MONIC MODULES AND SEMI-GORENSTEIN-PROJECTIVE MODULES

PU ZHANG
SCHOOL OF MATHEMATICAL SCIENCES, SHANGHAI JIAO TONG UNIVERSITY
SHANGHAI 200240, P. R. CHINA

Abstract. The category $\text{gp}(\Lambda)$ of Gorenstein-projective modules over tensor algebra $\Lambda = A \otimes_k B$ can be described as the monomorphism category $\text{mon}(B, \text{gp}(A))$ of B over $\text{gp}(A)$. In particular, Gorenstein-projective Λ-modules are monic. In this paper, we find the similar relation between semi-Gorenstein-projective Λ-modules and A-modules, via monic modules, namely, $\text{mon}(B, {}^+A) = \text{mon}(B, A) \cap {}^+A$. Using this, it is proved that if A is weakly Gorenstein, then Λ is weakly Gorenstein if and only each semi-Gorenstein-projective A-modules are monic; and that if $B = kQ$ with Q a finite acyclic quiver, then Λ is weakly Gorenstein if and only if A is weakly Gorenstein. However, this relation itself does not answer the question whether there exist double semi-Gorenstein-projective Λ-modules which are not monic. Using the recent discovered examples of double semi-Gorenstein-projective A-modules which are not torsionless, we positively answer this question, by explicitly constructing a class of double semi-Gorenstein-projective $T_2(A)$-modules with one parameter such that they are not monic, and hence not torsionless. The corresponding results are obtained also for the monic modules and semi-Gorenstein-projective modules over the triangular matrix algebras given by bimodules.

MSC 2020:
Primary: 16G10; 16G50; secondary: 16E05; 16E65.

Key words and phrases: monic module, monomorphism category, (double) semi-Gorenstein-projective module, Gorenstein-projective module, the canonical map, torsionless module, reflexive module, (left) weakly Gorenstein algebra, semi-Gorenstein-projective-free algebra

1. Introduction

Monic modules, defined on tensor products $\Lambda = A \otimes_k B$, or on matrix algebras $\Lambda = \begin{pmatrix} A & M \\ 0 & B \end{pmatrix}$ of bimodule modules M, built a bridge between Gorenstein-projective Λ-modules and Gorenstein-projective A-modules (Theorems 2.6 and 2.13). In particular, Gorenstein-projective Λ-modules are monic, in the both cases. This paper is to show that they also play an important role in the study of semi-Gorenstein-projective modules. In the both cases, we will give sufficient and necessary conditions such that Λ is weakly Gorenstein, and positively answer the question whether there exist double semi-Gorenstein-projective Λ-modules which are not monic, and hence not torsionless, and not Gorenstein-projective.

1.1. Let A be an Artin algebra. All the modules in this paper are finitely generated, and we start from left modules. Let A-mod be the category of left A-modules. For $M \in A$-mod, denote by $\text{add}(M)$ the full subcategory of A-mod of direct summands of a direct sum of copies of M; by 1M the full subcategory of A-mod of modules X with $\text{Ext}^i_A(X, M) = 0$ for $i \geq 1$; and by M^2 the full subcategory of A-mod of modules X with $\text{Ext}^i_A(M, X) = 0$ for $i \geq 1$.
Let M^* denote the A-dual $\text{Hom}_A(M, A)$ of M. Denote by $\phi_M : M \rightarrow M^{**}$ the canonical A-map, defined by $\phi_M(m)(f) = f(m)$ for $m \in M$ and $f \in M^*$. A module M is torsionless if it is a submodule of a projective module, or, equivalently, ϕ_M is a monomorphism; and M is reflexive if ϕ_M is an isomorphism.

A module M is semi-Gorenstein-projective if $M \in \mathcal{A}$; and M will be called double semi-Gorenstein-projective, if both M and M^* are semi-Gorenstein-projective. By definition, a Gorenstein-projective module is double semi-Gorenstein-projective and reflexive. This is introduced by Auslander and Bridger [AB], under the name of modules of G-dimension zero, and it is equivalent to the definition in terms of complete projective resolution given by Enochs and Jenda ([EJ1], [EJ2]). For the equivalence we refer to [AM, p.398] (where it is called a total reflexive module) and [Chr, Theorem 4.2.6]. Denote by $\text{gp}(A)$ the full subcategory of A-mod of Gorenstein-projective modules. Thus $\text{add}(A) \subseteq \text{gp}(A) \subseteq \mathcal{A}$.

1.2. Avramov and Martsinkovsky [AM, p.398] has proposed the independence problem of the total reflexivity. In fact, the known examples of semi-Gorenstein-projective modules which are not Gorenstein-projective are few and complicated. The first examples of reflexive semi-Gorenstein-projective modules which are not Gorenstein-projective, and the first examples of reflexive modules M with M^* semi-Gorenstein-projective such that M are not semi-Gorenstein-projective, are discovered by Jørgensen and Šega [JS]; and the first examples of double semi-Gorenstein-projective modules which are not torsionless, are recently found in [RZ2, RZ3]. Putting together, this solves the independence problem of the total reflexivity. Note that the first examples of semi-Gorenstein-projective modules which are not Gorenstein-projective over noncommutative algebras, are presented by Marczinzik [M2].

1.3. Let A and B be finite-dimensional algebras over field k. Since Cartan-Eilenberg [CE], modules over tensor algebra $\Lambda = A \otimes_k B$ have got interest. They are complicated in the sense that Λ-modules can not be controlled by $U \otimes_k V$ with $U \in A$-mod and $V \in B$-mod. However, if B is given by a bound quiver (Q, I), one can study Λ-modules by taking the advantage of the representations of quivers over algebra A ([RS1-RS3], [S2-S5], [KLM1, KLM2], [LZ1, LZ2], [RZ1], [ZX]), i.e., any Λ-module can be identified with a representation $(X_i, \alpha, i \in Q_0, \alpha \in Q_1)$ of (Q, I) over A, where each $X_i \in A$-mod, and each $X_\alpha : X_{s(\alpha)} \rightarrow X_{e(\alpha)}$ is an A-map, such that X_α’s satisfy all the relations which generate I.

When Q is finite acyclic and I is generated by monomial relations, this identification permits us to define monic Λ-modules and monomorphism category $\text{mon}(B, \mathcal{C}) = \text{mon}(Q, I, \mathcal{C})$ ([LZ1, LZ2], [ZX]), for any additive full subcategory \mathcal{C} of A-mod. This definition is combinatorial and constructive, and it admits a homological interpretation. In general, there is no longer the corresponding combinatorial definition of a monic module, but this homological interpretation still makes sense, and it is taken as the definition of the monomorphism category $\text{mon}(B, \mathcal{C})$ by Hu, Luo, Xiong and Zhou in [HLXZ]. See Subsection 2.1.

The study of the monomorphism categories can be traced to G. Birkhoff [Bir]. When B is the path algebra of quiver A_n with linear orientation, i.e., $B = T_n(k) = \begin{pmatrix} k & k & \cdots & k \\ 0 & k & \cdots & k \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & k \end{pmatrix}$, then $\Lambda = A \otimes_k B = T_n(A)$ and the monomorphism category $\text{mon}(B, A) = \text{mon}(Q, A$-mod) is exactly the submodule category $\mathcal{S}_n(A)$ ([RS1-RS3]), or called the filtered chain category ([S1-S5]). They have Auslander-Reiten sequences ([RS2]) and the RSS equivalence ([ZX]). Simson ([S2]-[S5]) has studied their representation type. By Kussin, Lenzing and Meltzer [KLM1, KLM2] and Chen [Chen1], they are related to the singularity theory.
1.4. An important application of monomorphism categories is that they can describe Gorenstein-projective modules as $\text{gp}(\Lambda) = \text{mon}(B, \text{gp}(A))$ (cf. Theorem 2.6 below). Thus, Gorenstein-projective Λ-modules are monic Λ-modules over Gorenstein-projective A-modules. If B is given by a finite acyclic quiver and monomial relations, by the combinatorial definition of monic modules, this gives in practice a reductive construction of Gorenstein-projective Λ-modules.

Question 1. Is there the similar relation between semi-Gorenstein-projective Λ-modules and A-modules?

Theorem 1.1. Let A and B be finite-dimensional k-algebras with $\text{gl.dim} B < \infty$, and $\Lambda = A \otimes_k B$. Then $$\text{mon}(B, \perp A) = \text{mon}(B, A) \cap \perp \Lambda.$$ Moreover, if $\text{inj.dim } A < \infty$, then $\perp \Lambda = \text{mon}(B, \perp A)$.

Theorem 1.1 will be proved in Section 3, as a special case of Theorem 3.1.

1.5. An Artin algebra A is **Gorenstein**, if $\text{inj.dim } A < \infty$ and $\text{inj.dim } A < \infty$. An Artin algebra A is left **weakly Gorenstein** ([M1], [RZ2]), if any left semi-Gorenstein-projective A-module is Gorenstein-projective, i.e., $\perp A = \text{gp}(A)$. It is open whether a left weakly Gorenstein algebra is right weakly Gorenstein ([M1, §5], [RZ2, 9.3]). However, if no confusions caused, we will omit the word “left”.

By Enochs and Jenda [EJ2, 11.5.3], Gorenstein algebras are weakly Gorenstein. By Yoshino [Y1, Theorem 5.5] and Beligiananis [Bel2, Corollary 5.11], if $\perp A$ is of finite type, then A is weakly Gorenstein. By Marczinzik [M1, Theorem 3.5(3)], torsinless finite algebras are weakly Gorenstein. For more information on weakly Gorenstein algebras we refer to [Bel1, Bel2], [M1], and [RZ2, 1.2 - 1.4, 3.6].

Question 2. (i) Let A and B be Artin algebras, M an A-B-bimodule such that $\Lambda = (\begin{array}{c|c} A & M \\ \hline 0 & B \end{array})$ is an Artin algebra. When Λ is weakly Gorenstein?

(ii) Let A and B be finite-dimensional k-algebras with $\text{gl.dim } B < \infty$. When the tensor product $A \otimes_k B$ is weakly Gorenstein?

It turns out that, in the both cases, monic modules will play a crucial role.

Theorem 1.2. Let A and B be Artin algebras, M an A-B-bimodule with $\text{proj.dim } A M < \infty$, and $\Lambda = (\begin{array}{c|c} A & M \\ \hline 0 & B \end{array})$.

1. If $\text{proj.dim } M_B < \infty$ and $D(M_B) \in (\perp B)^\perp$, then Λ is weakly Gorenstein if and only if each semi-Gorenstein-projective Λ-module is monic respect to bimodule M, and A and B are weakly Gorenstein.

2. If $\text{proj.dim } M_B < \infty$ and B is a Gorenstein algebra, then Λ is weakly Gorenstein if and only if each semi-Gorenstein-projective Λ-module is monic respect to bimodule M and A is weakly Gorenstein.

3. If $A M$ is torsionless and M_B is projective, then Λ is weakly Gorenstein if and only if A and B are weakly Gorenstein. In particular, if $A M$ and M_B are projective, then Λ is weakly Gorenstein if and only if A and B are weakly Gorenstein.

Theorem 1.2 is the combination of Propositions 4.1, 4.2 and 4.4.

Theorem 1.3. Let A and B be finite-dimensional k-algebras.
Assume that $\text{gl.dim} B < \infty$ and $\Lambda = A \otimes_k B$. If Λ is weakly Gorenstein, then so is A. Conversely, if A is weakly Gorenstein, then a semi-Gorenstein-projective Λ-module M is Gorenstein-projective if and only if M is monic.

Thus, if A is weakly Gorenstein, then Λ is weakly Gorenstein if and only if each semi-Gorenstein-projective Λ-module is monic, or equivalently, $\Lambda = \text{mon}(B, \Lambda)$.

(2) Let Q be a finite acyclic quiver. Then $A \otimes_k kQ$ is weakly Gorenstein if and only if A is weakly Gorenstein.

The assumption $\text{gl.dim} B < \infty$ holds automatically if B is given by a bound acyclic quiver. Theorem 1.3 is the combination of Propositions 4.7 and 4.8.

1.6 An Artin algebra A will be called left semi-Gorenstein-projective-free, or in short, lsgp-free, provided that each left semi-Gorenstein-projective A-module is a projective module, i.e., $\Lambda = \text{add}(A)$. We do not know whether a lsgp-free algebra is right semi-Gorenstein-projective-free.

Recall that A is left CM-free ([Chen 2]) if $\text{gp}(A) = \text{add}(A)$. Thus, A is lsgp-free if and only if A is left CM-free and weakly Gorenstein. It is open whether a left CM-free algebra is left weakly Gorenstein (or equivalently, lsgp-free). See [RZ2, 9.2]. Many algebras are lsgp-free. For example, this is the case if $\text{gl.dim} A < \infty$. There are also non Gorenstein algebras A (thus, $\text{gl.dim} A = \infty$) which are lsgp-free.

Theorem 1.4. (1) Assume that $\Lambda = \text{add}(B)$ with proj.dim$M_B < \infty$ and that A_M is torsionless with proj.dim$A_M < \infty$. Then $\Lambda = (A_M^0)_{0\in M}$ is weakly Gorenstein if and only if A is weakly Gorenstein.

Moreover, if in addition A_M is projective, then

$$\Lambda = \text{gp}(\Lambda) = \left\{ \left(\begin{array}{c} M \otimes_B P \\ P \end{array} \right) \mid P \in \text{add}(B), \ G \in \Lambda = \text{gp}(A) \right\}$$

and $\Lambda = \text{add}(\Lambda)$ if and only if $\Lambda = \text{add}(A)$.

(2) Let I be an admissible ideal of kQ, and $\Lambda = A \otimes_k kQ/I$. Then $\Lambda = \text{add}(\Lambda)$ if and only if $\Lambda = \text{add}(A)$.

Theorems 1.4 is the combination of Propositions 4.9 and 4.11.

1.7 If $\Lambda = A \otimes_b B$ with gl.dim$B < \infty$, or if $\Lambda = (A_M^0)_{0\in M}$, then Gorenstein-projective Λ-modules are always monic (cf. Theorems 2.0 and 1.1). Is this true for semi-Gorenstein-projective Λ-modules? One may ask a stronger question:

Question 3. In the both cases, whether there exist double semi-Gorenstein-projective Λ-modules which are not monic?

The positive answer will in particular gives double semi-Gorenstein-projective modules which are not Gorenstein-projective. As mentioned in Subsection 1.2, this is highly nontrivial.

To answer Question 3, we consider $\Lambda = A \otimes_k k(\phi \rightarrow \phi) = (A_M^0) = T_2(A)$. Any left Λ-module M can be identified with a triple $(\begin{array}{c} Y \\ X \end{array})_{\phi}$, where $\phi : Y \rightarrow X$ is a left A-map. Thus, one has the exact sequence of left A-modules $Y \rightarrow X \rightarrow \text{Coker}\phi \rightarrow 0$, and there is a unique A-map $\beta : \text{Coker}\pi^* \rightarrow Y^*$, such
that the diagram with exact rows

\[
\begin{array}{cccccccc}
0 & \longrightarrow & (\text{Coker}\varphi)^* & \overset{\pi^*}{\longrightarrow} & X^* & \overset{p}{\longrightarrow} & \text{Coker}\pi^* & \longrightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
0 & \longrightarrow & (\text{Coker}\varphi)^* & \overset{\pi^*}{\longrightarrow} & X^* & \overset{\varphi^*}{\longrightarrow} & Y^* & \longrightarrow & 0 \\
\end{array}
\]

commutes, where \(p \) is the canonical \(A \)-epimorphism. So one has the left \(A \)-map \(\beta^* : Y^{**} \longrightarrow (\text{Coker}\pi^*)^* \), and the composition \(\beta^* \phi_Y : Y \longrightarrow (\text{Coker}\pi^*)^* \), where \(\phi_Y : Y \longrightarrow Y^{**} \) is the canonical map.

