Rapid labelling and covalent inhibition of intracellular native proteins using ligand-directed N-acyl-N-alkyl sulfonamide

Tomonori Tamura1, Tsuyoshi Ueda1, Taiki Goto1, Taku Tsukidate1, Yonatan Shapira2, Yuki Nishikawa1, Alma Fujisawa1 & Itaru Hamachi1,3

Selective modification of native proteins in live cells is one of the central challenges in recent chemical biology. As a unique bioorthogonal approach, ligand-directed chemistry recently emerged, but the slow kinetics limits its scope. Here we successfully overcome this obstacle using N-acyl-N-alkyl sulfonamide as a reactive group. Quantitative kinetic analyses reveal that ligand-directed N-acyl-N-alkyl sulfonamide chemistry allows for rapid modification of a lysine residue proximal to the ligand binding site of a target protein, with a rate constant of \(-10^4 \text{ M}^{-1} \text{ s}^{-1}\), comparable to the fastest bioorthogonal chemistry. Despite some off-target reactions, this method can selectively label both intracellular and membrane-bound endogenous proteins. Moreover, the unique reactivity of N-acyl-N-alkyl sulfonamide enables the rational design of a lysine-targeted covalent inhibitor that shows durable suppression of the activity of Hsp90 in cancer cells. This work provides possibilities to extend the covalent inhibition approach that is currently being reassessed in drug discovery.

1 Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan. 2 Feinberg Graduate School, Weizmann Institute of Science, Rehovot 7610001, Israel. 3 CREST (Core Research for Evolutional Science and Technology, JST), Sanbancho, Chiyodaku, Tokyo 102-0075, Japan. Correspondence and requests for materials should be addressed to I.H. (email: ihamachi@sbcchem.kyoto-u.ac.jp)
Chemical modification of target proteins with synthetic molecules is a powerful methodology for the generation of a myriad of engineered proteins, such as antibody–drug conjugates and for the detailed study of protein function and dynamics in living cells. Over the past two decades, bioorthogonal methods, including chemoselective reactions with non-canonical amino acids bearing bioorthogonal functional groups, protein/peptide-tag-based methods, self-labelling enzyme tags and enzyme-mediated modifications have proven to be valuable for efficient and selective protein labelling. Because these reactions are usually conducted in dilute and/or multi-molecular crowding live cell conditions, unlike conventional chemical reactions in a flask, fast and highly chemoselective reactions are desired. Remarkable advances have been now achieved in both these parameters, providing researchers with useful tools for the selective chemical modification and engineering of protein molecules, even under live cell conditions. Most bioorthogonal protein modification strategies typically require two steps: (i) the incorporation of a bioorthogonal reaction handle, such as a noncanonical amino acid or an enzyme domain or its substrate peptide, into a protein of interest (POI) using genetic engineering protocols, followed by (ii) a specific (bioorthogonal) reaction to attach a functional molecule, such as a drug, fluorophore, polymer or detection tag. Although powerful, this two-step method inevitably involves genetic manipulation, making it impossible to modify endogenous (i.e. naturally occurring) proteins in their native environments.

As an alternative to the bioorthogonal protein labelling approaches, we have developed a chemical strategy based on an affinity-driven reaction involving protein–ligand interactions, termed ligand-directed (LD) chemistry (using systems bearing tosyl (LDT)−, alkoxyacyl imidazole (LDAI)− and dibromophenylbenzoate (LDBB)− reactive moieties). LD chemistry is a simple one-step procedure employing a labelling reagent in which a ligand for a POI and an appropriate functional molecule are connected with a cleavable electrophilic group. The reagent selectively binds to the POI through a specific protein–ligand interaction, facilitating the transfer of a functional molecule to a nucleophilic amino acid residue close to the ligand binding site via covalent bond formation. It is thus considered that the protein selectivity and the labelling kinetics of LD chemistry may largely rely on the recognition-driven proximity effect. However, no quantitative kinetic analyses have been performed yet, and therefore LD chemistry cannot be clearly evaluated, compared with conventional bioorthogonal methods, as a complimentary tool for protein chemical modification.

One of the most unique characteristics of LD chemistry is that it can target canonical amino acids of endogenous proteins with sufficient selectivity even in intact living systems without genetic disturbance. This advantage lets us envision that LD chemistry could be applied for the functional regulation of native proteins, as well as a complement to bioorthogonal chemistry. For example, the rational design of a LD reagent that is able to covalently attach a ligand (instead of a probe) to a protein should be able to produce targeted covalent inhibitors (TCIs). The development of unique TCIs may lead to potent covalent drugs, which have undergone a recent resurgence in drug discovery research because of their durability. To date, most of the recently developed TCIs target cysteine, and expansion of the available targetable amino acids remains a great challenge. Given that our LD reagents have been shown to react with several canonical amino acids (e.g. Lys, His, Ser, Tyr and Glu) other than Cys, our efforts to develop a variety of LD chemistry may substantially contribute to extending chemical warheads that can be used for TCIs (and covalent drugs).

Herein, we describe a LD chemistry using N-acyl-N-alkyl sulfonamide derivatives (LDNASA) as the electrophilic reactive group. Detailed kinetic analyses of in vitro protein labelling are conducted and compared with other LD reagents, revealing that the reaction rate of the labelling process of LDNASA is the fastest of all the LD chemistry reagents (LDT, LDAI and LDBB). Notably, the second-order reaction rate constant of LDNASA-mediated protein labelling reaches ~104 M−1 s−1, which is comparable to enzymatic labelling and the fastest bioorthogonal protein bioconjugations, such as inverse electron-demand Diels-Alder (IEDDA) cycloadditions. The excellent kinetics and bioorthogonality of LDNASA chemistry allow for the selective and efficient labelling of intracellular endogenous proteins, as well as a membrane-protein, in live cell environments.

