Genomic Strategies Toward Identification of Novel Therapeutic Targets

Thorsten Kessler and Heribert Schunkert

Contents

1 Introduction
2 Methodological Aspects
 2.1 Techniques
 2.2 Selection of Individuals
 2.3 Statistical Analysis
 2.4 Mendelian Randomization Studies
3 Genetic Risk Factors Associated with Coronary Artery Disease
 3.1 Genome-Wide Association Studies
 3.2 Exome-Wide Association Studies
 3.3 Exome and Whole-Genome Sequencing
4 Genetic Overlap and Demarcation with Other Atherosclerotic Diseases
5 Pharmacological Targets Identified by Genomic Studies
 5.1 Lipid Metabolism
 5.2 Inflammation
 5.3 Platelet Function and Nitric Oxide Signaling
 5.4 Vascular Phenotypes
 5.5 Further Directions
6 Risk Scores and Risk Prediction
7 Summary
References

Abstract

Coronary artery disease, myocardial infarction, and secondary damages of the myocardium in the form of ischemic heart disease remain major causes of death in...
Western countries. Beyond traditional risk factors such as smoking, hypertension, dyslipidemia, or diabetes, a positive family history is known to increase risk. The genetic factors underlying this observation remained unknown for decades until genetic studies were able to identify multiple genomic loci contributing to the heritability of the trait. Knowledge of the affected genes and the resulting molecular and cellular mechanisms leads to improved understanding of the pathophysiology leading to coronary atherosclerosis. Major goals are also to improve prevention and therapy of coronary artery disease and its sequelae via improved risk prediction tools and pharmacological targets. In this chapter, we recapitulate recent major findings. We focus on established novel targets and discuss possible further targets which are currently explored in translational studies.

Keywords
Coronary artery disease · Exome sequencing · Genomics · Genome-wide association studies · Myocardial infarction

1 **Introduction**

Coronary artery disease (CAD) and myocardial infarction (MI) are the main causes of morbidity and mortality. The identification of risk factors is a prerequisite to improve prevention and therapy of the disease via gaining knowledge about the underlying pathophysiological processes as well as the identification of therapeutic targets. Hyperlipidemia, hypertension, and diabetes mellitus are examples for risk factors which can be treated via pharmacological intervention, whereas smoking and obesity can be addressed by lifestyle interventions. Age and male gender, which are also major risk factors, cannot be addressed therapeutically. In the past, a positive family history has also been regarded as a non-modifiable risk factor. However, the underlying risk factors were not known for decades. In this chapter, we summarize the developments in the past years which led to the identification of a plethora of genomic loci which are associated with CAD with high statistical certainty.

2 **Methodological Aspects**

Over the past decades, the methodological spectrum has been vastly expanded to identify novel genetic risk factors of CAD and MI. Details on these methods have been discussed elsewhere (Kessler et al. 2016). In this section, we aim to briefly mention some important points.
2.1 Techniques

The development of arrays with hundred thousands of common single nucleotide polymorphisms (SNPs) distributed all over the genome of an individual enabled researchers to deeply genotype large numbers of individuals. An important prerequisite was knowledge of the human genome which has been mainly gained via projects as the human genome project (Lander et al. 2001; Sachidanandam et al. 2001). Subsequent projects as the 1000 Genomes Project (1000 Genomes Project Consortium et al. 2012, 2015) raised further possibilities with the imputation of SNPs which had not been genotyped directly. As a consequence genome-wide association studies investigating millions of SNPs have been performed, and mostly common variants were found to be associated with the disease and lend support to the common disease-common variant hypothesis (Reich and Lander 2001). Thereby, since 2007, mostly genome-wide association studies and subsequent analyses led to the identification of genetic risk variants for various traits including CAD and traditional risk factors as blood pressure or lipids. Subsequently, large international consortia were formed that were responsible for the identification of most of the currently known CAD risk loci. Figure 1 illustrates the evolution of genome-wide association studies focusing on the CARDIoGRAMplusC4D consortium, a coalition of several individual studies to facilitate the identification of CAD risk factors (Schunkert et al. 2019) and further studies using data from UK Biobank (Littlejohns et al. 2019). The idea of exome-wide association studies is comparable to that of a genome-wide association study with the exception that the investigated SNPs are enriched for coding variants distributed over the genome (Myocardial Infarction Genetics and CARDIoGRAM Exome Consortia Investigators et al. 2016). Most of the currently known genetic CAD risk factors have been identified using these methods (Kessler et al. 2016; Khera and Kathiresan 2017a; Erdmann et al. 2018).

Apart from common variants, the association of rare variants and private mutations has also been extensively studied. To identify such genetic variation, mostly exome sequencing has been used in the past (Erdmann et al. 2013). As the name says, this next-generation sequencing method is able to determine the genomic sequence of an individual enriched for coding regions and thus renders the identification of missense variants co-segregating with a certain disease in, e.g., a family with high prevalence possible. Whole-genome sequencing is not restricted to coding sequences. However, due to costs and computational challenges of the different methods, whole-genome sequencing has not yet contributed to the current knowledge of genetic variation in CAD.

2.2 Selection of Individuals

Most large-scale genomic studies use a case-control design, i.e., a cohort of patients suffering from the trait of interest is compared to a group of healthy individuals free of the disease. Obviously, clear definitions of phenotypes are important to gain reliable results. Most GWAS on CAD/MI focused on cases suffering from the
Fig. 1 Discovery of genomic variants associated with CAD/MI using genome-/exome-wide association studies (modified after Kessler et al. 2016). (a) Over the past years, ongoing research led to the identification of increasing numbers of SNPs which are associated with CAD/MI at the genome-wide level of significance. Results from the CARDIoGRAMplusC4D-Million Hearts Initiative are awaited for 2019/2020. (b) The number of investigated individuals correlates with the number of identified risk variants which highlights the importance of international collaborations.

disease at an early age. This increased the possibility of identification of the genetic predisposition which, together with gender, still represents the strongest risk factor. For controls, population-based samples as well as individuals which have been
diagnosed to not to suffer from CAD/MI have been included. An important resource that has increasingly been used in recent projects is the UK Biobank (https://www.ukbiobank.ac.uk/). It includes health information as well as genetic data for 500,000 individuals which can be accessed by researchers after approval of specific projects (Littlejohns et al. 2019). In the USA, the Million Veteran Project has formed and stated to provide likewise genome-wide data (Klarin et al. 2018).

2.3 Statistical Analysis

To reduce the possibility of a false-positive finding, rigorous statistical thresholds have been determined to identify a certain variant to be associated with a trait as CAD/MI. Currently, a \(p \)-value below \(5 \times 10^{-8} \) is commonly accepted as a genome-wide significant finding. The strict \(p \)-value is a result of the large number of statistical tests which are performed in parallel on one dataset in a genome-wide association study (Pe’er et al. 2008). However, it cannot be excluded that true positive signals are discarded because they do not reach the stringent \(p \)-value. Recent studies also reported loci below certain false discovery rate thresholds to address this issue.

2.4 Mendelian Randomization Studies

Mendelian randomization studies (for an overview see Jansen et al. 2014) enable to investigate whether a biomarker or a trait is causal in the development of a disease. In epidemiological research, associations between biomarkers and diseases are frequently observed. However, the association can be influenced by unknown factors. On the other hand, the investigated disease itself can influence a given biomarker. In Mendelian randomization studies, causality between a biomarker and development of a disease can be assumed if a genetic variant influences this biomarker in the same direction as the biomarker is associated with the disease. Important examples in CAD are biomarkers such as LDL-cholesterol or C-reactive protein as well as behavioral traits such as educational attainment (Zeng et al. 2019a) which are discussed in more detail below.

3 Genetic Risk Factors Associated with Coronary Artery Disease

3.1 Genome-Wide Association Studies

The discovery of genetic CAD/MI risk factors was launched in 2007 by three independent studies which reported the chromosome 9p21 locus as the first and, until today, strongest genetic risk locus (Helgadottir et al. 2007; McPherson et al. 2007; Samani et al. 2007). Since then, with the inclusion of more individuals and the
possibility of analyzing a larger number of SNPs, more and more variants associated with CAD/MI have been reported (for an overview see Kessler et al. (2016), Khera and Kathiresan (2017b), and Erdmann et al. (2018)). The currently known loci are depicted in Table 1. Surprisingly, most of the SNPs tag genes which have not been studied in the pathophysiology of coronary atherosclerosis before. Another surprising finding was that only the minority of genes is also associated with traditional risk factors as hypertension or lipid metabolism rendering the involvement of other cellular mechanisms likely. Additionally, almost every lead SNP is located in a non-coding region of the genome. The most prominent example is again the chromosome 9p21 locus. Here, it is still unclear which gene might be responsible for the strong signal. Rather, there is much evidence that the effect might be mediated by the circular non-coding RNA ANRIL (Holdt et al. 2010, 2013, 2016).

Overall, it has been estimated that the 163 so far known CAD risk loci explain between 30% and 40% of CAD heritability (Nelson et al. 2017). It has also been found that a large number of the reported loci also harbor multiple independent signals (van der Harst and Verweij 2018). Additionally, most of the loci show pleiotropy, i.e., a risk variant is associated with several phenotypes. About half of the currently known CAD risk loci have been reported to be associated with other traits (Webb et al. 2017).

The studies which led to the discovery of the currently known CAD/MI risk variants as well as studies which gave first insights into their involvement in CAD/MI are referenced in Table 1. Specific genes and pathways are further discussed below.

