The magnetic field in the X-ray corona of Cygnus X-1

M. Del Santo1, J. Malzac2,3, R. Belmont2,3, L. Bouchet2,3, G. De Cesare1

1Istituto Nazionale di Astrofisica, IAPS, via Fosso del Cavaliere 100, 00133 Roma, Italy
2Université de Toulouse, UPS-OMP, IRAP, Toulouse, France
3CNRS, IRAP, 9 Av. Colonel Roche, BP 44346, 31028 Toulouse Cedex 4, France

Accepted 2012 December 06. Received 2012 December 05; in original form 2012 July 05

ABSTRACT
The different electron distributions in the hard and soft spectral states of black-hole binaries could be caused by kinetic processes and changing because of varying physical conditions in the corona. In presence of a magnetic field in the corona, the electron distribution can appear thermal, even when acceleration mechanisms would produce non thermal distributions. This is due to fast and efficient thermalization through synchrotron self-absorption. In this paper, we have analyzed data from 6 years of observations of Cygnus X-1 with the INTEGRAL observatory and produced 12 high-quality, stacked broad-band hard X-ray spectra representative of the whole range of spectral shapes observed in this source. We then fit these spectra with hybrid thermal/non-thermal Comptonization models and study the evolution of the physical parameters of the accretion flow across the spectral transition. In particular, we use the BELM model to constrain the magnetic field in the corona through its effects on the coronal emission. Indeed, the hot electrons of the X-ray corona produce soft (optical-UV) synchrotron radiation which is then Comptonized and may affect the temperature of the electrons (and thus the slope of the X-ray spectrum) through Compton cooling. We find that in the softer states, the emission is dominated by Comptonization of the disc photons and the magnetic field is at most of the order of 10^6 G. In the harder states, the data are consistent with a pure synchrotron self-Compton model, although a significant contribution of Comptonization of disc photons may not be excluded. If the non-thermal excess observed above a few hundred keV in the hard state is produced in the same region as the bulk of the thermal Comptonization, we obtain an upper limit on the coronal magnetic field of about 10^5 G. If, on the other hand, the non-thermal excess is produced in a different location (such as the jet or a different part of the corona), the constraints on the magnetic field in the hard state are somewhat relaxed and the upper limit rises to $\sim 10^7$ G. We discuss these constraints in the context of current accretion flow models.

Key words: Gamma-rays: observations – accretion, accretion discs – black hole physics – radiation mechanisms: non-thermal – X-rays: binaries – stars: individual: Cygnus X-1

1 INTRODUCTION
Black hole binaries (BHBs), and Cyg X-1 in particular, show dramatic spectral variability. The most dramatic variations observed in BHBs are spectral transitions which occur, for most of these sources, on the time scales from weeks to days (Zdziarski et al. 2002). In the simplest classification, BHBs, are observed in two main spectral states: in the hard state (HS) the source emits essentially radiation peaking around 100 keV (Gierliński et al. 1997; Zdziarski & Gierkiński 1997; Zdziarski & Gierkiński 2004), while in the soft state (SS) the X-ray spectrum is a prominent ~ 1 keV black-body plus a power-law tail (Zdziarski 2000 and ref. therein). The HS spectrum is believed to originate from thermal Comptonization in a hot electrons dominated cloud (the so-called "corona"; Eardley, Lightman & Shapiro 1975; Sunyaev & Titarchuk 1980).

The black-body dominated spectrum observed in SS was associated with the optically thick accretion disc (Shakura & Sunyaev 1973), while the origin of the weak steep power-law component is still debated (Zdziarski 2004). In addition spectra with properties that are intermediate between that of the SS and HS are observed when the sources switches from one of the two stable state to the other. Terms such as "hard intermediate", or "soft intermediate" are often used to describe different flavors of those intermediate state (Belloni et al. 2005) but there is no unique classification (see McClintock & Remillard 2006).

The spectra of BHBs consist in several components. In the HS of Cyg X-1, the electron temperature and the Thomson op-
tically the depth of the Comptonizing plasma were found to be typi-
ically $kT_e \approx 50–100$ keV and $\tau \approx 1–3$ (Gierliński et al. 1997; Frontera et al. 2001). Although the scattering electrons have a pre-
eminently Maxwellian energy distribution in the HS, there are indica-
tions that the electron distribution may have some high-
energy tail i.e., it is hybrid, thermal/non-thermal. The first evi-
dence has been provided by CGRO/COMPTEL observations at $E > 500$ keV of Cyg X-1 in hard state (McConnell et al. 1994; McConnell et al. 2002). A slight indication was also inferred by CGRO/OSSE observations of GX 339–4 (Wardzinski et al. 2002).

Then, with the INTEGRAL mission, this feature has been ob-
erved many times during hard and/or intermediate/hard states in a number of BHBs and BH candidates (BHC; see Del Santo 2012 for a review on this topic), such as 1E 1740.7–
2942 (Bouclet et al. 2009), GX 339–4 (Del Santo et al. 2008; Foinet et al. 2007; Droulans et al. 2010), Cyg X–1 (Malzac et al. 2006; Cadolle Bel et al. 2006; Jourdain, Roques & Malzac 2012; Zdziarski, Lubinski & Sikora 2012).

Alternatively, it is possible that the non-thermal excess and thermal Comptonization component are not produced by the same electron distribution but in separate regions of the corona with different physical properties (Malzac 2012). Also, radio observations of Cygnus X-1 have resolved a compact relativistic jet (Stirling et al. 2001) and it was suggested that the high energy excess may be a component arising from it (Rahoui et al. 2011). This idea has been also proposed following the hard X-ray polarization measure-
ments by Laurent et al. (2011) obtained with the IBIS telescope in Compton mode. These authors found that, while the 250–400 keV spectrum is consistent with emission dominated by Compton scattering by thermal electrons and are weakly polarized ($P_{\text{f}} < 20\%$), the second spectral component seen in the 400 keV–2 MeV band is strongly polarized ($P_{\text{f}} = 67\pm 30\%$). They have argued that the MeV excess is likely to be produced in jet through synchrotron emission in a very coherent magnetic field. Such a high degree of polarization is indeed difficult to achieve through inverse Compton emission in the corona. Recently Jourdain et al. (2012) reported on a similar result by using the SPI telescope. They found that above 230 keV the Cyg X-1 emission is indeed polarized, with a mean polarization fraction of $76\pm 15\%$.

The shape of the MeV excess however, appears difficult to re-
produce in the jet scenario (Zdziarski, Lubinski & Sikora 2012). Such a scenario would also imply that the MeV excess in the HS and the non-thermal power-law emission observed in the SS have a completely different nature since the radio jet is quenched in the SS. We note that although it is very plausible that the non-thermal excess originates in the jet, it appears very unlikely that the jet emission could dominate the entire high energy spectrum of Cyg X-1 (see e.g. Malzac, Belmont & Fabian 2009 and references therein).

The X/γ-ray SS spectrum of Cyg X-1 has been studied ex-
tensively by simultaneous observations with ASCA, RXTE, Bepp-
OSSAX, and CGRO during summer 1996 (Di Salvo et al. 2001; Frontera et al. 2001). In addition to the dominating black-body, a long power-law tail like extending up to 10 MeV was discovered (McConnell et al. 2002). The high energy spectrum is well de-
scribed by single Compton scattering off electrons having a nearly power-law distribution (Gierliński et al. 1999, hereafter G99; Frontera et al. 2001).

The different spectral states are usually understood in terms of changes in the geometry of the accretion flow. According to a popular scenario (see e.g. Done, Gierliński & Kubota 2007 for an exhaustive review), in the SS a geometrically thin accretion disc (the standard Shakura-Sunyaev disc) extends down to the last sta-
ble orbit and is responsible for the dominant black-body emission.

