In Silico Characterization of a Cyclin Dependent Kinase -A (CDKA) and its Coding Gene in some Oryza Species

Ahmed S. Fouad1* Sanad M. AlSobeai2

1Botany and Microbiology Department, Faculty of Science, Cairo University, 12613 Cairo, Egypt.
2Sajir College of Arts and Science, Shaqra University, 11961 Sajir, Saudi Arabia.

Correspondence: ahmedsfouad@yahoo.com, salsobeai@su.edu.sa

Received 12/5/2020, Accepted 4/8/2020, Published 1/9/2020

Abstract:

Rice (Oryza sativa) is a fundamental food for the majority of world population. Cyclin Dependent Kinase -A (CDKA) accelerates transition through different stages of cell cycle and contributes in gametes formation. In the present investigation, a CDKA encoding gene along with the corresponding protein were characterized in O. sativa Indica Group, O. glaberrima, O. barthii, O. brachyantha, O. glumipatula, O. longistaminata, O. meridionalis, O. nivara, O. punctata and O. rufipogon using in silico analyses. The results reflected little variation in most species except O. longistaminata and O. brachyantha. Compared with the remaining species, O. longistaminata lacked a negative regulatory binding site and had a modified cyclin binding site (PSTAICE instead of PSTAIRE) that may lead to future characterization of a new distinct subclass of CDKAs. O. brachyantha had a modified SUC/CKS (suppressor of CDC2/cyclin dependent-kinase regulatory subunit)-binding motif. The observed variations can be exploited through traditional breeding or molecular approaches to manipulate cell division and growth of cultivated Oryza species.

Key words: CDKA, Genomes, Rice, Wild relatives.

Introduction:

Rice is an important strategic world crop stands second among the cultivated cereal crops with annual yield of 770 million ton from about 2.38 million acre (1). Possessing balanced contents of carbohydrates, lipids and proteins put rice as the predominant food for more than two thirds of the world population (2, 3). The global climate change in addition to the growing world population necessitates breeding for new cultivars with better quantitative and qualitative traits (3, 4).

Rice breeding suffers from the limited genetic variations of cultivated Oryza species (O. glaberrima and O. sativa) that do not exceed 20% of those recorded in wild Oryza species (5, 6). Thus efforts should be continued to demonstrate inter- and intraspecific genetic variations in wild Oryza species to compensate shortage in variations observed in cultivated rice (5). Fortunately, the full sequence genomes of many wild Oryza species are now available and ready to be used for mining of valuable genetic information.

The in silico analyses provide precious genetic information for rice breeding including identification of important sequences in wild Oryza species such as regulatory elements for pathogenesis-related proteins (7), cyclin dependent kinase-B coding gene (5) and a gene encoding a Pathogenesis-Related Protein-10 (6).

Growth and development are regulated through strict control of cell cycle (8, 9). All eukaryotic cells possess a group of Ser/Thr protein kinases known as cyclin dependent protein kinases (CDKs); that form complexes with cyclin then phosphorylate proteins crucial for cell cycle progression (10). All eukaryotes have a class of Ser/Thr protein kinases, known as CDKs that control progression through cell cycle checkpoints (7). CDKs contain a cyclin-binding domain, one or more phospho-regulatory sites in addition to an ATP binding site (11). Based on cyclin-binding domains, CDKs are clustered into seven classes (CDKA to CDKG) in addition to CDK-like kinases (CKLs) (8).

CDKAs constitute the biggest group of plant CDKs, distinguished with conserved PSTAIRE motif devoted for binding to cyclins (12). Through the constitutive expression of their coding genes (13), CDKAs are produced in plant cells to

DOI: http://dx.doi.org/10.21123/bsj.2020.17.3.0760
control plant growth through accelerating transition through different stages of cell cycle (14), phosphorylation of phosphatidic acid phosphohydrolase1 (15) and development of cytoskeleton and cell walls (16). Also, CDKAs contribute in gametes formation through a meiotic role recognized through preventing premature meiotic exit (17) and controlling chromosome axis assembly (18).

CDKA and its gene were characterized in rice (O. sativa Japonica group) for the first time by Hashimoto et al. (19). Thus, the present study aims at in silico characterizing of CDKA and its coding gene in cultivated and some wild Oryza species.

