Case report

Tocilizumab-effective multicentric Castleman's disease with infiltration of eosinophil and IgG4-positive plasma cells: A case report

Yusuke Katsumata, MDa,*, Jun Ikari, MDb, Nozomi Tanaka, MDc, Mitsuhiro Abe, MDb, Kenji Tsushima, MDa, Yoko Yonemori, MDb, Koichiro Tatsumi, MDa

a Department of Respiratory Medicine, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuou-ku, Chiba 260-8670, Japan
b Department of Diagnostic Pathology, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuou-ku, Chiba 260-8670, Japan
c Corresponding author. Department of Respiratory Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuou-ku Chiba 260-8670, Japan.

A B S T R A C T

A 67-year-old woman with fever and cough was diagnosed with eosinophilic pneumonia because of eosinophilia and increased eosinophil levels in the bronchoalveolar lavage fluid and transbronchial biopsy lung specimens. However, prednisolone therapy at a previous hospital was ineffective. Histological findings from thoracoscopic lung and lymph node biopsies were consistent with multicentric Castleman's disease (MCD). Since specimens also showed prominent eosinophil and IgG4-positive plasma cell infiltration, it was difficult to distinguish IgG4-related disease (IgG4-RD) from MCD. Administration of prednisolone plus tocilizumab improved the symptoms and lung lesions, and prednisolone administration was successfully reduced and then terminated. The present case highlights the difficulty in diagnosing MCD and IgG4-RD, and suggests that combined administration of tocilizumab and prednisolone might be effective in such a case.

1. Introduction

Multicentric Castleman's disease (MCD) is a benign lymphoproliferative disorder presenting with multiple enlarged lymph nodes associated with plasma cell invasion, and is characterized by polyclonal hypergammaglobulinemia due to IL-6 overproduction [1,2]. IgG4-related disease (IgG4-RD) is a novel disease entity characterized by high serum IgG4 levels and tissue infiltration of IgG4-producing plasma cells, and occasionally by eosinophilia and tissue eosinophil infiltration [3]. Since these diseases exhibit similar pathological findings, it can be difficult to differentiate MCD from IgG4-RD [4–6]. Here, we report a tocilizumab-effective case that was initially diagnosed with eosinophilic pneumonia (EP), but was later diagnosed with MCD, with difficulty in excluding IgG4-RD.

2. Case report

A 67-year-old woman with fever and cough was referred to a general hospital. A chest computed tomography (CT) scan revealed mediastinal lymphadenopathy and ground glass opacities in both lung fields. Initial blood examinations revealed a white blood cell (WBC) count of 11700/μL and an eosinophil count of 2925/μL. Cellular analysis of the bronchoalveolar lavage fluid (BALF) revealed 12.5% eosinophils. Histological findings from transbronchial lung biopsy (TBLB) specimens showed eosinophilic infiltration (5 cells/high-powered field [HPF]) (Fig. 1a). The patient was initially diagnosed with eosinophilic pneumonia, and oral prednisolone (PSL) was started at 30 mg/day. Thereafter, the ground glass opacities partially disappeared, and PSL was reduced to 10 mg/day. However, infiltrative opacities started appearing in the right middle lobe and the left lingula segment in chest CT. The patient was referred to our department for further examination.

Her medical history included steroid diabetes mellitus, surgery for extra-uterine pregnancy at the age of 30 years, and retinal detachment surgery at the age of 53. She had smoked four cigarettes a day for 20 years. She was receiving PSL 10 mg/day (prescribed for EP by the previous doctor), famotidine 20 mg/day, carbocysteine 1500 mg/day, and insulin lispro (8 U/day) for steroid diabetes mellitus. Her body temperature was 35.9 °C and her oxygen saturation was 98% on room air. Fine crackles were heard in the bilateral lower lungs, without wheezing. Superficial lymph nodes and submandibular glands were not palpable. She had no obvious symptoms of dry eyes, dry mouth, eruption, or numbness in the extremities.

Abbreviations: BALF, bronchoalveolar lavage fluid; CRP, C-reactive protein; CT, computed tomography; EGPA, eosinophilic granulomatosis with polyangiitis; EP, eosinophilic pneumonia; HPF, high-powered field; IgG4-RD, IgG4-related disease; MCD, multicentric Castleman's disease; PSL, prednisolone; TBLB, transbronchial lung biopsy; UCD, unicentric Castleman's disease; WBC, white blood cell

* Corresponding author. Department of Respiratory Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuou-ku Chiba 260-8670, Japan.

