The Equivariant Chow Ring of SO(4)
Rahul Pandharipande
4 July 1996

0. Introduction

Let G be a reductive algebraic group. The algebraic analogue of EG is attained by approximation. Let V be a \mathbb{C}-vector space. Let $G \times V \to V$ be an algebraic representation of G. Let $W \subset V$ be a G-invariant open set satisfying:

(i) The complement of W in V is of codimension greater than q.
(ii) G acts freely on W.
(iii) There exists a geometric quotient $W \to W/G$.

W is an approximation of EG up to codimension q. Let $e = \dim(W/G)$. The equivariant Chow groups of G (acting on a point) are defined by:

$$A^G_{-j}(\text{point}) = A^e_{-j}(W/G)$$

for $0 \leq j \leq q$. An argument is required to check the Chow groups are well-defined (see [EG1]). The basic properties of equivariant Chow groups are established in [EG1]. In particular, there is a natural intersection ring structure on $A^G_i(\text{point})$. For notational convenience, a superscript will denote the Chow group codimension:

$$A^G_{-j}(\text{point}) = A^j_G(\text{point}).$$

Equation (1) becomes:

$$\forall \ 0 \leq j \leq q, \ A^j_G(\text{point}) = A^j(W/G).$$

W/G is an approximation of BG. $A^*_G(\text{point})$ is called the (equivariant) Chow ring of G. $A^*_G(\text{point})$ is naturally isomorphic to the ring of algebraic characteristic classes of (étale locally trivial) principal G-bundles. The equivariant Chow ring of G was first defined by B. Totaro in [T].

Consider now the orthogonal and special orthogonal algebraic groups (over \mathbb{C}). The Chow ring of $O(n)$ is generated by the Chern classes of the standard representation. The odd classes are 2-torsion:

$$A^*_O(n)(\text{point}) = \mathbb{Z}[c_1, \ldots , c_n]/(2c_1, 2c_3, 2c_5, \ldots).$$

The Chow ring of $SO(n = 2k + 1)$ is also generated by the Chern classes of the standard representation. The odd classes are 2-torsion and $c_1 = 0$:

$$A^*_SO(n=2k+1)(\text{point}) = \mathbb{Z}[c_1, \ldots , c_n]/(c_1, 2c_3, 2c_5, \ldots).$$

1Research partially supported by an NSF Post-Doctoral Fellowship.
$A^*_O(n)$ (point) was first computed by B. Totaro. Algebraic computations of $A^*_O(n)$ (point) and $A^*_{SO(2k+1)}$ (point) can be found in [P2]. The Chow ring of $SO(n)$ has been computed with \mathbb{Q}-coefficients in [EG2]. The integral Chow ring of $SO(n = 2k)$ is not known in general.

Since $BO(n)$ is approximated by the set of non-degenerate quadratic forms in $\text{Sym}^2 S^*$ (where $S \to G(n, \infty)$ is the tautological sub-bundle), the Chow ring can be analyzed by degeneracy calculations ([P2]). Algebraic $BSO(n)$ double covers $BO(n)$. If $n = 2k + 1$, there is a product decomposition $O(n) \cong \mathbb{Z}/2\mathbb{Z} \times SO(n)$. As a result, the double cover geometry for $n = 2k + 1$ is tractable and a computation of $A^*_{SO(2k+1)}$ (point) can be made. In case $n = 2k$, the double cover geometry is more complicated.

Since $SO(2) \cong \mathbb{C}^*$, the first non-trivial even case is $SO(4)$. In this paper, the ring $A^*_{SO(4)}$ (point) is determined. Let c_1, c_2, c_3, c_4 be Chern classes of the standard representation of $SO(4)$. Let F be one of the two distinct irreducible 3-dimensional representations of $SO(4)$, and let f_2 be the second Chern class F.

