Stable de Sitter vacua in $N = 2, D = 5$ supergravity

Bert Cosemans and Geert Smet
Instituut voor Theoretische Fysica, Katholieke Universiteit Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
E-mail: bert.cosemans@fys.kuleuven.ac.be and geert.smet@fys.kuleuven.ac.be

Received 23 March 2005
Published 26 May 2005
Online at stacks.iop.org/CQG/22/2359

Abstract
We find 5D gauged supergravity theories exhibiting stable de Sitter vacua. These are the first examples of stable de Sitter vacua in higher-dimensional ($D > 4$) supergravity. Non-compact gaugings with tensor multiplets and R-symmetry gauging seem to be the essential ingredients in these models. They are however not sufficient to guarantee stable de Sitter vacua, as we show by investigating several other models. The qualitative behaviour of the potential also seems to depend crucially on the geometry of the scalar manifold.

PACS number: 04.65.+e

1. Introduction

Cosmological observations [1], suggesting that our current universe has a small positive cosmological constant, have led to a vigorous search for de Sitter vacua in string theory (see e.g. [2]) and more modestly in supergravity (see e.g. [3–8]). Up to this day, the only examples of stable de Sitter vacua in extended ($N \geq 2$) supergravity were found by Fré et al in [5] in the context of $N = 2, D = 4$ gauged supergravity. Some very specific elements of 4D supergravity were used to construct these examples, some of which have no clear string theory origin (like for instance the de Roo–Wagemans angles). The embedding of their models in $N = 4, D = 4$ gauged supergravity, and all semi-simple gaugings of $N = 4$ supergravity coupled to six vector multiplets were discussed in [7, 8], but all the de Sitter vacua turned out to be unstable. In view of these problems, we thought it might be instructive to look for de Sitter vacua in higher-dimensional gauged supergravity theories, in order to find out what general ingredients are necessary to guarantee the existence of stable de Sitter vacua.

In this paper, we will focus on 5D $N = 2$ gauged supergravity for several reasons. First of all, it is very similar to 4D $N = 2$ in certain respects. They both allow an arbitrary number of vector- and hypermultiplets, and there exist beautiful relations between their respective scalar...
manifolds. On the other hand, tensor multiplets seem to be somewhat easier to introduce in 5D, and there are no duality symmetries in 5D, which makes the 5D theory simpler1.

Besides this, there are some very good other reasons to study 5D gauged supergravity. An important motivation comes from the holographic principle, of which AdS/CFT [11] is a particularly nice realization. The best understood example is the famous correspondence between Type IIB string theory on AdS5 × S5 and N = 4 super Yang–Mills theory. A lot can be learned just by looking at the 5D N = 8 SO(6) gauged supergravity (which is assumed to be a consistent truncation of IIB supergravity on AdS5 × S5). For instance, anti-de Sitter critical points of the potential imply, under suitable conditions, non-trivial conformal fixed points for the Yang–Mills theory, and supergravity kink solutions that interpolate between anti-de Sitter vacua correspond to renormalization group flows in the dual YM theory (see [12] for a short review). There has been a lot of speculation that similarly, de Sitter (quantum) gravity might be dual to some (still unknown) Euclidean conformal field theory (see e.g. [13]). However, the correspondence is a lot less clear than in the anti-de Sitter case (for some recent reviews see [14]). Studying gauged supergravities (with probably non-compact gauge groups) that have stable de Sitter vacua might give us some more clues about a possible dS/CFT correspondence.

Finally, from a more phenomenological point of view, we should note that various authors have suggested that the universe may have undergone a phase where it was effectively five dimensional, see e.g. [15, 16] and references therein, giving another reason to understand the vacuum structure of 5D (N = 2) gauged supergravity theories.

Our paper is organized as follows. In section 2, we repeat some elements of 5D gauged supergravity coupled to tensor and vector multiplets. We then study the potential corresponding to R-symmetry gauging in more detail in section 3, where we prove that U(1)R gauging does not give rise to stable de Sitter vacua. In section 4, we present the first examples of stable de Sitter vacua in 5D gauged supergravity. Tensors charged under a non-compact group and R-symmetry gauging seem to be crucial. The following section contains more examples of 5D N = 2 gauged supergravities with charged tensors and R-symmetry gauging. Unfortunately, these do not lead to stable de Sitter vacua. In section 6, we show that if we replace R-symmetry gauging by a specific U(1) gauging of the universal hypermultiplet, we can also get stable de Sitter vacua. Finally, in the last section, we summarize our results and mention a few interesting directions for future research.

2. $D = 5, \mathcal{N} = 2$ gauged supergravity coupled to tensor and vector multiplets

2.1. The ungauged theory

The theory we consider is obtained by gauging $D = 5, \mathcal{N} = 2$ supergravity coupled to vector and tensor multiplets. These theories are completely determined by a constant symmetric tensor $\tilde{C}_{\tilde{I}\tilde{J}\tilde{K}}$. In particular, the manifold \mathcal{M}, parametrized by the \tilde{n} scalars in the theory, can be viewed as a hypersurface

$$N(h) = C_{\tilde{I}\tilde{J}\tilde{K}} h^{\tilde{I}} h^{\tilde{J}} h^{\tilde{K}} = 1 \tag{2.1}$$

of an ambient space with $\tilde{n} + 1$ coordinates $h^{\tilde{I}}$. The geometry of this surface is referred to as ‘very special geometry’. For more details on very special geometry, see the appendix.

The ‘very special real’ manifolds were classified in [17] in the case that \mathcal{M} is a homogeneous space2. The symmetric spaces are a subclass of these, and were already found

1 For interesting recent progress on the coupling of scalar–tensor multiplets to 4D $N = 2$ supergravity, see [9]. The coupling of a vector-tensor multiplet to supergravity was done in [10].

2 Homogeneous manifolds are manifolds for which the isometry group works transitively (on the manifold). The group G of linear transformations of the $h^{\tilde{I}}$ that leave $C_{\tilde{I}\tilde{J}\tilde{K}}$ invariant is a subgroup of the isometry group $Iso(\mathcal{M})$.

in [18] and [19]. They can be divided into two subclasses, depending on whether they are associated with Jordan algebras or not:

1. When \(\mathcal{M} \) is associated with a Jordan algebra, there are two subclasses:
 - The ‘generic’ or ‘reducible’ Jordan class:
 \[
 \mathcal{M} = SO(1, 1) \times \frac{SO(\tilde{n} - 1, 1)}{SO(\tilde{n} - 1)}, \quad \tilde{n} \geq 1.
 \]
 - The ‘irreducible’ or ‘magical’ Jordan class:
 \[
 \mathcal{M} = \frac{SL(3, \mathbb{R})}{SO(3)}, \quad (\tilde{n} = 5)
 \]
 \[
 \mathcal{M} = \frac{SU^*(6)}{USp(6)}, \quad (\tilde{n} = 8)
 \]
 \[
 \mathcal{M} = \frac{SU^*(6)}{USp(6)}, \quad (\tilde{n} = 14)
 \]
 \[
 \mathcal{M} = \frac{E_{6(-26)}}{F_4}, \quad (\tilde{n} = 26)
 \]

2. There is one class which is not associated with a Jordan algebra, and which is therefore referred to as the ‘symmetric non-Jordan family’:
 \[
 \mathcal{M} = \frac{SO(1, \tilde{n})}{SO(\tilde{n})}, \quad \tilde{n} > 1.
 \]

The total global symmetry group of a matter coupled \(N = 2 \) supergravity theory factorizes into \(SU(2) \times G \), where \(SU(2) \) is the R-symmetry group of the theory and \(G \) is a group of linear transformations of the coordinates \(h^I \) that leaves the tensor \(C_{IJK} \) invariant. The symmetry group \(G \) gives rise to isometries of the scalar manifold. In the Jordan class, \(G \) even coincides with the full isometry group of \(\mathcal{M} \).

2.2. Gauging the theory

The gauging of \(N = 2 \) supergravity coupled to \(n \) vector multiplets and \(m \) self-dual tensor multiplets was performed in [20–22]. The field content of the theory is

\[
\left\{ e^I, \Psi_i^I, A^I, B^M, \lambda^{Ia}, \phi^I \right\},
\]

where

\[
I = 0, 1, \ldots, n, \quad M = 1, 2, \ldots, 2m,
\]

\[
\tilde{I} = 0, 1, \ldots, n + 2m, \quad \tilde{a} = 1, \ldots, \tilde{n}, \quad \tilde{x} = 1, \ldots, \tilde{n},
\]

with \(\tilde{n} = n + 2m \). Note that we have combined the ‘graviphoton’ with the \(n \) vector fields of the \(n \) vector multiplets into a single \((n + 1)\)-plet of vector fields \(A^I \) labelled by the index \(I \). Also, the spinor and scalar fields of the vector and tensor multiplets are combined into \(\tilde{n} \)-tuples of spinor and scalar fields. The indices \(\tilde{a}, \tilde{b}, \ldots, \tilde{x}, \tilde{y}, \ldots \) are the flat and curved indices, respectively, of the \(\tilde{n} \)-dimensional target manifold \(\mathcal{M} \) of the scalar fields. We also combine the vector and tensor indices \(I \) and \(M \) into one index \(\tilde{I} \).

From the above fields, only the gravitini and the spin-1/2 fermions transform under the \(SU(2) \times G \) symmetry group. However, to gauge this group we need vectors that transform in the adjoint representation of the gauge group. This problem can be solved by identifying the \(SU(2) \times G \) group with an \(SU(2) \) subgroup of the symmetry group \(G \) of the \(C_{IJK} \), and to gauge both \(SU(2) \) groups simultaneously. If you just gauge a \(U(1) \) subgroup, this problem does not occur since the adjoint of \(U(1) \) is the trivial representation. An arbitrary linear combination of

but it is not the whole isometry group in general. For instance, the symmetric non-Jordan family (2.3) has isometries that are not in \(G \). Strictly speaking, only those homogeneous spaces for which \(G \) works transitively are classified. To the best of our knowledge, there is no proof that there are no other homogeneous (or even symmetric) very special real spaces (for which \(Iso(\mathcal{M}) \) works transitively, but \(G \) does not).
the vector fields can be used as $U(1)_R$ gauge field. However, if you also gauge a subgroup K of G, the $U(1)_R$ gauge field has to be a linear combination of the K-singlet vector fields only.

