Metabolic Effects of Bile Acids: Potential Role in Bariatric Surgery

Charles R. Flynn, Vance L. Albaugh, and Naji N. Abumrad

Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee

SUMMARY

Although surgical treatment of obesity is becoming widely accepted, the mechanisms of how these operations mediate their beneficial effects remain elusive. Changes in bile acid handling after bariatric surgery hallmark these procedures and likely contribute to the efficacy of these metabolic operations. Establishing the crosstalk and intracellular signaling influenced by bile acids may lead to new insights into the pathogenesis and treatment for numerous diseases.

Bariatric surgery is the most effective and durable treatment for morbid obesity, with an unexplained yet beneficial side effect of restoring insulin sensitivity and improving glycemia, often before weight loss is observed. Among the many contributing mechanisms often cited, the altered handling of intestinal bile acids is of considerable therapeutic interest. Here, we review a growing body of literature examining the metabolic effects of bile acids ranging from their physical roles in dietary fat handling within the intestine to their functions as endocrine and paracrine hormones in potentiating responses to bariatric surgery. The roles of 2 important bile acid receptors, Takeda G-protein coupled receptor (also known as G-protein coupled bile acid receptor) and farnesoid X receptor, are highlighted as is downstream signaling through GLP-1 and its cognate receptor. Additional improvements in other phenotypes and potential contributions of commensal gut bacteria, such as Akkermansia muciniphila, which are manifest after Roux-en-Y gastric bypass and other emulations, such as gallbladder bile diversion to the ileum, are also discussed. (Cell Mol Gastroenterol Hepatol 2019;8:235–246; https://doi.org/10.1016/j.jcmgh.2019.04.014)

Keywords: Bariatric Surgery; Bile Acids; Type 2 Diabetes; Roux-en-Y Gastric Bypass; Glucagon-Like Polypeptide 1 (GLP-1).

Over the past 2 decades, bile acids (BAs) have gained a greater visibility and notoriety for their roles in regulating metabolism. Once only appreciated for their role in facilitating the availability of dietary fat,1 BAs are now known to exert hormonal functions throughout the body via nuclear and membrane receptors. Here, we review the expansive list of BA-sensitive signaling pathways, with a focus on intestinal and liver metabolism as regulated by BA availability. We aim to highlight the mechanisms by which BA signaling networks modulate complex physiologic events and explore potential opportunities for BA manipulating interventions that might improve obesity or related disease, such as type 2 diabetes (T2D), hyperlipidemia, and nonalcoholic fatty liver disease.

Bile Acid Synthesis and Enterohepatic Circulation

BAs are physiologic surfactants and cell signaling molecules that are synthesized from a cholesterol precursor in the liver. BA synthesis is facilitated by 2 distinct enzymatic pathways. The classical pathway contributes approximately 75% of the total BA pool and is regulated by cholesterol 7α-hydroxylase.2 The alternate (acidic pathway) is responsible for the remaining, approximately 25% of BA synthesis and is regulated by sterol-27 hydroxylase.3 Chenodeoxycholic acid (CDCA) and cholic acid (CA) in humans, and α-muricholic acid (MCA), β-MCA in mice, are the 2 major primary BAs; they are conjugated to either taurine (in mice) or glycine (in humans) in the liver, before they are actively secreted into the canalicular space of the liver, where they are concentrated over 100-fold in the fasting state before being stored in the gallbladder (GB) and secreted in the duodenum after stimulation by food.4 Secondary BAs, such as lithocholic acid and deoxycholic acid, are formed through additional reactions including bile salt hydrolase and 7α-dehydroxylase present in commensal gut bacteria.5,6 These gut bacteria additionally oxidize, sulfonate, and dehydroxylate BAs to form a diverse array of other BA species that vary in structure, function, and hydrophobicity. Most of the BAs remain in the gut lumen until they reach the terminal ileum5 where uptake into the enterocyte occurs via the apical sodium-dependent BA transporter and basolateral transporters OSTα/β.7 BAs are then transported back to the liver via portal circulation where they are reabsorbed and then enter the portal circulation and are then reabsorbed and then enter.
hepatic portal circulation in a process repeated 8–10 times per day. In a 70-kg human the sum of dietary cholesterol intake (5 mg/day/kg) and cholesterol synthesis (10 mg/day/kg) is nearly equal to fecal neutral sterol (8 mg/day/kg) and fecal acidic sterol (7 mg/day/kg) secretion. In mice, cholesterol intake (30 mg/day/kg), cholesterol synthesis (160 mg/day/kg), and sterol excretion (60 mg/day/kg for neutral sterols and 50 mg/day/kg for acidic sterols) are considerably higher.4 BA malabsorption can cause congenital diarrhea, steatorrhea, and reduced plasma cholesterol levels. The eventual loss of BAs in feces serves as the primary mechanism for cholesterol excretion from the body.

Bile Acid Regulation of Dietary Fat Availability

Dietary fat in the Western diet accounts for nearly 40% of calories ingested per day, and most (~95%) of the dietary lipids is derived from triacylglycerol (TAG), approximately 5% from phospholipids and less than 0.5% from cholesteryl esters.5 BA concentrations in the intestine range from 10 mM in the duodenum to 2 mM in the ileum,9 and these salts (predominantly sodium and potassium in most of the body) play a vital role in intestinal fat absorption. It is noteworthy that conjugated BAs have lower pKa values than the unconjugated acids and are therefore more ionized and exhibit greater water solubility at alkaline pH of intestinal chyme. In response to a meal, cholecystokinin stimulates GB contraction releasing bile into the duodenum. Dietary fats (mainly TAG and phospholipids) in the intestinal lumen are solubilized into micelles through the coordinated actions of BAs and various lipases (lingual, gastric, and most importantly pancreatic lipases)11 at the TAG droplet-water interface.12 Dietary TAGs are hydrolyzed by intestinal lipases generating monoacylglycerols13 sensed by GPR119. Fatty acids are sensed by free fatty acid receptors 1–4, which are absorbed by passive diffusion and specific transporters, such as CD36, across the brush border of enterocytes.14 These products are re-esterified to diacylglycerols and TAGs before being assembled into apolipoprotein B-48-containing chylomicron particles used for export to peripheral tissues.14

In the intestine, TAG synthesis is thought to occur mainly through the monoacylglycerols pathway, where monoacylglycerol acyltransferase joins monoacylglycerols and fatty acid–coenzyme A to form diacylglycerols.15 Diacylglycerols and fatty acid–coenzyme A are covalently joined to form TAG through the actions of DGAT1 and DGAT2. Dgat1 and Dgat2 are highly expressed in mouse intestinal tissue,16 with DGAT2 predominating lipid processing.17 In humans, DGAT1 is the only highly expressed enzyme in the intestine, with DGAT2 being expressed mainly in the liver. The coordinated roles of Dgat1 and Dgat2 in intestinal TAG synthesis are not completely understood, but recent studies in mice with intestine-specific deletion of individual isoforms, Dgat1 (Dgat1^{im}) or Dgat2 (Dgat2^{im}), suggest different and nonredundant roles in regulating chylomicrons and cytoplasmic lipid droplets.18 The influence of BAs on the activity and/or localization of these enzymes is unknown; however, humans with DGAT1 deficiency exhibit BA diarrhea and may exhibit altered BA metabolism/composition,19 although fecal BA measurements have not yet been reported in these patients.

