G}_m)$ where the K_i’s are finite separable extensions of K (see Remark 2.1). Consequently, its $O\{∞\}$-model T^sc is isomorphic to $R_{O\{∞\},1} \times \cdots \times R_{O\{∞\},n}$ where $O\{∞\},i$ stands for the integral closure of $O\{∞\}$ in K_i for each i. By Shapiro’s formula for the flat topology, we have:

$$H^1_{\text{fppf}}(O\{∞\}, T^\text{sc}) \cong \bigoplus_{i=1}^n H^1_{\text{fppf}}(O\{∞\}, R_{O\{∞\},i}/O\{∞\})(\mathbb{G}_m) \cong \bigoplus_{i=1}^n H^1_{\text{fppf}}(O\{∞\},i, \mathbb{G}_m) \cong \bigoplus \text{Pic}(C^\text{af}).$$

If in addition the curve C is of genus 0 we have $\text{Pic}(C^\text{af}) = 0$, and so flat cohomology applied on sequence (7) gives rise to the following sequence of multiplicative groups of $O\{∞\}$-points:

$$1 \to F(O\{∞\}) \to T^\text{sc}(O\{∞\}) \xrightarrow{π_{O\{∞\}}} T^0(O\{∞\}) \to H^1_{\text{ét}}(O\{∞\}, F) \to 1. \quad (9)$$

Recall that $O\{∞\} = K \cap \bigcap_{p \neq ∞} O_p$, i.e., $O\{∞\}$ consists of exactly those elements of K that do not have poles at any place $p \neq ∞$. If $x \in O\{∞\}$ has a proper pole at $∞$, then it has a proper zero at some place $p \neq ∞$. Hence its inverse $x^{-1} \in K$ has a proper pole at that place and, thus, $x^{-1} \in K\{O\{∞\}\}$. We conclude that the only invertible elements of $O\{∞\}$ are the constants. In other words, since the curve C is projective, its regular functions are exactly the constants. This means that $T^\text{sc}(O\{∞\}) = T^\text{sc}(\mathbb{F}_q)$ and $T(O\{∞\}) = T(\mathbb{F}_q)$ are finite groups.
As the reduction of all geometric fibers of \(T^{sc} \) and \(T^0 \) are smooth and connected, the specializations \(T^{sc} = T^{sc} \otimes_{\text{Spec} \mathcal{O}_\infty} \text{Spec} \mathbb{F}_q \) and \(T^0 = T^0 \otimes_{\text{Spec} \mathcal{O}_\infty} \text{Spec} \mathbb{F}_q \) are connected \(\mathbb{F}_q \)-schemes, where \(\text{Spec} \mathbb{F}_q \to \text{Spec} \mathcal{O}_{\infty} \) is the closed immersion of the special point. Thus the exact sequence (9) can be rewritten as:

\[
1 \to \mathcal{F}(\mathcal{O}_{\infty}) \to T^{sc}(\mathbb{F}_q) \xrightarrow{\pi} T^0(\mathbb{F}_q) \to H^1_{\acute{e}t}(\mathcal{O}_{\infty}, \mathcal{F}) \to 1. \tag{10}
\]

The surjectivity of \(T^{sc} \to T^0 \) implies the one of \(T^{sc} \to T^0 \). These schemes are isogenous, connected and defined over \(\mathbb{F}_q \), so they share the same number of \(\mathbb{F}_q \)-points. Then the exactness of \((10) \) implies that \(|\mathcal{F}(\mathcal{O}_{\infty})| = |H^1_{\acute{e}t}(\mathcal{O}_{\infty}, \mathcal{F})| \). Returning back to the exact sequence (8) we get the claim. \(\square \)

The group \(G(\mathbb{A}) \) admits a natural action on the product \(B = \prod_p B_p \) of the Bruhat–Tits buildings, and its subgroup \(G(\mathbb{A}_{\infty}) \) fixes the fundamental special vertex of each building \(B_p \) with \(p \neq \infty \). Identifying \(B_{\infty} \) with its product with these fundamental special vertices therefore yields an action of \(G(\mathbb{A}_{\infty}) \) on \(B_{\infty} \). Let:

\[
G^0(\mathbb{A}_{\infty}) = G_{\infty}(\hat{K}_{\infty}) \times \prod_{p \neq \infty} G^0_p(\hat{\mathcal{O}}_p), \quad \Gamma^0 = G^0(\mathbb{A}_{\infty}) \cap G(K) \subset \Gamma. \]

Notice that as \(G^{sc} \) is simply connected \(\Gamma^{sc} := G^{sc}(\mathbb{A}_{\infty}) \cap G(K) = (\Gamma^{sc})^0 \).

Consider the following compact subgroups:

\[
U^{sc} = \prod_p G^{sc}_p(\hat{\mathcal{O}}_p) \subset G^{sc}(\mathbb{A}_{\infty}), \quad U = \prod_p G^0_p(\hat{\mathcal{O}}_p) \subset G(\mathbb{A}_{\infty}).
\]

Let \(Y^{sc} \) and \(Y \) be the sets of representatives respectively for the double cosets sets:

\[
\Gamma^{sc}\setminus G^{sc}(\mathbb{A}_{\infty})/U^{sc} \cong (\Gamma^{sc} \cap G^{sc}(\hat{K}_{\infty}))/G^{sc}_\infty(\hat{K}_{\infty})/G^{sc}_\infty(\hat{\mathcal{O}}_{\infty}), \quad \Gamma^0\setminus G(\mathbb{A}_{\infty})/U \cong (\Gamma^0 \cap G(\hat{K}_{\infty}))/G_{\infty}(\hat{K}_{\infty})/G^0_{\infty}(\hat{\mathcal{O}}_{\infty}). \tag{11}
\]

For any \(y \in Y^{sc} \), \(yU^{sc}y^{-1} \) is compact and \(\Gamma^{sc} \) is discrete thus their intersection is finite. More precisely, by the isomorphism above any such \(y \) may represents a non-trivial double coset only at its \(\infty \)-component, whence \(yU^{sc}y^{-1} \subset G^{sc}(\mathbb{A}_{\infty}) \) and therefore:

\[
yU^{sc}y^{-1} \cap \Gamma^{sc} = yU^{sc}y^{-1} \cap (G^{sc}(K) \cap G^{sc}(\mathbb{A}_{\infty})) = yU^{sc}y^{-1} \cap G^{sc}(K).
\]

But conjugation by \(y \) on the \(\infty \)-component of \(U \) is a shift to the stabilizer of \(yx \) in \(G_{\infty}(\hat{K}_{\infty}) \):

\[
yU^{sc}y^{-1} = G^{sc}_{\infty, yx}(\hat{\mathcal{O}}_{\infty}) \times \prod_{p \neq \infty} G^{sc}_p(\hat{\mathcal{O}}_p).
\]

Thus \(yU^{sc}y^{-1} \cap G^{sc}(K) \) admits an underlying group scheme \(\tilde{G}^{sc} \) having only global sections on \(K \), i.e. defined over \(\text{Spec} \mathbb{F}_q \) (recall that \(C \) is projective). We denote by \(\tilde{G}_{\pi(y)} \) the resulting \(\mathbb{F}_q \)-group for the same construction for \(G \) with \(\pi(y) \) (here again: \(\pi(y)U \pi(y)^{-1} = G^0_{\infty, \pi(y)x}(\hat{\mathcal{O}}_{\infty}) \times \prod_{p \neq \infty} G^0_p(\hat{\mathcal{O}}_p) \)).

The surjectivity of \(G^{sc}_{\infty, yx} \to G^0_{\infty, \pi(y)x} \xrightarrow{\gamma} G^0_p \forall p \neq \infty \) and \(G^{sc} \to G \) implies the one of
\(\tilde{G}_y \to \tilde{G}_{\pi(y)} \) having a finite kernel as well. So the groups \(\tilde{G}_y \) and \(\tilde{G}_{\pi(y)} \), being isogeneous, connected and of finite dimension, defined over the finite field \(\mathbb{F}_q \), share the same finite number of \(\mathbb{F}_q \)-points, i.e.:

\[
\forall y \in Y^\text{sc} : |y U^\text{sc} y^{-1} \cap \Gamma^\text{sc}| = |\pi(y) U \pi(y)^{-1} \cap \Gamma^0|.
\] (12)

As \(G(\mathbb{A}_\infty) \) is unimodular by [Mar, Corollary I.2.3.3] we get to Serre’s formula ([Ser1, p. 84],[BL, Corollary 1.6]) :

\[
\tau(G) \equiv h_\infty(G) \cdot \tau(G(K) \backslash G(\mathbb{A}_\infty)) = h_\infty(G) \cdot \sum_{y \in Y} \tau(yU)
\]
(13)

\[
= h_\infty(G) \cdot \sum_{y \in Y} \frac{\tau(U)}{|yU y^{-1} \cap \Gamma^0|}
= q^{-(g-1)\dim(G)} \cdot h_\infty(G) \cdot \prod_p \omega_p(\mathcal{O}_p) \cdot \sum_{y \in Y} \frac{1}{|yU y^{-1} \cap \Gamma^0|}
= q^{-(g-1)\dim(G)} \cdot h_\infty(G) \cdot i_\infty(G) \cdot \prod_p \omega_p(\mathcal{O}_p)
\]

where \(i_\infty(G) = \sum_{y \in Y} \frac{1}{|yU y^{-1} \cap \Gamma^0|} \).

