Strength of pairing interaction for hyperons in multistrangeness hypernuclei

Yu-Ting Ronga,b, Pengwei Zhaoc, Shan-Gui Zhoua,b,d,e,*

aCAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
bSchool of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
cState Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
dCenter of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, Lanzhou, 730000, China
eSynergetic Innovation Center for Quantum Effects and Application, Hunan Normal University, Changsha, 410081, China

Abstract

Pairing correlations play a very important role in atomic nuclei. Although several effective pairing interactions have been used in mean field calculations for nucleons, little is known about effective pairing interactions for hyperons. Based on the quark model, we propose a relationship between effective pairing interactions for hyperons and for nucleons; e.g., for Λs, the strength of the pairing interaction is $4/9$ of that for nucleons. A separable pairing force of finite range which has been widely applied to describing pairing correlations in normal nuclei is used to investigate pairing effects in multi-Λ Ca, Sn and Pb hypernuclei.

Keywords: Multistrangeness, pairing interaction, quark model, relativistic Hartree-Bogoliubov theory

Since the discovery of the first Λ hypernucleus from cosmic rays \cite{1}, the study of hypernuclei has been one of very interesting topics in nuclear physics \cite{2,3,4}. Most of the observed hypernuclei are of single-Λ. So far there is only one confirmed double-Λ hypernucleus $^{6}_\Lambda$He \cite{10} and two candidates $^{13}_\Lambda$B \cite{11} and $^{10}_\Lambda$Be \cite{12}. Nevertheless, many theoretical efforts have been devoted to

*Corresponding author.

Email address: sgzhou@itp.ac.cn (Shan-Gui Zhou)
investigating the structure of more double-Λ and even multistrangeness (−S ≥ 3) hypernuclei [13–20].

Hypernuclei are unique quantum many-body systems for the investigation of hyperon-nucleon (YN) and hyperon-hyperon (YY) interactions which are, in turn, crucial for understanding the hypernuclear structure as well as the hypernuclear matter and properties of neutron stars. With the strangeness degree of freedom, a hyperon can move deep inside the nucleus and serve as an impurity for probing nuclear properties that are not accessible by conventional methods developed for normal nuclei. Lots of many-body techniques for normal nuclei, including various mean-field models [18–39], have been extended to hypernuclei. In particular, the relativistic mean-field (RMF) models [40–49] which have been very successful in describing normal nuclei in the whole nuclear chart are also used extensively to study hypernuclei.

In the RMF models, one needs effective interactions both for the particle-hole (ph) and particle-particle (pp) channels. For normal nuclei, a large amount of effective interactions for the ph channel have been proposed, see, e.g., Refs. [50–58]. Meanwhile, both zero-range and finite-range pairing forces have been used in the pp channel [59–61]. For hypernuclei, YN and YY interactions in the ph channel can be either obtained by fitting experimental data or estimated with the naive quark model [29, 62–67]. However, effective interactions for hyperons in the pp channel are much less known. In this Letter, we propose a way to estimate the strength of pairing interactions for hyperons based on the meson exchange picture and the naive quark model.

From the quark model we know that nucleons consist of three u/d quarks and hyperons consist of, besides u/d quarks, one or more s quarks. Next we use nu/d to label the number of u/d quarks in a baryon (a nucleon or a hyperon) and define gBM to be the coupling constant of a non-strangeness meson M (σ, ω, ρ, · · ·) to a baryon B (N, Λ, · · ·). According to the OZI rule only u/d quarks are involved in the coupling of a non-strangeness meson to a baryon at the tree level. Therefore the following relation holds: gYM = nu/d/3 · gNM. Similar discussions have been made with the quark-meson coupling model [68]. If gNM is known, one can readily get gYM. For example, since nu/d = 2 in Λs, gΛ = 2/3 · gNM; this has been proposed and used in the study of Λ-hypernuclei [62, 63, 69–71].

The exchange of the meson M between two baryons B1 and B2 results in an interaction with the strength proportional to gB1,MgB2,M [72]. For single-Λ hypernuclei, the central potential for the Λ in the mean field generated by nucleons is proportional to gNMgAM while that for nucleons is proportional to g2NM, leading to the well known observation that the depth of the potential for the Λ is roughly
The strength for the YY interaction is proportional to g_{YM}^2, i.e., $n_{u/d}^2/9$ ($= g_{YM}^2/g_{NM}^2$) of that for the NN interaction. Since the pairing force is the residual of the two-body BB interaction, the ratio $n_{u/d}^2/9$ holds also between the strength of the pairing interaction for hyperons and that for nucleons. Note that mesons consisting of strange quarks may be exchanged between hyperons and result in possible deviations of this ratio from $n_{u/d}^2/9$. In this work we restrict our discussions in the framework of conventional RMF models with non-strangeness mesons.

As an illustration, we use the relativistic Hartree-Bogoliubov (RHB) theory to study the effects of the $\Lambda\Lambda$ pairing in multistrangeness hypernuclei. The RHB theory provides a unified description of the relativistic mean field and the pairing correlations via the Bogoliubov transformation. The RHB equation consists of the single particle Hamiltonian h_B and the pairing field Δ:

$$\int d^3r \begin{pmatrix} h_B - \lambda - \Delta^* & \Delta \\ -\Delta & -h_B + \lambda \end{pmatrix} \begin{pmatrix} U_k \\ V_k \end{pmatrix} = E_k \begin{pmatrix} U_k \\ V_k \end{pmatrix},$$

(1)

where λ is the Fermi energy and E_k and $(U_k, V_k)^T$ are the quasi-particle energy and wave function, respectively.

