Supplemental Appendix

“Characteristic-Sorted Portfolios: Estimation and Inference”

Matias D. Cattaneo
(Princeton University)
Max Farrell
(University of Chicago–Booth)

Richard K. Crump
(Federal Reserve Bank of New York)
Ernst Schaumburg
(AQR Capital Management)
Contents

A Optimal Choice of J_t ... 2
 A.1 Theoretical Quantities ... 2
 A.2 Empirical Implementation .. 2

B Proofs ... 5
 B.1 Notation ... 5
 B.2 Model, Setup and Assumptions ... 5
 B.3 Estimation Approach .. 6
 B.4 Lemmas .. 7
 B.5 Proof of Theorem 1 ... 9
 B.5.1 Term: L_1 .. 9
 B.5.2 Term: L_2 .. 10
 B.5.3 Term: L_3 .. 11
 B.5.4 Term: L_4 .. 12
 B.6 Proof of Theorem 2 ... 13
 B.6.1 Proof of Consistency of Variance Estimators (FM-style Variance Estimator) 13
 B.6.2 Proof of Consistency of Variance Estimators (Plug-in Variance Estimator) 14
 B.7 Proof of Theorem 3 ... 22
 B.7.1 Term: M_1 .. 23
 B.7.2 Term: M_2 .. 23
 B.7.3 Term: M_3 .. 28
 B.7.4 Term: M_4 .. 29
 B.7.5 Term: M_5 .. 30
 B.8 Proofs of Lemmas ... 32
A Optimal Choice of J_t

A.1 Theoretical Quantities

Here we provide explicit formulas for the main terms of the MSE expansion given in Theorem 3. First let us define $q_{jt} = P(z \in P_{jt} | \mathcal{F}_t)$. Then, we have that:

$$B_t(z) = JT^{-1}n_t^{-1}\mu'(z)\sum_{i=1}^{n_t}J_t^d\sum_{j=1}^{J_t}1_{jt}(z)q_{jt}^{-1}1_{jt}(z_{it} - z)$$

where $\mu'(z) = \frac{\partial \mu(z)}{\partial z}|_{z = z_0}$ and

$$V^{(1)}_t(z) = nJ^{-d}T^{-1}n_t^{-2}\sum_{i=1}^{n_t}\sum_{j=1}^{J_t}1_{jt}(z)q_{jt}^{-2}\{1_{jt}(z_{it})\sigma_{it}^2 - \mathbb{E}[1_{jt}(z_{it})\sigma_{it}^2 | \mathcal{F}_t]\},$$

$$V^{(2)}_t(z) = n^2J^{-2d}T^{-1}n_t^{-3}\sum_{i=1}^{n_t}\sum_{j=1}^{J_t}1_{jt}(z)q_{jt}^{-3}\{1_{jt}(z_{it})\sigma_{it}^2 - \mathbb{E}[1_{jt}(z_{it})\sigma_{it}^2 | \mathcal{F}_t]\}.$$\[\text{Finally, we have } \mathcal{C} = \sum_{t=1}^{T}C_t(z_L) + \sum_{t=1}^{T}C_t(z_H) \text{ where,}\]

$$C_t(z) = n^{3/2}J^{-3d/2}T^{-1/2}n_t^{-2}\sum_{i=1}^{n_t}\sum_{j=1}^{J_t}1_{jt}(z)q_{jt}^{-2}\{1_{jt}(z_{it})\sigma_{it}^2 - \mathbb{E}[1_{jt}(z_{it})\sigma_{it}^2 | \mathcal{F}_t]\}$$

- $2n^{3/2}J^{-3d/2}T^{-1/2}\sum_{t=1}^{T}n_t^{-3}\sum_{i=1}^{n_t}\sum_{j=1}^{J_t}1_{jt}(z)q_{jt}^{-3}(1_{jt}(z_{it}) - q_t)1_{jt}(z_{it})\sigma_{it}^2.$

A.2 Empirical Implementation

As we discussed in Section 5 we base our choice of the optimal number of portfolios in our empirical applications based on equation (11). To do so let $t_{\max} = \arg\max_{1 \leq t \leq T} n_t$, $n = n_{\max}$ and $J = J_{\max}$. For all other time periods we scale J_t as $J_t = J(n_t/n)^{\frac{1}{J_{\max}}}$ (see discussion in Section 4). We then choose a grid of values for J as $J = (n_{\min}/n)^{\frac{1}{J_{\max}}}, \ldots, J_{\max})$ where $t_{\min} = \arg\min_{1 \leq t \leq T} n_t$. In our empirical applications we set $J_{\max} = 400$.

To estimate the MSE in practice we have the following estimator,

$$\hat{\text{MSE}}(\hat{\mu}(z_H) - \hat{\mu}(z_L); J_1, \ldots, J_T)$$

$$= \left(\hat{\mu}'(z_H) \cdot T^{-1} \sum_{i=1}^{n_t}n_t \sum_{j=1}^{J_t}1_{jt}(z_{it})\hat{\mu}_{jt}(z_H)\hat{\mu}_{jt}(z_{it} - z_H)\right)\left(\hat{\mu}'(z_L) \cdot T^{-1} \sum_{i=1}^{n_t}n_t \sum_{j=1}^{J_t}1_{jt}(z_{it})\hat{\mu}_{jt}(z_L)\hat{\mu}_{jt}(z_{it} - z_L)\right)^2$$

$$+ T^{-2} \sum_{t=1}^{T} (\hat{\mu}_t(z_H) - \hat{\mu}_t(z_L) - (\hat{\mu}_t(z_H) - \hat{\mu}_t(z_L)))^2$$ \hspace{1cm} (A.1)

where

$$\hat{\mu}_t(z) = \sum_{j=1}^{J_t}N_t^{-1/2}n_t \sum_{i=1}^{n_t}1_{jt}(z_{it})\hat{\mu}_{jt}(z_{it})(R_{it} - X_{it}\hat{\beta}_t),$$

$$\hat{\mu}(z) = T^{-1} \sum_{t=1}^{T} \hat{\mu}_t(z).$$

Here ω_{it} is the weight applied to the returns in each portfolio which satisfies $\sum_{t=1}^{n_t}1_{jt}(z_{it})\omega_{it} = 1$ for each
$j = 1, \ldots, J_t^d$ and at each time t. As is common, we use lagged market equity to weight the returns in each portfolio in our empirical applications. The plug-in estimate of $\hat{V}^{(2)}_{\frac{J_t^d}{n_T}}$ implicit in the above expression utilizes the logic of the Fama-MacBeth variance estimator applied to the higher-order variance term. As a plug-in estimator of $\mu'(z)$ we use the time-series average of the estimated slope coefficient from a local regression using the 40 closest points to z (ties included) at each point in time.

Remark 1. As discussed in Remark 9 of the main text, when we are interested in point estimation, the optimal choice is J_t^{**} rather than J_t^*. In analogy with equation (A.1) we can utilize the following estimator,

$$
\hat{\text{MSE}}^{**}(\hat{\mu}(z_H) - \hat{\mu}(z_L); J_1, \ldots, J_T) = \left(\mu'(z_H) \cdot T^{-1} \sum_{t=1}^{T} \sum_{j=1}^{J_t^d} \sum_{i=1}^{n_t} \omega_{it} \hat{1}_{j_t} \hat{1}_{j_t}(z_H) \hat{1}_{j_t}(z_{it}) (z_{it} - z_H) \\
- \mu'(z_L) \cdot T^{-1} \sum_{t=1}^{T} \sum_{j=1}^{J_t^d} \sum_{i=1}^{n_t} \omega_{it} \hat{1}_{j_t} \hat{1}_{j_t}(z_L) \hat{1}_{j_t}(z_{it}) (z_{it} - z_L) \right)^2 + \hat{V}_{FM}(z).
$$

In this case, we would scale all other time periods as $J_t = J (n_t/n)^{\frac{1}{d+2}}$. We then choose a grid of values for J as $J = ([n_{t_{\text{min}}}/n]^{\frac{1}{d+2}}, \ldots, J_{\text{max}})$.

□
Figure A.1: **Cross-Sectional Sample Sizes**

The top chart shows the monthly cross-section sample sizes over time, n_t, for the primary data set from the Center for Research in Security Prices (CRSP). The bottom chart shows the cross-section sample sizes over time for those stocks listed on the New York Stock Exchange (NYSE).

All

![Chart showing cross-sectional sample sizes over time for all stocks.]

NYSE Only

![Chart showing cross-sectional sample sizes over time for NYSE listed stocks.]

4
B Proofs

B.1 Notation

In this Supplementary Appendix we use a generalized notation relative to the manuscript. Note that \(N_{jt} \) satisfies \(N_{jt} = n_t \hat{q}_{jt} \) where \(\hat{q}_{jt} \) is defined below. The other mappings from the manuscript to remainder of this supplement are as follows:

- \(\hat{1}_{jt} \mapsto 1_{jt} \)
- \(\hat{1}_{jt}(z) \mapsto \hat{1}_{jt}(z) \)
- \(d \mapsto d \)

We also abstain from bold symbols in the remainder of the supplement for simplicity of notation.

B.2 Model, Setup and Assumptions

Let \(R_{it} \in \mathbb{R} \) be the return of asset \(i \) at time \(t \) with regressor of interest, \(z_{it} \in \mathbb{R}^{d_z} \) and additional controls, \(x_{it} \in \mathbb{R}^{d_x} \). The model is

\[
R_{it} = \mu(z_{it}) + x_{it}' \beta_t + \varepsilon_{it}, \quad i = 1, \ldots, n_t, \quad t = 1, \ldots, T,
\]

where \(\beta_t \in \mathbb{R}^{d_x} \forall t \) and \(\mu(\cdot) \) is a time-invariant function. We make the following assumptions:

Assumption 1. Let the sigma fields \(\mathcal{F}_t = \sigma(f_t) \) be generated by a sequence of unobserved (possibly dependent) random vectors \(\{f_t : t = 0, 1, \ldots, T\} \). For \(t = 1, \ldots, T \), the following conditions hold.

1. Conditional on \(\mathcal{F}_t \), \(\{(R_{it}, z_{it}', x_{it}') : i = 1, 2, \ldots, n_t\} \) are iid satisfying Model (\(*\)).

2. \(\mathbb{E}[\varepsilon_{it}| z_{it}, x_{it}, \mathcal{F}_t] = 0 \); uniformly in \(t \), \(\Omega_{uu,t} = \mathbb{E}[\mathbb{V}(x_{it}| z_{it}, \mathcal{F}_t)|\mathcal{F}_t] \) is bounded and its minimum eigenvalue is bounded away from zero; \(\sigma_{it}^2 = \mathbb{E}[\varepsilon_{it}^2| z_{it}, x_{it}, \mathcal{F}_t] \) is bounded and bounded away from zero, and \(\mathbb{E}[|\varepsilon_{it}|^{2+\phi}| z_{it}, x_{it}, \mathcal{F}_t] \) is bounded for some \(\phi > 0 \); \(\mathbb{E}[a'x_{it}| z_{it}, \mathcal{F}_t] \) is sub-Gaussian for all \(a \in \mathbb{R}^{d_x} \).

3. Conditional on \(\mathcal{F}_t \), \(z_{it} \) has time-invariant support, denoted \(\mathcal{Z} \), and continuous Lebesgue density bounded away from zero.

4. \(\mu(z) \) is twice continuously differentiable; \(|\mathbb{E}[x_{it,\ell}| z_{it} = z, \mathcal{F}_t] - \mathbb{E}[x_{it,\ell}| z_{it} = z', \mathcal{F}_t]| \leq C \|z - z'\| \) for all all \(z, z' \in \mathcal{Z} \) where \(x_{it,\ell} \) is the \(\ell \)th element of \(x_{it} \) and the constant \(C > 0 \) is not a function of \(t \) or \(\mathcal{F}_t \).

Assumption 2. The cross-sectional sample sizes diverge proportionally for a sequence \(n \to \infty \), \(n_t = \kappa_t n \) with \(\kappa_t \leq 1 \) and uniformly bounded away from zero.

Assumption 3. The sequences \(n, T, \) and \(J \) obey: (a) \(n^{-1}J^{d_z} \log(n) \log(J^{d_z} \lor T) \to 0 \), (b) \(\sqrt{nT}J^{-(d_z/2+1)} \to 0 \), and, if \(d_z \geq 1 \), (c) \(T/n \to 0 \).

Finally, let \(\|A\| = \text{tr}(A'A) \) for a matrix \(A \). If \(A \) is square we denote the minimum eigenvalue by \(\lambda_{\min}(A) \).

Define for two sequences \(a_{n,T} \asymp b_{n,T} \) if \(\limsup_{n,T \to \infty} |a_{n,T}/b_{n,T}| < \infty \) and \(\limsup_{n,T \to \infty} |b_{n,T}/a_{n,T}| < \infty \).
B.3 Estimation Approach

We approximate the unknown function $\mu(\cdot)$ at fixed time t by a partitioning estimator. At each point in time t, the number of partitions may depend on (n_t, n, T). Let $J_t^{d_s}$ be the number of partitions for time t and by assumption we have that, uniformly in t, $J_t \approx J$ for some sequence $J = J_{n,T} \to \infty$ as $n, T \to \infty$. Throughout the Appendix, for simplicity of notation, we will suppress any dependence and just refer to J_t and J.

If we write

$$
\hat{\mu}_t^0 (z) = B_t (z)' \gamma_t^0, \quad B_t (z) = \left(\hat{I}_1 (z), \ldots, \hat{I}_{J_t} (z) \right)',
$$

where

$$
\hat{I}_{jt} (z) = \hat{I}_{jt,1} (z_1) \hat{I}_{jt,2} (z_2) \cdots \hat{I}_{jt,d} (z_d),
$$

and

$$
\begin{align*}
\{ \hat{I}_{jt,t} (z_t) = 1 \} & \iff \{ \hat{b}_{(j,t-1),t} \leq z_t < \hat{b}_{jt,t} \}, & 1 \leq j_t < J, \\
\{ \hat{I}_{jt,t} (z_t) = 1 \} & \iff \{ \hat{b}_{(j,t-1),t} \leq z_t \leq \hat{b}_{jt,t} \}, & j_t = J,
\end{align*}
$$

where $\hat{b}_{jt,t} = \hat{F}_{jt,t}^{-1} (j_t/J)$ and $\hat{F}_{jt,t}^{-1} (\cdot)$ is the empirical quantile function of $z_{it,t}$ for the cross-section at time t. Our estimator of $\mu(\cdot)$ at time t is

$$
\hat{\mu}_t (z) = B_t (z)' \hat{\gamma}_t, \quad \hat{\gamma}_t = (B_t' M_X t B_t)^{-1} B_t' M_X t R_t,
$$

where $B_t = (B_t (z_{11t}), \ldots, B_t (z_{nt}))' = n_t \times J_t^{d_s}$, $M_X t = I_{n_t} - X_t (X_t' X_t)^{-1} X_t'$, and X_t is the $n_t \times d_x$ matrix of the stacked x_{it}.

Furthermore our estimator of $\mu(\cdot)$ based on the full sample is

$$
\hat{\mu} (z) = \frac{1}{T} \sum_{t=1}^T \hat{\mu}_t (z).
$$

Corresponding to $\hat{\mu}_t (z)$, our estimator of β_t at time t is,

$$
\hat{\beta}_t = (X_t' M_{B_t} X_t)^{-1} X_t' M_{B_t} R_t,
$$

where $M_{B_t} = I_{n_t} - B_t (B_t' B_t)^{-1} B_t'$.

It will also be useful to introduce some additional definitions. First, let $I_{jt} (z)$ be defined similar as above so that

$$
I_{jt} (z) = I_{jt,1} (z_1) I_{jt,2} (z_2) \cdots I_{jt,d} (z_d),
$$

and

$$
\begin{align*}
\{ \hat{I}_{jt,t} (z_t) = 1 \} & \iff \{ b_{(j,t-1),t} \leq z_t < b_{jt,t} \}, & 1 \leq j_t < J, \\
\{ \hat{I}_{jt,t} (z_t) = 1 \} & \iff \{ b_{(j,t-1),t} \leq z_t \leq b_{jt,t} \}, & j_t = J,
\end{align*}
$$

and $b_{jt,t} = F_{jt,t}^{-1} (j_t/J)$ and $F_{jt,t}^{-1} (\cdot)$ is the quantile function for $z_{it,t}$ for the cross-section at time t. Then, recall that,

$$
q_{jt} = \mathbb{E} (I_{jt} (z_{it}) | F_t).
$$
The sample analog is
\[\tilde{q}_{jt} = \frac{1}{n_t} \sum_{i=1}^{n_t} \mathbb{I}_{jt}(z_{it}). \]

Further define
\[\hat{q}_{jt} = \frac{1}{n_t} \sum_{i=1}^{n_t} \hat{\mathbb{I}}_{jt}(z_{it}). \]

It will also be useful to define 1 as
\[1_{jt} = 1_{q,jt}1_{jt,t} = 1 \{ \hat{q}_{jt} \geq q_{jt}/2 \} \times 1 \left\{ \lambda_{\min} \left(\hat{\Omega}_{uu,t} \right) \geq C_{un}/2 \right\}, \]

where \(C_{un} \) is the lower bound, uniformly in \(t \), introduced in Assumption 1(2).

Finally define
\[V(z) = T^{-2} \sum_{t=1}^{T} n_t^{-2} \sum_{i=1}^{n_t} \sum_{j=1}^{J_t} 1_{jt} \hat{\mathbb{I}}_{jt}(z) \hat{q}_{jt}^{-2} \hat{\mathbb{I}}_{jt}(z_{it}) \sigma_{jt}^2, \]
\[\hat{V}(z) = T^{-2} \sum_{t=1}^{T} n_t^{-2} \sum_{i=1}^{n_t} \sum_{j=1}^{J_t} 1_{jt} \hat{\mathbb{I}}_{jt}(z) \hat{q}_{jt}^{-2} \hat{\mathbb{I}}_{jt}(z_{it}) \varepsilon_{it}^2, \]

along with
\[\hat{V}_{FM}(z) = T^{-2} \sum_{t=1}^{T} (\hat{\mu}_t(z) - \hat{\mu}(z))^2, \]
\[\hat{V}_{PI}(z) = T^{-2} \sum_{t=1}^{T} n_t^{-2} \sum_{i=1}^{n_t} \sum_{j=1}^{J_t} 1_{jt} \hat{\mathbb{I}}_{jt}(z) \hat{q}_{jt}^{-2} \hat{\mathbb{I}}_{jt}(z_{it}) \varepsilon_{it}^2. \]

B.4 Lemmas

Our first lemma is a generalization of Cattaneo and Farrell (2013, Lemma A.2) to allow for random partitions.

Lemma 1. Let Assumptions 1-3 hold. Then, (i) there exists a \(\gamma_{jt}^0 \) such that
\[\max_{1 \leq t \leq T} \max_{1 \leq j \leq J_t} \sup_z \left| \hat{\mathbb{I}}_{jt}(z) \mu(z) - \hat{\mathbb{I}}_{jt}(z) \gamma_{jt}^0 \right| = O_p \left(J^{-1} \right), \]
and
\[E \left[\max_{1 \leq t \leq T} \max_{1 \leq j \leq J_t} \sup_z \left| \hat{\mathbb{I}}_{jt}(z) \mu(z) - \hat{\mathbb{I}}_{jt}(z) \gamma_{jt}^0 \right|^2 \right] = O \left(J^{-2} \right). \]

(ii) If we define \(h_{t,\ell}(z) = h_{t,\ell}(z, \mathcal{F}_t) = E \left[x_{it,\ell} | \mathcal{F}_t, z_{it} = z \right] \) where \(x_{it,\ell} \) is the \(\ell \)th element of \(x_{it} \), there exists a \(\pi_{jt,\ell}^0 \) such that
\[\max_{1 \leq t \leq T} \max_{1 \leq j \leq J_t} \sup_z \left| \hat{\mathbb{I}}_{jt}(z) h_{t,\ell}(z) - \hat{\mathbb{I}}_{jt}(z) \pi_{jt,\ell}^0 \right| = O_p \left(J^{-1} \right), \]
and
\[E \left[\max_{1 \leq t \leq T} \max_{1 \leq j \leq J_t} \sup_z \left| \hat{\mathbb{I}}_{jt}(z) h_{t,\ell}(z) - \hat{\mathbb{I}}_{jt}(z) \pi_{jt,\ell}^0 \right|^2 \right] = O \left(J^{-2} \right). \]
Stack $\gamma_t^0 = \left(\gamma_{1,t}^0, \ldots, \gamma_{d_t,t}^0\right)'$ and

$$\Pi_t^0 = \begin{bmatrix}
\pi_{1t,1}^0 & \cdots & \pi_{1t,d_t}^0 \\
\vdots & \ddots & \vdots \\
\pi_{d_t,t,1}^0 & \cdots & \pi_{d_t,t,d_t}^0
\end{bmatrix}$$

We also stack the $h_{t,t} (\cdot)$’s as $h_t (\cdot) = (h_{t,1} (\cdot), \ldots, h_{t,d_t} (\cdot))'$ and then stack again as the $n_t \times d_x$ matrix $H_t = (h_t (z_{1t}), \ldots, h_t (z_{n_t}))'$. Finally, define $U_t = X_t - H_t$. Recall from above that $\Omega_{uu,t} = \text{plim}_{n \to \infty} U_t' U_t / n_t = E \left[(x_{it} - E [x_{it} | z_{it}, F_t]) (x_{it} - E [x_{it} | z_{it}, F_t])' \right] F_t = E [V (x_{it} | z_{it}, F_t) | F_t].$

Lemma 2. Let Assumptions 1-3 hold. Then,

$$\max_{1 \leq t \leq T} \max_{1 \leq j \leq d_x} |\hat{q}_{jt} - q_{jt}|^2 = O_p \left(\frac{\log (J^{d_x} \vee T)}{J^{d_x} n} \right).$$

Lemma 3. Let Assumptions 1-3 hold. Define,

$$\hat{\Omega}_{uu,t} = X_t' M_{B_r} X_t / n_t.$$

Then,

$$\frac{1}{T} \sum_{t=1}^{T} \left\| \hat{\Omega}_{uu,t} - \Omega_{uu,t} \right\|^2 = O_p (n^{-1}) + O_p (J^{-4}) + O_p \left(n^{-2} J^{2d_x} \right),$$

and

$$\max_{1 \leq t \leq T} \left\| \hat{\Omega}_{uu,t} - \Omega_{uu,t} \right\| = O_p \left(\log (T) n^{-1/2} \right) + O_p (J^{-2}) + O_p \left(n^{-1} J^{d_x} \right).$$

Lemma 4. Let Assumptions 1-3 hold. Then,

$$\left| T^{-1} \sum_{t=1}^{T} 1_{\beta_t} s_t' \left(\hat{\beta}_t - \beta_t \right) \right|^2 = O_p \left(n^{-1} T^{-1} \right) + O_p (J^{-4}) + O_p \left(J^{2d_x} n^{-3} \right) + O_p \left(J^{d_x - 4} n^{-2} \right)$$

and

$$T^{-1} \sum_{t=1}^{T} 1_{\beta_t} \left(s_t' \left(\hat{\beta}_t - \beta_t \right) \right)^2 = O_p (n^{-1}) + O_p (J^{-4}),$$

where $\|s_t\| \leq C$ almost surely and s_t is nonrandom conditional on z_t and F_t.

Lemma 5. Let Assumptions 1-3 hold. Then, $C_1 n^{-1} T^{-1} J^{d_x} \left[1 + o_p (1) \right] \leq V (z) \leq C_2 n^{-1} T^{-1} J^{d_x} \left[1 + o_p (1) \right]$ for constants C_1 and C_2 bounded and bounded away from zero.

