On the Component Factor Group G/G_0

of a Pro-Lie Group G

Rafael Dahmen and Karl H. Hofmann

Abstract. A pro-Lie group G is a topological group such that G is isomorphic to the projective limit of all quotient groups G/N (modulo closed normal subgroups N) such that G/N is a finite dimensional real Lie group. A topological group is almost connected if the totally disconnected factor group $G_0 = G/G_0$ of G modulo the identity component G_0 is compact. In this case it is straightforward that each Lie group quotient G/N of G has finitely many components. However, in spite of a comprehensive literature on pro-Lie groups, the following theorem, proved here, was not available until now:

Theorem. A pro-Lie group G is almost connected if each of its Lie group quotients G/N has finitely many connected components.

The difficulty of the proof is the verification of the completeness of G_t.

Mathematics Subject Classification 2010: 22A05, 22e15, 22e65, 22e99.

Key Words and Phrases: Pro-Lie groups, almost connected groups, projective limits.

Projective Limits of Almost Connected Lie Groups

A notorious problem in the structure theory of pro-Lie groups is the completeness of quotient groups, notably that of the group G/G_0 of connected components. In one of the sources on pro-Lie groups, [2], the section following Definition 4.24 on pp.195ff. exhibits some of the characteristic difficulties involving the completeness of quotients of a pro-Lie group G in general and the quotient $G_1 = G/G_0$ in particular. In their entirety, these difficulties remain unresolved today. We shall settle the completeness issue of G_1 here for any pro-Lie group whose Lie group quotients have finitely many components.

Existing literature (see [4], Corollary 8.4) provides the following conclusion, which reinforces the independent interest in the result of this note:

An almost connected pro-Lie group G contains a maximal compact subgroup C and a closed subspace V homeomorphic to \mathbb{R}^J for a set J such that $(e, x) \mapsto cx: C \times V \to G$

is a homeomorphism.

So, let G denote a topological group and $\mathcal{N}(G)$ the set of all closed normal subgroups of G for which G/N is a Lie group. With these conventions we formulate a theorem, to be proved subsequently. The proof requires some effort. It is based on information from [2].
Theorem 1. For a pro-Lie group G, the following statements are equivalent:

1. G_t is compact,
2. There is a compact totally disconnected subspace $D \subseteq G$ being mapped homeomorphically onto G_t by the quotient map $q_t: G \to G_t$.
3. $(G/N)_t$ is finite for all $N \in \mathcal{N}(G)$.

The proof of the theorem will require the proof of some new lemmas and some references to existing literature. The first one is cited from [4], Main Theorem 8.1, Corollary 8.3.

Lemma 2. Let G be an almost connected pro-Lie group. Then the following conclusions hold:

(i) G contains a maximal compact subgroup C, and any compact subgroup of G has a conjugate inside C.
(ii) $G = G_0C$.
(iii) G contains a profinite subgroup D such that $G = G_0D$.

For every compact group K there is a compact totally disconnected subspace $D \subseteq K$ such that $(k,d) \mapsto kd : K_0 \times D \to K$ is a homeomorphism (see [3], Corollary 10.38, p. 573). From Lemma 2 we know that G is almost connected iff there is a compact subgroup $K \subseteq G$ such that $G = G_0K$. Write $K = K_0D$ with the topological direct factor $D \subseteq K$ as we just pointed out. Then $G = G_0K_0D = G_0D$ and so $(g,d) \mapsto gd : G_0 \times D \to G$ is readily seen to be a homeomorphism. Thus, in Theorem 1 Condition (1) implies (2), and for (2)\Rightarrow(1) there is nothing to prove.

