Cluster structures of 18O and 20O up to 20 MeV excitation energy from the (7Li,p)-reaction

T Dorsch1,2, H G Bohlen1, W von Oertzen1,3, R Krücken2, Th Faestermann2, M Mahgoub2, Tz Kokoalova1, C Wheldon1, M Milin4, H Wirth2 and R Hertenberger5

1 Hahn-Meitner-Institut Berlin, Glienicker Str. 100, D-14109 Berlin, Germany
2 Technische Universität München, Physik-Department E12, James-Franck-Str., D-85748 Garching, Germany
3 Freie Universität Berlin, Fachbereich Physik, Arnimallee 14, D-14195 Berlin, Germany
4 Rudjer Bošković Institute, Bijenicka 54, HR-10002 Zagreb, Croatia
5 Department of Physics, LMU München, Am Coulombwall 1, D-85748 Garching, Germany

E-mail: tatiana.dorsch@hmi.de

Abstract. We studied the band structure of 18O and 20O using the (7Li,p)-reaction at an incident energy of 44 MeV on 12C and 14C targets. Spectra have been measured from the ground state up to 20 MeV excitation energy. We found 27 and 38 new states for 18O and 20O, respectively. The even-parity bands have been analysed up to now, i.e., some bands were extended by further members. The 0^+ band head of the molecular band in 18O at 7.796(5) MeV was identified for the first time.

1. Introduction

Cluster structures in light nuclei have recently attracted much interest, in particular α-clustering. The cluster states based on α-particles and other strongly bound substructures are observed especially at excitation energies near the separation energies to these clusters, as described by the Ikeda diagram [1]. In neutron-rich light nuclei molecular-like states with a two-centre structure can be produced where, e.g., an α-particle is bound by valence neutrons to the core. Such clusters and states are for example well-known in beryllium and carbon isotopes [2, 3, 4, 5].

The 18O nucleus has been studied in the past with many reactions [6, 7, 8]. However detailed knowledge of the cluster and, in particular, of the molecular structures is still missing. The different structures of this nucleus can be characterized by the configurations (i) 16O\otimes2n, (ii) 14C$\otimes$$\alpha$, (iii) 14C$\otimes$6He, (iv) 12C$\otimes$2n$\otimes$$\alpha$ etc. All these structures can be populated in the 12C(7Li,p)18O reaction, which we used in our investigation. In this case we transfer 6He or rather an α-particle and 2 neutrons to the 12C target. The configuration (i) is characterized by 2-particle-0-hole (2p-0h) states with even parity. Another possibility is a (2p-2h) proton excitation of the 16O-core, which leads to (4p-2h) states with a strong parentage to the 14C$\otimes$$\alpha$ configuration. There also exists the molecular 12C\otimes2n$\otimes$$\alpha$ structure consisting of a 12C-core and an α-particle, which is bound by two valence neutrons in $2h\omega$ orbits. In an equivalent shell model description this corresponds to a (6p-4h) configuration with 2 protons and 4 neutrons in the (sd) shell. An odd-particle-odd-hole excitation produces odd parity states by excitation from the $(1p)$ shell to the (sd) shell. Similar considerations apply to the 20O nucleus.
These cluster structures usually correspond to large deformations of the nucleus. Strongly deformed asymmetric cluster configurations, as we are dealing with in 18O, lead to doublets of parity-split bands [9]. Several cluster bands are already known in the oxygen isotopes 18O and 20O. The 14C⊗α band in 18O is known up to the 8^+ state [6, 7]. The three members 2^+, 4^+ and 6^+ of the 12C⊗$2n$⊗α molecular band are also already known [8, 10]. The missing 0^+ band head was predicted by Fortune [10] at 7.11 MeV, but we have localized it at a different place (see below). This nucleus has also been studied in the microscopic cluster model in the GCM framework by Descouvemont [11]. Concerning 20O, only little is known about cluster structures. The (4p-0h) ground state band and three members 0^+, 2^+ and 4^+ of the (6p-2h) cluster band with the equivalent 16C⊗α configuration were identified by LaFrance [12]. GCM calculations have also been performed for 20O by Descouvemont [13] using the 16O⊗$2n$⊗$2n$ configuration.

