Absolute spin-valve effect with superconducting proximity structures

Daniel Huertas-Hernando1, Yu. V. Nazarov1, W. Belzig2

1Department of Applied Physics and Delft Institute of Microelectronics and Submicronotechnology, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
2Department of Physics and Astronomy, University of Basel, Klingelbergstr. 82, 4056 Basel, Switzerland

(March 22, 2022)

Spin transport in hybrid systems of ferromagnets and normal metals is a very active field of research. This is inspired by prospectives of spin-based electronics or “spintronics” [1]. The feasibility to create and control spin accumulation in such systems by injecting spin-polarized current from a ferromagnetic material into a non-magnetic one is being extensively studied [3]. The theory predicts a variety of novel effects in the case of non-collinear magnetization[3].

The main attention receives the so-called spin-valve effect, which provides the mechanism for the giant magnetoresistance (GMR) [6]. An idealized ferromagnetic metal would have electrons with only one direction of spin. The current between two such metals would not go if their magnetizations are opposite. This is the absolute spin-valve effect. The absolute effect is impossible to achieve with common ferromagnetic metals, since electron states of both spin directions are present at Fermi surface. This is why the actual values of GMR are relatively small. There have been substantial efforts to increase these values by exploring various material combinations [4]. Recent attempts to realize the absolute spin-valve effect concentrated on exotic magnetic materials. A spin polarization of up to 80% was achieved using the dilute magnetic semiconductor Zn\textsubscript{1-x}Mn\textsubscript{x}Se [5].

In this Letter we propose a different approach, in which an absolute spin-valve effect can be achieved without using “exotic” compounds. We suggest to use the proximity effect minigap induced in a normal metal by an adjacent superconductor. This minigap has been predicted long ago [6] and has been intensively investigated in recent years [7]. Features related to the proximity effect can be probed by tunneling spectroscopy measurements. The tunneling current between two superconducting proximity structures exhibits a jump at the voltage $eV_{th} = (\tilde{\Delta}_1 + \tilde{\Delta}_2)$, $\tilde{\Delta}_i(2)$ being the minigaps in the structures. For the calculation, we adopt the circuit theory description [9]. This assures that neither the ferromagnet suppresses superconductivity nor the superconductor affects ferromagnetism. It also provides more control over the strength of the correlations.

We have found that the best result is achieved if the ferromagnet is an insulator. Then the only result of the magnetic correlations is a shift $\pm \hbar$ of the minigap edges for opposite spin directions. The peaks of the density of states are therefore split. If one combines two such structures by a tunnel contact between the normal metal parts, the tunneling current exhibits jumps at different threshold voltages depending on which spin components contribute to the current. In the voltage interval between these threshold voltages, the tunneling current jumps from zero to a finite value differently for parallel than for antiparallel orientations of magnetizations in the two structures. Generally, the results depend on the relative orientation of the magnetizations of the two ferromagnets in the system, as well as on the induced superconducting gaps and the induced spin-splitting in each normal metal.

A possible design for an actual device is shown in Fig.1. It consists of two S/N/F structures as described above with their normal parts connected by a tunnel junction. For the calculation, we adopt the circuit theory description of the system [9]. In terms of Green’s functions, this means that we assume isotropic Green’s functions in momentum space. Quasiclassical Green’s functions have already been used to study structures involving superconducting materials and magnetically active interfaces [10]. The advantage of the circuit theory description is that we do not have to specify a concrete geometry of the structures. Each part of the structure is...
then presented by a normal node, which is connected to superconducting and ferromagnetic reservoirs by means of tunnel junctions. We concentrate first on one of the structures.

In the circuit theory, the Green’s functions are calculated from balance equations for matrix “currents” in each node. These currents come from each connector to the node. The matrix current is expressed in terms of the connector properties and the Green’s functions on the two sides of the connector. The case of a matrix current, that accounts both for the ferromagnetic and for the superconducting nature of the reservoirs, as well as for the magnetic structure of the contact, has not yet been included into the circuit theory. We have investigated this problem in some details \[11\]. Here, we only give the results for the relevant case of a tunnel connector:

\[
\hat{I}_{21} = \frac{G_T}{2} [\hat{G}_2, \hat{G}_1] + \frac{G_{\text{MB}}}{4} \left\{ \hat{M} \hat{\sigma} \hat{\tau}_3, \hat{G}_2, \hat{G}_1 \right\} + i \frac{G_{\phi}}{2} \left\{ \hat{M} \hat{\sigma} \hat{\tau}_3, \hat{G}_1 \right\}.
\] (1)

