On small n-uniform hypergraphs with positive discrepancy

Danila Cherkashin, Fedor Petrov

March 2017

Abstract

A two-coloring of the vertices V of the hypergraph $H = (V, E)$ by red and blue has discrepancy d if d is the largest difference between the number of red and blue points in any edge. Let $f(n)$ be the fewest number of edges in an n-uniform hypergraph without a coloring with discrepancy 0. Erdős and Sós asked: is $f(n)$ unbounded?

N. Alon, D. J. Kleitman, C. Pomerance, M. Saks and P. Seymour proved upper and lower bounds in terms of the smallest non-divisor (snd) of n (see \cite{1}). We refine the upper bound as follows:

$$f(n) \leq c \log \text{snd} n.$$

Keywords: hypergraph colorings, hypergraph discrepancy, prescribed matrix determinant.

1 Introduction

A hypergraph is a pair (V, E), where V is a finite set whose elements are called vertices and E is a family of subsets of V, called edges. A hypergraph is n-uniform if every edge has size n. A vertex 2-coloring of a hypergraph (V, E) is a map $\pi : V \to \{1, 2\}$.

The discrepancy of a coloring is the maximum over all edges of the difference between the number of vertices of two colors in the edge. The discrepancy of a hypergraph is the minimum discrepancy of a coloring of this hypergraph. The general discrepancy theory is set out in \cite{2, 4, 4, 1}.

Let $f(n)$ be the minimal number of edges in an n-uniform hypergraph (all edges have size n) having positive discrepancy. Obviously, if $2 \nmid n$ then $f(n) = 1$; if $2 | n$ but $4 \nmid n$ then $f(n) = 3$. Erdős and Sós asked whether $f(n)$ is bounded or not. N. Alon, D. J. Kleitman, C. Pomerance, M. Saks and P. Seymour proved the following Theorem, showing in particular that $f(n)$ is unbounded.

Theorem 1.1. Let n be an integer such that $4 | n$. Then

$$c_1 \frac{\log \text{snd}(n/2)}{\log \log \text{snd}(n/2)} \leq f(n) \leq c_2 \frac{\log^3 \text{snd}(n/2)}{\log \log \text{snd}(n/2)},$$

where snd(x) stands for the least positive integer that does not divide x.

To prove the upper bound they introduced several quantities. Let M denote the set of all matrices M with entries in $\{0, 1\}$ such that the equation $Mx = e$ has exactly one non-negative solution (here e stands for the vector with all entries equal to 1). This unique solution is denoted x^M. Let $z(M)$ be the least integer
such that \(z(M)x^M \) is integer and let \(y^M = z(M)x^M \). For each positive integer \(n \), let \(t(n) \) be the least \(r \) such that there exists a matrix \(M \in \mathcal{M} \) with \(r \) rows such that \(z(M) = n \) (obviously, \(t(n) \leq n + 1 \) because \(z(J_{n+1} - I_{n+1}) = n \), where \(J_{n+1} \) is the \((n+1) \times (n+1)\) matrix with unit entries; \(I_{n+1} \) is the \((n+1) \times (n+1)\) identity matrix). The upper bound in (1) follows from the inequality \(f(n) \leq t(m) \) for such \(m \) that \(\lceil \frac{4n}{m} \rceil \) is odd.

Then N. Alon and V. H. Vău [3] showed that \(t(m) \leq (2 + o(1)) \frac{\log m}{\log \log m} \) for infinitely many \(m \). However they marked that trueness of inequality \(t(m) \leq c \log m \) for arbitrary \(m \) is not clear.

Our main result is the following

Theorem 1.2. Let \(n \) be a positive integer number. Then

\[
f(n) \leq c \log \text{nd}(n).
\]

for some constant \(c > 0 \).

Corollary 1.3. Let \(n \) be a positive integer number. Then

\[
f(n) \leq c \log n.
\]

for some constant \(c > 0 \).

The construction of the hypergraph with positive discrepancy which yields Theorem 1.2 uses a matrix with determinant \(\text{nd}(n) \) and small entries satisfying some additional technical properties. Before coming to a general construction we give an example with a specific \(2 \times 2 \) matrix which shows the vague idea.

2 Example

Example 2.1. Let us consider the matrix \(A = \begin{pmatrix} 3 & 5 \\ 1 & 8 \end{pmatrix} \) and suppose that \(n \) is not divisible on \(\det A = 19 \).