Lemma 5.3. With the previously introduced notations one has

\[
\frac{i_\infty(G)}{i_\infty(G^\text{sc})} = \frac{t_\infty(G)}{j_\infty(G)}.
\]

Proof. Let us regard the double cosets groups in formulas[11] represented by \(Y^\text{sc} \) and \(Y \) respectively. The representatives of \(G^\text{sc}(\mathbb{A}_\infty)/U^\text{sc} \cong G^\text{sc}_0(\hat{K}_\infty)/G^\text{sc}_0(\hat{O}_\infty) \) and of \(G(\mathbb{A}_\infty)/U \cong G_\infty(\hat{K}_\infty)/G_\infty(\hat{O}_\infty) \) correspond to vertices in the orbits of \(x \) in \(B_\infty \) obtained by the actions of \(G^\text{sc}_0(\hat{K}_\infty) \) and \(G(\hat{K}_\infty) \) respectively (the Iwahori subgroup is the kernel of this action in each case). Since these actions are transitive on the alcoves in \(B_\infty \), it is sufficient to compare the orbits inside each alcove. Recall that \(t_\infty(G) \) is the number of (special) points in the orbit of \(x \) in one alcove. For each \(y \in Y^\text{sc} \), let \(x_1, ..., x_{t_\infty(G)} \) be the types representatives in the \(G_\infty(\hat{K}_\infty) \)-orbit of \(x_1 = \pi(y) \). Since the \(G^\text{sc}_\infty(\hat{K}_p) \)-action on \(B_\infty \) is type preserving, this correspondence of types in the \(x \)-orbit is one to one.

To accomplish the comparison between \(Y^\text{sc} \) and \(Y \), the above right quotients, taken modulo the discrete subgroups \(\Gamma^\text{sc} \) and \(\Gamma^0 \) (from the left) respectively, correspond to vertices in some fundamental domains of the aforementioned orbits of \(x \). In Lemma 5.2 we compared between these subgroups and got that \(\Gamma^0 \) is bijective to \(j_\infty(G) \) times \(\Gamma^\text{sc} \). Moreover, along any orbit the Bruhat-Tits schemes are isomorphic (see [Tit, § 2.5., p. 47]) and have isomorphic reductions. Thus:
∀i : |x_i U x_i^{-1} \cap \Gamma^0| = |\pi(y) U \pi(y)^{-1} \cap \Gamma^0|. We get:

\[i_{\infty}(G) = \sum_{y \in Y} \frac{1}{|x_i U x_i^{-1} \cap \Gamma^0|} = \sum_{y \in Y} \frac{1}{|\pi(y) U \pi(y)^{-1} \cap \Gamma^0|} \]

[12]

\[\frac{t_{\infty}(G)}{j_{\infty}(G)} \sum_{y \in Y^{G_c}} \frac{1}{|y U^{G_c} y^{-1} \cap \Gamma^{G_c}|} = \frac{t_{\infty}(G)}{j_{\infty}(G)} \cdot i_{\infty}(G^{G_c}). \]

Recall that

\[\tau(G) = 13 \cdot q^{-(g-1) \dim G} \cdot h_{\infty}(G) \cdot i_{\infty}(G) \cdot \prod_p \omega_p(L^0_p(\hat{O}_p)). \]

Clearly the invariant \(q^{-(g-1) \dim G} \) is the same for both \(G \) and \(G^{G_c} \), as well as the volume of the compact subgroups (see Lemma 3.5 and Remark 4.1). We conclude that:

\[\frac{\tau(G)}{\tau(G^{G_c})} = \frac{h_{\infty}(G)}{h_{\infty}(G^{G_c})} \cdot \frac{i_{\infty}(G)}{i_{\infty}(G^{G_c})}. \]

Now assuming the validity of the Weil Conjecture: \(\tau(G^{G_c}) = 1 \) and due to the strong approximation related to \(G^{G_c} \) for which \(h_{\infty}(G^{G_c}) = 1 \) (see Remark 4.7), plus Lemma 5.3 we finally deduce that:

Corollary 5.4.

\[\tau(G) = h_{\infty}(G) \cdot \frac{t_{\infty}(G)}{j_{\infty}(G)}. \]

If \(G \) is quasi-split and \(C \) is of genus 0, according to Lemma 5.2 this formula simplifies to:

\[\tau(G) = h_{\infty}(G) \cdot t_{\infty}(G). \]

6. Number of types in the orbit of a special point

We retain the notation and terminology introduced in the preceding sections.

Lemma 6.1. For any prime \(p \) one has \(H^1(\langle \sigma_p \rangle, \pi(G^{G_c}_p(\hat{K}_p^{un}))) = 1. \)

Proof. At any prime \(p \) we may consider the following exact sequence of \(\hat{K}_p \)-groups:

\[1 \to F_p \to G^{G_c}_p(\hat{K}_p^{un}) \to \pi(G^{G_c}) \to 1. \]

Due to Harder [Har2, Satz A] we know that \(H^1(\langle \sigma_p \rangle, G^{G_c}_p(\hat{K}_p^{un})) = 1 \), hence \(\langle \sigma_p \rangle \)-cohomology gives rise to the exact sequence:

\[1 \to H^1(\langle \sigma_p \rangle, \pi(G^{G_c}_p(\hat{K}_p^{un}))) \to H^2(\langle \sigma_p \rangle, F_p(\hat{K}_p^{un})) \]

on which the right term is trivial as \(F_p(\hat{K}_p^{un}) \) is finite. This gives the required result. \(\square \)
Lemma 6.2. The number $t_\infty(G)$ of (special) types in the $G_\infty(\hat{K}_\infty)$-orbit of the fundamental special vertex x in B_∞ is given by

$$t_\infty(G) = |H^1(I_\infty, F_\infty(\hat{K}_\infty^s))^{\sigma_\infty}| = |\overline{F}_\infty^{G_\infty}|.$$

Proof. Galois I_∞ and g_∞-cohomology yield the exact diagram

$$
1 \longrightarrow F_\infty(\hat{K}_\infty^{un}) \quad \longrightarrow \quad G_\infty^{sc}(\hat{K}_\infty^{un}) \quad \longrightarrow \quad G_\infty(\hat{K}_\infty^{un}) \quad \longrightarrow \quad H^1(I_\infty, F_\infty(\hat{K}_\infty^s)) \quad \longrightarrow \quad 1
$$

$$
1 \longrightarrow F_\infty(\hat{K}_\infty) \quad \longrightarrow \quad G_\infty^{sc}(\hat{K}_\infty) \quad \longrightarrow \quad G_\infty(\hat{K}_\infty) \quad \longrightarrow \quad H^1(g_\infty, F_\infty(\hat{K}_\infty^s)) \quad \longrightarrow \quad 1
$$

The group $\pi_\infty(G_\infty^{sc}(\hat{K}_\infty^{un})) \cap G_\infty(\hat{K}_\infty)$ is the largest type-preserving subgroup of $G_\infty(\hat{K}_\infty)$. By the classification of affine Dynkin diagrams an automorphism of B_∞ preserves the types of special vertices in B_∞ if and only if it preserves types of arbitrary vertices. Therefore the cosets of $\pi_\infty(G_\infty^{sc}(\hat{K}_\infty^{un})) \cap G_\infty(\hat{K}_\infty)$ in $G_\infty(\hat{K}_\infty)$ are in 1-to-1 correspondence with the types of special vertices in the $G_\infty(\hat{K}_\infty)$-orbit. We conclude that

$$t_\infty(G) = \left| G_\infty(\hat{K}_\infty)/\left(\pi(G_\infty^{sc}(\hat{K}_\infty^{un})) \cap G_\infty(\hat{K}_\infty)\right) \right|.$$

The exact sequence

$$1 \rightarrow F_\infty(\hat{K}_\infty^{un}) \rightarrow G_\infty^{sc}(\hat{K}_\infty^{un}) \rightarrow G_\infty(\hat{K}_\infty^{un}) \rightarrow H^1(I_\infty, F_\infty(\hat{K}_\infty^s)) \rightarrow 1$$

can be shortened to

$$1 \rightarrow \pi(G_\infty^{sc}(\hat{K}_\infty^{un})) \rightarrow G_\infty(\hat{K}_\infty^{un}) \rightarrow H^1(I_\infty, F_\infty(\hat{K}_\infty^s)) \rightarrow 1.$$

Applying (σ_∞)-cohomology on this exact sequence gives the exact sequence

$$1 \rightarrow \pi(G_\infty^{sc}(\hat{K}_\infty^{un})) \cap G_\infty(\hat{K}_\infty) \rightarrow G_\infty(\hat{K}_\infty) \rightarrow H^1(I_\infty, F_\infty(\hat{K}_\infty^s))^{\sigma_\infty} \rightarrow H^1(\langle \sigma_\infty \rangle, \pi(G_\infty^{sc}(\hat{K}_\infty^{un})))$$

on which the right-hand group is trivial by Lemma 6.1. Hence $t_\infty(G) = |H^1(I_\infty, F_\infty(\hat{K}_\infty^s))^{\sigma_\infty}|$.

