Case Report: Therapeutic Threshold for Rifampicin-Resistant Tuberculosis in a Patient from Maputo, Mozambique

Lorena D. M. Gonzaga, Tinne Gils, Tom Decroo, Bart K. M. Jacobs, and Lutgarde Lynen

1Centro de Saude Primeiro de Maio, Maputo, Mozambique; 2Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium; 3Research Foundation Flanders, Brussels, Belgium

Abstract. We present a case of a patient in Mozambique, who initiated treatment for rifampicin-resistant tuberculosis (RR-TB) without proof of resistance. For this patient, we estimated the probability of RR-TB using likelihood ratios of clinical arguments. The probability of RR-TB in Mozambique, positive HIV status, and treatment failure after a first treatment and after retreatment were included as confirming arguments, and a rapid molecular test showing rifampicin susceptibility as excluding argument. The therapeutic threshold to start treatment for RR-TB is unknown, but probably lower than 47% and should be calculated to guide clinical decisions.

INTRODUCTION

Rollout of rapid molecular tests to detect rifampicin (RIF) resistance (RR) has likely led to a decrease in empirical treatment for RIF-resistant tuberculosis (RR-TB). Most RR-conferring mutations are situated in the rifampicin resistance determining region (RRDR), targeted by rapid molecular tests such as Xperta Mycobacterium tuberculosis (MTB)/RIF and Xpertb MTB/RIF Ultra (Xpert MTB/RIF, Cepheid, Sunnyvale, CA) and line-probe assays (LPAs; GenoTypec MTBDRsl and GenoTyped MTBDRs, HAIN Lifescience, Nehren, Germany).4,5 Both tests report on the detection of MTB and of RIF. When diagnosis of RR-TB depends on such tests, RR-TB patients with mutations outside of the RRDR may be repeatedly treated with first-line regimens, mostly without success.4,6

The probability of disease required to treat a patient, or the therapeutic threshold, with equipoise between treating and not treating, has not yet been estimated for RR-TB. Current guidelines recommend all TB patients should be tested for RIF.7 The sensitivity and specificity of Xpert MTB/RIF to detect RIF are 96% and 98%, respectively.11 In case of Xpert MTB+/RIF− (MTB detected, RIF not detected), first-line treatment is recommended.8 In patients with a very high probability of RR-TB, treatment can be started regardless of test results, based on clinical decision-making. We determined this probability for a Mozambican patient when clinicians started RR-TB treatment without bacteriological proof of RR.

Mozambique is a high TB- and RR-TB–burden country. An estimated 3.7% of new, 20% of previously treated patients, and 80% of patients with repetitive first-line treatment failure have RR-TB.11 Drug susceptibility testing (DST) by Xpert MTB/RIF is recommended for all TB patients. Health facilities without Xpert MTB/RIF send sputum samples to a nearby facility and manage TB patients based on smear microscopy while waiting for results. In the capital Maputo, DST beyond RIF is carried out at the Central Hospital for retreatment, treatment failure, or suspected RR-TB cases.

Likelihood ratios (LRs) were calculated for clinical arguments and Xpert MTB/RIF results for one patient, using probabilities and odds ratios from the literature. The confirming power is the positive LR or the number of times a positive test result is more likely in a diseased versus a non-diseased person. The excluding power is the inverse of a negative LR or the number of times more likely a negative test result is in a non-diseased versus a diseased person. Excluding and confirming powers are not directly influenced by disease prevalence.12

\begin{align*}
\text{excluding power} &= \frac{\text{sensitivity}}{1 - \text{sensitivity}} \\
\text{confirming power} &= \frac{\text{specificity}}{1 - \text{specificity}}
\end{align*}

The estimated probability of RR-TB in Mozambique was converted to odds and multiplied by the LRs of confirming arguments before testing. That result was multiplied with the excluding power of Xpert MTB+/RIF−. After accounting for all arguments, the probability of RR-TB and its variation were estimated. Uncertainty intervals (UIs) were constructed for log-odds, odds, and probabilities at each step by selecting the relevant quantiles from 1,000 independent estimates calculated based on random draws from the relevant power and probability distributions. R version 3.5.2 was used for analysis.13 (Supplemental File 1: detailed methodology).

