Environmental impact of coal based power plant of Rampal on the Sundarbans (world largest mangrove forest) and surrounding areas

Abstract

The physico-chemical conditions of air, water and soil, and biological conditions of the proposed Coal based Power Plant area (Rampal), Mongla and the Sundarbans were studied from August 2011 to July 2013 to assess the possible environmental impact on the Sundarbans and surrounding areas. Environmental Impact Assessment (EIA) of physical, biological, social and economic environment of the study areas indicate that most of the impacts of coal-fired power plant are negative and irreversible (-81) which can’t be mitigated in any way. It is indicating that climate, topography, land use pattern, air and water quality, floral and faunal diversity, aquatic ecosystems, capture fisheries and tourism of the Sundarbans and the surroundings areas would be affected permanently due to proposed coal fired power plant. Increasing of water logging conditions, river erosion, noise pollution and health hazards; decreasing of ground water table; loss of culture fisheries, social forestry and major destruction of agriculture would be happened due to coal fired power plant. The benefits of proposed coal fired power plant of Rampal is very poor (S+19) than that of negative irreversible impact (-81). So the proposed area is not suitable to establish the coal based power plant as the Sundarbans and surrounding areas would be affected permanently by establishing the proposed coal power plant.

Keywords: coal, power plant, rampal, the sundarbans, environmental impact

Introduction

Coal based power plant produce electricity by burning coal in a boiler to heat water to produce steam. The steam, at tremendous pressure, flows into a turbine, which spins a generator to produce electricity. A typical 500-megawatt coal power plant creates more than 125,000 tons of ash and 192,000 tons of sludge each year which contain arsenic, mercury, chromium, and cadmium etc. and more than 75% of this waste is disposed of in unlined, unmonitored onsite landfills and surface impoundments as a result source of drinking water (ground water) is being contaminated and damage vital human organs and the nervous system. According to the studies of Billings1-3 ecosystems have been damaged sometimes severely or by the disposal of coal plant waste and heat. A coal power plant uses only 33-35% of the coal’s heat to produce electricity and rest of the heat is released into the atmosphere and absorbed by the cooling water.1 Once the 2.2 billion gallons of water have cycled through the coal-fired power plant, they are released back into the lakes, rivers, or oceans with chlorine or other toxic chemicals which water is hotter (by up to 20-25°F) than the natural water that receives it and this “thermal pollution” can decrease fertility and increase heart rates in fish.1

According to,2 burning coal is a leading cause of smog, acid rain, global warming, and air toxics. Bangladesh government has decided to establish 1320MW coal-fired power plant at the mouth of the Sundarbans under Rampal upazila of Bagerhat district beside the Poshur river. The Bangladesh government signed a joint venture agreement with India’s state-run electricity generation company (National Thermal Power Company) on 29 January 2012 to implement this project. By implementing this coal-fired power plant the Sundarbans will be affected as the sundarbans situated only 9km downstream from the project site.3 The Sundarbans- the largest single tract mangrove forest has been declared Ramsar Site and Natural World Heritage which is situated in the South-West area (21º31'-22º38’N and 89º00’-89º55’ E) of Bangladesh. It is intersected by a network of tidal canals, creeks and rivers. It is covered an area of 6000km² of which 3956km² of mangrove forest land and more than 1800km² water bodies.4 This tidal forest is very rich with natural resources especially floral and faunal diversity like 66 species of plants, more than 200 fish species, 42 mammals, 234 birds, 51 reptiles, 8 amphibians, a lot of invertebrates etc.5 More than 500 thousand peoples are directly and indirectly depending on the Sundarbans for their livelihoods as well as socio-economic purposes. Around 200 thousand people go to the Sundarbans regularly to collect the resources for their livelihoods; less than 200 thousand collect the resources seasonally and around 100 thousand people are doing business of the collected resources and they never go to the Sundarbans for directly for resources extraction; roughly 22% people’s livelihoods are involved with the collection of wood resources; 5% are involved with the non-timber forest product; 69% are involved with the aquatic resources and 4% are involved with other purposes.6,7

Government has acquired 1,834 acres of agriculture land in Satmari-Katakhali and Koigordashkathi areas under Rampal upazila to establish the power plant. Only 86 acres land are kish land and rest of the lands are public lands which were used for rice and fish cultivations by the land owners. The government has also taken an initiative for dredging 10 kilometers of the Poshur river to allow easy access of ships carrying coal for the plant.8,9 Due to an inadequate supply of local coal, the operator suggests to use imported coal. The Bangladesh government has acquired 1,834 acres of agriculture land in Satmari-Katakhali and Koigordashkathi areas under Rampal upazila to establish the power plant.
government has decided to bring coal inside the Sundarbans through the Mongla sea port. Indian National Thermal Power Company and Bangladesh Power Development Board are the two signatories of the project. The proposed power plant will burn around 4.75 million tonnes of coal annually when more or less 0.71 million tonnes ashes and around 0.5 million tonnes sludge and liquid waste may be produced (CEGIS 2013). It would also emit a good amount of carbon dioxide (CO₂), a key factor for global warming - some other toxic gases and airborne particles, according to Union of Concerned Scientists, a USA-based group.³² Discussed on the types and levels of pollution of coal-fired power plant. The ground water and water of the Poshur river may be polluted by the huge amount of waste produced due to burning of the coal. Whereas the existence of strict laws to protect the environment and the wildlife, the government has recently decided to declare a part of the Poshur and Andhmarik rivers sanctuaries for dolphins (Sankar 2012). Due to the Ecologically Critical Area (ECA) rules no power plant should be set up within 12km of the Sundarbans buffer zone.¹² The proposed project is 4km away from the buffer zone of the Sundarbans. According to Ministry of Environment and Forests (2010) of India, any thermal power plant can’t be established within 25km from any natural forest or wild life habitats. But no such data or information on the possible environmental impact of proposed coal based power plant on the Sundarbans and Rampal areas are available. Under the circumstances, it has become imperative to institute an investigation on the estimation of coal-fired power plant hazards and their impacts on the floral and faunal communities of the Sundarbans and surroundings of the project area. The present study deals on the possible impact of coal-fired power plant of Rampal on the ecological and biological conditions of the Sundarbans and surroundings areas of the power plant. The findings of the study will help scientifically to assess the suitability of the coal based power plant in the proposed site.

