TECHNICAL SOLUTIONS TO RESOURCES ALLOCATION FOR DISTRIBUTED VIRTUAL MACHINE SYSTEMS

Ha Huy Cuong Nguyen
Department of Information Technology, Quangnam University
Quang Nam, Viet Nam
nguyenhahuycuong@gmail.com

Van Thuan Dang
Department of Information Technology, Industrial University of HCM City
Quang Ngai, Viet Nam
dangvanthuan26@gmail.com

Van Son Le
Department of Information Technology, Danang University of Education
The university of Danang
Da Nang, Viet Nam
levanpham2004@yahoo.com

Abstract— Virtual machine is built on group of real servers which are scattered globally and connect together through the telecommunications systems, it has an increasingly important role in the operation, providing the ability to exploit virtual resources. The latest technique helps to use computing resources more effectively and has many benefits, such as cost reduction of power, cooling and, hence, contributes to the Green Computing. To ensure the supply of these resources to demand processes correctly and promptly, avoiding any duplication or conflict, especially remote resources, it is necessary to study and propose a reliable solution appropriate to be the foundation for internal control systems in the cloud. In the scope of this paper, we find a way to produce efficient distributed resources which emphasizes solutions preventing deadlock and proposing methods to avoid resource shortage issue. With this approach, the outcome result is the checklist of resources state which has the possibility of deadlock and lack of resources, by sending messages to the servers, the server would know the situation and have corresponding reaction.

Keywords— Virtual machine, best-effort, lease, deadlock detection, distributed environments, virtual resources.

I. INTRODUCTION

In the early 1980s, Cloud Computing (Clouds) has changed from large computer models to client - server model. Details infrastructure is abstracted from the users, they do not need to know about IT infrastructure and resources are easily accessible in the cloud. Client use of cloud computing applications while computing resources or data placed in the cloud environment. Most cloud computing infrastructure consists of services delivered through data centers and built on the virtual machine. Cloud computing resources are often a single points of access to all cloud computing servers. At the moment, the Internet retains its traditional role as a means of communication and at the same time, it is also a means to share resources. The current trend shows the need to build more flexibility infrastructure in scalability, resiliency of security and network congestion. Virtualization technology provides the abstract and isolates the lower level functions, allowing greater mobility and gathering physical resources [2]. These problems have prompted researchers, expertist in the field of computer science looking for better solutions to meet capacity requirements of information technology service from users. In this article, we present solutions to virtual machine model which needs to provide information resources, preventing deadlock in resources supply. Deadlock problems in resources supply on distributed platforms has always been an interest of advanced researchers. However, there are still many things to do with the challenge of future trends.

In the past, grid computing and batch scheduling have both been commonly used for large scale computation. Cloud computing presents a different resource allocation paradigm than either grids or batch schedulers [4,5]. In particular, Amazon C2 [10], is equipped to, handle may smaller computer resource allocations, rather than a few, large request as is normally the case with grid computing. The introduction of heterogeneity allows clouds to be competitive with traditional distributed computing systems, which often consist of various types of architecture as well. In a heterogeneous cloud environment. Recently, reports have appeared many of the studies provide cloud computing resources, the majority of this research to deal with variability in resource capacity for infrastructure and application performance in the cloud. In this paper, we develop a method to predict the lease completion time distribution that is applicable to making a sophisticated trade off decisions in resource allocation and scheduling. Our evaluation shows that these methods deadlock detection using algorithm two ways search can improve efficiency and effectiveness of the cloud computing allocation resource heterogeneous systems.

The work is organized in the following way: in section 2, we introduce the related works; in section 3, we introduce existing models; in section 4, we present solutions in resource allocation heterogeneous distributed virtual machine, in section 5, we present the results from our assessment in section 6, we present our conclusions and suggestions for future work.

II. RELATED WORKS

Large distributed system [6,10] using the virtualization technology to enable the creation of dynamic range of virtual resources which can meet the computing needs of users with specific applications, grid computing. Resource allocation in cloud computing has attracted the attention of the research community over last few years. Srikantaiah et al. [8] studied the problem of request scheduling for multi-tiered web applications in virtualized heterogeneous systems in order to minimize energy consumption.
while meeting performance requirements. They proposed a heuristic for a multidimensional packing problem as an algorithm for workload consolidation. Garg et al. [10] proposed near optimal scheduling policies that consider a number of energy efficiency factors, which changes across different data centers depending on their location, architectural design, and management system. Warneke et al. [11] discussed the challenges and opportunities for efficient parallel data processing in cloud environment and presented a data processing framework to exploit the dynamic resource provisioning offered by IaaS clouds. Wu et al. [12] proposed a resource allocation for SaaS providers who want to minimize infrastructure cost and SLA violations. Addis et al. [13] proposed resource allocation policies for the management of multi-tier virtualized cloud systems with the aim to maximize the profits associated with multiple class SLAs. A heuristic solution based on a local search that also provides availability, guarantees that running applications has been developed.

