Research Article

Distance signless Laplacian eigenvalues, diameter, and clique number

Saleem Khan, Shariefuddin Pirzada

Department of Mathematics, University of Kashmir, Srinagar, Kashmir, India

(Received: 18 January 2022. Received in revised form: 7 April 2022. Accepted: 13 April 2022. Published online: 19 April 2022.)

© 2022 the authors. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

Let G be a connected graph of order n. Let $\text{Diag}(\text{Tr})$ be the diagonal matrix of vertex transmissions and let $\mathcal{D}(G)$ be the distance matrix of G. The distance signless Laplacian matrix of G is defined as $\mathcal{D}_s(G) = \text{Diag}(\text{Tr}) + \mathcal{D}(G)$ and the eigenvalues of $\mathcal{D}_s(G)$ are called the distance signless Laplacian eigenvalues of G. Let $\mathcal{D}_s(G) \geq \mathcal{D}_s(G) \geq \cdots \geq \mathcal{D}_s(G)$ be the distance signless Laplacian eigenvalues of G. The largest eigenvalue $\mathcal{D}_s(G)$ is called the distance signless Laplacian spectral radius. We obtain a lower bound for $\mathcal{D}_s(G)$ in terms of the diameter and order of G. With a given interval I, denote by $m_{\mathcal{D}_s(G)}(I)$ the number of distance signless Laplacian eigenvalues of G which lie in I. For a given interval I, we also obtain several bounds on $m_{\mathcal{D}_s(G)}(I)$ in terms of various structural parameters of the graph G, including diameter and clique number.

Keywords: distance matrix; distance signless Laplacian matrix; spectral radius; diameter; clique number.

2020 Mathematics Subject Classification: 05C50, 05C12, 15A18.

1. Introduction

Let $G = (V(G), E(G))$ be a simple connected graph with the vertex set $V(G) = \{v_1, v_2, \ldots, v_n\}$ and edge set $E(G)$. The order and size of G are $|V(G)| = n$ and $|E(G)| = m$, respectively. The degree of a vertex v, denoted by $d_G(v)$, is the number of edges incident to the vertex v. In G, $N_G(v)$ is the set of all vertices which are adjacent to v. Further, K_n denotes the complete graph on n vertices. In a graph G, the subset $M \subseteq V(G)$ is called an independent set if no two vertices of M are adjacent. A clique is a complete subgraph of a given graph G. The cardinality of the maximum clique is called the clique number of G and is denoted by ω. A vertex $u \in V(G)$ is called a pendant vertex if $d_G(u) = 1$. For other standard definitions, we refer the reader to [6, 11].

For $v_i, v_j \in V(G)$, the distance between v_i and v_j, denoted by $d_G(v_i, v_j)$, is the length of a shortest path between v_i and v_j. The diameter d (or $\text{d}(G)$) of a graph G is the maximum distance between any two vertices of G. The distance matrix of G, denoted by $\mathcal{D}(G)$, is defined as $\mathcal{D}(G) = (d_{ij})_{v_i, v_j \in V(G)}$. The transmission $Tr_G(v_i)$ (we will write $Tr(v_i)$ if the graph G is understood) of a vertex v_i is defined as the sum of the distances from v_i to all other vertices in G, that is,

$$Tr_G(v_i) = \sum_{v_j \in V(G)} d_G(v_i, v_j).$$

Let $Tr(G) = \text{diag}(Tr(v_1), Tr(v_2), \ldots, Tr(v_n))$ be the diagonal matrix of vertex transmissions of G. For a connected graph G, Aouchiche and Hansen [4] defined the distance Laplacian matrix of G as $\mathcal{D}^L(G) = \text{Diag}(\text{Tr}) - \mathcal{D}(G)$ (or simply \mathcal{D}^L) and the distance signless Laplacian matrix as $\mathcal{D}_s(G) = Tr(G) + \mathcal{D}(G)$ (or simply \mathcal{D}_s). The eigenvalues of $\mathcal{D}_s(G)$ are called the distance signless Laplacian eigenvalues of G. Clearly, $\mathcal{D}_s(G)$ is a real symmetric matrix. We denote its eigenvalues by $\mathcal{D}_s(G)$’s and order them as $\mathcal{D}_s(G) \geq \mathcal{D}_s(G) \geq \cdots \geq \mathcal{D}_s(G)$. The largest eigenvalue $\mathcal{D}_s(G)$ is called the distance signless Laplacian spectral radius. Recent work on distance Laplacian matrix can be seen in [13, 14]. For more work done on distance signless Laplacian matrix of a graph G, we refer the reader to [1–3, 7–9, 12, 15–19]. If the graph G is understood, we may write \mathcal{D}_s in place of $\mathcal{D}_s(G)$ and refer the distance signless Laplacian eigenvalues as \mathcal{D}_s eigenvalues. Let $m_{\mathcal{D}_s(G)}(I)$ be the number of distance signless Laplacian eigenvalues of G that lie in the interval I. Also, let $m_{\mathcal{D}_s(G)}(\mathcal{D}_s(G))$ be the multiplicity of the distance signless Laplacian eigenvalue $\mathcal{D}_s(G)$.

