Phosphorus recovery by struvite precipitation: a review of the impact of calcium on struvite quality

Isaac Enyemadze a,*, Francis W. Y. Momadeb, Sampson Oduro-Kwartenga and Helen Essandoha a

a Department of Civil Engineering, Regional Water and Environmental Sanitation Center Kumasi (RWESCK), Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
b Department of Material Engineering, College of Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana

*Corresponding author. E-mail: isaac.enyemadze@gmail.com

ABSTRACT

Precipitation of phosphorus (P) as a struvite product from wastewater and local magnesium (Mg) sources is considered as a high economical prudent venture, as it has shown to bring down the cost of producing the product. However, there is a significant concentration of calcium (Ca) in these Mg and most wastewater sources. The presence of Ca in wastewater and Mg sources during struvite precipitation has been shown to negatively affect the quality of the struvite produced. The low struvite quality greatly impedes its use as a fertiliser given the economic value of the product as an alternative P fertiliser. This review paper provides an understanding of how the presence of Ca affects the purity, crystal size, and morphology of the struvite. Different methods that have been used to mitigate the effect of Ca on struvite quality have been reviewed. The factors that affect the recovery of P and the percentage recoveries of P by different Mg sources have also been reviewed. This paper serves as a basis for further research where the possibility of removing Ca from wastewater and Mg sources is explored. When Ca is removed before struvite precipitation is carried out, the quality of the product will be greatly improved.

Key words: calcium, magnesium sources, precipitation, quality, struvite

HIGHLIGHTS

- Trend analysis of impact of Ca on struvite quality has been done.
- All methods for the mitigation of the negative impact of Ca have been reviewed.
- Nutrient removal efficiencies of Mg sources have been compared.
- Molar ratios that affect struvite quality have been identified.
- Research gap for improving struvite quality has been identified.

1. INTRODUCTION

The presence of Ca²⁺ during struvite precipitation has been shown to negatively affect characteristics of the struvite produced (Le et al. 2005, Li et al. 2016; Liu & Wang 2019; Moragaspitiya et al. 2019; Bayuseno & Schmahl 2020; Hutnik et al. 2020). Precipitating struvite at high Ca concentration produces undesired amorphous product and reduces the proportion of P in the struvite (Desmidt et al. 2013; Li et al. 2016). This can be attributed to the fact that when the ratio of Ca/Mg is high, the reaction between P and nitrogen (N) reduced (Li et al. 2016). The wastewater, which is used (such as swine waste, cattle waste, and faecal sludge effluent) for struvite precipitation, contains some high concentration of Ca. Li et al. (2016) reported CO₃²⁻, SO₄²⁻, Ca²⁺, Al³⁺, Zn²⁺, and Cu²⁺ as some of the common ions found in wastewater streams with calcium present at high concentrations. This can be confirmed by Munir et al. (2017) in a study where concentrations of PO₄³⁻, Ca²⁺, Cu²⁺, and Zn²⁺ in faecal sludge were determined. They reported concentrations as 31.0, 90.0, 2.5, and 3.4 ppm, respectively. The effluent after undergoing hydrothermal treatment contained 0–90, 30–37, 11–50, and 15–20% of PO₄³⁻, Ca²⁺, Cu²⁺, and Zn²⁺, respectively.
The precipitation of struvite requires the chemical addition of magnesium (Mg) in a non-spontaneous reaction to form magnesium ammonium phosphate (MgNH₄PO₄·6H₂O) (Barbosa et al. 2016).

\[
\text{NH}_4^+ + \text{Mg}^{2+} + \text{HPO}_4^{2-} + 6\text{H}_2\text{O} \rightarrow \text{MgNH}_4\text{PO}_4 \cdot 6\text{H}_2\text{O} + \text{H}^+
\]

The commonly used Mg sources used in the struvite reaction in their solution form are MgCO₃, MgSO₄, MgO, Mg(OH)₂, and MgCl₂. The alkaline nature of MgCO₃, MgO, and Mg(OH)₂ helps by increasing the pH during the precipitation reaction. The struvite precipitation produces H⁺, which decreases the pH, and so requires periodic dosing of NaOH to increase the pH. However, MgSO₄ and MgCl₂ are widely used for phosphorus recovery due to their greater solubility because of their reduced reaction time (Wu & Bishop 2004). Nevertheless, the use of these external Mg sources increases the cost of producing struvite and discourages the production of struvite as a fertiliser. Barbosa et al. (2016) reported that the cost of operation for the crystallisation of struvite mainly arises from the cost of reagent, power, and sometimes transportation. An increase in 75% cost has been reported due to the addition of magnesium (Peng et al. 2018), and this has hampered the application of struvite as a fertiliser due to the high operational cost (Wang et al. 2018). Research has shown that the addition of low-cost magnesium sources can significantly reduce the cost of producing struvite between 18 and 81% (Huang et al. 2011; Lahav et al. 2013 as cited by Wang et al. 2018).

Some natural Mg sources, which have shown potential to precipitate struvite, are wood ash (Sakthivel et al. 2012; Huang et al. 2017), brucite (Zhang et al. 2009; Huang et al. 2011; Hövelmann & Putnis 2016), dolomite (Roques et al. 1991; Holmberg et al. 2000; Chen et al. 2017), and bittern, brine, or seawater (Li & Zhao 2002; Ye et al. 2011; Lahav et al. 2013; Liu et al. 2013; Tran et al. 2016; Huang et al. 2017). These natural sources contain a significant amount of calcium.

