BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers’ comments and the authors’ responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (http://bmjopen.bmj.com).

If you have any questions on BMJ Open’s open peer review process please email info.bmjopen@bmj.com
Patients’ experiences of using an eHealth tool for self-management support after prostate cancer surgery - a deductive interview study explained through the FITT framework

Journal:	*BMJ Open*
Manuscript ID	bmjopen-2019-035024
Article Type:	Original research
Date Submitted by the Author:	19-Oct-2019
Complete List of Authors:	Nilsson, Lina; Linnaeus University, eHealth Institute; Hellström, Amanda; Linnaeus University, Health and Caring Sciences; Wennerberg, Camilla; Kalmar County Hospital, Department of Surgery; Ekstedt, Mirjam; Karolinska Institutet, LIME; Linnaeus University, Health and Caring Sciences; Schildmeijer, Kristina; Linnaeus University, Health and Caring Sciences
Keywords:	ONCOLOGY, QUALITATIVE RESEARCH, Quality in health care < HEALTH SERVICES ADMINISTRATION & MANAGEMENT
I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd (“BMJ”) its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge (“APC”) for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author’s Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.
Title: Patients’ experiences of using an eHealth tool for self-management support after prostate cancer surgery - a deductive interview study explained through the FITT framework

Lina Nilsson, PhD

Amanda Hellström, PhD

Camilla Wennerberg, PhD student

Mirjam Ekstedt, RN, PhD

Kristina Schildmeijer, RN, PhD

1) eHealth Institute, Faculty of Health and Life Science, Linnaeus University, Sweden
2) Department of Health and Caring Sciences, Faculty of Health and Life Sciences, Linnaeus University, Kalmar, Sweden
3) Department of Surgery, Region Kalmar County, Kalmar, Sweden
4) Department of Learning, Informatics, Management, and Ethics, Karolinska Institutet, Stockholm, Sweden

Corresponding author: Mirjam Ekstedt, PhD
Department of Health and Caring Sciences
Faculty of Health and Life Sciences
Linnaeus University
Hus Vita Kalmar, SE-391 82 Sweden
Phone: +46 480 446 399
Email: mirjam.ekstedt@lnu.se
ABSTRACT

Objective: To evaluate patients’ experiences of using a web-based application, especially its usability as support for self-care activities after prostate cancer surgery.

Design: A deductive content analysis was used, stemming from the Fit between Individuals, Task and Technology (FITT) framework.

Setting: One surgical department in southeast Sweden between October 2015 and April 2016.

Participants: Fifteen men who had undergone radical prostatectomy for prostate cancer.

Results: Organizing data in accordance with the FITT model, three main categories with ten subcategories, were identified. Patients gave feedback on functions that suited them and their needs, as well as potential adjustments and improvements. Patients experienced that ePATH gave them easy access to reliable information regarding their rehabilitation. Directed information about ePATH at enrollment was seen as important. ePATH was perceived to have a logical structure that was easy to follow. However, when the structure was unclear, patients became less motivated to use a function.

Conclusions: Patients experienced ePATH as satisfactorily user-friendly and useful as a complementary self-management support after prostate cancer surgery, especially when the information and tasks were tailored to their preferences and the system design features supported individual autonomy.

Keywords: content analysis, experiences, FITT framework, patient activation, prostate cancer, self-care, usability, qualitative interviews

Word count: 3646 words, excluding title page, abstract, references, figures and tables.
Strengths and limitations of the study

- The study was based on experiences among a sample of 15 men using ePATH. This sample could be seen as too small, but it is these men’s unique experiences that are described and the purpose of qualitative research is not to cover all aspects of a phenomenon.

- The voluntary nature of each patient’s participation may have led to our results not being transferable to other patients with prostate cancer or to men and women with other cancer diagnoses. We used verification strategies to establish trustworthiness, as appropriate in qualitative research.

- The usability testing included a limited number of participants, which is not uncommon in iterative designs. The usability testing was not video-recorded and some difficulties in using functionalities may have passed unnoticed. This will be further addressed in ongoing further development of the application.

- In the ongoing effectiveness study, user log data will also be extracted to observe actual use.

Competing interests

None declared.

Funding

This work was supported by the Cancer Foundation in Kalmar County, the Kamprad Family Foundation for Entrepreneurship Research and Charity, and the Research Council of Southeast Sweden.
BACKGROUND

In 2015, a standardized care pathway (SCP) for prostate cancer was launched by the Swedish government. As part of the SCP, patients are assigned a contact nurse, whose task is to facilitate access to care. The nurse provides information and education related to the disease, treatment and self-care activities, supports patients and relatives, coordinates contacts within healthcare and assesses and monitors the patient’s symptoms. However, a recent study in men diagnosed with prostate cancer showed that the patients felt that they were in a vacuum and constantly waiting for information before diagnosis, and during and after treatment. A need for more personalized support to patients and their families, especially in rehabilitation after treatment, was suggested. Shortcomings in the rehabilitation after surviving cancer have been found in other studies as well, and improved follow-up and effective interventions have been called for. eHealth applications have the potential to provide support to everyone, everywhere, and to facilitate contact with healthcare services when it is most convenient for the user.

There are several studies describing development and evaluation of eHealth tools in prostate cancer care. The focus has been on short-term rehabilitation or cancer illness in general, without tailoring the content based on diagnosis. Ruland et al. investigated several important components, such as long-term follow-up, interactive forums with contact nurses and other patients, support and monitoring of symptoms. Frankland et al. focused mainly on costs and differences between traditional appointment-based follow-up care and an online supported self-management and follow-up care program. Although attention to eHealth applications has increased in cancer care, few studies focus on eHealth applications as rehabilitation support in the aftermath of prostate cancer treatment. Thus, the aim of the
current study was to evaluate patients’ experiences of using a web-based application, especially its usability as support for self-care activities after prostate cancer surgery.

METHODS

Design and theoretical framework

The study consisted of usability testing of ePATH, using a think-aloud protocol and semi-structured interviews to identify design and functionality issues along with usability problems, and exploring patient experiences of using an eHealth application as support for self-care activities after prostate cancer surgery. Usability can be improved only with an understanding of the tasks that patients need to perform in the course of their “self-management and rehabilitation work” 10. We therefore approached usability from the patients’ perspective through the lens of the FITT framework, to determine the Fit between Individual, Task and Technology. The adoption of eHealth support depends on the fit between user and technology, and between task and technology, meaning that the fit in the interaction between the user and the task must also be considered 11. The assumption is that the attributes of the individual, the task, and the technology affect the fit between them, which in turn will have an influence on the utilization and adoption of the eHealth support (Figure 1). In this study, the FITT framework is used to describe and analyze the current fit between individual, task and technology, which can be used to identify how to improve the interaction between those aspects in ePATH.
Figure 1. The FITT (Fit between Individual, Task and Technology) framework, applied to usability testing of ePATH in prostate cancer patients.

The web-based application
ePATH is an interactive eHealth application that is accessible through computer, smartphone or tablet devices, using safe authentication. The content and functionality of ePATH was developed with end users, by applying user-centered design. ePATH is based on five content areas that have been considered to be essential for post-hospital self-management of care and rehabilitation. Furthermore, ePATH is conceptually based on self-determination theory, SDT, with the assumption that intrinsic motivation, the ‘drive’ to sustain performance of self-care activities at home, is promoted by patient autonomy, competence and relatedness. Social contexts that support fulfilment of these basic psychological needs also facilitate more autonomous functioning. ePATH enhances patient autonomy by providing access to communication and interaction with healthcare professionals. Also, ePATH provides access to tailored information and self-care activities in partnership with the contact nurse. The patient can track self-care activities (e.g., physical activity and pelvic floor muscle training) and monitor symptoms (e.g., urinary leakage). The registrations are displayed numerically as tables or in graphs, and can be followed over time, providing feedback to enhance motivation. Important dates can be added to the calendar and there is a private diary function. There is also a messaging function, allowing the patient to
send text-based messages to his contact nurse, and the contact nurse has the possibility to respond or send supportive messages to the patient 18.

Patient and Public Involvement

Patients were involved in the development of the research questions and design of the study by applying participatory, user-centered design 12 13 where patients who had undergone prostate cancer operation shared their experiences and priorities which informed the content and functionality of ePATH and the design of the intervention, as well as how the research question for this study was formulated. Patients were not involved in conduction of the study. The results has been disseminated to the study participants and patient compounds.

Procedures

The usability testing was conducted at the surgical department in a medium-sized hospital in the southeast of Sweden, to provide users (patients and contact nurses) with a system with a real look and feel and to determine the acceptance of the eHealth application and its features in everyday work. The contact nurses got an introduction to ePATH from the research team, during which they were able to test how to log in using their staff identification security card, and learned how to introduce patients to ePATH, send messages and provide information. A user manual was developed as support for staff during the usability study. Eligible patients were informed about the study by their contact nurse in connection with their diagnosis (verbal and written information). Those who agreed to participate got an introduction to ePATH from the contact nurse. A written tutorial for patients was developed, describing the full range of functions offered by ePATH. When the patients had been using ePATH for about four weeks, a researcher contacted each of them, asking for an interview to discuss their experiences of using the eHealth tool.
Participants and setting

Fifteen men, aged 56–72 years, diagnosed with prostate cancer and treated with radical prostatectomy, were invited to use ePATH during four weeks post-surgery, and then participate in a follow-up interview. Inclusion criteria were to have access to a computer or tablet and a mobile BankID for secure login. All 15 men agreed to participate and sampling ended after these 15 interviews, as no substantial new information was retrieved. Usability testing and interviews took place between 15 September 2017 and 3 July 2018.

Data collection methods

To set date and time for interviews, one of the researchers contacted the patients who agreed to participate in the study. Interviews were conducted at a conference room at the hospital by two researchers (KS and OF, LN and CW). The semi-structured interviews were constructed using a think-aloud protocol, with the goal of obtaining the participants’ immediate experiences of functionality and usability of ePATH. The users were asked to show how they used ePATH, while thinking aloud about their decision process, problem solving or what functions and content areas they found useful, difficult or easy to use. The interview protocol was loosely based on items in the modified System Usability Scale 19. During the interviews, probing questions were used to encourage the participants to elaborate on situations which were problematic or where they encountered concerns and to discuss possible causes or suggestions for improvements. The interviews lasted between 11 and 57 minutes (M = 27). All interviews were recorded and transcribed verbatim. In order to increase credibility, all quotations are presented with the quoted participant numbered.

Ethical approval

The study was conducted in accordance with the ethical principles of Helsinki 20. All participants gave written informed consent to participate in the study. Ethical approval was
obtained from the Regional Ethical Board of Linköping University, Sweden, (Dnr 2016/484-31).

Analysis of the interviews

The transcribed interviews were analyzed with content analysis using a deductive approach. A structured categorization matrix was developed based on the FITT framework, to sort data into the pre-defined categories (Figure 1). The relations between patients, ePATH and its content were used as an outline in the understanding of what influenced patients’ utilization of ePATH. Subcategories and main categories were discussed by all the authors and grouped based on how they were linked together by the authors separately.

RESULTS

Organizing data in accordance with the FITT model, ten subcategories were identified and sorted into the three main categories. The latter captured the fit between patient, technology and task (Figure 2).

Figure 2. Usability of ePATH described through three main categories and ten subcategories.
Patients found the opportunity to get trustworthy information about their diagnosis through the eHealth tool valuable. Patients reported that online searches for information about their illness sometimes ended up on sites that did not provide reliable information. They experienced that ePATH helped them to easily get information they could trust.

“Otherwise you end up sitting there, going online and checking around. There are sites that you can look at, but sometimes you get disinformation.” (P 1)

Some of the patients found the self-care activity function useful for registering their self-care activities and symptoms, while others felt no need for such registration. The function could enhance or facilitate the understanding of which activities were most important and how often they should be done. The participants had different experiences of the usefulness of frequent registrations. Some felt that they lost motivation to register symptoms on a regular basis, when the symptoms changed little over time. They suggested that symptoms should be
reported only when changes occurred. One patient stated that many things were going on in parallel during this time of life, and found reminders unnecessary.

The motivation for and the feeling in relation to the rehabilitation process varied from day to day. Some patients wanted clear goals to focus on, while others did not have that need. The goals could awaken a competitive instinct that inspired more activity.

“Yeah, but there’s so much else. You need to know that it ... that this ... that how you feel and your general health and so on, it’s a rollercoaster in this kind of situation.” (P 8)

Patients had differing needs for the functions in the system and used those that suited them and their needs. The need for individual information directed at a specific patient was highlighted. Overly generic information was not perceived as useful; instead, the patients wanted ePATH to be tailored based on personal needs and requests. Patients wanted to cease with registration of self-care activities and symptoms when such registration felt redundant. Instead, they wanted the possibility to register other self-care activities of importance for their rehabilitation, such as sleep patterns. Reminders to perform self-care activities were set to specific hours, but patients often performed them in connection with other daily activities.

Patients emphasized that it was enough to get information about what to do and how many times a day. Psychoeducation about the importance of the activity was described as imperative. If patients did not understand why a task was recommended or how the self-care activity was assumed to affect their symptoms, they became less motivated to follow the instructions and register their activities in ePATH.

“So I use what I feel I need at the time.” (P 6)

Patients experienced benefits from the messaging function in ePATH. The possibility to write a message whenever it suited them and not have to adjust their life based on office hours was
appreciated. It simplified contact with healthcare and created a sense of security. They described past difficulties with getting in contact with healthcare professionals and the frustration this had caused.

