Structural design and kinematic analysis of a welding robot for liquefied natural gas membrane tank automatic welding

Jiang Yi · Han Qingqing · Dai Zhaoen · Zhou Chao · Yu Jianfeng · Hua Chunjian

Received: 7 January 2022 / Accepted: 27 July 2022 / Published online: 19 August 2022
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022

Abstract
Owing to the complex structures of welding materials, special welding conditions, and challenges during the automatic welding of the liquefied natural gas (LNG) ship Mark III’s membrane tank, a series–parallel–series hybrid structure mobile welding robot having sufficient adaptability for welding corrugated plates in membrane tanks was designed in this study. The configuration of the hybrid robot had good workspace characteristics, and it could always maintain a certain distance and angle between the end of the welding torch and the weld line because of its detection and control system coordination. In this study, degrees of freedom, kinematic characteristics, workspace, and adaptability analyses were conducted for the hybrid mechanism. A simulation verification was performed, and a ripple-trajectory-following experiment was conducted using real objects. The simulation and experimental results showed that the welding robot had a reasonable mechanism design, smooth motion, and good terminal distance and angle control, thus meeting the requirements for automatic welding of corrugated plates in membrane tanks.

Keywords Welding robot for membrane tank · Series–parallel hybrid · Screw theory · Kinematic analysis · Working space

1 Introduction

Liquid cargo enclosure technology is the core technology in liquefied natural gas (LNG) ships, and membrane cargo tanks have increasingly been used because of their advantageous characteristics, including their strong shock resistance ability, high space utilization rate, low evaporation, and low maintenance costs.

A membrane cargo tank is a large, fully enclosed structure with a height of up to 15 m. The bulkhead is a sandwich-type multi-layer structure. The main barrier wall film consists of welded 304-L corrugated austenitic stainless-steel plates with thicknesses of 1.2 mm. There are latticed grooves of different sizes on the film, which are folded at the intersections and have special shapes [1]. In addition, membrane cargo tanks have high product welding quality requirements for the sake of security [2]. As the main way of corrugated plate welding for membrane tank at this stage, the manual tungsten inert gas welding (TIG) does not perform well. It is also necessary to build an aerial platform during the manual TIG process for LNG membrane tanks. This is not only complicated but also inefficient; it introduces a high-risk factor, and ensuring quality becomes a challenge.

Conventional robotic welding systems are seldom used because shipyard welding tasks are characterized by non-standard, large workpieces that come in small batches [3]. At present, studies investigating automatic robotic welding primarily focus on weld-track recognition and tracking. For example, Zhou et al. [4] proposed a welding seam sensing method based on a line-structured light sensor and constructed an intelligent guidance system for a welding robot. Li et al. [5] designed a dual-station intelligent welding strategy based on charge-coupled device (CCD) visual detection system. Zhang et al. [6] proposed a four-step welding seam tracking technology for complex welds based on laser sensors. Special automatic welding equipment [7, 8], particularly the special equipment related to shipbuilding...
welding [9, 10], has rarely been studied. In addition, the welds in membrane tanks were always long and high above the ground, which was beyond the working space of the existing automatic welding equipment. Therefore, there is great significance and practical value in developing automatic welding equipment suitable for membrane chambers instead of manual welding.

Three problems should be solved for automatic welding of corrugated plates in membrane tanks:

1. The end of the TIG welding torch should maintain a certain distance and angle with respect to the weld.
2. The shape change of a corrugated plate should be accurately detected, and each motion pair must quickly follow the linkage with good stiffness and precision.
3. Sufficient working space characteristics are required, and the length of a continuous weld should be greater than 1.5 m.

For these three problems, a series–parallel–series hybrid mobile welding robot structure scheme with good adaptability is proposed in this paper for membrane tank welding. A kinematics analysis was conducted, the adaptability of the workspace to the working conditions was investigated, and simulations were performed. Additionally, a corrugated trajectory-following experiment was conducted that demonstrated the rationality and feasibility of the design.

2 Robot structure

The proposed structure of an automatic welding robot for membrane tanks [11] and its three-dimensional model are shown in Fig. 1. To adapt to work high above the ground and to promptly change the working position, an overall lightweight design was desirable. The 6061 aluminum alloy was selected as the robot body material, the body base was 270 × 280 mm, the total height was 350 mm, and the body mass was only 13 kg. These characteristics met the requirements for rapid assembly and disassembly and a lightweight design.

The robot consisted of four detachable modules: a posture-adjustment mechanism, a terminal device, a walking mechanism, and a rapid assembly and disassembly mechanism. The first two modules constituted the robot body. The posture-adjustment mechanism could change the position and orientation of the robot terminal device. The walking mechanism was composed of a guide rail and a transmission mechanism, which could constrain the robot to the welding working surface and could move along the direction of the weld. The rapid assembly and disassembly mechanism enabled swift separation and combination of the body and the walking mechanism.

To solve Problem 3 that the robot had a limited working space and could not perform long welds, and to account for the man–machine combination efficiency, a walking mechanism and the rapid assembly and disassembly mechanism were designed as shown in Fig. 2. A closed-loop stepping motor rack, a pinion drive mechanism (⑨, ⑥, ⑧), a roller (⑪), and a guide rail (⑫) can cooperate with each other to position and guide the robot body. A self-locking rapid fixture (⑫) pushed the sliding roller baseplate (⑩), and drove the trapezoidal groove roller to buckle the guide rail surface to achieve swift locking. After completing a long weld, the robot body must only be placed on the guide rail, which would be pre-clamped at the fold of the membrane corrugated plate, and the self-locking rapid fixture could quickly switch between flat welding, vertical welding, horizontal welding, and inverted welding.