This disc is the source of soft seed photons for Comptonization in small active coronal regions located above and below the disc. The magnetic field lines rise above the accretion disc through magnetic buoyancy, transporting a significant fraction of the accretion power into the corona where it is then dissipated through magnetic reconnec-
tion (Galeev et al. 1979). This leads to particle acceleration in the corona. A population of high-energy electrons is formed which then cools down by up-scattering the soft photons emitted by the disc. This produces the high-energy non-thermal emission (see e.g. G99; Zdziarski et al. 2002). In the HS, the standard geometrically thin disc is truncated at distances ranging from a few tens to a few thousand gravitational radii from the black hole. In its inner parts, the accretion flow takes the form of a hot geometrically thick, opti-
tically thin disc (Esin, McClintock & Narayan 1997). In this hot accretion flow, the electrons are predominantly heated by Coulomb interaction with a population of hot ions and cool down by Com-
ptonizing their own synchrotron emission and/or soft photons from the accretion disc.

The different electron distributions in HS and SS could be caused by kinetic processes and changing because of varying physical conditions in the corona (Malzac & Belmont 2009, hereafter MB09; Puttanen & Yurd 2009, hereafter PY09). These authors showed that in presence of a magnetic field in the corona, the electron distribution can appear thermal, even when acceleration mech-
anism would produce non thermal distributions. This is due to fast and efficient thermalization through synchrotron self-absorption as first pointed out by Ghisellini, Guilbert & Svensson (1988). MB09 and PY09, presented a rough ‘fit by eye’ of the average CGRO data of Cyg X-1 with this synchrotron boiler model which already pro-
vided estimates of the magnetic field in the hard state under the assumption that the non-thermal excess is produced by electrons in the same zone as the Maxwellian component. In this paper, we will use the same model to perform a statistical fit of INTEGRAL data for the whole range of observed spectral shapes and also considering the possibility that the non-thermal excess in the hard state may have a different origin.

As one of the brighter galactic hard X-ray source, Cyg X-1 is a prime target for the INTEGRAL mission (Winkler et al. 2003). It was extensively observed during the Performance Verification (PV) Phase of the mission. The on-board instruments offer an unprece-
dented simultaneous broad-band spectral coverage, ranging from 3 keV to several MeV. Thus a large amount of observing time (open time and core programme for a total of about 7 Ms) have been dedi-
cated to this target by INTEGRAL. A number of studies of the in-
termediate spectral states have been performed (Malzac et al. 2006; Cadolle Bel et al. 2006); an X-ray flare during the hard state ap-
ppears to be coincident with the TeV emission detected by MAGIC (Albert et al. 2007; Malzac et al. 2008).

Recent papers have also provided a refined estimation of the distance (d=1.86 kpc; Reid et al. 2011) and the black-hole mass of Cyg X-1 (14.8 M$_\odot$; Orosz et al. 2011).

In this work, we present the long term behaviour and a spectral variability study of Cyg X-1 using the whole INTEGRAL data base available until Spring 2009. Rather than following the evolution of the source chronologically, the aim was to extract high quality data representative of the source in a given ‘spectral state’. For this purpose, we stacked all the pointings with similar hardness ratios to produce 12 averaged spectra spanning the whole range of observed spectral shapes. The details of how this was done are described in Section 2. These 12 broad band (3 keV–1 MeV) spectra were then fit with two different hybrid thermal Comptonization models.
Magnetic field in Cyg X-1

2 OBSERVATIONS AND DATA ANALYSIS

We have analyzed six years of Cyg X-1 observations performed by INTEGRAL until April 2009 (revolution 794) with the three coded-mask telescopes IBIS (Ubertini et al. 2003), SPI (Vedrenne et al. 2003) and JEM-X (Lund et al. 2003). We started from March 2003 (revolution 52), thus we excluded the performance verification phase observations (1 Ms) due to some peculiar instrument settings. Results on Cyg X-1 obtained during the calibration phase have been extensively reported (Bouchet et al. 2003; Pottschmidt et al. 2003; Bazzano et al. 2003).

For the purpose of spectral analysis, we have built our data-set by selecting all IBIS observations including Cyg X-1 in a partially coded FOV of $15^\circ \times 15^\circ$ where the instrument response is well known. Based on this selection, the total number of IBIS and SPI science windows (SCWs) results as 1024 (Tab. 1) for a total exposure time of about 3.3 Ms (a single SCW can last from 800 up to 4000 seconds). The total SPI exposure time is essentially the same as that of IBIS, even though a further analysis excluding SPI problematic pointings (i.e. solar flares, radiation belts) leads to a slightly lower SPI effective exposure time than IBIS. Because of the smaller FOV of the X-ray telescope JEM-X, the related selected pointings (FOV of $3.5^\circ \times 3.5^\circ$ has been considered) are 364 (see Tab. 1). In particular, 44 SCWs for JEM-X2, operating at the beginning of the mission and 320 for JEM-X1 operating since revolution 181.

The IBIS scientific analysis, focused on the low energy detector ISGRI (Lebrun et al. 2003), and the JEM-X analysis have been performed using the INTEGRAL off-line analysis software, OSA v.9 (Goldwurm et al. 2003; Courvoisier et al. 2003). The IBIS/ISGRI light curves (Fig. 1) have been extracted in two energy bands ($20-40$ keV, $40-80$ keV). JEM-X and IBIS/ISGRI spectra, extracted SCW by SCW, extend from 3 to 20 keV and from 20 to 500 keV, respectively.

To account for change over time of the energy response, IBIS is calibrated in different periods using dedicated observations of the Crab. Then for each Crab observation an ancillary response file (ARF) is estimated and associated with a given interval of revolutions in the INTEGRAL data (see IBIS User Manual). Since spectra in our data analysis (see Section 2.2) often correspond to observations collected in different periods, i.e. associated with different ARF files, we evaluated for each averaged spectrum an ARF file obtained by a weighted mean of the effective areas in the different periods involved.

2.1 SPI data treatment

The signal recorded by SPI camera is composed of contributions from sources in the FOV convolved with the instrument response function plus the background. A system of equations is to be solved to determine sources and background intensities. In order to reduce the number of uncertainties and hence to maximize the signal-to-noise ratio of each sources, a few assumptions are introduced.

The background count rates of the 19 Ge detectors (uniformity maps) are assumed to be stable on timescale of ~ 6 months, while the global normalization factor is determined on ~ 6 hours.
timescale. For the sources, the timescales are chosen in function of the source intensity and temporal behavior: the faint sources are considered as constant. More information and details on SPI data reduction can be found in Bouchet et al. (2008) and Bouchet, Roques & Jourdain (2011).

At energy around 1 MeV, high energy particles saturate the electronics and can generate false events. The trigger signal issued by the Pulse Shape Discriminators is used to select events between electronics and can generate false events. The trigger signal issued by the Pulse Shape Discriminators is used to select events between electronics and can generate false events.

In order to maximize the signal-to-noise ratio, we used a catalog containing sources detected above 2σ in the whole time interval spanned by the data. The catalogue contains 10, 6, 5 and 5 sources in the 25-50 keV, 50-100 keV, 100-300 keV and 300-600 keV energy bands, respectively. In addition Cyg X-1 is time-variable up to ~400 keV, while above ~400 keV, the signal-to-noise ratio is better when assuming Cyg X-1 as constant. Above 500 keV, we can derive a better uniformity map using high latitude exposures (telescope pointing axis satisfying b > |30°|) as they contain no significant source emission (Bouchet et al. 2010). Comparison of the fluxes obtained with this uniformity map and one that is determined by the fitting algorithm (Bouchet et al. 2011) shows that the difference in determined fluxes is well smaller than the error bars and hence fluxes are fully compatible. In this paper, we use SPI spectra from 22 keV up to 1 MeV (when possible because of the statistics).

