Anticancer activity of genistein on implanted tumor of human SG7901 cells in nude mice

Hai-Bo Zhou, Jin-Ming Chen, Jian-Ting Cai, Qin Du, Chan-Ni Wu

AIM: To investigate genistein-induced apoptosis of implanted tumors of SG7901 cells in nude mice, and the relationship between this apoptosis and expression of Bcl-2 and Bax.

METHODS: Establishing a transplanted tumor model by injecting human SG7901 cells into subcutaneous tissue of nude mice. Genistein (0.5, 1 and 1.5 mg/kg) was directly injected adjacent to the tumor, six times at 2-d intervals. Then, changes in tumor volume were measured continuously and tumor inhibition rate of each group was calculated. We observed the morphological alterations by transmission electron microscopy (TEM), measured the apoptotic rate by the TUNEL staining method, and detected the expression of apoptosis-regulated gene Bcl-2 and bax by immunohistochemical staining and RT-PCR.

RESULTS: Genistein 0.5, 1 and 1.5 mg/kg significantly inhibited carcinoma growth when it was injected near the tumor by 10.8%, 29.9% and 39.6%, respectively. Genistein induced implanted tumor cells to undergo apoptosis, with apoptotic characteristics seen by TEM. The apoptosis index was increased progressively with increasing genistein dose (28.9% ± 1.2%, 33.8% ± 1.6% and 37.7% ± 1.2%). The positive rate of Bcl-2 protein was decreased progressively (11.9% ± 0.9%, 5.9% ± 0.7% and 4.2% ± 0.6%), and the positive rate of bax protein was increased progressively (0.9% ± 1.7%, 24.9% ± 0.8% and 29.6% ± 1.7%) by immunohistochemical staining, with increasing dose of genistein. The density of Bcl-2 mRNA decreased progressively and the density of bax mRNA increased progressively with elongation of time by RT-PCR.

CONCLUSION: Genistein was able to induce apoptosis of transplanted tumor cells. This apoptosis may be mediated by down-regulation of the apoptosis-regulated gene Bcl-2 and up-regulation of apoptosis-regulated gene bax.

© 2008 WJG. All rights reserved.

Key words: Genistein; Gastric carcinoma; Nude mice; Apoptosis

Peer reviewer: Marco Romano, MD, Professor, Dipartimento di Internistica Clinica e Sperimentale-Gastroenterologia, II Policlinico, Edificio 3, II piano, Via Pansini 5, Napoli 80131, Italy

Zhou HB, Chen JM, Cai JT, Du Q, Wu CN. Anticancer activity of genistein on implanted tumor of human SG7901 cells in nude mice. World J Gastroenterol 2008; 14(4): 627-631 Available from: URL: http://www.wjgnet.com/1007-9327/14/627.asp DOI: http://dx.doi.org/10.3748/wjg.14.627

INTRODUCTION

The Bcl-2 family plays a crucial role in the control of apoptosis. The family includes a number of proteins which have homologous amino acid sequences, including anti-apoptotic members such as Bcl-2 and Bcl-xL, as well as pro-apoptotic members including Bax and Bad.[10-14] In in vitro experiments, overexpression of Bcl-2 has been shown to inhibit apoptosis[15,16], but overexpression of Bax has been shown to promote apoptosis[10,14].

Genistein has estrogenic properties in receptor binding assays[15,16], cell culture[17,18], and uterine weight assays[19-21]. Genistein inhibits microsomal lipid peroxidation[22] and angiogenesis[23]. Genistein exhibits antioxidant properties[24,25] and has been reported to induce differentiation of numerous cell types[26-29]. Moreover, a recent report has shown that genistein is a potent cancer chemopreventive agent[30-32]. The anti-tumor activity of genistein might be related to the induction of apoptosis of tumor cells but the precise mechanism of its antitumor activity is not well understood.

