Time at which the maximum of a random acceleration process is reached

Satya N Majumdar¹, Alberto Rosso¹ and Andrea Zoia²

¹ CNRS, Université Paris-Sud, LPTMS, UMR8626, Bât. 100, 91405 Orsay Cedex, France
² CEA/Saclay, DEN/DM2S/SERMA/LTSD, Bât. 454, 91191 Gif-sur-Yvette Cedex, France

E-mail: andrea.zoia@cea.fr

Received 8 January 2010, in final form 28 January 2010
Published 2 March 2010
Online at stacks.iop.org/JPhysA/43/115001

Abstract

We study the random acceleration model, which is perhaps one of the simplest, yet nontrivial, non-Markov stochastic processes, and is key to many applications. For this non-Markov process, we present exact analytical results for the probability density $p(t_m|T)$ of the time t_m at which the process reaches its maximum, within a fixed time interval $[0, T]$. We study two different boundary conditions, which correspond to the process representing respectively (i) the integral of a Brownian bridge and (ii) the integral of a free Brownian motion. Our analytical results are also verified by numerical simulations.

PACS numbers: 05.40.Fb, 05.40.—a, 05.40.Jc

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Consider a general stochastic process $x(t)$, starting from $x(0) = 0$, over a fixed time interval $[0, T]$. Let t_m denote the time at which the process achieves its maximum value x_m during the interval $[0, T]$ (see figure 1). Clearly, t_m is a random variable that fluctuates from one realization of the process to another. Our main goal is to investigate the probability density function (pdf) $p(t_m|T)$ of the stochastic times t_m, given the interval length T and the underlying stochastic process $x(t)$.

This question naturally arises in a variety of fields. For instance, in the context of the queueing theory, the stochastic process $x(t)$ may represent the length of a queue at time t, and one would like to know t_m, i.e. the time at which the queue length is maximum over a given time span. In the context of finance, $x(t)$ may represent the price of a stock, and a trader is evidently interested in t_m, i.e. the time at which the stock price is at its highest.
Perhaps, one of the simplest examples is provided by the underlying stochastic process $x(t)$ being an ordinary Brownian motion:
\[
\frac{dx}{dt} = \eta(t),
\]
where $\eta(t)$ is a Gaussian white noise with zero mean $\langle \eta(t) \rangle = 0$, and a delta correlator $\langle \eta(t)\eta(t') \rangle = 2D\delta(t - t')$. In this case, the probability density $p(t_m|T)$ is independent of D and is well known [1]:
\[
p(t_m|T) = \frac{1}{\pi \sqrt{t_m(T - t_m)}}; \quad 0 \leq t_m \leq T.
\]
This curve is symmetric around the mid-point $t_m = T/2$, has a ‘U shape’ with the minimum at $t_m = T/2$, and diverges at the two end points $t_m = 0$ and $t_m = T$. The cumulative distribution $\text{Prob}(t_m \leq x|T) = \frac{1}{2} \arcsin[\sqrt{t_m/T}]$ is known as one of Levy’s celebrated ‘arcsine laws’ [1].

For a Brownian bridge, i.e. a Brownian motion constrained to return to 0 at T, i.e. $x(T) = 0$, the corresponding pdf is known to be uniform:
\[
p(t_m|T) = \frac{1}{T} \quad \text{for} \quad 0 \leq t_m \leq T \quad [2].
\]
Motivated principally by the applications in the queueing theory and finance, the pdf $p(t_m|T)$ has been computed explicitly for a variety of other ‘constrained’ Brownian motions by using suitably adapted path integral methods. These examples include Brownian excursion [3], Brownian meander [3], reflected Brownian bridge [3], Brownian motion till its first-passage time [4] and Brownian motion with a drift [5]. Some of these exact results were then reobtained via a functional renormalization group method [6]. In [6], the authors computed $p(t_m|T)$ also for Bessel processes and for continuous-time random walks. Curiously, the pdf $p(t_m|T)$ also appeared recently as an important input in the calculation of the area enclosed by the convex hull of a planar Brownian motion of duration T [7, 8], which displays an interesting application in ecology. In addition, we have recently shown that $p(t_m|T)$ also appears in the computation of the disorder-averaged equilibrium distribution of a particle moving in a random self-affine potential [9].

The results for $p(t_m|T)$ mentioned above have been obtained for Brownian motion and its variants, which are all Markov processes. The purpose of this paper is to go beyond Markov processes and present an exact result of $p(t_m|T)$ for a non-Markov process. The non-Markov process that we study here is the well-known random acceleration process, which evolves via
\[
\ddot{x}(t) = \eta(t),
\]
$\eta(t)$ being a Gaussian white noise with $\langle \eta(t) \rangle = 0$, as before, and $\langle \eta(t)\eta(t') \rangle = 2D\delta(t - t')$. For simplicity, we will choose $D = 1$ subsequently. The process starts at $x(0) = 0$ with $v(0) = \dot{x}(0) = 0$, and evolves until the time T. We denote by $x_f = x(T)$ and $v_f = v(T)$ the final position and velocity of the process, respectively (see figure 1). The random acceleration process in the single variable $x(t)$ is non-Markovian, whereas the position-velocity process (x, v) is Markovian and does not depend on the past history.

The random acceleration process, being among the simplest non-Markovian processes, has been intensely studied both in physics and mathematics literature. In physics, for instance, it appears in the continuum description of the equilibrium Boltzmann weight of a semiflexible polymer chain with non-zero bending energy [10]. It also describes the steady state profile of a $(1 + 1)$-dimensional Gaussian interface [11] with dynamical exponent $z = 4$, the continuum version of the Golubovic–Bruinsma–Das Sarma–Tamborenea model [12]. This process also appears in the description of the statistical properties of the Burgers equation with Brownian initial velocity [13]. Furthermore, the random acceleration process is connected to the ‘Sylvester’s question’, which concerns the probability that N points, randomly and independently chosen on the unit disc, are the vertices of a convex N-sided polygon [14]. The
first-passage and a variety of other related properties of the random acceleration model are highly nontrivial and have been studied extensively over the last few decades [10, 11, 15–22].

