Lack of association between PAX6/SOSTDC1/FAM20B gene polymorphisms and mesiodens

Shanshan Liu, Jiancheng Li, Jincheng Xu, Shengkai Liao, Yongfeng Chen, Rongxiu Zhang, Ruixue Tian and Kai Zhang *

Abstract

Background: The purpose of this study was to analyze the association between the genetic polymorphism of genes (PAX6, SOSTDC1 and FAM20B) and the susceptibility to mesiodens.

Methods: This study was carried out on 50 patients with mesiodens and 50 controls. The family history of each patient with mesiodens were recorded. Genomic DNA was extracted from saliva samples, and single nucleotide polymorphisms were detected in all exons and exon/intron boundaries of PAX6, SOSTDC1 and FAM20B using Sanger sequencing. The data were analyzed using Pearson chi-square test with theoretical frequency ≥ 5. For theoretical frequency less than 5 but at least 1 (≤ 20% cell), the data were analyzed by continuity correction. For the rest, Fisher’s Exact test was used. A P-value < 0.05 was considered statistically significant. The Odds ratio (OR) and confidence intervals (CI) were recorded.

Results: Three polymorphisms were detected in PAX6. Two polymorphisms were detected in SOSTDC1. Twenty-nine polymorphisms were detected in FAM20B. Although, the T allele of FAM20B (rs3766626) appears to be associated with mesiodens (P = 0.051), there were no significant differences of PAX6/SOSTDC1/FAM20B gene polymorphisms between the two groups. The T allele of FAM20B (rs3766626) was associated with susceptibility to two mesiodens (P < 0.001; OR = 8.333; CI = 2.516–27.600).

Conclusions: Lack of association between PAX6/SOSTDC1/FAM20B gene polymorphisms and mesiodens in the population studied was detected. Further studies with large samples on T allele of FAM20B (rs3766626) are needed.

Keywords: Mesiodens, PAX6, SOSTDC1, FAM20B, Genetic polymorphism

Background

Mesiodens is the most common supernumerary teeth located in the central position of the upper or lower jaw [1]. Mesiodens can be either erupted or impacted in alveolar bone placed and oriented vertically, horizontally or in an inverted manner [2, 3]. The prevalence of mesiodens in the population ranges from 0.09 to 2.2%, according to previous studies [4–6]. A series of clinical complications can be caused by mesiodens, including malposition or delayed eruption of the permanent incisors or the formation of a dentigerous cyst [7–9]. However, the etiology of mesiodens is still unclear.

An increasing number of studies indicate that genetic polymorphisms are associated with oral diseases. For instance, in Polish children, the prevalence of the AG genotype of the Enamelin (ENAM) gene (rs12640848) was higher in subjects with dental caries compared to that in controls [10]. The polymorphism of COX2-765G/C had significant influence on periodontitis risk [11]. The genetic polymorphism of axin 2 (AXIN2) and Gremlin-2 (GREM2, also called PRDC) were related with tooth agenesis [12, 13].

