Notes on Communication and Computation in Secure Distributed Matrix Multiplication

Rafael G. L. D’Oliveira*, Salim El Rouayheb†, Daniel Heinlein‡, and David Karpuk§

* RLE, Massachusetts Institute of Technology, USA, rafaeld@mit.edu
† ECE, Rutgers University, USA, salim.elrouayheb@rutgers.edu
‡ Department of Communications and Networking, Aalto University, Finland, daniel.heinlein@aalto.fi
§ F-Secure, Finland, da.karpuk@uniandes.edu.co

Abstract—We consider the problem of secure distributed matrix multiplication in which a user wishes to compute the product of two matrices with the assistance of honest but curious servers. In this paper, we answer the following question: Is it beneficial to offload the computations if security is a concern? We answer this question in the affirmative by showing that by adjusting the parameters in a polynomial code we can obtain a trade-off between the user’s and the servers’ computational time. Indeed, we show that if the computational time complexity of an operation in \(\mathbb{F}_q \) is at most \(Z_q \) and the computational time complexity of multiplying two \(n \times n \) matrices is \(\mathcal{O}(n^2 Z_q) \) then, by optimizing the trade-off, the user together with the servers can compute the multiplication in \(\mathcal{O}(n^2 Z_q) \) time.

We also show that if the user is only concerned in optimizing the download rate, a common assumption in the literature, then the problem can be converted into a simple private information retrieval problem by means of a scheme we call Private Oracle Querying. However, this comes at large upload and computational costs for both the user and the servers.

I. INTRODUCTION

There has been a growing interest in applying coding theoretic methods for Secure Distributed Matrix Multiplication (SDMM) [1]–[7]. In SDMM, a user has two matrices, \(A \in \mathbb{F}_q^{r \times s} \) and \(B \in \mathbb{F}_q^{s \times t} \), and is interested in obtaining \(AB \in \mathbb{F}_q^{r \times t} \) with the help of \(N \) servers without leaking any information about \(A \) or \(B \) to any server. All servers are assumed to be honest and responsive, but are curious, in that any \(T \) of them may collude to try to deduce information about either \(A \) or \(B \). The original performance metric used in the literature is the download cost [1], i.e. the total amount of data downloaded by the user from the servers, with later work considering the total communication cost [6], [8], [9].

In [10], the following existential issue is raised with the SDMM setting: Is it beneficial to offload the computations if security is a concern? Indeed computing the product \(AB \) locally is both secure and has zero communication cost. The authors in [10] circumvent this by changing the setting so that the user does not possess the matrices \(A \) and \(B \). This forces communication to be the only way for the user to obtain the product \(AB \). This however, is solving a problem quite different from the one initially posed in [1].

In this paper we revisit the original setting of SDMM and show that offloading the computations can be justified from a computational perspective. More precisely, we show that by adjusting the parameters in a polynomial code we can obtain a trade-off between the user’s and the servers’ computational time, as shown in Figure 1a. Indeed, if the computational time complexity of an operation in \(\mathbb{F}_q \) is at most \(Z_q \) and the computational time complexity of multiplying two \(n \times n \) matrices is \(\mathcal{O}(n^2 Z_q) \) then, by optimizing the trade-off, the user together with the servers can compute the multiplication in \(\mathcal{O}(n^2 Z_q) \) time, as shown in Figure 1b.

A. Related Work

For distributed computations, Polynomial codes were originally introduced in [11] in a slightly different setting, namely to mitigate stragglers in distributed matrix multiplication. This work was followed by a series of works [12]–[15]. However, the polynomial codes in these works are not designed to ensure security, making them not applicable to settings where there are privacy concerns related to the data being used.

B. Main Contributions

The main contributions of this work are as follows.

• In Section III, we show that if the performance metric for SDMM is solely the download cost, then, by transforming the problem into a private information retrieval problem, we can obtain download costs much lower than those obtained using polynomial codes. This, however, comes at exponential upload and computational costs. The scheme, however, can be readily implemented in settings where the download cost is the performance metric of interest, like in [8] or [10].

• In Section V, we show the existence of a regime under which outsourcing computations with security constraints is beneficial. We do this by analyzing the computational time complexity of a family of polynomial codes known as gap additive secure polynomial (GASP) codes [3], [4], and show that by adjusting the code parameters we can obtain a trade-off between the user’s and the servers’ computational time. By optimizing this trade-off we can show that if the time complexity of an operation in \(\mathbb{F}_q \) is at most \(Z_q \) and a matrix multiplication algorithm for \(n \times n \) matrices with
time complexity $O(n^w Z_q)$ is used, then the total time taken for the user to retrieve AB with the help of the servers is given by $O(n^{4 - \omega \gamma} Z_q)$.

