Factors associated with worsening sexual function during adjuvant endocrine therapy in a prospective clinic-based cohort of women with early-stage breast cancer

Neha Verma1 · Amanda L. Blackford2 · Elissa Thorner3 · Jennifer Lehman3 · Claire Snyder1,4,5 · Vered Stearns3 · Karen Lisa Smith3,6

Received: 2 June 2022 / Accepted: 17 September 2022 / Published online: 5 October 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Purpose Sexual function problems are common but under-reported among women receiving adjuvant endocrine therapy for breast cancer. Worsening scores on patient-reported outcomes (PROs) may identify those at risk for sexual function problems during treatment. We performed a secondary analysis of prospectively collected PROs in women receiving adjuvant endocrine therapy to identify factors associated with worsening sexual function.

Methods Women with stage 0–III breast cancer initiating adjuvant endocrine therapy participating in a prospective cohort completed PROs at baseline, 3, 6, 12, 24, 36, 48, and 60 months. Sexual function was evaluated by the MOS-SP measure. Other measures included PROMIS pain interference, fatigue, depression, anxiety, physical function, and sleep disturbance and the Endocrine Symptom Subscale of the FACT-ES. We evaluated associations between score worsening of at least the minimal important difference (MID) in PROMIS T-scores (4 points) and FACT-ES scores (5 points) with score worsening of at least the MID in MOS-SP scores (8 points) using logistic regression.

Results Among 300 participants, 45.7% experienced ≥ 8-point worsening of MOS-SP score at any time point compared to baseline. Worsening endocrine symptoms (OR 1.34, 95% CI 1.22–1.49, \(p < 0.001 \)), worsening physical function (OR 1.09, 95% CI 1.00–1.18, \(p = 0.06 \)), and prior mastectomy (OR 1.45, 95% CI 0.94–2.23, \(p = 0.09 \)) were associated with MOS-SP score worsening by at least the MID.

Conclusion Worsening endocrine symptoms and physical function identified on PROs are associated with worsening sexual function during adjuvant endocrine therapy. Routine assessment of these domains with PROs may identify women at risk for sexual function problems.

Trial registration number NCT01937052; Date of Registration: 09/09/2013.

Keywords Patient-reported outcomes · Adjuvant endocrine therapy · Sexual problems · Sexual function · Minimal important difference · Breast cancer
Introduction

Sexual function problems are common among women treated for early breast cancer [1–8]. Adjuvant endocrine therapies for hormone receptor-positive (HR+) breast cancer, including aromatase inhibitors (AI), tamoxifen, and ovarian function suppression (OFS), have anti-estrogenic effects, often leading to vaginal dryness, dyspareunia, trouble reaching climax, and loss of libido [9]. Sexual function problems are often distressing for women receiving adjuvant endocrine therapy and negatively affect quality of life (QOL) [5, 6, 10, 11].

Prior studies have identified multiple factors associated with sexual function problems during adjuvant endocrine therapy; however, sexual function problems remain under-reported by patients and under-detected and under-addressed by clinicians [1, 2, 7, 8, 11–27]. Evidence-based interventions can improve sexual function problems during endocrine therapy, and routine assessment to identify women who may benefit from these interventions is an unmet need [28–34]. Patient-reported outcome (PRO) measures can be used to assess symptoms during cancer treatment and can identify sexual function problems during endocrine therapy [26].

We present a secondary analysis from a prospective clinic-based cohort of women receiving adjuvant endocrine therapy for early-stage HR+ breast cancer who completed serial PRO measures over 5 years. Our aim was to identify clinicodemographic variables and patient-reported symptoms associated with the worsening sexual function during adjuvant endocrine therapy.

Methods

Study population

From March 2012 to December 2016, we recruited women with HR+ stage 0–III breast cancer initiating adjuvant endocrine therapy with tamoxifen or an AI to an IRB-approved prospective observational cohort at Johns Hopkins clinical sites. Potential participants were identified by screening provider schedules. The type of endocrine therapy (tamoxifen or AI) was determined by the treating clinician. Concurrent OFS was permitted in pre-menopausal women. Participants could enroll upon first initiating endocrine therapy or upon switching from one endocrine therapy to another. Written informed consent was obtained.

Patient-reported outcomes

Participants completed PROs using the online PatientViewpoint interface at baseline (the time of endocrine therapy initiation) and 3, 6, 12, 24, 36, 48, and 60 months later [35–37]. Participants were followed until the last PRO survey or the last clinic visit prior to the date the database was locked (May 15, 2020), whichever was longer. Sexual function was evaluated by the Medical Outcomes Study Sexual Problems (MOS-SP) measure [38]. Respondents rate the severity of problems in four domains of sexual function (“lack of sexual interest,” “unable to relax and enjoy sex,” “difficulty being aroused,” and “difficulty achieving orgasm”) using a 4-point scale (“not a problem”—1, “little of a problem”—2, “somewhat of a problem”—3, and “very much of a problem”—4). For each item, there is also a “not applicable” response which is recoded as “not a problem.” The MOS-SP total score is calculated by summing the individual items (range 4–16) and rescaling from 0 to 100, with higher scores indicating more sexual function problems [38]. The reported mean MOS-SP score for women with early-stage breast cancer ranges from 20 to 36, with standard deviation (SD) 27–31 [1, 21, 38]. In accordance with prior analyses utilizing a distribution-based method to identify the minimal important difference (MID, i.e., the smallest change in PRO score that patients would perceive as beneficial or harmful and that would affect clinical management) on the MOS-SP, we considered an increase in MOS-SP score of ≥ 8 points to represent clinically significant worsening of sexual function [1, 39, 40]. Participants with baseline MOS-SP scores 0–92 were included in this analysis as participants with baseline scores > 92 could not experience ≥ 8-point worsening.

Participants also completed other PRO measures, including the Patient-Reported Outcomes Measurement Information System (PROMIS) Version 1.0 short forms for pain interference, fatigue, depression, anxiety, physical function, and sleep disturbance, and the Endocrine Symptom Subscale of the Functional Assessment of Cancer Therapy—Endocrine Symptom (FACT-ES) measure [41–45]. PROMIS measures are scored using a T-score metric with higher scores indicating more of the outcome measured. T-scores of 50 (SD 10) represent the mean for PROMIS measures [42]. Using a combination of anchor- and distribution-based methods, the reported MID for PROMIS measures in patients with early-stage cancer is 3–5 points [41–44, 46]. We considered the midpoint of this range (4 points) to be the MID on the PROMIS measures. Scores on the Endocrine Symptom Subscale of the FACT-ES range from 0 to 76 with a mean of 59 (SD 9.7) in women with early-stage breast cancer. Lower scores indicate worse endocrine-related (QOL) and more endocrine symptoms [45]. We considered 0.5 SD (rounded to 5 points) to be the MID for the Endocrine Symptom Subscale of the FACT-ES [39, 40].