Studies have shown that several genes can result in the formation of mesiodens. The Paired box gene 6 (PAX6) mutant in rats can result in the formation of a supernumerary upper incisor [14]. The inactivation of Family with sequence similarity member 20-B (FAM20B) in the
ID	Primer sequences	Amplicon size (bp)	Sequencing size (bp)
PAX6	F CAAACGGACCAATTGCACCA	432	432
PAX6	R GGTTGGTGTGTGAGAGCAATTCTC		
PAX6	F CAGAGTCTAGGGCCTTCCCTC	449	449
PAX6	R TCGCTGGAAGTAGAAAGGTTTGG		
PAX6	F TGACTGAGCCTCATAGTCAGATG	466	466
PAX6	R TCCCCAATCTGTTCCTCCCTACAT		
PAX6	F GAACCGGAGATTCTCTCTCTCTCA	364	364
PAX6	R CAGTATCGAGAGAGGCAAGGC		
PAX6	F AGGATGCATTGTGGTTGTCCTC	405	405
PAX6	R TCCCAATGCTGGAATCTCGGAATCAA		
PAX6	F AGAGCACAGACAGACTAAGAGACA	707	707
PAX6	R GGTATATGCTGCAAATTCACCCCA	470	470
PAX6	R CAATGTGGTCGATGTGTGCCCA		
PAX6	F AAAGCTGACAGATTTCTCCGTGGGAA	398	398
PAX6	R TCTTCTATGCAAAGGGGCGCTG		
PAX6	F TGGTTGGAGATATGAGGAGT	334	334
PAX6	R TGCGACGAGGAGATTTAGACAG		
PAX6	F CCAGAGACAGACAGATTCTCGTAGTA	614	614
PAX6	R GCAGACACAGCCAAATGAGG		
PAX6	F AGCTCAGAGGGCCAAATTCCTAGAT	436	436
PAX6	R AGGGACAAGGAAAGCAAGGAGT		
PAX6	F1 CTCTTCTGTTGAGTGGGCTG	654	–
PAX6	R1 CACAGATCAACATCCATCCAGTCT		
PAX6	F2 CCTATAAAATTGATTTACATGCT	Only used for sequencing	149
SOSTDC1	F ACAAGTGATGAAGTGACATATC	550	550
SOSTDC1	R ACAAGTGATGAAGTGACATATC		
FAM20B	F GTCCTGCTGCTTGGCTGCCTACCTAC	832	832
FAM20B	R CTTTACAACCTCCATCCAGTCT		
FAM20B	F ACTGCTGCCATCATTAGGGTC	949	949
FAM20B	R CAGTGGGTACAGCTGCTGTCTCT		
FAM20B	F AATCAGGCTTGCTTAATGGGTG	417	417
FAM20B	R AGGCCAGAAATGGAATGACCTA		
FAM20B	F TTAATTGGCTGCTGTTGGCCTTAG	825	825
FAM20B	R CACATGGTTTACCATGCTGTA		
FAM20B	F AGAGTGAGCTGGGTAGAAGGA	1130	1130
FAM20B	R TAGCCAAAGGGAAAGCATGCTAG		
FAM20B	F AAGTTCCACAGTATCTGCTAG	800	800
FAM20B	R AAATGAAAATTCATCCATCCAGTCT		
FAM20B	F CATGGTGAAGGCAACAACA		
FAM20B	F GTCCTGCTGCTTGGCTGCCTACCTAC	832	832
FAM20B	R CTTTACAACCTCCATCCAGTCT		
FAM20B	F ACTGCTGCCATCATTAGGGTC	949	949
FAM20B	R CAGTGGGTACAGCTGCTGTCTCT		
FAM20B	F AATCAGGCTTGCTTAATGGGTG	417	417
FAM20B	R AGGCCAGAAATGGAATGACCTA		
FAM20B	F TTAATTGGCTGCTGTTGGCCTTAG	825	825
FAM20B	R CACATGGTTTACCATGCTGTA		
FAM20B	F AGAGTGAGCTGGGTAGAAGGA	1130	1130
FAM20B	R TAGCCAAAGGGAAAGCATGCTAG		
FAM20B	F AAGTTCCACAGTATCTGCTAG	800	800
FAM20B	R AAATGAAAATTCATCCATCCAGTCT		
FAM20B	F CATGGTGAAGGCAACAACA		
dental epithelium in mice results in supernumerary maxillary and mandibular incisors [15]. The deletion of Sclerostin domain-containing 1 (SOSTDC1, also known as Wise, Ectodin, or USAG-1) in mice leads to the development of extra molar and incisors [16, 17]. However, research regarding the association between genetic polymorphism and mesiodens formation has been reported less often. Therefore, the purpose of the current study is to analyze the association between mesiodens formation and the genetic polymorphisms of genes related to this process, identifying the importance of genetic polymorphisms in mesiodens formation-related genes.