3.2 Exome-Wide Association Studies

As mentioned above, GWAS mainly led to the identification of non-coding variation associated with the disease. To specifically investigate the role of coding variants, dedicated arrays enriched for exonic variants were used. In an international effort, the Myocardial Infarction Genetics and CARDIoGRAM Exome Consortium Investigators performed the largest exome-wide association study so far (Myocardial Infarction Genetics and CARDIoGRAM Exome Consortium Investigators et al. 2016). The results are depicted in Table 2. In summary, only four variants were identified. First, it could be replicated that coding variation in the LPA and PCSK9 genes is associated with CAD/MI. Second, two novel coding variants in ANGPTL4 and SVEP1 were found. Whereas LPA, PCSK9, and ANGPTL4 are associated with lipid metabolism (see below), SVEP1 only displayed association with blood pressure (Myocardial Infarction Genetics and CARDIoGRAM Exome Consortium Investigators et al. 2016). However, this effect cannot fully explain the association signal for CAD/MI.
Chr.	Lead SNP	EA (EAF)	OR	Gene(s)	Association with traditional risk factors	Ref.		
					HTN	Lipids		
1	rs36096196	T (0.15)	1.05	MORN1, SKI	+		Van der Harst and Verweij (2018)	
	rs2493298	A (0.14)	1.06	PRDM16, PEX10, PLCH2, RER1			Van der Harst and Verweij (2018)	
	rs61776719	A (0.53)	1.04	FHL3, UTP11, SF3A3, MANEAL, INPP5B			Van der Harst and Verweij (2018)	
	rs11206510	T (0.82)	1.08	PCSK9			Abifadel et al. (2003), Cohen et al. (2006), Myocardial Infarction Genetics Consortium et al. (2009), and Teslovich et al. (2010)	
	rs17114036	A (0.91)	1.17	PPAP2B			Teslovich et al. (2010), Schunkert et al. (2011)	
	rs599839	A (0.78)	1.11	SORT1, PSCR1, CELSR2	+		Samani et al. (2007), Teslovich et al. (2010), and Schunkert et al. (2011)	
	rs11806316	G (0.66)	1.04	NGF, CASQ2			Van der Harst and Verweij (2018)	
	rs11810571	G (0.79)	1.07	TDRKH, RP11-98D18.9			Verweij et al. (2017), Nelson et al. (2017)	
	rs4845625	T (0.47)	1.06	IL6R, AQP10, ATP8B2, CHTOP, UBPAP2L			CARDioGRAMplusC4D Consortium et al. (2013)	
	rs1892094	C (0.50)	1.04	ATP1B1, BLZF1, CCDC18I, F5, NME7, SELP, SLCL9A2			Howson et al. (2017)	
	rs6700559	C (0.53)	1.04	DDX59, CAMSAP2, KIF14				
	rs2820315	T (0.30)	1.05	LMOD1, IPO9, NAV1, SHISA4, TIMM17A				
	rs60154123	T (0.15)	1.05	HHAT, SERTAD4, DIEXF			Van der Harst and Verweij (2018)	
	rs17465637	C (0.74)	1.14	MIA3, AIDA, C1orf58			Samani et al. (2007), Schunkert et al. (2011)	
	rs699	G (0.42)	1.04	AGT, CAPN9, GNPAT			Van der Harst and Verweij (2018)	

(continued)
Chr.	Lead SNP	EA (EAF)	OR	Gene(s)	Association with traditional risk factors	Ref.
2	rs515135	G (0.83)	1.07	APOB		Teslovich et al. (2010), CARDIoGRAMplusC4D Consortium et al. (2013)
	rs6544713	T (0.30)	1.06	ABCG5, ABCG8		Teslovich et al. (2010), Schunkert et al. (2011), and IBC 50K CAD Consortium (2011)
	rs582384	A (0.53)	1.03	PRKCE, TMEM247		Van der Harst and Verweij (2018)
	rs1561198	A (0.45)	1.06	VAMP5, VAMP8, GGCX		CARDiOGRAMplusC4D Consortium et al. (2013)
	rs2252641	G (0.46)	1.06	ZEB2, TEX41		CARDiOGRAMplusC4D Consortium et al. (2013)
	rs12999907	A (0.82)	1.06	FIGN		Van der Harst and Verweij (2018)
	rs840616	C (0.65)	1.04	CALCRL, TFPI		Van der Harst and Verweij (2018)
	rs6725887	C (0.15)	1.14	WDR12, CARF, FAM117B, ICA1L, NBEAL1		Myocardial Infarction Genetics Consortium et al. (2009), Schunkert et al. (2011)
	rs1250229	T (0.26)	1.07	FN1, ATIC, LOC102724849, ABCA12, LINC00607		Klarin et al. (2017), Nelson et al. (2017)
	rs2571445	A (0.39)	1.04	TNS1, CXCR2, RUFY4		Howson et al. (2017)
	rs2972146	T (0.65)	1.07	LOC646736, IRS1, MIR5702		Klarin et al. (2017)
	rs1801251	A (0.35)	1.05	KCNJ13, GIGYF2		Webb et al. (2017)
	rs11677932	G (0.68)	1.03	COL6A3		Van der Harst and Verweij (2018)
SNP ID	Chrs	Minor Allele	Minor Allele Frequency	log10 OR	Reference Genes	Authors
-------------	-------	--------------	------------------------	----------	-----------------	---------
rs748431	3	G	0.36	1.04	FGD5	Klarin et al. (2017)
rs7633770	5	A	0.41	1.03	ALS2CL, RTP3	Van der Harst and Verweij (2018)
rs7617773	5	T	0.67	1.04	CDC25A, SPINK8, MAP4, ZNF589	+
rs7623687	5	A	0.86	1.07	RHOA, AMT, TCTA, CDHRA, KLHDC8B, etc.	Verweij et al. (2017), Klarin et al. (2017), Nelson et al. (2017), and Howson et al. (2017)
rs142695226	12	G	0.14	1.08	UMPS, ITGB5	Verweij et al. (2017), Klarin et al. (2017), and Nelson et al. (2017)
rs10512861	12	G	0.86	1.04	DNAJC13, NPHP3, ACAD11, UBA5	+
rs667920	12	T	0.78	1.05	STAG1, MSL2, NCK1, PPP2R3A	+
rs2306374	14	C	0.18	1.12	MRAS, CEP70	Erdmann et al. (2009), Schunkert et al. (2011)
rs12493885	16	C	0.85	1.07	ARHGGEF26	Verweij et al. (2017), Klarin et al. (2017), and Nelson et al. (2017)
rs4266144	17	G	0.32	1.03	CCNL1, TIPARP	Van der Harst and Verweij (2018)
rs12897	17	G	0.41	1.04	FNDC3B	Van der Harst and Verweij (2018)
rs16844401	17	A	0.07	1.07	HGFAC, RGS12, MSANTD1	+
rs17087335	17	T	0.21	1.06	REST, NOA1	Nikpay et al. (2015)
rs12500824	17	A	0.36	1.04	SHROOM3, SEPT11, FAM47E, STBD1	Van der Harst and Verweij (2018)
rs10857147	17	T	0.27	1.06	PRDM8, FGF5	Verweij et al. (2017), Klarin et al. (2017), and Nelson et al. (2017)
rs11099493	17	A	0.69	1.04	HNRNPD, RASGEF1B	Van der Harst and Verweij (2018)
rs3775058	17	A	0.23	1.04	UNC5C	Van der Harst and Verweij (2018)
rs11723436	17	G	0.31	1.05	MAD2L1, PDE5A	Verweij et al. (2017), Klarin et al. (2017), and Nelson et al. (2017)
rs35879803	17	C	0.70	1.05	ZNF827	Verweij et al. (2017)
rs1878406	17	T	0.15	1.10	EDNRA	CARDIoGRAMplusC4D Consortium et al. (2013)
rs7692387	17	G	0.81	1.08	GUCY1A1	International Consortium for Blood Pressure Genome-Wide Association Studies et al. (2011), CARDIoGRAMplusC4D Consortium et al. (2013), and Erdmann et al. (2013)
rs7696431	17	T	0.51	1.04	PALLD, DDX60L	Van der Harst and Verweij (2018)

(continued)
Chr.	Lead SNP	EA (EAF)	OR	Gene(s)	Association with traditional risk factors	Ref.
5	rs1508798	T (0.81)		SEMA5A, TAS2R1	+	
	rs3936511	G (0.18)	1.04	MAP3K1, MIER3	+	
	rs1800449	T (0.17)	1.09	LOX	Klarin et al. (2017)	
	rs273909	C (0.14)	1.07	SLC22A4	CARDIoGRAMplusC4D Consortium et al. (2013)	
	rs2706399	G (0.51)	1.07	IL5, RAD50	IBC 50K CAD Consortium (2011)	
	rs246600	T (0.48)	1.05	ARHGAP26	Howson et al. (2017)	
6	rs9501744	C (0.87)	1.05	FOXC1	Van der Harst and Verweij (2018)	
	rs12526453	C (0.67)	1.10	PHACTR1, EDN1	Myocardial Infarction Genetics Consortium et al. (2009), Schunkert et al. (2011)	
	rs35541991	C (0.31)	1.05	HDGFL1	Verweij et al. (2017), Nelson et al. (2017)	
	rs3130683	T (0.86)	1.09	C2, C4A, etc.	Webb et al. (2017)	
	rs17609940	G (0.75)	1.07	ANKS1A, UHRF1BP1	Schunkert et al. (2011)	
	rs1321309	A (0.49)	1.03	CDKN1A, PI16	Van der Harst and Verweij (2018)	
	rs10947789	T (0.76)	1.07	KCN5	CARDIoGRAMplusC4D Consortium et al. (2013)	
	rs6905288	A (0.57)	1.05	VEGFA, MRPL14, TMEM63B	+	Van der Harst and Verweij (2018)
	rs9367716	G (0.68)	1.04	PRIM2, RAB23, DST, BEND6		
	rs4613862	A (0.53)	1.03	FAM46A	Schunkert et al. (2011)	
	rs1591805	A (0.49)	1.04	CENPW	Schunkert et al. (2011)	
	rs12190287	C (0.62)	1.08	TCF21, TARID (EYA4–AS1)		Schunkert et al. (2011)
	rs17080091	C (0.92)	1.05	PLEKHG1, IYD	Van der Harst and Verweij (2018)	
	rs3798220	C (0.02)	1.51	LPA, SLC22A3, LPAL2	+	Tregouet et al. (2009), Teslovich et al. (2010), and Schunkert et al. (2011)
	rs4252120	T (0.73)	1.07	PLG, LPAL2	CARDIoGRAMplusC4D Consortium et al. (2013)	
Genomic Strategies Toward Identification of Novel Therapeutic Targets						