This study investigated genistein-induced apoptosis of implanted tumors of SG7901 cells in nude mice, the relationship between this apoptosis and expression of Bcl-2 and bax in vivo, and the theoretical and methodological basis of the clinical application of genistein.
MATERIALS AND METHODS

Materials
Genistein was obtained from Sigma and dissolved in dimethylsulfoxide (DMSO). In situ cell detection kit, anti-Bcl-2 monoclonal antibody and anti-Bax monoclonal antibody were purchased from Beijing Zhongshan Biotechnology. Female Balb/C nude mice (4 wk old, 16-18 g) were obtained from Chinese Academy of Medical Science.

Cell culture
Fresh samples from a patient with low-differentiation gastric cancer were obtained in the operating room. A single-cell suspension of tumor cells with a concentration of 5 × 10^5/mL was prepared for seeding. SG7901 cells were artificially purified after culture by pancreatic proteinase.

Tumor implantation into nude mice
A transplanted tumor model was established by injecting 1 × 10^9 human SG7901 cells/L into the subcutaneous tissue of nude mice. After 10 d, 25 nude mice were randomly divided into five groups, and 0.2 mL normal saline solution, 1.5 mg/kg DMSO, or 0.5, 1 or 1.5 mg/kg genistein was directly injected adjacent to the tumor, six times at 2-d intervals. Changes in tumor volume \(V = \frac{\pi}{6} \cdot a^2 \cdot b \) were measured at 11 d after drug treatment and the tumor inhibition rate of each group was calculated.

\[
\text{Inhibitory rate (IR)} = \frac{C (V_1 - V_V)}{C (V_1 - V_0)}
\]

where C is the control group; T is the treated group; V1 the volume before treatment (mm^3); and V0 the volume after treatment (mm^3).

Transmission electron microscopy (TEM)
The tumor samples were cut into 1 mm^3 blocks and fixed in 4% glutaraldehyde and immersed in Epon 821, and embedded for 72 h at 60°C. The blocks were artificial purified after culture by pancreatic proteinase. Slices were made in Japan.

TUNEL assay
The tumor samples were cryopreserved in liquid nitrogen and cut into 8-μm-thick slices. Slices were fixed in ice-cold 80% ethanol for up to 24 h, treated with proteinase K and 0.3% H2O2, and labeled with fluorescein dUTP in a humid box for 1 h at 37°C. Slices were then combined with POD-horseradish peroxidase, stained with DAB, and lead citrate. Cell morphology was observed by TEM.

Immunohistochemical staining
The tumor samples were cryopreserved in liquid nitrogen and cut into 8-μm-thick slices and fixed in acetone. After washing in PBS, slices were incubated in 0.3% H2O2 solution at room temperature for 5 min. Slices were then incubated with anti-Bcl-2 or anti-Bax monoclonal antibody at a 1:300 dilution at 4°C overnight. After washing in PBS, the second antibody, biotinylated anti-rat IgG, was added and the cells were incubated at room temperature for 1 h. After washing in PBS, ABC compound was added and then incubated at room temperature for 10 min. DAB was used as the chromogen. After 10 min, the brown color signifying the presence of antigen bound to antibodies was detected by light microscopy. Controls were prepared in the same manner as the experimental group, except for incubation with the primary antibody. The positive rate (PR) was calculated as follows: PR = (number of positive cells/total number of cells) × 100%.

RT-PCR
The tumor samples were cryopreserved in liquid nitrogen and total RNA was extracted. The concentration of RNA was determined by absorption at 260 nm. The primers for Bcl-2, bax and β-actin were as follows: β-actin (500 bp) 5'-GTGGGGCCGCCAGGCACA-3', 5'-CTCCTTAATGTCACGCAGATTTT-3'; Bcl-2 (716 bp) 5'-GGAAATAAGGCGACGCT-3', 5'-TCACTTGTGGCCCAGAT-3'; bax (508 bp) 5'-CCAGCTCTGAGCAGATCAT-3', 5'-TATCAGCCCATCTTCTTCC-3'. PCRs were performed in a 50 μL reaction volume. RT-PCR reaction was run as follows: 94°C for 7 min, one cycle; 94°C for 1 min, 25°C for 1 min, 30 cycles; 72°C for 7 min, one cycle. Ten microliters PCR product was placed on to 15 g/L agarose gel and observed by ethidium bromide staining using a Gel-Pro analyzer.