Considering the robot’s operating occasion of high altitude, a small mass was necessary for safety on the premise...
of ensuring the stiffness, bearing capacity, and mechanism accuracy, such that compact structure design was required. The walking mechanism provided the ability of moving along the direction of the weld. The freedom compensation from the walking mechanism could provide the translation freedom of the posture-adjustment mechanism along the weld, so that the posture-adjustment mechanism needs at least two translational and one rotational degree of freedom in accordance with Problem 1.

According to the above analysis, the overall design of the robot posture-adjustment mechanism’s motion chain had a series–parallel–series transmission form. In addition, V-Axis was added as a redundant degree of freedom to adjust the height of welding gun for the convenience of ripple track tracking control, as shown in Fig. 3. The parallel mechanism adopts a left and right symmetrical double parallelogram configuration scheme, which was composed of parallel fixed/moving platform (⑥/⑨), big arm (④), front/back triangle connecting plate (③/⑧), and cross roller bearing (⑩). This design enabled the parallel linkage platform to rotate with a same angular speed when the drive motor of b-axis drove the big arm by gear meshing. Besides, the rotation center of the moving platform was a fixed straight line on the vertical bisector plane in the middle of the two big arm rotating axes, which not only ensured the structural stiffness and bearing capacity, but also completely decoupled the rotational motion of the space position of the rotating axis from the motion of other degrees of freedom.

For subsequent compensation of the welding torch height errors, the translation axis W and the sensor responsible for the height adjustment of the welding torch should be parallel to the welding torch axis and installed behind the rotating joint. Therefore, the overall structure of the posture-adjustment mechanism has three optional forms: TTRT, RTTT, and TRTT. The form of TTRT has higher requirements on the bearing capacity of the second translational joint, which obviously has higher weight and was not conducive to compact structure. The RTTT form cannot adjust the position of the parallel mechanism, so the advantage of the “external virtual rotating axis” of the parallel mechanism is not able to be brought into play. Finally, the TRTT form was selected as the posture-adjustment mechanism configuration: the parallel mechanism was mounted on the Y-axis slide block (②) and moved in the Y-direction through the guide screw. V-axis (⑤) and X-axis (①) screws were mounted in series on the parallel mechanism’s moving platform. The entire motion chain mechanism adjusted the position and orientation of the terminal device by the coordination of the Y-axis, fixed and moving platform of parallel mechanism, and the V- and X-axis screws (series–parallel–series). Problems 1 and 2 from Sect. 1 were thus addressed at the level of mechanism design.

3 Kinematic analysis

3.1 Degree-of-freedom analysis

According to a further analysis of the requirements for Problem 1, to ensure sufficient welding quality during membrane tank corrugated plate welding, the welding torch must be adjustable in the length, width, and depth directions, and must be capable of adapting to the dynamic angle between the welding torch and the welding surface curvature. Therefore, at least one rotational and three mobile degrees of freedom were required, and a mixed degree-of-freedom (DOF) verification must be performed.

The robot designed had a hybrid configuration, and the DOF total was equal to the DOF sum for the series and parallel portions. There were four degrees of freedom for the four translational axes in the series portion. The parallel structure was relatively complex; to determine its degrees of freedom, an equivalent analysis was first done by observing its structural characteristics, as shown in Fig. 4a.

The DOF analysis after equivalence was performed based on screw theory, and the modified Kutzbach–Gubler formula [12] was adopted for the analysis:

$$M = 6(n - g - 1) + \sum_{j=1}^{g} f_j + \mu$$

(1)

Due to the common motion pairs on the two branch chains of the mechanism, the coupling strength was relatively high, and consequently, a direct analysis was difficult.
For this reason, the simple four-bar mechanism shown in Fig. 4b was analyzed first. The mechanism was regarded as a parallel mechanism composed of the A_i B_i (i = 1, 2) branch and the output rod, B_3 B_2. The A_1 B_1 branch chain motion screw system could be represented by Eq. (2):

\[
\begin{align*}
\mathbf{S}_{A_1} & = (1, 0, 0; 0, 0, 0) \\
\mathbf{S}_{B_1} & = (1, 0, 0; -a \sin \theta, a \cos \theta)
\end{align*}
\]

Its constraint screw system is given by Eq. (3):

\[
\begin{align*}
\mathbf{S}_{11} & = (1, 0, 0; 0, 0, 0) \\
\mathbf{S}_{12} & = (0, 0, 0; 0, 1, 0) \\
\mathbf{S}_{13} & = (0, 0, 0; 0, 0, 1) \\
\mathbf{S}_{14} & = (0, \cos \theta, \sin \theta; 0, 0, 0)
\end{align*}
\]

The A_2 B_2 branch chain motion screw system can be expressed by Eq. (4):

\[
\begin{align*}
\mathbf{S}_{A_2} & = (1, 0, 0; 0, b) \\
\mathbf{S}_{B_2} & = (1, 0, 0; -a \sin \theta, b + a \cos \theta)
\end{align*}
\]

Its constraint screw system is given by Eq. (5):

\[
\begin{align*}
\mathbf{S}_{21} & = (1, 0, 0; 0, 0, 0) \\
\mathbf{S}_{22} & = (0, 0, 0; 0, 1, 0) \\
\mathbf{S}_{23} & = (0, 0, 0; 0, 0, 1) \\
\mathbf{S}_{24} & = (0, \cos \theta, \sin \theta; -b \sin \theta, 0, 0)
\end{align*}
\]

