Tori in symplectic 4–manifolds

RONALD FINTUSHEL
RONALD J STERN

Abstract We study the question of how many embedded symplectic or Lagrangian tori can represent the same homology class in a simply connected symplectic 4–manifold.

AMS Classification 57R57; 57R17

Keywords 4–manifold, Seiberg–Witten invariant, symplectic, Lagrangian

1 Introduction

The basic question addressed in this paper is:

Let X be a simply connected symplectic 4–manifold and let \( x \in H_2(X, \mathbb{Z}) \). How unique is an embedded symplectic or Lagrangian representative of \( x \)?

It is only in the last few years that an answer to this question has begun to emerge. The answer is ‘not very’ for symplectic tori of self-intersection 0 and remains elusive for higher genus surfaces. As we show below:

**Theorem** If \( X \) is a simply connected symplectic 4–manifold containing an embedded symplectic torus \( T \) of self-intersection 0, then for each fixed integer \( m \geq 2 \), there are infinitely many embedded symplectic tori, each representing the homology class \( m[T] \), no two of which are equivalent under a smooth isotopy of \( X \).

The first such examples were produced by the present authors in \cite{6}, and the technique therein was enhanced to produce further examples in \cite{19, 8}. In section \( \mathbb{A} \) we give a proof of the above theorem. In section \( \mathbb{B} \) we give a proof of the theorem for even \( m \geq 6 \) which is straightforward, and which depends on some nice theorems of Montesinos and Morton \cite{12} and of Kanenobu \cite{9} rather than on explicit constructions.
Some intriguing questions remain. Siebert and Tian have conjectured that for symplectic 4–manifolds with $b^+ = 1$ and $c_1^2 > 0$ any embedded symplectic surface must be symplectically isotopic to a holomorphic curve. (Of course, no such manifold contains an embedded symplectic torus of square 0.) They have shown that in $\mathbb{CP}^2$ this is true for each curve of degree $\leq 17$, and they have also some results to this effect in $S^2 \times S^2$. However the general problem is still wide open, as is the case in general for surfaces of higher genus or for other self-intersections. However, in the case where $\pi_1(X) \neq 0$ Ivan Smith has constructed examples of nonisotopic but homologous surfaces of square 0 distinguished by $\pi_1$ of their complements.

Much less is known in the case of Lagrangian tori. Until this year, it was unknown if there existed Lagrangian tori which were homologous but inequivalent (under either isotopy or orientation-preserving diffeomorphism). The first examples are due to Stefano Vidussi:

**Theorem** [20] Let $K$ denote the trefoil knot. Then in the symplectic manifold $E(2)_K$ there is a primitive homology class $\alpha$ so that for each positive integer $m$, there are infinitely many embedded Lagrangian tori representing $m\alpha$, no two of which are equivalent under orientation-preserving diffeomorphisms.

Utilizing an invariant coming from Seiberg–Witten theory and the geometry of fibered knots, the current authors improved this theorem as follows:

**Theorem** [7] (a) Let $X$ be any symplectic manifold with $b^+_2(X) > 1$ which contains an embedded symplectic torus with a vanishing cycle. Then for each fibered knot $K$ in $S^3$, the result of knot surgery $X_K$ contains infinitely many nullhomologous Lagrangian tori, pairwise inequivalent under orientation-preserving diffeomorphisms.

(b) Let $X_i$, $i = 1, 2$, be symplectic 4–manifolds containing embedded symplectic tori $F_i$ and assume that $F_1$ contains a vanishing cycle. Let $X$ be the fiber sum, $X = X_1 \# F_1 = F_2 X_2$. Then for each fibered knot $K$ in $S^3$, the manifold $X_K$ contains an infinite family of homologically primitive and homologous Lagrangian tori which are pairwise inequivalent.

In sections 5–8 we show how this theorem works in a specific example constructed via double branched covers. The discussion here differs somewhat from the more general arguments of [7], however we feel that it is helpful to understand specific examples from different points of view.

The authors gratefully acknowledge support from the National Science Foundation. The first author was partially supported NSF Grants DMS0072212 and DMS0305818, and the second author by NSF Grant DMS0204041.
2 Seiberg–Witten invariants

The Seiberg–Witten invariant of a smooth closed oriented 4–manifold $X$ with $b_2^+(X) > 1$ is an integer-valued function which is defined on the set of Spin$^c$ structures over $X$ (cf [21]). In case $H_1(X;\mathbb{Z})$ has no 2–torsion, there is a natural identification of the Spin$^c$ structures of $X$ with the characteristic elements of $H_2(X;\mathbb{Z})$ (ie those elements $k$ whose Poincaré duals $\hat{k}$ reduce mod 2 to $w_2(X)$).

In this case we view the Seiberg–Witten invariant as

$$SW_X: \{k \in H_2(X;\mathbb{Z}) | \hat{k} \equiv w_2(TX) \text{ (mod 2)}\} \rightarrow \mathbb{Z}.$$  

The sign of $SW_X$ depends on an orientation of $H^0(X;\mathbb{R}) \otimes \det H^2_+(X;\mathbb{R}) \otimes \det H^1(X;\mathbb{R})$; however, when $X$ has a symplectic structure, there is a preferred sign for $SW_X$ (see [16]).

If $SW_X(\beta) \neq 0$, then $\beta$ is called a basic class of $X$. It is a fundamental fact that the set of basic classes is finite. Furthermore, if $\beta$ is a basic class, then so is $-\beta$ with $SW_X(-\beta) = (-1)^{(e+\text{sign}(X))/4} SW_X(\beta)$ where $e(X)$ is the Euler number and sign$(X)$ is the signature of $X$.

It is convenient to view the Seiberg–Witten invariant as an element of the integral group ring $\mathbb{Z}H_2(X)$. For $\alpha \in H_2(X)$ we let $t_\alpha$ denote the corresponding element in $\mathbb{Z}H_2(X)$. More specifically, suppose that $\{\pm \beta_1, \ldots, \pm \beta_n\}$ is the set of nonzero basic classes for $X$. Then the Seiberg–Witten invariant of $X$ is the Laurent polynomial

$$SW_X = SW_X(0) + \sum_{j=1}^n SW_X(\beta_j) \cdot (t_{\beta_j} + (-1)^{(e+\text{sign}(X))/4} t_{\beta_j}^{-1}) \in \mathbb{Z}H_2(X).$$

A key vanishing theorem for the Seiberg–Witten invariants is:

**Theorem** [21] Let $X$ be a smooth closed 4–manifold which admits a decomposition $X = A \cup B$ into 4–manifolds with $\partial A = \partial B = Y$. Suppose that $b_2^+(A) > 0$, $b_2^+(B) > 0$, and that $Y$ admits a metric of positive scalar curvature, then $SW_X = 0$.

Another important and extremely useful fact about Seiberg–Witten invariants is the adjunction inequality: If $X$ is a smooth closed 4–manifold with $b_2^+ > 1$ and $\Sigma$ is an embedded surface of positive genus $g$ in $X$ representing a nontrivial element of $H_2(X;\mathbb{R})$ then for any basic class $\beta$ of $X$

$$2g - 2 \geq \Sigma^2 + \beta \cdot \Sigma$$ (1)
We next recall the link surgery construction of [5]. This construction starts with an oriented \( n \)-component link \( L = \{K_1, \ldots, K_n\} \) in \( S^3 \) and \( n \) pairs \( (X_i, T_i) \) of smoothly embedded self-intersection 0 tori in simply connected 4–manifolds. (In the original article [5], an extra condition (‘c-embedded’) was placed on these tori; however, recent work of Cliff Taubes [17] has shown this condition to be unnecessary.)