More explicitly, the Kottwitz epimorphism together with Galois descent, yields an epimorphism $T_\infty(\hat{K}_\infty) \rightarrow X_\sigma(T_\infty)_{I_\infty}^{\sigma_\infty}$ whose kernel is the Iwahori subgroup $T_\infty^{\sigma_\infty} \cap \hat{O}_\infty$ (see [Bli, Corollary 3.2]). We get the following exact diagram

$$
1 \longrightarrow F_\infty(\hat{O}_\infty) \quad \longrightarrow \quad T_\infty^{sc}(\hat{O}_\infty) \quad \longrightarrow \quad T_\infty^{\sigma_\infty}(\hat{O}_\infty) \quad \longrightarrow \quad H^1(\langle \sigma_\infty \rangle, F_\infty(\hat{O}_\infty^{sh})) \quad \longrightarrow \quad 0
$$

$$
1 \longrightarrow F_\infty(\hat{K}_\infty) \quad \longrightarrow \quad T_\infty^{sc}(\hat{K}_\infty) \quad \longrightarrow \quad T_\infty^{\sigma_\infty}(\hat{K}_\infty) \quad \longrightarrow \quad H^1(\langle \sigma_\infty \rangle, F_\infty(\hat{K}_\infty^s)) \quad \longrightarrow \quad 0
$$

$$
0 \longrightarrow X_\sigma(T_\infty)_{I_\infty}^{\sigma_\infty} \quad \longrightarrow \quad X_\sigma(T_\infty)_{I_\infty}^{\sigma_\infty} \quad \longrightarrow \quad H^1(I_\infty, F_\infty(\hat{K}_\infty^s))^{\sigma_\infty} \quad \longrightarrow \quad 0
$$
on which the lower row can be also obtained by the following steps: applying the contravariant
left-exact functor \(\text{Hom}(-, \mathbb{Z}) \) on the exact sequence of character \(g_\infty \)-modules
\[
0 \to X^*(T_\infty) \to X^*(T_\infty^\text{sc}) \to \widehat{F_\infty} \to 0,
\]
on which \(\widehat{F_\infty} = \text{Hom}(F_\infty \otimes \hat{K}_\infty^*, \mathbb{G}_m, \hat{K}_\infty^*) \), gives the exact sequence
\[
0 \to 0 = \text{Hom}(\widehat{F_\infty}, \mathbb{Z}) \to X_s(T_\infty^\text{sc}) \overset{\pi^\vee}{\longrightarrow} X_s(T_\infty) \to \text{Ext}^1(\widehat{F_\infty}, \mathbb{Z}) \to \text{Ext}^1(X^*(T_\infty^\text{sc}), \mathbb{Z}) = 0. \tag{14}
\]
Applying the functor \(\text{Hom}(\widehat{F_\infty}, -) \) on the resolution
\[
0 \to \mathbb{Z} \to \mathbb{Q} \to \mathbb{Q}/\mathbb{Z} \to 0
\]
gives rise to a long exact sequence on which as \(\widehat{F_\infty} \) is finite, \(\text{Hom}(\widehat{F_\infty}, \mathbb{Q}) = 0 \) and \(\text{Ext}^1(\widehat{F_\infty}, \mathbb{Q}) = 0 \), showing the existence of an isomorphism
\[
\text{Ext}^1(\widehat{F_\infty}, \mathbb{Z}) \cong \text{Hom}(\widehat{F_\infty}, \mathbb{Q}/\mathbb{Z}) = \widehat{F_\infty}^*\]
where \(\widehat{F_\infty}^* \) is the Pontryagin dual of \(\widehat{F_\infty} \), i.e., the group of finite order characters of \(\widehat{F_\infty} \), see also [Mi2 p. 23]. Being finite, these duals are isomorphic. So sequence \(\text{(14)} \) can be rewritten as
\[
0 \to X_s(T_\infty^\text{sc}) \overset{\pi^\vee}{\longrightarrow} X_s(T_\infty) \to \widehat{F_\infty}^* \to 0. \tag{15}
\]
The \(I_\infty \)-coinvariants functor is in general only right exact, but here as \(T_\infty^\text{sc} \) is connected, \(X_s(T_\infty^\text{sc})_{I_\infty} \) is free (see [Bit Formula (3.1)]) and embedded into \(X_s(T_\infty)_{I_\infty} \). Thus applying this functor on
\[
0 \to X_s(T_\infty^\text{sc}) \overset{\pi^\vee}{\longrightarrow} X_s(T_\infty) \to \widehat{F_\infty}^* \cong \widehat{F_\infty} \to 0
\]
also leaves the left hand side exact
\[
0 \to X_s(T_\infty^\text{sc})_{I_\infty} \overset{\pi^\vee}{\longrightarrow} X_s(T_\infty)_{I_\infty} \to \widehat{F_\infty}^*_{I_\infty} \to 0.
\]
Now applying the Galois \(\langle \sigma_\infty \rangle \)-cohomology gives the exact lower row on the above diagram
\[
0 \to X_s(T_\infty^\text{sc})_{I_\infty} \overset{\pi^\vee_{I_\infty}}{\longrightarrow} X_s(T_\infty)_{I_\infty} \overset{\pi^\vee}{\longrightarrow} (\widehat{F_\infty}^*)_{I_\infty} \sigma_\infty \to H^1((\sigma_\infty), X_s(T_\infty^\text{sc})) = 0. \tag{16}
\]
Returning to the diagram, as \(\widehat{F_\infty}^* \) being finite is isomorphic as a \(g_\infty \)-module to \(\widehat{F_\infty} \), we finally get
\[
t_\infty(G) = |H^1(I_\infty, F_\infty(\hat{K}_\infty^*))_{\sigma_\infty}| = |\text{coker}(\pi^\vee_{I_\infty})| = |\widehat{F_\infty}^g_{I_\infty}|. \tag*{□}
\]

Remark 6.3.

(a) Sequence \(\text{(16)} \) illustrates the fact that the number \(t_\infty(G) \) of types in the
orbit of \(x \) depends only on the embedding of \(X_s(T_\infty^\text{sc}) \) in \(X_s(T_\infty) \).

(b) By the geometric version of Čebotarev’s density theorem (see in [Ja2]), one may choose the
point \(\infty \) such that \(G_\infty \) is split. In this case \(t_\infty(G) = |F_\infty| \).

Now Corollary 5.4 together with Lemma 6.2 show the Main Theorem.
Main Theorem. Assuming the Weil conjecture validity one has:

\[\tau(G) = h_\infty(G) \cdot \frac{t_\infty(G)}{j_\infty(G)}. \]

The number \(t_\infty(G) \) satisfies

\[t_\infty(G) = |H^1(I_\infty, F_\infty(\hat{\mathcal{K}}_\infty))^{\sigma_\infty}| = |\hat{F}_\infty^{g_\infty}| \]

and:

\[j_\infty(G) = \frac{|H^1(\mathcal{O}_\infty(\hat{\mathcal{K}}_\infty), \mathcal{F})|}{|\mathcal{F}(\mathcal{O}_\infty(\hat{\mathcal{K}}_\infty))|}. \]

If in particular \(G \) is quasi-split and the genus \(g \) of the curve \(C \) is 0 then \(j_\infty(G) = 1 \) and so

\[\tau(G) = h_\infty(G) \cdot t_\infty(G) = h_\infty(G) \cdot |\hat{F}_\infty^{g_\infty}|. \]

7. Application and examples

In this section we describe an application of our Main Theorem in case \(G \) is quasi-split and \(g = 0 \). We combine our result with [Ono1, Formula (3.9.1')] and the techniques from [PR § 8.2] in order to relate the cokernels of Bourqui’s degree maps \(\text{deg}_{T^{sc}} \) and \(\text{deg}_T \) from [Bou, Section 2.2], where \(T^{sc} \) and \(T \) denote suitable Cartan subgroups of \(G^{sc} \) and \(G \) respectively; cf. Proposition 7.8 below. These concrete computations will allow us to also provide a wealth of examples for which we compute the relative Tamagawa numbers. Ono’s formula was originally designed for groups over number fields and was generalized to the function field case in [BD, Theorem 6.1]. We will use freely the notation concerning algebraic tori introduced in [Ono1]. In this section we will usually assume that Weil’s conjecture \(\tau(G^{sc}) = 1 \) holds.

Remark 7.1. According to the Bruhat–Tits construction \(G_p(\hat{\mathcal{O}}_p) = T_p(\hat{\mathcal{O}}_p) \mathcal{X}(\hat{\mathcal{O}}_p) \). As \(G_p \) is quasi-split one has (see [BT2, Corollary 4.6.7]) \(G_p^0(\hat{\mathcal{O}}_p) = T_p^0(\hat{\mathcal{O}}_p) \mathcal{X}(\hat{\mathcal{O}}_p) \) and so

\[[G_p(\hat{\mathcal{O}}_p) : G_p^0(\hat{\mathcal{O}}_p)] = [T_p(\hat{\mathcal{O}}_p) : T_p^0(\hat{\mathcal{O}}_p)]. \]

Definition 7.2. The finite group \(W(T) = T(K) \cap T^{c}(\mathbb{A}) = T(\mathbb{F}_q) \) is the group of units of \(T \) and its cardinality is denoted by \(w(T) \).