2.2 Long term behaviour and spectral variability

As a first step in characterizing the spectral variability (i.e. spectral states) of Cyg X-1, we computed the hardness ratio (HR) defined as the count rate ratio 40–80 keV to 20–40 keV for each one of the 1024 IBIS pointings (Fig. 1 panel 4). Cyg X-1 was most of the time in HS so that observations in hard states are significantly more numerous than the ones in soft states (Fig. 2). During the first three years of the INTEGRAL monitoring, Cyg X-1 showed a very variable activity in term of both flux variation and spectral transition. Since middle of 2006, the source entered in an almost steady hard state, characterized by flux variability not combined with simultaneous spectral variability (see the two flares around MJD~54000 and MJD~54600) and the corresponding flat HR in

HR	SCW (JEM-X) number	Exp1	Exp2	Γ
0.37-0.41	7 (1)	15.4	2.2	2.6±0.04−0.03
0.43-0.48	12 (2)	36.8	6.5	2.32±0.02
0.48-0.50	35 (9)	111.5	27.8	2.29±0.01
0.50-0.53	59 (8)	181.1	22.9	2.23±0.02
0.53-0.56	82 (11)	236.8	34.0	2.17±0.02
0.56-0.58	38 (19)	101.0	51.1	2.08±0.02
0.58-0.61	113 (40)	343.4	113.7	2.02±0.02
0.61-0.64	97 (27)	287.7	80.3	1.98±0.02
0.64-0.66	114 (29)	944.2	34.7	1.81±0.02
0.66-0.68	340 (72)	784.4	147.6	1.79±0.02
0.68-0.70	157 (16)	402.0	34.2	1.74±0.02
0.70-0.72	9 (4)	26.1	8.0	1.73±0.02

Figure 3. Correlation between the spectral photon index of the IBIS spectra fit with a simple power law in the range 30–100 keV and the hardness ratio 40–80/20–40 keV. Dashed lines indicate the twelve data groups used for the final spectral analysis (see text).

The twelve averaged broad-band spectra have been fitted with XSPEC v. 11.3.2, using two Comptonization models, namely EQPAIR (Coppi 1999, G99) and BELM (B08, MB09), plus disc reflection and relativistic iron line emission. The best-fit parameters of the twelve averaged broad-band spectra are shown in Tab. 3 (EQPAIR) and Tab. 4 (BELM). All quoted errors are at 90% confidence level.

3 MODELS

The twelve averaged broad-band spectra have been fitted with XSPEC v. 11.3.2, using two Comptonization models, namely EQPAIR (Coppi 1999, G99) and BELM (B08, MB09), plus disc reflection and relativistic iron line emission. The best-fit parameters of the twelve averaged broad-band spectra are shown in Tab. 3 (EQPAIR) and Tab. 4 (BELM). All quoted errors are at 90% confidence level.
3.1 Coronal emission models

EQPAIR and BELM model the emission from a homogeneous, isotropic, spherical cloud of fully ionized gas in interaction with the ambient radiation field. Not only do they compute the observed photon spectrum of the corona, but also they give the energy distributions of leptons in the corona. Those results are computed self-consistently according to the following microphysical processes: lepton-lepton Coulomb collisions, Compton scattering, photon-photon pair production, pair annihilation, self-absorbed bremsstrahlung radiation, and self-absorbed synchrotron radiation (the latter for BELM only). The leptons distributions are generally found to be composed of a low-energy thermal population and an additional high-energy non-thermal population, so that those kind of models are usually called hybrid models. The main physical parameters that characterize such corona are its typical size, density, magnetic field, and how it is energized. However, the spectral properties depend more explicitly on non-dimensional combinations of these quantities.

For instance, the dependence on the absolute coronal size is negligible for most parameter regimes, and the radius is set to \(R = 5 \times 10^7 \text{ cm} \), which corresponds to a region of about \(R \approx 20 R_g \) for a \(15 M_{\odot} \) black hole.

The proton density \(n_p \) is represented by the proton Thomson optical depth \(\tau_{th} = \sigma_T n_p R \), where \(\sigma_T \) is the Thomson cross section. The Thomson optical depth \(\tau_p \) provided by the two models is related to the ionization electrons only. The total optical depth \(\tau_{tot} \) is the sum of the optical depth of \(e^+e^- \) pairs plus \(\tau_p \).

The source luminosity \(L \) is described by the non-dimensional compactness parameter \(\frac{L}{m_ne^+c^2 R} \) (Lightman & Zdziarski 1987):

\[
l = \frac{\sigma_T}{m_ne^+c^2} \frac{L}{R}
\]

where \(m_e \) is the electron mass, and \(c \) the speed of light.

Photon escape can only be dealt with exactly by Monte-Carlo or complete radiation transfer simulation. Instead, it is modeled here through an approximate escape probability formalism (e.g. Lightman, Zdziarski & Rees 1987; Lightman & Zdziarski 1987; Stern et al. 1995). EQPAIR uses an escape probability based on pure photon scattering, whereas the escape probability used in the present version of BELM is based on both photon scattering and absorption (Sobolev 1974; VP09), which can lead to significant differences for low energy photons and large optical depths. Although results with the two models can give slightly different results for a given set of parameters, the spectral dependence on parameters is identical in both models.

To compensate for losses associated to photon escape, energy can be injected in the corona (i) directly as external photons from the accretion disc, or indirectly to the leptons populations through two channels: (ii) thermal heating or (iii) non-thermal acceleration.

(i) External photons are assumed to originate from an optically thick, multi-temperature accretion disc extending from the minimal stable orbit of a non-rotating black hole \(R_{in} = 6 G M / c^2 \) out to \(R_{out} = 10^5 R_g \). The emitted multi-color black-body spectrum is then essentially determined by the temperature \(T_{in} \) at the inner radius. As for the source luminosity, the power injected as soft photons is characterized by the soft compactness: \(l_s \) (also named \(l_{bb} \) in EQPAIR).

(ii) Thermal heating provides energy to the pool of thermal leptons with a compactness parameter \(l_{th} \).

(iii) Non thermal processes such as magnetic reconnection and/or shock acceleration are expected to generate power-law like distributions of particles. This is modeled as an injection of leptons with a power-law distribution \(f(\gamma) \propto \gamma^{-\Gamma_{inj}} \) characterized by the minimal and maximal Lorentz factor \(\gamma_{min} = 1.3 \) and \(\gamma_{max} = 10^3 \) between which the acceleration takes place, the power-law index \(\Gamma_{inj} \), and the total injected power described by the compactness \(l_{nth} \).

\[
l_{th} = l_{th} + l_{nth}
\]

corresponds to the total power supplied directly to the plasma. In steady state, all injected power goes out as photons and \(l = l_{th} + l_{nth} \). As far as the compactness \(l \) does not reach too large values \((l < 100) \), the spectral shape is rather insensitive to the total compactness and to the absolute values of \(l_{th} \), \(l_{nth} \), and \(l_{nth} \).

However, it depends on the channel used to injected this power, i.e. on the ratios such as \(l_{th}/l \) and \(l_{nth}/l \). For this reason, it is customary to fix \(l \) to some reasonable value when fitting data with EQPAIR.

The main difference between these two models is that in addition to all physical process mentioned earlier, the BELM model allows for self-absorbed synchrotron radiation resulting from the gyro-motion of leptons around a tangled magnetic field, \(B \) (B08). The magnetic field intensity is set through the magnetic compactness parameter:

\[
l_B = \frac{\sigma_T}{m_e c^2} \frac{L}{8\pi R^2} \frac{B^2}{R} \]

Since the shape of the spectrum depends on the ratio \(l_B/l \) rather than on the absolute value of \(l_B \) we computed the BELM code leaving \(l_B/l \) as a free spectral parameter.

