ON THE QUANTUM POINCARÉ GROUP

Leonardo Castellani

Istituto Nazionale di Fisica Nucleare, Sezione di Torino
and
Dipartimento di Fisica Teorica
Via P. Giuria 1, 10125 Torino, Italy.

Abstract

The inhomogeneous quantum groups $IGL_q(n)$ are obtained by means of a particular projection of $GL_q(n + 1)$. The bicovariant differential calculus on $GL_q(n)$ is likewise projected into a consistent bicovariant calculus on $IGL_q(n)$. Applying the same method to $GL_q(n, \mathbb{C})$ leads to a bicovariant calculus for the complex inhomogeneous quantum groups $IGL_q(n, \mathbb{C})$. The quantum Poincaré group and its bicovariant geometry are recovered by specializing our results to $ISL_q(2, \mathbb{C})$.
The study of a continuous deformation of the Poincaré group is worthwhile per se, given the central role of this group in physics. In the context of a quantum group theoretic formulation of gravity theories, it is in fact essential to find a consistent q-deformation of the Poincaré group. This we will present in this letter.

Quantum groups [1]-[4] have emerged in the last years as nontrivial deformations of Lie groups, and the differential calculus on them has been developed recently [5, 6, 7, 8, 9]. The general constructive procedure of ref. [7] works for the q-groups of the A, B, C, D series, and in ref. [10] we have studied how to extend it to nonhomogeneous quantum groups.

We begin by presenting a general method for constructing inhomogeneous quantum groups and their complexification. In ref. [10] we have found the R-matrix and a bicovariant differential calculus for $IGL_q(n)$, using the definition of inhomogeneous q-groups as given in [11]. Here, however, we take a different route and obtain the inhomogeneous q-groups $IGL_q(n)$ and $IGL_q(n, C)$ (and their bicovariant differential calculi) as projections of $GL_q(n+1)$ and $GL_q(n+1, C)$ (and their bicovariant differential calculi). Both procedures are equivalent and lead to the same q-differential calculi; the one we present here has the advantage of giving a new interpretation to the results of ref.s [11, 10].

Finally, our method is specialized to $ISL_q(2, C)$, the quantum Poincaré group, whose bicovariant q-Lie algebra is found and given explicitly in the Table.

Other papers concerning the quantum Lorentz group or the quantum Poincaré group are quoted in [12]-[14].

The key observation is that the R-matrix of $GL_q(n+1)$ can be written as (A=(0,a)):

$$ R^{AB}_{CD} = \begin{pmatrix} q & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & q^{-1} & 1 & 0 \\ 0 & 0 & 0 & R^{ab}_{cd} \end{pmatrix} $$

(1)

where R^{ab}_{cd} is the R-matrix of $GL_q(n)$, and the indices AB are ordered as $00, 0b, a0, ab$. This form of the R-matrix allows a consistent projection of $GL_q(n+1)$ into $GL_q(n)$. This projection works also for the corresponding $*$-Hopf algebra structures and bicovariant differential calculi, as was pointed out in ref. [13] in the case of $GL_q(3) \rightarrow GL_q(2)$. The reason why it works will be clarified below.

Let us explain what we mean by “projection”. To be specific, we take again the

1 “bicovariant” meaning that one can define a left and a right action of the q-group on the space of quantum one-forms, as in the $q = 1$ case, see ref. [5].
case of $GL_q(3)$, generated by: i) the matrix elements T^A_B

$$T^A_B = \begin{pmatrix} T^0_0 & T^0_1 & T^0_2 \\ T^1_0 & T^1_1 & T^1_2 \\ T^2_0 & T^2_1 & T^2_2 \end{pmatrix} \equiv \begin{pmatrix} T_1 & T_2 & T_3 \\ T_4 & T_5 & T_6 \\ T_7 & T_8 & T_9 \end{pmatrix}$$

(2)

ii) the identity I, and the inverse Ξ of the q-determinant of T, defined by:

$$\Xi \det_q T = \det_q T \Xi = I$$

$$\det_q T \equiv \sum_\sigma (-q)^{l(\sigma)} T^1_{\sigma(1)} \cdots T^n_{\sigma(n)}$$

(3)

(4)

where $l(\sigma)$ is the minimum number of transpositions in the permutation σ. Moreover, the matrix entries in (2) satisfy the “RTT” relations:

$$R^{AB}_{\ EF} T^E_C T^F_D = T^B_F T^A_E R^{EF}_{\ CD}$$

(5)

with $R^{AB}_{\ CD}$ given by:

$$R^{AB}_{\ CD} = \begin{pmatrix} q & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \lambda & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & q & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & \lambda & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \lambda & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & q & 0 \end{pmatrix}$$

(6)

where $\lambda = q - q^{-1}$. The reader can verify that this R-matrix indeed has the form (1). We recall the co-structures of $GL_q(n+1)$, i.e the coproduct Δ, the counit ε and the coinverse κ:

$$\Delta(T^A_B) = T^A_B \otimes T^B_C$$

$$\varepsilon(T^A_B) = \delta^A_B$$

$$\kappa(T^A_B) = (T^{-1})^A_B$$

$$\Delta(\det_q T) = \det_q T \otimes \det_q T, \quad \Delta(\Xi) = \Xi \otimes \Xi, \quad \Delta(I) = I \otimes I$$

$$\varepsilon(\det_q T) = 1, \quad \varepsilon(\xi) = 1, \quad \varepsilon(I) = 1$$

$$\kappa(\det_q T) = \xi, \quad \kappa(\xi) = \det_q T, \quad \kappa(I) = I$$

(7)

(8)

(9)

(10)

(11)

(12)

The quantum inverse of T^A_B is given by:

$$(T^{-1})^A_B = \Xi (-q)^{A-B} t^A_B$$

(13)

where t^A_B is the quantum minor, i.e. the quantum determinant of the submatrix of T obtained by removing the B-th row and the A-th column.
A consistent \ast-structure of $GL_q(n)$ is given by [3]:

\[(T^A_D)^\ast = \kappa(T^B_A), \]
\[\Xi^\ast = \det_q T \]
(14)
(15)

The unitarity condition (14) restricts $GL_q(n+1)$ to $U_q(n+1)$, while setting $\det_q T = I$ restricts $GL_q(n+1)$ to $SL_q(n+1)$. If both conditions hold we have $SU_q(n+1)$. For sake of generality we consider $GL_q(n+1)$ rather than its restrictions, but our discussion applies to $SL_q(n+1)$, $U_q(n+1)$ and $SU_q(n+1)$ as well. In the following we do not require (14) to hold.