![Fig. 1](image-url) Two distinct approaches for bioorthogonal protein labelling. a Schematic illustration of protein labelling through bioorthogonal chemistry. The first step involves the genetic incorporation of a bioorthogonal reactive handle into a protein of interest (POI) in cells. In a second step, the reactive handle chemoselectively reacts with a designed synthetic probe. b Schematic illustration of the basic principle of ligand-directed N-acyl-N-alkyl sulfonamide (LDNASA) chemistry. The reagent binds to a POI through a specific protein–ligand interaction, driving a chemical reaction between the reactive group and a natural nucleophilic amino acid located on the protein surface, through the proximity effect. EWG, electron-withdrawing group; Kd, dissociation constant; k1, first-order rate constant for the labelling process; Nu, nucleophilic amino acid.
Results

Design and characterisation of LDNASA reagents. While the LD chemistries reported by our group (LDT, LDAI and LDBB) have proved to be applicable to selective protein labelling both in vitro and in living cells, they still suffer from sluggish reaction rates, requiring hours to a day to achieve acceptable levels of labelled products.\(^{14,15,18,19}\) This motivated us to further explore an electrophilic cleavable linker amenable to the LD strategy. We here focused on NASA, which has been widely used as Kenner’s safety-catch linker in solid-phase peptide synthesis.\(^{29}\) Recently, our group found that NASA derivatives can be used as acyl donors for catalyst-mediated protein labelling in vitro and in crude biological environments, such as live-cell surfaces and brain tissues.\(^{30}\) This study revealed that NASA is sufficiently stable in neutral aqueous buffer and cell lysate conditions, and is less susceptible to enzymatic degradation because of its unique structure not found in nature. We thus reasoned that NASA may have potential as a promising cleavable linker in LD chemistry for bioorthogonal protein acylation. It has been reported that the electron-withdrawing properties of the reactive group is a promising warhead for a covalent inhibitor,\(^{33}\) and a biotin (Bt) affinity-tag are connected with a NASA group. The syntheses were carried out as shown in Supplementary Methods. All of the final compounds were well characterised by NMR and high-resolution mass spectrometry.

FKBP12 labelling was conducted in test tubes by incubating each NASA reagent (1-3) (10 \(\mu\)M) with purified recombinant (wild-type) FKBP12\(^{13}\) (5 \(\mu\)M, \(M_w\): 11 914 Da) at 37 °C in a buffer solution (pH 7.2). The labelling reactions were monitored by matrix-assisted desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS). In all cases, the molecular mass corresponding to Bt-labelled FKBP12 (\(M_w\): 12 140 Da) was detected as shown in Fig. 2b and Supplementary Figure 1. Rapid and efficient FKBP12 labelling was observed in the case of 1 (98% yield within 15 min), whereas 2 and 3 gave lower yields (22% for 2, 17% for 3) even after a 2-h incubation. The initial rate of the reaction with 1 (84 \(\mu\)M min\(^{-1}\)) was 49- and 105-fold faster than 2 (1.7 \(\mu\)M min\(^{-1}\)) and 3 (0.8 \(\mu\)M min\(^{-1}\)), respectively (Fig. 2c).

The labelling by 1 was completely abolished in the presence of rapamycin\(^{33}\) (a competitive ligand), indicating that the labelling reaction was efficiently driven by an affinity-mediated proximity effect (Fig. 2b, c). This rapid and efficient labelling using a NASA containing a cyanomethyl group was also observed when targeting \textit{Escherichia coli} dihydrofolate reductase (eDHFR) using reagent 4 containing trimethoprim (TMP) as a ligand (15 min, 80%) (Fig. 3a and Supplementary Figure 2)\(^{18,34}\). The results clearly showed that the cyano group is the optimal N-alkyl group in LDNASA reagents for efficient protein labelling. The intrinsic reactivity of the reagents was evaluated by the hydrolysis rate in vitro using FKBP12 as a model target protein. We thus designed NASA reagents 1-3 (Fig. 2a, in which a synthetic ligand for FKBP12 (SLF, reported \(K_d\) = 20 nM)\(^{22}\) and a biotin (Bt) affinity-tag are connected with a NASA group. The syntheses were carried out as shown in Supplementary Methods. All of the final compounds were well characterised by NMR and high-resolution mass spectrometry.

In vitro FKBP12 labelling with LDNASA reagents 1-3. \(\text{a}\) Molecular structures of LDNASA reagents 1-3. \(\text{b}\) MALDI-TOF mass analysis of FKBP12 labelling by 1 in the absence or presence of rapamycin (Rap). Reaction conditions: 5 \(\mu\)M FKBP12, 10 \(\mu\)M 1, 100 \(\mu\)M Rap, 50 mM HEPES buffer, pH 7.2, 37 °C. \(\text{c}\) Initial rates were estimated from the time courses of the reaction yields (inset). n.d., not detected. \(\text{d}\) The crystal structure of the FKBP12-SLF complex (PDB:1FKG). Lys44, the major labelling site with 1, is coloured in red. The SLF ligand is shown as a green stick. Lys34 was also identified as the second (minor) labelling site (see Supplementary Figure 5).

Fig. 2 In vitro FKBP12 labelling with LDNASA reagents 1-3. a Molecular structures of LDNASA reagents 1-3. b MALDI-TOF mass analysis of FKBP12 labelling by 1 in the absence or presence of rapamycin (Rap). Reaction conditions: 5 \(\mu\)M FKBP12, 10 \(\mu\)M 1, 100 \(\mu\)M Rap, 50 mM HEPES buffer, pH 7.2, 37 °C. o, native FKBP12 (\(M_w\): 11 914); *, single-labelled FKBP12 (\(M_w\): 12 140); **, double-labelled FKBP12 (\(M_w\): 12 366). c Initial rates (M min\(^{-1}\)) of FKBP12 labelling by 1-3. The initial rates were estimated from the time courses of the reaction yields (inset). n.d., not detected. d The crystal structure of the FKBP12-SLF complex (PDB:1FKG). Lys44, the major labelling site with 1, is coloured in red. The SLF ligand is shown as a green stick. Lys34 was also identified as the second (minor) labelling site (see Supplementary Figure 5).
Reagents for FKBP12 labelling

Low-affinity ligand of FKBP12 (LLF)

Reagents for eDHFR labelling

a Kinetic analysis of protein labelling with various LD reagents.
(b) MALDI-TOF MS analyses of labelling process of FKBP12 with 1. Purified FKBP12 (100 nM) was incubated with 1 (200 nM) in HEPES buffer (50 mM, pH 7.2) at 37 °C. O, native FKBP12 (Mw 11 914); *, single-labelled FKBP12 (Mw 12 140); **, double-labelled FKBP12 (Mw 12 366). c Time course of the depletion of native (non-labelled) FKBP12 during the labelling reaction with various concentrations of 1: Purified FKBP12 (100 nM) was incubated with reagents (200 nM) in HEPES buffer (50 mM, pH 7.2) at 37 °C. The reaction was monitored by MALDI-TOF MS. As shown in Fig. 2d, Supplementary Figures 4 and 5, Lys44 located near the ligand-binding pocket (11.3 Å from the bound SLF ligand) was predominantly modified with biotin by 1. We also identified the labelling site of eDHFR to be specific to Lys32 when 4 was used (Supplementary Figure 6). These results clearly demonstrate that NASA reagents prefer the ε-amino group of lysine side chains, and form a chemically stable amide bond.

Kinetic analysis of ligand-directed chemistry. With the optimal NASA reactive group in hand, we next investigated the reaction kinetics of LD chemistry in vitro protein labelling.

