Supporting information

NO$_x$ reduction by CO over ASC catalysts in a simulated rotary reactor: effect of CO$_2$, H$_2$O and SO$_2$

Peiliang Suna,b, Xingxing Chenga,b,1*, Yanhua Laib*, Zhiqiang Wanga,b, Chunyuan Maa,b, Jingcai Changa,b

a National Engineering Lab for Coal-fired Pollutant Emission Reduction, School of Energy and Power Engineering, Shandong University, Jinan, 250061, China
b School of Energy and Power Engineering, Shandong University, Jinan, 250061, China

* Corresponding Authors. Xingxing Cheng, tel: (86) 531-88399372(615), fax: (86) 531-88385877, email: xcheng@sdu.edu.cn. Yanhua Lai, tel: (86) 531-88392637, email: layh@sdu.edu.cn
Fig. S1 The schematic of the fixed bed experimental system

Fig. S2 NO\textsubscript{x} adsorption capacity of catalysts at different temperatures in 800 s
Fig. S3 Dimensionless outlet NO\textsubscript{x} concentration in the simulated rotary reactor. ((a) T = 200 °C, (b) T = 250 °C)

![Graph showing NO\textsubscript{x} concentration in the simulated rotary reactor at 200 °C and 250 °C, with adsorption and reduction stages highlighted.]

Fig. S4 Dimensionless outlet NO\textsubscript{x} concentration in the simulated rotary reactor. ((a) T = 200 °C, (b) T = 250 °C)

![Graph showing NO\textsubscript{x} concentration in the simulated rotary reactor at 200 °C and 250 °C, with adsorption and reduction stages highlighted, and the effect of H\textsubscript{2}O addition.]
Table S1 NO$_x$ adsorption capacity of catalysts under different conditions in 800 s

Conditions	Adsorption capacity (mg/g)
Baseline group	0.660
15 % CO$_2$	0.580
5 % H$_2$O	0.516
10 % H$_2$O	0.330
10 % H$_2$O + 15 % CO$_2$	0.290

Table S2 The influence of CO$_2$ on the NO adsorption and reduction efficiencies

Temperature	NO adsorption efficiency	NO reduction efficiency		
	no CO$_2$	adding CO$_2$	no CO$_2$	adding CO$_2$
150 °C	87.0%	59.7%	4.4%	3.4%
200 °C	93.4%	87.6%	19.9%	1.2%
250 °C	88.6%	90.8%	32.8%	4.0%
Table S3 NO adsorption and reduction efficiencies of catalyst under wet condition

	NO adsorption efficiency		NO reduction efficiency		
		no H₂O	adding H₂O	no H₂O	adding H₂O
150 °C	87.0%	39.6%	4.4%	0.1%	
200 °C	93.4%	65.9%	19.9%	4.8%	
250 °C	88.6%	78.2%	32.8%	24.8%	

Table S4 Influence of SO₂ on NO adsorption and reduction efficiencies

	NO adsorption efficiency		NO reduction efficiency		
		no SO₂	adding SO₂ 45 min	no SO₂	adding SO₂ 45 min
150 °C	87.0%	37.3%	4.4%	4.2%	
200 °C	93.4%	34.9%	19.9%	10.2%	
250 °C	88.6%	39.5%	32.8%	11.8%	