Data Article

Pediatric Quality of Life Inventory™ version 4.0 short form generic core scale across pediatric populations review data

Matthew Smytha,b, Kevan Jacobson, MBBCh, FRCPC, FACP, AGAF, CAGFa,b,c,*

aDepartment of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Faculty of Medicine, British Columbia Children's Hospital, University of British Columbia, British Columbia, Canada
bBritish Columbia Children Hospital Research Institute, Vancouver, British Columbia, Canada
cDepartment of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada

\textbf{A R T I C L E I N F O}

Article history:
Received 22 October 2021
Revised 14 November 2021
Accepted 16 November 2021
Available online 24 November 2021

Keywords:
Quality of life
Inflammatory bowel disease
Pediatrics
PedsQLTM

\textbf{A B S T R A C T}

The Pediatric Quality of Life Inventory™ Version 4.0 Short Form Generic Core Scale (PedsQLTM) is a validated and widely used tool assessing the quality of life (QoL) of children and youth. It has been used extensively across healthy populations as well as those with chronic and acute illnesses, allowing for comparison of the psychosocial impact of chronic illness between pediatric disease cohorts. As part of the QoL initiative undertaken at the British Columbia Children's Hospital (BCCH) Inflammatory Bowel Disease (IBD) program and published in the Journal of Pediatrics titled “Cross-Sectional Analysis of Quality of Life in Pediatric Patients with IBD in British Columbia, Canada,” a limited literature review was conducted using Embase and Ovid. Studies using the English version of the PedsQLTM short form generic scale (not a disease specific scale) were identified. Studies with populations greater than 50 patients with robust subgroup sample size were included, with an emphasis on studies with well-

DOI of original article: 10.1016/j.jpeds.2021.07.036

* Corresponding author at: Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Faculty of Medicine, British Columbia Children's Hospital, and British Columbia Children's Hospital Research Institute, University of British Columbia, 4480 Oak Street, Room K4–184, Vancouver, British Columbia, V6H 3V4 British Columbia, Canada
E-mail address: kjacobson@cw.bc.ca (K. Jacobson).
Social media: ♦ (K. Jacobson)

https://doi.org/10.1016/j.dib.2021.107599

2352-3409/© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
defined patients with chronic disease. These data were compared to the BCCH population, as discussed in the aforementioned journal article. Analysis within the BCCH cohort is described separately. Comparison between different populations from the existing literature was qualitative only, with no statistical analysis done given the heterogeneity of populations and studies. In a study of patients from the emergency department at BCCH (n=178), the mean (SD) QoL scores of the healthy patients was 89.2 (10.3). In a group of self-identified healthy patients in California (n=5079), their mean QoL score was 83.9 (12.5). Separating the BCCH IBD population by disease activity, those in remission (n=220, 84.4 (12.8)) have similar QoL scores to these healthy cohorts, though their scores remain slightly below the previously published BCCH cohort. For children with any degree of active IBD (n=98, 75.6 (15.8)), their QoL scores are below the healthy means and are lower than other groups with self-identified “chronic illnesses” (n=367, 77.2 (15.5)), diabetes (n=418, 82.3 (13.5)), mild asthma (n=281, 85.5 (13.3)), or Canadian patients 4 weeks post-concussion (n=1157, 80.3). BCCH IBD patients with moderately to severely active disease have QoL scores well below the other disease groups (n=33, 63.1 (18.8)); lower than oncology patients on induction chemotherapy regimens (n=105, 68.9 (16.0)), acute inpatients (n=359, 63.9 (20.3)), and asthmatics with moderate-severe, persistent asthma (n=86, 67.1 (18.6)). This data is useful for clinicians treating pediatric patients looking at how QoL is influenced by chronic illness and by factors such as disease type and severity.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

Specifications Table
Subject
Specific subject area
Type of data
How data were acquired
Data format
Parameters for data collection
Description of data collection
Data source location

(continued on next page)
Data accessibility

Repository name: Mendeley
Data identification number: http://dx.doi.org/10.17632/r7fyyf9fbc.1
Direct URL to data: http://dx.doi.org/10.17632/r7fyyf9fbc.1

Related research article

M. Smyth, J. Chan, K. Evans, C. Penner, A. Lakhani, T. Newlove, K. Jacobson, Cross-Sectional Analysis of Quality of Life in Pediatric Patients with Inflammatory Bowel Disease in British Columbia, Canada., Pediatrics, In Press.

