Pathogenicity of entomopathogenic fungi against the aphid and the whitefly species on crops grown under greenhouse conditions in India

Harshdeep Singh and Tanjot Kaur

Abstract

The aphids, *Myzus persicae* (Sulzer) and *Aphis gossypii* (Glover) (Hemiptera: Aphididae) and the whiteflies, *Trialeurodes vaporariorum* (Westwood) and *Bemisia tabaci* (Gennadius) (Hemiptera: Aleyrodidae) are the most damaging pests of greenhouse crops, which cause vector-borne viral diseases and its damage includes chlorosis, necrosis, and fruit abortion. This review article addresses the protected cultivation of vegetable crops (cucumber, capsicum, tomato, and gerbera), important insect pests of greenhouse crops in India along with its management by entomopathogenic fungi (EPF) and increase in the virulence by different genetically modified techniques. Due to excessive and indiscriminate use of insecticides over the years, these insect pests became resistant to these insecticides. So, there is a need for the effectual substitutes to manage these pests. Biological control is a foundation of integrated pest management (IPM) that plays a key role in the repression of arthropod pests. Among different IPM program, the uses of different microbial formulations are ecofriendly and safe for life and proven a boon for the farmers and entrepreneurs. EPF are the most effective in reducing aphid and whitefly populations on vegetable crops recommending its organic production under greenhouse conditions and could be a part of IPM. In the future, these insect pests will become more resistant to entomopathogens. Some novel techniques such as genetic engineering of fungal formulations will be required to increase the efficiency of various entomopathogens as these techniques are well adopted by countries like the USA, China, and European countries but its use in India and needs to be improved in the near future.

Keywords: Protected cultivation, Aphid, Whitefly, Entomopathogenic fungi, Genetic engineering

Background

In the changing scenario of increasing human population, decreasing cultivable land and water resources, there is a need to produce more food from available land and water. One technology being used in this direction is growing crops under protected cultivation, which has shown enormous potential during the last few decades and is well adopted for vegetable and ornamental crops. Protected cultivation of vegetable crops hold good for manifold increase in productivity compared to open-field conditions (Singh 2013; Pekeriet et al. 2015, and Choudhary 2016). In the recent past, there has been a tremendous increase in area under protected cultivation (around 20 million hectares area all over the world). In India, the area under protected cultivation is around 46,000 hectares with productivity of 327 thousand tons, which is mainly confined to Andhra Pradesh, Maharashtra, Karnataka, Himachal Pradesh, Punjab, Haryana, and Rajasthan (Sabir and Singh 2013; Senthilkumar et al. 2018).
farmers are growing vegetables, flowers, and other high-value crops under the protected environment and earn high profit. Among the vegetables, capsicum, chili, cucumber, tomato, and brinjal are the main crops grown under protected environment. The productions of these crops are greatly influenced by the insect pests (Vashishth 2009 and Sood et al. 2012a). The whitefly, Trialeurodes vaporariorum (Westwood) and Bemisia tabaci (Gennadius); red spider mite, Tetramyces ludenzi (Zacher) and T. urticae (Koch); sp- pentine leaf miner, Liriomyza trifoli (Burgess); Polyphagotaronemus latus (Banks); thrips, Franklinella occidentalis (Pergande); Scirtothrips dorsalis (Hood); tobacco caterpillar, Spodoptera littura (Fabricius) and aphid, Aphis gossypii (Glover) and Myzus persicae (Sulzer) are economic pests infest crops under protected cultivation (Sood et al. 2018; Singh and Joshi 2020). Among these, the aphids, M. persicae and A. gossypii (Hemiptera: Aphididae) and the whitefly, T. vaporariorum and B. tabaci (Hemiptera: Aleyrodidae) are the major insect pests, which cause vector borne viral diseases and their damage includes chlorosis, necrosis, wilting, stunting, flower and fruit abortion, leaf distortion, and defoliation (Sayed et al. 2019). Due to the availability of favorable environmental conditions under protected cultivation, the management of these pests is quite challenging. It is mainly done by chemical pesticides but due to excessive and indiscriminate use of these pesticides, insect pests become resistant against them. Additionally, inauspicious effects of chemical insecticide residues on the crop (Van Lenteren 2000), killing of non-target organisms (Pilkington et al. 2010), and development of resistance to pesticides (Sood and Sood 2005; Pap- pas et al. 2013) are linked with its excessive use.

Various parasitoids, predators, pathogens, and botan- icals are being exploited for the management of these pests (Ali et al. 2017 and Ullah et al. 2019). Entomopathogenic fungi (EPF) have been identified as potential control agents against aphids and the whitefly species under protected conditions (Saito and Sugiyama 2005). Beauveria bassiana (Balsamo) Vuillemin, Lecanicillium lecanii (Zimmerman), Metarhizium anisopliae (Metsch.), and Paecilo- myces fumosoroseus (Wiize) are the key tools for the management of various agricultural insect pests, including whiteflies, mealy bugs, aphids and thrips in outdoor and greenhouse crops (Wraith et al. 2000; Daniel and Wyss 2010; Shah and Shukla 2014).