Bile Acid Receptors

In lean and fasted humans, plasma BA concentrations are very low and hence most receptors are not activated. However, in metabolic stress or in the postprandial period, BA levels increase and composition changes resulting in the activation of various membrane bound and nuclear receptors. The quintessential membrane-bound receptor is a G-protein coupled BA receptor 1 (GPBAR1; TGR5),20,21 which is involved with rapid and dose-dependent elevation of intracellular cAMP levels.20 The most prototypical nuclear receptor is farnesoid X receptor (FXR; also known as NR1H4)22; other nuclear receptors include vitamin D receptor (NR1H1),23 pregnane X receptor (NR1H2),24,25 and constitutive androstane receptor (HR1H3). Other receptors include muscarinic receptors,26 active voltage-receptors (BKCA), calcium and chloride channels27 tyrosine kinase coupled receptors, and phospholipases (NAPE-PLD).28 BAs species bind these receptors with varying affinities and with a multitude of pathophysiological and pharmacologic effects. It has also been shown that conjugated BAs also activate sphingosine-1-phosphate receptor 2 leading to activation of the ERK1/2 and AKT signaling pathways.29

TGR5

TGR5 (encoded by GPBAR1) is a BA receptor that is a key mediator of the nongenomic actions of BAs. TGR5 is not expressed in hepatocytes, but is localized to sinusoidal endothelial cells,20 monocytes,20 enteroendocrine cells,31,32 adipose tissue,21,33 smooth muscle,34 skeletal muscle,21 pancreas,35 and the central nervous system.36 BAs activate TGR5 with a potency order of lithocholic acid>deoxycholic acid>CDCA>CA. TGR5^{-/-} mice have mildly reduced BA pools,37,38 impaired glucose tolerance,39 and amplified inflammatory responses to partial hepatectomy, CA-enriched feeding, or bile duct ligation injury.39 Through kinase signaling pathways, TGR5 activation stimulates GB filling,40 modulates energy expenditure,41 suppresses hepatic glycolenolysis, and reduces inflammation and inflammatory macrophage activation.20,41-45 TGR5 also maintains intestinal epithelial barrier integrity and maintains intestinal homeostasis.46

Farnesoid X receptor

FXR is a nuclear BA sensor critical in regulating BA synthesis and transport. The receptor also serves as a critical regulator of glucose, lipid, and amino acid metabolism.47,48 Such features make it an attractive therapeutic target for T2D, dyslipidemia, BA disorders (inflammatory bowel disease, cholangitis), and nonalcoholic fatty liver disease.49-51 FXR is expressed as 4 different isoforms in humans52 and mice.53 FXR isoforms α1-α2 differ in the function of the N-terminal activation function domain and in an alternative splicing event giving rise to a 4 amino acid insertion (methionine-tyrosine-threonine-glycine) between the DNA binding domain and the hinge domain that
connects the DNA binding domain with the ligand binding domain. In humans, FXR\(\beta\) is highly expressed in small and large intestine and kidney, whereas FXR\(\alpha\) is highly expressed in adrenal and liver.\(^{52}\) FXR subsequently heterodimerizes with RXR and binds to FXR responsive element motifs, namely IR-1, depending on pathophysiologic or metabolic state.

Access to the FXR nuclear receptor is facilitated by many BA transporters and by passive diffusion. Reciprocally, FXR controls absorption of BAs via apical and basolateral transporters in both the liver and the intestine\(^{65}\) and these are essential for the function of the enterohepatic circulation. When bound by BAs (6\(\alpha\)-ECDCA>CDCA>deoxycholic acid>CA>lithocholic acid relative potency),\(^{55,56}\) nuclear FXR changes conformation to release corepressors, recruit coactivators, and drive target gene transcription programs. Other bile secondary acids, such as ursodeoxycholate acid (UDCA), are antagonistic.\(^{57}\) In the liver induction of small nuclear FXR helps in intestinal growth\(^{76}\) and nutrient absorption.\(^{73}\) Patel et al\(^{73}\) showed that GLP-2R plays a role in increasing circulating GLP-1 and BA levels, but despite markedly elevated levels of GLP-2 after vertical sleeve gastrectomy in mice, GLP-2R does not seem to play a vital role in reducing weight loss and glycemia postoperatively.

In the liver, FXR activation not only reduces BA synthesis but also reduces the expression of several genes mediating free fatty acid synthesis, including sterol responsive element binding protein 1 c, thereby attenuating de novo lipogenesis.\(^{63,79,80}\) FXR also represses the expression of microsomal triglyceride transfer protein\(^{79}\) and apolipoprotein B,\(^{81}\) thereby blunting very-low-density lipoprotein secretion. Hypercholesterolemia is promoted through FXR-mediated inhibition of BA synthesis and the resulting accumulation of the cholesterol precursor.\(^{82}\) Furthermore, FXR increases the expression of apolipoprotein C-II and decreases the expression of apo C-III, increasing the activity of lipoprotein lipase and consequently reducing triglyceride uptake by peripheral tissues. Consistent with these observations, mice deficient in FXR exhibit increased plasma lipids and cholesterol and increased hepatic steatosis.\(^{83-86}\) Recent studies also demonstrate a central role for BA stimulation of FXR and the release of FGF15/19 in transintestinal cholesterol excretion by increasing the hydrophobicity of the BA pool stimulating cholesterol efflux through the sterol-exporting heterodimer adenosine triphosphate binding cassette subfamily G member 5/\(\alpha_8\).\(^{87}\)

Using ileal organoids, Goldspink et al\(^{76}\) discovered that there is an elevation of L-cell cAMP concentrations and increase in L-type Ca\(^{2+}\) currents when administering the BA taurodeoxycholic acid and TGR5 agonist GPBAR-A individually leading to increased secretion of GLP-1. Similar results were achieved with administration of large amounts TAK-875, a free fatty acid receptor 1 agonist. Administration of a combination of TAK-875 and GPBAR-A causes a synergistic increase in Ca\(^{2+}\) response along with a synergistic stimulation of GLP-1 secretion from L-cells. In human studies, cholecystokinin-induced GB emptying results in significant GLP-1 secretion, which is abrogated with the use colesvelam, a BA sequestrant.\(^{77}\) Conjugated BAs released in the ileocolonic region in obese patients causes a statistically significant increase in postprandial GLP-1.\(^{78}\) GLP-2 is another proglucagon polypeptide secreted by L-cells, which helps in intestinal growth\(^{76}\) and nutrient absorption.\(^{73}\) Patel et al\(^{73}\) showed that GLP-2R plays a role in increasing circulating GLP-1 and BA levels, but despite markedly elevated levels of GLP-2 after vertical sleeve gastrectomy in mice, GLP-2R does not seem to play a vital role in reducing weight loss and glycemia postoperatively.