Material and Methods

NCBI (http://www.ncbi.nlm.nih.gov) database was employed to download the amino acid sequence of CDKA (CAA42923.1) identified in O. sativa Japonica Group. The sequence was targeted in cultivated (O. glaberrima, O. sativa Indica Group and O. sativa Japonica Group) and eight wild (O. barthii, O. brachyantha, O. glumipatula, O. longistaminata, O. meridionalis, O. nivara, O. punctata and O. rufipogon) Oryza species genomes published in EnsemblPlants database (http://www. http://plants.ensembl.org) utilizing BLASTP search tool to demonstrate candidate genes and coding sequences.

Exon-intron structures of the retrieved genes were built up using coding and genomic sequences with the aid of Gene Structure Display Server website (http://gsds.cbi.pku.edu.cn/). The mined CDKA genes and the corresponding ones in the closest Gramineae species available in Gene Bank were aligned using Clustal W. The aligned sequences were employed to establish a phylogenetic tree based on Maximum Likelihood (ML) method in MEGA v. 6 (20) according to Hasegawa-Kishino-Yano model (21) with gamma distribution. 1000 replica-Bootstrap was utilized to judge significance of grouping patterns support (22).

The predicted amino acid sequences were aligned employing (multalin) (23, http://multalin.toulouse.inra.fr/multalin) to highlight the functionally important domains. The important physico-chemical characteristics of the mined proteins including molecular mass and isoelectric points were resolved utilizing Expasy Prot parm server (24, http://us.expasy.org/tools/protparam.html).

Subcellular distribution of the mined proteins was anticipated with the aid of the CELLO2GO server (25).

Docking was implemented between the predicted proteins and cyclin D that binds to CDKA in many CDKA-related functions (7) using Frodock server (28, 29, http://frodock.chaconlab.org).

Results and Discussion:

The mined data of this investigation reflected open reading frames (ORFs) of 819 bp in O. longistaminata, 873 bp in O. sativa Indica gp, O. glumipatula, O. rufipogon, and O. glaberrima while other species exhibited an ORF of 876 bp for CDKA coding gene. However, all mined genes shared the same general exon-intron structure of 7 exons spaced with 6 introns (Fig. 1). The same exon-intron structure for CDKA coding gene was observed in walnut hybrid (30) and Physcomitrella patens (31). On the other hand, Gao et al. (32) recorded 8 exons spaced with 7 introns studying the same gene in Arabidopsis thaliana and Gossypium hirsutum. Such species-dependent exon-intron arrangement for CDKA coding gene was also recorded upon studying a gene encoding class B of these kinases (5).

![Figure 1. Exon-intron arrangement of a CDKA coding gene in some Oryza species.](image-url)
Phylogenetic tree (Fig. 2) declared gathering of all examined Oryza species in a large clade greatly backed with maximum bootstrap value without any of the taxonomically close Gramineae taxa suggesting CDKA encoding gene as a powerful taxonomic tool. The tree showed that O. nivara and O. rufipogon are the closest wild Oryza species to the Asian cultivated one (O. sativa), while O. barthii is the closest wild taxon to the African cultivated species (O. glaberrima). Compared with cultivated species, genetic variation in CDKA encoding gene reached its maximum in O. brachyantha and O. punctata that appeared as outgroup for all the studied Oryza species. Similar general phylogenetic relationships appeared among wild and cultivated

Figure 2. Phylogenetic tree for CDKA coding gene predicted in some Oryza species along with some of the taxonomically closest monocot Graminae taxa (Lolium temulentum, Zea mays, Hordeum vulgare and Triticum aestivum) based on Maximum Likelihood method using the Hasegawa-Kishino-Yano model. Based on 1000 replicates, Bootstrap values are presented as percentages at branching points.

Oryza species upon employing different sequences including a supermatrix of more than 4600 nuclear gene (33), sequences of centromeres in addition to centromere-linked genes (34), CDKB1 coding gene (5) and PR-10 coding gene (6).

