Active and passive sensitivity analysis for the second-order active RC filter families using operational amplifier: a review

Ahmed M. Hassanein1 · Lobna A. Said1 · Ahmed H. Madian1,2 · Ahmed G. Radwan3,4 · Ahmed M. Soliman5

Received: 3 April 2022 / Revised: 22 May 2022 / Accepted: 17 July 2022 / Published online: 29 September 2022 © The Author(s) 2022

Abstract
This work is a review article that sheds light on the active and passive sensitivities of the active RC filters based on opamp. This work provides a detailed analysis through different filters realization criteria and sensitivity summary tables and quantitative insight by discussing the most significant. However, some are almost forgotten, filters families in the literature over decades. A detailed mathematical analysis for the passive sensitivity to compare the filters' realizations is presented. The concept of dealing between filter design theory and filter design circuit realization is highlighted. Some filters families are chosen from the literature for the analysis. Some detailed specifications tables for each filter family are given. Monte Carlo simulation is carried out on some filters to compare their passive sensitivity. Furthermore, the effect of the active sensitivity of some filters is verified through simulation by adjusting the input common-mode voltage to lower the DC gain of the amplifier. The results of the simulation match with the theoretical analysis and the summary provided in the specifications tables.

Keywords Analys filter · Active filter · Passive sensitivity · Active sensitivity · Bandwidth limitation

1 Introduction
Filters are essential blocks in communications and electronics systems applications. Ranging from large communication systems like radio-frequency (RF) transceiver systems [1], radar systems [2] and 5G systems [3], to on-chip communication systems like serial links and phase-locked loops (PLL), using filters to purify and adapt the processed signal in such systems is inevitable. At first, filters were realized using capacitors and inductors, known as passive RLC filters. However, the limitations of inductors’ bulky size in low-frequency applications led to the idea of realizing inductorless filters [4]. Employing opamp to inductorless filters (i.e., activating the filter) has many advantages. One of the advantages of using opamp in the realization of filters is that it simplifies the idealization of the filter, and hence, the design procedure of the filter becomes systematic. It is also worth mentioning that those filters are suitable for discrete, hybrid thick-film and hybrid thin-film technologies. However, for integrated circuit (IC) technologies, other types of filters, namely, switched-capacitor filters, are designed instead [4]. Those filters consist only of capacitors and opamps [5]. The analysis of a second-order active RC filter depends mainly on some criteria. Starting with the filter’s transfer function, some variables could be deducted to compare between different filter realizations. A pivotal concept to highlight is the difference between filter theoretical and circuit realization perspectives. A specific circuit realization can be tuned to obtain the desired filter response (i.e., the transfer function). For inductorless active filters, the complex poles are obtained from using feedback using only resistors and capacitors in addition to the operational amplifier [6]. Therefore, a set of specifications can be introduced to compare different filters for each perspective. Specifically talking, Cutoff frequency (ω_0), quality factor (Q), response selectivity, shaping factor, phase delay and, group delay are the specifications that could be checked to judge which
theoretical filter transfer function mimics well the ideal filter response [7]. On the other hand, passive sensitivity, active sensitivity, the spread of elements, frequency limitation, circuit selectivity, number of passive elements and, number of active elements are most of the specifications to compare among different filter circuit realizations. Surveys in the literature aim to either introduce a new filter to enhance one of the criteria mentioned above or to focus and analyze some of them. For Example, in [8], the performance of around ten different filters was studied for over the effect of the limited gain-bandwidth product of the operational amplifier. A more practical insight was considered in [9] with simulation results and discussion for common realization issues. Many filters were categorized and analyzed mathematically in [6]. A detailed review on some of the well-known filters, specifically talking, KHN, and TT filters, was represented in [10]-[11] respectively. Table 1 concludes and compares this work with others in the literature that included any review to the second-order active filters. This work focuses on the specifications of the filters’ circuit realization perspective and gives some detailed tables of these specifications. This work starts with some theoretical and mathematical relations for the second-order filters. Then, a survey for some of the filters families in the literature will be presented with the schematics and the direct transfer functions. This is followed by some tables that list some specifications of the presented filters. Finally, monte-carlo simulation results are presented to highlight the effect of the variations of the passive elements on the pole frequency for some of the filters.

2 Mathematical basics and criteria

As known for the second-order filters, the type of the filter could be controlled by the numerator of the transfer function, and the filter response of a type could be controlled by the denominator. Specifically talking, the cutoff frequency and the quality factor are the main factors that judge the filter response to the signal frequency and the settling time. When comparing the realized transfer function to the required one, cutoff frequency and quality factor are expressed in the passive components of the filter eventually. This raises the importance of studying and reviewing the passive sensitivity effects on the filter response. The filter’s ideal transfer function is derived as ideal opamps with infinite gain, which is not the actual case. Deriving the transfer function with the assumption of the finite opamp gain will result in a gain-dependent cutoff frequency and quality factor. This raises the importance to study the effect of the active sensitivity on the filter response. Some essential mathematical basics for such analyses are revised in this section. Equations 1–3 show the basic mathematical expressions for the filter transfer function.

\[
T(s) = \frac{K_1 s^2 + K_2 s + K_3}{s^2 + \omega_0^2 s + \omega_0^2},
\]

where \(s = j\omega \) and \(K_1, K_2 \) and \(K_3 \) are constant factors that decide the type of the filter. Equation 1 could be put on the form:

Table 1 Summary and Comparison of Filters Reviews from the literature
References

\[T(j\omega) = \frac{(K_3 - K_4\omega^2) + jK_2\omega}{(\omega_o^2 - \omega^2) + j\frac{K_2}{Q}\omega}. \] \hspace{1cm} (2)

The magnitude of the transfer function becomes:

\[|T(j\omega)| = \sqrt{\frac{(K_3 - K_4\omega^2)^2 + (K_2\omega)^2}{(\omega_o^2 - \omega^2)^2 + (\omega_o\omega)^2}}. \] \hspace{1cm} (3)

2.1 Sensitivity

There are two types of sensitivity: passive sensitivity and active sensitivity. It could be deduced from the definition of sensitivity that passive sensitivity measures the change of the cutoff frequency \((\omega_o) \) and the quality factor \((Q) \) with the variations of the passive components (i.e., the resistances and capacitors). On the other hand, the active sensitivity measures that change with the opamp gain variations (i.e., the effect of the finite gain of the opamp to the filter response). The mathematical formula of sensitivity could be written as:

\[S_y^x = \frac{\partial y}{\partial x} \frac{y}{x}, \] \hspace{1cm} (4)

where \(y \) is the factor that is affected, i.e., cutoff frequency and quality factor in this case, and, \(x \) is the impacting element, i.e., resistors, capacitors and, opamps in this case.

2.2 Spread of elements

This aspect measures how large or small the values of passive components spread to each other [4]. As the values of the passive elements depend on the geometry of the element, this spec was the target of many works as a figure-of-merit for the circuit performance [23]-[24].

2.3 Circuit selectivity

A filter’s selectivity has different meanings in the literature depending on what perspective is adopted. Considering the theoretical perspective, selectivity would measure how a filter response represents the ideal filter response. This could be measured by calculating the slope of the transfer function magnitude frequency response curve at the 3-dB cutoff point (i.e., the half-power slope) [7]. Meanwhile, in-circuit realization perspective, selectivity is a measure for the maximum achievable range of the quality factor without affecting the cutoff frequency [i.e., independency of \(Q \) and \(\omega_o \)] [15].

2.4 Effect of the roll-off of the gain of the operational amplifier (Bandwidth Limitation)

The effect of finite gain of the opamp is the active sensitivity analysis. Considering the bandwidth limitations, the operational amplifier’s gain exhibits a low-pass response across frequency. To ensure a high gain and equality between the input pair voltages, the bandwidth of the opamp is the best frequency region for filtering operation. The high gain of the opamp in the bandwidth range ensures a perfect equalization between the positive and negative terminals, which is the ideal case for the filter response [4]. An excellent approximate method of calculating the bandwidth limitations is setting the gain of the opamp to its one-pole roll-off model and using Budak-Petrela analysis [15, 25].

The procedure of calculating the Budak-Petrela analysis for a given filter realization is as follows:

1. Derive the filter’s transfer function assuming ideal infinite DC open-loop gain.
2. Exchange the DC gain of the amplifier in the transfer function with its first-order roll-off model [25] as in Table 2.
3. Derive the new characteristic equation of the filter with the which will be on the form [25]:

\[D(s) = P_1(s) + \frac{1}{\omega_o} P_2(s), \] \hspace{1cm} (5)

where \(\omega_o \) is the gain-bandwidth product of the amplifier to the cutoff frequency of the filter, \(P_1(s) \) is the nominal part of the characteristic equation and, \(P_2(s) \) is the part resulting due to finite \(\omega_o \).

4. Calculate the fractional shift in the cutoff frequency and quality factor of the filter as follows [26]: Assuming the part of the new characteristic equation due to finite \(\omega_o \) for the second-order filter is of the form:

\[P_2(s) = s(a\omega_o^2 + b\omega_o s + c\omega_o^2), \] \hspace{1cm} (6)

where \(a, b, \) and, \(c \) are constant coefficients and, \(\omega_o \) is the cutoff frequency of the filter.