Distributed intelligent model has been proposed to support for large complex distributed systems with smart algorithms. The concept of distributed intelligence model aims to provide information resources based on middleware components which can meet the growing and challenging request from customer that they do not necessarily have to change the system.

The trend in building virtual machine network model in order to manage resources effectively include the following useful purposes:

- The hardware resources in distributed system consists of separate compute nodes connected together via communications networks. At each node, resources include CPU, memory, disk, network, computers, clusters, grids. The special thing is, it cannot communicate directly to the resources of other nodes at this node. The physical architecture components can be the same or different ... These buttons can be distributed on any geographical surface and in separate governance areas, management by the resource management system.

- For resources information including system of programs and data, a vital key requirement of the system is to ensure the coherence of data in multiple host systems.

The process of resource providing under virtualization mechanism is illustrated in Figure 1. Grouping the cloud computing service providers activate based on the need for additional resources and the need for collaboration which has been explained in the basic functions of the cloud computing architecture, and in the structure of the cloud. Multi-agent system in resources providing based on virtualization mechanism

III. SYSTEM MODEL RESOURCE ALLOCATION IN HETEROGENEOUS DISTRIBUTED PLATFORMS

Resource allocation in cloud computing has attracted the attention of the research community in the last few years. Cloud computing presents a different resource allocation paradigm than either grids or batch schedulers[2]. In particular, Amazon C2 [10], is equipped to, handle may smaller computer resource allocations, rather than a few, large request as is normally the case with grid computing. The introduction of heterogeneity allows clouds to be competitive with traditional distributed computing systems, which often consist of various types of architecture and as well. Like traditional distributed system before we can see a heterogeneous distributed system consists of a set of processes that are connected by a communication network. The communication delay is finite but unpredictable [21,22].

A. The application

A heterogeneous distributed program is composed of a set of n asynchronous processes $p_1, p_2,..., p_n$ that communicates by message passing over the communication network. We assume that each process is running on a different processor. The processor does not share a common global memory and communicate solely by passing messages over the communication network. There is no physical global clock in the system to which processes have instance access. The communication medium may deliver messages out of order, messages may be lost garble or duplicated due to timeout and retransmission, processors may fail and communication links may go down. The system can be modeled as a directed graph in which vertices represent the processes and edge represent unidirectional communication channels.

Example 1 Resource allocation on heterogeneous distributed platforms

Figure 1 illustrates an example with two nodes and one service. Node A, B are comprised of 4 cores and a large memory. Its resource capacity vectors show that each core has elementary capacity 0.8 for an aggregate capacity of 3.2. Its memory has a capacity of 1.0, with no difference between elementary and aggregate values because the memory, unlike cores, can be partitioned arbitrarily. No single virtual CPU can run at the 0.9 CPU capacity on this node. The figure shows two resource allocations one on each node. On both nodes, the service can be allocated for memory it requires...
which, in turn, are also waiting for some resources held by
the previous requests. In this paper, we only consider the
case where requests are processors on virtual machine re-
source allocation on heterogeneous distributed platforms. A
deadlock situation results in permanently blocking a set of
processors from doing any useful work.

There are four necessary conditions which allow a system to
deadlock[3]: (a) Non – Preemptive: resources can only be
released by the holding processor; (b) Mutual Exclusion:
resources can only be accessed by one processor at a time;
(c) Blocked Waiting: a processor is blocked until the re-
source becomes available; and (d) Hold – and – Wait: a
processor is using resources and making new requests for
other resources that the same time, without releasing held
resources until some time after the new requests are granted.

Example 2 A example simple platform

![Figure 2. A example simple platform](image)

We use the platform graph, for the grid platform. We model
a collection of heterogeneous resources and the communica-
tion links between them as the nodes and edges of an un-
directed graph. See example in Figure 2 with 8 processors
and 11 communication links. Each node is a computing
resource (a processor, or a cluster, or node).

A process can be in two states: running or blocked. In the
running state (also called active state), a process has all the
needed resources and is either executing or is ready for execution.

In the blocked state, a process is waiting to acquire some
resource.

B. The architecture

The target heterogeneous platform is represented by a
directed graph, the platform graph.

There are p nodes P_1, P_2,..., P_p that represent the processors. In the example of figure 1 there at eight processors, hence n = 8.