This review paper discusses the impact of Ca on struvite quality in P recovery, and the methods used for reducing the impact to date has been reviewed to enable the use of an effective method in future studies.

2. OVERVIEW OF RESEARCH

In the past 29 years, there has not been a clear pattern (Figure 1) in terms of published work in studies on the effect of Ca on struvite quality until recently where publication in this area has increased. A total of 60 non-medical publications have been reviewed in the Scopus database. This paper provides a review of the influence of Ca on struvite quality specifically on purity, size, and morphology of the precipitate. In addition, factors that have been used to mitigate the effect of Ca have also been reviewed. In this review, the nutrient (P and N) removal efficiencies of different Mg sources have also been considered.

Figure 1 shows a general view of non-medical research on how Ca influences struvite quality since 1991. The number of publications has been very low with an increase from 7 in 2019 to 11 as of October 2020. This can be corroborated by Li et al. (2019a, 2019b) in their review paper where they reported low publication on struvite quality research which is needed for industrial application. However, research activities in struvite precipitation have rather seen a gradual increase since 2010.
The direction of research (Table 1) has been how Ca concentration in solution influences the struvite purity, crystal size, and morphology and the methods used to mitigate the negative impacts it has on struvite products. Published paper by wastewater type (Figure 2) shows that majority of the wastewater source used is synthetic. The synthetic wastewater enables the researcher to manipulate the concentrations of Ca, Mg, NH₄-N, and PO₃-P in solution and observe how the different molar ratios affect struvite size, purity, and morphology. The different concentrations are also manipulated to enable a researcher to observe how the negative impact of Ca on struvite quality can be mitigated.

Currently, China is leading the research, in terms of published papers, on the influence of Ca on the quality of struvite as can be seen in Figure 3.

3. EFFECT OF CALCIUM ON STRUVITE QUALITY

3.1. Struvite purity

The purity of the struvite product is determined by the percentage mass of the pure struvite (MgNH₄PO₄·6H₂O) in the total precipitate. The higher the struvite purity, the greater its effectiveness as a fertiliser.

Different methods have been used to determine struvite purity in the literature by analysing the concentration of NH₄-N in the precipitate formed (Hao et al. 2013; Sun et al. 2020). NH₄⁺ is removed from the solution only during the formation of struvite. It is not involved in any reaction, which competes for PO₃³⁻; therefore, when a certain mass of the precipitate is first dissolved in HCl and then diluted with water, the purity of the struvite can be calculated by using the following equation:

\[
\text{% purity of struvite} = \frac{n(\text{NH}_4 - \text{N}) \times \text{MW}_{\text{struvite}}}{\text{mass of dissolved precipitate}} \times 100
\]

Table 1 | Presenting the influence of Ca on struvite purity and size from various wastewater sources and according to various investigators

Wastewater type	Mg source	Mg/Ca ratio	Struvite purity (%)	Crystal size (μm)	Key findings	References
Synthetic	MgCl₂·6H₂O	1.0	95.51	–	XRD result revealed that up to 31.4% amorphous material was produced.	Moragasptiya et al. (2019)
Synthetic	MgCl₂·6H₂O	1:1	73.31	–		
Synthetic	MgCl₂·6H₂O	1.2	81.06	–		
Fertiliser industry	MgCl₂·6H₂O	0.04% Ca	36.8	–	Crystallisation reaction of struvite was affected by the presence of Ca ions. The presence of Ca in the processing system resulted in the co-formation of amorphous calcium phosphates.	Hutnik et al. (2019)
Cattle manure	MgCl₂·6H₂O	0.12% Ca	40.2	–		
Synthetic	MgCl₂·6H₂O	0.15% Ca	24.5	–		
Urine	Seawater	4.7:1	92.8	–	The presence of Ca in the Mg sources can compromise struvite purity. It was found that the higher the Mg/Ca ratio in the Mg source, the higher the struvite purity could be obtained.	Liu et al. (2013)
Urine	Brine	10.4:1	96.6	–		
Urine	MgCl₂	1.0	99.9	–		
Swine	MgCl₂	1:1	38	–	Calcium is the major competing ion in struvite formation, and struvite purity can be greatly decreased when the Mg/Ca ratio is less than 1.	Wang et al. (2005)
Swine	MgCl₂	2:0.5	85	–		
Swine	MgCl₂	2:1	62	–		
Synthetic	MgCl₂·6H₂O	1.0	–	13.4–15.1	An increase in Ca concentration during struvite precipitation reduces the crystal size and impedes the struvite growth and leads to the production of amorphous substances instead of crystalline struvite.	Le et al. (2005)
Synthetic	MgCl₂·6H₂O	1:1	–	3.1		
Synthetic	MgCl₂·6H₂O	1:2	–	2.7		
Synthetic	MgCl₂·6H₂O	2:1	–	4.5		
WWTP effluent	MgCl₂·6H₂O	1.7	–	14		Zhang et al. (2015)
where \(n(NH_4 - N)\) is the number of moles of dissolved struvite, which is determined by the titrimetric method, and \(MW_{struvite}\) is the molecular weight of the struvite (Clesceri et al. 1999).