SNP	Functional Region	Meta-Analysis p-Value	Meta-Analysis Effect Size	CMC Phases of Interest (2015)	CARDIoGRAMplusC4D Consortium et al. (2013)	
rs10267593	G	0.8	1.04	Van der Harst and Verweij (2018)	CARDIoGRAMplusC4D Consortium et al. (2013)	
rs7797644	C	0.77	1.04			
rs392216	T	0.31	1.04			
rs11509880	A	0.36	1.04			
rs2023938	G	0.10	1.08			
rs10953541	C	0.36	1.08			
rs975722	G	0.91	1.06			
rs11556244	C	0.80	1.08			
rs10237377	G	0.65	1.14			
rs3918226	G	0.86	1.11			
rs6997340	G	0.86	1.11			
rs264	T	0.91	1.11			
rs10953541	C	0.36	1.08			
rs944172	C	0.28	1.04			
rs885150	C	0.27	1.03			
rs797949	C	0.21	1.10			
rs1333049	C	0.46	1.29			
rs11509880	A	0.36	1.04			
rs2954209	A	0.55	1.06			
rs944172	C	0.28	1.04			
rs885150	C	0.27	1.03			
rs797949	C	0.21	1.10			
Chr.	Lead SNP	EA (EAF)	OR	Gene(s)	Association with traditional risk factors	Ref.
------	----------------	----------	-----	--------------------------	---	--
10	rs61848342	C (0.36)	1.04	**CDC123, NUDT5, OPTN**		Van der Harst and Verweij (2018)
	rs2505083	C (0.38)	1.07	**KIAA1462**		Coronary Artery Disease C4D Genetics
	rs1746048	C (0.87)	1.09	**CXCL12**		Samani et al. (2007), Schunkert et al. (2011)
	rs17680741	T (0.72)	1.05	**TSPAN14, MAT1A, FAM213A**		Van der Harst and Verweij (2018)
	rs1412444	T (0.42)	1.09	**LIPA**		Coronary Artery Disease C4D Genetics
	rs12413409	G (0.89)	1.12	**CYP17A1, CNNM2, NT5C2**	+	Levy et al. (2009), Newton-Cheh et al. (2009), and Schunkert et al. (2011)
	rs4918072	A (0.27)	1.04	**STN1, SH3PXD2A**		
	rs4752700	G (0.45)	1.03	**HTRA1, PLEKHAI**		
11	rs111601507	A (0.07)	1.09	**TRIM5, TRIM22, TRIM6, OR52N1, OR52B6**		Van der Harst and Verweij (2018)
	rs10840293	A (0.55)	1.06	**SWAP70**		Nikpay et al. (2015)
	rs11042937	T (0.49)	1.03	**MRVII, CTR9**		Webb et al. (2017)
	rs1351525	T (0.67)	1.05	**ARNTL**		Verweij et al. (2017), Nelson et al. (2017)
	rs7116641	G (0.31)	1.03	**HSD17B12**		Van der Harst and Verweij (2018)
	rs12801636	G (0.77)	1.05	**PCNX3, POLA2, RELA, SIPA1, etc.**	+	Howson et al. (2017)
	rs590121	T (0.30)	1.05	**SERPINH1**		Howson et al. (2017)
	rs7947761	G (0.28)	1.04	**ARHGAP42**		Van der Harst and Verweij (2018)
	rs974819	T (0.32)	1.07	**PDGF**		Coronary Artery Disease C4D Genetics
	rs964184	G (0.13)	1.13	**APOA1-C3-A4-A5**	+	Schunkert et al. (2011), Do et al. (2015)
	rs11838267	T (0.87)	1.05	**C1S**		Van der Harst and Verweij (2018)
rsID	SNP	MAF	OR (95% CI)	Gene(s)	Reference(s)	
------------	-----	-----	-------------	--	---	
rs10841443			1.06	**RP11-664H17.1, PDE3A**	Klarin et al. (2017)	
rs11170820	G	0.67	1.10	**HOXC4**	Verweij et al. (2017)	
rs11172113	C	0.41	1.06	**LRP1, STAT6**	Webb et al. (2017)	
rs7306455	G	0.9	1.05	**NDUFA12, FGD6**	Van der Harst and Verweij (2018)	
rs3184504	T	0.44	1.07	**SH2B3, FLJ21127, ATXN2, etc.**	+ Gudbjartsson et al. (2009), Levy et al. (2009), Newton-Cheh et al. (2009), Teslovich et al. (2010), and Schunkert et al. (2011)	
rs11830157	G	0.36	1.12	**KSR2**	Nikpay et al. (2015)	
rs2244608	G	0.35	1.06	**HNF1A, OASL, C12orf43, and others**	+ Verweij et al. (2017), Klarin et al. (2017), Nelson et al. (2017), and Howson et al. (2017)	
rs11057401	T	0.69	1.08	**CCDC92**	+ Klarin et al. (2017)	
rs11057830	A	0.15	1.07	**SCARB1**	+ Webb et al. (2017), Howson et al. (2017)	
rs9319428	A	0.32	1.06	**FLT1**	CARDIoGRAMplusC4D Consortium et al. (2013)	
rs9591012	G	0.66	1.04	**N4BP2L2, PDS5B**	Van der Harst and Verweij (2018)	
rs4773144	G	0.44	1.07	**COL4A1, COL4A2**	Schunkert et al. (2011)	
rs1317507	A	0.26	1.04	**MCF2L, PCID2, CUL4A**	Van der Harst and Verweij (2018)	
rs2145598	G	0.42	1.03	**ARID4A, PSMA3**	+ Verweij et al. (2017)	
rs3832966	I	0.46	1.05	**TMED10, ZC2HC1C, RPS6KLI1, NEK9, EIF2B2e, ACYPI**	+ Klarin et al. (2017), Nelson et al. (2017), and Howson et al. (2017)	
rs12639523	G	0.66	1.03	**SERPINA2, SERPINA1**	+ Schunkert et al. (2011)	
rs2895811	C	0.43	1.13	**HHT1L1, YY1**	+ Van der Harst and Verweij (2018)	
rs6494488	A	0.82	1.05	**OAZ2, RBPMS2, TRIP4, etc.**	Schunkert et al. (2011)	
rs56062135	C	0.79	1.07	**SMAD3**	Howson et al. (2017)	
rs3825807	A	0.57	1.08	**ADAMTS7**	+ Reilly et al. (2011), Schunkert et al. (2011), Coronary Artery Disease C4D Genetics Consortium (2011a)	
rs8042271	G	0.9	1.10	**MFGE8, RP11-326A19.4, ABHD2**	+ Nikpay et al. (2015)	
rs17514846	A	0.44	1.07	**FURIN, FES**	International Consortium for Blood Pressure Genome-Wide Association Studies et al. (2011), CARDIoGRAMplusC4D Consortium et al. (2013)	
rs17581137	A	0.75	1.04	**Gene desert**	Van der Harst and Verweij (2018)	

(continued)
Chr	Lead SNP	EA (EAF)	OR	Gene(s)	Association with traditional risk factors	Ref.
16	rs1800775	C (0.51)	1.03	CETP	HTN +	Webb et al. (2017)
	rs1050362	A (0.38)	1.04	DHX38, HP, DHODH	Lipids +	Howson et al. (2017)
	rs3851738	C (0.60)	1.07	CFDP1, BCAR1		Verweij et al. (2017), Klarin et al. (2017)
	rs7199941	A (0.4)	1.04	PLCG2, CENPN		Van der Harst and Verweij (2018)
	rs7500448	A (0.77)	1.07	CDH13		Verweij et al. (2017), Klarin et al. (2017), and Nelson et al. (2017))
17	rs216172	C (0.37)	1.07	SMG6, SRR		Schunkert et al. (2011)
	rs1293587	G (0.56)	1.07	Ral1, PEMT, RASD1, SMCR3, TOM1L2		Schunkert et al. (2011)
	rs13723	G (0.49)	1.04	CORO6, BLMH, ANKRD13B, GIT1, SSH2, EFCAB5		Van der Harst and Verweij (2018)
	rs76954792	T (0.22)	1.04	COPRS, RAB11FIP4		
	rs2074158	C (0.18)	1.05	DHX58, KAT2A, RAB5, NKIRAS2, DNAJC7, KCNH4, HCRT, GHDC	+	
	rs17608766	C (0.14)	1.07	GOSR2, MYLA, ARLI7A, etc.	+	Howson et al. (2017)
	rs46522	T (0.53)	1.06	UBE2Z, GIP, ATP5GI		Schunkert et al. (2011)
	rs7212798	C (0.15)	1.08	BCAS3		Nikpay et al. (2015)
	rs1867624	T (0.61)	1.04	PECAM1, DDX5, TEX2, etc.		Howson et al. (2017)
18	rs9964304	C (0.38)	1.04	ACA2, RPL17		Van der Harst and Verweij (2018)
	rs663129	A (0.26)	1.06	PMAIP1, MC4R		Nikpay et al. (2015)
Chr	SNP	EA	EAF	Gene(s)	Reference(s)	
-----	-----	----	-----	---------	--------------	
19	rs1122608	G (0.77)	1.14	LDLR, SMARCA4	Myocardial Infarction Genetics Consortium et al. (2009), Teslovich et al. (2010), Schunkert et al. (2011), and Do et al. (2015)	
	rs73015714	G (0.2)	1.06	FCHO1, COLGALT1	Van der Harst and Verweij (2018)	
	rs12976411	A (0.91)	1.33	ZNF507, LOC400684	Nikpay et al. (2015)	
	rs8108632*	T (0.48)	1.05	HNRNPU1, CCDC97, TGFB1, B9D2	Verweij et al. (2017), Klarin et al. (2017), and Nelson et al. (2017)	
	rs2075650	G (0.14)	1.14	APOE, APOC1, TOMM40, PVRL2, COTL1	+ Teslovich et al. (2010), IBC 50K CAD Consortium (2011)	
	rs1964272	G (0.51)	1.04	SNRPN2, GIPR	Nelson et al. (2017)	
20	rs867186	A (0.89)	1.07	PROCR, ASIP, NCOA6, ITGB4BP/EIF6, etc.	Howson et al. (2017)	
	rs6102343	A (0.25)	1.04	ZHX3, PLCG1, TOP1	Van der Harst and Verweij (2018)	
	rs7270354	A (0.15)	1.06	PCIF1, ZNF335, NEURL2, PLTP, MMP9	+ Braenne et al. (2017)	
	rs260020	T (0.13)	1.04	ZNF831	Van der Harst and Verweij (2018)	
	rs2832227	G (0.18)	1.04	MAP3K7CL, BACH1		
21	rs9982601	T (0.15)	1.18	MRPS6, SLC5A3, KCNE2	Myocardial Infarction Genetics Consortium et al. (2009)	
22	rs180803	G (0.97)	1.20	ADORA2A	Nikpay et al. (2015)	

The most likely candidate gene at the locus is marked in bold (after McPherson and Tybjaerg-Hansen (2016)). Chr chromosome, EA effect allele, EAF effect allele frequency, HTN hypertension, I/D Indel/Deletion, OR odds ratio, Ref reference, SNP single nucleotide polymorphism
Chr.	SNP (AA change)	EA (EAF)	OR	Gene(s)	Association with traditional risk factors	Ref.
1	rs11591147 (p. R46L)	T (0.0152)	0.78	PCSK9	+	Myocardial Infarction Genetics and CARDIoGRAM Exome Consortia Investigators et al. (2016)
6	rs3798220 (p. I4399M)	C (0.019)	1.54	LPA	+	
9	rs111245230 (p. D2702G)	C (0.036)	1.14	SVEP1	+	
19	rs116843064 (p. E40K)	A (0.02)	0.86	ANGPTL4	+	