Materials and methods

The research was studied from August 2011 to July 2013 in 10 permanent stations of each study area (Rampal, Mongla and the Sundarbans). Monthly sampling was carried out and air, water, soil and biological samples were studied in the field and laboratory. Secondary data were collected from published documents and different government offices. All data were analyzed and potential environmental impacts were indentified and calculated by using standard tools and methodologies.¹⁴ The samples of the river Poshur and Maidara were collected by using a country boat. Water samples were collected from 10-25cm depth by using a scale²² for physico-chemical analysis. A standard Secchi disc was used to measure the transparency of water while for water temperature a digital thermometer was used (Model No. 950). In situ measurements of total dissolved solids (TDS), conductivity, salinity, pH, and dissolved oxygen (DO) were carried out with the help of respective portable field meters. Titrimetric methods were used to determine free CO₃-, CO₂, and HCO₃ alkalinity (Welch 1948). BOD₅, COD, NO₃-N and other chemical parameters were measured following APHA (1989). Total hardness, calcium and magnesium were estimated following.¹⁶ Phosphate and silicate were measured following.¹⁷ Air and Noise Pollution have been measured by using instruments with the help of Environmental Science Discipline, Khulna University, Khulna. Emission rate of Suspended Particle Matter (SMP), SO₂ and NOₓ were measured by using High volume sampler (Envirotech APM-415). Noise pollution was measured using Sound Level Meter (Lutorn, SL-4010). The sound level meter consists of microphone that converts the pattern of sound pressure fluctuations into an electrical voltage, amplifier and a voltmeter that is normally calibrated to read the decibel (dB). Shovels and large ladders were used to collect the soil samples according to.²⁸ Soil quality was determined in the laboratory by following.¹⁹,²⁰ The populations of aquatic and terrestrial plants in field were measured by following quadrant method (Ambasht 1974). Standard observations and monitoring methods²¹ (Foot/Pug marks per quadrant area/a standard area curve) were followed for different faunal study. Latitude and longitude were measured by using a hand GPS meter (model GARMIN GPSMAP® 78s). Statistical analysis among the different parameters was done by following.²²

Environmental impact assessment (EIA)

Most of the development projects produce impacts on or changes in the state of natural environment. Of which some are positive and some are negative. Similarly, some positive and negative impacts have been identified for the Coal based Power Plant Project. The DOE (1997) guidelines for industries, ADB (2003) environmental assessment guidelines for initial environmental evaluation (IEE) and FPCO (1992) EIA guidelines were followed during impact assessment. Screening and scoping were used to determine the environmental issues and impacts for Coal fired Power Plant Project and identified as IECs. These issues and impacts had been evaluated in terms of distribution, quantity, quality, seasonality, ecological and socio-economic importance.

The sources of information for the scoping process were

i. Field visits and environmental survey;

ii. Collected data from KDA, Khulna University, DPHE, BWDB, Meteorological Department, Bangladesh Atomic Energy Center, Upazilas, Upas, NGOs etc.

iii. Meeting with chairmen, members, local people, govt. officials, teachers, social workers.

Selection of important environmental components (IECs)

Through the screening and scoping process (ADB 2003), the IECs relevant to environmental study of the proposed coal fired power plant project had been identified and presented in vertical column of Table 15. The IECs are climate, topography, land use, flood, river erosion, drainage congestion, surface water pollution, groundwater table depletion, groundwater pollution, loss of wetlands, air pollution, noise pollution, loss of habitats and biodiversity, loss of capture fisheries and agriculture, human population, literacy, status of women, water supply, sanitation, electricity and telephone facilities, health services, human diseases, solid waste, urbanization, industrialization, employment, business opportunity, housing, transportation, markets and bazaars, traffic congestion, fire hazard and tourism.

Impact assessment matrix

The impact assessment matrix is presented in Table 15 identified the potential impacts of coal based power plant of Rampal. The assessment matrix was done in consultation with multi-disciplinary team members. When an impact could not be quantified, qualitative judgment was used based on professional experience. The scoring was done within a 21 point score scale ranging from −1 to −10 for negative impacts and +1 to +10 for positive impacts while “0” was used for no impact (neutral impact) (Pastakia and Jensen 1998).
Results and discussion

The physico-chemical conditions of air, water and soil of the proposed coal fired area (Rampal), Mongla and Sundarbans were studied and data are presented in Tables 1-6. The biological components of the study area had also been studied (Tables 7-14) which are presented in the following pages. Wind direction for the last ten years of the study areas was north to south or north-west to south-east facing from the month of November to February in every year. In the study areas monthly average air temperature varied from 13.5 to 35°C; relative humidity and rainfall varied from 65 to 86% and 7 to 320mm; SPM, NOx and SOx varied from 145 to 312mg/m³, 12 to 109µg/m³ and 9 to 61µg/m³ respectively. Surface water temperature, TDS, conductivity, salinity, pH, DO, BOD, COD, total hardness and PO4 varied from 22 to 35.5°C, 3 to 23g/l, 4 to 16.6ms/cm, 2 to 22ppt, 7.1 to 8.9, 6.1 to 8.1mg/l, 1.3 to 2.4mg/l, 3.5 to 9.1mg/l, 560 to 1150mg/l, 120 to 58 and 53 to 2.55mg/l respectively. Ground water arsenic varied from 0.01 to 0.21mg/l. Soil pH, Sulphur and Iron were recorded from 7.3 to 8.1, 44.5 to 1031 micro-gram/g soil and 16 to 108 micro-gra姆/g soil respectively. During the period of study total 24 herbs, grasses and shrubs were recorded and among them 8 were rare in the project area and 2 were also rare outside of the project area. A total 47 natural woody plants and fruit trees were recorded and among them 5 were in extinct condition, 15 natural woody and fruit trees, and 8 natural woody and fruit trees were recorded as rare in the project and outside the project area respectively. Out of 36 medicinal plants and non-fruit trees 8 species were in extinct condition and 20 were recorded as rare in the project area; 14 medicinal plants and non-fruit trees were also recorded as rare outside of the project area. 6 aquatic macrophytes were recorded as rare out of 14 species. A total 59 species of shrimp, crab, mollusks and fishes were recorded but 18 fishes were extinct and 10 fishes were rare in the project area. 7 species of shrimp, crab and mollusks were also rare in the project area. During the period of study only 3 amphibians were recorded in the project area but 2 were rare. 11 reptiles were recorded in the project area but 2 were extinct and 4 were rare species. In the period of study 24 terrestrial and 10 wetlands birds were recorded but among them 7 rare and 3 extinct terrestrial birds, and 6 extinct and 2 rare wetlands birds were recorded. Only 11 mammals were recorded during the period of study but most of them were extinct in the project area and those were also threatened outside of the project area.