Also, in the BELM code the thermalization process is treated self-consistently while in EQPAIR the electron distribution is assumed to be purely thermal at low energy (see MB09 for details).

The computation time with BELM is comparatively longer than with EQPAIR and the former cannot be used for inline fitting. Instead, a table of spectra was computed and used in XSPEC as a table model.

3.2 Reflection on the accretion disc

Compton reflection has been modeled by using the viewing-angle-dependent Green’s functions approximation obtained by Magdziarz & Zdziarski (1995) for an isotropic point source (or, equivalently an optically thin corona) above a slab. We treat \(\Omega/2\pi \) as a free parameter, where \(\Omega \) is an effective (i.e., corresponding to the observed strength of reflection) solid angle subtended by the reflector. The reflection is accompanied by an Fe fluorescence Kα line centered at an energy, \(E_{line} \).

When the reflection comes from a fast rotating disc in a strong gravitational potential, Doppler and gravitational shifts become important. These effects are usually approximated by convolving both the reflected component and the Fe Kα line with the Schwarzschild disc line profile of Fabian et al. (1989; DISKLINE in XSPEC).

In calculating the relativistic distortion, we consider a range of radii from \(R_{in}=6 \) to \(R_{out}=10000 \) gravitational radii. The disc reflection component is calculated for neutral material with standard abundances. We assumed an inclination angle of 50°.

To the energy resolution and line sensitivity, the iron line study cannot be performed with JEM-X. The line energy was therefore imposed at 6.7 keV. The inclination angle, inner radius of the disc and the disc emissivity law were fixed at the same values as in the Compton reflection model. The normalization is therefore the only free parameter for the iron line emission.

4 RESULTS

4.1 Unmagnetized model

As a first study, we investigate here a model with no magnetic field \(l_B=0 \), so that we performed the analysis with EQPAIR. According with previous studies (Zdziarski et al. 2002; Wilms et al. 2006), we also have found that the bolometric luminosity of Cyg X-1 does not change significantly from SS to HS. Therefore, unless the size of the corona changes dramatically during the transition, the total compactness is not expected to vary much (Poutanen & Coppi 1998). However the distribution of the radiation changes dramatically. In the hard state most of the luminosity comes from the corona while in SS most of the radiation is in the black-body disc emission. We therefore fixed \(l_s = 10 \) when fitting soft and intermediate/soft states (States 1–4 in Tab. 3; G99) and \(l_s = 1 \) when fitting the intermediate/hard and hard states (States 5–12; Ibragimov et al. 2005).

The best fit parameters are shown in Tab. 3. We note that spectrum 1 shows spectral parameters of the canonical soft state, according also with the hard X-ray power-law slope (Tab. 1), while spectra 9–12 show typical spectral parameters of the hard state (see Zdziarski 2000; Zdziarski & Gierliński 2004). Spectra 2–8 may be defined as intermediate. In addition, we call intermediate/soft all spectra where a disc black-body is required by the fitting procedure and intermediate/hard the spectra where it is not possible to give constraints to the inner disc temperature.

In Fig. 4 we show the relation between the best-fit model parameters and the hard X-ray power-law slopes. Four significantly different energy-spectra of Cyg X-1 are plotted in Fig. 5, while in Fig. 7 we show the total best-fit models for each of the twelve selected spectra.

In agreement with previous studies (G99) our fits show that the electron-positron pairs constitute only a small, if not negligible, fraction of the Comptonising leptons. An interesting trend (shown in Fig. 4) is that the Thomson optical depth is lower in softest states \(\tau_p \approx 0.2 \) in SS). It increases significantly from SS (spectrum 1) to intermediate states (spectra 2–8) and is approximately constant in the hard states \(\tau_p \approx 1.4 \), spectra 9–12). This change by a factor of 7 could be associated either to a change in electron density or in the size of the corona (since \(\tau \propto n_e H \)). If this is the size of...
the corona that changes then this would imply that the corona is larger in the HS than in the SS by a factor of ~ 7. This would be in agreement with the decrease of the inner radius of the accretion disc and faster rapid variability in the SS which both suggest a smaller emitting region in the SS. Another possibility would be that the coronal material is evacuated during the ejection event (optically thin radio flare) at the spectral transition (as suggested by Rodriguez & Prat 2010). However we see on Fig. 4 that the evolution of τ_p is gradual. It starts in the intermediate/hard states and continues in the soft state, this appears in contradiction with a scenario in which most of the corona would be suddenly ejected at the transition. If the corona is ejected this has to be a gradual process, that might be associated with the presence of strong disc winds evidenced in the SS of X-ray binaries (see e.g. Ponti et al. 2012).

We find that the inner disc temperature kT_{in} decreases from 0.6 and 0.4 keV between spectrum 1 and 4 (soft state to intermediate/soft state, see Tab. 3). This is combined with a decrease by a factor of four of the flux of the measured thermal disc component. For harder spectra, the disc temperature is so low that it cannot be constrained with our data. We therefore imposed an inner disc temperature of 0.3 keV when in intermediate/hard states (spectra 5–8) and 0.1 keV when in canonical HS (spectra 9–12). The temperature of the corona has the opposite behaviour and is larger for harder spectra, except for spectrum 1. This change of coronal temperature is driven by a change in the ratio of the electron heating rate to soft cooling photon flux in the corona ($\propto l_h/l_s$) which is larger at small Γ. The fact that the temperature appears higher in the softer spectrum 1, is related to the significantly smaller optical depth in soft state. In fact, even if the temperature is higher in spectrum 1, the Compton parameter $y \propto \tau T_e$ which is expected to vary approximately like l_h/l_s is the lowest. Then computing the absolute disc and Comptonized fluxes (respectively F_{bb} and F_{Compt}, see Tab. 3) can provide indications on whether this evolution is driven by changes in the flux of soft cooling photons from the disc ($\propto l_s$) or changes in the electron heating rate ($\propto l_h$). We find that the thermal disc flux changes by more than one order of magnitude while the Comptonized radiation decreases by almost a factor of two. The softening we observe in the states 1-4 appears to be caused by a dramatic increase in the disc thermal flux in the corona associated with a modest reduction of the electron heating rate.

Non-thermal acceleration appears to be required to fit most spectra. When trying to fit with a non-thermal compactness fraction fixed to $l_{nth}/l_h = 0$, only for the spectrum 12 we obtained an acceptable χ^2 (i.e. 0.98). However, for this last spectrum the statistics is very low and residuals show that an additional non-thermal component is required at high energy. For the other spectra, significant l_{nth}/l_h fractions are required. This indicates that a non-thermal electron population may also be present in the corona (or elsewhere), together with the thermal population even during the hard states. This is in agreement with previous studies performed on intermediate and hard states of BH binaries, as also reported in Sec. 1. In soft and intermediate/soft states (1–4) though, it was not possible to constrain l_{nth}/l_h and this parameter was fixed at 0.99.

From our spectral fits, from the softest (spectrum 1) to the harder states (up to spectrum 9) Γ_{inj} parameter changes from 3.5 to 2.0. We are not able to give constraints on this parameter for spectra 10–12, so that we fixed it to 2. Such a change in the slope of the injected non-thermal electrons suggests a different acceleration
can thermalize particle distribution efficiently, even when particles are accelerated through pure non-thermal mechanisms. To minimize the number of parameters, we focus here on such a model with pure non-thermal acceleration. The alternative case of thermal heating will be discussed in the next subsection.

Using BELM, we have computed a table of more than 5×10^5 spectra and 5 fitting parameters: l_{nth}/l, l_B/l_{nth}, τ_p, Γ_{inj}, and kT_{in} (see Table 2). This pure SSC model does not include any thermal or Coulomb heating ($l_{\text{th}} = l_c = 0$). As shown in MB09, the spectrum shape depends on ratios such as l_B/l_{nth} or l_{nth}/l and not on the total compactness of the source. Therefore the best fit values for these ratios are also insensitive to the exact value of l. The total compactness was thus set to the typical value $l = 10$ and l_c was computed such as $l_c + l_{\text{nth}} = l = 10$.

