Proficiency of data interpretation: identification of signaling SNPs/specific loci for coronary artery disease

Asma N. Cheema¹,²,*, Samantha L. Rosenthal³ and M. Ilyas Kamboh³

¹Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences & Technology, Islamabad, Pakistan, ²Department of Pathology, University Medical & Dental College, The University of Faisalabad, Faisalabad, Pakistan and ³Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA

*Corresponding author: Tel: +92 41 8869861 62, Ext: 170; Fax: +92 41 8868220; Email: asma.cheema4@gmail.com or dr.asma.naseer@tuf.edu.pk

Citation details: Cheema, A.N., Rosenthal, S.L., and Kamboh, M.I. Proficiency of data interpretation: Identification of signaling SNPs/specific loci for coronary artery disease. Database (2017) Vol. 2017: article ID bax078; doi:10.1093/database/bax078

Received 25 August 2016; Revised 15 September 2017; Accepted 17 September 2017

Abstract

Coronary artery disease (CAD) is a complex disorder involving both genetic and non-genetic factors. Genome-wide association studies (GWAS) have identified hundreds of single nucleotides polymorphisms (SNPs) tagging over > 40 CAD risk loci. We hypothesized that some non-coding variants might directly regulate the gene expression rather than tagging a nearby locus. We used RegulomeDB to examine regulatory functions of 58 SNPs identified in two GWAS and those SNPs in linkage disequilibrium (LD) (r² ≥ 0.80) with the GWAS SNPs. Of the tested 1200 SNPs, 858 returned scores of 1–6 by RegulomeDB. Of these 858 SNPs, 97 were predicted to have regulatory functions with RegulomeDB score of <3. Notably, only 8 of the 97 predicted regulatory variants were genome-wide significant SNPs (LIPA/rs2246833, RegulomeDB score = 1b; ZC3HC1/rs11556924, CYP17A1-CNNM2-N5C2/rs12413409, APOE-APOC1/rs2075650 and UBE2Z/rs46522, each with a RegulomeDB score = 1f; ZNF259-APOA5-APOA1/rs964184, SMG6/rs2281727 and COL4A1-COL4A2/rs4773144, each with a RegulomeDB score = 2b). The remainder 89 functional SNPs were in linkage disequilibrium with GWAS SNPs. This study supports the hypothesis that some of the non-coding variants are true signals via regulation of gene expression at transcription level. Our study indicates that RegulomeDB is a useful database to examine the putative functions of large number of genetic variants and it may help to identify a true association among multiple tagged SNPs in a complex disease, such as CAD.

Database URLs: http://www.regulomedb.org/; https://www.broadinstitute.org/mpg/snap/
Background

Most human DNA sequence is non-coding (98%) and hence only small portion (2%) of human genome encodes proteins (1). Although the pathogenesis of monogenic disorders is largely explained, it has been difficult to determine the underlying mechanisms of complex disorders like coronary artery disease (CAD). Before the development of genome-wide association studies (GWAS), only the APOE*4 allele showed consistent association with the risk of CAD across many populations (2–5).

The hypothesis-free GWAS approach was designed with the assumption that common DNA variants explain the bulk of the variation in common diseases (6). About 90% of GWAS-implicated variants, exert only minimal to modest effect sizes on disease phenotypes, and they are present in non-coding rather than coding regions (7). Highly sensitive molecular and computational techniques have identified different regulatory elements (DNAse hypersensitive regions, sequences affecting the binding of transcription factors and promoters or enhancers) in intergenic regions (8). Common variants located in one of these regulatory elements may affect gene expression. To predict the role of these variants in gene regulation and to differentiate between physically tagged and functional single nucleotides polymorphism (SNPs), many databases have been created (9). RegulomeDB is one of such databases that describes the role of these variants in transcriptional regulation.

Similar to many other complex diseases, GWAS have identified hundreds of risk variants associated with CAD that need to be analyzed for their functional role in gene expression (10). Recently, we have used SNAP web portal and Regulome DB to identify potential regulatory function of variants in associated risk loci for Alzheimer’s disease (11). In this study, we have applied the same approach to identify the regulatory nature of GWAS-implicated variants with CAD and those that are in linkage disequilibrium (LD) with these variants.

Objective

The objective of our study was to assess the GWAS-implicated CAD variants and those variants in LD with GWAS variants for their potential regulatory effects on gene transcription using bioinformatics tools.

Materials and methods

SNPs selection

A total of 58 SNPs within 54 CAD loci was selected, including 52 with accepted genome-wide significant threshold ($P < 5 \times 10^{-8}$) and 6 with suggestive associations ($P > 5 \times 10^{-8}$) identified in two GWAS (12, 13). Detailed information on the selected 58 SNPs is provided in Supplementary Table S1.

Linkage disequilibrium

For the LD assessment of the selected 58 SNPs, we used SNAP web portal (https://www.broadinstitute.org/mpg/snap/, accessed 13 July 2016) (14) (Supplementary Table S2). SNAP contains data from the Northern European from Utah (CEU) population derived from the 1000 Genomes Pilot Project 1 and three different releases of the International-Hap Map Project. We used data from both the 1000 Genomes Project and HapMap 3 (release 2) to identify SNPs in strong LD ($r^2 \geq 0.80$) with our SNPs of interest. We did not select an array bound search, and query SNPs were included in the output. We performed the search at three thresholds—$r^2 \geq 0.80$, $r^2 \geq 0.90$ and $r^2 \geq 1.0$—for both SNP datasets and identified a total of 1,200 SNPs in LD with the 58 published GWAS SNPs, including the GWAS SNPs themselves. As shown in Table 1, the number of proxy SNPs decreased with the increased level of r^2.