Theorem 1. $A^*_{SO(4)}$ (point) is generated by the Chern classes $c_1, c_2, c_3, c_4,$ and f_2. Define $x \in A^2_{SO(4)}$ by $x = c_2 - f_2$.

$$A^*_{SO(4)}(\text{point}) = \mathbb{Z}[c_1, c_2, c_3, c_4, x]/(c_1, 2c_3, xc_3, x^2 - 4c_4)$$

Let \tilde{F} be the other irreducible 3-dimensional representation of $SO(4)$. Let \tilde{f}_2 be the second Chern class of \tilde{F}. Since (see [FH])

$$F \oplus \tilde{F} \cong \wedge^2 V,$$

the relation $\tilde{f}_2 = 2c_2 - f_2$ is obtained. Hence, $c_2 - \tilde{f}_2 = -x$. The presentation in Theorem 1 does not depend upon the choice of 3-dimensional representation.

Thanks are due to D. Edidin, W. Fulton, W. Graham, and B. Totaro for conversations about $BSO(n)$. The $SO(4)$ calculation presented here is similar in spirit to the $SO(2k + 1)$ calculations of [P2]. In [P1] and [P2], equivariant Chow rings are used to compute ordinary Chow rings of certain moduli spaces of maps and Hilbert schemes of rational curves.

1. Ruled Quadric Surfaces

Let $V \cong \mathbb{C}^4$ be equipped with a non-degenerate quadratic form Q. A ruled quadric surface in $\mathbb{P}(V)$ is a pair (X, r) where $X \subset \mathbb{P}(V)$ is a nonsingular quadric surface and r is a choice of ruling. Let $\mathcal{X} \subset$
\(P(\text{Sym}^2 V^*) \) be the parameter space of nonsingular quadrics. The parameter space of ruled quadrics, \(\mathcal{X}_{\text{ruled}} \), is an étale double cover of \(\mathcal{X} \) via the natural map: \(\mathcal{X}_{\text{ruled}} \rightarrow \mathcal{X} \).

There are natural maps \(\text{SO}(V) \rightarrow \text{PSO}(V) \subset \text{PGL}(V) \) and \(\text{O}(V) \rightarrow \text{PO}(V) \subset \text{PGL}(V) \). Let \(\text{SO}(V) \) and \(\text{O}(V) \) act on \(\text{PGL}(V) \) on the right via these maps. There exist geometric quotients (see [P2]):

\[
\text{PGL}(V)/\text{SO}(V) \rightarrow \text{PGL}(V)/\text{O}(V).
\]

Consider the quadric surface \((Q) \subset \text{P}(V) \) obtained from the quadratic form. The standard left action \(\text{PGL}(V) \times \text{P}(V) \rightarrow \text{P}(V) \) yields a transitive \(\text{PGL}(V) \)-action on the space of nonsingular quadric surfaces. The stabilizer of \((Q) \) for this action is exactly \(\text{PO}(V) \subset \text{PGL}(V) \).

Hence, there is a canonical isomorphism

\[
\text{PGL}(V)/\text{O}(V) \cong \mathcal{X}.
\]

For the entire paper, fix a ruling \(r \) of \((Q) \). Since \(\text{PGL}(V) \) acts transitively on the space of ruled quadrics and the stabilizer of \(((Q), r) \) is exactly \(\text{PSO}(V) \subset \text{PGL}(V) \), there is a canonical isomorphism determined by \(((Q), r) \):

\[
\text{PGL}(V)/\text{SO}(V) \cong \mathcal{X}_{\text{ruled}}.
\]

There is a canonical Plücker embedding \(G(2, V) \hookrightarrow \text{P}(\wedge^2 V) \). Let \(Z \subset G(3, \wedge^2 V) \) be the open locus of 2-planes in \(\text{P}(\wedge^2 V) \) which intersect \(G(2, V) \) transversely in a nonsingular conic curve.

Lemma 1. There is a canonical isomorphism \(Z \cong \mathcal{X}_{\text{ruled}} \).