II. Notation

Our analysis in sections IV and V will require asymptotic notation for multivariate functions. As shown in [16], care must be taken when generalizing the asymptotic notation from univariate to multivariate functions.

Hence, we apply the following asymptotic notation. For a function f mapping $D \subseteq \mathbb{R}^n$ to \mathbb{R}, such that D is in each coordinate not upper bounded, $O(f(x))$ is the set of all $g : D \rightarrow \mathbb{R}$ such that there exist $N, c \in \mathbb{R}_+$ with $|g(x)| \leq c|f(x)|$ for all x with $N \leq x_i$ for all $i \in \{1, \ldots, n\}$. We define $\Omega(f(x))$ in the same way with the inequality replaced by $|g(x)| \geq c|f(x)|$.

We assume a base field \mathbb{F}_p over which all elementary operations (addition, subtraction, multiplication, division) take constant time. We also assume that transmitting symbols in \mathbb{F}_p between the user and the servers takes constant time.

When constructing polynomial codes we will need to consider a field extension \mathbb{F}_q of \mathbb{F}_p. We assume that any elementary operation or generation of a random element in \mathbb{F}_q takes time at most Z_q. The possible values for Z_q depend on the representation of the field elements, e.g. powers of a generator of the group of units \mathbb{F}_q^* or polynomials in $\mathbb{F}_p[X]/(f)$ (with $f \in \mathbb{F}_p[X]$ irreducible and of degree d with $p^d = q$), and of the underlying machine, e.g. a Turing machine or a Boolean circuit [17], and its implementation [18], [19].

We set $Z_q = O((\log(q) \gamma)^\omega)$, i.e. Z_q is polylogarithmic. If only additions and multiplications are used, for example, we can set $\gamma = 2$ if we use standard polynomial multiplication. This can be reduced by using better multiplication algorithms.

Next, we assume that the transmission of one q-ary symbol has communication cost at most C_q. If we use the usual polynomial representation, then $C_q = O(\log(q))$.

We denote by $\mathcal{M}(r,s,t)$ the computation complexity of multiplying an $r \times s$ matrix by an $s \times t$ matrix. The study of the computational complexity of matrix multiplication is one of the main topics in algebraic complexity theory.

The most understood case is for square matrices, i.e. when $r = s = t = n$. In [20], Strassen presented the first algorithm outperforming the standard $O(n^3)$. Strassen’s algorithm has computational complexity $O(n^{\log_2(7)} \approx O(n^{2.81})$. This was further improved to $\approx O(n^{2.37})$ by Coppersmith, Winograd, and Le Gall [21], [22]. Since any entry of both $n \times n$ matrices has to be used in general, the number of operations is at least $\Omega(n^2)$. It is an open problem if there exists an algorithm which uses $\Theta(n^2)$ operations.
III. PRIVATE ORACLE QUERYING

In this section we show that by transforming the SDMM problem into a private information retrieval problem we can obtain schemes with download costs much lower than polynomial codes. These schemes, however, have exponential upload and computational costs. They serve as an example of why we cannot use the download cost as the sole performance metric as was done originally in the literature.

The scheme, however, can be readily implemented in settings where the download cost is the performance metric of interest, like in [8] or [10].

We name this scheme a private oracle querying scheme and begin by giving a simplified example of it. It consists in transforming the secure distributed matrix multiplication problem into a private information retrieval problem [23].

The reason for naming it Oracle Querying, is that the technique applies to settings more general than matrix multiplication. Indeed the same can be done even for non-computable functions, say if the servers have access to some oracle.

A. An Example

Let \(A, B \in \mathbb{F}_2 \) and the number of servers be \(N = 2 \) none of which collude, thus \(T = 1, r = s = t = 1, \) and \(q = 2. \) The user is interested in \(AB \in \mathbb{F}_2 \). The Private Oracle Querying scheme consists in transforming SDMM into a private information retrieval problem.

The servers begin by precomputing all \(M = q^{s(r+t)} = 4 \) possible multiplications, shown in Table I. Then, each server stores all possible multiplications in its database, i.e. the third column of Table I.

\[
\begin{array}{ccc}
A & B & AB \\
0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 1 \\
\end{array}
\]

TABLE I: Each server stores the third column in the table.

