An update on radiomics techniques in primary liver cancers

Vincenza Granata1*, Roberta Fusco2, Sergio Venazio Setola1, Igino Simonetti1, Diletta Cozzi3,4, Giulia Grazzini3,4, Francesca Grassi5, Andrea Belli6, Vittorio Miele3,4, Francesco Izzo6 and Antonella Petrillo1

Abstract

Background: Radiomics is a progressing field of research that deals with the extraction of quantitative metrics from medical images. Radiomic features detection indirectly tissue features such as heterogeneity and shape and can, alone or in combination with demographic, histological, genomic, or proteomic data, be used for decision support system in clinical setting.

Methods: This article is a narrative review on Radiomics in Primary Liver Cancers. Particularly, limitations and future perspectives are discussed.

Results: In oncology, assessment of tissue heterogeneity is of particular interest: genomic analysis have demonstrated that the degree of tumour heterogeneity is a prognostic determinant of survival and an obstacle to cancer control. Therefore, that Radiomics could support cancer detection, diagnosis, evaluation of prognosis and response to treatment, so as could supervise disease status in hepatocellular carcinoma (HCC) and Intrahepatic Cholangiocarcinoma (ICC) patients. Radiomic analysis is a convenient radiological image analysis technique used to support clinical decisions as it is able to provide prognostic and/or predictive biomarkers that allow a fast, objective and repeatable tool for disease monitoring.

Conclusions: Although several studies have shown that this analysis is very promising, there is little standardization and generalization of the results, which limits the translation of this method into the clinical context. The limitations are mainly related to the evaluation of data quality, repeatability, reproducibility, overfitting of the model.

Trial registration: Not applicable.

Keywords: Radiomics, Texture analysis, Machine learnings, Hepatocellular carcinoma, Cholangiocarcinoma

Introduction

Radiomics is an emerging field that extracts and analyses data from medical images, comprising quantitative and qualitative features not detected by human eye [1–6]. The Radiomics analysis includes several moments: image acquisition (all radiological or nuclear medicine procedures are involved); the segmentation of volume of interest by automatic, semi-automatic or manual segmentation tools; features creation; database improvement; database analysis with the construction of a predictive model and the validation of the models created and Radiomics signature [7–15].

The features can be morphological, of First-, Second- and Higher-ordes. Morphological ones describe the shape of the traced region of interest (ROI) and its geometric properties such as volume, maximum diameter along different orthogonal directions, maximum surface, tumour compactness, and sphericity. First-order statistics

*Correspondence: v.granata@istitutotumori.na.it
1 Division of Radiology, “Istituto Nazionale Tumori IRCCS Fondazione Pascale – IRCCS di Napoli”, Via Mariano Semmola 80131, Naples, Italy
features describe the distribution of individual voxel values without concern for spatial relationships.

These are properties based on the histogram that report the average, median, maximum and minimum values of the intensity of the voxels, their asymmetry (asymmetry), kurtosis (flatness), uniformity and entropy. Second-order statistical characteristics include structural characteristics, which are obtained by calculating statistical interrelationships between neighboring voxels and provide a measure of the spatial arrangement of the voxel intensities. Higher-order statistical characteristics are obtained with statistical methods after applying filters or mathematical transformations to images such as fractal analysis, Minkowski functional, wavelet transforms and Laplacian transforms of Gaussian filtered images [16–22].

Clinical, pathological and genomic relationships are established for the predictive model. Therefore, this analysis allows the integration of radiomic characteristics and molecular, clinical or other data of the patient allowing to obtain precision medical instruments [20–23].

Today, the main relevance area is oncolgical setting, since Radiomics features, providing data on tumour or tissue microenvironmment, could be associated with histological grade, prognosis, response to therapy, and survival in innumerable cancers [22, 24–31]. The possibility to combine radiomics with genomic data (“radiogenomics”) could theoretically offer the highest level of personalized risk patients stratification so that to greatly augment patient selection for different cancer therapy [32–40].

With the development of the deep learning (DL) technique, the neural network is more commonly used in radiomics studies, and has achieved expert-level performance in several tumours [41–45]. DL self-learning quantitative features may supplement unrevealed imaging features besides conventional radiomic features to improve the predictive power. Additionally, DL-based radiomics avoided time-consuming [45, 46].

Recently, it has been a significant increase in the radiomics investigation in liver disease, including liver fibrosis assessment, characterization of malignant and benign lesions, and prognosis [47–49].

Methods
This article is a narrative review on Radiomics in Primary Liver Cancers. Particularly, limitations and future perspectives are discussed.

Results
Radiomics: Basic principles and process
Radiomic is planned to be utilised in precision medicine decision support, employing standard of care images that are usually obtained in clinical setting [50–53]. Moreover, Radiomics offers prognostic biomarker which allow for a fast, low-cost, and repeatable means for longitudinal analysis [54–56]. Radiomics is based on the features extraction from medical images, [57–60]. Images assessed during this analysis are accumulated from different centers or data-centers; so, these images could be obtained employing different manufacturers, with diverse protocols and parameters. These elements could influence radiomic models [61, 62].

Segmentation phase is a crucial moment since features are obtained from the segmented volumes. This step is difficult since several lesions have unclear borders and could suffer of high inter-reader variability. However, several studies believe that this approach by expert operator should be chosen even if it is time consuming and not always feasible due to very large data sets to analyse [63]. Automatic and semi-automatic approaches have been developed. Common requirements include maximum automaticity with minimum operator interaction, time efficiency, accuracy, and boundary reproducibility. Several algorithms rely on region-growing methods that require an operator to select a seed point within the volume of interest [63].

Generation of features refers to the extraction of Semantic Features such as dimension, necrosis, margin, location or extraction of non semantic features such as shape, histogram or texture [63–69].

