Online Distributed Evolutionary Optimization of Time Division Multiple Access Protocols

Anil Yaman, Tim van der Lee, Giovanni Iacca

1 Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
2 Eindhoven University of Technology, Eindhoven, the Netherlands
3 University of Trento, Trento, Italy

* AY: a.yaman@vu.nl

Abstract

With the advent of cheap, miniaturized electronics, ubiquitous networking has reached an unprecedented level of complexity, scale and heterogeneity, becoming the core of several modern applications such as smart industry, smart buildings and smart cities. A crucial element for network performance is the protocol stack, namely the sets of rules and data formats that determine how the nodes in the network exchange information. A great effort has been put to devise formal techniques to synthesize (offline) network protocols, starting from system specifications and strict assumptions on the network environment. However, offline design can be hard to apply in the most modern network applications, either due to numerical complexity, or to the fact that the environment might be unknown and the specifications might not available. In these cases, online protocol design and adaptation has the potential to offer a much more scalable and robust solution. Nevertheless, so far only a few attempts have been done towards online automatic protocol design. Here, we envision a protocol as an emergent property of a network, obtained by an environment-driven Distributed Hill Climbing algorithm that uses node-local reinforcement signals to evolve, at runtime and without any central coordination, a network protocol from scratch. We test this approach with a 3-state Time Division Multiple Access (TDMA) Medium Access Control (MAC) protocol and we observe its emergence in networks of various scales and with various settings. We also show how Distributed Hill Climbing can reach different trade-offs in terms of energy consumption and protocol performance.

Keywords. Distributed Evolutionary Algorithm, Network Protocol, Online Adaptation.

1 Introduction

A fundamental element in many engineering and industrial applications is the use of networked systems: be it environment monitoring, smart industries, smart cities, or distribution systems, networks of various scales and complexity are employed today practically everywhere. One of the most important aspects in network design is the protocol stack, which determines the way (data format and rules) the nodes in a network communicate with each other [1].

Traditionally, network protocols have been modelled as a reactive system, i.e., a two-player game where an agent (a node in the network) reacts –by performing a certain action– to predefined conditions in the environment (the rest of the network): for instance, the agent retries a packet transmission if it does not receive an acknowledgment. As such, a
protocol can be described with an automaton, for which formal specifications can be logically expressed and verified. For that, one usually needs to have complete knowledge about (and strict assumptions on) the environment. This approach, rooted in the theory of Temporal Logic and infinite (Büchi) automata \[2\], has been the gold standard in protocol design and verification for decades. Since the late ‘60, an impressive number of theoretical and practical results have been obtained in this area, gearing towards the automatic synthesis of protocol from service specifications \[3, 4, 5, 6\] and the development of automatic model checker tools, such as SPIN \[7\].

Despite these many successes, this approach to protocol design has also limitations. First of all, it assumes, in general, the environment— and all its states— to be known: this might not be the case of some modern network applications, where the environment conditions might be unpredictable. Furthermore, this approach models the environment as a whole, i.e., without describing the mutual interactions between the other nodes in the network (with few notable exceptions, see e.g. \[8, 9\]). Another issue is the numerical (time and space) complexity of these methods, which makes them impractical when the number of protocol and environment states grows \[10\]. Finally, and this is arguably the main limitation, this approach fundamentally follows a waterfall design model, as the design and verification steps are performed offline, before deployment, and usually no online adaptation or feedback design cycles are considered. This is the case of projects such as x-kernel \[11\], Horus and Ensemble \[12\] and—to some extent— ANTS \[13\]; all these tools offer a great level of modularity and abstraction, but—as pointed out by Keller et al. \[14\]— their being based on offline design limits their flexibility and applicability. With the exception of ANTS, which also provides a way to dynamic reprogramming/redeploying the protocol code over the network, in all the other cases if one wants to change the protocol code all network nodes must be manually reprogrammed with the new protocol implementation: clearly, not only this approach disrupts the operation of the network, but also it becomes expensive when the network size increases.

In contrast to this traditional “rigid” offline approach, online protocol design and adaptation \[15\] has the potential to offer a much more scalable and robust solution. Some researchers have even suggested that flexibility—in the form of self-adaptation and empowerment, i.e., the principle of agents performing the actions which maximize the number of reachable states— should be the key design principle in modern network engineering \[16, 17, 18\]. Nevertheless, so far only a few attempts have been done in this direction, oriented towards the grand vision of autonomic or self-adaptive networking \[19, 20\]. Most of these attempts are based on Machine Learning (ML) and bio-inspired techniques, although they suffer from some limitations, as we briefly summarize below.

Machine Learning: Various solutions based on collective intelligence \[21\] and Reinforcement Learning (RL) \[22, 23, 24\] have been proposed in the context of routing protocols and particularly in Wireless Sensor Networks (WSNs) \[25, 26, 27\]; other works \[28\] used Deep Learning (DL) to model and optimize the physical layer. Albeit quite powerful, the main limitation of most of these approaches is that they often require a large amount of data collected from the network at runtime, in order to build (i.e., train offline) a model of the protocol, to be used later for online adaptation and optimization. In this sense, we can consider these methods as “semi-online”.

Bio-inspired techniques: a large body of research exists in this field, as surveyed for instance in \[29, 30\]. Similarly to the ML-based methods, most of the existing literature focuses however on offline optimization, based on Swarm Intelligence algorithms, such as Particle Swarm Optimization \[31\] or Ant Routing \[32\], and especially on Evolutionary
In the context of EAs, a seminal paper is represented by the work from late ’90 by El-Fakih et al. [34]. Later on, Genetic Programming (GP) has been successfully used to evolve –i.e., optimize offline– protocol adaptors [35], wireless protocols based on Carrier Sense Multiple Access (CSMA) [36], aggregation protocols [37, 38, 39], or MAC access protocols [40, 41]. The latter have been evolved also by means of evolvable Finite State Machines (FSMs) [42, 43, 44]. As for online methods, an interesting bio-inspired (distributed) learning approach was introduced in [45], where each node observes the other nodes’ behavior and forms internal conjectures on how they would react to its actions, to then choose the action that maximizes a local utility function: the authors demonstrated, analytically and through numerical simulations, that this method reaches Nash equilibria corresponding to optimal traffic fairness and throughput. Other works have investigated distributed EAs [46] and distributed GP [47, 48] to evolve the nodes’ parameters and functioning logics of WSNs, or distributed optimization in multi-agent network systems. Finally, two notable online methods are STEM-Net [49] and Fraglets [50]. The first one is a wireless network where each node uses an EA “to reconfigure itself at multiple layers of the protocol stack, depending on environmental conditions, on the required service and on the interaction with other analogous device” [49]. The latter is based on the concept of “autocatalytic software” [51], or chemical computing [52]: essentially, protocols emerge automatically as collections of “fraglets”, i.e., combinations of code segments and parameters which are evolved, respectively, by distributed GP [53] and distributed EAs [54], and spread over the network through opportunistic (epidemic) propagation [55] regulated by interactions with the environment. On top of this, an additional EA optimizes the combination of protocols [56].

Figure 1: Example network model used for evolving TDMA MAC protocols: each node has a time frame consisting of S slots, where each slot $s_i, i \in \{1, \ldots, S\}$ can be either “T” (transmit), “L” (listen) or empty (idle).

In this work, we continue along this research direction on online evolution of protocols. We consider a network of spatially distributed, locally connected nodes, and –to illustrate

1Interestingly, a loop between network engineering and evolutionary theory exists. Recent evidence has shown that the “hourglass” shape of most protocol stacks is the result of an implicit evolutionary process that led to a minimal complexity, maximal robustness architecture [33, 33].
our method’s applicability—we focus on a Time Division Multiple Access (TDMA)-based Medium Access Control (MAC) protocol, where given a time frame consisting of a fixed number of time slots, each node should learn in which slots it should transmit, listen, or stay idle, see Figure 1 for an example. TDMA protocols are of particular interest in modern network research since the existing protocols are usually not suitable to handle the most recent network instances such as WSNs [57], vehicular ad-hoc networks [58] or underwater acoustic networks [59]. On the other hand, the proposed approach is applicable also to other protocols and stack layers.