The projection of $GL_q(3)$ onto $GL_q(2)$ is defined by setting

\[T_2 = T_3 = T_4 = T_7 = 0, \quad T_1 = I \]
(16)
in (2). The corresponding left-invariant one-forms ω and the q-Lie algebra generators χ are set to “zero”:

\[\omega^2 = \omega^3 = \omega^4 = \omega^7 = \omega^1 = 0, \]
(17)
\[\chi_2 = \chi_3 = \chi_4 = \chi_7 = \chi_1 = 0. \]
(18)

(another equivalent projection would be given by $T_3 = T_6 = T_7 = T_8 = 0, \quad T_9 = I$). Using (17) and (18) in the differential calculus of ref. [13], one retrieves the bicovariant differential calculus on $GL_q(2)$. The reason this projection works at the quantum group level is of course the particular form of the R-matrix in (2), so that, for example, the “RTT” relations for $GL_q(3)$ correctly reduce to those of $GL_q(2)$. Also, the \ast-Hopf algebra structures project into those of $GL_q(2)$, as one can easily deduce by substituting (17) into (2)-(23). As we now discuss, the projection works also for the differential calculi.

A bicovariant differential calculus [3] on $GL_q(n+1)$ can be constructed in terms of the corresponding R matrix [4, 5, 6]. The basic object is the braiding matrix

\[\Lambda_{A_1 D_1}^A_{C_1} | B_1 C_2 B_2 = d^2 d^{-1} R_{C_2 G_1} R^{-1} C_1 G_1 E_1 A_1 R^{-1} A_2 E_1 G_2 D_1 R_{G_2 D_2 B_2 F_2} \]
(19)

which is used in the definition of the exterior product of quantum left-invariant one forms ω_A^B:

\[\omega_{A_1}^{A_2} \wedge \omega_{D_1}^{D_2} \equiv \omega_{A_1}^{A_2} \otimes \omega_{D_1}^{D_2} - \Lambda_{A_1 D_1}^A_{C_1} B_1 C_2 B_2 \omega_{C_1}^{C_2} \otimes \omega_{B_1}^{B_2} \]
(20)

and in the q-commutations of the quantum Lie algebra generators χ_A^B:

\[\chi_{D_1}^{D_2} \chi_{C_1}^{C_2} - \Lambda_{E_1 F_1}^{E_2 F_2} D_1 C_1 \chi_{E_2}^{E_1} F_2^{F_1} C_2 B_2 \chi_{E_2}^{E_1} F_2^{F_1} C_2 B_2 = C_{D_1}^{D_2} C_1 A_1 A_2 \]
(21)

where the structure constants are explicitly given by:

\[C_{A_2 B_2}^{A_1} | B_1 C_1 = \frac{1}{q - q^{-1}} [-\delta_{B_2}^{A_1} \delta_{A_2}^{C_1} + \Lambda_{B_2}^{B_1} C_1 A_2 B_2 | A_2 B_2]. \]
(22)
and $\chi^{D_1 C_1}_{C_2} \equiv (\chi^{D_1}_{D_2} \otimes \chi^{C_1}_{C_2})\Delta$, cf. ref.s [7, 8, 9].

The d^A vector is defined by

$$\kappa^2(T^A_B) = D^A_C T^C_D (D^{-1})^B_D = d^A d^{-1} B A$$ (23)

For $GL_q(n+1)$ we have $d^A = q^{2A-1}$ (cf. [3]). In the case of $GL_q(3)$, $d^0 = q$, $d^1 = q^3$, $d^2 = q^5$.

The braiding matrix Λ and the structure constants C defined in (19) and (22) satisfy the conditions

$$C_{ri}^{\ n} C_{nj}^{\ s} - \Lambda^{kl}_{ij} C_{rk}^{\ n} C_{nl}^{\ s} = C_{ij}^{\ k} C_{rk}^{\ s}$$ (q-Jacobi identities) (24)

$$\Lambda^{nm}_{ij} \Lambda^{rk}_{lp} \Lambda^{ls}_{pq} = \Lambda^{nk}_{ri} \Lambda^{ms}_{kj} \Lambda^{ij}_{pq}$$ (Yang–Baxter) (25)

$$C_{mn}^{\ m} \Lambda^{rs}_{lk} + \Lambda^{il}_{rj} C_{lk}^{\ s} = \Lambda^{pq}_{jk} \Lambda^{il}_{rp} C_{lp}^{\ s} + C_{jk}^{\ m} \Lambda^{is}_{rm}$$ (26)

$$C_{jk}^{\ m} \Lambda^{ns}_{ml} = \Lambda^{ij}_{kl} \Lambda^{nm}_{ri} C_{mj}^{\ s}$$ (27)

where the index pairs A^B and A^B have been replaced by the indices i and i respectively. These are the so-called “bicovariance conditions”, see ref.s [5, 6, 9], necessary in order to have a consistent bicovariant differential calculus.

By using (4) in (19) and (22), one finds that $\Lambda^{A_2 D_2 b_1 c_1}_{A_1 D_1 b_2 c_2} = 0$ unless $A_1 = a_1, A_2 = a_2, D_1 = d_1, D_2 = d_2,$ and $C^{c_1 b_1}_{c_2 b_2 D_1} = 0$ unless $D_1 = d_1, D_2 = d_2$. As a consequence $\Lambda^{a_2 D_2 b_1 c_1}_{a_1 D_1 b_2 c_2}$ and $C^{c_1 b_1}_{c_2 b_2 D_1}$ satisfy by themselves the bicovariance conditions (24)–(27). This explains why the projection from $GL_q(n+1)$ to $GL_q(n)$:

$$T^0_a = T^a_0 = 0, T^0_0 = I,$$ (28)

$$\omega^a_0 = \omega^0_a = \omega^0_0 = 0,$$ (29)

$$\chi^a_0 = \chi_0^a = \chi_0^0 = 0$$ (30)

leads to a consistent bicovariant calculus for $GL_q(n)$.

So far we have seen how to obtain $GL_q(n)$, together with its $*$-Hopf algebra structure and bicovariant differential calculus from the “mother” structures of $GL_q(n+1)$. This is not so exciting, but suggests a way to obtain inhomogeneous quantum groups via another kind of projection.

Indeed, consider

$$T^0_a = 0, T^a_0 = a^a, T^0_0 = u$$ (31)

(note that T^0_0 is not set to the identity any more), together with

$$\omega^a_0 = \omega^0_a = 0$$ (32)

$$\chi^a_0 = \chi_0^a = 0$$ (33)
The projection \(31\) yields the quantum group \(IGL_q(n)\), generated by \(T^a_b, x^a, u, v\) (the inverse of \(u\), i.e. \(uv = vu = I\)), \(\xi\) (the inverse of \(\det_q T^a_b\)) and the identity \(I\). The commutation relations of these elements can be read off the “RTT” relations \(3\) for \(GL_q(n + 1)\) after using \(1\) and \(31\):

\[
R^{ab}_{\ e \ f} T^e_{\ c} T^f_{\ d} = T^b_{\ f} T^a_{\ c} R^{ef}_{\ cd} \tag{34}
\]

\[
x^a T^b_{\ c} = R^{ba}_{\ e \ f} T^e_{\ c} x^f \tag{35}
\]

\[
A^{ab}_{\ cd} x^c x^d = 0 \tag{36}
\]

\[
T^a_{\ b} u = u T^a_{\ b} \tag{37}
\]

\[
T^a_{\ b} v = v T^a_{\ b} \tag{38}
\]

\[
x^a u = q^{-1} u x^a \tag{39}
\]

\[
x^a v = q v x^a \tag{40}
\]

the \(A\) matrix being the \(q\)-generalization of the antisymmetrizer:

\[
A = \frac{q I - \tilde{R}}{q + q^{-1}} \tag{41}
\]

where \(\tilde{R}^{ab}_{\ cd} \equiv R^{ba}_{\ cd}\).

