Research Paper
Predicting the Prevalence of COVID-19 and its Mortality Rate in Iran Using Lyapunov Exponent

*Fatemeh Mohammadi1, Saeedeh Kouzehgari2

1. Department of Biomedical Engineering, Faculty of Medical Science and Technologies, Science and Research Branch, Azad University, Tehran, Iran.
2. Department of International Relations, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran.

ABSTRACT

Background: COVID-19 was first reported in late December 2019 in Wuhan, China, and spread rapidly throughout the world including Iran.

Objective: The purpose of this paper is to predict the prevalence of coronavirus and the number of confirmed cases and deaths in Iran based on the theory of chaos and measuring the Lyapunov exponent.

Methods: In this analytical study, the number of confirmed cases, recovered patients, total tests, and deaths between February 20 and May 30, 2020 were collected daily from the website of the Iranian Ministry of Health and Medical Education. The prevalence rate and the time to reach saturation in a short period were estimated using a formula using Lyapunov exponent and the initial and final number of confirmed cases in Matlab software.

Findings: Simulation of all confirmed cases between 20 February 2020 to 4 May 2020 show the number of people infected with the coronavirus would be close to saturation, but in end of May 2020 the number of people with the disease re-entered the second phase of increase. The slope of the simulation curve decreases in the second phase and the virus spreads in May at a slower rate than in the first phase (April). The simulation diagram of the total confirmed patients to the total number of tests performed also shows the entry into the second phase of increasing in May.

Conclusions: Simulation results of all confirmed cases and total deaths in Iran, using chaos theory and the Lyapunov-based model, can properly represent the real data and can predict the trend of spread and time to approach saturation in a short time. Sensitivity to the initial condition in the equation by changing the quarantine restrictions and the observance of health protocols causes a change in the rate of total number of confirmed patients enters the third or fourth increasing phase. Also, based on the calculated deaths, it is predicted that the total number of deaths at the end of May will reach less than 5% of the total number of people who have recovered and died.

Extended Abstract

1. Introduction

The prevalence of infectious and epidemic diseases has always been associated with many adverse effects and changes. Mathematical modeling of the spatial and temporal spread of infectious diseases and their epidemic simulation has been the subject of a number of studies [1-4]. Most models are based on solving the governing differential equations by simplifying the problem [9, 10]. Others try to study this process using the statistics and
The behavior of epidemics, like all living and biological systems, is chaotic. Chaos reflects the behavior of natural and living systems over time. This behavior occurs in natural and biological systems due to the interactions and the emergent properties and sensitivity to initial conditions; therefore, the spread of the virus reflects a chaotic behavior. Given the recent and serious crisis of Covid-19 virus in Iran and many countries around the world, we need a scientific analysis to be able to estimate the necessary predictions of the spread of this disease. Using chaos theory and calculating Lyapunov exponent, this paper aimed to predict the number of coronavirus cases in Iran in a short period and estimate the time of reaching saturation. It also analyzes the recovered and death rates.

2. Materials and Methods

In this analytical study, all statistics including the total number of coronavirus confirmed cases, recovered cases, tests, and deaths were collected from the website of the Iranian Ministry of Health and Medical Education from February 20 to May 30, 2020, and then entered into the MATLAB software. The theory of chaos (derived from the principle of chaos that governs the behavior of nature) emerged as a mathematical approach in the natural sciences and was used to model dynamic and complex systems in order to establish a kind of adaptation in relation to the environment, like living organisms, and to create effects similar to reality [18]. One of the characteristics of nonlinear dynamic systems is the sensitivity to initial condition. A slight change in the initial conditions of such systems can cause many changes in the next step [19]. Therefore, the behavior of nonlinear dynamic systems cannot be predicted in the long run. It can only be estimated and predicted in a short time. Sensitivity to initial conditions can be measured by Lyapunov exponents [23]. It provides a valuable tool for measuring chaos in the environment or genetics that are important in shaping social diversity, determining the spread of epidemics, or establishing a new mutation [27]. Therefore, Lyapunov exponent was used in this study to estimate the chaotic prevalence of coronavirus. It can estimate the time the coronavirus outbreak needs to reach saturation and the increasing trend of its cases in a short period. Using the Formula 1, which is based on the calculation of Lyapunov exponent from time-series data, the trend of increase in the number of confirmed cases is simulated in specific time intervals:

\[N(d) = \frac{d_0 d_\infty}{d_0 + d_\infty e^{-\lambda d}} \]

Where, \(d\) represents days (the number of days in the time interval), \(N(d)\) indicates the total number of infected cases per day, \(d_0\) is the initial number of infected cases, \(d_\infty\) is the final number of infected cases, and \(\lambda\) represents Lyapunov exponent (growth rate of the curve).

3. Results

Simulation of all confirmed cases between 20 February 2020 to 4 May 2020 show the number of people infected with the coronavirus would be close to saturation, but in end of May 2020 the number of people with the disease re-entered the second phase of increase. The slope of the simulation curve decreases in the second phase and the virus spreads in May at a slower rate than in the first phase (April). The simulation diagram of the total confirmed patients to the total number of tests performed also shows the entry into the second phase of increasing in May.

4. Discussion

In the present study, simulation of the total number of confirmed cases, deaths and recovered cases in Iran based on chaos theory and Lyapunov exponent was able to properly represent the real data of the disease cases, and could predict the prevalence and spread of the disease and the time to reach saturation in a short period. According to the results, the total number of coronavirus confirmed cases in Iran was expected to be saturated in the second half of April 2020, but with the change of social conditions and reduction of restrictions, the total number of coronavirus cases entered its second increasing phase and was expected to increase in May. The results showed an increase in the rate of recovered cases from the second half of March to the second half of May (from 82% to 93%), and the mortality rate was expected to reach less than 5% of the total number of deaths and recovered cases by June.

Due to the chaotic spread of the virus, a little change in the initial conditions, (imposing or relaxing restrictions, people's observance of health protocols, genetic mutation of the virus, gathering in public places, finding definitive treatment/vaccine and etc.) causes many changes in disease outbreak. The findings of the present study can be useful for short-term strategic decisions and providing solutions on how to deal with the virus and how it spreads.
Ethical Considerations

Compliance with ethical guidelines

There were no ethical considerations to be considered in this research.

Funding

This research did not receive any grant from funding agencies in the public, commercial, or non-profit sectors.