The simultaneous gauging of the $U(1)_R$ or $SU(2)_R$ R-symmetry group and a subgroup $K \subset G$ introduces a scalar potential of the form

$$e^{-1}C_{pot} = -g^2 P,$$

where $P := P^{(T)} + P^{(R)}$. $P^{(R)}$ arises from the gauging of $U(1)_R$ or $SU(2)_R$, whereas $P^{(T)}$ is due to the tensor fields transforming under the gauge group K (see (2.6)).

The potential $P^{(T)}$ can be written as $[23]$

$$P^{(T)} = \frac{3\sqrt{6}}{16} h^I h^M h^N,$$

with Λ^I_{MN} being the transformation matrices of the tensor fields under the gauge group K and

$$\Lambda^I_{MN} \equiv \Lambda^M_{IP} \Omega^{PN} = \frac{2}{\sqrt{6}} \Omega^{MR} C_{IRP} \Omega^{PN},$$

with \tilde{a}^{IJK} being the inverse of a_{IJK}, Ω^{MN} is the inverse of Ω_{MN}, which is a (constant) invariant antisymmetric tensor of the gauge group K

$$\Omega_{MN} = -\Omega_{NM}, \quad \Omega_{MN} \Omega^{NP} = \delta^P_M.$$

For the potential $P^{(R)}$ we have the following general expression:

$$P^{(R)} = -4 \vec{P} \cdot \vec{P} + 2 \vec{P^*} \cdot \vec{P},$$

where $\vec{P} = h^I \vec{P}_I$ and $\vec{P}_I = h^I \vec{P}_I$ are vectors in $SU(2)$ space (see [22]). When we gauge the full R-symmetry group $SU(2)_R$ we have

$$\vec{P}_I = \tilde{e}_I V,$$

where V is an arbitrary constant, and \tilde{e}_I are constants that are non-zero only for I in the range of the $SU(2)$ factor and satisfy

$$\tilde{e}_I \times \tilde{e}_J = f_{IK}^J \tilde{e}_K,$$

with f_{IK}^J being the $SU(2)$ structure constants. From now on, we will use indices A, B, \ldots for the $SU(2)$ factor. We can then take $\tilde{e}_A \cdot \tilde{e}_B = \delta_{AB}$ such that (using (A.10))

$$P^{(R)} = -4 V^2 C^{AB} h^I \delta_{AB},$$

where we defined

$$C^{IJK} \equiv \tilde{a}^{I} \tilde{a}^{J} \tilde{a}^{K} C_{IJK}.$$

In the case of $U(1)_R$ gauging we have

$$\vec{P}_I = V_I \tilde{e}_I,$$

where \tilde{e} is an arbitrary vector in $SU(2)$ space and V_I are constants that define the linear combination of the vector fields A^I_μ that is used as the $U(1)_R$ gauge field

$$A_\mu [U(1)_R] = V_I A^I_\mu.$$

They have to be constrained by

$$V_I f^I_{JK} = 0.$$

3 We assume $C_{MN} = C_{IJK} = 0$. More general tensor couplings with $C_{IJK} \neq 0$ are possible, see [22], but we will not consider these here.
Stable de Sitter vacua in $N = 2, D = 5$ supergravity

with f_{JK}^I being the structure constants of K. Using the very special geometry identities of the appendix, the $U(1)_R$ potential can be written as

$$P^{(R)} = -4C^{IJK} V_I V_J h_K.$$ \hfill (2.17)

Finally, we remark that when \mathcal{M} is associated with a Jordan algebra [18], one has (componentwise)

$$C^{IJK} = C_{IJK} = \text{const.}$$ \hfill (2.18)

3. Exploring the R-symmetry potential

3.1. $U(1)$ R-symmetry gauging leads to tachyonic de Sitter vacua

Theorem. Without charged tensors or hypers, the potential gets only a contribution from R-symmetry gauging. Unlike in 4D, non-Abelian vector multiplets do not contribute a term to the potential [24, 25]. For the $U(1)_R$ case the potential is given by (2.17).

In our conventions, a critical point φ_\star of the potential with $P^{(R)}(\varphi_\star) > 0$ corresponds to a de Sitter vacuum. We will demonstrate that if such a de Sitter vacuum exists, it will always be unstable. To prove this, we need to calculate the matrix of second derivatives of the potential at the critical point. A critical point, by definition, obeys the following relation:

$$\frac{\partial P^{(R)}}{\partial \varphi^x}(\varphi_\star) = -4C^{IJK} V_I V_J h_K |_{\varphi_\star} = 0.$$ \hfill (3.1)

For the mass matrix we find

$$g^{yx} \frac{\partial P^{(R)}}{\partial \varphi^x \partial \varphi^y}(\varphi_\star) = \left(\frac{2}{8} P^{(R)} \delta_y^x - 8 \sqrt{\frac{3}{2}} V_I V_J h^{l_h} h^{l_j} T_{wxz}^w T_{wyk}^k \right) |_{\varphi_\star},$$ \hfill (3.2)

where we have used (A.9), (A.13) and (3.1). We will now show that $V_I h^I(\varphi_\star)$ is an eigenvector of this matrix. Equation (A.12) leads to

$$T_{uxy}^z h^{l_h} h^{l_j} V_I V_J V_K = \left(\frac{3}{2} h^{l_h} h^{l_j} V_I V_J V_K h^K - 2V_I V_J h^{l_h} h^{l_j} T_{uxz}^w T_{wyk}^k \right).$$ \hfill (3.3)

Since, using (A.11) and (3.1), we have

$$V_I V_J h^{l_h} h^{l_j} T_{uxz}^w |_{\varphi_\star} = V_I h^I V_J h^J |_{\varphi_\star},$$ \hfill (3.4)

we finally obtain

$$T_{uxy}^z h^{l_h} h^{l_j} V_I V_J V_K |_{\varphi_\star} = \sqrt{\frac{3}{2}} h^{l_h} h^{l_j} V_I V_J V_K h^K |_{\varphi_\star} = \sqrt{\frac{3}{8}} P^{(R)} V_K h^K |_{\varphi_\star}.$$ \hfill (3.5)

We thus find that $V_I h^I(\varphi_\star)$ is indeed an eigenvector of the mass matrix with eigenvalue $-10P^{(R)}(\varphi_\star)/3$. Looking at equations (2.9) and (2.14) we see that if a critical point with $P^{(R)} > 0$ exists, then also $V_I h^I(\varphi_\star) \neq 0$. This proves that in the case of a de Sitter extremum, the mass matrix has always at least one negative eigenvalue.

Example. To illustrate our proof, we will give an example of a de Sitter vacuum obtained by $U(1)_R$ gauging. The Jordan symmetric spaces only lead to anti-de Sitter or Minkowski vacua (see [24]), but we will show here that there are also a lot of models with de Sitter vacua.

Equations (2.17), (3.1) and (A.7) lead to

$$C^{IJK} V_I V_K |_{\varphi_\star} = -\frac{1}{2} P(\varphi_\star) h^I(\varphi_\star).$$ \hfill (3.6)
This is a necessary and sufficient condition for φ_c to be a critical point. Furthermore, for φ_c in the domain where a_{IJ} is positive definite, one can always perform a linear transformation on the h^I such that $h_I(\varphi_c) = (1, 0, \ldots, 0)$ and $a_{IJ}(\varphi_c) = \delta_{IJ}$. After this transformation the polynomial $N(h)$ will take the following form:

$$N(h) = (h_0^0)^3 - \frac{3}{2}h_0^0 h_i^j h^i h^j, \quad i = 1, \ldots, n,$$

which is called the canonical parametrization of $N(h)$. Equation (3.6) then becomes

$$C_{0JK} V_J V_K = -\frac{1}{4} P(\varphi_c),$$

and

$$C_{ijk} V_j V_k = V_0 V_i = 0,$$

with summation over repeated indices. Equation (2.17) however leads to

$$p_{(R)}(\varphi_c) = -4C_{0JK} V_J V_K = -4V_0^2 + 2\sum_i V_i^2,$$

such that (3.8) is automatically fulfilled. So, given a theory (a tensor C_{ijk}), we look for a vector V_I that solves equation (3.9) and for which

$$-4V_0^2 + 2\sum_i V_i^2 < 0.$$

(3.11)

As we know, this is not possible for general C_{ijk}. However, one can construct a lot of examples. Take for example $C_{ijk} = 0$. Equation (3.9) in this case leads to $V_i = 0$, corresponding to anti-de Sitter vacua or $V_0 = 0$, corresponding to de Sitter vacua. To study the mass matrix, we look at the particular example $n = 1$. We then have the following polynomial:

$$N(h) = (h_0^0)^3 - \frac{3}{2}h_0^0 (h_1^1)^2.$$

(3.12)

The constraint $N = 1$ can be solved by

$$h_0^0 = \frac{\varphi}{2} + \frac{\sqrt{\varphi + \varphi^2}}{2\varphi}$$

(3.13)

and

$$h_1^1 = \sqrt{\frac{2}{3}} \left(-3 \frac{2}{\varphi} + \frac{\sqrt{\varphi + \varphi^2}}{2\varphi} \right).$$

(3.14)

The metric on the scalar manifold is (using (A.3))

$$g_{xy} = \frac{3 + 12\varphi^3}{4(\varphi^2 + \varphi^3)}.$$

(3.15)

We restrict to the region $\varphi > 0$, which contains the point $h^I(\varphi_c = 1/2) = (1, 0)$ and where the metric is positive definite.

Taking $V_0 = 0$, equation (3.9) is fulfilled for arbitrary values of V_1 and equation (3.10) becomes

$$p_{(R)}(\varphi_c) = 2V_1^2 > 0.$$

(3.16)

Using the metric (3.15) and with $V_0 = 0$ we get for the potential

$$p_{(R)}(\varphi) = \frac{-1 - 8\varphi^3 - 40\varphi^6 + 12\varphi\sqrt{\varphi + \varphi^2} + 24\varphi^4\sqrt{\varphi + \varphi^2}}{2(\varphi + 4\varphi^2)} V_1^2,$$

(3.17)

which indeed fulfills (3.16). Furthermore,

$$p_{(R),x}(\varphi_c) = 0,$$

(3.18)

and

$$g^{yz} P_{(R),y,z}(\varphi_c) = -\frac{20}{3} V_1^2,$$

(3.19)

which is indeed $-10p_{(R)}(\varphi_c)/3$ as stated in the above theorem.
3.2. de Sitter vacua from SU(2)\textsubscript{R} gauging

For the known symmetric spaces, SU(2)\textsubscript{R} gauging never gives any critical points (see [26]). We show here that there are however also a lot of models with unstable de Sitter vacua. Proving that there are no stable de Sitter vacua seems to be somewhat more difficult than in the U(1)\textsubscript{R} case and we hope to come back to this in a future publication.