Here \(\hat{G}_{1(2)} \) are the Green’s functions on the two sides of the junction. They are matrices in Keldysh-Nambu-spin space, obeying the normalization condition \(\hat{G}^2 = 1 \) \[12\]. The first term presents the usual boundary condition for tunnel junctions \[11\], \(G_T \) being the junction conductance. The second term accounts for the different conductances for different spin directions. This term leads to a spin polarized current through the junction. We assume a small value of this effect, \(G_{\text{MB}} \sim G_T^\uparrow - G_T^\downarrow \ll G_T \). The unity vector \(\hat{M} \) is in the direction of the magnetization, and \(\hat{\sigma}, \hat{\tau} \) are Pauli matrices in spin and Nambu space, respectively.

The third term is of the most interest for us. It will not vanish even if there is no conductance through the junction. In this special case, the physical meaning of the third term can be understood as follows: electrons with different spin directions pick up different phases when reflecting from the magnetic insulator. The coefficient \(G_{\phi} \) is related to the mixing conductance introduced in \[11\] via \(G_{\phi} = \text{Im} G_{\uparrow\downarrow} \). To give a concrete example, we have calculated \(G_{\phi} \) in the framework of an effective mass model for electrons with Fermi momentum \(k_f \) and with spin-dependent penetration depths \(\kappa_{\uparrow\downarrow} \) \[13\]. Assuming \(\delta \kappa \equiv \kappa_\uparrow - \kappa_\downarrow \ll \kappa \), we find \(G_{\phi} = 10^{-4} G_{Q} \delta \kappa \text{arcsin} (k_f/\kappa)/(k_f^2 + \kappa^2), \) \(\lambda \) being the surface area of the interface and \(G_{Q} \equiv e^2/2\pi h \). The first principles calculations of these interface spin conductances have been performed recently \[14\].

We proceed by finding the Green’s functions for equilibrium conditions. In particular it is sufficient to find the solution in the retarded block only. The retarded Green’s functions associated with the ferromagnetic and with the superconducting reservoirs are respectively \(\hat{R}_F = \hat{\tau}_3 \) and \(\hat{R}_S = \hat{\tau}_1 \), assuming that the range of energies considered is smaller than gap of the superconducting reservoir \((\varepsilon \ll \Delta_{\text{bulk}}) \). The retarded function \(\hat{R} \) in the normal metal is obtained from the conservation of matrix currents in the node. The current from the superconductor is given by the first term in \(i \hat{G}_\uparrow \) and the current from the ferromagnetic insulator is given by the third term. A further current (called “leakage current” in Ref. \[11\]) being proportional to energy \(\varepsilon \) and inversely proportional to the average level spacing \(\delta \) in the normal node, is also included. It describes decoherence between electrons and holes. The matrix current conservation then reads

\[
\left[-i G_Q \frac{\varepsilon}{\delta} \hat{\tau}_3 - i \frac{G_{\phi}}{2} \hat{M} \hat{\sigma} \hat{\tau}_3 + \frac{G_{\text{T}}(S)}{2} \hat{\tau}_1, \hat{R} \right] = 0,
\] (2)

where \(G_{\text{T}}(S) \) is the conductance of the tunnel junction to the superconductor. This equation is easy to solve since it again separates into two blocks for spin parallel (\(\uparrow \)) and antiparallel (\(\downarrow \)) to the magnetization. We introduce parameters \(\hbar \equiv G_{\phi} \delta/2G_Q \) and \(\Delta = G_{\text{T}}(S) \delta/2G_Q \). In these notations, the normalized density of states in the normal node is different for two spin directions and reads

\[
\nu^{(\uparrow)}(\varepsilon) = \frac{|\varepsilon \pm \hbar|}{\sqrt{(\varepsilon \pm \hbar)^2 - \Delta^2}}
\] (3)

This expression is the same as the one for a BCS superconductor in the presence of the spin-splitting magnetic field \[13\]. However, here the density of states is formed in the normal metal, where neither superconductivity nor magnetization are present. The quantities \(\Delta, \hbar \) are induced by the corresponding reservoirs. This is why superconductivity and ferromagnetism do not have to compete and the relevant parameters can be experimentally controlled by adjusting the conductivities of the barriers \[15\].