Authors’ contributions

Writing, methodology and data analysis: Both authors; Resources and validation: Fatemeh Mohammadi; Project administration, writing – review & editing: Saeedeh Kouzehgari.

Conflicts of interest

The authors declared no conflict of interest.
پیشرفتی شیوع بیماری کووید-19 و معرفی میزان نمای لیاپانوف بر اساس نظریه آشوب

قلمه‌نامه مهندسی پزشکی

1. کرویه مهدی، پژوهشکده ژنتیک، دانشگاه علوم پزشکی اصفهان، ایران.
2. کرویه رابی و علی، پژوهشکده ژنتیک، دانشگاه علوم پزشکی اصفهان، ایران.

مقدمه

برای اولین بار در مسلمانان سال ۲۰۱۹، بر اساس مشاهده‌های اصلی، بیماری کووید-۱۹ در غرب و ایران آغاز شد. ایران در اردیبهشت ماه سال ۱۳۹۹ به مرز هزار نفر از سوی سازمان جهانی بهداشت برای بیماری نام رسمی، سازمان جهانی بهداشت با انتشار بیانیه‌ای، بیماری کووید-۱۹ را وارد فهرست ضد شیوع کروناویروس کرد.

شیوع بیماری کروناویروس، پیش بینی شده است که ناشی از دما و فرآیند اکسپانشن در محیط اطراف می‌باشد. با استفاده از مدل‌ریاضی، می‌توان به مرز هزار نفر رسید. در این مقاله با هدف پیش‌بینی شیوع بیماری کروناویروس و روند افزایش شمار مبتلایان و مرگ‌ومیر ناشی از در ایران، مدل‌ریاضی مستند به نظریه آشوب، با استفاده از نرم‌افزار مهندسی متلب، مدل‌سازی شد.

طرح کلی مقاله

هدف از این مقاله، پیش‌بینی شیوع ویروس کروناویروس، افزایش شمار مبتلایان و مرگ‌ومیر ناشی از در ایران است که با استفاده از نظریه آشوب و مدل مستند به نمای لیاپانوف انجام شده است.

مواد و روش‌ها

مواد و روش‌ها در این مقاله از نحوه جمع‌آوری اطلاعات روزانه تا استفاده از نرم‌افزار مهندسی متلب برای شیوع ویروس و واقعیت مثبت نسبت به فاز اول (فروردین ماه) و روند افزایشی نسبت به فاز دوم (خرداد ماه) نشان داده شد.

نتایج

نتایج به طور رسمی در وب‌سایت وزارت بهداشت ایران اعلام گردیده است. در این ارائه، میزان بهبود یافته و جان باختگان و مبتلایان در ایران به صورت روزانه جمع‌آوری گردیده است. در این مقاله نشان داده شد که مبتلایان در اردیبهشت ماه به درجه مارک‌شینگی نسبت به فاز اول (فروردین ماه) افزایش یافته است، در حالی که در فاز دوم (خرداد ماه) این رقم کاهش یافته است.

در نتیجه، مبتلایان در ایران در اردیبهشت ماه در فاز دوم افزایشی به شمار می‌رسیدند، اما در خرداد ماه به فاز سوم و چهارم جاری شدند. نیز به‌طور کلی پیش‌بینی شده است که آمار کل مبتلایان به ویروس کروناویروس در ایران در فاز دوم افزایشی بوده است.

کلیدواژه‌ها:

کروناویروس، شیوع، ایران، نظریه آشوب، نمای لیاپانوف.
پریوس قواره [1]، نتایج مدلی معنوی آنها حاکی از این است که امکان کرونا - ۱۹ در ایران محدود بوده است، [۲] به معنی مثال تا سال ۱۹۸۷ شیکاگو بیماری‌های ویروسی گزارش شده براساس نظام مدیریت بیماری‌های ویروسی، فعالیت‌های واهی و ناکامی‌های متصل به ویروسی‌ها و شیکاگو بیماری‌های [۳] از سال ۱۹۸۷ تا به حال، و بررسی آنها و [۴] بدون اینکه ممکن است برای بیماری‌های ناشی از وابستگی به ویروس‌ها، [۵] و در انتهای نتایج پریوس قواره، [۶] [۷] در ایران، پژوهش نوعی آرامش افکار عمومی و راه‌های تحلیل بهبود به عنوان نشانه‌هایی از پیشرفت [۸] افراد شبکه ای از موجودیت‌های غیرخطی متصل به ویروس‌ها و شیکاگو بیماری‌ها، خارج از مرزهای جغرافیایی و مستقل از وابستگی به ویروس‌ها، زنده ماندن ویروس‌ها در نتیجه شیوع ویروس‌ها در سیستم‌های طبیعی و بیولوژیکی، [۹] می‌تواند به عنوان یک جهت بررسی پویایی بیماری‌های واگیردار و در سیستم‌های طبیعی و بیولوژیکی، ساده‌سازی‌های زیاد معمولاً قادر به تشریح بسیاری از جزئیات در بررسی این‌ها است. اما متأسفانه این مدل‌ها به دلیل [۱۰] استفاده از ابزارهای آمار و احتمالات سعی در مدل‌ها اغلب از معادلات دیفرانسیلی استفاده می‌شود و بررسی‌های مشابه نشان می‌دهد که اپیدمی کرونا از سندرم حاد تنفسی خاورمیانه بیشتر و از سندرم حاد نشان داده قابلیت انتقال ویروس جدید کرونا را پیشنهاد کردند. مدل و همکارانش یک مدل ریاضی برای شبیه‌سازی قابلیت در ایالات متحده با گسترش سریع ظاهر می‌شود و [۱۱] درصد افراد آلوده هنوز کشف نشده اند. با توجه به بحران اخیر و جدی ویروس کووید-۱۹ و بررسی این‌ها نشان داده شد که اپیدمی کرونا در ایالات متحده را برآورد کردند و همکارانش با استفاده از شبکه‌های نظارت بر [۱۲] می‌تواند بیماری‌ها را به افراد دیگر منتقل کند. این افراد بسته به هر قدیمی، خاصیت اضطراری و حساسیت به شرایط افراد مبتلا، و زنده در طول زمان است. این رفتار به واسطه وجود آشوبگون است. آشوب نشان‌دهنده رفتار سیستم‌های طبیعی، اپیدمی‌های همچون کرونا را می‌توان با استفاده از توصیف خانواده‌ای، [۱۳] و بررسی صحیح آن‌ها نیستند. در سال ۲۰۰۹، یک مدل اپیدمی‌پیشگیری بررسی مثبت از فاز اضافی و آزمایش‌های چند وابستگی به ویروس‌ها، راهبردهای رنگی را مورد بررسی قرار دادند که به عنوان یک نتیجه از تعاملات افراد در یک محیط واقع و تاکید که در مورد ویروس‌های جدید، دیباکی‌های متعددی و راهکارهای ویروس‌های جدید را توصیف کردند و با استفاده از نشان‌دهنده رفتار سیستم‌های طبیعی و بیولوژیکی، راهکارهای ۱. French Communicable Disease Network (FCZN) 2. Toulouba & Vibert 3. Perez, L. & Droguetovic 4. Geographic Information Systems (GIS) 5. Robert Verity 6. Justin D. Silverman 7. Stochastic Susceptible, Exposed, Infectious, and Recovered (SEIR) 8. Tian-Mu Chen 9. Simulating the phase-based transmissibility Toubiana & Vibert 10. 11. 12. 13.
اثر پروانه در نظریه آشوب (Brønstad et al. 1945) به عنوان یک اثر تصادفی در نظر گرفته می‌شود که باعث رفتار غیرقابل پیش‌بینی در سیستم‌های پویا می‌شود. این اثر از طریق تغییرات کوچک در شرایط اولیه سیستم، باعث شادمانی و نامنظمی در رفتار آن می‌شود. در هر یک از این‌گونه اثرات، به عنوان یک رفتار مبهم، می‌تواند به صورت لیاپانوف مشاهده شود.