Lemma 6. Under Assumptions 1-3 and if $J^d \log (T)^2 \log (T \wedge J^d)^{-1} = O (n)$ then

$$V (z)^{-1} T^{-2} \sum_{t=1}^{T} n_t^{-2} \sum_{i=1}^{n_t} \sum_{j=1}^{d_x} J_{j,t} \bar{\xi}_{j,t} (z) \bar{q}_{jt} (z_{it}) (z_{it}^2 - \sigma_{jt}^2) = o_p (1).$$

Before proceeding note that by Lemma 2 and 3 we have that $1_{q,jt} \to 1$ and $1_{\beta,t} \to 1$ with probability approaching one.
B.5 Proof of Theorem 1

Recall that our estimator is
\[\hat{\mu}(z) = T^{-1} \sum_{t=1}^{T} n_t^{-1} \sum_{i=1}^{n_t} \sum_{j=1}^{J_z} 1_{jt} \hat{\mu}_{jt}(z) \hat{q}_{jt}^{-1} \hat{\mu}_{jt}(z_{it})(\mu(z_{it}) - \mu(z)), \]
which can be decomposed as
\[\hat{\mu}(z) - \mu(z) = \mathcal{L}_1 + \mathcal{L}_2 + \mathcal{L}_3 + \mathcal{L}_4, \]
where
\[
\mathcal{L}_1 = T^{-1} \sum_{t=1}^{T} n_t^{-1} \sum_{i=1}^{n_t} \sum_{j=1}^{J_z} 1_{jt} \hat{\mu}_{jt}(z) \hat{q}_{jt}^{-1} \hat{\mu}_{jt}(z_{it})(\mu(z_{it}) - \mu(z)), \\
\mathcal{L}_2 = T^{-1} \sum_{t=1}^{T} n_t^{-1} \sum_{i=1}^{n_t} \sum_{j=1}^{J_z} 1_{jt} \hat{\mu}_{jt}(z) \hat{q}_{jt}^{-1} \hat{\mu}_{jt}(z_{it}) \varepsilon_{it}, \\
\mathcal{L}_3 = -T^{-1} \sum_{t=1}^{T} n_t^{-1} \sum_{i=1}^{n_t} \sum_{j=1}^{J_z} 1_{jt} \hat{\mu}_{jt}(z) \hat{q}_{jt}^{-1} \hat{\mu}_{jt}(z_{it}) x_{it}' \left(\hat{\beta}_t - \beta_t \right), \\
\mathcal{L}_4 = T^{-1} \sum_{t=1}^{T} \sum_{j=1}^{J_z} (1_{jt} - 1) \hat{\mu}_{jt}(z) \mu(z).
\]

We will work with the re-scaled estimator:
\[V(z)^{-1/2}(\hat{\mu}(z) - \mu(z)) = V(z)^{-1/2} \mathcal{L}_1 + V(z)^{-1/2} \mathcal{L}_2 + V(z)^{-1/2} \mathcal{L}_3 + V(z)^{-1/2} \mathcal{L}_4, \]
and show that
\[V(z)^{-1/2}(\hat{\mu}(z) - \mu(z)) = V(z)^{-1/2} \mathcal{L}_2 + o_p(1), \quad V(z)^{-1/2} \mathcal{L}_2 \longrightarrow_d \mathcal{N}(0,1). \]

B.5.1 Term: \mathcal{L}_1

By Lemma 5 we need only show that
\[
\left| \epsilon^{d/2} T^{-1/2} \sum_{t=1}^{T} n_t^{1/2} n_t^{-1} \sum_{i=1}^{n_t} \sum_{j=1}^{J_z} 1_{jt} \hat{\mu}_{jt}(z) \hat{q}_{jt}^{-1} \hat{\mu}_{jt}(z_{it})(\mu(z_{it}) - \mu(z)) \right| = o_p(1).
\]

We have,
\[
\begin{align*}
T^{-1} \sum_{t=1}^{T} n_t^{-1} \sum_{i=1}^{n_t} \sum_{j=1}^{J_z} 1_{jt} \hat{\mu}_{jt}(z) \hat{q}_{jt}^{-1} \hat{\mu}_{jt}(z_{it})(\mu(z_{it}) - \mu(z)) & \\
\leq T^{-1} \sum_{t=1}^{T} n_t^{-1} \sum_{i=1}^{n_t} \sum_{j=1}^{J_z} 1_{jt} \hat{\mu}_{jt}(z) \hat{q}_{jt}^{-1} \hat{\mu}_{jt}(z_{it}) \mu(z_{it}) - \gamma_{jt}^{0} \\
& + T^{-1} \sum_{t=1}^{T} n_t^{-1} \sum_{i=1}^{n_t} \sum_{j=1}^{J_z} 1_{jt} \hat{\mu}_{jt}(z) \hat{q}_{jt}^{-1} \hat{\mu}_{jt}(z_{it}) \mu(z) - \gamma_{jt}^{0}.
\end{align*}
\]

The first term is
\[
T^{-1} \sum_{t=1}^{T} n_t^{-1} \sum_{i=1}^{n_t} \sum_{j=1}^{J_z} 1_{jt} \hat{\mu}_{jt}(z) \hat{q}_{jt}^{-1} \hat{\mu}_{jt}(z_{it}) \mu(z_{it}) - \gamma_{jt}^{0}
\]
\[
\leq \max_{1 \leq t \leq T} \max_{1 \leq j \leq J_z} \sup_{z} \left| \hat{\mu}_{jt}(z) \mu(z) - \hat{\mu}_{jt}(z) \gamma_{jt}^{0} \right| \times T^{-1} \sum_{t=1}^{T} n_t^{-1} \sum_{i=1}^{n_t} \sum_{j=1}^{J_z} 1_{jt} \hat{\mu}_{jt}(z) \hat{q}_{jt}^{-1} \hat{\mu}_{jt}(z_{it})
\]
\[
\leq \max_{1 \leq t \leq T} \max_{1 \leq j \leq J_z} \sup_{z} \left| \hat{\mu}_{jt}(z) \mu(z) - \hat{\mu}_{jt}(z) \gamma_{jt}^{0} \right|,
\]
which is $O_p\left(J^{-1}\right)$ by Lemma 1. The second term follows by the same steps so that

$$
|J^{-d/2}T^{-1/2} \sum_{t=1}^{T} n_t^{-2} \sum_{i=1}^{n_t} \sum_{j=1}^{r_{is}^d} 1_{j_t \in \mathcal{J}_t}(z) \hat{q}_{jt}^{-1} \mathbb{I}_{jt}(z_{it}) (\mu(z_{it}) - \mu(z))| = O_p\left(J^{-(d/2+1)}T^{1/2}n_t^{-1}\right),
$$

which is $o_p(1)$ under our rate assumptions.

B.5.2 Term: \mathcal{L}_2

For \mathcal{L}_2 define the sigma field, $\mathcal{G}_s = \sigma(z_1, \ldots, z_T, x_1, \ldots, x_T, \mathcal{F}_1, \ldots, \mathcal{F}_T, \varepsilon_1, \ldots, \varepsilon_s)$ and the variable

$$
\xi_s = V(z)^{-1/2} T^{-1} n_s^{-1} \sum_{i=1}^{n_s} \sum_{j=1}^{r_{is}^d} 1_{j_s \in \mathcal{J}_s}(z) \hat{q}_{js}^{-1} \mathbb{I}_{js}(z_{is}) \varepsilon_{is}.
$$

Note first that

$$
\sum_{t=1}^{T} \mathbb{E}\left[|\xi_t^2| \mid \mathcal{G}_{t-1}\right] = V(z)^{-1/2} T^{-1} n_s^{-1} \sum_{i=1}^{n_s} \sum_{j=1}^{r_{is}^d} 1_{j_s \in \mathcal{J}_s}(z) \hat{q}_{js}^{-1} \mathbb{I}_{js}(z_{is}) \mathbb{E}\left[\varepsilon_{is} \mid \mathcal{G}_{s-1}\right],
$$

with $\mathbb{E}\left[\varepsilon_{is} \mid \mathcal{G}_{s-1}\right] = 0$. Thus, (ξ_s, \mathcal{G}_s) is a martingale difference sequence with $\sum_{t=1}^{T} \mathbb{E}\left[|\xi_t|^2 \mid \mathcal{G}_{t-1}\right] = 1$. By Hall and Heyde (1980, Corollary 3.1) we need only show that

$$
\sum_{t} \mathbb{E}\left[|\xi_t|^{2+\delta} \mid \mathcal{G}_{t-1}\right] = o_p(1) \quad \text{for all} \; \epsilon > 0.
$$

This is implied by showing that

$$
\sum_{t} \mathbb{E}\left[|\xi_t|^{2+\delta} \mid \mathcal{G}_{t-1}\right] = o_p(1),
$$

for some $\delta > 0$. To show this note that,

$$
\sum_{t} \mathbb{E}\left[|\xi_t|^{2+\delta} \mid \mathcal{G}_{t-1}\right] = V(z)^{-(1+\delta/2)} T^{-(2+\delta)} \sum_{t} \mathbb{E}\left[\left|n_t^{-1} \sum_{i=1}^{n_t} \sum_{j=1}^{r_{is}^d} 1_{j_t \in \mathcal{J}_t}(z) \hat{q}_{jt}^{-1} \mathbb{I}_{jt}(z_{it}) \varepsilon_{it}\right|^{2+\delta} \mid \mathcal{F}_t, x_t, z_t, \mathcal{G}_{t-1}\right] \mathbb{E}\left[|\varepsilon_t|^{2+\delta} \mid \mathcal{G}_{t-1}\right].
$$

Then note that

$$
\mathbb{E}\left[\left|n_t^{-1} \sum_{i=1}^{n_t} \sum_{j=1}^{r_{is}^d} 1_{j_t \in \mathcal{J}_t}(z) \hat{q}_{jt}^{-1} \mathbb{I}_{jt}(z_{it}) \varepsilon_{it}\right|^{2+\delta} \mid \mathcal{F}_t, x_t, z_t, \mathcal{G}_{t-1}\right] \leq C \sum_{i=1}^{n_t} \mathbb{E}\left[\left|n_t^{-1} \sum_{j=1}^{r_{is}^d} 1_{j_t \in \mathcal{J}_t}(z) \hat{q}_{jt}^{-1} \mathbb{I}_{jt}(z_{it}) \varepsilon_{it}\right|^{2+\delta} \mid \mathcal{F}_t, x_t, z_t, \mathcal{G}_{t-1}\right] \vee
$$

$$
\sum_{j=1}^{r_{is}^d} \mathbb{E}\left[\left|n_t^{-1} 1_{j_t \in \mathcal{J}_t}(z) \hat{q}_{jt}^{-1} \mathbb{I}_{jt}(z_{it}) \varepsilon_{it}\right|^{2+\delta} \mid \mathcal{F}_t, x_t, z_t, \mathcal{G}_{t-1}\right].
$$
\[
C \left(\sum_{i=1}^{n_t} E \left[\left| n_t^{-1} \sum_{j=1}^{J_t^{ds}} 1_{jt} \hat{\mu}_{jt} (z) \hat{\varphi}_{jt}^{-1} \hat{\nu}_{jt} (z_{it}) \varepsilon_{it} \right|^2 \right| F_t, x_t, z_t, \mathcal{G}_{t-1} \right) \right]^{1+\delta/2}.
\]

The first term is
\[
\sum_{i=1}^{n_t} E \left[\left| n_t^{-1} \sum_{j=1}^{J_t^{ds}} 1_{jt} \hat{\mu}_{jt} (z) \hat{\varphi}_{jt}^{-1} \hat{\nu}_{jt} (z_{it}) \varepsilon_{it} \right|^2 \right| F_t, x_t, z_t, \mathcal{G}_{t-1} \right] \leq C \sum_{i=1}^{n_t} \left| n_t^{-1} \sum_{j=1}^{J_t^{ds}} 1_{jt} \hat{\mu}_{jt} (z) \hat{\varphi}_{jt}^{-1} \hat{\nu}_{jt} (z_{it}) \right|^{2+\delta} \leq C n^{-2+\delta} J^d (2+\delta) \sum_{i=1}^{n_t} \left| \sum_{j=1}^{J_t^{ds}} \hat{\mu}_{jt} (z) \hat{\nu}_{jt} (z_{it}) \right|^{2+\delta} = C n^{-2+\delta} J^d (2+\delta) \sum_{j=1}^{J_t^{ds}} \hat{\mu}_{jt} (z) \sum_{i=1}^{n_t} \hat{\nu}_{jt} (z_{it}) = C \left(n^{-1} J^d \right)^{1+\delta}.
\]

The second term is
\[
\left(\sum_{i=1}^{n_t} E \left[\left| n_t^{-1} \sum_{j=1}^{J_t^{ds}} 1_{jt} \hat{\mu}_{jt} (z) \hat{\varphi}_{jt}^{-1} \hat{\nu}_{jt} (z_{it}) \varepsilon_{it} \right|^2 \right| F_t, x_t, z_t, \mathcal{G}_{t-1} \right) \right]^{1+\delta/2} \leq C \left(J^d n_t^{-1} \right)^{-(1+\delta/2)} T^{-1-\delta} \left(n_t^{-1} J^d (1+\delta) \right)^{1+\delta/2} \leq C T^{-\delta/2},
\]

and the result follows.

B.5.3 Term: \(L_3 \)

We have
\[
-V (z)^{-1/2} L_3 = V (z)^{-1/2} T^{-1} \sum_{t=1}^{T} n_t^{-1} \sum_{j=1}^{n_t} \sum_{i=1}^{J_t^{ds}} 1_{jt} \hat{\mu}_{jt} (z) \hat{\varphi}_{jt}^{-1} \hat{\nu}_{jt} (z_{it}) x'_it \left(\hat{\beta}_t - \beta_t \right)
\]
\[
= V (z)^{-1/2} T^{-1} \sum_{t=1}^{T} 1_{\beta,t} \hat{h}_t (z)' \left(\hat{\beta}_t - \beta_t \right),
\]
where
\[
\hat{h}_t (z) = \sum_{j=1}^{J_t^{ds}} \hat{\mu}_{jt} (z) \hat{\pi}_{jt}, \quad \hat{\pi}_{jt} = 1_{q,j} \hat{\varphi}_{jt}^{-1} n_t^{-1} \sum_{i=1}^{n_t} \hat{\nu}_{jt} (z_{it}) x_{it}.
\]

Thus,
\[
-V (z)^{-1/2} L_3 = V (z)^{-1/2} T^{-1} \sum_{t=1}^{T} 1_{\beta,t} h_t (z)' \left(\hat{\beta}_t - \beta_t \right)
\]
\[+V (z)^{-1/2} T^{-1} \sum_{t=1}^{T} 1_{\beta,t} \left(\hat{h}_t (z) - h_t (z) \right)' \left(\hat{\beta}_t - \beta_t \right) \]

\[= V (z)^{-1/2} \mathcal{L}_{31} + V (z)^{-1/2} \mathcal{L}_{32}. \]

First we have,

\[|\mathcal{L}_{31}|^2 = \left| T^{-1} \sum_{t=1}^{T} 1_{\beta,t} \left(\hat{h}_t (z) - h_t (z) \right)' \left(\hat{\beta}_t - \beta_t \right) \right|^2 \]

\[= O_p \left(n^{-1} T^{-1} \right) + O_p \left(J^{-4} \right) + O_p \left(J^{2d} n^{-3} \right) + O_p \left(J^{d-4} n^{-2} \right), \]

by Lemma 4. Thus,

\[\frac{nT}{Jd} |\mathcal{L}_{31}|^2 = O_p \left(n^{-1} T^{-1} \right) + O_p \left(\frac{nT}{Jd+2} J^{-2} \right) + O_p \left(\frac{Jd}{n} T \right) + O_p \left(\frac{T}{nJ^2} \right), \]

which is \(o_p (1) \) under Assumption 3. Next, by the Cauchy-Schwartz inequality

\[|\mathcal{L}_{32}|^2 \leq \frac{1}{T} \sum_{t=1}^{T} \left| \hat{h}_t (z) - h_t (z) \right|^2 \times \frac{1}{T} \sum_{t=1}^{T} 1_{\beta,t} \left| \hat{\beta}_t - \beta_t \right|^2. \]

The order of the first factor follows by exactly the same steps as in the proof of Theorem 2 for the consistency of the Fama-MacBeth style variance estimator (ignoring the \(S_{12}^{FM} \) term). That is, we show below that

\[\frac{1}{T^2} \sum_{t=1}^{T} (\hat{\mu} (z) - \mu (z))^2 = O_p \left(\frac{Jd}{nT} \right). \]

Thus, the first factor is \(O_p \left(n^{-1} T^{-1} \right) \). By Lemma 4, the second factor is \(O_p \left(n^{-1} \right) + O_p \left(J^{-4} \right) \). Thus,

\[\frac{nT}{Jd} |\mathcal{L}_{32}|^2 = O_p \left(n^{-1} T \right) + O_p \left(T J^{-4} \right), \]

which is \(o_p (1) \) under our assumptions.

B.5.4 Term: \(\mathcal{L}_4 \)

Finally consider \(\mathcal{L}_4 \):

\[|V (z)^{-1/2} \mathcal{L}_4| = |V (z)^{-1/2} T^{-1} \sum_{t=1}^{T} \sum_{j=1}^{J} 1_{j,t} (\hat{I}_{jt} - 1) \hat{I}_{jt} (z) \mu (z)| \]

\[\leq CV (z)^{-1/2} T^{-1} \sum_{t=1}^{T} \sum_{j=1}^{J} 1_{j,t} (|1_{j,t} - 1|) \hat{I}_{jt} (z) \]

\[\leq Cn^{1/2} T^{1/2} J^{-d/2} \times \max_{1 \leq t \leq T} \max_{1 \leq j \leq J} |1_{j,t} - 1|, \]

Thus, \(|V (z)^{-1/2} \mathcal{L}_4| = o_p (1) \) by Lemmas 2 and 3.
B.6 Proof of Theorem 2

B.6.1 Proof of Consistency of Variance Estimators (FM-style Variance Estimator)

We need to show that
\[
\frac{n_T}{Jd_z} \left(\hat{V}_\text{FM}(z) - V(z) \right) = o_p(1), \quad \hat{V}_\text{FM}(z) = T^{-2} \sum_{t=1}^{T} (\hat{\mu}_t(z) - \mu(z))^2.
\]

First note that
\[
\hat{V}_\text{FM}(z) = T^{-2} \sum_{t=1}^{T} (\hat{\mu}_t(z) - \mu(z))^2 = T^{-2} \sum_{t=1}^{T} (\hat{\mu}_t(z) - \mu(z))^2 - T^{-1} (\hat{\mu}(z) - \mu(z))^2.
\]

Recall that,
\[
\hat{\mu}_t(z) - \mu(z) = n_{t_1}^{-1} \sum_{j_1} q_{j_1 t_1}^{-1} \sum_{i_1} 1_{j_1 t_1} \widehat{\mu}_{j_1 t_1}(z) \widehat{I}_{j_1 t_1}(z_{i_1 t_1}) \left(R_{i_1 t_1} - x_{i_1 t_1} \hat{\beta}_{t_1} \right) - \mu(z)
\]
\[
= n_{t_1}^{-1} \sum_{j_1} q_{j_1 t_1}^{-1} \sum_{i_1} 1_{j_1 t_1} \widehat{\mu}_{j_1 t_1}(z) \widehat{I}_{j_1 t_1}(z_{i_1 t_1}) \varepsilon_{i_1 t_1}
\]
\[
+ n_{t_1}^{-1} \sum_{j_1} q_{j_1 t_1}^{-1} \sum_{i_1} 1_{j_1 t_1} \widehat{\mu}_{j_1 t_1}(z) \widehat{I}_{j_1 t_1}(z_{i_1 t_1}) (\mu(z_{i_1 t_1}) - \mu(z))
\]
\[
- n_{t_1}^{-1} \sum_{j_1} q_{j_1 t_1}^{-1} \sum_{i_1} 1_{j_1 t_1} \widehat{\mu}_{j_1 t_1}(z) \widehat{I}_{j_1 t_1}(z_{i_1 t_1}) x_{i_1 t_1}' \left(\hat{\beta}_{t_1} - \beta_{t_1} \right)
\]
\[
+ \sum_{j_1} (1_{j_1 t_1} - 1) \widehat{I}_{j_1 t_1}(z_{i_1 t_1}) \mu(z) .
\]

Thus, since we have already shown that \(\frac{n_T}{Jd_z} \left(\hat{V}(z) - V(z) \right) = o_p(1) \) by Lemma 6 then by the CS inequality it is sufficient to show that \(|S_{11}^{\text{FM}}| = o_p(1), |S_{12}^{\text{FM}}| = o_p(1), |S_{13}^{\text{FM}}| = o_p(1) \), and \(|S_2^{\text{FM}}| = o_p(1) \) where
\[
S_{11}^{\text{FM}} = \frac{n}{T J d_z} \sum_{t_1} \left[n_{t_1}^{-1} \sum_{j_1} q_{j_1 t_1}^{-1} \sum_{i_1} 1_{j_1 t_1} \widehat{\mu}_{j_1 t_1}(z) \widehat{I}_{j_1 t_1}(z_{i_1 t_1}) (\mu(z_{i_1 t_1}) - \mu(z)) \right]^2
\]
\[
S_{12}^{\text{FM}} = \frac{n}{T J d_z} \sum_{t_1} \left[n_{t_1}^{-1} \sum_{j_1} q_{j_1 t_1}^{-1} \sum_{i_1} 1_{j_1 t_1} \widehat{\mu}_{j_1 t_1}(z) \widehat{I}_{j_1 t_1}(z_{i_1 t_1}) x_{i_1 t_1}' \left(\hat{\beta}_{t_1} - \beta_{t_1} \right) \right]^2
\]
\[
S_{13}^{\text{FM}} = \frac{n}{T J d_z} \sum_{t_1} \left(\sum_{j_1} (1_{j_1 t_1} - 1) \widehat{I}_{j_1 t_1}(z) \mu(z) \right)^2
\]
\[
S_2^{\text{FM}} = \frac{n}{J d_z} (\hat{\mu}(z) - \mu(z))^2 .
\]

First consider, \(S_2^{\text{FM}} \). We have already shown that \(\hat{\mu}(z) - \mu(z) = O_p \left(\sqrt{J d_z n^{-1} T^{-1}} \right) \), so that \(S_2 \) satisfies
\[
S_2^{\text{FM}} = \frac{n}{J d_z} (\hat{\mu}(z) - \mu(z))^2 = O_p \left(T^{-1} \right) = o_p(1)
\]

Next, consider \(S_{11}^{\text{FM}} \),
\[
S_{11}^{\text{FM}} = \frac{n}{T J d_z} \sum_{t_1} \left[n_{t_1}^{-1} \sum_{j_1} q_{j_1 t_1}^{-1} \sum_{i_1} 1_{j_1 t_1} \widehat{\mu}_{j_1 t_1}(z) \widehat{I}_{j_1 t_1}(z_{i_1 t_1}) (\mu(z_{i_1 t_1}) - \mu(z)) \right]^2
\]
\[
\leq \frac{n}{T J d_z} \sum_{t_1} \left[n_{t_1}^{-1} \sum_{j_1} q_{j_1 t_1}^{-1} \sum_{i_1} 1_{j_1 t_1} \widehat{\mu}_{j_1 t_1}(z) \widehat{I}_{j_1 t_1}(z_{i_1 t_1}) (|\mu(z_{i_1 t_1}) - \mu(0)| + |\mu(z) - \mu(0)|) \right]^2
\]
\[
\leq C \max_{1 \leq t \leq T} \max_{1 \leq j \leq p_{t_1}} \sup_z \left| \hat{I}_{j t}(z) \mu(z) - \hat{I}_{j t}(z) \gamma^0_{j t_1} \right|^2 \times \frac{n}{T J d_z} \sum_{t_1} \left[\sum_{j_1} q_{j_1 t_1}^{-1} 1_{j_1 t_1} \widehat{I}_{j_1 t_1}(z) n_{t_1}^{-1} \sum_{i_1} \widehat{I}_{j_1 t_1}(z_{i_1 t_1}) \right]^2
\]
\[
\leq C \max_{1 \leq t \leq T} \max_{1 \leq j \leq p_{t_1}} \sup_z \left| \hat{I}_{j t}(z) \mu(z) - \hat{I}_{j t}(z) \gamma^0_{j t_1} \right|^2 \times \frac{n}{J d_z} .
\]
and so $S_{11}^{FM} = O_p\left(nJ^{-(d_z+2)}\right)$ which is $o(1)$ under our rate assumptions.

Next consider S_{12}^{FM},

\[
S_{12}^{FM} = \frac{n}{TJ^{d_z}} \sum_{t_1} \left[\sum_{j_1} \hat{q}_{j_1 t_1} \sum_{\beta_1} 1_{\beta_1} \left(\hat{h}_{t_1} (z) - h_{t_1} (z) \right) ' (\hat{\beta}_1 - \beta_1) \right]^2
\]

\[
= \frac{n}{TJ^{d_z}} \sum_{t_1} \left[\sum_{\beta_1} 1_{\beta_1} \left(\hat{h}_{t_1} (z) - h_{t_1} (z) \right) ' (\hat{\beta}_1 - \beta_1) \right]^2
\]

\[
\leq C \frac{n}{TJ^{d_z}} \sum_{t_1} \sum_{\beta_1} 1_{\beta_1} \left(\hat{h}_{t_1} (z) - h_{t_1} (z) \right) ' (\hat{\beta}_1 - \beta_1) \right]^2
\]

\[
= S_{121}^{FM} + S_{122}^{FM}.
\]

S_{121}^{FM} follows by exactly the same steps as in the proof for L_3 so that we have

\[
\frac{n}{TJ^{d_z}} \sum_{t_1} 1_{\beta_1} \left(\hat{h}_{t_1} (z) - h_{t_1} (z) \right) ' (\hat{\beta}_1 - \beta_1) \right]^2 = \frac{n}{J^{d_z}} T \cdot (O_p\left(n^{-1}T^{-1}\right) + O_p\left(T^{-1}J^{-4}\right))
\]

\[
= O_p\left(J^{-d_z}\right) + O_p\left(\frac{nT}{J^{d_z+2}} \times \frac{1}{TJ^2}\right),
\]

which is $o_p(1)$ under our Assumptions 3. Next consider S_{122}^{FM},

\[
\frac{n}{TJ^{d_z}} \sum_{t_1} 1_{\beta_1} \left(\hat{h}_{t_1} (z) - h_{t_1} (z) \right) ' (\hat{\beta}_1 - \beta_1) \right]^2 \leq \left(\frac{n}{J^{d_z}} \right) T^{-1} \sum_{t_1} \left\| \hat{h}_{t_1} (z) - h_{t_1} (z) \right\|^2 \left(\sum_{t_1} 1_{\beta_1} \right) \left\| \hat{\beta}_1 - \beta_1 \right\|^2.
\]

The first factor is $O_p(1)$. To see this note that we can show that $\left(\frac{n}{J^{d_z}} \right) T^{-1} \sum_{t_1} (\hat{\mu}_t (z) - \mu (z))^2 = O_p(1)$ by showing $|S_{11}^{FM}| = o_p(1)$, $|S_{12}^{FM}| = o_p(1)$, and $|S_{2}^{FM}| = o_p(1)$. We can then follow the same steps to show that $\left(\frac{n}{J^{d_z}} \right) T^{-1} \sum_{t_1} \left\| \hat{h}_{t_1} (z) - h_{t_1} (z) \right\|^2 = O_p(1)$. The second factor is $O_p\left(Tn^{-1}\right) + O_p\left(TJ^{-4}\right)$ which is $o_p(1)$ by our rate assumptions and since $TJ^{-4} = TJ^{-2} \cdot J^{-2}$ which is $o(1)$ under Assumption 3.

Finally consider S_{13}^{FM},

\[
S_{13}^{FM} = \frac{n}{TJ^{d_z}} \sum_{t_1} \sum_{j_1} (1_{j_1 t_1} - 1) \hat{\beta}_{j_1 t_1} (z) \mu (z)^2
\]

\[
= \frac{n}{TJ^{d_z}} \sum_{t_1} \sum_{j_1} |1_{j_1 t_1} - 1| \hat{\beta}_{j_1 t_1} (z) \mu (z)^2
\]

\[
\leq \sup_z \mu (z)^2 \times \frac{n}{TJ^{d_z}} \sum_{t_1} \sum_{j_1} \max_{1 \leq t \leq T, 1 \leq j \leq d_z} |1_{j_1 t_1} - 1|
\]

\[
\leq C \left(\frac{n}{J^{d_z}} \max_{1 \leq t \leq T, 1 \leq j \leq d_z} \right),
\]

so that $S_{13}^{FM} = o_p(1)$.