E-mail address: ahna4462@chiba-u.jp (Y. Katsumata).

https://doi.org/10.1016/j.rmcr.2018.06.001
Received 12 May 2018; Received in revised form 1 June 2018; Accepted 1 June 2018
2213-0071/ © 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).
Laboratory data on admission were as follows: C-reactive protein (CRP), 17.8 mg/dL (normal range, < 0.30 mg/dL); WBC count of 10100/μL (eosinophil count of 0/μL); IL-6, 35.9 pg/mL (normal range, < 4.0); IgE, 237 IU/mL (normal range, < 170); IgG, 3916 mg/dL (normal range, 870–1700); IgG4, 435 mg/dL (normal range, 4.5–117); KL-6, 573 U/mL (normal range, < 500); RF, 110 IU/mL (normal range, < 15); ANA, titer 1/80; MPO-ANCA < 1.0 IU/mL; ACE 7.1 IU/L (normal range, 8.3–21.4). She had negative findings for human immunodeficiency virus antibodies and human herpesvirus 8 on polymerase chain reaction tests. Arterial blood gas analysis on room air yielded the following findings: partial pressure of oxygen, 79 mmHg; partial pressure of carbon dioxide, 36 mmHg; pH 7.47.

A chest CT scan showed swelling of the mediastinal lymph nodes, centrilobular granular nodules, ground glass opacity, thickening of the interlobular septa predominantly in the lower lung, and invasive opacity in the right middle lobe and the left lingula segment (Fig. 2). Gallium scintigraphy showed accumulation in the lower lungs, but not in the submandibular or lacrimal glands (Fig. 3). An abdominal CT scan did not show any abnormal findings in the structure of the pancreas or other abdominal organs.

MCD was suspected on the basis of clinical features such as the steroid-refractory nature of the condition, chest CT findings, polyclonal hypergammaglobulinemia, thrombocytosis (platelet count of 61.9 × 10^5/μL), anemia (hemoglobin, 9.1 g/dL), high IL-6 and CRP levels, and normal ANA, ACE, and MPO-ANCA levels. Bronchoscopy was therefore performed again and cellular analysis of BALF from the right B3 yielded the following findings: neutrophils, 2.0%; lymphocytes, 7.1%; eosinophils, 0.4%; macrophages, 90.6%; and CD4+ /CD8+...
Since histological diagnosis could not be confirmed by lung and lymph node specimens, thoracoscopic surgical biopsy samples were obtained from the right S10 lung and #4R LN. In the right S10 specimen, patchy plasma cell-dominant inflammatory cell infiltration was apparent, but interstitial fibrosis or eosinophilic infiltration was not observed (Fig. 1d). In the #4R LN specimen, an atrophic germinal center and plasma cell proliferation in the follicle center were observed, but obliteratorive phlebitis, dense fibrosis, or eosinophilic infiltration were not apparent. IgG4+ plasma cells were observed in both the #4R LN and right S10 specimens (Fig. 1b and c), and the IgG4+/IgG+ plasma cell ratio was 36.4% (242/665 cells) in the #4R LN and 24.1% (123/510 cells) in the right S10, neither of which met the Comprehensive Diagnostic Criteria for IgG4-RD (IgG4+/IgG+ plasma cell ratio > 40%).

Taken together, we concluded that the clinical and histological findings of the patient were consistent with those of MCD. Since PSL monotherapy (at 10 mg/day) was not effective, we implemented administration of tocilizumab (8 mg/kg q2w) in addition to PSL, and the fever and cough disappeared. In the chest CT scan, the ground glass opacities in the left lower lobe and the consolidation in the left lingula segment and the right middle lobe improved partially (Fig. 4). Thereafter, tocilizumab administration was continued and the dose of PSL was successfully reduced until no further administration was required.

3. Discussion

This is a rare case of MCD with pulmonary eosinophil infiltration. Since eosinophilia and pulmonary eosinophil infiltration are rare manifestations in MCD, it was necessary to consider the possibility of IgG4-RD.

Castleman's disease (CD) is a benign lymphoproliferative disease characterized by lymph node enlargement and polyclonal hypergammaglobulinemia [2]. CD is clinically classified into unicentric CD (UCD) and MCD, and histologically classified into the hyaline vascular-type and plasma cell-type. The hyaline vascular-type accounts for the majority of UCD cases, and large percentages of MCD cases are of the plasma cell-type.