The labelling sites on FKBP12 after reaction with 1 were identified by conventional peptide mapping analysis. FKBP12 labelled by 1 was digested with trypsin and the resultant peptide fragments were analysed by HPLC followed by tandem mass spectrometry. As shown in Fig. 2d, Supplementary Figures 4 and 5, Lys44 located near the ligand-binding pocket (11.3 Å from the bound SLF ligand) was predominantly modified with biotin by 1. We also identified the labelling site of eDHFR to be specific to Lys32 when 4 was used (Supplementary Figure 6). These results clearly demonstrate that NASA reagents prefer the ε-amino group of lysine side chains, and form a chemically stable amide bond.
labelling reaction of LD chemistry follows Eq. (1):

\[
P + R \xrightarrow{k_d} PR \xrightarrow{k_l} P^* \tag{1}
\]

where P is a native (non-labelled) protein, R is the reagent, PR is the native protein–reagent complex, P* is the labelled-protein, \(k_d\) is the dissociation constant and \(k_l\) is the rate constant for the labelling process. When \([R] > [P]\), the pseudo-first-order reaction rate (\(k_{app}\)) is given as follows (see Supplementary Methods)\(^{35}\):

\[
\frac{[P] + [PR]}{[P]_0} = \exp(-k_{app}t) \tag{2}
\]

\[
k_{app} = \frac{k_l}{1 + K_d/[R]} \tag{3}
\]

According to Eq. (3), a Michaelis-Menten-type saturation curve should be obtained from the \(k_{app} \sim [R]\) plot.

The reaction time courses of FKB12 labelling with various concentrations of I (200–2000 nM) were monitored by MALDI-TOF MS (Fig. 3b) and plotted to determine \(k_{app}\) using Eq. (2) (Fig. 3c). The values of \(k_{app}\) obtained in this manner were then plotted against the concentration of I, which were well fitted by Eq. (3) (Fig. 3d). The labelling rate constant \(k_l\) and the dissociation constant \(K_d\) of I were determined from curve fitting analysis to be \((6.1 \pm 0.6) \times 10^{-3} \text{s}^{-1}\) and \((2.1 \pm 0.2) \times 10^{-7} \text{M}\), respectively (the mean of triplicate ± standard deviation (s.d)) (Table 1). The obtained \(K_d\) value was ~1 order of magnitude higher than the reported \(K_d\) of SLF for FKB12 \((K_d = 20 \text{nM})^{32}\), which indicates that the derivatization of SLF leads to slightly drop the affinity but does not appreciably reduce the binding ability as reported by other groups\(^{12}\).

We then performed a kinetic characterisation of other LD chemistry that we have previously developed, including LDT, LD reagent for eDHFR and selective protein labelling. To clarify the relationship between the ligand affinity and how strong an affinity is required to achieve efficient and selective protein labelling. To clarify the relationship between the ligand affinity and the reaction profiles in LD chemistry, we subsequently sought to quantify the kinetic parameters of NASA reagents \(8\) containing LLF, a low-affinity ligand for FKB12 (reported \(K_d = 3.5 \mu\text{M})^{36}\). Prior to the kinetic analysis, we confirmed that the major labelling site of FKB12 with \(8\) (Lys34) is identical to \(1\) (Supplementary Figure 4). As shown in Supplementary Figure 9, higher concentrations of \(8\) (\(\mu\text{M to sub-nM}\)) were required for efficient labelling in comparison with \(1\), which is because of the low binding affinity of LLF. The kinetics assay revealed that the \(k_l\) value of \(8\) \([(7.6 \pm 1.7) \times 10^{-3} \text{s}^{-1}]\) is almost the same as that of \(1\) (Table 1). In stark contrast, the second-order rate constant \(k_l/K_d\) of \(8\) \((74 \pm 19 \text{M}^{-1} \text{s}^{-1})\) was 392-fold less than \(1\), because of its large \(K_d\) value \([(1.0 \pm 0.4) \times 10^{-4} \text{M}]\). These results clearly demonstrated that the affinities of the ligand of LD reagents predominantly determines the labelling kinetics when the reactive group is identical, and also indicated that a ligand with sub \(\mu\text{M}\) order affinity is required to achieve rapid and efficient labelling with LDNASA chemistry.

Selective protein labelling in crude biological contexts. In addition to the reaction rate and efficiency, target selectivity is also important for the biological application of protein chemical labelling. To verify the selectivity and bioorthogonality of LDNASA chemistry, we next conducted protein labelling

| Table 1 Kinetic and binding parameters of labelling reagents for FKB12 and eDHFR |
|-----------------|----------------|----------------|
| Protein | Reagent | \(k_l \ (\text{s}^{-1})\) | \(K_d \ (\text{M})\) | \(k_l/K_d \ (\text{M}^{-1} \text{s}^{-1})\) |
| FKB12 | 1 (LDNASA) | \((6.1 \pm 0.6) \times 10^{-3}\) | \((2.1 \pm 0.2) \times 10^{-7}\) | \((2.9 \pm 0.4) \times 10^{4}\) |
| | 5 (LDT) | \((9.6 \pm 0.2) \times 10^{-6}\) | \((2.1 \pm 0.3) \times 10^{-7}\) | \(45 \pm 6\) |
| | 8 (LDNASA) | \((7.6 \pm 1.7) \times 10^{-3}\) | \((1.0 \pm 0.4) \times 10^{-4}\) | \(74 \pm 19\) |
| | 4 (LDNASA) | \((1.3 \pm 0.1) \times 10^{-2}\) | \((1.4 \pm 0.2) \times 10^{-6}\) | \((9.3 \pm 1.5) \times 10^{3}\) |
| | 6 (LDAI) | \((5.8 \pm 0.1) \times 10^{-6}\) | \((5.5 \pm 0.3) \times 10^{-7}\) | \(11 \pm 1\) |
| | 7 (LDBB) | \((3.4 \pm 0.3) \times 10^{-4}\) | \((5.8 \pm 1.1) \times 10^{-7}\) | \((5.9 \pm 1.2) \times 10^{2}\) |