Value of the Data

• To provide a comparison of quality of life between various pediatric chronic illnesses as well as their healthy peers using a validated, generic, and widely used quality of life measurement tool.
• This information is useful for clinicians caring for pediatric patients with a variety of chronic illnesses.
• As the PedsQL™ continues to be widely used in clinical care and research alike, this data will continue to be useful in providing a benchmark for results across patient populations. By breaking down results by both disease type and disease severity/disease activity, and ensuring conclusions are drawn with robust population sizes, this data should provide the standard by which future PedsQL™ research is conducted.
• This data enables the reader to appreciate the psychosocial burden of disease across populations and anticipate the needs of the patient. By understanding the quality of life implications of a chronic diagnosis, the hope is that the practitioner can work with families and community supports to help children and youth thrive despite their diagnosis.

1. Data Description

Table 1: this table corresponds to supplemental Table 3 from the article “Cross-Sectional Analysis of Quality of Life in Pediatric Patients with Inflammatory Bowel Disease in British Columbia, Canada” published in the Journal of Pediatrics.

The table shows the results from the pediatric Inflammatory Bowel Disease (IBD) population at BC Children’s Hospital (BCCH) as well as the PedsQL™ scores from multiple other large studies that used the Quality of Life (QoL) tool. In a study of patients from the emergency department at BCCH (n=178), the mean (SD) QoL scores of the healthy patients was 89.2 (10.3). In a group of self-identified healthy patients in California (n=5079), their mean QoL score was 83.9 (12.5). Separating the BCCH IBD population by disease activity, those in remission (n=220, 84.4 (12.8)) are similar to these healthy scores, though remain slightly below the previously published BCCH cohort. For children with any degree of active IBD (n=98, 75.6 (15.8)), their QoL scores are below the healthy means and are lower than other groups with self-identified “chronic illnesses” (n=367, 77.2 (15.5)), diabetes (n=418, 82.3 (13.5)), mild asthma (n=281, 85.5 (13.3)), or Canadian patients 4 weeks post-concussion (n=1157, 80.3). BCCH IBD patients with moderately to severely active disease have QoL scores well below the other disease groups (n=33, 63.1 (18.8)); lower than oncology patients on induction chemotherapy regimens (n=105, 68.9 (16.0)), acute inpatients (n=359, 63.9 (20.3)), and asthmatics with moderate-severe, persistent asthma (n=86, 67.1 (18.6)). The raw data for this table is attached and is also available on an open data repository.

Data Upload: The raw data is uploaded in both .csv and .sav format

Supplemental Data: Original Article: The original research article, in press with the Journal of Pediatrics, is attached.

PedsQL™ Pediatric Quality of Life Inventory Version 4.0 Short Form: The short form of the survey was used to collect the quality of life data for this study. The authors do not own the rights to this tool, and so will provide a summary of the tool only. The tool uses a standard
Table 1 looks at the published literature of healthy controls and chronic conditions where patients have used the self-reported PedsQL 4.0 Generic or Short form questionnaire. This table corresponds to Table 3 from the article by M.Smyth et al. “Cross-Sectional Analysis of Quality of Life in Pediatric Patients with Inflammatory Bowel Disease in British Columbia, Canada” in press with the Journal of Pediatrics.