B.6.2 Proof of Consistency of Variance Estimators (Plug-in Variance Estimator)

We need to show that

\[
\frac{nT}{J^{d_z}} \left(\hat{V}_{PI} (z) - V (z) \right) = o_p(1), \quad \hat{V}_{PI} (z) = T^{-2} \sum_{t=1}^{T} n_t^{-2} \sum_{i=1}^{n_t} \sum_{j=1}^{d_z} 1_{ji} \hat{\beta}_{ji t} (z) \hat{q}_{ji t} \hat{z}_{ji t} (z) \hat{z}_{it}^2.
\]
First note that
\[
\frac{nT}{Jd_z} \left(\tilde{V}_{pi}(z) - V(z) \right) = \frac{nT}{Jd_z} \left(\tilde{V}(z) - V(z) \right) + S_{1}^{PI} + S_{2}^{PI} + S_{3}^{PI},
\]
where
\[
S_{1}^{PI} = -\frac{n}{Jd_z T} \sum_{t=1}^{T} n_{t}^{-2} \sum_{i_{1} \neq i_{2}} \sum_{j_{1}} J^{st}_{ij} \tilde{h}_{j_{1}t} (z) \tilde{q}_{j_{1}t}^{2} \tilde{h}_{jt} (z_{i_{1}t}) \tilde{h}_{jt} (z_{i_{2}t}) \varepsilon_{i_{1}t} \varepsilon_{i_{2}t}
\]
\[
S_{2}^{PI} = \frac{2n}{Jd_z T} \sum_{t=1}^{T} n_{t}^{-2} \sum_{i_{1}} \sum_{i_{2}} \sum_{j_{1}} J^{st}_{ij} \tilde{h}_{j_{1}t} (z) \tilde{q}_{j_{1}t}^{2} \tilde{h}_{jt} (z_{i_{1}t}) \varepsilon_{it} (\varepsilon_{it} - \varepsilon_{it})
\]
\[
S_{3}^{PI} = \frac{n}{Jd_z T} \sum_{t=1}^{T} n_{t}^{-2} \sum_{i_{1}} \sum_{i_{2}} \sum_{j_{1}} J^{st}_{ij} \tilde{h}_{j_{1}t} (z) \tilde{q}_{j_{1}t}^{2} \tilde{h}_{jt} (z_{i_{1}t}) (\varepsilon_{it} - \varepsilon_{it})^{2}.
\]

Again, we have already shown that \(\frac{nT}{Jd_z} \left(\tilde{V}(z) - V(z) \right) = o_p (1) \).

Term: \(S_{1}^{PI} \)

First consider \(S_{1}^{PI} \):
\[
E \left| S_{1}^{PI} \right|^{2} = E \left[\frac{n}{Jd_z T} \sum_{t=1}^{T} n_{t}^{-2} \sum_{i_{1} \neq i_{2}} \sum_{j_{1}} J^{st}_{ij} \tilde{h}_{j_{1}t} (z) \tilde{q}_{j_{1}t}^{2} \tilde{h}_{jt} (z_{i_{1}t}) \tilde{h}_{jt} (z_{i_{2}t}) \varepsilon_{i_{1}t} \varepsilon_{i_{2}t} \right]^{2}
\]
\[
= \left(\frac{n}{Jd_z T} \right)^{2} \sum_{t_{1}, t_{2}} n_{t_{1}}^{-2} n_{t_{2}}^{-2} \sum_{i_{1} \neq i_{2}} \sum_{i_{3} \neq i_{4}} \sum_{j_{1}, j_{2}} E \left[1_{j_{1}t_{1}} 1_{j_{2}t_{2}} \tilde{h}_{j_{1}t_{1}} (z) \tilde{h}_{j_{2}t_{2}} (z) \tilde{q}_{j_{1}t_{1}}^{2} \tilde{q}_{j_{2}t_{2}}^{2} \times \tilde{h}_{j_{1}t_{1}} (z_{i_{1}t_{1}}) \tilde{h}_{j_{1}t_{1}} (z_{i_{2}t_{1}}) \tilde{h}_{j_{2}t_{2}} (z_{i_{1}t_{2}}) \tilde{h}_{j_{2}t_{2}} (z_{i_{2}t_{2}}) \varepsilon_{i_{1}t_{1}} \varepsilon_{i_{2}t_{1}} \varepsilon_{i_{1}t_{2}} \varepsilon_{i_{2}t_{2}} \right].
\]

The expectation is nonzero only when \((t_{1} = t_{2}) \) and either \((i_{1} = i_{3}) , (i_{2} = i_{4}) \) or \((i_{1} = i_{4}) , (i_{2} = i_{3}) \). This yields
\[
E \left| S_{1}^{PI} \right|^{2} \leq C \left(\frac{n}{Jd_z T} \right)^{2} \sum_{t} n_{t}^{-4} \sum_{i_{1}, i_{2}} \sum_{j_{1}} E \left[1_{j_{1}t_{1}} \tilde{h}_{j_{1}t_{1}} (z) \tilde{q}_{j_{1}t_{1}}^{2} \tilde{h}_{j_{1}t_{1}} (z_{i_{1}t}) \tilde{h}_{j_{1}t_{1}} (z_{i_{2}t}) \varepsilon_{i_{1}t} \varepsilon_{i_{2}t} \right]^{2}
\]
\[
\leq C \left(\frac{n}{Jd_z T} \right)^{2} \sum_{t} n_{t}^{-4} \sum_{i_{1}, i_{2}} \sum_{j_{1}} E \left[1_{j_{1}t_{1}} \tilde{h}_{j_{1}t_{1}} (z) \tilde{q}_{j_{1}t_{1}}^{2} \tilde{h}_{j_{1}t_{1}} (z_{i_{1}t}) \tilde{h}_{j_{1}t_{1}} (z_{i_{2}t}) \right]
\]
\[
= C \left(\frac{n}{Jd_z T} \right)^{2} \sum_{t} n_{t}^{-4} \sum_{j_{1}} E \left[1_{j_{1}t_{1}} \tilde{h}_{j_{1}t_{1}} (z) \tilde{q}_{j_{1}t_{1}}^{2} \right]
\]
\[
\leq C J^{2d_{z}} \left(\frac{n}{Jd_z T} \right)^{2} T n^{-2}
\]
\[
= CT^{-1}
\]
so that \(S_{1}^{PI} = o_p (T^{-1/2}) \) by Markov’s inequality.

Term: \(S_{2}^{PI} \)

This term is
\[
S_{2}^{PI} = \frac{2n}{Jd_z T} \sum_{t=1}^{T} n_{t}^{-2} \sum_{i_{1}} \sum_{j_{1}} J^{st}_{ij} \tilde{h}_{j_{1}t} (z) \tilde{q}_{j_{1}t}^{2} \tilde{h}_{jt} (z_{i_{1}t}) \varepsilon_{it} \varepsilon_{it}
\]
\[
= -\frac{2n}{Jd_z T} \sum_{t_{1}, t_{2}} n_{t_{1}}^{-2} n_{t_{2}}^{-1} \sum_{i_{1}, i_{2}} \sum_{j_{1}, j_{2}} 1_{j_{1}t_{1}} 1_{j_{2}t_{2}} \tilde{h}_{j_{1}t_{1}} (z) \tilde{q}_{j_{1}t_{1}}^{2} \tilde{h}_{j_{1}t_{1}} (z_{i_{1}t_{1}}) \tilde{h}_{j_{2}t_{2}} (z_{i_{1}t_{2}}) \tilde{h}_{j_{2}t_{2}} (z_{i_{2}t_{2}}) \varepsilon_{i_{1}t_{1}} \varepsilon_{i_{2}t_{2}}
\]
\[
- \frac{2n}{Jd_z T} \sum_{t_{1}, t_{2}} n_{t_{1}}^{-2} n_{t_{2}}^{-1} \sum_{i_{1}, i_{2}} \sum_{j_{1}, j_{2}} 1_{j_{1}t_{1}} 1_{j_{2}t_{2}} \tilde{h}_{j_{1}t_{1}} (z) \tilde{q}_{j_{1}t_{1}}^{2} \tilde{h}_{j_{1}t_{1}} (z_{i_{1}t_{2}}) \tilde{h}_{j_{2}t_{2}} (z_{i_{1}t_{2}}) \tilde{h}_{j_{2}t_{2}} (z_{i_{2}t_{2}}) \times \varepsilon_{i_{1}t_{1}} (\mu (z_{i_{2}t_{2}}) - \mu (z_{i_{1}t_{1}}))
\]
\[
+ \frac{2n}{Jd_z T} \sum_{t_{1}, t_{2}} n_{t_{1}}^{-2} n_{t_{2}}^{-1} \sum_{i_{1}, i_{2}} \sum_{j_{1}, j_{2}} 1_{j_{1}t_{1}} 1_{j_{2}t_{2}} \tilde{h}_{j_{1}t_{1}} (z) \tilde{q}_{j_{1}t_{1}}^{2} \tilde{h}_{j_{1}t_{1}} (z_{i_{1}t_{2}}) \tilde{h}_{j_{2}t_{2}} (z_{i_{1}t_{2}}) \tilde{h}_{j_{2}t_{2}} (z_{i_{2}t_{2}}) \times
\]
\[S_{21} = S_{22} + S_{23} + S_{24} \]

Term: \(S_{21} \) First consider \(S_{21} \) which can be decomposed as

\[
S_{21} = -\frac{2n}{Jd_zT^2} \sum_{t_1,t_2} n_{t_1}^{-2} \sum_{i_1,i_2} \sum_{j_1,j_2} 1_{j_1t_1} 1_{j_2t_2} \overline{\mu}_{j_1t_1} (z_1) \overline{q}_{j_1t_1} \overline{q}_{j_2t_2} (z_2) \varepsilon_{i_1t_1} \varepsilon_{i_2t_2} \]

The first term is \(S_{211} \) which satisfies

\[
E \left| S_{211} \right| = \frac{2n}{Jd_zT^2} \sum_{t_1} n_{t_1}^{-2} \sum_{i_1} \sum_{j_1} 1_{j_1t_1} \overline{\mu}_{j_1t_1} (z) \overline{q}_{j_1t_1} \overline{q}_{j_1t_1} (z_1) \varepsilon_{i_1t_1} \varepsilon_{i_1t_1} \leq C \frac{Jd_z}{nT}
\]

so that \(S_{211} = o_p(1) \) by Markov’s inequality and our rate assumptions. Following similar steps, we can show that \(S_{212} = o_p(Jd_z/n^{-3/2}T^{-3/2}) \), \(S_{213} = o_p(Jd_z^2/n^{-3/2}T^{-1}) \), and \(S_{214} = o_p(Jd_z/n^{-1}T^{-1}) \) which are all \(o_p(1) \) under our rate assumptions.

Term: \(S_{22} \) Next consider \(S_{22} \)
Now consider,

\[
E \left| S_{221}^{\text{PI}} \right| \leq \frac{2n}{Jd_2 T^2} \sum_{t_1,t_2} n_{t_1}^{-1} n_{t_2}^{-1} \sum_{i_1,i_2} \sum_{j_1,j_2} \mathbb{E} \left[1_{j_1 t_1} 1_{j_2 t_2} \hat{\mu}_{j_1 t_1} (z) \hat{q}_{j_1 t_1}^{-2} \hat{q}_{j_2 t_2}^{-1} \hat{\mu}_{j_2 t_2} (z_{i_1 t_1}) \hat{\mu}_{j_2 t_2} (z_{i_2 t_2}) \times |\varepsilon_{i_1 t_1} (\mu (z_{i_2 t_2}) - \mu (z_{i_1 t_1}))| \right]
\]

\[
\leq C \frac{n}{Jd_2 T^2} \sum_{t_1,t_2} n_{t_1}^{-2} n_{t_2}^{-1} \sum_{i_1,i_2} \sum_{j_1,j_2} \mathbb{E} \left[1_{j_1 t_1} 1_{j_2 t_2} \hat{\mu}_{j_1 t_1} (z) \hat{q}_{j_1 t_1}^{-2} \hat{\mu}_{j_2 t_2} (z_{i_1 t_1}) \hat{\mu}_{j_2 t_2} (z_{i_2 t_2}) \times \varepsilon_{i_1 t_1} \left[x_{i_2 t_2}' (\hat{\beta}_t - \beta_t) - x_{i_1 t_1}' (\hat{\beta}_t - \beta_t) \right] \right]
\]

\[
\leq C \frac{1}{T}.
\]

Thus, \(S_{221}^{\text{PI}} = o_p (1) \) by Markov’s inequality. Following similar steps it can be shown that \(S_{222}^{\text{PI}} = O_p \left(Jd_2 n^{-1} T^{-1/2} \right) \) and \(S_{223}^{\text{PI}} = O_p \left(Jd_2 n^{-1/2} T^{-1/2} \right) \) which are \(o_p (1) \) under our rate assumptions.

Term: \(S_{23}^{\text{PI}} \) Next consider \(S_{23}^{\text{PI}} \)

\[
S_{23}^{\text{PI}} = \frac{2n}{Jd_2 T^2} \sum_{t_1,t_2} n_{t_1}^{-2} n_{t_2}^{-1} \sum_{i_1,i_2} \sum_{j_1,j_2} 1_{j_1 t_1} 1_{j_2 t_2} \hat{\mu}_{j_1 t_1} (z) \hat{q}_{j_1 t_1}^{-2} \hat{q}_{j_2 t_2}^{-1} \times \varepsilon_{i_1 t_1} \left[x_{i_2 t_2}' (\hat{\beta}_t - \beta_t) - x_{i_1 t_1}' (\hat{\beta}_t - \beta_t) \right] \]

\[
= S_{231}^{\text{PI}} + S_{232}^{\text{PI}}.
\]

First consider \(S_{231}^{\text{PI}} \):

\[
S_{231}^{\text{PI}} = - \frac{2n}{Jd_2 T^2} \sum_{t_1,t_2} n_{t_1}^{-2} n_{t_2}^{-1} \sum_{i_1,i_2} \sum_{j_1,j_2} 1_{j_1 t_1} 1_{j_2 t_2} \hat{\mu}_{j_1 t_1} (z) \hat{q}_{j_1 t_1}^{-2} \hat{q}_{j_2 t_2}^{-1} \times \varepsilon_{i_1 t_1} \left[x_{i_2 t_2}' (\hat{\beta}_t - \beta_t) - x_{i_1 t_1}' (\hat{\beta}_t - \beta_t) \right]
\]

\[
= - \frac{2n}{Jd_2 T^2} \sum_{t_1} n_{t_1}^{-1} \sum_{i_1,i_2} \sum_{j_1,j_2} 1_{j_1 t_1} 1_{j_2 t_2} \hat{\mu}_{j_1 t_1} (z) \hat{q}_{j_1 t_1}^{-2} \hat{q}_{j_2 t_2}^{-1} \times \varepsilon_{i_1 t_1} \left[x_{i_2 t_2}' (\hat{\beta}_t - \beta_t) - x_{i_1 t_1}' (\hat{\beta}_t - \beta_t) \right]
\]

so that by the CS inequality

\[
|S_{231}^{\text{PI}}|^2 \leq \left(\frac{2n}{Jd_2 T^2} \right)^2 \times \sum_{t_2} \left(\sum_{t_1} n_{t_1}^{-2} n_{t_2}^{-1} \sum_{i_1,i_2} \sum_{j_1,j_2} 1_{j_1 t_1} 1_{j_2 t_2} \hat{\mu}_{j_1 t_1} (z) \hat{q}_{j_1 t_1}^{-2} \hat{q}_{j_2 t_2}^{-1} \hat{\mu}_{j_1 t_1} (z_{i_1 t_1}) \hat{\mu}_{j_2 t_2} (z_{i_2 t_2}) \varepsilon_{i_1 t_1} x_{i_2 t_2}' \right) \times \left(\sum_{t_1} n_{t_1}^{-2} n_{t_2}^{-1} \sum_{i_1,i_2} \sum_{j_1,j_2} 1_{j_1 t_1} 1_{j_2 t_2} \hat{\mu}_{j_1 t_1} (z) \hat{q}_{j_1 t_1}^{-2} \hat{q}_{j_2 t_2}^{-1} \hat{\mu}_{j_1 t_1} (z_{i_1 t_1}) \hat{\mu}_{j_2 t_2} (z_{i_2 t_2}) \varepsilon_{i_1 t_1} x_{i_2 t_2}' \right)'
\]

\[
\sum_{t_2} \left(\hat{\beta}_t - \beta_t \right)' \left(\hat{\beta}_t - \beta_t \right) = O_p (T n^{-1}) + O_p (T J^{-4})
\]
The second factor has expectation

\[\mathbb{E} \sum_{t_2} \left(\sum_{t_1} n_{t_1}^{-2} n_{t_2}^{-1} \sum_{i_1, i_2} \sum_{j_1, j_2} 1_{j_1 t_1} 1_{j_2 t_2} \hat{I}_{j_1 t_1} (z) \hat{q}_{j_1 t_1}^{-2} \hat{q}_{j_2 t_2}^{-1} \hat{I}_{j_2 t_2} (z_{i_1 t_1}) \hat{I}_{j_2 t_2} (z_{i_2 t_2}) \epsilon_{i_1 t_1} x_{i_2 t_2}^{j_1 t_2} \right) \times \left(\sum_{t_3} n_{t_3}^{-2} n_{t_2}^{-1} \sum_{i_3, i_4} \sum_{j_3, j_4} 1_{j_3 t_3} 1_{j_4 t_4} \hat{I}_{j_3 t_3} (z) \hat{q}_{j_3 t_3}^{-2} \hat{q}_{j_4 t_4}^{-1} \hat{I}_{j_4 t_4} (z_{i_3 t_3}) \hat{I}_{j_4 t_4} (z_{i_4 t_4}) \epsilon_{i_3 t_3} x_{i_4 t_4}^{j_2 t_4} \right) \]

\[= \sum_{t_1, \ldots, t_3} n_{t_1}^{-2} n_{t_2}^{-1} n_{t_3}^{-2} \sum_{i_1, \ldots, i_4} \sum_{j_1, \ldots, j_4} \mathbb{E} \left[1_{j_1 t_1} 1_{j_2 t_2} 1_{j_3 t_3} 1_{j_4 t_4} \hat{I}_{j_1 t_1} (z) \hat{I}_{j_3 t_3} (z) \hat{q}_{j_1 t_1}^{-2} \hat{q}_{j_3 t_3}^{-1} \hat{q}_{j_2 t_2}^{-1} \hat{q}_{j_4 t_4}^{-1} \right] \]

The expectation is zero unless \((t_1 = t_3, i_1 = i_3)\) so we have

\[\sum_{t_1, t_2} n_{t_1}^{-4} n_{t_2}^{-2} \sum_{i_1, i_2} \sum_{j_1, j_2} \sum_{j_1, j_2} \mathbb{E} \left[1_{j_1 t_1} 1_{j_2 t_2} 1_{j_3 t_3} 1_{j_4 t_4} \hat{I}_{j_1 t_1} (z) \hat{I}_{j_3 t_3} (z) \hat{q}_{j_1 t_1}^{-2} \hat{q}_{j_3 t_3}^{-1} \hat{q}_{j_2 t_2}^{-1} \hat{q}_{j_4 t_4}^{-1} \right] \]

\[\leq C \sum_{t_1, t_2} n_{t_1}^{-4} n_{t_2}^{-2} \sum_{i_1, i_2} \sum_{j_1, j_2} \sum_{j_1, j_2} \mathbb{E} \left[1_{j_1 t_1} 1_{j_2 t_2} 1_{j_3 t_3} 1_{j_4 t_4} \hat{I}_{j_1 t_1} (z) \hat{I}_{j_3 t_3} (z) \hat{q}_{j_1 t_1}^{-2} \hat{q}_{j_3 t_3}^{-1} \hat{q}_{j_2 t_2}^{-1} \hat{q}_{j_4 t_4}^{-1} \right] \]

\[\leq C T^2 n^{-3} J^{3d_3} . \]

Thus,

\[|S_{231}^{PI}|^2 \leq O \left(\left(\frac{n}{J d_s T^2} \right)^2 \right) \times O_p \left(T^2 n^{-3} J^{3d_3} \right) \times \left[O_p (T n^{-1}) + O_p (T J^{-4}) \right] , \]

by Markov’s inequality and \(S_{231}^{PI} = o_p (1)\) by our rate assumptions. By similar steps we can show that \(|S_{232}^{PI}|^2 \leq O \left(\left(\frac{n}{J d_s T^2} \right)^2 \right) O_p \left(J^{2d_s} n^{-2} T^3 \right) \left[O_p (T n^{-1}) + O_p (T J^{-4}) \right] \) and so \(S_{232}^{PI} = o_p (1)\) under our rate assumptions.

Term: \(S_{24}^{PI}\) Finally, consider \(S_{24}^{PI}\). This term satisfies,

\[|S_{24}^{PI}| \leq \frac{2 n}{J d_s T^2} \sum_{t_1, t_2} n_{t_1}^{-2} n_{t_2}^{-2} \sum_{i_1} \sum_{j_1, j_2} 1_{j_1 t_1} 1_{j_2 t_2} - 1 \hat{I}_{j_1 t_1} (z) \hat{q}_{j_1 t_1}^{-2} \hat{I}_{j_2 t_2} (z_{i_1 t_1}) \hat{I}_{j_2 t_2} (z_{i_1 t_1}) \epsilon_{i_1 t_1} \mu (z_{i_1 t_1}) \]

\[\leq \max_{1 \leq i \leq 1} \max_{1 \leq j \leq J^{d_s}} |1_{j_1 t_1} - 1| \times C \frac{n}{J d_s T^2} \sum_{t_1, t_2} n_{t_1}^{-2} n_{t_2}^{-2} \sum_{i_1} \sum_{j_1, j_2} 1_{j_1 t_1} 1_{j_2 t_2} (z) \hat{q}_{j_1 t_1}^{-2} \hat{q}_{j_2 t_2} (z_{i_1 t_1}) \hat{I}_{j_2 t_2} (z_{i_1 t_1}) \epsilon_{i_1 t_1} . \]

The second factor has expectation

\[C \frac{n}{J d_s T^2} \sum_{t_1, t_2} n_{t_1}^{-2} n_{t_2}^{-1} \sum_{i_1} \sum_{j_1, j_2} \mathbb{E} \left[1_{j_1 t_1} 1_{j_2 t_2} (z) \hat{q}_{j_1 t_1}^{-2} \hat{I}_{j_2 t_2} (z_{i_1 t_1}) \hat{I}_{j_2 t_2} (z_{i_1 t_1}) \epsilon_{i_1 t_1} \right] \]

\[\leq C \frac{n}{J d_s T^2} \sum_{t_1, t_2} n_{t_1}^{-1} \sum_{j_1} \mathbb{E} \left[1_{j_1 t_1} \hat{I}_{j_1 t_1} (z) \hat{q}_{j_1 t_1}^{-1} \right] \]

\[\leq C. \]

Thus this term is \(o_p (1)\) by Lemma 2.

Term: \(S_3^{PI}\)
We have that

\[S^{\text{PI}}_3 = \left(\frac{nT}{Jd^2} \right) T^{-2} \sum_{t=1}^{T} n_t^{-2} \sum_{i=1}^{n_t} \sum_{j=1}^{Jd^r} 1_{jt} \hat{I}_{jt} (z) \hat{q}^{\text{PI}}_{jt} (z_i) (\hat{e}_{it} - e_{it})^2 \]

\[= \left(\frac{nT}{Jd^2} \right) T^{-2} \sum_{t_1} n_{t_1}^{-2} \sum_{i_1} \sum_{j_1} 1_{j_1 t_1} \hat{I}_{j_1 t_1} (z) \hat{q}^{\text{PI}}_{j_1 t_1} (z_i) \times \]

\[\left[T^{-1} \sum_{t_2} n_{t_2}^{-1} \sum_{j_2} \sum_{i_2} \hat{q}^{\text{PI}}_{j_2 t_2} (z_i) \overline{\hat{I}}_{j_2 t_2} (z_i) (\hat{e}_{i_2 t_2} e_{i_2 t_2})^2 \right]^2 \]

\[+ \left(\frac{nT}{Jd^2} \right) T^{-2} \sum_{t_1} n_{t_1}^{-2} \sum_{i_1} \sum_{j_1} 1_{j_1 t_1} \hat{I}_{j_1 t_1} (z) \hat{q}^{\text{PI}}_{j_1 t_1} (z_i) \times \]

\[\left[T^{-1} \sum_{t_2} n_{t_2}^{-1} \sum_{j_2} \hat{q}^{\text{PI}}_{j_2 t_2} (z_i) \overline{\hat{I}}_{j_2 t_2} (z_i) (\hat{e}_{i_2 t_2} (\hat{\beta}_{t_2} - \beta_{t_2}) - x'_{i_2 t_2} (\hat{\beta}_{t_1} - \beta_{t_1}))]^2 \]

\[+ \left(\frac{nT}{Jd^2} \right) T^{-2} \sum_{t_1} n_{t_1}^{-2} \sum_{i_1} \sum_{j_1} 1_{j_1 t_1} \hat{I}_{j_1 t_1} (z) \hat{q}^{\text{PI}}_{j_1 t_1} (z_i) \times \]

\[\left[T^{-1} \sum_{t_2} n_{t_2}^{-1} \sum_{j_2} (1_{j_2 t_2} - 1) \overline{\hat{I}}_{j_2 t_2} (z_i) \mu (z_i) \right]^2 \]

\[= S^{\text{PI}}_3 + S^{\text{PI}}_3^2 + S^{\text{PI}}_3^3 + S^{\text{PI}}_3^4. \]

