Molecular dynamics analysis of biomolecular systems including nucleic acids

Takeru Kameda¹,²,³, Akinori Awazu⁴,⁵, Yuichi Togashi¹,⁴,⁵,⁶,⁷

¹ College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
² Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
³ RIKEN Center for Biosystems Dynamics Research (BDR), Wako, Saitama 351-0198, Japan
⁴ Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
⁵ Research Center for the Mathematics on Chromatin Live Dynamics (RcMcD), Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
⁶ RIKEN Center for Biosystems Dynamics Research (BDR), Higashi-Hiroshima, Hiroshima 739-0046, Japan
⁷ Cybermedia Center, Osaka University, Ibaraki, Osaka 567-0047, Japan

Received March 31, 2022; Accepted August 18, 2022; Released online in J-STAGE as advance publication August 23, 2022
Edited by Haruki Nakamura

With the recent progress in structural biology and genome biology, structural dynamics of molecular systems that include nucleic acids has attracted attention in the context of gene regulation. The structure–function relationship is an important topic that highlights the importance of the physicochemical properties of nucleotides, as well as that of amino acids in proteins. Simulations are a useful tool for the detailed analysis of molecular dynamics that complement experiments in molecular biology; however, molecular simulation of nucleic acids is less well developed than that of proteins partly due to the physical nature of nucleic acids. In this review, we briefly describe the current status and future directions of the field as a guide to promote collaboration between experimentalists and computational biologists.

Key words: DNA/RNA, nucleosome, molecular modeling, simulation, structural dynamics

DNA carries genomic information, and RNA serves as a catalyst or regulator, as well as a temporal copy of the information. These nucleic acids are not merely information media but also parts of the information-processing machinery, and hence their physical properties are important for the operation of the system. However, compared with proteins and lipids, molecular simulation of nucleic acids is intrinsically difficult and requires further improvement. Here, we provide an overview of recent progress in this field and discuss future directions.

Introduction

Biological systems are characterized by a large variety of macromolecules, the functions of which are inseparable from their structure. In particular, the operation of molecular machines, such as enzymes, is coupled with their conformational changes, analogous to macroscopic machines. Structural biology from the viewpoint of physics and chemistry has thus expanded its scope of application and attracted broad attention in the life sciences. X-ray crystallography [1–3] and nuclear magnetic resonance (NMR) spectroscopy [4,5] have been applied to determine many protein structures, and recently,

Corresponding author: Yuichi Togashi, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan. ORCID iD: https://orcid.org/0000-0003-0032-2424, e-mail: togashi@fc.ritsumei.ac.jp
cryo-electron microscopy (cryoEM) has become a powerful tool for solving large complexes [6–11]. Analysis using these methods is driving progress in structural biology [12], and allowed protein structure and function (e.g., enzyme activity) to be unveiled in parallel [13]. However, progress in this area needs to proceed further, as there remain many proteins lacking a known structure.

These methods have also been applied to other biomolecules. Since the discovery of the double-helix structure of DNA by Watson and Crick [14], nucleic acids have been also targeted [15–17]. Similar to the amino acid sequence of proteins, the nucleotide sequence affects the structure and physical properties of nucleic acids [18,19]. Complexes of nucleic acids and proteins play crucial roles in the cell. Nucleosomes, as constituent units of chromatin, are of particular importance, and their structure has been determined [20–22]. Efforts to elucidate the relationships between nucleosome structure and dynamics and transcription-regulation mechanisms are now acknowledged in the emerging field of chromatin biology [23–25].

Although structural biological methods have contributed to solving a large number of structures, information on their dynamics is limited [26]. Analysis of structural dynamics is particularly important if the target molecule shows large conformational changes or secondary structure transitions; however, crystallography and cryoEM can provide only single static structures in most cases, and the spatiotemporal resolution of NMR is not very high. Molecular simulation has thus become a complement to these experimental methods [27–30]. In this review, an extended version of the Japanese article [31], we briefly introduce the basics of molecular dynamics (MD) simulations and then showcase recent advances in MD studies of proteins and nucleic acids. Finally, we discuss the current status and future directions of molecular modeling and simulation for nucleosomes and chromatin.

Molecular Dynamics (MD) Simulation

In this section, we briefly overview modeling and MD simulation techniques for nucleic acids and other biomolecules (for a general introduction to MD simulations, see Supplementary Text S1).

Force Fields for MD Simulation

Classical MD assumes that the force on each particle is calculated as a function of particle positions; i.e., a force field, although often represented in the form of a potential energy function. A force field is an approximation of quantum mechanics [32], and model parameters are determined by experiments or quantum chemistry calculations of small systems. Therefore, the parameters (e.g., bond stiffness) of a particular force field vary [33].

For biomolecules, such as proteins, nucleic acids, and lipids, AMBER [34,35], CHARMM [36,37], GROMOS [38], and OPLS [39,40] force fields are commonly used, with each having strengths and weaknesses according to the application. For example, AMBER provides variants of force fields adapted for different types of systems and is frequently used for nucleic acids. CHARMM is popular e.g. for membrane-bound proteins and has been increasingly used for nucleic acids, especially since the CHARMM36 update with improved accuracy [36]. An accurate force field specialized for DNA has been recently developed [41]. These force fields are periodically updated and will be further improved in the future [42].

Coarse-grained (CG) Models

A defined force field theoretically enables the performance of MD simulations for any system; however, system size and time scale are practically limited by computational costs. Using all-atom models, the accessible time scale is only nanoseconds to milliseconds, no longer than the folding time of small proteins [43,44].

Coarse-grained (CG) models are often used to mitigate this problem [45–48]. Coarse-graining reduces the number of particles (or variables) in the model (e.g., using a single particle as a substitute for atoms in an amino acid residue within a protein) [49,50], which can decrease the calculation of interactions and also increase the time step allowed, drastically saving computation time and costs (Fig. 1). Various CG models for proteins and nucleic acids have been proposed; however, their accuracy and application are limited due to the simplified form, which forfeits microscopic details such as side-chain conformations and interactions [51]. Currently, applications of CG models are problem-dependent, and improvements in their use for proteins and nucleic acids have been in progress [52–55]. Furthermore, long fibers of DNA and chromatin have been modeled as polymer chains [56–62], and efficient simulation methods have been considered [63].

Note that the use of massively parallel supercomputers enables simulations of large systems, e.g. all-atom models of cytoplasm [64], and even larger systems with billions of atoms (e.g. a whole cell) will be targeted. In contrast, computing time for each simulation step cannot be drastically reduced, even in a simulation of a small molecule by a state-of-the-art supercomputer; which is a so-called strong scaling problem. Hence, coarse-grained and/or simplified models will be still useful for slow (longer than milliseconds) phenomena also in the future.
Kameda et al.: Molecular dynamics analysis of nucleic acids

Figure 1 Coarse-grained (CG) models. (a) 3SPN (3-site-per-nucleotide) model [65,66]. Several atoms in the all-atom model are represented by a single particle, as shown in the right panel. Figure reprinted from [66] with permission. (b) OxDNA model [67]. Each nucleotide is assumed as a rigid body with a backbone and a base parts. Figure reproduced from [68] under the Creative Commons Attribution-NonCommercial License. (c) Elastic network (1P1N) model. Each nucleotide is represented by a particle, and all the interactions are approximated as linear springs. Figure reproduced from [55] under the Creative Commons Attribution License.

Extended Ensemble Methods

MD simulation numerically reproduces time series for coordinates that represent molecular motion. Considering the snapshots as samples of the structural ensemble allows evaluation of statistical or physical quantities, such as the frequency of secondary structure formation in proteins [69,70]. However, MD simulation in equilibrium is not always adequate to sufficiently explore the structural space to allow estimation of properties [71,72]. In MD simulation, the initial conformation is usually established according to an experimentally known structure. If the molecule acquires another stable conformation that is separated by a high free energy barrier (Fig. 2a), acquisition of the other conformation by the system within a realistic computational cost is likely impossible due to the barrier [69,73–76]. Countermeasures to address these situations have been applied.

An extended- or generalized-ensemble method can be applied, typically in combination with Monte Carlo simulations and also with MD simulations. Extended-ensemble methods make it easier to overcome free energy barriers by artificially creating high-energy states that appear more frequently than what would normally occur in the canonical ensemble. Multi-canonical and simulated-tempering methods are traditional examples along with replica-exchange [77–81] and umbrella-sampling [82–85] methods.

