Pulse-Reverse Protocol for Efficient Suppression of Dendritic Micro-structures in Rechargeable Batteries

Asghar Aryanfar∗†‡, Yara Ghamlouche†, William A. Goddard III §

∗ Corresponding author, Email: aryanfar@caltech.edu

† American University of Beirut, Riad El-Solh, Lebanon 1107
‡ Bahçeşehir University, 4 Çırağan Cad, Beşiktaş, Istanbul, Turkey 34353
§ California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125

Abstract

The ramified and stochastic evolution of dendritic microstructures has been a major issue on the safety and longevity of rechargeable batteries, particularly for the utilization metallic electrodes. We computationally develop pulse-reverse protocols for effective halting of the growing microstructures during extensive charging periods far beyond inter-ionic collisions. Our framework is based on the competitiveness of the dendritic growth during the pulse period versus the dissolution of the (sub)branches during the reverse charge. The detachment of the atoms from the structure preferentially occurs from the meta-stable sites which possess the lowest coordination number and require lowest activation energy for dissolution. We prove that even an infinitesimal pulse-reverse charge is more effective than an extended pulse-relaxation method for the suppression of the dendritic structures.

1 Introduction

Metallic anodes are arguably popular materials for their applicability in the future rechargeable batteries [1, 2, 3]. Specifically, lithium metal possesses the lowest mass density which provides a very high energy density. It additionally has the highest electropositivity ($E^0 = -3.04V$ vs SHE) making it suitable for high-power applications. ($\rho = 0.53 \text{ g.cm}^{-3}$) [4, 5]. However, the quick formation of microstructures during the charge period leads to a tree-like formation of microstructures with high surface to volume ratio [6] which occupy a large volume, can reach the counter-electrode and short the cell. As well, they could dissolve from their thinner necks during the discharge period. Such a formation-dissolution cycle is particularly prominent for the metal electrodes due to lack of diffusion into the inner layers, as opposed to depositing in the surface [7].
Previous studies have investigated various factors on dendritic formation such as current density [8], electrode surface roughness [9, 10], impurities [11], solvent and electrolyte chemical composition [12], electrolyte concentration [13], utilization of powder electrodes [14] and adhesive polymers [15], temperature [16], guiding scaffolds [17, 18], capillary pressure [19], cathode morphology [20] and mechanics [21, 22]. Some of the conventional characterization techniques used include NMR [23] and MRI. [24] Other studies also have shown the necessity of stability of solid electrolyte interphase (i.e. SEI) layer for controlling the nucleation and growth of the branched medium [25, 26].

Earlier model of the branched evolution have addressed the electric field and space charge as the main driving mechanism [27] for growth while the other models focused on ionic concentration causing the diffusion limited aggregation (DLA) [28, 29, 30]. Both mechanisms are part of the electrochemical potential [31, 32], indicating that each could be dominant depending on the localizations of the electric potential or ionic concentration within the medium. Nevertheless, their interplay has been rarely explored, especially in continuum scale and realistic time intervals, matching scales of the experimental time and space.

The main cause of dendritic formation is the non-uniformity of electrode surface morphology at the atomic scale and the Brownian nature of ionic motion during electrodeposition. A surface sharpness provides a large electric field that attracts the ions as a sink. The other contributing factor is the closeness of the asperity to the counter electrode, where more deposition accelerate the growth rate.

Pulse method has recently proven to be an effective mechanism for suppression of the dendrites [33, 34]. The concentration of ions in a given region is the results of the cooperative role of the mass flux into/out of the region, as well consumption of ions due to reduction reaction. While the reaction process is probable during the interaction with any kind of surface, the influx of ions is in fact highly manipulated via the sharp and large electric fields (i.e. $|E| > 10^5 V.cm^{-1}$) [33]). Therefore during each pulse period, the ions unfavorably accumulate at the dendrites tips and during the subsequent rest period they favorably diffuse away to lower concentration zones. Such relaxation, which occurs within the double layer (or stern layer [35]), provides a useful mechanism to achieve uniform morphology. In fact, after the equilibrium, there is still ionic exchange between the above regions, with equal rates, due to Brownian motion, which occurs in local and global scales. Particularly, during higher charge rates, the ionic concentration is completely exhausted on the electrode surface [36]; Nevertheless, the continuum-level approach could extend to a larger scale, beyond the double layer region. [37]