Texture analysis (TA) has sparked interest in the clinical setting as it has proven to be a substantial computer-assisted diagnostic tool [70–72]. TA could be defined as the spatial arrangement of models that provides the visual aspect of coarseness, randomness, smoothness. The use of TA compromises the classification and segmentation of the target area, involving a six-step method: image acquisition, definition of the region of interest (ROI), ROI pre-processing, feature extraction, feature selection and classification [70–72]. Manual ROI delineation is still considered the preferred approach. The size of the ROI should be large enough to get the plot data thereby producing statistical significance. It has been established that some characteristics are related such as texture and ROI characteristics, such as mean intensity and variance [73–77].

Feature extraction is the main step in TA indicating the computation of texture features from predefined ROIs. Several methods have been offered, including 2D methods or 3D approaches. Application of 4D TA is promising by including the temporal dimension available in some MRI datasets [78–81].

Radiomic analysis should be performed with large data sets to obtain high statistical power [82–87]. We often have datasets with a large number of features
extracted from images with a low number of cases. Often many of the characteristics extracted are redundant, non-informative and not useful in the database. Therefore, initial analyzes should include dimensionality reduction and feature selection, generally achieved through unsupervised approaches; and association analysis with one or more specific outcomes using supervised approaches. The two most commonly used unsupervised methods are cluster analysis and principal component analysis (PCA). All selected features that are considered reproducible, informative, and non-redundant can then be used for association analysis. Supervised multivariate analysis consists of building a mathematical model to predict a result or a response variable. The different analysis approaches depend on the purpose of the study and the category of results ranging from statistical methods to data mining / machine learning approaches, such as random forests, neural networks, linear regression, logistic regression, absolute minimum shrinkage and selection operator, and Cox proportional hazards regression [88–92]. Furthermore, since models must be validated to be preferably run on outpatient and independent patient groups, comparability of features extracted from images with different parameters and segmented with different techniques is challenging and can affect the final performance of the model itself [92].

Figure 1 reports a graphic representation of the workflow for extraction of radiomic features from clinical images.

Current applications

Clinical setting

Primary liver cancer, including hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC) and other rare types, is the sixth most usually detected tumour and the third leading cause of tumour death worldwide. HCC may be noninvasively diagnosed by imaging findings alone, often without biopsy. Several morphological and functional data obtained during imaging studies allow a truthful ICC diagnosis.

The choice of modality (CT, US/CEUS or MRI) is correlated to patient, department, and regional features [50, 51, 93–106].

Radiomics is a promising tool in the assessment of HCC (Fig. 2) and ICC patients (Fig. 3).

HCC and radiomics

Up to now, several researches have assessed radiomics or radiogenomics features as biomarkers in HCC patients, evaluating correlation with response and/or recurrence after several treatments as chemotherapy, resection, ablation therapies, and transplantation. The main diagnostic tool used in radiomics studies has been Computed Tomography (CT) [107]. Otherwise, few researches have assessed radiomics data obtained by Magnetic Resonance Imaging (MRI). This may be due to the difficulty of providing standardization of MR sequences respect to CT [23, 108, 109]. In fact, MRI offers the advantage of high contrast resolution and functional data, and this tool is superior in the assessment of tumour metabolism.

Fig. 1 Workflow for extraction of radiomic features from clinical images. The first step contains receiving images and segmentation of the region of interest. The next step is feature extraction within the defined ROI. In the last step the features are analysed, and combined and compared with clinical data.
The areas of main attention have been correlated to lesion characterization and treatment evaluation [107, 110–135].

For differentiation between HCC and benign liver lesions, a CT radiomic nomogram demonstrated an area under the receiver operating characteristic curve (AUC) of 0.917 to differentiate focal nodular hyperplasia (FNH) by HCC [129]. An MRI reported an AUC of 0.89 (sensitivity 0.822, specificity 0.714) to differentiate HCC by haemangioma using conventional and diffusion sequences (DWI) [130]. Furthermore, using CT and MRI, fusion models showed an AUC of 0.966 for CT and 0.971 for MRI to differentiate HCC by FNH [131]. Furthermore, a retrospective multicenter cohort study of 178 patients with cirrhosis showed an AUC of 0.66 in the diagnosis of HCC, demonstrating the advantage of Artificial Intelligence (AI) to improve physician decisions identifying high risk of HCC patients [188].

Oyama et al. evaluated MRI radiomics features for liver tumor classification using TA and topological data analysis demonstrating that TA could provide useful data for diagnosing liver disease [136]. Li et al. assessed the TA feasibility based on the recovery of attenuated spectral inversion on MRI for the classification of hepatic haemangioma (HH), liver metastases (HM), and hepatocellular carcinoma (HCC), demonstrating that HH versus HM, HM versus HCC and HH and HCC could be differentiated by 9, 16 and 10 TA features, respectively [137]. Jansen et al. assessed MRI datasets of 125 benign lesions (40 adenomas, 29 cysts and 56 haemangiomas) and 88 malignant lesions (30 HCC and 58 metastases). Contrast curve, grey level histogram, and grey level co-occurrence matrix texture features were extracted from the DCE-MRI and T2- W images. In addition, risk factors including the presence of steatosis, cirrhosis, and a known primary tumour were used as features. Fifty features with
the highest ANOVA F-score were selected and fed to a randomized trees classifier. The classifier evaluation was performed using the leave-one-out cross validation and ROC curve analysis was performed. They demonstrated that the overall accuracy for the classification of the five main types of focal liver disease is 0.77. Sensitivity / specificity is 0.80/0.78, 0.93/0.93, 0.84/0.82, 0.73/0.56 and 0.62/0.77 for adenoma, cyst, haemangioma, hepatocellular carcinoma and metastases [138], respectively. These data are similar to the data by Gatos et al. [139].

Different researches have suggested the use of radiomic parameters to guide therapeutic decisions by response prediction of ablative therapies and immuno-oncological characteristics [124–126]. Therefore, if the therapeutic direction is considered inappropriate for ablation treatment, it should be changed with the targeted molecular agents use. However, the clinical benefit of radiomic features should be validated by further studies in a prospective setting.

ICC and radiomics

Many studies have been assessed the radiomics or radiogenomics role in ICC [140–166]. The main interest area has been the assessment of recurrence after surgical resection.