We start from a polynomial in the canonical parametrization. In order to gauge SU(2)\textsubscript{R}, the polynomial should have an SU(2)\textsubscript{G} symmetry [26]. Without charged tensors this further restricts the coefficients C_{ijk} by [16]

$$C_{ABC} = 0, \quad C_{A\beta a} = c_\alpha \delta_{AB}, \quad C_{Aa\beta} = 0,$$

(3.20)

with c_α some arbitrary constants. We have split the indices $i = 1, \ldots, n$ as $i = (A, \alpha)$ with $A, B, \ldots \in \{1, 2, 3\}$ corresponding to the SU(2) factor of the gauge group. The $C_{a\beta\gamma}$ are still unconstrained.

Using expression (2.12) for the SU(2)\textsubscript{R} potential, the equation analogous to (3.6) is

$$C_{ABi} \delta_{AB} |_{\phi_c} = - P(\phi_c) h^I(\phi_c).$$

(3.21)

We now assume that $h^I(\phi_c) = (1, 0, \ldots, 0)$. Equation (3.21) then leads to the conditions

$$P(x(\phi_c)) = \frac{3}{2},$$

(3.22)

$$c_\alpha = 0, \quad \forall \alpha,$$

(3.23)

and therefore $C_{ABi} = 0, \forall i$. The first condition is again automatically fulfilled and tells us that all these critical points are de Sitter.

We now investigate the stability of these de Sitter vacua. Calculating the second derivative of the potential, we get

$$P_{,x; y} = - C_{ABI} \delta_{AB} h_{I,x} - C_{ABI} \delta_{AB} h_{I,y}.$$

(3.24)

Using $h^I(\phi_c) = (1, 0, \ldots, 0)$, $a_{IJ}(\phi_c) = \delta_{IJ}$ and (A.8) we get for the second term in the critical point

$$- C_{ABI} \delta_{AB} h_{I,x} |_{\phi_c} = \frac{3}{2} P(\phi_c) g_{xy}(\phi_c) = g_{xy}(\phi_c).$$

(3.25)

For the first term we also use (A.13), (A.12), (A.9) and (3.20), which gives after some calculation

$$- C_{ABI} \delta_{AB} h_{I,x} |_{\phi_c} = - 2 g_{xy}(\phi_c) - \frac{4}{3} h^A x h^B y \delta_{AB},$$

(3.26)

and therefore

$$g^{yz} P_{,x; y} |_{\phi_c} = - \delta^z_x - \frac{4}{3} h^A x h^B y \delta_{AB}.$$

(3.27)

This matrix has the following eigenvectors:

$$\begin{cases} h^A_x(\phi_c) & \text{with eigenvalue } - \frac{7}{3}, \\ h^A_y(\phi_c) & \text{with eigenvalue } - 1. \end{cases}$$

(3.28)

The de Sitter vacua are therefore always maxima of the potential.

4. Stable de Sitter vacua in 5D $N = 2$ gauged supergravity: an example

The previous section made clear that $U(1)_R$ gauging alone cannot give rise to stable de Sitter vacua. We show here that adding tensor multiplets can change this. The gauging we study in this section was already performed in [23] for $\tilde{n} = 3$. They found de Sitter extrema, but did
not check that they are stable. We generalize for arbitrary \tilde{n} and show that the obtained de Sitter vacua are all stable.

We consider $\mathcal{N} = 2$ supergravity coupled to \tilde{n} Abelian vector multiplets and with scalar manifold $\mathcal{M} = SO(\tilde{n} - 1, 1) \times SO(1, 1)/SO(\tilde{n} - 1), \tilde{n} \geq 1$. The polynomial can then be written in the following form:

$$N(h) = 3 \frac{\sqrt{3}}{2} h^0[(h^1)^2 - (h^2)^2 - \ldots - (h^\tilde{n})^2].$$ \hspace{1cm} (4.1)

With $x = 1, \ldots, \tilde{n}$, introducing

$$\eta_{xy} = \eta^{xy} = \text{Diag}(1, -1, \ldots, -1),$$ \hspace{1cm} (4.2)

we write the C_{IJK} symbols as

$$C_{0xy} = \frac{\sqrt{3}}{2} \eta_{xy},$$ \hspace{1cm} (4.3)

(we underline x-type indices that are in fact of type I, but take values in the x-range due to our choice). The constraint $N = 1$ can be solved by

$$h^0 = \frac{1}{\sqrt{3} \|\varphi\|^2}, \quad h^2 = \sqrt{\frac{2}{3}} \varphi^I,$$

with

$$\|\varphi\|^2 = \varphi^I \eta_{xy} \varphi^y.$$ \hspace{1cm} (4.4)

The hypersurface $N = 1$ decomposes into three disconnected components:

(i) $\|\varphi\|^2 > 0$ and $\varphi^I > 0$
(ii) $\|\varphi\|^2 < 0$
(iii) $\|\varphi\|^2 > 0$ and $\varphi^I < 0$.

In the following, we will consider the ‘positive timelike’ region (i) only, since in region (ii), g_{xy} and δ_{ij} are not positive definite, and region (iii) is isomorphic to region (i).

We now proceed by gauging the above theory. The isometry group of the scalar manifold is $SO(\tilde{n} - 1, 1) \times SO(1, 1)$. We gauge the non-compact subgroup $SO(1, 1) \subset SO(\tilde{n} - 1, 1)$ together with $U(1)_R \subset SU(2)_R$. The $SO(1, 1)$ subgroup rotates h^I and h^2 into each other and therefore acts non-trivially on the vector fields A^1_μ and A^2_μ. In order for the resulting theory to be supersymmetric, these vectors have to be dualized to antisymmetric tensor fields. We can thus decompose the index I in the following way

$$\tilde{I} = (I, M),$$ \hspace{1cm} (4.5)

with $I, J, K, \ldots = 0, 3, 4, \ldots, \tilde{n}$ and $M, N, P, \ldots = 1, 2$.

Furthermore, we need a vector transforming in the adjoint of $SO(1, 1)$ (which means it should be inert) to act as its gauge field. Looking at $A^M_{\Lambda N} \sim C_{IKN} \Omega^{MR}$, we see that only A^0_μ couples to the tensor fields (only $C_{0RP} \neq 0$) and thus acts as the gauge field of $SO(1, 1)$. The remaining vectors are called ‘spectator fields’ with respect to the $SO(1, 1)$ gauging.

Finally, for the $U(1)_R$ gauge field we take a linear combination $A_\mu [U(1)_R] = V_I A^I_\mu$ of the vectors. We now have the ingredients to calculate the potentials (2.6) and (2.17) (taking $\Omega^{12} = -\Omega^{21} = -1$):

$$\Lambda^M_{0N} = \frac{2}{\sqrt{6}} \Omega^{MR} C_{ORN} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$ \hspace{1cm} (4.6)

$$p^{(T)} = \frac{3 \sqrt{6}}{16} h^I \Lambda^M_{IN} h_M h_N = \frac{1}{8} \frac{(\varphi^I)^2 - (\varphi^2)^2}{\|\varphi\|^6}.$$ \hspace{1cm} (4.7)
Stable de Sitter vacua in $N = 2, D = 5$ supergravity

\[P^{(R)} = -4\sqrt{2}V_0 V_i \|\psi\|^2 + 2|V|^2\|\psi\|^2, \quad |V|^2 \equiv V_i, \]

(4.8)

where we defined a new index i as $I = (0, i)$. Then

\[P = P^{(T)} + P^{(R)} = \frac{1}{8} \frac{(\varphi^1)^2 - (\varphi^2)^2}{\|\psi\|^6} - 4\sqrt{2}V_0 \varphi_1 V_i \|\psi\|^{-2} + 2\|\psi\|^2|V|^2. \]

(4.9)

Demanding $P_{\varphi^I} = 0$ gives the following conditions on the critical points:

\[
\frac{\varphi^I}{\|\psi\|^4} = 16\sqrt{2}V_0 V_i,
\]

(4.10)

\[
\frac{1}{\|\psi\|^6} = -\frac{1}{2} (16\sqrt{2}V_0 |V|)^2 + 8|V|^2,
\]

(4.11)

with the constraints

\[
|V|^2 \neq 0, \quad 32V_0^2 < 1.
\]

(4.12)

From (4.11) we see that $\|\psi\|^2$ is completely determined by the V_i. From (4.10), we see that also the φ^I are completely fixed by the V_i. This means that only φ^1 and φ^2 can still vary, as long as the combination $(\varphi^1)^2 - (\varphi^2)^2$ remains fixed. We thus have a one parameter family of critical points, which is due to the unbroken $SO(1, 1)$. There is also an unbroken $SO(n - 3)$, but the vacuum is at the symmetric point.

The value of the potential in the critical points becomes

\[P(\varphi_c) = 3\|\psi\|^2|V|^2 (1 - 32V_0^2), \]

(4.13)

which is clearly positive because of (4.12) and therefore corresponds to de Sitter vacua.

We now show that all these vacua are stable. We use the index $m = 1, 2$ for the scalars related to $M = 1, 2$. Calculating the second derivatives of the potential in the critical points gives the following Hessian

\[
P_{m,n}(\varphi_c) = (n\varphi)_m (n\varphi)_n [3\|\psi\|^{-8} + 4\varphi^k \varphi^k \|\psi\|^{-10}],
\]

\[
P_{m,j}(\varphi_c) = -4(n\varphi)_m \varphi^j [\|\psi\|^{-8} + \varphi^k \varphi^k \|\psi\|^{-10}],
\]

\[
P_{i,j}(\varphi_c) = \varphi^i \varphi^j [5\|\psi\|^{-8} + 4\varphi^k \varphi^k \|\psi\|^{-10}] + \frac{1}{2} \delta_{ij} \|\psi\|^{-6},
\]

(4.14)

where $(n\varphi)_i \equiv \eta_{i\lambda} \varphi^\lambda$.