Theorem 1.5. Let \(A \) be an Artin algebra, \(\Lambda = T_2(A) = (A A_0 A) \), and \((\overset{X}{Y})_\varphi \) a left \(\Lambda \)-module. Then

1. There is a left \(\Lambda \)-module isomorphism \((\overset{X}{Y})_\varphi^{**} \cong \left(\overset{X^{**}}{(\text{Coker}\pi^*)^*} \right)_{p^*} \), where \(p^* : (\text{Coker}\pi^*)^* \longrightarrow X^{**} \) is the \(A \)-monomorphism induced by \(p : X^* \longrightarrow (\text{Coker}\varphi)^* \).

2. Taking this isomorphism as identity, then the canonical \(\Lambda \)-map \(\phi((\overset{X}{Y})_\varphi) \) is given by \(\phi((\overset{X}{Y})_\varphi) = (\overset{\phi_X}{\beta^* \circ \phi_Y}) \).

3. \((\overset{X}{Y})_\varphi \) is torsionless and double semi-Gorenstein-projective if and only if \((\overset{X}{Y})_\varphi \) is monic, \(X, Y, \) and \(\text{Coker}\varphi \) are double semi-Gorenstein-projective, and \(X \) and \(Y \) are torsionless.

4. \((\overset{X}{Y})_\varphi \) is double semi-Gorenstein-projective with epimorphism \(\phi((\overset{X}{Y})_\varphi) \) if and only if \(\varphi^* : X^* \longrightarrow Y^* \) is an epimorphism, \(X \) and \(Y \) are double semi-Gorenstein-projective, \((\text{Coker}\varphi)^* \) is semi-Gorenstein-projective, and \(\phi_X \) and \(\phi_Y \) are epimorphisms.

Theorem 1.5(1) is a summary of Lemma 5.3 and Proposition 5.4 and Theorem 1.5(2) and (3) will be clear after Proposition 5.7.

As remarked in [RZ4, 3.1], up to now, all the known examples have the following property:

Double semi-Gorenstein-projective modules \(M \) such that \(\phi_M \) is a monomorphism (an epimorphism, respectively) are Gorenstein-projective.

The following result shows that this property is preserved under the \(T_2 \)-extensions.

Theorem 1.6. Let \(A \) be an Artin algebra and \(\Lambda = T_2(A) = (A A_0 A) \). Then

1. Any torsionless and double semi-Gorenstein-projective \(A \)-module is Gorenstein-projective if and only if any torsionless and double semi-Gorenstein-projective \(\Lambda \)-module is Gorenstein-projective.

2. Any double semi-Gorenstein-projective \(A \)-module \(L \) with \(\phi_L \) an epimorphism is Gorenstein-projective if and only if any double semi-Gorenstein-projective \(\Lambda \)-module \(M \) with \(\phi_M \) an epimorphism is Gorenstein-projective.

Theorem 1.6 will be proved in Subsection 5.9.

1.8. The following result positively answers **Question 3**, and gives a construction of double semi-Gorenstein-projective \(T_2(A) \)-modules which are not monic.
Theorem 1.7. Suppose that \(Y \) is a double semi-Gorenstein-projective \(A \)-module which is not torsionless. Let \(\varphi : Y \to P \) be a left add(\(A \))-approximation of \(Y \). Then \((\varphi, Y) \) is a double semi-Gorenstein-projective \(T_2(A) \)-module which is not monic. In particular, \((\varphi, Y) \) is not torsionless.

Theorem 1.7 will be proved in Subsection 6.1. Using the algebra \(A \) in [RZ2] and the \(A \)-modules \(M(1, -q, c) \) in [RZ3], by Theorem 1.7 we obtain a class of double semi-Gorenstein-projective \(T_2(A) \)-modules with parameter \(c \) as

\[
X(c) := \left(M_{(1, -q, c)}^{A} \right)_{f_1}
\]

such that \(X(c) \) is not monic, and hence not torsionless; moreover, all the canonical maps \(\phi_{X(c)} : X(c) \to X(c)** \) are neither monomorphisms nor epimorphisms, and \(X(c)** \) are not semi-Gorenstein-projective. See Proposition 6.2.

2. Preliminaries: Monic modules with relations to Gorenstein-projective modules

2.1. Monic modules over tensor algebras.

Definition 2.1. ([HLXZ, 3.1]) Let \(A \) and \(B \) be finite-dimensional \(k \)-algebras, and \(\Lambda = A \otimes_k B \).

(1) A left \(\Lambda \)-module \(X \) is monic, if \(\text{Tor}_i^A(A \otimes V, X) = 0 \) for all \(i \geq 1 \) and for all right \(B \)-modules \(V \).

Denote by \(\text{mon}(B, A) \) the full subcategory of \(\Lambda \)-mod consisting of monic modules, which is called the monomorphism category of \(B \) over \(A \).

(2) Let \(\mathcal{C} \) be an additive full subcategory of \(A \)-mod. An object \(X \in \text{mon}(B, A) \) is a monic module over \(\mathcal{C} \), if \((A \otimes_k V) \otimes_{\Lambda} X \in \mathcal{C} \) for all right \(B \)-module \(V \).

Denote by \(\text{mon}(B, \mathcal{C}) \) the full subcategory of \(\text{mon}(B, A) \) of monic modules over \(\mathcal{C} \), which is called the monomorphism category of \(B \) over \(\mathcal{C} \).

Lemma 2.2. ([HLXZ, Lemma 3.2(7)]; [ZX, Theorem 2.6(1)]) One has

\[
\text{mon}(B, A) = \{ X \in \Lambda \text{-mod} \mid \text{Tor}_i^A(A \otimes_k D(S), X) = 0, \forall i \geq 1, \forall \text{ simple left } B \text{-module } S \}
= \frac{1}{(D(A_A) \otimes_k B)}.
\]

Example 2.3. (1) If \(B \) is the path algebra of the quiver \(A_n \) (\(n \geq 2 \)) with linear orientation, then \(B = T_n(k) = \begin{pmatrix} k & \cdots & k \ 0 & \cdots & k \end{pmatrix} \), \(\Lambda = A \otimes_k B = \begin{pmatrix} A & \cdots & A \ 0 & \cdots & 0 \end{pmatrix} = T_n(A) \), and \(\text{mon}(B, A) \) turns out to be

\[
\mathcal{S}_n(A) = \{ \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \}_{(\varphi_i)} \in T_n(A)\text{-mod} \mid \varphi_i : X_{i+1} \to X_i \text{ is a monomorphism, } \forall 1 \leq i \leq n-1 \}.
\]

This submodular category has been studied in [A], [S1-S5], [RS1 - RS3], [Z1].

(2) If \(B \) is the path algebra \(kQ \), where \(Q = (Q_0, Q_1, s, e) \) is a finite acyclic quiver, then a monical \(\Lambda \)-module has been defined in [LZ1] as a representation \((X_i, X_{\alpha}, i \in Q_0, \alpha \in Q_1) \) of \(Q \) over \(A \), such that for each \(i \in Q_0 \) the \(A \)-map

\[
(X_\alpha)_{\alpha \in Q_1, e(\alpha) = i} : \bigoplus_{\alpha \in Q_1, e(\alpha) = i} X_{s(\alpha)} \to X_i
\]
is a monomorphism.

For any additive full subcategory \mathcal{C} of A-mod, a monic Λ-module over \mathcal{C} has been defined in [ZX, 2.1], as a monic Λ-module $(X_i, \ X_\alpha, \ i \in Q_0, \ \alpha \in Q_1)$ satisfying

$$X_i/\text{Im}(X_\alpha)_{\alpha \in Q_1, e(\alpha) = i} \in \mathcal{C}, \ \forall \ i \in Q_0.$$

(3) If $B = kQ/I$ with I generated by monomial relations, then $\text{mon}(B, \mathcal{C})$ has also been defined combinatorially. For details see [LZ2] and [ZX].

In all these monomorphism categories defined via quivers, “monomorphisms” are visible, and they also admit the homological description in Definition 2.6 ([Z1, Theorem 3.1], [LZ2, 2.1], [ZX, Theorem 2.6]).

Lemma 2.4. Let $\Lambda = A \otimes_k kQ$, where Q is a finite acyclic quiver. Then torsionless Λ-modules are monic.

Proof. Let $X = (X_i, \ X_\alpha)$ be a torsionless Λ-module. Then X is a submodule of a projective Λ-module, which is of the form $P \otimes_k L$, where P is a projective left A-module, and $L = (L_i, \ L_\alpha)$ is a projective left kQ-module. Thus there is a monomorphism $\left((f_i)_{i \in Q_0} : (X_i, X_\alpha) \rightarrow (P \otimes_k L(i), \ Id_P \otimes_k L_\alpha)\right)$ of Λ-modules. Hence, for each $i \in Q_0$, the diagram of A-maps

$$\begin{array}{ccc}
X_{s(\alpha)} & \xrightarrow{f_{s(\alpha)}} & X_i \\
\bigoplus_{\alpha \in Q_1, e(\alpha) = i} X_{s(\alpha)} & \xrightarrow{(X_{s(\alpha)})_{\alpha \in Q_1, e(\alpha) = i}} & \bigoplus_{\alpha \in Q_1, e(\alpha) = i} P \otimes_k L_{s(\alpha)} \\
\bigoplus_{\alpha \in Q_1, e(\alpha) = i} P \otimes_k L_{s(\alpha)} & \xrightarrow{(Id_P \otimes_k L_\alpha)_{\alpha \in Q_1, e(\alpha) = i}} & P \otimes_k L_i
\end{array}$$

commutes. Since both $\bigoplus_{\alpha \in Q_1, e(\alpha) = i} f_{s(\alpha)}$ and $(Id_P \otimes_k L_\alpha)_{\alpha \in Q_1, e(\alpha) = i}$ are monomorphisms, it follows that $(X_{s(\alpha)})_{\alpha \in Q_1, e(\alpha) = i}$ is a monomorphism, i.e., X is a monic Λ-module. $
$
Remark 2.5. Lemma 2.4 is not true for $\Lambda = A \otimes_k (kQ/I)$, even if I is generated by monomial relations. For example, if $A = k$, $Q = 3 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 1$, and $I = \langle \alpha \rangle$, then the simple module $S(2) = \text{rad}P(3)$ is a torsionless (kQ/I)-module, but it is not monic.

2.2. Gorenstein-projective modules over tensor algebras. The relationship between Gorenstein-projective modules over $\Lambda = A \otimes_k B$ and monomorphism categories of B over A is

Theorem 2.6. ([HLXZ, Theorem 4.5]) Let A and B be finite-dimensional k-algebras with $\text{gl.dim}B < \infty$, and $\Lambda = A \otimes_k B$. Then $\text{gp}(\Lambda) = \text{mon}(B, \ \text{gp}(A))$. In particular, a Gorenstein-projective Λ-module is monic.

Theorem 2.6 is proved for $\Lambda = T_n(A) = A \otimes_k T_n(k)$ with A Gorenstein in [Z1, Corollary 4.1(ii)]; it is proved for $B = kQ$ in [LZ1, Theorem 5.1], and for $B = kQ/I$ in [LZ2, Theorem 4.1], where Q is any finite acyclic quiver, and I is generated by monomial relations. In all these cases, since $\text{mon}(B, \ \text{gp}(A))$ are defined via the combinatorics of quivers, Theorem 2.6 provides in practice an inductive construction of Gorenstein-projective modules.
2.3. Monic modules respect to bimodules. Let A and B be Artin algebras, and M an A-B-bimodule such that $\Lambda = (A \overset{M}{\underset{B}{\Lambda}})$ is an Artin algebra. This is equivalent to say that A and B are Artin R-algebra, and M is finitely generated over R which acts centrally on M, where R is a commutative Artin ring ([ARS, Proposition 2.1, p.72]). Any left Λ-module is identified with a triple $(X, Y)\varphi$, where X is a left A-module, Y is a left B-module, and $\varphi : M \otimes_B Y \longrightarrow X$ is a left A-map.

Definition 2.7. ([XZZ, 2.1]) Let $\Lambda = (A \overset{M}{\underset{B}{\Lambda}})$ be an Artin algebra. A Λ-module $(X, Y)\varphi$ is monic respect to bimodule $\mathcal{A}M_B$, provided that $\varphi : M \otimes_B Y \longrightarrow X$ is a monomorphism.

Denote by $\mathcal{M}(A, M, B)$ the full subcategory of Λ-mod of monic Λ-modules respect to bimodule $\mathcal{A}M_B$, which is called the monomorphism category respect to bimodule $\mathcal{A}M_B$.

Example 2.8. The monomorphism category $\text{mon}(B, A)$ and the monomorphism category $\mathcal{M}(A, M, B)$ are in different setting. Even if $\Lambda = A \otimes_k B = (A \overset{M}{\underset{B}{\Lambda}})$, $\text{mon}(B, A) \neq \mathcal{M}(A', M, B')$ in general.

For example, consider $T_n(A) = A \otimes_k T_n(k)$. A $T_n(A)$-module $X = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix}$ is a monic $T_n(A)$-module if and only if $\varphi_i : X_{i+1} \longrightarrow X_i$ is a monomorphism for all $1 \leq i \leq n-1$. Thus $\text{mon}(T_n(k), A) = S_n(A)$.

On the other hand, $T_n(A) = \left(T_{n-1}(A) \overset{M_{n-1}}{\underset{A}{\Lambda}} \right)$ for $n \geq 2$, where $M_{n-1} = \begin{pmatrix} A \\ \vdots \\ A \end{pmatrix}$ (n − 1 rows) is a $T_{n-1}(A)$-A-bimodule, and X is a monic $T_n(A)$-module respect to bimodule M_{n-1} if and only if

$$\varphi_i \cdots \varphi_{n-1} : X_n \longrightarrow X_i$$

is a monomorphism for all $1 \leq i \leq n-1$.

Thus, a $T_n(A)$-module X is a monic $T_n(A)$-module if and only if

$$\begin{pmatrix} X_1 \\ \vdots \\ X_m \end{pmatrix}$$

is a monic $T_m(A)$-module respect to bimodule M_{m-1} for all $2 \leq m \leq n$, where $T_m(A) = \left(T_{m-1}(A) \overset{M_{m-1}}{\underset{A}{\Lambda}} \right)$, and $M_{m-1} = \begin{pmatrix} A \\ \vdots \\ A \end{pmatrix}$ (m − 1 rows); and a monic $T_n(A)$-module X respect to M_{n-1} is not necessarily a monic $T_n(A)$-module. In some sense, $\mathcal{M}(T_{n-1}(A), M_{n-1}, A)$ can be seen as the local version of $\text{mon}(T_n(k), A)$.

For example, let $n \geq 3$. Consider $T_n(A)$-module $X = \begin{pmatrix} A \\ \vdots \\ A \oplus A \\ X_n \end{pmatrix}$, where

$$\varphi_{n-1} = \begin{pmatrix} \text{Id}_A \\ 0 \end{pmatrix} : A \longrightarrow A \oplus A, \quad \varphi_{n-2} = (\text{Id}_A, 0) : A \oplus A \longrightarrow A$$

and $\varphi_i = \text{Id}_A : X_{i+1} = A \longrightarrow A = X_i$ for all $1 \leq i \leq n-3$. Then $X \notin \text{mon}(T_n(k), A)$, but $X \in \mathcal{M}(T_{n-1}(A), M_{n-1}, A)$.

Lemma 2.9. Let $\Lambda = (A \overset{M}{\underset{B}{\Lambda}})$ be an Artin algebra, where M_B is projective. Then torsionless Λ-modules are monic respect to bimodule $\mathcal{A}M_B$.