Statistical analysis

Clinicodemographic characteristics of participants and PRO scores over time are presented descriptively using mean (SD), median (range), and proportions. The frequency and
percentage of participants with worsening by ≥8 points on the MOS-SP relative to baseline were calculated at each time point. To account for repeated measures in each participant over time, we fit a logistic regression model with generalized estimating equations (GEE) to examine changes in the distribution over time.

We used a similar modeling approach to assess how variables measured at baseline and during follow-up were associated with worsening of MOS-SP score by at least 8 points. Non-time-dependent demographic covariates considered for the models included age at enrollment, race (White vs. other), and neighborhood poverty (NP) rate. NP rate, the percentage of persons living in a zip code with a family income under the federal poverty line based on United States 2010 census data, was considered a surrogate for socioeconomic status (SES), with low SES defined as residence in a zip code with NP rate >15% [47]. Non-time-dependent clinical covariates included stage (continuous variable), type of surgery (mastectomy/breast conservation), receipt of chemotherapy (yes/no), receipt of radiation therapy (yes/no), number of self-reported concomitant medications at enrollment, menopausal status at diagnosis (post/pre), and type of endocrine therapy (AI/tamoxifen). Time-dependent covariates included change in PRO scores at all time points up to 60 months in units based on MIDs, defined as worsening of scores on the PROMIS measures in 4-point increments and on the FACT-ES in 5-point increments. The follow-up time point was included as a covariate in all models.

We first evaluated univariate associations of each covariate with worsening of MOS-SP score by ≥8 points. Next, we estimated the model quasi-information criterion (QIC) for each possible combination of the covariates listed above. The model yielding the smallest QIC was selected as the final multivariable model describing the association between clinicodemographic variables and minimally important changes in the PROMIS and Endocrine Symptom Subscale FACT-ES scores up to 5 years with worsening in the MOS-SP score of ≥8 points [48, 49]. Analyses were completed with R version 4.0.0 [50].

Results

Participant characteristics

Of 321 participants in the overall cohort, 21 were excluded from this secondary analysis due to baseline MOS-SP score >92 (N = 15) or incomplete baseline MOS-SP measure (N = 6). Characteristics of the 300 participants included in this analysis are summarized in Table 1 and were similar to those excluded due to baseline MOS-SP score >92 (Supplementary Table 1). Mean age at enrollment was 62 years and 195 (65%) participants were post-menopausal. Prior to endocrine therapy, 132 (44%) underwent mastectomy, 199 (66%) received radiation, and 84 (28%) received chemotherapy. Thirteen percent of study participants were of low SES. A total of 119 (39.7%) participants initiated tamoxifen only, 15 (5%) initiated tamoxifen plus OFS, 165 (55%) initiated an AI only, and 1 (0.3%) initiated an AI plus OFS. Five participants (1.7%) enrolled upon switching endocrine therapy agents. Median follow-up was 56.1 months.

Sexual function over time

In all four MOS-SP domains, at least 30% of participants reported having at least a “little of a problem” at every time point (Fig. 1). Overall, 165 (55%) participants reported ≥1 sexual function problem during study participation (i.e., response other than “not a problem”). A total of 137 (45.7%) participants experienced ≥8-point worsening of MOS-SP score compared to baseline at any time point. The distribution of participants with worsening MOS-SP by ≥8 points relative to baseline through 60 months is shown in Fig. 2. On average, the percentage of participants with worsening sexual function increased over time (p < 0.001). Differences between MOS-SP scores at each time point for participants treated with AI compared to tamoxifen were small (Supplementary Table 2).

Scores on PRO surveys

For the overall study population, mean scores at baseline and at each follow-up time point for all measures were within one SD of published population means (Table 2) [1, 21, 38, 42, 45]. The proportions of participants who completed each PRO measure declined over time. Overall, 36% of participants experienced at least a 4-point worsening in physical function score (Fig. 3) and 53% of participants experienced at least a 5-point worsening in endocrine symptom score (Fig. 4) at any time compared to baseline.

Association of clinicodemographic characteristics and PROs over time with worsening of sexual function

Univariate and multivariate analyses evaluating the association between clinicodemographic variables and worsening symptoms, as assessed with PROs, with worsening sexual function, as measured by increase in MOS-SP score by ≥8 points, are shown in Table 3. In the univariate analyses, worsening in all symptoms was associated with worsening sexual function. In the final multivariable model, every 5-point worsening in endocrine symptoms (OR 1.34, 95% CI 1.22–1.49, p < 0.001) and every 4-point worsening in physical function (OR 1.08, 95% CI 1.00–1.18 p = 0.06) were associated with worsening sexual function. Participants with
prior mastectomy (OR 1.45, 95% CI 0.94–2.23, \(p = 0.09 \)) were also more likely to experience worsening sexual function. Participants of lower SES were less likely to have an increase in MOS-SP score \(\geq 8 \) (OR 0.51, 95% CI 0.25–1.03, \(p = 0.06 \)).

Sensitivity analyses

Because of the decline in PRO completion rates over time, we performed a sensitivity analysis comparing participants who completed all measures during the first 24 months to those with at least one missing measure during that timeframe (Supplementary Table 3). Apart from the number of concomitant medications, baseline characteristics were similar between the two groups. Mean baseline scores on the PROMIS fatigue and physical function measures revealed less fatigue (\(p = 0.01 \)) and better physical function (\(p = 0.01 \)) for participants who completed all measures; however, differences in mean scores were smaller than the MID.

Additionally, because the MOS-SP and the Endocrine Symptom Subscale of the FACT-ES questionnaires both contain an item about sexual interest, we recalculated the Endocrine Symptom Subscale FACT-ES score excluding this item and re-estimated the logistic regression model. Excluding this item did not change the result (Supplementary Table 4). Furthermore, since patients who do not tolerate one endocrine therapy agent may experience toxicities limiting tolerance of other endocrine therapy agents [51], we re-estimated our logistic regression model excluding the five patients who enrolled in the study upon switching from one endocrine therapy agent to another. Excluding these 5 patients did not meaningfully change the final model (Supplementary Table 5).

