LETTER • OPEN ACCESS

Exciting and propagating characteristics of two coexisting kinetic geodesic acoustic modes in the edge of plasma

To cite this article: D.F. Kong et al 2017 Nucl. Fusion 57 044003

View the article online for updates and enhancements.

Related content
- Observation of nonlinear couplings between coexisting kinetic geodesic acoustic modes in the edge plasmas of the HT-7 tokamak
 D.F. Kong, A.D. Liu, T. Lan et al.
- Evolutions of zonal flows and turbulence in a tokamak edge plasma during electron cyclotron resonance heating
 D.F. Kong, A.D. Liu, T. Lan et al.
- Properties of Density Fluctuations Induced by Geodesic Acoustic Mode in the Edge of HT-7 Tokamak
 Zhao Hailin, Lan Tao, Liu Adi et al.

Recent citations
- Kinetic theory of geodesic acoustic modes in toroidal plasmas: a brief review
 Zhiyong Qiu et al.
Letter

Exciting and propagating characteristics of two coexisting kinetic geodesic acoustic modes in the edge of plasma

D.F. Kong¹,², A.D. Liu², T. Lan², C.X. Yu², J. Cheng³, Z.Y. Qiu⁴, H.L. Zhao¹,², H.G. Shen¹, L.W. Yan³, J.Q. Dong³, M. Xu³, K.J. Zhao³, X.R. Duan¹, Y. Liu³, R. Chen¹, S.B. Zhang¹, X. Sun², J.L. Xie⁵, H. Li² and W.D. Liu²

¹ Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, People’s Republic of China
² Department of Modern Physics, University of Science and Technology of China, Hefei 230026, People’s Republic of China
³ Southwestern Institute of Physics, PO Box 432, Chengdu, Sichuan 610041, People’s Republic of China
⁴ Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027, People’s Republic of China

E-mail: lad@ustc.edu.cn

Received 20 August 2016, revised 27 November 2016
Accepted for publication 2 December 2016
Published 2 March 2017

Abstract

Coexisting dual kinetic geodesic acoustic modes (KGAMs) with similar characteristics have been observed with Langmuir probe arrays in the edge plasma of HL-2A tokamak with low density Ohmic discharge. The dual KGAMs are named a low-frequency GAM (LFGAM) and a high-frequency GAM (HFGAM), respectively. By changing the line averaged density from $n_e \times 10^{19}$ m$^{-3}$ to 0.7×10^{19} m$^{-3}$, the study of n_e and T_e profiles indicate that collision damping rate plays a crucial role on exciting of dual KGAMs, especially for the higher frequency branch (HFGAM). With the application of modulating techniques, we provide direct proof that nonlinear interactions between GAMs and ambient turbulence (AT) show great difference at different radial positions. At the exciting position of GAM, the amplitude modulation of AT is dominant, indicating that GAM is generated in the energy-conserving triad interaction. After the exciting of GAMs, they will propagate both inward and outward. During the propagation, the phase modulation of AT is dominant, GAMs can rarely gain energy from AT, yet they can give back-reactions on AT through shearing effect.

Keywords: zonal flow, kinetic GAM, ambient turbulence

(Some figures may appear in colour only in the online journal)
sheared flow could be developed from drift waves as a second instability and that the formation of the sheared flow structure in the mesoscale, i.e. zonal flows, could give back-reactions on the micro-scale drift wave turbulence. This kind of mutual interaction between zonal flow and turbulence is emphasized as the process of determining turbulence saturation and transport levels.

The schematic view of the system of zonal flows and drift waves provided above is mainly established on the understanding of continuum GAM, which was first derived via fluid theory and linear dependence of GAM frequency on the ion acoustic velocity C_i. However the existence of GAM eigen-modes were also reported, especially in the edge plasma. In JFT-2M [5], it was found that the GAM frequencies remained constant alone the radial direction at several centimeters just inside the last closed flux surface (LCFS) and similar results have also been observed in HL-2A [6] and HT-7 [7]. Besides, phenomena of multi-GAMs or splitting GAMs at edge plasma have also been reported on T-10 [8], ASDEX-U [9] and HT-7 tokamak [10]. Our previous work on HT-7 summarized those phenomena and provided a set of proofs that the GAM with eigen-frequency observed in the edge plasma may be the kinetic GAM (KGAM) [11–15], which is converted from a continuum GAM. After its excitation, the KGAM will propagate both inward and outward with its frequency remaining the same during the process. Although many theoretical and experimental works have been done to study the KGAM and have achieved fruitful conclusions, especially the mode structure characteristics of KGAM [10]. Yet, the mechanism of exciting and propagating characteristics of KGAM and its nonlinear interactions with drift-turbulence of these two processes still remain unknown. Another important issue of KGAM is the exciting mechanism of multi-GAMs.

