More convex functions by Artin’s method

Martin Himmel

August 29, 2014

Abstract

We use Artin’s paper on the Gamma function to find more log convex functions that interpolate a sequence of natural numbers given by a recursion equation.

1 Introduction

Let us recall some ideas and results from Artin’s famous paper on the Gamma function. Therefore, let a and b be real numbers with $a < b$ and $f : (a, b) \to \mathbb{R}$ a function. For any $x_1, x_2 \in (a, b), x_1 \neq x_2$, we define the difference quotient

$$\varphi(x_1, x_2) := \frac{f(x_1) - f(x_2)}{x_1 - x_2} = \varphi(x_2, x_1).$$

(1)

Then, for pairwise different $x_1, x_2, x_3 \in (a, b)$, the iterated difference quotient is defined by

$$\Phi(x_1, x_2, x_3) := \frac{\varphi(x_1, x_3) - \varphi(x_2, x_3)}{x_1 - x_3}.$$

(2)

Exercise 1 Show that $\Phi(x_1, x_2, x_3)$ does not change sign under permutation of the arguments x_1, x_2 and x_3.

Definition 1 (Convexity) The function $f : (a, b) \to \mathbb{R}$ is called convex if, for any fixed $x_3 \in (a, b)$, the difference quotient $\varphi(x_1, x_3)$ is a monotone increasing function of x_1, i.e. whenever $x_1, x_2 \in (a, b)$ with $x_1 < x_2$ we have

$$\varphi(x_1, x_3) \leq \varphi(x_2, x_3).$$

(3)

Exercise 2 Show that $f : (a, b) \to \mathbb{R}$ is convex, if and only if, the iterated difference quotient Φ satisfies $\Phi(x_1, x_2, x_3) \geq 0$.

Exercise 3 Show that the sum $f + g$ of convex functions $f : (a, b) \to \mathbb{R}$ and $g : (a, b) \to \mathbb{R}$ is convex and the limit $\lim_{n \to \infty} f_n$ of a sequence of convex functions $f_n : (a, b) \to \mathbb{R}$ is convex.

Much is known about convex functions [2]. The following results are taken from Artin’s paper on the Gamma function [1].

Theorem 1 (Rolle) Let $f : (a, b) \to \mathbb{R}$ be continuous whose one-sided derivatives $f(x + 0)$ and $f(x - 0)$ exists for $x \in (a, b)$. Moreover, assume that $f(a) = f(b)$. Then, there is a $\xi \in (a, b)$ such that

$$f'(\xi + 0) \geq 0 \text{ and } f'(\xi - 0) \leq 0$$

(4)
Theorem 2 (Mean Value) Let $f : [a, b] \to \mathbb{R}$ be continuous with one-sided derivatives $f(x+0)$ and $f(x-0)$ exists for any $x \in (a, b)$. Then there exists $\xi \in (a, b)$ such that
\[
\frac{f(b) - f(a)}{b - a} \in (f'(\xi - 0), f'(\xi + 0))
\] (5)

Theorem 3 (Characterization of Convexity) $f : (a, b) \to \mathbb{R}$ is a convex function if, and only if, f has monotonically increasing one-sided derivatives. If, in addition, f is twice differentiable, convexity of f is equivalent to $f'' \geq 0$ for $x \in (a, b)$.

Definition 2 (Weak Convexity) $f : (a, b) \to \mathbb{R}$ is called weakly convex if
\[
f(x_1 + x_2) \leq \frac{1}{2}(f(x_1) + f(x_2))
\] (6)
holds for all $x_1, x_2 \in (a, b)$.

Any weakly convex function is convex and the converse holds for continuous functions.

Theorem 4 (Weakly Convex plus Continuous implies Convex) $f : (a, b) \to \mathbb{R}$ is a convex function if, and only if, f is weakly convex and continuous.

Exercise 4 Let $f(x) := -\log(x)$ defined on the positive real numbers \mathbb{R}_+. Show that f is convex. How is inequality (6) called in this situation?

Definition 3 (Log-Convexity) $f : (a, b) \to \mathbb{R}$ is called log-convex (weakly log-convex) if f is positive and $\log f$ is convex (weakly log-convex).

The positivity assumption on f for log-convexity is, of course, a formal prerequisite because otherwise the logarithm of f cannot be formed. Any logarithmically convex function is convex since it is the composite of the increasing convex function \exp and the function $\log f$, but the converse generally does not hold.