AA amino acid, Chr chromosome, EA effect allele, EAF effect allele frequency, HTN hypertension, OR odds ratio, Ref reference, SNP single nucleotide polymorphism
3.3 Exome and Whole-Genome Sequencing

As discussed above, due to still comparatively high costs, whole-genome sequencing has not yet significantly contributed to the knowledge of genetic CAD risk factors. In contrast, several studies made use of exome sequencing to identify variation in the coding sequence which is associated with CAD/MI. One scope of application the investigation of members of families with a high disease prevalence. Using this approach and subsequent co-segregation analyses genetic factors underlying the development of CAD/MI or its risk factors was possible. An important example is a mutation in the GUCY1A3 gene, which has been – together with a coding mutation in the CCT7 gene – shown to be responsible for the phenotype of premature CAD/MI in a family (Erdmann et al. 2013). As shown in Table 1, the GUCY1A3 locus also harbors common, non-coding variants associated with CAD/MI. Thus, an allelic series has been shown at the locus with a mutation and common variants which lead to a strong or only moderate risk increase, respectively. Further loci have been identified by analyzing large cohorts of cases and controls comparable to the GWAS approach. Most of the genes that were thereby identified play a role in lipid metabolism. Some of the genes, e.g., LDLR or PCSK9, also demonstrate allelic series. A selection of genes which have been identified using exome sequencing is depicted in Table 3 and discussed below in more detail.

4 Genetic Overlap and Demarcation with Other Atherosclerotic Diseases

An increased prevalence of CAD risk alleles can be traced in a large number of cardiovascular conditions including heart failure, peripheral arterial disease, or atrial fibrillation (Ntalla et al. 2019). Large-scale genomic studies have also been published in particular for stroke (for a review see Dichgans et al. (2019)). Despite there is genetic overlap between CAD and atherosclerotic stroke (Dichgans et al. 2014; Kessler et al. 2015a), the genetic risk factors of CAD and stroke are not similar. The formation of large, international consortia has advanced the identification of risk genes in the fields of CAD and stroke genetics. In other atherosclerotic diseases as peripheral artery disease, genetic research will be facilitated by publicly available data from large-scale biobanks. Nevertheless, the identification of common genetic risk factors will be important to evaluate novel therapeutic strategies. Other genetic risk factors for CAD might also not play an important role in related diseases: as such, the strongest genetic risk factor reported so far, chromosome 9p21, is not associated with calcified aortic stenosis; in contrast, the LPA gene is associated with both diseases (Trenkwalder et al. 2018).
Chr	Gene(s)	Mechanism	Ref.
1	ANGPTL3	• Angiopoietin-like 3 inhibits lipoprotein lipase	Stitziel et al. (2017)
		• **ANGPTL3** loss-of-function mutations are associated with reduced LDL-cholesterol and triglycerides as well as reduced CAD risk	
2	APOB	• Apolipoprotein B is a main component of LDL-cholesterol and triglyceride-rich lipoproteins	Peloso et al. (2019)
		• Truncating APOB mutations are associated with reduced LDL-cholesterol and reduced CAD risk	
4/2	GUCY1A3/	• Premature stop codon in **GUCY1A3** leads to loss of α₁-subunit of the soluble guanylyl cyclase (sGC); missense mutation in **CCT7** which encodes a chaperone protein stabilizing the sGC	CARDIoGRAMplusC4D Consortium et al. (2013), Erdmann et al. (2013), and Wobst et al. (2016)
	CCT7	• Carriers of the **GUCY1A3** +**CCT7** mutation show reduced sGC-dependent cGMP formation in platelets	
		• Coding variants in **GUCY1A3** are overrepresented in young MI patients	
7	NPC1L1	• Niemann-Pick C1-like protein 1 is responsible for the uptake of cholesterol from the intestine	Myocardial Infarction Genetics Consortium Investigators et al. (2014)
		• NPC1L1 loss-of-function mutations are associated with reduced LDL-cholesterol and reduced risk of CAD/MI	
8	LPL	• Lipoprotein lipase reduced triglyceride levels	Myocardial Infarction Genetics and CARDIoGRAM Exome Consortium Investigators et al. (2016) and Khera et al. (2017)
		• Loss-of-function variants are associated with increased triglyceride levels and CAD/MI	
11	APOA5	• Apolipoprotein A-V increases lipoprotein lipase activity	Do et al. (2015)
		• **APOA5** loss-of-function mutations are associated with high triglyceride levels and CAD/MI	
	APOC3	• Apolipoprotein C-III reduced lipoprotein lipase activity	The TG and HDL Working Group of the Exome Sequencing Project, National Heart, Lung, and Blood Institute (2014)
		• **APOC3** loss-of-function mutations are associated with	
Pharmacological Targets Identified by Genomic Studies

Genomic studies identified putative pharmacological targets at every stage of plaque formation, progression, and rupture (Fig. 2) which are discussed in this section.

5.1 Lipid Metabolism

While less than half of the identified variants tag genes which are associated with traditional risk factors, lipid metabolism represents a cluster of such variants.

LDL-Cholesterol Metabolism High levels of LDL-cholesterol are an established risk factors for CAD. Not surprisingly, the most prominent genes which are directly
involved in LDL-cholesterol metabolism and have been tagged by GWAS are LDLR, PCSK9, and SORT1. In line, mutations in the LDLR gene leading to reduced hepatic uptake of LDL-cholesterol have been shown to underlie familial hypercholesterolemia which itself increases CAD risk (Tolleshaug et al. 1983; Brown and Goldstein 1986), and common variants at the LDLR locus have been associated with both phenotypes (Myocardial Infarction Genetics Consortium et al. 2009; Teslovich et al. 2010; Schunkert et al. 2011; Do et al. 2015). PCSK9 has been identified as an interaction partner of the LDL-receptor. If PCSK9 binds to the LDL-receptor, it is internalized and degraded resulting in reduced hepatic uptake and high plasma levels of LDL-cholesterol (Cameron et al. 2006). Gain-of-function mutations in PCSK9 have been shown to increase LDL-cholesterol (Abifadel et al. 2003), whereas loss-of-function variants have been shown to reduce LDL-cholesterol and CAD risk (Cohen et al. 2006). PCSK9 has been targeted pharmacologically via different approaches. The inhibition of PCSK9 using, e.g., neutralizing antibodies resulted in a marked reduction of LDL-cholesterol and reduced risk of cardiovascular events in CAD patients (Sabatine et al. 2015, 2017). Sortilin 1 encoded by SORT1 has also been shown to affect LDL-cholesterol (Samani et al. 2007; Musunuru et al. 2010; Teslovich et al. 2010; Schunkert et al. 2011). However, as it seems to also play a role in other processes and as the mechanism involving sortilin 1 in LDL-cholesterol metabolism has still not been fully understood, it might not represent an ideal drug target. NPC1L1, a membrane transporter leading to the uptake of cholesterol from the intestine encoded by the NPC1L1 gene, also revealed a signal. Using exome sequencing, loss-of-function mutations were identified to be associated with reduced LDL-cholesterol and protection from CAD (Myocardial Infarction Genetics Consortium Investigators et al. 2014). In parallel, it has been shown that pharmacological targeting of NPC1L1 with ezetimibe also reduces the incidence of cardiovascular events in addition to a statin (Cannon et al. 2015). Figure 3 summarizes the multiple lines of evidence for an involvement of LDL-cholesterol metabolism in CAD/MI from a genetic point of view.

Triglyceride Metabolism Lipoprotein lipase has been identified as a central enzyme regulating triglyceride levels. In line, genetic variants in LPL have been associated with both triglyceride levels and CAD risk (Khera et al. 2017). Additionally, the genes encoding several modulators of lipoprotein lipase activity were found to be associated with CAD/MI risk: (1) apolipoprotein C-III reduces lipoprotein lipase activity, and mutations in APOC3 are associated with both increased triglyceride levels and CAD risk (The TG and HDL Working Group of the Exome Sequencing Project, National Heart, Lung, and Blood Institute 2014; Klarin et al. 2018); (2) apolipoprotein A-V increases lipoprotein lipase activity, and mutations in APOA5 increase triglyceride levels and CAD risk (Do et al. 2015); and (3) angiopoietin-like 4 inhibits lipoprotein lipase activity, and mutations in ANGPTL4 reduce triglyceride levels and CAD risk (Myocardial Infarction Genetics and CARDIoGRAM Exome Consortia Investigators et al. 2016). Angiopoietin-like 3 seems to have comparable effects as deficiency was also associated with reduced triglycerides and CAD risk (Stitziel et al. 2017). Mainly apolipoprotein C-III but also
Pharmacological treatment e.g., PCSK9, NPC1L1, …

Mendelian Randomization e.g., LDR, …

Shared association e.g., LDLR, PCSK9, APOA5, …

Genetic Risk LDL-C genetic risk score

Genetic variants affecting LDL-C

Fig. 3 Multiple lines of genetic evidence for an involvement of LDL-cholesterol metabolism in CAD/MI. 1. Pharmacological treatments targeting genes which have been associated with LDL-cholesterol reduce risk of cardiovascular events. 2. Mendelian randomization studies have proven the causal influence of LDL-cholesterol metabolism in CAD/MI. 3. CAD/MI and LDL-cholesterol show shared genetic risk variants which are associated with both traits at the genome-wide level of statistical significance. 4. Genetic risk scores for LDL-cholesterol including genome-wide significant variants are also associated with CAD/MI risk, i.e., individuals with a high genetic LDL-cholesterol risk score are also at higher risk for CAD/MI and vice versa. Contains modified image material available at Servier Medical Art under a Creative Commons Attribution 3.0 Unported License.
angiopoietin-like 3 are subjects of research for novel strategies targeting lipoprotein lipase metabolism (Graham et al. 2013; Gaudet et al. 2015; Ahmad et al. 2019).

