Janus Field Theories from Non-Linear BF Theories for Multiple M2-Branes

Shijong Ryang

Department of Physics
Kyoto Prefectural University of Medicine
Taishogun, Kyoto 603-8334 Japan
ryang@koto.kpu-m.ac.jp

Abstract

We integrate the nonpropagating B_μ gauge field for the non-linear BF Lagrangian describing N M2-branes which includes terms with even number of the totally antisymmetric tensor M^{IJK} in arXiv:0808.2473 and for the two-types of non-linear BF Lagrangians which include terms with odd number of M^{IJK} as well in arXiv:0809:0985. For the former Lagrangian we derive directly the DBI-type Lagrangian expressed by the $SU(N)$ dynamical A_μ gauge field with a spacetime dependent coupling constant, while for the low-energy expansions of the latter Lagrangians the B_μ integration is iteratively performed. The derived Janus field theory Lagrangians are compared.
1 Introduction

Inspired by Bagger and Lambert [11] and Gustavsson [2] (BLG) who constructed the worldvolume theory of multiple coincident M2-branes following earlier works [3, 4], the multiple M2-branes have been extensively studied. The BLG theory is described by a three-dimensional $\mathcal{N} = 8$ superconformal Chern-Simons gauge theory with manifest SO(8) R-symmetry based on 3-algebra with a positive definite metric, that is, the unique nontrivial A_4 algebra [5]. However, this Chern-Simons gauge theory expresses two M2-branes on a R^8/Z_2 orbifold [6].

A class of models based on 3-algebra with a Lorentzian metric have been constructed by three groups [7, 8, 9] where the low-energy worldvolume Lagrangian of N M2-branes in flat spacetime is described by a three-dimensional superconformal BF theory for the $su(N)$ Lie algebra. Using a novel Higgs mechanism of ref. [10] the BF membrane theory has been shown to reduce to the three-dimensional maximally supersymmetric Yang-Mills theory whose gauge coupling is the vev of one of the scalar fields [7, 9, 11]. For the prescription of the ghost-like scalar fields a ghost-free formulation has been proposed by introducing a new gauge field for gauging a shift symmetry and then making the gauge choice for decoupling the ghost state [12, 13, 14]. In ref. [15] starting from the maximally supersymmetric three-dimensional Yang-Mills theory and using a non-Abelian duality transformation due to de Wit, Nicolai and Samtleben (dNS) [16], the Lorentzian BLG theory has been reproduced.

The relation between the $\mathcal{N} = 6$ superconformal Chern-Simons-matter theory [17] and the $\mathcal{N} = 8$ Lorentzian BLG theory has been studied [18, 19, 20, 21]. The various investigations related with the BLG theory have been performed [22, 23, 24, 25].

There has been a construction of a manifestly SO(8) invariant non-linear BF Lagrangian for describing the non-Abelian dynamics of the bosonic degrees of freedom of N coincident M2-branes in flat spacetime, which reduces to the bosonic part of the BF membrane theory for $SU(N)$ group at low energies [26]. This non-linear Lagrangian is an extension of the non-Abelian DBI Lagrangian [27, 28] of N coincident D2-branes and includes only terms with even number of the totally antisymmetric tensor M^{IJK}. Further, two types of non-linear BF Lagrangians have been presented such that they include terms with even and odd number of M^{IJK} [29]. A different kind of non-linear gauged M2-brane Lagrangian has been proposed for the Abelian case [30].

As a related work, it has been shown that starting with the $\mathcal{N} = 8$ supersymmetric Yang-Mills theory on D2-branes and incorporating higher-derivative corrections to lowest nontrivial order, the Lorentzian BF membrane theory including a set of derivative corrections is constructed through a dNS duality [31] (see [32]). The higher-derivative corrections to the Euclidean A_4 BLG theory have been determined [33] by means of the novel Higgs mechanism and also shown to match the result of [31]. The couplings of the worldvolume of multiple M2-branes to the antisymmetric background fluxes have been investigated by using the low-energy Lagrangian for multiple M2-branes [34, 35] as well as the non-linear BF Lagrangian [36]. There have been proposals for the non-linear Lagrangians for describing the M2-brane-anti-M2-brane system [37] and the unstable M3-brane [38].

We will perform the integration over the redundant B_μ gauge field for the non-linear BF Lagrangians of ref. [26] and ref. [29], to see how the Lagrangians are described by the dynamical A_μ gauge field. We will carry out the B_μ integration directly for the non-linear
Lagrangian of ref. [26], while the $B \mu$ integration will be iteratively performed for the two types of non-linear BF Lagrangians of ref. [29]. These three $B \mu$ integrated Lagrangians will be compared.

2 Non-linear BF Lagrangian with even number of M^{IJK}

We consider the non-linear BF Lagrangian for $SU(N)$ group which describes the non-Abelian dynamics of the bosonic degrees of freedom of N M2-branes in flat spacetime [26]

\[L = -T_2 \text{Str} \left(\sqrt{\det \left(\eta_{\mu\nu} + \frac{1}{T_2} \tilde{D}_\mu X^I \tilde{Q}_{IJ}^{-1} \tilde{D}_\nu X^J \right)} \right) \left(\det \tilde{Q} \right)^{1/4} \]

\[+ \text{Tr} \left(\frac{1}{2} \epsilon^{\mu\nu\lambda} B_\mu F_{\nu\lambda} \right) + (\partial_\mu X^I - \text{Tr}(X^I B_\mu)) \partial^\mu X^I_+ \]

\[- \text{Tr} \left(\frac{X^+_+ X^+_+}{X^+_+} \tilde{D}_\mu X^I \partial^\mu X^I_+ - \frac{1}{2} \left(\frac{X^+_+ X^+_+}{X^+_+} \right)^2 \partial_\mu X^I_+ \partial^\mu X^I_+ \right), \]

(1)

where $X^+_+ = X^+_+ X^+_+$ and the M2-brane tension T_2 is related to the eleven-dimensional Planck length scale l_p as $T_2 = 1/(2\pi)^2 l_p^3$. The two non-dynamical gauge fields A_μ, B_μ and the scalar fields X^I ($I = 1, \cdots, 8$) are in the adjoint representation of $SU(N)$ and X^I_\pm are $SU(N)$ singlets. The covariant derivative \tilde{D}_μ is defined by

\[\tilde{D}_\mu X^I = \dot{D}_\mu X^I - \frac{X^+_+}{X^+_+} \partial_\mu X^I_+, \quad \dot{D}_\mu X^I = D_\mu X^I - X^+_+ B_\mu, \quad D_\mu X^I = \partial_\mu X^I + i[A_\mu, X^I] \]

(2)

and the SO(8) tensor \tilde{Q}^{IJ} is given by

\[\tilde{Q}^{IJ} = S^{IJ} + \frac{X^+_+ X^+_+}{X^+_+} (\det S - 1), \quad S^{IJ} = \delta^{IJ} + \frac{i}{\sqrt{T_2}} \frac{m^{IJ}}{\sqrt{X^+_+}}, \]

(3)

where m^{IJ} is expressed as

\[m^{IJ} = X^K M^{IKJK}, \quad M^{IKJK} = X^K [X^J, X^K] + X^J [X^K, X^I] + X^+ [X^I, X^J]. \]

(4)

In (1) \tilde{Q}^{-1}_{IJ} denotes the matrix inverse of \tilde{Q}^{IJ} and Str is the symmetrized trace [27]. The non-linear Lagrangian L is invariant under the obvious global SO(8) transformation and the SU(N) gauge transformation associated with the A_μ gauge field, and further the non-compact gauge transformation associated with the B_μ gauge field

\[\delta X^I = X^I_+ \Lambda, \quad \delta B_\mu = D_\mu \Lambda, \quad \delta X^I_+ = 0, \quad \delta X^I_- = \text{Tr}(X^I \Lambda). \]