On the basis of present conditions of the study areas like physico-chemical conditions of air, water and soil; meteorological data (Tables 1-6) and, floral and faunal status (Tables 7-14) it can be concluded that inside and outside of the project area such as Rampal, Mongla and the adjacent Sundarbans are free from different types of pollution except salinity intrusion. More or less similar observations were also made by22-25 recorded dolphins, crocodile, Masked fin-foot, migratory birds, wild boar, deer, snakes, fishes, different mammals etc. inside the Sundarbans, in and around the rivers and their connected canals and creeks of the Sundarbans. Floral and faunal statuses (Table 7-14) are indicating that some plants and animals are already in extinct conditions and some are in rare conditions due to natural climatic hazards. Due to pollution of the coal fired power plant rest of the floral and faunal diversity will be destroyed by changing air, water and soil quality of the study areas. According to EIA study of CEGIS (2013) the proposed coal based power plant will discharge 51830 Metric Tons (MT) Sulfur di-oxide (SO2) yearly and 17277 MT SO2 during dry season (16 November to 15 March) if power plant burn less sulfur content (<0.6%) coal; emission of Nitrogen di-oxide (NOx) will be 31025 MT yearly and 10342 MT during dry season; 71750 MT ash will produce yearly and 237250 MT will produce during dry seasons; yearly 2783184060 gallons and during dry season 7927728020 gallons water will intake by this power plant from the Pashur river; yearly 10397020354 gallons water will be consumed and 13386163706 gallons cooling/ waste water will be discharged to the Pashur river directly or indirectly and ultimately polluted water flows to the Sundarbans as the Pashur meets the sea by flowing inside the Sundarbans. CEGIS (2013) also mentioned that after starting the Rampal coal based power plant the SO2 level will be reached 50.4-53.4ig/m³ and NOx level will be reached 47.2-51.2ig/m³ inside the Sundarbans if use best quality coal; whereas present SO2 level is 8-11ig/m³ and NOx level is 16-20ig/m³ inside the Sundarbans. Last ten years wind flows directions (Table 1) and CEGIS (2013) produced wind flows diagram indicate that during dry season (from 16 November to 15 March) the Sundarbans will receive directly SO2, NOx and other gases from the power plant. As a result floral and faunal diversity of the Sundarbans will be affected gradually day by day and endangered species will be injured seriously in aquatic and forest floors as during dry season there is no possibility of dilute of gases by rainfall. Dispersion models of different gases of CEGIS (2013) indicate that SO2, NOx and other gases will flow up to 35km inside the Sundarbans during dry season in every year. Surrounding agricultural (rice, shrimp etc.) lands and wetlands (the river Pashur, Maida and other tidal canals) of the coal power plants will be affected by the leaching of toxic substances from deposited coal burned ashes; the ashes contain many heavy metals including arsenic, lead, mercury, nickel, vanadium, beryllium, barium, cadmium, chromium, selenium and radium, which are dangerous if released into environment (CEGIS 2013). These heavy metals can change the soil and water quality of the Sundarbans by mixing runoff rain water during rainy reason.32 described on the emission level of different toxic gases and heavy metals of coal fired power plant. Human health hazards and possible impact on the Sundarbans due to coal-fired power plant have also been discussed by.1 The wind flow is indicating that the total study area i.e. Rampal, Mongla and the Sundarbans will be affected by the toxic gases and ashes of the coal based power plant in different seasons. Especially the Sundarbans will be affected during pick tourism period in the month of December to February. It is a matter to be concerned when the Sundarbans reserve forest is already facing threats from natural calamity, deforestation, rise in salinity and extinction of many species mainly due to human unawareness, ignorance and lack of implementation of laws, poaching and illegal wildlife trade.24,25 Study of34-36 on the impacts of oil spill on the Sundarbans indicates that sink of coal loaded ship created some problems for the biodiversity and ecological conditions of the Sundarbans.

Environmental Impact Assessment (EIA)31-35 of physical, biological, social and economic environment of the Sundarbans and the surrounding areas indicate that most of the impacts of coal-fired power plant are negative and irreversible (~81) which can’t be mitigated in any way. It is indicating that climate, topography, land use pattern, air and water (surface and ground both) quality, floral and faunal diversity, aquatic ecosystems, capture fisheries and tourism of the Sundarbans and the surrounding areas will be affected permanently due to proposed coal fired power plant. Increasing of water logging conditions, river erosion, noise pollution and health hazards; decreasing of ground water table; loss of culture fisheries, social forestry and health hazards, and major destruction of agriculture will be happened due to coal fired power plant. These

Citation: Chowdhury AH. Environmental impact of coal based power plant of Rampal on the Sundarbans (world largest mangrove forest) and surrounding areas. MOJ Eco Environ Sci. 2017;2(3):85–98. DOI: 10.15406/mojes.2017.02.00022
problems may be reversible after long mitigation process except agriculture. But all reversible mitigations are negative (total no. is -87). Mitigation of agricultural loss will be very difficult and many people will become land less. Urbanization, development of markets/bazaars, transportation and industrialization will be developed which may be sustainable but mitigation must be ensured. The total no. of sustainable mitigation is only +14 which indicate that the study area is not suitable for industrialization and urbanization (Table 15). By establishing the coal fired power plant only electrification in the rural area, and very few job and localized business facilities will be increased. The benefits/facilities of proposed coal fired power plant of Rampal is very poor (S+19) than that of negative irreversible impact (-81). So environmentally, physically, socially and economically the selected area is not suitable to establish any type of coal based power plant. On the basis of IECs and EIA, coal based power plant will be act as “to add insult to injure” in the project area as well as on the Sundarbans, Rampal and Mongla areas. A long term research and intensive monitoring must be done to find out the detail information on the long term impact of coal based power plant on the biodiversity and ecological conditions of the Sundarbans before introducing the coal based power plant in Rampal. Otherwise the fragile ecosystem of the Sundarbans including its buffer zone could be threatened by the pollutants of the coal based power plant of Rampal.

Table 1 Monthly prevailing winds speed in knots and direction of the study areas from 2003-2012

Year	Jan	Feb	Mar	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec												
2003	3.4	N	2.9	NW	3.8	NW	4.7	S	5.2	4.8	4.0	3.8	3.4	S	3.0	2.6	N	2.3	NW					
2004	3.3	NW	3.3	NW	3.4	S	4.9	S	4.8	3.3	3.3	3.3	3.3	S	3.3	3.3	4.1	SE	3.6	E	2.1	NW	2.5	NW
2005	2.9	NW	3.0	N	4.0	S	4.6	S	4.1	3.9	3.6	3.5	3.0	S	2.4	3.0	2.4	NW	2.1	NW	2.3	NW		
2006	2.8	NW	2.8	N	3.0	S	4.6	S	4.1	3.9	3.6	3.5	3.0	2.6	2.4	2.1	2.9	2.3	2.3	2.3	2.3	N		
2007	2.7	N	3.0	S	3.9	3.9	4.4	S	3.2	3.0	2.6	2.7	2.5	2.7	2.4	2.4	2.3	N	2.3	N				
2008	3.1	N	3.3	NW	3.6	S	4.0	S	4.8	4.1	3.5	3.5	3.0	3.2	3.0	3.2	3.0	3.4	3.2	N	2.9	N		
2009	3.6	N	2.9	S	3.9	3.9	4.0	S	3.2	3.3	3.0	3.0	3.2	3.4	3.0	3.4	3.0	3.4	3.0	3.2	N			
2010	2.8	N	2.7	S	2.8	2.9	3.2	3.1	3.3	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3		
2011	2.6	N	2.6	S	2.1	SW	2.8	S	2.9	3.9	3.0	2.9	3.9	3.0	2.9	3.2	3.4	2.8	2.8	2.5	N			
2012	2.8	N	3.4	S	3.4	3.5	3.0	3.3	3.1	3.1	3.2	3.0	3.4	3.0	3.5	2.4	2.5	N	2.3	N				