Also, the quantitative X-ray diffraction (QXRD) technique has been used to determine the purity of the precipitated struvite. Lu et al. (2016) used QXRD to measure elemental concentrations of N, Mg, and P in the precipitate formed. This elemental information from QXRD is compared with elemental concentrations of N, Mg, and P using ICP. The concentration of N obtained from QXRD and ICP was very consistent and it was concluded that the QXRD technique is an effective method to determine \(MgNH_4PO_4\cdot6H_2O\) content in struvite precipitate. The elemental analysis showed that N in the precipitates produced was primarily from the struvite phase, while Mg and P in the recovered precipitates were from both crystalline (i.e. struvite) and amorphous phases.

Furthermore, by comparing the % mass of Mg, NH\(_4\)-N, and PO\(_4\)-P in struvite precipitate with theoretical values of Mg, NH\(_4\)-N, and PO\(_4\)-P in pure struvite, the purity of the struvite can be estimated. The % mass of Mg, NH\(_4\)-N, and PO\(_4\)-P in pure struvite is 9.9, 5.7, and 12.6, respectively. The % composition of impurities (Ca, Fe, and CO\(_3^{2-}\)) in the supernatant can then be measured to ascertain how much of the impurities remain in the precipitate (Huang et al. 2006; Kemacheevakul et al. 2014).

In addition, energy dispersive spectrometry (EDS) has been used to identify the elemental composition of precipitates to measure the purity of struvite (Le et al. 2005). For samples with 0% Ca, the graph showed Mg, P, and O as the highest peaks. This is expected because these are the main elements in struvite in terms of percentage mass. At the Mg/Ca ratio of
1:1 and above, EDS spectrum reveals the formation of amorphous calcium phosphate compounds covering the struvite crystals.

\[5\text{Ca}^{2+} + 3\text{PO}_4^{3-} + \text{H}_2\text{O} \rightarrow \text{Ca}_5(\text{PO}_4)_3\text{OH} + \text{H}^+ \]

3.2. Crystal size

The size attained by struvite crystal during product precipitation depends on a two-step process: nucleation and crystal growth. The growth of the crystal is affected by a combination of several factors such as the pH (Matynia et al. 2006), supersaturation, mixing turbulence (Matynia et al. 2006), and presence of foreign ions (Le et al. 2005; Liu & Wang 2019; Moragaspitiya et al. 2019; Hutnik et al. 2020). Le et al. (2005) found that at higher concentrations of Ca (with regard to Mg) in the solution, the mean size of the struvite is decreased. In their experiment to determine the impact of Ca on struvite size, they found that at the Mg/Ca ratio of 1:1 and above, the struvite formed was restricted and crystals were further inhibited by the production of amorphous calcium phosphate. Reaction media without the presence of Ca showed the highest percentage mass of struvite elements (Mg, P, and O) signifying the purity of the element (Le et al. 2005). This has been confirmed in a recent study by Moragaspitiya et al. (2019) that the absence of Ca in media generally resulted in the increase of crystal size with increasing NH$_4$ concentration. Jones (2002) attributed the slow growth rate of crystals by Ca in solution to the blocking off sites where crystals could form, resulting in the inhibition in the growth of struvite crystals. The size of the struvite crystal is significant to ease the recovery of the precipitate. This is because the finer struvite crystals, the more easily they can be discharged along with the effluent, resulting in a loss of crystals. Larger particle size has more benefits than smaller particle size; the larger the particle size, the easier it can be separated, the higher the P recovery efficiency, the lower their solubility, and they are less prone to be washed out (Ronteltap et al. 2010). This can be confirmed by Wei et al. (2018) in their study on phosphorus recovery from the urine of pregnant women. In that study, 94% of phosphorus was precipitated as struvite, but only 55% was removed from solution.

Rahman et al. (2011) showed that the addition of seed materials did not significantly affect the crystal size of the struvite formed. Nevertheless, Liu et al. (2014) pointed out that adding seed materials significantly affect the crystal size of the struvite formed with the crystal size increasing from 33.7 to 57.0 μm with multi-stage addition of zeolite, whereas it was 44.7 μm with one-stage addition of zeolite. Therefore, the multi-stage addition of zeolite gave the highest effect on crystal growth. In other words, seed materials should be added periodically during a continuously running process.

3.3. Morphology

A scanning electron microscope (SEM) has been used to examine the images of the morphology of struvite precipitates. Tansel & Monje (2018) has reported the presence of impurities, other ions, and changes in pH as factors that can change crystal growth patterns which will result in irregularities in crystal morphology. The shape of struvite products is rod-like in the absence (Figures 5(a), 6(a) and 7(a)) of Ca (Le et al. 2005; Moragaspitiya et al. 2019). It has been described as needle-like (Figure 4(c)) also in the absence of Ca (Le et al. 2007; Doino et al. 2011; Muster et al. 2013; Muryanto et al. 2017). In experiments where Ca ion is present at different Mg/Ca ratios, the morphology has been described as arrow-head (Figure 4(d)) (Zhao et al. 2019), prismatic (Bayuseno & Schmahl 2020), pyramidal, star, rectangular platelet, elongated platelet, X-shape (Figure 4(b)), or coffin-lid shape (Figure 4(a)) (Prywer & Torczewska 2012).