Finally, since it is possible that responses to PROs may differ following cessation or change in endocrine therapy and our analysis included all

Table 1 Characteristics of study population

Characteristic	\(N = 300 \)
Mean age in years (SD)	62.4 (11.0)
Post-menopausal—\(N \) (%)	195 (65)
Race—\(N \) (%)	
White	252 (84)
Black	30 (10)
Other	18 (6)
Median number of self-reported concomitant medications at enrollment (range)	4 (0–29)
Neighborhood poverty rate—\(N \) (%)	
0–15%	258 (86.6)
> 15%	40 (13.4)
Mean baseline body mass index (SD)	27.5 (6.0)
Stage—\(N \) (%)	
0	28 (9.3)
I	180 (60)
II	73 (24.3)
III	19 (6.3)
ER positive—\(N \) (%)	299 (100)
PR positive—\(N \) (%)	264 (88.9)
HER-2 positive—\(N \) (%)	25 (9.2)
Mastectomy—\(N \) (%)	132 (44)
Radiation—\(N \) (%)	199 (66.3)
Chemotherapy—\(N \) (%)	84 (28.2)
Adjuvant endocrine therapy—\(N \) (%)	
Tamoxifen only	119 (39.7)
Tamoxifen plus OFS	15 (5)
Aromatase inhibitor only	165 (55)
Aromatase inhibitor plus OFS	1 (0.3)
Enrolled upon switching type of endocrine therapy—\(N \) (%)	5 (1.7)
Median duration of follow-up in months (range)	56.1 (6.9–87.7)

SD standard deviation, ER estrogen receptor, PR progesterone receptor, HER-2 human epidermal growth factor receptor-2, OFS ovarian function suppression
Fig. 1 Bar plots display responses to the four domains of the MOS-SP at each time point. Respondents rate the severity of problems in each domain using a 4-point scale (“not a problem”—1, “little of a problem”—2, “somewhat of a problem”—3, and “very much of a problem”—4). For each item, there is also a “not applicable” response which is recoded as “not a problem.” Response options are denoted by color according to the legend. The number of responses at each time point is noted under the x-axis at the corresponding time points. There was only 1 study participant who answered “not applicable” to the item “Difficulty in having an orgasm” at the baseline assessment. However, she responded “Very much of a problem” to two other items and “Little of a problem” to the other item at baseline. None of her responses at other time points were “not applicable” nor were any of the responses from the other study participants at any time points.

Fig. 2 Graph displays percentage of participants with worsening MOS-SP scores by 8 points or more relative to baseline through 60 months. The size of the dot is proportional to the number of participants who completed the MOS-SP measure at that time point. Bars represent exact 95% confidence intervals.
submitted PROs regardless of treatment status, we repeated our analysis excluding all PRO responses participants submitted after (1) discontinuing the endocrine therapy initiated at enrollment, (2) the development of locoregional or distant recurrence, or (3) switching from tamoxifen to an AI. Only 52 of 947 (5.5%) of the PROs included in our analysis were submitted after one of these events. After excluding these PROs, the selection algorithm yielded a similar final model with similar effect sizes (Supplementary Table 6).

Discussion

In this prospective cohort of women with early-stage HR+ breast cancer receiving adjuvant endocrine therapy, sexual function problems were common, with 55% of patients reporting at least one sexual function problem and 45.7% experiencing clinically significant worsening sexual function. For every 5-point worsening in Endocrine Symptom Subscale FACT-ES score, participants were 34% more likely to experience a clinically significant worsening in MOS-SP score \((p < 0.001) \). For every 4-point worsening in PROMIS physical function score, participants were 8% more likely to experience a clinically significant worsening in MOS-SP score \((p = 0.06) \). Worsening of endocrine symptoms and decline in physical function were common, with 53% of patients experiencing at least a 5-point worsening in Endocrine Symptom Subscale FACT-ES score and 36% experiencing at least a 4-point worsening in PROMIS physical function score. In addition, participants who had undergone a mastectomy were 45% more likely to experience a clinically significant worsening in MOS-SP score \((p = 0.09) \).

Our findings are consistent with prior studies demonstrating an association between endocrine symptoms and sexual problems during endocrine therapy. Hot flashes and vaginal dryness are among the most common endocrine symptoms patients experience during endocrine therapy [9, 51–53] and these have previously been identified as predictors of sexual health outcomes [1, 13, 20, 21, 23, 25]. Vaginal dryness often leads to dyspareunia, which may affect multiple domains on the MOS-SP, including relaxing and enjoying sex and achieving orgasm [9]. Hot flashes are associated with mood disturbance and sleep disruption, which may lead to sexual function problems [1, 7, 17, 18, 20, 25, 54–56].

A key finding in our study is that worsening physical function was associated with worsening sexual function problems during adjuvant endocrine therapy. Physical function refers to an individual’s ability to execute activities requiring physical capability, including basic activities of daily living and more vigorous activities that require strength, endurance, and/or mobility [57]. Several prior studies have evaluated the association of QOL, as assessed with a multi-dimensional measure that includes a physical

Table 2 Mean scores on patient-reported outcome measures at each study time point

Measure	Baseline	Time point (months)	N	Mean (SD)												
MOS-SP 300	24 (4.8)	264	62	64.2 (8.9)	238	63.3 (8.3)	204	62.1 (9.1)	138	61.1 (9.8)	87	60.7 (9.3)	50	60.2 (9.0)	22	61.4 (9.2)
FACT-ES endocrine Symptom subscale	300	24 (3.1)	264	62.1 (8.8)	238	63.2 (8.1)	204	62.1 (9.0)	138	61.1 (8.8)	87	60.6 (8.4)	50	60.2 (8.1)	22	61.3 (8.1)
PROMIS: physical function 299	24 (3.8)	264	62	66.2 (8.9)	238	64.3 (8.3)	204	63.1 (9.1)	138	62.1 (9.8)	87	61.6 (9.3)	50	61.2 (9.0)	22	62.4 (9.2)
PROMIS: pain interference 300	24 (3.1)	264	62	64.2 (8.8)	238	63.3 (8.3)	204	62.1 (9.1)	138	61.1 (9.8)	87	60.6 (8.4)	50	60.2 (8.1)	22	61.3 (8.1)
PROMIS: depression 300	24 (3.1)	264	62	64.2 (8.8)	238	63.3 (8.3)	204	62.1 (9.1)	138	61.1 (9.8)	87	60.6 (8.4)	50	60.2 (8.1)	22	61.3 (8.1)
PROMIS: anxiety 300	24 (3.1)	264	62	64.2 (8.8)	238	63.3 (8.3)	204	62.1 (9.1)	138	61.1 (9.8)	87	60.6 (8.4)	50	60.2 (8.1)	22	61.3 (8.1)
PROMIS: sleep disturbance 300	24 (3.1)	264	62	64.2 (8.8)	238	63.3 (8.3)	204	62.1 (9.1)	138	61.1 (9.8)	87	60.6 (8.4)	50	60.2 (8.1)	22	61.3 (8.1)
function subscale and sexual function problems in breast cancer survivors. Among these prior studies, some have demonstrated an association between worse scores on the physical function subscales and sexual function problems; however, this association has not been consistently reported \[11, 18, 22, 56\]. In contrast to prior studies, we evaluated physical function using the PROMIS physical function measure, a stand-alone measure validated in the early-stage cancer population, as opposed to evaluating physical function with a subscale of a multi-dimensional QOL measure \[41, 57, 58\].

