Exposure Medium: Key in Identifying Free Ag^+ as the Exclusive Species of Silver Nanoparticles with Acute Toxicity to Daphnia magna

Mo-Hai Shen1, Xiao-Xia Zhou1, Xiao-Ya Yang1,2, Jing-Bo Chao3, Rui Liu1 & Jing-Fu Liu1

1State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China. 2School of the Environment, Jiangsu University, Zhenjiang 212013, China. 3Chemical Metrology and Analytical Science Division, National Institute of Metrology, Beijing 100013, China.

It is still not very clear what roles the various Ag species play in the toxicity of silver nanoparticles (AgNPs). In this study, we found that traditional exposure media result in uncontrollable but consistent physicochemical transformation of AgNPs, causing artifacts in determination of median lethal concentration (LC50) and hindering the identification of Ag species responsible for the acute toxicity of AgNPs to Daphnia magna. This obstacle was overcome by using 8 h exposure in 0.1 mmol L$^{-1}$ NaNO$_3$ medium, in which we measured the 8-h LC50 of seven AgNPs with different sizes and coatings, and determined the concentrations of various Ag species. The LC50 as free Ag$^+$ of the seven AgNPs (0.37–0.44 μg L$^{-1}$) agreed very well with that of AgNO_3 (0.40 μg L$^{-1}$), and showed the lowest value compared to that as total Ag, total Ag$^+$, and dissolved Ag, demonstrating free Ag$^+$ is exclusively responsible for the acute toxicity of AgNPs to D. magna, while other Ag species in AgNPs have no contribution to the acute toxicity. Our results demonstrated the great importance of developing appropriate exposure media for evaluating risk of nanomaterials.

Due to their unique properties especially the excellent antibacterial capability, silver nanoparticles (AgNPs) are produced in large production and applied in various areas$^{1–4}$. This leads to the release of AgNPs into the environments, and the wide detection of AgNPs together with their transformation products like nanoparticulate Ag$_2$S in waste water treatment plants5. Therefore, the environmental processes and toxicity of AgNPs are more and more concerned.

Various studies on the toxicity of AgNPs, especially to aquatic organisms, were studied and well reviewed recently$^{1–4}$. However, the mechanisms of the toxicity of AgNPs to organisms are not quite clear yet. Although some studies suggest that only the dissolved silver is responsible for the toxicity to Daphnia magna6,7, many results suggest that both the dissolved and nanoparticulate silver contribute to the toxicity of AgNPs, and Ag$^+$ is the main source of direct toxicity$^{8–15}$.

Since AgNPs are highly dynamic in aquatic systems, during the exposure they would undergo different chemical and morphology transformation, such as chemical oxidation of AgNPs to release Ag$^+$, formation of second generation AgNPs from the released Ag$^+$, and the aggregation/reconstitution of AgNPs, which would in turn greatly affect their bioavailability and toxicity$^{8,16–28}$. Consequently, it is likely that in aquatic exposure systems, AgNPs are present in altered morphology, and co-existed with released Ag$^+$ that may present in the forms of free ions and complexes with the capping agents or ligands in the exposure media, as well as adsorbed on the particles. It was reported that during the exposure of AgNPs to D. magna, the standard exposure media recommended by Organization for Economic Co-operation and Development (OECD) and Environmental Protection Agency (EPA) with salts like CaCl$_2$(CaSO$_4$), MgCl$_2$(MgSO$_4$) and Na$_2$CO$_3$(NaHCO$_3$) usually cause uncontrollable but consistent aggregation of AgNPs, and variation of silver species concentration due to the reaction of Ag$^+$ with Cl$^-$, SO$_4^{2–}$, CO$_3^{2–}$ in the culture media, and therefore gave rise to changes in organism exposure levels and the nature of the exposed particles compared to exposure to fully dispersed particles8,24,29. However, these very few studies focus on the physical effects, and the variation of chemical species of AgNPs in the exposure media remains unclear. Thus, to elucidate the toxicity mechanism of AgNPs to D. magna, it is of great
importance to develop exposure media that are able to preserve the initial physical and chemical properties of AgNPs during the exposure, as well as to accurately determine the various Ag species in AgNPs.30,31

Currently, various methods have been developed to determine the optional species in AgNPs. Dialysis17 and flow field-flow fractionation32–36 was used to separate AgNPs from free Ag+ and low molecular weight (MW) ligand complexes Ag+. Centrifugal ultrafiltration (UF)29,37,38 and diffusive gradients in thin films (DGT)39 were adopted to separate AgNPs from dissolved Ag, which including free Ag+, ligand complexed Ag+, and tiny AgNPs (<2 nm). While ion-selective electrode (ISE) provides an inexpensive, sensitive and selective technique for direct measurement of free Ag+35,36, single-particle inductively coupled plasma mass spectrometry was adopted to directly quantify AgNPs with sizes ≥20 nm38,39. Cloud point extraction40–44, reversed-phase liquid chromatography (LC)45,46 and capillary electrophoresis (CE)47 were coupled with inductively coupled plasma mass spectrometry (ICP-MS) for speciation test of AgNPs and insoluble Ag+, which was defined as including free Ag+, Ag+ complexed with ligands, Ag+ adsorbed on the AgNP surface, and originally undissolved silver salts that can be dissolved in the presence of Na2S2O3.