Chu et al. [140] assessed 203 ICCs, that were subdivided into training and the validation set. Clinical features and radiomic features were used with a random forest algorithm and logistic models to build both a clinical model and a radiomic model. The radiomic model showed a higher AUC than the clinical model to predict avoidable resections in ICC reaching a sensitivity of 0.846 and a specificity of 0.771 in the validation cohort [140]. Quin et al. [141] developed a multilevel model, integrating clinicopathology, molecular pathology and radiology to predict early recurrence after curative surgery, using a machine-learning analysis of 18,120 radiomic features based on CT studies and 48 clinical features. They demonstrated that the radiomics based multilevel model has superior performance over conventional staging systems and could serve as a prognostic tool for planning surveillance and guiding individualized post-operative management [141]. Also Hao et al. [142] developed a non-invasive CT based radiomics analysis model to predict early recurrence in 177 ICC patients. Radiomic features were extracted on six established radiomic models were selected as stable according to the robustness-based rule. Max-Relevance Min-Redundancy (MRMR) combined with Gradient Boosting Machine (GBM) produced the highest AUCs of 0.802 and 0.781 in the training and testing set, respectively [142].

Mosconi et al. [150] evaluated the relationships between the structural features of CT before TARE and objective response (OR), progression-free survival (PFS) and overall survival (OS). They demonstrated that ICCs showing OR after TARE had higher contrast iodine uptake in the arterial phase (higher mean histogram values, \(p < 0.001 \)) and a more homogeneous distribution (lower kurtosis, \(p = 0.043 \); GLCM contrast, \(p = 0.004 \); GLCM dissimilarity, \(p = 0.005 \) and higher GLCM homogeneity, \(p = 0.005 \) and GLCM correlation \(p = 0.030 \) on pre-TARE CT. A favourable radiomic signature was calculated and observed in 15 of the 55 patients [150].

Current limitations

To day, radiomics researches are in their immaturity with no standardized or unified standards for this problematic analysis. Though several researches reported meticulously manual segmentation, however, automated segmentation algorithms should be employed for realising standardization. In addition, the absence of clear definition of reason for false-positive results in Convolutional Neural Network still an important issue. In addition, for ROI selection, there is no appropriate algorithm to segment tumour area. Another critical issue is the lack of standardization in results reporting that makes it confusing for readers. It may be appropriate report features according to ‘Image biomarker standardisation initiative’ using formal lexicon.

With regard to machine-learning algorithms, these are different in different studies since there is no research to prove which algorithm is the main suitable considering the study type. Finally, most of the current research results are still in the training sample stage, so the model's high accuracy does not reflect its actual predictive ability. Whether the model is really effective or not depends on the validation phase by the test sample.

Discussion and Conclusions

Radiomics is a rapidly evolving field of research that deals with the extraction of quantitative metrics within medical images that capture tissue and lesion characteristics such as heterogeneity and shape and which can, alone or in combination with demographic, histological, genomic or proteomic data, to be used for the resolution of clinical problems. In oncology, the assessment of tissue heterogeneity is of particular interest: genomic analyzes have shown that the degree of tumour heterogeneity is a prognostic determinant of survival.

Although many studies have shown that radiomics to be very promising, there has been little standardization and generalization of radiomic findings, which limit the use of this method into the clinical practice. Clear limitations especially regard to data quality control, repeatability, reproducibility, generalizability of results and issues related to model overfitting.
Acknowledgements
The authors are grateful to Alessandra Trocino, librarian at the National Cancer Institute of Naples, Italy.

Authors’ contributions
The authors confirm that the article is not under consideration for publication elsewhere. Each author has participated sufficiently to take public responsibility for the manuscript content. All authors read and approved the final manuscript.

Funding
No funding.

Availability of data and materials
Data are available at https://zenodo.org/record/6307725#.Yhz8V0jMK3A.

Declarations
Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Division of Radiology, “Istituto Nazionale Tumori IRCCS Fondazione Pascale – IRCCS di Napoli”, Via Mariano Semmola 80131, Naples, Italy. 2 Medical Oncology Division, Igea SpA, Naples, Italy. 3 Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy. 4 Italian Society of Medical and Interventional Radiology (SiRMI), SiRMI Foundation, Via Della Signora 2, 20122 Milan, Italy. 5 Division of Radiology, “University Degli Studi Della Campagna Luigi Vanvitelli”, Naples, Italy. 6 Division of Hepatobiliary Surgical Oncology, “Istituto Nazionale Tumori IRCCS Fondazione Pascale – IRCCS di Napoli”, 80131 Naples, Italy.

Received: 19 February 2022 Accepted: 28 February 2022
Published online: 04 March 2022

