Nucleotide excision repair is universally mutagenic and transcription-associated

Juan Carvajal-Garcia¹, Ariana N. Samadpour², Angel J. Hernandez Viera¹, Houra Merrikh#1

¹Vanderbilt University School of Medicine, Department of Biochemistry, Nashville, TN, USA
²Department of Microbiology, University of Washington, Seattle, WA, USA

#Corresponding author

Email: houra.merrikh@vanderbilt.edu
Summary

Nucleotide excision repair (NER) is a highly conserved mechanism that removes lesions from DNA. This process has been studied for decades, however, almost all of the work on NER was performed in the presence of exogenous DNA damage. Under these conditions, NER is anti-mutagenic in bacteria. Here, we describe our findings on the role of NER in mutagenesis under endogenous conditions. Counter to dogma, we find that NER is actually pro-mutagenic. Our data suggest a hand-off mechanism between two different types of DNA polymerases that explains the mutagenic nature of NER. Additionally, NER is thought to occur in two different ways; 1) in a transcription-coupled manner where it plays a role in removing lesions that block RNA polymerase, and 2) in a process known as global genome NER, which is independent of transcription. Counter to the classical view, our genetic analyses of the relationship between NER and the RNA polymerase interacting DNA translocase, and evolvability factor, Mfd, indicate that most likely all NER is associated with transcription. Lastly, we show that NER is pro-mutagenic because of endogenous oxidative damage. Altogether, our data strongly suggest that oxidative damage induces a mutagenic NER mechanism, which then accelerates evolution across divergent bacterial species.
Main text

Mutations drive evolution. They provide the necessary genetic diversity that natural selection can then use to help organisms adapt to new environments. Even though mutations are mostly deleterious, and that lower mutation rates are generally accepted to be beneficial, all organisms have a baseline mutation rate that allows them to evolve. However, which endogenous mechanisms most commonly lead to mutations and drive evolution remain poorly understood.

We recently determined that the bacterial RNA polymerase interacting protein Mfd, which is involved in a sub-pathway of the DNA repair pathway nucleotide excision repair (NER), promotes mutations and leads to rapid antibiotic resistance development across highly divergent bacteria. This function depended on Mfd’s interaction with the NER protein UvrA. These findings suggested that NER in general might be a mechanism that drives spontaneous mutagenesis in bacteria, potentially even in the absence of transcription. However, this was a hypothesis that would go against dogma. The dogmatic view of NER and its role in reducing mutagenesis was based on a series of studies that utilized artificial DNA damaging conditions. Most in vivo studies on NER to date have been performed in the presence of exogenous DNA damage such as UV light. These studies led to the conclusion that NER is an anti-mutagenic DNA repair pathway. However, whether this is true in an endogenous context, in unperturbed cells, in the absence of artificial DNA damaging conditions, has not been investigated.

Bacterial NER consists of four steps: 1) Damage recognition, 2) Strand separation, 3) Damaged strand cleavage, 4) Damaged oligonucleotide eviction and 5) Fill in synthesis and ligation. Traditionally, bacterial NER has been thought to consist of two sub pathways that differ only on the recognition step: in transcription-coupled NER (TC-NER), a stalled RNA polymerase detects the DNA lesion and involves Mfd-dependent recruitment of UvrA; in global genome (GG) NER, lesions are detected by the UvrA dimer and is Mfd independent. Downstream of damage recognition, UvrB separates the strands and guides the UvrC nuclease to cleave the damaged strand. The damage containing oligo is removed by the UvrD helicase and the pathway is fished by gap filling DNA synthesis. A recent alternative model for damage recognition during TC-NER suggests that UvrD instead of Mfd recruits the NER factors and proposes that, in bacteria, all NER is transcription coupled, although these conclusions remain somewhat controversial.

Here we show that the core NER factors UvrABC promote spontaneous mutagenesis, across highly divergent bacterial species. We also show that a replicative polymerase, and two Y-family polymerases are responsible for the observed NER-dependent increase in mutagenesis. Critically, our genetic analyses show that all three polymerases function in the same pathway as the NER proteins and Mfd. These findings strongly suggest that bacterial NER is a pro-mutagenic repair pathway that is universally coupled to transcription, and that this is due to the usage of error prone polymerases. Last, we present data that the underlying cause of this process is endogenous oxidative stress and that in general, oxidative damage drives NER mutagenesis and rapid evolution in bacteria.

NER promotes mutagenesis in bacteria
We and others have previously shown that, in the absence of exogenous DNA damage, the bacterial transcription-coupled repair (TCR) protein Mfd promotes mutagenesis across many different bacterial species2,11,12. In addition, we previously showed that this pro-mutagenic effect depends on the interaction of Mfd with the RNA polymerase (RNAP) and the NER protein UvrA2. This brings up the possibility that NER, which is thought to promote genome stability and reduce mutagenesis3,4, is pro-mutagenic in the absence of exogenous DNA damage, in the endogenous context.

We first tested this hypothesis by measuring mutation rates using the Luria-Delbruck fluctuation assays13 in wild-type Bacillus subtilis strains and isogenic strains that lack each of the NER proteins: UvrA, UvrB and UvrC. We performed these experiments in the absence of exogenous DNA damage. Strikingly, we observed a 50-75\% decrease in the mutation rates in NER deficient strains (Fig. 1A).