In this work, two coexisting GAMs are observed through Langmuir probe arrays in the edge plasma with a low collisionality approached by low average density discharge ($\bar{n}_e \leq 1.0 \times 10^{19} \, \text{m}^{-3}$) on the HL-2A tokamak. These two coexisting GAMs of different frequencies are named high frequency GAM (HFGAM) and low frequency GAM (LFGAM) for convenient. The radial distributions of central frequency and radial wavenumber of these GAMs all suggest that they are kinetic GAMs, which are similar to the observations on HT-7. The probe arrays are just fixed at the exciting position of LFGAM, where is the propagating point for HFGAM. With the reciprocating probes moving from $r = 45 \text{ cm}$ to $r = 37 \text{ cm}$, T_e increased from 9 eV to $\sim 90 \text{ eV}$ and n_e increased from $2 \times 10^{17} \, \text{m}^{-3}$ to $3.4 \times 10^{18} \, \text{m}^{-3}$. T_e and n_e remained almost the same from 700 ms to 1000 ms, as illustrated in figures 1(c) and (d). The temporal evolution of spectra of the local floating potential V_f is shown in figure 1(e). It can be seen that two coherent modes can be observed with peak frequencies at $f = 10.5 \text{ kHz}$ and $f = 17.5 \text{ kHz}$, respectively. The two coherent modes are coexisting with each other and can only be observed inside the separatrix. It needs to be noticed that no coherent modes with similar peak frequencies can be found from the Mirnov signals at the edge. Those results indicate that both of the coherent modes are electrostatic fluctuations. Probe signals jump unnormally at around 1080 ms.

To identify these two electrostatic modes, their mode structures have been studied. Figures 2(a) and (b) provide the coherence and cross-phase spectra of two potential fluctuations measured by probes located at the same flux surface with the toroidal separations of 130 cm. It can be seen that both features have high coherence and phase-shifts of nearly zero. The poloidal and toroidal mode numbers are evaluated to be $m = -0.1 \pm 0.2$ and $n = 0.5 \pm 0.1$ for low frequency feature and $m = 0.02 \pm 0.2$ and $n = -0.2 \pm 0.1$ for the high frequency feature respectively. Both of the two features can be regarded as poloidally and toroidally symmetric modes of $m = 0$ and $n = 0$. Furthermore, according to the measured electron temperature, the GAM frequency calculated from $f_{GAM}^h = \sqrt{(T_e + 7/4 \cdot T_i)/m_e/(\pi/2 \cdot \epsilon R_i)}$ is 11 kHz with the assumption of $T_i = T_e$, as illustrated the blue line in figure 1(e), which seems to access the mode peaking at 10.5 kHz. Thus, the 10.5 kHz coherent mode is the GAM existed just at the probe
while the 17.5 kHz coherent mode may be another GAM generated inside then propagated outward. To distinguish the coexisting GAMs, the two modes at 10.5 kHz and 17.5 kHz would be called a low-frequency GAM (LFGAM) and a high-frequency GAM (HFGAM), respectively, in the following.

Figure 2(c) shows a contour plot of wavenumber-frequency spectrum $S(k_r, f)$ below 30 kHz estimated from two \tilde{V}_fs separated by $d_\phi = 130$ cm and $d_r = 5$ mm.

Figure 2. (a) Coherency and (b) cross-phase spectra between two \tilde{V}_fs with poloidal (black dash) and toroidal (red solid) separations of 11 cm and 130 cm, respectively. Wavenumber-frequency spectrum $S(k_r, f)$ below 30 kHz estimated from two \tilde{V}_fs separated by $d_\phi = 130$ cm and $d_r = 5$ mm.

position, while the 17.5 kHz coherent mode may be another GAM generated inside then propagated outward. To distinguish the coexisting GAMs, the two modes at 10.5 kHz and 17.5 kHz would be called a low-frequency GAM (LFGAM) and a high-frequency GAM (HFGAM), respectively, in the following.