Let us establish that (1)\Rightarrow(3):
Assume G/N to be a Lie group quotient of G. Then $(G/N)_0 = G_0N/N \cong G_0/(G_0 \cap N)$ (cf. [2], Lemma 3.29, p.152). Let K be a compact subgroup of G such that $G = G_0K$, and let $L = G/N$. Then $L = (G_0N/N)(KN/N) = L_0C$ for the compact Lie group $C = KN/N$. Thus $L_t = L_0C/L_0 \cong C/(C \cap L_0)$ is a compact totally disconnected Lie group and is therefore finite. This proves (3).

There remains a proof of the implication (3)\Rightarrow(1):
For the moment let us assume that the following hypothesis is satisfied

(H) G_t is a complete topological group.

By [2], Corollary 3.31, hypothesis (H) implies that G_t is prodiscrete, that is, $G_t = \lim_{N \in \mathcal{N}(G)} G_t/N$ where G_t/N is discrete. Now G_t/N is a Lie group quotient of G and so is finite by (3). Hence G_t is profinite and thus compact. This proves Condition (1).

It therefore remains to prove (H). For this purpose we shall invoke results from [2], pp.195ff.
Firstly, we define $\mathcal{M}(G)$ to be the subset of all $M \in \mathcal{N}(G)$ with the additional property that each open subgroup $N \subseteq M$ from $\mathcal{N}(G)$ has finite index in M. We shall then use

Lemma 3. If G is a pro-Lie group such that

(*) each Lie group quotient G/N, $N \in \mathcal{N}(G)$ is almost connected, then $\mathcal{M}(G)$ is cofinal in $\mathcal{N}(G)$ and thus is a filter basis.

Moreover, G is the strict projective limit of the G/M, $M \in \mathcal{M}(G)$.

Proof. For the proof see Lemma 4.25 in [2], pp.195 and 196.

We note that Lemma 4.25 in [2] states as hypothesis that G is almost connected which implies (*). But the hypothesis (*) is all that is used in the proof of Lemma 4.25.

Any set \mathcal{Z} of subsets of a set G may be considered as a subbasis of closed sets for a topology. If G is a topological group, and \mathcal{Z} is the set of all cosets gM with $g \in G$ and $M \in \mathcal{M}(G)$, then \mathcal{Z} generates the set of closed sets of a topology on G, called the \mathcal{Z}-topology.

Lemma 4. The \mathcal{Z}-topology on a pro-Lie group G satisfying Condition (*) of Lemma 3 is a compact T_1-topology.

Proof. See Proposition 4.27 of [2], pp. 197–201.

Again we note that Proposition 4.27 in [2] assumes the hypothesis that G is almost connected, but the proof of the conclusion of Lemma 4 only uses Hypothesis (*) of Lemma 3.

We now adjust the proof of Theorem 4.28 on p. 202 of [2] for our purposes.

Lemma 5. Let G be a pro-Lie group satisfying hypothesis (*) of Lemma 3. Then G_ι is complete.

We note right away that Lemma 5 will prove hypothesis (H) and therefore complete the proof of Theorem 1.

Proof of Lemma 5. We let $f: G \to G_\iota = G/G_0$ be the quotient morphism and consider a Cauchy filter \mathcal{C} on G_ι. We have to show that \mathcal{C} converges. By Lemma 3, $\mathcal{M}(G)$ is cofinal in $\mathcal{N}(G)$. For each $N \in \mathcal{M}(G)$ let $N^* = \overline{f(N)}$ and let $p_N \cdot : G \to G_\iota/N^*$ be the quotient morphism. Then the image $p_{N^*}(\mathcal{C})$ is a Cauchy filter in the Lie group G_ι/N^* and thus has a limit g_N. Then $(g_N)_{N \in \mathcal{M}(G)} \in \prod_{N \in \mathcal{M}(G)} G_\iota/N^*$ is an element of $\lim_{N \in \mathcal{M}(G)} G_\iota/N^*$; indeed \mathcal{C} has to converge to a point in the completion of G_ι. Now let $F_N = (p_{N^*} \circ f)^{-1}(g_N)$. Then $\{F_N : N \in \mathcal{M}(G)\}$ is a filter basis consisting of cosets modulo $N_* = \overline{G_0N}$ of G. We claim that $N_* \in \mathcal{M}(G)$. Indeed we have $N_* \in \mathcal{N}(G)$. Now we let
M be an open subgroup of $N_0 \supset G_0$. Then $G_0 \subseteq M$, so $G_0 N \subseteq MN$ and MN is open-closed in $N_0 = \frac{G_0 N}{M}$. Thus $N_0 = MN$. So $MN/M \cong N/(N \cap M)$ is discrete and then $M \cap N$ is open in N. But $N \in \mathcal{M}(G)$ then implies that $N_0/M \cong N/(M \cap N)$ is finite. This shows that $N_0 \in \mathcal{M}(G)$ as claimed. Since G is Z-compact by Lemma 4 we find an element $g \in \bigcap_{N \in \mathcal{M}(G)} F_N$. But then $p_N(f(g)) = g_N$ for all $N \in \mathcal{M}(G)$ which implies that $f(g) = \lim C$. Thus every Cauchy filter in G_t converges showing that G_t is complete.