Our proposed solution works as follows. Starting from a *tabula rasa*, nodes automatically learn the optimal protocol configuration—the one that minimizes collisions and/or reduces the energy consumption (for which we use, as proxy, the number of slots used for transmit / listen actions)—online, and in a distributed manner. To do this, we propose an environment-driven approach, based on our previous work [60], in which each node in the network runs *in situ* a minimalist evolutionary search, receives reinforcement signals corresponding to its actions, and occasionally shares its protocol parameters with its neighbors. This approach aims to optimize the collective behavior of a population of agents that interact with a certain environment, and uses such interaction to drive a distributed evolutionary search. This approach has proven particularly successfully in robotics [61, 62, 63, 64, 65], while to the best of our knowledge it has never been applied to the evolution of network protocols. Compared to traditional protocol design, the advantage of our approach is at least twofold:

1. **Scalability:** since there is no central unit that guides the evolutionary search, this method can potentially scale up to very large networks.

2. **Robustness:** since the evolutionary search runs continuously and open-ended, it allows a form of continual learning that can respond adequately to different network conditions, even unknown prior to deployment.

In addition to this, the proposed method is fairly agnostic to the environment: by definition, the other nodes’ behavior—in our case, the structure of their time frames—is not known a priori as it will adapt online via embedded evolution. Furthermore, differently from other works such as [45], there is not even the need to build a node-local conjecture on how the other nodes would behave. In essence, our only assumptions are: 1) the node actions are taken from a finite action set that is the same for all nodes in the network (in our case: transmit, listen, idle); 2) each action is associated to a certain reinforcement signal that is the same in all the network; 3) for each transmission an ack packet can be received at the transmitter to acknowledge that the transmitted packet has been received correctly. Finally, it is worth highlighting once more that one distinct characteristic of our proposal w.r.t. the existing evolutionary approaches to MAC protocol optimization [40, 41, 42, 43, 44] is that our approach is fully distributed (decentralized) and works online rather than offline.

The remaining of this paper is organized as follows. In the next section, we introduce the TDMA problem and the proposed Distributed Hill Climbing algorithm. In Section 3, we present the experimental setup, while the numerical results are discussed in Section 4. Finally, in Section 5 we draw the conclusions and hint at future works.
2 Methods

2.1 Problem settings

The network, illustrated in Figure 1, can be represented as a graph $G = (V, E)$ consisting of a set of nodes V, and undirected edges $E \subset V \times V$ which represent the possibility of communication between the nodes \[66\]. Two nodes, seed and target, are selected in the network. All the packets originating from the seed node and are targeted to the target node.

Each node n_i has a time frame, TF_i, consisting of S time slots that can take one of three values: “T”, “L” or empty, to indicate transmit, listen and idle actions respectively. We assume that the time frames of all nodes have the same length and that their time slots are synchronized. In addition, each node has a queue data structure Q_i of unlimited size to allow storing packets if they cannot be transmitted.

The evaluation process of the whole network is performed for K time steps. The process starts at time step $t_1 = 1$ by simultaneously executing the action in the first time slot of each node. Then, at each time step $t_k, k \in \{2, \ldots, K\}$, the action to be executed is the one in the next slot in the time frame, until the last slot is reached. Once the last slot is reached, the next action to be executed becomes the one from the time slot, and so on. This process is repeated until the last time step t_K is reached.

During the evaluation process, a predefined number of packets are introduced into the queue of the seed node with a certain frequency. Depending on the actions in the time slots of the nodes, these packets are transmitted and received across nodes. For instance, if there is a packet in the queue of a node, and the action in the current time slot is “T”, then the node attempts to transmit the packet. Every node in the neighborhood that performs the action “L” in the same time step can receive the packet. However, a collision occurs when a node performing the action “L” has more than one neighbor that is attempting to transmit a packet at the same time. This can be observed in Figure 1. In the first time slot, s_0, while “Node 3” listens, its two neighbors “Node 1” and “Node 2” try to transmit at the same time, which causes a collision. In this case the packet cannot be received. If there are no collisions, the packet is received by the neighbor and put into its queue. The neighbor that receives the packet sends an acknowledgement. In this case, the transmitting node removes the packet from its queue. If a packet is received at the target node, it is removed from its queue. The number of packets received at the target node and the number of time steps took for each packet to reach the target are recorded.

The goal of the problem is to assign an action to each time slot of the time frame of each node in such a way to allow all packets generated at the seed node to reach the target node (100% delivery rate). Ideally, it is also desirable to reduce the number of used slots (i.e., slots assigned to transmit and listen actions), to reduce the network energy consumption.

As a note, to avoid multiple transmissions of the same packet we include an additional data structure to keep track of the received packets in each node. To achieve that, we simply record the packet ID of each packet in each node when they are received. Moreover, if a node receives a packet with the same ID that was received before, it simply ignores it and does not send an acknowledgement.

2.2 Distributed Hill Climbing

Algorithm 1 shows the proposed Distributed Hill Climbing (DHC) algorithm for optimizing TDMA MAC protocols over a network consisting of N nodes. Each node $n_i, i \in \{1, \ldots, N\}$
runs the DHC algorithm independently. The DHC algorithm starts with the initialization of the time frame TF_i. Here, we initialize TF_i with empty time slots, to allow “complexification” of the time frames and emergence of frames with a minimum number of transmit/listen actions.

Algorithm 1 Distributed Hill Climbing algorithm used to optimize the time frame TF_i of node n_i in a network.

1: procedure DistributedHillClimbing
2: $TF_i \leftarrow$ initialize() ▷ Empty slots
3: $f_i = \text{eval}(TF_i)$ ▷ Local fitness
4: while True do
5: $TF' \leftarrow \text{mutate}(TF_i, mr)$ ▷ Mutation
6: $f' = \text{eval}(TF')$ ▷ Local fitness
7: if $f' > f_i$ then ▷ Maximizing reward
8: $f_i \leftarrow f'$
9: $TF_i \leftarrow TF'$
10: end if
11: end while
12: end procedure

Behavior ID	Action	Queue	Outcome	r_k
1	Transmit	empty	-	r_1
2	Transmit	non-empty	(ack) received	r_2
3	Transmit	non-empty	(ack) not received	r_3
4	Idle	empty	-	r_4
5	Idle	non-empty	-	r_5
6	Listen	empty	(packet) received	r_6
7	Listen	non-empty	(packet) received	r_7
8	Listen	empty	(packet) not received	r_8
9	Listen	non-empty	(packet) not received	r_9

2.2.1 Local fitness computation

During the evaluation process, each node executes its time frame as discussed in Section 2.1. The fitness value of each node is then computed locally, as a cumulative sum of scores. We refer to these scores as *reinforcements*. Each reinforcement is associated to the node behavior (i.e., a combination of action, queue and outcome) displayed in each time step of the evaluation. These reinforcements specify the rewards for the possible node behaviors. For instance, a transmit action would be more preferable if there is a packet in the queue of a node. However, if the queue of a node is empty, performing a transmit action would be unnecessary. Therefore, to encourage/discourage specific behaviors, it is possible to define rewarding (positive) or punishing (negative) reinforcements depending on the preference of the action in a certain situation.

The complete list of node behavior reinforcement associations (NBRAs) defined in our experiments is given in Table 1. For each node behavior, the corresponding reinforcement

2On the other hand, random initialization is crucial in centralized approaches to obtain a diverse set of global network solutions that facilitate exploration and crossover.
value \(r_k \) is provided as the reward \(r(t) \) at time step \(t \). These reinforcements are aggregated to compute the local fitness value \(f_i \) of each node \(n_i \), as follows:

\[
f_i = \begin{cases}
C & \text{if } TF_{i,j} \text{ is empty } \forall j \in \{1, \ldots, S\}; \\
\sum_{t=1}^{K} r(t) & \text{otherwise.}
\end{cases}
\]

(1)

i.e., if all the time slots in \(TF_i \) are empty, we set \(f_i \) to a large negative constant value \(C \), which is intended to encourage transmit/listen actions. Else, we compute \(f_i \) by aggregating the reinforcement values \(r(t) \) obtained in each step \(t \).

The NBRAs can be divided into two groups. The first group (ID: 2, 3, 5, 6, 7) aims to encourage the reception and transmission of the packets in the network. The second group (ID: 1, 4, 8, 9) aims to penalize unnecessary actions, thus implicitly minimizing the number of slots used for transmit/listen actions, a proxy for energy consumption.

