Misleading signatures of quantum chaos

J. M. G. Gómez, R. A. Molina, A. Relaño and J. Retamosa
Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, E-28040 Madrid, Spain

The main signature of chaos in a quantum system is provided by spectral statistical analysis of the nearest neighbor spacing distribution and the spectral rigidity given by $\Delta_3(L)$. It is shown that some standard unfolding procedures, like local unfolding and Gaussian broadening, lead to a spurious increase of the spectral rigidity that spoils the $\Delta_3(L)$ relationship with the regular or chaotic motion of the system. This effect can also be misinterpreted as Berry’s saturation.

PACS:05.45>Mt,05.46>Pq,24.60>Lz

Quantum chaos has been an active research field since the link between energy level fluctuations and the chaotic or integrable properties of Hamiltonian systems was conjectured \[\text{[1,2]} \], providing one of the fundamental signatures of quantum chaos \[\text{[3,4]} \] in atoms, molecules, nuclei, quantum dots, etc. The secular or smooth behavior of the level density is a characteristic of each quantum system, while the fluctuations relative to this smooth behavior are related to the regular or chaotic character of the motion in all quantum systems. To achieve the separation of the smooth and fluctuating parts, the energy spectrum is scaled to a sequence with the same local mean spacing along the whole spectrum. This scaling is called unfolding \[\text{[5]} \]. Although this can be a non-trivial task \[\text{[6]} \], the description of the unfolding details of calculations is usually neglected in the literature.

In this Letter we show that, contrary to common assumptions, the statistics that measure long range level correlations are strongly dependent on the unfolding procedure utilized, and some standard unfolding methods give very misleading results in regard to the chaoticity of quantum systems. Long range level correlations are usually measured by means of the Dyson and Mehta Δ_3 statistic \[\text{[5]} \]. On the other hand, short range correlations, characterized by the nearest-neighbor spacing distribution $P(s)$, are not very sensitive to the unfolding method.

Let us consider a rectangular quantum billiard with a size ratio $a/b = \pi$. This is a well known example of a regular system. In general, for regular systems level fluctuations behave like in a sequence of uncorrelated energy levels, and the $\Delta_3(L)$ statistic increases linearly with L. However, it was shown by Berry \[\text{[7]} \] that the existence of periodic orbits in the phase space of the analogous classical system leads to a saturation of $\Delta_3(L)$ for L larger than a certain value L_s, related to the period of the shortest periodic orbit. Fig. 1 shows the Δ_3 behavior for a sequence of 8000 high energy levels of the mentioned quantum billiard, calculated with two different unfolding procedures. The mean density for this system is given by the Weyl law \[\text{[8]} \]. Using this density to perform the unfolding, Δ_3 follows the straight line of level spacings with Poisson distribution, characteristic of regular systems. In this example, Berry’s saturation takes place at $L_s \approx 750$, that is outside the figure. Let us suppose now that the law giving the mean level density of the system were unknown. Then, a standard method to obtain the local mean level density at energy E is to calculate the average density of a few levels around this energy. Using this method one obtains a very different behavior, the spectral rigidity increases strongly at $L \approx 20$, and afterwards Δ_3 is close to the Gaussian orthogonal ensemble (GOE) line characteristic of chaotic systems. The latter behavior is not at all related to the Berry saturation. It is a spurious effect due to inappropriate unfolding of the level spectrum and it implies that strong long-range correlations have been improperly introduced by the procedure.

![FIG. 1. Comparison of the Δ_3 statistic for a rectangular quantum billiard using two unfolding procedures. Open triangles correspond to the smooth unfolding using the Weyl law, and filled triangles to the local unfolding method. The dashed line is the Poisson limit and the dotted line is the GOE limit.](image)

This first example illustrates the problem that can arise with some reasonable unfolding methods currently used in quantum chaos calculations \[\text{[9–13]} \]. In order to understand its origin we shall analyze different unfold-
The principal difficulty in the unfolding is the correct characterization of the mean level density \(\bar{\rho}(E) \). Having this function, the unfolded adimensional variables \(\varepsilon_i \),

\[
\varepsilon_i = \tilde{N}(E_i), \quad \tilde{N}(E) = \int dE \rho(E), \tag{1}
\]

have mean level density \(\bar{\rho}(\varepsilon) = 1 \). The unfolded spacing sequence is then \(\{ s_i = \varepsilon_{i+1} - \varepsilon_i \} \), and the nearest-neighbor spacing distribution \(P(s) \) is well suited to study the short-range spectral correlations [5].