Table 1 Inhibition effect of genistein on implanted tumors in nude mice (mean ± SD)

Groups dosage	Number of animals	Volume of tumors (mm^3)	Inhibition rate (%)		
	Beginning	Ending			
Control group	0.2 mL saline	5	20.6 ± 1.1	499.8 ± 11.8	
	1.5 mg/kg DMSO	5	20.6 ± 1.3	509.4 ± 8.6	
Genistein	1.5 mg/kg	5	20.3 ± 1.6	458.2 ± 6.7	10.8*
1.0 mg/kg	5	21.6 ± 1.6	397.9 ± 6.4	29.9*	
1.5 mg/kg	5	21.5 ± 1.6	319.5 ± 10.6	39.6*	

*P < 0.05 vs the control group.

RESULTS

Inhibitory rate of tumor growth
An inhibitory effect was observed in all therapeutic groups, and the IR for 0.5, 1 and 1.5 mg/kg genistein was 10.8%, 29.9% and 39.6%, respectively (Table 1).

Morphological changes
Control cells had a normal structure, but some cells in the therapeutic groups had apoptotic characteristics, including chromatin condensation, appearance of chromatin

www.wjgnet.com
crescents, and nucleus fragmentation, which were seen by TEM (Figure 1A and B).

TUNEL assay
Positive staining was located in the nucleus. The AI for 0.2 mL normal saline solution, 1.5 mg/kg DMSO, and 0.5, 1 and 1.5 mg/kg genistein was 12.6% ± 0.6%, 13.4% ± 0.7%, 28.9% ± 1.2%, 33.8% ± 1.6% and 37.7% ± 1.2%, respectively (Table 2).

Expression of Bcl-2 proteins
Positive staining was located in the cytoplasm. The PR for Bcl-2 protein for 0.2 mL normal saline solution, 1.5 mg/kg DMSO, and 0.5, 1 and 1.5 mg/kg genistein was 18.4% ± 1.6%, 17.9% ± 0.7%, 11.9% ± 0.9%, 5.9% ± 0.7 and 4.2% ± 0.6%, respectively by immunohistochemical staining (Table 3).

Expression of Bax proteins
Positive staining was located in the cytoplasm. PR for bax protein for 0.2 mL normal saline solution, 1.5 mg/kg DMSO, and 0.5, 1 and 1.5 mg/kg genistein was 11.2% ± 0.8%, 11.9% ± 0.5%, 20.9% ± 1.7%, 24.9% ± 0.8% and 29.6% ± 1.7%, respectively (Table 3).

RT-PCR
The density of Bcl-2 mRNA for 0.2 mL normal saline solution, 1.5 mg/kg DMSO, and 0.5, 1 and 1.5 mg/kg genistein decreased progressively, and the density of bax mRNA for 0.2 mL normal saline solution, 1.5 mg/kg DMSO, and 0.5, 1 and 1.5 mg/kg genistein increased progressively, with elongation of time by RT-PCR.

DISCUSSION
Currently, only a few chemotherapeutic drugs are effective for the treatment of human primary gastric carcinoma, and there is a clear need to look for new anti-gastric carcinoma drugs. Genistein is a planar molecule with an aromatic A-ring, has a second oxygen atom from that in the A ring, and has a molecular mass similar to those of the steroidal estrogens. It has estrogenic properties in receptor binding assays\[15,16\], cell culture\[17,18\], and uterine weight assays\[19-21\]. Genistein inhibits topoisomerase II\[33\], platelet-activating factor- and epidermal growth factor-induced expression of c-fos\[34\], diacylglycerol synthesis\[35\], and tyrosine kinases\[36\]. It also inhibits microsomal lipid peroxidation\[22\] and angiogenesis\[23\]. Genistein exhibits antioxidant properties\[24-26\] and has been reported to induce differentiation of numerous cell types\[27-29\]. Moreover, a recent report has shown that genistein is a potent cancer chemopreventive agent\[30-32\].