This review will elucidate the fundamental information on the crops grown under protected conditions; discuss major insect pests of crops grown under protected cultivation in India along with its management with the use of different commercial and indigenous fungal formulations and genetically engineered entomopathogens.

Protected cultivation of vegetable crops in India

The concept of protected cultivation came into existence in seventeenth century when natives of Netherlands and England used artificial structures (similar to polyhouse structures) to produce the crop under adequate climatic conditions (Janick et al. 2007). In today’s world, the Netherlands is forefront in the production of large-capacity polyhouses to enhance the crop yield and quality (Muijzenberg and Erwin 1980). The adoption of new agricultural techniques is foremost in the agriculture leading countries to produce the crop with high quality and revenue from low-cost investment. The uses of various agricultural approaches put India out of frontier (Navale et al. 2003 and Kanzaria et al. 2017). The protected cultivation includes growing crops under poly- house, greenhouse, net house which are made up of materials like acrylic, polycarbonate, polyethylene which help to protect the crops from environmental factors. Nowadays, India is becoming popular for protected cul- tivation among the farmers and entrepreneurship because of its profitability and sustainability. Protected cultivation is the most important way to produce a large variety of horticultural crops, including tomato, capsicum, cucumber, and other vegetable crops (Sabir and Singh 2013). Under protected conditions, various factors like temperature, humidity, light, soil, and water are controlled. Additionally, the economics of capsicum under protected cultivation was studied by Sreedhara et al. (2013) and they revealed that India contributes one-fourth of world production of capsicum with an average annual production of 0.9 million tons from an area of 0.885 million hectares with a productivity of 1266 kg per hectare and out of total production; Andhra Pradesh stands first with production of 748.5 thousand tons followed by Karnataka from an area of 76 thousand hectares with a productivity of 131 thousand tons. Wein- traub (2007) explained that when IPM is employed properly, it had the advantage of eliminating some open field pests, thereby results in increasing fruit yields. The performance of crops grown under open and protected cultivation was studied and observed that capsicum grown under protected conditions enhanced the yield of a crop by 49.8 MT/ha than open-field cultivation (18.34 MT/ha) (Ngullie and Biswas 2016). The performance and economics of crop varieties are almost thrice in protected conditions as compared to open field conditions (Singh et al. 2011) due to the protective ability of greenhouses.

Abundances of aphid and whitefly species on crops grown under protected cultivation in India

Whiteflies

Whiteflies are the devastating pests of vegetables, ornamentals, and field crops throughout the tropical, subtropical,
and temperate regions of the world. More than 1420 species of whiteflies associated with agricultural crops throughout the world. Among different species of whiteflies, *B. tabaci* being one of the most widely distributed pests found in tropical and subtropical regions of the world, where it infests over 600 different cultivated and wild plant species from 63 plant families (Oliveira et al. 2001). In India, *B. tabaci* was first recorded on cotton at Pusa (Bihar) in 1905 (Misra and Lamba 1929). Seventeen plant whitefly species belonging to widely separate families were reported in the Kalyani area of West Bengal. In Andhra Pradesh, *B. tabaci* was found to survive on 14 off-season hosts (Verma et al. 1989). Later, (Arneja 2000) from Punjab reported *B. tabaci* from 16 different host plants comprising field crops, vegetables, and weeds. Konar during (1997) also observed the three species of Aleyrodoidea associated with *Citrus reticulata* (mandarin) orchards in the Darjeeling district of West Bengal. Whereas, in Lakshadweep (Dubey et al. 2004) reported the occurrence of 12 species of whiteflies representing 11 genera. From Himachal Pradesh, (Bhalla and Pawar 1977) recorded 10 species of whiteflies belonging to 6 genera. *Bemisia tabaci* was recorded on crops such as *Capsicum annuum*, *Cucumis sativus*, *Lycopersicon esculentum*, *Gerbera jamesonii*, and *Solamun melongena* in different regions of India (Reddy and Kumar 2006; Sood and Sharma 2010; Ibrahim et al. 2011; Kumar et al. 2017; Padhi et al. 2017; Khanzada et al. 2018) (Table 1). In India, the incidence of *T. vaporariorum* was recorded first at Thummanthy in the Nilgiri hills of Tamil Nadu and Himachal Pradesh on crops such as potato, capsicum, tomato, and cucumber (David 1971; Sharma et al. 2006; Sood et al. 2006; Vashisth 2009; Sood et al. 2012b; Sood and David 2012). So far, it has been reported on 120 host plants belonging to 38 plant families, mainly Solanaceae (15 species), Compositae (17 species), Labiatae (8 species), Acanthaceae (7 species), Leguminosae and Onagraceae (6 species each), and Malvaceae and Verbenaceae (5 species each) from different parts of India (Mohan et al. 1988; Krishnan and David 1999, and Bakshi et al. 2003).