نتایج آشوب و نمای لیاپانوف

آزمایش رفتار مبهم در نظریه آشوب می‌تواند در شبیه‌سازی‌های ریاضی و شبیه‌سازی‌های گرافیکی به کار بگیرد. این رفتار مبهم می‌تواند در شبیه‌سازی‌های ریاضی و شبیه‌سازی‌های گرافیکی به کار بگیرد. این رفتار مبهم می‌تواند در شبیه‌سازی‌های ریاضی و شبیه‌سازی‌های گرافیکی به کار بگیرد. این رفتار مبهم می‌تواند در شبیه‌سازی‌های ریاضی و شبیه‌سازی‌های گرافیکی به کار بگیرد. این رفتار مبهم می‌تواند در شبیه‌سازی‌های ریاضی و شبیه‌سازی‌های گرافیکی به کار بگیرد. این رفتار مبهم می‌تواند در شبیه‌سازی‌های ریاضی و شبیه‌سازی‌های گرافیکی به کار بگیرد. این رفتار مبهم می‌تواند در شبیه‌سازی‌های ریاضی و شبیه‌سازی‌های گرافیکی به کار بگیرد. این رفتار مبهم می‌تواند در شبیه‌سازی‌های ریاضی و شبیه‌سازی‌های گرافیکی به کار بگیرد. این رفتار مبهم می‌تواند در شبیه‌سازی‌های ریاضی و شبیه‌سازی‌های گرافیکی به کار بگیرد. این رفتار مبهم می‌تواند در شبیه‌سازی‌های ریاضی و شبیه‌سازی‌های گرافیکی به کار بگیرد. این رفتار مبهم می‌تواند در شبیه‌سازی‌های ریاضی و شبیه‌سازی‌های گرافیکی به کار بگیرد. این رفتار مبهم می‌تواند در شبیه‌سازی‌های ریاضی و شبیه‌سازی‌های گرافیکی به کار بگیرد. این رفتار مبهم می‌تواند در شبیه‌سازی‌های ریاضی و شبیه‌سازی‌های گرافیکی به کار بگیرد. این رفتار مبهم می‌تواند در شبیه‌سازی‌های ریاضی و شبیه‌سازی‌های گرافیکی به کار بگیرد. این رفتار مبهم می‌تواند در شبیه‌سازی‌های ریاضی و شبیه‌سازی‌های گرافیکی به کار بگیرد. این رفتار مبهم می‌تواند در شبیه‌سازی‌های ریاضی و شبیه‌سازی‌های گرافیکی به کار بگیرد. این رفتار مبهم می‌تواند در شبیه‌سازی‌های ریاضی و شبیه‌سازی‌های گرافیکی به کار بگیرد. این رفتار مبهم می‌تواند در شبیه‌سازی‌های ریاضی و شبیه‌سازی‌های گرافیکی به کار بگیرد. این رفتار مبهم می‌تواند در شبیه‌سازی‌های ریاضی و شبیه‌سازی‌های گرافیکی به کار بگیرد. این رفتار مبهم می‌تواند در شبیه‌سازی‌های ریاضی و شبیه‌سازی‌های گرافیکی به کار بگیرد. این رفتار مبهم می‌تواند در شبیه‌سازی‌های ریاضی و شبیه‌سازی‌های گرافیکی به کار بگیرد. این رفتار مبهم می‌تواند در شبیه‌سازی‌های ریاضی و شبیه‌سازی‌های گرافیکی به کار بگیرد. این رفتار مبهم می‌تواند در شبیه‌سازی‌های ریاضی و شبیه‌سازی‌های گرافیکی به کار بگیرد. این رفتار مبهم می‌تواند در شبیه‌سازی‌های ریاضی و شبیه‌سازی‌های گرافیکی به کار بگیرد. این رفتار مبهم M
لیاپانوف، ناپایداری ذاتی مسیرها (تراژکتوری‌ها) را نشان می‌دهد و می‌گوییم سرعت همگرایی میان دو مسیر همیشه می‌کند. یک فضای فاز در سیستم‌های آشوبگون، یک فضای محدود به مسیرها (تراژکتوری‌ها) همواره در این تابع محدود قرار می‌گیرد. مقادیر کلی فضای فاز و تقاضای حاکم بر حفاظت انرژی در سیستم‌های دینامیکی کم‌درجه نشان می‌دهد که سیستم آشوبی به یک مقدار محدود اشباع می‌شود.

برای نشان دادن ویژگی‌های سیستم‌های دینامیکی غیرخطی، نمای لیاپانوف نقش حیاتی دارد. یک سیستم گسسته در زمان که تمام نماهای لیاپانوف آن منفی است، یک جاذب نقطه ثابت یا چرخه تناوبی خواهد داشت و رفتار آشوبی آن در نخستین بارها به دلیل مشخصه‌های قاب‌بندی‌های جاذب چرخهای در آن نمایش داده خواهد شود. نماهای لیاپانوف می‌توانند مرحله‌های فراهم آورنده یا پرپژ در این باره فرض اینکه سیستم به‌طور نهایی می‌شود.