Figure 1: a, b) Mutation rates of Bacillus subtilis strains measured using rifampicin. n=54 (wt), 48 (ΔuvrA), 37 (ΔuvrB), 48 (ΔuvrC), 59 (Δmfd), 40 (Δmfd ΔuvrA), 40 (Δmfd ΔuvrB), 50 (Δmfd ΔuvrC) biological replicates. c) Mutation rates of Salmonella enterica serovar Typhimurium strains measured using rifampicin. n=54 (wt), 40 (ΔuvrB), 48 (Δmfd). d) Median rifampicin concentration that allows for
growth in the indicated strains at the indicated timepoints. n=23 (wt), 24 (ΔuvrA), 12 (Δmfd), 12 (ΔuvrA Δmfd). Error bars are 95% confidence intervals.

To determine whether the pro-mutagenic effects of NER were due to TCR and/or GG-NER, we built double mutants that lacked Mfd and the Uvr proteins. If NER is mutagenic due to only TCR, then we expected that the double mutants lacking Mfd and NER proteins would have an epistatic relationship, and that the mutation rates of the double mutants would be similar to the single mutants. On the other hand, if NER-mediated mutagenesis is through both GG-NER and TCR, the combination of mutants lacking both Mfd and NER proteins would further reduce mutation rates. To discern between these possibilities, we measured and compared the mutation rates of the single and double mutants side-by-side. We found that the mutation rates of strains lacking both Mfd and all three canonical NER factors have the same mutation rates as each single mutant alone (Fig. 1B). This strongly suggests that all (mutagenic) NER is coupled to transcription.

To determine whether the mutagenic nature of NER is conserved across bacterial species, we next determined the mutation rates of similar strains in Salmonella enterica serovar Typhimurium, a Gram-negative bacterium which is highly divergent from B. subtilis. When we compared the mutation rates of wild-type strains to those that either lack a Uvr protein or Mfd, we found results that were consistent with what we observed in B. subtilis. In the absence of UvrB, there was a similar decrease in mutation rates compared to strains lacking Mfd. These results indicate that, the mutagenicity of NER is conserved amongst bacteria (Fig. 1C).

A replicative and two Y-family polymerases function in the same pathway as NER

NER is generally thought to be an error free pathway. However, our observations clearly suggest that this is not the case in the endogenous context. Our data suggest that the gap filling step of NER is completed by an error-prone mechanism. During NER, gap-filling synthesis is the last step of the pathway and based on in vitro experiments that examined DNA polymerase I (PolA in
B. subtilis), the dogmatic view became that this is the polymerase that functions during this step. Thus, we measured mutation rates in cells lacking PolA. Although in vitro work had led to the conclusion that PolA is a high-fidelity polymerase, we found that this is not the case in vivo. We observed that PolA is mutagenic, as cells lacking PolA showed a decrease in mutation rates that were very similar to that seen in NER deficient strains.

To determine whether NER is mutagenic due to PolA activity, we measured the mutation rates of uvrA polA and mfd polA double knockouts. When we compared the mutation rates of strains lacking either PolA, Mfd, or UvrA alone to the double mutants that lacked Mfd and PolA as well as UvrA and PolA, we did not see an additional decrease in mutation rates, indicating that Mfd-associated, mutagenic NER is in the same pathway as PolA (Fig. 2A). In addition, we used a biochemical assay where we purified B. subtilis PolA and used an in vitro primer-extension assay on a ssDNA gap template similar to the one that would be generated during NER to re-examine whether PolA can fill in this gap. We indeed observed that PolA is able to efficiently fill in this gap (Extended Data Fig 1A, B).

Figure 2: a, b) Mutation rates of B. subtilis strains. n=54 (wt), 40 (ΔpolA), 36 (ΔuvrA ΔpolA), 44 (Δmfd ΔpolA), 57 (ΔpolY1), 56 (ΔpolY2), 35 (ΔpolY1 ΔpolY2), 43 (ΔpolA ΔpolY1 ΔpolY2). c) Model for the molecular mechanism of NER-dependent mutagenesis. Due to DNA being single stranded in the transcription bubble and/or during NER, the non-transcribed strand is prone to damage that stalls PolA and leads to the recruitment of Y-family polymerases, further increasing the possibility of acquiring a mutation. Error bars are 95% confidence intervals.

However, in vitro studies with the E. coli ortholog of PolA (PolI) have determined that it is a high-fidelity polymerase, making it unlikely that by itself, it would introduce an error in such a small gap as the one generated during NER. Given that previous work has suggested that B. subtilis PolA interacts with two error-prone, Y-family polymerases, PolY1 and PolY2 (orthologs of the E. coli DinB and UmuC and the mammalian Pol kappa and Pol eta), we reasoned that these Y-family polymerases could also be involved in the pro-mutagenic nature of NER. To test our model, we generated strains that lacked either PolY1, PolY2, or both polymerases. When we determined the mutation rates of strains that either lacked PolY1 or PolY2, we didn’t observe a
decrease in mutation rates in either single mutant. Interestingly we did observe a decrease in
mutation rates in strains lacking both PolY1 and PolY2, suggesting a redundant, pro-mutagenic
role for these polymerases (Fig 2B). If our hypothesis that these polymerases cooperate with
PolA during the NER gap filling step is correct, then in strains that lack all three polymerases,
we should not observe any additional decrease in mutation rates. Indeed, we observed that there
was no additional decrease in mutation rates when cells lacked all three polymerases compared
to cells either lacking only PolA, the Uvr proteins, or both PolY1 PolY2 (Fig 2B and Extended
Data Fig 1B). Therefore, we conclude that these polymerases are in the same pathway and
cooperate to complete the last step during NER.