Thus, in addition to being relevant in many applications, the random acceleration model represents a simple, yet nontrivial, non-Markov process where one can try to compute observables of physical interest. Recent studies have concerned with the distribution of extreme observables associated with this process, notably the global maximum x_m itself over the interval $[0, T]$ [10, 23, 24]. In this paper, we focus instead on the time t_m at which the global maximum x_m occurs in $[0, T]$. Actually, we show in this paper that $p(t_m|T)$ can be computed explicitly.

Let us first summarize our main results. Since the only time scale in the problem is T, it is evident that $p(t_m|T)$, normalized to unity over $0 \leq t_m \leq T$, has the scaling form

$$p(t_m|T) = \frac{1}{T} p\left(\frac{t_m}{T}\right),$$

(4)

where the scaling function $p(z)$, defined over $0 \leq z \leq 1$, satisfies the normalization condition:

$$\int_0^1 p(z) \, dz = 1.$$

We will consider two different boundary conditions, detailed below, for which we are able to compute $p(z)$ explicitly.

1.1. Integral of a Brownian Bridge

When the final velocity vanishes, $v_f = 0$, the process can be interpreted as the integral of a Brownian Bridge. In this case, we will show that

$$p(z) = \frac{\Gamma(1/2)}{\Gamma^2(1/4)} \frac{1}{[z(1-z)]^{3/4}},$$

(5)

which is evidently symmetric around the mid-point $z = 1/2$ and diverges at the two end points as $z^{-3/4}$ and $(1-z)^{-3/4}$, respectively. It is also useful to consider the cumulative distribution $P(z) = \int_0^z p(z') \, dz'$, which reads

$$P(z) = \frac{\Gamma(1/2)}{\Gamma^2(1/4)} B_z\left(\frac{1}{4}, \frac{1}{4}\right),$$

(6)

Here $B_z(p, q) = \int_0^z x^{p-1} (1-x)^{q-1} \, dx$ is the incomplete Beta function [25]. A plot of $P(z)$ is shown in figure 4, where it is also compared to direct numerical solutions, to an excellent agreement.

1.2. Integral of a free Brownian motion

When v_f is arbitrary, the process can be interpreted as the integral of a free Brownian motion. In this case, we obtain the following exact result for the normalized pdf:

$$p(z) = C \delta(z - 1) + \frac{(1 - C)}{\pi \sqrt{2}} z^{-3/4} (1 - z)^{-1/4},$$

(7)

where the constant C has the exact value

$$C = 1 - \sqrt{\frac{3}{8}} = 0.387628 \ldots$$

(8)

The density is thus asymmetric around the mid-point $t_m = T/2$ (i.e. $z = 1/2$), and the maximum may either occur at some time strictly shorter than T, namely $t_m < T$ (i.e. $z < 1$), or with a finite nonvanishing probability $C = 0.387628 \ldots$ at the end point of the interval $t_m = T$ (or equivalently $z = 1$). The representative trajectories for these two situations are shown respectively in figures 1 and 2. In other words, roughly 38.67% of all trajectories,
starting at \(x(0) = 0 \) and \(v(0) = 0 \), achieve their maximum only at the end of the interval \([0, T]\). The corresponding cumulative distribution \(P(z) = \int_0^z p(z') \, dz' \) is given by

\[
P(z) = C \theta(z - 1) + \frac{(1 - C)}{\pi \sqrt{2}} B \left(\frac{1}{4}, \frac{3}{4} \right),
\]

where \(\theta(z - 1) \) is zero for \(z < 1 \) and is equal to 1 for \(z = 1 \), i.e. \(P(z) \) exhibits a discontinuous jump at \(z = 1 \) from \(1 - C = \sqrt{3/8} = 0.612372 \ldots \) to 1. A plot of \(P(z) \) is provided in figure 5, where it is also compared to direct simulation results: we find an excellent agreement between analytical and numerical results.

The paper is organized as follows. In section 2, we outline the main ideas used for the exact derivation of \(p(t_m | T) \) via path decomposition techniques. In subsection 2.3, we also compare our analytical predictions with the results obtained via Monte Carlo simulations. The concluding section 3 presents a summary and raises some open questions. The details of the calculations are left to the four appendices, as they involve rather cumbersome multiple integrations of Airy functions.

2. Calculations

The basic ingredient in our computation is the propagator \(Z_{+}(x_1, v_1; x_0, v_0, t) \), i.e. the probability that the process \(x(t) \), starting at \(x_0 > 0 \) with velocity \(v_0 \), reaches the point \(x_1 \) with velocity \(v_1 \) at time \(t \), without ever crossing the origin \(x = 0 \) during this time. The Laplace transform of the propagator has been explicitly computed by Burkhardt and is recalled in
appendix A. We show that the location of the maximum can be expressed in terms of the propagator Z_+. Then, we make use of the known results about Z_+ in Laplace space to derive a closed form expression for $p(t_m|T)$.

The velocity $v(t)$ of a random acceleration process is a Brownian motion; thus, $v(t)$ is continuous everywhere, which implies that $x(t)$ is continuous and differentiable everywhere. An important consequence is that the global maximum x_m can lie either inside the interval $(0, T)$, with a velocity $v_m = 0$ (figure 1), or at the boundary $t_m = T$, with a velocity $v_m > 0$ (figure 2).

With reference to figure 1, the global maximum of the process starting at $\{x_0 = v_0 = 0\}$ and ending at $\{x_f, v_f\}$ lies inside the interval $(0, T)$. It is useful to decompose the total path into two portions: a first path from $\{x(0) = 0, v(0) = 0, x_m, v_m = 0\}$ in a time t_m and a second path from $\{x_m, v_m = 0\}$ to $\{x_f, v_f\}$ in a time $T - t_m$ (see figure 3(a)). Remark that x_m represents the maximum of both paths. Denote by $P[x_m, v_m = 0; x(0) = v(0) = 0, t_m]$ the probability of the first path and by $P[x_f, v_f; x_m, v_m = 0, T - t_m]$ the probability of the second path. With respect to the variables $\{x, v\}$, the process is Markovian, and the probability of the entire path is given by the product

$$P[x_m, v_m = 0; x(0) = v(0) = 0, t_m] \times P[x_f, v_f; x_m, v_m = 0, T - t_m].$$

We introduce the change of variables $\tilde{x} = x_m - x, \tilde{t} = t_m - t$ (which implies $\tilde{v} = v$) for the first path (see figure 3(b)). Therefore, we can rewrite

$$P[x_m, v_m = 0; x(0) = v(0) = 0, t_m] = Z_+(x_m, 0; 0, 0, t_m).$$

As for the second path, the change of variables $\tilde{x} = x_m - x, \tilde{t} = T - t_m$ (see figure 3(b)) gives

$$P[x_f, v_f; x_m, v_m = 0, T - t_m] = Z_+ (\tilde{x}_f = x_m - x_f, 0, 0, T - t_m).$$

When $t_m = T$, as illustrated in figure 2, an analogous argument, with a change of variables $\tilde{x} = x_m - x$ and $\tilde{t} = T - t$ (which implies $\tilde{v} = v$), allows rewriting the probability of such a path as $Z_+(x_m, 0; 0, v_f, T)$.