The wide range of aleyrodid fauna, *B. tabaci* and *T. vaporariorum* has drawn the maximum attention due to their wider host range and the losses incurred. *Bemisia tabaci* is distributed in the warmer regions Byrne and Bellows (1991) whereas *T. vaporariorum* is a serious pest in temperate region under glasshouses and field crops with summer region (Hill 1987). It is a serious pest in temperate regions under protected cultivation situations and in field crops where the summers are warm enough. It is considered as a “New World” species having distribution throughout Europe, parts of Africa, Asia, Australasia, North America, and South America (Hill 1987). Moreover, the infestation of greenhouse whitefly occurs in 249 host plants from 84 families of different crops and ornamental plants in temperate regions from six continents Russell (1977). The whitefly breeds were found throughout the year and it completes 13 generations in a year under protected environment in India (Sood et al. 2014). Adults of *T. vaporariorum* are tiny (1 mm long) snowy whiteflies with a covering of white waxy powder on wings. They are mostly found on the under surface of the leaves (Hill 1987). One hundred and fourteen virus species are transmitted by whiteflies (Aleyrodoidea). Whiteflies, *B. tabaci*, and *T. vaporariorum* transmits 111 and 3 species, respectively. Of the whitefly-transmitted virus species, 90% belongs to the *Begomovirus* genus, 6% belongs to the *Crinivirus* genus, and the remaining 4% belongs to the *Closterovirus*, *Ipomovirus*, and *Carlavirus* genera (Jones 2003). The host plants were found to have a pronounced effect on the selection, feeding, oviposition, and development of whitefly. Overall, the yield loss due to various insect pests ranged from 30-40% among different vegetable crops in India (Sharma et al. 2017). However, loss due to whitefly under protected conditions varies among different vegetables. In capsicum, whitefly, *B. tabaci* caused 13.60% yield loss (Singh H and Joshi N 2020) whereas, on cucumber plant yield loss was approximately 26% (Ghongade 2020). Moreover, whitefly caused 54% yield loss in okra plant (Dhandapani et al. 2003). The development of the whitefly was seen higher on eggplant and cucumber, followed by tomato whereas slow on capsicum crop (Kamp and Lenteren 1981). Research indicated

Species	Host plants	Location	Author and year
Aphis gossypii	*Capsicum annuum*, *Cucumis sativus*, and *Lycopersicon esculentum*	Punjab, New Delhi	Kaur (2005), Ibrahim et al. (2011), Khanzada et al. (2018)
Myzus persicae	*Capsicum annuum*, *Cucumis sativus*, and *Gerbera jamesonii*	Punjab, Maharashtra, and Himachal Pradesh	Singh et al. (2003), Singh et al. (2004), Gavkare et al (2014), Ibrahim et al. (2011), Weintraub (2007), Javed et al. (2019)
Bemisia tabaci	*Capsicum annuum*, *Cucumis sativus*, *Lycopersicon esculentum* *Gerbera jamesonii*, and *Solamun melongena*	Karnataka, Punjab, Himachal Pradesh, Uttar Pradesh, and West Bengal	Singh et al. (2003), Reddy and Kumar (2006), Ibrahim et al. (2011), Khanzada et al. (2018), Kumar et al. (2017), Padhi et al. (2017)
Trialeurodes vaporariorum	*Capsicum annuum*, *Cucumis sativus*, *Lycopersicon esculentum*, and *Gerbera jamesonii*	Tamil Nadu and Himachal Pradesh	Vashisth (2009), Sood et al. (2012), Sharma et al. 2006, Chinniah et al. 2016
that the whitefly prefers tobacco, cucumber, broad bean, and cowpea significantly more than paprika with more probing time on preferred hosts (Xu et al. 1994).

Aphids

The aphid species, *M. persicae* and *A. gossypii* are the most damaging insect pests of crops grown under protected conditions across the world because of their ability to transmit viruses to the plants. Their damage includes chlorosis, necrosis, fruit abortion, and stunted growth (Perdikis et al. 2008). *Myzus persicae* caused 19.43% yield loss on vegetable crops under protected cultivation in India (Singh and Joshi 2020). However, on an average, damage caused by insect pests under protected conditions on various crops ranged from 15-37% (Dhandapani et al. 2003; Rathee and Dalal 2018). Damage caused by aphid species on chili crops was recorded as 38.85% (Chinniah et al. 2016). More than 500 species of *M. persicae* are known to kill various host plants all around the world. In India, *M. persicae* is recorded in various regions of Punjab, Himachal Pradesh, and Maharasthra on crops capsicum, cucumber, tomato, and Gerbera (Singh et al. 2004; Weintraub 2007; Vashisth 2009; Ibrahim et al. 2011; Sood et al. 2012; Sabir et al. 2013; Gavkare et al. 2014; and Javed et al. 2019) (Table 1). As reported by Vasicek et al. (2001), among the most important pests of pepper (*Capsicum annuum*) crop in Argentina, the aphids stand out, of which *M. persicae* is the key pest, followed by *Aphis solani* and *Macrosiphum euphorbiae*. The glasshouse provides the best condition for the development of aphid population. Greenhouse crops are susceptible to infestation by no. of insects like aphid, whitefly, mites, and thrips that cause yield loss and crop damage. In India, capsicum is an important vegetable crop. *Capsicum annuum* and *C. frutescens*, family Solanaceae are the two capsicum species extensively cultivated in tropic and sub tropic regions. The population dynamics of sucking pests and their correlation with weather on capsicum was studied and result showed an incidence of aphid *A. gossypii* on capsicum crop under protected conditions (Meena et al. 2013). *Aphis gossypii* is the most abundant in Punjab and New Delhi regions on *Capsicum annuum, Cucumis sativus*, and *Lycopersicon esculentum* (Singh et al. 2004; Kaur 2005; Ibrahim et al. 2011, and Nagamandla et al. 2017) It was observed in West Bengal region along with other insect pests on tomato under protected conditions and cause various vector-borne diseases. It is observed that the majority of the aphids and whiteflies species are observed in the northern and southern regions of India.