Lemma 7.3.

\[\frac{w(T)}{w(T^{sc})} = \frac{|T(\mathbb{F}_q)|}{|T^{sc}(\mathbb{F}_q)|} = \frac{|T(\mathbb{F}_q)|}{|T^0(\mathbb{F}_q)|} = [T(\mathbb{F}_q) : T^0(\mathbb{F}_q)]. \]

Proof. Under the assumptions of \(G \) being quasi-split and \(g = 0 \) the finite groups \(T^{sc}(\mathbb{F}_q) \) and \(T^0(\mathbb{F}_q) \) are of the same cardinality (see in the proof of Lemma 5.2). The assertion follows. \(\square \)
For an algebraic K-torus T we set the following subgroup of the adelic group $T(\mathbb{A})$

$$T^1(\mathbb{A}) := \{ x \in T(\mathbb{A}) : ||\chi(x)|| = 1 \ \forall \chi \in X^*(T)_K \}. \quad (17)$$

Let $\mathfrak{g} = \text{Gal}(K^s/K)$. Following J. Oesterlé in [Oes 1.5.5], D. Bourqui defines in [Bou §2.2.1] the morphism

$$\text{deg}_T : T(\mathbb{A}) \to \text{Hom}(X^*(T)^0, \mathbb{Z})$$

with $\text{ker}(\text{deg}_T) = T^1(\mathbb{A})$ and a finite cokernel (see [Bou Proposition 2.21]). The maximal compact subgroup of $T(\mathbb{A})$ is denoted by

$$T^c(\mathbb{A}) := \prod_p T_p(\hat{O}_p).$$

Definition 7.4. The class number of T is $h(T) := [T^1(\mathbb{A}) : T^c(\mathbb{A}) T(K)].$

By [Ono Formula (3.9.1)] for a K-isogeny $\pi : T \to T'$ of tori T, T' defined over K one has

$$\tau(\pi) := \frac{\tau(T')}{\tau(T)} = \frac{w(T) h(T')}{w(T') h(T)} \prod_p \frac{L_p(1, \chi_{T'}) \cdot \omega_p(T_{\hat{O}_p})}{L_p(1, \chi_{T} \cdot \omega_p(T_{\hat{O}_p}))}. \quad (18)$$

We shall need the following

Lemma 7.5. Let H_p be an affine, smooth and connected group scheme defined over O_p. Then $H^1((\sigma_p), H_p(O^h_p)) = 1$.

Proof. As O_p is Henselian, we have $H^1((\sigma_p), H_p(O^h_p)) \cong H^1((\sigma_p), H_p(k^s_p))$ (see Remark 3.11(a) in [Mii Chapter III, §3]). The group on the right hand side is trivial by Lang’s Theorem (see [Lan] and [Ser Chapter VI, Proposition 5]). □

Remark 6. As G^sc_p is quasi-split and simply connected, its Cartan subgroup T^sc_p is a quasi-trivial torus (i.e. a product of Weil tori). Thus not only $H^1(\mathfrak{g}_p, G^sc_p(K^s_p)) = 1$ (which is due to Harder as aforementioned), but also $H^1(\mathfrak{g}_p, T^sc_p(K^s_p)) = 1$ as well as $H^1(\mathfrak{g}, G^sc(K^s)) = 1$ and $H^1(\mathfrak{g}, T^sc(K^s)) = 1$.

Lemma 7.7. The map $\pi_K^*: \text{Hom}(X^*(T^sc)^0, \mathbb{Z}) \to \text{Hom}(X^*(T)^0, \mathbb{Z})$ is injective. One has

$$h_\infty(G) \cdot \frac{h(T^sc)}{h(T)} = \frac{|\text{coker}(\pi^*_K)|}{l_\infty(G) \cdot |D|} \cdot \frac{\prod_p |T_p(\hat{O}_p) : T^0_p(\hat{O}_p)|}{[T(F_q) : T^0(F_q)]}.$$

Proof. Since G is of non-compact type, the exact sequence of K-groups

$$1 \to F \to G^sc \xrightarrow{\pi_K} G \to 1$$

induces the exactness over the adelic ring \mathbb{A}

$$1 \to F(\mathbb{A}) \to G^sc(\mathbb{A}) \xrightarrow{\pi_K^A} G(\mathbb{A}) \xrightarrow{\text{coker}(\pi^*_A)} \prod_p H^1(\mathfrak{g}_p, F^\times_p(K^s_p)).$$
where \(g_p := \text{Gal}(\hat{K}_p^*/K_p) \) – see [PR § 8.2] and 3) in the proof of Thm. 3.2. in [Tha] for the function field case. According to [PR Proposition 8.8] one has

\[
h_{\infty}(G) = [\psi_h(G(A)) : \psi_h(G(\hat{A}_\infty)G(K))].
\]

Denote \(G^0(\hat{A}_\infty) = G_{\infty}(\hat{K}_\infty) \times \prod_{p \neq \infty} G^0_p(\hat{O}_p) \). Define the finite set \(S := \{p \mid p \text{ ramified}\} \). If \(S = \emptyset \) then \(G^0(\hat{A}_\infty) = G^0(\hat{A}_\infty) \) (see Remark 3.2). Otherwise, by the Borel density theorem (e.g. in the guise of [CM Thm. 2.4, Prop. 2.8]) \(G(\hat{O}(1_{\infty\cup S})) \) is Zariski-dense in \(\prod_{p \in S \setminus \{\infty\}} G_p \). This implies the equality \(G(\hat{A}_\infty)G(K) = G^0(\hat{A}_\infty)G(K) \), and so

\[
h_{\infty}(G) = [\psi_h(G(A)) : \psi_h(G^0(\hat{A}_\infty)G(K))].
\]

(19)

Since \(F \) is central in \(G^{sc} \), it is embedded in \(T^{sc} \). The corresponding exact sequence of \(K \)-groups of multiplicative type

\[
1 \to F \to T^{sc} \xrightarrow{\pi} T \to 1
\]

induces by \(g \)-cohomology the exact sequences over \(K \) (see Remark 7.6):

\[
1 \to F(K) \to G^{sc}(K) \xrightarrow{\pi} G(K) \xrightarrow{\delta_K} H^1(\langle \sigma_p \rangle, F(K^s)) \to 1
\]

\[
1 \to F(K) \to T^{sc}(K) \xrightarrow{\pi} T(K) \xrightarrow{\delta_K} H^1(\langle \sigma_p \rangle, F(K^s)) \to 1
\]

showing that \(\delta_K(G(K)) = \delta_K(T(K)) \). At any \(p \), as \(G^{sc}_p \) is connected, by Lemma 7.5 and Remark 7.6 one has

\[
\text{coker}[G^{sc}_p(\hat{O}_p) : G^0_p(\hat{O}_p)] = \text{coker}[T^{sc}_p(\hat{O}_p) : T^0_p(\hat{O}_p)] = H^1(\langle \sigma_p \rangle, F_p(\hat{O}_p)),
\]

\[
\text{coker}[G^{sc}_p(\hat{K}_p) \to G_p(\hat{K}_p)] = \text{coker}[T^{sc}_p(\hat{K}_p) \to T_p(\hat{K}_p)] = H^1(\langle \sigma_p \rangle, F_p(\hat{K}_p)).
\]

Thus together with \([G_p(\hat{O}_p) : G^0_p(\hat{O}_p)] = [T_p(\hat{O}_p) : T^0_p(\hat{O}_p)] \) (see Remark 7.1), we may infer that

\[
\psi_h(G(\hat{A})) = \text{coker}[G^{sc}(\hat{A}) \to G(\hat{A})] = \text{coker}[T^{sc}(\hat{A}) \to T(\hat{A})] = \psi_h(T(\hat{A})).
\]

In particular, over \(\hat{A}_\infty \), due to Corollary 3.4 Galois cohomology yields an exact sequence

\[
1 \to F(\hat{A}_\infty) \to G^{sc}(\hat{A}_\infty) \xrightarrow{\pi} G^0(\hat{A}_\infty) \xrightarrow{\psi_h} H^1(\langle \sigma_p \rangle, F(\hat{K}_\infty^s)) \times \prod_{p \neq \infty} H^1(\langle \sigma_p \rangle, F_p(\hat{O}_p)),
\]

and similarly for the tori, showing that \(\psi_h(G^0(\hat{A}_\infty) = \psi_h(T(\hat{A}_\infty)) \). These cokernel equalities enable us to express \(h_{\infty}(G) \) as given in (19) via \(T \), namely

\[
h_{\infty}(G) = [\psi_h(T(\hat{A})) : \psi_h(T^0(\hat{A}_\infty)T(K))].
\]

