Maternal folic acid and multivitamin supplementation: International clinical evidence with considerations for the prevention of folate-sensitive birth defects

R.D. Wilson a,*, 1, D.L. O’Connor b, 1

a Cumming School of Medicine, Department of Obstetrics and Gynecology, University of Calgary, FMC NT 435, 1403 29 St NW, Calgary, Alberta, Canada
b Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada

ARTICLE INFO
Keywords:
Folic acid supplementation
Folate food fortification
Primary neural tube defect prevention
Prevention of recurrence of neural tube defects
Folate sensitive birth defects
Folate supplementation benefit
Folate supplementation risk
Folate maternal physiology
Maternal RBC folate level
Maternal serum folate levels
Folate and epilepsy
Folate and obesity

ABSTRACT
More evidence is available for maternal intake, absorption, distribution, tissue specific concentrations, and pregnancy outcomes with folic acid (fortification/supplementation) during preconception – first trimester. This Quality Improvement prevention review used expert guidelines/opinions, systematic reviews, randomized control trials/controlled clinical trials, and observational case control/case series studies, published in English, from 1990 to August 2021. Optimization for an oral maternal folic acid supplementation is difficult because it relies on folate acid dose, type of folate supplement, bio-availability of the folate from foods, timing of supplementation initiation, maternal metabolism/genetic factors, and many other factors. There is continued use of high dose pre-food fortification ‘RCT evidenced-based’ folic acid supplementation for NTD recurrence pregnancy prevention. Innovation requires preconception and pregnancy use of ‘carbon one nutrient’ supplements (folic acid, vitamin B12, B6, choline), using the appropriate evidence, need to be considered. The consideration and adoption of directed personalized approaches for maternal complex risk could use serum folate testing for supplementation dosing choice. Routine daily folic acid dosing for low-risk women should consider a multivitamin with 0.4 mg of folic acid starting 3 months prior to conception until completion of breastfeeding. Routine folic acid dosing or preconception measurement of maternal serum folate (after 4-6 weeks of folate supplementation) could be considered for maternal complex risk group with genetic/medical/surgical co-morbidities. These new approaches for folic acid oral supplementation are required to optimize benefit (decreasing folate sensitive congenital anomalies; childhood morbidity) and minimizing potential maternal and childhood risk.

1. Background

It has been estimated that 4% to 5% of babies are born with a serious congenital anomaly and 2% to 3% (≥50%) will have congenital anomalies (malformations, deformations or disruptions) that can be identified prenatally by non–invasive ultrasound screening while a further 2% will have developmental or functional conditions and minor congenital anomalies recognized at birth or during their first year of life.

For Canada, the congenital anomalies prevalence per 10,000 total births is neural tube defects 5.66 (anencephaly 1.58; spina bifida 3.53; encephalocoele 0.62), congenital heart defects 20.69, oral facial cleft 16.95, and urinary tracts anomalies 11.12 (Public Health Infobase, 2021).

Two landmark RCT studies, without the benefit of folic acid food fortification, using initial experimental dosing choices from expert opinion and case-control studies, provided folic acid supplementation dosing evidence for NTD (and other major congenital anomalies) primary prevention (0.8 mg) and recurrence (4.0 mg) (MRC Vitamin Study Research Group, 1991; Czeizel and Dudas, 1992; Czeizel, 1993).

More evidence is now available regarding the maternal intake, absorption, distribution, tissue specific concentrations, and pregnancy outcomes with folic acid (FA) (fortification/supplementation) during preconception and first trimester. New clinical considerations are required using an estimated total daily intake of folic acid, with better prediction and understanding of the dietary intake (flour/corn fortification food products) and recommended supplementation dosing

* Corresponding author.
E-mail address: doug.wilson@ahs.ca (R.D. Wilson).
1 These authors contributed equally to this work.

https://doi.org/10.1016/j.pmedr.2021.101617
Received 5 June 2021; Received in revised form 18 October 2021; Accepted 22 October 2021
Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
2. Methods

This quality improvement (QI) prevention evaluation (SQUIRE2.0) is focused on the appropriate use of FA for supplementation to prevent folate sensitive birth defects (in addition to regulated food fortification). Systematic Review was not possible due to the multiple search requirements that would be necessary. Evidence: Published literature was retrieved through searches of PubMed, National –Society Guidelines (Society of Obstetricians and Gynecologists of Canada (SOGC), American College of Obstetrics and Gynecology (ACOG), Society of Maternal Fetal Medicine (SMFM), Royal College of Obstetrics and Gynecology (RCOG), United States Preventive Services Task Force (USPSTF)), and the Cochrane Library using appropriate controlled vocabulary/key-words (folic acid supplementation; folate food fortification; primary neural tube defect prevention; prevention of recurrence of neural tube defects; folate sensitive birth defects; folate supplementation benefit; folate supplementation risk; folate maternal physiology; maternal RBC folate level; maternal serum folate levels; folate and epilepsy; folate and obesity). Results were focused toward expert guidelines/opinions, systematic reviews, randomized control trials/controlled clinical trials, and observational case control/case series studies from 1990 to 2020 published in English. Updated literature searches were completed on a regular basis through August 2021 and were incorporated into this quality improvement review.

3. Results

3.1. Evidence: Folic acid supplementation for the prevention of folate-sensitive birth defects

3.1.1. Pre-conception counselling

The etiologies for fetal NTD and other folate sensitive anomalies (cardiac (VSD, ASD); oral facial cleft; cleft palate; limb reduction defects; obstructive urinary tract anomalies) need to consider the 3 mechanistic pathways in preventive strategies (Wilson et al., 2021; Bibbins-Domingo et al., 2017; ACOG Practice Bulletin Neural Tube Defects, 2017; Hurst et al., 2005; Hall et al., 1988; Holmes et al., 1976; Khoury et al., 1982; Jones et al., 2013; Mulineau et al., 1988; Mills et al., 1989; Milunsky et al., 1989; Centers for Disease Control (CDC), 1983–1991; Bower and Stanley, 1989; Rothenberg et al., 2004; Cabrera et al., 2008):

Genetic factors including gene polymorphisms that affect the efficiency of folate metabolism, gene mutations, clinical effects related to DNA methylation/epigenetics, and chromosomal anomalies; at present, multifactorial risk inheritance (genetic/environmental factors) is commonly reported, but single gene and chromosomal etiologies have specific effects.

Environmental factors such as dietary folate intake (food fortification and/or dietary supplementation), gastrointestinal absorption efficiency, teratogenic medication exposure (epilepsy or folate antagonist medications), glucose metabolism (obesity, diabetes type I and II), drugs, and alcohol.

Non genetic folate receptor alpha autoantibodies (blocking; binding) have been implicated with folate related anatomical and developmental pathology.

The NTD affected population, prior to folic acid food fortification in different countries, identified the diversity of the NTD related anomalies and the co-existing anomalies (Hurst et al., 2005; Hall et al., 1988; Holmes et al., 1976; Khoury et al., 1982; Jones et al., 2013; Mulineau et al., 1988; Mills et al., 1989; Milunsky et al., 1989; Centers for Disease Control (CDC), 1983–1991; Bower and Stanley, 1989).

Table 1 summarizes the evidence supporting the oral prenatal fortification and supplementation dosing of FA for the prevention of folic acid sensitive anomalies (strong evidence (neural tube defects; cardiac (VSD/ASD); oral facial clefts; cleft palate; limb reduction defects; obstructive urinary tract anomalies) and moderate evidence (congenital hydrocephalus; transposition of the great arteries; pyloric stenosis; omphalocele) (MRC Vitamin Study Research Group, 1991;
Table 1

Oral folic acid supplementation dosing evidence.
Study Design Publication Date Country Food Folic Acid Fortification Status
Study Summation

RCT
International multi-centered including Hungary
Non-fortified
Non-fortified
Non-fortified
Non-fortified
Case-control
USA Non-fortified
USA Other: Cultures/ Systematic Review
USA Fortified
Chile, Argentina, Brazil, Canada, Costa Rica, Iran, Jordan, South Africa, USA Fortified

Abbreviations: DFE dietary functional equivalent; FA folic acid; NTD neural tube defect; RBC red blood cell; RCT Randomized Clinical Trial; UK United Kingdom

Czeizel and Dudás, 1992; Czeizel, 1993; Shaw et al., 1995; Werler et al., 1993; Cawley et al., 2017; Castillo-Lancellotti et al., 2013; Moore et al., 2003; Bonnette et al., 1998; Caudill et al., 1997.

Table 2 summarizes the evidenced-based studies using case-control, cohort, or RCT comparisons in populations with FA fortification or supplementation. Folic acid combination in multivitamin supplements has been shown to reduce additional congenital anomalies. Case-control cohorts, after FA fortification, highlight the decrease in folate sensitive congenital anomaly frequencies (Czeizel, 1996; Jahanbin et al., 2018; Ingrid Goh et al., 2006; Goh and Koren, 2008; Johnson and Little, 2008; Lowry et al., 2019; Morris et al., 2019; Nishigori et al., 2019; Kondo et al., 2019; McDonnell et al., 2018; Mao et al., 2017; Liu et al., 2019; Liu et al., 2018; Liu et al., 2017; Kurdi et al., 2019; Poletta et al., 2018; Li et al., 2013; Godwin et al., 2008; Canfield et al., 2005; Canfield et al., 2009; Ray et al., 2002; Wilcox et al., 2007).

Table 3 summarizes maternal counselling issues used to identify increased risk factors for fetal NTD and for low maternal folate status (Hurst et al., 2005; Briggs et al., 2017; Greene and Copp, 2014; Han et al., 2009; Ichholzer et al., 2006; Desrosiers et al., 2018; Werler et al., 2011; Chong and Lerman, 2016; Meijer et al., 2005).

Table 4 summarizes evidenced-based drugs/medications that may interact with the physiology of maternal fortification or supplemental FA intake (Hurst et al., 2005; Briggs et al., 2017; Alpers, 2016; Stabler et al., 2009; O’Connor et al., 2016; Tsakiridis et al., 2020).

A positive impact from MMN supplementation during pregnancy for iron and folic acid is supported for several birth outcomes (decreased maternal anemia at term; reduction in low birth-weight babies; possible reduction in small-for-gestation age babies and reduced preterm birth). No important benefits or harms of MMN supplementation are found for
Table 2
Geographic NTD/congenital anomaly prevalence reported with population access to folic acid fortification and/or supplementation.