Source: Bangladesh meteorological department, 2013

Table 2 Climatic conditions of the study areas (10 years average)

Parameters	Month											
	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
Temp. Avg. Max. (°C)	25.1	30	32.6	34.9	35	34.9	32.8	32.7	31.9	31.9	29.8	26.4
Temp. Avg. Min. (°C)	13.5	17.3	22.1	25.2	25.9	27.3	27.1	25.6	23.8	23.8	18.5	14.5
Temp. Mean (°C)	17.2	20.4	25.2	29.3	29.8	29.8	29.4	28.9	27.4	23.7	19.2	
Relative Humidity Mean (%)	69	65	72	76	79	86	83	81	79	77	72	70
Rainfall Mean (mm)	7	10	148	47	215	103	314	246	320	110	18	9
Sunshine Hour (hr)	6.9	8	8.3	8.3	7.2	5.5	4.5	4.8	5.3	7.2	7.9	7.6
Wind Speed Avg. (Nautical miles/hr)	7.6	10.7	9.7	13	14.2	12.7	12.5	9.6	11.6	7.9	7	6.7

Source: Khulna meteorological office, 2013

Table 3 Air quality of study areas

Study location	SPM (mg/m³)	NOₓ (µg/m³)	SOₓ (µg/m³)			
	Working day	Holiday	Working day	Holiday	Working day	Holiday
Rampal area	172-292	53-85	72	37-52	45	
Mongla area	183-312	65-109	98	45-61	52	
Sundarbans area	145-179	21-Dec	-	15-Sep	-	
EQS- Bangladesh	400	80	80			

Source: Field study, 2011-2013

Citation: Chowdhury AH. Environmental impact of coal based power plant of Rampal on the Sundarbans (world largest mangrove forest) and surrounding areas. MOJ Eco Environ Sci. 2017;2(3):85–98. DOI: 10.15406/mojes.2017.02.00022
Table 4 Physico-chemical conditions of water of the study areas

Parameter	Rampal	Mean value	Mongla	Mean value	Sundarbans	Mean value
Range	Range	Range	Range	Range	Range	
	°C	°C	°C	cm	g/l	mg/l
Air temp.	24-37.5	30.6±0.8	24-38.5	30.7±1.1	24-38.5	30.8±1.1
Water temp.	22-35.5	28±0.6	22.5-35.5	28.3±0.4	22.5-35.5	28.5±0.7
Transparency	19-37	25±2	18-33	21±3	17-32	20±2
TDS	3-20 g/l	10±1 g/l	8.2-23 g/l	16±5 g/l	10-23 g/l	17±6 g/l
Conductivity	4-16.5	9.95±0.42	7.78-14.1	11.44±0.93	9.91-15.6	12.26±0.49
Salinity	19-Feb	12±3	21-Aug	14±4	22-Aug	15±5
pH	7.1-8.7	7.4±0.3	7.3-8.9	7.5±0.7	7.5-8.9	7.7±0.7
DO	6.1-7.5	6.4±0.2	6.3-8.1	6.5±0.6	6.3-7.9	6.5±0.4
BOD₃	1.3-2.3	1.4±0.5	1.7-2.4	1.6±0.5	1.3-2.4	1.4±0.6
COD	7.5-8	7.7±0.4	8.6-9.1	8.9±0.4	3.5±4.02	3.8±0.4
CO₂	0-6	2.5±3.5	-	-	-	-
CO₂ alk.	16-Jun	11±7	14-30	22±11	9-Jun	8±2
HCO₃ alk.	100-148	133±22	99-128	110±15	61-77	69±11
Total Hard	660-1022	710±25	910-1190	955±34	920-1210	990±103
Ca²⁺	476-641	511±33	519-683	566±66	535-716	615±22
Mg²⁺	377-385	378±6	330-412	371±58	413-460	437±33
PO₄	1.53-1.87	1.63±0.19	1.65-1.78	1.71±0.12	1.76-2.55	1.82±0.11
Silicate	4.96-6.93	5.74±0.26	5.78-6.99	5.95±0.27	6.01-7.12	6.26±0.24
NO₃-N	2.51-3.93	3.18±0.53	2.49-3.73	2.86±0.53	2.33-3.51	2.75±0.47

- = Not detected

Table 5 Physico-chemical conditions of groundwater of the study areas

Parameter	Units	Value	Rampal	Mean value	Mongla	Mean value	Sundarbans	Mean value
Depth	m	60-125	75-140	75-140				
pH	-	7.5-7.9	7.4-8.1	7.5-8.2				
TDS	mg/l	454-1660	617-2584	635-2610				
E. Conductivity	µs/cm	908-3270	1170-3654	1126-3709				
Salinity	ppt	00-13	16-May	16-May				
Arsenic	mg/l	0.01-0.21	0.01-0.17	0.01-0.12				
Total Iron	mg/l	0.16-2.89	0.34-3.24	0.18-3.29				
HCO₃	mg/l	315-651	244-632	229-645				
Ca⁺	mg/l	39-122	37-151	29-154				
Mg⁺	mg/l	15-63	22-82	23-89				
Na⁺	mg/l	135-514	154-642	164-657				
Uranium	Ppb	4.46-11.58	-	-				

Source: Field study 2011-2013.