As the Mg/Ca decreases, the needle-like shape of the struvite associated at the Mg/Ca ratio of 1:0 begins to become shorter (Figure 5(b)), irregular (Figures 5(b) and 7(b)), and thicker (Figures 6 and 7(c)) with increasing Ca concentration. This has been attributed to the interference of Ca in the struvite formation, where Ca reacts with phosphates to form undesirable calcium phosphates (Le et al. 2009).

\[5\text{Ca}^{2+} + 3\text{PO}_4^{3-} + \text{H}_2\text{O} \rightarrow \text{Ca}_5(\text{PO}_4)_3\text{OH} + \text{H}^+ \]
\[\text{NH}_4^+ + \text{Mg}^{2+} + \text{HPO}_4^{2-} + 6\text{H}_2\text{O} \rightarrow \text{MgNH}_4\text{PO}_4 \cdot 6\text{H}_2\text{O} + \text{H}^+ \]

This was supported by Moragaspitiya et al. (2019) in a recent study on the impact of Ca on struvite crystallisation. Liu & Wang (2019) found that at the Mg/Ca ratio of 1:1 and above, amorphous calcium phosphate compounds precipitate and cover the struvite crystals. Abbona & Franchini-Angela (1990) have explained that due to the lower solubility of calcium phosphates, it nucleates more easily and as a result precipitates faster and easier than magnesium phosphates. At the Mg/Ca ratio of 1:1 and above, energy dispersive spectroscopy (EDS) mapping reveals the formation of an amorphous Ca layer on the
struvite crystal (Le et al. 2005). The presence of Ca during struvite precipitation does not affect phosphorus recovery but greatly affect the purity of the struvite.

4. METHODS OF MITIGATING THE EFFECTS OF CALCIUM

As a means of mitigating the negative impact of Ca, the following measures have been identified in the literature.

1. Increasing the concentration of ammoniacal nitrogen (NH$_4$-N) in the solution (Moragaspitiya et al. 2019; Shaddel et al. 2020). Struvite purity has shown a significant increase when the concentration of NH$_4$-N is increased. Moragaspitiya et al. (2019) showed that struvite purity can increase by 5.2% when the concentration of NH$_4$-N is doubled. In their study, a synthetic solution was prepared to mimic wastewater effluent. In their results, when Mg/Ca is 1:1, the % weight of the struvite produced was 68.11, 73.51, and 76.75 at NH$_4$-N concentrations of 328, 700, and 1,000 mg/L, respectively. Crutchik & Garrido (2011) established that when NH$_4$-N is high, factors that favour struvite precipitation over Ca

Figure 4 | SEM photograph of struvite: (a) coffin-lid, (b) X-shaped (Prywer & Torzewska 2012), (c) needle-like (Muryanto et al. 2017), and (d) arrow-head (Zhao et al. 2019).

Figure 5 | SEM photograph of struvite crystals: (a) Mg/Ca ratio of 1:0, (b) Mg/Ca ratio of 1:1, and (c) Mg/Ca ratio of 1:2 (Moragaspitiya et al. 2019).
phosphate precipitation like buffer capacity of the solution and nucleation rate of the solution are favoured. Moragaspitiya et al. (2019) also confirmed that NH₄-N acts as a pH buffer by preventing the reduction of pH during struvite reactions.

2. Shaddel et al. (2020) studied the effect of a high Mg/P ratio to mitigate the impact of Ca on struvite quality. When Mg/P is kept high (1.67:1, 2.3:1, and 3.1:1) at high pH, the concentration of Ca is kept constantly under 1% in the precipitate produced.

3. Ye et al. (2011) have investigated pH control as a mitigating factor and plotted the percentage amorphous calcium phosphate (% ACP) and the ratio of saturation index of ACP to saturation index of struvite (SIACP/SIMAP) against pH, as shown in Figure 8. They established that the presence of Ca increased the SIACP and as a result the % ACP. When the pH is kept at 9.5 and below, the % ACP was kept at an extremely low concentration. The pH adjustment was done along with keeping the Mg concentration in seawater (the Mg source used for the study) at 1% and above.

4. The mitigating factor of a high Mg/Ca ratio has been suggested by many investigators (Liu et al. 2013; Li et al. 2019a, 2019b; Moragaspitiya et al. 2019; Shaddel et al. 2020). Adjusting the Mg/Ca ratio during struvite precipitation has been widely used to mitigate the negative effect of Ca.

Struvite purity falls below 60% (Figure 9) when the ratio of Ca/Mg is 1 but can be as high as 90% if the Ca/Mg ratio is 0.5 or less. This was confirmed by Kemacheevakul et al. (2014) in their study on the improvement of purity in struvite recovered from hydrolysed urine. This is very important if struvite precipitation is to be an economically viable venture. To increase the purity means adding more Mg to the process to compensate for the presence of Ca but this may not be an economically prudent venture. This means that a very high concentration of calcium in wastewater makes struvite precipitation unfeasible, as it lowers the purity significantly. Struvite purification with regard to calcium removal has not received the attention given to the economic value of the product.

