Multiplicative Zagreb indices of k-trees

Shaohui Wang*, Bing Wei

Department of Mathematics, The University of Mississippi, University, MS 38677, USA

Abstract

Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. The first generalized multiplicative Zagreb index of G is $\prod_{1,c}(G) = \prod_{v \in V(G)} d(v)^c$, for a real number $c > 0$, and the second multiplicative Zagreb index is $\prod_2(G) = \prod_{uv \in E(G)} d(u)d(v)$, where $d(u), d(v)$ are the degrees of the vertices of u, v. The multiplicative Zagreb indices have been the focus of considerable research in computational chemistry dating back to Narumi and Katayama in 1980s. In this paper, we generalize Narumi-Katayama index and the first multiplicative index, where $c = 1, 2$, respectively, and extend the results of Gutman to the generalized tree, the k-tree, where the results of Gutman are for $k = 1$. Additionally, we characterize the extremal graphs and determine the exact bounds of these indices of k-trees, which attain the lower and upper bounds.

Keywords: Multiplicative Zagreb indices, k-trees

1 Introduction

Throughout this paper $G = (V, E)$ is a connected finite simple undirected graph with vertex set $V = V(G)$ and edge set $E = E(G)$. Let $|G|$ or $|V|$ denote the cardinality of V. For $S \subseteq V(G)$ and $F \subseteq E(G)$, we use $G[S]$ for the subgraph of G induced by S, $G - S$ for the subgraph induced by $V(G) - S$ and $G - F$ for the subgraph of G obtained by deleting F. Let $w(G - S)$ be the number of components of $G - S$, and S be a cut set if $w(G - S) \geq 2$. For a vertex
In the 1980s, Narumi and Katayama [7] considered the product

\[NK = \prod_{v \in V(G)} d(v) \]

which is the "Narumi-Katayama index". And recently, Todeschini and Gutman et al [4, 10, 11] studied the first and second multiplicative Zagreb indices defined as follow:

\[
\begin{align*}
\Pi_1(G) & = \prod_{v \in V(G)} d(v)^2, \\
\Pi_2(G) & = \prod_{uv \in E(G)} d(u)d(v).
\end{align*}
\]

Obviously, the first multiplicative Zagreb index is just the square of the NK index. Gutman [4] in 2011 characterized the multiplicative Zagreb indices for trees and determined the unique trees that obtained maximum and minimum values for \(\Pi_1(G)\) and \(\Pi_2(G)\), respectively.

Theorem 1 (Gutman 2011) Let \(n \geq 5\) and \(T_n\) be any tree with \(n\) vertices, then

\[
\begin{align*}
(i) & \quad \Pi_1(S_n) \leq \Pi_1(T_n) \leq \Pi_1(P_n); \\
(ii) & \quad \Pi_2(P_n) \leq \Pi_2(T_n) \leq \Pi_2(S_n).
\end{align*}
\]

In this paper, we consider the first generalized multiplicative Zagreb index defined in (1) below and the second multiplicative Zagreb index: for any real number \(c > 0\),

\[
\begin{align*}
(1) & \quad \Pi_{1,c}(G) = \prod_{v \in V(G)} d(v)^c; \\
(2) & \quad \Pi_2(G) = \prod_{uv \in E(G)} d(u)d(v).
\end{align*}
\]

Eventually, for \(c = 1, 2\), (1) is just the NK index and the first multiplicative Zagreb, respectively. For (2), it is easy to see that \(\Pi_2(G) = \prod_{v \in V(G)} d(v)^{d(v)}\). Also we will find the bounds of the values of \(\Pi_{1,c}(G)\), \(\Pi_2(G)\) for \(k\)-trees, respectively, and determine the extremal graphs which attain the bounds. Our main results are as follows:

Theorem 2 Let \(T^k_n\) be a \(k\)-tree on \(n \geq k\) vertices, then

\[\Pi_{1,c}(S_{k,n-k}) \leq \Pi_{1,c}(T^k_n) \leq \Pi_{1,c}(P^k_n), \]

the left-side and the right-side equalities are reached if and only if \(T^k_n \cong S_{k,n-k}\) and \(T^k_n \cong P^k_n\), respectively.
Theorem 3 Let T_n^k be a k-tree on $n \geq k$ vertices, then

$$\Pi_2(P_n^k) \leq \Pi_2(T_n^k) \leq \Pi_2(S_{k,n-k}).$$

the left-side and the right-side equalities are reached if and only if $T_n^k \cong P_n^k$ and $T_n^k \cong S_{k,n-k}$, respectively.