The $SO(1, 1)$ invariance implies a zero eigenvector $\varphi^\lambda (\sigma_i)_{m}$. Using this $SO(1, 1)$ and the $SO(n - 2)$ of the φ^I, we may further use for any critical point $\varphi_c = (\varphi^1, 0, \varphi^3, 0, \ldots, 0)$ with $|\varphi^1| < |\varphi^3|$. Then the zero mode is φ^3, and the sector $\varphi^4, \ldots, \varphi^6$ decouples as a unit matrix times $\frac{1}{2} \|\psi\|^{-6}$. The relevant part of the hessian therefore is

\[
\partial^2 P = \|\psi\|^{-10} \begin{pmatrix}
-3(\varphi^1)^2 + (\varphi^3)^2 & -4(\varphi^1)^3 \varphi^3 \\
-4(\varphi^1)^3 \varphi^3 & \frac{1}{2}(\varphi^1)^4 + 18(\varphi^1)^2(\varphi^3)^2 - 3(\varphi^3)^4
\end{pmatrix},
\]

(4.15)

where we defined $\partial^2 P \equiv \partial_3 \partial_3 P(\varphi_c)|_{\varphi^I=1}$. The determinant and trace are

\[
\det \partial^2 P = \frac{1}{2} (\varphi^1)^2 \|\psi\|^{-14},
\]

\[
\text{Tr} \partial^2 P = \frac{1}{2} (\varphi^1)^2 [13(\varphi^1)^4 + 22(\varphi^1)^2(\varphi^3)^2 - 3(\varphi^3)^4],
\]

(4.16)

which shows that the eigenvalues are positive.
Comments

• **BEH effect.** Like in [5, 6], the massless scalar is a Goldstone boson. It will get ‘eaten’ by the SO(1,1) gauge field, making the gauge field massive. There will thus be only positive mass scalars left in the effective theory.

• **Quantized scalar masses.** The masses of the scalars are given by the eigenvalues of \(g^{\alpha \beta} P_{\alpha \beta}(\varphi_c) / P(\varphi_c) \). We already showed that these will be positive. Using Mathematica, the scalar mass spectrum turns out to be

\[
\left(0, \frac{8}{3} \frac{(\varphi_1)^2 - (\varphi_2)^2}{\|\varphi\|^2}, \frac{2}{3}, \frac{2}{3}, \ldots, \frac{2}{3}\right).
\]

(4.17)

In [4] it was observed that all known examples of de Sitter extrema in extended supergravities have scalar masses that are quantized in units of the cosmological constant. This is also true in our model for all scalars, but one. One of the scalar masses depends on the parameters \(\tilde{V}_i \) that determine the \(\text{U}(1)_R \) gauge field. Also in [8] examples of (unstable) de Sitter extrema were found that had parameter-dependent scalar masses.

• **SU(2)_R gauging.** Instead of gauging \(\text{U}(1)_R \) we could also have gauged the full SU(2)_R R-symmetry as long as there is a sufficient number of gauge fields available (\(\tilde{n} \geq 5 \)). Without loss of generality, we can choose \(A_3^\mu, A_4^\mu, A_5^\mu \) as the SU(2) gauge fields. We then find

\[
P(U\!(1)\!R) = \frac{3}{2} \|\varphi\|^2.
\]

(4.18)

Looking at equation (4.8), we observe that we get the same potential if we do a \(\text{U}(1)_R \) gauging with \(V_0 = 0 \) and \(|V|^2 = 3/4 \). \(\text{SU}(2)_R \) gauging with tensors charged under \(\text{SO}(1,1) \) therefore will also lead to stable de Sitter vacua. The scalar masses are in this case given by \((0, 8/3, 2/3, 2/3, \ldots, 2/3)\).

5. **U(1)_R gauging and charged tensors: more examples**

To try to find out what ingredients are really necessary to obtain stable de Sitter vacua, we will now look at a few other examples with \(\text{U}(1)_R \) and charged tensors. A natural idea is to take the scalar manifold \(\mathcal{M} \) to be one of the other known symmetric very special real manifolds.

5.1. **The magical Jordan family**

5.1.1. \(\mathcal{M} = \text{SL}(3, \mathbb{R})/\text{SO}(3) \). \(\mathcal{M} \) is described as the hypersurface \(N(h) = 1 \) of the cubic polynomial [17, 26]

\[
N(h) = \frac{3}{2} \sqrt{3} h^3 \eta_{\alpha \beta} h^\alpha h^\beta + \frac{3\sqrt{3}}{2\sqrt{2}} \gamma_\alpha MN h^\alpha h^M h^N,
\]

(5.1)

where

\[
\alpha, \beta = 0, 1, 2, \quad M, N = 4, 5,
\]

\[
\eta_{\alpha \beta} = \text{diag}(+,-,-), \quad \gamma_0 = -\mathbb{I}_2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix},
\]

\[
\gamma_1 = \sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \gamma_2 = \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.
\]

(5.2)

The vector field metric \(a_{\mu \nu} \) becomes degenerate when \(\eta_{\alpha \beta} h^\alpha h^\beta = 0 \), so we can restrict ourselves to the region \(\eta_{\alpha \beta} h^\alpha h^\beta \neq 0 \). To solve the constraint \(N(h) = 1 \), we take the
parametrization used in [26],

\[h^a = \frac{\sqrt{2}}{3} x^a, \quad h^M = \frac{\sqrt{2}}{3} b^M, \quad h^3 = \frac{1 - b^T \bar{x} b}{\sqrt{5} \|x\|^2}, \]

(5.3)

where \(b^T \bar{x} b \equiv b^M \bar{x}_{MN} b^N \) with \(\bar{x}_{MN} = x^a \gamma_{aMN} \) and \(\|x\|^2 \equiv \eta_{ab} x^a x^b \). The metrics \(a_{ij} \) and \(g_{a_3} \) are only positive definite in the region \(\|x\|^2 > 0 \) and \(x_0 > 0 \). Since this is the physically relevant region, we will restrict ourselves to this domain from now on.

In this model we can gauge the \(SO(2, 1) \) symmetry between \(h^a \) with the vector fields \(A^a_\mu \), while dualizing the non-trivially charged vector fields \(A^M_\mu \) to tensor fields. We then get a potential

\[P^{(T)} = \frac{i}{8} b^T \bar{x} \Omega \bar{x} \Omega \bar{x} b, \quad \Omega = i \sigma_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}. \]

(5.4)

Gauging the full R-symmetry is not possible in this model, but we can gauge a \(U(1)_R \) symmetry. We have \(A_\mu[U(1)_R] = V_I A^I_\mu \), with \(V_I f_J^K = 0 \). From this it follows that \(A_\mu[U(1)_R] = V_I A^3_\mu \), so \(A^3_\mu \) is the \(U(1)_R \) gauge field. Since \(P^{(R)} = -4 C^{IJK} V_I V_J h_K \) and \(C^{333} = C_{333} = 0 \) we find \(P^{(R)} = 0 \). The total potential \(P \) is thus given by \(P^{(T)} \) alone. The critical points of \(P \) are given by \(b^M = 0 \), leading to Minkowski vacua. They are supersymmetric when the \(U(1)_R \) gauging is turned off (\(V_I = 0 \)). There are no de Sitter vacua in this model.

5.1.2. \(M = SL(3, \mathbb{C})/SU(3) \). \(M \) is described as the hypersurface \(N(h) = 1 \) of the cubic polynomial [17, 26]

\[N(h) = \frac{3}{2} \sqrt{3} h^4 \eta_{a\beta} h^a h^\beta + \frac{3 \sqrt{3}}{2 \sqrt{2}} \eta_{aMN} h^a h^M h^N, \]

(5.5)

where

\[\alpha, \beta = 0, 1, 2, 3, \quad M, N = 5, 6, 7, 8, \]

\[\eta_{a\beta} = \text{diag}(+,-,-,-), \quad \gamma_0 = -\mathbb{1}_4, \]

\[\gamma_1 = \mathbb{1}_2 \otimes \sigma_1, \quad \gamma_2 = \sigma_2 \otimes \sigma_2, \quad \gamma_3 = \mathbb{1}_2 \otimes \sigma_3. \]

(5.6)

We take the same parametrization as in the previous model,

\[h^a = \frac{\sqrt{2}}{3} x^a, \quad h^M = \frac{\sqrt{2}}{3} b^M, \quad h^3 = \frac{1 - b^T \bar{x} b}{\sqrt{5} \|x\|^2}. \]

(5.7)

The metrics are again only positive definite in the region \(\|x\|^2 > 0 \) and \(x_0 > 0 \).

