Modeling and Analysis of Non-Uniform Honeycomb Structures Based on Topology Optimization

Xin Jin, Guoxi Li, Meng Zhang and Jingzhong Gong

1College of Mechatronics Engineering and Automation, National University of Defense Technology, Changsha 410073, China
2School of Mechanical Engineering, Hunan International Economics University, Changsha 410205, China

anmajin@163.com

Abstract. Honeycomb structure infilling is an important way to achieve lightweight. Focusing on the deficiency of the non-optimized macro-material distribution in uniform honeycomb structures, a modeling method of non-uniform honeycomb structures based on topology optimization was proposed. The loaded component was topology-optimized and the density results were mapped to the relative density matrix of cells. The rapid and automatic modeling of non-uniform honeycomb structures was realized with the using of User-Defined Features and the cyclic definitions of the reference datums. The simulation results show that the mechanic performance of non-uniform honeycomb structures is better than uniform honeycomb structures and the efficiency of the proposed method is validated.

1. Introduction

In the structural design of aerospace, rail transportation and other industry products, lightweight can not only reduce energy consumption in the production and operation, but also bring higher manoeuvrability and better dynamic and static performance, which are key indicators related to the product competitiveness. In recent years, with the rapid development of material preparation and forming technology, honeycomb structure emerges as a kind of novel multifunctional lightweight structure [1]. It exhibits properties of high strength and rigidity except for weight reduction, realize the shock resistance [2], heat transfer and insulation [3], sound absorption [4], and meet the requirements of multifunction [5]. Traditional honeycomb structure is a periodic structure, with the relative density distribution uniform, and the preparation technologies mature [6]. Although the microstructure is optimized on the cell scale, the uniform structure of the macroscale is not optimized. The uniform distribution of the structure doesn't considers the optimal load transfer path; the lightweight efficiency is not sufficient.

Topology optimization is an important way to achieve lightweight when satisfying performance. The essence of this method is to seek the structural layout with the optimal load transfer path under the action of external force and constraint [7]. Topology optimization plays a significant role in the structural design of automobile, aerospace, industrial equipment and other fields [8, 9]. At present, the most mature commercial application is solid isotropic material penalty model (SIMP) proposed by Rozvany [10]. The density of each element in the design space is used as the design variable and the optimal design result is the density distribution between 1 and 0. We can map the optimal density distribution of topology optimization results to the relative density of honeycomb cells, resulting in...
non-uniform honeycomb structure, and realize the optimization design in the macro-scale and meso-
scale, to improve the efficiency of lightweight.

There are two ways to model the honeycomb structure. First method is to use CAD platform for
interactive modeling, and the problem is that: due to the non-uniform characteristics of the honeycomb
cells, it is not easy to directly model with periodic operations of array or mirror. The manual modeling
has the difficulties of high cost. Second method is to use rapid prototyping processing software, such
as Magics. This kind of software is to fill the model with fixed units based on STL format. The main
problem of the scheme is that: it only provides function of uniform-cell filling. Modeling object is
STL format, which is not conducive to the modification of structures. If the structure is generated with
defects, it must return to the CAD software. Therefore, it is important to develop the auxiliary
application for CAD software by programming to realize rapid and automatic modeling.

2. Structural topology optimization

For the topology optimization of nonuniform honeycomb structure, the reference structure is the
honeycomb structure with uniform density. The maximum stiffness at the same weight reduction is
achieved by the topology optimization. It adapts to the general definition of the minimum compliance
problem [11]: under the given material volume constraint, the optimal distribution of the material in
the design domain is sought, so that achieve the structural topology optimization of the maximum
stiffness. Therefore, the minimum compliance optimization model is established, the relative density
of elements is used as the design variable, and the maximum stiffness is obtained under the constraint
of volume.

The expression for the compliance is given as:

\[C = F^T U = U^T K U \]

where \(K \) is the overall stiffness matrix, which can be expressed as a function of element density. \(U \)
is the structural displacement matrix. \(F \) is the external force. Constraints include volume constraint,
element density range constraints, and other constraints. The volume constraint represents that
material distribution is arranged in a fixed volume fraction the same as the uniform honeycomb
structure. Element density range is \(x_{\text{min}} \leq x_e \leq x_{\text{max}} \). Taking into account that extremely low density
means the cell wall is too thin and extremely high density means the cell center hole is too small,
which is both not conducive to manufacturing, so the minimum density and maximum density is given
as 0.2 and 0.9. Other constraints include other requirements to be considered in the design and
manufacturing, and they are expressed in \(g(x_e) \leq 0 \). The mathematical model of topology
optimization is obtained:

\[
\begin{align*}
\min \ C(x_e) &= F^T U = U^T K U = \sum_{i=1}^{n} u_i^T k_i u_i \\
\text{s.t. } F &= K U; \\
K &= K(D(x_e)) = K(x_e); \\
\sum_{i=1}^{n} x_{ei} \cdot v_i &= V; \\
x_{\text{min}} \leq x_e \leq x_{\text{max}}; \\
g(x_e) &\leq 0;
\end{align*}
\]