Let \( \alpha_L : \pi_1(S^3 \setminus L) \to \mathbb{Z} \) denote the homomorphism characterized by the property that it sends the meridian \( m_i \) of each component \( K_i \) to 1, and let \( \ell_i \) denote the longitude of \( K_i \). The curves \( \gamma_i = \ell_i - \alpha_L(\ell_i)m_i \) on \( \partial N(K_i) \) form the boundary of a Seifert surface for the link, and in case \( L \) is a fibered link, the \( \gamma_i \) are given by the boundary components of a fiber.

In \( S^1 \times (S^3 \setminus N(L)) \) let \( T_{m_i} = S^1 \times m_i \), and define the link-surgery manifold \( X(X_1, \ldots X_n; L) \) by

\[
X(X_1, \ldots X_n; L) = (S^1 \times (S^3 \setminus N(L)) \cup \bigcup_{i=1}^n (X_i \setminus (T_i \times D^2))
\]

where \( S^1 \times \partial N(K_i) \) is identified with \( \partial N(T_i) \) so that for each \( i \)

\[
[T_{m_i}] = [T_i], \quad \text{and} \quad [\gamma_i] = [pt \times \partial D^2].
\]

It is not clear whether or not this determines \( X(X_1, \ldots X_n; L) \) up to diffeomorphism, however any such manifold will have the same Seiberg–Witten invariant:

**Theorem [5]** If each \( \pi_1(X \setminus T_i) = 1 \), then \( X(X_1, \ldots X_n; L) \) is simply-connected and its Seiberg–Witten invariant is

\[
\text{SW}_X(X_1, \ldots X_n; L) = \Delta_L^{\text{sym}}(t_1^2, \ldots, t_n^2) \cdot \prod_{j=1}^n \text{SW}_X(t_j - t_j^{-1})
\]

where \( t_j = t_{[T_j]} \) and \( \Delta_L^{\text{sym}}(t_1, \ldots, t_n) \) is the symmetric multivariable Alexander polynomial of the link \( L \).

In case each \( (X_i, T_i) \cong (X, T) \), a fixed pair, we write

\[
X(X_1, \ldots X_n; L) = X_L
\]

(We implicitly remember \( T \), but it is removed from the notation.) As an example, consider the case where each \( X_i = E(1) \), the rational elliptic surface \( (E(1) \cong \mathbb{C}P^2 \# 9\mathbb{C}P^2) \) and each \( T_i = F \) is a smooth elliptic fiber. Since \( \text{SW}_{E(1)} = (t - t^{-1})^{-1} \), we have that

\[
\text{SW}_{E(1),L} = \Delta_L^{\text{sym}}(t_1^2, \ldots, t_n^2).
\]
In case the link $L$ is actually a knot $K$, we call the procedure ‘knot surgery’ and the resulting manifold $X_K$. The formula for the Seiberg–Witten invariant looks slightly different in this case due to the difference in the relationship of the Seiberg–Witten invariant of a 3–manifold and its Alexander polynomial when $b_1 > 1$ and $b_1 = 1$.

**Theorem** [5] If $\pi_1(X \setminus T) = 1$, then $X_K$ is simply connected and its Seiberg–Witten invariant is

$$SW_{X_K} = \Delta_K^{\text{sym}}(t^2) \cdot SW_X$$

where $t = t|_T$.

### 3 Tori and simple covers

Our first construction utilizes an extremely interesting theorem of José Montesinos and Hugh Morton which characterizes fibered links in the 3–sphere. To begin, let $X$ be a simply connected symplectic 4–manifold containing an embedded symplectic torus $T$ of self-intersection 0, and identify a tubular neighborhood of $T$ with $S^1 \times (S^1 \times D^2)$. A closed braid may be viewed as contained in $S^1 \times D^2 \subset S^3 = (S^1 \times D^2) \cup (D^2 \times S^1)$ and then its axis is $\{0\} \times S^1$. The theorem of Montesinos and Morton is:

**Theorem** (Montesinos and Morton [12]) Every fibered link in $S^3$ with $k$ components can be obtained as the preimage of the braid axis for a $d$–sheeted simple branched cover of $S^3$ branched along a suitable closed braid, where $d = \max\{k, 3\}$.

(Recall that a simple branched cover of degree $d$ is one whose branch points have exactly $d - 1$ points in their preimages.)

A second important ingredient in this construction is a theorem of Kanenobu concerning the Hosokawa polynomial of fibered links. The Alexander polynomial of a link $L$ of $k$ components is a polynomial $\Delta_L(t_1, \ldots, t_k)$ in $k$ variables (corresponding to the meridians of the components of the link). The polynomial $\Delta_L(t, \ldots, t)$ obtained by setting all the variables equal is always divisible by $(t - 1)^{k-2}$, and the Hosokawa polynomial of $L$ is defined to be $\nabla_L(t) = \Delta_L(t, \ldots, t)/(t - 1)^{k-2}$.

**Theorem** (Kanenobu [9]) Let $f(t)$ be any symmetric polynomial of even degree with integral coefficients satisfying $f(0) = \pm 1$, then for any $k \geq 2$ there is a fibered link $L$ of $k$ components in $S^3$ with $\nabla_L(t) = f(t)$. 

*Geometry & Topology Monographs, Volume 7 (2004)*
We now use these two theorems to build symplectic tori homologous to multiples of $T$. We have described a tubular neighborhood $N$ of $T$ as $N = S^1 \times (S^1 \times D^2)$. Fix a three-component fibered link $L$ in $S^3$ and let $B_L$ be the braid corresponding to $L$ by the Montesinos–Morton Theorem. As above, we view $B_L$ as contained in $S^1 \times (S^1 \times D^2) \subset S^3 = (S^1 \times D^2) \cup (D^2 \times S^1)$ with axis $A = \{0\} \times S^1$. (See Figure 1 for an example.) Then $T_L = S^1 \times B_L \subset N$ is a symplectic torus, and if $B_L$ has $m$ strands, then $T_L$ is homologous to $mT$.

![Figure 1](image-url)

Let $\pi: (S^3, L) \to (S^3, A)$ be the threefold branched cover with branch set $B_L$ given by the Montesinos–Morton Theorem. Because $L = \pi^{-1}(A)$ is a three-component link, the covering restricted to $A$ is trivial. This means that the restriction of $\pi$ over $\partial(S^1 \times D^2)$ is a trivial covering, and the induced branched cover over $N = S^1 \times (S^1 \times D^2)$ extends trivially over $X$. We thus get a threefold simple branched cover $p = p_L: \tilde{X} \to X$ with branch set $T_L$. We have

$$\tilde{X} = \tilde{N} \cup \bigcup_{i=1}^{3} (X \setminus N)_i$$

where $\tilde{N} = p^{-1}(N) = S^1 \times (S^3 \setminus L)$, and $(X \setminus N)_i$ denotes a copy of $X \setminus N$.