These enhanced methods can be largely classified into two groups; one of which depends on pre-defined collective variable(s) (CV), and the other does not require CVs. Although the dynamics of macromolecules involve thousands to millions of degrees of freedom (DoF), usually, only a small number of DoF are relevant to the function. Hence, the dynamics are often described by low-dimensional (typically one to several) generalized coordinates, or CVs, determined by a certain projection from the original coordinates; e.g., end-to-end or domain-to-domain distances may serve as CVs.

As long as the behavior is well captured by the CVs, conformational states can be efficiently sampled by artificially controlling the dynamics in the CV space. The umbrella-sampling method is a common CV-based method, which cancels the free energy barrier by the addition of a bias-potential function based on the CV(s) [86,87]. This allows conformational states within a certain range of coordinates to be intensively explored. Moreover, using multiple coordinate ranges can allow the broad sampling of states that include the barrier region, and the probability distribution (and hence the free energy landscape) can be recalculated by canceling the effect of the bias potential [88,89]. Metadynamics [90] and adaptive biasing force [91] methods are also based on CVs. If the initial and final states of the transition are known, besides, path sampling techniques such as the string method are convenient for searching the structural transition path [92,93].

In contrast, CV-free methods are useful when the system involves complex phenomena that cannot be represented by low-dimensional coordinates. The replica-exchange method is a parallel version of simulated tempering (also known as parallel tempering), where multiple replicas of the same system are simulated at different temperatures or other parameters in parallel. In the case of temperature replica exchange, replicas are exchanged between two temperatures and at a probability that does not change the equilibrium distribution. By using an appropriate set of temperatures, the system can escape from (meta)stable states at a high temperature (Fig. 2b). Replica-exchange MD simulation is frequently used for
Figure 2 The free energy barrier. (a) Local free energy minima separated by high energetic barriers can significantly limit conformational sampling within a limited simulation time (left; the simulation starts at state A and ends before reaching another state, B), which distorts the estimated free energy landscape (right). (b) Schematics of the temperature replica-exchange method. Transitions are possible at a high temperature. The exchange probability obeys the detailed balance condition, which maintains the distribution and hence the free energy profile at each temperature unchanged.

Various problems such as protein-folding [94,95]. Multicanonical MD [96] and accelerated MD [97] methods also belong to this class.

Although these methods are frequently used for proteins, there remain problems with their application to systems that include nucleic acids.
MD Simulation of Nucleic Acids

In this section, we focus on MD studies on simplex nucleic acids, such as DNA and RNA. In the case of proteins, MD simulations usually initiate from an already-folded structure according to structural data deposited in the protein data bank (PDB), and homology modeling is applied when necessary [98,99]. By contrast, there are limited cases of experimentally determined simplex nucleic acid structures except some short segments [100–103], given that they do not generally fold into a specific stable structure. For double-stranded structures of nucleic acids, structures can be modeled by stacking individual base pairs (Fig. 3). Specifically, base-pair configurations are determined by base-step parameters depending on the specific nucleotides; e.g. X3DNA [104,105]. Double-stranded (ds) DNA structures can theoretically be generated for any nucleotide sequence in this way [52,106,107], resulting in predicted structures that are potentially applicable for MD simulation.

In addition to common B-DNA, other structures including A- and Z-DNA can be observed under special conditions [108], and their formation or transition from B-DNA has been studied [109,110]. Such structural transitions have also been the target of MD simulations, in particular their solution conditions, free energy barriers, and deformation sites [110–112]. Additionally, excessive mechanical stress can reportedly induce transitions between DNA structures [113,114], with transitions depending on the chemical modification of DNA previously studied by MD simulation [115].

Chemical modification frequently occurs in DNA in the eukaryotic genome and acts as a biochemical signal [116,117]. For example, DNA methylation is broadly observed and biologically important, as 5-methylated cytosine (5mC or mC) in CpG islands (regions where CpG dinucleotides are condensed) is a well-known gene-silencing signal involved in regulating cell differentiation [118–120]. The effects of DNA methylation have been investigated by MD simulation, with findings ranging from those associated with microscopic interactions with nearby atoms (Fig. 4) and hydration [121–124] to functional behavior, such as strand separation [125] and homologous sequence recognition [126], as well as alterations relevant to nucleosome formation and positioning [127,128]. In a previous study, we focused on microscopic mechanical properties represented by base-pair and base-step dynamics (Fig. 3) and systematically evaluated their dependence on methylation patterns (Fig. 4) [124]. Moreover, these dependencies may explain the mechanism of (macroscopic) methylation-induced DNA stiffening observed experimentally [128,129]. Notably, other DNA modification besides methylation have gained increasing attention, and their effects have been discussed [125,128].

Figure 3 Base-pair and base-step parameters. Relative positioning (translation and rotation) of bases in a base pair (base-pair parameters) or between adjacent base pairs (base-step parameters) [104,105]. Bases are shown as planes. Figure derived from [104] under the Creative Commons Attribution License.
Compared with DNA, little is known about the physical properties of RNA either through experimental or simulated observations. Simplex RNA typically does not form a specific structure similar to dsDNA. The backbone of RNA is flexible and can result in promiscuous base-pairing between complementary sequences; therefore, its folding pattern is not simply related to the nucleotide sequence, and hence methods to determine RNA structure have been sought. RNA secondary structures have been a primary focus of discussion regarding prediction methods [130–132]. Structures of protein–RNA complexes have been determined by crystallography [133–135], and although methods for predicting RNA structure remain under development, the three-dimensional (3D) structure of RNA has been investigated in the context of riboswitches [136–138]. Recently, noncoding RNA was intensively studied and its function in gene regulation elucidated. In these fields, it is likely that the roles of RNA as molecular machines will be a research focus and for which the structure–function relationship is important.

Although MD simulations have been applied to RNA molecules with experimentally known structures, there remains room for improvement in force field accuracy [139] and the analysis of dynamics [140]. Specifically, the experimental data needed for calibration (e.g., the crystallographic B-factor) is still not satisfactory, and additional datasets would be valuable for the refinement of force fields [141,142]. For dynamics analysis, the definition of modes of motion or reaction coordinates is important; however, there is a lack of consensus for RNA, unlike proteins, where functional domains are known in many cases. In the case of single-stranded RNA, structural behavior is extremely diverse, and its classification requires both novel experiments and theories. Currently, the behavior of only short RNA segments (e.g., hairpin structure [143], tetraloop formations [144], and base stacking [145,146]) has been discussed. In addition, nucleotide dependence and/or chemical modification in many specific systems have been discussed [147].

Another area involves comparison of DNA and RNA. Although they differ only by an oxygen atom in the nucleotide monomer, disparities are observed in the flexibility of double-stranded molecules [148], backbone dynamics and base stacking [146], and twisting and stretching stiffness [149,150]. For example, when stretched, DNA overwinds resulting in a smaller helical radius, whereas RNA unwinds [150]. Moreover, the geometries estimated by simulation also differ. Such distinct features of DNA and RNA are also likely important to their roles in molecular complexes (e.g., RNA polymerase [151] and CRISPR-Cas9 [152]).

MD Analysis of Nucleosomes

Nucleic acids do not always work alone and sometimes form a complex with proteins. Transcription factors such as p53 interact with DNA, and their recognition and binding mechanisms have been discussed by MD simulations [153]. The CRISPR-Cas9 complex, broadly utilized for genome editing, is also a target of MD analysis [152,154]. Ribosomes are protein-RNA complexed machinery essential for protein synthesis, though too large for all-atom MD as a whole [155,156].
Of special interest are nucleosomes. Chromatin comprises nucleosomes, which represent complexes of DNA and histone proteins [20,158–161]. Nucleosome structures have been determined by crystallography and cryoEM, resulting in numerous structural datasets available in the PDB for different complexes [162–165]. Moreover, determination of conformations of multiple nucleosomes along the DNA is also possible [166,167]; however, proper utilization of these data remains an issue for theoretical and computational biologists.

Nucleosome positioning on genomic DNA has been extensively investigated experimentally. Sequencing of nucleosomal DNA (e.g., MNase-seq) can demonstrate nucleosome affinity [168–170], which can be affected by DNA mechanics depending on the DNA sequence. However, there are few structural studies addressing the sequence-dependence of such interactions. Nevertheless, special sequences required for stable nucleosome formation are commonly employed in structural-determination experiments [20,21], whereas computational studies usually adopt the sequence present in the given structure. Additionally, nucleosome sliding has been discussed in the context of MD simulations [171–173], with results showing that dsDNA dynamics are dependent on nucleotide sequence, which thus alters the sliding behavior. For example, a previous study evaluating the “601 sequence” (known for highly stable positioning) showed discrete transitions, whereas simple repeat sequences allowed continuous sliding [173]. These studies applied CG models of DNA and protein, and despite their omission of atomic details, the results successfully defined the effects of nucleotide sequences and have been further applied to other investigations of chromatin dynamics [25,174–176].