Proof. Let $L = \begin{pmatrix} X \\ Y \end{pmatrix}^\varphi$ be a torsionless Λ-module. Then L is a submodule of a projective Λ-module, which is of the form $\begin{pmatrix} P \oplus (M \otimes_B Q) \end{pmatrix}_\text{Id}_{M \otimes_B Q}$, where P is a projective left A-module, and Q is a projective
left B-module. Thus, there is a monomorphism $\left(\begin{array}{c} 1 \\ y \end{array} \right) : \left(\begin{array}{c} X \\ Y \end{array} \right) \varphi \rightarrow \left(\begin{array}{c} P \oplus M \otimes_B Q \end{array} \right)_{(i)}$. Since M_B is projective, $\text{Id}_M \otimes_B g$ is a monomorphism. By the commutative diagram

\begin{equation}
\begin{array}{c}
M \otimes_B Y \\
\downarrow \text{Id}_M \otimes_B g \\
M \otimes_B Q \\
\end{array}
\xrightarrow{\varphi}
\begin{array}{c}
X \\
\downarrow \\
P \oplus M \otimes_B Q \\
\end{array}
\end{equation}

φ is a monomorphism, i.e., L is a monic Λ-module.

Remark 2.10. Lemma 2.9 is not true if M_B is not projective. For example, let $\Lambda = \left(\begin{array}{c} k \\ M \end{array} \right)$, where A is the path algebra $k(2 \rightarrow 1)$, $kM_A = D(Ae_1) = \text{Hom}_k(Ae_1, k)$ is a k-A-bimodule. Since $M_{e_2} = 0$, $M \otimes_A Ae_2 = M e_2 \otimes_A e_2 = 0$. Thus $\left(\begin{array}{c} 0 \\ 0 \end{array} \right)$ is a left projective Λ-module. Let $\sigma : Ae_1 \rightarrow Ae_2$ be the embedding. Then $\left(\begin{array}{c} 0 \\ 0 \end{array} \right) : \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \rightarrow \left(\begin{array}{c} 0 \\ 0 \end{array} \right)$ is a Λ-monomorphism, and hence $\left(\begin{array}{c} 0 \\ 0 \end{array} \right)$ is not monic respect to bimodule kM_A.

2.4. (Semi-)Gorenstein-projective modules over triangular matrix algebras of bimodules.

For an Artin algebra B, let D denote the duality of B ([ARS, p.37]).

Let A and B be Artin algebras, M an A-B-bimodule such that $\Lambda = \left(\begin{array}{c} A \\ B \end{array} \right)$ is an Artin algebra. Under suitable conditions, semi-Gorenstein-projective Λ-modules can be described as follows.

Theorem 2.11. ([Z2, Theorem 1.1]) Assume that $\text{proj.dim}_A M < \infty$ and $D(M_B) \in \left(\begin{array}{c} + \end{array} \right) \left(\begin{array}{c} + \end{array} \right)$. Then a Λ-module $\left(\begin{array}{c} X \\ Y \end{array} \right) \varphi \in \mathcal{L}(\Lambda)$ if and only if $Y \in \mathcal{L}(\Lambda)$, the left A-map $\varphi : M \otimes_B Y \rightarrow X$ induces isomorphisms $\text{Ext}^i_A(X, A) \cong \text{Ext}^i_A(M \otimes_B Y, A)$ for all $i \geq 1$, and $\varphi^* : X^* \rightarrow (M \otimes_B Y)^*$ is a right Λ-epimorphism.

An A-B-bimodule M is compatible ([Z2, Definition 1.1]), if the following two conditions hold:

- If Q^* is an exact sequence of projective B-modules, then $M \otimes_B Q^*$ is exact; and
- If P^* is a complete A-projective resolution, then $\text{Hom}_A(P^*, M)$ is exact.

Lemma 2.12. ([Z2, Proposition 1.3(1)]) Let M be an A-B-bimodule. If $\text{proj.dim}_A M < \infty$ and $\text{proj.dim}_B M < \infty$, then M is compatible.

Under the condition of compatible bimodule, Gorenstein-projective Λ-modules can be described as follows. In particular, again, Gorenstein-projective Λ-modules are monic, but in the sense of respect to bimodule $A_M B$ (compare Theorem 2.6).

Theorem 2.13. ([Z2, Theorem 1.4]) Assume that M is a compatible A-B-bimodule. Then $\left(\begin{array}{c} X \\ Y \end{array} \right) \varphi \in \text{gp}(\Lambda)$ if and only if $\varphi : M \otimes_B Y \rightarrow X$ is a monomorphism, $\text{Coker} \varphi \in \text{gp}(A)$, and $Y \in \text{gp}(B)$.

If this is the case, $X \in \text{gp}(A)$ if and only if $M \otimes_B Y \in \text{gp}(A)$.

Corollary 2.14. Let A be an Artin algebra, and $\Lambda = T_2(A) = \left(\begin{array}{c} A \\ B \end{array} \right)$. Then

1. $\mathcal{L}(\Lambda) = \{(X, Y) \in \Lambda \text{-mod} \mid X \in \mathcal{L}(\Lambda), \ Y \in \mathcal{L}(\Lambda), \ \varphi^* : X^* \rightarrow Y^* \text{ is epic}\}$.

2. $\text{gp}(\Lambda) = \{(X, Y) \in \Lambda \text{-mod} \mid \varphi : Y \rightarrow X \text{ is monic}, \ \text{Coker} \varphi \in \text{gp}(A), \ Y \in \text{gp}(A)\}$

 $= \{(X, Y) \in \Lambda \text{-mod} \mid \varphi : Y \rightarrow X \text{ is monic}, \ \text{Coker} \varphi \in \text{gp}(A), \ Y \in \text{gp}(A), \ X \in \text{gp}(A)\}$.

3. Monomorphism categories over perpendicular categories

Let A and B be finite-dimensional k-algebras, and $\Lambda = A \otimes_k B$. A relation between semi-Gorenstein-projective A-modules and semi-Gorenstein-projective A-modules is contained in the following general result.

Theorem 3.1. Let A and B be finite-dimensional k-algebra with $\text{gl.dim}B < \infty$, T an A-module, and $\Lambda = A \otimes_k B$. Then

$$\text{mon}(B, \perp T) = \text{mon}(B, A) \cap \perp (T \otimes_k B).$$

Moreover, if there is an exact sequence of left A-modules

$$0 \longrightarrow T_m \longrightarrow \cdots \longrightarrow T_0 \longrightarrow D(A) \longrightarrow 0$$

with each $T_j \in \text{add}(T)$, then $\text{mon}(B, \perp T) = \perp (T \otimes_k B)$.

In particular, there holds $\text{mon}(B, \perp A) = \text{mon}(B, A) \cap \perp \Lambda$; and if $\text{inj.dim} A < \infty$, then $\perp \Lambda = \text{mon}(B, \perp A)$.

Proof. Let $X \in \text{mon}(B, A)$. Since by definition $\text{mon}(B, \perp T) \subseteq \text{mon}(B, A)$, it follows that, in order to prove $\text{mon}(B, \perp T) = \text{mon}(B, A) \cap \perp (T \otimes_k B)$, it suffices to prove that $X \in \perp (T \otimes_k B)$ if and only if $X \in \text{mon}(B, \perp T)$, i.e., $(A \otimes_k V) \otimes_\Lambda X \in \perp T$ for all right B-modules V.

Take a Λ-projective resolution

$$P_\bullet : \cdots \longrightarrow P_1 \longrightarrow P_0 \longrightarrow X \longrightarrow 0.$$

Claim 1: $X \in \perp (T \otimes_k B)$ if and only if the complex

$$\text{Hom}_\Lambda(P_\bullet, \text{Hom}_k(S', T))$$

is exact, for each right simple B-module S'.

Since $\text{gl.dim}B < \infty$, it is clear that $\perp (T \otimes_k B) = \bigcap_S \perp (T \otimes_k S)$, where S ranges over all the left simple B-modules. To use the Tensor-Hom adjoint pair later, we write a left simple B-module S as $D(S')$, where S' is a right simple B-module. Thus, $\perp (T \otimes_k B) = \bigcap_{S'} \perp (T \otimes_k D(S'))$, where S' ranges over all the right simple B-modules. Therefore, $X \in \perp (T \otimes_k B)$ if and only if

$$\text{Hom}_\Lambda(P_\bullet, T \otimes_k D(S'))$$

is exact, for each right simple B-module S'. Note that the canonical k-linear isomorphism

$$T \otimes_k D(S') \longrightarrow \text{Hom}_k(S', T), \ t \otimes f \mapsto "s' \mapsto f(s')t", \ \forall t \in T, \ f \in D(S'), \ s' \in S'$$

is a left Λ-isomorphism. Thus, $X \in \perp (T \otimes_k B)$ if and only if $\text{Hom}_\Lambda(P_\bullet, \text{Hom}_k(S', T))$ is exact, for each right simple B-module S'.

Claim 2: $(A \otimes_k V) \otimes_\Lambda X \in \perp T$ for all right B-modules V if and only if the complex

$$\text{Hom}_k((A \otimes_k S') \otimes_\Lambda P_\bullet, T)$$

is exact for each right simple B-module S'.
By assumption $X \in \text{mon}(B, A)$, i.e., $\text{Tor}_i^\Lambda(A \otimes_k V, X) = 0$ for all $i \geq 1$ and for all right B-modules V.

It follows that the functor

$$(A \otimes_k -) \otimes_A X : \text{mod}B \to \text{mod}A$$

is an exact functor. As a consequence, $(A \otimes_k V) \otimes_A X \in \perp T$ for all right B-modules V if and only if $(A \otimes_k S') \otimes_A X \in \perp T$ for each right simple B-module S', since $\perp T$ is extension closed. Since $\text{Tor}_i^\Lambda(A \otimes_k S', X) = 0$ for all $i \geq 1$, it follows that

$$(A \otimes_k S') \otimes_A P_\bullet : \cdots \to (A \otimes_k S') \otimes_A P_1 \to \cdots \to (A \otimes_k S') \otimes_A P_0 \to (A \otimes_k S') \otimes_A X \to 0$$

is an exact sequence of left A-modules. Since each P_i is a projective left A-module, each $(A \otimes_k S') \otimes_A P_i \in \text{add}(A \otimes_k S')$. Thus each $(A \otimes_k S') \otimes_A P_i$ is projective as a left A-module, and hence $(A \otimes_k S') \otimes_A P_\bullet$ is an A-projective resolution of left A-module $(A \otimes_k S') \otimes_A X$, for each right simple B-module S'. Therefore, $(A \otimes_k S') \otimes_A X \in \perp T$ for each right simple B-module S' if and only if $\text{Hom}_A((A \otimes_k S') \otimes_A P_\bullet, T)$ is exact for each right simple B-module S'.

Claim 3: There is an isomorphism of complexes

$$\text{Hom}_A((A \otimes_k S') \otimes_A P_\bullet, T) \cong \text{Hom}_A(P_\bullet, \text{Hom}_k(S', T))$$

for each right simple B-module S'.

Applying the Tensor-Hom adjoint pair $((A \otimes_k S') \otimes_A - , \text{Hom}_A(A \otimes_k S', -))$ between Λ-mod and A-mod, one has the following isomorphism of complexes of k-spaces

$$\text{Hom}_A((A \otimes_k S') \otimes_A P_\bullet, T) \cong \text{Hom}_A(P_\bullet, \text{Hom}_A(A \otimes_k S', T)).$$

Applying the adjoint pair $(A \otimes_k - , \text{Hom}_A(-, -))$ between k-mod and A-mod, one has the isomorphisms of k-spaces

$$\text{Hom}_A(A \otimes_k S', T) \cong \text{Hom}_k(S', \text{Hom}_A(A, T)) \cong \text{Hom}_k(S', T),$$

which is clearly also an isomorphism of left A-modules. All together we get an isomorphism of complexes

$$\text{Hom}_A((A \otimes_k S') \otimes_A P_\bullet, T) \cong \text{Hom}_A(P_\bullet, \text{Hom}_k(S', T))$$

for each right simple B-module S'.

It follows from **Claim 1**, **Claim 2** and **Claim 3** that $X \in \perp (T \otimes_k B)$ if and only if $(A \otimes_k V) \otimes_A X \in \perp T$ for all right B-module V. This proves $\text{mon}(B, \perp T) = \text{mon}(B, A) \cap \perp (T \otimes_k B)$.

Finally, assume that there is an exact sequence $0 \to T_m \to \cdots \to T_0 \to D(A_A) \to 0$ with each $T_j \in \text{add}(T)$. To show $\text{mon}(B, \perp T) = \perp (T \otimes_k B)$, it suffices to show $\perp (T \otimes_k B) \subseteq \text{mon}(B, A)$. By Lemma 2.2, $\text{mon}(B, A) = \perp (D(A_A) \otimes_k B)$. Thus, it suffices to show $\perp (T \otimes_k B) \subseteq \perp (D(A_A) \otimes_k B)$. This follows from the exact sequence $0 \to T_m \otimes_k B \to \cdots \to T_0 \otimes_k B \to D(A_A) \otimes_k B \to 0$ with each $T_j \otimes_k B \in \text{add}(T \otimes_k B)$. This completes the proof.

4. **Weakly Gorenstein algebras: Proof of Theorems 1.2, 1.3, and 1.4**

4.1. **When triangular matrix algebras of bimodules are weakly Gorenstein?** Let A and B be Artin algebras, M an A-B-bimodule such that $\Lambda = \left(\begin{array}{c|c} A & B \\ \hline 0 & M \end{array} \right)$ is an Artin algebra. We will give various conditions for Λ being a left weakly Gorenstein algebra, i.e., $\perp \Lambda = \text{gp}(\Lambda)$.

Proposition 4.1. Assume that \(\text{proj.dim}_A M < \infty \), \(\text{proj.dim}_B M < \infty \), and \(D(M_B) \in (\perp_{(B)} B)\perp \). Then \(\Lambda = (A \overset{M}{\underset{B}{\wedge}}) \) is weakly Gorenstein if and only if each semi-Gorenstein-projective \(\Lambda \)-module is monic respect to bimodule \(A M_B \), and \(A \) and \(B \) are weakly Gorenstein.

Proof. Since \(\text{proj.dim}_A M < \infty \) and \(\text{proj.dim}_B M < \infty \), the \(A \)-\(B \)-bimodule \(M \) is compatible (cf. Lemma 2.12). Thus, under the assumptions, one can apply Theorems 2.11 and 2.13.

Assume that each semi-Gorenstein-projective \(\Lambda \)-module is monic respect to bimodule \(A M_B \), and \(A \) and \(B \) are weakly Gorenstein. Let \((\overline{X}_Y) \) \(\in \perp \Lambda \). We need to prove \((\overline{X}_Y) \in \text{gp}(A) \). By the assumption, \(\varphi : M \otimes_B Y \rightarrow X \) is a monomorphism; thus \(\text{Coker} \varphi \rightarrow 0 \), since \(\text{projdim} \Lambda \). Applying Theorem 2.11 one gets the conclusions:

- \(\varphi : M \otimes_B Y \rightarrow X \) is a monomorphism;
- \(Y \in \perp B \), and hence \(Y \in \text{gp}(B) \) (since by assumption \(B \) is weakly Gorenstein);
- \(\varphi \) induces isomorphisms \(\text{Ext}^i_A(X, A) \cong \text{Ext}^i_A(M \otimes_B Y, A) \) for all \(i \geq 1 \);
- \(\varphi^* : X^* \rightarrow (M \otimes_B Y)^* \) is a right \(A \)-epimorphism.

Applying \(\text{Hom}_A(-, A) \) to the exact sequence \(0 \rightarrow M \otimes_B Y \xrightarrow{\varphi} X \rightarrow \text{Coker} \varphi \rightarrow 0 \), since \(\varphi^* : X^* \rightarrow (M \otimes_B Y)^* \) is an epimorphism and \(\varphi \) induces isomorphisms \(\text{Ext}^1_A(X, A) \cong \text{Ext}^1_A(M \otimes_B Y, A) \) for all \(i \geq 1 \), it follows that \(\text{Coker} \varphi \in \perp A \). Hence \(\text{Coker} \varphi \in \text{gp}(A), \) since by assumption \(A \) is weakly Gorenstein. Thus, we get the following:

- \(\varphi : M \otimes_B Y \rightarrow X \) is a monomorphism;
- \(\text{Coker} \varphi \in \text{gp}(A); \) and
- \(Y \in \text{gp}(B). \)

Applying Theorem 2.13 one gets \((\overline{X}_Y) \in \text{gp}(A) \). This proves the “if” part.