Biological control by entomopathogenic fungi

Entomopathogenic fungi (EPF) are bioinsecticides with an ability to infect and kill arthropods. They are isolated from the naturally occurring soil and arthropod carcasses (Behie and Bidoche 2014; Litwin et al. 2020). These fungi belong to 6 fungal classes: Basidiomycota, Entomophthoromycota, Oomycetes, Chytridiomycota, Microsporidia, and Ascomycota. Until now, 238 species of Basidiomycota, 474 species of Entomophthoromycota, 12 species of Oomycetes, 65 species of Chytridiomycota, 339 species of Microsporidia, and 476 species Ascomycota were reported (Araujo and Hughes 2016). However, species of Ascomycota and Entomophthoromycota are more often in natural habitat. Metarhizium spp. (Metschnikoff) Sorokin are ubiquitous naturally occurring soil-inhabiting fungi (Meyling et al. 2011). In 1888, Elie Metchnikoff, a Russian microbiologist firstly discovered the EPF and named it as *Metarhizium anisopliae*. In 1965, Boverin, a *Beauveria bassiana* based mycoinsecticide was developed to control the Colorado potato beetle and codling moth (Litwin et al. 2020). *Verticillium lecanii* (Zimmerman) Viégas (reclassified as *Lecanicillium lecanii* (Petch) Zare and Gams as an insect pathogen that is used commercially to control greenhouse pests (Cuthberston and Walter 2005).

Strains of entomopathogenic fungi are concentrated in the following orders: Hypocreales (various genera), Onygenales (*Ascosphaera* genus), Entomophthorales, and Neozygites (Entomophthoromycota). Entomopathogens are the most important biological agents that can occur as epizootic or enzootic levels in their host populations (Mora et al. 2017). Entomopathogens are being reported to control various crops insect pests. These EPF viz. *Beauveria bassiana* (Hypocreales: Cordycipitaceae), *M. anisopliae* (Hypocreales: Clavicipitaceae), *Lecanicillium* spp., (previously *Verticillium lecanii* (Hypocreales: Cordycipitaceae), and *I. fumosorosea* (Hypocreales: Clavicipitaceae) (previously *Paecilomyces fumosoroseus*) are reported to kill insect by nutritional deficiency, the release of adhesions (MADI and MAD2), secondary metabolites, tissue degradation, and release of toxins. The EPF contain cuticle degrading enzymes like protease; lipase and chitinase which degrade the insect cuticle, followed by penetration of fungal germ tube into insect body and thereby release of several mycotoxins such as Beauvericin, Beauverolides, Bassianolide to kill the insect (Gabarty et al. 2014; Skinner et al. 2014; Lacey et al. 2015). It has been reported that *B. bassiana* and *M. robertsii* provides plant with nitrogen during insect parasitization, thus encourages plant growth (Behie and Bidoche 2014).

Virulence of entomopathogenic fungi against whitefly

All biopesticides containing insect pathogen *B. bassiana, V. lecanii, and M. anisopliae* were found effective in reducing the pest population. But the organic products and mineral oils were comparatively less effective. Therefore, a study
was conducted to evaluate EPF against *B. tabaci* and *T. vaporariorum*, and obtained result showed that *L. lecanii* caused 89.3 to 96 and 79.3 to 95.6% mortality, respectively under greenhouse conditions. In addition to this, the infectious and epizootic potential of *P. fumosoroseus* on the susceptibility of *B. argenticollis* were not affected by the host vegetable species of tomato (Vidal et al. 1998). However, mortality was > 70%, the first week after treatment and increased further in the second week. *Lecanicillium lecanii* caused 86% mortality of *B. tabaci* on brinjal at 5 days after treatment (Phadke and Phadke 2000). Besides this, *B. bassiana* and *P. fumosoroseus* have strong potential for microbial control of nymphal whiteflies infesting cucurbit crops (Wraight et al. 2000). Thirty-five strains of *Lecanicillium lecanii* caused > 70% mortality under greenhouse conditions. In addition to this, the infectious and epizootic potential of *P. fumosoroseus* on the susceptibility of *B. argenticollis* were not affected by the host vegetable species of tomato (Vidal et al. 1998). However, mortality was > 70%, the first week after treatment and increased further in the second week. **Table 2**