“I think that’s good. It is easier than that you have to ... call and wait on hold or ... Going in here and writing a message to the contact nurses, for instance, and maybe you’ll get a response the very same day. That’s much better than that I have to sit on the phone and ... on hold and maybe I won’t reach them anyway.” (P 11)

The need for clarity about the functions and parts in ePATH was highlighted. Patients had various suggestions on how the technical usability could be improved, such as creating an application you could use on smartphones and using notifications as reminders.

Getting started with ePATH – managing technology

Computers or tablets were used to access ePATH. The headings provided clear guidance on where different functions could be found. The tool was perceived to have a logical structure that was easy to follow. The interface and color settings in the tool were considered to be good.

“That layout is clear and distinct. It is not complicated” (P 15)

One patient had hoped to read his medical journal through the system and was disappointed when that was not possible. Connections between different systems or links were seen as a good function and could be a way to improve functionality. One example was to supply recommendations for podcasts that were suitable in the situation or links to patient information on prostate cancer.
Patients believed that the paperless society was the future and that eHealth tools like ePATH were a good way to get access to the information that you previously got on paper. According to the patients, ePATH gave access to the information wherever they had internet access, and there was no need to keep track of papers or phone numbers anymore, as you had the option to get in touch through ePATH.

Degree to which ePATH assists the patient in task performance

Clear information about what ePATH entailed was important at enrollment. In circumstances when information was not clear, the results were disappointment and lack of motivation for usage.

Patients encountered bugs and deficiencies, which confused some of them and made them question their digital literacy and skills. Others were certain that the shortcomings that occurred were due to technical problems.

“No, but there’s no message box, I can tell you that right away, because then I would have looked there, but there were no headings.” (P 6)

“And then I discovered that the registration here … Sometimes it disappears. I’ve saved it and then it’s gone.” (P 2)

DISCUSSION

This study aimed to evaluate patients’ experiences of using a web-based application, especially its usability as support for self-care activities after prostate cancer surgery.

Fit between the individual and the technology

The patients’ appraisal of using an eHealth tool was positive, in general. An important aspect in using ePATH was that the design and the interface were logical and clear, that the view
was up-to-date when they opened the application and that outdated activities or registrations were hidden. Provision of diagnosis-specific information, a bi-directional communication functionality and the possibility to personalize timing and features of self-care activities based on preferences and needs were especially appreciated and motivating. Similarly, Lentferink et al. found that patients described usability as the ability to personalize and set the technical features of an application, such as timing of messages, layout or password protection. Personalization of an application also included having an influence over its contents and the possibility to observe patterns or trends in personalized data. The patients were also willing to put more effort into registration of data if it added value for them. Performance of self-tracking was perceived as increasing awareness; however, registration of data seemingly irrelevant for the patient could be demotivating.

A good fit between the patient and technology, with a focus on personalization and autonomous functioning, as shown in this study, may support patient engagement in using ePATH as a self-management tool in the postoperative phase. On the other hand, the more autonomy there is, the more options there are to handle and the more technical competence is required from both patients and healthcare professionals. Personalized information and tracking of symptoms and activities that can be deemed sensitive have to be protected by secure login, which might have a negative effect on user-friendliness and challenge users’ digital literacy. Thus, there is a delicate balance between supporting patient autonomy and individual expectations on what an eHealth application should offer, and its fit into the daily activities of most users. The importance of having technical support available to educate and promptly correct bugs and system failures is also highlighted.
Fit between technology and task

For a good fit between eHealth support and tasks, the tasks and processes need to be tailored and delivered in a manner that meets the user’s expectations and needs \(^1\). The technology, on the other hand, needs to have adequate functionality and stability to support the tasks. ePATH provided the patients with an easy way of getting in contact with healthcare, simplifying communication. Previous studies \(^3\ 24\ 25\) have shown that patients in cancer care commonly feel abandoned after discharge from hospital. It was difficult to get in touch with the contact nurse or physician once at home, and worries and problems could pile up, with the patient not knowing where to turn. Another problematic task was keeping track of the large amount of information that patients received at the time of diagnosis. ePATH had adequate functionality to store diagnosis-specific information on treatment and rehabilitation, which was easy to access just-in-time when needed. Thus, the technology supported patients by providing information, as well as assisting in interaction and communication with healthcare in the postoperative phase. Information, interaction, visualization, and communication were identified as the cornerstones of the technology-task-fit in ePATH, as described previously \(^1\).

Patients’ experiences of the technical functionality for supporting self-care tasks varied, as did patients’ expectations of support and motivation to perform self-care activities. In this study, it became clear that patients not only needed to be informed about what to do, but also needed to understand why they should perform self-care, and how to incorporate the new behaviors into their daily lives. When someone is faced with a diagnosis and new behaviors of which they have little knowledge and experience, an autonomy-supportive healthcare climate with strong patient-staff or peer support surrounding the individual is imperative to facilitate engagement in self-care activities \(^16\ 17\). In this context, an eHealth application may serve as a tool bridging distance and as continuous long-term support.
Fit between the individual and the task

For successful rehabilitation, patients need to be engaged and motivated to perform the recommended activities. In this study, the importance of diagnosis-specific information and self-care advice of personal relevance was appraised, showing a clear association with motivation to perform self-care activities. It was also important that the tasks were accompanied by instructions on how to track and interpret the registrations. However, motivation is complex. There are various types of motivation or behavioral regulation, broadly classified as autonomous self-regulation, controlled regulation, and autonomous motivation. Autonomous motivation “moves people to action,” driven by personal value and utility (e.g., personally wanting to maintain or regain good health). Autonomous self-regulation encompasses intrinsic and integrated motivation, which describes activities that are spontaneous or heuristic. Such activities give sufficient satisfaction to be sustained for their own sake and the engagement in an activity is congruent with central personal goals and values. ePATH may have enhanced intrinsic motivation by providing patients with personalized information and encouraging them to decide autonomously when to interact and communicate with healthcare. In contrast to externally prompted activities that are functionally dependent on rewards for their occurrence, autonomous motivation is strongly correlated with the maintenance of behavioral change over time, as well as with greater psychological health. However, controlled regulation, generally reflecting internal pressures such as contingent self-worth, guilt, shame and a need for approval, can also drive a specific behavior for a short period of time. We found that patients tended to do what they thought was of importance to get the healthcare staff’s approval, instead of understanding the benefit of the activity for themselves. Such controlled behavioral regulation, in this case approval from the contact nurses, has in other studies been beneficial in the internalization of a new
behavior into more autonomous forms of self-regulation. If motivation is to be established, the patient needs to have functional ways to feel connected, which is one of the three pillars of motivation according to self-determination theory. This study indicates that an eHealth application may be a useful tool for patients to become more independent and take on more responsibility for self-care activities over time.

Conclusions

Advances in treatment have led to longer survival after prostate cancer diagnosis, but that does not automatically mean that survivors are living well. A substantial group of men surviving prostate cancer are experiencing long-term physical side effects and heightened psychological distress, indicating a need for long-term rehabilitation support and availability of healthcare. The patients’ appraisal of ePATH as satisfactory, easy to use and to access, with information and activities tailored to patient needs and preferences, gives promising indications that eHealth applications are useful as support for self-management and rehabilitation after prostate cancer surgery. As patients’ needs for support varied across their rehabilitation trajectories, despite them having the same diagnosis and treatment, autonomous regulation and accessibility to healthcare seems crucial for the eHealth application to fit into their everyday lives. Further testing in a large-scale RCT is warranted and in progress.

Acknowledgments

Thanks to the participating patients who took part in the study with the intention to improve ePATH.

Thanks to Oscar Frykholm for valuable contributions to study design and data collection in the initial phase of the study.
Author Contributions

LN’s responsibility: study design, acquisition of data, analysis, interpretation of data, drafting the article and intellectual content.

CW’s responsibility: study design, acquisition of data, analysis, interpretation of data, drafting the article and intellectual content.

ME’s responsibility: PI of the ePATH project, study design, and intellectual contribution to interpretation of data and drafting the article.

AH’s responsibility: drafting the article and intellectual content.

KS’s responsibility: study design, acquisition of data, analysis, interpretation of data, drafting the article and intellectual content.

Data sharing

All interview and usability data are in Swedish and available on request.
REFERENCES

1. Wilkens J, Thulesius H, Schmidt I, et al. The 2015 National Cancer Program in Sweden: Introducing standardized care pathways in a decentralized system. Health policy (Amsterdam, Netherlands) 2016;120(12):1378-82. doi: 10.1016/j.healthpol.2016.09.008

2. de Leeuw J, Larsson M. Nurse-led follow-up care for cancer patients: what is known and what is needed. Support Care Cancer 2013;21(9):2643-49. doi: 10.1007/s00520-013-1892-6.

3. Schildmeijer K, Frykholm O, Kneck Å, et al. Not a straight line-patients' experiences of prostate cancer and their journey through the healthcare system. Cancer Nurs 2019;42(1):E36-E43. doi: 10.1097/NCC.0000000000000559

4. Crawford-Williams F, March S, Goodwin BC, et al. Interventions for prostate cancer survivorship: A systematic review of reviews. Psycho-Oncology 2018;27(10):2339-48.

5. Ruland CM, Maffei RM, Borosund E, et al. Evaluation of different features of an eHealth application for personalized illness management support: cancer patients' use and appraisal of usefulness. Int J Med Inform 2013;82(7):593-603. doi: 10.1016/j.ijmedinf.2013.02.007

6. Frankland J, Brodie H, Cooke D, et al. Follow-up care after treatment for prostate cancer: evaluation of a supported self-management and remote surveillance programme. BMC Cancer 2019;19(1):368. doi: 10.1186/s12885-019-5561-0 [published Online First: 2019/04/23]

7. Renzi C, Fioretti C, Oliveri S, et al. A qualitative investigation on patient empowerment in prostate cancer. Front Psychol 2017;8:1215. doi: 10.3389/fpsyg.2017.01215 [published Online First: 2017/08/12]

8. Bartlett YK, Selby DL, Newsham A, et al. Developing a useful, user-friendly website for cancer patient follow-up: Users' perspectives on ease of access and usefulness. Eur J Cancer Care (Engl) 2012;21(6):747-57. doi: 10.1111/j.1365-2354.2012.01357.x [published Online First: 2012/04/26]

9. Kessel KA, Vogel MM, Kessel C, et al. Mobile health in oncology: A patient survey about app-assisted cancer care. JMIR Mhealth Uhealth 2017;5(6):e81. doi: 10.2196/mhealth.7689 [published Online First: 2017/06/16]

10. Corbin J, Strauss A. Managing chronic illness at home: three lines of work. Qual Sociol 1985;8(03):224-47.

11. Ammenwerth E, Iller C, Mahler C. IT-adoption and the interaction of task, technology and individuals: a fit framework and a case study. BMC Med Inform Decis Mak 2006;6:3. doi: 10.1186/1472-6947-6-3 [published Online First: 2006/01/13]

12. Schildmeijer K, Wannheden C, Nilsson L, et al. Developing an eHealth tool to support patient empowerment at home. Stud Health Technol Inform 2018;247:925-29. [published Online First: 2018/04/22]

13. Frykholm O, Flink M, Lindblad M, et al. User-centered design of integrated eHealth to improve patient’s activation in transitional care.: User-centered design of integrated eHealth to improve patient’s activation in transitional care., 2016. Presented at: 16th International Conference for INtegrated Care; May 23-25; Barcelona p. 16.

14. Coleman EA, Parry C, Chalmers S, et al. The care transitions intervention: results of a randomized controlled trial. Arch Intern Med 2006;166(17):1822-8. doi: 10.1001/archinte.166.17.1822

15. Flink M, Ekstedt M. Planning for the discharge, not for patient self-management at home - An observational and interview study of hospital discharge. Int J Integr Care 2017;17(6):1. doi: 10.5334/ijic.3003 [published Online First: 2018/03/29]

16. Ryan R, Deci E. Self-Determination Theory: Basic psychological needs in motivation, development and wellness. New York, London England: The Guildford Press 2017.
17. Ng J, Ntoumanis N, Thøgersen-Ntoumani C, et al. Self-Determination Theory Applied to Health Contexts: a Meta-Analysis. *Perspect Psychol Sci* 2012;7:325–40.

18. Ekstedt M, Schildmeijer K, Wennerberg C, et al. Enhanced patient activation in cancer care transitions: Protocol for a randomized controlled trial of a tailored electronic health intervention for men with prostate cancer. *JMIR Res Protoc* 2019;8(3):e11625. doi: 10.2196/11625 [published Online First: 2019/03/22]

19. Bangor A, Kortum PT, Miller JT. An empirical evaluation of the system usability scale. *Int J Hum Comput Interact* 2008;24(6):574-94.

20. World Medical Association WMA (2013). World Medical Association Declaration of Helsinki – Ethical Principles for Medical Research Involving Human Subjects. *JAMA* 2013; 310(20): 2191-4

21. Elo S, Kyngäs H. The qualitative content analysis process. *J Adv Nurs* 2008;62(1):107-15.

22. Lentferink AJ, Oldenhuis HK, de Groot M, et al. Key components in eHealth interventions combining self-tracking and persuasive eCoaching to promote a healthier lifestyle: a scoping review. *J Med Internet Res* 2017;19(8):e277.

23. Page KL, Robson MJ, Uncles MD. Perceptions of web knowledge and usability: When sex and experience matter. *Int J Hum Comput Stud* 2012;70(12):907-19.