Methods

Study participants

One hundred patients (50 mesiodens group, 50 unrelated controls) were recruited in this study in Bengbu, China. The diagnosis of mesiodens was based on oral examination combined with periapical radiograph, panoramic radiograph, and/or cone-beam computed tomography. The characteristics including gender, crown direction, the number of mesiodens, and the eruption status of mesiodens were recorded. All patients had no abnormalities in their head, ears, eyes, nose, throat, thyroid, trunk, or extremities and were without cleft lip or palate, congenital absence of teeth or tooth malformation. The family history was recorded.

Saliva collection and genomic DNA extraction

A total of 2 mL of unstimulated saliva sample for each recruited participant was collected and stored using Oragene DNA Self-Collection kits (Lang Fu, Shanghai, China). Genomic DNA was extracted using the MagBeads Saliva & Swab DNA Extraction Kit (Regular & Pre-loading Version, Enriching Biotechnology LTD, Shanghai, China) according to the manufacturer’s protocol. The Genomic DNA samples were stored at −20 °C until further analysis.

Sanger sequencing of selected mesiodens formation related genes

We were particularly interested in PAX6, SOSTDC1, and FAM20B, which were reported to result in the formation of mesiodens. All exons and exon/intron boundaries of these three genes in 100 samples were amplified using a GC-rich PCR Kit (Sangon Biotech, Shanghai, China) combined with Champagne Taq DNA Polymerase (Vazyme, Nanjing, China). The PCR products were purified using a MagBeads Gel DNA Extraction Kit (Enriching Biotechnology LTD, Shanghai, China) according to the manufacturer’s instructions. The PCR reaction mixture (50 μL) included 3 μL of template, 5 μL of buffer, 4 μL of dNTP, 1 μL of each of the specific forward and reverse primers for these three genes, 0.25 μL rTaq enzyme, and RNase-free water. The PCR was performed with the

ID	Primer sequences	Amplicon size (bp)	Sequencing size (bp)
FAM20B exon-8 F1	CCATAATTTAACTATTTCCCAAGTCG	862	862
FAM20B exon-8 R1	CCAATCCCAATTCCATCTATCC	795	795
FAM20B exon-8 F2	TGGTGACGGGACAGATGTCGCC	793	793
FAM20B exon-8 R2	AGATGAGTGGGCACATCAGG	735	735
FAM20B exon-8 F3	TGACTTTGCACCTAAGTAAATCTGTG	666	666
FAM20B exon-8 R3	CGTGGCCTCATGCTGTAATC	842	842
FAM20B exon-8 F4	CTGGACCCATGATGGTTGATTTA	764	764
FAM20B exon-8 R4	AAAGCAATCTCTGGAGAACAA	879	879
FAM20B exon-8 F5	TTCCTTGATCTCAGTCTCCTC	765	765
FAM20B exon-8 R5	ATTCATCATGACACTGTGGCAAA	879	879
FAM20B exon-8 F6	CTACCTTGCTACACCCAGA	765	765
FAM20B exon-8 R6	TGGTGAGGGCTGCTGTTGGA	514	514
FAM20B exon-8 F7	TAGTGAAAGGCTGCAATGGTG	514	514
FAM20B exon-8 R7	CTGGGAATTAATCTGAGCAAA	514	514
following temperature procedures: denaturation at 94 °C for 5 min, 35 cycles of 30 s at 94 °C, 30 s at 55 °C, and 30 s at 72 °C, with a 10-min extension step at 72 °C. The purified products were used for Sanger sequenced using the ABI Prism 3730 platform (Applied Biosystems™, USA). The primers used for amplification and sequencing are listed in Table 1. The primers of PAX6 were selected according to previous study [18]. The amplification sequences were detailed in Additional file 1 and Additional file 2.

Statistics
The association between susceptibility to mesiodens and the genetic polymorphism of PAX6, SOSTDC1 and FAM20B were assessed using IBM SPSS 20.0 software (IBM, Armonk, NY, USA). The data were analyzed using Pearson chi-square test with theoretical frequency ≥ 5. For theoretical frequency less than 5 but at least 1 (≤20% cell), the data were analyzed by continuity correction. For the rest, Fisher’s Exact test was used. A P-value<0.05 was considered statistically significant. The relationships between the characteristics of mesiodens and the polymorphisms with P value less than 0.05 were further analyzed using the same method described previously.