The \(\Delta_3 \) statistic is used to investigate the long range correlations. It is defined for the interval \([a, a + L]\) in the cumulative level density as

\[
\Delta_3(a, L) = \frac{1}{L} \min_{A, B} \int_a^{a + L} [N(\varepsilon) - A\varepsilon - B]^2 \, d\varepsilon. \tag{2}
\]

The function \(\Delta_3(L) \), averaged over intervals, measures the deviations of the quasi-uniform spectrum from a true equidistant spectrum.

For some systems a natural unfolding procedure exists, because \(\bar{\rho}(E) \) is known from an appropriate statistical theory or by a well checked empirical ansatz. For example, \(\bar{\rho}(E) \) is a semicircle for large GOE matrices [5], it often has Gaussian form for large nuclear shell-model matrices [5], and follows the Weyl law in quantum billiards [5]. However, in many systems where there is no natural choice for \(\bar{\rho}(E) \), it is usually estimated from a set of neighboring levels. The simplest method, called local unfolding, has been widely used [11,12]. The mean level density is assumed to be approximately linear in a window of \(v \) levels on each side of \(E_i \), and is given by

\[
\bar{\rho}_L(E_i) = \frac{2v}{E_{i-v} - E_{i+v}}, \tag{3}
\]

where \(L \) stands for local unfolding. More sophisticated is the Gaussian broadening method [5,8,13]. The level density \(\rho(E) = \sum_i \delta(E - E_i) \) is substituted by an average level density

\[
\bar{\rho}_G(E) = \frac{1}{\sigma \sqrt{2\pi}} \sum_i \exp \left\{ -\frac{(E - E_i)^2}{2\sigma^2} \right\}, \tag{4}
\]

where \(G \) stands for Gaussian broadening. The sum runs over all the energy levels, but only those satisfying \(|E - E_i| \lesssim \sigma \) do significantly contribute to \(\bar{\rho}_C(E) \). Although these two methods are different, both depend on a parameter \(v \) or \(\sigma \) that measures, in a real or effective way, how many neighboring levels are used to calculate the local mean density.

Let us now consider the atomic nucleus as example of a quantum system more complex than the quantum billiard. In most nuclei, level fluctuations are in agreement with GOE predictions at all energies, showing that the motion is chaotic. However, it has recently been observed that single closed nuclei are less chaotic than expected [11,12]. One of the most regular nuclei at law energy is \(^{52}\text{Ca}\). Analysis of the shell-model level spectrum [14] shows that the nearest neighbor \(P(s) \) distribution is close to the Poisson limit (the Brody parameter is \(\omega = 0.25 \)) for levels up to 5 MeV above the yrast line. As the excitation energy is increased, \(P(s) \) approaches the spacing distribution of a chaotic system. However, other statistics indicate that the dynamics still is not fully chaotic. Often, the mean level density inside a valence space is very well reproduced by an Edgeworth expansion around a Gaussian form [11]. If we use it to perform a smooth unfolding of the 2755 \(J = 10 \) levels of \(^{52}\text{Ca}\), the \(\Delta_3(L) \) statistic is close to GOE limit for very small \(L \) values, but it increases linearly instead of logarithmically for larger \(L \) values, as can be seen in Fig. 2. Except for very small \(L \) values, the spectral rigidity is intermediate between that of GOE and Poisson limits, giving a clear signature of non chaotic motion. This result is in agreement with the behavior of the wave function localization lengths [14].

When the Edgeworth expansion fails, as it happens sometimes [11], the local unfolding or the Gaussian broadening are the available unfolding methods. Fig. 2 also shows the results of local unfolding for \(v = 5 \). The calculated \(\Delta_3 \) follows the line obtained with the smooth unfolding up to \(L \approx 2v \), but then accumulated unfolding errors increase the spectral rigidity and lead to a \(\Delta_3 \) saturation for larger \(L \). This is the same behavior that was observed in the quantum billiard system described above. Moreover, as the \(\Delta_3 \) values are rather close to
the GOE limit when \(v = 5 \) is used, the conclusion in this case would be that \(^{52}\text{Ca} \) is a chaotic system. This example is then very enlightening. First, it illustrates that, contrary to common practice, the \(\Delta_3(L) \) statistic should be calculated up to high \(L \) values, because otherwise one can miss relevant information on the system dynamics. Second, it shows the problems that can arise when the mean level density is not known and one has to rely on local unfolding.

To avoid any uncertainties on the real mean level density \(\bar{\rho}(E) \) and level fluctuations, we can study GOE and Poisson level spectra, the paradigmatic cases of chaotic and regular systems, respectively. We consider a GOE matrix with dimension \(N = 10000 \), and compare the spectral fluctuations obtained by three different methods: Smooth unfolding made with the semicircle law, local unfolding, and Gaussian broadening unfolding. All these methods yield almost indistinguishable results for the \(\bar{\rho}(s) \) distribution, that is in perfect agreement with the Wigner surmise. The behavior of the short range correlations is not affected by the method of unfolding.