The mechanism by which impairment in physical function during adjuvant endocrine therapy leads to sexual function problems is not known and cannot be determined based on the responses to the PROMIS physical function measure used in this study. It is possible that physical function limitations are attributable to joint pain during adjuvant endocrine therapy which, in turn, may affect
multiple domains on the MOS-SP, such as sexual interest and ability to relax and enjoy sex [59]. Supporting this hypothesis is the fact that joint pain in the setting of arthritic conditions is associated with sexual function problems [60]. It must be noted that a limitation of our study is that we evaluated pain using the PROMIS pain interference measure, a tool that is not specific to joint pain and that may not be sufficiently sensitive to detect endocrine therapy-associated joint pain, thus limiting our ability to evaluate whether joint pain is associated with worsening physical function during endocrine therapy.

Another possible mechanism by which physical function problems may lead to sexual function problems during endocrine therapy is via physical inactivity. Female breast cancer survivors with poor physical function are more likely to be physically inactive and physical inactivity is associated with sexual function problems [11, 56, 61]. Future studies are needed to evaluate the reasons for declining physical function during adjuvant endocrine therapy and to define the mechanism(s) by which physical function impairment during adjuvant endocrine therapy limit sexual function.

Our study confirmed the previously demonstrated association between prior mastectomy and sexual function problems during adjuvant endocrine therapy [2, 8, 12, 14, 15]. Patients who undergo mastectomy may experience body image concerns that may lead to sexual function problems [8, 12–14, 23, 62].

We found that patients of low SES, defined by residence in a zip code with NP rate > 15%, were less likely to experience worsening sexual function during adjuvant endocrine therapy (p=0.06). The explanation for this finding is unclear and should be interpreted with caution. NP rate is not a precise measure of SES and only a small percentage of our cohort was low SES [47, 63].

Our study, like others, confirmed that sexual function problems are common during endocrine therapy [1–8]. Despite being common and distressing for patients, sexual problems are under-reported and under-treated [2, 24, 26, 27]. Approximately 60% of breast cancer patients experiencing a sexual function problem who feel a need for intervention do not consult a healthcare professional [2]. Common patient-reported barriers to accessing support for sexual problems include embarrassment or discomfort in bringing up sexual concerns [27]. Many patients want their clinicians to initiate these discussions; however, clinicians may be reluctant to do so due to time constraints, lack of knowledge and training, and concerns about causing offense [27, 64].

Multiple evidence-based interventions have been shown to improve sexual function during adjuvant endocrine

Variable	Univariate analysis	Multivariate analysis	
	Odds ratio (95% CI)	p value	
		Adjusted odds ratio (95% CI)	p value
Clinicodemographic characteristics			
Age in years	0.98 (0.96–1.0)	0.04	
Race (White vs. Black or Other)	0.75 (0.45–1.25)	0.27	
Adjuvant endocrine therapy (AI vs. Tamoxifen)	1.05 (0.71–1.55)	0.80	
Number of baseline concomitant medications	1.02 (0.98–1.07)	0.30	
Stage	1.11 (0.85–1.46)	0.42	
Menopausal status at diagnosis (Post vs. Pre)	0.90 (0.60–1.34)	0.60	
Mastectomy	1.67 (1.13–2.46)	0.01	
Radiation	1.15 (0.76–1.73)	0.51	
Chemotherapy	1.33 (0.87–2.04)	0.18	
Neighborhood poverty rate (> 15% vs. ≤ 15%)	0.52 (0.26–1.02)	0.05	
Patient-reported outcomes			
Physical Function (4-point worsening)	1.09 (1.02–1.18)	0.02	
Endocrine Symptoms (5-point worsening)	1.43 (1.31–1.57)	<0.001	
Pain Interference (4-point worsening)	1.11 (1.03–1.19)	0.007	
Fatigue (4-point worsening)	1.15 (1.06–1.24)	0.002	
Depression (4-point worsening)	1.14 (1.06–1.23)	0.001	
Anxiety (4-point worsening)	1.12 (1.04–1.2)	0.003	
Sleep disturbance (4-point worsening)	1.13 (1.05–1.21)	0.003	

CI confidence interval, AI aromatase inhibitor
therapy [28–34]. Vaginal moisturizers, tablets, suppositories, gels, oils, topical vitamin D or E, and hyaluronic acid can help alleviate vaginal dryness, and lubricants can be used during sexual activity for dyspareunia associated with vaginal dryness [28–30]. Topical lidocaine can also improve dyspareunia in this population [32]. Local hormonal treatments, including vaginal estrogen or dehydroepiandrostosterone (DHEA), can also be used; however, there is some concern about systemic absorption, and not all patients and clinicians are comfortable with the use of these products [28–30, 34]. Additionally, pelvic floor muscle training can improve sexual function and vaginal dilators can improve dyspareunia [28, 29, 33].

Given the availability of evidence-based interventions to address sexual function problems, routine assessment of sexual function during adjuvant endocrine therapy is critical. Based on the associations we identified, patients who experience worsening endocrine symptoms or worsening physical function are at particular risk for worsening sexual function, as are those who have had a mastectomy. Thus, our findings are actionable in that they support the use of PROs as a part of routine clinical care to monitor sexual function, endocrine symptoms, and physical function in patients receiving adjuvant endocrine therapy. Doing so may help identify patients experiencing sexual problems and also those at particular risk for worsening sexual function. Since the extent of symptoms identified by PROs is greater than that reported by clinicians, PROs may be particularly informative in this setting, as both patients and clinicians may otherwise hesitate to initiate discussions about sexual health [26, 27, 64]. Moreover, beyond identifying symptoms that may not have been identified otherwise, PROs have been shown to enhance communication between patients and providers, to facilitate conversations about symptoms, and to impact management [65–67]. Thus, use of PROs during adjuvant endocrine therapy may not only lead to greater awareness of patients’ sexual function problems, endocrine symptoms, and declining physical function, but it may facilitate communication between patients and providers about these issues and the opportunity to offer evidence-based interventions to alleviate these problems.

A strength of this study is that, unlike many prior studies, we evaluated the association between worsening sexual function and other symptoms prospectively over 5 years. Additional strengths include our real-world population and inclusion of both pre- and post-menopausal women. Furthermore, we used validated measures assessing multiple common symptoms during endocrine therapy and used MIDs to identify clinically meaningful changes in PRO scores. Finally, a strength of our analysis is that we used the QIC model selection approach. This approach is unique to analyses with repeated measures in individual participants using GEE and achieves a favorable fit and correlation structure [68]. It must be noted that this approach is based on the model likelihood and is not value driven and, that, as is the case in our analysis, it can yield a final model that includes variables with $p > 0.05$. Despite this fact, the directionality of the odds ratios in our final multivariable model supports the associations of the selected variables with worsening sexual function problems.

