Conformal invariants of manifolds of non-positive scalar curvature

Man Chun LEUNG
Department of Mathematics,
National University of Singapore,
Singapore 119260
matlmc@nus.sg
Dec. 1995

Abstract
Conformal invariants of manifolds of non-positive scalar curvature are studied in association with growth in volume and fundamental group.

KEY WORDS: conformal invariant, scalar curvature, Euler characteristic
1991 AMS MS Classifications: 53C20, 53A30

1. Introduction

Let \((M, g)\) be a complete Riemannian \(n\)-manifold. In this paper we consider the conformal invariant \(Q(M, g)\) defined by

\[
Q(M, g) = \inf \left\{ \frac{\int_M |\nabla u|^2 dv_g + \frac{n-2}{4(n-1)} \int_M S_g u^2 dv_g}{(\int_M |u|^{\frac{2n}{n-2}} dv_g)^{\frac{n-2}{n}}} \mid u \in C^\infty(M), u \not\equiv 0 \right\},
\]

where \(S_g\) is the scalar curvature of \((M, g)\). The conformal invariant \(Q(M, g)\) has been studied in association with the Yamabe problem [9]. The sign of \(Q(M, g)\) is an important conformal invariant. If \((M, g)\) is a compact Riemannian \(n\)-manifold with \(n \geq 3\), then \(Q(M, g)\) is negative (resp. zero, positive) if and only if \(g\) is conformal to a Riemannian metric of negative (resp. zero, positive) scalar curvature [13]. It is
shown in [13] that if there is a conformal map \(\Phi : (M,g) \rightarrow (S^n,g_o) \), then \(Q(M,g) = Q(S^n,g_o) > 0 \), where \(S^n \) is the unit sphere and \(g_o \) is the standard metric on \(S^n \). In particular, the conformal invariants for the Euclidean space \(\mathbb{R}^n \) and the hyperbolic space \(\mathbb{H}^n \) are both positive, even though in the Euclidean space, the scalar curvature is zero and in the hyperbolic space, the scalar curvature is a negative number. In this paper we show the following.

Theorem 1. Let \((M,g)\) be a complete non-compact Riemannian \(n\)-manifold with \(n \geq 3\) and \(S_g \leq 0\). Let \(x_o \in M\) and let \(B_R\) be the open ball on \(M\) with center at \(x_o\) and radius equal to \(R > 0\). If there exist positive constants \(C\) and \(\alpha \in (0,n/2)\) such that
\[
\text{Vol}(B_R) \leq CR^\alpha
\]
for all \(R > 0\), then \(Q(M,g) \leq 0\).

In particular, \(Q(M \times \mathbb{R}^m,g \times h_o) \leq 0\) if \(n > m\), where \((M,g)\) is a compact Riemannian \(n\)-manifold of non-positive scalar curvature and \(h_o\) is the Euclidean metric on \(\mathbb{R}^n\). If the scalar curvature of the manifold \((M,g)\) does not drop to zero too fast, and if \((M,g)\) has polynomial volume growth, then we can conclude that \(Q(M,g) < 0\). Next, we show the following.

Theorem 2. If \((M,g)\) is a compact conformally flat manifold with scalar curvature \(S_g \leq 0\), then the fundamental group of \(M\) has exponential growth unless \(S_g \equiv 0\).

By a result of Avez [1], a compact manifold of non-positive sectional curvature has exponentially growing fundamental group unless the manifold is flat. It is known that a compact manifold of non-positive sectional curvature is flat if and only if its fundamental group is almost solvable [4] (see also [2]). We show that if \((M,g)\) is a compact conformally flat manifold with scalar curvature \(S_g \leq 0\) and the fundamental group of \(M\) is almost solvable, then \((M,g)\) is flat.

2. Proofs

Theorem 2.1. Let \((M,g)\) be a complete non-compact Riemannian \(n\)-manifold with \(n \geq 2\) and \(S_g \leq 0\). Let \(x_o \in M\) and let \(B_R\) be the open ball on \(M\) with center at \(x_o\) and radius equal to \(R > 0\). If there exist positive constants \(C\) and \(\alpha \in (0,n/2)\) such
that
\[\text{Vol}(B_R) \leq CR^\alpha \]
for all \(R > 0 \), then \(Q(M, g) \leq 0 \).