The “projected” quantum determinant \(\det_q T^A_{\ B} = u \det_q T^a_{\ b}\) and its inverse \(\Xi = v \xi\) are central.

The Hopf algebra co-structures, consistent with the commutation rules, are deduced from those of \(GL_q(n + 1)\) by simply substituting \(31\) into \(7\)-\(14\):

\[
\Delta(T^a_{\ b}) = T^a_{\ c} \otimes T^c_{\ b}, \quad \Delta(I) = I \otimes I, \tag{42}
\]

\[
\Delta(x^a) = T^a_{\ b} \otimes x^b + x^a \otimes u \tag{43}
\]

\[
\Delta(u) = u \otimes u, \quad \Delta(v) = v \otimes v \tag{44}
\]

\[
\Delta(\det_q T) = det_q T \otimes det_q T, \quad \Delta(\xi) = \xi \otimes \xi \tag{45}
\]

\[
\varepsilon(T^a_{\ b}) = \delta^a_b, \quad \varepsilon(I) = 1, \tag{46}
\]

\[
\varepsilon(x^a) = 0 \tag{47}
\]

\[
\varepsilon(u) = \varepsilon(v) = 1 \tag{48}
\]

\[
\varepsilon(\det_q T) = \varepsilon(\xi) = 1 \tag{49}
\]

\[
\kappa(T^a_{\ b}) = (T^{-1})^a_{\ b}, \quad \kappa(I) = I, \tag{50}
\]

\[
\kappa(x^a) = -\kappa(T^a_{\ b}) x^b v \tag{51}
\]

\[
\kappa(u) = v, \quad \kappa(v) = u \tag{52}
\]

\[
\kappa(\det_q T) = \xi, \quad \kappa(\xi) = \det_q T \tag{53}
\]
After using (32) and (33) do we obtain a consistent bicovariant differential calculus for the quantum group $GL_q(n)$? The answer is yes. Indeed consider the q-Lie algebra \([21]\) of $GL_q(n+1)$. Using the decomposition \([1]\) for R^{AB}_{CD} we find

\[
\chi^{a_1}_{c_2} \delta^{b_1}_{c_2} \chi^{b_1}_{d_2} - \Lambda^{a_2}_{d_2} \delta^{b_1}_{c_2} \chi^{a_1}_{d_2} = \frac{1}{q-q^{-1}} \left[-\delta^{b_1}_{d_2} \delta^{c_1}_{d_2} + \Lambda^{a_2}_{d_1} \delta^{b_1}_{c_2} \right] \chi^{d_1}_{d_2} \quad (54)
\]

\[
\chi^{a_1}_{c_2} \delta^{b_1}_{c_2} \chi^{b_1}_{d_2} - \left(R^{1}\right)^{a_2}_{c_1} \epsilon_{c_1}^{b_1} (R^{1})^{a_2}_{d_1} \chi^{d_1}_{d_2} = \frac{1}{q-q^{-1}} \left[-\delta^{b_1}_{d_2} \delta^{c_1}_{d_2} + \left(R^{1}\right)^{a_1}_{c_2} (R^{1})^{a_2}_{d_1} \right] \chi^{d_1}_{d_2} \quad (55)
\]

\[
\chi^{a_1}_{c_2} \chi^{b_1}_{d_0} - (q-q^{-1}) d^{g_2}_{c_2} d^{i_1}_{c_2} (R^{1})^{c_1}_{g_2i_1} (R^{1})^{a_1}_{i_1} (R^{1})^{a_2}_{d_1} \chi^{a_1}_{d_2} = \quad (56)
\]

\[
\chi^{a_1}_{c_2} \chi^{b_1}_{d_0} - q (R^{1})^{a_1}_{c_2} \chi^{a_1}_{d_0} = 0 \quad (57)
\]

where $\Lambda^{a_2}_{d_2} \delta^{b_1}_{c_2}$ is the braiding matrix of $GL_q(n)$, given in \([58]\), so that the commutations in \([54]\) are those of the q-subalgebra $GL_q(n)$. Note that the $q \to 1$ limit on the right hand sides of \([54]\) and \([55]\) is finite, since the terms in square parentheses are a (finite) series in $q-q^{-1}$, and the $0-th$ order part vanishes (see \([9]\), eq. (5.55)). We have written here only a subset X of the commutation relations \([21]\). This subset involves only the $\chi^{a_1}_{b_1}$ and $\chi^{a_1}_{d_0}$ generators, and closes on itself. The Λ and C components entering \([54]-[57]\) are

\[
\Lambda^{a_2}_{d_2} \delta^{b_1}_{c_2} = d^{f_2}_{c_2} d^{i_1}_{c_2} (R^{1})^{c_1}_{f_2i_1} (R^{1})^{a_1}_{i_1} (R^{1})^{a_2}_{d_1} R^{g_2d_1}_{d_2} \quad (58)
\]

\[
\Lambda^{a_0}_{d_2} \delta^{b_1}_{c_2} = d^{f_2}_{c_2} d^{i_1}_{c_2} (R^{1})^{c_1}_{f_2i_1} (R^{1})^{a_1}_{i_1} (R^{1})^{a_2}_{d_1} \quad (59)
\]

\[
\Lambda^{a_1}_{d_2} \delta^{b_1}_{c_2} = (R^{1})^{c_1}_{d_1} (R^{1})^{a_1}_{b_2} \quad (60)
\]

\[
\Lambda^{a_2}_{d_2} \delta^{b_1}_{c_2} = (q-q^{-1}) d^{f_2}_{c_2} d^{i_1}_{c_2} (R^{1})^{c_1}_{f_2i_1} (R^{1})^{a_1}_{i_1} (R^{1})^{a_2}_{d_1} \quad (61)
\]

\[
\Lambda^{a_2}_{d_2} \delta^{b_1}_{c_2} = q (R^{1})^{a_2}_{d_1} \quad (62)
\]