Our study has several limitations. Few participants received OFS, limiting generalizability of our findings to this population that faces high risk of sexual problems [1, 69]. Additionally, our participants were predominantly White and of high SES. Some participants may have been on medications that can affect sexual function, such as selective serotonin reuptake inhibitors; however, we did not collect data on specific concomitant medications. In addition, the proportion of participants who completed each measure declined over time, and participants with complete data during the first 24 months reported slightly less fatigue and better physical function at baseline than those with missing measures, thus it is possible that missing data resulted in an underestimation of the strength of the association of these symptoms with worsening sexual function. Additionally, on the MOS-SP, respondents who are not sexually active indicate “not applicable” and this is recoded as “not a problem,” which may underestimate the prevalence of sexual function problems [1, 38]. However, only one participant responded “not applicable” to one question at baseline, so we do not think this limitation is likely to have impacted our findings. Furthermore, the MOS-SP and the Endocrine Symptom Subscale of the FACT-ES questionnaires both contain an item regarding sexual interest; however, in a sensitivity analysis excluding this item when calculating the Endocrine Symptom Subscale FACT-ES score, our findings remained robust. Finally, given that we evaluated the association of worsening symptoms by at least the MID at any time during endocrine therapy with co-occurring worsening of sexual function, we were not able to demonstrate causality.

In conclusion, in this prospective clinic-based cohort of women with early-stage HR+ breast cancer receiving endocrine therapy, we confirmed that sexual function problems are common. Worsening endocrine symptoms, worsening physical function, and prior mastectomy are associated with worsening sexual function. Routine assessment for endocrine symptoms, physical function, and sexual function problems using PROs may reduce under-detection of sexual function problems and identify patients who can benefit from interventions to alleviate sexual symptoms.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s10549-022-06750-w.

Author contributions Conceptualization: KLS, NY, and VS. Data Curation: JL. Formal Analysis: ALB. Funding Acquisition: VS. Methodology: KLS, ALB, VS, and CS. Resources: VS, JL, and CS.
Software: not applicable. Supervision: KLS and VS. Writing of the original draft: NV and KLS. Writing, reviewing, and editing of the manuscript: All authors.

Funding This work was supported by funding from the Susan G. Komen Foundation and the National Institutes of Health [P30 CA006973].

Data availability The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Declarations

Conflict of interest Karen Lisa Smith has received research support (to institution) from Pfizer. Karen Lisa Smith’s spouse has stock ownership in ABT Labs and Abbvie. Vered Stearns has received research grants (to institution) from Abbvie, Biocept, Pfizer, Puma Biotechnology, and Novartis. Vered Stearns has been on an advisory board for Novartis (10/25/21). Vered Stearns is a Data Safety Monitoring Board member for Immunomedics, Inc. and for AstraZeneca. Vered Stearns has received non-financial support from Foundation Medicine for Study Assays. Claire Snyder has research funding (to institution) from Pfizer and Genentech and has received personal consulting fees from Janssen via Health Outcomes Solutions. Elissa Thorner has received research support (to institution) from Pfizer. The following authors declare that they have no conflicts of interest related to the work presented in this manuscript: Neha Verma, Amanda Blackford, and Jennifer Lehman.

Research involving human participants and/or animals All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. We obtained approval from the Johns Hopkins (JH) Institutional Review Board (IRB) to conduct this prospective study. All participants signed written informed consent.