FIG. 3. Comparison of the spectral rigidity for an \(N = 10000 \) GOE level spectrum, calculated with different unfolding methods. Open triangles correspond to the smooth unfolding. Filled circles and squares to the local unfolding with window size \(2v = 42 \) and \(2v = 18 \), respectively. Open circles and squares to the Gaussian broadening unfolding for \(\sigma = 2 \) and \(\sigma = 1 \) MeV, respectively.

However, Fig. 4 shows a completely different scenario for \(\Delta_3 \). For the smooth unfolding, the spectral rigidity behaves as predicted by GOE, up to very large \(L \) values. The local unfolding was performed using two different windows, with \(v = 9 \) and \(v = 21 \). The calculated \(\Delta_3 \) coincides now with GOE predictions only up to \(L \simeq 2v \), then it leaves the GOE trend because the spectral rigidity increases and finally \(\Delta_3 \) saturates to a constant value. The Gaussian broadening unfolding was performed for \(\sigma = 1 \) MeV and \(\sigma = 2 \) MeV. In the central part of the spectrum these values correspond to windows containing about 10 and 20 states, respectively. Therefore, the effective number of states that affect the average level density is about the same as in the local unfolding case. Again, we see the same \(\Delta_3 \) behavior for \(L \) values greater than the window used in the unfolding.

Fig. 4 shows the spectral rigidity for 10000 levels generated with Poisson statistics and a uniform density \(\bar{\rho}(E) = 1 \). The smooth unfolding gives \(\Delta_3 \) values close to Poisson predictions, but local unfolding with \(v = 2, 9 \) and 21, leads again to the same behavior observed in previous cases for \(L \gtrsim 2v \). In fact, for the small window with four spacings, the \(\Delta_3 \) of the Poisson spectrum closely follows GOE predictions!

FIG. 4. Comparison of the spectral rigidity for a Poisson sequence of 10000 levels with uniform density, using several unfolding procedures. Open triangles correspond to the smooth unfolding. Filled circles, squares and triangles, to the local unfolding with window size \(2v = 42, 2v = 18 \) and \(2v = 4 \), respectively.

Looking for deeper insight into the spurious \(\Delta_3 \) saturation, we consider the sequence of nearest level spacings as a physical signal, and apply Fourier analysis techniques to its study. We have chosen a system with Poisson statistics and uniform level distribution to illustrate the idea, because the smooth density is constant. Therefore, the fundamental assumption of the local unfolding method, namely that the mean density is approximately linear within a window, is exactly fulfilled. From the real nearest-neighbor level spacing sequence \(S \), we obtain: (a) the average spacing sequence \(D_L \), calculated with the local constant density of Eq. (3) and \(v = 21 \), (b) the sequence of smoothly unfolded spacings \(s_L \), and (c) the sequence of locally unfolded spacings \(s_L \). Since for this spectrum \(\bar{\rho}(E) = 1 \), we have \(D = 1 \) and \(s = S \).

Fig. 4 displays the power spectrum of these sequences for frequencies up to \(k = 0.6 \). For \(D_L \), it has a maximum near \(k = 0 \) and decreases smoothly becoming essentially zero at some threshold frequency \(k_0 = \pi/v \). However, this behavior is a spurious effect, because the real mean spacing \(D \) is constant and then its power spectrum is...
zero for all the frequencies $k \neq 0$. Therefore the local unfolding procedure introduces spurious low frequency components into the D_L signal. Comparing the power spectra of D_L and s, it is seen that they are very similar at low frequencies, except for the damping of the former. The power spectra of s and s_L are also very similar, except that the low frequency components are missing in the latter. These results clarify the deficiencies of local unfolding. It becomes apparent that the procedure is filtering out low frequency fluctuations from the spectrum s, and improperly including them in D_L. Moreover, by reducing or eliminating fluctuations of frequency smaller than k_0, the procedure is introducing long range correlations with wave lengths greater than $2v$. As this fluctuation reduction is progressive, the spurious long range correlations become stronger as L increases beyond the window size $2v$. It is precisely this phenomenon what has previously been detected by the Δ_3 statistic, that strong long range correlations leading to a saturation of the Δ_3 are observed for $L \gtrsim 2v$.

In summary, we have shown that the correct behavior of Δ_3 is strongly modified by some commonly used unfolding procedures when the exact shape of the mean level density is not known. Methods like local unfolding or Gaussian broadening introduce spurious long range correlations in the unfolded level spectrum, increasing the spectral rigidity and leading to a saturation of $\Delta_3(L)$. In these methods the local average level spacing at energy E is calculated from the levels inside an energy window around E. The spurious behavior of the Δ_3 statistic is observed for L larger than the window size. In general it gives misleading signatures of quantum chaos, and for small windows the behavior of Δ_3 may be close to the GOE limit. Furthermore, the spurious saturation of Δ_3 can easily be misinterpreted as Berry’s saturation.