2 Preliminary

It is commonly known that the class of k-trees is an important subclass of triangular graphs. Harry and Plamer [5] first introduced the 2-tree in 1968, which is showed to be maximal outerplanar graphs in [3, 6]. Beineke and Pippert [1] gave the definition of k-trees in 1969. Relating to k-trees, there are many interesting applications to the study of a computational complexity and the intersection between graph theory and chemistry [2, 9]. We will just give some notations and definitions below.

Notation 1. Let $[a, b]$ be the set of all the integers between a and b with $a \leq b$ including a, b, where a, b are integers. Also, let $(a, b) = [a, b] - \{a\}$ and $[a, b) = [a, b] - \{b\}$. In particular, $[a, b) = \phi$ for $a > b$.

Notation 2. For any integer p, if $p \geq 0$, we denote $x_{\max\{0,p\}} = x_p$; If $p < 0$, we say $x_{\max\{0,p\}}$ does not exist.

Definition 1. The k-tree, denoted by T_n^k, for positive integers n, k with $n \geq k$, is defined recursively as follows: The smallest k-tree is the k-clique K_k. If G is a k-tree with $n \geq k$ vertices and a new vertex v of degree k is added and joined to the vertices of a k-clique in G, then the obtained graph is a k-tree with $n + 1$ vertices.

Definition 2. The k-path, denoted by P_n^k, for positive integers n, k with $n \geq k$, is defined as follows: Starting with a k-clique $G[\{v_1, v_2, \ldots v_k\}]$. For $i \in [k + 1, n]$, the vertex v_i is adjacent to vertices $\{v_{i-1}, v_{i-2}, \ldots v_{i-k}\}$ only.

Definition 3. The k-star, denoted by $S_{k,n-k}$, for positive integers n, k with $n \geq k$, is defined as follows: Starting with a k-clique $G[\{v_1, v_2, \ldots v_k\}]$ and an independent set S with $|S| = n - k$. For $i \in [k + 1, n]$, the vertex v_i is adjacent to vertices $\{v_1, v_2, \ldots v_k\}$ only.

Definition 4. A vertex $v \in V(T_n^k)$ is called a k-simplicial vertex if v is a vertex of degree k whose neighbors form a k-clique of T_n^k. Let $S_1(T_n^k)$ be the set of all k-simplicial vertices of T_n^k, for $n \geq k + 2$, and set $S_1(K_k) = \phi, S_1(K_{k+1}) = \{v\}$, where v is any vertex of K_{k+1}.
$G = G_0, G_i = G_{i-1} - v_i$, where v_i is a k-simplicial vertex of G_{i-1}, then \{v_1, v_2…v_n\} is called a
simplicial elimination ordering of the n-vertex graph G.

Definition 5. If $w(G - S) \leq 2$ for any k-clique $G[S]$ of T^k_n, we say T^k_n is a hyper pendent
edge; If there exists a k-clique $G[S]$ with $w(G - S) \geq 3$, let C be a component of $T^k_n - S$ and
contain a unique vertex belonging to $S_1(G)$, then we say that $G[V(S)\cup V(C)]$ is a hyper pendent
edge of T^k_n, denoted by \mathcal{P}. In particular, a k-path is a hyper pendent edge.

Moreover, let $G[\{v_1, v_2…v_k\}]$ denote the initial k-clique, then just by the definition of k-trees,
one can get

Fact 1. For the k-star, the degree of vertex v_i can be characterized as follows: $d(v_i) = n-k$,
for $i \in [1, k]; d(v_i) = k$, for $i \in [k + 1, n]$.

Fact 2. For the k-path, the degree of vertex v_i can be characterized as follows:
(1) If $4 \leq n \leq 2k$, $d(v_i) = k + i - 1$, for $i \in [1, n - k - 1]; d(v_i) = n - 1$, for $i \in [n - k, k + 1];$
 $d(v_i) = k + n - i$, for $i \in [k + 2, n]$.
(2) If $n \geq 2k + 1$, $d(v_i) = k + i - 1$, for $i \in [1, k]; d(v_i) = 2k$, for $i \in [k + 1, n - k]; d(v_i) = k + n - i$,
 for $i \in [n - k + 1, n]$.

Easily verified through induction by using the above obseaverations, one can deduce the
first generalized multiplicative Zagreb indices and second multiplicative Zagreb indices of
the k-path and k-star as follows.