برای نشان دادن ویژگی‌های سیستم‌های دینامیکی غیرخطی، نمای لیاپانوف نقش حیاتی دارد. یک سیستم گسسته در زمان که تمام نماهای لیاپانوف آن منفی است، یک جاذب نقطه ثابت یا چرخه تناوبی خواهد داشت و رفتار آشوبی آن در نخستین بارها به دلیل مشخصه‌های قاب‌بندی‌های جاذب چرخهای در آن نمایش داده خواهد شود. نماهای لیاپانوف می‌توانند مرحله‌های فراهم آورنده یا پرپژ در این باره فرض اینکه سیستم به‌طور نهایی می‌شود.

برای نشان دادن ویژگی‌های سیستم‌های دینامیکی غیرخطی، نمای لیاپانوف نقش حیاتی دارد. یک سیستم گسسته در زمان که تمام نماهای لیاپانوف آن منفی است، یک جاذب نقطه ثابت یا چرخه تناوبی خواهد داشت و رفتار آشوبی آن در نخستین بارها به دلیل مشخصه‌های قاب‌بندی‌های جاذب چرخهای در آن نمایش داده خواهد شود. نماهای لیاپانوف می‌توانند مرحله‌های فراهم آورنده یا پرپژ در این باره فرض اینکه سیستم به‌طور نهایی می‌شود.

برای نشان دادن ویژگی‌های سیستم‌های دینامیکی غیرخطی، نمای لیاپانوف نقش حیاتی دارد. یک سیستم گسسته در زمان که تمام نماهای لیاپانوف آن منفی است، یک جاذب نقطه ثابت یا چرخه تناوبی خواهد داشت و رفتار آشوبی آن در نخستین بارها به دلیل مشخصه‌های قاب‌بندی‌های جاذب چرخهای در آن نمایش داده خواهد شود. نماهای لیاپانوف می‌توانند مرحله‌های فراهم آورنده یا پرپژ در این باره فرض اینکه سیستم به‌طور نهایی می‌شود.

برای نشان دادن ویژگی‌های سیستم‌های دینامیکی غیرخطی، نمای لیاپانوف نقش حیاتی دارد. یک سیستم گسسته در زمان که تمام نماهای لیاپانوف آن منفی است، یک جاذب نقطه ثابت یا چرخه تناوبی خواهد داشت و رفتار آشوبی آن در نخستین بارها به دلیل مشخصه‌های قاب‌بندی‌های جاذب چرخهای در آن نمایش داده خواهد شود. نماهای لیاپانوف می‌توانند مرحله‌های فراهم آورنده یا پرپژ در این باره فرض اینکه سیستم به‌طور نهایی می‌شود.
شیوع ویروس کرونا در ایران

در سال ۱۳۹۸، شیوع ویروس کرونا در جهان به پایان رسید و ایران نیز از دیگر کشورها از جمله چین، ایتالیا و اسپانیا برای مقابله با سریع شدن این بیماری نسبت به دیگر کشورها آمادگی داشت. ایران نیز به‌طور مشابه کشورهای دیگر از جمله چین، ایتالیا و اسپانیا در مقاومت به شیوع ویروس کرونا در جهان کوشید.

در سال ۱۳۹۹، شیوع ویروس کرونا در ایران به پایان رسید و این کشور به‌طور مشابه کشورهای دیگر در مقاومت به شیوع ویروس کرونا در جهان کوشید.

در نهایت، ایران نیز به‌طور مشابه کشورهای دیگر در مقاومت به شیوع ویروس کرونا در جهان کوشید.
در فاز اول پیوسته، آمار کل مبتلایان به کرونا در طی اعلام ورود به همه مردم در پایان ماه تیر 1399 مورد تجربه و طی مدت 10 روز در شکل شماره ۱ تازه بیماری کرونا در دانشگاه اکتشافه و دنیا به انتشار رسیده. این نتایج اکتشاف، با استفاده از قانون شماره ۲ که مشخصات بیماری کرونا در دانشگاه، روند الگویی آمار مبتلایان به کرونا در دانشگاه و در مداخله‌های متعددی نشان داده شده است. به‌طور کلی، می‌توان انتظار داشت که نمودار را به‌طور کامل بیان کند.

در کوتاه مدت از طریق برخی مدل‌های ریاضی امکان‌پذیر است مقدار نمای لیاپانوف می‌تواند زمان رسیدن به اشباع شیوع ویروس کرونا و روند افزایش آمار مبتلایان به این بیماری را در محاسبه‌های نمای لیاپانوف در مدل‌های ساده‌تر و در مدل‌های اکتشافی نیز بهبودیافته و بهبود پیدا کند. برای محاسبه نمای لیاپانوف در یک سری زمانی از داده‌های مبتلایان به کرونا، در بازه‌های زمانی مشخص، شیب‌هایی می‌شود که سپس می‌توان در کوتاه مدت پیش‌بینی کرد. می‌توان در کوتاه مدت پیش‌بینی کرد که این نمودار را به‌طور کامل بیان کند.

در این بخش کلیه محاسبات و تجزیه و تحلیل داده‌ها و رسم نمودارها با استفاده از نرم‌افزار متلب انجام شده است. یک آشفتگی کوچک که ما آن را به عنوان شماره ۲ معنی‌دار می‌گیریم، با ضریب λ = 0/0506 محاسبه شده است. نمودار را به‌طور کامل بیان کند.

در فاز دوم آمار کل مبتلایان به کرونا در پایان ماه اردیبهشت ۱۳۹۹ از مدت زمان ۱۰ روز در شکل شماره ۲ نشان داده شده است. در این پژوهش، آمار کل مبتلایان به کرونا طبق ارائه شده بر اساس داده‌های معین، وزارت بهداشت در بازه زمانی افزایش شکل شماره ۱ به انتشار رسیده. این نتایج اکتشاف، با استفاده از قانون شماره ۲ که مشخصات بیماری کرونا در دانشگاه، روند الگویی آمار مبتلایان به کرونا در دانشگاه و در مداخله‌های متعددی نشان داده شده است. به‌طور کلی، می‌توان انتظار داشت که نمودار را به‌طور کامل بیان کند.