2.1. Integral of a Brownian Bridge

In this case, $v_f = 0$, and the location of the maximum lies inside the interval, as in figure 1. It follows that $p(t_m|T)$ can be obtained by integrating the two paths of equation (10) over x_m.

![Figure 3](https://example.com/figure3.png)

Figure 3. (a) Left: decomposition of a realization of the random acceleration process into two paths, from 0 to t_m (I) and from t_m to T (II). (b) Right: illustration of the change of variables $\tilde{x} = x_m - x$ and $\tilde{t} = t_m - t$ for (I) and $\tilde{x} = x_m - x$ and $\tilde{t} = T - t_m$ for (II).
and \(\hat{x}_f \), with \(v_f = 0 \):

\[
\int_0^\infty dx_m \int_{-\infty}^{\infty} dx_f P[x_m, 0; 0, 0, t_m] P[x_f, 0; x_m, 0, T - t_m]
= \int_0^\infty dx_m Z_+(x_m, 0; 0, 0, t_m) \int_0^\infty dx_f Z_+(\hat{x}_f, 0; 0, 0, T - t_m)
= I_2(0, t_m) I_2(0, T - t_m).
\] (13)

We define

\[
I_2(\epsilon, t) = \int_0^\infty dx Z_+(x, 0; \epsilon, 0, t),
\] (14)

which denotes the probability that the process, starting at the initial position \(\epsilon \geq 0 \) at \(t = 0 \), with initial velocity \(v_0 = 0 \), remains positive up to time \(t \), with a vanishing final velocity (the final position being arbitrary).

The integral \(I_2(\epsilon, t) \) can be computed exactly and it turns out that, in the \(\epsilon \to 0 \) limit, this integral vanishes, as apparent from equation (C.11). This is not surprising: indeed, if the particle starts at the origin with vanishing velocity, it cannot survive up to a finite time \(t \), since it will cross the boundary almost immediately. This is due to the continuous nature of the Brownian velocity. Therefore, if one puts \(\epsilon = 0 \) straightaway, the rhs of equation (13) vanishes. The reason for this is clear: the lhs of equation (13) represents the probability that the maximum lies in \([t_m, t_m + \delta_{t_m}] \), i.e. \(p(t_m|t) \, dt_m \), and hence is proportional to the small time increment \(dt_m \). Setting \(\epsilon \to 0 \) essentially implies \(dt_m = 0 \), which therefore gives 0 on the rhs. To extract the nonzero probability density \(p(t_m|t) \), one therefore needs to keep a finite \(\epsilon \) (therefore a finite \(dt_m \)) in \(I_2(\epsilon, t) \) on the rhs of equation (13). Then, finally one uses the following limiting procedure that gives a finite answer:

\[
p(t_m|T) = \lim_{\epsilon \to 0} \int_0^T dt_m I_2(\epsilon, t_m) I_2(\epsilon, T - t_m) = \frac{\Gamma(1/2)}{\Gamma^2(1/4) [T - t_m]}^{1/4}.
\] (15)

We note that this type of regularization procedure has been adopted before in computing the distribution of the area under a Brownian excursion [26] and, more recently, in the context of computing \(p(t_m|T) \) for several constrained Brownian motions, including the Brownian excursion [3].

2.2. Integral of a free Brownian motion

When the final velocity \(v_f \) of the particle is arbitrary, there is a finite probability that the global maximum occurs at the end of the observation time window \([0, T]\). This means that the probability density \(p(t_m|T) \) includes a delta function \(C \delta(t_m - T) \) (with a nonzero weight \(C \)). This is in addition to a non-delta function part with a nonzero support (and a total weight \(1 - C \)) over the full interval \(t_m \in [0, T] \).

Let us first compute the delta-function component in \(p(t_m|T) \) at \(t_m = T \). This contribution comes from paths that start at the origin with zero velocity and end up at \(x_m \) (with \(x_m \) being the maximum) in a small time window \(t_m \in [T - \delta, T] \), where \(\delta \to 0 \) and \(x_m \) is free to take any positive value. Following the notations and the change of variables discussed earlier, one can write the net probability of such paths as

\[
\lim_{\delta \to 0} \int_{T - \delta}^T p(t_m|T) \, dt_m = \int_0^\infty \int_0^{\infty} dx_m \, dv_f Z_+(x_m, 0; 0, v_f, T) = I_1(T).
\] (16)

We compute this integral \(I_1(T) \) explicitly in appendix B, and it turns out to be a constant independent of \(T \), \(I_1(T) = C = 1 - \sqrt{3}/8 \). Thus, it follows that the delta-function component of the probability density is \(p(t_m|T) = C \delta(t_m - T) \).
Figure 4. Simulation results for the cumulative distribution $P(z) = \int_0^z p(z') \, dz'$ (circles) as compared to the analytical formula in equation (6) (solid line), for the integral of a Brownian Bridge.

We next focus on the non-delta function part, where the maximum occurs at some time t_m well inside the interval $[0, T]$. The calculation is performed along the lines of the integral of a Brownian Bridge. The integral of the two paths of equation (10) is now written as

$$\int_0^\infty dx_m Z_e(x_m, 0; 0, 0, t_m) \int_{-\infty}^{+\infty} d\tilde{v} \int_0^\infty dx_f Z_e(\tilde{x}_f, -v_f; 0, 0, T - t_m)$$

$$= I_2(0, t_m)I_3(0, T - t_m), \quad (17)$$

where

$$I_3(\epsilon, t) = \int_{-\infty}^{+\infty} dv \int_0^\infty dx Z_e(x, v; \epsilon, 0, t). \quad (18)$$

The integral $I_3(\epsilon, t)$ is computed in equation (D.7) and, for reasons explained already, it vanishes as $\epsilon \to 0$. Using the regularization mentioned before with $x_0 = \epsilon$ and taking into account the full normalization, $\int_0^T p(t_m|T) \, dt_m = 1$, we can then write

$$p(t_m|T) = C \delta(t_m - T) + (1 - C) \lim_{\epsilon \to 0} \frac{I_2(\epsilon, t_m)I_3(\epsilon, T - t_m)}{\int_0^T d\epsilon_m I_2(\epsilon, t_m)I_3(\epsilon, T - t_m)}. \quad (19)$$

This thus gives the result of equation (7).