Since each node tries to maximize the sum of its rewards, these reinforcements obviously play a crucial role in the optimization process. In principle, for the first group of behaviors the nodes should be rewarded/punished more severely since the actions corresponding to those behaviors directly affect the transmission of packets. On the other hand, the reinforcement signals for the second group can be relaxed, since as said they aim mainly at reducing unnecessary actions. However, it is especially important to find a balance on the reinforcement signals of the second group because if these rewards/punishments are too high the nodes will avoid actions which are supposedly unnecessary yet may lead to exploration of new connections and establishing of new pathways. On the other hand, if these rewards/punishments are too low, the nodes will perform too many unnecessary actions. Although this may lead to several established pathways, it would also increase the network energy consumption and yield to an unnecessarily high number of duplicate packets. For instance, punishing a node in the cases where it listens but nothing is received (behavior 8 and 9) would reduce the number of listen actions in the time frame. However, this would also reduce the probability of establishing possible new connections. Similarly, behavior 4 rewards a node if it remains idle when the queue is empty, yet other actions may be tried. To demonstrate that, we performed a sensitivity analysis to show the difference in results when different reinforcement values are used in behavior 4, 8 and 9, see Table 2 in the next Section.

2.2.2 Mutation operator

The DHC algorithm uses a mutation operator to perturb the time frame \(TF_i \) of each node. The mutation operator (see Line 5 in Algorithm 1) simply samples, for each time slot, a new value with a probability of \(mr \) (mutation rate). Sampling is performed by selecting with uniform probability a random action different from the one present in the time slot.

3 Experimental setup

3.1 Algorithm settings

The exact reinforcement values used in the NBRAs (see \(r_k \) in Table 1) can be assigned differently. This in turn can change the rewards/punishments of certain actions. We tested the proposed algorithm for seven different NBRA assignments, given in Table 2. These particular assignments (in the following, referred to as “rules”) were defined based on domain
knowledge. These rules differ only for the reinforcement values \(r_4, r_8 \) and \(r_9 \), to assess their effect on the minimization of the used slots. The other reinforcement values concern mainly the packet transmission, as discussed earlier in Section 2.2.

Rule ID	\(r_1 \)	\(r_2 \)	\(r_3 \)	\(r_4 \)	\(r_5 \)	\(r_6 \)	\(r_7 \)	\(r_8 \)	\(r_9 \)
1	-1	1	-1	0	-1	1	1	0	0
2	-1	1	-1	0.5	-1	1	1	0	0
3	-1	1	-1	1	-1	1	1	0	0
4	-1	1	-1	0	-1	1	1	-0.5	-0.5
5	-1	1	-1	0	-1	1	1	-1	-1
6	-1	1	-1	0.5	-1	1	1	-0.5	-0.5
7	-1	1	-1	1	-1	1	1	-1	-1

Among the tested rules, rule 1 is the most relaxed one in terms of unnecessary slot use since it does not provide any rewards/punishments for \(r_4, r_8 \) and \(r_9 \). Rules 2 and 3 reward only for \(r_4 \), to keep idle slots empty if they are not used. Rules 4 and 5 aim to provide punishments for unnecessary listen actions. Rules 6 and 7 provide both rewards and punishments for not using unnecessary idle slots and performing unnecessary listen actions respectively.

We tested for various mutation rate values, \(mr = \{0.01, 0.02, 0.04, 0.08, 0.16, 0.32, 0.64\} \). The maximum number of function evaluations was set to 10000. However, to reduce the running time we stop the evolutionary process as soon as a solution that obtains 100% delivery rate of the packets to the target node is found (even though further refinement might be possible). For each rule and mutation rate, the algorithm was executed for 28 independent runs.

3.2 Network settings

We tested the proposed algorithm on square (Manhattan-like) grids and randomly generated network topologies consisting of 9, 36 and 81 nodes. In the case of grid networks, the seed and target nodes are placed in opposite corners.

In the case of random topologies, we considered a 2D Cartesian plane \([0, 1]^2\) where the seed and target nodes are assigned to the coordinates \((0, 0)\) and \((1, 1)\) respectively, while the remaining \(N - 2 \) nodes are assigned to random \((x, y)\) coordinates. The connectivity of the random networks are adjusted based on two parameters, \textit{connection distance} (\(cd \)) and \textit{connection probability} (\(cp \)). A connection is established between two nodes when the Euclidean distance between them is smaller than \(cd \), with probability \(cp \); i.e., for all \(i, j \in \{1, \ldots, N\} \) where \(i \neq j \), node \(n_i \) is connected to node \(n_j \) if \(\text{dist}(n_i, n_j) < cd \) and \(\text{rand} < cp \), where \text{dist}() is the Euclidean distance and \(\text{rand} \) is a real valued uniform random variable in \([0, 1]\).

We set the number of time slots \(S \) to be equal to the number of nodes \(N \). During the evaluation process of the networks, \(M = 5 \) packets are generated in the seed node to be delivered to the target node. We set the number of steps \(K \) to \(M \times S \). For 9, 36 and 81 nodes we set \(cd \) to 0.8, 0.5 and 0.3 respectively. For each network size, we considered four \(cp \) values, namely \(cp = \{1, 0.5, 0.25, 0.125\} \). Therefore, in total we considered 12 random network configurations with various sizes and connectivity, see Figure 2 for two examples.
For each random network configuration we generated 28 networks and ran the algorithm once for each one independently.

3.3 Benchmark algorithms

To compare the results of our proposed approach, we considered seven centralized offline algorithms from the literature. For these algorithms, we conducted the optimization in a centralized (network-level) fashion, i.e., optimizing global network solutions obtained by concatenating the time frames of all nodes. The evaluation was performed as described in Section 2.1, in this case after deconstructing the global network solution into individual node time frames.

Contrarily to the proposed distributed approach, where each node locally maximizes its aggregated reward (Eq. 1), the centralized algorithms do not make use of any online reinforcement during the fitness evaluation. Instead, they use a posteriori objective functions based on the global performance of the networks, namely the hop distance of the packets to the target node, and the node activity (used slots). The former is computed as follows:

$$f^{(1)} = \max_{i=1,\ldots,M} \left(\min_{c=1,\ldots,L_i} (h_{ci}^c) \right)$$

where $h_{ci}^c = \text{hop}(p_{ci}^c, n_{\text{target}})$. Here, p_{ci}^c indicates the c-th copy of the i-th packet and hop() measures the shortest hop distance from the node reached by p_{ci}^c to the target node n_{target}, whereas L_i and M indicate respectively the number of copies of a given packet and the number of unique packets originating from the seed node (in our case $M = 5$). Finally, $f^{(1)}$ is scaled in $[0,1]$ by dividing the maximum possible hop distance in a network (from any node to the target node).

For the latter, we simply find the average number of non-empty slots per node as follows:

$$f^{(2)} = \frac{1}{NS} \sum_{i=1}^{N} \sum_{j=1}^{S} A(i,j)$$

Figure 2: Examples of random networks with 81 nodes. Connection distance (cd) and connection probability (cp) are used to control the connectivity of the networks. Seed (in location (0,0)) and target (in location (1,1)) nodes are shown in green and red respectively.
where:
\[A(i, j) = \begin{cases}
1, & \text{if } TF_{i,j} \text{ is “T” (transmit) or “L” (listen)}, \\
0, & \text{otherwise.}
\end{cases} \]

We divide the benchmark algorithms into three groups:

1. **Group 1 (Pareto multi-objective optimization)**: NSGA-II [67] and MSEA [68].
 \(^\text{The two algorithms were configured to perform Pareto optimization minimizing } f^{(1)} \text{ and } f^{(2)}.\)
 \(^\text{For these experiments we used the implementation of NSGA-II and MSEA available in the PlatEMO platform [69], with the default parameter settings. The representation and evolutionary operators were adjusted to handle our ternary representation.}\)

2. **Group 2 (scalarized multi-objective optimization)**: Centralized Hill Climbing with 2 Objectives (CHC2O), Centralized Simulated Annealing with 2 Objectives (CSA2O) and Genetic Algorithm with 2 Objectives (GA2O). In this group, we minimize the sum of two objectives as \(f^{(1)} + f^{(2)} \in [0, 2] \). The implementation of CHC2O and CSA2O is the same as CHC and CSA (in Group 3), except for the use of the second objective. In the case of GA2O, we configured the algorithm with roulette wheel selection with 10 elites, 1-point crossover operator with 0.9 probability, and the mutation operator used in DHC.

3. **Group 3 (single-objective optimization)**: Centralized Hill Climbing (CHC) and Centralized Simulated Annealing (CSA) algorithms. The CHC and CSA iteratively perform mutations on a single centralized global network solution. In CHC, only solutions that are better or equal to the current solution are accepted for the next iteration, whereas CSA uses a temperature parameter \(T \) to accept worse solutions based on the probability \(e^{(f_{\text{new}} - f_{\text{old}})/T} \). \(T \) is scheduled to be reduced at each iteration to decrease this probability \((T \leftarrow \alpha T, \alpha < 1)\) [70]. In our experiments, we assign 0.9 for \(\alpha \). Both CHC and CSA minimize \(f^{(1)} \).