In this paper, we obtain a lower bound for the distance signless Laplacian spectral radius of the graph G in terms of diameter d and order n. We show that the number of distance signless Laplacian eigenvalues in the interval $[n - 2, dn]$ is at least $d + 1$, where d is the diameter of the graph G. We also obtain a lower bound for the number of distance signless Laplacian eigenvalues which fall in the interval $(n - 2, 2n - 2)$, in terms of the order n and the number of vertices having

*Corresponding author (pirzadasd@kashmiruniversity.ac.in).
degree \(n - 1 \). Moreover, we show that the number of distance signless Laplacian eigenvalues in the interval \([n - 2, 2n - \omega - 2]\) is at most \(n - \omega + 2 \), where \(n \) is the order and \(\omega \) is the clique number of the graph \(G \).

2. Distribution of distance signless Laplacian eigenvalues

We require the following lemmas to prove our main results.

Lemma 2.1. [5] Let \(G \) be a connected graph on \(n \geq 3 \) vertices. Then, \(\partial_1^Q(G) \geq \partial_1^Q(K_n) = 2n - 2 \) and \(\partial_i^Q(G) \geq \partial_i^Q(K_n) = n - 2 \) for all \(2 \leq i \leq n \).

A particular case of the well known \(\min - \max \) theorem is the following result.

Lemma 2.2. [20] If \(N \) is a symmetric \(n \times n \) matrix with eigenvalues \(\mu_1 \geq \mu_2 \geq \cdots \geq \mu_n \), then for any \(x \in \mathbb{R}^n \) (\(x \neq 0 \)), we have

\[
\mu_1 \geq \frac{x^T N x}{x^T x},
\]

where the equality holds if and only if \(x \) is an eigenvector of \(N \) corresponding to the largest eigenvalue \(\mu_1 \).

Lemma 2.3. [10] Let \(M = (m_{ij}) \) be a \(n \times n \) complex matrix having \(l_1, l_2, \ldots, l_p \) as its distinct eigenvalues. Then,

\[
\{l_1, l_2, \ldots, l_p\} \subset \bigcup_{i=1}^{n} \left\{ z : |z - m_{ii}| \leq \sum_{j \neq i} |m_{ij}| \right\}.
\]

If we apply Lemma 2.3 for the distance signless Laplacian matrix of a graph \(G \) with \(n \) vertices, we get

\[
\partial_1^T(G) \leq 2\text{Tr}_{\text{max}}
\]

(1)

Theorem 2.1 (Cauchy Interlacing Theorem). Let \(M \) be a real symmetric matrix of order \(n \), and let \(A \) be a principal submatrix of \(M \) with order \(s \leq n \). Then

\[
\lambda_i(M) \geq \lambda_i(A) \geq \lambda_{i+n-s}(M) \quad (1 \leq i \leq s).
\]

In the following theorem, we give the lower bound for the distance signless Laplacian spectral radius of the graph \(G \) in terms of diameter \(d \) and order \(n \).