Functional assessment of CAD-associated SNPs

We used RegulomeDB to identify potentially functional SNPs among the 1200 SNPs of interest. Regulome DB is a database that scores SNPs functionality based upon experimental data, such as its existence in a DNAse hypersensitive site or transcription factor binding site. These regions have been characterized biochemically, and data are drawn from published literature, Gene Expression Omnibus and ENCODE project that include a total of 962 experimental datasets, covering over 100 tissues and cell lines and representing nearly 60 million annotations. The output data can be mapped to Human genome version 19. It is a user friendly and freely accessible database (http://www.regulomedb.org/accessed 17 July 2016) (15). The functional Grades 1–6 of RegulomeDB are given in Table 2. SNPs

Table 1. Number of SNPs in LD for all published GWAS SNPs for HapMap3 and 1000 genomes populations at tested r^2 threshold

r^2 threshold	LD
0.80	1176
0.90	210
1.0	1200

Table 2. Functional Grades of RegulomeDB

Grade	Description
1	Low functional impact
2	Moderate functional impact
3	High functional impact
4	Very high functional impact
5	Extremely high functional impact
6	Maximal functional impact
showing the strongest evidence of being regulatory (affecting the binding of transcription factor) are given a score of 1 and SNPs demonstrating the least evidence of being functional are given a score of 6.

Results

Among the 1200 SNPs evaluated with RegulomeDB, 342 had no data (Supplementary Table S3). Of the 838 SNPs for which RegulomeDB provided a score, 97 had a score of < 3 (likely to affect the binding) and among these only 8 SNPs were genome-wide significant, including LIPA/rs2246833 (RegulomeDB score = 1b; eQTL in monocytes), ZC3HC1/rs11556924 (RegulomeDB score = 1d; eQTL in monocytes and lymphoblasts), APOE-APOC1/rs2075650, and UBE2Z/rs46522 (RegulomeDB score = 1f; eQTL in monocytes), CYP17A1-CNNM2-NT5C2/rs12413409 (RegulomeDB score = 1f; eQTL in monocytes and lymphoblasts), APOE-APOC1/rs2075650, and UBE2Z/rs46522 (RegulomeDB score = 1f; eQTL in monocytes), ZNF259-APOA5-APOAI/rs964184, UBE2Z/rs46522, SMG6/rs2281727, COL4A1-COL4A2/rs4773144 (RegulomeDB score = 2b; eQTLs in monocytes and lymphoblasts). A flow chart summarizes these results (Figure 1). The remaining 89 SNPs with RegulomeDB scores < 3 were not identified in GWAS but they were in LD ($r^2 \geq 0.80$) with the 29 GWAS reported SNPs. A summary of the regulatory SNPs in LD with GWAS SNPs is provided in Table 3.

Overall, we had 97 functional SNPs (RegulomeDB < 3). Eight of these were GWAS SNPs, and the remaining 89 were in LD ($r^2 \geq 0.80$) with the GWAS SNPs.

Three variants, FES/rs1894401, LIPA/rs2246833 and VAMP8/rs1009, were strongly predicted to be functional with score of 1b. FES/rs1894401 is an intronic SNP that is an eQTL for FES in thyroid and transformed lymphoblasts, is present in the binding motif of Pax5, and affects the binding of eleven transcription factors. LIPA/rs2246833 (RegulomeDB score = 1b), located in Intron 6 of LIPA, in the DNA motif of EWSR1/FLI1, is a GWAS reported SNP along with 4 other functional SNPs (of 12 tested) in this region and it and it affects the binding of CTCF. It is an eQTL in the whole blood. VAMP5-VAMP8-GGCX/rs1009 is an eQTL in lymphoblasts, skeletal muscles, adipose tissue and thyroid. Of 42 SNPs analyzed in this locus, we found 8 other SNPs with RegulomeDB score < 3 (Table 3).

There were 33 functional SNPs within 15 GWAS identified CAD loci: ABO (1 of 10 assessed), ADAMTS7 (1 of 15 assessed), CXCL12 (2 of 36 assessed), HHIP/L1 (3 of 17 assessed), KCNE2 (2 of 18 assessed), KIA1A1 (9 of 1 assessed), MIA1 (1 of 27 assessed), PPAP2B (2 of 22 assessed), SORT1 (3 of 9 assessed), WDR12 (5 of 214 assessed), IL6R (3 of 14 assessed), LPL (2 of 6 assessed), PLG (2 of 214 assessed), SLC22A4-SLC22A5 (1 of 2 assessed) and TRIB1 (4 of 16 assessed).

Of 97 SNPs with RegulomeDB score < 3, 25 were in the CYP17A1-CNNM2-NT5C2 region, and one of them was a GWAS reported SNP (rs12413409). The regional LD plot of this SNP is given in Supplementary Figure S1. rs9633712 (RegulomeDB score = 1e) is located in Intron 3 of NT5C2 and is an eQTL for USMG5 in monocytes. This SNP was also found in the motifs of the following transcription factors: PU1, ELF1, Spf1, Pu.1 and c-Ets-1.
Table 3. Functional SNPs (RegulomeDB Score < 3) in LD ($r^2 \geq 0.80$) with published GWAS SNPs