Proof. Assume that \(Q(M, g) > 0 \). Let \(\alpha' \in (0, n/2) \) be a positive constant such that \(\alpha < \alpha' \). There exist positive constants \(c \) and \(R_o \) such that
\[
\frac{2}{c^2} \leq \frac{Q(M, g)}{4} \quad \text{and} \quad \text{Vol}(B_R) \leq cR^{\alpha'}
\]
for all \(R \geq R_o \). For \(R > 0 \), let
\[
\lambda_R = \inf \left\{ \frac{\int_{B_R} |\nabla u|^2 \, dv_g}{(\int_{B_R} |u|^2 \, dv_g)} \mid u \in C^\infty_o(B_R), u \not\equiv 0 \right\}.
\]
Then
\[
\lambda_R \geq \inf \left\{ \frac{\int_{B_R} |\nabla u|^2 \, dv_g + \frac{n-2}{4(n-1)} \int_{B_R} S_g u^2 \, dv_g}{(\int_{B_R} |u|^2 \, dv_g)} \mid u \in C^\infty_o(B_R), u \not\equiv 0 \right\}
\]
\[
= \inf \left\{ \frac{(\int_{B_R} |u|^{\frac{2n}{n-2}} \, dv_g)^{\frac{n-2}{n}}}{\int_{B_R} |u|^2 \, dv_g} \times \left(\frac{\int_M |\nabla u|^2 \, dv_g + \frac{n-2}{4(n-1)} \int_M S_g u^2 \, dv_g}{(\int_M |u|^{\frac{2n}{n-2}} \, dv_g)^{\frac{n-2}{n}}} \right) \mid u \in C^\infty_o(B_R), u \not\equiv 0 \right\}.
\]
By Hölder’s inequality we have
\[
\int_{B_R} |u|^2 \, dv_g \leq \left(\int_{B_R} |u|^{\frac{2n}{n-2}} \, dv_g \right)^{\frac{n-2}{n}} \left(\int_{B_R} 1 \, dv_g \right)^{\frac{2}{n}}.
\]
Therefore
\[
\frac{(\int_{B_R} |u|^{\frac{2n}{n-2}} \, dv_g)^{\frac{n-2}{n}}}{\int_{B_R} |u|^2 \, dv_g} \geq \frac{1}{\left(\text{Vol}(B_R) \right)^{\frac{2}{n}}} \geq \frac{1}{c^2 R^{\frac{2\alpha'}{n}}}, \quad R \geq R_o.
\]
As \(Q(M, g) > 0 \), we have
\[
\frac{\int_M |\nabla u|^2 \, dv_g + \frac{n-2}{4(n-1)} \int_M S_g u^2 \, dv_g}{(\int_M |u|^{\frac{2n}{n-2}} \, dv_g)^{\frac{n-2}{n}}} > 0
\]
for all \(u \in C^\infty_o(M), u \not\equiv 0 \). Thus
\[
\lambda_R \geq \frac{1}{c^2 R^{\frac{2\alpha'}{n}}} \inf \left\{ \frac{\int_M |\nabla u|^2 \, dv_g + \frac{n-2}{4(n-1)} \int_M S_g u^2 \, dv_g}{(\int_M |u|^{\frac{2n}{n-2}} \, dv_g)^{\frac{n-2}{n}}} \mid u \in C^\infty_o(M), u \not\equiv 0 \right\}
\]
\[
\geq \frac{4}{R^{\frac{2\alpha'}{n}}}
\]
for $R \geq R_o$, as $c^2 \leq Q(M,g)/4$. Let $k > R_o$ be an integer and let $\varphi_k \in C^\infty(B_{k+1})$ be such that $\varphi_k(x) \geq 0$ for all $x \in B_{k+1}$, $\varphi_k(x) = 1$ for $x \in B_k$ and $|\nabla \varphi_k| \leq 2$ [cf. 11]. We have

$$\text{Vol} (B_{k+1}) - \text{Vol} (B_k) \geq \frac{1}{4} \int_{B_{k+1}} |\nabla \varphi_k|^2 d\nu_g \geq \frac{1}{4} \lambda_{k+1} \int_{B_{k+1}} |\varphi_k|^2 d\nu_g \geq \frac{\text{Vol} (B_k)}{(k+1)^{\frac{2n}{n}}}.$$