This means that $\tilde{X}$ is obtained via link surgery on the link $L$ using $(X, T)$. The Seiberg–Witten invariant of $\tilde{X}$ (viewed as an element of $\mathbb{Z}H_2(\tilde{X})$) may be calculated via the techniques of [17, 14, 5]:

$$SW_{\tilde{X}} = \Delta_L^{sym}(t_1^2, t_2^2, t_3^2) \cdot \prod_{i=1}^{3} SW_{X_i} \cdot (t_i - t_i^{-1})$$

The induced map $p_*: \mathbb{Z}H_2(\tilde{X}) \to \mathbb{Z}H_2(X)$ satisfies $p_*(SW_{X_i}) = SW_{X}$. Also, since $t_i$ is the element of $\mathbb{Z}H_2(\tilde{X})$ corresponding to the homology class of $S^1 \times \mu_i$
where \( \mu_i \) are the meridians of the components of \( L \), \( p_\ast(t_i) \) is the element of \( \mathbb{Z}H_2(X) \) corresponding to \( S^1 \times \mu_A \), where \( \mu_A \) is a meridian to \( A \). Since \( \mu_A \) is the core circle \( S^1 \times \{0\} \subset S^1 \times D^2 \), we have \( [S^1 \times \mu_A] = [T] \) in \( H_2(X) \). Thus \( p_\ast(t_i) = t_i \), and

\[
p_\ast(SW_{\tilde{X}}) = \Delta_L^{sym}(t^2, t^2, t^2) \cdot SW_X^3 \cdot (t - t^{-1})^3
\]

(2)

Now suppose that we are given another three-component link \( L' \) which is a threefold simple cover of \( S^3 \) with branch set \( B_{L'} \) and symplectic torus \( T_{L'} = S^1 \times B_{L'} \). The covering projections \( p_L, p_{L'} \) are determined by homomorphisms \( \varphi_L \) (or \( \varphi_{L'} \)) from \( \pi_1(X \setminus T_L) \) (or \( \pi_1(X \setminus T_{L'}) \)) to the symmetric group \( S_3 \) such that each meridian of \( T_L \) (or \( T_{L'} \)) is sent to a transposition.

Any isotopy of \( X \) taking \( T_L \) to \( T_{L'} \) and which carries the covering data for \( p_L \) to that of \( p_{L'} \) gives rise to

\[
\begin{array}{ccc}
\tilde{X}_L & \xrightarrow{\tilde{f}} & \tilde{X}_{L'} \\
p_L \downarrow & & \downarrow p_{L'} \\
X & \xrightarrow{f \cong} & X
\end{array}
\]

(3)

where \( f(T_L) = T_{L'} \) and \( f_\ast \) is the identity on homology.

Since \( \tilde{f}_\ast(SW_{\tilde{X}_L}) = SW_{\tilde{X}_{L'}} \), it follows from (2) and (3) that

\[
\Delta_L^{sym}(t^2, t^2, t^2) = \Delta_{L'}^{sym}(t^2, t^2, t^2)
\]

In other words, \( \nabla_L^{sym}(t^2) = \nabla_{L'}^{sym}(t^2) \). Using Kanenobu’s theorem, one sees that there are infinite families of fibered links \( \{L_i\} \) whose \( \nabla_{L_i}^{sym}(t) \) are distinct and have arbitrary fixed even degree \( (> 0) \). The genus \( g_L \) of the fibered link \( L \) is half the degree of its Hosokawa polynomial. (See, for instance, [2].) Furthermore, the fiber of \( L \) is the thrice-punctured surface which is a simple threefold branched cover of \( D^2 \) (a normal fiber to \( S^1 \times \{0\} \)) with \( m \) branch points. Thus the number of strands \( m \) of \( B_L \) is determined by \( m = 2g_L + 4 \).

This means that for any even \( m \geq 6 \) we get an infinite family \( \{T_i\} \) of symplectic tori homologous to \( mT \) with distinct threefold simple branched covers. Note that each braided torus \( T_L \) admits at most finitely many simple threefold branched covers of \( X \) with \( T_L \) as branch set, since there are finitely many distinct homomorphisms \( \pi_1(X \setminus T_L) \to S_3 \). Thus we have:

**Theorem 3.1** Let \( X \) be a simply connected symplectic 4–manifold containing an embedded symplectic torus \( T \) of self-intersection 0. Then for each even \( m \geq 6 \) there are infinitely many pairwise nonsmoothly isotopic embedded symplectic tori homologous to \( mT \).
4 Fiber sums

We begin this section with the same hypotheses as the last: We are given a simply connected symplectic 4–manifold $X$ containing an embedded symplectic torus $T$ of self-intersection 0. The construction of new symplectic tori is similar to that of the last section (and of [6]). For each $m \geq 2$ consider closed braids $B$ with $m$ strands. Then the braided torus $T_B = S^1 \times B$ is embedded in the tubular neighborhood $S^1 \times (S^1 \times D^2)$ of $T = S^1 \times S^1 \times \{0\}$. Furthermore, $T_B$ is symplectic and homologous to $mT$.

Suppose that $B$ and $B'$ are $m$–strand closed braids and that $T_{B'}$ is smoothly isotopic to $T_B$ in $X$. Then there is a diffeomorphism $f: X \to X$ satisfying: $f(T_B) = T_{B'}$, $f(\mu_B) = \mu_{B'}$, and $f_* = \text{id}$ on $H_*(X)$. (Here $\mu_B$ and $\mu_{B'}$ are meridians to the braids; so they also may be viewed as meridians to the tori $T_B$ and $T_{B'}$.)

Our goal is to use relative Seiberg–Witten invariants $SW_{(X,T_B)}$ to distinguish the tori $T_B$ up to isotopy. Let $E(1)$ denote the rational elliptic surface. Because of the gluing theorems of [17, 14] and the fact that the relative Seiberg–Witten invariant of $E(1)$ minus a smooth elliptic fiber is $SW_{E(1) \setminus F} = 1$ (see eg [10]), the relative Seiberg–Witten invariant of $(X,T_B)$ may be expressed as the absolute Seiberg–Witten invariant of the fiber sum of $X$ and $E(1)$ along $T_B$ and $F$:

$$SW_{(X,T_B)} = SW_{X \# T_B = F \# E(1)}$$

Now write $N(T_B)$ for a tubular neighborhood of $T_B$ in $X$ and also write $N(T) = S^1 \times (S^1 \times D^2)$, the original tubular neighborhood of $T$. We have

$$X \setminus N(T_B) = (X \setminus N(T)) \cup (S^1 \times ((S^1 \times D^2) \setminus N(B)))$$  \hspace{1cm} (4)

Let $L_B$ be the link in $S^3$ consisting of the closed braid $B$ together with its axis $A$. If $\mu_A$ denotes a meridian to $A$, then $T$ is homologous to $S^1 \times \mu_A$. Let $t = t_T$ denote the corresponding element in $\mathbb{Z}H_2(X)$.

We may now rewrite (4) as

$$X \setminus N(T_B) = (X \setminus N(T)) \cup (S^1 \times (S^3 \setminus N(L_B)))$$

The manifold $X \#_{T_B = F} E(1)$ is obtained from the same components as link surgery using the link $L_B$ and the manifolds $(E(1), F)$ and $(X, T)$; however the gluings are not necessarily those specified in section 2. Since $E(1)$ has big diffeomorphism group with respect to $F$ (see eg [8]), each diffeomorphism $\partial N(F) \to \partial N(F)$ extends to a self-diffeomorphism of $E(1) \setminus N(F)$; so the diffeomorphism used to glue in $E(1) \setminus N(F)$ is inconsequential. However, it is...
useful to demand that the fiber $F$ of $E(1)$ should be identified with $S^1 \times \lambda_B$ where $\lambda_B$ is the longitude of $B$ in $S^3$.