References

1. Ribi K, Luo W, Walley BA, Burstein HJ, Chirgwin J, Ansari RH, Salim M, van der Westhuizen A, Abdi E, Francis PA, Chia S, Harvey VJ, Giobbie-Hurder A, Fleming GF, Fagani O, Di Leo A, Collemo M, Gelber RD, Goldhirsh A, Coates AS, Regan MM, Bernhard J (2020) Treatment-induced symptoms, depression and age as predictors of sexual problems in premenopausal women with early breast cancer receiving adjuvant endocrine therapy. Breast Cancer Res Treat 181(2):347–359. https://doi.org/10.1007/s10549-020-05622-5
2. Kedde H, van de Wiel HBM, Weijmar Schultz WCM, Wijsen C (2013) Sexual dysfunction in young women with breast cancer. Support Care Cancer 21(1):271–280. https://doi.org/10.1007/s00520-012-1521-9
3. Baumgart J, Nilsson K, Evers AS, Kallak TK, Poromaa IS (2013) Sexual dysfunction in women on adjuvant endocrine therapy after breast cancer. Menopause 20(2):162–168. https://doi.org/10.1097/gme.0b013e31826560da
4. van Londen GJ, Beckjord EB, Dew MA, Cooper KL, Davidson NE, Bovbjerg DH, Donovan HS, Thurston RC, Morse JQ, Nutt S, Rechis R (2014) Associations between adjuvant endocrine therapy and onset of physical and emotional concerns among breast cancer survivors. Support Care Cancer 22(4):937–945. https://doi.org/10.1007/s00520-013-2041-y
5. Schover LR, Baum GP, Fuson LA, Brewster A, Melhem-Bertrandt A (2014) Sexual problems during the first 2 years of adjuvant treatment with aromatase inhibitors. J Sex Med 11(12):3102–3111. https://doi.org/10.1111/jsm.12684
6. Robinson PJ, Bell RJ, Chistikis MK, Ivicec SR, Davis SR (2017) Aromatase inhibitors are associated with low sexual desire causing distress and fecal incontinence in women: an observational study. J Sex Med 14(12):1566–1574. https://doi.org/10.1016/j.jsxm.2017.09.018
7. Oberguggenberger A, Martini C, Huber N, Fallowfield L, Hubalek M, Daniaux M, Sperner-Unterweger B, Holzner B, Sztankay M, Gamper E, Meraner V (2017) Self-reported sexual health: breast cancer survivors compared to women from the general population—an observational study. BMC Cancer 17(1):599–599. https://doi.org/10.1186/s12885-017-3580-2
8. Raggio GA, Butryn ML, Arigo D, Mikorski R, Palmer SC (2014) Prevalence and correlates of sexual morbidity in long-term breast cancer survivors. Psychol Health 29(6):632–650. https://doi.org/10.1080/08870446.2013.879136
9. Cella D, Fallowfield LJ (2008) Recognition and management of treatment-related side effects for breast cancer patients receiving adjuvant endocrine therapy. Breast Cancer Res Treat 107(2):167–180. https://doi.org/10.1007/s10549-007-9548-1
10. Bober SL, Varela VS (2012) Sexuality in adult cancer survivors: challenges and intervention. J Clin Oncol 30(30):3712–3719. https://doi.org/10.1200/JCO.2012.41.7915
11. Paiva CE, Rezende FF, Paiva BSR, Mauad EC, Zucca-Matthes G, Carneseca EC, Syrjänen KJ, Schover LR (2016) Associations of body mass index and physical activity with sexual dysfunction in breast cancer survivors. Arch Sex Behav 45(8):2057–2068. https://doi.org/10.1007/s10508-016-0758-7
12. Aerts L, Christiaens MR, Enzlin P, Neven P, Amant F (2014) Sexual functioning in women after mastectomy versus breast conserving therapy for early-stage breast cancer: a prospective controlled study. Breast 23(5):629–636. https://doi.org/10.1016/j.breast.2014.06.012
13. Fobair P, Stewart SL, Chang S, D’Onofrio C, Banks PJ, Bloom JR (2006) Body image and sexual problems in young women with breast cancer. Psychooncology 15(7):579–594. https://doi.org/10.1002/pon.991
14. Engel J, Kerr J, Schlesinger-Raab A, Sauer H, Hözel D (2004) Quality of life following breast-conserving therapy or mastectomy: results of a 5-year prospective study. Breast J 10(3):223–231. https://doi.org/10.1007/s10508-004-3123-x
15. Pérez M, Liu Y, Schouteman M, Aft RL, Schechtman KB, Gillanders WE, Jelfe DB (2010) Changes in sexual problems over time in women with and without early-stage breast cancer. Menopause 17(5):924–937. https://doi.org/10.1097/gme.0b013e3181d5dd26
16. Rosenberg SM, Tamimi RM, Gelber S, Ruddy KJ, Bober SL, Kerekaglow S, Borges VF, Come SE, Schapira L, Partridge AH (2014) Treatment-related amenorrhea and sexual functioning in young breast cancer survivors. Cancer 120(15):2264–2271. https://doi.org/10.1002/cncr.28378
17. Lee M, Kim YH, Jeon MJ (2015) Risk factors for negative impacts on sexual activity and function in younger breast cancer survivors. Psychooncology 24(9):1097–1103. https://doi.org/10.1002/pon.3772
18. Bréda S, Doélbeaux S, Savignoni A, Besancenot C, Thiis P, Giani A, Michaels S, Flahault C, Falcou MC, Asselain B, Copel L (2011) Prevalence and associated factors of sexual problems after early-stage breast cancer treatment: results of a French exploratory survey. Psychooncology 20(8):841–850. https://doi.org/10.1002/pon.1789
19. Rojas KE, Matthews N, Raker C, Clark MA, Onstad M, Stuckey A, Gass J (2018) Body mass index (BMI), postoperative appearance satisfaction, and sexual function in breast cancer
survivorship. J Cancer Surviv 12(1):127–133. https://doi.org/10.1007/s11764-017-0651-y
20. Avis NE, Johnson A, Canzona MR, Levine BJ (2018) Sexual functioning among early post-treatment breast cancer survivors. Support Care Cancer 26(8):2605–2613. https://doi.org/10.1007/s00520-018-4098-0
21. Burwell SR, Case LD, Kaelin C, Avis NE (2006) Sexual problems in younger women after breast cancer surgery. J Clin Oncol 24(18):2815–2821. https://doi.org/10.1200/JCO.2005.04.2499
22. Webber K, Mok K, Bennett B, Lloyd AR, Friedlander M, Juraskova I, Goldstein D, FolCan study (2011) If I am in the mood, I enjoy it: an exploration of cancer-related fatigue and sexual functioning in women with breast cancer. Oncologist 16(9):1333–1344. https://doi.org/10.1634/theoncologist.2011-0100
23. Ganz PA, Desmond KA, Belin TR, Meyerowitz BE, Rowland JH (1999) Predictors of sexual health in women after a breast cancer diagnosis. J Clin Oncol 17(8):2371–2380. https://doi.org/10.1200/JCO.1999.17.8.2371
24. Aptecar L, Fiteni F, Jarlier M, Delaine S, Guillerme V, Jacot W, D’Hondt V (2021) Prospective evaluation of sexual health in breast cancer women during the first year of adjuvant hormonal treatment using a cancer patient’s dedicated questionnaire: a glaring gap of communication between health professionals and patients. Breast Cancer Res Treat. https://doi.org/10.1007/s10549-020-06062-x
25. Carpenter JS, Johnson D, Wagner L, Andrykowski M (2002) Hot flashes and related outcomes in breast cancer survivors and matched comparison women. Oncol Nurs Forum 29(3):E16-25. https://doi.org/10.1188/02.onf.e16-25
26. Oberguggenberger A, Hubalek M, Sztankay M, Meraner V, Beer B, Oberacher H, Giesinger J, Kemmler G, Egger D, Gamper EM, Sperner-Unterweger B, Holzner B (2011) Is the toxicity of adjuvant aromatase inhibitor therapy underestimated? Complementary information from patient-reported outcomes (PROs). Breast Cancer Res Treat 128(2):553–561. https://doi.org/10.1007/s10549-011-1378-5
27. Dai Y, Cook OY, Yeganeh L, Huang C, Ding J, Johnson CE (2020) Patient-reported barriers and facilitators to seeking and accessing supportive aromatase inhibitor therapy underestimated? Complemen
tary analyses and translating results for quality of life end points in breast cancer patients: a web system for patient-reported outcomes assessment in clinical practice. Psychooncology 22(4):895–901. https://doi.org/10.1002/pon.3087
28. Snyder CF, Jensen R, Courtin SO, Wu AW, Website for Outpatient QOLARN (2009) PatientViewpoint: a website for patient-reported outcomes assessment. Qual Life Res 18(7):793–800. https://doi.org/10.1007/s11136-009-9497-8
29. Sherbourne CD (1992) Social functioning: sexual problems measured in postmenopausal cancer survivors: NCCTG N10C1 (Alliance). Support Care Cancer 26(2):643–650. https://doi.org/10.1007/s00520-017-3878-2
30. Bailey P, Chang DK, Nones K, Johns AL, Patch AM, Gingras MC, Miller DK, Christ AN, Bruxner TJ, Quinn MC, Nourse C, Murtaugh LC, Harliwong I, Idrisoglu S, Manning S, Nourbakhsh E, Wani S, Fink L, Holmes O, Chiv V, Anderson MJ, Kazakoff S, Leonard C, Newell F, Waddell N, Wood S, Xu Q, Wilson PJ, Closed N, Kassahn KS, Taylor D, Quek K, Robertson A, Pantano L, Mincarelli L, Sanchez LN, Evers L, Wu J, Pines M, Cowley MJ, Jones MD, Colvin EK, Nagrial AM, Humphrey ES, Chantrell LA, Mawson A, Humphris J, Daoj M, Scarlett CJ, Pinho AV, Giry-Laterrer M, Rooman I, Samra JS, Kenj GH, Lovell JA, Merrett ND, Toon CW, Epari K, Nguyen NQ, Barbour A, Zeps N, Morgan-Jones K, Jamieson NB, Graham J, Duthie F, Oien K, Hair J, Gutzmann R, Maira T, Iacobuzio-Donahue CA, Wolfgang CL, Morgan RA, Lawlor RT, Corbo V, Bassi C, Rusev B, Capelli P, Salvia R, Tortora G, Muhkaphadbya D, Petersen GM, Australian Pancreatic Cancer Genome I, Munzy DM, Fisher WE, Karim SA, Eshleman JR, Hruban RH, Pilarsky C, Morton JP, Sansom OJ, Scarpa A, Miusgrove EA, Bailey YM, Hofmann O, Sutherland RL, Wheeler DA, Gill AJ, Gibbs RA, Pearson JV, Waddell N, Biankin AV, Grimmond SM (2016) Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 531(7592):47–52. https://doi.org/10.1038/nature16965
31. Snyder CF, Blackford AL, Wolff AC, Carducci MA, Herman JM, Wu AW, Patient Viewpoint Scientific Advisory B (2013) Feasibility and value of patient viewpoint: a web system for patient-reported outcomes assessment in clinical practice. Psychooncology 22(4):895–901. doi.org/10.1002/pon.3087
32. Snyder CF, Jensen R, Courtin SO, Wu AW, Website for Outpatient QOLARN (2009) PatientViewpoint: a website for patient-reported outcomes assessment. Qual Life Res 18(7):793–800. https://doi.org/10.1007/s11136-009-9497-8
33. Yang EJ, Lim JY, Rah UW, Kim YB (2012) Effect of a pelvic floor muscle training program on gynecologic cancer survivors with pelvic floor dysfunction: a randomized controlled trial. Gynecol Oncol 125(3):705–711. https://doi.org/10.1016/j.ygyno.2012.03.045
34. Barton DL, Sloan JA, Shuster LT, Gill P, Griffin P, Flynn K, Ter
triep SA, Rana FN, Dockter T, Atherton PJ, Tsai M, Sturtz K, Lakhy JM, Riepl M, Thielien J, Loprinzi CL (2018) Evaluating the efficacy of vaginal dehydroepiandrosterone for vaginal symptoms in postmenopausal cancer survivors: NCCTG N10C1 (Alliance). Support Care Cancer 26(2):643–650. https://doi.org/10.1007/s00520-017-3878-2
35. Bailey P, Chang DK, Nones K, Johns AL, Patch AM, Gingras MC, Miller DK, Christ AN, Bruxner TJ, Quinn MC, Nourse C, Murtaugh LC, Harliwong I, Idrisoglu S, Manning S, Nourbakhsh E, Wani S, Fink L, Holmes O, Chiv V, Anderson MJ, Kazakoff S, Leonard C, Newell F, Waddell N, Wood S, Xu Q, Wilson PJ, Closed N, Kassahn KS, Taylor D, Quek K, Robertson A, Pantano L, Mincarelli L, Sanchez LN, Evers L, Wu J, Pines M, Cowley MJ, Jones MD, Colvin EK, Nagrial AM, Humphrey ES, Chantrell LA, Mawson A, Humphris J, Daoj M, Scarlett CJ, Pinho AV, Giry-Laterrer M, Rooman I, Samra JS, Kenj GH, Lovell JA, Merrett ND, Toon CW, Epari K, Nguyen NQ, Barbour A, Zeps N, Moran-Jones K, Jamieson NB, Graham J, Duthie F, Oien K, Hair J, Gutzmann R, Maira T, Iacobuzio-Donahue CA, Wolfgang CL, Morgan RA, Lawlor RT, Corbo V, Bassi C, Rusev B, Capelli P, Salvia R, Tortora G, Muhkaphadbya D, Petersen GM, Australian Pancreatic Cancer Genome I, Munzy DM, Fisher WE, Karim SA, Eshleman JR, Hruban RH, Pilarsky C, Morton JP, Sansom OJ, Scarpa A, Miusgrove EA, Bailey YM, Hofmann O, Sutherland RL, Wheeler DA, Gill AJ, Gibbs RA, Pearson JV, Waddell N, Biankin AV, Grimmond SM (2016) Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 531(7592):47–52. https://doi.org/10.1038/nature16965
outcomes measurement information system symptom and functional status reference values for individuals with cancer. J Clin Oncol 35(17):1913–1920. https://doi.org/10.1200/JCO.2016.71.4410