References
1. Lambin P, Leijenaar RT, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, Sanduleanu S, Larue RITH, Even AJG, Jochems A, van Wijk Y, Woodruff H, van Soest J, Lustberg T, Roelofs E, van Emmt W, Dekker A, Mottaghy FM, Wildberger JE, Walsh S. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14(12):749–62.
2. Limkin EJ, Sun R, Dercle L, Zacharaki EI, Robert C, Reuzé S, Schrembs A, Paragios N, Deutsch E, Ferté C. Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology. Ann Oncol. 2017;28(6):1191–206.
3. Verma V, Simone CB 2nd, Krishnan S, Lin SH, Yang J, Hahn SM. The rise of radiomics and implications for oncologic management. J Natl Cancer Inst. 2017;109(7).
4. Agazzi GM, Ravaneli M, Roca E, Medicina D, Balzarini P, Pessina C, Vermi W, Berruti A, Maroldi R, Farina D. CT texture analysis for prediction of EGFR mutational status and ALK rearrangement in patients with non-small cell lung cancer. Radiol Med. 2021. https://doi.org/10.1007/s11547-021-01432-7.
5. Palumbo P, Masedu F, De Cataldo C, Cianci R, Ambrosini R, Calisti L, Colagrande S. Dynamic contrast-enhanced MRI in oncology: how we do it. Radiol Med. 2020;125:1288–300. https://doi.org/10.1007/s11547-020-01220-z.
6. Ria F, Samei E. Is regulatory compliance enough to ensure excellence in medicine? Radiol Med. 2020;125:904–5. https://doi.org/10.1007/s11547-020-01171-5.
7. Zhang A, Song J, Ma Z, Chen T. Combined dynamic contrast-enhanced magnetic resonance imaging and diffusion-weighted imaging to predict neoadjuvant chemotherapy effect in FGFO stage Ib-IIA2 cervical cancers. Radiol Med. 2020;125:1233–42. https://doi.org/10.1007/s11547-020-01215-w.
8. Crimi F, Capelli G, Spolverato G, Bao QR, Florio A, Milite Rossi S, Cecchin D, Albertoni L, Campi C, Pucciarrelli S, et al. MRI T2-weighted sequences-based texture analysis (TA) as a predictor of response to neoadjuvant chemo-radiotherapy (nCRT) in patients with locally advanced rectal cancer (LARC). Radiol Med. 2020;125:1216–24. https://doi.org/10.1007/s11547-020-01215-w.
9. Kinemoto M, Ninatti G, Cozzi L, Voulae G, Egnarro N, Barajon I, Ricci F, Carlo-Stella C, Zucalli P, Sollini M, et al. Computed tomography (CT)-derived radiomic features differentiate prevascular mediastinal lymph nodes masses as thymic neoplasms versus lymphomas. Radiol Med. 2020;125:951–60. https://doi.org/10.1007/s11547-020-01188-w.
10. Zhang L, Kang L, Li G, Zhang X, Ren J, Shi Z, Li J, Yu S. Computed tomography-based radiomics model for discriminating the risk stratification of gastrointestinal stromal tumors. Radiol Med. 2020;125:465–73. https://doi.org/10.1007/s11547-020-01198-6.
11. Gurgiuto M, Angileri SA, Roda GM, Ligouri A, Pandolfi M, Jerardi AM, Wood BJ, Carrafello G. Interventional radiology ex-machina: impact of
artificial intelligence on practice. Radiol Med. 2021;126(7):998–1006. https://doi.org/10.1007/s11547-021-01351-x (Epub 2021 Apr 16).

21. Scapicchio C, Gabellini M, Barucci A, Cioni D, Saba L, Neri E. A deep look into radiomics. Radiol Med. 2021;126(10):926–31. https://doi.org/10.1007/s11547-021-01389-x (Epub 2021 Jul 2).

22. Wei J, Jiang H, Gu D, Niu M, Fu F, Han Y, Song B, Tian J. Radiomics in liver diseases: current progress and future opportunities. Liver Int. 2020;40(9):2050–63. https://doi.org/10.1111/liv.14555.

23. Benedetti G, Moni M, Panzeri MM, Barbera M, Palumbo D, Sini C, Muffatti F, Andreau V, Steidlser S, Doglionni C, Partelli S, Manzonii M, Falconi M, Fiorino C, De Nardi E. CT-derived radiomic features to discriminate histologic characteristics of pancreatic neuroendocrine tumors. Radiol Med. 2021. https://doi.org/10.1007/s11547-021-01333-z.

24. Saini A, Breen I, Peshyad Y, Naidu S, Knuttinen MG, Alzubaidi S, Sheth R, Albadi B, Kuo M, Oklu R. Radiogenomics and radiomics in liver cancers. Diagnostics (Basel). 2019;8(1):4. https://doi.org/10.3390/diag8010004.

25. de la Pinta C, Castelló M, Collado M, Galindo-Pumarín C, Peña C. Radiogenomics: hunting down liver metastasis in colorectal cancer patients. Cancers (Basel). 2021;13(2):5547. https://doi.org/10.3390/cancers13025547.

26. Nardone V, Reginelli A, Grassi R, Boldrini L, Vacca G, D’ippolito E, Annunziata S, Farchione A, Belforte MP, Desideri I, Cappabianca S. Delta radiomics—a systematic review. Radiol Med. 2021;126(12):1571–83. https://doi.org/10.1007/s11547-021-01436-7.

27. Brunese L, Brunese MC, Carbone M, Ciccone V, Mercaldo F, Santone A. Automatic PI-RADS assignment by means of formal methods. Radiol Med. 2021. https://doi.org/10.1007/s11547-021-01425-w.

28. van der Lubbe MFJA, Vaidyanathan A, de Wit M, van den Burg EL, van der Lubbe MFJA, Vaidyanathan A, de Wit M, van den Burg EL. Radiomics of gastrointestinal stromal tumors: potential as an imaging biomarker of disease aggressiveness, response and survival. Eur J Radiol. 2018;102:15–21.

29. Andersen IR, Thorup K, Jepsen M, Madsen NB, Olesen R, Mortensen FV, Nielsen DT, Rasmussen F. Texture in the monitoring of regorafenib therapy in patients with colorectal liver metastases. Acta Radiol. 2019;60:1084–93.

30. Zhang H, Li W, Hu F, Sun Y, Hu T, Tong T. MR texture analysis: Potential imaging biomarker for predicting the chemotherapeutic response of patients with colorectal liver metastases. Abdom Radiol. 2018;44(6):71–7.

31. Kriensko M, Ninatti G, Cozzi L, Voulae E, Gennaro N, Barajon J, Ricci F, Carlo-Stella C, Zucali P, Sollini M, Balzarini L, Chiti A. Computed tomography (CT)-derived radiomic features differentiate prevascular mediastinal masses as thymic neoplasms versus lymphomas. Radiol Med. 2020;125(10):951–60. https://doi.org/10.1007/s11547-020-01188-w.

32. Zhang Y, Zhu Y, Zhang K, Liu Y, Cui J, Tao J, Wang Y, Wang S. Invasive ductal breast cancer: preoperative prediction Ki-67 index based on radiomics of ADC maps. Radiol Med. 2020;125(2):109–16. https://doi.org/10.1007/s11547-019-01100-o.