Supported with instability index value lower than 40 (Table 1), all the retrieved CDKAs exhibited in vitro stability (35). Subcellular location analysis reflected cytoplasmic and nuclear distribution of the predicted CDKA protein (Table 1) which is suitable for roles recorded to be played by such protein. In nucleus, CDKA is involved in DNA replication (36) and formation of synaptonemal complex at the beginning of meiosis (18). In cytoplasm, CDKA is associated with spindle (37, 38) and phragmoplast formation (39).
Table 1. Subcellular localization and physiochemical characters of the predicted CDKA in some *Oryza* species.

Species	Subcellular location	Molecular mass (KDa)	Formula:	No. of amino acids	No. of negatively charged residues	No. of positively charged residues	Instability index	PI*
O. sativa Japonica gp	Cytoplasm / Nucleus	33692.90	C₁₅₂₂H₂₃₉₈N₄₁₀O₄₃₁S₁₀	292	40	39	6.87	30.87
O. rufipogon		33561.71	C₁₅₂₂H₂₃₉₈N₄₁₀O₄₃₁S₁₀	291	40	39	6.97	30.94
O. nivara		33692.90	C₁₅₂₂H₂₃₉₈N₄₁₀O₄₃₁S₁₀	292	40	39	6.87	30.87
O. sativa Indica gp		33561.71	C₁₅₂₂H₂₃₉₈N₄₁₀O₄₃₁S₁₀	291	40	39	6.97	30.94
O. meridionalis		33664.89	C₁₅₂₂H₂₃₉₈N₄₁₀O₄₃₁S₁₀	292	40	39	6.87	30.21
O. longistaminata		31288.10	C₁₄₁₁H₂₂₂₃N₃₇₈O₄₀₃S₁₀	273	37	33	6.22	34.04
O. glumipatula		33561.71	C₁₅₂₂H₂₃₉₈N₄₁₀O₄₃₁S₁₀	291	40	39	6.97	30.94
O. glaberrima		33533.66	C₁₅₁₁H₂₃₉₈N₄₁₀O₄₃₁S₁₀	291	40	39	6.97	30.94
O. barthii		33664.85	C₁₅₂₂H₂₃₉₈N₄₁₀O₄₃₁S₁₀	292	40	39	6.87	30.87
O. punctata		33603.72	C₁₅₁₁H₂₃₉₈N₄₁₀O₄₃₁S₁₀	292	41	38	6.38	31.24
O. brachyantha		33658.84	C₁₅₂₂H₂₃₉₈N₄₁₀O₄₃₁S₁₀	292	41	39	6.56	28.21

*Isoelectronic point

Analyses of the amino acid sequences of CDKA mined from the studied *Oryza* genomes showed 291–292 amino acid length in all species except *O. longistaminata* that appeared as a shorter amino acid chain of 273 residues (Fig. 3). Working on *O. sativa*, Hashimoto *et al.* (19) recorded a 292 amino acid long CDKA. Generally, protein kinases share a similar feature of having a 250–300 amino acid residue domain for the phospho-transfer reaction (40).
Figure 3. Multalin-based amino acid sequence alignment of a CDKA in some *Oryza* species showing: 1. threonine (T) and tyrosine (Y) residues, 2. PSTAIRE motif, 3. T-loop preceded with asparagine (D) and 4. SUC/CKS -binding motif

Regarding the functionally important binding sites, the retrieved CDKAs showed the same sites appeared in CDKA characterized in *O. sativa* Japonica Group by Hashimoto et al. (19) with few but important exceptions (Fig. 3). Except *O. longistaminata*, all CDKAs showed threonine (T) and tyrosine (Y) residues whose phosphorylation blocks enzymatic activity. Absence of this binding site in *O. longistaminata* indicates a new mechanism for negative regulation that may be beneficial for breeding of cultivated *Oryza*. A second interesting variation in functionally important sites was also demonstrated in *O. longistaminata* where PSTAIRE motif, specialized for cyclin binding, was modified to PSTAICE. Docking with cyclin D reflected absolute energy score of 3276 to 3479 kcal/mol in species having PSTAIRE motif (Table 2). Within this range, *O. longistaminata* having PSTAICE motif showed 3342 kcal/mol absolute energy score for the same docking process strongly highlighting insignificant effect for difference between the two motifs on binding to cyclin.