Conversely, assume that \(\Lambda \) is weakly Gorenstein. Thus, any semi-Gorenstein-projective \(\Lambda \)-module is Gorenstein-projective, and hence it is monic respect to bimodule \(A M_B \), by Theorem 2.13. It remains to prove that \(A \) and \(B \) are weakly Gorenstein. Let \(X \in \perp A \). Applying Theorem 2.11 one knows \((\overline{X}_0) \in \perp \Lambda \), thus \((\overline{X}_0) \in \text{gp}(A) \) by the assumption, and then by Theorem 2.13 one has \(X \in \text{gp}(A) \). This proves that \(A \) is weakly Gorenstein.

Similarly, let \(Y \in \perp B \). By Theorem 2.11 one knows \((\overline{M \otimes_B Y})_{\text{Id}_{M \otimes_B Y}} \in \perp \Lambda \), and hence \((\overline{M \otimes_B Y})_{\text{Id}_{M \otimes_B Y}} \in \text{gp}(A) \). Then by Theorem 2.13 \(Y \in \text{gp}(B) \). This proves that \(B \) is weakly Gorenstein.

Taking \(B \) to be a Gorenstein algebra in Proposition 4.1, we get

Proposition 4.2. Assume that \(\text{proj.dim}_A M < \infty \), \(\text{proj.dim}_B M < \infty \), and that \(B \) is a Gorenstein algebra. Then \(\Lambda = (A \overset{M}{\underset{B}{\wedge}}) \) is weakly Gorenstein if and only if each semi-Gorenstein-projective \(\Lambda \)-module is monic respect to bimodule \(A M_B \) and \(A \) is weakly Gorenstein.

Proof. Since by assumption \(B \) is a Gorenstein algebra, it follows that \(\perp (B) = \text{gp}(B) \). Recall that for a Gorenstein algebra \(B \), \(\text{gp}(B), p(B)^{< \infty} \) is a cotorsion pair (see e.g., [H], [EJ2], [BR]), where \(p(B)^{< \infty} \) is the full subcategory of \(B \)-mod consisting of modules of finite projective dimension. Thus

\[\perp (B) = \text{gp}(B) = p(B)^{< \infty}. \]

Since by assumption \(\text{proj.dim}_B M < \infty \), it follows that \(\text{inj.dim} D(M_B) < \infty \). Since \(B \) is Gorenstein, it follows that \(\text{proj.dim} D(M_B) < \infty \), i.e., \(D(M_B) \in p(B)^{< \infty} = (\perp (B))^{\perp} \). Thus, the assertion follows from Proposition 4.1. \(\blacksquare \)
Taking B to be a field k in Proposition 4.12 we get

Corollary 4.3. Let A be a finite-dimensional k-algebra.

1. Let M be a finite-dimensional A-module. Assume that $\text{proj.dim}_A M < \infty$. Then $\Lambda = \begin{pmatrix} A & M \\ 0 & k \end{pmatrix}$ is weakly Gorenstein if and only if each semi-Gorenstein-projective Λ-module is monic respect to bimodule AM_k and A is weakly Gorenstein.

2. Let P be a finite-dimensional projective left A-module, and $\Lambda = \begin{pmatrix} A & P \\ 0 & k \end{pmatrix}$. Then

$$\begin{aligned}
\perp \Lambda &= \left\{ \begin{pmatrix} G \\ 0 \end{pmatrix} \oplus \begin{pmatrix} P \otimes_k V \\ V \end{pmatrix} \right\}_{\text{id}_{P \otimes_k V}} \mid G \in \perp A, V \in k\text{-mod} \\
\text{gp}(A) &= \left\{ \begin{pmatrix} G \\ 0 \end{pmatrix} \oplus \begin{pmatrix} P \otimes_k V \\ V \end{pmatrix} \right\}_{\text{id}_{P \otimes_k V}} \mid G \in \text{gp}(A), V \in k\text{-mod}
\end{aligned}$$

and Λ is weakly Gorenstein if and only if A is weakly Gorenstein.

Proof. (2) Let $\begin{pmatrix} X \\ V \end{pmatrix}_ϕ \in \perp \Lambda$. By Theorem 2.11 one has

- $ϕ : P^{\oplus \dim V} \rightarrow X$ induces isomorphisms $\text{Ext}_A^i(X,A) \cong \text{Ext}_A^i(P^{\oplus \dim V},A) = 0$, $∀ i \geq 1$; and
- $ϕ^* : X^* \rightarrow (P^*)^{\oplus \dim V}$ is a right A-epimorphism.

Thus $X \in \perp A$, and $ϕ^*$ is a splitting epimorphism. Hence $ϕ^{**}$ is a splitting monomorphism. By the commutative diagram

$$\begin{array}{ccc}
P^{\oplus \dim V} & \xrightarrow{ϕ} & X \\
\cong & \downarrow{ϕ_X} & \downarrow{ϕ^*} \\
(P^{**})^{\oplus \dim V} & \xrightarrow{ϕ^{**}} & X^{**}
\end{array}$$

one sees that $ϕ$ is a splitting monomorphism. Thus $X = G \oplus P^{\oplus \dim V}$ where G is semi-Gorenstein-projective, and hence $\begin{pmatrix} X \\ V \end{pmatrix}_ϕ \cong \begin{pmatrix} G \\ 0 \end{pmatrix} \oplus \begin{pmatrix} P \otimes_k V \\ V \end{pmatrix}_{\text{id}_{P \otimes_k V}}$. This proves $\perp \Lambda = \left\{ \begin{pmatrix} G \\ 0 \end{pmatrix} \oplus \begin{pmatrix} P \otimes_k V \\ V \end{pmatrix}_{\text{id}_{P \otimes_k V}} \mid G \in \perp A, V \in k\text{-mod} \right\}$. Since $\begin{pmatrix} P \otimes_k V \\ V \end{pmatrix}_{\text{id}_{P \otimes_k V}}$ is a projective Λ-module and $\begin{pmatrix} G \\ 0 \end{pmatrix}$ is a Gorenstein-projective Λ-module if and only if G a Gorenstein-projective A-module, it follows that $\text{gp}(A) = \left\{ \begin{pmatrix} G \\ 0 \end{pmatrix} \oplus \begin{pmatrix} P \otimes_k V \\ V \end{pmatrix}_{\text{id}_{P \otimes_k V}} \mid G \in \text{gp}(A), V \in k\text{-mod} \right\}$. Therefore Λ is weakly Gorenstein if and only if A is weakly Gorenstein.

Proposition 4.4. Assume that AM is torsionless with $\text{proj.dim}_A M < \infty$ and $M B$ is projective. Then $\Lambda = \begin{pmatrix} A & M \\ 0 & B \end{pmatrix}$ is weakly Gorenstein if and only if A and B are weakly Gorenstein.

In particular, if AM and MB are projective, then Λ is weakly Gorenstein if and only if A and B are weakly Gorenstein.

Proof. Since M_B is projective, $D(M_B)$ is an injective B-module, and hence $D(M_B) \in (B^+)$. Thus, the assumption that $\text{proj.dim}_A M < \infty$ and M_B is projective guarantee that the conditions of Proposition 4.11 are satisfied. By Proposition 4.11 it suffices to prove that if A and B are weakly Gorenstein, then any semi-Gorenstein-projective Λ-module $\begin{pmatrix} X \\ V \end{pmatrix}_ϕ$ is monic respect to bimodule AM_B.

Applying Theorem 2.11 to $\begin{pmatrix} X \\ V \end{pmatrix}_ϕ \in \perp \Lambda$, one gets the following conclusions:

- $Y \in \perp B$, and hence $Y \in \text{gp}(B)$ (since by assumption B is weakly Gorenstein);
- $ϕ : M \otimes_B Y \rightarrow X$ induces isomorphisms $\text{Ext}_A^i(X,A) \cong \text{Ext}_A^i(M \otimes_B Y, A)$, $∀ i \geq 1$; and
- $ϕ^* : X^* \rightarrow (M \otimes_B Y)^*$ is a right A-epimorphism.
Since $Y \in \text{gp}(B)$, BY is a submodule of some projective B-module $_BP$. Since M_B is projective, it follows that $A(M \otimes_B Y)$ is a submodule of $A(M \otimes_B P)$. Since B_P is projective, $A(M \otimes_B P) \in \text{add}(AM)$. Since by assumption AM is torsionless, it follows that $M \otimes_B P$ is a torsionless left A-module, and hence $M \otimes_B Y$ is a torsionless left A-module. Thus, the canonical map $\phi_{M \otimes_BY} : M \otimes_B Y \to (M \otimes_B Y)^{**}$ is a monomorphism.

Since $\varphi^* : X^* \to (M \otimes_B Y)^*$ is an epimorphism, it follows that $\varphi^{**} : (M \otimes_B Y)^{**} \to X^{**}$ is a monomorphism. From the commutative diagram with monomorphism $\phi_{M \otimes_BY}$

$$
\begin{array}{ccc}
M \otimes_B Y & \xrightarrow{\varphi} & X \\
\downarrow \phi_{M \otimes_B Y} & & \downarrow \phi_X \\
(M \otimes_B Y)^{**} & \xrightarrow{\varphi^{**}} & X^{**}
\end{array}
$$

one sees that $\varphi : M \otimes_B Y \to X$ is a monomorphism, i.e., $(X^Y)_\varphi$ is monic respect to bimodule AM_B. This completes the proof.

\begin{remark}
The “only if” part in Proposition 4.4 does not need the condition that AM is torsionless.
\end{remark}

4.2. When tensor algebras are weakly Gorenstein? Let A and B be finite-dimensional k-algebras with $\text{gl.dim}B < \infty$, and $\Lambda = A \otimes_k B$. We first look at some properties of a map $\text{mon}(B, -)$.

\begin{lemma}
Let A and B be finite-dimensional k-algebra, and $\Lambda = A \otimes_k B$.

(i) Let \mathscr{C} be an additive full subcategory of A-mod closed under direct summands, and $M \in A$-mod. Then $M \otimes_k B \in \text{mon}(B, \mathscr{C})$ if and only if $M \in \mathscr{C}$.

(ii) If M is a semi-Gorenstein-projective A-module which is not Gorenstein-projective, then $M \otimes_k B$ is a semi-Gorenstein-projective Λ-module which is not Gorenstein-projective.

(iii) Let Ω (respectively, Γ) be the set of additive full subcategories of A-mod (respectively, Λ-mod) closed under direct summands. Then the map

$$
\text{mon}(B, -) : \Omega \to \Gamma, \quad \mathscr{C} \mapsto \text{mon}(B, \mathscr{C})
$$

is an injective map.

\begin{proof}
(i) Assume that $M \in \mathscr{C}$. For any right B-module V, taking a B-projective resolution

$$
P_* : \cdots \to P_1 \to P_0 \to V \to 0
$$

of V, one has a projective resolution $A \otimes_k P_*$ of right A-module $A \otimes_k V$. By the isomorphisms

$$(A \otimes_k V) \otimes \Lambda (M \otimes_k B) \cong (A \otimes \Lambda M) \otimes_k (V \otimes_B B) \cong M \otimes_k V$$

one sees that there is an isomorphism of complexes

$$(A \otimes_k P_*) \otimes \Lambda (M \otimes_k B) \cong M \otimes_k P_*$$

and hence

$$\text{Tor}^\Lambda_i(A \otimes_k V, M \otimes_k B) \cong \text{Tor}_i^\Lambda(M, V) = 0.$$

This shows $M \otimes_k B \in \text{mon}(B, A)$. Further, by $(A \otimes_k V) \otimes \Lambda (M \otimes_k B) \cong M \otimes_k V \in \mathscr{C}$, one gets $M \otimes_k B \in \text{mon}(B, \mathscr{C})$.

\end{proof}
Conversely, if $M \otimes_k B \in \text{mon}(B, C)$, then by definition $(A \otimes_k B) \otimes_A (M \otimes_k B) \cong M \otimes_k B \in C$. Since C is closed under direct summands, it follows that $M \in C$.

(ii) Assume that $M \in \perp A$ and $M \notin \text{gp}(A)$. By (i), $M \otimes_k B \in \text{mon}(B, \perp A) \subseteq \perp \Lambda$, where the inclusion follows from Theorem 3.1. Again by (i), $M \otimes_k B \notin \text{mon}(B, \text{gp}(A)) = \text{gp}(\Lambda)$, where the equality follows from Theorem 2.6.

(iii) Assume that \mathcal{C}_1 and \mathcal{C}_2 are additive full subcategories of $A\text{-mod}$ closed under direct summands, such that $\text{mon}(B, \mathcal{C}_1) = \text{mon}(B, \mathcal{C}_2)$. We need to prove $\mathcal{C}_1 = \mathcal{C}_2$. Let $M \in \mathcal{C}_1$. By (i), $M \otimes_k B \in \mathcal{C}_1$. Thus $M \otimes_k B \in \mathcal{C}_2$. Again by (i), $M \in \mathcal{C}_2$. This completes the proof.

Proposition 4.7. If Λ is weakly Gorenstein, then so is A. Conversely, if A is weakly Gorenstein, then a semi-Gorenstein-projective Λ-module is Gorenstein-projective if and only if it is monic.

Thus, if A is weakly Gorenstein, then Λ is weakly Gorenstein if and only if each semi-Gorenstein-projective Λ-module is monic, or equivalently, $\perp \Lambda = \text{mon}(B, \perp A)$.

Proof. If Λ is weakly Gorenstein, then A is weakly Gorenstein, by Lemma 4.6(ii).

Assume that A is weakly Gorenstein and M is a semi-Gorenstein-projective Λ-module. If M is Gorenstein-projective, then M is monic, by Theorem 2.6. If M is monic, then by Theorem 3.1 and Theorem 2.6 one has $M \in \text{mon}(B, A) \cap \perp \Lambda = \text{mon}(B, \perp A) = \text{mon}(B, \text{gp}(A)) = \text{gp}(\Lambda)$.

Proposition 4.8. Let Q be a finite acyclic quiver. Then $A \otimes_k kQ$ is weakly Gorenstein if and only if A is weakly Gorenstein.

In particular, $T_n(A) = \left(\begin{array}{ccc} A & \cdots & A \\ 0 & \cdots & A \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{array} \right)$ is weakly Gorenstein if and only if A is weakly Gorenstein.

Proof. By Proposition 4.7, it remains to prove the “if” part. Assume that A is weakly Gorenstein. We will prove that $\Lambda = A \otimes_k kQ$ is weakly Gorenstein, by using induction on $|Q_0|$. If $|Q_0| = 1$, then $\Lambda = A$ is weakly Gorenstein, by the assumption.

Assume that $|Q_0| \geq 2$. We write the conjunction of paths of Q from left to right. Since Q is an acyclic quiver, Q has a source vertex, say, n, and then

$$kQ = \left(\begin{array}{c} kQ' \text{rad}P(n) \\ 0 \end{array} \right)$$

where Q' is the subquiver of Q by deleting the source vertex n, and $P(n) = kQe_n$. Then $\text{rad}P(n)$ is a kQ'-k-bimodule. Thus

$$\Lambda = A \otimes_k kQ = \left(\begin{array}{c} A \otimes_k kQ' \text{M} \\ 0 \end{array} \right)$$

where $M = A \otimes_k \text{rad}P(n)$ is an $(A \otimes_k kQ')$-A-bimodule. Since Q is acyclic, so is Q'. Hence $\text{rad}P(n)$ is a projective left kQ'-module. Thus $M = A \otimes_k \text{rad}P(n)$ is a projective right $(A \otimes_k kQ')$-module, and also $M = A \otimes_k \text{rad}P(n)$ is a projective right A-module.