This completes the proof of Theorem 1.

An inspection of [2] shows that the following questions appear to be unsettled:

Question 1. For which pro-Lie groups G is $\mathcal{M}(G)$ cofinal in $\mathcal{N}(G)$?

For each of these groups G we would know that G is (isomorphic to) the strict projective limit $\lim_{M \in \mathcal{M}(G)} G/M$. In [2] this is proved of all almost connected pro-Lie groups.

Test examples are the nondiscrete pro-discrete groups $\mathbb{Z}^{(N)}$ and \mathbb{Z}^N (see e.g. [2], Example 4.4ff., Proposition 5.2).

Question 2. For which pro-Lie groups is the Z-topology compact?

In [2], Proposition 4.27, this is shown for almost connected pro-Lie groups, and here we have proved it for those pro-Lie groups G all of whose Lie group quotients are known to be almost connected.

Theorem 1 suggests the following rather general question:

Question 3. When is the projective limit of a projective system of almost connected topological groups almost connected?

Theorem 1 says that within the category of pro-Lie groups we have an affirmative answer for the projective system of all Lie group quotients. See also some background information in [2] in and around Theorem 1.27, p. 88.

One remark is in order in the context of the Z-topology discussed in [2] on pp. 197–203:

In Exercise E4.2(i), p. 202, it is pointed out that $\mathcal{M}(\mathbb{Z}) = \{\{0\}, \mathbb{Z}\}$ and that therefore the Z-topology on \mathbb{Z}, being the cofinite topology, is compact. Whereas the topology generated by the set of cosets $z + N$, $N \in \mathcal{N}(\mathbb{Z})$, the set of all subgroups of \mathbb{Z}, fails to be compact.

Theorem 1 will play a significant role in the authors’ study [1] of weakly complete real or complex topological algebras with identity, which will explore in detail their relation to pro-Lie theory and aims for a systematic treatment of weakly complete group algebras of topological groups and their representation and duality theories.

Acknowledgment. The authors thank the referee for his swift, yet thorough contributions to the final form of this note.
References

[1] R. Dahmen and K. H. Hofmann, *Weakly Complete Unital Algebras, Group Algebras, and Pro-Lie Groups*, in preparation.

[2] K. H. Hofmann and S. A. Morris, “The Lie Theory of Connected Pro-Lie Groups—A Structure Theory for Pro-Lie Algebras, Pro-Lie Groups, and Connected Locally Compact Groups,” European Mathematical Society Publishing House, 2006.

[3] K. H. Hofmann and S. A. Morris, “The Structure of Compact Groups,” 3rd Edition, De Gruyter Studies in Mathematics 25, De Gruyter, Berlin, 2013.

[4] K. H. Hofmann and S. A. Morris, *The Structure of Almost Connected Pro-Lie Groups*, J. of Lie Theory 21 (2011), 347–383.