In a clinical setting, the power of arguments can be estimated based on clinical expertise (e.g., strong) or rounded up or down to obtain integer numbers and then categorized. Such intuitive approximation of an LR can be converted to a log-odds scale (Table 1).14 The patient was informed about the purpose of this study and signed consent.

CASE STUDY

The patient was a 40-year-old woman from rural southern Mozambique. In 2012, she was diagnosed with HIV and started first-line antiretroviral therapy (lamivudine, tenofovir, and efavirenz). She reported having a TB diagnosis and TB treatment at least twice: in 2014 for 6 months (RIF, isoniazid, ethambutol, pyrazinamide) and later for 8 months with the same drugs strengthened with 2 months of streptomycin. She interrupted the last regimen as her clinical presentation worsened. We considered at least two episodes of treatment failure.

In May 2018, the patient presented with productive cough, thoracic pain, wasting, no fever, normal blood pressure, a respiratory rate of 23 counts per minute, wheezing, and a
positive sputum smear microscopy with high bacillary load. She had no known RR-TB contacts. Despite Xpert MTB/RIF showing MTB+/RIF−, an RR-TB treatment containing levofloxacin, capreomycin, ethionamide, cycloserine, pyrazinamide, and ethambutol was started. In June 2018, LPA DST showed RR to levofloxacin, ethionamide, and isoniazid, and confirmed RIF susceptibility. Treatment was modified to contain bedaquiline, delamanid, clofazimine, linezolid, and para-aminosalicylic acid. The patient had smear conversion and negative cultures from month 5. The detailed clinical history and chest X-ray are available as Supplemental Files 2 and 3.

After including all arguments, the estimated probability of RR-RB in this patient was 46.6% (95% UI: 25.0–72.0; Table 2, Figure 1). An alternative starting point was a pretest probability of RR-TB in retreatment cases in Mozambique of 20% (95% CI: 5.2–40). When including the probability of HIV of 36%, assuming the same HIV prevalence in new and retreatment TB cases, the probability of RR-TB increases to 24.0% (95% UI: 8.1–54.2) among HIV-positive patients with a TB history.11,15

Table 1

Rounded power*	Strength	Steps on the log-odds scale†
60–200	Very strong	2
20–50	Strong	1.5
6–15	Good	1
2–5	Weak	0.5
1	Useless	0

* Confiming or excluding power can range between 0 and infinity. The power is rarely 200 or more, whereas power lower than 1 means the test is useless or should have its outcomes reversed.

† If confirming power, add the respective number of steps, if excluding power, subtract steps (unit in log₁₀ odds).

Table 2

Argument	Available data	Odds of RR-TB	Probability of RR-TB	Reference
1 Newly diagnosed TB patient in Mozambique	Prevalence of RR-TB in Mozambique: 3.7% (95% CI: 2.5–5.2)	0.038	3.7% (95% CI: 2.5–5.2)	11
2 HIV positive	OR of RR-TB in HIV-positive patients: 1.49 (95% CI: 0.73–3.06)	0.049	4.6% (95% UI: 2.5–8.7)	24
3 Treatment failure after a first treatment	OR of initial RR-TB in retreatment cases (after treatment failure of a first treatment): 7.24 (95% CI: 4.06–12.89)	0.246	19.8% (95% UI: 9.0–36.7)	24
4 Treatment failure after retreatment	Probability of acquiring RR-TB during a first TB treatment (if no initial RR-TB) that resulted in treatment failure: 28.6% (95% CI: 8.4–58.1)	0.745	42.7% (95% UI: 24.0–67.8)	6
5 Xpert MTB+/RIF−	Likelihood ratio of retreatment failure in patients with RR-TB acquired during first treatment (before starting retreatment): 19.1 (95% CI: 15.2–24.1)	14.152	93.4% (95% UI: 85.4–97.5)	6

OR = odds ratio; TB = tuberculosis; RR-TB = rifampicin-resistant tuberculosis; UI = uncertainty interval; Xpert MTB+/RIF− = Xpert Mycobacterium tuberculosis detected/isoniazid resistance not detected.

* Pretest probability.
† Posttest probability.

Discussion

We estimated the probability of RR-TB in an HIV-positive TB patient with retreatment failure and a susceptible RIF-DST result in Mozambique at 46.6% (95% UI: 25.0–72.0). At this probability, RR-TB treatment was started without delay. We illustrated the use of the log-odds scale to facilitate the process of clinical decision-making.