Results
Basic characteristics of patients with mesiodens
Four of the 50 patients with mesiodens (8%) patients had a family history of mesiodens. The basic characteristics of mesiodens are listed in Table 2.

Associations between mesiodens formation and genetic polymorphisms
Considering the specific role of family history in mesiodens is still unknown, hence, careful family history is record in our study and excluded when we analyzed the association between mesiodens formation and gene polymorphisms. Removing patients with family history, three polymorphisms (rs750093295, rs667773 and rs3026393) were detected in PAX6. Two polymorphisms (rs6945425 and rs12699799) were detected in SOSTDC1. Twenty-nine polymorphisms (chr1:179025841, rs19319619, rs72707294, rs1024965514, rs745360443, rs778968805, rs2025584, rs140751029, rs9726948, rs16853612, rs9725887, rs9725888, rs4652352, rs147003645, rs72709441, rs4652353, rs4652354, rs56006430, rs3766625, rs3766626, rs775951319, rs16853619, rs2018786, rs16853621, rs18854154, rs530920451, rs9249, rs117216397, rs1220) were detected in FAM20B. Although, the T allele of FAM20B (rs3766626) appears to be associated with susceptibility to two mesiodens (P < 0.001; OR = 8.333; CI = 2.516–27.600).

Discussion
A total of 8% of patients have a family history of mesiodens, which may indicate that the occurrence of mesiodens is partially determined by genetics. The patients with mesiodens were mostly concentrated in the northern and southern regions of Bengbu. The occurrence of mesiodens might have regional distribution characteristics.

PAX6 is an important gene involved in a series of diseases including eye diseases, diabetes, autism spectrum disorder and mesiodens [14, 19–21]. Variants of PAX6 are correlated with eye diseases and the insulin response [22–24]. Lei HH et al. identified that variants of rs677773 and rs3026393, and showed that the GG

Table 2	Characteristic of patients with mesiodens, mean ± SD, or n (%)
Numbers	50
Age (years)	11.8 ± 9.3
Gender	Females 16 (32.00) Males 34 (68.00)
Number of mesiodens per patient	1 35 (70.00) 2 15 (30.00)
Growth status	1 erupted 13 (26.00) 1 impacted 22 (44.00) 1 erupted and 1 impacted 8 (16.00) 2 erupted 2 (4.00) 2 impacted 5 (10.00)
Crown direction	1 vertical 13 (26.00) 1 horizontal 4 (8.00) 1 inverted 17 (34.00) 1 inverted and 1 vertical 6 (12.00) 1 horizontal and 1 vertical 4 (8.00) 2 vertical 4 (8.00) 1 horizontal and 1 inverted 1 (2.00) 2 inverted 1 (2.00)
Family history	4 (8.00)
Located in maxilla	49 (98.00)
Located in mandible	1 (2.00)
genotype of rs302693 was less prevalent in 20 patients with mesiodens than in 31 controls [18]. These results were further supported by our study. Polymorphisms in rs667773 and rs3026393 of PAX6 were detected in the current study, and the mesiodens group might have fewer genotypes of GG (rs3026393) than do the controls. Polymorphisms related to other diseases were not detected in this study; however, this may be because the patients with mesiodens did not have any other diseases.

