The Effect of the Low Energy Constants on the Spectral Properties of the Wilson Dirac Operator

Savvas Zafeiropoulos

July 29-August 3, 2013
Wilson term breaks $\chi -$ symmetry explicitly

Lattice spacing effects lead to new terms in $\chi - PT$

Sharpe and Singleton (1998), Rupak and Shoresh (2002), Baer,Rupak and Shoresh (2004)

$\epsilon -$ regime where in the thermodynamic, chiral and continuum limit $mV\Sigma, zV\Sigma$ and a^2VW_i kept fixed.

At order a^2 it involves three Low Energy Constants (LECs)

$$Z_{N_f}(m, z; a) = \int_{\mathcal{M}} dU \ e^{-S[U]},$$

where the action is

$$S = -\frac{m}{2} \Sigma V \text{tr} (U + U^\dagger) - \frac{z}{2} \Sigma V \text{tr} (U - U^\dagger)$$

$$+ a^2VW_6[\text{tr} (U+U^\dagger)]^2 + a^2VW_7[\text{tr} (U-U^\dagger)]^2 + a^2VW_8\text{tr}(U^2+U^\dagger^2).$$
Wilson Chiral Perturbation Theory

- Wilson term breaks $\chi -$ symmetry explicitly
- Lattice spacing effects lead to new terms in $\chi - PT$

 Sharpe and Singleton (1998), Rupak and Shoresh (2002), Baer,Rupak and Shoresh (2004)

- $\epsilon -$ regime where in the thermodynamic, chiral and continuum limit $mV\Sigma$, $zV\Sigma$ and a^2VW_i kept fixed.

- At order a^2 it involves three Low Energy Constants (LECs)

$$Z_{N_f}(m, z; a) = \int_{\mathcal{M}} dU \ e^{-S[U]},$$

where the action is

$$S = -\frac{m}{2} \Sigma V \text{tr} (U + U^\dagger) - \frac{z}{2} \Sigma V \text{tr} (U - U^\dagger)$$
$$+ a^2 VW_6[\text{tr} (U + U^\dagger)]^2 + a^2 VW_7[\text{tr} (U - U^\dagger)]^2 + a^2 VW_8 \text{tr}(U^2 + U^\dagger^2).$$
Wilson Chiral Perturbation Theory

- Wilson term breaks $\chi -$ symmetry explicitly
- Lattice spacing effects lead to new terms in $\chi -$ PT
 - Sharpe and Singleton (1998), Rupak and Shoresh (2002), Baer,Rupak and Shoresh (2004)
- $\epsilon -$ regime where in the thermodynamic, chiral and continuum limit $mV\Sigma$, $zV\Sigma$ and $a^2 VW_i$ kept fixed.
- At order a^2 it involves three Low Energy Constants (LECs)

$$Z_{N_f}(m, z; a) = \int_M dU \ e^{-S[U]},$$

where the action is

$$S = -\frac{m}{2} \Sigma V \text{tr} (U + U^\dagger) - \frac{z}{2} \Sigma V \text{tr} (U - U^\dagger) + a^2 VW_6 [\text{tr} (U + U^\dagger)]^2 + a^2 VW_7 [\text{tr} (U - U^\dagger)]^2 + a^2 VW_8 \text{tr}(U^2 + U^\dagger^2).$$
The Goal

- Facilitate simulations in the deep chiral regime by an exact, analytical understanding of the average behavior of the smallest eigenvalues
 - Chiral symmetry breaking from lattice spacing
 - Stability of lattice simulations
The Goal

- Facilitate simulations in the deep chiral regime by an exact, analytical understanding of the average behavior of the smallest eigenvalues
- Chiral symmetry breaking from lattice spacing
- Stability of lattice simulations
The Goal

- Facilitate simulations in the deep chiral regime by an exact, analytical understanding of the average behavior of the smallest eigenvalues
- Chiral symmetry breaking from lattice spacing
- Stability of lattice simulations
Introduction of the Model
Partition function of D_W with N_f flavors:

$$Z_{N_f}^{RMT,\nu} = \int dD_W \det^{N_f}(D_W + m)P(D_W)$$

$P(D_W)$ → is a Gaussian

$$D_W = \begin{pmatrix} aA & W \\ W^\dagger & aB \end{pmatrix} + am_6 + a\lambda_7\gamma_5$$

(Damgaard et al (2010), Akemann et al (2010), Kieburg et al (2011, 2012))

