Constraining resonant dark matter with combined LHC electroweakino searches

Giancarlo Pozzoa Yang Zhanga

aARC Centre of Excellence for Particle Physics at the Tera-scale, School of Physics and Astronomy, Monash University, Melbourne, Victoria 3800, Australia

E-mail: giancarlo.pozzo@monash.edu, yang.zhang@monash.edu

Abstract: In the Minimal Supersymmetric Standard Model light neutralinos can satisfy the dark matter (DM) abundance constraint by resonant annihilation via a Z or a light Higgs (h) boson. In this work we study the current and future status of this scenario by investigating relevant experimental constraints, including DM direct detection, measurements of Z and Higgs invisible decays, and direct searches at the Large Hadron Collider (LHC). To take full advantage of the LHC data, we combine the results of all relevant electroweakino searches performed by the Compact Muon Solenoid (CMS) Collaboration. Such combination can increase the bound on the Higgsino mass parameter to $|\mu| > 390$ GeV, which is about 80 GeV stricter than the bound obtained from individual analyses. In a simplified model we find that the Z funnel region is on the brink of exclusion, the h funnel for $\mu < 0$ only survives if $\tan \beta < 7.4$, and the h funnel for $\mu > 0$ is the main surviving region. Future DM direct detection experiments, such as LUX and ZEPLIN, can explore the whole region, while the high luminosity LHC can exclude $\tan \beta > 8$ for $\mu > 0$ and $\tan \beta > 5.5$ for $\mu < 0$. After applying the the muon anomalous magnetic moment constraint only a tiny part of the Z/h funnel region survives which will soon be probed by ongoing experiments.
1 Introduction

A wide range of astrophysical observations indicates the existence of dark matter (DM) at various length scales via gravitational effects. Motivated by this during the last decades considerable effort was made to detect DM particles at collider experiments (such as LEP and the LHC), in direct (by XENON, LUX or PandaX) and indirect (AMS-II, Fermi-LAT or DAMPE) detection experiments. Despite the lack of direct experimental evidence, the lightest neutralino of the R-parity conserving Minimal Supersymmetric Standard Model (MSSM) remains an especially attractive DM candidate. This is because, beyond dark matter, the MSSM provides solutions to several problems of the Standard Model (SM): the lightness of the observed Higgs mass, a dynamical mechanism of electroweak symmetry breaking, the unification of particles and forces and beyond.

Supersymmetric (SUSY) global fits, which also include experimental constraints on DM particles, have delineated the most likely model parameter regions [1–22]. In global fits of the phenomenological Minimal Supersymmetric Standard Model (MSSM) [20–22], there is always a Z/h funnel region in which neutralino dark matter can achieve the right thermal relic density through Z or Higgs boson resonant annihilation. Consequently, in this region the DM mass is about half of the Z or Higgs boson mass. Comparing to other regions, the Z/h funnel region is an islet in the parameter space where some of the supersymmetric particles (sparticles) are relatively light. These characteristics make the sparticles in the Z/h funnel region the most promising candidates to be detected at the LHC and DM search.
experiments. This is our main motivation to carefully explore the present and future status of the Z/h funnel region.

Z/h resonant annihilation is important in natural SUSY [23], especially in the natural MSSM, since it allows the lightest neutralino to achieve the observed thermal relic density [24]. In the natural Next-to-MSSM (NMSSM), although the inclusion of a singlet superfield relaxes the experimental constraints on the electroweakinos, the exclusion of the Z/h funnel region increases the lower limit on the DM mass from 20 GeV to 80 GeV [25–27]. The lower limit on the DM mass, in turn, is critical for any LHC sparticle search because under R-parity all sparticles decay to the lightest supersymmetric particle (LSP) $\tilde{\chi}^0_1$ and the LSP mass is folded into the analyses. Typically, stricter search limits arise in analyses with light neutralinos. In a simplified model, for instance, with first- and second-generation mass-degenerate squarks, squark masses below 1.6 TeV (1.4 TeV) are excluded for $m_{\tilde{\chi}^0_1} < 200$ GeV (200 GeV < $m_{\tilde{\chi}^0_1} < 400$ GeV), but entirely survive if $m_{\tilde{\chi}^0_1} > 600$ GeV [28]. Therefore, in most cases, the exclusion of the Z/h funnel region affects the mass limits of all sparticles.

The MSSM Z/h funnel region have been examined in numerous recent papers [29–51]. The constraints from LHC Run-I SUSY direct searches were implemented by requiring that the SUSY signal events do not exceed the 95% confidence level (C.L.) upper limit in the signal region with the best-expected exclusion power [30, 33, 49, 50]. At Run-I, due to relatively small backgrounds of leptonic processes, the signal region with the best-expected exclusion power for the Z/h funnel region comes from the "3ℓ" search for the $pp \rightarrow \tilde{\chi}^+_1 \tilde{\chi}^-_2 \rightarrow W^± Z\tilde{\chi}^0_1 \tilde{\chi}^0_1 \rightarrow \ell\ell\nu\ell\nu \tilde{\chi}^0_1 \tilde{\chi}^0_1$ process [52]. However, with the increase of centre-of-mass-energy and integrated luminosity, the boosted jets can also be used to distinguish signals of heavy electroweakinos from background events. As a result, the sensitivities of searches for other decay modes will increase significantly, even surpassing the "3ℓ" search. An example is the "1ℓ2b" search for the $pp \rightarrow \tilde{\chi}^+_1 \tilde{\chi}^-_2 \rightarrow W^± H\tilde{\chi}^0_1 \tilde{\chi}^0_1 \rightarrow b\bar{b}v\ell\tilde{\chi}^0_1 \tilde{\chi}^0_1$ process with one lepton, two b-jets and E_T^{miss} final state. At the high luminosity LHC (HL-LHC), the 95% C.L. exclusion contour of "3ℓ" search reaches 1100 GeV in the case of the WZ-mediated simplified models [53], while the exclusion contour of "1ℓ2b" search reaches 1310 GeV in $\tilde{\chi}^+_1$, $\tilde{\chi}^0_1$ mass in the case of the Wh-mediated simplified models using the MVA technique [54]. At Run-II the impact of "1ℓ2b" search in the Z/h funnel region cannot be ignored, because $\tilde{\chi}^+_1$ decay exclusively to $\tilde{\chi}^0_1 W^±$ while BR$(\tilde{\chi}^0_2 \rightarrow \tilde{\chi}^0_1 Z)+BR(\tilde{\chi}^3_2 \rightarrow \tilde{\chi}^0_1 Z) \simeq BR(\tilde{\chi}^0_2 \rightarrow \tilde{\chi}^0_1 h)+BR(\tilde{\chi}^0_3 \rightarrow \tilde{\chi}^0_1 h)$ [30]. A statistical combination of exclusive signal regions in these searches maximizes the discovery potential. For example, in the case of the WZ-mediated simplified models, the combination performed by CMS [55] improves on the "3ℓ" analysis yielding an observed lower limit of 150 GeV on the chargino mass.

In this work, we study the present status of Z/h funnel region under the constraint of $3\ell + E_T^{miss}$ [56], $2\ell + E_T^{miss}$ [57] and $1\ell + 2b + E_T^{miss}$ [58] searches using 13 TeV 35.9 fb$^{-1}$ LHC data, as well as the latest DM direct detection results. The rest of paper is organized as follows. In Section 2 we briefly describe the electroweakino sector of MSSM, with focus on the properties of DM. We present the parameter space of the Z/h funnel region and related constraints in Section 3. The HL-LHC reach for the regions that survive the present LHC constraints is discussed in Section 4. In Section 5 we investigate the Z/h funnel region in a practical phenomenology model. Finally, we draw our conclusions in Section 6.
2 The Z/h-resonant neutralino dark mater

In this section we describe the MSSM electroweakino sector, that is the superpartners of the electroweak gauge bosons (Bino B and Winos \tilde{W}) and the two Higgs doublets (Higgsinos \tilde{H}).

After electroweak symmetry breaking the electroweakinos mix to form neutralino $\tilde{\chi}_i^0$ ($i = 1, 2, 3, 4$) and chargino $\tilde{\chi}_i^\pm$ ($i = 1, 2$) mass eigenstates. In the $\psi_\alpha = (\tilde{B}, \tilde{W}, \tilde{H}_d^0, \tilde{H}_u^0)$ basis neutralino masses are given by $-\frac{1}{2} |\psi_\alpha M^\chi_{\alpha\beta} \psi_\beta + h.c.|$ with the non-diagonal, symmetric mass matrix

$$M_{\tilde{\chi}^0} = \begin{pmatrix}
M_1 & 0 & -M_{ZSW} c_\beta & M_{ZSW} s_\beta \\
0 & M_2 & M_{ZCW} c_\beta & -M_{ZCW} s_\beta \\
-M_{ZSW} c_\beta & M_{ZCW} c_\beta & 0 & -\mu \\
M_{ZSW} s_\beta & -M_{ZCW} s_\beta & -\mu & 0
\end{pmatrix}. \quad (2.1)$$

Here M_1, M_2 and μ are the Bino, Wino and Higgsino masses, $s_\beta = \sin \beta$ and $c_\beta = \cos \beta$ where $\tan \beta = \langle H_u \rangle / \langle H_d \rangle$ is the ratio of the vacuum expectation values of the two Higgs doublets, M_Z is the Z boson mass, and s_W and c_W are the sine and cosine of the weak mixing angle θ_W. With the same notation, in the $(\tilde{W}^\pm, \tilde{H}^\pm)$ basis the chargino mass matrix is given by

$$M_{\tilde{\chi}^\pm} = \begin{pmatrix}
M_2 & \sqrt{2} c_\beta M_W \\
\sqrt{2} s_\beta M_W & \mu
\end{pmatrix}. \quad (2.2)$$

where M_W is the W boson mass. The physical masses of the neutralinos and charginos are given by the eigenvalues of $M_{\tilde{\chi}^0}$ and $M_{\tilde{\chi}^\pm}$.