Bile Acid Regulation of Metabolism

By examining loss-of-function and gain-of-function of TGR5, it was discovered that the TGR5 pathway is essential in glucose homeostasis.\(^{31}\) TGR5 stimulates cAMP synthesis and activation of the MAPK pathway induces secretion of glucagon-like polypeptide 1 (GLP-1).\(^{20,34,73}\) GLP-1 is a hormone that has been shown to promote satiety, optimize nutrient absorption, stimulate the secretion of insulin, and impede gastric emptying.\(^{72,73}\) Katsuma et al\(^{73}\) showed that BAs interact with TGR5 to stimulate the secretion of GLP-1 in a murine enteroendocrine cell line STC-1. The promotion of GLP-1 secretion caused by BAs via TGR5 is caused by accumulation of intracellular cAMP within the STC-1 cells. BAs stimulate the release of GLP-1 in a dose-dependent manner.\(^{74,75}\) In TGR5 knockout mice, there is no significant increase in secretion of GLP-1 when BAs are introduced suggesting that TGR5 is necessary for BAs to stimulate the release of GLP-1 from intestinal L-cells.\(^{75}\) TGR5 mediates the release of GLP-1 in L-cells through modulating mitochondrial oxidative phosphorylation, which Causes the closing and opening of \(K_{ATP}/Ca\(_{\text{v}}\) channels and changes in the ATP/ADP ratio.\(^{51}\)

Using ileal organoids, Goldspink et al\(^{76}\) discovered that there is an elevation of L-cell cAMP concentrations and increase in L-type Ca\(^{2+}\) currents when administering the BA taurodeoxycholic acid and TGR5 agonist GPBAR-A individually leading to increased secretion of GLP-1. Similar results were achieved with administration of large amounts TAK-875, a free fatty acid receptor 1 agonist. Administration of a combination of TAK-875 and GPBAR-A causes a synergistic increase in Ca\(^{2+}\) response along with a synergistic stimulation of GLP-1 secretion from L-cells. In human studies, cholecystokinin-induced GB emptying results in significant GLP-1 secretion, which is abrogated with the use colesvelam, a BA sequestrant.\(^{77}\) Conjugated BAs released in the ileocolonic region in obese patients causes a statistically significant increase in postprandial GLP-1.\(^{78}\) GLP-2 is another proglucagon polypeptide secreted by L-cells, which helps in intestinal growth\(^{76}\) and nutrient absorption.\(^{73}\) Patel et al\(^{73}\) showed that GLP-2R plays a role in increasing circulating GLP-1 and BA levels, but despite markedly elevated levels of GLP-2 after vertical sleeve gastrectomy in mice, GLP-2R does not seem to play a vital role in reducing weight loss and glycemia postoperatively.
released in the fed state. FGF15/19 acts on the liver to decrease glycemia and increase glycogen synthesis through a mechanism involving inactivation of the transcription factor cAMP regulatory element binding protein and the blunted expression of peroxisome proliferator-activated receptor γ coactivator-1α. Studies in FXR+/− mice further suggest these actions may additionally be mediated by small heterodimer partner, a direct FXR target and glucagon-like peptide 1 receptor.

Metabolic Effects of Manipulating Intestinal Bile Acid Availability

Dyslipidemia is more than 2 times more prevalent with T2D than in people without. Although statins are among mainstay therapies for treating dyslipidemia, BA sequestrant therapy has long proven effective in reducing low-density lipoprotein levels and improving glycemic control. The sequestrant works by mechanisms that are additive to the actions of other glucose-lowering drugs, such as metformin. Inhibition of ileal BA uptake by resins and luminal exposure to perfused BAs increases L-cell secretion and improves glycemic control through TGR5-FGF15/19 and FXR-LXRα axes. To more selectively modulate FXR and minimize undesirable side effects, novel strategies have been taken to develop tissue-specific FXR agonists. The gut-restricted FXR agonist fexaramine increased thermogenesis, adipose tissue browning, and insulin sensitivity, and reduced weight gain. These beneficial effects were mediated by increased FGF15 production leading to alterations in BA composition.

Obeticholic acid is a semisynthetic FXR-agonist that in the liver inhibits BA synthesis and promotes BA efflux, inhibits inflammation, and reduces fibrosis. In enterocytes, obeticholic acid stimulates FGF-15/19 release and inhibits intestinal inflammation. Interestingly, antagonism of FXR also has metabolic benefits. Oral administration of the antioxidant tempol reduced Lactobacillus bile salt hydrolase activity leading to accumulation of T-β-MCA, an FXR antagonist. Obese, high-fat-diet fed mice treated with tempol exhibited reduced obesity and improved insulin resistance. Because T-β-MCA is rapidly metabolized by bacteria through the actions of bile salt hydrolase, a variant of this BA, glycine-β-MCA, was developed and tested. G-β-MCA was tested in high-fat-fed mice and revealed to be a potent intestinal FXR antagonist resulting in decreased serum ceramide levels blunting obesity, insulin resistance, and development of fatty liver. These observed metabolic improvements were associated with white adipose tissue being and increased energy expenditure and were solely caused by inhibition of FXR signaling in the intestine. Interestingly, intestine-specific Fxr-null mice were unresponsive to the beneficial effects of Gly-β-MCA. Collectively, these data suggest a complex interplay between BAs, gut bacteria, and intestinal BA receptor signaling. Further studies are needed to clarify tissue-specific BA signaling pathways and how such pathways can be modulated to achieve therapeutic effect.