Figure 2(c) shows a contour plot of wavenumber-frequency spectrum $S(k_r, f)$ of a typical shot with two GAMs, which is estimated from two \tilde{V}_fs with a radial separation of $d_r = 5$ mm and toroidal separation of $d_\phi = 130$ cm. $S(k_r, f)$ is calculated through the two-point cross-correlation technique, which has been widely used for characterizing plasma turbulence. Figure 2(c) reveals that most of the power of LFGAM is concentrated in the negative k_r region, in contrast, most of the power of HFGAM is concentrated in the positive k_r region with little power in the negative k_r region. The spectrally averaged radial wavenumber \bar{k}_r and the wavenumber width σ_{k_r} have also been estimated. For the LFGAM, $\bar{k}_r = -1.0$ cm$^{-1}$.
and \(\sigma_2 = 1.8 \text{ cm}^{-1}\), while for the HFGAM, \(\dot{k}_r = 0.4 \text{ cm}^{-1}\) and \(\sigma_2 = 1.0 \text{ cm}^{-1}\). Those results imply that LFGAM packets propagate in radially inward direction, while HFGAM packets propagate in radially outward direction. The characteristics, especially the property propagation of LFGAM and HFGAM will be given.

Figure 3 shows the auto-power spectra of \(V_f\), the summed square auto-bicoherence \(\Sigma b_i^2\) for \(f = f_{\text{LFGAM}}\) and \(f = f_{\text{HFGAM}}\), respectively, the central frequencies and the radial wavenumbers of LFGAM and HFGAM at different radial positions inside the separatrix. Figure 3(a) illustrates the radial distributions of amplitude and central frequency of the LFGAM and HFGAM. It can be seen that the amplitude of LFGAM and HFGAM keep growing in the radially inward direction, while the amplitude of ambient turbulence have maximum value at \(r = 37.25 \text{ cm}\). From figure 3(c), it could be found that the central frequencies of both LFGAM and HFGAM remained almost constant in the range of measurement. To study the relationship between the LFGAM, the HFGAM and the continuum GAM, the theoretic GAM frequencies \(f_{\text{GAM}}^{\text{th}} = \sqrt{(T_i + 7T_j/4|m_i|/\sqrt{2}} \pi \rho_0\) is also plotted for comparison.

\[k_{r,LFGAM} \] changes sign between at around \(r = 37.3 \text{ cm}\), indicating that the LFGAM propagates in opposite directions on both sides of this position. It also implies that \(r = 37.3 \text{ cm}\) may be the position where the LFGAM is generated. Then going back to figure 3(c), it could be seen that the frequencies of the LFGAM are just consistent with continuum GAM frequencies at \(r = 37.3 \text{ cm}\), which happen to be the positions where \(k_r \approx 0\).

Like the results observed on HT-7 [10], which reported that the maximum amplitude of LFGAM was close to the generation position, figure 3(a) shows that the maximum amplitude of LFGAM is about 3 mm deeper than the generation position.

Bispectral analysis is used to investigate the nonlinear interaction between the GAMs and ambient turbulence (AT), which is a powerful fluctuating analysis technique for detecting the strength of nonlinear three-wave interactions among the fluctuating quantities. A commonly used quantity is the
GAM and the envelope of AT has been investigated in our previous work [20]. In this investigation, we have constructed a model signal as:

$$X(t) = [1 + \alpha \cos(2\pi f_{\text{GAM}} t)] \times \sum_{f=\omega}^{\infty} Y(t) e^{i(2\pi f t + \beta \sin(2\pi f \omega_{\text{GAM}} t))}$$

(1)

here $Y(t) = \sum_{f=\omega}^{\infty} Y(f) e^{i(2\pi f t)}$ is taken from experimental data without GAM. Because the GAM is a symmetric $E \times B$ velocity oscillation, it will induce a time-dependent Doppler frequency modulation to turbulence, i.e. $\omega(t) = k_0 E_r, \omega_{\text{GAM}}/B_\phi$ and $\phi(f) = \int \omega(t) dt = (k_0 E_r, \omega_{\text{GAM}}/B_\phi) \sin(\omega_{\text{GAM}} t)$ with the phase modulation index $\beta(f) = k_0 (E_r, \omega_{\text{GAM}}/B_\phi, \omega_{\text{GAM}}$. The direct regulation effect during the GAM generation can cause directly the amplitude modulation of turbulence, i.e. $1 + \alpha \cos(\omega_{\text{GAM}} t)$

The simulation results reveal that for the pure phase-modulation signal $X_{\text{PM}}(t)$, the cross phase between the GAM and the envelope is close to $\pi/2$ radian, while for the pure amplitude modulation signal, the cross phase is close to zero or π radian for the positive or negative index α, respectively.