5. NUTRIENT REMOVAL EFFICIENCIES USING DIFFERENT MAGNESIUM SOURCES

Generally, the recovery of PO₄-P is calculated by using the following equation:

\[
\text{% Recovery of P} = \frac{\text{Initial } [P] - \text{Final } [P]}{\text{Initial } [P]} \times 100
\]

The presence of Ca²⁺ does not affect the percentage recovery of nutrients from wastewater. Zhang et al. (2015) observed that high phosphorus recovery reached a maximum of 95% (Figure 11) at the Mg/Ca molar ratio of 7:1. It was further
observed that the struvite content of the precipitate formed was only 17%. However, pH, Mg/P molar ratio, and reaction time are the significant factors that affect PO₄-P recovery.

PO₄-P recovery can occur between the pH of 7–11 but lower % PO₄-P are removed at pH lower than 8 as can be seen in Figure 10. Mijangos et al. (2004) has been corroborated by Pastor et al. (2008) in an experiment conducted to determine the conditions influencing struvite precipitate. They observed that when pH was gradually increased from 8.2 to 9.5, at almost the same reaction time, % PO₄-P recovery changed from 37.3 to 76.1%, respectively. Huang et al. (2017) attributed this reason to

Figure 7 | SEM photograph showing shapes of struvite crystals at different Ca/Mg ratios: (a) Mg/Ca ratio of 1:0, (b) Mg/Ca ratio of 1:1, and (c) Mg/Ca ratio of 1:2 (Le et al. 2005).
orthophosphate speciation at different pH. At low pH of 8, there is a lower quantity (87%) of HPO$_4^{2-}$/CO$_4^-$ in the total orthophosphate, while the proportion of HPO$_4^{2-}$/CO$_4^-$ increases significantly (99%) at pH 9. This is likely to be the reason why PO$_4$-P recovery as struvite is high at high pH values. Interestingly, Zhang et al. (2015) in their study on phosphorus recovery from bioeffluents of wastewater treatment plant (WWTP) observed that a rather huge drop in phosphorus recovery occurred at pH beyond 11.

Figure 8 | Percentage of phosphorus precipitated as ACP and the ratio of S_{ACP}/S_{MAP} (Ye et al. 2011).

Figure 9 | Influence of calcium on struvite purity (Li et al. 2016).

Figure 10 | Influence of pH and Mg/P molar ratio on P recovery (Huang et al. 2017).
The molar ratio (specifically Mg/P molar ratio) of participating ions during struvite precipitation is very important because it affects the level of the solution. Recovery of total phosphorus (TP) is very high at a high Mg/P molar ratio (Table 2). Ye et al. (2016) observed that TP recovery increases significantly when the Mg/P ratio is 1.8 and above. Korchef et al. (2011) explained that an increase in Mg concentration in solution decreases the adhesion of crystals on the walls of the reactor vessel which result in high PO₄-P recovery.

From Table 2, it can be seen that high-grade Mg sources (e.g. MgCl₂ and MgSO₄) can be replaced by natural Mg-rich sources in the production of struvite. However, strategies must be adopted to improve reactivity and removal of impurity

![Figure 11](https://iwaponline.com/washdev/article-pdf/11/5/706/937729/washdev0110706.pdf)

Figure 11 | Influence of pH on phosphorus recovery at the Mg/Ca ratio of 7:1 (Zhang et al. 2015).

Operational conditions	% phosphorus recovery
MgCl₂ Synthetic 8.8 30 min –	> 90.0
Seawater Synthetic 8.8 30 min –	88.9
Dolomite Synthetic 8.0 2 h 1:1.2	75.7
MgO Synthetic 9.0 10 min 2:1	90–99
MgCl₂ Synthetic 8.0 10 min 2:1	89
Mg(OH)₂ Synthetic 8.7 10 min 1:5:1	93
MgCl₂ Swine 8.5 – 1.5	71.1–75.7
MgSO₄ Swine 8.5 – 1.5	75.7
Brine Swine 8.5 – 1.5	71.1
Seawater Anaerobic sludge 8.2 60 min 1	95.1
Seawater Anaerobic sludge 8.2 20 min 1.12	92.6
Brine Urine 9.3 – 1.1:1	99
Seawater Urine 9.3 – 1.1:1	99
MgCl₂ Urine 9.3 – 1.1:1	99
WWTP effluent WWTP effluent 9–9.5 – 1.4:1	97

Table 2 | Percentage of phosphorus recovery at different operational conditions from different Mg sources

The molar ratio (specifically Mg/P molar ratio) of participating ions during struvite precipitation is very important because it affects the level of the solution. Recovery of total phosphorus (TP) is very high at a high Mg/P molar ratio (Table 2). Ye et al. (2016) observed that TP recovery increases significantly when the Mg/P ratio is 1.8 and above. Korchef et al. (2011) explained that an increase in Mg concentration in solution decreases the adhesion of crystals on the walls of the reactor vessel which result in high PO₄-P recovery.

From Table 2, it can be seen that high-grade Mg sources (e.g. MgCl₂ and MgSO₄) can be replaced by natural Mg-rich sources in the production of struvite. However, strategies must be adopted to improve reactivity and removal of impurity

![Figure 11](https://iwaponline.com/washdev/article-pdf/11/5/706/937729/washdev0110706.pdf)

Figure 11 | Influence of pH on phosphorus recovery at the Mg/Ca ratio of 7:1 (Zhang et al. 2015).