While the pulse-relaxation method reduces the evolution of the dendrites in batteries [33, 38, 39, 40] and during other applications [41, 42], the pulse-reverse method has specific advantages including saving the total charge time and retaining charge capacity. A pulse-reverse protocol consists of a positive pulse charge followed by a negative charge, with a possible optional resting time [43, 44] as shown in the Figure 2. This method reduces the concentration polarization [45] and is particularly used for controlling the thickness and uniformity of deposits [46]. With well chosen parameters, a larger cell’s specific energy and specific power can be reached with this technique [47, 48]. Pulse-reverse is a potentially good method to overcome mass transport limitations in
batteries [49]. This technique optimally decreases the possibly-formed concentration gradients. Therefore, the pulse-reverse has adequate potentials in terms of health and efficiency [43].

In this paper, we elaborate further in the range of acceptable reverse-ratio for suppression of stochastically-grown dendrites and we develop new insight for the effective rest period on the curved boundary. Subsequently we carry out experimental investigation to verify our analytical developments on the pulse parameters. We perform dimensional analysis to set our formulation applicable to the large range of electrochemical devices.

2 Methodology

The ionic motion is generated either from the variation of the concentration (∇C) or the electric potential ($\nabla \phi$). Typically, the ions in the high-concentrated zones collide and repel more and gradually move to less populated regions. In the larger scales such displacement can be represented by the diffusion length. On the other hand, ions tend to acquire drift velocity in the electrolyte medium when exposed to electric field. Therefore, as represented in the Figure 1, the total displacement of the ions in the given coarse time interval of δt is given by

$$\delta \vec{r} = \sqrt{2D^+ \delta t \hat{g}} + \mu^+ \vec{E} \delta t$$

where D^+ is the ionic diffusion coefficient in the electrolyte, and \hat{g} is a normalized vector in a random direction, representing the Brownian dynamics, μ^+ is the mobility of cations in electrolyte, \vec{E} is the local electric field, which is the gradient of electric potential ($\vec{E} = -\nabla \phi$).

The diffusion length represents the average progress of a diffusive wave in a given time, obtained directly from the diffusion equation. [50]

$^1\delta t = \sum_{i=1}^{n} \delta t_i$ where δt_i is the inter-collision time, typically in the range of fs.
The pulse charging in its simplest form consists of trains of square active period t_{ON}, followed by a square rest interval t_{OFF} in terms of current I or voltage V as shown in Figure 2. The period P is the time lapse of a full cycle defined as:

$$P = t_{ON} + t_{REV} + t_{OFF}$$

which is solely true for the intended galvanostatic (i.e. constant current density) charging. In fact f_{REV} shows the fraction of the discharge-to-charge amount (i.e. $f_{REV} = 0.1$ means for every 10 attached atoms, there is 1 removal). As well we define the relaxation-ratio f_{OFF} as:

$$f_{OFF} = \frac{t_{OFF}}{t_{ON}}$$

Based on the Equations 2, 3 and 4, the pulse reverse curve is uniquely characterized.

The reverse ratio f_{REV} is characterized based on charge amount whereas the relaxation-ratio f_{OFF} based on the amount of time. The algorithm defined in the Figure 3 sets to enter the either. Hence, to enter the discharge phase, i.e. the reverse, a certain amount of charge needs to be met. This means that after a certain number of depositions, the program will set the phase to reverse and it will discharge the specified charge amount based on the reverse-ratio f_{REV}. In the ideal
case, one can reduce the time to an infinitesimal amount and magnify the current i indefinitely. Therefore, the reverse phase could be explained as a Dirac delta function function below:

$$Q_{REV} = \lim_{t \to 0} \int_0^t i \, dt$$

(5)

where the higher the current i is, the less time is needed to obtain the same discharge amount Q.

The electrodeposition-dissolution process for the formation of the dendritic morphologies is described in detail below:

1. Define the values for the time intervals composing the period P: they are the pulse period t_{ON}, rest period t_{OFF} and the reverse period t_{REV} which is defined through the reverse-ratio f_{REV}. The initial values are determined as the relaxation time scale for blocking electrodes, such that:

$$t_{on} = t_{off} = \kappa l$$

where κ is the scale of the double-layer, l is the scale of the domain and D is the diffusivity coefficient of the bulk medium.