2.3. Numerical simulations

To verify our main theoretical predictions in two cases, namely, (i) the integral of a Brownian bridge in equation (6) and (ii) the integral of a free Brownian motion in equation (9), we have also performed Monte Carlo simulations of the two processes. In both cases, we simulated 10^4 realizations, with $T = 1$ and an integration step 10^{-5}. In figures 4 and 5, for the two cases (i) and (ii) respectively, the theoretical and numerical results are compared. The circles represent the simulation results and the solid lines represent the analytical formulae, respectively in equation (6) (figure 4) and equation (9) (figure 5). The agreement between simulations and analytical curves is excellent.
3. Summary and conclusions

In this paper we have studied two non-Markov stochastic processes: (i) the integral of a Brownian bridge up to time T and (ii) the integral of a Brownian motion up to T, i.e. the so-called random acceleration processes. For both processes, we have computed exactly the probability density $p(t_m|T)$ of the time t_m at which the process achieves its maximum when observed over a time window $[0,T]$. In the former case, the density $p(t_m|T)$ is symmetric around the mid-point $t_m = T/2$, with power law divergences at the end points $t_m = 0$ and $t_m = T$. In contrast, in the latter case, $p(t_m|T)$ is asymmetric around the mid-point $t_m = T/2$ and, in addition, has an unusual delta-function contribution at the end point $t_m = T$. The exact results are given respectively in equations (5) and (7). Our analytical findings are in excellent agreement with numerical Monte Carlo simulations (see figures 4 and 5).

As we mentioned in the introduction, the random acceleration model is key to understanding many applications in physics, and our results therefore apply in answering a number of questions. For instance, in the case of the semiflexible polymer chain, for which it was first used, or of fluctuating interfaces. In the former, what we have computed in this regard is the following: consider a semiflexible polymer chain of length t in arbitrary dimensions, with t also being proportional to the number of monomers. One can ask what is the maximal extent of the chain, say in the x-direction, and what is the length of the chain (or the monomer label) that is farthest away in the positive chosen direction. In the latter (Das-Sarma Tamboreana), this means the point in space where the fluctuating interface reaches the maximal height.

Note that, even though our final results look rather simple, their derivations, starting from the basic propagator, are nontrivial and involve rather delicate mathematical manipulations of multiple integrals, which we have tried to present systematically in a stepwise fashion in the appendices. Hopefully, some of these details might also be useful in other problems involving the integrals of a Brownian motion.

The exact result for $p(t_m|T)$ that we obtain in this paper is directly relevant for a particle diffusing in a one-dimensional random potential $V(x)$. In a finite box of size T, the particle finally thermalizes with an equilibrium Boltzmann density, $p_{eq}(x) = e^{-\beta V(x)}/Z$, where β is the inverse temperature and $Z = \int_0^T e^{-\beta V(x)} \, dx$ is the partition function. In the low temperature
limit, by taking the average over disorder, one can show [9] that \(p_{\text{eq}}(x) \) is precisely equal to the probability density \(p(t_m=x|T) \) that the potential \(V(x) \), viewed as a stochastic process in space (where the space plays the role of ‘time’), has its minimum (or equivalently its maximum\(^3\)) at \(t_m = x \). For example, for the well-known Sinai model, where \(V(x) \) itself is a free Brownian trajectory, \(p_{\text{eq}}(x) = 1/[\pi \sqrt{x(T-x)}] \), the same as the arcsine law. Our finding for \(p(t_m|T) \) then generalizes the result for \(p_{\text{eq}}(x) \) to the case where the potential \(V(x) \) represents the trajectory of a random acceleration process.

Let us end with a curious observation. For the free Brownian motion, Levy’s arcsine law appears in the distribution of two different observables: (a) in \(p(t_m|T) \), i.e. the location of the maximum, and (b) in \(p(t_{\text{occup}}|T) \), where \(t_{\text{occup}} = \int_0^T \theta[x(t)] \, dt \) represents the occupation time, i.e. the time the process spends on the positive half axis within the interval \([0, T]\). One may then ask if these two observables share the same distribution also for the random acceleration process. While we are able to compute \(p(t_m|T) \) explicitly in this case, the computation of \(p(t_{\text{occup}}|T) \) seems harder in the random acceleration case. Our numerical evidence shows that, unlike in the Brownian case, the two distributions are different in the random acceleration model. Therefore, computing the occupation time distribution \(p(t_{\text{occup}}|T) \) for the random acceleration model remains a challenging open problem.

Appendix A. Propagator with an absorbing boundary

In the absence of boundaries, the free propagator for the random acceleration process reads [10]
\[
Z_0(x, v; x_0, v_0, t) = \frac{\sqrt{3}}{2\pi t^2} \exp \left\{ -\frac{3}{t^3} \left[(x - x_0 - vt)(x - x_0 - v_0 t) + \frac{t^2}{3} (v - v_0)^2 \right] \right\}.
\]

(A.1)

In the presence of the absorbing boundary at \(x = 0 \), the propagator reads [10]
\[
\tilde{Z}_1(x, v; x_0, v_0, s) = \int_0^\infty dt \, e^{-s t} Z_1(x, v; x_0, v_0, t),
\]

(A.2)

where the Laplace transform of \(Z_1(x, v; x_0, v_0, t) \), i.e.
\[
\tilde{Z}_1(x, v; x_0, v_0, s) = \int_0^\infty dt \, e^{-s t} Z_1(x, v; x_0, v_0, t),
\]

(A.3)

has a rather complicated expression [10]
\[
\tilde{Z}_1(x, v; x_0, v_0, s) = -\frac{1}{2\pi} \int_0^\infty dF \, \int_0^\infty dG \, \text{Ai}(s/G^{2/3} - vG^{1/3}) \exp[-(Fx_0 + Gx + \frac{t}{2}s^{3/2}(F^{-1} + G^{-1}))] \left(\frac{F^{1/6}(F+G)}{(FG)^{1/6}(F+G)}\right).
\]