5.2 Inflammation

Vascular inflammation and the recruitment of leukocytes are the hallmarks of atherosclerosis (for reviews see Lusis (2000), Libby et al. (2011), and Swirski and Nahrendorf (2013)). Several clinical studies already in the past decades thus targeted inflammatory parameters. A prominent example is C-reactive protein (CRP), which has been regarded for a long time as a pathophysiological player. This was mainly due to the observation of elevated CRP levels in individuals suffering from CAD in epidemiological studies (Koenig et al. 1999; Danesh et al. 2004) making CRP a promising therapeutic target (Pepys et al. 2006). Indeed, clinical trials, e.g., the JUPITER trial which investigated the effect of rosuvastatin in individuals with elevated CRP levels, showed a benefit (Ridker et al. 2008). Genetic studies were, however, able to dissect this association and trial outcomes. As such, LDL-cholesterol could be clearly proven as a causal risk factor for CAD as a genetic risk score for LDL-cholesterol elevating variants was also associated with CAD risk (Kathiresan et al. 2008). In contrast, several variants found to increase CRP levels did not show an association with CAD risk (Lange et al. 2006; Zacho et al. 2008; Linsel-Nitschke et al. 2008; Schunkert and Samani 2008; C Reactive Protein Coronary Heart Disease Genetics Collaboration (CCGC) et al. 2011). While these studies on CRP remained disappointing, targeting inflammation has indeed lately been proven to be effective in CAD. In the CANTOS trial, the administration of an interleukin-1β neutralizing antibody was able to reduce the incidence of cardiovascular events ultimately proving the inflammation hypothesis (Ridker et al. 2017). This is in line with Mendelian randomization studies that revealed evidence for a causal role of interleukin-6/interleukin-6 receptor signaling, which is downstream of interleukin-1β, in CAD (Interleukin-6 Receptor Mendelian Randomisation Analysis Consortium et al. 2012).

GWAS led to the identification of a number of variants tagging genes which play a role in inflammatory processes to be associated with CAD/MI.

Autoimmune Processes CAD/MI and autoimmune disease share genetic risk factors. As such, the SH2B3 locus has been identified to be associated with CAD/MI (Coronary Artery Disease C4D Genetics Consortium 2011b; Schunkert et al. 2011) but also, e.g., type 1 diabetes mellitus (Barrett et al. 2009) and celiac disease (Hunt et al. 2008). A role for the encoded protein, SH2B adaptor protein 3 (SH2B3), has been shown in post MI remodeling: lack of Sh2b3 in rats was associated with increased fibrosis, increased leukocyte infiltration, and decreased cardiac function (Flister et al. 2015). Additionally, it is involved in dendritic cell function leading to T-cell interferon signaling (Mori et al. 2014). Nevertheless, uncertainties remain as the locus was also found to be associated with blood pressure (Levy et al. 2009; Newton-Cheh et al. 2009) and hematologic parameters (Soranzo
et al. 2009). The latter observation might be important as an involvement in megakaryopoiesis and stabilization of thrombi has also been shown experimentally (Tong and Lodish 2004; Takizawa et al. 2010). In a recent study, the $SH2B3$ risk allele was found to be associated with decreased $SH2B3$ expression which, at least for the murine counterpart Sh2b3/Lnk, together with cholesterol loading promoted platelet production and activation (Wang et al. 2016).

Innate Immunity
CXCL12 is a chemokine which is encoded by the CAD risk gene $CXCL12$ (Myocardial Infarction Genetics Consortium et al. 2009; Coronary Artery Disease C4D Genetics Consortium 2011b) and has a function in various cellular processes. In atherosclerosis the CXCL12/CXCR4 axis has initially been described to have a rather protective role (Döring et al. 2014). Disruption of this axis led to increased plaque formation and proinflammatory plaque phenotypes in vivo (Zernecke et al. 2008). In line, CXCL12/CXCR4 signaling was shown to be important in endothelial cells and smooth muscle cells via maintaining barrier function and contractile responses, respectively (Döring et al. 2017). However, the interaction of CXCL12 and CXCR4 in atherosclerosis seems to be more complex. Whereas the atheroprotective findings were mainly derived from studies in which the interaction was inhibited by small molecules or genetic deletion of CXCR4, endothelial cell-derived CXCL12 was found to promote atherosclerosis (Döring et al. 2019). CXCR4 in contrast seems to be atheroprotective: in addition to the mentioned in vivo studies, the rs2322864 C-allele, which was found to be associated with CAD risk in a candidate gene study, was also associated with CXCR4 expression in plaques (Döring et al. 2017). The double-edged effects of CXCL12/CXCR4 signaling need to be considered to successfully target this pathway.

5.3 Platelet Function and Nitric Oxide Signaling

Genetic studies led to the identification of several genes which play a role in nitric oxide (NO) signaling leading to the formation or degradation of the second messenger cyclic guanosine monophosphate (cGMP), an endogenous inhibitor of platelet aggregation (Moro et al. 1996). Whereas several genes (e.g., $NOS3$, $PDE5A$, $MRVI1$, $PDE3A$) fulfill important functions in this pathway, most is known about $GUCY1A3$ which encodes the α_1-subunit of the soluble guanylyl cyclase (α_1-sGC). As discussed above, a digenic mutation in $GUCY1A3$ and the $CCT7$ gene, which encodes the chaperone protein, was identified in a family by exome sequencing (Erddmann et al. 2013). At the same time, also a common non-coding variant (rs7678555) was identified in Europeans to be associated with CAD by GWAS (CARDIoGRAMplusC4D Consortium et al. 2013). Whereas the digenic mutation led to loss of α_1-sGC due to premature stop of translation (Erddmann et al. 2013), the common variant has been shown to influence $GUCY1A3$ expression, i.e., the risk allele G was linked to reduced expression (Kessler et al. 2017). Both the digenic mutation and the common risk variant led to reduced cGMP formation in platelets (Erddmann et al. 2013; Kessler et al. 2017). As a consequence, platelets of carriers of
the common risk variants showed impaired inhibition of platelet aggregation secondary to NO stimulation (Kessler et al. 2017). The sGC is a known pharmacological target. Specific stimulators and activators of the sGC are available (for an overview see Stasch et al. (2011)) and approved for other traits, e.g., pulmonary hypertension (Ghofrani et al. 2013a, b). First preclinical data also render a positive influence of sGC stimulators on atherosclerotic phenotypes possible (Tsou et al. 2014). Additionally, the impaired response to nitric oxide in carriers of the common risk allele G in platelets might also be targeted via unspecific inhibitors of platelet aggregation. Recently, we showed that homozygous risk allele carriers might benefit from aspirin treatment in the primary prevention of cardiovascular diseases, whereas homozygous or heterozygous carriers of the non-risk allele A seem to even display increased risk (Hall et al. 2019). Additionally, homozygous carriers of the risk allele G are at an increased risk of ischemic events after the implantation of coronary stents, at least in part via higher on-aspirin platelet reactivity (Kessler et al. 2019). While platelets, in addition to their well-known role in atherothrombosis, are also involved in atherosclerotic plaque formation (Gawaz et al. 2005) and despite the known influence of sGC function on inflammatory phenotypes (Ahluwalia et al. 2004), the exact mechanisms are still unknown. This is complicated by the fact that a complete knockout of the murine counterpart \textit{Gucy1a3} led to the unexpected finding of reduced atherosclerotic plaque formation (Segura-Puimedon et al. 2016), whereas genetically determined reduced but not lacking expression of \textit{Gucy1a3} was also associated with increased plaque formation (Kessler et al. 2017). The genetic findings at the further mentioned NO-cGMP-signaling loci associated with CAD/MI have been extensively discussed elsewhere (Wobst et al. 2018). A promising target in addition to sGC is phosphodiesterase 5A encoded by the \textit{PDE5A} gene (Nelson et al. 2017) which leads to degradation of cGMP. However, there is currently no evidence for a beneficial effect of PDE5A inhibition in atherosclerosis.

5.4 Vascular Phenotypes

Several genes identified by GWAS have been linked to vascular phenotypes including the regulation of vascular tone and vascular remodeling.

Vascular Tone and Blood Pressure Hypertension is a known risk factor for CAD (Yusuf et al. 2004). Some of the CAD risk genes also display genome-wide association with blood pressure. In particular, \textit{NOS3}, encoding endothelial NO synthase (eNOS), and \textit{GUCY1A3} (see above) have an established role also in smooth muscle cells leading to vasodilatation after production of cGMP (Moro et al. 1996). Both have been identified as blood pressure genes (International Consortium for Blood Pressure Genome-Wide Association Studies et al. 2011; Salvi et al. 2012). In line, a genetic risk score for \textit{NOS3} and \textit{GUCY1A3} was associated with increased CAD risk. However, the effect could only in part be explained by effects on blood pressure (Emdin et al. 2018). Further genes associated with both CAD and blood pressure
include \textit{SH2B3}, \textit{CYP17A1}, \textit{FURIN}, \textit{AGT}, and \textit{ARHGAP42}. Profound knowledge about the underlying mechanisms is still lacking. However, a genetic risk score for hypertension was strongly associated with CAD/MI and vice versa highlighting the importance of this risk factor which also has a strong heritability (Ntalla et al. 2019).

\textbf{Vascular Remodeling} A large number of genes have been linked to vascular remodeling (for an overview see Erdmann et al. (2018)). One example is the \textit{REST} gene which has been identified as a CAD risk gene in 2017 (Nelson et al. 2017). \textit{REST} encodes the RE-1 silencing transcription factor (REST) which has been mainly studied in neuronal diseases as Huntington disease (Zuccato et al. 2003) or seizures (McClelland et al. 2014). However, there is also evidence for a role in cardiac development where REST led to increased proliferation (Zhang et al. 2017). Additionally, REST has been described to inhibit microRNA-21 and to inhibit proliferation in vascular smooth muscle cells. As a consequence, REST might influence the formation of vulnerable atherosclerotic plaques (Jin et al. 2018). As it acts as a transcriptional regulator, several downstream transcripts might play important pathophysiological roles and represent novel targets. Another novel target is a disintegrin and metalloproteinase with thrombospondin motifs 7 (ADAMTS-7) which has been identified as a CAD risk gene (\textit{ADAMTS7}) in 2011 (Reilly et al. 2011; Schunkert et al. 2011; Coronary Artery Disease C4D Genetics Consortium 2011a). It has been shown that \textit{Adams7} deficiency leads to reduced neointima formation after vascular injury (Bauer et al. 2015; Kessler et al. 2015b) as well as reduced atherosclerotic plaque formation under proatherogenic conditions (Bauer et al. 2015). Whereas the influence on vascular remodeling is influenced by ADAMTS-7-dependent degradation of cartilage oligomeric matrix protein (COMP) (Wang et al. 2009) and thrombospondin-1 (TSP-1) (Kessler et al. 2015b) with effects on vascular smooth muscle cells and endothelial cells, respectively, the mechanism underlying reduced atherosclerotic plaque formation in mice lacking \textit{Adams7} remains unknown so far. Of note, the \textit{ADAMTS7} locus is the only locus that has been identified to exert a gene-environment interaction with smoking. In smokers, the protective effect of the \textit{ADAMTS7} non-risk allele was outweighed in smokers, presumably via upregulation of \textit{ADAMTS7} expression secondary to exposure to tobacco ingredients (Saleheen et al. 2017).