Sensitivity analysis is carried out as the key step to solve the optimization problem. The sensitivity
of the objective function to the design variables is obtained [11]:

\[
\frac{\partial C(x_e)}{\partial x_e} = -U^T \frac{\partial K(x_e)}{\partial x_e} U
\]
Based on the sensitivity of the objective function, the OC algorithm is used to update the design variables. The iteration formula for the design variables based on the optimization criterion method is given \[12\]:

\[
 x_{e}^{k+1} = \begin{cases}
 \max(x_{\min}^e, x_e - m) & \text{if } \left(B^k_e \right)^o x_e^k \leq \max(x_{\min}^e, x_e - m) \\
 \min(x_{\max}^e, x_e + m) & \text{if } \min(x_{\min}^e, x_e + m) \leq \left(B^k_e \right)^o x_e^k \\
 \left(B^k_e \right)^o x_e^k & \text{otherwise}
 \end{cases}
\]

(4)

where \(k \) is used to represent the number of iterations, \(\eta = 0.5 \) is the damping coefficient to ensure the stability and convergence of the numerical calculation, and \(m = 0.2 \) to limit the maximum variation of the density variable for each iteration. \(B^k_e \) is the optimal criterion:

\[
 B^k_e = -\frac{\partial C}{\partial x_e} / \lambda \frac{\partial V}{\partial x_e}
\]

(5)

where Lagrange multiplier \(\lambda \) must satisfy the volume constraints in the optimization model, which can be searched by bisection method. After the determination of optimal criterion, design variables start iteration until convergence.

3. Cellular density mapping

Aiming to the specific object as shown in figure 1:

It is a solid plate design domain with \(l = 120 \text{mm} \), \(w = 60 \text{mm} \) and \(b = 10 \text{mm} \) under pressure \(F = 60N \) on the top. Because the load is on the direction of the cell wall, refer to the mechanical properties analysis carried out by Wang \[13\] for the typical honeycomb structures including hexagonal honeycomb, square honeycomb and triangle honeycomb, square honeycomb is choose to construct nonuniform honeycomb structure. Based on the elements density matrix obtained by the optimal solution, the densities of the finite elements are calculated by averaging, and the density distribution matrix of honeycomb cells is mapped out. The specific process, as shown in figure 2, is divided into the following three steps:

1. Determination of some parameters. The length of the design domain is \(\text{length} \), the width of the design domain is \(\text{width} \), the dimension of one single cell is \(a \), the dimension of one single element is \(r \), and the density distribution matrix of elements is \(x_e \).

2. Determination of the arrangement of cells. With the origin \(O \) as the starting point for arrangement, the number of cells in \(x \) direction is \(m = \text{cell}(\text{width} / a) \), and \(y \) direction is \(n = \text{cell}(\text{length} / a) \).
(3) Solution for the relative density matrix of cells. The boundary coordinates of the cell in row \(j \) and column \(i \) are calculated as:

\[
x_i = a*(i-1), x_2 = \min(\text{width}, a*i), i = 1, 2, \ldots, m
\]
\[
y_i = a*(j-1), y_2 = \min(\text{length}, a*j), j = 1, 2, \ldots, n
\]

(6)

The number of rows and columns the cell locates in the density matrix of elements are given as:

\[
\text{row boundary: } k_1 = y_1 / r + 1, k_2 = y_2 / r
\]
\[
\text{column boundary: } l_1 = x_1 / r + 1, l_2 = x_2 / r
\]

(7)

Then the relative density of the cell can be calculated with average method in the boundary of rows and columns:

\[
x(j,i) = \frac{\sum_{k_1}^{k_2} \sum_{l_1}^{l_2} \chi(k,l)}{(l_2-l_1+1)*(k_2-k_1+1)}
\]

(8)

4. Nonuniform honeycomb modeling

With the arrangement and density matrix of cells as input, modeling of nonuniform honeycomb structure is carried out. The PTC Creo is choose as structural modeling CAD software. User-Defined Feature (UDF) is used to simplify the modeling process. With the support of Pro/Toolkit library of Creo, we can develop the automatic modeling auxiliary application for nonuniform honeycomb structure.

The general flow of nonuniform honeycomb structure modeling is shown in figure 3. Firstly, we need to establish parametric model and references of the honeycomb cell features, and so on to complete the creation of cell UDF. The schematic diagram of square cell UDF is shown in figure 4. The key parameters and references in the diagram are shown in table 1, which constitute a parameterized UDF.
The relationship between cell size parameters and cell density is satisfied as below, which can determine the basic parameters of each cell:

$$\frac{d_1^2 - d_2^2}{d_1^2} = x \Rightarrow d_2 = d_1 \sqrt{1 - x}$$

(9)

Secondly, the function of generating datums with location and size information is encapsulated as
datums generation module. The type of datums includes default datum plane and offset datum plane. Default datum plane is the standard orthogonal plane in the default coordinate system, which is the reference of the initial cell. Offset datum planes are referred by other cells. Based on the default datum, offset value and arrangement number are determined, where offset value is the cell length d1, and arrangement of the number in x and y direction is specified in Sec 3.

