Synthesis of Rhodamines from Fluoresceins Using Pd-Catalyzed C—N Cross-Coupling

Jonathan B. Grimm and Luke D. Lavis*

Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
lavisl@janelia.hhmi.org

Received September 28, 2011

ABSTRACT

A unified, convenient, and efficient strategy for the preparation of rhodamines and N,N'-diacylated rhodamines has been developed. Fluorescein ditriflates were found to undergo palladium-catalyzed C—N cross-coupling with amines, amides, carbamates, and other nitrogen nucleophiles to provide direct access to known and novel rhodamine derivatives, including fluorescent dyes, quenchers, and latent fluorophores.

Rhodamine dyes and their fluorogenic derivatives enjoy widespread use as laser dyes, tracer agents, and biological probes.1 This broad utility stems from the ability to modify the optical properties of the dye by appending different substituents on the rhodamine nitrogens. N-Alkyl rhodamines are valuable fluorescent dyes where the absorption and fluorescence emission can be tuned by altering the number and type of alkyl groups. Attachment of aryl functionalities yields strongly absorbing, nonfluorescent dyes, which can serve as quenchers for Förster resonance energy transfer (FRET) experiments.2 Acylation of the rhodamine nitrogens locks the molecule in the nonfluorescent lactone form; such compounds serve as useful latent fluorescent compounds,1 including fluorogenic enzyme substrates3 and photoactivatable “caged” fluorophores.4

Despite the utility and flexibility of rhodamines, the established synthetic approach to this dye scaffold is archaic and difficult. Rhodamines are typically prepared through the acid-catalyzed condensation of an aminophenol (1) with a phthalic anhydride (2) to yield 3 (Scheme 1, Route A). Unfortunately, only a limited number of 3-amino-phenols are compatible with this century-old route. Use of phthalic anhydrides bearing a substituent (R2 in 3) for bioconjugation yields products as intractable mixtures of 5- and 6-substituted regioisomers. Consequently, commercially available functionalized rhodamines are expensive and often sold as regioisomeric mixtures.1c Furthermore, derivatization of the already elusive rhodamines into fluorogenic derivatives via N-acylation is often inefficient, due primarily to the low nucleophilicity of the rhodamine nitrogens.3b,4c

Given the difficulties with existing syntheses, we sought an alternative route wherein the C(aryl)—N bonds of...
rhodamines are formed at a late stage.5 We envisioned using the Buchwald–Hartwig cross-coupling of nitrogen nucleophiles with fluorescein ditriflates (Scheme 1, Route B). Pd-catalyzed cross-coupling has emerged as a powerful method for C–N bond formation,6 yet these amination reactions have seen little use in the preparation of xanthene dyes. Lippard and co-workers reported a single example of coupling pyrrolidine to a dibromofluoranthrene.7 Peng and Yang prepared a rhodol library via cross-coupling of a fluorescein monotriflate with various amines.8 We recently used this strategy to construct a precursor for a photoactivatable “caged” rhodamine.9 These examples inspired us to further explore the C–N cross-coupling (Route B) as a general strategy for the direct conversion of fluorescein ditriflates to not only N-alkyl rhodamines but also N-aryl (5, HNR\(_R^4\)= aniline) and N-acyl derivatives (HNR\(_R^4\)= amide, carbamate, etc.). Most importantly, isomerically pure 5- and 6-substituted fluorescein dyes are readily synthesized on a multigram scale,9 making this approach a convenient and divergent synthetic route to regiosomerically pure rhodamine dyes.

We initially investigated the ability of the cross-coupling to generate N-alkyl and N-aryl rhodamine dyes. Following preparation of several fluorescein ditriflates by straightforward reaction of known fluoresceins with Tf\(_2\)O,10 bisamination of the parent analog 6 or the 5-carboxyfluorescein-derived 7 was explored with a variety of amines (Table 1). In all cases, the primary competitive side reaction was triflate hydrolysis to give fluorescein and/or rhodamines.7 The undesired detriflation—most notable at low catalyst levels—was mitigated in a manner similar to that of Yang8 by increasing loadings to 20 mol % Pd and catalyst levels.11

entry	HNR\(_R^4\)	R\(_R^4\)	conditions\(^a\)	product\(^a\)	yield (%)
1	NH	H	A	8a	83
2	NH	CO\(_2\)Bu	A	8b	72
3	NH	H	A	8c	73
4	NH	H	A	8d	89
5	NH	CO\(_2\)Bu	A	8e	81
6	NH	H	A	8f	70
7	NH	H	A	8g	50
8	NH	H	A	8h	74
9	NH	H	A	8i	94
10	NH	CO\(_2\)Bu	A	8j	87
11	NH	H	A	8k	96
12	NH	H	A	8l	35
13	NH	H	B	8m	54
14	NH	H	B	8n	54
15	NH	H	B	8o	49
16	NH	H	B	8p	95
17	NH	H	C	8q	87
18	NH	H	C	8r	92