The data represent the mean of triplicate ± standard deviation.
experiments in different biological environments. First, FKBP12 labelling in cell lysate was carried out using 1 and 8 to investigate whether the affinity of LD reagents affects the labelling efficiency and target selectivity in crude conditions. HeLa cell lysate containing 1 µM of FKBP12 was incubated with 1 (1 µM) and 8 (1–20 µM) for 1 h at 37 °C, and analysed by SDS-PAGE and western blotting using streptavidin–horseradish peroxidase conjugate (SAv–HRP). As shown in lane 2 of Fig. 4a, a specific band (12 kDa) corresponding to the biotinylated FKBP12 was clearly observed using 1. Such selective FKBP12 labelling was inhibited in the presence of rapamycin (lane 3), and instead, some labelling reactions with proteins other than FKBP12 occurred owing to the presence of 1 in the free (unbound) state. We also conducted a titration experiment with higher concentrations of 1 (1–20 µM) to the cell lysate (Supplementary Figure 10). Although several bands due to unspecific labelling appeared in the ratio of reagent-to-protein greater than one, the labelling band of FKBP12 was predominant (the ratio of unspecific to specific labelling is less than 0.15). When the LDNASA reagent bearing the weak affinity ligand LLF (8) was used, the FKBP12 labelling was substantially diminished (lane 4 of Fig. 4a). To obtain the same signal intensity as biotinylated FKBP12 labelled by 1, 20 µM of 8 was required (lane 6 of Fig. 4a). However, such a high concentration of the LDNASA reagent caused non-specific labelling reactions with many non-targeted proteins. Given the affinity of 1 \([K_d = (2.1 \pm 0.2) \times 10^{-7} \text{M}]\), these results clearly indicate that the ligand affinity of the LDNASA reagent requires at least a sub µM order \(K_d\) value to ensure sufficient bioorthogonality (target selectivity) in crude environments.

We then conducted intracellular endogenous FKBP12 labelling. Mouse myoblast C2C12 cells were incubated in culture medium containing 1 for 10–120 min at 37 °C. The cells were lysed and analysed by western blotting. As shown in lanes 2–5 of Fig. 4b, endogenous FKBP12 inside live cells was specifically modified with biotin using LDNASA 1 and this labelling was abolished on co-incubation with rapamycin (lane 6 of Fig. 4b), indicating that recognition-driven protein labelling efficiently proceeded inside the live cells. The time course of intracellular FKBP12 labelling with LDNASA 1 is shown in Fig. 4c. Although the reaction rate was slightly slower than that of the in vitro experiments, probably because of the low membrane-permeability of 1, it should be noted that the labelled band was detectable after just 10 min incubation with 1, highlighting the rapid kinetics of LDNASA chemistry. Quantitative western blotting analysis revealed the labelling yield with LDNASA 1 at 60 min to be 78% of the entire population of FKBP12 (almost quantitative at 120 min) (Fig. 4c).
and Supplementary Figure 11), while the LDT reagent 5, which has successfully achieved intracellular FKBP12 labelling in our previous work 13, failed to label FKBP12 in C2C12 cells in that time frame (<120 min) (lane 7 of Fig. 4b).

The applicability of LDNASA chemistry to membrane proteins was demonstrated by folate receptor (FR) labelling in KB cells with LDNASA 9 containing the methotrexate (MTX) ligand (Kd ≈ 200 nM for FR) 37 and an Oregon-Green probe (Fig. 4d). The specific fluorescent band of the labelled-FR was observed in in-gel fluorescence detection (Fig. 4e), and the labelling reaction was completed within 30 min using LDNASA 9 (Fig. 4f), while negligible signal was observed with the previous LDAI reagent 10 in such a short time. Overall, these results demonstrated that LDNASA reagents can rapidly label both endogenous intracellular and membrane-associated proteins in a highly specific manner in native multi-molecular crowding biological contexts.

Design of a NASA-based irreversible inhibitor for Hsp90. LD reagents are normally designed to incorporate a synthetic probe into a protein, but conversely, they can also be used to attach the ligand moiety (instead of the probe) to a protein by switching the linkage direction. We expected that such a LD reagent may act as an irreversible inhibitor of the target protein 22,23. As demonstrated above, LDNASA chemistry allows rapid and efficient covalent modification of canonical nucleophilic amino acids (e.g. the ε-amino group of non-catalytic lysine) of the target (endogenous) protein. Given these unique properties, which cannot be addressed by other bioorthogonal methods, we envisioned that NASA-based protein labelling could serve as a useful strategy to develop a selective covalent inhibitor, in which the NASA group is used as a warhead for the covalent bond formation between a ligand and the target protein. As a proof-of-principle, we chose Hsp90 as a target protein 28,39. Recent studies have revealed that the chaperone activity of Hsp90 is closely associated with the pathology of various diseases, including tumourigenesis, inflammation and neurodegenerative diseases. Therefore, Hsp90 is now considered an attractive drug target, and covalent inhibition of its chaperone activity holds promise as a therapeutic strategy for treatment of these conditions 40.

Prior to the development of a covalent inhibitor for Hsp90, we investigated whether the NASA-based reagents can selectively react with endogenous Hsp90 in live cells. We designed the LDNASA reagent 11, which consists of PU-H71 41,42, a specific (reversible) ligand for the N-terminal ATP binding domain of Hsp90, and fluorescein diacetate (AcFL) as the detection probe (Fig. 5a). It was revealed that LDNASA 11 labelled endogenous Hsp90 (both α and β isoforms) in breast cancer SKBR3 cells after 3 h with sufficient selectivity even using high concentrations of the reagent (~10 µM) (Fig. 5b, Supplementary Figures 12 and 13). This reaction was inhibited by various Hsp90 inhibitors that

Fig. 5 Selective and site-specific labelling of endogenous Hsp90 in live cells. a Molecular structure of LDNASA 11 for Hsp90 labelling. b SDS-PAGE and western blotting analysis of the labelling reaction in live SKBR3 cells. The cells were treated with 11 (0.5 µM) in the absence or presence of PU-H71 (10 µM) for 3 h at 37 °C in medium (pH 7.4). After washing, the cells were lysed and analysed by in-gel fluorescence and western blotting using anti-Hsp90 antibody. c Workflow for TMT-based quantitative LC-MSMS analysis of proteins labelled with 11. After in-gel digestion, obtained peptide fragments were modified with Light- (L-), Medium- (M-), or Heavy- (H-) TMT reagent for samples treated with 11 (0.5 µM, 3 h), 11 with PU-H71 (10 µM), or DMSO, respectively. d L/H ratio plots for total proteins identified in experiments comparing cells treated with 11 versus DMSO. Proteins with median L/H ratios >5 are assigned as 11-labelled proteins (red plots). e L/M ratios (11 versus 11 with PU-H71) of proteins assigned as 11-targets. Gene names of ligand-specific targets (L/M ratios >1) and off-targets (L/M ratios <1) are written in red and black, respectively. f The crystal structure of the N-terminal ATP binding domain of Hsp90α-PU-H71 complex (PDB ID: 2FWZ). The residue (Lys 58) modified with 11 and 12 is highlighted in red, and the PU-H71 ligand is coloured in blue.
While these gel-based analyses showed the selective labelling of Hsp90, we more carefully evaluated off-target proteins of 11 in live cells by a quantitative mass spectrometry using tandem mass tag (TMT) labelling (Fig. 5c)\(^1\). The labelled proteins were enriched by immunoprecipitation with an anti-fluorescein antibody and tryptically digested in gel. Digested peptides were modified with Light- (L-), Medium- (M-), or Heavy- (H-) TMT reagent for samples treated with 11, 11 with PU-H71 (as competitive condition), or DMSO (vehicle), respectively, and mixed in a 1:1:1 ratio for LC-MSMS analysis. We performed three experimental replicates, in which proteins detected and quantified at least twice were selected as identified proteins. According to the related approach of Cravatt et al\(^4\), the proteins having L/H (11/DMSO) ratios >5 were defined as 11-labelled proteins. We also designated the ligand-specific targets or off-targets as proteins exhibiting L/M (11/11 with PU-H71) ratios more or less than 1, respectively. On the basis of these criteria, we identified 6 proteins that react with 11, including three ligand-specific targets (Hsp90α (HSP90AA1), Hsp90β (HSP90AB1), and Grp94 (HSP90B1)) and three off-targets (Trifunctional enzyme subunit α (HADHA), Tubulin-α (TUBA1B), and ADP/ATP translocase 3 (SLC25A6)) (Fig. 5d, e and Supplementary Data 1). Notably, the targeted Hsp90α and Hsp90β showed the highest L/H ratios among identified proteins (13.5 and 9.3, respectively). Grp94, a Hsp90 isomer, was previously reported to be a PU-H71 specific target. TRAP-1, another Hsp90 isomer that can bind PU-H71, on the other hand, was not identified as 11-target by our criteria\(^4\). Both the gel-based analysis and chemoproteomic data clearly demonstrated the high selectivity of the NASA reagent for Hsp90, although there are a few off-target proteins.