(5)

The terms except for the first non-linear term and the second BF-coupling term in (1) are added to have consistency with the low-energy Lagrangian. In the non-linear Lagrangian L only the symmetric part of \tilde{Q}^{-1}_{IJ} is taken into consideration.
We introduce a Lagrange multiplier p to rewrite the square root term in (1) as

$$- T_2 \sqrt{- \det \left(\eta_{\mu \nu} + \frac{1}{T_2} \tilde{D}_\mu X^I \tilde{Q}_{IJ}^{-1} \tilde{D}_\nu X^J \right) \det \tilde{Q}}^{1/4}$$

$$\to \left(\frac{T_2^2}{2p} \det(\eta_{\mu \nu} + \frac{1}{T_2} \tilde{D}_\mu X^I \tilde{Q}_{IJ}^{-1} \tilde{D}_\nu X^J) - \frac{p}{2} \right) \det \tilde{Q}^{1/4},$$ \hspace{1cm} (6)$$

where a matrix can be treated as a c-number within the symmetrized trace. Owing to $\tilde{Q}_{IJ}^{-1} = \tilde{Q}_{JI}^{-1}$ the relevant tensor is rearranged as

$$\eta_{\mu \nu} + \frac{1}{T_2} \tilde{D}_\mu X^I \tilde{Q}_{IJ}^{-1} \tilde{D}_\nu X^J = g_{\mu \nu} + \tilde{B}_\mu \tilde{B}_\nu,$$ \hspace{1cm} (7)$$

where

$$g_{\mu \nu} = \eta_{\mu \nu} + \frac{1}{T_2} \tilde{D}_\mu X^I \tilde{P}_{IJ} \tilde{D}_\nu X^J, \quad \tilde{D}_\mu X^I = D_\mu X^I - X^I - \tilde{D}_\mu X^I \tilde{Q}_{IJ}^{-1} X^J$$

and

$$\tilde{B}_\mu = \sqrt{\frac{X^I \tilde{Q}_{IJ}^{-1} X^J}{T_2}} \left(B_\mu - \frac{\tilde{D}_\mu X^I \tilde{Q}_{IKL} X^L}{X^I \tilde{Q}_{IKL} X^L} \right)$$ \hspace{1cm} (8)$$

with

$$\tilde{P}_{IJ} = \tilde{Q}_{IJ}^{-1} - \frac{\tilde{Q}_{IK} X^I \tilde{Q}_{JL} X^L}{X^I \tilde{Q}_{IKL} X^L},$$ \hspace{1cm} (9)$$

which is orthogonal to X^I as $X^I \tilde{P}_{IJ} = 0$.

The expression (6) together with (7) is quadratic in B_μ so that the equation of motion for the auxiliary field B_μ is given by

$$g^{\mu \nu} \left(B_\nu - \frac{\tilde{D}_\nu X^I \tilde{Q}_{IJ}^{-1} X^J}{X^I \tilde{Q}_{IKL} X^L} \right) = \frac{p}{T_2 \det g(X^I \tilde{Q}_{IKL} X^L)(\det \tilde{Q})^{1/4}} \left(x^\mu - \frac{1}{2} \epsilon^{\mu \nu \lambda} F_{\nu \lambda} \right),$$ \hspace{1cm} (10)$$

where

$$x^\mu = \partial^\mu X_+^I P_{IJ} X^J$$ \hspace{1cm} (11)$$

with a projection operator

$$P_{IJ} = \delta_{IJ} - \frac{X^I X^J}{X_+^2}.$$ \hspace{1cm} (12)$$

Substituting the expression (10) back into the starting Lagrangian accompanied with the replacement (6) and solving the equation of motion for p we get

$$L = \text{STr} \left[-T_2 (\det \tilde{Q})^{1/4} \sqrt{- \det g} \left\{ 1 + \frac{1}{2T_2 (X^I \tilde{Q}_{IKL} X^L)(\det \tilde{Q})^{1/4}} \frac{1}{\sqrt{2T_2 (X^I \tilde{Q}_{IKL} X^L)(\det \tilde{Q})^{1/4}}} F_{\mu \rho} F_{\nu \sigma} g^{\mu \rho} g^{\nu \sigma} \right\} \right. \left. + \frac{\tilde{D}_\mu X^I \tilde{Q}_{IJ}^{-1} X^J}{X^I \tilde{Q}_{IKL} X^L} \left(\frac{1}{2} \epsilon^{\mu \nu \lambda} F_{\nu \lambda} - x^\mu \right) \right] + L_0,$$ \hspace{1cm} (13)$$
where

\[F_{\mu\nu} = F_{\mu\nu} - \frac{1}{\det g} \epsilon_{\mu\nu\lambda} x^\lambda, \]

\[L_0 = \partial_\mu X^I_+ \partial^\mu X^I_+ - \text{Tr} \left(\frac{X_+ \cdot X}{X_+^2} D_\mu X^I \partial^\mu X^I_+ - \frac{1}{2} \left(\frac{X_+ \cdot X}{X_+^2} \right)^2 \partial_\mu X^I \partial^\mu X^I_+ \right). \]

Here we use the identity for 3 \times 3 matrices \(g_{\mu\nu} + a F_{\mu\nu} \) with \(F_{\mu\nu} = -F_{\nu\mu} \)

\[\det (g_{\mu\nu}) \left(1 + \frac{1}{2} a^2 F_{\mu\nu} F_{\rho\sigma} g^{\mu\rho} g^{\nu\sigma} \right) = \det (g_{\mu\nu} + a F_{\mu\nu}) \]

(16)

to obtain a DBI-type Lagrangian

\[L = \text{STr} \left[-T_2 (\det Q)^{1/4} \sqrt{\frac{1}{T_2 (X^K Q_{KL}^{-1} X^L) (\det Q)^{1/4}}} F_{\mu\nu} \right] + \bar{D}_\mu X^I \tilde{Q}^{-1}_{IJ} X^J_+ + L_0. \]

(17)

The inverse matrix of \(\tilde{Q}^{-1}_{IJ} \) in (3) is given by

\[\tilde{Q}^{-1}_{IJ} = P_{IJ} + \frac{X^I_+ X^J_+}{X_+^2} \frac{1}{\det S} + \left(\frac{m_0}{1 - m_0} \right)^{IJ}, \]

(18)

where an orthogonal relation \(m^{IJ} X^J_+ = 0 \) is used and

\[\left(\frac{m_0}{1 - m_0} \right)^{IJ} = m_0^{IJ} + (m_0^2)^{IJ} + (m_0^3)^{IJ} + \cdots, \]

\[m_0^{IJ} = -\frac{i}{\sqrt{T_2 X_+^2}} m^{IJ} \]

(19)

with \((m_0^2)^{IJ} = m_0^{IK} m_0^{KJ} \). Since only the symmetric part of matrix \(\tilde{Q}^{-1}_{IJ} \) is taken into account in the Lagrangian, the expression (18) is modified to be

\[\tilde{Q}^{-1}_{IJ} = P_{IJ} + \frac{X^I_+ X^J_+}{X_+^2} \frac{1}{\det S} + \left(\frac{m_0^2}{1 - m_0^2} \right)^{IJ}, \]

(20)

which obeys \(\tilde{Q}^{-1}_{IJ} \) = \(\tilde{Q}^{-1}_{JI} \) and includes only terms with even number of \(M^{IJK} \) as expressed by

\[\left(\frac{m_0^2}{1 - m_0^2} \right)^{IJ} = (m_0^2)^{IJ} + (m_0^4)^{IJ} + (m_0^6)^{IJ} + \cdots. \]