Each edge represents a physical interconnection. Each edge e_{ij}; P_i \rightarrow P_j is labeled by value e_{ij} which represents the time to transfer a message of unit length between P_i and P_j, in
either direction: we assume that the link between P_i and P_j is
bidirectional and symmetric. A variant would be to assume
two unidirectional links, one in each direction, with possibly
different label values. If there is no communication link
between P_i and P_j we let c_{ij} = +\infty, so that c_{ij} < +\infty means
that P_i and P_j are neighbors in the communication graph.

C. Wait – For – Graph (WFG)

In distributed systems, the state of the system can be
modeled by directed graph, called a wait for graph (WFG)
[21,22,23,24,25]. In a WFG, nodes are processors and there
is a directed edge from node P_i to mode P_j if P_i is blocked
and is waiting for P_j to release some resource. A system is
deadlocked if and only if there exists a directed cycle or
knot in the WFG.

Let us first of all describe the deadlock condition problem
more precisely.

A set S = {s_1, s_2,...,s_k} \subseteq E of k > 1 entities is deadlocked
when the following two conditions simultaneously hold:

- Each entity s_i \in S is waiting for an event permission that
 must be generated from another entity in the set;
- No entity s_i \in S can generate a permission while it is wait-
ing.

If these two conditions hold, the entities in the set will be
waiting forever, regardless of the nature of the permission
and of why they are waiting for the “permission”; for ex-
ample, it could be because s_i needs a resource held by s_j in
order to complete its computation.

A useful way to understand the situations in which deadlock
may occur is to describe the status of the entities during a
computation, with respect to their waiting for some events,
by means of a directed graph \overline{W}, called wait-for graph.

IV. SOLUTIONS IN RESOURCE
ALLOCATION HETEROGENEOUS
DISTRIBUTED VIRTUAL MACHINES

In cloud computing model as introduced above, the re-
sources provided is gathered in so many complicated steps.
The development of a solution to prevent deadlock need to
ensure that at least one of the following conditions cannot
occur: Resources cannot be shared.Occupied and the addi-
tional resources required. No recovery resources. Exist in a
cycle or knot.

A. The proposed algorithm for distributing virtual
machines

Virtual machine distribution on physical nodes at a spec-
tific time. To determine the distribution capabilities of all
VM’s of a lease on physical nodes at required times, starting
at time t and lasting d seconds is very difficult. When com-
bining best-effort and algorithm 2, we can find that the time
before and algorithms used to provide resources in distribut-
ed environments is underutilized, as we cant schedule and
best-effort request.

Algorithm 1 Best-effort

Input: A lease l, a Boolean allow_future
Output:A lease l

Step 1 if m \neq 0 then

VMrr \leftarrow new reservation
start[VMrr] \leftarrow now
end[VMrr] \leftarrow now + duration[l]
res[VMrr] \leftarrow ...
add VMrr to reservations[l] and to slot table.
State[l] \leftarrow Scheduled
Step 2 else if m=0 and not allow_future

Step 2
We propose the following technique in distributed environments.

When a lease (l) requests resources to create a virtual machine VM (including software, data operating systems, etc.) of any Data Center DC,

Step 1 If DC already has VM then l already has resources, no deadlock detects and algorithm ends.

Else, if DC does not have VM but l has been issued for transaction l, then send message l to DC(l) and DC(l). The message content is (l, l).

When any DC received a notification message for blocked pair (l, l) then:

Step 2 If DC = DC(l) then add l to set P(DC) if l does not belong to T(DC).

Step 3 If P(DC) ∩ T(DC) = {j} then deadlock detection succeeds and algorithm ends.

Else, send message (l, l') for all servers DC(l'), with each l' being a member of set B(S).

Else if DC = DC(l) then add l to T(DC).

From the above algorithm, it can be concluded that the proposed solution is of computational complexity. For every deadlock detection, the algorithm exchanges e request messages and e reply messages, where e = m(n-1) is the number of edges.

On consideration of resources required, we imposed some information about time that lease contracts are submitted, elapsed duration, the number of nodes required. We also set up more information: p = 1, m = 1024 (which means each node requires 1 CPU and 1024 MB of memory).

We conduct studies to evaluate the ability to provide resources, namely CPU hardware resources. In the future we will conduct additional analysis capabilities of virtualized resources such as storage drives, availability and completion time upon lease contract submission. p, the percentage of CPU being used by a given request. (Value of p can be 10%, 20%, 30%, 40% and 50% - because the percentage of CPU for using the greedy algorithm is calculated as approximately 49.20%).