Fact 3. Let $S_{k,n-k}$ be a k-star on $n \geq k + 1$ vertices, then
(1) $\prod_{1,c}(S_{k,n-k}) = (n - k)^{ck}k^{(n-k)}$;
(2) $\prod_{2}(S_{k,n-k}) = (n - k)^{k(n-k)}k^{(n-k)}$.

Fact 4. Let P_n^k be a k-path on $n \geq k + 1$ vertices, then
(1.1) $\prod_{1,c}(P_n^k) = (n - 1)^c \prod_{i=k}^{n-2}i^{2c}$, if $n \in [k + 1, 2k]$;
(1.2) $\prod_{1,c}(P_n^k) = (2k)^{c(n-2k)} \prod_{i=k}^{2k-1}i^{2c}$, if $n \geq 2k + 1$;
(2.1) $\prod_{2}(P_n^k) = (n - 1)^{n-1} \prod_{i=k}^{n-2}i^{2i}$, if $n \in [k + 1, 2k]$;
(2.2) $\prod_{2}(P_n^k) = (2k)^{2k(n-2k)} \prod_{i=k}^{2k-1}i^{2i}$, if $n \geq 2k + 1$.

By considering the derivatives of the following functions, one can get

Fact 5. The function $f(x) = \frac{x}{x + m}$ is strictly increasing for $x \in [0, \infty)$, where m is a
positive integer.

Fact 6. The function $f(x) = \frac{x^x}{(x + m)^{x+m}}$ is strictly decreasing for $x \in [0, \infty)$, where m
is a positive integer.
3 Main proofs

Firstly, we give some lemmas that are critical in the proof of our main results.

Lemma 1 For any k-tree $G \not\cong S_{k,n-k}$, let $u \in S_2$, $N(u) \cap S_1 = \{v_1, v_2...v_s\}$, where $s \geq 1$ is an integer, then

(1) For any i with $1 \leq i \leq s$, there exists a vertex $v \in N(u) - \{v_1, v_2...v_s\}$ of degree at least k in $G[V(G) - \{v_1, v_2...v_s\}]$ such that $vv_i \notin E(G)$.

(2) There exists a k-tree G^* such that $\Pi_{1,c}(G^*) < \Pi_{1,c}(G)$ and $\Pi_{2}(G^*) > \Pi_{2}(G)$.

Proof. For (1), let $G' = G[V(G) - \{v_1, v_2...v_s\}]$ and $S = N(u) - \{v_1, v_2...v_s\}$, we obtain that $d_{G'}(u) = |S| = k$ and $G[S]$ is a k-clique by $u \in S_2$. Since $G \not\cong S_n^k$, $d_{G'}(v) \geq k$ for all $v \in S$. And by the facts that $N(v_i) \subseteq (N(u) - \{v_1, v_2...v_s\}) \cup \{u\}$ with $|N(v_i)| = k$ and $|(N(u) - \{v_1, v_2...v_s\}) \cup \{u\}| = k + 1$, we have for any $i \in [1, s]$, there exists a vertex $v \in S$ such that $vv_i \notin E(G)$.

For (2), choose v_1 and by (1) there exists a vertex $v \in N(u) - \{v_1, v_2...v_s\}$ with $d_{G'}(v) \geq k$ such that $vv_1 \notin E(G)$. If $d_{G'}(v) = k$, and by $uv \in E(G')$, we obtain G' is a $k + 1$-clique. Let $x \in S$ be the vertex such that $d(x) = \min_{v \in S}\{d(v)\}$, and let v_t be the vertex such that $v_t \notin E(G)$, $v_t y \notin E(G)$ for some $t \in [1, s]$ and $y \in S$, that is, $d(x) - 1 < d(y)$. Construct a new graph G^* such that $V(G^*) = V(G)$, and $E(G^*) = E(G) - \{v_t x\} + \{v_t y\}$. Denote $G_0 = G[V(G) - \{x, y\}]$, since $d(x) - 1 < d(y)$, and by the definition of $\Pi_{1,c}(G), \Pi_{2}(G)$ and Fact 5, Fact 6, we have

\[
\frac{\Pi_{1,c}(G)}{\Pi_{1,c}(G^*)} = \frac{[\Pi_{w \in V(G_0)} d(w)^c]d(y)^c d(x)^c}{[\Pi_{w \in V(G_0)} d(w)^c] [d(y) + 1]^c [d(x) - 1]^c} \frac{d(y)^c d(x)^c}{d(y)^c d(x)^c} = \frac{\frac{[d(y) + 1]^c [d(x) - 1]^c}{[d(x) - 1]^c}}{[d(x) - 1]^c} > 1.
\]