Active ingredient and concentration

Active ingredient and concentration	Brand name	Target pests	Crops	Manufacturer
Beauveria bassiana 1.50% [1 × 10⁸ CFU/ml]	Bio-Power	Aphids, whiteflies, mites, and thrips	Capsicium, tomato	T. Stanes and Company Limited, India
Lecanicillium lecanii 1.50% [1 × 10⁸ CFU/ml]	Bio-Catch	Whiteflies, aphids, mealybugs	Several crops	T. Stanes and Company Limited, India
Metarhizium anisopliae 1.50% [1 × 10⁸ CFU/ml]	Bio-Magic	Borer, termites, leaf hoppers, and aphids	Rice, Capsicium	T. Stanes and Company Limited, India
Beauveria bassiana 2.0% strain IPL/BB/MI/01 [2 × 10⁸ CFU/ml]	Daman	Sucking pests, caterpillars	Greenhouse crops	International Panaacea Limited, India
Verticillium lecanii 2.0% strain IPL/VL/05 [2 × 10⁸ CFU/ml]	Varunastra	Whiteflies, aphids, thrips, and scale insects	Capsicum, cucumber, tomato and brinjal	International Panaacea Limited, India
Metarhizium anisopliae 1.0% strain IPLUK/44 [1 × 10⁸ CFU/g]	Kalichakra	Beetles, grasshoppers, and aphids	All crops	International Panaacea Limited, India
Beauveria bassiana strain 63428-82-0 [1 × 10⁸ CFU/ml]	Biosoft	Sucking pests	Capsicum, cabbage, cotton	Agriland Biotech Limited, India
Beauveria bassiana NCIM/1216 ATCC 26851 [1 × 10⁸ CFU/ml]	Racer	Spodoptera litura, caterpillars, mealybugs, aphids	Several horticultural crops	Agrilife Biosolutions for soil & crops, India

Data source: (Ramanujam et al. 2014; Chinniah et al. 2016; Mascarin and Jaronski 2016 and Ruiu L 2018; Singh and Joshi 2020)
Virulence of entomopathogenic fungi against aphid

Twelve different strains of EPF, viz., *L. lecanii*, *P. farinosus*, *B. bassiana*, *M. anisopliae*, *Cordeceps scarabaeicola*, and *Nomuraea rileyi* (Hypocreales: Clavicipitaceae) were evaluated against aphids on cabbage and cucumber crops grown under greenhouse conditions. Among these EPF’s, *L. lecanii* 41185 strain was highly virulent than all other strains against *M. persicae* and *A. gossypii* because it germinates and grew well under a wide range of temperature and humidity as reported by Vu et al. (2007). *Beauveria bassiana* was used for the control of *M. persicae* on cabbage and it caused 76-83% mortality in 4 weeks after spray (Filho et al. 2011). While native isolate of *B. bassiana* caused 100% mortality 7 days post treatment against *M. persicae* (Ibrahim et al. 2011). Aphids are the most destructive pests in crop production such as pepper and cucumber (Kim et al. 2013). They conducted a bioassay with 47 fungal culture filtrates (three isolates of *Isaria* spp., and *Lecanicillium* spp., 20 isolates of *B. bassiana* and 20 isolates of *Cordeceps* spp.) in order to evaluate the potential of secondary metabolites produced by entomopathogenic fungi for aphid control. Among 47 culture filtrates cultured potato dextrose broth, filtrate of *B. bassiana* Bb08 at 1 ml concentration showed the highest mortality (78%) against green peach aphid 3 days post treatment. Filtrate of Bb08 cultured in Adamek’s medium showed a toxicity of 100% to 3rd instar nymphs of the aphid compared with 7 other filtrates cultured in different broth and results indicated that the fungal culture fluid or culture filtrate of *B. bassiana* Bb08 cultured in Adamek’s medium had potential for development as a mycopesticide for aphid control. Interestingly, among different tested conidial bioformulation against *A. gossypii* and *M. persicae*, maximum percent reduction was found by *B. bassiana* isolate JW-1with 98-100% mortality (Jandricic et al. 2014). Additionally, it was observed that 2 strains of *B. bassiana* and 1 strain of *L. lecanii* against *M. persicae* caused maximum mortality after 10 days post treatment with maximum of 95% and minimum of 87% with *B. bassiana* and *L. lecanii*, respectively (Nazir et al. 2019). Reseach studies on the effect of EPF showed that mortality caused by *L. lecanii* formulation is significantly better than *M. anisopliae* and *B. bassiana* against *M. persicae* and *A. gossypii* under laboratory and greenhouse cultivations. Four procured native isolates of *B. bassiana*, *M. anisopliae*, *L. lecanii*, and *Chaetomium globosum* and recorded for efficacy against the aphids *M. persicae* and *A. gossypii* and results showed that *L. lecanii* showed higher mortality than all 3 isolates against *M. persicae* and *A. gossypii* under laboratory as well as under greenhouse cultivations, when applied at the concentration of 1 × 10^6 conidia/ml (Mohammed et al. 2018). *Beauveria bassiana* and *L. lecanii* were more virulent entomopathogens for the management of *M. persicae* (Javed et al. 2019).

Increased virulence by genetically engineered methods

The release of the cuticle enzyme was low during the initial penetration t and high during the degradation of protein (St. Leger et al. 1996). *Beauveria bassiana* and *M. anisopliae* caused infection against insect pests through their cuticle by release of cuticle degrading enzymes.

