BRAIDED AUTOEQUIVALENCES AND QUANTUM COMMUTATIVE
BI-GALOIS OBJECTS

YINHUO ZHANG AND HAIXING ZHU

Abstract. Let \((H, R)\) be a quasitriangular weak Hopf algebra over a field \(k\). We show that there is a braided monoidal equivalence between the Yetter-Drinfeld module category \(\mathcal{YD}_H\) over \(H\) and the category of comodules over some braided Hopf algebra \(R_H\) in the category \(\mathcal{H}\). Based on this equivalence, we prove that every braided bi-Galois object \(A\) over the braided Hopf algebra \(R_H\) defines a braided autoequivalence of the category \(\mathcal{YD}_H\) if and only if \(A\) is quantum commutative.

In case \(H\) is semisimple over an algebraically closed field, i.e. the fusion case, then every braided autoequivalence of \(\mathcal{YD}_H\) trivializable on \(\mathcal{H}\) is determined by such a quantum commutative Galois object. The quantum commutative Galois objects in \(\mathcal{H}\) form a group measuring the Brauer group of \((H, R)\) as studied in [20] in the Hopf algebra case.

Introduction

Let \(\mathcal{C}\) be a braided fusion category \(\mathcal{C}\), that is, a fusion category equipped with a braiding. Denote by \(\mathbb{Z}(\mathcal{C})\) the Drinfeld center of \(\mathcal{C}\). The braided autoequivalences of \(\mathbb{Z}(\mathcal{C})\) play important roles in the study of braided fusion categories, see [3, 4, 7]. For example, auto-equivalences were used to classify \(G\)-extensions of a given fusion category, see [7]. In order to classify \(G\)-extensions of a given fusion category \(\mathcal{C}\) using the classical homotopy theory, P. Etingof, D. Nikshych and V. Ostrik introduced in [7] a 3-groupoid \(\mathbb{BP}(\mathcal{C})\), called the Brauer-Picard groupoid of \(\mathcal{C}\). This 3-groupoid can be truncated in the usual way into the Brauer-Picard group \(\mathbb{BP}(\mathcal{C})\) of \(\mathcal{C}\), i.e. the group of the equivalence classes of invertible \(\mathcal{C}\)-bimodule categories. It turns out that there is a natural group isomorphism [7, Thm 1.1]:

\[\mathbb{BP}(\mathcal{C}) \cong \text{Aut}^{br}_{\mathcal{Z}(\mathcal{C})}(\mathbb{Z}(\mathcal{C}))\]

where \(\text{Aut}^{br}(\mathbb{Z}(\mathcal{C}))\) is the group of isomorphism classes of braided autoequivalences of \(\mathbb{Z}(\mathcal{C})\). The name "Brauer-Picard group" speaks for itself that the group \(\mathbb{BP}(\mathcal{C})\) has a close relation with the Brauer group \(\text{Br}(\mathcal{C})\) of the category \(\mathcal{C}\) which classifies the Azumaya algebras in \(\mathcal{C}\), see [19]. In fact, every Azumaya algebra in \(\mathcal{C}\) defines an invertible \(\mathcal{C}\)-bimodule category, so that \(\text{Br}(\mathcal{C})\) forms a subgroup of \(\mathbb{BP}(\mathcal{C})\). The characterization of the Brauer group \(\text{Br}(\mathcal{C})\) in the group \(\text{Aut}^{br}(\mathbb{Z}(\mathcal{C}))\) has been done by A. Davydov and D. Nikshych in [3], where the braided autoequivalences corresponding to the Azumaya algebras are those trivializable on the base category \(\mathcal{C}\), that is, \(\text{Br}(\mathcal{C}) \cong \text{Aut}^{br}(\mathbb{Z}(\mathcal{C}), \mathcal{C})\).

Now we look at braided fusion categories from the angle of weak Hopf algebras. Let \(k\) be an algebraically closed field. It is well known that a braided fusion category \(\mathcal{C}\) is equivalent to the category \(\mathcal{H}\) of finite dimensional modules over some finite dimensional quasitriangular semisimple weak
Hopf algebra \((H, R)\) over \(k\), see \([5, 14, 15]\). When the weak Hopf algebra \(H\) happens to be a Hopf algebra, we know that the Brauer group of \(\mathcal{C}\) is the Brauer group \(\text{BM}(H, R)\) of \((H, R)\) consisting of Azumaya \(H\)-module algebras, see \([19]\). In this case, the Brauer group \(\text{BM}(H, R)\) can be characterized by the quantum commutative Galois objects over the braided Hopf algebra \(RH\), the transmutation of the quasitriangular Hopf algebra \((H, R)\), see \([20]\). In fact, we have the following general exact sequence of groups:

\[
1 \longrightarrow \text{Br}(k) \longrightarrow \text{BM}(H, R) \longrightarrow \text{Gal}^q_c(RH),
\]

where \(\text{Gal}^q_c(RH)\) is the group of quantum commutative bi-Galois objects over \(RH\), and \(k\) does not need to be algebraically closed. Now the question is whether the group \(\text{Gal}^q_c(RH)\) is isomorphic to \(\text{Aut}^{br}(\mathcal{Z}(\mathcal{C}), \mathcal{C})\), where \(\mathcal{C} = H.\mathcal{M}\). The answer is positive, see \([5]\). The proof is based on the fact that an autoequivalence of the comodule category over a Hopf algebra \(H\) is defined by a bi-Galois object over \(H\). We don’t know whether this fact still holds for a weak Hopf algebra. However, one direction is always true, that is, a bi-Galois object over a weak Hopf algebra \(H\) defines an autoequivalence of the comodule category over \(H\). In case \(H\) is semisimple over an algebraically closed field, i.e. the braided category \(H.\mathcal{M}_{fd}\) is a fusion category, we can show that both groups \(\text{Gal}^q_c(RH)\) and \(\text{Aut}^{br}(\mathcal{Z}(\mathcal{C}), \mathcal{C})\) are isomorphic to the Brauer group \(\text{BM}(H, R)\), see \([21]\). To obtain the isomorphisms, we first construct a braided Hopf algebra \(RH\) from a quasitriangular weak Hopf algebra \((H, R)\). Unlike the Hopf algebra case, the original algebra \(H\) can not be deformed into a Hopf algebra in the category of \(H\)-modules using Majid’s transmutation theory. Here our braided Hopf algebra \(RH\) is nested on some centralizer subalgebra of \(H\), see \([10]\).

The next step is to use the braided Hopf algebra \(RH\) to describe the Drinfeld center of the category of left \(H\)-modules using the category of left \(RH\)-comodules. Our result is the following (see Theorem 2.5).

Theorem 1 Let \((H, R)\) be a quasitriangular weak Hopf algebra over a field \(k\). Then the category of Yetter-Drinfeld modules over \(H\) is equivalent to the category of left comodules over the braided Hopf algebra \(RH\) as a braided monoidal category.

Following \([16]\) Thm 5.2 we know that a braided bi-Galois object \(A\) over a braided Hopf algebra \(H\) in a braided monoidal category \(\mathcal{C}\) defines an autoequivalence of the category \(\mathcal{C}^H\) of comodules over \(H\). Now we can apply this result to the braided Hopf algebra \(RH\) in the braided monoidal category \(H.\mathcal{M}\) of a weak quasitriangular Hopf algebra \((H, R)\). Following Theorem 1, we know that the category of left comodules over \(RH\) is braided. Thus a natural question arises: when is the autoequivalence defined by a braided bi-Galois object \(A\) over \(RH\) a braided autoequivalence? Our answer is as follows (see Theorem 3.6):

Theorem 2 Let \((H, R)\) be a quasi-triangular weak Hopf algebra over a field \(k\). Assume that \(A\) is a braided bi-Galois object. Then the functor \(A \boxtimes -\) defines a braided autoequivalence of the category of Yetter-Drinfeld modules if and only if \(A\) is quantum commutative.

As a consequence, we obtain the following result:

Theorem 3 Let \(\mathcal{C}\) be a braided fusion category. Then the Drinfeld center of \(\mathcal{C}\) is equivalent to the category of finite dimensional left comodules over some braided Hopf algebra \(RH_{\mathcal{C}}\). If \(A\) is a braided bi-Galois object over \(RH_{\mathcal{C}}\), then the functor \(A \boxtimes -\) defines a braided autoequivalence of the Drinfeld center of \(\mathcal{C}\) trivializable on \(\mathcal{C}\) if and only if \(A\) is quantum commutative.
The paper is organized as follows. In Section 1, we recall some necessary definitions such as a weak Hopf algebra, a Yetter-Drinfeld module and the Drinfeld center of a monoidal category. In Section 2, we show that the category of Yetter-Drinfeld modules over a quasitriangular weak Hopf algebra \((H, R)\) is equivalent to the category of left comodules over the braided Hopf algebra \(R H\). In Section 3, we show that a braided bi-Galois object \(A\) over \(R H\) defines a braided autoequivalence of the category of Yetter-Drinfeld modules if and only if \(A\) is quantum commutative. Such a braided autoequivalence is trivializable on the base category \(H\). In case \((H, R)\) is semisimple and \(k\) is algebraically closed, then every braided auto-equivalence of \(R H\) trivializable on \(H\) is given by a quantum commutative Galois object over \(R H\). The proof will be given in the forthcoming paper [21] as it is a consequence of the exact sequence of the Brauer group. In the last section, we compute the braided Hopf algebras \(R H\) of the face algebras defined by Hayashi in [8] and the quantum commutative Galois objects over \(R H\).

1. Preliminaries

Throughout this paper \(k\) is a fixed field. Unless otherwise stated, unadorned tensor products will be over \(k\). For a coalgebra over \(k\), the coproduct will be denoted by \(\Delta\). We adopt Sweedler’s notation for the comultiplication in [18], e.g., \(\Delta(a) = a_1 \otimes a_2\).

We assume that the reader is familiar with the notions of a (braided) monoidal category, a ribbon or a modular category (see [9]) as well as a braided fusion category in [6]. Moreover, we make free use of the notions of algebras, bialgebras and Hopf algebras in a braided monoidal category, see [12].