$C^{a_1}_{c_2} \delta^{b_1}_{c_2} \delta^{d_2}_{c_2}$ is the structure constants of $GL_q(n)$. This result was already found in \([1]\) without using the projection discussed in the present Letter. We repeat now the same reasoning as in \([1]\): the components given in \([58]-[59]\) are the only non-vanishing $\Lambda^{a_2}_{d_2} \delta^{b_1}_{c_2}$ components and the only non-vanishing $C^{a_1}_{c_2} \delta^{b_1}_{c_2} \delta^{d_2}_{c_2}$ components with indices C_1, C_2, B_1, B_2 corresponding to the subset X. Because of this, they satisfy by themselves the bicovariance conditions, as the sums in \([24]-[27]\) do not involve other components. Then \([54]-[57]\) defines a bicovariant quantum Lie algebra, and a consistent differential calculus can be set up, based on a Λ tensor whose only nonvanishing components are \([58]-[59]\).
Finally, we consider the complexification \(IGL_q(n, \mathbb{C}) \). This we obtain as the projection of the complex \(q \)-group \(GL_q(n+1, \mathbb{C}) \). Let us recall how to construct \(GL_q(n+1, \mathbb{C}) \) from \(GL_q(n+1) \) [22]. Using the \(\ast \)-structure on \(GL_q(n+1) \), one introduces the conjugated elements

\[
\hat{T}^A_{\bar{B}} \equiv [\kappa(T^B_A)]^* \quad (66)
\]

The complex conjugate version of (5) yields the \(R\hat{T}\hat{T} \) relation:

\[
R^{AB}_{\ EF} \hat{T}^E_C \hat{T}^F_D = \hat{T}^B_F \hat{T}^A_E R^{EF}_{\ CD} \quad (67)
\]

whereas the commutations between \(T^A_B \) and \(\hat{T}^\alpha_{\bar{B}} \) can be defined to be

\[
R^{AB}_{\ EF} \hat{T}^E_C T^F_D = T^B_F \hat{T}^A_E R^{EF}_{\ CD} \quad (68)
\]

An \(RTT \)-formulation for the complexified quantum group \(GL_q(n+1, \mathbb{C}) \) can be found by defining the matrix \(T^J_K \):

\[
T^J_K = \begin{pmatrix} T^A_B & 0 \\ 0 & T^A_{\bar{B}} \end{pmatrix} \quad (69)
\]

where

\[
T^A_{\bar{B}} \equiv \hat{T}^A_B \quad (70)
\]

with the index convention \(J = (A, \bar{A}) \). Then the \(RTT \) relation

\[
\mathcal{R}^{IJ}_{\ MN} T^M_K T^N_L = T^J_N T^I_M \mathcal{R}^{MN}_{\ KL} \quad (71)
\]

with

\[
\mathcal{R}^{IJ}_{\ KL} = \begin{pmatrix} R & 0 & 0 & 0 \\ 0 & (R^+)^{-1} & 0 & 0 \\ 0 & 0 & R & 0 \\ 0 & 0 & 0 & R \end{pmatrix} \quad (72)
\]

(indices \(IJ \) ordered as \(AB, \bar{A}B, \bar{A}\bar{B}, \bar{A}\bar{B} \), and \((R^+)^{AB}_{\ CD} \equiv R^{BA}_{\ DC} \)) reproduces the commutations (5), (67) and (68). A bicovariant calculus on \(GL_q(n+1, \mathbb{C}) \) can be set up in terms of the \(\mathcal{R} \) matrix, via the standard formula given before for the braiding matrix \(\Lambda \).

We define now the projection of \(GL_q(n+1, \mathbb{C}) \) onto the complexified inhomogeneous quantum group \(IGL_q(n, \mathbb{C}) \) by taking the complexified version of (31):

\[
T^0_a = 0, \ T^a_0 \equiv x^a, \ T^0_0 \equiv u, \ T^\alpha_0 = 0, \ T^\alpha_\bar{a} \equiv x^{\bar{a}}, \ T^\bar{0}_0 \equiv \bar{u} \quad (73)
\]

Then \(IGL_q(n+1, \mathbb{C}) \) is defined as the algebra \(\mathcal{A} \) freely generated by the elements \(T^a_b, \ T^a_{\bar{b}}, \ x^a, \ x^{\bar{a}}, \ u \) and its inverse \(v, \bar{u} \) and inverse \(v, \bar{v} \), and the inverses \(\xi, \bar{\xi} \) of the \(q \)-determinants \(\det_q T^a_b, \ det_q T^a_{\bar{b}} \). The “projected” \(q \)-determinants \(u\det_q T^a_b, \ uv \) and their inverses \(v, \bar{v} \) are central. The commutations of these elements
are deduced from (3), (67) and (68) after use of (73); they are given therefore by (44)-(50) for TT and TT commutations, whereas the $\bar{T}T$ commutations are:

\[
R^{ab}_{\, ef} T^{\bar{e}}_{\, c} T^{f}_{\, d} = T^{b}_{\, f} T^{\bar{a}}_{\, \bar{e}} R^{ef}_{\, cd}
\]

(74)

\[
R^{ab}_{\, ef} x^{\bar{e}}_{\, c} x^{f}_{\, d} = x^{b}_{\, f} T^{\bar{a}}_{\, \bar{e}}
\]

(75)

\[
T^{\bar{a}}_{\, \bar{e}} u = u T^{\bar{a}}_{\, \bar{e}}, \quad T^{\bar{a}}_{\, \bar{e}} v = v T^{\bar{a}}_{\, \bar{e}}
\]

(76)

\[
R^{ab}_{\, ef} x^{\bar{e}}_{\, c} x^{f}_{\, d} = (q - q^{-1}) x^{b}_{\, f} T^{\bar{a}}_{\, \bar{e}} + T^{b}_{\, d} x^{\bar{a}}
\]

(77)

\[
R^{ab}_{\, ef} x^{\bar{e}}_{\, c} x^{f}_{\, d} = q x^{b}_{\, f} x^{\bar{a}}
\]

(78)

\[
x^{\bar{a}} u + (q - q^{-1}) \bar{u} x^{a} = q u x^{\bar{a}}
\]

(79)

\[
v x^{\bar{a}} + (q - q^{-1}) v \bar{u} x^{a} v = q x^{\bar{a}} v
\]

(80)

\[
\bar{u} T^{a}_{\, b} = T^{\bar{a}}_{\, \bar{b}} \bar{u}, \quad \bar{v} T^{a}_{\, b} = T^{\bar{a}}_{\, \bar{b}} \bar{v}
\]

(81)

\[
\bar{u} x^{a} = q x^{\bar{a}} \bar{u}, \quad \bar{v} x^{a} = q^{-1} x^{\bar{a}} \bar{v}
\]

(82)

\[
\bar{u} u = u \bar{u}, \quad \bar{v} v = v \bar{v}, \quad \bar{v} u = u \bar{v}, \quad \bar{v} v = v \bar{v}
\]

(83)

The co-structures of the conjugated elements $T^{A}_{\, B\bar{}}$ are given by the same formulas (with barred indices) as in (39)-(42).