Exercise 5 Verify that the function $x \mapsto x^2$ defined on \mathbb{R} is convex, but not log-convex. On the other hand: given a convex function $g : \mathbb{R} \to \mathbb{R}$, that is not log-convex. Can you find some fixed other function $l : \mathbb{R} \to \mathbb{R}$ such that l composed with g, which we call
\[
h(x) := l(g(x)),
\]
is log-convex?

Hint: Depending on your background you may call l (if you pick the best/simplest l) the most or the the second most important function in mathematics.

As we have seen, convex functions form a vector space and so do log-convex functions, but since the product of log-convex functions is again log-convex, they even form an algebra.

Theorem 5 Let $f, g : (a, b) \to \mathbb{R}$ be two log-convex (weakly log convex) functions. Then their sum $f + g$ and their product $f \cdot g$ is log-convex (weakly log convex). The same holds for sequences of log-convex functions, if the limit function is positive.

1In literature you will also find logarithmically convex or superconvex for what we call here log-convex.
1.1 Log-convex Integrals

The previous results can be combined to the statement on log-convexity of integrals. Suppose \(f : (a, b) \times I \to \mathbb{R} \), \(I \) some interval of \(\mathbb{R} \), is a continuous function of the two variables \(x \) and \(t \). Furthermore, for any fixed value of \(t \), suppose that \(f(t, \cdot) \) is log-convex, twice differentiable function of \(x \). For any fixed integer \(n \) we can build the function

\[
F_n(x) = h \sum_{k=0}^{n-1} f(a + kh, x)
\]

with \(h = \frac{b-a}{n} \). Being the sum of log-convex functions, \(F_n \) is also log-convex. As \(n \) approaches infinity, \(F_n \) converges to the integral

\[
\int_a^b f(t, x) \, dt,
\]

which hence is also log-convex. If \(b = \infty \), the result also holds supposed the improper integral converges. Artin is mainly interested in integral representations of Euler’s Gamma function and therefore considers integrals of the form

\[
\int_a^b \varphi(t) t^{x-1} \, dt
\]

with \(\varphi : (a, b) \to \mathbb{R} \) being a positive and continuous function for \(t \in (a, b) \). Verify that

\[
\frac{d^2}{dx^2} \left(\varphi(t) t^{x-1} \right) = 0.
\]

Sufficiently smooth log-convex functions are characterized in the next

Theorem 6 (Characterization of Log-Convexity) Let \(f : (a, b) \to \mathbb{R} \) be twice differentiable and without zeros. Then \(f \) is log-convex if, and only if,

\[
q(f) := \text{det} \begin{pmatrix} f & f' \\ f' & f'' \end{pmatrix} = ff'' - (f')^2 \geq 0
\]

for all \(x \in (a, b) \)

Proof 1 Let \(f : \mathbb{R} \to \mathbb{R} \) be twice differentiable and log-convex. Thus \(f'' \) exists for all \(x \in \mathbb{R} \) and the second derivative of \(\log f \) is non-negative

\[
(\log f)'' = \left(\frac{f''}{f'} \right)' = \frac{f'' - (f')^2}{f^2} = \frac{ff'' - (f')^2}{f^2} = \frac{1}{f^2} \text{det} \begin{pmatrix} f & f' \\ f' & f'' \end{pmatrix} \geq 0
\]

and hence

\[
f \geq \frac{(f')^2}{f''}.
\]

Theorem 7 Let \(\varphi : (a, b) \to \mathbb{R} \) be positive continuous function. Then

\[
\int_a^b \varphi(t) t^{x-1} \, dt
\]

is a log-convex function of \(x \) defined where the integral converges.
Theorem 8 Let \(f : (a, b) \to \mathbb{R} \) be a log-convex function and \(c \in \mathbb{R}, c \neq 0 \). Then the translated \(f_t : (a, b) \to \mathbb{R} \) and the scaled \(f_s : (a, b) \to \mathbb{R} \) version of \(f \) defined by \(f_t(x) := f(x + c) \) and \(f_s(x) := f(cx) \), respectively, are log-convex.

With more sophisticated words one can express the latter theorem as: the space of log-convex functions is a common invariant subspace of the uniform shift and the uniform translation operator.