Proof. The family of lines determined by a nonsingular plane conic \(C \subset G(2, V) \subset \text{P}(\wedge^2 V) \) sweeps out an irreducible degree 2 surface in \(\text{P}(V) \). There are three possibilities for this degree 2 surface: a double plane, a quadric cone, or a nonsingular quadric surface. If the conic \(C \) sweeps out a a double plane \(H \subset \text{P}(V) \), then \(C \subset P \subset G(2, V) \) where \(P \) is the plane of all lines contained in \(H \). If \(C \) sweeps out a quadric cone, then \(C \subset P \subset G(2, V) \) where \(P \) is the plane of all lines passing through the vertex of the cone. Hence, if \(C \) is the transverse intersection \(P \cap G(2, V) \) of a plane, then \(C \) must correspond to a ruling of a unique nonsingular quadric surface. Conversely, a ruling of a nonsingular quadric surface yields a conic curve in \(G(2, V) \) which is the transverse intersection of a unique 2-plane in \(\text{P}(V) \). These maps are easily seen to be algebraic. \qed

By Lemma 1, the ruled quadric \(((Q), r) \) corresponds to a 3-dimensional subspace \(F \subset \wedge^2 V \). \(F \) is \(\text{SO}(V) \)-invariant since \(((Q), r) \) is stabilized by \(\text{SO}(V) \). \(F \) is therefore a 3-dimensional representation of \(\text{SO}(V) \). Let
s be the other ruling of \((Q)\). \(((Q), s)\) similarly corresponds to an invariant 3-dimensional subspace \(\tilde{F} \subset \wedge^2 V\). The \(SO(V)\) representation \(\wedge^2 V\) decomposes as \(\wedge^2 V \cong F \oplus \tilde{F}\).

2. \(BSO(V)\)

Let \(V \cong \mathbb{C}^4\) be equipped with a non-degenerate quadratic form as before. Approximations to \(E SO(V)\) and \(BSO(V)\) are obtained via direct sums of the representation \(V^*\). Let \(m > > 0\) and let

\[
W_m \subset \bigoplus_1^m V^*
\]
denote the spanning locus. \(W_m\) is the locus of \(m\)-tuples of vectors of \(V^*\) which span \(V^*\). The natural action of \(SO(V)\) on \(W_m\) is free and has a geometric quotient (see \([P2]\)). The codimension of the complement of \(W_m\) in \(\bigoplus_1^m V^*\) is \(m - 3\). \(W_m\) is an approximation of \(E SO(V)\) up to codimension \(m - 4\). Therefore

\[
BSO(V) = \lim_{m \to \infty} W_m/\text{SO}(V),
\]

\[
A^*_\text{SO}(V)(\text{point}) = \lim_{m \to \infty} A^*(W_m/\text{SO}(V)).
\]

There is a scalar \(\mathbb{C}^*\)-action on \(W_m\). Let \(P(W_m) = W_m/\mathbb{C}^*\). Since this \(\mathbb{C}^*\)-action commutes with the \(SO(V)\)-action, there is diagram of quotients:

\[
\begin{array}{ccc}
W_m & \xrightarrow{\tau_1} & W_m/\text{SO}(V) \\
i_1 \downarrow & & \downarrow i_2 \\
P(W_m) = W_m/\mathbb{C}^* & \xrightarrow{\tau_2} & P(W_m)/\text{SO}(V)
\end{array}
\]

All the maps in (2) are quotient maps:

(i) \(i_1\) is a free \(\mathbb{C}^*\)-quotient.
(ii) \(i_2\) is a free \(\mathbb{C}^*/(\pm)\)-quotient.
(iii) \(\tau_1\) is a free \(SO(V)\)-quotient.
(iv) \(\tau_2\) is a free \(PSO(V)\)-quotient.

The existence of these quotients is easily deduced (see \([P2]\)).