24. LithNER M, Klefsgard R, Johansson J, et al. The significance of information after discharge for colorectal cancer surgery—a qualitative study. *BMC nursing* 2015;14(1):36.

25. Mikkelsen TH, Søndergaard J, Jensen AB, et al. Cancer rehabilitation: Psychosocial rehabilitation needs after discharge from hospital? A qualitative interview study. *Scand J Prim Health Care* 2008;26(4):216-21.
User: patients with prostate cancer

User behavior
- Relevance of task
- Complexity of task
- Clarity of instructions

eHealth literacy
- Personal skills/knowledge in IT
- Technical bugs
- Users’ expectations on ePATH

Task: Self-care
- Symptom monitoring
- Information communication

Technology: ePATH
- Graphs
- Tracking
- Ratings

FITT

Applied informatics
- Visualization
- Up-to-date information
- Interpretability
- Optimization of functions

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
Usability of ePATH

Getting started with ePATH - managing technology

Degree to which ePATH assists the patient in task performance

Technical stability/ Performance

Technical preparations

Logical interface

Information before use

Simplifies communication

Interaction with the system

Individual needs

Relevance of tasks

Complexity of registrations

Reliable information

Turning input into output - task engagement and completion
Standards for Reporting Qualitative Research (SRQR)*

*http://www.equator-network.org/reporting-guidelines/srqr/

Title and abstract

Title	Concise description of the nature and topic of the study Identifying the study as qualitative or indicating the approach (e.g., ethnography, grounded theory) or data collection methods (e.g., interview, focus group) is recommended
	1/1-3

Abstract	Summary of key elements of the study using the abstract format of the intended publication; typically includes background, purpose, methods, results, and conclusions
	2

Introduction

Problem formulation	Description and significance of the problem/phenomenon studied; review of relevant theory and empirical work; problem statement
	4/14-22

Purpose or research question	Purpose of the study and specific objectives or questions

Methods

Qualitative approach and research paradigm	Qualitative approach (e.g., ethnography, grounded theory, case study, phenomenology, narrative research) and guiding theory if appropriate; identifying the research paradigm (e.g., postpositivist, constructivist/ interpretivist) is also recommended; rationale**
	5/3-10

Researcher characteristics and reflexivity	Researchers’ characteristics that may influence the research, including personal attributes, qualifications/experience, relationship with participants, assumptions, and/or presuppositions; potential or actual interaction between researchers’ characteristics and the research questions, approach, methods, results, and/or transferability
	8/7-9

Context	Setting/site and salient contextual factors; rationale**

Sampling strategy	How and why research participants, documents, or events were selected; criteria for deciding when no further sampling was necessary (e.g., sampling saturation); rationale**
	8

Ethical issues pertaining to human subjects	Documentation of approval by an appropriate ethics review board and participant consent, or explanation for lack thereof; other confidentiality and data security issues
	8/20-21, 9/1

Data collection methods	Types of data collected; details of data collection procedures including (as appropriate) start and stop dates of data collection and analysis, iterative process, triangulation of sources/methods, and modification of procedures in response to evolving study findings; rationale**
	8-9
Data collection instruments and technologies - Description of instruments (e.g., interview guides, questionnaires) and devices (e.g., audio recorders) used for data collection; if/how the instrument(s) changed over the course of the study

8-9

Units of study - Number and relevant characteristics of participants, documents, or events included in the study; level of participation (could be reported in results)

8

Data processing - Methods for processing data prior to and during analysis, including transcription, data entry, data management and security, verification of data integrity, data coding, and anonymization/de-identification of excerpts

9/3-8

Data analysis - Process by which inferences, themes, etc., were identified and developed, including the researchers involved in data analysis; usually references a specific paradigm or approach; rationale**

9/3-11

Techniques to enhance trustworthiness - Techniques to enhance trustworthiness and credibility of data analysis (e.g., member checking, audit trail, triangulation); rationale**

3

Results/findings

Synthesis and interpretation - Main findings (e.g., interpretations, inferences, and themes); might include development of a theory or model, or integration with prior research or theory

9-17

Links to empirical data - Evidence (e.g., quotes, field notes, text excerpts, photographs) to substantiate analytic findings

9/Fig 2

Discussion

Integration with prior work, implications, transferability, and contribution(s) to the field - Short summary of main findings; explanation of how findings and conclusions connect to, support, elaborate on, or challenge conclusions of earlier scholarship; discussion of scope of application/generalizability; identification of unique contribution(s) to scholarship in a discipline or field

3, 13-17

Limitations - Trustworthiness and limitations of findings

Other

Conflicts of interest - Potential sources of influence or perceived influence on study conduct and conclusions; how these were managed

3

Funding - Sources of funding and other support; role of funders in data collection, interpretation, and reporting

3

*The authors created the SRQR by searching the literature to identify guidelines, reporting standards, and critical appraisal criteria for qualitative research; reviewing the reference lists of retrieved sources; and contacting experts to gain feedback. The SRQR aims to improve the transparency of all aspects of qualitative research by providing clear standards for reporting qualitative research.
The rationale should briefly discuss the justification for choosing that theory, approach, method, or technique rather than other options available, the assumptions and limitations implicit in those choices, and how those choices influence study conclusions and transferability. As appropriate, the rationale for several items might be discussed together.

Reference:
O'Brien BC, Harris IB, Beckman TJ, Reed DA, Cook DA. Standards for reporting qualitative research: a synthesis of recommendations. *Academic Medicine, Vol. 89, No. 9 / Sept 2014* DOI: 10.1097/ACM.0000000000000388
Patients’ experiences of using an eHealth tool for self-management support after prostate cancer surgery - a deductive interview study explained through the FITT framework

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-035024.R1
Article Type:	Original research
Date Submitted by the Author:	16-Jan-2020
Complete List of Authors:	Nilsson, Lina; Linnaeus University, eHealth Institute Hellström, Amanda; Linnaeus University, Health and Caring Sciences Wennerberg, Camilla; Kalmar County Hospital, Department of Surgery Ekstedt, Mirjam; Karolinska Institutet, LIME; Linnaeus University Schildmeijer, Kristina; Linnaeus University, Health and Caring Sciences
Primary Subject Heading	Oncology
Secondary Subject Heading	Qualitative research
Keywords	ONCOLOGY, QUALITATIVE RESEARCH, Quality in health care < HEALTH SERVICES ADMINISTRATION & MANAGEMENT
I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd (“BMJ”) its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge (“APC”) for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author’s Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.
Title: Patients’ experiences of using an eHealth tool for self-management support after prostate cancer surgery - a deductive interview study explained through the FITT framework

Lina Nilsson, PhD
Amanda Hellström, PhD
Camilla Wennerberg, PhD student
Mirjam Ekstedt, RN, PhD
Kristina Schildmeijer, RN, PhD

1) eHealth Institute, Faculty of Health and Life Science, Linnaeus University, Sweden
2) Department of Health and Caring Sciences, Faculty of Health and Life Sciences, Linnaeus University, Kalmar, Sweden
3) Department of Surgery, Region Kalmar County, Kalmar, Sweden
4) Department of Learning, Informatics, Management, and Ethics, Karolinska Institutet, Stockholm, Sweden

Corresponding author: Mirjam Ekstedt, PhD
Department of Health and Caring Sciences
Faculty of Health and Life Sciences
Linnaeus University
Hus Vita Kalmar, SE-391 82 Sweden
Phone: +46 480 446 399
Email: mirjam.ekstedt@lnu.se
ABSTRACT

Objective: To evaluate patients’ experiences of using a web-based application, especially its usability as support for self-care activities after prostate cancer surgery.

Design: A deductive content analysis was used, stemming from the Fit between Individuals, Task and Technology (FITT) framework.

Setting: One surgical department in southeast Sweden between October 2015 to April 2016 and between 15 September 2017 and 3 July 2018.

Participants: Fifteen men who had undergone radical prostatectomy for prostate cancer.

Results: Organizing data in accordance with the FITT model, three main categories with ten subcategories, were identified. Patients gave feedback on functions that suited them and their needs, as well as potential adjustments and improvements. Patients experienced that ePATH gave them easy access to reliable information regarding their rehabilitation. Directed information about ePATH at enrollment was seen as important. ePATH was perceived to have a logical structure that was easy to follow. However, when the structure was unclear, patients became less motivated to use a function.

Conclusions: Patients experienced ePATH as satisfactorily user-friendly and useful as a complementary self-management support after prostate cancer surgery, especially when the information and tasks were tailored to their preferences and the system design features supported individual autonomy.

Keywords: content analysis, experiences, FITT framework, patient activation, prostate cancer, self-care, usability, qualitative interviews

Word count: 3646 words, excluding title page, abstract, references, figures and tables.

Article Summary
Strengths and limitations of the study

- The usability testing was conducted at one surgical department in a medium-sized hospital in the southeast of Sweden.

- A sample of 15 men could be considered as too small to collect reliable data, but even smaller sample size is quite common and can still be meaningful as it covers a variety of unique experiences.

- The voluntary nature of each patient’s participation may have led to our results not being transferable to other patients with prostate cancer or to men and women with other cancer diagnoses.

- The usability testing was not video-recorded and some difficulties in using functionalities may have passed unnoticed.

- We used the FITT framework to describe and analyze the current fit between individual, task and technology to identify how to improve the interaction between those aspects in ePATH.

Competing interests

None declared.

Funding

This work was supported by the Cancer Foundation in Kalmar County, the Kamprad Family Foundation for Entrepreneurship Research and Charity, and the Research Council of Southeast Sweden.
BACKGROUND

In 2015, a standardized care pathway (SCP) for prostate cancer was launched by the Swedish government. 1 As part of the SCP, patients are assigned a contact nurse, whose task is to facilitate access to care. The nurse provides information and education related to the disease, treatment and self-care activities, supports patients and relatives, coordinates contacts within healthcare and assesses and monitors the patient’s symptoms. 2 However, a recent study in men diagnosed with prostate cancer showed that the patients felt that they were in a vacuum and constantly waiting for information before diagnosis, and during and after treatment. A need for more personalized support to patients and their families, especially in rehabilitation after treatment, was suggested. 3 Shortcomings in the rehabilitation after surviving cancer have been found in other studies as well, and improved follow-up and effective interventions have been called for. 4 eHealth applications have the potential to provide support to everyone, everywhere, and to facilitate contact with healthcare services when it is most convenient for the user.

There are several studies describing development and evaluation of eHealth tools in prostate cancer care 5-8. However, the applications have different focus and some lack theoretical basis for their content or interface. 6 8 9 Golsteijn 7 focus solely on physical activities, while 5 6 9 focus on information and guidance to follow-up according to the standardized care plan. Several of the applications apply to cancer illness in general or several diagnoses 5 7-9, which makes tailoring of the content more difficult. Ruland et al. 8 investigated several important components, such as long-term follow-up, interactive forums with contact nurses and other patients, support and monitoring of symptoms and is also the application that most resembles the tool described in this paper. Frankland et al. focused mainly on costs and differences between traditional appointment-based follow-up care and an online supported self-
management and follow-up care program. Although attention to eHealth applications has increased in cancer care, few studies focus on eHealth applications as rehabilitation support in the aftermath of prostate cancer treatment \(^{10}\). As a response to this scarcity, we designed a web-platform, emanating from five areas of postoperative self-management that are considered essential by the patients. It has a theoretical base, emphasizing autonomy, competence and relatedness, and guides the patient up to 12 months after treatment.

Thus, the aim of the current study was to evaluate patients’ experiences of using a web-based application, especially its usability as support for self-care activities after prostate cancer surgery.

METHODS

Design and theoretical framework

The study consisted of usability testing of ePATH, using think-aloud technique, and semi-structured interviews. To identify design and functionality issues along with usability problems when using an eHealth application as support for self-care activities after prostate cancer surgery. Usability can be improved only with an understanding of the tasks that patients need to perform in the course of their “self-management and rehabilitation work” \(^{11}\). We therefore approached usability from the patients’ perspective through the lens of the FITT framework, to determine the Fit between Individual, Task and Technology. This framework was developed by Ammenwerth, Iller & Mahler\(^{12}\) based on the idea that the adoption of eHealth support depends on the fit between user and technology, and between task and technology. The mean that the fit in the interaction between the attribute is more important than the individuals attribute themselves and this must also be considered \(^{12}\). The assumption
is that the attributes of the individual, the task, and the technology affect the fit between them, which in turn will have an influence on the utilization and adoption of the eHealth support (Figure 1). In this study, the FITT framework is used to describe and analyze the current fit between individual, task and technology, which can be used to identify how to improve the interaction between those aspects in ePATH.

Figure 1. The FITT (Fit between Individual, Task and Technology) framework, applied to usability testing of ePATH in prostate cancer patients.

The web-based application

ePATH is an interactive eHealth application that is accessible through computer, smartphone or tablet devices, using secure authentication. The content and functionality of ePATH was developed with end users, by applying user-centered design. ePATH is based on five content areas that have been considered to be essential for post-hospital self-management of care and rehabilitation. Furthermore, ePATH is conceptually based on self-determination theory, SDT, with the assumption that intrinsic motivation, the ‘drive’ to sustain performance of self-care activities at home, is promoted by patient autonomy, competence and relatedness. Social contexts that support fulfilment of these basic psychological needs also facilitate more autonomous functioning. ePATH enhances
patient autonomy by providing access to communication and interaction with healthcare professionals. Also, ePATH provides access to tailored information and self-care activities in partnership with the contact nurse. The patient can track self-care activities (e.g., physical activity and pelvic floor muscle training) and monitor symptoms (e.g., urinary leakage). The registrations are displayed numerically as tables or in graphs, and can be followed over time, providing feedback to enhance motivation. Important dates can be added to the calendar and there is a private diary function. There is also a messaging function, allowing the patient to send text-based messages to his contact nurse, and the contact nurse has the possibility to respond or send supportive messages to the patient.