The bicovariant differential calculus on $GL_{q}(n + 1, \C)$ is found by the usual procedure, described in formulas (19)-(22), after replacing $A, B...$ indices by $I, J...$ indices. Here again we find a subset X of the q-Lie algebra of $GL_{q}(n + 1, \C)$ that closes on itself, and allows therefore a consistent projection onto a bicovariant differential calculus for $IGL_{q}(n, \C)$. This subset is given by (54)-(57) and:

\[
\chi^{\bar{c}}_{\bar{b}} x_{a_{2}} = \Lambda_{a_{2}}^{\bar{a}} d_{1} | c_{2} b_{2} \chi^{\bar{a}}_{a_{2}} x_{a_{2}} = \frac{1}{q - q^{-1}} \left(-\delta^{\bar{b}_{1}}_{b_{1}} c_{1} d_{2}^{1} + \Lambda_{a_{2}}^{\bar{a}} c_{1} b_{1} \right) \chi^{\bar{a}}_{a_{2}} x_{a_{2}} = 0 (84)
\]

\[
\chi^{\bar{c}_{2}}_{\bar{b}} x_{a_{2}} = d^{2}_{2} d^{2}_{2} R^{b_{2}}_{c_{2} a_{2}} R^{a_{2}}_{b_{2} f_{2}} \chi^{\bar{a}_{2}}_{a_{2}} x_{a_{2}} = \frac{1}{q - q^{-1}} \left(-\delta^{\bar{b}_{2}}_{b_{2}} c_{2} d_{2}^{2} + \delta^{\bar{b}_{2}}_{b_{2}} c_{2} d_{2}^{2} \right) \chi^{\bar{a}_{2}}_{a_{2}} x_{a_{2}} = 0 (85)
\]

\[
\chi^{\bar{c}_{2}}_{\bar{b}} x_{a_{2}} = (q - q^{-1}) \delta^{\bar{a}_{2}}_{a_{2}} R^{a_{2}}_{b_{2} c_{2}} \chi^{\bar{a}_{2}}_{a_{2}} x_{a_{2}} = \frac{1}{\lambda_{a_{2}} x_{a_{2}}} = 0 (86)
\]

\[
\chi^{\bar{c}_{2}}_{\bar{b}} x_{a_{2}} = q^{-1} R^{a_{2}}_{b_{2} c_{2}} \chi^{\bar{a}_{2}}_{a_{2}} x_{a_{2}} = 0 (87)
\]

\[
\chi^{\bar{b}_{1}}_{\bar{b}_{2}} = (q - q^{-1}) d^{0}_{2} d^{0}_{2} c_{1} c_{2} (R^{1})^{a_{2}}_{a_{2} b_{1} d_{1}} \chi^{\bar{a}_{2}}_{a_{2}} x_{a_{2}} = \frac{1}{q - q^{-1}} \left(-\delta^{\bar{b}_{1}}_{b_{1}} c_{1} d_{1}^{1} + \Lambda_{a_{1}}^{\bar{a}_{1}} c_{1} b_{1} \right) \chi^{\bar{a}_{2}}_{a_{2}} x_{a_{2}} = 0 (88)
\]

\[
\chi^{\bar{b}_{1}}_{\bar{b}_{2}} = (q - q^{-1}) d^{0}_{2} d^{0}_{2} c_{1} c_{2} (R^{1})^{a_{2}}_{a_{2} b_{1} d_{1}} \chi^{\bar{a}_{2}}_{a_{2}} x_{a_{2}} = \frac{1}{q - q^{-1}} \left(-\delta^{\bar{b}_{1}}_{b_{1}} c_{1} d_{1}^{1} + \Lambda_{a_{1}}^{\bar{a}_{1}} c_{1} b_{1} \right) \chi^{\bar{a}_{2}}_{a_{2}} x_{a_{2}} = 0 (88)
\]

\[
\chi^{\bar{b}_{1}}_{\bar{b}_{2}} = (q - q^{-1}) d^{0}_{2} d^{0}_{2} c_{1} c_{2} (R^{1})^{a_{2}}_{a_{2} b_{1} d_{1}} \chi^{\bar{a}_{2}}_{a_{2}} x_{a_{2}} = \frac{1}{q - q^{-1}} \left(-\delta^{\bar{b}_{1}}_{b_{1}} c_{1} d_{1}^{1} + \Lambda_{a_{1}}^{\bar{a}_{1}} c_{1} b_{1} \right) \chi^{\bar{a}_{2}}_{a_{2}} x_{a_{2}} = 0 (88)
\]

\[
\chi^{\bar{b}_{1}}_{\bar{b}_{2}} = (q - q^{-1}) d^{0}_{2} d^{0}_{2} c_{1} c_{2} (R^{1})^{a_{2}}_{a_{2} b_{1} d_{1}} \chi^{\bar{a}_{2}}_{a_{2}} x_{a_{2}} = \frac{1}{q - q^{-1}} \left(-\delta^{\bar{b}_{1}}_{b_{1}} c_{1} d_{1}^{1} + \Lambda_{a_{1}}^{\bar{a}_{1}} c_{1} b_{1} \right) \chi^{\bar{a}_{2}}_{a_{2}} x_{a_{2}} = 0 (88)
\]
\(\chi_{c_2}^0 x_{b_2} - d^2 d_{c_2}^{-1} R f_{c_2 a_1} (R^{-1})^{a_2 e_1} f_{b_2} \chi_{a_2}^0 x_{d_2} = 0 \) \hfill (91)

\(\chi_{b_2}^c x_{b_2} - R^{b_1 c_{1 e_1}} (R^{-1})^{a_{2 e_1}} b_{2 d_1} \chi_{a_2}^0 x_{d_2} = 0 \) \hfill (92)

\(\chi_{c_2}^0 x_{b_2} - d^2 d_{c_2}^{-1} R f_{c_2 a_1} (R^{-1})^{a_2 e_1} b_{2 a_1} \chi_{a_2}^0 x_{d_2} = 0 \) \hfill (93)

\(\chi_{b_2}^c x_{b_2} - q^{-1} (R^{-1})^{a_{2 c_1}} b_{2 d_1} \chi_{a_2}^0 x_{d_2} = 0 \) \hfill (94)

\(\chi_{c_2}^0 x_{b_2} - q d^2 d_{c_2}^{-1} R f_{c_2 a_1} (R^{-1})^{a_{2 e_1}} b_{2 a_1} \chi_{a_2}^0 x_{d_2} = 0 \) \hfill (95)

The commutations in (54)-(57) and (58)-(61) are those of the two \(q \)-commuting subalgebras \(GL_q(n) \). Again we call \(X \) this subset of the \(q \)-Lie algebra commutation relations of \(GL_q(n+1,C) \). It closes on the generators \(\chi^a_b, \chi^a_0, \chi^b_0, \chi^0_b \). The \(\Lambda \) and \(C \) components entering the subset \(X \) are given by (58)-(63) and by