First consider the space \(P(W_m)/\text{SO}(V)\). Let \(Q\) be the quadratic form on \(V\) and let \(r\) be the ruling of the quadric surface \((Q) \subset P(V)\) fixed in section \([P]\). An element \(f \in P(W_m)\) yields a canonical embedding

\[\mu_f : P(V) \hookrightarrow P(\mathbb{C}^m).\]

The image under \(\mu_f\) of \(((Q), r)\) is a ruled quadric surface in \(P(\mathbb{C}^m)\) associated canonically to \(f \in P(W_m)\). Since \(PSO(V) \subset PGL(V)\) is exactly the stabilizer of the ruled quadric \(((Q), r)\), it follows that \(P(W_m)/\text{SO}(V)\) is isomorphic to the parameter space of ruled quadric
surfaces in \(\mathbb{P}(\mathbb{C}^m) \). Since a ruled quadric surface in \(\mathbb{P}(\mathbb{C}^m) \) spans a unique 3-plane in \(\mathbb{P}(\mathbb{C}^m) \), the parameter space is fibered over \(G(4, m) \). By Lemma 3, the parameter space of ruled quadric surface in \(\mathbb{P}(\mathbb{C}^m) \) is canonically isomorphic to an open set
\[
Z \subset G(3, \wedge^2 S)
\]
where \(S \to G(4, m) \) is the tautological sub-bundle.

The Chow computations in section 2 will require two results about line bundles. We have seen \(\mathbb{P}(W_m)/SO(V) \) is canonically fibered over \(G(4, m) \). Let \(c_1 \) be the first Chern class of the tautological bundle \(S \) on \(G(4, m) \). Let \(c_1 \) also denote the pull-back of this class to \(\mathbb{P}(W_m)/SO(V) \). For \(m > 4 \), \(A^1(\mathbb{P}(W_m)) \cong \mathbb{Z} \) with generator \(c_1(\mathcal{O}_P(-1)) \) (which is the Chern class of the line bundle associated to the \(\mathbb{C}^* \)-bundle \(i_1 \).

Lemma 2. \(\tau_2^*(c_1) = c_1(\mathcal{O}_{\mathbb{P}}(-4)) \).

Proof. Elements of \(\mathbb{P}(W_m) \) correspond to embeddings of \(\mathbb{P}(V) \) in \(\mathbb{P}(\mathbb{C}^m) \). The class \(\tau_2^*(-c_1) \) is the divisor class of embeddings that meet a fixed \((m - 5)\)-plane in \(\mathbb{P}(\mathbb{C}^m) = \mathbb{P}^{m-1} \). This divisor class is determined by a \(4 \times 4 \) determinant. Hence, \(\tau_2^*(-c_1) = c_1(\mathcal{O}_{\mathbb{P}}(4)) \). \(\square \)

The map \(i_2 : W_m/SO(V) \to \mathbb{P}(W_m)/SO(V) \) is a \(\mathbb{C}^*/(\pm) \)-bundle. Since there is an abstract isomorphism \(\mathbb{C}^*/(\pm) \cong \mathbb{C}^* \), \(i_2 \) is also a \(\mathbb{C}^* \)-bundle. Let \(N \) be the line bundle on \(\mathbb{P}(W_m)/SO(V) \) canonically associated to \(i_2 \).

Lemma 3. \(\tau_2^*(N) \cong \mathcal{O}_{\mathbb{P}}(-2) \).

Proof. Let \(i_1/(\pm) : W_m/(\pm) \to \mathbb{P}(W_m) \). The map \(i_1/(\pm) \) is a free \(\mathbb{C}^*/(\pm) \)-quotient. The line bundle associated to the \(\mathbb{C}^*/(\pm) \)-bundle \(i_1/(\pm) \) is \(\mathcal{O}_{\mathbb{P}}(-2) \). The map \(\tau_1/(\pm) : W_m/(\pm) \to W_m/SO(V) \) is \(\mathbb{C}^*/(\pm) \)-equivariant. Hence, \(\tau_2^*(N) \cong \mathcal{O}_{\mathbb{P}}(-2) \). \(\square \)