Also,
\[
\frac{\Pi_2(G)}{\Pi_2(G^*)} = \frac{[\prod_{w \in V(G_0)} d(w)^{d(w)}]d(y)^{d(y)}d(x)^{d(x)}}{[\prod_{w \in V(G_0)} d(w)^{d(w)}][d(y) + 1]^{d(y)+1}[d(x) - 1]^{d(x)-1}}
\]
\[
= \frac{[d(y) + 1]^{d(y)+1}[d(x) - 1]^{d(x)-1}}{d(y)^{d(y)}}
\]
\[
< 1.
\]

Thus, we find that the \(k\)-tree \(G^*\) satisfies \(\Pi_{1,c}(G^*) < \Pi_{1,c}(G)\) and \(\Pi_2(G^*) > \Pi_2(G)\), we are done.

If \(d_G(v) \geq k + 1\), reorder the subindices of \(\{v_1, v_2 \ldots v_s\}\) such that \(vv_i \notin E(G)\) with \(i \in [1, s_1]\), where \(s_1 \leq s\), and by the fact that \(G[N(u) - \{v_1, v_2 \ldots v_s\}]\) is a \(k\)-clique, we have \(d(u) = k + s\) and \(d(v) \geq k + 1 + s - s_1\), that is, \(d(v) \geq d(u) - s_1 + 1\). Construct a new graph \(G^*\) such that \(V(G^*) = V(G)\), and \(E(G^*) = E(G) - \{uv_i\} + \{vv_i\}\), for all \(i \in [1, s_1]\). Since \(G[N(u) - \{v_1, v_2 \ldots v_s\} + \{u\}]\) is a \(k + 1\)-clique, and for any \(i\), \(N(v_i) \subseteq N_{G - \{v_1, v_2 \ldots v_s\}}(u) \cup \{u\}\), then \(G^*\) is a \(k\)-tree. Denote \(G_0 = G[V(G) - \{u, v\}]\), since \(d(v) \geq d(u) - s_1 + 1\), and by the definition of \(\Pi_{1,c}(G)\), \(\Pi_2(G)\) and Fact 5, Fact 6, we have

\[
\frac{\Pi_{1,c}(G)}{\Pi_{1,c}(G^*)} = \frac{[\prod_{w \in V(G_0)} d(w)^c]d(v)^cd(u)^c}{[\prod_{w \in V(G_0)} d(w)^c][d(v) + s_1]^c[d(u) - s_1]^c}
\]
\[
= \frac{[d(v) + s_1]^c[d(u) - s_1]^c}{d(v)^c}
\]
\[
= \frac{[d(v) + s_1]^c}{d(u)^c}
\]
\[
> 1.
\]

Also,
$$\Pi_2(G) = \frac{\prod_{w\in V(G_0)} d(w)d(w)\prod_{v\in V(G_0)} d(v)v\prod_{u\in V(G_0)} d(u)u}{\prod_{w\in V(G_0)} d(w)d(w)\prod_{v\in V(G_0)} d(v)v\prod_{u\in V(G_0)} d(u)u}$$

$$= \frac{[d(v) + s_1][d(v) - s_1]}{d(d(v))d(d(u))}$$

$$< 1.$$

Hence, we find that the k-tree G^* satisfies $\Pi_1,c(G^*) < \Pi_1,c(G)$ and $\Pi_2(G^*) > \Pi_2(G)$, we are done.

Lemma 2 Let G be a k-tree, if either $\Pi_1,c(G)$ attains the maximal or $\Pi_2(G)$ attains the minimal, then every hyper pendent edge is a k-path.

Proof. Let $P = G[V(S) \cup V(C)]$ be a hyper pendent edge, where $G[S] = G[\{x_1, x_2, \ldots, x_k\}]$ is a cut k-clique and $V(C) = \{u_1, u_2, \ldots, u_p\}$ with p is a positive integer such that u_1 is the only vertex of P in $S_1(G)$ and for $i \in [1, p-1], u_i$ is the vertex added following by u_{i+1} through the process of Definition 1.

Fact 7. For any hyper pendent edge $P = G[V(S) \cup V(C)]$ as represented above, $\{u_1, u_2, \ldots, u_p\}$ is a simplicial elimination ordering of P.