2 Euler’s Gamma Function

By the famous Bohr-Mollerup theorem Euler’s Gamma function can be characterized as the unique solution to the following interpolation problem.

Theorem 9 (Bohr Mollerup) Any function \(f : \mathbb{R} \to \mathbb{R} \) that satisfies

1. \(f(1) = 1 \),
2. \(f(x + 1) = xf(x) \) for any \(x > 0 \),
3. \(f \) is log-convex,

equals the Gamma function

\[
\Gamma(x) := \int_0^\infty e^{-t}t^{x-1} \, dt. \tag{12}
\]

Because of the functional Equation in Theorem 9 (second condition) the Gamma function is well-known as an analytic continuation (from \(\mathbb{N} \) to \(\mathbb{R} \)) of the sequence of factorials \(n \mapsto n! = n \cdot (n-1)! \) with \(1! := 1 \).

Exercise 6 Verify by partial integration that \(\Gamma(n) = (n-1)! \) for any natural number \(n \geq 2 \).

Surprising is that log-convexity is the property that characterizes the Gamma function uniquely up to some normalization (first condition in Theorem 9) as the only function that agrees at the natural number \(n \) with \((n-1)! \).

Exercise 7 Verify that the Gamma function as defined in (12) satisfies the three properties from theorem 9.

3 Artin Type Functional Equations

We take Theorem 9 as a starting point to constructively solve multiplicative Functional Equation of the form

\[
f(x + 1) = g(x)f(x)
\]

with \(g : \mathbb{R} \to \mathbb{R} \) some continuous function. Many interesting functions satisfy a Artin functional equation (13) for some \(g : \mathbb{R} \to \mathbb{R} \). For instance, if \(g(x) = 1 \) for all real numbers \(x \), solutions \(f \) to (13) are 1-periodic functions. If \(g \) is the identity function on \(\mathbb{R} \), then \(f \) interpolates the factorials since \(f(x + 1) = xf(x) \). Under additional assumptions (for instance, if \(f \) is log-convex and \(f(1) = 1 \), see Bohr Mollerup theorem 9) we have \(f = \Gamma \).

Definition 4 Let \(g : \mathbb{R} \to \mathbb{R} \) any function and \(a > 0 \) and \(f : (0, a) \to \mathbb{R} \) a solution to the functional equation (13). Then we call \(f \) Artin function with representor \(g \). A log-convex Artin function is called Bohr Mollerup function or function of Bohr Mollerup type.
Exercise 8 Find necessary and sufficient conditions on the representer \(g \) of an Artin function \(f \) such that \(f \) is of Bohr Mollerup type.

Of course, the notion of Artin functions is merely a tautology because every function \(f : \mathbb{R} \to \mathbb{R} \) can be thought as an Artin function with representer \(g(x) := \frac{f(x+1)}{f(x)} \). We want to explore whether there is some kind of analogue to the Bohr Mollerup theorem for functional equations of the form \([13] \) when \(g \) is not the identity function. Therefore, we have to investigate when solutions to \([13] \) are log-convex and satisfy some interpolation property \(f(n) = a_n \) for some positive sequence \((a_n)_{n \in \mathbb{N}} \). In the case of the Gamma function we have \(g(x) = x \) on \(\mathbb{R} \) and \(f(n) = a_n := (n-1)! \).

Theorem 10 (Bohr Mollerup Type Representation) Let \(g : \mathbb{R} \to \mathbb{R} \) be a positive continuous function and \(f : \mathbb{R} \to \mathbb{R} \) a solution to functional equation \([13] \), which satisfies

\[
 f(1) = g(\infty) := 1
\]

\[
 f(n) = \prod_{k=1}^{n-1} g(k)
\]

\[
 f \text{ is log-convex.}
\]

Then \(f : \mathbb{R} \to \mathbb{R} \) with

\[
 f(x) = \lim_{n \to \infty} g^n(n) \prod_{k=0}^{n} \frac{g(k)}{g(x+k)}
\]

is the only solution to the Bohr Mollerup functional equation \([13] \).

Proof

Step 1 Find a product formula for the solution \(f : (0,1] \to \mathbb{R} \) to the Bohr Mollerup functional equation \([13] \) by using the log-convexity \([16] \) and the interpolation property \([15] \).

Step 2 Extend this solution to \(\mathbb{R} \) by iterated application of \([13] \).

Step 3 Show that the product representation obtained in step 1 holds on \(\mathbb{R} \).