The objective of this work is to evaluate the contribution of various Ag species in AgNP exposure mixtures to the toxicity towards D. magna. To exclude the artifacts from the exposure media, we at first sought an exposure medium that was able to minimize the aggregation of AgNPs, eliminate the precipitation of Ag+, and ensure the living of D. magna. Then, the acute toxicity of AgNPs with varied coating and sizes were assessed using the optimized medium, and the median lethal concentration (LC50) in terms of total Ag, free Ag+, total Ag+, dissolved Ag, and nano Ag were determined with different analytical techniques. Finally, the concentration of various Ag species in exposure mixtures of different AgNPs were compared to LC50 of Ag+ as AgNO3, to identify which species of Ag is responsible for the AgNP acute toxicity towards D. magna.

Results

Characterization of AgNPs. A series of AgNPs varied in their primary size and surface coating were studied herein. Fig. S1 (Supporting Information (SI)) shows that both the synthesized polyvinylpyrrolidones (PVP) coated AgNPs (herein referred to as AgNP_PVP) and commercially obtained sodium-citrate coated AgNPs (herein referred to as AgNP_CIT) were in spherical or near-spherical structures in ultrapure water. No visible coatings were evident in AgNP_PVP transmission electron microscopy (TEM) images, indicating the excess PVP in suspensions were effectively removed in wash procedures. Counted from over 133 particles in TEM images, the respective primary particle sizes of the two synthesized AgNP_PVP were 9.9 ± 2.2, and 28.1 ± 4.6 nm (herein referred to as AgNP_PVP1 and AgNP_PVP28), while that of the 5 commercial AgNP_CIT (herein referred to as AgNP_CIT1, AgNP_CIT10, AgNP_CIT20, AgNP_CIT40 and AgNP_CIT100) were 9.2 ± 1.7, 20.7 ± 2.8, 40.0 ± 3.9, 56.3 ± 5.9, 95.5 ± 7.8 nm, respectively, agreed very well with their commercially reported sizes. All the studied AgNPs had a negative z-potential in ultrapure water, due to that PVP or citrate were used as stabilizing and coating material.

Development of Acute Toxicity Testing Medium for Daphnia magna. The EPA and OECD standard exposure media with diverse ions were established with primary concerns for the living maintenance of D. magna. These media have long been applied for testing the acute toxicity of traditional chemicals, as they do not cause physicochemical changes to the tested chemicals. Given the various ions in EPA and OECD media could alter the state and speciation of AgNPs/Ag+ for their special properties, NaNO3 was selected to develop a medium that is able to maintain both the state of AgNPs/Ag+ and the living of D. magna, even though a medium containing single type of ion would not be favourable for the survival of D. magna as the EPA and OECD media did. The 48-h mortality experiments showed that with 0.1 mmol L⁻¹ NaNO3 medium (pH 7.8 ± 0.2 adjusted by NaOH), the D. magna all lived well and showed normal behavior in at least 14 h without feeding, while with NaNO3 media at other studied concentrations the death of D. magna occurred within 8-h exposure, indicating the media with either higher or lower concentrations of NaNO3 were more toxic relative to 0.1 mmol L⁻¹ NaNO3 upon D. magna (Fig. 1). The higher toxicity of media with higher concentration of NaNO3 would probably due to the toxicity of NO3⁻ to D. magna, whereas the more toxic of media with lower concentration of NaNO3 could be attributed to the insufficient ionic strength of the media to maintain the lives of D. magna. Thus, test of 8-h acute toxicity to D. magna in 0.1 mmol L⁻¹ NaNO3 (pH 7.8 ± 0.2 adjusted by NaOH) medium was adopted as optimum. We acknowledge that the 8-h exposure was relatively short, but it was a compelled choice due to concerns over the survival assurance of D. magna in this specific exposure medium. It should also be noted that, as the aim of this study was to identify the relative importance of various Ag species in AgNP exposure mixtures to the acute toxicity towards D. magna by using a reliable exposure medium, the relative short term exposure would actually help understand the rapid response of D. magna to certain Ag species, thus reveal the Ag species with relatively high acute toxicity towards D. magna. In addition, it was found that some previous studies also chose short term exposure (≤8 h) in toxicity study to D. magna to meet special concerns48,49.