Therefore

$$\text{Vol} (B_{k+1}) \geq (1 + \frac{1}{(k+1)^{\frac{2n}{n}}}) \text{Vol} (B_k)$$

for all $k > R_o$. Let $\beta = 2\alpha'/n < 1$. Given an integer $m > n/2$, there exists an integer $k_o > R_o$ such that for any integer $k > k_o$, we have

$$\left(\frac{k+2}{k+1}\right)^m = (1 + \frac{1}{k+1})^m = 1 + \frac{c_1(m)}{k+1} + \frac{c_2(m)}{(k+1)^2} + \ldots + \frac{c_{m-1}(m)}{(k+1)^{m-1}} + \frac{1}{(k+1)^m} \leq 1 + \frac{C(m)}{k+1} \leq 1 + \frac{1}{(k+1)^\beta},$$

where $c_1(m), ..., c_{m-1}(m)$ are positive constants and $C(m)$ is a large positive constant.

We have

$$\text{Vol} (B_{k+1}) \geq (1 + \frac{1}{(k+1)^\beta})(1 + \frac{1}{k^\beta}) \cdots (1 + \frac{1}{(k_o+1)^\beta}) \text{Vol} (B_{k_o}) \geq \left(\frac{k+2}{k+1}\right)^m \times \left(\frac{k+1}{k}\right)^m \times \cdots \times \left(\frac{k_o+3}{k_o+2}\right)^m \times \left(\frac{k_o+2}{k_o+1}\right)^m \text{Vol} (B_{k_o}) = \left(\frac{k+2}{k_o+1}\right)^m \text{Vol} (B_{k_o})$$

for all $k > k_o$. This contradicts that $\text{Vol} (B_{k+1}) \leq c(k+1)^{\alpha'}$ with $\alpha' < n/2$, for all $k > k_o$. Q.E.D.

Corollary 2.2. Let (M,g) be a complete Riemannian manifold of non-positive scalar curvature. If the volume of (M,g) is finite, then $Q(M,g) \leq 0$.

Corollary 2.3. For $n \geq 3$, let (M,g) be a simply connected, complete, non-compact, conformally flat Riemannian manifold of non-positive scalar curvature. Then for
some positive constant C and for any $\alpha < n/(n + 2)$, $\text{Vol} B_R \geq CR^\alpha$ for all R large.

Proof. As (M, g) is a simply connected, complete, non-compact, conformally flat Riemannian manifold, we have [13]

$$Q(M, g) = Q(S^n, g_0) = \frac{n(n - 2)\omega_n^2}{4},$$

where ω_n denotes the volume of (S^n, g_0). Let C be a positive constant with $C\omega_n^2 \leq Q(M, g)/4$. If the statement that $\text{Vol} B_R \geq CR^\alpha$ for all R large does not hold for a positive constant $\alpha < n/(n + 2)$, then there exists an increasing sequence of positive numbers $\{r_0, r_1, \ldots, r_k, \ldots\}$ such that

$$\lim_{k \to \infty} r_k = \infty \quad \text{and} \quad \text{Vol} B_{r_k} \leq Cr_k^\alpha$$

for $k = 1, 2, \ldots$. It follows from the proof of theorem 2.1 that for k large,

$$\text{Vol} B_{r_k} \geq \prod (1 + \frac{1}{2d}) \text{Vol} B_{r_k-1} \geq \prod \frac{r_k}{2d} \text{Vol} B_1 \geq \frac{r_k}{2d} \text{Vol} B_1 \geq r_k^\alpha \text{Vol} B_1,$$

where $[r_k]$ is the integer part of r_k and α' is a constant such that $\alpha < \alpha' < n/(n + 2)$. When k is large enough, the last inequality contradicts that $\text{Vol} B_{r_k} \leq Cr_k^\alpha$ for all non-negative integer k. Q.E.D.

