Latest Results from Daya Bay

J. Pedro Ochoa-Ricoux*
Pontificia Universidad Católica de Chile
*on behalf of the Daya Bay Collaboration
Neutrino 2018, Heidelberg
Outline

- The Daya Bay Experiment
- New Results*
 - New oscillation measurement
 - Improved measurement of reactor antineutrino flux
 - Search for a time-varying electron antineutrino signal
- Brief review of other results
- Outlook & Summary

* = shown here for the first time. Articles in preparation
Daya Bay Basics

- Daya Bay was designed to measure the θ_{13} mixing angle:

$$P_{\bar{\nu}_e \rightarrow \nu_e} = 1 - \sin^2 2\theta_{13} \left(\cos^2 \theta_{12} \sin^2 \frac{\Delta m_{31}^2 L}{4E} + \sin^2 \theta_{12} \sin^2 \frac{\Delta m_{32}^2 L}{4E} \right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \frac{\Delta m_{21}^2 L}{4E}$$

- Keys to a precise measurement:
 - High-statistics
 - Suppressing backgrounds
 - Keeping systematics under control
 - Relative near/far measurement
 - Make detectors as similar as possible (design, construction & calibration)

With > 5 years of data, controlling systematic uncertainties becomes increasingly important
Experimental Setup

- 8 identically designed detectors distributed in three underground experimental halls (EHs) beside the Daya Bay Power Plant in China

Six 2.9 GWth reactors distributed in 3 Nuclear Power Plants (NPPs)

Among the most powerful nuclear power complexes in the world!
Antineutrino Detection

- Antineutrinos are detected via the Inverse Beta Decay (IBD) reaction:
 \[\overline{\nu}_e + p \rightarrow e^+ + n \]

- Coincidence between positron and neutron signals allows for powerful background rejection

- Energy of positron preserves information about energy of incoming \(\overline{\nu}_e \)
The antineutrino detectors (ADs) are “three-zone” cylindrical modules immersed in water pools:

- **Daya Bay Detectors**
- **Energy resolution:** $\sigma_E/E \cong 8.5%/\sqrt{E}[\text{MeV}]
- **Double purpose:** shield the ADs and veto cosmic ray muons

Images:
- 192 8” PMTs
- Gd-doped Liquid Scintillator (LS)
- Mineral Oil
- Data from:
 - NIM A 811, 133 (2016)
 - NIM A 773, 8 (2015)
A Selection of Pictures
We have new oscillation results with **1958 days of data**

Select unambiguous prompt-delayed pairs with right energies and time separation, not in coincidence with a muon

- $1 \, \mu s < \Delta t < 200 \, \mu s$
- $0.7 \, \text{MeV} < E_{\text{prompt}} < 12 \, \text{MeV}$
- $6 \, \text{MeV} < E_{\text{delayed}} < 12 \, \text{MeV}$

- **< 2% background** in all halls
- Roughly 60% increase in statistics with respect to previous result
- Other important improvements (see next slides)
Improved Energy Response Model

- A model is needed to convert reconstructed positron energy to antineutrino energy.

- Energy response is non-linear mainly due to two reasons:
 - Normal quenching + Cerenkov light in liquid scintillator
 - Response of the electronics

- Carried out two key measurements:
 - End of 2015: installation of a full FADC readout system in EH1-AD1, taking data simultaneously with standard electronics.
 - Early 2017: deployment of ^{60}Co calibration sources with different encapsulating materials, to constrain optical shadowing effects.

Graph

![Graph showing energy response and non-linearity](image)

- **Gamma data**
- **FADC data**
- **Best fit model**

Note: Both in the order of 10%!
• The model is built based on various gamma peaks and the continuous 12B spectrum
 - Validated with low energy $\beta+\gamma$ spectra from 212Bi and 214Bi
 - Halved uncertainty of absolute energy scale to $\sim0.5\%$
Improved $^{9}\text{Li}/^{8}\text{He}$ and SNF Estimations

- β-n decays of cosmogenically produced $^{9}\text{Li}/^{8}\text{He}$ are indistinguishable from $\bar{\nu}_{e}$ signal
- Now can take advantage of very large statistics:

 Apply a large E_{prompt} cut to enhance the $^{9}\text{Li}/^{8}\text{He}$ fraction:

 Fit the time-since-last-muon distribution

$^{9}\text{Li}/^{8}\text{He}$ uncertainty in near ADs reduced from 50% to 30%

- Also, a review of the spent nuclear fuel history with power plant reduced its uncertainty from 100% to 30% (SNF=0.3% of total rate)
Relative Detection Efficiency

The relative detection efficiency uncertainty and the relative energy scale uncertainty are the dominant systematics for θ_{13} and $|\Delta m^2_{ee}|$:

- Relative Gd capture fraction uncertainty < 0.10%
- Relative energy scale uncertainty < 0.2%

Achieve a relative detection efficiency uncertainty of 0.13%
Data Set

• Summary of the 1958 days data sample:

