CARBANA: Carbon analysis program for protein sequences

Ekambaram Rajasekaran*, Marimuthu Vijayasarathy

Department of Bioinformatics, School of Biotechnology and Health Sciences, Karunya University, Coimbatore – 641114 Tamil Nadu, India;
Ekambaram Rajasekaran - Email: ersekar@gmail.com; *Corresponding author

Received November 01, 2010; Accepted January 29, 2011; Published February 15, 2011

Abstract:
There are lots of works gone into proteins to understand the nature of proteins. Hydrophobic interaction is the dominant force that drives the proteins to carry out the biochemical reactions in all living system. Carbon is the only element that contributes towards this hydrophobic interaction. Studies find that globular proteins prefer to have 31.45% of carbon for its stability. Taking this as standard, a carbon analysis program has been developed to study the carbon distribution profile of protein sequences. This carbon analysis program has been made available online. This can be accessed at www.rajasekaran.net.in/tools/carbana.html. This new program is hoped to help in identification and development of active sites, study of protein stability, evolutionary understating of proteins, gene identification, ligand binding site identification, and to solve the long-standing problem of protein-protein and protein-DNA interactions.

Keywords: carbon distribution; CARBANA analysis; hydrophobicity; carbon profile; hydropathy plot;

Background:
There is lot of work gone into proteins to understand the ultimate truth of real information [1-3]. Hydrophobic interaction is the dominant force that comes from presence of carbon. Recent studies reveal that proteins prefer to have 31.45% of carbon in its structure and in sequence [2]. To understand the buried information further in proteins this work has been taken up.

Methodology:
The idea behind this method is visualising the molecule on actual basis. That is the basic units of proteins are elements such as carbon, sulphur, nitrogen, oxygen and hydrogen. In this method the amino acid sequences are converted into atomic sequences. Example is given in supplementary material.

It is also hoped that a protein sequence with 100 amino acids should have about 1555 atoms in the atomic sequence. Further the percentage of carbon is computed for a group of atoms in the protein sequence. The window length of 500 atoms (~32 amino acids) is chosen because the smallest unit which can produce 31.45% of carbon is 35 atom length. Car bon accumulation in active site or in core can be easily identified at length of 500. So by default a length of 500 atoms is taken for general carbon profile study. To identify the residue contributing to the stabilization or destabilization factors, one can reduce this length. For mutational study a length value of 50 atoms may be appropriate. A sample input and output are given below for length of 500 atoms and shift size of 17 atoms.

Discussion:
The program reads protein sequences and converts it into array of elements. The percentage of carbon is computed for a group of atoms is assigned to reference point residue. Normally the shift value of 5 is used. It can be increased or decreased depends upon the resolution required. Reduction in shift value creates too many points and makes the plot congested. A shift value of 17 may be optimum. This value is half of the smallest unit (35 atoms) that is producing 31.45% of carbon. Further improvements in having all amino acids (including first and last 17 residues) represented in the output and in figures are underway. Also the computation of carbon percentage at alpha carbon position will be implemented for mutational studies and for other applications.

Input:
>gi|10833718|ref|YP_692577.1| hypothetical protein ABO_0857 [Acanthorhiza borkumensis SK2]
MRHVMKRKATTLMATAISALILSGLCGEQAAATPVSIEPKVYTDSDLFAVMNADRTNYYTCLKIGRLGAPAGDSKIPHEYWEDELENGLPLPAOMFRYGAESVSEMSTIFSFYLSQLWIPINGQNEPKTLEGLOYVDPNPGENFYEEKLGTVYTAVVPDVAVAAPCVACHNKHDPKTDFFEGDVMMGVVIRVPM

Discussion:
The program reads protein sequences and converts it into array of elements. The percentage of carbon is computed for a group of atoms is assigned to reference point residue. Normally the shift value of 5 is used. It can be increased or decreased depends upon the resolution required. Reduction in shift value creates too many points and makes the plot congested. A shift value of 17 may be optimum. This value is half of the smallest unit (35 atoms) that is producing 31.45% of carbon. Further improvements in having all amino acids (including first and last 17 residues) represented in the output and in figures are underway. Also the computation of carbon percentage at alpha carbon position will be implemented for mutational studies and for other applications.