The user can obtain the multiplication privately via a private information retrieval scheme where the user wants one file out of the database, \(D \), of \(M = q^{s(r+t)} = 4 \) files each one of length \(rt = 1. \) This can be done, for example, by using a simple secret sharing scheme achieving a download rate of \(D = \frac{N-T}{N} = \frac{1}{4} \), as shown in Table II.

B. The Scheme

We now present the scheme, which we refer to as private oracle querying.

Theorem 1. Let \(N \) be the number of servers, \(T \) the security parameter, \(A \in \mathbb{F}_q^{r \times s} \) and \(B \in \mathbb{F}_q^{s \times t} \). Then, the secure distributed matrix multiplication problem for computing \(AB \in \mathbb{F}_q^{r \times t} \) can be solved by solving a private information retrieval problem where each server has \(M = q^{s(r+t)} \) files, each one of length \(rt \).

Proof. As a preprocessing step of the scheme, each server computes all \(M = q^{s(r+t)} \) possible matrix multiplications and stores them in its database. Considering each result of each multiplication as a file, each server then has \(M \) files, each of size \(rt \). Thus, the secure distributed matrix multiplication problem can be reinterpreted as a private information retrieval problem where each server has \(M \) files, each of size \(rt \).

If the field \(q \) is large enough, the user can use a simple secret sharing scheme.

Corollary 1. Under the same hypothesis of Theorem 1, for large enough field size \(q \), there exists a secure distributed matrix multiplication scheme with download rate \(D = \frac{N-T}{N} \).

Proof. This rate can be achieved by using the construction in Section III B of [24]. The large field size is needed to guarantee the existence of an MDS code.

The download capacity for private information retrieval is known [25]. However, as the number of files grows, this capacity converges to the rate in Corollary 1.

If one uses the download rate as the sole performance metric for the setting in [1], these private information retrieval codes can outperform the polynomial codes in [1]–[7]. They, however, have two shortcomings.

First, the upload cost is exponential, since even a single query will have the size of the whole database, \(q^{s(r+t)} \).

Second, the time to generate a single query, \(\Omega(q^{s(r+t)}) \), is much longer than the time for the user to calculate the matrix multiplication locally using the standard matrix multiplication algorithm, \(O(rstZ_q) \).

In other settings, where the user does not have access to both matrices and computational costs are not considered, like in [8] or [10], private oracle querying can be readily applied.

IV. POLYNOMIAL CODES

Polynomial codes for secure distributed matrix multiplication were first introduced in [1] and later improved on in [1]–[7]. Our goal is to highlight the existence of a regime where securely offloading the computation to the workers is beneficial. Towards that goal we analyze the communication and computation complexity of a family of polynomial codes called GASP codes [3], [4]. Since we are using upper bounds to show that
SDMM is beneficial, constructions which outperform GASP codes will also be upper bounded by the expressions shown. The analysis shown here can be straightforwardly extended to other polynomial codes in the literature.

A. Constructing GASP Codes

Let $A \in \mathbb{F}_q^{T \times K}$ and $B \in \mathbb{F}_q^{n \times T}$ be partitioned as follows:

$$A = \begin{bmatrix} A_1 & \cdots & A_K \end{bmatrix}, \quad B = [B_1 \cdots B_L],$$

so that $AB = \begin{bmatrix} A_1B_1 & \cdots & A_1B_L \\ \vdots & \ddots & \vdots \\ A_KB_1 & \cdots & A_KB_L \end{bmatrix}.$

The user chooses T matrices R_t over \mathbb{F}_q of the same size as the A_k independently and uniformly at random, and T matrices S_t of the same size as the B_t independently and uniformly at random. A polynomial code is a choice of $\alpha = (\alpha_1, \ldots, \alpha_{K+T}) \in \mathbb{N}^{K+T}$ and $\beta = (\beta_1, \ldots, \beta_{L+T}) \in \mathbb{N}^{L+T}$ defining the polynomials

$$f(x) = \sum_{k=1}^{K} A_k x^{\alpha_k} + \sum_{t=1}^{T} R_t x^{\alpha_{K+t}},$$

$$g(x) = \sum_{t=1}^{L} B_t x^{\beta_t} + \sum_{t=1}^{T} S_t x^{\beta_{L+t}},$$

and their product $h(x) = f(x)g(x)$.