\textbf{5.5 Further Directions}

Other CAD risk genes have been clustered into similarly interesting pathways which could in principle be targets of therapeutic interventions. Genes have, for example, also been annotated to \textit{transcriptional gene regulation, mitosis and proliferation, or neovascularization and angiogenesis} (Lемпиäinen et al. 2018; Zeng et al. 2019b). The majority of variants and genes has nevertheless not yet been classified to such pathways (Erdmann et al. 2018). Also, the role of the first and strongest risk locus chromosome 9p21 is still not fully understood. Whereas studies initially focused on the role of the cyclin-dependent kinase inhibitors 2A/2B (CDKN2A/B) (Harismendy
et al. 2011), the circular form of the non-coding RNA ANRIL, which is also located at the locus (Pasmant et al. 2011), was found to have an atheroprotective role through balanced regulation of vascular cells. In contrast, the linear form which is increased in carriers of the risk allele increases atherosclerosis risk (Holdt et al. 2016).

6 Risk Scores and Risk Prediction

Apart from identifying novel pharmacological targets, GWAS raised hope to identify patients at risk early on to improve prevention of CAD. Whereas initial studies including some of the identified variants only led to modest success in this regard (Hughes et al. 2012; for an overview see Kessler and Schunkert (2012)), recent studies using polygenic risk scores changed the scenario. A polygenic risk score for CSD including more than six millions of variants was able to identify individuals with a substantially elevated CAD risk. Strikingly, the score identified 20 times more individuals than familial hypercholesterolemia patients, while the carriers of a high genetic risk score were at even higher CAD risk (Khera et al. 2018). Even in a scenario in which high polygenic risk score and the presence of familial hypercholesterolemia lead to a same increase in CAD risk, the prevalence of a high polygenic risk score was ten times higher than that of familial hypercholesterolemia (Khera et al. 2019) illustrating the potential of including such scores in prevention programs.

Another field in which polygenic risk scores can be used is to investigate associations with other phenotypes. In particular, as discussed above it has been shown that CAD/MI and other cardiovascular phenotypes, e.g., peripheral arterial disease, stroke, or abdominal aneurysm, share genetic predisposition. In contrast, risk of migraine was reduced with increased genetic CAD/MI risk (Ntalla et al. 2019). Risk scores were also able to dissect an interrelationship between educational attainment, which is regarded as a determinant of lifestyle factors, and CAD/MI risk. Here, a genetic risk score including variants which are known to be associated with educational attainment was also associated with CAD risk. As the signal was lost after adjusting for body mass index and smoking, it can be hypothesized that a genetic predisposition to educational attainment might influence a healthier lifestyle and, subsequently, reduce CAD/MI risk (Zeng et al. 2019a).

Furthermore, there is hope that knowledge of particular genetic risk factors can be used to design individualized treatment strategies. GUCY1A3 as an example has been discussed above. Here, knowledge of genotype could inform aspirin therapy in the setting of primary prevention (Hall et al. 2019) and ischemic risk in CAD patients after PCI (Kessler et al. 2019). Genetic risk scores have also been able to identify individuals who could have a larger benefit from statin treatment (Mega et al. 2015; Natarajan et al. 2017). In the future, polygenic risk scores might therefore also be used in the design of clinical trials. A recent post hoc study of the ODYSSEY trial which investigated the benefit from the PCSK9 inhibitor alirocumab in CAD (Schwartz et al. 2018) revealed that individuals with a higher polygenic risk score particularly benefited from treatment (Damask et al. 2020). Whereas this clearly
indicated that polygenic risk scores might provide an excellent tool for risk stratification, a prospective benefit in the design of clinical trials needs to be demonstrated.

7 Summary

Genomic studies led to the identification of a large and still growing number of genes which play a role in the pathophysiology of CAD/MI. While only a few have been functionally investigated so far, novel therapeutic strategies have been developed in, e.g., LDL-cholesterol metabolism, and further promising targets might be identified. In addition, knowledge of genetic risk factors might facilitate prevention of the disease through early identification of individuals at risk and therapy via individualized treatment strategies.

References

1000 Genomes Project Consortium, Abecasis GR, Auton A et al (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491:56–65. https://doi.org/10.1038/nature11632

1000 Genomes Project Consortium, Auton A, Brooks LD et al (2015) A global reference for human genetic variation. Nature 526:68–74. https://doi.org/10.1038/nature15393

Abifadel M, Varret M, Rabès J-P et al (2003) Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 34:154–156. https://doi.org/10.1038/ng1161

Ahluwalia A, Foster P, Scotland RS et al (2004) Antiinflammatory activity of soluble guanylate cyclase: cGMP-dependent down-regulation of P-selectin expression and leukocyte recruitment. Proc Natl Acad Sci U S A 101:1386–1391. https://doi.org/10.1073/pnas.0304264101

Ahmad Z, Banerjee P, Hamon S et al (2019) Inhibition of Angiopoietin-Like Protein 3 with a Monoclonal antibody reduces triglycerides in hypertriglyceridemia. Circulation 140:470–486. https://doi.org/10.1161/CIRCULATIONAHA.118.039107

Barrett JC, Clayton DG, Concannon P et al (2009) Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet 41:703–707. https://doi.org/10.1038/ng.381

Bauer RC, Tohyama J, Cui J et al (2015) Knockout of Adamts7, a novel coronary artery disease locus in humans, reduces atherosclerosis in mice. Circulation 131:1202–1213. https://doi.org/10.1161/CIRCULATIONAHA.114.012669

Braenne I, Willenborg C, Tragante V et al (2017) A genomic exploration identifies mechanisms that may explain adverse cardiovascular effects of COX-2 inhibitors. Sci Rep 7:10252. https://doi.org/10.1038/s41598-017-10928-4

Brown MS, Goldstein JL (1986) A receptor-mediated pathway for cholesterol homeostasis. Science 232:34–47

C Reactive Protein Coronary Heart Disease Genetics Collaboration (CCGC), Wensley F, Gao P et al (2011) Association between C reactive protein and coronary heart disease: mendelian randomisation analysis based on individual participant data. BMJ 342:d548. https://doi.org/10.1136/bmj.d548

Cameron J, Holla OL, Ranheim T et al (2006) Effect of mutations in the PCSK9 gene on the cell surface LDL receptors. Hum Mol Genet 15:1551–1558. https://doi.org/10.1093/hmg/ddl077

Cannon CP, Blazing MA, Giugliano RP et al (2015) Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med 372:2387–2397. https://doi.org/10.1056/NEJMoa1410489
CARDIoGRAMplusC4D Consortium, Deloukas P, Kanoni S et al (2013) Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet 45:25–33. https://doi.org/10.1038/ng.2480

Cohen JC, Boerwinkle E, Mosley TH, Hobbs HH (2006) Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med 354:1264–1272. https://doi.org/10.1056/NEJMoa054013

Coronary Artery Disease C4D Genetics Consortium (2011a) A genome-wide association study in Europeans and South Asians identifies five new loci for coronary artery disease. Nat Genet 43:339–344. https://doi.org/10.1038/ng.782

Coronary Artery Disease C4D Genetics Consortium (2011b) A genome-wide association study in Europeans and South Asians identifies five new loci for coronary artery disease. Nat Genet 43:339–344. https://doi.org/10.1038/ng.782

Damask A, Steg PG, Schwartz GG et al (2020) Patients with high genome-wide polygenic risk scores for coronary artery disease may receive greater clinical benefit from alirocumab treatment in the ODYSSEY OUTCOMES Trial. Circulation 141:624–636. https://doi.org/10.1161/CIRCULATIONAHA.119.044434

Danesh J, Wheeler JG, Hirschfield GM et al (2004) C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N Engl J Med 350:1387–1397. https://doi.org/10.1056/NEJMoa032804

Dichgans M, Malik R, König IR et al (2014) Shared genetic susceptibility to ischemic stroke and coronary artery disease: a genome-wide analysis of common variants. Stroke 45:24–36. https://doi.org/10.1161/STROKEAHA.113.002707

Dichgans M, Pult SL, Rosand J (2019) Stroke genetics: discovery, biology, and clinical applications. Lancet Neurol 18:587–599. https://doi.org/10.1016/S1474-4223(19)30043-2

Do R, Stitzel NO, Won H-H et al (2015) Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction. Nature 518:102–106. https://doi.org/10.1038/nature13917

Döring Y, Pawlig L, Weber C, Noels H (2014) The CXCL12/CXCR4 chemokine ligand/receptor axis in cardiovascular disease. Front Physiol 5:212. https://doi.org/10.3389/fphys.2014.00212

Döring Y, Noels H, van der Vorst EPC et al (2017) Vascular CXCR4 limits atherosclerosis by maintaining arterial integrity: evidence from mouse and human studies. Circulation 136:388–403. https://doi.org/10.1161/CIRCULATIONAHA.117.027646

Döring Y, van der Vorst EPC, Duchene J et al (2019) CXCL12 derived from endothelial cells promotes atherosclerosis to drive coronary artery disease. Circulation 139:1338–1340. https://doi.org/10.1161/CIRCULATIONAHA.118.037953

Emdin CA, Khera AV, Klarin D et al (2018) Phenotypic consequences of a genetic predisposition to enhanced nitric oxide signaling. Circulation 137:222–232. https://doi.org/10.1161/CIRCULATIONAHA.117.028021

Erdmann J, Grosshennig A, Braun PS et al (2009) New susceptibility locus for coronary artery disease on chromosome 3q22.3. Nat Genet 41:280–282. https://doi.org/10.1038/ng.307

Erdmann J, Willenborg C, Nahrstaedt J et al (2011) Genome-wide association study identifies a new locus for coronary artery disease on chromosome 10p11.23. Eur Heart J 32:158–168. https://doi.org/10.1093/eurheartj/ehq405

Erdmann J, Stark K, Esslinger UB et al (2013) Dysfunctional nitric oxide signalling increases risk of myocardial infarction. Nature 504:432–436. https://doi.org/10.1038/nature12722

Erdmann J, Kessler T, Munoz Venegas L, Schunkert H (2018) A decade of genome-wide association studies for coronary artery disease: the challenges ahead. Cardiovasc Res 114:1241–1257. https://doi.org/10.1093/cvr/cvy084

