Progressive nitrogen limitation across the Tibetan alpine permafrost region

Dan Kou1,2,3,4, Guibiao Yang1,2, Fei Li1,2, Xuehui Feng1,2, Dianye Zhang1,2, Chao Mao1,2, Qiwen Zhang1,2, Yunfeng Peng1, Chengjun Ji5, Qiuian Zhu6, Yunting Fang7, Xueyan Liu8, Xu-Ri9, Siqi Li10, Jia Deng11, Xunhua Zheng2,10, Jingyun Fang1,5 & Yuanhe Yang1,2

https://doi.org/10.1038/s41467-020-17169-6

The ecosystem carbon (C) balance in permafrost regions, which has a global significance in understanding the terrestrial C-climate feedback, is significantly regulated by nitrogen (N) dynamics. However, our knowledge on temporal changes in vegetation N limitation (i.e., the supply of N relative to plant N demand) in permafrost ecosystems is still limited. Based on the combination of isotopic observations derived from a re-sampling campaign along a ~3000 km transect and simulations obtained from a process-based biogeochemical model, here we detect changes in ecosystem N cycle across the Tibetan alpine permafrost region over the past decade. We find that vegetation N limitation becomes stronger despite the increased available N production. The enhanced N limitation on vegetation growth is driven by the joint effects of elevated plant N demand and gaseous N loss. These findings suggest that N would constrain the future trajectory of ecosystem C cycle in this alpine permafrost region.
Permafrost regions store more than 1300 Pg (1 Pg = 10¹⁵ g) carbon (C, ca. 43% of the global soil organic C storage) in ~15% of the global land area. During the past decades, permafrost regions have experienced two times faster climate warming compared with the rest of Earth’s areas, which has triggered extensive permafrost thaw. Consequently, large amounts of C stored in permafrost regions may be emitted into the atmosphere as carbon dioxide (CO₂) and methane (CH₄) because of the accelerated microbial decomposition, potentially aggravating global warming through the positive C-climate feedback. However, permafrost regions may still appear as a C sink due to the enhanced vegetation productivity under both the current and near-future climate scenarios. These uncertainties in ecosystem C balance across permafrost regions could be partly ascribed to ecosystem nitrogen (N) dynamics, especially changes in the status of N limitation on vegetation under changing environment. Vegetation N limitation is characterized as the lower supply of N to plants relative to their N demand and jointly determined by the provision of available N and plant N requirements. In general, the greater the vegetation N limitation is, the less N vegetation would sequester and the more likely permafrost ecosystems function as a C source; on the contrary, permafrost ecosystems would tend to act as a C sink. Consistent with this conceptual understanding, ecosystem C stock simulated with a C-N model configuration could be ~35 Pg lower than that simulated with a C-only configuration across the circumpolar permafrost region in 2300. Therefore, deeper exploration of ecosystem N dynamics in permafrost regions is imperative to better predict permafrost C cycle and its feedback to climate warming.

During the last decade, the global change research community has paid great attention to the site-level dynamics of available N supply to plants in permafrost ecosystems. Based on these efforts, an enhanced supply of plant-available N derived from the accelerated N mineralization or the release of originally frozen available N is observed with climate warming or permafrost thaw. In addition, there are also studies that reveal increased plant productivity, or enhanced plant N pool in permafrost ecosystems, reflecting an elevated plant N demand under environmental changes. These studies have advanced our understanding on both the dynamics of available N supply and plant N demand in permafrost regions. However, little is known about the dynamics of N supply relative to plant N demand across permafrost regions, especially over the broad geographic scale. This knowledge gap constrains our understanding on the status of vegetation N limitation and prevents an accurate prediction of the direction and magnitude of permafrost C-climate feedback.

To fill the knowledge gap mentioned above, we conducted a large-scale repeated sampling during the 2000s and the 2010s along a ~3000 km transect on the Tibetan Plateau (Fig. 1 and Supplementary Fig. 1), the largest alpine permafrost region around the world, which has experienced fast warming, elevated atmospheric CO₂ concentration (Supplementary Fig. 2) and extensive permafrost thaw as other permafrost regions. The initial field campaign that investigated 135 sites across the study area was carried out during the period 2001–2004, while the revisited field campaign that covered 107 of the original 135 sites was performed during the period of 2013–2014 (Fig. 1). For each paired sampling sites, the investigation methods are identical (see details in “Methods” section). Based on the collected samples during the two sampling campaigns, plant δ¹⁵N and bulk soil δ¹⁵N (i.e., δ¹⁵N of total inorganic and organic N pools in the soil) were measured to characterize changes in ecosystem N cycle in this alpine permafrost region. To further explore ecosystem N dynamics, N cycling processes were simulated for each resampling site with a process-based biogeochemical model—DeNitrification-DeComposition (DNDC). With all the obtained measurements and simulations, this study aims to examine the temporal changes in ecosystem N cycle, especially vegetation N limitation across the Tibetan alpine permafrost region over the last decade. We find that plant growth becomes more N-limited in this alpine permafrost region despite the enhanced provision of plant-available N.