The mechanism in Fig. 4b had eight constraints, among which three were over-constraints; therefore, the screw system of the mechanism constraint is given by Eq. (6):

\[
\begin{align*}
\mathbf{S}_{1} & = (1, 0, 0; 0, 0, 0) \\
\mathbf{S}_{2} & = (0, 0, 0; 0, 1, 0) \\
\mathbf{S}_{3} & = (0, 0, 0; 0, 0, 1) \\
\mathbf{S}_{4} & = (0, \cos \theta, \sin \theta; -b \sin \theta, 0, 0)
\end{align*}
\]

The output rod, B_3 B_2, of the mechanism had a single degree of freedom, and the motion direction was always perpendicular to A_1 B_1. For further analysis, the mechanism shown in Fig. 4c added a parallel rod, C_1 C_2, above the mechanism shown in Fig. 4b. It is worth noting that C_1 and C_2 were located on A_1 B_1 and A_2 B_2, respectively, and therefore, the motion pattern C_1 and C_2 was consistent with A_1 B_1 and A_2 B_2, respectively. Considering the influence of C_1 C_2 on the overall constraint, the motion spiral system at C_1 C_2 can be expressed by Eq. (7):

\[
\begin{align*}
\mathbf{S}_{C_1} & = (1, 0, 0; -a + c \sin \theta, (a + c) \cos \theta) \\
\mathbf{S}_{C_2} & = (1, 0, 0; -a + c \sin \theta, b + (a + c) \cos \theta)
\end{align*}
\]

Taking the inverse helix resulted in Eq. (8):

\[
\begin{align*}
\mathbf{S}_{31} & = (1, 0, 0; 0, 0, 0) \\
\mathbf{S}_{32} & = (0, 0, 0; 0, 1, 0) \\
\mathbf{S}_{33} & = (0, 0, 0; 0, 0, 1) \\
\mathbf{S}_{34} & = (0, \cos \theta, \sin \theta; -b \sin \theta, 0, 0)
\end{align*}
\]

Thus, the addition of C_1 C_2 brought no additional independent constraints, but only four over-constraints. Similarly, as the mechanism in Fig. 4a was equivalent to adding a rod, DE, parallel to B_3 C_2 on the mechanism in Fig. 4c, and because ΔC_1 C_2 D = ΔB_3 B_2 E, the rod brought four over-constraints. Therefore, the mechanism had a total of 11 over-constraints, and according to Eq. (1):

\[M = 6(n - g - 1) + \sum_{i=1}^{\xi} f_i + \mu = 6 \times (6 - 8 - 1) + 8 + 11 = 1\]

Therefore, the parallel mechanism had one degree of freedom, which was the motion of B_3 B_2 perpendicular to A_1 B_1, i.e., the rotations of DE and A_1 C_1 were consistent. Including the series portion, the hybrid mechanism had a total of five degrees of freedom with four translational shifts and one rotation, which met the DOF welding requirements.

3.2 Motion law analysis of the parallel mechanism

The DOF analysis of the mechanism from Sect. 3.1 indicated that the parallel mechanism achieved the rotational degree of freedom of the moving platform, DE. However, in general, if there is an uncertain rotational center when a mechanism rotates, points on the moving platform will move in non-DOF directions during rotation [13, 14]. This motion in the non-DOF directions affects the motion flexibility during welding and thus is not conducive to weld control and formation. Therefore, it was necessary to analyze the motion
law of the parallel mechanism. Since the parallel mechanism was compact in structure and had few degrees of freedom, the spatial geometry method was used for analysis.

To study a more general rule, a more general situation was considered. The parallel mechanism could be represented as an equivalent structure, as shown in Fig. 5a. ΔC1C2D and ΔB1B2E were regarded as rigid connections, A1C1 and A2C2 as rigid bars, and C1D ≠ B2E. The coordinate system A1xyz was established at A1, and the parallel part of the mechanism was projected onto the xA1z plane, as shown in Fig. 5b.

In Fig. 5, A1B1 = A2B2 = a, B1C1 = B2C2 = b, DF = e, EG = f, C1F = g, B1G = h, and B2E = 0. For convenience, A1C1 was initially in a vertical orientation and the driving force was around the y-axis of coordinate system {A1}, so that A1C1 and x had the angle θ between them. As the C1 coordinate was set as (xC1, zC1), the trajectory of C1 could be expressed by Eq. (9):

\[
x_{C1}^2 + z_{C1}^2 = (a + b)^2
\]

(9)

The quadrilateral A1A2C1C2 formed a parallelogram, hence at any time \(C_1^1C_2^2 = \overrightarrow{A_1A_2} \). Equation (10) was true for coordinate system \(\{A_1\} \):

\[
(x_D, z_D)^T = (x_{C1} + g, z_{C1} - e)^T
\]

(10)

Then, Eq. (11) could be obtained from Eqs. (9) and (10):

\[
(x_D - g)^2 + (z_D + e)^2 = (a + b)^2
\]

(11)

According to Eq. (11), while the mechanism was moving, the rotation pair D moved in a circle around a fixed axis in space. If the projection of the axis in the A1xz plane was H(g, -e), Eq. (5) could be generated using Eq. (11):

\[
DH = a + b = A_1C_1
\]

(12)