For the population-based algorithms (NSGA-II, MSEA, and GA2O) we used a population of 50 solutions and we set the maximum number of function evaluations to 10000 (without any early stop). For CHC and CSA (both with single and two objectives) we set 10000, with early stop in case of 100% delivery rate solution found.

4 **Experimental results**

4.1 **Evaluating scalability**

The complete comparison of the results is given in Table 3. The results of DHC and Group 3 are the best results obtained across all mutation rates tested (see the Supplementary Material). We should note that, except for the cases marked by “-”, all the compared algorithms reach \(f^{(1)} = 0 \) (distance to target node), which yields 100% delivery rate. For this reason, we compare the algorithms on \(f^{(2)} \) (slot use). In the case of Group 1, we select from the final Pareto front the solution with \(f^{(1)} = 0 \) and minimum \(f^{(2)} \) for comparison. Once again it is worth stressing that our method does not optimize explicitly \(f^{(1)} \) or \(f^{(2)} \), but it optimizes node-local rewards (Eq. 1).

The results show the superiority in terms of scalability of DHC over the benchmark algorithms\(^3\). When the size of the problem is low (i.e., in the case of 9 nodes), the algorithms...
based on a multi-objective optimization approach (in particular NSGA-II) and the ones that combines two objectives (i.e., GA2O, CHC2O and CSA2O) find better solutions in terms of ratio of used slots. On the other hand, while the size of the problem increases, DHC is able to find solutions with a smaller ratio of used slots relative to the other algorithms. We observe a further improvement in the performance of DHC when sparsity increases (i.e., cp decreases). However, the standard deviations of the results provided by DHC are relatively higher than those obtained by the multi-objective optimization algorithms, which might be due to the fact that differently from these algorithms DHC does not minimize explicitly the ratio of used slots.

Table 3: Comparison of the algorithms on grid and random networks with 9 to 81 nodes. The problem size is computed as N (no. of nodes) × S (no. of slots), which yields to N^2 since we set $N = S$. The value in each cell shows the ratio of used slots (median across 28 runs at the end of the optimization process) for the solutions found by the algorithms ("-" indicates that no solution is found).

Problem	Size	NSGA-II	MSELA	GA2O	CHC2O	CSA2O	CHC	CSA	R1	R2	R3	R4	R5	R6	R7
Grid9	81	0.10	0.23	0.10	0.17	0.15	0.66	0.66	0.64	0.38	0.35	0.41	0.28	0.15	0.34
9cp1	81	0.07	0.22	0.07	0.09	0.09	0.69	0.69	0.62	0.31	0.31	0.32	0.32	0.25	0.25
9cp05	81	0.07	0.23	0.07	0.07	0.07	0.64	0.64	0.67	0.34	0.31	0.33	0.26	0.38	0.26
9cp025	81	-	-	0.07	0.10	0.10	0.71	0.69	0.55	0.28	0.28	0.28	0.25	0.25	0.24
9cp0125	81	-	-	0.09	0.07	0.14	0.75	0.75	0.75	0.52	0.52	0.53	0.42	0.42	0.42
Grid90	1296	0.41	0.55	0.19	0.34	0.33	0.65	0.64	0.69	0.44	0.44	0.44	0.40	0.40	0.40
36cp1	1296	0.45	0.56	0.54	0.38	0.38	0.65	0.59	0.35	0.36	0.50	0.34	0.39	0.39	0.56
36cp05	1296	0.43	0.56	0.49	0.33	0.33	0.56	0.53	0.40	0.35	0.36	0.26	0.25	0.26	0.41
36cp025	1296	0.42	0.58	0.48	0.32	0.31	0.58	0.60	0.47	0.31	0.29	0.29	0.21	0.25	0.37
36cp0125	1296	0.41	0.60	-	0.57	0.55	0.66	0.66	0.63	0.26	0.23	0.23	0.32	0.21	0.26
Grid91	6661	0.59	0.62	0.58	0.52	0.52	0.59	0.59	0.57	0.49	0.48	0.46	0.52	0.44	0.52
81cp1	6661	0.66	0.65	0.61	0.61	0.61	0.69	0.69	0.62	0.62	0.62	0.55	0.55	0.66	0.66
81cp05	6661	0.66	0.62	0.56	0.55	0.56	0.84	0.84	0.38	0.40	0.50	0.50	0.51	0.56	0.91
81cp025	6661	0.59	0.64	0.58	0.52	0.52	0.51	0.51	0.46	0.43	0.44	0.46	0.49	0.48	0.48
81cp0125	6661	0.59	0.64	-	0.59	0.58	0.66	0.65	0.56	0.37	0.39	0.36	0.37	0.39	0.39

Another important aspect to analyze is the effectiveness, in terms of function evaluations, of the proposed approach. Figure 5 shows the results of CHC, CSA and the proposed DHC with the seven rules shown in Table 2 in terms of used resources and used slots on six selected random network configurations. Here, used resources refer to the ratio of function evaluations needed to find a solution with 100% delivery rate, while used slots refer to the ratio of non-empty slots in the solution found. The results (median across 28 runs) of different algorithms and mutation rates are shown using different shapes and colors.

Overall, CHC and CSA are able to find a solution quickly. However, they often find solutions with a larger ratio of used slots. On the other hand, DHC is able to find solutions with a smaller ratio of used slots, although different reward/punishment assignments produce solutions with different ratios of used slots. In particular, we observe that rules which are more restrictive in terms of reward/punishment of unnecessary slot use (i.e., 5, 6, 7) tend to find solutions with a smaller ratio of used slots. However, they tend to use more fitness evaluations. Furthermore, we observe that higher mutation rates provide more randomness, resulting in similar results w.r.t. the CHC and CSA algorithms. In those cases, the solutions are found quite quickly but the ratio of slot use is high. Slightly higher mutation rates appear

4The results for the other configurations of the grid and random networks and all the complete numerical data are provided as Supplementary Material.
Figure 3: Ratio of used slots vs ratio of used resources (median across 28 runs) of CHC, CSA and the proposed DHC algorithm (with seven different rules × seven different mutation rates) on six selected random network configurations (the remaining ones are reported in the Supplementary Material).

to be helpful for more restrictive rules rather than for the less restrictive ones. Overall, the best performing mutation rate ranges in 0.01 − 0.04. However, the exact mutation rate that performs the best varies across different network configurations and rules.
4.2 Evaluating robustness

We tested DHC in four scenarios which require adaptation of previously found solutions to new conditions of the network. These scenarios include addition, removal, relocation and reinitialization of the nodes in the network. In case of addition, 10 nodes were included into the networks at random locations, with random time frames. In case of removal, 6 randomly selected nodes were removed from the networks. In case of relocation, 18 randomly selected nodes were reassigned to new randomly initialized locations. In the case of reinitialization, the time frame of 18 randomly selected nodes were reinitialized randomly.

The experimental process involves first finding solutions for the initial networks, then applying each of the perturbations, independently. After each perturbation, we establish links based on the cp and cd parameters, as described in Section 3.2. Then, we run the optimization process for 10000 evaluations to find solutions adapted to the new conditions.

Table 4 shows the results of DHC after perturbations. The “Used resources” sub-table indicates the median of the ratio of the function evaluations used to find a 100% delivery rate solution for the perturbed networks, while the “Used slots” sub-table indicates the ratio of occupied slots in the corresponding solutions. “Initial solution” indicates the median of the ratio of used resources and median of ratio of used slots found for the initial network prior to the perturbation. We tested the algorithm on random networks with 36 nodes, using the best rules found in Table 3 (shown in bold for each network configuration).

Concerning the resource use, we observe that the algorithm can find solutions to the perturbed networks in a short time, usually using less than 10% of the allocated function evaluations. However, adaptation requires more evaluations in the case of the network with the highest sparsity ($cp = 0.125$).

Concerning the ratio of used slots, this seems to increase in general after perturbations. However, we observe that removal and relocation do not appear to have a high impact, especially in sparse networks. On the other hand, addition and reinitialization produces an increased slot use in all networks. This is likely due to the random reinitialization of the time frames occurring during the addition and reinitialization processes.

Table 4: Results found by DHC after perturbing the initial solution by addition, removal, relocation and reinitialization.