The model above has an \(SO(3, 1) \times U(1) \) symmetry, which acts on the fields \(h^I \) (and similarly on the vector fields \(A^I_\mu \)) as [27]

\[\delta h^a = B^a_\beta h^\beta, \]

\[\delta h^M = \frac{1}{2} B^a_\beta (\gamma_{a\beta})^M_N h^N + S^M_N h^N \epsilon, \]

(5.8)

where

\[S = \gamma_1 \gamma_2 \gamma_3 = i \sigma_2 \otimes \mathbb{1}_2, \quad S^2 = -\mathbb{1}_4, \]

\[\gamma_{ab} = \gamma_a \gamma_b = -S \epsilon_{abc} \gamma^c, \quad \gamma_{a\sigma} = -\gamma_{a0} = \gamma_a, \quad a = 1, 2, 3. \]

(5.9)

Indices on the matrices \(B_{a\beta} \) are raised and lowered with \(\eta_{a\beta} \) and these transformations satisfy \(B_{a\beta} = -B_{a\beta} \). This implies that they describe \(SO(1, 3) \). The motivation for the definition of \(\gamma_{a\sigma} = -\gamma_{a0} \) is based on a larger Clifford algebra, see [27, (5.16)]. The \(\gamma \)-matrices are symmetric, while \(S \) is antisymmetric. \(\epsilon \) is the parameter for the \(U(1) \) symmetry.
To gauge a symmetry, we have to assign the isometry transformations to vector multiplets, i.e. to connect the parameters of gauge transformations Λ^I to parameters of the isometry group, such that the transformations on the vector part form the adjoint representation and on the tensor multiplets there exists an antisymmetric matrix Ω_{MN} such that (see (2.7))

$$\Omega_{MP} \Lambda_{IN}^P = \frac{2}{\sqrt{6}} C_{I J M N}.$$ \hspace{1cm} (5.10)

\bullet $U(1)_R$ gauging and tensors charged under $U(1) \times SU(2)$. We now gauge the $SO(3)$ part of (5.8) with $B^{\alpha \mu} = 0$ and take A_{μ}^a as the adjoint vectors. We gauge the $U(1)$ by the vector field A_μ^0. To gauge this symmetry, we also have to dualize the vector fields A_{μ}^M to tensor fields. We have

$$B_{ab} = \epsilon \eta_{abc} \epsilon,$$

$$\epsilon = \beta \Lambda_0^0,$$ \hspace{1cm} (5.11)

where we allowed for arbitrary coefficients α and β to be determined below. This leads thus to the transformation matrices

$$\Lambda_{MN}^M = \beta S_{MN}^M, \hspace{0.5cm} \Lambda_{a \nu}^M = -\frac{1}{2} \alpha (S_{\gamma a})^M_{\nu N}.$$ \hspace{1cm} (5.12)

Checking (5.10) gives

$$\Omega = \frac{1}{\alpha} S, \hspace{0.5cm} \beta = \frac{\alpha}{2}.$$ \hspace{1cm} (5.13)

For simplicity, and without losing generality, we can choose $\alpha = 1, \beta = 1/2$.

In [26] the vector fields A_{μ}^a were used to also gauge the full $SU(2)_R$ symmetry and it was found that the total potential has no critical points. Instead, we will use the vector field A_{μ}^0 together with A_{μ}^a to gauge the $U(1)_R$ symmetry. The potential $P = P^{(T)} + P^{(R)}$ becomes

$$p^{(R)} = -2\sqrt{3}V_0 \left(\frac{V_0}{\sqrt{3}} \|x\|^2 + \frac{4}{\sqrt{2}} V_4 \left(\frac{1 - b^T \bar{b}}{\sqrt{4 \|x\|^2}} \right) \bar{x}^0 - \frac{2}{\sqrt{6}} V_4 b^T \bar{b} \right),$$ \hspace{1cm} (5.14)

$$p^{(T)} = -\frac{1}{8} b^T \bar{x} \Omega \bar{x} b = -\frac{1}{8} \bar{x}^0 \bar{b}^T \bar{b}$$

$$= \frac{1}{8} \|x\|^2 \bar{x}^0 \bar{b}^T \bar{b} - \frac{1}{2} x_0 \bar{x}^0 \bar{b}^T \bar{b} + \frac{1}{4} \|\bar{x}\|^2 \|\bar{b}\|^2 + \frac{1}{4} \bar{x}_0^2 \|\bar{b}\|^2,$$ \hspace{1cm} (5.15)

where $b^T \bar{b} = b^M \delta_{MN} \bar{x}_0 \|\bar{x}\|^2 = \bar{x}_0 x^a \delta_{ab}$, $\|x\|^2 = \eta_{ab} x^a \bar{x}^b$, $\bar{b}_M = x^a \gamma_a \delta_{MN}$ and $\bar{b}_N = x^a \gamma_a \delta_{MN}$. The last line of (5.15) makes the $U(1)_R \times SU(2)$ symmetry of the potential manifest, since $b^T \bar{x} b$, $\|\bar{x}\|^2$ and $\|x\|^2$ are easily seen to be invariant under the transformations (5.8) (with $B_{ab} = 0$). Using this symmetry we can restrict the search for extrema to points where e.g. $x_2 = x_3 = b_8 = 0$. We analysed the potential with Mathematica and found no de Sitter vacua (in the region where the metrics are positive definite).

When $b^M = 0$, finding critical points of P reduces to finding critical points of $p^{(R)}$. It was shown in [24] that $P^{(R)}$ has an anti-de Sitter maximum if and only if $V^{(R)} = \sqrt{2} C^{(R)} J V J V_k$ lies in the domain of positivity of the Jordan algebra, and a Minkowski critical point if and only if $V^{(R)} = 0$ ($p^{(R)}$ identically zero). The total potential P also has these critical points, but the extra potential from the tensors can change the nature of these critical points (e.g. from a maximum to a saddle point). With Mathematica we also found anti-de Sitter vacua of P with $b^M \neq 0$. Since our primary interest was finding de Sitter vacua, we did not check the nature of these critical points.
Stable de Sitter vacua in $N = 2$, $D = 5$ supergravity

- $U(1)_R$ gauging and tensors charged under $U(1) \times SO(2, 1)$. Instead of the compact symmetry above, we can also gauge $U(1) \times SO(2, 1)$ by again dualizing the vector fields A^μ to tensor fields and choosing the $SO(2, 1)$ gauge fields to be A^μ_M, A^{μ}_{1}, A^{μ}_{2}, while letting A^μ_3 correspond to the $U(1)$ gauge field. Similarly as in the previous example, this leads to $\Omega = \gamma_2S$. We can again gauge the $U(1)_R$ symmetry, this time with a linear combination of A^μ_M and A^μ_{1}. This leads to the following potential:

$$P^{(R)} = 2\sqrt{3}V_2 \left(\frac{V_2}{\sqrt{3}}x^2 - \frac{4}{\sqrt{3}}V_4 \left(\frac{1}{\sqrt{2}}b^T \bar{\gamma}b \right) x^2 + \frac{2}{\sqrt{6}}V_6 b^T \gamma_2 b \right),$$

$$P^{(T)} = \frac{1}{8} b^T \bar{x} \Omega \ell \bar{\Omega} b$$

$$= -\frac{1}{8} ||x||^2 b^T \bar{x}b - \frac{1}{2} x^2 b^T \bar{\gamma}b - \frac{1}{4} x^2 ||\bar{x}||^2 b^T b - \frac{1}{4} x^2 b^T b,$$

(5.16)

where now $||\bar{x}||^2 = (x^0)^2 - (x^1)^2 - (x^3)^2$ and $\bar{x}_{MN} = x^0 \gamma_{0MN} + x^1 \gamma_{1MN} + x^3 \gamma_{3MN}$. Analysing the potential as in the previous case, we again found no de Sitter vacua. The potential has a critical point only when $V_2 = 0$. $P^{(R)}$ is then identically zero, and we have a family of Minkowski vacua at $b^M = 0$.

5.1.3. The other magical Jordan symmetric spaces. The spaces $\mathcal{M} = SU^*(6)/USp(6)$ and $\mathcal{M} = E_{6(-26)}/F_4$ are 14 and 26 dimensional respectively, and allow for more possibilities to get charged tensor multiplets, making the potential more difficult to analyse. Because all the magical Jordan spaces have a similar structure, one might expect similar qualitative features as in the previous models, but this has to be checked in detail to be sure.

5.2. The non-Jordan symmetric spaces

We now consider theories with $\mathcal{M} = \frac{SO(1, \tilde{n})}{SO(\tilde{n})}$, $\tilde{n} > 1$. We can then take the following polynomial:

$$N(h) = \frac{3}{2}\sqrt{3} \left[(\sqrt{2/3})h^0[h^1]^2 + \cdots + (h^\tilde{n})^2 \right].$$

(5.17)

This means for the non-vanishing components of the tensor C_{ijk}

$$C_{011} = \frac{\sqrt{3}}{2}, \quad C_{1xy} = -\frac{\sqrt{6}}{4} \delta_{xy} \quad x, y = 2, \ldots, \tilde{n}.$$

(5.18)

The constraint $N = 1$ can be solved by

$$h^0 = \frac{\sqrt{2}}{3} \left(\frac{1}{\sqrt{2}}(\varphi^1)^2 + \frac{1}{\sqrt{2}}(\varphi^2)^2 + \cdots + (\varphi^\tilde{n})^2 \right),$$

(5.19)

$$h^1 = \frac{\sqrt{2}}{3} \varphi^1, \quad h^i = \frac{\sqrt{2}}{3} \varphi^i.$$

(5.20)

The Lagrangian of the theory is not invariant under the full isometry group $SO(1, \tilde{n})$. Only the subgroup $G = [SO(\tilde{n} - 1) \otimes SO(1, 1)] \otimes T_{\tilde{n} - 1}$, with $T_{\tilde{n} - 1}$ being the group of translations in an $(\tilde{n} - 1)$ dimensional Euclidean space, leaves the tensor C_{ijk} invariant and can thus be gauged [28]. In order to gauge a subgroup $K \subset G$ we need $\text{Dim}(K)$ vectors transforming in the adjoint of K. Furthermore, we want an additional number of vectors transforming non-trivially under K. After dualization to tensor multiplets these give the required contribution $P^{(T)}$ to the potential.
The subgroup $SO(1, 1)$ cannot be gauged since all vectors transform non-trivially under this group and we need an invariant vector to gauge $SO(1, 1)$.

The group $SO(n - 1)$ rotates h^2, \ldots, h^k (and thus also the vectors $A^2_{\mu}, \ldots, A^k_{\mu}$) into each other. This means that only its subgroup $SO(2)$ can be gauged in order to have both vectors that transform in the adjoint and vectors that transform non-trivially but not in the adjoint of the gauge group. We will therefore gauge this $SO(2)$, possibly together with $SU(2)_R$ or $U(1)_R$. The former was already worked out in [26], where it was shown that the potentials $P^{(R)}$ and $P = P^{(T)} + P^{(R)}$ do not have any critical points at all and $P^{(T)}$ only has Minkowski vacua. We now investigate the latter gauging.

We restrict ourselves to $\tilde{n} = 3$, so the group $SO(2)$ acts on A^2_{μ} and A^3_{μ}. These vectors therefore have to be dualized to tensors. We decompose the index I as follows:

\[\tilde{I} = (I, M), \]

with $I, J, K, \ldots = 0, 1$ and $M, N, P, \ldots = 2, 3$. The vector A^1_{μ} will act as gauge field for $SO(2)$ since it is the only vector left that couples to the tensor fields. For the $U(1)_R$ gauging we take the gauge vector $A_{\mu}[U(1)_R] = V_I A^I_{\mu}$. The constraint (2.16) is automatically fulfilled.