Because of its high sensitivity and specificity,10 Xpert MTB+/RIF− (MTB detected, RIF detected), has a strong confirming power (approximately 50), whereas Xpert MTB+/RIF− has a lower, but still strong excluding power. However, RIF-DST can miss RR-TB if mutations happened outside of the RRDR.5,16,17 In Eswatini, 38/125 (30%) of RR strains were not detected by Xpert MTB/RIF.3 In South Africa, 37/249 (15%) samples identified as RS by Xpert MTB/RIF were reclassified as RR after sequencing.4 These patients could be wrongly treated for RS-TB, have worse treatment outcomes, and silently spread RR-TB.6 In Rwanda, when RIF-DST was not available or results delayed, RR treatment initiation based on clinical decision-making reduced mortality.18 In patients with a high pretest probability of RR-TB, Xpert MTB+/RIF− is unlikely to lower the posttest probability below the therapeutic threshold, justifying empirical treatment.7

These scenarios, common in low-resource settings, show why establishment of a therapeutic threshold for RR-TB is important. The therapeutic threshold for pulmonary RS-TB in Rwanda was 2.6%, rising to 12% when including regret factors such as treatment-related cost and morbidity.8,19 In our case, the therapeutic threshold is not equipoise between treating and not treating, but between treating for RS-TB or RR-TB. Compared with RS-TB, RR-TB treatment is longer, more toxic, and expensive, but disease-related mortality and morbidity is also higher.11 These regret factors should be considered when calculating the RR-TB threshold.20 Clinical
The probability of RR-TB in HIV-positive retreatment cases estimated as alternative starting point (24%) approached the estimate of the pretest probability of RR-TB in first treatment failure cases (20%) because of initial RR-TB in HIV-positive patients, but was lower than the estimated 43% for a HIV-positive case with treatment failure, with a large UI. This could be explained by the fact that patients with a TB history include patients with treatment failure and those with reinfection.

The therapeutic threshold is yet unknown for RR-TB, but probably less than 47%. Establishing this threshold can guide clinical decision-making. Attributing confirming and excluding power to clinical arguments on a log-odds scale can help to rationalize the process.

Received August 5, 2020. Accepted for publication December 10, 2020.

Published online February 8, 2021.

Note: Supplemental files appear at www.ajtmh.org.

Acknowledgment: We thank the patient for her participation.

Authors’ addresses: Lorena D.M. Gonzaga, Centro de Saude Primeiro de Maio, Maputo, Mozambique, E-mail: lmougueret@gmail.com.

Tinne Gils, Tom Decroo, Bart K. M. Jacobs, and Lutgarde Lynen, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium, E-mails: tgils@itg.be, tdecroo@itg.be, bkjacobs@itg.be, and llynen@itg.be.

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

REFERENCES

1. Hermans S, Caldwell J, Kaplan R, Cobelens F, Wood R, 2017. The impact of the roll-out of rapid molecular diagnostic testing for tuberculosis on empirical treatment in Cape Town, South Africa. Bull World Health Organ 95: 554–563.

2. Nguyen TNA, Anton-Le Berre V, Banuls AL, Nguyen TVA, 2019. Molecular diagnosis of drug-resistant tuberculosis: A literature review. Front Microbiol 10: 794.

3. Sanchez-Padilla E, Merker M, Beckert P, Jochims F, Diamini T, Kahn P, Bonnet M, Niemann S, 2015. Detection of drug-resistant tuberculosis by Xpert MTB/RIF in Swaziland. N Engl J Med 372: 1181–1182.

4. Makhado NA et al., 2018. Outbreak of multidrug-resistant tuberculosis in South Africa undetected by WHO-endorsed commercial tests: an observational study. Lancet Infect Dis 18: 1350–1359.
5. Van Deun A, Aung KJ, Bola V, Lebeke R, Hossain MA, de Rijk WB, Rigouts L, Gumusboga A, Torrea G, de Jong BC, 2013. Rifampin drug resistance tests for tuberculosis: challenging the gold standard. J Clin Microbiol 51: 2633–2640.

6. Van Deun A, Decroo T, Kya Jai Maug A, Hossain MA, Gumusboga M, Mulders W, Ortuño-Gutierrez N, Lynen L, de Jong BC, Rieder HL, 2020. The perceived impact of isoniazid resistance on outcome of first-line rifampicin-throughout regimens is largely due to missed rifampicin resistance. PLoS One 15: e0233500.