(20)
Applying the Snake Lemma on its two middle rows, we get the exactness of the diagram

\[
\begin{array}{ccccccc}
1 & \rightarrow & F(A) & \rightarrow & (T^{sc})^1(A) & \rightarrow & T^1(A) & \rightarrow & \psi_A & \rightarrow & \psi_A(T^1(A)) & \rightarrow & 1 \\
1 & \rightarrow & F(A) & \rightarrow & T^{sc}(A) & \rightarrow & T(A) & \rightarrow & \psi_A & \rightarrow & \psi_A(T(A)) & \rightarrow & 1 \\
& & & \downarrow & \text{deg}_{T^{sc}} & \downarrow & \text{deg}_T & & & & & \\
0 & \rightarrow & \text{Hom}(X^*(T^{sc})^\theta, \mathbb{Z}) & \rightarrow & \text{Hom}(X^*(T)^\theta, \mathbb{Z}) & \rightarrow & \text{coker}(\pi_K^\vee) & \rightarrow & 0 \\
& & & & & & & & & & & \\
& & & \rightarrow & \text{coker}(\text{deg}_{T^{sc}}) & \rightarrow & \text{coker}(\text{deg}_T) & \rightarrow & D & \rightarrow & 0 \\
\end{array}
\]

(note that the elements in ker(π_A) are units, and so belong to $T^1(A)$) from which we see that:

\[
[\psi_A(T(A)) : \psi_A(T^1(A))] = |\text{coker}(\pi_K^\vee)|/|D|. \quad (21)
\]

Furthermore, from the following exact diagram

\[
\begin{array}{ccccccc}
1 & \rightarrow & F(A) & \rightarrow & (T^{sc})^c(A)T^{sc}(K) & \rightarrow & (T^{c})^0(A)T(K) & \rightarrow & \psi_A & \rightarrow & \psi_A((T^{c})^0(A)T(K)) & \rightarrow & 1 \\
1 & \rightarrow & F(A) & \rightarrow & (T^{sc})^1(A) & \rightarrow & T^1(A) & \rightarrow & \psi_A & \rightarrow & \psi_A(T^1(A)) & \rightarrow & 1 \\
& & & & & & & & & & & \\
1 & \rightarrow & \text{Cl}(T^{sc}) & \rightarrow & \text{Cl}(T^0) & \rightarrow & \psi_A(T^1(A))/\psi_A((T^{c})^0(A)T(K)) & \rightarrow & 1 \\
\end{array}
\]

with $(T^{c})^0(A) := \prod_p T^0_p(\hat{O}_p)$ one can see that

\[
\frac{h(T)}{h(T^{sc})} = \frac{h(T^0)/h(T^{sc})}{[T^{c}(A)T(K) : (T^{c})^0(A)T(K)]} = \frac{[\psi_A(T^1(A)) : \psi_A((T^{c})^0(A)T(K))]}{[T^{c}(A)T(K) : (T^{c})^0(A)T(K)]}. \quad (22)
\]

Using the third and second isomorphism Theorems one has

\[
T^{c}(A)T(K)/((T^{c})^0(A)T(K)) \cong T^{c}(A)T(K)/(T^{c})^0(A)T(K)/T(K) \cong T^{c}(A)T(K)/T(F_q)(T^{c})^0(A)/T^0(F_q)
\]

whence

\[
[T^{c}(A)T(K) : (T^{c})^0(A)T(K)] = \frac{\prod_p [T^0_p(\hat{O}_p) : T^0_p(\hat{O}_p)]}{[T(F_q) : T^0(F_q)]}. \quad (23)
\]

Similarly,

\[
T^0(A_\infty)T(K)/((T^{c})^0(A)T(K)) \cong T^0(A_\infty)T(K)/(T^{c})^0(A)T(K)/T(K) \cong T^0(A_\infty)/T^0(F_q)((T^{c})^0(A)/T^0(F_q) \cong T^0(A_\infty)/(T^{c})^0(A).
\]

In order to compute the cardinality of the latter ratio image under ψ, we may use cohomology again. Fix a separable closure \hat{K}_∞^s of \hat{K}_∞ containing the maximal unramified extension \hat{K}_∞^{un} of \hat{K}_∞ with absolute Galois group g_∞ and inertia subgroup $I_\infty = \text{Gal}(\hat{K}_\infty^s/\hat{K}_\infty^{un})$. The spectral sequence
then induces the exact sequence (see [Ser3 1.2.6(b)])

\[0 \to H^1(\langle \sigma_\infty \rangle, F_\infty(\hat{K}_\infty^{\text{un}})) \xrightarrow{\text{inf}} H^1(g_\infty, F_\infty(\hat{K}_\infty^{\text{a}})) \xrightarrow{\text{reg}} H^1(I_\infty, F_\infty(\hat{K}_\infty^{\text{a}}))^{\sigma_\infty} \to H^2(\langle \sigma_\infty \rangle, F_\infty(\hat{K}_\infty^{\text{un}})) = 0 \]

which shows that

\[
[\psi_A(T^0(\mathbb{A}_\infty)) : \psi_A((T^e)^0(\mathbb{A}_e))] = \frac{|H^1(g_\infty, F_\infty(\hat{K}_\infty^{\text{a}}))|}{|H^1(\langle \sigma_\infty \rangle, \mathcal{E}_\infty(\hat{G}^{\text{sh}}))|} = |H^1(I_\infty, F_\infty(\hat{K}_\infty^{\text{a}}))^{\sigma_\infty}| \overset{(\ref{25})}{=} t_\infty(G) \tag{25}
\]

All together we finally get

\[
h_\infty(G) \cdot \frac{h^{(T^{sc})}}{h(T)} \overset{(21), (22), (23)}{=} \frac{[\psi_A(T(\mathbb{A}_e)) : \psi_A((T^e)^0(\mathbb{A}_e)T(\mathbb{K}))]}{[\psi_A(T^1(\mathbb{A}_e)) : \psi_A((T^e)^0(\mathbb{A}_e)T(\mathbb{K}))]} \cdot \prod_p \left[\mathcal{I}_p(\hat{\mathcal{O}}_p) : \mathcal{I}_p^0(\hat{\mathcal{O}}_p) \right] \cdot \prod_p \left[\mathcal{I}_p(\hat{\mathcal{O}}_p) : \mathcal{I}_p^0(\hat{\mathcal{O}}_p) \right] \overset{(24)}{=} \frac{[\psi_A(T(\mathbb{A}_e)) : \psi_A((T^e)^0(\mathbb{A}_e)T(\mathbb{K}))]}{[\psi_A(T^0(\mathbb{A}_\infty)) : \psi_A((T^e)^0(\mathbb{A}_e)T(\mathbb{K}))]} \cdot \prod_p \left[\mathcal{I}_p(\hat{\mathcal{O}}_p) : \mathcal{I}_p^0(\hat{\mathcal{O}}_p) \right] \overset{(21), (25)}{=} \frac{\text{coker}(\pi_\hat{\mathcal{K}})}{|D| \cdot t_\infty(G)} \cdot \prod_p \left[\mathcal{I}_p(\hat{\mathcal{O}}_p) : \mathcal{I}_p^0(\hat{\mathcal{O}}_p) \right] = \frac{\text{coker}(\pi_\hat{\mathcal{K}})}{|D| \cdot t_\infty(G)} \cdot \prod_p \left[\mathcal{I}_p(\hat{\mathcal{O}}_p) : \mathcal{I}_p^0(\hat{\mathcal{O}}_p) \right] \]

The following proposition now is an immediate consequence of the Main Theorem, Lemma \ref{7.7}

Proposition 7.8. \(|D| = |\text{coker}(\pi_\hat{\mathcal{K}})| = 1.\)

Proof. Following [Ono3] by the proof of Theorem 6.1 in [BD] one has

\[
\tau(G) = \tau(G^{\text{sc}}) \cdot \frac{\tau(T)}{\tau(T^{\text{sc}})} \cdot |\text{coker}(\pi_\mathbb{K})|. \tag{26}
\]

Applying the functor \(\text{Hom}(\cdot, \mathbb{Z})\) on the sequence:

\[
0 \to X^*(T)^{\theta} \xrightarrow{\pi_\mathbb{K}} X^*(T^{\text{sc}})^{\theta} \to M := \text{coker}(\pi_\mathbb{K}) \to 0 \tag{27}
\]

gives rise to the exact sequence

\[
0 \to 0 = \text{Hom}(M, \mathbb{Z}) \to \text{Hom}(X^*(T^{\text{sc}})^{\theta}, \mathbb{Z}) \xrightarrow{\pi_\mathbb{K}} \text{Hom}(X^*(T)^{\theta}, \mathbb{Z}) \to \text{Ext}^1(M, \mathbb{Z}) \cong \text{Hom}(M, \mathbb{Q}/\mathbb{Z}) \to 0
\]
which shows that \(\text{coker}(\pi_K) \) is the Pontryagin dual of \(\text{coker}(\hat{\pi}_K) \). As both groups are finite, they therefore have the same cardinality. Hence from formula (26) we get

\[
\tau(G) = \tau(G^{sc}) \cdot |\text{coker}(\pi_K)| \cdot \frac{\tau(T)}{\tau(T^{sc})}
\]

\[
\text{LS} \quad \tau(G^{sc}) \cdot |\text{coker}(\pi_K)| \cdot \frac{h(T)}{h(T^{sc})} \cdot \frac{w(T^{sc})}{w(T)} \prod_p L_p(1, \chi_T) \cdot \omega_p(T_p(\hat{\mathcal{O}_p}))
\]

\[
\text{Bit} \quad \text{sc} \quad \tau(G^{sc}) \cdot |\text{coker}(\pi_K)| \cdot \frac{h(T)}{h(T^{sc})} \cdot \frac{w(T^{sc})}{w(T)} \prod_p [T_p(\hat{\mathcal{O}_p}) : T^{0}_p(\hat{\mathcal{O}_p})]
\]

\[
\text{L3} \quad \tau(G^{sc}) \cdot |\text{coker}(\pi_K)| \cdot \frac{h(T)}{h(T^{sc})} \cdot \frac{\prod_p[T_p(\hat{\mathcal{O}_p}) : T^{0}_p(\hat{\mathcal{O}_p})]}{|T(\mathbb{F}_q) : T^{0}(\mathbb{F}_q)|}
\]

\[
\tau(G^{sc}) \cdot h_\infty(G) \cdot t_\infty(G) \cdot |D| \quad \text{LL}
\]

\[
\tau(G^{sc}) \cdot \tau(G) \cdot |D|.
\]

