CURRENT KNOWLEDGE OF STEM CELL BIOLOGY, AS WELL AS VARIOUS CELL CULTURE TECHNOLOGIES THAT HAVE BEEN ESTABLISHED IN RECENT YEARS, SUPPORTS THE FIELD OF DEVELOPMENTAL BIOLOGY AND REGENERATIVE MEDICINE (IKEYA ET AL., 2021A, B). STEM CELLS INCLUDE EMBRYONIC STEM CELLS (MARTIN, 1981; THOMSON ET AL., 1998) WITH PLURIPOTENT DIFFERENTIATION ABILITY RETAINED BY FERTILIZED EGGS, AND INDUCED PLURIPOTENT STEM (iPS) CELLS (Takahashi ET AL., 2007; Takahashi AND YAMANAKA, 2006), WHICH HAVE BEEN DEVELOPED BY CELL CULTURE AND MOLECULAR BIOLOGICAL TECHNOLOGIES. IN ADDITION, MESCENHYMAL STEM CELLS (MSCs) DERIVED FROM BONE MARROW ARE KNOWN AS MULTIPOTENT ADULT STEM CELLS (GAO ET AL., 2021), CAPABLE OF DIFFERENTIATING INTO VARIOUS MESCENHYMAL CELLS AND HAVE CONTRIBUTED TO REGENERATIVE MEDICINE AS HAVE BIOLOGICAL MICRODEVICES. TISSUE-SPECIFIC STEM/PROGENITOR CELLS THAT CAN BE ISOLATED FROM VARIOUS ADULT TISSUES CAN CONTRIBUTE TO THE SPECIFIC TISSUE TYPES FOR PHYSIOLOGICAL TISSUE MAINTENANCE AND REPAIR AFTER DAMAGE (PRENTICE, 2019). THE USE OF THESE STEM/PROGENITOR CELLS HAS BEEN FURTHER ENHANCED BY GENETIC ENGINEERING AND EMBRYOLOGICAL STRATEGIES (WANG ET AL., 2021). FOR EXAMPLE, THE USE OF SIGNAL TRANSDUCTION MIMICKING THE DEVELOPMENTAL STAGES OF TISSUES TO INDUCE SPECIFIC CELL DIFFERENTIATION, THE CONSTRUCTION OF TARGET TISSUES BY ORGANOIDS, A THREE-DIMENSIONAL CULTURE METHOD, AND THE USE OF EIXOMES, WHICH PLAY AN IMPORTANT ROLE IN CELL-CELL COMMUNICATION, HAVE RECENTLY ATTRACTIONED ATTENTION. STEM CELL BIOLOGY AND REGENERATIVE MEDICINE CAN BE SYSTEMATIZED BY COMBINING THESE FUNDAMENTAL TECHNOLOGIES RELATED TO DEVELOPMENTAL BIOLOGY AND STEM CELLS.
In addition to these four primary research articles, eight reviews were chosen to complete this collection of noteworthy and recently published manuscripts in the Stem Cell section. These reviews underscore several central themes in this field of research. The therapeutic potential of MSCs was reviewed by Shammaa et al., while Xiong et al. assessed the potential of exosomes from adipose-derived stem cells in tissue regeneration (Xiong et al.). In a related topic, Rees et al. described the latest research on the regenerative properties of intestinal stem cell upon injury (Rees et al.). Two reviews discussed the role and importance of signalling pathways in stem cell maintenance and differentiation. A manuscript by Yang and Jiang describe the role of the signal transducer and activator of transcription (STATS) in the control of human embryonic stem cell pluripotency and differentiation (Yang and Jiang), while Rivetti et al. assessed our current knowledge on FGF signalling during mammary gland development, homeostasis and cancer (Rivetti et al.).

On different themes, the physiology of gastric stem cells and potential related-pathologies was reviewed by Xiao and Zhou, while Dumortier et al. summarized the current literature on the role of CFTR mutations on the commitment of induced pluripotent stem cells to bone cells (Dumortier et al.). In the last review selected as part of this topic, Nakamura et al. discussed the role of hypoxia and epigenetics in the regulation of cellular reprogramming (Nakamura et al.).

Selecting manuscripts to include in this Editor’s Pick was an arduous task. This series of twelve articles, that made it to the short list, underscores the remarkable quality of manuscripts recently published in the Stem Cell Research section of Frontiers in Cell and Developmental Biology. This Editor’s Pick also highlights the breadth of stem cell research and regenerative medicine and reveals a field of research moving forward at an incredible pace.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.

ACKNOWLEDGMENTS

The authors thank laboratory members for their helpful discussion.

REFERENCES

Gao, Q., Wang, L., Wang, S., Huang, B., Jing, Y., and Su, J. (2021). Bone Marrow Mesenchymal Stromal Cells: Identification, Classification, and Differentiation. Front Cell Dev Biol 9, 787118. doi:10.3389/fcell.2021.787118

Ikeya, M., Toyooka, Y., and Eiraku, M. (2021a). Pluripotent Stem Cells in Developmental Biology. Develop. Growth Differ. 63, 3–4. doi:10.1111/dgd.12712

Ikeya, M., Toyooka, Y., and Eiraku, M. (2021b). Pluripotent Stem Cells in Developmental Biology (Part 2). Develop. Growth Differ. 63, 103. doi:10.1111/dgd.12720

Martin, G. R. (1981). Isolation of a Pluripotent Cell Line from Early Mouse Embryos Cultured in Medium Conditioned by Teratocarcinoma Stem Cells. Proc. Natl. Acad. Sci. U.S.A. 78, 7634–7638. doi:10.1073/pnas.78.12.7634

Prentice, D. A. (2019). Adult Stem Cells. Circ. Res. 124, 837–839. doi:10.1161/circresaha.118.313664

Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., et al. (2007). Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell 131, 861–872. doi:10.1016/j.cell.2007.11.019

Takahashi, K., and Yamanaka, S. (2006). Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 126, 663–676. doi:10.1016/j.cell.2006.07.024

Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., et al. (1998). Embryonic Stem Cell Lines Derived from Human Blastocysts. Science 282, 1145–1147. doi:10.1126/science.282.5391.1145

Wang, L., Ye, Z., and Jang, Y.-Y. (2021). Convergence of Human Pluripotent Stem Cell, Organoid, and Genome Editing Technologies. Exp. Biol. Med. (Maywood) 246, 861–875. doi:10.1177/1535370220985808

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors, and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Kouskoff and Asakura. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.