	EH1 AD1	EH1 AD2	EH2 AD3	EH2 AD8	EH3 AD4	EH3 AD5	EH3 AD6	EH3 AD7
$\bar{\nu}_e$ candidates	830036	964381	889171	784736	127107	127726	126666	113922
DAQ live time (days)	1536.621	1737.616	1741.235	1554.044	1739.611	1739.611	1739.611	1551.945
ε_μ	0.8261	0.8221	0.8576	0.8568	0.9831	0.9831	0.9829	0.9833
ε_m	0.9744	0.9748	0.9758	0.9757	0.9761	0.9760	0.9758	0.9758
Accidentally (day$^{-1}$)	8.27 ± 0.08	8.12 ± 0.08	6.00 ± 0.06	5.86 ± 0.06	1.06 ± 0.01	1.00 ± 0.01	1.03 ± 0.01	0.86 ± 0.01
Fast neutron (AD$^{-1}$ day$^{-1}$)	0.79 ± 0.10	0.57 ± 0.07	0.05 ± 0.01	0.05 ± 0.01	0.05 ± 0.01	0.05 ± 0.01	0.05 ± 0.01	0.05 ± 0.01
9Li/8He (AD$^{-1}$ day$^{-1}$)	2.38 ± 0.66	1.59 ± 0.49	0.19 ± 0.08	0.19 ± 0.08	0.19 ± 0.08	0.19 ± 0.08	0.19 ± 0.08	0.19 ± 0.08
Am-C correlated 6-AD (day$^{-1}$)	0.29 ± 0.13	0.27 ± 0.12	0.30 ± 0.14	0.24 ± 0.11	0.23 ± 0.10	0.23 ± 0.10	0.23 ± 0.10	0.23 ± 0.10
Am-C correlated 8-AD (day$^{-1}$)	0.15 ± 0.07	0.14 ± 0.06	0.12 ± 0.05	0.13 ± 0.06	0.04 ± 0.02	0.03 ± 0.02	0.03 ± 0.02	0.04 ± 0.02
13C$(\alpha,n)^{16}$O (day$^{-1}$)	0.08 ± 0.04	0.06 ± 0.03	0.04 ± 0.02	0.06 ± 0.03	0.04 ± 0.02	0.04 ± 0.02	0.04 ± 0.02	0.04 ± 0.02
$\bar{\nu}_e$ rate (day$^{-1}$)	659.36 ± 1.00	681.09 ± 0.98	601.83 ± 0.82	595.82 ± 0.85	74.75 ± 0.23	75.19 ± 0.23	74.56 ± 0.23	75.33 ± 0.24

TABLE I. Summary of signal and backgrounds. Rates are corrected for the muon veto and multiplicity selection efficiencies $\varepsilon_\mu \cdot \varepsilon_m$. The measured ratio of IBD rates in AD1 and AD2 in the 6+8 AD period (AD3 and AD8 in the 8+7 AD period) is 0.981±0.002 (1.014±0.002) while the expected ratio is 0.982 (1.013).

• Some highlights:
 - More than 3.9 million antineutrino interactions (0.5 million at far site)
 - Statistical error in $\bar{\nu}_e$ rates: ~0.11% (near ADs), ~0.29% (far ADs)
 - Background uncertainty in $\bar{\nu}_e$ rates: ~0.12% (all ADs)
 - Relative efficiency uncertainty: 0.13% (all ADs)
Oscillation Results with 1958 Days

- See a clear rate and shape distortion that fits well to the 3-neutrino hypothesis:

\[\chi^2/\text{ndf} = 8.8/6 \] (p-value = 0.19)

Nothing abnormal found with two far ADs whose rates deviate from best-fit
Oscillation Results with 1958 Days

- Measure $\sin^2 2\theta_{13}$ and $|\Delta m^2_{ee}|$ to 3.4% and 2.8% respectively

\[
P(\bar{\nu}_e \to \bar{\nu}_e) = 1 - \sin^2 2\theta_{13} \sin^2 \frac{1.267 \Delta m^2_{ee} L}{E} - \text{solar term}
\]

\[
\sin^2 2\theta_{13} = 0.0856 \pm 0.0029
\]

\[
|\Delta m^2_{ee}| = (2.52 \pm 0.07) \times 10^{-3} \text{ eV}^2
\]

The statistical uncertainty contributes about 60% (50%) of the total θ_{13} (Δm^2_{ee}) uncertainty.