By the use of phage display technology, hydrophobins were isolated from the culture of *B. bassiana*. Furthermore, cDNA library was built up by using RNA, in the presence of insect pests. Hydrophobins appears should be selectively enriched by melibiose agarose beads, which further yield two (hyd 1 and hyd 2) different hydrophobins proteins. Results revealed that *hyd 1* gene expressed well in aerial conidia, in vitro blastospores, submerged conidia, and cells sporulating on chitin and insect cuticle in contrast to *hyd 2* gene (Cho et al. 2007). Additionally, modification of cuticle degrading and adhesion toxin intestine-specific virulence factor (Vip3Aa1) into *B. bassiana* isolate BbV28 in the cabbage transgenic plant against *S. litura* aids in digestion in the cytoplasm of insect after 18 to 36 h of conidial infection (Qin et al. 2010).

Systematically disruption of *Cag8* gene is one of the alternative ways to increase the expression of gene MrKu70 (Xu et al. 2014) that helps to increase the pathogenicity of *M. robertsii* ARSEF2575 by 93% as compared to wild type (7%). Insect cuticle is mainly composed of chitin fibrils, to penetrate this barrier fungus produce chitin degrading enzyme such as proteases and chitinases (Zhao et al. 2016). Over expression of *Pr1A* enzyme in *M. robertsii* and *CDEP1 Bbchit1* in *B. bassiana* can lead to increase the virulence of these fungi against major crop pests. Genes along with metabolic pathways to increase the virulence are described in Table 3.

Table 3 Modified genes along with their metabolic pathways to increase the pathogenicity

Modified genes	Metabolic pathway	Fungal species
Pr 1A	Protease	Metarhizium robertsii
CDEP 1	Subtilisin-like protease	Beauveria bassiana
Bbchit 1	Chitinase	Beauveria bassiana
Mr-Npc 2a	Sterol carrier	Metarhizium robertsii
ATM 1	Trehalase	Metarhizium acridium
BbBqrA	Benzoquinone oxidoreductase	Beauveria bassiana

Data source (Zhao et al. 2016 and Romeis et al. 2019)

Conclusion

Protected cultivation or greenhouse cultivations would be the modern approach to produce vegetable crops qualitatively and quantitatively in India. Due to the availability of favorable environmental conditions, various insect pests cause acute to severe crop damages under...
protected cultivations. Aphids and whiteflies are the major insect pests of crops grown under protected cultivations. The use of entomopathogenic fungi (EPF) is one of the alternatives to control various insect pests in India over a few decades. In the future, some novel techniques are required to increase the efficiency of various entomopathogens. Techniques like genetically engineering and cDNA probe will be one of the appropriate ones to decrease pest resistance. These techniques are well adopted by countries like the USA, China, and European countries but its use is limited in India and need to be improved in the near future.

Abbreviations
EPF: Entomopathogenic fungi; GE: Genetically engineered; IPM: Integrated pest management; CFU: Colony forming unit

Acknowledgements
Authors are thankful to Dr. Neelam Joshi, Principal Microbiologist, Department of Entomology, Punjab Agricultural University, Ludhiana for his valuable suggestions during the present study.

Authors’ contributions
The first author, H S collected the information mentioned in the tables from different sources, edited the paper and remove errors and grammatical mistakes, and written the manuscript. T K prepared Table 2 and topic with different sources, edited the paper and remove errors and grammatical mistakes. All authors read and approved the final manuscript.

Funding
Not applicable

Availability of data and materials
Data collected from different sources during this study are included in this article.

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, India. 2B. tech (Biotechnology), Sri Guru Granth Sahib World University, Sahib, Fatehgarh 140407, India.