Results and discussion

Decreased plant δ¹⁵N over time. Over the past decade, neither mean annual precipitation (MAP; Supplementary Fig. 2) nor atmospheric N deposition (Supplementary Figs. 2 and 3) experienced significant changes, whereas both mean annual air temperature (MAAT) and atmospheric CO₂ concentration significantly increased (P < 0.05; Supplementary Fig. 2) across the Tibetan alpine permafrost region. Under these environmental changes, plant δ¹⁵N across this alpine permafrost region significantly decreased during the period from the 2000s to the 2010s (median in the 2000s: 1.3‰, median in the 2010s: 1.0‰, P < 0.001; Fig. 2a, b). On average, the absolute changing rate in plant δ¹⁵N was ~0.02‰ per year (within the range of ~0.043 ~0.016‰ per year globally) and the relative changing rate was ~1.7% per year. Further analyses revealed that plant δ¹⁵N tended to decrease among 73 of the total 107 resampling sites and the decline in plant δ¹⁵N remained significant until >74 resampling sites were removed from the initial analysis with 107 resampling sites (Supplementary Fig. 4), demonstrating the robustness of isotopic dynamics observed in this study.

Changes in plant δ¹⁵N could be associated with multiple reasons, such as shifts in vegetation community, atmospheric N deposition, biological N fixation and plant N uptake through root or mycorrhizae. However, both vegetation community (Supplementary Figs. 5–7 and Supplementary Note 1) and atmospheric N deposition (both rate and δ¹⁵N; Supplementary Figs. 2 and 3) were stabilized over the two sampling periods, and thus had limited effects on the plant δ¹⁵N dynamics observed in this study. Moreover, despite biological N fixation increased over the last decade (P < 0.001; Fig. 3), it should not be the main reason for the decrease in plant δ¹⁵N, as plant δ¹⁵N also significantly decreased among the investigated sites without Leguminosae (P < 0.05; Supplementary Fig. 8). In addition, plant δ¹⁵N uptake through roots could elevate rather than diminish plant δ¹⁵N, because bulk soil δ¹⁵N increased over the detection period (P < 0.01; Fig. 4) and the fractionation of N isotopes was minimal during root N uptake in natural ecosystems. In contrast to root N uptake, plant N uptake through mycorrhizae can decrease plant δ¹⁵N given: (i) the transfer of δ¹⁵N-deleted N to plants by mycorrhizae; (ii) the crucial role of mycorrhizae in supplying N to plants under N-limited conditions; (iii) the widespread distribution of plants associated with mycorrhizae across the 107 resampling sites; (iv) the potentially enhanced mycorrhizal colonization driven by the two major environmental changes on the Tibetan Plateau (CO₂ enrichment and climate warming, Supplementary Fig. 2). Nevertheless, besides N limitation, other factors especially phosphorus (P) limitation and water stress could also make plants to invest more to mycorrhizae. However, soil N : P ratio in the top 10 cm across the study area significantly decreased over the detection period (P < 0.01; Supplementary Fig. 10), indicating that N rather than P limitation was more likely to reduce plant δ¹⁵N via mycorrhizae. Moreover, topsoil moisture across the study area did not exhibit significant change over the detection period (Supplementary Figs. 11 and 12, and Supplementary Note 3), reflecting the minimal effect of water stress on the plant δ¹⁵N.
dynamics. Taken together, of all the factors considered, an enhancement in reliance on mycorrhizae for N acquisition could be the plausible reason for the decreased plant δ15N observed in this study.