Proof. By contradiction, assume that $\{u_1, u_2, \ldots, u_p\}$ is not a simplicial elimination ordering of P. Let u_t be the first vertex from u_1 to u_p such that $\{u_t, u_{t+1}\} \in E$ for $t \in [2, p-1]$, then $u_t u_{t+1} \notin E(G)$ and $\{u_t, u_{t+1}\}$ can not be in some k-cliques. And by Definition 1, there must be at least two vertices that belongs to S_1 in $V(C)$, a contradiction. □

By Fact 7, we know $\{u_1, u_2, \ldots, u_p\}$ is a simplicial elimination ordering of P. For $p \leq 2$, P is a k-path by Definition 2; For $p \geq 3$, if P is a k-path, then we are done. Otherwise, let u_s be the first vertex from u_p to u_1 such that $G[V(S) \cup \{u_p, u_{p-1}, \ldots, u_{s+1}, u_s\}]$ is not a k-path. Since $G[V(S) \cup \{u_p, u_{p-1}, \ldots, u_{s+1}\}]$ is a k-path, for each $i \in [s+1, p]$, let $N_{G-[u_1, u_2, \ldots, u_{i-1}]}(u_i) = \{u_{i+1}, u_{i+2}, \ldots, u_{\min\{p, i+k\}}, x_1, x_2, \ldots, x_{\max\{0, k-p+i\}}\}$, and by Definition 2 and the symmetry of $G[S]$, we have $|N(u_s) \cap \{u_{s+1}, u_{s+2}, \ldots, u_{\min\{p, s+k\}}\}| = \min\{p-s-1, k-1\}$, where $1 \leq s \leq p - 1$.

For $p \leq k + s$, suppose that u_t is the vertex such that $u_t \notin N(u_s)$ with $s + 2 \leq t \leq p$, let $N_{G-[u_1, u_2, \ldots, u_{s-1}]}(u_s) = \{u_{s+1}, u_{s+2}, \ldots, u_{t-1}, u_{t+1}, u_{t+2}, \ldots, u_p, x_1, x_2, \ldots, x_{k-p+s+1}\}$, and let $|N(x_{k-p+s+1}) \cap \{u_1, u_2, \ldots, u_{s-1}\}| = m$ for $m \in [0, s-1]$. By Definition 2, we have $u_t u_i \notin E(G)$ for $i \in [1, s]$, and then $d(u_t) = k + t - s - 1$ and $d(x_{k-p+s+1}) > k + p - s + m - 1$. Now construct a new graph G^* such that $V(G^*) = V(G), E(G^*) = E(G) - \{u_s x_{k-p+s+1}, u_s x_{k-p+s+1}\} + \{u_s u_t, u_t u_t\}$
with \(i \in [0, m] \), then \(G^* \) is a \(k \)-tree. Since \(t \leq p \), we have \(d(x_{k-p+s+1}) > d(u_l) + m + 1 \), and by the definition of \(\Pi_{i,c}(G) \), \(\Pi_2(G) \) and Fact 5, Fact 6, we get

\[
\frac{\Pi_{i,c}(G)}{\Pi_{i,c}(G^*)} = \frac{d(u_t)^c d(x_{k-p+s+1})^c}{[d(u_t) + m + 1]^c[d(x_{k-p+s+1}) - m - 1]^c} = \frac{[d(u_t) + m + 1]^c}{d(x_{k-p+s+1})} < 1, \]

\[
\frac{\Pi_2(G)}{\Pi_2(G^*)} = \frac{d(u_t)^c d(x_{k-p+s+1})^c}{[d(u_t) + m + 1]^c[d(x_{k-p+s+1}) - m - 1]^c} = \frac{[d(u_t) + m + 1]^c}{d(x_{k-p+s+1})} > 1. \]

Thus, \(\Pi_{i,c}(G^*) > \Pi_{i,c}(G) \) and \(\Pi_2(G^*) < \Pi_2(G) \), a contradiction.