Figure 2 shows the characterization of a representative AgNP, AgNP_CIT20, at 8 h after being spiked in four exposure media including OECD simplified M4 (SM4) medium, EPA hard water, 0.1 mmol L⁻¹ NaNO3, and ultrapure water, respectively. While the OECD and EPA media induced the aggregations of AgNPs (hydrodynamic sizes and TEM results shown in Fig. 2A–D), suppressed the absorbance at 400 nm (Fig. 2E), and turned the suspension color to blue (photograph) relative to that in ultrapure water, the 0.1 mmol L⁻¹ NaNO3 medium resulted in negligible change in comparison to that in ultrapure water. Fig. 2F also shows the total Ag⁺ released from these media during 8-h exposure. At the initial of exposure, the total Ag⁺ content accounted for only 1.3% of the total Ag in AgNP_CIT20 (4 mg L⁻¹ as total Ag). In OECD and EPA media, proportions of total Ag⁺ increased to 5.0% and 2.7%, respectively. Whereas, the total Ag⁺ elevated only a little to 1.6% in NaNO3 medium and to 1.7% in ultrapure water at the end of 8-h exposure. The analysis of variance (ANOVA) results further indicated that the total Ag⁺ release from the later two media had no significant differences either during
Characterization of AgNP\textsubscript{CIT20} (4 mg L-1) at the end of or during 8-h exposure

(A) OECD SM4

\begin{tabular}{|c|c|}
\hline
HS: & 1769 ± 163 \\
\hline
PDI: & 0.930 ± 0.121 \\
\hline
\end{tabular}

(B) EPA hard water

\begin{tabular}{|c|c|}
\hline
HS: & 1561 ± 63.5 \\
\hline
PDI: & 0.884 ± 0.087 \\
\hline
\end{tabular}

(C) 0.1 mmol L-1 NaNO\textsubscript{3}

\begin{tabular}{|c|c|}
\hline
Total Ag+ & 30.15 ± 4.49 \\
\hline
Ag+ & 0.133 ± 0.015 \\
\hline
\end{tabular}

(D) Ultrapure water

\begin{tabular}{|c|c|}
\hline
Total Ag+ & 26.64 ± 0.27 \\
\hline
Ag+ & 0.112 ± 0.011 \\
\hline
\end{tabular}

(E) UV-vis spectra of AgNP\textsubscript{CIT20} (4 mg L-1) in these media at the end of 8-h exposure.

(F) Release of total Ag+ from AgNP\textsubscript{CIT20} (4 mg L-1) in these media during 8-h exposure.

Figure 2 | Characterization of AgNP\textsubscript{CIT20} (4 mg L-1) at the end of or during 8-h exposure in different media. (A–D) Photograph, TEM images, hydrodynamic sizes (HS, nm) and polydispersity index (PDI) of AgNP\textsubscript{CIT20} (4 mg L-1) in OECD SM4, EPA hard water, 0.1 mmol L-1 NaNO\textsubscript{3} and ultrapure water at the end of 8-h exposure. (E) UV-vis spectra of AgNP\textsubscript{CIT20} (4 mg L-1) in these media at the end of 8-h exposure. (F) Release of total Ag+ from AgNP\textsubscript{CIT20} (4 mg L-1) in these media during 8-h exposure.

Median Lethal Concentration of AgNPs to Daphnia magna in 0.1 mmol L-1 NaNO\textsubscript{3} Medium. The mortality values of D. magna against exposure concentrations of AgNO\textsubscript{3} and AgNPs were quantitatively presented in Fig. 3, with lethal concentration probability lines obtained from probit regressions by SPSS 16.0 software on the basis of the original data. The median lethal concentration for 8-h (LC\textsubscript{50\textsubscript{8-h}}) as nominal total Ag showed that toxicity of AgNPs spanned an order of magnitude with values varying in the range of 5.04 to 144.25 μg L-1, and AgNO\textsubscript{3} was much acute toxic than AgNPs with LC\textsubscript{50\textsubscript{8-h}} of 0.78 μg L-1 (Table S1 of SI). For AgNO\textsubscript{3}, the LC\textsubscript{50\textsubscript{8-h}} agreed with the 48-h LC\textsubscript{50}, which was reported as 0.58–2.51 μg L-1 as nominal total Ag in literature6,7,10,11,50–52.

Measured Concentrations of Ag Species in AgNP Suspensions Equivalent to LC\textsubscript{50\textsubscript{8-h}}. With the analytical methods shown in
proportions of 0.32% to 9.31% of the measured total Ag, and the proportion increased significantly as the size of AgNP increased (Table S3 of SI).

Concentrations of total Ag\(^+\) and dissolved Ag were relatively higher than that of free Ag\(^+\) in identical AgNP suspension, with concentration ranges of 1.05–2.62 µg L\(^{-1}\) and 0.91–1.58 µg L\(^{-1}\), respectively. Although LC50\(_{0.5\text{h}}\) as total Ag\(^-\) and dissolved Ag both differed significantly among AgNP suspensions (p < 0.05, Table S4 of SI), neither of them showed size-dependent changes among AgNPs.