On the contrary, the magnetic field intensity depends on the exact amplitude of the magnetic compactness l_B. Once the spectra were fitted and the flux derived from XSPEC, the real source compactness l_{obs} was computed using Eq. 1 and assuming a distance of $d = 1.86$ kpc. The exact magnetic compactness was then scaled linearly to l_{obs} as:

$$l_{B,\text{obs}} = \frac{l_B}{l_{\text{nth}}} l_{\text{obs}}$$

where l_B/l_{nth} and l_{nth}/l are provided by the fit and insensitive to l. The magnetic field B was then estimated from equation (2), assuming a size of the corona as $R = 20R_g$. Alternatively, the observed magnetic field can be compared to the value of magnetic field in equipartition with the radiative energy density. In the limit of low-energy photons ($h\nu < m_e c^2$), the corresponding compactness ratio is (Lightman & Zdziarski 1987):

$$\frac{l_B}{l_{B,\text{fit}}} = \frac{l_B}{l_{\text{nth}}} l_{\text{obs}} \frac{4\pi/3}{1 + \tau_p \Gamma_{\text{inj}}}$$

This ratio is again insensitive to the choice for l and is also independent of uncertainties on the source size and distance.

Table 2 shows the best-fit parameters. Fig. 8 presents a selection of four different INTEGRAL spectra fitted with BELM, while Figs. 10 and 11 display respectively the photon spectra and the particle distribution, for the corresponding models. Overall this model provide good fit to the data (Tab. 2). This confirms that the data are compatible with pure non-thermal acceleration models.

The parameters τ_p, kT_{in}, l_{nth} (or l_c/l_{nth}) and the reflection amplitude have a similar behaviour as in the fits with the un magnetized model EQAIR, for similar reasons (Fig. 9). The fact that l_{nth}/l is lower in softer state is equivalent to the trend observed for the ratio l_c/l_c. We note that when using BELM the electron acceleration index Γ_{inj} is better constrained by the data in the magnetized model since it also affects the number of synchrotron emitting electrons which in turns control the temperature of the Maxwellian electrons and the slope of the X-ray spectrum. The trend for a softer injection index in softer state is less clear in the fits with this magnetized model.

From the results of our fits, it is clear that in the soft state, the accretion disc photons represent the main source of soft seed photons (see Fig. 11). In the harder states (spectra 6–12), it is not possible to obtain any constraints and the synchrotron photons may dominate. We have set $l_c = 0$ when fitting these spectra and obtained good fits. Based on the observation of correlations between X-ray flux and spectral index in several black hole binaries in the HS, Sobolewska et al. (2011) have argued that synchrotron seeds should dominates at luminosities below about a percent of the Eddington limit, while disc seed photons should dominate at higher

4.2 Magnetized, one-zone model with pure non-thermal acceleration

If the corona is magnetized, it must emit synchrotron emission that can add up to disc photons and be Comptonized. In this section we aim at answering the question: how large can be the magnetic field before synchrotron emission makes the modelled spectra incompatible with the data? It was shown in MB09 and PV09 that processes such as the synchrotron boiler and Coulomb collisions

![Figure 7. Total models obtained by fitting all twelve broad-band spectra with EQPAIR plus DISKLINE (see Tab. 3)](image)

min	max	number	grid	
l_{nth}/l	0.1	10	15	log
l_B/l_{nth}	0.001	10	15	log
τ_p	0.005	5	15	log
Γ_{inj}	1	5	15	lin
kT_{in}	20 eV	2 keV	10	log

To test probabilities
luminosities. It is interesting to note that Cyg X-1 has a stable luminosity located around this transition. It is therefore likely that both the accretion disc and the magnetic field contribute to seed the Comptonization process.

Nevertheless, since it is not possible to constrain their respective contribution from our data, assuming the extreme case of pure synchrotron seed photons allows us to set an upper limit on the magnetic compactness. Indeed the total flux of seed photons (synchrotron+disc) determines the slope of the X-ray spectrum (via energy balance of the thermal electrons). Since the flux of synchrotron photons increases with l_B, and the spectral slope is well constrained by the data, assuming that there are no disc photons is going to maximize l_B. In the softer states the spectra are consistent with $l_B = 0$ (since they can be fit with an unmagnetized model) but again we are able to obtain an upper limit on l_B.

We note that the jump in l_B/l_{nth} and B between spectra 5 and 6 is due to the fact that we had to turn off the disc seeds photon when fitting spectra 6–12. This makes the upper limit on l_B less restrictive. The presence of this jump suggest that disc photons continue to play a role even in the harder spectra.

From Tab. 4 we see that for a corona of size $R = 20R_g$, these upper limits range from $\approx 10^5$ G in the hardest HS to $\approx 3 \times 10^6$ G in the soft state (see also Fig. 6). This implies strongly subequilibrium partition magnetic fields ($l_B/l_{BR} < 1$) in the spectra intermediate and hard. As discussed in MB09 and Droulans et al. (2010), this has important consequences for dynamical models of the corona. Namely, this rules out any model based on a X-ray corona powered through magnetic dissipation in the hard state and this may also be a problem to drive the powerful jet that is observed.

4.3 Magnetized, two-zone model with pure thermal heating

In the previous one-zone model, we obtained upper limits on the magnetic field intensity assuming Synchrotron Self-Compton emission (SSC) and pure non-thermal acceleration. This was motivated by the overall non-thermal nature of the softer spectra and by the high energy emission above the cutoff in the harder states (HR>0.64), none of which is reproduced with purely thermal lepton populations. In the hard state, these constraints were mostly governed by the non-thermal, highest energy data points. However, it has been suggested that the high energy emission in the hard states could originate from a different region of the accretion system, i.e. the jet (Laurent et al. 2011; Zdziarski et al. 2012) or another component of the corona (Malzac 2012). Then, the hard spectra below the cutoff could also be reproduced by SSC models with pure thermal heating. In this case the exact heating mechanism is of little importance for spectral modeling, because whatever the heating mechanism the resulting electron distribution is very close to a pure Maxwellian. In BELM this electron thermal heating mechanism is assumed to be Coulomb collisions with a distribution of hot thermal protons (MB09). Then, the constraints on the magnetic field are expected to be different.

To investigate this issue, we computed a new table model with pure Coulomb heating ($l_B = 0$, $l_{nth} = 0$, $l_c = l_B$). As before, the spectral shape does not depend on the absolute compactness of the system, and we set $l = l_c = 1$ to prevent degeneracy issues. Then we determined the proton temperature (kT_p in Tab. 5) corresponding to this compactness and to the exact steady state electron distribution. The two free parameters of the table model are: l_B (20 values between 0.1 and 10^4), and τ (20 values between 0.5 and 5). As for previous models, we also added a reflection component. We fitted the four harder spectra (HR>0.64; see Tab. 5).

As expected, the broadband spectrum can not be fitted with this pure thermal model, since it does not reproduce the highest energy data, which either requires a significant level of non-thermal acceleration or must originate in a different region. When excluding data above 200 keV, we obtained good fits with $\chi^2 < 0.95$. The results are shown in Tab. 5. The best fit Thomson optical depth and the reflection amplitude are comparable to those of the non-thermal model.

Noticeably, the ratio l_B/l_c is larger by about 4 orders of magnitude in the thermal model than in the previous non-thermal model. Indeed, the spectrum below the cutoff is essentially governed by the temperature of the thermal electron distribution. The cooling of thermal electrons is dominated by inverse Compton scattering on soft synchrotron photons. Non-thermal models produce stronger high energy tails in the electron distribution and thus tend to provide more synchrotron seed photons than thermal models for comparable l_B. Hence the magnetic field has to be weaker in non-

![Figure 8](image_url)
Figure 8. Joint JEM-X, IBIS and SPI energy spectra of Cyg X-1 during four different spectral states fitted with the BELM model with pure non-thermal acceleration plus DISKLINES and REFLECT (see Tab. 4).