3. Chow Calculations

In this section, the Chow ring of \(W_m/SO(V) \) is determined (up to codimension \(m - 4 \)). Consider the parameter space of ruled quadrics in \(\mathbb{P}(\mathbb{C}^m) \):
\[
Z \subset G(3, \wedge^2 S) \to G(4, m).
\]
Let \(D \) be the complement of \(Z \) in \(G(3, \wedge^2 S) \). Following the notation of section 2, \(W_m/SO(V) \) is the \(\mathbb{C}^* \)-bundle associated to a line bundle \(N \to Z \). Therefore,
\[
A^*(W_m/SO(V)) \cong A^*(Z)/(c_1(N)) \cong A^*(G(3, \wedge^2 S))/(I_D, c_1(N))
\]
where $I_D \subset A^*(\mathbf{G}(3, \wedge^2 S))$ is the ideal generated by cycles supported on D and \mathbf{N} is any extension of N to $\mathbf{G}(3, \wedge^2 S)$. The ideal I_D is determined by constructing a well-behaved variety which surjects onto D.

Let $\mathbf{G}(2, S) \hookrightarrow \mathbf{P}(\wedge^2 S)$ be the canonical relative Plücker embedding. D is exactly the locus of 2-planes in the fibers of $\mathbf{P}(\wedge^2 S)$ which do not meet $\mathbf{G}(2, S)$ transversely in a nonsingular conic curve. Equivalently, D is the locus of 2-planes P in the fibers of $\mathbf{P}(\wedge^2 S)$ which satisfy one of the following conditions:

(i) $P \cap \mathbf{G}(2, S)$ is a pair of distinct lines in P.
(ii) $P \cap \mathbf{G}(2, S)$ is a double line in P.
(iii) $P \cap \mathbf{G}(2, S) = P$.

D is dominated by a canonical Grassmannian bundle over $\mathbf{G}(2, S)$. Let $B \to \mathbf{G}(2, S)$ be the tautological sub-bundle. By wedging, there is canonical surjective bundle map on $\mathbf{G}(2, S)$:

$$\wedge^2 S \otimes \wedge^2 B \to \wedge^4 S$$

which induces a canonical sequence on $\mathbf{G}(2, S)$:

(3) \[0 \to K \to \wedge^2 S \to \wedge^4 S \otimes (\wedge^2 B)^* \to 0. \]

There is a canonical inclusion $\wedge^2 B \subset K$ and a quotient sequence

(4) \[0 \to \wedge^2 B \to K \to E \to 0 \]

on $\mathbf{G}(2, S)$. The geometric interpretation of these sequences is as follows. Let $\xi \in \mathbf{G}(2, S)$. $\mathbf{P}(K_\xi) \subset \mathbf{P}(\wedge^2 S_\xi)$ is the projective tangent space to $\mathbf{G}(2, S_\xi)$ at ξ. $\mathbf{P}(\wedge^2 B_\xi)$ in $\mathbf{P}(\wedge^2 S_\xi)$ is the Plücker image of the point ξ. The fiber of the Grassmannian bundle $\mathbf{G}(2, E) \to \mathbf{G}(2, S)$ over ξ corresponds to the 2-planes P of $\mathbf{P}(\wedge^2 S_\xi)$ that are tangent to $\mathbf{G}(2, S)$ at ξ. There is a canonical map