Theorem 2.2. Let \(G \) be a connected graph on \(n \) vertices having diameter \(d \). Then

\[
\partial_1^Q(G) \geq \frac{2n + d(d + 1) - 2}{2}.
\]

Proof. Let \(P_{d+1} : v_1v_2 \ldots v_{d+1} \) be a diametral path in \(G \) such that \(d_G(v_1, v_{d+1}) = d \). Consider the \(n \)-vector

\[
y = (y_1, y_2, \ldots, y_{d-1}, y_d, y_{d+1}, \ldots, y_n)^T
\]

defined by

\[
y_i = \begin{cases}
\frac{1}{\sqrt{2}} & \text{if } i = 1, d + 1 \\
0 & \text{otherwise.}
\end{cases}
\]

By Lemma 2.2, we have

\[
\partial_1^Q(G) \geq \frac{y^T D^Q y}{y^T y} = \frac{\text{Tr}(v_1) + \text{Tr}(v_{d+1})}{2} + d_G(v_1, v_{d+1}).
\]

(2)

Now, we have

\[
\text{Tr}(v_1) + \text{Tr}(v_{d+1}) \geq 2(1 + 2 + \cdots + d) + 2(n - d - 1) = d(d + 1) + 2(n - d - 1)
\]

On substituting the above inequality in Inequality (2), we get

\[
\partial_1^Q(G) \geq \frac{d(d + 1) + 2(n - d - 1)}{2} + d = \frac{2n + d(d + 1) - 2}{2}.
\]

\(\square \)

The next result shows that the number of distance signless Laplacian eigenvalues in the interval \([n - 2, dn]\) is at least \(d + 1 \), where \(d \) is the diameter of the graph \(G \).
Theorem 2.3. Let G be a connected graph on $n \geq 3$ vertices having diameter d, then

$$m_{D^Q(G)}[n-2,dn] \geq d + 1.$$

Proof. We consider the principal submatrix, say M, corresponding to the vertices $v_1, v_2, \ldots, v_{d+1}$ which belong to the induced path P_{d+1} in the distance signless Laplacian matrix of G. Clearly,

$$Tr(v_i) \leq 1 + 2 + \ldots + d + d(n - d - 1) = \frac{d(2n - d - 1)}{2},$$

for all $i = 1, 2, \ldots, d + 1$. Also, the sum of the off diagonal elements of any row of M is less than or equal to $d(d + 1)/2$. Using Lemma 2.3, we conclude that the maximum eigenvalue of M is at most dn. Using Lemma 2.1 and Theorem 2.1, we see there are at least $d + 1$ distance signless Laplacian eigenvalues of G which are greater than or equal to $n - 2$ and less than or equal to dn, that is

$$m_{D^Q(G)}[n-2,dn] \geq d + 1.$$

\[\square\]

An immediate consequence of Theorem 2.3 is the following result.

Corollary 2.1. Let G be a connected graph on $n \geq 3$ vertices having diameter d. If $dn < 2Tr_{max}$, then

$$m_{D^Q(G)}(dn,2Tr_{max}) \leq n - d - 1.$$

Proof. Since $dn < 2Tr_{max}$, by Lemma 2.1 and Inequality (1), we have

$$m_{D^Q(G)}[n-2,dn] + m_{D^Q(G)}(dn,2Tr_{max}) = n.$$

Thus, using Theorem 2.3, we get

$$m_{D^Q(G)}(dn,2Tr_{max}) \leq n - d - 1.$$

\[\square\]

For proving the next result, we need the following lemma which can be found in [5].

Lemma 2.4. Let G be a connected graph with n vertices. If $K = \{v_1, v_2, \ldots, v_p\}$ is a clique of G such that $N_G(v_i) - K = N_G(v_j) - K$ for all $i, j \in \{1, 2, \ldots, p\}$, then $\partial = Tr(v_i) = Tr(v_j)$ for all $i, j \in \{1, 2, \ldots, p\}$ and $\partial - 1$ is an eigenvalue of $D^Q(G)$ with multiplicity at least $p - 1$.

Now, we obtain a lower bound for the number of distance signless Laplacian eigenvalues which fall in the interval $(n - 2, 2n - 2)$, in terms of the order n and the number of vertices having degree $n - 1$.

Theorem 2.4. Let G be a connected graph on n vertices. If $m_d = |\{u \in V(G) : d_G(u) = n - 1\}|$, where $1 \leq m_d \leq n$, then

$$m_{D^Q(G)}(n-2,2n-2) \leq n - m_d.$$

Equality holds when $m_d = n$, that is, $G \cong K_n$.

Proof. We consider the following two cases.

Case 1. Let $m_d = n$, that is, $G \cong K_n$. By Lemma 2.1, we see that the equality holds.