Country/Region (Time Period)	NTD	Other Anomalies	(Year)/reference
Hungary RCT 1992		Total anomalies MVS 20.6/1000	(1996) (Czeizel, 1996)
Meta-analysis		Significant reduction for obstructive urinary tract anomalies and cardiac VSDs	
Supplementation		FA supplementation modest reduced risk for all oral clefts (OR = 0.69; 0.60-0.78)	(2018) (Jahanbin et al., 2018)
		FA alone: CL/P OR = 0.73	
		CP only OR = 0.75	
		Multivitamin with FA CL/P OR=0.65	
		CP only OR = 0.69	
Fortification Case-control (CC)		Oral facial cleft	(2006; 2008) (Ingrid Goh et al., 2006; Goh and Koren, 2008)
Randomized Controlled Trial (RCT)		CC 0.63 (0.54-0.73)	
		RCT 0.58 (0.28-1.19)	
		Cardiovascular defects	
		CC 0.78 (0.67-0.92)	
		RCT 0.61 (0.40-0.92)	
		Limb reduction defects	
		CC 0.46 (0.30-0.67)	
		RCT 0.57 (0.38-0.85)	
		Cleft palate	
		CC 0.76 (0.62-0.93)	
		RCT 0.42 (0.06-2.084)	
		Urinary tract defects	
		CC 0.48 (0.30-0.76)	
		RCT 0.68 (0.35-1.31)	
		Cong hydrocephalus	
		CC 0.37 (0.24-0.56)	
		RCT 1.05 (0.53-4.50)	
Fortification Case-control (CC)		Cleft palate only	(2008) (Johnson and Little, 2008)
		CC 0.75 (0.65-0.88)	
		Cleft palate only	
		CC 0.88 (0.76-1.01)	
Geographic Populations		Total NTD rate (2000–2014) is 0.74 per 1000 total births	(2018) (Lowry et al., 2019)
Canada Alberta 2001–2015		Urinary and heart defects were the most frequently identified associated anomalies	
Fortification and supplementation		Certain cases with SB are unlikely to respond to folic acid such as lipomeningomyelocele, chromosomal defects, syndromes or SB with multiple congenital anomalies.	(2018) (Morris et al., 2018)
Europe (1980–2012)		CHD increasing	
Supplementation		Severe CHD 1.4%	
		Single ventricle 4.6%	
		AVSD 3.4%	
		ToFallot 4.1%	
		CPAM increasing	
		Limb reduction defects decreasing	
Japan		92,269 participants	(2019) (Nishigori et al., 2019)
Supplementation		NTD 74	
		Spina bifida 32	
		Anencephaly 24	
		Encephalocoele 19	
Supplementation		8.29 per10,000 births 2014	(2019) (Kondo et al., 2019)
		8.72 per10,000 births 2015	
Ireland		No decrease over 20 years	(2018) (McDonnell et al., 2018)
Supplementation		1.05 per 1000 pregnancies with 91% detected antenatally and 53% live born	
China (2010–2012)		Preconception folic acid decreased overall CHDs (OR 0.42; 0.21–0.86)	(2017) (Mao et al., 2017)
Supplementation (2002–2011)		Congenital limb reduction with and without FA supplementation	(2019) (Liu et al., 2019)
		With 2.7/10,000	
		Without 9.7/10,000	

(continued on next page)
peri-natal mortality outcomes (stillbirth, peri-natal and neonatal mortality) (O’Connor et al., 2016; Tsakiridis et al., 2020; Saldanha et al., 2017; Keats et al., 2019; Keats et al., 2019; Mousa et al., 2019; O’Leary and Samman, 2010; Wolf et al., 2017; Chang et al., 2013).

The 2011 Canadian Health Measures Survey identified that < 1% of Canadians had folate deficiency (RBC folate < 305 nmol/L), 40% had high folate concentrations (RBC folate > 1360 nmol/L) and for women of reproductive age, 22% were below the optimal NTD-risk reduction value (RBC folate < 906 nmol/L) (Colapinto et al., 2011). By 2015, a shift to higher RBC folate concentrations was identified in the population, a positive outcome for the prevention of folate sensitive birth defect but raised concern re maternal/fetal health risks. Three RBC folate concentration thresholds were used for population comparison (Colapinto et al., 2015).

Maternal evaluation, from the APron cohort, concluded from the wide range of identified RBC folate levels that the FA supplementation counselling in this maternal cohort had not been adequate (Fayyaz et al., 2014).

Table 2 (continued)

Country/Region (Time Period)	Folic acid intake	Other Anomalies	(Year)/reference
Supplementation		Complicated Hydrocephalus 20.3/10,000 Isolated hydrocephalus 8.3/10,000	(2018) (Liu et al., 2018)
Saudi Arabia (single center)	FA supplementation reduced total NTDs for both male and female but was greater in females for total NTD and anencephaly	Anomalies total 412 per 10,000births	(2019) (Kurdli et al., 2019)
Supplementation		After 2009 supplementation identified decreased prevalence	(2018) (Liu et al., 2018)
Latin America (1990-2013)		Heart defects CC isolated 0.52 (0.34–0.78) CC complex 0.27 (0.14–0.55)	(2013) (Li et al., 2013)
Fortification		Spina bifida Case-control (CC) 0.51 (0.36–0.73)	(2008) (Godwin et al., 2008)
Single Populations		Anencephaly Case-control (CC) 0.84 (0.76–0.94) CC 0.88 (0.81–0.96) Cleft palate only	(2005) (Canfield et al., 2005)
Fortification		Spina bifida Case-control (CC) 0.66 (0.61–0.71) CC 0.88 (0.82–0.95)	(2009) (Canfield et al., 2009)
Fortification		Anencephaly Case-control (CC) 0.84 (0.76–0.94) CC 0.88 (0.81–0.96) Cleft palate only	(2002) (Ray et al., 2002)
Fortification		Spina bifida Case-control (CC) 0.66 (0.61–0.71) CC 0.88 (0.82–0.95)	(2007) (Wilcox et al., 2007)
Fortification		Hispanic cohort (<5 years in USA) OR 3.28 (1.46–7.37)	(2005) (Canfield et al., 2009)
Supplementation		Neural tube defect Post fortification 1.13 per 1000 pregnancies	(2013) (Petersen et al., 2013)
Supplementation		Isolated cleft lip ± palate aOR 0.61 (0.39–0.96) High folic acid diet and supplement aOR 0.36 (0.17–0.77)	(2018) (Murphy et al., 2021)

During the 2011 Canadian Health Measures Survey identified that < 1% of Canadians had folate deficiency (RBC folate < 305 nmol/L), 40% had high folate concentrations (RBC folate > 1360 nmol/L) and for women of reproductive age, 22% were below the optimal NTD-risk reduction value (RBC folate < 906 nmol/L) (Colapinto et al., 2011). By 2015, a shift to higher RBC folate concentrations was identified in the population, a positive outcome for the prevention of folate sensitive birth defect but raised concern re maternal/fetal health risks. Three RBC folate concentration thresholds were used for population comparison (Colapinto et al., 2015).

Maternal evaluation, from the APron cohort, concluded from the wide range of identified RBC folate levels that the FA supplementation counselling in this maternal cohort had not been adequate (Fayyaz et al., 2014).

3.1.1.1 One-Carbon metabolism folic acid, vitamin B12 and choline: How do they prevent?

One-carbon metabolism is responsible for purine and thymidine synthesis and transmethylation which is critical in embryonic/fetal development. FA is a key player in one-carbon metabolism cycle (Fig. 2) (Ducker and Rabinowitz, 2017; Bailey et al., 2015; O’Leary and Samman, 2010; Ueland, 2011; Petersen et al., 2019; Brossan et al., 2019). Table 5 summarizes one-carbon metabolism cohort studies (Petersen et al., 2019; Ray et al., 2002; Ray et al., 2007; Visentin et al., 2016; Visentin et al., 2016; Fofou-Caillierez et al., 2019; O’Malley et al., 2018; Molloy, 2018; Visentin et al., 2015; Barzilay et al., 2018; Plumptre et al., 2018; Murphy et al., 2021).

Vitamin B12 interacts as a coenzyme (O’Connor et al., 2016; Ray et al., 2002; Ray et al., 2007) while in a pregnancy cohort, 5% of women had serum vitamin B12 levels (<148 pmol/L) where recommended higher serum cut-off values (>220 pmol/L) should be considered for NTD protection (Visentin et al., 2016; Visentin et al., 2016; Farrell, 2013; Farrell et al., 2013; Colapinto et al., 2014).

Choline deficiency during pregnancy has been associated with adverse birth outcomes (impaired neurodevelopment; birth defects).
Table 3
Counselling Issues for identified increased risk factors for fetal NTD or for a low maternal folate status (Hurst et al., 2005; Briggs et al., 2017; Greene and Copp, 2014; Han et al., 2009; Eichholzer et al., 2006; Derosiers et al., 2018; Werler et al., 2011; Chong and Lerman, 2016; Meijer et al., 2005).

Personal/Family History or Ethnic Risk	Maternal Medical/Surgical co-morbidities conditions	Maternal lifestyle factors
NTD: maternal or paternal affected; previous affected fetus for either parent; affected child, sibling, or second/third degree relative	GI: malabsorption/inflammatory bowel disease; Crohn’s disease; active Celiac disease; gastric bypass surgery; advanced liver disease	Low Socio-economic-demographic status
Epilepsy: anti-epilepsy medications	Diabetes: pre-gestational diabetes (type I or II)	Immigrant women/access/language/knowledge
Maternal obesity BMI > 30 kg/m2 or 80 kg	Maternal obesity BMI > 30 kg/m2 or 80 kg (pre-pregnancy weight)	Oral compliance factors measured by pregnancy intake of multi-vitamin
Folate inhibiting medication	Folate inhibiting medication	Smoking
Renal: kidney dialysis	Renal: kidney dialysis	Alcohol overuse
		Non-prescription drug use/abuse
		Poor or restricted (gluten-free) diet

Table 4
Interactions between drugs/medication and maternal folate concentrations (Hurst et al., 2005; Briggs et al., 2017; Alpers, 2016; Stabler et al., 2009).

Biology reduced folate activity	Interference with erythrocyte maturation Other	Chloramphenicol activity
Reduced folate acid levels	Impaired absorption	Methotrexate activity
Other interactions	Increased metabolism	Methotrimin activity
		Sulfasalazine activity
		Methotrexate activity
		Methotrimin activity
		Phenobarbital activity
		Primidone activity
		Triamterene activity
		Barbiturates activity

The richest sources of dietary choline come from meat and egg yolk (O’Connor et al., 2016; Masih et al., 2015).

3.1.2. Management for maternal Co-Morbidity groups with identified increased risk for folate sensitive congenital anomalies
Preconception counselling for pregnancy planning is recommended for all pregnancies but will have greater preventive value with a history of genetic morbidity (includes paternal), adverse pregnancy outcomes, and maternal co-morbidity conditions (Wilson et al., 2021; Bibbins-Domingo et al., 2017; ACOG Practice Bulletin Neural Tube Defects, 2017; Wilson, 2018; ACOG Practice Bulletin Neural Tube Defects, 2019; Broughton and Douek, 2019). A three-generation pedigree for congenital anomalies (personal, fetal or neonatal) and pregnancy outcomes (live birth, stillbirth, pregnancy termination, spontaneous loss) is required for the maternal and paternal families (Table 3) World-wide NTD prevalence range is 0.3–200 per 10,000 births (Canada 5.66 per 10,000 births; USA range 3.0–6.3 per 10,000 births dependent on race and socioeconomic factors) where the identification of folate gene interactions, through transcriptome profiling studies, would allow enhanced genetic folate deficiency identification and management (Public Health Infobase, 2021; Au et al., 2017).

3.1.2.1. Genetic factor contribution to NTD. The NTD disruptive developmental processes are complex (genetic, epigenetic, metabolic, nutritional) and the identification of folate-responsive mechanisms require integrative research and collaboration (Molloy et al., 2017; Finnell et al., 2021). Neonatal folate cord blood concentration was 60% higher than maternal concentrations supporting an increased activity of one-carbon metabolism in the fetus with influence by the fetal genotype (3 fetal variants). There was no maternal folate difference between pregnancy and delivery values (Brosnan et al., 2019).

