Prevalence of preterm birth and perinatal outcome: A rural tertiary teaching hospital-based study

Ke Manga Reddy, Shilpa Rani Ravula, Shruthi Palakollu, Kalpana Betha
Department of Obstetrics and Gynecology, Mediciti Institute of Medical Sciences, Ghanpur, Medchal, Malkajgiri, Telangana, India

ABSTRACT

Context: Preterm birth is defined as births before 37 weeks of gestational age. Preterm birth is a major challenge in obstetric health care and leading cause of perinatal mortality and long-term morbidity. Complications arising from preterm births are the leading cause of deaths among children less than 5 years of age. Seventy-five percent of them could be saved with current, cost-effective interventions. The rate of preterm births worldwide is 5–18% with the developing countries accounting for the maximum deaths.

Aims: This study was undertaken to evaluate the prevalence of preterm births and risk factors associated with it among women delivered at a rural tertiary teaching hospital in Telangana and further assess its impact on perinatal outcome.

Methods and design: This was a retrospective case control study conducted at Mediciti Institute of Medical Sciences from January 2019 to December 2019.

Results: The prevalence rate of preterm birth was 10.86%. History of previous preterm birth (OR = 4.88, C.I: 1.50–15.87, P = 0.0084), previous LSCS (OR = 2.16, C.I: 1.36–3.44, P = 0.001), inter-pregnancy interval <12 months (OR = 2.78, C.I: 1.13–6.84, P = 0.026), hypertension (OR = 3.10, C.I: 1.78–5.42, P = 0.0001), PROM (OR =0.73, C.I: 2.36–9.49, P < 0.0001), Oligohydramnios (OR = 3.58, C.I: 1.29–9.9, P = 0.01), and multiple pregnancy (OR = 24.09, C.I: 3.09–187.46, P = 0.0024) were found to be significant risk factors for preterm birth. Though the NICU admission rate was high (52%), neonatal outcome was found to be satisfactory.

Conclusions: Some of the risk factors that contributed to preterm birth were modifiable. Preventive strategies addressing the risk factors such as hypertension, oligohydramnios, and also improving health care quality to pregnant women will reduce the prevalence of preterm births and outcomes.
birth occurs in 7–11% of pregnancies but is responsible for 85% of neonatal deaths in normally formed infants who do not have any congenital anomalies.

A greater increase in the survival of preterm infants is seen in recent decades, mostly by timely interventions, antenatal administration of corticosteroids, better NICU care, and exogenous surfactant therapy but still prematurity is the leading cause of neonatal morbidity and mortality.

Earlier is the preterm birth, greater is the risk of adverse outcomes; however, infants born late preterm still have considerable higher morbidity and mortality compared to infants born at term.

Preterm labor can be spontaneous or iatrogenic where labor is induced due to medical, fetal, or obstetric indications. The etiology of preterm birth is multifactorial and it is affected by social, psychological, biological, and genetic factors. Several factors that contribute to preterm birth include maternal factors (prepregnancy BMI, inter-pregnancy interval, psychosocial factors), pregnancy history (previous preterm delivery, medical disorders), and pregnancy characteristics (infections, multiple gestation, shortened cervix, tobacco, antepartum hemorrhage, hydramnios, etc). There is a strong association between infections and preterm birth. The etiology still remains unknown in a large number of cases. Wherever feasible it is important to screen and identify the mothers with risk factors for preterm delivery at the primary care level and provide timely corrective interventions such as smoking cessation, counseling, use of progestational agents, cervical cerclage, etc.

Better understanding of the causes and mechanisms of preterm birth will help in developing solutions to prevent preterm birth. Reliable information on the predictors of preterm birth is critical to design effective preventive intervention strategies in India and globally. Early identification of at-risk pregnancies with timely referral for specialized obstetric care may help to identify women at risk for preterm labor and reduce the extreme prematurity thereby decreasing the morbidity and mortality rate. Though several studies have been conducted worldwide to assess the prevalence of preterm birth and its risk factors, studies on the risk factors for preterm birth in low-middle-income countries are sparse.

We analyzed a range of prenatal risk factors on preterm birth in a prospective observational cross-sectional study in India.