Since $|Q'_0| = |Q_0| - 1$, by induction $A \otimes kQ'$ is weakly Gorenstein. Applying Proposition 1.3 to

$$\left(\begin{array}{c} A \otimes_{kQ'} \text{M} \\ 0 \end{array} \right) = \Lambda,$$ one sees that Λ is weakly Gorenstein.

4.3 Semi-Gorenstein-projective-free algebras. Replacing the condition that M_B is projective in Proposition 1.3 by $\perp B = \text{add}(B)$ and $\text{proj.dim}M_B < \infty$, we then get the following result on lsgp-free algebras.
Proposition 4.9. Assume that \(B = \text{add}(B) \) with \(\text{proj.dim} M_B < \infty \), and that \(A \) is torsionless with \(\text{proj.dim} A M < \infty \). Then \(\Lambda = (A M_B) / B \) is left weakly Gorenstein if and only if \(A \) is left weakly Gorenstein.

Moreover, if in addition \(A M \) is projective, then

\[
\bot \Lambda = \text{gp}(\Lambda) = \left\{ \left(\frac{M \otimes_B P}{P} \right)_{\text{id}_{M \otimes_B P}} \oplus \left(\begin{array}{c} G \\ 0 \end{array} \right) \mid P \in \text{add}(B), \ G \in \bot A = \text{gp}(A) \right\}
\]

and \(\bot A = \text{add}(A) \) if and only if \(\bot A = \text{add}(A) \).

Proof. Since \(\bot B = \text{add}(B) \), it follows that \((\bot B) \bot = B \)-mod, and hence \(D(M_B) \in (\bot B) \bot \). So, the conditions of Proposition 4.11 are satisfied. To prove the first assertion, by Proposition 4.11 it suffices to prove that if \(A \) is left weakly Gorenstein, then any semi-Gorenstein-projective \(A \)-module \(\left(\frac{X}{Y} \right)_\varphi \) is monic respect to bimodule \(A M_B \). In fact, applying Theorem 2.13 to \(\left(\frac{X}{Y} \right)_\varphi \) one gets that \(Y \in \bot B \), that \(\varphi : M \otimes_B Y \rightarrow X \) induces isomorphisms \(\text{Ext}_A^1(X, A) \cong \text{Ext}_A^1(M \otimes_B Y, A) \) for all \(i \geq 1 \), and that \(\varphi^* : X^* \rightarrow (M \otimes_B Y)^* \) is a right \(A \)-epimorphism. Since \(Y \in \bot B = \text{add}(B) \), \(B Y \) is projective. Thus \(A(M \otimes_B Y) \in \text{add}(A M) \). Since by assumption \(A M \) is torsionless, it follows that \(A(M \otimes_B Y) \) is torsionless. Thus, the canonical map \(\phi_{M \otimes_B Y} : M \otimes_B Y \rightarrow (M \otimes_B Y)^* \) is a monomorphism. By the same argument as in the proof of Proposition 4.11 one concludes that \(\left(\frac{X}{Y} \right)_\varphi \) is monic respect to bimodule \(A M_B \).

Now, assume in addition that \(A M \) is projective. Continuing the argument above, one knows that \(A(M \otimes_B Y) \) is projective, thus, \(\phi_{M \otimes_B Y} : M \otimes_B Y \rightarrow (M \otimes_B Y)^* \) is an isomorphism. By \(\text{Ext}_A^1(X, A) \cong \text{Ext}_A^1(M \otimes_B Y, A) = 0 \) for all \(i \geq 1 \), one has \(X \in \bot A \). Since by assumption \(A \) is weakly Gorenstein, \(X \in \text{gp}(A) \), and hence \(\phi_X : X \rightarrow X^* \) is an isomorphism. Since \(\varphi^* : X^* \rightarrow (M \otimes_B Y)^* \) is an epimorphism and \((M \otimes_B Y)^* \) is a right projective \(A \)-module, it follows that \(\varphi^* \) is a splitting epimorphism, and hence \(\varphi^* : X^* \rightarrow (M \otimes_B Y)^* \) is a splitting monomorphism. From the commutative diagram

\[
\begin{array}{ccc}
M \otimes_B Y & \xrightarrow{\varphi} & X \\
\phi_{M \otimes_B Y} \downarrow & \cong & \downarrow \phi_X \\
(M \otimes_B Y)^* & \xrightarrow{\varphi^*} & X^*
\end{array}
\]

one sees that \(\varphi : M \otimes_B Y \rightarrow X \) is also a splitting monomorphism. Thus \(X \cong (M \otimes_B Y) \oplus X' \) for some \(X' \in \text{gp}(A) \) and \(\left(\frac{X}{Y} \right)_\varphi = \left(\frac{M \otimes_B Y}{X'} \right)_{\text{id}_{M \otimes_B Y}} \oplus \left(\begin{array}{c} X' \\ 0 \end{array} \right) \).

Since \(A M \) is projective and \(\text{proj.dim} M_B < \infty \), the \(A-B \)-bimodule \(M \) is compatible (cf. Lemma 2.12). By Theorem 2.13 \(\left(\frac{X}{Y} \right)_\varphi \in \text{gp}(A) \), and hence \(\left(\frac{X}{Y} \right)_\varphi = \left(\frac{M \otimes_B Y}{X'} \right)_{\text{id}_{M \otimes_B Y}} \oplus \left(\begin{array}{c} X' \\ 0 \end{array} \right) \in \text{gp}(A) \). This proves

\[
\bot \Lambda = \text{gp}(\Lambda) = \left\{ \left(\frac{M \otimes_B P}{P} \right)_{\text{id}_{M \otimes_B P}} \oplus \left(\begin{array}{c} G \\ 0 \end{array} \right) \mid P \in \text{add}(B), \ G \in \bot A = \text{gp}(A) \right\}
\]

and from which one sees that \(\bot \Lambda = \text{add}(\Lambda) \) if and only if \(\bot A = \text{add}(A) \).

Remark 4.10. The “only if” part in Proposition 4.9 does not need the conditions that \(\bot B = \text{add}(B) \) and \(A M \) is torsionless.

Proposition 4.11. Let \(Q \) be a finite acyclic quiver, \(I \) an admissible ideal of \(kQ \), and \(\Lambda = A \otimes kQ/I \). Then \(\bot \Lambda = \text{add}(\Lambda) \) if and only if \(\bot A = \text{add}(A) \).
Proof. Assume that $\perp A = \text{add}(A)$. We will prove $\perp A = \text{add}(A)$, again by using induction on $|Q_0|$. If $|Q_0| = 1$, then $\Lambda = A$, thus the assertion holds, by the assumption $\perp A = \text{add}(A)$.

Assume that $|Q_0| \geq 2$. Similar as in the proof of Proposition 4.8 we write Λ as a triangular matrix algebra. However, in order to apply Proposition 4.9 this time we need to use the subquiver Q' of Q by deleting a sink vertex, say, 1, and the corresponding algebra kQ'/I'. Then $kQ/I = \begin{pmatrix} k \text{rad}(e_1 kQ/I) & kQ'/I' \\ 0 & kQ'/I' \end{pmatrix}$

where $\text{rad}(e_1 kQ/I)$ is a k-(kQ'/I')-bimodule. Thus $\Lambda = \begin{pmatrix} A & M \\ 0 & \Lambda' \end{pmatrix}$

where $\Lambda' = A \otimes_k (kQ'/I')$, $M = A \otimes_k \text{rad}(e_1 kQ/I)$ is a A-Λ'-bimodule. Since $|Q_0| = |Q_0| - 1$, by induction one gets $\perp \Lambda' = \text{add}(\Lambda')$.

Since $\text{proj.dim.} \text{rad}(e_1 kQ/I)_{kQ'/I'} < \infty$, it follows that $\text{proj.dim.} \text{rad}(e_1 kQ/I)_{kQ'/I'} < \infty$.

Also, $A M$ is projective. Since we already known $\perp \Lambda' = \text{add}(\Lambda')$ by induction, thus we can apply Proposition 4.9 to $\Lambda = A \otimes_k (kQ/I) = \begin{pmatrix} A & M \\ 0 & \Lambda' \end{pmatrix}$ to get $\perp \Lambda = \text{gp}(\Lambda) = \{ \begin{pmatrix} M \otimes_{\Lambda'} P \\ P \end{pmatrix} | P \in \text{add}(\Lambda'), G \in \perp A \}$.

Since $G \in \perp A = \text{add}(A)$, it follows that $(0_0) \in \text{add}(\Lambda)$, and hence $\perp \Lambda = \text{add}(A)$.

Conversely, assume that $\perp A = \text{add}(A)$. Let X be an indecomposable A-module with $X \in \perp A$. For any indecomposable projective (kQ/I)-module P, by the Cartan-Eilenberg isomorphism ([CE, Thm. 3.1, p.209, p.205]) one has $\text{Ext}^i_A(X \otimes_k P, A \otimes_k kQ/I) = \bigoplus_{p+q=i} (\text{Ext}^p_A(X, A) \otimes_k \text{Ext}^q_{kQ/I}(P, kQ/I)) = 0, \forall i \geq 1$.

So $X \otimes_k P \in \perp A = \text{add}(A)$, and hence $X \in \text{add}(A)$.

4.4. Example and Problem. Let A be the algebra given by quiver $\begin{array}{cccc} \beta & \alpha \\ 2 & 1 \end{array}$ and relations β^2, $\alpha \beta$. The Auslander-Reiten quiver of A is

\[
\begin{array}{cccc}
2 & 2 & 1 & 2 \\
2 & 1 & 2 & 2 \\
1 & 2 & 2 & 2 \\
\end{array}
\]

with indecomposable projective modules $P(1) = 1$ and $P(2) = 2^2 1$, and indecomposable injective modules $I(1) = \frac{1}{2}$ and $I(2) = \frac{3}{2}$. Since $\text{Ext}^1_A(2, 2^2 1) \neq 0$, $\text{Ext}^1_A(2, 1) \neq 0$, $\text{Ext}^2_A(1, 1) = \text{Ext}^2_A(1, 2) \neq 0$ one sees that A is lsgp-free, i.e., $\perp A = \text{add}(A)$. Note that A is not Gorenstein. By Proposition 4.11 $\perp (A \otimes_k kQ/I) = \text{gp}(A \otimes_k kQ/I) = \text{add}(A \otimes_k kQ/I)$, for any finite acyclic quiver Q and any admissible ideal I.
5.1. \textbf{Problem 1.} Are there a left weakly Gorenstein algebra A, a finite acyclic quiver Q, and an admissible ideal I of kQ, such that $A \otimes_k kQ/I$ is not left weakly Gorenstein, or equivalently, such that there is a semi-Gorenstein-projective $(A \otimes_k kQ/I)$-module which is not monic?

This problem is different from \textbf{Question 4.} Such an algebra A (if there exists) is not Gorenstein (otherwise, $A \otimes_k kQ/I$ is Gorenstein, by [AR, Proposition 2.2]); such an $I \neq 0$, by Proposition 4.8 and also $\perp A \neq \text{add}(A)$, by Proposition 4.11.

5. \textit{Canonical maps of modules over $T_2(A)$}

Let A be an Artin algebra, $\Lambda = T_2(A) = (A, A)\otimes A$, and M a Λ-module. We will give a sufficient and necessary condition, such that the canonical Λ-map $\phi_M : M \rightarrow M^{**}$ is a monomorphism (an epimorphism, and reflexive, respectively); and we will give a sufficient and necessary condition such that M is double semi-Gorenstein-projective with ϕ_M a monomorphism (an epimorphism, respectively).

Recall that a left Λ-module M is identified with the triple (X, ϕ, Y), where $\phi : Y \rightarrow X$ is a left Λ-map; and a right Λ-module is identified with a triple (U, V, ψ), where $\psi : U \rightarrow V$ is a right Λ-map. Using the identifications, we will determine the right Λ-module $M^* = \text{Hom}_\Lambda(M, \Lambda)$, the left Λ-module $M^{**} = \text{Hom}_\Lambda(M^*, \Lambda)$, and $\phi_M : M \rightarrow M^{**}$.

5.1. \textbf{The Λ-dual of a left Λ-module.} For a left Λ-module (X, ϕ, Y), we will determine the right Λ-module $(X^*, \phi^*, Y^*) = \text{Hom}_\Lambda((X, \phi, Y), \Lambda)$. As a left Λ-module, $\Lambda = (\Lambda, \Lambda, \Lambda, \Lambda, \Lambda, \Lambda) = (A, A)\otimes A$. Thus, any Λ-map

$$f \in (X^*, \phi^*, Y^*) = \text{Hom}_\Lambda((X, \phi, Y), \Lambda)$$

is of the form $\left(\begin{array}{c} (\alpha_1) \\ \beta \end{array} \right)$, where $\alpha_1, \alpha_2 \in X^* = \text{Hom}_\Lambda(X, A)$, $\beta \in Y^*$, such that the square

$$\begin{array}{ccc}
Y & \xrightarrow{\phi} & X \\
\beta \downarrow & & \downarrow (\alpha_1) \\
A & \xrightarrow{(g, \alpha_2)} & A \oplus A
\end{array}$$

commutes. So $\alpha_1 \phi = 0$, $\beta = \alpha_2 \phi$. Thus, there is a unique $g \in (\text{Coker}\phi)^* = \text{Hom}_\Lambda(\text{Coker}\phi, A)$ such that $\alpha_1 = g \pi$, where $\pi : X \rightarrow \text{Coker}\phi$ is the canonical A-epimorphism.

\textbf{Lemma 5.1.} Let (X, ϕ, Y) be a left Λ-module with $\phi : Y \rightarrow X$ a left Λ-map. Then

(i) Any $f \in (X^*, \phi^*, Y^*)$ is of the form $\left(\begin{array}{c} (g \pi) \\ \alpha_2 \end{array} \right)$, where $g \in (\text{Coker}\phi)^*$, $\pi : X \rightarrow \text{Coker}\phi$ is the canonical A-epimorphism, and $\alpha_2 \in X^*$.

(ii) There is a unique right Λ-module isomorphism $h : (X^*, \phi^*, Y^*) \cong ((\text{Coker}\phi)^*, X^*)_{\pi^*}$, given by

$$f = \left(\begin{array}{c} (g \pi) \\ \alpha_2 \end{array} \right) \mapsto (g, \alpha_2)$$

where $\pi^* : (\text{Coker}\phi)^* \rightarrow X^*$ is the right Λ-monomorphism induced by π.

\textbf{Proof.} (ii) We claim that h is a right Λ-map, i.e.,

$$h(f(a_1 a_2)) = h(f)(a_1 a_2), \quad \forall \ f = \left(\begin{array}{c} (g \pi) \\ \alpha_2 \end{array} \right) \in (X^*, \phi^*, Y^*), \quad \forall \ (a_1 a_2) \in \Lambda.$$
In fact, for any \(\left(\begin{array}{c} a_1 \\ a_2 \\ a_3 \end{array} \right) \), since \(\pi \varphi = 0 \), one has

\[
(f \left(\left(\begin{array}{c} a_1 \\ a_2 \\ a_3 \end{array} \right) \right)) \left(\begin{array}{c} x \\ y \end{array} \right) = \left(\begin{array}{c} (g_1 \varphi)(x) \\ (g_2 \varphi)(y) \end{array} \right) \left(\begin{array}{c} a_1 \\ a_2 \\ a_3 \end{array} \right)
\]

\[
= \left(\begin{array}{c} (g_1 \varphi)(x) \\ (g_2 \varphi)(y) \end{array} \right) \left(\begin{array}{c} a_1 \\ a_2 \\ a_3 \end{array} \right)
\]

Thus \(f \left(\left(\begin{array}{c} a_1 \\ a_2 \\ a_3 \end{array} \right) \right) = \left(\begin{array}{c} (g_1 \pi)(x) \\ (g_2 \pi)(y) \end{array} \right) \left(\begin{array}{c} a_1 \\ a_2 \\ a_3 \end{array} \right) \), and hence

\[
h \circ f = (g_1 \pi)(x) + (g_2 \pi)(y) = (g_1, g_2) \pi + \alpha a_3.
\]

One the other hand, by the right \(\Lambda \)-module structure of \((\operatorname{Coker} \varphi)^*, X^* \), one has

\[
h(f \left(\left(\begin{array}{c} a_1 \\ a_2 \\ a_3 \end{array} \right) \right)) = (g, \alpha) \left(\begin{array}{c} a_1 \\ a_2 \\ a_3 \end{array} \right) = (g_1, \pi \varphi + \alpha a_3)
\]

This proves the claim.