GWAS SNPs	Functional proxy SNPs	Regulome DB score
LIPA/rs2246833	LIPA/rs1332327	2b
LIPA/rs1332328	2b	
LIPA/rs1412444	1d	
LIPA/rs2246833*	1b	
LIPA/rs2250644	2b	
ZC3HC1/rs11556924	ZC3HC1/rs11556924*	1f
CYP17A1-CNNM2-NT5C2/rs12413409	AS3MT/rs11191454	1f
BORCS7-ASMT/rs4409766	1f	
CNNM2/rs10883808	1f	
MAT2A/rs1446668	2a	
NT5C2/rs10883832	1f	
CNNM2/rs11191479	1f	
NT5C2/rs11191557	1f	
CNNM2/rs11191499	1f	
NT5C2/rs11191558	1f	
CNNM2/rs11191514	1f	
NT5C2/rs11191580	1f	
CNNM2/rs11191515	1f	
NT5C2/rs11191582	1f	
CNNM2/rs12221064	2b	
NT5C2/rs12412038	1f	
CNNM2/rs12411886	1f	
NT5C2/rs12413046	1f	
CNNM2/rs12413409*	1f	
NT5C2/rs9633712	1e	
CNNM2/rs17115213	1f	
NT5C2/rs11191548	1f	
CNNM2/rs2297787	2a	
CNNM2/rs3781285	1f	
CNNM2/rs943037	1f	
CNNM2/rs12219901	2b	
APOE-APOC1/TOMM40/rs2075650	APOE-APOC1/rs2075650*	1f
UBE2Z/rs46522	GIP/rs2291725	1f
	GIP/rs4794004	1d
	SNF8/rs1994970	1f
	SNF8/rs4793992	1f
	UBE2Z/rs12601672	2b
	UBE2Z/rs15563	1f
	UBE2Z/rs3744608	2a
	UBE2Z/rs3848460	1f
	UBE2Z/rs46522*	1f
	UBE2Z/rs11079844	1f
ZNF259-APOA5-APOA1/rs964184	ZNF259-APOA5-APOA1/rs964184	1f
SMG6/rs2281727	SMG6/rs2281727*	2b
	SMG6/rs7217687	2b
	SMG6/rs9908888	2b
COL4A1-COL4A2/rs4773144	COL4A1-COL4A2/rs4773144*	2b
ABO/rs79459	ABO/rs649129	2b
ADMT57/rs7173743	LOCI05370915/rs5029904	2b
	PHACTR1/rs4773143	2b
CXCL12/rs5011120	CXCL12/rs518594	2b
	CXCL12/rs1746052	2b

(Continued)
It appears to affect the binding of SPI1. Twenty SNPs returned a score of 1f (likely to affect the binding), and 18 of them were in intronic regions. NT5C2/rs11191558 lies in HOXC series of DNA motifs, and CNNM2/rs3781285 lies between NF-kappaB and P50:50. NT5C2/rs2297787 returned a score of 2a, affecting the binding motifs of FOXI1, HNF3-alpha and FOXP1 and the binding of FOXA1. SNP rs12412038 is located in Intron 10 of NT5C2 and is in the binding motif of Irx. The remaining two SNPs, rs12219901 and rs12221064, lie in the

GWAS SNPs	Functional proxy SNPs	Regulome DB score
FURIN-FES/rs17514846	FES/rs1894401	1b
HHIPL1/rs2895811	HHIPL1/rs28391527	2b
	HHIPL1/rs4624107	2b
	HHIPL1/rs7145262	2b
IL6R/rs4845625	IL6R/rs7549250	2b
	IL6R/rs7549338	2b
	IL6R/rs7553796	2b
KCNE2/rs9982601	KCNE2/rs28591415	2b
KIAA1462/rs2505083	KIAA1462/rs3739998	2b
LPL/rs264	LPL/rs271	1f
	LPL/rs3779788	2b
MIA3/rs17465637	MIA3/rs17163301	2b
PLG/rs4252120	PLG/rs4252135	1f
	PLG/rs4252126	1f
PPAP2B/rs17114036	LOC101929929/rs72664304	2a
	PLP3/rs4634932	1f
SLC22A4-SLC22A5/rs273909	SLC22A5/rs17689550	1f
	SMG6/rs7217687	2b
	SMG6/rs9908888	2b
SORT1/rs602633	CELSR2/rs12740374	2b
	CELSR2/rs629301	1f
	CELSR2/rs646776	1f
TRIB1/rs2954029	LOC105375745/rs2980853	2b
	LOC105375745/rs2001844	2b
	LOC105375745/rs6982636	2b
VAMP5-VAMP8-GGCX/rs1561198	GGCX/rs6738645	1f
	GGCX/rs10187424	1f
	VAMP8/rs1009	1b
	GGCX/rs6547621	1f
	VAMP8/rs1348818	1f
	GGCX/rs2886722	1f
	VAMP8/rs3770098	1f
	VAMP8/rs6757263	1f
WDR12/rs6725887	ICA1L/rs72934715	2b
	NBEAL1/rs2351524	1f
	WDR12/rs72936852	2b
	NBEAL1/rs4675330	1f
	NBEAL1/rs72934512	2b
REST-NOA1/rs17087335	REST/rs2227901	1f
	REST-NOA1/rs7687767	1d
SWAP70/rs10840293	SWAP70/rs93138	1f
	SWAP70/rs360136	1f
SMAD3/rs56062135	SMAD3/rs17293632	2a
	SMAD3/rs1866316	2b
	MTERF1/rs8032739	2b
CDKN2BAS1/rs1333049	CDKN2BAS1/rs4977574	2c

*GWAS significant SNPs with functional evidence (RegulomeDB score < 3) are bolded.
CNNM2-NTSC2 intergenic region and upstream of CNNM2, respectively. They are located in DNA motifs of SRF and MAZ and affect the binding of POLRA2 and CTCF/ETS. Interestingly, rs943037 resides in exon 7 of CNNM2. Nineteen of the 25 SNPs in the region of CYP17A1-CNNM2-NTSC2 are eQTLs for USMG5 (Table 4).

One SNP rs207565 lies in Intron 2 of ApoEApoC1/ATP5G1 with a RegulomeDB score of 1f. It is located in RREB1 DNA motif and is an eQTL for TOMM40 (Table 4).

In total 3 of 107 SMG6 associated SNPs, rs2281727, rs7217687 and rs9908888 had a score of 2b and they affect the binding of EP300. rs2281727 is a genome-wide significant SNP located in Intron 9 of SMG6. It is in binding motifs of SRY, Srf and Zfp105 and affects the binding of CREBBP, EP300, STAT3, TRIM28, MYC and RBBP5 (Table 4).