The distance from H to coordinate system \(\{A_1\} \) could be expressed by Eq. (13):

\[
A_1H^2 = g^2 + e^2
\]

(13)

For the right triangle C1DF, Eq. (14) was true:

\[
C_1D^2 = g^2 + e^2
\]

(14)

According to Eqs. (12)–(14), the quadrilateral A1C1DH was a parallelogram, and therefore HD \(\parallel A_1C_1 \), that is, the rotational pair D had the same angular velocity as the rigid rod A1C1 when rotating around the axis. Therefore, the coordinates of D were \((g + (a + b) \cos \theta, e + (a + b) \cdot \sin \theta) \). Similarly, the rotational pair E rotated about a fixed axis in space and had the same angular velocity as rod A1C1. The projection of the axis in the A1xy plane was I(h, -f), and the trajectory equation for the rotational pair E about the axis was \((x_E - h)^2 + (z_E + f)^2 = a^2 \). Similarly, for the rotational pair E, the coordinates of E were \((h + a \cos \theta, f + a \cdot \sin \theta) \). When A1C1 was at any angle θ with respect to x, the moving platform ED was at an angle α with respect to x, and Eqs. (15) and (16) were true:

\[
ED = \left((g - h + b \cos \theta)^2 + (e - f + b \sin \theta)^2 \right)^{1/2}
\]

(15)

\[
\alpha = \arctan \left(\frac{(e - f) + b \sin \theta}{(g - h) + b \cos \theta} \right)
\]

(16)

According to Eqs. (15) and (16), the moving platform rotated with the rotation of A1C1, and the distance between joints D and E changed accordingly.

3.3 Forward and inverse kinematics analyses

This section presents further analyses of the requirements for Problem (2). Although an LVDT sensor group was used to detect the instantaneous position and orientation of the welding gun, it was still necessary to conduct kinematics forward and inverse solution analyses to cause each motion pair to quickly follow the linkage and achieve the desired position and orientation. Kinematics analyses are not only the basis of robot motion control, but also the basis of subsequent workspace analysis [15].

According to the analysis in Sect. 3.2, the rotation angle and length of ED on the moving platform changed nonlinearly with the rotation of A1C1. Such a change increased the complexity of the mechanism and control algorithm. Equations (15) and (16) indicate that if \(e = f \) and \(g = h \), then \(\alpha = \theta \) and the length of ED was a constant value. At this point, the parallel mechanism was considered equivalent to a virtual revolute joint existing outside the mechanism. The motion of the parallel mechanism’s moving platform was regarded as circular motion around the revolute joint, and the motion...
law was consistent with that of the big arm \(A_1C_1 \), thus, when the end of the welding gun was located at the virtual revolute joint, the rotation motion was completely decoupled from the translation motion in the \(X \), \(Y \), and \(Z \) directions, which caused the system complexity to decrease. The results and analyses in the rest of the paper were based on \(e = f \) and \(g = h \).

First, the direct kinematics were studied, that is, the mapping between the robot joint space and the Cartesian coordinate space. To facilitate the analysis, each joint in the mechanism was adjusted to a special horizontal or vertical position, and the coordinate system was established according to the D–H model criterion [16]. The equivalent hybrid mechanism and coordinate system are shown in Fig. 6, and the values of each parameter in the D–H model are listed in Table 1.

In the D–H model modified based on Craig’s rule, the general transformation matrix expression for the coordinate system \(\{ i-1 \} \) relative to the coordinate system \(\{ i \} \) is given in Eq. (17):

\[
{^i}_{i-1}T = \begin{bmatrix}
\cos \theta_i & -\sin \theta_i & 0 & a_{i-1} \\
\sin \theta_i \cos \alpha_{i-1} & \cos \theta_i \cos \alpha_{i-1} & -\sin \alpha_{i-1} & -d_i \sin \alpha_{i-1} \\
\sin \theta_i \sin \alpha_{i-1} & \cos \theta_i \sin \alpha_{i-1} & \cos \alpha_{i-1} & d_i \cos \alpha_{i-1} \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

(17)

The matrix transformation of the robot end actuator relative to the base system could be expressed by Eq. (18):

\[
{^0}_nT = \prod_{i=1}^{n} {^i}_{i-1}T_i
\]

(18)

The forward kinematics problem was to find the position and orientation of the manipulator relative to the base robot system, namely, to find the homogeneous transformation matrix \({^0}_5T \). By substituting the D–H parameters from Table 1 into Eq. (17), the homogeneous transformation matrix \({^i}_{i-1}T_i \) for each joint was obtained. According to Eq. (18), the forward kinematics solution could be expressed by Eq. (19):

\[
{^0}_5T = \begin{bmatrix}
{n_3} & {o_3} & {a_3} & {P_3} \\
{n_2} & {o_2} & {a_2} & {P_2} \\
{n_1} & {o_1} & {a_1} & {P_1} \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

(19)

In Eq. (19), \(a_x = 1 \), \(n_y = -s_3 \), \(o_y = -c_3 \), \(n_z = c_3 \), \(o_z = s_3 \), \(p_x = d_5 + n \), \(p_y = -d_2 - d_4 c_3 \), \(p_z = d_6 s_3 + d_4 + m \), \(n_x = o_z = a_y = a_z = 0 \).