Having obtained the simple solution \(i \hat{G}_\uparrow \), we discuss now the limits of its validity. The first limitation is the presence of sufficiently strong scattering in the normal part and/or at its boundaries to provide the isotropy of the Green function. Two other limitations are provided by the homogeneity of the Green’s function in the node. The minimum size \(L \) of the normal part should exceed neither the superconducting coherence length nor the spin-flip length. If the size of the system is larger than the spin-flip length, the circuit theory description fails and spatially dependent Green’s functions have to be considered. In addition, the conductance of the normal part itself should exceed both \(G_{\phi} \) and \(G_{\text{T}}(S) \).

Now we consider transport between the two S/N/F structures through a non-magnetic tunnel junction with conductance \(G_{\text{T}}(L) \) connecting the two normal metals (see Fig.1). Both structures are assumed to be in local equilibrium. This assumption is justified if \(G_{\text{T}}(L) \ll G_{\phi}, G_{\text{T}}(S) \). A voltage \(V \) is applied between them. We also assume that the temperature \(T \) is much smaller than \(\Delta, \hbar \). This
is required for the absolute spin-valve effect. The magnetization directions $\vec{M}_{1(2)}$ of each magnetic insulator may be arbitrary. The matrix current between the two nodes reads

$$I = \frac{G^{(j)}_{1(2)}}{2} \left[\hat{G}_1, \hat{G}_2 \right],$$

where $\hat{G}_{1(2)}$ are the quasiclassical Green’s functions for the left (1) and for the right node (2) respectively. We can choose the spin-quantization axis to be parallel to \vec{M}_1. As a result, the Green’s function \hat{G}_1 separates into two blocks in spin space

$$\hat{G}_1 = \begin{bmatrix} \hat{G}^{\uparrow\uparrow} & 0 \\ 0 & \hat{G}^{\downarrow\downarrow} \end{bmatrix}.$$ \hspace{1cm} (5)

The Green’s function \hat{G}_2 can be presented as

$$\hat{G}_2 = U \begin{bmatrix} \hat{G}^{\uparrow\uparrow} & 0 \\ 0 & \hat{G}^{\downarrow\downarrow} \end{bmatrix} U^{-1}.$$ \hspace{1cm} (6)

U being the spin rotation matrix that transforms \vec{M}_2 into \vec{M}_1. The electric current is given by the Keldysh component of Eq. (4)

$$I_e = -\frac{G^{(j)}_{1(2)}}{8e} \int_{-\infty}^{\infty} d\varepsilon \text{Tr} \left\{ \hat{T}_3 \left[\hat{G}_1, \hat{G}_2 \right] \right\}.$$ \hspace{1cm} (7)

It may be written as

$$I_e = \frac{1}{4} I_{p,\theta} + \frac{1}{4} I_{\theta}(\vec{M}_1 \cdot \vec{M}_2),$$ \hspace{1cm} (8)

where $I_{p,\theta} = I^{\uparrow\uparrow} + I^{\downarrow\downarrow} \pm I^{\uparrow\downarrow} \pm I^{\downarrow\uparrow}$. Each $I^{ss'}$ (s and $s' = \{\uparrow, \downarrow\}$) is an integral of the form

$$I^{ss'} = \frac{G^{(j)}_{1(2)}}{e} \int_{0}^{\infty} d\varepsilon \left[\psi^*_s(\varepsilon - eV) \psi_{s'}(\varepsilon) \right].$$ \hspace{1cm} (9)

As a function of the applied bias voltage, the left density of states $\psi^*_s(\varepsilon - eV)$ is shifted in energy. Now we assume $\tilde{\Delta}_{1(2)} \gg \hbar_{1(2)}$. Each component $I^{ss'}$ will be zero until the voltage reaches a certain threshold $eV^{ss'}_{th}$, at which both and right densities of states start to overlap. Because both densities of states are spin-split, there are four different threshold voltage $eV^{ss'}_{th}$, depending on which spin components of both densities of states are “matched” together

$$eV^{ss'}_{th} = \tilde{\Delta}_1 + \tilde{\Delta}_2 \pm \left(\hbar_1 \pm \hbar_2 \right).$$ \hspace{1cm} (10)

So the voltage interval $|eV - \tilde{\Delta}_1 - \tilde{\Delta}_2| \leq \hbar_1 + \hbar_2$ can be divided in four regions, separated by the four different threshold voltages $eV^{ss'}_{th}$.