As a widely used indicator to reflect the supply of N relative to plant N demand, a lower plant δ15N generally represents an elevated N limitation12,13,26,27,36,37. Due to this point, the decreased plant δ15N observed in this study suggests enhanced vegetation N limitation across the Tibetan alpine permafrost region over the last decade. To further demonstrate this point, we conducted a historical simulation from 1980 to 2015 for the 107 resampling sites with the DNDC model and acquired an indicator (plant N stress index) that represented the supply of N relative to plant demand38–40. The lower the plant N stress value is, the greater the vegetation N limitation is38–40. Our results showed that the plant N stress index significantly decreased during the past decades (\(P < 0.001\); Fig. 2c), confirming the enhancement of vegetation N limitation across the study area. Besides the plant N stress index, we also explored the dynamics of available N production by analyzing changes in the simulated annual rates of soil N mineralization and biological N fixation. In contrast to the plant N stress index, these two processes were significantly accelerated during the period between the 2000s and the 2010s (\(P < 0.001\); Fig. 3), indicating the enhanced production of available N across the study area. Collectively, these results highlighted that vegetation N limitation became stronger across the Tibetan alpine permafrost region during the past decade despite the increased production of available N.

Enhanced plant N demand under changing environment. The enhancement of vegetation N limitation could be associated with increases in plant N demand41. To illustrate this point, we detected the changes in indicators characterizing plant N demand derived from the DNDC simulations, including plant N pool and annual plant N uptake rate. Results showed that both indicators significantly increased during the last decade (\(P < 0.001\); Fig. 3), indicating that increased plant N demand could promote vegetation N limitation across the Tibetan alpine permafrost region. Based on the factorial analysis conducted through the DNDC model, we further disentangled the effects of environmental changes on plant N pool and annual plant N uptake rate. Our results illustrated that climate warming and CO\textsubscript{2} enrichment played dominant roles in elevating these two parameters, highlighting their crucial effects on stimulating plant N demand (Supplementary Fig. 13a–d). Of them, climate warming can enhance vegetation productivity and subsequent plant N demand by accelerating plant metabolic activity and extending growing season length36, while CO\textsubscript{2} enrichment can improve plant N demand through its fertilization effect11,42. In support of this interpretation, large amounts of evidences have revealed earlier growing season43,44, larger vegetation productivity43,45 and continuous ecosystem C sink45,46 across the Tibetan alpine permafrost region during the past decades.

Increased ecosystem N loss induced by environmental change. The enhancement of vegetation N limitation could also be linked with processes that tend to decrease the supply of available N to plant growth41. To demonstrate this point, we examined changes in ecosystem N loss (gaseous N loss and leaching N loss) derived from the DNDC simulations. Our results showed that annual total ecosystem N loss rate significantly increased during the period from the 2000s to the 2010s (\(P < 0.001\); Fig. 3) and the enhancement in total ecosystem N loss was largely due to the significant increase in gaseous N loss (\(P < 0.001\); Fig. 3). The increase in gaseous N loss has potentials to reduce the supply of N relative to plant N demand and hence tends to induce the
Besides climate warming and CO₂ enrichment, soil moisture is known as another key factor regulating ecosystem gaseous N loss⁴⁷, however, topsoil moisture across the study area experienced no significant change over the detection period (Supplementary Figs. 11 and 12, and Supplementary Note 3) and did not exhibit significant association with the simulated gaseous N loss (Supplementary Fig. 14 and Supplementary Note 3), indicating its limited effect on the increased gaseous N loss across the study area.

Elevated bulk soil δ¹⁵N between the sampling interval. The increase in both plant N demand and ecosystem external N loss was confirmed by the increases in bulk soil δ¹⁵N observed in this study, which was a comprehensive indicator of ecosystem N cycle⁵²⁹,⁵³⁴. To be specific, our results showed that bulk soil δ¹⁵N in the top 10 cm across the Tibetan alpine permafrost region significantly increased during the period 2000s–2010s (median in the 2000s: 5.2‰, median in the 2010s: 5.8‰, P < 0.01; Fig. 4). The absolute changing rate of bulk soil δ¹⁵N was 0.05‰ per year and the relative changing rate was 0.9‰ per year. Bulk soil δ¹⁵N is determined by multiple N cycling processes, including gaseous N loss, net plant N uptake, leaching N loss, atmospheric N deposition and biological N fixation⁵³,⁵⁴. These processes have different effects on bulk soil δ¹⁵N, with the largest isotopic fractionation effects occurring in gaseous N loss (16–30‰), the second in net plant N uptake (5–10‰), the third in leaching N loss (1‰), and the least in atmospheric N deposition and biological N fixation (−2–0‰)⁵³,⁵⁴. Among these processes, atmospheric N deposition (both rate and δ¹⁵N, Supplementary Figs. 2–3) and leaching N loss (Fig. 3) did not exhibit significant changes during the detection period. Consequently, these two processes are supposed to have limited effects on bulk soil δ¹⁵N dynamics. Moreover, biological N fixation significantly increased during the past decade (P < 0.001; Fig. 3), which tended to depress bulk soil δ¹⁵N values because of the lower δ¹⁵N in biologically fixed N sources⁵³,⁵⁴. Accordingly, the increased bulk soil δ¹⁵N observed across the Tibetan alpine permafrost region should be largely driven by the enhanced gaseous N loss and/or the elevated plant N uptake. Overall, the simulated changes in plant N demand and ecosystem N loss (Fig. 3) were supported by the observed bulk soil δ¹⁵N dynamics (Fig. 4).