The molar ratio (specifically Mg/P molar ratio) of participating ions during struvite precipitation is very important because it affects the level of the solution. Recovery of total phosphorus (TP) is very high at a high Mg/P molar ratio (Table 2). Ye et al. (2016) observed that TP recovery increases significantly when the Mg/P ratio is 1.8 and above. Korchef et al. (2011) explained that an increase in Mg concentration in solution decreases the adhesion of crystals on the walls of the reactor vessel which result in high PO₄-P recovery.

From Table 2, it can be seen that high-grade Mg sources (e.g. MgCl₂ and MgSO₄) can be replaced by natural Mg-rich sources in the production of struvite. However, strategies must be adopted to improve reactivity and removal of impurity

![Figure 11](https://iwaponline.com/washdev/article-pdf/11/5/706/937729/washdev0110706.pdf)

Figure 11 | Influence of pH on phosphorus recovery at the Mg/Ca ratio of 7:1 (Zhang et al. 2015).

The molar ratio (specifically Mg/P molar ratio) of participating ions during struvite precipitation is very important because it affects the level of the solution. Recovery of total phosphorus (TP) is very high at a high Mg/P molar ratio (Table 2). Ye et al. (2016) observed that TP recovery increases significantly when the Mg/P ratio is 1.8 and above. Korchef et al. (2011) explained that an increase in Mg concentration in solution decreases the adhesion of crystals on the walls of the reactor vessel which result in high PO₄-P recovery.

From Table 2, it can be seen that high-grade Mg sources (e.g. MgCl₂ and MgSO₄) can be replaced by natural Mg-rich sources in the production of struvite. However, strategies must be adopted to improve reactivity and removal of impurity

![Figure 11](https://iwaponline.com/washdev/article-pdf/11/5/706/937729/washdev0110706.pdf)

Figure 11 | Influence of pH on phosphorus recovery at the Mg/Ca ratio of 7:1 (Zhang et al. 2015).

The molar ratio (specifically Mg/P molar ratio) of participating ions during struvite precipitation is very important because it affects the level of the solution. Recovery of total phosphorus (TP) is very high at a high Mg/P molar ratio (Table 2). Ye et al. (2016) observed that TP recovery increases significantly when the Mg/P ratio is 1.8 and above. Korchef et al. (2011) explained that an increase in Mg concentration in solution decreases the adhesion of crystals on the walls of the reactor vessel which result in high PO₄-P recovery.

From Table 2, it can be seen that high-grade Mg sources (e.g. MgCl₂ and MgSO₄) can be replaced by natural Mg-rich sources in the production of struvite. However, strategies must be adopted to improve reactivity and removal of impurity

![Figure 11](https://iwaponline.com/washdev/article-pdf/11/5/706/937729/washdev0110706.pdf)

Figure 11 | Influence of pH on phosphorus recovery at the Mg/Ca ratio of 7:1 (Zhang et al. 2015).

The molar ratio (specifically Mg/P molar ratio) of participating ions during struvite precipitation is very important because it affects the level of the solution. Recovery of total phosphorus (TP) is very high at a high Mg/P molar ratio (Table 2). Ye et al. (2016) observed that TP recovery increases significantly when the Mg/P ratio is 1.8 and above. Korchef et al. (2011) explained that an increase in Mg concentration in solution decreases the adhesion of crystals on the walls of the reactor vessel which result in high PO₄-P recovery.

From Table 2, it can be seen that high-grade Mg sources (e.g. MgCl₂ and MgSO₄) can be replaced by natural Mg-rich sources in the production of struvite. However, strategies must be adopted to improve reactivity and removal of impurity

![Figure 11](https://iwaponline.com/washdev/article-pdf/11/5/706/937729/washdev0110706.pdf)

Figure 11 | Influence of pH on phosphorus recovery at the Mg/Ca ratio of 7:1 (Zhang et al. 2015).

The molar ratio (specifically Mg/P molar ratio) of participating ions during struvite precipitation is very important because it affects the level of the solution. Recovery of total phosphorus (TP) is very high at a high Mg/P molar ratio (Table 2). Ye et al. (2016) observed that TP recovery increases significantly when the Mg/P ratio is 1.8 and above. Korchef et al. (2011) explained that an increase in Mg concentration in solution decreases the adhesion of crystals on the walls of the reactor vessel which result in high PO₄-P recovery.

From Table 2, it can be seen that high-grade Mg sources (e.g. MgCl₂ and MgSO₄) can be replaced by natural Mg-rich sources in the production of struvite. However, strategies must be adopted to improve reactivity and removal of impurity

![Figure 11](https://iwaponline.com/washdev/article-pdf/11/5/706/937729/washdev0110706.pdf)

Figure 11 | Influence of pH on phosphorus recovery at the Mg/Ca ratio of 7:1 (Zhang et al. 2015).

The molar ratio (specifically Mg/P molar ratio) of participating ions during struvite precipitation is very important because it affects the level of the solution. Recovery of total phosphorus (TP) is very high at a high Mg/P molar ratio (Table 2). Ye et al. (2016) observed that TP recovery increases significantly when the Mg/P ratio is 1.8 and above. Korchef et al. (2011) explained that an increase in Mg concentration in solution decreases the adhesion of crystals on the walls of the reactor vessel which result in high PO₄-P recovery.