Given N servers, the user chooses evaluation points $a_1, \ldots, a_N \in \mathbb{F}_q$ for some finite extension \mathbb{F}_q^r of \mathbb{F}_q. They then send $f(a_n)$ and $g(a_n)$ to server $n = 1, \ldots, N$, who computes the product $f(a_n)g(a_n) = h(a_n)$ and transmits it back to the user. The user then interpolates the polynomial $h(x)$ given all of the evaluations $h(a_n)$, and attempts to recover all products A_kB_t from the coefficients of $h(x)$.

GASP codes [3], [4] are a family of polynomial codes constructed via a combinatorial table called the degree table.

In Table III we show the upload and download time complexity for GASP codes. These values follow directly from the analysis done in Appendix B of [9].

Operation	Time Complexity
Upload	$O(Ns(\frac{n}{K} + \frac{1}{T}))C_q$
Download	$O(N(\frac{n}{K} + \frac{1}{T}))C_q$

TABLE III: Communication time for GASP codes.

B. The Computational Complexity of GASP codes

In this section we perform an analysis on the computational time complexity of GASP codes. The computations can be separated into three parts.

1) **User Encoding**: the computation time it takes the user to generate the evaluations that will be uploaded to the servers.

2) **Server Computation**: the computation time it will take each server to multiply the two evaluations it receives from the user.

3) **User Decoding**: the computation time it will take the user to decode the matrix multiplication from what it received from the servers.

Theorem 2. The computational time complexity for GASP codes is given in Table IV.

Proof.

1) **User Encoding**: The number of additions and multiplications in \mathbb{F}_q needed to compute an evaluation of f and g are $(K+T)\frac{n}{K}$ and $(L+T)\frac{n}{L}$. The result follows from performing this N times, once for each server.

2) **Server Computation**: Each server must compute the product of two matrices of dimensions $\frac{n}{K} \times s$ and $s \times \frac{n}{L}$.

3) **User Decoding**: We assume that the inverted generalized Vandermonde matrix is precomputed. Then, the interpolation of A_tB_j is a linear combination of the servers’ answers. The number of additions in \mathbb{F}_q is $KL(N-1)\frac{n}{K} \frac{n}{L}$ and the number of multiplications is $KLN\frac{n}{K} \frac{n}{L}$.

If using the standard matrix multiplication algorithm then we can substitute $\mathcal{O}(\frac{n^3}{K^2})$.

TABLE IV: Computation time for GASP codes.

V. CHOOSING THE RIGHT PARAMETERS

In this section we show that, by choosing the right parameters for GASP codes, secure distributed matrix multiplication can speed up the computation time when compared to the user performing the computation locally.

We will analyze the following setting. We consider square matrices, i.e. $r = s = t = n$, assume that the security parameter, T, is a constant, and that the partitioning parameter $K = L = n^\varepsilon$ for some $0 \leq \varepsilon \leq 1$. We also assume that the servers multiply two $n \times n$ matrices using an algorithm with computational complexity $O(n^\omega)$. Our goal is to study the time complexity of GASP codes as n grows.

In [4], it was shown that for GASP codes we have the bounds $KL \leq N \leq (K + T)(L + T)$. Thus, $N = O(K^2)$.

We calculate the time complexity for each of the servers.

Proposition 1. Let $r = s = t = n$, T be a constant, $K = L$, and $O(n^\omega)$ be the computational complexity of the algorithm which the servers use to multiply an $n \times n$ matrix. Then, the time
complexity for each server to compute the matrix multiplication
sent to it in the GASP scheme is $O\left(\frac{n^\omega}{K}Z_q\right)$.

Proof. The rectangular matrices each server has to multiply, say F and G, have dimensions $\frac{n}{K} \times n$ and $n \times \frac{n}{K}$, so that they can be split into

$$F = \begin{bmatrix} F_1 & \cdots & F_K \end{bmatrix}, \quad G = \begin{bmatrix} G_1 \\ \vdots \\ G_K \end{bmatrix},$$

so that F_i and G_i are square matrices with shape $\frac{n}{K} \times \frac{n}{K}$ and

$$F \cdot G = \sum_{i=1}^K F_i \cdot G_i.$$

The right hand side can be evaluated by K matrix multiplications requiring $O\left(\frac{n}{K}^\omega\right)$ (with $2 \leq \omega$) field operations and $(K-1)\left(\frac{n}{K}\right)^2$ additions of field elements. So the total time complexity is

$$O((K-1)\left(\frac{n}{K}\right)^2 + K\left(\frac{n}{K}\right)^\omega)Z_q = O\left(\frac{n^\omega}{K^{\omega - \gamma}}Z_q\right).$$

Proposition 2. Assume the setting of Proposition 1 and that $K = L = n^\varepsilon$. Then, the time complexity for each operation in GASP is given in Table V.