In MCD, differentiation of B cells into plasma cells is promoted by IL-6 overproduction from the enlarged lymph node [1]. IL-6 promotes plasma cell proliferation, hypergammaglobulinemia and production of CRP, serum amyloid A, and fibrinogen. MCD is characterized by various manifestations, such as fever, respiratory failure, secondary infection, secondary amyloidosis, and various other symptoms. Johkoh et al. examined chest CT findings of 12 MCD patients with pulmonary lesions [7]. In all 12 cases, hilar/mediastinal lymph node enlargement and pale centrilobular nodules were observed, and in 10 cases, thickening of the bronchial vascular bundle, interlobular septal thickening, thin-walled cysts, and less frequently, ground-glass opacity, invasive shadows, and subpleural nodules were found. The chest CT findings in the current case, such as swollen mediastinal lymph nodes, ground glass opacity, and thickening of the interlobular septa, were consistent with those of MCD. We concluded that the clinical findings in this patient were consistent with those of plasma cell-type MCD.

IgG4-RD is an immune-mediated condition characterized by an elevated serum IgG4 concentration and tissue infiltration by IgG4-positive plasma cells [8]. IgG4-related lung disease, in which IgG4+ cells infiltrate into the lung, have recently been recognized [9]. Common chest CT findings of IgG4-RD are solid nodules, ground-glass opacity, alveolar interstitial opacity, bronchovascular thickening, and hilar mediastinal lymph node swelling [12]. Chest CT findings in the current case, such as swelling of the mediastinal lymph nodes, ground glass opacity, thickening of the interlobular septa, were consistent with these features. On the basis of histological characteristics, IgG4-related lymphadenopathies are classified into five patterns: MCD-like patterns,
Table 1

Author	Sex	Age	Diagnosis	Organ pathological findings	IgG4/IgG (%)	Therapy	Outcome
Ogoshi et al.	female	42	MCD, > IgG4-RD	Lymph node, mediastinal lymph node, hilar lymph node	> 50	PSL 0.6 mg/kg/day	response
Mima et al.	male	48	Castleman’s disease	Lymph node, mediastinal lymph node, hilar lymph node	unknown	PSL 55 mg/day	response
Imai et al.	female	50	MCD	Lymph node, mediastinal lymph node, hilar lymph node	PC type	PSL 50 mg/day	response
Medouki et al.	male	63	IgG4-RD	Lymph node, mediastinal lymph node, hilar lymph node	PC type	PSL 345 mg/day	response
Hestra et al.	male	49	IgG4-RD	Lymph node, mediastinal lymph node, hilar lymph node	PC type	PSL 195 mg/day	response
Hori et al.	female	67	IgG4-RD	Lymph node, mediastinal lymph node, hilar lymph node	unknown	Rituximab + PSL 0.2	no change
Hash et al.	male	59	IgG4-RD	Lymph node, mediastinal lymph node, hilar lymph node	unknown	PSL 50 mg/day	response
Mima et al.	male	74	Castleman’s disease, AIP	Lymph node, mediastinal lymph node, hilar lymph node	unknown	PSL 0.5 mg/kg/day	response

To further distinguish MCD from IgG4-RD, Y. Katsumata et al. [4,6,28] suggested the use of anti-IL-6 receptor antibody (tocilizumab) and rituximab. Since this case was diagnosed as MCD and was steroid-refractory, tocilizumab was added to the therapeutic regimen. The combination therapy safely improved the symptoms and chest CT findings (Fig. 4).

We searched for other case reports in which it was difficult to distinguish MCD from IgG4-RD using PubMed, and found 8 case reports. Steroid monotherapy was effective in 6 of 7 cases, combination therapy of rituximab and prednisolone showed no obvious improvement in the remaining 1 case (Table 1). Furthermore, the efficacy of tocilizumab in such a case has not been reported.

Combined administration of tocilizumab and PSL improved lung lesions and general symptoms in our case, suggesting that combination therapy of tocilizumab and PSL may be effective, and that tocilizumab administration may contribute to the successful reduction of PSL treatment in such a case.

Conflict of interest

None to declare.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.rmcr.2018.06.001.
References

[1] K. Yoshizaki, T. Matsuda, N. Nishimoto, T. Kuritani, L. Taeho, K. Aozasa, et al., Pathogenic significance of interleukin-6 (IL-6/BSF-2) in Castleman’s disease, Blood 74 (1989) 1360–1367.