Bariatric Surgery

Bariatric surgery is the most effective and durable treatment for class III or higher obesity (body mass index ≥35 kg/m²) with and without diabetes. Currently, the 2 most popular bariatric procedures are Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy, both effectively promote weight loss. These bariatric operations reduce satiety, alter food preference, and improve nutrient handing with the beneficial side effect of improving insulin sensitivity before significant weight loss; we attributed these improvements to caloric restriction. Data from our longitudinal study showed that the average weight loss in bariatric subjects undergoing RYGB was 10% at 1 month, 27% at 6 months, 34% at 1 year, 33% at 2 years, and 27% at 5 years.

RYGB remodels the digestive tract by interrupting the stomach forming a small and vertical-oriented gastric pouch (≤30 mL), with the upper pouch reanastomosed to jejunum; bowel continuity is restored by jejunoejunostomy (Figure 1). The newly created digestive tract bypasses a major portion of the stomach, the duodenum, and the proximal jejunum, leading to decreased food intake and nutrient absorption. Following RYGB bile and pancreatic secretions drain through the foregut and meet with chime in the mid to distal jejunum at the site of the newly created jejunoejunostomy, where bowel continuity is restored. Hallmark of bariatric procedures is a chronic elevation in systemic BAs. Although increases in serum BAs are evident in the fasted state, increases are most predominant in the early postprandial period, particularly after RYGB. We measured by liquid chromatography–mass spectrometry the plasma BAs in class III obese (body mass index ≥40 kg/m²), preoperatively and longitudinally up to 2 years after RYGB. We observed bimodal significant increases in total BAs 1 month and 2 years after surgery. These increases were consistent with improvements in glucose tolerance and insulin sensitivity. The early changes (at 1 month) were characterized by significant increases in the secondary BA, UCDA, and conjugates GUDCA and TUDCA, whereas the increases at 2 years were caused by significant increases in CA and CDCA. Several hypotheses have been put forth to explain these improvements. The foregut hypothesis suggests that exclusion of the upper small intestine prevents secretion of “inhibitory” signals that promote insulin resistance and formation of T2D. A second hypothesis proposes that enhanced glucose use in the Roux (alimentary) limb favorably alters whole-body glucose disposal. A third hypothesis implicates the hindgut in modulating intestinal sodium-glucose cotransport in mediating the improvement in glucose tolerance and insulin sensitivity. A fourth hypothesis implicates intestinal satiety factors, such as oleoylthanolamine and BAs acting on brain dopaminergic circuits to impart satiety. Recent evidence obtained by our group and others supports a central role for BAs in each of these hypotheses.
Patients who have undergone either laparoscopic RYGB or laparoscopic sleeve gastrectomy have a significant increase in the secretion of GLP-1 and PYY by 1 week postoperatively. Kohli et al. discovered that patients after RYGB have a positive correlation between the postprandial levels of BAs and GLP-1. The data generated by us and others show that both bariatric procedures, RYGB and vertical sleeve gastrectomy, are associated with enhanced delivery of BAs to distal segments of the small and large intestine, to the sites where BA-responsive enteroendocrine cells are enriched, thus eliciting amplified hormonal secretory responses. These include increased GLP-1, PYY, and FGF15/19 release, all of which have insulin-sensitizing effects in the liver and peripheral tissue (eg, skeletal muscle and adipose).

Bile Diversion

To understand the role of BAs, we developed a murine mouse model connecting the GB to specific segments of the small intestine (eg, duodenum vs mid- or distal-jejunum vs terminal ileum), without stomach or intestinal remodeling.
examined. These data also suggest that intraluminal nascent BAs play an important role in the metabolic improvements observed with RYGB, and that these improvements seem to be site specific in nature.

Although the role of bile and BAs on enterocyte TAG metabolism is relatively unknown, our recent studies in mice with GB-IL suggests that bile may interfere with fatty acid absorption in the terminal ileum. GB bile is rich in phospholipids and provides the main source of lipid for intestinal chylothoracic assembly and secretion into lymph. Because phospholipid biosynthesis is tightly coupled to production of cellular membranes and intestinal phospholipid synthesis is required for phospholipid monolayers in endoplasmic reticulum, Golgi and lipid droplet membranes, the lipid inclusions we observed in GB-IL ileocytes could have resulted from impaired phospholipid handling as well.

Summary

Overall, metabolic benefits of altering intestinal BA availability include weight-dependent and weight-independent effects (Figure 2). Bile diversion increases circulating BAs and improves glucose tolerance without altering body weight. This improved glucose homeostasis is typically attributed to effects of weight loss when observed clinically, but our findings suggest the weight-independent effects of bariatric surgery on glucose metabolism are driven by BAs. These findings implicate BAs as novel therapeutics for obesity and T2D, and adjuvant therapies in poor responders to bariatric surgery. With the continued development and greater availability of low-cost, high-throughput screening technologies for identifying risk and predicting response to therapy it may one day be routine to tailor bariatric procedures or suggest alternative, more effective procedures to those for whom it is warranted.