The progressive N limitation observed across the Tibetan alpine permafrost region contrasted with the traditional view that warming-induced permafrost thaw could eliminate vegetation N limitation in the circumpolar permafrost region by producing large amounts of available N through the acceleration of soil N mineralization and the release of originally frozen available N⁴¹⁵,₁₇,₁₉. Such a difference could be related to the following two aspects. First, the soil N density (N storage per area) across the Tibetan alpine permafrost region (1.6 kg N m⁻² to 3 m depth⁵⁵) is much lower than that in the circumpolar permafrost region (4.6 ~ 7.5 kg N m⁻² to 3 m depth⁵⁶), which can lead to a lower available N supply through mineralization and thus is more likely to induce the enhanced vegetation N limitation. Second, the active layer thickness across the Tibetan alpine permafrost region (~2.4 m⁵⁵) is two times deeper than that in the circumpolar permafrost region (~0.9 m⁵⁷). Given that over 90% of plant roots are distributed within the 30 cm soil layer⁴⁸, the deeper active layer thickness in this alpine permafrost region can restrict plants to use the released available N after permafrost thaw and thus is more likely to result in the enhanced vegetation N limitation.

In summary, based on isotopic observations from a resampling field investigation and simulations from a process-based biogeochemical model, this study explored ecosystem N dynamics enhanced vegetation N limitation. Based on the factorial analysis conducted in the DNDC model, we found that climate warming was the major driver of the increased gaseous N loss over the past decade (Supplementary Fig. 13e, f). Ecologically, climate warming can promote gaseous N loss through (i) enhancing the production of available N substrates⁴⁷,⁴⁸ for nitrification and denitrification by stimulating microbial biomass or activity⁴⁹,⁵⁰, (ii) improving the supply of C for nitrifiers and denitrifiers by increasing root exudations²⁴,²⁵ and (iii) accelerating the diffusion of gaseous N generated by nitrification and denitrification processes⁵¹. Moreover, CO₂ enrichment can also stimulate gaseous N loss (Supplementary Fig. 13e, f), probably due to the enhancement in soil biological activity or labile C availability under elevated CO₂³⁴.
Changes in N cycling variables were derived from the DeNitrification-DeComposition (DNDC) simulations. Changes in N cycling variables were characterized by the slope of the relationship between an indicator and the fixed effect (year), which were examined with linear mixed-effects models after data normalization. Points in the plot denote the estimated model slopes and error bars represent 95% confidence intervals. N, the number of sites used for analyzing temporal dynamics of each indicator; df.resid, residual degrees of freedom.

Fig. 3 Temporal dynamics of N production, demand and loss. Changes in production of available N are reflected by annual soil N mineralization and biological N fixation rates (BNF), changes in plant N demand are represented by plant N pool and annual plant N uptake rate, and changes in ecosystem N loss are indicated by gaseous N loss, leaching N loss and total N loss (sum of gaseous and leaching N losses) over 2000s~2010s. Data of the N cycling variables were derived from the DeNitrification-DeComposition (DNDC) simulations. Changes in N cycling variables were characterized by the slope of the relationship between an indicator and the fixed effect (year), which were examined with linear mixed-effects models after data normalization. Points in the plot denote the estimated model slopes and error bars represent 95% confidence intervals. N, the number of sites used for analyzing temporal dynamics of each indicator; df.resid, residual degrees of freedom.