Since the map

\[
((\operatorname{Coker} \varphi)^*, X^*) \rightarrow \left(\begin{array}{c} X^* \\ \varphi \end{array} \right), \quad (g, \alpha) \mapsto f = \left(\begin{array}{c} (g_1 \pi + \alpha a_3) \\ (g_2 \pi + \alpha a_3) \end{array} \right)
\]

is the inverse of \(h \), \(h \) is a right \(\Lambda \)-isomorphism. \(\square \)

5.2. The \(\Lambda \)-dual of a right \(\Lambda \)-module.

Similarly, one can determine the \(\Lambda \)-dual of a right \(\Lambda \)-module \((U, V)\), where \(\psi : U \rightarrow V \) is a right \(\Lambda \)-map. As a right \(\Lambda \)-module, \(\Lambda(A, A) \) is of the form \((\cdot) \rightarrow (\cdot)\), where \(\alpha \in U^* = \operatorname{Hom}_A(U, A) \), \(\beta_1, \beta_2 \in V^* \), such that

\[
\begin{array}{ccc}
U & \xrightarrow{\psi} & V \\
\alpha \downarrow & & \downarrow \beta_1 \\
A & \xrightarrow{\psi} & A \oplus A \\
\end{array}
\]

commutes. Thus \(\alpha = \beta_2 \psi, \beta_2 \psi = 0 \). Hence, there is a unique \(g \in (\operatorname{Coker} \psi)^* = \operatorname{Hom}_A(\operatorname{Coker} \psi, A) \) such that \(\beta_2 = g \pi \), where \(\pi : V \rightarrow \operatorname{Coker} \psi \) is the canonical \(\Lambda \)-map. By the similar argument one has

Lemma 5.2. Let \((U, V)\) be a right \(\Lambda \)-module with \(\psi : U \rightarrow V \) a right \(\Lambda \)-map. Then

(i) Any \(f \in (U, V)^* \) is of the form \((\beta_1, \left(\begin{array}{c} \beta_1 \\ \beta_2 \end{array} \right)) \), where \(\beta_1 \in V^*, \beta_2 \in (\psi)^*, \) and \(\pi \in \psi \rightarrow \operatorname{Coker} \psi \) is the canonical \(\Lambda \)-map.

(ii) There is a unique left \(\Lambda \)-module isomorphism \(h' : (U, V)^* \cong \left(\begin{array}{c} V^* \\ \operatorname{Coker} \psi^* \end{array} \right) \), given by

\[
f = (\beta_1 \psi, \left(\begin{array}{c} \beta_1 \\ \beta_2 \end{array} \right)) \mapsto \left(\begin{array}{c} \beta_1 \\ \beta_2 \end{array} \right),
\]

where \(\pi^* : (\operatorname{Coker} \psi)^* \rightarrow V^* \) is the left \(\Lambda \)-monomorphism induced by \(\pi \).
5.3. The left Λ-module $(\tilde{X})^*_\varphi$. For any left Λ-module $(\tilde{X})_\varphi$ with left Λ-map $\varphi : Y \rightarrow X$, by Lemma 5.3, one has the right module isomorphism

$$h : (\tilde{X})_\varphi^* \cong ((\text{Coker}\varphi)^*, X^*)_{\pi^*}, \quad f = \left(\begin{pmatrix} g \\ \alpha \end{pmatrix}\right) \mapsto (g, \alpha)_2$$

where $\pi^* : (\text{Coker}\varphi)^* \rightarrow X^*$ is the right Λ-monomorphism induced by $\pi : X \rightarrow \text{Coker}\varphi$. Applying Lemma 5.2 to $(\text{Coker}\varphi)^*, X^*)_{\pi^*}$, we then get

Lemma 5.3. (i) Any $f \in ((\text{Coker}\varphi)^*, X^*)_{\pi^*}$ is of the form $(\beta_1 \pi^*, (\beta_2 g))$, where $\beta_1 \in X^{**}$, $g \in (\text{Coker}\pi^*)^*$, and $p : X^* \rightarrow \text{Coker}\pi^*$ is the canonical Λ-epimorphism.

(ii) There is a unique left Λ-module isomorphism $\tilde{h} : \left((\tilde{X})^{**}_{\varphi}\right)_p \cong (\tilde{X})^{**}_{\varphi}$, given by

$$\left(\begin{pmatrix} \beta_1 \\ g \end{pmatrix}\right) \mapsto h^*((\beta_1 \pi^*, (\beta_2 g)))$$

where $p^* : (\text{Coker}\pi^*)^* \rightarrow X^{**}$ is the Λ-monomorphism induced by p, $h : (\tilde{X})_\varphi^* \cong ((\text{Coker}\varphi)^*, X^*)_{\pi^*}$ is given in (5.1), and $h^* : ((\text{Coker}\varphi)^*, X^*)_{\pi^*} \rightarrow (\tilde{X})^{**}_{\varphi}$ is induced by h.

5.4. The canonical Λ-map $\phi(\tilde{X})_\varphi : (\tilde{X})_\varphi \rightarrow (\tilde{X})^{**}_{\varphi}$. For a left Λ-module $(\tilde{X})_\varphi$, one has an exact sequence $0 \rightarrow Y \xrightarrow{\varphi} X \xrightarrow{\varphi} \text{Coker}\varphi \rightarrow 0$ of left Λ-modules. Applying $\text{Hom}_\Lambda(-, A\Lambda)$, one gets an exact sequence of right Λ-modules

$$0 \rightarrow (\text{Coker}\varphi)^* \xrightarrow{\pi^*} X^* \xrightarrow{\varphi^*} Y^*$$

and the exact sequence

$$0 \rightarrow (\text{Coker}\varphi)^* \xrightarrow{\pi^*} X^* \xrightarrow{p} \text{Coker}\pi^* \rightarrow 0.$$

Thus, there is a unique Λ-map $\beta : \text{Coker}\pi^* \rightarrow Y^*$ such that the diagram

$$\begin{array}{ccc}
(\text{Coker}\varphi)^* & \xrightarrow{\pi^*} & X^* \\
\downarrow & & \downarrow \beta \\
0 & \xrightarrow{p} & \text{Coker}\pi^* \\
\downarrow & & \downarrow \beta \\
0 & \xrightarrow{\pi^*} & X^* \\
& & \varphi^* \\
& & Y^*
\end{array}$$

commutes, i.e., $\varphi^* = \beta p$. Thus, φ^* is an epimorphism if and only if so is β, and if and only if β is an isomorphism. So one has the Λ-map $\beta^* : Y^{**} \rightarrow ((\text{Coker}\pi^*)^*)^*$. Consider the composition

$$\beta^* \phi_Y : Y \rightarrow ((\text{Coker}\pi^*)^*)^*$$

where $\phi_Y : Y \rightarrow Y^{**}$ is the canonical map. By the definition of ϕ_Y and β^*, one knows that $\beta^* \phi_Y : Y \rightarrow ((\text{Coker}\pi^*)^*)^*$ is given by

$$y \mapsto "g \mapsto (\beta(g))(y)"., \quad \forall \ g \in \text{Coker}\pi^*$$

i.e., $((\beta^* \phi_Y)(y))(g) = (\beta(g))(y), \ \forall \ y \in Y$.

Proposition 5.4. For any left Λ-module $(\tilde{X})_\varphi$ with left Λ-map $\varphi : Y \rightarrow X$, with the notations above one has

(i) $(\tilde{X})_\varphi^* : (\tilde{X})_\varphi \rightarrow ((\tilde{X})^{**}_{\varphi})_p$, is left Λ-map, where $\phi_X : X \rightarrow X^{**}$ and $\phi_Y : Y \rightarrow Y^{**}$ are the canonical Λ-maps, $\beta : \text{Coker}\pi^* \rightarrow Y^*$ is the canonical Λ-map such that $\varphi^* = \beta p$, and $\beta^* : Y^{**} \rightarrow ((\text{Coker}\pi^*)^*)^*$ is induced by β.
(ii) The canonical Λ-map $\phi_{(X)} : (X)_\varphi \rightarrow (X)_\varphi^{**}$ is given by
\[
\phi_{(X)} = \tilde{h} \circ (\phi_X)_{\beta^* \phi_Y}.
\]
where $\tilde{h} : (Coker\pi^*)^* \rightarrow (X)_\varphi^{**}$ is the isomorphism given in Lemma 5.3.

Proof. (i) One needs to prove the diagram
\[
\begin{array}{ccc}
Y & \xrightarrow{\varphi} & X \\
\downarrow{\beta^* \phi_Y} & & \downarrow{\phi_X} \\
(Coker\pi^*)^* & \xrightarrow{\pi^*} & X^{**}
\end{array}
\]
commutes, i.e., $p^* \beta^* \phi_Y = \varphi^{**} \phi_Y = \varphi X \varphi$. In fact, since $\varphi^* = \beta p$, one has $\varphi^{**} = p^* \beta^*$. By the functorial property of the canonical map $\phi_X : X \rightarrow X^{**}$ one has the commutative diagram
\[
\begin{array}{ccc}
Y & \xrightarrow{\varphi} & X \\
\downarrow{\phi_Y} & & \downarrow{\phi_X} \\
Y^{**} & \xrightarrow{\varphi^{**}} & X^{**}
\end{array}
\]
It follows that $p^* \beta^* \phi_Y = \varphi^{**} \phi_Y = \varphi X \varphi$.

(ii) We need to prove $\phi_{(X)}(X)_{\varphi}(x) = \tilde{h}(\phi_{X})_{\varphi}(x)$, $\forall (x) \in (X)_\varphi$. For this, let $f \in (X)_\varphi^*$. By Lemma 5.1(i), $f = \left(\frac{g}{\alpha_2}\right)_{\varphi}$, where $g \in (Coker\varphi)^*$, $\pi : X \rightarrow Coker\varphi$ is the canonical Λ-epimorphism, and $\alpha_2 \in X^*$.

By the definition of $\phi_{(X)}$, one has
\[
\phi_{(X)}(X)_{\varphi}(f) = f \left(\frac{x}{y}\right) = \left(\frac{g(x)}{\alpha_2(y)}\right) = \left(\frac{\alpha_2(x)}{\alpha_2(y)}\right) \in \Lambda.
\]

On the other hand, by the definitions of $\beta^* \phi_Y$ and \tilde{h} one has
\[
\tilde{h}(\phi_X(\beta^* \phi_Y)(x, y))(f) = \tilde{h}(\phi_X(x))(f) = \tilde{h}(\phi_X(\beta^* \phi_Y)(y))(f)
\]
\[
= \tilde{h}((\phi_X(x)\pi^*, \left(\frac{\phi_X(x)}{(\beta^* \phi_Y)(y)}\right)))(f) = \tilde{h}(\phi_X(x)\pi^*, \left(\frac{\phi_X(x)}{(\beta^* \phi_Y)(y)}\right))(f)
\]
\[
= \pi^*(g(x), \alpha_2) = \left(\begin{array}{c}
\alpha_2(x) \\
\beta^* \phi_Y(\alpha_2(y))
\end{array}\right) = \left(\begin{array}{c}
\alpha_2(x) \\
\beta^* \phi_Y(\alpha_2(y))
\end{array}\right).
\]
This completes the proof.

5.5. Torsionless Λ-modules and reflexive Λ-modules.

Corollary 5.5. Let $(X)_\varphi$ be a left Λ-module, where $\varphi : Y \rightarrow X$ is a left Λ-map. Then

(i) $(X)_\varphi$ is a torsionless Λ-module if and only if it is monic (i.e., φ is a monomorphism), X and Y are torsionless Λ-modules.

(ii) $\phi_{(X)}$ is a Λ-epimorphism if and only if ϕ_X and $\beta^* \phi_Y : Y \rightarrow (Coker\pi^*)^*$ are Λ-epimorphisms.
Lemma 5.6. Let \(\Lambda \)-module \(X \) be double semi-Gorenstein-projective if and only if the conditions (1), (2), (3) hold:

1. \(X \in \perp A \);
2. \(Y \in \perp A \);
3. \(\varphi^* : X^* \to Y^* \) is an epimorphism.

By Lemma 5.1, \((Y)^* \varphi \cong (\text{Coker} \varphi)^* \) as right \(\Lambda \)-modules, where \(\pi^* : (\text{Coker} \varphi)^* \to X^* \) is the right \(\Lambda \)-monomorphism induced by \(\pi : X \to \text{Coker} \varphi \). Thus, by the right module version of Corollary 2.14(i), \((Y)^* \varphi \in \perp A \) if and only if the following conditions (4)-(6) hold:

4. \((\text{Coker} \varphi)^* \in \perp A \);
5. \(X^* \in \perp A \);
6. \(\pi^{**} : X^{**} \to (\text{Coker} \varphi)^{**} \) is an epimorphism.

Lemma 5.6. Let \((Y)^\varphi \) be a left \(\Lambda \)-module, where \(\varphi : Y \to X \) is a left \(\Lambda \)-map. Then \((Y)^\varphi \) is double semi-Gorenstein-projective if and only if the conditions (1) - (6) above hold, and if and only if the conditions (1) - (8) hold, where

7. \(Y^* \in \perp A \);
8. The canonical \(\Lambda \)-map \(\beta : \text{Coker} \pi^* \to Y^* \) is an isomorphism.
Proof. It remains to show that the conditions (1) - (6) imply the conditions (7) and (8).

Assume that the conditions (1) - (6) hold. Since \(\varphi^* : X^* \rightarrow Y^* \) is an epimorphism, \(\beta : \text{Coker}\pi^* \rightarrow Y^* \) is an isomorphism (cf. the diagram (5.2)). Applying \(\text{Hom}_A(-, A\Lambda) \) to the exact sequence \(0 \rightarrow (\text{Coker}\varphi^*) \overset{\pi^*}{\rightarrow} X^* \overset{\varphi^*}{\rightarrow} Y^* \rightarrow 0 \), by the assumption that \(\pi^{**} : X^{**} \rightarrow (\text{Coker}\varphi)^* \) is an epimorphism and by the assumptions \(X^* \in \overset{\perp}{} A \) and \((\text{Coker}\varphi)^* \in \overset{\perp}{} A \), one sees that \(Y^* \in \overset{\perp}{} A \). □

5.7. A double semi-Gorenstein-projective \(\Lambda \)-module \(M \) with \(\phi_M \) monomorphism or epimorphism.

Proposition 5.7. Let \((\overset{\perp}{}Y, \overset{\perp}{}Y) \varphi \) be a left \(\Lambda \)-module with left \(\Lambda \)-map \(\varphi : Y \rightarrow X \). Then

(i) \((\overset{\perp}{}Y, \overset{\perp}{}Y) \varphi \) is torsionless and double semi-Gorenstein-projective if and only if \((\overset{\perp}{}Y, \overset{\perp}{}Y) \varphi \) is monic (i.e. \(\varphi \) is a monomorphism), \(X, Y, \) and \(\text{Coker}\varphi \) are double semi-Gorenstein-projective, and \(X \) and \(Y \) are torsionless.

(ii) \((\overset{\perp}{}Y, \overset{\perp}{}Y) \varphi \) is double semi-Gorenstein-projective with epimorphism \(\phi(\overset{\perp}{}Y) \varphi \) if and only if the following conditions are satisfied:

- \(\varphi^* : X^* \rightarrow Y^* \) is an epimorphism;
- All the five modules \(X, Y, X^*, Y^* \), \((\text{Coker}\varphi)^* \) are semi-Gorenstein-projective;
- \(\phi_X \) and \(\phi_Y \) are epimorphisms.