Step 2: Suppose a log-convex solution \(f : (0,1] \to \mathbb{R} \) to \([13] \) is known. Then \(f \) can be extended to the interval \((0,1]\) by iterated application of the functional equation \([13] \):

\[
 f(x+n) = g(x+n-1)f(x+n-1) = g(x+n-1)g(x+n-2)f(x+n-2) = g(x+n-1)g(x+n-2)g(x+n-3)f(x+n-3) = \ldots
\]

\[
 = g(x+n-1)g(x+n-2)g(x+n-3) \ldots g(x+2)g(x+1)g(x)f(x) = \prod_{k=0}^{n-1} g(x+k)f(x)
\]

Now we want to extend \(f \) to include negative real numbers. Therefore, we solve the iterated functional equation \(f(x+n) = \prod_{k=0}^{n-1} g(x+k)f(x) \) for \(f(x) \) and take the expression obtained as a definition of \(f \) for negative real numbers: if \(x \) lies in the interval \((-n,-n+1)\) for some \(n \in \mathbb{N} \), we define the value of \(f \) to be

\[
 f(x) = f(x+n) \frac{1}{\prod_{k=0}^{n-1} g(x+k)}
\]

\[\text{2}\] The sequence \((a_n)_{n \in \mathbb{N}} \) has to be positive because otherwise \(\log f \) cannot be formed and there is no hope for log-convexity of \(f \).
Step 1: Now, let’s use the log-convexity of f to find the exact value $f(x)$ for $0 < x \leq 1$. Let $n \geq 2$. Then

$$\frac{\log f(n) - \log f(n+1)}{n(n+1)} \leq \frac{\log f(n) - \log f(n+1)}{n+1} \leq \frac{\log f(n) - \log f(n+1)}{n+1}$$

expresses the monotone increase of the difference quotients of f. If we use the interpolation property $f(n) = \prod_{k=1}^{n-1} g(k)$, equation (19) reads

$$\log g(n-1) \leq \log f(n) \leq \log g(n)$$

and hence

$$g^n(n-1) \leq \frac{f(n)}{f(n)} \leq g^n(n).$$

Multiplying by $f(n) = \prod_{k=0}^{n-1} g(k)$ and using the iterated functional equation $f(x+n) = f(x) \prod_{k=0}^{n-1} g(x+k)$ we obtain

$$g^n(n-1) \leq f(x) \prod_{k=0}^{n-1} \frac{g(x+k)}{g(x+k)} \leq g^n(n).$$

Setting $p_n(x) := \prod_{k=0}^{n-1} \frac{g(k)}{g(x+k)}$ with $g(0) := 1$ the latter equation reads

$$p_n(x) \cdot g^n(n-1) \leq f(x) \leq p_n(x) \cdot g^n(n).$$

Since this holds for all $n \geq 2$, we can replace n by $n+1$ on the left side. Thus

$$p_{n+1}(x) \cdot g^n(n) \leq f(x) \leq p_n(x) \cdot g^n(n).$$

Now observe that f is bounded from above and from below by the same function $p_{n+1}(x) \cdot g^n(n)$ up to the factor $\frac{g(x+n)}{g(n)}$ because $p_n(x) = p_{n+1}(x) \frac{g(x+n)}{g(n)}$. Hence (23) reads

$$p_{n+1}(x) \cdot g^n(n) \leq f(x) \leq p_{n+1}(x) \cdot \frac{g(x+n)}{g(n)} \cdot g^n(n).$$

Multiplying through the second part of (23) by $\frac{g(n)}{g(x+n)}$ and combining it with the first part of (23) gives

$$f(x) \frac{g(n)}{g(x+n)} \leq p_{n+1}(x) \cdot g^n(n) \leq f(x).$$

Assuming $\lim_{n \to \infty} \frac{g(n)}{g(x+n)} = 1$ gives the desired product representation of f:

$$f(x) = \lim_{n \to \infty} g^n(n) \prod_{k=0}^{n} \frac{g(k)}{g(x+k)}$$

on $(0, 1]$.