Discussion:
The program reads protein sequences and converts it into array of elements. The percentage of carbon is computed for a group of atoms is assigned to reference point residue. Normally the shift value of 5 is used. It can be increased or decreased depends upon the resolution required. Reduction in shift value creates too many points and makes the plot congested. A shift value of 17 may be optimum. This value is half of the smallest unit (35 atoms) that is producing 31.45% of carbon. Further improvements in having all amino acids (including first and last 17 residues) represented in the output and in figures are underway. Also the computation of carbon percentage at alpha carbon position will be implemented for mutational studies and for other applications.
Conclusion:
Carbon profile analysis software [CARBANA] has been developed and presented here. This program is capable of locating the carbon accumulated site in proteins. It can clearly identify the hydrophobic and hydrophilic regions along the sequence. It can also pinpoint an amino acid which is causing instability. Atomic level representation of proteins can yield better results. This carbon analysis program is available online. This new program is hoped to address several biological problems based on hydrophobicity. Particularly, it can help in identification and development of active sites, address the proteins in diseased and healthy state, characterize the disordered proteins, address the role of carbon in half of proteins and understand patterns and repeats in proteins.

References:
[1] V Jayaraj et al. Bioinformation (2009) 3: 409 [PMID: PMC2732037]
[2] E Rajasekaran et al. IACSIT-SC, IEEE (2009) 452
[3] E Rajasekaran et al. J Comput Intelli. Bioinfo (2008)1:115

License statement: This is an open-access article, which permits unrestricted use, distribution, and reproduction in any medium, for non-commercial purposes, provided the original author and source are credited.
Supplementary material:

For example sequence MATAISALIVE… etc. is converted into atomic sequence as follows.

```
CCCSNOHHNHHHCCCSNOHHHCCCSNOOHNNHNNHCCCSNOHHH…etc
M                                  A                        T                              A              …etc
```

Table 1: The output of the Carbana program showing amino acid number and percentage of carbon

	15	29.7405	41	31.1377	64	32.1357	88	33.5329	112	33.1337	134	31.9361	158	33.7325
16	16	29.7405	42	31.9361	64	31.9361	89	33.3333	113	32.5349	135	32.5349		
17	17	29.7405	43	31.5369	65	32.1357	91	33.9321	114	32.1357	136	32.5349		
19	19	29.5409	45	31.9361	67	31.9361	92	33.5329	115	31.9361	137	32.7345		
20	20	29.5409	46	31.9361	69	32.1357	93	34.1317	115	32.5349	139	33.1337		
21	21	29.7405	47	32.1357	71	32.1357	93	33.7325	117	32.3353	140	32.7345		
22	22	29.5409	48	31.9361	72	32.9341	94	33.1337	117	32.7345	142	33.3333		
23	23	30.5389	49	31.7365	73	32.9341	95	32.3353	119	32.9341	143	33.9321		
25	25	30.9381	50	31.3373	74	31.9361	96	32.7345	120	33.1337	144	33.7325		
27	27	30.5389	51	31.5369	75	32.1357	98	32.1357	121	33.1337	144	34.3313		
28	28	31.3373	53	31.3373	76	31.9361	99	32.9341	123	32.5349	146	34.3313		
29	29	30.9381	54	31.5369	77	32.5349	100	32.9341	124	32.5349	147	33.9321		
31	31	30.9381	55	31.1377	78	32.7345	102	33.3333	125	31.9361	148	33.3333		
32	32	31.7365	56	31.3373	79	32.7345	103	33.1337	126	31.7365	149	33.7325		