As the prevalence of preterm birth also depends on geographical and demographic features and risk factors might differ, this study will help in implementing necessary interventions in a rural area.

Materials and Methods

A retrospective study was carried out at Mediciti Institute of Medical Sciences (MIMS), a rural tertiary teaching hospital in the Medchal district in Telangana State, India. It is an observational cross-sectional study. The protocol was approved by the SHARE INDIA/Mediciti Institute of Medical Sciences Ethics Committee. Preterm births that occurred from January 19 to December 19 at MIMS were taken as cases. All term births that were considered controls were randomly taken.

Among 1243 births that occurred during the study period, 135 were born preterm. Control group (N = 248) was randomly selected from births that occurred at 37 or more completed weeks of gestation. All deliveries in the hospital and the pregnancy outcomes were recorded in the birth register. Using the parturient's identification numbers, case files were obtained from the medical records department. Data on demographic variables, obstetric history, risk factors contributing to the preterm delivery such as pre-eclampsia, FGR, previous history of preterm births, etc., were noted. Information regarding the onset of labor, mode of delivery, weight of the baby, NICU admissions, and complications was recorded on a predesigned proforma.

Gestational age was ascertained by the last menstrual period (LMP) and confirmed by dating scan. Wherever the LMP was not known, first trimester dating ultrasound was used and if not available, clinical estimate of gestational age was considered. Pre-eclampsia is defined as hypertension after 20 weeks of pregnancy, combined with proteinuria and edema. Proteinuria in pregnancy is defined as the new appearance of protein in the urine equal to or greater than 300 mg of protein in 24-hour collection, protein/creatinine ratio equal to or greater than 0.3 mg/mg or +2 or more on urine dipstick testing. Oligohydramnios is defined as decreased amniotic fluid volume for gestational age. For oligohydramnios AFI <5 cm is taken as a cut-off value. Polyhydramnios is defined as deepest vertical pool (DP) more or equal than 8 cm or amniotic fluid index (AFI) of equal or more than 24 cm or AFI above the 95th percentile for gestational age.

Fetal growth restriction is defined as fetal weight less than the 10th percentile for gestational age as determined with an ultrasound. Low birth weight (LBW) is defined by the World Health Organization as birth weight of an infant of 2499 g or less, regardless of gestational age.

Statistical analysis

Data were collected and tabulated as shown in the results. Statistical analysis was done using Microsoft Excel. Frequency and percentage of each parameter were calculated and analyzed. The risk estimates were analyzed between the cases and controls by calculating the odds ratio, 95% confidence interval, and P value. P Value of <0.05 was considered significant.

Results

Out of the 1,243 deliveries that occurred at Mediciti Institute of Medical Sciences from January 2019 to December 2019, 135 (10.86%) were born preterm.

Table 1 shows the gestational age at the time of delivery among preterm births. Out of 135 preterm births, 7 (5%) were
Preterm birth and perinatal outcome, a hospital based study

Reddy, et al.

Discussion

Preterm birth is a major challenge in healthcare and is associated with most of the perinatal deaths. In the present study, 1,243 deliveries took place during the study period, out of which 135 were preterm births. The prevalence of PTB was 10.86% which was similar to a study by Yamini V. Pusdekar et al.\(^\text{[13]}\) (12.6%). This may be explained by the fact that these women were from rural background with low socioeconomic status and were relatively young at the time of conception. In contrast, Jida Ali Hassen et al.\(^\text{[16]}\) study showed incidence of preterm birth to be 25%.

There are multiple factors associated with the etiology of preterm labor that includes maternal risk factors, pregnancy-related complications, the social and environmental factors. Parity is a risk factor for preterm birth. Sonia Arogya et al.\(^\text{[18]}\) study showed that multiparous women had higher chances of preterm delivery (72.92%) compared to primigravida (27.08%). We observed that preterm births were high in multiparous women (60.74%). One of the factors that may contribute to PTB in multiparous women is a damaged cervix. The cervix plays a very important role in maintaining pregnancy.