Though PSTAIRE was known to be evolutionarily conserved signature for CDKA, it was modified to PSTALRE in diatoms (41) and sea lettuce (42) that adds to the importance of our finding in *O. longistaminata* and necessitates wet lab-based future investigations to characterize this CDKA that may lead to a distinct subclass of these important kinases.

The third functionally important area was identical in all *Oryza* species of the present study; it consists of asparagine (D) and adjacent T-loop (Fig. 3). Asparagine is required for positioning of the bound ATP essential for kinase activity. The T-loop consists of 27 residue centered around threonine (T) whose phosphorylation stabilizes the cyclin-binding (43).

With one exception observed in *O. brachyantha*, SUC/CKS (suppressor of CDC2/cyclin dependent-kinase regulatory subunit)-binding motif showed complete matching in all studied species. Three substitutions were recorded in where serine, isoleucine and threonine in the consensus sequence where replaced with arginine,
Table 2. Characteristic features of the predicted secondary structures and 3-D models of CDKA in some Oryza species.

Species	Secondary Structure	Dimensions (Å)	Z-Score	Absolute Energy Score for Docking with Cyclin D (kcal/mol)
O. sativa Indica gp	41 18	55.728 50.854 51.340	-6.58	3388
O. rafipogon	41 18	55.728 50.854 51.340	-6.58	3283
O. nivara	40 17	55.728 51.490 51.340	-6.54	3388
O. sativa Japonica gp	40 17	55.728 51.490 51.340	-6.54	3283
O. meridionalis	41 17	55.728 51.490 51.340	-6.61	3480
O. longistaminata	45 13	56.321 59.238 42.077	-4.98	3342
O. glumipatula	41 18	55.728 50.854 51.340	-6.58	3283
O. glaberrima	41 18	55.728 50.854 51.340	-6.64	3314
O. barthii	41 18	55.728 51.490 51.340	-6.55	3382
O. punctate	41 18	55.560 50.854 51.340	-6.54	3356
O. brachyantha	41 18	55.728 51.564 51.201	-6.69	3277

Lysine and alanine. The same substitutions were also recorded in Jerusalem artichoke (44), coconut palm (45), Dendrobium candidum (46) and Lolium temulentum (47).

Except for O. longistaminata with molecular weight of 31.29 KDa and isoelectric point of 6.22 (Table 1), physiochemical characteristics of the mined CDKAs in other taxa showed narrow ranges of molecular weights (33.56 - 33.69 KDa) and isoelectric points (6.38 - 6.97). CDKAs having similar characteristics were identified in Physcomitrella patens (31), Dendrobium candidum (46), maize endosperm (48) and Arabidopsis thaliana (49).

Secondary structures (Fig. 4 and Table 2) of the retrieved CDKAs showed PSTAIRE motif in the first α-helix as described by Sorrell et al. (50). 3-D models (Fig. 5 and Table 4) supported with negative Z-score also showed the pattern described for such kinases consisting of joined couple of α-helices and β-strands (46).
Figure 4. Secondary structures of the retrieved CDKAs in some *Oryza* species showing PSTAIRE motif in the first α-helix.
In conclusion, in silico analyses provided a time and cost effective tool to highlight valuable genetic variations in wild relatives of rice. The unique CDKA predicted in *O. longistaminata* lacking the negative regulatory binding site observed in other species may be exploited to accelerate growth in cultivated species through traditional breeding or molecular approaches.

Similarly, polymorphism in SUC/CKS - binding motif recorded in *O. brachyantha*, can be employed in cultivated species to make benefit of such variation in manipulating cell division.