Due to the $m_{\tilde{\chi}^\pm} > 92$ GeV chargino mass limit from LEP [59], the Wino mass, M_2, and Higgsino mass, $|\mu|$, must be higher than about 100 GeV. As a result, the lightest neutralino, with mass $m_{\tilde{\chi}_1^0} \sim M_Z/2$ or $M_h/2$, must be Bino dominated. We demand it to be the LSP, and R-parity conservation renders it a DM candidate. The main annihilation mode for this DM proceeds via an s-channel Z or Higgs boson, and the corresponding annihilation cross section is given by [49]:

$$\sigma(\chi_1^0 \chi_1^0 \rightarrow Z/h \rightarrow f\bar{f}) \approx \frac{1}{2} \frac{C_{Z/h}^2}{s} \sqrt{1 - \frac{4 m_{\chi_1^0}^2}{s}} \left[\frac{1}{(s - M_{Z/h}^2)^2 + (M_{Z/h} \Gamma_{Z/h})^2} \right] \frac{s}{M_{Z/h}} \Gamma_{Z/h \rightarrow f\bar{f}}, \quad (2.3)$$

where $C_{Z/h}$ is the coupling between $\tilde{\chi}_1^0$ and the Z/h boson, and $\Gamma_{Z/h}$ is the corresponding decay width. The couplings arise via neutralino mixing, as shown by the relevant Lagrangian term [60]:

$$L_{\chi^0} = \frac{e}{s_W} h_{\chi_1^0}^0 (N_{12} - N_{11} \tan \theta_W) (\sin \alpha N_{13} + \cos \alpha N_{14}) \chi_1^0 + \frac{e}{s_W c_W} Z_{\mu} \tilde{\chi}_i^0 \gamma^\mu \left[\frac{P_L}{2} (N_{14}^2 - N_{13}^2) + \frac{P_R}{2} (N_{14}^2 - N_{13}^2) \right] \tilde{\chi}_j. \quad (2.4)$$

Here α is the Higgs mixing angle, and N_{ij} are the elements of the 4×4 unitary matrix that diagonalizes the neutralino mass matrix M_{χ^0} such that N_{11}^2, N_{12}^2 and N_{13}^2 are the Bino, Wino and Higgsino components of $\tilde{\chi}_1^0$, respectively. Equation (2.4) shows that the Higgsino components play an important role both in the $h_{\chi_1^0}^0 \chi_1^0$ and $Z_{\chi_1^0} \chi_1^0$ interaction.
Considering the limit $M_1 < 100 \text{GeV} < |\mu| \ll M_2$, the Higgsino components can be expressed as [30]

$$N_{13} = \frac{M_{Z\gamma}}{\mu} \left(\frac{s_\beta + c_\beta M_1}{\mu} \right), \quad N_{14} = -\frac{M_{Z\gamma}}{\mu} \left(\frac{c_\beta + s_\beta M_1}{\mu} \right),$$ \hspace{1cm} (2.5)

which decrease when the mass hierarchy between Higgsino and Bino increases. From equations (2.5) and (2.4), one can derive the couplings

$$C_Z = \frac{e M_Z^2}{\mu^2} \cos(2\beta) \left(1 + \frac{M_1^2}{\mu^2} \right), \quad C_h = \frac{e M_Z}{\mu} \left[\cos(\beta + \alpha) + \sin(\beta - \alpha) \frac{M_1}{\mu} \right].$$ \hspace{1cm} (2.6)

Thus, the relic density of Z/h-resonant DM at tree level depends on M_1, μ, and $\tan \beta$. We, therefore, perform a scan over M_1, μ, and $\tan \beta$ to identify the parameter space where Z/h-resonant DM satisfies the observed DM abundance. Following that, we examine on the impact of current and future experimental constraints on this parameter space.

3 The parameter space and constraints

To concentrate on the Z/h funnel region, we first study the simplified model that assume the masses of all sfermions and the gluino are fixed at 3 TeV, heavy enough to decouple at LEP or the LHC. To match the measured value of SM-like Higgs mass of 125.09 GeV [61], the tri-linear coupling A_t is fixed at 4.5 TeV for $\tan \beta > 10$, at 5.0 TeV for $7 < \tan \beta < 10$, and at 6.0 TeV for $\tan \beta < 7$. Under these assumptions, we sample the following parameter space:

$$10 \text{ GeV} < M_1 < 100 \text{ GeV}, \quad 50 \text{ GeV} < |\mu| < 1500 \text{ GeV}, \quad 5 < \tan \beta < 50.$$ \hspace{1cm} (3.1)

We use SUSY-HIT-1.5 [62] based on SuSpect [63], together with SDecay [62, 64] and HDecay [65] to generate the mass spectrum and to calculate the Z/h boson decay branching ratios, micrOMEGAs-4.3.5 [66, 67] to calculate the DM observables, and EasyScan_HEP [5] to perform the scan. Due to the low dimensionality and simplicity of the parameter space we generate samples on a grid.

In Sections 3.1-3.4 we detail the relevant constraints on the Z/h-resonant DM. Here we ignore other observations, such as B-physics measurements, that tend to give mild constraints due to the high scale of the fixed SUSY parameters.

3.1 The thermal relic density of DM

From equations (2.6) and (2.3), we see that the measurement of the DM abundance by Planck [68] and WMAP [69] place severe restrictions on the relationship among M_1, μ, and $\tan \beta$. We assume that the thermal relic density of the lightest neutralino is equal to the cold DM abundance $\Omega h^2 = 0.1199 \pm 0.0022$ at 2σ level with 10% theoretical uncertainty (c.f. the Plik cross-half-mission likelihood in [68]). In Figure 1 we project the allowed regions on the $(m_{\tilde{\chi}_1^0}, |\mu|)$ plane for both $\mu > 0$ and $\mu < 0$ with colors indicating the value of $\tan \beta$.

- 4 -
Figure 1. Parameter regions allowed by the observed DM relic density \((0.0959 < \Omega h^2 < 0.1439)\) on the Higgsino mass vs. lightest neutralino mass plane for \(\mu > 0\) (left panel) and \(\mu < 0\) (right panel). Colours show the value of \(\tan \beta\). The masses of sparticles other than the electroweakinos are fixed at 3 TeV. The value of \(A_t\) is also fixed to obtain the observed Higgs mass: \(A_t = 4.5\) TeV for \(\tan \beta > 10\), \(A_t = 5.0\) TeV for \(7 < \tan \beta < 10\) and \(A_t = 6.0\) TeV for \(\tan \beta < 7\).

As sketched in Section 2, to achieve both the observed DM abundance and a sizable coupling to the \(Z/h\) boson, the Bino-like \(\tilde{\chi}_1^0\) must contain certain amount of Higgsino component. This imposes limits on the Higgsino mass, shown in Figure 1 by the colored regions. The blank region above the colored region leads to an overproduction of DM in the early universe, while the blank region below the colored region has a relic density smaller than 0.096. Due to the resonance in equation (2.3), the Higgsino mass is enhanced when \(m_{\tilde{\chi}_1^0}\) close to \(M_{Z/h}\), therefore the allowed region features two clear peaks.

The Higgs resonances (the peaks around \(m_h/2\)) in the left (\(\mu > 0\)) and right (\(\mu < 0\)) panel of Figure 1 show different dependence on \(\tan \beta\) for a fixed \(m_{\tilde{\chi}_1^0}\). This difference is caused by the sign of \(M_1/\mu\) in the coupling between the \(\tilde{\chi}_1^0\) and the Higgs boson. Taking the decoupling limit of the Higgs sector, \(\beta - \alpha = \pi/2\), \(C_h\) in equation (2.6) can be written as

\[
C_h = \frac{eM_Z}{\mu} \left(\sin 2\beta + \frac{M_1}{\mu}\right). \tag{3.2}
\]

Therefore, for \(M_1/\mu > 0\) and \(M_1 \simeq M_h/2\) to keep the coupling \(C_h\) unchanged the Higgsino mass has to increase from 400 GeV to 1440 GeV and \(\tan \beta\) has to decrease from 50 to 5. For the same reason, for \(M_1/\mu < 0\) and \(M_1 \simeq M_h/2\) the coupling is bracketed as \(|\mu|\) decreases from 380 GeV to 130 GeV and \(\tan \beta\) decreases from 50 to 7. For \(M_1/\mu < 0\) and \(\tan \beta < 7\) there are two separate regions corresponding to the observed relic density, divided by the so-called "blind spot" where \(\sin 2\beta = M_1/\mu\) [26, 38, 70–72]. The coupling \(C_h\) changes sign between the two regions. For \(\tan \beta = 5\) and \(m_{\tilde{\chi}_1^0} = 52\) GeV, for example, the regions \(\mu < -136\) GeV and \(-168\) GeV < \(\mu < -1085\) GeV both correspond to \(\Omega h^2 < 0.14\).

\[\]
The Z resonance, on the other hand, is independent of the sign of M_1/μ and it mildly depends on $\tan \beta$, as shown in equation (2.6). The Higgsino can be as heavy as about 470 GeV when DM annihilates via the Z resonance.

