CCAAT/Enhancer Binding Protein β Is Dispensable for Development of Lung Adenocarcinoma

Citation
Cai, Y., A. Hirata, S. Nakayama, P. A. VanderLaan, E. Levantini, M. Yamamoto, H. Hirai, et al. 2015. “CCAAT/Enhancer Binding Protein β Is Dispensable for Development of Lung Adenocarcinoma.” PLoS ONE 10 (3): e0120647. doi:10.1371/journal.pone.0120647. http://dx.doi.org/10.1371/journal.pone.0120647.

Published Version
doi:10.1371/journal.pone.0120647

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:14351287

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story.

Accessibility
CCAAT/Enhancer Binding Protein β Is Dispensable for Development of Lung Adenocarcinoma

Yi Cai1*, Ayako Hirata1,4, Sohei Nakayama1, Paul A. VanderLaan2, Elena Levantini1,3, Mihoko Yamamoto1, Hideyo Hirai5, Kwok-Kin Wong6, Daniel B. Costa1, Hideo Watanabe5,6*, Susumu S. Kobayashi1,7*

1 Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America, 2 Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America, 3 Institute of Biomedical Technologies, National Research Council (CNR), Pisa, Italy, 4 Department of Transfusion Medicine & Cell Therapy, Kyoto University Hospital, Kyoto, Japan, 5 Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America, 6 Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America, 7 Harvard Stem Cell Institute, Cambridge, Massachusetts, United States of America

* These authors contributed equally to this work.
† HY and SSK are joint senior authors on this work.
* hideo_watanabe@dfci.harvard.edu (HW); skobayas@bidmc.harvard.edu (SSK)

Abstract

Lung cancer is the leading cause of cancer death worldwide. Although disruption of normal proliferation and differentiation is a vital component of tumorigenesis, the mechanisms of this process in lung cancer are still unclear. A transcription factor, C/EBPβ is a critical regulator of proliferation and/or differentiation in multiple tissues. In lung, C/EBPβ is expressed in alveolar pneumocytes and bronchial epithelial cells; however, its roles on normal lung homeostasis and lung cancer development have not been well described. Here we investigated whether C/EBPβ is required for normal lung development and whether its aberrant expression and/or activity contribute to lung tumorigenesis. We showed that C/EBPβ was expressed in both human normal pneumocytes and lung adenocarcinoma cell lines. We found that overall lung architecture was maintained in Cebpb knockout mice. Neither overexpression of nuclear C/EBPβ nor suppression of CEBPB expression had significant effects on cell proliferation. C/EBPβ expression and activity remained unchanged upon EGF stimulation. Furthermore, deletion of Cebpb had no impact on lung tumor burden in a lung specific, conditional mutant EGFR lung cancer mouse model. Analyses of data from The Cancer Genome Atlas (TCGA) revealed that expression, promoter methylation, or copy number of CEBPB was not significantly altered in human lung adenocarcinoma. Taken together, our data suggest that C/EBPβ is dispensable for development of lung adenocarcinoma.
Introduction

Lung cancer is one of the major cancers with more than 220,000 new cases annually in the United States [1]. Lung cancer is histologically classified into two categories: small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC). NSCLC is further classified into three major categories: squamous-cell carcinoma (approximately 30% of all lung cancers), large-cell carcinoma (10–15%) and adenocarcinoma (30–40%) [2]. Although tobacco smoking is considered the dominant cause of lung cancer, in particular SCLC and squamous-cell carcinoma, approximately 10% of lung cancers occur in never smokers [3]. At a molecular level, somatic mutations that inactivate tumor suppressors (e.g., p53) or constitutively activate signaling molecules (e.g., Kras and epidermal growth factor receptor [EGFR]) have been identified during the last three decades. Additional factors include epigenetic changes and altered expression of microRNA [4, 5]. These oncogenic events lead to changes in transcription patterns, resulting in a block in differentiation, suppression of apoptosis, and uncontrolled proliferation [6].

Given that normal lung development is tightly and precisely controlled by complex transcriptional networks, it has been postulated that deregulation of crucial transcription factors can lead to tumorigenesis [7]. Recently, we and others have shown that C/EBPα, a transcription factor essential for proper lung development, is required for differentiation from alveolar type II (AT-II) to alveolar type I (AT-I) cells and that lack of C/EBPα promotes lung adenocarcinoma development [8, 9]. As re-expression of C/EBPα leads to proliferation arrest, differentiation, and increased apoptosis accompanied by morphological changes, it suggests that loss of C/EBPα may contribute to lung cancer development in humans [10, 11]. However, roles of other members of C/EBP family on lung development and tumorigenesis have not been well characterized.

C/EBPβ is a critical regulator of proliferation and/or differentiation in multiple cells/tissues, including myeloid cells, liver, adipose tissues, the immune system, mammary gland and uterus [12–18]. C/EBPβ is known to have three isoforms, which are products of a single mRNA by a leaky ribosomal scanning mechanism [19]. In humans, the full protein and liver-enriched activator protein (LAP) act as activators, whereas liver-enriched inhibitory protein (LIP), the N-terminal truncated form LIP can attenuate the transcriptional activity as it lacks part of the transactivation domain [20]. Therefore, the ratio of their isoforms can determine transcriptional activity [20].