A significant risk of PPROM is that preterm birth happens within few days after membrane rupture. In our analysis of risk factors, it was one of the significant factors that contributed to PTB (p < 0.0001). Sureshbabu et al.\(^\text{[19]}\) study found that 25.1% of the cases had PPROM. We found preterm rupture of membrane to be associated with 22% of preterm births. Chauhan N et al.\(^\text{[20]}\) also reported PROM as a risk factor in 31.8% of cases.

Previous preterm delivery increases the risk of a subsequent preterm delivery 2.5-fold, with those women with a previous preterm delivery at the lowest gestations being at highest risk. History of previous preterm birth had an odds of 4.88 of having preterm birth in the present study. A statistically significant relationship was observed between previous preterm delivery and the occurrence of preterm delivery in present pregnancy. Satija A et al.\(^\text{[21]}\) observed a positive history of previous preterm births in 12% cases of preterm labor. Carr-Hill and Hall\(^\text{[22]}\) state that there is 15% chance of preterm delivery with history of one previous preterm delivery and 32% chance after two preterm deliveries.

APH accounted for 9% of preterm births in the present study, whereas in Satija et al.\(^\text{[21]}\) study, 11% of PTB were secondary to APH. Abruptio and bleeding at the choriodecidual interface lead to thrombin generation which enhances protease and prostaglandin production and cause myometrial contractions.

The odds of delivering a preterm birth were significantly high among the women with oligohydramnios (OR 3.58; CI: 1.29–9.9; p < 0.01). When oligohydramnios was detected management included early induction of labor or performing CS. Some reports have estimated the likelihood of preterm birth to be 3–10 times higher in women with oligohydramnios.\(^\text{[23]}\) Various factors like fetal abnormalities, hypertension, pre-eclampsia, blood transfusion between twins, and chronic leakage of amniotic fluid from ruptured areas of the membrane may lead to oligohydramnios.

Table 1: Gestational age at the time of delivery among preterm births

Gestational age in weeks	Number of deliveries	Percentage
<28 weeks	7	5
28-31 + 6 weeks	10	7
32-36 + 6 weeks	118	88

Table 2: Prevalence of risk factors associated with Preterm birth

Risk Factors	Number of cases (n)	Percentage
PPROM	28	21
Gestational hypertension	15	11
Pre-eclampsia	14	10.4
Imminent eclampsia/ eclampsia	9	5.2
Abruptio	3	6.7
Placenta previa	4	2.2
Oligohydramnios	11	8.15
Polyhydramnios	2	1.48
GDM	11	8.15
Hypothyroidism	21	15.56
Anemia	6	4.44
UTI	3	2.22
Multiple pregnancy	12	9
Previous preterm birth	10	7
Miscarriage	13	10
Previous LSCS	50	37
The present study revealed a significant association between pregnancy-induced hypertension and preterm birth ($p = 0.0001$). Mothers who had pregnancy-induced hypertension had three times increased risk of having a preterm birth than those mothers without pregnancy-induced hypertension. Hypertension increases the resistance of uterine vessels and reduces uteroplacental blood flow which in turn causes intrauterine growth restriction. High rate of disorders like placental abruption, pre-eclampsia, and intrauterine growth restriction among women with hypertension may result in surgical operations and preterm birth. Pregnancy-induced hypertension may cause vascular damage to the placenta and induce oxytocin receptors which result in preterm delivery. Renzo et al. \cite{23} reported the likelihood of preterm birth to be 2.6 times greater among women with chronic hypertension.

We observed a statistically significant increased risk of preterm birth in subsequent pregnancy in women with previous history of cesarean section (OR: 2.16, C.I: 1.36–3.44, $p = 0.001$). Gugusheff J et al. \cite{24} demonstrated that both first birth intrapartum and prelabor cesarean section increase the risk of subsequent preterm birth. Zhang Y. \cite{25} study also showed that, compared with primary vaginal birth, cesarean section in the first pregnancy increased the risk preterm birth in subsequent pregnancies. Cesarean section can be associated with subsequent preterm birth by different mechanisms. Injury to the cervix at the time of cesarean section, changed uterine microenvironment and disruption of tissue may predispose to spontaneous preterm labor.