1.1. Weak Hopf algebras. We first recall the notion of a weak Hopf algebra. For more detail on weak Hopf algebras, the reader is referred to [1]. A weak Hopf algebra \(H\) is a \(k\)-algebra \((H, m, \mu)\) and a \(k\)-coalgebra \((H, \Delta, \varepsilon)\) such that the following axioms hold:

\[
\begin{align*}
(i) & \quad \Delta(hk) = \Delta(h)\Delta(k), \\
(ii) & \quad \Delta^2(1) = 1_1 \otimes 1_2 1'_1 \otimes 1'_2 = 1_1 \otimes 1'_1 1_2 \otimes 1'_2, \\
(iii) & \quad \varepsilon(hkl) = \varepsilon(hk_1)\varepsilon(k_2) = \varepsilon(hk_2)\varepsilon(k_1l), \\
(iv) & \quad \text{There exists a } k\text{-linear map } S : H \rightarrow H, \text{ called the antipode, satisfying}
\end{align*}
\]

\[
\begin{align*}
h_1S(h_2) &= \varepsilon(1_1h)1_2, & S(h_1)h_2 &= 1_1\varepsilon(h_12), & S(h) &= S(h_1)h_2S(h_3),
\end{align*}
\]

for all \(h, k, l \in H\). We have two idempotent linear maps \(\varepsilon_t, \varepsilon_s : H \rightarrow H\) defined respectively by

\[
\varepsilon_t(h) = \varepsilon(1_1h)1_2, \quad \varepsilon_s(h) = 1_1\varepsilon(h1_2),
\]

called the target map and the source map respectively. Their images \(H_t\) and \(H_s\) are called the target space and the source space respectively. In fact, \(H_t\) and \(H_s\) are Frobenius-separable subalgebras of \(H\). Moreover, the following equations hold:

\[
\begin{align*}
(1) & \quad h_1 \otimes h_2S(h_3) = 1_1h \otimes 1_2, \\
(2) & \quad S(h_1)h_2 \otimes h_3 = 1_1 \otimes h1_2, \\
(3) & \quad h_1 \otimes S(h_2)h_3 = h1_1 \otimes S(1_2),
\end{align*}
\]
Definition 1.2. Let H be a weak Hopf algebra with a bijective antipode S. A quasi-triangular weak Hopf algebra is a pair (H, R), where

$$R = R^1 \otimes R^2 \in \Delta^{\text{cop}}(1)(H \otimes_k H)\Delta(1),$$

satisfies the following conditions:

\begin{align*}
(1) & \quad (id \otimes \Delta)R = R_{13}R_{12}, \\
(2) & \quad (\Delta \otimes id)R = R_{13}R_{23}, \\
(3) & \quad \Delta^{\text{cop}}(h)R = R\Delta(h),
\end{align*}

where $h \in H, R_{12} = R \otimes 1, R_{23} = 1 \otimes R$, etc. Moreover, there exists an element $\overline{R} \in \Delta(1)(H \otimes_k H)\Delta^{\text{cop}}(1)$ such that $\overline{R}R = \Delta^{\text{cop}}(1)$ and $R\overline{R} = \Delta(1)$. Such an element R is often called an R-matrix. In particular, (H, R) is called a triangular weak Hopf algebra if $\overline{R} = R^2 \otimes R^1$.

For any $y \in H_s$ and $z \in H_t$, the following equations hold:

\begin{align*}
(11) & \quad (1 \otimes z)R = R(z \otimes 1), \\
(12) & \quad (z \otimes 1)R = (1 \otimes S(z))R, \\
(13) & \quad R(y \otimes 1) = R(1 \otimes S(y)), \\
(14) & \quad (\varepsilon \otimes id)(R) = \Delta(1), \\
(15) & \quad (id \otimes \varepsilon)(R) = (S \otimes id)\Delta^{\text{cop}}(1), \\
(16) & \quad (id \otimes \varepsilon)(R) = (S \otimes id)\Delta(1).
\end{align*}

1.2. Modules over weak Hopf algebras. Let H be a weak Hopf algebra. Denote by \mathcal{M}_H the category of left H-modules. Then \mathcal{M}_H forms a monoidal category $(\mathcal{M}_H, \otimes, H_1, a, l, r)$ as follows:

(i) for any two objects M and N in \mathcal{M}_H,

$$M \otimes_1 N = \{ \sum m_i \otimes n_i \in M \otimes N | \sum \Delta(1)(m_i \otimes n_i) = \sum m_i \otimes n_i \}.$$
(ii) for any two objects M and N in $\mathbb{H}^\mathbb{M}$, the H-module structure on $M \otimes_\mathbb{I} N$ is as follows: $h \cdot (m \otimes_\mathbb{I} n) = h_1 \cdot m \otimes_\mathbb{I} h_2 \cdot n$ for all $h \in H$ and $m \in M$ and $n \in N$;

(iii) H_t is the unit object with H-action $h \cdot z = \varepsilon_t(hz)$, where $h \in H$, $z \in H_t$, and the k-linear maps l_M, r_M and their inverses are given by

\[l_M(1_1 \cdot z \otimes 1_2 \cdot m) = z \cdot m, \quad l_M^{-1}(m) = 1_1 \cdot 1_H \otimes 1_2 \cdot m \]

\[r_M(1_1 \cdot m \otimes 1_2 \cdot z) = S(z) \cdot m, \quad r_M^{-1}(m) = 1_1 \cdot m \otimes 1_2, \]

for any $z \in H_t$ and $m \in M$, where M is an object in $\mathbb{H}^\mathbb{M}$.

If (H, R) is a quasi-triangular weak Hopf algebra, then the category $\mathbb{H}^\mathbb{M}$ can be equipped with a braiding C as follows [14 Prop. 5.2]:

\[C_{M,N}(m \otimes_\mathbb{I} n) = R^2 \cdot n \otimes_\mathbb{I} R^1 \cdot m, \quad \text{for all } m \in M \text{ and } n \in N, \]

where M and N are any two objects in $\mathbb{H}^\mathbb{M}$.

1.3. Yetter-Drinfeld modules and the Drinfeld center.

Definition 1.3. Let H be a weak Hopf algebra. A left H-module M is called a left *Yetter-Drinfeld module* if (M, ρ^L) is a left H-comodule such that the following two conditions:

(i) $\rho^L(m) = m_{[-1]} \otimes m_{[0]} \in H \otimes_\mathbb{I} V$,

(ii) $(h \cdot m)_{[-1]} \otimes (h \cdot m)_{[0]} = h_1 m_{[-1]} S(h_3) \otimes h_2 \cdot m_{[0]}$, are satisfied for all $h \in H$ and $m \in M$. For a Yetter-Drinfeld module M, we have the identity:

\[m_{[-1]} \otimes m_{[0]} = m_{[-1]} S(1_2) \otimes 1_1 \cdot m_{[0]}, \quad \text{for } m \in M. \]

Denote by \mathbb{YD}_H^H the category of left Yetter-Drinfeld modules. A Yetter-Drinfeld morphism is both left H-linear and left H-colinear. If the antipode S is bijective, then \mathbb{YD}_H^H is a braided monoidal category with the braiding given by

\[C_{V,W}(v \otimes w) = v_{[-1]} \cdot w \otimes v_{[0]}, \]

where $v \in V \in \mathbb{YD}_H^H$ and $w \in W \in \mathbb{YD}_H^H$. In particular, if (H, R) is a quasi-triangular weak Hopf algebra, then every left H-module M is automatically a left Yetter-Drinfeld module with the following left coaction:

\[\rho^L(m) = R^2 \otimes R^1 \cdot m, \quad \forall m \in M. \]

It is easy to see that the category $\mathbb{H}^\mathbb{M}$ is a braided monoidal subcategory of \mathbb{YD}_H^H.

Definition 1.4. Let H be a weak Hopf algebra with a bijective antipode S. An algebra A in \mathbb{YD}_H^H is called *quantum commutative* if the following equation:

\[xy = (x_{[-1]} \cdot y)x_{[0]} \]

holds for all $x, y \in A$.

Definition 1.5. Let H be a weak Hopf algebra with a bijective antipode. The left *Drinfeld center* $\mathcal{Z}(\mathbb{H}^\mathbb{M})$ of the monoidal category $\mathbb{H}^\mathbb{M}$ is the category, whose objects are pairs $(U, \nu_{U, -})$, where U is an object of $\mathbb{H}^\mathbb{M}$ and $\nu_{U, -}$ is a natural family of isomorphisms, called *half-braidings*:

\[\nu_{U,V} : U \otimes V \rightarrow V \otimes U, \quad \forall V \in \mathbb{H}^\mathbb{M} \]

satisfying the Hexagon Axiom. Similarly, one can define the right Drinfeld center of $\mathbb{H}^\mathbb{M}$.

Lemma 1.6. [2] Thm 2.6] Let H be a weak Hopf algebra with bijective antipode. Then $\mathcal{Z}(H, M)$ is equivalent to $\mathcal{H}(H, M)$ as a braided monoidal category.

2. The Drinfeld center of a quasi-triangular weak Hopf algebra

Let H be a quasi-triangular weak Hopf algebra. In this section, we show that there is a braided monoidal equivalence between the Drinfeld center of the category of left H-modules and the category of left comodules over some braided Hopf algebra.

Denote by $C_H(H_s)$ the centralizer subalgebra of H_s in H. Clearly, $C_H(H_s) = \{1_hS(1)| \forall h \in H\}$. The algebra $C_H(H_s)$ is a left H-module algebra with the adjoint action: $h \cdot x = h_1 x S(h_2)$ for all $h \in H$ and $x \in C_H(H_s)$.

Now we need Majid’s transmutation theory in the case of a quasi-triangular weak Hopf algebra. Recall Theorem 3.11 from [10].

Lemma 2.1. Let (H, R) be a quasi-triangular weak Hopf algebra. Then $C_H(H_s)$ is a Hopf algebra in the braided monoidal category $\mathcal{H}(H, M)$ with the following structures:

(i) the multiplication $\overline{\mu}$ and the unit $\overline{\eta}$ are defined by:
$$\overline{\mu} : C_H(H_s) \otimes C_H(H_s) \rightarrow C_H(H_s), \quad a \otimes b \mapsto (1_1 \cdot a)(1_2 \cdot b),$$
$$\overline{\eta} = \text{Id}_H : H \rightarrow C_H(H_s), \quad x \mapsto x.$$

(ii) The comultiplication $\overline{\Delta}$ and the counit $\overline{\varepsilon}$ are given by:
$$\overline{\Delta} : C_H(H_s) \rightarrow C_H(H_s) \otimes C_H(H_s), \quad x \mapsto x_1 S(R^2) \otimes R^1 \cdot x_2,$$
$$\overline{\varepsilon} = \varepsilon_t : C_H(H_s) \rightarrow H, \quad x \mapsto \varepsilon_t(x).$$

(iii) The antipode is \overline{S} defined by
$$\overline{S} : C_H(H_s) \rightarrow C_H(H_s), \quad x \mapsto R^2 R^2 S(R^1 x S(R^1)) .$$

Moreover, $R H$ is cocommutative cocentral in the sense of [17].

A Hopf algebra in a braided monoidal category is usually called a braided Hopf algebra in case the category does not need to be mentioned. In the sequel, we shall call the Hopf algebra $C_H(H_s)$ in \mathcal{H} a braided Hopf algebra and denote it by $R H$.

Definition 2.2. [12] Let H be a quasitriangular weak Hopf algebra. Let M be a left H-module. We call (M, ρ^l) a left $R H$-comodule in the category \mathcal{H} if (M, ρ^l) is a left $R H$-comodule such that ρ^l is left H-linear, i.e.,
$$\rho^l(h \cdot m) = h_1 \cdot m(-1) \otimes h_2 \cdot m(0), \forall h \in H, \quad m \in M.$$
Let \((M, \rho')\) and \((N, \rho')\) be two left \(_R H\)-comodules. The tensor product \(M \otimes_N N\) is a left \(_R H\)-comodule with the following comodule structure:

\[
 h \cdot (m \otimes n) = h_1 \cdot m \otimes h_2 \cdot n, \quad \rho'(m \otimes n) = (\overline{h} \otimes 1 \otimes 1)(1 \otimes C \otimes 1)(\rho \otimes \rho')(m \otimes n),
\]

where \(m \in M\), \(n \in N\), \(h \in H\) and \(C\) is the braiding in \(_H \mathcal{M}\).

Denote by \(\mathcal{H}^H(M, \mathcal{M})\) the category of left \(_R H\)-comodules. Note that a morphism in \(\mathcal{H}^H(M, \mathcal{M})\) is both left \(H\)-linear and left \(_R H\)-colinear. It is easy to see that the category \(\mathcal{H}^H(M, \mathcal{M})\) is a monoidal category with the unit object given by \(H\).