(21)

From this expression the following SO(8) invariant factors are simplified as

\[X^I_+ \tilde{Q}^{-1}_{IJ} X^J_+ = X_+^2 \frac{1}{\det S}, \]

\[\bar{D}_\mu X^I \tilde{Q}^{-1}_{IJ} X^J_+ = \frac{1}{\det S}. \]

(22)
and the tensor \tilde{P}_{IJ} in (9) is also given by

$$\tilde{P}_{IJ} = \tilde{Q}_{IJ}^\dagger \frac{X_I X_J}{X_+^2} \frac{1}{\det S}. $$

(23)

The relations in (22) together with $\det \tilde{Q} = (\det S)^2$ make the DBI-type Lagrangian (17) a simple form

$$L = -T_2 S \text{Tr} \left(-\det \left(g_{\mu\nu} + \frac{1}{\sqrt{T_2 X_+^2}} F_{\mu\nu} \right) (\det S)^{1/2} \right)$$

$$+ \text{Tr} \left(\frac{D_\mu X^I X^J}{X_+^2} \left(\frac{1}{2} \epsilon^{\mu\nu\lambda} F_{\nu\lambda} - x^\mu \right) \right) + L_0, \quad (24)$$

where $g_{\mu\nu}$ defined in (8) is rewritten by

$$g_{\mu\nu} = \eta_{\mu\nu} + \frac{1}{T_2} \bar{D}_\mu X^I \left(P_{IJ} - \frac{1}{T_2 X_+^2} \left(\frac{m^2}{1 + \frac{m^2}{T_2 X_+^2}} \right)^{IJ} \bar{D}_\nu X^J \right) \bar{D}_\nu X^J \quad (25)$$

and there is a relation derived from (14)

$$\frac{1}{2} \epsilon^{\mu\nu\lambda} F_{\nu\lambda} = \frac{1}{2} \epsilon^{\mu\nu\lambda} F_{\nu\lambda} - x^\mu. \quad (26)$$

Thus from the non-linear BF Lagrangian with two nonpropagating gauge fields A_μ, B_μ we have integrated the auxiliary B_μ gauge field to extract the DBI-type Lagrangian expressed in terms of the $SU(N)$ dynamical A_μ gauge field.

Now to perform the low-energy expansion for the non-linear Lagrangian (24), we calculate $\det S_{IJ}$ for 8×8 matrices by making the $1/T_2$ expansion as

$$\det S = 1 + \frac{1}{2T_2 X_+^2} (m^2)^{IJ} - \frac{1}{4T_2^2 (X_+^2)^2} (m^4)^{IJ} - \frac{1}{2} ((m^2)^{IJ})^2 + \cdots, \quad (27)$$

where $m^{IJ} = -m^{JI}$ is taken into account and $(m^2)^{IJ} = -X_+^2 M^{IJ} M^{JK}/3$. There is the following identity with finite terms for any 3×3 matrices $A_{\mu\nu}$

$$\det(\eta_{\mu\nu} + A_{\mu\nu}) = \det \eta \left(1 + \text{tr}(\eta^{-1} A) - \frac{1}{2} \text{tr}(\eta^{-1} A)^2 + \frac{1}{2} \left(\text{tr}(\eta^{-1} A) \right)^2 \right)$$

$$+ \frac{1}{3} \text{tr}(\eta^{-1} A)^3 - \frac{1}{2} \text{tr}(\eta^{-1} A) \text{tr}(\eta^{-1} A)^2, \quad (28)$$

which gives the $1/T_2$ expansion for $\det g_{\mu\nu}$ in (13)

$$\det g_{\mu\nu} = - \left(1 + \frac{1}{T_2} D_\mu X^I P_{IJ} D_\nu X^J + \frac{1}{T_2^2} \left(\frac{1}{2} D_\mu X^I P_{IJ} D_\nu X^J D^K X^K P_{KL} D^K Y^L \right. \right.$$

$$\left. + \frac{1}{2} (D_\mu X^I P_{IJ} D^K X^K) + \frac{1}{X_+^2} D_\mu X^I m^{IK} m^{KJ} P_{KL} D^K Y^L \right) + O \left(\frac{1}{T_2^3} \right). \quad (29)$$
We see that the $SO(8)$ vectors $\hat{D}_\mu X^I$ are contracted with $(m^2)^IJ$ and the projection operator P^{IJ}. It is convenient to express the square root factor including $F_{\mu\nu}$ in (13) in terms of $F_\mu \equiv \epsilon^{\mu\nu\lambda}F_{\nu\lambda}/2 - x^\mu$ which appears as an interaction $\hat{D}_\mu X^I X^I F_\mu / X_+^2$ in (24), and expand it through (25) and (29) as

$$\sqrt{1 + \frac{1}{2T_2 X_+^2} F_{\mu\nu} F_{\rho\sigma} g^{\mu\rho} g^{\nu\sigma}} = \sqrt{1 + \frac{1}{T_2 X_+^2} \det g} F_\mu F_\nu g_{\mu\nu}$$

$$= 1 - \frac{1}{2T_2 X_+^2} F_{\mu\nu} F_{\eta\mu} + \frac{1}{2T_2 X_+^2} \left(F_{\mu\nu} \hat{D}_\mu X^I P_{IJ} \hat{D}_\nu X^J - \frac{1}{4X_+^2} (F_\mu F_\mu)^2 \right) + O \left(\frac{1}{T_2^3} \right). \quad (30)$$

Gathering the expansions (27), (29) and (30) in (24) or (13) we obtain the low-energy effective Lagrangian whose leading part is given by

$$L = - NT_2 + \text{Tr} \left(\frac{1}{12} M^{IJK} M^{IJK} - \frac{1}{2} D_\mu X^I P_{IJ} \hat{D}_\nu X^J + \frac{1}{2X_+^2} X^I \partial^\mu X^I \hat{D}_\nu X^J \right) + L_0,$$

where $F_\mu F_\mu / 2X_+^2$ is alternatively expressed as $-f_{\mu\nu} f^{\mu\nu}/4X_+^2$ in terms of $f_{\mu\nu} \equiv F_{\mu\nu} + \epsilon_{\mu\nu\lambda} x^\lambda$. This leading Lagrangian shows the Janus field theory with a spacetime dependent coupling constant in ref. [11] (see [39]). This Lagrangian is rewritten by the following form

$$L = - NT_2 + \text{Tr} \left(\frac{1}{12} M^{IJK} M^{IJK} - \frac{1}{2} D_\mu X^I P_{IJ} \hat{D}_\nu X^J + \frac{1}{2X_+^2} X^I \partial^\mu X^I \hat{D}_\nu X^J \right)$$

$$- 2D_\mu X^J X^I - \frac{1}{4X_+^2} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2X_+^2} \epsilon^{\mu\nu\lambda} F_{\nu\lambda}(D_\mu X^I X^I - X^I \partial_\mu X^I) + \partial_\mu X^I \partial^\mu X^I, \quad (32)$$

which is further compactly represented by

$$L = - NT_2 + \text{Tr} \left(\frac{1}{12} M^{IJK} M^{IJK} - \frac{1}{2} D_\mu X^I D^\mu X^I \right)$$

$$+ \frac{1}{2X_+^2} \left(\frac{1}{2} \epsilon^{\mu\lambda} F_{\nu\lambda} + D^\mu X^I X^I - X^I \partial^\mu X^I \right)^2 + \partial_\mu X^I \partial^\mu X^I. \quad (33)$$

