Mihić, Ljubica

The remainder term of Gauss-Radau quadrature rule with single and double end point.
(English) | Zbl 07337550
Publ. Inst. Math., Nouv. Sér. 102(116), 73-83 (2017)

Summary: The remainder term of quadrature formula can be represented as a contour integral with a complex kernel. We study the kernel on elliptic contours for Gauss-Radau quadrature formula with the Chebyshev weight function of the second kind with double and single end point. Starting from the explicit expression of the corresponding kernel, derived by Gautschi and Li, we determine the locations on the ellipses where the maximum modulus of the kernel is attained.

MSC:
65D30 Numerical integration
41A55 Approximate quadratures
65D32 Numerical quadrature and cubature formulas

Keywords:
Gauss-Radau quadrature formula; Chebyshev weight function; remainder term

Full Text: DOI

References:
[1] W. Gautschi, R. S. Varga, Error bounds for Gaussian quadrature of analytic functions, SIAM J. Numer. Anal. 20(1983), 1170-1186. · Zbl 0545.41040
[2] W. Gautschi, S. Li, The remainder term for analytic functions of Gauss-Radau and Gauss-Lobatto quadrature rules with multiple end points, J. Comput. Appl. Math. 33(1990), 315-329. · Zbl 0724.41024
[3] W. Gautschi, On the remainder term for analytic functions of Gauss-Lobatto and Gauss-Radau quadratures, Rocky Mt. J. Math. 21(1991), 259-270. · Zbl 0749.41026
[4] D. B. Hunter, G. Nikolov, On the error term of symmetric Gaussian-Lobatto quadrature formulae for analytic functions, Math. Comput. 69(2000), 269-282. · Zbl 0946.41019
[5] Lj. Mihić, A. Pejčev, M. Spalević, Error bounds for Gauss-Lobatto quadrature formula with multiple end points with Chebyshev weight function of the third and the fourth kind, Filomat 30(1)(2016), 231-239. · Zbl 06749678
[6] G. V. Milovanović, M. M. Spalević, A. S. Cvetković, Calculation of Gaussian type quadratures with multiple nodes, Math. Comput. Modelling 49(2004), 325-347. · Zbl 1049.65019
[7] G. V. Milovanović, M. M. Spalević, A note on the bounds of the error of Gaussian-type quadratures, J. Comput. Appl. Math. 200(2007), 276-282. · Zbl 1105.41025
[8] G. V. Milovanović, M. M. Spalević, M. Pranić, On the remainder term of Gauss-Radau quadrature for analytic functions, J. Comput. Appl. Math. 218(2008), 281-289. · Zbl 1147.41009
[9] A. Pejčev, M. Spalević, On the remainder term of Gauss-Radau quadrature with Chebyshev weight of the third kind for analytic functions, Appl. Math. Comput. 219(2012), 2760-2765. · Zbl 1308.65029
[10] S. E. Notari, The error norm of quadrature formulae, Numer. Algorithms 60(2012), 555-578. · Zbl 1256.65025
[11] T. Schira, The remainder term for analytic functions of symmetric Gaussian quadratures, Math. Comp. 66(1997), 297-310. · Zbl 0854.41025
[12] M. M. Spalević, M. S. Pranić, A. V. Pejčev, Maximum of the modulus of kernels of Gaussian quadrature formulae for one class of Bernstein-Szegő weight functions, Appl. Math. Comput. 218(2012), 5746-5756. · Zbl 1257.41020
[13] M. M. Spalević, Error bounds and estimates for Gauss-Turán quadrature formulae of analytic functions, SIAM J. Numer. Anal. 52(2014), 443-467. · Zbl 1290.65021

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.