Study	Comment	Subgroup	N	QOL score	SD	
BCCH IBD Patients		**Total (a)**	351	79.95	15.77	
		Remission (b)	220	84.41	12.84	
		Mild (c)	98	75.59	15.75	
		Moderate-severe (d)	33	63.13	18.78	
Health Controls		**BCCH Population**	Healthy	178	89.17	10.28
Kruse et al. [1]	BCCH Population. Healthy patients discharged from emerg. age 8-16. \(\text{SD derived from reported confidence interval}\)	Healthy	5079	83.91	12.47	
Varni et al. [2]	California pediatric population responding to mail out PedsQL; only healthy population included	Healthy	1099	80.5	12.2	
Williams et al. [3]	Australia: 9-12 year old healthy as part of obesity survey	Healthy	340	83.15\(\uparrow\)	77.17-90.22	
Varni et al. [4]	California: Phone survey from healthy patients identified in ortho clinic as "recovered"	Healthy	401	83	14.79	
Dierderen et al. [5]	Netherlands: Age 8-18; Online questionnaire self-identified as healthy \(\text{Median, IQR}\)	Healthy	42	87.7	14.7	
Youssef et al. [6]	New Jersey: Healthy patients seen for routine appointment or minor acute medical problem; prospectively enrolled	Healthy	71	88.77\(\uparrow\)	16.76 \(\uparrow\)	
Tahirovic et al. [7]	Bosnia and Herzegovina: Healthy visitors to pediatrics department, no chronic conditions \(\text{pooled mean} + \text{SD for age 8-18}\)	Healthy	1157	80.3	Not reported	

Chronically Ill Pediatric Populations

Study	Comment	Subgroup	N	QOL score	SD
Novak et al. [8]	Concussion Study: Canadian patients; 9 Centres, 8-18 yo	All Patients post concussion	510	70	Not reported
		4 wks post with persisting Sx's	60	80.9	13.69
Young et al. [9]	Hemophilia study: Toronto Boys 6-17 yo, prospectively enrolled	Hemophilia	281	85.4	13.3
Chan et al. [10]	Asthma Study: Asthma severity based off NHLBI Guidelines; 13 pediatric sites across US	Mild intermittent asthma	96	75	15.2
		Mild persistent asthma	86	67.1	18.6

(continued on next page)
Study	Comment	Subgroup	N	QOL score	SD
Varni et al. [4]	Cancer Study in California: 8-18 yo; includes inpatients/outpatients, all cancer types, including remission and recurrent dx	Cancer- On Tx	105	68.92	15.97
		Cancer- Off Tx < 12Mo	41	70.88	17.19
		Cancer- Off Tx > 12 Mo	73	77.66	15.25
		T1DM	418	82.33	13.53
Varni et al. [11]	Type 1 Diabetes: 13-25 yo across 10 american sites, those with poorly controlled DM have lower QoL scores				
Desai et al. [12]	Inpatient population age 13-18 admitted to Seattle Childrens with a variant of Dx. Prospectively enrolled	Inpatient	359	63.9	20.28
Varni et al. [13]	Rheumatologic Dx in California: JIA, fibromyalgia, spondyloarthritis, SLE, Other (157) Ages 6-18	Rheumatological illnesses	336	70.35	17.83
Goldstein et al. [14]	End Stage Renal Disease from two american centres, ages 5-18	ESRD, including dialysis and transplant patients	85	73.97	15.22
Tahirovic et al. [7]	Congential Heart Disease in Bosnia and Herzegovina: Patients 1+ years post cardiac surgery for CHD pooled mean + SD for age 8-18	Congenital Heart Disease	83	87.35	12.47
Ng et al. [15]	Liver Transplant study in Canada + US, patients 10 years post LTx; retrospective. Mean age of LTx 2.3yo	Liver Transplant patients	73	77.16	12.93
Maskell et al. [16]	Burn patients; Australia and NZ: Age 8-17; not acute burns, with mature scarring present; 6 sites	Burns	66	78.87	15.1
Younossi et al. [17]	Chronic HCV patients receiving sofosbuvir and ribavirin; Prospective, International (30 sites, 7 countries)	Hepatitis C Virus (HCV)	50	80.4	1.93
Liu et al. [18]	Inflammatory Brain Diseases: QoL scores from time of Dx; most common presenting sx's: seizures, cognitive dysfunction or hemiparesis. International, multi-centre	Inflammatory Brain Diseases	34	68.4	Not reported

Chronically Ill- Self Identified

Study	Comment	Chronic Ill	N	QOL score	SD
Varni et al. [8]	Surveys completed in community specialty clinics in United States; Patients self-identified as chronically. Those in subspecialty clinics identified as acutely ill	Chronic Ill	367	77.19	15.53