$$\rho : \mathbf{G}(2, E) \to D$$

which is a surjection of algebraic varieties. Let $[P] \in D$. The fiber of ρ over $[P]$ is simply the set of points of $P \cap \mathbf{G}(2, S)$ where P is tangent to $\mathbf{G}(2, S)$. In case (i) above, the fiber is a point. In case (ii), the fiber is a straight line in $\mathbf{P}(\wedge^2 S)$. In case (iii), the fiber is 2-plane in $\mathbf{P}(\wedge^2 S)$. Hence, there is stratification of D by intersection type (i-iii) where ρ is a projective bundle over each stratum. The Chow groups of $\mathbf{G}(2, E)$ therefore surject upon the Chow groups of D.
The ideal \(I_D \) is determined by calculating the push-forwards of the Chow classes of \(\mathbb{G}(2, E) \) to \(\mathbb{G}(3, \wedge^2 S) \). Consider the projection
\[
\pi : \mathcal{G} = \mathbb{G}(3, \wedge^2 S) \times_{\mathbb{G}(4, m)} \mathbb{G}(2, S) \to \mathbb{G}(3, \wedge^2 S).
\]
The sequences (3) and (4) pull-back to \(\mathcal{G} \). Let \(F \to \mathbb{G}(3, \wedge^2 S) \) denote the tautological sub-bundle (and also let \(F \) denote the pull-back to \(\mathcal{G} \) of this bundle). There is a canonical inclusion
\[
\iota : \mathbb{G}(2, E) \hookrightarrow \mathcal{G}
\]
determined by the sequences (3) and (4). \(\mathbb{G}(2, E) \subset \mathcal{G} \) is the closed subvariety of points \(g \in \mathbb{G} \) where
\[
\wedge^2 B_g \subset F_g \subset K_g.
\]
The class \([\mathbb{G}(2, E)]\) in Chow ring of \(A^* (\mathcal{G}) \) is easily found by degeneracy calculations. Let \(c_1, c_2, c_3, c_4 \) be the Chern classes of \(S \to \mathbb{G}(4, m) \). Let \(b_1, b_2 \) be the Chern classes of \(B \to \mathbb{G}(2, S) \). Let \(f_1, f_2, f_3 \) be the Chern classes of \(F \to \mathbb{G}(3, \wedge^2 S) \). Since \(\mathcal{G} \) is a tower of Grassmanian bundles, these Chern classes \(c_i, b_j, f_k \) generate \(A^* (\mathcal{G}) \). Let \(Y \) be the locus of points \(g \in \mathcal{G} \) such that \(F_g \subset K_g \). \(Y \) is the nonsingular degeneracy locus of the canonical bundle map on \(\mathcal{G} \),
\[
F \to \wedge^4 S \otimes (\wedge^2 B)^*,
\]
obtained from the inclusion \(F \subset \wedge^2 S \) and sequence (3). By the Thom-Porteous formula on \(\mathcal{G} \) (see [F]),
\[
A^* (\mathcal{G}) \ni [Y] = c_3 (F^* \otimes \wedge^4 S \otimes (\wedge^2 B)^*)
\]
\[= -f_3 + (c_1 - b_1) f_2 - (c_1 - b_1)^2 f_1 + (c_1 - b_1)^3.\]
\(Y \) is canonically isomorphic to the Grassmannian bundle \(\mathbb{G}(3, K) \to \mathbb{G}(2, S) \). There is natural bundle quotient sequence on \(Y \):
\[
0 \to F \to K \to K/F \to 0.
\]
The locus \(\mathbb{G}(2, E) \subset Y \) is the set of points \(y \in Y \) such that \(\wedge^2 B_y \subset F_y \). \(\mathbb{G}(2, E) \subset Y \) is the nonsingular degeneracy locus of the canonical bundle map on \(Y \),
\[
\wedge^2 B \to K/F,
\]
obtained from the sequences (4) and (5). By the Thom-Porteous formula on \(Y \),
\[
A^*(Y) \ni [\mathbb{G}(2, E)] = c_2 ((K/F) \otimes (\wedge^2 B)^*)
\]
\[= b_1^2 - c_1 b_1 + c_2^2 - 2c_1 f_1 + f_1^2 - f_2 + 2c_2.\]
The class \([G(2, E)] \in A^*(G)\) is there expressed by

\[
A^*(G) \ni [G(2, E)] = (-f_3 + (c_1 - b_1)f_2 - (c_1 - b_1)^2 f_1 + (c_1 - b_1)^3)
\]

\[
\cdot (b_1^2 - c_1 b_1 + c_1^2 - 2c_1 f_1 + f_1^2 - f_2 + 2c_2).
\]