Citation: Chowdhury AH. Environmental impact of coal based power plant of Rampal on the Sundarbans (world largest mangrove forest) and surrounding areas. MOJ Eco Environ Sci. 2017;2(3):85-98. DOI: 10.15406/mojes.2017.02.00022
Table 6 Chemical properties of the soils of the study areas

Type of soil associations	Study area	pH	Salinity ppt	Org. Mat %	N %	P micro-gram/g soil	S micro-gram/g soil	Zn mg/100g soil	Br mg/100g soil	K mg/100g soil	Ca mg/100g soil	Mg micro-gram/g soil	Cu micro-gram/g soil	Fe micro-gram/g soil	Mn micro-gram/g soil
	Rampal	7.3-8.1	2.3-7.8	1.7-2.7	0.07-0.15	Sep-60	170-476	1.6-3.3	0.76-0.85	8.3-3	1-6.33	4.7-9.3	21-108	12-46.6	
	Mongla	7.3-8.1	5-8.5	1.63-2.23	0.07-0.11	4.2-8.2	280-1031	0.4-0.6	0.53-1.55	1.24	11-21.5	5.05-9.75	2.8-6.2	16-22.2	
	Sundarbans	7.6-8.1	3.0-19	1.37-2.8	0.07-0.15	4.1-7.5	44.5-387.3	0.56-0.99	0.56-2.54	1.16	3-34.5	5-12.5	3.91-7.67	20.5-72	10.6-35

Source: Field study 2011-2013

Table 7 Herbs, grasses and shrubs of the study areas (except the Sundarbans)

Local name	Scientific name	Status
Assamlata/Baraty	Eupatorium odoratum	Vc C
Bish-katali	Polygonum hydropiper	C R
Badaca	Andropogon aciculatus	C F
Banna danga shak	Amaranthus viridis	F F
Bilai achra	Mucuna pruriens	F F
Dubba ghas	Cynodon dactylon	Vc C
Fenkachu/Mankachu	Alocasia indica	F R
Fanimonasha	Euphorbia nerifolia	R R
Gimashak	Gliricidia sepium	C R
Kukurmuta	Blumea lacera	C F
Khurarakata/Kata danga	Amaranthus spinosus	F F
Kachu	Colocasia esculenta	Vc C
Kashjar	Saccharum spontaneum	F R
Lajjahati	Mimosa pudica	R R
Marich (Banna)	Croton bonplandianum	C F
Shealmotra	Vernonia patula	F F
Telakucha	Coccinea cordifolia	C F
Shrubs		
Varanda/Venna	Ricinus communis	F R
Bhat	Clerodendrum viscosum	C F
Bet	Calamus sp.	F E
Dhaincha/Dhanchi	Sesbania cannabina	F R
Gagra	Xanthium strumarium	C F
Chikhi	Phyllanthus reticulatus	C F
Titabegun	Solanum torvum	F F

Status: VC, very common; C, common; F, fairly common; R, rare; E, endangered; T, threatened; Et, extinct (Source: Field study 2011-2013).

Citation: Chowdhury AH. Environmental impact of coal based power plant of Rampal on the Sundarbans (world largest mangrove forest) and surrounding areas. MOJ Eco Environ Sci. 2017;2(3):85–98. DOI: 10.15406/mojees.2017.02.00022
Table 8 Natural woody plants and fruit trees of the study areas (except the Sundarbans)

Local name	Scientific name	Status	Outside the project area	Project area
Natural woody plants				
Bannay	Crataeva religiosa	R	Et	Et
Debdaru	Polyalthia longifolia	R	R	
Jobb dumur	Ficus racemosa	F	R	R
Kharajura	Litsea monopetala	F	R	
Kadam	Anthocephalus chinensis	F	R	
Gab	Diospyros peregrine	F	Et	
Gudu/Pitadong/Medda	Trevia nudiflora	F	F	
Khoksha/dumur	Ficus sp.	C	F	
Kharchuna/Teet gila	Deris indica	R	R	
Chattin/Chaitan	Abltonia scholaris	R	R	
Shaora	Strebus asper	F	R	
Titijam	Eugenia sp.	F	Et	
Ika	Alangium salvifolium	F	Et	
Pitraj	Amoora rohituka	C	F	
Jarul	Lagerstroemia speciosa	F	R	
Hijal	Barringtonia acutangula	E	Et	
Harhari/Shola	Trema orientalis	F	F	
Nim	Azadirachta indica	F	R	
Shimul	Salmuia malabarica	F	R	
Fruit trees				
Aam	Mangifera indica	Vc	C	
Amloki	Phyllanthus emblica	R	R	
Amrah	Spondias pinnata	F	F	
Ata (Sharpha)	Annona squamosa	F	F	
Ata (Nuna)	Annona reticulata	F	F	
Bel	Aegle marmelos	F	F	
Boroi/Kul	Ziziphus fujuba	C	F	
Chalta	Dillenia indica	R	R	
Dalim	Punica granatum	F	F	
Deophal	Artocarpus lacucha	R	E	
Jam	Syzygium cuminii	C	F	
Jambura	Citrus grandis	F	R	
Jamrul	Eugenia javanica	F	F	
Kala	Musa spp.	C	F	
Kamranga	Averrhoa carambola	F	F	
Karamcha	Carissa carandas	R	R	
Kadbel	Foronia elephantum	C	C	
Kanthal	Artocarpus heterophyllus	C	F	
Khejur	Phoenix sylvestris	C	F	
Lebu	Citrus spp.	C	C	
Narikel	Cocos nucifera	C	C	
Pepe	Carica papaya	C	F	
Peyara	Psidium guajava	C	C	
Sajina	Moringa oleifera	C	F	
Supari	Areca catechu	C	C	
Safeda	Achrus zapota	C	C	
Tal	Borassus flabellifer	C	F	
Tetul	Tamarindus indica	F	R	

Status: VC, very common; C, common; F, fairly common; R, rare; E, endangered; T, threatened; Et, extinct (Source: Field study 2011-2013)
Table 9: Wild medicinal plants and non-fruit trees of the study areas (except the Sundarbans)

Local Name	Scientific Name	Status Outside the project area	Status Project area
Wild medicinal plants			
Akanda	Calotropis procera Br.	R	Et
Anantamul	Hemidesmus indicus L.	R	Et
Apang/Shisakanda	Achyranthes aspera L.	C	R
Bandhonia/Chinigura	Scoparia dulcis L.	C	F
Basak	Adhatoda vasica Nees.	R	R
Chui Jhal	Piper chaba Hunter	F	R
Dhatura	Datura metel Linn.	F	R
Durba ghas	Cynodon dactylon Pers	C	C
Ghritakumari	Aloe indica Willd.	R	R
Hatisur	Heliotropium indicum L.	C	F
Kalokasunda.	Cassia occidentalis L.	C	R
Kalokeshi	Eclipta alba (Hassk).	F	R
Kalomegh	Andrographis paniculata	R	Et
Kamarilata.	Smilax zeylanica L.	F	R
Lajjaba (white)	Mimosa pudica Linn.	R	Et
Mehedi.	Lavsonia inermis L.	F	R
Nayantara.	Catharanthus roseus.	F	F
Nisinda	Vitex negundo L.	F	R
Olotkombol	Abrroma augusta L.	F	R
Pahor kuchi	Kalanchoe pinnata (Lam.)	C	F
Pipul	Piper longum Linn.	R	Et
Pudina	Mentha arvensis L.	F	R
Shapagandha.	Rauwolfia serpentina	R	Et
Shoti	Curcuma zedoaria Rosc.	R	Et
Shotomuli	Asparagus racemosus L.	R	Et
Telakucha	Coccina cordifolia (L)	C	R
Thankuni	Centella asiatica (L) Urban.	C	R
Tulshi	Ocimum basilicum Linn.	C	F
Non-fruit trees			
Arjun	Terminalia arjuna	R	F
Asawatha	Ficus religiosa	R	R
Bansh	Bambusa spp.	C	R
Bot	Ficus benghalensis	R	R
Jilapi	Acacia sp.	F	R
Krishnachura	Delonix regia	R	F
Mandar	Erythrina variegata	F	R
Zigha	Lannea coromandelica	C	R