43. Schalet BD, Pilkonis PA, Yu L, Dodds N, Johnston KL, Yount S, Riley W, Cella D (2016) Clinical validity of PROMIS depression, anxiety, and anger across diverse clinical samples. J Clin Epidemiol 73:119–127. https://doi.org/10.1016/j.jclinepi.2015.08.036

44. Teresi JA, Ocepek-Welikson K, Kleinman M, Ramirez M, Kim G (2016) Measurement equivalence of the patient reported outcomes measurement information system. Psychol Test Assess Model 31(1):183–219

45. Fallowfield LJ, Leaty SK, Howell A, Benson S, Cella D (1999) Assessment of quality of life in women undergoing hormonal therapy for breast cancer: validation of an endocrine symptom subscale for the FACT-B. Breast Cancer Res Treat 55(2):189–199. https://doi.org/10.1023/a:1006263811815

46. Yost KJ, Eton DT, Garcia SF, Cella D (2011) Minimally important differences were estimated for six patient-reported outcomes measurement information system-cancer scales in advanced-stage cancer patients. J Clin Epidemiol 64(5):507–516. https://doi.org/10.1016/j.jclinepi.2011.10.018

47. Zager S, Mendu ML, Chang D, Bazick HS, Braun AB, Gibbons FK, Christopher KB (2011) Neighborhood poverty rate and mortality in patients receiving critical care in the academic medical center setting. Chest 139(6):1368–1379. https://doi.org/10.1378/chest.10-2594

48. Liang K-Y, Zeger SL (1986) Longitudinal data analysis using generalized linear models. Biometrika 73(1):13–22. https://doi.org/10.1093/biomet/73.1.13

49. Pan W (2001) Akaike’s information criterion in generalized estimating equations. Biometrics 57(1):120–125. https://doi.org/10.1111/j.0006-341X.2001.00120.x

50. R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria

51. Henry NL, Azzouz F, Desta Z, Li L, Nguyen AT, Lemler S, Hayden J, Tarpinian K, Yakim E, Flockhart DA, Stearns V, Hayes DF, Storniolo AM (2012) Predictors of aromatase inhibitor discontinuation as a result of treatment-emergent symptoms in early-stage breast cancer. J Clin Oncol 30(9):936–942. https://doi.org/10.1200/JCO.2011.38.0261