References

1. Borgstrom B, Dahlqvist A, Lundh G, Sjovall J. Studies of intestinal digestion and absorption in the human. J Clin Invest 1957;36:1521–1536.
2. Li-Hawkins J, Gafvels M, Olin M, Lund EG, Andersson U, Schuster G, Bjorkhem I, Russell DW, Eggertsen G. Cholic acid mediates negative feedback regulation of bile acid synthesis in mice. J Clin Invest 2002;110:1191–1200.
3. Pandak WM, Bohdan P, Franklund C, Malonee DH, Eggertsen G, Bjorkhem I, Gil G, Vlahcevic ZR, Hylemon PB. Expression of sterol 12alpha-hydroxylase alters bile acid pool composition in primary rat hepatocytes and in vivo. Gastroenterology 2001;120:1801–1809.
4. Farkkila M, Pietinen TA. Lipid metabolism in bile acid malabsorption. Ann Med 1990;22:5–13.
5. Duboc H, Rajca S, Raintau D, Benarous D, Maubert MA, Quervain E, Thomas G, Barbu V, Humbert L, Despras G, Bridonneau C, Dumetz F, Grill JP, Maslia J, Beaugerie L, Cosnes J, Chazouilleres O, Poupon R, Wolf C, Mallet JM, Langella P, Trugnan G, Sokol H, Seksik P. Connecting...
dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut 2013;62:531–539.
6. Ridlon JM, Harris SC, Bhowmik S, Kang DJ, Hylemon PB. Consequences of bile salt bio-transformations by intestinal bacteria. Gut Microbes 2016;7:22–39.
7. Jahnel J, Fickert P, Hauer AC, Hogenauer C, Avian A, Trauner M. Inflammatory bowel disease alters intestinal bile acid transporter expression. Drug Metab Dispos 2014;42:1423–1431.
8. Dietschy JM, Turley SD. Control of cholesterol turnover for Americans. 8th ed. Washington, DC: US Dept of Health and Human Services; December 2015. Available at: http://www.health.gov/DietaryGuidelines. Accessed December 16, 2018.
9. Northfield TC, McColl I. Postprandial concentrations of free and conjugated bile acids down the length of the normal human small intestine. Gut 1973;14:513–518.
10. DeNigris SJ, Hamosh M, Kasbekar DK, Lee TC, Hamosh P. Linguial and gastric lipases: species differences in the origin of prepancreatic digestive lipases and in the localization of gastric lipase. Biochim Biophys Acta 1982;699:38–45.
11. Wang TY, Liu M, Portincasa P, Wang DQ. New insights into the molecular mechanism of intestinal fatty acid absorption. Eur J Clin Invest 2013;43:1203–1218.
12. Storch J, Zhou YX, Lagakos WS. Metabolism of apical versus basolateral sn-2-monoacylglycerol and fatty acids in rodent small intestine. J Lipid Res 2008;49:1762–1769.
13. Coleman RA, Haynes EB. Monoacylglycerol acyltransferase. Evidence that the activities from rat intestine and suckling liver are tissue-specific isoenzymes. J Biol Chem 1986;261:224–228.
14. Abumrad NA, Davidson NO. Role of the gut in lipid homostasis. Physiol Rev 2012;92:1061–1085.
15. DeNigris SJ, Boggs EG, Wise JK, Altman RB, Wilkin TJ. A G protein-coupled bile acid receptor responsive to bile acids. J Biol Chem 2003;278:9435–9440.
16. Makishima M, Okamoto AP, Repa JJ, Tu H, Learned RM, Luj A, Hull MV, Lugt KD, Mangelsdorf DJ, Shan B. Identification of a nuclear receptor for bile acids. Science 1999;284:1362–1365.
17. Makishima M, Lu TT, Xie W, Whitfield GK, Domoto H, Evans RM, Haussler MR, Mangelsdorf DJ. Vitamin D receptor as an intestinal bile acid sensor. Science 2002;296:1313–1316.
18. Staudinger JL, Goodwin B, Jones SA, Hawkins-Brown D, MacKenzie KL, LaTour A, Liu Y, Klaassen CD, Brown KK, Reinhard J, Willson TM, Koller BH, Kliewer SA. The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proc Natl Acad Sci U S A 2001;98:3369–3374.
19. Xie W, Radominska-Pandya A, Shi Y, Simon CM, Nelson MC, Ong ES, Waxman DJ, Evans RM. An essential role for nuclear receptors SXR/PXR in detoxification of cholestatic bile acids. Proc Natl Acad Sci U S A 2001;98:3375–3380.
20. Rauffan JP, Chen Y, Cheng K, Compadre C, Compard L, Zimniak P. Selective interaction of bile acids with muscarinic receptors: a case of molecular mimicry. Eur J Pharmacol 2002;457:77–84.
21. Li Q, Dutta A, Kresge C, Bugde A, Feranchak AP. Bile acids stimulate cholangiocyte fluid secretion by activation of transmembrane member 16A Cl(-) channels. Hepatology 2018;68:187–199.
22. Margheritis E, Castellani B, Magotti P, Peruzzi S, Romeo E, Natali F, Mostarda S, Gioiello A, Plomelli D, Garau G. Bile acid recognition by NAPE-PLD. ACS Chem Biol 2016;11:2908–2914.
23. Studer E, Zhou X, Zhao R, Wang Y, Takabe K, Nagahashi M, Pandak WM, Dent P, Spiegel S, Shi R, Xu W, Liu X, Bohdan P, Zhang L, Zhou H, Hylemon PB. Conjugated bile acids activate the sphinostine-1-phosphate receptor 2 in primary rodent hepatocytes. Hepatology 2012;55:267–276.
24. Keitel V, Reinehr R, Gatsios P, Rupprecht C, Gorg B, Selbach O, Haussinger D, Kubitz R. The G-protein coupled bile salt receptor TGR5 is expressed in liver sinusoidal endothelial cells. Hepatology 2007;45:695–704.
25. Thomas C, Gioiello A, Noriega L, Strehle A, Oury J, Rizzo G, Macchiario A, Yamamoto H, Maita C, Pruensanz M, Pelliciari R, Auwerx J, Schoonjans K. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab 2009;10:167–177.
26. Habib AM, Richards P, Rogers GJ, Reimann F, Gribble FM. Co-localisation and secretion of glucagon-like peptide 1 and peptide YY from primary cultured human L cells. Diabetologia 2013;56:1413-1416.
33. Svensson PA, Olsson M, Andersson-Assarsson JC, Taube M, Pereira MJ, Fuguel P, Jacobson P. The TGR5 gene is expressed in human subcutaneous adipose tissue and is associated with obesity, weight loss and resting metabolic rate. Biochem Biophys Res Commm 2013;433:563–566.

34. Rajagopal S, Kumar DP, Mahavadi S, Bhattacharya S, Zhou R, Corvera CU, Bunnett NW, Grider JR, Murthy KS. Activation of G protein-coupled bile acid receptor, TGR5, induces smooth muscle relaxation via both Epac- and PKA-mediated inhibition of RhoA/Rho kinase pathway. Am J Physiol Gastrointest Liver Physiol 2013;304:G527–G535.

35. Kumar DP, Rajagopal S, Mahavadi S, Mirshahi F, Grider JR, Murthy KS, Sanyal AJ. Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic beta cells. Biochem Biophys Res Comm 2012;427:600–605.

36. Poole DP, Godfrey C, Cattaruzza F, Cottrell GS, Kirkland JG, Pelayo JC, Bunnett NW, Corvera CU. Expression and function of the bile acid receptor GpBAR1 (TGR5) in the murine enteric nervous system. Neurogastroenterol Motil 2010;22:814–825.

37. Maruyama T, Tanaka K, Suzuki J, Miyoshi H, Harada N, Nakamura T, Miyamoto Y, Kanatani A, Tamai Y. Targeted disruption of G protein-coupled bile acid receptor 1 (Gpbar1/M-Bar) in mice. J Endocrinol 2006;191:197–205.

38. Vassileva G, Golovko A, Markowitz L, Abbondanzo SJ, Zeng M, Yang S, Hoos L, Tetzloff G, Levitan D, Zhu HH, He Z, Suino-Powell K, Ji K, Li J, Shao J, Xu HE, Kowdley KV, Luketic V. An international study evaluating the farnesoid X receptor agonist obeticholic acid as monotherapy in PBC. J Hepatol 2011;54:S13.