The observed requirement for both an A-family replicative polymerase and a Y-family
polymerase led us to the hypothesis that PolA performs DNA synthesis during NER, but that it
often stalls at a DNA lesion that is present on the opposite strand to the original lesion that was
excised. This stalled PolA would then recruit a Y-family polymerase to overcome this lesion,
further increasing the chances of generating a mutation. More specifically, this DNA lesion
would be on the NER template strand, which is the non-transcribed strand. Therefore, it is
possible that the origin of this secondary damage stems from the non-transcribed strand being
single stranded during transcription and/or NER, which would make it more susceptible to DNA
lesions (Fig 2C)16,17.

To test this model, we again turned to our biochemical assay where we used purified PolA and
measured DNA synthesis on a template where we introduced an abasic site on the opposite
strand to that which is removed by the NER protein UvrD. We observed that an abasic site, one
the most common lesions observed in DNA18, is a strong block to synthesis by PolA9 (Extended
data Fig 1C), supporting the model that PolA alone cannot fill in a gap generated during NER
that has damage on the non-transcribed strand. To complete gap-filling at this stage, Y-family
polymerases are most likely required, consistent with the results described above.

Oxidative stress drives NER-dependent evolution

In this study, all mutation rates and evolution assays were performed in the absence of
exogenous DNA damage. Thus, we wondered what the endogenous source of DNA damage
behind NER mutagenesis is that damages the non-transcribed strand. Because oxidative damage
is considered the most common endogenous form of DNA damage19, and it damages ssDNA
much more efficiently than dsDNA16,17, we tested if oxidative DNA damage is responsible for
NER being pro-mutagenic and a strong driver of evolution.

To test our model, we performed evolution assays where we decreased the levels of oxidative
stress that the cells experience using two different methods. First, we performed evolution assays
in the presence of the antioxidant thiourea. This is an antioxidant molecule that has been used in
the past to reduce oxidative stress in bacteria20-22. We used concentrations that do not affect the
growth rate of our strains (Extended Data Fig 2A). We observed a marked decrease in the rate of
evolution of wild-type cells to various antibiotics when thiourea was present in the media (Fig.
3A, Extended Data Figure 2B). To confirm that the effect we observed was not simply due to
some artifact generated by thiourea, we also made a *B. subtilis* strain that overexpresses *katA*, the
gene that codes for the vegetative catalase, which breaks down hydrogen peroxide23. Similar to the results we obtained with thiourea, we observed a decrease in the rate of evolution to the antibiotic rifampicin (Fig. 3A). These results together strongly suggest that oxidative DNA damage is indeed driving evolution.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure3.png}
\caption{\textbf{a, b, c)} Median rifampicin concentration that allows for growth in the indicated strains at each sampled timepoint. 50 mM thiourea was included in the media where indicated. 1mM IPTG was added for \textit{katA} overexpression. \textit{n}=23 (wt - thiourea), 12 (wt + thiourea), 12 (\textit{Δmfd} - thiourea), 12 (\textit{Δmfd} + thiourea), 24 (\textit{ΔuvrA} - thiourea), 12 (\textit{ΔuvrA} + thiourea) biological replicates.}
\end{figure}

For both thiourea and \textit{katA} overexpression, the decrease in the rate of evolution was similar to those observed in strains lacking NER proteins. We therefore tested whether oxidative damage is responsible for the mutagenic nature of NER. We performed evolution assays in strains deficient in NER genes (\textit{uvrA} nulls and \textit{mfd} nulls). Although these strains have a serious deficiency in evolving resistance to antibiotics, towards the end of the evolution assays, a slight increase in their MIC can be observed (Fig. 3B, C). We took advantage of this and analyzed the rate at which evolution starts to take off at the last time points when oxidative stress is reduced. Consistent with our model, we observed that, in strains lacking Mfd, or the NER proteins, or both, thiourea didn’t have any effect on the rate of evolution. This strongly suggests that NER mutagenesis and subsequent adaptive evolution depends on endogenous oxidative stress.

Last, to determine whether this was a conserved mechanism, we performed evolution assays in patient derived strains of \textit{Pseudomonas aeruginosa} (CF127)24 and multidrug resistant \textit{Staphylococcus aureus} (MRSA). Again, we performed evolution assays, with and without thiourea, at a concentration that again doesn’t affect the growth rate of these bacterial species (Extended Data Fig 2C, D). Consistent with our observations in \textit{B. subtilis}, we found that in these other species, there was a significant decrease in the rate of evolution when thiourea was included in the media (Fig 4A, B). This effect is particularly striking in the case of the MRSA strain, for which the concentration of antibiotic in which it could survive increased \(\approx250,000\)X (Fig 4B) in the absence of thiourea. This increase was 32X for \textit{B. subtilis} (Fig 3A) and \(\approx250\)X for \textit{P. aeruginosa} (Fig 4A).
Figure 4: a, b) Median rifampicin concentration that allows for growth in *Pseudomonas aeruginosa* (CF127) (a) and *Staphylococcus aureus* (b) at each sampled timepoint. 10 mM (*P. aeruginosa*) or 50 mM (*S. aureus*) thiourea was included in the media where indicated. n=12 biological replicates for all strains.

Discussion

We have shown that nucleotide excision repair (NER), which strongly suppresses mutagenesis in cells exposed to DNA damaging agents\(^3,4\), is actually promoting mutagenesis under endogenous conditions and is generally a pro-mutagenic mechanism. Bacteria lacking any one of the three core components of the NER mechanism, UvrABC, have lower mutation rates than wild-type cells, indicating that NER causes spontaneous mutations (Fig. 1A, C). In addition, our data indicate that all mutagenic NER functions in the same pathway as the transcription-coupled (TC) NER factor Mfd, suggesting that NER is universally transcription dependent, at least under endogenous conditions (Fig. 1B). This is consistent with recent biochemical findings regarding NER and transcription and brings into question whether GG-NER is a mechanism that exists\(^10\).