![Figure 9](image_url)
Figure 9. Electron energy distributions obtained in the best fit models of Figs. 8 and 9. The different colours corresponds to those of the spectra shown in Fig. 8.
Figure 10. BELM total models (black) corresponding to fits of the spectra shown in Fig. 8 and the components: Compton (red), pair annihilation/production (orange), synchrotron (blue), soft black body photons (purple). Solid lines correspond to positive contribution to the spectrum, dashed lines correspond to negative contribution.

thermal models in order to provide the same electron temperature and reproduce the data.

Thus, by assuming that the highest energy emission originates from a different region, the constraints on the ratio I_B/I_c estimated in this thermal model correspond to the most conservative upper limits. Following the procedure described in the previous subsection, we obtain that the magnetic field in the hard states is stronger by a factor of 100 compared to that estimated in the SSC model (Tab. 5). The magnetic field is now allowed to be strongly super equipartition in the hard state with typical upper limits of the order of 10^7 G.

In the case of a pure Maxwellian plasma, the dependence of the Coulomb compactness (l_c) on electron and proton temperatures can be re-written as:

$$\frac{T_p}{T_e} \approx 1 + \frac{g l_{c\text{(obs)}}}{\tau^2},$$

where $g(\theta_e) = \sqrt{7}\theta_e$ and $\theta_e = \frac{kT_e}{m_e c^2}$ is the electron temperature in units of the electron rest mass (see MB09 for details). $l_{c\text{(obs)}}$ is obtained from equation (5) and the bolometric fluxes by the fits (Tab. 5). We see that temperature of the ions is at most of a few MeV which is incompatible with standard two temperature accretion flow models (such as ADAF models). As discussed in MB09, this relatively low proton temperature is related to the large (i.e. $\gtrsim 1$) Thomson optical depth required to fit the data. As discussed in Malzac (2012), standard hot disc solution do not produce such large Thomson depth (and low ion temperature). The magnetically dominated accretion flow model of Oda et al. (2010, 2011) may however produce such parameters. The strong magnetic field assumed in this model would be consistent with our upper limits only in the case of a pure thermal electron plasma with the MeV tail produced in the jet or in another region of the corona.

5 CONCLUSION

We have used data from 6 years of observation of Cygnus X-1 with INTEGRAL, to produce 12 high quality, stacked broad-band spectra spanning the whole range of spectral shapes observed in this source from the SS to HS. We have then fitted these spectra with hybrid thermal/non-thermal Comptonization models. We have used both a magnetized BELM and a unmagnetized EQPAIR models. For both models we found that the spectral changes at high energy are driven essentially by the strength of the soft seed cooling photons in the corona as the disc temperature (and inner radius of emission) changes.
During the spectral transition from HS to SS the power of the corona decreases by less than a factor of 2 while the disc emission increases at least by a factor of ~ 50. This appears to be associated with a gradual change of the Thomson depth of the corona which decreases from ~ 1.5 in HS to ~ 0.2 in SS, that may be caused either by a condensation of the corona into the disc or evaporation into an outflow, or compactification of the corona in the SS.

For the first time we have performed a statistical fit of the Cyg X-1 data with the BEML model. This allowed us to test the effects of the magnetic field on the coronal emission. As explained by Comptonization of the disc photons and the upper limit on the quasiparticle, similar to our finding. In the case of SSC in the HS provides upper limits on the magnetic field for all dynamical accretion flow models. In this case, we also considered a condensation of the corona into the disc or evaporation into an outflow, or compactification of the corona in the SS.

We found that in the softer states, the emission is dominated by Comptonization of the disc photons and the upper limit on the magnetic field is at most of the order of 3 x 10^8 G. Such a magnetic field is energetically consistent with a magnetic dissipation process, such as reconnection, powering the corona.

In the hard states the data are consistent with a pure Comptonized synchrotron emission model, although Comptonization of disc photons cannot be excluded. We consider that a mixture of both is the most likely possibility. However, fitting in the limiting case of SSC in the HS provides upper limits on the magnetic field intensity.

If the non-thermal excess observed above a few hundred keV is produced in the same region as the bulk of the thermal Comptonization, the magnetic field is at most of the order of 3 x 10^8 G. This is strongly subquadruplet with radio which is challenging for all dynamical accretion flow models. In this case, we also confirm the qualitative results of MB09 and PV09 that the emission in all spectral states can be modeled with pure non-thermal electron acceleration. Indeed, provided that the magnetic field is not too strong in the HS, the electrons thermalise at the observed temperature under the effects of Coulomb collisions and synchrotron self-absorption. Moreover, Wardziński et al. (2002) found analytically that if the high-energy tail observed in HS of BHBs is from the hybrid distribution, the magnetic field has to be strongly subquadruplet, similar to our finding.

If, on the other hand the non-thermal excess is produced in a different location, the constraints on the magnetic field in the hard state are somewhat relaxed and we obtain an upper limit of about 2 x 10^7 G in the hard state. Such a large magnetic field would be consistent with the magnetically dominated hot accretion flow model of Oda et al. (2010) which also appear to produce the rather large Thomson depth (\(\tau_P \approx 1.5\)) and low ion temperatures T_p \approx 10^{10} K, that we infer from the data in the hard state.

ACKNOWLEDGMENTS

MDS and GDC acknowledge financial support from the agreement ASI-INAF I/009/10/0 and from PRIN-INAF 2009 (PI. L. Sidoli). MDS and JM acknowledge financial support from Université Paul Sabatier. JM & RB acknowledge support from PNHE in France. MDS thanks IRAP/CNRS (France) for hospitality. JM thanks the Institute of Astronomy of Cambridge (UK) for hospitality. MDS and JM thank A. Zdziarski for useful scientific discussion and suggestions. MDS thanks J. Wilms and V. Grinberg for useful comments.