Liu et al. reported on 1517 non-chromosomal NTDs with an increasing prevalence of 3.6 (2004) to 4.6 (2015) per 10,000 total births. The NTD birth prevalence was higher in women with type 2 diabetes (rate ratio 3.74 (2.21, 6.35)), chronic illness (rate ration 3.16 (1.97, 5.07)), and history of substance abuse (rate ratio 1.88 (1.31, 2.71)) (Liu et al., 2019). These identified clinical associations support the genetic folate deficiency mechanisms and indicate primary and secondary prevention strategies are required (Liu et al., 2019; van Gool et al., 2018; Toivonen et al., 2018).

The genetic contribution for NTD malformations is further highlighted by the clinical evidence, that the siblings of the NTD proband have an increased risk for NTD (2–6%) compared with the general population risk of < 0.1% (Molloy et al., 2017). The NTD recurrence risk rate in a subsequent pregnancy is estimated at 4.0% (3.5–7.0%) but is increased to 11% in families with 2 or more NTD pregnancies/children (Chitayat et al., 2016). An early NTD embryonic-fetal losses may not always be identified but the subsequent NTD recurrence risk is present (Hartge et al., 2018).

The genetic-associated NTD risk for siblings is estimated at 20–60× compared to the more common multifactorial-associated 2–10× risk for other complex human diseases (type 2 diabetes, rheumatoid arthritis,
Table 5
One carbon co-factor clinical evaluation.

Cohort	One Carbon Element(s)	Findings	Reference
Multi-center case-control:	folic acid	NTD outcomes associations between oral supplementation of at least 400 μg FA and individual and concurrent (≥2) intake of one-carbon cofactors (vitamin B6 and B12, choline, betaine, methionine) Women with concurrent high intake of B6, B12, choline and methionine and moderate intake of betaine had an OR 0.49 (95% CI 0.23–1.08, NS) of an NTD-affected pregnancy	(Petersen et al., 2019)
164 maternal controls	B6	Vitamin B12 use and measurement of homocysteobolin (vitamin B12 indicator) at 15–20 weeks gestation and identified an increasing B12 deficiency NTD risk (aOR 2.9 (1.2–6.9))	(O’Connor et al., 2016; Ray et al., 2002; Ray et al., 2007)
2831 maternal controls	Methionine	Serum vitamin B12 measured at 12–16 weeks found levels that were deficient (17%) marginal (35%)	(Visentin et al., 2016; Visentin et al., 2016)
Population-based case-control:	B12	Evaluated for serum folate and vitamin B12 concentrations and 3 liver enzymes (activity; expression, gene variants). Results identified decreased vitamin B12 concentrations in liver and cord blood and decreased expression and activity of methionine synthase in liver identifying an impaired re-methylation pathway associated with NTD risk	(Fofou-Calilieris et al., 2019)
89 women with fetal NTD	B12	Significant differences between groups were found in plasma folate, S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH) and SAM/SAH levels. Genotype and allele distributions of 52 SNPs in 8 genes identified 4 polymorphisms that could identify maternal NTD risk factors	(O’Malley et al., 2018)
422 controls			
PREFORM cohort	folic acid	Without prenatal vitamin supplementation, the dietary intake of folate and vitamin B6 would have not met requirements (dietary amounts folate 57%; vitamin B6 52%; vitamin B12 37%). Choline intake was less than adequate (<450 mg/d) in 87% of women	(Molloy, 2019)
women with and	B12		
without a child NTD	Choline		
Multiple			

Abbreviations: aOR adjusted odds ratio; B6 vitamin B6; B12 vitamin B12; FA folic acid; NTD neural tube defect; NS non-significant; RBC red blood cell.

3.1.2.2. Maternal epilepsy. There is a strong association (drug and dosage) of anti-epileptic drugs (AEDs) with increased congenital anomalies (prevalence 2.5%) including neural tube defects. There has been no impact on the congenital anomaly prevalence with ‘high dose’ FA supplementation in epileptic pregnancy care (Harden, 2014; Keni et al., 2020; Baishya et al., 2020; Kasif et al., 2019; Harden et al., 2009; Harden et al., 2009; Morrow et al., 2009; Kjær et al., 2008; Tomson et al., 2015; Herzog et al., 2017; Mahdavi et al., 2019) as the AEDs teratogenic mechanism may have no FA component or association (Harden et al., 2009; Harden et al., 2009; Morrow et al., 2009). High dose FA should no longer be recommended for congenital anomaly reduction for pregnant women with epilepsy (Stephen et al., 2019; Tomson et al., 2020; Li et al., 2021).

Benefit from FA supplementation use in epileptic pregnancy cohorts has been associated with neonatal neurodevelopmental benefits (Meador et al., 2020). A population-based biobank study (Norway) and the NEAD study (USA) have shown a decreased risk of autistic traits in children, exposed ‘in utero’ to AEDs, following periconceptional FA supplementation (Meador et al., 2020; Bjørk et al., 2018). Periconceptual FA supplementation in women with epilepsy is associated with better cognitive development in neonatal – childhood up to age 6 (Meador et al., 2020). The critical period for FA supplementation exposure is during the first trimester as plasma folate levels later in the pregnancy were not associated with better cognitive outcomes although they were inversely associated with autistic traits (Bjørk et al., 2015). It is recommended that fertile epileptic women using AEDs should take FA supplements continuously (Bjørk et al., 2018) with periconceptual FA supplementation, using a dose of at least 400 μg daily.

3.1.2.3. Maternal Gastro-intestinal disease. Gluten-free diet (GFD) food when compared to equivalent wheat-based food, show deficiencies in minerals (calcium, iron, magnesium, zinc) and vitamins (vitamin B 12, folate, vitamin D) (Diez-Sampedro et al., 2019; Oxentenko and Rubio-
Maternal lactase deficiency/polyorphism (poor gastro-intestinal nutrient absorption) is associated with NTD newborns but there were racial differences in the lactase deficiency rates (Hoang et al., 2019). Folate ‘loss of function’ transporter gene mutations (transporting folate from maternal intestinal lumen) may affect maternal folate availability (Findley et al., 2017).

3.1.2.4. Maternal diabetes (Pre-existing and Gestational).

For pre-existing diabetes in pregnancy, the overall congenital anomaly risk is 3–4% (Broughton and Douek, 2019; Lind et al., 2019; Akbari et al., 2018; Zhao et al., 2018).

A pregestational diabetes cohort reported that daily FA supplementation (≥400 µg) was associated with a lower NTD risk (0.25 (0.04, 1.05) NS) compared to no supplementation (Petersen et al., 2019).

Although the preconception-pregnancy duration of FA supplementation and the joint effects of FA and vitamin B12 imbalance (higher folate/vitamin B12 ratio) has reported a higher pregnancy risk for the development of gestational diabetes (GDM) (Cheng et al., 2019; Huang et al., 2019; Li et al., 2019; Petersen et al., 2019). GDM may alter the concentrations of serum folate, plasma betaine and trimethylamine N-oxide (TMAO) in fetal cord blood with a possible impact on fetal epigenetic programming and later adult health (Barzilay et al., 2018).

Pre-conceptional use of inositol and FA, after one or more NTD affected pregnancies, has been evaluated in RCT and non-randomized cohorts (Greene et al., 2017; Dell’edera D, Sarfo K, Allegretti A, Epifania AA, Simone F, Lupo MG, 2017; Farren et al., 2017). Two meta-analyses conclude that myo-inositol supplementation has some ability to reduce the incidence of gestational diabetes (risk ratio 0.43; 95% CI (0.21–0.89)) and preterm delivery (risk ratio 0.36; 95%CI (0.17–0.73)) in pregnant women. Inositol administration during pregnancy appears to be safe and may represent a novel strategy for GDM prevention with double administration of myo-inositol 2 g per day to improve the glycemic homeostasis which may reduce GDM rate (odds ratio 0.49, 95%CI 0.24–1.03) and preterm delivery rate (odds ratio 0.35, 95%CI 0.17–0.74) (Zhang et al., 2019; Vitagliano et al., 2019).

3.1.2.5. Maternal Pre-pregnancy obesity.

An obese cohort, using daily FA supplementation (at least 400 µg), was associated with a lower NTD risk (aOR 0.65(0.40,1.04) NS) compared with no supplementation (Petersen et al., 2019). In a pre-food fortification cohort, assessment of maternal pre-pregnancy weight and NTD risk reduction using ≥400 µg FA daily reduced the risk for women <70 Kg by 40% but there was no reduction for women >70 Kg (Kose et al., 2019).

Maternal obesity in pregnancy has an estimated prevalence of 5–10% with a significant negative impact on pregnancy outcomes.

Obese females have lower tissue folate concentrations when compared to normal weight females. There was a negative correlation between increasing BMI for both serum folate (p = 0.03) and plasma B12 (p = 0.03) but with no correlation between BMI and RBC folate concentration (p = 0.13) (O’Malley et al., 2018). The association of obesity and NTDs may be independent of folate intake with a clinical ‘relative folate deficiency’ secondary to low-grade chronic inflammation, insulin resistance, inositol, and ‘dysbiotic’ gut microbiome associated physiology. Maternal assessment of serum folate or RBC folate and plasma total homocysteine will assist in the management of this complex risk (Werler et al., 1996; Shaw et al., 1996; Ray et al., 2005; Zhang et al., 2021; van der Windt et al., 2021).

3.2. Social inequity issues

Social inequity factors create obstacles to timely and appropriate folic acid supplementation. The factors, leading to a lower likelihood of FA supplemental use to no supplemental use, were young maternal age, low education, low family income, multiparity, single parenthood, maternal unemployment, maternal overweight, and smoking. Immigrant and underweight woman in the cohort were more likely to receive FA supplementation but after the periconceptional period (Camer et al., 2019; Ţarca et al., 2021).

3.2.1. Maternal folate receptor autoantibodies

The developing fetus receives folate from the mother through the placenta. It is proposed that folate as 5-MTHF, from the maternal circulation, binds to FR alpha (folate receptor alpha) present on the microvillous membrane surface of placental syncytiotrophoblast (Solanky et al., 2010). The PCFT (proton coupled folate transporter) is co-localize to this region and the receptor-mediated endocytosis of FR alpha-folate may internalize the adjacent PCFT (Solanky et al., 2010). In the endosomal compartment, acidification allows folate to be released from FR alpha and transported, coupled to a H + transporter, into the cytoplasm by PCFT (Solanky et al., 2010). Folate is exported out via RFC (reduced folate carrier) and possibly other transporters, into cytotrophoblast cells, then to the fetal vessels. While data on FA requirements and placental transport mechanisms are lacking in pregnancy and fetal development, animal studies have provided some insight into this process. Folate is actively transported across the placenta and made available to the fetus (YASUDA et al., 2008). The expression of FR alpha and FR beta in the placenta would suggest a role for both proteins in the process. In human placenta, the ratio of FR alpha and FR beta is 3:1 and in the rat, it is 1:1. While the role of FR beta in transplacental transport/fetal folate uptake is not clear, FR alpha is likely to play a major role in fetal uptake of folate since administering an antibody to FR alpha in pregnant rats causes a significant decrease in fetal uptake of folic acid. Structural development of the fetal brain requires adequate folate as evidenced by neural tube defects in the FR alpha knockout mouse (Priedhita et al., 1999).