Interestingly, our data show that it is the cooperative nature of at least two DNA polymerases that causes NER-dependent mutations: the replicative polymerase commonly associated with NER, PolA, and one of two redundant Y-family polymerases, PolY1 and PolY2 (Fig. 2A-C, Extended Data Fig 1C). We propose that DNA damage in the NER template strand (the non-coding strand, Fig 2C) explains this requirement for both DNA polymerases to complete NER, which will naturally lead to an increased likelihood of mutations being introduced into the synthesized DNA gap. This DNA lesion would be independent of the lesion that triggered NER, and we propose that it is caused during transcription and NER, as the non-transcribed strand stays as ssDNA for an extended period of time during both processes and it is well-known that ssDNA is more prone to damage than dsDNA\(^16,17\).
There is a potential alternative model: the NER machinery has been shown to excise non-damaged DNA \textit{in vitro}25 and that transcription stimulates this process \textit{in vivo}26. These gratuitous repair events, even if much less efficient than excision of damaged DNA, are predicted to be a common phenomenon, as the amount of non-damaged DNA outweighs the amount of damaged DNA by several orders of magnitude in cells that are not exposed to exogenous DNA damaging agents27. Moreover, Mfd has been found bound to DNA throughout the genome in the absence of exogenous DNA damage28,29, and it plays a role in transcription that is independent of its role in TC-NER30. This constitutive association with DNA and RNAP could lead to excision, fill in synthesis, and therefore increasing the likelihood of mutations being introduced onto undamaged DNA.

Interestingly, a recent pre-print has proposed that DNA lesions that are in close proximity and on different strands lead to mutagenic NER, using a mouse liver cancer model in which cells are exposed to high levels of the DNA damaging agent diethylnitrosamine31. Moreover, NER has been found to be pro-mutagenic in stationary phase yeast cells irradiated with UV light32–35. Several models have been proposed that could explain this, including damage to both strands of the DNA, which is supported by the requirement of proteins involved in error-prone bypass of DNA damage in NER-dependent mutagenesis36. These findings, together with our results, suggest that the mechanism of NER-induced mutagenesis is conserved from bacteria to mammals. Our findings add an additional piece of information: NER is universally coupled to transcription.

Last, we identify endogenous oxidative stress as the main source of NER-dependent mutagenesis and evolution. Oxidative stress is an obligatory consequence of aerobic life, and it results from an imbalance of reactive oxygen species. Reactive oxygen species have been shown to lead to most spontaneous mutagenesis in \textit{E. coli}37 and are thought to be an important source of endogenous DNA damage38. We tested the contribution of oxidative stress to mutagenesis by measuring the evolution of resistance to antibiotics in cells that were grown in the presence or absence of thiourea, an antioxidant that has been shown to reduce oxidative stress in bacteria20. We observed that the evolution of antibiotic resistance was much slower when thiourea was present in the media for both \textit{B. subtilis} and patient-derived pathogenic strains of \textit{P. aeruginosa} and MRSA (Fig 3A, Fig 4), indicating that oxidative stress drives evolution. Moreover, we observed a similar effect when we overexpress the vegetative catalase \textit{kata} (Fig. 3A), which breaks down hydrogen peroxide, a molecule that can’t itself react with DNA, but that can react with free cellular iron which oxidizes DNA38. Interestingly we observed that the little evolution we observe in NER deficient strains is \textit{not} diminished in the presence of thiourea, supporting our model that NER-dependent mutagenesis is mostly due to lesions caused by oxidative stress. This is consistent with the mutagenic footprint of NER observed in mammalian cells31. Therefore, in addition to showing that NER is universally mutagenic and transcription-associated in bacteria, our findings likely explain the main source of NER-dependent mutagenesis not only in bacteria, but also in higher eukaryotes.
References

1. Hershberg, R. Mutation—The Engine of Evolution: Studying Mutation and Its Role in the Evolution of Bacteria. Cold Spring Harbor Perspectives in Biology 7, a018077 (2015).

2. Ragheb, M. N. et al. Inhibiting the Evolution of Antibiotic Resistance. Molecular Cell 73, 157-165.e5 (2019).

3. Ishii, Y. & Kondo, S. Comparative analysis of deletion and base-change mutabilities of Escherichia coli B strains differing in DNA repair capacity (Wild-type, uvrA-, polA-, recA-) by various mutagens. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 27, 27–44 (1975).

4. Fabisiewicz, A. & Janion, C. DNA mutagenesis and repair in UV-irradiated E. coli K12 under condition of mutation frequency decline. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 402, 59–66 (1998).

5. Kisker, C., Kuper, J. & van Houten, B. Prokaryotic Nucleotide Excision Repair. Cold Spring Harbor Perspectives in Biology 5, a012591–a012591 (2013).

6. Hanawalt, P. C. & Spivak, G. Transcription-coupled DNA repair: Two decades of progress and surprises. Nature Reviews Molecular Cell Biology vol. 9 958–970 (2008).

7. Epshtein, V. et al. UvrD facilitates DNA repair by pulling RNA polymerase backwards. Nature 505, 372–377 (2014).

8. Adebiyi, O., Chiou, Y.-Y., Hu, J., Sancar, A. & Selby, C. P. Genome-wide transcription-coupled repair in Escherichia coli is mediated by the Mfd translocase. Proceedings of the National Academy of Sciences 114, (2017).

9. Martinez, B., Bharati, B. K., Epshtein, V. & Nudler, E. Pervasive Transcription-coupled DNA repair in E. coli. Nature Communications 13, 1702 (2022).

10. Bharati, B. K. et al. Crucial role and mechanism of transcription-coupled DNA repair in bacteria. Nature 604, 152–159 (2022).