Status: VC, very common; C, common; F, fairly common; R, rare; E, endangered; T, threatened; Et, extinct (Source: Field study 2011-2013).
Table 10 Social forest plants and aquatic plants of the study area (except the Sundarbans)

Local Name	Scientific Name	Status	Outside the project area	Project area
Social forest plants				
Akashmoni	Acacia moniliformis	F	F	
Rendi koroi	Samanea saman	C	C	
Shil koroi	Albizia sp.	F	R	
Mahogany	Swietenia mahagoni	C	C	
Piya	Melia semprevirens	F	R	
Eucalyptus	Eucalyptus citriodora	F	F	
Shegun	Tectona grandis	R	R	
Shishu	Dalbergia shishu	C	C	
Babla	Acacia arabica	C	F	
Ipil ipil	Leucaena latifolia	C	F	
Aquatic plants				
Azola	Azolla pinnata	R	R	
Buripana	Spirodela polyrhiza	C	C	
Chaicha	Scirpus articulatus	C	C	
Dhol kalni	Ipomoea fistulosa	F	F	
Helenchu	Alternanthera philoxeroides	C	F	
Jhanji	Utricularia aurea	R	R	
Kachuri pana	Eichhornia crassipes	C	F	
Kalmi	Ipomoea aquatica	F	R	
Kesordam	Ludwigia adscendens	C	F	
Khudipana	Lemna minor	C	C	
Malanchi	Enhydra fluctuans	F	R	
Shapla	Nymphaea stellata	F	R	
Shusni shak	Marsilea quadrifolia	C	F	
Topapana	Pistia stratiotes	F	R	

Status: VC, very common; C, common; F, fairly common; R, rare; E, endangered; T, threatened; Et, extinct. (Source: Field study 2011-2013).

Table 11 Shrimp, crab, mussels and fishes of the study areas (except the Sundarbans)

Bangla Name	Scientific name	Habitat	Status	Outside the project area	Project area
Shrimp, crab and mussels					
Golda chingri	Macrobrachium rosenbergii	RB	C	R	
Bagda chingri	Penaeus monodon	RB	C	R	
Harina chingri	Metapenaeus monoceros	RB	C	R	
Guara-chingri	Palaemon spp.	RBP	C	F	
Boro- kakara	Scylla serrata	RBP	F	R	
Choto-kakra	Gelasimus annulipes	RBP	C	F	
Boro- shamuk	Pila globosa	BP	F	R	
Guli- shamuk	Vivipara bengalensis	BP	C	F	
Choto- shamuk	Lymnaea spp.	BP	C	F	
Choto- shamuk	Bithynia tentaculata	RBP	C	F	
Lamba- shamuk	Melania tuberculata	RB	F	R	
Zinuk	Lamellideus marginalis	RBP	F	R	

Citation: Chowdhury AH. Environmental impact of coal based power plant of Rampal on the Sundarbans (world largest mangrove forest) and surrounding areas. MOJ Eco Environ Sci. 2017;2(3):85–98. DOI: 10.15406/mojes.2017.02.00022
Bangla Name	Scientific name	Habitat	Status
Fishes			
Kakila	Xenentodon cancila	RBP	C
Shol	Channa striatus	RB	C
Taki	Channa punctatia	RB	C
Gazar	Channa marulius	RB	R
Darkina	Esomus danicus	RB	C
Chela	Onygotaster phulo	RB	F
Mola	Amblypharyngodon mola	RB	F
Rui	Labeo rohita	RBP	F
Catla	Catla catla	RBP	C
Mrigal	Cirrhinus mirigala	RBP	C
Tatkini	Cirrhinus reha	RB	F
Silver carp	Hypophthalmichthys molitrix	RBP	C
Grass carp	Ctenopharyngodon idella	RBP	F
Carp	Cyprinus carpio	RBP	E
Tit punti	Puntius ticto	RBP	F
Punti	Puntius stigmad	RB	C
Thai punti	Puntius gonionotus	RBP	F
Gutum	Lepidocephalus guntea	RB	F
Shingi	Heteropeastes fossilis	RB	C
Magur	Clarias batrachus	RB	R
Baol	Wallago attu	RB	C
Kani pabda	Ompok bimaculatus	RB	R
Pangas	Pangasius pangasius	RBP	C
Rita	Rita rita	RB	F
Ayre	Mystus aor	RB	C
Tengra	Mystus vitatus	RB	C
Chitol	Notopterus chitala	RB	R
Foli	Notopterus notopterus	RB	F
Chapila	Gudasia chapra	RB	C
Baim	Mastacembelus armatus	RB	C
Baim	Mastacembelus panaclus	RB	C
Baim	Macrognathus aculeatus	RB	R
Khalisha	Colisa fasciatus	RB	C
Chata/Beichn	Colisa lalius	RB	F
Koi	Anabas testudineus	RB	F
Telapia	Oreochromis niloticus	RBP	C
Baila	Glossogobius giurus	RB	C
Baro chanda	Chanda nama	RB	R
Choto chanda	Chanda ranga	RB	F
Khorshula	Rhinomugil corsula	RB	F
Vetki	Lates calcarifer	RB	C
Parshe	Liza spp.	RB	C
Datina	Pomadasys hasta	RB	C
Roop chanda	Pampus chinensis	R	F
Taposhi	Polynemus paradiseus	R	F
Khorkuno	Mugil spp.	RBP	C
Ilish	Hilsa ilisha	R	F

Habitat: R, River; B, Beel/Gher and P, Pond; Status: Vc, Very Common; C, Common; F, Fairly Common; R, Rare and T, Threatened; Et, Extinct (Source: Field study 2011-2013).

Citation: Chowdhury AH. Environmental impact of coal based power plant of Rampal on the Sundarbans (world largest mangrove forest) and surrounding areas. MOJ Eco Environ Sci. 2017;2(3):85-98. DOI: 10.15406/mojes.2017.02.00022
Table 12: Amphibians and reptiles of the study areas (except the Sundarbans).