\(\Lambda_{a_2 d_2}^{c_1 b_1} e_{c_1 b_1} = \Lambda_{a_2 d_2}^{c_1 b_1} e_{c_2 b_1} = \Lambda_{a_1 d_1}^{c_1 b_1} e_{c_2 b_2} = \Lambda_{a_2 d_2}^{c_1 b_0} e_{c_2 b_1} = (R^{-1})^{a_{2 e_1}} b_{1 a_1} \chi_{a_2 e_1} (R^{-1})^{a_2 e_1} b_{2 d_1} \) \hfill (96)

\(\Lambda_{a_2 d_2}^{c_1 b_0} e_{c_2 b_1} = (R^{-1})^{a_{2 e_1}} b_{1 a_1} \chi_{a_2 e_1} (R^{-1})^{a_2 e_1} b_{2 d_1} \) \hfill (97)

\(\Lambda_{a_1 d_1}^{c_1 b_0} e_{c_2 b_1} = (R^{-1})^{a_{2 e_1}} b_{1 a_1} \chi_{a_2 e_1} (R^{-1})^{a_2 e_1} b_{2 d_1} \) \hfill (98)

\(\Lambda_{a_2 d_2}^{c_1 b_0} e_{c_2 b_1} = (R^{-1})^{a_{2 e_1}} b_{1 a_1} \chi_{a_2 e_1} (R^{-1})^{a_2 e_1} b_{2 d_1} \) \hfill (99)

\(\Lambda_{a_2 d_2}^{c_1 b_0} e_{c_2 b_1} = (R^{-1})^{a_{2 e_1}} b_{1 a_1} \chi_{a_2 e_1} (R^{-1})^{a_2 e_1} b_{2 d_1} \) \hfill (100)

Again we find that these are the only non-vanishing \(\Lambda_{A_2 D_2}^{C_1 B_1} \) components and the only non-vanishing \(C_{C_2 B_2}^{D_2} \) components with indices \(C_1, C_2, B_1, B_2 \) corresponding to the subset \(X \). By the same reasoning used in the case of \(IGL_q(n) \), we
conclude that \((34)-(37), (68)-(72) \) define a bicovariant quantum Lie algebra, and a consistent differential calculus can be set up, based on a \(\Lambda \) tensor whose only non-vanishing components are \((58)-(62), (96)-(110) \). This differential calculus is obtained from the one of \(GL_q(n+1, C) \) by setting:

\[
\begin{align*}
\omega_0^a &= \omega_0^a = \omega_0^0 = 0 \\
\chi^0_a &= \chi^0_a = \chi^0_0 = 0
\end{align*}
\] (114)

In the Table we present the \(q \)-Lie algebra for \(IGL_q(2, C) \), i.e. the quantum Poincaré group with the addition of two dilatations, generated by \(\chi^1_1 + \chi^2_2 \). The generators \(\chi^a_0 \) and \(\chi_0^a \) close on the \(q \)-Lie algebra of \(GL_q(2, C) \), while \(\chi_0^0 \) and \(\chi^0_0 \) are the four \(q \)-momentum generators. To obtain \(ISL_q(2, C) \) we must require \(\text{udet} q T^a_b - \bar{\text{udet}} q T^\bar{a}_b = I \). This implies the relation

\[
\chi^1_1 + \chi^2_2 - (q - q^{-1})\chi^1_1 \chi^2_2 + q^2(q - q^{-1})\chi^1_1 \chi^2_1 = 0
\] (116)

(cf. ref. [8]) and a similar one for barred generators, which reduce the number of independent generators from 12 to 10.

The co-structures of \(\chi^I_J \) are given by:

\[
\begin{align*}
\Delta'(\chi^I_J) &= I' \otimes \chi^I_J + \chi^K_L \otimes f_{KL}^{LI} J \\
\varepsilon'(\chi^I_J) &= 0 \\
\kappa'(\chi^I_J) &= -\chi^K_L f_{KL}^{LI} J
\end{align*}
\] (117) (118) (119)

where

\[
f_{KL}^{LI} J \equiv \kappa'((L^+)^I_K)(L^-)^L_J
\] (120)

and the functionals \((L^\pm)^I_J \) are defined below. A detailed account of the bicovariant differential calculus on the quantum Poincaré group is given in ref. [16].

Note 1: we have chosen \(R^{\bar{A}\bar{B}}_{\bar{C}\bar{D}} = R^{AB}_{CD} \) in (72). In fact, another choice is possible, i.e. \(R^{AB}_{CD} = [(R^+)^{-1}]^{AB}_{CD} \), since it reproduces the same commutations (67). This last choice is favoured in ref. [12]. However a consistent projection on \(IGL_q(n, C) \) does not seem to exist in this case. Note that our choice (72) is still consistent with a \(\ast \)-structure on the space of regular functionals. Indeed a conjugation on the functionals \((L^\pm)^A_B \) can be defined as:

\[
[(L^\pm)^A_B]^\ast(a) \equiv [(L^\pm)^B_A(a^\ast)]
\] (121)

where \(a \in GL_q(n+1, C) \) and the bar indicates the usual conjugation on \(C \). We recall that these functionals are defined by their action on the group elements:

\[
(L^\pm)^I_J(T^K_L) = (R^\pm)^{IK}_{JL}
\] (122)
Then

\[(L^\pm)^A_B = [(L^\pm)^A_B]^\dagger \] \hspace{1cm} (123)

Note 2: the right-hand sides of eqs (88) and (89) vanish because of the identities:

\[d^f_2 d^{-1}(R^{-1})^{b_1 f_2}_{c_2} R^{g d_2}_{b_2 f_2} = \delta^{d_2}_{c_2} \delta^{b_1}_{b_2} \] \hspace{1cm} (124)

\[d^f_2 d^{-1}(R^{-1})^{f_2 b_1}_{c_2 g} R^{d_2 g}_{f_2 b_2} = \delta^{d_2}_{c_2} \delta^{b_1}_{b_2} \] \hspace{1cm} (125)

valid for any \(GL_q(n) \) \(R \)-matrix.