The UBE2Z region had 10 functional SNPs, including a GWAS reported SNP, UBE2Z/rs46522 (RegulomeDB score of 1f). The SNP with the most evidence of regulatory function in this locus is rs4794004 with a score of 1d. It is in DNA motif of Gata5 that alters the expression of UBE2Z and ATP5G1 and affects the binding of NR3C1, IN3AK20, CREB1, TAF12, CTCF, POLR2A, USF1, FOXA1, FOXA2 and RBBP5. The other 5 SNPs in this region have a score of 1f. The remaining two regulatory SNPs, rs3744608 and rs12601672, have scores of 2a and 2b, respectively. rs3744608 is located in Intron 3 of UBE2Z and it affects the binding of large number of transcription factors (Table 4).

COL4A1-COL4A2/rs473144 is a GWAS reported SNP, achieving a RegulomeDB score of 2b. This SNP lies in Intron 3 of COL4A2 between STST3:STAT3 DNA motif and affects the binding of POLR2A and EZH2 (Table 4). ZNF259-APOA5-APOA1/rs964184 is a GWAS significant SNP with a score of 1f and is an eQTL for TAGLN. This SNP is located downstream of this gene region and is present in FOXJ2 DNA motif. Another GWAS significant SNP, ZC3HC1/rs11556924 is an exonic variant and the only functional SNP (score = 1f) in this locus; it is also an eQTL for ZC3HC1 (Table 4).

REST-NOA1/rs17087335 is in LD with two functional SNPs (rs2227901 and rs7687767 with RegulomeDB scores of 1f and 1d, respectively). rs7687767 lies in DNA motif of Sox8 and affects the binding of FOXA1. SWAP70 has two functional SNPs, rs93138 and rs360136, each with a RegulomeDB score of 1f. SWAP70/rs93138 is an eQTL as evidenced in monocytes.

SMAD3 has three functional SNPs, SMAD3/rs1729363 and SMAD3/rs1866316 and MTERF1/rs8032739 with RegulomeDB scores of 2a, 2a and 2b, respectively. Both are in LD with a lead GWAS SNP (SMAD3/rs56062135). CDKN2BAS1/rs1333049 has one functional SNP (rs4977574) only with RegulomeDB score of 3c. It is a part of a gene cluster on chromosome 9p21 and it maps to Intron 16 of cyclin dependent kinase, an important regulator of cell cycle.

Discussion
Following the sequencing of human genome, a large number of SNPs have been identified that affect disease phenotypes, but their exact roles remain unclear (16). One possible explanation is that some variation affects disease expression at the transcriptional level other than at the protein level. For example, a base pair change in a transcription factor binding site may affect the binding affinity of transcription factors that consequently may alter the transcription of the related genes. These effects are indirect and may seem subtle, but their interactions with other genetic or environmental factors may result in the pathogenesis of common diseases.

Like other complex disorders, a large number of CAD associated risk variants have been discovered by multiple GWAS (12, 13, 17). ENCODE provides information regarding the functionality of human genome (18). This data requires careful interpretation and helps to define the biological function of previously termed ‘junk DNA’. Using bioinformatics tools, we may generate new hypotheses about the gene regulation of complex disorders. In this study, we have used two bioinformatics tools, SNAP and RegulomeDB, in order to identify the putative roles of CAD-associated SNPs.

We examined a total 1,200 SNPs in 54 loci implicated by GWAS, including 58 genome-wide significant SNPs. Ninety-seven SNPs were predicted to have regulatory functions with a RegulomeDB score of <3, but only 8 of them were genome-wide significant. Interestingly, all 8 genome-wide significant SNPs with suggested regulatory function are located either in intronic or intergenic regions, suggesting that these are true associations that regulate gene expression at the transcriptional level.

Among these eight GWAS reported functional SNPs, the SNP with the top RegulomeDB score was LIPA/rs2246833 (Regulome DB score = 1b). This variant is located in Intron 6 of lipase A (LIPA) and is an eQTL for the same gene which catalyzes intracellular triglyceride and hydrolyses cholesterol ester (19).

ZC3HC1/rs11556924 is a GWAS significant CAD associated SNP that returned a score of 1f. rs11556924 is a coding SNP located in the ZC3HC1 gene region encoding NIPA (Nuclear Interaction Partner of ALK) protein. This polymorphism is responsible for arginine-histidine amino acid alteration at position 363 (R363H). The SNP has been
Coordinate 0-based	SNP ID	RegulomeDB score	Gene/Locus Position	eQTL	Motif	Protein-binding
chr15:91429041	rs1894401	1b	FES Intron 2	FES	Pax5	SPI1 USF1 POLR2A GABPA BHLHE40 CEBPB CTCF MAX RFX3 RUNX3 STAT5A
chr10:91005853	rs2246833	1b	LIPA Intron 6	LIPA	EWSR-FLI1 zf143	CTCF HSF1 NR3C1 IN3AK20 CREB1 TAF1 TCF12 CTCF POLR2A USF1 FOXA1 FOXA2 RBBP5
chr2:85808736	rs1009	1b	VAMP8 Exon 3	VAMP8 LOC388969	CTCF	
chr17:47038470	rs4794004	1d	GIP Intron 4	ATP5G1 UBE2Z	Gata5	
chr11:116648916	rs964184	1f	ZPR1 Downstream ZRP1	TAGLN	AT2F2 FOXM1 SPI SPI1 MTA3 RUNX3	
chr1:109818529	rs646776	1f	CELSR2 Upstream CELSR2	PSMA5	CTCF HEY1 REST POLR2A ZBTB7A TAF7	
chr10:104616662	rs4409766	1f	BORCS7-ASMT Intron 1	C10orf77 USMG5	Tcf3 BACH1 MAFF	