REFERENCES

Albert J., et al., 2007, ApJ, 665, L51
Bazzano A., et al., 2003, A&A, 411, L389
Belmont R., Malzac J., Marcowith A., 2008, A&A, 491, 617 (B08)
Belloni T., Homan J., Casella P., van der Klis M., Nespoli E., Lewin W. H. G., Miller J. M., Méndez M., 2005, A&A, 440, 207
Bouchet L., et al., 2003, A&A, 411, L377
Bouchet L., Jourdain E., Roques J.-P., Strong A., Diehl R., Lebrun F., Terrier R., 2008, ApJ, 679, 1315
Bouchet L., Del Santo M., Jourdain E., Roques J. P., Bazzano A., De Cesare G., 2009, ApJ, 693, 1871
Bouchet L., Roques J.-P., & Jourdain E., 2010, ApJ, 720, 1772
Bouchet L., Roques J.-P., & Jourdain E., 2011, ApJ, 739, 29
Cadolle Bel M., et al., 2006, A&A 446, 591
Coppi P. S., 1999, ASP Conf. Ser. 161: High Energy Processes in Accreting Black Holes, 161, 375
Courvoisier T.-J.-L., Walter R., Beckmann V., et al., 2003, A&A, 411, L53
Del Santo M., Malzac J., Jourdain E., Belloni T., Ubertini P., 2008, MNRAS, 390, 227
Del Santo M., 2012, JPhCS, 354, 012003
Di Salvo T., Done C., Zyczi P. T., Burderi L., Robba N. R., 2001, ApJ, 547, 1024
Done C., Gierliński M., Kubota A., 2007, A&A Review, 15, 1
Droulans R., Belmont R., Malzac J., Jourdain E., 2010, ApJ, 717, 1022
Eardley D. M., Lightman A. P., Shapiro S. L., 1975, ApJ, L199, 153
Esin A. A., McClintock J. E., Narayan R., 1997, ApJ, 489, 865
Fabian A. C., Rees M. J., Stella L., White N. E., 1989, MNRAS, 238, 729
Frontera F. et al., 2001, ApJ, 546, 1027
Galeev A. A., Rosner R., Vaiana G. S., 1979, ApJ, 229, 318
Gierliński M., Zdziarski A. A., Done C., Johnson W. N., Ebisawa K., Ueda Y., Haardt F., Philips B. F., 1997, MNRAS, 288, 958
Gierliński M., Zdziarski A. A., Poutanen J., Coppi P. S., Ebisawa K., Johnson W. N., 1999, MNRAS, 309, 496 (G99)
Ghisellini G., Guilbert P. W., Svensson R., 1988, ApJ, 334, L5
Goldwurm A., et al., 2003, A&A, 41, 223
Ibragimov A., Poutanen J., Gilfanov M., Zdziarski A. A., Shrader C. R., 2005, MNRAS, 362, 1435
Joinet A., Jourdain E., Malzac J., et al., 2007, ApJ, 657, 400
Jourdain E., & Roques J.-P., 2009, ApJ, 704, 17
Jourdain E., Roques J. P., Malzac J., 2012, ApJ, 744, 64
E. Jourdain, J. P. Roques, M. Chauvin, D. J. Clark, 2012, Accepted in ApJ, arXiv:1210.4783
Laurent P., Rodriguez J., Wilms J., Cadolle Bel M., Pottschmidt K., Grinberg V., 2011, Science, 332, L438
Lebrun F., Leray J. P., Lavocat, P., et al., 2003, A&A, 411, L141
Lightman, A. P., Zdziarski, A. A., & Rees, M. J. 1987, ApJL, 315, L113
Lightman, A. P., & Zdziarski, A. A. 1987, ApJ, 319, 643
Lund N., et al., 2003, A&A, 411, L231
McClintock J. E., Remillard R. A., 2006, in Compact Stellar X-ray Sources, ed. W. Lewin & M. van der Klis (Cambridge: Cambridge Univ. Press), 157
Magdziarz P., & Zdziarski A. A., 1995, MNRAS, 273, 837
Malzac J. & Belmont R., 2009, MNRAS, 392, 570 (MB09)
Malzac J., et al., 2006, A&A, 448, 1125
Malzac J., Lubisiński P., Zdziarski A. A., Cadolle Bel M., Turler M., Laurent P., 2008, A&A, 492, 527
Malzac J., Belmont R., Fabian A. C., 2009, MNRAS, 400, 1512
Malzac J., 2012, JUMPS, 8, 73
McConnell M. L., Zdziarski A. A., Bennett K., et al., 2002, ApJ, 572, 984
McConnell M. L., et al., 1994, ApJ, 424, 933
Oda H., Machida M., Nakamura K. E., Matsumoto R., 2012, ApJ, 712, 639
Oda H., Machida M., Nakamura K. E., Matsumoto R., Narayan R., 2012, PASJ, 64, 15
Orosz J. A., McClintock J. E., Aufdenberg J. P., Remillard R. A., Reid M. J., Narayan R., Gou L., 2011, ApJ, 742, 84
Pottschmidt K., et al., 2003, A&A, 411, L383
M. Del Santo et al.

Ponti G., Fender R. P., Begelman M. C., Dunn R. J. H., Neilsen J., Coriat M., 2012, MNRAS, 422, L11
Poutanen J., & Vurm I., 2009, ApJL, 690, 97 (PV09)
Rahoui F., Lee J. C., Heinz S., Hines D. C., Pottschmidt K., Wilms J., Grindlay V., 2011, ApJ, 736, 63
Reid M. J., McClintock J. E., Narayan R., Remillard R. A., Orosz J. A., 2011, ApJ, 742, 83
Rodriguez J., & Prat L., 2010, IJMPD, 19, 777
Shakura N. I., Sunyaev R. A., 1973, A&A, 24, 337
Sobolev, V. V. 1974, Astrophysics, 10, 113
Sobolewska M. A., Papadakis I. E., Done C., Malzac J., 2011, MNRAS, 417, 280
Stirling A. M., Spencer R. E., de la Force C. J., Garrett M. A., Fender R. P., Ogley R. N., 2001, MNRAS, 327, 1273
Stern, B. E., Begelman, M. C., Sikora, M., & Svensson, R., 1995, MNRAS, 272, 291
Sunyaev R. A., Titarchuk L. G., 1980, A&A, 86, 121
Ubertini P., et al., 2003, A&A, 411, L131
Vedrenne G., et al., 2003, A&A, 411, L63
Vurm I., & Poutanen J., 2009, ApJ, 698, 293
Wardziński G., Zdziarski A. A., Gierliński M., Grove J. E., Jahoda K., Johnson W. N., 2002, MNRAS, 337, 829
Wilms J., Nowak M. A., Pottschmidt K., Pooley G. G., Fritz S., 2006, A&A, 447, 245
Winkler C., et al., 2003, A&A, 411, L1
Zdziarski A. A., Poutanen J., Paciesas W. S., Wen L., 2002, ApJ, 578, 357
Zdziarski A. A., Gierliński M., 2004, Progress of theoretical Physics, 155, 99
Zdziarski A. A., 2000, Proceedings of IAU Symposium, 195, 153
Zdziarski A. A., Lubniński P., Sikora M., 2012, MNRAS, 423, 663
Table 3. The fit parameters of the joint JEM-X, IBIS and SPI spectra in twelve different spectral states. Fits have been performed with EQPAIR combined with DISKLINE. Values in parenthesis denote parameters fixed during the fits. One of the interesting fixed parameters is l_{bb} (l_{bb} in EQPAIR) which is fixed at 10 for states 1-4 and at 1 for states 5-12. The inner disc temperature is fixed at 0.3 keV in the intermediate states, while it is 0.1 keV in the harder ones. See text for the parameters description.