3.2 Dark matter direct detection experiments

Neutralinos with non-negligible Higgsino component can be directly detected via elastic scattering on nuclei mediated by Z or Higgs boson exchange [73–78]. The null result of the searches for such scattering by LUX [73], XENON1T [74, 79] and PandaX-II [75] provides limits on the spin-independent (SI) neutralino-nucleon elastic cross section $\sigma_{\chi_1^0 n}^{\text{SI}}$. In the χ_1^0 mass region we consider the one-sided 90% C.L. upper limit on $\sigma_{\chi_1^0 n}^{\text{SI}}$ is about 5×10^{-11} pb [79]. The most sensitive constraints on spin-dependent (SD) DM-neutron elastic cross section $\sigma_{\chi_1^0 n}^{\text{SD}}$ and DM-proton elastic cross section $\sigma_{\chi_1^0 p}^{\text{SD}}$ come from LUX [78] and PICO-60 [80], respectively. In Figure 2 we show current, as well as projected LUX-ZEPLIN [81], constraints on $\sigma_{\chi_1^0 n}^{\text{SI}}$ and $\sigma_{\chi_1^0 n}^{\text{SD}}$ in the parameter regions that account for the observed DM abundance. The gray regions are excluded by either DM SI or SD scattering searches.

The top panels of Figure 2 show the predicted $\sigma_{\chi_1^0 n}^{\text{SI}}$ in the surviving region as a function of $m_{\chi_1^0}$. In the limit of heavy scalar superpartners, the dominant contribution of $\sigma_{\chi_1^0 n}^{\text{SI}}$ comes from the t-channel exchange of a Higgs boson [38, 72]:

$$
\sigma_{\chi_1^0 n}^{\text{SI}} \simeq \frac{4\mu_r^2}{\pi} \left[\sum_{i=1}^{2} \frac{C_{h_i \chi_1^0 n} C_{h_i NN}}{2M_{h_i}^2} \right]^2.
$$

Here μ_r is the neutralino-nucleus reduced mass, $C_{h_i NN}$ denotes the effective coupling between the Higgs and nucleon. As discussed in Subsection 3.1, in the vicinity of the Higgs resonance $C_{h \chi_1^0 \chi_1^0}$ is restricted by the observed DM abundance. In this region $\sigma_{\chi_1^0 n}^{\text{SI}}$ is practically independent of $\tan \beta$ and sign of μ, and it is large enough to be fully covered by the LZ projected limits. On the other hand, on the Z resonance the DM relic density is independent of $C_{h \chi_1^0 \chi_1^0}$, and demands a fixed $|\mu|$ for certain $m_{\chi_1^0}$, such as $|\mu| \simeq 450$ GeV for $m_{\chi_1^0} = 45$ GeV. As a result, for $\mu > 0$ the $\sigma_{\chi_1^0 n}^{\text{SI}}$ cross section decreases when $\tan \beta$ increases and will be detectable at LZ. For $\mu < 0$, however, due to the blind spot at $\sin 2\beta = M_1/\mu$, it is impossible to test Z-resonance DM for $\tan \beta = \tan[\arcsin(45/450)/2] \simeq 20$.

On the contrary, at tree level and in the heavy squark limit only the t-channel Z boson exchange diagram contributes to $\sigma_{\chi_1^0 n}^{\text{SD}}$ and $\sigma_{\chi_1^0 p}^{\text{SD}}$. Therefore, Z-resonant DM will be detected at LZ by SI DM-nucleon scattering, as shown in the bottom panels of Figure 2. Since the 90% C.L. limit on the DM mass given by LUX [78] is about two times lower than the corresponding limit provided by PICO-60 [80], while in our model $\sigma_{\chi_1^0 n}^{\text{SD}} = 0.76\sigma_{\chi_1^0 p}^{\text{SD}}$, in the following we only study the SD DM-neutron elastic cross section.

In summary, large part of the Z/h funnel region has been excluded by the current DM direct detection experimental constraints. The surviving regions require $m_{\chi_1^0} \in [41, 46] \cup [58, 63]$ GeV for positive μ and $m_{\chi_1^0} \in [40, 46] \cup [58, 63]$ GeV for negative μ. These regions will be probed by the SI and SD DM-nucleon scattering detection at LZ. We should keep in mind, however, that these regions are obtained under the assumption that the masses of all non-electroweakino sparticle masses are 3 TeV. If that is not the case, for example in
Figure 2. Parameter regions allowed by the observed DM abundance ($0.0959 < \Omega h^2 < 0.1439$) on the $(m_{\tilde{\chi}}, \sigma_{SI}^{n})$ logarithmic plane (upper panels) and $(m_{\tilde{\chi}}, \sigma_{SD}^{n})$ logarithmic plane (lower panels) for $\mu > 0$ (left panels) and $\mu < 0$ (right panels). The orange solid lines mark the limit on σ_{SI}^{n} given by XENON1T [74, 79] and PandaX-II [75] experiments. The green dashed lines mark the projected limit of LUX-ZEPLIN [81]. The colors show the value of $\tan \beta$; gray regions are excluded by DM direct detection at 90% C.L.

the case of light squarks and a light non-SM-like CP-even Higgs, the SI DM-neutron cross section could reduce and modify the allowed regions.
3.3 Z and Higgs boson invisible decay

If \(m_{\tilde{\chi}_1^0} < M_Z/2 \), the decay of Z boson to a pair of neutralinos is kinematically allowed. The decay width of this process is given by [49]:

\[
\Gamma(Z \to \tilde{\chi}^0_1\tilde{\chi}^0_1) = \frac{M_Z C^2 Z \tilde{\chi}^0_1 \tilde{\chi}^0_1}{24\pi} \left(1 - \frac{4m_{\tilde{\chi}_1^0}^2}{M_Z^2} \right)^{\frac{3}{2}}. \tag{3.4}
\]

In the region \(m_{\tilde{\chi}_1^0} > 40 \text{ GeV} \), in which DM direct detection is possible, equation (3.4) gives \(\Gamma(Z \to \tilde{\chi}^0_1\tilde{\chi}^0_1) \lesssim 0.05 \text{ MeV} \). This decay width is much below the LEP bound on the new physics contribution to \(\Gamma(Z \to \text{invisible}) = 2 \text{ MeV at 95\% C.L.} \) LEP bounds on electroweakino masses, \(m_{\tilde{\chi}^\pm_1} > 92 \text{ GeV} \) and \(m_{\tilde{\chi}_1^0} + m_{\tilde{\chi}_2^0} > 208 \text{ GeV} \) [82], are not constraining either in the surviving regions.

![Figure 3](image-url)
Figure 3. Constrains on the relevant parameter regions from invisible decay limits. Regions excluded by DM direct detection are filled with gray color. The blue dashed lines indicate the 95\% C.L. upper limits on the invisible decay branching ratio of 125 GeV Higgs boson for different values of \(\tan \beta \). The green dot-dashed lines and red dotted lines show the 95\% C.L. upper limits from the combination of CMS searches for electroweakinos at the 13 TeV LHC with 35.9 fb\(^{-1}\) data and at the HL-LHC with 3000 fb\(^{-1}\) data, respectively. Regions below these lines are excluded by the corresponding experimental results.

Similarly, for \(m_{\chi_1^0} < M_h/2 \), the Higgs boson decay width into a pair of neutralinos is:

\[
\Gamma(h \to \tilde{\chi}^0_1\tilde{\chi}^0_1) = \frac{M_h C^2 h \tilde{\chi}^0_1 \tilde{\chi}^0_1}{16\pi} \left(1 - \frac{4m_{\tilde{\chi}_1^0}^2}{M_h^2} \right)^{\frac{3}{2}}. \tag{3.5}
\]

The combination of several searches performed by the ATLAS [83] and CMS [84, 85] collaborations sets an upper limit of 0.24 at the 95\% C.L. on \(\text{BR}(h \to \tilde{\chi}^0_1\tilde{\chi}^0_1) \) for the 125 GeV Higgs boson. In Figure 3, we show these limits in the \((m_{\tilde{\chi}_1^0}, |\mu|) \) logarithmic plane for different values of \(\tan \beta \). It is clear that the limits become stronger as \(\tan \beta \) decreases (increases) for
\(\mu > 0 \) (\(\mu < 0 \)), but they are always weaker than the DM direct detection limits. The global fit of Higgs couplings will provide a stricter constraint on the invisible Higgs decay width. However, since the other SUSY masses that we fixed at 3 TeV have non-negligible impact on the global fit, we do not impose the Higgs invisible decay constraint. The projected limit on \(\text{BR}(h \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0) \), such as \(\text{BR}(h \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0) > 0.4\% \) from ILC [86], can cover the whole \(Z \) funnel region, but not the \(h \) funnel [33, 49].