Term: \(S^{\text{PI}}_{31} \) Now consider \(S^{\text{PI}}_{31} \). It is

\[S^{\text{PI}}_{31} = \left(\frac{nT}{Jd^2} \right) T^{-4} \sum_{t_1,t_2,t_3} n_{t_1}^{-1} n_{t_2}^{-1} n_{t_3}^{-1} \sum_{i_1,i_2,i_3} \sum_{j_1,j_2,j_3} 1_{j_1 t_1} 1_{j_2 t_2} 1_{j_3 t_3} \times \]

\[\hat{I}_{j_1 t_1} (z) \hat{q}^{\text{PI}}_{j_1 t_1} (z_i) \overline{\hat{I}}_{j_2 t_2} (z_i) \overline{\hat{I}}_{j_3 t_3} (z_i) \hat{e}_{i_2 t_2} \hat{e}_{i_3 t_3} \]

\[= \sum_{\ell=1}^{5} S^{\text{PI}}_{31} \ell, \]

where

\[S^{\text{PI}}_{311} = \left(\frac{nT}{Jd^2} \right) T^{-4} \sum_{t_1=t_2=t_3} n_{t_1}^{-1} n_{t_2}^{-1} n_{t_3}^{-1} \sum_{i_1,i_2,i_3} \sum_{j_1,j_2,j_3} 1_{j_1 t_1} 1_{j_2 t_2} 1_{j_3 t_3} \times \]

\[\hat{I}_{j_1 t_1} (z) \hat{q}^{\text{PI}}_{j_1 t_1} (z_i) \overline{\hat{I}}_{j_2 t_2} (z_i) \overline{\hat{I}}_{j_3 t_3} (z_i) \hat{e}_{i_2 t_2} \hat{e}_{i_3 t_3} \]

\[S^{\text{PI}}_{312} = \left(\frac{nT}{Jd^2} \right) T^{-4} \sum_{t_1 \neq t_2 \neq t_3} n_{t_1}^{-1} n_{t_2}^{-1} n_{t_3}^{-1} \sum_{i_1,i_2,i_3} \sum_{j_1,j_2,j_3} 1_{j_1 t_1} 1_{j_2 t_2} 1_{j_3 t_3} \times \]

\[\hat{I}_{j_1 t_1} (z) \hat{q}^{\text{PI}}_{j_1 t_1} (z_i) \overline{\hat{I}}_{j_2 t_2} (z_i) \overline{\hat{I}}_{j_3 t_3} (z_i) \hat{e}_{i_2 t_2} \hat{e}_{i_3 t_3} \]

\[S^{\text{PI}}_{313} = \left(\frac{nT}{Jd^2} \right) T^{-4} \sum_{t_1=t_2 \neq t_3} n_{t_1}^{-1} n_{t_2}^{-1} n_{t_3}^{-1} \sum_{i_1,i_2,i_3} \sum_{j_1,j_2,j_3} 1_{j_1 t_1} 1_{j_2 t_2} 1_{j_3 t_3} \times \]

\[\hat{I}_{j_1 t_1} (z) \hat{q}^{\text{PI}}_{j_1 t_1} (z_i) \overline{\hat{I}}_{j_2 t_2} (z_i) \overline{\hat{I}}_{j_3 t_3} (z_i) \hat{e}_{i_2 t_2} \hat{e}_{i_3 t_3} \]

\[S^{\text{PI}}_{314} = \left(\frac{nT}{Jd^2} \right) T^{-4} \sum_{t_1 \neq t_2 \neq t_3} n_{t_1}^{-1} n_{t_2}^{-1} n_{t_3}^{-1} \sum_{i_1,i_2,i_3} \sum_{j_1,j_2,j_3} 1_{j_1 t_1} 1_{j_2 t_2} 1_{j_3 t_3} \times \]

\[\hat{I}_{j_1 t_1} (z) \hat{q}^{\text{PI}}_{j_1 t_1} (z_i) \overline{\hat{I}}_{j_2 t_2} (z_i) \overline{\hat{I}}_{j_3 t_3} (z_i) \hat{e}_{i_2 t_2} \hat{e}_{i_3 t_3} \]

\[S^{\text{PI}}_{315} = \left(\frac{nT}{Jd^2} \right) T^{-4} \sum_{t_1=t_2 \neq t_3} n_{t_1}^{-1} n_{t_2}^{-1} n_{t_3}^{-1} \sum_{i_1,i_2,i_3} \sum_{j_1,j_2,j_3} 1_{j_1 t_1} 1_{j_2 t_2} 1_{j_3 t_3} \times \]

\[\hat{I}_{j_1 t_1} (z) \hat{q}^{\text{PI}}_{j_1 t_1} (z_i) \overline{\hat{I}}_{j_2 t_2} (z_i) \overline{\hat{I}}_{j_3 t_3} (z_i) \hat{e}_{i_2 t_2} \hat{e}_{i_3 t_3} \]
Term: S_{311}^{PI} First consider S_{311}^{PI}:

\[
S_{311}^{PI} = \left(\frac{n T}{J d_s} \right) T^{-4} \sum_{t_1=t_2=t_3} n_{t_1}^{-2} n_{t_2}^{-1} n_{t_3}^{-1} \sum_{i_1,i_2,i_3} \sum_{j_1,j_2,j_3} 1_{j_1t_1} 1_{j_2t_2} 1_{j_3t_3} \times
\]

\[
\hat{g}_{j_1t_1} (z) \hat{q}_{j_1t_1}^{-1} \hat{q}_{j_2t_2}^{-1} \hat{q}_{j_3t_3}^{-1} \prod_{t_1} (z_{i_1t_1}) \prod_{t_2} (z_{i_2t_2}) \prod_{t_3} (z_{i_3t_3}) \epsilon_{i_2t_2} \epsilon_{i_3t_3}
\]

\[
= \left(\frac{n T}{J d_s} \right) T^{-4} \sum_{t_1} n_{t_1}^{-2} n_{t_2}^{-1} n_{t_3}^{-1} \sum_{i_1,i_2,i_3} \sum_{j_1,j_2,j_3} 1_{j_1t_1} 1_{j_2t_2} 1_{j_3t_3} \times
\]

\[
\hat{g}_{j_1t_1} (z) \hat{q}_{j_1t_1}^{-1} \hat{q}_{j_2t_2}^{-1} \hat{q}_{j_3t_3}^{-1} \prod_{t_1} (z_{i_1t_1}) \prod_{t_2} (z_{i_2t_2}) \prod_{t_3} (z_{i_3t_3}) \epsilon_{i_2t_2} \epsilon_{i_3t_3}
\]

\[
= \left(\frac{n T}{J d_s} \right) T^{-4} \sum_{t_1} n_{t_1}^{-2} n_{t_2}^{-1} n_{t_3}^{-1} \sum_{i_1,i_2,i_3} \sum_{j_1} 1_{j_1t_1} \hat{g}_{j_1t_1} (z) \hat{q}_{j_1t_1}^{-1} \hat{g}_{j_1t_1} (z) \hat{g}_{j_1t_1} (z) \prod_{t_1} (z_{i_1t_1}) \prod_{t_2} (z_{i_2t_2}) \prod_{t_3} (z_{i_3t_3}) \epsilon_{i_2t_2} \epsilon_{i_3t_3}
\]

which satisfies

\[
E \left| S_{311}^{PI} \right| \leq \left(\frac{n T}{J d_s} \right) T^{-4} \sum_{t_1} n_{t_1}^{-2} n_{t_2}^{-1} n_{t_3}^{-1} \sum_{i_1,i_2,i_3} \sum_{j_1} E \left[1_{j_1t_1} \hat{g}_{j_1t_1} (z) \hat{q}_{j_1t_1}^{-1} \hat{g}_{j_1t_1} (z) \hat{g}_{j_1t_1} (z) \prod_{t_1} (z_{i_1t_1}) \prod_{t_2} (z_{i_2t_2}) \prod_{t_3} (z_{i_3t_3}) \epsilon_{i_2t_2} \epsilon_{i_3t_3} \right]
\]

\[
\leq C \left(\frac{n T}{J d_s} \right) T^{-4} \sum_{t_1} n_{t_1}^{-1} \sum_{j_1} E \left[1_{j_1t_1} \hat{g}_{j_1t_1} (z) \hat{q}_{j_1t_1}^{-1} \right]
\]

\[
= C \left(\frac{n T}{J d_s} \right) T^{-4} \sum_{t_1} n_{t_1}^{-1} \sum_{j_1} E \left[\hat{g}_{j_1t_1} (z) \hat{q}_{j_1t_1}^{-1} \right]
\]

\[
\leq C \left(\frac{n T}{J d_s} \right) T^{-4} J d_s \sum_{t_1} n_{t_1}^{-1} \sum_{j_1} E \left[\hat{g}_{j_1t_1} (z) \right]
\]

\[
\leq CT^{-2},
\]

so that $S_{311}^{PI} = O_p (T^{-2}) = o_p (1)$ by Markov’s inequality. By similar steps we can show that $S_{312}^{PI} = O_p (T^{-1}) = S_{313}^{PI} = O_p (T^{-1})$, $S_{314}^{PI} = O_p (T^{-1})$, and $S_{315}^{PI} = O_p (J d_s n^{-1})$ which are $o_p (1)$ under our rate assumptions.

Term: S_{32}^{PI} Now consider S_{32}^{PI}:

\[
S_{32}^{PI} = \left(\frac{n T}{J d_s} \right) T^{-2} \sum_{t_2} n_{t_1}^{-2} \sum_{j_1} 1_{j_1t_1} \hat{g}_{j_1t_1} (z) \hat{q}_{j_1t_1}^{-2} \hat{g}_{j_1t_1} (z) \hat{g}_{j_1t_1} (z) \prod_{j_1} (z_{i_1t_1}) \prod_{j_2} (z_{i_2t_2}) \prod_{j_3} (z_{i_3t_3}) (\mu (z_{i_2t_2}) - \mu (z_{i_1t_1}))
\]

\[
\leq C \left[\max_{1 \leq t \leq T} \max_{1 \leq j \leq J d_s} \sup_{z} \left| \prod_{t} (z) \mu (z) - \prod_{j} (z) \mu (z) \right| \right]^2 \left(\frac{n T}{J d_s} \right) T^{-2} \sum_{t_1} n_{t_1}^{-2} \sum_{j_1} 1_{j_1t_1} \hat{g}_{j_1t_1} (z) \hat{q}_{j_1t_1}^{-2} \hat{g}_{j_1t_1} (z) \hat{g}_{j_1t_1} (z) \prod_{j_1} (z_{i_1t_1}) \prod_{j_2} (z_{i_2t_2}) \prod_{j_3} (z_{i_3t_3}) (\mu (z_{i_2t_2}) - \mu (z_{i_1t_1}))
\]

\[
\times \left[T^{-1} \sum_{j_2} n_{j_2}^{-1} \sum_{j_3} 1_{j_2t_2} \hat{g}_{j_2t_2} (z) \hat{g}_{j_2t_2} (z) \prod_{j_2} (z_{i_2t_2}) \prod_{j_3} (z_{i_3t_3}) \right]^2
\]

The first factor is $O_p (J^{-2})$ by Lemma 1. The second factor is

\[
\leq \left(\frac{n T}{J d_s} \right) T^{-2} \sum_{t_2} n_{t_1}^{-2} \sum_{j_1} 1_{j_1t_1} \hat{g}_{j_1t_1} (z) \hat{q}_{j_1t_1}^{-2} \hat{g}_{j_1t_1} (z) \hat{g}_{j_1t_1} (z) \prod_{j_1} (z_{i_1t_1}) \prod_{j_2} (z_{i_2t_2}) \prod_{j_3} (z_{i_3t_3}) (\mu (z_{i_2t_2}) - \mu (z_{i_1t_1}))
\]

\[
\leq \left(\frac{n T}{J d_s} \right) T^{-2} \sum_{t_2} n_{t_2}^{-1} \sum_{j_2} 1_{j_2t_2} \hat{g}_{j_2t_2} (z) \hat{g}_{j_2t_2} (z) \prod_{j_2} (z_{i_2t_2}) \prod_{j_3} (z_{i_3t_3}) \right]^2
\]

\[
\leq \left(\frac{n T}{J d_s} \right) T^{-2} \sum_{t_2} n_{t_2}^{-1} \sum_{j_2} 1_{j_2t_2} \hat{g}_{j_2t_2} (z) \hat{g}_{j_2t_2} (z) \prod_{j_2} (z_{i_2t_2}) \prod_{j_3} (z_{i_3t_3}) \right]^2
\]
\[
\begin{align*}
S_{32}^\pi &= O_p(J^{-2}) = o(1).
\end{align*}
\]

Term: \(S_{33}^\pi\) Now consider \(S_{33}^\pi\)

\[
S_{33}^\pi = \left(\frac{nT}{J} \right) T^{-2} \sum_{t_1} n_{t_1}^{-2} \sum_{i_1} \sum_{j_1} 1_{j_1 t_1} \tilde{T}_{j_1 t_1} (z) \frac{\hat{q}_{j_1 t_1} - 2}{\tilde{T}_{j_1 t_1} (z_{i_1 t_1})} \left(n_{t_1}^{-1} \sum_{i_1} \tilde{T}_{j_1 t_1} (z_{i_1 t_1}) \right) \\
&\leq C.
\]

Thus \(S_{32}^\pi = O_p(J^{-2}) = o(1)\).

First consider \(S_{33}^\pi\). By the CS inequality we have,

\[
S_{33}^\pi = 2 \left(\frac{nT}{J} \right) T^{-2} \sum_{t_1} n_{t_1}^{-2} \sum_{i_1} \sum_{j_1} 1_{j_1 t_1} \tilde{T}_{j_1 t_1} (z) \frac{\hat{q}_{j_1 t_1} - 2}{\tilde{T}_{j_1 t_1} (z_{i_1 t_1})} \left(n_{t_1}^{-1} \sum_{i_1} \tilde{T}_{j_1 t_1} (z_{i_1 t_1}) \right) \\
&\leq 2 \left(\frac{nT}{J} \right) T^{-2} \sum_{t_1} n_{t_1}^{-2} \sum_{i_1} \sum_{j_1} 1_{j_1 t_1} \tilde{T}_{j_1 t_1} (z) \frac{\hat{q}_{j_1 t_1} - 2}{\tilde{T}_{j_1 t_1} (z_{i_1 t_1})} \left(n_{t_1}^{-1} \sum_{i_1} \tilde{T}_{j_1 t_1} (z_{i_1 t_1}) \right) \\
&\leq 2 \left(\frac{nT}{J} \right) T^{-2} \sum_{t_1} n_{t_1}^{-2} \sum_{i_1} \sum_{j_1} 1_{j_1 t_1} \tilde{T}_{j_1 t_1} (z) \frac{\hat{q}_{j_1 t_1} - 2}{\tilde{T}_{j_1 t_1} (z_{i_1 t_1})} \left(n_{t_1}^{-1} \sum_{i_1} \tilde{T}_{j_1 t_1} (z_{i_1 t_1}) \right) \\
&\leq C \left(\frac{nT}{J} \right) T^{-4} \sum_{t_1, t_2} n_{t_1}^{-2} n_{t_2}^{-2} \sum_{i_1, i_2, j_1, j_2} \sum_{j_1, j_2} \mathbb{E} \left[1_{q, j_1 t_1} 1_{q, j_2 t_2} 1_{q, j_1 t_3} \tilde{T}_{j_1 t_1} (z) \frac{\hat{q}_{j_1 t_1} - 2}{\tilde{T}_{j_1 t_1} (z_{i_1 t_1})} \right. \\
&\leq C \left(\frac{nT}{J} \right) T^{-4} \sum_{t_1, t_2} n_{t_1}^{-2} n_{t_2}^{-2} \sum_{i_1, i_2, j_1, j_2} \sum_{j_1, j_2} \mathbb{E} \left[1_{q, j_1 t_1} 1_{q, j_2 t_2} 1_{q, j_1 t_3} \tilde{T}_{j_1 t_1} (z) \frac{\hat{q}_{j_1 t_1} - 2}{\tilde{T}_{j_1 t_1} (z_{i_1 t_1})} \right].
\]

The last factor is \(O_p(Tn^{-1}) + O_p(TJ^{-4})\) The first and second factor are then bounded by

\[
2 \left(\frac{nT}{J} \right) T^{-4} \sum_{t_1, t_2} n_{t_1}^{-2} n_{t_2}^{-2} \sum_{i_1, i_2, j_1, j_2} \sum_{j_1, j_2} \mathbb{E} \left[1_{q, j_1 t_1} 1_{q, j_2 t_2} 1_{q, j_1 t_3} \tilde{T}_{j_1 t_1} (z) \frac{\hat{q}_{j_1 t_1} - 2}{\tilde{T}_{j_1 t_1} (z_{i_1 t_1})} \right. \\
&\leq C \left(\frac{nT}{J} \right) T^{-4} \sum_{t_1, t_2} n_{t_1}^{-2} n_{t_2}^{-2} \sum_{i_1, i_2, j_1, j_2} \sum_{j_1, j_2} \mathbb{E} \left[1_{q, j_1 t_1} 1_{q, j_2 t_2} 1_{q, j_1 t_3} \tilde{T}_{j_1 t_1} (z) \frac{\hat{q}_{j_1 t_1} - 2}{\tilde{T}_{j_1 t_1} (z_{i_1 t_1})} \right].
\]

Thus, \(S_{33}^\pi = O_p(n^{-1}) + O_p(J^{-4})\). By similar steps we can show that \(S_{33}^\pi = O_p(n^{-1}) + O_p(T^{-1}J^{-2})\) which is \(o_p(1)\) under our rate assumptions.
Term: S_{34}^{PI} Now consider S_{34}^{PI}:

$$S_{34}^{PI} = \left(\frac{nT}{j_{dz}} \right) T^{-2} \sum_{t_1} n_{t_1}^{-2} \sum_{i_1} \sum_{j_1} 1_{j_1t_1 \hat{\mu}_{j_1t_1} (z) \hat{q}_{j_1t_1}^{-2} \hat{\mu}_{j_1t_1} (z_i_{t_1})} \times$$

$$\left[T^{-1} \sum_{t_2} \sum_{j_2} (1_{j_2t_2} - 1) \hat{\mu}_{j_2t_2} (z_i_{t_1}) \mu (z_i_{t_1}) \right]^2 ,$$

which satisfies

$$|S_{34}^{PI}| \leq \max_{1 \leq t \leq T} \max_{1 \leq j \leq j_{dz}} |1_{jt} - 1| \times C \left(\frac{nT}{j_{dz}} \right) T^{-2} \sum_{t_1} n_{t_1}^{-2} \sum_{i_1} \sum_{j_1} 1_{j_1t_1 \hat{\mu}_{j_1t_1} (z) \hat{q}_{j_1t_1}^{-2} \hat{\mu}_{j_1t_1} (z_i_{t_1})} .$$

The second factor is

$$\left(\frac{nT}{j_{dz}} \right) T^{-2} \sum_{t_1} n_{t_1}^{-2} \sum_{i_1} \sum_{j_1} 1_{j_1t_1 \hat{\mu}_{j_1t_1} (z) \hat{q}_{j_1t_1}^{-2} \hat{\mu}_{j_1t_1} (z_i_{t_1})}$$

$$= \frac{n}{j_{dz} T} \sum_{t_1} n_{t_1}^{-1} \sum_{i_1} \sum_{j_1} 1_{j_1t_1 \hat{\mu}_{j_1t_1} (z) \hat{q}_{j_1t_1}^{-2} \hat{\mu}_{j_1t_1} (z_i_{t_1})}$$

$$\leq C \frac{n}{T} \sum_{t_1} n_{t_1}^{-1} \sum_{i_1} \sum_{j_1} \hat{\mu}_{j_1t_1} (z)$$

$$\leq C .$$

Thus, $S_{34}^{PI} = o_p (1)$ by Lemma 2.

B.7 Proof of Theorem 3

As discussed in the main text we will work with a modified version of L_2 and L_3 where we assume that the conditional quantiles are known. We start with

$$L_1 = T^{-1} \sum_{t=1}^{T} n_{t}^{-1} \sum_{i=1}^{n_{t}} \sum_{j=1}^{j_{dz}} 1_{jt} \hat{\mu}_{jt} (z) \hat{q}_{jt}^{-1} \hat{\mu}_{jt} (z_i t) (\mu (z_i t) - \mu (z)) ,$$

$$L_{21} = T^{-1} \sum_{t=1}^{T} n_{t}^{-1} \sum_{i=1}^{n_{t}} \sum_{j=1}^{j_{dz}} 1_{jt} \hat{\mu}_{jt} (z) \hat{q}_{jt}^{-1} \hat{\mu}_{jt} (z_i t) \varepsilon_{it}$$

$$L_{22} = -T^{-1} \sum_{t=1}^{T} n_{t}^{-1} \sum_{i=1}^{n_{t}} \sum_{j=1}^{j_{dz}} 1_{jt} \hat{\mu}_{jt} (z) \hat{q}_{jt}^{-1} q_{jt}^{2} (\hat{q}_{jt} - q_{jt}) \hat{\mu}_{jt} (z_i t) \varepsilon_{it}$$

$$L_{23} = T^{-1} \sum_{t=1}^{T} n_{t}^{-1} \sum_{i=1}^{n_{t}} \sum_{j=1}^{j_{dz}} 1_{jt} \hat{\mu}_{jt} (z) \hat{q}_{jt}^{-1} q_{jt}^{2} (\hat{q}_{jt} - q_{jt})^{2} \hat{\mu}_{jt} (z_i t) \varepsilon_{it}$$

$$L_{3} = -T^{-1} \sum_{t=1}^{T} n_{t}^{-1} \sum_{i=1}^{n_{t}} \sum_{j=1}^{j_{dz}} 1_{jt} \hat{\mu}_{jt} (z) \hat{q}_{jt}^{-1} \hat{\mu}_{jt} (z_i t) x_{it} ' (\hat{\beta}_t - \beta_t) ,$$

$$L_{4} = T^{-1} \sum_{t=1}^{T} \sum_{j=1}^{j_{dz}} (1_{jt} - 1) \hat{\mu}_{jt} (z) \mu (z) ,$$

and recall that $\hat{q}_{jt} = n_{t}^{-1} \sum_{i=1}^{n_{t}} \hat{\mu}_{jt} (z_i t)$ so that

$$\hat{\mu} (z) - \mu (z) = L_1 + L_{21} + L_{22} + L_{23} + L_{3} + L_{4} .$$

Thus,

$$E \left[|\hat{\mu} (z) - \mu (z)|^2 \right] = M_1 + M_2 + M_3 + M_4 + M_5 + o_p \left(J^{-2} + \frac{J_{dz}^{2}}{n^2 T} \right) ,$$

22
where

\[\mathcal{M}_1 = \mathcal{L}_1^2 \]
\[\mathcal{M}_2 = \mathbb{E} \left[(\mathcal{L}_{21} + \mathcal{L}_{22} + \mathcal{L}_{23})^2 \mid \mathcal{F}_1, \ldots, \mathcal{F}_T \right] \]
\[\mathcal{M}_3 = \mathbb{E} \left[\mathcal{L}_3^2 \mid \mathcal{F}_1, \ldots, \mathcal{F}_T \right] \]
\[\mathcal{M}_4 = 2\mathcal{L}_1 \mathbb{E} \left[\mathcal{L}_3 \mid \mathcal{F}_1, \ldots, \mathcal{F}_T \right] \]
\[\mathcal{M}_5 = 2\mathbb{E} \left[(\mathcal{L}_{21} + \mathcal{L}_{22} + \mathcal{L}_{23}) \mathcal{L}_3 \mid \mathcal{F}_1, \ldots, \mathcal{F}_T \right] \]

since \(\mathbb{E} \left[\mathcal{L}_1 (\mathcal{L}_{21} + \mathcal{L}_{22} + \mathcal{L}_{23}) \mid \mathcal{F}_1, \ldots, \mathcal{F}_T \right] = 0 \) and by Lemmas 2 and 3 all terms involving \(\mathcal{L}_4 \) are of smaller order.

B.7.1 Term: \(\mathcal{M}_1 \)

First, consider, \(\mathcal{L}_1^2 \). For this term we work with estimated quantiles. We have,

\[
\mathcal{L}_1 = T^{-1} \sum_{t=1}^{T} n_t^{-1} \sum_{i=1}^{n_t} \sum_{j=1}^{l_{jz}^{z}} 1_{jt} \frac{\hat{\mu}_{jt}}{\hat{\mu}_{jt}} (z) \hat{q}_{jt}^{-1} \hat{\mu}_{jt} (z_{it}) (\mu (z_{it}) - \mu (z)) \\
= \sum_{t=1}^{T} n_t^{-1} \sum_{i=1}^{n_t} \sum_{j=1}^{l_{jz}^{z}} 1_{jt} \frac{\hat{\mu}_{jt}}{\hat{\mu}_{jt}} (z) \hat{q}_{jt}^{-1} \hat{\mu}_{jt} (z_{it}) (z_{it} - z) \\
+ T^{-1} \sum_{t=1}^{T} n_t^{-1} \sum_{i=1}^{n_t} \sum_{j=1}^{l_{jz}^{z}} 1_{jt} \frac{\hat{\mu}_{jt}}{\hat{\mu}_{jt}} (z) \hat{q}_{jt}^{-1} \hat{\mu}_{jt} (z_{it}) (z_{it} - z), \quad \frac{\partial \mu (z)}{\partial z^j} \bigg|_{z = \hat{z}} (z_{it} - z) \\
= \mathcal{L}_{11} + \mathcal{L}_{12},
\]

where \(\hat{z} = \alpha \cdot z + (1 - \alpha) \cdot z_{it} \), \(\alpha \in (0, 1) \). Thus, we need only show that \(\mathcal{L}_{12} \) is \(O_p (J^{-1}) \). We have,

\[
|\mathcal{L}_{12}| \leq T^{-1} \sum_{t=1}^{T} n_t^{-1} \sum_{i=1}^{n_t} \sum_{j=1}^{l_{jz}^{z}} 1_{jt} \hat{q}_{jt}^{-1} \hat{\mu}_{jt} (z_{it}) (z_{it} - z), \quad \frac{\partial \mu (z)}{\partial z^j} \bigg|_{z = \hat{z}} (z_{it} - z) \\
\leq C T^{-1} \sum_{t=1}^{T} n_t^{-1} \sum_{i=1}^{n_t} \sum_{j=1}^{l_{jz}^{z}} 1_{jt} \hat{q}_{jt}^{-1} \hat{\mu}_{jt} (z_{it}) \| z_{it} - z \|^2 \\
\leq C T^{-1} \sum_{t=1}^{T} n_t^{-1} \sum_{i=1}^{n_t} \sum_{j=1}^{l_{jz}^{z}} 1_{jt} \hat{q}_{jt}^{-1} \hat{\mu}_{jt} (z_{it}) \sum_{s=1}^{d_z} \left(\hat{b}_{jst} - \hat{b}_{js-1}, t, s \right)^2 \\
\leq \max_{1 \leq t \leq T} \max_{1 \leq j \leq J} \max_{1 \leq s \leq d_z} \left| \hat{b}_{jst} - \hat{b}_{js-1}, t, s \right|^2 \times C T^{-1} \sum_{t=1}^{T} \sum_{j=1}^{l_{jz}^{z}} 1_{jt} \hat{\mu}_{jt} (z),
\]

and so \(\mathcal{L}_{12} = O_p (J^{-2}) \) by Lemma 1 and the result follows.