The subleading terms of order $1/T_2$ are derived as

$$\frac{1}{8T_2} \text{STr} \left[\frac{1}{(X_+^2)^2} m^{IJK} m^{KLM} m^{LMI} - \frac{1}{36} (M^{IJK})^2 + 2\hat{D}_\mu X^I P_{IJ} \hat{D}_\nu X^J \hat{D}^\nu X^K P_{KL} \hat{D}^\mu X^L \right.$$

$$- (\hat{D}_\mu X^I P_{IJ} \hat{D}^\mu X^J)^2 + \frac{1}{3} (M^{IJK})^2 \hat{D}_\mu X^I P_{IJ} \hat{D}_\nu X^J + \frac{1}{X_+^2} \hat{D}_\mu X^I m^{IJK} m^{KL} \hat{D}^\mu X^J$$

$$+ \frac{(F_\mu F^\mu)^2}{(X_+^2)^2} - \frac{F_\mu F^\mu}{3X_+^2} (M^{IJK})^2 + \frac{4F_\mu F^\nu}{X_+^2} \hat{D}_\nu X^I P_{IJ} \hat{D}^\nu X^J - \frac{2F_\mu F^\mu}{X_+^2} \hat{D}_\nu X^I P_{IJ} \hat{D}^\nu X^J \bigg]. \quad (34)$$

The last four terms including $F_\mu = \epsilon^{\mu\nu\lambda} f_{\nu\lambda}/2$ in (34) are expressed in terms of $f_{\mu\nu}$ as

$$\frac{1}{8T_2 X_+^2} \text{STr} \left[\frac{1}{4X_+^2} (f_{\mu\nu} f^{\mu\nu})^2 + 4f_{\mu\nu} f_{\rho\sigma} \hat{D}^\nu X^I P_{IJ} \hat{D}^\sigma X^J \right.$$
\[-f_{\mu \nu} f^{\mu \nu} \bar{D}_\lambda X^I P_{IJ} \bar{D}^\lambda X^J + \frac{1}{6} (M^{IJK})^2 f_{\mu \nu} f^{\mu \nu}, \]

(35)

where a \(f_{\mu \nu} \) is accompanied with a factor \(1/\sqrt{X_+^2} \). The trace is taken symmetrically between all the matrix ingredients \(f_{\mu \nu}, \bar{D}_\mu X^I, M^{IJK} \) so that the expression (35) is described by

\[
\frac{1}{12 T_2 X_+} \text{Tr} \left[-\frac{1}{2} (2 f_{\mu \nu} f^{\mu \nu} \bar{D}_\lambda X^I \bar{D}^\lambda X^J + f_{\mu \nu} \bar{D}_\lambda X^I f^{\mu \nu} \bar{D}^\lambda X^J) P_{IJ} \right.
\]

\[+ \left. \left(2 f^{\rho \mu} f_{\mu \nu} f_{\rho \sigma} f^{\mu \nu} f^{\rho \sigma} + f_{\mu \nu} f_{\rho \sigma} f^{\mu \nu} f^{\rho \sigma} \right) P_{IJ} \right]+ \frac{1}{8 X_+} \left(2 f_{\mu \nu} f_{\rho \sigma} f^{\mu \nu} f^{\rho \sigma} + \frac{1}{12} (2 f_{\mu \nu} f^{\mu \nu} (M^{IJK})^2 + f_{\mu \nu} M^{IJK} f^{\mu \nu} M^{IJK}) \right]. \]

The potential part in (34) is also expanded as

\[
\frac{1}{24 T_2} \text{Tr} \left[\frac{(m^2)^I}{(X^2_+)^2} (m^2)^I + 2(m^2)^I (m^2)^I \right] - \frac{1}{36} \left(M^{IJK} M^{LMN} M^{IJK} M^{LMN} + 2((M^{IJK})^2)^2 \right). \]

(37)

Here we write down the remaining terms

\[
\frac{1}{12 T_2} \text{Tr} \left[\bar{D}_\mu X^I \bar{D}_\nu X^J \bar{D}^\nu X^K \bar{D}^\mu X^L + \bar{D}_\mu X^I \bar{D}_\nu X^K \bar{D}^\nu X^J \bar{D}^\mu X^L + \bar{D}_\mu X^I \bar{D}_\nu X^K \bar{D}^\mu X^L \bar{D}^\nu X^J
\]

\[- \bar{D}_\mu X^I \bar{D}^\mu X^J \bar{D}_\nu X^K \bar{D}^\nu X^L - \frac{1}{2} \bar{D}_\mu X^I \bar{D}_\nu X^K \bar{D}^\mu X^J \bar{D}^\nu X^L \right] P_{IJ} P_{KL} \]

\[+ \frac{1}{12 T_2} \text{Tr} \left[\frac{2(m^2)^I (\bar{D}_\mu X^I \bar{D}^\mu X^J + \bar{D}_\mu X^J \bar{D}^\mu X^I)}{X_+^2} + \frac{1}{X_+^2} (\bar{D}_\mu X^I m^{IK} \bar{D}^\mu X^J m^{JK} + m^{KI} \bar{D}^\nu X^I m^{KJ} \bar{D}^\nu X^J) \right]+ \frac{1}{6} (2(M_{MN})^2 \bar{D}_\mu X^I P_{IJ} \bar{D}^\mu X^J + M_{MN} \bar{D}_\mu X^I M_{MN} \bar{D}^\mu X^J P_{IJ}). \]

3 Two non-linear BF Lagrangians with even and odd number of \(M^{IJK} \)

There are propositions of two types of non-linear BF Lagrangians for multiple M2-branes, which include terms with even number as well as odd number of \(M^{IJK} \) [29]. One type is presented by

\[
L_1 = -T_2 S \text{Tr} \left[\sqrt{\text{det} \left(\eta_{\mu \nu} + \frac{1}{T_2} \bar{D}_\mu X^I \bar{D}^{IJ} \bar{D}_\nu X^J \right)} (\text{det} S_1) \right] \]

\[+ \frac{1}{2} \epsilon_{\mu \nu \lambda} \left(\text{Tr}(B_\mu F_\nu) - i \frac{1}{T_2} S \text{Tr}(\bar{D}_\mu X^K \bar{D}_\nu X^I M^{IKN} (S_1^{-1})^{NJ} \bar{D}^\lambda X^J) \right) \]

\[+ (\partial_\mu X^I - \text{Tr}(X^I B_\mu)) \partial^\mu X^I - \text{Tr} \left(\frac{X \cdot X}{X_+^2} \bar{D}_\mu X^I \partial^\mu X^I X^I - \frac{1}{2} \left(\frac{X \cdot X}{X_+^2} \right)^2 \partial_\mu X^I \partial^\mu X^I \right), \]

(39)
where the symmetric tensor \tilde{R}^{IJ} is defined by

$$
\tilde{R}^{IJ} = (S_1^{-1})^{IJ} + \left[\frac{1}{\sqrt{\det S_1}} - 1 \right],
$$

$$
S_1^{IJ} = \delta^{IJ} - \frac{1}{T_2} M^{IKM} M^{JKN} \left(\frac{X^M X^N}{X_+^2} \right).
$$

(40)