11. Ross, C. et al. Novel role of mfd: Effects on stationary-phase mutagenesis in Bacillus subtilis. Journal of Bacteriology 188, 7512–7520 (2006).

12. Gómez-Marroquín, M. et al. Stationary-phase mutagenesis in stressed bacillus subtilis cells operates by Mfd-dependent mutagenic pathways. Genes (Basel) 7, (2016).

13. Luria, S. E. & Delbrück, M. Mutations of Bacteria From Virus Sensitivity To Virus Resistance. Genetics 28, 491–511 (1943).

14. Kuchta, R. D., Benkovic, P. & Benkovic, S. J. Kinetic mechanism whereby DNA polymerase I (Klenow) replicates DNA with high fidelity. Biochemistry 27, 6716–6725 (1988).

15. Duigou, S., Ehrlich, S. D., Noirot, P. & Noirot-Gros, M.-F. DNA polymerase I acts in translesion synthesis mediated by the Y-polymersases in Bacillus subtilis. Molecular Microbiology 57, 678–690 (2005).
16. Degtyareva, N. P. et al. Oxidative stress-induced mutagenesis in single-strand DNA occurs primarily at cytosines and is DNA polymerase zeta-dependent only for adenines and guanines. *Nucleic Acids Research* **41**, 8995–9005 (2013).

17. Degtyareva, N. P. et al. Mutational signatures of redox stress in yeast single-strand DNA and of aging in human mitochondrial DNA share a common feature. *PLoS Biology* **17**, (2019).

18. Thompson, P. S. & Cortez, D. New insights into abasic site repair and tolerance. *DNA Repair* **90**, 102866 (2020).

19. Imlay, J. A. Where in the world do bacteria experience oxidative stress? *Environmental Microbiology* **21**, 521–530 (2019).

20. Kohanski, M. A., Dwyer, D. J., Hayete, B., Lawrence, C. A. & Collins, J. J. A Common Mechanism of Cellular Death Induced by Bactericidal Antibiotics. *Cell* **130**, 797–810 (2007).

21. Kohanski, M. A., DePristo, M. A. & Collins, J. J. Sublethal Antibiotic Treatment Leads to Multidrug Resistance via Radical-Induced Mutagenesis. *Molecular Cell* **37**, 311–320 (2010).

22. Pribis, J. P. et al. Gamblers: An Antibiotic-Induced Evolvable Cell Subpopulation Differentiated by Reactive-Oxygen-Induced General Stress Response. *Molecular Cell* **74**, 785-800.e7 (2019).

23. Bol, D. K. & Yasbin, R. E. Analysis of the dual regulatory mechanisms controlling expression of the vegetative catalase gene of Bacillus subtilis. *Journal of Bacteriology* **176**, 6744–6748 (1994).

24. Wolfgang, M. C. et al. Conservation of genome content and virulence determinants among clinical and environmental isolates of Pseudomonas aeruginosa. *Proc Natl Acad Sci U S A* **100**, 8484–8489 (2003).

25. Branum, M. E., Reardon, J. T. & Sancar, A. DNA Repair Excision Nuclease Attacks Undamaged DNA. *Journal of Biological Chemistry* **276**, 25421–25426 (2001).

26. Hanawalt, P. C. Subpathways of nucleotide excision repair and their regulation. *Oncogene* **21**, 8949–8956 (2002).

27. Reardon, J. T. & Sancar, A. Nucleotide Excision Repair. in 183–235 (2005). doi:10.1016/S0079-6603(04)79004-2.

28. Ho, H. N., van Oijen, A. M. & Ghodke, H. The transcription-repair coupling factor Mfd associates with RNA polymerase in the absence of exogenous damage. *Nature Communications* **9**, 1570 (2018).

29. Ragheb, M. N., Merrikh, C., Browning, K. & Merrikh, H. Mfd regulates RNA polymerase association with hard-to-transcribe regions in vivo, especially those with structured RNAs. *Proceedings of the National Academy of Sciences* **118**, (2021).
30. Le, T. T. *et al.* Mfd Dynamically Regulates Transcription via a Release and Catch-Up Mechanism. *Cell* **172**, 344-357.e15 (2018).

31. Anderson, C. J. *et al.* Strand-resolved mutagenicity of DNA damage and repair. *Biorxiv* (2022).

32. Eckardt, F. & Haynes, R. H. Induction of pure and sectored mutant clones in excision-proficient and deficient strains of yeast. *Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis* **43**, 327–338 (1977).

33. James, A. P. & Kilbey, B. J. THE TIMING OF UV MUTAGENESIS IN YEAST: A PEDIGREE ANALYSIS OF INDUCED RECESSIVE MUTATION. *Genetics* **87**, 237–248 (1977).

34. James, A. P., Kilbey, B. J. & Prefontaine, G. J. The timing of UV mutagenesis in yeast: Continuing mutation in an excision-defective (rad1-1) strain. *Molecular and General Genetics* **MGG 165**, 207–212 (1978).

35. Eckardt, F., Teh, S.-J. & Haynes, R. H. HETERODUPLEX REPAIR AS AN INTERMEDIATE STEP OF UV MUTAGENESIS IN YEAST. *Genetics* **95**, 63–80 (1980).

36. Kozmin, S. G. & Jinks-Robertson, S. The Mechanism of Nucleotide Excision Repair-Mediated UV-Induced Mutagenesis in Nonproliferating Cells. *Genetics* **193**, 803–817 (2013).

37. Sakai, A., Nakanishi, M., Yoshiyama, K. & Maki, H. Impact of reactive oxygen species on spontaneous mutagenesis in *Escherichia coli*. *Genes to Cells* **11**, 767–778 (2006).