(continued on next page)
Table 1 (continued)

Study	Comment	Subgroup	N	QOL score	SD
Overweight and Obese					
Williams et al. [3]	Overweight/Obese 9-12 year olds; Ht and Wt measured at schools by trained staff; categories based off international obesity task force; Australia	Overweight	294	79.3	12.8
Hoedjes et al. [19]	Severe Obesity (SDS-BMI >3, or >2.3 with obesity-related comorbidity); Prospective, Netherlands \(\Delta\)SD derived from SE.	Obese	63	74	14.2
		Severe Obesity	120	67.8 \(\Delta\)19.7	
Faus et al. [20]	BMI >85% for age; Convenience Sample. New Jersey	Obese	60	76.42	Not reported
Gastrointestinal Illness					
Varni et al. [21]	GI disorders; 9 US centres across US ages 5-18	Functional GI disorders (constipation, Pain, IBS, dyspepsia)	281	70.2	17
Varni et al. [22]	Outpatient GI population in 3 US sites; 2002-2004 ages 5-18	Organic GI Disorders (IBD and GERD)	298	78	14.6
		IBS (Rome Criteria)	119	77.9	12.64
Youssef et al.[6]	Single NJ Centre, prospective, 5-18 yo. (Chronic constipation >3 months sx's with <3 BMs/week)	Functional Abdominal Pain (Rome)	81	79.98	10.62
		Chronic Constipation	80	70.4	12.2
Kunz et al [23]	IBD patients recruited from 3 american sites	IBD, New diagnosis	42	83.8	13.2
		GERD (Bx proven w/sx's)	56	79.9	14
		IBD- Remission	79	86.67	13.31
		IBD- Mild-Severe	42	78.57	17.99
Faus et al. [20]	IBD pts: 80% remission, 20% mild; Convenience Sample; NJ, USA	IBD	60	79.3	Not reported
Dierderen et al. [5]	IBD pt's: 63% patients in remission; Cross-sectional study of online questionnaires in Netherlands. \(\Delta\) Median and IQR	IBD	87	83.37 \(\Delta\)71.5-91.3 \(\Delta\)	

BCCH: BC Children’s Hospital; BMI: Body Mass Index; Dx: diagnosis; GI: Gastrointestinal HCV: Hepatitis C Virus; IBD: Inflammatory Bowel Disease; IQR: Interquartile Range; JIA: juvenile idiopathic arthritis; LTx: liver transplant; NHLBI: National Heart Lung and Blood Institute; NJ: New Jersey; NZ: New Zealand; QOL: Quality of Life; SD: Standard Deviation; SLE: systemic lupus erythematosus.
5 point Likert scale for patients to respond to each question. There are four sections to the short form questionnaire, with 3-5 questions per section for a total of 15 questions. The first section looks at any issues being able to do normal activities of childhood and participating with peers; the second section looks at frequency of low mood symptoms; the third section asks about interpersonal difficulties with peers; the fourth section looks at difficulty with classwork specifically.

2. Experimental Design, Materials and Methods

BCCH IBD QoL Data:

This data is from is a cross-sectional, retrospective study analyzing a quality improvement initiative in the IBD program at British Columbia Children’s Hospital (BCCH), Vancouver, Canada. From 2014-2018, a multidisciplinary team of pediatric gastroenterologists, IBD nurses, and clinical psychologists at BCCH started a program to identify and support IBD patients with psychosocial issues associated with their disease. QoL was assessed using the Pediatric Quality of Life Inventory™ Version 4.0 Short Form Generic Core Scale (PedsQL™) [24], accessed via the hospital’s licence. This tool was selected for its brevity and lack of questions overlapping with specific IBD symptoms, its validation in our target age group, and its straightforward scoring based off a Likert scale. The PedsQL™ was programed into a REDCap [25] survey accessed on iPads donated by the BCCH Foundation. The disease activity at the time of survey completion was determined as part of clinical care, and patients were separated into disease activity categories that included remission, mild and moderate/severe disease. The overall QoL scores of the patient cohort as well as the QoL scores by disease activity are presented in the table (mean with standard deviation).