For the ph channel, the Dirac Hamiltonian for nucleons has been established and that for Λ reads:

$$h_{\Lambda}(r) = \alpha \cdot p + V_{\Lambda}(r) + \beta(m_{\Lambda} + S_{\Lambda}(r)) + T_{\Lambda}(r),$$

(2)

where the scalar, vector and tensor potentials are

$$S_{\Lambda}(r) = g_{\sigma\Lambda} \sigma(r),$$

$$V_{\Lambda}(r) = g_{\omega\Lambda} \omega_0(r),$$

$$T_{\Lambda}(r) = -\frac{f_{\omega\Lambda}}{2m_{\Lambda}} \beta(\alpha \cdot p) \omega_0(r).$$

(3)

The tensor potential $T_{\Lambda}(r)$ is included to achieve the small spin-orbit splitting for the Λ. We adopt two effective interactions NLSH-A and PK1-Y1 which have been extensively used in the study of Λ hypernuclei.

In the pp channel, the pairing potential reads

$$\Delta(r_1\sigma_1, r_2\sigma_2) = \int d^3r_1'd^3r_2' \sum_{\sigma_1'\sigma_2'} V(r_1\sigma_1, r_2\sigma_2, r_1'\sigma_1', r_2'\sigma_2') \kappa(r_1\sigma_1, r_2\sigma_2),$$

(4)
where \(V \) is the effective pairing interaction and \(\kappa \) is the pairing tensor

\[
\kappa(r_1\sigma_1, r_2\sigma_2) = \sum_{k>0} V_k^* (r_1\sigma_1) U_k (r_2\sigma_2). \tag{5}
\]

We use the separable pairing force of finite range proposed by Tian et al. \([60, 81–83]\)

\[
V(r_1\sigma_1, r_2\sigma_2, r'_1\sigma'_1, r'_2\sigma'_2) = -G\delta(R - R')P(r)P(r') \frac{1 - P_{\sigma}}{2}, \tag{6}
\]

where \(G \) is the pairing strength and \(R = (r_1 + r_2)/2 \) and \(r = r_1 - r_2 \) are the center of mass and relative coordinates, respectively. \(P(r) \) denotes the Gaussian function,

\[
P(r) = \left(4\pi a^2\right)^{-3/2} e^{-r^2/4a^2}, \tag{7}
\]

where \(a \) is the effective range of the pairing force. For nucleons, the pairing strength \(G_N = 728 \text{ MeV} \cdot \text{fm}^3 \) and the effective range \(a = 0.644 \text{ fm} \) have been obtained by fitting the momentum dependence of the pairing gap in the nuclear matter calculated from the Gogny force. According to our proposal discussed before, the pairing strength for \(\Lambda \)s is taken to be \(G_{\Lambda} = 4/9 \cdot G_N \).

We have carried out calculations with the multidimensionally-constrained (MDC) RHB theory \([84]\), one of the recently developed MDC covariant density functional theories (MDC-CDFTs) \([49, 84–87]\). For simplicity, we choose doubly-magic \(^{40}\text{Ca}, ^{132}\text{Sn}\) and \(^{208}\text{Pb}\) as the core nuclei and study even-even-even
hypernuclei $^{40-5}_{-S_{\Lambda}}$Ca ($-S = 0-20$), $^{132-5}_{-S_{\Lambda}}$Sn ($-S = 0-40$) and $^{208-5}_{-S_{\Lambda}}$Pb ($-S = 0-70$). All these hypernuclei are spherical and have vanishing neutron and proton pairing gaps according to our MDC-RHB calculations. In Fig. 1, the two-Lambda separation energies $S_{2\Lambda}$ are shown for them. One can find that $S_{2\Lambda}$ decreases monotonically with the number of Λs increasing. As far as the two-Lambda separation energy is concerned, at least 20, 40 and 70 Λs can be bound to the core nuclei $^{40}_{-S_{\Lambda}}$Ca, $^{132}_{-S_{\Lambda}}$Sn and $^{208}_{-S_{\Lambda}}$Pb, respectively. There are sudden drops in $S_{2\Lambda}$ when $-S = 2, 8, 20, 34, 40$ and 58. These numbers are magic numbers for Λs. Since the spin-orbit splitting is very small in the single Λ spectrum, these numbers actually correspond to shell closures or sub-closures in the single particle level scheme of a harmonic oscillator potential.

Figure 2: (Color online) The pairing gap of Λs as a function of the strangeness number $-S$ for (a) $^{40}_{-S_{\Lambda}}$Ca ($-S = 0-20$), (b) $^{132}_{-S_{\Lambda}}$Sn ($-S = 0-40$) and (c) $^{208}_{-S_{\Lambda}}$Pb ($-S = 0-70$) obtained in the MDC-RHB calculations. The effective interactions PK1-Y1 and NLSH-A are used for the ph channel and the separable pairing force of finite range with the pairing strength $G_{\Lambda} = 4/9 \cdot G_N = 323.56$ MeV-fm3 is used for pp channel.