Since \(G(2, E)\) is a Grassmannian bundle over \(G(2, S)\), the Chow ring of \(G(2, E)\) is generated over \(A^*(G(2, S))\) by the Chern classes \(h_1, h_2\) of the tautological sub-bundle \(H \to G(2, E)\). Via the embedding \(\iota : G(2, E) \hookrightarrow G\), \(H\) is isomorphic to \(\iota^*(F)/\iota^*(\Lambda^2 B)\). The Chern classes \(h_1\) and \(h_2\) can be expressed via \(\iota\) in terms of the classes \(b_j\) and \(f_k\). Therefore, the classes

\[
G(2, E) \cap M(c_1, c_2, c_3, c_4, b_1, b_2, f_1, f_2, f_3)
\]

(where \(M\) is monomial in the Chern classes) span the Chow ring of \(G(2, E)\). The ideal \(I_D \subset A^*(G(3, \Lambda^2 S))\) is generated by the \(\pi\) push-forwards of the classes \(f\):

\[
(6) \quad [G(2, E)] \cdot M(c_1, c_2, c_3, c_4, b_1, b_2, f_1, f_2, f_3) \in A^*(G)
\]

Since the classes \(c_i, f_k\) in \(A^*(G)\) are pull-backs from \(G(3, \Lambda^2 S)\), \(I_D\) is generated by the elements

\[
\pi_*([G(2, E)] \cdot M(b_1, b_2)).
\]

By the standard relations satisfied by the classes \(b_1\) and \(b_2\) over \(A^*(G(4, m))\), it follows that \(I_D\) is generated by:

\[
\begin{align*}
\pi_*([G(2, E)]) & \\
\pi_*([G(2, E)] \cdot b_1) & \\
\pi_*([G(2, E)] \cdot b_1^2) & \quad \pi_*([G(2, E)] \cdot b_2) \\
\pi_*([G(2, E)] \cdot b_1 b_2) & \\
\pi_*([G(2, E)] \cdot b_1^2 b_2) & \\
\pi_*([G(2, E)]) = 13c_1 - 2f_1.
\end{align*}
\]

\textbf{Lemma 4.} \textit{The pair} \((13c_1 - 2f_1, c_1(N))\) \textit{generates} \(A^1(G(3, \Lambda^2 S))\).

\textit{Proof.} Recall the notation of diagram \(2\):

\[\tau_2 : P(W_m) \to Z \subset G(3, \Lambda^2 S).\]

Let \(L = c_1(O_P(-1))\) be a generator of \(A^1(P(W_m))\). By Lemma 2, \(\tau_2^*(c_1) \cong 4L\). Since \(\tau_2^*[D] = \tau_2^*(13c_1 - 2f_1) = 0\), \(\tau_2^*(f_1) = 26L\). Therefore the image of \(\tau_2^*\) is the subgroup \(\mathbb{Z}(2L)\).
Since \([D] = 13c_1 - 2f_1\) is not divisible in \(A^1(G(3, \wedge^2 S))\), \(A^1(Z) \cong \mathbb{Z}\) and \(\tau_2^*\) is an isomorphism:

\[
\tau_2^* : A^1(Z) \xrightarrow{\sim} \mathbb{Z}(2L).
\]

By Lemma 3, \(\tau_2^*(c_1(N)) = 2L\). Therefore, \(c_1(N)\) generates \(A^1(Z)\). It now follows that the pair \((13c_1 - 2f_1, c_1(N))\) generates the group \(A^1(G(3, \wedge^2 S))\).

Therefore, \((I_D, c_1(N)) = (I_D, c_1, f_1)\).