VM, the number of nodes required. These are approximately as follows: small (1-24), medium (25-48), large (49-72). With the above two parameters, the research team determined the times to collect the results of the when it requires to use the greedy algorithm within 1 lease contract in 1 DC and the time when the deadlock detection algorithm detected on deadlocks.

V. THE RESULTS FROM OUR ASSESSMENT

This section presents the results to the simulation experiments in simulated scheduling software Haizea.

Table 1. Average time a contract ends with greedy algorithm, together with the CPU usage at local environment.

The ability of the CPU p	10%	20%	30%	40%	50%
NOVM with NO suspension/recovery	4.5	14.3	15.5	10.5	18
NOVM with suspension/recovery	2.4	2.6	6.5	16.5	20
Can create VM	2.8	2.8	27.3	37.3	90

Table 2. Mean attenuation limit with more experiments

The ability of the CPU p	10%	20%	30%	40%	50%
NOVM with NO suspension/recovery	43.95	45.65	20	26.95	47
NOVM with suspension/recovery	4.05	8.40	8.46	4.05	8.40
Can create VM	45	43	66	75.5	85
Through chart 2, by applying scheduling using greedy algorithm with the requirement to provide resources for 10 lease contracts (given the condition that the ability of CPU is pre-determined), we found that the success rate to create VM is high with the CPU’s ability at 20%. As for CPU’s ability at 10%, the success and failed rate are almost the same. At CPU’s ability of 50%, we can clearly see that differences between these rates are greater, with failure creation at 47% while success creation at 85%.

Through chart 3, by applying scheduling using greedy algorithm combined with deadlock detection algorithm to the requirement to provide resources for 10 lease contracts (given the condition that the ability of CPU is pre-determined), we found that the success rate to create VM is very high with the CPU’s ability at 50%. For CPU’s ability at 10% and 20%, the success creation is also higher than that of failure creation.

VI. CONCLUSION

In the context of this paper, we are interested primarily in the criteria of readiness, because it affects preparing costs the most. The use of virtualization technology has great potential to meet the requirements of complex computing systems.

Two algorithms proposed in this research on providing efficient resources for virtual workspaces can grow up by utilizing the above advantages. Security problems, isolation, and the ability to adjust resources can impact positively on the standard of environmental quality by ensuring sufficient workspace resources (CPU, RAM, etc.) to support execution. Independence ability also improves the standard of resources openness, expanding pool of physical resources to run certain workspaces.

Our main approach focuses on applying scheduling algorithms for each type of lease contracts and applying the proposed algorithm in the distributed resources system. There were previous studies on the topic like that of author Borja Sotomayor, but it limited at researching local stations. We have also conducted experiments on distributed environments, given the ability of CPU, in some data centers – which yielded some positive results. It is the assessment that compares between the ability to create VM as requirements, or reject the request of creating a VM as other VM’s cannot be suspended, or to stop the CPU in the data centers. Through this research we found that the application of appropriate scheduling algorithms would give optimal performance to distributed resources of virtual machine systems.