In rodents, C/EBPβ is expressed in alveolar epithelial cell [21] and the bronchiolar epithelium [22]. It has been shown that mice lacking C/EBPβ show no abnormalities in lung function or morphology at perinatal stage [23, 24]; however, its role on adult lung homeostasis or lung cancer development has not been well characterized. Here we sought to determine whether C/EBPβ plays an important role on lung maintenance at adult stage and whether aberrant expression/activity of C/EBPβ contributes to lung cancer development, specifically in a lung adenocarcinoma model.

Materials and Methods

Cell lines and culture

All cell lines used in this study (293T, A427, A549, NCI-H125, NCI-H358, NCI-H460, NCI-H1299, NCI-H1355, NCI-H1650, NCI-H1755, NCI-H1975, NCI-H3255, HCC827, PC9, and BEAS-2B cells) were purchased from the American Type Culture Collection. To examine the expression of C/EBPβ upon EGF exposure, A549 and NCI-H1975 were plated at 1x10^5 cells per mL in 6-well plates and allowed to grow overnight, and then cells were treated with 100 ng/mL EGF in the presence or absence of either 1 μM erlotinib or 1 μM afatinib for 24 hours. For
the generation of the cell lines with conditional C/EBPβ expression, NCI-H358 cells were transfected with pBabePuro vector or pBabePuro C/EBPβ-ER and puromycin resistant clones were selected as previously described [25]. Cells were maintained in phenol red free RPMI1650 supplemented with 10% charcoal-dextran–stripped fetal bovine serum. The presence of the fusion protein C/EBPβ-ER was screened by western blot analysis using C/EBPβ antibody (C-19: sc-150). To generate cells transduced with shRNA-mediated suppression of CEBPB, NCI-H358 and NCI-H1975 cells were retrovirally infected with shRNA constructs against CEBPB (pNa-ntxC/EBPβ) or luciferase gene (control) and sorted for GFP positive cells as previously described [26].

Mice
The protocol was approved by the Institutional Animal Care and Use Committee at Beth Israel Deaconess Medical Center (Protocol Number: 022-2012). EGFR-L858R-T790M (EGFR^T)/CCSP-rTA bi-transgenic mice and C/EBPβ knockout mice were previously reported [27, 28]. EGFR^T and CCSP-rTA genotyping were performed as described previously [27]. C/EBPβ knockout mice were genotyped by using following primers: Forward primer; 5’ GGCTGCTGGTACAAAG 3’, Reverse primer 1; 5’ GGCTGCTGGTACAAAG 3’, Reverse primer 2; 5’ CATCAGAGCAGCGAATTGTC 3’. PCR reactions were done as follows: 94°C denaturation for 5 min, followed by 35 cycles of 94°C for 40 sec, 58°C for 40 sec, 72°C for 40 sec, followed by a 10 min extension at 72°C. Wildtype and knockout alleles generate 221 bp and 396 bp, respectively. To induce EGFR^T expression, mice were fed with a doxycycline diet (Harlan Laboratories) up to 12 weeks. Lungs were isolated from treated mice which were euthanized by CO₂. Maximum tumor volume did not exceed 1,000 mm³. A total of 39 mice were used in this study.

Cell lysate preparation and Western blotting
Cell lysates were prepared as previously described [29, 30]. Briefly, cells were washed with PBS and centrifuged at 1500 rpm for 5 minutes. Cell pellets were resuspended in 30–60 μL cell lysis buffer (20 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton, 1 mM β-glycerophosphate, 1 mM Na₃VO₄, 1 mM NaF, Protease inhibitor cocktail set III (EMD Millipore), and 1 mM phenylmethanesulfonyl fluoride). Lysates were cleared by centrifugation (14,000 rpm for 15 minutes in a pre-cooled centrifuge) and boiled with SDS sample buffer for 3 minutes. Protein lysates (20–40 μg) were subjected to SDS polyacrylamide gel electrophoresis and blotted on to PVDF membranes (Millipore). We purchased C/EBPβ antibody (C-19) from Santa Cruz Biotechnology (sc-150) and β-actin antibody from Sigma-Aldrich (A3854). Quantitative analysis of relative protein was performed using ImageQuant software (GE Healthcare).

Immunohistochemical analysis
Lungs isolated from mice were fixed in 10% neutral buffered formalin, embedded in paraffin, sectioned, and stained with H&E. Immunohistochemical staining was performed on formalin-fixed paraffin sections after antigen retrieval, with the antibodies against TTF-1 (Abcam: ab40880) followed by incubations with biotinylated secondary antibody (Jackson ImmunoResearch), avidin-biotin complex (Vector Laboratories), and 3, 3’-diaminobenzidine (Sigma-Aldrich).