QoL scores from other patient populations:

After identifying appropriate studies (those with large, well-defined cohorts of patients with chronic illnesses and healthy controls) from EMBASS and OVID since 2003 (time of PedsQL™ publication), mean QoL scores from the PedsQL™ were extracted, along with standard deviations, where possible. For some studies [5], IQR was given and is presented, and for other studies [1,7,19], the SD was derived from the data in the manuscript and a standard deviation is presented.

Ethics Statement

Ethical Considerations: This study evaluates a quality improvement initiative, and after consultation with the BCCH Research Ethics Board and in accordance with National TCPS2 policy, the study did not require an official ethics review.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships which have or could be perceived to have influenced the work reported in this article.

Outside of this submitted work, KJ is a Senior Clinician Scientists supported by the BC Children’s Hospital Research Institute Clinician Scientist Awards Program and the Children with Intestinal and Liver Disorders (CHILD) Foundation. He has received research support from Janssen, AbbVie and adMare Bioinnovations, Vancouver, BC Canada. KJ has served on the advisory boards of Janssen, AbbVie, Merck and Mylan Inc and has participated in a speaker’s bureau for AbbVie and Janssen.
Supplementary Materials

Supplementary material associated with this article can be found in the online version at doi:10.1016/j.dib.2021.107599.

References

[1] S. Kruse, A. Schneeberg, M. Brussoni, Construct validity and impact of mode of administration of the PedsQL® among a pediatric injury population, Health Qual Life Outcomes 12 (2014) 168.
[2] J.W. Varni, T.M. Burwinkle, M. Seid, D. Skarr, The PedsQL 4.0 as a pediatric population health measure: feasibility, reliability, and validity, Ambul Pediatr. 3 (6) (2003) 329–341.
[3] J. Williams, M. Wake, K. Hesketh, E. Maher, E. Waters, Health-related quality of life of overweight and obese children, JAMA 293 (1) (2005) 70–76.
[4] J.W. Varni, T.M. Burwinkle, E.R. Katz, K. Meeske, P. Dickinson, The PedsQL in pediatric cancer: Reliability and validity of the pediatric quality of life inventory generic core scales, multidimensional fatigue scale, and cancer module, Cancer 94 (7) (2002) 2090–2106.
[5] K. Diederlen, L. Haverman, M.A. Grotenhuis, M.A. Benninga, A. Kindermann, Parental distress and quality of life in pediatric inflammatory bowel disease: implications for the outpatient clinic, J. Pediatr. Gastroenterol. Nutr. 66 (4) (2018) 630–636.
[6] N.N. Youssef, A.L. Langseder, B.J. Verga, R.L. Mones, J.R. Rosh, Chronic childhood constipation is associated with impaired quality of life: a case-controlled study, J. Pediatr. Gastroenterol. Nutr. 41 (1) (2005) 56–60.
[7] E. Tahirović, H. Begić, H. Tahirović, J.W. Varni, Quality of life in children after cardiac surgery for congenital heart disease, Coll Antropol. 35 (4) (2011) 1285–1290.
[8] Z. Novák, M. Aglić, N. Barrowman, K.O. Yeates, M.J. Beauchamp, J. Gravel, et al., Association of persistent postconception symptoms with pediatric quality of life, JAMA Pediatr. 170 (12) (2016) e162900.
[9] N.L. Young, C. Wakefield, T.A. Burke, R. Ray, P.J. McCusker, V. Blanchette, Updating the canadian hemophilia outcomes-kids life assessment tool (CHO-KLAT Version2.0), Value Health 16 (5) (2013) 837–841.
[10] K.S. Chan, R. Mangione-Smith, T.M. Burwinkle, M. Rosen, J.W. Varni, The PedsQL: Reliability and validity of the short-form generic core scales and asthma module, Med Care 43 (3) (2005) 256–265.
[11] J.W. Varni, A.M. Delamater, K.K. Hood, K.A. Driscoll, J.C. Wong, S. Adi, et al., Diabetes management mediating effects between diabetes symptoms and health-related quality of life in adolescents and young adults with type 1 diabetes, Pediatr. Diabetes 19 (7) (2018) 1322–1330.
[12] A.D. Desai, C. Zhou, S. Stanford, W. Haaland, J.W. Varni, RM. Mangione-Smith, Validity and responsiveness of the pediatric quality of life inventory (PedsQL) 4.0 generic core scales in the pediatric inpatient setting, JAMA Pediatr. 168 (12) (2014) 1114–1121.
[13] J.W. Varni, C.A. Limbers, T.M. Burwinkle, Impaired health-related quality of life in children and adolescents with chronic conditions: A comparative analysis of 10 disease clusters and 33 disease categories/severities utilizing the PedsQL 4.0 generic core scales, Health Qual Life Outcomes 5 (2007) 43.
[14] S.L. Goldstein, N. Graham, T. Burwinkle, B. Warady, R. Farrah, J.W. Varnie, Health-related quality of life in pediatric patients with ESRD, Pediatr. Nephrol. 21 (6) (2006) 846–850.
[15] V.L. Ng, E.M. Alonso, J.C. Bucuvalas, G. Cohen, C.A. Limbers, J.W. Varni, et al., Health status of children alive 10 years after pediatric liver transplantation performed in the US and canada: Report of the studies of pediatric liver transplantation experience, J. Pediatr. 160 (5) (2012) 820–826 e3.
[16] J. Maskell, P. Newcombe, G. Martin, R. Kimble, Psychosocial functioning differences in pediatric burn survivors compared with healthy norms, J. Burn Care Res. 34 (4) (2013) 465–476.
[17] Z.M. Younossi, M. Stepanova, K.B. Schwartz, S. Wirth, P. Rosenthal, R. Gonzalez-Peralta, et al., Quality of life in adolescents with hepatitis C treated with sofosbuvir and ribavirin, J. Viral Hepat. 25 (4) (2018) 354–362.
[18] E. Liu, M. Twilt, P.N. Tyrrell, A. Dropol, S. Sheikh, M. Gorman, et al., Health-related quality of life in children with inflammatory brain disease, Pediatr. Rheumatol. Online J. 16 (1) (2018) 73.
[19] M. Hoedjes, S. Makkes, J. Halberstadt, H. Noordman, C.M. Renders, J.E. Bosmans, et al., Health-related quality of life in children and adolescents with severe obesity after intensive lifestyle treatment and at 1-year follow-up, Obes Facts 11 (2) (2018) 116–128.