REFERENCES

[1] Ha Huy Cuong Nguyen, Van Son Le, Thanh Thuy Nguyen, “Algorithmic approach to deadlock detection for resource allocation in heterogeneous platforms”, Proceedings of 2014 International Conference on Smart Computing, IEEE Computer Society Press, 3 - 5 November, Hong Kong, China, page 97 – 103.
[2] B.Sotomayor, R.Santiago Montero, I.Martin Llorente, I.Foster, Virtual Infrastructure Management in Private and Hybrid Clouds, IEEE Internet Computing, vol. 13, no. 5, pp. 14-22, Sep/Oct. 2009.
[3] Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing. Commune. ACM53(4), 50–58 (2010)
[4] M. Andreolini, S. Casolari, M. Colajanni, and M. Missouri, “Dynamic load management of virtual machines in a cloud architectures,” inCLOUDCOMP, 2009.
[5] P. Shiu, Y. Tan and V. Mooney “A novel deadlock detection algorithm and architecture”, Proc. CODES 01, pp.73-78, (2001).
[6] Vaquero, L.M., Ruedo-Merino, L., Caceres, J., Lindner, M.: A break in the clouds: towards a cloud definition. SIGCOMM Comput. Commune. Rev. 39(1), 50–55 (2009)
[7] Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson, D.,Rabkin, A., Stoica, I., Zaharia, M.; Above the Clouds: A Berkeley View of Cloud Computing.Technical Report No. UCB EECS-2009-28, University of California at Berkeley, USA, Feb 10, 2009
[8] Kaur P.D., Chana I.: Enhancing Grid Resource Scheduling Algorithms for Cloud Environments. HPAGC 2011, pp. 140–144, (2011)
[9] Vouk, M.A.: Cloud computing: Issues, research and implementations. In: Information Technology Interfaces. ITI 2008: 30th International Conference on, 2008, pp. 31–40, (2008)
[10] Srikantaiah, S., Kansal, A., Zhao, F.: Energy aware consolidation for cloud computing. Cluster Comput. 12, 1–15 (2009)
[11] Berl, A., Gelenbe, E., di Girolamo, M., Giuliani, G., de Meer, H., Pentikousis, K., Dang, M.Q.:Energy-efficient cloud computing. Comput. J. 53(7), 1045–1051 (2010)
[12] Garg, S.K., Yoo, C.S., Anandasivam, A., Buyya, R.: Environment-conscious scheduling of HPC applications on distributed cloud-oriented data centers. J Distrib Comput. Elsevier Press,Amsterdam. (2011)
[13] Warneke, D., Kao, O.: Exploiting dynamic resource allocation for efficient data processing in the cloud. IEEE Trans. Distrib. Syst. 22(6), 985–997 (2011).
[14] Wu, L., Garg, S.K., Buyya, R.: A Software as a Service Provider in Cloud Computing Environments. In: Proceedings of the 11th IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid 2011), Los Angeles, USA, May 23–26, (2011)
[15] Addis, B., Ardagna, D., Panicucci, B.: Autonomic Management of Cloud Service Centers with Availability Guarantees. 2010 IEEE 3rd International Conference on Cloud Computing, pp 220–207,(2010)
[16] Abdelsalam, H.S., Maly, K., Kaminsky, D.: Analysis of Energy Efficiency in Clouds. 2009 Computation, World: Future Computing, Service Computation, Cognitive, Adaptive, Content, Patterns, pp. 416–422, (2009)
[17] Yazir, Y.O., Matthews, C., Farahbod, R.: Dynamic Resource Allocation in Computing Clouds using Distributed Multiple Criteria Decision Analysis. IEEE 3rd International Conference on Cloud Computing, pp. 91–98, (2010)
[18] M. Stillwell, D. Schanzenbach, F. Vivien, and H. Casanova, “Resource allocation algorithms for virtualized service hosting platforms,” JPDC, vol. 70, no. 9, pp. 962–974, (2010).

[19] S. Benin, A. I. Bucur, and D. H. Epema, “A measurement-based simulation study of processor co-allocation in multi-cluster systems,” in SSPP, pp. 184–204, (2003).

[20] A. Buttery, J. Kurzak, and J. Dongarra, “Limitations of the PlayStation 3 for high performance cluster computing,” U Tenn., Knoxville ICL, Tech. Rep. UT-CS-07-597, (2007).

[21] S. Banen, A. I. Bucur, and D. H. Epema, “A measurement-based simulation study of processor co-allocation in multi-cluster systems,” in SSPP, pp. 184–204, (2003).

[22] A. Buttari, J. Kurzak, and J. Dongarra, “Limitations of the PlayStation 3 for high performance cluster computing,” U Tenn., Knoxville ICL, Tech. Rep. UT-CS-07-597, (2007).

[23] D. P. Mitchell and M. J. Merritt, “A distributed algorithm for deadlock detection and resolution,” in Proc. ACM Symposium on Principles of Distributed Computing, pp. 282–284, 1984.

[24] Ajay D. Kshemkalyani, Mukesh Singhal. “Distributed Computing Principles, Algorithms, and Systems”, Cambridge University Press, 2008.

[25] Bondy JA, Murty USR (2008) Graph theory. Springer graduate texts in mathematics. Springer, Berlin. ISBN 978-1-84628-970-5.

[26] Fournier JC (2009) Graph theory and applications. Wiley, New York. ISBN 978-1-84832-070-7.

[27] Greg N. Frederickson. Fast algorithms for shortest paths in planar graphs, with applications, SIAM Journal on Computing, v.16 n.6, p.1004-1022.

AUTHORS PROFILE

HA HUY CUONG NGUYEN received his B.S. degree in information technology from Van Lang University, Ho Chi Minh, Viet Nam, in 2003, the M.S. degree in Computer Science from DA Nan University, DA Nang, Viet Nam, in 2010. He was a lecturer, with Department of Information Technology, Quang Nam University, in 2003 so far. From 2011 until now, he studied at the center DATIC, University of Science and Technology - The University of Da Nang. At the center of this research, he doctoral thesis "Studies deadlock prevention solutions in resource allocation for distributed virtual systems". His research interests include network, operating system, distributed system and cloud computing.