Now we discuss the relation between the category \(\mathcal{H}^H(M, \mathcal{M})\) and the category of left Yetter-Drinfeld \(H\)-modules.

Lemma 2.3. Let \(H\) be a quasitriangular weak Hopf algebra. If \((M, \rho')\) is a left \(_R H\)-comodule, then \(M\) is a left Yetter-Drinfeld \(H\)-module with the following \(H\)-comodule structure:

\[
 \rho^L(m) = m_{(-1)} R^2 \otimes R^1 \cdot m_{(0)} \in H \otimes M,
\]

where \(\rho'(m) = m_{(-1)} \otimes m_{(0)}\) for all \(m \in M\).

Proof. For any \(m \in M\), we first have

\[
 1_m m_{(-1)} R^2 \otimes 1^2 R^1 \cdot m_{(0)} = m_{(-1)} 1 R^2 \otimes 1^2 R^1 \cdot m_{(0)} = m_{(-1)} R^2 \otimes R^1 \cdot m_{(0)}.
\]

So \(\rho^L(M) \in H \otimes M\). Namely, \(\rho^L\) is well-defined.

Next we verify that \((M, \rho^L)\) is a left \(H\)-comodule. For the coassociativity, we have:

\[
(1 \otimes \rho^L)(\rho^L) = (1 \otimes \rho^L)(m_{(-1)} R^2 \otimes R^1 \cdot m_{(0)}).
\]

The counit axiom holds as well because we have:

\[
(\varepsilon \otimes 1) \rho^L(m) = \varepsilon(m_{(-1)} R^2)(R^1 \cdot m_{(0)}) \stackrel{(5)}{=} \varepsilon(m_{(-1)} \varepsilon(R^2))(R^1 \cdot m_{(0)})
\]

\[
(\varepsilon \cdot 1 \otimes 1) \rho^L(m) = \varepsilon(m_{(-1)} 1_R)(S(1 \otimes 1) \cdot m_{(0)}) = \varepsilon(m_{(-1)} 1_R)(S(1 \otimes 1) \cdot m_{(0)}) = \varepsilon(m_{(-1)} 1_R)(1_R \cdot m_{(0)}) = \varepsilon(1_R m_{(-1)})(1_R \cdot m_{(0)}) = m.
\]
where the last equality follows from the counit of a left \(R H \)-comodule, namely,

\[
l \circ (\varepsilon_1 \otimes 1)(m_{(-1)} \otimes m_{(0)}) = \varepsilon_1(m_{(-1)}) \cdot m_{(0)} = m.
\]

Finally, the compatible condition holds since

\[
h_1(m_{(-1)}R^2) \otimes h_2 \cdot [R^1 \cdot m_{(0)}] = h_11_{[-1]}S(1_2)R^2 \otimes h_2R^1 \cdot m_{(0)}
\]

\[
\overset{(3)}{=} h_11_{[-1]}S(h_2)h_3R^2 \otimes h_4R^1 \cdot m_{(0)}
\]

\[
\overset{(10)}{=} h_11_{[-1]}S(h_2)R^2h_4 \otimes R^1h_3 \cdot m_{(0)}
\]

\[
= (h_1 \cdot m)_{[-1]}R^2h_2 \otimes R^1 \cdot (h_1 \cdot m_{(0)}).
\]

for all \(m \in M \) and \(h \in H \).

The following lemma says that the converse of Lemma 2.3 is also true.

Lemma 2.4. Let \(H \) be a quasitriangular weak Hopf algebra with an antipode \(S \). If \((N, \rho^L) \) is a left Yetter-Drinfeld module, then \(N \) is a left \(R H \)-comodule with the following structure:

\[\rho^l(n) = n_{[-1]}S(R^2) \otimes R^1 \cdot n_{[0]}, \]

where \(\rho^l(n) = n_{[-1]} \otimes n_{[0]} \) for all \(n \in N \).

Proof. First of all, we need to check that \(\rho^l \) is well-defined. For any \(n \in N \),

\[
1_{[-1]}[n_{[-1]}S(R^2)S(1_2) \otimes R^1 \cdot n_{[0]}] = 1_{[-1]}n_{[-1]}S(1_2R^2) \otimes R^1 \cdot n_{[0]}
\]

\[
\overset{(11)}{=} 1_{[-1]}n_{[-1]}S(R^2) \otimes R^11_2 \cdot n_{[0]}
\]

\[
= 1_{[-1]}n_{[-1]}S(R^2) \otimes R^1 \cdot (1_2 \cdot n_{[0]})
\]

\[
= n_{[-1]}S(R^2) \otimes R^1 \cdot n_{[0]};
\]

\[
1 \cdot [n_{[-1]}S(R^2)] \otimes 1_2R^1 \cdot n_{[0]} = [n_{[-1]}S(R^2)]S(1_1) \otimes 1_2R^1 \cdot n_{[0]}
\]

\[
= [n_{[-1]}S(1_1R^2)] \otimes 1_2R^1 \cdot n_{[0]}
\]

\[
= [n_{[-1]}S(R^2)] \otimes R^1 \cdot n_{[0]}.
\]

So \(\rho^l(N) \subset R H \otimes_1 N \). The \(H \)-linearity of the map \(\rho^l \) follows from the equations below:

\[
h_1 \cdot [n_{[-1]}S(R^2)] \otimes h_2R^1 \cdot n_{[0]} = h_1n_{[-1]}S(R^2)S(h_2) \otimes h_3R^1 \cdot n_{[0]}
\]

\[
= h_1n_{[-1]}S(h_2R^2) \otimes h_3R^1 \cdot n_{[0]}
\]

\[
\overset{(10)}{=} h_1n_{[-1]}S(R^2h_3) \otimes R^1h_2 \cdot n_{[0]}
\]

\[
= (h_1n_{[-1]}S(h_3))S(R^2) \otimes R^1 \cdot (h_2 \cdot n_{[0]})
\]

\[
= (h \cdot n)_{[-1]}S(R^2) \otimes R^1 \cdot (h \cdot n_{[0]} = \rho^l(h \cdot n),
\]
for all $h \in H$. Now we show that (N, ρ^l) is a left R^H-comodule. For any $n \in N,$

\[
(1 \otimes \rho^l)(n) = n_{(-1)}S(R^2) \otimes (R^1 \cdot n_{(0)}) = n_{(-1)}S(R^2) \otimes R^1 \cdot n_{(0)}[11]
\]

\[
= n_{(-1)}S(R^2) \otimes R^1 \cdot n_{(0)}[12]
\]

\[
= n_{(-1)}S(R^2) \otimes R^1 \cdot n_{(0)}[13]
\]

\[
= n_{(-1)}S(R^2) \otimes R^1 \cdot n_{(0)}[14]
\]

\[
= n_{(-1)}S(R^2) \otimes R^1 \cdot n_{(0)}[15]
\]

\[
= n_{(-1)}S(R^2) \otimes R^1 \cdot n_{(0)}[16]
\]

\[
= n_{(-1)}S(R^2) \otimes R^1 \cdot n_{(0)}[17]
\]

\[
= \sum_{n_{(-1)}S(r^2)} \otimes R^1 \cdot n_{(0)} = (\Delta \otimes 1)\rho^l(n).
\]

Hence the coassociativity holds. Finally, we verify that ε_i satisfies the counit axiom:

\[
\varepsilon_i(n_{(-1)}S(R^2)) \cdot (R^1 \cdot n_{(0)}) = (\varepsilon_i(n_{(-1)}S(R^2))R^1) \cdot n_{(0)}[18]
\]

\[
= (\varepsilon_i(n_{(-1)}S(R^2))R^1) \cdot n_{(0)}[19]
\]

\[
= (12R^1 \cdot n_{(0)} \varepsilon(1_1) \varepsilon(1_{(-1)}S(R^2))) = (12S(1_1^2)) \cdot n_{(0)} \varepsilon(1_{(-1)}S(1_1^2))
\]

\[
= 12 \cdot n_{(0)} \varepsilon(1_{(-1)}S(1_1)) = n.
\]

Therefore, (N, ρ^l) is a left R^H-comodule.

Combining Lemma 2.3 and Lemma 2.4, we obtain the following theorem.

Theorem 2.5. Let (H, R) be a quasitriangular weak Hopf algebra. Then there is a monoidal equivalence F from the category $H^R_H(M)$ of left R^H-comodules to the category $H^R_H(D)$ of left Yetter-Drinfeld modules:

\[
F: H^R_H(M) \rightarrow H^R_H(D), \quad (M, \rho^l) \mapsto (M, \rho^r),
\]

where ρ^r is defined in Lemma 2.3. The quasi-inverse of F is

\[
G: H^R_H(D) \rightarrow H^R_H(M), \quad (N, \rho^r) \mapsto (N, \rho^l),
\]

where ρ^l is defined in Lemma 2.4.

Proof. We show first that $GF(M) = M$ for any object M in $H^R_H(M)$. It is enough to verify that $\rho^l(m) = m_{(-1)} \otimes m_{(0)}$ for all $m \in M$. Indeed,

\[
\rho^l(m) = m_{(-1)}S(R^2) \otimes R^1 \cdot m_{(0)}[20]
\]

\[
= m_{(-1)}rS(R^2) \otimes R^1 \cdot [r \cdot m_{(0)}] = m_{(-1)}rS(R^2) \otimes (R^1r) \cdot m_{(0)}[21]
\]

\[
= m_{(-1)}S(R^2) \otimes R^1 \cdot m_{(0)}[22]
\]

\[
= m_{(-1)}S(R^2) \otimes 1 \cdot m_{(0)}[23]
\]

\[
= S^{-1}(1_2) \cdot m_{(-1)} \otimes S(1_1) \cdot m_{(0)}[24]
\]

\[
= 1_2 \cdot m_{(-1)} \otimes S(1_1) \cdot m_{(0)}[25]
\]

\[
= m_{(-1)} \otimes m_{(0)}[26]
\]

Thus, $GF(M) = M$. The proof is complete.

\[\square\]
Next we show that $\mathcal{F} \mathcal{G}(N) = N$ for any object of $\mathcal{H}' \mathcal{D}$. For all $n \in N$,

\[
\rho^L(n) = n_{(-1)} R^2 \otimes R^1 \cdot n_{(0)} = n_{(-1)} S(r^2) R^2 \otimes R^1 \cdot (r^1 \cdot n_{(0)}) \\
= n_{(-1)} S(r^2) R^2 \otimes (R^1 r^1) \cdot n_{(0)} \overset{(\delta)}{=} n_{(-1)} \varepsilon_s R^2 \otimes R^1 \cdot n_{(0)} \\
\overset{(14)}{=} n_{(-1)} 1_{1} \otimes S(1_{2}) \cdot n_{(0)} = n_{(-1)} S(1_{2}) \otimes 1_{1} \cdot n_{(0)} \\
= 1_{1} n_{(-1)} S(1_{2}) \otimes 1_{1} \cdot (1_{2} \cdot n_{(0)}) = 1_{1} n_{(-1)} S(1_{3}) \otimes 1_{2} \cdot n_{(0)} \\
= n_{(-1)} \otimes n_{(0)}.
\]