Patient and Public Involvement

User-centered design approach was used as it provides a variety of methods (e.g. interviews, think aloud techniques) to allow end users to influence how the product takes shape. Patients who had undergone prostate cancer surgery were involved in the design and development of the ePATH platform by sharing their experiences, preferences and needs, which informed the content and functionality of ePATH. Patients were not involved in designing the research study, nor service development with the entire ecosystem, but only the eHealth service. The results has been disseminated to the study participants and patient associations.

Procedures

The usability testing was conducted at the surgical department in a medium-sized hospital in the southeast of Sweden, to provide users (patients and contact nurses) with a system with a real look and feel and to determine the acceptance of the eHealth application and its features in everyday work. The contact nurses got an introduction to ePATH from the research team, during which they were able to test how to log in using their staff identification security card,
and learned how to introduce patients to ePATH, send messages and provide information. A user manual was developed as support for staff during the usability study. Eligible patients were informed about the study by their contact nurse in connection with their diagnosis (verbal and written information). Those who agreed to participate got an introduction to ePATH from the contact nurse. A written tutorial for patients was handed out, describing the full range of functions offered by ePATH. When the patients had been using ePATH for about four weeks, a researcher contacted each of them, asking for an interview to discuss their experiences of using the eHealth tool.

Participants and setting
Fifteen men, aged 56–72 years, diagnosed with prostate cancer and treated with radical prostatectomy, were invited to use ePATH during four weeks post-surgery, and then participate in a follow-up interview. Inclusion criteria were to have access to a computer or tablet and a mobile BankID for secure login. All 15 men agreed to participate and sampling ended after these 15 interviews, as no substantial new information was retrieved. Usability testing and interviews were made in two rounds, October 2015 to April 2016 and 15 September 2017 to 3 July 2018.

Data collection methods
To set date and time for interviews, one of the researchers contacted the patients who agreed to participate in the study. Interviews were conducted at a conference room at the hospital by pairs of researchers (KS and OF, LN and CW). The usability testing started with a think-aloud session followed by semi-structured interviews loosely based on items in the modified System Usability Scale. The usability testing session lasted from 11-57 minutes (mean=27). When showing the researchers how ePATH was used, users were thinking aloud while signing in, performing different activities within ePATH, and using different functions.
The think-aloud was guided by the same areas of function and content as described in the ePATH instructions. During the session, users reflected on how ePATH may be improved, i.e., functions, communication, and visualization of patients’ data. During the interviews, probing questions were used to encourage the participants to elaborate on situations which were problematic or where they encountered concerns and to discuss possible causes or suggestions for improvements. All interviews were recorded and transcribed verbatim. In order to increase credibility, all quotations are presented with the quoted participant numbered.

Ethical approval

The study was conducted in accordance with the ethical principles of Helsinki. All participants gave written informed consent to participate in the study. Ethical approval was obtained from the Regional Ethical Board of Linköping University, Sweden, (Dnr 2016/484-31).

Analysis of the interviews

The transcribed interviews were analyzed with content analysis using a deductive approach. As a first step, four authors (L.N., C.W, M.E, K.S) read all transcripts to obtain an understanding of the whole. The transcripts were then coded separately. In the next step, all authors discussed the interpretation of the data and compared the coding. A structured categorization matrix was then developed based on the FITT framework, to sort data into the pre-defined categories (Figure 1). The structure for figure 1 was made by one author (A.H). The relations between patients, ePATH, and its content were used as an outline in the understanding of what influenced patients’ utilization of ePATH. Subcategories and main categories were discussed by all the authors and grouped based on how they were linked.
together. To increase trustworthiness, discussions in the research group continued until no inconsistencies existed and a shared understanding was reached.

RESULTS

Organizing data in accordance with the FITT model, ten subcategories were identified and sorted into the three main categories. The latter captured the fit between patient, technology and task (Figure 2).

Figure 2. Usability of ePATH described through three main categories and ten subcategories.

Turning input into output – task engagement and completion

Patients found the opportunity to get trustworthy information about their diagnosis through the eHealth tool valuable. Patients reported that online searches for information about their illness sometimes ended up on sites that did not provide reliable information. They experienced that ePATH helped them to easily get information they could trust.

“Otherwise you end up sitting there, going online and checking around. There are sites that you can look at, but sometimes you get disinformation.” (P 1)

Some of the patients found the self-care activity function useful for registering their self-care activities and symptoms, while others felt no need for such registration. The function could enhance or facilitate the understanding of which activities were most important and how often they should be done. The participants had different experiences of the usefulness of frequent registrations. Some felt that they lost motivation to register symptoms on a regular basis, when the symptoms changed little over time. They suggested that symptoms should be
reported only when changes occurred. One patient stated that many things were going on in parallel during this time of life, and found reminders unnecessary.

The motivation for and the feeling in relation to the rehabilitation process varied from day to day. Some patients wanted clear goals to focus on, while others did not have that need. The goals could awaken a competitive instinct that inspired more activity.

“Yeah, but there’s so much else. You need to know that it ... that this ... that how you feel and your general health and so on, it’s a rollercoaster in this kind of situation.” (P 8)

Patients had differing needs for the functions in the system and used those that suited them and their needs. The need for individual information directed at a specific patient was highlighted. Overly generic information was not perceived as useful; instead, the patients wanted ePATH to be tailored based on personal needs and requests. Patients wanted to cease with registration of self-care activities and symptoms when such registration felt redundant. Instead, they wanted the possibility to register other self-care activities of importance for their rehabilitation, such as sleep patterns. Reminders to perform self-care activities were set to specific hours, but patients often performed them in connection with other daily activities.

Patients emphasized that it was enough to get information about what to do and how many times a day. Psychoeducation about the importance of the activity was described as imperative. If patients did not understand why a task was recommended or how the self-care activity was assumed to affect their symptoms, they became less motivated to follow the instructions and register their activities in ePATH.

“So I use what I feel I need at the time.” (P 6)

Patients experienced benefits from the messaging function in ePATH. The possibility to write a message whenever it suited them and not have to adjust their life based on office hours was
appreciated. It simplified contact with healthcare and created a sense of security. They described past difficulties with getting in contact with healthcare professionals and the frustration this had caused.

“I think that’s good. It is easier than that you have to ... call and wait on hold or ... Going in here and writing a message to the contact nurses, for instance, and maybe you’ll get a response the very same day. That’s much better than that I have to sit on the phone and ... on hold and maybe I won’t reach them anyway.” (P 11)

The need for clarity about the functions and parts in ePATH was highlighted. Patients had various suggestions on how the technical usability could be improved, such as creating an application you could use on smartphones and using notifications as reminders.

Getting started with ePATH – managing technology

Computers or tablets were used to access ePATH. The headings provided clear guidance on where different functions could be found. The tool was perceived to have a logical structure that was easy to follow. The interface and color settings in the tool were considered to be good.

“That layout is clear and distinct. It is not complicated” (P 15)

One patient had hoped to read his medical journal through the system and was disappointed when that was not possible. Connections between different systems or links were seen as a good function and could be a way to improve functionality. One example was to supply recommendations for podcasts that were suitable in the situation or links to patient information on prostate cancer.
Patients believed that the paperless society was the future and that eHealth tools like ePATH were a good way to get access to the information that you previously got on paper. According to the patients, ePATH gave access to the information wherever they had internet access, and there was no need to keep track of papers or phone numbers anymore, as you had the option to get in touch through ePATH.

Degree to which ePATH assists the patient in task performance

Clear information about what ePATH entailed was important at enrollment. In circumstances when information was not clear, the results were disappointment and lack of motivation for usage.

Patients encountered bugs and deficiencies, which confused some of them and made them question their digital literacy and skills. Others were certain that the shortcomings that occurred were due to technical problems.

“No, but there’s no message box, I can tell you that right away, because then I would have looked there, but there were no headings.” (P 6)

“And then I discovered that the registration here ... Sometimes it disappears. I’ve saved it and then it’s gone.” (P 2)

DISCUSSION

This study aimed to evaluate patients’ experiences of using a web-based application, especially its usability as support for self-care activities after prostate cancer surgery.

Fit between the individual and the technology

The patients’ appraisal of using an eHealth tool was positive, in general. An important aspect in using ePATH was that the design and the interface were logical and clear, that the view
was up-to-date when they opened the application and that outdated activities or registrations were hidden. Provision of diagnosis-specific information, a bi-directional communication functionality and the possibility to personalize timing and features of self-care activities based on preferences and needs were especially appreciated and motivating. Similarly, Lentferink et al. 24 found that patients described usability as the ability to personalize and set the technical features of an application, such as timing of messages, layout or password protection. Personalization of an application also included having an influence over its contents and the possibility to observe patterns or trends in personalized data. The patients were also willing to put more effort into registration of data if it added value for them.

Performance of self-tracking was perceived as increasing awareness; however, registration of data seemingly irrelevant for the patient could be demotivating 24,25. The possibility of setting one’s own goals and break these down to more manageable subgoals, is found important from a user-perspective 26 and could add value to the content.

A good fit between the patient and technology, with a focus on personalization and autonomous functioning, as shown in this study, may support patient engagement in using ePATH as a self-management tool in the postoperative phase 18. On the other hand, the more autonomy, the more options there are to handle and the more digital literacy competence is required from both patients and healthcare professionals. Kim & Xieb 27 conclude that barriers to access online health information could depend on the availability and readability of content, and usability of the eHealth services. To facilitate accessibility educational programs could be employed. Personalized information and tracking of symptoms and activities that can be deemed sensitive have to be protected by secure login, which might have a negative effect on user-friendliness and challenge users’ digital literacy. Thus, there is a delicate balance between supporting patient autonomy and individual expectations on what
an eHealth application should offer. The usage of eHealth applications may also be affected by difficulties in fitting the technologies in daily life. Feelings of discomfort or lack of confidence with the technology may affect the usability of eHealth. Most technologies are designed for the general population, and could post a difficulty for groups that are unaccustomed to ICT or have reduced cognitive, perceptual, or psychomotor abilities. The acceptance of technology is fostered when it is perceived as not intrusive or unaesthetic, therefore are careful considerations regarding the user interface needed.

Fit between technology and task

For a good fit between eHealth support and tasks, the tasks and processes need to be tailored and delivered in a manner that meets the user’s expectations and needs. The technology, on the other hand, needs to have adequate functionality and stability to support the tasks. ePATH provided the patients with an easy way of getting in contact with healthcare, simplifying communication. Previous studies have shown that patients in cancer care commonly feel abandoned after discharge from hospital. It was difficult to get in touch with the contact nurse or physician once at home, and worries and problems could pile up, with the patient not knowing where to turn. Another problematic task was keeping track of the large amount of information that patients received at the time of diagnosis. ePATH had adequate functionality to store diagnosis-specific information on treatment and rehabilitation, which was easy to access just-in-time when needed. Thus, the technology supported patients by providing information, as well as assisting in interaction and communication with healthcare in the postoperative phase. Information, interaction, visualization, and communication were identified as the cornerstones of the technology-task-fit in ePATH, as described previously.

Patients’ experiences of the technical functionality for supporting self-care tasks varied, as did patients’ expectations of support and motivation to perform self-care activities. A
computer-tailored intervention for physical activity (OncoActive) was found to increase
physical activity in prostate and colorectal cancer patients and survivors, but health-related
effects on other measure were mainly found in those with colorectal cancer\(^7\). In our study, it
became clear that patients not only needed to be informed about what to do, but also needed
to understand why they should perform self-care, and how to incorporate the new behaviors
into their daily lives. In another study\(^{26}\) Avatars were suggested to function as a tutor or
guide or show and explain how to do certain exercises. Avatars could also represent the user
and visualize the users’ progression through the app. When someone is faced with a diagnosis
and new behaviors of which they have little knowledge and experience, an autonomy-
supportive healthcare climate with strong patient-staff or peer support surrounding the
individual is imperative to facilitate engagement in self-care activities\(^{18}^{19}\). In this context, an
eHealth application may serve as a tool bridging distance and as continuous long-term
support.

Fit between the individual and the task

For successful rehabilitation, patients need to be engaged and motivated to perform the
recommended activities\(^{24}\). In this study, the importance of diagnosis-specific information and
self-care advice of personal relevance was appraised, showing a clear association with
motivation to perform self-care activities. It was also important that the tasks were
accompanied by instructions on how to track and interpret the registrations. However,
motivation is complex. There are various types of motivation or behavioral regulation,
broadly classified as autonomous self-regulation, controlled regulation, and autonomous
motivation. Autonomous motivation “moves people to action,” driven by personal value and
utility (e.g., personally wanting to maintain or regain good health). Autonomous self-
regulation encompasses intrinsic and integrated motivation, which describes activities that are
spontaneous or heuristic. Such activities give sufficient satisfaction to be sustained for their own sake and the engagement in an activity is congruent with central personal goals and values. ePATH may have enhanced intrinsic motivation by providing patients with personalized information and encouraging them to decide autonomously when to interact and communicate with healthcare. Commercial health apps often use gamification to increase engagement and motivation. This could be in form of getting recognition from the app for finishing tasks or being able to acquire points to unlock new functionality. Another way of increasing engagement could be to enabling users to connect to and compete with others.