The simulation results reveal that for the pure phase-modulation signal $X_{\text{PM}}(t)$, the cross phase between the GAM and the envelope is close to $\pi/2$ radian, while for the pure amplitude modulation signal, the cross phase is close to zero or π radian for the positive or negative index α, respectively. The simulation results reveal that for the pure phase-modulation signal $X_{\text{PM}}(t)$, the cross phase between the GAM and the envelope is close to $\pi/2$ radian, while for the pure amplitude modulation signal, the cross phase is close to zero or π radian for the positive or negative index α, respectively. The simulation results reveal that for the pure phase-modulation signal $X_{\text{PM}}(t)$, the cross phase between the GAM and the envelope is close to $\pi/2$ radian, while for the pure amplitude modulation signal, the cross phase is close to zero or π radian for the positive or negative index α, respectively. The simulation results reveal that for the pure phase-modulation signal $X_{\text{PM}}(t)$, the cross phase between the GAM and the envelope is close to $\pi/2$ radian, while for the pure amplitude modulation signal, the cross phase is close to zero or π radian for the positive or negative index α, respectively. The simulation results reveal that for the pure phase-modulation signal $X_{\text{PM}}(t)$, the cross phase between the GAM and the envelope is close to $\pi/2$ radian, while for the pure amplitude modulation signal, the cross phase is close to zero or π radian for the positive or negative index α, respectively. The simulation results reveal that for the pure phase-modulation signal $X_{\text{PM}}(t)$, the cross phase between the GAM and the envelope is close to $\pi/2$ radian, while for the pure amplitude modulation signal, the cross phase is close to zero or π radian for the positive or negative index α, respectively. The simulation results reveal that for the pure phase-modulation signal $X_{\text{PM}}(t)$, the cross phase between the GAM and the envelope is close to $\pi/2$ radian, while for the pure amplitude modulation signal, the cross phase is close to zero or π radian for the positive or negative index α, respectively.
probe arrays outside. Those results indicate that the decrease of the collision damping rate would benefit the generation and propagation of GAMs.

In conclusion, the generation and propagation characteristics of dual GAMs at the edge of HL-2A tokamak with low-averaged discharging density ($n_e < 1.0 \times 10^{19} \text{ m}^{-3}$) are studied through Langmuir probe arrays. The mode structure and radial propagation of the coexisting dual GAMs have been studied in detail. The toroidal and poloidal mode numbers of both LFGAM and HFGAM have been proven to be $n = m = 0$. Within the measurement range of the probe arrays inside the separatrix, it can be found that the central frequencies of the LFGAM and the HFGAM remain almost unchanged. The theoretically predicted GAM frequency and LFGAM frequency got a crosspoint at $r = 37.25 \text{ cm}$ where the radial wavenumber of LFGAM happen to be $0 (k_r, \text{LFGAM} \sim 0)$. Those characteristics of the dual GAMs are consistent with the predictions of the kinetic GAM theory. Moreover, the different non-interactions between the GAMs and AT at the generating position and the propagating positions have also been identified. The results indicate that GAM mainly gain energy from AT through amplitude modulation at the generating position, while at the propagation positions, AT would be mainly suppressed through the shearing effect of GAM. By the end of the paper, we discussed the discharging condition of dual GAMs. Our results provided direct proofs that the collision damping rate is the key factor to generate the dual GAMs.

Acknowledgments

The authors thank the HL-2A Team for support of these experiments, as well as L. Chen, Z. Gao, F. Zonca and X.Q. Xu for the helpful comments. This work is supported by the NSFC under Grant No. 10990210, 10990211, 11405214, 11375188, 11275234, 11305208, 11305215, 11505221, the China National Fusion Project for ITER under Grant No. 2014GB106000, 2013GB106002, 2014GB106003.