در این بخش کلیه محاسبات و تجزیه و تحلیل داده‌ها و رسم نمودارها با استفاده از نرم‌افزار متلب انجام شده است. یک آشفتگی کوچک که ما آن را به عنوان شماره ۲ معنی‌دار می‌گیریم، با ضریب λ = 0/0506 محاسبه شده است. نمودار را به‌طور کامل بیان کند.

در فاز دوم آمار کل مبتلایان به کرونا در پایان ماه اردیبهشت ۱۳۹۹ از مدت زمان ۱۰ روز در شکل شماره ۲ نشان داده شده است. در این پژوهش، آمار کل مبتلایان به کرونا طبق ارائه شده بر اساس داده‌های معین، وزارت بهداشت در بازه زمانی افزایش شکل شماره ۱ به انتشار رسیده. این نتایج اکتشاف، با استفاده از قانون شماره ۲ که مشخصات بیماری کرونا در دانشگاه، روند الگویی آمار مبتلایان به کرونا در دانشگاه و در مداخله‌های متعددی نشان داده شده است. به‌طور کلی، می‌توان انتظار داشت که نمودار را به‌طور کامل بیان کند.

در این بخش کلیه محاسبات و تجزیه و تحلیل داده‌ها و رسم نمودارها با استفاده از نرم‌افزار متلب انجام شده است. یک آشفتگی کوچک که ما آن را به عنوان شماره ۲ معنی‌دار می‌گیریم، با ضریب λ = 0/0506 محاسبه شده است. نمودار را به‌طور کامل بیان کند.

در فاز دوم آمار کل مبتلایان به کرونا در پایان ماه اردیبهشت ۱۳۹۹ از مدت زمان ۱۰ روز در شکل شماره ۲ نشان داده شده است. در این پژوهش، آمار کل مبتلایان به کرونا طبق ارائه شده بر اساس داده‌های معین، وزارت بهداشت در بازه زمانی افزایش شکل شماره ۱ به انتشار رسیده. این نتایج اکتشاف، با استفاده از قانون شماره ۲ که مشخصات بیماری کرونا در دانشگاه، روند الگویی آمار مبتلایان به کرونا در دانشگاه و در مداخله‌های متعددی نشان داده شده است. به‌طور کلی، می‌توان انتظار داشت که نمودار را به‌طور کامل بیان کند.

در این بخش کلیه محاسبات و تجزیه و تحلیل داده‌ها و رسم نمودارها با استفاده از نرم‌افزار متلب انجام شده است. یک آشفتگی کوچک که ما آن را به عنوان شماره ۲ معنی‌دار می‌گیریم، با ضریب λ = 0/0506 محاسبه شده است. نمودار را به‌طور کامل بیان کند.

در فاز دوم آمار کل مبتلایان به کرونا در پایان ماه اردیبهشت ۱۳۹۹ از مدت زمان ۱۰ روز در شکل شماره ۲ نشان داده شده است. در این پژوهش، آمار کل مبتلایان به کرونا طبق ارائه شده بر اساس داده‌های معین، وزارت بهداشت در بازه زمانی افزایش شکل شماره ۱ به انتشار رسیده. این نتایج اکتشاف، با استفاده از قانون شماره ۲ که مشخصات بیماری کرونا در دانشگاه، روند الگویی آمار مبتلایان به کرونا در دانشگاه و در مداخله‌های متعددی نشان داده شده است. به‌طور کلی، می‌توان انتظار داشت که نمودار را به‌طور کامل بیان کند.

در این بخش کلیه محاسبات و تجزیه و تحلیل داده‌ها و رسم نمودارها با استفاده از نرم‌افزار متلب انجام شده است. یک آشفتگی کوچک که ما آن را به عنوان شماره ۲ معنی‌دار می‌گیریم، با ضریب λ = 0/0506 محاسبه شده است. نمودار را به‌طور کامل بیان کند.
درباره روند زیستاتیک الوقایع، با توجه به تعداد کل آزمایشات و معناداری که انجام شده، بهتر است تعداد کل آزمایشات در هر روز ثابت باشد. چرا که تعداد کل افرادی که آزمایش آنها مثبت شده، وابستگی مستقیم به تعداد آزمایشات انجام شده در هر روز دارد. واضح است با افزایش تعداد آزمایشات جمعیت بیشتری از جامعه در یک روز، آمار افرادی که مبتلا به ویروس تشخیص داده می‌شوند، افزایش یافته و بر روی آمار کل مبتلایان تأثیر بسزایی خواهد گذاشت.

طبق آمار اعلام شده از طرف وزارت بهداشت، تعداد کل فروردین به بعد به 20 آزمایشات در هر روز از تاریخ 20 فروردین به بعد به طور رسمی در استادیوم آشنا می‌ماند. بنابراین، در بازه زمانی تغییر رفتار، استفاده از دو مدل مبتنی بر نماهای لیاپانوف (مدل ارائه شده در فاز اول خط آبی و مدل ارائه شده در فاز دوم خط سبز) در بازه زمانی مشخصه هستند. همانطور که در شکل شماره 3 نشان داده شده است، هر دو مدل مبتنی بر نماهای لیاپانوف بر اساس داده‌های مربوط به شایعات کرونا و مرگ و میرهای ناشی از آن در ایران، تغییر رفتار آمار کل جان باختگان و بیماری بهبود و مرگلومباری کرونا به جامعه تأثیر گذاشتند.

به این معنی که نمودار شبیه‌سازی آمار کل جان باختگان (ستاره‌های قرمز) بر اساس کاهش میزان مبتلایان به بیماری کرونا در بازه زمانی تا 20 فروردین 1399 نشان داده شد. سپس در این نمودار شکل شماره 4 نشان داده شد، که مناسب‌ترین مدل (مدل 2) مبتنی بر نماهای لیاپانوف بوده و به‌طور کلی نسبت بهبود و مرگلومباری کرونا به جامعه به‌طور کلی بهتر بوده است. این مدل به‌طور کلی بهتر بوده و به‌طور کلی بهتر بوده است. این مدل به‌طور کلی بهتر بوده و به‌طور کلی بهتر بوده است.
شیب توزیع منحنی در ابتدای خرداد تنا خان می‌دهد، نرخ مرگ‌ومیر افراد مبتلا به کمرت از 7 درصد نزدیک نرسید (شکل شماره 7).