Note 3: the quantum Lorentz group \(SL_q(2, \mathbb{C}) \) is obviously contained in the \(q \)-Poincaré group \(ISL_q(2, \mathbb{C}) \). This inclusion holds also for the corresponding \(q \)-Lie algebras, since \(\chi^a\bar{b} \) and \(\chi^a\bar{b} \) close on the quantum Lorentz \(q \)-Lie algebra, cf. the Table. This fact is of relevance for the construction of a \(q \)-Minkowski spacetime as the quantum coset space \(q \)-Poincaré / \(q \)-Lorentz.
Table
The bicovariant q-Lie algebra of the quantum Poincaré group

\[
\begin{align*}
\chi_1^1\chi_2^1 - \chi_1^2\chi_1^1 + (1 - q^2)\chi_1^2\chi_2^2 &= q\chi_2^1, \\
\chi_1^2\chi_2^1 - \chi_1^1\chi_1^2 - (1 - q^2)\chi_2^2\chi_1^1 &= -q\chi_1^2, \\
\chi_1^1\chi_2^2 - \chi_2^1\chi_1^1 &= 0, \\
\chi_1^1\chi_2^2 - \chi_1^1\chi_2^1 + (1 - q^2)\chi_2^2\chi_1^1 - (1 - q^2)\chi_2^2\chi_2^1 &= q(\chi_1^1 - \chi_2^2), \\
\chi_1^2\chi_2^2 - q^2\chi_2^2\chi_2^1 &= q\chi_1^1, \\
\chi_1^2\chi_2^2 - q^{-2}\chi_2^2\chi_1^1 &= -q^{-1}\chi_2^1, \\
\text{and same with barred indices}
\end{align*}
\]

\[
\begin{align*}
\chi_0^1\chi_1^1 - q^{-2}\chi_1^1\chi_0^1 - (q^{-2} - 1)\chi_1^2\chi_0^2 &= -q^{-1}\chi_0^1, \\
\chi_0^1\chi_1^2 - q^{-1}\chi_2^1\chi_0^1 &= 0, \\
\chi_0^1\chi_2^1 - q^{-1}\chi_1^2\chi_0^1 - (q^{-1} - q)\chi_2^2\chi_0^2 &= -\chi_0^1, \\
\chi_0^1\chi_2^2 - \chi_2^1\chi_0^1 &= 0, \\
\chi_0^1\chi_1^2 - q^{-2}\chi_1^2\chi_0^1 - (q^{-2} - 1)\chi_1^1\chi_0^1 - (-2 + q^{-2} + q^2)\chi_2^2\chi_0^2 &= (q - q^{-1})\chi_0^1, \\
\chi_0^1\chi_2^2 - q^{-1}\chi_2^2\chi_0^1 - (q^{-1} - q)\chi_2^1\chi_0^1 &= -\chi_0^1, \\
\chi_0^1\chi_2^2 - q^{-1}\chi_2^1\chi_0^2 &= 0, \\
\chi_0^1\chi_2^2 - q^{-2}\chi_2^2\chi_0^2 &= -q^{-1}\chi_0^2
\end{align*}
\]

\[
\begin{align*}
\chi_0^1\chi_1^1 - q^{-2}\chi_1^1\chi_0^1 - (1 - 2q^2 + q^4)\chi_2^1\chi_0^2 - (-q + q^3)\chi_2^2\chi_0^2 &= q^3\chi_1^0, \\
\chi_0^1\chi_1^2 - q\chi_1^2\chi_0^0 - (q^2 + q^4)\chi_2^2\chi_0^2 &= q^3\chi_1^2, \\
\chi_0^0\chi_1^1 - \chi_1^1\chi_0^2 - (q - q^{-1})\chi_2^1\chi_0^1 &= 0, \\
\chi_0^0\chi_1^2 - q\chi_1^2\chi_0^0 &= 0, \\
\chi_0^1\chi_2^1 - q\chi_2^1\chi_0^1 &= 0, \\
\chi_0^1\chi_2^2 - q\chi_1^2\chi_0^1 &= 0, \\
\chi_0^2\chi_1^1 - q\chi_2^2\chi_1^0 - (q^2 - 1)\chi_2^2\chi_1^0 &= q\chi_1^0, \\
\chi_0^2\chi_1^2 - q^2\chi_2^2\chi_1^0 &= q\chi_1^2
\end{align*}
\]