33. Zhang L, Kang L, Li G, Zhang X, Ren J, Shi Z, Li J, Yu S. Computed tomography-based radiomics model for discriminating the risk stratification of gastrointestinal stromal tumors. Radiol Med. 2020;125(3):465–73. https://doi.org/10.1007/s11547-020-01356-8.

34. Fusco R, Granata V, Petrollo A. Introduction to special issue of radiology and imaging of cancer. Cancers Basel. 2020;12(9):2665. https://doi.org/10.3390/cancers12092665.

35. Grassi R, Belforte MP, Montanelli A, Patelli G, Urraro F, Giacobbe G, Fusco R, Granata V, Petrollo A, Sacco P, Mazzai MA, Feragalli B, Reginelli A, Cappabianca S. COVID-19 pneumonia: computer-aided quantification of healthy lung parenchyma, emphysema, ground glass and consolidation on chest computed tomography (CT). Radiol Med. 2020;126:553–60. https://doi.org/10.1007/s11547-020-01305-9.

36. Grassi R, Cappabianca S, Urraro F, Feragalli B, Montanelli A, Patelli G, Granata V, Giacobbe G, Russo GM, Grillo A, De Liso A, Paur A, Clemente A, Gagliardi A, Magliocchetti S, Cozzi D, Fusco R, Belforte MP, Grassi R, Miele V. Chest CT computerized aided quantification of PNEUMONIA lesions in COVID-19 infection: a comparison among three commercial software. Int J Environ Res Public Health. 2020;17(18):6914. https://doi.org/10.3390/ijerph17186914.

37. Liang H, Hu C, Lu J, Zhang T, Jiang J, Ding D, Su D, Suan S. Correlation of radiomic features on dynamic contrast-enhanced magnetic resonance with microvascular density in hepatocellular carcinoma based on different models. J Int Med Res. 2021;49(3):30006521995856. https://doi.org/10.1177/0300065521995856.

38. Sahani DV, Jiang T, Hayano K, Duda DG, Catalano OA, Ancukiewicz M, Jain RK, Zhu AX. Magnetic resonance imaging biomarkers in hepatocellular carcinoma: association with response and circulating biomarkers after sunitinib therapy. J Hematol Oncol. 2013;6:51.

39. Gutmann DAP, Roposchsz S, Rathmann W, Schlett CL, Peters A, Wachinger C, Gatidis S, Bamberg F. MRI-derived radiomics features of hepatic fat predict metabolic states in individuals without cardiovascular disease. Acad Radiol. 2020;28:51–10. https://doi.org/10.1016/j.acra.2020.06.030.

40. Shin N, Choi JA, Choi JM, Cho ES, Kim JH, Chung JJ, Yu JS. Sclerotic changes of cavernous hemangioma in the cirrhotic liver: long-term follow-up using dynamic contrast-enhanced computed tomography. Radiol Med. 2020;125(12):1225–32. https://doi.org/10.1007/s11547-020-01221-y.

41. Bottari A, Silipigni S, Carej ML, Cattafi A, Maimone S, Marino MA, Mazzotti S, Pitronne A, Squadrino G, Ascenti G. Dual-source–dual-energy CT in the evaluation of hepatic fractional extracellular space in cirrhosis. Radiol Med. 2020;125(1):7–14. https://doi.org/10.1007/s11547-019-01089-7.

42. Agostini A, Borgheresi A, Carotti M, Ottaviani L, Badaloni M, Floridi C, Giovagnoni A. Third-generation iterative reconstruction on a
55. Shi L, He Y, Yuan Z, Benedict S, Valicenti R, Qiu J, Rong Y. Radiomics for
57. Yin Q, Hung SC, Rathmell WK, Shen L, Wang L, Lin W, Fielding JR,
59. Wei J, Cheng J, Gu D, Chai F, Hong N, Wang Y, Tian J. Deep learning-
61. Sansone M, Grassi R, Belfiore MP , Gatta G, Grassi F, Pinto F, La Casella GV,
62. Granata V, Fusco R, Sansone M, Grassi R, Maio F, Palaia R, Tatangelo F,
65. Fusco R, Grassi R, Granata V, Setola SV, Grassi F, Cozzi D, Pecori B, Izzo F,
66. Granata V, Fusco R, Filice S, Catalano O, Piccirillo M, Palaia C, Izzo F,
67. Granata V, Fusco R, Avallone A, Catalano O, Filice F, Leongito M, Palaia
68. Granata V, Faggioni L, Grassi R, Fusco R, Reggiani A, Rega D, Maglialetti
69. Cellini F, Di Franco R, Manfrida S, Borzillo V, Maranzano E, Bergolizzi M,
70. Morganti AG. Fusco R, Deodato F, Santarelli M, Arcidiacono F, Rossi M,
71. Reina S, Merlotti A, Jereczek-Fossa BA, Tozzi A, Siege P, Cacciola A, Russi
72. Gambacorta MA, Scorsetti M, Ricardi U, Corvò R, Donato V, Muto P,
73. Mayerhoefer ME, Szomolanyi P, Jirak D, Berg A, Materka A, Dirisamer A,
74. Montella M, Ciaghi E, Bellifemine F, De Muzio F, Grazzini G, De Filippo M,
75. Mirabile A, Lucarelli NM, Sollazzo EP, Stabile Ianora AA, Sardaro A,
76. Nakata N. Recent technical development of artificial intelligence for
77. Kec A, Sezgin OS, Kayipmaz S. Comparing different planimetric
methods on volumetric estimations by using cone beam computed
tomography. Radiol Med. 2020;125(4):398–405. https://doi.org/10.1007/s11547-019-01133-8.

83. Neri E, Miele V, Coppola F, Grassi R. Use of CT and artificial intelligence in suspected or COVID-19 positive patients: statement of the Italian society of medical and interventional radiology. Radiol Med. 2020;125:505–8.