2. Determine the displacement of the each ion $\Delta \vec{r}$ in the given time interval δt, where the pulse period carries the diffusion and migration effect, while the rest period only carries the sole diffusion effect. τ is the remainder of the total time divided by the period P and is the measure for determining the time zone, such that:

$$\tau := rem(t, P) \rightarrow \begin{cases} \tau \leq t_{ON} & \text{Pulse} \\ \tau > t_{ON} & \text{Relaxation} \end{cases}$$

3. Keep moving the ions, until (at least) one of them reaches the vicinity of dendrite and turns into the atom. If the program is in the charging phase, the atoms will both diffuse and attach to the structure. As long as the atoms are only diffusing, the loop keeps repeating itself. After
each deposited atom, the program goes through a checkpoint. If the charge is divisible by \(\frac{1}{f_{REV}} \), then the program will enter the reverse phase. Since \(f_{REV} = \frac{t_{REV}}{t_{ON}} \) shows the fraction of time the discharge occurs relative to the charging period, therefore the term \(\text{rem} (\text{Att}, f_{REV}) = 0 \) ensures entering into the detachment loop once every \(f_{REV}^{-1} \) times the attachment occurs. In the latter phase, the adjacency matrix \(A_{i,j} \) of all the atoms will be calculated, which is a measure of the inter-atomic distance and \(A_{i,j} = 1 \) represents the two atoms being in the bond distance and 0 otherwise. The row sum leads to the number of neighbors for each atom.

4. In the reverse loop, the most metastable atom is removed. Thermodynamically such atom possesses the least coordination number (i.e. number of attached neighbors). Coordination number can be achieved by counting the number of atoms, which center-to-center distance of less than the atomic bond distance (~ 2\(a \)) where \(A_{i,j} = 1 \). On the other hand, if the charge is not divisible by \(f_{REV}^{-1} \), the loop is directed back to calculation of total time again unless the total number of atoms attached is reached. In the latter case, the program ends and the density of the atoms in the space filled is calculated and studied.

5. Continue step 1 to 4 until all desired number of atoms are attached (i.e. deposited).

Consequently, we define the density of the obtained microstructures as the filled-to-total fraction of the area as:

\[
\rho = \frac{n \pi r^2}{h_{max} l}
\]

where \(n \) is the number of atoms, \(r \) is the atomic radius, \(h_{max} \) is the height of the tallest atom and \(l \) is the scale of the domain. Figures 5a and 5b represent the variation of the density \(\rho \) versus the reverse ratio \(f_{REV} \) and the relaxation ratio \(f_{OFF} \).
3 Experimental

We performed experiments within a manually-fabricated sandwich cell [51], which provides the possibility of in-situ observation of growing dendrites from the periphery (Figure 6a). The cell encompasses two \(\text{Li}_0 \) disc electrodes \((D = 1.59 \text{cm}) \) with the distance of \(L = 0.32 \text{cm} \) via a transparent acrylic PMMA separator. The fabricated cells were filled with \(0.4 \text{cm}^3 \) of LiPF\(_6\) in a solution with stoichiometric compound of EC:EMC\(\equiv 1:1 \) in an argon-filled glovebox\((H_2O, O_2 < 0.5 \text{ppm})\). Multiple such cells were electrolyzed with pulse reverse ratio values \(f_{\text{REV}} \) given in the Table 1, generated by a programmable multichannel cycler. After the passage of \(48 \text{mAh} \) \((\approx 173 \text{C})\) through the cells, 3 images within the periphery of \(120^\circ \) were taken by means of Leica M205FA optical microscope through the acrylic separator. The image processing algorithm is described as below:

1. The RGB image is read to the program by 3 values of \(\{R, G, B\} \in [0, 255] \) and has been converted to a grayscale image \(I \) with individual values of range \(I_{i,j} \in [0, 1] \).
2. The grayscale image \(I_{i,j} \) is binarized to \(J_{i,j} \) via the grayness threshold \(I_c \) as below:

\[
J_{i,j} = \begin{cases}
1 & I_{i,j} \geq I_c \\
0 & I_{i,j} < I_c
\end{cases}
\]

the threshold value \(I_c \) has been chosen to minimize the weighted intra-class variance \(\sigma^2 \) defined as:

\[
\sigma^2 = \omega_0 \sigma_0^2 + \omega_1 \sigma_1^2 \\
\omega_0 + \omega_1 = 1
\]
where \(\omega_0 \) and \(\omega_1 \) are the total fraction of element divided by the value of \(I_c \) and \(\sigma_0^2 \) and \(\sigma_1^2 \) are their respective variances. [52] Such minimization ensures that the resulted