(Continued)
Coordinate 0-based	SNP ID	RegulomeDB score	Gene/Locus Position	eQTL	Motif	Protein-binding
chr17:47008206	rs4793992	1f	SNF8 Intron 7	ATP5G1		MAFK POLR2A TEAD4
chr6:161152293	rs4252126	1f	PLG Intron 11			CTCF RUNX3 TEAD4 RAD21
chr6:161154231	rs4252135	1f	PLG Intron 12			CTCF FOXA1 RAD21
chr10:104846177	rs11191548	1f	NT5C2 gene region Downstream NT5C2	USMG5	TEAD1 TEAD3	
chr10:104864613	rs11191557	1f	NT5C2 Intron 5	USMG5	HOXC13 Hoxa13 Hoxc13 Hoxd12 HOXA13 HOXD9 HOXC11	
chr10:104871203	rs12413046	1f	NT5C2 Intron 3	USMG5	NR3C1 TRIM28 CTCF ATF2 IKZF1 TCF7L2 ZNF263	
chr10:104871278	rs10883832	1f	NT5C2 Intron 3	USMG5	TRIM28 TCF7L2 EP300	
chr10:104913652	rs11191582	1f	NT5C2 Intron 2	USMG5	NFIC TCF12 TEAD4 STAT1 ARID3A EP300 JUN RCOR1	
chr10:104906210	rs11191580	1f	NT5C2 Intron 2	USMG5	TRIM28 SETDB1 GATA1 GT2F1 CEBPB FOS JUN JUND ZNF263	
chr10:104856161	rs12412038	1f	NT5C2 Intron 10	USMG5	Irx-3 Irx-2	

(Continued)
Coordinate 0-based	SNP ID	RegulomeDB score	Gene/Locus Position	eQTL	Motif	Protein-binding
chr2:85807081	rs1348818	1f	VAMP8 Intron 2	GGCX	Irx-4	EBF1,
chr2:85805366	rs3770098	1f	VAMP8 Intron 1	VAMP8 LOC388969		POLR2A
chr2:85803541	rs6757263	1f	VAMP8 Upstream VAMP8	GGCX		ATP5G1, UBE2Z
chr19:45395618	rs2075650	1f	TOMM40 Intron 2	TOMM40 RREB1		POLR2A
chr1:56996190	rs4634932	1f	PLPP3 Intron 2	PPAP2B		
chr2:20380833	rs4675310	1f	NBEAL1 Intron 1	ALS2CR13		
chr10:104681142	rs17115213	1f	CNNM2 Intron 1	USMG5		
chr10:104721125	rs10883080	1f	CNNM2 Intron 1	USMG5		
chr10:104723619	rs11191479	1f	CNNM2 Intron 1	USMG5		GATA1 TAL1
						CEBPB PAX5
chr10:104773363	rs11191514	1f	CNNM2 Intron 1	USMG5		
chr10:104776526	rs11191515	1f	CNNM2 Intron 1	USMG5		
chr10:104825664	rs3781285	1f	CNNM2 Intron 4	USMG5		
chr10:104835918	rs943037	1f	CNNM2 Exon 7	USMG5		
chr8:19813701	rs271	1f	LPL Intron 6	LPL		
chr17:47039131	rs2291725	1f	GIP Exon 4	GIP		
chr2:203880991	rs2351524	1f	NBEAL1 5' UTR	ALS2CR13		

(Continued)
Coordinate	SNP ID	RegulomeDB score	Gene/Locus Position	eQTL	Motif	Protein-binding
chr1:109818305	rs629301	f	CELSR2 3' UTR	PSRC1	CTCF	POLR2A
chr2:85774675	rs6547621	f	CELSR2 3' UTR	GGCX	ELK4	POLR2A
chr10:10466003	rs11191454	f	AS3MT Intron10	USMG5		
chr10:104685298	rs12411886	f	CNNM2 Intron1	USMG5	Zec	
chr10:104719095	rs12413409	f	CNNM2 Intron1	USMG5	POLR3A	
chr10:104764270	rs11191499	f	CNNM2 Intron1	USMG5		
chr17:47014126	rs1994970	f	SNF8 Intron4	ATP5G1	TFI-I	
chr2:85742296	rs2886722	f	Pseudogene Intron5	LOC3889	Evi-1	POLR2A
chr2:85783127	rs6738645	f	GXCX Intron5	GGCX		
chr2:85794296	rs10187424	f	Pseudogene Intron5	LOC3889	RAPGEF6	
chr3:131723064	rs17689550	f	ZC3H1 Intron8	KIAA0265		
chr5:104687735	rs11079844	f	Pseudogene Intron5	ATP5G1		
chr17:47005192	rs15563	f	UBEZ Intron7	UBEZ		
chr17:47047113	rs3848460	f	UBEZ Intron7	UBEZ		
chr10:104680136	rs2297787	2a	CNNM2 Intron1	PRDM1	CEBPB	FOXA1
chr15:56948289	rs72664304	2a	C8B Intron 6	Foxa2	FOXA1	FOXA2
chr17:46993232	rs3744608	2a	UBE2Z Intron 3	Zfp740	SPI1	POLR2A
						IKZF1
						MAX
						TFAP2A
						TFAP2C
						SP1
						ZNF219
						BCL11A
						MEK2A
						NFkB1
						JUND

(Continued)
Table 4. Continued

Coordinate	SNP ID	Gene/Locus Position	eQTL	Motif	Protein-binding
chr2:85764959	rs1446668	2a MAT2A nc transcript Upstream MAT2A		CTCF	EP300 STAT3 IRF4 EBF1 FOSL2 BATF NR3C1 RUNX3 MYC STAT3
chr17:47006492	rs12601672	2b UBE2Z Downstream UBE2Z		Zfx	POLR2A
chr10:30316071	rs3739998	2b KIAA1462 Exon 2		RELA	EGR1 SPI1 ELF1 CTCF MYC PAX5 ZNF143
chr8:126476378	rs2980856	2b TRIB1 gene region Downstream TRIB1		pax-8 Sox17	JUND POLR2A TFAP2C MXI1 CEBPB
chr9:136154303	rs649129	2b ABO gene region Intergenic region Upstream ABO		IRF	NFYA POLR2A