The Bcl-2 family plays a crucial role in the control of apoptosis. The family includes a number of proteins that have homologous amino acid sequences, including anti-apoptotic members such as Bcl-2 and Bcl-xL, as well as pro-apoptotic members including Bad\[1\]-\[4\]. Overexpression of Bax has the effect of promoting cell death\[10-14\]. Conversely, overexpression of anti-apoptotic proteins such as Bcl-2 represses the function of Bax\[5\]-\[9\]. Thus, the ratio of Bcl-2/Bax appears to be a critical determinant of a cell’s threshold for undergoing apoptosis\[7\].

We found that genistein was able to induce apoptosis in SG7901 cells *in vitro*. This apoptosis might have been mediated by down-regulating the expression of the apoptosis-regulated gene Bcl-2 and up-regulating the
expression of apoptosis-regulated gene Bax. In this study, we evaluated the effectiveness of the gastric carcinoma apoptosis induced by genistein in vivo, and investigated the molecular mechanisms involved, and the theoretical and methodological basis for the clinical application of genistein, by using an animal model.

We demonstrated that inhibition was induced in all therapeutic groups. Control cells appeared normal in structure, but some cells in the therapeutic groups showed apoptotic characteristics. The AI of 0.5, 1 and 1.5 mg/kg genistein increased with the dose of genistein. Expression of Bel-2 in the presence of genistein was decreased, but expression of bax was increased. The density of Bel-2 mRNA decreased progressively with 0.5, 1 and 1.5 mg/kg genistein, and the density of bax mRNA increased progressively. The ratio of Bel-2/Bax was decreased and triggered apoptosis of transplanted tumor cells. Our results demonstrated that genistein was able to induce apoptosis of transplanted tumor cells in nude mice. The apoptosis may have been mediated by down-regulating expression of apoptosis-regulated gene Bel-2 and up-regulating expression of apoptosis-regulated gene Bax. Genistein may be potentially used as a chemotherapeutic drug in the anti-gastric carcinoma chemotherapy.

COMMENTS

Background
A recent study has shown that genistein is a potent cancer chemopreventive agent. The anti-tumor activity of genistein might be related to induction of apoptosis of tumor cells, but the precise mechanism of its anti-tumor activity is not well understood. This study investigated the genistein-induced apoptosis of implanted tumors of SG7901 cells in nude mice, the relationship between this apoptosis and expression of Bcl-2 and bax in vivo, and the theoretical and methodological basis for the clinical application of genistein.

Research frontiers
Our results demonstrated that genistein was able to induce apoptosis of transplanted tumor cells in nude mice. The apoptosis may have been mediated by down-regulating expression of apoptosis-regulated gene Bel-2 and up-regulating expression of apoptosis-regulated gene Bax.

Related publications
For more information about each section, please refer to the studies cited in the reference list.

Innovations and breakthroughs
Genistein was able to induce the apoptosis of transplanted tumor cells in nude mice. The apoptosis may have been mediated by down-regulating expression of apoptosis-regulated gene Bel-2 and up-regulating expression of apoptosis-regulated gene Bax. To the best of our knowledge, no similar studies are available at present.

Applications
According to the results of this study, genistein may potentially be used as a chemotherapeutic drug for gastric carcinoma.

Terminology
Bel-2: This is a large family composed of various members that are key regulators of apoptosis. High levels and aberrant patterns of Bel-2 expression have been reported in a wide variety of human cancers. Bax: This is a pro-apoptotic member of the Bcl-2 family, which is thought to induce apoptosis. Loss of Bax in genetically engineered mice results in increased tumor incidence, which suggests that Bax may play a role in suppressing tumor growth in vivo.

Peer review
The study demonstrated that genistein was able to induce apoptosis of transplanted tumor cells in nude mice. The apoptosis may have been mediated by down-regulating expression of apoptosis-regulated gene Bel-2 and up-regulating expression of apoptosis-regulated gene Bax. The authors conclude that genistein may potentially be used as a chemotherapeutic drug for gastric carcinoma.