The fractional shift in the cutoff frequency will be calculated as follows:

\[\frac{\Delta \omega_o}{\omega_o} = -\frac{1}{2}(b - \frac{a}{Q} \frac{\omega_o}{\omega_o}). \] \hspace{1cm} (7)
power consumption as it is usually assumed that all opamps point under the same conditions and response as values of one large capacitor. However, this is still a good comparison on some forgotten filter families in the literature.

countless resonators; therefore, this work aims to shed light on some of these filters. A biquad is an active RC circuit that represents a biquadratic transfer function. A biquad that uses one amplifier is called a single amplifier biquad (SAB) [29]-[30]. Other active filters use two op-amps to increase the quality factor [6]. Indeed, a configuration of capacitors with resistors can lead to countless solutions, yet Bach’s low pass filter is one of the oldest active filters. The limitations of this filter, as stated in [33], were that it had minimum passive components (i.e., two capacitors and two resistors) and, it could be directly cascaded for a higher-order response without the need for compensation. Figure 2 shows the basic schematics for Bach’s low pass filter. The limitations of the filters and possible solutions were studied in [33] with a proposed circuit modification. The transfer functions for the circuit realizations in Fig. 1 are listed in Table 3.

3.2 Decoupled-time-constant based filters

Decoupling of time constants of a filter is one of the most straightforward techniques to improve the performance [6]. The time constant decoupling means that each node of the filter corresponds to only one time constant i.e., connected to one resistor and one capacitor. This should eliminate any cross-time constants from the transfer function [6]. Bach filter and Soderstrand filter families are presented next as an example of such filters.

3.2.1 Bach LPF

One of the oldest active low-pass filters was introduced by Bach in 1960 [32]. The main advantages of this filter, as stated in [33], were that it had minimum passive components (i.e., two capacitors and two resistors) and, it could be directly cascaded for a higher-order response without the need for compensation. Figure 2 shows the basic schematics for Bach’s low pass filter. The limitations of the filters and possible solutions were studied in [33] with a proposed circuit modification. The transfer function is as follows:

\[T_{Bach}(s) = \frac{1}{s^2 + \frac{s}{R_1C_1} + \frac{1}{R_1R_2C_1C_2}}. \] (9)

Table 2 First-order Roll-off Models of Common Amplifiers

Type	First-order roll-off model
Operational amplifier	\(\frac{V_o}{V_i} = -\frac{K}{s + \frac{1}{\omega_0}} \)
Non-inverting amplifier	\(\frac{V_o}{V_i} = -\frac{K}{s + \frac{1}{\omega_0}} \)
Inverting amplifier	\(\frac{V_o}{V_i} = -\frac{K}{s + \frac{1}{\omega_0}} \)

\[K = \frac{R_o}{R_1} \]

\[\omega_0 = \frac{1}{R_1C_1} \]

\(\omega_0 \) is the open loop 3 dB bandwidth in radians per seconds.

The fractional shift in the quality factor will be calculated as follows:

\[\frac{\Delta Q}{Q} = [(a - c)Q + \frac{1}{2}(b - a)\frac{\omega_0}{\omega_t}] \]

\[\frac{\omega_0}{\omega_t} \] (8)

Table 3 SK transfer functions

Filter type	\(T(s) \)
Low-pass	\(\frac{s^2}{s^2 + \frac{s}{R_1C_1} + \frac{1}{R_1R_2C_1C_2}} \)
High-pass	\(\frac{s^2}{s^2 + \frac{s}{R_1C_1} + \frac{1}{R_1R_2C_1C_2}} \)
Band-pass	\(\frac{s^2}{s^2 + \frac{s}{R_1C_1} + \frac{1}{R_1R_2C_1C_2}} \)

3.1 Positive feedback Sallen-Key family

One of the oldest filters of all time is the Sallen-Key filter introduced in [31]. The filter was based on activating a second-order passive section with a non-inverting amplifier to obtain a higher achievable quality factor (Q) than the passive configuration. The transfer functions for the circuit realizations in Fig. 1 are listed in Table 3.

2.5 Number of passive and active elements (i.e. Area and Power)

Comparing the number of passive components among different filter realizations of the same type gives an approximate estimation of the design area of each one and, has been utilized in the literature [27]-[18]. This may not be accurate 100% as two capacitors may still be smaller in area than one large capacitor. However, this is still a good comparison point under the same conditions and response as values of different capacitors and resistors would still be in the same range. Extending this concept to the active components (i.e., the opamp) directly gives a better comparison to the opamp power consumption as it is usually assumed that all opamps in the design are identical with high gain [4]-[28].

3 Second order active filters analysis

A biquad is an active RC circuit that represents a biquadratic transfer function. A biquad that uses one amplifier is called a single amplifier biquad (SAB) [29]-[30]. Other active filters use two op-amps to increase the quality factor [6]. Indeed, any configuration of capacitors with resistors can lead to countless resonators; therefore, this work aims to shed light on some forgotten filter families in the literature.
3.2.2 Soderstrand-Mitra band-pass filter

The author in [34] had a brief description about the well-known developed active RC filters during that era and the challenges in their design. The author was interested in the fact that most of the former designs needed a very high amplifier gain to accomplish the low Q passive sensitivity. To deal with that problem, the author proposed a design that achieved a zero-sensitivity Q with reduced amplifier gain without affecting the active sensitivity. The proposed design was a modified version of Sallen-Key BPF with introduced additional amplifier in the forward path. Practical design recommended using one as inverting amplifier and one as a non-inverting amplifier is given by Eqn. 5 in [34] (i.e., $K_1 = -K_2$). The design schematics are shown in Fig. 3 and the transfer function is as follows.

$$T_{Sod}(s) = \frac{K_1 K_2}{s^2 + \frac{s}{(1 - K_1 K_2)} \left(\frac{1 - K_1 K_2}{R_1 C_1} + \frac{1}{R_2 C_2} \right) + \left(\frac{1}{R_1 R_2 C_1 C_2 (1 - K_1 K_2)} \right)}.$$ (10)

3.3 GIC-derived biquads

The advantage of using a GIC in implementing an RC filter is that it has very low passive sensitivity [30]. Also, this type of building block could be used to realize a wide variety of functions [6].

3.3.1 Fliege filters family

A family of dual-amplifier building blocks based on generalized impedance converter (GIC) was discussed in [35]. Fliege also used the GIC concept to implement many functions, including elliptic and all-pass responses. Figure 4 shows Fliege family schematics for the four basic filters and, Table 4 summarizes their transfer functions.

3.3.2 Mikhael-Bhattacharyya (MB) filters family

The MB filter family was first proposed in 1975 as a universal building block that could be adjusted to achieve different responses [16]. Figure 5 shows the schematics of the four basic types of MB family and, Table 5 summarizes their transfer functions.
3.3.3 Padukone-Mulawka-Ghausi (PMG) Filters Family

In 1980, a universal filter building block was realized in [19]. A detailed comparison between the proposed design and other filter circuits was provided and well explained. Table 6 shows the transfer functions for PMG Family with schematics shown in Fig. 6.

3.3.4 Bhattacharyya-Mikhael-Antoniou (BMA)

A family based on the generalized-immittance converters was proposed in [30]. This filter was introduced to get the unique feature of getting tuned through adjusting only the resistors. Also, cascading for obtaining higher-order filters did not provide any additional isolating amplifiers. Table 8 summarizes the presented 12 filters that could be achieved from the configuration of Fig. 7. All components are assumed to be normal resistors unless stated in the conditions.

Table 4 Fliege Transfer Functions

Filter Type	\(T(s) \)
Low-pass	\(\frac{R_1 + R_2}{s^2 + \frac{R_2 R_3 R_5}{R_1 R_2} + \frac{R_2 R_3 R_5}{R_1 R_2}} \)
High-pass	\(s \left(\frac{1}{R_1 C_2} \right) \)
Band-pass	\(\frac{s^2}{s^2 + \frac{1}{R_1 C_2} + \frac{1}{R_2 R_3 R_4 C_1 C_2}} \)
Notch	\(\frac{s^2 + \frac{R_1 R_2}{R_3 R_4 R_5} + \frac{R_1 R_2}{R_3 R_4 R_5} \frac{1}{s^2}}{s^2 + \frac{R_1 R_2}{R_3 R_4 R_5} + \frac{R_1 R_2}{R_3 R_4 R_5} \frac{1}{s^2}} \)
3.4 Multiple-feedback filters

Multiple-feedback is an old technique used to synthesize biquad filters with only one opamp (i.e., SAB). One great advantage of using multiple-feedback is that it provides highly stable realizations [6]. Deliyannis filter is one example of a SAB based on the multiple-feedback concept.

3.4.1 Deliyannis BPF

The Deliyannis band-pass filter was first discussed in 1968 in [36]. The transfer functions of the family are shown in Table 7 while basic schematics is introduced in Fig. 8 (Table 8).
3.5 State-variable-based filters

These filters are designed based on analog computer architecture [37] that are derived from the state-variable representation of continuous linear systems, which could be interpreted as using integrators to realize the filter. One crucial feature of those filters is that they can simultaneously realize low-pass, high-pass, and band-pass responses like KHN filter [6]. Also, it can be generalized to a global filter by adding an output amplifier to sum the three responses as mentioned above [6].