Theorem 2.4. Let (M, g) be a complete non-compact Riemannian n-manifold with $n \geq 3$. Assume that $S_g \leq 0$ and there exist constants $C > 0$, $R_1 > 0$ and $\beta \in (0, 1)$ such that

$$S_g(x) \leq -Cd(x_o, x)^{-\beta}$$

for all $x \in M \setminus B_{R_1}$, where $x_o \in M$ is a fixed point and $d(x_o, x)$ is the distance between x_o and x in (M, g). If there exist a positive constant C' and a positive integer m such
that
\[\text{Vol}(B_R) \leq C'R^m \]
for all \(R > 0 \), then \(Q(M, g) < 0 \).

Proof. Given a positive number \(\delta \), let \(u_o \in C_0^\infty(M) \) be a smooth function such that
\[\frac{4(n-1)}{n-2} \Delta u_o = \delta \quad \text{on} \quad B_{R_1} . \]
Assume that the support of \(u_o \) is inside \(B_{R_2} \) for some constant \(R_2 > R_1 \). We can find a positive constant \(c_o \) such that
\[S_g(x)(c_o + u_o(x)) - \frac{4(n-1)}{n-2} \Delta u_o(x) \leq -\delta \]
for all \(x \in B_{R_2} \). This is because \(S_g \leq 0 \) and
\[S_g(x) \leq -C R_2^{-\beta} \]
for all \(x \in B_{R_2} \setminus B_{R_1} \). Let \(u = c_o + u_o \). Then \(u \) is a smooth positive function on \(M \). Furthermore, \(u(x) = c_o \) for all \(x \in M \setminus B_{R_2} \). Let \(g' = u^{4/(n-2)}g \) and let \(S' \) be the scalar curvature of the metric \(g' \). Then [9]
\[S'(x) = u^{-\frac{n-2}{4}}[S_g(x)u(x) - \frac{4(n-1)}{n-2} \Delta u_o(x)] \leq -\epsilon \]
for all \(x \in B_{R_2} \), where \(-\epsilon \) is a suitable constant. And
\[S'(x) = c_o^{-\frac{n-2}{4}} S_g(x) \]
for all \(x \in M \setminus B_{R_2} \). There exist positive constants \(c_1 \) and \(C_1 \) such that \(c_1 \leq u \leq C_1 \) on \(M \). Therefore
\[c_1^{-\frac{n-2}{4}} d'(x_o, x) \leq d(x_o, x) \leq C_1^{-\frac{n-2}{4}} d'(x_o, x) \]
for all \(x \in M \), where \(d'(x_o, x) \) is the distance between \(x_o \) and \(x \) with respect to the Riemannian metric \(g' \). Thus we can find a positive constant \(R'_1 \) such that
\[S'(x) \leq -C'' d'(x_o, x)^{-\beta} \]
for all \(x \in M \) with \(d'(x_o, x) > R'_1 \), where \(C'' \) is a positive constant. And for \(d'(x_o, x) \leq R'_1 \), we can find a positive constant \(\epsilon' \) such that
\[S'(x) \leq -\epsilon' . \]
Hence we can find a positive number \(R_o \) such that for all \(R > R_o \), we have
\[S'(x) \leq -C_o R^{-\beta} \]
for all \(x \in M \) with \(d'(x_o, x) \leq R \), where \(C_o \) is a positive integer. As \(Q(M, g') = Q(M, g) \), by above, we may assume without loss of generality that for all \(R > R_o \),

\[
S_g(x) \leq -C_o R^{-\beta}
\]

for all \(x \in M \) with \(d(x_o, x) \leq R \).

Assume that \(Q(M, g) \geq 0 \). Take \(\beta' \in (0, 1) \) such that \(\beta' > \beta \). Then we can find a positive number \(R_3 > R_o \) such that for all \(R > R_3 \),

\[
S_g(x) \leq -\frac{4^2(n-1)}{n-2} \frac{1}{R^{\beta'}}
\]

for all \(x \in M \) with \(d(x_o, x) \leq R \). For \(R > R_3 \), we have

\[
\lambda_R \geq \inf \left\{ \frac{\int_{B_R} |\nabla u|^2 d\nu_g + \frac{n-2}{4(n-1)} \int_{B_R} S_g u^2 d\nu_g}{(\int_{B_R} |u|^2 d\nu_g)^{\frac{n-2}{n}}} \frac{\int_{B_R} S_g u^2 d\nu_g}{(\int_{B_R} |u|^2 d\nu_g)^{\frac{n-2}{n}}} \mid u \in C_o^\infty(B_R), u \not\equiv 0 \right\}
\]