To illustrate the effect, we consider the symmetric case $\tilde{\Delta}_1 = \tilde{\Delta}_2 \equiv \tilde{\Delta}$, $\hbar_1 = \hbar_2 \equiv \hbar$. In this case, there are only three threshold voltages $eV^{\uparrow\downarrow}_{th}$, $eV^{\downarrow\uparrow}_{th} = 2(\tilde{\Delta} - \hbar)$, and $eV^{\uparrow\uparrow}_{th} = 2(\tilde{\Delta} + \hbar)$. At each threshold, the correspondent spin component $I^{ss'}$ jumps from zero to the value

$$I^{ss'} \approx \frac{\pi G^{(j)}_{1(2)}}{4e} eV^{ss'}_{th}.$$ \hspace{1cm} (11)

These jumps are characteristic of tunneling between superconductors (S-S tunneling) \cite{3}. Through the voltage interval $|eV - 2\Delta| \leq 2\hbar$, the total current I_e presents steps reflecting these jumps (Fig. 2). These steps depend on the relative angle θ between the magnetization of the magnetic insulators (see Fig. 2). Of specific interest is the first jump of the current in antiparallel configuration ($\theta = \pi$), occurring at the threshold $eV^{\uparrow\downarrow}_{th} = 2(\tilde{\Delta} - \hbar)$. In this case only spin-down quasiparticles in the left node overlap with spin-up quasiparticles in the right node, which constitutes the absolute spin valve-effect. As expected, the total current being finite at $\theta = \pi$, goes to zero if the magnetization of one of the ferromagnetic insulator is reversed (see Fig.2). The absolute spin valve-effect already vanishes at the second zone. Nevertheless again the difference between $\theta = \pi$ and $\theta = 0$ currents resembles the effect. Generally these results depend on the relative values of $\hbar_{1(2)}$ and $\tilde{\Delta}_{1(2)}$. In general the region of voltages where the effect occurs $eV^{\uparrow\downarrow}_{th} - eV^{\downarrow\uparrow}_{th}$ is equal to $2\min(\hbar_1, \hbar_2)$.

In conclusion, we have investigated theoretically spin transport in multiterminal S/N/F proximity structures using quasiclassical Green’s function methods, inspired by circuit theories of mesoscopic transport \cite{4}. Spin-splitting of the induced density of states, caused by the presence of magnetic insulators, is probed by means of tunneling spectroscopy of the superconducting proximity effect. The tunneling current has jumps for certain intervals of voltages, in which an absolute spin valve effect can be achieved. These features of the current depend on the relative angular configuration of the different magnetic insulators and on the relative values of the induced superconducting minigap and the induced spin-splitting in each node. Moreover our proposal allows for the possibility of inducing two independent “fields” (i.e. antiparallel “fields”) in the device. This would be very difficult to achieve with an applied magnetic field in a system of superconducting electrodes. Finally, we emphasize, that the physical separation of the sources of both superconducting and ferromagnetic correlations provides a feasible way to manipulate specifically the spin-filtering properties of our proposed multiterminal S/N/F proximity structure.

We thank discussions with A. Brataas, Ya. M. Blanter, Gerrit E. W. Bauer and M.R. Wegewijs. We specially thank N.M. Chtchelkatchev for stimulating discussions and for his help with the numerical calculations. This
work was financially supported by the Stichting voor Fundamenteel Onderzoek der Materie (FOM).

[1] G. A. Prinz, Phys. Today 282, 1660-1663 (1998); S. Datta and B. B. Das, Appl. Phys. Lett. 56, 665 (1990); J. M. Kikkawa, D. D. Awschalom, Nature 397, 139 (1999); R. Fiederling et al., Nature 402, 787 (2000); Y. Ohno et al., Nature 402, 790 (2000); I. Malajovich et al., Phys. Rev. Lett. 84, 1015 (2000).

[2] F. J. Jedema et al., Nature 410, 345 (2000); A. Filip et al., Phys. Rev. B 62, 9996 (2000).

[3] A. Brataas et al., Phys. Rev. Lett. 84, 2481 (2000); D. Huertas-Hernando et al., Phys. Rev. B 62, 5700 (2000).

[4] M. A. M. Gijs and G. E. W. Bauer, Adv. Phys. 46, 285 (1997);

[5] Th. Gruber, Appl. Phys. Lett. 78, (8) 1101 (2001).

[6] W.L. McMillan and J.R. Rowell, in Superconductivity, edited by R.D. Parks (Marcel Dekker, New York, 1969); M. Tinkham Introduction to Superconductivity, 2nd ed., (McGraw Hill, N.Y., 1996).