Because of $\det S_1 = (\det S)^2$ the symmetric tensor \tilde{R}^{IJ} is identical to \tilde{Q}^{-1}_{IJ} in (20), and $(\det S_1)^{1/4} = (\det Q)^{1/4}$, so that the Lagrangian L_1 except for terms with odd number of M^{IKJ} reduces to L in (1). For this topological BF Lagrangian we consider the integration over the B_μ gauge field to obtain a dynamical gauge theory Lagrangian. Since the type one Lagrangian L_1 contains not only the mass term of B_μ but also the cubic term, we cannot perform the B_μ integration directly. Instead, we begin to make the low-energy expansion for the non-linear term in (39) up to $1/T_2$ order

$$
- T_2 N + \text{Str} \left[-\frac{1}{2} \tilde{D}_\mu X^I \tilde{D}^\mu X^I + \frac{1}{4} A^{II} \right]
+ \frac{1}{T_2} \left(-Z(B_\mu) + \frac{1}{8} (A^{II} \tilde{D}_\mu X^I \tilde{D}^\mu X^I + A^{IJ} A^{JI} - \frac{1}{4} (A^{II})^2) \right),
$$

(41)

where

$$
A^{IJ} = M^{IKM} M^{JKN} \left(\frac{X^M X^N}{X_+^2} \right) = \frac{1}{X_+^2} (m^2)^{IJ},
$$

$$
Z(B_\mu) = \frac{1}{8} \left((\tilde{D}_\mu X^I \tilde{D}^\mu X^I)^2 - 2 \tilde{D}_\mu X^I \tilde{D}_\nu X^I \tilde{D}^\nu X^J \tilde{D}^\mu X^J
+ 4 \tilde{D}_\mu X^I \left(A^{IJ} + \frac{X^I X^J}{2X_+^2} A^{KK} \right) \tilde{D}^\mu X^J \right).
$$

(42)

The algebraic equation of motion for B_μ reads

$$
X_+^I (\tilde{D}^\mu X^I) - X_+^I B_\mu \right) + \frac{1}{2} \epsilon^{\mu\nu\lambda} F_{\nu\lambda} - x^\mu
$$

$$
= \frac{1}{T_2} \left(\frac{1}{4} A^{II} X_+^I (\tilde{D}^\mu X^J - X_+^J B_\mu) + \frac{\delta Z}{\delta B_\mu} + \frac{i}{2} \epsilon^{\mu\nu\lambda} \frac{\delta X_{\nu\lambda}}{\delta B_\mu} \right)
$$

(43)

with $X_{\mu\nu\lambda}(B_\mu) = \tilde{D}_\mu X^K \tilde{D}_\nu X^I M^{IKJ} \tilde{D}_\lambda X^J$. The solution can be iteratively derived by $B_\mu = B_\mu^0 + B_\mu^1/T_2$, with

$$
B_\mu^0 = \frac{1}{X_+^2} \left(X_+^I \tilde{D}^\mu X^I + \frac{1}{2} \epsilon^{\mu\nu\lambda} F_{\nu\lambda} - x^\mu \right)
$$

(44)

and

$$
B_\mu^1 = -\frac{1}{X_+^2} \left(\frac{1}{4} A^{II} X_+^I (\tilde{D}^\mu X^J - X_+^J B_\mu^0) + \frac{\delta Z}{\delta B_\mu^0} \bigg|_{B_\mu^0} + \frac{i}{2} \epsilon^{\mu\nu\lambda} \frac{\delta X_{\nu\lambda}}{\delta B_\mu^0} \bigg|_{B_\mu^0} \right),
$$

(45)
where the expression of B_0^μ \[44\] is inserted into the last two derivative terms. Substituting this solution back into the low-energy Lagrangian of $L_1 \[39\]$ we obtain the same leading Lagrangian as \[31\] through a relation
\[
\bar{D}^\mu X^I - X^I_+ B_0^\mu = P^{IJ} \bar{D}^\mu X^J - \frac{1}{X^2_+} X^I_+ F^\mu
\] (46)
and the following correction terms of order $1/T_2$
\[
\frac{1}{T_2} \text{STr} \left((D_\mu X^I - X^I_+ B_0^\mu) X^I_+ B_1^\mu + \frac{1}{8} A^{IJ}(D_\mu X^J - X^J_+ B_0^\mu)(D^\mu X^J - X^J_+ B_0^\mu)
\right. \\
+ \frac{1}{8} (A^{IJ} A^{II} - \frac{1}{4} (A^{II})^2) - Z(B_0^\mu) + F^\mu B_1^\mu - \frac{i}{2} \epsilon^\mu_{\nu\lambda} X_{\nu\lambda}(B_0^\mu) \right).
\] (47)
The subleading terms except for the terms including $X_{\nu\lambda}(B_0^\mu)$ and $\delta X_{\nu\lambda}/\delta B_\mu|_{B_0^\mu}$ are described by
\[
\frac{1}{T_2} \text{STr} \left[\frac{1}{8} A^{KK} \bar{D}_\mu X^I P_{IJ} \bar{D}_\mu X^J - A^{II} \frac{F_\mu_F^\mu}{X^2_+} + A^{IJ} A^{II} - \frac{1}{4} (A^{II})^2 \right] \\
+ \frac{1}{4} \left(\bar{D}_\mu X^I P_{IJ} \bar{D}_\nu X^J \bar{D}_\nu X^K P_{KL} \bar{D}_\mu X^L + \frac{2 F_\mu F_\nu}{X^2_+} \bar{D}_\mu X^I P_{IJ} \bar{D}_\nu X^J + \frac{(F_\mu F_\mu)^2}{(X^2_+)^2} \right) \\
- \frac{1}{8} \left(\bar{D}_\mu X^I P_{IJ} \bar{D}_\mu X^J \right)^2 + \frac{2 F_\mu F_\mu}{X^2_+} \bar{D}_\nu X^I P_{IJ} \bar{D}_\nu X^J + \frac{(F_\mu F_\mu)^2}{(X^2_+)^2} \\
+ \frac{1}{2 X^2_+} \bar{D}_\mu X^I m^{IK} m^{JK} \bar{D}_\mu X^J . \right]
\] (48)
It is noted that the $SO(8)$ vectors $\bar{D}_\mu X^I$ are contracted with $(m^2)^{IJ}$ and the projection operator P_{IJ} which is due to \[46\]. The expression \[48\] is confirmed to agree with \[31\]. Thus we have observed that these subleading terms obtained by the iterative procedure for the B_μ integration in the low-energy Lagrangian reproduces the previous expression \[31\] which is derived by the low-energy expansion of the effective DBI-type Lagrangian generated by the exact B_μ integration.

The remaining terms lead to
\[
- \frac{i}{2 T_2} \text{STr} \left(\epsilon^\mu_{\nu\lambda} X_{\nu\lambda}(B_0^\mu) + \epsilon^\mu_{\nu\lambda} \delta X_{\nu\lambda} \delta B_\mu |_{B_0^\mu} \left(\frac{X^I_+}{X^2_+} (\bar{D}_\mu X^I - X^I_+ B_0^\mu) + \frac{1}{X^2_+} F_\mu \right) \right) \\
= \frac{i}{2 T_2} \epsilon^\mu_{\nu\lambda} \text{STr} \left(\tilde{M}^{IK} \bar{D}_\mu X^I \bar{D}_\nu X^J \bar{D}_\lambda X^K - \frac{3 m_{IJ}}{X^2_+} F_\mu \bar{D}_\nu X^I \bar{D}_\lambda X^K \right),
\] (49)
where \tilde{M}^{IK} is a totally antisymmetric tensor defined by
\[
\tilde{M}^{IK} = M^{IK} - \frac{1}{X^2_+} (m^{IJ} X^K + m^{IK} X^J + m^{JK} X^I),
\] (50)
which is orthogonal to X^I_+ as $\tilde{M}^{IK} X^I_+ = 0$. This expression including single M^{IK} is rewritten by
\[
\frac{i}{2 T_2} \text{STr} (\epsilon^\mu_{\nu\lambda} \tilde{M}^{IK} \bar{D}_\mu X^I \bar{D}_\nu X^J \bar{D}_\lambda X^K + 3 m^{IJ} f^{\mu\nu} \bar{D}_\mu X^I \bar{D}_\nu X^J).
\] (51)
We see that there is a coupling between the gauge field strength $F^{\mu\nu}$ and $m^{IJ} \bar{D}_\mu X^I \bar{D}_\nu X^J$. The symmetrization in (51) is taken as

$$\frac{i}{2T_2} \text{Tr}(\epsilon^{\mu\nu\lambda} M^{IK} \bar{D}^I \bar{D}^\mu X^I \bar{D}^\nu X^J + m^{IJ} f^{\mu\nu} \bar{D}_\mu X^I \bar{D}_\nu X^J$$

$$+ m^{IJ} \bar{D}_\mu X^I f^{\mu\nu} \bar{D}_\nu X^J + m^{IJ} \bar{D}_\mu X^I \bar{D}_\nu X^J f^{\mu\nu}),$$

(52)

where the first term remains intact.