Nucleosome unwrapping (i.e., extracting DNA from core histones) has been investigated using either all-atom or coarse-grained models in order to determine specifics regarding regulation of the nucleosome structure and the accessibility of nucleosomal DNA. Of particular interest are the pioneer factors that interact with nucleosomal DNA to affect gene transcription [177]. The energetic barriers to changes in nucleosome conformation (i.e., resistance to unwrapping) and the roles of histones have been surveyed [157,178–182]. The stable barrel-like structure is amenable to characterizing nucleosome motion. Such studies use the end-to-end distance of DNA as a coordinate (CV), which allows evaluation of structural dynamics according to those structural coordinates. Recently, long MD simulations revealed plausible modes of nucleosome unwrapping at the beginning of sliding (Fig. 5) [157]. The behavior of neighboring or overlapping nucleosomes [183] is also current targets of detailed MD analyses [184]. Such studies promote future prediction of nucleosome dynamics.

Systems of single to several nucleosomes are now good targets for MD simulations. Currently, the majority of MD studies of nucleosomes focus on histones rather than DNA. For example, the effects of histone modification (e.g., methylation at specific positions) on the nucleosome dynamics have been investigated [185,186], with the findings largely consistent with those from biochemical studies. Furthermore, the roles of histone tails in nucleosome unwrapping [157] or alignment [187] have been elucidated, with the dynamics of these tails affecting overall structural stability [188–193] and offering insight into structures lacking some histones [194].

Because DNA and core histones have large negative and positive charges, respectively, they strongly attract each other and stabilize the barrel-like structure of the nucleosome; however, this also makes MD studies difficult, in that such stability precludes observation of conformational changes within a realistic time scale (e.g., microseconds for all-atom models). Therefore, detection of subtle differences based on changes in single nucleotides may require higher computational costs.
Additionally, the tails of histones are flexible and strongly attract nucleosomal DNA [189,194], resulting in observation of spontaneous detachment a rare event in MD simulations. A possible solution to this problem involves the application of methods that involve variable (reduced) strengths of electrostatic interactions (e.g., REST2 [195,196]).

Summary and Future Perspectives

In this review, we described analytical methods for evaluating the structural dynamics of molecular systems that include nucleic acids. We focused on efficient sampling methods for assessing conformational states and their necessity due to the prohibitive computational cost of all-atom MD simulation over physiological time scales. Because nucleic acids are becoming higher profile targets of bioengineering and drug discovery (e.g. mRNA vaccines [197–199]), determining the structural dynamics of nucleic acids is of increasing importance, and effective computational methods for this research are needed.

Many proteins form a specific folded structure characterized by secondary structures or functional domains, whereas nucleic acids do not usually fold into a single structure, making definition of their structural states or order parameters nontrivial. Although dsDNA is typically characterized by local structural variables, these cannot be used to represent meso- or macroscopic structural properties. This is further complicated in the case of RNA, which lacks consensus parameters necessary for structural analysis. The application of CV-based methods to nucleic acids is thus obstructed in many cases.

In some specific systems, we can define CVs suitable for the dynamics of nucleic acids therein. We recently proposed a method to estimate the free energy landscape for the binding of base pairs without destroying the structure by applying adaptive biasing force MD [91], one of the CV-based methods; in which the distance between the bases in each pair could be chosen as a CV (Fig. 6) [155,156]. Although the system size is limited by its relatively large computational cost, application of this method demonstrated the binding dynamics of codons and anticodons in the ribosome (pre-initiation complex), thereby offering insight into the mechanical basis of start-codon recognition, and confirming that the estimated affinity was consistent with the experimentally-observed initiation frequency. This method would likely be useful for the analysis of nucleotide-dependent behavior in other systems.

On the other hand, CV-free methods have shortcomings that become crucial for systems with nucleic acids. For example, following denaturation of dsDNA, the strands do not revert to the original double-stranded structure within the typical time scale of an MD simulation; therefore, sampling methods involving complete separation of strands (e.g. temperature replica-exchange MD) cannot work efficiently. Nevertheless, for complex behavior, CV-free methods need to be adopted, and there are choices other than the classical replica-exchange. The Gaussian accelerated MD method, for example, was successfully applied to the CRISPR–Cas9 system [152,154].

Machine learning approaches are getting popular also in the field of structural biology. Among them, 3D-structure prediction by AlphaFold2 [200,201] and RoseTTAFold [202] have attracted attention [203]. These methods rely on structural data available in the PDB and provide not only a predicted structure but also additional information valuable for MD analysis, e.g. to define CVs [204]. Another trend is machine learning force fields. Unlike classical force fields, the potential function does not depend on the pre-defined types of atoms, instead fits quantum mechanics calculations using machine learning [205,206]. These techniques are indeed powerful, however, their statistical nature requires a large amount of data in general. Compared with proteins, available data sets are still limited for nucleic acids, and reliable prediction of structure and dynamics requires the accumulation of additional data. Although a similar structure prediction technique was proposed for RNA [207], there remains significant room for improvement.

In the field of drug discovery, recently, RNA-targeted drugs have attracted increased attention [208]. Currently, most studies targeting RNA with small molecules are aimed at inhibition of splicing or translation (such as antibiotics), using small molecules as structural restraints, and simulation-based techniques have not been fully utilized yet [209,210]. Development of MD analysis for the complex behavior of nucleic acids will open the possibility of rational design of nucleic-acid-targeted drugs. As well as existing drug-target proteins such as receptors or kinases, hopefully, interactions between nucleic acids and ligands will be efficiently surveyed and designed in near future.

Given the diversity of biopolymers and biopolymer complexes, only a very limited portion of possible combinations can be studied. This is especially problematic when the molecular function or structure–function relationship of these biopolymers is unclear. Solutions toward the effectual survey of such molecules and finding of their universal laws include the application of informatics, which allows the comparison of items represented by sequences, although frequently at the exclusion of physicochemical properties. Therefore, combinations of computational biophysics and bioinformatics (including multi-omics analyses) will be powerful tools for the analysis of biomolecular dynamics [211].
Figure 6 Pairing of mRNA and tRNA in the ribosome. (a) Binding and unbinding dynamics. Binding is facilitated by stabilization of the first base pair, followed by formation of the second and third base pairs (left, downward arrows). Unbinding appears to be initiated by dissociation of the third base pair (right, upward arrow) and enhanced by stretching (right, thick arrow). (b) The adaptive biasing force (ABF) method. Mean forces in terms of the CV (conformational coordinate) ξ are calculated through the potential of mean force. Additional bias that cancels the mean forces is applied in order to unfavor already well-sampled regions and allow efficient sampling of conformations in high free energy regions (e.g. mismatched base-pairing in this case) without changing the temperature. Figure reproduced from [155] under the Creative Commons Attribution License.

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Author Contributions

TK, AA, and YT wrote the paper. A preliminary version of this work, DOI: 10.48550/arXiv.2111.10749, was deposited in the arXiv on November 21, 2021.

Acknowledgements

The authors are grateful to S. Tate, T. Yamamoto, N. Sakamoto, M. M. Suzuki, I. Nikaido, R. Erban, K. Asano, S. Shinkai, and H. Nishimori for fruitful discussions. This work was supported by JSPS KAKENHI (grant No. JP18KK0388).