For \(p \geq k + s + 1 \), let \(|N(u_{k+s+1}) \cap \{u_1, u_2 \ldots u_{s+1}\}| = m \) for \(m \in [0, s - 1] \). Since \(G[V(S) \cup \{u_p, u_{p-1} \ldots u_{s+1}\}] \) is a \(k \)-path, we have \(G[\{u_{s+1}, u_{s+2} \ldots u_{s+k+1}\}] \) is a \(k + 1 \)-clique. Suppose that \(u_t \) is the vertex such that \(u_t \notin N(u_s) \) with \(s + 2 \leq t \leq s + k \), let \(N_{G-\{u_1, u_2 \ldots u_{s+1}\}}(u_s) = \{u_{s+1}, u_{s+2} \ldots u_{t-1}, u_{t+1} \ldots u_{s+k+1}\} \). Now we construct a new graph \(G^* \) such that \(V(G^*) = V(G) \), \(E(G^*) = E(G) - \{u_s u_{k+s+1}, u_i u_{k+s+1}\} + \{u_i u_t, u_t u_t\} \) for \(i \in [0, m] \), then \(G^* \) is a \(k \)-tree and \(d(u_{k+s+1}) = 2k + m, d(u_t) = k + t - s - 1 \). Since \(t \leq s + k \), we have \(d(u_{k+s+1}) > d(u_t) + m + 1 \), and by the definition of \(\Pi_{i,c}(G) \), \(\Pi_2(G) \) and Fact 5, Fact 6, we get

\[
\frac{\Pi_{i,c}(G)}{\Pi_{i,c}(G^*)} = \frac{d(u_t)^c d(u_{k+s+1})^c}{[d(u_t) + m + 1]^c[d(u_{k+s+1}) - m - 1]^c} = \frac{[d(u_t) + m + 1]^c}{d(u_{k+s+1})} < 1, \]

8
\[\frac{\Pi_2(G)}{\Pi_2(G^*)} = \frac{d(u_t)d(u_i)d(u_{k+s+1})}{d(u_t)d(u_i)} \times \frac{d(u_{k+s+1})}{d(u_{k+s+1})} \]

Thus, \(\Pi_{1,c}(G^*) > \Pi_{1,c}(G) \) and \(\Pi_2(G^*) < \Pi_2(G) \), a contradiction. Hence, for any \(s \in [1,p] \)
\[N_{G-\{u_1,u_2...u_{s-1}\}}(u_s) = \{u_{s+1}, u_{s+2}...u_{\min\{p,k+s\}}, x_1, x_2...x_{\max\{0,k-p+s\}}\} \], that is, \(\mathcal{P} \) is a \(k \)-tree. \(\square \)

Lemma 3 Let \(G \) be a \(k \)-tree, if either \(\Pi_{1,c}(G) \) attains the maximal or \(\Pi_2(G) \) attains the minimal, then \(|S_1(G)| = 2 \).

Proof. We know that \(|S_1(G)| \geq 2 \) for \(n \geq k + 2 \), and by Lemma 2, every hyperpendent edge is a \(k \)-path for \(\Pi_{1,c}(G) \) to attain the maximal or \(\Pi_2(G) \) to attain the minimal. If \(|S_1(G)| = 2 \), we are done; Suppose that \(|S_1(G)| \geq 3 \), it suffices to prove that there exists a graph \(G' \) such that \(|S_1(G')| = |S_1(G)| - 1 \) with \(\Pi_{1,c}(G') > \Pi_{1,c}(G) \) and \(\Pi_2(G') < \Pi_2(G) \).

Fact 8. For any \(k \)-tree \(G \) satisfying the conditions of Lemma 3, if \(|S_1(G)| \geq 3 \), then there exists a \(k \)-clique \(G[S] \) such that \(w(G - S) \geq 3 \).

Proof. We will proceed by induction on \(n = |G| \). For \(n = k + 3 \), it’s trivial; For \(n \geq k + 4 \), assume that the fact is true for the \(k \)-tree \(G \) with \(n < k + p \), and consider \(n = k + p \). If \(|S_1(G)| \geq 4 \), choose any vertex \(v \in S_1(G) \), or \(|S_1(G)| = 3 \) and \(|S_2(G)| \geq 2 \), choose the vertex \(v \in S_1(G) \) such that \(N(w) \cap S_1(G) = \{v\} \) for some \(w \in S_2(G) \), then construct a new graph \(G' \) such that \(G' = G - v \). Since \(S_2(G) \) is an dependent set and \(G'[N(v)] \) is a \(k \)-clique for any \(v \in S_1(G) \), we obtain \(|S_1(G')| \geq 3 \). By the induction hypothesis, there exists a \(k \)-clique \(G[S] \) in \(G' \) such that \(w(G' - S) \geq 3 \). Thus, by adding back \(v \), \(G[S] \) is still a \(k \)-clique in \(G \) and \(w(G - S) \geq 3 \), we are done. Next, we only consider \(|S_1(G)| = 3 \) and \(|S_2(G)| = 1 \).