References

[1] Winsor N., Johnson J.L. and Dawson J.M. 1968 Geodesic acoustic waves in hydromagnetic systems Phys. Fluids 11 2448–50
[2] Diamond P.H., Itoh S.-I., Itoh K. and Hahm T.S. 2005 Zonal flows in plasma—a review Plasma Phys. Control. Fusion 47 R35–161
[3] Fujisawa A. 2009 A review of zonal flow experiments Nucl. Fusion 49 013001
[4] Conway G.D., Angioni C., Ryter F., Sauter P. and Vicente J. 2011 Mean and oscillating plasma flows and turbulence interactions across the l-h confinement transition transition Phys. Rev. Lett. 106 065001
[5] Ido T. et al and JFT-2M group 2006 Geodesic-acoustic-mode in jft-2m tokamak plasmas Plasma Phys. Control. Fusion 48 S41–50
[6] Zhao K.J. et al 2010 Turbulence and zonal flows in edge plasmas of the hl-2a tokamak Plasma Phys. Control. Fusion 52 124008
7 Liu A.D., Lan T., Yu C.X., Zhang W., Zhao H.L., Kong D.F., Chang J.F. and Wan B.N. 2010 Spectral characteristics of zonal flows in the edge plasmas of the ht-7 tokamak Plasma Phys. Control. Fusion 52 085004
[8] Melnikov A.V. et al 2006 Investigation of geodesic acoustic mode oscillations in the t-10 tokamak Plasma Phys. Control. Fusion 48 S87–110
[9] Conway G.D., Troster C., Scott B., Hallatschek K. and The ASDEX Upgrade Team 2008 Frequency scaling and localization of geodesic acoustic modes in asdex upgrade Plasma Phys. Control. Fusion 50 055009
[10] Kong D.F. et al 2013 Observation of nonlinear couplings between coexisting kinetic geodesic acoustic modes in the edge plasmas of the ht-7 tokamak Nucl. Fusion 53 113008
[11] Zonca F. and Chen L. 2008 Radial structures and nonlinear excitation of geodesic acoustic modes Europhys. Lett. 83 35001
[12] Gao Z., Itoh K., Sanuki H. and Dong J.Q. 2006 Multiple eigenmodes of geodesic acoustic mode in collisionless plasmas Phys. Plasmas 13 100702
[13] Itoh S.-I., Itoh K., Sasaki M., Fujisawa A., Ido T. and Nagashima Y. 2007 Geodesic acoustic mode spectroscopy Plasma Phys. Control. Fusion 49 L7
[14] Xu X.Q., Xiong Z., Gao Z., Nevins W.M. and McKee G.R. 2008 Tempest simulations of collisionless damping of the geodesic-acoustic mode in edge-plasma pedestals Phys. Rev. Lett. 100 215001
[15] Zhiyong Q., Zonca F. and Liu C. 2011 Kinetic theories of geodesic acoustic modes: radial structure, linear excitation by energetic particles and nonlinear saturation Plasma Sci. Technol. 13 257
[16] Lan T. et al 2008 Spectral characteristics of geodesic acoustic mode in the h-l-2a tokamak Plasma Phys. Control. Fusion 50 045002
[17] Moyer R.A. et al 1995 Beyond paradigm: turbulence, transport, and the origin of the radial electric field in low to high confinement mode transitions in the diii-d tokamak Phys. Plasmas 2 2397–407
[18] Uckan T., Hidalgo C., Bell J.D., Harris J.H., Dunlap J.L., Wilgen J.B., Ritz Ch. P., Rhodes T.L. and Wootten A.J. 1991 Characteristics of edge plasma turbulence on the atf torsatron Phys. Fluids B 3 1000–5
[19] Hillesheim J.C., Peebles W.A., Carter T.A., Schmitz L. and Rhodes T.L. 2012 Experimental investigation of geodesic acoustic mode spatial structure, intermittency, and interaction with turbulence in the diii-d tokamak Phys. Plasmas 19 022301
[20] Lan T. et al 2008 Spectral features of the geodesic acoustic mode and its interaction with turbulence in a tokamak plasma Phys. Plasmas 15 026405
[21] McKee G.R. et al 2003 Experimental characterization of coherent, radially-sheared zonal flows in the diii-d tokamak Phys. Plasmas 10 1712–9