39. Huber RM, Murphy K, Miao B, Link JR, Cunningham MR, Rupar MJ, Gunyuzu PL, Haws TF, Kassam A, Powell F, Hollis GF, Young PR, Mukherjee R, Burn TC. Generation of multiple farnesoid-X-receptor isoforms through the use of alternative promoters. Gene 2002;290:35–43.

40. Li T, Holmstrom SR, Kir S, Umetani M, Schmidt DR, Kliewer SA, Mangelsdorf DJ. The G protein-coupled bile acid receptor, TGR5, stimulates gallbladder filling. Mol Endocrinol 2011;25:1066–1071.

41. Keitel V, Donner M, Winandy S, Kubitz R, Haussinger D. Expression and function of the bile acid receptor TGR5 in Kupffer cells. Biochem Biophys Res Comm 2008;372:78–84.

42. Maruyama T, Miyamoto Y, Nakamura T, Tamai Y, Okada H, Sugiyama E, Itadani H, Tanaka K. Identification of membrane-type receptor for bile acids (M-BAR). Biochem Biophys Res Comm 2002;298:714–719.

43. Wang YD, Chen WD, Wang M, Yu D, Forman BM, Huang W. Farnesoid X receptor antagonizes nuclear factor kappaB in hepatic inflammatory response. Hepatology 2008;48:1632–1643.

44. Lou G, Ma X, Fu X, Meng Z, Zhang W, Wang YD, Van Ness C, Yu D, Xu R, Huang W. GpBAR1/TGR5 mediates bile acid-induced cytokine expression in murine Kupffer cells. PLoS One 2014;9:e935677.

45. Perino A, Pols TW, Nomura M, Stein S, Pelliciari R, Schoonjans K. TGR5 reduces macrophage migration through mTOR-induced C/EBPbeta differential translation. J Clin Invest 2014;124:5424–5436.

46. Cipriani S, Mencarelli A, Chini MG, Distrutti E, Renga B, Bifulco G, Baldelli F, Donini A, Fiorucci S. The bile acid receptor GPBAR-1 (TGR5) modulates integrity of intestinal barrier and immune response to experimental colitis. PLoS One 2011;6:e25637.

47. Kuipers F, Bloks VW, Groen AK. Beyond intestinal soap: bile acids in metabolic control. Nat Rev Endocrinol 2014;10:488–498.

48. Sina C, Tohkin M, Miyata M, Ward JM, Lambert G, Gonzalez FJ. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell 2000;102:731–744.

49. Mudalair S, Henry RR, Sanyal AJ, Morrow L, Marschall HU, Kipnes M, Adorini L, Sciacca CI, Clotpton P, Castelloe E, Dillen P, Pruzanski M, Shapiro D. Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease. Gastroenterology 2013;145:574–582.

50. Neuschwander-Tetri BA, Loomba R, Sanyal AJ, Lavine JE, Van Natta ML, Abdelmalek MF, Chalasani N, Dasarathy S, Diehl AM, Hamed B, Kowdley KV, McCullough A, Terrault N, Clark JM, Tonascia J, Brun EM, Kleiner DE, Doo E, Network NCR. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet 2015;385:956–965.

51. Huber RM, Murphy K, Miao B, Link JR, Cunningham MR, Rupar MJ, Gunyuzu PL, Haws TF, Kassam A, Powell F, Hollis GF, Young PR, Mukherjee R, Burn TC. Generation of multiple farnesoid-X-receptor isoforms through the use of alternative promoters. Gene 2002;290:35–43.

52. Wang YD, Chen WD, Wang M, Yu D, Forman BM, Huang W. Farnesoid X receptor antagonizes nuclear factor kappaB in hepatic inflammatory response. Hepatology 2008;48:1632–1643.

53. Lou G, Ma X, Fu X, Meng Z, Zhang W, Wang YD, Van Ness C, Yu D, Xu R, Huang W. GpBAR1/TGR5 mediates bile acid-induced cytokine expression in murine Kupffer cells. PLoS One 2014;9:e935677.
Li T, Feng GS. Cytoplasmic tyrosine phosphatase Shp2 coordinates hepatic regulation of bile acid and FGF15/19 signaling to repress bile acid synthesis. Cell Metab 2014; 20:320–332.

59. Kong B, Wang L, Chiang JY, Zhang Y, Klaassen CD, Guo GL. Mechanism of tissue-specific farnesoid X receptor expression in suppressing the expression of genes in bile-acid synthesis in mice. Haploge 2012;56:1034–1043.

60. Wang L, Lee YK, Bundman D, Han Y, Thevanothan S, Kim CS, Chua SS, Wei P, Heyman RA, Karin M, Moore DD. Redundant pathways for negative feedback regulation of bile acid production. Dev Cell 2002;2:721–731.

61. Xie MH, Holcomb I, Deuel B, Dowd P, Huang A, Vagts A, Foster J, Liang J, Brush J, Gu Q, Hillan K, Goddard A, Gurney AL, FGF-19, a novel fibroblast growth factor with unique specificity for FGFR4. Cytokine 1999; 11:729–735.

62. Inagaki T, Choi M, Moschetta A, McDonald JG, Luo G, Jones SA, Goodwin B, Richardson JA, Gerard RD, Repa JJ, Mangelsdorf DJ, Kliewer SA. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab 2005;2:217–225.

63. Bhatnagar S, Damron HA, Hillgartner FB. Fibroblast growth factor-19, a novel factor that inhibits hepatic fatty acid metabolism. J Biol Chem 2009;284:10023–10033.

64. Kir S, Beddow SA, Samuel VT, Miller P, Previs SF, Suino-Powell K, Xu HE, Shulman GI, Kliewer SA, Mangelsdorf DJ. FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. Science 2011;331:1621–1624.

65. Berrabah W, Aumercier P, Gheeraert C, Dehondt H, Xie MH, Holcomb I, Deuel B, Dowd P, Huang A, Vagts A, Foster J, Liang J, Brush J, Gu Q, Hillan K, Goddard A, Gurney AL, FGF-19, a novel fibroblast growth factor with unique specificity for FGFR4. Cytokine 1999; 11:729–735.
nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. PNAS 2006;103:1006–1011.

83. Cariou B, van Harmelen K, Duran-Sandoval D, van Dijk TH, Greffhorst A, Abdelkarim M, Caron S, Torpier G, Fruchart JC, Gonzalez FJ, Kuipers F, Staels B. The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice. J Biol Chem 2006;281:11039–11049.

84. Bjursell M, Wedin M, Admyre T, Hermansson M, Cariou B, van Harmelen K, Duran-Sandoval D, van Dijk TH, Grefhorst A, Torpier G, Kuipers F, Staels B. Farnesoid X receptor deficiency improves glucose homoeostasis in mouse models of obesity. Diabetes 2011;60:1861–1871.