References

[1] Boutet, S., Lomb, L., Williams, G. J., Barends, T. R. M., Aquila, A., Doak, R. B., et al. High-
resolution protein structure determination by serial femtosecond crystallography. Science 337, 362–364 (2012). https://doi.org/10.1126/science.1217737

[2] Spence, J. C. H., Weierstall, U., Chapman, H. N. X-ray lasers for structural and dynamic biology. Rep. Prog. Phys. 75, 102601 (2012). https://doi.org/10.1088/0034-4885/75/10/102601

[3] Martin-Garcia, J. M., Conrad, C. E., Coe, J., Roy-Chowdhury, S., Fromme, P. Serial femtosecond crystallography: A revolution in structural biology. Arch. Biochem. Biophys. 602, 32–47 (2016). https://doi.org/10.1016/j.jb.2016.03.036

[4] Kay, L. E. NMR studies of protein structure and dynamics. J. Magn. Reson. 213, 477–491 (2011). https://doi.org/10.1016/j.jmr.2011.09.009

[5] Prestegard, J. H. New techniques in structural NMR — anisotropic interactions. Nat. Struct. Biol. 5, 517–522 (1998). https://doi.org/10.1038/337756a0

[6] Topf, M., Lasker, K., Webb, B., Wolfson, H., Chiu, W., Sali. A. Protein structure fitting and refinement guided by cryo-EM density. Structure 16, 295–307 (2008). https://doi.org/10.1016/j.str.2007.11.016

[7] Yip, K. M., Fischer, N., Paknia, E., Chari, A., Stark, H. Atomic-resolution protein structure determination by cryo-EM. Nature 587, 157–161 (2020). https://doi.org/10.1038/s41586-020-2833-4

[8] Shi, D., Nannenga, B. L., Iadanza, M. G., Gonçalves, J. Three-dimensional electron crystallography of protein microcrystals. eLife 2, e01345 (2013). https://doi.org/10.7554/eLife.01345

[9] Nogales, E. The development of cryo-EM into a mainstream structural biology technique. Nat. Methods 13, 24–27 (2016). https://doi.org/10.1038/nmeth.3694

[10] Ho, P. T., Reddy, V. S. Rapid increase of near atomic resolution virus capsid structures determined by cryo-electron microscopy. J. Struct. Biol. 201, 1–4 (2018). https://doi.org/10.1016/j.jsb.2017.10.007

[11] Raunser, S. Cryo-EM revolutionizes the structure determination of biomolecules. Angew. Chem. Int. Ed. 56, 16450–16452 (2017). https://doi.org/10.1002/anie.201710679

[12] Branden, C. I., Tooze, J. Introduction to Protein Structure, 2nd ed. (Garland Science, New York, 1998). https://doi.org/10.1201/9781136969898

[13] Sadowski, M. I., Jones, D. T. The sequence–structure relationship and protein function prediction. Curr. Opin. Struct. Biol. 19, 357–362 (2009). https://doi.org/10.1016/j.sbi.2009.03.008

[14] Watson, J. D., Crick, F. H. C. Molecular structure of nucleic acids: A structure for deoxyribonucleic acid. Nature 171, 737–738 (1953). https://doi.org/10.1038/171737a0

[15] Sim, A. Y. L., Minny, P., Levitt, M. Modeling nucleic acids. Curr. Opin. Struct. Biol. 22, 273–278 (2012). https://doi.org/10.1016/j.sbi.2012.03.012

[16] Blackburn, G. M., Gait, M. J., Loakes, D., Williams, D. M. eds. Nucleic Acids in Chemistry and Biology, 3rd. ed. (Royal Society of Chemistry, Cambridge, 2006). https://doi.org/10.1039/9781847555380

[17] McCammon, J. A., Harvey, S. C. Dynamics of Proteins and Nucleic Acids. (Cambridge University Press, Cambridge, 1987). https://doi.org/10.1017/CBO9781139167864

[18] Rief, M., Clausen-Schaumann, H., Gaub, H. E. Sequence-dependent mechanics of single DNA molecules. Nat. Struct. Biol. 6, 346–349 (1999). https://doi.org/10.1038/171737a0

[19] Ma, N., van der Vaart, A. Anisotropy of B-DNA groove bending. J. Am. Chem. Soc. 138, 9951–9958 (2016). https://doi.org/10.1021/jacs.6b05136

[20] Davey, C. A., Sargent, D. F., Luger, K., Maeder, A. W., Richmond, T. J. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Å resolution. J. Mol. Biol. 319, 1097–1113 (2002). https://doi.org/10.1016/S0022-2836(02)00386-8

[21] Vasudevan, D., Chua, E. Y. D., Davey, C. A. Crystal structures of nucleosome core particles containing the ‘601’ strong positioning sequence. J. Mol. Biol. 403, 1–10 (2010). https://doi.org/10.1016/j.jmb.2010.08.039

[22] Tan, S., Davey, C. A. Nucleosome structural studies. Curr. Opin. Struct. Biol. 21, 128–136 (2011). https://doi.org/10.1016/j.sbi.2010.11.006

[23] Luger, K., Hansen, J. C. Nucleosome and chromatin fiber dynamics. Curr. Opin. Struct. Biol. 15, 188–196 (2005). https://doi.org/10.1016/j.sbi.2005.03.006

[24] Dai, Z., Ramesh, V., Locasale, J. W. The evolving metabolic landscape of chromatin biology and epigenetics. Nat. Rev. Genet. 21, 737–753 (2020). https://doi.org/10.1038/s41576-020-0270-8

[25] Hihara, S., Pack, C.-G., Kaizu, K., Tani, T., Hanafusa, T., Nozaki, T., et al. Local nucleosome dynamics facilitate chromatin accessibility in living mammalian cells. Cell Rep. 2, 1645–1656 (2012). https://doi.org/10.1016/j.celrep.2012.11.008

[26] Rao, F., Karplus, M. Protein dynamics investigated by inherent structure analysis. Proc. Natl. Acad. Sci. U.S.A.
Kameda et al.: Molecular dynamics analysis of nucleic acids

107, 9152–9157 (2010). https://doi.org/10.1073/pnas.0915087107

[27] Frenkel, D., Smit, B. Understanding Molecular Simulation: From Algorithms to Applications, 2nd ed. (Academic Press, San Diego, 2002). https://doi.org/10.1016/B978-0-12-267351-1.X5000-7

[28] Kofke, D. A. Getting the most from molecular simulation. Mol. Phys. 102, 405–420 (2004). https://doi.org/10.1080/00268970410001683861

[29] Bonomi, M., Camilloni, C. eds. Biomolecular Simulations: Methods and Protocols. (Humana Press, New York, 2019). https://doi.org/10.1007/978-1-4939-9608-7

[30] Huggins, D. J., Biggin, P. C., Dämgen, M. A., Essex, J. W., Harris, S. A., Henchman, R. H., et al. Biomolecular simulations: From dynamics and mechanisms to computational assays of biological activity. Wiley Interdiscip. Rev. Comput. Mol. Sci. 9, e1393 (2019). https://doi.org/10.1002/wcms.1393

[31] Kameda, T., Awazu, A., Togashi, Y. Molecular dynamics analysis of partially disassembled nucleosomes. SEIBUTSU BUTSURI 60, 288–290 (2020). https://doi.org/10.2142/biophys.60.288

[32] Donchev, A. G., Ozrin, V. D., Subbotin, M. V., Tarasov, O. V., Tarasov, V. I. A quantum mechanical polarizable force field for biomolecular interactions. Proc. Natl. Acad. Sci. U.S.A. 102, 7829–7834 (2005). https://doi.org/10.1073/pnas.0502962102

[33] Weiner, S. J., Kollman, P. A., Case, D. A., Singh, U. C., Ghio, C., Alagona, G., et al. A new force field for molecular mechanical simulation of nucleic acids and proteins. J. Am. Chem. Soc. 106, 765–784 (1984). https://doi.org/10.1021/ja00315a051

[34] Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., Case, D. A. Development and testing of a general amber force field. J. Comput. Chem. 25, 1157–1174 (2004). https://doi.org/10.1002/jcc.20035

[35] Zhang, Y., Zhang, Y., McCready, M. J., Maginn, E. J. Evaluation and refinement of the general AMBER force field for nineteen pure organic electrolyte solvents. J. Chem. Eng. Data 63, 3488–3502 (2018). https://doi.org/10.1021/acs.jced.8b00382

[36] Hart, K., Foloppe, N., Baker, C. M., Denning, E. J., Nilsson, L., MacKerell Jr, A. D. Optimization of the CHARMM additive force field for DNA: Improved treatment of the BI/BII conformational equilibrium. J. Chem. Theory Comput. 8, 348–362 (2012). https://doi.org/10.1021/ct200723y

[37] Best, R. B., Zhu, X., Shim, J., Lopes, P. E., Mittal, J., Feig, M., et al. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone ϕ, ψ and side-chain χ1 and χ2 dihedral angles. J. Chem. Theory Comput. 8, 3257–3273 (2012). https://doi.org/10.1021/ct300400x

[38] Scott, W. R. P., Hünenberger, P. H., Tironi, I. G., Mark, A. E., Billeter, S. R., Fennen, J., et al. The GROMOS biomolecular simulation program package. J. Phys. Chem. A 103, 3596–3607 (1999). https://doi.org/10.1021/jp984217f

[39] Robertson, M. J., Tirado-Rives, J., Jorgensen, W. L. Improved peptide and protein torsional energetics with the OPLS-AA force field. J. Chem. Theory Comput. 11, 3499–3509 (2015). https://doi.org/10.1021/acs.jctc.5b00356