3. The circular sandwich cell with the radius \(R \) has been divided of 3 arcs with the angle of \(\frac{2\pi}{3} \) and width incremental length of \(\delta x \), which is supposed to be projected to a 2D plane with the incremental width of \(\delta x' \). From Figure 6a due to geometry we have: \(x = \frac{D}{2} \sin(\theta), \rightarrow dx = \frac{D}{2} \cos(\theta) d\theta \), where \(\cos(\theta) = \sqrt{1 - \frac{4x^2}{D^2}} \); hence:

\[
\delta x' = \frac{\delta x}{\sqrt{1 - \frac{4x^2}{D^2}}}
\]

where \(D \) is diameter of the sandwich cell [53].

4. Starting from the electrode surface, the occupied space by the dendrites has been calculated by the square site percolation paradigm [54].

5. The infinitesimal calculations have been integrated and normalized to inter-electrode distance (\(\hat{\lambda}_i := \lambda_i/l \)) to get the dendrite measure \(\bar{\lambda} \) as:

\[
\rho = \frac{1}{\pi D h_{\text{max}}} \sum_{k=1}^{3} \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \hat{\lambda}_k(\theta) \frac{D}{2} d\theta
\]

\[
= \frac{1}{\pi D h_{\text{max}}} \sum_{k=1}^{3} \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \hat{\lambda}_k(x) dx \sqrt{1 - \frac{4x^2}{D^2}}
\]

where \(h_{\text{max}} \) is the height of the tallest peak in the observed dendrite. The integral Equation 6 has been obtained by incremental sum from experimental data. Figure 6b shows such investigation for the sample reverse ratios of \(f_{REV} = \{0.2, 0.4\} \), where the red encirclement is the approximated dendrite area, the green rectangle is the total area, and the dashed line represents the height of the tallest obtained dendrite in each experiment. The detailed experimental parameters are given in the Table 1.

\[\text{Note that the current density } i \text{ and the ionic flux } j \text{ are correlated with } i = zFj, \text{ where } z \text{ is the valence number of charge carriers and } \text{Faraday's constant, representing the amount of charge per mole.}\]

Parameter	\(f_{REV} \)	\(i \)	\(l \)	\(R \)	\(T \)	\(C_\infty \)
Value	\{0, 0.2, 0.4, 0.6, 0.8\}	1	3.175	7.95	298	1
Unit	[] mA/cm² mm mm K M					

Table 1: Experimental Parameters.
Dissolving peaks
\[f_{REV} < \text{Opt} \]
Formation of cavities
\[f_{REV} > \text{Opt} \]
Flat
Interface
\[f_{REV} = \text{Opt} \]

Figure 7: The role of extreme reverse-ratio \(f_{REV} \) on the possible formation of cavities.

4 Results & Discussions

During the excessive pulse period, which imposes the ionic flux on the dendrite body, the concentration order in the interface regions turns to the following due to manipulation from the electric field:

Concentration: \(\text{Tip} > \text{Bulk} > \text{Voids} \)

whereas, during a typical diffusion process, the flow of the ions occurs from high-to-low concentrated regions (i.e. \(J = -D \nabla C \)). Therefore, given enough time for the relaxation period, the concentration gradient should vanish, ensuring the equilibrium in ionic kinetics.

Figure 4 shows that the reverse ratio \(f_{REV} \) correlates directly with the dendritic tendency. Starting from the uniform charging in the Figure 4a the average height reduces consecutively through Figures 4b, 4c and 4d where atoms leave the highly condensed sites and reattach on the inner unoccupied regions. This phenomenon is explained by the fact that the reverse current density at the tips is larger than in other locations which makes the high spots’ atoms more prone to detachment [55] due to Arrhenius relationship as [56]:

\[
k = k_0 \exp \left(-\frac{\Delta G}{k_B T} \right)
\]

Therefore, due to lowest coordination number (i.e. \(N = 1 \)), such sites require the lowest activation energy \(\Delta G \) for dissolution and the preferential detachment of the high-spots with sharp interfaces leads to the melting of the peaks and the residue of smoother surface.