Then, the inverse kinematics solution was studied, that is, the mapping relationship between the Cartesian coordinate system and the joint coordinate system. According to the above analysis, the walking mechanism expanded the welding working space of the robot and introduced a redundant degree of freedom. Therefore, countless sets of solutions must exist for each end actuator orientation. Since the orientation-adjustment mechanism of the robot body had the required four-DOF orientation-adjustment capability, the displacement of the walking mechanism could be regarded as the translation expansion of the robot’s motion space in practical applications. Therefore, the robot motion was decoupled from the motion of the four-DOF robot along the walking axis. This study analyzed the inverse solution for the robot when walking to any position, that is, it assumed that any \(d_1 \) was a constant and \(d_1 \in (d_{1\text{min}}, d_{1\text{max}}) \). According to the kinematics analysis of the parallel mechanism, \(\theta_3 \) was the actual orientation angle of the end actuator, that is, \(\alpha = \theta_3 \). The inverse kinematics equation was then obtained according to Eq. (19):

\[
{^0}_nT = \prod_{i=1}^{n} {^i}_{i-1}T_i
\]

(18)

The forward kinematics problem was to find the position and orientation of the manipulator relative to the base robot system, namely, to find the homogeneous transformation matrix \({^0}_5T \). By substituting the D–H parameters from Table 1 into Eq. (17), the homogeneous transformation matrix \({^i}_{i-1}T_i \) for each joint was obtained. According to Eq. (18), the forward kinematics solution could be expressed by Eq. (19):

\[
{^0}_5T = \begin{bmatrix}
{n_3} & {o_3} & {a_3} & {P_3} \\
{n_2} & {o_2} & {a_2} & {P_2} \\
{n_1} & {o_1} & {a_1} & {P_1} \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

(19)

In Eq. (19), \(a_x = 1 \), \(n_y = -s_3 \), \(o_y = -c_3 \), \(n_z = c_3 \), \(o_z = s_3 \), \(p_x = d_5 + n \), \(p_y = -d_2 - d_4 c_3 \), \(p_z = d_6 s_3 + d_4 + m \), \(n_x = o_z = a_y = a_z = 0 \).

Then, the inverse kinematics solution was studied, that is, the mapping relationship between the Cartesian coordinate system and the joint coordinate system. According to the above analysis, the walking mechanism expanded the welding working space of the robot and introduced a redundant degree of freedom. Therefore, countless sets of solutions must exist for each end actuator orientation. Since the orientation-adjustment mechanism of the robot body had the required four-DOF orientation-adjustment capability, the displacement of the walking mechanism could be regarded as the translation expansion of the robot’s motion space in practical applications. Therefore, the robot motion was decoupled from the motion of the four-DOF robot along the walking axis. This study analyzed the inverse solution for the robot when walking to any position, that is, it assumed that any \(d_1 \) was a constant and \(d_1 \in (d_{1\text{min}}, d_{1\text{max}}) \). According to the kinematics analysis of the parallel mechanism, \(\theta_3 \) was the actual orientation angle of the end actuator, that is, \(\alpha = \theta_3 \). The inverse kinematics equation was then obtained according to Eq. (19):

\[
{^0}_nT = \prod_{i=1}^{n} {^i}_{i-1}T_i
\]

(18)

The forward kinematics problem was to find the position and orientation of the manipulator relative to the base robot system, namely, to find the homogeneous transformation matrix \({^0}_5T \). By substituting the D–H parameters from Table 1 into Eq. (17), the homogeneous transformation matrix \({^i}_{i-1}T_i \) for each joint was obtained. According to Eq. (18), the forward kinematics solution could be expressed by Eq. (19):

\[
{^0}_5T = \begin{bmatrix}
{n_3} & {o_3} & {a_3} & {P_3} \\
{n_2} & {o_2} & {a_2} & {P_2} \\
{n_1} & {o_1} & {a_1} & {P_1} \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

(19)

In Eq. (19), \(a_x = 1 \), \(n_y = -s_3 \), \(o_y = -c_3 \), \(n_z = c_3 \), \(o_z = s_3 \), \(p_x = d_5 + n \), \(p_y = -d_2 - d_4 c_3 \), \(p_z = d_6 s_3 + d_4 + m \), \(n_x = o_z = a_y = a_z = 0 \).

Then, the inverse kinematics solution was studied, that is, the mapping relationship between the Cartesian coordinate system and the joint coordinate system. According to the above analysis, the walking mechanism expanded the welding working space of the robot and introduced a redundant degree of freedom. Therefore, countless sets of solutions must exist for each end actuator orientation. Since the orientation-adjustment mechanism of the robot body had the required four-DOF orientation-adjustment capability, the displacement of the walking mechanism could be regarded as the translation expansion of the robot’s motion space in practical applications. Therefore, the robot motion was decoupled from the motion of the four-DOF robot along the walking axis. This study analyzed the inverse solution for the robot when walking to any position, that is, it assumed that any \(d_1 \) was a constant and \(d_1 \in (d_{1\text{min}}, d_{1\text{max}}) \). According to the kinematics analysis of the parallel mechanism, \(\theta_3 \) was the actual orientation angle of the end actuator, that is, \(\alpha = \theta_3 \). The inverse kinematics equation was then obtained according to Eq. (19):
This section presents further analysis of the requirements of Problem 3. Although the walking mechanism met the working space requirements in the weld length direction, one of the difficulties in welding membrane corrugated stainless-steel is that stamping and corrugated size errors are always present. Additionally, the film surfaces are highly reflective, which causes difficulty in conducting real-time welding trajectory detection and compensation using optical means. In this case, to achieve high welding accuracy, it is very important to adequately match the workspace characteristics of the welding robot and the thin-film corrugated surface structure.