[40] Robertson, M. J., Tirado-Rives, J., Jorgensen, W. L. Improved treatment of nucleosides and nucleotides in the OPLS-AA force field. Chem. Phys. Lett. 683, 276–280 (2017). https://doi.org/10.1016/j.cplett.2017.02.049

[41] Ivani, I., Dans, P. D., Noy, A., Pérez, A., Faustino, I., Hospital, A., et al. Parmbsc1: A refined force field for DNA simulations. Nat. Methods 13, 55–58 (2016). https://doi.org/10.1038/nmeth.3658

[42] Nerenberg, P. S., Head-Gordon, T. New developments in force fields for biomolecular simulations. Curr. Opin. Struct. Biol. 49, 129–138 (2018). https://doi.org/10.1016/j.sbi.2018.02.002

[43] Klepeis, J. L., Lindorff-Larsen, K., Dror, R. O., Shaw, D. E. Long-timescale molecular dynamics simulations of protein structure and function. Curr. Opin. Struct. Biol. 19, 120–127 (2009). https://doi.org/10.1016/j.sbi.2009.03.004

[44] Chodera, J. D., Swope, W. C., Pitera, J. W., Dill, K. A. Long-time protein folding dynamics from short-time molecular dynamics simulations. Multiscale Model. Simul. 5, 1214–1226 (2006). https://doi.org/10.1137/06065146X

[45] Noid, W. G. Perspective: Coarse-grained models for biomolecular systems. J. Chem. Phys. 139, 090901 (2013). https://doi.org/10.1063/1.4818908

[46] Izvekov, S., Voth, G. A. A multiscale coarse-graining method for biomolecular systems. J. Phys. Chem. B 109, 2469–2473 (2005). https://doi.org/10.1021/jp044629q

[47] Tozzini, V. Coarse-grained models for proteins. Curr. Opin. Struct. Biol. 15, 144–150 (2005). https://doi.org/10.1016/j.sbi.2005.02.005

[48] Shino, G., Takada, S. Modeling DNA opening in the eukaryotic transcription initiation complexes via coarse-grained models. Front. Mol. Biosci. 8, 772486 (2021). https://doi.org/10.3389/fmolb.2021.772486

[49] Takada, S. Coarse-grained molecular simulations of large biomolecules. Curr. Opin. Struct. Biol. 22, 130–137 (2012). https://doi.org/10.1016/j.sbi.2012.01.010
[50] Takada, S., Kanada, R., Tan, C., Terakawa, T., Li, W., Kenzaki, H. Modeling structural dynamics of biomolecular complexes by coarse-grained molecular simulations. Acc. Chem. Res. 48, 3026–3035 (2015). https://doi.org/10.1021/acs.accounts.5b00338

[51] Wagner, J. W., Dannenhoffer-Lafage, T., Jin, J., Voth, G. A. Extending the range and physical accuracy of coarse-grained models: Order parameter dependent interactions. J. Chem. Phys. 147, 044113 (2017). https://doi.org/10.1063/1.4995946

[52] Kameda, T., Isami, S., Togashi, Y., Nishimori, H., Sakamoto, N., Awazu, A. The 1-particle-per-k-nucleotides (1PkN) elastic network model of DNA dynamics with sequence-dependent geometry. Front. Physiol. 8, 103 (2017). https://doi.org/10.3389/fphys.2017.00103

[53] Togashi, Y., Flechsig, H. Coarse-grained protein dynamics studies using elastic network models. Int. J. Mol. Sci. 19, 3899 (2018). https://doi.org/10.3390/ijms19123899

[54] Amyot, R., Togashi, Y., Flechsig, H. Analyzing fluctuation properties in protein elastic networks with sequence-specific and distance-dependent interactions. Biomolecules 9, 549 (2019). https://doi.org/10.3390/biom9100549

[55] Isami, S., Sakamoto, N., Nishimori, H., Awazu, A. The 1-particle-per-k-nucleotides (1PkN) elastic network model of DNA dynamics with sequence-dependent geometry. Front. Physiol. 8, 103 (2017). https://doi.org/10.3389/fphys.2017.00103

[56] Langowski, J. Polymer chain models of DNA and chromatin. Eur. Phys. J. E Soft Matter 19, 241–249 (2006). https://doi.org/10.1140/epje/i2005-10067-9

[57] Marenduzzo, D., Micheletti, C., Cook, P. R. Entropy-driven genome organization. Biophys. J. 90, 3712–3721 (2006). https://doi.org/10.1529/biophysj.105.077685

[58] Rosa, A., Everaers, R. Structure and dynamics of interphase chromosomes. PLoS Comput. Biol. 4, e1000153 (2008). https://doi.org/10.1371/journal.pcbi.1000153

[59] Knotts, T. A., Rathore, N., Schwartz, D. C., de Pablo, J. J. A coarse grain model for DNA. J. Chem. Phys. 126, 084901 (2007). https://doi.org/10.1063/1.2431804

[60] Hincley, D. M., Freeman, G. S., Whitmer, J. K., de Pablo, J. J. An experimentally-informed coarse-grained 3-site-per-nucleotide model of DNA: Structure, thermodynamics, and dynamics of hybridization. J. Chem. Phys. 139, 144903 (2013). https://doi.org/10.1063/1.4822042

[61] Ouldridge, T. E., Louis, A. A., Šulc, P., Schaeffer, J. M., Yurke, B., Louis, A. A., et al. The fractal globule as a model of chromatin architecture in the cell. Chromosome Res. 19, 37–51 (2011). https://doi.org/10.1007/s10577-010-9177-0

[62] Tokuda, N., Terada, T. P., Sasai, M. Dynamical modeling of three-dimensional genome organization in interphase budding yeast. Biophys. J. 102, 296–304 (2012). https://doi.org/10.1016/j.bpj.2011.12.005

[63] Annunziatella, C., Chiariello, A. M., Esposito, A., Bianco, S., Fiorillo, L., Nicodemi, M. Molecular dynamics simulations of the strings and binders switch model of chromatin. Methods 142, 81–88 (2018). https://doi.org/10.1016/j.ymeth.2018.02.024

[64] Shinkai, S., Nakagawa, M., Sugawara, T., Togashi, Y., Ochiai, H., Nakato, R., et al. PHi-C: Deciphering Hi-C data into polymer dynamics. NAR Genom. Bioinform. 2, lqaa020 (2020). https://doi.org/10.1093/nargab/lqaa020

[65] Rolls, E., Togashi, Y., Erban, R. Varying the resolution of the Rouse model on temporal and spatial scales: Application to multiscale modeling of DNA dynamics. Multiscale Model. Simul. 15, 1672–1693 (2017). https://doi.org/10.1016/j.jymeth.2018.02.024

[66] Yu, I., Goris, T., Ando, T., Harada, R., Jung, J., Sugita, Y., et al. Biomolecular interactions modulate macromolecular structure and dynamics in atomic model of a bacterial cytoplasm. eLife 5, e19274 (2016). https://doi.org/10.7554/eLife.19274

[67] Knotts, T. A., Rathore, N., Schwartz, D. C., de Pablo, J. J. A coarse grain model for DNA. J. Chem. Phys. 126, 084901 (2007). https://doi.org/10.1063/1.2431804

[68] Hincley, D. M., Freeman, G. S., Whitmer, J. K., de Pablo, J. J. An experimentally-informed coarse-grained 3-site-per-nucleotide model of DNA: Structure, thermodynamics, and dynamics of hybridization. J. Chem. Phys. 139, 144903 (2013). https://doi.org/10.1063/1.4822042

[69] Ouldridge, T. E., Louis, A. A., Doye, J. P. K. DNA nanotweezers studied with a coarse-grained model of DNA. Phys. Rev. Lett. 104, 178101 (2010). https://doi.org/10.1103/PhysRevLett.104.178101

[70] Srinivas, N., Ouldridge, T. E., Sulc, P., Schaeffer, J. M., Yurke, B., Louis, A. A., et al. On the biophysics and kinetics of toehold-mediated DNA strand displacement. Nucleic Acids Res. 41, 10641–10658 (2013). https://doi.org/10.1093/nar/gkt801

[71] Minary, P., Tuckerman, M. E., Martyna, G. J. Long time molecular dynamics for enhanced conformational sampling in biomolecular systems. Phys. Rev. Lett. 93, 150201 (2004). https://doi.org/10.1103/PhysRevLett.93.150201

[72] Leimkuhler, B., Matthews, C. Molecular Dynamics: With Deterministic and Stochastic Numerical Methods. (Springer, Cham, 2015). https://doi.org/10.1007/978-3-319-16375-8

[73] Hamelryck, T., Kent, J. F., Krogh, A. Sampling realistic protein conformations using local structural bias. PLoS Comput. Biol. 2, e131 (2006). https://doi.org/10.1371/journal.pcbi.0020131