3.4 Electroweakino searches at the 13 TeV LHC

The ATLAS [87–91] and CMS [55–58, 92–94] collaborations performed numerous searches for direct production of electroweakinos at the 13 TeV LHC. In the simplified model in which the Wino-like \(\tilde{\chi}_1^\pm \left(\tilde{\chi}_2^0\right) \) decays to a \(W(Z) \) boson and a massless \(\tilde{\chi}_1^0 \), the search performed by ATLAS with 36 fb\(^{-1} \) data for final states involving two or three leptons excludes Wino masses up to 580 GeV [87]. The statistical combination of searches performed by CMS excludes the Wino below a mass of 650 GeV at the 95\% C.L. [55]. The corresponding mass bounds for the Higgsino might be lower than that at least 100 GeV because the production rate of Higgsino-like chargino and neutralino pair is nearly half than the production rate of Wino-like chargino and neutralino pair [30]. Based on this surviving regions of \(Z/h \)-resonance DM could be excluded since the DM relic density imposes strict requirements on the Higgsino mass, as shown in Figure 3. In the following, we assess the LHC constraints on the parameter space of interest by a detailed Monte Carlo simulation.

We use MadGraph5_aMC@NLO_v2.6.1 [95] in combination with Pythia6 [96] to generate events for the relevant processes:

\[
pp \rightarrow \tilde{\chi}_1^\pm \tilde{\chi}_2^0, \quad pp \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_2^0, \quad pp \rightarrow \tilde{\chi}_1^\pm \tilde{\chi}_1^\mp, \quad (3.6)
\]

where the production rate of the first process at the LHC is much larger than the others. Here \(\tilde{\chi}_1^\pm \) decays 100\% to a \(W \) boson and a \(\tilde{\chi}_2^0, \tilde{\chi}_2^0 \) decay to a \(Z \) boson and a \(\tilde{\chi}_1^0 \) or a \(h \) boson and \(\tilde{\chi}_1^0 \). Although the branching ratios \(\text{BR}(\tilde{\chi}_2^0 \rightarrow \tilde{\chi}_2^0 Z) \) and \(\text{BR}(\tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 h) \) depend on \(\tan \beta \) and sign of \(\mu \), \(\sum \text{BR}(\tilde{\chi}_2^0 \rightarrow \tilde{\chi}_2^0 Z) \simeq \sum \text{BR}(\tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 h) \simeq 100\% \) for the whole parameter space [30]. The cross sections are normalized to next-to-leading order (NLO) computed by PROSPINO2 [97]. Finally, we use CheckMATE-2.0.7 [98] with Delphes3.4.1 [99] to repeat the CMS analysis [55].

The CMS combined search related to our processes [55] included the following channels.

- The "\(\geq 3\ell \)" search for the \(pp \rightarrow \tilde{\chi}_1^\pm \tilde{\chi}_2^0 \rightarrow W^\pm Z \tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow \ell

 \ell

 \nu \ell \nu \tilde{\chi}_1^0 \tilde{\chi}_1^0 \) process, with three or more leptons and large \(E_T^{\text{miss}} \) in the final state [56]. In the several signal regions (SR) categorized by the number of lepton and lepton flavor, SR-A targets the \(WZ \) topology. This is done by selecting events with three light-flavor leptons (\(e, \mu \)), two of which form an opposite-sign, same-favor (OSSF) pair. These events are further divided into 44 bins by the invariant mass of the pair \(M_{\ell\ell} \), the transverse mass \(M_T \) of the third lepton and \(E_T^{\text{miss}} \). In [55], the categorization has been updated to improve the sensitivity for the region of \(m_{\tilde{\chi}_2^0} \sim M_Z \) by requiring \(H_T \), the scalar \(p_T \) sum of the jets, with \(p_T > 30 \text{ GeV} \). However, compared to [56], the observed lower mass limit of the Wino-like \(\tilde{\chi}_1^\pm \) for massless \(m_{\tilde{\chi}_1^0} \) has also been improved from 450 GeV to
500 GeV. Here we adopt the improved bins of SR-A for the analysis, but the validation of cut-flows is based on [56] since the cut-flow in [55] has not been provided.

- The "2ℓ on-Z" search for the $pp \rightarrow \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{0} \rightarrow ZW^{\pm} \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} \rightarrow \ell\ell jj \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0}$ process, with exactly two OSSF leptons consistent with the Z boson mass, two non b-tagged jets consistent with the W boson mass and large E_{T}^{miss} in the final state [57]. The variable M_{T2} [100, 101] is defined using E_{T}^{miss} and the two leptons are required to be more energetic than 80 GeV to reduce the $t\bar{t}$ background. Then four exclusive bins are defined based on E_{T}^{miss}. The analysis probes Wino-like $\tilde{\chi}_{1}^{\pm}$ masses between approximately 160 and 610 GeV for $m_{\tilde{\chi}_{1}^{0}} = 0$ GeV and BR($\tilde{\chi}_{1}^{\pm} \rightarrow W^{\pm} \tilde{\chi}_{1}^{0}$) = BR($\tilde{\chi}_{1}^{0} \rightarrow Z \tilde{\chi}_{1}^{0}$) = 100%.

- The "1ℓ2b" search for the $pp \rightarrow \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{0} \rightarrow hW^{\pm} \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} \rightarrow b\nu\ell\ell \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0}$ process, with exactly one lepton, exactly two b jets and large E_{T}^{miss} in the final state [58]. The invariant mass of the two b jets is required to be in the range [90, 150] GeV. The transverse mass of the lepton-E_{T}^{miss} system and the contransverse mass M_{CT} of the two b jets are used to suppress backgrounds, and the E_{T}^{miss} separates the SR into two exclusive bins. The result can exclude $m_{\tilde{\chi}_{1}^{\pm}}$ between 220 GeV and 490 GeV at 95% C.L. when the $\tilde{\chi}_{1}^{0}$ is massless in the simplified model.

Additionally, there are "H(γγ)" searches for the $pp \rightarrow \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{0} \rightarrow hW^{\pm} \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} \rightarrow γγ\ell\ell \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0}$ process, and "2ℓ soft" searches for the $pp \rightarrow \chi_{1}^{\pm} \chi_{2}^{0} \rightarrow ZW^{\pm} \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} \rightarrow \ell\ell jj \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0}$ process where Z^{*} and W^{\pm} are off-shell. But we do not include them in the analysis, further constraining the regions that survived DM direct detection limits, because the former can only exclude Wino below 170 GeV in a simplified model and the latter targets the situation of $m_{\tilde{\chi}_{2}^{0}} - m_{\tilde{\chi}_{1}^{0}} \simeq M_{Z}$.

As checked by CMS [55], these SRs are mutually exclusive, which means that they can be statistically combined to maximize the detection sensitivity. Thus, we combine them together though the modified frequentist approach, CL_{s} method [102], by RooStats [103]. The likelihood functions are written as

$$L(\mu) = \prod_{i}^{N_{s}} \int d\mu' \int d\nu \frac{(\mu' s_{i} + b_{j})^{n_{i}} e^{-(\mu' s_{i} + b_{j})}}{n_{i}!} \times e^{-\frac{(\mu' - \mu)^{2}}{2\sigma_{\mu}^{2}}} \times e^{-\frac{(\nu - \nu_{i}^{0})^{2}}{2\sigma_{\nu_{i}^{0}}^{2}}},$$

(3.7)

where μ is the parameter of interest, μ' and b_{i} are nuisance parameters, and n_{i} and b_{i} are the number of signal and background events in the SRs. We take $\mu = 1$ for the signal hypothesis and $\mu = 0$ for the background only hypothesis. The background event numbers b_{i} and uncertainties $\sigma_{b_{i}}$ are taken from the CMS reports, while the relative uncertainties of signal σ_{μ} is assumed to equal 5%. Covariance matrices are not included.

The individual validations of our CheckMATE-2.0.23 implementation of the above analyses are given in Appendix A. This shows that our simulations agree with the corresponding CMS analyses within a 20% uncertainty. Since the signal events numbers are provided for the benchmark points, in Table 3 and 4 we also check the calculation of CL_{s}. The values of CL_{s} for CMS are estimated from the 95% C.L. CMS upper limit in the plane of $m_{\tilde{\chi}_{1}^{0}}$ and $m_{\tilde{\chi}_{1}^{0}}$. $\text{CL}_{s} \simeq 0.05$, $\text{CL}_{s} > 0.05$ and $\text{CL}_{s} < 0.05$ stands for the correspond benchmark point lying
on, inside and outside of the 95% C.L. upper limit, respectively. The results show that our CLs calculation is closely in line with that of CMS.