The pairing gap is one of the typical quantities to characterize pairing effects. We have calculated the average pairing gap as [88]

$$\Delta_\Lambda = \frac{\sum_k \langle u_k v_k \Delta_k \rangle}{\sum_k \langle u_k v_k \rangle}, \tag{8}$$

where Δ_k is the pairing gap corresponding to a single Λ state k in the canonical basis and u_k^2 and v_k^2 give the empty and occupation probabilities, respectively. Figure 2 shows the $\Lambda\Lambda$ pairing gaps of $^{40}_{-S_{\Lambda}}$Ca, $^{132}_{-S_{\Lambda}}$Sn and $^{208}_{-S_{\Lambda}}$Pb. It can be seen that for almost every hypernucleus, the pairing gaps of Λs obtained from PK1-Y1 and NLSH-A are very similar. One can also find that the $\Lambda\Lambda$ pairing gaps are zero when the strangeness number is 2, 8, 20, 34, 40, 58 and 70, consistent with the conclusion drawn from the two-Lambda separation energies that they are magic.
numbers for Λs. There is a clear dependence of Δ_Λ on the mass number of the core nucleus. For $^{40-5}_{-5A}$Ca, $^{132-5}_{-5A}$Sn and $^{208-5}_{-5A}$Pb, the maximal values of Δ_Λ are a bit smaller than 0.8 MeV, around 0.6 MeV and smaller than 0.6 MeV, respectively. That is, the heavier the core, the smaller the pairing gap of Λs. This dependence is consistent with the observation in normal open shell nuclei that the pairing gap for nucleons decreases with the mass number. We will discuss more about this dependence later. Meanwhile, when comparing the maximal values of Δ_Λ with Δ_N, one may also notice that the pairing effects of Λs are weaker than nucleons; e.g., $\Delta_\Lambda < 0.8$ MeV for $^{44}_{4A}$Ca, while for an open shell nucleus with $A = 44$, Δ_N is about 1.8 MeV according to the empirical formula $\Delta_N \approx 12A^{-1/2}$ MeV \cite{89}. Since the pairing strength for Λs has been taken as $4/9$ of that for nucleons, it is not unexpected that the pairing effects of Λs are weaker compared to nucleons.

![Figure 3](image_url)

Figure 3: (Color online) (a) $\Lambda\Lambda$ pairing gaps for $^{46}_{6A}$Ca, $^{160}_{28A}$Sn and $^{272}_{64A}$Pb and (b) the average $\Lambda\Lambda$ pairing gaps as defined in Eq. (9) for $^{40-5}_{-5A}$Ca ($-S = 6-20$), $^{132-5}_{-5A}$Sn ($-S = 18-40$) and $^{208-5}_{-5A}$Pb ($-S = 58-70$) compared with the HFB results \cite{19} with SLy5 for the NN interaction and DF-NSC89, DF-NSC97a and DF-NSC97f for the ΛN interaction in the ph channel. In the MDC-RHB calculations, the effective interactions PK1-Y1 and NLSH-A are used for the ph channel and the separable pairing force of finite range with the pairing strength $G_\Lambda = 4/9 \cdot G_N = 323.56$ MeV\cdotfm3 is used for pp channel.

There have not been much work on the pairing effects of hyperons in finite nuclei, though some efforts were made to the study of double-Λ and multistrangeness ($-S \geq 3$) hypernuclei \cite{13-20}. In Ref. \cite{19}, Güven et al. have investigated multistrangeness hypernuclei with the Hartree-Fock-Bogoliubov (HFB) theory and obtained interesting results concerning pairing effects of Λs. Next we make a brief comparison of our results with Ref. \cite{19}. In Fig. 3(a), the pairing gaps for Λs
in three typical multistrangeness hypernuclei $^{46\Lambda}$Ca, $^{160\Lambda}$Sn and $^{272\Lambda}$Pb are compared with the HFB results [19]. It can be seen that $\Lambda\Lambda$ pairing gaps of these three nuclei in the present work are smaller than those given in Ref. [19]. Furthermore, the Δ_{Λ} from the MDC-RHB theory decreases faster with A than the HFB predictions. This conclusion holds also for the average pairing gap

$$\bar{\Delta}_{\Lambda} = \frac{1}{m} \sum_{-S} \Delta_{\Lambda}(-S_{-S}\Lambda X), \quad X = \text{Ca, Sn and Pb},$$

for $^{40-S}_{-S\Lambda}$Ca ($-S = 6–20$ and $m = 8$), $^{132-S}_{-S\Lambda}$Sn ($-S = 18–40$ and $m = 12$) and $^{208-S}_{-S\Lambda}$Pb ($-S = 58–70$ and $m = 12$), as seen in Fig. 3(b). In Ref. [19], a zero-range δ force is adopted for the $\Lambda\Lambda$ pairing and its strength for $^{40-S}_{-S\Lambda}$Ca, $^{132-S}_{-S\Lambda}$Sn and $^{208-S}_{-S\Lambda}$Pb has been adjusted separately within a sharply truncated pairing window. The adjustment was made by fitting the average pairing gap (8) to the maximal pairing gap in uniform hypernuclear matter given in Ref. [90] at a certain density corresponding to the averaged density of $^{40-S}_{-S\Lambda}$Ca ($-S = 6–20$), $^{132-S}_{-S\Lambda}$Sn ($-S = 18–40$) and $^{208-S}_{-S\Lambda}$Pb ($-S = 58–70$), respectively. Thus for Ca, Sn and Pb isotopes, the pairing strengths are different and the pairing interaction is always the strongest for Pb, as seen in TABLE IV of Ref. [19]. In the present work, however, a global finite-range pairing force [Eq. (6)] is adopted and, thus, there is no hard cut-off for the pairing window.