Received: 22 May 2020 Accepted: 23 June 2020
Published online: 06 July 2020

References
Abdel-Rahim, MA, Lamya Ahmed AK (2017) Virulence of three entomopathogenic fungi against whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) in tomato crop. J Entomol 14:155–159
Ali S, Ullah MI, Arshad M, Iftikhar Y, Saqib M, Afzal M (2017) Effect of botanicals and synthetic insecticides on Pieris brassicae (L., 1758) (Lepidoptera: Pieridae). Turkish J Entomol 41(2):275–284
Arasu JPM, Hughes DP (2016) Diversity of entomopathogenic fungi which groups conquered the insect body? In: Lovett B, Leger RJ5 (eds) Advances in genetics, vol 94. Elsevier, Amsterdam, pp 1–39. https://doi.org/10.1016/bs.adgen.201601.001
Arneja AK (2000) Biology of whitefly, Bemisia tabaci (Gennadius) on American cotton. Punjab Agricultural University, Ludhiana, India, M.Sc. thesis
Bakhsh AK, Chauhan U, Sharma KC, Gupta YM (2003) Host range of the greenhouse whitefly T. vaporariorum (Westwood) (Homoptera: Aleyrodidae) in mid-hill regions of Himachal Pradesh. Insect Environ 9:55–56
Behie SW, Bidochka MJ (2014) Ubiquity of insect-derived nitrogen transfer to plants by endophytic insect-pathogenic fungi: an additional branch of the soil nitrogen cycle. Appl Environ Microbiol 80:1555–1560
Bhalla O P and Pawar A D (1977) A survey study of insect and non-insect pests of economic importance in Himachal Pradesh. Tiku and Tiku, Kitab Mahal, 192-D. N. Road, Bombay400 001 (India).
Budha PB, Sharma M, Pradhan SB (2015) Efficacy test of bio-pesticides against tobacco whitefly Bemisia tabaci (Gennadius, 1889) on tomato plants in Nepal. J Inst Sci Tech 20(2):11–17
Byrne DN, Bellows TS (1991) Whitefly biology. Annu Rev Entomol 36:431–457
Chinmiah C, Ravikumar A, Kalyanasundaram M, Parthiban P (2016) Management of sucking pests, by integration of organic sources of amendments and foliar application of entomopathogenic fungi on chili. J Biopest 9(1):34–40
Cho EM, Kirkland BH, Holder DJ, Keyhani NO (2007) Phage display cDNA cloning and expression analysis of hydrophobins from the entomopathogenic fungus Beauveria (Cordyceps) bassiana. Microbiol 153:3438–3447
Choudhary AK (2016) Scaling-up of protected cultivation in Himachal Pradesh, India. Curr Sci 111:272–277
Cuthbertson AGS, Walters KFA (2005) Pathogenicity of the entomopathogenic fungus, Leucanicium muscarum, against the sweet potato whitefly Bemisia tabaci under laboratory and glasshouse cultivation. Mycopathologia 160:315–319
Daniel C, Wyss E (2010) Field applications of Beauveria bassiana to control the European cherry fruit fly Phaenocoris cerasi. J Appl Entomol 134:9–10
David BV (1971) Studies on south indian aleyrodidae. Tamil Nadu Agricultural University, Coimbatore, India, Ph.D. dissertation
Dhandapani N, Shelkar UR, Murugan M (2003) Bio-intensive pest management (BIPM) in major vegetable crops. J Food Agric Environ 1(2):333–339
Dubey AK, Regu K, Sundararaj R (2004) Aleyrodid (Hemiptera: Aleyrodidae) fauna of the Lakshadweep, India. Entomon 29:279–286
Faria M, Wright SP (2001) Biological control of Bemisia tabaci with fungi. Crop Prot 20:767–778
Filho MM, Oliveira S, Liz RD, Faria M (2011) Cage and field assessments of Beauveria bassiana-based Mycoinsecticides for Myzus persicae Sulzer (Hemiptera: Aphiidae) control in cabbage. Nectrop Entomol 40(4):470–476
Gabarty A, Salem HM, Fouda MA, Abbas AA, Ibrahim AA (2014) Pathogenicity induced by the entomopathogenic fungi Beauveria bassiana and Metarhizium anatipestifer in Aegrisi ipsilon (Hufn.). J Res Res Sci 7(1):95–100
Gavkare O, Surjeet K, Yuvraj S, Bhopale SP (2014) Abundance of the Myzus persicae Sulzer under protected environment in Himachal Pradesh, India. J Ind Pollut Control 30(2):285–287
Ghongade DS (2003) Population abundance and management of whitefly and red spider mite on parthenocarpic cucumber grown under protected conditions. Punjab Agricultural University, Dissertation
Gindin G, Geshtovt NU, Racch B, Barash I (2000) Pathogenicity of Verticillium lecanii to different developmental stages of the silverleaf whitefly, Bemisia argentifoli. Phytoparasitica 28:229–239
Hill DS (1987) Agricultural insect pests of temperate regions and their control, pp 654-59, Cambridge University Press, London, UK
Ibrahim L, Hamieh A, Ghannem H, Ibrahim SK (2011) Pathogenicity of entomopathogenic fungi from Lebanese soils against aphid, whitefly and non-target beneficial insects. Int J Agr Sci 3(3):156–164
Jandricic SE, Filotas MM, Jandricic SE, Princess, WP, Wright SP (2014) Pathogenicity of conidia-based preparations of entomopathogenic fungi against the greenhouse pest aphids Myzus persicae, Aphis gossypii, and Aulacorthum solani (Hemiptera: Aphiidae). J Invertebr Pathol 118:34–46
Janick J, Paris HS, Parrish DC (2007) The cucurbits of Mediterranean antiquity: identification of taxa from ancient images and descriptions. Annuals of Botany. 100:1441–1457
Javed K, Javed H, Mukhtar T, Qiu D (2019) Pathogenicity of some entomopathogenic fungal strains to green peach aphid, Myzus persicae Sulzer (Hemiptera: Aphiidae). Egypt J Biol Pest Control. 29(2):1–7
Jones DR (2003) Plant viruses transmitted by whiteflies. European J Plant Pathol 109:195–219