The presence of autoantibodies to folate receptor alpha can impair folate physiologic processes. Pregnancy associated FR autoantibodies in the pathogenesis of NTD are summarized in Table 6 (Rothenberg et al., 2004; Cabrera et al., 2008; Berrocal-Zaragoza et al., 2009; Molloy et al., 2009; Bille et al., 2010; Boyle et al., 2011; Shapiro et al., 2015; Yang et al., 2016; Dong et al., 2018). The % contribution of the blocking and binding FR alpha autoantibody involvement to the overall NTD malformation prevalence is unknown. The autoantibody-NTD data has both positive and negative association studies but the dose response and genotypic variations data provides important considerations. The single case pre-pregnancy treatment report related to the reduction or elimination of the autoantibodies needs larger cohort evaluation (Yang et al., 2016).

The discovery of FR alpha autoantibodies has provided a potential mechanism by which fetal folate insufficiency could occur in the presence of normal maternal folate status. Two types of the FR alpha autoantibodies have been identified based on their functional property and epitope specificity; blocking autoantibody, which prevents binding of folate to FR alpha (by virtue of directly or sterically interfering with folate binding), and binding autoantibody, which may exert its pathology by triggering an antibody-mediated immune reaction and inflammation (Sequeira et al., 2015).

In children, these folate autoantibodies are associated with neurodevelopmental abnormalities as identified in cerebral folate deficiency syndrome, Rett syndrome and autism (ASD). Many of the parents of autistic children are also positive for these autoantibodies. Therefore, the presence of autoantibodies against FR alpha, whether transferred to the fetus from the mother during pregnancy or developed postnatally in the infant, can disrupt the transfer of folate to the brain, decreasing this essential nutrient with potential changes in the brain that may cause the ASD behavioral deficits (Ramaekers et al., 2004; Ramaekers et al., 2007; Ramaekers et al., 2007; Ramaekers et al., 2013; Frye et al., 2013).

Preconception/prenatal testing of women and men for gene mutations in folate dependent pathways and for FR alpha autoantibodies requires more study, prior to advocating for pre-pregnancy testing of
Table 6
Pregnancy reported Folate Receptor Antibodies clinical impact.

Population/Country/Year	Study	Outcome	Reference	
Pregnancy cohort/USA/2004	Serum from 12 pregnant women with a fetal NTD and 24 control women	9/12 women positive for autoantibodies 2/20 women positive for autoantibodies Autoantibodies blocked folate receptor binding to folate receptors on placental membranes/ED27 cells/KB cells	(Rothenberg et al., 2004)	
Pregnancy cohort/USA/2008	Serum specimens collected at 15–18 weeks with 29 pregnancies complicated by spina bifida and 76 unaffected pregnancies	OR 2.07 (CI 1.02, 4.06) anti-FBP IgM OR 2.15 (CI 1.02, 4.69) anti-FR IgG OR 3.19 (CI 1.47; 6.92) anti-FR IgM High titer of antibodies and blocking of FA binding to FR	(Cabrera et al., 2008)	
Infertility/Spain	Women planning pregnancy participated in the PREC (PRE Conception) longitudinal study of maternal nutritional status from preconception throughout pregnancy 17 cases of subfertility 25 controls	At least one positive reading for FR autoantibodies was observed in 29.4% (5/17; mean [SD] titer: 0.88 [0.39] pmol FR blocked/mL plasma) of the subfertility cases compared with in 4% (1/25; titer: 0.19 pmol FR blocked/mL plasma) of the control group (P < 0.05). The risk of subfertility was 12 times higher in women with autoantibodies compared with those without (OR, 12; 95% confidence interval [CI], 1.9–129.6; P < 0.05).	(Bierrocal-Zaragoza et al., 2009)	
Variable stored blood samples/Ireland/2009	Study 1: Analysis of stored frozen patient samples (103 NTGs; 103 no fetal anomaly; 58 women never pregnant; 36 men) Study 2: evaluated frozen degradation risk	Serum available for 47 cases and 39 controls. Autoantibodies were 17% of cases compared to 13% controls (OR, 1.95; 95% CI, 0.95–3.99). Within the Norwegian Mother and Child Cohort Study mothers of children with NTD were measured for folate receptor antibodies. Increased binding inhibition for NTD autoantibodies (aOR 1.4 (CI 1.0; 1.8)) No increased risk for oral facial clefts	(Boyles et al., 2011)	
Pregnancy Case Report/USA/2015		Positive for both binding and blocking autoantibodies	Successful 5th pregnancy after 4 SAs with milk-free diet, folic acid 4 mg, leucovorin 2.5 mg, prednisone 5 mg, ASA 81 mg, vitamin D 4000 IU, vitamin B12 500ug, synthroid 25ug/progesterone 100 mg BID through 1st trimester/on this therapy her antibody titer dropped to undetectable after 300 days with natural conception	(Shapira et al., 2015)
Pregnancy cohort/China/2016	118 mothers with NTD-affected pregnancies (fetus or neonate) 242 mothers with unaffected pregnancies (fetus or neonate)	Plasma FR autoantibodies levels IgG/IgM were significantly elevated in mothers of infants with NTDs compared with mothers of healthy controls. A dose-response relationship was found between FR autoantibodies levels and risk of NTDs (P < 0.001 for IgG, P 0.002 for IgM). The same pattern was observed in both subtypes of spine bifida and anencephaly. No significant difference in levels of cord blood FR autoantibodies was observed.	(Yang et al., 2016)	
Pregnancy cohort/China/2018	320 pregnant women to evaluate genetic polymorphisms in the folate pathway on FR autoantibodies titers	Significant associations were observed between genetic variations and levels of FR autoantibodies. Genetic variations in MTHFR, DNMT3A, and MTHFD2 genes were associated with elevated plasma levels of FR autoantibodies.	(Dong et al., 2018)	

Abbreviations:
aOR adjusted odds ratio; CI confidence interval; CL/P cleft lip with or without cleft palate; CP cleft palate; FR folate receptor; NTD neural tube defect; SA spontaneous abortion.

Both parents or the mother throughout pregnancy. A treatment protocol for pre-pregnancy is reported in a single case report with a larger pharmacologic treatment experience in affected children (Shapira et al., 2015; Ramaekers et al., 2008; Desai et al., 2016).
4. Evidence for oral folic acid supplementation and the maternal and Fetal-Pediatric benefit and risk

4.1. Maternal benefit/risk

Review of FA safety and documented use fully supports the benefits of mandatory FA food fortification in NTD prevention, with no established risks for adverse consequences (Field and Stover, 2018).

4.2. Maternal cancer

Evidence from meta-analysis reported there was no significant effect of folic acid supplementation (with a median dose of 2.0 mg/day folic acid) on the incidence of cancer of the large intestine, prostate, lung, breast, or any specific site (Volset et al., 2013; Song et al., 2012; Castillo-Lancellotti et al., 2012; Qin et al., 2015).

Continued cancer surveillance is required as the review and the impact of folate exposure on cancer risk should continue due to conflicting study findings. A low or deficient folate status is associated with increased risks of many cancers and gene polymorphisms may impact risk in certain ethnic groups (Pieroth et al., 2018).

4.3. Adverse pregnancy events

Cochrane Review has found no conclusive evidence of benefit of FA supplementation on focused pregnancy outcomes (preterm birth, stillbirths, neonatal deaths, low birth weight babies, pre-delivery anemia, or low pre-delivery red cell folate) (Lassi et al., 2013).

4.4. Maternal serum unmetabolized folic acid (UMFA) levels during pregnancy

Concern has been raised over unmetabolized FA in the maternal circulation, due to perinatal folate fortification and supplementation. Various folate forms have been investigated in maternal and corresponding neonatal umbilical cord samples based on maternal reported perinatal FA intake with no dietary data. While unmetabolized FA identified in umbilical cord samples (50%), the concentration was 5X lower than the maternal blood while the natural folate forms showed a reverse pattern with higher cord concentrations than maternal blood samples (Obeid et al., 2010).

A secondary analysis of stored blood, from the 2006–2007 RCT Folic Acid Supplementation in the Second and Third Trimesters (FASSTT) pregnancy cohort (McNulty et al., 2013; Pentieva et al., 2016) (RCT: all women in the first trimester were given 400 μg FA per day and then they were randomized in the second and third trimester to continuing the 400 μg FA per day or a placebo) measured unmetabolized folic acid in maternal and cord blood. Plasma concentration of unmetabolized FA from supplementation and fortified FA food intake, was low or undetectable in mothers and newborns (Pentieva et al., 2016).

From a prospective study, the maternal and cord blood concentrations of folate and UMFA was determined in a cohort of pregnant women and their newborns examining the effect of maternal intake of FA and fetal genetic variants in folate metabolism on folate status. During early pregnancy, maternal plasma UMFA was detectable (≥0.2 nmol/L) in 97% of women (range: undetectable to 244 nmol/L). Plasma UMFA was detectable in 93% of cord blood samples (range: undetectable to 15 nmol/L). Cord plasma UMFA concentrations were 72% lower than maternal plasma UMFA concentrations during early pregnancy (P < 0.0001). The proportion of plasma UMFA that made up total serum folate was greater for maternal blood than for cord blood (P < 0.0001). Consistent with a previous study (Obeid et al., 2010), the lower concentration and percentage of plasma UMFA that contributed to total cord blood folate and a weak or no correlation between plasma UMFA and serum and RBC folate in cord blood, suggested that UMFA does not accumulate in the fetus even with a high folate status and detectable UMFA in mothers. Unlike adults, the fetus has limited folate storage in the liver and must use folic acid immediately available via the placenta. Therefore, the UMFA that reaches the fetus is likely metabolized to active folate forms in a more-efficient manner (Plump et al., 2015).

A SR for adverse maternal health outcomes associated with high serum or red blood cell folate concentrations, demonstrated no consistent relationship between increasing folate concentrations and any of the adverse health outcomes examined (Colapinto et al., 2016).

An evaluation of micronutrients, on placental function, found low maternal micronutrient status (vitamin D and A and B12, iron, folate) was associated with a range of pregnancy pathologies involving placental dysfunction (fetal growth restriction (FGR), small for gestational age (SGA), pre-eclampsia (PE), preterm birth (PTB)). The beneficial effects of micronutrients on fetal/neonatal outcomes indicates a reduction of low birth weight (LBW) (RR 0.88; 0.85–0.91) and SGA (RR 0.92, 0.86–0.98). (Oker et al., 2018).

4.5. Fetal and pediatric benefit – Risk

4.5.1. Pediatric cancer

Maternal use of prenatal multivitamins is associated with a decreased risk for pediatric tumors (OR 0.73, 95% CI 0.60 to 0.88), neuroblastoma (OR0.53, 95% CI 0.42 to 0.68), leukemia (OR 0.61, 95% CI 0.50 to 0.74), acute lymphoblastic leukemia OR 0.75 (0.66, 0.86), Wilms’ tumor, primitive neuroectodermal tumors, and ependymomas (Olshan et al., 2002; Wan Ismail et al., 2019; Metayer et al., 2016; Metayer et al., 2014; Ajrache et al., 2014; Bailey et al., 2012; Goh et al., 2007; Milne et al., 2012; Greenop et al., 2014; Amigou et al., 2012; van Uitert and Steegers-Theunissen, 2013; Linabery et al., 2012).

4.5.2. Fetal/neonatal cardiac

There is good evidence that folate supplementation may have a protective effect against severe types of CHD while the impact on CHD prevalence, could be greater than for NTD (Obeid et al., 2019; Botto et al., 1996; van Beynum et al., 2010; Shaw et al., 2009; Goldmuntz et al., 2008; Qu et al., 2020; Viswanathan et al., 2017).