Now we turn to the other type of non-linear Lagrangian for non-Abelian BF membranes

$$L_2 = -T_2 \text{Str} \left(\sqrt{-\det(\eta_{\mu\nu} + \frac{1}{T_2} \bar{D}_\mu X^I (S_2^{-1})_{IJ} \bar{D}_\nu X^J)} (\det S_2)^{1/6} \right)$$

$$+ \frac{1}{2} \epsilon^{\mu\nu\lambda} \left(\text{Tr}(B_\mu F_{\nu\lambda}) - \frac{i}{T_2} \text{Str}(\bar{D}_\mu X^K \bar{D}_\nu X^L M^{IK} M^{LJ} (S_2^{-1})_{NJ} \bar{D}_\lambda X^J) \right)$$

$$+ (\partial_\mu X^I - \text{Tr}(X^I B_\mu)) \partial^\mu X^I_+ - \text{Tr} \left(\frac{X_+ \cdot X}{X^2_+} \bar{D}_\mu X^I \partial^\mu X^I_+ - \frac{1}{2} \left(\frac{X_+ \cdot X}{X^2_+} \right)^2 \partial_\mu X^I_+ \partial^\mu X^I_+ \right) \right),$$

(53)

where the symmetric tensor S_2^{IJ} is defined by

$$S_2^{IJ} = \delta^{IJ} - \frac{1}{2T_2} B^{IJ}$$

(54)

with $B^{IJ} = M^{IK} M^{JK} \equiv (M^2)^{IJ}$. We make the following low-energy expansion for the non-linear term in (53)

$$- T_2 N + \text{Str} \left[-\frac{1}{2} \bar{D}_\mu X^I \bar{D}^\mu X^I + \frac{1}{12} B^{IJ}$$

$$+ \frac{1}{T_2} \left(-W(B_\mu) + \frac{1}{24} \left(B^{IJ} \bar{D}_\mu X^J \bar{D}^\mu X^J + \frac{1}{2} B_{IJ} B^{IJ} - \frac{1}{12}(B^{IJ})^2 \right) \right) \right],$$

(55)

where

$$W(B_\mu) = \frac{1}{8} \left((\bar{D}_\mu X^I \bar{D}^\mu X^I)^2 - 2 \bar{D}_\mu X^I \bar{D}_\nu X^J \bar{D}^\nu X^J \bar{D}^\mu X^J + 2 \bar{D}_\mu X^I B^{IJ} \bar{D}^\mu X^J \right).$$

(56)

The algebraic equation of motion for B_μ is also given by

$$X^I_+ \left(\bar{D}_\mu X^I - X^I_+ B^\mu \right) + \frac{1}{2} \epsilon^{\mu\nu\lambda} F_{\nu\lambda} - x^\mu$$

$$= \frac{1}{T_2} \left(\frac{1}{12} B^{IJ} X^J_+ (\bar{D}_\mu X^J - X^J_+ B^\mu) + \frac{\delta W}{\delta B_\mu} \bigg|_{B^\mu_0} + \frac{i}{2} \epsilon^{\rho\nu\lambda} \frac{\delta X^{\rho\nu\lambda}}{\delta B_\mu} \bigg|_{B^\mu_0} \right),$$

(57)

whose solution is iteratively derived by $B^\mu = B^\mu_0 + \tilde{B}_{1\mu}^\mu / T_2$ where B^μ_0 is the same expression as (44) and $\tilde{B}_{1\mu}^\mu$ is

$$\tilde{B}_{1\mu}^\mu = -\frac{1}{X^2_+} \left(\frac{1}{12} B^{IJ} X^J_+ (\bar{D}_\mu X^J - X^J_+ B^\mu_0) + \frac{\delta W}{\delta B_\mu} \bigg|_{B^\mu_0} + \frac{i}{2} \epsilon^{\rho\nu\lambda} \frac{\delta X^{\rho\nu\lambda}}{\delta B_\mu} \bigg|_{B^\mu_0} \right).$$

(58)
The substitution of this solution into the low-energy Lagrangian of L_2 \((53)\) yields the same leading Lagrangian as \((31)\) and the following subleading terms of order $1/T_2$

$$\frac{1}{T_2} \text{STr} \left((\bar{D}_\mu X^I - X^I_+ B_{0\mu}) X^I_+ \bar{D}^\mu + \frac{1}{24} B^{II}(\bar{D}_\mu X^J - X^J_+ B_{0\mu})(\bar{D}^\mu X^J - X^J_+ B_{0\mu}^\ast) + \frac{1}{48} (B^{IJ} B^{JI} - \frac{1}{6} (B^{II})^2 - W(B_0^\ast) + F^\mu \bar{B}_{I\mu} - \frac{i}{2} \epsilon^{\mu\nu\lambda} X_{\mu\nu\lambda}(B_0^\ast) \right). \quad (59)$$

We use an identity $B^{II} = 3A^{II}$ to express \((59)\) as sum of \((49)\) and

$$\frac{1}{T_2} \text{STr} \left[\frac{1}{8} \left(A^{KK} \bar{D}_\mu X^I P_{IJ} \bar{D}^\mu X^J - A^{II} \frac{F^\mu F^\mu}{X_+^2} + \frac{1}{6} (M^2)^{IJ} (M^2)^{JI} - \frac{1}{4} (A^{II})^2 \right) \right. + \frac{1}{4} \left(\bar{D}_\mu X^I P_{IJ} \bar{D}^\nu X^J P_{KL} \bar{D}^\mu X^L + \frac{2F^\mu P^\nu}{X_+^2} \bar{D}_\nu X^I P_{IJ} \bar{D}^\mu X^J + \frac{(F^\mu F^\mu)^2}{(X_+^2)^2} \right) \right.
$$

$$- \frac{1}{8} \left((\bar{D}_\mu X^I P_{IJ} \bar{D}^\mu X^J)^2 \right. + \frac{2F^\mu P^\nu}{X_+^2} \bar{D}_\nu X^I P_{IJ} \bar{D}^\mu X^J \left. + \frac{(F^\mu F^\mu)^2}{(X_+^2)^2} \right) \right. - \frac{1}{4} \bar{D}_\mu X^I \bar{M}^{IJMN} \bar{M}^{IJMN} \bar{D}^\mu X^J \right], \quad (60)$$

where $\bar{M}^{IJMN} = P^{IK} M^{KMN}$ and a relation $\bar{M}^{IJMN} m^{MN} = 0$ is used. The $1/T_2$ corrections show almost similar expressions to \((48)\) with two different terms which are a potential term $(M^2)^{IJ} (M^2)^{JI}/6$ and an interaction term $-\bar{D}_\mu X^I \bar{M}^{IJMN} \bar{M}^{IJMN} \bar{D}^\mu X^J/4$.