![Diagram of state-variable-based filters]

Fig. 6 Padukone-Mulawka-Ghausi Filters Family: a LPF, b HPF, c BPF, d NF [19]

![Diagram of Padukone-Mulawka-Ghausi Filters Family]

Fig. 7 BMA general building block [30]

![Diagram of BMA general building block]

Table 7 Deliannis transfer functions

Filter type	\(T(s) \)
Band-pass I	\(-\frac{s}{s^2+R_1 C_1} \)
Band-pass II	\(-\frac{s}{s^2+(1+K) R_1 C_1} \)

\(K' = \frac{R_2}{R_0} \)
3.5.1 Kerwin-Huelsman-Newcomb (KHN) family

The KHN is one of the oldest and well-known filters family. The filter was introduced in [38], and it was extensively reviewed in [10]. The filter achieved low sensitivity with high achievable Q_p and slightly increased active sensitivity for $Q > 1000$. The schematics of the circuit realization is shown in Fig. 9 with the transfer functions of the filter listed in Table 9.

3.5.2 Tow-Thomas (TT) family

Another old and well-known filter family is the Tow-Thomas filter. The filter was first introduced by Tow in [39] and then by Thomas in [40]. The circuit was then extensively reviewed in [11]. The schematics of the circuit realization is shown in Fig. 10 with the transfer functions of the filter listed in Table 10.

3.5.3 Berka-Herpy family

The BH filter family is another universal building block family that was first proposed in 1981 in [21]. This filter was presented to target the minimum passive sensitivity criterion with a relatively low active sensitivity. The transfer function for this family is presented in Table 11 alongside the circuit realization in Fig. 11.

3.5.4 Akerberg-Mossberg family

The authors in [41] introduced four building blocks for realizing universal biquadratic function. In [42], the authors further studied one of the four blocks presented in the former paper and produced a modification to enhance the stability of the circuit. The modified circuit was also made to have independent cut-off frequency and quality factors, making it suitable for high-frequency applications. Also, it had the advantage of the quality factor independent of the opamp temperature variations. The synthesis of the four basic filter types transfers functions using that modified building block are summarized in Table 12 with the schematics in Fig. 12.
In that work, authors first demonstrated the dependency of sensitivities on the Q factor, which limits the maximum obtainable Q. Considering design approaches to take over this problem, the author mentioned two approaches which had been reported in [38, 43] and [44]. In brief, the first approach was the state variable approach that was used in designing the KHN filter, which uses at least three OAs for a second-order response. That paper discussed various second-order configurations based on the pole-zero cancellation technique. It also gave three designs, one with one amplifier for medium-Q and two with two amplifiers for high-Q. The third design could accomplish an all-pass filter with the advantage of saving one OA than the all-pass filter in [43]. Tables 13, 15 and 16 show the transfer functions for the three approaches while Figs. 13, 14 and 15 show the basic schematics.

3.7 Rauch filters family

The Rauch filter section was introduced in [45]. In [8], the Rauch filter was mentioned alongside many other topologies to be compared for the effect of gain-bandwidth on the filter quality factor. Furthermore, the filter was utilized in [46] to...
increase the linearity of the low-pass filter section for an RF receiver system. The Transfer function of the Rauch filter is listed in Table 17 and the schematics are shown in Fig. 16.

3.8 Geffe filters family

In 1968, Geffe published a paper that presents some analysis on some well-known active RC filters [47]. First, the paper explained the Sallen-Key filter and how it encountered low passive sensitivity (1/6). However, the Sallen-key was limited to low-Q applications. The author explained a resonator design (Fig. 3 in [47]) where it has a low spread of passive elements and can achieve BPF of medium Q. Using the pole-zero cancellation technique for that circuit, A LPF could be obtained (Fig. 4 in [47]). The paper mentioned that dual-integrator feedback resonator is notably insensitive to amplifier parasitics: input impedance, output impedance, and roll off of the open-loop characteristic (phase compensation). The differential sensitivity of y to x is the fractional change in y due to the fractional change in x. The conditions stated in that work for the BPF emphasize \(R_1 = R_2 = 1 \), \(C_1 = C_2 = \frac{1}{Q^2} \), \(R_3 = 9Q^2 - 1 \), and \(Q = \infty \) with all values normalized and Q is the required pole quality factor. By using positive feedback, Geffe lowered the required gain at the expense of Q sensitivity [34]. The second design (Geffe II) gave a low-pass response and implied conditions of \(R_1 = R_4 \), \(R_6 = R_8(\frac{Q^2}{Q^2 - 1}) \), \(C_1 = R_1/R_2 \) and \(C_2 = \frac{2Q}{R_3(Q^2 - 1)} \). The transfer functions of the Geffe family are shown in Table 17 and the schematics are in Fig. 17.

3.9 All-pass based

This type is based on first-order all-pass sections like Tarmy-Ghausi filter [6].

3.9.1 Tarmy-Ghausi filter

Tarmy-Ghausi filter was proposed in 1970 in [48] to realize a stable high Q active RC filter. The realized Q was in the range of 1000 5000. The key feature of that work is that its Q is independent of the amplifier bandwidth and, it has low sensitivity compared to KHN filter. The design schematic is shown in Fig. 18 and the transfer function is listed in 17 where \(T_1 = R_4C_1 \) and, \(T_2 = R_6C_2 \). The conditions required for high Q i.e., \(Q_p \gtrsim 100 \) are \(T_1 = T_2 = T = 1 \) and, \(K_2K_3K_4 < 1 \).
3.10 Soliman filters

3.10.1 Soliman72 filter

An active notch filter was proposed in [49] by activating the twin-T network for achieving medium quality factor. It also has the advantage of having low passive sensitivity. However, it consists of 8 passive elements. The filter schematics are shown in Fig. 19 with the transfer function as follows:

$$T_{Sol72}(s) = \frac{s^2 + \left(\frac{1}{R_1C}\right)^2}{s^2 + \left(\frac{4}{KR_1C}\right) + \left(\frac{1}{R_1C}\right)^2}. \tag{11}$$

3.10.2 Soliman73 family

The author in [50] presented two different realizations for the second-order nonminimum phase transfer function. The
first one has the advantage of being a SAB and, permanently
stable while the second provides a unity gain factor, but it
uses two opamps. The filter schematics are shown in Fig. 20
with the transfer function in Table 18 where the parameter
\(a \) is dependent on the required quality factor.

3.10.3 Soliman74 Family

In [15], an active second-order low-pass filter was pre-
sented with a unique feature of \(\omega_0 \) being insensitive to the
gain-bandwidth product of the OA. The filter schematics
are shown in Fig. 21 with the transfer function as follows:

\[
T_{Sol74}(s) = \frac{(R_1+R_2)(R_1+R_2)}{s^2 + s\left(\frac{1}{R_1C_1} + \frac{1}{R_1C_2} + \frac{1}{R_2C_1} + \frac{1}{R_2C_2}\right) + \frac{R_1R_2R_1C_1C_2}{R_1R_2R_1C_1C_2}}.
\]

3.10.4 Soliman76 Family

In [17], an active second-order band-pass filter had been
presented. The filter was proven to have minimized change
in the natural frequency and selectivity due to finite ampli-
fier gain and bandwidth. The filter schematics is shown in
Fig. 22 with the transfer function in Table 19.

3.10.5 Soliman78 Family

In [18], an active second-order band-pass filter had been
presented. The filter depends on activating two identical
passive RC building blocks, which was proved to provide

Table 15 Hamilton-Sedra72 IB transfer functions

Filter type	\(T(s) \)
Low-pass	\(\frac{1}{s^2R_1C_1} \)
	\(+ \frac{s^2R_2C_1}{s^2R_2C_2} \)
	\(+ \frac{sR_1C_1}{sR_1C_2} \)
	\(+ \frac{sR_2C_1}{sR_2C_2} \)
High-pass	\(\frac{1}{s^2R_1C_1} \)
	\(+ \frac{s^2R_2C_1}{s^2R_2C_2} \)
	\(+ \frac{sR_1C_1}{sR_1C_2} \)
	\(+ \frac{sR_2C_1}{sR_2C_2} \)
Band-pass	\(\frac{1}{s^2R_1C_1} \)
	\(+ \frac{s^2R_2C_1}{s^2R_2C_2} \)
	\(+ \frac{sR_1C_1}{sR_1C_2} \)
	\(+ \frac{sR_2C_1}{sR_2C_2} \)
Fig. 14 Hamilton-Sedra72 IB Filters Family: a LPF, b HPF, c BPF [13]

Fig. 15 Hamilton-Sedra72 IC Schematics [13]

Table 16 Hamilton-Sedra72 IC transfer functions

Filter type	\(T(s) \)
Band-pass \((k_2(1 + k_3) = k_1k_3)\)	\(s^2 + \frac{1}{(k_2k_3)R_1C} + \frac{(k_2^2R_3^2R_0^2 + (2+R_0)/(C2))}{k_2^2R_3^2R_0^2} \)
All-pass \((k_2 = k_3 = 1)\)	\(\left(\frac{2R_0}{R + R_0}\right) s^2 + \frac{2}{R_0} + \frac{1 + 2(R_0)}{R_1C} \)
Notch \((k_2 = k_3 = 1)\)	\(\left(\frac{4R_0}{R + R_0}\right) s^2 + \frac{2}{R_0} + \frac{1 + 2(R_0)}{R_1C} \)

\[k_1 = \frac{R_1}{R_1 + R_3}, \quad k_2 = \frac{R_2}{R_1 + R_4}, \quad k_3 = \frac{R_4}{R_3} \]
a trade-off between better element ratios (spread of passive elements) and low sensitivity. The filter schematics are shown in Fig. 23 with the transfer function in Table 19.