[74] Rodinger, T., Pomès, R. Enhancing the accuracy, the efficiency and the scope of free energy simulations. Curr.
[97] Hamelberg, D., Mongan, J., McCammon, J. A. Accelerated molecular dynamics: A promising and efficient simulation method for biomolecules. J. Chem. Phys. 120, 11919–11929 (2004). https://doi.org/10.1063/1.1755656

[98] Schwede, T., Köpp, J., Guex, N., Peitsch, M. C. SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res. 31, 3381–3385 (2003). https://doi.org/10.1093/nar/gkg520

[99] Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303 (2018). https://doi.org/10.1093/nar/gky427

[100] Marchanka, A., Simon, B., Althoff-Ospelt, G., Carlomagno, T. RNA structure determination by solid-state NMR spectroscopy. Nat. Commun. 6, 7024 (2015). https://doi.org/10.1038/ncomms8024

[101] Jovine, L., Hainzl, T., Oubridge, C., Scott, W. G., Li, J., Sixma, T. K., et al. Crystal structure of the Ffh and EF-G binding sites in the conserved domain IV of Escherichia coli 4.5S RNA. Structure 8, 527–540 (2000). https://doi.org/10.1016/S0969-2126(00)000137-4

[102] McAteer, K., Aceves-Gaona, A., Michalczyk, R., Buchko, G. W., Isern, N. G., Silks, L. A. P., et al. Compensating bends in a 16-base-pair DNA oligomer containing a T3A3 segment: A NMR study of global DNA curvature. Biopolymers 75, 497–511 (2004). https://doi.org/10.1002/bip.20168

[103] Bugris, V., Harmat, V., Ferenc, G., Brockhauser, S., Carmichael, I., Garman, E. F. Radiation-damage investigation of a DNA 16-mer. J. Synchrotron Radiat. 26, 998–1009 (2019). https://doi.org/10.1107/S160057751900763X

[104] Xu, N., You, Y., Liu, C., Balasov, M., Lun, L. T., Geng, Y., et al. Structural basis of DNA replication origin recognition by human Orc6 protein binding with DNA. Nucleic Acids Res. 48, 11146–11161 (2020). https://doi.org/10.1093/nar/gkaa751

[105] Dickerson, R. E. DNA structure from A to Z. Methods Enzymol. 211, 67–111 (1992). https://doi.org/10.1007/10066-6879(92)11007-6

[106] Cheatham III, T. E., Kollman, P. A. Insight into the stabilization of A-DNA by specific ion association: Spontaneous B-DNA to A-DNA transitions observed in molecular dynamics simulations of [dACCCCGCGGT]2 in the presence of hexaamminecobalt (III). Structure 5, 1297–1311 (1997). https://doi.org/10.1016/S0969-2212(97)00282-7

[107] Kannan, S., Kohlhoff, K., Zacharias, M. B-DNA under stress: Over- and untwisting of DNA during molecular dynamics simulations. Biophys. J. 91, 2956–2965 (2006). https://doi.org/10.1529/biophysj.105.087163

[108] Knee, K. M., Dixit, S. B., Aitken, C. E., Ponomarev, S., Beveridge, D. L., Mukerji, I. Spectroscopic and molecular dynamics evidence for a sequential mechanism for the A-to-B transition in DNA. Biophys. J. 95, 257–272 (2008). https://doi.org/10.1529/biophysj.107.117606

[109] Curradi, M., Izzo, A., Badaracco, G., Landsberger, N. Molecular mechanisms of gene silencing mediated by DNA methylation. Mol. Cell. Biol. 22, 3157–3173 (2002). https://doi.org/10.1128/MCB.22.9.3157-3173.2002

[110] Temiz, N. A., Donohue, D. E., Bacolla, A., Luke, B. T., Collins, J. R. The role of methylation in the intrinsic dynamics of B- and Z-DNA. PLoS One 7, e35558 (2012). https://doi.org/10.1371/journal.pone.0035558

[111] Jones, P. A., Takai, D. DNA methylation and gene silencing in cancer. Nat. Clin. Pract. Oncol. 2, S4–S11 (2005). https://doi.org/10.1038/ncompcancer0354

[112] Rausch, C., Hastert, F. D., Cardoso, M. C. DNA modification readers and writers and their interplay. J. Mol. Biol. 432, 1731–1746 (2020). https://doi.org/10.1016/j.jmb.2019.12.018

[113] Baylin, S. B. DNA methylation and gene silencing in cancer. Nat. Clin. Pract. Oncol. 2, S4–S11 (2005). https://doi.org/10.1038/ncompcancer0354
Kameda et al.: Molecular dynamics analysis of nucleic acids

[120] Suzuki, M. M., Bird, A. DNA methylation landscapes: Provocative insights from epigenomics. Nat. Rev. Genet. 9, 465–476 (2008). https://doi.org/10.1038/nrg2341

[121] Liebl, K., Zacharias, M. How methyl–sugar interactions determine DNA structure and flexibility. Nucleic Acids Res. 47, 1132–1140 (2019). https://doi.org/10.1093/nar/gky1237

[122] Teng, X., Hwang, W. Effect of methylation on local mechanics and hydration structure of DNA. Biophys. J. 114, 1791–1803 (2018). https://doi.org/10.1016/j.bpj.2018.03.022

[123] Furukawa, A., Walinda, E., Arita, K., Sugase, K. Structural dynamics of double-stranded DNA with epigenome modification. Nucleic Acids Res. 49, 1152–1162 (2021). https://doi.org/10.1093/nar/gkaa1210

[124] Kameda, T., Suzuki, M. M., Awazu, A., Togashi, Y. Structural dynamics of DNA depending on methylation pattern. Phys. Rev. E 103, 012404 (2021). https://doi.org/10.1103/PhysRevE.103.012404

[125] Severin, P. M. D., Zou, X., Schulten, K., Gaub, H. E. Effects of cytosine hydroxymethylation on DNA strand separation. Biophys. J. 104, 208–215 (2013). https://doi.org/10.1016/j.bpj.2012.11.013

[126] Yoo, J., Kim, H., Aksimentiev, A., Ha, T. Direct evidence for sequence-dependent attraction between double-stranded DNA controlled by methylation. Nat. Commun. 7, 11045 (2016). https://doi.org/10.1038/ncomms11045

[127] Portella, G., Battistini, F., Orozco, M. Understanding the connection between epigenetic DNA methylation and nucleosome positioning from computer simulations. PLoS Comput. Biol. 9, e1003354 (2013). https://doi.org/10.1371/journal.pcbi.1003354

[128] Ngo, T. T. M., Yoo, J., Dai, Q., Zhang, Q., He, C., Aksimentiev, A., et al. Effects of cytosine modifications on DNA flexibility and nucleosome mechanical stability. Nat. Commun. 7, 10813 (2016). https://doi.org/10.1038/ncomms10813

[129] Pongor, C. I., Bianco, P., Ferenczy, G., Kellermayer, R., Kellermayer, M. Optical trapping nanometry of hypermethylated CPG-island DNA. Biophys. J. 112, 512–522 (2017). https://doi.org/10.1016/j.bpj.2016.12.029

[130] Waterman, M. S., Smith, T. F. RNA secondary structure: A complete mathematical analysis. Math. Biosci. 42, 257–266 (1978). https://doi.org/10.1016/0025-5564(78)90099-8

[131] Aviran, S., Trapnell, C., Lucks, J. B., Mortimer, S. A., Luo, S., Schroth, G. P., et al. Modeling and automation of sequencing-based characterization of RNA structure. Proc. Natl. Acad. Sci. U.S.A. 108, 11069–11074 (2011). https://doi.org/10.1073/pnas.1006541108

[132] Hamada, M. Fighting against uncertainty: An essential issue in bioinformatics. Brief. Bioinform. 15, 748–767 (2014). https://doi.org/10.1093/bib/bbt038

[133] Lu, X.-J., Bussemaker, H. J., Olson, W. K. DSSR: An integrated software tool for dissecting the spatial structure of RNA. Nucleic Acids Res. 43, e142 (2015). https://doi.org/10.1093/nar/gkv716

[134] Hanson, R. M., Lu, X.-J. DSSR-enhanced visualization of nucleic acid structures in Jmol. Nucleic Acids Res. 45, W528–W533 (2017). https://doi.org/10.1093/nar/gkx365

[135] Lu, X.-J. DSSR-enabled innovative schematics of 3D nucleic acid structures with PyMOL. Nucleic Acids Res. 48, e74 (2020). https://doi.org/10.1093/nar/gkaa426