Results are cross-checked by a few independent analyses.
Absolute Antineutrino Flux

- Previous measurement of the absolute reactor $\bar{\nu}_e$ flux compared to the Huber+Mueller expectation:
 \[R_{\text{data/pred}} = 0.946 \pm 0.020 \text{ (exp.)} \]
 - systematics-dominated from absolute detection efficiency

- New strategy: take new neutron calibration data and use it to constrain the “neutron detection efficiency” ε_n

Source	ε	$\delta \varepsilon / \varepsilon$
Target protons		0.92%
Flasher cut	99.98%	0.01%
Capture time cut	98.70%	0.12%
Prompt energy cut	99.81%	0.10%
Gd capture fraction	84.17%	0.95%
nGd detection efficiency	92.7%	0.97%
Spill-in correction	104.9%	1.00%
Combined	80.6%	1.93%

Carried out an extensive calibration campaign in late 2016 / early 2017

Deployed two neutron sources ($^{241}\text{Am-}^{13}\text{C}$ and $^{241}\text{Am-}^{9}\text{Be}$) along three vertical calibration axes

ACU=Automated Calibration Unit
Absolute Antineutrino Flux

- For each calibration point define a proxy for ε_n:

 benchmark for detector geometry, nonlinearity, neutron and gamma models

 $$F = \frac{N([6,12] \text{ MeV})}{N([1.5,12] \text{ MeV})}$$

- Compare with 20 different simulation models (5 neutron scattering x 4 Gd capture gamma emission models)
 - Extract a correction on ε_n from the measured data-MC differences in F via linear regression
 - Uncertainty conservatively estimated with spread from “reasonable” models

 $$\varepsilon_n = (81.48 \pm 0.60)\%$$

 Results with 1230 days

 $$R_{\text{data/pred}} = 0.952 \pm 0.014(\exp.) \pm 0.023(\text{model})$$

 $$\sigma_f = (5.91 \pm 0.09) \times 10^{-43} \text{ cm}^2 / \text{fission}$$
Search for Time-Varying Antineutrino Signal

- We performed a search for a time-varying $\bar{\nu}_e$ signal over 704 calendar days
 - Motivated by models with ultralight dark matter coupling to neutrinos, as well as Lorentz and CPT violation.

- Search for any periodicity with a Lomb-Scargle (LS) periodogram:

Hall	Frequency	Period	Confidence Level
EH1	0.15 hr$^{-1}$	6.6 hr	69.8%
EH2	0.10 hr$^{-1}$	10.4 hr	5.1%
EH3	0.11 hr$^{-1}$	8.9 hr	33.9%

 No signal was found

- Also search for a sidereal modulation in the context of the Standard Model Extension (SME):
 - Thanks to its multiple directions and high-statistics, Daya Bay is able to disentangle the complex relationship between sidereal amplitudes and individual SME coefficients
Other Recent Results

- Two cosmic-ray results from Daya Bay were released recently:
 - **Seasonal Variation of the Underground Cosmic Muon Flux**
 - Observe a clear correlation between atmospheric temperature and variations in muon flux
 - *JCAP 1801 n°1 (2018)*
 - **Cosmogenic neutron production at Daya Bay**
 - Measurement of neutron yield in LS. Important input for underground experiments.
 - *Phys. Rev. D97, 052009 (2018)*
Other Results

- Finally, there are also other older results:

 - **Evolution of the Reactor Antineutrino Flux and Spectrum**

 Physics Rev. Lett. 182, 251801 (2017)

 - **Independent measurement of θ_{13} via neutron capture on hydrogen**

 Physics Rev. D93, 072011 (2016)

 - **Improved search for a sterile neutrino (with Bugey-3 + MINOS)**

 Physics Rev. Lett. 117, 151802 (2016)
 Physics Rev. Lett. 117, 151801 (2016)

 - **Search for neutrino decoherence**

 Eur. Phys. J. C77, 606 (2017)
Outlook & News

• Daya Bay will run until 2020
 - Will achieve < 3% precision in $\sin^22\theta_{13}$

• After the special calibration campaign in early 2017, EH1-AD1 was taken down permanently and its Gd-LS replaced with JUNO LS
 - Loss of this detector will only impact $\sin^22\theta_{13}$ precision by < 0.05%
 - Carrying out measurements on LS R&D in conjunction with subset of JUNO collaboration
 • Evaluating performance of purification methods and of different LS recipes, among others

• Also working on improving our other results:
 - A single-channel non-linearity correction derived from the FADC data will improve our absolute reactor antineutrino shape measurement
 - New sterile neutrino, nH and fuel evolution results are already well advanced
Summary

• Daya Bay is releasing three new results this summer:

\[
\sin^2 2\theta_{13} = 0.0856 \pm 0.0029
\]

\[
|\Delta m_{ee}^2| = (2.52 \pm 0.07) \times 10^{-3} \text{ eV}^2
\]

\[
\Delta m_{32}^2 = (2.47 \pm 0.07) \times 10^{-3} \text{ eV}^2 \text{ (NH)}
\]

Articles in preparation

• Also a search for a time-varying electron antineutrino signal.

• We also have many other recent results in other areas

We encourage you to look at the 9 posters from Daya Bay in this conference

• Much work is going into better understanding and improving our systematics, given the statistical precision we have achieved with a > 5 year data set

• Future looks bright ahead with ~2.5 more years of data taking, as well as many new and improved results in the works
Thank you for your attention!