From Table 2, it can be seen that high-grade Mg sources (e.g. MgCl₂ and MgSO₄) can be replaced by natural Mg-rich sources in the production of struvite. However, strategies must be adopted to improve reactivity and removal of impurity
ions (Ca$^{2+}$) from both wastewater and Mg sources that have the potential to hinder struvite quality. It can be observed that this reduces the crystal size of the struvite product.

6. CONCLUSION

The literature has shown that the presence of Ca ions in solution during struvite precipitation negatively affects struvite quality, in terms of purity, size, and morphology. All papers reviewed revealed that at higher Ca concentrations, the crystals formed had reduced size and contained amorphous Ca phosphate substances rather than crystalline struvite. Even though Ca negatively affected struvite quality, its presence in solution did not negatively affect PO$_4$-P removal from wastewater irrespective of the type of Mg source used. PO$_4$-P recovery was rather affected by pH, Mg/P molar ratio, and reaction time. The high percentage recovery of P is always achieved at a higher Mg/P molar ratio. Even though the effect of Ca in solution during struvite precipitation has been studied, gaps still exist in the area. Research must be carried out on the removal of only Ca from Mg-rich sources to improve struvite purity, size, and thus its use as a fertilizer. The selective removal of Ca before struvite precipitation is a research gap that must be explored. Also, struvite precipitation from low phosphorus-rich sources should be looked at, since most research is focused on phosphorus-rich wastewater.

DATA AVAILABILITY STATEMENT

All relevant data are included in the paper or its Supplementary Information.

REFERENCES

Abbona, F. & Franchini-Angela, M. 1990 Crystallization of calcium and magnesium phosphates from solutions of low concentration. Journal of Crystal Growth 104 (3), 661–671. https://doi.org/10.1016/0022-0248(90)90009-A.

Aguado, D., Barat, R., Bouzas, A., Seco, A. & Ferrer, J. 2019 Science of the total environment P-recovery in a pilot-scale struvite crystallisation reactor for source separated urine systems using seawater and magnesium chloride as magnesium sources. Science of the Total Environment 672, 88–96. https://doi.org/10.1016/j.scitotenv.2019.03.485.

Barbosa, S. G., Peixoto, L., Meulman, B., Alves, M. M. & Pereira, M. A. 2016 A design of experiments to assess phosphorous removal and crystal properties in struvite precipitation of source separated urine using different Mg sources. Chemical Engineering Journal 298, 146–153. https://doi.org/10.1016/j.cej.2016.03.148.

Bayuseno, A. P. & Schmahl, W. W. 2020 Crystallization of struvite in a hydrothermal solution with and without calcium and carbonate ions. Chemosphere 250, 126245. https://doi.org/10.1016/j.chemosphere.2020.126245.

Chen, L., Hui, C., Zhang, H., Shen, D. & Hu, W. 2017 Chemosphere capture and recycling of ammonium by dolomite-aided struvite precipitation and thermolysis. Chemosphere 187, 302–310. https://doi.org/10.1016/j.chemosphere.2017.08.065.

Clesceri, L., Greenberg, A. & Eaton, A. D. 1999 Standard Methods for the Examination of Water and Wastewater, 20th edn. American Public Health Association, USA.

Crutchik, D. & Garrido, J. M. 2011 Struvite crystallization versus amorphous magnesium and calcium phosphate precipitation during the treatment of a saline industrial wastewater. Water Science and Technology 64 (12), 2460–2467. https://doi.org/10.2166/wst.2011.836.

Desmidt, E., Ghyselbrecht, K., Monballiu, A., Rabaey, K., Verstraete, W. & Meessenbaert, B. D. 2013 Factors influencing urease driven struvite precipitation. Separation and Purification Technology 110, 150–157. https://doi.org/10.1016/j.seppur.2013.03.010.

Doino, V., Mozet, K., Muhr, H. & Plasari, E. 2011 Study on struvite precipitation in a mechanically stirring fluidized bed reactor. Chemical Engineering Transactions 24, 679–684. https://doi.org/10.3303/CET1124114.

Hao, X., Wang, C., Van Loosdrecht, M. C. M. & Hu, Y. 2013 Looking beyond struvite for P recovery. Environmental Science and Technology 47 (10), 4965–4966. https://doi.org/10.1021/es401140s.

Holmberg, S. L., Lind, B. B. & Claesson, T. 2000 Chemical composition and leaching characteristics of granules made of wood ash and dolomite. Environmental Geology 40, 1–10.

Hövelmann, J. & Putnis, C. V. 2016 In situ nanoscale imaging of struvite formation during the dissolution of natural brucite: implications for phosphorus recovery from wastewaters. Environmental Science and Technology. https://doi.org/10.1021/acs.est.6b04623.

Huang, H., Mavinic, D. S., Lo, K. V. & Koch, F. A. 2006 Production and basic morphology of struvite crystals from a pilot-scale crystallization process. Environmental Technology 27 (3), 233–245. https://doi.org/10.1080/09593332708618637.