[136] Breaker, R. R. Prospects for riboswitch discovery and analysis. Mol. Cell 43, 867–879 (2011). https://doi.org/10.1016/j.molcel.2011.08.024

[137] Antunes, D., Jorge, N. A. N., Caffarela, E. R., Passetti, F. Using RNA sequence and structure for the prediction of riboswitch aptamer: A comprehensive review of available software and tools. Front. Genet. 8, 231 (2018). https://doi.org/10.3389/fgene.2017.00231

[138] Domin, G., Findeiß, S., Wachsmuth, M., Will, S., Stadler, P. F., Mörl, M. Applicability of a computational design approach for synthetic riboswitches. Nucleic Acids Res. 45, 4108–4119 (2017). https://doi.org/10.1093/nar/gkw1267

[139] Šponer, J., Krepl, M., Banáš, P., Kůhrová, P., Zgarbová, M., Jurečka, P., et al. How to understand atomistic molecular dynamics simulations of RNA and protein–RNA complexes? Wiley Interdiscip. Rev. RNA 8, e1405 (2017). https://doi.org/10.1002/wrna.1405

[140] Herschlag, D., Bonilla, S., Bisaria, N. The story of RNA folding, as told in epochs. Cold Spring Harb. Perspect. Biol. 10, a032433 (2018). https://doi.org/10.1101/cshperspect.a032433

[141] Buck, M., Bouguet-Bonnet, S., Pastor, R. W., MacKerell Jr, A. D. Importance of the CMAP correction to the CHARMM22 protein force field: Dynamics of hen lysozyme. Biophys. J. 90, L36–L38 (2006). https://doi.org/10.1529/biophysj.105.078154

[142] Krieger, E., Darden, T., Nabuurs, S. B., Finkelstein, A., Vriend, G. Making optimal use of empirical energy functions: Force-field parameterization in crystal space. Proteins 57, 678–683 (2004). https://doi.org/10.1002/prot.20251

[143] Deng, N.-J., Cieplak, P. Free energy profile of RNA hairpins: A molecular dynamics simulation study. Biophys. J. 98, 627–636 (2010). https://doi.org/10.1016/j.bpj.2009.10.040

e190027_15
[144] DePaul, A. J., Thompson, E. J., Patel, S. S., Haldeman, K., Sorin, E. J. Equilibrium conformational dynamics in an RNA tetraloop from massively parallel molecular dynamics. Nucleic Acids Res. 38, 4856–4867 (2010). https://doi.org/10.1093/nar/gkq134

[145] Condon, D. E., Kennedy, S. D., Mort, B. C., Kierzek, R., Yildirim, I., Turner, D. H. Stacking in RNA: NMR of four tetramers benchmark molecular dynamics. J. Chem. Theory Comput. 11, 2729–2742 (2015). https://doi.org/10.1021/ct501025q

[146] Yamashita, T. Toward rational antibody design: Recent advancements in molecular dynamics simulations. Int. Immunol. 30, 133–140 (2018). https://doi.org/10.1093/intimm/dx077

[147] Šponer, J., Bussi, G., Krepl, M., Banáš, P., Bottaro, S., Cunha, R. A., et al. RNA structural dynamics as captured by molecular simulations: A comprehensive overview. Chem. Rev. 118, 4177–4338 (2018). https://doi.org/10.1021/acs.chemrev.7b00427

[148] Noy, A., Perez, A., Lankas, F., Luque, F. J., Orozco, M. Relative flexibility of DNA and RNA: A molecular dynamics study. J. Mol. Biol. 343, 627–638 (2004). https://doi.org/10.1016/j.jmb.2004.07.048

[149] Liebl, K., Drsata, T., Lankas, F., Lipfert, J., Zacharias, M. Explaining the striking difference in twist-stretch coupling between DNA and RNA: A comparative molecular dynamics analysis. Nucleic Acids Res. 43, 10143–10156 (2015). https://doi.org/10.1093/nar/gkv1028

[150] Marin-Gonzalez, A., Villenha, J. G., Perez, R., Moreno-Herrero, F. Understanding the mechanical response of double-stranded DNA and RNA under constant stretching forces using all-atom molecular dynamics. Proc. Natl. Acad. Sci. U.S.A. 114, 7049–7054 (2017). https://doi.org/10.1073/pnas.1705642114

[151] Rengachari, S., Schilbach, S., Aibara, S., Dienemann, C., Cramer, P. Structure of the human Mediator–RNA polymerase II pre-initiation complex. Nature 594, 129–133 (2021). https://doi.org/10.1038/s41586-021-03555-7

[152] Palermo, G. Structure and dynamics of the CRISPR–Cas9 catalytic complex. J. Chem. Inf. Model. 59, 2394–2406 (2019). https://doi.org/10.1021/acs.jcim.8b00988

[153] Terakawa, T., Takada, S. p53 dynamics upon response element recognition explored by molecular simulations. Sci. Rep. 5, 17107 (2015). https://doi.org/10.1038/srep17107

[154] Cutter, A. R., Hayes, J. J. A brief review of nucleosome structure. FEBS Lett. 589, 2914–2922 (2015). https://doi.org/10.1016/j.febslet.2015.05.016

[155] Koyama, M., Kurumizaka, H. Structural diversity of the nucleosome. J. Biochem. 163, 85–95 (2018). https://doi.org/10.1093/jb/mvx081

[156] Kobayashi, W., Kurumizaka, H. Structural transition of the nucleosome during chromatin remodeling and transcription. Curr. Opin. Struct. Biol. 59, 107–114 (2019). https://doi.org/10.1016/j.sbi.2019.07.011

[157] Noguchi, Y., Tachiwana, H., Tomiguchi, K., Hori, T., Kimura, H., Fukagawa, T., et al. The CENP-A centromere targeting domain facilitates H4K20 monomethylation in the nucleosome by structural polymorphism. Nat. Commun. 10, 576 (2019). https://doi.org/10.1038/s41467-019-08314-x
Kameda et al.: Molecular dynamics analysis of nucleic acids

[166] Adhireksan, Z., Sharma, D., Lee, P. L., Davey, C. A. Near-atomic resolution structures of interdigitated nucleosome fibres. Nat. Commun. 11, 4747 (2020). https://doi.org/10.1038/s41467-020-18533-2

[167] Takizawa, Y., Ho, C.-H., Tachiwana, H., Matsunami, H., Kobayashi, W., Suzuki, M., et al. Cryo-EM structures of centromeric tri-nucleosomes containing a central CENP-A nucleosome. Structure 28, 44–53 (2020). https://doi.org/10.1016/j.str.2019.10.016

[168] Gaffney, D. J., McVicker, G., Pai, A. A., Fondufe-Mittendorf, Y. N., Lewellen, N., Michelini, K., et al. Controls of nucleosome positioning in the human genome. PLoS Genet. 8, e1003036 (2012). https://doi.org/10.1371/journal.pgen.1003036

[169] Chereji, R. V., Clark, D. J. Major determinants of nucleosome positioning. Biophys. J. 114, 2279–2289 (2018). https://doi.org/10.1016/j.bpj.2018.03.015

[170] Chung, H.-R., Vingron, M. Sequence-dependent nucleosome positioning. J. Mol. Biol. 386, 1411–1422 (2009). https://doi.org/10.1016/j.jmb.2008.11.049

[171] Brandani, G. B., Niina, T., Tan, C., Takada, S. DNA sliding in nucleosomes via twist defect propagation revealed by molecular simulations. Nucleic Acids Res. 46, 2788–2801 (2018). https://doi.org/10.1093/nar/gky158

[172] Lequieu, J., Schwartz, D. C., de Pablo, J. J. In silico evidence for sequence-dependent nucleosome sliding. Proc. Natl. Acad. Sci. U.S.A. 114, E9197–E9205 (2017). https://doi.org/10.1073/pnas.1705685114

[173] Niina, T., Brandani, G. B., Tan, C., Takada, S. Sequence-dependent nucleosome sliding in rotation-coupled and uncoupled modes revealed by molecular simulations. PLoS Comput. Biol. 13, e1005880 (2017). https://doi.org/10.1371/journal.pcbi.1005880

[174] Müller, O., Kepper, N., Schöpflin, R., Ettig, R., Rippe, K., Wedemann, G. Changing chromatin fiber conformation by nucleosome repositioning. Biophys. J. 107, 2141–2150 (2014). https://doi.org/10.1016/j.bpj.2014.09.026