B.7.2 Term: \(\mathcal{M}_2 \)

We have

\[
\mathcal{M}_{21} = \mathbb{E} \left[|\mathcal{L}_{21}|^2 \mid \mathcal{F}_1, \ldots, \mathcal{F}_T \right] \\
\mathcal{M}_{22} = \mathbb{E} \left[|\mathcal{L}_{22}|^2 \mid \mathcal{F}_1, \ldots, \mathcal{F}_T \right] \\
\mathcal{M}_{23} = \mathbb{E} \left[|\mathcal{L}_{23}|^2 \mid \mathcal{F}_1, \ldots, \mathcal{F}_T \right] \\
\mathcal{M}_{24} = 2\mathbb{E} \left[\mathcal{L}_{21} \mathcal{L}_{22} \mid \mathcal{F}_1, \ldots, \mathcal{F}_T \right] \\
\mathcal{M}_{25} = 2\mathbb{E} \left[\mathcal{L}_{21} \mathcal{L}_{23} \mid \mathcal{F}_1, \ldots, \mathcal{F}_T \right] \\
\mathcal{M}_{26} = 2\mathbb{E} \left[\mathcal{L}_{22} \mathcal{L}_{23} \mid \mathcal{F}_1, \ldots, \mathcal{F}_T \right].
\]
Squared Terms

First note that M_{21} is

$$M_{21} = -2 \sum_{t=1}^{T} n_t^{-2} \sum_{i=1}^{n_t} \sum_{j=1}^{J_t} \mathbb{1}_{jt} \mathbb{1}_{jt} (z) q_{jt}^{-2} \mathbb{1}_{jt} (z_i t) \sigma_{it}^2$$

$$= M_{211} + M_{212} + o_p \left(\frac{J^{2d_z} n^{-2} T^{-1}}{n} \right),$$

by Lemma 2 where

$$M_{211} = -2 \sum_{t=1}^{T} n_t^{-2} \sum_{i=1}^{n_t} \sum_{j=1}^{J_t} \mathbb{1}_{jt} \mathbb{1}_{jt} (z) q_{jt}^{-2} \mathbb{1}_{jt} (z_i t) \sigma_{it}^2 \mathbb{E} \left[\mathbb{1}_{jt} (z_i t) \sigma_{it}^2 | \mathcal{F}_t \right]$$

$$M_{212} = -2 \sum_{t=1}^{T} n_t^{-2} \sum_{i=1}^{n_t} \sum_{j=1}^{J_t} \mathbb{1}_{jt} (z) q_{jt}^{-2} \{ \mathbb{1}_{jt} (z_i t) \sigma_{it}^2 - \mathbb{E} \left[\mathbb{1}_{jt} (z_i t) \sigma_{it}^2 | \mathcal{F}_t \right] \}.$$

Note that $M_{211} = O_p \left(J^{d_z} n^{-1} T^{-1} \right)$ as given in the proof of Theorem 1. Next, M_{212} is mean zero with variance,

$$\mathbb{E} \left[|M_{212}|^2 \right] = -2 \sum_{i=1}^{T} n_t^{-4} \sum_{i=1}^{n_t} \sum_{j=1}^{J_t} \mathbb{1}_{jt} (z) q_{jt}^{-4} \mathbb{1}_{jt} (z_i t) \sigma_{it}^2 \mathbb{E} \left[\mathbb{1}_{jt} (z) q_{jt}^{-4} \left(\mathbb{1}_{jt} (z_i t) \sigma_{it}^2 - \mathbb{E} \left[\mathbb{1}_{jt} (z_i t) \sigma_{it}^2 | \mathcal{F}_t \right] \right)^2 \right]$$

$$\leq C T^{-3} n^{-3} J^{3d_z},$$

where the first equality follows by Assumption 1. Thus, $M_{212} = O_p \left(J^{3d_z} n^{-3/2} T^{-3/2} \right)$.

Next, we have

$$M_{22} = -2 \sum_{t=1}^{T} n_t^{-2} \sum_{i=1}^{n_t} \sum_{j=1}^{J_t} \mathbb{1}_{jt} \mathbb{1}_{jt} (z) q_{jt}^{-4} (\tilde{q}_{jt} - q_{jt})^2 \mathbb{1}_{jt} (z_i t) \sigma_{it}^2$$

$$= -2 \sum_{t=1}^{T} n_t^{-2} \sum_{i=1}^{n_t} \sum_{j=1}^{J_t} \mathbb{1}_{jt} \mathbb{1}_{jt} (z) q_{jt}^{-4} (\mathbb{1}_{jt} (z_i t) - q_{jt}) (\mathbb{1}_{jt} (z_i t) - q_{jt}) \mathbb{1}_{jt} (z_i t) \sigma_{it}^2$$

$$= M_{221} + M_{222} + M_{223} + M_{224},$$

where

$$M_{221} = -2 \sum_{t=1}^{T} n_t^{-4} \sum_{i=1}^{n_t} \sum_{j=1}^{J_t} \mathbb{1}_{jt} \mathbb{1}_{jt} (z) q_{jt}^{-4} (\mathbb{1}_{jt} (z_i t) - q_{jt}) (\mathbb{1}_{jt} (z_i t) - q_{jt}) \mathbb{1}_{jt} (z_i t) \sigma_{it}^2$$

$$M_{222} = -2 \sum_{t=1}^{T} n_t^{-4} \sum_{i=1}^{n_t} \sum_{j=1}^{J_t} \mathbb{1}_{jt} \mathbb{1}_{jt} (z) q_{jt}^{-4} (\mathbb{1}_{jt} (z_i t) - q_{jt}) (\mathbb{1}_{jt} (z_i t) - q_{jt}) \mathbb{1}_{jt} (z_i t) \sigma_{it}^2$$

$$M_{223} = 2T^{-2} \sum_{t=1}^{T} n_t^{-4} \sum_{i=1}^{n_t} \sum_{j=1}^{J_t} \mathbb{1}_{jt} \mathbb{1}_{jt} (z) q_{jt}^{-4} (\mathbb{1}_{jt} (z_i t) - q_{jt}) (\mathbb{1}_{jt} (z_i t) - q_{jt}) \mathbb{1}_{jt} (z_i t) \sigma_{it}^2$$

$$M_{224} = -2 \sum_{t=1}^{T} n_t^{-4} \sum_{i=1}^{n_t} \sum_{j=1}^{J_t} \mathbb{1}_{jt} \mathbb{1}_{jt} (z) q_{jt}^{-4} (\mathbb{1}_{jt} (z_i t) - q_{jt}) (\mathbb{1}_{jt} (z_i t) - q_{jt}) \mathbb{1}_{jt} (z_i t) \sigma_{it}^2.$$

However,

$$\mathbb{E} |M_{221}| = -2 \sum_{t=1}^{T} n_t^{-4} \sum_{i=1}^{n_t} \sum_{j=1}^{J_t} \mathbb{1}_{jt} \mathbb{1}_{jt} (z) \mathbb{E} \left[q_{jt}^{-4} (1 - q_{jt})^2 \mathbb{1}_{jt} (z_i t) \sigma_{it}^2 \right] \leq C T^{-1} n^{-3} J^{3d},$$

so that $M_{221} = O_p \left(T^{-1} n^{-3} J^{3d} \right) = o_p \left(J^{2d_z} n^{-2} T^{-1} \right)$ by Markov’s inequality and Assumption 3. Next,

$$M_{222} = -2 \sum_{t=1}^{T} n_t^{-4} \sum_{i=1}^{n_t} \sum_{j=1}^{J_t} \mathbb{1}_{jt} \mathbb{1}_{jt} (z) q_{jt}^{-2} (\mathbb{1}_{jt} (z_i t) - q_{jt})^2 \mathbb{1}_{jt} (z_i t) \sigma_{it}^2$$

$$= M_{2221} + M_{2222} + o_p \left(\frac{J^{2d_z} n^{-2} T^{-1}}{n} \right),$$

where
by Lemma 2 where

\[\mathcal{M}_{2221} = T^{-2} \sum_{t=1}^{T} n_t^{-4} (n_t - 1) \sum_{i_t}^{n_t} \sum_{j_t=1}^{J_t} \mathbb{E} \left[(\mathbb{I}_{jt}(z) q_{jt}^{-3}) \sigma_{i_t}^{2} | \mathcal{F}_t \right] \]

\[\mathcal{M}_{2222} = T^{-2} \sum_{t=1}^{T} n_t^{-4} \sum_{i_t \neq i_2}^{n_t} \sum_{j_t=1}^{J_t} \mathbb{I}_{jt}(z) q_{jt}^{-4} \times \]

\[\left\{ (\mathbb{I}_{jt}(z) - q_{jt})^2 \mathbb{I}_{jt}(z) \sigma_{i_t}^{2} - \mathbb{E} \left[(\mathbb{I}_{jt}(z) - q_{jt})^2 \mathbb{I}_{jt}(z) \sigma_{i_t}^{2} | \mathcal{F}_t \right] \right\}. \]

\[\mathcal{M}_{2221} = O_p \left(J^{2d_z} n^{-2} T^{-1} \right). \]

Next note that \(\mathcal{M}_{2222} \) is mean zero with variance,

\[\mathbb{E} \left[|\mathcal{M}_{2222}|^2 \right] \leq T^{-4} \sum_{t=1}^{T} n_t^{-8} \sum_{i_t \neq i_2,i_3 \neq i_4}^{n_t} \sum_{j_t=1}^{J_t} \mathbb{E} \left[(\mathbb{I}_{jt}(z) q_{jt}^{-8}) \left\{ (\mathbb{I}_{jt}(z) - q_{jt})^2 \mathbb{I}_{jt}(z) \sigma_{i_t}^{2} - \mathbb{E} \left[(\mathbb{I}_{jt}(z) - q_{jt})^2 \mathbb{I}_{jt}(z) \sigma_{i_t}^{2} | \mathcal{F}_t \right] \right\} \right] \]

\[\left\{ (\mathbb{I}_{jt}(z) - q_{jt})^2 \mathbb{I}_{jt}(z) \sigma_{i_t}^{2} - \mathbb{E} \left[(\mathbb{I}_{jt}(z) - q_{jt})^2 \mathbb{I}_{jt}(z) \sigma_{i_t}^{2} | \mathcal{F}_t \right] \right\}. \]

There are six nonzero terms and by Markov’s inequality and following similar steps as above we can show that \(\mathcal{M}_{2222} = O_p \left(T^{-3/2} n^{-5/2} J^{2d_z}/2 \right) = o_p \left(J^{2d_z} n^{-2} T^{-1} \right) \) by Assumption 3. Next,

\[\mathcal{M}_{223} = 2T^{-2} \sum_{t=1}^{T} n_t^{-4} \sum_{i_t \neq i_2}^{n_t} \sum_{j_t=1}^{J_t} \mathbb{I}_{jt}(z) q_{jt}^{-4} (1 - q_{jt}) (\mathbb{I}_{jt}(z) - q_{jt}) \mathbb{I}_{jt}(z) \sigma_{i_t}^{2} \]

is mean zero with variance

\[\mathbb{E} \left[|\mathcal{M}_{223}|^2 \right] = 4T^{-4} \sum_{t=1}^{T} n_t^{-8} \sum_{i_t \neq i_2,i_3 \neq i_4}^{n_t} \sum_{j_t=1}^{J_t} \mathbb{E} \left[(1 - q_{jt})^2 (\mathbb{I}_{jt}(z) - q_{jt}) (\mathbb{I}_{jt}(z) - q_{jt}) \mathbb{I}_{jt}(z) \sigma_{i_t}^{2} \sigma_{i_t}^{2} \right]. \]

There are three nonzero terms and by Markov’s inequality and following similar steps as above we can show that \(\mathcal{M}_{223} = O_p \left(J^{2d_z}/2 n^{-5/2} T^{-3/2} \right) = o_p \left(J^{2d_z} n^{-2} T^{-1} \right) \) by Assumption 3.

Finally, we have \(\mathcal{M}_{224} \),

\[\mathcal{M}_{224} = T^{-2} \sum_{t=1}^{T} n_t^{-4} \sum_{i_t \neq i_2,i_3 \neq i_4}^{n_t} \sum_{j_t=1}^{J_t} \mathbb{I}_{jt}(z) q_{jt}^{-4} (\mathbb{I}_{jt}(z) - q_{jt}) (\mathbb{I}_{jt}(z) - q_{jt}) \mathbb{I}_{jt}(z) \sigma_{i_t}^{2} \]

which is mean zero with variance

\[\mathbb{E} \left[|\mathcal{M}_{224}|^2 \right] = T^{-4} \sum_{t=1}^{T} n_t^{-8} \sum_{i_t \neq i_2,i_3 \neq i_4}^{n_t} \sum_{j_t=1}^{J_t} \mathbb{E} \left[(1 - q_{jt})^2 (\mathbb{I}_{jt}(z) - q_{jt}) (\mathbb{I}_{jt}(z) - q_{jt}) (\mathbb{I}_{jt}(z) - q_{jt}) \mathbb{I}_{jt}(z) \sigma_{i_t}^{2} \sigma_{i_t}^{2} \right]. \]

There are four nonzero terms and by Markov’s inequality and following similar steps as above we can show that \(\mathcal{M}_{224} = O_p \left(T^{-3/2} n^{-2} J^{2d_z} \right) = o_p \left(J^{2d_z} n^{-2} T^{-1} \right) \) by Markov’s inequality and Assumption 3.

Next we have

\[\mathcal{M}_{23} = \mathbb{E} \left[\mathcal{L}_2 \mathcal{F}_1, \ldots, \mathcal{F}_T \right] = T^{-2} \sum_{t=1}^{T} n_t^{-2} \sum_{i_t}^{n_t} \sum_{j_t=1}^{J_t} \mathbb{I}_{jt}(z) \mathbb{Q}_{jt}^{-2} \mathbb{I}_{jt}(z) \mathbb{Q}_{jt}^{-4} (\mathbb{I}_{jt}(z) - q_{jt}) \mathbb{I}_{jt}(z) \sigma_{i_t}^{2}. \]
and note that
\[
T^{-2} \sum_{t=1}^{T} n_t^{-2} \sum_{i=1}^{n_t} \sum_{j=1}^{J_d} \mathbf{1}_{jt} \mathbb{I}_{jt}(z) q_{jt}^{-2} q_{jt}^{-4} (\hat{q}_{jt} - q_{jt})^4 \mathbb{I}_{jt}(z_i t) \sigma_{it}^2 \\
\leq CT^{-2} \sum_{t=1}^{T} n_t^{-1} \sum_{j=1}^{J_d} \mathbf{1}_{jt} \mathbb{I}_{jt}(z) q_{jt}^{-1} q_{jt}^{-4} (\hat{q}_{jt} - q_{jt})^4 \\
\leq CT^{-2} \cdot \max_{1 \leq t \leq T} \max_{1 \leq j \leq J_d} q_{jt}^{-4} |\hat{q}_{jt} - q_{jt}|^4 \cdot J^d n_t^{-1},
\]
so that \(\mathcal{M}_{23} = O_p \left(T^{-2} n^{-3} J^3 d_s \log(J^d \vee T)^2 \right) = o_p \left(J^{2d_s n^{-2} T^{-1}} \right).

Cross-Product Terms

The first cross-product term is:
\[
\mathcal{M}_{24} = 2 \mathbb{E} [L_{21} L_{22} | 3, \mathcal{X}, \mathcal{F}_1, \ldots, \mathcal{F}_T] \\
= -2T^{-2} \sum_{t=1}^{T} n_t^{-2} \sum_{i=1}^{n_t} \sum_{j=1}^{J_d} \mathbf{1}_{jt} \mathbb{I}_{jt}(z) q_{jt}^{-3} (\hat{q}_{jt} - q_{jt}) \mathbb{I}_{jt}(z_i t) \sigma_{it}^2 \\
= -2T^{-2} \sum_{t=1}^{T} n_t^{-3} \sum_{i_1,i_2}^{n_t} \sum_{j=1}^{J_d} \mathbf{1}_{jt} \mathbb{I}_{jt}(z) q_{jt}^{-3} (\mathbb{I}_{jt}(z_i t) - q_{jt}) \mathbb{I}_{jt}(z_i t) \sigma_{it}^2 \\
= \mathcal{M}_{241} + \mathcal{M}_{242} + \mathcal{M}_{243} + o_p \left(J^{2d_s n^{-2} T} \right)
\]
by Lemma 2 where
\[
\mathcal{M}_{241} = -2T^{-2} \sum_{t=1}^{T} n_t^{-3} \sum_{i_1} \sum_{j=1}^{J_d} \mathbf{1}_{jt} \mathbb{I}_{jt}(z) q_{jt}^{-3} \mathbb{E} \left[\mathbb{I}_{jt}(z_i t) \sigma_{it}^2 | \mathcal{F}_t \right] \\
\mathcal{M}_{242} = -2T^{-2} \sum_{t=1}^{T} n_t^{-3} \sum_{i_1} \sum_{j=1}^{J_d} \mathbf{1}_{jt} \mathbb{I}_{jt}(z) q_{jt}^{-3} \left\{ \mathbb{I}_{jt}(z_i t) \sigma_{it}^2 - \mathbb{E} \left[\mathbb{I}_{jt}(z_i t) \sigma_{it}^2 | \mathcal{F}_t \right] \right\} \\
\mathcal{M}_{243} = -2T^{-2} \sum_{t=1}^{T} n_t^{-3} \sum_{i_1 \neq i_2} \sum_{j=1}^{J_d} \mathbf{1}_{jt} \mathbb{I}_{jt}(z) q_{jt}^{-3} (\mathbb{I}_{jt}(z_i t) - q_{jt}) \mathbb{I}_{jt}(z_i t) \sigma_{it}^2.
\]
Note that \(\mathcal{M}_{241} = O_p \left(J^{5d_s n^{-5/2} T^{-3/2}} \right).\) For \(\mathcal{M}_{242}\) it is mean zero with variance,
\[
\mathbb{E} |\mathcal{M}_{242}|^2 = 4T^{-4} \sum_{t=1}^{T} n_t^{-2} \sum_{i_1} \sum_{j=1}^{J_d} \mathbb{E} \left[\mathbb{I}_{jt}(z) q_{jt}^{-6} \left\{ \mathbb{I}_{jt}(z_i t) \sigma_{it}^2 - \mathbb{E} \left[\mathbb{I}_{jt}(z_i t) \sigma_{it}^2 | \mathcal{F}_t \right] \right\} \right]^2 \\
\leq CT^{-4} \sum_{t=1}^{T} n_t^{-2} \sum_{i_1} \sum_{j=1}^{J_d} \mathbb{E} \left[\mathbb{I}_{jt}(z) q_{jt}^{-5} \right] \\
\leq CT^{-3} n^{-5} J^{5d},
\]
and so \(\mathcal{M}_{242} = o_p \left(J^{5d_s n^{-5/2} T^{-3/2}} \right) = o_p \left(J^{2d_s n^{-2} T^{-1}} \right)\) by Markov’s inequality and Assumption 3. Next, \(\mathcal{M}_{243}\)
\[
\mathcal{M}_{243} = -2T^{-2} \sum_{t=1}^{T} n_t^{-3} \sum_{i_1 \neq i_2} \sum_{j=1}^{J_d} \mathbf{1}_{jt} \mathbb{I}_{jt}(z) q_{jt}^{-3} (\mathbb{I}_{jt}(z_i t) - q_{jt}) \mathbb{I}_{jt}(z_i t) \sigma_{it}^2,
\]
is conditionally mean zero with variance
\[
\mathbb{E} \left[|\mathcal{M}_{243}|^2 \right] = 4T^{-4} \sum_{t=1}^{T} n_t^{-2} \sum_{i_1 \neq i_2} \sum_{j=1}^{J_d} \mathbb{E} \left[\mathbb{I}_{jt}(z) q_{jt}^{-6} (\mathbb{I}_{jt}(z_i t) - q_{jt}) (\mathbb{I}_{jt}(z_i t) - q_{jt}) \mathbb{I}_{jt}(z_i t) \mathbb{I}_{jt}(z_i t) \sigma_{it}^2 \sigma_{it}^2 \right] \\
= \mathcal{N}_{243}^{(1)} + \mathcal{N}_{243}^{(2)} + \mathcal{N}_{243}^{(3)}.
\]
Then,

\[
\mathcal{N}_{243}^{(1)} = 4T^{-4} \sum_{t=1}^{T} n_t^{-6} \sum_{i_1 \neq i_2, i_3 \neq i_4} n_t^{J_{d_t}^d} \sum_{j=1}^{j_{d_t}^d} \mathbb{E}\left[\Pi_{jt}(z) q_{jt}^{-6} \Pi_{jt}(z_{i_2t}) - q_{jt} \right] \Pi_{jt}(z_{i_1t}) \Pi_{jt}(z_{i_3t}) \sigma_{i_1t}^2 \sigma_{i_3t}^2
\]

\[
\mathcal{N}_{243}^{(2)} = 4T^{-4} \sum_{t=1}^{T} n_t^{-6} \sum_{i_1 \neq i_3} n_t^{J_{d_t}^d} \sum_{j=1}^{j_{d_t}^d} \mathbb{E}\left[\Pi_{jt}(z) q_{jt}^{-6} \Pi_{jt}(z_{i_2t}) - q_{jt} \right] \Pi_{jt}(z_{i_1t}) \Pi_{jt}(z_{i_3t}) \sigma_{i_1t}^2 \sigma_{i_3t}^2
\]

\[
\mathcal{N}_{243}^{(3)} = 4T^{-4} \sum_{t=1}^{T} n_t^{-6} \sum_{i_1 \neq i_2, i_3 \neq i_4} n_t^{J_{d_t}^d} \sum_{j=1}^{j_{d_t}^d} \mathbb{E}\left[\Pi_{jt}(z) q_{jt}^{-6} \Pi_{jt}(z_{i_2t}) - q_{jt} \right] \Pi_{jt}(z_{i_1t}) \Pi_{jt}(z_{i_3t}) \sigma_{i_1t}^2 \sigma_{i_3t}^2
\].

Then,

\[
\mathcal{N}_{243}^{(1)} = 4T^{-4} \sum_{t=1}^{T} n_t^{-6} \sum_{i_1 \neq i_2, i_3 \neq i_4} n_t^{J_{d_t}^d} \sum_{j=1}^{j_{d_t}^d} \mathbb{E}\left[\Pi_{jt}(z) q_{jt}^{-6} \Pi_{jt}(z_{i_2t}) - q_{jt} \right] \Pi_{jt}(z_{i_1t}) \Pi_{jt}(z_{i_3t}) \sigma_{i_1t}^2 \sigma_{i_3t}^2 \leq C T^{-3} n^{-3} J^{3d_t}
\]

Next

\[
\mathcal{N}_{243}^{(2)} = 4T^{-4} \sum_{t=1}^{T} n_t^{-6} \sum_{i_1 \neq i_2} n_t^{J_{d_t}^d} \sum_{j=1}^{j_{d_t}^d} \mathbb{E}\left[\Pi_{jt}(z) q_{jt}^{-6} \Pi_{jt}(z_{i_2t}) - q_{jt} \right] \Pi_{jt}(z_{i_1t}) \sigma_{i_1t}^4 \leq C T^{-3} n^{-4} J^{4d_t}
\]

and

\[
\mathcal{N}_{243}^{(3)} = 4T^{-4} \sum_{t=1}^{T} n_t^{-6} \sum_{i_1 \neq i_2} n_t^{J_{d_t}^d} \sum_{j=1}^{j_{d_t}^d} \mathbb{E}\left[\Pi_{jt}(z) q_{jt}^{-6} \Pi_{jt}(z_{i_2t}) - q_{jt} \right] \Pi_{jt}(z_{i_1t}) \sigma_{i_1t}^2 \sigma_{i_2t}^2 \leq C T^{-3} n^{-4} J^{4d_t}
\]

Thus, \(\mathcal{N}_{243} \) is mean zero and of order \(O_p \left(T^{-3/2} n^{-3/2} J^{3d_t/2} \right) \).