In normal nuclei, it has been well known that the pairing gap for nucleons Δ_N declines more or less with \sqrt{A} [89]. This decreasing tendency is roughly consistent with the dependence of $\Lambda\Lambda$ pairing gaps with respect to the number of Λs obtained in the present work. Nevertheless, in Ref. [19], the decrease of the $\Lambda\Lambda$ pairing gaps is much gentler with the number of Λs. This is quite interesting and should be investigated further.

To summarize, we have proposed a relationship between effective pairing interactions for hyperons and for nucleons based on the quark model. Namely, the ratio between the strength of the effective pairing interaction for the hyperon Y consisting of $n_{u/d}$ u/d quarks and that for the nucleon is $n_{u/d}^2/9$. For Λs, this ratio is simply $4/9$. A separable pairing force of finite range has been implemented in the MDC-RHB theory to investigate $\Lambda\Lambda$ pairing effects in multi-Λ Ca, Sn and Pb hypernuclei. By examining the two-Λ separation energy $S_{2\Lambda}$ and the pairing gap Δ_{Λ}, it is revealed that $-S = 2, 8, 20, 34, 40$ and 58 are magic or semi-magic numbers for Λs. The Δ_{Λ} decreases when the mass number of the core nucleus increasing. It is also found that the pairing effects of Λs are weaker than nucleons due to the suppression of the pairing strength by a factor of $4/9$.

Finally, let us make two further remarks. First, one may notice that the ratio $n_{u/d}^2/9$ is probably very rough. Other factors such as the violation of the OZI rule \cite{91,92}, medium effects \cite{68}, possible different couplings of ρ to baryons \cite{93} and mass splittings for baryons \cite{79} may alternate this ratio or make the relation more complex between pairing interactions of Λs and nucleons. Second, although in the present work the ratio $n_{u/d}^2/9$ between the strength of the pairing interaction for hyperons and that for nucleons has been used in the framework of the RMF models, we expect it is also applicable to non-relativistic mean field models.

Acknowledgements

Helpful discussions with Xiang-Xiang Sun and Kun Wang are gratefully acknowledged. This work has been supported by the National Key R&D Program of China (2018YFA0404402), the NSF of China (11525524, 11621131001, 11947302, 11975031, and 11961141004), the CAS Key Research Program of Frontier Sciences (QYZDB-SSWSYS013), the CAS Key Research Program (XDPB09-02), the Inter-Governmental S&T Cooperation Project between China and Croatia, and the IAEA CRP “F41033”. The computation of this work was supported by the HPC Cluster of KLTP/ITP-CAS and the Supercomputing Center, CNIC of CAS.

References

References

[1] M. Danysz, J. Pniewski, Delayed disintegration of a heavy nuclear fragment: I, Philos. Mag. 44 (1953) 348–350.

[2] O. Hashimoto, H. Tamura, Spectroscopy of Λ hypernuclei, Prog. Part. Nucl. Phys. 57 (2) (2006) 564–653.

[3] E. Hiyama, M. Kamimura, Y. Yamamoto, T. Motoba, T. A. Rijken, $S = -1$ hypernuclear structure, Prog. Theor. Phys. Suppl. 185 (2010) 106–151.

[4] E. Hiyama, M. Kamimura, Y. Yamamoto, T. Motoba, T. A. Rijken, $S = -2$ hypernuclear structure, Prog. Theor. Phys. Suppl. 185 (2010) 152–196.

[5] H. Tamura, Strangeness nuclear physics experiments at J-PARC, Prog. Theor. Exp. Phys. 2012 (1) (2012) 02B012.
[6] A. Feliciello, T. Nagae, Experimental review of hypernuclear physics: recent achievements and future perspectives, Rep. Prog. Phys. 78 (9) (2015) 096301.

[7] A. Gal, E. V. Hungerford, D. J. Millener, Strangeness in nuclear physics, Rev. Mod. Phys. 88 (2016) 035004.

[8] X. Y. Chen, Z. Zhou, W. G. Jiang, B. S. Hu, F. R. Xu, p-shell hypernuclear energy spectra using the Gogny-interaction shell model, J. Phys. G: Nucl. Part. Phys. 46 (12) (2019) 125106.

[9] A. Nogga, Charge-symmetry breaking in light hypernuclei based on chiral and similarity renormalization group-evolved interactions, AIP Conf. Proc. 2130 (2019) 030004.