Mesiodens is the most common type among supernumerary teeth, and the development of supernumerary teeth is closely associated with bone morphogenetic protein (BMP) and Wnt signaling pathways [25]. BMP is

Table 3 The gene polymorphisms in patients with mesiodens and controls

Marker	Gene polymorphism	Mesiodens	Controls	P value
rs2025584 (FAM20B)	AA/AG/GG	4/23/16	10/24/15	0.326
	A/G	31/55	44/54	0.223
rs140751029 (FAM20B)	CC/CT	40/4	43/4	1.000
	C/T	84/4	90/4	1.000
rs9726948 (FAM20B)	GG/GT	41/2	41/6	0.270
	G/T	84/2	88/6	0.282
rs16853612 (FAM20B)	AA/AG/GG	23/12/8	28/16/3	0.206
	A/G	58/28	72/22	0.171
rs9725887 (FAM20B)	CC/CT/TT	15/22/6	14/19/15	0.146
	C/T	52/34	47/49	0.120
rs9725888 (FAM20B)	CT/TT	2/41	6/42	0.273
	C/T	2/84	6/90	0.284
rs4652352 (FAM20B)	AA/A/C/CC	5/15/23	6/12/30	0.584
	A/C	25/61	24/72	0.537
rs147003645 (FAM20B)	GG/AG	43/0	47/1	1.000
	G/A	86/0	95/1	1.000
rs7209441 (FAM20B)	CC/TT/CT	22/6/15	28/3/17	0.477
	C/T	59/27	73/23	0.262
rs4652353 (FAM20B)	GG/GT/TT	6/14/23	6/12/30	0.668
	G/T	26/60	24/72	0.430
rs4652354 (FAM20B)	CC/CT/TT	19/22/1	18/23/7	0.146
	C/T	60/24	59/37	0.159
rs56006430 (FAM20B)	CC/CG/GG	7/15/21	3/17/29	0.269
	C/G	29/57	23/75	0.123
rs3766626 (FAM20B)	GG/GT/TT	16/21/4	14/19/14	0.067
	G/T	53/29	47/47	0.051
rs3766625 (FAM20B)	AA/AG/GC/CC	6/15/20/0	2/17/27/1	0.277
	A/G/C	27/55/0	21/71/2	0.131
rs16853619 (FAM20B)	AA/AG/GG	2/39	6/41	0.276
	A/G	2/80	6/88	0.287
rs7207294 (FAM20B)	GG/GC/CC	8/18/22	3/18/27	0.249
	G/C	34/62	24/72	0.116
rs2018786 (FAM20B)	AA/AG/GG	7/14/23	1/18/30	0.061
	A/G	28/60	20/78	0.076
rs16853621 (FAM20B)	AA/AG/GG	36/4/1	40/8/0	0.361
	A/G	76/6	88/8	0.802
rs188554154 (FAM20B)	GG/GT/TT	43/0	47/1	1.000
	G/T	86/0	95/1	1.000
rs530090451 (FAM20B)	AA/AG	43/1	47/1	1.000
	A/G	87/1	95/1	1.000
rs775951319 (FAM20B)	CC	41	47	–
rs778068805 (FAM20B)	CC/CT	46/0	46/1	1.000
	C/T	92/0	93/1	1.000

Table 4 The distribution of AA genotype of FAM20B (rs2018786) according to eruption status

genotype	1 erupted	1 impacted	1 erupted	1 impacted	2 erupted	2 impacted
AA	1	3	0	0	3	2
others	8	17	8	2	2	2

Liu et al. BMC Oral Health (2019) 19:90
required for SHH expression during early tooth development and postnatal root development [26]. However, SOSTDC1 is an inhibitor of BMP, and the deletion of SOSTDC1 in mice induces the formation of mesiodens [15]. Wnt, another signaling pathway, can be inhibited by SOSTDC1, located in the upstream of Sonic hedgehog (Shh), and induces the expression of Shh, followed by the induction of high SOSTDC1 expression. Insufficient SOSTDC1 enhances WNT signaling, which increases proliferation and continuous development of vestigial tooth buds and results in the formation of supernumerary teeth [27, 28]. In our study, two polymorphisms (rs6945425 and rs12699799) were detected in SOSTDC1, but none of them were found related to susceptibility to mesiodens.