Problem	Used resources	Used slots									
	Initial solution	Adaptation after initial solution	Adaptation after initial solution	Add	Remove	Relocate	Reinit.	Add	Remove	Relocate	Reinit.
36cd05cp1	0.04	0.27	0.01	0.05	0.03						
36cd05cp05	0.17	0.02	0.06	0.07	0.02						
36cd05cp025	0.37	0.06	0.58	0.26	0.06						
36cd05cp0125	0.57	0.25	0.35	0.59	0.86						

Examples of delivery rate and fitness trends of the nodes during the evolutionary processes before and after the perturbations can be found in the Supplementary Material.
5 Conclusions

We proposed a decentralized, online evolutionary optimization algorithm, referred to as Distributed Hill Climbing (DHC), for optimizing a TDMA MAC protocol on a distributed network of nodes. In the proposed approach, each node evolves its time frame locally. To do that, we devised a set of reinforcement rules to assign predefined scores to the actions of the nodes and compute their local fitness accordingly. Overall, we tested seven different reinforcement rules. We found that the DHC algorithm was able to evolve, in all the tested network scenarios, efficient TDMA MAC protocols with 100% delivery rate. Moreover, even though Distributed Hill Climbing was not configured to explicit minimize the node activity (i.e., the number of used time slots), different reinforcement rules allowed the emergence of various protocols with different quality in terms of node activity.

We compared our algorithm with seven centralized single and multi-objective approaches, in which the optimization is performed at a global network level concatenating the time frames of all nodes in the network. In the multi-objective cases, we introduced a second objective function to minimize explicitly the node activity. Based on our comparisons, the benchmark algorithms with the explicit second objective showed better performance in terms of node activity only on the low-dimensional scenarios. On the other hand, DHC showed better performance when the network size increased.

An interesting direction for future investigations will be to extend the algorithm to other rules, and applying it to different network layers where online adaptation might provide a benefit. Furthermore, it will be interesting to verify the proposed protocols in hardware.
References

[1] Holzmann, Gerard J, Design and validation of computer protocols, Vol. 512, Prentice Hall, 1991.

[2] Büchi, J Richard and Landweber, Lawrence H, Solving sequential conditions by finite-state strategies, in: The Collected Works of J. Richard Büchi, Springer, 1990, pp. 525–541.

[3] Saleh, Kassem and Probert, Robert, Automatic synthesis of protocol specifications from service specifications, in: International Phoenix Conference on Computers and Communications, IEEE, 1991, pp. 615–621.

[4] Probert, Robert L. and Saleh, Kassem, Synthesis of communication protocols: survey and assessment, Transactions on Computers 40 (4) (1991) 468–476.

[5] Carchiolo, Vincenza and Faro, Alberto and Giordano, Daniela, Formal description techniques and automated protocol synthesis, Information and Software Technology 34 (8) (1992) 513–521.

[6] Saleh, Kassem, Synthesis of communications protocols: an annotated bibliography, SIGCOMM Computer Communication Review 26 (5) (1996) 40–59.

[7] Holzmann, Gerard J., The model checker SPIN, Transactions on Software Engineering 23 (5) (1997) 279–295.

[8] Al Dallal, Jehad and Saleh, Kassem A, Synthesizing distributed protocol specifications from a UML state machine modeled service specification, Journal of Computer Science and Technology 27 (6) (2012) 1150–1168.

[9] Finkbeiner, Bernd and Götz, Paul, Synthesis in distributed environments, arXiv preprint [arXiv:1710.05368] (2017).

[10] Vardi, Moshe Y, The Siren Song of Temporal Synthesis, in: International Conference on Concurrency Theory, 2018.

[11] Hutchinson, Norman C and Peterson, Larry L, The x-kernel: An architecture for implementing network protocols, Transactions on Software engineering 17 (1) (1991) 64–76.

[12] Birman, Ken and Constable, Bob and Hayden, Mark and Hickey, Jason and Kreitz, Christoph and Van Renesse, Robbert and Rodeh, Ohad and Vogels, Werner, The Horus and Ensemble projects: Accomplishments and limitations, in: DARPA Information Survivability Conference and Exposition, Vol. 1, IEEE, 2000, pp. 149–161.

[13] Wetherall, David J and Guttag, John V and Tennenhouse, David L, ANTS: A toolkit for building and dynamically deploying network protocols, in: Open Architectures and Network Programming, IEEE, 1998, pp. 117–129.

[14] Keller, Ariane and Hossmann, Theus and May, Martin and Bouabene, Ghazi and Jelger, Christophe and Tschudin, Christian, A system architecture for evolving protocol stacks, in: International Conference on Computer Communications and Networks, 2008, pp. 1–7.
[15] T. V. D. Lee, G. Exarchakos, S. H. D. Groot, Distributed Reliable and Energy-Efficient Scheduling for LR-WPANs, ACM Transactions on Sensor Networks (TOSN) 16 (4) (2020) 1–20.

[16] Kellerer, Wolfgang and Basta, Arsany and Blenk, Andreas, Flexibility of Networks: a new measure for network design space analysis?, arXiv preprint arXiv:1512.03770 (2015).

[17] Kalmbach, Patrick and Zerwas, Johannes and Babarczi, Peter and Blenk, Andreas and Kellerer, Wolfgang and Schmid, Stefan, Empowering self-driving networks, in: Afternoon Workshop on Self-Driving Networks, 2018, pp. 8–14.

[18] Kellerer, Wolfgang and Kalmbach, Patrick and Blenk, Andreas and Basta, Arsany and Reisslein, Martin and Schmid, Stefan, Adaptable and data-driven softwarized networks: Review, opportunities, and challenges, Proceedings of the IEEE 107 (4) (2019) 711–731.

[19] Bouabene, Ghazi and Jelger, Christophe and Tschudin, Christian and Schmid, Stefan and Keller, Ariane and May, Martin, The autonomic network architecture (ANA), Journal on Selected Areas in Communications 28 (1) (2009) 4–14.

[20] Xiao, Yang, Bio-inspired computing and networking, CRC Press, 2016.

[21] Wolpert, David and Tumer, Kagan and Frank, Jeremy, Using collective intelligence to route internet traffic, in: Advances in Neural Information Processing Systems, 1999, pp. 952–960.

[22] Tao, Nigel and Baxter, Jonathan and Weaver, Lex, A multi-agent, policy-gradient approach to network routing, in: International Conference on Machine Learning, 2001.

[23] Peshkin, Leonid and Savova, Virginia, Reinforcement learning for adaptive routing, in: International Joint Conference on Neural Networks, Vol. 2, IEEE, 2002, pp. 1825–1830.

[24] Stampa, Giorgio and Arias, Marta and Sánchez-Charles, David and Muntés-Mulero, Albert, A deep-reinforcement learning approach for software-defined networking routing optimization, arXiv preprint arXiv:1709.07080 (2017).

[25] Kulkarni, Raghavendra V and Forster, Anna and Venayagamoorthy, Ganesh Kumar, Computational intelligence in wireless sensor networks: A survey, Communications Surveys & Tutorials 13 (1) (2010) 68–96.

[26] Förster, Anna and Murphy, Amy L, Machine Learning across the WSN Layers, in: Emerging Communications for Wireless Sensor Networks, IntechOpen, 2011, Ch. 9.

[27] Alsheikh, Mohammad Abu and Lin, Shaowei and Niyato, Dusit and Tan, Hwee-Pink, Machine learning in wireless sensor networks: Algorithms, strategies, and applications, Communications Surveys & Tutorials 16 (4) (2014) 1996–2018.

[28] He, Hengtao and Jin, Shi and Wen, Chao-Kai and Gao, Feifei and Li, Geoffrey Ye and Xu, Zongben, Model-driven deep learning for physical layer communications, Wireless Communications 26 (5) (2019) 77–83.

[29] Nakano, Tadashi, Biologically inspired network systems: A review and future prospects, Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 41 (5) (2010) 630–643.
[30] Dressler, Falko and Akan, Ozgur B, A survey on bio-inspired networking, Computer Networks 54 (6) (2010) 881–900.

[31] Guo, Kai and Lv, Yang, Optimizing Routing Path Selection Method Particle Swarm Optimization, International Journal of Pattern Recognition and Artificial Intelligence (2020) 2059042.

[32] Zhang, Ximing and Li, Jin and Qiu, Rongfu and Mean, Tian-Shine and Jin, Fanzhu, Optimized Routing Model of Sensor Nodes in Internet of Things Network, Sensors and Materials 32 (8) (2020) 2801–2811.