Our study showed that women who conceived after a short inter-pregnancy interval of less than 12 months had a high risk of preterm birth (OR: 2.78, C.I. 1.13–6.84, $p = 0.0255$). Mothers with short inter-pregnancy interval cannot recover from the
biological stress imposed by the preceding pregnancy and also there is diminution of macronutrient supplementation in the body. Cervical insufficiency, anemia, and abnormal remodeling of endometrial vessels also may contribute to PTB.[26] Given the high risk of recurrence and association between interpregnancy interval and preterm birth, interpregnancy interval remains a potentially modifiable risk factor in women with previous preterm birth.

Multiple gestations, accounting for only 2–3% of infants, carry a substantial risk of preterm delivery and resulted in 9% of all preterm births. Apart from the different mechanisms that cause preterm birth in multiple pregnancy like intrauterine infection, increased uterine stretch, and cervical insufficiency increased secretion of mediators like CRH from larger placental mass, surfactant protein A from the fetal lung stimulate uterine contractility and may contribute to preterm birth.[27]

With respect to neonatal outcomes, RDS was diagnosed in 23% of these babies. A similar incidence of RDS was found in Chauhan et al.[17] study (22.6%).

Conclusion

The study findings highlight previous LSCS, interpregnancy interval of less than a year, previous PTB, PROM, oligohydramnios, hypertensive disorders as significant risk factors associated with PTB. Investment in educating women, senior involvement in decision-making for deciding time and mode of delivery, identifying pregnant women at risk of PTB, and providing quality health care may decrease the prevalence of PTB and its global burden. Its association with prior cesarean deliveries and all of the studied maternal and fetal pathologies suggest that the reduction of prematurity may be possible by the postponement of intervention in cases without clear evidence of maternal–fetal benefit.

Addressing the burden of preterm birth is crucial to achieve Sustainable Development Goal 3 and for reducing preterm-related neonatal and child mortality.[28] An active and integrated involvement of primary as well as tertiary health sectors can help in achieving this goal. Identifying the risk factors associated with preterm birth, focusing on preventable and modifiable factors, and providing appropriate risk-specific management can help in achieving the goal.

Key messages: Better understanding of the causes of preterm birth and their interrelationships will help in developing newer preventive and therapeutic measures to reduce preterm birth. Identifying at-risk women, implementing specific interventions and better management of obstetric complications are of utmost importance to reduce the burden of prematurity.