The labelling site of cellular Hsp90α was identified to be Lys58 located at the entrance of the ligand-binding pocket of the ATP binding domain of Hsp90α (Fig. 5f and Supplementary Figure 15). On the basis of the crystal structure (PDB ID: 2FZW), the labelled lysine residue of Hsp90α, which is conserved in Hsp90β, is close to the isopropyl amine moiety of the PU-H71 ligand at a distance of approximately 6.2 Å (Fig. 5f and Supplementary Figure 16).

Given all of these data, werationallydesigned the NASA-based covalent inhibitor 12, in which a PU-H71 ligand is connected to a NASA warhead with a 6.3 Å-linker (Fig. 6a, b). The quantitative and single covalent attachment of the PU-H71 ligand was confirmed to be Lys 58, identical to the labelling site with LDNASA 11, using a recombinant N-terminal ATP binding domain of Hsp90 and 12 in test tube experiments (Fig. 5f, Supplementary Figures 17 and 18). The kinetic study gave us the order rate constant was comparable to that of the fastest bioorthogonal protein modification methods. We also found that the NASA reactive group is capable of labelling the ε-amino group of non-catalytic Lys residues. It is generally considered that ~99.9% of the Lys residues on protein surface are protonated, which suppresses their nucleophilicities (reactivities) under physiological pH\(^2\). However, our data strongly suggest that the chemical labelling of the Lys residues can proceed by the close proximity of the NASA reactive group to the ε-amino group of Lys. While the ligand-directed chemistry requires an appropriate ligand and may suffer to some extent from the unspecific labelling in biological crude environments, the present study indicated that this limitation can be addressed by careful design of reagents (use of a ligand with a K_d value of sub µM order) and thorough optimisation of reaction conditions. Moreover, we demonstrated that the mass spectroscopy-based analysis is quite powerful for the proteome-wide characterisation of the possible off-target proteins in this method. These results provide deep insights and important guidelines for practical use of not only LDNASA chemistry but also other proximity-driven protein labelling in living systems.

We also demonstrated that NASA-based protein modification is applicable for the irreversible suppression of native protein functions in living cells. To the best of our knowledge, this study is the first report of covalent inhibition of the N-terminal ATP binding domain essential for the catalytic chaperone activity of Hsp90. Inhibition of the ATPase activity in an irreversible fashion can be addressed by careful design of reagents (use of a ligand with a K_d value of sub µM order) and thorough optimisation of reaction conditions. Moreover, we demonstrated that the mass spectroscopy-based analysis is quite powerful for the proteome-wide characterisation of the possible off-target proteins in this method. These results provide deep insights and important guidelines for practical use of not only LDNASA chemistry but also other proximity-driven protein labelling in living systems.

Discussion

In summary, we have developed LDNASA chemistry that shows rapid reaction kinetics with sufficient target selectivity and bioorthogonality under native live cell conditions. The second-order rate constant was comparable to that of the fastest bioorthogonal protein modification methods. We also found that the NASA reactive group is capable of labelling the ε-amino group of non-catalytic Lys residues. It is generally considered that ~99.9% of the Lys residues on protein surface are protonated, which suppresses their nucleophilicities (reactivities) under physiological pH\(^2\). However, our data strongly suggest that the chemical labelling of the Lys residues can proceed by the close proximity of the NASA reactive group to the ε-amino group of Lys. While the ligand-directed chemistry requires an appropriate ligand and may suffer to some extent from the unspecific labelling in biological crude environments, the present study indicated that this limitation can be addressed by careful design of reagents (use of a ligand with a K_d value of sub µM order) and thorough optimisation of reaction conditions. Moreover, we demonstrated that the mass spectroscopy-based analysis is quite powerful for the proteome-wide characterisation of the possible off-target proteins in this method. These results provide deep insights and important guidelines for practical use of not only LDNASA chemistry but also other proximity-driven protein labelling in living systems.
There have been few surface lysine-targetable inhibitors developed to date, and in general, it is quite difficult to rationally design such an inhibitor, mainly because of the lack of suitable warheads for such less-reactive residues. In this respect, the NASA reactive group should have great potential as a versatile electrophile for lysine-targeted irreversible inhibition and is expected to expand the scope of targetable proteins in covalent drug development.

Methods

Synthesis. All synthetic procedures and compound characterisations are described in Supplementary Methods.

General materials for biological experiments. All biological reagents were purchased from Sigma-Aldrich, Tokyo Chemical Industry (TCI), Wako Pure Chemical Industries, Sasaki Chemical, Bio-Rad, Thermo Fisher Scientific, Nacalai Tesque or Watanabe Chemical Industries, and used without further purification, unless otherwise noted. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blotting were carried out with a Bio-Rad Mini-Protean III Chromaster system equipped with a 5430 UV-vis detector, a 5440 diode array detector, and a YMC-Pack ODS-A column (5 μm, 250 × 4.6 mm) at a flow rate of 1.0 mL/min. All runs used linear gradients of acetonitrile containing 0.1% tri-fluoroacetic acid (TFA) and 0.1% aqueous TFA.