4.5.3. Pediatric respiratory and allergic diseases

Childhood respiratory illnesses associated with perinatal use of folic acid, have no consistent evidence of an increased risk from FA use during the perinatal period (Crider et al., 2013; Roy et al., 2018; Trivedi et al., 2018; Vereen et al., 2019; den Dekker et al., 2018; Veeranki et al., 2015; Chen et al., 2021).

A systematic review/meta-analysis has suggested that pregnancy related FA intake could be a risk factor for allergic diseases especially respiratory tract allergies (RR = 1.050, 95% CI = 1.027–1.073) (Levy and Blickstein, 2006). The stratified analyses revealed the association was significant only for respiratory allergy, only for pregnant women taking oral supplements, and only for countries without FA food fortification while the meta-regression analysis found the risk effect decreased with increasing FA exposure. These outcome results create doubt on the conclusion of a risk association.

4.5.4. Embryonic-fetal twinning

Twining associated with FA use in pregnancy has not been identified (Crider et al., 2013; Muggli and Halliday, 2007; Henry et al., 2018).

4.5.5. Neonatal-Childhood neurodevelopmental disorders

Studies have evaluated the fetal exposure to FA and subsequent brain development (DNA methylation; hypomethylation; imprinting; epigenetics) (Lassi et al., 2013; Obeid et al., 2010; McNulty et al., 2013). The Folic Acid Supplementation in the Second and Third Trimester (FASSTT) RCT (2005–2006) evaluated the effect of continuing FA supplementation after the first trimester of pregnancy on maternal and homocysteine responses and related effects of the newborn. The study conclusion was that continuing FA supplementation after the first trimester of
pregnancy can prevent the decline in both serum folate and red blood cell folate concentrations and increase in plasma homocysteine concentrations that otherwise occur by the later stages of pregnancy (McNulty et al., 2013).

The additional follow-up evaluations from the FASSTT RCT cohort have reported on the psychological developmental benefits for children (Caffrey et al., 2018), gene-specific DNA methylation in newborns (McNulty et al., 2019), the cognitive performance in the children (FASSTT Offspring Trial) (Caffrey et al., 2021), and the neurocognitive development in the children, eleven years after the RCT folic acid exposure (Schrott and Murphy, 2018).

The continued intake of FA in the second and third trimester of pregnancy has identified important folate-mediated epigenetic changes in genes related to brain development and function, with limited evaluations (Caffrey et al., 2019; Irwin et al., 2016; Liu et al., 2020; Liu et al., 2021). The clinical message for continued FA exposure throughout pregnancy may be most important for countries without FA food fortification (Irwin et al., 2016).

FA supplementation during early pregnancy is associated with a lower risk of offspring’s autism spectrum disorders (ASD) (OR 0.57, 95% CI 0.41–0.78). The maternal daily intake of at least 400μg FA (diet and supplements) was associated with reduced ASD risk in offspring (OR 0.55, 95% CI 0.36–0.83) (Roffman, 2018).

Preconception management for timing and dosing of FA prior to conception is required (Liu et al., 2021; Roffman, 2018). Preconceptional supplements may provide the sufficient folate reserves against both, NTDs and neuropsychiatric risk (Murray et al., 2018).

While the limited human data is encouraging, the data from animal studies with excess FA intake suggest there are behavioral, morphologic, and molecular changes in the brain of offspring (Molloy and Mills, 2018).

4.6. Folic acid supplementation dosing choice based on maternal precision monitoring directed versus evidence-based RCT directed dosing

Table 7 (Cawley et al., 2017; Crider et al., 2018; Vatamaparast et al., 2019; Teng et al., 2017; Nguyen et al., 2009; Shere et al., 2015; Higgins et al., 2000) indicates that oral FA supplementation is more efficient than food fortified diet only for congenital anomaly prevention but combining the two intake strategies increases the serum/RBC folate concentrations more quickly as folate catabolism is less effected in the first trimester. The folate catabolism is reported to peak in the third trimester, associated with the increasing fetal mass (Dolín et al., 2018).

Multiple studies for primary and recurrence NTD prevention have confirmed the utility of FA 400–800 μg dose with no studies identifying any additional NTD reduction when using FA doses > 1 mg (MRC Vitamin Study Research Group, 1991; Czeizel and Dudas, 1992; Bailey and Hausman, 2018; Rothenberg et al., 2004; Cabrera et al., 2008; Shaw et al., 1995; Werler et al., 1993; Cawley et al., 2017; Castillo-Lancellotti et al., 2013; Moore et al., 2003). Maternal FA metabolism during pregnancy suggests that FA doses > 1 mg have no increased level of maternal absorption or altered one-carbon metabolism (Murphy et al., 2021; Bailey and Hausman, 2018).

Evaluation of the maternal folate tissue status could allow for a directed or personalized supplementation dosing, optimizing for both fetal/neonatal and maternal outcomes (Chen et al., 2019) as inclusion of dietary information in folate and vitamin B12 status assessment is required and the potential use of maternal serum/RBC folate as the biomarker for risk-reduction.

Clinical laboratories are readily able to provide measurement of serum or red cell folate using automated assays where serum folate appears to offer the best combination of access, test cost and clinical information (Farrell, 2013; Farrell et al., 2013; Colapinto et al., 2014). The normal maternal serum folate range is defined as 13.5–45.3 nmol/L. (the conversion factor for 1 ng/ml = 2.265 nmol/L). The plasma folate concentration threshold for NTD prevention in a population-based RCT of FA supplementation found an optimal plasma threshold of 25.5 nmol/L (with RBC folate > 906 nmol/L). The relationship between RBC and plasma folate concentrations is modified by BMI and MTHFR genotype but more significantly by low plasma vitamin B12 levels (WHO, 2020). Hematologic defined folate deficiency was reported with a serum < 6.8 nmol/L or RBC < 226.5 nmol/L while metabolic defined folate deficiency was reported with a serum < 10 nmol/L and RBC < 340 nmol/L. (Tam et al., 2009).

A ‘directed screening’ of maternal folate tissue status strategy could be used to identify the ‘at risk’ low folate status for specific complex preconception populations (van der Windt et al., 2021; Amanda and MacFarlane Deborah, 2018). The complex ‘at risk’ maternal co-morbidities could include pre-gestational diabetes, epilepsy, and gastrointestinal pathology (celiac disease, inflammatory bowel disease, gastrectomy surgery with limited dietary requirements) and estimates the need in 20-25% of pregnant women including obesity. Obesity, with a prevalence of 10%, has been shown to have variable outcomes for folate tissue concentrations and folate sensitive anomalies (O’Malley et al., 2018; Kose et al., 2019; Werler et al., 1996).

The directed maternal preconception folate evaluation strategy can use:

- the surrogate ‘clinical serum folate equivalent’ for optimal NTD prevention is estimated at 28–30 nmol/L (RBC folate concentration > 906 nmol/L) (O’Connor et al., 2016; Chang et al., 2013; Amanda and MacFarlane Deborah, 2018)
- clinical standard for ‘sub-optimal folate’ has the serum folate concentration < 7 nmol/L (RBC folate concentration < 317 nmol/L) (Tam et al., 2009)

Table 7

Study Group and Reference	Tablet	EGFPs enriched cereal grain products	RTCs ready-to-eat cereals	Comment
Cohort [23]	FA	400μg oral		80.4% had optimal levels with a start 4-8 weeks prior to last LMP obtain FA other than tablet but these sources add limited additional protection over oral use of 400μg daily Canadian RTCs consumption but over-all the RTC group had better nutrition than non-RTC users
Cohort (Higgins et al., 2000; Dolin et al., 2018)	50%	23%		18.9% with age ≥19 29-38% with age < 19
Cohort comparison (Bailey and Hausman, 2018)	600μg oral			Steady-state was achieved more rapidly with a higher daily dose Folate steady-state is difficult to obtain due to folate catabolism but is not related to weight gain or renal clearance
Cohort (Chen et al., 2019; NMI NHD EPG 15.01.pdf/aa−1)	FA	800μg oral		
Accessed May 25, 2020	RCT	800μg oral		
RTC (Tam et al., 2009)	RCT	800μg oral		

Abbreviations: LMP last menstrual period; RBC red blood cell; RTC ready to eat cereal.
- vitamin B12 deficiency is considered at serum vitamin B12 level of < 150 pmol/L (Murphy et al., 2021), as holo-transcobalamin (HTC) is the functional form of B12 used by tissues, a HTC measurement can replace the standard total B12 test (Farrell, 2013).

Table 8 summarizes the routine evidenced-based FA supplementation dosing alone, if no maternal serum FA monitoring is considered in the prevention process using Table 1-2 (MRC Vitamin Study Research Group, 1991; Cezeil and Dudás, 1992; Shaw et al., 1995; Werler et al., 1993; Cawley et al., 2017; Castillo-Lancellotti et al., 2013; Moore et al., 2003; Bonnette et al., 1998; Caudill et al., 1997; Cezeil, 1996; Jahambin et al., 2018; Ingrid Goh et al., 2006; Goh and Koren, 2008; Johnson and Little, 2008; Lowry et al., 2019; Morris et al., 2018; Nishigori et al., 2019; Kondo et al., 2019; McDonnell et al., 2018; Mao et al., 2017; Liu et al., 2019; Liu et al., 2018; Liu et al., 2018; Kurdi et al., 2019; Poletta et al., 2018; Li et al., 2013; Godwin et al., 2008; Canfield et al., 2005; Canfield et al., 2009; Ray et al., 2002; Wilcox et al., 2007). The Appendix provides additional detail for routine verses personalized FA supplementation dosing considerations.

5. Discussion

Optimization of oral maternal FA supplementation is difficult because it relies on FA dose, type of folate supplement, bio-availability of the folate from foods, timing of supplementation initiation, maternal metabolism/genetic factors, and other factors. There was continued nutrient deficiency identified with folate food fortification/dietary intake (22% of women of childbearing age had folate concentration < than the RBC folate concentration reference level of 906 nmol/L) and dietary intake vitamin B12 status showed deficiency/marginal rates of 17% and 35% during pregnancy (12–16 weeks) (O’Connor et al., 2016; Wolf et al., 2017; Visentin et al., 2016).

Although folate is mainly stored in the liver, maternal folate status can be assessed in urine, serum, plasma or the red blood cells. The measurement of folate in red blood cells (RBCs) reflects long-term folate status in the body compared to plasma/serum folate which may be influenced by recent dietary intake (Farrell, 2013).

A workshop consensus reported on considerations for periconceptional folate intake of FA among low-risk women in Canada. Five key challenges were identified with the need for (Amanda and MacFarlane, 2018):

1. Harmonization of guidelines, definitions and recommendations
2. More consistency for ‘over the counter’ and prescription FA supplement dosing related to consensus guideline recommendations
3. More optimal facilitation of access to FA-containing supplements during periconception
4. Enhanced knowledge/education transfer for patient, provider, and industry
5. Reversal of the ‘more is better’ attitude for vitamin and supplements

6. Summary

Maternal optimization for oral maternal FA supplementation is difficult because it relies on FA dose, type of folate supplement, bio-availability of the folate from foods, timing of supplementation initiation, maternal metabolism/genetic factors, and many other factors. The directed use of ‘evidenced-based’ folic acid supplementation in pregnancy, with or without the recommended addition of maternal serum folate (RBC folate) testing, will require further clinical evaluation and medical services/laboratory cost collaboration.