(A.4)

\(\text{Ai}(x) \) being the Airy function [27]. In subsequent calculations, we will also use the following amazing identity [10, 17]:
\[
\frac{1}{2\pi} \int_0^\infty \frac{dG}{F+G} \, G^{-1/6} \exp \left\{ -\frac{2}{3} \left(\frac{s^{3/2}}{F} + \frac{s^{3/2}}{G} \right) \right\} \text{Ai} \left(\frac{s}{G^{2/3}} \right) = F^{-1/6} \text{Ai} \left(\frac{s}{F^{2/3}} \right).
\]

(A.5)

\(^3\) Note that for a symmetric process, the distribution of the location of its minimum coincides with that of its maximum.
Appendix B. The first integral

In this appendix we compute the first integral

\[I_1(T) = \int_0^\infty \int_0^\infty d\nu \, d\xi \, [Z_0(x, 0; 0, \nu, T) + Z_1(x, 0; 0, \nu, T)], \tag{B.1} \]

where the propagator \(Z_0 \) is given in equation (A.1), and the Laplace transform of \(Z_1 \) is given in equation (A.4). We show below that \(I_1(T) \) is actually a constant, independent of \(T \) and is given by an amazingly simple expression

\[I_1(T) = C = 1 - \sqrt{\frac{3}{8}}. \tag{B.2} \]

Performing these integrals in closed form requires the use of a number of identities from [25]. However, to use the available identities, we need to first express the integral in a suitable form. To summarize, the derivation is not straightforward and requires quite a few mathematical manipulations and tricks. To make it easy, we lay out the main steps used in this derivation.

Step 1. Upon substituting the exact \(Z_0 \) from equation (A.1), the first integral in equation (B.1) can be performed in a straightforward manner and gives

\[\int_0^\infty \int_0^\infty d\nu \, d\xi \, Z_0(x, 0; 0, \nu, T) = \frac{5}{12}. \tag{B.3} \]

Step 2. To perform the second integral, we first take its Laplace transform with respect to \(T \), substitute the result from equation (A.4), and then easily perform the integration over \(\xi \). This yields

\[J(s) = \int_0^\infty \int_0^\infty \int_0^\infty d\nu \, d\xi \, dT \, e^{-sT} Z_1(x, 0; 0, \nu, T) = -\frac{1}{2\pi} \int_0^\infty \int_0^\infty \int_0^\infty d\nu \, dG \, dF \left(\frac{FG^{2/3}}{G + F} \right) \exp \left[-\frac{2}{3} \left(\frac{s^{3/2}}{F} + \frac{s^{3/2}}{G} \right) \right] \text{Ai} \left(\frac{s}{G^{2/3}} \right) \text{Ai} \left(\frac{s}{F^{2/3}} + vF^{1/3} \right). \tag{B.4} \]

Step 3. Next, we split the term \(1/(G(F + G)) \) in the integrand on the rhs of equation (B.4) into two parts, namely,

\[\frac{1}{G(F + G)} = -\frac{1}{F(G + F)} + \frac{1}{FG}, \tag{B.5} \]

and thus split the integral \(J(s) \) into two parts, i.e. \(J(s) = J_1(s) + J_2(s) \). This allows dealing each contribution separately, so that a number of identities can be used, as explained below.

Step 4. Let us first consider the first term,

\[J_1(s) = \frac{1}{2\pi} \int_0^\infty \int_0^\infty \int_0^\infty d\nu \, dG \, dF \left(\frac{FG^{-1/6}}{F + G} \right) \exp \left[-\frac{2}{3} \left(\frac{s^{3/2}}{F} + \frac{s^{3/2}}{G} \right) \right] \text{Ai} \left(\frac{s}{G^{2/3}} \right) \text{Ai} \left(\frac{s}{F^{2/3}} + vF^{1/3} \right). \tag{B.6} \]

Now, the integral over \(G \) can be performed explicitly using the identity (A.5). Next, for the integral over \(v \), we make a change of variables: \(w = F^{1/3}v + sF^{-2/3} \). Substituting back, we get

\[J_1(s) = \int_0^\infty \frac{dF}{F^{5/3}} \text{Ai} \left(\frac{s}{F^{2/3}} \right) \int_{F^{-2/3}}^\infty \text{Ai}(w) \, dw. \tag{B.7} \]
Then, making a further change of variables, \(s F^{-2/3} = z \), yields a simpler expression
\[
J_1(s) = \frac{3}{2s} \int_0^\infty \mathrm{d}z \text{Ai}(z) \int_z^\infty \text{Ai}(w) \mathrm{d}w.
\] (B.8)

The rhs can be computed using integration by parts, so to give
\[
J_1(s) = \frac{3}{4s} \left[\int_0^\infty \text{Ai}(w) \mathrm{d}w \right]^2.
\] (B.9)

Using \(f_0^\infty \text{Ai}(w) \mathrm{d}w = 1/3 \) [27], finally gives a rather simple exact expression
\[
J_1(s) = \frac{1}{12s}.
\] (B.10)

Step 5. We now turn to the second contribution \(J_2(s) \), which is given by
\[
J_2(s) = -\frac{1}{2\pi} \int_0^\infty \int_0^\infty \int_0^\infty \mathrm{d}v \, \mathrm{d}G \, \mathrm{d}F \left(\frac{FG}{G(F + G)} \right)^{-7/6} \exp \left[-\frac{2}{3} \left(\frac{s^{3/2}}{F} + \frac{s^{3/2}}{G} \right) \right] \text{Ai} \left(\frac{s}{G^{3/2}} \right) \text{Ai} \left(\frac{s}{F^{2/3}} + v F^{1/3} \right).
\] (B.11)