The potential $P^{(T)}$ then becomes (taking $\Omega^{23} = -\Omega^{32} = -1$):

\[\Lambda^{IJ}_{\mu} = \frac{2}{\sqrt{6}} \Omega^{MR} C_{1RN} = -\frac{1}{2} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \]

\[P^{(T)} = \frac{3\sqrt{6}}{16} h^I \Lambda^{IJ}_{\mu} h_M h_N = \frac{1}{8} (\phi^I)^2 [(\phi^3)^2 + (\phi^3)^3]. \]

The calculation of $P^{(R)}$, however, is a bit more involved since for the non-Jordan theories C^{1JK} is not constant any more. The indices are raised using a^{ij} with

\[a^{ij} = h^I h^I + h^I h^J g^{ij}, \]

and $g^{ij} = \text{Diag} (\phi^I)^2/3, 1/(\phi^I)^3, 1/(\phi^I)^3)$. Then $P^{(R)}$ becomes

\[P^{(R)} = -4 C^{1JK} V_I V_J h_R = -4\sqrt{2} V_0 V_I \phi^I - (\phi^I)^2 (V_0 (\phi^3)^2 + (\phi^3)^3) + \sqrt{2} V_1. \]

We remark that we have to restrict to $\phi^I > 0$ in order for g^{ij} to be positive definite.

As already mentioned, $P^{(T)}$ only has Minkowski ground states. Moreover, $P^{(R)}$ can at most have unstable de Sitter vacua, as we proved in section 3.1. We will now study the total potential $P^{(T)} + P^{(R)}$.

The critical points of P. The total potential is

\[P = \frac{1}{8} (\phi^I)^2 [(\phi^3)^2 + (\phi^3)^3] - 4\sqrt{2} V_0 V_I \phi^I - (\phi^I)^2 A^2, \]

with

\[A = V_0 (\phi^3)^2 + (\phi^3)^3 + \sqrt{2} V_1. \]

The first derivatives are

\[P_1 = \frac{5}{8} (\phi^I)^2 [(\phi^3)^2 + (\phi^3)^3] + 4\sqrt{2} V_0 V_I \phi^I - 2\phi^I A^2, \]

\[P_2 = \frac{1}{4} (\phi^I)^2 [\phi^I]^3 - 16 A V_0], \]

\[P_3 = \frac{1}{4} (\phi^I)^2 [\phi^I]^3 - 16 A V_0]. \]

From (5.29) and (5.30) we get the following three possibilities for the critical points:
• When \(\phi^2 = \phi^3 = 0 \) and \(V_1 = 0 \), equations (5.28)–(5.30) are fulfilled and \(P(\phi_c) = 0 \), giving Minkowski vacua. Since \(V_I h_I^I(\phi_c) \neq 0 \), supersymmetry is broken unless also \(V_0 = 0 \).

• When \(\phi^2 = \phi^3 = 0 \) and \(V_1 \neq 0 \), equation (5.28) leads to the condition
 \[
 (\phi^1)^3 = \sqrt{2} \frac{V_0}{V_1}.
 \]
(5.31)

Then
\[
P(\phi_c) = -6(\phi^1)^2 V_1^2
\]
and we have an anti-de Sitter vacuum. The vectors \(V_I h_I^I(\phi_c) \) and \(h_M \Omega^{MN} h_N(\phi_c) \) are now identically zero, which means the vacuum preserves the full \(N = 2 \) supersymmetry.

• The third possibility is \((\phi^1)^3 = 16AV_0 \), which can be rewritten as
\[
V_1 = \frac{p - 16V_0^2 q}{16\sqrt{2}V_0},
\]
(5.33)
with \(p = (\phi^1)^3 \) and \(q = (\phi^2)^2 + (\phi^3)^2 > 0 \). Using this in (5.28) and solving for \(V_0 \) gives us the following four solutions:
\[
V_0 = \pm \frac{1}{8} \sqrt{2} \left(5p^2 + \frac{2p}{q} \pm \frac{\sqrt{4p^2 + 12p^3q + 25p^4q^2}}{q} \right).
\]
(5.34)

Remark that the expressions under the square roots are always positive. We substitute (5.33) and (5.34) into the potential \(P \) and get
\[
P(\phi_c) = \frac{3p^{5/3}q(p + 5p^2q \pm \sqrt{4p^2 + 12p^3q + 25p^4q^2})}{4(2p + 5p^2q \pm \sqrt{4p^2 + 12p^3q + 25p^4q^2})}.
\]
(5.35)
Here both signs are positive when the second sign choice in (5.34) is positive, otherwise both signs are negative (independent of the choice of the first sign in (5.34)). With the plus signs we have a de Sitter vacuum, with the minus signs an anti-de Sitter vacuum.

Calculating the matrix of second derivatives \(P, x, y \) and substituting (5.33) and (5.34), we get the following form:
\[
P, x, y(\phi_c) = \begin{pmatrix} B_{2x2} & 0 \\ 0 & 0 \end{pmatrix}.
\]
(5.36)
The expected zero eigenvalue from the \(SO(1, 1) \) invariance is already explicit. Furthermore,
\[
\text{Det}(B_{2x2}) = -\frac{1}{16}\sqrt{2}p^{5/3}q(14p + 25p^2q \pm 5\sqrt{4p^2 + 12p^3q + 25p^4q^2}),
\]
(5.37)
where again the plus sign corresponds to the de Sitter vacuum, the minus sign to the anti-de Sitter vacuum. The determinant is always negative, so there is always a negative eigenvalue and the de Sitter vacua are unstable.

5.3. Conclusions

These examples seem to suggest that the existence of stable de Sitter vacua is very model dependent. A \(U(1)_R \) gauging and tensors charged under a non-compact gauge group do not guarantee stable de Sitter vacua. On the other hand, we also found a de Sitter vacuum in a model with \(U(1)_R \) gauging and tensors charged under a compact group. Unfortunately the de
Sitter vacuum was unstable. Whether this is a general feature of compact gaugings is not clear to us.

6. Stable de Sitter vacua with hypers

Our goal in this section is to show that it is still possible to get stable de Sitter vacua when hypermultiplets are included. We will do this by giving a particular example, namely we will gauge a specific isometry of the universal hypermultiplet. There are probably many other possibilities, but we will not analyse this in its generality here.

When there are charged hypers in the model, the potential gets some extra contributions. The total potential is given by

\[P = -4 \tilde{P} \cdot \tilde{P} + 2 \tilde{P}_s \cdot \tilde{P}_s + 2 N_{iA} N^{iA} + P(T), \]

where, as before, \(\tilde{P} = h^I \tilde{P}_I \), \(\tilde{P}_s = h^I \tilde{P}_I \) and \(N_{iA} = \frac{\sqrt{2}}{2} h^I K_I^X f^{iA}_X \). Here \(f^{iA}_X \) are the quaternionic vielbeins, \(f^{iA}_X f^{iA}_Y = g_{XY} \) with \(g_{XY} \) being the metric of the quaternionic-Kähler hypermultiplet scalar manifold, \(K_I^X \) are the Killing vectors and \(\tilde{P}_I \) the corresponding prepotentials.

The metric of the universal hypermultiplet, together with the Killing vectors and corresponding prepotentials were given in [29], and we will repeat the results here for convenience of the reader. The four hyperscalars \(q^X \) are labelled as \(\{V, \sigma, \theta, \tau\} \) and the metric is given by

\[ds^2 = \frac{dV^2}{2V^2} + \frac{1}{2V^2} (d\sigma + 2\theta d\tau - 2\tau d\theta)^2 + \frac{2}{V} (d\tau^2 + d\theta^2). \]

The determinant for this metric is \(1/V^6 \) and since the metric is positive definite in \(\theta = \tau = 0 \) if \(V > 0 \), the metric will be positive definite and well behaved everywhere as long as \(V > 0 \). This parametrization of the universal hypermultiplet is the one that comes out naturally from the Calabi–Yau compactifications of M-theory, where \(V \) acquires the meaning of the volume of the Calabi–Yau manifold. The metric (6.2) has an \(SU(2,1) \) isometry group generated by the following eight Killing vectors \(\tilde{k}_x^i \)

\[
\begin{align*}
\tilde{k}_1 &= \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, & \tilde{k}_2 &= \begin{pmatrix} 0 \\ 2\theta \\ 0 \end{pmatrix}, & \tilde{k}_3 &= \begin{pmatrix} -2\tau \\ 0 \\ 1 \end{pmatrix}, & \tilde{k}_4 &= \begin{pmatrix} 0 \\ 0 \\ -\tau \end{pmatrix}, \\
\tilde{k}_5 &= \begin{pmatrix} V \\ \sigma/2 \\ \tau/2 \end{pmatrix}, & \tilde{k}_6 &= \begin{pmatrix} 2V\sigma \\ \sigma^2 - (V + \theta^2 + \tau^2)^2 \\ \sigma \theta - \tau (V + \theta^2 + \tau^2) \end{pmatrix}, \\
\tilde{k}_7 &= \begin{pmatrix} -2V\theta \\ -\sigma \theta + V \tau + \tau (\theta^2 + \tau^2) \\ \frac{1}{2}(V - \theta^2 + 3\tau^2) \end{pmatrix}, & \tilde{k}_8 &= \begin{pmatrix} -2V\tau \\ -\sigma \tau - V \theta - \theta (\theta^2 + \tau^2) \\ \frac{1}{2}(V + 3\theta^2 - \tau^2) \end{pmatrix}.
\end{align*}
\]

The corresponding prepotentials \(P^i_a \) are given by
Stable de Sitter vacua in $N = 2, D = 5$ supergravity

$$
\vec{P}_1 = \begin{pmatrix} 0 \\ 0 \\ -\frac{1}{\sqrt{3}} \end{pmatrix}, \quad \vec{P}_2 = \begin{pmatrix} -\frac{1}{\sqrt{3}} \\ 0 \\ \frac{1}{\sqrt{3}} \end{pmatrix}, \quad \vec{P}_3 = \begin{pmatrix} 0 \\ -\frac{1}{\sqrt{3}} \end{pmatrix}, \quad \vec{P}_4 = \begin{pmatrix} -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{pmatrix}
$$

$$
\vec{P}_5 = \begin{pmatrix} -\frac{\tau}{\sqrt{3}} \\ \frac{\sigma}{\sqrt{3}} \\ \frac{\sqrt{2}}{\sqrt{3}} \end{pmatrix}, \quad \vec{P}_6 = \begin{pmatrix} \frac{1}{\sqrt{3}} \tau - \theta (\sigma^2 + \theta^2 + \tau^2) + \sqrt{2} \theta (\sigma^2 + \tau^2) \\ \frac{1}{\sqrt{3}} \sigma - \theta (\sigma^2 + \theta^2 + \tau^2) + \sqrt{2} \theta (\sigma^2 + \tau^2) \\ \frac{1}{\sqrt{2}} \sum_{i,j} (\sigma^2 + \theta^2 + \tau^2) + \sqrt{2} \theta (\sigma^2 + \tau^2) \end{pmatrix}
$$

The Killing vectors $K_{\mathcal{I}}^X$ are now given by $V_{\alpha} k_{\alpha}^X$, where the components of the embedding matrix V_{α} are constants that determine which isometries are gauged and which vector fields are used to gauge them. The corresponding prepotentials P_I then become $V_{\alpha} P_{\alpha}$.