\[
\geq \inf \left\{ \frac{\int_{B_R} |\nabla u|^2 d\nu_g + \frac{n-2}{4(n-1)} \int_{B_R} S_g u^2 d\nu_g}{(\int_{B_R} |u|^2 d\nu_g)^{\frac{n-2}{n}}} \mid u \in C_o^\infty(B_R), u \not\equiv 0 \right\} + 4 \frac{1}{R^{\beta'}}
\]

\[
\geq 4 \frac{1}{R^{\beta'}}
\]

as \(Q(M, g) \geq 0 \) implies that

\[
\frac{\int_{B_R} |\nabla u|^2 d\nu_g + \frac{n-2}{4(n-1)} \int_{B_R} S_g u^2 d\nu_g}{(\int_{B_R} |u|^2 d\nu_g)^{\frac{n-2}{n}}} \geq 0
\]

for all \(u \in C_o^\infty(B_R), u \not\equiv 0 \). It follows as in theorem 2.1 that for any positive integer \(m' > m \), there exists an integer \(k_o > R_3 \) such that for all \(k > k_o \), we have

\[
\text{Vol} (B_{k+1}) \geq (k + 2)^{m'} \frac{\text{Vol} (B_{k_o})}{(k_o + 1)^m}
\]

for all \(k > k_o \). This contradicts that \(\text{Vol} (B_{k+1}) \leq C' R^m \) with \(m < m' \), for all \(k > k_o \).

Q.E.D.

Corollary 2.5. Let \((M, g)\) be a simple connected, complete, non-compact conformally flat Riemannian \(n \)-manifold with \(n \geq 3 \). Assume that \(S_g \leq 0 \) and there exist constants \(C > 0 \), \(R_1 > 0 \) and \(\beta \in (0, 1) \) such that

\[
S_g(x) \leq -Cd(x_o, x)^{-\beta}
\]
for all $x \in M \setminus B_{R_1}$, where $x_o \in M$ is a fixed point. Then for any positive numbers m and C', there exists a positive constant R_1 such that

$$\text{Vol} \ (B_R) \geq C'R^m$$

for all $R > R_1$.

Remark. Corollary 2.5 shows that on the Euclidean space \mathbb{R}^n, $n \geq 3$, there does not exist a Riemannian metric g' which is uniformly equivalent and conformal to the Euclidean metric and with non-positive scalar curvature S' which satisfies

$$S'(x) \leq -C|x|^{-\beta}$$

for some constants $\beta \in (0, 1)$ and $C > 0$, for all x outside a compact domain containing the origin. Such a metric exists if the scalar curvature is allowed to drop to zero faster. In fact, Ni [11] has constructed a metric g' in \mathbb{R}^n which is uniformly equivalent and conformal to the Euclidean metric, with $S' < 0$ and for all x outside a compact domain containing the origin,

$$S'(x) \leq -C|x|^{-l}$$

for some constant $l > 2$ and $C > 0$.

Theorem 2.6. Let (M, g) be a compact conformally flat n-manifold with $n \geq 3$ and scalar curvature $S_g \leq 0$. Then the fundamental group of M has exponential growth unless $S_g \equiv 0$.

Proof. If $S_g \neq 0$, then S_g is negative somewhere and hence the conformal invariant $Q(M, g)$ is negative. By a conformal change of the metric g, we may assume that $S_g \equiv -c^2$ with $c > 0$ being a constant [9]. Let \tilde{M} be the universal covering of M, equipped with the pull back metric. Then

$$Q(\tilde{M}, g) = Q(S_n, g_o) = \frac{n(n-2)\omega_n^2}{4}.$$

Given a point $p \in \tilde{M}$ and $R > 0$, let B_R be the ball in \tilde{M} with center at p and radius R. As in the proof of theorem 2.4, we have

$$\lambda_R \geq \frac{n-2}{4(n-1)}c^2$$

and hence there exist positive constants C and δ such that (c.f. proposition 1.2 of [13])

$$\text{Vol} \ (B_R) \geq Ce^{\delta R}$$
for all R large. Then an argument as in [10] shows that $\pi_1(M)$ has exponential growth. Q.E.D.