Compared with the above Ag species, the nano Ag was the primary portion in AgNP suspension. For AgNPs with the same coating, the proportion of nano Ag generally increased with the size of AgNPs. Take AgNPCIT\(_{10}\) for instance, the proportion of nano Ag increased from 81.57% to 98.30% as the size of AgNPCIT\(_{10}\) elevated from 10 nm up to 100 nm.

Relevance of Different Silver Species to the Toxicity towards Daphnia magna. With the above measured concentration of various Ag species in AgNP suspensions equivalent to LC50\(_{0.5\text{h}}\), we can present the LC50\(_{0.5\text{h}}\) values in terms of different Ag species. As shown in Fig. 4, for the seven tested AgNPs, while the LC50\(_{0.5\text{h}}\) for nano Ag spanned over an order of magnitude, the LC50\(_{0.5\text{h}}\) for different dissolved Ag species were relatively close to that as Ag\(^+\) in AgNO\(_3\). To identify the most responsible Ag species to the toxicity of AgNP suspension towards *D. magna*, ANOVA was performed to test the significances of concentrations of different dissolved Ag species among AgNPs with that from the LC50\(_{0.5\text{h}}\) values for AgNO\(_3\) (Table S4 of SI). First, the free Ag\(^+\) concentrations in AgNP suspensions at their LC50\(_{0.5\text{h}}\) concentration levels had no significant differences from the measured free Ag\(^+\) LC50\(_{0.5\text{h}}\) for AgNO\(_3\) (0.40 µg L\(^{-1}\) as Ag\(^+\)) either (p = 0.66, >0.05). For concentrations of total Ag\(^+\) and dissolved Ag, however, the ANOVA results showed that the two Ag species had significant difference from the measured free Ag\(^+\) LC50\(_{0.5\text{h}}\) for AgNO\(_3\) (p < 0.05).

Discussion

In traditional exposure media, a critical obstacle in the toxicity study of AgNPs was the occurrence of uncontrollable but consistent physical and chemical transformation (e.g., aggregation and dissolution) of AgNPs, due to the high chemical reactivity of Ag\(^0\) with dissolved O\(_2\) and Ag\(^+\) with anions like Cl\(^-\). In addition, the relatively high ionic strength of the exposure media also lead to physical changes of AgNPs, which in turn affects the dissolution of AgNPs to release Ag\(^+\). Therefore, the measured concentrations of Ag species in traditional media at an exact time point cannot profile the concentration during the entire exposure period (as shown in Fig. 2F). However, currently most of the reported LC50 of different Ag species to *D. magna* or other aquatic organisms in OECD/EPA media were related to concentrations of corresponding Ag species at the initial or end point of 24-h or 48-h exposure, which inevitably causes large artifacts in the measured LC50 values due to the significant changes of state and speciation of AgNPs/Ag\(^+\), regardless they were presented as total Ag.

Table 1 | Definition and Quantification Method of the Studied Ag Species in AgNP Exposure Media

Ag species defined	Ag forms included	quantification method
Total Ag	All forms of Ag in suspension	ICP-MS after digestion
Free Ag\(^+\)	Freely dissolved Ag\(^+\)	Ion-selective electrode [ISE]
Total Ag\(^+\)	Free Ag\(^+\) Ag\(^+\) complexed with ligands Ag\(^+\) adsorbed on the AgNP surface	LC-ICP-MS
Dissolved Ag	Free Ag\(^+\) Ag\(^+\) complexed with ligands Tiny AgNPs (<2 nm)	ICP-MS after centrifugal ultrafiltration with 30-kDa filter [UF&ICP-MS]
Nano Ag	Ag nanoparticles	The measured total Ag minus total Ag\(^+\)
dissolved Ag, or free Ag⁺. Consequently, previous studies have reported mixed results: some showed dissolved Ag is responsible for the AgNP toxicity⁶⁻¹², others show free Ag⁺ predominant toxicity¹⁰,¹² and particle-specific toxicity⁷,¹⁴. In this study, by using 8-h exposure in 0.1 mmol L⁻¹ NaNO₃ medium, the uncertainty of physical changes of AgNPs and their influences on the dissolution of AgNPs during exposure were significantly excluded. The ANOVA results on Ag⁺ contents in the representative AgNPCIT₂₀ suspension further showed that, the Ag⁺ contents during the 8-h exposure in the 0.1 mmol L⁻¹ NaNO₃ medium had no significant changes (p = 0.06, >0.05), suggesting the optimized exposure medium in the present study could significantly retard the dissolution and oxidation of AgNPs to Ag⁺ during the 8-h exposure procedure. Therefore, this more reliable exposure medium ensured the quantification of Ag species in solutions equivalent to the LC₅₀₈-h conditions, and the identification of the relative importance of various Ag species in AgNP exposure mixtures to the toxicity towards *Daphnia magna*. This excluded the artifacts in evaluation of LC₅₀, thus unlike the wide span of LC₅₀ value as free Ag⁺ (0.57–1.1 μg L⁻¹) reported in a previous study¹², almost the same LC₅₀ value (0.37–0.44 μg L⁻¹) as free Ag⁺ was obtained for 7 different AgNPs in this study.