Table 1

Parameter	BP1	BP2	BP3	BP4
$\tan\beta$	30	10	30	30
M_1 (GeV)	50	50	50	80
μ (GeV)	390	390	-390	390
$m_{\tilde{\chi}_1^0}$ (GeV)	49.5	46.4	48.6	78.0
$m_{\tilde{\chi}_2^0}$ (GeV)	401	402	402	402
$m_{\tilde{\chi}_3^0}$ (GeV)	403	403	403	403
$m_{\tilde{\chi}_1^\pm}$ (GeV)	400	399	400	399
$\text{BR}(\tilde{\chi}_2^0 \to \chi_1^0 Z)$	45%	39%	39%	33%
$\text{BR}(\tilde{\chi}_2^0 \to \chi_1^0 h)$	55%	61%	61%	67%
$\text{BR}(\tilde{\chi}_3^0 \to \chi_1^0 Z)$	63%	68%	69%	75%
$\text{BR}(\tilde{\chi}_3^0 \to \chi_1^0 h)$	37%	32%	31%	35%
$\sigma_{\tilde{\chi}_2^0 \tilde{\chi}_1^\pm} (fb)$	59.45	59.48	59.48	59.46

In Figure 3 we show the 95% C.L. combined upper limits in the plane of $m_{\tilde{\chi}_1^0}$ and μ indicated by green dot-dash lines. They barely depend on $\tan\beta$ and the sign of μ, and slightly decrease with increasing $m_{\tilde{\chi}_1^\pm}$. To illustrate this, we choose four benchmark points of fixed $m_{\tilde{\chi}_1^\pm}$ as examples and show the details of the CLs in Table 1. Comparing BP1, BP2 and BP3 we can see that the variation of $\tan\beta$ and sign of μ will affect the branching ratios of the Higgsino-like $\tilde{\chi}_2^0$, which can be easily obtained from equation (3.2), but hardly change $\text{BR}(\tilde{\chi}_2^0 \to \chi_1^0 Z)+\text{BR}(\tilde{\chi}_3^0 \to \chi_1^0 Z)$ and $\text{BR}(\tilde{\chi}_2^0 \to \chi_1^0 h)+\text{BR}(\tilde{\chi}_3^0 \to \chi_1^0 h)$. For BP4, a heavier Higgsino mass μ leads to a relatively compressed spectrum and hence smaller signal cut efficiencies.

In summary, for Z/h funnel DM, regions in which μ is smaller than about 390 GeV are excluded by LHC Run-II results, which limits are stricter than DM direct detection for negative μ and positive μ with $\tan\beta > 20$. The Z funnel region is on the verge of complete exclusion. In the case of $\mu < 0$, the h funnel region can only survive with $\tan\beta < 7.4$, while the h funnel region of $\mu > 0$ is the main surviving region. The h funnel regions for $\mu > 0$ and $\mu < 0$ are also shown in Figure 4 on the $(\tan\beta, |\mu|)$ plane to display the surviving parameter space more clearly.
4 Electroweakino searches at the HL-LHC

Although the h funnel region of $\mu > 0$, that is the main region that survives the current experimental limits, will be fully probed by LZ [81], the HL-LHC reach is still worth investigating as a complementary test. We employ two electroweakino analyses at the HL-LHC proposed by ATLAS: the "3ℓ" search [53] and the "$1\ell 2b$" search [54]. Similar to the "$\geq 3\ell$" search at 13 TeV, the "3ℓ" search at the HL-LHC targets the $pp \rightarrow \tilde{\chi}_1^\pm \tilde{\chi}_2^0 \rightarrow W^\pm Z \tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow \ell\ell\ell\tilde{\chi}_1^0$ process with three or more leptons and large E_T^{miss} in the final state. For 3000 fb$^{-1}$ luminosity four signal regions, indicated by 'A', 'B', 'C', 'D', optimize the discovery and exclusion ability. The $1\ell 2b$ search for the $pp \rightarrow \tilde{\chi}_1^\pm \tilde{\chi}_2^0 \rightarrow W^\pm h \tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow v\ell\tilde{b}\tilde{b}\chi_1^0 \tilde{\chi}_1^0$ process at the HL-LHC corresponds to two signal regions, 'C' and 'D'. Unlike the 13 TeV analysis, the signal regions at the HL-LHC are not exclusive. For example, in both analysis, the signal region C covers the signal region D. As a result, we choose the signal region with the best-expected exclusion power in each analysis, and then combine them together using the CL_s method described in Subsection 3.4.

![Plot](image.png)

Figure 4. The plots show, in the $(\tan \beta, |\mu|)$ plane, the h funnel region consistent with the observed DM abundance and DM direct detection limits. The green dot-dashed and red dotted lines show the 95% C.L. upper limits from combined CMS searches for electroweokinos at the 13 TeV LHC with 35.9 fb$^{-1}$ data and limits by the HL-LHC with 3000 fb$^{-1}$ data, respectively. Regions below the lines are excluded by the corresponding experimental results at 95% C.L.

The combined expected 95% C.L. upper limits on the Z/h funnel region are presented in Figure 3 and Figure 4 by red dot lines. We find that the combined result pushes the bound on μ to 960 GeV, which is 150 GeV stricter than the result of each individual analysis. There is no doubt that the Z funnel region will be completely excluded. The parameter space of h funnel region will be restricted to a very small region: $\tan \beta < 8$ for $\mu > 0$ and $\tan \beta < 5.5$ for $\mu < 0$. Such small $\tan \beta$, however, is highly disfavoured by experimental constraints, such as the SM-like Higgs data and the muon anomalous magnetic moment.
5 The Z/h funnel in phenomenological MSSM

In this section we briefly examine the Z/h funnel region in a wider model scope and with more experimental constraints. To this end, we study the light DM scenario of phenomenological MSSM (pMSSM) [60] by scanning the following parameter space:

$$2 < \tan \beta < 60, \quad 10 \text{ GeV} < M_1 < 100 \text{ GeV}, \quad 100 \text{ GeV} < M_2 < 1000 \text{ GeV},$$
$$200 \text{ GeV} < m_{Q_3}, \quad m_{U_3} = m_{D_3} < 2 \text{ TeV},$$
$$100 \text{ GeV} < m_{L_{1,2,3}} = m_{E_{1,2,3}} = A_{E_{1,2,3}} < 2 \text{ TeV}. \quad (5.1)$$

The mass of the gluino and the first two generation squarks are fixed to 2 TeV. In addition to the constraints described in Section 3, during the scan we implement the following experimental constraints at 95% C.L.:

- B-physics constraints, such as the precise measurements of $B \to X_s \gamma$, $B_s \to \mu^+ \mu^-$, $B_d \to X_s \mu^+ \mu^-$ and the mass differences ΔM_d and ΔM_s[82];

- the muon anomalous magnetic moment (a_μ), the measured value of which deviates from the SM prediction (a_μ^{SM})[104, 105];

- constraints on the Higgs sector included in the packages HiggsBounds [106] and HiggsSignal [107].

Since there may be other sources of DM, here we set only an upper bound on the DM relic density. Assuming that the other sources of the DM have no interaction with nuclei, this implies that we have to scale the DM-neutron elastic cross section by the ratio of neutralino DM relic density and observed DM abundance.

The surviving parameter regions of pMSSM are presented in Figure 5 with gray points indicating the samples excluded by DM direct detection and other colors indicating the unified mass of sleptons. The left panel is similar to the left top panel of Figure 2, though now $\tilde{\chi}_1^0$ may represent only part of the total DM. Both the Z and h funnel regions are tightly restricted by the DM direct detection constraints that yield $m_{\tilde{\chi}_1^0} \in [43.1, 45.6] \text{ GeV}$ or $[59.2, 63.6] \text{ GeV}$. In the right panel we find that the combination of electroweakino searches further excludes regions where the ratio of the neutralino DM relic density over the observed DM density is smaller than 58% (19%) for the Z (h) funnel region. Comparing the pMSSM model to the simplified model we find that the constraint on a_μ, which requires $\tan \beta > 9$, reduces the height of the h funnel region. Therefore, the whole Z/h funnel region is detectable at HL-LHC. Furthermore, a_μ also restricts the slepton masses [108]. As shown by the colors in Figure 5, the surviving samples require either a light slepton or a light chargino. An exclusion of light sleptons at the LHC will reduce the size of the Z/h funnel region in pMSSM.

6 Summary

In this work we investigate the current and future status of the Z/h funnel region in the MSSM. To this end, we scan the parameter space of the simplified MSSM to see if the relic
density of the lightest neutralinos in the Z/h funnel is consistent with the WMAP/Planck measurement. Then we impose relevant experimental constraints, including DM direct detection, measurements of Z/h invisible decay, and direct searches for electroweakinos at the LHC. To take full advantage of the LHC data, we combine the result of "1ℓ2b", "2ℓ" on-Z" and "$\geq 3\ell$" analyses performed by CMS. The combined result can push the bound on Higgsino mass $|\mu|$ up to 390 GeV, which is about 80 GeV stricter than the bound obtained from the individual analyses.