[175] Ishihara, S., Sasagawa, Y., Kameda, T., Yamashita, H., Umada, M., Kotomura, N., et al. Local states of chromatin compaction at transcription start sites control transcription levels. Nucleic Acids Res. 49, 8007–8023 (2021). https://doi.org/10.1093/nar/gkab587

[176] Armeev, G. A., Gribkova, A. K., Pospelova, I., Komarova, G. A., Shaytan, A. K. Linking chromatin composition and structural dynamics at the nucleosome level. Curr. Opin. Struct. Biol. 56, 46–55 (2019). https://doi.org/10.1016/j.sbi.2018.11.006

[177] Kagawa, W., Kurumizaka, H. Structural basis for DNA sequence recognition by pioneer factors in nucleosomes. Curr. Opin. Struct. Biol. 71, 59–64 (2021). https://doi.org/10.1016/j.sbi.2021.05.011

[178] Ettig, R., Kepper, N., Stehr, R., Wedemann, G., Rippe, K. Dissecting DNA-histone interactions in the nucleosome by molecular dynamics simulations of DNA unwrapping. Biophys. J. 101, 1999–2008 (2011). https://doi.org/10.1016/j.bpj.2011.07.057

[179] Kono, H., Ishida, H. Nucleosome unwrapping and unstacking. Curr. Opin. Struct. Biol. 64, 119–125 (2020). https://doi.org/10.1016/j.sbi.2020.06.020

[180] Kato, D., Osakabe, A., Arimura, Y., Mizukami, Y., Horikoshi, N., Saikusa, K., et al. Crystal structure of the overlapping dinucleosome composed of hexasome and octasome. Science 356, 205–208 (2017). https://doi.org/10.1126/science.aak9867

[181] Matsumoto, A., Sugiyama, M., Li, Z., Martel, A., Porcar, L., Inoue, R., et al. Structural studies of overlapping dinucleosomes in solution. Biophys. J. 118, 2209–2219 (2020). https://doi.org/10.1016/j.bpj.2019.12.010

[182] Gatchalian, J., Wang, X., Ikebe, J., Cox, K. L., Tencer, A. H., Zhang, Y., et al. Accessibility of the histone H3 tail in the nucleosome for binding of paired readers. Nat. Commun. 8, 1489 (2017). https://doi.org/10.1038/s41467-017-01598-x

[183] Ikebe, J., Sakuraba, S., Kono, H. H3 histone tail conformation within the nucleosome and the impact of K14 acetylation studied using enhanced sampling simulation. PLoS Comput. Biol. 12, e1004788 (2016). https://doi.org/10.1371/journal.pcbi.1004788

[184] Ishida, H., Kono, H. H4 tails potentially produce the diversity in the orientation of two nucleosomes. Biophys. J. 113, 978–990 (2017). https://doi.org/10.1016/j.bpj.2017.07.015

[185] Erler, J., Zhang, R., Petridis, L., Cheng, X., Smith, J. C., Langowski, J. The role of histone tails in the nucleosome:
A computational study. Biophys. J. 107, 2911–2922 (2014). https://doi.org/10.1016/j.bpj.2014.10.065

[189] Li, Z., Kono, H. Distinct roles of histone H3 and H2A tails in nucleosome stability. Sci. Rep. 6, 31437 (2016). https://doi.org/10.1038/srep31437

[190] Bignon, E., Gillet, N., Jiang, T., Morell, C., Dumont, E. A dynamic view of the interaction of histone tails with clustered abasic sites in a nucleosome core particle. J. Phys. Chem. Lett. 12, 6014–6019 (2021). https://doi.org/10.1021/acs.jpcl.1c01058

[191] Medina, E., Latham, D. R., Sanabria, H. Unraveling protein’s structural dynamics: From configurational dynamics to ensemble switching guides functional mesoscale assemblies. Curr. Opin. Struct. Biol. 66, 129–138 (2021). https://doi.org/10.1016/j.sbi.2020.10.016

[192] Bendandi, A., Patelli, A. S., Diaspro, A., Rocchia, W. The role of histone tails in nucleosome stability: An electrostatic perspective. Comput. Struct. Biotechnol. J. 18, 2799–2809 (2020). https://doi.org/10.1016/j.csbj.2020.09.034

[193] Huertas, J., Schöler, H. R., Cojocaru, V. Histone tails cooperate to control the breathing of genomic nucleosomes. PLoS Comput. Biol. 17, e1009103 (2021). https://doi.org/10.1371/journal.pcbi.1009103

[194] Kameda, T., Awazu, A., Togashi, Y. Histone tail dynamics in partially disassembled nucleosomes during chromatin remodeling. Front. Mol. Biosci. 6, 133 (2019). https://doi.org/10.3389/fmolb.2019.00133

[195] Wang, L., Friesner, R. A., Berne, B. J. Replica exchange with solute scaling: A more efficient version of replica exchange with solute tempering (REST2). J. Phys. Chem. B 115, 9431–9438 (2011). https://doi.org/10.1021/jp204407d

[196] Jo, S., Jiang, W. A generic implementation of replica exchange with solute tempering (REST2) algorithm in NAMD for complex biophysical simulations. Comput. Phys. Commun. 197, 304–311 (2015). https://doi.org/10.1016/j.cpc.2015.08.030

[197] Pardi, N., Hogan, M. J., Porter, F. W., Weissman, D. mRNA vaccines — a new era in vaccinology. Nat. Rev. Drug Discov. 17, 261–279 (2018). https://doi.org/10.1038/nrd.2017.243

[198] Zhang, C., Maruggi, G., Shan, H., Li, J. Advances in mRNA vaccines for infectious diseases. Front. Immunol. 10, 594 (2019). https://doi.org/10.3389/fimmu.2019.00594

[199] Martin, C., Lowery, D. mRNA vaccines: Intellectual property landscape. Nat. Rev. Drug Discov. 19, 578–579 (2020). https://doi.org/10.1038/d41573-020-00119-8

[200] Tunyasuvunakool, K., Adler, J., Wu, Z., Green, T., Zielinski, M., Żidek, A., et al. Highly accurate protein structure prediction for the human proteome. Nature 596, 590–596 (2021). https://doi.org/10.1038/s41586-021-03828-1

[201] Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021). https://doi.org/10.1038/s41586-021-03819-2

[202] Baek, M., DiMaio, F., Anishchenko, I., Dauparas, J., Ovchinnikov, S., Lee, G. R., et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021). https://doi.org/10.1126/science.abc8754

[203] Humphreys, I. R., Pei, J., Baek, M., Krishnakumar, A., Anishchenko, I., Ovchinnikov, S., et al. Computed structures of core eukaryotic protein complexes. Science 374, eabm4805 (2021). https://doi.org/10.1126/science.abm4805

[204] Sipiovk, V., Kurečka, M., Klene, A. Collective variable for metadynamics derived from AlphaFold output. Front. Mol. Biosci. 9, 878133 (2022). https://doi.org/10.3389/fmolb.2022.878133

[205] Unke, O. T., Chmiela, S., Sauceda, H. E., Gastegger, M., Poltavsky, I., Schütt, K. T., et al. Machine learning force fields. Chem. Rev. 121, 10142–10186 (2021). https://doi.org/10.1021/acs.chemrev.0c00111

[206] Rosenberger, D., Smith, J. S., Garcia, A. E. Modeling of peptides with classical and novel machine learning force fields: A comparison. J. Phys. Chem. B 125, 3598–3612 (2021). https://doi.org/10.1021/acs.jpcb.0c10401

[207] Townshend, R. J., Eismann, S., Watkins, A. M., Rangan, R., Karelina, M., Das, R., et al. Geometric deep learning of RNA structure. Science 373, 1047–1051 (2021). https://doi.org/10.1126/science.abe5650

[208] Warner, K. D., Hajdin, C. E., Weeks, K. M. Principles for targeting RNA with drug-like small molecules. Nat. Rev. Drug Discov. 17, 547–558 (2018). https://doi.org/10.1038/nrd.2018.93

[209] Yu, A.-M., Choi, Y. H., Tu, M.-J. RNA drugs and RNA targets for small molecules: Principles, progress, and challenges. Pharmacol. Rev. 72, 862–890 (2020). https://doi.org/10.1124/pr.120.019554

[210] Falese, J. P., Donlic, A., Hargrove, A. E. Targeting RNA with small molecules: From fundamental principles towards the clinic. Chem. Soc. Rev. 50, 2224–2243 (2021). https://doi.org/10.1039/D0CSR01261K

[211] Djordjevic, M., Rodic, A., Graovac, S. From biophysics to ‘omics and systems biology. Eur. Biophys. J. 48, 413–424 (2019). https://doi.org/10.1007/s00249-019-01366-3