4 Conclusion

Without resort to the low-energy expansion we have performed the integration over one Chern-Simons nonpropagating B_μ gauge field exactly for the non-linear Lagrangian of the BF membrane theory in ref. \[26\], which includes terms with even number of M^{IJK}. We have observed that there appears a non-linear DBI-type Lagrangian for the worldvolume theory of N M2-branes where the other Chern-Simons A_μ gauge field is promoted to the $SU(N)$ dynamical propagating gauge field.

In the non-linear DBI-type Lagrangian the coefficient factor of the modified field strength $F_{\mu\nu}$ takes a compact form $1/\sqrt{T_2 X_+^2}$ which yields the kinetic term of gauge field $-F_{\mu\nu} F^{\mu\nu}/4X_+^2$ with a space-time dependent coupling field X_+^I in the leading low-energy expansion. In the same way the linear term of F^μ also takes a compact interaction $\bar{D}_\mu X^I X^I_+ F^\mu/X_+^2$. The subleading terms including dynamical gauge field strength $F_{\mu\nu}$ are expressed in terms of F^μ or alternatively $f_{\mu\nu}$ which is a specific combination of $F_{\mu\nu}$ and an $SO(8)$ invariant contraction of scalar fields with the projection operator $\partial^\mu X^I_+ P_{IJ} X^J$. In the subleading terms the $SO(8)$ vectors $\bar{D}_\mu X^I$ are contracted with P^{IJ} and $(m^2)^{IJ}$ consisting of two M^{IJK}, which are orthogonal to X^I_+. This Lagrangian is regarded as the non-linear extension of the Janus field theory Lagrangian in ref. \[11\].

For the two types of non-linear BF Lagrangians in ref. \[29\] which include terms with even and odd number of M^{IJK}, we have made the low-energy expansion and then carried out the
integration by solving its equation of motion in the presence of the $1/T_2$ order corrections through an iterative procedure. In the type one Lagrangian L_1 we have demonstrated that there appear indeed various terms at order $1/T_2$ in the iteratively B_μ integrated effective Lagrangian, but they except for terms with odd number of M^{IJK} are reshuffled to be in agreement with the $1/T_2$ order terms in the low-energy expansion of the above exactly B_μ integrated Lagrangian of the DBI form. In the type two Lagrangian L_2 the effective Lagrangian has been observed to have almost similar $1/T_2$ order corrections except for two terms, where $\bar{D}_\mu X^I$ are contracted with P_{IJ} as well as $\hat{M}^{IMN}M^{JMN}$ which is also orthogonal to X_+^I. The remaining terms including single M^{IJK} in both effective Lagrangians consist of two kinds of interactions specified by $\epsilon^{\mu \nu \lambda} \hat{M}^{IJK} \bar{D}_\mu X^I \bar{D}_\nu X^J \bar{D}_\lambda X^K$ and $m^{IJ} f^{\mu \nu} \bar{D}_\mu X^I \bar{D}_\nu X^J$ where the SO(8) vectors $\bar{D}_\mu X^I$ are contracted with the tensors \hat{M}^{IJK} and m^{IJ} which are orthogonal to X_+^I.

References

[1] J. Barggner and N. Lambert, “Modeling multiple M2’s,” Phys. Rev. D75, 045020 (2007) [arXiv:hep-th/0611108]; “Gauge symmetry and supersymmetry of multiple M2-branes,” Phys. Rev. D77, 065008 (2008) [arXiv:0711.0955[hep-th]]; “Comments on multiple M2-branes,” JHEP 0802,105 (2008) [arXiv:0712.3738[hep-th]].

[2] A. Gustavsson, “Algebraic structures on parallel M2-branes,” Nucl. Phys. B811, 66 (2009) [arXiv:0709.1260[hep-th]]; “Selfdual strings and loop space Nahm equations,” JHEP 0804, 083 (2008) [arXiv:0802.3456[hep-th]].

[3] J.H. Schwarz, “Superconformal Chern-Simons theories,” JHEP 0411, 078 (2004) [arXiv:hep-th/0411077].

[4] A. Basu and J.A. Harvey, “The M2-M5 brane system and a generalized Nahm’s equation,” Nucl. Phys. B713, 136 (2005) [arXiv:hep-th/0412310].

[5] G. Papadopoulos, “M2-branes, 3-Lie algebras and Plucker relations,” JHEP 0805, 054 (2008) [arXiv:0804.2662[hep-th]]; J.P. Gauntlett and J.B. Gutowski, “Constraining maximally supersymmetric membrane actions,” arXiv:0804.3078[hep-th].

[6] M. Van Raamsdonk, “Comments on the Bagger-Lambert theory and multiple M2-branes,” JHEP 0805, 105 (2008) [arXiv:0803.3803[hep-th]]; N. Lambert and D. Tong, “Membranes on an orbifold,” Phys. Rev. Lett. 101, 041602 (2008) [arXiv:0804.1114[hep-th]]; J. Distler, S. Mukhi, C. Papageorgakis and M. Van Raamsdonk, “M2-branes on M-folds,” JHEP 0805, 038 (2008) [arXiv:0804.1256[hep-th]].

[7] J. Gomis, G. Milanesi and J.G. Russo, “Bagger-Lambert theory for general Lie algebras,” JHEP 0806, 075 (2008) [arXiv:0805.1012[hep-th]].

[8] S. Benvenuti, D. Rodriguez-Gomez, E. Tonni and H. Verlinde, “$\mathcal{N} = 8$ superconformal gauge theories and M2 branes,” JHEP 0901, 078 (2009) [arXiv:0805.1087[hep-th]].
[9] P.-M. Ho, Y. Imamura and Y. Matsuo, “M2 to D2 revisited,” JHEP 0807, 003 (2008) [arXiv:0805.1202[hep-th]].

[10] S. Mukhi and C. Papageorgakis, “M2 to D2,” JHEP 0805, 085 (2008) [arXiv:0803.3218[hep-th]].

[11] Y. Honma, S. Iso, Y. Sumitomo and S. Zhang, “Janus field theories from multiple M2 branes,” Phys. Rev. D78, 025027 (2008) [arXiv:0805.1895[hep-th]].

[12] M.A. Bandres, A.E. Lipstein and J.H. Schwarz, “Ghost-free superconformal action for multiple M2-branes,” JHEP 0807, 117 (2008) [arXiv:0806.0054[hep-th]].

[13] J. Gomis, D. Rodriguez-Gomez, M. Van Raamsdonk and H. Verlinde, “Supersymmetric Yang-Mills theory from Lorentzian three-algebras,” JHEP 0808, 094 (2008) [arXiv:0806.0738[hep-th]].

[14] H. Verlinde, “D2 or M2? A note on membrane scattering,” arXiv:0807.2121[hep-th].

[15] B. Ezhuthachan, S. Mukhi and C. Papageorgakis, “D2 to D2,” JHEP 0807, 041 (2008) [arXiv:0806.1639[hep-th]].

[16] H. Nicolai and H. Samtleben, “Chern-Simons vs. Yang-Mills gaugings in three dimensions,” Nucl. Phys. B668, 167 (2003) [arXiv:hep-th/0303213]; B. de Wit, H. Nicolai and H. Samtleben, “Gauged supergravities in three dimensions: A panoramic overview,” arXiv:hep-th/0403014.

[17] O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, “$\mathcal{N} = 6$ superconformal Chern-Simons-matter theories, M2-branes and their gravity duals,” JHEP 0810, 091 (2008) [arXiv:0806.1218[hep-th]].