38. Imlay, J. A. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. *Nature Reviews Microbiology* **11**, 443–454 (2013).

Methods

Bacterial culture

Bacillus subtilis, *Salmonella enterica* serovar Typhimurium, and *Staphylococcus aureus* were cultured in lysogeny broth (LB), and *Pseudomonas aeruginosa* in LB with 0.1% tween 20 (when liquid media). Bacterial plates were grown overnight at 37 °C unless otherwise indicated with the following antibiotics when appropriate: 500 µg/ml erythromycin and 12.5 mg/ml lincomycin (MLS), 5 µg/ml (*B. subtilis*) or 50 µg/ml (*E. coli* and *S. enterica*) kanamycin, 25 µg/ml chloramphenicol and 100 µg/ml carbenicillin. When grown in liquid media, cultures were started from single colonies and were grown with aeration (260 rpm).

Strain construction

The parental strain for all *B. subtilis* strains used in this study is HM1 (same as AG174, originally named JH642). Gene deletions that are marked with MLS or kanamycin resistance were obtained from. Genotypes for all strains used can be found in Extended Data Table 1. Genomic DNA from these strains was purified with the GeneJET Genomic DNA Purification Kit.
following the manufacturer’s instructions and transformed into the HM1 background as in previously described42. When necessary to make strains that carry multiple mutations, these antibiotic resistant cassettes were excised by transforming the strains with a plasmid expressing the Cre recombinase (pDR244, BGSCID: ECE274) purified from RecA+ \textit{Escherichia coli} (NEB) cells with the GeneJET Plasmid Miniprep Kit (Thermo), generating markerless strains41. Recombinants containing markerless strains were checked by PCR (Extended Data Table 2).

The \textit{S. enterica} Typhimurium strain is SL134443 and was a gift from Mariana Byndloss (Vanderbilt University), the \textit{Pseudomonas aeruginosa} strain is CF12724 and was a gift from Matt Parsek (University of Washington) and the multidrug-resistant \textit{Staphylococcus aureus} strain is a cystic fibrosis patient derived strain obtained from the Vanderbilt University Medical Center.

For \textit{katA} overexpression, the coding sequence of the \textit{katA} gene was amplified using Q5 polymerase (NEB) (Extended data Table 2) and cloned between the \textit{HindIII} and the \textit{NheI} sites in pCAL83844 to form pHM724. pHM724 DNA obtained from RecA+ \textit{Escherichia coli} cells was transformed into HM1 cells. Cells were plated on MLS containing plates and after overnight incubation at 37 °C, MLS resistant colonies were tested for growth in media lacking threonine. Colonies that lack growth in threonine less media and were MLS resistant were selected as integrants.

For \textit{S. enterica}, knock outs were made by recombineering as previously described45 using the pSIM27 plasmid, a gift from the Court lab (https://redrecombineering.ncifcrf.gov/strains--plasmids.html). In short, for knocking out \textit{mfd}, the chloramphenicol resistance gene was amplified from the pKD3 plasmid (a gift from the Wanner lab46) while adding 40 nucleotides of homology upstream of the start site and downstream of the stop codon using Q5 polymerase (Extended Data Table 2). The PCR amplicon was cleaned and electroporated into competent, wt cells harboring the pSIM27 plasmid. Chloramphenicol resistant colonies were selected and checked by PCR (Extended Data Table 2). For knocking out \textit{uvrB}, the kanamycin resistance gene was amplified from an \textit{E. coli} strain with this gene on its chromosome (Extended Data Table 2).

\textbf{Determination of the mutation rates by fluctuation assays}

Mutations rates were calculated as previously described2. A single colony was inoculated into 2 ml of LB and grown for 2 hours (\textit{B. subtilis}) or 2.5 hour (\textit{S. enterica}) to reach exponential growth (0.1 <OD<0.6). This culture was diluted to an OD of 0.0005 and between 3 and 10 parallel cultures with 2 ml of LB were grown for 4.5 hours. Then, 1.5 ml of cells were pelleted and plated on 50 \textmu g/ml rifampicin containing plates. The remaining cells were serially diluted in 1X Spizizen media and plated on antibiotic free media to quantify total viable cells. Colonies were counted after 24 hours at 37 °C (rifampicin plates) or 16 hours at 30 °C (no antibiotic plates). Mutation rates were calculated by using the Fluctuation AnaLysis CalculatOR47, utilizing the Ma-Sandri-Sarkar maximum likelihood method.

\textbf{Evolution assays}
Evolution assays were performed as previously described\(^2\). A single colony of the indicated species and genotype was grown until and OD of 1-2 was reached. Culture was then diluted to and OD of 0.01 in culture media and grown in 7 different concentrations of the indicated antibiotic, ranging from no antibiotic to 16X the minimal inhibitory concentration (MIC), as well as thiourea when indicated. Cells were grown for 24 hours at 37 °C with aeration, after which the OD was measured. The culture with the highest antibiotic concentration that showed an OD larger than 0.5X the OD of the culture without antibiotic (or, in the case of P. aeruginosa, an OD>0.3) was diluted 100X to an OD of approximately 0.01 and again grown in 7 different antibiotic concentrations. This process was repeated 6 times for B. subtilis and S. aureus or 5 times for P. aeruginosa.

Growth curves

Growth curves were determined by growing a single colony of the indicated species until and OD of 1-2 was reached. The culture was diluted to an OD of 0.01 in culture media and growth in an Epoch microplate spectrophotometer (BioTek) at 37 °C for 16 hours. OD600 was measured every 10 mins.