Theorem 2.7. For $n \geq 3$, let (M, g) be a compact conformally flat n-manifold of non-positive scalar curvature. If $\pi_1(M)$ is almost solvable, then (M, g) is a flat manifold.

Proof. Since $\pi_1(M)$ is almost solvable, the holonomy group of (M, g) is also almost solvable. By a result in [6], (M, g) is covered by a conformally flat manifold which is either conformally diffeomorphic to the n-sphere S^n, a flat n-torus, or a Hopf manifold $S^1 \times S^{n-1}$. If M is covered by $S^1 \times S^{n-1}$, then $S^1 \times S^{n-1}$ admits a conformally flat metric of non-positive scalar curvature. Since $\pi_1(S^1 \times S^{n-1})$ does not have exponential growth, theorem 2.6 implies that the scalar curvature of \bar{g} is identically equal to zero. Then by theorem 4.5 in [13], $(S^1 \times S^{n-1}, \bar{g})$ is conformally equivalent to Ω/Γ, where Ω is the image of a developing map and Γ is the corresponding holonomy group. Furthermore, Ω is the domain of discontinuity of Γ. Since $\Gamma \cong \mathbb{Z}$, by using a result in [6], we have Γ is conjugate to a cyclic group of similarities. Hence Ω/Γ is conformally equivalent to $S^1 \times S^{n-1}$ with the standard product metric, denoted by h_1. If we denote

$$\psi : (S^1 \times S^{n-1}, \bar{g}) \to (S^1 \times S^{n-1}, h_1)$$

a conformal equivalence and $h^* = \psi^* h_1$, then there exists a positive function u such that $\bar{g} = u^{4\frac{n}{n-2}} h^*$. Hence

$$\Delta \bar{g} u - c_n S_{\bar{g}} u = -c_n S_{h^*} u^{\frac{n+2}{n-2}},$$

where $S_{\bar{g}}$ and S_{h^*} are the scalar curvature of \bar{g} and h^*, respectively. Now $S_{\bar{g}} = 0$ and $S_{h^*} > 0$, the maximum principle implies that u is a constant, which is impossible.

Suppose that M is covered by S^n. By pulling back the metric g to S^n, we obtain a metric g'. Then g' is a conformally flat metric on S^n with non-positive scalar curvature. Let g_o be the standard metric on S^n. The developing map

$$\phi : (S^n, g') \to (S^n, g_o)$$

is a conformal equivalence. Let $g^* = \phi^* g_o$. Hence there exists a function $u > 0$ such that $g^* = u^2 g'$ and

$$\Delta g' u - c_n S_{g'} u = -c_n S_{g^*} u^{\frac{n+2}{n-2}},$$

where $S_{g'}$ and S_{g^*} are the scalar curvature of g' and g^*, respectively. In fact, $S_{g^*} = n(n-1)$ and $S_{g'} \leq 0$. The curvature conditions imply $\Delta g' u \leq 0$. Therefore u is a
constant, which is impossible. So we conclude that M is covered by a flat torus T^n. This implies that $\pi_1(M)$ is almost nilpotent and has polynomial growth [3]. Theorem 2.6 shows that the scalar curvature of g is identically equal to zero. By pulling back the metric g to T^n, we have a metric on T^n which has zero scalar curvature. But any scalar flat metric on T^n is flat [8]. So the pull back metric is flat, hence (M, g) is flat. Q.E.D.

Theorem 2.8. For $n = 4, 6$, let M be a compact, orientable n-manifold with zero Euler characteristic. If $\pi_1(M)$ does not have exponential growth, then any conformally flat metric on M with non-positive scalar curvature is flat.

