Greaves, Gary R. W.; Iverson, Joseph W.; Jasper, John; Mixon, Dustin G.
Frames over finite fields: equiangular lines in orthogonal geometry. (English) Zbl 07472504
Linear Algebra Appl. 639, 50-80 (2022)

Summary: We investigate equiangular lines in finite orthogonal geometries, focusing specifically on equian-
gular tight frames (ETFs). In parallel with the known correspondence between real ETFs and strongly
regular graphs (SRGs) that satisfy certain parameter constraints, we prove that ETFs in finite orthogonal
geometries are closely aligned with a modular generalization of SRGs. The constraints in our finite field
setting are weaker, and all but 18 known SRG parameters on \(v \leq 1300 \) vertices satisfy at least one of
them. Applying our results to triangular graphs, we deduce that Gerzon’s bound is attained in finite
orthogonal geometries of infinitely many dimensions. We also demonstrate connections with real ETFs,
and derive necessary conditions for ETFs in finite orthogonal geometries. As an application, we show that
Gerzon’s bound cannot be attained in a finite orthogonal geometry of dimension 5.

MSC:
51E26 Other finite linear geometries
51A50 Polar geometry, symplectic spaces, orthogonal spaces
05E30 Association schemes, strongly regular graphs
42C15 General harmonic expansions, frames
51F25 Orthogonal and unitary groups in metric geometry

Keywords:
equiangular lines; equiangular tight frames; finite fields; strongly regular graphs

Software:
GRAPE

Full Text: DOI

References:
[1] Azarija, J.; Marc, T., There is no \((75, 32, 10, 16)\) strongly regular graph, Linear Algebra Appl., 557, 62-83 (2018) - Zbl 1396.05122
[2] Azarija, J.; Marc, T., There is no \((95, 40, 12, 20)\) strongly regular graph, J. Comb. Des., 28, 4, 294-306 (2020)
[3] Bandeira, A. S.; Fickus, M.; Mixon, D. G.; Wong, P., The road to deterministic matrices with the restricted isometry property,
J. Fourier Anal. Appl., 19, 6, 1123-1149 (2013) - Zbl 1306.15051
[4] Bannai, E.; Munemasa, A.; Venkov, B., The nonexistence of certain tight spherical designs, Algebra Anal., 16, 4, 1-23 (2004)
[5] Barg, A.; Glazyrin, A.; Okoudjou, K. A.; Yu, W.-H., Finite two-distance tight frames, Linear Algebra Appl., 475, 163-175 (2015) - Zbl 1314.42011
[6] Brouwer, A. E., Parameters of strongly regular graphs (2020)
[7] Brouwer, A. E.; Haemers, W. H., Spectra of Graphs, Universitext (2012), Springer: Springer New York - Zbl 1231.05001
[8] Brouwer, A. E.; van Eijl, C. A., On the p-rank of the adjacency matrices of strongly regular graphs, J. Algebraic Comb., 1, 4, 329-346 (1992) - Zbl 0780.05039
[9] Brouwer, A. E.; Van Maldeghem, H., Strongly regular graphs (2020)
[10] Fickus, M.; Jasper, J.; Mixon, D. G.; Peterson, J., Tremain equiangular tight frames, J. Comb. Theory, Ser. A, 153, 54-66 (2018) - Zbl 1369.05217
[11] Fickus, M.; Jasper, J.; Mixon, D. G.; Peterson, J. D.; Watson, C. E., Equiangular tight frames with centroidal symmetry, Appl. Comput. Harmon. Anal., 44, 2, 476-496 (2018) - Zbl 1380.42025
[12] Fickus, M.; Mixon, D. G., Tables of the existence of equiangular tight frames
[13] Fickus, M.; Mixon, D. G.; Tremain, J. C., Steiner equiangular tight frames, Linear Algebra Appl., 436, 5, 1014-1027 (2012) - Zbl 1252.42002
[14] Greaves, G. R.W.; Iverson, J. W.; Jasper, J.; Mixon, D. G., Frames over finite fields: basic theory and equiangular lines in
unitary geometry, Finite Fields Appl., 77, Article 101954 pp. (2022) - Zbl 07432416
[15] Grove, L. C., Classical Groups and Geometric Algebra (2002), American Mathematical Society: American Mathematical Society Providence, RI

[16] Hoffman, A. J.; Singleton, R. R., On Moore graphs with diameters 2 and 3, IBM J. Res. Dev., 4, 497-504 (1960) - Zbl 0096.38102

[17] Lemmens, P. W.H.; Seidel, J. J., Equiangular lines, J. Algebra, 24, 494-512 (1973) - Zbl 0255.50005

[18] Makhnev, A. A., On the nonexistence of strongly regular graphs with the parameters \(\left((486, 165, 36, 66) \right) \), Ukr. Mat. Ž., 54, 7, 941-949 (2002) - Zbl 1018.05110

[19] Mixon, D. G.; Quinn, C. J.; Kiyavash, N.; Fickus, M., Fingerprinting with equiangular tight frames, IEEE Trans. Inf. Theory, 59, 3, 1855-1865 (2013) - Zbl 1364.94558

[20] Neumaier, A., New inequalities for the parameters of an association scheme, (Combinatorics and Graph Theory. Combinatorics and Graph Theory, Calcutta, 1980 (1981), Springer: Springer Berlin-New York), 365-367

[21] Renes, J. M.; Blume-Kohout, R.; Scott, A. J.; Caves, C. M., Symmetric informationally complete quantum measurements, J. Math. Phys., 45, 6, 2171-2180 (2004) - Zbl 1071.81015

[22] Seidel, J. J., A survey of two-graphs, (Geometry and Combinatorics: Selected Works of J.J. Siedel (1991), Academic Press: Academic Press Boston), 146-176

[23] Soicher, L. H., The GRAPE package for GAP, Version 4.8.3 (2019)

[24] Strohmer, T.; Heath, R. W., Grassmannian frames with applications to coding and communication, Appl. Comput. Harmon. Anal., 14, 3, 257-275 (2003) - Zbl 1028.42020

[25] Sustik, M. A.; Tropp, J. A.; Dhillon, I. S.; Heath, R. W., On the existence of equiangular tight frames, Linear Algebra Appl., 426, 2-3, 619-635 (2007) - Zbl 1127.15013

[26] Taylor, D. E., Regular 2-graphs, Proc. Lond. Math. Soc. (3), 35, 2, 257-274 (1977) - Zbl 0362.05065

[27] GAP - Groups, Algorithms, and Programming, Version 4.10.1 (2019)

[28] The Sage Developers, SageMath, the Sage Mathematics Software System (Version 8.7) (2019)

[29] Waldron, S., On the construction of equiangular frames from graphs, Linear Algebra Appl., 431, 11, 2228-2242 (2009) - Zbl 1216.05079

[30] Welch, L., Lower bounds on the maximum cross correlation of signals, IEEE Trans. Inf. Theory, 20, 3, 397-399 (1974) - Zbl 0298.94006

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.