A note on b-coloring of Kneser graphs

Saeed Shaebani
School of Mathematics and Computer Science
Damghan University
P.O. Box 36716-41167, Damghan, Iran
shaebani@du.ac.ir

Abstract

In this short note, the purpose is to provide an upper bound for the b-chromatic number of Kneser graphs. Our bound improves the upper bound that was presented by Balakrishnan and Kavaskar in [b-coloring of Kneser graphs, Discrete Appl. Math. 160 (2012), 9-14].

Keywords: b-coloring, b-chromatic number, Kneser graph.

Mathematics Subject Classification: 05C15

1 Introduction

In this note, simple graphs whose vertex sets are nonempty and finite are considered. Let G be a graph with vertex set $V(G)$. A coloring of G stands for a function $f : V(G) \rightarrow C$ such that for each c in C, the set $f^{-1}(c)$ is independent; in this case, we think of each c in C as a color and call $f^{-1}(c)$ a color class of f.

Let G be a graph and $f : V(G) \rightarrow C$ be a coloring of G. The vertex v of G is said to be a color-dominating vertex with respect to f if $f(N[v]) = C$, i.e., the vertex v sees all colors on its closed neighborhood. Also, the coloring $f : V(G) \rightarrow C$ is called a b-coloring of G whenever each of its color classes contains at least one color-dominating vertex. The b-chromatic number of G, denoted by $\varphi(G)$, is defined to be the maximum positive integer k for which G admits a b-coloring $f : V(G) \rightarrow C$ with $|C| = k$. This concept was introduced by Irving and Manlove in 1999 in [3], and since then there exists an extensive literature on it; see [4] for a survey.

Suppose that n and m are positive integers and $n \geq m$. The Kneser graph $KG(n, m)$ is the graph whose vertex set is the set of all m-subsets of $\{1, 2, \ldots, n\}$, in which two vertices A and B are declared to be adjacent iff $A \cap B = \emptyset$. In [1] 2 5 7, b-coloring of Kneser graphs has been investigated.

Every d-regular graph G satisfies $\varphi(G) \leq d + 1$ [3]. Kratochvíl, Tuza, and Voigt [3] showed that for each d there are only finitely many d-regular graphs up to isomorphism whose b-chromatic numbers are less than or equal to d. So, finding such regular graphs is of interest. In this regard, Balakrishnan and Kavaskar [1] presented some desired Kneser graphs meeting this property.

Theorem 1. [1] Let $n \geq 2$ and $i \geq 0$. Also, let d be the degree-regularity of the Kneser graph $G = KG(2n + k, n)$. If $|V(G)| \leq 2d + 2 - 2i$, then $\varphi(G) \leq d - i$.

The aim of this short note is to provide an improvement of Theorem 1 which is done in the next section.
2 The main result

This section concerns the main result of the note; as follows.

In Theorem 1, the statement $|V(G)| \leq 2d + 2 - 2i$ is equivalent to $\left\lceil \frac{|V(G)|-2}{2} \right\rceil \leq d - i$. Therefore, the upper bound in this Theorem, which is $d - i$, is greater than or equal to $\left\lceil \frac{|V(G)|-2}{2} \right\rceil$. In the next theorem, we provide a sharp upper bound for the b-chromatic number of Kneser graphs, which is asymptotic to $\frac{|V(G)|}{3}$.

Theorem 2. For fixed $n \geq 2$, the Kneser graph $G_k := KG(2n+k,n)$ satisfies

$$\varphi(G_k) \leq (1 + o(1))\frac{|V(G_k)|}{3},$$

where the $o(1)$ term tends to zero as k tends to infinity.

Proof. Let C be the set of color classes of an arbitrary b-coloring of G_k. For each color class S in C, we set $S^0 := \bigcap_{A \in S} A$; and call S an intersecting color class whenever $S^0 \neq \emptyset$. Let us denote by I the set $\{S \mid S \in C, \ S^0 \neq \emptyset\}$.

Consider two distinct color classes S and T in C; and let \hat{S} be a color-dominating vertex of S. The vertex \hat{S} is adjacent to a vertex of T, say T_1. So, $\hat{S} \cap T_1 = \emptyset$. Since $S^0 \cap T^0 \subseteq \hat{S} \cap T_1$, we have $S^0 \cap T^0 = \emptyset$. This shows that the function $f : I \rightarrow \{1, 2, \ldots, n + k + 1\}$ that assigns the minimum of S^0 to every S in I, is an injective mapping. Therefore, $|I| \leq n + k + 1$.

Each non-intersecting color class of C contains at least three vertices of G_k. Hence, $|C - I| \leq \frac{|V(G_k)| - |I|}{3}$. Accordingly, $|C| \leq \frac{|V(G_k)| + 2|I|}{3} \leq \frac{|V(G_k)| + 2(n + k + 1)}{3}$. Now, since $\lim_{k \to \infty} \frac{2(n + k + 1)}{2n + k} = 0$, we conclude that $\varphi(G_k) \leq (1 + o(1))\frac{|V(G_k)|}{3}$, which is desired.

In view of the proof of the Theorem 2, we proved that for any fixed positive integer n, the b-chromatic number of Kneser graph $G_k := KG(2n+k,n)$ is less than or equal to $U(G_k) := \frac{|V(G_k)|+2(n+k+1)}{3}$. The upper bound $U(G_k)$ is sharp for $n = 1$.

Let us regard an arbitrary integer $n \geq 2$ as fixed. Asymptotically in k, the bound $U(G_k)$ is $\frac{|V(G_k)|}{3}$. In [5], Javadi and Omoomei showed that for $n = 2$, the b-chromatic number of G_k is asymptotic to $\frac{|V(G_k)|}{3}$. Hence, for $n = 2$, this bound is asymptotically correct; i.e., the ratio $\frac{\varphi(G_k)}{U(G_k)}$ goes to 1 as k tends to infinity.

Since $d + 1$ is an upper bound for the b-chromatic number of any d-regular graph, it is worth pointing out that for a fixed positive integer $n \geq 2$, if d_k denotes the degree of any vertex of G_k, then the upper bound in Theorem 2 is asymptotically $\frac{d_k}{3}$, because the ratio $\frac{d_k}{|V(G_k)|}$ tends to 1 as k tends to infinity.

References

[1] R. Balakrishnan, T. Kavaskar, b-coloring of Kneser graphs, *Discrete Appl. Math.* 160 (2012), 9-14.

[2] H. Hajialiollahsan, On the b-chromatic number of Kneser graphs, *Discrete Appl. Math.* 158 (2010), 232-234.
[3] R. W. Irving, D. F. Manlove, The b-chromatic number of a graph, *Discrete Appl. Math.* **91** (1999), 127-141.

[4] M. Jakovak, I. Peterin, The b-chromatic number and related topics—a survey, *Discrete Appl. Math.* **235** (2018), 184-201.

[5] R. Javadi, B. Omoomi, On b-coloring of the Kneser graphs, *Discrete Math.* **309** (2009), 4399-4408.

[6] J. Kratochvil, Zs. Tuza, M. Voigt, On the b-chromatic number of graphs, *In WG 02: Graph-Theoretic Concepts Comput. Sci., Lecture Notes in Comput. Sci.* **2573** (2002), 310-320.

[7] S. Shaebani, On b-continuity of Kneser graphs of type $KG(2k+1, k)$, *Ars Combin.* **119** (2015), 143-147.