Finally, we verify that the triple $(\mathcal{G}, \text{Id}, \text{Id})$ is monoidal. It is clear that $\mathcal{G}(H_t) = H_t$. For any two left Yetter-Drinfeld modules U and V, the left RH-comodule structure on $\mathcal{G}(U) \otimes \mathcal{G}(V)$ is as follows:

\[
(\mu \otimes 1 \otimes 1)(1 \otimes C \otimes 1)(\rho^L \otimes \rho^R)(u \otimes v) = (\mu \otimes 1 \otimes 1)(1 \otimes C \otimes 1)(u_{(-1)} \otimes u_{(0)} \otimes n_{(-1)} \otimes v_{(0)}) = (\mu \otimes 1 \otimes 1)(u_{(-1)} \otimes R^2 \cdot v_{(-1)} \otimes R^1 \cdot u_{(0)} \otimes v_{(0)}) = u_{(-1)}(R^2 \cdot v_{(-1)}) \otimes R^1 \cdot u_{(0)} \otimes v_{(0)},
\]

where $u \in U$ and $v \in V$. Now we have

\[
u_{(-1)}(R^2 \cdot v_{(-1)}) \otimes R^1 \cdot u_{(0)} \otimes v_{(0)} = (u_{(-1)} S(p^2)) R^2(\nu_{(-1)} S(q^2)) S(R^2) \otimes R^1 \cdot (p^1 \cdot u_{(0)} \otimes q^1 \cdot v_{(0)}) \\
\overset{(8)}{=} (u_{(-1)} S(p^2)) r^2(\nu_{(-1)} S(q^2)) S(R^2) \otimes (R^1 r^1 p^1) \cdot u_{(0)} \otimes q^1 \cdot v_{(0)} \\
\overset{(8)}{=} u_{(-1)} \varepsilon_s r^2(\nu_{(-1)} S(q^2)) S(R^2) \otimes (R^1 r^1) \cdot u_{(0)} \otimes q^1 \cdot v_{(0)} \\
\overset{(14)}{=} u_{(-1)} S(1_{2})(\nu_{(-1)} S(q^2)) S(R^2) \otimes (R^1 1_{1}) \cdot u_{(0)} \otimes q^1 \cdot v_{(0)} \\
= u_{(-1)} S(1_{2})(\nu_{(-1)} S(q^2)) S(R^2) \otimes R^1 \cdot (1_{1} \cdot u_{(0)} \otimes q^1 \cdot v_{(0)}) \\
= u_{(-1)} (\nu_{(-1)} S(q^2)) S(R^2) \otimes R^1 \cdot u_{(0)} \otimes q^1 \cdot v_{(0)} \\
= (u_{(-1)} \nu_{(-1)} S(q^2)) S(R^2) \otimes R^1 \cdot u_{(0)} \otimes q^1 \cdot v_{(0)} \\
\overset{(9)}{=} (u_{(-1)} \nu_{(-1)} S(q^2)) S(R^2) \otimes R^1 \cdot (u_{(0)} \otimes v_{(0)}) \\
= [u \otimes v]_{(-1)} S(R^2) \otimes R^1 \cdot (u \otimes v)_{(0)} = \rho^L(u \otimes v).
\]

Hence, $\mathcal{G}(U \otimes V) = \mathcal{G}(U) \otimes \mathcal{G}(V)$. The verification of the other axioms for a monoidal functor are obvious.

Since the category of Yetter-Drinfeld modules is braided, the equivalence \mathcal{G} in Theorem 2.5 induces a braiding in the category of left RH-comodules such that the equivalence becomes braided.

Corollary 2.6. Let (H, R) be a quasitriangular weak Hopf algebra. Then the category of left RH-comodules is a braided monoidal category with a braiding \tilde{C} given by

\[
\tilde{C}(u \otimes v) = u_{(-1)} R^2 \cdot v \otimes R^1 \cdot u_{(0)}, \quad \forall u \in U, \forall v \in V,
\]

where U and V are any two left RH-comodules. The inverse of \tilde{C} is given by

\[
\tilde{C}^{-1}(v \otimes u) = R^1 \cdot u_{(0)} \otimes S^{-1}(u_{(-1)} R^2) \cdot v.
\]

Moreover, the functor \mathcal{G} in Theorem 2.5 gives a braided monoidal equivalence.
Proof. Consider the following commutative diagram of isomorphisms:

\[
\begin{array}{ccc}
G(U) \otimes G(V) & \overset{C_{G(U),G(V)}}{\longrightarrow} & G(U \otimes V) \\
G(V) \otimes G(U) & \overset{\cong}{\longrightarrow} & G(V \otimes U),
\end{array}
\]

where the horizontal isomorphisms are given by
\[Id : G(X) \otimes G(Y) \cong G(Y \otimes X)\]. Thus, the braiding \(\tilde{C}\) is just the composition \(Id^{-1} \circ C_{U,V} \circ Id\). In fact, we have

\[
\tilde{C}_{U,V}(u \otimes v) = Id \circ C_{U,V} \circ Id(u \otimes v) = Id \circ C_{U,V}(u \otimes v) = Id(u_{[-1]} \cdot v \otimes u_{[0]}) = u_{(-1)} R^2 \cdot v \otimes R^1 \cdot u_{(0)}.
\]

Similarly, one can obtain the inverse of \(\tilde{C}\).

By Lemma 1.6 and Corollary 2.6 we obtain the following corollary.

Corollary 2.7. Let \((H, R)\) be a quasitriangular weak Hopf algebra. Then the Drinfeld center \(Z_l(HM)\) of left \(H\)-modules is equivalent to the category \(^{RH}(HM)\) of left \(RH\)-comodules as a braided monoidal category.

As a special case, we have the following corollary on a quasitriangular Hopf algebra:

Corollary 2.8. Let \((H, R)\) be a quasitriangular Hopf algebra. Then the Drinfeld center of left \(H\)-modules is equivalent to the category of left \(RH\)-comodules as a braided monoidal category.

Remark 2.9. (i) when \(H\) is a finite dimensional quasitriangular Hopf algebra, the functor \(G\) was first proved in [20] to have a right adjoint.

(ii) Let \(H\) be a finite dimensional quasitriangular Hopf algebra. Following [11] Prop 4.1] the quantum double \(D(H)\) is isomorphic to a semidirect product \(A \rtimes H\), where \(A = H^*\) is a braided Hopf algebra. By Corollary 2.8 we may choose \(A\) as the dual braided Hopf algebra \((RH)^*\). Thus we have the following equivalences of braided monoidal categories:

\[
(\langle RH \rangle^* \rtimes H, M) \cong D(H, M) \cong ^{H \otimes H}(\mathcal{Y} \mathcal{D}) \cong Z_l(H, M).
\]

In case \(H\) is infinite dimensional, we have neither the usual quantum double \(D(H)\) nor the dual braided Hopf algebra \((RH)^*\). But Corollary 2.8 always holds for any (finite or infinite dimensional) quasitriangular Hopf algebra over any field (or even over a commutative ring). In particular, the Drinfeld center is naturally equivalent to the category of comodules over \(B\mathcal{U}_q(g)\) studied in [11].

3. Quantum commutative Galois objects

In this section we study (braided) Galois objects over the Braided Hopf algebra \(RH\) of a finite dimensional quasitriangular weak Hopf algebra \((H, R)\). We shall construct braided autoequivalences of the Drinfeld center of \(H, M\) from braided bi-Galois objects. For the details about braided Galois objects over a braided Hopf algebra one is referred to [16, 17].
Let \((H, R)\) be a finite dimensional quasitriangular weak Hopf algebra. An object \(X\) in \(H\mathcal{M}\) is flat if tensoring with \(X\) preserves equalizers. A flat object \(X\) is called faithfully flat if tensoring with \(X\) reflects isomorphisms. It is not hard to see that \(RH\) is flat in the category \(H\mathcal{M}\) since \(RH\) is finite and has a dual object.

Definition 3.1. \([16]\) An algebra \(A\) in \(H\mathcal{M}\) is called a left \(RH\)-comodule algebra if \(A\) is a left \(RH\)-comodule such that the left comodule map \(\rho^l\) satifies:

\[
\rho^l(ab) = a_{(-1)}(R^2 \cdot b_{(-1)}) \otimes (R^1 \cdot a_{(0)})b_{(0)},
\]

for all \(a, b \in A\), where \(\rho^l(a) = a_{(-1)} \otimes a_{(0)}\). Namely, \(\rho^l\) is an algebra map in \(H\mathcal{M}\).

Similarly, an algebra \(A\) in \(H\mathcal{M}\) is called a right \(RH\)-comodule algebra if \(A\) with a right \(RH\)-coaction \(\rho^r\) is a right \(RH\)-comodule such that

\[
\rho^r(ab) = a_{(0)}(R^2 \cdot b_{(0)}) \otimes (R^1 \cdot a_{(1)})b_{(1)},
\]

where \(a, b \in A\) and \(\rho^r(a) = a_{(0)} \otimes a_{(1)}\). An \(RH\)-bicomodule algebra is both a left and a right \(RH\)-comodule algebra such that the left and the right coactions commute.

Now let \(A\) be a right \(RH\)-comodule algebra. The subalgebra

\[
A_0 = \{a \in A | \rho^r(a) = a \otimes 1 = 1 \cdot a \otimes 1\}
\]

is called the coinvariant subalgebra. Similarly, one can define the coinvariant subalgebra of a left \(RH\)-comodule algebra. An \(RH\)-coinvariant subalgebra \(A_0\) is said to be trivial if \(A_0 = H_r\).

Definition 3.2. \([17]\) Defn 2.1] Let \(A\) be a right \(RH\)-comodule algebra. \(A\) is called a right braided \(RH\)-Galois object if \(A\) is faithfully flat and the morphism

\[
\beta : A \otimes_t A \longrightarrow A \otimes_t RH, \quad a \otimes b \longmapsto ab(0) \otimes b_{(1)}
\]

is an isomorphism. Similarly, one can define a left braided \(RH\)-Galois object and a braided bi-Galois object.

The coinvariant subalgebra \(A_0\) of a right \(RH\)-Galois object \(A\) is trivial. So is the coinvariant subalgebra of a left \(RH\)-Galois object \(A\). Moreover, it is not hard to see that \((RH, \tau_{RH}, \ldots)\) is an object in the Drinfeld center \(\mathcal{Z}(H, \mathcal{M})\), where \(\tau_{RH}\) is a half-braiding

\[
\tau_{RH,M} : RH \otimes M \longrightarrow M \otimes RH, \quad h \otimes m \longmapsto r^2 R^1 \cdot m \otimes r^1 hR^2.
\]

Since \(RH\) is cocommutative cocentral, for any left \(RH\)-comodule \((M, \rho^l)\), by \([17]\) there exists a natural right comodule structure induced by the half-braiding \(\tau_{RH,M} : RH \otimes M \longrightarrow M \otimes RH\),

\[
\rho^r = \tau_{RH,M} \circ \rho^l : M \longrightarrow RH \otimes M \longrightarrow M \otimes RH,
\]

so that \((M, \rho^l, \rho^r)\) becomes an \(RH\)-bicomodule. By \([17]\) we call \(M\) cocommutative if the right \(RH\)-comodule is induced by the left \(RH\)-comodule as above.