FKBP12 labelling in vitro. Recombinant human FKBP12 was obtained as described in Supplementary Methods. Purified FKBP12 (5 μM) was incubated with Protein–ligand interaction.

Irreversible inhibition!

Schematic illustration of reaction mechanism of NASA-based covalent inhibitor.

Cell viability assay or WB analysis of Hsp90 client proteins.

Cell viability (% control)

Inhibitor (μM)

Cell viability (% control)

Inhibitor (μM)

HER2

Akt

pAkt

β-actin

HER2

Akt

pAkt

β-actin

PU-H71

Compound 12

PU-H71

Compound 12

Fig. 6 Irreversible inhibition of intracellular Hsp90. a Schematic illustration of reaction mechanism of NASA-based covalent inhibitor. b Molecular structures of PU-H71 (non-covalent inhibitor) and NASA-based covalent inhibitor 12. c In-gel fluorescence analysis of fluorescein labelling of Hsp90 with 11 in SKBR3 cells after inhibitor washout. After cells were incubated with various concentrations of PU-H71 or 12 for 3 h, the cells were washed with medium and further incubated with 11 for 3 h. The cells were washed, lysed and analysed by in-gel fluorescence imaging. Error bars represent s.d., n = 3. d Viability of the cells 69 h after PU-H71 or 12 washout. Data represent mean values ± standard error of the mean (s.e.m.) for three (PU-H71) or six (compound 12) independent experiments. e Western blotting analysis of the destabilization of client proteins induced by inhibiting Hsp90 chaperone activity, and f the normalised band intensities. Cells were treated with PU-H71 or 12 for 3 h, followed by washing with media and further incubation for 21 h. The protein band intensity was normalised to DMSO control (lane 1). β-actin is a control as a non-Hsp90 client protein. Error bars represent s.d., n = 3.
reagent (10 µM) in the absence or presence of rapamycin (20 µM) in HEPES buffer (50 mM, pH 7.2) at 37 °C. Aliquots at different time points were taken and then desalted using a ZipTip-C4 (Merck), and the labelling yields were determined by MALDI-TOF MS (matrix: CHCA).

Peptide mapping of the Blabelled FKBP12. Purified FKBP12 (39.4 µM) was incubated with LDN9A 1 or 8 (39.4 µM) in HEPES buffer (50 mM, pH 7.2) at 37 °C. After 0.5 h, the labelled FKBP12 was purified by size-exclusion chromatography using a TOYOPEARL-HW-40F column with pH 8.0 50 mM HEPES buffer. To this solution, urea (at a final concentration of 2 M) and Trypsin (Trypsin/substrate ratio = 1/5 (w/w)) were added. After incubation at 37 °C for 24 h, the digested peptides were separated by analytical RP-HPLC. The collected fractions were analysed by MALDI-TOF MS (matrix: CHCA) and the labelled fragment was further characterised by MALDI-TOF-TOF MS/MS analysis. To determine the minor labelling site, the digested peptides were desalted using a ZipTip-C18 (Merck), and the labelling yields were determined by mixing acidic matrix solution (10 mM/50 mg/ml). The residual ratio of non labelled protein ([P] + [PR]/[P]) were determined by MALDI-TOF MS, and the kinetic parameters were obtained by the method described above.

FKBP12 labelling in HeLa cell lysate. HeLa cells (kindly gifted from Prof. Yoshiki Katayama) (1x10⁶ cells) were suspended in HEPES buffer (50 mM, pH 7.2) containing 1% protease inhibitor cocktail set III (Calbiochem) and lysed by Potter-Elvehjem homogeniser at 4 °C. The lysate was centrifuged at 16 000 x g for 3 min, and the supernatant was collected. Protein concentration was determined by BCA assay and adjusted to 0.5 mg/ml. This solution was incubated with recombinant FKBP12 (final concentration 1 µM) and 1 D (1 µM) or 1 20 (20 µM) in the absence or presence of Rapamycin (10 or 20 µM) for 1 h at 37 °C. The reaction mixture was mixed with 1/4 of 5 x sample buffer (pH 6.8, 31.25 mM Tris–HCl, 25% sucrose, 10% SDS, 0.025% bromophenol blue) containing 250 mM DTT and incubated for 1 h at 25 °C. The samples were analysed by western blotting using Streptavidin–HRP conjugate (SAV-HRP, Thermo, 5911, 1:5000) and Coomassie Brilliant Blue (CBR) stain.

Chemical labelling of endogenous FKBP12 in C2C12 cells. Mouse myoblast C2C12 cells (ATCC) (2x10⁵ cells) were cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% foetal bovine serum (FBS, Gibco), penicillin (100 units/ml), streptomycin (100 mg/ml), and amphotericin B (250 mg/ml) in a 5% CO2 humidified chamber at 37 °C. The cells were then incubated in FBS-deficient DMEM containing reagent (1 µM) at 37 °C for 120 min. As control experiments, the labelling was conducted in the presence of Rapamycin (10 µM). For western blot analysis, after washing twice with PBS, the cells were lysed using 1% SDS, 150 mM Tris–HCl (pH 7.4, 0.5% sodium deoxycholate, 1% Triton X-100) and centrifuged (15 200 × g, 10 min at 4 °C). The supernatants were mixed with 1/4 of 5 x sample buffer (pH 6.8, 31.25 mM Tris–HCl, 25% sucrose, 10% SDS, 0.025% bromophenol blue) containing 250 mM DTT and incubated for 1 h at 25 °C. The samples were subjected to SDS-PAGE and electro-transferred onto an Immun-Blot PVDF membrane (Bio-Rad). The labelled FKBP12 was detected by chemiluminescence analysis using Streptavidin–HRP conjugate, rabbit anti-FKBP12 antibody (Abcam, ab2918, 1:1000) and anti-rabbit IgG–HRP conjugate (CST, #70745, 1:5000).

Chemical labelling of endogenous FR in KB cells. KB cells were obtained from Cell resource centre for biomedical research (Institute of developmental, aging and cancer, Tohoku university), tested negative for mycoplasma contamination, and used without further authentication, to demonstrate endogenous FR labelling in live cell contexts because FR is highly expressed in the cells. KB cells (2x10⁵ cells) were cultured in folate-free RPMI1640 (Gibco) supplemented with 10% FBS, penicillin (100 units/ml), streptomycin (100 mg/ml), and amphotericin B (250 mg/ml), and incubated in a 5% CO2 humidified chamber at 37 °C. The cells were washed three times with folate- and FBS-deficient RPMI1640, and then incubated in the medium containing reagent (1 µM) at 37 °C. The labelling was also conducted in the presence of folate (25 µM) as a negative control. After washing three times with PBS, the cells were lysed on ice by RIPa buffer containing 1% protease inhibitor cocktail set III. The lysate was collected into a tube and centrifuged for 10 min at 15 200 × g. The supernatant was mixed with the same volume of 5 x sample buffer and incubated for 1 h at 25 °C. After SDS-PAGE, fluorescence signals in the gel were detected by LAS4000. The expression of FR was confirmed by western blot analysis using anti-FR antibody (Abcam, ab2918, 1:1000) and anti-rabbit IgG–HRP conjugate.