Immunofluorescence analysis
NCI-H358 cells expressing pBabePuro vector or pBabePuro C/EBPβ-ER were treated with 1 μM β-estradiol or 0.1% ethanol (vehicle) for 24 hours and stained with anti ERα antibody
Luciferase reporter gene assay

To measure C/EBPβ transactivation, A549 cells and NCI-H1975 cells were plated at 1x10^5/mL in 24-well plate and incubated overnight. The following day, cells were transiently transfected with 500 ng C/ebpβ-luc reporter (a gift from Dr. Daniel Tenen) [25] and 10 ng pCMV-Renilla plasmid using 1.0 μL TransIT-X2 reagent (Mirus Bio LLC) according to the instructions. The medium was replaced by fresh medium containing 100 ng/mL EGF (Peprotech) or PBS after 6 hours of incubation. The cells harvested with 100 μL Passive Lysis Buffer after 24 hours of treatment with EGF (or PBS) were subjected to reporter assays using the Dual-Luciferase Assay reporter system (Promega). Luciferase activities were normalized against Renilla luciferase activity, and the relative luciferase activity was calculated against PBS control.

Cell Growth Assay

Cell growth was assessed by CellTiter 96 AQueous One solution proliferation kit (Promega) according to manufacturer’s instruction. Briefly, cells were plated in 96 well plates at 2,000 cells/100 μl/well and incubated in 5% CO2 for 72 hours. Twenty μl/well of CellTiter 96 AQueous One solution was added and incubated in 5% CO2 for 1–4 hours. The absorbance at 490 nm was measured with the Victor 3 microplate reader (PerkinElmer).

Expression data analyses

Expression datasets from normal human tissues were obtained through Genotype-Tissue Expression (GTEx) project (https://www.gtexportal.org/home) and the distribution of CEBPB expression for each tissue type was depicted with a box plot and ranked ordered by average expression. Normalized expression datasets as RSEM (RNA-seq.V2) from primary lung adenocarcinoma samples obtained through the Cancer Genome Atlas (TCGA) project (https://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp) were log2 (+1) transformed and the distribution of CEBPB, CEBPA, or CDKN2A expression was plotted as well as depicted as box plot. Correlation of CEBPB expression with its methylation data (HM450) and its copy number data (SNP 6.0) from TCGA data were obtained and analyzed through cBioPortal (http://www.cbioportal.org/public-portal).

Statistical analysis

Differences between the experimental groups were tested with Student’s t-test. P-values of less than 0.05 were considered statistically significant.

Results

C/EBPβ is expressed in normal lung and adenocarcinoma cell lines

C/EBPβ regulates cellular proliferation and differentiation under normal physiological conditions. Thus, to confirm C/EBPβ is expressed in human lungs as well as rodent lungs [21, 22], we examined its expression level from various human organ systems from GTEx datasets. We found that CEBPB is expressed in human lung at a lower level than hematopoietic system but a level comparable to or higher than that in any other tissues examined (Fig. 1A). At a protein level, we also found that C/EBPβ expression was readily detected in BEAS-2B immortalized human bronchial epithelial cells [31] and a panel of human adenocarcinoma cell lines at
variable but equivalent level (Fig. 1B). These results indicate that C/EBPβ is expressed in both benign and malignant cells of the lung.

C/EBPβ knockout mice have normal lung appearance and structure

Cebpb knockout mice have been reported to manifest no histological abnormalities in the lung at perinatal stage [23, 24]. Therefore, we sought to determine whether C/EBPβ is required for development and maintenance of lung at later adult stage. Lungs were isolated from Cebpb knockout and control mice up to 10 weeks of age. We confirmed C/EBPβ was not expressed in the lungs of Cebpb knockout mice (Fig. 2A), but gross appearance of the lungs was indistinguishable from those of Cebpb wild type mice (data not shown). Histological analysis revealed
scattered parenchymal lymphoid aggregates in 7 out of 8 (87.5%) lungs isolated from Cebpb knockout mice, while no such aggregates were observed in ones from wild type siblings (0/10; 0%). However, no major difference in lung parenchymal architecture was apparent between C/EBPβ knockout and wild type mice (Fig. 2B).

C/EBPβ had no advantageous effects on cell growth in lung adenocarcinoma cells

Expression of C/EBPβ in lung adenocarcinoma cell lines (Fig. 1B) and its reported proliferative role in epithelial cancer development [32] prompted us to hypothesize that C/EBPβ may be important for lung cancer progression. To examine proliferative effects of C/EBPβ, we generated stable NCI-H358 cell lines expressing an estrogen receptor hormone-binding domain fused to C/EBPβ (C/EBPβ-ER) or expressing the estrogen receptor hormone-binding domain alone [25, 26]. Upon stimulation with β-estradiol, C/EBPβ-ER is translocated to the nucleus (Fig. 3A) and activated (Fig. 3B). Unexpectedly, nuclear translocation of C/EBPβ-ER to the nucleus led to suppression of cell proliferation in NCI-H358 cells (Fig. 3C). Next, to examine requirement of C/EBPβ expression in lung adenocarcinoma cells, we transduced NCI-H358 cells with retrovirus containing shRNA constructs against C/EBPβ and isolated three clones. Despite greater than 90% reduction in C/EBPβ expression achieved in all clones (Fig. 3D), we observed no significant difference in cell proliferation upon C/EBPβ suppression in NCI-H358 cells (Fig. 3E). Similar results were obtained in NCI-H1975 cells (data not shown). These results suggest that C/EBPβ is not essential for and does not promote lung cancer cell growth.

