Collecting and evaluating speech recognition corpora for nine Southern Bantu languages

Jaco Badenhorst, Charl van Heerden, Marelie Davel and Etienne Barnard

March 31, 2009
Outline

- Introduction
- Background:
 - ASR corpus design
 - The Lwazi ASR corpus
- Computational analysis
 - Approach
 - Analysis of phoneme variability
- Conclusion
Introduction

- Information flow in developing countries
 - Availability of alternate information sources is low in developing countries
 - Telephone networks (cellular) are spreading rapidly

- Spoken dialog systems (SDSs)
 - Widespread belief that impact can be significant
 - Speech-based access can empower semi-literate people

- Applications of SDSs
 - Education (Speech-enabled learning)
 - Agriculture
 - Health care
 - Government services
Introduction

To implement SDSs: ASR and TTS systems are needed

Main linguistic resources needed for telephone-based ASR systems:
- Electronic pronunciation dictionaries
- Annotated audio corpora
- Recognition grammars

Challenges:
- ASR only available for handful of African languages
- Lack of linguistic resources for African languages
- Lack of relevant audio for specific application (language used, profile of speakers, speaking style, etc.)
ASR audio corpus

- Resource intensive process

- Factors that add to complexity:
 - Recordings of multiple speakers
 - Matching channel and style
 - Careful orthographic transcription
 - Markers required to indicate important events (e.g., non-speech)

- Size of corpora:
 - Corpora of resource-scarce languages tend to be very small (1-10 hours of audio)
 - Contrasts with speech corpora used to build commercial systems (hundreds to thousands of hours)
Project Lwazi

- Three year (2006-2009) project commissioned by the South African Department of Arts and Culture
- Development of core speech technology resources and components (ASR, TTS, SDS, etc.)
- National pilot demonstrating potential impact of speech based systems in South Africa
- All 11 official languages of South Africa
Distribution of home languages for South African population:
- 9 Southern Bantu languages, 2 Germanic languages
Project Lwazi

- ASR corpus:
 - Approximately 200 speakers per language
 - Speaker population selected to provide a balanced profile with regard to age, gender and type of telephone (cellphone/landline)
 - Read and elicited speech recorded over telephone channel
 - 30 Utterances/speaker:
 - 16 Randomly selected from phonetically balanced corpus
 - 14 Short words and phrases
Project Lwazi: Southern Bantu languages

Distinct phonemes per language

Speech minutes per language

- Amount of data within Lwazi ASR corpus
Computational analysis

- Goal:
 - Understand data requirements to develop a minimal system that is practically usable
 - Use as seed ASR system to collect additional resources
 - Implications of additional speakers and utterances
 - Develop tools:
 - Provide indication of data sufficiency
 - Potential for cross-language sharing
Computational analysis

- Approach:
 - Measure acoustic variance in terms of the separability between probability densities by modelling specific phonemes
 - Statistical measure provides an indication of the effect that additional training data will have on recognition accuracy
 - Utilise the same measure as indication of acoustic similarity across languages
Computational analysis

- Mainly focus on four languages here:
 - isiNdebele (nbl)
 - siSwati (ssw)
 - isiZulu (zul)
 - Tshivenda (ven)

- We report only on single-mixture context-independent models (similar trends observed for more complex models)

- Report on examples from several broad categories of phonemes (SAMPA) which occur most in target languages:
 - /a/ (vowels)
 - /m/ (nasals)
 - /b/ and /g/ (voiced plosives)
 - /s/ (unvoiced fricatives)
Analysis of phoneme variability

Figure: Speaker-and-utterance three-dimensional plot for the siSwati nasal /m/
Number of phoneme utterances

Figure: Effect of number of phoneme utterances per speaker on similarity measure for different phoneme groups using data from 30 speakers
Number of speakers

Figure: Effect of number of speakers on similarity measure for different phoneme groups using 20 utterances per speaker
Developed initial ASR systems for all of the Bantu languages

Test sets: 30 speakers per language

ASR system is *phoneme recogniser*, with flat language model

A rough benchmark of acceptable phoneme accuracy: N-TIMIT
Impact of data reduction

- Division factor of 8:
 - Approximately 20 training speakers
 - Correlate well with the stable phoneme similarity values

Figure: Reducing the number of speakers has (approximately) the same effect as reducing the amount of speech per speaker.
Distances between phonemes

- Based upon proven stability of our phoneme models:
 - Phoneme similarity between phonemes across languages

Figure: Effective distances for isiNdebele phonemes /a/ and /n/ and their closest matches.
Conclusion

- New method to determine data sufficiency
- Confirmed that different phoneme classes have different data requirements
- Our results suggest that similar phoneme accuracies may be achievable by using more speech from fewer speakers
- Based upon proven model stability we performed successful measurements of distances between phonemes of different languages
Conclusion

- Project Lwazi website:
 - http://www.meraka.org.za/lwazi
- More info
- Download corpora (ASR, TTS)
- Download tools
- Contact details