REFERENCES
1. Konopleva M, Konoplev S, Hu W, Zaritskey AV, Afnanisnev BV, Andreiff M. Stromal cells prevent apoptosis of AML cells by up-regulation of anti-apoptotic proteins. Leukemia 2002; 16: 1713-1724
2. van der Woude CJ, Jansen PL, Tiebosch AT, Beuving A, Homan M, Kleibeuker JH, Moshage H. Expression of apoptosis-related proteins in Barrett's metaplasia-dysplasia-carcinoma sequence: a switch to a more resistant phenotype. Hum Pathol 2002; 33: 686-692
3. Panaretakis T, Pekrouskaja K, Shoshan MC, Grander D. Activation of Bak, Bax, and BH3-only proteins in the apoptotic response to doxorubicin. J Biol Chem 2002; 277: 44317-44326
4. Bellossillo B, Villamor N, Lopez-Guillermo A, Marce S, Bosch F, Campo E, Montserrat E, Colomer D. Spontaneous and drug-induced apoptosis is mediated by conformational changes of Bax and Bak in B-cell chronic lymphocytic leukemia. Blood 2002; 100: 1810-1816
5. Chen GG, Lai PB, Hu X, Lam IJ, Chak EC, Chun YS, Lau WY. Negative correlation between the ratio of Bax to Bcl-2 and the size of tumor treated by culture supernatants from Kupffer cells. Clin Exp Metastasis 2002; 19: 457-464
6. Usuda J, Chiu SM, Azizuddin K, Xue LY, Lam M, Nieminen AL, Oleinick NL. Promotion of photodynamic therapy-induced apoptosis by the mitochondrial protein Smac/DIABLO: dependence on Bax. Photochem Photobiol 2002; 76: 217-223
7. Sun F, Akazawa S, Sugahara K, Kamibira S, Kawasaki E, Eguchi K, Koji T. Apoptosis in normal rat embryo tissues during early organogenesis: the possible involvement of Bax and Bcl-2. Arch Histol Cytol 2002; 65: 145-157
8. Jang MH, Shin MC, Shin HS, Kim KH, Park HJ, Kim CJ. Alcohol induces apoptosis in TM3 mouse Leydig cells via bax-dependent caspase-3 activation. Eur J Pharmacol 2002; 449: 39-45
9. Tilli CM, Slavast-Koey AJ, Ramaekers FC, Neumann HA. Bax expression and growth behavior of basal cell carcinomas. J Cutan Pathol 2002; 29: 79-87
10. Matter-Reissmann UB, Forte P, Schneider MK, Filgueira L, Groscurth P, Seebach JD. Xenogeneic human NK cytotoxicity against porcine endothelial cells is perforin/granzyme B dependent and not inhibited by Bcl-2 overexpression. Xenotransplantation 2002; 9: 325-337
11. Lanzi C, Cassinelli G, Cucuru G, Supino R, Zucol F, Ferlini C, Scambia G, Zunino F. Cell cycle checkpoint efficiency and cellular response to paclitaxel in prostate cancer cells. Prostate 2001; 48: 254-264
12. Mertens HJ, Heineinan MJ, Evers JL. The expression of apoptosis-related proteins Bcl-2 and KI67 in endometrium of ovulatory menstrual cycles. Gynecol Obstet Invest 2002; 53: 224-230
13. Mehta U, Kang BP, Bansal G, Bansal MP. Studies of apoptosis and Bcl-2 in experimental atherosclerosis in rabbit and influence of selenium supplementation. Gen Physiol Biophys 2002; 21: 15-29
14. Chang WK, Yang KD, Chuang H, Jan JT, Shaio MF. Glutamine protects activated human T cells from apoptosis by up-regulating glutathione and Bcl-2 levels. Clin Immunol 2002; 104: 151-160
15. Shutt DA, Cox RI. Steroid and phyto-oestrogen binding to sheep uterine receptors in vitro. J Endocrinol 1972; 52: 299-310
16. Mathieson RA, Kitts WD. Binding of phyto-oestrogen and oestradiol-17 beta by cytoplasmic receptors in the pituitary gland and hypothalamus of the ewe. J Endocrinol 1980; 85.
Inhibition of in vitro angiogenesis by genistein, an inhibitor of tyrosine protein kinases. *Cancer Res* 1991; 51: 764-768