Case 2. Let $1 \leq m_d \leq n - 1$. Since G contains m_d vertices of degree $n - 1$, therefore, G contains a clique, say S, of size m_d. Let $S = \{v_1, v_2, \ldots, v_{m_d}\}$. Clearly,

$$n - 1 = Tr(v_1) = Tr(v_2) = \cdots = Tr(v_{m_d}).$$

By Lemma 2.4, we observe that $n - 2$ is a distance signless Laplacian eigenvalue of G with multiplicity at least $m_d - 1$. Also, we know that the distance signless Laplacian matrix corresponding to any connected graph H is symmetric, positive and irreducible. Therefore, by the Perron-Frobenius Theorem, $\partial^Q_1(H - uv) > \partial^Q_1(H)$ whenever $uv \in E(H)$ and $H - uv$ is connected. As $m_d \leq n - 1$, therefore, $G \not\cong K_n$. Thus, from the above information $\partial^Q_1(G) > \partial^Q_1(K_n) = 2n - 2$. Hence,

$$m_{D^Q(G)}(n-2,2n-2) \leq n - (m_d - 1) - 1 = n - m_d.$$

\[\square\]
The following lemma is used in proving Theorem 2.5.

Lemma 2.5. [5] Let G be a graph with n vertices. If $K = \{v_1, v_2, \ldots, v_p\}$ is an independent set of G such that $N_G(v_i) = N_G(v_j)$ for all $i, j \in \{1, 2, \ldots, p\}$, then $\delta = Tr(v_i) = Tr(v_j)$ for all $i, j \in \{1, 2, \ldots, p\}$ and $\delta - 2$ is an eigenvalue of $D^Ω(G)$ with multiplicity at least $p - 1$.

The next result shows that the number of distance signless Laplacian eigenvalues in the interval $[n - 2, 2n - 4]$ is at most $n - p + 1$, where $n \geq 3$ is the order of G and p is the number of pendant vertices adjacent to common neighbour.

Theorem 2.5. Let G be a connected graph of order $n \geq 3$. If $S = \{v_1, v_2, \ldots, v_p\} \subseteq V(G)$, where $|S| = p \leq n - 1$, is the set of pendant vertices such that every vertex in S has the same neighbourhood in $V(G) \setminus S$, then

$$m_{D^Q(G)}([n - 2, 2n - 4]) \leq n - p + 1.$$

Proof. Clearly all the vertices in S form an independent set. Since all the vertices in S are adjacent to same vertex, therefore, all the vertices of S have the same transmission. Now, for any v_i ($i = 1, 2, \ldots, p$) of S, we have

$$T = Tr(v_i) \geq 2(p - 1) + 1 + 2(n - p - 1) = 2n - 3.$$

From Lemma 2.5, there are at least $p - 1$ distance signless Laplacian eigenvalues of G which are equal to $T - 1$. From above we have $T - 1 \geq 2n - 3 - 1 = 2n - 4$. Thus, there are at least $p - 1$ distance signless Laplacian eigenvalues of G which are greater than or equal to $2n - 4$. Using Lemma 2.1, we get $m_{D^Q(G)}([n - 2, 2n - 4]) \leq n - p + 1$. \square

Next, we show that the number of distance signless Laplacian eigenvalues in the interval $[n - 2, 2n - \omega - 2]$ is at most $n - \omega + 2$, where n is the order and ω is the clique number of the graph G.

Theorem 2.6. Let G be a connected graph of order n having clique number $\omega \leq n - 1$. If only one vertex of the corresponding maximum clique is adjacent to the vertices outside of the clique, then

$$m_{D^Q(G)}([n - 2, 2n - \omega - 2]) \leq n - \omega + 2.$$

Proof. Let $S = \{v_1, v_2, \ldots, v_w\}$ be the set of vertices of the maximum clique such that v_w is the only vertex having neighbours outside of S. Clearly, the set of vertices $N = \{v_1, v_2, \ldots, v_w-1\}$ also form a clique such that every vertex of N is adjacent to v_w only outside of N. It is easy to see that all the vertices belonging to N have the same transmission. For any $v_i \in N$, $i = 1, 2, \ldots, \omega - 1$, we have

$$T = Tr(v_i) \geq \omega - 1 + 2(n - \omega) = 2n - \omega - 1.$$

Using Lemma 2.4, we observe that $T - 1$ is a distance signless Laplacian eigenvalue of G of multiplicity at least $\omega - 2$. From Inequality (3), we have $T - 1 \geq 2n - 1 - \omega - 1 = 2n - \omega - 2$. So there are at least $\omega - 2$ distance signless Laplacian eigenvalues of G which are greater than or equal to $2n - \omega - 2$. From Inequality (1), we get $m_{D^Q(G)}([2n - \omega - 2, 2Tr_{max}]) \geq \omega - 2$. Thus, by the above observation and Lemma 2.1, we have $m_{D^Q(G)}([n - 2, 2n - \omega - 2]) \leq n - \omega + 2$, which completes the proof. \square