This implies \(|D| = \frac{1}{\tau(G^{sc})} = 1 \) due to the Weil conjecture. \(\square \)

Remark 7.9. Any isogenous \(K \)-tori \(T^{sc} \) and \(T \) with \(T^{sc} \) quasi-trivial can be realized as Cartan subgroups of semisimple and quasi-split groups \(G^{sc} \) and \(G \) respectively, with \(G^{sc} \) simply connected. E.g., given the isogeny \(\pi : T^{sc} \to T \), then each factor \(R_{L/K}(G_{m}^{d}) \) in \(T^{sc} \), is a Cartan subgroup of the quasi-split and simply connected group \(G^{sc} = R_{L/K}(\text{SL}_{d+1}) \), and \(T \) is a Cartan subgroup of \(G = G^{sc}/\ker(\pi) \), cf. Examples 3.2 below. Hence we may generalize Proposition 7.8 to the statement that for any isogeny \(T^{sc} \to T \), the induced map \(\text{coker}(\deg_{T^{sc}}) \to \text{coker}(\deg_{T}) \) is surjective.

Quite naturally, our Main Theorem reproduces the following well-known facts. Recall that in this section we assume the validity of the Weil Conjecture.

Corollary 7.10. If \(G \) is \(K \)-split and \(g = 0 \) then \(h_\infty(G) = 1 \) and \(\tau(G) = t_\infty(G) = |F| \).

Proof. If \(G \) is \(K \)-split, then \(T^{sc} \) and \(T \) are \(K \)-split thus having connected reduction everywhere and \(h(T) = h(T^{sc}) \). Furthermore, \(|\text{coker}(\pi_K)| = |F| = |F_\infty| = t_\infty(G) \) whence by Lemma 7.11 \(h_\infty(G) = 1 \). Hence according to the Main Theorem 1 we get \(\tau(G) = t_\infty(G) = |F_\infty| = |F| \). \(\square \)

Remark 7.11. We have assumed in this section that the genus \(g \) of \(C \) is 0. Otherwise, if \(g > 0 \), \(h_\infty(G) \) does not need to be 1, though \(G \) splits over \(K \). For example, let \(G = \text{PGL}_n \) defined over \(K = \mathbb{F}_q(C) \) where \(C \) is an elliptic curve (\(g = 1 \)). Let \(\infty \) be a \(K \)-rational point and let \(G \) be an affine, smooth, flat, connected and of finite type model of \(G \) defined over \(\text{Spec} \mathcal{O}_{\{\infty\}} \) as been constructed above. Let \(\mathcal{G}_L \) be a similar construction for \(\text{GL}_n \) and \(\mathcal{G}_m \) for \(\mathcal{G}_m \). According to
Nisnevich exact sequence (see [Nis, 3.5.2] and also [Gon, Thm. 3.4]), since the Shafarevich-Tate group w.r.t. \(S = \{ \infty \} \) is trivial in this split case, we have:

\[
\text{Cl}_\infty(G) \cong H^1_{\text{ét}}(O_{(\infty)}, \mathcal{G}).
\]

The exact sequence of smooth \(O_{(\infty)} \)-groups

\[
1 \to \mathcal{G}_m \to \mathcal{GL}_n \to \mathcal{G} \to 1,
\]
gives rise by flat cohomology to the following exact sequence

\[
\text{Pic} \ (C_{\text{aff}}) \xrightarrow{\partial} H^1_{\text{ét}}(O_{(\infty)}, \mathcal{GL}_n) \xrightarrow{\delta} H^1_{\text{ét}}(O_{(\infty)}, \mathcal{G}) \to H^2_{\text{ét}}(O_{(\infty)}, \mathcal{G}_m)
\]
on which \(H^1_{\text{ét}}(O_{(\infty)}, \mathcal{GL}_n) \) classifies the rank \(n \) vector bundles defined over \(C_{\text{aff}} := C - \{ \infty \} \). Every rank-\(n \) vector bundle over a Dedekind domain is a direct sum \(O_{C_{\text{aff}}}^{n-1} \oplus \mathcal{L} \), where \([\mathcal{L}] \in \text{Pic} \ (C_{\text{aff}}) \) and \(O_{C_{\text{aff}}} \) is the trivial line bundle. As \(\partial : [\mathcal{L}] \mapsto n\mathcal{L} \) we have:

\[
\text{im}(\delta) \cong H^1_{\text{ét}}(O_{(\infty)}, \mathcal{GL}_n) / \ker(\delta) = H^1_{\text{ét}}(O_{(\infty)}, \mathcal{GL}_n) / \text{im}(\partial) \cong \text{Pic} \ (C_{\text{aff}})[n] := \text{Pic} \ (C_{\text{aff}})/n\text{Pic} \ (C_{\text{aff}}).
\]

Moreover, as \(C_{\text{aff}} \) is smooth, one has (see [Mil1, Prop. 2.15]): \(H^2_{\text{ét}}(O_{(\infty)}, \mathcal{G}_m) = \text{Br}(O_{(\infty)}) \), classifying Azumaya \(O_{(\infty)} \)-algebras (see [Mil1, § 2]). At each prime \(p \): \(\text{Br}(O_{(\infty)}) \subset \text{Br}((O_{(\infty)})_p) = \text{Br}(O_p) \).

Since \(O_p \) is complete, the latter group is isomorphic to \(\text{Br}(k_p) \) (see [AG, Thm. 6.5]). But \(k_p \) is a finite field thus \(\text{Br}(k_p) \) is trivial as well as \(H^2_{\text{ét}}(O_{(\infty)}, \mathcal{G}_m) \) and \(\delta \) is surjective. We get that \(h_\infty(G) = |\text{Cl}_\infty(G)| = |H^1_{\text{ét}}(O_{(\infty)}, \mathcal{G})| = |\text{Pic} \ (C_{\text{aff}})[n]|. \) In order to compute this group, as we assumed \(\infty \) is \(K \)-rational and \((\text{char}(K), |F|) = 1 \), the restrictions of \(C \) to \(C_{\text{aff}} \) and of \(\text{Pic} \ (C) \) for \(\text{Pic}^0(C) \) inducing the exact sequences

\[
0 \to \mathbb{Z} \to \text{Pic} \ (C) \to \text{Pic} \ (C_{\text{aff}}) \to 0
\]

\[
0 \to \mathbb{Z} \to \text{Pic} \ (C) \to \text{Pic}^0(C) \to 0
\]
give an isomorphism \(\text{Pic} \ (C_{\text{aff}}) \cong \text{Pic}^0(C) \cong C(\mathbb{F}_q) \). So it is easy to find an elliptic curve \(C \) for which \(h_\infty(G) = |C(\mathbb{F}_q)|/|n| > 1 \).

Applying flat cohomology on Kummer’s exact sequence of \(O_{(\infty)} \)-schemes:

\[
1 \to \mu_n \to \mathcal{G}_m \xrightarrow{x \mapsto x^n} \mathcal{G}_m
\]
gives rise to the exact sequence of groups of \(O_{(\infty)} \)-points:

\[
(O_{(\infty)})^\times \xrightarrow{x \mapsto x^n} (O_{(\infty)})^\times \to H^1_{\text{ét}}(O_{(\infty)}, \mu_n) \to \text{Pic} \ (C_{\text{aff}}) \xrightarrow{x \mapsto x^n} \text{Pic} \ (C_{\text{aff}})
\]

which in light of the proof of Lemma 5.2 can we rewritten as

\[
1 \to \mathbb{F}_q^\times/((\mathbb{F}_q^\times))^n \to H^1_{\text{ét}}(O_{(\infty)}, \mu_n) \to \text{Pic} \ (C_{\text{aff}})[n] \to 0.
\]
We deduce that $H^1_{ct}(O_{(\infty)}, \mu_n)$ is an extension of $\mathbb{F}^\times_q / (\mathbb{F}^\times_q)^n$ by $\text{Pic} (C^{\text{af}})[n]$ and so
\[
|H^1_{ct}(O_{(\infty)}, \mu_n)| = |\mathbb{F}^\times_q / (\mathbb{F}^\times_q)^n| \cdot |\text{Pic} (C^{\text{af}})[n]| = |H^1(\mathbb{F}_q, \mu_n)| \cdot |\text{Pic} (C^{\text{af}})[n]|.
\]
Consequently
\[
j_\infty(G) = \frac{|H^1_{ct}(O_{(\infty)}, \mu_n)|}{|\mu_n(\mathbb{F}_q)|} = \frac{|H^1_{ct}(O_{(\infty)}, \mu_n)|}{|H^1(\mathbb{F}_q, \mu_n)|} = |\text{Pic} (C^{\text{af}})[n]| = h_\infty(G)
\]
and finally:
\[
\tau(G) = h_\infty(G) \cdot \frac{j_\infty(G)}{j_\infty(G)} = |F| = n.
\]

Corollary 7.12. If G is adjoint (not necessarily split) and $g = 0$ then $h_\infty(G) = 1$ and $\tau(G) = \tau_\infty(G) = |\hat{F}|$, where $\hat{F} := \text{Hom}(F(K^s), \mathbb{G}_{m,K^s})$ and $g := \text{Gal}(K^s/K)$.