Now, the integral over \(G \) can be separated from the integrals over \(F \) and \(v \), and we write
\[
J_2(s) = -\frac{1}{2\pi} J_{21}(s) J_{22}(s),
\] (B.12)

where \(J_{21}(s) \) involves only the integration over \(G \):
\[
J_{21}(s) = \int_0^\infty \mathrm{d}G \, G^{-7/6} \exp \left[-\frac{2}{3} \left(\frac{s^{3/2}}{G} \right) \right] \text{Ai} \left(\frac{s}{G^{3/2}} \right).
\] (B.13)

and \(J_{22}(s) \) involves the integration over \(F \) and \(v \):
\[
J_{22}(s) = \int_0^\infty \mathrm{d}F \, F^{-7/6} \exp \left[-\frac{2}{3} \left(\frac{s^{3/2}}{F} \right) \right] \int_0^\infty \text{Ai}(F^{1/3}v + s F^{-2/3}) \mathrm{d}v.
\] (B.14)

Step 6. We now perform the integral \(J_{21}(s) \) in equation (B.13). We first make a change of variables from \(G \) to \(y = 2s^{3/2}/3G \). Next, we use the identity [27]
\[
\text{Ai} \left(\frac{3y}{2} \right)^{2/3} = \frac{1}{\sqrt{\pi}} \left(\frac{3}{2} \right)^{1/3} \frac{y^{1/3}}{\sqrt{\pi}} K_{1/3}(y),
\] (B.15)

where \(K_{\nu}(y) \) is the modified Bessel function of index \(\nu \) [25]. Substituting back in equation (B.13), we get
\[
J_{21}(s) = \frac{1}{s^{1/4}} \frac{1}{\sqrt{\pi}} \int_0^\infty y^{-1/2} e^{-y} K_{1/3}(y) \mathrm{d}y.
\] (B.16)

The integral over \(y \) can be explicitly performed [25], and gives \(\pi \sqrt{2\pi} \). Thus, we get a very simple expression
\[
J_{21}(s) = \frac{\sqrt{\pi}}{s^{1/4}}.
\] (B.17)

Step 7. Now we turn to the computation of \(J_{22}(s) \) in equation (B.14). Making the change of variables from \(v \) to \(w = F^{1/3}v + s F^{-2/3} \), we get
\[
J_{22}(s) = \int_0^\infty \mathrm{d}F \, F^{-3/2} \exp \left[-\frac{2}{3} \left(\frac{s^{3/2}}{F} \right) \right] \int_{s F^{-2/3}}^\infty \text{Ai}(w) \mathrm{d}w.
\] (B.18)
Next, we make a change of variables from F to $y = 2s^{3/2} / 3 F$, so to rewrite the integral as

$$J_{22}(s) = \frac{1}{3^{3/4} \sqrt{2}} 2^{1/2} \int_{0}^{\infty} dy \ y^{-1/2} e^{-y} \int_{(3y/2)^{3/2}}^{\infty} \text{Ai}(w) \ dw. \quad (B.19)$$

Substituting the expressions for $J_{22}(s)$ and $J_{21}(s)$ in equation (B.12) finally yields

$$J_2(s) = -\left[\sqrt{\frac{3}{8\pi}} A_0 \right] \frac{1}{s}.$$

where the constant A_0 is given by the integral

$$A_0 = \int_{0}^{\infty} dy \ y^{-1/2} e^{-y} \int_{(3y/2)^{3/2}}^{\infty} \text{Ai}(w) \ dw. \quad (B.21)$$

Step 8. We now have to evaluate the constant A_0 in equation (B.21). As a first step, let us again use the identity in equation (B.15), so as to express the inner integral in equation (B.21) as

$$\int_{(3y/2)^{3/2}}^{\infty} \text{Ai}(w) \ dw = \frac{1}{\pi^{3/2}} \int_{y}^{\infty} K_{1/3}(z) \ dz. \quad (B.22)$$

This follows by making a change of variables $w = (3z/2)^{2/3}$ on the lhs of equation (B.22) and then using the identity in equation (B.15). Thus, we get

$$A_0 = \frac{1}{\pi^{3/2}} \int_{0}^{\infty} dy \ y^{-1/2} e^{-y} \int_{y}^{\infty} K_{1/3}(z) \ dz. \quad (B.23)$$

Next, we perform integration by parts and use the incomplete Gamma function defined by $\Gamma[\alpha, y] = \int_{y}^{\infty} dx \ x^{\alpha-1} e^{-x}$. This gives

$$A_0 = \frac{1}{\pi^{3/2}} \left[\sqrt{\pi} \int_{0}^{\infty} K_{1/3}(z) \ dz - \int_{0}^{\infty} K_{1/3}(y) \Gamma[1/2, y] \ dy \right]. \quad (B.24)$$

Using the result [25] $\int_{0}^{\infty} K_{1/3}(z) \ dz = \pi / \sqrt{3}$, we get

$$A_0 = \frac{\sqrt{\pi}}{3} - \frac{1}{\pi^{3/2}} \int_{0}^{\infty} K_{1/3}(y) \Gamma[1/2, y] \ dy = \frac{\sqrt{\pi}}{3} - \frac{1}{\pi^{3/2}} A_1. \quad (B.25)$$

Step 9. Concerning finally the integral A_1 in equation (B.25), namely,

$$A_1 = \int_{0}^{\infty} K_{1/3}(y) \Gamma[1/2, y] \ dy, \quad (B.26)$$

we first write

$$\Gamma[1/2, y] = \frac{1}{\sqrt{y}} e^{-y} - \frac{1}{2} \Gamma[-1/2, y] \quad (B.27)$$

which can be easily proved by integration by parts. Substituting this result in equation (B.26), the first term can be easily computed, and gives $\pi \sqrt{2\pi}$. We then get

$$A_1 = \pi \sqrt{2\pi} - \frac{1}{2} \int_{0}^{\infty} K_{1/3}(y) \Gamma[-1/2, y] \ dy. \quad (B.28)$$

To perform the second integral, we first use the integral representation [25]

$$\Gamma[-1/2, y] = \frac{2}{\sqrt{\pi}} y^{-1/2} e^{-\sqrt{y}} \int_{0}^{\infty} \frac{e^{-t^{1/2}}}{y+t} \ dt. \quad (B.29)$$
Substituting this result in equation (B.28) gives
\[A_1 = \pi \sqrt{2\pi} - \frac{1}{\sqrt{\pi}} \int_0^\infty dt \ t^{1/2} \ e^{-t} \int_0^\infty dy \ y^{-1/2} \ e^{-y} \frac{K_{1/3}(y)}{y + t}. \] (B.30)
Next, we use the identity [25]
\[\int_0^\infty dy \ y^{-1/2} \ e^{-y} K_{1/3}(y) = 2\pi e^{K_{1/3}(t)} / t, \] (B.31)
so to perform the inner integral over \(y \) in equation (B.30). The integral over \(t \) then becomes simple and using once again \(\int_0^\infty K_{1/3}(t) \ dt = \pi / \sqrt{3} \) yields an exact expression for \(A_1 \), namely,
\[A_1 = \left(\sqrt{2} - \frac{2}{\sqrt{3}} \right) \pi^{3/2}. \] (B.32)
Substituting this result in equation (B.25) gives the final expression for \(A_0 \):
\[A_0 = \left(1 - \frac{\sqrt{2}}{\sqrt{3}} \right) \sqrt{\pi}. \] (B.33)