C/EBPβ activity is not mediated by EGFR signaling in lung cancer cells

In breast cancer, EGF stimulation has been shown to reduce C/EBPβ activity by increasing LIP [33]. Therefore, we asked whether C/EBPβ activity can be regulated by the EGFR signaling
Role of C/EBPβ on Lung Adenocarcinoma Development

Fig 3. C/EBPβ fails to contribute to cell proliferation in vitro. (A) Fluorescent images of NCI-H358 cells stably expressing C/EBPβ-ER. Cells were treated with 1 μM β-estradiol or 0.1% ethanol (vehicle) for 24 hours and stained with anti ER antibody and visualized by Alexa Fluor 488. Scale Bar = 10 μm. (B) Luciferase assay to determine C/EBPβ transcriptional activity in NCI-H358 cells stably expressing C/EBPβ-ER and control cells. Cells were transfected with C/ebpb0.3-luc reporter and pCMV-Renilla control plasmid were assayed after 24 hours of treatment with 1 μM β-estradiol or vehicle control. Data represents mean ± standard deviation from three independent experiments. ** denotes p < 0.01. (C) Cell viability determined by MTS assay. NCI-H358 cells expressing C/EBPβ-ER cells or control cells were plated in 96 well plates at 2,000 cells/well and assayed after 72 hours of incubation. Data represents mean ± standard deviation from eight independent experiments. * denotes p < 0.05. (D) Immunoblots of C/EBPβ in NCI-H358 cells transduced with shRNA against CEBPB. Three clones each for control and shRNA against CEBPB are shown. (E) Cell viability determined by MTS assay. NCI-H358 cells transduced with shRNA against CEBPB or control shRNA described in (D) were plated in 96 well plates at 2,000 cells/well and assayed after 72 hours of incubation. Data represents mean ± standard deviation from three independent experiments. N.S. denotes not significant.

doi:10.1371/journal.pone.0120647.g003
pathway in the lung cancer cells. To this end, we examined two cell lines, NCI-H1975 and A549 cells, which harbor the \textit{EGFR L858R+T790M} and \textit{KRAS G12S} mutations, respectively. When these cells were treated with EGF in the presence or absence of EGFR kinase inhibitors (erlotinib or afatinib), no apparent changes in expression of C/\textit{EBP}\textsubscript{β} LIP isoform were detected (Fig. 4A). Consistent with these results, EGF stimulation led to no significant change in C/\textit{EBP}\textsubscript{β} activity determined by luciferase assay in these two cell lines (Fig. 4B). Therefore, it appears unlikely that EGFR signaling mediates C/\textit{EBP}\textsubscript{β} activity in lung cancer cells.

C/\textit{EBP}\textsubscript{β} is dispensable for lung tumorigenesis in the EGFR mutant-driven murine lung cancer model

Our results from lung cancer cell lines suggest that C/\textit{EBP}\textsubscript{β} in tumor cells may not drive cell growth. However, these results should be confirmed in vivo. In addition, it is possible that C/\textit{EBP}\textsubscript{β} play an important role to maintain tumor microenvironment. Therefore, we generated the inducible \textit{EGFR T790M-L858R} transgenic mouse model in \textit{Cebpb} knockout background. We crossed two established mouse models, the lung specific \textit{EGFR-L858R-T790M (EGFRTL)/CCSP-rtTA} bi-transgenic mice [27] and the C/\textit{EBP}\textsubscript{β} conventional knockout mice (\textit{Cebpb}-/-) (Fig. 5A and 5B) [28]. Consistent with our previous report [27], TTF-1 positive lung adenocarcinomas developed in \textit{EGFRTL/CCSP-rtTA/Cebpb+/+} mice (Fig. 5C; I and II) as well as in \textit{EGFRTL/CCSP-rtTA/Cebpb+/-} mice (Fig. 5C; III and IV) when treated with doxycycline for 10 weeks. By histological analysis, the lung adenocarcinomas in \textit{EGFRTL/CCSP-rtTA/Cebpb+/-} mice tended to demonstrate a more central bronchial papillary growth pattern (Fig. 5C; III), whereas the adenocarcinomas in \textit{EGFRTL/CCSP-rtTA/Cebpb+/-} mice tended to have a more peripheral distribution with solid and bronchoalveolar growth features (Fig. 5C; I). However, no significant differences were noted regarding overall tumor burden as reflected by gross lung weights (Fig. 5D). These data suggest that C/\textit{EBP}\textsubscript{β} is dispensable for lung tumorigenesis in EGFR-driven murine lung cancer.
Fig 5. Deletion of Cebpb does not affect tumor burden in vivo. (A) Scheme of the strategy generating lung specific inducible EGFR-TL transgenic mice with Cebpb knockout background. (B) Genotype of EGFRTL/CCSP-rtTA/Cebpb++, CCSP-rtTA/Cebpb+/− and EGFRTL/CCSP-rtTA/Cebpb−− mice. (C) Representative images of H&E staining and immunohistochemistry of lungs isolated from EGFRTL/CCSP-rtTA/Cebpb++ (I and II) or EGFRTL/CCSP-rtTA/ Cebpb−− (III and IV). Lung sections were stained with H&E (I and III) and anti-TTF1 (II and IV) antibodies. “A” indicates an area with bronchioalveolar growth pattern and “P” indicates an area with bronchial papillary growth pattern. (D) Lung weight isolated from mice treated with doxycycline for 8–12 weeks. We analyzed 5 CCSP-rtTA/Cebpb++, 5 EGFRTL/CCSP-rtTA/Cebpb+++, and 11 EGFRTL/CCSP-rtTA/Cebpb−− mice. Data represent mean ± standard deviation. ** denotes p < 0.01. N.S. denotes not significant.