2. Experiment
The (7Li,p)-reaction has been measured at the Q3D magnetic spectrograph of the Maier-Leibnitz-Laboratory in Garching using an incident energy of 44.0 MeV. The measurements have been performed at three scattering angles 10°, 20° and 30°. The 7Li(3^+)-beam intensity was typically about 200 nA. The target thicknesses were 100 μg/cm2 for 12C and 70 μg/cm2 for 14C. Furthermore, we used a V$_2$O$_5$ target to identify contamination lines from 16O in both carbon targets (it turned out, that the oxygen content was negligibly small). The outgoing protons were detected in the focal plane of the spectrograph in a detector system described in [14]. For each isotope spectra have been measured from the ground state up to 20 MeV excitation energy with a resolution of 45 keV. To cover this wide energy range it was necessary to measure the (7Li,p)-reaction at ten magnetic field settings. For each isotope the resulting ten parts of spectra were joined together in the overlapping regions, and the counting rates were adjusted to a common scale. The spectra have been calibrated using known states of 18O and 20O, respectively. A part of the full 18O spectrum between 6.2 MeV and 13.7 MeV excitation energy is shown in Fig. 1.

![Figure 1](https://example.com/figure1.png)

Figure 1. Spectrum of the 12C(7Li,p)18O reaction measured at 44.0 MeV incident energy and $\theta_{\text{Lab}} = 10^\circ$. Known spin and parity assignments [15] are indicated. The small gap in the spectrum marked by the asterisk results from a shielding plate to suppress the elastic scattering, which enters the focal plane at this point.

In the analysis of the spectra the lines have been fitted using Gaussians and, above particle...
thresholds, Breit-Wigner line shapes. The flat background in Fig. 1 corresponds to the 3-body phase-space distribution (cyan) for the three particles p (detected), n and 17O (both not detected). At about 12.8 MeV the 4-body phase-space distribution ($p + n + n + ^{16}$O) (pink line) becomes visible. Full spectra for 18O also exist at 20° and 39°. Similar spectra were obtained for 20O at 10°, 20° and 39°. As an example a part of the spectrum of the 14C(7Li,p)20O reaction up to 6 MeV excitation energy is shown in Fig. 2. Since the 14C targets contained some 12C, the spectrum measured on the 12C target was used in the fit also as a background in this case.

![Figure 2. Spectrum of the 14C(7Li,p)20O reaction up to 6.4 MeV excitation energy measured at 44.0 MeV incident energy and $\theta_{Lab}=10^\circ$. Shown spin and parity assignments were taken from the literature [16]. 18O lines resulting from 12C are indicated.](image)

3. Results and Discussion

The excitation energy E_x of the members of a rotational band depends on the angular momentum J of these states as follows: $E_x = (h^2/\Theta) \cdot J(J+1) + E_0$. Here Θ is the moment of inertia of the deformed nucleus in a given cluster configuration and E_0 is the offset energy. We present here first results for the bands, where some members are already known, and extend these by further band members using the given relation between E_x and J and further information from the cross sections and their angular dependences. Tentative assignments of the new members of the rotational bands have been made in this way.

3.1. 18O rotational bands

All members of the well-known ground state band of 18O are observed [6]: 0$^+$ at 0.00 MeV, 2$^+$ at 1.98 MeV and 4$^+$ at 3.36 MeV. We also observe the 14C⊗α cluster band based on the 0$^+$ band head at 3.64 MeV and the members at 5.26 MeV (2$^+$), 7.12 MeV (4$^+$), 11.70 MeV (6$^+$) and 17.60 MeV (8$^+$) [17]. The three known members [8, 10]: 2$^+$ at 8.22 MeV, 4$^+$ at 10.29 MeV and 6$^+$ at 12.55 MeV of the 12C⊗2n⊗α molecular band are also identified. The 0$^+$ band head, suggested by Fortune at 7.11 MeV [10], has now been identified for the first time at 7.796(5) MeV. Furthermore, using the $J(J+1)$ rule for the excitation energy and taking into account, that the states of this molecular band should be strongly populated in our reaction, we extended this band by tentatively assigned states $J^2=8^+$ at 15.80 MeV and 10^+ at 20.38 MeV.
Figure 3. Even-parity bands of 18O studied in the present work. Solid circles refer to the members of the (2p-0h) ground state band, solid squares to the 14C⊗α cluster band and solid triangles to the 12C⊗2n⊗α molecular band. The lines indicate a linear fit to the data.