84. Caruso D, Polimi M, Zerunian M, Pucciarelli F, Poldoni T, Guido G,ucci B, Cracci R, Muscogiuri E, De Dominicis C, Laghi A. Quantitative Chest CT analysis in discriminating COVID-19 from non-COVID-19 patients. Radiol Med. 2021;126(2):243–9.

85. Neri E, Coppola F, Miele V, Bibbollino C, Grassi R. Artificial intelligence: Who is responsible for the diagnosis? Radiol Med. 2020;125(6):517–21. https://doi.org/10.1007/s11547-020-01135-9.

86. van Assen M, Muscogiuri G, Caruso D, Lee SJ, Laghi A, de Cecco CN. Artificial intelligence in cardiac radiology. Radiol Med. 2020;125(1):118–99. https://doi.org/10.1007/s11547-020-01277-w.

87. Granata V, Grassi R, Fusco R, Galdiero R, Setola SV, Palia R, Belli A, Silvestro L, Cozzi D, Brunese L, Petriolo A, Izzo F. Pancreatic cancer detection and characterization: state of the art and radiomics. Eur Rev Med Pharmacol Sci. 2021;25(10):3684–99. https://doi.org/10.23737/eurrev.202105_25935 (PMID: 34195578).

88. Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJ. Machine learning and clinical applications. Radiol Med. 2020;125(4):398–405. https://doi.org/10.1007/s11547-019-01133-8.

89. Rizzo S, Botta F, Raimondi S, Origgi D, Buscarino V, Colarieti A, Tomao F, Huynh E, Coroller TP, Narayan V, et al. Associations of radiomic data extracted from static and respiratory-gated CT scans with disease recurrence in lung cancer patients treated with SBRT. PLOS ONE. 2021;2009;63:179–84.

90. Santambrogio R, Mariani NM, Opocher E, Carrafiello G. LI-RADS to categorize liver nodules in patients at risk of HCC: tool or a gadget in daily practice? Radiol Med. 2021;126(12):1584–600. https://doi.org/10.1007/s11547-020-01169-z.

91. Agostini A, Borgheresi A, Mari A, Floridi C, Bruno F, Carotti M, Schicchi N, Barile A, Maggi S, Giovagnoni A. Dual-energy CT: theoretical principles and clinical applications. Radiol Med. 2019;124(12):1281–95. https://doi.org/10.1007/s11547-019-01107-8.

92. Park SH, Kim YS, Choi J. Dosimetric analysis of the effects of a temporary tissue expander on the radiotherapy technique. Radiol Med. 2021;126(3):347–44. https://doi.org/10.1007/s11547-020-01297-6.

93. Nakamura Y, Hijaki T, Honda Y, Tatsugami F, Tani C, Fukumoto W, Narita K, Kondo S, Akagi M, Awai K. Advanced CT techniques for assessing hepatocellular carcinoma. Radiol Med. 2021;126(7):925–35. https://doi.org/10.1007/s11547-021-01366-4.

94. Khalaf A, Alhassani A, Almazroui A, Almutairi A, Alhajeri S, Almuhairi A, Alzahrani I, Almusaial M. Metastases to the lung: the added additive value of MRI-based radiomics analysis to LI-RADS. Radiol Med. 2021;126(8):697–705. https://doi.org/10.1007/s11547-020-01174-2.

95. Choi JW, Kim H, Kim HC, et al. Blood oxygen level-dependent MRI for evaluation of early response of liver tumors to chemoembolization: an animal study. Anticancer Res. 2013;33:1867–92.

96. Boldrini L, Cusumano D, Chiloiero G, Casà C, Masciocchi C, Lenkwicz J, Cellini F, Dinapoli N, Azarino L, Tedoldi S, Gambarcia MA, De Spirito M, Valentini V. Delta radiomics for rectal cancer response prediction with hybrid 0.35 T magnetic resonance-guided radiotherapy (MRgRT): a hypothesis-generating study for an innovative personalized medicine approach. Radiol Med. 2019;124(12):145–53. https://doi.org/10.1007/s11547-018-0951-y.

97. Nazari M, Shiri I, Hajarfan G, Ovesi N, Abdollahi H, Deebband MR, Oveisiz M, Zaidi H. Noninvasive Fuhrman grading of clear cell renal cell carcinoma using computed tomography radiomic features and machine learning. Radiol Med. 2020;125(8):754–62. https://doi.org/10.1007/s11547-020-01169-z.

98. Borhani AA, Catania R, Velichko YS, Hectors S, Taooli B, Lewis S. Radiomics of hepatocellular carcinoma: promising roles in patient selection, prediction, and assessment of treatment response. Abdom Radiol (NY). 2021. https://doi.org/10.1007/s00261-021-03085-w.

99. Sagir KA. Radiomics in hepatocellular carcinoma. J Gastrointest Oncol. 2020;11(4):165–8. https://doi.org/10.21609/jgi-2020-00049-x.

100. Zhong X, Guan T, Tang D, Li J, Lu B, Cui S, Tang H. Differentiation of small (<3 cm) hepatocellular carcinomas from benign nodules in cirrhotic liver: the added additive value of MRI-based radiomics analysis to LI-RADS version 2018 algorithm. BMC Gastroenterol. 2021;21(1):155. https://doi.org/10.1186/s12876-021-01710-y.

101. Jiang H, Liu X, Chen J, Wei Y, Lee JM, Cao L, Wu Y, Duan T, Li X, Ma L, Song B. Man or machine? Prospective comparison of the version 2018 EASL-LI-RADS criteria and a radiomics model to diagnose hepatocellular carcinoma. Cancer Imaging. 2019;19(1):84. https://doi.org/10.1186/s40644-019-0266-9.