doi:10.1371/journal.pone.0120647.g005
C/EBPβ is neither overexpressed nor downregulated in human lung adenocarcinoma

Lastly, we sought to determine whether C/EBPβ expression is altered in human lung adenocarcinoma using data from The Cancer Genome Atlas (TCGA). We confirmed that two tumor suppressors, CEBPA and CDKN2A, were downregulated in a subset of human lung adenocarcinomas as previously described [34, 35]. Compared to these two genes, expression of CEBPB was maintained in these tumor samples (Fig. 6A). Next, we examined the methylation status of the CEBPA and CEBPB promoters. The CEBPB promoters were unmethylated in all lung adenocarcinoma samples with available methylation data (n = 185), whereas the CEBPA promoter regions were frequently aberrantly methylated, consistent with previous results [36] (Fig. 6B). By examining the matched copy number data, we found that the CEBPA and CEBPB loci were not subject to frequent deletion (Fig. 6C). Taken together, these data suggest that expression of C/EBPβ is not altered in human lung adenocarcinoma.

Discussion

C/EBP proteins consist of a group of basic-leucine zipper (bZIP) transcription factors which are involved in the regulation of important functions such as proliferation and differentiation, survival and apoptosis, oncogene-induced senescence and tumorigenesis, inflammation, immunity, and metabolism [37]. In this study, we investigated the role of C/EBPβ on lung adenocarcinomagenesis.

C/EBPα and C/EBPβ reportedly play partly overlapping roles in some tissues. Knock-in mice where the C/EBPα gene function is replaced by that of C/EBPβ partly rescues the hematopoietic phenotype of the C/EBPα knockout mice, providing evidence that C/EBPβ could compensate for loss of C/EBPα in hematopoiesis [38]. However, C/EBPβ seems to have more complex roles as it can act as either a promoter or an inhibitor to cell proliferation under the different cellular contexts or tissues [33]. C/EBPβ is up-regulated during macrophage differentiation [18], indicating that C/EBPβ shows anti-proliferative and differentiation-inducing function similar to C/EBPα. On the other hand, partial hepatectomy leads to increased expression of C/EBPβ, suggesting that C/EBPβ is required for hepatocyte proliferation [15]. Although both C/EBPα and C/EBPβ are expressed in pulmonary cells in rodents [21, 22] and humans (Fig. 1A), it is unlikely that C/EBPβ is involved in normal lung homeostasis as there was no striking difference in lung architecture between wild type and Cebpb knockout mouse at adult stage (Fig. 2B). However, C/EBPβ can be upregulated in the lung together with C/EBPδ when challenged with acute-phase stimuli [39]. In this regard, it is notable that scattered parenchymal lymphoid aggregates were frequently observed in lungs isolated from Cebpb knockout mice (Fig. 2B: IV) possibly due to upregulation of IL-6 in Cebpb knockout mice [28]. As infiltrated lymphocytes may regulate neutrophil recruitment during acute lung injury [40], it is possible that C/EBPβ may play a role to resolve acute inflammation by suppressing accumulation of lymphoid cells. These questions remain to be addressed.

Based on our observation that C/EBPβ was expressed in lung adenocarcinoma cell lines (Fig. 1B), we hypothesized that C/EBPβ may contribute to lung cancer development. Although C/EBPβ has been established as a cell cycle inhibitor/tumor suppressor [41], several lines of evidence suggest that the role of C/EBPβ in tumorigenesis seems to be tissue-specific. All-trans retinoic acid induces differentiation of acute promyelocytic leukemia (AML) cells via C/EBPβ expression [25]. Overexpression of C/EBPβ in HepG2 hepatocellular carcinoma cells strongly inhibits tumor cell proliferation. On the other hand, C/EBPβ is highly expressed and was associated with tumor progression in colorectal and ovarian cancers [42, 43]. Furthermore, deletion of Cebpβ in keratinocytes protects carcinogen-induced skin tumorigenesis [32]. In the current
study, neither overexpression of nuclear C/EBP\(\beta\) nor suppression of CEBPB expression showed evidence that supports tumor promoting or suppressive role of C/EBP\(\beta\) (Fig. 3). Furthermore, unlike in breast cancer cells [33], LIP protein and C/EBP\(\beta\) activity upon EGF stimulation were unchanged in lung adenocarcinoma cell lines (Fig. 4), indicating that C/EBP\(\beta\) may not be involved in proliferation in response to growth factor stimulation. These in vitro data was supported by our in vivo mouse model (Fig. 5) and clinical data (Fig. 6).