نرخ بهبودیلگتن مبتلا به ویروس کرونا (سمت چپ به رنگ سبز) سپری‌نماینگ و افزایش درصد بهبود بالاترگان از همه عناصر به بهترین نرخ بهبودیلگتن بیماری داشت. به‌ویژه در افراد بهبودیلگتن و افزایش در 82 درصد افراد بهبودیلگتن حقانی و سالمندی خود را به درمان می‌آوردند در حالی که در ابتدای خرداد این احتمال به بیش از 77 درصد افزایش یافت. لذا

تا این کمک این نرخ بهبود به توصیه روان‌شناسی و پزشک‌فکری و از کناری پیک پیشینی دست یافت. این محاسبه‌ای است که برای محاسبه نرخ بهبود شمار بهبودیلگتن یک بیماری را بر مجموع فوتی و رهنه قاره‌ها تقسیم می‌کنند. به‌ویژه در این آمار بهبودیلگتن را بر مجموع بیماری‌ها سر است. شکل شماره 2 در حالی که در ابتدای خرداد این درصد نقاط شد که در نتیجه نرخ بهبود یافته‌ها از این دوره به پایین می‌آمد. به‌ویژه در این پژوهش، تعداد درمان بیماری بین پزشک و تعداد کل مبتلایان و تعداد کل درمان بیماری بین پزشک و تعداد کل مبتلایان و تعداد کل مبتلایان در دو بزهکاران 1399 خرداد تا 1399 خرداد و 1399 می‌باشد. در هر دو بزهکاران، نرخ بهبود یافته‌ها از این دوره به پایین می‌آمد. به‌ویژه در این پژوهش، تعداد درمان بیماری بین پزشک و تعداد کل درمان بیماری بین پزشک و تعداد کل مبتلایان در دو بزهکاران 1399 خرداد تا 1399 خرداد و 1399 می‌باشد. در هر دو بزهکاران، نرخ بهبود یافته‌ها از این دوره به پایین می‌آمد. به‌ویژه در این پژوهش، تعداد درمان بیماری بین پزشک و تعداد کل مبتلایان در دو بزهکاران 1399 خرداد تا 1399 خرداد و 1399 می‌باشد. در هر دو بزهکاران، نرخ بهبود یافته‌ها از این دوره به پایین می‌آمد. به‌ویژه در این پژوهش، تعداد درمان بیماری بین پزشک و تعداد کل مبتلایان در دو بزهکاران 1399 خرداد تا 1399 خرداد و 1399 می‌باشد. در هر دو بزهکاران، نرخ بهبود یافته‌ها از این دوره به پایین می‌آمد. به‌ویژه در این پژوهش، تعداد درمان بیماری بین پزشک و تعداد کل مبتلایان در دو بزهکاران 1399 خرداد تا 1399 خرداد و 1399 می‌باشد. در هر دو بزهکاران، نرخ بهبود یافته‌ها از این دوره به پایین می‌آمد. به‌ویژه در این پژوهش، تعداد درمان بیماری بین پزشک و تعداد کل مبتلایان در دو بزهکاران 1399 خرداد تا 1399 خرداد و 1399 می‌باشد. در هر دو بزهکاران، نرخ بهبود یافته‌ها از این دوره به پایین می‌آمد. به‌ویژه در این پژوهش، تعداد درمان بیماری بین پزشک و تعداد کل مبتلایان در دو بزهکاران 1399 خرداد تا 1399 خرداد و 1399 می‌باشد. در هر دو بزهکاران، نرخ بهبود یافته‌ها از این دوره به پایین می‌آمد. به‌ویژه در این پژوهش، تعداد درمان بیماری بین پزشک و تعداد کل مبتلایان در دو بزهکاران 1399 خرداد تا 1399 خرداد و 1399 می‌باشد. در هر دو بزهکاران، نرخ بهبود یافته‌ها از این دوره به پایین می‌آمد. به‌ویژه در این پژوهش، تعداد درمان بیماری بین پزشک و تعداد کل مبتلایان در دو بزهکاران 1399 خرداد تا 1399 خرداد و 1399 می‌باشد. در هر دو بزهکاران، نرخ بهبود یافته‌ها از این دوره به پایین می‌آمد. به‌ویژه در این پژوهش، تعداد درمان بیماری بین پزشک و تعداد کل مبتلایان در دو بزهکاران 1399 خرداد تا 1399 خرداد و 1399 می‌باشد. در هر دو بزهکاران، نرخ بهبود یافته‌ها از این دوره به پایین می‌آمد. به‌ویژه در این پژوهش، تعداد درمان بیماری بین پزشک و تعداد کل مبتلایان در دو بزهکاران 1399 خرداد تا 1399 خرداد و 1399 می‌باشد. در هر دو بزهکاران، نرخ بهبود یافته‌ها از این دوره به پایین می‌آمد. به‌ویژه در این پژوهش، تعداد درمان بیماری بین پزشک و تعداد کل مبتلایان در دو بزهکاران 1399 خرداد تا 1399 خرداد و 1399 می‌باشد. در هر دو بزهکاران، نرخ بهبود یافته‌ها از این دوره به پایین می‌آمد. به‌ویژه در این پژوهش، تعداد درمان بیماری بین پزشک و تعداد کل مبتلایان در دو بزهکاران 1399 خرداد تا 1399 خرداد و 1399 می‌باشد. در هر دو بزهکاران، نرخ بهبود یافته‌ها از این دوره به پایین می‌آمد. به‌ویژه در این پژوهش، تعداد درمان بیماری بین پزشک و تعداد کل مبتلایان در دو بزهکاران 1399 خرداد تا 1399 خرداد و 1399 می‌باشد. در هر دو بزهکاران، نرخ بهبود یافته‌ها از این دوره به پایین می‌آمد. به‌ویژه در این پژوهش، تعداد درمان بیماری بین پزشک و تعداد کل مبتلایان در دو بزهکاران 1399 خرداد تا 1399 خرداد و 1399 می‌باشد. در هر دو بزهکاران، نرخ بهبود یافته‌ها از این دوره به پایین می‌آمد. به‌ویژه در این پژوهش، تعداد درمان بیماری بین پزشک و تعداد کل مبتلایان در دو بزهکاران 1399 خرداد تا 1399 خرداد و 1399 می‌باشد. در هر دو بزهکاران، نرخ بهبود یافته‌ها از این دوره به پایین می‌آمد. به‌ویژه در این پژوهش، تعداد درمان بیماری بین پزشک و تعداد کل مبتلایان در دو بزهکاران 1399 خرداد تا 1399 خرداد و 1399 می‌باشد. در هر دو بزهکاران، نرخ بهبود یافته‌ها از این دوره به پایین می‌آمد. به‌ویژه در این پژوهش، تعداد درمان بیماری بین پزشک و تعداد کل مبتلایان در دو بزهکاران 1399 خرداد تا 1399 خرداد و 1399 می‌باشد. در هر دو بزهکاران، نرخ بهبود یافته‌ها از این دوره به پایین می‌آمد. به‌ویژه در این پژوهش، تعداد درمان بیماری بین پزشک و تعداد کل مبتلایان در دو بزهکاران 1399 خرداد تا 1399 خرداد و 1399 می‌باشد. در هر دو بزهکاران، نرخ بهبود یافته‌ها از این دوره به پایین می‌آم.
به‌طور کل مبتلایان به ویروس کرونا از اوایل خرداد ماه به شیبی تا حدودی کاهش یافت. نرخ بهبود بیماران از اوایل فروردین تا دهه اول خرداد از مقدار متوسط 93 درصد به مقدار متوسط 82 درصد کاهش یافت. نرخ مرگ و میر نیز تا پایان خرداد به کمتر از 5 درصد کل جان باختگان و بهبود یافتگان رسید. افزایش آمار جان باختگان و کاهش آمار بهبود یافتگان ممکن است نتیجه حساسیت به شرایط اولیه و کاهش مقاومت بیماران در مقابل ویروس باشد. به دلیل آشوبگون بودن شیوع ویروس و محدودیت‌های فنی و فنی در تولید داروها، احتمال جهش ژنتیکی در ویروس کرونا افزایش یافت که ممکن است نتایج مثبتی را داشته باشد. به‌طور کلی، تلاش برای کاهش شیوع ویروس و بهبود بیماران نیازمند برگزاری برنامه‌های پیشگیری و بهبودی‌محیطی است.
رعایت نکات بهداشتی توسعه مردم، جهش زیان‌دهنده ویروس، تراکم جمعیت در مرکز‌های عمومی، پانکروش درمان قطعی و یا کاهش جریان بیماری و غیره تغییرات زیادی در روند شیوع بیماری ایجاد می‌کند. از آنجا که ویروس کرونا جدید و ناشناخته است و مطالعات و تحقیقات انتقال‌های قطعی برای ویروس این کمک به تنظیم وضعیت بیماری جلوگیری از شیوع آن است. جهش رژیم و تحول های ارجاع شده در رژیم حاضر می‌تواند در تصمیم‌گیری‌های پزشکان در کشورهای و در ارائه راهکار در خصوص نحوه مراقبت‌های بهداشتی و ویروس و چگونگی کنترل آن مؤثر باشد. استفاده از نظریه آشوب و معادله مبتنی بر تماشای لیاپانوف، آمار کل مبتلایان به ویروس کووید-19 و تعداد کل جوانان مبتلا و بهبود شیوه‌های کرد و می‌تواند بیشتری مناسبی از شیوع بیماری ارائه دهد.

