Automatic Control Three-Dimensional Warehouse based on PLC

Souvanhkhoomman Sane*1, Prof. Deng Sanpeng*2
Institute of Robotics and Intelligent Equipment.
Tianjin University of Technology and Education
Tianjin 300222, China

Abstract - An automated system is increased in this globalized world. This paper is based upon use of PLC (Programmable Logic Controllers), 3-ph motor and sensors for the purpose of automatic goods handling inside the warehouse and the logistics industries. In many industries, found problem storage goods and flow tasks efficiency in warehouse because several kinds of products. Usage PLC system input line automation to helpful manufactured process accuracy and efficiency. In this research we proposed warehouse automation system which is easy to implement and cost effective. The implementation of this system improves the efficiency of labor and the quality of manufactured products and to create conditions for the optimum utilization of all production resources depends on the PLC program

Keywords: Automatic goods handling, Warehouse automation system, 3-ph motor and sensors, PLC,

I. INTRODUCTION

Automation is the use of control systems and information technologies systems (such as numerical control, inventory control, programmable logic control, and other industrial control systems) to reduce the need for human work in the production of goods and services. In the scope of industrialization, automation is a step beyond mechanization. Automation greatly decreases the need for human sensory, mental requirements and saves time as well [1]. The processes and Systems can also be automated. Specialized industrial computers, referred to as programmable logic controllers (PLCs), are frequently used to synchronize the flow of inputs from (physical) sensors and events with the flow of outputs to actuators and events. This leads to precisely controlled actions that permit a tight control of almost any industrial process [2].

Automatic segregation and directing of materials are controlled using PLCs. It makes use of limiting sensor, color sensor, proximity sensors for segregation and directing of the materials is controlled by using a motor and the conveyor belt depending on the instructions specified in the ladder logic in PLC. In food packaging industry PLC is mainly used for automation purpose which helps in reducing packaging time and increases the production rate as compared with the manual system [3].

Many useful researches have been done in the field of warehouse automation system. For example, Min S. Ko et al. [4] developed a case study to simulate and verify the PLC program for an automobile panel AS/RS. They suggested a PLC simulation using 3D models and PLC codes, which consists of real automobile manufacturing data. Senanayake and S. Veera Ragavan [5] used an optimization method to determine the optimum storage locations for the goods that will use AS/RS. They used fuzzy control system for the purpose of determining the best storage location. In this study, AS/RS’s working strategies, sensor, PLC and other control components are analyzed and automation techniques are discussed. System’s control structure is explained with detailed algorithms and AS/RS automation components’ functions are examined. AsaadMusaab Ali Yousif [2] design and developed control system of AS/RS by simulate through PLC. Sunderesh S. Heragu et al. [6] modeled the AVS/RS (Autonomous Vehicle Storage and Retrieval System) and used MPA (manufacturing system performance analyzer) to examine the performance of an AS/RS. They used experimental results to show if the OQN (Open Queueing Network) methodology can be applied to analyze an AS/RS and determined MPA is a better choice to quickly evaluate alternate configurations of the AVS/RS. Rashid et al. [7] proposed a new design of an Automated Storage and Retrieval System using wireless communication to improve existing warehouse management system (WMS). They made the communication between PIC controller and computer by wireless technology and the motion of the system is based on three DC motors for each direction of motion X, Y and Z that is controlled by PIC microcontroller.

The main objective of the project controls the three-dimensional warehouse in goods handling with help of PLCs. The whole process is done automatically based on input signals from the PLC to the respective devices

II. HARDWARE AND DESCRIPTION

A. PLC control

We have chosen SIEMENS S7-1200 CPU 1215c series. Programmable Logic Controllers with the following features

Feature	CPU 1215c
Physical size (mm)	130 x 100 x 75
User memory	
Work	125 Kbytes
Load	4 Mbytes
Retentive	10 Kbytes
Local on-board I/O	
Digital	14 inputs/10 output
Analog	2 inputs/1 output
Process image size	
Input	1024 bytes
Output	1024 bytes
Bit memory (M)	8192 bytes
Signal module (SM) expansion	8
Signal board (SB), Battery board (BB), or communication board (CB)	1
Communication module (CM)	3
B. Sensor

In this system, Proximity sensor detect an object input signal transmitter for the PLC without touching it and therefore do not cause abrasion or damage to the object.

C. DC motor

It is use to operate the directions of the stacker crane and the gripper. The motor operation is performed using PLC and relays. Triaxial operation is performed here that is, X axis, Y axis and Z axis. Hence three motors are used to perform this operation and one for the gripper movement.

III. SOFTWARE PLATFORM REQUIREMENT

Siemens PLC programming software Portal V13 (including SIMATIC STEP 7 Professional V13 and SIMATIC WinCC Comfort Advanced V13)

Table 2: The computer can support software

Hardware requirement	The computer with STEP 7 Basic/Professional V13 must at least meet the following requirements:
	● CPU processor: CoreTM i5-3320m 3.3 GHz ● Memory: 8G or larger ● Hard disk: 300 GB SSD ● Graphics resolution: minimum, 1920 x 1080 ● Monitor: 15.6" widescreen display, 1920 x 1080(● CD-ROM: DL MULTISTANDARD DVD - RW