Appropriate evidence for One-Carbon metabolic supplements needs to be considered, for possible additional co-factor support for added prevention of folate-sensitive congenital anomalies (folic acid, vitamin B12, B6, choline). The preconception measurement of maternal serum folate (after 6–8 weeks of evidenced -based dose supplementation) should be considered for women with a complex risk (genetic and medical/surgical co-morbidities) for an optimized prevention of folate-sensitive birth defects.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix. Detail for routine versus personalized FA supplementation dosing clinical protocol.

Maternal folic acid and multivitamin Supplementation: Best practice considerations

A consideration in the personalized/planned pregnancy Preconception Maternal Care Protocol will require directed laboratory testing access (within the first or second month of the preconception ‘three-month window’) and for serum folate test cost:

- for an individual with a pregnancy history of a folate-sensitive congenital anomaly outcome
- for the personalized maternal determination of the folic acid supplementation dose

All women in the reproductive age group (12–45 years) should be advised to maintain a healthy folate-rich diet as recommended including a brief periodic dietary review if considering a pregnancy due to the normal dietary variations such as vegetarian or gluten-free diets/the frequency of fortified grains-cereal intake and servings per day of fruits and vegetables/the frequency of alcohol use and the abnormal variation with GI pathology (inflammatory bowel disease/celiac disease/GI by-pass obesity surgery).

As many pregnancies are unplanned, all women who may become pregnant, need to optimize the maternal tissue folate levels for maximal protection against folate sensitive birth defects including neural tube defect. All women in the reproductive age group (12–45 years of age) who have preserved fertility should be advised about the benefits from the additional oral supplementation of folic acid and multivitamin (B6, B12), along with the consideration of the regular consumption of choline -rich foods (meat; egg yolk) and the

Table 8

Identified folate congenital anomaly risk	Supplementation oral folate dose (mg) from preconception to 12 weeks of gestation	Oral vitamin B12 dose (µg)	Oral iron dose (mg) for routine prenatal care	Dietary intake for folate and choline rich foods	If available clinically fasting maternal folate RBC Serum (nmol/L)
Previous Neural Tube Defect history	4.0	2.6	30	yes	>907 > 28–30
History for another folate sensitive anomaly	0.8–1.0	2.6	30	yes	>907 > 28–30
Complex medical/surgical/lifestyle	0.8–1.0	2.6	30	yes	>907 > 28–30
Low	0.4	2.6	30	yes	>907 > 28–30
routine pregnancy requirement for oral iron supplementation, during female medical wellness visits (birth control renewal, Pap testing, yearly gynecology examination) whether or not a pregnancy is contemplated. Creating or updating the maternal three generation pedigree should be routinely undertaken as new medical-genetic-surgical information is frequently changing.

The overdosing of oral maternal folate supplementation has not had proven associations in childhood cohorts but animal studies have shown a potential adverse risk for neuro-developmental outcomes (behavioral; morphologic; molecular). The use of folate supplementation at an oral 4 mg daily dose should only be used for women at risk for recurrence of NTD malformations.

Oral folic acid supplementation is unlikely to mask vitamin B12 deficiency (pernicious anemia). Investigations (examination or laboratory) are not generally required prior to initiating folic acid supplementation for women at a low risk of folate or vitamin B12 deficiency. Folic acid supplementation should be taken in a daily oral multivitamin which includes a 2.6 μg dose of vitamin B12.

LOW-RISK Primary Prevention with no maternal folate monitoring requirement/Women with a LOW-RISK status for a neural tube defect or other folic acid-sensitive congenital anomaly (isolated and complex cardiovascular, oral facial clefts, limb reduction defects, urinary tract defects) requires a pre-conception and first-trimester diet of folate rich foods along with the use of a daily oral multivitamin supplement that contains 400 μg (0.4 mg) folic acid, 2.6 μg vitamin B12, and iron supplement of 30 mg for at least 2 to 3 months before conception, throughout the pregnancy, and for 4 to 6 weeks postpartum or as long as breast-feeding continues.

COMPLEX-RISK Primary Prevention with consideration for a maternal folate monitoring requirement/Women with a COMPLEX-RISK, for a neural tube defect or other folic acid-sensitive congenital anomaly (isolated and complex cardiovascular, oral facial clefts, limb reduction defects, urinary tract defects) are identified by their reproductive or medical or surgical history and comorbidity complex risk groups (only case-control association evidence):

a) present co-morbid medical diagnosis (pre-gestational diabetes, gastro-intestinal pathology or surgical bypass)

b) the use of medications with anti-folate physiology effects; epilepsy (phenytoin, carbamazepine, valproate); methotrexate; sulfasalazine

c) alcohol abuse

d) history of oral medication compliance issues that may impact the ability to achieve an adequate maternal folate supplementation level

Require: Personalized

- implementation or review for pre-conception and first-trimester diet of folate rich foods

- a maternal preconception fasting serum folate [‘clinical serum folate equivalent’ for optimal NTD prevention is estimated at 28–30 nmol/L] in the first or second month of the three months ‘preconception window’ (evidenced-based protective process).

- based on the preconception serum folate level, the use of a daily oral multivitamin supplement that contains 400–1000 μg (0.4–1.0 mg) folic acid, 2.6 μg vitamin B12, and iron supplement of 30 mg for at least 2 to 3 months before conception and until 12 weeks gestation, then decrease to a daily oral multivitamin supplement with 400μg (0.4 mg) throughout the pregnancy, and for 4 to 6 weeks postpartum or as long as breast-feeding continues.

OR

Routine supplementation choice with no maternal serum folate testing, primary prevention has RCT evidence for supplementation with preconception use of oral folic acid 0.8–1.0 mg daily starting 3 months preconception until 12 weeks gestation to prevent fetal NTD and other folate sensitive anomalies such as isolated and complex cardiovascular, oral facial clefts, limb reduction defects, urinary tract defects, then decrease to a daily oral multivitamin supplement with 400ug (0.8 mg) throughout the pregnancy, and for 4 to 6 weeks postpartum or as long as breast-feeding continues.

PREVIOUS FOLATE SENSITIVE BIRTH DEFECT Recurrence Prevention of Folate sensitive anomalies/Women with an increased reproductive RISK due to a history of a previous fetus affected with a neural tube defect or other folic acid-sensitive congenital anomaly (isolated and complex cardiovascular, oral facial clefts, limb reduction defects, urinary tract defects) require a personalized (maternal serum) dosing process or the RCT determined dosing evidence to determine the daily oral folate supplementation dose either:

a) the evidenced based RCTs with the dosing (4 mg for recurrence NTD prevention/0.8–1.0 mg for primary NTD prevention) was used in historical cohorts with no exposure to the present dietary flour folic acid fortification practice or maternal serum folate testing

or

b) the evidenced-based protective maternal preconception or early pregnancy fasting serum folate [‘clinical serum folate equivalent’ for optimal NTD prevention is estimated at 28–30 nmol/L] to determine the appropriate oral folic acid supplementation dose of 800–4000 μg (0.8–4.0 mg)

- pregnant women should continue their directed folate supplementation regime until 12 weeks of gestational age, from 12 weeks of gestational age, continuing through the pregnancy, and for 4 to 6 weeks post-partum or as long as breast-feeding continues, with a continued daily supplementation of an oral multivitamin containing 0.4 mg (400 μg) folic acid, 2.6 μg vitamin B12, and 30 mg iron.

OBESITY RISK Primary Prevention/Women of reproductive age with preconception obesity (BMI > 30.0) will require a more personal and focused folate counseling and supplementation/fetal anomalies prevention assessment (neural tube defect; cardiac; renal; oral cleft) due to their co-morbidity BMI status (class I 30.0–34.9; class II 35.0–39.9; class III > 40.0). This risk group should consider using a preconception folate tissue concentration assessment (serum folate concentration provides a good risk evaluation) and the folate supplementation management through the COMPLEX-RISK evaluation process.

The map above reflects the legislation by grain or combination of grains as follows:

- 64 countries have legislation for wheat flour alone

- 15 countries have legislation for wheat flour and maize flour
Czeizel, A.E., 1993. Prevention of congenital abnormalities by periconceptional multivitamin and the occurrence of neural tube defects. JAMA 320, 3451–3456.

Mills, J.L., Rhodes, G.G., Simpson, J.J., Cunningham, G.C., Conley, M.R., Lassman, M.R., Walden, M.E., Depp, O.R., Hoffman, H.J., 1989. The absence of a relation between periconceptional use of vitamins and neural tube defects. N. Engl. J. Med. 321 (7), 430–435.

Milunsky, A., Jick, H., Jick, S.S., Brueil, C.L., MacLaughlin, D.S., Rothman, K.J., et al., 1989. Multivitamin/folic acid supplementation in early pregnancy reduces the prevalence of neural tube defects. JAMA 262, 2847–2852.

Centers for Disease Control (CDC). Use of folic acid for prevention of spina bifida and other neural tube defects 1983–1991. MMWR Mortal Mortal Wkly Rep1991: 40: 513–516.

Bower, C., Stanley, F.J., 1989. Dietary folate as a risk factor for neural tube defects: evidence from a case-control study in Western Australia. Med. J. Aust. 150 (11), 613–619.

Rothenberg, S.P., da Costa, M.P., Sequeira, J.M., Craco, J., Roberts, J.L., Weeden, J., Quadros, E.V., 2004. Autoantibodies against folate receptors in women with a pregnancy complicated by a neural-tube defect. N. Engl. J. Med. 350 (2), 134–142.

Cabrera, R.M., Shaw, G.M., Ballard, J.L., Carmichael, S.L., Yang, W., Lamm, E.J., Finnell, R.H., 2008. Autoantibodies to folate receptor during pregnancy and neural tube defect risk. J. Reprod. Immunol. 79 (1), 85–92. doi:https://doi.org/10.1016/j.jri.2008.08.002.

Shaw, G.M., Schaffer, D., Velie, E.M., Morland, K., Harris, J.A., 1995. Periconceptional vitamin use, dietary folate, and the occurrence of neural tube defects. Epidemiology 6 (3), 219–226.

Werler, M.M., Shapiro, S., Mitchell, A.A., 1993. Periconceptional folic acid exposure and risk of neural tube defects. JAMA 269 (10), 1257–1261.

Cawley, S., McCartney, D., Woodside, V.J., Sweeney, M.R., McDonnell, R., Molloy, A.M., et al., 2017. Optimization of folic acid supplementation in the prevention of neural tube defects. J. Public Health 40 (4), 827–834.

Castillo-Lancellotti, C., Tur, J.A., Uauy, R., 2013. Impact of folic acid fortification of flour on neural tube defects: a systematic review. Public Health Nutr. 16 (5), 901–911.

Moore, K.L., Bradley, M.L., Singer, M.R., Rothman, K.J., Winkelmayer, W.C., 2003. Folate intake and the risk of neural tube defects: an estimation of dose-response. Epidemiology 14 (2), 200–205.

Bonette, R.C., Cauldill, M.A., Baddley, A.M., Hutson, A.D., Kaswell, G.P., Bailey, L.B., 1998. Plasma homocysteine concentrations in pregnant and nonpregnant women with controlled folate intake. Obstet. Gynecol. 92 (2), 167–170.