Externally prompted activities that are functionally dependent on rewards for their occurrence, autonomous motivation is strongly correlated with the maintenance of behavioral change over time, as well as with greater psychological health. However, controlled regulation, generally reflecting internal pressures such as contingent self-worth, guilt, shame and a need for approval, can also drive a specific behavior for a short period of time. We found that patients tended to do what they thought was of importance to get the healthcare staff’s approval, instead of understanding the benefit of the activity for themselves. Such controlled behavioral regulation, in this case approval from the contact nurses, has in other studies been beneficial in the internalization of a new behavior into more autonomous forms of self-regulation. If motivation is to be established, the patient needs to have functional ways to feel connected, which is one of the three pillars of motivation according to self-determination theory. This study indicates that an eHealth application may be a useful tool for patients to become more independent and take on more responsibility for self-care activities over time.
Conclusions and future research

Advances in treatment have led to longer survival after prostate cancer diagnosis, but that does not automatically mean that survivors are living well. A substantial group of men surviving prostate cancer are experiencing long-term physical side effects and heightened psychological distress, indicating a need for long-term rehabilitation support and availability of healthcare. The patients’ appraisal of ePATH as satisfactory, easy to use and to access, with information and activities tailored to patient needs and preferences, gives promising indications that eHealth applications are useful as support for self-management and rehabilitation after prostate cancer surgery. However, future development and research of ePATH need to include structured studies on functionality. Areas that were highlighted by users and functionality issues that may have passed unnoticed need to be highlighted in future work of the application. Further testing of ePATH regarding the short and long-term effects on prostate cancer rehabilitation, health literacy, motivation and complexity of text is needed. The current study has provided information on development of additional features of relevance for the users. There is an ongoing RCT using ePATH\(^{20}\), where also an additional mobile application for rating symptoms is available. However, elements of gamification, as suggested by the participants in the study of Jessen et al. are still to be developed. It has also been put forth, that computer-based algorithms accounting for factors such as language, age, gender, reading ability, and health literacy level increase the efficacy \(^{31}\). Even if the sample size of the current study could be considered as small, a study of 8-10 participants can still provide meaningful results\(^{32}\).

As patients’ needs for support varied across their rehabilitation trajectories, despite them having the same diagnosis and treatment, autonomous regulation and accessibility to healthcare seems crucial for the eHealth application to fit into their everyday lives.
Acknowledgments

Thanks to the participating patients who took part in the study with the intention to improve ePATH.

Thanks to Oscar Frykholm for valuable contributions to study design and data collection in the initial phase of the study.

Author Contributions

LN’s responsibility: study design, acquisition of data, analysis, interpretation of data, drafting the article and intellectual content.

CW’s responsibility: study design, acquisition of data, analysis, interpretation of data, drafting the article and intellectual content.

ME’s responsibility: study design, interpretation of data, drafting the article and intellectual content. ME was the principal investigator of the ePATH project.

AH’s responsibility: interpretation of data, drafting the article and intellectual content.

KS’s responsibility: study design, acquisition of data, analysis, interpretation of data, drafting the article and intellectual content.

Data sharing

All interview and usability data are in Swedish and available on request.
REFERENCES

1. Wilkens J, Thulesius H, Schmidt I, et al. The 2015 National Cancer Program in Sweden: Introducing standardized care pathways in a decentralized system. *Health policy (Amsterdam, Netherlands)* 2016;120(12):1378-82. doi: 10.1016/j.healthpol.2016.09.008

2. de Leeuw J, Larsson M. Nurse-led follow-up care for cancer patients: what is known and what is needed. *Support Cancer Care* 2013;21(9):2643-49. doi: 10.1007/s00520-013-1892-6.

3. Schildmeijer K, Frykholm O, Kneck Å, et al. Not a Straight Line-Patients' Experiences of Prostate Cancer and Their Journey Through the Healthcare System. *Cancer Nurs* 2019;42(1):E36-E43. doi: 10.1097/NCC.0000000000000559

4. Crawford-Williams F, March S, Goodwin BC, et al. Interventions for prostate cancer survivorship: A systematic review of reviews. *Psycho-Oncology* 2018;27(10):2339-48.

5. Davis SN, O'Malley DM, Bator A, et al. Rationale and design of extended cancer education for longer term survivors (EXCELS): a randomized control trial of 'high touch' vs. 'high tech' cancer survivorship self-management tools in primary care. *BMC Cancer* 2019;19(1):340. doi: 10.1186/s12885-019-5531-6 [published Online First: 2019/04/12]

6. Frankland J, Brodie H, Cooke D, et al. Follow-up care after treatment for prostate cancer: evaluation of a supported self-management and remote surveillance programme. *BMC Cancer* 2019;19(1):368. doi: 10.1186/s12885-019-5561-0 [published Online First: 2019/04/23]

7. Golsteijn RHJ, Bolman C, Volders E, et al. Short-term efficacy of a computer-tailored physical activity intervention for prostate and colorectal cancer patients and survivors: a randomized controlled trial. *Int J Behav Nutr Phys Act* 2018;15(1):106. doi: 10.1186/s12966-018-0734-9 [published Online First: 2018/11/01]

8. Ruland CM, Maffei RM, Borosund E, et al. Evaluation of different features of an eHealth application for personalized illness management support: cancer patients' use and appraisal of usefulness. *Int J Med Inform* 2013;82(7):593-603. doi: 10.1016/j.ijmedinf.2013.02.007 [published Online First: 2013/03/20]

9. Bartlett YK, Selby DL, Newsham A, et al. Developing a useful, user-friendly website for cancer patient follow-up: users' perspectives on ease of access and usefulness. *Eur J Cancer Care (Engl)* 2012;21(6):747-57. doi: 10.1111/j.1365-2354.2012.01357.x [published Online First: 2012/04/26]

10. Kessel KA, Vogel MM, Kessel C, et al. Mobile Health in Oncology: A Patient Survey About App-Assisted Cancer Care. *JMIR Mhealth Uhealth* 2017;5(6):e81. doi: 10.2196/mhealth.7689 [published Online First: 2017/06/16]

11. Corbin J, Strauss A. Managing chronic illness at home: three lines of work. *Qual Sociol* 1985;8(03):224-47.

12. Ammenwerth E, Iller C, Mahler C. IT-adoption and the interaction of task, technology and individuals: a fit framework and a case study. *BMC Med Inform Decis Mak* 2006;6:3. doi: 10.1186/1472-6947-6-3 [published Online First: 2006/01/13]

13. De Vito Dabbs A, Myers BA, Mc Curry KR, et al. User-centered design and interactive health technologies for patients. *Comput Inform Nurs* 2009;27(3):175-83. doi: 10.1097/NCN.0b013e31819f7c7c [published Online First: 2009/05/05]

14. Frykholm O, Flink M, Lindblad M, et al. User-centered design of integrated eHealth to improve patients’ activation in transitional care. *Int J Integr Care* 2016;16(6):A338. doi: http://doi.org/10.5334/ijic.2886

15. Schildmeijer K, Wanheden C, Nilsson L, et al. Developing an eHealth Tool to Support Patient Empowerment at Home. *Stud Health Technol Inform* 2018;247:925-29.
16. Coleman EA, Parry C, Chalmers S, et al. The care transitions intervention: results of a randomized controlled trial. Arch Intern Med 2006;166(17):1822-8. doi: 10.1001/archinte.166.17.1822
17. Flink M, Ekstedt M. Planning for the Discharge, not for Patient Self-Management at Home - An Observational and Interview Study of Hospital Discharge. Int J Integr Care 2017;17(6):1. doi: 10.5334/ijic.3003 [published Online First: 2018/03/29]
18. Ryan R, Deci E. Self-Determination Theory: basic psychological needs in motivation, development and wellness. New York, London England: The Guilford Press 2017.
19. Ng J, Ntoumanis N, Thøgersen-Ntouman C, et al. Self-Determination Theory Applied to Health Contexts: a Meta-Analysis. Perspect Psychol Sci 2012;7:325–40.
20. Ekstedt M, Schildmeijer K, Wennerberg C, et al. Enhanced Patient Activation in Cancer Care Transitions: Protocol for a Randomized Controlled Trial of a Tailored Electronic Health Intervention for Men With Prostate Cancer. JMIR Res Protoc 2019;8(3):e11625. doi: 10.2196/11625 [published Online First: 2019/03/22]
21. Bangor A, Kortum PT, Miller JT. An empirical evaluation of the system usability scale. Int J Hum Comput Interact 2008;24(6):574-94.
22. Association WM. WMA Declaration of Helsinki – Ethical Principles for Medical Research Involving Human Subjects https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/2018 [updated 20180709. accessed June 2019.
23. Elo S, Kyngäs H. The qualitative content analysis process. J Adv Nurs 2008;62(1):107-15.
24. Lentferink AJ, Oldenhuis HK, de Groot M, et al. Key components in eHealth interventions combining self-tracking and persuasive eCoaching to promote a healthier lifestyle: a scoping review. J Med Internet Res 2017;19(8):e277.
25. Page KL, Robson MJ, Uncles MD. Perceptions of web knowledge and usability: When sex and experience matter. Int J Hum Comput Stud 2012;70(12):907-19.
26. Jessen S, Mirkovic J, Ruland CM. Creating Gameful Design in mHealth: A Participatory Co-Design Approach. JMIR Mhealth Uhealth 2018;6(12):e11579. doi: 10.2196/11579 [published Online First: 2018/12/16]
27. Kim H, Xie B. Health literacy in the eHealth era: A systematic review of the literature. Patient education and counseling 2017;100(6):1073-82. doi: 10.1016/j.pec.2017.01.015 [published Online First: 2017/01/28]
28. Bertoncello C, Colucci M, Baldovin T, et al. How does it work? Factors involved in telemedicine home-interventions effectiveness: A review of reviews. PloS one 2018;13(11):e0207332. doi: 10.1371/journal.pone.0207332 [published Online First: 2018/11/16]
29. Lithner M, Klefsgard R, Johansson J, et al. The significance of information after discharge for colorectal cancer surgery—a qualitative study. BMC nursing 2015;14(1):36.
30. Mikkelsen TH, Søndergaard J, Jensen AB, et al. Cancer rehabilitation: psychosocial rehabilitation needs after discharge from hospital? A qualitative interview study. Scand J Prim Health Care 2008;26(4):216-21.
31. Jacobs RJ, Lou JQ, Ownby RL, et al. A systematic review of eHealth interventions to improve health literacy. Health Informatics J 2016;22(2):81-98. doi: 10.1177/1460458214534092 [published Online First: 2014/06/12]
32. Albert W. Measuring the User Experience. Collecting, analyzing, and presenting usability metrics: Morgan Kaufmann Publishers Inc. 2013.
User:
- patients with prostate cancer

eHealth literacy
- Personal skills/knowledge in IT
- Technical bugs
- Users’ expectations on ePATH

Task:
- Self-care
- Symptom monitoring
- Information communication

FITT

Technology:
- ePATH
- Graphs
- Tracking
- Ratings

Applied informatics
- Visualization
- Up-to-date information
- Interpretability
- Optimization of functions
Usability of ePATH

Getting started with ePATH - managing technology

- Technical stability/ Performance
- Technical preparations
- Logical interface
- Information before use
- Simplifies communication
- Interaction with the system
- Individual needs
- Relevance of tasks
- Complexity of registrations
- Reliable information

Degree to which ePATH assists the patient in task performance

Turning input into output - task engagement and completion
Standards for Reporting Qualitative Research (SRQR)*

http://www.equator-network.org/reporting-guidelines/srqr/

Title and abstract

Title	Concise description of the nature and topic of the study Identifying the study as qualitative or indicating the approach (e.g., ethnography, grounded theory) or data collection methods (e.g., interview, focus group) is recommended	1/1-3
Abstract	Summary of key elements of the study using the abstract format of the intended publication; typically includes background, purpose, methods, results, and conclusions	2

Introduction

Problem formulation	Description and significance of the problem/phenomenon studied; review of relevant theory and empirical work; problem statement	4/14-22
Purpose or research question	Purpose of the study and specific objectives or questions	

Methods

Qualitative approach and research paradigm	Qualitative approach (e.g., ethnography, grounded theory, case study, phenomenology, narrative research) and guiding theory if appropriate; identifying the research paradigm (e.g., postpositivist, constructivist/interpretivist) is also recommended; rationale**	5/3-10
Researcher characteristics and reflexivity	Researchers’ characteristics that may influence the research, including personal attributes, qualifications/experience, relationship with participants, assumptions, and/or presuppositions; potential or actual interaction between researchers’ characteristics and the research questions, approach, methods, results, and/or transferability	8/7-9
Context	Setting/site and salient contextual factors; rationale**	8/1-6
Sampling strategy	How and why research participants, documents, or events were selected; criteria for deciding when no further sampling was necessary (e.g., sampling saturation); rationale**	8
Ethical issues pertaining to human subjects	Documentation of approval by an appropriate ethics review board and participant consent, or explanation for lack thereof; other confidentiality and data security issues	8/20-21, 9/1
Data collection methods	Types of data collected; details of data collection procedures including (as appropriate) start and stop dates of data collection and analysis, iterative process, triangulation of sources/methods, and modification of procedures in response to evolving study findings; rationale**	8-9
Data collection instruments and technologies - Description of instruments (e.g., interview guides, questionnaires) and devices (e.g., audio recorders) used for data collection; if/how the instrument(s) changed over the course of the study	8-9	
---	---	
Units of study - Number and relevant characteristics of participants, documents, or events included in the study; level of participation (could be reported in results)	8	
Data processing - Methods for processing data prior to and during analysis, including transcription, data entry, data management and security, verification of data integrity, data coding, and anonymization/de-identification of excerpts	9/3-8	
Data analysis - Process by which inferences, themes, etc., were identified and developed, including the researchers involved in data analysis; usually references a specific paradigm or approach; rationale**	9/3-11	
Techniques to enhance trustworthiness - Techniques to enhance trustworthiness and credibility of data analysis (e.g., member checking, audit trail, triangulation); rationale**	3	

Results/findings

| **Synthesis and interpretation** - Main findings (e.g., interpretations, inferences, and themes); might include development of a theory or model, or integration with prior research or theory | 9-17 |
| **Links to empirical data** - Evidence (e.g., quotes, field notes, text excerpts, photographs) to substantiate analytic findings | 9/Fig 2 |

Discussion

| **Integration with prior work, implications, transferability, and contribution(s) to the field** - Short summary of main findings; explanation of how findings and conclusions connect to, support, elaborate on, or challenge conclusions of earlier scholarship; discussion of scope of application/generalizability; identification of unique contribution(s) to scholarship in a discipline or field | 3, 13-17 |
| **Limitations** - Trustworthiness and limitations of findings | |

Other

| **Conflicts of interest** - Potential sources of influence or perceived influence on study conduct and conclusions; how these were managed | 3 |
| **Funding** - Sources of funding and other support; role of funders in data collection, interpretation, and reporting | 3 |

The authors created the SRQR by searching the literature to identify guidelines, reporting standards, and critical appraisal criteria for qualitative research; reviewing the reference lists of retrieved sources; and contacting experts to gain feedback. The SRQR aims to improve the transparency of all aspects of qualitative research by providing clear standards for reporting qualitative research.
**The rationale should briefly discuss the justification for choosing that theory, approach, method, or technique rather than other options available, the assumptions and limitations implicit in those choices, and how those choices influence study conclusions and transferability. As appropriate, the rationale for several items might be discussed together.