We find that in simplified model the Z funnel region is on the brink of complete exclusion, the h funnel of $\mu < 0$ only survive if $\tan \beta < 7.4$, and the h funnel region of $\mu > 0$ is the main surviving region:

1. Z funnel region, $m_{\tilde{\chi}_1^0} \in [42.5, 45.8]$ GeV, $\mu \in [388, 484]$ GeV;
2. Z funnel region, $m_{\tilde{\chi}_1^0} \in [42.5, 45.8]$ GeV, $\mu \in [-388, -486]$ GeV;
3. h funnel region, $m_{\tilde{\chi}_1^0} \in [58.4, 63.6]$ GeV, $\mu \in [386, 1444]$ GeV;
4. h funnel region, $m_{\tilde{\chi}_1^0} \in [59.4, 63.4]$ GeV, $\mu \in [-386, -1089]$ GeV, $\tan \beta \in [5, 7.4]$;

They can be entirely detected by LZ, while regions 1. and 2. and most of the parameter space in region 3. and 4. can be excluded by the HL-LHC.

In pMSSM with 8 free parameters, the surviving parameter space becomes smaller due to other constraints. Especially, the light sleptons required by the muon anomalous magnetic moment will accelerate the exclusion of Z/h funnel region at the LHC.
All Events & 3630.00 & 6462.00 & 115.79 & 165.14 \\
3 tight lepton & 482.20 & 546.04 & 18.06 & 19.14 \\
4th lepton veto & 481.49 & 544.75 & 18.03 & 19.11 \\
Conversions and low-mass veto & 463.71 & 514.38 & 17.79 & 18.61 \\
B-jet veto & 456.68 & 511.14 & 17.47 & 18.41 \\
$E_T^{\text{miss}} > 50$ GeV & 317.00 & 326.98 & 16.98 & 17.60 \\
$M_T > 100$ GeV & 111.97 & 110.50 & 12.74 & 12.90 \\
$M_{\ell\ell} > 75$ GeV & 103.49 & 98.22 & 11.71 & 11.69 \\

| & $\tilde{\chi}_1^+\tilde{\chi}_1^0(200,100)$ & & & $\tilde{\chi}_1^\pm\tilde{\chi}_1^0(500,150)$ & |
|-------------------------------|------------|-----------------|-----------------|
| CMS | CM | CMS | CM |

Table 2. Validations for cut flow tables of the "3ℓ" search [56] for various signal model points. The "CM" stands CheckMATE. The "-" means that the corresponding cut is not applied. The yields in "All events" of "CM" are normalized by the production cross sections provide by the additional tables of [56].

Acknowledgments

We thank Csaba Balazs for useful comments on the draft. This research was supported by the ARC Centre of Excellence for Particle Physics at the Tera-scale, under the grant CE110001004.

A Validations of electroweakino direct searches at the LHC

In Table 2, 3, 4, 5 and 6 we show the validations of our implementations of the searches used in Section 3 and Section 4. Only the benchmark points for the WZ-mediated and Wh-mediated simplified model are presented. The results indicate that our simulation agrees with the corresponding analysis within 20% uncertainty.
Cut	CMS	CM		
All Events	109.35	109.35	1058.97	1058.97
≤ 2 Leptons	24.21	25.33	203.2	252.74
Extra lepton veto	18.37	20.70	178.36	220.68
$m_{\ell\ell} \in [86, 96]$ GeV	14.13	14.89	135.71	164.91
2-3 Jets	11.98	10.32	114.05	97.47
$\Delta \Phi > 0.4$	10.95	9.33	99.68	84.50
No B-tags	9.92	8.61	76.41	69.66
$M_{T2}(\ell\ell) > 80$ GeV	8.04	7.10	54.4	49.74
$M_{jj} < 150$ GeV	5.62	5.39	34.34	36.51
$E_T^{miss} > 100$ GeV	5.41	5.05	32.07	34.12
$E_T^{miss} > 150$ GeV	4.96	4.57	28.2	29.12
$E_T^{miss} > 250$ GeV	3.59	3.31	15.53	14.83
$E_T^{miss} > 350$ GeV	1.94	1.86	2.41	3.19
$CL_s < 0.05$	<0.05	0.046	$\ll 0.05$	0

Table 3. Validations for cut tables of the "2ℓ" search [57] for various signal model points. The "CM" stands CheckMATE. The yields in "All events" of "CM" are normalized to "All events" of "CMS".

Cut	CMS	CM						
All events	4901.0	4901.0	1309.1	1309.1	290.2	290.2	290.3	290.3
≤ 1 good lepton, $E_T^{miss} > 50$ GeV	1035.1	1296.3	328.1	359.0	89.0	94.3	86.9	95.9
2nd lepton veto	1011.4	1157.6	321.2	319.8	87.3	85.0	85.3	87.1
Isolated track veto	994.3	-	316.6	-	85.8	-	84.1	-
Tau veto	989.6	1126.2	315.3	306.8	85.5	81.5	83.9	83.5
$=2$ jets	542.3	673.9	162.9	193.5	42.3	57.4	41.1	58.9
$=2$ b-tags	242.6	215.6	74.9	65.0	19.7	20.5	19.5	19.7
$90 < M_{b\bar{b}} < 150$ GeV	214.4	177.9	65.6	50.9	17.5	16.6	17.6	15.4
$M_{CT} > 170$ GeV	67.2	66.2	26.7	23.9	11.9	11.2	10.9	9.9
$E_T^{miss} > 125$ GeV	54.8	50.0	22.9	19.4	10.9	10.1	9.9	8.9
$M_T > 150$ GeV	17.6	13.7	10.7	8.5	7.1	6.2	6.5	5.6
SR($E_T^{miss} < 200$ GeV)	7.6	6.4	2.7	2.7	0.9	1.0	1.0	0.9
SR($E_T^{miss} > 200$ GeV)	10.0	7.4	8.0	5.8	6.3	5.2	5.5	4.7
CL_s	<0.05	0.006	≈ 0.05	0.038	$\gtrsim 0.05$	0.086	>0.05	0.129

Table 4. Validations for cut-flows of the "1ℓ2b" search [58] for various signal model points. The "CM" stands CheckMATE. The "-" means that the corresponding cut is not applied. The yields in "All events" of "CM" are normalized to "All events" of "CMS".
Table 5. Validations for SRs of the "3ℓ" search [53] at HL-LHC for various signal model points. The "CM" stands CheckMATE. The number of events of "CM" are normalized to the production cross sections provide by [109].

	$\tilde{\chi}_1^+\tilde{\chi}_1^0(1000,0)$		$\tilde{\chi}_1^+\tilde{\chi}_1^0(800,0)$		$\tilde{\chi}_1^+\tilde{\chi}_1^0(600,0)$						
CMS	22.90	CM	20.91	CMS	69.60	CM	66.10	CMS	195.00	CM	193.31
SRB	20.40	CM	18.97	CMS	59.10	CM	53.95	CMS	148.90	CM	144.28
SRC	16.36	CM	15.20	CMS	42.40	CM	38.79	CMS	81.60	CM	86.15
SRD	11.55	CM	11.14	CMS	25.20	CM	22.64	CMS	33.50	CM	27.32

Table 6. Validations for SRs of the 1ℓ2b search [54] at HL-LHC for various signal model points. The "CM" stands CheckMATE. The number of events of "CM" are normalized to the production cross sections provide by [109].

	$\tilde{\chi}_1^+\tilde{\chi}_1^0(500,300)$		$\tilde{\chi}_1^+\tilde{\chi}_1^0(600,0)$		$\tilde{\chi}_1^+\tilde{\chi}_1^0(1000,0)$				
CMS	2.7	CM	83.7	CMS	80.9	CM	20.0	CMS	18.6
SRD	0.5	CM	51.0	CMS	45.1	CM	16.8	CMS	14.4
References

[1] GAMBIT collaboration, P. Athron et al., Global fits of GUT-scale SUSY models with GAMBIT, Eur. Phys. J. C77 (2017) 824, [1705.07935].

[2] GAMBIT collaboration, P. Athron, SUSY Global Fits, in 5th Large Hadron Collider Physics Conference (LHCP 2017) Shanghai, China, May 15-20, 2017, 2017, 1708.07594, http://inspirehep.net/record/1620065/files/arXiv:1708.07594.pdf.

[3] GAMBIT collaboration, P. Athron et al., GAMBIT: The Global and Modular Beyond-the-Standard-Model Inference Tool, Eur. Phys. J. C77 (2017) 784, [1705.07908].

[4] M. A. Ajaib and I. Gogoladze, Status Update on Selective SUSY GUT Inspired Models, 1710.07842.

[5] C. Han, K.-i. Hikasa, L. Wu, J. M. Yang and Y. Zhang, Status of CMSSM in light of current LHC Run-2 and LUX data, Phys. Lett. B769 (2017) 470–476, [1612.02296].