Fig. 4 Changes in topsoil δ¹⁵N over 2000s ~ 2010s. a, b Frequency distributions of bulk soil δ¹⁵N and changes in bulk soil δ¹⁵N during the period between the 2000s and the 2010s, respectively. The change in bulk soil δ¹⁵N was examined with linear mixed-effects model, in which the fixed effect was year and the random effect was sampling site. Points in b denote mean values and error bars represent 95% confidence intervals. N, the number of sites used for analyzing bulk soil δ¹⁵N; Median, median value of bulk soil δ¹⁵N; df.resid, residual degrees of freedom.
across the Tibetan alpine permafrost region. We found an enhanced vegetation N limitation across the study area over the last decade despite the increase in available N production. The progressive N limitation was associated with the joint enhancement in plant N demand and ecosystem N loss under current environmental changes, especially climate warming and CO₂ enrichment. These results suggest that the enhanced N limitation may constrain the positive effects of climate warming and CO₂ enrichment on vegetation productivity. Despite that, microbial respiration can still be stimulated by the continuous climate warming. Consequently, the Tibetan alpine permafrost region would turn from the current C sink to future C source with continuous environmental changes, which could then switch the feedback of C cycle to climate warming in an opposite direction.

Methods

Study area. This study was conducted on the Tibetan Plateau, the largest alpine permafrost region around the world, with an area of ~1.35 × 10⁶ km² and a mean elevation over 4000 m asl. Climate on this plateau is cold and dry, and the MAAT ranges between −4.1 and 7.4 °C, and the MAP varies from dozens of mm in the southwest of the plateau to ~700 mm in the southeast. Due to the low temperature, permafrost is extensively developed and categorized as continuous, discontinuous, sporadic and isolated types across the plateau. The mean active layer thickness ranges from 2.4 m (range: 1.3–4.6 m) along the Qinghai–Tibetan highway to ~2.5 m along the Qinghai–Tibetan highway. Alpine grassland is the main vegetation type across the Tibetan alpine permafrost region, with dominant species being Stipa pumilae and Carex moorcroftii. Consequently, the Tibetan alpine permafrost region is a natural laboratory to explore ecosystem N dynamics. Based on this original campaign, 135 sites were investigated across the plateau (Fig. 1). After about 10 years, the resampling campaign was validated in terms of simulating ecosystem-atmosphere nitrous oxide (N₂O) fluxes. Specifically, we measured atmospheric CO₂ concentration, observed at the Waliguan (a global atmospheric background station), was obtained from the Chinese Research Network or Special Environment Observation site. The thermal degree days were calculated by summing the daily mean temperature higher than 0 °C. Based on the above-mentioned dataset, N₂O emissions were modelled using the DNDC model in terms of simulating ecosystem N dynamics.

Original and repeated sampling. To detect temporal dynamics of ecosystem N cycle in the context of environmental changes across the Tibetan alpine permafrost region, texture, soil bulk density, soil pH, SOC, soil C:N ratio, and soil δ¹⁵N values were measured. In the repeated field campaign, we carried out the study area during 2000s – 2010s (Fig. 1). To be specific, the original sampling campaign was conducted by the investigation team from Peking University during the period from 2001 to 2004. Based on this original campaign, 135 sites were investigated across the plateau (Fig. 1). After about 10 years, the resampling field campaign was performed by the investigation team from Institute of Botany, Chinese Academy of Sciences in the year 2013 and 2014. With the record of geographic location (latitude and longitude) of a historical site investigated during the 2000s, the resampling site was preliminarily determined by a Global Position System with a decimetre precision (Supplementary Fig. 1). The samples used on the soil were collected within the area of ~10 cm depth with standard 100 cm³ steel cylinders (Supplementary Fig. 1c). Soil samples used to determine bulk density were collected within the 10 cm depth with standard 100 cm³ steel cylinders in three quadrats along a diagonal within each resampling site. Besides the identical investigation method and the stable vegetation community, the topography and management practices were also unchanged during the detection period for each of the 107 paired sampling sites.

Elemental and stable isotope analyses. To explore changes in ecosystem N cycle, we measured δ¹⁵N values of plant and bulk soil with samples collected through the large-scale resampling investigations. In our study, site-level plant δ¹⁵N measurement was conducted based on the five vegetation samples collected over the five quadrats (1 × m1 × m) within a sampling plot (10 m × 10 m; Supplementary Fig. 1). Specifically, at each sampling site, plant samples were collected from each of the five 1 × 1 m² quadrats, dried to a constant weight at 65 °C and weighed as aboveground biomass separately. The dried plant samples were then ground using a ball mill (Mixer Mill MM 400, Retsch, Germany). With the treated plant and soil samples, we measured plant and bulk δ¹⁵N values using an isotope ratio mass spectrometer (SerCon 20–22, Crewe, UK), analysed plant and soil N contents with an elemental analyser (Vario EL III, Elemental, Germany), and determined soil C:N ratio with an inductively coupled plasma optical emission spectrometer (ICP 6300 ICP-OES Spectrometer, Thermo Scientific, USA). To avoid errors in measurements, both δ¹⁵N values and element contents during the two sampling periods were determined at the same time with the same instruments.