Definition 3.3. A cocommutative braided bi-Galois object \(A\) is called a quantum commutative Galois object if \(A\) is quantum commutative as an algebra in \(H^2 \mathcal{D}\).
By Theorem 2.5 and Corollary 2.6, a left Yetter-Drinfeld module is an \mathcal{H}-bicomodule in \mathcal{H}-\mathcal{M}. Thus we can consider the cotensor product $M \square_{nH} N$, or $M \square N$ for convenience, for two left Yetter-Drinfeld modules M and N:

$$M \square N = \{m \otimes_t n \in M \otimes_t N | \rho^a(m) \otimes_t n = m \otimes_t \rho^b(n),$$

or precisely,

$$M \square N = \{m \otimes n \in M \otimes N | r^2 \cdot m_{[0]} \otimes r^1 m_{[-1]} \otimes n = m \otimes n_{[-1]} S(R^2) \otimes R^1 \cdot n_{[0]} \}.$$ \hspace{1cm} (18)

If A is a braided \mathcal{H}-bi-Galois object, by [16] we have an isomorphism:

$$\xi : (A \square M) \otimes_t (A \square N) \cong A \square (M \otimes_t N),$$

given by $\xi((a \otimes m) \otimes (b \otimes n)) = a(R^2 \cdot b) \otimes R^1 \cdot m \otimes n$, for all $a, b \in A$, $m \in M$ and $b \in N$. Following [17] the cotensor functor $A \square -$ is a monoidal autoequivalence of $\mathcal{H}(\mathcal{H},\mathcal{M})$.

Lemma 3.4. Let (H, R) be a finite dimensional quasitriangular weak Hopf algebra. If A is a quantum commutative Galois object, then the functor $A \square -$ is a braided autoequivalence of $\mathcal{H}(\mathcal{H},\mathcal{M})$.

Proof. Let A be a quantum commutative Galois object. By Theorem 2.5 and [19] it suffices to verify that the following diagram is commutative:

$$\begin{array}{ccc}
(A \square M) \otimes_t (A \square N) & \xrightarrow{\cdot \left(\tilde{C}_{ADM, ADN}\right)} & A \square (M \otimes_t N) \\
\downarrow & & \downarrow \left(\ast\right) \\
(A \square N) \otimes_t (A \square M) & \xrightarrow{\cdot \left(\tilde{C}_{M,N}\right)} & A \square (N \otimes_t M)
\end{array}$$

Indeed, on the one hand, for any $a \otimes m \in A \square M$ and $b \otimes n \in A \square N$, we have:

$$\begin{array}{l}
\xi[(a \otimes m)(-1)^2 \cdot (b \otimes n) \otimes r^1 \cdot (a \otimes m)(0)] \\
\xi[a(-1)^2 \cdot (b \otimes n) \otimes r^1 \cdot (a(0) \otimes m)] \\
\xi[a(-1)^2 \cdot b \otimes a(-1) a(0) \otimes r^1 \cdot a(0) \otimes r^1 \cdot m] \\
[a(-1)^2 \cdot b[R^2 r^1 \cdot a(0)] \otimes R^1 a(-1) a(0) \otimes n \otimes r^1 \cdot m] \\
[a(-1)^2 \cdot b[S(q^2)r^2_1 \cdot b[R^2 r^1 q^1 \cdot a(0)] \otimes R^1 a(-1) a(0) \otimes n \otimes r^1 \cdot m] \\
[a(-1)^2 \cdot b[S(q^2)r^2_1 \cdot b[R^2 r^1 q^1 \cdot a(0)] \otimes R^1 a(-1) a(0) \otimes n \otimes r^1 \cdot m] \\
[a(-1)^2 \cdot b[R^2 r^1 q^1 \cdot a(0)] \otimes R^1 a(-1) a(0) \otimes n \otimes p \cdot r^1 \cdot m] \\
[a(-1)^2 \cdot b[R^2 r^1 q^1 \cdot a(0)] \otimes R^1 a(-1) a(0) \otimes n \otimes p \cdot r^1 \cdot m] \\
[a(-1)^2 \cdot b[R^2 r^1 q^1 \cdot a(0)] \otimes R^1 a(-1) a(0) \otimes n \otimes p \cdot r^1 \cdot m] \\
[a(-1)^2 \cdot b[R^2 r^1 q^1 \cdot a(0)] \otimes R^1 a(-1) a(0) \otimes n \otimes p \cdot r^1 \cdot m] \\
[a(-1)^2 \cdot b[R^2 r^1 q^1 \cdot a(0)] \otimes R^1 a(-1) a(0) \otimes n \otimes p \cdot r^1 \cdot m] \\
[a(-1)^2 \cdot b[R^2 r^1 q^1 \cdot a(0)] \otimes R^1 a(-1) a(0) \otimes n \otimes p \cdot r^1 \cdot m]
\end{array}$$

where Corollary 2.6 and Lemma 2.4 were used in the first and fifth equality, respectively. On the other hand, we have:

$$(1 \otimes \tilde{C}) \circ \xi[(a \otimes m) \otimes (b \otimes n)]$$
\[a(r^2 \cdot b) \otimes \tilde{C}(r^1 \cdot m \otimes n) = a(r^2 \cdot b) \otimes (r^1 \cdot m)(-1)W^2 \cdot n \otimes W^1 \cdot (r^1 \cdot m)(0) = a(r^2 \cdot b) \otimes (r^1 \cdot m(-1))W^2 \cdot n \otimes W^1 r^2_1 \cdot m_0 = a(r^2 \cdot b) \otimes r^1_m m(-1)S(r^2_1)W^2 \cdot n \otimes W^1 r^3_1 \cdot m_0 = a(r^2 \cdot b) \otimes r^1_m m(-1)S(R^2)S(r^2_1)W^2 \cdot n \otimes W^1 r^3_1 R^1 \cdot m_0 = a(r^2 \cdot b) \otimes r^1_m m(-1)S(r^2_1 R^2)W^2 \cdot n \otimes W^1 r^3_1 R^1 \cdot m_0 = a(r^2 \cdot b) \otimes r^1_m m(-1)S(r^3_1)S(R^2)W^2 \cdot n \otimes W^1 r^3_1 R^1 \cdot m_0 = a(r^2 \cdot b) \otimes r^1_m m(-1)S(r^3_1) \cdot n \otimes r^2_1 \cdot m_0 = a(r^2 \cdot b) \otimes r^1_m m(-1)S(12)S(r^3_1) \cdot n \otimes r^2_1 R^1 \cdot m_0 \]

\(^{(14)}\)

A braided autoequivalence. We have the commutative diagram (14). Let \(H, R \) be a finite dimensional quasitriangular weak Hopf algebra. Assume that \(A \) is a braided bi-Galois object. If the functor \(\mathcal{A} \) defines a braided autoequivalence of \({}^H H \), then \(A \) is quantum commutative.

Proof. Assume that the functor \(\mathcal{A} \) defines a braided autoequivalence. We have the commutative diagram (A). Let \(M \) and \(N \) be two left \(RH \)-comodules. Following the proof of Lemma 3.3, we obtain
the following equation:
\[a_{(0)}(r^2 \cdot b) \otimes r_1^1 a_{(1)} p^2 S(r_3^1) \cdot n \otimes r_2^1 p^1 \cdot m \]
(19)
\[= [a_{(-1)} r_1^1 b][R^2 r_1^1 \cdot a_{(0)}] \otimes R^1 a_{(-1)} r_2^2 \cdot n \otimes r_2^1 \cdot m, \]
for all \(a \otimes m \in A \square M \) and \(b \otimes n \in A \square N \). Now let \(M = RH \). Since \(a_{(0)} \otimes a_{(1)}, b_{(0)} \otimes b_{(1)} \in A \square RH \), we may substitute them for the elements \(a \otimes m \) and \(b \otimes n \) in the above equation and obtain the following equation:
\[a_{(0)}(r^2 \cdot b_{(0)}) \otimes (r^1 \cdot a_{(1)})[-1] \cdot b_{(1)} \otimes (r^1 \cdot a_{(1)})[0] \]
\[= [a_{(-1)} r_1^1 b_{(0)}][R^2 r_1^1 \cdot a_{(0)}] \otimes R^1 a_{(-1)} r_2^2 \cdot b_{(1)} \otimes r_2^1 \cdot a_{(1)}. \]
Now we apply the map \(1 \otimes \varepsilon_t \otimes \varepsilon_t \) to the foregoing equality and obtain the following:
\[[a_{(-1)} r_1^1 b_{(0)}][R^2 r_1^1 \cdot a_{(0)}] \otimes \varepsilon_t(R^1 a_{(-1)} r_2^2 \cdot b_{(1)}) \varepsilon_t(r_2^1 \cdot a_{(1)}) \]
\[= a_{(0)}(r^2 \cdot b_{(0)}) \otimes \varepsilon_t[(r^1 \cdot a_{(1)})[-1] \cdot b_{(1)}] \varepsilon_t[(r^1 \cdot a_{(1)})[0]]. \]
Since \(\varepsilon_t \) is an algebra map in the category \(H \square \mathcal{M} \) and \(A \) is a right \(RH \)-comodule algebra, we have
\[[a_{(-1)} r^2 \cdot b][r^1 \cdot a_{(0)}] = ab, \]
which is equivalent to
\[ab = (a_{[-1]} \cdot b)a_{[0]}. \]
Thus \(A \) is quantum commutative.