Figure 5a reveals that the density of the structures \(\rho \) versus the number of atoms increases with the reverse ratio \(f_{REV} \), where each point is the average of the 3 individual runs. The increasing trend correlates with the previous studies that the reverse ratio is an effective method for dendritic suppression [49, 57]. The experimental values correlated closely with the numerical simulations. The slight higher values of the experiments relative to the model can be interpreted as the result of
Figure 8: Density values obtained via both imposing reverse ratio f_{REV} (red) and the relaxation ratio f_{OFF} (blue). $\{\text{Solid, Dashed, Dotted}\} = \{200, 400, 800\}$ atoms

the ignoring the void in the dendrites body (i.e. red encirclements) leading to the over-measurement in the experimental merit of density.

The density results in the Figure 5b with identical reverse ratio f_{REV} are slightly higher in the presence of relaxation ratio f_{OFF}, which is additionally effective in vanishing the concentration gradients in the over-occupied zones until a certain limit. Nevertheless, the density decreases after a peak merging to smaller values by the reverse-ratio. The dissolution of the atoms is supposed to cut and shorten the branches in the structure and, in the best cases, completely remove them and flatten-out the interface. However, excessive dissolution will lead to the disturbing of the flat interface where the extra cavities form. Figure 7 schematically explains such over-dissolution process, where the disruption occurs again. The green arrows indicate an increase in the f_{REV}/f_{OFF} ratio and their intersection with the flat interface is at the critical value $f_{REV}/f_{OFF} \approx 0.15$.

The extended advantage of this the reverse-charging is the facilitation of the accessibility in ions to inner layer during the subsequent charge-discharge cycles. Comparing the Figures 5a and 5b the cooperation of pulse-reverse (f_{REV}) and pulse-relaxation (f_{OFF}) is constructive, albeit pulse reverse shows much more efficacy for increasing the density. This has collectively been shown in the Figure 8 where the relatively much smaller reverse ratio f_{REV} leads to much larger density values, even compared to extended relaxation ratio f_{OFF}. Thus, in order to reach comparable densities to the pulse-reverse technique, pulse-relaxation obliges a very long and unnecessary waiting time [49]. In practice, the partial discharge process can be imposed by programming the charger electronics and the entire pulse-reverse protocol could be automated to the infinitesimal (i.e. finite) time intervals, scaling down up to $\sim \mu s$. Needless to mention that, the results obtained are suitable
and effective during a single charge period and short-term application, whereas the long term performance parameters such as coulombic efficiency and cycle stability will be studied in future works. Ultimately, tuning the morphology adjusts the distribution of the electric field and the concentration profile in the favor of uniform growth and since they are controlled not to reach extreme values, there will possibly be less side reactions.

5 Conclusion

In this paper, we have developed a reverse feedback control loop for more effective prevention of formation of dendritic growth during charge period of battery. The controlling parameters is mainly the charge-based reverse ratio f_{REV} accompanied with time-based relaxation ratio f_{OFF}. The preferential detachment of ions during the reverse charge correlates with the respective coordination number as well as their location in the microstructure. Both pulse-reverse and pulse-relaxation were investigated and compared with variant charge ratios. Pulse-reverse has shown to be the most efficient method for morphology control during dendritic evolution.

Acknowledgement

The authors would like to thank the University Research Board of American University of Beirut, Award #103950, for the financial support.

References

[1] Pucheng Pei, Keliang Wang, and Ze Ma. Technologies for extending zinc air batterys cyclelife: A review. Applied Energy, 128:315–324, 2014.

[2] Michael D Slater, Donghan Kim, Eungje Lee, and Christopher S Johnson. Sodium-ion batteries. Adv. Funct. Mater., 23(8):947–958, 2013.

[3] Yanguang Li and Hongjie Dai. Recent advances in zinc–air batteries. Chem. Soc. Rev., 43(15):5257–5275, 2014.

[4] Siyuan Li, Jixiang Yang, and Yingying Lu. Lithium metal anode. Encyclopedia of Inorganic and Bioinorganic Chemistry, pages 1–21.