Proof. The proof follows from substituting the values in the hypothesis and Proposition 1 into Theorem 2.

Operation	Time Complexity
Query Encoding	$O\left(n^{2+\varepsilon}Z_q\right)$
User Decoding	$O\left(n^{2+\varepsilon}Z_q\right)$
Each Server	$O\left(n^{\omega - (\varepsilon + 1)}Z_q\right)$
Upload	$O\left(n^{2+\varepsilon}C_q\right)$
Download	$O\left(n^2C_q\right)$

Table V: Time complexity for the setting in Proposition 2.

We will now deal with the field size. Indeed, to use GASP codes we need the field size to satisfy certain bounds. Thus, by making n grow, it will also be necessary to make the field size q to grow.

Proposition 3. Assume the setting in Proposition 2 and that $Z_q = O(\log(q)\gamma)$. Then $Z_q = O(\log(n)\gamma)$.

Proof. The proof for GASP codes in [9, Lemma 2], shows an argument for the evaluation points of f and g to exist if $q > \left(2\left(\frac{N}{T}\right) + 1\right)J$.

Moreover, $J = \sum_{j \in J} j$ where J is the set of exponents in $h(x) = \sum_{j \in J} h_j x^j$ with $\#J = N$. Since we use GASP codes, all entries in the degree table are between zero and

$$W = 2KL + (T - 1)(K + 1),$$

so that,

$$J \leq \sum_{j=0}^W j = \frac{W(W + 1)}{2} = O(W^2) = O(K^2(L + T)^2).$$

In particular, a field size larger than $\left(2\left(\frac{N}{T}\right) + 1\right)\cdot \frac{W(W + 1)}{2}$ is sufficient.

An application of the Stirling approximation $n! \sim \sqrt{2\pi n}(n/e)^n$ yields

$$\left(\frac{N}{T}\right)! \leq \frac{N!}{\left\lceil T\left(|N - T|\right)\right\rceil} = \frac{O(N)}{O(\sqrt{2\pi N}(N/e)^n)} \leq \frac{\Omega(1)}{\Omega(\sqrt{2\pi N}(N/e)^n)} = \Theta(\sqrt{2\pi N}(N/e)^n) \leq 2\pi N^{1/2} |N - T|^{1/2} \left|\frac{|N - T|}{|N - T|}\right|^{(\lfloor|N - T|\rfloor)} \leq \Theta\left(\frac{N^{1/2}}{\sqrt{2\pi N}(N/e)^n}\right),$$

as $N - T - |N - T| \leq 0$, so that

$$\left(\frac{N}{T}\right)! \leq \frac{\left(2\left(\frac{N}{T}\right) + 1\right)\cdot \frac{W(W + 1)}{2}}{\left(\frac{2}{T} + \frac{1}{T}\right)\cdot \frac{W(W + 1)}{2}} = O\left(\left(\frac{N}{T}\right)^{2W}\right)$$

is a lower bound on the sufficient field size.

Using the same exemplary parameters as in Section V, i.e., $T = \text{constant}$, $K = L = n^{\varepsilon}$, and $N \in O(K^2)$, noting that $T \leq N$, this simplifies to $O(n^{2\varepsilon(T+2)})$. Using a field size in $O(n^{2\varepsilon(T+2)})$ implies

$$Z_q = O(\log(n^{2\varepsilon(T+2)})) = O(\log(n)\gamma).$$

We are now ready to calculate the total time complexity when implementing GASP codes.

Theorem 3. Assume the setting in Proposition 2. Then, the total time complexity of GASP is $O(n^{\omega}(\varepsilon + \omega - 2\varepsilon + 2\varepsilon)Z_q)$.

Proof. We begin by noting that since $C_q = O(\log(q))$, it follows that $C_q = O(Z_q)$.