یکی از محدودیت‌های جمع‌آوری و آنالیز داده‌ها در دسترسی تعداد کل آزمایش‌های انجام شده در ابتدا از این نظر پژوهش است. از این رو استفاده از نسبت تعداد کل مبتلایان به نتایج پیش بینی که از این نظر نتایج دقیق‌تری به دست آورده نباید تا این تحلیل‌ها و تحلیل‌های پیش‌بینی بازه زمانی 1399 خرداد 20 تا 10 خرداد 1399 در نظر گرفته شده است.

ملاحظات اخلاقی

پژوهش از اصول اخلاق پژوهش این مقاله از نوع فراتحلیل است و نمونه‌ای انسانی و حیوانی نداشته است.

حامی مالی

این پژوهش هیچ‌گونه کمک مالی از سازمان‌های دولتی، خصوصی و غیرانتفاعی دریافت نکرده است.

مشارکت‌کننده‌سانان

بیانیه سازی، روش‌شناسی، نظرات و مدیریت پروژه سرمایه‌گذاری، تحلیل، محاسبه و بررسی، نگارش پژوهی، ویراستاری و نهایی سازی نوشته سری کتاب‌زبانگونه و طراح و محمدی، انتشارات و منابع: فاطمه محمدی.

تعارض منافع

بنا بر اظهار نویسندگان، این مقاله تعارض منافع ندارد.
References

[1] Bauch CT. The role of mathematical models in explaining recurrent outbreaks of infectious childhood diseases. In: Brauer F, van den Driessche P, Wu J, editors. Mathematical Epidemiology. Berlin: Springer; 2008. p. 297-319. [DOI:10.1007/978-3-540-78911-6_11]

[2] Pourbohrouh B, Meyers LA, Skowronsni DM, Krajden M, Patrick DM, Brunham RC. Modeling control strategies of respiratory pathogens. Emerg Infect Dis. 2005; 11(8):1249-56. [DOI:10.3201/eid1108.040449] [PMID] [PMCID]

[3] Ssematimba A, Hagenas T, de Jong MCM. Modelling the wind-borne spread of highly pathogenic avian influenza virus between farms. PLoS One. 2012; 7(2):e31114. [DOI:10.1371/journal.pone.0031114] [PMID] [PMCID]

[4] Briggs ADM, Wolstenholme J, Blakely T, Scarborough P. Choosing an epidemiological model structure for the economic evaluation of non-communicable disease public health interventions. Popul Health Metr. 2016; 14:17. [DOI:10.1186/s12963-016-0085-1] [PMID] [PMCID]

[5] Garnerin P, Valleron AJ. The French communicable diseases computer network: A technical view. Comput Biol Med. 1992; 22(3):189-200. [DOI:10.1016/0010-4825(92)90015-F]

[6] Toubiana L, Vibert JF. A neural network model for the spread of the spread of the influenza A virus. In: Gierl L, Cliff AD, Valleron AJ, Farquharson P, editors. Chaos in medicine. Berlin: Springer; 2008. p. 257-274. [PMID] [PMCID]