[2] B. Castleman, L. Iverson, V.P. Meshen, Localized mediastinal lymph node hyperplasia resembling thymoma, Cancer 9 (1956) 822–830.

[3] M. Kojima, Y. Sato, Y. Ootsuki, H. Kobayashi, T. Yoshino, S. Nakamura, Lymph node lesion in IgG4-related sclerosing disease, Pathol. Clin. Med. 27 (2009) 67–72.

[4] T. Ogoshi, K. Yatera, S. Nagata, C. Nishida, A case of multicentric Castleman disease with massive infiltration of plasmacytes presenting IgG4, Ann. Jpn. Resp. Soc. 49 (2011) 437–442.

[5] J. Ikari, M. Kojima, K. Tomita, T. Nakamura, F. Toyoda, Y. Otsuki, et al., A case of IgG4-related lung disease associated with multicentric Castleman’s disease and lung cancer, Integ. Med. 49 (13) (2010) 1287–1291.

[6] I. Miwa, Y. Maruyama, M. Kageoka, K. Nagata, A. Ohata, Y. Noda, et al., Retroperitoneal fibrosis and Castleman disease in two patients with high IgG4 levels, J. Jpn. Soc. Gastroenterol. 105 (2008) 1087–1092.

[7] T. Johkoh, N.L. Müller, K. Ichikado, N. Nishimoto, K. Yoshizaki, O. Honda, et al., Intrathoracic multicentric Castleman disease: CT findings in 12 patients, Radiology 209 (1998) 477–481.

[8] H. Hamano, S. Kawa, A. Horiuchi, H. Unno, N. Furuya, T. Akamatsu, et al., High serum IgG4 concentrations in patients with sclerosing pancreatitis, N. Engl. J. Med. 344 (2001) 732–738.

[9] T. Taniguchi, M. Ko, S. Seko, O. Nishida, F. Inoue, H. Kobayashi, et al., Intestinal pneumonia associated with autoimmune pancreatitis, Gut 53 (2004) 770–771.

[10] Y. Zen, Y. Nakamura, IgG4-related disease: a cross-sectional study of 114 cases, Am. J. Surg. Pathol. 34 (2010) 1812–1819.

[11] D. Inoue, Y. Zen, H. Abo, T. Gabata, H. Demachi, T. Kobayashi, et al., Immunoglobulin G4-related lung disease: CT findings with pathologic correlations, Radiology 251 (2009) 260–270.

[12] W. Cheuk, H.K. Yuen, S.Y. Chu, E.K. Chiu, L.K. Lam, J.K. Chan, Lymphadenopathy of IgG4-related sclerosing disease, Am. J. Surg. Pathol. 32 (2008) 671–681.

[13] H. Umehara, K. Okazaki, Y. Masaki, M. Kawano, M. Yamamoto, T. Saki, et al., Comprehensive diagnostic criteria for IgG4-related disease (IgG4-RD), Mod. Rheumatol. 22 (2011) 21–30.

[14] H. Pieringer, I. Parzer, A. Wehrlen, P. Reis, B. Oppl, J. Zwerina, IgG4-related disease: an orphan disease with many faces, Orphanet J. Rare Dis. 9 (2014) 110.

[15] V. Cottin, J.F. Cordier, Eosinophilic pneumonias, Allergy 60 (2005) 841–857.

[16] Y. Sato, M. Kojima, K. Takata, T. Morito, H. Asaoku, T. Takeuchi, et al., Systemic IgG4-related lymphadenopathy: a clinical and pathologic comparison to multicentric Castleman’s disease, Mod. Pathol. 22 (2009) 589–599.

[17] Y. Zen, D. Inoue, A. Kitao, M. Onodera, H. Abo, S. Miyayama, et al., Nakanuma, IgG4-related lung and pleural disease: a clinicopathologic study of 21 cases, Am. J. Surg. Pathol. 33 (2009) 1886–1893.

[18] F. Inoue, T. Fujisawa, N. Mato, T. Nakaya, H. Yamasawa, M. Bando, et al., A case of IgG4-related lung disease with multiple infiltrative shadows, mediastinal lymphadenopathy and left endobronchial tumor, J. Jpn. Soc. Resp. Endosc. 32 (2014) 621–626.