[20] A.L. Faus, R.M. Turchi, M. Polansky, A. Berez, K.L. Leibowitz, Health-related quality of life in overweight/obese children compared with children with inflammatory bowel disease, Clin. Pediatr. (Phila) 54 (8) (2015) 775–782.

[21] J.W. Varni, C.B. Bendo, S. Nurko, et al., Health-related quality of life in pediatric patients with functional and organic gastrointestinal diseases, J. Pediatr. 166 (1) (2015) 85–90.

[22] J.W. Varni, M.M. Lane, T.M. Burwinkle, E.N. Fontaine, N.N. Youssef, J.B. Schwimmer, et al., Health-related quality of life in pediatric patients with irritable bowel syndrome: a comparative analysis, J. Dev Behav Pediatr. 27 (6) (2006) 451–458.

[23] J.H. Kunz, K.A. Hommel, RN. Greenley. Health-related quality of life of youth with inflammatory bowel disease. A comparison with published data using PedsQL 4.0 generic core scales, Inflamm Bowel. Dis. 16 (6) (2010) 939–946.

[24] J.W. Varni, M. Seid, P.S. Kurtin, PedsQL 4.0: Reliability and validity of the pediatric quality of life inventory version 4.0 generic core scales in healthy and patient populations, Med. Care 39 (8) (2001) 800–812.

[25] P.A. Harris, R. Taylor, B.L. Minor, V. Elliott, M. Fernandez, L. O’Neal, et al., The REDCap consortium: Building an international community of software platform partners, J. Biomed. Inf. 95 (2019) 103208.