[7] Perez L, Dragicovic S. An agent-based approach for modeling dynamics of contagious disease spread. Int J Health Geogr. 2009; 8:50. [DOI:10.1186/1472-664X-8-50] [PMID] [PMCID]

[8] Verity R, Okell LC, Dorigatti I, Winsill P, Whittaker C, Imai N, et al. Estimates of the severity of coronavirus disease 2019: A model-based analysis. Lancet Infect Dis. 2020; 20(6):669-77. [DOI:10.1016/S1473-3099(20)30343-7]

[9] Silverman JD, Hupert N, Washburne AD. Using influenza surveillance networks to estimate state-specific prevalence of SARS-CoV-2 in the United States. Sci Transl Med. 2020; 12(554):eaab1126. [DOI:10.1126/scitranslmed.abc1126] [PMID] [PMCID]

[10] Cao S, Feng P, Shi P. Study on the epidemic development of COVID-19 in Hubei province by a modified SEIR model. J Zhejiang Univ (Med Sci). 2020; 49(2):178-84. http://www.zjujournals.com/med/EN/10.3785/j.issn.1008-9292.2020.02.05

[11] Chen TM, Rui J, Wang QP, Zhao ZY, Cui JA, Yin L. A mathematical model for simulating the phase-based transmissibility of a novel coronavirus. Infect Dis Poverty. 2020; 9(1):24. [DOI:10.1186/s40429-020-00640-3] [PMID] [PMCID]

[12] Basiri MR. Theory about treatments and morbidity prevention of corona virus disease (coivd-19). J Pharm Pharmacol. 2020; 8:89-90. [DOI:10.17265/2328-2150/2020.03.004]

[13] Alipour A, Ghadami A, Alipour Z, Abdollahzadeh H. Preliminary validation of the Corona Disease Anxiety Scale (CDAS) in the Iranian sample. J Health Psychol. 2020; 8(32):163-75. [In Persian] http://hpj.journals.pnu.ac.ir/article_6571_en.html

[14] Pourghaznein T, Salati S. National approach in response to the COVID-19 pandemic in Iran. Int J Community Based Nurs Midwifery. 2020; 8(3):275-6. [DOI:10.30476/ICBNM.2020.85928.1308] [PMID] [PMCID]

[15] Pearsall J. The concise Oxford English dictionary. Oxford: Oxford University Press; 2002. https://books.google.com/books?id=a4rlAAAAMAAJ

[16] Chaté H, Villermaux E, Chomaz JM. Mixing: Chaos and turbulence. Berlin: Springer Science & Business Media; 2012. https://books.google.com/books?id=0awJCAAAQBAJ

[17] Redondo JM. Turbulence, entropy and dynamics [Internet]. 2014 [Updated 2014 December]. Available from: https://upcommons.upc.edu/bitstream/handle/2117/86131/Turbulence_Entropy_Dynamics.pdf

[18] Hashemi Golpayegani SMR. Chaos and its applications in engineering. Tehran: Amirkabir University of Technology; 2009. [In Persian] http://opac.nli.ir/opac-prod/bibliographic/ic/1906260

[19] Kouzehgari S. Explanation of international system behavior based on chaos principal, case study the Middle East region [PhD. dissertation]. Tehran: Tarbiat Modares University; 2015. [In Persian] https://ganj.irandoc.ac.ir/#/articles/4ac14d31a125de353490e2fc2c09d47

[20] Kinsner W. Characterizing chaos through Lyapunov metrics. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews). 2006; 36(2):141-51. [DOI:10.1109/TSMCC.2006.871132]

[21] Nazarimehr F, Jafari S, Hashemi Golpayegani SMR, Sprott JC. Can Lyapunov exponent predict critical transitions in biological systems? Nonlinear Dyn. 2017; 88(2):1493-500. [DOI:10.1007/s11071-016-3325-9]

[22] Schuster HG. Deterministic chaos. Hoboken: Wiley; 1995. https://books.google.com/books?id=m2vAAAAMAAJ

[23] Nychka D, Ellner S, Gallant AR, McCaffrey D. Finding chaos in noisy systems. J R Stat Soc B. 1992; 54(2):399-426. [DOI:10.1111/j.2517-6161.1992.tb01889.x]

[24] McCue LS, Tresch AW. Use of Lyapunov exponents to predict chaotic vessel motions. In: Almeida Santos Neves M, Belenky VL, de Kat JO, Spyrou K, Umeda N, editors. Contemporary Ideas on Ship Stability and Capsizing in Waves. Dordrecht: Springer; 2011. p. 415-432. [DOI:10.1007/978-94-007-1482-3_23]

[25] Moeini A, Abrishami H, Ahrari M. Using lyapunov exponent for modeling time series of oil price based on logistic map. Tahghighat- E- Eghtesadi. 2006; (76):77-100. [In Persian] https://books.google.com/books?id=0awJCAAAQBAJ

[26] Moeini Sedeh S, Arjmand N, Sanjari MA, Mokhtarinia HR, Asgari M, Parvinpour M. Nonlinear analysis of dynamic lumbar stability during repetitive trunk flexion extension at symmetric and asymmetric directions. Iran J Biomed Eng. 2013; 7(4):333-40. [In Persian] http://www.ijbme.org/article_13281_en.html

[27] Ferriere R, Gatto M. Lyapunov exponents and the mathematics of invasion in oscillatory or chaotic populations. Theor Popul Biol. 1995; 49(2):178-84. http://www.zjujournals.com/med/EN/10.3785/j.issn.1008-9292.2020.02.05

[28] Alipour A, Ghadami A, Alipour Z, Abdollahzadeh H. Preliminary validation of the Corona Disease Anxiety Scale (CDAS) in the Iranian sample. J Health Psychol. 2020; 8(32):163-75. [In Persian] http://hpj.journals.pnu.ac.ir/article_6571_en.html
[28] Dehghanpisheh B. Coronavirus has spread to nearly all Iran provinces: President [Internet]. 2020 [Updated 2020 March 4]. Available from: https://www.reuters.com/article/us-health-coronavirus-iran-rouhani-idUSKBN20R1ES

[29] Worldometer. COVID-19 coronavirus pandemic [Internet]. 2020. [Updated 2020 September 23]. Available from: https://www.worldometers.info/coronavirus/

[30] Bonasera A, Zhang S. Chaos, percolation and the coronavirus spread. Front Phys. 2020; 8:171. [DOI:10.3389/fphy.2020.00171]
This Page Intentionally Left Blank