3.10.6 Soliman79 Family

In [51], the author presented an active second-order canonic band-pass filter that is always stable and has low sensitivity to ω_t of the OA. The filter schematics are shown in Fig. 24 with the transfer function in Table 19.

3.11 Filters comparison and results

3.11.1 Filters features

Tables 20, 21 summarizes all the filters specifications. First, for Table 20, a set of key features for each filter alongside some shortcomings are presented. The shortcomings are assumed compared to the minimum required components to form a biquad circuit i.e., one opamp, two resistors, and two capacitors this is besides any disadvantage presented by the authors in the corresponding work. Second, for Table 21, the
detailed passive sensitivity for each family was presented. The benefit of such a table arises when choosing among different designs. For example, in comparison between MB and BH LPF, while both use three opamps, the MB filter passive sensitivity for both R_3 and R_4 depends on their values, contrary to the BH filter where these resistors have a constant sensitivity. Finally, Table 22 shows a summary for the presented filters with some references in the literature and with the approximate effect of the roll-off of the operational amplifier gain beyond bandwidth. The active sensitivities of the filters presented assuming $Q_p \gg 1$ and identical opamps for designs that use more than one amplifier. It’s also worth mentioning that the effect of designing such filters on high CMOS technology nodes, i.e., 7nm, could be seen from two points of view according to this article, i.e., passive and active sensitivities.

Table 18: Soliman73 Filter Transfer Functions

Filter type	$T(s)$
All-pass ($a = \frac{1}{1+1/2a^2}$)	$\frac{s^2 + a^2 + 2sa + a^2}{s^2 + a^2 + 2sa + a^2}$
All-pass	$\frac{s^2 + 2a^2}{s^2 + 2a^2}$

Table 19: Soliman76, Soliman78 and, Soliman79 Filter Transfer Functions

Filter type	$T(s)$
Band-pass (Soliman76)	$\frac{s^2 + a^2}{s^2 + a^2}$
Band-pass (Soliman78)	$\frac{s^2 + a^2}{s^2 + a^2}$
Band-pass (Soliman79)	$\frac{s^2 + a^2}{s^2 + a^2}$

Fig. 19 Soliman72 Filter Schematics [49]

Fig. 20 Soliman73 Filters Family: a APF I, b APF II [50]

Fig. 21 Soliman74 Filter Schematics [15]

Fig. 22 Soliman76 Filter Schematics [17]
active sensitivities. For active sensitivity, some filters like KHN should not suffer from degradation if the DC-gain of the amplifier is high enough to minimize its input offset voltage. However, some filters that have a dependency on the DC-gain, i.e., the quality factor of Tow-Thomas, may suffer degradation depending on how the amplifier topology and variation on the gain. For passive sensitivity, and assuming the amplifier provides enough DC-gain, some filters specs should not be affected by the variations of the passive elements which depends on how they are implemented on IC technologies (i.e., poly resistors and MOM capacitors ...etc) like the cutoff frequency of Sallen-Key filters as shown in Table 21. Other filters have specs that are dependent on some of the passive element variations like the cutoff frequency of the MB filter as shown in Table 21.

3.11.2 Passive sensitivity simulation (Monte Carlo Results)

This section shows the monte-carlo results of some filter families to highlight a comparison among those filters for variations on the cutoff frequency. The monte-carlo analysis was performed on Cadence OrCAD software running 1000 monte-carlo seeds. The used amplifier model was TL084 which is based on BJT transistors with J-FET input pair in a monolithic integrated circuit. results were plotted using MATLAB software. The transfer function that is desired to simulate is as follows:

$$T(s) = \frac{K}{s^2 + \sqrt{2}s + 1}.$$ \hfill (13)

The realization of the filter assumed a frequency scaling by a factor of 1000 and a magnitude scaling by a factor of 10k to obtain realizable passive elements values. The scaling factors lead to a low-pass response with a cutoff frequency $\approx 159 \text{ Hz}$. The results are shown in Fig. 25. It could be seen that as expected from 21, both PMG and MB low-pass filters have high passive sensitivity contrary to Fliege and AM. The PMG and MB filters histograms show variations of ≈ 200 seeds which are 20% of the total seeds around 12.5% of the cutoff frequency while it is ≈ 150 seeds for AM and is zero for Fliege.

The last result is a comparison among some different filters. However, for the seek of more understanding of the passive sensitivity analysis, a Monte Carlo analysis has been carried out on the same filter but with varying tolerance of the passive components. PMG filter was chosen in three cases; no tolerance for all passive elements, 10% tolerance for R_5 and, 10% tolerance for R_7. From Table 21 it could be seen that in case of $R_7 = R_8$ the passive sensitivity of the cutoff frequency to R_5 and R_7 is 0.5 and 0.25 respectively. This means the spread of the cutoff frequency along the Monte Carlo seeds is higher in the case of tolerance R_5. Figure 26 shows these results. It could be seen that in case of no tolerance there are no variations on the cutoff frequency, while variation is $120:210 \text{ Hz}$ for R_5 and, $140 : 180 \text{ Hz}$ for R_7 which, as expected, is lower than that of R_5.

Fig. 23 Soliman78 Filter Schematics [18]

Fig. 24 Soliman79 Filter Schematics [51]
Family name	Key feature	Shortcomings
Sallen-Key	Minimum passive components	Moderate passive sensitivity
	Ease of direct cascading	
KHN	Multiple response	Uses 3 opamps
	Low passive and active sensitivity	Uses 8 passive elements
	Minimum number of capacitors	
TT	Multiple response	Uses 3 opamps
	Low passive and active sensitivity	Uses 8 passive elements
	Minimum number of capacitors	
Bach	Minimum passive components	Need for iterative procedure to design
	Ease of direct cascading	
	Low spread of passive elements	
Fliege	Low spread of elements	Many passive components (i.e. 7 ~ 8) which implies more complexity and more power consumption
	Relative sensitivities to the passive elements are of the same order of magnitude as that of a second-order passive network Pole parameters have low active sensitivities	
MB	Low passive sensitivity	Uses 3 OPAMPs
	Very low active sensitivity	Uses 10 passive elements
	Adjustable universal design	
	Suitable for high-Q realizations	
	Insensitive to temperature and power supply	
	No isolation OPAMP is needed for cascading	
	Low resistors spread	
BH	Universal building block	Uses 3 OPAMPs
	Low active sensitivity	Uses 9 ~ 10 passive components
PMG	High Q at high frequencies	Uses 3 OPAMPs
	Low sensitivity for passive and active components	Uses 10 passive elements
	Low sensitivity for GB which cut the need for matched OPAMPs	
Deliyannis	SAB	Large spread of elements for positive feedback section
	High Q at high frequencies	
Soliman72	Medium selectivity	Double OPAMPs
	Very low passive sensitivities	8 passive components
AM	Universal building block	Uses 3 OPAMPs
	Quality factor is approximately independent of the gain-bandwidth product of the operational amplifiers low temperature sensitivity for quality factor	Uses 9 ~ 10 passive components
	Capacitive input for HPF and BPF	
Soliman73I	SAB	–
	Always stable	
Soliman73II	Provides unity gain factor	Double OPAMPs
	10 passive components	
Soliman74	ω_o, is insensitive to ω_i	Double OPAMPs
	8 passive components	
Soliman76	Canonic design	Double OPAMP
	Provides gain	6 passive components
	High quality factor	high passive sensitivity
	low active sensitivity	
	low sensitivity to ω_o of the OAs	
Soliman78	Canonic design	Two passive RC networks
	SAB	Trade-off between spread of passive elements and low passive sensitivity
	Low active sensitivity	
	Low passive sensitivity	
	low sensitivity to ω_o of the OAs	
Soliman79	Inverting canonic design	Double OPAMP
	Always stable	8 passive components
	Low sensitivity to amplifier gain-bandwidth product	
3.11.3 Simulation results for the active sensitivity of the cutoff frequency

To check the active sensitivity of a filter, it is desired to check the change of the cutoff frequency due to the degradation of the dc gain of the used amplifier. As every amplifier has a common-mode input range, a sweep on the VCM will first be simulated to identify the operating range of the used opamp (i.e., TL084). The simulation was carried on OrCAD software, and the result is shown in Fig 27. As the BJT-based amplifier suffers an abrupt degradation in DC gain outside its common-mode input range, this could be seen around \(\pm 13V \). This means that a sweep on VCM could be used as a reflector of the deviation on the DC gain of the opamp.

Four filters families were simulated to realize the transfer function in 13 with the same magnitude and frequency scaling as the Monte Carlo analysis. A parametric sweep on the input common-mode was performed over the ac analysis on OrCAD; then, the measurement of the 3-dB frequency was taken and plotted over the sweep using MATLAB. Figure 28 shows the sweep results. The expected cutoff frequency of the transfer function should be at 159 Hz as could be seen from the figure that AM and MB filters have a better response (stable over higher range of VCM) than BH and Fliege. This result agrees with the listed active sensitivity in Table 22.