Step 3: To see that representation (27) holds even for all $x \in \mathbb{R}$, define

$$f_n(x) := g^n(n) \prod_{k=0}^{n} \frac{g(k)}{g(x+k)}$$
be the expression in (27) under the limit sign. Then we have
\[f(x + 1) = g(x)f_n(x) \cdot \frac{g(n)}{g(x + n + 1)} \]
(28)

and thus
\[f_n(x) = f(x + 1) \frac{g(x + n + 1)}{g(x)g(n)} \]

We see: if the limit in (27) exists for \(x \), it also exists for \(x + 1 \) and vice versa. Hence the product representation (27) is valid for all \(x \in \mathbb{R} \).

Following the lines of Artin’s paper [1], we proceed by deriving expressions for \(\log f \) with \(f \) being a log-convex solution to the Bohr Mollerup Type functional equation (13). Assuming continuity of \(f \) in (27), we obtain
\[\log f(x) = \lim_{n \to \infty} \left(x \log g(n) + \sum_{k=0}^{n} (\log g(k) - \log g(x+k)) \right) \]
(29)

Now we would like to differentiate twice under the limit sign to obtain conditions on \(g \) that guarantee the log-convexity of \(f \). If the convergence in (29) is uniformly, we have
\[(\log f(x))'' = \sum_{k=0}^{\infty} \left(\frac{(g'(x+k))^2}{g''(x+k)} - \frac{g''(x+k)}{g(x+k)} \right) \geq 0 \]
(30)

Remark 1 For the Gamma function we have \(g(x) = x \) and condition (30) reads
\[\sum_{k=0}^{\infty} \frac{1}{(x+k)^2} \geq 0. \]
(31)

We can use (30) to define an inner product.

Definition 5 Let \(g: \mathbb{R} \to \mathbb{R} \) be twice differentiable. Then
\[a(f(x), g(x)) := \sum_{k=0}^{\infty} \det \begin{pmatrix} (f'(x+k))^2 & g''(x+k) \\ g''(x+k) & f''(x+k) \end{pmatrix} \]

Then log-convex solutions to the Artins functional equation (13) can be interpreted as functions that make the quadratic form \(q(g) := a(g, g) \) positive.

Example 1 Setting \(g = \text{id} \) you obtain the product representation of Euler’s Gamma function. Because \(g(x) = 0 \) if, and only if, \(x = 0 \), the function \(g = \text{id} \) does not satisfy the positivity assumption, that we made.

Exercise 9 (Artin functions with Artinian derivative) The derivative \(f' \) of an Artin function \(f \) is called Artinian if \(f' \) again is an Artin function, i.e. from \(f \) satisfying \(f(x + 1) = g_0(x)f(x) \) for some analytic function \(g_0 \) follows that there is an analytic function \(g_1 \) such that \(f'(x + 1) = g_1(x)f'(x) \). Show that the \(n \)-th derivative of an Artin function \(f \) with representer \(g_0 \) is Artinian if
\[g_n(x) = \left(g_{n-1}f^{(n-1)} \right)' \]
(32)
Example 2 Let us consider a class of Artin functions with representer \(g(x) = x^c \) with \(c \) some complex number. When are these Artin functions \(f := f_g \) satisfying \(f(x+1) = g(x)f(x) \) of Bohr Mollerup type? Condition \(\text{(30)} \) reads
\[
(\log f)'' = \sum_{k=0}^{\infty} \frac{c(x+k)^{2(c-1)}}{(x+k)^{2c}} - \frac{c(c-1)(x+k)^{c-2}}{(x+k)^c} \]
\[
= c(2-c) \sum_{k=0}^{\infty} (x+k)^{-1} \geq 0.
\]
Hence the Artin function \(f \) is of Bohr Mollerup Type, if \(\Re(c(2-c)) \geq 0 \). Consequently, \(f \) is log-convex for all real numbers \(c \).

4 Making functions log-convex

Assume \(f : \mathbb{R} \to \mathbb{R} \) is a twice differentiable, but not log-convex function. How can we modify \(f \) such that the modified version of \(f \) is log-convex?