Fig 6. C/EBP\(\beta\) is not altered in human lung adenocarcinoma. (A) mRNA expression of CEBPA, CEBPB, and CDKN2A in TCGA lung adenocarcinoma dataset. RSEM values obtained from TCGA data were log\(_2\) transformed and depicted as individual dots representing a sample and box plot. (B) Methylation status in CEBPA and CEBPB promoter regions in TCGA lung adenocarcinoma dataset. Scatter plot depicts mRNA expression in Y-axis and methylation level of the promoter region in X-axis of CEBPA and CEBPB genes. (C) Copy number estimates of CEBPA and CEBPB gene loci in TCGA lung adenocarcinoma dataset. Scatter plot depicts mRNA expression in Y-axis and copy number estimates in log\(_2\) scale in X-axis of CEBPA and CEBPB genes.

doi:10.1371/journal.pone.0120647.g006
Notably, however, lung adenocarcinomas from EGFR+/+/CCSP-rtTA/Cebpb−/− mice show a propensity to form papillary tumors in the bronchial airways (Fig. 5C; III). Given that there are no gross or histologic differences in lung architecture or epithelial differentiation observed in Cebpb knockout lungs [24], it is plausible that environmental alternations led by disruption of Cebpb may have affected this histological phenotype. One possibility is that IL-6 may be involved in cell fate conversion efficiency. As described above, IL-6 is shown to be upregulated in Cebpb knockout mice [28] and can lead to regeneration of airway ciliated cells from basal stem cells [44]. In addition, inflammatory cytokines including IL-6 can promote de-differentiation of tumor cells into progenitor cells in hepatocellular carcinoma [45]. Therefore, alterations of cytokine expression induced by deletion of Cebpb may have influenced the observed cell types in lung adenocarcinomas.

In summary, we confirmed that overall lung architecture was maintained in Cebpb knockout mice. While C/EBPβ was expressed in human adenocarcinoma cell lines, neither overexpression of nuclear C/EBPβ nor knockdown of CEBPB had significant effect on cell proliferation. Deletion of Cebpb had no impact on lung tumor burden in a murine lung cancer model. Expression of CEBPB was not altered in human lung cancer samples. Taken together, our data indicate that C/EBPβ largely is not essential for lung homeostasis or development of lung adenocarcinoma.

Acknowledgments
We thank Dr. Daniel Tenen (Beth Israel Deaconess Medical Center, Boston) for providing DNA constructs.

Author Contributions
Conceived and designed the experiments: YC AH HW SSK. Performed the experiments: YC AH SN MY HW SSK. Analyzed the data: YC AH SN PAV EL HH KKW DBC HW SSK. Contributed reagents/materials/analysis tools: YC AH SN PAV EL HH KKW DBC HW SSK. Wrote the paper: YC PAV EL HH DBC HW SSK.

References
1. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA: a cancer journal for clinicians. 2014; 64 (1):9–29.
2. Cersosimo RJ. Lung cancer: a review. American journal of health-system pharmacy: AJHP: official journal of the American Society of Health-System Pharmacists. 2002; 59(7):611–42. PMID: 11944603
3. Dela Cruz CS, Tanoue LT, Matthay RA. Lung cancer: epidemiology, etiology, and prevention. Clinics in chest medicine. 2011; 32(4):605–44. doi: 10.1016/j.ccm.2011.09.001 PMID: 22054876
4. Hercog Z, Vaissiere T. Epigenetic mechanisms and cancer: an interface between the environment and the genome. Epigenetics: official journal of the DNA Methylation Society. 2011; 6(7):804–19. doi: 10.4161/epi.6.7.16262 PMID: 21758002
5. Liloglou T, Bediaga NG, Brown BR, Field JK, Davies MP. Epigenetic biomarkers in lung cancer. Cancer letters. 2014; 342(2):200–12. doi: 10.1016/j.canlet.2012.04.018 PMID: 22546286
6. Darnell JE Jr. Transcription factors as targets for cancer therapy. Nature reviews Cancer. 2002; 2 (10):740–9. PMID: 12360277
7. Yeh JE, Toniolo PA, Frank DA. Targeting transcription factors: promising new strategies for cancer therapy. Current opinion in oncology. 2013; 25(6):652–6. doi: 10.1097/CCO.0b013e32835e2e34 PMID: 24048019
8. Basseres DS, Levantini E, Ji H, Monti S, Elf S, Dayaram T, et al. Respiratory failure due to differentiation arrest and expansion of alveolar cells following lung-specific loss of the transcription factor C/EBPalpha in mice. Mol Cell Biol. 2006; 26(3):1109–23. PMID: 16429462
9. Martis PC, Whitsett JA, Xu Y, Peri AK, Wan H, Ikegami M. C/EBPalpha is required for lung maturation at birth. Development. 2006; 133(6):1155–64. PMID: 16467360
10. Halmos B, Huettner CS, Kocher O, Ferenczi K, Karp DD, Tenen DG. Down-regulation and antiproliferative role of C/EBPα in lung cancer. Cancer research. 2002; 62(2):528–34. PMID: 11809705