Let \(S_1(G) = \{v_1, v_2, v_3\} \) and \(G_0 = G - \{v_1, v_2, v_3\} \), by Definition 4, we have \(G_0 \) is a \(k \)-clique, denoted \(G'[\{x_1, x_2...x_{k+1}\}] \). If there exists \(N(v_i) = N(v_j) \), for some \(i, j \in [1,3] \) with \(i \neq j \), and take \(S = N(v_i) \), then \(w(G - S) \geq 3 \), we are done; If \(N(v_i) \neq N(v_j) \), for any \(i, j \in [1,3] \) with \(i \neq j \), then reorder the index of \(x_i \) such that \(N(v_1) = \{x_1, x_2...x_k\}, N(v_2) = \{x_2, x_3...x_{k+1}\} \) and \(N(v_3) = \{x_1, x_3...x_{k+1}\} \). Construct a new graph \(G^* \) such that \(V(G^*) = V(G), E(G^*) = E(G) - \{v_1x_1\} + \{v_1v_2\} \), then \(G^* \) is still a \(k \)-tree and \(d_G(x_1) = k + 2 \), \(d_{G^*}(x_1) = k + 1 \), \(d_G(v_1) = d_G(v_2) = k \) and \(d_{G^*}(v_2) = k + 1 \). By the definition of \(\Pi_{1,c}(G), \Pi_2(G) \) and Fact 6, we...
\[
\frac{\Pi_1(c)(G)}{\Pi_1(c)(G^*)} = \frac{d(v_2)^c d(x_1)^c}{[d(v_2) + 1]^c[d(x_1) - 1]^c} = \left[\frac{k(k+2)}{(k+1)^2}\right]^c < 1,
\]

\[
\frac{\Pi_2(G)}{\Pi_2(G^*)} = \frac{d(v_2)^{d(v_2)} d(x_1)^{d(x_1)}}{[d(v_2) + 1]^{d(v_2)+1}[d(x_1) - 1]^{d(x_1)-1}} = \left[\frac{(k+1)^{k+1}}{(k+2)^{k+2}}\right] > 1.
\]

Thus, we find a graph \(G^*\) with \(\Pi_1(c)(G^*) > \Pi_1(c)(G)\) and \(\Pi_2(G^*) < \Pi_2(G)\), a contradiction with that \(\Pi_1(c)(G)\) attains the maximal or \(\Pi_2(G)\) attains the minimal, we are done. \(\square\)

Choose a \(k\)-clique \(G[S]\) with \(w(G - S) \geq 3\) such that there are two components of \(G - S\): \(C_1, C_2\) with \(|C_1| = p, |C_2| = q\) and \(p + q\) being minimal, for \(p \geq q\). Let \(u_1 \in V(C_1), v_1 \in V(C_2)\) with \(\{u_1, v_1\} \subseteq S_1(G)\). Let \(N_{G-\{v_1,v_2,...,v_{i-1}\}}(v_i) = \{v_{i+1}, v_{i+2}...v_{\min\{k+1,q\}}, x_1, x_2...x_{\max\{0,k-q+i\}}\}, \)

\(N_{G-\{u_1,u_2,...,u_{j-1}\}}(u_j) = \{u_{j+1}, u_{j+2}...u_{\min\{k+1,p\}}, y_1, y_2...y_{\max\{0,k-p+i\}}\}\) for \(i \geq 1, j \geq 1,\) where \(\{v_1, v_2...v_q\}\) and \(\{u_1, u_2...u_p\}\) are simplicial elimination orderings of \(G[S \cup V(C_1)]\) and \(G[S \cup V(C_2)]\), respectively. We will prove Lemma 3 by induction on \(q\).