The robot workspace is an important kinematic index reflecting the robot’s working characteristics and the applicability of the working conditions; it also verifies the rationality of the mechanism design to a certain extent [17]. The ripple position is the key welding position. The Monte Carlo method [18] was used to investigate the motion space of the welding robot with the ripple position as the reference. The implementation process consisted of four primary steps:

\[
\begin{align*}
 d_2 &= -p_y - (p_x - m - d_1) \cot \theta_1 \\
 d_4 &= \frac{p_x - m - d_1}{\sin \theta_1} \\
 d_5 &= p_x - n \\
 \theta_3 &= \alpha
\end{align*}
\] (20)

(a) The range of values for each joint variable were determined \((\theta_{\min}, \theta_{\max}) \).

(b) \(N \) groups of random value sequences of joint variables were generated by random functions \(\{ \theta_i \} \)

\[
\theta_i = \theta_{\min} + (\theta_{\max} - \theta_{\min}) \cdot \text{RAND}, \quad i = 1, 2, 3, 4, 5
\]

and RAND is a random number between 0 and 1.

(c) By substituting the joint variables, \(\theta_i (i = 1, 2, 3, 4, 5) \), into the orientation transformation matrix, \(^0T_5 \), the position vectors of the mechanism’s end actuator, \(P = [P_X, P_Y, P_Z] \), were obtained.

(d) A three-dimensional scatter diagram was drawn using MATLAB, and the spatial point cloud of the robot’s terminal motion was obtained.

The walking axis, \(Z_1 \), was set at the origin, and the workspace distribution of the robot body was studied. Within the value range of each joint variable, the robot workspace obtained using the Monte Carlo method is shown in Fig. 7.

In this figure, the \(x \), \(y \), and \(z \) directions correspond to the width, depth, and length directions, respectively, of the weld during the welding process. Figure 7a shows that the contour of the robot’s working space was of a curved-roof type, and the motion range of the welding gun in the width direction was 70 mm, which meets the welding requirements of the folded structure (40 mm). Figure 7b shows that the workspace section shape corresponded to the shape of the corrugated plate. When the wave peak of the corrugated plate and the virtual robot rotational center were at the same position along the \(z \)-axis, the allowable

Fig. 7 Cloud of points for the manipulator workspace. a Three-dimensional view of the robot workspace; b YOZ view
welding radius of the corrugated plate was larger than the standard corrugated size and had a large workspace redundancy. The workspace size and corrugated-curve structure were well matched.

4 Kinematic simulations

4.1 Degree-of-freedom verification

The kinematic pair and drive were added to the robot model, and a mechanism model verification using Automatic Dynamic Analysis of Mechanical System (ADAMS) software showed that the parallel mechanism had one degree of freedom, while there were five degrees of freedom in total for the hybrid mechanism. The mechanism had 11 over-constraint equations, which were consistent with the screw theory analysis results.

4.2 Forward kinematics verification

To verify the correctness of the forward kinematics solution, the offset distance between the virtual rotational center and the symmetric center of the mechanism was set to \(m = 0 \), and \(n = 171 \) mm was also selected. Forward and backswing motions with 20-s periods and 10-s lengths were implemented, and the trajectory of each moving joint could be described by Eq. (21):

\[
\begin{align*}
 d_1 &= 100 \sin \left(\frac{\pi}{10} \cdot t \right) \\
 d_2 &= 50 \sin \left(\frac{\pi}{10} \cdot t \right) \\
 \theta_3 &= 60 \sin \left(\frac{\pi}{10} \cdot t \right) \\
 d_4 &= 20 \sin \left(\frac{\pi}{10} \cdot t \right) \\
 d_5 &= 20 \sin \left(\frac{\pi}{10} \cdot t \right)
\end{align*}
\]

(21)

By substituting Eq. (21) into the kinematics forward solution model in Eq. (19), the theoretical calculated position data for the end mechanism in the X, Y, and Z-directions relative to the base coordinate system were obtained. Additionally, the drive shown in Eq. (21) was also applied to each joint in the ADAMS model to simulate the robot’s motion state. After unifying the post-simulation processing data and the theoretical calculation data, the results shown in Fig. 8 were obtained. These figures show that the simulation data and the data obtained by theoretical calculation had the same variation trends and that the error was very small, thus verifying the correctness of the kinematics forward solution model. The simulation and calculation were both aimed at the welding robot designed in this paper, and had the same input during calculation, so the results are very close. However, the accuracy of the data derived in MATLAB and ADAMS is different, so the results are not exactly the same.

4.3 Inverse kinematics verification

According to the above analysis, the displacement, \(d_i \), of the walking mechanism only affected the position of the robot body’s workspace, but not the shape of its workspace. Therefore, when verifying the inverse kinematics solution, \(\{O_1\} \) was set at the origin of the base standard system, that is, \(d_1 = 0 \). A parabolic motion in space with an interval of 10 s was planned for the mechanism’s end device, and the end trajectory of the mechanism could be expressed by Eq. (22):

\[
\begin{align*}
 x_p &= -t \\
 y_p &= \frac{1}{2} \cdot t(t - 10) \\
 z_p &= \frac{2}{5} \cdot t \\
 \alpha &= \frac{\pi}{90} \cdot t
\end{align*}
\]

(22)

In the ADAMS model, the driving function shown in Eq. (22) was applied at the centroid of the mechanism’s end device. The \(Z_1 \) moving pair was changed to a fixed constraint for motion simulation, and the displacement data variation rule for the driving pair of each moving joint was output with respect to time through post-processing. Meanwhile, by substituting Eq. (22) into Eq. (20), the displacement variation rule for each moving joint was obtained with respect to time from theoretical calculations. The curves generated using both methods are shown in Fig. 9. The figures show that the theoretical calculation results for the kinematic inverse solution had the same variation trend as the results from the software simulation, and the error was very small, thus verifying the correctness of the operational inverse solution model. The figure also shows that the displacement curves for each joint were continuous and smooth during motion, without a mutation phenomenon; in other words, the velocity changes were relatively uniform and the impact was relatively small, meaning that the mechanism had good stability during motion.