[5] W. Xu, J. L. Wang, F. Ding, X. L. Chen, E. Nasybutin, Y. H. Zhang, and J. G. Zhang. Lithium metal anodes for rechargeable batteries. Energy and Environmental Science, 7(2):513–537, 2014.
[6] Shizhao Xiong, Michael Regula, Donghai Wang, and Jiangxuan Song. Toward better lithium–sulfur batteries: functional non-aqueous liquid electrolytes. *Electrochemical Energy Reviews*, 1(3):388–402, 2018.

[7] Zhe Li, Jun Huang, Bor Yann Liaw, Viktor Metzler, and Jianbo Zhang. A review of lithium deposition in lithium-ion and lithium metal secondary batteries. *J. Power Sources*, 254:168–182, 2014.

[8] Rui Zhang, Xin-Bing Cheng, Chen-Zi Zhao, Hong-Jie Peng, Jia-Le Shi, Jia-Qi Huang, Jinfu Wang, Fei Wei, and Qiang Zhang. Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth. *Advanced Materials*, 28(11):2155–2162, 2016.

[9] Christoffer P Nielsen and Henrik Bruus. Morphological instability during steady electrodeposition at overlimiting currents. *arXiv preprint arXiv:1505.07571*, 2015.

[10] PP Natsiavas, K Weinberg, D Rosato, and M Ortiz. Effect of prestress on the stability of electrode–electrolyte interfaces during charging in lithium batteries. *Journal of the Mechanics and Physics of Solids*, 95:92–111, 2016.

[11] J. Steiger, D. Kramer, and R. Monig. Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium. *J. Power Sources*, 261:112–119, 2014.

[12] Reza Younesi, Gabriel M Veith, Patrik Johansson, Kristina Edström, and Tejs Vegge. Lithium salts for advanced lithium batteries: Li-metal, li-o 2, and li-s. *Energy and Environmental Science*, 8(7):1905–1922, 2015.

[13] Anna Teyssot, Céline Belhomme, Renaud Bouchet, Michel Rosso, Stéphane Lascaud, and Michel Armand. Inter-electrode in situ concentration cartography in lithium/polymer electrolyte/lithium cells. *Journal of Electroanalytical Chemistry*, 584(1):70–74, 2005.

[14] I. W. Seong, C. H. Hong, B. K. Kim, and W. Y. Yoon. The effects of current density and amount of discharge on dendrite formation in the lithium powder anode electrode. *J. Power Sources*, 178(2):769–773, 2008.

[15] GM Stone, SA Mullin, AA Teran, DT Hallinan, AM Minor, A Hexemer, and NP Balsara. Resolution of the modulus versus adhesion dilemma in solid polymer electrolytes for rechargeable lithium metal batteries. *J. Electrochem. Soc.*, 159(3):A222–A227, 2012.

[16] Asghar Aryanfar, Tao Cheng, Agustin J Colussi, Boris V Merinov, William A Goddard III, and Michael R Hoffmann. Annealing kinetics of electrodeposited lithium dendrites. *The Journal of chemical physics*, 143(13):134701, 2015.
[17] Yuanzhou Yao, Xiaohui Zhao, Amir A Razzaq, Yuting Gu, Xietao Yuan, Rahim Shah, Yuebin Lian, Jinxuan Lei, Qiaoqiao Mu, Yong Ma, et al. Mosaic rgo layer on lithium metal anodes for effective mediation of lithium plating and stripping. *Journal of Materials Chemistry A*, 2019.

[18] Ji Qian, Yu Li, Menglu Zhang, Rui Luo, Fujie Wang, Yusheng Ye, Yi Xing, Wanlong Li, Wenjie Qu, Lili Wang, et al. Protecting lithium/sodium metal anode with metal-organic framework based compact and robust shield. *Nano Energy*, 2019.

[19] Wei Deng, Wenhua Zhu, Xufeng Zhou, Fei Zhao, and Zhaoping Liu. Regulating capillary pressure to achieve ultralow areal mass loading metallic lithium anodes. *Energy Storage Materials*, 2019.

[20] Alexander W Abboud, Eric J Dufek, and Boryann Liaw. Implications of local current density variations on lithium plating affected by cathode particle size. *Journal of The Electrochemical Society*, 166(4):A667–A669, 2019.

[21] Chen Xu, Zeeshan Ahmad, Asghar Aryanfar, Venkatasubramanian Viswanathan, and Julia R Greer. Enhanced strength and temperature dependence of mechanical properties of li at small scales and its implications for li metal anodes. *Proceedings of the National Academy of Sciences*, 114(1):57–61, 2017.