Cauldill, M.A., Cruz, A.C., Gregory, J.F., Hutson, A.D., Bailey, L.B., 1997. Folate status response to controlled folate intake in pregnant women. J. Nutr. 127 (12), 2363–2370.

Czeizel, A.E., 1996. Reduction of urinary tract and cardiovascular defects by periconceptional vitamin supplementation. Am. J. Med. Genet. 62 (2), 178–183.

Jahabini, A., Shadkam, E., Miri, H.H., Shirazi, A.S., Absahi, M., 2018. Maternal folic acid supplementation and the risk of oral clefts in offspring. J. Craniofac Surg 29 (6), e534–e541.

Ingraham, Y., Bollano, E., Einaron, T.R., Koren, G., 2006. Prenatal multivitamin supplementation and rates of congenital anomalies: a meta-analysis. J. Obstet. Gynaecol. Can. 28 (8), 680–689.

Goh, Y.I., Koren, G., 2008. Folic acid in pregnancy and fetal outcomes. J. Obstet. Gynecol. Can. 28 (1), 3–13.

Johnston, C.L., J., 2008. Folate intake, markers of folate status and oral clefts: is the evidence converging? Int. J. Epidemiol. 37 (5), 1041–1058.

Lowry RB, Bedard T, MacFarlane AJ, Crawford S, Sibbald B, Agborsangaya BC. Prevalence rates of spina bifida in Alberta, Canada: 2001-2015. Can we achieve more prevention? Birth Defects research 2019; 111: 151-158.

Morris, J.K., Springett, A.L., Greenlees, R., Loane, M., Addor, M.C., Barisic, I., et al., 2018. Trends in congenital anomalies in Europe from 1980–2012. PloS ONE 13 (4), 224183.

Nishigori, H., Obara, T., Nishigori, T., Ishikuro, M., Sakurai, K., Hoshiai, T., Saito, M., 2012. Folate supplementation and the risk of occurrent neural tube defects. JAMA 269 (10), 1257–1261.

Kondo, A., Akada, S., Aikiya, K., Arakawa, M., Ishii, I., Inamoto, Y., Ichi, S., Kon, T., Kondo, T., 2019. Preconception folic acid supplementation use and the occurrence of neural tube defects in Japan: a nationwide birth cohort study of the Japan Environment and Children’s Study. Congenit Anom (Kyoto) 59 (4), 110–117.

Kondo, A., Akada, S., Aikiya, K., Arakawa, M., Ishii, I., Inamata, Y., Ishida, T., Ishikawa, H., Itoh, T., Izumi, A., Kominami, F., Kondo, A.S., Matsuoka, R., Miyachi, A., Morizaki, J., Nakajima, Y., Nishimura, K., Ochiai, H., Okada, Y., Okita, K., Otsu, K., Sato, M., Shimizu, S., Shimizu, T., Shimamura, K., Sumigama, S., Tada, K., Takahashi, H., Tani, A., Wada, S., Wada-Hirake, O., Watanabe, T., Yamaguchi, M., Yasui, Y., Yokomine, M., 2019. Real prevalence of the neural tube defects in Japan: How many of such pregnancies have been terminated? Congenit Anom (Kyoto) 59 (4), 118–124.
Wilcox, A.J., Lie, R.T., Solvoll, K., Taylor, J., McConnaughey, D.R., Abyholm, F., et al., Meijer, W.M., de Walle, H.E.K., Kerstjens-Frederikse, W.S., de Jong-van den Berg, L.T.W., Eichholzer, M., Stabler SP. Clinical folate deficiency. 2009 In: Bailey LB, editor. Folate in Health and Disease. 2016. Absorption and blood/cellular transport of folate and cobalamin: pharmacokinetics and physiological considerations. Biochim Biophys Acta 126, 52

Godwin, K.A., Sibbald, B., Bedard, T., Kuzeljevic, B., Lowry, R.B., Arbour, L., 2008. Multivitamin use according to maternal country of birth. J. Obstet. Gynecol. Can. 31(5), 428-434.

Kurdi, A.M., Majeed-Saidan, M.A., Al Rakaf, M.S., Al Hashem, A.M., Botto, L.D., Wilson and D.L. O'Connor. Preventive Medicine Reports 24 (2021) 101617

Prevalence and trend of folate deficiency in the United States: findings from a multi- state population-based study. Birth Defects Res A Clin Mol Teratol. 85 (7), 637-646.

Changes in frequencies of select congenital anomalies since the onset of folic acid fortification in a Canadian birth defect registry. Can. J. Public Health 99 (4), 271-275.

Cardwell, M.A., Collins, J.S., Boto, L.D., Williams, L.J., Mai, C.T., Kirby, R.S., et al., 2005. Changes in the birth prevalence of selected birth defects after grain fortification with folic acid in the United States: findings from a multi- state population-based study. Birth Defects Res A Clin Mol Teratol. 85 (7), 637-646.

Changes in the direction of the difference between Canadian and American erythrocyte pyridoxal 5 phosphate concentrations are uncommon in a cohort of Canadian adults. 1999. Changes in the birth prevalence of selected birth defects after grain fortification with folic acid in the United States: findings from a multi- state population-based study. Birth Defects Res A Clin Mol Teratol. 85 (7), 637-646.

Keats EC, Neufeld LM, Garrett GS, Mbuya MNN, Bhutta ZA. Improved micronutrient status and health outcomes in low- and middle-income countries following large-scale fortification: evidence from a systematic review and meta-analysis. Am J Clin Nutr 2019; doi: 10.1093/jcn/nzu023.

Mons, A., Naghash, A., Lim, S., Kwon, Y., Chang YM, Bailey R, O'Connor DL. Folate. Am Soc Nutr Adv. Nutr. 2013; 4: 123-125.

Colapinto, C.K., O’Connor, D.L., Trembley, M.S., 2011. Folate status of the population in the Canadian Health Measures Survey. CMAJ 183 (2), E100-E106.

Colapinto, C.K., O’Connor, R.B., Trembley, M.S., 2015. Prevalence and correlates of high red blood cell folate concentrations in the Canadian population using 3 proposed cut-offs. Appl. Physiol. Nutr. Metab. 40 (10), 1025-1030.

Fayyaz, F., Wang, F., Jacobs, Renée L., O’Connor, D.L., Bell, R.C., Field, C.J., 2014. Folate, vitamin B12, and vitamin B6 status of a group of high socioeconomic status women in the Alberta Pregnancy Outcomes and Nutrition (APON) cohort. Appl. Physiol. Nutr. Metab. 39 (12), 1402-1408.

Duckett, G.S., Rabinowitz, J.D., 2017. One-carbon metabolism in health and disease. Cell Metab 25 (1), 27-42.

Lynn B Bailey Patrick J Stover Helenne McNulty Michael F Fenech Jesse F Gregory James L Mills Christine M Pfeifer Zia Fazlali Mindy Zhang Per M Ueland Anne M Molyk Marie A Caudill Barry Shane Robert J Berrigan Regan I Bailey Dorothy B Hausman Ranikripa Raghavan Daniel J Raiten Biomarkers of Nutrition for Development Folate Review 145 7 2015 2015 1636S 1680S 10.3945/jn.114.206599.

R.D. Wilson and D.L. O’Connor.
the Canadian Health Measures Survey and National Health and Nutrition Examination Survey. Br. J. Nutr. 112 (11), 1873–1881.

Mans, S.F., Plummer, L.L., Li, J., Berger, H., Lauman, A.Y., Croxford, R., et al., 2015. Pregnant Canadian women achieve recommended intakes of one-carbon nutrients through prenatal supplementation but the supplement composition, including folic acid, requires reconsideration. J. Nutr. 145 (8), 1824–1834.

Wilson, R.D., 2018. Prevention—pre-conception counselling. J Obstet Gynecol Can 40 (10), 1267–1271.

ACOG Committee Opinion # 762 Pre-pregnancy Counseling. Obstet Gynecol 2013; 11 (3): e78-e89.

Broughton, C., Douek, I., 2019. An overview of the management of diabetes from preconception, during pregnancy and in the postnatal period. Clin. Med. 19 (5), 399–402.

Au, K.E., Findley, T.O., Northrup, H., 2017. Finding the genetic mechanisms of folate deficiency and neural tube defects- Leaving no stone unturned. Am. J. Med. Genet. 173 (11), 3042–3057.

Molloy, A.M., Pangilinan, F., Brody, L.C., 2017. Genetic risk factors for folate-responsive neural tube defects. Annu. Rev. Nutr. 37 (3), 269–291. https://doi.org/10.1146/annurev-nutr-071416-034235.

Finnell, R.H., Caiafza, C.D., Kim, S.E., Lei, Y., Steele, J., Cao, X., Tukeman, G., Lin, Y.L., Cabrera, R.M., Widarczyk, B.J., 2021. Gene environment interactions in the etiology of neural tube defects. Front. Genet. 12 https://doi.org/10.3389/fgene.2021.006912.

Liu, S., Evans, J., MacFarlane, A.J., Ananth, C.V., Little, J., Kramer, M.S., Joseph, K.S., Ananth, C.V., Little, J., Kramer, M.S., Joseph, K.S., 2019. Folic acid supplementation during the preconception period and risk of neural tube defects: a meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. https://doi.org/10.1093/ajcn/nqz176.

Broughton, C., Douek, I., 2019. An overview of the management of diabetes from preconception, during pregnancy and in the postnatal period. Clin. Med. 19 (5), 1246–1255.

Herzog, A., MacEachern, B.D., Mandle, H.B., Cahill, K.E., Fowler, K.M., Davis, A.R., Allen Hauser, W., 2017. Folic acid use by women with epilepsy: findings of the Unispir-it Birth Control Registry. Epilepsy Behav. 72, 156–163.

Razavi, F., Attie-Bitach, T., Malan, V., 2019. SOX3 duplication: a genetic cause to congenital malformations in offspring of women with epilepsy: a prospective study. Epilepsia Open 4 (1), 506–517. https://doi.org/10.1002/epio.201438.

Connor, O.E, Christensen J, Vestergaard M, Czeizel AE, Sørensen TT. Reproduction in mothers of children with celiac disease: a population-based case control study of the Danish National Registration Database. Am J Epidemiol. 2012; 175 (1): 30-39. https://doi.org/10.1093/aje/kws100.

Bryant, A., Stowe, P., Scott, R., Geddes, J., 2012. Antiepileptic drugs in pregnancy. Bailliere’s Best Pract. Ref. 12 (1), 167–175. https://doi.org/10.1016/j.brpcr.2011.12.001.

Greene, N.D., Leung, K.Y., Copp, A.J., 2017. Inositol, neural tube closure and the prevention of neural tube defects. Birth Def. Res. Rev. 11 (10), 150–152.

Oxentenko AS, Rubio-Tapia A. Celiac Disease Mayo Clin Proc 2019; 94(12): 2556-2571.

Makovicky, P., Makovicky, P., Caja, F., Rimarova, K., Kamas, G., Vannucci, L., 2020. Celiac disease and gluten-free diet: past, present, and future. Gastroenterol. Hepatol. (Phila.) 20(3), 283–291. https://doi.org/10.1016/j.gjhp.2020.01.013.

Hsieh, M.-S., Huang, G.-T., Wang, J.-W., Wang, Y.-K., Ku, H.-M., Chang, W.-K., Chen, C.-Y., Wu, D.-C., Kuo, F.-C., Su, W.-W., 2020. Nutritional and dietary strategy in the clinical care of inflammatory bowel disease. J. Formos. Med. Assoc. 119 (12), 1239–1249. https://doi.org/10.1016/j.jfma.2019.09.012.