- $A : n \times n$ Hermitian
- $B : (n + \nu) \times (n + \nu)$ Hermitian
- $W : n \times (n + \nu)$ Complex
- m_6 and λ_7 scalar random variables
- At $a = 0 : D_W$ has ν generic zero modes
- At finite a : definition of the index through spectral flow lines
 or equivalently \(\nu = \sum_{\lambda_k^W \in \mathbb{R}} \text{sign}(\langle k | \gamma_5 | k \rangle) \)

Itoh et al (1987)
Partition function of D_W with N_f flavors:

$$Z_{N_f}^{RMT,\nu} = \int dD_W \det^{N_f}(D_W + m)P(D_W)$$

$P(D_W)$ is a Gaussian

$D_W = \begin{pmatrix} aA & W \\ W^\dagger & aB \end{pmatrix} + am_6 + a\lambda_7\gamma_5$ (Damgaard et al (2010), Akemann et al (2010), Kieburg et al (2011, 2012))

- $A: n \times n$ Hermitian
- $B: (n + \nu) \times (n + \nu)$ Hermitian
- $W: n \times (n + \nu)$ Complex
- m_6 and λ_7 scalar random variables
- At $a = 0$: D_W has ν generic zero modes
- At finite a: definition of the index through spectral flow lines or equivalently $\nu = \sum_{\lambda_k^W \in \mathbb{R}} \text{sign}(\langle k|\gamma_5|k \rangle)$ (Itoh et al (1987))
Partition function of D_W with N_f flavors:

$$Z_{N_f}^{RMT,\nu} = \int dD_W \det^{N_f}(D_W + m)P(D_W)$$

$P(D_W) \rightarrow$ is a Gaussian

$$D_W = \begin{pmatrix} aA & W \\ W^\dagger & aB \end{pmatrix} + am_6 + a\lambda_7\gamma_5$$
(Damgaard et al (2010), Akemann et al (2010), Kieburg et al (2011, 2012))

- $A: n \times n$ Hermitian
- $B: (n + \nu) \times (n + \nu)$ Hermitian
- $W: n \times (n + \nu)$ Complex
- m_6 and λ_7 scalar random variables
- At $a = 0: D_W$ has ν generic zero modes
- At finite a: definition of the index through spectral flow lines
 or equivalently $\nu = \sum_{\lambda_k^W \in \mathbb{R}} \text{sign}(\langle k|\gamma_5|k \rangle)$
(Itoh et al (1987))
Partion function of D_W with N_f flavors:

$$Z_{N_f}^{RMT,\nu} = \int dD_W \det^{N_f} (D_W + m) P(D_W)$$

$P(D_W)$ → is a Gaussian

$$D_W = \begin{pmatrix} aA & W \\ W^\dagger & aB \end{pmatrix} + am_6 + a\lambda_7\gamma_5$$

(Damgaard et al (2010), Akemann et al (2010), Kieburg et al (2011,2012))

A : $n \times n$ Hermitian

B : $(n + \nu) \times (n + \nu)$ Hermitian

W : $n \times (n + \nu)$ Complex

m_6 and λ_7 scalar random variables

At $a = 0$: D_W has ν generic zero modes

At finite a : definition of the index through spectral flow lines or equivalently

$$\nu = \sum_{\lambda^W_k \in \mathbb{R}} \text{sign}(\langle k | \gamma_5 | k \rangle)$$

Itoh et al (1987)
Wilson Dirac operator and RMT

- Partition function of D_W with N_f flavors:

$$Z_{N_f}^{RMT,\nu} = \int dD_W \det^{N_f} (D_W + m) P(D_W)$$

- $P(D_W)$ → is a Gaussian

$$D_W = \begin{pmatrix} aA & W \\ W^\dagger & aB \end{pmatrix} + am_6 + a\lambda_7\gamma_5$$ (Damgaard et al (2010), Akemann et al (2010), Kieburg et al (2011,2012))

- $A : n \times n$ Hermitian
- $B : (n + \nu) \times (n + \nu)$ Hermitian
- $W : n \times (n + \nu)$ Complex