Bangla Name	English Name	Scientific Name	Status	
			Outside of the project area	Project area
Amphibians			F	R
Kotkoti/Baiya bang	Skipper frog	Rana cyanophlyctis		
Sonalibang	Bull frog	Rana tigrina		
Kunobang	Toad	Bufo melanostictus		
Reptiles			C	C
Tiktiki	Wall lizard	Hemidactylus flaviviridis		
Anjali/Nenja	Shink	Mabuya carinata		
Kalo Gui shap	Monitor lizard/Grey lizard	Varanus bengalensis		
Sonali/Haldey Gui	Yellow lajnd monitor	Varanus flavescens		
Bara-kasim	Soft shell turtle	Trionyx gangeticus		Et
Kaitta /Kori kaitta	Roofed turtle	Kochuga tecta		
Saundi kasim	Spotted flap shell tortoise	Lissemys punctata		Et
Paina/Matia shap	Common water snake	Enhydris enhydris		F
Dora Shap	Checkered keelback	Xenochrophis piscator		F
Daras shap	Rat snake	Ptyas mucosus		
Gokhra shap	Cobra	Naja noja		
Table 13 Birds of the study areas (except the Sundarbans)

Amphibians	English name	Scientific name	Status
Kotkoti/Baiya bang	Skipper frog	Rana cyanophlyctis	Outside of the project area (F), Project area (R)
Sonalibang	Bull frog	Rana tigrina	F, R
Kunobang	Toad	Bufo melanostictus	F, R
Reptiles			
Tikiki	Wall lizard	Hemidactylus flaviviridis	C, R
Anjali/Enja	Shink	Mahuya carinata	F, C
Kalo Gui shap	Monitor lizard/Grey lizard	Varanus bengalensis	F, R
Sonalit/Haldey Gui	Yellow ladjnd monitor	Varanus flavescens	F, R
Bara-kasim	Soft shell turtle	Trionyx gangeticus	R, Et
Kaitta/Kori kaitta	Roofed turtle	Kachoga tecta	F, R
Saundi kasim	Spotted fl. shell totoise	Lisesmys punctata	F, Et
Pains/Matai shap	Common water snake	Enbydris enbydris	C, F
Dora Shap	Checkered keelback	Xenochrophis piscator	C, F
Daras shap	Rat snake	Ptyas mucosus	F, R
Gokhra shap	Cobra	Naja naja	F, C
Bhuban cheel	Black kite	Milus migrans	F, R
Tila baz	Kestre eagle	Falco tinnunculus	R, Et
Mala ghugu	Ring dove	Streptopelia deaacto	F, R
Tila ghugu	Spotted dove	Streptopelia chinensis	F, R
Jalabi cobutor	Blue R. pigeon	Columba livia	C, C
Teya	Parakeet	Ptitacula krameri	F, R
Kokil	Koel	Eudynamys scolopacea	F, R
Kanakoka	Lesser coucal	Centropus bengalensis	F, R
Lokhi pecha	Bran owl	Tyto alba	F, R
Bhutum pecha	Spotted owlet	Athene brama	F, C
Kawkhoka	Golden-backed wood pecker	Dinopium javanense	F, R
Ababil	House swift	Apus affinis	C, C
Shipahi-bulbul	Red-whiskerbulbul	Pyconotus caf	C, C
Doyal	Magpic robin	Copsychus saularis	C, C
Tintune	Tailor bird	Orthotomus sutorias	F, F
Fingae	Black drongo	Dicras macrorcurs	C, C
Pati kak	House crow	Corvus splendens	C, C
Dar kak	Jungle corv	Corvus macrorhynchos	C, C
Baht salik	Common myna	Acrodrotheres tristas	C, C
Jhuti-salik	Pied myna	Sturnus contra	C, C
Chorui	House sparrow	Passer domesticca	C, C
Babui	Baya	Plocus philippinus	C, F
Kutum	Black headed oriole	Oriolus chimensis	F, R
Shukan	White backed vulture	Gyps bengalensis	F, R
Wetlands bird			
Pancowri	Little cormorant	Phalacrocorax niger	F, Et
Kani bok	Pond heron	Ardeola grayii	C, F
Sada bok	Little egret	Egretta garzetta	C, F
Bali hash	Lesser Whistling duck	Dendrocygna javanica	F, Et
Chota machranga	Common kingfisher	Alcides athias	F, R
Machranga	White thrated kingfisher	Halcyon smyrnensis	C, R
Dahuk	Water hen	Gallicrex cinerea	F, Et
Kora	Water cock	Amaurornis phoenicus	F, Et
Shamuk bangla	Openbill stork	Anastomus oscitans	T, Et
Pancowri	Little cormorant	Phalacrocorax niger	F, Et

Status: VC, Very Common; C, Common; F, Fairly Common; R, Rare and T, Threatened; Et, Extinct. (Source: Field study 2011-2013).
Table 14 List of mammals the project area (except the Sundarbans)

Bangla name	English name	Scientific name	Status	Out of the project area	Project area
Borobadur	Flying fox	Pteropus giganteus	F	R	
Shial	Jackal	Canis aureus indicus	R	Et	
Khak shial	Fox	Vulpes bengalensis	T	Et	
Beji	Mongoose	Herpestes edwardsii	T	R	
Banbiral/Bona	Jungle cat	Felis bengalensis	T	Et	
Khorgosh	Black-naped hare	Lepus nigricollis	Et	Et	
Kathirali	Irrawadedy squire	Callosciurus pygeregirus	R	Et	
Udd	Otter	Lutra lutra	T	Et	
Gaso indur	Bandicoot rat	Bandicota bengalensis	C	F	
Indur	Bandicoot rat	Bandicota indica	Vc	C	
Chika/Sucho	House shrew	Suncus murinus	C	C	

Status: VC, Very Common; C, Common; F, Fairly Common; R, Rare and T, Threatened; Et, Extinct. (Source: Field study 2011-2013).

Acknowledgements

None.

Conflict of interest

The author declares no conflict of interest.