(Continued)
Coordinate 0-based	SNP ID	RegulomeDB Score	Gene/Locus Position	eQTL	Motif	Protein-binding
chr10:104849066	rs12219901	CNNM2 gene region	Intergenic region	SRF		FOS
			Downstream CXCL12			
						IRF1
						NFYB
						PML
chr10:44778545	rs13746052	CXCL12 gene region	Intergenic region	GATA1		
			Downstream CXCL12			
						TAL1
chr21:35593826	rs28451064	LINC00310 gene region	Intergenic region	PPAR		
			Downstream LINC00310			
chr17:2098271	rs7217687	SMG6	Intron 13	-		
						NF-1
chr13:10960711	rs4773144	COL4A2	Intron 3	STAT3	STAT3	TCF12
						MYC
chr14:100116251	rs28391527	HHIPL1	Intron 3	MyoD		
chr1:154404335	rs7549250	IL6R	Intron 3	TBX15		
chr1:154404379	rs7549338	IL6R	Intron 3	GR		
						AR
chr1:154404405	rs7553796	IL6R	Intron 3			
chr14:100127439	rs4624107	HHIPL1	Intron 7	Pax5		
chr10:91011457	rs1332328	LIPA	Intron 9			
(Continued)						
Coordinate	SNP ID	RegulomeDB score	Gene/Locus Position	eQTL	Motif	Protein-binding
------------	--------	------------------	---------------------	------	-------	-----------------
chr17:2117944	rs2281727	2b	SMG6	Intron 13	SRY, Ser	ZEB1, TBP, TFAP2C, TBP, POLR2A, ETS1, GABPA, HEY1, ZEB1, TBP, TFAP2C, TBP, POLR2A, ETS1, GABPA, HEY1, ZEB1, TBP, TFAP2C, TBP, POLR2A, ETS1, GABPA, HEY1
chr8:126479314	rs6982636	2b	LOC105375745	Intron1	MAF, SRY, CREBBP, EP300, STAT3, TRIM28, MYC, RBBP5, SMARCC1, RFX3, POLR2A, GATA2, CHD2, GTF2F1, SMARC4, ZBTB7A, SMARCB1, POLR2A, EZH2, RAD21, BACH1, CTCF, ETS1, ETS1	
chr14:100125720	rs7145262	2b	HHIIPL1	Intron 4	ESR2, SMARCC1, RFX3, POLR2A, GATA2, CHD2, GTF2F1, SMARC4, ZBTB7A, SMARCB1, POLR2A, EZH2, RAD21, BACH1, CTCF, ETS1, ETS1	
chr10:104677125	rs12221064	2b	CNNM2	Upstream CNNM2	MAZ, CTCF, ETS1, ETS1	
chr8:126478349	rs2980853	2b	LOC105375745	Upstream LOC105375745	Pit-1, RFX3, USF1, POLR2A, YY1, FOXA1, E2F4, MAX, TAF7, TAF1, MXH1, RFX3	
chr15:79152421	rs5029904	2b	LOC105370915	Upstream LOC105370915	NeuroD, USF1, POLR2A, YY1, FOXA1, E2F4, MAX, TAF7, TAF1, MXH1, RFX3	
chr8:126478744	rs2001844	2b	LOC105375745	Upstream LOC105375745	HSF1, CREBBP, CDX2, ELF1, TBP, SPI1, NRF1, ELF1, ETS1, GABPA, SPI1, PAX5	
chr10:91011680	rs1332327	2b	LIPA	5′ UTR	AP-4, CREBBP, CDX2, ELF1, TBP, SPI1, NRF1, ELF1, ETS1, GABPA, SPI1, PAX5	

(Continued)
Table 4. Continued

Coordinate	SNP ID	RegulomeDB score	Gene/Locus Position	eQTL	Motif	Protein-binding
chr17:2102452	rs9908888	2b	SMG6 Intron10		GR AR	SREBF1 CEBPB
chr10:91008878	rs2250644	2b	LIPA Intron1		Oct-1 XBP-1	RUNX3
chr1:109817589	rs12740374	2b	CELSR2 Exon34		HNF1 HNF1A	
chr1:222794090	rs17163301	2b	MIA3 Intron1		HNF1	EBF1
chr21:35644028	rs28591415	2b	pseudogene			
chr2:203713279	rs72934715	2b	ICA1L Intron2		HMG1Y	
chr2:203775474	rs72936852	2b	WDR12 Intron1		AR	
chr2:203926270	rs72934512	2b	NBEAL1 Intron6		TEAD1 TEAD3	
chr8:19803092	rs3779788	2b	LPL Intron1		TGFIF	
chr10:44757106	rs518594	2b	CXCL12 Downstream intergenic		E2A NRSE NRSF	
chr4:5713862	rs5712562	1d	CECR6 Intron8		Sox8	
chr11:5739712	rs93138	1f	SWAP70 Intron13			
chr4:57798188	rs2227901	1f	REST-NOA1 Exon6			
chr15:67442595	rs17293632	2a	SMAD3 Intron4			

(Continued)
associated with essential hypertension in Finnish population (20, 21).

The CYP17A1-CNNM2-NT5C2 gene region has the highest number of regulatory SNPs, including one GWAS significant SNP, rs12413409. This locus affects diastolic blood pressure, systolic blood pressure and body mass index. All three measures are important risk factors for CAD (22). There are 25 putative regulatory SNPs in LD with rs12413409 that are located across four genes on chromosome 10 (CNNM2, NT5C2, AS3MT and BORCS7/ASMT) but affect the expression of same protein USMG5. These findings suggest that USMG5 should be investigated as an important player for CAD pathogenesis. USMG5 (upregulated during skeletal muscle growth protein 5) is also known as diabetes-associated protein in insulin-sensitive tissues that plays a crucial role in the maintenance of ATP synthase structure in mitochondria (23). Chen et al. (24) have purified this protein from bovine heart mitochondria and suggested its role in cell energy metabolism.