According to [17, 14], $\mathcal{SW}_X \cdot (t - t^{-1})$ is the relative Seiberg–Witten invariant of $(X,T)$, and by [5], as described in section 2 the relative invariant of the manifold $S^1 \times (S^3 \setminus N(L_B))$ is $\Delta_{L_B}^{\text{sym}}(t^2, \tau^2)$. Applying [5] and [17] we obtain:

$$\mathcal{SW}_{(X, T_B)} = \mathcal{SW}_X \#_{T_B = F} E(1) = \Delta_{L_B}^{\text{sym}}(t^2, \tau^2) \cdot \mathcal{SW}_X \cdot (t - t^{-1})$$

where $\tau$ is the element of $ZH_2(X)$ corresponding to $[S^1 \times \mu_B]$. Since $[F] = [S^1 \times \lambda_B] = m[S^1 \times \mu_A] = m[T]$. When applying this formula, we need to remember that $t_T = t$ and $t_F = t^m$.

**Theorem 4.1** Let $X$ be a simply connected symplectic 4–manifold with $b^+_2 > 1$ containing an embedded symplectic torus $T$ of self-intersection 0. For a fixed integer $m \geq 2$, let $B$ and $B'$ be closed $m$–strand braids in $S^3$. Then $T_B$ and $T_{B'}$ are embedded symplectic tori in $X$ which are homologous to $mT$. If there is an isotopy of $X$ taking $T_B$ to $T_{B'}$, then $\Delta_{L_{B'}}^{\text{sym}}(t^2, \tau^2) = \Delta_{L_B}^{\text{sym}}(t^2, \tau^2)$.

**Proof** We first describe $H_2(X \#_{T_B = F} E(1))$. Let $R_B$ denote the group of rim tori of the torus $T_B$; i.e $R_B = \ker(H_2(X \setminus T_B) \to H_2(X)) \cong \mathbb{Z} \oplus \mathbb{Z}$. A basis for $R_B$ is given by $\tau = [S^1 \times \mu_B]$ and $v = [\lambda_B \times \mu_B]$ where $\lambda_B$ is the longitude of the knot $B$ in $S^3$. The classes $\tau$ and $v$ are primitive (because of the definition of $R_B$), thus there is a group $D_B \cong \mathbb{Z} \oplus \mathbb{Z}$ generated by the dual classes to $\tau$ and $v$ in $H_2(X \#_{T_B = F} E(1))$.

Let $A = T_B^\perp = T^\perp \subset H_2(X)$. Note that the adjunction inequality [11] implies that no basic class of $X$ has nontrivial intersection with $[T]$. Thus $\mathcal{SW}_X \in \mathbb{Z}A$. We have $H_2(X \setminus T_B) = A \oplus R_B$. Finally, suppose that $[T]$ is $n$ times a primitive homology class, and let $S$ denote the class in $H_2(X \#_{T_B = F} E(1))$ which has a representative built from $mn$ punctured sections in $E(1) \setminus F$ and a surface in $X \setminus T_B$ which has boundary $mn$ copies of the meridian $\mu_B$ to $T_B$.

A Mayer–Vietoris argument shows that the homology of $X \#_{T_B = F} E(1)$ splits as

$$H_2(X \#_{T_B = F} E(1)) = A \oplus (R_B \oplus D_B) \oplus \mathbb{Z}(S) \oplus E_8$$

where the $E_8$ comes from $H_2(E(1) \setminus F)$. There is a similar splitting of the homology of $H_2(X \#_{T_{B'} = F} E(1))$.

If there is an isotopy of $T_B$ to $T_{B'}$, there is a diffeomorphism $\tilde{f}: X \#_{T_B = F} E(1) \to X \#_{T_{B'} = F} E(1)$.
satisfying $\bar{f}_s|_A = \text{id}$ and $\bar{f}_s(R_B) = R_{B'}$ (since $f(\mu_B) = \mu_{B'}$). Thus the induced homomorphism of group rings satisfies $\bar{f}_s(SW_X) = SW_X$ and $\bar{f}_s(t_F) = t_{F'}$; i.e $\bar{f}_s(t)^m = t^m$, and so $\bar{f}_s(t) = t$ because $H_2(X \# T_B = F E(1))$ is torsion-free. It follows that the fact that $\bar{f}_s(SW_{(X,T_B)}) = SW_{(X,T_{B'})}$ implies that

$$\Delta_{LB}^{sym}(t^2, \bar{f}_s(\tau)^2) = \Delta_{LB'}^{sym}(t^2, \tau'^2)$$

Write $\bar{f}_s(\tau) = a\tau' + bv'$ (where $\tau' = [S^1 \times \mu_{B'}]$ and $v' = [\lambda_{B'} \times \mu_{B'}]$). Each term $nt^{2r}\tau'^{2s'}$ of $\Delta_{LB'}^{sym}(t^2, \tau'^2)$ corresponds to basic classes of $X \# T_B = F E(1)$ of the form $\alpha + (2r' \pm 1)[T] + 2s'\tau'$ where $\alpha \in H_2(X)$ is a basic class, and so $\alpha \cdot \tau' = 0$, and $\alpha \cdot [T] = 0$. Furthermore each class in $R_{B'}$ is orthogonal to $T$.

Terms of the form $nt^{2r}\bar{f}_s(\tau)^{2s}$ of $\Delta_{LB'}^{sym}(t^2, \bar{f}_s(\tau)^2)$ correspond to basic classes of $X \# T_B = F E(1)$ of the form $\beta + (2r \pm 1)[T] + 2s(a\tau' + bv')$, and each basic class can be written like this. Since $\tau'$ and $v'$ are independent, it is clear that $b = 0$. This means that $\bar{f}_s(\tau) = a\tau'$, and $a = \pm 1$ since $\tau$ is primitive. Thus $\Delta_{LB'}^{sym}(t^2, \tau'^2) = \Delta_{LB}^{sym}(t^2, \tau^{\pm 2})$.}

We have as a corollary:

**Theorem 4.2** Let $X$ be a simply-connected symplectic 4–manifold satisfying $b^+_2(X) > 1$ and containing an embedded symplectic torus $T$ of self-intersection 0. For each $m \geq 2$ there are infinitely many pairwise nonisotopic embedded symplectic tori in $X$ which are homologous to $mT$.

**Proof** This follows from the above theorem provided for each $m \geq 2$ there are infinitely many closed $m$-strand braids $B$ whose 2-component links $L_B = A \cup B$ have distinct 2-variable Alexander polynomials. Such examples are given, for example, in the work of Etgu and Park [3].