Based on the LC₅₀ values (Fig. 4) that was accurately measured with the proposed exposure procedure, it is possible to weight the actual contribution of different Ag species to the toxicity of AgNPs, and therefore distinguish the intrinsic Ag species responsible for the acute toxicity of AgNP suspension to *D. magna*.

For all the tested seven AgNPs with different coatings and sizes, the values of LC₅₀₈-h, as free Ag⁺ were very close to that of AgNO₃, and were lower than that as total Ag⁺ and dissolved Ag. Given that the total Ag⁺ covered the free Ag⁺, Ag⁺ complexes and absorbed Ag⁺ on AgNP surfaces, and the dissolved Ag contained free Ag⁺, Ag⁺ complexes and tiny AgNPs, these results thus indicated that the other parts except for free Ag⁺ showed no contribution to the acute toxicity, namely free Ag⁺ is the exclusive contributor of acute toxicity to *D. magna*. If the measured LC₅₀ as total Ag⁺ or dissolved Ag had been lower than that as free Ag⁺, it would have indicated that the AgNP adsorbed Ag⁺, ligand complexed Ag⁺, and tiny AgNPs contributed to the observed toxicity.

To aquatic organisms, it is generally believed that free metal ions are bioavailable, while other metal species such as metal ions complexed with organic ligands, and associated to dissolved organic matter or particles are not bioavailable¹³–¹⁵. Since AgNPs were reported to be directly available, it is controversial if AgNPs showed particle effects to the acute toxicity to organisms. Our results suggest that particulate AgNPs, even tiny AgNPs (<2 nm) that was found to present in the dissolved Ag (Fig. S2 of SI), showed negligible contribution to the acute toxicity to *D. magna*. Although the 8-h acute toxicity exposure performed in the present study was relatively shorter than that in traditional experiments, it in fact proved that the free Ag⁺ showed highly acute toxicity towards *D. magna* at a very short term relative to any other Ag species. It is noteworthy that this is the first study elucidating free Ag⁺ is exclusively responsible for the acute toxicity of AgNPs to *D. magna*, though previous studies reported that free Ag⁺ dominate the toxicity of AgNPs to bacteria¹⁶,¹⁷.

Numerous studies have reported the influence of size and coating on the toxicity of AgNPs. Difference of 48-h LC₅₀ values among three AgNPs with different coatings¹⁶ and varied sizes¹⁷ were reported. The present study showed that the acute toxicity of AgNPs to *D. magna* represented as total Ag decreased in the order of AgNO₃ > AgNPCIT₁₀ > AgNPCIT₂₀, and the toxicity of AgNPCIT₂₀ decreased with the increase of size. Specifically, the LC₅₀₈-h as total Ag among AgNPs with different sizes and surface coatings varied by a factor of 27. Apparently, this was probably due to the changes of dissolution of different types of AgNPs as influenced by nanoparticle size and surface-coating. For AgNPs with the same coating, the proportion of total Ag⁺ generally decreased with the increasing size of AgNPs. Take AgNPCIT for instance, the proportion of total Ag⁺ decreased from 18.43% to 1.70% as the size of AgNPCIT elevated from 10 nm to 100 nm. This was in accordance with expectation since the increase of AgNP particle size reduced the relative surface area, thus retarded the release of dissolved Ag species, and exhibit lower toxic responses²⁰. For AgNPCIT₁₀ and AgNPCIT₂₀ with similar sizes, the proportion of total Ag⁺ for AgNPCIT₁₀ was generally higher than that of AgNPCIT₂₀, which could be attributed to the reducibility of sodium-citrate relatively retarded the dissolution of Ag⁺ to Ag⁰. However, the LC₅₀₈-h as free Ag⁺ showed no significant difference among AgNPs and agreed very well with that of AgNO₃. Together, our results indicate free Ag⁺ was the intrinsic and ultimate reason that governs the acute toxicity of AgNPs, while size and surface coating are apparent factors that influence the toxicity through affecting the free Ag⁺ concentration of AgNPs.

In summary, uncontrollable but consistent physical and chemical transformation of AgNPs occurred in traditional OECD and EPA exposure media, which hinders the identification of Ag species of AgNPs responsible for the acute toxicity to *D. magna*. By using 8 h exposure in 0.1 mmol L⁻¹ NaNO₃ medium, the artifacts in determination of LC₅₀ were excluded, and the LC₅₀₈-h as free Ag⁺ of all the seven AgNPs were found to be almost the same and agree with that of AgNO₃. More importantly, with this developed exposure procedure, we found that free Ag⁺ is exclusively responsible for the acute toxicity of AgNPs to *D. magna*, while other Ag species in AgNPs like Ag⁺ complexes, Ag⁺ absorbed on AgNP surfaces, and nanoparticulate Ag showed no contribution to the acute toxicity. Our results also showed that free Ag⁺ was the intrinsic and ultimate factor that governs the acute toxicity of AgNPs, while size and surface coating are apparent factors that influence the toxicity through affecting the free Ag⁺ concentration of AgNPs.