85. Lambert G, Amar MJ, Guo G, Brewer HB Jr, Gonzalez FJ, Sinal CJ. The farnesoid X-receptor is an essential regulator of cholesterol homeostasis. J Biol Chem 2003;278:2563–2570.

86. Prawitt J, Abdelkarim M, Stroeve JH, Popescu I, Duez H, Bjursell M, Wedin M, Admyre T, Hermansson M, Lambert G, Amar MJ, Guo G, Brewer HB Jr, Cipriani S, Mencarelli A, Palladino G, Fiorucci S. FXR activation reverses insulin resistance and lipid abnormalities and protects against liver steatosis in Zucker (fa/fa) obese rats. J Lipid Res 2010;51:771–784.

87. Poitou M, Mazuy C, Graziosi L, Bruno A, Monti MC, Distriti E, Cipriani S, Donini A, Fanciulli S. Dissociation of intestinal and hepatic activities of FXR and LXRalpha supports metabolic effects of terminal ileum interposition in rodents. Diabetes 2013;62:3384–3393.

88. Cipriani S, Mencarelli A, Palladino G, Fanciulli S. FXR activation reverses insulin resistance and lipid abnormalities and protects against liver steatosis in Zucker (fa/fa) obese rats. J Lipid Res 2010;51:771–784.

89. Potthoff MJ, Boney-Montoya J, Choi M, He T, Sunny NE, Satapati S, Suino-Powell K, Xu HE, Gerard RD, Finck BN, Burgess SC, Mangelsdorf DJ, Kliewer SA. FGF15/19 regulates hepatic glucose metabolism by inhibiting the CREB-PGC-1alpha pathway. Cell Metab 2011;13:729–738.

90. Van Dijk TH, Grefhorst A, Oosterveer MH, Bloks WV, Staels B, Reijnoud DJ, Kuipers F. An increased flux through the glucose 6-phosphate pool in enterocytes delays glucose absorption in Fxr-/- mice. J Biol Chem 2009;284:10315–10323.

91. Mencarelli A, Renga B, D’Amore C, Santorelli C, Graziosi L, Bruno A, Monti MC, Distriti E, Cipriani S, Donini A, Fanciulli S. Dissociation of intestinal and hepatic activities of FXR and LXRalpha supports metabolic effects of terminal ileum interposition in rodents. Diabetes 2013;62:3384–3393.

92. Potthoff MJ, Boney-Montoya J, Choi M, He T, Sunny NE, Satapati S, Suino-Powell K, Xu HE, Gerard RD, Finck BN, Burgess SC, Mangelsdorf DJ, Kliewer SA. FGF15/19 regulates hepatic glucose metabolism by inhibiting the CREB-PGC-1alpha pathway. Cell Metab 2011;13:729–738.

93. Park MJ, Kong HJ, Kim HY, Kim HH, Kim JH, Cheong JH. Transcriptional repression of the gluco- neogenic gene PEPCK by the orphan nuclear receptor SHP through inhibitory interaction with C/EBPalpha. Biochem J 2007;402:567–574.

94. Emerging Risk Factors C, Sarwar N, Gao P, SessoHsahsi SR, Gao P, Sarwar N, Whincup PH, Mukamal KJ, Gillum RF, Holme I, Njolstad I, Fletcher A, Nilsson P, Lewington S, Collins R, Gudnason V, Thompson SG, Sattar N, Selvin E, Hu FB, Danesh J. Emerging Risk Factors C, Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 2010;375:2215–2222.

95. Rao Kondapally Seshasai S, Kaptoge S, Thompson A, Di Angelantonio E, Gao P, Sarwar N, Whincup PH, Mukamal KJ, Gillum RF, Holme I, Njolstad I, Fletcher A, Nilsson P, Lewington S, Collins R, Gudnason V, Thompson SG, Sattar N, Selvin E, Hu FB, Danesh J. Emerging Risk Factors C, Diabetes mellitus, fasting glucose, and risk of cause-specific death. N Engl J Med 2011;364:829–841.

96. Garg SK, Ritchie PJ, Moser EG, Snell-Bergeon JK, Freson BJ, Hazenfield RM. Effects of colestevam on LDL-C, A1c and GLP-1 levels in patients with type 1 diabetes: a pilot randomized double-blind trial. Diabetes Obes Metab 2011;13:137–143.

97. Yamakawa T, Takano T, Utsunomiya H, Kadonosono K, Okamura A. Effect of colestimide therapy for glycemic control in type 2 diabetes mellitus with hypercholesterolemia. Endocr J 2007;54:53–58.

98. Zieve FJ, Kalin MF, Schwartz SL, Jones MR, Bailey WL. Results of the glucose-lowering effect of WelChol study (GLOWS): a randomized, double-blind, placebo-controlled pilot study evaluating the effect of colesevelam hydrochloride on glycemic control in subjects with type 2 diabetes. Clin Ther 2007;29:74–83.

99. Bays HE, Goldberg RB, Truitt KE, Jones MR. Colesevelam hydrochloride therapy in patients with type 2 diabetes mellitus treated with metformin: glucose and lipid effects. Arch Intern Med 2008;168:1975–1983.

100. Fonseca VA, Rosenstock J, Wang AC, Truitt KE, Jones MR. Colesevelam HCl improves glycemic control and reduces LDL cholesterol in patients with inadequately controlled type 2 diabetes on sulfonylurea-based therapy. Diabetes Care 2008;31:1479–1484.

101. Chen L, McNulty J, Anderson D, Liu Y, Nystrom C, Bullard S, Collins J, Handlon AL, Klein R, Grimes A, Murray D, Brown R, Krull D, Benson B, Kleymenova E, Remlinger K, Young A, Yao X. Cholestyramine reverses hyperglycemia and enhances glucose-stimulated glucagon-like peptide 1 release in Zucker diabetic fatty rats. J Pharmacol Exp Ther 2010;334:164–170.

102. Shang Q, Saumoy M, Holst JJ, Salen G, Xu G. Colesevelam improves insulin resistance in a diet-induced obesity (F-DIO) rat model by increasing the release of
GLP-1. Am J Physiol Gastrointest Liver Physiol 2010; 298:G419–G424.

103. Kobayashi M, Ikegami H, Fujisawa T, Nojima K, Kawabata Y, Nosu S, Babaya N, Ito-Babaya M, Yamaji K, Hiromine Y, Shibata M, Ogihara T. Prevention and treatment of obesity, insulin resistance, and diabetes by bile acid-binding resin. Diabetes 2007; 56:239–247.