By Lemma 4 it suffices to compute the five remaining push-forwards modulo the ideal \(J = (c_1, f_1)\). The results are (modulo \(J\)):

\[
\begin{align*}
\pi_*(\mathbb{G}(2, E)) : b_1 &= 0. \\
\pi_*(\mathbb{G}(2, E)) : b_2^2 &= -2f_3. \\
\pi_*(\mathbb{G}(2, E)) : b_2 &= c_3 - f_3. \\
\pi_*(\mathbb{G}(2, E)) : b_1 b_2 &= (c_2 - f_2)^2 - 4c_4. \\
\pi_*(\mathbb{G}(2, E)) : b_1^2 b_2 &= c_2 f_3 + f_2 c_3.
\end{align*}
\]

Hence \((I_D, c_1(N)) = (c_1, f_1, 2c_3, c_3 - f_3, (c_2 - f_2)^2 - 4c_4, (c_2 - f_2)c_3)\).

The ring \(A^*(G(4, m))\) is freely generated (up to codimension \(m - 4\)) by \(c_1, c_2, c_3, c_4\). The ring \(A^*(G(3, \wedge^2 S))\) has the following presentation (up to codimension \(m - 4\)):

\[
A^*(G(3, \wedge^2 S)) \cong \mathbb{Z}[c_1, c_2, c_3, c_4, f_1, f_2, f_3] / (t_4, t_5, t_6)
\]

where the \(t_4, t_5, t_6\) are the Chern classes of the tautological quotient bundle \(T : 0 \rightarrow F \rightarrow \wedge^2 S \rightarrow T \rightarrow 0\). We find (modulo \(J\)):

\[
\begin{align*}
t_4 &= (c_2 - f_2)^2 - 4c_4. \\
t_5 &= 2f_2 f_3 - 2c_2 f_3. \\
t_6 &= f_2 (-(c_2 - f_2)^2 + 4c_4) + f_3^2 - c_3^2.
\end{align*}
\]

There is a presentation:

\[
A^*(G(3, \wedge^2 S)) / (I_D, c_1(N)) \cong \mathbb{Z}[c_1, c_2, c_3, c_4, f_1, f_2, f_3] / (I_D, c_1, f_1, t_4, t_5, t_6)
\]

(7) (up to codimension \(m - 4\)). Surprisingly, the relations \(t_4, t_5, t_6\) are contained in the ideal \((I_D, c_1, f_1)\). By the limit procedure, \(A_{SO(4)}^*(\text{point}) \cong \mathbb{Z}[c_1, c_2, c_3, f_2] / (c_1, 2c_3, (c_2 - f_2)c_3, (c_2 - f_2)^2 - 4c_4)\).

The vector bundles \(S, F \subset \wedge^2 S\) on the approximation \(W_m/\text{SO}(V)\) are easily seen to be obtained from the principal \(\text{SO}(V)\)-bundle

\[
W_m \rightarrow W_m / \text{SO}(V)
\]

and the representations \(V, F \subset \wedge^2 V\) defined in section [4]. Define

\[
x = c_2 - f_2.
\]

Theorem 1 is proved.
REFERENCES

[EG1] D. Edidin and W. Graham, Equivariant intersection theory, preprint 1996.
[EG2] D. Edidin and W. Graham, Characteristic classes of principal bundles in algebraic geometry, preprint 1995.
[F] W. Fulton, Intersection theory, Springer-Verlag: Berlin, 1984.
[FH] W. Fulton and J. Harris, Representation Theory, Springer-Verlag: New York, 1991.
[KS] S. Katz and S. A. Stromme, Schubert: A Maple package for intersection theory in algebraic geometry.
[P1] R. Pandharipande, The Chow ring of the non-linear Grassmannian, preprint 1996.
[P2] R. Pandharipande, The Chow ring of the Hilbert scheme of rational normal curves, preprint 1996.
[T] B. Totaro, The Chow ring of the symmetric group, preprint 1994.

Department of Mathematics
University of Chicago
5734 S. University Ave. 60637
rahul@math.uchicago.edu