We are now ready to give a concrete example. We choose to gauge the $U(1)$ (hypermultiplet) isometry generated by $2\tilde{k}_4 - \tilde{k}_1 - \tilde{k}_6$, so we take

$$
\tilde{K}_I = V_I (2\tilde{k}_4 - \tilde{k}_1 - \tilde{k}_6), \quad \vec{P}_1 = V_I (2\tilde{P}_4 - \tilde{P}_1 - \tilde{P}_6) = V_I \vec{Q},
$$

where we have defined $\vec{Q} \equiv 2\tilde{P}_4 - \tilde{P}_1 - \tilde{P}_6$. For the scalar manifold of the vector multiplets we choose $\mathcal{M} = SO(\tilde{n} - 1, 1) \times SO(1, 1)/SO(\tilde{n} - 1), \tilde{n} \geq 1$, and again gauge a non-compact $SO(1, 1)$ isometry of this manifold by dualizing the two charged vector fields to tensor fields (see section 4 for notation and more details). For simplicity, we do not charge the hypers under this symmetry. Our gauge group is thus $SO(1, 1) \times U(1)$, where two tensors are charged under the $SO(1, 1)$ and the hypers are charged under the $U(1)$. We then find that

$$
\frac{\partial P}{\partial q^X}(\varphi, q_c) = 0, \quad P(\varphi, q_c) = \frac{9}{4} P^{(R)}(\varphi) + P^{(T)}(\varphi),
$$

where $q_c = \{ V = 1, \sigma = 0, \theta = 0, \tau = 0 \}$ and with $P^{(R)}$ and $P^{(T)}$ given in equations (4.8) and (4.7) respectively.

To verify this, first note that $K_{\mathcal{I}}^X |_{q_c} = 0$ and therefore

$$
\mathcal{N}_{IA} |_{q_c} = 0, \quad \frac{\partial (\mathcal{N}_{IA}^\dagger N^A)}{\partial q^X} |_{q_c} = 0.
$$

We also have $\frac{\partial P^{(T)}}{\partial q^X} = 0$ since $P^{(T)}$ only depends on the scalars of the vector multiplets. The remaining term $-4 \vec{P} \cdot \vec{P} + 2 \vec{P}^{\dagger} \cdot \vec{P}$ in equation (6.1) can be written as

$$
-4 \vec{P} \cdot \vec{P}(\varphi, q) + 2 \vec{P}^{\dagger} \cdot \vec{P}(\varphi, q) = -4 C^{ijk} V_i V_j h_{k}(\varphi) \vec{Q} \cdot \vec{Q}(q),
$$

where the φ (vector multiplet) and q (hypermultiplet) dependence of this part factorizes. Since $\vec{Q} |_{q_c} = (0, 0, 3/2)$, to verify equation (6.6) we only need to check that $\frac{\partial Q}{\partial q^X} |_{q_c} = 0$, with Q^3 being the third component of the vector \vec{Q}. Because Q^3 is quadratic in θ, σ and τ we have

$$
\frac{\partial Q^3}{\partial \theta} = \frac{\partial Q^3}{\partial \sigma} = \frac{\partial Q^3}{\partial \tau} = 0 \quad \text{if} \quad \theta = \sigma = \tau = 0.
$$
Finally
\[Q^3 |_{\mu = \sigma = \tau = 0} = 1 + 1/4V + V/4, \]
(6.11)
and it is easy to see that \(V = 1 \) is an extremum. This proofs equations (6.6) and (6.7).

We thus find that at the point \(q_c \), up to a factor \(9/4 \) which can be absorbed in the \(V \), the potential reduces to the same potential for the vector multiplet scalars as found in section 4, where we gauged a \(U(1)_R \) symmetry. We now have to calculate the mass matrix at the critical point. Since (6.6) is true for any value of the vector multiplet scalars, we have
\[\frac{\partial^2 P}{\partial q^X \partial q^S} \bigg|_{q_c} = 0, \]
(6.12)
so we can calculate the masses of the hyper-scalars and the vector-scalars separately. Since we already calculated the mass matrix for the vector multiplet scalars, we just have to calculate the mass matrix for the hypers. After a straightforward calculation we find the matrix to be diagonal, with all entries always positive. There are only two different diagonal elements and they can both be written as a sum of manifestly positive terms. Because the expressions are quite messy, we will not give them in their generality here. Instead we will look at the particular case \(V_0 = 0 \). We then have \(\varphi_i = 0 \) at the critical point and the expressions simplify significantly. Concretely, we find
\[\frac{\partial X}{\partial Y} P \bigg|_{q_c} = \begin{pmatrix} 8/9 & 0 & 0 & 0 \\ 0 & 8/9 & 0 & 0 \\ 0 & 0 & 4/9 & 0 \\ 0 & 0 & 0 & 4/9 \end{pmatrix}, \]
(6.13)
where derivation with respect to \(q^X \) is denoted by \(\partial_X \) and indices are raised with the (inverse) quaternionic-Kähler metric \(g^{X,Y} \). This shows that potentials with stable de Sitter vacua also exist when hypers are included.

7. Summary

In this paper we investigated different possibilities to get stable de Sitter vacua in 5D \(N = 2 \) gauged supergravity. We proved that \(U(1)_R \) gauging (without tensors) at most leads to unstable de Sitter vacua. In the case of \(SU(2)_R \) gauging we found several theories exhibiting de Sitter extrema, but were unable to find stable de Sitter vacua. However, by also introducing tensor multiplets and gauging a non-compact symmetry group together with the R-symmetry group we managed to construct 5D supergravity theories with stable de Sitter vacua. The ingredients used are however not sufficient to guarantee stable de Sitter vacua, as the analysis of several other examples made clear. Finally, we showed with a specific example that we can also get stable de Sitter vacua if we replace the R-symmetry gauging with charged hypers.

There are several directions in which we plan to continue our research. First of all it would be interesting to find out under which conditions stable de Sitter vacua exist in supergravity theories. A more general analysis of the potentials coming from \(SU(2)_R \) gauging and tensors will certainly be useful for this. Investigating the potential coming from charged hypermultiplets might also give interesting results. Another possible fruitful path would be to try to embed the stable de Sitter vacua in \(N = 4 \) and \(N = 8 \) supergravity and check whether they are still stable. Attempts in this direction in 4D have failed (see [8]), and it would be interesting to see whether this generalizes to higher dimensions. Having an \(N = 8 \) embedding could also make it easier to find their 10 or 11 dimensional origin, if any. Finally, considering the similarities between 4D and 5D \(N = 2 \) supergravity, the results we found perhaps suggest
that investigating 4D gauged supergravities with tensor couplings might lead to new examples of stable de Sitter vacua. We hope to come back to these issues in the near future.

Acknowledgments

We would like to thank A Van Proeyen for helpful discussions and for proofreading this manuscript. We have also greatly benefitted from conversations with A Celi and want to thank M Trigiante for useful e-mail correspondence. This work is supported in part by the European Community’s Human Potential Programme under contract MRTN-CT-2004-005104 ‘ Constituents, fundamental forces and symmetries of the universe’, by the FWO-Vlaanderen, project G.0235.05 and by the Federal Office for Scientific, Technical and Cultural Affairs through the ‘Interuniversity Attraction Poles Programme—Belgian Science Policy’ P5/27.

Appendix. Very special real geometry

In this appendix, we will repeat some elements of very special real geometry for the convenience of the reader. This presentation is mostly based on the appendix in [22] and the classic paper on 5D $N=2$ supergravity [18].

Very special real manifolds are the scalar manifolds of $N=2 D=5$ supergravity coupled to vector(tensor) multiplets and are completely determined by a symmetric 3-tensor C_{IJK}. Let M be the following $n+1$ dimensional subspace of \mathbb{R}^{n+1}

$$M \equiv \{ h^I \in \mathbb{R}^{n+1} | N(h) = C_{IJK} h^I h^J h^K > 0 \},$$

with metric

$$a_{IJ} = -\frac{1}{3} \partial_I \partial_J \ln N(h). \quad (A.1)$$

Then the very special real manifold M_n can be defined as the hypersurface $N(h) = 1$ with metric being the induced metric from the embedding space M,

$$g_{xy} = \frac{3}{2} \delta_{I,J} h^I_{,x} h^J_{,y} = -3 C_{IJK} h^I_{,x} h^J_{,y} h^K, \quad (A.3)$$

with $h^I(\phi)$ obeying $C_{IJK} h^I(\phi) h^J(\phi) h^K(\phi) = 1$, x denoting an ordinary derivative with respect to ϕ^x and

$$\dot{a}_{IJ} \equiv a_{IJ} N=1 = -2 C_{IJK} h^K + 3 h_1 h_J, \quad h_J \equiv C_{IJK} h^K h^K = \dot{a}_{IJ} h^I. \quad (A.4)$$

Defining

$$h^I_{,x} = -\sqrt{\frac{3}{2}} \dot{h}^I_{,x}(\phi). \quad (A.5)$$

we have $h_1 h^J_{,x} = 0$, leading to

$$h_{1x} \equiv \dot{a}_{IJ} h^J_{,x} = \sqrt{\frac{3}{2}} h^I_{,x}(\phi), \quad h^I_{,x} h_J = 0. \quad (A.6)$$

Using the above relations we can also write \dot{a}_{IJ} as

$$\dot{a}_{IJ} = h_I h_J + h^J_{,x} h_J, \quad (A.7)$$

and we have

$$h_{1x,y} = \sqrt{\frac{2}{5}} (h_1 g_{xy} + T_{xy} h^J), \quad (A.8)$$

$$h_{1,x,y} = -\sqrt{\frac{2}{5}} (h^I g_{xy} + T_{xy} h^I).$$

\footnote{It should be understood that the h^I obey $N(h) = 1$ from here on.}
where ‘;’ is a covariant derivative using the Christoffel connection calculated from the metric g_{xy}, with

$$T_{yzx} = C_{IJK} h^I_y h^J_z h^K_z. \quad (A.9)$$

The previous relations can be used to derive some useful identities.