Step 10. Using the expression for \(A_0 \) in equation (B.20) we compute \(J_2(s) \), which, combined with the result for \(J_1(s) \) in equation (B.10), allows evaluating \(J(s) = J_1(s) + J_2(s) \):
\[J(s) = J_1(s) + J_2(s) = \left[\frac{7}{12} - \frac{\sqrt{2}}{\sqrt{3}} \right] \frac{1}{s}. \] (B.34)
This shows that the inverse Laplace transform of \(J(s) \) is just the constant prefactor of \(1/s \) in equation (B.34). Combining this result with equation (B.3) finally yields our main result
\[I_1(T) = C = 1 - \frac{\sqrt{2}}{\sqrt{3}}. \] (B.35)

Appendix C. The second integral

\[I_2(\epsilon, t) = \int_0^\infty dx \ [Z_0(x, 0; \epsilon, 0, t) + Z_1(x, 0; \epsilon, 0, t)], \] (C.1)
The first term can be easily integrated, and expanding in small \(\epsilon \) yields
\[\int_0^\infty dx Z_0(x, 0; \epsilon, 0, t) = \frac{1}{4\sqrt{\pi t^2}} - \frac{\sqrt{3}}{2\pi t^2} \epsilon + \cdots. \] (C.2)
We next take the Laplace transform of the second term with respect to \(t \): \(\tilde{Z}_1(x, 0; \epsilon, 0, s) = \int_0^\infty Z_1(x, 0; \epsilon, 0, t) \ e^{-st} \ dt \) and then integrate over \(x \) using the expression in equation (A.4). To extract the leading \(\epsilon \) dependence, it turns out to be useful to split \(e^{-\epsilon F x} = e^{-\epsilon F x} - 1 + 1 \). This gives
\[\int_0^\infty dx \tilde{Z}_1(x, 0; \epsilon, 0, s) = \int_0^\infty \Phi(F, s) \ dF + \int_0^\infty dF (e^{-\epsilon F x} - 1) \Phi(F, s), \] (C.3)
where
\[\Phi(F, s) = -\frac{1}{2\pi F^{1/6}} \int_0^\infty \frac{dG}{G^{7/6}(F + G)} \ \exp \left[-\frac{2}{3} \left(\frac{s^{3/2}}{F} + \frac{s^{3/2}}{G} \right) \right] \ Ai \left(\frac{s}{G^{2/3}} \right) \ Ai \left(\frac{s}{F^{2/3}} \right). \] (C.4)
Remark that the integral Appendix D. The third integral

\[\int_0^\infty \Phi(F, s) \, dF = - \int_0^\infty \frac{dG}{G^{2/3}} \frac{\mathrm{Ai}^2 \left(\frac{s}{G^{2/3}} \right)}{4\sqrt{s}} = - \frac{1}{4\sqrt{s}} \]

(C.5)

This contribution, after performing the inverse Laplace transform, cancels the one coming from equation (C.2) (at the leading order in the small \(\epsilon \) expansion).

We now address the second term in equation (C.3) in the small \(\epsilon \) expansion. By means of the change of variables \(\epsilon F = z \), the leading order of the second term reads

\[\int_0^\infty \frac{dF(e^{-F\epsilon} - 1)\Phi(F, s)}{F} = \frac{\epsilon^{1/6}\mathrm{Ai}(0)}{2\pi} B_1B_2(s), \]

(C.6)

where

\[B_1 = \int_0^\infty dz \frac{(1 - e^{-z})}{z^{3/2}} = -\Gamma(-1/6) \]

(C.7)

and

\[B_2(s) = \int_0^\infty \frac{dG}{G^{7/6}} \exp \left(-\frac{2s^{3/2}}{3G} \right) \frac{\mathrm{Ai} \left(\frac{s}{G^{2/3}} \right)}{\pi}. \]

(C.8)

Setting \(y = s^{3/2}/G \), we get

\[B_2(s) = \frac{1}{\Gamma(2/3)} \int_0^\infty \frac{dy}{y^{5/6}} \exp \left(-\frac{2y^3}{3} \right) \frac{\mathrm{Ai}(y^{2/3})}{\pi y^{3/2}}. \]

Using \(\mathrm{Ai}(0) = 1/(3^{2/3}\Gamma(2/3)) \), we finally get

\[\int_0^\infty \frac{dF(e^{-F\epsilon} - 1)\Phi(F, s)}{F} = \frac{\epsilon^{1/6}}{2^{2/3}\pi \Gamma(1/4)} \frac{3^{5/6}\Gamma(2/3)}{s^{1/4}}. \]

(C.9)

Then, by inverting the Laplace transform, we obtain the leading order contribution

\[I_2(\epsilon, t) = \frac{3^{5/6}\Gamma(2/3)}{2^{2/3}\pi \Gamma(1/4)} \frac{\epsilon^{1/6}}{t^{3/4}} + \mathcal{O}(\epsilon^{1/3}). \]

(C.11)

\textbf{Appendix D. The third integral}

Remark that the integral

\[I_3(\epsilon, t) = \int_{-\infty}^{+\infty} dv \int_0^\infty dx \left[Z_0(x, v; \epsilon, 0, t) + Z_1(x, v; \epsilon, 0, t) \right] \]

(D.1)

represents the survival probability at time \(t \) of the process started at the origin with vanishing velocity. The Laplace transform of this quantity, with respect to \(t \), has been computed in [10], and reads

\[\hat{I}_3(\epsilon, s) = \frac{1}{s} - \int_0^\infty dF\Psi(F, s) - \int_0^\infty dF(e^{-F} - 1)\Psi(F, s), \]