Proof. According to Ono’s formula (3.9.11’) in [Ono1], considering the isogeny of class groups of T^{sc} and T, there exists a finite set of primes S for which
\[
\frac{h(T)}{h(T^{\text{sc}})} = \left(\frac{q(\alpha_1)}{\prod_{p \in S} q(\alpha_{O_p})}\right) / \left(\frac{q(\alpha_S)}{q(\alpha_W)}\right)
\]
where for any isogeny α, $q(\alpha)$ stands for $|\ker(\alpha)|/|\text{ker}(\alpha)|$ and (see notation in Section 4):
\[
T_S^1(\mathbb{A}) := T^1(\mathbb{A}) \cap T_S, \ T_S(K) := T(\mathbb{A}(S)) \cap T(K),
\]
\[
\alpha_1^S := (T_S^{\text{sc}})^1(\mathbb{A}) \to T_S^1(\mathbb{A}), \ \alpha_K^S := T_S^{\text{sc}}(K) \to T_S(K), \ \alpha_W := W(T^{\text{sc}}) \to W(T).
\]
As G^{sc} is simply-connected and G is adjoint, both quasi-split, their Cartan subgroups T^{sc} and T are quasi-trivial and their integral models are connected everywhere (see Remark 2.1). In this case the quantities $q(\alpha)$ related to α^{K} and α_K^{S} are equals to the ones obtained in the split case on which the class group of each $\mathbb{G}_{m,n}$ is the class group of K (see Formulas (3.1.7) and (3.1.8) in [Ono1]), thus equal to 1. Also by Lemma 3.5 one may deduce that $q(\alpha_{O_p}) = 1$ at each p and by Lemma 7.3 (recall $g = 0$) this can be deduced also for α_W. Hence T^{sc} and T share the same class number and so by Lemma 7.7 Prop. 7.8 and our Main Theorem $\tau(G) = h_\infty(G) \cdot \tau_\infty(G) = |\text{coker}(\pi_K^{\vee})|$ (see in the proof of 7.8). But as T is quasi-trivial, $X^*(T) = \bigoplus_{i=1}^{n} \text{Ind}_1^H (H_i, \mathbb{Z})$ where H_i are some finite subgroups of \mathfrak{g}, thus by Shapiro’s lemma $H^1(\mathfrak{g}, X^*(T)) \cong \bigoplus_{i=1}^{n} H^1(H_i, \mathbb{Z}) = 0$. Consequently the exact sequence of character groups (considered as \mathfrak{g}-modules):
\[
0 \to X^*(T) \to X^*(T^{\text{sc}}) \to \hat{F} \to 0
\]
gives rise by \mathfrak{g}-cohomology to the exact sequence:
\[
0 \to X^*(T)^{\#} \xrightarrow{\tilde{\pi}_K} X^*(T^{\text{sc}})^{\#} \to \hat{F}^{\#} \to H^1(\mathfrak{g}, X^*(T)) = 0
\]
from which we can see that $\tau(G) = |\text{coker}(\tilde{\pi}_K)| = |\text{coker}(\tilde{\pi}_K)| = |\hat{F}|$. This also shows by Ono’s formula [Ono3 Main Theorem] (see Cor. 7.13 below) that $\text{III}^1(\hat{F}) = 1$. \qed
More generally, our Main Theorem leads us under this section settings: G is quasi-split and $g = 0$, to the following more general result obtained by Ono at 1965 (see Main Theorem in [Ono3]). It was designed for groups over number fields and been generalized by Behrend and Dhillon at 2009 to the function field case in [BD, Theorem 6.1].

Corollary 7.13 (Ono’s formula). One has

$$
\tau(G) = \frac{|\hat{F}^\theta|}{|\Pi^1(\hat{F})|}
$$

where the denominator is the first Shafarevitch–Tate group assigned to \hat{F}.

Proof. Applying Galois g-cohomology to the sequence of groups of characters

$$
0 \to X^*(T) \xrightarrow{\pi} X^*(T^{sc}) \to \hat{F} \to 0
$$

where $\hat{F} := \text{Hom}(F \otimes_K K^*, \mathbb{G}_{m,K^*})$ yields the relation

$$
|\text{coker}(\pi_K)| = \frac{|\hat{F}\theta|}{|H^1(g, X^*(T))|}.
$$

(28)

The following formula for the Tamagawa number of a torus is taken from [Ono2, Main Theorem], [Oes, Corollary 3.3]

$$
\tau(T) = \frac{|H^1(g, X^*(T))|}{|\Pi^1(T)|}.
$$

(29)

Together with $|\Pi^1(T)| = |\Pi^1(\hat{F})|$ ([Ono3, p. 102]) we conclude

$$
\tau(G) \overset{28}{=} \tau(G^{sc}) \cdot \tau(T) \cdot |\text{coker}(\pi_K)| \quad \overset{28}{=} \tau(G^{sc}) \cdot \tau(T) \cdot \frac{|\hat{F}\theta|}{|H^1(g, X^*(T))|} \quad \overset{29}{=} \tau(G^{sc}) \cdot \frac{|\hat{F}\theta|}{|\Pi^1(\hat{F})|}.
$$

In the following examples we refer to a construction which was demonstrated by Ono over number fields, in [Ono2, Example 6.3]. Our ground field is $K = \mathbb{F}_q(t)$ with odd characteristic and ∞ is chosen to correspond to the pole of t. At each example we consider another extension L of K. We denote $g = \text{Gal}(L/K)$. The group $G^{sc} = R_{L/K}^{\text{SL}_2}$ is the universal cover of the semisimple and quasi-split K-group $G = G^{sc}/F$ where $F := R_{L/K}^{(1)}(\mu_n) = \ker[R_{L/K}(\mu_n) \to \mu_n]$. Let S be the diagonal K-split maximal torus in G. Then $T = \text{Cent}_G(S)$ is a maximal torus of G and is isomorphic as a g-module to the K-torus $\mathbb{G}_m \times R_{L/K}^{(1)}(\mathbb{G}_m)$ where the right hand factor is the norm torus, namely the kernel of the norm map (see [San, Example 5.6])

$$
R_{L/K}^{(1)}(\mathbb{G}_m) := \ker \left[R_{L/K}(\mathbb{G}_m) \xrightarrow{N_{L/K}} \mathbb{G}_m \right].
$$
Its preimage in G^{sc} is the Weil torus $T^{sc} = R_{L/K}(G_{m,L})$, fitting into the exact sequence

$$1 \to F \to T^{sc} \xrightarrow{\pi} T \to 1.$$

Over any \hat{O}_p, the norm torus is Spec $\hat{O}_\infty[a,b]/(a^2 - pb^2 - 1)$. Its reduction provides at each place p, e_p connected components, where e_p stands for the ramification index there (see [Bil] Example 3.3]), i.e. $[\mathcal{T}_p(\hat{O}_p) : \mathcal{T}_p^0(\hat{O}_p)] = e_p$. In this construction $|\text{coker}(\hat{\pi}_K)| = 1$.

Example 7.14. We start by $L = \mathbb{F}_{q^2}(t)$ obtained by extending the field of constants of K. Since the extension is quadratic, $F_\infty = \mu_2$ is K_∞-split whence $t_\infty(G) = |\hat{F}_\infty| = |F_\infty| = 2$. Moreover, as L/K is imaginary and totally unramified we have $h(T)/h(T^{sc}) = 2$ (see [Mor] Example 1]). Thus by Lemma [7,14] $h_\infty(G) = 1$ whence according to our Main Theorem $\tau(G) = h_\infty(G) \cdot t_\infty(G) = 2$.

Example 7.15. Now let $L = K(\sqrt{d})$ where d is a product of m distinct finite primes p_i. As before, $F_\infty = \mu_2$ and $t_\infty(G) = 2$. Recall that the norm torus is the only factor in T^{sc} and T which might have a disconnected reduction. This time, since each p_i, as well as ∞, ramifies in L with $e_p = 2$ we have

$$\prod_p [\mathcal{T}_p(\hat{O}_p) : \mathcal{T}_p^0(\hat{O}_p)] = 2^{m+1}$$

while:

$$[\mathcal{T}(\mathbb{F}_q) : \mathcal{T}_0(\mathbb{F}_q)] = |\{x \in \mathbb{F}_q : x^2 = 1\}| = |\{\pm 1\}| = 2.$$

Moreover, as $h(T^{sc})/h(T) = 2^{m-1}$ (see [Mor] Example 1]) and $\text{coker}(\hat{\pi}_K) = 1$, by Lemma [7,13] we get $h_\infty(G) = 1$. Altogether, we see by the Main Theorem that $\tau(G)$ remains equal to 2, independently of m. Both this result and the one of the previous example agree with Ono’s formula [7,13] indeed, as L/K is cyclic, $\Pi^1(\hat{F}) = 1$ and $\tau(G) = |\hat{F}^\times| = |F| = 2$.