[10] H. Takahashi, J. K. Ahn, H. Akikawa, S. Aoki, K. Arai, S. Y. Bahk, K. M. Baik, B. Bassalleck, J. H. Chung, M. S. Chung, D. H. Davis, T. Fukuda, K. Hoshino, A. Ichikawa, M. Ieiri, K. Imai, Y. H. Iwata, Y. S. Iwata, H. Kanda, M. Kaneko, T. Kawai, M. Kawasaki, C. O. Kim, J. Y. Kim, S. J. Kim, S. H. Kim, Y. Kondo, T. Kouketsu, Y. L. Lee, J. W. C. McNabb, M. Mitsuhara, Y. Nagase, C. Nagoshi, K. Nakazawa, H. Noumi, S. Ogawa, H. Okabe, K. Oyama, H. M. Park, I. G. Park, J. Parker, Y. S. Ra, J. T. Rhee, A. Rusek, H. Shibuya, K. S. Sim, P. K. Saha, D. Seki, M. Sekimoto, J. S. Song, T. Takahashi, F. Takeutchi, H. Tanaka, K. Tanida, J. Tojo, H. Torii, S. Torikai, D. N. Tovee, N. Ushida, K. Yamamoto, N. Yasuda, J. T. Yang, C. J. Yoon, C. S. Yoon, M. Yosoi, T. Yoshida, L. Zhu, Observation of a $^6_{\Lambda\Lambda}$He double hypernucleus, Phys. Rev. Lett. 87 (21) (2001) 212502.

[11] S. Aoki, S. Y. Bahk, S. H. Chung, H. Funahashi, C. H. Hahn, M. Hanabata, T. Hara, S. Hirata, K. Hoshino, M. Ieiri, T. Iijima, K. Imai, Y. Itow, T. Jinya, M. Kazuno, C. O. Kim, J. Y. Kim, S. H. Kim, K. Kodama, T. Kuze, Y. Maeda, A. Masaike, A. Masuoka, Y. Matsuda, A. Matsui, Y. Nagase, C. Nagoshi, M. Nakamura, S. Nakanishi, T. Nakano, K. Nakazawa, K. Niwa, H. Oda, H. Okabe, S. Ono, R. Ozaki, B. D. Park, I. G. Park, K. Sakai, T. Sasaki, Y. Sato, H. Shibuya, H. M. Shimizu, J. S. Song, M. Sugimoto, H. Tajima, H. Takahashi, R. Takashima, F. Takeutchi, K. H. Tanaka, M. Teranaka, I. Tezuka, H. Togawa, T. Tsunemi, M. Ukai, N. Ushida, T. Watanabe, N. Yasuda, J. Yokota, C. S. Yoon, Nuclear capture at rest of Ξ^- hyperons, Nucl. Phys. A 828 (3–4) (2009) 191–232.
[12] J. K. Ahn, H. Akikawa, S. Aoki, K. Arai, S. Y. Bahk, K. M. Baik, B. Bassalleck, J. H. Chung, M. S. Chung, D. H. Davis, T. Fukuda, K. Hoshino, A. Ichikawa, M. Ieiri, K. Imai, K. Itonaga, Y. H. Iwata, Y. S. Iwata, H. Kanda, M. Kaneko, T. Kawai, M. Kawasaki, C. O. Kim, J. Y. Kim, S. H. Kim, S. J. Kim, Y. Kondo, T. Kouketsu, H. N. Kyaw, Y. L. Lee, J. W. C. McNabb, A. A. Min, M. Mitsuhara, K. Miwa, K. Nakazawa, Y. Nagase, C. Nagoshi, Y. Nakanishi, H. Noumi, S. Ogawa, H. Okabe, K. Oyama, B. D. Park, H. M. Park, I. G. Park, J. Parker, Y. S. Ra, J. T. Rhee, A. Rusek, A. Sawa, H. Shibuya, K. S. Sim, P. K. Saha, D. Seki, M. Sekimoto, J. S. Song, H. Takahashi, T. Takahashi, F. Takeutchi, H. Tanaka, K. Tanida, K. T. Tint, J. Tojo, H. Torii, S. Torikai, D. N. Tovee, T. Tsunemi, M. Ukai, N. Ushida, T. Wint, K. Yamamoto, N. Yasuda, J. T. Yang, C. J. Yoon, C. S. Yoon, M. Yosoi, T. Yoshida, L. Zhu, Double-Λ hypernuclei observed in a hybrid emulsion experiment, Phys. Rev. C 88 (1) (2013) 014003.

[13] K. Miyahara, K. Ikeda, H. Bando, Molecular orbital model study of the $^9\Lambda$Be, $^{10}\Lambda\Lambda$Be, $^{11}_{3}\Lambda$Be and $^{12}_{4}\Lambda$Be hypernuclei, Prog. Theor. Phys. 69 (6) (1983) 1717–1730.

[14] H.-F. Lü, J. Meng, Hyperon haloes in Λ hypernuclei in the relativistic continuum Hartree-Bogoliubov theory, Chin. Phys. Lett. 19 (12) (2002) 1775–1778.

[15] H.-F. Lü, Extreme exotic calcium lambda hypernuclei in the relativistic continuum Hartree-Bogoliubov theory, Chin. Phys. Lett. 25 (10) (2008) 3613–3616.

[16] M. Shoeb, Sonika, Stability of the s- and p-shell α cluster hypernuclei with strangeness $S = -2$ to -4, J. Phys. G: Nucl. Part. Phys. 36 (4) (2009) 045104.

[17] A. Gal, D. J. Millener, Shell-model predictions for ΛΛ hypernuclei, Phys. Lett. B 701 (3) (2011) 342–345.

[18] J. Margueron, E. Khan, F. Gulminelli, Density functional approach for multistrange hypernuclei: Competition between Λ and Ξ hyperons, Phys. Rev. C 96 (5) (2017) 054317.