FAM20B is a member of Family with sequence similarity 20 (Fam20) proteins containing FAM20A, FAM20B, and FAM20C in the human genome [29]. FAM20A knockout mice have biomineralization defects, and mutations in FAM20A have been found to be associated with amelogenesis imperfecta subsequently [30–32]. FAM20B null mice showed mesiodens [15]; however, the relationship between variants of FAM20B and mesiodens has not yet been reported. Our results suggest for the first time that individuals with T allele of FAM20B (rs3766626) appear to have a low risk of mesiodens, which was located in the 3′ untranslated region (3′ UTR) of corresponding gene. Although it isn’t translated into protein, previous and recent studies showed that variant in 3′ UTR region could impact the expression of mRNA [33, 34].

The current study provides information on the association between genetic polymorphisms and the occurrence of mesiodens; however, there are some limitations. The sample size (mainly the control size) and the number of genes analyzed in this study were limitations. The mechanism by which these polymorphism affect mesiodens is unknown. Further studies including more samples, more genes, and the mechanism of these polymorphism on mesiodens are needed.

Conclusions
There were no significant differences of PAX6/SOSTDC1/ FAM20B gene polymorphisms between the two groups. Further studies with large samples on T allele of FAM20B (rs3766626) are needed.

Table 5 The distribution of AA genotype of FAM20B (rs2018786) according to crown direction

genotype	1 vertical	1 horizontal	1 inverted	1 inverted + 1 vertical	1 horizontal + 1 vertical	2 vertical	2 horizontal + 1 inverted	2 inverted
AA	2	0	2	0	2	0	1	0
others	8	3	14	5	2	4	0	1

Additional files

Additional file 1: The amplification sequences of FAM20B. (DOCX 22 kb)
Additional file 2: The amplification sequences of SOSTDC1. (DOCX 13 kb)

Abbreviations
AXIN2: Axin 2; BMP: Bone morphogenetic protein; ENAM: Enamelin; Fam20: Family with sequence similarity member 20; Grem2: Gremlin-2; PAX6: Paired box gene 6; SOSTDC1: Sclerostin domain-containing 1; UTR: Untranslated region

Acknowledgements
Not applicable

Authors’ contributions
KZ and SSL conceived and designed the experiments; JCL and JCX contributed to the data acquisition; SKL, YFC, RXZ and RTP analyzed the data; SSL wrote the manuscript; KZ revised the manuscript. All authors read and approved the final manuscript.

Funding
This study was funded by Education Department of Anhui Province, China (No. KJ2013Z203). The funding body helped with the data collection, sequencing and analysis.

Availability of data and materials
The data and materials of the present study were available from the corresponding author.

Ethics approval and consent to participate
This study was approved by the Ethics Committee of [2017] KY010 by the First Affiliated Hospital of Bengbu Medical College. Informed consents were written before recruitment. Written informed consent for participation under 16 years old in the study was obtained from their parent or guardian.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no conflict of interest.

Received: 10 August 2018 Accepted: 20 May 2019
Published online: 27 May 2019

References
1. Van Buggenhout C, Bailleul-Forestier I. Mesiodens. Eur J Med Genet. 2008; 51:1:78–81.
2. Colak H, Uagur R, Tan E, Hamidi IM, Turkal M, Colak T. Investigation of prevalence and characteristics of mesiodens in a non-syndromic 11:256 dental outpatients. Eur Rev Med Pharmacol Sci. 2013;17:2684–9.
3. Nagaveni NB, Sreedevi B, Praveen BS, Praveen Reddy B, Vidyullatha BG, Umashankara KV. Survey of mesiodens and its characteristics in 2500 children of Davangere city, India. Eur J Paediatr Dent. 2010;11:185–8.
4. Ayers E, Kennedy D, Wiebe C. Clinical recommendations for management of mesiodens and unerupted permanent maxillary central incisors. Eur Arch Paediatr Dent. 2014;15(6):421–8.
5. Gündüz K, Celenk P, Zengin Z, Sümer P. Mesiodens: a radiographic study in children. J Oral Sci. 2008;50(3):287–91.
6. Meighani G, Pakdaman A. Diagnosis and management of supernumerary (mesiodens): a review of the literature. J Dent (Tehran). 2010;7:41–9.