Example 7.16. Let $L = K(\Lambda_f)$ be the f-cyclotomic extension where f is an irreducible polynomial of degree d. Then \mathfrak{g} is cyclic of order $n = q^d - 1$. We still have $h(T)/h(T^{sc}) = 1$ ([Mor] Example 2]).

The only places which ramify in L are ∞ with $e_\infty = q-1$ and (f) which is totally ramified (see [Hay] Theorem 3.2)]. Therefore $[\mathcal{T}_{(\infty)}(O_{(\infty)}) : \mathcal{T}_0(\mathbb{O}_{(\infty)})] = q - 1$ and $[\mathcal{T}_{(f)}(O_{(f)}) : \mathcal{T}_0(\mathcal{O}_{(f)})] = n$. On the units group, since $q - 1 | n$ we have

$$[\mathcal{T}(\mathbb{F}_q) : \mathcal{T}_0(\mathbb{F}_q)] = |\{x \in \mathbb{F}_q : x^n = 1\}| = |\mathbb{F}_q^\times| = q - 1.$$

Moreover, $t_\infty(G) = |\hat{F}_\infty^\times| = |\mu_n| = n$ and as before $\text{coker}(\hat{\pi}_K) = 1$. So by Lemma [7,7] we get

$$h_\infty(G) = \frac{\prod_p [\mathcal{T}_p(\hat{O}_p) : \mathcal{T}_p^0(\hat{O}_p)]}{t_\infty(G) \cdot [\mathcal{T}(\mathbb{F}_q) : \mathcal{T}_0(\mathbb{F}_q)]} = \frac{(q - 1) \cdot n}{n \cdot (q - 1)} = 1.$$

Thus by our Main Theorem we conclude that $\tau(G) = t_\infty(G) = n$. Indeed, as L/K is cyclic, $\Pi^1(\hat{F}) = 1$ and $\tau(G) = |\hat{F}^\times| = |\mu_n| = n$, which agrees again with Ono’s formula [7,13].
References

[AB] P. Abramenko, K. Brown, Buildings, Springer, Berlin (2008).

[AG] M. Auslander, O. Goldman, The Brauer group of a commutative ring, Trans. AMS 97 (1960), 367–409.

[BL] H. Bass, A. Lubotzky, Tree lattices, Birkhäuser, Basel (2001).

[Beh] H. Behr, Endliche Erzeugbarkeit arithmetischer Gruppen über Funktionenkörpern, Invent. math. 7 (1969), 1–32.

[BD] K. Behrend, A. Dhillon, Connected components of moduli stacks of torsors via Tamagawa numbers.

[Bit] R. A. Bitan, The Discriminant of an Algebraic Torus, J. Number Theory 131 (2011), 1657–1671.

[BLR] S. Bosch, W. Lütkebohmert, M. Raynaud, Néron models, Springer, Berlin (1990).

[Bou] D. Bourqui, Fonction zéta des hauteurs des variétés toriques non déployées, Memoirs of the AMS, No. 994 (2011).

[BKW] K.-U. Bux, R. Köhl, S. Witzel, Higher finiteness properties of reductive arithmetic groups in positive characteristic: the rank theorem, Ann. of Math. (2) 177 (2013), no. 1, 311–366.

[BW] K.-U. Bux, K. Wortman, Connectivity properties of horospheres in Euclidean buildings and applications to finiteness properties of discrete groups, Invent. Math. 185 (2011), 395–419.

[CM] P.-E. Caprace, N. Monod, Isometry groups of non-positively curved spaces: discrete subgroups, J. Topology 2 (2009), 701–746.

[CY] C.-L. Chai, J.-K. Yu Congruences of Néron models for tori and the Artin conductor, Annals of Math., 154 (2001), 347–382.

[Clo] L. Clozel, Nombres de Tamagawa des groupes semi-simples (d’après Kottwitz), Séminaire Bourbaki, 41ème année, Exp. No. 702, Astérisque 177-178 (1989), 61–82.

[Gai] D. Gaitsgory, Contractibility of the space of rational maps, Invent. Math. 191 (2013), no. 1, 91-196.

[Gon] C. D. González-Avilés, Abelian class groups of reductive group schemes, arXiv:1108.3264v4.

[Gro] B. H. Gross, On the motive of a reductive group, Invent. Math. 130 (1997), 287–313.

[EGAIV] A. Grothendieck, J. Dieudonné, Éléments de géométrie algébrique: IV. Étude locale des schémas et des morphismes de schémas, Quatrième partie, Publications mathématiques de l’I.H.E.S. 32 (1967), 5–361.

[Har1] G. Harder, Chevalley groups over function fields and automorphic forms, Ann. of Math. 100 (1974), 249–306.

[Har2] G. Harder, Über die Galoiscohomoologie halbeinfacher algebraischer Gruppen, III, J. Reine Angew. Math. 274/275 (1975), 125–138.

[Hay] D. R. Hayes, Explicit class field theory for rational function fields, Trans. Amer. Math. Soc. 189 (1974), 77–91.

[Jar] M. Jarden, The Čebotarev density theorem for function fields: An elementary approach, Math. Ann., 261 4 (1982), 467-475.

[Kne] M. Kneser, Strong approximation, in: Algebraic groups and discontinuous subgroups (Proc. Sympos. Pure Math., Boulder 1965), American Mathematical Society, Providence, (1966), 187–196.

[Lan] S. Lang, Algebraic groups over finite fields, Amer. J. Math. 78 (1956), 555–563.

[Liu] Q. Liu, Algebraic Geometry and Arithmetic Curves, Oxford University Press (2002).

[LL] Q. Liu, D. Lorenzini, Special fibers of Néron models and wild ramification, J. Reine Angew. Math. 532 (2001), 179–222.

[Lur] J. Lurie, Tamagawa Numbers in the Function Field Case (Lecture 2), at http://www.math.harvard.edu/~lurie/283.html.

[Mar] G. Margulis, Discrete subgroups of semisimple Lie groups, Springer, Berlin (1991).

[Mil1] J. S. Milne, Étale cohomology, Princeton University Press, Princeton (1980).

[Mil2] J. S. Milne, Arithmetic Duality Theorems, Academic Press, Boston (1986).

[Mor] M. Morishita, On S-class number relations of algebraic tori in Galois extensions of global fields, Nagoya Math. J. 124 (1991), 133–144.

[NX] E. Nart, X. Xarles, Additive reduction of algebraic tori, Arch. Math. 57 (1991), 460–466.
[Nis] Y. Nisnevich, *Étale Cohomology and Arithmetic of Semisimple Groups*, PhD thesis, Harvard University, 1982.

[Oes] J. Oesterlé, *Nombres de Tamagawa et groupes unipotents en caractéristique p*, Invent. Math. 78 (1984), no. 1, 13–88.

[Ono1] T. Ono, *Arithmetic of algebraic tori*, Ann. of Math. 74 (1961), 101–139.

[Ono2] T. Ono, *On the Tamagawa number of algebraic tori*, Ann. of Math. 78 (1963), 47–73.

[Ono3] T. Ono, *On the Relative Theory of Tamagawa Numbers*, Ann. of Math. 82 (1965), 88–111.

[Pra1] G. Prasad, *Strong approximation for semi-simple groups over function fields*, Ann. of Math. 105 (1977) 553–572.

[Pra2] G. Prasad, *Volumes of S-arithmetic quotients of semi-simple groups*, Publ. Math. IHES 69 (1989), 91–114.

[Pla] V. Platonov, *The problem of strong approximation and the Kneser–Tits hypothesis for algebraic groups*, Izv. Akad. Nauk SSSR Ser. Mat. 33 (1969), 1211–1219; translated in: *Math. USSR-Izv.* 3 (1969), 1139–1148.

[PR] V. Platonov, A. Rapinchuk, *Algebraic Groups and Number Theory*, Academic Press, San Diego (1994).

[Tha] N. Q. Thangs, *A Norm Principle for class groups of reductive group schemes over Dedekind rings*, to appear in Vietnam J. Math.

[San] J.-J. Sansuc, *Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres*, J. Reine Angew. Math. 327 (1981), 12–80.

[Ser1] J.-P. Serre, *Trees*, Springer, Berlin (1980).

[Ser2] J.-P. Serre, *Algebraic groups and class fields*, Springer, Berlin (1988).

[Ser3] J.-P. Serre, *Galois cohomology*, Springer, Berlin (1997).

[Spr] T. A. Springer, *Linear algebraic groups*, second edition, Birkhäuser (1998).

[Tit] J. Tits, *Reductive groups over local fields*, in: Automorphic Forms, Representations and L-Functions, Part 1, Proc. Sympos. Pure Math. 33, Amer. Math. Soc. (1979), 29–69.

[Weil] A. Weil, *Adèles and Algebraic Groups*, Progress in Mathematics, Birkhäuser, Basel (1982).