Reference:
O'Brien BC, Harris IB, Beckman TJ, Reed DA, Cook DA. Standards for reporting qualitative research: a synthesis of recommendations. Academic Medicine, Vol. 89, No. 9 / Sept 2014 DOI: 10.1097/ACM.0000000000000388
Patients’ experiences of using an eHealth tool for self-management support after prostate cancer surgery - a deductive interview study explained through the FITT framework

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-035024.R2
Article Type:	Original research
Date Submitted by the Author:	07-Apr-2020
Complete List of Authors:	Nilsson, Lina; Linnaeus University, eHealth Institute, Hellström, Amanda; Linnaeus University, Health and Caring Sciences, Wennerberg, Camilla; Kalmar County Hospital, Department of Surgery, Ekstedt, Mirjam; Linnaeus University, Health and Caring Sciences; Karolinska Institutet, Learning Informatics Management and Ethics, Schildmeijer, Kristina; Linnaeus University, Health and Caring Sciences
Primary Subject Heading:	Oncology
Secondary Subject Heading:	Qualitative research
Keywords:	ONCOLOGY, QUALITATIVE RESEARCH, Quality in health care < HEALTH SERVICES ADMINISTRATION & MANAGEMENT
I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd (“BMJ”) its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge (“APC”) for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author’s Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.
Title: Patients’ experiences of using an eHealth tool for self-management support after prostate cancer surgery - a deductive interview study explained through the FITT framework

Lina Nilsson, PhD¹
Amanda Hellström, PhD²
Camilla Wennerberg, PhD student², ³
Mirjam Ekstedt, RN, PhD², ⁴
Kristina Schildmeijer, RN, PhD²

1) eHealth Institute, Faculty of Health and Life Science, Linnaeus University, Sweden
2) Department of Health and Caring Sciences, Faculty of Health and Life Sciences, Linnaeus University, Kalmar, Sweden
3) Department of Surgery, Region Kalmar, Kalmar, Sweden
4) Department of Learning, Informatics, Management, and Ethics, Karolinska Institutet, Stockholm, Sweden

Corresponding author: Mirjam Ekstedt, PhD
Department of Health and Caring Sciences
Faculty of Health and Life Sciences
Linnaeus University
Hus Vita Kalmar, SE-391 82 Sweden
Phone: +46 480 446 399
Email: mirjam.ekstedt@lnu.se
ABSTRACT

Objective: To evaluate patients’ experiences of using a web-based application, especially its usability as support for self-care activities after prostate cancer surgery.

Design: A deductive content analysis was used, stemming from the Fit between Individuals, Task and Technology (FITT) framework.

Setting: One surgical department in south of Sweden between October 2015 and April 2016 and between September 2017 and July 2018.

Participants: Fifteen men who had undergone radical prostatectomy for prostate cancer.

Results: By organizing data in accordance with the FITT model, three main categories with ten subcategories, were identified. Patients gave feedback on functions that suited them and their needs, as well as potential adjustments and improvements. Patients experienced that ePATH gave them easy access to reliable information regarding their rehabilitation. Directed information about ePATH at enrolment was seen as important. ePATH was perceived to have a logical structure that was easy to follow. However, when the structure was unclear, patients became less motivated to use a function.

Conclusions: Patients experienced ePATH as satisfactorily user-friendly and useful as a complementary self-management support after prostate cancer surgery, especially when the information and tasks were tailored to their preferences and the system design features supported individual autonomy.

Keywords: content analysis, experiences, FITT framework, patient activation, prostate cancer, self-care, usability, qualitative interviews

Word count: 3646 words, excluding title page, abstract, references, figures and tables.
Strengths and limitations of the study

- The usability testing was conducted at one surgical department in a medium-sized hospital in the southeast of Sweden.
- A sample of 15 men could be considered too small to provide reliable data, but even smaller sample sizes are quite common and can be meaningful as they cover a variety of unique experiences.
- The voluntary nature of patient participation may have led to our results not being transferable to other patients with prostate cancer or to men and women with other cancer diagnoses.
- The usability testing was not video-recorded and some difficulties in using functionalities may have passed unnoticed.
- We used the FITT framework to describe and analyse the current fit between individual, task and technology, to identify how to improve the interaction between those aspects in ePATH.

Competing interests

None declared.

Funding

This work was supported by the Cancer Foundation in Kalmar County, the Kamprad Family Foundation for Entrepreneurship Research and Charity, the Research Council of Southeast Sweden and the Swedish Cancer Society.
BACKGROUND

In 2015, a standardized care pathway (SCP) for prostate cancer was launched by the Swedish government. As part of the SCP, patients are assigned a contact nurse, whose task is to facilitate access to care. The nurse provides information and education related to the disease, treatment and self-care activities, supports patients and relatives, coordinates contacts within healthcare and assesses and monitors the patient’s symptoms. However, a recent study in men diagnosed with prostate cancer showed that the patients felt that they were in a vacuum and constantly waiting for information, both before diagnosis and during and after treatment. A need for more personalized support to patients and their families, especially in rehabilitation after treatment, was suggested. Shortcomings in the rehabilitation after surviving cancer have been found in other studies as well, and improved follow-up and effective interventions have been called for. eHealth applications have the potential to provide support to everyone, everywhere, and to facilitate contact with healthcare services when it is most convenient for the user.

There are several studies describing development and evaluation of eHealth tools in prostate cancer care. However, the applications have different focus and some lack theoretical basis for their content or interface. Golsteijn et al. focus solely on physical activities, while Davis et al., Frankland et al. and Bartlett et al. focus on information and guidance to follow-up in accordance with the standardized care plan. Several of the applications apply to cancer illness in general or to multiple diagnoses, which makes tailoring of the content more difficult. Ruland et al. investigated several important components, such as long-term follow-up, interactive forums with contact nurses and other patients, and support and monitoring of symptoms. This is the tool that most resembles the tool evaluated in this study with respect to multi-modality and patient-driven use.
costs and differences between traditional appointment-based follow-up care and an online-supported self-management and follow-up care program. Although attention to eHealth applications has increased in cancer care, few studies focus on eHealth applications as person-centred rehabilitation support in the aftermath of prostate cancer treatment. In response to this scarcity, we designed a web platform, based on postoperative self-management needs that have been considered essential by patients in past studies. It has a theoretical base, emphasizing autonomy, competence and relatedness, and guides the patient up to 12 months after treatment.

Thus, the aim of the current study was to evaluate patients’ experiences of using a web-based application, especially its usability as support for self-care activities after prostate cancer surgery.

METHODS

Design and theoretical framework

The study consisted of usability testing of ePATH using a think-aloud technique and semi-structured interviews. The goal was to identify design and functionality issues along with usability problems in using an eHealth application as support for self-care activities after prostate cancer surgery. Usability can be improved only with an understanding of the tasks that patients need to perform in the course of their “self-management and rehabilitation work.” We therefore approached usability from the patients’ perspective through the lens of the FITT framework, to determine the Fit between Individual, Task and Technology. This framework was developed by Ammenwerth, Iller & Mahler based on the idea that the adoption of eHealth support depends on the fit between user and technology, and between
task and technology. This means that the fit in the interaction between the attributes is more important than the individuals attributes themselves, and this must also be considered. The assumption is that the attributes of the individual, the task, and the technology affect the fit between them, which in turn will have an influence on the utilization and adoption of the eHealth support (Figure 1). In this study, the FITT framework is used to describe and analyse the current fit between individual, task and technology, which can be used to identify how to improve the interaction between those aspects in ePATH.

Figure 1. The FITT (Fit between Individual, Task and Technology) framework, applied to usability testing of ePATH in prostate cancer patients.

The web-based application ePATH is an interactive eHealth application that is accessible through computer, smartphone or tablet devices, using secure authentication. The content and functionality of ePATH was developed with end users, by applying user-centred design. ePATH is based on five content areas that have been considered to be essential for post-hospital self-management of care and rehabilitation. Furthermore, ePATH is conceptually based on self-determination theory, SDT, with the assumption that intrinsic motivation, the ‘drive’ to sustain performance of self-care activities at home, is promoted by patient autonomy;
competence and relatedness. Social contexts that support fulfilment of these basic psychological needs also facilitate more autonomous functioning11, 19. ePATH enhances patient autonomy by providing access to communication and interaction with healthcare professionals. Also, ePATH provides access to tailored information and self-care activities in partnership with the contact nurse. The patient can track self-care activities (e.g., physical activity and pelvic floor muscle training) and monitor symptoms (e.g., urinary leakage). The registrations are displayed numerically as tables or in graphs, and can be followed over time, providing feedback to enhance motivation. Important dates can be added to the calendar and there is also a private diary function. Further, there is a messaging function, allowing the patient to send text-based messages to his contact nurse, and the contact nurse has the possibility to respond or send supportive messages to the patient20.

Patient and Public Involvement
User-centred design approach was used as it provides a variety of methods (e.g., interviews, think-aloud techniques) to allow end users to influence how the product takes shape13, 14, 16. Patients who had undergone prostate cancer surgery were involved in the design and development of the ePATH platform by sharing their experiences, preferences and needs, which informed the content and functionality of ePATH. Patients were not involved in designing the research study, nor with service development with the entire ecosystem, but only the eHealth service. The results have been disseminated to the study participants and patient associations.

Procedures
The usability testing was conducted at the surgical department of a medium-sized hospital in the southeast of Sweden, to provide users (patients and contact nurses) with a system with a real look and feel and to determine the acceptance of the eHealth application and its features.
in everyday work. The contact nurses got an introduction to ePATH from the research team, during which they were able to test how to log in using their staff identification security card, and learned how to introduce patients to ePATH, send messages and provide information. A user manual was developed as support for staff during the usability study. Eligible patients were informed about the study by their contact nurse in connection with their diagnosis (verbal and written information). Those who agreed to participate got an introduction to ePATH from the contact nurse. A written tutorial for patients was handed out, describing the full range of functions offered by ePATH. When the patients had been using ePATH for about four weeks, a researcher contacted each of them, asking for an interview to discuss their experiences of using the eHealth tool.

Participants and setting

Fifteen men, aged 56–72 years, diagnosed with prostate cancer and treated with radical prostatectomy, were invited to use ePATH post-surgery, and then participate in a follow-up interview. Inclusion criteria were to have access to a computer or tablet and a mobile BankID for secure login. All 15 men agreed to participate in the study and sampling ended after 15 usability tests and interviews, as no substantial new information was retrieved. Usability testing and interviews were made in two rounds, October 2015 to April 2016 and September 2017 to July 2018.

Data collection methods

After the introduction to ePATH from the contact nurse, patients who agreed to participate in the study were invited to test ePATH for four weeks post-surgery. During these weeks, they were encouraged to try out and use functions in ePATH. To set the date and time for interviews after the usability tests, one of the researchers contacted the patients who had agreed to participate in the study. Interviews were conducted in a conference room at the
hospital by pairs of researchers (KS and OF, LN and CW). The usability testing started with a think-aloud session followed by semi-structured interviews loosely based on items in the modified System Usability Scale \(^{21}\). The usability test sessions lasted from 11 to 57 minutes (mean = 27). When showing the researchers how ePATH was used, users thought aloud while signing in, performing various activities within ePATH, and using various functions of ePATH. The think-aloud was guided by the same areas of function and content as described in the ePATH instructions. During the session, users reflected on how ePATH could be improved, i.e., functions, communication, and visualization of patient data. During the interviews, probing questions were used to encourage the participants to elaborate on situations which were problematic or where they had concerns and to discuss possible causes or suggestions for improvements. All interviews were recorded and transcribed verbatim. In order to increase credibility, all quotations are presented with the quoted participant numbered.