Fig. 3 shows these results in a plot of excitation energy E_x versus $J(J+1)$ for the states of the ground state band (solid circles), the α-cluster band (solid squares) and the molecular band (solid triangles) in 18O. One can see, that the excitation energies for the α-cluster band follow quite well the $J(J+1)$ dependence. Concerning the molecular band, the known 2$^+$, 4$^+$ and 6$^+$ states, the suggested 8$^+$ and 10$^+$ members and the new 0$^+$ state at 7.8 MeV also lie all along a straight line in the plot. Theoretical calculations of Descouvemont and Baye [11] using a 14C⊗α structure are in a good agreement with the experimental data for the cluster band, but for the ground state band they are 5 MeV below the experimental values and for the known three members of the molecular band 2 MeV above the data.

The 12C⊗2n⊗α rotational band has a very small slope parameter $\hbar^2/\Theta = 0.114$ MeV (for comparison: the slope for the 16O⊗4n ground state band is 0.330 MeV and for the 14C⊗α cluster band 0.183 MeV). This means that the molecular band has a very large moment of inertia Θ, which corresponds to a strong deformation of the structure and a large distance between the 12C-core and the α-particle in this configuration.

3.2. 20O rotational bands
States in 20O are known up to about 13 MeV [12, 18]. To investigate the cluster structure of this isotope we have measured the 14C(7Li,p)20O reaction up to 20.2 MeV excitation energy. The analysis has been performed in same way as for 18O. In 20O all members of the 16O⊗4n ground state band [12] are observed: 0.00 MeV (0$^+$), 1.67 MeV (2$^+$) and 3.57 MeV (4$^+$). We identify also the three known members of the 16C⊗α cluster band based on the 0$^+$ band head at 4.46 MeV with the members 5.24 MeV (2$^+$) and 7.75 MeV (4$^+$). Furthermore, we extended this band suggesting states with $J^\pi = 6^+$ at 10.92 MeV and $J^\pi = 8^+$ at 15.72 MeV. We have also indications for the 14C⊗2n⊗α molecular band in 20O based on the 0$^+$ band head at 9.77 MeV.

4. Summary and Outlook
The spectra of 18O and 20O have been measured from the ground state up to 20 MeV excitation energy and many new states were found. The band structure has been analyzed and, as a first result, the known even-parity cluster bands were extended by new members. In 18O the 0$^+$ band head could be identified at 7.796 MeV. Further results are expected in the ongoing analysis for odd-parity states and for the corresponding band structures. They will give additional information for parity-split bands and asymmetric molecular structures.
5. Acknowledgments
The technical staff at MLL is gratefully acknowledged for the stable operation of the accelerator with the high-current 7Li-beam. Prof. Dr. Martin Freer is gratefully acknowledged for providing the 14C target.

6. References
[1] Ikeda K, Takigawa N and Horiuchi H 1968 Japan. Suppl. Prog. Theor. Phys., Extra Number p 464
[2] von Oertzen W 1997 Z. Phys. A 357 355
[3] von Oertzen W 2001 Eur. Phys. J. A 11 403
[4] Bohlen H G et al 2003 Nucl. Phys. A 722 3
[5] von Oertzen W 2004 et al. Eur. Phys. J. A 21 193
[6] Fortune H T, Medsker L R and Bishop J N 1978 Nucl. Phys. A 309 221
[7] Cunsolo A et al 1981 Phys. Rev. C 24 476
[8] Curtis N 2002 et al Phys. Rev. C 66 024315
[9] von Oertzen W 2004 Nucl. Phys. A 734 1385
[10] Fortune H T 1978 Phys. Rev. C 18 1053
[11] Descouvemont P and Baye D 1985 Phys. Rev. C 31 2274
[12] LaFrance S et al 1979 Phys. Rev. C 20 1673
[13] Descouvemont P 1998 Phys. Lett. B 437 7
[14] Wirth H F 2001 PhD thesis TU Munich 2001
[15] Tilley D R, Weller H R, Cheves C M and Chasteler R M 2000 Nucl. Phys. A 595 1
[16] Tilley D R, Cheves C M, Kelley J H, Raman S and Weller H R 1998 Nucl. Phys. A 636 6
[17] Cunsolo A et al 1982 Phys. Lett. B 112 121
[18] Sumithrarachchi C S et al 2006 Phys. Rev. C 74 024322