Model simulation. To further examine ecosystem N dynamics on the basis of observations from large-scale resampling investigations, we simulated the key ecosystem N cycling processes for the 107 resampling sites with DNDC (http://www.dndc.sr.unh.edu/), a process-based biochemical model. DNDC has been widely tested and applied around the world (http://www.globaldnndc.net). Model simulations were run specially for the simulation of ecosystem N dynamics, and has also been demonstrated to perform well across the Tibetan alpine permafrost region. In this study, we first validated the DNDC model in terms of simulating ecosystem-atmosphere nitrous oxide (N₂O) fluxes. Specifically, we collected N₂O fluxes daily from 33 sites across the area for the whole of the 2000s, and obtained 58 N₂O observations from 22 sites (Supplementary Fig. 1a) in 18 studies (Supplementary Methods). We also synthesized other data from the above-mentioned literature (Supplementary Methods) and other associated literature (Supplementary Fig. 4) to drive the model simulation, including vegetation type, plant biomass (plant C:N ratio, soil C:N and soil δ¹⁵N ratio. To drive the model simulation, we further acquired data for atmospheric CO₂ concentration, annual rate of atmospheric N deposition, daily meteorology and thermal degree days. Among them, the atmospheric CO₂ concentration, observed at the Waliguan (a global atmospheric background station) was obtained from the Chinese Research Network. The atmospheric N deposition rate was obtained from a national-scale spatiotemporal dataset if it was not provided in the original literature. The daily meteorological data, including mean temperature, maximum temperature, minimum temperature and precipitation, were derived from the Global Climate Data Set (http://data.cern.ch) closing the N₂O observation site. The thermal degree days were calculated by summing the daily mean temperature higher than 0 °C. Based on the above-mentioned dataset, N₂O emissions were modelled using the DNDC model in terms of simulating ecosystem N dynamics.
To disentangle effects of environmental changes on N cycling processes, factorial analyses were conducted with the DNDC simulations. Four simulation experiments were carried out for each of the 107 resampling sites: (i) constant atmospheric CO2 concentration with normal changes in other factors; (ii) constant temperature with normal changes in other factors; (iii) constant precipitation with normal changes in other factors; and (iv) normal changes in all factors. After all the simulations, we calculated the differences between the target variable in one of the four controlling simulation experiments and the target variable in experiment (iv) for each resampling site. Finally, we averaged the calculated differences among the 107 resampling sites to reflect the impact of different environmental changes on the dynamics of N cycling processes.

Data availability

All plant and soil δ15N data used in this study are available as a supplementary file (Supplementary Data 1). Additional data are available from the corresponding author (Dr. Yuande Yang) upon reasonable request.

Received: 5 December 2019; Accepted: 15 June 2020;
Published online: 03 July 2020

References

1. Schuur, E. A. G. & Mack, M. C. Ecological response to permafrost thaw and consequences for local and global ecosystem services. Annu. Rev. Ecol. Evol. Syst. 49, 279–301 (2018).

2. Köhly, M., Hiederer, R. & Freibauer, A. Global distribution of soil organic carbon—Part I: Masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world. Soil 1, 351–365 (2015).

3. Bukabara, B. K. et al. Permafrost is warming at a global scale. Nat. Commun. 10, https://doi.org/10.1038/s41467-018-08240-4 (2019).

4. Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–175 (2015).

5. Natali, S. M. et al. Large loss of CO2 in winter observed across the northern permafrost region. Nat. Clim. Chang. 9, 852–857 (2019).

6. Knoblauch, C., Beer, C., Liebner, S., Grigoriev, M. N. & Pfeiffer, E. M. Methane production as key to the greenhouse gas budget of thawing permafrost. Nat. Clim. Chang. 8, 309–312 (2018).

7. Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).

8. Koven, C. D., Lawrence, D. M. & Riley, W. J. Permafrost carbon-climate feedback is sensitive to deep soil carbon composability but not deep soil nitrogen dynamics. Proc. Natl Acad. Sci. USA 112, 3752–3757 (2015).