Ethical approval

The study was conducted in accordance with the ethical principles of the Declaration of Helsinki \(^{22}\). All participants gave written informed consent to participate in the study. Ethical approval was obtained from the Regional Ethical Board of Linköping University, Sweden, (Dnr 2016/484-31).

Analysis of the interviews

The transcribed interviews were analysed with content analysis using a deductive approach \(^{23}\). As a first step, four authors (LN, CW, ME, KS) read all transcripts to obtain an understanding of the whole. The transcripts were then coded separately. In the next step, all authors discussed the interpretation of the data and compared the coding. A structured categorization matrix was then developed based on the FITT framework \(^{13}\), to sort data into
the pre-defined categories (Figure 1). The structure for Figure 1 was made by one author (AH). The relations between patients, ePATH and its content were used as an outline for the understanding of what influenced patients’ utilization of ePATH. Subcategories and main categories were discussed by all the authors and grouped based on how they were linked together. To increase trustworthiness, discussions in the research group continued until no inconsistencies existed and a shared understanding was reached.

RESULTS

Organizing data in accordance with the FITT model, ten subcategories were identified and sorted into the three main categories. The latter captured the fit between patient, technology and task (Figure 2).

Figure 2. Usability of ePATH described through three main categories and ten subcategories.

Turning input into output – task engagement and completion

Patients found the opportunity to get trustworthy information about their diagnosis through the eHealth tool valuable. Patients reported that online searches for information about their illness sometimes took them to sites that did not provide reliable information. They felt that ePATH helped them to easily get information they could trust.

"Otherwise you end up sitting there, going online and checking around. There are sites that you can look at, but sometimes you get disinformation." (P 1)

Some of the patients found the self-care activity function useful for registering their self-care activities and symptoms, while others felt no need for such registration. The function could enhance or facilitate the understanding of which activities were most important and how
often they should be done. The participants had different experiences of the usefulness of frequent registrations. Some felt that they lost motivation to register symptoms on a regular basis, when the symptoms changed little over time. They suggested that symptoms should be reported only when changes occurred. One patient stated that many things were going on in parallel during this time of life and found reminders unnecessary.

The motivation for and the feeling in relation to the rehabilitation process varied from day to day. Some patients wanted clear goals to focus on, while others did not have that need. The goals could awaken a competitive instinct that inspired more activity.

“Yeah, but there’s so much else. You need to know that it ... that this ... that how you feel and your general health and so on, it’s a rollercoaster in this kind of situation.” (P 8)

Patients had differing needs for the functions in the system and used those that suited them and their needs. The need for individual information directed at a specific patient was highlighted. Overly generic information was not perceived as useful; instead, the patients wanted ePATH to be tailored based on personal needs and requests. Patients wanted to cease with registration of self-care activities and symptoms when such registration felt redundant. Instead, they wanted the possibility to register other self-care activities of importance for their rehabilitation, such as sleep patterns. Reminders to perform self-care activities were set to specific hours, but patients often performed them in connection with other daily activities. Patients emphasized that it was enough to get information about what to do and how many times a day. Psychoeducation about the importance of the activity was described as imperative. If patients did not understand why a task was recommended or how the self-care activity was assumed to affect their symptoms, they became less motivated to follow the instructions and register their activities in ePATH.
“So I use what I feel I need at the time.” (P 6)

Patients experienced benefits from the messaging function in ePATH. The possibility to write a message whenever it suited them and not have to adjust their life based on office hours was appreciated. It simplified contact with healthcare and created a sense of security. They described past difficulties with getting in contact with healthcare professionals and the frustration this had caused.

“I think that’s good. It is easier than that you have to ... call and wait on hold or ... Going in here and writing a message to the contact nurses, for instance, and maybe you’ll get a response the very same day. That’s much better than that I have to sit on the phone and ... on hold and maybe I won’t reach them anyway.” (P 11)

The need for clarity about the functions and parts in ePATH was highlighted. Patients had various suggestions on how the technical usability could be improved, such as creating an application you could use on smartphones and using notifications as reminders.

Getting started with ePATH – managing technology

Computers or tablets were used to access ePATH. The headings provided clear guidance on where different functions could be found. The tool was perceived to have a logical structure that was easy to follow. The interface and colour settings in the tool were considered to be good.

“That layout is clear and distinct. It is not complicated” (P 15)

One patient had hoped to read his medical journal through the system and was disappointed when that was not possible. Connections between different systems or links were seen as a good function and could be a way to improve functionality. One example was to supply
recommendations for podcasts that were suitable in the situation or links to patient information on prostate cancer.

Patients believed that the paperless society was the future and that eHealth tools like ePATH were a good way to get access to the information that you previously got on paper. According to the patients, ePATH gave access to the information wherever they had internet access, and there was no need to keep track of papers or phone numbers anymore, as you had the option to get in touch through ePATH.

Degree to which ePATH assists the patient in task performance

Clear information about what ePATH entailed was important at enrolment. In circumstances when information was not clear, the results were disappointment and lack of motivation for usage.

Patients encountered bugs and deficiencies, which confused some of them and made them question their digital literacy and skills. Others were certain that the shortcomings that occurred were due to technical problems.

“No, but there’s no message box, I can tell you that right away, because then I would have looked there, but there were no headings.” (P 6)

“And then I discovered that the registration here ... Sometimes it disappears. I’ve saved it and then it’s gone.” (P 2)

DISCUSSION

This study aimed to evaluate patients’ experiences of using a web-based application, especially its usability as support for self-care activities after prostate cancer surgery.
Fit between the individual and the technology

The patients’ impressions of using an eHealth tool were positive, in general. An important aspect in using ePATH was that the design and the interface were logical and clear, that the view was up-to-date when they opened the application and that outdated activities or registrations were hidden. Provision of diagnosis-specific information, a bi-directional communication feature and the possibility to personalize timing and features of self-care activities based on preferences and needs were especially appreciated and motivating. Similarly, Lentferink et al. found that patients described usability as the ability to personalize and set the technical features of an application, such as timing of messages, layout or password protection. Personalization of an application also included having an influence over its contents and the possibility to observe patterns or trends in personalized data. The patients were also willing to put more effort into registration of data if it added value for them. Performance of self-tracking was perceived as increasing awareness; however, registration of data seemingly irrelevant for the patient could be demotivating. The possibility of setting one’s own goals and breaking these down to more manageable sub-goals, has been found to be important from a user perspective and could add value to the content.

A good fit between the patient and technology, with a focus on personalization and autonomous functioning, as shown in this study, may support patient engagement in using ePATH as a self-management tool in the postoperative phase. On the other hand, the more autonomy, the more options there are to handle and the more digital literacy competence is required from both patients and healthcare professionals. Kim & Xie conclude that barriers to access online health information could depend on the availability and readability of content and the usability of eHealth services. To facilitate accessibility, educational
programs could be employed. Personalized information and tracking of symptoms and activities that can be deemed sensitive have to be protected by secure login, which might have a negative effect on user-friendliness and may challenge users’ digital literacy. Thus, there is a delicate balance between supporting patient autonomy and individual expectations on what an eHealth application should offer. The usage of eHealth applications may also be affected by difficulties in fitting the technologies in daily life. Feelings of discomfort or lack of confidence in the technology may affect the usability of eHealth. Most technologies are designed for the general population and could pose a difficulty for groups that are unaccustomed to ICT or have reduced cognitive, perceptual, or psychomotor abilities. The acceptance of technology is fostered when it is perceived as non-intrusive or appealing, therefore careful considerations regarding the user interface are needed.

Fit between technology and task

For a good fit between eHealth support and tasks, the tasks and processes need to be tailored and delivered in a manner that meets the user’s expectations and needs. The technology, on the other hand, needs to have adequate functionality and stability to support the tasks. ePATH provided the patients with an easy way of getting in contact with healthcare, simplifying communication. Previous studies have shown that patients in cancer care commonly felt abandoned after discharge from hospital. It was difficult to get in touch with the contact nurse or physician once at home, and worries and problems could pile up, with the patient not knowing where to turn. Another problematic task was keeping track of the large amount of information that patients received at the time of diagnosis. ePATH had adequate functionality to store diagnosis-specific information on treatment and rehabilitation, which was easy to access just-in-time when needed. Thus, the technology supported patients by providing information, as well as assisting in interaction and communication with healthcare in the
postoperative phase. Information, interaction, visualization, and communication were identified as the cornerstones of the technology-task-fit in ePATH, as described previously. Patients’ experiences of the technical functionality for supporting self-care tasks varied, as did patients’ expectations of support and motivation to perform self-care activities. A computer-tailored intervention for physical activity (OncoActive) was found to increase physical activity in prostate and colorectal cancer patients and survivors, but health-related effects on other measure were mainly found in those with colorectal cancer. In our study, it became clear that patients not only needed to be informed about what to do, but also needed to understand why they should perform self-care, and how to incorporate the new behaviours into their daily lives. In another study, avatars were suggested to function as a tutor or guide, to show and explain how to do certain exercises. An avatar could also be used represent the user and indicate their progress through the app. When someone is faced with a diagnosis and new behaviours of which they have little knowledge and experience, an autonomy-supporting healthcare climate with strong patient-staff or peer support is imperative to facilitate engagement in self-care activities. In this context, an eHealth application may serve as a tool bridging distance and as continuous long-term support.

Fit between the individual and the task

For successful rehabilitation, patients need to be engaged and motivated to perform the recommended activities. In this study, the importance of diagnosis-specific information and self-care advice of personal relevance was appraised, showing a clear association with motivation to perform self-care activities. It was also important that the tasks were accompanied by instructions on how to track and interpret the registrations. However, motivation is complex. There are various types of motivation or behavioural regulation, broadly classified as autonomous self-regulation, controlled regulation, and autonomous
motivation. Autonomous motivation “moves people to action,” driven by personal value and utility (e.g., personally wanting to maintain or regain good health). Autonomous self-regulation encompasses intrinsic and integrated motivation, which describes activities that are spontaneous or heuristic. Such activities give sufficient satisfaction to be sustained for their own sake; the engagement in an activity is congruent with central personal goals and values. ePATH may have enhanced intrinsic motivation by providing patients with personalized information and encouraging them to decide autonomously when to interact and communicate with healthcare. Commercial health apps often use gamification to increase engagement and motivation. This could be in form of getting recognition from the app for finishing tasks or being able to acquire points to unlock new functionality. Another way of increasing engagement could be to enable users to connect with and compete with others. Externally prompted activities that are functionally dependent on rewards for their occurrence – autonomous motivation – are strongly correlated with the maintenance of behavioural change over time, as well as with greater psychological health. However, controlled regulation, generally reflecting internal pressures such as contingent self-worth, guilt, shame and a need for approval, can also drive a specific behaviour for a short period of time. We found that patients tended to do what they thought was important to get the healthcare staff’s approval, instead of understanding the benefit of the activity for themselves. Such controlled behavioural regulation, in this case driven by approval from the contact nurses, has in other studies been beneficial in the internalization of a new behaviour into more autonomous forms of self-regulation. If motivation is to be established, the patient needs to have functional ways to feel connected, which is one of the three pillars of motivation according to self-determination theory. This study indicates that an eHealth application may be a useful tool for patients to become more independent and take on more responsibility for self-care activities over time.
Limitations

This study has a number of shortcomings that must be considered when interpreting the results. The voluntary nature of participation in a sample of men who had the same diagnosis and had undergone the same treatment in a medium-sized hospital implies that participants represented a rather homogeneous group. Thus, the user experiences may not be representative for potential future users with other diagnoses and in other settings. The sample size of 15 patients could also be seen as too small. However, according to Albert, a study of 8–10 participants can provide meaningful results. The adequacy of the sample, the data quality, and the variability of relevant experiences are often more important than the number of participants. We may have missed some difficulties in using the system features, as the usability tests were not video-recorded. Log data covering frequency of actual use of different features in ePATH during the four test weeks are not included in this study. These limitations will be addressed further in evaluation of the application and user log data will be extracted in the ongoing effectiveness study to review actual use.

Conclusions and future research

Advances in treatment have led to longer survival after prostate cancer diagnosis, but that does not automatically mean that survivors are living well. A substantial group of men surviving prostate cancer are experiencing long-term physical side effects and heightened psychological distress, indicating a need for long-term rehabilitation support and availability of healthcare. The patients’ evaluation of ePATH as satisfactory, easy to use and o access, with information and activities tailored to patient needs and preferences, gives promising indications that eHealth applications are useful as support for self-management and rehabilitation after prostate cancer surgery. However, future development and research of
ePATH need to include structured studies on functionality. Areas that were highlighted by users and functionality issues that may have passed unnoticed need to be highlighted in future work with the application. Further testing of ePATH regarding short- and long-term effects on prostate cancer rehabilitation, health literacy, motivation, and complexity of text is needed. The current study has provided information on development of additional features of relevance for the users. There is an ongoing RCT using ePATH, in which a mobile application for rating symptoms is also available. However, elements of gamification, as suggested by the participants in the study of Jessen et al., are still to be developed. It has also been put forth that computer-based algorithms accounting for factors such as language, age, gender, reading ability, and health literacy level increase efficacy.

As patients’ needs for support varied across their rehabilitation trajectories, despite them having the same diagnosis and treatment, autonomous regulation and accessibility to healthcare seems crucial for the eHealth application to fit into their everyday lives.

Acknowledgments

Thanks to the participating patients who took part in the study with the intention to improve ePATH.