Huang, H. M., Xiao, X. M., Yang, L. P. & Yan, B. 2011 Removal of ammonium from rare-earth wastewater using natural brucite as a magnesium source of struvite precipitation. Water Science and Technology 64 (10), 468–475. https://doi.org/10.2166/wst.2011.245.

Huang, H., Guo, G., Zhang, P., Zhang, D., Liu, J. & Tang, S. 2017 Feasibility of physicochemical recovery of nutrients from swine wastewater: evaluation of three kinds of magnesium sources. Journal of the Taiwan Institute of Chemical Engineers 70, 209–218. https://doi.org/10.1016/j.tice.2016.10.051.

Hutnik, N., Stancilic, A., Piotrowski, K. & Matynia, A. 2019 Recovery of phosphates(V) from wastewaters of different chemical composition. Open Chemistry 17 (1), 1071–1079. https://doi.org/10.1515/chem-2019-0114.
Roques, H., Nugroho-Juedy, L. & Lebugle, A. 1991 Phosphorus removal from wastewater by half-burned dolomite. *Water Research* **25** (8), 959–965.

Sakthivel, S. R., Tilley, E. & Udert, K. M. 2012 Science of the total environment wood ash as a magnesium source for phosphorus recovery from source-separated urine. *Science of the Total Environment* **419**, 68–75. https://doi.org/10.1016/j.scitotenv.2011.12.065.

Shaddel, S., Grini, T., Ucar, S., Azrague, K., Andreassen, J. P. & Østerhus, S. W. 2020 Struvite crystallization by using raw seawater: improving economics and environmental footprint while maintaining phosphorus recovery and product quality. *Water Research* **173**, 115572. https://doi.org/10.1016/j.watres.2020.115572.

Sun, H., Nayeem, A. & Liu, Y. 2020 Science of the total environment phosphorus recovery from source-diverted blackwater through struvite precipitation. *Science of the Total Environment* **743**, 140747. https://doi.org/10.1016/j.scitotenv.2020.140747.

Tansel, B. & Monje, O. 2018 Struvite formation and decomposition characteristics for ammonia and phosphorus recovery: a review of magnesium-ammonia-phosphate interactions. *Chemosphere* **194**, 504–514. https://doi.org/10.1016/j.chemosphere.2017.12.004.

Tran, K. T., Han, K. S., Kim, S. J., Kim, M. J. & Tran, T. 2016 Recovery of magnesium from Uyuni salar brine as hydrated magnesium carbonate. *Hydrometallurgy* **160**, 106–114. https://doi.org/10.1016/j.hydromet.2015.12.008.

Wang, J., Burken, J. G., Zhang, X. & Surampalli, R. 2005 Engineered struvite precipitation: impacts of component-ion molar ratios and pH. *Journal of Environmental Engineering* **131** (10), 1433–1440. https://doi.org/10.1061/(ASCE)0733-9372(2005)131:10(1433).

Wang, J., Ye, X., Zhang, Z., Ye, Z. & Chen, S. 2018 Selection of cost-effective magnesium sources for fluidized struvite crystallization. *Journal of Environmental Sciences* **70**, 144–153.

Wei, S. P., Rossum, F. V., Jan, G., Pol, V. D. & Winkler, M. H. 2018 Recovery of phosphorus and nitrogen from human urine by struvite precipitation, air stripping and acid scrubbing: a pilot study. *Chemosphere* **212**, 1030–1037.

Wu, Q. & Bishop, P. L. 2004 Enhancing struvite crystallization from anaerobic supernatant. *Journal of Environmental Engineering and Science* **29**, 21–29. https://doi.org/10.1139/S03-050.

Ye, Z., Chen, S., Lu, M., Shi, J., Lin, L. & Wang, S. 2011 Recovering phosphorus as struvite from the digested swine manure with bittern as a magnesium source swine wastewater with bittern as a magnesium source. *Water Science and Technology* **334**–340. https://doi.org/10.2166/wst.2011.720.

Ye, X., Ye, Z. L., Lou, Y., Pan, S., Wang, X., Wang, M. K. & Chen, S. 2016 A comprehensive understanding of saturation index and upflow velocity in a pilot-scale fluidized bed reactor for struvite recovery from swine wastewater. *Powder Technology* **295**, 16–26. https://doi.org/10.1016/j.powtec.2016.03.022.

Zhang, T., Ding, L. & Ren, H. 2009 Pretreatment of ammonium removal from landfill leachate by chemical precipitation. *Journal of Hazardous Materials* **166** (2–3), 911–915. https://doi.org/10.1016/j.jhazmat.2008.11.101.

Zhang, Y., Zhang, W. & Pan, B. 2015 Struvite-based phosphorus recovery from the concentrated bioeffluent by using HFO nanocomposite adsorption: effect of solution chemistry. *Chemosphere* **141**, 227–234. https://doi.org/10.1016/j.chemosphere.2015.07.023.

Zhao, T., Li, H., Huang, Y., Yao, Q., Huang, Y. & Zhou, G. 2019 Microbial mineralization of struvite: salinity effect and its implication for phosphorus removal and recovery. *Chemical Engineering Journal* **358**, 1324–1331. https://doi.org/10.1016/j.cej.2018.10.139.

First received 5 May 2021; accepted in revised form 14 July 2021. Available online 30 July 2021