Authors' declaration:
- Conflicts of Interest: None.
- We hereby confirm that all the Figures and Tables in the manuscript are mine ours. Besides,

References:
1. FAOSTAT F. Available online: http://www.fao.org/faostat/en/# data. QC (accessed on January 2018). 2017.
2. Balindong JL, Ward RM, Liu L, Rose TJ, Pallas LA, Ovenden BW, et.al. Rice grain protein composition influences instrumental measures of rice cooking and eating quality. J Cereal Sci. 2018; 79: 35-42.
3. Szarecki VJ, Carvalho IR, da Rosa TC, Dellagogostin SM, de Pelegrin AJ, Barbosa MH, et al. Oryza Wild Species: An alternative for rice breeding under abiotic stress conditions. Am J Plant Sci. 2018; 9(06): 1093.
4. Kilasi NL, Singh J, Vallejos CE, Ye C, Jagadish SK, Kusolwa P, et al. Heat stress tolerance in rice (Oryza sativa L.): Identification of quantitative trait loci and candidate genes for seedling growth under heat stress. Front Plant Sci. 2018; 9: 1578.
5. Fouad AS, Hafez RM. In silico characterization of CDKB1 and its coding gene in some Oryza species. Biosci Res. 2019a: 16(2): 1679-1690.
6. Fouad AS, Hafez RM. Molecular modeling and in silico characterization of a pathogenesis-related protein-10 (PR10) and its coding genes in some Oryza species. Baghdad Sci J. 2019b; 16(4 Supplement): 993-1002.
7. Kaur A, Pati PK, Pati AM, Naggal AK. In-silico analysis of cis-acting regulatory elements of pathogenesis-related proteins of Capsaspora thaliana and Oryza sativa. PloS one. 2017; 12(9): e0184523.
8. Yang L, Cai K, Huang H, Zhang Y, Zong Y, Wang S, et al. Comparative analysis of anatomy, gene expression of Vaccinium corymbosum cyclins and cyclin dependent kinases during the flower bud and fruit ontogeny. Sci Hortic. 2019; 251: 252-259.
9. Qi F, Zhang F. Cell cycle regulation in the plant response to stress. Front Plant Sci. 2020; 10: 1765.
10. Perez-Posada A, Dudin O, Ocaña-Pallares E, Ruiz-Trillo I, Ondracka A. Cell cycle transcriptomics of Capsaspora provides insights into the evolution of cyclin-CDK machinery. PLoS Genet. 2020; 16(3): e1008584.
11. Lents NH, Baldassare JJ. Cyclins and cyclin-dependent kinases. Ency Cel Bio. 2016; 3: 423–431.
12. Tank JG, Thaker VS. Cyclin dependent kinases and their role in regulation of plant cell cycle. Biol Plantarum. 2011; 55(2) : 201.
13. Van Leene J, Han C, Gadeyne A, Eeckhout D, Matthijs C, Cannoot B, et al. Capturing the phosphorylation and protein interaction landscape of the plant TOR kinase. Nat plants. 2019; 5(3): 316-27.
14. Velappan Y, Signorelli S, Considine MJ. Cell cycle arrest in plants: what distinguishes quiescence, dormancy and differentiated G1? Ann Bot. 2017; 120(4): 495-509.
15. Craddock CP, Adams N, Kroon JT, Bryant FM, Hussey PJ, Kurup S, et al. Cyclin-dependent kinase activity enhances phosphatidylcholine biosynthesis in Arabidopsis by repressing phosphatidic acid phosphohydrolase activity. Plant J. 2017; 89(1): 3-14.
16. Tamayo-Ordóñez MC, Espinosa-Barrera LA, Tamayo-Ordóñez YJ, Ayil-Gutiérrez B, Sánchez-Teyler LF. Advances and perspectives in the generation of polyploid plant species. Euphytica. 2016; 209(1): 1-22.
17. Cifuentes M, Jolivet S, Cromer L, Harashima H, Balunkova P, Renne C, et al. TDM1 regulation determines the number of meiotic divisions. PLoS Genet. 2016; 12(2).
18. Yang C, Sofroni K, Wijnker E, Hamamura Y, Carstens L, Harashima H, et al. The Arabidopsis Cdk1/Cdk2 homolog CDKA;1 controls chromosome axis assembly during plant meiosis. EMBO J. 2020; 39(3).
19. Hashimoto J, Hirabayashi T, Hayano Y, Hata S, Ohashi Y, Suzuki I, et al. Isolation and characterization of cDNA clones encoding cdc2 homologues from Oryza sativa: a functional homologue and cognate variants. Genet Mol Biol. 1992; 233(1-2): 10-16.
20. Tamura K, Stecher G, Peterson D, Filipski A., Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013; 30(12): 2725-2729.
21. Hasegawa M, Kishino H, Yano T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol. 1985; 22: 160–174.
22. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985; 39(4): 783-791.
23. Corpet F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 1988; 16(22): 10881-10890.
24. Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A. Protein identification and analysis tools on the ExPASy server. In The proteomics protocols handbook 2005 (pp. 571-607). Humana press.
25. Yu CS, Cheng CW, Su WC, Chang KC, Huang SW, Hwang JK, et al. CELLO2GO: a web server for protein subCELlular LOcalization prediction with functional gene ontology annotation. PLoS one. 2014; 9(6): e99368.
26. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015; 10(6): 845.
27. Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007; 35(suppl_2): W407-410.
28. Ramirez-Aportela E, Lopez-Blanco JR, Chacón P. FRODOCK 2.0: a fast rotational protein–protein docking server. Bioinformatics. 2016; 32(15): 2386-2388.