The next cross product term is

\[
\mathcal{M}_{25} = \mathbb{E}\left[\mathcal{L}_{21} \mathcal{L}_{23} | \mathbf{3}, \mathbf{X}, \mathbf{F}_1, \ldots, \mathbf{F}_T \right]
\]

\[
= T^{-2} \sum_{t=1}^{T} n_t^{-2} \sum_{i=1}^{n_t} \sum_{j=1}^{J_{d_t}^d} 1_{jt} \Pi_{jt}(z) q_{jt}^{-1} \Pi_{jt}(z_{i_2t}) - q_{jt} \Pi_{jt}(z_{i_1t}) \sigma_{i_1t}^2
\]

\[
= \mathbb{E}\left[|\mathcal{L}_{21}|^2 \right] \mathbb{E}\left[\mathbf{3}, \mathbf{X}, \mathbf{F}_1, \ldots, \mathbf{F}_T \right]
\]

\[
- T^{-2} \sum_{t=1}^{T} n_t^{-2} \sum_{i=1}^{n_t} \sum_{j=1}^{J_{d_t}^d} 1_{jt} \Pi_{jt}(z) q_{jt}^{-4} \Pi_{jt}(z_{i_2t}) - q_{jt} \Pi_{jt}(z_{i_1t}) \sigma_{i_1t}^2
\]

The second term satisfies

\[
\left| - T^{-2} \sum_{t=1}^{T} n_t^{-2} \sum_{i=1}^{n_t} \sum_{j=1}^{J_{d_t}^d} 1_{jt} \Pi_{jt}(z) q_{jt}^{-4} \Pi_{jt}(z_{i_2t}) - q_{jt} \Pi_{jt}(z_{i_1t}) \sigma_{i_1t}^2 \right|
\]

\[
\leq C T^{-2} \sum_{t=1}^{T} n_t^{-1} \sum_{j=1}^{J_{d_t}^d} 1_{jt} \Pi_{jt}(z) q_{jt}^{-4} |\Pi_{jt}(z_{i_1t}) - q_{jt}|^3
\]

\[
\leq C J^{2d} \frac{J^{d/2} \log (J^d \vee T)^{3/2}}{n^{1/2}}
\]
and so

\[\mathcal{M}_{25} = \mathbb{E} \left[\left| \mathcal{L}_{22} \right|^2 \left| 3, \mathcal{X}_t, \mathcal{F}_1, \ldots, \mathcal{F}_T \right| \right] + o_p \left(J^{2d_z n^{-2} - T^{-1}} \right). \]

Finally,

\[\mathcal{M}_{26} = \mathbb{E} \left[\mathcal{L}_{22} \mathcal{L}_{23} \left| 3, \mathcal{X}_t, \mathcal{F}_1, \ldots, \mathcal{F}_T \right| \right] = -T^{-2} \sum_{t=1}^{T} n_t^{-2} \sum_{i=1}^{n_t} \sum_{j=1}^{J_{dz}} 1_{jt} \mathbb{I}_{jt} (z) \tilde{q}_{jt}^{-4} \tilde{q}_{jt}^{-4} (\tilde{q}_{jt} - q_{jt})^3 \mathbb{I}_{jt} (z_{it}) \sigma_{it}^2. \]

But

\[\left| T^{-2} \sum_{t=1}^{T} n_t^{-2} \sum_{i=1}^{n_t} \sum_{j=1}^{J_{dz}} 1_{jt} \mathbb{I}_{jt} (z) \tilde{q}_{jt}^{-4} \tilde{q}_{jt}^{-4} (\tilde{q}_{jt} - q_{jt})^3 \mathbb{I}_{jt} (z_{it}) \sigma_{it}^2 \right| \]
\[\leq CT^{-2} \sum_{t=1}^{T} n_t^{-1} \sum_{j=1}^{J_{dz}} 1_{jt} \mathbb{I}_{jt} (z) q_{jt}^{-4} (|\tilde{q}_{jt} - q_{jt}|)^3 \]
\[\leq CT^{-1} \max_{1 \leq t \leq T} \max_{1 \leq j \leq J_{dz}} q_{jt}^{-3} |\tilde{q}_{jt} - q_{jt}|^3 \cdot J^{d_z - n^{-1}}, \]

so that \(\mathcal{M}_{26} = O_p \left(T^{-1} n^{-5/2} J^{5d_z/2} \log (J \vee T)^{3/2} \right) = o_p \left(J^{2d_z n^{-2} T^{-1}} \right) \) by Lemma 2 and Assumption 3. Thus,

\[\mathcal{M}_2 = \mathbb{E} \left[(\mathcal{L}_{21} + \mathcal{L}_{22} + \mathcal{L}_{23})^2 \left| 3, \mathcal{X}_t, \mathcal{F}_1, \ldots, \mathcal{F}_T \right| \right] = 3 \mathbb{E} \left[(\mathcal{L}_{22})^2 \left| 3, \mathcal{X}_t, \mathcal{F}_1, \ldots, \mathcal{F}_T \right| \right] + 2 \mathbb{E} \left[(\mathcal{L}_{21} \mathcal{L}_{22}) \left| 3, \mathcal{X}_t, \mathcal{F}_1, \ldots, \mathcal{F}_T \right| \right] + o_p \left(J^{2d_z n^{-2 T}} \right), \]

where

\[\mathcal{V}_t^{(1)} (z) = n J^{-d_z} T^{-1} n_t^{-2} \sum_{i=1}^{n_t} \sum_{j=1}^{J_{dz}} 1_{jt} \mathbb{I}_{jt} (z) q_{jt}^{-2} \mathbb{E} \left[\mathbb{I}_{jt} (z_{it}) \sigma_{it}^2 \right], \]
\[\mathcal{V}_t^{(2)} (z) = n^2 J^{-2d_z} T^{-1} n_t^{-3} \sum_{i=1}^{n_t} \sum_{j=1}^{J_{dz}} 1_{jt} \mathbb{I}_{jt} (z) q_{jt}^{-3} \mathbb{E} \left[\mathbb{I}_{jt} (z_{it}) \sigma_{it}^2 \right], \]
\[\mathcal{C}_t (z) = n^{3/2} J^{-3d_z/2} T^{-1/2} n_t^{-2} \sum_{i=1}^{n_t} \sum_{j=1}^{J_{dz}} 1_{jt} \mathbb{I}_{jt} (z) q_{jt}^{-2} \mathbb{E} \left[\mathbb{I}_{jt} (z_{it}) \sigma_{it}^2 \right] \]
\[+ 2n^{3/2} J^{-3d_z/2} T^{-1/2} n_t^{-3} \sum_{i_1 \neq i_2} \sum_{j=1}^{J_{dz}} 1_{jt} \mathbb{I}_{jt} (z) q_{jt}^{-3} \mathbb{E} \left[\mathbb{I}_{jt} (z_{it}) \sigma_{it}^2 \right] \]

B.7.3 Term: \(\mathcal{M}_3 \)

We have,
\[M_3 = \mathbb{E} \left[T^{-1} \sum_{t=1}^{T} n_t^{-1} \sum_{i=1}^{n_t} \sum_{j=1}^{J_{\text{obs}}^t} 1_{\beta_t} (z) \hat{q}_{ij} (z) (z_i) x_i' (\hat{\beta}_t - \beta_t)^2 \right] 3, \mathcal{X}, \mathcal{F}_1, \ldots, \mathcal{F}_T \]
\[= \mathbb{E} \left[T^{-1} \sum_{t=1}^{T} 1_{\beta,t} (z)' (\hat{\beta}_t - \beta_t)^2 \right] 3, \mathcal{X}, \mathcal{F}_1, \ldots, \mathcal{F}_T \]
\[\leq 2\mathbb{E} \left[T^{-1} \sum_{t=1}^{T} 1_{\beta,t} (z)' (\hat{\beta}_t - \beta_t)^2 \right] 3, \mathcal{X}, \mathcal{F}_1, \ldots, \mathcal{F}_T \]
\[+ 2\mathbb{E} \left[T^{-1} \sum_{t=1}^{T} 1_{\beta,t} (\hat{h}_t (z) - h_t (z))' (\hat{\beta}_t - \beta_t)^2 \right] 3, \mathcal{X}, \mathcal{F}_1, \ldots, \mathcal{F}_T \]
\[= M_{31} + M_{32} \]

However, following similar steps as in the proof of Lemma 4

\[M_{31} = O_p \left(n^{-1} T^{-1} \right) + O_p \left(J^{-4} \right) + O_p \left(J^{d_z} n^{-3} \right) + O_p \left(J^{d_z - 4} n^{-2} \right). \]

The \(O_p \left(n^{-1} T^{-1} \right) \) term is not a function of \(J \) and the remaining terms are \(o_p \left(J^{d_z} n^{-2} T^{-1} \right) \). By the CS inequality, the second term satisfies

\[M_{32} \leq T^{-1} \sum_{t=1}^{T} \| \hat{h}_t (z) - h_t (z) \| ^2 \times T^{-1} \sum_{t=1}^{T} \mathbb{E} \left[\| \hat{\beta}_t - \beta_t \| ^2 \right] 3, \mathcal{X}, \mathcal{F}_1, \ldots, \mathcal{F}_T. \]

The first factor is \(O_p \left(n^{-1} J^{d_z} \right) \) by similar steps as in the proof of Theorem 1 and the second factor, following similar steps as in the proof of Lemma 4, so that

\[M_{32} = O_p \left(n^{-1} J^{d_z} \right) \times O_p \left(J^{-4} + n^{-1} J^{-2} \right) = o_p \left(J^{d_z} n^{-2} T^{-1} \right), \]

and the result follows.

B.7.4 Term: \(M_4 \)

We have,

\[M_4 = 2\mathcal{L}_1 \mathbb{E} \left[L_3 | 3, \mathcal{X}, \mathcal{F}_1, \ldots, \mathcal{F}_T \right] \]
\[= 2\mathcal{L}_1 \mathbb{E} \left[T^{-1} \sum_{t=1}^{T} 1_{\beta,t} (z)' \hat{\Omega}_{uu,t}^{-1} X_t M_{B_t} (\mu (z_t) + \varepsilon_t) / n_t | 3, \mathcal{X}, \mathcal{F}_1, \ldots, \mathcal{F}_T \right] \]
\[= 2\mathcal{L}_1 \times T^{-1} \sum_{t=1}^{T} 1_{\beta,t} (z)' \hat{\Omega}_{uu,t}^{-1} X_t M_{B_t} (z_t) / n_t, \]

where, with some abuse of notation, we define \(\mu (z_t) \) as the \(n_t \times 1 \) vector \(\mu (z_t) = (\mu (z_1), \mu (z_2), \ldots, \mu (z_{n_t}))' \).

The first factor is \(O_p \left(J^{-1} \right) \) by the proof of Theorem 1 and the second factor satisfies

\[T^{-1} \sum_{t=1}^{T} 1_{\beta,t} (z)' \hat{\Omega}_{uu,t}^{-1} X_t M_{B_t} \mu (z_t) / n_t = M_{41} + M_{42}, \]

where

\[M_{41} = T^{-1} \sum_{t=1}^{T} 1_{\beta,t} h_t (z)' \hat{\Omega}_{uu,t}^{-1} (H_t + U_t)' M_{B_t} \mu (z_t) / n_t \]
\[M_{42} = T^{-1} \sum_{t=1}^{T} 1_{\beta,t} (\hat{h}_t (z) - h_t (z))' \hat{\Omega}_{uu,t}^{-1} X_t M_{B_t} \mu (z_t) / n_t. \]
Following similar steps as in the proof of Lemma 4 we have that,

\[|M_{41}|^2 = O_p \left(J^{-4} \right) + O_p \left(n^{-1}T^{-1}J^{-2} \right) + O_p \left(n^{-2}J^{-2} \right) + O_p \left(n^{-1}J^{-6} \right) + O_p \left(J^{2d_s-2}n^{-3} \right). \]

For \(M_{42} \), by the CS inequality,

\[|M_{42}|^2 \leq T^{-1} \sum_{t=1}^{T} \left\| h_t(z) - h_t(z) \right\|^2 \times T^{-1} \sum_{t=1}^{T} 1_{\beta,t} \left\| \tilde{\Omega}_{u,u,t}^{-1} X_t'M_{B_t,\mu}(z_t)/n_t \right\|^2. \]

The first factor is \(O_p \left(n^{-1}J^{d_s} \right) \) by the same steps as in the proof of Theorem 1. The second factor is

\[T^{-1} \sum_{t=1}^{T} 1_{\beta,t} \left\| \tilde{\Omega}_{u,u,t}^{-1} X_t'M_{B_t,\mu}(z_t)/n_t \right\|^2 \leq T^{-1} \sum_{t=1}^{T} 1_{\beta,t} \lambda_{\max} \left(\tilde{\Omega}_{u,u,t}^{-1} \right)^2 \left\| X_t'M_{B_t,\mu}(z_t)/n_t \right\|^2 \leq CT^{-1} \sum_{t=1}^{T} \left\| X_t'M_{B_t,\mu}(z_t)/n_t \right\|^2. \]

Following similar steps as in the proof of Lemma 4 we have that,

\[|M_{42}|^2 = O_p \left(n^{-1}J^{d_s} \right) O_p \left(J^{-4} + n^{-1}J^{-2} \right) = o_p \left(J^{2d_s-2}n^{-2}T^{-1} \right). \]

Thus,

\[|M_4|^2 = O_p \left(J^{-6} \right) + O_p \left(n^{-1}T^{-1}J^{-4} \right) + O_p \left(n^{-2}J^{-4} \right) + O_p \left(n^{-1}J^{-8} \right) + O_p \left(J^{2d_s-4}n^{-3} \right) + O_p \left(n^{-1}J^{d_s}J^{-6} \right) + O_p \left(J^{d_s}n^{-2} \right), \]

so that \(M_4 = o_p \left(J^{-2} + J^{2d_s}n^{-2}T^{-1} \right) \) by Assumption 3.

B.7.5 Term: \(M_5 \)

Finally, we have

\[
M_5 = 2E \left[(L_{21} + L_{22} + L_{23}) L_3 \left| \mathbf{3}, \mathbf{x}, \mathbf{F}_1, \ldots, \mathbf{F}_T \right. \right] \\
= 2E \left[T^{-2} \sum_{t=1}^{T} n_t^{-2} \sum_{i=1}^{n_t} \sum_{j=1}^{d_s} 1_{jt} I_{jt}(z) \tilde{q}_{jt}^{-1} I_{j(tz)}(z_{it}) \varepsilon_{it}\varepsilon_{it}^t \left| \mathbf{3}, \mathbf{x}, \mathbf{F}_1, \ldots, \mathbf{F}_T \right. \right] \\
= 2E \left[T^{-2} \sum_{t=1}^{T} n_t^{-2} \sum_{i=1}^{n_t} \sum_{j=1}^{d_s} 1_{jt} I_{jt}(z) \tilde{q}_{jt}^{-1} I_{j(tz)}(z_{it}) \varepsilon_{it}\varepsilon_{it}^t \tilde{\Omega}_{u,u,t}^{-1} X_t'M_{B_t}(\mu(z_t) + \varepsilon_t)/n_t \left| \mathbf{3}, \mathbf{x}, \mathbf{F}_1, \ldots, \mathbf{F}_T \right. \right] \\
= 2T^{-2} \sum_{t=1}^{T} n_t^{-3} \sum_{i=1}^{n_t} \sum_{j=1}^{d_s} 1_{jt} I_{jt}(z) \tilde{q}_{jt}^{-1} I_{j(tz)}(z_{it}) \varepsilon_{it}\varepsilon_{it}^t \tilde{\Omega}_{u,u,t}^{-1} X_t'M_{B_t}(H_t + U_t) \tilde{\Omega}_{u,u,t}^{-1} x_{it} \\
= \mathcal{M}_{51} + \mathcal{M}_{52},
\]

where \(\Sigma_t = \text{diag} (\sigma^2_{1t}, \ldots, \sigma^2_{nt}) \) and

\[
\mathcal{M}_{51} = 2T^{-2} \sum_{t=1}^{T} n_t^{-3} \sum_{i=1}^{n_t} \sum_{j=1}^{d_s} 1_{jt} I_{jt}(z) \tilde{q}_{jt}^{-1} I_{j(tz)}(z_{it}) \varepsilon_{it}\varepsilon_{it}^t \tilde{\Sigma}_t M_{B_t}(H_t + U_t) \tilde{\Omega}_{u,u,t}^{-1} x_{it} \\
\mathcal{M}_{52} = 2T^{-2} \sum_{t=1}^{T} n_t^{-3} \sum_{i=1}^{n_t} \sum_{j=1}^{d_s} 1_{jt} I_{jt}(z) \tilde{q}_{jt}^{-1} I_{j(tz)}(z_{it}) \varepsilon_{it}\varepsilon_{it}^t \tilde{\Sigma}_t M_{B_t} U_t \tilde{\Omega}_{u,u,t}^{-1} x_{it}.
\]
Thus,

\[\mathcal{M}_{51} = 2T^{-2} \sum_{t=1}^{T} n_{t}^{-3} \sum_{i=1}^{n_{T}} \sum_{j=1}^{d_{x}} 1_{j} \mathbb{I}_{j} (z) \bar{q}_{j}^{-1} \mathbb{I}_{j} (z_{i}) \left| \epsilon_{t} \sum_{t} M_{B_{t}} \left(H_{t} - B_{t} \Pi_{t}^{0} \right) \hat{\Omega}_{u_{x}, t}^{-1} x_{i t} \right| \]

\[\leq 2T^{-2} \sum_{t=1}^{T} n_{t}^{-3} \sum_{i=1}^{n_{T}} \sum_{j=1}^{d_{x}} 1_{j} \mathbb{I}_{j} (z) \bar{q}_{j}^{-1} \mathbb{I}_{j} (z_{i}) \left| \epsilon_{t} \sum_{t} M_{B_{t}} \left(H_{t} - B_{t} \Pi_{t}^{0} \right) \right| \left| \hat{\Omega}_{u_{x}, t}^{-1} x_{i t} \right| \]

\[\leq \max_{1 \leq t \leq T} \left\| H_{t} - B_{t} \Pi_{t}^{0} \right\| C J^{d_{x}} T^{-2} \sum_{t=1}^{T} n_{t}^{-3} \sum_{i=1}^{n_{T}} \sum_{j=1}^{d_{x}} 1_{j} \mathbb{I}_{j} (z) \bar{q}_{j}^{-1} \mathbb{I}_{j} (z_{i}) \left\| x_{i t} \right\| \]

However,

\[\max_{1 \leq t \leq T} \left\| H_{t} - B_{t} \Pi_{t}^{0} \right\| ^{2} = \max_{1 \leq t \leq T} \left(\left\| H_{t} - B_{t} \Pi_{t}^{0} \right\| ^{2} \right) \]

\[= \max_{1 \leq t \leq T} \sum_{i=1}^{n} \left\| h_{t} (z_{i}) - B_{t} (z_{i}) \right\| _{\pi_{t}^{0}} ^{2} \]

\[= \sum_{i=1}^{n} \sum_{t=1}^{d_{x}} \max_{1 \leq t \leq T} \left\| \sum_{j=1}^{d_{x}} \mathbb{I}_{j} (z_{i}) h_{t, j} (z_{i}) - \bar{q}_{j} (z_{i}) \pi_{j, t}^{0} \right\| ^{2} \]

\[\leq \sum_{i=1}^{n} \sum_{t=1}^{d_{x}} \max_{1 \leq t \leq T} \sup_{z} \left\| \bar{q}_{j} (z) h_{t, j} (z) - \bar{q}_{j} (z) \pi_{j, t}^{0} \right\| ^{2} , \]

so that \(\max_{1 \leq t \leq T} \left\| H_{t} - B_{t} \Pi_{t}^{0} \right\| ^{2} = O_{p} \left(n J^{-2} \right) \) so that, by Markov’s inequality, \(\mathcal{M}_{51} = O_{p} \left(J^{-1} T^{-1} n^{-3/2} \right) = o_{p} \left(J^{2 d_{x} n^{-2} T^{-1}} \right) \) by Assumption 3.

\[\mathcal{M}_{52} = 2T^{-2} \sum_{t=1}^{T} n_{t}^{-3} \sum_{i=1}^{n_{T}} \sum_{j=1}^{d_{x}} 1_{j} \mathbb{I}_{j} (z) \bar{q}_{j}^{-1} \mathbb{I}_{j} (z_{i}) \left| \epsilon_{t} \sum_{t} M_{B_{t}} U_{t} \hat{\Omega}_{u_{x}, t}^{-1} x_{i t} \right| \]

But

\[\left| \mathcal{M}_{52} \right| \leq 2T^{-2} \sum_{t=1}^{T} n_{t}^{-3} \sum_{i=1}^{n_{T}} \sum_{j=1}^{d_{x}} 1_{j} \mathbb{I}_{j} (z) \bar{q}_{j}^{-1} \mathbb{I}_{j} (z_{i}) \left| \epsilon_{t} \sum_{t} M_{B_{t}} U_{t} \hat{\Omega}_{u_{x}, t}^{-1} x_{i t} \right| \]

\[\leq C J^{d_{x}} T^{-2} \sum_{t=1}^{T} n_{t}^{-3} \sum_{i=1}^{n_{T}} \sum_{j=1}^{d_{x}} 1_{j} \mathbb{I}_{j} (z) \bar{q}_{j}^{-1} \mathbb{I}_{j} (z_{i}) \left\| U_{t} \right\| \left\| x_{i t} \right\| , \]

and

\[J^{d_{x}} T^{-2} \sum_{t=1}^{T} n_{t}^{-3} \sum_{i=1}^{n_{T}} \sum_{j=1}^{d_{x}} \mathbb{E} \left[1_{j} \mathbb{I}_{j} (z) \bar{q}_{j}^{-1} \mathbb{I}_{j} (z_{i}) \mathbb{E} \left[\left\| U_{t} \right\| \left\| x_{i t} \right\| \mid z_{t}, F_{t} \right] \right] \]

\[\leq J^{d_{x}} T^{-2} \sum_{t=1}^{T} n_{t}^{-3} \sum_{i=1}^{n_{T}} \sum_{j=1}^{d_{x}} \mathbb{E} \left[1_{j} \mathbb{I}_{j} (z) \bar{q}_{j}^{-1} \mathbb{I}_{j} (z_{i}) \sqrt{\mathbb{E} \left[\left\| U_{t} \right\| ^{2} \mid z_{t}, F_{t} \right] \mathbb{E} \left[\left\| x_{i t} \right\| ^{2} \mid z_{t}, F_{t} \right]} \right] \]

\[\leq C T^{-1} n^{-3/2} , \]

Thus, \(\mathcal{M}_{52} = O_{p} \left(T^{-1} n^{-3/2} \right) \) which is \(o_{p} \left(J^{2 d_{x} n^{-2} T^{-1}} \right) \) under Assumption 3.
B.8 Proofs of Lemmas

Proof of Lemma 1. We would like to show that there exists a γ_{jt}^0 such that

$$\max_{1 \leq t \leq T} \max_{1 \leq j \leq J} \sup_z |\bar{\mu}_{jt}(z) - \hat{\mu}_{jt}(z)| \gamma_{jt}^0 = O_p(J^{-1}).$$

Let $\gamma_{jt}^0 = (\gamma_{jt}^0(z_{1t}, \ldots, z_{nt})) = \mu(\hat{b}_t)$ where $\hat{b}_t = (\hat{b}_{(j_1-1)/2t,1}, \ldots, \hat{b}_{(jd_s-1)/2t,d_s})'$. We have

$$P \left(\max_{1 \leq t \leq T} \max_{1 \leq j \leq J} \sup_z |\bar{\mu}_{jt}(z) - \hat{\mu}_{jt}(z)| > \frac{C}{J} \right) \leq \sum_{t=1}^T \sum_{j=1}^J P \left(\sup_z |\bar{\mu}_{jt}(z) - \hat{\mu}_{jt}(z)| > \frac{C}{J} \right).$$

Let us focus on the summand,

$$\mathbb{P} \left(\sup_z \left| \bar{\mu}_{jt}(z) - \hat{\mu}_{jt}(z) \right| > \frac{C}{J} \right).$$

where $\hat{\gamma}_{jt} = \alpha z + (1 - \alpha) \hat{b}_t$, $\alpha \in (0, 1)$. Now, choose C_1 sufficiently large such that $\max_{1 \leq s \leq d_s} \sup_z \left| \frac{\partial \mu(z)}{\partial z} \right|_{z=\hat{\gamma}_{jt}} < C_1$. Then,

$$\mathbb{P} \left(\sup_z \left| \bar{\mu}_{jt}(z) - \hat{\mu}_{jt}(z) \right| > \frac{C}{J} \right) \leq \mathbb{P} \left(\sup_z \left| \bar{\mu}_{jt}(z) - \hat{\mu}_{jt}(z) \right| > \frac{C}{J} \right).$$

Thus, we can focus on

$$\mathbb{P} \left(\sup_z \left| \bar{\mu}_{jt}(z) - \hat{\mu}_{jt}(z) \right| > \frac{C}{J} \right) \leq \sum_{s=1}^{d_s} \mathbb{P} \left(\hat{b}_{j_s,t,s} - \hat{b}_{(j_s-1),t,s} > \frac{C_1}{J} \right).$$

Recall that we can define the empirical quantile function in terms of the order statistics of the z_{it}'s:

$$\hat{F}_{t,s}^{-1}(p) = z_{(k)_{t,s}}, \quad \frac{k-1}{n} < p \leq \frac{k}{n},$$

where $z_{(k)_{t,s}}$ is the kth order statistic of $z_{it,s}$. Thus we have

$$\mathbb{P} \left(\sup_z \left| \bar{\mu}_{jt}(z) - \hat{\mu}_{jt}(z) \right| > \frac{C}{J} \right) \leq \sum_{s=1}^{d_s} \mathbb{P} \left(\hat{b}_{j_s,t,s} - \hat{b}_{(j_s-1),t,s} > \frac{C_1}{J} \right).$$

where

$$\frac{k_{1,s} - 1}{n} < \frac{j_s - 1}{J} \leq \frac{k_{1,s}}{n}, \quad \frac{k_{2,s} - 1}{n} < \frac{j_s}{J} \leq \frac{k_{2,s}}{n},$$

32
for \(s = 1, \ldots, d_2 \) and \(u(k)_t, s \) are order statistics of (conditionally) independent standard uniform random variables. The last line uses the fact that, conditional of \(\mathcal{F}_t \), \(z_{it} \) are iid with CDF \(F_{z_{it}|\mathcal{F}_t}(z) \) and so we can use the probability integral transform to map to the uniform order statistics from a sample of \(n_1 \) standard uniform random variables (conditional on \(\mathcal{F}_t \)). Using another mean-value expansion we have

\[
\begin{align*}
P \left(F_{z_{it}, s|\mathcal{F}_t}^{-1}(u(k)) - F_{z_{it}, s|\mathcal{F}_t}^{-1}(u(k)) > \frac{C_1}{J} \mid \mathcal{F}_t \right) \\
= P \left(q_{z_{it}, s|\mathcal{F}_t}(\tilde{u}) (u(k)_{t, s} - u(k)) > \frac{C_1}{J} \mid \mathcal{F}_t \right) \\
= P \left(q_{z_{it}, s|\mathcal{F}_t}(\tilde{u}) (u(k)_{t, s} - u(k)) - E \left[u(k)_{t, s} - u(k) \mid \mathcal{F}_t \right] > \frac{C_1}{J} - q_{z_{it}, s|\mathcal{F}_t}(\tilde{u}) \mid \mathcal{F}_t \right)
\end{align*}
\]

where \(\tilde{u} = \alpha u(k), s + (1 - \alpha) u(k)_{t, s} \) and \(\alpha \in (0, 1) \), and

\[
q_{z_{it}, s|\mathcal{F}_t}(u) = \frac{\partial}{\partial u} F_{z_{it}, s|\mathcal{F}_t}^{-1}(u) = \begin{cases} \frac{1}{f_{z_{it}, s|\mathcal{F}_t}} & \text{if } f_{z_{it}, s|\mathcal{F}_t}(u) > 0 \\ 0 & \text{otherwise} \end{cases}
\]

Under our assumptions \(q_{z_{it}, s|\mathcal{F}_t}(u) \) is positively bounded from above and below. Conditional on \(\mathcal{F}_t \), \(u(k)_{t, s} \mid \mathcal{F}_t \sim \text{Beta}(k, n - k) \) so that

\[
E \left[u(k)_{t, s} - u(k) \mid \mathcal{F}_t \right] = \frac{k_2 - k_1}{n + 1}.
\]

The inequalities defining \(k_1 \) and \(k_2 \) imply that

\[
\frac{1}{J} - \frac{1}{n} \leq \frac{k_2 - k_1}{n} \leq \frac{1}{J} + \frac{1}{n}.
\]