4.1 Inner multiplication problem

Let \(f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable, but not log-convex function. In the inner multiplication problem we seek to find a twice differentiable function \(m : \mathbb{R} \to \mathbb{R} \) such that \(mf \) is log-convex. Any function such that \(mf \) is log-convex is called inner multiplicator of \(f \). According to theorem \(\text{(6)} \) \(mf \) is log-convex if and only if, second derivative of \(\log (mf) \) is non-negative. This is characterized in the next

Theorem 11 Let \(f : \mathbb{R} \to \mathbb{R} \) be a differentiable, but not log-convex function. Then, there is an inner multiplicator \(m : \mathbb{R} \to \mathbb{R} \) of \(f \) if and only if,
\[
mf \cdot (mf)'' \geq (mf)'^2.
\] (33)

4.2 Outer multiplication problem

Let \(f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable, but not log-convex function. The outer multiplication problem consists of finding a twice differentiable function \(m : \mathbb{R} \to \mathbb{R} \) such that \(m \log f \) is convex. We use theorem \(\text{(6)} \) to characterize convexity of \(\log (mf) \) and obtain

Theorem 12 Assume \(f : \mathbb{R} \to \mathbb{R} \) is twice differentiable, but not log-convex. Then an outer multiplier of \(f \) satisfies
\[
(m \log f)'' = m'' \log f + 2m' f' f + m \left(f'' + \frac{(f')^2}{f} \right) \geq 0.
\] (34)

Theorem 13 (Curvature of Artin functions) Let \(f \) be a twice differentiable Artin function with representer \(g \):
\[
f(x+1) = g(x)f(x).
\]
Then the curvature of \(f \) is given by
\[
\kappa_f = \frac{g'' f + 2g' f' + g f''}{(1 + (g' f + g f')^2)^{3/2}}.
\]
5 Fibonacci function

The goal of this section is to find a real-valued log-convex function that interpolates the Fibonacci numbers, which are given by the following linear second order recursion equation

\[a_n = a_{n-1} + a_{n-2} \]

(35)

with initial values \(a_0 = a_1 = 1 \). The first Fibonacci numbers are 1, 1, 2, 3, 5, 7, 11, 18. For any linear recursion of depth two we can find a closed formula by making the ansatz \(a_n = \lambda^n \). Here this ansatz leads to the quadratic equation \(\lambda^2 - \lambda + 1 = 0 \) with solution \(\lambda_{1,2} = \frac{1}{2}(1 \pm \sqrt{5}) \). Hence the \(n \)-th Fibonacci number can be calculated directly by

\[a_n = \frac{\varphi^n - (-1)^n \varphi^{-n}}{\sqrt{5}} \]

(36)

with \(\varphi = \frac{1 + \sqrt{5}}{2} \) the golden ratio. If we replace \(n \) in (36) by some real number \(x \), we get an extension of the Fibonacci numbers

\[F(x) = \frac{\varphi^x - (-1)^x \varphi^{-x}}{\sqrt{5}}. \]

(37)

Since \((-1)^x = e^{i\pi x} = \cos(\pi x) + i \sin(\pi x)\), this extension is not always real-valued, more precisely \(F(x) \) is a real number if and only if, \(x \) is an integer. We are interested in constructing a real-valued extension of the Fibonacci numbers. Therefore, we consider the real part of \(F(x) \)

\[f(x) := \Re F(x) = \frac{\varphi^x - \cos(\pi x) \varphi^{-x}}{\sqrt{5}}. \]

(38)

Let us take a closer look on the behavior of \(f(x) \) at the integers. Since \(\cos \pi n = (-1)^n \) for \(n \in \mathbb{Z} \), we have

\[f(n) = \begin{cases}
\frac{\sqrt{5}}{2} \sinh(n \ln \varphi), & \text{n even} \\
\frac{\sqrt{5}}{2} \cosh(n \ln \varphi), & \text{n odd}
\end{cases} \]

(39)

Since the Fibonacci numbers form an increasing sequence of natural numbers, the real part of its canonical interpolation \(f \) is an Artin function with representer

\[g(x) := \frac{f(x + 1)}{f(x)} = \frac{\varphi^{x+1} - \cos(\pi x) \varphi^{-(x+1)}}{\varphi^x - \cos(\pi x) \varphi^{-x}}. \]

(40)

Is \(f : \mathbb{R} \to \mathbb{R} \), the real part of the canonical extension of the Fibonacci numbers to \(\mathbb{R} \), log-convex? No. Due to the oscillating term \(\cos(\pi x) \) the second derivative of \(f \) changes sign four times in the intervall \([0, 4]\).

References

[1] Emil Artin. The gamma function. Athena Series, 1964. Translated from the German by Michael Butler.

[2] Barry Simon. Convexity: An Analytic Viewpoint. Halsted Press (A division of John Wiley & Sons), New York-Toronto, Ont., 1973.