Thermalization of gluons in spatially homogeneous systems

Sergio Barrera Cabodevila

in collaboration with

Carlos A. Salgado and Bin Wu

(Physics Letters B 834 (Nov. 2022) 137491 [arXiv:2206.12376])

IGFAE

December 2022
After a heavy-ion collision, an out-of-equilibrium system of gluons is produced.

In the weak coupling limit, the thermalization follows a bottom-up fashion.

The only tool used for a quantitative study of these systems before is the Effective Kinetic Theory (EKT).

Our study uses the Boltzmann Equation in Diffusion Approximation (BEDA) as an alternative approach.
○ After a heavy-ion collision, an out-of-equilibrium system of gluons is produced.

Phys. Rev. D 55 (1997). Jalilian-Marian et al.
Nucl. Phys. B 529 (1998). Kovchegov and Mueller

○ In the weak coupling limit, the thermalization follows a bottom-up fashion.

Phys. Lett. B 502 (2001). Baier et al.

○ The only tool used for a quantitative study of these systems before is the Effective Kinetic Theory (EKT).

JHEP 01 (2003). Arnold, Moore, and Yaffe

○ Our study uses the Boltzmann Equation in Diffusion Approximation (BEDA) as an alternative approach.
After a heavy-ion collision, an out-of-equilibrium system of gluons is produced.

In the weak coupling limit, the thermalization follows a bottom-up fashion.

The only tool used for a quantitative study of these systems before is the Effective Kinetic Theory (EKT).

Our study uses the Boltzmann Equation in Diffusion Approximation (BEDA) as an alternative approach.
After a heavy-ion collision, an out-of-equilibrium system of gluons is produced.

In the weak coupling limit, the thermalization follows a bottom-up fashion.

The only tool used for a quantitative study of these systems before is the Effective Kinetic Theory (EKT).

Our study uses the Boltzmann Equation in Diffusion Approximation (BEDA) as an alternative approach.
The QCD Boltzmann equation at leading order:

\[
(\partial_t + \mathbf{v} \cdot \nabla_x) f = C^{2\leftrightarrow2}[f] + C^{1\leftrightarrow2}[f]
\]

The thermalization process is mainly determined by the Debye mass and the jet quenching parameter.

\[
m_D^2 = 8\pi\alpha_s N_c \int \frac{d^3 p}{(2\pi)^3} \frac{f}{|p|}, \quad \hat{q} = 8\pi\alpha_s^2 N_c^2 \ln \frac{\langle p_t^2 \rangle}{m_D^2} \int \frac{d^3 p}{(2\pi)^2} f(1 + f)
\]
In diffusion approximation, the $2 \leftrightarrow 2$ collision kernel can be rewritten as a Fokker-Planck equation.

\[
C^{2\leftrightarrow2} = \frac{1}{4} \hat{q}(t) \nabla_p \cdot \left(\nabla_p f + \frac{v}{T^*_t(t)} f(1 + f) \right)
\]

\[
T^*_t(t) \equiv \frac{\hat{q}}{2\alpha_s N_c m_D^2 \ln \frac{\langle p_t^2 \rangle}{m_D^2}}
\]

The function f is known to diverge at small p for over-occupied systems, which is interpreted as the onset of Bose-Einstein Condensation (BEC).

The presence of BEC can be study numerically by choosing the appropriate boundary conditions.
In diffusion approximation, the $2 \leftrightarrow 2$ collision kernel can be rewritten as a Fokker-Planck equation.

\[
C^{2\leftrightarrow2} = \frac{1}{4} \hat{q}(t) \nabla_p \cdot \left(\nabla_p f + \frac{v}{T^*_\star(t)} f(1 + f) \right)
\]

\[
T^*_\star(t) \equiv \frac{\hat{q}}{2\alpha_s N_c m_D^2 \ln \frac{\langle p_t^2 \rangle}{m_D^2}}
\]

The function f is known to diverge at small p for over-occupied systems, which is interpreted as the onset of Bose-Einstein Condensation (BEC).

The presence of BEC can be study numerically by choosing the appropriate boundary conditions.
The $1 \leftrightarrow 2$ kernel is computed considering the LPM splitting rate.

\[C^{1 \leftrightarrow 2}[f] = \int \frac{d^3 p'}{(2\pi)^3} \int_0^1 dx \frac{d^2 I(p')}{dx dt} \times \left\{ \begin{array}{l} \text{Statistics} \\ \text{contribution} \end{array} \right\} \]

\[\frac{d^2 I(p)}{dx dt} = \frac{\alpha_s N_c}{\pi} \frac{(1 - x + x^2)^{\frac{5}{2}}}{(x - x^2)^{\frac{3}{2}}} \sqrt{\frac{\hat{q}}{p}} \]

When we include the inelastic collisions, no BEC appears.
At very early times, the inelastic kernel dominates for small p.

$$f(p) \approx \frac{T_*}{p} \quad \text{for} \quad p \lesssim p_*$$

where the momentum scale p_* has been introduced.

$$p_* \equiv \left(\hat{q} m_D^4 t^2 \right)^{\frac{1}{5}}$$

This means that the soft sector is always in a thermal distribution.
Under-populated scenario I

Three different stages for thermalization.