Thus,

\[
\begin{align*}
P \left(F_{z_{it}, s|\mathcal{F}_t}^{-1}(u(k)) - F_{z_{it}, s|\mathcal{F}_t}^{-1}(u(k)) > \frac{C_1}{J} \mid \mathcal{F}_t \right) \\
= P \left((u(k)_{t, s} - u(k)) - E \left[u(k)_{t, s} - u(k) \mid \mathcal{F}_t \right] > \frac{1}{J} \frac{C_1}{J} - E \left[u(k)_{t, s} - u(k) \mid \mathcal{F}_t \right] \mid \mathcal{F}_t \right) \\
\leq P \left((u(k)_{t, s} - u(k)) > \frac{C_1}{J} - \left(\frac{1}{J} \frac{C_1}{J} - 1 \right) E \left[u(k)_{t, s} - u(k) \mid \mathcal{F}_t \right] \mid \mathcal{F}_t \right) \\
\leq 2 \exp \left\{ -C_2 (n + 1) \left(\frac{1}{J} \frac{C_3}{J} - 1 \right)^2 \right\},
\end{align*}
\]

where the last line uses the fact that, conditional of \(\mathcal{F}_t \), \(u(k)_{t, s} - u(k) \) are the sum of individual uniform spacings and are distributed as \(\left(u(k)_{t} - u(k)_{t} \mid \mathcal{F}_t \sim \text{Beta}(k, n - 1 - (k_2 - k_1)) \right) \) and Bobkov and Ledoux (2016, Proposition B.10). We can put all this together to obtain

\[
P \left(\sup_z \left| \hat{\gamma}_{jt}(z) \mu(z) - \hat{\gamma}_{jt}(z) \gamma_{jt} \right| > C \right) \leq \sum_{t=1}^{T} \sum_{j=1}^{J} \sum_{j=1}^{J'} \left[1 \wedge 2 \exp \left\{ -C_2 (n + 1) \left(\frac{1}{J} \frac{C_3}{J} - 1 \right)^2 \right\} \right]
\]

\[
\leq E \left[1 \wedge 2JT \exp \left\{ -C_2 (n + 1) \left(\frac{1}{J} \frac{C_3}{J} - 1 \right)^2 \right\} \right] = o(1)
\]
under our assumptions. Next we would like to show,
\[
\mathbb{E} \left[\max_{1 \leq t \leq T} \max_{1 \leq j \leq J_{d_z}^t} \sup_z \left| \tilde{\mu}_{jt}(z) - \hat{\mu}_{jt}(z) \right|^2 \right] = O(J^{-2}).
\]
This follows immediately from the previous result since,
\[
\mathbb{E} \left[\max_{1 \leq t \leq T} \max_{1 \leq j \leq J_{d_z}^t} \sup_z \left| \tilde{\mu}_{jt}(z) - \hat{\mu}_{jt}(z) \right|^2 \right] \leq C_1 \mathbb{P} \left[\left(\max_{1 \leq t \leq T} \max_{1 \leq j \leq J_{d_z}^t} \sup_z \left| \tilde{\mu}_{jt}(z) - \hat{\mu}_{jt}(z) \right|^2 > \frac{C_2}{J^2} \right) \right] + \frac{C_2}{J^2}.
\]

Proof of Lemma 2. By the proof of Lemma 1 we have that
\[
\mathbb{P} \left(\max_{1 \leq t \leq T} \max_{1 \leq j \leq J_{d_z}^t} \max_s \left| \hat{b}_{jt,s} - \hat{b}_{jt,s} \right| > \frac{C}{J} \right) = o(1).
\]
By Einmahl and Ruymgaart (1987, Theorem 3.1) for all sequences \(\delta_n = O(J^{-d_z}) \),
\[
\max_{1 \leq t \leq T} \max_{1 \leq j \leq J_{d_z}^t} \left| \tilde{\mu}_{jt} - \hat{\mu}_{jt} \right|^2 = O_p \left(\frac{\log (J_{d_z} \lor T)}{J_{d_z} n} \right)
\]
provided that
\[
\frac{J_{d_z} \log (n)}{n} \to 0, \quad \text{and,} \quad \frac{J_{d_z} \log (n)}{n} \to \infty,
\]
which are satisfied under our assumptions. □

Proof of Lemma 3. We will first find the order of
\[
\frac{1}{T} \sum_{t=1}^{T} \left\| \Omega_{u,t} - \Omega_{u,t} \right\|^2 = \frac{1}{T} \sum_{t=1}^{T} \left\| (X_t' MB_t X_t/ n_t) - \Omega_{u,t} \right\|^2 \\
\leq C \cdot \frac{1}{T} \sum_{t=1}^{T} \left\| X_t' MB_t X_t/ n_t - U_t U_t' / n_t \right\|^2 + C \cdot \frac{1}{T} \sum_{t=1}^{T} \left\| U_t U_t' / n_t - \Omega_{u,t} \right\|^2.
\]
For the second term we have that
\[
\mathbb{E} \left[\frac{1}{T} \sum_{t=1}^{T} \left\| U_t U_t' / n_t - \Omega_{u,t} \right\|^2 \right] = \frac{1}{T} \sum_{t=1}^{T} \mathbb{E} \left[\left\| \frac{1}{n_t} \sum_{i=1}^{n_t} u_{it} u_{it}' - \Omega_{u,t} \right\|^2 \right] \\
= \frac{1}{T} \sum_{t=1}^{T} \text{tr} \left(\frac{1}{n_t^2} \sum_{i_1,i_2} \mathbb{E} \left[(u_{i_1t} u_{i_2t}' - \Omega_{u,t}) (u_{i_2t} u_{i_1t}' - \Omega_{u,t})' \right] \right) \\
\leq C \cdot \frac{1}{n},
\]
so this term is \(O_p \left(n^{-1} \right) \) by Markov’s inequality. For the first term note that,
\[
X_t' MB_t X_t/ n_t - U_t U_t' / n_t = (U_t + H_t)' MB_t (U_t + H_t) / n_t \\
= H_t' MB_t H_t / n_t - U_t' (I_{n_t} - MB_t) U_t / n_t + U_t' MB_t H_t / n_t + H_t' MB_t U_t / n_t,
\]

34
so that
\[
\frac{1}{T} \sum_{t=1}^{T} \left\| X_t' M_B X_t / n_t - U_t U_t' / n_t \right\|^2 \leq C \cdot \frac{1}{T} \sum_{t=1}^{T} \left\| H_t' M_B H_t / n_t \right\|^2 \\
+ C \cdot \frac{1}{T} \sum_{t=1}^{T} \left\| U_t' (I_{n_t} - M_B) U_t / n_t \right\|^2 \\
+ C \cdot \frac{1}{T} \sum_{t=1}^{T} \left\| U_t' M_B H_t / n_t \right\|^2
\]
For the first term,
\[
\left\| H_t' M_B H_t / n_t \right\| = n_t^{-1} \left\| (H_t - B_t \Pi_t^0)' M_B (H_t - B_t \Pi_t^0) \right\| \\
\leq C \cdot n_t^{-1} \sum_{i=1}^{n_t} \left\| h_t (z_{it}) - B_t (z_{it} \Pi_t^0) \right\|^2 \\
= C \cdot n_t^{-1} \sum_{i=1}^{n_t} \sum_{\ell=1}^{d_x} \sum_{j=1}^{J_{ds}} \left(\hat{\mathbf{J}}_{jt} (z_{it}) h_{t,\ell} (z_{it}) - \bar{\mathbf{J}}_{jt} (z_{it}) \right)^2 \\
\leq C \cdot n_t^{-1} \sum_{i=1}^{n_t} \sum_{\ell=1}^{d_x} \max_{1 \leq j \leq J_{ds}} \sup_z \left(\hat{\mathbf{J}}_{jt} (z) h_{t,\ell} (z) - \bar{\mathbf{J}}_{jt} (z) \right)^2 \\
\leq C \cdot \max_{1 \leq j \leq T} \max_{1 \leq \ell \leq J_{ds}} \max_z \left(\hat{\mathbf{J}}_{jt} (z) h_{t,\ell} (z) - \bar{\mathbf{J}}_{jt} (z) \right)^2,
\]
and so \(\left\| H_t' M_B H_t / n_t \right\| = O_p (J^{-2}) \) by Lemma 1. Next let \(P_{B_t} = I_{n_t} - M_B \) with elements \([P_{B_t}]_{i,j} = p_{i,j} \) and note that,
\[
\left\| U_t' P_{B_t} U_t / n_t \right\|^2 = n_t^{-2} \mathbb{E} \left[\text{tr} \left((U_t' P_{B_t} U_t)' U_t' P_{B_t} U_t \right) \right] \\
= n_t^{-2} \mathbb{E} \left[\text{tr} \left(P_{B_t} U_t U_t' P_{B_t} U_t' \right) \right] \\
= n_t^{-2} \mathbb{E} \left[\text{tr} \left(P_{B_t} \mathbb{E} \left[U_t U_t' P_{B_t} U_t' \right] \right) \right].
\]
Then,
\[
\text{tr} \left(P_{B_t} \mathbb{E} \left[U_t U_t' P_{B_t} U_t' \right] \right) = \sum_{i=1}^{n_t} \sum_{\ell_0=1}^{n_t} \sum_{\ell_1=1}^{d_x} \sum_{\ell_2=1}^{n_t} \sum_{\ell_3=1}^{d_x} p_{i,\ell_0,\ell_1,\ell_2,\ell_3} \mathbb{E} \left[u_{i,\ell_0,\ell_1,\ell_2,\ell_3} u_{i,\ell_0,\ell_1,\ell_2,\ell_3} u_{i,\ell_0,\ell_1,\ell_2,\ell_3} z_t, \mathcal{F}_t \right].
\]
This expectation is nonzero only when \(\{\ell_0 = \ell_2, \ell_3 = i\} \) or \(\{\ell_0 = \ell_3, \ell_2 = i\} \) or \(\{\ell_0 = i, \ell_2 = \ell_3\} \). These correspond to the following three terms:
\[
\text{tr} \left(P_{B_t} \mathbb{E} \left[U_t U_t' P_{B_t} U_t' \right] \right) \leq \sum_{i=1}^{n_t} \sum_{\ell_0=1}^{n_t} \sum_{\ell_1=1}^{d_x} p_{i,\ell_0,\ell_1,\ell_2,\ell_3} \mathbb{E} \left[u_{i,\ell_0,\ell_1,\ell_2,\ell_3} u_{i,\ell_0,\ell_1,\ell_2,\ell_3} u_{i,\ell_0,\ell_1,\ell_2,\ell_3} \right] z_t, \mathcal{F}_t \]
\[
+ \sum_{i=1}^{n_t} \sum_{\ell_0=1}^{n_t} \sum_{\ell_1=1}^{d_x} \sum_{\ell_2=1}^{n_t} p_{i,\ell_0,\ell_1,\ell_2,\ell_3} \mathbb{E} \left[u_{i,\ell_0,\ell_1,\ell_2,\ell_3} u_{i,\ell_0,\ell_1,\ell_2,\ell_3} u_{i,\ell_0,\ell_1,\ell_2,\ell_3} \right] z_t, \mathcal{F}_t \]
\[
+ \sum_{i=1}^{n_t} \sum_{\ell_0=1}^{n_t} \sum_{\ell_1=1}^{d_x} \sum_{\ell_2=1}^{n_t} \sum_{\ell_3=1}^{d_x} p_{i,\ell_0,\ell_1,\ell_2,\ell_3} \mathbb{E} \left[u_{i,\ell_0,\ell_1,\ell_2,\ell_3} u_{i,\ell_0,\ell_1,\ell_2,\ell_3} u_{i,\ell_0,\ell_1,\ell_2,\ell_3} \right] z_t, \mathcal{F}_t \]
\[
\leq C \cdot \text{tr} \left(P_{B_t}^2 \right) + C \cdot \text{tr} \left(P_{B_t}^2 \right) + C \cdot \left[\text{tr} \left(P_{B_t} \right) \right]^2 \\
\leq C \cdot (J_{ds} + J_{ds}^2).
\]
Thus,
\[
\frac{1}{T} \sum_{t=1}^{T} \mathbb{E} \left\| U_t' P_{B_t} U_t / n_t \right\|^2 \leq C \cdot n^{-2} \left(J_{ds} + J_{ds}^2 \right),
\]
so this term is \(O_p(n^{-2}J_{ds}^2) \) by Markov’s inequality. Finally, note that
\[
\max_{1 \leq t \leq T} \mathbb{E} \left[\left\| U_t' M_B H_t / n_t \right\|^2 \right]
\]
We will now find the order of max
\[\max_{1 \leq t \leq T} E \left[\| U_t' M_B, H_t \|^2 \right] \]
\[= C \cdot n^{-2} \max_{1 \leq t \leq T} E \left[\text{tr} \left(E \left[U_t U_t' z_t, F_t \right] M_B H_t H_t' M_B \right) \right] \]
\[\leq C \cdot n^{-2} \max_{1 \leq t \leq T} E \left[\text{tr} \left((H_t - B_t \Pi_t')' M_{B_t} (H_t - B_t \Pi_t') \right) \right] \]
\[\leq C \cdot n^{-2} \sum_{i=1}^{n} \sum_{t=1}^{d} \max_{1 \leq t \leq T} E \left[\left| h_{t,1} (z_{it} - B_t (z_{it})' \pi_{t,i}^0 \right|^2 \sum_{j=1}^{J_{d,2}} \tilde{I}_{jt} (z) \right] \]
\[\leq C \cdot n^{-1} J^{-2}. \]

Thus,
\[\frac{1}{T} \sum_{t=1}^{T} \left\| X_t' M_B, X_t / n_t - U_t U_t' / n_t \right\|^2 = O_p \left(J^{-4} \right) + O_p \left(n^{-2} J^{2d} \right) + O_p \left(n^{-1} J^{-2} \right), \]
and
\[\frac{1}{T} \sum_{t=1}^{T} \left\| \hat{\Omega}_{uu,t} - \Omega_{uu,t} \right\|^2 = O_p \left(n^{-1} \right) + O_p \left(J^{-4} \right) + O_p \left(n^{-2} J^{2d} \right) + O_p \left(n^{-1} \right). \]

We will now find the order of max\(_{1 \leq t \leq T} \left\| \hat{\Omega}_{uu,t} - \Omega_{uu,t} \right\|. \) Recall that

\[\hat{\Omega}_{uu,t} - \Omega_{uu,t} = H_t' M_B, H_t / n_t \]
\[- U_t' (I_{n_t} - M_B) U_t / n_t \] (B.2)
\[+ U_t' M_B, H_t / n_t + H_t' M_B U_t / n_t \] (B.2)
\[+ (U_t' U_t / n_t - \Omega_{uu,t}). \] (B.2)

The first term (equation (B.2)) satisfies max\(_{1 \leq t \leq T} \| H_t' M_B, H_t / n_t \| = O_p \left(J^{-2} \right) \) by the derivations above. Now consider equation (B.2). Let a \(\in \mathbb{R}^{d_x} \), \(a \neq 0 \). Then by the CS inequality it is sufficient to show that max\(_{1 \leq t \leq T} |a' U_t' P_B, U_t a| / n_t = O_p \left(J^{d_x n^{-1}} \right). \) First note that

\[\max_{1 \leq t \leq T} \left| a' U_t' P_B, U_t a \right| \leq \max_{1 \leq t \leq T} \left| a' U_t' P_B, U_t a - a' E \left[U_t' P_B, U_t \right] z_t, F_t \right| a \right| + \max_{1 \leq t \leq T} \left| a' E \left[U_t' P_B, U_t \right] z_t, F_t \right| a \right|. \]

Define \(\tilde{U}_t = U_t a \) which is a \(n_t \times 1 \) vector and note that conditional on \(F_t \), the elements of \(\tilde{U}_t \) are independent (and mean zero). We will deal with the second term first,

\[\left| a' E \left[U_t' P_B, U_t \right] z_t, F_t \right| a \right| / n_t \leq C n^{-1} \left| \text{tr} \left(P_B, \tilde{U} \right) \right| / n_t \]
\[\leq C n^{-1} J^{d_x}. \]

By our assumption of sub-Gaussianity on \(x_{it} \) and that sums of sub-Gaussian variables are also sub-Gaussian, the Hanson-Wright inequality (see, for example, Rudelson and Vershynin (2013) yields

\[\mathbb{P} \left(\left| \tilde{U}_t' P_B, \tilde{U}_t - E \left[\tilde{U}_t' P_B, \tilde{U}_t \right] z_t, F_t \right| \geq \delta \right| z_t, F_t \right) \]
\[\leq 2 \exp \left\{ -C \min \left(\frac{\delta^2}{2 K^4 \| P_B \|^2}, \frac{\delta}{K^2 \sup_{\| y \|=1} \| P_B y \|} \right) \right\} \]
\[= 2 \exp \left\{ -C \min \left(\frac{\delta^2}{2 K^4 J^{d_x}}, \frac{\delta}{K^2} \right) \right\}, \]

36
if we map \(\delta \mapsto \delta \log (T)^{1/2} J^{d_z/2} \) we have that
\[
\Pr \left(\max_{1 \leq t \leq T} J^{-d_z/2} \log (T)^{-1/2} \left| \tilde{U}_t' P_B \tilde{U}_t - \mathbb{E} \left[\tilde{U}_t' P_B \tilde{U}_t \right] \right| \geq \delta \right| z_t, F_t) \\
\leq 2 \exp \left\{ -C \min \left(\frac{\delta^2 \log (T)}{2K^4}, \frac{\delta \log (T)^{1/2}}{K^2} J^{d_z/2} \right) \right\} \\
\leq 2 \exp \left\{ -C \frac{\delta^2 \log (T)}{2K^4} \right\},
\]
for sufficiently large \(n \) and \(T \). Thus,
\[
\Pr \left(\max_{1 \leq t \leq T} J^{-d_z/2} \log (T)^{-1/2} \left| \tilde{U}_t' P_B \tilde{U}_t - \mathbb{E} \left[\tilde{U}_t' P_B \tilde{U}_t \right] \right| \geq \delta \right| z_t, F_t) \\
\leq T \max_{1 \leq t \leq T} \Pr \left(J^{-d_z/2} \log (T)^{-1/2} \left| \tilde{U}_t' P_B \tilde{U}_t - \mathbb{E} \left[\tilde{U}_t' P_B \tilde{U}_t \right] \right| \geq \delta \right| z_t, F_t) \\
\leq 2T \exp \left\{ -C \frac{\delta^2 \log (T)}{2K^4} \right\} \\
= \exp \left\{ \log (2) + \log (T) \left[1 - C \frac{\delta^2}{2K^4} \right] \right\},
\]
which can be made arbitrarily small for \(\delta \) sufficiently large. Thus,
\[
\max_{1 \leq t \leq T} \left| \tilde{U}_t' P_B \tilde{U}_t - \mathbb{E} \left[\tilde{U}_t' P_B \tilde{U}_t \right] \right| / n_t = O_p \left(\log (T)^{1/2} J^{d_z/2} n^{-1} \right),
\]
and \(\max_{1 \leq t \leq T} |a' U'_t P_B a| / n_t = O_p \left(J^{d_z-1} n^{-1} \right) = O_p \left(J^{d_z-1} n^{-1} \right) \). By similar steps we may show that equation \((B.2)\) satisfies
\[
\max_{1 \leq t \leq T} |a' U'_t a - a' \mathbb{E} \left[U'_t \right] a| / n_t = O_p \left(\log (T)^{1/2} n^{-1/2} \right)
\]
Finally, we need to deal with the term \(U_t' M_B H_t / n_t \). First note that \(\| U_t' M_B H_t / n_t \|^2 = n_t^{-2} \operatorname{tr} (U_t' M_B H_t H'_t M_B U_t) \) so that we may focus on
\[
|a' U_t' M_B H_t H'_t M_B U_t a| \leq |U_t' M_B H_t H'_t M_B U_t - \mathbb{E} \left[U_t' M_B H_t H'_t M_B U_t \right]| + \mathbb{E} \left[U_t' M_B H_t H'_t M_B U_t \right] z_t, F_t).
\]
The second term has expectation
\[
\max_{1 \leq t \leq T} \mathbb{E} \left[U_t' M_B H_t H'_t M_B U_t \right] z_t, F_t) = \max_{1 \leq t \leq T} \mathbb{E} \left[\operatorname{tr} \left(M_t H_t H'_t M_B, z_t, F_t, \mathbb{E} \left[U_t' \right] \right) \right] \\
\leq C \max_{1 \leq t \leq T} \mathbb{E} \left[\operatorname{tr} \left((H_t - B_t \Pi^0_t)' M_B (H_t - B_t \Pi^0_t) \right) \right] \\
\leq Cn \sum_{\ell=1}^{d_z} \max_{1 \leq t \leq T} \mathbb{E} \left[\sup_{1 \leq j \leq d_z} \left\| h_{t, \ell} (z) H_{t, \ell} (z) - \tilde{h}_{t, \ell} (z) \right\|_{\ell, z} \right]^2 \\
\leq Cn J^{-2}.
\]
Thus, by Markov’s inequality it is \(O_p (n J^{-2}) \). For the first term consider we can again utilize the Hanson-Wright inequality which yields
\[
\Pr \left(\max_{1 \leq t \leq T} |U_t' M_B H_t H'_t M_B U_t - \mathbb{E} \left[U_t' M_B H_t H'_t M_B U_t \right]| > \delta \right| z_t, F_t) \\
\leq 1 \land 2 \sum_{t=1}^T \exp \left\{ -C \min \left(\frac{\delta^2}{2K^4 \|M_B H_t H'_t M_B\|^2}, \frac{\delta}{K^2 \sup_{\|y\|=1} \|M_B H_t H'_t M_B y\|} \right) \right\}
\]
37
\[
\leq 1 \land 2T \max_{1 \leq t \leq T} \exp \left\{ -C \min \left(\frac{\delta^2}{2K^4 \| M_{Bt} H_t H_t' M_{Bt} \|^2}, \frac{\delta}{K^2 \| M_{Bt} H_t H_t' M_{Bt} \|} \right) \right\}
\]
by properties of matrix norms. If we map \(\delta \mapsto \delta \log (T) nJ^{-2} \) then

\[
\mathbb{P} \left(\max_{1 \leq t \leq T} \left| \hat{U}_t' M_{Bt} H_t H_t' M_{Bt} \hat{U}_t - \mathbb{E} \left[\hat{U}_t' M_{Bt} H_t H_t' M_{Bt} \hat{U}_t \right] \right| > \delta \log (T) nJ^{-2} \right)
\leq \mathbb{E} \left(1 \land 2 \sum_{t=1}^{T} \exp \left\{ -C \min \left(\frac{\delta^2 \log (T) ^2 n^2 J^{-4} \| M_{Bt} H_t H_t' M_{Bt} \|^2}{2K^4 \| M_{Bt} H_t H_t' M_{Bt} \|^2}, \frac{\delta \log (T) nJ^{-2}}{K^2 \| M_{Bt} H_t H_t' M_{Bt} \|} \right) \right\}
\leq C \cdot \mathbb{P} \left(\max_{1 \leq t \leq T} \| M_{Bt} H_t H_t' M_{Bt} \| \geq C_2 nJ^{-2} \right)
+ \left(1 \land 2 \sum_{t=1}^{T} \exp \left\{ -C \min \left(\frac{\delta^2 \log (T) ^2 \| M_{Bt} H_t H_t' M_{Bt} \|^2}{2K^4 C_2^2}, \frac{\delta \log (T) nJ^{-2}}{K^2 C_2} \right) \right\} \right)
\]
The first term is \(o(1) \) by Lemma 1 and the second term can be made arbitrarily small for sufficiently large \(\delta \) so that

\[
\max_{1 \leq t \leq T} \left| \hat{U}_t' M_{Bt} H_t H_t' M_{Bt} \hat{U}_t - \mathbb{E} \left[\hat{U}_t' M_{Bt} H_t H_t' M_{Bt} \hat{U}_t \right] \right| = O_p \left(\log (T) nJ^{-2} \right).
\]

Thus,

\[
\max_{1 \leq t \leq T} \| U_t' M_{Bt} H_t / n_t \| = O_p \left(\log (T) n^{-1} J^{-2} \right) + O \left(n^{-1} J^{-2} \right) = O_p \left(\log (T) n^{-1} J^{-2} \right),
\]
which is of smaller order than the term in equation (B.2).

Proof of Lemma 5. We have

\[
V (z) = T^{-2} \sum_{t=1}^{T} n_t^{-2} \sum_{i=1}^{n_t} \sum_{j=1}^{j_{ds}} \mathbf{1}_{j_{tj}} \hat{u}_{jt} (z) \hat{q}_{jt}^{-2} \hat{\eta}_{jt} (z_{it}) \sigma_{it}^2
\leq CT^{-2} \sum_{t=1}^{T} n_t^{-2} \sum_{i=1}^{n_t} \sum_{j=1}^{j_{ds}} \mathbf{1}_{j_{tj}} \hat{u}_{jt} (z) \hat{q}_{jt}^{-2} \hat{\eta}_{jt} (z_{it})
= CT^{-2} \sum_{t=1}^{T} n_t^{-1} \sum_{j=1}^{j_{ds}} \mathbf{1}_{j_{tj}} \hat{u}_{jt} (z) \hat{q}_{jt}^{-1}
\leq C J_t d n^{-1} T^{-2} \sum_{t=1}^{T} \sum_{j=1}^{j_{ds}} \mathbf{1}_{j_{tj}} \hat{u}_{jt} (z)
\leq C J_t d n^{-1} T^{-1} + C J_t d n^{-1} T^{-2} \sum_{t=1}^{T} \sum_{j=1}^{j_{ds}} \mathbf{1}_{j_{tj}} (1 - 1) \hat{u}_{jt} (z)
\leq C J_t d n^{-1} T^{-1} + C J_t d n^{-1} T^{-1} \max_{1 \leq t \leq T} \max_{1 \leq j \leq j_{ds}} \mathbf{1}_{j_{tj}} (1 - 1),
\]
and so the second term is \(o_p (1) \) by Lemma 2. The lower bound follows by similar steps.