APOE-APOC1/TOMM40/rs2075650 is present in the TOMM40 gene region near the APOE-C1 cluster.
TOMM40 encodes TOMM40 protein, which is an important subunit 40 of outer mitochondrial membrane protein complex. rs2075650 risk allele has shown an association with low levels of CRP in CAD patients (25).

rs46522, an intronic SNP in Ubiquitin-conjugating enzyme E2Z (UBE2Z) gene region returns a RegulomeDB score of 1f. This SNP is associated with CAD in Iranian and Han Chinese populations (26, 27). The exact mechanism by which genetic alteration in UBE2Z can attribute to the CAD risk is not yet clear; however, rs46522 is in strong LD with the causal SNPs in gastric inhibitory peptide (GIP) gene that encodes GIP protein, a protein that modifies the glucose and lipid metabolism potentially mediating known CAD risk factors.

ZNF259-APOA5-APOA1/rs964184 is also an important regulatory SNP. ZNF259 protein polymorphism has been associated with metabolic syndrome in Chinese population. Aung et al. (28) have also shown its association with lipid levels. ZNF259 is located close to APOA5. Overexpression of APOA5 in mice reduces plasma triglyceride levels and mice lacking APOA5 have hypertriglyceridemia (29).

COL4A2/rs4773144 has been identified as functional lead SNP by RegulomeDB (score = 2b). This gene controls collagen proliferation, indicating a potential functional role in atherosclerotic plaque strengthening (30).

SMG6/rs2281727 is an intronic SNP. The potential function of SMG6 in CAD is not yet established. This gene promotes the endonuclease activity and is responsible for protection of telomere ends of chromosomes (16).

Although regulatory elements are most often found in non-coding regions of the genome, we found 5 loci with exonic regulatory SNPs (VAMP8/rs1009, CNNM2/rs943037, GIP/rs2291725, KIAA1462/rs3739998 and UBE2Z/rs15563), indicating the presence of regulatory signals inside the coding sequences as well.

USF1 is an upstream transcription factor whose binding is affected by three SNPs (GIP/rs4794004, FES/rs1894401, HHIPL1/rs28391527), suggests a potential functional link between FES, GIP and HHIPL1 (31).

RegulomeDB identified three important functional SNPs affecting CAD phenotype. Among these, REST-NOA1/rs17087335 is the lead GWAS SNP that encodes a transcription factor which suppresses the voltage gated sodium and potassium channels and it has shown to maintain vascular smooth muscle cells in non-proliferative phase (32). SWAP70/rs10840293 encodes a signaling molecule that is implicated in cell adhesion and migration and it appears to be a potential regulator of leukocyte migration and their adhesion to endothelial cells (33). SMAD3 is a major regulator of TGF-β. A study on mice has shown that mutations in this gene lead to decreased connective tissue deposition in response to vascular injury (34).

It should be noted that 342 SNPs had returned ‘No Data’ when queried by RegulomeDB. This suggests that current evidence does not support a functional role for those variants. Our results also showed that some loci harbor markedly more regulatory SNPs as compared with other regions. We caution against interpreting this finding to mean that one region is more functionally relevant, as regions with ‘fewer’ functional SNPs may have yet to be interrogated as thoroughly and thus have fewer annotations.

Since these loci are mostly in Europeans, and only 5 of them are replicated in South Asians (35), the findings may not be as relevant to other populations as they are to Europeans as genetic effects can differ across populations. The cause of this varying association with disease phenotype may be the ethnic admixture resulting in population...
stratification. It is also noteworthy that robust associations of variants with different diseases have been reported in Europeans while other populations (Africans, Asians and Hispanics) failed to demonstrate those associations (36, 37).

Though the cellular mechanisms underlying CAD pathogenesis are established, the molecular basis is not yet agreed upon. Comprehending the molecular basis of disease is crucial before pathogenesis is completely described. The study has identified 97 regulatory SNPs associated with CAD. In summary, our results highlight the importance of considering both disease-associated SNPs and those SNPs in LD, as well as the regulatory function of these SNPs to help identify the causal genetic mechanisms of CAD. The methods which we have implemented here can inform planning of more complete and better directed functional genomic studies.

Supplementary data
Supplementary data are available at Database Online.

Funding
This study was partially supported by Higher Education Commission of Pakistan and the US National Institutes of Health grants (AG030653 and AG041718).

Conflict of interest. None declared.