5 Lagrangian tori

In this section we use branched covers as a means for constructing examples of Lagrangian tori in symplectic 4–manifolds whose homology classes are equal but which are not equivalent under symplectic diffeomorphisms. There are already two papers [20, 7] dealing with this phenomenon, and the invariants of [7] can be used to distinguish the examples given in this section. However we believe that the constructions below are interesting in their own right and are certainly different from those cited.
To begin, let $K$ be the trefoil knot, and $M_K$ the 3–manifold obtained from 0–framed surgery on $S^3$ along $K$. Since $K$ is a genus–1 fibered knot, $M_K$ fibers over the circle with fiber a torus, $M_K = T^2 \times S^1$. Let $E(1)_K$ be the result of knot surgery on $E(1)$, $E(1)_K = E(1)\#_{F=S^1 \times m_0} S^1 \times M_K$, where $m_0$ is a meridian to $K$. This manifold has a symplectic structure induced from that on $E(1)$ and the structure on $S^1 \times M_K$ in which the fiber and section are symplectic submanifolds. (See [5].)

\[
X = E(1)' \#_{F'=S^1 \times m_0'} S^1 \times \tilde{M}_K \#_{S^1 \times m_0''=E(1)''} E(1)''
\]

where $E(1)'$ and $E(1)''$ are copies of $E(1)$ and $\tilde{M}_K$ is the double cover of $M_K$ branched over $m_1 \cup m_2$. It follows that $\tilde{M}_K$ also fibers over the circle, and its fiber is the double branched cover of the fiber of $M_K$, branched over two points. Thus the fiber of $\tilde{M}_K \to S^1$ has genus 2. We can say more:

**Lemma 5.1** Let $K$ be any knot in $S^3$ and $M_K$ the result of 0–surgery along $K$. The double cover of $M_K$ branched over two meridians to $K$ is $M_K\#_K$, the result of 0–surgery on $S^3$ along the connected sum $K\#K$.

**Proof** This proof is an exercise in Kirby calculus. The double branched cover of $S^3$ branched over the two-component unlink is $S^2 \times S^1$. This means that the double branched cover of $M_K$ branched along two meridians to $K$ is the result of surgery on the lift of $K$ in $S^2 \times S^1$. (See Figure 3.) Note that $K$ lifts to two components. Referring to Figure 3, slide one copy of $K$ over the other.
copy of \( K \) to obtain Figure 4. In this figure, 0–surgery on \( K \) together with 0–surgery on a meridian form a cancelling pair. We are left with 0–surgery on \( K\#K \).

\[
\begin{align*}
K & \\
& \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\qa
Since the endpoints of $P$ and $P'$ lie in the branch set of the cover, their lifts $\gamma$ and $\gamma'$ in $M_K = M_{K\#K}$ are circles in the fibers (which are genus-2 surfaces). We thus obtain Lagrangian tori $T = T_\gamma = S^1 \times \gamma$ and $T' = T'_\gamma = S^1 \times \gamma'$ in $S^1 \times M_{K\#K}$. These tori are disjoint from the lifts of $m_0$, where the gluing in the construction of $X$ takes place, so $T$ and $T'$ are Lagrangian tori in $X$. 

The meridian $m_0$ in $M_K$ lifts to a pair of meridians, $m'_0$, $m''_0$ in $M_{K\#K}$ as in Figure 6. $H_1(M_{K\#K} \setminus (m'_0 \cup m''_0)) \cong \mathbb{Z} \oplus \mathbb{Z}$ is generated by $[m'_0] = [m''_0]$ and by the classes of the meridians $[\mu'] = [\mu'']$ to $m'_0$ and $m''_0$. (Note that $M_{K\#K} \setminus (m'_0 \cup m''_0)$ is fibered over the circle and its fibers are genus 2 surfaces with two boundary components. The meridians $\mu'$ and $\mu''$ form the boundary of one fiber.)
Referring to Figure 6, in $H_1(M_{K\#K} \setminus (m'_0 \cup m''_0))$ we have $[\gamma'] - [\gamma] = [\delta'] + [\delta''].$ Because $\delta'$ and $\delta''$ link neither $m'_0$ (or $m''_0$) nor $\mu'$ (or $\mu''$), the loops $\delta'$ and $\delta''$ are nullhomologous in $M_{K\#K} \setminus (m'_0 \cup m''_0)$. This means that the corresponding Lagrangian tori, $\Sigma' = S^1 \times \delta'$ and $\Sigma'' = S^1 \times \delta''$ are nullhomologous in $X$. Since $T' - T$ is homologous to $\Sigma' + \Sigma''$, we see that $T$ and $T'$ are homologous in $X$.

The loop $\gamma$ is a separating curve in the fiber of $M_{K\#K} \to S^1$. See Figure 7. We see that $\gamma$ is homologous to $\mu'$ in the fiber of $M_{K\#K} \setminus (m'_0 \cup m''_0) \to S^1$. Thus in $S^1 \times M_{K\#K} \setminus (m'_0 \cup m''_0)$, the Lagrangian torus $T = S^1 \times \gamma$ is homologous to $R_{\mu'} = S^1 \times \mu'$. But $R_{\mu'}$ is a rim torus to $S^1 \times m'_0$, one of the tori along which the fiber sum

$$X = E(1)' \#_{F' = S^1 \times m'_0} S^1 \times M_{K\#K\#S^1 \times m'_0 = F'} E(1)'$$

is made. In such a fiber sum, the rim tori give essential homology classes – thus we see that the Lagrangian tori $T$ and $T'$ are essential in $X$.

![Diagram](https://example.com/diagram.png)

Figure 7

We claim that there is no diffeomorphism of $X$ which takes $T$ to $T'$. To see this we shall use an invariant obtained from Seiberg–Witten theory. To do this we need the notion of ‘surgery on $T$’. As usual, this means the result of removing a tubular neighborhood $N(T) \cong T^2 \times D^2$ and regluing it.

$$X(T, \psi) = (X \setminus N(T)) \cup_\psi (T^2 \times D^2)$$

The key quantity in this operation is the class $\omega \in H_1(\partial N(T))$ which is killed by the composition of $\psi$: $\partial N(T) \to T^2 \times \partial D^2$ with the inclusion $T^2 \times \partial D^2 \to T^2 \times D^2$. This class determines $X(T, \psi)$ up to diffeomorphism; so we write $X_T(\omega)$ instead of $X(T, \psi)$.
Note that if there is a diffeomorphism \( f \) of \( X \) taking \( T \) to \( T' \), then each manifold \( X_T(\omega) \) corresponds to a unique \( X_{T'}(f_*(\omega)) \). Thus the collection of all manifolds
\[
\{X_T(\omega) | \omega \in H_2(\partial N(T))\}
\]
is a diffeomorphism invariant of \((X,T)\). Our invariant \( I(X,T) \), defined and computed below, will be the set of Seiberg–Witten invariants of these manifolds.