Consider the system

\[
A \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} n \\ n+t \end{pmatrix}.
\]

The solution of the system is \(a = (3n - 5t)/19, b = (2n + 3t)/19 \), which is integral if and only if \(t = 12n \pmod{19} \) i. e. \(t \) has prescribed residue modulo 19. Since \(n \) is not divisible on 19, \(t \) is not equal to zero modulo 19. So one can choose \(-19 < t < 19\) such that \(t \) has prescribed residue modulo 19 and \(t \) is odd. Also, assume that \(n/8 > t > -2n/3 \) which is certainly true if \(n > 200 \). Then \(a \) and \(b \) are positive and also \(b > t \) and \(a, b \) tend to infinity simultaneously with \(n \).

Let us construct an \(n \)-uniform hypergraph \(H \) with positive discrepancy. Consider disjoint vertex sets \(A_1, A_2, A_3 \) of size \(a \) and \(B_1, \ldots, B_8 \) of size \(b \). If \(t < 0 \) then consider a vertex set \(T \) of size \(|t| \) and set \(C := B_1 \cup T \); if \(t > 0 \) let \(T \) be a \(t \)-vertex subset of \(B_1 \) and define \(C := B_1 \setminus T \). The edges of \(H \) are listed:

\[
A_1 \cup A_2 \cup A_3 \cup B_1 \cup B_2 \cup B_3 \cup B_4 \cup B_5 \\
A_1 \cup A_2 \cup A_3 \cup B_1 \cup B_2 \cup B_3 \cup B_4 \cup B_6 \\
A_1 \cup A_2 \cup A_3 \cup B_1 \cup B_2 \cup B_3 \cup B_4 \cup B_7 \\
A_1 \cup A_2 \cup A_3 \cup B_1 \cup B_2 \cup B_3 \cup B_4 \cup B_8 \\
A_1 \cup A_2 \cup A_3 \cup B_2 \cup B_3 \cup B_4 \cup B_5 \cup B_8 \\
A_1 \cup A_2 \cup A_3 \cup B_1 \cup B_3 \cup B_4 \cup B_5 \cup B_8 \\
A_1 \cup A_2 \cup A_3 \cup B_1 \cup B_2 \cup B_4 \cup B_5 \cup B_8 \\
A_1 \cup A_2 \cup A_3 \cup B_1 \cup B_2 \cup B_3 \cup B_5 \cup B_8 \\
A_1 \cup A_2 \cup A_3 \cup B_1 \cup B_2 \cup B_3 \cup B_4 \cup B_5 \cup B_8
\]
Obviously, if \(H \) has a coloring with discrepancy 0, then \(d(B_5) = d(B_6) \), where \(d(X) \) is the difference between blue and red vertices in \(X \), because the second edge can be reached by replacing \(B_5 \) on \(B_6 \) in the first edge. Similarly one can deduce that \(d(A_i) = d(A_j) \) and \(d(B_i) = d(B_j) \) for all pairs \(i, j \). So one can put \(k := d(A_i), l := d(B_i) \). Because of the first edge we have \(3k + 5l = 0 \). Obviously, \(k \) and \(l \) are odd numbers, so the minimal solution is \(k = 5, l = -3 \) (or \(k = -5, l = 3 \) which is the same because of red-blue symmetry). But then the last edge gives \(|k + 8l| \leq |t| \) which contradicts with \(|k + 8l| \geq 19 > |t| \).

So we got an example if \(19 \mid n \) and \(n > 200 \) of an \(n \)-uniform hypergraph with 11 edges and positive discrepancy.

The number of edges in this example equals 11 = 3 + 8, the sum of maximal entries in the columns of \(A \). This is essentially (up to multiplicative constant) the general property of our construction.

3 Proofs

Proof of Theorem 1.2 Let us denote \(\text{snd}(n) \) by \(q \). We should construct a hypergraph with at most \(c \log q \) edges and positive discrepancy. Take \(m \) such that \(2^m - 1 \leq q \leq 2^{m+1} - 2 \). Then

\[
q - (2^m - 1) = \sum_{i=0}^{m-1} \varepsilon_i 2^i \quad \text{for some } \varepsilon_i \in \{0, 1\},
\]

therefore

\[
q = \sum_{i=0}^{m-1} \eta_i 2^i, \quad \text{where } \eta_i = 1 + \varepsilon_i \in \{1, 2\}.
\]

Consider \(m \) vectors in \(\mathbb{Z}^m \):

\[
v_0 = (\eta_0, \ldots, \eta_{m-1}),
\]

\[
v_i = (\eta_0, \ldots, \eta_{i-1}, \eta_{i-1} + 2, \eta_i - 1, \eta_{i+1}, \ldots, \eta_{m-1}) \quad \text{for } i = 1, \ldots, m - 1, \text{ i.e.}
\]

\[
v_{i,k} = \begin{cases}
\eta_k, & k \neq i, i - 1 \\
\eta_k - 1, & k = i \\
\eta_k + 2, & k = i - 1.
\end{cases}
\]