References
1. Alexander, R.P., Fang, G., Rozowsky, J. et al. (2010) Annotating non-coding regions of the genome. Nat. Rev. Genet., 11, 559–571.
2. Cheema, A.N., Bhatti, A., Wang, X. et al. (2015) APOE gene polymorphism and risk of coronary stenosis in Pakistani population. Biomed. Res. Int., 2015, e587465.
3. Chen, Q., Steven, E.R., Candace, M.A. et al. (2003) APOE polymorphism and angiographic coronary artery disease severity in the Women's Ischemia Syndrome Evaluation (WISE) study. Atherosclerosis, 169, 159–167.
4. Afroze, D., Youssuf, A., Tramboo, N.A. et al. (2015) ApoE gene polymorphism and its relationship with coronary artery disease in ethnic Kashmiri population. Clin. Exp. Med., 16, 551–556.
5. Wang, C., Zhou, X., Ye, S. et al. (2006) Combined effects of apoE-CI-CII cluster and LDL-R gene polymorphisms on chromosome 19 and coronary artery disease risk. Int. J. Hyg. Environ. Health, 209, 265–273.
6. Lohmueller, K.E., Pearce, C.L., Pike, M. et al. (2003) Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat. Genet., 33, 177–182.
7. Roberts, R. (2014) Genetics of coronary artery disease. Circ. Res., 114, 1890–1903.
8. Pennisi, E.G. (2012) ENCODE project writes eulogy for junk DNA. Science, 337, 1159–1161.
9. Johnston, J.J., and Biesecker, L.G. (2013) Databases of genomic variation and phenotypes: existing resources and future needs. Hum. Mol. Genet., 22, R27–R31.
10. Bjorkegren, J.L., Kovacic, J.C., Dudley, J.T., and Schadt, E.E. (2015) Genome-wide significant loci: how important are they? Systems genetics to understand heritability of coronary artery disease and other common complex disorders. J. Am. Coll. Cardiol., 65, 830–845.
11. Rosenthal, S.L., Bablina, M.M., Wang, N. et al. (2014) Connecting the dots: potential of data integration to identify regulatory SNPs in late-onset Alzheimer’s disease GWAS findings. PLoS One, 9, e95152.
12. Deloukas, P., Kanoni, S., Willenborg, C. et al. (2013) Large-scale association analysis identifies new risk loci for coronary artery disease. Nat. Genet., 45, 25–33.
13. Nikpay, M., Goel, A., Won, H.H. et al. (2015) A comprehensive 1,000 Genomes-based genome wide association meta-analysis of coronary artery disease. Nat. Genet., 47, 1121–1130.
14. Johnson, A.D., Handsaker, R.E., Pulit, S.L. et al. (2008) SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics, 24, 2938–2939.
15. Boyle, A.P., Hong, E.L., Harirahman, M. et al. (2012) Annotation of functional variation in personal genomes using RegulomeDB. Genome Res., 22, 1790–1797.
16. Gibbs, R.A., Belmont, J.W., Hardenbol, P. et al. (2003) The international HapMap project. Nature, 426, 789–796.
17. Anand, S.S., Xie, C., Pare, G. et al. (2009) Genetic variants associated with myocardial infarction risk factors in over 8000 individuals from five ethnic groups: The INTERHEART Genetics Study. Circ. Cardiovasc. Genet., 2, 16–25.
18. De Souza, N. (2012) The ENCODE project. Nat. Methods, 9, 1046.
19. Vargas-Alrcon, G., Ppossadas, R.C., Villarrial, M. et al. (2013) Single nucleotide polymorphisms within LIPA (Lysosomal Acid Lipase A) gene are associated with susceptibility to premature coronary artery disease. A replication in the genetic of atherosclerotic disease (GEA) Mexican study. PLoS One, 8, e74703.
20. Kunnas, T., and Nikkari, S.T. (2012) Association of zinc finger, C3HC-type containing 1 (ZC3HC1) rs11556924 genetic variant with hypertension in a finnish population, the TAMRISK study. J. Hum. Genet., 57, 46–51.
21. Basermann, F., Vonz-Kllinget, C., Munch, S. et al. (2005) NIPA defines a SCF-type mammalian E3 ligase that regulates mitotic activity. Cell, 122, 45–57.
22. Woudenberg, M.V., Shin, J., Bernard, M. et al. (2015) CYP17A1 and blood pressure reactivity to stress in adolescence. Int. J. HTN, 2015, e734586.
23. Ohsakaya, S., Fujikawa, M., Hisabori, T., and Yoshida, M. (2011) Knockdown of DAPIT (diabetes-associated protein in insulin-sensitive tissue) results in loss of ATP synthase in mitochondrial. J. Biol. Chem., 286, 20292–20296.
24. Chen, R., Fearnley, L.M., Peak-Chew, S.Y., and Walker, J.E. (2004) The phosphorylation of subunits of complex I from bovine heart mitochondria. J. Biol. Chem., 279, 26036–26045.
25. Christiansen, M.K., Larsen, S.B., Nyegaard, M. et al. (2017) Coronary artery disease associated genetic variants and biomarkers of inflammation. PLoS One, 12, e0180365.
26. Bastami, M. et al. (2017) *J Diabetes Res*, 2017, e4501794.
27. Lu, D., Huan, J., Xiaowei, M. et al. (2017) *e46522 in the ubiquitin-conjugating enzyme E2Z gene is associated with the risk of coronary artery disease in individuals of chinese han population with type 2 diabetes. J. Diabetes Res.*, 2017, e4501794.
28. Aung, L.H.H., Yin, R.W., Wu, D.F. et al. (2014) Association of the variants in the BUD13-ZNF259 genes and the risk of hyperlipidaemia. *J. Cell. Mol. Med.*, 18, 1417–1428.
29. Do, R., Stitziel, N.O., Won, H.H. et al. (2015) Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction. *Nature*, 518, 102–106.
30. Turner, A.W., Nikpay, M., Silva, M. et al. (2015) Functional interaction between COL4A1/COL4A2 and SMAD3 risk loci for coronary artery disease. *Atherosclerosis*, 242, 543–552.
31. Wang, T., Furey, T.S., Connelly, J.J. et al. (2009) A general integrative genomic feature transcription factor binding site prediction method applied to analysis of USF1 binding in cardiovascular disease. *Hum. Genomics*, 3, 221–235.
32. Cheong, A., Bingham, A.J., Li, J. et al. (2005) Downregulated REST transcription factor is a switch enabling critical potassium channel expression and cell proliferation. *Mol. Cell.*, 20, 45–52.
33. Fairfax, B.P., Humburg, P., Makino, S. et al. (2014) Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression. *Science*, 343, e1246949.
34. Ashcroft, G.S., Yan, X., Glick, A.B. et al. (1999) Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. *Nat. Cell Biol.*, 1, 1260–1266.
35. Peden, J.F., Hopewell, J.C., and Saleheen, D. (2011) A genome-wide association study in Europeans and South Asians identifies five new loci for coronary artery disease. *Nat. Genet.*, 43, 339–344.
36. Farrer, L.A., Cupples, L.A., Haines, J.L. et al. (1997) Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. *APOE and Alzheimer Disease Meta-Analysis Consortium. JAMA*, 278, 1349–1356.
37. Tang, M.X., Stern, Y., Marder, K. et al. (1998) The APOE-epsilon4 allele and the risk of Alzheimer disease among African Americans, whites, and Hispanics. *JAMA*, 279, 751–755.