52. Smith SG, Sestak I, Howell A, Forbes J, Cuzick J (2017) Participant-reported symptoms and their effect on long-term adherence in the international breast cancer intervention study I (IBIS I). J Clin Oncol 35(23):2666–2673. https://doi.org/10.1200/JCO.2016.71.7439

53. Sestak I, Smith SG, Howell A, Forbes JF, Cuzick J (2018) Early participant-reported symptoms as predictors of adherence to anastrozole in the international breast cancer intervention studies II. Ann Oncol 29(2):504–509. https://doi.org/10.1093/annonc/mdx713

54. Chang HY, Jotwani AC, Lai YH, Jensen MP, Syrjala KL, Fann JR, Gralow J (2016) Hot flashes in breast cancer survivors: frequency, severity and impact. Breast 27:116–121. https://doi.org/10.1016/j.breast.2016.02.013

55. Lowery-Allison AE, Passik SD, Cribbet MR, Reinsel RA, O’Sullivan B, Norton L, Kirsh KL, Kavey NB (2018) Sleep problems in breast cancer survivors 1–10 years posttreatment. Palliat Support Care 16(3):325–334. https://doi.org/10.1080/14789515.2018.14789515

56. Smedsland SK, Vandras SK, Bohn SK, Dahl AA, Kiserud CE, Brekke M, Falk RS, Reinertsen KV (2022) Sexual activity and functioning in long-term breast cancer survivors; exploring associated factors in a nationwide survey. Breast Cancer Res Treat 193(1):139–149. https://doi.org/10.1007/s10549-022-06544-0

57. Cella D, Riley W, Stone A, Rothrock N, Reeve B, Yount S, Amtmann D, Bode R, Buyssse D, Choi S, Cook K, Devellis R, DeWalt D, Fries JF, Gershon R, Hahn EA, Lai JS, Pilkonis P, Revicki D, Rose M, Weinfurt K, Hays R (2010) The patient-reported outcomes measurement information system (PROMIS) developed and tested its first wave of adult self-reported health outcome item banks: 2005–2008. J Clin Epidemiol 63(11):1179–1194. https://doi.org/10.1016/j.jclinepi.2010.04.011

58. Jensen RE, Potosky AL, Reeve BB, Hahn E, Cella D, Fries J, Smith AW, Keegan TH, Wu X, Paddock L, Moinpour CM (2015) Validation of the PROMIS physical function measures in a diverse US population-based cohort of cancer patients. Qual Life Res 24(10):2333–2344. https://doi.org/10.1007/s11136-015-0992-9

59. Sittlinger A, Shelby RA, Van Denbug AN, White H, Edmond SN, Marcom PK, Bosworth HB, Keefe JE, Kimmick GG (2019) Higher symptom burden is associated with lower function in women taking adjuvant endocrine therapy for breast cancer. J Geriatr Oncol 10(2):317–321. https://doi.org/10.1016/j.jgo.2018.11.008

60. Rodriguez JA, Hobart SJ, Deshmukh AJ, Menken LG, Ranawat AS, Rathod PA (2021) Improved sexual function after total hip and knee arthroplasty for osteoarthritis. Orthopedics 44(2):111–116. https://doi.org/10.3928/01477447-20201014-01

61. Blair CK, Robien K, Inoue-Choi M, Rahn W, Lazovich D (2016) Physical inactivity and risk of poor quality of life among elderly cancer survivors compared to women without cancer: the Iowa women’s health study. J Cancer Surviv 10(1):103–112. https://doi.org/10.1007/s11766-015-0456-9

62. Markopoulos C, Tzourouka AK, Kouskos E, Mantas D, Antonopoulou Z, Karvelis S (2009) Impact of breast cancer surgery on the self-esteem and sexual life of female patients. J Int Med Res 37(1):182–188. https://doi.org/10.1177/030006050907000122

63. Link-Gelles R, Westreich D, Aiello AE, Shang N, Weber DJ, Holtzman C, Scherzinger K, Reingold A, Schaffner W, Harrison LH, Rosen JB, Petit S, Farley M, Thomas A, Eason J, Wigen C, Barnes M, Thomas O, Zansky S, Beall B, Whitney CG, Moore MR (2016) Bias with respect to socioeconomic status: a closer look at zip code matching in a pneumococcal vaccine effectiveness study. SS–Popul Health 2:587–594. https://doi.org/10.1016/j.ssmhealth.2016.08.005

64. Dyer K, das Nair R (2013) Why don’t healthcare professionals talk about sex? A systematic review of recent qualitative studies conducted in the United Kingdom. J Sex Med 10(11):2658–2670. https://doi.org/10.1111/j.1743-6109.2012.02856.x

65. Snyder CF, Jensen RE, Segal JB, Wu AW (2013) Patient-reported outcomes (PROs): putting the patient perspective in patient-centered outcomes research. Med Care 51(8 Suppl 3):S73-79. https://doi.org/10.1097/MLR.0b013e318289b1d84

66. Barbera L, Sutradhar R, Earle CC, Howell D, Mittman N, Li Q, Thiruchelvam D, Seow H (2020) The impact of routine Edmonton symptom assessment system use on receiving palliative care services: results of a population-based retrospective-matched cohort analysis. BMJ Support Palliat Care. https://doi.org/10.1136/bmjspcare-2020-002200

67. Graupner C, Kimman ML, Mul S, Slot AHM, Claessens D, Kleijnen J, Dirksen CD, Breukink SK (2021) Patient outcomes, patient experiences and process indicators associated with the routine use of patient-reported outcome measures (PROMs) in cancer care: a systematic review. Support Care Cancer 29(2):573–593. https://doi.org/10.1007/s00520-020-05695-4

68. Cui J, Qian G (2007) Selection of working correlation structure and best model in GEE analyses of longitudinal data. Commun Stat Simul Comput. https://doi.org/10.1080/03610910701539617

69. Ribi K, Luo W, Bernhard W, Francis PA, Burstein HJ, Ciruelos E, Bellet M, Pavesi L, Lluch A, Visini M, Parmar V, Tondini C, Kerbrat P, Perello A, Neven P, Torres R, Lombardi D, Pugliasi F,
Karlsson P, Ruhstaller T, Colleoni M, Coates AS, Goldhirsch A, Price KN, Gelber RD, Regan MM, Fleming GF (2016) Adjuvant tamoxifen plus ovarian function suppression versus tamoxifen alone in premenopausal women with early breast cancer: patient-reported outcomes in the suppression of ovarian function trial. J Clin Oncol 34(14):1601–1610. https://doi.org/10.1200/JCO.2015.64.8675

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.