State	HR	$l_{\text{bb}}/l_{\text{th}}$	$l_{\text{bb}}/l_{\text{th}}$	τ_p	kT_{in} [eV]	$\Omega/2\pi$	Γ_{inj}	τ_{tot}	kT_{e} [keV]	χ^2/dof	Flux $\times 10^{-8}$ [erg cm$^{-2}$ s$^{-1}$]
1	0.37-0.41	$0.30^{+0.05}_{-0.04}$	(0.99)	0.20$^{+0.18}_{-0.08}$	627$^{+31}_{-108}$	$0.3^{+0.1}_{-0.1}$	3.44$^{+0.07}_{-0.08}$	0.20	48.0	0.82(89)	8.1 5.2 2.4
2	0.43-0.48	0.7 ± 0.1	(0.99)	0.8$^{+0.2}_{-0.4}$	416$^{+144}_{-39}$	0.4$^{+0.2}_{-0.1}$	2.93$^{+0.04}_{-0.06}$	0.86	25.0	0.97(127)	7.8 3.4 4.2
3	0.48-0.50	1.35$^{+0.08}_{-0.20}$	(0.99)	1.21$^{+0.15}_{-0.08}$	426$^{+33}_{-75}$	0.4$^{+0.08}_{-0.16}$	2.92$^{+0.05}_{-0.02}$	1.24	25.7	0.99(129)	7.8 2.1 5.2
4	0.50-0.53	1.63$^{+0.04}_{-0.02}$	(0.99)	1.4$^{+0.1}_{-0.03}$	430$^{+24}_{-20}$	0.37$^{+0.03}_{-0.02}$	2.80$^{+0.03}_{-0.02}$	1.48	23.7	1.04(125)	5.4 1.2 3.8
5	0.53-0.56	3.88$^{+0.09}_{-0.06}$	0.75$^{+0.06}_{-0.04}$	1.63 ± 0.02	(300)	0.17 ± 0.03	2.37$^{+0.08}_{-0.03}$	1.7	37.6	0.98(120)	4.6 0.6 3.8
6	0.56-0.58	4.4$^{+0.2}_{-0.1}$	0.83 ± 0.08	1.61$^{+0.20}_{-0.03}$	(300)	0.28$^{+0.02}_{-0.04}$	2.4 ± 0.1	1.62	41.0	0.98(116)	4.3 0.5 3.5
7	0.58-0.61	5.19$^{+0.06}_{-0.15}$	0.87$^{+0.05}_{-0.02}$	1.51 ± 0.03	(300)	0.29$^{+0.03}_{-0.01}$	2.50$^{+0.03}_{-0.17}$	1.52	47.2	0.99(118)	4.3 0.4 3.6
8	0.61-0.64	6.1$^{+0.1}_{-0.2}$	0.86$^{+0.06}_{-0.05}$	1.50 ± 0.07	(300)	0.32 ± 0.03	2.33$^{+0.03}_{-0.06}$	1.53	48.4	1.09(119)	4.4 0.4 3.6
9	0.64-0.66	11.3$^{+0.3}_{-0.2}$	0.55$^{+0.01}_{-0.07}$	1.30 ± 0.02	(100)	0.23$^{+0.04}_{-0.02}$	2.5$^{+0.4}_{-0.3}$	1.34	67.6	0.91(125)	4.2 0.3 3.8
10	0.66-0.68	16.2$^{+0.2}_{-0.4}$	0.51 ± 0.03	1.38$^{+0.06}_{-0.04}$	(100)	0.36$^{+0.11}_{-0.02}$	(2.0)	1.53	64.6	0.96(66)	4.7 0.1 4.0
11	0.68-0.70	16.3$^{+0.8}_{-0.3}$	0.33$^{+0.02}_{-0.03}$	1.30$^{+0.06}_{-0.02}$	(100)	0.31$^{+0.03}_{-0.02}$	(2.0)	1.41	76.0	1.04(130)	3.5 0.1 3.1
12	0.70-0.72	15.8$^{+0.7}_{-1.2}$	0.3$^{+0.2}_{-0.1}$	1.3 ± 0.1	(100)	0.33$^{+0.04}_{-0.04}$	(2.0)	1.39	77.2	0.95(132)	4.9 0.1 4.3
Table 4. Same spectra than in Tab. fitted with the BELM model with pure non-thermal acceleration plus DISKLINE and REFLECT.

HR	I_{nth}/l	l_B/I_{nth}	τ_b	Γ_{in}	kT_{in} [keV]	$\Omega/2\pi$	$\chi^2/\text{(dof)}$	$F_{\text{Bol}} \times 10^{-8}$ [erg cm$^{-2}$ s$^{-1}$]	B [Gauss]	l_B/l_{Br}
0.37-0.41	$0.19^{+0.05}_{-0.03}$	< 4.5	$2.6^{+0.4}_{-0.08}$	$3.0^{+0.4}_{-0.7}$	0.5 ± 0.2	$1.1^{+0.8}_{-0.4}$	0.85(88)	7.2	3.1×10^6	3.29
0.43-0.48	$0.29^{+0.09}_{-0.06}$	< 1.4	$1.1^{+1.1}_{-0.5}$	$2.7^{+0.3}_{-0.4}$	$0.21^{+0.06}_{-0.04}$	< 0.4	0.96(126)	6.7	2.1×10^6	1.34
0.48-0.50	$0.60^{+0.04}_{-0.05}$	< 0.2	$1.9^{+0.1}_{-0.2}$	$2.5^{+0.2}_{-0.1}$	$0.21^{+0.06}_{-0.04}$	0.4 ± 0.2	1.05(128)	6.3	1.1×10^6	0.31
0.50-0.53	$0.77^{+0.008}_{-0.005}$	< 0.007	2.56 ± 0.07	$2.69^{+0.13}_{-0.05}$	(0.2)	< 0.2	1.0(112)	3.8	1.8×10^5	0.012
0.53-0.56	$0.815^{+0.004}_{-0.002}$	< 0.003	2.45 ± 0.04	$2.76^{+0.08}_{-0.04}$	(0.1)	< 1.0	1.1(120)	3.8	1.2×10^5	0.056
0.56-0.58	(1)	$0.09^{+0.05}_{-0.02}$	$2.3^{+0.1}_{-0.2}$	$2.47^{+0.12}_{-0.09}$	< 0.3	$0.13^{+0.08}_{-0.06}$	0.94(17)	3.5	7.1×10^5	0.21
0.58-0.61	(1)	$0.050^{+0.002}_{-0.006}$	2.3 ± 0.1	$2.49^{+0.01}_{-0.04}$	< 0.3	0.16 ± 0.01	0.99(119)	3.7	5.4×10^5	0.12
0.61-0.64	(1)	0.025 ± 0.001	$2.17^{+0.08}_{-0.10}$	$2.37^{+0.04}_{-0.04}$	< 0.3	0.21 ± 0.02	0.93(17)	3.8	3.9×10^5	0.06
0.64-0.66	(1)	$0.03^{+0.02}_{-0.01}$	$2.04^{+0.05}_{-0.03}$	$2.78^{+0.02}_{-0.03}$	< 0.3	$0.10^{+0.02}_{-0.06}$	0.85(126)	3.6	4.2×10^5	0.07
0.66-0.68	(1)	$0.004^{+0.0002}_{-0.001}$	2.3 ± 0.1	2.4 ± 0.1	< 0.3	$0.25^{+0.02}_{-0.05}$	1.07(67)	4.2	1.6×10^5	0.009
0.68-0.70	(1)	0.012 ± 0.002	$2.07^{+0.06}_{-0.04}$	$2.78^{+0.03}_{-0.15}$	< 0.3	$0.22^{+0.07}_{-0.08}$	0.96(18)	3.2	2.5×10^5	0.03
0.70-0.72	(1)	$0.0029^{+0.017}_{-0.001}$	$2.36^{+0.08}_{-0.29}$	$2.18^{+0.05}_{-0.05}$	< 0.3	$0.17^{+0.07}_{-0.11}$	1.03(132)	4.6	1.3×10^5	0.006
Table 5. Spectra below 200 keV in HS fitted with a pure thermal heating model. kT_p and $kT_{p\text{(obs)}}$ are the temperatures of the ions for $l_c = 1$ and l_c observed ($l_c = l$), respectively.

HR	l_B/l_c	τ_p	$\Omega/2\pi$	χ^2_{dof}	$F_{\text{Bol}} \times 10^{-8}$ [erg cm$^{-2}$ s$^{-1}$]	B [Gauss]	l_B/l_{Br}	kT_e [keV]	kT_p [keV]	$kT_{p\text{(obs)}}$ [MeV]
0.64-0.66	68^{+12}_{-3}	$1.83^{+0.2}_{-0.02}$	$0.12^{+0.05}_{-0.04}$	0.94(107)	3.5	1.9×10^7	176.3	79.0	245	1.6
0.66-0.68	44^{+4}_{-8}	2.0 ± 0.1	$0.27^{+0.01}_{-0.04}$	0.94(58)	3.9	1.7×10^7	110.3	70.2	219	1.5
0.68-0.70	48^{+12}_{-4}	$2.0^{+0.2}_{-0.06}$	$0.19^{+0.05}_{-0.06}$	0.90(112)	3.0	1.5×10^7	119.8	78.2	215	1.1
0.70-0.72	64^{+17}_{-21}	$2.1^{+0.3}_{-0.2}$	$0.14^{+0.12}_{-0.06}$	0.95(113)	4.1	2.0×10^7	157.1	72.3	183	1.3