Note that the vector \(u = (1, 2, \ldots, 2^{m-1}) \) satisfies a system of linear equations

\[
\langle v_i, u \rangle = q; \quad i = 0, \ldots, m - 1.
\]

Assume that \(q \) is odd. Choose odd \(\delta \in (-q, q) \) such that \(x_0 := \frac{n + \eta_{m-1} \delta}{q} \) is integer. Define

\[
x_i := 2^i x_0 \quad \text{for } i = 1, \ldots, m - 2; \quad x_{m-1} := 2^{m-1} x_0 - \delta,
\]

then the vector \(x = (x_0, \ldots, x_{m-1}) \) satisfies \(\langle v_i, x \rangle = n \) for \(i = 0, \ldots, m - 2 \), \(\langle v_{m-1}, x \rangle = n + \delta \).

In the case \(q = 2^m \geq 8 \) we have \(n \equiv 2^{m-1} \pmod{q} \) and \(\eta_0 = 2, \eta_1 = \cdots = \eta_{m-1} = 1 \).

Choose \(x = (x_0, \ldots, x_{m-1}) \) so that \(\langle v_1, x \rangle = \langle v_{m-1}, x \rangle = n + 1 \) and \(\langle v_i, x \rangle = n \) for \(i = 0, 2, 3, \ldots, m - 2 \).

The solution is given by

\[
x_0 := \frac{n + 2^{m-1}}{q}; \quad x_1 := 2 x_0 - 1; \quad x_i := 2^{i-1} x_1 \quad \text{for } i = 2, \ldots, m - 2; \quad x_{m-1} := 2^{m-2} x_1 - 1.
\]
Now let us construct a hypergraph in the following way: for $i = 0, \ldots, m-1$ let us take 4 sets A_i^j ($j = 1, \ldots, 4$) of vertices of size x_i such that all $4m$ sets A_i^j are disjoint. Let the edge e_0 be the union of A_i^j over $0 \leq i \leq m-1$ and $1 \leq j \leq \eta_i$. By the choice of x_i and η_i we have $|e_0| = n$. Then we add an edge

$$
\bigcup_{0 \leq i \leq m-1} \bigcup_{1 \leq j \leq \eta_i \text{ for } i \neq k} A_i^j
$$

for every k and for every $R \subset [4]$ such that $|R| = \eta_k$. Clearly there are at most $6m$ such edges. Let us say that they form the first collection of edges. Finally, for every $1 \leq k \leq m-1$ we add the edge

$$
\bigcup_{0 \leq i \leq m-1} \bigcup_{1 \leq j \leq \eta_i \text{ for } i \neq k, k-1} A_i^j,
$$

which form the second collection of edges.

Summing up we have hypergraph with at most $7m$ edges; at most 2 of them have size not equal to n. Let us correct these edges in the simplest way: if an edge has size less than n then we add arbitrary vertices; if an edge has size greater than n then we exclude arbitrary vertices.

Suppose that our hypergraph has discrepancy 0, so it has a proper coloring π. For every set A_i^j denote by $d(A_i^j)$ the difference between the numbers of red and blue vertices of π in A_i^j. Obviously, $d(A_i^{j_1}) = d(A_i^{j_2})$ because there are edges e_1, e_2 from the first collection such that e_2 can be obtained from e_1 by the replacement of $A_i^{j_1}$ to $A_i^{j_2}$. So we may write d_i instead of $d(A_i^j)$.

If q is odd then the vector $d = (d_0, \ldots, d_{m-1})$ satisfies

$$
\langle v_i, d \rangle = 0 \quad \text{for} \quad i = 0, 1, \ldots, m-2 \quad \text{and} \quad \langle v_{m-1}, d \rangle = s
$$

for some odd $s \in (-q, q)$. Considering consequent differences of this equations we get

$$
d_i = 2^i d_0 \quad \text{for} \quad i = 0, \ldots, m-2; \quad d_{m-1} = 2^{m-1} d_0 - s; \quad 0 = \sum \eta_i d_i = d_0 q - \eta_{m-1} s,
$$

but this fails modulo q. A contradiction. In the case $q = 2^m$ we get a similar contradiction, as $(2^{m-1} - 1) \pm 1$ is not divisible by 2^m.