[6] P. Bechtle et al., Killing the cMSSM softly, Eur. Phys. J. C76 (2016) 96, [1508.05951].

[7] E. A. Bagnaschi et al., Supersymmetric Dark Matter after LHC Run 1, Eur. Phys. J. C75 (2015) 500, [1508.01173].

[8] C. Balazs, A. Buckley, D. Carter, B. Farmer and M. White, Should we still believe in constrained supersymmetry?, Eur. Phys. J. C73 (2013) 2563, [1205.1568].

[9] A. Fowlie, M. Kazana, K. Kowalska, S. Munir, L. Roszkowski, E. M. Sessolo et al., The CMSSM Favoring New Territories: The Impact of New LHC Limits and a 125 GeV Higgs, Phys. Rev. D86 (2012) 075010, [1206.02264].

[10] O. Buchmueller et al., The CMSSM and NUHM1 in Light of 7 TeV LHC, $B_s \rightarrow \mu^+ \mu^-$ and XENON100 Data, Eur. Phys. J. C72 (2012) 2243, [1207.7315].

[11] C. Strege, G. Bertone, F. Feroz, M. Fornasa, R. Ruiz de Austri and R. Trotta, Global Fits of the cMSSM and NUHM including the LHC Higgs discovery and new XENON100 constraints, JCAP 1304 (2013) 013, [1212.2636].

[12] M. Citron, J. Ellis, F. Luo, J. Marrouche, K. A. Olive and K. J. de Vries, End of the CMSSM coannihilation strip is nigh, Phys. Rev. D87 (2013) 036012, [1212.2886].

[13] N. Bornhauser and M. Drees, Determination of the CMSSM Parameters using Neural Networks, Phys. Rev. D88 (2013) 075016, [1307.3383].

[14] S. Henrot-Versillé, R. Lafaye, T. Plehn, M. Rauch, D. Zerwas, S. Plaszczynski et al., Constraining Supersymmetry using the relic density and the Higgs boson, Phys. Rev. D89 (2014) 055017, [1309.6968].

[15] P. Bechtle et al., Constrained Supersymmetry after the Higgs Boson Discovery: A global analysis with Fittino, PoS EPS-HEP2013 (2013) 313, [1310.3045].

[16] O. Buchmueller et al., The CMSSM and NUHM1 after LHC Run 1, Eur. Phys. J. C74 (2014) 2922, [1312.5250].

[17] J. Ellis, Supersymmetric Fits after the Higgs Discovery and Implications for Model Building, Eur. Phys. J. C74 (2014) 2732, [1312.5426].

[18] P. Bechtle et al., How alive is constrained SUSY really?, Nucl. Part. Phys. Proc. 273-275 (2016) 589–594, [1410.6038].
[19] P. Bechtle et al., *Constrained Supersymmetry after two years of LHC data: a global view with Fittino*, JHEP 06 (2012) 098, [1204.4199].

[20] E. Bagnaschi et al., *Likelihood Analysis of the pMSSM11 in Light of LHC 13-TeV Data*, Eur. Phys. J. C78 (2018) 256, [1710.11091].

[21] GAMBIT collaboration, P. Athron et al., *A global fit of the MSSM with GAMBIT*, Eur. Phys. J. C77 (2017) 879, [1705.07917].

[22] ATLAS collaboration, G. Aad et al., *Summary of the ATLAS experiment’s sensitivity to supersymmetry after LHC Run 1 at 13 TeV interpreted in the phenomenological MSSM*, JHEP 10 (2015) 134, [1508.06608].

[23] H. Baer, V. Barger, P. Huang, A. Mustafayev and X. Tata, *Radiative natural SUSY with a 125 GeV Higgs boson*, Phys. Rev. Lett. 109 (2012) 161802, [1207.3343].

[24] M. Abdughani, L. Wu and J. M. Yang, *Status and prospects of light bino-âŠšhiggsino dark matter in natural SUSY*, Eur. Phys. J. C78 (2018) 4, [1705.09164].

[25] J. Cao, Y. He, L. Shang, W. Su and Y. Zhang, *Natural NMSSM after LHC Run I and the Higgsino dominated dark matter scenario*, JHEP 08 (2016) 037, [1606.04416].

[26] J. Cao, Y. He, L. Shang, W. Su, P. Wu and Y. Zhang, *Strong constraints of LUX-2016 results on the natural NMSSM*, JHEP 10 (2016) 136, [1609.00204].

[27] U. Ellwanger, *Present Status and Future Tests of the Higgsino-Singlino Sector in the NMSSM*, JHEP 02 (2017) 051, [1612.06574].

[28] ATLAS collaboration, M. Aaboud et al., *Search for squarks and gluinos in final states with jets and missing transverse momentum using 36 fb$^{-1}$ of $\sqrt{s}=13$ TeV pp collision data with the ATLAS detector*, 1712.02332.

[29] T. Han, F. Kling, S. Su and Y. Wu, *Unblinding the dark matter blind spots*, JHEP 02 (2017) 057, [1612.02387].

[30] L. Calibbi, J. M. Lindert, T. Ota and Y. Takanishi, *LHC Tests of Light Neutralino Dark Matter without Light Sfermions*, JHEP 11 (2014) 106, [1410.5730].

[31] M. van Beekveld, W. Beenakker, S. Caron, R. Peeters and R. Ruiz de Austri, *Supersymmetry with Dark Matter is still natural*, Phys. Rev. D96 (2017) 035015, [1612.06333].

[32] A. Achterberg, S. Amoroso, S. Caron, L. Hendriks, R. Ruiz de Austri and C. Weniger, *A description of the Galactic Center excess in the Minimal Supersymmetric Standard Model*, JCAP 1508 (2015) 006, [1502.05703].

[33] R. K. Barman, G. Belanger, B. Bhattacharjee, R. Godbole, G. Mendiratta and D. Sengupta, *Invisible decay of the Higgs boson in the context of a thermal and nonthermal relic in MSSM*, Phys. Rev. D95 (2017) 095018, [1703.03838].

[34] J. Bramante, N. Desai, P. Fox, A. Martin, B. Ostdiek and T. Plehn, *Towards the Final Word on Neutralino Dark Matter*, Phys. Rev. D93 (2016) 063525, [1510.03460].

[35] M. Chakraborti, A. Datta, N. Ganguly and S. Poddar, *Multilepton signals of heavier electroweakinos at the LHC*, JHEP 11 (2017) 117, [1707.04410].

[36] M. Badziak, M. Olechowski and P. Szczerbiak, *Spin-dependent constraints on blind spots for thermal singlino-higgsino dark matter with(out) light singlets*, JHEP 07 (2017) 050, [1705.00227].
T. Han, S. Padhi and S. Su, *Electroweakinos in the Light of the Higgs Boson*, Phys. Rev. D88 (2013) 115010, [1309.5966].

M. Badziak, M. Olechowski and P. Szczerbiak, *Blind spots for neutralino dark matter in the NMSSM*, JHEP 03 (2016) 179, [1512.02472].

A. Choudhury, S. Rao and L. Roszkowski, *Impact of LHC data on muon g − 2 solutions in a vectorlike extension of the constrained MSSM*, Phys. Rev. D96 (2017) 075046, [1708.05675].

M. Chakraborti, U. Chattopadhyay and S. Poddar, *How light a higgsino or a wino dark matter can become in a compressed scenario of MSSM*, JHEP 09 (2017) 064, [1702.03954].

A. Kobakhidze, M. Talia and L. Wu, *Probing the MSSM explanation of the muon g-2 anomaly in dark matter experiments and at a 100 TeV pp collider*, Phys. Rev. D95 (2017) 055023, [1608.03641].

A. Choudhury and S. Mondal, *Revisiting the Exclusion Limits from Direct Chargino-Neutralino Production at the LHC*, Phys. Rev. D94 (2016) 055024, [1603.05502].

M. van Beekveld, W. Beenakker, S. Caron and R. Ruiz de Austri, *The case for 100 GeV bino dark matter: A dedicated LHC tri-lepton search*, JHEP 04 (2016) 154, [1602.00590].

S. Profumo, T. Stefaniak and L. Stephenson Haskins, *The Not-So-Well Tempered Neutralino*, Phys. Rev. D96 (2017) 055018, [1706.08537].

L. Calibbi, T. Ota and Y. Takanishi, *Light Neutralino in the MSSM: a playground for dark matter, flavor physics and collider experiments*, JHEP 07 (2011) 013, [1104.1134].

G. Belanger, F. Boudjema, A. Cottrant, R. M. Godbole and A. Semenov, *The MSSM invisible Higgs in the light of dark matter and g-2*, Phys. Lett. B519 (2001) 93–102, [hep-ph/0106275].

T. Han, Z. Liu and A. Natarajan, *Dark matter and Higgs bosons in the MSSM*, JHEP 11 (2013) 008, [1303.3040].

Q.-F. Xiang, X.-J. Bi, P.-F. Yin and Z.-H. Yu, *Searching for Singlino-Higgsino Dark Matter in the NMSSM*, Phys. Rev. D94 (2016) 055031, [1606.02149].