- m_6 and λ_7 scalar random variables
- At $a = 0 : D_W$ has ν generic zero modes
- At finite a : definition of the index through spectral flow lines or equivalently $\nu = \sum \text{sign}(\langle k | \gamma_5 | k \rangle)$ (Itoh et al (1987))
Partition function of D_W with N_f flavors:

$$Z_{N_f}^{RMT,\nu} = \int dD_W \det^{N_f}(D_W + m)P(D_W)$$

$P(D_W)$ → is a Gaussian

$$D_W = \begin{pmatrix} aA & W \\ W^\dagger & aB \end{pmatrix} + a m_6 + a \lambda_7 \gamma_5$$ (Damgaard et al (2010), Akemann et al (2010), Kieburg et al (2011, 2012))

- $A : n \times n$ Hermitian
- $B : (n + \nu) \times (n + \nu)$ Hermitian
- $W : n \times (n + \nu)$ Complex
- m_6 and λ_7 scalar random variables

At $a = 0 : D_W$ has ν generic zero modes

At finite a : definition of the index through spectral flow lines

or equivalently

$$\nu = \sum_{\lambda^W_k \in \mathbb{R}} \text{sign}(\langle k | \gamma_5 | k \rangle)$$ Itoh et al (1987)
Partition function of D_W with N_f flavors:

$$Z_{N_f}^{\text{RMT},\nu} = \int dD_W \det^{N_f}(D_W + m)P(D_W)$$

$P(D_W)$ → is a Gaussian

$D_W = \begin{pmatrix} aA & W \\ W^\dagger & aB \end{pmatrix} + a m_6 + a \lambda_7 \gamma_5$ (Damgaard et al (2010), Akemann et al (2010), Kieburg et al (2011, 2012))

A: $n \times n$ Hermitian

B: $(n + \nu) \times (n + \nu)$ Hermitian

W: $n \times (n + \nu)$ Complex

m_6 and λ_7 scalar random variables

At $a = 0$: D_W has ν generic zero modes

At finite a: definition of the index through spectral flow lines or equivalently $\nu = \sum \text{sign}(\langle k | \gamma_5 | k \rangle) \lambda_k^W \in \mathbb{R}$ (Itoh et al (1987))
Partition function of D_W with N_f flavors:

$$Z_{N_f}^{RMT,\nu} = \int dD_W \det^{N_f}(D_W + m)P(D_W)$$

$P(D_W) \rightarrow$ is a Gaussian

$$D_W = \begin{pmatrix} aA & W \\ W^\dagger & aB \end{pmatrix} + am_6 + a\lambda_7\gamma_5$$ (Damgaard et al (2010), Akemann et al (2010), Kieburg et al (2011,2012))

- $A : n \times n$ Hermitian
- $B : (n + \nu) \times (n + \nu)$ Hermitian
- $W : n \times (n + \nu)$ Complex
- m_6 and λ_7 scalar random variables
- At $a = 0 : D_W$ has ν generic zero modes
- At finite a : definition of the index through spectral flow lines or equivalently
 $$\nu = \sum_{\lambda_k^W \in \mathbb{R}} \text{sign}(\langle k|\gamma_5|k\rangle)$$ Itoh et al (1987)
$D_W = \frac{1}{2} \gamma_\mu (\nabla_\mu + \nabla^*_\mu) - \frac{1}{2} a \nabla^*_\mu \nabla_\mu$

- $a \neq 0$ is non-Hermitian but retains γ_5-Hermiticity

 $D_W^{\dagger} = \gamma_5 D_W \gamma_5$

- Eigenvalues of D_W because of the γ_5-Hermiticity occur in complex conjugate pairs or are real

- ONLY eigenvectors corresponding to real eigenvalues have non-vanishing chirality $\langle k | \gamma_5 | k \rangle$
\[D_W = \frac{1}{2} \gamma_\mu (\nabla_\mu + \nabla^*_\mu) - \frac{1}{2} a \nabla^*_\mu \nabla_\mu \]

At \(a \neq 0 \) is non-Hermitian but retains \(\gamma_5 \)-Hermiticity

\[D_W^\dagger = \gamma_5 D_W \gamma_5 \]

- Eigenvalues of \(D_W \) because of the \(\gamma_5 \)-Hermiticity occur in complex conjugate pairs or are real

- ONLY eigenvectors corresponding to real eigenvalues have non-vanishing chirality \(\langle \kappa | \gamma_5 | \kappa \rangle \)
\(\gamma_5\)-hermiticity