(iii) \(\text{(Corollary 5.14)} \) \((\overset{\perp}{}Y, \overset{\perp}{}Y) \varphi \) is Gorenstein-projective if and only if \(\varphi \) is a monomorphism, \(Y \) and \(\text{Coker}\varphi \) are Gorenstein-projective. If this is the case, then \(X \) is Gorenstein-projective.

Proof. (i) Assume that \((\overset{\perp}{}Y, \overset{\perp}{}Y) \varphi \) is torsionless and double semi-Gorenstein-projective. By Corollary 5.6(i), \(\varphi \) is a monomorphism, and \(X \) and \(Y \) are torsionless. By Lemma 5.6 all the conditions (1)-(8) hold. Applying \(\text{Hom}_A(-, A\Lambda) \) to the exact sequence \(0 \rightarrow Y \overset{\varphi}{\rightarrow} X \overset{\pi}{\rightarrow} \text{Coker}\varphi \rightarrow 0 \), since \(\varphi^* : X^* \rightarrow Y^* \) is an epimorphism, and since \(X \) and \(Y \) are semi-Gorenstein-projective, it follows that \(\text{Coker}\varphi \) is semi-Gorenstein-projective.

Conversely, assume that \(\varphi \) is a monomorphism, \(X, Y \) and \(\text{Coker}\varphi \) are double semi-Gorenstein-projective, and that \(X \) and \(Y \) are torsionless. By Corollary 5.6(i), \((\overset{\perp}{}Y, \overset{\perp}{}Y) \varphi \) is torsionless. Again applying \(\text{Hom}_A(-, A\Lambda) \) to the exact sequence \(0 \rightarrow Y \overset{\varphi}{\rightarrow} X \overset{\pi}{\rightarrow} \text{Coker}\varphi \rightarrow 0 \), since \(\text{Coker}\varphi \) is semi-Gorenstein-projective, \(\varphi^* : X^* \rightarrow Y^* \) is an epimorphism and \(0 \rightarrow (\text{Coker}\varphi)^* \overset{\pi^*}{\rightarrow} X^* \overset{\varphi^*}{\rightarrow} Y^* \rightarrow 0 \) is an exact sequence. Since \(Y^* \) is semi-Gorenstein-projective, \(\pi^{**} : X^{**} \rightarrow (\text{Coker}\varphi)^* \) is an epimorphism. Thus, all the conditions (1)-(6) hold. By Lemma 5.6 \((\overset{\perp}{}Y, \overset{\perp}{}Y) \varphi \) is double semi-Gorenstein-projective.

(ii) Assume that \((\overset{\perp}{}Y, \overset{\perp}{}Y) \varphi \) is double semi-Gorenstein-projective and \(\phi(\overset{\perp}{}Y) \varphi \) is an epimorphism. By Lemma 5.6 all the conditions (1)-(8) are satisfied. By Corollary 5.6(ii), \(\phi_X \) and \(\beta^*\phi_Y \) are epimorphisms, where \(\beta : \text{Coker}\pi^* \rightarrow Y^* \) is the canonical \(\Lambda \)-map such that \(\varphi^* = \beta p \), \(p : X^* \rightarrow \text{Coker}\pi^* \) is the canonical \(\Lambda \)-epimorphism, and \(\beta^* : Y^{**} \rightarrow (\text{Coker}\pi^*)^* \) is induced by \(\beta \). It remains to show that \(\phi_Y \) is an epimorphism. In fact, by Condition (8), \(\beta^* \) is an isomorphism, hence \(\phi_Y \) is an epimorphism.

Conversely, assume that \(\varphi^* : X^* \rightarrow Y^* \) is an epimorphism, all the five modules \(X, Y, X^*, Y^* \), \((\text{Coker}\varphi)^* \) are semi-Gorenstein-projective, and that \(\phi_X \) and \(\phi_Y \) are epimorphisms. Since \(\varphi^* \) is an epimorphism, \(\beta : \text{Coker}\pi^* \rightarrow Y^* \) is an isomorphism (cf. Subsection 5.4), and hence \(\beta^* \) is an isomorphism. Thus \(\beta^*\phi_Y \) is an epimorphism. By Corollary 5.6(ii), \(\phi(\overset{\perp}{}Y) \varphi \) is an epimorphism.
Applying $\text{Hom}_A(-, A\Lambda)$ to the exact sequence $Y \xrightarrow{\varphi} X \xrightarrow{\pi} \text{Coker}\varphi \to 0$, since $\varphi^* : X^* \to Y^*$ is an epimorphism, it follows that $0 \to (\text{Coker}\varphi)^* \xrightarrow{\pi^*} X^* \xrightarrow{\varphi^*} Y^* \to 0$ is an exact sequence. Since Y^* is semi-Gorenstein-projective, $\pi^{**} : X^{**} \to (\text{Coker}\varphi)^{**}$ is an epimorphism. Thus, all the conditions (1)-(6) hold. By Lemma 5.6, (\overline{Y}_φ) is double semi-Gorenstein-projective.

(iii) This is just Corollary 2.14. We rewrite here, because in the setting of (i) and (ii), it admits a simple proof. The “if” part follows from (i) and (ii) and the fact that Gorenstein-projective modules are closed under extensions.

Assume that (\overline{Y}_φ) is Gorenstein-projective. Then by (i) and (ii), φ is a monomorphism, X and Y are Gorenstein-projective, and $\text{Coker}\varphi$ is double semi-Gorenstein-projective. Moreover, the diagram

$$
\begin{array}{ccc}
0 & \xrightarrow{\varphi} & Y \\
& \searrow^{\phi_Y} & \downarrow \cong \\
& & X \\
& \searrow^{\phi_X} & \downarrow \cong \\
& & \text{Coker}\varphi \\
0 & \xrightarrow{\varphi^{**}} & Y^{**} \\
& \searrow^{\phi_{\text{Coker}\varphi}} & \downarrow \cong \\
& & X^{**} \\
& \searrow^{\pi^{**}} & \downarrow \cong \\
& & (\text{Coker}\varphi)^{**} \\
& \searrow & \downarrow \\
& & 0
\end{array}
$$

(5.3)

commutes with exact rows. So $\phi_{\text{Coker}\varphi}$ is an isomorphism, and thus $\text{Coker}\varphi$ is Gorenstein-projective. ■

5.8. Problems. As remarked in [RZ4, 3.1], all known examples of double semi-Gorenstein-projective modules M such that ϕ_M is a monomorphism (an epimorphism, respectively) are Gorenstein-projective.

Problem 2. Is there a torsionless and double semi-Gorenstein-projective module M such that M is not Gorenstein-projective?

Problem 3. Is there a double semi-Gorenstein-projective module M with ϕ_M an epimorphism such that M is not semi-Gorenstein-projective?

Theorem 1.6 is a result in this direction.

5.9. Proof of Theorem 1.6. (1) Assume that any torsionless and double semi-Gorenstein-projective A-module is Gorenstein-projective. Let $M = (\overline{Y}_\varphi)$ be a torsionless and double semi-Gorenstein-projective A-module. We need to show that M is Gorenstein-projective.

By Proposition 5.7(i), φ is a monomorphism, X, Y, and $\text{Coker}\varphi$ are double semi-Gorenstein-projective, and X and Y are torsionless. By the assumption, X and Y are Gorenstein-projective.

By Lemma 5.6, φ^* and π^{**} are epimorphisms. Thus, one again has the commutative diagram (5.3) with exact rows, from which one knows that $\phi_{\text{Coker}\varphi}$ is also an isomorphism, and hence Cokerφ is Gorenstein-projective. Thus, M is Gorenstein-projective, by Proposition 5.7(iii).

Conversely, assume that any torsionless and double semi-Gorenstein-projective A-module is Gorenstein-projective. Let L be a torsionless and double semi-Gorenstein-projective A-module. We need to prove that L is Gorenstein-projective.

Since L is torsionless, a left add(A)-approximation $\varphi : L \to P$ of L is a monomorphism, where P is a projective A-module. Since both P and L are semi-Gorenstein-projective and φ is a left add(A)-approximation, it follows that $\text{Coker}\varphi$ is also semi-Gorenstein-projective. Consider the A-module (\overline{L}_φ). Since P^* and L^* are semi-Gorenstein-projective and

$$0 \to (\text{Coker}\varphi)^* \to P^* \xrightarrow{\varphi^*} L^* \to 0$$

is an exact sequence, it follows that L^* is semi-Gorenstein-projective. Therefore, \overline{L}_φ is double semi-Gorenstein-projective and, by the commutative diagram (5.3), $\phi_{\text{Coker}\varphi}$ is an isomorphism, and hence $\text{Coker}\varphi$ is Gorenstein-projective. Thus, L is Gorenstein-projective, by Proposition 5.7(iii).
is an exact sequence, it follows that \((\text{Coker}\varphi)^*\) is also semi-Gorenstein-projective. Thus, by Proposition 5.7(i), \((\varphi_L)_\varphi^*\) is a torsionless and double semi-Gorenstein-projective \(A\)-module. By the assumption, \((\varphi_L)_\varphi\) is Gorenstein-projective. Hence \(L\) is Gorenstein-projective, by Proposition 5.7(ii).

(2) Assume that any double semi-Gorenstein-projective \(A\)-module \(L\) with \(\phi_L\) an epimorphism is Gorenstein-projective. Let \(M = (\bar{X})_\varphi\) be a double semi-Gorenstein-projective \(A\)-module such that \(\phi_M\) is an epimorphism. We need to prove that \(M\) is Gorenstein-projective.

By Proposition 5.7(ii), \(\varphi^* : X^* \to Y^*\) is an epimorphism, all the five modules \(X, Y, X^*, Y^*, (\text{Coker}\varphi)^*\) are semi-Gorenstein-projective, and \(\phi_X\) and \(\phi_Y\) are epimorphisms. By the assumption, \(X\) and \(Y\) are Gorenstein-projective, in particular, \(\phi_X\) and \(\phi_Y\) are isomorphisms.

We claim that \(\varphi : Y \to X\) is a monomorphism and \(\text{Coker}\varphi\) is reflexive. In fact, applying \(\text{Hom}_A(-, A)\) to \(Y \xrightarrow{\varphi} X \xrightarrow{\pi} \text{Coker}\varphi \to 0\), since \(\varphi^* : X^* \to Y^*\) is an epimorphism, it follows that

\[0 \to (\text{Coker}\varphi)^* \xrightarrow{\varphi^*} X^* \xrightarrow{\pi^*} Y^* \to 0\]

is an exact sequence. Since \(Y^*\) is semi-Gorenstein-projective,

\[0 \to Y^{**} \xrightarrow{\varphi^{**}} X^{**} \xrightarrow{\pi^{**}} (\text{Coker}\varphi)^{**} \to 0\]

is an exact sequence. Thus, by the functorial property of \(\varphi\) one has the commutative diagram

\[
\begin{array}{ccc}
Y & \xrightarrow{\varphi} & X \\
\Downarrow{\cong} & & \Downarrow{\cong} \\
0 & \xrightarrow{\pi} & \text{Coker}\varphi \\
\end{array}
\]

with exact rows. Since both \(\phi_Y\) and \(\varphi^{**}\) are monomorphisms, \(\varphi\) is a monomorphism. Also, this commutative diagram shows that \(\phi_{\text{Coker}\varphi}\) is an isomorphism, i.e., \(\text{Coker}\varphi\) is reflexive. This proves the claim.

Applying \(\text{Hom}_A(-, A)\) to the exact sequence \(0 \to Y \xrightarrow{\varphi} X \xrightarrow{\pi} \text{Coker}\varphi \to 0\), since \(\varphi^* : X^* \to Y^*\) is an epimorphism and \(X\) and \(Y\) are semi-Gorenstein-projective, it follows that \(\text{Coker}\varphi\) is also semi-Gorenstein-projective. So, \(\text{Coker}\varphi\) is double semi-Gorenstein-projective and reflexive, i.e., \(\text{Coker}\varphi\) is Gorenstein-projective. By Proposition 5.7(iii), \(M = (\bar{X})_\varphi\) is Gorenstein-projective.

Conversely, assume that any double semi-Gorenstein-projective \(A\)-module \(M\) with \(\phi_M\) an epimorphism is Gorenstein-projective. Let \(L\) be a double semi-Gorenstein-projective \(A\)-module such that \(\phi_L\) is an epimorphism. We need to show that \(L\) is Gorenstein-projective.

Take a left \(\text{add}(A)\)-approximation \(\varphi : L \to P\) of \(L\). Applying \(\text{Hom}_A(-, A)\) to the exact sequence \(L \xrightarrow{\varphi} P \xrightarrow{\pi} \text{Coker}\varphi \to 0\), since \(\varphi\) is left \(\text{add}(A)\)-approximation, \(\varphi^* : P^* \to L^*\) is an epimorphism and

\[0 \to (\text{Coker}\varphi)^* \xrightarrow{\varphi^*} P^* \xrightarrow{\pi^*} L^* \to 0\]

is an exact sequence. Since \(L^*\) and \(P^*\) are semi-Gorenstein-projective, so is \((\text{Coker}\varphi)^*\). Thus, by Proposition 5.7(ii), \((\varphi_L)_\varphi^*\) is a double semi-Gorenstein-projective \(A\)-module such that \(\phi_L\) is an epimorphism. By the assumption, \((\varphi_L)_\varphi\) is Gorenstein-projective. Hence by Proposition 5.7(iii), \(L\) is Gorenstein-projective. ■
6. Double semi-Gorenstein-projective modules which are not monic

6.1. Proof of Theorem 1.7 Since by assumption \(Y \) is not torsionless and \(\varphi : Y \to P \) is a left \(\text{add}(A) \)-approximation of \(Y \), it follows that \(\varphi \) is not a monomorphism. Thus \((\ell^\varphi)_1 \) is not a monic \(T_2(A) \)-module. By Corollary 5.6(i), \((\ell^\varphi)_1 \) is not torsionless.

Apply \(\text{Hom}_A(-, \text{add}(A)) \) to the exact sequence \(Y \xrightarrow{\varphi} P \xrightarrow{\pi} \text{Coker}\varphi \to 0 \). Since \(\varphi \) is a left \(\text{add}(A) \)-approximation of \(Y \), \(\varphi^* : P^* \to Y^* \) is an epimorphism and

\[
0 \to (\text{Coker}\varphi)^* \xrightarrow{\pi^*} P^* \xrightarrow{\varphi^*} Y^* \to 0
\]

is an exact sequence. Since \(Y^* \) and \(P^* \) are semi-Gorenstein-projective, it follows that \((\text{Coker}\varphi)^*\) is semi-Gorenstein-projective and \(\pi^{**} : P^{**} \to (\text{Coker}\varphi)^{**} \) is an epimorphism. Thus, all the conditions (1) - (6) in Subsection 5.6 are satisfied. By Lemma 5.6 (\(\ell^\varphi_1 \)) is a double semi-Gorenstein-projective \(T_2(A) \)-module.

6.2. A class of double semi-Gorenstein-projective modules which are not torsionless. From now on, \(A \) is the algebra \(\Lambda(q) \), which has been studied in [RZ2, RZ3], i.e.,

\[
A = k(x, y, z)/(x^2, y^2, z^2, yz, xy + qyx, xz - zy, zy - zx)
\]

where \(q \) is a non-zero element in field \(k \), and \(q \) is of multiplicative order \(\infty \). Then \(A \) is a semi-local algebra of wild representation type, with a basis \(1, x, y, z, xy, xz \), and with Hilbert type \((|J/J^2|, |J^2|) = (3, 2) \), where \(J \) is the Jacobson radical of \(A \). For the studies on short local algebras, we refer to e.g. [L], [Y2], [CV], [AIS], [RZ5], [RZ6].