6 Product formulas for the Seiberg–Witten invariant

Before formally defining \( I(X,T) \) we need to discuss techniques for calculating the Seiberg–Witten invariants of the manifolds \( X_T(\omega) \). Fix simple loops \( \alpha, \beta, \delta \) on \( \partial N(T) \) whose homology classes generate \( H_1(\partial N(T)) \). If \( \omega = p\alpha + q\beta + r\delta \) write \( X_T(p,q,r) \) instead of \( X_T(\omega) \). An important formula for calculating the Seiberg–Witten invariants of surgeries on tori is due to Morgan, Mrowka, and Szabo [13] (see also [11], [17]). Given a class \( k \in H_2(X) \):
\[
\sum_i \mathrm{SW}_{X_T(p,q,r)}(k(p,q,r) + 2i[T]) = p \sum_i \mathrm{SW}_{X_T(1,0,0)}(k(1,0,0) + 2i[T]) \\
+ q \sum_i \mathrm{SW}_{X_T(0,1,0)}(k(0,1,0) + 2i[T]) + r \sum_i \mathrm{SW}_{X_T(0,0,1)}(k(0,0,1) + 2i[T])
\]
(6)

In this formula, \( T \) denotes the torus which is the core \( T^2 \times 0 \subset T^2 \times D^2 \) in each specific manifold \( X(a,b,c) \) in the formula, and \( k(a,b,c) \in H_2(X_T(a,b,c)) \) is any class which agrees with the restriction of \( k \) in \( H_2(X \setminus T \times D^2, \partial) \) in the diagram:

\[
\begin{align*}
H_2(X_T(a,b,c)) & \longrightarrow H_2(X_T(a,b,c), T \times D^2) \\
& \cong H_2(X \setminus T \times D^2, \partial) \\
H_2(X) & \longrightarrow H_2(X, T \times D^2)
\end{align*}
\]

Let \( \pi(a,b,c) : H_2(X_T(a,b,c)) \to H_2(X \setminus T \times D^2, \partial) \) be the composition of maps in the above diagram, and \( \pi(a,b,c)_* \) the induced map of integral group rings. Since we are interested in invariants of the pair \((X,T)\), we shall work with
\[
\overline{\mathrm{SW}}_{(X_T(a,b,c), T)} = \pi(a,b,c)_*(\mathrm{SW}_{X_T(a,b,c)}) \in \mathbb{Z}H_2(X \setminus T \times D^2, \partial).
\]
The indeterminacy due to the sum in (6) is caused by multiples of \( T \); so passing to \( \text{SW} \) removes this indeterminacy, and the Morgan–Mrowka–Szabo formula becomes
\[
\text{SW}(X_T(p,q,r),T) = p\text{SW}(X_T(1,0,0),T) + q\text{SW}(X_T(0,1,0),T) + r\text{SW}(X_T(0,0,1),T).
\] (7)

**Proposition 6.1** The collection of Seiberg–Witten invariants
\[
I(X,T) = \{ \text{SW}_{X_T(a,b,c)} \mid a, b, c \in \mathbb{Z} \}
\]
is an orientation-preserving diffeomorphism invariant of the pair \((X,T)\).

### 7 Calculation of \( I(X,T) \): \( X(0,1,0) \)

We first specify a basis for \( H_1(\partial N(T)) \) as follows: Recall that \( T = S^1 \times \gamma \) where \( \gamma \) lies in a fiber of the fibration \( M_{K\#K} \setminus (m'_0 \cup m''_0) \to S^1 \) (Figure 7). Then \( N(T) \) may be identified with \( S^1 \times \gamma \times D^2 \), and we take the basis \( \alpha = [S^1 \times pt \times pt] \), \( \beta = [pt \times \gamma_L] \), where \( \gamma_L \) is a pushoff of \( \gamma \) in the fiber of the fibration \( M_{K\#K} \setminus (m'_0 \cup m''_0) \to S^1 \) (this is called the ‘Lagrangian framing’ in \[4\]), and \( \delta = [m_T] \), where \( m_T = pt \times pt \times \partial D^2 \), the meridian to \( T \). It is then clear from (7) that in order to calculate \( I(X,T) \), one needs to calculate \( \text{SW}_Y \) for \( Y = X_T(1,0,0) \), \( X_T(0,1,0) \), and \( X_T(0,0,1) \); however, from our choice of basis, we have \( X_T(0,0,1) \cong X \). This leaves us with two invariants to calculate below. For a different approach to these calculations see [7].

The calculation of \( \text{SW}_{X_T(0,1,0)} \) depends on some basic facts about double covers of 3–manifolds branched over closed braids. Suppose that \( B \) is a braid in a solid torus with \( 2m \) strands, ie \( B \subset S^1 \times D^2 \subset M^3 \) is a link such that each disk \( pt \times D^2 \) intersects \( B \) in exactly \( 2m \) points. There is then a double cover \( Y_B \to M^3 \) branched over \( B \) for which each meridian to \( B \) is covered nontrivially, and this cover is trivial outside the solid torus.

The pertinent question is: ‘What is the effect on \( Y_B \) of putting half-twists into the braid \( B \)?’ In other words, suppose that \( \zeta \) is an arc in \( (pt \times D^2) \subset S^1 \times D^2 \) whose endpoints lie on \( B \), but so that no other point of \( \zeta \) is on \( B \). Then we can put half-twists in \( B \) by twisting in a small neighborhood of \( \zeta \). Figure 8 shows a local picture.

![Figure 8](image-url)
In the double cover, $Y_B$, the solid torus $S^1 \times D^2$ lifts to a bundle $V$ over the circle with fiber the double cover of $D^2$ branched over $2m$ points, a twice-punctured surface $S$ of genus $m - 1$. The path $\zeta$ lifts to a simple closed loop $\tilde{\zeta} \subset S \subset Y_B$, and changing $B$ by a half-twist of along $\zeta$ as described corresponds to changing the monodromy of the lifted bundle by a single Dehn twist along $\tilde{\zeta}$. (This is true essentially because each half-twist along $\zeta$ lifts to a full twist in the double cover.)

Thus if $B'$ is the braid with the new positive half-twist, then its corresponding double branched cover, $Y_{B'}$, is obtained from $Y_B$ by cutting out $V$ and replacing it with the bundle over $S^1$ with fiber $S$ but whose monodromy is the monodromy of $V$ composed with a Dehn twist about $\tilde{\zeta}$. This means that $Y_{B'}$ is obtained by $(+1)$-Dehn surgery on $\tilde{\zeta}$ with respect to the 0-framing given by the pushoff of $\zeta$ in the fiber $S$ of $V$. (For example, see [1].)

**Proposition 7.1** The result of 0-surgery on $\tilde{\zeta}$ in $Y_B$ is the double cover of $M^3$ branched along the link obtained from $B$ by the operation of Figure 9.

\[ \zeta \quad \rightarrow \quad \emptyset \]

**Figure 9**

**Proof** If we restrict the deck transformation $\tau: Y_B \rightarrow Y_B$ of the branched cover to an annular neighborhood of $\tilde{\zeta}$ in a fiber $S$ of $V$, then we see an annulus double covering a disk with two branch points. Identify a neighborhood of $\tilde{\zeta}$ in $Y_B$ with $\tilde{\zeta} \times I \times I$ where $I = [-1, 1]$. The restriction of $\tau$ to this neighborhood is equivalent to $\tau(z, s, t) = (\tilde{z}, -s, t)$, and its fixed point set consists of two arcs $\{(\pm 1, 0)\} \times I$ (identifying $\zeta$ with $S^1$). If we now change coordinates so that $I \times I$ becomes $D^2 \subset \mathbb{C}$, then we get $\tau(z, w) = (\tilde{z}, \rho w)$, where $\rho$ is reflection in the imaginary axis, and the fixed set is $\{\pm 1\} \times \{\text{the imaginary axis} \cap D^2\}$.