- \(D_W = \frac{1}{2} \gamma_\mu (\nabla_\mu + \nabla^*_\mu) - \frac{1}{2} a \nabla^*_\mu \nabla_\mu\)
- At \(a \neq 0\) is non-Hermitian but retains \(\gamma_5\)-Hermiticity
 \(D_W^\dagger = \gamma_5 D_W \gamma_5\)
- Eigenvalues of \(D_W\) because of the \(\gamma_5\)-Hermiticity occur in complex conjugate pairs or are real
- ONLY eigenvectors corresponding to real eigenvalues have non-vanishing chirality \(\langle k|\gamma_5|k\rangle\)
\(D_W = \frac{1}{2} \gamma_\mu (\nabla_{\mu} + \nabla^*_{\mu}) - \frac{1}{2} a \nabla^*_{\mu} \nabla_{\mu} \)

- At \(a \neq 0 \) is non-Hermitian but retains \(\gamma_5 \)-Hermiticity

\[D_W^\dagger = \gamma_5 D_W \gamma_5 \]

- Eigenvalues of \(D_W \) because of the \(\gamma_5 \)-Hermiticity occur in complex conjugate pairs or are real

- ONLY eigenvectors corresponding to real eigenvalues have non vanishing chirality \(\langle k | \gamma_5 | k' \rangle \)
The Eigenvalue Densities
\(\hat{a}_6 = \hat{a}_7 = 0.25, \hat{a}_8 = 0.7 \)
\(\hat{m} = 5.3 \)
\(\nu = 0 \) (top) and
\(\nu = 1 \) (bottom)

(Deuzeman, Wenger and Wuilloud (2011))

\(\hat{m} = 4.8, \nu = 2 \)

(Damgaard, Heller and Splittorff (2011))
The density of real eigenvalues of D_W

Damgaard, Heller and Splittorff (2012)

Cumulative eigenvalue distributions of D_5 with all $W_{6/7/8}$ included at $\nu = 0$

(Deuzeman, Wenger and Wuilloud (2011))
The effects of W_6 and W_7 when $W_8 = 0$

- \hat{a}_6 and \hat{a}_7 introduced through the addition of the Gaussian stochastic variable $\hat{m}_6 + \hat{\lambda}_7 \gamma_5$ to D_W

- $D = D_W + (m + \hat{m}_6)1 + \hat{\lambda}_7 \gamma_5$

- When $\hat{a}_8 = 0$ D_W is anti-Hermitian,

- the eigenvalues of $D_W(\hat{\lambda}_7, \hat{m}_6) = D - m$ are given by

$$\hat{z}_\pm = \hat{m}_6 \pm i \sqrt{\hat{\lambda}^2_W - \hat{\lambda}^2_7}$$

where $i\lambda_W$ is an eigenvalue of D_W
\(\hat{a}_6 \) and \(\hat{a}_7 \) introduced through the addition of the Gaussian stochastic variable \(\hat{m}_6 + \hat{\lambda}_7 \gamma_5 \) to \(D_W \)

\[D = D_W + (m + \hat{m}_6)1 + \hat{\lambda}_7 \gamma_5 \]

When \(\hat{a}_8 = 0 \) \(D_W \) is anti-Hermitian,

the eigenvalues of \(D_W(\hat{\lambda}_7, \hat{m}_6) = D - m \) are given by

\[\hat{z}_\pm = \hat{m}_6 \pm i \sqrt{\lambda^2_W - \hat{\lambda}^2_7} \]

where \(i\lambda_W \) is an eigenvalue of \(D_W \)
The effects of W_6 and W_7 when $W_8 = 0$

- \hat{a}_6 and \hat{a}_7 introduced through the addition of the Gaussian stochastic variable $\hat{m}_6 + \hat{\lambda}_7 \gamma_5$ to D_W
- $D = D_W + (m + \hat{m}_6)1 + \hat{\lambda}_7 \gamma_5$
- When $\hat{a}_8 = 0$ D_W is anti-Hermitian,
- the eigenvalues of $D_W(\hat{\lambda}_7, \hat{m}_6) = D - m$ are given by

$$\hat{z}_\pm = \hat{m}_6 \pm i \sqrt{\lambda_W^2 - \hat{\lambda}_7^2}$$

where $i\lambda_W$ is an eigenvalue of D_W
The effects of W_6 and W_7 when $W_8 = 0$