[22] Peng Wang, Wenjie Qu, Wei-Li Song, Haosen Chen, Renjie Chen, and Daining Fang. Electro–chemo–mechanical issues at the interfaces in solid-state lithium metal batteries. *Advanced Functional Materials*, page 1900950, 2019.

[23] Rangeet Bhattacharyya, Baris Key, Hailong Chen, Adam S Best, Anthony F Hollenkamp, and Clare P Grey. In situ nmr observation of the formation of metallic lithium microstructures in lithium batteries. *Nat. Mater.*, 9(6):504, 2010.

[24] S Chandrashekar, Nicole M Trease, Hee Jung Chang, Lin-Shu Du, Clare P Grey, and Alexej Jerschow. Li mri of li batteries reveals location of microstructural lithium. *Nat. Mater.*, 11(4):311–315, 2012.

[25] Yunsong Li and Yue Qi. Energy landscape of the charge transfer reaction at the complex li/sei/electrolyte interface. *Energy & Environmental Science*, 2019.

[26] Laleh Majari Kasmaee, Asghar Aryanfar, Zarui Chikneyan, Michael R Hoffmann, and AgustÅ- n J Colussi. Lithium batteries: Improving solid-electrolyte interphases via underpotential solvent electropolymerization. *Chem. Phys. Lett.*, 661:65–69, 2016.

[27] J. N. Chazalviel. Electrochemical aspects of the generation of ramified metallic electrodeposits. *Phys. Rev. A*, 42(12):7355–7367, 1990.
[28] Thomas A Witten and Leonard M Sander. Diffusion-limited aggregation. *Phys. Rev. B*, 27(9):5686, 1983.

[29] Xin Zhang, Q Jane Wang, Katharine L Harrison, Katherine Jungjohann, Brad L Boyce, Scott A Roberts, Peter M Attia, and Stephen J Harris. Rethinking how external pressure can suppress dendrites in lithium metal batteries. *Journal of The Electrochemical Society*, 166(15):A3639–A3652, 2019.

[30] Stéphane Douezan and Françoise Brochard-Wyart. Active diffusion-limited aggregation of cells. *Soft Matter*, 8(3):784–788, 2012.

[31] Deepti Tewari and Partha P Mukherjee. Mechanistic understanding of electrochemical plating and stripping of metal electrodes. *Journal of Materials Chemistry A*, 7(9):4668–4688, 2019.

[32] Allen J Bard, Larry R Faulkner, et al. Fundamentals and applications. *Electrochemical Methods*, 2(482):580–632, 2001.

[33] Asghar Aryanfar, Daniel Brooks, Boris V. Merinov, William A. Goddard Iii, AgustÁn J. Colussi, and Michael R. Hoffmann. Dynamics of lithium dendrite growth and inhibition: Pulse charging experiments and monte carlo calculations. *The Journal of Physical Chemistry Letters*, 5(10):1721–1726, 2014.

[34] Matthew Z Mayers, Jakub W Kaminski, and Thomas F Miller III. Suppression of dendrite formation via pulse charging in rechargeable lithium metal batteries. *The Journal of Physical Chemistry C*, 116(50):26214–26221, 2012.

[35] Martin Z Bazant, Brian D Storey, and Alexei A Kornyshev. Double layer in ionic liquids: Overscreening versus crowding. *Phys. Rev. Lett.*, 106(4):046102, 2011.

[36] V. Fleury. Branched fractal patterns in non-equilibrium electrochemical deposition from oscillatory nucleation and growth. *Nature*, 390(6656):145–148, 1997.

[37] Asghar Aryanfar, Daniel J Brooks, Tao Cheng, Boris V Merinov, William A Goddard, Agustín J Colussi, and Michael R Hoffmann. Three dimensional modeling of dendrite growth in rechargeable lithium metal batteries. In *Meeting Abstracts*, number 15, pages 1154–1154. The Electrochemical Society, 2015.

[38] Asghar Aryanfar, Daniel J Brooks, and William A Goddard. Theoretical pulse charge for the optimal inhibition of growing dendrites. *MRS Advances*, 3(22):1201–1207, 2018.