Now we show that \(A \) is cocommutative. Namely, we need to verify that the right coaction \(\rho^L \) on \(A \) is induced by its left coaction \(\rho^L \) and the half-braiding. Note that the regular left \(H \)-module \(H \) has an induced Yetter-Drinfeld module structure, where the comodule structure is given by
\[\rho^L(h) = R^2 \otimes R^1 h := h_{[-1]} \otimes h_{[0]} \]
By Lemma 2.4 we have a left \(RH \)-comodule structure on \(H \), where \(\rho^L(h) = 1 \otimes_k h \) for any \(h \in H \). Namely, \((H, \rho^L)\) is a trivial left \(RH \)-comodule. Now consider \(A \square RH \) and \(A \square H \). Note that \(1_A \otimes_1 H \in A \square H \) and \(a_{(0)} \otimes a_{(1)} \in A \square RH \). Using Equation (19) we easily get:
\[a_{(0)}(r^2 \cdot 1_A) \otimes r_1^1 a_{(1)} p^2 S(r_3^1) \otimes r_2^1 p^1 \cdot a_{(2)} \]
\[= [a_{(-1)} r_1^1 1_A][R^2 r_1^1 \cdot a_{(0)}] \otimes R^1 a_{(-1)} r_2^2 \otimes r_2^1 \cdot a_{(1)}. \]
Now on the one hand, we have:
\[a_{(0)}(r^2 \cdot 1_A) \otimes r_1^1 a_{(1)} p^2 S(r_3^1) \otimes r_2^1 p^1 \cdot a_{(2)} \]
\[= a_{(0)}(\varepsilon_t(r^2) \cdot 1_A) \otimes r_1^1 a_{(1)} p^2 S(r_3^1) \otimes r_2^1 p^1 \cdot a_{(2)} \]
(15) \[= a_{(0)}(1^L_2 \cdot 1_A) \otimes S(I^L_1) 1_1 a_{(1)} p^2 S(1_3) \otimes 1_2 p^1 \cdot a_{(2)} \]
\[= 1^L_1 \cdot a_{(0)} \otimes 1_2^L 1_1 a_{(1)} p^2 S(1_3) \otimes 1_2 p^1 \cdot a_{(2)} \]
\[= a_{(0)} \otimes 1_1 a_{(1)} p^2 S(1_3) \otimes 1_2 p^1 \cdot a_{(2)} \]
\[= a_{(0)} \otimes a_{(1)} p^2 S(1_3) \otimes 1_1 p^1 \cdot a_{(2)} \]
(11) \[= a_{(0)} \otimes a_{(1)} p^2 \otimes p^1 \cdot a_{(2)}. \]
On the other hand, we have:
\[[a_{(-1)} r_1^1 1_A][R^2 r_1^1 \cdot a_{(0)}] \otimes R^1 a_{(-1)} r_2^2 \otimes r_2^1 \cdot a_{(1)} \]
\[= a_{(0)} \otimes a_{(1)} p^2 \otimes p^1 \cdot a_{(2)} \]
(11)
= \varepsilon_s(a_{(-1)} r_1) \cdot 1_A [R^2 r_1^1 \cdot a_{(0)}] \otimes R^1 a_{(-1)} r_2^1 \otimes r_2^1 \cdot a_{(1)} \\
= [\varepsilon_s(a_{(-1)} 1) \cdot 1_A [R^2 r_1^1 \cdot a_{(0)}] \otimes R^2 a_{(-1)} r_2^1 \otimes r_2^1 \cdot a_{(1)} \\
\overset{\text{(4)}}{=} [\varepsilon_s(a_{(-1)} S(1)) \cdot 1_A [R^2 r_1^1 \cdot a_{(0)}] \otimes R^1 a_{(-1)} r_2^1 \otimes r_2^1 \cdot a_{(1)} \\
= [\varepsilon_s(a_{(-1)} 1) \cdot 1_A [R^2 r_1^1 \cdot a_{(0)}] \otimes R^1 a_{(-1)} r_2^1 \otimes r_2^1 \cdot a_{(1)} \\
= [1_1 \cdot 1_A [R^2 r_1^1 \cdot a_{(0)}] \otimes R^1 a_{(-1)} r_2^1 \otimes r_2^1 \cdot a_{(1)} \\
= S(1) R^2 r_1^1 \cdot a_{(0)}] \otimes R^1 a_{(-1)} r_2^1 \otimes r_2^1 \cdot a_{(1)} \\
\overset{\text{(11)}}{=} R^2 r_1^1 \cdot a_{(0)} \otimes R^1 a_{(-1)} r_2^1 \otimes r_2^1 \cdot a_{(1)}. \\

Thus, the following equation holds:

\[a_{(0)} \otimes a_{(1)} p^2 \otimes p^1 \cdot a_{(2)} = R^2 r_1^1 \cdot a_{(0)} \otimes R^1 a_{(-1)} r_2^1 \otimes r_2^1 \cdot a_{(1)} \in A \otimes H \otimes H. \]

Applying the map \((1 \otimes 1 \otimes \varepsilon)\) to right side of the above equation, we obtain:

\[(1 \otimes 1 \otimes \varepsilon)(R^2 r_1^1 \cdot a_{(0)} \otimes R^1 a_{(-1)} r_2^1 \otimes r_2^1 \cdot a_{(1)}) \]
\[\overset{\text{(5)}}{=} R^2 r_1^1 \cdot a_{(0)} \otimes [R^1 a_{(-1)} r_2^1 \varepsilon_s(r_2^1) a_{(1)} S(r_2^1)] \]
\[\overset{\text{(2)}}{=} R^2 r_1^1 \cdot a_{(0)} \otimes [R^1 a_{(-1)} r_2^1 \varepsilon_s(a_{(1)} S(r_2^1))] \]
\[= R^2 r_1^1 \cdot a_{(0)} \otimes [R^1 a_{(-1)} r_2^1 \varepsilon_s(a_{(1)} S(r_2^1))] \]
\[= R^2 r_1^1 \cdot a_{(0)} \otimes [R^1 a_{(-1)} r_2^1 \varepsilon_s(a_{(1)} S(r_2^1))] \]
\[\overset{\text{(3)}}{=} R^2 r_1^1 1_1 \cdot a_{(0)} \otimes [R^1 a_{(-1)} r_2^1 \varepsilon_s(a_{(1)} S^2(1))] \]
\[= R^2 r_1^1 1_1 \cdot a_{(0)} \otimes [R^1 a_{(-1)} r_2^1 \varepsilon_s(a_{(1)} S^2(1))] \]
\[= R^2 r_1^1 1_1 \cdot a_{(0)} \otimes [R^1 a_{(-1)} r_2^1 \varepsilon_s(a_{(1)} S^2(1))] \]
\[= R^2 r_1^1 1_1 \cdot a_{(0)} \otimes [R^1 a_{(-1)} r_2^1 \varepsilon_s(a_{(1)} S^2(1))] \]
\[= R^2 r_1^1 1_1 \cdot a_{(0)} \otimes [R^1 a_{(-1)} r_2^1 \varepsilon_s(a_{(1)} S^2(1))] \]
\[= R^2 r_1^1 1_1 \cdot a_{(0)} \otimes [R^1 a_{(-1)} r_2^1 \varepsilon_s(a_{(1)} S^2(1))] \]
\[= R^2 r_1^1 1_1 \cdot a_{(0)} \otimes [R^1 a_{(-1)} r_2^1 \varepsilon_s(a_{(1)} S^2(1))] \]
\[= R^2 r_1^1 \cdot a_{(0)} \otimes [R^1 a_{(-1)} r_2^1] \]
\[= R^2 r_1^1 \cdot a_{(0)} \otimes [R^1 a_{(-1)} r_2^1] \]
\[= R^2 r_1^1 \cdot a_{(0)} \otimes [R^1 a_{(-1)} r_2^1], \]

where the counit of a right \(RH\)-comodule \(A\) was used in the last equality. Now we have

\[R^2 r_1^1 \cdot a_{(0)} \otimes [R^1 a_{(-1)} r_2^1] = (1 \otimes 1 \otimes \varepsilon)(a_{(0)} \otimes a_{(1)} p^2 \otimes p^1 \cdot a_{(2)}) \]
\[= a_{(0)} \otimes a_{(1)} p^2 \varepsilon(p^1 \cdot a_{(2)}) \]
\[= a_{(0)} \otimes a_{(1)} p^2 \varepsilon_s(p^1 S(p^1)) \]
\[= a_{(0)} \otimes a_{(1)} p^2 \varepsilon_s(a_{(2)} S(p^1)) \]
\[= a_{(0)} \otimes a_{(1)} p^2 \varepsilon_s(a_{(2)} S(p^1)) \]
\[\overset{\text{(14)}}{=} a_{(0)} \otimes a_{(1)} 1_2 \varepsilon_s(a_{(2)} S(1)) \]
\[= a_{(0)} \otimes a_{(1)} 1_2 \varepsilon_s(1 a_{(2)}) \]
\[= a_{(0)} \otimes a_{(1)} \varepsilon_s(a_{(2)}) \]
\[= a_{(0)} \otimes a_{(1)}, \]

where the counit on \(RH\) was used in the last equality. This means that a right \(RH\)-comodule structure on \(A\) is indeed induced by its left \(RH\)-coaction. Therefore, \(A\) is a quantum commutative Galois object. \(\square\)
Summarizing the foregoing arguments, we obtain the main result of this section:

Theorem 3.6. Let (H, R) be a finite dimensional quasitriangular weak Hopf algebra. Assume that A is a braided bi-Galois object. Then the functor $A \Box -$ defines a braided autoequivalence of the category $H_H \mathcal{Y} \mathcal{D}$ of Yetter-Drinfeld modules if and only if A is quantum commutative.

Proof. Assume that A is a braided bi-Galois object. By Lemma 3.4 and Lemma 3.5 the functor $A \Box -$ defines a braided autoequivalence of $H^H(\mathcal{M}, \mathcal{D})$ if and only if A is quantum commutative. Since $H^H(\mathcal{M}, \mathcal{D}) \cong H_H \mathcal{Y} \mathcal{D}$ as braided monoidal categories, the functor $A \Box -$ induces a braided autoequivalence of $H_H \mathcal{Y} \mathcal{D}$ if and only if A is quantum commutative. \qed

Recall that the Drinfeld center $Z(H, \mathcal{D})$ is tensor equivalent to the Yetter-Drinfeld module category $H_H \mathcal{Y} \mathcal{D}$. Thus the functor $A \Box -$ defines a braided autoequivalence of the Drinfeld center if and only if A is quantum commutative. This holds as well for any quasitriangular Hopf algebra.

In order to deal with the case of a braided fusion category, we need to restrict ourself to the category of finite dimensional representations. Denote by $H_0 \mathcal{M}^{\text{f.d}}$ and $H_H \mathcal{Y} \mathcal{D}^{\text{f.d}}$ the category of finite dimensional left H-modules and the category of finite dimensional left Yetter-Drinfeld modules respectively. Then $Z(H_0 \mathcal{M}^{\text{f.d}}, \mathcal{D}) \cong H_H \mathcal{Y} \mathcal{D}^{\text{f.d}}$. Thus, Theorem 3.6 applies to $H_0 \mathcal{M}^{\text{f.d}}$.

Corollary 3.7. Let C be a braided fusion category. Then the Drinfeld center of C is equivalent to the category of finite dimensional left comodules over some braided Hopf algebra RH_C. Moreover, if A is a braided bi-Galois object over RH_C, then the cotensor functor $A \Box -$ defines a braided autoequivalence of the Drinfeld center of C if and only if A is quantum commutative.

Proof. Suppose that C is a braided fusion category. By [15] there exists a semisimple connected weak Hopf algebra H_C such that C is (tensor) equivalent to the category $H_C \mathcal{M}^{\text{f.d}}$ of finite dimensional left H_C-modules. Similar to the proof of Corollary 2.6, one can endow the category $H_C \mathcal{M}^{\text{f.d}}$ with a braiding Φ such that the equivalence between the two categories preserves the braidings. Following [14] Prop 5.2] one can define a quasitriangular structure R on H_C so that the braiding Φ of $H_C \mathcal{M}^{\text{f.d}}$ is induced by the quasi-triangular structure R of H_C. \qed

To end this section, we show that the quantum commutative Galois objects over RH form a subgroup of the group of braided bi-Galois objects (see [16]). In the Hopf algebra case, this subgroup was defined in [20]. In what follows, we fix a finite dimensional quasitriangular weak Hopf algebra (H, R). A Galois object means a braided bi-Galois object over the braided Hopf algebra RH in the category $H \mathcal{D}$. It is easy to see that $RH \boxtimes -$ defines the identity functor of $H^H(\mathcal{M}, \mathcal{D})$. So RH is a quantum commutative Galois object.

Lemma 3.8. If A and B are two quantum commutative Galois objects, so is $A \Box B$.

Proof. Assume that A and B are quantum commutative Galois objects. Then $A \Box -$ and $B \Box -$ are braided autoequivalences. So is the composition $(A \Box B) \Box -$. Thus by Proposition 3.3 $A \Box B$ is quantum commutative. \qed

Let A a bi-Galois object A. One can define a braided bi-Galois object $A^{-1} := (RH \otimes A)^{\text{cop}} H \subset RH \otimes A^{\text{op}}$ such that $A \Box A^{-1} \cong RH$ and $A^{-1} \Box A \cong RH$. For more detail on A^{-1}, one may refer to [16].
Lemma 3.9. If A is a quantum commutative Galois object, so is \(A^{-1} \).