References

[1] A. Alhevaz, M. Baghipur, H. A. Ganie, S. Pirzada, Brouwer type conjecture for the eigenvalues of distance signless Laplacian matrix of a graph, Linear Multilinear Algebra 69 (2021) 2423–2440.

[2] A. Alhevaz, M. Baghipur, E. Hashemi, On distance signless Laplacian spectrum and energy of graphs, Electron. J. Graph Theory Appl. 6 (2018) 326–340.

[3] A. Alhevaz, M. Baghipur, S. Pirzada, Y. Shang, Some inequalities involving the distance signless Laplacian eigenvalues of graphs, Trans. Comb. 10 (2021) 9–29.

[4] M. Aouchiche, P. Hansen, Two Laplacians for the distance matrix of a graph, Linear Algebra Appl. 439 (2013) 21–33.

[5] M. Aouchiche, P. Hansen, Two Laplacians for the distance matrix of a graph, Linear Algebra Appl. 464 (2016) 1113–1123.

[6] D. Cvetković, P. Rowlinson, S. Simić, An Introduction to the Theory of Graph Spectra, Cambridge Univ. Press, New York, 2010.

[7] K. C. Das, H. Lin, J. Guo, Distance signless Laplacian eigenvalues of graphs, Front. Math. China 14 (2019) 693–713.

[8] H. Jia, W. C. Shiu, Distance signless Laplacian spectrum of a graph, Front. Math. China, DOI: 10.1007/s11464-021-0898-6, In press.

[9] H. Lin, B. Zhou, The effect of graft transformations on distance signless Laplacian spectral radius, Linear Algebra Appl. 504 (2016) 433–461.

[10] M. Marcus, H. Minc, A Survey of Matrix Theory and Matrix Inequalities, Reprinted of the 1964 edition, Dover Publications, New York, 1992.

[11] S. Pirzada, An Introduction to Graph Theory, Universities Press, Hyderabad, 2012.

[12] S. Pirzada, H. A. Ganie, A. Alhevaz, M. Baghipur, On sum of the powers of distance signless Laplacian eigenvalues of graphs, Indian J. Pure Appl. Math. 53 (2022) 1145–1163.

[13] S. Pirzada, S. Khan, On the distance signless Laplacian spectral radius and chromatic number of graphs, Linear Algebra Appl. 625 (2021) 44–54.

[14] S. Pirzada, S. Khan, On the sum of the distance signless Laplacian eigenvalues of graphs, Tamkang J. Math., DOI: 10.5556/tjm.54.2023.4120, In press.

[15] S. Pirzada, B. A. Rather, M. Aijaz, T. A. Chishti, On distance signless Laplacian spectrum of graphs and spectrum of zero divisor graphs of Z_n, Linear Multilinear Algebra, DOI: 10.1080/03081087.2020.1838425, In press.

[16] B. A. Rather, S. Pirzada, T. A. Naikoo, On distance signless Laplacian spectra of power graphs of the integer modulo group \mathbb{Z}_n, Art Discrete Appl. Math., DOI: 10.26493/2590-9770.1393.2be, In press.

[17] R. Xing, B. Zhou, On the distance and distance signless Laplacian spectral radii of bicyclic graphs, Linear Algebra Appl. 439 (2013) 3955–3965.

[18] J. Xue, S. Lu, J. Shu, The complements of path and cycle are determined by their distance (signless) Laplacian spectra, Appl. Math. Comput. 326 (2018) 137–142.

[19] L. You, L. Ren, G. Yu, Distance and distance signless Laplacian spread of connected graphs, Discrete Appl. Math. 223 (2017) 140–147.

[20] F. Zhang, Matrix Theory: Basic Results and Techniques, Springer-Verlag, New York, 1999.