Key points

1. Previous cesarean section, short inter-pregnancy interval, previous preterm birth, premature rupture of membranes, oligohydramnios were significant risk factors for preterm birth in rural population.
2. Measures to prevent primary cesarean section would bring down preterm births.
3. Women should be made aware of the consequences of short inter-pregnancy interval.
4. Obstetric complications like pregnancy-induced hypertension should be timely managed.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. American College of Obstetrics and Gynaecologists. Preterm labor. Technical bulletin. Washington, D. C.: ACOG; 1995;206:303-13.
2. WHO. Global nutrition targets 2025: low birth weight policy brief (WHO/NMH/NHD/14/5). Geneva: World Health Organization; 2014.
3. Krueger PM, Scholl TO. Adequacy of prenatal care and pregnancy outcome. J Am Osteopath Assoc 2000;100:485-92.
4. Modarres SZ, Amooian B, Movahed SB, Mohamadi M. Periodontal health in mothers of preterm and term infants. Taiwan J Obstet Gynecol 2007;46:157-61.
5. Copper RL, Goldenberg RL, Creasy RK, DuBard MB, Davis RO, Entman SS, et al. A multicenter study of preterm birth weight and gestational age specific neonatal mortality. Am J Obstet Gynecol 1993;168:78-84.
6. Goffinet F. Primary predictors of preterm labour. Br J Obstet Gynaecol 2005;11(Suppl 1):58-47.
7. Amount RF. Infection in the prediction and antibiotics in the prevention of spontaneous preterm labour and preterm birth. Br J Obstet Gynaecol 2003;110(Suppl 20):71-5.
8. Cunningham FG, Leveno KJ, Bloom SL, Spong CY, Dash JS, Hoffman BL, et al. Williams Obstetrics. 24th ed. New York: McGraw Hill; 2014. p. 729.
9. ACOG Practice Bulletin No. 202: Gestational Hypertension and Preeclampsia. Obstet Gynecol 2019;133:1.
10. Pauer HU, Viereek V, Krauss V, Osmers R, Krauss T. The incidence of fetal malformations in pregnancies complicated by oligo and polyhydramnios. Arch Gynecol Obstet 2003;268:52-6.
11. ACOG Practice bulletin no. 134: Fetal growth restriction. Obstet Gynecol 2013;121:1122-33.
12. Organization WH. International Statistical Classification of Diseases and Related Health Problems, Tenth Revision. 2nd ed. World Health Organization; 2004.
13. Pusdekar YV, Patel AB, Kurhe KG, Bhargav SR, Thorsten V, Garces A, et al. Rates and risk factors for preterm birth and low birthweight in the global network sites in six low- and low-middle-income countries. Reprod Health 2020;17:187.
14. HassenJA, HandisoMN,AdmassuBW. Predictors of preterm birth among mothers who gave birth in Silte zone public hospitals, Southern Ethiopia. J Prepregnancy2021;2021:1706713. doi: 10.1155/2021/1706713.
15. Prakash SA, Rasquinha S, Rajaratnam A. Analysis of risk factors and outcome of preterm labor. Int J Eng Sci 2016;6:2602-4.
16. Sureshbabu RP, Aramthottil P, Anil N, Sumathy S, Varughese SA, Sreedevi A, et al. Risk factors associated with preterm delivery in singleton pregnancy in a tertiary care hospital in South India: A case control study. Int J Womens Health 2021;13:369-77.
17. Chauhan N, Purohit RC, Rawat U. Analysis of etiology and outcome of preterm labor in tertiary health centre of Uttarakhand. Sch J App Med Sci 2016;4:740-3.
18. Satija A, Satija V, Kaur J, Bains HS. Prospective analysis of preterm labour: Its etiology and outcome. Int J Basic Appl Med Sci 2014;4:70-7.
19. Carr-Hill RA, Hall MH. The repetition of spontaneous preterm labour Br J Obstet Gynecol 1985;92:921-8.
20. LO CC, Hsu JJ, Hsieh CC, Hsieh TT, Hung T. Risk factors for spontaneous preterm delivery before 34 weeks of gestation among Taiwanese women. Taiwan J Obstet Gynecol 2007;46:389-93.
21. Cunningham FG, Leveno KJ, Hauth JC, editors. Williams Obstetrics. 23rd ed. New York: McGraw Hill; 2010.
22. Bernabe JV, Soriano T, Albaladejo R, Juarranz M, Calle ME, Martinez D, et al. Risk factors for low birth weight: A review. Eur J Obstet Gynecol Reprod Biol 2004;116:3-15.
23. Renzo GC, Giardina I, Rosati A, Clerici G, Torricelli M, Petraglia F, et al. Maternal risk factors for preterm birth: A country-based population analysis. Eur J Obstet Gynecol Reprod Biol 2011;159:342-6.
24. Gugusheff J, Patterson J, Torvaldsen S, Iliebele I, Nippita T. Is mode of first birth a risk factor for subsequent preterm birth? Aust N Z J Obstet Gynaecol 2021;61:86-93.
25. Zhang Y, Zhou J, Ma Y, Liu L, Xia Q, Fan D, et al. Mode of delivery and preterm birth in subsequent births: A systematic review and meta-analysis. PLoS One 2019;14:e0213784.
26. Conde-agudelo A, Rosas-bermudez A, Castaño F, Norton MH. Effects of birth spacing on maternal, perinatal, infant, and child health: A systematic review of causal mechanisms. Stud Fam Plan 2012;43:93-114.
27. Stock S, Norman J. Preterm and term labour in multiple pregnancies. Semin Fetal Neonatal Med 2010;15:336-41.
28. Hug L, Alexander M, You D, Alkema L. National, regional, and global levels and trends in neonatal mortality between 1990 and 2017, with scenario-based projections to 2030: A systematic analysis. Lancet Global Health 2019;7:e710-20.