Since all servers perform their computations in parallel, the total time complexity, T, is the sum of the time complexities in Table V,

$$T = O\left(K^2n^2 + K^2n^2 + \frac{n^\omega}{K^{\omega - \gamma}}Z_q + (Kn^2 + n^2)C_q\right) = O(n^{\max\{\varepsilon + \omega - 2\varepsilon, 2\varepsilon\}Z_q}),$$

The parameter ε controls the trade-off between computational costs at the client ($O(n^{2\varepsilon}Z_q)$) versus computational costs at each of the servers ($O(n^{\varepsilon+\omega-\varepsilon}Z_q)$). This trade-off, shown in
Figure 1a, is linear in the exponents. By choosing ε carefully we can bound the total time complexity, as shown in Figure 1b.

Corollary 2. Assume the setting in Proposition 2. The minimum total time complexity for GASP is $O(n^{4-\varepsilon} Z_q)$ for $\varepsilon = \frac{n-3}{n+4}$.

Thus, by using GASP codes, the user can perform the matrix multiplication in time $O(n^{4-\varepsilon} Z_q)$ as opposed to the $O(n^{6})$ time it would take to do locally. Note here that since $Z_q = O((\log(n))^{4})$, this is always an improvement. Also, if the user uses F_q as the base field, i.e. for very large fields, then Z_q can be taken to be constant.

Finally, we note that the analysis trivially holds for polynomial codes that outperform GASP codes since all results were proven via upper bounds. More so, since our analysis is done using asymptotic notation, the improvements would have to be by more than just constants to obtain better results.

REFERENCES

[1] W.-T. Chang and R. Tandon, “On the capacity of secure distributed matrix multiplication,” in 2018 IEEE Global Communications Conference (GLOBECOM). IEEE, 2018, pp. 1–6.

[2] J. Kakar, S. Ebadifar, and A. Sezgin, “On the capacity and straggler-robustness of distributed secure matrix multiplication,” IEEE Access, vol. 7, pp. 45 783–45 799, 2019.

[3] R. G. L. D’Oliveira, S. El Rouayheb, D. Karpuk, “Gasp codes for secure distributed matrix multiplication,” in 2019 IEEE International Symposium on Information Theory (ISIT). IEEE, 2019, pp. 1107–1111.

[4] R. G. L. D’Oliveira, S. El Rouayheb, D. Heinlein, and D. Karpuk, “Degree tables for secure distributed matrix multiplication,” in 2019 IEEE Information Theory Workshop (ITW), 2019.

[5] M. Aliasgari, O. Simeone, and J. Kliewer, “Distributed and private coded matrix computation with flexible communication load,” 2019 IEEE International Symposium on Information Theory (ISIT), pp. 1092–1096, 2019.

[6] J. Kakar, A. Khristoforov, S. Ebadifar, and A. Sezgin, “Uplink-downlink tradeoff in secure distributed matrix multiplication,” ArXiv, vol. abs/1910.13849, 2019.

[7] Q. Yu and A. S. Avestimehr, “Entangled polynomial codes for secure, private, and batch distributed matrix multiplication: Breaking the “cubic” barrier,” ArXiv, vol. abs/2001.05101, 2020.

[8] W.-T. Chang and R. Tandon, “On the upload versus download cost for secure and private matrix multiplication,” ArXiv, vol. abs/1906.10684, 2019.

[9] R. G. L. D’Oliveira, S. El Rouayheb, and D. Karpuk, “Gasp codes for secure distributed matrix multiplication,” IEEE Transactions on Information Theory, pp. 1–1, 2020.

[10] Z. Jia and S. A. Jafar, “On the capacity of secure distributed matrix multiplication,” 2019.

[11] Q. Yu, M. Maddah-Ali, and A. S. Avestimehr, “Polynomial codes: an optimal design for high-dimensional coded matrix multiplication,” in Advances in Neural Information Processing Systems, 2017, pp. 4403–4413.

[12] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation in distributed matrix multiplication: Fundamental limits and optimal coding,” in 2018 IEEE International Symposium on Information Theory (ISIT). IEEE, 2018, pp. 2022–2026.

[13] S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and P. Grover, “On the optimal recovery threshold of coded matrix multiplication,” IEEE Transactions on Information Theory, 2019.

[14] U. Sheth, S. Dutta, M. Chaudhari, H. Jeong, Y. Yang, J. Kohonen, T. Roos, and P. Grover, “An application of storage-optimal matdot codes for coded matrix multiplication: Fast k-nearest neighbors estimation,” in 2018 IEEE International Conference on Big Data (Big Data). IEEE, 2018, pp. 1113–1120.