Methods

Organisms, Chemicals and Materials. *D. magna* was obtained from Chinese Center for Disease Control and Prevention (Beijing, China), cultured in the charcoal-filtered tap water at 25°C and 16:8 h light: dark cycle and fed daily with green algae Scenedesmus quadricauda. *S. quadricauda* were cultured in Shuisheng NO. 4 medium (containing (NH₄)₂SO₄ 1.55 mmol L⁻¹, Ca(H₂PO₄)₂ 0.93 mmol L⁻¹, CaSO₄ 0.40 mmol L⁻¹, MgSO₄ 0.32 mmol L⁻¹, NaHCO₃ 1.19 mmol L⁻¹, KH₂PO₄ 0.34 mmol L⁻¹, FeCl₃ 0.03 mmol L⁻¹ and soil-extract 0.5 ml) at 25°C and 16:8 h light: dark cycle. Commercially available AgNPCIT (AgNPCIT₁₀, AgNPCIT₂₀, AgNPCIT₄₀, AgNPCIT₆₀ and AgNPCIT₁₀₀) were purchased from Sigma-Aldrich (St. Louis, MO).
PVP with molecular weight of 10,000 Da (VPV10,000) and 58,000 Da (VPV58,000) were purchased from Sigma-Aldrich and Aladdin Chemistry (Shanghai, China), respectively. The Fl-70 was obtained from Fisher Scientific (Fair Lawn, NJ). Silver nitrate (AgNO3), sodium thiosulfate (Na2S2O3), sodium borohydride (NaBH4), and nitric acid (65%) were obtained from Merck (Darmstadt, Germany). Amicon Ultra-15 centrifugal filter (with nominal molecular weight cut-off of 30 kDa) were obtained from Millipore (Darmstadt, Germany). All reagents were used without further purification. Ultrapure water (18 MΩ cm) produced from a Millipore Milli-Q Gradient system (Billerica, MA) were used to prepare all solutions throughout experiments.

Synthesis and Characterization of AgNPs. Besides the 5 commercial AgNPCTD24, another two AgNPPVP (AgNPV10,000 and AgNPV58,000) were used in the present study. The two AgNPVVP were synthesized following methods from published works57,58, and details were shown in SI.

Characterization and Quantification of AgNPs. The TEM observation was performed on JEM-2100F (JEOL) (see details in SI). The concentrations of AgNPs were quantified by ICP-MS (Agilent 7700, Santa Clara, CA) and each AgNPs. Exposures were conducted at LC508-h (as total Ag), were measured in new exposure medium with traditional media on the stability of AgNP suspensions equivalent to LC508-h (as nominal total Ag) of AgNO3 and AgNPs were prepared in 0.1 mmol L−1 NaNO3 medium in 50-mL glass beakers. Given the predictable sorption of Ag+ to glass beakers after the preparation standard solutions would result in deviations of calibration, the Ag+ concentrations of ICP-MS standards were determined by ICP-MS simultaneously with the ISE standards (Fig. S3 of SI). The LC50 values determined by the coupling of ISE and ICP-MS system were quantified by ISE for measuring the free Ag+ in samples of AgNPs and AgNO3. A linear calibration obtained over the whole concentration range with slope of 50.7 mV was represented in Fig. S4 of SI. Free Ag+ measurements for each AgNP suspension were conducted at least in triplicates. The electrode was carefully washed with ultrapure water after each measurement, and dried off by dust-free paper prior to the next measurement.

Determination of Total Ag+ by LC-ICP-MS. Concentrations of total Ag+ in AgNPs at LC30h (as nominal total Ag) were measured using on-line coupled LC (Agilent 1200, Santa Clara, CA) and ICP-MS (Agilent 7700). This LC-ICP-MS was recently established by our group for speciation analysis of nanoparticulate Ag (1–100 nm) from dissoluble Ag+, which was defined to include free Ag+, Ag+ complexed with ligands, Ag+ adsorbed on the AgNP surface, and originally undissolved Ag(II) salts that can be dissolved in the presence of Na2S2O3. For the simple AgNP exposure mixture used in this study, the dissolvable Ag+ equals to the total Ag+. Briefly, the LC separation of total Ag+ from the AgNP sample (20 μL) was performed with a Vensil Durashell-NH2 amino column (250 × 4.6 mm I.D., 5 μm particle size, 50 Å pore size, Bonna-Agela Technologies Inc., Tianjin, China) and a mobile phase of 0.1% (v/v) FL-70 (a surfactant) and 2 mmol L−1 NaNO3 in ultrapure water at a flow rate of 0.7 mL min−1. The total Ag+ was identified by the coupling (Fig. S5 of SI). For the measurement of total Ag+ in AgNPs at LC50h, into the AgNP samples were added 2 mmol L−1 Na2S2O3 just before injection into the LC-ICP-MS system, with each sampling conducted in triplicates. The calibration curve prepared by the AgNO3 standards of 0.1, 0.2, 0.5, 1, 2 and 5 μg L−1 Ag+ in 2 mmol L−1 Na2S2O3 shows good linearity. The detection limit of total Ag+ at 87.5 μg L−1 is 5.2% for total Ag+ allowed, the total Ag+ values determined by LC-ICP-MS method in this study were without recovery correction.