\(^a\) A: 20 mol % Pd(OAc)\(_2\), 30 mol % BINAP, toluene. B: 10 mol % Pd\(_{db}a_3\), 30 mol % XPhos, dioxane. C: 10 mol % Pd\(_{db}a_3\), 30 mol % Xantphos, dioxane. See Supporting Information for optical spectros-
copy of rhodamine products.

Well-established Buchwald–Hartwig conditions6,11 using Pd(OAc)\(_2\), BINAP, and Cs\(_2\)CO\(_3\) in toluene at 100 °C (A) were effective in coupling 6 and 7 with cyclic amines (entries 1–7) and anilines (entries 8–12) to provide tetra-
kyl rhodamines 8a–g and aryl rhodamines8 8h–l in good to excellent yields. Surprisingly, these conditions resulted in poor yields and low conversions for a number of secondary acyclic and primary aliphatic amines. The use of Pd\(_{db}a_3\) with the active biaryl ligand XPhos12 in dioxane (B) expanded the scope to include these types of amines (entries 13–15) and provided convenient access to known dyes such as rhodamine B (8o). The cross-coupling was also tolerant of atypical, electronically diverse amination substrates, including benzophenone hydrazone13 (entry 16).

(6) Reviews: (a) Hartwig, J. F. in Modern Arene Chemistry: Astra, D., Ed.; Wiley-VCH: Weinheim, 2002; p 107. (b) Muci, A. R.; Buchwald, S. L. Top. Curr. Chem. 2002, 219, 131. (c) Jiang, L.; Buchwald, S. L. In Metal-Catalyzed Cross-Coupling Reactions, 2nd ed.; de Meijere, A., Diederich, F., Eds.; Wiley-VCH: Weinheim, 2004; p 699.

(7) Lippard, S. J. Tetrahedron 2005, 61, 3097.

(9) (a) Coons, A. H.; Kaplan, M. H. J. Exp. Med. 1950, 91, 1. (b) Sun, W.-C.; Gee, K. R.; Klabundt, D. H.; Haugland, R. P. J. Org. Chem. 1997, 62, 6469. (c) Rossi, F. M.; Kao, J.-P. Bioconjugate Chem. 1997, 8, 495.

(10) See Supporting Information for experimental details.

(11) Åhman, J.; Buchwald, S. L. Tetrahedron Lett. 1997, 38, 6363.

(12) (a) Huang, X.; Anderson, K. W.; Zi, D.; Jiang, L.; Klaps, A.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 6653. (b) Surry, D. S.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 6338.

(13) (a) Wagaw, S.; Yang, B. H.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 10251. (b) Chen, A.; Gee, K.; Kang, H.-C. U.S. Patent Appl. US2010/0291547 A1, Nov. 18, 2010.

(14) Old, D. W.; Harris, M. C.; Buchwald, S. L. Org. Lett. 2000, 2, 1403.
and, under Xantphos14,15 conditions (C), nitrogen hetero-
aroimetics (entries 17–18).16

Carbamates, amides, and other N-acyl building blocks were of particular interest as substrates in the C–N cross-
coupling of fluorescein ditriflates. In addition to providing
efficient access to fluorogenic rhodamine derivatives, such
compounds can also serve as surrogates for amines (e.g.,
ammonia) that are unsuitable for the direct amination
process due to volatility, poor reactivity, or difficult prod-
cuct purification.17 Moreover, using protecting-group-
structure and nonfluorescent in solution and in the solid state, suggesting they
provide convenient access to “lactone-locked” forms of the dyes that are easier
to purify and manipulate than the free rhodamines. To that
end, a thorough investigation of the ditriflate amidation
was undertaken (Table 2). In concurrence with the sub-
stantial precedent for palladium-catalyzed amidations,
Pd\textsubscript{2}dba\textsubscript{3}/Xantphos conditions, with Cs\textsubscript{2}CO\textsubscript{3} as base and
dioxane as solvent at elevated temperature (80–100 °C),
were found to be effective for nearly all substrates
tested.6,18 Comparatively high catalyst loadings were once
again necessary to minimize triflate hydrolysis. As illus-
trated in entries 1–7, Boc-, Cbz-, and Teoc-masked
ammonia equivalents underwent smooth cross-coupling
with 6, 7, and 9–11 to afford dicarbamates 12a–g
in excellent yields (73–91%). These included rhodamine
110 (Rh\textsubscript{110}) derivatives with halide substituents on the
xanthene core (R\textsubscript{1} = F, Cl) and the crucial carboxyl handle
on the bottom ring (R\textsubscript{2} = CO\textsubscript{2}H-Bu). Gratifyingly, more
hindered secondary carbamates18,19 were also effectively
arylated under these conditions to provide several Boc-
protected rhodamines bearing N-alkyl groups (entries
8–11), including those with ester functionalities (12j–k).