PolA purification

The coding sequence of PolA without the start codon was amplified by PCR using Q5 polymerase (NEB) and cloned BamHI-XhoI into pET28a (Thermo) to generate an N-terminal 6X his tagged protein coding sequence. The plasmid was transformed into BL21(DE) cells (NEB), and a single colony was inoculated into 70 ml of LB and grown overnight in LB containing kanamycin. 10 ml of culture were then inoculated in 1 L of LB+kanamycin and grown until an OD600 of 0.6, when 1 mM IPTG was added to the media. Cells were grown for 4 hours and centrifuged for 15 mins at 4000G. Pellets were resuspended in 30 ml of CelLytic B cell lysis reagent (Sigma) with 3 µl of Benzonase (Sigma) and 10 mM imidazole and shaken at RT for 10 mins. Lysate was centrifuged at 20000G at 4 °C and the supernatant was mixed with an equal volume of equilibration buffer (20 mM sodium phosphate pH 7.4, 300 mM sodium chloride, 10 mM imidazole), and run twice through 15 ml of equilibrated HisPur™ Ni-NTA Resin (Thermo) at 4 °C. Resin was washed with 150 ml of wash buffer (20 mM sodium phosphate pH 7.4, 300 mM sodium chloride, 40 mM imidazole) and eluted with 15 ml of elution buffer (20 mM sodium phosphate pH 7.4, 300 mM sodium chloride, 150 mM imidazole). Protein was dialyzed with a 30 ml Slide-A-Lyzer Dialysis Cassette G2 20000 MWCO (Thermo) against 10 mM tris pH 8, 50 mM NaCl, 5% glycerol, 0.1 mM DTT, 0.1 mM EDTA for 3 hours at RT. Protein prep was then concentrated with Amicon Ultra-15 Centrifugal Filter Units 3000K (Millipore) to a final concentration of 1.6 mg/ml measured by Bradford assay (Thermo). PolA prep was run on a 10% SDS-PAGE and stained by Imperial protein stain (Thermo) to confirm purity of purified enzyme.

PolA synthesis assay

PolA synthesis was tested on 40 mM Tris pH 8, 10 mM MgCl, 60 mM KCl, 2.5% glycerol buffer containing 1 mM dNTPs, 1.5 mM of the indicated DNA substrate labeled with Cy5, and 100 nM PolA. 10 ul reactions were incubated at 37 °C for 30 mins and stopped with 10 ul of
95% formamide 10 mM EDTA. DNA was denatured at 85 °C for 15 mins and run in a 12% urea denaturing gel at 150V for 30 mins. Gel was scanned in a ChemiDoc imaging system (BioRad).

The substrates for PolA synthesis experiments were done by annealing three (gap substrate) or two (abasic site substrate) HPLC purified oligos (Sigma) in a thermocycler. The template for the abasic site substrate contained a deoxyuracil in the 9th position. The abasic site was generated by treating the annealed oligo with hSMUG1 (NEB) for 30 mins at 37 °C followed by heat inactivation of the enzyme at 65 °C for 20 mins.

Methods references

39. Brehm, S. P., Staal, S. P. & Hoch, J. A. Phenotypes of Pleiotropic-Negative Sporulation Mutants of *Bacillus subtilis*. *Journal of Bacteriology* **115**, 1063–1070 (1973).

40. Smith, J. L., Goldberg, J. M. & Grossman, A. D. Complete Genome Sequences of Bacillus subtilis subsp. *subtilis* Laboratory Strains JH642 (AG174) and AG1839. *Genome Announcements* **2**, (2014).

41. Koo, B.-M. *et al.* Construction and Analysis of Two Genome-Scale Deletion Libraries for Bacillus subtilis. *Cell Systems* **4**, 291-305.e7 (2017).

42. Harwood, C. R. & Cutting, S. M. *Molecular biological methods for Bacillus*. (Wiley, 1990).

43. Hoiseth, S. K. & Stocker, B. A. D. Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. *Nature* **291**, 238–239 (1981).

44. Leonetti, C. T. *et al.* Critical Components of the Conjugation Machinery of the Integrative and Conjugative Element ICE *Bs1* of Bacillus subtilis. *Journal of Bacteriology* **197**, 2558–2567 (2015).

45. Thomason, L. C., Sawitzke, J. A., Li, X., Costantino, N. & Court, D. L. Recombineering: Genetic Engineering in Bacteria Using Homologous Recombination. *Current Protocols in Molecular Biology* **106**, (2014).

46. Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in *Escherichia coli* K-12 using PCR products. *Proceedings of the National Academy of Sciences* **97**, 6640–6645 (2000).

47. Hall, B. M., Ma, C.-X., Liang, P. & Singh, K. K. Fluctuation AnaLysis CalculatOR: a web tool for the determination of mutation rate using Luria-Delbruck fluctuation analysis. *Bioinformatics* **25**, 1564–1565 (2009).

Acknowledgements

We would like to thank current and former Merrikh Lab members for helpful discussion, especially Anna Johnson.

Author Contributions and Affiliations

JCG ANS and AJHV performed experiments. JCG and ANS analyzed data. JCG created figures. JCG and HM wrote the manuscript. HM directed the project.

Competing interest declaration
The authors declare no conflict of interest.

Funding sources

This work was supported by the NIH R01-AI-127422 and NIH R01-GM-127593 to HM.