[19] H. Güven, K. Bozkurt, E. Khan, J. Margueron, ΛΛ pairing in multistrange hypernuclei, Phys. Rev. C 98 (1) (2018) 014318.
[20] Y. Tanimura, *Clusterization and deformation of multi-Λ hypernuclei within a relativistic mean-field model*, Phys. Rev. C 99 (3) (2019) 034324.

[21] H. F. Lü, J. Meng, S. Q. Zhang, S. G. Zhou, *Neutron halos in hypernuclei*, Eur. Phys. J. A 17 (1) (2003) 19–24.

[22] X.-R. Zhou, H.-J. Schulze, F. Pan, J. P. Draayer, *Strong hyperon-nucleon pairing in neutron stars*, Phys. Rev. Lett. 95 (5) (2005) 051101.

[23] H. Shen, F. Yang, H. Toki, *Double-Λ hypernuclei in the relativistic mean-field theory*, Prog. Theor. Phys. 115 (2) (2006) 325–335.

[24] X. R. Zhou, J. W. Cui, N. Wei, *Nonrelativistic mean-field description of the deformation of Λ hypernuclei*, Sci. China Ser. G-Phys. Mech. Astron. 52 (10) (2009) 1548–1553.

[25] H.-J. Schulze, M. T. Win, K. Hagino, H. S. Sagawa, *Hyperons as a probe of nuclear deformation*, Prog. Theor. Phys. 123 (3) (2010) 569–580.

[26] M. T. Win, K. Hagino, T. Koike, *Shape of Λ hypernuclei in the (β, γ) deformation plane*, Phys. Rev. C 83 (1) (2011) 014301.

[27] B.-N. Lu, E.-G. Zhao, S.-G. Zhou, *Quadrupole deformation (β, γ) of light Λ hypernuclei in a constrained relativistic mean field model: Shape evolution and shape polarization effect of the Λ hyperon*, Phys. Rev. C 84 (1) (2011) 014328.

[28] C.-Y. Song, J.-M. Yao, J. Meng, *Tensor coupling effects on spin symmetry in the anti-Lambda spectrum of hypernuclei*, Chin. Phys. Lett. 28 (9) (2011) 092101.

[29] R. Xu, C. Wu, Z. Ren, *Single-Λ hypernuclei in the relativistic mean-field theory with parameter set FSU*, J. Phys. G: Nucl. Part. Phys. 39 (8) (2012) 085107.

[30] B.-N. Lu, E. Hiyama, H. Sagawa, S.-G. Zhou, *Superdeformed Λ hypernuclei within relativistic mean field models*, Phys. Rev. C 89 (04) (2014) 044307.

[31] H. Mei, K. Hagino, J. M. Yao, T. Motoba, *Microscopic study of low-lying spectra of Λ hypernuclei based on a beyond-mean-field approach with a covariant energy density functional*, Phys. Rev. C 91 (6) (2015) 064305.
[32] T. T. Sun, E. Hiyama, H. Sagawa, H.-J. Schulze, J. Meng, Mean-field approaches for Ξ^- hypernuclei and current experimental data, Phys. Rev. C 94 (6) (2016) 064319.

[33] J.-W. Cui, X.-R. Zhou, L.-X. Guo, H.-J. Schulze, Investigation of single- and double-Λ hypernuclei using a beyond-mean-field approach, Phys. Rev. C 95 (2) (2017) 024323.

[34] X. Y. Wu, H. Mei, J. M. Yao, X.-R. Zhou, Beyond-mean-field study of the hyperon impurity effect in hypernuclei with shape coexistence, Phys. Rev. C 95 (3) (2017) 034309.

[35] T.-T. Sun, W.-L. Lu, S.-S. Zhang, Spin and pseudospin symmetries in the single-Λ spectrum, Phys. Rev. C 96 (4) (2017) 044312.

[36] W.-Y. Li, J.-W. Cui, X.-R. Zhou, Structure of $^9\Lambda$Be and $^{10}\Lambda\Lambda$Be using the beyond-mean-field Skyrme-Hartree-Fock approach, Phys. Rev. C 97 (3) (2018) 034302.

[37] H. Mei, K. Hagino, J. M. Yao, T. Motoba, Disappearance of nuclear deformation in hypernuclei: A perspective from a beyond-mean-field study, Phys. Rev. C 97 (6) (2018) 064318.

[38] Z.-X. Liu, C.-J. Xia, W.-L. Lu, Y.-X. Li, J. N. Hu, T.-T. Sun, Relativistic mean-field approach for Λ, Ξ, and Σ hypernuclei, Phys. Rev. C 98 (2) (2018) 024316.

[39] H. Xia, X. Wu, H. Mei, J. Yao, Beyond mean-field approach for pear-shaped hypernuclei, Sci. China-Phys. Mech. Astron. 62 (4) (2019) 042001.

[40] B. D. Serot, J. D. Walecka, The relativistic nuclear many-body problem, Adv. Nucl. Phys. 16 (1986) 1–327.

[41] P. G. Reinhard, The relativistic mean-field description of nuclei and nuclear dynamics, Rep. Prog. Phys. 52 (4) (1989) 439–514.

[42] P. Ring, Relativistic mean field theory in finite nuclei, Prog. Part. Nucl. Phys. 37 (1996) 193–263.