Determination of Dissolved Ag by Centrifugal Ultrafiltration and ICP-MS. The concentrations of dissolved Ag in AgNPs at LC50h (as nominal total Ag) were measured by centrifugal ultrafiltration off-line coupled with ICP-MS (UFT-ICP-MS). The separation of dissolved Ag from AgNPs followed the method in our previous work27, which was modified from literature reported by Li and Lenhart28. Briefly, 10 mL aliquot of prepared sample was added to centrifugal ultrafiltration devices (Amicon Ultra-15, 30 kDa), and the dissolved Ag was separated from AgNPs after centrifugation at 5000 rpm for 20 min. The dissolved Ag in the filtrate was collected and mixed with 0.2 μL% HNO3 for ICP-MS analysis. The quantification was conducted with calibration curve of Ag+ ranging from 0.1 to 5 μg L−1 with R2 > 0.997. The recovery of Ag through the 30-kDa membrane was 66.6 ± 14.6%, obtained by testing 5 mL AgNO3 solution at concentrations of Ag+ as 1.0 and 5.0 μg L−1 in 0.1 mmol L−1 NaNO3 with the same sample preparation procedure. The dissolved Ag values presented here were all with recovery correction, and each measurement was conducted in triplicates.

To test the existence of tiny particles in dissolved Ag, 30-kDa centrifugal ultrafiltration off-line coupled with LC-ICP-MS were performed on AgNPVVP at appropriate concentration. Fig. S2 of SI shows the presence of tiny particles in the filtrate of AgNP with particle size of ~1 nm, which was estimated according to the retention times of AgNP with different sizes following our previous method18.