Miller D R, Lee GM, Maness PF. Increased neurite outgrowth induced by inhibition of protein tyrosine kinase activity in PC12 pheochromocytoma cells. *J Neurochem* 1993; 60: 2134-2144

Simon HU, Yousefi S, Blaser K. Tyrosine phosphorylation regulates activation and inhibition of apoptosis in human eosinophils and neutrophils. *Int Arch Allergy Immunol* 1995; 107: 338-339

Davis JN, Kucuk O, Sarkar FH. Genistein inhibits NF-kappa B activation in prostate cancer cells. *Nutr Cancer* 1999; 35: 167-174

Xu LH, Owens LV, Sturge GC, Yang X, Liu ET, Craven RJ, Cance WG. Attenuation of the expression of the focal adhesion kinase induces apoptosis in tumor cells. *Cell Growth Differ* 1996; 7: 413-418

Davis JN, Singh B, Bhuiyan M, Sarkar FH. Genistein-induced upregulation of p21WAF1, downregulation of cyclin B, and induction of apoptosis in prostate cancer cells. *Nutr Cancer* 1998; 32: 123-131

Okura A, Arakawa H, Oka H, Yoshinari T, Monden Y. Effect of genistein on topoisoamerase activity and on the growth of [Val 12]Ha-ras-transformed NIH 3T3 cells. *Biochem Biophys Res Commun* 1988; 157: 183-189

Tripathi YB, Lim RW, Fernandez-Gallardo S, Kandala JC, Guntaka RV, Shukla SD. Involvement of tyrosine kinase and protein kinase C in platelet-activating-factor-induced c-fos gene expression in A-431 cells. *Biochem J* 1992; 286: 527-533

Akiyama T, Ishida J, Nakagawa S, Ogawara H, Watanabe S, Itoh N, Shibuya M, Fukami Y, Genistein, a specific inhibitor of tyrosine-specific protein kinases. *J Biol Chem* 1987; 262: 5592-5595

Dean NM, Kanemitsu M, Boynton AL. Effects of the tyrosine-kinase inhibitor genistein on DNA synthesis and phospholipid-derived second messenger generation in mouse 10T1/2 fibroblasts and rat liver T51B cells. *Biochem Biophys Res Commun* 1989; 165: 795-801

Pettersson F, Dalgleish AG, Bissonnette RP, Colston KW. Retinoids cause apoptosis in pancreatic cancer cells via activation of RAR-gamma and altered expression of Bcl-2/Bax. *Br J Cancer* 2002; 87: 555-561

References

17 Martin PM, Horwitz KB, Ryan DS, McGuire WL. Phytoestrogen interaction with estrogen receptors in human breast cancer cells. *Endocrinology* 1978; 103: 1860-1867

18 Makela S, Davis VL, Tally WC, Korkman J, Salo L, Viikko R, Santti R, Korach KS. Dietary Estrogens Act through Estrogen Receptor-Mediated Processes and Show No Antiestrogenicity in Cultured Breast Cancer Cells. *Environ Health Perspect* 1994; 102: 572-578

19 Thigpen JE, Haseman JK, Saunders H, Locklear J, Caviness G, Grant M, Forsythe D. Dietary factors affecting uterine weights of immature CD-1 mice used in uterotrophic bioassays. *Cancer Detect Preo* 2002; 26: 381-393

20 Fotsis T, Pepper M, Adlercreutz H, Fleischmann G, Grant M, Forsythe D. Dietary factors affecting uterine weights of immature CD-1 mice used in uterotrophic bioassays. *Cancer Detect Preo* 2002; 26: 381-393

21 Power KA, Ward WE, Chen JM, Saarinen NM, Thompson LU. Genistein alone and in combination with the mammalian lignans enterolactone and enterodiol induce estrogenic effects on bone and uterus in a postmenopausal breast cancer mouse model. *Bone* 2006; 39: 117-124