Thus we get a hypergraph on at most $7m = O(\log q)$ edges with positive discrepancy, the claim is proven.

\[\square\]

4 Discussion

- In fact, during the proof we have constructed a matrix of size of $O(\log k)$ with bounded integer coefficients and with determinant $k := \text{snd}(n)$. By Hadamard inequality, the determinant k of $m \times m$ matrix with bounded coefficients satisfies $k = O(\sqrt{m})^m$, thus $\log k = O(m \log m)$, $m \geq \text{const} \cdot \log k / \log \log k$.
 We suppose that actually a matrix of size $O(\log k / \log \log k)$ with bounded integer coefficients and determinant k always exists; and moreover, it may be chosen satisfying additional properties which allow to replace the main estimate with $f(n) \leq c \log \text{snd}(n) / \log \log \text{snd}(n)$ (which asymptotically coincides with the lower bound).

- It turns out, that for a fixed value of $q = \text{snd}(n)$ and some values of n modulo q, a hypergraph, constructions of above type have the discrepancy separated from zero. In particular, in Example 2.1 the choice $n \in \{\pm 4, \pm 7\}$ modulo 19 leads to the discrepancy 6.

- For fixed r and large enough n using Theorem 1.2 one can construct an n-uniform hypergraph with discrepancy at least r and $O(\ln \text{snd}[n/r])^r$ edges (here $[x]$ stands for the nearest integer to x), as
follows: let H_0 be a hypergraph realizing $f([n/r])$, H_1, \ldots, H_{2r-1} be vertex-disjoint copies of H. Let $V := V(H_1) \sqcup \cdots \sqcup V(H_{2r-1})$, $E := \{\sqcup e_i \mid i \in A \subset [2r-1], |A| = r\}$. By the construction, every H_i has discrepancy at least 2; so by pigeonhole principle (V, E) has discrepancy at least $2r$. Define $l := r[n/r] - n$. Finally, if $l > 0$, then exclude arbitrary l vertices from every edge $e \in E$; else add arbitrary l vertices to every edge $e \in E$; denote the result by H. By definition $l \leq r$, so the discrepancy of H is at least r. Since $|E(H_j)| = f([n/r])$, we have

$$|E(H)| = \left(\frac{2r-1}{r}\right)f([n/r])^r = O((\ln \text{ndd} [n/r])^r \leq O(\ln \ln n)^r.$$

- A. Raigorodskii independently asked the same question in a more general form: he introduced the quantity $m_k(n)$ that is the minimal number of edges in a hypergraph without a vertex 2-coloring such that every edge has at least k blue vertices and at least k red vertices. So $m_k(n)$ is the minimal number of edges in a hypergraph with discrepancy at least $n - 2k + 2$, in particular $f(n) = m_{n/2}(n)$ for even n. For the history and the best known bounds on $m_k(n)$ see [7]. Note that our result replaces the bound $m_k(2k + r) = O(\ln k)^{r+1}$ with $m_k(2k + r) = O(\ln \ln k)^{r+1}$ for a constant r. It worth noting, that in the case $n = O(k)$ the behavior of $m_k(n)$ is completely unclear.

Acknowledgements. The work was supported by the Russian Scientific Foundation grant 16-11-10014. The authors are grateful to A. Raigorodskii for the introduction to the problem, to N. Alon for directing our attention to the paper [1] and fruitful discussions and to N. Rastegaev for a very careful reading of the draft of the paper.

References

[1] N. Alon, D. J. Kleitman, K. Pomerance, M. Saks, and P. Seymour. The smallest n-uniform hypergraph with positive discrepancy. Combinatorica, 7(2):151–160, 1987.

[2] Noga Alon and Joel H. Spencer. The probabilistic method. John Wiley & Sons, 2016.

[3] Noga Alon and V˘ an H. V˘ u. Anti-Hadamard matrices, coin weighing, threshold gates, and indecomposable hypergraphs. Journal of Combinatorial Theory, Series A, 79(1):133–160, 1997.

[4] William Chen, Anand Srivastav, and Giancarlo Travaglini eds. A Panorama of Discrepancy Theory, volume 2107. Springer, 2014.

[5] D. D. Cherkashin and A. B. Kulikov. On two-colorings of hypergraphs. Doklady Mathematics, 83(1):68–71, 2011.

[6] Jiří Matoušek. Geometric discrepancy: An illustrated guide. Springer, 1999.

[7] S. M. Teplyakov. Upper bound in the erdős-hajnal problem of hypergraph coloring. Mathematical Notes, 93(1-2):191–195, 2013.