According to our framing convention, 0-surgery on $\tilde{\zeta}$ is the one that kills the homology class of a pushoff of $\tilde{\zeta}$ in $S$, ie the class of $\tilde{\zeta} \times \text{pt}$ in $\tilde{\zeta} \times D^2$. Thus the result of 0-surgery is $Z = Y_B \setminus (\tilde{\zeta} \times D^2) \cup_{\varphi} (S^1 \times D^2)$ where $\varphi_*[\text{pt} \times \partial D^2] = [\tilde{\zeta} \times \text{pt}]$. Such a map $\varphi$ is given by $\varphi(z, w) = (w, z)$. Define the involution $\sigma$
on $S^1 \times D^2$ by $\sigma(z, w) = (\rho(z), \bar{w})$. Then we see that the diagram
\[
\begin{array}{ccc}
S^1 \times \partial D^2 & \xrightarrow{\sigma} & S^1 \times \partial D^2 \\
\varphi \downarrow & & \downarrow \varphi \\
\tilde{\zeta} \times \partial D^2 & \xrightarrow{\tau} & \tilde{\zeta} \times \partial D^2
\end{array}
\]
(8)

commutes. Thus, the restriction of $\tau$ to $Y_B \setminus (\tilde{\zeta} \times D^2)$ extends to an involution $\tau'$ over all of $Z$ via $\sigma$.

On the solid torus $S^1 \times D^2$ the fixed set of $\tau' = \sigma$ is $\{\pm i\} \times \{\text{the real axis} \cap D^2\}$. Thus the picture in the quotient is exactly that of Figure 9.

We now apply this proposition to the case at hand, where the 3–manifold is $M_K$, the braid is the trivial braid with components $m_1$ and $m_2$, and the arc $\zeta$ is the path $P$ of Figure 5. It follows that $X_T(0, 1, 0)$ is the double branched cover of $E(1)_K$ with branch set $S^1 \times C$ where $C$ is the loop shown in Figure 10. Notice that $C$ is an unknotted circle which is unlinked from $K$.

The double cover of a 3–ball, branched over an unknot, is $S^2 \times I$ so it follows that the double cover of $M_K$ branched over $C$ is $M_K \# M_K$. Thus

$$X_T(0, 1, 0) = E(1)\#_F (S^1 \times (M_K \# M_K)) \#_F E(1)$$

This means that $X_T(0, 1, 0)$ is split by $S^1 \times S^2$ with $b^+_2$ positive on each side. It follows that $SW_{X_T(0,1,0)} = 0$.

Next we need to make a similar calculation for $X_{T'}(0, 1, 0)$. This time the arc $\zeta$ is the path $P'$ of Figure 5, and $X_{T'}(0, 1, 0)$ is the double branched cover of $E(1)_K$ with branch set $S^1 \times C'$ where $C'$ is the loop shown in Figure 11.
Tori in symplectic 4–manifolds see [15].) Using Fox calculus, one calculates the torsion of the link $1$. However, we have just shown that this manifold is the double cover (Witten invariant of $0$). For the nullhomologous Lagrangian tori $G$ have $eometry & $T$ $M$ $'$ $0$

$(1)\#$ $F= S^1 \times m'_0 (S^1 \times (M_K)_{C'}) \# S^1 \times m'_0 = F E(1)$ is equal to $1$. However, we have just shown that this manifold is $X_{T'}(0,1,0)$.

Proposition 7.2 For the nullhomologous Lagrangian tori $T$, $T'$ in $X$, we have

$$SW_{X_T(0,1,0)} = 0, \quad SW_{X_{T'}(0,1,0)} = 1$$
8 Calculation of $I(X, T) : X(1, 0, 0)$

The key calculation of this section will show that the Seiberg–Witten invariants of the manifolds $X_T(1, 0, 0)$ and $X_{T'}(1, 0, 0)$ vanish. Our approach here is to describe the surgered manifolds in terms of a branched covering. (It would be useful to compare with \cite{7}, where a more general approach is utilized.)

**Proposition 8.1** Let $\tilde{\gamma}$ denote either $\gamma$ or $\gamma'$, and let $Z$ be the result of the surgery on $T = S^1 \times \gamma \subset X$ which kills $S^1 \times pt \times pt \subset S^1 \times \tilde{\gamma} \times \partial D^2 \subset S^1 \times (M_K \# K \setminus (m_0' \cup m_0''))$. Then $Z$ is the double branched cover of the manifold $W$ obtained from $E(1)_K$ by a surgery on a circle $S^1 \times \{\text{point on } \tilde{\gamma}\}$ (trading a neighborhood $S^1 \times D^3$ for $D^2 \times S^2$). The branch set in $W$ of this cover consists of a pair of disjoint 2–spheres of self-intersection 0.

**Proof** As we have seen in the proof of Proposition \ref{prop:branch}, the deck transformation of $X \to E(1)_K$ in a neighborhood $S^1 \times \tilde{\gamma} \times D^2$ of $T$ is given by $\tau(t, z, w) = (t, \bar{z}, \rho(w))$ where $\rho$ is reflection through the imaginary axis. The manifold $Z$ is:

$$Z = (X \setminus (S^1 \times \tilde{\gamma} \times D^2)) \cup_{\vartheta} (S^1 \times S^1 \times D^2)$$

where $\vartheta(t, z, w) = (w, z, t)$. Then the diagram

$$
\begin{array}{ccc}
S^1 \times S^1 \times \partial D^2 & \xrightarrow{\vartheta} & S^1 \times S^1 \times \partial D^2 \\
\downarrow{\phi} & & \downarrow{\vartheta} \\
S^1 \times \tilde{\gamma} \times \partial D^2 & \xrightarrow{\tau} & S^1 \times \tilde{\gamma} \times \partial D^2
\end{array}
$$

(9)

commutes, where $\vartheta(t, z, w) = (\rho(t), \bar{z}, w)$. Thus $\vartheta$ extends the deck transformation $\tau$ over the surgered manifold $Z$.

The quotient $(S^1 \times S^1 \times D^2)/\tau \cong S^1 \times (D^2 \times I) \cong S^1 \times D^3$, but $(S^1 \times S^1 \times D^2)/\vartheta \cong S^2 \times D^2$, since the action of $\vartheta$ restricted to $S^1 \times S^1 \times \{\text{pt}\}$ is equivalent to the action of the deck transformation of the double covering $T^2 \to S^2$ with four branch points. Thus the effect of the surgery on the base is to perform surgery on the circle $S^1 \times \{\text{pt}\} \subset S^1 \times D^3$. Before performing the surgery, the branch set consists of two tori. Since the fixed point set of $\vartheta$ on $S^1 \times S^1 \times D^2$ is $\{\pm i\} \times \{\pm 1\} \times D^2$, the surgery trades a pair of annuli for four disks. Removing the annuli leaves us with a pair of complementary annuli in the branch set, and the addition of the four disks caps them off, giving a pair of 2–spheres.