9. McGuire, A. D. et al. Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proc. Natl Acad. Sci. USA 115, 3882–3887 (2018).

10. Kicklighter, D. W., Meibom, J. M., Monier, E., Sokolov, A. P. & Zhuang, Q. L. Future nitrogen availability and its effect on carbon sequestration in Northern Peatlands. Proc. Natl Acad. Sci. USA 108, 2497–2502 (2011).

11. Chapin, F. S. III, Matson, P. A. & Vitousek, P. Principles of Terrestrial Ecosystem Ecology. (Springer Science & Business Media, 2011).

12. McLaughlin, K. K., Craine, J. M., Oswald, W. W., Leavitt, P. R. & Likens, G. E. Changes in nitrogen cycling during the past century in a northern hardwood forest. Proc. Natl Acad. Sci. USA 104, 7466–7470 (2007).

13. Craine, J. et al. Isotopic evidence for oligotrophication of terrestrial ecosystems. Nat. Ecol. Evol. 2, 1735–1744 (2018).

14. Koven, C. D. et al. Permafrost carbon-climate feedbacks accelerate global warming. Proc. Natl Acad. Sci. USA 108, 14769–14774 (2011).

15. Keuper, F. et al. A frozen feast: thawing permafrost increases plant-available nitrogen in subarctic peatlands. Glob. Chang. Biol. 18, 1998–2007 (2012).

16. Finger, R. A. et al. Effect of permafrost thaw on nitrogen availability and plant-soil interactions in a boreal Alaskan lowland. J. Ecol. 104, 1542–1554 (2016).

17. Salmon, V. G. et al. Nitrogen availability increases in a tundra ecosystem during five years of experimental permafrost thaw. Glob. Chang. Biol. 22, 1927–1941 (2016).

18. Salmon, V. G. et al. Adding depth to our understanding of nitrogen dynamics in permafrost soils. J. Geophys. Res. Biogeosci. 123, 2497–2512 (2018).

19. Beermann, F. et al. Permafrost thaw and liberation of inorganic nitrogen in Eastern Siberia. Permafrosl. Periglacial Process 28, 605–618 (2017).

20. Hewitt, R. E., Taylor, D. L., Genet, H., McGuire, A. D. & Mack, M. C. Belowground plant traits influence tundra plant acquisition of newly thawed permafrost nitrogen. J. Ecol. 107, 950–962 (2019).

21. Natali, S. M., Schuur, E. A. G. & Rubin, R. L. Increased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost. J. Ecol. 100, 488–498 (2012).