The reactivity of several other types of related nitrogen
nucleophiles was also examined. The protected hydroxyl-
amine tert-butyl benzoxycarbamate was found to couple
with 6 in excellent yield (entry 12, 91%). This result is
significant as few reports exist detailing the C–N cross-
coupling of hydroxylamines,20 and 12i represents the first
example involving a triflate. Primary and secondary sulfon-
amides were also viable substrates (entries 13–14), as was a urea15 (entry 15). Hence, the robustness of this reac-
tion allows for the rapid preparation of lesser-known,
yet potentially useful rhodamine derivatives (e.g., N,N'-disul-
fonyl rhodamines).21

As mentioned earlier, more elaborate N,N'-diacyl
rhodamines possessing photolytically or enzymatically
labile acyl moieties are themselves valuable as latent
fluorophores. Rather than employ unreliable rhodamine
acylations, we hoped to achieve the direct preparation of
these fluorogenic molecules via the same ditriflate amida-
tion strategy. We found the appropriately functionalized
nucleophiles were well tolerated when coupled with fluo-
rescein ditriflates (entries 16–20). A carbamate containing
the photolabile ortho-nitroveratryloxycarbonyl (NVOC)
cage was reacted with 6 and 7 to conveniently afford
NVOC\textsubscript{2}Rh\textsubscript{110} (12p, entry 16, 68%) and the regioisomer-
ically pure 5-tert-butoxycarbonyl analog 12q (entry 17,
77%).22 Primary amides of amino acids were also cross-
coupled to 6 in excellent yields (entries 18–19). Rhoda-
mine-linked amino acids like 12s have seen significant use
as fluorogenic substrates for proteases.3a Finally, a rhoda-
mine 110 substrate bearing the esterase-labile trimethyl
lock2b moiety (12t) was easily prepared in high yield through
coupling of the trimethyl lock amide with 6 (entry 20).

To further illustrate the ease of preparing rhodamine
dyes via this strategy, the N,N'-di-Boc coupling prod-
ccts were deprotected (Table 3). Standard conditions

\begin{table}[h]
\centering
\caption{Cross-Coupling of Fluorescein Ditriflates with Car-
bamates and Other Nitrogen Nucleophiles}
\begin{tabular}{|c|c|c|c|c|}
\hline
entry & \(HNR^2R^4\) & triflate & \(R^2\) & \(R^3\) & product yield (%) \\
\hline
1 & BocNH\textsubscript{2} & 6 & H & H & 12a 91 \\
2 & BocNH\textsubscript{2} & 9 & F & H & 12b 87 \\
3 & BocNH\textsubscript{2} & 10 & Cl & H & 12c 76 \\
4 & BocNH\textsubscript{2} & 7 & CO\textsubscript{2}H-Bu & H & 12d 87 \\
5 & BocNH\textsubscript{2} & 11 & CO\textsubscript{2}H-Bu & H & 12e 91 \\
6 & CbzNH\textsubscript{2} & 6 & H & H & 12f 73 \\
7 & TeocNH\textsubscript{2} & 6 & H & 12g 80 \\
8 & BocNHMe & 6 & H & H & 12h 92 \\
9 & BocNHBn & 6 & H & H & 12i 51 \\
10 & H\textsubscript{2}BuO\textsubscript{2}CO\textsubscript{2}H-NHboc & 6 & H & 12j 82a \\
11 & H\textsubscript{2}BuO\textsubscript{2}CO\textsubscript{2}H\textsubscript{2}NHboc & 6 & H & 12k 58a \\
12 & BocNHboc & 6 & H & H & 12l 91a \\
13 & TeoNH\textsubscript{2} & 6 & H & 12m 70 \\
14 & TeoNHMe & 6 & H & 12n 53 \\
15 & \(\text{Me}_2\text{N}[-\text{NH}_2]\) & 6 & H & H & 12o 83 \\
16 & MeON[\text{NH}]-\text{MeO} & 6 & H & H & 12p 66b \\
17 & MeON[\text{NH}]-\text{MeO} & 7 & CO\textsubscript{2}H-Bu & H & 12q 77b \\
18 & N\text{Hoc} & 6 & H & 12r 85 \\
19 & H\text{BuO}\text{CO}\text{N}[\text{Hoc}] & 6 & H & 12s 86c \\
20 & \(\text{Me}_2\text{N}[-\text{NH}_2]\) & 6 & H & H & 12t 86b \\
\hline
\end{tabular}
\footnote{a Reaction performed at 80 °C for 18 h. b Reaction performed at 80 °C for 2–3 h. c Product resulted exclusively from coupling at primary amide.}
\end{table}
(TFA/CH2Cl2, room temperature) cleanly removed the Boc groups and cleaved pendant tert-butyl esters, providing the free, deacylated rhodamines in excellent to nearly quantitative yields (80–94%). Several rhodamine 110 analogs were prepared in this expedient manner (entries 1–5), including the extremely useful and expensive \(^{22}\) 5-carboxy-Rh110 (13d, entry 4) and the 2',7'-difluororhodamines 13b and 13e (entries 2 and 5) recently reported by Hell and co-workers.\(^{23}\)