Hoang TT, Lei Y, Mitchell LE, Sharma SV, Swartz MD, Waller DK, et al. Maternal Lactase Polymorphism (rs4988235) is Associated with Neural Tube Defects in Offspring in the National Birth Defects Prevention Study. J Hum Genet. 2019; 149(2): 295-303.

Fenyo, T.O., Tempenny, J.C., Byrne, S., McCrory, G.A., Coxson, J.E., Northrup, H., Au, K.S., 2017. Mutations in folate transporter genes and risk for human myeloneuropenem. Am. J. Med. Genet. A 173 (11), 2973–2984.

Lind, M.V., Lauritzen, L., Kristensen, M., Ross, A.B., Eriksen, J.N., 2019. Effects of folic acid supplementation on insulin resistance: a systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. https://doi.org/10.1093/ajcn/qnj324.

Abhari, M., Tabrizi, R., Lankarani, I.B., Heydari, S.T., Karimali, M., Khandani, M., et al., 2018. The effects of folate supplementation on diabetes biomarkers among patients with metabolic diseases: a systematic review and meta-analysis of randomized controlled trials. Diab. Metab. Res. Rev. https://doi.org/10.1002/dmrr.2534.

Shafiei, T.O., Azizabadi, S.H., Miremori, S., Hashemgholi, A., 2019. The effects of folic acid supplementation on glucose metabolism and risk of type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Am. J. Med. Genet. 8 (24), 299–304.

Cheng, G., Sha, T., Gao, X., He, Q., Wu, X., Tian, Q., Yang, F., Tang, C., Wu, X., Qie, Q., Yan, S., Yang, J., 2019. The Association between the duration of inositol supplementation, gestational diabetes mellitus, and adverse birth outcomes based on a birth cohort. Int. J. Environ. Res. 16 (22), 4511. https://doi.org/10.3390/ijerph16224511.

Huang, L., Yu, X., Li, L., Chen, Y., Yang, Y., Yang, Y., et al., 2019. Duration of periconceptional folic acid supplementation and risk of gestational diabetes mellitus. Asia Pac. J. Clin. Nutr. 28 (2), 321–329.

Li, S., Hou, Y., Yan, X., Wang, Y., Shi, C., Wu, X., Liu, H., Zhang, Z., Li, J., Zhang, M., Zhang, Q., Tang, N., 2019. Joint effects of folic acid and vitamin B12 imbalance with maternal characteristics on gestational diabetes mellitus. J. Diab. 11 (9), 744–751.

Petersen, J.M., Parker, S.E., Benedum, C.M., Mitchell, A.A., Tinker, S.C., Werler, M.M., 2019. Periconceptional folic acid and risk for neural tube defects among higher risk pregnancies. Birth Def. Res. Ref. 111 (10), 1501–1512.

Greene, N.D., Leung, K.Y., Copp, A.J., 2017. Inositol, neural tube closure and the prevention of neural tube defects. Birth Defects Res. 109 (2), 68–69.

Dell edera D, Sarto F, Allegritti A, Epifania AA, Simone F, Lisso MG, et al. Prevention of neural tube defects and maternal gestational diabetes through the inositol supplementation: preliminary results. Euro Rev Med Sci 2017; 21: 3305-3311.

Farren, M., Daly, N., McKeating, A., Kinsley, B., Turner, M.J., Daly, S., 2017. The prevention of gestational diabetes mellitus with antenatal oral inositol supplementation: a randomized controlled trial. Diabet. Care 40 (6), 759–763.

Zhang, H., Liu, Y., Li, Z., Sun, L., Guo, W., 2019. The efficacy of myo-inositol supplementation to prevent gestational diabetes onset: a meta-analysis of randomized controlled trials. J. Obstet. Gynaecol. Res. 45 (8), 1249–2255. https://doi.org/10.1111/jogr.12830.

Vitagliano, A., Saccone, G., Comi, E., Visentin, S., Desole, F., Ambrosini, G., Berghella, V., 2019. Inositol supplementation for the prevention of gestational diabetes: a systematic review and meta-analysis of randomized controlled trials. Arch. Gynecol. Obstet. 299 (1), 55–68. https://doi.org/10.1007/s00404-018-5505-0.

Kose, S., Souza, S., Bolukbas, H., Unal, M., 2019. Gezmiz-Karadag. Obesity is associated with maternal metabolism. Int. J. Vitam. Nutr. Res. https://doi.org/10.3233/ IJVR200088. https://doi.org/10.3233/ IJVR200088.
Ramaekers VT, Sequeira JM, Blau N, Quadros EV. A milk-free diet down regulates folate receptor antibodies in women with a previous history of neural tube defects. J Matern Fetal Neonatal Med. 2005; 16(2):104-14.

Molloy, A.M., Quadros, E.V., Sequeira, J.M., Troendle, J.F., Scott, J.M., Kirke, P.N., et al., 2004. Autoantibodies against folate receptors in women with a previous history of neural tube defects. N. Engl. J. Med. 350 (2), 134–142.

Yasuda, S., Hasui, S., Yamamoto, C., Kobayashi, M., Itagaki, S., Hirano, T., et al., 2003. The role of folate receptor autoantibodies in the pathogenesis of neural tube defects. J Matern Fetal Neonatal Med. 16 (3), 162–167.

Lacey, S.W., Anderson, R.G.W., Finnell, R.H., 1999. Mice lacking the folic acid-homocysteine metabolism. Placenta 31 (2), 134–143.

Bille, C., Pedersen, D.A., Andersen, A.M.N., Mansilla, M.A., Murray, J.C., Christensen, K., et al., 2013. Maternal folic acid and neural tube defects in a Chinese population. Birth Defects Res. (Part A) 106 (8), 511–518.

Pieroth, R., Paver, S., Day, S., Cunningham, F., 2018. Folate and Its Impact on Cancer Prevention: Results from a Large Cohort Study. Nutrients 10 (3), no page number.

van Uitert, E.M., Steegers-Theunissen, R.P.M., 2013. Influence of maternal folate status on human fetal growth parameters. Mol. Nutr. Food Res. https://doi.org/10.1002/mnfr.201400281.
Obeid, R., Holzgrewe, W., Pietrzik, K., 2019. Folate supplementation for prevention of congenital heart defects and low birth weight: an update. Cardiovasc Diagn Ther. 9 (52), 2424-2433. https://doi.org/10.21037/cdt.2019.09.18.

Botto, L.D., Khoury, M.J., Mulhern, J., Erickson, J.D., 1996. Periconceptional multivitamin use and the occurrence of congenital heart defects: results from a population-based, case-control study. Pediatrics 98, 911-917.

van Beynum IM, Kapusta I, Bakker ME, et al. Protective effect of periconceptional folic acid supplements on the risk of congenital heart defects: a registry-based case-control study in the northern Netherlands. Eur Heart J 2010; 31: 464-471.

Shaw, G.M., Lu, W., Zhu, H., Yang, W., Briggs, F.B., Carmichael, S.L., Barcelos, L.F., Lammer, E.J., Finnell, R.H., 2009. 118 SNPs of folate-related genes and risks of spina bifida and conotruncal heart defects. BMC Med. Genet. 10 (1) https://doi.org/10.1186/1471-2350-10-49.

Goldmuntz, E., Woyciechowski, S., Renstrom, D., Lupo, P.J., Mitchell, L.E., 2008. Variants of folate metabolism genes and the risk of congenital cardiac defects. Circ. Cardiovasc Genet. 1 (2), 126-132. https://doi.org/10.1161/ CIRCGENETICS.107.796342.

Qu, Y., Lin, S., Zhuang, J., Bloom, M.S., Smith, M., Nie, H., Mai, J., et al., 2020. First-trimester maternal folic acid supplementation reduced risks of severe and most congenital heart diseases in offspring: a large case-control study. J. Am. Heart Assoc. https://doi.org/10.1161/JAHA.119.015652.

Viswanathan, M., Treiman, K.A., Kirsh-Doto, J., Middleton, J.C., Coker-Schwimmer, E.J., Lich, N.W., Nicholson, W.K., 2017. Folic acid supplementation for the prevention of neural tube defects: an updated evidence report and systematic review for the US Preventive services task force. JAMA 317 (2), 190. https://doi.org/10.1001/jama.2016.19193.

Crider, K.S., Cordero, A.M., Qi, Y.P., Mulinaire, J., Dowling, N.F., Berry, R.J., 2013. Prenatal folic acid and risk of asthma in children: a systematic review and meta-analysis. Am. J. Clin. Nutr. 98 (5), 1272-1281.

Roy A, Kocak M, Hartman TJ, Vereen S, Adgent M, Piyathilake C, et al. Association of folate with maternal over supplementation with folic acid and its impact on neurodevelopment of offspring. Epigenomics 8 (6), 908–921. Molloy AM, Mills JL. Fortifying food with folic acid to prevent neural tube defects: are we now where we ought to be? Am J Clin Nutr 2018; https://doi.org/10.1093/ajcn/any110.

Irwin, R.E., Qi, Y.P., Devine, O., Tinker, S.C., Berry, R.J., 2018. Modelling the impact of folic acid fortification and supplementation on red blood cell folate concentrations and predicted neural tube defect risk in the United States: have we reached optimal prevention? Am J Clin Nutr. 107 (6), 1027–1034.

Vatanparast, H., Islam, N., Pattil, R.P., Shamloo, A., Keshavarz, P., Smith, J., Chu, L.M., Whiting, S., 2019. Consumption of ready-to-eat cereal in canada and its contribution to nutrient intake and nutrient density among Canadians. Nutrients 11 (5), 1009. https://doi.org/10.3390/nu11051009.

Teng, Y., Hu, J., Dong, S., Zhang, L., Liu, X., Yang, H., 2017. Concentration of red blood cell folate and the analysis of folic acid supplement optimum time and dose in first trimester. Wei Sheng Yan Jiu 46 (4), 569–578.

Nguyen, P., Tam, C., O’Connor, D.L., Kapur, B., Koren, G., 2009. Steady state folate concentration achieved with 5 compared with 1.1 folic acid supplementation among women of childbearing age. Am. J. Clin. Nutr. 89 (3), 844–852.

Shere, M., Nguyen, P., Tam, C., Stern, S., Kapur, B., O’Connor, D.L., Koren, G., 2015. Pregnancy-induced changes in the long-term pharmacokinetics of 1mg vs 5 mg folic acid: a randomized clinical trial. J. Clin. Pharm. 55 (2), 159–167.

Higgins, J.R., Quinlivan, E.P., McPartlin, J., Scott, J.M., Weir, D.G., Darling, M.R., 2000. Folic Acid: a randomized clinical trial. J. Clin. Pharm. 55 (2), 159–167.

Murray, L.K., Smith, M.J., Jadavji, N.M., 2018. Maternal over supplementation with folic acid and its impact on neurodevelopment of offspring. Nutr. Rev. 76 (9), 708–721.

McNulty, H., Rollins, M., Cassidy, T., Lees-Murdock, D., McLaughlin, M., Prasad, G., Dupont, W.D., Dorris, S.L., Carroll, K.N., 2015. Maternal folic acid supplementation during pregnancy and early childhood asthma. Acta Paediatr. 107 (8), 1370–1379.