Proof of Lemma 4. We have that

\[
\mathbf{1}_{\beta_t} \left(\hat{\beta}_t - \beta_t \right) = \mathbf{1}_{\beta_t} \hat{\Omega}_{\mu u, t}^{-1} X_t' M_{Bt} \left(\mu (z_t) + \varepsilon_t \right) / n_t
\]
Next recall that $X_t = U_t + H_t$ so we can decompose $1_{\beta,t} (\hat{\beta}_t - \beta_t)$ as

$$T^{-1} \sum_{t=1}^{T} 1_{\beta,t} s_t^i \hat{\Omega}_{u,t}^{-1} X'_t M_{B_t} (\mu (z_t) + \varepsilon_t) / n_t$$

$$= T^{-1} \sum_{t=1}^{T} 1_{\beta,t} s_t^i \hat{\Omega}_{u,t}^{-1} (U_t + H_t)' M_{B_t} (\mu (z_t) + \varepsilon_t) / n_t. $$

For the first result it is then sufficient to consider $\sum_t |\mathcal{K}_{1t}|^2$ where

$$\mathcal{K}_{11} = T^{-1} \sum_{t=1}^{T} 1_{\beta,t} s_t^i \hat{\Omega}_{u,t}^{-1} U_t' \varepsilon_t / n_t$$

$$\mathcal{K}_{12} = T^{-1} \sum_{t=1}^{T} 1_{\beta,t} s_t^i \hat{\Omega}_{u,t}^{-1} U'_t (I_{nt} - M_{B_t}) \varepsilon_t / n_t$$

$$\mathcal{K}_{13} = T^{-1} \sum_{t=1}^{T} 1_{\beta,t} s_t^i \hat{\Omega}_{u,t}^{-1} H'_t M_{B_t} \mu (z_t) / n_t$$

$$\mathcal{K}_{14} = T^{-1} \sum_{t=1}^{T} 1_{\beta,t} s_t^i \hat{\Omega}_{u,t}^{-1} H'_t M_{B_t} \varepsilon_t / n_t$$

$$\mathcal{K}_{15} = T^{-1} \sum_{t=1}^{T} 1_{\beta,t} s_t^i \hat{\Omega}_{u,t}^{-1} U'_t M_{B_t} \mu (z_t) / n_t$$

For the second result, by the CS inequality, it is sufficient to show that $\sum_t \mathcal{K}_{2t} = O_p (n^{-1}) + O_p (J^{-1})$ where,

$$\mathcal{K}_{21} = T^{-1} \sum_{t=1}^{T} \left(1_{\beta,t} s_t^i \hat{\Omega}_{u,t}^{-1} U'_t \varepsilon_t / n_t \right)^2$$

$$\mathcal{K}_{22} = T^{-1} \sum_{t=1}^{T} \left(1_{\beta,t} s_t^i \hat{\Omega}_{u,t}^{-1} U'_t (I_{nt} - M_{B_t}) \varepsilon_t / n_t \right)^2$$

$$\mathcal{K}_{23} = T^{-1} \sum_{t=1}^{T} \left(1_{\beta,t} s_t^i \hat{\Omega}_{u,t}^{-1} H'_t M_{B_t} \mu (z_t) / n_t \right)^2$$

$$\mathcal{K}_{24} = T^{-1} \sum_{t=1}^{T} \left(1_{\beta,t} s_t^i \hat{\Omega}_{u,t}^{-1} H'_t M_{B_t} \varepsilon_t / n_t \right)^2$$

$$\mathcal{K}_{25} = T^{-1} \sum_{t=1}^{T} \left(1_{\beta,t} s_t^i \hat{\Omega}_{u,t}^{-1} U'_t M_{B_t} \mu (z_t) / n_t \right)^2$$

We will prove the second result, first. Consider \mathcal{K}_{21}

$$|\mathcal{K}_{21}| = T^{-1} \sum_{t=1}^{T} \left| 1_{\beta,t} s_t^i \hat{\Omega}_{u,t}^{-1} U'_t \varepsilon_t / n_t \right|^2$$

$$\leq T^{-1} \sum_{t=1}^{T} 1_{\beta,t} \lambda_{\max} \left(\hat{\Omega}_{u,t}^{-1} \right) \| s_t \|^2 \| U'_t \varepsilon_t / n_t \|^2$$

$$\leq CT^{-1} \sum_{t=1}^{T} n_t^{-2} \text{tr} \left((U'_t \varepsilon_t \varepsilon_t' U_t) \right).$$

Taking expectations we obtain,

$$T^{-1} \sum_{t=1}^{T} n_t^{-2} \mathbb{E} \left[\text{tr} (U'_t E [\varepsilon_t \varepsilon_t' | z_t, x_t, \mathcal{F}_t] U_t) \right] \leq C n^{-1}. $$

Thus, $\mathcal{K}_{21} = O_p (n^{-1})$ by Markov’s inequality. By similar steps we can show that $\mathcal{K}_{22} = O_p (J^{d_x} n^{-2})$.

Next consider \mathcal{K}_{23}

$$\mathcal{K}_{23} = T^{-1} \sum_{t=1}^{T} n_t^{-2} \left(1_{\beta,t} s_t^i \hat{\Omega}_{u,t}^{-1} H'_t M_{B_t} \mu (z_t) / n_t \right)^2$$

$$\leq CT^{-1} \sum_{t=1}^{T} n_t^{-2} \left(1_{\beta,t} \left[\max \left(\hat{\Omega}_{u,t}^{-1} \right) \right] \| M_{B_t} (H_t - B_t \Pi'_t) \|^2 \| M_{B_t} (\mu (z_t) - B_t \gamma'_t) \|^2 \right)$$

$$\leq CT^{-1} \sum_{t=1}^{T} n_t^{-2} \left(\sum_{s=1}^{n_t} \| h_t (z_{it}) - B_t (z_{it})' \pi'_t \|^2 \right) \left(\sum_{i=1}^{n_t} \| \mu (z_{it}) - B_t (z_{it})' \gamma'_t \|^2 \right)$$

$$\leq CT^{-1} \sum_{t=1}^{T} n_t^{-2} \left(\sum_{i=1}^{n_t} \sum_{t=1}^{J_{i,t}} \sum_{j=1}^{d_x} \left(J_{i,t,j} (z_{it}) h_{t,j} (z_{it}) - \bar{J}_{i,t,j} (z_{it}) \pi'_{j,t} (z_{it}) \right)^2 \right) \times$$
Thus, $K_{23} = O_p(J^{-4})$. Now consider K_{24}

$$K_{24} = T^{-1} \sum_{t=1}^{T} \left| 1_{\beta,t} s_{t}^l \tilde{\Omega}_{u,t}^{-1} H_t^t M_{B_t} \varepsilon_t / n_t \right|^2 \leq CT^{-1} \sum_{t=1}^{T} \left\| H_t^t M_{B_t} \varepsilon_t / n_t \right\|^2.$$

Taking expectations gives

$$T^{-1} \sum_{t=1}^{T} n_t^{-2} \mathbb{E} \left[\text{tr} \left(H_t^t M_{B_t} \mathbb{E} \left[\varepsilon_t \varepsilon_t' \big| z_t, x_t, \mathcal{F}_t \big] M_{B_t} H_t \right) \right] \leq CT^{-1} \sum_{t=1}^{T} n_t^{-2} \mathbb{E} \left[\text{tr} \left(\left(H_t - B_t \gamma_t^0 \right)^' \left(H_t - B_t \gamma_t^0 \right) \right) \right] \leq CT^{-1} \sum_{t=1}^{T} n_t^{-2} \sum_{i=1}^{n_t} \sum_{t=1}^{d_x} \mathbb{E} \left[\max_{1 \leq j \leq d_x} \sup_{z} \left| \tilde{i}_{j,t} (z) \mu_t (z) - \tilde{i}_{j,t} (z) \gamma_t^0 \right|^2 \right] \sum_{j=1}^{d_x} \tilde{i}_{j,t} (z) \right] \leq C n^{-1} J^{-2}.$$

Thus $K_{24} = O_p(n^{-1} J^{-2})$ by Markov’s inequality. Now consider K_{25}

$$K_{25} = T^{-1} \sum_{t=1}^{T} \left| 1_{\beta,t} s_{t}^l \hat{\Omega}_{u,t}^{-1} U_t^t M_{B_t} \mu (z_t) / n_t \right|^2 \leq CT^{-1} \sum_{t=1}^{T} \left\| U_t^t M_{B_t} \mu (z_t) / n_t \right\|^2.$$

Taking expectations gives

$$T^{-1} \sum_{t=1}^{T} n_t^{-2} \mathbb{E} \left[\left\| U_t^t M_{B_t} \mu (z_t) \right\|^2 \right] \leq CT^{-1} \sum_{t=1}^{T} n_t^{-2} \mathbb{E} \left[\text{tr} \left(\mathbb{E} \left[U_t^t U_t^t' \big| z_t, \mathcal{F}_t \right] M_{B_t} \mu (z_t) M_{B_t} \right) \right] \leq CT^{-1} \sum_{t=1}^{T} n_t^{-2} \mathbb{E} \left[\text{tr} \left(\left(\mu (z_t) - B_t \gamma_t^0 \right)^' \left(\mu (z_t) - B_t \gamma_t^0 \right) \right) \right] \leq CT^{-1} \sum_{t=1}^{T} n_t^{-2} \sum_{i=1}^{n_t} \mathbb{E} \left[\max_{1 \leq j \leq d_x} \sup_{z} \left| \tilde{i}_{j,t} (z) \mu_t (z) - \tilde{i}_{j,t} (z) \gamma_t^0 \right|^2 \right] \leq C n^{-1} J^{-2}.$$

Thus, $K_{25} = O_p(n^{-1} J^{-2})$ and

$$\sum_{\ell} K_{2\ell} = O_p \left(n^{-1} + O_p \left(J^{d_x} T^{n^{-2}} \right) + O_p \left(J^{-4} \right) + O_p \left(n^{-1} J^{-2} \right) \right) = O_p \left(n^{-1} + O_p \left(J^{-4} \right) \right),$$

where the second equality follows by Assumption 3. Now consider the first result. We have that K_{11} satisfies $K_{11} = K_{111} + K_{112}$ where

$$K_{111} = T^{-1} \sum_{t=1}^{T} 1_{\beta,t} s_{t}^l \Omega_{u,t}^{-1} U_t^t \varepsilon_t / n_t$$

and

$$K_{112} = T^{-1} \sum_{t=1}^{T} 1_{\beta,t} s_{t}^l \Omega_{u,t}^{-1} \left(\Omega_{u,t} - \hat{\Omega}_{u,t} \right) \hat{\Omega}_{u,t}^{-1} U_t^t \varepsilon_t / n_t.$$

For K_{111} we have

$$\mathbb{E} |K_{111}|^2 = T^{-2} \sum_{t_1, t_2} n_{t_1}^{-1} n_{t_2}^{-1} \mathbb{E} \left[1_{\beta,t_1} 1_{\beta,t_2} s_{t_1}^l s_{t_2}^l \Omega_{u,t_1}^{-1} U_{t_1}^t \mathbb{E} \left[\varepsilon_{t_1} \varepsilon_{t_2}' \big| \mathcal{F}_{t_1}, \mathcal{F}_{t_2}, z_{t_1}, z_{t_2}, x_{t_1}, x_{t_2} \right] U_{t_2}^t \Omega_{u,t_2}^{-1} s_{t_2}^l \right] = T^{-2} \sum_{t_1} n_{t_1}^{-2} \mathbb{E} \left[1_{\beta,t_1} s_{t_1}^l \Omega_{u,t_1}^{-1} U_{t_1}^t \varepsilon_{t_1} \varepsilon_{t_1}' U_{t_1}^t \Omega_{u,t_1}^{-1} s_{t_1}^l \right] \leq C n^{-1} T^{-1},$$

and
following similar steps as for the term \mathcal{K}_{21}. Then, by the CS inequality
\[
|\mathcal{K}_{112}|^2 \leq T^{-1} \sum_{t=1}^{T} 1_{\beta,t} \left| s_t' \Omega_{uu,t} \left(\Omega_{uu,t} - \hat{\Omega}_{uu,t} \right) \hat{\Omega}_{uu,t}^{-1} \right|^2 \times T^{-1} \sum_{t=1}^{T} \left| U'e_{t}/ n_t \right|^2 \\
\leq T^{-1} \sum_{t=1}^{T} 1_{\beta,t} \left[\lambda_{\max} \left(\Omega_{uu,t}^{-1} \right) \right]^2 \left[\lambda_{\max} \left(\hat{\Omega}_{uu,t}^{-1} \right) \right]^2 \left| \Omega_{uu,t} - \hat{\Omega}_{uu,t} \right|^2 \times T^{-1} \sum_{t=1}^{T} \left| U'e_{t}/ n_t \right|^2 \\
\leq CT^{-1} \sum_{t=1}^{T} \left| \hat{\Omega}_{uu,t} - \Omega_{uu,t} \right|^2 \times T^{-1} \sum_{t=1}^{T} \left| U'e_{t}/ n_t \right|^2.
\]
The first factor is $O_p \left(n^{-1} \right) + O_p \left(J^{-4} \right) + O_p \left(J^{2d} n^{-2} \right)$ by Lemma 3 and by similar steps as for \mathcal{K}_{21} the second factor has expectation,
\[
T^{-1} \sum_{t=1}^{T} \mathbb{E} \left[\left| U'e_{t}/ n_t \right|^2 \right] \leq C n^{-1}.
\]
Thus, $|\mathcal{K}_{11}|^2 = O_p \left(n^{-1} T^{-1} \right) + O_p \left(n^{-2} \right) + O_p \left(n^{-1} J^{-4} \right) + O_p \left(J^{2d} n^{-3} \right)$ by Markov’s inequality. By similar steps we can show that \\
\[
|\mathcal{K}_{12}|^2 = O_p \left(T^{-1} n^{-2} J^{d} \right) + O_p \left(J^{d} n^{-3} \right) + O_p \left(J^{d} n^{-4} \right) + O_p \left(J^{3d} n^{-4} \right) \\
|\mathcal{K}_{13}| = O_p \left(J^{-2} \right) \\
|\mathcal{K}_{14}|^2 = O_p \left(n^{-1} J^{-2} \right) + O_p \left(n^{-2} J^{-2} \right) + O_p \left(n^{-1} J^{-6} \right) + O_p \left(J^{2d} n^{-3} \right) \\
|\mathcal{K}_{15}|^2 = O_p \left(n^{-1} T^{-1} J^{-2} \right) + O_p \left(n^{-2} J^{-2} \right) + O_p \left(n^{-1} J^{-6} \right) + O_p \left(J^{2d} n^{-3} \right).
\]
Thus, we have that \\
\[
\sum_{\ell} |\mathcal{K}_{1\ell}|^2 = O_p \left(n^{-1} T^{-1} \right) + O_p \left(J^{-4} \right) + O_p \left(J^{2d} n^{-3} \right) + O_p \left(J^{d} n^{-4} \right).
\]

Proof of Lemma 6. We would like to show that \\
\[
V^{-1} \left(z \right)^{-2} \sum_{t=1}^{T} n_t^{-2} \sum_{i=1}^{n_t} \sum_{j=1}^{J_{it}} \mathbb{I}_{\beta} \hat{\eta}_{it}^{(z)} \left(z \right) \hat{q}_{jt}^{-2} \hat{\eta}_{jt}^{(z)} \left(z \right) \left(\varepsilon_{it}^2 - \sigma_{it}^2 \right) = o_p \left(1 \right).
\]
By Lemma 5 we need only show that \\
\[
J^{-d} n^{-1} \sum_{t=1}^{T} n_t^{-2} \sum_{i=1}^{n_t} \sum_{j=1}^{J_{it}} \mathbb{I}_{\beta} \hat{\eta}_{it}^{(z)} \left(z \right) \hat{q}_{jt}^{-2} \hat{\eta}_{jt}^{(z)} \left(z \right) \left(\varepsilon_{it}^2 - \sigma_{it}^2 \right) = J_1 + J_2,
\]
where \\
\[
\hat{\eta}_{it}^{\pm} = \epsilon_{it}^2 \mathbb{I} \{ \epsilon_{it}^2 > t_{nT} \} - \mathbb{E} \left[\epsilon_{it}^2 \mathbb{I} \{ \epsilon_{it}^2 > t_{nT} \} \right] \mathcal{F}_t, z_{it}, x_{it} \\
\hat{\eta}_{it}^{-} = \epsilon_{it}^2 \mathbb{I} \{ \epsilon_{it}^2 \leq t_{nT} \} - \mathbb{E} \left[\epsilon_{it}^2 \mathbb{I} \{ \epsilon_{it}^2 \leq t_{nT} \} \right] \mathcal{F}_t, z_{it}, x_{it}
\]
First consider J_1, \\
\[
\mathbb{P} \left(\left| J^{-d} n^{-1} \sum_{t=1}^{T} n_t^{-2} \sum_{i=1}^{n_t} \sum_{j=1}^{J_{it}} \mathbb{I}_{\beta} \hat{\eta}_{it}^{(z)} \left(z \right) \hat{q}_{jt}^{-2} \hat{\eta}_{jt}^{(z)} \left(z \right) \eta_{it}^{\pm} \right| > \delta_{nT} \right) \leq \frac{n^2}{\delta_{nT}^2 J^{2d} T^2} \times
\]

41
\[
\sum_{t_1,t_2=1}^T n_t^{-2} n_t^{-2} \sum_{1 \leq i,j \leq n_t} \sum_{j_1,j_2=1}^{J_{ds}} \mathbb{E} \left[1_{j_1 t_1} 1_{j_2 t_2} \tilde{q}_{j_1 t_1} (z) \tilde{q}_{j_2 t_2} (z) \eta_{j_1 t_1}^+ \eta_{j_2 t_2}^+ \right] = \frac{n^2}{\delta_n T J^{2d} \tilde{T}^2} \times \sum_{t=1}^T n_t^{-4} n_t^{-4} \sum_{j=1}^{J_{dz}} \mathbb{E} \left[1_{j t} \tilde{q}_{j t} (z) \tilde{q}_{j t}^2 (z, \eta_{j t})^2 \right] \\
\leq \frac{n^2}{\delta_n T J^{2d} \tilde{T}^2} \sum_{t=1}^T n_t^{-4} n_t^{-4} \sum_{j=1}^{J_{dz}} \mathbb{E} \left[1_{j t} \tilde{q}_{j t} (z) \tilde{q}_{j t}^2 (z, \eta_{j t}) \mathbb{E} \left[\varepsilon_{t t}^i 1 \{ \varepsilon_{t t} > t_n \} | \mathcal{F}_t, z_{it}, x_{it} \right] \right] \\
\leq \frac{n^2}{\delta_n T n_t T^{2d} T} \sum_{t=1}^T n_t^{-4} n_t^{-4} \sum_{j=1}^{J_{dz}} \mathbb{E} \left[1_{j t} \tilde{q}_{j t} (z) \tilde{q}_{j t}^2 (z, \eta_{j t}) \mathbb{E} \left[\varepsilon_{t t}^4 \varepsilon_{t t} \mathbb{E} \left[\varepsilon_{t t}^4 \varepsilon_{t t} | \mathcal{F}_t, z_{it}, x_{it} \right] \right] \right] \\
\leq \frac{C J^{2d} n^2}{\delta_n T n_t T^{2d} \tilde{T}^2} \sum_{t=1}^T n_t^{-3} \sum_{j=1}^{J_{dz}} \mathbb{E} \left[1_{j t} \tilde{q}_{j t} (z) n_t^{-1} \sum_{i=1}^{n_t} \tilde{q}_{j t} (z) \right] \\
\leq \frac{C J^{2d} n^2}{\delta_n T n_t T^{2d} \tilde{T}^2} \sum_{t=1}^T n_t^{-3} \sum_{j=1}^{J_{dz}} \mathbb{E} \left[1_{j t} \tilde{q}_{j t} (z) \right] \\
\leq \frac{C J^d}{\delta_n T n_t T \tilde{T}^2}.
\]

Now consider \(J_2 \):

\[
\left| J^{-d} n T^{-1} \sum_{t=1}^T n_t^{-2} \sum_{i=1}^{n_t} \sum_{j=1}^{J_{dz}} 1_{j t} \tilde{q}_{j t} (z) \tilde{q}_{j t}^2 (z, \eta_{j t}^-) \right| \\
\leq J^{-d} n T^{-1} \sum_{t=1}^T \left| n_t^{-2} \sum_{i=1}^{n_t} \sum_{j=1}^{J_{dz}} 1_{j t} \tilde{q}_{j t} (z) \tilde{q}_{j t}^2 (z, \eta_{j t}^-) \right| \\
\leq J^{-d} n \max_{1 \leq t \leq T} \left| n_t^{-2} \sum_{i=1}^{n_t} \sum_{j=1}^{J_{dz}} 1_{j t} \tilde{q}_{j t} (z) \tilde{q}_{j t}^2 (z, \eta_{j t}^-) \right|
\]

and

\[
\mathbb{P} \left(J^{-d} n \max_{1 \leq t \leq T} \left| n_t^{-2} \sum_{i=1}^{n_t} \sum_{j=1}^{J_{dz}} 1_{j t} \tilde{q}_{j t} (z) \tilde{q}_{j t}^2 (z, \eta_{j t}^-) \right| > \delta_n \right) \\
\leq \sum_{t=1}^T \mathbb{P} \left(\left| n_t^{-2} \sum_{i=1}^{n_t} \sum_{j=1}^{J_{dz}} 1_{j t} \tilde{q}_{j t} (z) \tilde{q}_{j t}^2 (z, \eta_{j t}^-) \right| > \delta_n \right).
\]

This is a mean-zero, bounded random variable. The summands are bounded by

\[
\left| J^{-d} n T^{-1} \sum_{j=1}^{J_{dz}} 1_{j t} \tilde{q}_{j t} (z) \tilde{q}_{j t}^2 (z, \eta_{j t}^-) \right| \\
\leq J^{-d} n T^{-1} \sum_{j=1}^{J_{dz}} 1_{j t} \tilde{q}_{j t} (z) \tilde{q}_{j t}^2 (z, \eta_{j t}^-) \\
\leq I_{n T}^2 J^d n T^{-1} \sum_{j=1}^{J_{dz}} 1_{j t} \tilde{q}_{j t} (z) \tilde{q}_{j t}^2 (z, \eta_{j t}^-) \\
\leq C I_{n T}^2 J^d.
\]

The rescaled sum of the variances are

\[
\frac{1}{n_t} \sum_{i=1}^{n_t} \mathbb{E} \left[\left| J^{-d} n T^{-1} \sum_{j=1}^{J_{dz}} 1_{j t} \tilde{q}_{j t} (z) \tilde{q}_{j t}^2 (z, \eta_{j t}^-) \right|^2 \right] \mathbb{E} \left[\mathcal{F}_t, z_{it}, x_{it} \right] \\
\leq \frac{C}{n_t J^{2d}} \sum_{i=1}^{n_t} \sum_{j=1}^{J_{dz}} 1_{j t} \tilde{q}_{j t} (z) \tilde{q}_{j t}^2 (z, \eta_{j t}^-) \mathbb{E} \left[\left| \eta_{j t}^- \right|^2 \right] \mathbb{E} \left[\mathcal{F}_t, z_{it}, x_{it} \right] \\
\leq \frac{C}{J^{2d}} \sum_{j=1}^{J_{dz}} 1_{j t} \tilde{q}_{j t} (z) \tilde{q}_{j t}^2 \left(n_t^{-1} \sum_{i=1}^{n_t} \tilde{q}_{j t} (z) \eta_{j t}^- \right)
\]

42
\[\leq C J^d \sum_{j=1}^{J^d_t} \mathbb{1}_{j t} \hat{I}_{j t} (z) \]

\[\leq C J^d. \]

Thus,

\[\mathbb{P} \left(\sum_{t=1}^{T} n_t^{-1} \sum_{i=1}^{n_t} n_t^{-1} \sum_{j=1}^{J^d_t} \mathbb{1}_{j t} \hat{I}_{j t} (z) \eta_{i t} \right) \leq \delta_{n T} \]

\[\leq 1 \land \sum_{t=1}^{T} \mathbb{P} \left(\sum_{i=1}^{n_t} n_t^{-1} \sum_{j=1}^{J^d_t} \mathbb{1}_{j t} \hat{I}_{j t} (z) \eta_{i t} \right) \leq \delta_{n T} \]

\[\leq C \sum_{t=1}^{T} \mathbb{P} \left(\sum_{i=1}^{n_t} n_t^{-1} \sum_{j=1}^{J^d_t} \mathbb{1}_{j t} \hat{I}_{j t} (z) \eta_{i t} \right) \leq \delta_{n T} \]

\[\leq 1 \land \sum_{t=1}^{T} \mathbb{P} \left(\sum_{i=1}^{n_t} n_t^{-1} \sum_{j=1}^{J^d_t} \mathbb{1}_{j t} \hat{I}_{j t} (z) \eta_{i t} \right) \leq \delta_{n T} \]

\[\leq C \sum_{t=1}^{T} \exp \left\{ - \frac{n_t \delta_{n T}^2}{C J^d + C \delta_{n T} J^d t_{n T}^2} \right\} \]

\[= 1 \land C \exp \left\{ \log (T) \left(1 - \frac{C n \delta_{n T}^2 J^d \log (T)^{-1}}{1 + \delta_{n T} t_{n T}^2} \right) \right\}. \]

Thus, we need to find conditions such that

\[t_{n T} \rightarrow \infty \]

\[\delta_{n T} \rightarrow 0 \]

\[\frac{t_{n T}^2 n T}{J^d n \delta_{n T}} = O (1) \]

\[\frac{J^d \log (T)}{n \delta_{n T}} \not\rightarrow \infty \]

\[\frac{J^d \log (T)}{n \delta_{n T}} \not\rightarrow \infty. \]

Let \(t_{n T} = \log (T \lor J^d)^{1/4} \log (T \land J^d)^{-1/4} \) and \(\delta_{n T}^2 = J^d n^{-1} \log (T \lor J^d). \) Then, in reverse order, we have

\[\frac{J^d \log (T)}{n \delta_{n T}} = \frac{J^d / 2 \log (T)}{n^{1/2}} \log (T \land J^d)^{1/2} = \sqrt{\frac{J^d \log (T)^2 \log (T \land J^d)^{-1}}{n}}, \]

which is \(O (1) \) by assumption. Then

\[\frac{J^d \log (T)}{n \delta_{n T}^2} = \frac{\log (T)}{\log (T \lor J^d)} = O (1), \]

and

\[\frac{J^d}{\delta_{n T}^2 t_{n T} n T} = \frac{1}{\log (T \lor J^d) \log (T \lor J^d)^{e/4} \log (T \land J^d)^{-e/4} T} = o (1). \]
References

Bobkov, S., Ledoux, M., 2016. One-dimensional empirical measures, order statistics, and Kantorovich transport distances. Memoirs of the American Mathematical Society (forthcoming).

Cattaneo, M. D., Farrell, M. H., 2013. Optimal convergence rates, Bahadur representation, and asymptotic normality of partitioning estimators. Journal of Econometrics 174, 127–143.

Einmahl, J. H., Ruymgaart, F. H., 1987. The almost sure behavior of the oscillation modulus of the multivariate empirical process. Statistics & Probability Letters 6, 87–96.

Hall, P., Heyde, C. C., 1980. Martingale Limit Theory and its Application. Academic Press, New York.

Rudelson, M., Vershynin, R., 2013. Hanson-Wright inequality and sub-gaussian concentration. Electronic Communications in Probability 18, 1–9.