[43] M. Bender, P.-H. Heenen, P.-G. Reinhard, Self-consistent mean-field models for nuclear structure, Rev. Mod. Phys. 75 (1) (2003) 121–180.
[44] D. Vretenar, A. V. Afanasjev, G. A. Lalazissis, P. Ring, Relativistic Hartree-Bogoliubov theory: Static and dynamic aspects of exotic nuclear structure, Phys. Rep. 409 (3–4) (2005) 101–259.

[45] J. Meng, H. Toki, S. G. Zhou, S. Q. Zhang, W. H. Long, L. S. Geng, Relativistic continuum Hartree Bogoliubov theory for ground-state properties of exotic nuclei, Prog. Part. Nucl. Phys. 57 (2) (2006) 470–563.

[46] T. Nikšić, D. Vretenar, P. Ring, Relativistic nuclear energy density functionals: Mean-field and beyond, Prog. Part. Nucl. Phys. 66 (3) (2011) 519–548.

[47] H. Liang, J. Meng, S.-G. Zhou, Hidden pseudospin and spin symmetries and their origins in atomic nuclei, Phys. Rep. 570 (2015) 1–84.

[48] J. Meng, S. G. Zhou, Halos in medium-heavy and heavy nuclei with covariant density functional theory in continuum, J. Phys. G: Nucl. Part. Phys. 42 (9) (2015) 093101.

[49] S.-G. Zhou, Multidimensionally constrained covariant density functional theories—nuclear shapes and potential energy surfaces, Phys. Scr. 91 (6) (2016) 063008.

[50] B. A. Nikolaus, T. Hoch, D. G. Madland, Nuclear ground state properties in a relativistic point coupling model, Phys. Rev. C 46 (5) (1992) 1757–1781.

[51] M. M. Sharma, M. A. Nagarajan, P. Ring, Rho meson coupling in the relativistic mean field theory and description of exotic nuclei, Phys. Lett. B 312 (4) (1993) 377–381.

[52] Y. Sugahara, H. Toki, Relativistic mean-field theory for unstable nuclei with non-linear sigma and omega terms, Nucl. Phys. A 579 (3-4) (1994) 557–572.

[53] G. A. Lalazissis, J. Konig, P. Ring, New parametrization for the Lagrangian density of relativistic mean field theory, Phys. Rev. C 55 (1) (1997) 540–543.

[54] W. Long, J. Meng, N. V. Giai, S.-G. Zhou, New effective interactions in relativistic mean field theory with nonlinear terms and density-dependent meson-nucleon coupling, Phys. Rev. C 69 (3) (2004) 034319–15.
[55] G. A. Lalazissis, T. Nikšić, D. Vretenar, P. Ring, New relativistic mean-field interaction with density-dependent meson-nucleon couplings, Phys. Rev. C 71 (2) (2005) 024312.

[56] T. Nikšić, D. Vretenar, P. Ring, Relativistic nuclear energy density functionals: Adjusting parameters to binding energies, Phys. Rev. C 78 (3) (2008) 034318.

[57] G. A. Lalazissis, S. Karatzikos, R. Fossion, D. P. Arteaga, A. V. Afanasjev, P. Ring, The effective force NL3 revisited, Phys. Lett. B 671 (1) (2009) 36–41.

[58] P. W. Zhao, Z. P. Li, J. M. Yao, J. Meng, New parametrization for the nuclear covariant energy density functional with a point-coupling interaction, Phys. Rev. C 82 (5) (2010) 054319.

[59] J. Meng, Relativistic continuum Hartree-Bogoliubov theory with both zero range and finite range Gogny force and their application, Nucl. Phys. A 635 (1-2) (1998) 3–42.

[60] Y. Tian, Z. Y. Ma, P. Ring, A finite range pairing force for density functional theory in superfluid nuclei, Phys. Lett. B 676 (1-3) (2009) 44–50.

[61] L. M. Robledo, T. R. Rodríguez, R. R. Rodríguez-Guzmán, Mean field and beyond description of nuclear structure with the Gogny force: a review, J. Phys. G: Nucl. Part. Phys. 46 (1) (2018) 013001.

[62] Y. Sugahara, H. Toki, Relativistic mean field theory for lambda hypernuclei and neutron stars, Prog. Theor. Phys. 92 (4) (1994) 803–813.

[63] J. Mares, B. K. Jennings, Relativistic description of Λ, Σ, and Ξ hypernuclei, Phys. Rev. C 49 (5) (1994) 2472–2478.

[64] Z.-Y. Ma, J. Speth, S. Krewald, B.-Q. Chen, A. Reuber, Hypernuclei with meson-exchange hyperon-nucleon interactions, Nucl. Phys. A 608 (3) (1996) 305–315.

[65] X.-S. Wang, H.-Y. Sang, J.-H. Wang, H.-F. Lü, A new determination of the lambda-nucleon coupling constants in relativistic mean field theory, Commun. Theor. Phys. 60 (4) (2013) 479–484.
[66] Y. N. Wang, H. Shen, Superfluidity of Λ hyperons in neutron stars, Phys. Rev. C 81 (2) (2010) 025801.

[67] Y. Tanimura, K. Hagino, Description of single-Λ hypernuclei with a relativistic point-coupling model, Phys. Rev. C 85 (1) (2012) 014306.

[68] K. Tsushima, K. Saito, A. W. Thomas, Self-consistent description of Λ hypernuclei in the quark-meson coupling model, Phys. Lett. B 411 (1) (1997) 9–18.