Proof. Let g be a conformally flat metric on M with non-positive scalar curvature. For $n = 4$, let B be the Gauss-Bonnet integrand of (M, g) and let \mathcal{R} and Ric be the curvature tensor and Ricci tensor of g, respectively. Then there exist universal constants [3] α, β and γ such that

$$B = \alpha | \mathcal{R} |^2 + \beta | \text{Ric} |^2 + \gamma | S_g |^2.$$

Here R is the scalar curvature of g. Since (M, g) is conformally flat, we can write $| \mathcal{R} |^2$ in terms of the other two norms. That is, $B = a | \text{Ric} |^2 + b | S_g |^2$. Evaluate a and b on $S^1 \times S^3$ with the standard product metric and S^4, we obtain

$$a = -\frac{1}{6 \text{Vol} (S^4)},$$

and

$$b = \frac{1}{18 \text{Vol} (S^4)}.$$

Using the Gauss-Bonnet theorem, we obtain

$$0 = \chi(M) = \frac{-1}{6 \text{Vol} (S^4)} \int_M | \text{Ric} |^2 dv_g + \frac{1}{18 \text{Vol} (S^4)} \int_M | S_g |^2 dv_g.$$

Since $\pi_1(M)$ does not have exponential growth, theorem 2.6 implies that $S_g \equiv 0$. The above formula gives $\text{Ric} \equiv 0$. Since g is conformally flat, the Weyl tensor is identically equal to zero. Therefore g is flat.

For $n = 6$, we use equation (2.4) in [12] to obtain

$$384 \pi^3 \chi(M) = -\int_M | \nabla \mathcal{R} |^2 dv_g.$$
Since $\chi(M) = 0$, therefore (M, g) is locally symmetric. Then the classification theorem of conformally flat symmetric spaces in dimension six [7] implies that the universal covering of (M, g) is isometric to one of the following symmetric spaces:

$$\mathbb{R}^6, \quad S^6(c), \quad H^6(-c), \quad \mathbb{R} \times S^5(c), \quad \mathbb{R} \times H^5(-c), \quad S^2(c) \times H^4(-c),$$

$$S^4(c) \times H^2(c), \quad S^3(c) \times H^3(-c),$$

where $H^n(-c)$ is the n-dimensional simply connected complete manifold of constant sectional curvature equal to $-c$ and $S^n(c)$ is the sphere with sectional curvature equal to c. Since (M, g) has non-positive scalar curvature, it cannot be covered by $S^6(c), \mathbb{R} \times S^5(c)$ or $S^4(c) \times H^2(c)$. If M were covered by $H^6(-c), \mathbb{R} \times H^5(-c)$, or $S^3(c) \times H^3(-c)$, then $\pi_1(M)$ would have exponential growth, but this is not true. Hence (M, g) can only be covered by \mathbb{R}^6 and so g is flat. Q.E.D.
References

[1] Avez, A.: Varietes Riemanniennes sans points focaux, C.R. Acad. Sc. Paris 270 (1970), 188-191.

[2] Ballmann, W., Gromov, M., Schroeder, V.: Manifolds of nonpositive curvature, Birkhäuser, 1985.

[3] Berger, M., Gauduchon, P., Mazet, E.: Le Spectre d’une Variete Riemanniene, Lecture Notes in Mathematics, Vol. 194, Springer-Verlag, New York.

[4] Cheeger, H., Ebin, D.: Comparison theorems in Riemannian geometry, North-Holland, 1975.

[5] Gromov, M.: Groups of polynomial growth and expanding maps, IHES Publications Mathématiques 53 (1981), 53-73.

[6] Kamishima, Y.: Conformally flat manifolds whose development maps are not surjective I, Transactions of the AMS 294 (1986), 607-623.

[7] Kurita, M.: On the holonomy group of the conformally flat Riemannian manifold, Nagoya Math. J. 9 (1955), 161-171.

[8] Lawson, H. Jr., Michelsohn, M.: Spin Geometry, Princeton Mathematical Series: 38, Princeton University Press, 1989.

[9] Lee, J., Parker, T.: The Yamabe Problem, Bulletin of the AMS 17 (1987), 37-91.

[10] Milnor, J.: A note on curvature and fundamental group, J. Diff. Geom. 2 (1968), 1-7.

[11] Ni, W. M.: On the elliptic equation $\Delta u + K(x)u^{\frac{n+2}{n-2}} = 0$, Indiana Univ. Math. J. 31 (1982), 493-529.

[12] Perrone, D.: Osservazioni sulla caratteristica di Eulero-Poincaré di varietà Riemanniane conformemente piatte, Note di Matematica 3 (1983), 173-181.

[13] Schoen, R., Yau, S.-T.: Conformally flat manifolds, Kleinian groups and scalar curvature, Invent. Math. 92 (1988), 47-71.