4.4 Corrugation trajectory motion simulation

The usage and motion function for each degree of freedom of the robot are described below: Before welding, the torch was pre-aligned with the weld through X-axis, and the end of the torch was adjusted to the virtual rotating axis by the calibration axis of \(V \), so as to realize the complete decoupling of the rotational and translational degrees of freedom. During the welding process, the movement along
The welding seam was realized by the walking axis of X. The movement in the vertical direction of the welding seam was realized by the Y axis. The angle adjustment of the welding gun was realized by the rotation movement of the parallel mechanism, and the dynamic adjustment of the welding gun height error was carried out by the LVDT sensor mounted on the V axis to keep the welding torch height constant.

The shape of the corrugated plate is irregular, and the kinematic model of the corrugated weld needs to be established before welding. The discrete coordinate sequence of the corrugated curve was obtained by image processing method. According to the obtained waveform curve coordinates, the welding speed was 2.5 mm/s, and the S-shaped trajectory planning combined with the linear and arc interpolation algorithm was used for segmental trajectory planning to obtain the trajectory time interpolation sequence of the first and second joints. According to the above time-position sequence, an independent trajectory planning of the third joint was carried out through cubic splines, as shown in Fig. 10.
The above track-time series were loaded into the corresponding kinematic joint of ADAMS. After simulation, the trajectory and velocity of the robot end were shown in Fig. 11. It can be seen from the figure that the rotation of the third joint did not affect the position and velocity of the robot end, so the hypothesis of “virtual revolute joint” was verified.

Fig. 9 Displacement curve for each joint. a Displacement of Z₂; b Displacement of θ₃; c Displacement of Z₄; d Displacement of Z₅

Fig. 10 Displacement curve for each joint. a Displacement of Z-axis; b Displacement of Y-axis; c Degree of A-axis
Corrugation trajectory-following experiments

The robot experimental platform and control system were built according to the mechanism scheme previously described, as shown in Figs. 12 and 13. The upper layer of the control system was a man–machine interaction module. The IPS touch screen and handheld terminal communicated with the main control system by USB and infrared communication respectively to realize the man–machine interaction function of the system. Raspberry pi 4, as the upper computer of the robot master control system, received instructions and information from the human–computer interaction module and the sensing and feedback system, and to process them for background management and error compensation calculation, and to deliver the control signal to the motion controller. Delta universal controller AS332P-A was used as the lower computer of control system, and RS485 bus was applied for Modbus communication with the host computer. AS332P-A received motion control instructions, and transmitted pulse signals of a certain frequency and quantity to each joint stepper motor driver, so that the robot moves according to the preset trajectory.

Additionally, ripple-trajectory motion experiments were conducted. In the ripple-track motion experiments, the expected normal distance between the terminal device and the ripple surface was set to 0. The normal error for the whole motion process was dynamically compensated by using LVDT feedback data to fine-tune the w-axis guide screw relative to the original position.

Ripple-track-following experiments were conducted for two corrugated plates of different specifications, with ripple heights of 47 mm and 21 mm, respectively. By substituting LVDT data feedback and encoders of each joint into Eq. (19), the terminal device trajectories and axial vectors were drawn and are shown in Fig. 14. The actual trajectory points of the terminal device coincided with the ripple curve, and the vector arrows pointing at the welding gun changed smoothly with the ripple curve and maintained a certain angle with respect to the normal direction of the curve.

The normal distance deviations between the track points and the corrugated curve were also drawn, as were the angle deviations between the end point and the normal line at that point, as shown in Fig. 15.

Figure 15 shows that the maximum distance deviation for the track points was approximately 0.8 mm. The angle deviations had approximately symmetrical distributions along the midline of the ripple, and the angle deviation interval was $\in (5^\circ, 20^\circ)$. The experimental results show that the welding angle could be controlled within the recommended literature range [19] by setting the initial position of the welding gun to simultaneously meet the welding distance and welding angle requirements for stainless-steel TIG welding.
Fig. 13 Robot control system structure

Fig. 14 End trajectory and axial vector diagrams. *a* Ripple heights of 47 mm; *b* Ripple heights of 21 mm

Fig. 15 Distance and angle deviation curves. *a* Ripple heights of 47 mm; *b* Ripple heights of 21 mm
6 Conclusions and future work

Focusing on the problems of mechanism kinematics, workspace design, and welding-process matching during automatic welding of corrugated plates in membrane chambers, a series–parallel–series hybrid automatic welding robot with redundant degrees of freedom and rapid assembly and disassembly was designed.

1. The composition and configuration characteristics of the robot were analyzed, and the robot degrees of freedom were determined based on screw theory. The kinematics law for the parallel mechanism was analyzed, and forward and inverse solution models for the robot were established. The workspace characteristics of the robot were also analyzed. The results showed that the robot had sufficient adaptability for welding of corrugated plates in membrane tanks.