Kanzaria DR, Patel HN, Vaghasia M, Malam VR, Chitroda RL, Badar HR, Hakapotra F, Solanki M (2017) Capsicum and tomato production potentials under protected conditions. Trends in Biosciences 10(15):2612–2614
Sood AK, David BV (2012) The greenhouse whitefly, Trialeurodes vaporariorum (Westwood). In: David BV (ed) The Whitefly or Mealywing Bugs. LAP Lambert Academic Publishing Gmb & Co. KG, Germany, pp 147–169
Sood A K, Mehta P K, Verma K S, Sharma K D, Banyal D K and Chandel Y S (2012a) Status of plant protection mechanism under protected cultivation in Himachal Pradesh. Proc Indian Sci Congr. pp 154-155. OUAT, Bhubneshwar
Sood AK, Mehta PK, Verma KS, Sharma KD, Banyal DK and Chandel YS (2012b) Status of plant protection mechanism under protected cultivation in Himachal Pradesh. Proceedings ‘Indian Science Congress – 2012’ at Bhubneshwar, January 3-7, 2012, pp 154–155.
Sood AK and Sharma G (2010) Spatial distribution and management of greenhouse whitefly in Himachal Pradesh. Proceedings: National Seminar ‘Perspectives and Challenges of Integrated Pest Management for Sustainable Agriculture’ at Dr Y. S. Parmar University of Horticulture and Forestry, Nauni w.e.f. November 19-21, 2010’. pp 55.
Sood AK, Singh V, Mehta PK (2018) Current status and management strategies of insect-pests of vegetables crops under protected cultivation in Himachal Pradesh. Proc 1st Cong Insect Sci.148–150 Punjab Agricultural University, Ludhiana, India
Sood AK, Sood S, Anjana D (2014) Morphometric and annual life cycle of greenhouse whitefly, Trialeurodes vaporariorum (Westwood) in Himachal Pradesh. Himachal J Agric Res. 45:50–57
Sood S, Sood AK, Verma KS (2006) Determination of baseline toxicity of some insecticides to greenhouse whitefly, Trialeurodes vaporariorum (Westwood) population from North-Western Indian Himalayas. Pest Manag Hort Ecosyst 12:67–70.
Sreedhara DS, Kerutagi MG, Kunnal LB, Dodamani MT (2013) Economics of insect-pests of vegetables crops under protected cultivation in Northern Karnataka. Karnataka J Agric Sci 81(10):973–975
St Leger RJ, Joshi L, Bidocka MJ, Rizzo NW, Roberts DW (1996) Characterization and ultrastructural localization of chitinase from Metarhizium anisopliae, M. flavoviride, and Beauveria bassiana during fungal invasion of host (Manudaca sexta) cuticle. Appl Environ Microbiol 62(3):907–912
Ullah M, Altaf N, Azfal M, Arshad M, Mehmoond N, Majeeed S, Ali S, Abdullah A (2019) Effects of entomopathogenic fungi on the biology of Spodoptera litura (Lepidoptera: Nocticidae) and its reduviid predator, Rhynocoris marginatus (Heteroptera: Reduviidae). Inter J Insect Sci 11:1–7
van der Kamp RJ, Lenteren JC-v (1981) Do mechanical barriers of the host plant prevent successful penetration of the phloem by whitefly larvae and adults. J Appl Entomol 92:149–159
Van Lenteren JC (2000) A greenhouse without pesticides: fact or fantasy. Crop Prot 19:375–384
Vashisth S (2009) Insect and nematode complex associated with some polyhouse crops. CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur (Unpublished), M Sc. Thesis
Vasieek A, F-de-la R, Paglioni A (2001) Biological and population aspects of Aulacorthum solani (Kalt), Myasa peniscat (Sulz) and Macrosiphum euphorbiae (Thomas) (Homoptera : Aphidoidea) on pepper under laboratory cultivation. Boletin de Sanidal Vegetal Plagas 27(4):439–446
Verma AK, Basu D, Nath PS, Das S, Ghatak SS, Mukhopadhyay S (1989) Relationship between the population of whitefly, Bemisia tabaci Genn. (Homoptera: Aleyrodidae) and the incidence of tomato leaf curl virus disease. Indian J Mycol Res 27:49–53
Vidal C, Osborne LS, Lacey LA, Fargues J (1998) Effect of host plant on the potential of Paecilomyces fumosoroseus (Deuteromycotina: Hyphomycetes) for controlling the silverleaf whitefly, Bemisia argentifolii (Homoptera: Aleyrodidae) in greenhouses. Biol Conr 12:191–199
Vu VH, Hong SJ, Kim K (2007) Selection of entomopathogenic fungi for aphid control. J Biosci Bioeng 106(6):498–505
Weinstaub PG (2007) Review Integrated control of pests in tropical and subtropical sweet pepper production. Pest Manag Sci 63:753–760
Wright SP, Camurthes R, Jaronski ST, Bradley CA, Garza CJ, Wright SG (2000) Evaluation of the entomopathogenic fungi, Beauveria bassiana and Paecilomyces fumosoroseus for microbial control of the silverleaf whitefly, Bemisia argentifolii. Biol Conr 17:203–217
Xu C, Zhang X, Qian Y, Chen X, Liu R, Zeng G, Zhao H, Fang W (2014) A high-throughput gene disruption methodology for the entomopathogenic fungus Metarhizium robertsii. Plos One 9(9):1–7
Xu WM, Zhang Y, Ma WR (1994) The probing and feeding process of the greenhouse whitefly, Trialeurodes vaporariorum Westwood. Entomol Sin 1:67–70
Zhao H, Lovett B, Feng W (2018) Genetically engineering entomopathogenic fungi. Adv Genet. 94:1–27

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submit your manuscript to a SpringerOpen™ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Open access: articles freely available online
- High visibility within the field
- Retaining the right to your article

Submit your next manuscript at ➤ springeropen.com