Finally, combine cell UDF with datums generation module, and import data of design domain size, cellular dimensions and cellular density matrix. With these data, datums can be generated, cellular references can be matched and values of cell parameters are assigned, so as to circular definite location and geometry of each cell. And nonuniform honeycomb CAD model is obtained.

5. Results and discussion
The object is shown in figure 1 and the Young’s modulus and Poisson's ratio of cell wall material are $E = 7.2 \times 10^{10} Pa$ and $\nu = 0.3$. Optimization results and nonuniform honeycomb structure model are shown in figure 5 and figure 6. The model via density mapping and CAD modeling is complete without defects, and it is consistent with the density distribution of topology optimization.

![Figure 5. Optimization results.](image1)

![Figure 6. Honeycomb structure.](image2)

With ANSYS as the simulation tools, the compare of compressive stiffness of uniform and nonuniform honeycomb structures is carried out by FEA simulation. Compressive stiffness can be expressed as $k = F / u_y$, where u_y is the average displacement in y direction on the top, and F is the pressure. Deformations of uniform and nonuniform honeycomb structures are shown in figure 7 and figure 8.

![Figure 7. Deformation of uniform honeycomb.](image3)

![Figure 8. Deformation of nonuniform honeycomb.](image4)

Compressive stiffness of uniform honeycomb structure is calculated as $145197N/mm$, and nonuniform honeycomb structure is $164383N/mm$. At the same weight reduction, stiffness of
optimized nonuniform honeycomb structure is higher than uniform structure and the extent is 13.2%. The efficiency of the proposed modeling method is validated by FEA simulation.

6. Conclusion
(1) In this paper, a modeling method of non-uniform honeycomb structures based on topology optimization is proposed. Loaded structure is topology optimized, and the optimized density results are mapped to honeycomb cellular relative density distribution matrix. The rapid and automatic modeling of non-uniform honeycomb structures is realized with the using of User-Defined Features and the cyclic definitions of the reference datums.
(2) After density mapping and CAD modeling, the non-uniform honeycomb structure model is complete with no defects, which can reflect the density distribution of topology optimization well.
(3) Paper analyzes and compares the compressive stiffness of uniform honeycomb structure and non-uniform honeycomb structure. The results show that performance of optimized non-uniform honeycomb structure is better, and the effectiveness of uniform honeycomb structure modeling method based on topology optimization is verified.

7. References
[1] Wadley H N G 2006 Multifunctional periodic cellular metals. Phil Trans R Soc A. 364 31-68
[2] Elnasri I, Pattofatto S, et al 2007 Shock enhancement of cellular structures under impact loading: Part I Experiments. J Mech Phys Solids. 55(12) 2652-2671
[3] Tian J, Kim T, Lu T J, et al 2004 The effects of topology upon fluid-flow and heat-transfer within cellular copper structures. Int J Heat Mass Transf. 47 3171-3186
[4] Wang J, Lu T J, Woodhouse J, et al 2005 Sound transmission through lightweight double-leaf partitions: theoretical modeling. J Sound Vib. 286 817-847
[5] Fan H L, Jin F N, Fang D N 2008 Mechanical properties of hierarchical cellular materials: Part I Analysis. Compos Sci Technol. 68 3380-3387
[6] Sundarram SS, Jiang W, Li W 2014 Fabrication of small pore-size nickel foams using electroless plating of solid-state foamed immiscible polymer blends. J Manuf Sci Eng. 136 021002
[7] Yan J, Guo X, Cheng G 2016 Multi-scale concurrent material and structural design under mechanical and thermal loads. Comput Mech. 57 437-446
[8] Gil Ho Yoon 2010 Maximizing the fundamental eigenfrequency of geometrically nonlinear structures by topology optimization based on element connectivity parameterization. Computers and Structures. 88 120-133
[9] Soren Halkjær, Ole Sigmund, Jakob S Jensen 2006 Maximizing band gaps in plate structures. Struct Multidisc Optim. 32 263-275
[10] Rozvany GIN, Zhou M, Birker T 1992 Generalized shape optimization without homogenization. Struct Optim. 4 250-254
[11] Bendsoe M P 2003 Topology Optimization: Theory, Methods and Applications (Berlin: Springer) pp 9-24
[12] Erik Andreassen, Anders Clausen, et al 2011 Efficient topology optimization in MATLAB using 88 lines of code. Struct. Multidiscip. Optim. 43(1) 1–16
[13] Wang A J, McDowell D L 2004 In-plane stiffness and yield strength of periodic metal honeycombs. ASME J Eng Mater Technol. 126 137-156