To see that the components of the branch set of $W$ have self-intersection 0, first consider the branch torus $S^1 \times m_1$ of $X$. Write $m_1 = J_1 \cup J_2$, the union of two
intervals meeting only at their endpoints. We do this so that the intersection of $S^1 \times m_1$ with $(S^1 \times S^1 \times D^2)/\tau \cong S^1 \times D^3$ is $S^1 \times J_2$ where $J_2 \cap \partial D^3 = \partial J_2$. Then the corresponding component of the branch set in $W$ is $(S^1 \times J_1) \cup (D^2 \times \partial J_2)$. In $X$ we can isotop $S^1 \times m_1$ slightly by moving $m_1$ to $\bar{m}_1 = I_1 \cup I_2$ in $M_K$; so that $\bar{m}_1 \cap m_1 = \emptyset$, $\bar{m}_1 \cap D^3 = I_2$, and $I_2 \cap \partial D^3 = \partial I_2$. Then in $W$, $(S^1 \times I_1) \cup (D^2 \times \partial I_2)$ is disjoint from $(S^1 \times J_1) \cup (D^2 \times \partial J_2)$. □

Let $\Gamma_i$ denote the components of the branch set in $Z$. The $\Gamma_i$ are also 2–spheres of self-intersection 0.

In $X$ there is a ‘section class’ $C$ which arises from the sections of the elliptic fibrations on the copies of $E(1)$. To build a representative for $C$, start with a fixed Seifert surface $B_0$ of $K\#K$ which is a fiber of the fibration of $S^3 \setminus K\#K \to S^1$. The boundary of $B_0$ is capped off by the 2–disk introduced when we do 0–surgery on $K\#K$ to form $M_{K\#K}$. The tori $S^1 \times m_0$ and $S^1 \times m_0''$ which are identified with fibers of $E(1)'$ and $E(1)''$ each intersect $\{pt\} \times B_0$ in a single point. Remove disks in $\{pt\} \times B_0$ about each of these points. The boundaries then bound disks of self-intersection $-1$, sections of $E(1)$ minus the neighborhood of a fiber. The union of these surfaces gives a genus–2 surface of self-intersection $-2$ representing $C$.

The loop $\bar{\gamma} \subset X$ is contained in a Seifert surface for $K\#K$, and we may assume that it is disjoint from $B_0$. Thus the surgery torus, $S^1 \times \bar{\gamma}$ is disjoint from $C$. Since $C \cdot (S^1 \times m_1) = C \cdot F' = 1$, after surgery in $Z$, we still have $C \cdot \Gamma_1 = 1$; so $\Gamma_1$ is an essential 2–sphere in $Z$ (and similarly for $\Gamma_2$). Thus $Z$ contains an essential 2–sphere of self-intersection 0, and that means that $SW_Z = 0$.[1]

**Theorem 8.2** $T$ and $T'$ are essential and homologous Lagrangian tori of $X$; however, there is no orientation-preserving diffeomorphism $f$ of $X$ with $f(T) = T'$.

**Proof** We have $SW_{X_T(1,0,0)} = 0$, $SW_{X_T(0,1,0)} = 0$, and, since $X_T(0,0,1) = X$, $SW_{X_T(0,0,1)} = (t_F^2 - 1 + t_F^{-2})^2$. Hence $I(X,T) = \{r(t_F^2 - 1 + t_F^{-2})^2 | r \in \mathbb{Z}\}$. On the other hand, $SW_{X_T(1,0,0)} = 0$, $SW_{X_T(0,1,0)} = 1$, and $X_T(0,0,1) = X$; so $I(X,T') = \{q + r(t_F^2 - 1 + t_F^{-2})^2 | q,r \in \mathbb{Z}\}$. This concludes the proof since $I(X,T)$ is an orientation-preserving diffeomorphism invariant of $(X,T)$. □

Auroux, Donaldson, and Katzarkov have shown in [1] that the surgery manifolds $X_T(0,k,1)$ and $X_T(0,k,1)$ are symplectic for all $k \in \mathbb{Z}$. The corresponding Seiberg–Witten invariants are $SW_{X_T(0,k,1)} = (t_F^2 - 1 + t_F^{-2})^2$ and $SW_{X_T(0,k,1)} = k + (t_F^2 - 1 + t_F^{-2})^2$. Note that the leading coefficient of these polynomials is $\pm 1$, as required by Taubes’ theorem.
References

[1] D Auroux, S K Donaldson, L Katzarkov, Luttinger surgery along Lagrangian tori and non-isotopy for singular symplectic plane curves, Math. Ann. 326 (2003) 185–203 MR1981618

[2] G Burde, H Zieschang, Knots, de Gruyter, Berlin (1985) MR0808776

[3] T Etgu, B D Park, Non-isotopic symplectic tori in the same homology class, Trans. Amer. Math. Soc. 356 (2004) 3739–3750 MR2055752

[4] R Fintushel, R Stern, Immersed spheres in 4–manifolds and the immersed Thom conjecture, Turkish J. Math. 19 (1995) 145–157 MR1349567

[5] R Fintushel, R Stern, Knots, links, and 4–manifolds, Invent. Math. 134 (1998) 363–400 MR1650308

[6] R Fintushel, R Stern, Symplectic surfaces in a fixed homology class, J. Differential Geom. 52 (1999) 203–222 MR1738295

[7] R. Fintushel, R. Stern, Invariants for Lagrangian tori, preprint arXiv:math.SG/0304402

[8] R Gompf, A Stipsicz, 4–manifolds and Kirby calculus, Amer. Math. Soc., Providence, RI (1999) MR1707327

[9] T Kanenobu, Module d’Alexander des nœuds fibrés et polynôme de Hosokawa des lacements fibrés, Math. Sem. Notes Kobe Univ. 9 (1981) 75–84 MR0633997

[10] C McMullen, C Taubes, 4–manifolds with inequivalent symplectic forms and 3–manifolds with inequivalent fibrations, Math. Res. Lett. 6 (1999) 681–696 MR1739225

[11] G Meng, C Taubes, $SW = Milnor$ torsion, Math. Res. Lett. 3 (1996) 661–674 MR1418579

[12] H Morton, J Montesinos, Fibred links from closed braids, Proc. London Math. Soc. (3) 62 (1991) 167–201 MR1078219

[13] J Morgan, T Mrowka, Z Szabo, Product formulas along $T^3$ for Seiberg–Witten invariants, Math. Res. Lett. 4 (1997) 915–929 MR1492130

[14] B D Park, A gluing formula for the Seiberg–Witten invariant along $T^3$, Michigan Math. J. 50 (2002) 593–611 MR1935154

[15] D Rolfsen, Knots and links, Publish or Perish, Berkeley, Calif. (1976) MR0515288

[16] C Taubes, The geometry of the Seiberg–Witten invariants, from: “Surveys in differential geometry Vol. III”, Int. Press, Boston, MA (1996) 299–339 MR1677891

[17] C Taubes, The Seiberg–Witten invariants and 4–manifolds with essential tori, Geom. Topol. 5 (2001) 441–519 MR1833751

Geometry & Topology Monographs, Volume 7 (2004)
Tori in symplectic 4–manifolds

[18] V Turaev, Reidemeister torsion in knot theory, Uspekhi Mat. Nauk 41 (1986) 97–147, 240 MR0832411

[19] S Vidussi, Symplectic tori in homotopy E(1)’s, (to appear in Proc. Amer. Math. Soc.)

[20] S Vidussi, Lagrangian surfaces in a fixed homology class: existence of knotted Lagrangian tori, (to appear in J. Diff. Geom.)

[21] E Witten, Monopoles and four–manifolds, Math. Res. Lett. 1 (1994) 769–796 MR1360021

Department of Mathematics, Michigan State University
East Lansing, Michigan 48824, USA
and
Department of Mathematics, University of California
Irvine, California 92697, USA

Email: ronfint@math.msu.edu, rstern@math.uci.edu