102. Molinaro ZF, Lu L, Vavasseur A, Orl, Péron JM, Luk L, Yang H, Ammari S, Saenger Y, Rousseau H, Zhou B, Schwartz LH, Delclôre L. Radiomics machine-learning signature for diagnosis of hepatocellular carcinoma in cirrhotic patients with indeterminate liver nodules. Eur Radiol. 2020;30(1):558–70. https://doi.org/10.1007/s00330-019-06347-w.
116. Houseni M, Mahmoud MA, Saad S, ElHussiny F, Shihab M. Advanced intra-tumoral structural characterization of hepatocellular carcinoma utilizing FDG-PET/CT: a comparative study of radiomics and metabolic features in 3D and 2D. Pol J Radiol. 2021;86:e64–73. https://doi.org/10.1144/gjr.2021.1033259.

117. Maruyama H, Yamauchi T, Nagamatsu H, Shiina S. AI-based radiological imaging for HCC: current status and future of ultrasound. Diagnostics (Basel). 2021;11(2):292. https://doi.org/10.3390/diagnostics11020292 (PMID: 33637322; PMCID: PMC7918339).

118. Yao Z, Dong Y, Wu G, Zhang Q, Yang D, Yu JH, Wang WP. Preoperative diagnostic prediction of hepatocellular carcinoma: Radiomics analysis based on multi-modal ultrasound images. BMC Cancer. 2018;18(1):1089. https://doi.org/10.1186/s12888-018-5003-4.

119. Lai Q, Spelletti G, Meninini G, Laureilo ZL, Tsilimigras DI, Pawlik TM, Rossi M. Prognostic role of artificial intelligence among patients with hepatocellular carcinoma: a systematic review. World J Gastroenterol. 2020;26(4):6679–88. https://doi.org/10.3748/wjg.v26.i6.6679.

120. Chen Y, Liu Z, Mo Y, Li B, Zhou Q, Peng S, Li S, Kuang M. Prediction of post-hepatectomy liver failure in patients with hepatocellular carcinoma based on radiomics using Gd-EOB-DTPA-enhanced MRI: the liver failure model. Front Oncol. 2021;11:605296. https://doi.org/10.3389/fonc.2021.605296.

121. Zhang L, Hu J, Hou J, Jiang X, Guo L, Tian L. Radiomics-based model using voxel-based acidosis-dissolved MR images: associations with recurrence-free survival of patients with hepatocellular carcinoma treated by surgical resection. Abdom Radiol (NY). 2021. https://doi.org/10.1007/s00261-021-03034-7.

122. Kuang Y, Li R, Jia P, Yu P, Zhou H, Zhu H, Jiang L, Jin S, Pang P, Ji W. MRI-based radiomics: nomograms predicting the short-term response after transarterial arterial chemoembolization (TACE) in hepatocellular carcinoma patients with diameter less than 5 cm. Abdom Radiol (NY). 2021. https://doi.org/10.1007/s00261-021-02992-2.

123. Chen M, Hao J, Toppatana W, Li S, Juengpanich S, Lin J, Tong C, Shen J, Zhang B, Wu J, Pocha C, Kudo M, Amedei A, Trevisani F, Sung PS, Ruan S, Tian W, Zhang X, Wan D, Huang Q, Ding Y, Xiao W. Differentiating hepatic epithelioid angiomyolipoma from hepatocellular carcinoma and focal nodular hyperplasia via radiomics models. Front Oncol. 2020;10:563407.

124. Granata V, Fusco R, Setola SV, Picone C, Vallenos P, Belli A, Incollonge P, Albino V, Tatangelo F, Izzo F, Petrelli A. Major and ancillary features according to LI-RADS in the assessment of combined hepatocellular-cholangiocarcinoma. Radiol Oncol. 2020;54(2):149–58. https://doi.org/10.2478/raro-2020-0029.

125. Granata V, Fusco R, Setola SV, Picone C, Vallenos P, Belli A, Incollonge P, Albino V, Tatangelo F, Izzo F, Petrelli A. Microvascular invasion and grading in hepatocellular carcinoma: correlation with major and ancillary features according to LI-RADS. Abdom Radiol (NY). 2019;44(8):2788–800. https://doi.org/10.1007/s00261-019-02056-6.

126. Chou H, Liu Z, Wang D, Zhu Q, Zhang Y, Lei K, Tang M, Gao Y, Chen S, Peng S, Kuang M. Radiomics using CT images for predictive prediction of futile resection in inapathetic cholangiocarcinoma. Eur Radiol. 2021;31(4):3695–705. https://doi.org/10.1007/s00330-021-06991-9.

127. Qin H, Hu X, Zhang J, Dai H, He Y, Zhao Z, Yang J, Xu Z, Hu X, Chen Z. Machine-learning radiomics to predict early recurrence in perihilar cholangiocarcinoma after curative resection. Liver Int. 2021;41(4):836–48. https://doi.org/10.1111/liv.14763 (Epub 2021 Sep 25).

128. Xiao X, Li B, Hu X, Wei J, Han Y, Liu X, Chen Z, Li B, Bai J, Chen Y, Wang J, Ni M, Tian J. Radiomics-based approach for predicting early recurrence in inapathetic cholangiocarcinoma after surgical resection: a multicenter study. Ann Nucl Int Conf IEEE Eng Med Biol Soc. 2021;2021:3659–62. https://doi.org/10.1109/EMBC46164.2021.9630029.

129. Tang Y, Zhang T, Zhou X, Zhao Y, Hu L, Liu Y, Wang H, Chen Z, Ma X. The preoperative prognostic value of the radiomics nomogram based on CT combined with machine learning in patients with inapathetic cholangiocarcinoma. World J Surg Oncol. 2021;19(1):45. https://doi.org/10.1186/s12957-021-02162-0.

130. Li MD, Lu XZ, Liu JF, Chen B, Xu M, Xie XY, Lu MD, Kuang M, Wang W, Park HJ, Park B, Park SY, Chon SH, Rhee H, Park JH, Cho ES, Yeom SK, Park S, Park MS, Lee SS. Preoperative prediction of postsurgical outcomes in mass-forming inapathetic cholangiocarcinoma based on clinical, radiologic, and radiomics features. Eur Radiol. 2021;31(11):16836–48. https://doi.org/10.1007/s00330-021-07926-6.