3.11.4 Cutoff frequency active sensitivity experimental results

To check the effect of the active sensitivity on the cutoff frequency experimentally, MB filter is chosen and designed to synthesize the transfer function in 13 with 10000 magnitude scale and 10000 frequency scale. The expected cutoff frequency should be at 1.59 KHz. The experiment was carried out using NI ELVIS II kit. The LM324A chip was used for the opamps in the filter. The calculated passive elements are \(R_1 = R_3 = R_4 = R_5 = R_8 = 14 \text{ k}\Omega \), \(R_6 = R_7 = 10 \text{ k}\Omega \) and, it could be seen in Fig. 29(b) that the cutoff frequency around VCM = 0 V is \(f_c \approx 1585 \text{ Hz} \) while a little degradation

Table 20 (continued)

Family name	Key feature	Shortcomings		
HS72 IA	SAB	11 passive components		
	Low quality factor \((Q \leq 50)\)	Based on pole-zero cancellation technique		
HS72 IB	Medium quality factor \((50 < Q \leq 500)\)	Quality factor active sensitivity limits the maximum quality factor \(Q_o \approx \frac{Q}{4} \)		
HS72 IC	Easily cascadable High resistive input impedance Low resistive output impedance APF uses less OPAMPs compared to Moschytz70 for the same quality factor	Double OPAMPs 14 passive components Based on pole-zero cancellation technique		
Geffe I	SAB	Band-pass only floating capacitors low passive sensitivity Moderate quality factor		
Geffe II	Low quality factor Low passive sensitivity	Double OPAMPs 8 passive elements High quality factor active sensitivity except for low quality factor		
Soderstand	Zero passive sensitivity Active sensitivity less than 0.5	Double OPAMPs		
TG	High Q low passive sensitivity	Triple OPAMPs		
SK	LPF	HPF	BPF	NF
----	-----	-----	-----	-----
SK1	R1	R2	R3	C1
SK2	R4	R5	R6	C2
SK3	R7	R8	R9	C3
SK4	R10	R11	R12	C4

Table 21: Passive sensitivity for the unified filters families

Family	Filter Type	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12	C1	C2	C3	C4
Family	Filter Type	y	S'_y														
----------	-------------	----	--------														
			R_1	R_2	R_3	R_4	R_5	R_6	R_7	R_8	R_9	C_1	C_2	C_3			
BMA	LPF I	ω_o	$-\frac{1}{2}$	-	-	$-\frac{1}{2}$	-	-	$-\frac{1}{2}$	-	-	-	-	-			
		Q	$-\frac{1}{2}$	-	1	$-\frac{1}{2}$	-	-	-	$-\frac{1}{2}$	-	1	-	-			
	LPF II	ω_o	-	$-\frac{1}{2}$	$-\frac{1}{2}$	-	-	$\frac{1}{2}$	$-\frac{R_1/2}{R_1+R_5}$	$-\frac{R_1/2}{R_1+R_5}$	-	1	$-\frac{1}{2}$	-			
		Q	-	*BMA1	*BMA2	-	*BMA3	$-\frac{R_1/2}{R_1+R_5}$	$-\frac{R_1/2}{R_1+R_5}$	-	1	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	-		
	HPF I	ω_o	$-\frac{1}{2}$	1	-	$-\frac{1}{2}$	-	-	$-\frac{1}{2}$	-	-	1	$-\frac{1}{2}$	$-\frac{1}{2}$			
		Q	$-\frac{1}{2}$	1	-	$-\frac{1}{2}$	-	-	-	1	$-\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}$	-			
	HPF II	ω_o	$-\frac{1}{2}$	1	-	$-\frac{1}{2}$	-	-	$-\frac{1}{2}$	-	-	1	$-\frac{1}{2}$	$-\frac{1}{2}$			
		Q	$-\frac{1}{2}$	1	-	$-\frac{1}{2}$	-	-	-	1	$-\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}$	-			
	BPF I	ω_o	-	$-\frac{1}{2}$	$-\frac{1}{2}$	-	-	-	-	$-\frac{1}{2}$	-	-	-	-			
		Q	-	*BMA4	-	-	-	1	$-\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$				
	LPF II	ω_o	$-\frac{1}{2}$	-	-	$-\frac{1}{2}$	-	-	$-\frac{1}{2}$	-	-	1	$-\frac{1}{2}$	-			
		Q	$-\frac{1}{2}$	-	1	$-\frac{1}{2}$	-	-	-	1	$-\frac{1}{2}$	-	1	$-\frac{1}{2}$			
	HPF I	ω_o	-	$-\frac{1}{2}$	$-\frac{1}{2}$	-	-	$-\frac{1}{2}$	-	-	1	$-\frac{1}{2}$	-				
		Q	-	$-\frac{1}{2}$	$-\frac{1}{2}$	-	-	-	1	$-\frac{1}{2}$	-	1	$-\frac{1}{2}$				
	HPF II	ω_o	-	$-\frac{1}{2}$	$-\frac{1}{2}$	-	-	$-\frac{1}{2}$	-	-	1	$-\frac{1}{2}$	-				
		Q	-	$-\frac{1}{2}$	$-\frac{1}{2}$	-	-	-	1	$-\frac{1}{2}$	-	1	$-\frac{1}{2}$				
	NF I	ω_o	-	$-\frac{1}{2}$	$-\frac{1}{2}$	-	-	$-\frac{1}{2}$	-	-	1	$-\frac{1}{2}$	-				
		Q	-	$-\frac{1}{2}$	$-\frac{1}{2}$	-	-	-	1	$-\frac{1}{2}$	-	1	$-\frac{1}{2}$				
	NF II	ω_o	-	$-\frac{1}{2}$	$-\frac{1}{2}$	-	-	$-\frac{1}{2}$	-	-	1	$-\frac{1}{2}$	-				
		Q	-	$-\frac{1}{2}$	$-\frac{1}{2}$	-	-	-	1	$-\frac{1}{2}$	-	1	$-\frac{1}{2}$				
	NF III	ω_o	-	$-\frac{1}{2}$	$-\frac{1}{2}$	-	-	$-\frac{1}{2}$	-	-	1	$-\frac{1}{2}$	-				
		Q	-	$-\frac{1}{2}$	$-\frac{1}{2}$	-	-	-	1	$-\frac{1}{2}$	-	1	$-\frac{1}{2}$				
	Deliyannis	BPF I	ω_o	$-\frac{R_1/2}{R_1+R_5}$	-	$-\frac{R_1/2}{R_1+R_5}$	-	-	-	-	-	-	-	-			
		Q	$-\frac{R_1/2}{R_1+R_5}$	-	$-\frac{R_1/2}{R_1+R_5}$	-	-	-	-	-	-	-	-				
	BPF II	ω_o	$-\frac{R_1/2}{R_1+R_5}$	-	$-\frac{R_1/2}{R_1+R_5}$	-	-	-	-	-	-	-	-				
		Q	$-\frac{R_1/2}{R_1+R_5}$	-	$-\frac{R_1/2}{R_1+R_5}$	-	-	-	-	-	-	-	-				
	Soderst rand-Mitra	BPF	ω_o	$-\frac{1}{2}$	-	1	-	-	-	-	-	-	-	-			
		Q	*Sod1	*Sod2	-	-	-	-	-	-	-	-	-	-			
	Soliman72	Notch	ω_o	-	-	-	1	-	-	-	-	-	-	-			
		Q	*Sod1	*Sod2	-	-	-	-	-	-	-	-	-	-			
	Soliman73I	All-pass	ω_o	-	-	-	-	-	-	-	-	-	-	-			
		Q	-	-	-	-	-	-	-	-	-	-	-	-			
	Soliman73II	All-pass	ω_o	-	-	-	-	-	-	-	-	-	-	-			
		Q	-	-	-	-	-	-	-	-	-	-	-	-			
	Soliman74	Low-pass	ω_o	$-\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	-	-	-	-	-	-	-	-			
		Q	$-\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	-	-	-	-	-	-	-	-				
	Soliman76	Band-pass	ω_o	-	-	-	-	-	-	-	-	-	-	-			
		Q	-	-	-	-	-	-	-	-	-	-	-	-			
	Soliman78	Band-pass	ω_o	$-\frac{1}{2}$	$\frac{1}{2}$	-	-	-	-	-	-	-	-	-			
		Q	*Sol78a	*Sol78b	-	-	-	-	-	-	-	-	-	-			
Table 21 (continued)

Family	Filter Type	y	S_y	R_1	R_2	R_3	R_4	R_5	R_6	R_7	R_8	C_1	C_2	C_3
Soliman97	Band-pass	α_o	$-\frac{1}{2}$	$\frac{1}{2}$										
AM	LPF	α_o	$-\frac{1}{2}$	$\frac{1}{2}$										
	HPF	α_o	$-\frac{1}{2}$	$\frac{1}{2}$										
	BPF	α_o	$-\frac{1}{2}$	$\frac{1}{2}$										
BH	LPF	α_o	$-\frac{1}{2}$	$\frac{1}{2}$										
	HPF	α_o	$-\frac{1}{2}$	$\frac{1}{2}$										
	BPF	α_o	$-\frac{1}{2}$	$\frac{1}{2}$										