Chemical labelling of endogenous Hsp90 in SKBR3 cells. SKBR3 human breast cancer cells (ATCC) (4x10⁵ cells) were cultured in McCoy’s 5 A supplemented with 10% FBS, penicillin (100 units/ml), streptomycin (100 mg/ml), and amphotericin B (250 mg/ml), and incubated in a 5% CO2 humidified chamber at 37 °C. The cells were then washed with reagent (1 µM) or 1 20 (20 µM) containing reagent (indicated concentration) at 37 °C for indicated time. As control experiments, the labelling was conducted in the presence of competitive inhibitors. After labelling, the cells were washed twice with PBS, and lysed with RIPA buffer. The lysed sample was collected and centrifuged (15 200 × g, 10 min at 4 °C). The supernatants were mixed with 1/4 of 5 x sample buffer and incubated for 1 h at room temperature. The samples were subjected to in-gel fluorescence and western blotting analysis using anti-Hsp90 antibody HRP conjugate (CST, #79641, 1:1000).

Identification of Blabelled proteins in live cells. SKBR3 human breast cancer cells (2x10⁵ cells) were seeded on a 10 cm dish and cultured for 3 days in McCoy’s 5 A in a 5% CO2 humidified chamber at 37 °C. The cells were then incubated in HEPES-modified McCoy’s 5 A (FBS-free) containing 11 (0.5 µM) or DMSO (vehicle) at 37 °C for 3 h. As competitive experiments, the labelling was...
conducted in the presence of PU-H71 (10 µM). After labelling, the cells were washed twice with PBS, and lysed with RIPA buffer. The lysed sample was collected and centrifuged (15 200 × g, 10 min at 4 °C). The supernatant was mixed with chilled acetone and incubated overnight at −80 °C. The protein precipitates were solubilized by sonication in 1 mL of RIPA buffer containing 1% SDS, and then 10-fold diluted with RIPA buffer to reduce SDS concentration to c.a. 0.1%. The protein solution (containing 1 mg of protein) was mixed with Protein G Sepharose 4 Fast Flow (60 µL of packed resin) at 4 °C. After removal of the beads, the remaining supernatant was mixed with anti-fluorescein antibody (Abcam, ab19491, 7:100000) and rotated at 4 °C for 1 h, followed by addition of fresh Protein G Sepharose 4 Fast Flow and further incubation at 4 °C for 4 h. The beads were washed twice with RIPA buffer and once with PBS. Proteins were eluted from the beads by addition of 2 × sample buffer containing 100 mM DTT and boiling at 95 °C for 5 min. The samples were resolved by 7.5% SDS-PAGE, and the fluorescent band corresponding to fluorescein-modified Hsp90 was excised from in-gel fluorescence image. The excised gel was subjected to in-gel digestion using MS grade Trypsin (Thermo Fisher Scientific). The peptide fragments were analysed by nanoflow reverse liquid chromatography followed by tandem MS, using a LTQ Orbitrap XL hybrid mass spectrometer as described above. Searches were performed using the SEQUEST HT against the latest uniprot database for Hsp90α (H90A_HUMAN, P07900) and Hsp90 beta (H90B_HUMAN, P08238).

In vitro labelling of N-terminal domain of Hsp90α. Recombinant Hsp90α N-terminal domain was obtained as described in Supplementary Methods. The solution of Hsp90α N-terminal domain (6.4 µM) was incubated with 12 (10 µM) in PBS at 37 °C. Aliquots at different time points were taken and then desalted using ZipTip-C4. The modification yields were determined by MALDI-TOF MS (matrix: sinapinic acid)

Peptide mapping of N-terminal domain of Hsp90α. The 12-modified N-terminal domain of Hsp90α was purified by size-exclusion chromatography as described above. The purified protein was denatured by urea (at a final concentration of 2 M), followed by trypptic digestion (Trypsin/substrate ratio = 1:10 (w/w)) at 37 °C for 18 h. The digested peptides were separated by RP-HPLC and characterised by MALDI-TOF MS and MS/MS (matrix: CHCA).

Cell viability assay. SKBR3 cells (6 × 10⁴ cells) were seeded on a 12 well plate (Corning) and incubated in McCoy’s 5A supplemented with 10% FBS for 48 h at 37 °C under 5% CO₂. After washing twice with HEPEs-modified McCoy’s 5A (FBS-free) medium, the cells were incubated in the medium containing PU-H71 or DMSO (light tag) for 3 h at 37 °C. The cells were washed with 100 µL of 100 mM TEAB buffer containing 10% FBS and further incubated for 69 h. As a control experiment, the cells were treated with PU-H71 for 72 h. The cell viability was assessed using Cell Counting Kit-8 (Dojin). The absorbance of each well was measured at 450 nm with infinite M200 (TECAN).

Western blotting of Hsp90 client proteins. SKBR3 cells (2 × 10⁵ cells) were seeded on a 12 well plate and incubated in McCoy’s 5A supplemented with 10% FBS for 48 h at 37 °C under 5% CO₂. After washing twice with HEPEs-modified McCoy’s 5A (FBS-free) medium, the cells were incubated in the medium containing PU-H71 (10 µM) or DMSO (component) for 3 h at 37 °C. The cells were washed twice with McCoy’s 5A supplemented with 10% FBS and further incubated for 21 h. The cells were washed with PBS, and lysed with RIPA buffer containing 1% protease inhibitor cocktail. The lysed samples were centrifuged (15 200 × g, 10 min at 4 °C). The protein concentrations of supernatant were analysed by BCA assay, and the normalised lysates were mixed with 1/4 volume of 5 × sample buffer containing 250 mM DTT and vortexed for 1 h at room temperature. The samples were subjected to Western blotting analysis using anti-HER2 (CST, #2242, 1:1000), anti-EGFR (CST, #2276, 1:1000), anti-AKT (CST, #4704, 1:1000), and anti-beta actin (Abcam, ab8226, 1:1000) antibodies.

Data availability. The data that support the findings of this study are available from the corresponding authors on reasonable request.