Extended data

Strain	Species	Genotype	Reference	Figure
HM1	*B. subtilis*	wt	Brehm 1973	1, 2, 3, S2
HM2521	*B. subtilis*	mfd::MLS	Million-Weaver 2015	1,3
HM2633	*B. subtilis*	uvrA::MLS	This study	1,3
HM2634	*B. subtilis*	uvrB::MLS	This study	1
HM2635	*B. subtilis*	uvrC::MLS	This study	1
HM2472	*B. subtilis*	mfd::markerless uvrA::MLS	This study	1
HM2473	*B. subtilis*	mfd::markerless uvrB::MLS	This study	1
HM2474	*B. subtilis*	mfd::markerless uvrC::MLS	This study	1
HM4315	*S. enterica*	wt	Hoiseth and Stocker 1981	1
HM4500	*S. enterica*	mfd::Cm	This study	1
HM4510	*S. enterica*	uvrB::Kan	This study	1
HM3533	*B. subtilis*	polA::MLS	This study	2
HM4449	*B. subtilis*	uvrA::markerless polA::MLS	This study	2
HM3550	*B. subtilis*	mfd::markerless polA::MLS	This study	2
HM391	*B. subtilis*	polY1::Cm	Million-Weaver 2015	2
HM345	*B. subtilis*	polY2::Cm	Million-Weaver 2015	2
HM2632	*B. subtilis*	polY1::MLS polY2::Cm	This study	2
HM3567	*B. subtilis*	polY1::markerless polY2::Cm polA::MLS	This study	2
HM2666	*B. subtilis*	polY1::markerless polY2::Cm uvrA::MLS	This study	S1
HM2667	*B. subtilis*	polY1::markerless polY2::Cm uvrB::MLS	This study	S1
HM2668	*B. subtilis*	polY1::markerless polY2::Cm uvrC::MLS	This study	S1
HM2669	*B. subtilis*	polY1::markerless polY2::Cm mfd::MLS	This study	S1
HM4488	*B. subtilis*	polY1::markerless polY2::Cm	This study	S1
PCR/substrate	Species	Oligo	Sequence (5'->3')	
---------------	-------------	------------	---	
uvrA::markerless	B. subtilis	Fwd	GGAGCTTCGCAGATTTACTTTTAG	
		Rev	GCTTGCCTGCTAAGCCC	
mfd::markerless	B. subtilis	Fwd	CGAAATCCCGCATTACCACGA	
		Rev	TTAGAATACCCAGCCCCGACC	
polY1::markerless	B. subtilis	Fwd	TGTTACGCCTGTGTATC	
		Rev	CGAAATTCATGCGGAAGACCTTTAC	
uvrB recombineering	S. enterica	Fwd	TACACCCCTGGCCTCACTCTCTCAGGT	
		Rev	CCATGGTAACGATGACTCGCTGCGCAGT	
mfd recombineering	S. enterica	Fwd	GACGCCCCGCCTGACGTTATGCAATAGC	
		Rev	GTGCAGCGTAAACAAAAAGAGATACTGAAGC	
uvrB check	S. enterica	Fwd	GCAATATTCACCGAGAGAGAGGAGACTGAAGGAGCTG	
		Rev	CTATTTGCACTGAAAAATTCTCCAAG	
mfd check	S. enterica	Fwd	AGAATTGTAAAGATTAGGCCCG	
		Rev	TGAAGCAGCTGAGGAGG	
Gap substrate	In vitro	Top left	GCCTAGTCTCGCCATGATAGA	
		Top right	TACACCTGTCTATCATTAG	
		Bottom	ACTAATGATAGACAGGGTTAGTGACAGGAGATC	
			ATCTTTCTACGTTATGCACTGGCACAGGCAGTA	
Abasic site substrate	In vitro	Top	Cy5-ATTCTGGGAAATGGCCCGCTGCTAT	
polA for cloning into pET28a	Bottom	GTGGAACGCTA[dU]ATGTGCCATATAGCA		
		GCGCGCCATTTCCACCAGAAT		
B. subtilis Fwd		AAGGATCCACGGAACGAAAAAAATTAGT		
	Rev	AAGAATTCTTATTTCGACATCGTACCAAGA		
katA for cloning into pCAL838		TGGGC		
B. subtilis Fwd		TTAAGCTTATGAGTCTAATAAACCTGACA		
	Rev	TTGCTAGCTTAAGAATCTTTTTTAATCGGC		
		AATCCAAGGC		

Extended Data Figure 1:

a) SDS-PAGE of purified *B. subtilis* PolA
b) Primer extension assay with purified *B. subtilis* PolA using a gap substrate
c) Mutation rates of Bacillus subtilis strains of the indicated genotype to rifampicin. n=40 (ΔpolY1 ΔpolY2 ΔuvrA), 40 (ΔpolY1 ΔpolY2 ΔuvrB), 30 (ΔpolY1 ΔpolY2 ΔuvrC), 33 (ΔpolY1 ΔpolY2 Δmfd), 36 (ΔpolA ΔpolY1 ΔpolY2 ΔuvrA), 36 (ΔpolA ΔpolY1 ΔpolY2 Δmfd) biological replicates. Error bars are 95% confidence intervals.
d) Primer extension assay with purified *B. subtilis* PolA using a substrate including an abasic site.
Extended Data Figure 2

(a) OD$_{600}$ measured every 10 mins for 490 mins of wt *B. subtilis* with and without 50 mM thiourea in the media. b) Median kanamycin concentration that allows for growth in wt cells at each sampled timepoint. 50 mM thiourea was included in the media when indicated. n=12 (-thiourea), 12 (+ thiourea) c,d) OD$_{600}$ measured every 10 mins for 970 mins of *P. aeruginosa* (b) and *S. aureus* (c) with and without 10 mM thiourea (*P. aeruginosa*) or 50 mM thiourea (*S. aureus*) in the media. n= 12 biological replicates for all three strains. Error bars indicate standard deviation.