[33] Siyari, Payam and Dilkina, Bistra and Dovrolis, Constantine, Emergence and evolution of hierarchical structure in complex systems, in: Dynamics on and of Complex Networks, Springer, 2017, pp. 23–62.

[34] Khaled El-fakih and Hirozumi Yamaguchi and Gregor Bochmann, A Method and a Genetic Algorithm for Deriving Protocols for Distributed Applications with Minimum Communication Cost, Journal of Physics A - Mathematical General (1999) 863–868.

[35] Van Belle, Werner and Mens, Tom and D'Hondt, Theo, Using genetic programming to generate protocol adaptors for interprocess communication, in: International Conference on Evolvable Systems, Springer, 2003, pp. 422–433.

[36] Tekken-Valapil, Vidhya and Kulkarni, Sandeep S, Derivation of Network Reprogramming Protocol with Z3, arXiv preprint arXiv:1709.06604 (2017).

[37] Weise, Thomas and Geihs, Kurt and Baer, Philipp A, Genetic programming for proactive aggregation protocols, in: International Conference on Adaptive and Natural Computing Algorithms, Springer, 2007, pp. 167–173.

[38] Weise, Thomas and Zapf, Michael and Geihs, Kurt, Evolving proactive aggregation protocols, in: European Conference on Genetic Programming, Springer, 2008, pp. 254–265.

[39] Weise, Thomas and Tang, Ke, Evolving distributed algorithms with genetic programming, Transactions on Evolutionary Computation 16 (2) (2011) 242–265.

[40] Lewis, Tim and Fanning, Neil and Clemo, Gary, Enhancing IEEE802.11 DCF using genetic programming, in: Vehicular Technology Conference, Vol. 3, IEEE, 2006, pp. 1261–1265.

[41] Roohitavaf, Mohammad and Zhu, Ling and Kulkarni, Sandeep and Biswas, Subir, Synthesizing customized network protocols using genetic programming, in: Genetic and Evolutionary Computation Conference Companion, 2018, pp. 1616–1623.

[42] Sharples, Nicholas and Wakeman, Ian, Protocol construction using genetic search techniques, in: Workshops on Real-World Applications of Evolutionary Computation, Springer, 2000, pp. 235–246.

[43] Hajiaghajani, Faezeh and Biswas, Subir, Feasibility of Evolutionary Design for Multi-Access MAC Protocols, in: Global Communications Conference, IEEE, 2015, pp. 1–7.
Hajiaghajani, Faezeh and Biswas, Subir, MAC protocol design using evolvable state-machines, in: International Conference on Computer Communication and Networks, IEEE, 2015, pp. 1–6.

Su, Yi and Van Der Schaar, Mihaela, Dynamic conjectures in random access networks using bio-inspired learning, Journal on Selected Areas in Communications 28 (4) (2010) 587–601.

Iacca, Giovanni, Distributed optimization in wireless sensor networks: an island-model framework, Soft Computing 17 (12) (2013) 2257–2277.

Johnson, Derek M and Teredesai, Ankur M and Saltarelli, Robert T, Genetic programming in wireless sensor networks, in: European Conference on Genetic Programming, Springer, 2005, pp. 96–107.

Valencia, Philip and Lindsay, Peter and Jurdak, Raja, Distributed genetic evolution in WSN, in: International Conference on Information Processing in Sensor Networks, ACM/IEEE, 2010, pp. 13–23.

Aloi, Gianluca and Bedogni, Luca and Felice, Marco Di and Loscri, Valeria and Molinaro, Antonella and Natalizio, Enrico and Pace, Pasquale and Ruggeri, Giuseppe and Trotta, Angelo and Zema, Nicola Roberto, STEM-Net: an evolutionary network architecture for smart and sustainable cities, Transactions on Emerging Telecommunications Technologies 25 (1) (2014) 21–40.

Yamamoto, Lidia and Schreckling, Daniel and Meyer, Thomas, Self-replicating and self-modifying programs in fraglets, in: Workshop on Bio-Inspired Models of Network, Information and Computing Systems, IEEE, 2007, pp. 159–167.

Tschudin, Chr and Yamamoto, Lidia, Self-evolving network software, Praxis der Informationsverarbeitung und Kommunikation 28 (4) (2005) 206–210.

Miorandi, Daniele and Yamamoto, Lidia, Evolutionary and embryogenic approaches to autonomic systems, in: International Conference on Performance Evaluation Methodologies and Tools, 2008, pp. 1–12.

Yamamoto, Lidia and Tschudin, Christian, Genetic evolution of protocol implementations and configurations, in: International Workshop on Self-Managed Systems and Services, IFIP/IEEE, 2005, pp. 34–2007070218786.

Alouf, Sara and Neglia, Giovanni and Carreras, Iacopo and Miorandi, Daniele and Fialho, Álvaro, Fitting genetic algorithms to distributed on-line evolution of network protocols, Computer Networks 54 (18) (2010) 3402–3420.

Alouf, Sara and Carreras, Iacopo and Miorandi, Daniele and Neglia, Giovanni, Embedding evolution in epidemic-style forwarding, in: International Conference on Mobile Adhoc and Sensor Systems, IEEE, 2007, pp. 1–6.

Imai, Pierre and Tschudin, Christian, Practical online network stack evolution, in: International Conference on Self-Adaptive and Self-Organizing Systems, IEEE, 2010, pp. 34–41.
[57] Lee, Jae-Hyoung and Cho, Sung Ho, Tree TDMA MAC algorithm using time and frequency slot allocations in tree-based WSNs, Wireless Personal Communications 95 (3) (2017) 2575–2597.

[58] Sun, Yuanxin and Zhang, Ziheng and Li, Xiaoping and Xiao, Sa and Tang, Wanbin, An extensible frame structure for time division multiple access medium access control in vehicular ad-hoc networks, Transactions on Emerging Telecommunications Technologies (2020).

[59] Yun, Changho and Cho, A-Ra and Kim, Seung-Geun and Park, Jong-Won and Lim, Yong-Kon, A hierarchical time division multiple access medium access control protocol for clustered underwater acoustic networks, Journal of information and communication convergence engineering 11 (3) (2013) 153–166.

[60] A. Yaman, G. Iacca, Distributed embodied evolution over networks, Applied Soft Computing 101 (2021) 106993. doi:https://doi.org/10.1016/j.asoc.2020.106993.

[61] Eiben, Agoston E and Haasdijk, EW and Bredeche, Nicolas, Embodied, On-line, On-board Evolution for Autonomous Robotics, in: Symbiotic Multi-Robot Organisms: Reliability, Adaptability, Evolution, Springer, 2010, pp. 361–382.

[62] Bredeche, Nicolas and Montanier, Jean-Marc and Liu, Wengu and Winfield, Alan FT, Environment-driven distributed evolutionary adaptation in a population of autonomous robotic agents, Mathematical and Computer Modelling of Dynamical Systems 18 (1) (2012) 101–129.

[63] Haasdijk, Evert and Bredeche, Nicolas and Eiben, Agoston E, Combining environment-driven adaptation and task-driven optimisation in evolutionary robotics, PloS ONE 9 (6) (2014).

[64] Prieto, Abraham and Bellas, Francisco and Trueba, Pedro and Duro, Richard J, Real-time optimization of dynamic problems through distributed Embodied Evolution, Integrated Computer-Aided Engineering 23 (3) (2016) 237–253.

[65] Bredeche, Nicolas and Haasdijk, Evert and Prieto, Abraham, Embodied Evolution in Collective Robotics: A Review, Frontiers in Robotics and AI 5 (2018) 12.

[66] S. C. Ergen, P. Varaiya, TDMA scheduling algorithms for wireless sensor networks, Wireless networks 16 (4) (2010) 985–997.

[67] Deb, Kalyanmoy and Pratap, Amrit and Agarwal, Sameer and Meyarivan, TAMT, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation 6 (2) (2002) 182–197.

[68] Tian, Ye and He, Cheng and Cheng, Ran and Zhang, Xingyi, A Multistage Evolutionary Algorithm for Better Diversity Preservation in Multiobjective Optimization, IEEE Transactions on Systems, Man, and Cybernetics: Systems (2019).