Flister MJ, Hoffman MJ, Lemke A et al (2015) SH2B3 is a genetic determinant of cardiac inflammation and fibrosis. Circ Cardiovasc Genet 8:294–304. https://doi.org/10.1161/CIRCGENETICS.114.000527
Gaudet D, Alexander VJ, Baker BF et al (2015) Antisense inhibition of apolipoprotein C-III in patients with hypertriglyceridemia. N Engl J Med 373:438–447. https://doi.org/10.1056/NEJMoA1400283

Gawaz M, Langer H, May AE (2005) Platelets in inflammation and atherogenesis. J Clin Invest 115:3378–3384. https://doi.org/10.1172/JC127196

Ghofrani H-A, D’Armini AM, Grimminger F et al (2013a) Riociguat for the treatment of chronic thromboembolic pulmonary hypertension. N Engl J Med 369:319–329. https://doi.org/10.1056/NEJMoA1209657

Ghofrani H-A, Galié N, Grimminger F et al (2013b) Riociguat for the treatment of pulmonary arterial hypertension. N Engl J Med 369:330–340. https://doi.org/10.1056/NEJMoA1209655

Graham MJ, Lee RG, Bell TA et al (2013) Antisense oligonucleotide inhibition of apolipoprotein C-III reduces plasma triglycerides in rodents, nonhuman primates, and humans. Circ Res 112:1479–1490. https://doi.org/10.1161/CIRCRESAHA.111.300367

Gudbjartsson DF, Bjornsdottir US, Halapi E et al (2009) Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction. Nat Genet 41:342–347. https://doi.org/10.1038/ng.323

Hall KT, Kessler T, Buring JE et al (2019) Genetic variation at the coronary artery disease risk locus GUCY1A3 modifies cardiovascular disease prevention effects of aspirin. Eur Heart J 40:3385–3392. https://doi.org/10.1093/eurheartj/ehz384

Harismendy O, Notani D, Song X et al (2011) 9p21 DNA variants associated with coronary artery disease impair interferon-γ signalling response. Nature 470:264–268. https://doi.org/10.1038/nature09753

Helgadottir A, Thorleifsson G, Manolescu A et al (2007) A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science 316:1491–1493. https://doi.org/10.1126/science.1142842

Holdt LM, Beutner F, Scholz M et al (2010) ANRIL expression is associated with atherosclerosis risk at chromosome 9p21. Arterioscler Thromb Vasc Biol 30:620–627. https://doi.org/10.1161/ATVBAHA.109.196832

Holdt LM, Hoffmann S, Sass K et al (2013) ALU elements in ANRIL non-coding RNA at chromosome 9p21 modulate atherogenic cell functions through trans-regulation of gene networks. PLoS Genet 9:e1003588. https://doi.org/10.1371/journal.pgen.1003588

Holdt LM, Stahringer A, Sass K et al (2016) Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun 7:12429. https://doi.org/10.1038/ncomms12429

Howson JMM, Zhao W, Barnes DR et al (2017) Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms. Nat Genet 385:117–119. https://doi.org/10.1038/ng.3874

Hughes MF, Saarela O, Stritzke J et al (2012) Genetic markers enhance coronary risk prediction in men: the MORGAM prospective cohorts. PLoS One 7:e40922

Hunt KA, Zhemakova A, Turner G et al (2008) Newly identified genetic risk variants for celiac disease related to the immune response. Nat Genet 40:395–402. https://doi.org/10.1038/ng.102

IBC 50K CAD Consortium (2011) Large-scale gene-centric analysis identifies novel variants for coronary artery disease. PLoS Genet 7:e1002260. https://doi.org/10.1371/journal.pgen.1002260

Interleukin-6 Receptor Mendelian Randomisation Analysis (IL6R MR) Consortium, Swerdlow DI, Holmes MV et al (2012) The interleukin-6 receptor as a target for prevention of coronary heart disease: a mendelian randomisation analysis. 379:1214–1224. https://doi.org/10.1016/S0140-6736(12)60110-X

International Consortium for Blood Pressure Genome-Wide Association Studies, Ehret GB, Munroe PB et al (2011) Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478:103–109. https://doi.org/10.1038/nature10405

Jansen H, Samani NJ, Schunkert H (2014) Mendelian randomization studies in coronary artery disease. Eur Heart J 35:1917–1924. https://doi.org/10.1093/eurheartj/ehu208
Jin H, Li DY, Chernogubova E et al (2018) Local delivery of miR-21 stabilizes fibrous caps in vulnerable atherosclerotic lesions. Mol Ther 26:1040–1055. https://doi.org/10.1016/j.ymthe.2018.01.011

Kathiresan S, Melander O, Anevski D et al (2008) Polymorphisms associated with cholesterol and risk of cardiovascular events. N Engl J Med 358:1240–1249. https://doi.org/10.1056/NEJMoa0706728

Kessler T, Schunkert H (2012) Clinical validation of genetic markers for improved risk estimation. Eur J Prev Cardiol 19:25–32. https://doi.org/10.1177/2047487312448993

Kessler T, Erdmann J, Dichgans M, Schunkert H (2015a) Shared genetic aetiology of coronary artery disease and atherosclerotic stroke-2015. Curr Atheroscler Rep 17:498. https://doi.org/10.1007/s11883-015-0498-5

Kessler T, Zhang L, Liu Z et al (2015b) ADAMTS-7 inhibits re-endothelialization of injured arteries and promotes vascular remodeling through cleavage of Thrombospondin-1. Circulation 131:1191–1201. https://doi.org/10.1161/CIRCULATIONAHA.114.014072

Kessler T, Vilne B, Schunkert H (2016) The impact of genome-wide association studies on the pathophysiology and therapy of cardiovascular disease. EMBO Mol Med 8:688–701. https://doi.org/10.15252/emmm.201506174

Kharra AV, Kathiresan S (2017a) Genetics of coronary artery disease: discovery, biology and clinical translation. Nat Rev Genet 18:331–344. https://doi.org/10.1038/nrg.2016.160

Kharra AV, Kathiresan S (2017b) Genetics of coronary artery disease: discovery, biology and clinical translation. Nat Rev Genet 18:1–14. https://doi.org/10.1038/nrg.2016.160

Khera AV, Won H-H, Peloso GM et al (2017) Association of rare and common variation in the lipoprotein lipase gene with coronary artery disease. JAMA 317:937–946. https://doi.org/10.1001/jama.2017.0972

Khera AV, Chaffin M, Aragam KG et al (2018) Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat Genet 50:1219–1224. https://doi.org/10.1038/s41588-018-0183-z

Khera AV, Chaffin M, Zekavat SM et al (2019) Whole-genome sequencing to characterize monogenic and polygenic contributions in patients hospitalized with early-onset myocardial infarction. Circulation 139:1593–1602. https://doi.org/10.1161/CIRCULATIONAHA.118.035658

Klarin D, Zhu QM, Emdin CA et al (2017) Genetic analysis in UK Biobank links insulin resistance and transendothelial migration pathways to coronary artery disease. Nat Genet 50:1219–1224. https://doi.org/10.1038/s41588-018-0183-z

Klarin D, Damrauer SM, Cho K et al (2018) Genetics of blood lipids among ~300,000 multi-ethnic participants of the Million Veteran Program. Nat Genet 50:1514–1523

Koenig W, Sund M, Fröhlich M et al (1999) C-Reactive protein, a sensitive marker of inflammation, predicts future risk of coronary heart disease in initially healthy middle-aged men: results from the MONICA (Monitoring Trends and Determinants in Cardiovascular Disease) Augsburg Cohort Study, 1984 to 1992. Circulation 99:237–242. https://doi.org/10.1161/01.cir.99.2.237

Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

Lange LA, Carlson CS, Hindorff LA et al (2006) Association of polymorphisms in the CRP gene with circulating C-reactive protein levels and cardiovascular events. JAMA 296:2703–2711. https://doi.org/10.1001/jama.296.22.2703

Leppärinne H, Brenne I, Michoel T et al (2018) Network analysis of coronary artery disease risk genes elucidates disease mechanisms and druggable targets. Sci Rep 8:3434
Levy D, Ehret GB, Rice K et al (2009) Genome-wide association study of blood pressure and hypertension. Nat Genet 41:677–687. https://doi.org/10.1038/ng.384

Libby P, Ridker PM, Hansson GK (2011) Progress and challenges in translating the biology of atherosclerosis. Nature 473:317–325. https://doi.org/10.1038/nature10146

Linsel-Nitschke P, Götz A, Erdmann J et al (2008) Lifelong reduction of LDL-cholesterol related to a common variant in the LDL-receptor gene decreases the risk of coronary artery disease—a Mendelian Randomisation study. PLoS One 3:e2986. https://doi.org/10.1371/journal.pone.0002986

Littlejohns TJ, Sudlow C, Allen NE, Collins R (2019) UK Biobank: opportunities for cardiovascular research. Eur Heart J 40:1158–1166. https://doi.org/10.1093/eurheartj/ehx254

Lusis AJ (2000) Atherosclerosis. Nature 407:233–241. https://doi.org/10.1038/35025203

McClelland S, Brennan GP, Dubé C et al (2014) The transcription factor NRSF contributes to epileptogenesis by selective repression of a subset of target genes. Elife 3:e01267. https://doi.org/10.7554/eLife.01267

McPherson R, Tybjaerg-Hansen A (2016) Genetics of coronary artery disease. Circ Res 118:564–578. https://doi.org/10.1161/CIRCRESAHA.115.306566

McPherson R, Pertsemidis A, Kavaslar N et al (2007) A common allele on chromosome 9 associated with coronary heart disease. Science 316:1488–1491. https://doi.org/10.1126/science.1142447

Mega JL, Stitziel NO, Smith JG et al (2015) Genetic risk, coronary heart disease events, and the clinical benefit of statin therapy: an analysis of primary and secondary prevention trials. Lancet 385:2264–2271. https://doi.org/10.1016/S0140-6736(14)61730-X

Mori T, Iwasaki Y, Seki Y et al (2014) Lnk/Sh2b3 controls the production and function of dendritic cells and regulates the induction of IFN-γ-producing T cells. J Immunol 193:1728–1736. https://doi.org/10.4049/jimmunol.1303243

Moro MA, Russel RJ, Cellek S et al (1996) cGMP mediates the vascular and platelet actions of nitric oxide: confirmation using an inhibitor of the soluble guanylyl cyclase. Proc Natl Acad Sci U S A 93:1480–1485

Musunuru K, Strong A, Frank-Kamenetsky M et al (2010) From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature 466:714–719. https://doi.org/10.1038/nature09266