[18] Y. Honma, S. Iso, Y. Sumitomo and Z. Zhang, “Scaling limit of $\mathcal{N} = 6$ superconformal Chern-Simons theories and Lorentzian Bagger-Lambert theories,” Phys. Rev. D78, 105011 (2008) [arXiv:0806.3498[hep-th]]; “Generalized conformal symmetry and recovery of SO(8) in multiple M2 and D2 branes,” arXiv:0807.3825[hep-th].

[19] J. Bagger and N. Lambert, “Three-algebras and $\mathcal{N} = 6$ Chern-Simons gauge theories,” Phys. Rev. D79, 025002 (2009) [arXiv:0807.0163[hep-th]].

[20] Y. Pang and T. Wang, “From N M2’s to N D2’s,” Phys. Rev. D78, 125007 (2008) [arXiv:0807.1444[hep-th]].

[21] E. Antonyan and A.A. Tseytlin, “On 3d $\mathcal{N} = 8$ Lorentzian BLG theory as a scaling limit of 3d superconformal $\mathcal{N} = 6$ ABJM theory,” Phys. Rev. D79, 046002 (2009) [arXiv:0811.1540[hep-th]].

[22] P.-M. Ho, R.-C. Hou and Y. Matsuo, “Lie 3-algebra and multiple M2-branes,” JHEP 0806, 020 (2008) [arXiv:0804.2110[hep-th]]; P.-M. Ho and Y. Matsuo, “M5 from M2,” JHEP 0806, 105 (2008) [arXiv:0804.3629[hep-th]]; P.-M. Ho, Y. Imamura Y. Matsuo
and S. Shiba, “M5-brane in three-form flux and multiple M2-branes,” JHEP **0808**, 014 (2008) [arXiv:0805.2898[hep-th]]; J.H. Park and C. Sochichiu, “Single M5 to multiple M2: taking off the square root of Nambu-Goto action,” [arXiv:0806.0335[hep-th]]; I.A. Bandos and P.K. Townsend, “Light-cone M5 and multiple M2-branes,” Class. Quant. Grav. **25**, 245003 (2008) [arXiv:0806.4777[hep-th]]; “SDiff gauge theory and the M2 condensate,” JHEP **0902**, 013 (2009) [arXiv:0808.1583[hep-th]].

[23] A. Morozov, “On the problem of multiple M2 branes,” JHEP **0805**, 076 (2008) [arXiv:0804.0913[hep-th]]; U. Gran, B.E.W. Nilsson and C. Petersson, “On relating multiple M2 and D2-branes,” JHEP **0810**, 067 (2008) [arXiv:0804.1784[hep-th]]; E.A. Bergshoeff, M. de Roo and O. Hohm, “Multiple M2-branes and the embedding tensor,” Class. Quant. Grav. **25**, 142001 (2008) [arXiv:0804.2201[hep-th]]; S. Banerjee and A. Sen, “Interpreting the M2-brane action,” [arXiv:0805.3930[hep-th]]; S. Cecotti and A. Sen, “Coulomb branch of the Lorentzian three algebra theory,” [arXiv:0806.1990[hep-th]]; E.A. Bergshoeff, M. de Roo, O. Hohm and D. Roet, “Multiple membranes from gauged supergravity,” JHEP **0808**, 091 (2008) [arXiv:0806.2584[hep-th]].

[24] H. Lin, “Kac-Moody extensions of 3-algebras and M2-branes,” JHEP **0807**, 136 (2008) [arXiv:0805.4003[hep-th]]; P. de Medeiros, J. Figueroa-O’Farrill and E. Mendez-Escobar, “Lorentzian Lie 3-algebras and their Bagger-Lambert moduli space,” JHEP **0807**, 11 (2008) [arXiv:0805.4363[hep-th]]; “Metric Lie 3-algebras in Bagger-Lambert theory,” JHEP **0808**, 045 (2008) [arXiv:0806.3242[hep-th]]; M. Ali-Akbari, M.M. Sheikh-Jabbari and J. Simon, “The relaxed three-algebras: their matrix representations and implications for multi M2-brane theory,” JHEP **0812**, 037 (2008) [arXiv:0807.1570[hep-th]]; S. Cherkis and C. Saemann, “Multiple M2-branes and generalized 3-Lie algebra,” Phys. Rev. **D78**, 066019 (2008) [arXiv:0807.0808[hep-th]]; S. Cherkis, V. Dotsenko and C. Saemann, “On superspace actions for multiple M2-branes, metric 3-algbras and their classification,” [arXiv:0812.3127[hep-th]]; C.I. Lazroiu, D. McNamee, C. Saemann and A. Zejak, “Strong homotopy Lie algebras, generalized Nahm equations and multiple M2-branes,” [arXiv:0901.3905[hep-th]].

[25] P.-M. Ho, Y. Matsuo and S. Shiba, “Lorentzian Lie (3-)algebra and toroidal compactification of M/string theory,” JHEP **0903**, 045 (2009) [arXiv:0901.2003[hep-th]]; P. de Medeiros, J. Figueroa-O’Farrill, E. Mendez-Escobar and P. Ritter, “Metric 3-Lie algebras for unitary Bagger-Lambert theories,” [arXiv:0902.4674[hep-th]].

[26] R. Iengo and J.G. Russo, “Non-linear theory for multiple M2 branes,” JHEP **0810**, 030 (2008) [arXiv:0808.2473[hep-th]].

[27] A.A. Tseytlin, “On non-Abelian generalisation of the Born-Infeld action in string theory,” Nucl. Phys. **B501**, 41 (1997) [arXiv:hep-th/9701125].

[28] R.C. Myers, “Dielectric-branes,” JHEP **9912**, 022 (1999) [arXiv:hep-th/9910053].

[29] M.R. Garousi, “On non-linear action of multiple M2-branes,” Nucl. Phys. **B809**, 519 (2009) [arXiv:0809.0985[hep-th]].
[30] J. Kluson, “D2 to M2 procedure for D2-brane DBI effective action,” Nucl. Phys. B808, 260 (2009) arXiv:0807.4054[hep-th].

[31] M. Alishahiha and S. Mukhi, “Higher-derivative 3-algebras,” JHEP 0810, 032 (2008) arXiv:0808.3067[hep-th].

[32] T. Li, Y. Liu and D. Xie, “Multiple D2-brane action from M2-branes,” arXiv:0807.1183[hep-th].

[33] B. Ezruthachan, S. Mukhi and C. Papageorgakis, “The power of the Higgs mechanism: higher-derivative BLG theories,” arXiv:0903.0003[hep-th].

[34] M. Li and T. Wang, “M2-branes coupled to antisymmetric fluxes,” JHEP 0807, 093 (2008) arXiv:0805.3427[hep-th].

[35] M.A. Ganjali, “Nambu-Poisson bracket and M-theory branes coupled to antisymmetric fluxes,” arXiv:0811.2976[hep-th].

[36] M.A. Ganjali, “On dielectric membranes,” arXiv:0901.2642[hep-th].

[37] M.R. Garousi, “A proposal for M2-brane-anti-M2-bane action,” arXiv:0809.0381[hep-th].

[38] J. Kluson, “Note about unstable M3-brane action,” Phys. Rev. D79, 026001 (2009) arXiv:0810.0585[hep-th].

[39] D. Gaiotto and E. Witten, “Janus configurations, Chern-Simons couplings, and the theta-angle in $\mathcal{N} = 4$ super Yang-Mills theory,” arXiv:0804.2907[hep-th]; K. Hosomichi, K.M. Lee, S. Lee and J. Park, “$\mathcal{N} = 4$ superconformal Chern-Simons theories with hyper and twisted hyper multiplets,” JHEP 0807, 091 (2008) arXiv:0805.3662[hep-th].