Thanks to Oscar Frykholm for valuable contributions to study design and data collection in the initial phase of the study.

Author Contributions

LN’s responsibility: study design, acquisition of data, analysis, interpretation of data, drafting the article and intellectual content.

CW’s responsibility: study design, acquisition of data, analysis, interpretation of data, drafting the article and intellectual content.
ME’s responsibility: acquiring funding, conception and study design, interpretation of data, critical revision of the manuscript for important intellectual content and final approval.

AH’s responsibility: interpretation of data, drafting the article and intellectual content.

KS’s responsibility: study design, acquisition of data, analysis, interpretation of data, drafting the article and intellectual content.

Data sharing

All interview and usability data are in Swedish and available on request.
REFERENCES

1. Wilkens J, Thulesius H, Schmidt I, et al. The 2015 National Cancer Program in Sweden: Introducing standardized care pathways in a decentralized system. *Health policy (Amsterdam, Netherlands)* 2016;120(12):1378-82. doi: 10.1016/j.healthpol.2016.09.008

2. de Leeuw J, Larsson M. Nurse-led follow-up care for cancer patients: what is known and what is needed. *Support Cancer Care* 2013;21(9):2643-49. doi: 10.1007/s00520-013-1892-6.

3. Schildmeijer K, Frykholm O, Kneck Å, et al. Not a Straight Line-Patients' Experiences of Prostate Cancer and Their Journey Through the Healthcare System. *Cancer Nurs* 2019;42(1):E36-E43. doi: 10.1097/NCC.0000000000000559

4. Crawford-Williams F, March S, Goodwin BC, et al. Interventions for prostate cancer survivorship: A systematic review of reviews. *Psycho-Oncology* 2018;27(10):2339-48.

5. Davis SN, O’Malley DM, Bator A, et al. Rationale and design of extended cancer education for longer term survivors (EXCELS): a randomized control trial of 'high touch' vs. 'high tech' cancer survivorship self-management tools in primary care. *BMC Cancer* 2019;19(1):340. doi: 10.1186/s12885-019-5553-6 [published Online First: 2019/04/12]

6. Frankland J, Brodie H, Cooke D, et al. Follow-up care after treatment for prostate cancer: evaluation of a supported self-management and remote surveillance programme. *BMC Cancer* 2019;19(1):368. doi: 10.1186/s12885-019-5561-0 [published Online First: 2019/04/23]

7. Golsteijn RHJ, Bolman C, Volders E, et al. Short-term efficacy of a computer-tailored physical activity intervention for prostate and colorectal cancer patients and survivors: a randomized controlled trial. *Int J Behav Nutr Phys Act* 2018;15(1):106. doi: 10.1186/s12966-018-0734-9 [published Online First: 2018/11/01]

8. Ruland CM, Maffei RM, Borosund E, et al.Evaluation of different features of an eHealth application for personalized illness management support: cancer patients' use and appraisal of usefulness. *Int J Med Inform* 2013;82(7):593-603. doi: 10.1016/j.ijmedinf.2013.02.007 [published Online First: 2013/03/20]

9. Bartlett YK, Selby DL, Newsham A, et al. Developing a useful, user-friendly website for cancer patient follow-up: users' perspectives on ease of access and usefulness. *Eur J Cancer Care (Engl)* 2012;21(6):747-57. doi: 10.1111/j.1365-2354.2012.01357.x [published Online First: 2012/04/26]

10. Kessel KA, Vogel MM, Kessel C, et al. Mobile Health in Oncology: A Patient Survey About App-Assisted Cancer Care. *JMIR Mhealth Uhealth* 2017;5(6):e81. doi: 10.2196/mhealth.7689 [published Online First: 2017/06/16]

11. Ryan R, Deci E. Self-Determination Theory: basic psychological needs in motivation, development and wellness. New York, London England: The Guildford Press 2017.

12. Corbin J, Strauss A. Managing chronic illness at home: three lines of work. *Qual Sociol* 1985;8(03):224-47.

13. Ammenwerth E, Iller C, Mahler C. IT-adoption and the interaction of task, technology and individuals: a fit framework and a case study. *BMC Med Inform Decis Mak* 2006;6:3. doi: 10.1186/1472-6947-6-3 [published Online First: 2006/01/13]

14. De Vito Dabbs A, Myers BA, Mc Curry KR, et al. User-centered design and interactive health technologies for patients. *Comput Inform Nurs* 2009;27(3):175-83. doi: 10.1097/NCN.0b013e31819f7c7c [published Online First: 2009/05/05]

15. Frykholm O, Flink M, Lindblad M, et al. User-centered design of integrated eHealth to improve patients’ activation in transitional care. *Int J Integr Care* 2016;16(6):A338. doi: http://doi.org/10.5334/ijic.2886
16. Schildmeijer K, Wannheden C, Nilsson L, et al. Developing an eHealth Tool to Support Patient Empowerment at Home. *Stud Health Technol Inform* 2018;247:925-29. [published Online First: 2018/04/22]

17. Coleman EA, Parry C, Chalmers S, et al. The care transitions intervention: results of a randomized controlled trial. *Arch Intern Med* 2006;166(17):1822-8. doi: 10.1001/archinte.166.17.1822

18. Flink M, Ekstedt M. Planning for the Discharge, not for Patient Self-Management at Home - An Observational and Interview Study of Hospital Discharge. *Int J Integr Care* 2017;17(6):1. doi: 10.5334/ijic.3003 [published Online First: 2018/03/29]

19. Ng J, Ntoumanis N, Thøgersen-Ntoumani C, et al. Self-Determination Theory Applied to Health Contexts: a Meta-Analysis. *Perspect Psychol Sci* 2012;7:325–40.

20. Ekstedt M, Schildmeijer K, Wennerberg C, et al. Enhanced Patient Activation in Cancer Care Transitions: Protocol for a Randomized Controlled Trial of a Tailored Electronic Health Intervention for Men With Prostate Cancer. *JMIR Res Protoc* 2019;8(3):e11625. doi: 10.2196/11625 [published Online First: 2019/03/22]

21. Bangor A, Kortum PT, Miller JT. An empirical evaluation of the system usability scale. *Int J Hum Comput Interact* 2008;24(6):574-94.

22. Association WM. WMA Declaration of Helsinki – Ethical Principles for Medical Research Involving Human Subjects [https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/2018 [updated 20180709. accessed June 2019.

23. Elo S, Kyngäs H. The qualitative content analysis process. *J Adv Nurs* 2008;62(1):107-15.

24. Lentferink AJ, Oldenhuis HK, de Groot M, et al. Key components in eHealth interventions combining self-tracking and persuasive eCoaching to promote a healthier lifestyle: a scoping review. *J Med Internet Res* 2017;19(8):e277.

25. Page KL, Robson MJ, Uncles MD. Perceptions of web knowledge and usability: When sex and experience matter. *Int J Hum Comput Stud* 2012;70(12):907-19.

26. Jessen S, Mirkovic J, Ruland CM. Creating Gameful Design in mHealth: A Participatory Co-Design Approach. *JMIR Mhealth Uhealth* 2018;6(12):e11579. doi: 10.2196/11579 [published Online First: 2018/12/16]

27. Kim H, Xie B. Health literacy in the eHealth era: A systematic review of the literature. *Patient education and counseling* 2017;100(6):1073-82. doi: 10.1016/j.pec.2017.01.015 [published Online First: 2017/01/28]

28. Bertoncello C, Colucci M, Baldovin T, et al. How does it work? Factors involved in telemedicine home-interventions effectiveness: A review of reviews. *PloS one* 2018;13(11):e0207332. doi: 10.1371/journal.pone.0207332 [published Online First: 2018/11/16]

29. Lithner M, Klesfsgard R, Johansson J, et al. The significance of information after discharge for colorectal cancer surgery—a qualitative study. *BMC nursing* 2015;14(1):36.

30. Mikkelsen TH, Søndergaard J, Jensen AB, et al. Cancer rehabilitation: psychosocial rehabilitation needs after discharge from hospital? A qualitative interview study. *Scand J Prim Health Care* 2008;26(4):216-21.

31. Albert W. Measuring the User Experience. Collecting, analyzing, and presenting usability metrics: Morgan Kaufmann Publishers Inc. 2013.

32. Jacobs RJ, Lou JQ, Ownby RL, et al. A systematic review of eHealth interventions to improve health literacy. *Health Informatics J* 2016;22(2):81-98. doi: 10.1177/1460458214534092 [published Online First: 2014/06/12]
User:
patients with prostate cancer

User behavior
Relevance of task
Complexity of task
Clarity of instructions

eHealth literacy
Personal skills/knowledge in IT
Technical bugs
Users’ expectations on ePATH

Task:
Self-care
Symptom monitoring
Information communication

Technology:
ePATH
graphs
tracking
ratings

FITT

Applied informatics
Visualization
Up-to-date information
Interpretability
Optimization of functions
Usability of ePATH

- Getting started with ePATH - managing technology
 - Technical stability/Performance
 - Technical preparations
 - Logical interface

- Degree to which ePATH assists the patient in task performance
 - Information before use
 - Simplifies communication
 - Interaction with the system
 - Individual needs
 - Relevance of tasks
 - Complexity of registrations
 - Reliable information

- Turning input into output - task engagement and completion
Standards for Reporting Qualitative Research (SRQR)*

http://www.equator-network.org/reporting-guidelines/srqr/

Title and abstract	Page/line no(s).
Title - Concise description of the nature and topic of the study Identifying the study as qualitative or indicating the approach (e.g., ethnography, grounded theory) or data collection methods (e.g., interview, focus group) is recommended	1/1-3
Abstract - Summary of key elements of the study using the abstract format of the intended publication; typically includes background, purpose, methods, results, and conclusions	2

Introduction	
Problem formulation - Description and significance of the problem/phenomenon studied; review of relevant theory and empirical work; problem statement	4/14-22
Purpose or research question - Purpose of the study and specific objectives or questions	

Methods		
Qualitative approach and research paradigm - Qualitative approach (e.g., ethnography, grounded theory, case study, phenomenology, narrative research) and guiding theory if appropriate; identifying the research paradigm (e.g., postpositivist, constructivist/ interpretivist) is also recommended; rationale**	5/3-10	
Researcher characteristics and reflexivity - Researchers’ characteristics that may influence the research, including personal attributes, qualifications/experience, relationship with participants, assumptions, and/or presuppositions; potential or actual interaction between researchers’ characteristics and the research questions, approach, methods, results, and/or transferability	8/7-9	
Context - Setting/site and salient contextual factors; rationale**	8/1-6	
Sampling strategy - How and why research participants, documents, or events were selected; criteria for deciding when no further sampling was necessary (e.g., sampling saturation); rationale**	8	
Ethical issues pertaining to human subjects - Documentation of approval by an appropriate ethics review board and participant consent, or explanation for lack thereof; other confidentiality and data security issues	8/20-21, 9/1	
Data collection methods - Types of data collected; details of data collection procedures including (as appropriate) start and stop dates of data collection and analysis, iterative process, triangulation of sources/methods, and modification of procedures in response to evolving study findings; rationale**	8-9	
Section	Description	Page(s)
--	---	---------
Data collection instruments and technologies	Description of instruments (e.g., interview guides, questionnaires) and devices (e.g., audio recorders) used for data collection; if/how the instrument(s) changed over the course of the study	8-9
Units of study	Number and relevant characteristics of participants, documents, or events included in the study; level of participation (could be reported in results)	8
Data processing	Methods for processing data prior to and during analysis, including transcription, data entry, data management and security, verification of data integrity, data coding, and anonymization/de-identification of excerpts	9/3-8
Data analysis	Process by which inferences, themes, etc., were identified and developed, including the researchers involved in data analysis; usually references a specific paradigm or approach; rationale**	9/3-11
Techniques to enhance trustworthiness	Techniques to enhance trustworthiness and credibility of data analysis (e.g., member checking, audit trail, triangulation); rationale**	3
Results/findings		
Synthesis and interpretation	Main findings (e.g., interpretations, inferences, and themes); might include development of a theory or model, or integration with prior research or theory	9-17
Links to empirical data	Evidence (e.g., quotes, field notes, text excerpts, photographs) to substantiate analytic findings	9/Fig 2
Discussion		
Integration with prior work, implications, transferability, and contribution(s) to the field	Short summary of main findings; explanation of how findings and conclusions connect to, support, elaborate on, or challenge conclusions of earlier scholarship; discussion of scope of application/generalizability; identification of unique contribution(s) to scholarship in a discipline or field	3, 13-17
Limitations	Trustworthiness and limitations of findings	
Other		
Conflicts of interest	Potential sources of influence or perceived influence on study conduct and conclusions; how these were managed	3
Funding	Sources of funding and other support; role of funders in data collection, interpretation, and reporting	3

The authors created the SRQR by searching the literature to identify guidelines, reporting standards, and critical appraisal criteria for qualitative research; reviewing the reference lists of retrieved sources; and contacting experts to gain feedback. The SRQR aims to improve the transparency of all aspects of qualitative research by providing clear standards for reporting qualitative research.
The rationale should briefly discuss the justification for choosing that theory, approach, method, or technique rather than other options available, the assumptions and limitations implicit in those choices, and how those choices influence study conclusions and transferability. As appropriate, the rationale for several items might be discussed together.

Reference:
O’Brien BC, Harris IB, Beckman TJ, Reed DA, Cook DA. Standards for reporting qualitative research: a synthesis of recommendations. *Academic Medicine, Vol. 89, No. 9 / Sept 2014*
DOI: 10.1097/ACM.0000000000000388