7. Pauker SG, Kassirer JP, 1980. The threshold approach to clinical decision making. New Engl J Med 302: 1109–1117.

8. Van den Ende J, Mugabekazi J, Moreira J, Seryange E, Basinga P, Bisoffi Z, Menten J, Boelaert M, 2010. Effect of applying a treatment threshold in a population. An example of pulmonary tuberculosis in Rwanda. J Eval Clin Pract 16: 499–508.

9. Falzon D, Schünemann HJ, Harasaki E, González-Angulo L, Lienhardt C, Jaramillo E, Weyer K, 2017. World Health Organization treatment guidelines for drug-resistant tuberculosis, 2016 update. Eur Respir J 49: 1602308.

10. Horne DJ, Kohli M, Zifodya JS, Schiller I, Dendukuri N, Tollefson D, Schumacher SG, Ochodo EA, Pai M, Steingart KR, 2019. Xpert MTB/RIF and Xpert MTB/RIF Ultra for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Syst Rev 6: CD009593.

11. World Health Organization, 2019. Global Tuberculosis Report 2019. Available at: https://apps.who.int/iris/bitstream/handle/10665/329368/9789241565714-eng.pdf?ua=1. Accessed July 29, 2020.

12. Decroo T, Henriquez-Trujillo AR, De Weggheleire A, Lynen L, 2017. Rational use of Xpert testing in patients with presumptive TB: clinicians should be encouraged to use the test-treat threshold. BMC Infect Dis 17: 674.

13. R Development Core Team, 2018. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.

14. Van den Ende J, Bisoffi Z, Van Puymbroeck H, Van der Stuyft P, Van Gompel A, Derese A, Lynen L, Moreira J, Janssen PA, 2007. Bridging the gap between clinical practice and diagnostic clinical epidemiology: pilot experiences with a didactic model based on a logarithmic scale. J Eval Clin Pract 13: 374–380.

15. Ministério da Saúde, 2018. República de Moçambique. Direcção Nacional de Saúde Pública Programa Nacional de Controlo da Tuberculose. Relatório das Actividades Desenvolvidas durante o ano 2018 [Report of Activities Developed during the year 2018]. Available at: https://www.misau.gov.mz/index.php/relatorios-aneuais-pnct. Accessed December 4, 2020.

16. Boehme CC et al., 2010. Rapid molecular detection of tuberculosis and rifampin resistance. N Engl J Med 363: 1005–1015.

17. Andre E, Goeminne L, Cabibbe A, Beckert P, Kabamba Mukadi B, Mathys V, Gagneux S, Niemann S, Van Ingen J, Cambau E, 2017. Consensus numbering system for the rifampicin resistance-associated rpoB gene mutations in pathogenic mycobacteria. Clin Microbiol Infect 23: 167–172.

18. Ngabonziza JS et al., 2020. Reduction of diagnostic and treatment delays reduces rifampicin-resistant tuberculosis mortality in Rwanda. Int J Tuberc Lung Dis 24: 329–339.

19. Basinga P, Moreira J, Bisoffi Z, Bisig B, Van den Ende J, 2007. Why are clinicians reluctant to treat smear-negative tuberculosis? An inquiry about treatment thresholds in Rwanda. Med Decis Making 27: 53–60.

20. Boyles TH, 2017. Why do clinical trials of Xpert(R) MTB/RIF fail to show an effect on patient relevant outcomes? Int J Tuberc Lung Dis 21: 249–250.

21. Ebelle MH, Locatelli I, Senn N, 2015. A novel approach to the determination of clinical decision thresholds. Evid Based Med 20: 41–47.

22. Boyles T, Locatelli I, Senn N, Ebelle M, 2017. Determining clinical decision thresholds for HIV-positive patients suspected of having tuberculosis. Evid Based Med 22: 132–138.

23. Ngabonziza JCS et al., 2020. Prevalence and drivers of false-positive rifampicin-resistant Xpert MTB/RIF results: a prospective observational study in Rwanda. Lancet Microbe 1: e74–e83.

24. Pradipta IS, Forsman LD, Bruchfeld J, Hak E, Alffenaar JW, 2018. Risk factors of multidrug-resistant tuberculosis: a global systematic review and meta-analysis. J Infect 77: 469–478.