Statistical analyses

To determine whether N cycling variables exhibited significant differences during the detection period, we conducted statistical tests with the linear mixed-effects model (LMM). LMM is an extension of simple linear model, which can effectively remove the random effects for non-independent data. In this study, LMMs were used to explore changes in plant δ15N, plant N stress index, the production of available N (soil mineralization and biological N fixation), plant N demand (plant N pool and plant N uptake rate), ecosystem N loss (total N loss, gaseous N loss and leaching N loss) and bulk soil δ15N over the detection period. For all the analyses with LMM, the fixed effect was year and the random effect was sampling site. Data normality was tested before the LMM analyses, and log-transformation was performed when necessary. All the analyses were conducted in R 3.5.1 with the lme4 package.
22. Zhang, T., Barry, R. G., Knowles, K., Heginbottom, J. A. & Brown, J. Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere. Polar Geogr. 31, 47–68 (2008).
23. Wu, Q. B. & Zhang, T. J. Changes in active layer thickness over the Qinghai-Tibetan Plateau from 1995 to 2007. J. Geophys. Res. Atmos. 115, D09107 (2010).
24. Li, C. S., Frolking, S. & Frolking, T. A. A model of nitrous oxide evolution from soil driven by rainfall events: I. Model structure and sensitivity. J. Geophys. Res. Atmos. 97, 9759–9776 (1992).
25. Li, C. S. Biogeochemistry: Scientific Fundamentals and Modelling Approach. (Tsinghua Univ. Press, 2016).
26. Craine, J. M. et al. Global patterns of fertilizer nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. J. Geophys. Res. 114, G02020 (2009).
27. McCaluclan, K. K., Ferguson, C. J., Wilson, I. E., Ocheltree, T. W. & Craine, J. M. Thirteen decades of fertilizer isotopes indicate declining nitrogen availability in central North American grasslands. N. Phytol. 187, 1135–1145 (2010).
28. Hobbie, J. E. & Hobbie, E. A. 15N in symbiotic fungus and plants estimates nitrogen and carbon flux rates in Arctic tundra. Ecology 87, 816–822 (2006).
29. Hobbie, E. A. & Hogberg, P. Nitrogen isotopes link mycorrhizal fungi and plants to nitrogen dynamics. N. Phytol. 196, 367–382 (2012).
30. Houlton, B. Z., Sigman, D. M., Schuur, E. A. G. & Hedin, L. O. A climate-driven switch in plant nitrogen acquisition within tropical forest communities. Proc. Natl Acad. Sci. USA 104, 8992–8996 (2007).
31. Hobbie, E. A. & Hobbie, J. E. Natural abundance of N-15 in nitrogen-limited forests and tundra can estimate nitrogen cycling through mycorrhizal fungi: A review. Ecosystems 11, 815–830 (2008).
32. Schimel, J. P. & Bennett, J. Nitrogen mineralization: Challenges of a changing paradigm. Ecology 85, 591–602 (2004).
33. Zhang, L., Wang, Y., Yang, N. & Jin, L. Advances in the study of arbuscular mycorrhizal fungi in high altitude and cold habitats on Tibetan Plateau. J. Fungal Res. 15, 58–67 (2019).
34. Treseder, K. K. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. N. Phytol. 164, 347–355 (2008).
35. Jaynes, B. & Quigley, M. Influence of arbuscular mycorrhiza on growth and reproductive response of plants under water deficit: a meta-analysis. Mycorrhiza 24, 109–119 (2014).
36. Elmore, A. J., Nelson, D. M. & Craine, J. M. Earlier springs are causing reduced nitrogen availability in North American deciduous forests. Nat. Plants 2, 16133 (2016).
37. McCaluclan, K. K. et al. Centennial-scale reductions in nitrogen availability in temperate forests of the United States. Sci. Rep. 7, https://doi.org/10.1038/s41598-017-08170-z (2017).
38. Li, C. User’s Guide for the DNDC Model. (Institute for the Study of Earth, Oceans and Space, University of New Hampshire, 2012).
39. Zhang, Y. et al. Ecological change on the Tibetan Plateau. Nat. Commun. 5, 504–506 (2014).
40. Guest, G. et al. Comparing the performance of the DNDC, Holos, and VSMB models for predicting the water partitioning of various crops and sites across Canada. Can. J. Veg. Sci. 55, 212–231 (2018).
41. Luo, Y. et al. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. BioScience 54, 731–739 (2004).
42. Finzi, A. C. et al. Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. Proc. Natl Acad. Sci. USA 104, 14014–14019 (2007).
43. Zhang, X. et al. Ecological change on the Tibetan Plateau. Chin. Sci. Bull. 60, 3048–3056 (2015).
44. Zhang, G. L., Zhang, Y. J., Dong, J. W. & Xiao, X. M. Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011. Proc. Natl Acad. Sci. USA 110, 4309–4314 (2013).
45. Ding, J. et al. Decadal soil carbon accumulation across Tibetan permafrost regions. Nat. Geosci. 10, 420–424 (2017).
46. Piao, S. L. et al. Impacts of climate and CO2 changes on the vegetation growth and carbon balance of Qinghai-Tibetan grasslands over the past five decades. Glob. Planet Change 98–99, 73–80 (2012).
47. Bai, E. et al. A meta-analysis of experimental warming effects on terrestrial nematodes. Proc. Natl Acad. Sci. USA 105, 441–451 (2013).
48. Dawes, M. A., Schleppi, P., Hattenschwiler, S., Rixen, C. & Hagedorn, F. Soil warming opens the nitrogen cycle at the alpine treeline. Glob. Chang. Biol. 23, 421–434 (2017).
49. Zhang, X. Z., Shen, Z. X. & Fu, G. A meta-analysis of the effects of experimental warming on soil carbon and nitrogen dynamics on the Tibetan Plateau. Appl. Soil Eco. 87, 32–34 (2015).
50. Xue, K. et al. Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming. Nat. Clim. Chang. 6, 595–600 (2016).
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-020-17169-6.

Correspondence and requests for materials should be addressed to Y.Y.

Peer review information Nature Communication thanks Jeffrey Heikoop and other, anonymous, reviewers for their contributions to the peer review of this work. Peer review reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.