- \hat{a}_6 and \hat{a}_7 introduced through the addition of the Gaussian stochastic variable $\hat{m}_6 + \hat{\lambda}_7 \gamma_5$ to D_W
- $D = D_W + (m + \hat{m}_6) 1 + \hat{\lambda}_7 \gamma_5$
- When $\hat{a}_8 = 0$ D_W is anti-Hermitian,
- the eigenvalues of $D_W(\hat{\lambda}_7, \hat{m}_6) = D - m$ are given by

$$\hat{z}_\pm = \hat{m}_6 \pm i \sqrt{\lambda_W^2 - \hat{\lambda}_7^2}$$

where $i \lambda_W$ is an eigenvalue of D_W
The effects of W_6 and W_7

Schematic plots of the effects of W_6 (left plot) and of W_7 (right plot). W_6 broadens the spectrum parallel to the real axis according to a Gaussian with width $4\hat{a}_6$, but does not change the continuum spectrum in a significant way. When $W_7 \neq 0$ and $W_6 = 0$ the purely imaginary eigenvalues invade the real axis through the origin and only the real (green crosses) are broadened by a Gaussian with width $4\hat{a}_7$.
Notice that the two curves for $\hat{a}_7 = \hat{a}_8 = 0.1$ (right plot) are two orders smaller than the other curves (left plot). Notice the soft repulsion of the additional real modes from the origin at large \hat{a}_7. The parameter \hat{a}_6 smooths the distribution.
Log-log plots of additional real modes vs \hat{a} for $\nu = 0, 2$

Log-log plots of N_{add} as a function of \hat{a}_8 for $\nu = 0$ (left plot) and $\nu = 2$ (right plot). W_6 has no effect on N_{add}. Saturation around zero due to a non-zero value of \hat{a}_7. For $\hat{a}_7 = 0$ (lowest curves) the average number of additional real modes behaves like $\hat{a}_8^{2\nu+2}$. Kieburg, Verbaarschot and SZ (2011)
Distribution of additional real modes for $\hat{a} \gg 1$

At $\hat{a} \gg 1$, ρ_r develops square root singularities at the boundaries. Finite matrix size + finite lattice spacing $\rightarrow \rho_r$ has a tail dropping off much faster than the size of the support. The dependence on W_6 and ν is completely lost.
The distribution of the complex eigenvalues projected onto the imaginary axis for $\nu = 1$. Notice that \hat{a}_6 does not affect this distribution. The comparison of $\hat{a}_7 = \hat{a}_8 = 0.1$ with the continuum result (black curve) shows that ρ_{cp} is still a good quantity to extract the chiral condensate Σ at small lattice spacing.
The distribution is symmetric around the origin. At small \hat{a}_8 the distributions for $(\hat{a}_6, \hat{a}_7) = (1, 0.1), (0.1, 1)$ are almost the same Gaussian as the analytical result predicts. At large \hat{a}_8 the maximum reflects the predicted square root singularity which starts to build up. We have not included the case $\hat{a}_6/\hat{a}_7/\hat{a}_8 = 0.1$ since it exceeds the other curves by a factor of 10 to 100.
Extracting the LECs of Wilson chPT
Please do not read this
Extracting the LECs of Wilson chPT

\[K^{(4)}_{n_1 n_2} \left(\frac{2 \pi}{2 \pi - 2 \pi} \right) \times \exp \left[\sum_{n=1}^{\infty} \frac{\left(-\frac{1}{2} \right)^n}{n} \right] \times \left[\text{sign}(x_1 - x_2) \exp \left[\frac{n}{2a^2} \left(x_1 + x_2 - \frac{a^2}{n} \right)^2 \right] \right] \]

- the average number of the additional real modes for the lowest index:
 \[N_{\text{add}} \lesssim 2V\sqrt{a^2(W_8 - 2W_7)}, \quad (75) \]
- the width of the Gaussian shaped strip of complex eigenvalues:
 \[2\sigma \lesssim \frac{4a\sqrt{W_8 - 2W_6}}{V\sqrt{2}}, \quad (76) \]
- the variance of the distribution of chirality over the real eigenvalues:
 \[\langle (V\Sigma\Xi)^2 \rangle \lesssim 8V\sqrt{a^2(\nu W_8 - W_6 - W_7)}, \quad \nu > 0, \quad (77) \]