29. Garzon JJ, Lopez-Blanco JR, Pons C, Kovacs J, Abagyan R, Fernandez-Recio J, Chacon P. FRODOCK: a new approach for fast rotational protein–protein docking. Bioinformatics. 2009; 25(19): 2544-2551.

30. Goue N, Montiel G, Levert I, Gaudet M, Jay-Allemand C, Label P. CDKA orthologue isolation and its expression during cambial activity in hybrid walnut (Juglans nigrax Juglans regia). Trees. 2003; 17(4): 316-24.

31. Ishikawa M, Murata T, Sato Y, Nishiyama T, Hiwatashi Y, Imai A, et al. Physcomitrella cyclin-dependent kinase A links cell cycle reactivation to other cellular changes during reprogramming of leaf cells. Plant Cell. 2011; 23(8): 2924-2938.

32. Gao W, Saha S, Ma DP, Guo Y, Jenkins JN, Stelly DM. A cotton-fiber-associated cyclin-dependent kinase a gene: characterization and chromosomal location. Int J Plant Genom. 2012; 2012.

33. Brozynska M, Copetti D, Furtado A, Wing RA, Crayn D, Fox G, et al. Sequencing of Australian wild rice genomes reveals ancestral relationships with domesticated rice. Plant Biotechnol J. 2017; 15(6): 765-774.

34. Liao Y, Zhang X, Li B, Liu T, Chen J, Bai Z, et al. Comparison of Orzya sativa and Orzya brachyantha genomes reveals selection-driven gene escape from the centromeric regions. Plant Cell. 2018; 30(8): 1729-1744.

35. Guruprasad K, Reddy BB, Pandit MW. Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng Des Sel. 1990; 4(2): 155-161.

36. Atkins KC, Cross FR. Interregulation of CDKA/CDK1 and the plant-specific cyclin-dependent kinase CDKB in control of the Chlamydomonas cell cycle. Plant Cell. 2018; 30(2): 429-446.

37. Silkova OG, Loginova DB. Sister chromatid separation and monopolar spindle organization in the first meiosis as two mechanisms of unreduced gametes formation in wheat–rye hybrids. Plant Reprod. 2016; 29(1-2): 199-213.

38. Fouad AS, Hafez RM. The effects of silver ions and silver nanoparticles on cell division and expression of cdc2 gene in Allium cepa root tips. Biol Plantarum. 2018; 62(1): 166-172.

39. Vavrdova T, Samaj J, Komis G. Phosphorylation of plant microtubule associated proteins during cell division. Front Plant Sci. 2019; 10: 238.

40. Lehti-Shiu MD, Shiu SH. Diversity, classification and function of the plant protein kinase superfamily. Philos Trans R Soc Lond B Biol Sci. 2012; 367(1602): 2619-2639.

41. Huysman MJ, Tanaka A, Bowler C, Vyverman W, De Veylder L. Functional characterization of the diatom cyclin-dependent kinase A2 as a mitotic regulator reveals plant-like properties in a non-green lineage. BMC plant biol. 2015; 15(1): 86.

42. De Clerck O, Kao SM, Bogaert KA, Blomme J, Foflonker F, Kwantes M, et al. Insights into the evolution of multicellularity from the sea lettuce genome. Curr Biol. 2018; 28(18): 2921-2933.