Proof. Suppose that A is a quantum commutative Galois object. The functor \(A \boxtimes - \) is a braided autoequivalence functor. It is easy to see that \(A^{-1} \boxtimes - \) gives the inverse of the functor \(A \boxtimes - \). By Lemma 3.5 the Galois object \(A^{-1} \) is quantum commutative. □

Denote by \(\text{Gal}^{qc}(R\mathcal{H}) \) the set of isomorphism classes of the quantum commutative Galois objects. Let \([A]\) denote the isomorphism class of a quantum commutative Galois object A. By Lemma 3.8 and Lemma 3.9 we obtain the following.

Theorem 3.10. The set \(\text{Gal}^{qc}(R\mathcal{H}) \) forms a group. The multiplication is induced by the cotensor product \(\boxtimes \) over \(R\mathcal{H} \), the identity is given by \([R\mathcal{H}]\) and the inverse of an element \([A]\) is represented by \(A^{-1} \).

It is well-known that the category \(\mathcal{M} \) is braided subcategory of the Yetter-Drinfeld module category \(\mathcal{D} \). If \(M \) is a left \(H \)-module. Then \(M \) possesses a left \(H \)-comodule structure:

\[
\rho^L(m) = R^2 \otimes R^1 \cdot m := m_{[-1]} \otimes m_{[0]},
\]

so that \((M, \rho^L)\) is a left Yetter-Drinfeld module. It follows from Lemma 2.4 that the induced left \(RH \)-comodule structure on \(M \) is trivial, namely, \(\rho^L(m) = 1 \otimes m \) for all \(m \in M \). If \(A \) is a braided bi-Galois object, then \(A \boxtimes M \cong M \). Thus the functor \(A \boxtimes - \) restricts to the identity functor on the category of left \(H \)-modules.

Now we consider the image of the group \(\text{Gal}^{qc}(R\mathcal{H}) \) in the group \(\text{Aut}^br(\mathcal{D})_{\mathcal{M}} \) of braided autoequivalences of the Yetter-Drinfeld module category.

Definition 3.11. \([3, \text{Defn 2.1}]\) A braided autoequivalence \(F \) of \(\mathcal{D} \) is called trivalizable on \(\mathcal{M} \) if the restriction \(F|_{\mathcal{M}} \) is isomorphic to the identity functor as a braided tensor functor.

Denote by \(\text{Aut}^br(\mathcal{D}, \mathcal{M}) \) the group of isomorphism classes of braided autoequivalences of \(\mathcal{D} \) trivalizable on \(\mathcal{M} \).

Corollary 3.12. The group \(\text{Gal}^{qc}(R\mathcal{H}) \) is a subgroup of the group \(\text{Aut}^br(\mathcal{D}, \mathcal{M}) \).

We expect that the two groups are isomorphic for any finite dimensional quasitriangular weak Hopf algebras \((H, R)\). This is the case when \(H \) is a Hopf algebra, see \([3]\). In case \(H \) is semisimple over an algebraically closed field, i.e. the fusion case, the two groups are indeed isomorphic (to the Brauer group of the braided fusion category), see \([21]\) or \([22]\).

Example 3.13. Let \(k \) be a field with \(\text{ch}(k) \not= 2 \). Let \(H_4 \) be the Sweedler 4-dimensional Hopf algebra over \(k \). Namely, \(H_4 \) is generated by two elements \(g \) and \(h \) satisfying

\[
g^2 = 1, \quad h^2 = 0, \quad gh + hg = 0.
\]

The comultiplication, the counit and the antipode are given as follows:

\[
\Delta(g) = g \otimes g, \quad \Delta(h) = 1 \otimes h + h \otimes g \\
\varepsilon(g) = 1, \quad S(g) = g, \quad \varepsilon(h) = 0, \quad S(h) = gh.
\]
It is known that H_4 has a quasitriangular structure R_0. All quantum commutative Galois objects were computed in $[20]$. Moreover, the group $Gal^{qc}(R_0, H)$ is isomorphic to $\Gamma \rtimes Z_2$, where $\Gamma \cong k^\times \times K^*/K^*2$.

4. Face algebras

In this section we compute the groups of quantum commutative Galois objects of a class of weak Hopf algebras, namely, the face algebras introduced by Hayashi in $[8]$.

Let $N \geq 2$ be an integer and \mathbb{Z}_N the cyclic group $\mathbb{Z}/N\mathbb{Z}$. Let $\omega \in \mathbb{C}$ be a primitive Nth root of unity. Let H be the \mathbb{C}-linear span of $\{X_i^j(s) | i, j, s \in \mathbb{Z}_N\}$. H is a quasitriangular weak Hopf algebra equipped with the following structures:

$$\Delta(X_i^j(s)) = \sum_{p+q=s} X_i^j(p) \otimes X_{i+p}^j(q), \quad \varepsilon(X_i^j(s)) = \delta_{s,0},$$

$$X_i^j(p)X_i^k(q) = \delta_{j,k}\delta_{p,q}X_i^j(p), \quad 1 = \sum_{i,p} X_i^i(p),$$

$$S(X_i^j(p)) = X_{i+p}^j(-p),$$

$$R_1 \otimes R_2 = \sum_{i,j,p} X_j^i(p) \otimes X_{j+p}^1(i-j)\omega^{-p(i-j)},$$

$$R_1' \otimes R_2' = \sum_{i,j,p} X_{i+p}^j(-p) \otimes X_{j+p}^i(i-j)\omega^{-p(i-j)},$$

where the target subalgebra H_t of H is the \mathbb{C}-linear span of $\{\sum_p X_i^j(p) | i \in \mathbb{Z}_N\}$. Denote by 1^i the sum $\sum_p X_i^j(p)$ for all $i \in \mathbb{Z}_N$. Then H_t is commutative and is equal to the direct sum $\bigoplus_{i \in \mathbb{Z}_N} \mathbb{C}1^i$.

Now we compute the braided Hopf algebra RH.

Lemma 4.1. The braided Hopf algebra RH is equal to the \mathbb{C}-linear span of $\{X_i^j(p) | i, p \in \mathbb{Z}_N\}$ equipped with the following structures:

$$\Delta'(X_k^i(s)) = \sum_{w+q=s} X_k^i(w) \otimes X_k^i(q), \quad \varepsilon(X_k^i(s)) = \delta_{s,0} \sum_p X_i^i(p),$$

$$X_i^j(p)X_k^j(q) = \delta_{i,k}\delta_{p,q}X_i^j(p), \quad 1 = \sum_{i,p} X_i^i(p),$$

$$S(X_k^i(s)) = X_k^i(-s).$$

Proof. Note that $\Delta(1_R) = \Delta(\sum_{i,s} X_i^i(s)) = \sum_{i,s} \sum_{p+q=s} X_i^i(p) \otimes X_{i+p}^{i+p}(q)$. We have

$$1_R X_n^m(r)S(1_R) = \sum_{i,s} \sum_{p+q=s} X_i^i(p)X_n^m(r)S(X_{i+p}^{i+p}(q))$$

$$= \sum_{i,s} \sum_{p+q=s} X_i^i(p)X_n^m(r)X_{i+p+q}^{i+p+q}(-q)$$

$$= \sum_{i,s} \sum_{p+q=s} \delta_{i,n}\delta_{n,i+p+q}\delta_{p,r}\delta_{q,r}X_{i+p+q}^s$$

$$= \sum_{i} \delta_{i,m}\delta_{n,i}X_i^r = \delta_{m,n}X_n^m(r),$$

for all $m, n, r \in \mathbb{Z}_N$. So RH is the \mathbb{C}-linear span of $\{X_i^j(p) | i, p \in V\}$.
Using the expression $\Delta(R^1) \otimes R^2 = \sum_{i,j,p} \sum_{u+v=p} X^i_j(u) \otimes X^{i+u}_j(v) \otimes X^j_{i+p}(i-j)\omega^{-p(i-j)}$, we compute the deformed comultiplication as follows:

$$\Delta'(X^k_h(s)) = \sum_{u+q=s} X^k_h(w)S(R^2) \otimes R^1 \cdot X^{k+w}_{k+w}(q)$$

$$= \sum_{u+q=s} X^k_h(w)S(R^2) \otimes R^1 X^{k+w}_{k+w}(q)S(R^2)$$

$$= \sum_{u+q=s} \sum_{i,j,p} X^k_h(w)S(X^j_{j+p}(i-j)) \otimes X^j_{j+p}(u)X^{k+w}_{k+w}(q)S(X^{i+u}_j + u(v))\omega^{-p(i-j)}$$

$$= \sum_{u+q=s} \sum_{i,j,p} \sum_{u+v=p} \sum_{i,j,p} X^k_h(w)X^{i+p}(j-i) \otimes X^j_{j+p}(u)X^{k+w}_{k+w}(q)X^{i+u+v}_j(-v)\omega^{-p(i-j)}$$

$$= \sum_{u+q=s} \sum_{i,j,p} \delta_{w,j-i} \delta_{k,i} \delta_{k,j} X^k_h(w) \otimes X^i_j(q)$$

By Lemma 2.1 the antipode is given by $\Xi(x) = R^2 R^2 S^2(R^1)S(R^1x)$. For convenience, we first compute $R^2 S^2(R^1)$. Indeed,

$$R^2 S^2(R^1) = \sum_{i,j,p} X^j_{j+p}(i-j)S^2(X^j_j(p))\omega^{-p(i-j)}$$

$$= \sum_{i,j,p} X^j_{j+p}(i-j)X^i_j(p)\omega^{-p(i-j)}$$

$$= \sum_{i,j,p} \delta_{j+p,i} X^j_{j+p}(i-j)\omega^{-p(i-j)}.$$
Lemma 4.3. For all equipped with the following structures:

\[
\sum_{i} \sum_{j} \delta_{i-k,j} \delta_{j,-s} \delta_{k+s,j} X_{i+s}^{k}(-s) \omega^{-(s(k)+s(j))} = \sum_{i} \sum_{j} \delta_{i-k,j} \delta_{j,-s} \delta_{k+s,j} X_{i+s}^{k}(-s) \omega^{-(s(k)+s(j))}\]

Thus, the proof is completed. \qed

Take \(i \in \mathbb{Z}_{N} \). Define \(H^{i} \) to be the \(\mathbb{C} \)-linear span of \(\{X_{i}(p)|p \in \mathbb{Z}_{N}\} \). It is obvious that \(H^{i} \) is a subalgebra of \(R H \) with unity \(1^{i} \). Moreover, \(R H \) is the direct sum of all these \(H^{i} \), i.e., \(R H = \bigoplus_{i \in \mathbb{Z}_{N}} H^{i} \). We will show that every \(H^{i} \) is also an ordinary Hopf algebra and so \(R H \) is actually the direct sum of all these Hopf algebras. In order to verify that every \(H^{i} \) can be equipped with a coalgebra structure, we need to decompose the vector space \(R H \otimes_{\mathbb{C}} R H \).

Lemma 4.2. \(R H \otimes_{\mathbb{C}} R H = \bigoplus_{i \in \mathbb{Z}_{N}} (H^{i} \otimes H^{i}) \).