(D.2)

where

\[\Psi(F, s) = \frac{\mathrm{Ai}(s/F^{2/3})}{F^{2/3}} \left[1 + \frac{\Gamma \left(-\frac{1}{2}, \frac{2s^{3/2}}{3F} \right)}{4\sqrt{\pi}} \right]. \]

(D.3)

For the second term, we can set \(s/F^{2/3} = y \), so to make the dependence on \(s \) explicit, and get after some algebra

\[\int_0^\infty dF\Psi(F, s) = \frac{3}{2s} \int_0^\infty dy \mathrm{Ai}(y) \left[1 + \frac{\Gamma \left(-\frac{1}{2}, \frac{2y^{3/2}}{3} \right)}{4\sqrt{\pi}} \right] = -\frac{1}{s}. \]

(D.4)
This contribution cancels the $\frac{1}{z}$ of the first term. The third term can be computed by resorting to the substitution $z = \epsilon F$, namely,
\[
\int_0^\infty dF (e^{-\epsilon F} - 1) \Psi(F, s) = e^{2/3} \frac{\text{Ai}(0)}{\sqrt{3}} \int_0^\infty \frac{dz}{z^{5/3}} (e^{-z} - 1) \left[1 + \frac{\Gamma(-\frac{1}{6}, \frac{2}{3} e^{3/2})}{4\sqrt{\pi}} \right].
\] (D.5)

Then, by noting that, for small x, $\Gamma(-1/2, x) \rightarrow 2/\sqrt{x}$, we get
\[
\int_0^\infty dF (e^{-\epsilon F} - 1) \Psi(F, s) = \sqrt{\frac{3}{8\pi}} \frac{\text{Ai}(0)}{3^{1/4}} \int_0^\infty \frac{dz}{z^{7/6}} (1 - e^{-z}) = \frac{25/6 \Gamma(-4/3)}{3^{2/3} \sqrt{\pi}} \frac{\epsilon^{1/6}}{s^{1/4}}.
\] (D.6)

By finally performing the inverse Laplace transform, we obtain
\[
I_3(\epsilon, t) = \frac{25/6 \Gamma(-4/3)}{3^{2/3} \sqrt{\pi}} \frac{\epsilon^{1/6}}{t^{1/4}} + O(\epsilon^{1/3}).
\] (D.7)

References

[1] Levy P 1939 Sur certains processus stochastiques homogènes Comput. Math. 7 283
[2] Feller W 1968 An Introduction to Probability Theory and Its Applications (New York: Wiley)
[3] Majumdar S N, Random-Furling J, Kearney M J and Yor M 2008 On the time to reach maximum for a variety of constrained Brownian motions J. Phys. A: Math. Theor. 41 365005
[4] Randon-Furling J and Majumdar S N 2007 Distribution of the time at which the deviation of a Brownian motion is maximum before its first-passage time J. Stat. Mech. P10008
[5] Majumdar S N and Bouchaud J-P 2008 Optimal time to sell a stock in Black–Scholes model Quant. Finance 8 753
[6] Schehr G and Le Doussal P 2009 Extreme value statistics from the real space renormalization group: Brownian motion, Bessel processes and continuous time random walks arXiv:arXiv:0910:4913
[7] Randon-Furling J, Majumdar S N and Comtet A 2009 Convex hull of N planar Brownian motions: application to ecology Phys. Rev. Lett. 103 140602
[8] Majumdar S N, Comtet A and Randon-Furling J Random convex hulls and extreme value statistics J. Stat. Phys. (arXiv:0912:0631) doi:10.1007/s10955-009-9905-z
[9] Majumdar S N, Rosso A and Zoia A 2010 Hitting probability for anomalous diffusion processes Phys. Rev. Lett. 104 020602 (arXiv:0911:3815)
[10] Burkhardt T W 1993 Semiflexible polymer in the half plane and statistics of the integral of a Brownian curve J. Phys. A: Math. Gen. 26 L1157
[11] Majumdar S N and Bray A J 2001 Spatial persistence of fluctuating interfaces Phys. Rev. Lett. 86 3700
[12] Golubovic L and Bruinsma R 1991 Surface diffusion and fluctuations of growing interfaces Phys. Rev. Lett. 66 321
Das Sarma S and Tamborenea P 1991 A new universality class for kinetic growth: One-dimensional molecular-beam epitaxy Phys. Rev. Lett. 66 325
[13] Valaeeas P 2009 Statistical properties of the Burgers equation with Brownian initial velocity J. Stat. Phys. 134 589
[14] Hilhorst H J, Calka P and Schehr G 2008 J. Stat. Phys. P10010
[15] McKean H P 1963 A winding problem for a resonator driven by a white noise J. Math. Kyoto Univ. 2 227
[16] Goldman M 1971 On the first passage of the integrated Wiener process Ann. Math. Stat. 42 2150
[17] Marshall T W and Watson E J 1985 A drop of ink falls from my pen . . . it comes to earth, I know not when J. Phys. A: Math. Gen. 18 3531
[18] Sinai Ya G 1992 Distribution of some functionals of a random walk Theor. Math. Phys. 90 219
[19] Lachal A 1994 Last passage time for integrated Brownian motion Stoch. Proc. Appl. 49 57
[20] Majumdar S N and Bray A J 1998 Persistence with partial survival Phys. Rev. Lett. 81 1142
[21] De Smidt G, Godreche G and Luck J M 2001 Partial survival and inelastic collapse for a randomly accelerated particle Europhys. Lett. 53 438
[22] Burkhardt T W 2000 Dynamics of absorption of a randomly accelerated particle J. Phys. A: Math. Gen. 33 L129
[23] Gyoergyi G, Moloney N R, Ozogany K and Racz Z 2007 Maximal height statistics for $1/f^a$ signals Phys. Rev. E 75 021123
[24] Burkhardt T W 2008 First-passage and extreme-value statistics of a particle subject to a constant force plus a random force J. Stat. Phys. 133 217

[25] Gradshteyn I S and Ryzhik I M 1980 Tables of Integrals, Series, and Products (New York: Academic)

[26] Majumdar S N and Comtet A 2005 Airy distribution function: from the area under a Brownian excursion to the maximal height of fluctuating interfaces J. Stat. Phys. 119 777

[27] Abramowitz A and Stegun I A 1965 Handbook of Mathematical Functions (New York: Dover)