43. Joubes J, Chevalier C, Dudits D, Heberle-Bors E, Inze D, Umeda M, et al. CDK-related kinases in plants. Plant Mol Biol. 2000; 43: 607–620.

44. Freeman D, Riou-Khamlichi C, Oakenfull EA, Murray JA. Isolation, characterization and expression of cyclin and cyclin-dependent kinase genes in Jerusalem artichoke (Helianthus tuberosus L.). J Exp Bot. 2003; 54(381): 303-308.

45. Montero-Cortes M, Rodriguez-Paredes F, Burgeff C, Perez-Nunez T, Cordova I, Oropeza C, et al. Characterisation of a cyclin-dependent kinase (CDKA) gene expressed during somatic embryogenesis of coconut palm. Plant Cell Tissue Organ Cult. 2010; 102(2): 251-258.

46. Zhang G, Song C, Zhao MM, Li B, Guo SX. Characterization of an A-type cyclin-dependent kinase gene from Dendrobium candidum. Biologia. 2012; 67(2): 360-368.

47. Gocał GF, King RW. Early increased expression of a cyclin-dependent protein kinase (LtCDKA1) during inflorescence initiation of the long day grass Lolium temulentum. Funct Plant Biol. 2013; 40(10): 986-995.

48. Dante RA, Sabeli PA, Nguyen HN, Leiva-Neto JT, Tao Y, Lowe KS, Hoerster GJ, Gordon-Kamm WJ, Jung R, Larkins BA. Cyclin-dependent kinase complexes in developing maize endosperm: evidence for differential expression and functional specialization. Planta. 2014; 239(2): 493-509.

49. Oszi E, Papdi C, Mohammed B, Petko-Szandtner A, Leviczky T, Molnar E, et al. E2FB interacts with RETINOBLASTOMA RELATED and regulates cell proliferation during leaf development. Plant physiol. 2020; 182(1): 518-533.

50. Sorrell DA, Menges M, Healy JS, Deveaux Y, Amano C, Su Y, et al. Cell cycle regulation of cyclin-dependent kinases in tobacco cultivar Bright Yellow-2 cells. Plant Physiol. 2001; 126(3): 1214-1223.
توصيف أحد بروتينات الفسفرة المعتمدة على السيكلين من المجموعة A و الجين الخاص به في بعض أنواع جنس Oryza باستخدام التقنيات الحاسوبية

أحمد سيد فؤاد

قسم النبات والبيولوجيا التطورية، كلية العلوم، جامعة القاهرة، القاهرة، مصر العربية (1261)
كلية العلوم، جامعة سراج، جامعة شقراء، المملكة العربية السعودية (1196)

الخلاصة:

يعتبر الأرز طعاماً أساسيًا لأغلب سكان العالم. تساهم بروتينات الفسفرة المعتمدة على السيكلين من المجموعة (CDKA) A في الانتقال عبر المراحل المختلفة لدورة الخلية و كذلك تساهم في تصنيع الأحماض الأمينية. وقد هدفت الدراسة الحالية إلى توصيف أحد هذه البروتينات و الأحماض الأمينية المعنية بها في الأنواع المختلفة من جنس Oryza. كشفت النتائج اختلافات في بعض تتابعات الأحماض الأمينية التي تنظم عمل البروتين محل الدراسة في كل من O. nivara , O. glumipatula , O. barthii , O. glaberrima , O. sativa Indica Group , O. nivara , O. brachyantha , O. punctata , O. longistaminata , O. meridionalis brachyantha. الأحماض الأمينية المسئولة عن تثبيط عمل البروتين كما لوحظ إختلاف في تتابع الأحماض الأمينية المسئولة عن الارتباط بالسيكلين (PSTAICE) و UTASICL من PSTAIPE الساقية. تم تسجيل اختلاف في تتابع الأحماض الأمينية بالموضع المسئول عن النشاط المرتبط بالسيكلين. توصى الدراسة بالأستفادة من الاختلافات السابقة للتحكم في الانقسام الخلوي و النمو في الأنواع المزروعة من جنس Oryza باستخدام طرق التربية التقليدية أو الطريقة الجزيئية.

الكلمات المفتاحية: CDKA، الجينومات، الأرز، الأقارب البرية.