[69] Tian, Ye and Cheng, Ran and Zhang, Xingyi and Jin, Yaochu, PlatEMO: A MATLAB platform for evolutionary multi-objective optimization, IEEE Computational Intelligence Magazine 12 (4) (2017) 73–87.
A Parameter analysis

We report in the heatmaps shown in Figures 4, 5, 6 and 7 the variation of the evolved TDMA MAC protocol performance (as % of used resources and used slots, average values across 28 runs of each algorithmic setting at the end of the optimization process, i.e., either as soon as a viable protocol configuration capable to obtain 100% delivery rate is found, or after 10000 evaluations) w.r.t. the mutation rate (%) and the rule ID used in DHC, as well as the two baseline single-objective centralized algorithms, namely Centralized Hill Climbing (CHC) and Centralized Simulated Annealing (CSA), for the cases of grid networks (9, 36 and 81 nodes), as well as random networks with 9, 36, and 81 nodes, respectively. For the random networks, we consider different combinations of connection distance (cd) and connection probability (cp) values. In the heatmaps, darker (lighter) color means worse (better) performance.

The main findings that can be inferred from the figures can be summarized as follows:

• Concerning the used resources (first column of each figure), apart from the case of random networks with 81 nodes and $cd=0.3$, $cp=1$ (Figure 7a), in all the tested settings low mutation rates tend to lead to higher % resource consumption. This is particularly evident in the grid topologies when DHC is configured to use rules from R2 to R7. Another interesting case is random networks with 9 nodes and $cd=0.8$, $cp=0.125$ (Figure 5g), where CHC and CSA perform quite poorly for the lowest values of mutation rate. Apart from the two aforementioned peculiar cases, when higher mutation rates are used the resource consumption tends to be lower, with most of the algorithms reaching roughly similar values.

• Concerning the used slots (second column of each figure), in most cases there is a trend similar to that observed for the used resources (the lower the mutation rate, the worse the performance), with some exceptions represented by e.g. the random networks with higher values of cp, especially with 36 and 81 nodes (Figures 6b, 6d, 7b, and 7d). Overall, apart from these four cases DHC appears to use in general less slots than both centralized approaches.

Apart from these two trends, this analysis reveals that in general the optimal mutation rate depends on the network size and the specific DHC rule adopted for the online protocol evolution. This observation suggests, for instance, a possible extension of DHC to use (self-)adaptive mutation rates.
Figure 4: Variation of the evolved TDMA MAC protocol performance for Centralized Hill Climbing (CHC), Centralized Simulated Annealing (CSA) and Distributed Hill Climbing (DHC) with 7 different rules on grid networks with 3×3, 6×6 and 9×9 nodes.
Figure 5: Variation of the evolved TDMA MAC protocol performance for Centralized Hill Climbing (CHC), Centralized Simulated Annealing (CSA) and Distributed Hill Climbing (DHC) with 7 different rules on random networks with 9 nodes and various levels of connection distance \((cd)\) and connection probability \((cp)\).
Figure 6: Variation of the evolved TDMA MAC protocol performance for Centralized Hill Climbing (CHC), Centralized Simulated Annealing (CSA) and Distributed Hill Climbing (DHC) with 7 different rules on random networks with 36 nodes and various levels of connection distance \((cd)\) and connection probability \((cp)\).
Figure 7: Variation of the evolved TDMA MAC protocol performance for Centralized Hill Climbing (CHC), Centralized Simulated Annealing (CSA) and Distributed Hill Climbing (DHC) with 7 different rules on random networks with 81 nodes and various levels of connection distance (cd) and connection probability (cp).
Figure 8: Ratio of used slots vs ratio of used resources (median across 28 runs) of CHC, CSA and the proposed DHC algorithm (with seven different rules × seven different mutation rates) on grid topologies and six selected random network configurations (the remaining ones are reported in the main text).
B Statistical Analysis

Table 5 shows the standard deviations of the results (based on slot use across 28 independent runs) produced by the variants of DHC and the other algorithms under comparison.

Table 5: Comparison of the algorithms on grid and random networks with 9 to 81 nodes.

Problem	Size	Group 1	Group 2	Group 3	DHC																					
		NSGA-II	MSEA	GA2O	CHC2O	USA2O	R1	R2	R3	R4	R5	R6	R7													
Grid9	81	0.035	0.042	0.004	0.014	0.185	0.085	0.058	0.070	0.190	0.006	0.016	0.016	0.022	0.022	0.018	0.016	0.009	0.016	0.016	0.022	0.022	0.016	0.016	0.022	0.022
9cp1		0.012	0.014	0.014	0.012	0.222	0.122	0.114	0.158	0.129	0.190	0.095	0.048	0.239												
9cp2		0.026	0.067	0.021	0.018	0.199	0.118	0.138	0.117	0.249	0.276	0.312	0.342	0.253	0.148											
9cp25	81			0.024	0.014	0.024	0.166	0.179	0.085	0.288	0.399	0.261	0.302	0.112	0.095											
Grid36	1296	0.026	0.022	0.007	0.004	0.007	0.018	0.016	0.034	0.040	0.258	0.386	0.364	0.046	0.052											
36cp1		0.020	0.016	0.013	0.019	0.024	0.005	0.120	0.187	0.232	0.281	0.326	0.254	0.187												
36cp25	1296	0.014	0.014	0.014	0.014	0.015	0.114	0.059	0.079	0.171	0.195	0.203	0.165	0.318												
36cp25	1296	0.010	0.017	0.001	0.018	0.137	0.073	0.091	0.097	0.181	0.196	0.371	0.349	0.322												
36cp125	1296	0.009	0.022		0.002	0.006	0.006	0.105	0.356	0.306	0.311	0.332	0.332													
Grid81	6561	0.005	0.006	0.003	0.006	0.004	0.018	0.038	0.032	0.030	0.056	0.139	0.182	0.408												
81cp1	6561	0.019	0.009	0.012	0.016	0.020	0.146	0.136	0.218	0.165	0.171	0.171	0.116													
81cp25	6561	0.005	0.006	0.011	0.016	0.014	0.061	0.006	0.099	0.154	0.197	0.172	0.160	0.178												
81cp25	6561	0.003	0.006	0.005	0.004	0.005	0.080	0.106	0.076	0.256	0.339	0.312	0.230	0.296												
81cp125	6561	0.002	0.006		0.019	0.009	0.003	0.015	0.082	0.342	0.233	0.359	0.312	0.242	0.256											

Furthermore, we provide the pairwise comparisons (Wilcoxon rank-sum test, $N = 28$, $\alpha = 0.05$ [71]) and a post-hoc analysis (Nemenyi test, $N = 28$, $\alpha = 0.05$ [72]) of the compared algorithms. More specifically:

- Tables 6-20 show the p-values of the pairwise comparisons computed based on the number of slots used by each algorithm. We indicate the results that do not show statistical significance (p-value greater than 0.05) with "-". Otherwise, we leave the cell empty.

- Figures 24-23 show the statistical ranking of the algorithms in the form of critical difference (CD) plots. Lower ranks indicate better performance in terms of number of slots. In the plots, algorithms connected by a thick line show statistically equivalent results. We should note that the CD plots are based on the average of the results obtained from multiple runs. Therefore, there may be some differences with the results reported in the main text, which are based on median values. Nevertheless, the CD plots support our main conclusions.

In the Tables and Figures, we exclude from the comparisons the algorithms that could not found a solution on the corresponding problem instance (see the "-" symbols in Table 5).

The discussion provided in the main text is based on this statistical analysis. Mainly, the analysis shows that the various variants of DHC demonstrate significantly better performances on the large networks, whereas the algorithms based on a centralized approach demonstrate significantly better performances on small networks.
Table 6: Pairwise \(p \)-values of the compared algorithms on grid networks with 9 nodes.

	R1	R2	R3	R4	R5	R6	R7	CHC	CSA	CHC2O	CSA2O	GA2O	NSGA-II	MSEA
R1														
R2														
R3	-													
R4	-	-												
R5	-	-	-											
R6	-	-	-	-										
R7	-	-	-	-	-									
CHC														
CSA	-	-												
CHC2O														
CSA2O														
GA2O														
NSGA-II														
MSEA														

Table 7: Pairwise \(p \)-values of the compared algorithms on random networks with 9 nodes, \(cd = 0.8 \) and \(cp = 1 \).

	R1	R2	R3	R4	R5	R6	R7	CHC	CSA	CHC2O	CSA2O	GA2O	NSGA-II	MSEA
R1														
R2														
R3	-													
R4	-	-												
R5	-	-	-											
R6	-	-	-	-										
R7	-	-	-	-	-									
CHC														
CSA	-	-												
CHC2O														
CSA2O														
GA2O														
NSGA-II														
MSEA														

Table 8: Pairwise \(p \)-values of the compared algorithms on random networks with 9 nodes, \(cd = 0.8 \) and \(cp = 0.5 \).