[39] Asghar Aryanfar, Michael R Hoffmann, and William A Goddard III. Finite-pulse waves for efficient suppression of evolving mesoscale dendrites in rechargeable batteries. *Physical Review E*, 100(4):042801, 2019.
[40] Hui Zhi Zak Beh, Grant A Covic, and John T Boys. Effects of pulse and dc charging on lithium iron phosphate (lifepo 4) batteries. In 2013 IEEE Energy Conversion Congress and Exposition, pages 315–320. IEEE, 2013.

[41] M. S. Chandrasekar and M. Pushpavanam. Pulse and pulse reverse plating - conceptual, advantages and applications. Electrochim. Acta, 53(8):3313–3322, 2008.

[42] M. Z. Bazant, K. Thornton, and A. Ajdari. Diffuse-charge dynamics in electrochemical systems. Physical Review E, 70(2), 2004.

[43] François Savoye, Pascal Venet, Michael Millet, and Jens Groot. Impact of periodic current pulses on li-ion battery performance. IEEE Transactions on Industrial Electronics, 59(9):3481–3488, 2011.

[44] Sang Ha Lee, Hyuck Lee, Mi Suk Cho, Jae-Do Nam, and Youngkwan Lee. Morphology and composition control of manganese oxide by the pulse reverse electrodeposition technique for high performance supercapacitors. Journal of Materials Chemistry A, 1(46):14606–14611, 2013.

[45] Wen Cheng, Wen Ge, Qian Yang, and Xinxin Qu. Study on the corrosion properties of nanocrystalline nickel electrodeposited by reverse pulse current. Applied surface science, 276:604–608, 2013.

[46] Uziel Landau. Periodic reverse plating for effective leveling. Extended Abstract n 615, The Electrochemical Society Extended Abstracts, 93:1, 1993.

[47] Carla-Fabiana Chiasserini and Ramesh R Rao. Pulsed battery discharge in communication devices. In Proceedings of the 5th annual ACM/IEEE international conference on Mobile computing and networking, pages 88–95, 1999.

[48] Biju Shrestha, David A Wetz, and Peter M Novak. Pulsed elevated rate discharge of electrochemical energy storage devices. IEEE Transactions on Plasma Science, 40(10):2462–2469, 2012.

[49] Heng Yang, Edmond O Fey, Bryan D Trimm, Nikolay Dimitrov, and M Stanley Whittingham. Effects of pulse plating on lithium electrodeposition, morphology and cycling efficiency. Journal of Power Sources, 272:900–908, 2014.

[50] Jean Philibert. One and a half century of diffusion: Fick, einstein, before and beyond. Diffusion Fundamentals, 4(6):1–19, 2006.

[51] Asghar Aryanfar. Method and device for dendrite research and discovery in batteries, April 11 2017. US Patent 9,620,808.

[52] Nobuyuki Otsu. A threshold selection method from gray-level histograms. Automatica, 11(285-296):23–27, 1975.
[53] Asghar Aryanfar, Daniel J Brooks, Agustin J Colussi, and Michael R Hoffmann. Quantifying the dependence of dead lithium losses on the cycling period in lithium metal batteries. *Phys. Chem. Chem. Phys.*, 16(45):24965–24970, 2014.

[54] Asghar Aryanfar, William Goddard III, and Jaime Marian. Constriction percolation model for coupled diffusion-reaction corrosion of zirconium in pwr. *Corrosion Science*, 158:108058, 2019.

[55] Wei Jiang, Sriharsha S Sundarram, and Wei Li. Fabrication of microcellular metal foams with sphere template electrodeposition. *Manufacturing Letters*, 2(4):118–121, 2014.

[56] Svante Arrhenius. Über die dissociationswärme und den einfluss der temperatur auf den dissociationsgrad der elektrolyte. *Zeitschrift für physikalische Chemie*, 4(1):96–116, 1889.

[57] N Hasani, M Ghaemi, and M Javankbakht. Using pulse-and reverse pulse currents in synthesis of cathode materials for rechargeable lithium-ion batteries. 2013.
Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Credit Author Statement

Asghar Aryanfar, PhD: Conceptualization, Validation, Formal Analysis, Investigation, Data Curation, Writing Original Draft, Writing - Review/Editing, Visualization, Funding Acquisition.

Yara Ghamlouche (MSc Student): Methodology, Resources, Software, Writing - Review/Editing, Supervision, Project Administration.

Prof. William Goddard III: Consultation & Supervision, Project Administration.