*SKQ1: $-0.5 + Q$. *SKQ2: $0.5 - Q$. *SKQ3: $-0.5 + 2Q$. *SKQ4: $-0.5 - 2Q$
Approximate Bandwidth Limitations

\[\frac{\Delta \omega}{\omega_0} = \frac{\Delta Q}{Q} = \frac{\Delta \rho}{\rho_0} \]

Active sensitivity

\[S_{\Delta\omega} = \frac{\Delta Q}{Q} \]

\[\Delta \omega = \frac{1}{\omega_0} \left(1 - \frac{\Delta Q}{Q} \right) \]

\[\Delta \omega = \frac{1}{\omega_0} \left(1 - \frac{\Delta \rho}{\rho_0} \right) \]

Table 21 (continued)

Family name	Ref	No. of OAs	No. of Rs	No. of Cs	\(\frac{\Delta \omega}{\omega_0} \)	\(\frac{\Delta Q}{Q} \)	Active sensitivity	
Sallen-Key	[31]	1	2	2	\(- \frac{1}{2} (3 - \frac{1}{Q})^2\)	\(- \frac{1}{2} (3 - \frac{1}{Q})^2\)	12.5\(Q^2 \)	
Rauch	[45]	1	3	2	\(- \frac{3}{2} \)	\frac{2}{2}	N/A	
Bach	[32]	2	2	2	\(- \frac{1}{2} \)	\(- \frac{1}{2} \)	N/A	
KHN	[10, 22, 38]	3	6	2	\(-1\)	\(4Q_p\)	\(\star 1/3\) \(\star 1/3\)	
Tow-Thomas	[22, 39, 40]	3	6	2	\(1 + \frac{3m_0}{m_0} \)	\(1 - \frac{3m_0}{m_0} \)	0 \(2Q_p\)	
Tarmy-Ghausi	[16, 48, 19]	3	2	2	\(1 + \frac{3m_0}{m_0} \)	\(1 + \frac{3Q_p}{\alpha_p} - \frac{3m_0}{2m_0} \)	0 \(\frac{3Q_p}{\alpha_p}\)	
Soliman72	[49]	2	5	3	\(-2 + \frac{1}{20}\)	\(2 - \frac{1}{20}\)	0 \(\frac{4Q_p}{Q_p}\)	
Soliman73I	[50]	1	4	2	\(- \frac{m_0 Q}{\omega_0} \)	\(1 + \frac{m_0 Q}{\omega_0} \)	0 \(\frac{2Q_p}{\alpha_p}\)	
Soliman73II	[50]	3	7	3	\(1 - \frac{4m_0 Q}{\omega_0} \)	\(1 + \frac{4m_0 Q}{\omega_0} \)	0 < \(\frac{4Q_p}{\alpha_p}\)	
Soliman74	[15]	2	6	2	\(6Q^2\)	\(3Q_p\) \(\frac{3Q_p}{\alpha_p}\)	0 \(\frac{3Q_p}{\alpha_p}\)	
Soliman76	[17]	2	4	2	\(\frac{1}{Q_0}\) \(\frac{m_0}{m_0} - \frac{3}{Q_0}\)	N/A	N/A	
Soliman78	[18]	1	4	4	\(-1.4\)	\(-1.4\)	0 \(\frac{2Q_p}{\alpha_p}\)	
Soliman79	[51]	2	6	2	\(-2\)	\(2\)	N/A	N/A
Fliege	[6, 35]	2	5	2	\(-2\)	\(2\)	N/A	N/A
AM	[14, 42]	3	6	2	\(\frac{3m_0}{2m_0}\)	\(\frac{3Q_p}{\alpha_p} + \frac{m_0}{m_0}\)	0 \(\frac{Q_m}{m_m}\)	
MB	[16]	3	9	2	\(1 + \frac{m_0}{m_0}\)	\(1 + \frac{Q_p}{\alpha_p} - \frac{m_0}{2m_0}\)	0 \(\frac{2Q_p}{\alpha_p}-1\)	
PMG	[19]	3	8	3-4	\(\frac{3m_0}{m_0}\)	\(-2m_0\)	0 \(\frac{2Q_p}{\alpha_p}\)	
BH	[21]	3	\(-9\)	2	N/A	N/A	0.5 \(6Q_p^2 + 0.5\)	
BMA	[30]	2	\(-6\)	\(-3\)	\(\omega_0 (1 - 2m_0 / \omega_0)\)	\(Q_p (1 - 4Q_p / \alpha_p)\)	\(\frac{4Q_p}{\alpha_p}\)	
Deliyannis	[36]	1	\(-4\)	\(-2\)	N/A	N/A	0 \(\frac{Q_p}{m_m}\) \(\frac{m_m}{m_m}\)	
AM	[41, 42]	3	\(-6\)	\(-3\)	0.5	\(\frac{m_0}{m_0}\)	0 \(\frac{4Q_p}{\alpha_p}\)	
Hamilton-Sedra (IA)	[13]	1	6	5	*HS1dW	*HS1dQ	0 \(\frac{4Q_p}{\alpha_p}\)	
Hamilton-Sedra (IB)	[13]	2	8	6	*HS2dW	*HS2dQ	0 \(\frac{4Q_p}{\alpha_p}\)	
Hamilton-Sedra (IC)	[13]	2	10	3	N/A	N/A	0 \(\frac{4Q_p}{\alpha_p}\)	
Geffe II	[47]	2	6	2	N/A	N/A	0 \(\frac{4Q_p}{\alpha_p}\)	

* Pole sensitivity to the amplifier gain.

*HS1dQ = \(\frac{m_0}{m_0} \left(\frac{1}{\omega_0} - 1 \right)\)

*HS1dW = \(\frac{m_0}{m_0} \left(\frac{1}{\omega_0} + \frac{4Q_p m_0 / \omega_0}{\sqrt{1 + 2m_0 / \omega_0}} \right)^{-1} \)

*HS2dW = \(\frac{m_0}{m_0} \left(\frac{1}{\omega_0} + \frac{0.4Q_p m_0 / \omega_0}{\sqrt{1 + 0.4Q_p m_0 / \omega_0}} \right)^{-1} \)

*HS2dQ = \(\frac{m_0}{m_0} \left(\frac{1}{\omega_0} + \frac{0.4Q_p m_0 / \omega_0}{\sqrt{1 + 0.4Q_p m_0 / \omega_0}} \right)^{-1} \)
on the input common-mode level (i.e., $V_{CM} = 0.5 \, \text{V}$) causes a degradation on the DC gain of the amplifiers thus the cut-off frequency is $f_\circ \approx 1230 \, \text{Hz}$ and finally for a relatively high input common-mode $V_{CM} = 2 \, \text{V}$ the filter fails and the output is messy.

4 Conclusion

This work is a review article for active and passive sensitivities analysis of some second-order analog active filters based on opamp in the literature. As can be seen, there are a lot
of judging factors to compare among different filter realizations. As mentioned in [52], "It is not possible to recommend particular types of inductorless filters, many of which have not yet been proved in actual practice. The choice, of course, will depend upon the application". Although it is around 50 years since this statement was given, it is still valid. There are no absolute good or bad filters regarding the other filters as there is always this trade-off between performance and power consumption. This work presents some detailed tables to facilitate the choice decision depending on comparing the filters from different aspects, mainly passive sensitivity. Furthermore, choosing the best filter always depends on the application, design conditions, design scheme, and available kit and hardware, which will always be the designer’s responsibility.

Fig. 26 Monte Carlo results histogram for PMG filter family: a no tolerance, b $TOL = 10\%$ for R_5, c $TOL = 10\%$ for R_7

Fig. 27 TL084 DC Gain Over Sweep of the Input Common Mode
Fig. 28 Cutoff Frequency Active Sensitivity of some of the Filter Families: a AM, b BH, c Fliege and, d MB
Acknowledgements This paper is based upon work supported by Science, Technology, and Innovation Funding Authority (STIFA) under grant number (#38161).

Author contributions First Author was student worked in the experimental work second, third and fourth authors worked in the paper writing and analysis for results fifth author are team leader

Funding Open access funding provided by The Science, Technology & Innovation Funding Authority (STDF) in cooperation with The Egyptian Knowledge Bank (EKB).

Data availability There is no data associated with this manuscript.

Fig. 29 MB LPF Experimental: a Setup, b Magnitude Response and, c Phase Response

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
References

1. Lavalle-Aviles, F., & Sánchez-Sinencio, E. (2020). A 0.6–v power-efficient active-rc analog low-pass filter with cutoff frequency selection. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 28(8), 1757–1769.

2. Hrobak, M., Thurn, K., Moll, J., Hossain, M., Shrestha, A., Al-Sawaf, T., et al. (2021). A modular mimo millimeter-wave imaging radar system for space applications and its components. Journal of Infrared, Millimeter, and Terahertz Waves, 42(3), 275–324.

3. Roobert, A. A., & Rani, D. (2021). Design and analysis of a sleep and wake-up cmos low noise amplifier for 5g applications. Telecommunication Systems, 76(3), 461–470.

4. Sedra, A., Smith, K. C., Chan Carusone, T., & Gaudet, V. (2020). Exercise 3. Roobert, A. A., & Rani, D. (2021). Design and analysis of a sleep and wake-up cmos low noise amplifier for 5g applications. Telecommunication Systems, 76(3), 461–470.