104. Adrian TE, Ballantyne GH, Longo WE, Bilchik AJ, Adrian TE, Gariballa S, Parekh KA, Thomas SA, Saadi H, Li F, Jiang C, Krausz KW, Li Y, Albert I, Hao H, Fabre KM, Verbeke L, Farre R, Trebicka J, Komuta M, Roskams T, Fang S, Suh JM, Reilly SM, Yu E, Osborn O, Lackey D, Herrema H, Meissner M, van Dijk TH, Brufau G, Jiang C, Xie C, Lv Y, Li J, Krausz KW, Shi J, Brocker CN, Desai D, Amin SG, Bisson WH, Liu Y, Gavrilova O, Patterson AD, Gonzalez FJ. Intestine-selective farnesoid X receptor agonist, improves portal hypertension by two distinct pathways in cirrhotic rats. Hepatology 2010; 51:806–816.

105. Verbeke L, Fajardao R, Souverein MH, Reijnoudt D, Muller M, Stellard F, Groen AK, Kuipers F. Bile salt sequestration induces hepatic de novo lipogenesis, and cholesterol and bile acid kinetics in type 2 diabetes: a randomised controlled study. Diabetologia 2012;55:432–442.

106. Beksy C, Murphy EJ, Deines K, Chan M, Tsang E, Adrian TE, Glass A, Turner SM, Protasio J, Riiff T, Hellerstein MK. Bile acid sequestrants on glucose metabolism, hepatic de novo lipogenesis, and cholesterol and bile acid kinetics in type 2 diabetic volunteers. Diabetologia 2012;55:2343–2347.

107. Beksy C, Murphy EJ, Deines K, Chan M, Tsang E, Glass A, Turner SM, Protasio J, Riiff T, Hellerstein MK. Bile acid sequestrants on glucose metabolism, hepatic de novo lipogenesis, and cholesterol and bile acid kinetics in type 2 diabetic volunteers. Diabetologia 2012;55:2343–2347.

108. Beysen C, Murphy EJ, Deines K, Chan M, Tsang E, Glass A, Turner SM, Protasio J, Riiff T, Hellerstein MK. Effect of bile acid sequestrants on glucose metabolism, hepatic de novo lipogenesis, and cholesterol and bile acid kinetics in type 2 diabetes: a randomised controlled study. Diabetologia 2012;55:432–442.

109. Beysen C, Murphy EJ, Deines K, Chan M, Tsang E, Glass A, Turner SM, Protasio J, Riiff T, Hellerstein MK. Effect of bile acid sequestrants on glucose metabolism, hepatic de novo lipogenesis, and cholesterol and bile acid kinetics in type 2 diabetes: a randomised controlled study. Diabetologia 2012;55:432–442.

110. Beysen C, Murphy EJ, Deines K, Chan M, Tsang E, Glass A, Turner SM, Protasio J, Riiff T, Hellerstein MK. Effect of bile acid sequestrants on glucose metabolism, hepatic de novo lipogenesis, and cholesterol and bile acid kinetics in type 2 diabetes: a randomised controlled study. Diabetologia 2012;55:432–442.

111. Beysen C, Murphy EJ, Deines K, Chan M, Tsang E, Glass A, Turner SM, Protasio J, Riiff T, Hellerstein MK. Effect of bile acid sequestrants on glucose metabolism, hepatic de novo lipogenesis, and cholesterol and bile acid kinetics in type 2 diabetes: a randomised controlled study. Diabetologia 2012;55:432–442.

112. Beysen C, Murphy EJ, Deines K, Chan M, Tsang E, Glass A, Turner SM, Protasio J, Riiff T, Hellerstein MK. Effect of bile acid sequestrants on glucose metabolism, hepatic de novo lipogenesis, and cholesterol and bile acid kinetics in type 2 diabetes: a randomised controlled study. Diabetologia 2012;55:432–442.
125. Albaugh VL, Banan B, Antoun J, Xiong Y, Guo Y, Ping J, Alikhan M, Clements BA, Abumrad NN, Flynn CR. Role of bile acids and GLP-1 in mediating the metabolic improvements of bariatric surgery. Gastroenterology 2018.

126. Flynn CR, Albaugh VL, Cai S, Cheung-Flynn J, Williams PE, Brucker RM, Bordenstein SR, Guo Y, Wasserman DH, Abumrad NN. Bile diversion to the distal small intestine has comparable metabolic benefits to bariatric surgery. Nat Commun 2015;6:7715.

127. Reddy IA, Smith NK, Erreger K, Ghose D, Saunders C, Foster DJ, Turner B, Poe A, Albaugh VL, McGuinness O, Hackett TA, Grueter BA, Abumrad NN, Flynn CR, Galli A. Bile diversion, a bariatric surgery, and bile acid signaling reduce central cocaine reward. PLoS Biol 2018;16:e2006682.

128. Kohli R, Setchell KD, Kirby M, Myronovych A, Ryan KK, Ibrahim SH, Berger J, Smith K, Toure M, Woods SC, Seeley RJ. A surgical model in male obese rats uncovers protective effects of bile acids post-bariatric surgery. Endocrinology 2013;154:2341–2351.

129. Ryan KK, Tremaroli V, Clemmensen C, Kovatcheva-Datchary P, Myronovych A, Karna S, Wilson-Perez HE, Sandoval DA, Kohli R, Backhed F, Seeley RJ. FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature 2014;509:183–188.

130. Steinert RE, Peterli R, Keller S, Meyer-Gersbach AC, Drewe J, Peters T, Beglinger C. Bile acids and gut peptide secretion after bariatric surgery: a 1-year prospective randomized pilot trial. Obesity (Silver Spring) 2013;21:E660–E668.

131. Kohli R, Bradley D, Setchell KD, Eagon JC, Abumrad N, Klein S. Weight loss induced by Roux-en-Y gastric bypass but not laparoscopic adjustable gastric banding increases circulating bile acids. J Clin Endocrinol Metab 2013;98:E708–E712.

132. Pournaras DJ, Glicksman C, Vincent RP, Kuganolipava S, Alaghband-Zadeh J, Mahon D, Bekker JH, Ghatei MA, Bloom SR, Walters JR, Welbourn R, le Roux CW. The role of bile after Roux-en-Y gastric bypass in promoting weight loss and improving glycaemic control. Endocrinology 2012;153:3613–3619.

133. Tso P, Kendrick H, Balint JA, Simmonds WJ. Role of biliary phosphatidylcholine in the absorption and transport of dietary triolein in the rat. Gastroenterology 1981;80:60–65.