1. Nowack, B., Krug, H. F. & Height, M. 120 years of nanosilver history: Implications for policy makers. Environ. Sci. Technol. 45, 1177–1183 (2011).
2. Eckhardt, S. et al. Nanobio silver: Its Interactions with peptides and bacteria, and its uses in medicine. Chem. Rev. 113, 4708–4754 (2013).
3. Codounousova, S. & Epple, M. Silver antibacterial activity: Ion, nanoparticle, and metal. Angew. Chem.-Int. Edit. 52, 1636–1653 (2013).
4. Yu, S. J., Yin, Y. G. & Liu, J. F. Silver nanoparticles in the environment. Environ. Sci. Technol. 15, 78–92 (2001).
5. Li, L. X., Hartmann, G., Doblinger, M. & Schuster, M. Quantification of nanoscale silver particles removal and release from municipal wastewater treatment plants in Germany. Environ. Sci. Technol. 47, 7317–7323 (2013).
6. Newton, K. M., Puppala, H. L., Kitchens, C. L., Colvin, V. L. & Klaine, S. J. Silver nanoparticle toxicity to Daphnia magna is a function of dissolved silver concentration. Environ. Toxicol. Chem. 32, 2356–2364 (2013).
7. Kennedy, A. J. et al. Fractionating nanosilver: Importance for determining toxicity to freshwater test organisms. Environ. Toxicol. Chem. 14, 449–455 (2005).
8. Romer, I. et al. Aggregation and dispersion of silver nanoparticles in exposure media for aquatic toxicity tests. J. Chromatogr. A 1218, 4226–4233 (2011).
9. Ho, J. H., Choi, J. W., Lee, S. H. & Hong, S. W. Acute toxicity of Ag and CuO nanoparticle suspensions against Daphnia magna: The importance of their dissolved fraction varying with preparation methods. J. Hazard. Mater. 227, 301–308 (2012).
10. Zhao, C. M. & Wang, W. X. Comparison of acute and chronic toxicity of silver nanoparticles and silver nitrate to Daphnia magna. Environ. Toxicol. Chem. 30, 885–892 (2011).
11. Allen, H. J. et al. Effects from filtration, capturing agents, and presence/absence of food on the toxicity of silver nanoparticles to Daphnia magna. Environ. Toxicol. Chem. 29, 2742–2750 (2010).
12. Zhao, C. M. & Wang, W. X. Importance of surface coatings and soluble silver in silver nanoparticles toxicity to Daphnia magna. Nanotoxicology 6, 361–370 (2012).
13. Asghari, S. et al. Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna. J. Nanobiotechnol. 10, 14–24 (2012).
14. Wang, Z., Chen, J. W., Li, X. H., Shao, J. P. & Peijnenburg, W. J. G. M. Aquatic toxicity of nanosilver colloids to different trophic organisms: Contributions of particles and free silver ion. Environ. Toxicol. Chem. 31, 2408–2413 (2012).
15. Dau, P., Xenopoulos, M. A. & Metcalfe, C. D. Toxicity of silver and titanium dioxide nanoparticle suspensions to the aquatic invertebrate, Daphnia magna. B. Environ. Contam. Tox. 91, 76–82 (2013).
16. Liu, J. Y. & Hurt, R. H. Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ. Sci. Technol. 44, 2169–2173 (2010).
17. Kütler, S., Greluich, C., Dindorf, J., Koller, M. & Epple, M. Toxicity of silver nanoparticles during storage because of slow dissolution under release of silver ions. Chem. Mater. 22, 4548–4554 (2010).
18. Liu, J. Y., Sonshine, D. A., Shervani, S. & Hurt, R. H. Controlled release of biologically active silver from nano-silver surfaces. ACS Nano 4, 6903–6913 (2010).
19. Wiensner, M. R. et al. Meditations on the ubiquity and mutability of nano-sized materials in the environment. ACS Nano 5, 8466–8470 (2011).
20. Levard, C., Hotze, E. M., Lowry, G. V. & Brown, G. E. Environmental transformations of silver nanoparticles: Impact on stability and toxicity. Environ. Sci. Technol. 46, 6900–6914 (2012).
21. Li, X. & Lenhart, J. H. Aggregation and dissolution of silver nanoparticles in natural surface water. Environ. Sci. Technol. 46, 5378–5386 (2012).
22. Chong, W. W. et al. Toxicity reduction of polymer-stabilized silver nanoparticles by sunlight. J. Phys. Chem. C 115, 4425–4432 (2011).
23. Urrine, J. M., Colman, B. P., Bone, A. J., Gondikas, A. P. & Matson, C. W. Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles. Part I. Aggregation and dissolution. Environ. Sci. Technol. 46, 6915–6924 (2012).
24. Tejeyama, M., Romer, J., Merrifield, R. C. & Lead, J. R. Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environ. Sci. Technol. 46, 7011–7017 (2012).
25. Li, Y., Zhang, W., Niu, J. & Chen, Y. Surface-coating-dependent dissolution, and abiotic interactions in silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem. Mater. 22, 4548–4554 (2010).
26. Shi, J. P. et al. Improved sample preparation and quality of Ag nanoparticles toxicity to rainbow trout (Oncorhynchus mykiss), fathead minnows (Pimephales promelas), and water fleas (Daphnia magna). Environ. Toxicol. Chem. 18, 63–70 (1999).
27. Campbell, P. G. C. Interactions between trace metals and aquatic organisms: A critique of the free-ion activity model in Metal Speciation and Bioavailability in Aquatic Systems (eds Tessier, A. & Turner, D. R.) 45–102 (John Wiley & Sons, 1995).
28. van Leeuwen, H. P. et al. Dynamic speciation analysis and bioavailability of metals in aquatic systems. Environ. Sci. Technol. 39, 8545–8556 (2005).
29. Sigg, L. et al. Comparison of analytical techniques for dynamic trace metal speciation in natural freshwater. Environ. Sci. Technol. 40, 1934–1941 (2006).
30. Jin, X. et al. High-throughput screening of silver nanoparticle stability and bacterial inactivation in aquatic media: Influence of specific ions. Environ. Sci. Technol. 44, 7321–7328 (2010).
31. Yang, X. et al. Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Cuonorhabditis elegans. Environ. Sci. Technol. 46, 1119–1127 (2012).
32. Silver, P. Y., HerreraUrbina, R., Duvauchelle, N., Vijayakrishnan, V. & Elhissien, K. T. Preparation of colloidal silver dispersions by the polyol process Part 1- Synthesis and characterization. J. Mater. Chem. 6, 573–577 (1996).
33. OECD, Guidelines for Testing of Chemicals: Daphnia sp., Acute immobilisation test and reproduction test, No. 202. OECD/OCDE: Paris (2004).
34. USEPA, Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms.. EPA-821-R-02-012. Washington, J. A.C. (2002).
35. Kaege, R. et al. Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant. Environ. Sci. Technol. 45, 3902–3908 (2011).
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Shen, M.-H. et al. Exposure Medium: Key in Identifying Free Ag⁺ as the Exclusive Species of Silver Nanoparticles with Acute Toxicity to Daphnia magna. Sci. Rep. 5, 9674; DOI:10.1038/srep09674 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/