[7] S.M. Freake and C.J. Adkins, Phys. Lett 7, 382 (1969); J. Vrba and S.B. Woods, Phys. Rev. B 16, 2072 (1977); S. Guéròn et al., Phys. Rev. Lett. 77, 3025 (1996); W. Belzig et al., Phys. Rev. B 54, 9443 (1996); E. Scheer et al., Phys. Rev. Lett. 86, 284 (2001); N. Moussy et al., Europhys. Lett. 55, 861 (2001); M. Zareyan et al., Phys. Rev. Lett. 86, 308 (2001).

[8] W.L. McMillan and J.R. Rowell, in Superconductivity, edited by R.D. Parks (Marcel Dekker, New York, 1969); M. Tinkham Introduction to Superconductivity, 2nd ed., (McGraw Hill, N.Y., 1996).

[9] Yu.V. Nazarov, Phys. Rev. Lett. 73, 1420 (1994); Yu.V. Nazarov, Superlatt. and Microstruct. 25, 1221 (1999).

[10] A. Millis et al., Phys. Rev. B 38, 4504 (1988); M. Fogelstrom, Phys. Rev. B 62, 11812 (2000); J.C. Cuevas et al., Phys Rev B. 64, 104502 (2001).

[11] D. Huertas-Hernando et al., unpublished.

[12] J. Rammer and H. Smith, Rev. Mod. Phys. 58, 323 (1986).

[13] T. Tokuyasu et al., Phys. Rev. B 38, 8823 (1988).

[14] K. Xia et al., cond-mat/0107589 (2001).

[15] W. J. Gallagher et al., Phys. Rev. B 21, 962 (1980); R. Meservey and P. M. Tedrow, Phys. Rep. 238, 173 (1994).

[16] In particular we found that the parameters that control the injection of the “ferromagnetic” and “superconducting” correlations are inversely proportional to the average time, that it takes for the quasiparticles to probe each of the junction that connect the node with the reservoirs ($\tau_F = h/\Delta$, and $\tau_F = h/\Delta$ respectively).

[17] There is also a term I_1 in I_c, which describes supercurrent between the two nodes: $I_1(t) = I_1(eV) \sin(2eVt+\Phi)$. For a d.c. bias voltage, this Josephson current alternates and does not contribute to d.c. electric current.

FIG. 1. Schematic circuit of two coupled tri-layer S/N/F structures. In each trilayer structure, a normal metal node (N) is coupled to superconducting (S) and ferromagnetic (F) reservoirs through tunnel junctions of conductances $G_T^{(S)}$ and G_ϕ respectively. The ferromagnetic reservoir is assumed to be a magnetic insulator. Both normal metal nodes are coupled together through a third tunnel junction $G_T^{(J)}$. The relative magnetic configuration of the ferromagnetic insulators may be non-collinear. A voltage V is applied between both N nodes.

FIG. 2. Steps of the normalized N-N tunneling current $e I_c/(G_T^{(J)} \Delta)$ with the applied voltage V for the symmetric case $\Delta_1 = \Delta_2 \equiv \Delta$, $h_1 = h_2 \equiv h$. In this case $h/\Delta = 0.5$. The tunneling current presents jumps in the range of voltages $|eV - 2\Delta| \leq 2h$. For $\theta = 0$, the current jumps at the voltage $eV = 2\Delta$. For $\theta = \pi$ the current presents two jumps at voltages $eV = 2(\Delta - h)$ and $eV = 2(\Delta + h)$ respectively. This jumps reflect how the different spin components of the induced density of states in each normal node, contribute to the total tunneling current at different voltages. Between the voltages $eV = 2(\Delta - h)$ and $eV = 2\Delta$ the absolute spin-valve effect is achieved. The change of the current between $\theta = 0$ and $\theta = \pi$ situations is shown for various values of the angle θ.

4
Fig. 2 D. Huertas-Hernando et al.

\[e I_e / (G_T^{(j)} \tilde{\Delta}) \]

- \(\theta = 0 \)
- \(\theta = \pi/4 \)
- \(\theta = \pi/2 \quad \tilde{h} = 0.5 \tilde{\Delta} \)
- \(\theta = 3\pi/4 \)
- \(\theta = \pi \)

\[eV / \tilde{\Delta} \]
Fig. 1 D. Huertas-Hernando et al.