References

1. Mittal ML, C Sharma, R Singh. Estimates of emissions from coal fired thermal power plants in India. Radio and atmospheric Sciences Div Nat Phy Lab, Council of sci and ind Res New Delhi-110012 India; 2011. 22 p.
2. Environmental impacts of coal power: wastes generated. Union of concerned scientists, National Headquarters. 2 Brattle Square, Cambridge, USA: UCS; 2012.
3. ADB. Environmental assessment guidelines. Asian development bank; 2003. 175 p.
4. Billings P. Emissions of hazardous air pollutants from coal-fired power plant. Needham MA: Environmental health and engineering, Inc; 2011. 46 p.
5. Sattar MA. Saving Sundarban for millions of years as world heritage. Bangladesh J Envon Sci. 2010;19:13–24.
6. Sarkar PK. Fighting for the survival of the Sundarbans. Bangladesh: The Daily Star; 2012.
7. Hossain GM. Ecosystem health status assessment of the Sundarbans mangrove forest in Bangladesh. Dhaka: Jahangirnagar University: 2014.
8. The Bangladesh Sundarbans: A Photoreal Sojourn. IUCN Bangladesh country office Dhaka, Bangladesh: IUCN; 2001. 186 p.
9. Chowdhury AH. Glimpses of flora and fauna of the Sundarbans. Proceedings of the National seminar on the Sundarbans, the largest mangrove forest on the earth: A World Heritage Site, Bangladesh: Khulna University; 2003.
10. Biswas SR, Choudhury JK, Nishat A, et al. Do invasive plants threaten the Sundarbans mangrove forest of Bangladesh? Forest Ecology and Management. 2007;245(1-3):1–9.
11. Uddin MS, E de R van Steveninck, Stuip M, Shah MAR. Economic valuation of provisioning and cultural services of a protected mangrove ecosystem: a case study on sundarbar reserve forest, Bangladesh. Ecosystem Services. 2013;5:88–93.
12. Sattar MA. Impact of coal-fired power plant on air pollution, climate changes and environmental degradation. Bangladesh J Environ Sci. 2010;19:1–12.
13. DoE. Fourth National Report to the Convention on Biological Diversity. Government of the People’s Republic of Bangladesh; 2010.
14. Trivedy RK. River pollution in India. House, New Delhi, India: Ashish Publ; 1993. 294 p.
15. Gautam A. Ecology and pollution of mountain water. House, New Delhi, India: Ashish Publ; 1990. 209 p.
16. Jackson ML. Soil chemical analysis. New Delhi, India: Prentice-Hall of India Pvt, Ltd; 1973.
17. Page AL, RH Miller, DR. Keeney. Methods of soil analysis (Part-2) American society of agronomy. Madison, Wisconsin, USA; 1982.
18. Jayaraman K, PS Easa, EA Jayson. Evaluation of methods for estimating the abundance of herbivores in the forests of Kerala. Peechi, Thrissur India: Kerala Forest Research Institute; 1998. 47 p.
19. Hoshmand AR. Statistical methods for environmental and agricultural sciences. New York, USA: CRR Press LLC; 1998. 439 p.
20. Chowdhury AH. Environmental impact of salinity increasing on soil, water and floral diversity of Rampal upazila, Bagerhat. UGC Funded Research Report, Env Sci Discipline Khulna Univ Bangladesh; 2012. 16 p.
21. Ahmed R, Rahman MM, Chowdhury AH. Physico-chemical attributes of different water bodies of Rampal Upazila at Bagerhat. Bangladesh J Environ Sci. 2013;5:27–32.
22. Rahman MM, Rahman MT, Rahman MS, et al. Water quality of the world’s largest mangrove forest. Canadian Chem. Transactions. 2013;1(2):141–156.
23. Chowdhury AH. Environmental threats on the plant resources of the Sundarbans-the world heritage site of Bangladesh (ICARIO/103). Proceedings of international conference on advances in ecological research (19-21 December, 2011) M Ganga Singh University; Bikaner 334 001 India; 2011.
24. Mannan MA. Impact of environmental hazards on the plant diversity of the Sundarbans Satkhira range. Ph.D. Thesis (unpubl.) Dhaka, Bangladesh: Dept Bot Jahangirnagar University; 2010 pp. 157.
25. Hussain Z, Acharya G. Mangrove of the Sundarbans. Volume 2: Bangladesh, UGC Funded Research Report, Discipline Khulna Univ Bangladesh; 2012. 16 p.

Citation: Chowdhury AH. Environmental impact of coal based power plant of Rampal on the Sundarbans (world largest mangrove forest) and surrounding areas. MOJ Eco Environ Sci. 2017;2(3):85–98. DOI: 10.15406/mojes.2017.02.00022
Environmental impact of coal based power plant of Rampal on the Sundarbans (world largest mangrove forest) and surrounding areas

Bangkok, Thailand: IUCN; 1994. 180 p.

26. Chowdhury AH, Akber MA. Study of Impacts of oil spill on the Sundarban mangrove forest of Bangladesh. J Asiat Soc Bangladesh Sci. 2015;41(1):75–94.

27. Pastakia CMR, Jensen A. The rapid impact assessment matrix (RIAM) for EIA. Environ Impact Asses Rev. 1998;18:461–482.

28. Ambasht RS. Plant Ecology. Varanasi India: Students’ Friends and Co; 1974. 261 p.

29. APHA. Standard methods for the examination of water and waste water. Washington: American Public Health Association; 1989. 1125 p.

30. Welch PS. Limnological Methods. New York: Mc Graw Hill Book Company; 1948. 381 p.

31. Final Report on environmental impact assessment of 2×(500-660) MW coal based thermal power plant to be constructed at the location of Khulna. Ministry of Water Resources, Bangladesh: Center for environmental and geographic information services; 2013. 500 p.

32. EIA Guidelines for Industries by department of environment. Ministry of environment and forest, Government of the People’s Republic of Bangladesh: DoE; 1997.

33. Guidelines for Environmental impact assessment (EIA). Ministry of water resources, Government of the People’s Republic of Bangladesh: Flood Plan Coordination Organization; 1992.

34. Giri C, Pengra B, Zhu Z, et al. Monitoring Mangrove Forest Dynamics of the Sundarbans in Bangladesh and India Using Multi-Temporal Satellite Data from 1973 to 2000. Estuarine, Coastal and Shelf Science. 2007;73(1-2):91–100.

35. Jahan MS, GMJ Islam, MR Rahman. Molluscan biodiversity of Sundarbans, Bangladesh. Proceeding of the National Seminar on coastal environment and energy resources in Bangladesh, organized by environmental Sci. Discipline, Bangladesh: Khulna University; 2000. p. 8–9.

36. Ministry of environment and forests. Technical EIA guidance manual for thermal power plants. Government of India: IL&FS Ecosmart Ltd; 2010. 269 p.

37. Mishra SN, R Swarup, VP Jauhari. Encyclopaedia of ecology, Environment and pollution control. Environmental air and water analysis. House, New Delhi India: Ashish Publ; 1992. 17 p.

38. Rahman F, Rahman MT, Rahman MS, et al. Organic production of Koromjol, Passur river system of the sundarbans, Bangladesh. Asian J of Water Env and Pollution. 2014;11(1):95–103.

Citation: Chowdhury AH. Environmental impact of coal based power plant of Rampal on the Sundarbans (world largest mangrove forest) and surrounding areas. MOJ Eco Environ Sci. 2017;2(3):85–98. DOI: 10.15406/mojes.2017.02.00022