11. Costa DB, Li S, Kocher O, Feins RH, Keller SM, Schiller JH, et al. Immunohistochemical analysis of C/EBPα in non-small cell lung cancer reveals frequent down-regulation in stage II and IIIA tumors: a correlative study of E3590. Lung cancer. 2007; 56(1):97–103. PMID: 17239984

12. Wedel A, Ziegler-Heitbrock HW. The C/EBP family of transcription factors. Immunobiology. 1995; 193 (2–4):171–85. PMID: 8522359

13. Tang QQ, Otto TC, Lane MD. Mitotic clonal expansion: a synchronous process required for adipogenesis. Proceedings of the National Academy of Sciences of the United States of America. 2003; 100 (1):44–9. PMID: 12502791

14. Robinson GW, Johnson PF, Hennighausen L, Sterneck E. The C/EBPbeta transcription factor regulates epithelial cell proliferation and differentiation in the mammary gland. Genes & development. 1998; 12(12):1907–16.

15. Greenbaum LE, Li W, Cressman DE, Peng Y, Ciliberto G, Poli V, et al. CCAAT enhancer-binding protein beta is required for normal hepatocyte proliferation in mice after partial hepatectomy. The Journal of clinical investigation. 1998; 102(5):996–1007. PMID: 9727068

16. Seagroves TN, Kmacsk J, Raught B, Gay J, Burgess-Beusse B, Darlington GJ, et al. C/EBPbeta, but not C/EBPalpha, is essential for ductal morphogenesis, lobuloalveolar proliferation, and functional differentiation in the mouse mammary gland. Genes Dev. 1998; 12(12):1917–28. PMID: 9637692

17. Scott LM, Civin CI, Rorth P, Friedman AD. A novel temporal expression pattern of three C/EBP family members in differentiating myelomonocytic cells. Blood. 1992; 80(7):1725–35. PMID: 1391942

18. Natsuka S, Akira S, Nishio Y, Hashimoto S, Sugita T, Isshiki H, et al. Macrophage differentiation-specific expression of NF-IL6, a transcription factor for interleukin-6. Blood. 1992; 79(2):460–6. PMID: 1730090

19. Xiong W, Hsieh CC, Kurtz AJ, Rabek JP, Papaconstantinou J. Regulation of CCAAT/enhancer-binding protein-beta isoform synthesis by alternative translational initiation at multiple AUG start sites. Nucleic acids research. 2001; 29(14):3087–98. PMID: 11452034

20. Burgess-Beusse BL, Timchenko NA, Darlington GJ. C/EBPalpha in non-small cell lung cancer reveals frequent down-regulation in stage II and IIIA tumors: a correlative study of E3590. Lung cancer. 2007; 56(1):97–103. PMID: 17239984

21. Robinson GW, Johnson PF, Hennighausen L, Sterneck E. The C/EBPbeta transcription factor regulates epithelial cell proliferation and differentiation in the mammary gland. Genes & development. 1998; 12(12):1907–16.

22. Cassel TN, Nord M. C/EBP transcription factors in the lung epithelium. American journal of physiology Lung cellular and molecular physiology. 2003; 285(4):L773–81. PMID: 12959923

23. Tanaka T, Yoshida N, Kishimoto T, Akira S. Defective adipocyte differentiation in mice lacking the C/EBPbeta and/or C/EBPdelta gene. The EMBO journal. 1999; 16(24):7432–43. PMID: 9405372

24. Roos AB, Berg T, Barton JL, Didon L, Nord M. Airway epithelial cell differentiation during lung organogenesis requires C/EBPalpha and C/EBPbeta. Developmental dynamics: an official publication of the American Association of Anatomists. 2012; 241(5):911–23. doi: 10.1002/dvdy.23773 PMID: 22411169

25. Duprez E, Wagner K, Koch H, Tenen DG. C/EBPbeta: a major PML-RARA-responsive gene in retinoic acid-induced differentiation of APL cells. The EMBO journal. 2003; 22(21):5806–16. PMID: 14592978

26. Hirai H, Zhang P, Dayaram T, Hetherington CJ, Mizuno S, Imamishi J, et al. C/EBPbeta is required for ‘emergency’ granulopoiesis. Nature immunology. 2006; 7(7):732–9. PMID: 16751774

27. Li D, Shimamura T, Ji H, Chen L, Haringsma HJ, McNamara K, et al. Bronchial and peripheral murine lung carcinomas induced by T790M-L858R mutant EGFR respond to HKI-272 and rapamycin combination therapy. Cancer Cell. 2007; 12(1):81–93. PMID: 17613438