(Figure courtesy of M. Kieburg)
Conclusions

- Studied the effect of the three LECs on the spectrum of D_W.
- W_6 and W_7 can be interpreted as collective fluctuations of the spectrum while W_8 induces interactions among all modes.
- Analytical and numerical results of the eigenvalue densities of D_W
- At small lattice spacing we propose the following quantities for the extraction of LECs

\[
\tilde{a}^2 V \begin{bmatrix}
0 & -2 & 1 \\
-2 & 0 & 1 \\
-1 & -1 & 1 \\
-1 & -1 & 2
\end{bmatrix} \begin{bmatrix}
W_6 \\
W_7 \\
W_8
\end{bmatrix} = \frac{\pi^2}{8} \begin{bmatrix}
4 N_{\text{add}}^{\nu=0} / \pi^2 \\
2 \sigma^2 / \Delta^2 \\
\langle \tilde{x}^2 \rangle_{\rho_x}^{\nu=1} / \Delta^2 \\
\langle \tilde{x}^2 \rangle_{\rho_x}^{\nu=2} / \Delta^2
\end{bmatrix}
\]
Conclusions

- Studied the effect of the three LECs on the spectrum of D_W.
- W_6 and W_7 can be interpreted as collective fluctuations of the spectrum while W_8 induces interactions among all modes.
- Analytical and numerical results of the eigenvalue densities of D_W.
- At small lattice spacing we propose the following quantities for the extraction of LECs:

$$\tilde{a}^2 V \begin{bmatrix} 0 & -2 & 1 \\ -2 & 0 & 1 \\ -1 & -1 & 1 \\ -1 & -1 & 2 \end{bmatrix} \begin{bmatrix} W_6 \\ W_7 \\ W_8 \end{bmatrix} = \frac{\pi^2}{8} \begin{bmatrix} \frac{4N_{\text{add}}^{\nu=0}}{\pi^2} \\ \frac{2\sigma^2}{\Delta^2} \\ \langle \tilde{x}^2 \rangle_{\rho_x}^{\nu=1} / \Delta^2 \\ \langle \tilde{x}^2 \rangle_{\rho_x}^{\nu=2} / \Delta^2 \end{bmatrix}$$
Conclusions

- Studied the effect of the three LECs on the spectrum of D_W.
- W_6 and W_7 can be interpreted as collective fluctuations of the spectrum while W_8 induces interactions among all modes.
- Analytical and numerical results of the eigenvalue densities of D_W
- At small lattice spacing we propose the following quantities for the extraction of LECs

$$\tilde{a}^2 V \begin{bmatrix} 0 & -2 & 1 \\ -2 & 0 & 1 \\ -1 & -1 & 1 \\ -1 & -1 & 2 \end{bmatrix} \begin{bmatrix} W_6 \\ W_7 \\ W_8 \end{bmatrix} = \frac{\pi^2}{8} \begin{bmatrix} 4N_{\text{add}}^{\nu=0}/\pi^2 \\ 2\sigma^2/\Delta^2 \\ \langle \tilde{x}^2 \rangle_{\rho_x}^{\nu=1}/\Delta^2 \\ \langle \tilde{x}^2 \rangle_{\rho_x}^{\nu=2}/\Delta^2 \end{bmatrix}$$
Conclusions

- Studied the effect of the three LECs on the spectrum of D_W.
- W_6 and W_7 can be interpreted as collective fluctuations of the spectrum while W_8 induces interactions among all modes.
- Analytical and numerical results of the eigenvalue densities of D_W
- At small lattice spacing we propose the following quantities for the extraction of LECs

\[
\tilde{a}^2 V \begin{bmatrix}
0 & -2 & 1 \\
-2 & 0 & 1 \\
-1 & -1 & 1 \\
-1 & -1 & 2 \\
\end{bmatrix} \begin{bmatrix}
W_6 \\
W_7 \\
W_8 \\
\end{bmatrix} = \frac{\pi^2}{8} \begin{bmatrix}
\frac{4 N_{\text{add}}^{\nu=0}}{\pi^2} \\
\frac{2 \sigma^2}{\Delta^2} \\
\frac{\langle \tilde{x}^2 \rangle_{\nu=1}}{\rho_x} / \Delta^2 \\
\frac{\langle \tilde{x}^2 \rangle_{\nu=2}}{\rho_x} / \Delta^2 \\
\end{bmatrix}
\]
for upcoming results . . .
Thank you for your attention!

Collaborators:
Mario Kieburg 8E 17.30
A classification of 2− dim Lattice Theory
Jacobus Verbaarschot 7D 15.40
Discretization Effects in the ϵ Domain of QCD