N-Alkyl rhodamines (entries 6–7) were similarly prepared in a straightforward fashion. Entry 8 is notable because it represents the first preparation of an N-alkoxy rhodamine; exploration of the utility of this novel chemotype is ongoing.

Finally, we explored the utility of the cross-coupling strategy for other dye scaffolds. As shown in Scheme 2, coupling of naphthofluorescein ditriflate (14) with tert-butyl carbamate followed by deprotection with TFA provided naphthorhodamine 16 in excellent yield (81%, two steps).\(^{24}\) The chemistry proved flexible enough to allow the preparation of the novel naphthorhodamine derivative 17 bearing the esterase-labile trimethyl lock. Thus, the facile coupling chemistry could prove useful for generating a variety of novel nitrogenous dyes from phenolic precursors, as also evidenced by recent work on the coumarin system by Ting and co-workers.\(^{25}\)

In summary, we have developed a general, efficient, and unified strategy for the synthesis of rhodamines and \(N,N'\)-diacylated rhodamines. Fluorescein ditriflates, which are easily prepared from readily available, regioisomerically pure fluoresceins, were found to undergo palladium-catalyzed C–N cross-coupling with amines, amides, carbamates, and related nucleophiles. Amination with alkyl and aryl amines allowed for convenient synthesis of fluorophores and FRET quencher dyes. Where the synthesis of rhodamine dyes by direct amination was impractical, protecting-group-based carbamates were effectively employed. Appropriately functionalized carbamates and amides were also coupled with ditriflates to efficiently assemble rhodamine-based latent fluorophores, including fluorogenic enzyme substrates and photoactivatable dyes. This process constitutes a divergent strategy for the rapid synthesis of many types of rhodamines and will enable the fine-tuning of optical and chemical properties for specific applications.

Acknowledgment. This work was supported by the Howard Hughes Medical Institute. We thank S. M. Sternson, L. M. Wysocki, and P. H. Lee (Janelia Farm Research Campus) for contributive discussions.

Supporting Information Available. Experimental procedures and spectral data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

\(^{22}\) Price for single regioisomer (5-carboxy-Rh110): $59,000/g (AAT Bioquest).

\(^{23}\) Mitronova, G. Y.; Belov, V. N.; Bossi, M. L.; Wurm, C. A.; Meyer, L.; Medda, R.; Moneron, G.; Bretschneider, S.; Eggeling, C.; Jakobs, S.; Hell, S. W. *Chem.—Eur. J.* 2010, 16, 4477.

\(^{24}\) (a) Lee, L. G.; Berry, G. M.; Chen, C.-H. *Cytometry* 1989, 10, 151. (b) Furukawa, K.; Abe, H.; Wang, J.; Uda, M.; Koshino, H.; Tsuneda, S.; Ito, Y. *Org. Biomol. Chem.* 2009, 7, 671.

\(^{25}\) Jin, X.; Uttamapinant, C.; Ting, A. Y. *ChemBioChem* 2011, 12, 65.