K. Hamaguchi and K. Ishikawa, *Prospects for Higgs- and Z-resonant Neutralino Dark Matter*, Phys. Rev. D93 (2016) 055009, [1510.05378].

C. Han, *Probing light bino and higgsinos at the LHC, Int. J. Mod. Phys. A32* (2017) 1745003, [1409.7000].

E. Bernreuther, J. Horak, T. Plehn and A. Butter, *Actual Physics behind Mono-X*, 1805.11637.

ATLAS collaboration, G. Aad et al., *Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in $\sqrt{s} = 8$TeV pp collisions with the ATLAS detector*, JHEP 04 (2014) 169, [1402.7029].

Search for Supersymmetry at the high luminosity LHC with the ATLAS experiment, Tech. Rep. ATL-PHYS-PUB-2014-010, CERN, Geneva, Jul, 2014.

Prospect for a search for direct pair production of a chargino and a neutralino decaying via a W boson and the lightest Higgs boson in final states with one lepton, two b-jets and missing transverse momentum at the high luminosity LHC with the ATLAS Detector., Tech. Rep. ATL-PHYS-PUB-2015-032, CERN, Geneva, Jul, 2015.
[55] CMS collaboration, A. M. Sirunyan et al., Combined search for electroweak production of charginos and neutralinos in proton-proton collisions at \(\sqrt{s} = 13 \) TeV, 1801.03957.

[56] CMS collaboration, A. M. Sirunyan et al., Search for electroweak production of charginos and neutralinos in multilepton final states in proton-proton collisions at \(\sqrt{s} = 13 \) TeV, 1709.05406.

[57] CMS collaboration, A. M. Sirunyan et al., Search for new phenomena in final states with two opposite-charge, same-flavor leptons, jets, and missing transverse momentum in pp collisions at \(\sqrt{s} = 13 \) TeV, JHEP 03 (2018) 070, [1709.08908].

[58] CMS collaboration, A. M. Sirunyan et al., Search for electroweak production of charginos and neutralinos in WH events in proton-proton collisions at \(\sqrt{s} = 13 \) TeV, JHEP 11 (2017) 029, [1706.09933].

[59] “Lepsusywg, aleph, delphi, l3 and opal experiments, note lepsusywg/02-04.1, note lepsusywg/01-03.1.” http://lepsusy.web.cern.ch/lepsusy.

[60] J. Cao, Y. He, L. Shang, W. Su and Y. Zhang, Testing the light dark matter scenario of the MSSM at the LHC, JHEP 03 (2016) 207, [1511.05386].

[61] ATLAS, CMS collaboration, G. Aad et al., Combined Measurement of the Higgs Boson Mass in pp Collisions at \(\sqrt{s} = 7 \) and 8 TeV with the ATLAS and CMS Experiments, Phys. Rev. Lett. 114 (2015) 191803, [1503.07589].

[62] A. Djouadi, M. M. Muhlleitner and M. Spira, Decays of supersymmetric particles: The Program SUSY-HIT (SUspect-SidecaY-Hdecay-InTerface), Acta Phys. Polon. B38 (2007) 635–644, [hep-ph/0609292].

[63] A. Djouadi, J.-L. Kneur and G. Moultaka, SuSpect: A Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426–455, [hep-ph/0211331].

[64] M. Muhlleitner, SDECAY: A Fortran code for SUSY particle decays in the MSSM, Acta Phys. Polon. B35 (2004) 2753–2766, [hep-ph/0409200].

[65] A. Djouadi, J. Kalinowski and M. Spira, HDECAY: A Program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56–74, [hep-ph/9704448].

[66] G. Belanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs: A Program for calculating the relic density in the MSSM, Comput. Phys. Commun. 149 (2002) 103–120, [hep-ph/0112278].

[67] D. Barducci, G. Belanger, J. Bernon, F. Boudjema, J. Da Silva, S. Kraml et al., Collider limits on new physics within micrOMEGAs, 1606.03834.

[68] PLANCK collaboration, P. A. R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13, [1502.01589].

[69] WMAP collaboration, J. Dunkley et al., Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Likelihoods and Parameters from the WMAP data, Astrophys. J. Suppl. 180 (2009) 306–329, [0803.0586].

[70] C. Cheung, L. J. Hall, D. Pinner and J. T. Ruderman, Prospects and Blind Spots for Neutralino Dark Matter, JHEP 05 (2013) 100, [1211.4873].
[89] ATLAS collaboration, M. Aaboud et al., *Search for electroweak production of supersymmetric states in scenarios with compressed mass spectra at $\sqrt{s} = 13$ TeV with the ATLAS detector*, Submitted to: *Phys. Rev. D* (2017), [1712.08119].

[90] ATLAS collaboration, M. Aaboud et al., *Search for long-lived charginos based on a disappearing-track signature in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector*, 1712.02118.

[91] ATLAS collaboration, M. Aaboud et al., *Search for the direct production of charginos and neutralinos in final states with tau leptons in $\sqrt{s} = 13$ TeV pp collisions with the ATLAS detector*, *Eur. Phys. J.* C78 (2018) 154, [1708.07875].

[92] CMS collaboration, A. M. Sirunyan et al., *Search for Higgsino pair production in pp collisions at $\sqrt{s} = 13$ TeV in final states with large missing transverse momentum and two Higgs bosons decaying via $H \rightarrow b\bar{b}$*, *Phys. Rev.* D97 (2018) 032007, [1709.04896].

[93] CMS collaboration, A. M. Sirunyan et al., *Search for supersymmetry with Higgs boson to diphoton decays using the razor variables at $\sqrt{s} = 13$ TeV*, *Phys. Lett.* B779 (2018) 166–190, [1709.00384].

[94] CMS collaboration, A. M. Sirunyan et al., *Search for new physics in events with two soft oppositely charged leptons and missing transverse momentum in proton-proton collisions at $\sqrt{s} = 13$ TeV*, 1801.01846.

[95] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer et al., *The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations*, *JHEP* 07 (2014) 079, [1405.0301].

[96] P. Torrielli and S. Frixione, *Matching NLO QCD computations with PYTHIA using MC@NLO*, *JHEP* 04 (2010) 110, [1002.4293].

[97] W. Beenakker, R. Hopker and M. Spira, *PROSPINO: A Program for the production of supersymmetric particles in next-to-leading order QCD*, hep-ph/9611232.

[98] D. Dercks, N. Desai, J. S. Kim, K. Rolbiecki, J. Tattersall and T. Weber, *CheckMATE 2: From the model to the limit*, *Comput. Phys. Commun.* 221 (2017) 383–418, [1611.09856].

[99] DELPHES 3 collaboration, J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemaître, A. Mertens et al., *DELPHES 3, A modular framework for fast simulation of a generic collider experiment*, *JHEP* 02 (2014) 057, [1307.6346].

[100] C. G. Lester and B. Nachman, *Bisection-based asymmetric M_{T2} computation: a higher precision calculator than existing symmetric methods*, *JHEP* 03 (2015) 100, [1411.4312].

[101] C. G. Lester and D. J. Summers, *Measuring masses of semi invisibly decaying particles pair produced at hadron colliders*, *Phys. Lett.* B463 (1999) 99–103, [hep-ph/9906349].

[102] A. L. Read, *Presentation of search results: the cl s technique*, *Journal of Physics G: Nuclear and Particle Physics* 28 (2002) 2693.

[103] RooStats Team collaboration, G. Schott, *RooStats for Searches*, in Proceedings, *PHYSTAT 2011 Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding*, CERN, Geneva, Switzerland 17-20 January 2011, (Geneva), pp. 199–208, CERN, CERN, 2011, 1203.1547, DOI.

[104] Muon $g-2$ collaboration, G. W. Bennett et al., *Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL*, *Phys. Rev.* D73 (2006) 072003, [hep-ex/0602035].
[105] M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, *Reevaluation of the Hadronic Contributions to the Muon g-2 and to alpha(MZ)*, *Eur. Phys. J.* **C71** (2011) 1515, [1010.4180].

[106] P. Bechtle, O. Brein, S. Heinemeyer, O. StÄél, T. Stefaniak, G. Weiglein et al., *HiggsBounds – 4: Improved Tests of Extended Higgs Sectors against Exclusion Bounds from LEP, the Tevatron and the LHC*, *Eur. Phys. J.* **C74** (2014) 2693, [1311.0055].

[107] P. Bechtle, S. Heinemeyer, O. StÄél, T. Stefaniak and G. Weiglein, *HiggsSignals: Confronting arbitrary Higgs sectors with measurements at the Tevatron and the LHC*, *Eur. Phys. J.* **C74** (2014) 2711, [1305.1933].

[108] P. Cox, C. Han and T. T. Yanagida, *Muon g – 2 and Dark Matter in the MSSM*, [1805.02802].

[109] M. Kramer, A. Kulesza, R. van der Leeuw, M. Mangano, S. Padhi, T. Plehn et al., *Supersymmetry production cross sections in pp collisions at \(\sqrt{s} = 7 \) TeV*, [1206.2892].