When \((a, b, c) \) ranges over \(k^3 \setminus \{0\} \), left \(A \)-modules

\[
M(a, b, c) := \text{add}(A)/[A(ax + by + cz) + \text{soc}A] = \overline{A}
\]

give all the 3-dimensional local \(A \)-modules. They are \((A/J)^2 \)-modules. Since \(A/J^2 \) is commutative, \(\text{D}(M(a, b, c)) = \text{Hom}_k(M(a, b, c), k) \) are also left \((A/J^2) \)-modules, and hence left \(A \)-modules. [RZ3, Proposition A.1] asserts that \(M(a, b, c) \) and \(D(M(a, b, c)) \) give all the indecomposable left \(A \)-modules of dimension 3.

For \((a, b, c) \in k^3 \setminus \{0\} \), we also consider right \(A \)-modules

\[
M'(a, b, c) := A/[(ax + by + cz)A + \text{soc}A] = \overline{1}A.
\]

Lemma 6.1. ([RZ3, 1.7]) An indecomposable \(A \)-module \(M \) of dimension at most 3 is double semi-Gorenstein-projective which are not torsionless if and only if \(M \cong M(1, -q, c) \) for some \(c \in k \). Moreover,

\[
M(1, -q, c)^* \cong (x - y)A \cong A/(x - q^{-1}y)A = M'(1, -q^{-1}, 0)
\]

where the first isomorphism is given by \(f \mapsto f(\overline{1}) \), and the second isomorphism is given by \(x - y \mapsto \overline{1} \).

6.3. A class of double semi-Gorenstein-projective \(T_2(A) \)-modules which are not monic. In order to apply Theorem 1.7 to get a family of double semi-Gorenstein-projective \(T_2(A) \)-modules which are not monic, we look for a left \(\text{add}(A) \)-approximation of \(M(1, -q, c) = A/(x - qy + cz) = \overline{A} \). Any \(f \in M(1, -q, c)^* = \text{Hom}_A(A\overline{1}, A) \) is the right multiplication by \(f(\overline{1}) \). Since \(\text{Im}f \in J \), \(f(\overline{1}) = c_1x + c_2y + c_3z + c_4yx + c_5zx \) with \(c_i \in k \), such that \((x - qy + cz)f(\overline{1}) = 0 \). Thus \(c_1 + c_2 = 0, c_3 = 0 \).
Hence \(f(\overline{1}) \in (x - y)A \) and \(M(1, -q, c)^* \) has a \(k \)-basis \(f_1, f_2, f_3 \), where \(f_i : M(1, -q, c) \to A \) is the left \(A \)-map given by

\[
\begin{align*}
f_1(\overline{1}) &= x - y, & f_2(\overline{1}) &= yx, & f_3(\overline{1}) &= zx.
\end{align*}
\]

Therefore \(M(1, -q, c)^* = f_1 A \) and

\[
f_1 : M(1, -q, c) \to A
\]

is a left \(\text{add}(A) \)-approximation of \(M(1, -q, c) \). Applying Theorem \ref{maintheorem}, one gets

Proposition 6.2. For all \(c \in k \), the \(T_2(A) \)-modules

\[
X(c) := \left(\frac{A}{M(1, -q, c)} \right)^A
\]

where \(f_1 : M(1, -q, c) \to A \) is the left \(A \)-map given by \(f_1(\overline{1}) = x - y \), are double semi-Gorenstein-projective, but not monic, and hence not torsionless.

Moreover, one has

\begin{itemize}
\item[(i)] \(X(c)^* \cong ((x - q^{-1}y)A, A)_\sigma \), where \(\sigma : (x - q^{-1}y)A \to A \) is the embedding; \(X(c)^{**} \cong \left(\frac{A}{A(x-y)A} \right)_\ell \) is not semi-Gorenstein-projective, where \(\ell : A(x-y) \to A \) is the embedding. In particular, \(X(c)^* \) is not Gorenstein-projective.
\item[(ii)] If one identifies \(X(c)^{**} \) with \(\left(\frac{A}{A(x-y)A} \right)_\ell \), then the canonical \(\Lambda \)-map \(\phi_{X(c)} : X(c) \to X(c)^{**} \) reads as

\[
\left(\frac{\text{Id}_A}{r_{x-y}} \right) : \left(\frac{A}{M(1, -q, c)} \right)^A \to \left(\frac{A}{A(x-y)A} \right)_\ell
\]

where \(r_{x-y} \) is the right multiplication by \(x - y \). Thus, \(\phi_{X(c)} \) is neither a monomorphism nor an epimorphism.
\end{itemize}

Proof. It remains to prove (i) and (ii).

(i) Note that there are isomorphisms

\[
\text{Coker} f_1) = (A/A(x-y))^* \cong (x - q^{-1}y)A \cong A/(x - q^{-2}y)A
\]

as right \(A \)-modules, where the first isomorphism is given by \(g \mapsto g(\overline{1}) \), and the second isomorphism is given by \(x - q^{-1}y \mapsto 1 \). We stress that

\[
A/A(x-y) \ncong M(1,-1,0) = A/[A(x-y) + \text{soc}A]
\]

and that \((A/A(x-y))^* \cong (x - q^{-1}y)A \cong M(1,-1,0)^* \). By Lemma \ref{lemma1}ii), there is a right \(\Lambda \)-module isomorphism

\[
h : X(c)^* \cong ((x - q^{-1}y)A, A)_\sigma
\]

where \(\sigma : (x - q^{-1}y)A \to A \) is the embedding.

Note that \((\text{Coker} \sigma)^* = (A/(x - q^{-1}y)A)^* \cong A(x-y)A \) as left \(A \)-modules, with the isomorphism given by \(g \mapsto g(\overline{1}) \). By Lemma \ref{lemma2}ii), there is a left \(\Lambda \)-module isomorphism

\[
\left(\frac{A}{A(x-y)A} \right)_\ell \cong X(c)^{**}
\]

where \(\ell : A(x-y)A \to A \) is the embedding.

Note that \(A(x-y)A = A(x-y) \oplus kzx \) is decomposable left \(A \)-module of dimension 3. By \cite[Theorem 1.5]{RZ3}, \(A(x-y)A \) not semi-Gorenstein-projective. It follows from Corollary \ref{corollary1} that \(\left(\frac{A}{A(x-y)A} \right)_\ell \) is not....
semi-Gorenstein-projective, and hence \(X(c)^{**} \) is not semi-Gorenstein-projective. In particular, \(X(c)^* \) is not Gorenstein-projective.

(ii) To get \(\phi_{X(c)} \), we apply Proposition 5.4 to \(X(c) = \left(\frac{A^A}{M(1,-q,c)} \right)_{f_1} \). It is clear that \(\phi_A = \text{Id}_A \).

Since \(X(c) \) is double semi-Gorenstein-projective, it follows from Lemma 5.6 that the canonical \(A \)-map \(\beta : \text{Coker} \sigma \rightarrow M(1,-q,c)^* \) appeared in Proposition 5.4 is an isomorphism. Without loss of generality, one may regard \(\beta \) as the identity. Note that

\[
M(1,-q,c)^{**} \cong M'(1,-q^{-1},0)^* \cong A(x-y)A
\]

where the first isomorphism is given in Lemma 6.1 and the second isomorphism is given by \(g \mapsto g(\bar{1}) \).

By Proposition 5.4(ii), if we identify \(X(c)^{**} \) with \(\left(\frac{A^A}{A(x-y)A} \right)_1 \), then \(\phi_{X(c)} \) reads as

\[
\left(\frac{\text{Id}_A}{\phi_{M(1,-q,c)}} \right) : \left(\frac{A^A}{M(1,-q,c)} \right)_{f_1} \rightarrow \left(\frac{A^A}{A(x-y)A} \right)_1.
\]

Since the diagram

\[
\begin{array}{ccc}
M(1,-q,c) & \xrightarrow{f_1} & A \\
\phi_{M(1,-q,c)} & \downarrow & \\
A(x-y)A & \xrightarrow{\iota} & A
\end{array}
\]

commutes, it follows that \(\phi_{M(1,-q,c)} : M(1,-q,c) \rightarrow A(x-y)A \) is just the right multiplication \(r_{x-y} \).

Thus, \(\phi_{M(1,-q,c)} \) is neither a monomorphism nor an epimorphism, and hence \(\phi_{X(c)} \) is neither a monomorphism nor an epimorphism.

\[\blacksquare\]

Acknowledgement: The author sincerely thanks Claus Michael Ringel for his helpful discussions and comments, and the anonymous referee for suggestions on the presentation of the paper.

References

[A] D. M. Arnold, Abelian Groups and Representations of Finite Partially Ordered Sets, Springer CMS Books in Math., 2000.

[AB] M. Auslander, M. Bridger, Stable module theory, Mem. Amer. Math. Soc. 94., Amer. Math. Soc., Providence, R.I., 1969.

[AR] M. Auslander, I. Reiten, Cohen-Macaulay and Gorenstein artin algebras, In: Representation theory of finite groups and finite-dimensional algebras, Progress in Math. vol. 95, 221-245, Birkhäuser, Basel, 1991.

[ARS] M. Auslander, I. Reiten, S. O. Smalø, Representation Theory of Artin Algebras, Cambridge Studies in Adv. Math. 36., Cambridge Univ. Press, 1995.

[AIS] L. L. Avramov, S. B. Iyengar, L. M. Şega, Free resolutions over short local rings, J. London Math. Soc. 78(2008), 459-476.

[AM] L. L. Avramov, A. Martsinkovsky, Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension, Proc. London Math. Soc. 85(3)(2002), 393-440.

[Bel1] A. Beligiannis, Cohen-Macaulay modules, (co)torsion pairs and virtually Gorenstein algebras, J. Algebra 288(1)(2005), 137–211.

[BR] A. Beligiannis, I. Reiten, Homological and homotopical aspects of torsion theories, Mem. Amer. Math. Soc. 188(883), Amer. Math. Soc., Providence, R.I., 2007.

[Bel2] A. Beligiannis, On algebras of finite Cohen-Macaulay type, Adv. Math. 226(2)(2011), 1973–2019.

[Bir] G. Birkhoff, Subgroups of abelian groups, Proc. Lond. Math. Soc. II. Ser. 38(1934), 385-401.

[CE] H. Cartan, S. Eilenberg, Homological algebra, Oxford Univ. Press, Princeton Univ. Press, 1956.
X. W. Chen, The stable monomorphism category of a Frobenius category, Math. Res. Lett. 18(1) (2011), 125-137.

X. W. Chen, Algebras with radical square zero are either self-injective or CM-free, Proc. Amer. Math. Soc. 140(1) (2012), 93-98.

L. W. Christensen, Gorenstein Dimensions, Lecture Notes in Math. 1747, Springer-Verlag, 2000.

L. W. Christensen, O. Veliche, Acyclicity over local rings with radical cube zero, Illinois J. Math. 51 (2007), 1439-1454.

E. E. Enochs, O. M. G. Jenda, Gorenstein injective and projective modules, Math. Z. 220(4) (1995), 611-633.

E. E. Enochs, O. M. G. Jenda, Relative homological algebra, De Gruyter Exp. Math. 30. Walter De Gruyter Co., 2000.

M. Hovey, Cotorsion pairs, model category structures, and representation theory, Math. Z. 241(3) (2002), 553-592.

W. Hu, X. H. Luo, B. X. Xiong, G. D. Zhou, Gorenstein projective bimodules via monomorphism categories and filtration categories, J. Pure Appl. Algebra 223 (2019), 1014-1039.

D. A. Jorgensen, L. M. Šega, Independence of the total reflexivity conditions for modules, Algebras and Representation Theory 9 (2) (2006), 217-226.

D. Kussin, H. Lenzing, H. Meltzer, Nilpotent operators and weighted projective lines, J. Reine Angew. Math. 685(6) (2010), 33-71.

D. Kussin, H. Lenzing, H. Meltzer, Triangle singularities, ADE-chains, and weighted projective lines, Adv. Math. 237 (2013), 194-251.

J. Lescot, Asymptotic properties of Betti numbers of modules over certain rings, J. Pure Appl. Algebra 38 (1985), 287-298.

X. H. Luo, P. Zhang, Monic representations and Gorenstein-projective modules, Pacific J. Math. 264(1) (2013), 163-194.

X. H. Luo, P. Zhang, Separated monic representations I: Gorenstein-projective modules, J. Algebra 479 (2017), 1-34.

R. Marczinzik, Gendo-symmetric algebras, dominant dimensions and Gorenstein homological algebra, arXiv:1608.04212

R. Marczinzik, On stable modules that are not Gorenstein projective, arXiv:1709.01132v3.

C. M. Ringel, M. Schimidmeier, Submodules categories of wild representation type, J. Pure Appl. Algebra 205(2) (2006), 412-422.

C. M. Ringel, M. Schimidmeier, The Auslander-Reiten translation in submodule categories, Trans. Amer. Math. Soc. 360(2) (2008), 691-716.

C. M. Ringel, M. Schimidmeier, Invariant subspaces of nilpotent operators I, J. rein angew. Math. 614(2008), 1-52.

C. M. Ringel, P. Zhang, Representations of quivers over the algebra of dual numbers, J. Algebra 475 (2017), 327-360.

C. M. Ringel, P. Zhang, Gorenstein-projective and semi-Gorenstein-projective modules, Algebra & Number Theory 14-1 (2020), 1-36.

C. M. Ringel, P. Zhang, Gorenstein-projective and semi-Gorenstein-projective modules II, J. Pure Appl. Algebra 224 (2020) 106248.

C. M. Ringel, P. Zhang, On modules M such that both M and M^* are semi-Gorenstein-projective, Algebras and Representation Theory 24(2021), 1125-1140.

C. M. Ringel, P. Zhang, Gorenstein-projective modules over short local algebras, J. London Math. Soc. https://doi.org/10.1112/jlms.12577, arXiv:1912.02081v6 (math. RT)

C. M. Ringel, P. Zhang, Koszul modules (and the Ω-growth of modules) over short local algebras, J. Pure Appl. Algebra 225 (2021), 106772.

D. Simson, Linear representations of partially ordered sets and vector space categories, Gordon and Breach Science Publishers, 1992.

D. Simson, Chain categories of modules and subprojective representations of posets over uniserial algebras, Rocky Mountain J. Math. 32(2002) 1627–1650.

D. Simson, Representation types of the category of subprojective representations of a finite poset over $K[t]/(t^n)$ and a solution of a Birkhoff type problem, J. Algebra 311(2007), 1-30.

D. Simson, Tame-wild dichotomy of Birkhoff type problems for nilpotent linear operators, J. Algebra 424(2015), 254-293.
[SS] D. Simson, Representation-finite Birkhoff type problems for nilpotent linear operator, J. Pure Appl. Algebra 222(2018), 2181-2198.

[XZ] B. L. Xiong, P. Zhang, Gorenstein-projective modules over triangular matrix Artin algebras, J. Algebra Applications (JAA) 11(4)(2012), 1250066.

[XZZ] B. L. Xiong, P. Zhang, Y. H. Zhang, Bimodule monomorphism categories and RSS equivalences via cotilting modules, J. Algebra 503(2018), 21-55.

[Y1] Y. Yoshino, A functorial approach to modules of G-dimension zero, Illinois J. Math. 49(3)(2005), 345-367.

[Y2] Y. Yoshino, Modules of G-dimension zero over local rings with the cube of maximal ideal being zero, In: Commutative algebra, singularities and computer algebra (Sinaia, 2002), 255–273, NATO Sci. Ser. II Math. Phys. Chem. 115, Kluwer Acad. Publ., Dordrecht, 2003.

[Z1] P. Zhang, Monomorphism categories, cotilting theory, and Gorenstein-projective modules, J. Algebra 339(2011), 180-202.

[Z2] P. Zhang, Gorenstein-projective modules and symmetric recollements, J. Algebra 388 (2013), 65-80.

[ZX] P. Zhang, B. L. Xiong, Separated monic representations II: Frobenius subcategories and RSS equivalences, Trans. Amer. Math. Soc. 372(2)(2019), 981-1021.