	R1	R2	R3	R4	R5	R6	R7	CHC	CSA	CHC2O	CSA2O	GA2O	NSGA-II	MSEA
R1														
R2														
R3	-													
R4	-	-												
R5	-	-	-											
R6	-	-	-	-										
R7	-	-	-	-	-									
CHC														
CSA	-	-												
CHC2O														
CSA2O														
GA2O														
NSGA-II														
MSEA														
Table 9: Pairwise p-values of the compared algorithms on random networks with 9 nodes, $cd = 0.8$ and $cp = 0.25$.

	R1	R2	R3	R4	R5	R6	R7	CHC	CSA	CHC2O	CSA2O	GA2O
R1												
R2												
R3												
R4												
R5												
R6												
R7												
CHC												
CSA												
CHC2O												
CSA2O												
GA2O												

Table 10: Pairwise p-values of the compared algorithms on random networks with 9 nodes, $cd = 0.8$ and $cp = 0.125$.

	R1	R2	R3	R4	R5	R6	R7	CHC	CSA	CHC2O	CSA2O	GA2O
R1												
R2												
R3												
R4												
R5												
R6												
R7												
CHC												
CSA												
CHC2O												
CSA2O												
GA2O												

Table 11: Pairwise p-values of the compared algorithms on grid networks with 36 nodes.

	R1	R2	R3	R4	R5	R6	R7	CHC	CSA	CHC2O	CSA2O	NSGA-II	MSEA
R1													
R2													
R3													
R4													
R5													
R6													
R7													
CHC													
CSA													
CHC2O													
CSA2O													
NSGA-II													
MSEA													
Table 12: Pairwise p-values of the compared algorithms on random networks with 36 nodes, $cd = 0.5$ and $cp = 1$.

	R1	R2	R3	R4	R5	R6	R7	CHC	CSA	CHC2O	CSA2O	GA2O	NSGA-II	MSEA
R1														
R2														
R3														
R4														
R5														
R6														
R7														
CHC														
CSA														
CHC2O														
CSA2O														
GA2O														
NSGA-II														
MSEA														

Table 13: Pairwise p-values of the compared algorithms on random networks with 36 nodes, $cd = 0.5$ and $cp = 0.5$.

	R1	R2	R3	R4	R5	R6	R7	CHC	CSA	CHC2O	CSA2O	GA2O	NSGA-II	MSEA
R1														
R2														
R3														
R4														
R5														
R6														
R7														
CHC														
CSA														
CHC2O														
CSA2O														
GA2O														
NSGA-II														
MSEA														

Table 14: Pairwise p-values of the compared algorithms on random networks with 36 nodes, $cd = 0.5$ and $cp = 0.25$.

	R1	R2	R3	R4	R5	R6	R7	CHC	CSA	CHC2O	CSA2O	GA2O	NSGA-II	MSEA
R1														
R2														
R3														
R4														
R5														
R6														
R7														
CHC														
CSA														
CHC2O														
CSA2O														
GA2O														
NSGA-II														
MSEA														
Table 15: Pairwise p-values of the compared algorithms on random networks with 36 nodes, $cd = 0.5$ and $cp = 0.125$.

	R1	R2	R3	R4	R5	R6	R7	CHC	CSA	CHC2O	CSA2O	NSGA-II	MSEA
R1													
R2													
R3													
R4													
R5													
R6													
R7													
CHC													
CSA													
CHC2O													
CSA2O													
NSGA-II													
MSEA													

Table 16: Pairwise p-values of the compared algorithms on grid networks with 81 nodes.

	R1	R2	R3	R4	R5	R6	R7	CHC	CSA	CHC2O	CSA2O	GA2O	NSGA-II	MSEA
R1														
R2														
R3														
R4														
R5														
R6														
R7														
CHC														
CSA														
CHC2O														
CSA2O														
GA2O														
NSGA-II														
MSEA														

Table 17: Pairwise p-values of the compared algorithms on random networks with 81 nodes, $cd = 0.3$ and $cp = 1$.

	R1	R2	R3	R4	R5	R6	R7	CHC	CSA	CHC2O	CSA2O	GA2O	NSGA-II	MSEA
R1														
R2														
R3														
R4														
R5														
R6														
R7														
CHC														
CSA														
CHC2O														
CSA2O														
GA2O														
NSGA-II														
MSEA														
Table 18: Pairwise p-values of the compared algorithms on random networks with 81 nodes, $cd = 0.3$ and $cp = 0.5$.

	R1	R2	R3	R4	R5	R6	R7	CHC	CSA	CHC2O	CSA2O	GA2O	NSGA-II	MSEA
R1														
R2														
R3														
R4														
R5														
R6														
R7														
CHC														
CSA														
CHC2O														
CSA2O														
GA2O														
NSGA-II														
MSEA														

Table 19: Pairwise p-values of the compared algorithms on random networks with 81 nodes, $cd = 0.3$ and $cp = 0.25$.

	R1	R2	R3	R4	R5	R6	R7	CHC	CSA	CHC2O	CSA2O	GA2O	NSGA-II	MSEA
R1														
R2														
R3														
R4														
R5														
R6														
R7														
CHC														
CSA														
CHC2O														
CSA2O														
GA2O														
NSGA-II														
MSEA														

Table 20: Pairwise p-values of the compared algorithms on random networks with 81 nodes, $cd = 0.3$ and $cp = 0.125$.

	R1	R2	R3	R4	R5	R6	R7	CHC	CSA	CHC2O	CSA2O	GA2O	NSGA-II	MSEA
R1														
R2														
R3														
R4														
R5														
R6														
R7														
CHC														
CSA														
CHC2O														
CSA2O														
GA2O														
NSGA-II														
MSEA														
Figure 9: Critical differences of DHC vs the compared algorithms on grid networks with 9 nodes.

Figure 10: Critical differences of DHC vs the compared algorithms on random networks with 9 nodes, $cd = 0.8$ and $cp = 1$.
Figure 11: Critical differences of DHC vs the compared algorithms on random networks with 9 nodes, $cd = 0.8$ and $cp = 0.5$.

Figure 12: Critical differences of DHC vs the compared algorithms on random networks with 9 nodes, $cd = 0.8$ and $cp = 0.25$.
Figure 13: Critical differences of DHC vs the compared algorithms on random networks with 9 nodes, $cd = 0.8$ and $cp = 0.125$.

Figure 14: Critical differences of DHC vs the compared algorithms on grid networks with 36 nodes.
Figure 15: Critical differences of DHC vs the compared algorithms on random networks with 36 nodes, $cd = 0.5$ and $cp = 1$.

Figure 16: Critical differences of DHC vs the compared algorithms on random networks with 36 nodes, $cd = 0.5$ and $cp = 0.5$.

35
Figure 17: Critical differences of DHC vs the compared algorithms on random networks with 36 nodes, $cd = 0.5$ and $cp = 0.25$.

Figure 18: Critical differences of DHC vs the compared algorithms on random networks with 36 nodes, $cd = 0.5$ and $cp = 0.125$.
Figure 19: Critical differences of DHC vs the compared algorithms on grid networks with 81 nodes.

Figure 20: Critical differences of DHC vs the compared algorithms on random networks with 81 nodes, $cd = 0.3$ and $cp = 1$.
Figure 21: Critical differences of DHC vs the compared algorithms on random networks with 81 nodes, $cd = 0.3$ and $cp = 0.5$.

Figure 22: Critical differences of DHC vs the compared algorithms on random networks with 81 nodes, $cd = 0.3$ and $cp = 0.25$.
Figure 23: Critical differences of DHC vs the compared algorithms on random networks with 81 nodes, \(cd = 0.3 \) and \(cp = 0.125 \).
C Runtime behavior of the evolutionary process

Figure 24 shows the delivery rate of the networks and the fitness trends of two randomly selected nodes during the evolutionary processes performed for the robustness experiments. For example, in the experiment with the addition perturbation (shown in the first row), 100% delivery rate is achieved around the 200th generation with the initial network. Then, the perturbation decreases the delivery rate. However, DHC is able to recover from the perturbation and achieve 100% delivery rate again in about 30 generations.

Figure 24: Delivery rate of the network (first column) and fitness trend of two randomly selected nodes (second and third columns) during example evolutionary processes performed for the robustness experiments. The rows provide example processes for 36cp1, 36cp05, 36cp025 and 36cp0125 problem instances with Add, Relocate, Remove and Reinitialization perturbations respectively. The blue dots indicate the end of the evolutionary process before applying the perturbation (starting from the initial network until 100% delivery rate is achieved).