5. John, D. A., & Martin, K. (2008). Analog integrated circuit design. John Wiley & Sons.

6. Wheat, K. (2009). Passive, active, and digital filters. CRC Press.

7. Paarmann, L. D. (2006). A signal processing perspective (Vol. 617). Springer Science & Business Media.

8. Faulkner, E. A., & Grindle, J. B. (1973). The effect of amplifier gain-bandwidth product on the performance of active filters. Radio and Electronic Engineer, 43(9), 547–552.

9. Analog Devices. (2008). Design and analysis of analog filters: Passive, active, and digital filters. CRC Press.

10. Soliman, A. M. (1974). History and progress of the Tow-Thomas bi-quadratic filter part i: Generation and op amp realizations. Journal of Circuits, Systems, and Computers, 17(04), 637–658.

11. Soliman, A. M. (1974). History and progress of the Tow-Thomas bi-quadratic filter part ii: Open-loop gain and noise. Journal of Circuits, Systems, and Computers, 17(01), 33–54.

12. Hamilton, T., & Sedra, A. (1972). A single-amplifier biquad active filter. IEEE Transactions on Circuit Theory, 19(4), 398–403.

13. Hamilton, T., & Sedra, A. (1972). Some new configurations for active filters. IEEE Transactions on Circuit Theory, 19(1), 25–33.

14. Wilson, G., Bedri, Y., & Bowron, P. (1974). Rc-active networks with reduced sensitivity to amplifier gain bandwidth product. IEEE Transactions on Circuits and Systems, 21(5), 618–626.

15. Soliman, A. M. (1974). Active rc high selectivity notch filter. International Journal of Electronics, 37(4), 565–567.

16. Mikael, W., & Bhattacharyya, B. (1975). A practical design for insensitive rc-active filters. IEEE Transactions on Circuits and Systems, 22(5), 407–415.

17. Soliman, A. M. (1976). A novel canonical active rc bandpass network with reduced sensitivity to amplifier gain bandwidth product. In Proc. Int. Symp. Circuits Systems (pp. 493–496).

18. Soliman, A. M. (1977). A new single operational amplifier active rc bandpass network with reduced sensitivity to amplifier gain-bandwidth product. International Journal of Circuit Theory and Applications, 6(4), 321–326.

19. Padukone, P., Mulawkia, J., & Ghausi, M. S. (1980). An active-rc biquadratic section with reduced sensitivity to operational amplifier imperfections. Journal of the Franklin Institute, 310(1), 27–40.

20. Bowron, P., Mohamed, M., & Al-Kabbani, A. (1980). Unified single-amplifier filters. IEEE Transactions on Circuits and Systems, 27(1), 62–64.

21. Berka, J. C., & Herpy, M. (1981). Novel active rc building block with optimal sensitivity. Electronics Letters, 17(23), 887–888.

22. Mohan, P., Ramachandran, V., & Swamy, M. (1985). Nodal voltage simulation of active rc networks. IEEE Transactions on Circuits and Systems, 32(10), 1085–1088.

23. Ono, T. (1996). Two-phase controlled switched-capacitor inductance simulation circuits using one second-generation current conveyor (cc ii). Electronics and Communications in Japan (Part III: Fundamental Electronic Science), 79(11), 35–44.

24. Chang, C. M., Soliman, A. M., & Swamy, M. N. (2007). Analytical synthesis of low-sensitivity high-order voltage-mode ddc and fdcii-grounded r and c all-pass filter structures. IEEE Transactions on Circuits and Systems I: Regular Papers, 54(7), 1440–1443.

25. Budak, A., & Petrela, D. (1972). Frequency limitations of active filters using operational amplifiers. IEEE Transactions on Circuit theory, 19(4), 322–328.

26. Awad, I. A., Abd-El Gawad, S. Y., & Soliman, A. M. (1995). Simplified formulas for ϵ and Ω based on Budak-Petrela’s method. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 42(3), 186–187.

27. Soliman, A. M. (1978). A new active rc configuration for realizing nonminimum phase transfer functions. International Journal of Circuit Theory and Applications, 2(3), 307–315.

28. Razavi, B. (2021). Fundamentals of microelectronics. John Wiley & Sons.

29. Antoniou, A. (1969). Realisation of gyrators using operational amplifiers, and their use in rc-active-network synthesis. In Proceedings of the Institution of Electrical Engineers, vol. 116 (pp. 1838–1850). IET.

30. Bhattacharyya, B. B., Mikhail, W. B., & Antoniou, A. (1974). Design of rc-active networks using generalized-immittance converters. Journal of the Franklin Institute, 297(1), 45–58.

31. Sallen, R. P., & Key, E. L. (1955). A practical method of designing rc active filters. IRE Transactions on Circuit Theory, 2(1), 74–85.

32. Bach, R. E. (1960). Selecting rc values for active filters. Electronics, 33, 82–85.

33. Bhattacharyya, B. B., Das, S. K., & Swamy, M. N. S. (1976). A note on bach’s low-pass active rc filter. Proceedings of the IEEE, 64(4), 562–564.

34. Soderstrand, M. A., & Mitra, S. K. (1969). Extremely low sensitivity active rc filter. Proceedings of the IEEE, 57(12), 2175–2176.

35. Fliege, N. (1973). A new class of second-order rc-active filters with two operational amplifiers.

36. Deliyannis, T. (1968). High-q factor circuit with reduced sensitivity. Electronics Letters, 4(26), 577–579.

37. Schüssler, W. (1959). Switching and measuring transfer functions on an analog computer. AEU, 13, 405–419.

38. Kerwin, W. J., Huelsman, L. P., & Newcomb, R. W. (1967). State-variable synthesis for insensitive integrated circuit transfer functions. IEEE Journal of Solid-State Circuits, 2(3), 87–92.

39. Tow, J. (1969). A step-by-step active-filter design. IEEE Spectrum, 6(12), 64–68.

40. Thomas, L. (1971). The biquad: Part i-some practical design considerations. IEEE Transactions on Circuit Theory, 18(3), 350–357.

41. Åkerberg, D., & Mossberg, K. (1969). Low-sensitivity easily trimmed standard building block for active rc filters. Electronics Letters, 5(21), 528–529.

42. Åkerberg, D., & Mossberg, K. (1974). A versatile active rc building block with inherent compensation for the finite bandwidth of the amplifier. IEEE Transactions on Circuits and systems, 21(1), 75–78.

43. Moschytz, G. S., & Thelen, W. (1970). Design of hybrid integrated-filter building blocks. IEEE Journal of Solid-State Circuits, 5(3), 99–107.

44. Moschytz, G. S. (1970). Fen filter design using tantalum and silicon integrated circuits. Proceedings of the IEEE, 58(4), 550–566.

45. Nichols, M. H., & Rauch, L. L. (1956). Radio telemetry. Wiley.

46. Giannini, V., Craninckx, J., D’Amico, S., & Baschirotto, A. (2007). Flexible baseband analog circuits for software-defined

Springer
radio front-ends. *IEEE Journal of Solid-State Circuits*, 42(7), 1501–1512.

47. Geffe, P. (1968). Rc-amplifier resonators for active filters. *IEEE Transactions on Circuit Theory*, 15(4), 415–419.

48. Tarmy, R., & Ghausi, M. (1970). Very high-q insensitive active rc networks. *IEEE Transactions on Circuit Theory*, 17(3), 358–366.

49. Soliman, A. M. (1972). New active rc configuration for realising a medium-selectivity notch filter. *Electronics Letters*, 8(21), 522–524.

50. Soliman, A. M. (1973). Two active rc configurations for realizing nonminimum phase transfer functions. *International Journal of Circuit Theory and Applications*, 1(3), 293–299.

51. Soliman, A. M. (1979). A modified canonic active-rc bandpass filter with reduced sensitivity to amplifier gain-bandwidth product. *Proceedings of the IEEE*, 67(2), 325–326.

52. Moschytz, G. S. (1970). Inductorless filters: A survey ii. Linear active and digital filters. *IEEE Spectrum*, 7(9), 63–75.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ahmed M. Hassanein received the B.Sc. degree from Faculty of Engineering, Fayoum University in 2016 in the Electronics and Communications Department. He joined the Nanoelectronics Integrated Systems Center (NISC), Nile University as a research assistant in 2017. He worked in many research areas as memristor modeling and applications, integer-order analog systems like filters and their realizations and, fractional-order analog filters. He published many papers in these areas in 2018 and 2019. He also participated as an organizer in the “NU Undergraduate Research Forum” which demonstrates applications-oriented projects related to the undergraduate courses. He is currently working in the IC industry as an analog IC design engineer.