22 Jha HC, von Recklinghausen G, Zilliken F. Inhibition of in vitro microsomal lipid peroxidation by isoflavonoids. *Biochem Pharmacol* 1985; 34: 1367-1369

23 Fotis T, Pepper M, Adlercreutz H, Fleischmann G, Hase T, Montesano R, Schweigerer L. Genistein, a dietary-derived inhibitor of in vitro angiogenesis. *Proc Natl Acad Sci USA* 1993; 90: 2690-2694

24 Mitchell JH, Gardner PT, McPhail DB, Morrice PC, Collins AR, Duthie GG. Antioxidant efficacy of phytoestrogens in chemical and biological model systems. *Arch Biochem Biophys* 1998; 360: 142-148

25 Tikkanen MJ, Adlercreutz H. Dietary soy-derived isoflavone phytoestrogens. Could they have a role in coronary heart disease prevention? *Biochem Pharmacol* 2000; 60: 1-5

26 Wei H, Bowen R, Cai Q, Barnes S, Wang Y. Antioxidant and antipromotional effects of the soybean isoflavone genistein. *Proc Soc Exp Biol Med* 1995; 208: 124-130

27 Watanabe T, Kondo K, Oishi M. Induction of in vitro differentiation of mouse erythroleukemia cells by genistein, an inhibitor of tyrosine protein kinases. *Cancer Res* 1991; 51: 764-768

28 Miller D R, Lee GM, Maness PF. Increased neurite outgrowth induced by inhibition of protein tyrosine kinase activity in PC12 pheochromocytoma cells. *J Neurochem* 1993; 60: 2134-2144

29 Simon HU, Yousefi S, Blaser K. Tyrosine phosphorylation regulates activation and inhibition of apoptosis in human eosinophils and neutrophils. *Int Arch Allergy Immunol* 1995; 107: 338-339

30 Davis JN, Kucuk O, Sarkar FH. Genistein inhibits NF-kappa B activation in prostate cancer cells. *Nutr Cancer* 1999; 35: 167-174

31 Xu LH, Owens LV, Sturge GC, Yang X, Liu ET, Craven RJ, Cance WG. Attenuation of the expression of the focal adhesion kinase induces apoptosis in tumor cells. *Cell Growth Differ* 1996; 7: 413-418

32 Davis JN, Singh B, Bhuiyan M, Sarkar FH. Genistein-induced upregulation of p21WAF1, downregulation of cyclin B, and induction of apoptosis in prostate cancer cells. *Nutr Cancer* 1998; 32: 123-131

33 Okura A, Arakawa H, Oka H, Yoshinari T, Monden Y. Effect of genistein on topoisoamerase activity and on the growth of [Val 12]Ha-ras-transformed NIH 3T3 cells. *Biochem Biophys Res Commun* 1988; 157: 183-189

34 Tripathi YB, Lim RW, Fernandez-Gallardo S, Kandala JC, Guntaka RV, Shukla SD. Involvement of tyrosine kinase and protein kinase C in platelet-activating-factor-induced c-fos gene expression in A-431 cells. *Biochem J* 1992; 286: 527-533

35 Akiyama T, Ishida J, Nakagawa S, Ogawara H, Watanabe S, Itoh N, Shibuya M, Fukami Y, Genistein, a specific inhibitor of tyrosine-specific protein kinases. *J Biol Chem* 1987; 262: 5592-5595

36 Dean NM, Kanemitsu M, Boynton AL. Effects of the tyrosine-kinase inhibitor genistein on DNA synthesis and phospholipid-derived second messenger generation in mouse 10T1/2 fibroblasts and rat liver T51B cells. *Biochem Biophys Res Commun* 1989; 165: 795-801

37 Pettersson F, Dalgleish AG, Bissonnette RP, Colston KW. Retinoids cause apoptosis in pancreatic cancer cells via activation of RAR-gamma and altered expression of Bcl-2/Bax. *Br J Cancer* 2002; 87: 555-561

S-Editor Liu Y L-Editor Kerr C E-Editor Li HY