28. Screpanti I, Romani L, Musiani P, Modesti A, Fattori E, Lazzaro D, et al. Lung cellular and molecular physiology. 2003; 285(4):L773–81. PMID: 12959923

29. Costa DB, Halmos B, Kumar A, Schumer ST, Huberman MS, Boggon TJ, et al. BIM mediates EGFR tyrosine kinase inhibitor-induced apoptosis in lung cancers with oncogenic EGFR mutations. PLoS Med. 2007; 4(10):1669–79. discussion 90. PMID: 17973572

30. Nakayama S, Sng N, Carretero J, Weiser R, Hayashi Y, Yamamoto M, et al. beta-Catenin Contributes To Lung Tumor Development Induced by EGFR Mutations. Cancer research. 2014; 74(20):5891–902. doi: 10.1158/0008-5472.CAN-14-0184 PMID: 25164010

31. Ke Y, Reddel RR, Gerwin BI, Miyashita M, McMenamin M, Lechner JF, et al. Human bronchial epithelial cells with integrated SV40 virus T antigen genes retain the ability to undergo squamous differentiation. Differentiation. 1988; 38(1):60–6. Epub 1988/06/01. PMID: 2846394
32. Sterneck E, Zhu S, Ramirez A, Jorcano JL, Smart RC. Conditional ablation of C/EBP beta demonstrates its keratinocyte-specific requirement for cell survival and mouse skin tumorigenesis. Oncogene. 2006; 25(8):1272–6. PMID: 16205634

33. Sebastian T, Johnson PF. Stop and go: anti-proliferative and mitogenic functions of the transcription factor C/EBPbeta. Cell cycle. 2006; 5(9):953–7. PMID: 16687924

34. Costa DB, Dayaram T, D’Alo F, Wouters BJ, Tenen DG, Meyerson M, et al. C/EBP alpha mutations in lung cancer. Lung cancer. 2006; 53(2):253–4. PMID: 16765476

35. Cooper WA, Lam DC, O’Toole SA, Minna JD. Molecular biology of lung cancer. Journal of thoracic disease. 2013; 5 Suppl 5:S479–90. doi: 10.3978/j.issn.2072-1439.2013.08.03 PMID: 24163741

36. Tada Y, Brenna RM, Hackanson B, Morrison C, Otterson GA, Plass C. Epigenetic modulation of tumor suppressor CCAAT/enhancer binding protein alpha activity in lung cancer. Journal of the National Cancer Institute. 2006; 98(6):396–406. PMID: 16537832

37. Lekstrom-Himes J, Xanthopoulos KG. Biological role of the CCAAT/enhancer-binding protein family of transcription factors. The Journal of biological chemistry. 1998; 273(44):28545–8. PMID: 9786841

38. Jones LC, Lin ML, Chen SS, Krug U, Hofmann WK, Lee S, et al. Expression of C/EBPbeta from the C/ebpalpha gene locus is sufficient for normal hematopoiesis in vivo. Blood. 2002; 99(6):2032–6. PMID: 11877276

39. Alam T, An MR, Papaconstantinou J. Differential expression of three C/EBP isoforms in multiple tissues during the acute phase response. The Journal of biological chemistry. 1992; 267(8):5021–4. PMID: 1371993

40. Xing Z, Braciat T, Jordana M, Croitoru K, Graham FL, Gauldie J. Adenovirus-mediated cytokine gene transfer at tissue sites. Overexpression of IL-6 induces lymphocytic hyperplasia in the lung. Journal of immunology. 1994; 153(9):4059–69. PMID: 7930613

41. Koschmieder S, Halmos B, Levantini E, Tenen DG. Dysregulation of the C/EBPalpha differentiation pathway in human cancer. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 2009; 27(4):619–28.

42. Rask K, Thorn M, Ponten F, Kraaz W, Sundfeldt K, Hedin L, et al. Increased expression of the transcription factors CCAAT-enhancer binding protein-beta (C/EBBeta) and C/EBzeta (CHOP) correlate with invasiveness of human colorectal cancer. International journal of cancer Journal international du cancer. 2000; 86(3):337–43. PMID: 10760820

43. Sundfeldt K, Ivarsson K, Carlsson M, Enerback S, Janson PO, Brannstrom M, et al. The expression of CCAAT/enhancer binding protein (C/EBP) in the human ovary in vivo: specific increase in C/EBPbeta during epithelial tumour progression. British journal of cancer. 1999; 79(7–8):1240–8.

44. Tadokoro T, Wang Y, Barak LS, Bai Y, Randell SH, Hogan BL. IL-6/STAT3 promotes regeneration of airway ciliated cells from basal stem cells. Proceedings of the National Academy of Sciences of the United States of America. 2014; 111(35):E3641–9. doi: 10.1073/pnas.1409781111 PMID: 25136113

45. Dubois-Pot-Schneider H, Fekir K, Coulouam C, Glaise D, Aninat C, Jarnouen K, et al. Inflammatory cytokines promote the retrodifferentiation of tumor-derived hepatocyte-like cells to progenitor cells. Hepatology. 2014; 60(6):2077–90. doi: 10.1002/hep.27353 PMID: 25098666