131. King MJ, Hectors S, Lee KM, Omidele O, Babb JS, Schwartz MB, Tabrizian P, Taouli B, Lewis S. Outcomes assessment in inapathetic cholangiocarcinoma using qualitative and quantitative imaging features. Cancer Imaging. 2020;20:20. https://doi.org/10.1039/d0ci00043g.

132. Xiang F, Wei S, Liu X, Liang X, Yang L, Yan S. Radiomics analysis of contrast-enhanced CT for the preoperative prediction of microvascular...
infection in mass-forming intrahepatic cholangiocarcinoma. Front Oncol. 2021;11:774117. https://doi.org/10.3389/fonc.2021.774117.

148. Liang W, Xu L, Yang F, Zhang L, Wan D, Huang Q, Niu T, Chen F. Novel nomogram for preoperative prediction of early recurrence in intrahepatic cholangiocarcinoma. Front Oncol. 2018;8:360. https://doi.org/10.3389/fonc.2018.00360.

149. Ji GW, Zhu FP, Zhang YD, Liu XS, Wu FY, Wang K, Xia YY, Zhang YD, Jiang WJ, Li XC, Wang XH. A radiomics approach to predict lymph node metastasis and clinical outcome of intrahepatic cholangiocarcinoma. Eur Radiol. 2019;29(7):3725–35. https://doi.org/10.1007/s00330-018-6046-7.

150. Mosconi C, Cuccetti A, Bruno A, Cappelli A, Bargellini I, De Benedittis C, Lorenzoni G, Gramenzi A, Tarantino FP, Panini L, Pettinato V, Modestino F, Peta G, Cioni R, Golfini R. Radiomics of cholangiocarcinoma on pretreatment CT can identify patients who would best respond to radioembolisation. Eur Radiol. 2020;30(8):4534–44. https://doi.org/10.1007/s00330-020-08679-9.

151. Xu H, Zou X, Zhao Y, Zhang T, Tang Y, Zheng A, Zhou X, Ma X. Differentiation of intrahepatic cholangiocarcinoma and hepatic lymphoma based on radiomics and machine learning in contrast-enhanced computed tomography: Technol Cancer Res Treat. 2021;20:15330382811039125.

152. Peng YT, Zhou CY, Lin P, Wen DY, Wang XD, Zhong XZ, Pan DH, Que Q, Li X, Chen L, He Y, Yang H. Preoperative ultrasound radiomics signatures for noninvasive evaluation of biological characteristics of intrahepatic cholangiocarcinoma. Acad Radiol. 2020;27(6):785–97. https://doi.org/10.1016/j.acra.2019.07.029.

153. Deng L, Chen B, Zhan C, Yu H, Zheng J, Bao W, Deng T, Zheng C, Wu L, Yang Y, Yu Z, Wang Y, Chen G. A novel clinical-radiomics model based on sarcopenia and radiomics for predicting the prognosis of intrahepatic cholangiocarcinoma after radical hepatectomy. Front Oncol. 2021;11:744311. https://doi.org/10.3389/fonc.2021.744311.

154. Li Q, Che F, Wei Y, Jiang HY, Zhang Y, Song B. Role of noninvasive imaging in the evaluation of intrahepatic cholangiocarcinoma: from diagnosis and prognosis to treatment response. Expert Rev Gastroenterol Hepatol. 2021;15(11):1367–79. https://doi.org/10.1080/17474124.2021.1974294.

155. Zhang J, Wu Z, Zhang X, Liu S, Zhao J, Yuan F, Shi Y, Song B. Machine learning: an approach to preoperatively predict PD-1/PD-L1 expression and outcome in intrahepatic cholangiocarcinoma using MRI biomarkers. ESMO Open. 2020;5(6):e000910. https://doi.org/10.1136/esmoopen-2020-000910.

156. Xue B, Wu S, Zheng M, Jiang H, Chen J, Jiang Z, Tian T, Tu Y, Zhao H, Shen X, Ramen K, Wu X, Zhang Q, Zeng Q, Zheng X. Development and validation of a radiomic-based model for prediction of intrahepatic cholangiocarcinoma in patients with intrahepatic lithiasis complicated by imagologically diagnosed mass. Front Oncol. 2021;10:598253.

157. Xu L, Wan Y, Luo C, Yang J, Yang P, Chen F, Wang J, Niu T. Integrating intratumoral and peritumoral features to predict tumor recurrence in intrahepatic cholangiocarcinoma. Phys Med Biol. 2021;66(12):125001. https://doi.org/10.1088/1361-6560/ac01f3.

158. Wang Y, Shao J, Wang P, Chen L, Ying M, Chai S, Ruan S, Tian W, Cheng Y, Zhang H, Zhang X, Wang X, Ding Y, Liang W, Wu L. Deep learning radiomics to predict regional lymph node staging for hilar cholangiocarcinoma. Front Oncol. 2021;11:721460. https://doi.org/10.3389/fonc.2021.721460.

159. Tang Y, Yang CM, Su S, Wang WJ, Fan LP, Shu J. Machine learning-based radiomics analysis for differentiation degree and lymphatic node metastasis of extrahepatic cholangiocarcinoma. BMC Cancer. 2021;21(1):1268. https://doi.org/10.1186/s12885-021-08947-6.

160. Zhao J, Zhang W, Zhu YY, Zheng HY, Xu L, Zhang J, Liu SY, Li FY, Song B. Development and validation of noninvasive MRI-based signature for preoperative prediction of early recurrence in perihilar cholangiocarcinoma. J Magn Reson Imaging. 2021. https://doi.org/10.1002/jmri.27846.

161. Yao X, Huang X, Yang C, Hu A, Zhou G, Ju M, Lei J, Shu J. Correction: A novel approach to assessing differentiation degree and lymph node metastasis of extrahepatic cholangiocarcinoma: prediction using a radiomics-based particle swarm optimization and support vector machine model. JMRI Med Inform. 2021;9(1):e25337. https://doi.org/10.2196/25337.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.