Comparing (A.7) and (A.4), we obtain

$$h^I_y h^J_z = -2C_{IJK} h^K_z + 2h^I_y h^J_z, \quad (A.10)$$

and taking the covariant derivative with respect to ϕ^y of (A.10) leads to

$$T_{xyz} h^I_y h^J_z = C_{IJK} h^K_y + h(I h J)_y. \quad (A.11)$$

Finally, after a straightforward calculation, we get

$$T_{xyz} = \sqrt{\frac{2}{3}} \left[g_{xy} g_{zw} - 2T_{xyz} T_{zwy} \right]. \quad (A.12)$$

$$C_{IJK} = 2T_{uvw} h^I_u h^J_v h^K_w. \quad (A.13)$$

This formula was found in [24], but with an erroneous factor 3 instead of 2.

The domain of the variables should be limited to $h^I(\phi) \neq 0$ and the metrics α_{IJ} and g_{xy} should be positive definite. The latter two conditions are equivalent.

References

[1] Riess A G et al (Supernova Search Team Collaboration) 1998 Observational evidence from supernovae for an accelerating universe and a cosmological constant Astron. J. 116 1009 (Preprint astro-ph/9805201)

Perlmutter S et al (Supernova Cosmology Project Collaboration) 2002 Measurements of Omega and Lambda from 42 high-redshift supernovae Astrophys. J. 517 565 (Preprint astro-ph/9812133)

[2] Berglund P, Hubsch T and Minic D 2002 de Sitter spacetimes from warped compactifications of IIB string theory Phys. Lett. B 534 147 (Preprint hep-th/0112079)

Maloney A, Silverstein E and Strominger A 2002 De Sitter space in noncritical string theory Preprint hep-th/0112079

Kachru S, Kallosh R, Linde A and Trivedi S P 2003 De Sitter vacua in string theory Phys. Rev. D 68 046005 (Preprint hep-th/0301240)

Escoda C, Gomez-Reino M and Quevedo F 2003 Saltaory de Sitter string vacua J. High Energy Phys. JHEP11(2003)065 (Preprint hep-th/0307160)

Burgess C P, Kallosh R and Quevedo F 2003 de Sitter spacetimes from supersymmetric D-terms J. High Energy Phys. JHEP10(2003)065 (Preprint hep-th/0309187)

Brustein R and de Alwis S P 2004 Moduli potentials in string compactifications with fluxes: searching for the discreteum Phys. Rev. D 69 126006 (Preprint hep-th/0402088)

Saltman A and Silverstein E 2004 The scaling of the no-scale potential and de Sitter model building J. High Energy Phys. JHEP11(2004)066 (Preprint hep-th/0402135)

Becker M, Curio G and Krause A 2004 de Sitter vacua from heterotic M-theory Nucl. Phys. B 693 223 (Preprint hep-th/0403027)

Denef F, Douglas M R and Florea B 2004 Building a better racetrack J. High Energy Phys. JHEP06(2004)034 (Preprint hep-th/0404257)

Bachbinder E J 2004 Raising anti de Sitter vacua to de Sitter vacua in heterotic M-theory Phys. Rev. D 70 066008 (Preprint hep-th/0406101)

Saltman A and Silverstein E 2004 A new handle on de Sitter compactifications Preprint hep-th/0411271

[3] Hull C M 2001 De Sitter space in supergravity and M theory J. High Energy Phys. JHEP11(2001)012 (Preprint hep-th/0109213)

Hull C M 2001 Domain wall and de Sitter solutions of gauged supergravity J. High Energy Phys. JHEP11(2001)061 (Preprint hep-th/0110048)

Gibbons G W and Hull C M 2001 de Sitter space from warped supergravity solutions Preprint hep-th/0111072

Kallosh R, Linde A D, Prokushkin S and Shmakova M 2002 Gauged supergravities, de Sitter space and cosmology Phys. Rev. D 65 105016 (Preprint hep-th/0110089)

Kallosh R 2002 Supergravity, M theory and cosmology Preprint hep-th/0205315
Stable de Sitter vacua in $N = 2, D = 5$ supergravity

[5] Fré P, Trigiante M and Van Proeyen A 2002 Stable de Sitter vacua from $N = 2$ supergravity Class. Quantum Grav. 19 4167 (Preprint hep-th/0205119)

[6] Fré P, Trigiante M and Van Proeyen A 2003 $N = 2$ supergravity models with stable de Sitter vacua Class. Quantum Grav. 20 S487 (Preprint hep-th/0301024)

[7] de Roo M, Westra D B and Panda S 2003 De Sitter solutions in $N = 4$ matter coupled supergravity J. High Energy Phys. JHEP02(2003)003 (Preprint hep-th/0212216)

[8] de Roo M, Westra D B, Panda S and Trigiante M 2003 Potential and mass-matrix in gauged $N = 4$ supergravity J. High Energy Phys. JHEP11(2003)022 (Preprint hep-th/0310187)

[9] D’Auria R, Sommavigo L and Vaula S 2004 $N = 2$ supergravity Lagrangian coupled to tensor multiplets with electric and magnetic fluxes J. High Energy Phys. JHEP11(2004)028 (Preprint hep-th/0409097)

[10] Claus P, de Wit B, Faux M, Kleijn B, Siebelink R and Termonia P 1998 $N = 2$ supergravity Lagrangians with vector-tensor multiplets Nucl. Phys. B 512 148 (Preprint hep-th/9710212)

[11] Maldacena J 1998 The large N limit of superconformal field theories and supergravity Adv. Theor. Math. Phys. 2 231

[12] Warner N 2000 Renormalization group flows from five-dimensional supergravity Class. Quantum Grav. 17 1287 (Preprint hep-th/9911240)

[13] Strominger A 2001 The dS/CFT correspondence J. High Energy Phys. JHEP10(2001)034 (Preprint hep-th/0106113)

[14] Balasubramanian V, de Boer J and Minic D 2002 Exploring de Sitter space and holography Class. Quantum Grav. 19 S137 (Preprint hep-th/0404075)

[15] Ellis J R, Lalak Z, Pokorski S and Pokorski W 1999 Five-dimensional aspects of M-theory dynamics and supersymmetry breaking Nucl. Phys. B 540 149 (Preprint hep-ph/9805377)

[16] Lukas A, Ovrut B A, Stelle K S and Waldram D 1999 Heterotic M-theory in five dimensions Nucl. Phys. B 552 246 (Preprint hep-th/9806051)

[17] Balasubramanian V, de Boer J and Minic D 2002 Accelerating universes and string theory Class. Quantum Grav. 19 S137 (Preprint hep-th/0404075)

[18] Klemm D and Vanzo L 2004 Aspects of quantum gravity in de Sitter spaces J. Cosmol. Astropart. Phys. JCAP11(2004)006 (Preprint hep-th/0407255)

[19] Ellis J, Gümaydín M and Zagermann M 2001 Options for gauge groups in five-dimensional supergravity Nucl. Phys. B 585 483–70 (Preprint hep-th/0004111)

[20] Gümaydín M, Sierra G and Townsend P K 1984 The geometry of $N = 2$ Maxwell–Einstein supergravity and Jordan algebras Nucl. Phys. B 242 244

[21] Gümaydín M, Sierra G and Townsend P K 1986 More on $D = 5$ Maxwell–Einstein supergravity: symmetric spaces and kinks Class. Quantum Grav. 3 763

[22] Gümaydín M and Zagermann M 2000 The gauging of five-dimensional, $N = 2$ Maxwell–Einstein supergravity theories coupled to tensor multiplets Nucl. Phys. B 572 131–50 (Preprint hep-th/9912027)

[23] Ceresole A and Dall’Agata G 2000 General matter coupled $N = 2, D = 5$ gauged supergravity Nucl. Phys. B 585 143–70 (Preprint hep-th/0004111)

[24] Bergshoeff E, Cucu S, de Wit T, Gheerardyn J, Vandeuren S and Van Proeyen A 2004 $N = 2$ supergravity in five dimensions revisited Class. Quantum Grav. 21 3015 (Preprint hep-th/0403045)

[25] Gümaydín M and Zagermann M 2000 The vacua of $5d$, $N = 2$ gauged Yang–Mills/Einstein/tensor supergravity: Abelian case Phys. Rev. D 62 044028 (Preprint hep-th/0002228)
[24] Günaydin M, Sierra G and Townsend P K 1985 Gauging the $d = 5$ Maxwell–Einstein supergravity theories: more on Jordan algebras Nucl. Phys. B 253 573

[25] Günaydin M, Sierra G and Townsend P K 1984 Vanishing potentials in gauged $N = 2$ supergravity: an application of Jordan algebras Phys. Lett. B 144 41

[26] Günaydin M and Zagermann M 2001 Gauging the full R-symmetry group in five-dimensional, $N = 2$ Yang–Mills/Einstein/tensor supergravity Phys. Rev. D 63 064023 (Preprint hep-th/0004117)

[27] de Wit B, Vanderseypen F and Van Proeyen A 1993 Symmetry structure of special geometries Nucl. Phys. B 400 463 (Preprint hep-th/9210068)

[28] de Wit B and van Proeyen A 1992 Broken sigma-model isometries in very special geometry Phys. Lett. B 293 94 (Preprint hep-th/9207091)

[29] Ceresole A, Dall’Agata G, Kallosh R and Van Proeyen A 2001 Hypermultiplets, domain walls and supersymmetric attractors Phys. Rev. D 64 104006 (Preprint hep-th/0104056)