Proof. It is equivalent to show that

\[
1_{1} \cdot X_{u}^{a}(b) \otimes 1_{2} \cdot X_{u}^{a}(w) = \delta_{u,a} X_{u}^{a}(b) \otimes X_{u}^{a}(w),
\]

for all \(a, b, u, w \in \mathbb{Z}_{N} \). Indeed, we have

\[
1_{1} \cdot X_{u}^{a}(b) \otimes 1_{2} \cdot X_{u}^{a}(w) = \sum_{i, s} \sum_{p+q=s} X_{i}^{a}(p) \cdot X_{u}^{a}(b) \otimes X_{i+p}^{a}(q) \cdot X_{u}^{a}(w) = \sum_{i, s} \sum_{p+q=s} \delta_{i, u} \delta_{p, 0} X_{i}^{a}(b) \otimes \delta_{i+p, u} \delta_{q, 0} X_{i+p}^{a}(w) = \sum_{i} \delta_{i, u} X_{i}^{a}(b) \otimes \delta_{i, u} X_{i}^{a}(w) = \delta_{u,a} X_{u}^{a}(b) \otimes X_{u}^{a}(w),
\]

for all \(a, b, u, w \in \mathbb{Z}_{N} \). \qed

Lemma 4.3. For all \(i \in \mathbb{Z}_{N} \), \(H^{i} \) is a coalgebra over \(\mathbb{C} 1^{i} \) with the following structures:

\[
\Delta'(X_{i}^{a}(s)) = \sum_{w+q=s} X_{i}^{a}(w) \otimes X_{i}^{a}(q),
\]

\[
\varepsilon_{t}(X_{i}^{a}(s)) = \delta_{s, b} \sum_{p} X_{i}^{a}(p).
\]

Proof. Follows from Lemma 4.1 and Lemma 4.2. \qed

Proposition 4.4. For all \(i \in \mathbb{Z}_{N} \), \(H^{i} \) is a commutative and cocommutative Hopf algebra over \(\mathbb{C} 1^{i} \) equipped with the following structures:

\[
X_{i}^{a}(p) X_{i}^{a}(q) = \delta_{p, q} X_{i}^{a}(p), \quad 1_{H^{i}} = 1^{i},
\]

\[
\Delta'(X_{i}^{a}(s)) = \sum_{w+q=s} X_{i}^{a}(w) \otimes X_{i}^{a}(q),
\]

\[
\varepsilon_{t}(X_{i}^{a}(s)) = \delta_{s, 0} \sum_{p} X_{i}^{a}(p), \quad S(X_{i}^{a}(s)) = X_{i}^{a}(-s).
\]
Proof. Since we know already that H^1 is both an algebra and a coalgebra, it remains to be proved that Δ' and ε_t are multiplicative, and that the axioms of the antipode S hold. We first check that Δ' is multiplicative. Indeed,

$$\Delta'(X^i_s(t))\Delta''(X^i_t(s)) = \sum_{p+q=s} X^i_p \otimes X^i_q \left[\sum_{p'+q'=t} X^i_{p'} \otimes X^i_{q'} \right]$$

$$= \sum_{p+q=s} \sum_{p'+q'=t} [X^i_p X^i_{p'} \otimes X^i_q X^i_{q'}]$$

$$= \sum_{p+q=s} \sum_{p'+q'=t} \delta_{p,p'} \delta_{q,q'} [X^i_p \otimes X^i_q]$$

$$= \delta_{s,t} \sum_{p+q=s} X^i_p \otimes X^i_q$$

$$= \Delta'(X^i_s(t) X^i_t(s)),$$

for all $i, s, u, t \in \mathbb{Z}_N$.

Note that $\Delta'(1) = 1 \otimes 1$. It follows from Lemma 4.2 that $\Delta'(1^i) = 1^i \otimes 1^i$.

Next we verify that ε_t is an algebra map. For all $s, t \in \mathbb{Z}_N$, we have

$$\varepsilon_t(X^i_s(t))\varepsilon_t(X^i_t(s)) = \delta_{s,0} \delta_{t,0} \left(\sum_p X^i_p \right) \left(\sum_q X^i_q \right)$$

$$= \delta_{s,0} \delta_{t,0} \left(\sum_p X^i_p \right) = \delta_{s,t} \delta_{s,0} \varepsilon_t(X^i_s(t))$$

$$= \varepsilon_t(X^i_s(t)) \varepsilon_t(X^i_t(s)).$$

Finally, we prove that the antipode axioms hold. Indeed,

$$m(1 \otimes S) \Delta''(X^i_s(s)) = \sum_{p+q=s} X^i_p S(X^i_q) = \sum_{p+q=s} X^i_p X^i_{-q}$$

$$= \delta_{p,-q} \sum_{p+q=s} X^i_p = \delta_{s,0} \sum_{p \in \mathbb{Z}_N} X^i_p = \varepsilon_t(X^i_s(s)).$$

for any $s \in \mathbb{Z}_N$. Similarly, we also have

$$\sum_{w+q=s} S(X^i_w) X^i_q = \sum_{w+q=s} X^i_{-w} X^i_q = \sum_{w+q=s} \delta_{-w,q} X^i_q$$

$$= \sum_q \delta_{s,0} X^i_q = \varepsilon_t(X^i_s(s)).$$

Hence, H^1 is an ordinary Hopf algebra over $\mathbb{C}1^i$. \hfill \Box

In fact, H^1 is isomorphic to the dual Hopf algebra of the group Hopf algebra $k\mathbb{Z}_N$.

Corollary 4.5. The braided Hopf algebra $\mathcal{R}H$ has a decomposition:

$$\mathcal{R}H = \bigoplus_{i \in \mathbb{Z}_N} H^i,$$

where H^1 is a Hopf algebra over $\mathbb{C}1^i$ with unity 1^i. Moreover, there exists a Hopf algebra isomorphism from H^i to H^j defined by

$$\iota^j_i : X^i_p \rightarrow X^j_p.$$
for all $i,j,p \in \mathbb{Z}_N$.

Proof. Follows from Proposition 4.4. □

Corollary 4.5 indicates that braided bi-Galois objects over $R H$ can be obtained from bi-Galois objects over a Hopf algebra H^i.

Let the notations be as above. Let A be a quantum commutative Galois object over $R H$. Corollary 4.5 implies that there is a decomposition: $A = \bigoplus_{i \in \mathbb{Z}_N} A^i$, where $\rho'(A^i) \in A^i \otimes H^i$. Furthermore, every A^i is just a Galois object over H^i (automatically a bi-Galois object as H^i is cocommutative).

Conversely, given a Galois object A' over Hopf algebra H^i for some $i \in \mathbb{Z}_N$, we can get a quantum commutative Galois object over $R H$ as the direct sum $\bigoplus_{i \in \mathbb{Z}_N} A'^i$, where every algebra A'^i is a copy of A'. Now we state the relation between quantum commutative Galois object over $R H$ and Galois object over H^i as follows:

Proposition 4.6. Let A be a C-algebra with unity. Then A is a quantum commutative Galois object over $R H$ if and only if A is the direct sum $\bigoplus_{i \in \mathbb{Z}_N} A^i$, where every A^i is an H^i-Galois object. Moreover, there exists a group isomorphism

$$\Omega : \text{Gal}^{qc}(R H) \rightarrow \text{Gal}(H^i), \quad A \mapsto A^i,$$

for any fixed $i \in \mathbb{Z}_N$. The inverse of Ω is given as follows:

$$\Omega' : \text{Gal}(H^i) \rightarrow \text{Gal}^{qc}(R H), \quad A' \mapsto \bigoplus_{i \in \mathbb{Z}_N} A'^i.$$

The detailed proof of the statement above is given in [22] following a tedious and long computation.

So the group $\text{Gal}^{qc}(R H)$ can be obtained by computing the group $\text{Gal}(H^i)$ of Galois objects over H^i. Since the Hopf algebra H^i is commutative and cocommutative isomorphic to $k\mathbb{Z}_N$, we know that the group $\text{Gal}(H^i)$ is actually given by the second Galois cohomology group $H^2(\mathbb{Z}_N, k)$.

Acknowledgement

This work forms a part of the PhD thesis of the second named author at University of Hasselt. He would like to thank BOF of UHasselt for the financial support: BOF09-DOC009-R-1964.

References

[1] G. Böhm, F. Nill and K. Szlachányi, Weak Hopf algebras I. Integral theory and C^*-structure, J. Algebra 221 (1999), 385-438.
[2] S. Caenepeel, D. Wang and Y. Yin, Yetter-Drinfeld modules over weak Hopf algebras, Ann. Univ. Ferrara Sez. VII Sci. Mat. 51 (2005), 69-98.
[3] A. Davydov and D. Nikshych, The Picard crossed module of a braided tensor category, Arxiv: 1202.0061v1.
[4] V. Drinfeld, S. Gelaki, D. Nikshych and V. Ostrik, On braided fusion categories I, Sel. Math. New Ser. 16 (2010), 1-119.
[5] J. Dello and Y.H. Zhang, Braided autoequivalences and the equivariant Brauer group of a quasitriangular Hopf algebra, in preparation.
[6] P. Etingof, D. Nikshych and V. Ostrik, On fusion categories, Ann. of Math. 162(2) (2005), 581-642.
[7] P. Etingof, D. Nikshych, V. Ostrik. Fusion categories and homotopy theory, Quantum Topology, 1(3) (2010), 299-273.
[8] T. Hayashi, Face algebras and Unitarity of $SU(N)_L$-TQFT, Comm. Math. Phys. 203 (1999), 211-247.
[9] C. Kassel, Quantum Groups, Graduate texts in mathematics 155, Springer-Verlag, 1995.
[10] G.H. Liu and H.X. Zhu, Braided groups and quantum groupoids, Acta. Math. Hungar. 135(4) (2012), 383-399.
[11] S. Majid, Braided matrix structure of the Sklyanin algebra and of the quantum Lorentz group, Commun. Math. phys. 156 (1993), 607-638.
[12] S. Majid, Foundations of Quantum Group Theory, Cambridge Univ. Press, Cambridge, 1995.
[13] D. Nikshych, On the structure of weak Hopf algebras, Adv. Math. 170 (2002), 257-286.
[14] D. Nikshych, V.Turaev and L. Vainerman, Invariants of knot and 3-manifolds from quantum groupoids, Topology and its application 127 (2003), 91-123.
[15] V. Ostrik, Module categories, weak Hopf algebras and modular invariants, Transform. Groups 8(2) (2003), 177-206.
[16] P. Schauenburg, Braided Bi-Galois objects, Ann. Univ. Ferrara Sez. VII (N.S.) 51 (2005), 199-149.
[17] P. Schauenburg, Braided Bi-Galois objects II: The cocommutative case, J. Algebra 324(11) (2010), 3199-3218.
[18] M.E. Sweedler, Hopf Algebras, Benjamin, New York, 1969.
[19] F. Van Oystaeyen and Y.H. Zhang, The Brauer group of a braided monoidal category, J. Algebra 202 (1998), 96-128.
[20] Y.H. Zhang, An exact sequence of a finite quantum group, J. Algebra 272 (2004), 321-378.
[21] Y.H. Zhang and H.X. Zhu, The Brauer group of a quasitriangular weak Hopf algebra, in preparation.
[22] H.X. Zhu, Brauer groups of braided fusion categories, Ph.D dissertation, September 2012, Hasselt University, Hasselt, Belgium.

Department WNI, University of Hasselt, Universitaire Campus, 3590 Diepenbeek, Belgium

E-mail address: yinhuo.zhang@uhasselt.be

School of Economics and Management, Nanjing Forest University, Longpan Road 159, 210037, China

E-mail address: zhuhaixing@163.com