For systems intermediate between regular and chaotic, the traditional spectral statistics $P(s)$ and $\Delta_3(L)$ for small L values may be close to the GOE limit, and strong deviations of the spectral rigidity from GOE predictions only appear for larger L values. Thus if the local mean level density is not known from a statistical theory or a good empirical ansatz, the analysis of energy level fluctuations will not lead to correct conclusions on the system dynamics. In this case, it becomes necessary to go beyond level statistics and study properties of the wave functions, such as localization length, transition strengths and transition strength sums [1].

We want to acknowledge useful discussions with D. Weinmann. This work is supported in part by Spanish Government grants for the research projects BFM2000-0600 and FTN2000-0963-C02.

FIG. 5. Comparison of the power spectrum for the sequences D_L, s and s_L, for a sequence of 10000 uncorrelated levels with uniform density. The locally unfolded spacings s_L are calculated with a window of size $2v = 42$ that corresponds to $k_0 = 0.15$.

In summary, we have shown that the correct behavior of Δ_3 is strongly modified by some commonly used unfolding procedures when the exact shape of the mean level density is not known. Methods like local unfolding or Gaussian broadening introduce spurious long range correlations in the unfolded level spectrum, increasing the spectral rigidity and leading to a saturation of $\Delta_3(L)$. In these methods the local average level spacing at energy E is calculated from the levels inside an energy window around E. The spurious behavior of the Δ_3 statistic is observed for L larger than the window size. In general it gives misleading signatures of quantum chaos, and for small windows the behavior of Δ_3 may be close to the GOE limit. Furthermore, the spurious saturation of Δ_3 can easily be misinterpreted as Berry’s saturation.

For systems intermediate between regular and chaotic, the traditional spectral statistics $P(s)$ and $\Delta_3(L)$ for small L values may be close to the GOE limit, and strong deviations of the spectral rigidity from GOE predictions only appear for larger L values. Thus if the local mean level density is not known from a statistical theory or a good empirical ansatz, the analysis of energy level fluctuations will not lead to correct conclusions on the system dynamics. In this case, it becomes necessary to go beyond level statistics and study properties of the wave functions, such as localization length, transition strengths and transition strength sums [1].

We want to acknowledge useful discussions with D. Weinmann. This work is supported in part by Spanish Government grants for the research projects BFM2000-0600 and FTN2000-0963-C02.

[1] M. V. Berry, Ann. Phys. (N.Y.) 131, 163 (1981).
[2] O. Bohigas, M. J. Giannoni and C. Schmidt, Phys. Rev. Lett. 52, 1 (1984).
[3] O. Bohigas and M. J. Giannoni, in Mathematical and Computational Methods in Nuclear Physics, Eds. J. S. Dehesa, J. M. G. Gómez and A. Polls (Springer-Verlag, Berlin, 1984).
[4] H. J. Stöckmann, Quantum Chaos, (Cambridge University Press, Cambridge, 1999).
[5] T. A. Brody, J. Flores, J. B. French, P. A. Mello, A. Pandey and S. S. M. Wong, Rev. Mod. Phys. 53, 385 (1981).
[6] T. Guhr, A. Müller-Groeling and H. A. Weidenmüller, Phys. Rep. 299, 189 (1998).
[7] M. V. Berry, Proc. R. Soc. Lond. A 400, 229 (1985).
[8] F. Haake, Quantum Signatures of Chaos (Springer-Verlag, Heidelberg, 2001).
[9] J. B. French and S. S. M. Wong, Phys. Lett. B35, 5 (1971).
[10] V. Paar, D. Vorkapic, K. Heyde, A. G. M. van Hees and A. A. Wolters, Phys. lett. B271, 1 (1991).
[11] M. S. Bae, T. Otsuka, T. Mizusaki and N. Fukunishi, Phys. Rev. Lett., 69, 2349 (1992).
[12] H. Meyer, J. C. Angles d’Auriac and J. M. Maillard, Phys. Rev. E, 55, 5380 (1997).
[13] H. Bruus and C.A. d’Auriac, Phys. Rev. B 55, 9142 (1997).
[14] R. A. Molina, J. M. G. Gómez and J. Retamosa, Phys. Rev. C 63, 014311 (2001).
[15] J. M. G. Gómez, K. Kar, V. K. B. Kota, J. Retamosa and R. Sahu, Phys. Rev. C 64, 034305 (2001).