Myocardial Infarction Genetics and CARDIoGRAM Exome Consortium Investigators, Stitziel NO, Stirrups KE et al (2016) Coding variation in ANGPTL4, LPL, and SVEP1 and the risk of coronary disease. N Engl J Med 374:1134–1144. https://doi.org/10.1056/NEJMoa1507652

Myocardial Infarction Genetics Consortium Investigators, Stitziel NO, Won H-H et al (2014) Inactivating mutations in NPC1L1 and protection from coronary heart disease. N Engl J Med 371:2072–2082. https://doi.org/10.1056/NEJMoa1405386

Myocardial Infarction Genetics Consortium, Voight BF, Purcell S et al (2009) Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genet 41:334–341. https://doi.org/10.1038/ng.327

Natarajan P, Young R, Stitziel NO et al (2017) Polygenic risk score identifies subgroup with higher burden of atherosclerosis and greater relative benefit from statin therapy in the primary prevention setting. Circulation 135:2091–2101. https://doi.org/10.1161/CIRCULATIONAHA.116.024436

Nelson CP, Goel A, Butterworth AS et al (2017) Association analyses based on false discovery rate implicate new loci for coronary artery disease. Nat Genet 49:1385–1391. https://doi.org/10.1038/ng.3913

Newton-Cheh C, Johnson T, Gateva V et al (2009) Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet 41:660–667. https://doi.org/10.1038/ng.361

Nikpay M, Goel A, Won H-H et al (2015) A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet 47:1121–1130. https://doi.org/10.1038/ng.3396
Nomura A, Won H-H, Khera AV et al (2017) Protein-truncating variants at the Cholesteryl Ester transfer protein gene and risk for coronary heart disease. Circ Res 121:81–88. https://doi.org/10.1161/CIRCRESAHA.117.311145

Ntalla I, Kanoni S, Zeng L et al (2019) Genetic risk score for coronary disease identifies predispositions to cardiovascular and noncardiovascular diseases. J Am Coll Cardiol 73:2932–2942

Pasmant E, Sabbagh A, Vidaud M, Bièche I (2011) ANRIL, a long, noncoding RNA, is an unexpected major hotspot in GWAS. FASEB J 25:444–448. https://doi.org/10.1002/febs.21003

Peloso GM, Nomura A, Khera AV et al (2019) Rare protein-truncating variants in APOB, lower low-density lipoprotein cholesterol, and protection against coronary heart disease. Circ Genom Precis Med 12:e002376. https://doi.org/10.1161/CIRCGEN.118.002376

Pepys MB, Hirschfeld GM, Tennent GA et al (2006) Targeting C-reactive protein for the treatment of cardiovascular disease. Nature 440:1217–1221. https://doi.org/10.1038/nature04672

Reich DE, Lander ES (2001) On the allelic spectrum of human disease. Trends Genet 17:502–510

Reilly MP, Li M, He J et al (2011) Identification of ADAMTS7 as a novel locus for coronary atherosclerosis and association of ABO with myocardial infarction in the presence of coronary atherosclerosis: two genome-wide association studies. Lancet 377:383–392. https://doi.org/10.1016/S0140-6736(10)61996-4

Ridker PM, Danielson E, Fonseca FAH et al (2008) Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med 359:2195–2207. https://doi.org/10.1056/NEJMoa0807646

Ridker PM, Everett BM, Thuren T et al (2017) Antiinflammatory therapy with Canakinumab for atherosclerotic disease. N Engl J Med 377:1119–1131. https://doi.org/10.1056/NEJMoa1707914

Sabatine MS, Giugliano RP, Wiviott SD et al (2015) Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med 372:1500–1509. https://doi.org/10.1056/NEJMoa1500858

Sabatine MS, Giugliano RP, Keech AC et al (2017) Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med 376:1713–1722. https://doi.org/10.1056/NEJMoa1615664

Sachidanandam R, Weissman D, Schmidt SC et al (2001) A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409:928–933. https://doi.org/10.1038/35057149

Saleheen D, Zhao W, Young R et al (2017) Loss of cardioprotective effects at the ADAMTS7 locus as a result of gene-smoking interactions. Circulation 135:2336–2353. https://doi.org/10.1161/CIRCULATIONAHA.116.020891

Salvi E, Kutalik Z, Glorioso N et al (2012) Genomewide association study using a high-density single nucleotide polymorphism array and case-control design identifies a novel essential hypertension susceptibility locus in the promoter region of endothelial NO synthase. Hypertension 59:248–255. https://doi.org/10.1161/HYPERTENSIONAHA.111.181990

Samani NJ, Erdmann J, Hall AS et al (2007) Genomewide association analysis of coronary artery disease. N Engl J Med 357:443–453. https://doi.org/10.1056/NEJMoa072366

Schunkert H, Samani NJ (2008) Elevated C-reactive protein in atherosclerosis--chicken or egg? N Engl J Med 359:1953–1955

Schunkert H, König IR, Kathiresan S et al (2011) Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet 43:333–338. https://doi.org/10.1038/ng.784

Schunkert H, Erdmann J, Samani SNJ (2019) CARDIoGRAM celebrates its 10th Anniversary. Eur Heart J 40:1664–1666. https://doi.org/10.1093/eurheartj/ehz347
Schwartz GG, Steg PG, Szarek M et al (2018) Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med 379:2097–2107. https://doi.org/10.1056/NEJMoai1801174
Segura-Puimedon M, Mergia E, Al-Hasani J et al (2016) Proatherosclerotic effect of the α1-subunit of soluble Guanylyl Cyclase by promoting smooth muscle phenotypic switching. Am J Pathol 186:2220–2231. https://doi.org/10.1016/j.ajpath.2016.04.010
Soranzo N, Spector TD, Mangino M et al (2009) A genome-wide meta-analysis identifies 22 loci associated with eight hematological parameters in the HaemGen consortium. Nat Genet 41:1182–1190. https://doi.org/10.1038/ng.467
Stasch J-P, Pacher P, Evgenev OV (2011) Soluble guanylate cyclase as an emerging therapeutic target in cardiopulmonary disease. Circulation 123:2263–2273. https://doi.org/10.1161/CIRCULATIONAHA.110.981738
Stitziel NO, Khera AV, Wang X et al (2017) ANGPTL3 deficiency and protection against coronary artery disease. J Am Coll Cardiol 69:2054–2063. https://doi.org/10.1016/j.jacc.2017.02.030
Swirski FK, Nahrendorf M (2013) Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science 339:161–166. https://doi.org/10.1126/science.1230719
Takizawa H, Nishimura S, Takayama N et al (2010) Lnk regulates integrin αIIbβ3 outside-in signaling in mouse platelets, leading to stabilization of thrombus development in vivo. J Clin Invest 120:179–190. https://doi.org/10.1172/JCI39503DS1
Teslovich TM, Musunuru K, Smith AV et al (2010) Biological, clinical and population relevance of 95 loci for lipid levels. Nature 466:707–713. https://doi.org/10.1038/nature09270
The TG and HDL Working Group of the Exome Sequencing Project, National Heart, Lung, and Blood Institute (2014) Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N Engl J Med 371:22–31. https://doi.org/10.1056/NEJMoa1307095
Tolleshaug H, Hobgood KK, Brown MS, Goldstein JL (1983) The LDL receptor locus in familial hypercholesterolemia: multiple mutations disrupt transport and processing of a membrane receptor. Cell 32:941–951
Tsou C-Y, Chen C-Y, Zhao J-F et al (2014) Activation of soluble guanylyl cyclase prevents foam cell formation and atherosclerosis. Acta Physiol (Oxf) 210:799–810. https://doi.org/10.1111/apha.12210
van der Harst P, Verweij N (2018) Identification of 64 novel genetic loci provides an expanded view on the genetic architecture of coronary artery disease. Circ Res 122:433–443. https://doi.org/10.1161/CIRCRESAHA.117.312086
Verweij N, Eppinga RN, Hagemeijer Y, van der Harst P (2017) Identification of 15 novel risk loci for coronary artery disease and genetic risk of recurrent events, atrial fibrillation and heart failure. Sci Rep 7:2761. https://doi.org/10.1038/s41598-017-03062-8
Wang L, Zheng J, Bai X et al (2009) ADAMTS-7 mediates vascular smooth muscle cell migration and neointima formation in balloon-injured rat arteries. Circ Res 104:688–698. https://doi.org/10.1161/CIRCRESAHA.108.188425
Wang W, Tang Y, Wang Y et al (2016) LNK/SH2B3 loss of function promotes atherosclerosis and thrombosis. Circ Res 119:e91–e103. https://doi.org/10.1161/CIRCRESAHA.116.308955
Webb TR, Erdmann J, Stirrup KS et al (2017) Systematic evaluation of pleiotropy identifies 6 further loci associated with coronary artery disease. J Am Coll Cardiol 69:823–836. https://doi.org/10.1016/j.jacc.2016.11.056
Wobst J, Ameln Von S, Wolf B et al (2016) Stimulators of the soluble guanylyl cyclase: promising functional insights from rare coding atherosclerosis-related GUCY1A3 variants. Basic Res Cardiol 111:51. https://doi.org/10.1007/s00395-016-0570-5

Wobst J, Schunkert H, Kessler T (2018) Genetic alterations in the NO-cGMP pathway and cardiovascular risk. Nitric Oxide 76:105–112. https://doi.org/10.1016/j.niox.2018.03.019

Yusuf S, Hawken S, Ounpuu S et al (2004) Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 364:937–952. https://doi.org/10.1016/S0140-6736(04)17018-9

Zacho J, Tybjaerg-Hansen A, Jensen JS et al (2008) Genetically elevated C-reactive protein and ischemic vascular disease. N Engl J Med 359:1897–1908. https://doi.org/10.1056/NEJMoa0707402

Zeng L, Ntalla I, Kessler T et al (2019a) Genetically modulated educational attainment and coronary disease risk. Eur Heart J 40:2413–2420

Zeng L, Talukdar HA, Koplev S et al (2019b) Contribution of gene regulatory networks to heritability of coronary artery disease. J Am Coll Cardiol 73:2946–2957

Zernecke A, Bot I, Djalali-Talab Y et al (2008) Protective role of CXC receptor 4/CXC ligand 12 unveils the importance of neutrophils in atherosclerosis. Circ Res 102:209–217. https://doi.org/10.1161/CIRCRESAHA.107.160697

Zhang D, Wang Y, Lu P et al (2017) REST regulates the cell cycle for cardiac development and regeneration. Nat Commun 8:1979. https://doi.org/10.1038/s41467-017-02210-y

Zuccato C, Tartari M, Crotti A et al (2003) Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nat Genet 35:76–83. https://doi.org/10.1038/ng1219