[69] H. J. Pirner, Quantum chromodynamics and the spin-orbit splitting in nuclei and Λ- and Σ-hypernuclei, Phys. Lett. B 85 (2) (1979) 190–192.

[70] C. B. Dover, A. Gal, Hyperon-nucleus potentials, Prog. Part. Nucl. Phys. 12 (1984) 171–239.

[71] J. Schaffner, C. B. Dover, A. Gal, C. Greiner, D. J. Millener, H. Stocker, Multiply strange nuclear systems, Ann. Phys. 235 (1) (1994) 35–76.

[72] H. Yukawa, On the interaction of elementary particles. II, Proc. Phys.-Math. Soc. Jpn. 1 (1935) 1–10.

[73] A. Bouyssy, J. Hüfner, Hypernuclei with \(A \geq 12\), Phys. Lett. B 64 (3) (1976) 276–278.

[74] C. B. Dover, Kaon-nucleus reactions and hypernuclei, in: H.-C. Chiang, Z. Lin-Sheng (Eds.), Proc. Int. Symposium on Medium Energy Physics, Jun 23–28, 1987, Beijing, China, World Scientific, 1987, pp. 257–273.

[75] D. J. Millener, C. B. Dover, A. Gal, Λ-nucleus single-particle potentials, Phys. Rev. C 38 (6) (1988) 2700–2708.

[76] J. L. Rodríguez-Sánchez, J.-C. David, J. Hirtz, J. Cugnon, S. Leray, Constraining the Λ-nucleus potential within the Liège intranuclear cascade model, Phys. Rev. C 98 (2) (2018) 021602(R).

[77] H. Kucharek, P. Ring, Relativistic field theory of superfluidity in nuclei, Z. Phys. A 339 (1) (1991) 23–35.

[78] W. Brückner, M. A. Faessler, T. J. Ketel, K. Kilian, J. Niewisch, B. Pietrzyk, B. Povh, H. G. Ritter, M. Uhrmacher, P. Birien, H. Catz, A. Chaumeaux, J. M. Durand, B. Mayer, J. Thirion, R. Bertini, O. Bing, Spin-orbit
interaction of lambda particles in nuclei, Phys. Lett. B 79 (1–2) (1978) 157–160.

[79] J. V. Noble, Nuclear Dirac phenomenology and the Λ-nucleus potential, Phys. Lett. B 89 (3–4) (1980) 325–326.

[80] B. K. Jennings, The Dirac equation and Λ-nucleus systematics, Phys. Lett. B 246 (3–4) (1990) 325–328.

[81] Y. Tian, Z.-Y. Ma, A separable pairing force in nuclear matter, Chin. Phys. Lett. 23 (12) (2006) 3226–3229.

[82] Y. Tian, Z.-y. Ma, P. Ring, Axially deformed relativistic Hartree Bogoliubov theory with a separable pairing force, Phys. Rev. C 80 (2) (2009) 024313.

[83] Y. Tian, Z.-y. Ma, P. Ring, Separable pairing force for relativistic quasiparticle random-phase approximation, Phys. Rev. C 79 (6) (2009) 064301.

[84] J. Zhao, B.-N. Lu, E.-G. Zhao, S.-G. Zhou, Tetrahedral shapes of neutron-rich Zr isotopes from a multidimensionally constrained relativistic Hartree-Bogoliubov model, Phys. Rev. C 95 (1) (2017) 014320.

[85] B.-N. Lu, E.-G. Zhao, S.-G. Zhou, Potential energy surfaces of actinide nuclei from a multidimensional constrained covariant density functional theory: Barrier heights and saddle point shapes, Phys. Rev. C 85 (1) (2012) 011301(R).

[86] B.-N. Lu, J. Zhao, E.-G. Zhao, S.-G. Zhou, Multidimensionally-constrained relativistic mean-field models and potential-energy surfaces of actinide nuclei, Phys. Rev. C 89 (1) (2014) 014323.

[87] X. Meng, B.-N. Lu, S.-G. Zhou, Ground state properties and potential energy surfaces of 270Hs from multidimensionally-constrained relativistic mean field model, Sci. China-Phys. Mech. Astron. 63 (1) (2020) 212011.

[88] M. Bender, K. Rutz, P.-G. Reinhard, J. A. Maruhn, Pairing gaps from nuclear mean-field models, Eur. Phys. J. A 8 (1) (2000) 59–75.

[89] A. Bohr, B. R. Mottelson, Nuclear Structure, 1st Edition, Vol. I, Benjamin, New York, 1969.
[90] T. Tanigawa, M. Matsuzaki, S. Chiba, Possibility of $\Lambda\Lambda$ pairing and its dependence on background density in a relativistic Hartree-Bogoliubov model, Phys. Rev. C 68 (1) (2003) 015801.

[91] H. Kuwabara, T. Hatsuda, ϕ-meson in nuclear matter, Prog. Theor. Phys. 94 (6) (1995) 1163–1167.

[92] U.-G. Meißner, V. Mull, J. Speth, J. V. Orden, Strange vector currents and the OZI-rule, Phys. Lett. B 408 (1–4) (1997) 381–386.

[93] K. Saito, K. Tsushima, A. W. Thomas, Self-consistent description of finite nuclei based on a relativistic quark model, Nucl. Phys. A 609 (3) (1996) 339–363.