1. Soft gluon radiation and overheating.
 - T_* is almost constant.

2. Cooling and overcooling of soft gluons.
 - Soft gluons start to contribute to m_D^2.
 - T_* decreases.

3. Reheating of soft gluons and mini-jet quenching.
 - \hat{q} receives dominant contribution from soft gluons.
 - T_* increases until it reaches T_{eq}.

Parametric estimation for $f_0 \ll 1$
Under-populated scenario I

Three different stages for thermalization.

1. Soft gluon radiation and overheating.
 - T_* is almost constant.

2. Cooling and overcooling of soft gluons.
 - Soft gluons start to contribute to m_D^2.
 - T_* decreases.

3. Reheating of soft gluons and mini-jet quenching.
 - \hat{q} receives dominant contribution from soft gluons.
 - T_* increases until it reaches T_{eq}.

Parametric estimation for $f_0 \ll 1$
Three different stages for thermalization:

1. **Soft gluon radiation and overheating.**
 - T_* is almost constant.

2. **Cooling and overcooling of soft gluons.**
 - Soft gluons start to contribute to m_D^2.
 - T_* decreases.

3. **Reheating of soft gluons and mini-jet quenching.**
 - \hat{q} receives dominant contribution from soft gluons.
 - T_* increases until it reaches T_{eq}.

Parametric estimation for $f_0 \ll 1$
Under-populated scenario II

Parametric estimation for $f_0 \ll 1$

Numerical results for $f_0 = 0.01$

T_*/Q

m_D^2/Q^2

\dot{q}/Q^3

$\alpha_s f_0^{1/2}$

$\alpha_s f_0^{2/3}$

$\alpha_s^2 f_0^{3/4}$

$\alpha_s^2 f_0$

$f_0^{1/4}$

$f_0^{1/3}$

$a_s^2 f_0^{1/3}$

$a_s^2 f_0^{3/8}$

$\alpha_s^2 f_0$

10^{-1}

10^{-2}

10^{-3}

10^{-2}

10^{-1}

10^0

10^1

10^2
Time evolution of T_*, entropy density s and gluon number density n.

$f_0 = 0.01, \alpha_s = 0.1$
Over-populated scenario

Two-stage thermalization

1. Soft gluon radiation and overheating.
 - T_* is almost constant

2. Momentum broadening and cooling (no overcooling)
 - T_* starts to decrease until it reaches thermal equilibrium.
 - All the quantities evolve according the universal scaling solution (dashed lines).

See also:
Phys. Rev. D 86 (2012). Kurkela and Moore
Phys. Rev. D 89.7 (2014). Abraao York et al.

Parametric estimation for $f_0 \ll 1$
Over-populated scenario

Two-stage thermalization

1. Soft gluon radiation and overheating.
 - T_* is almost constant

2. Momentum broadening and cooling (no overcooling)
 - T_* starts to decrease until it reaches thermal equilibrium.
 - All the quantities evolve according the universal scaling solution (dashed lines).

See also:
- *Phys. Rev. D* 86 (2012). Kurkela and Moore
- *Phys. Rev. D* 89.7 (2014). Abraao York et al.

Parametric estimation for $f_0 \ll 1$
The Boltzmann Equation in Diffusion Approximation (BEDA) provides a framework to study the thermalization of a system of gluons. The qualitative features of thermalization described by the BEDA agree with previous studies using EKT. The soft sector quickly achieves a thermal distribution due to inelastic processes. We identify the reheating of the gluons, which agrees with the increasing of the temperature identified in the bottom-up scenario for initially under-populated systems.
The Boltzmann Equation in Diffusion Approximation (BEDA) provides a framework to study the thermalization of a system of gluons. The qualitative features of thermalization described by the BEDA agree with previous studies using EKT.

The soft sector quickly achieves a thermal distribution due to inelastic processes. We identify the reheating of the gluons, which agrees with the increasing of the temperature identified in the bottom-up scenario for initially under-populated systems.
Summary and conclusions

- The Boltzmann Equation in Diffusion Approximation (BEDA) provides a framework to study the thermalization of a system of gluons.
- The qualitative features of thermalization described by the BEDA agree with previous studies using EKT.
- The soft sector quickly achieves a thermal distribution due to inelastic processes.
- We identify the reheating of the gluons, which agrees with the increasing of the temperature identified in the bottom-up scenario for initially under-populated systems.
Summary and conclusions

- The Boltzmann Equation in Diffusion Approximation (BEDA) provides a framework to study the thermalization of a system of gluons.
- The qualitative features of thermalization described by the BEDA agree with previous studies using EKT.
- The soft sector quickly achieves a thermal distribution due to inelastic processes.
- We identify the reheating of the gluons, which agrees with the increasing of the temperature identified in the bottom-up scenario for initially under-populated systems.
Currently, we are including quarks and antiquarks in our calculations for BEDA.
Thank you for your attention