\[
\begin{align*}
\chi_1^0\chi_0^1 - q\chi_1^0\chi_0^1 &= 0, \\
\chi_0^1\chi_0^2 - q^{-1}\chi_0^2\chi_0^1 &= 0, \\
\chi_1^0\chi_0^2 - q^{-2}\chi_1^0\chi_0^1 + (1 - q^{-2})\chi_0^2\chi_0^2 &= 0, \\
\chi_0^1\chi_0^2 - q^{-1}\chi_2^1\chi_0^2 &= 0, \\
\chi_0^2\chi_0^2 - q^{-1}\chi_1^1\chi_0^2 &= 0, \\
\chi_0^2\chi_0^2 - q^{-2}\chi_2^2\chi_0^2 &= 0
\end{align*}
\]
\[\chi^1_1\chi^1_2 - \chi^1_1\chi^1_1 + (-q^{-4} + q^{-2})\chi^0_1\chi^0_0 + (-1 - q^{-4} + 2q^{-2})\chi^0_2\chi^0_2 -
\vspace{-0.5cm}
- (1 - q^{-2})\chi^1_2\chi^2_1 = 0
\]
\[\chi^1_1\chi^1_2 - \chi^1_2\chi^1_1 - (-q^{-3} + q^{-1})\chi^0_2\chi^0_0 = 0
\]
\[\chi^1_1\chi^1_2 - \chi^1_1\chi^1_1 - (q^2 - 1)\chi^1_1\chi^1_1 - (1 - q^2)\chi^2_2\chi^2_1 = 0
\]
\[\chi^1_1\chi^1_2 - \chi^1_2\chi^1_1 - (1 - q^{-2})\chi^1_2\chi^1_1 = 0
\]
\[\chi^2_1\chi^1_2 - (q^2 - 1)\chi^2_2\chi^2_1 - \chi^2_1\chi^2_1 - (1 - q^{-2})\chi^2_1\chi^2_2 = 0
\]
\[\chi^1_2\chi^2_1 - q^2\chi^1_2\chi^2_1 = 0
\]
\[\chi^2_1\chi^1_2 - q^{-2}\chi^2_1\chi^1_2 + (-q^{-6} + q^{-4})\chi^0_1\chi^0_0 - q^{-6}(1 - q^{-2})\chi^0_2\chi^0_2 -
\vspace{-0.5cm}
- (1 - q^{-2})\chi^1_1\chi^1_1 - (1 - q^{-2})\chi^2_2\chi^2_1 - (q^{-4} - q^{-2} + q^2 - 1)\chi^1_2\chi^2_1 -
\vspace{-0.5cm}
- (1 - q^{-2})\chi^1_2\chi^2_2 = 0
\]
\[\chi^1_2\chi^2_1 - q^2\chi^1_2\chi^2_1 = 0
\]
\[\chi^1_2\chi^1_2 - \chi^1_1\chi^1_1 + (-q^{-3} + q^{-1})\chi^0_1\chi^0_0 = 0
\]
\[\chi^1_2\chi^2_1 - q^{-2}\chi^1_2\chi^2_1 + (-q^{-4} + q^{-2})\chi^2_2\chi^2_1 = 0
\]
\[\chi^1_2\chi^1_2 - q^2\chi^1_2\chi^1_1 = 0
\]
\[\chi^1_2\chi^1_2 - \chi^1_2\chi^1_2 = 0
\]
\[\chi^1_2\chi^1_2 - \chi^1_1\chi^1_2 - (1 - q^{-2})\chi^2_2\chi^1_1 = 0
\]
\[\chi^2_2\chi^1_2 - \chi^2_2\chi^2_2 = 0
\]
\[\chi^2_2\chi^1_2 - \chi^1_2\chi^2_2 + (-q^{-5} + q^{-3})\chi^0_2\chi^0_0 - (-1 + q^{-2})\chi^1_2\chi^1_1 -
\vspace{-0.5cm}
- (1 - q^{-2})\chi^2_2\chi^2_2 = 0
\]
\[\chi^1_2\chi^0_1 - \chi^0_1\chi^1_1 - (1 - q^2)\chi^0_2\chi^1_1 = 0
\]
\[\chi^0_1\chi^0_1 - \chi^0_1\chi^0_1 = 0
\]
\[\chi^1_2\chi^0_1 - q^{-1}\chi^0_2\chi^1_2 + (q - q^{-1})\chi^0_2\chi^1_1 - (q^{-1} - q)\chi^0_2\chi^2_2 = 0
\]
\[\chi^1_2\chi^2_2 - q^2\chi^0_2\chi^1_1 = 0
\]
\[\chi^1_2\chi^0_1 - q\chi^0_1\chi^1_1 = 0
\]
\[\chi^2_2\chi^0_2 - q^{-1}\chi^0_2\chi^2_2 = 0
\]
\[\chi^0_2\chi^0_1 - \chi^0_1\chi^2_2 - (1 - q^{-2})\chi^0_2\chi^1_1 = 0
\]
\[\chi^2_2\chi^0_2 - \chi^0_2\chi^2_2 = 0
\]
\[\chi^1_0\chi^1_1 - \chi^1_1\chi^0_1 - (1 - q^2)\chi^1_2\chi^0_2 = 0
\]
\[\chi^0_1\chi^0_1 - q\chi^0_2\chi^1_1 = 0
\]
\[\chi^0_2\chi^0_1 - q^{-1}\chi^0_2\chi^1_1 - (q - q^{-1})\chi^0_2\chi^1_1 - (q^{-1} - q)\chi^0_2\chi^2_2 = 0
\]
\[\chi^0_2\chi^2_2 - \chi^0_2\chi^1_1 = 0
\]
\[\chi^2_0\chi^1_1 - \chi^1_1\chi^0_1 = 0
\]
\[\chi^1_0\chi^0_1 - q^{-1}\chi^1_1\chi^0_1 - (1 - q^{-2})\chi^1_1\chi^0_2 = 0
\]
\[\chi^0_0\chi^1_1 - \chi^1_1\chi^0_1 = 0
\]
\[\chi^0_1\chi^0_1 - q\chi^0_2\chi^1_1 = 0
\]
\[\chi^0_2\chi^0_1 - \chi^0_2\chi^0_1 = 0
\]
\[\chi^2_0\chi^1_1 - q\chi^1_2\chi^0_1 = 0
\]
\[\chi^0_2\chi^1_1 - q^{-1}\chi^1_2\chi^0_1 = 0
\]
\[\chi^0_2\chi^2_2 - \chi^2_2\chi^2_2 = 0
\]
References

[1] V. Drinfeld, Sov. Math. Dokl. 32 (1985) 254.

[2] M. Jimbo, Lett. Math. Phys. 10 (1985) 63; 11 (1986) 247.

[3] L.D. Faddeev, N.Yu. Reshetikhin and L.A. Takhtajan, Algebra and Analysis, 1 (1987) 178.

[4] S. Majid, Int. J. Mod. Phys. A5 (1990) 1.

[5] S.L. Woronowicz, Publ. RIMS, Kyoto Univ., Vol. 23, 1 (1987) 117; Commun. Math. Phys. 111 (1987) 613 and Commun. Math. Phys. 122, (1989) 125.

[6] D. Bernard, Quantum Lie algebras and differential calculus on quantum groups, Proc. 1990 Yukawa Int. Seminar, Kyoto; Phys. Lett. 260B (1991) 389.

[7] B. Jurčo, Lett. Math. Phys. 22 (1991) 177.

[8] B. Zumino, Introduction to the Differential Geometry of Quantum Groups, LBL-31432 and UCB-PTH-62/91, notes of a plenary talk given at the 10-th IAMP Conf., Leipzig (1991); P. Schupp, P. Watts and B. Zumino, Differential Geometry on Linear Quantum Groups, preprint LBL-32314, UCB-PTH-92/13 (1992).

[9] P. Aschieri and L. Castellani, An introduction to non-commutative differential geometry on quantum groups, preprint CERN-TH.6565/92, DFTT-22/92 (1992), to be publ. in Int. Jou. Mod. Phys. A.

[10] L. Castellani, R matrix and bicovariant calculus for the inhomogeneous quantum groups $IGL_q(n)$, Torino preprint DFTT-59/92, to be publ. in Phys. Lett. B.

[11] M. Schlieker, W. Weich and R. Weixler, Inhomogeneous quantum groups, LMU-TPW 1191-3.

[12] B. Drabant, M. Schlieker, W. Weich and B. Zumino, Complex quantum groups and their quantum enveloping algebras, MPI-PTh/91-75 and LMU-TPW 1991-5.

[13] P. Podleś and S.L. Woronowicz, Commun. Math. Phys. 130 (1990) 381; U. Carow-Watamura, M. Schlieker, M. Scholl and S. Watamura, Z. Phys. C48 (1990) 159 and Int. Jou. Mod. Phys. A6 (1991) 3081; W.B. Schmidke, J. Wess and B. Zumino, Z. Phys. C52 (1991) 471; O. Ogievetsky, W.B. Schmidke, J. Wess and B. Zumino, MPI-PTh/91-51 (1991); S. Majid, DAMPT/92-10; X.D. Sun, S.K. Wang and K. Wu, CCAST-92-14, ASIAM-92-11, ASITP-92-18 (1992).
[14] J. Lukierski, A. Novicki, H. Ruegg and V.N. Tolstoy, Phys. Lett. B264 (1991) 331; J. Lukierski, A. Novicki and H. Ruegg, Phys. Lett. B271 (1991) 321 and B293 (1992) 344; V. Dobrev, in the Proceedings of the Quantum Groups Workshop, Goslar, 1991; O. Ogievetsky, W.B. Schmidke, J. Wess and B. Zumino, MPI-Ph/91-98, LBL-31703, UCB 92/04; S. Majid, DAMTP/92-65.

[15] P. Aschieri and L. Castellani, Phys. Lett. B293 (1992) 299.

[16] L. Castellani, *Bicovariant differential calculus on the quantum Poincaré group*, Torino preprint DFTT-66/92