Table 3: Display configuration position devices of PLC program

Input	Signal	Description	Input status
I0.0	CEMG	Emergency stop	effective invalid
I0.1	PWR-ON	Power-on	effective invalid
I0.2	EX-LIM	Palletizer overrun relay	effective invalid
I0.3	3ELP	3-axis positive limit.	effective invalid
I0.4	3ORG1	3 axis origin 1.	effective invalid
I0.5	SEN1	Workpiece detection photoelectric switch on fork	effective invalid
I0.6	3ORG3	3 axis origin 3.	effective invalid
I0.7	3EL-	3-axis negative limit.	effective invalid
I0.8	2EL-	2-axis negative limit.	effective invalid
I0.9	2EL+	2-axis positive limit.	effective invalid
I1.1	2DEC1	2-axis deceleration 1 point.	effective invalid
I1.2	2DEC2	2-axis deceleration 2 point.	effective invalid
I1.3	2DEC3	2-axis deceleration 3 point.	effective invalid
I1.4	2EL+	2-axis positive limit.	effective invalid
I1.5	1EL+	1-axis positive limit.	effective invalid
I1.6	1DEC1	1-axis deceleration 1 point.	effective invalid
I1.7	1DEC2	1-axis deceleration 2 point.	effective invalid
V. ADVANTAGES AND DISADVANTAGES

A. Advantages
- This system reduces human intervention while increasing safety.
- Automatic Manufacturing process is efficiency and accuracy.
- Distance time work saving.

B. Disadvantages
- High cost investment installation
- Require engineers skilled knowledge, ability and experience
- Time in maintenance and improve are large

VI. APPLICATION

we have implemented a ladder code install at PLC software to control system. After that output commands to

I5.1 SQ21	Raw material warehouse position 21. Workpiece detection switch.	effective	invalid
I5.2 SQ22	Raw material warehouse position 22. Workpiece detection switch.	effective	invalid
I5.3 SQ23	Raw material warehouse position 23. Workpiece detection switch.	effective	invalid
I5.4 SQ24	Raw material warehouse position 24. Workpiece detection switch.	effective	invalid
I5.5 SQ25	Raw material warehouse position 25. Workpiece detection switch.	effective	invalid
I5.6 SQ26	Raw material warehouse position 26. Workpiece detection switch.	effective	invalid
I5.7 SQ27	Raw material warehouse position 27. Workpiece detection switch.	effective	invalid
I5.8 SQ28	Raw material warehouse position 28. Workpiece detection switch.	effective	invalid

| OUTPUT |
Q0.0 RED	Tricolor lamp red	effective	invalid
Q0.1 YELLOW	Three color light yellow	effective	invalid
Q0.2 GREEN	Tricolor light green	effective	invalid
Q0.3 START	Start relay	effective	invalid
Q0.4 STOP	Stop relay	effective	invalid
Q0.5 DIS LIM	Over limit contact relay	effective	invalid
Q0.6 ALMHL	Alarm indicator	effective	invalid
Q0.7 CMGHL	Emergency stop indicator	effective	invalid
Q1.0 STOP_U	Inverter stop	effective	invalid
configuration I/O devices. Complexity of automatic warehouse has been modeled, based on this paper purpose we achieved such as analysis, developed and control system

Figure 4: three-dimensional warehouse system

Figure 5: PLC control panel

ACKNOWLEDGMENT

This paper is supported by the National Key Technology R&D Program (2015BAK06B04); the key technologies R&D program of Tianjin (15ZXLZNGX00260, 17YFCZZC00270, 17KPMXM00190, 17KPMMS00180, 18ZJXMTC00160) Tianjin University of technology and education Plan Project (18JCTPJC67100, 18JCTPJC68300, 18JCTPJC67500, 18JCTPJC64200)

REFERENCE

[1] V. Ramanan & Sachin R “PLC-SCADA Based Automated Logistics Warehouse Management System” International Journal of Mechanical and Industrial Engineering (IJMIE), ISSN No. 2231-6477, Volume-2, Issue-2, 2012.J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892, pp.68-73.
[2] AsaadMusaab Ali Yousif, Jiang Dening “Automatic Control for Storage and Retrieval System Based On PLC” International journal of advanced research in electrical electronics and instrumentation engineering. Vol.3, Issue 9, September 2014.
[3] Kiran A. Gupta, Neha Armani, T. C. Manjunath and H. V. Manjunath “Design and implementation of PLC based industrial application prototype” Indian Journal of Science and Technology, Vol 10(35), DOI: 10.17485/ijst/2017/v10i35/118962, September 2017
[4] Min S. Ko, G.N. Wang, Hye S. Shin, Sang C. Park, “Machine Control Level Simulation of an AS/RS In the Automotive Industry,” in Winter Simulation Conference, 2010, Phoenix, Arizona, pp. 1727-1738.
[5] C. Senanayake and S. Veera Ragavan, “A Fuzzy Implementation for Optimization of Storage Locations in an Industrial AS/RS,” in World Academy of Science, Engineering and Technology, vol. 39, pp. 38-43, 2008.

[6] Sunderesh S. Heragu, Xiao Cai, Ananth Krishnamurthy, Charles J. Malmborg, “An Approach to Model the AS/RS via Colored Timed Petri Net,” in 5th Annual IEEE Conference on Automation Science and Engineering, 2009, Bangalore, India, pp. 455-459
[7] M.M. Rashid, Banna Kasemi, Mahmudur Rahman, “New Automated Storage and Retrieval System (ASRS) using wireless communications,” in 4th International Conference on Mechatronics (ICOM), 2011, Kuala Lumpur, Malaysia, pp. 1-7.