Received: 27 February 2018 Accepted: 20 April 2018
Published online: 14 May 2018

References
1. Prescher, J. A. & Bertozzi, C. R. Chemistry in living systems. Nat. Chem. Biol. 1, 1–11 (2005).
2. Sletten, E. M. & Bertozzi, C. R. Bioorthogonal chemistry: fishing for selectivity in vivo. Angew. Chem. Int. Ed. 48, 6974–6998 (2009).
3. Spicer, C. D. & Davis, B. G. Selective chemical protein modification. Nat. Commun. 5, 4740 (2014).
4. Takaoka, Y., Ojida, A. & Hamachi, I. Protein organic chemistry and applications for labelling and engineering in live-cell systems. Angew. Chem. Int. Ed. 52, 4088–4106 (2013).
5. Lang, K. & Chin, J. W. Cellular incorporation of unnatural amino acids and bioorthogonal labelling of proteins. Chem. Rev. 114, 4764–4806 (2014).
6. Chen, X. & Wu, Y.-W. Selective chemical labelling of proteins. Org. Biomol. Chem. 14, 5417–5439 (2016).
7. Rabuka, D. Chemoenzymatic methods for site-specific protein modification. Curr. Opin. Chem. Biol. 37, 789–796 (2016).
8. Gauthier, A. et al. An engineered protein tag for multiprotein labelling in living cells. Nat. Biotechnol. 21, 86–89 (2003).
10. Oliveira, B. L., Guo, Z. & Bernardes, G. J. L. Inverse electron demand Diels-Alder reactions in chemical biology. *Chem. Rev.* **46**, 4895–4990 (2017).

11. Ramí, C. P. & Lin, Q. Bioorthogonal chemistry: strategies and recent developments. *Chem. Commun.* **49**, 11007–11022 (2013).

12. Tsukiji, S., Miyagawa, M., Takaoka, Y., Tamura, T. & Hamachi, I. Ligand-directed tosyl chemistry for protein labelling in vivo. *Nat. Chem. Biol.* 7, 341–343 (2009).

13. Tamura, T., Tsukiji, S. & Hamachi, I. Native FKBPI2 engineering by ligand-directed tosyl chemistry: labelling properties and application to photo-cross-linking of protein complexes in vitro and in living cells. *J. Am. Chem. Soc.* **134**, 2216–2226 (2012).

14. Tamura, T., Kiot, Y., Miki, T., Tsukiji, S. & Hamachi, I. Fluorophore labelling of native FKBPI2 by ligand-directed tosyl chemistry allows detection of its molecular interactions in vitro and in living cells. *J. Am. Chem. Soc.* **135**, 6782–6785 (2013).

15. Fujishima, S., Yasui, R., Miki, T., Ojida, A. & Hamachi, I. Ligand-directed acylimidazole chemistry for labelling of membrane-bound proteins on live cells. *J. Am. Chem. Soc.* **134**, 3961–3964 (2012).

16. Wakahayama, S. et al. Chemical labelling for visualizing native AMPA receptors in live neurons. *Nat. Commun.* **8**, 14850 (2017).

17. Yamaura, K., Kiyonaka, S., Numata, T., Inoue, R. & Hamachi, I. Discovery of allosteric modulators for GABA _A_ receptors by ligand-directed chemistry. *Nat. Chem. Biol.* **12**, 822–830 (2016).

18. Takaoka, Y., Nishikawa, Y., Hashimoto, Y., Sasaki, K. & Hamachi, I. Ligand-directed dibromostyryl benzene chemistry for rapid and selective acylation of intracellular natural proteins. *Chem. Sci.* **6**, 3217–3224 (2015).

19. Tsukiji, S. & Hamachi, I. Ligand-directed tosyl chemistry for in situ native protein labelling and engineering in living systems: from basic properties to applications. *Curr. Opin. Chem. Biol.* **21**, 136–143 (2014).

20. Li, J. et al. Palladium-triggered deprotection chemistry for protein activation in living cells. *Nat. Chem.* **6**, 352–361 (2014).

21. Li, J. & Chen, P. R. Development and application of bond cleavage reactions in bioorthogonal chemistry. *Nat. Chem. Biol.* **12**, 129–137 (2016).

22. Singh, J., Petter, R. C., Baillie, T. A. & Whitty, A. The resurgence of covalent drugs. *Nat. Rev. Drug Discov.* **10**, 307–317 (2011).

23. Baillie, T. A. Targeted covalent inhibitors for drug design. *Angew. Chem. Int. Ed.* **55**, 13408–13421 (2016).

24. Brashaw, J. M. et al. Prolonged and tunable residence time using reversible covalent kinase inhibitors. *Nat. Chem. Biol.* **11**, 525–531 (2015).

25. Cohen, M. S., Zhang, C., Shokat, K. M., & Taunton, J. Structural bioinformatics-based design of selective, irreversible kinase inhibitors. *Science* **308**, 1318–1321 (2005).

26. Liu, Q. et al. Developing irreversible inhibitors of the protein kinase csteinome. *Chem. Biol.* **20**, 146–159 (2013).

27. Pettinger, J., Jones, K., & Cheeseman, M. D. Lysine-targeting covalent inhibitors. *Angew. Chem. Int. Ed.* **56**, 15200–15209 (2017).

28. Fansa, E. K. et al. Covalent protein labelling at glutamic acids. *Cell Chem. Biol.* **24**, 589–597 (2017).

29. Heidler, P. & Link, A. N-acyl-N-alkyl sulfonamide anchors derived from imidazole chemistry for labelling of membrane-bound proteins in live cells. *Chem. Biol.* **19**, 345–356 (2012).

30. Tamura, T. et al. Artificial and natural covalent kinase inhibitors. *Angew. Chem. Int. Ed.* **51**, 14606–14610 (2012).

31. Hacker, S. M. et al. Global profiling of lysine reactivity and lability in the human proteome. *Nat. Chem. Biol.* **9**, 1181–1190 (2013).

Acknowledgements

We thank Karin Nishimura and Eriko Kuwasa (Kyoto University) for experimental support of MS and NMR measurements. This work was supported by Grant-in-Aid for Young Scientists (B) (15K17884) and the Kyoto University Foundation to T.T., and the Japan Science and Technology Agency (JST) Core Research for Evolutional Science and Technology (CREST) to I.H. This work was also supported by a Grant-in-Aid for Scientific Research on Innovative Areas Chemistry for Multimolecular Crowding Biosystems (SPS KAKENHI Grant no. 17H06348).

Author contributions

T. Tamura and I.H. conceived and designed the project. T. Tamura, T.U., T.G., T. Tsukitade, Y.S. and Y.N. synthesized the labelling reagents. T. Tamura and T.G. carried out the kinetics experiments and cell-based protein labelling. T.U. conducted labelling and covalent inhibition of Hsp90. A.F. identified the labelling site of Hsp90. T. Tamura, T.U., T.G. and I.H. analyzed the experimental data. The manuscript was written by T. Tamura and I.H., and edited by all the co-authors.

Additional information

Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-018-04343-0.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2018