Lobna A. Said (Senior Member IEEE 2020) is a full-time Associate Professor at the Faculty of Engineering and Applied Science, Nile University (NU). She has been the Microelectronics System Design Master Program (MSD) director and the Co-director of the Nanoelectronics Integrated System Design Research center (NISC) since September 2021. She received her B.Sc., M.Sc., and the PhD degrees in electronics and electrical communications from Cairo University, Egypt, in 2007, 2011, and 2016, respectively. She has over 140 publications distributed between high-impact journals, conferences, and book chapters. She has an H-index of 25, as reported by the Scopus database. Her interdisciplinary research interests include modelling, control, optimization techniques, analog and digital integrated circuits, fractional-order circuits and systems, Memristors, non-linear analysis, and chaos theory. She was involved in many national/international research grants as PI, Co-PI, or a Senior Researcher/Member. She is the Vice-Chair of technical Chapters of the IEEE Egypt Section and the Vice-Chair of the IEEE Computational Intelligence Egypt Chapter 2018-present. She is the Counselor of the IEEE NU student branch 2018-present. She has been the Co-chair of WIE in the IEEE CAS Egypt Technical Chapter since 2021. She won the state encouragement award for the year 2019. She received the Excellence Award from the Center for the Development of Higher education and Research in 2016. She won the Dr Hazem Ezzat Prize for the outstanding researcher NU 2019 and 2020. She is one of the top 10 researchers at NU for 2018-2019 and 2019-2020. Her name was in the Top 2% of Scientists According to Stanford Report for 2019, released in 2020. She has received the Recognized Reviewer Award from many international journals. She was awarded the IEEE Outstanding Branch Counselor & Branch Chair Advisor Award in 2021. In 2019, she was selected as a member of the Egyptian Young Academy of Sciences (EYAS) to empower and encourage young Egyptian scientists in science and technology and build knowledge-based societies. In 2020, she was elected as the Co-Chair of EYAS. Furthermore, in 2020, she was selected to be an African Academy of Science (AAS) affiliate member. In 2020, she was also chosen to be a Member of the Arab-German Young Academy of Sciences and Humanities (AGYA). In 2021, she was selected to be a Member of the Council for future studies and risk management, ASRT, Egypt. Additionally, she served on the technical and organizing committees of many international conferences and organized special sessions, and was selected as a TWAS Young Affiliate.

Ahmed H. Madian (SM’12) received his Ph.D. and M.Sc. degrees from Cairo University, Egypt, in 2007 and 2002, respectively. He is currently Professor at the Department of Electronics and computer Engineering, Faculty of Engineering and applied science, NILE University, Giza, Egypt. He is the director of Microelectronics System Design Master Program since sept. 2015. Also, He is the director of Nanoelectronics Integrated System Design Research center (NISC) since 2016. He has published more than 150 papers in international conferences and journals. His H-index is currently 20. Also, he served in the many technical and organizing committee of many international conferences. He received many research grants as Principle Investigator (PI), Co-PI, or Consultant from different national/international organizations. He won the best researcher award (Dr. Hazem Ezzat award 2017) for his outstanding research profile. His research interests are in low-voltage analog CMOS circuit, current-mode analog, Memristors, Fractional systems, VLSI, Encryption systems and mixed/digital applications on FPGA. Also, he is member of the national radio of science committee (NRSC) since 2018. Dr. Madian is actively serving as a reviewer in several journal and conference publications including IEEE conferences and journals. He served as guest associate editor for many international journals. He is the founder of IEEE Circuits and systems (CASS) Egypt technical chapter and co-founder of the IEEE RAS Egypt TC.
Prof. Ahmed G. Radwan received the State achievements award for research in Mathematical Sciences in 2012, received the Cairo University achievements award for research in the Engineering Sciences in 2013, received the Physical Sciences award in 2013 by Misr El-Khair Institution, and received the Best Researcher Awards Nile University 2015. He is a senior member of IEEE since 2012, member in different international organizations such as: IEEE Communications Society, IEEE Circuit and System Society, and IEEE Transportation Electrification Initiative (TEI). In 2014, he was selected as a member among 15 Ph.D. holders in all fields (30 – 40 years inside Egypt) to form the first Egyptian Young Academy of Science (EYAS), as a part from the Academy of Scientific Research & Technology (ASRT) http://www.eyas.eg.net/. In 2014, he was selected as a member among 50 PhD holder in all fields (inside and outside Egypt) to form the first scientific council of The Egyptian Center for the Advancement of Science, Technology, and Innovation (ECASTI) http://www.ecasti.org/. His main research interests are in the fields of nonlinear circuit analysis, chaotic systems, digital chaos, fractional order systems, image encryption, stability analysis, and memristor-based circuits. He supervised/co-supervised more than 9 Ph.D./ 16 MSc students in different research topics. Many of his students received the best papers/posters in different international conferences. He is the co-author of more than 170 international papers and few international books. He is the author of the Springer book “On the Mathematical Modeling of Memristor, Memcapacitor, and Meminductor,” which has been prefaced by Prof. Leon Chua, who postulated the existence in 1971 and the father of nonlinear-circuit. He has Six US patents based on interdisciplinary ideas between mathematics, circuits, MEMS, electromagnetics, and digital chaos. He received many research grants as Principle Investigator (PI), CO-PI, or Consultant from Science and Technological Development Fund (STDF), Academy of Scientific Research and Technology (ASRT), and also from Faculty of Engineering Cairo University as well as Nile University inside Egypt. Invited to be Guest Editors of the “Special Issue on Fractional-Order Circuits and Systems: Designs and Applications” for the Journal of Circuits, Systems and Signal Processing (IF = 1.264) during the interval March 2015 to Dec. 2015. Moreover, He is guest editor of the special issue “New Trends on Modeling, Design, and Control of Chaotic Systems” for the journal of Mathematical Problems in Engineering (IF = 0.644) during the interval July 2016 – April 2017. He was invited to organize many special session in different international conferences such as: Progress In Electromagnetic Research (PIER2011, China), (PIER2012, Malaysia), International Symposium on Nonlinear Theory and its Applications (NOLTA2015, Hong Kong). Moreover, he was selected as session chair for many international conferences. He served as Technical program Committee and/or Scientific Committee of many international conferences such as ICECS2015. He is also the Program Co-Chair of the upcoming conference ICM2016, December 2016, Egypt. For students activities:- Founder of the series of “NU Undergraduate Research Forum” which demonstrates applications-oriented projects related to the undergraduate courses. Selected to be the Consoler of the IEEE Nile University Student Branch (NUSB) in the interval from Oct. 2014 – May 2016, where many activities have been introduced to the NU community. Moreover, the NUSB organizes several learning camps for many students as a preparation for national competitions. Selected to be one of the jury committee of many competitions such as the Intel International Science and Engineering Fair (Intel ISEF), which is the world’s largest international pre-college science competition Egypt 2015.

Prof. Ahmed M. Soliman was born in Cairo, Egypt, on November 22, 1943. He received the B.Sc. degree with honors from Cairo University, Cairo, Egypt, in 1964, the M.S. and Ph.D. degrees from the University of Pittsburgh, Pittsburgh, PA., U.S.A., in 1967 and 1970, respectively, all in Electrical Engineering. He is currently Professor Emeritus; Electronics and Communications Engineering Department, Cairo University, Egypt. From September 1997–September 2003, Dr. Soliman served as Professor and Chairman Electronics and Communications Engineering Department, Cairo University, Egypt. From 1985–1987, Dr. Soliman served as Professor and Chairman of the Electrical Engineering Department, United Arab Emirates University, and from 1987–1991 he was the Associate Dean of Engineering at the same University. He has held visiting academic appointments at San Francisco State University, Florida Atlantic University and the American University in Cairo. He was a visiting scholar at Bochum University, Germany (Summer 1985) and with the Technical University of Wien, Austria (Summer 1987). In 1977, Dr. Soliman was decorated with the First-Class Science Medal, from the President of Egypt, for his services to the field of Engineering and Engineering Education. In 2008, Dr. Soliman received the State Engineering Science Excellency Prize Award from the Academy of Scientific Research Egypt. In 2010, Dr. Soliman received the State Engineering Science Appreciation Prize Award from the Academy of Scientific Research Egypt. In 2013, Dr. Soliman was decorated with the First-Class Science Medal, from the President of Egypt, for his services to Egypt. Dr. Soliman was a Member of the Editorial Board of the IET Proceedings Circuits Devices and Systems and is associate editor now. Dr. Soliman served as a Member of the Editorial Board of Electrical and Computer Engineering (Hindawi). Dr. Soliman is a Member of the Editorial Board of Analog Integrated Circuits and Signal Processing. Dr. Soliman is also a Member of the Editorial Board of Scientific Research and Essays. Dr. Soliman served as Associate Editor of the IEEE Transactions on Circuits and Systems I (Analog Circuits and Filters) from December 2001 to December 2003 and is Associate Editor of the Journal of Circuits, Systems and Signal Processing from January 2004–Now. Dr. Soliman is Associate Editor of the Journal of Advanced Research (JAR) Cairo University. Dr. Soliman is the inventor (with Dr. Inas Awad) of the pathological Voltage Mirror and the pathological Current Mirror. Dr. Soliman is the inventor (with Dr. Inas Awad) of the family of the Inverting Current Conveyors which completes the set of CCI invented by Dr Sedra and Dr Smith. Dr Soliman received the Excellency Award Five Times from Center of advancement of Post Graduate Studies and Researches in Engineering Sciences, Faculty of Engineering, Cairo University. On October 2020 a report published by Stanford University, showing the “World’s Top 2% Scientists List” based on Scopus Database for all fields. In the “Electrical & Electronic Engineering” field, Prof. Ahmed Soliman ranked as 36 worldwide and the first Egyptian on the list. Also, in the Table of the Top 2% in all areas from Cairo University; Prof. Ahmed Soliman is ranked as the first in the list. On October 2021 a report published by Stanford University, showing the “World’s Top 2% Scientists List” based on Scopus Database for all fields. In the “Electrical & Electronic Engineering” field, Prof. Ahmed Soliman ranked as 54 worldwide and the first Egyptian on the list.