2. The simulation and experimental results showed that the robot mechanism was reasonably designed, the motion was smooth, the distance and angle of the end were well controlled, and that the robot mechanism met the requirements for automatic welding of corrugated plates in membrane tanks.

The proposed welding robot structure provides equipment support for the welding of the main screen wall layer of the LNG membrane tank. Further work is necessary to perform in-situ TIG welding process experiments in the membrane chamber to verify and improve the robot’s structure and control system functionality.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00170-022-09861-2.

Acknowledgements We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Author contribution All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by all authors. The first draft of the manuscript was written by [Han Qingqing] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Funding This work was supported by the Natural Science Foundation of China [51675233].

Data availability Agree to open source sharing.

Code availability Agree to open source sharing.

Declarations

Ethics approval Not applicable.

Consent to participate All authors have approved to participate.

Consent for publication The authors give the consents to publish the manuscript.

Competing interests The authors declare no competing interests.

References

1. Gu Y, Chen X, Wang L (2015) Key technologies for building cargo containment system (CCS) mock-up of membrane type LNG carriers. Nav Archit Ocean Eng 31(2):62–67, 73
2. Yu YH, Kim BG, Lee DG (2012) Cryogenic reliability of composite insulation panels for liquefied natural gas (LNG) ships. Compos Struct 94(2):462–468. https://doi.org/10.1016/j.compstruct.2011.08.009
3. Ang MH, Lin W, Lim SY (1999) A walk-through programmed robot for welding in shipyards. Ind Rob 26(5):377–388. https://doi.org/10.1080/0101106.2011.3065956
4. Zhou B, Liu Y, Xiao Y, Zhou R, Gan Y, Fang F (2021) Intelligent guidance programming of welding robot for 3D curved welding seam. IEEE Access 9:42345–42357. https://doi.org/10.1109/access.2021.3065956
5. Li D, Chen H, Sheng Y, Yang L (2019) Dual-station intelligent welding robot system based on CCD. Meas Sci Technol 30(4):045401. https://doi.org/10.1088/1361-6501/abd0d7
6. Zhang G, Zhang Y, Tuo S, Hou Z, Yang W, Xu Z, Wu Y, Yuan H, Shin K (2021) A novel seam tracking technique with a four-step method and experimental investigation of robotic welding oriented to complex welding seam. Sensors (Basel) 21(9):3067. https://doi.org/10.3390/s21093067
7. Lima EJ, Fortunato Torres GC, Felizardo I, Ramalho Filho FA, Bracarense AQ (2005) Development of a robot for orbital welding. Ind Rob 32(4):321–335. https://doi.org/10.1108/01439910510600182
8. Gui Z, Deng Y, Sheng Z, Xiao T, Li Y, Zhang F, Dong N, Wu J (2014) Design and experimental verification of an intelligent wall-climbing welding robot system. In: 17th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, Poznan, Poland, 21–23 July 2014. World Scientific, pp 117–124. https://doi.org/10.1142/9789814623353_0014
9. Lee D, Lee S, Ku N, Lim C, Lee K-Y, Kim T-W, Kim J, Kim SH (2010) Development of a mobile robotic system for working in the double-hulled structure of a ship. Robot Comput Integr Manuf 26(1):13–23. https://doi.org/10.1016/j.rcim.2009.01.003
10. Ku N, Cha J-h, Lee K-Y, Kim J, Kim T-w, Ha S, Lee D (2010) Development of a mobile welding robot for double-hull structures in shipbuilding. J Mar Sci Technol 15(4):374–385. https://doi.org/10.1007/s00773-010-0099-5
11. Jiang Y (2021) Corrugated plate automatic welding machine and its control system. China Patent 202110952943(4):12
12. Wang Y, Lyu C, Liu J (2021) Kinematic analysis and verification of a new 5-DOF parallel mechanism. Appl Sci 11(17):1108. https://doi.org/10.3390/app11171108
13. Shi X, Ren L, Liao Z, Zhu J, Wang H (2017) Design & analysis of the mechanical system for a spacial 4-DOF series-parallel hybrid lower limb rehabilitation robot. J Mech Eng 53(13):48–54. https://doi.org/10.3901/jme.2017.13048
14. Carretelo JA, Podhorodeski RP, Nahon MA, Gosselin CM (2000) Kinematic analysis and optimization of a new three degree-of-freedom spatial parallel manipulator. J Mech Des 122(1):17–24. https://doi.org/10.1115/1.1533542
15. Guo J, Zhu Z, Chen M, Li Q (2018) Structural design and kinematics modeling of welding robot system for box-type steel
structure. Trans China Weld Inst 39(8):32–37, 130. https://doi.org/10.12073/j.hjxb.2018390196

16. Li L, Huang Y, Guo X (2019) Kinematics modelling and experimental analysis of a six-joint manipulator. J Eur Syst Autom 52(5):527–533. https://doi.org/10.18280/jesa.520513

17. Au C, Barnett J, Lim SH, Duke M (2020) Workspace analysis of Cartesian robot system for kiwifruit harvesting. Ind Rob 47(4):503–510. https://doi.org/10.1108/ir-12-2019-0255

18. Chu W, Huang X, Li S (2021) A calibration method of redundant actuated parallel mechanism for posture adjustment. Ind Rob 48(4):494–509. https://doi.org/10.1108/ir-11-2020-0251

19. Chen Q (2008) Welding handbook. China Machine Press, Beijing

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.