(1) If \(q = 1\), then \(d(v_1) = k\). Choose \(x_i \in N(v_1),\) let \(|N(x_i) \cap \{u_1, u_2...u_p\}| = m\) for \(m \in [1,k]\), we get \(d(x_i) > k + 1 + m\) by \(w(G - S) \geq 3\), and then \(d(x_i) > d(v_1) + m + 1\). Now construct a new graph \(G^*\) such that \(V(G^*) = V(G), E(G^*) = E(G) - \{u_i x_i\} + \{u_i v_1\}\) for \(i \in [1,m]\), then \(G^*\) is a \(k\)-tree and \(|C_1| + |C_2| = p\) with \(G[\{x_1, x_2...x_{t-1}, x_{t+1}...x_k, v_1\}]\) is a \(k\)-clique in \(G^*\). Since \(d(x_i) > d(v_1) + m + 1\), by the definition of \(\Pi_1(c)(G), \Pi_2(G)\) and Fact 5, Fact 6, we have

\[
\frac{\Pi_1(c)(G)}{\Pi_1(c)(G^*)} = \frac{d(v_1)^c d(x_t)^c}{[d(v_1) + m]^c[d(x_t) - m]^c} = \frac{\left[\frac{d(v_1) + m}{d(x_t)}\right]^c}{\left[\frac{d(v_1) + m}{d(x_t) - m}\right]^c} < 1.
\]
$$\frac{\Pi_2(G)}{\Pi_2(G^*)} = \frac{\frac{d(v_1)^d(x_1)d(x_t)}{[d(v_1) + m]^{d(v_1)/d(x_t) - m}}}{\frac{d(v_1)^d(x_t)}{d(x_t)^{d(x_t)}}}$$

$$= \frac{\frac{[d(v_1) + m]^{d(v_1)/d(x_t)} - m]}{[d(v_1) + m]^{d(v_1)/d(x_t) - m}}$$

$$> 1.$$

Then, $\Pi_{1,c}(G^*) > \Pi_{1,c}(G)$ and $\Pi_2(G^*) < \Pi_2(G)$. Thus, let $G' = G^*$, $|S_1(G')| = |S_1(G)| - 1$, $\Pi_{1,c}(G') > \Pi_{1,c}(G)$ and $\Pi_2(G') < \Pi_2(G)$, and we are done.

(2) Assume that $q = s$, there exists a k-tree G' such that $|S_1(G')| = |S_1(G)| - 1$, $\Pi_{1,c}(G') > \Pi_{1,c}(G)$, $\Pi_2(G') < \Pi_2(G)$ and we consider $q = s + 1$.

If $q \leq k$, we have $d(v_q) = k + q - 1$ by the fact that $G[S \cup V(C_2)]$ is a k-path. Choose $x_t \in N(v_1)$, we know $x_t \in N(v_i)$ for all $i \in [1, p]$ by $G[S \cup V(C_2)]$ is a k-path. Let $|N(x_t) \cap \{u_1, u_2...u_p\}| = m$ for $m \in [1, k]$, we have $d(x_t) > k + q + m$ by $w(G - S) \geq 3$, and then $d(x_t) > d(v_q) + m + 1$. Now construct a new graph G^* such that $V(G^*) = V(G), E(G^*) = E(G) - \{u_i x_t \} + \{u_i v_q\}$ for $i \in [1, m]$, then G^* is a k-tree and $|C_1| + |C_2| = p + q - 1$ with $G'\{x_1, x_2...x_{t-1}, x_{t+1}...x_k, v_q\}$ is a k-clique in G^*. Since $d(x_t) > d(v_q) + m + 1$, by the definition of $\Pi_{1,c}(G), \Pi_2(G)$ and Fact 5, Fact 6, we have

$$\frac{\Pi_{1,c}(G)}{\Pi_{1,c}(G^*)} = \frac{\frac{d(v_q)^c d(x_t)^c}{[d(v_q) + m]^c [d(x_t) - m]^c}}{\frac{d(v_q)^c}{d(x_t)^c}}$$

$$= \frac{\frac{[d(v_q) + m]^c - m}{[d(v_q) + m]^c - m}}{d(x_t)}$$

$$< 1,$$

$$\frac{\Pi_2(G)}{\Pi_2(G^*)} = \frac{\frac{d(v_q)^d(x_t)d(x_t)}{[d(v_q) + m]^{d(v_q)/d(x_t) - m}}}{\frac{d(v_q)^d(x_t)}{d(x_t)^{d(x_t)}}}$$

$$= \frac{\frac{[d(v_q) + m]^{d(v_q)/d(x_t)}}{[d(v_q) + m]^{d(v_q)/d(x_t) - m}}}{d(x_t)^{d(x_t)}}$$

$$> 1.$$

Then, $\Pi_{1,c}(G) < \Pi_{1,c}(G^*)$, $\Pi_2(G) > \Pi_2(G^*)$ and $q = s$ in G^*, then by the induction hypothesis, there exists a k-tree G' such that $|S_1(G')| = |S_1(G)| - 1$, $\Pi_{1,c}(G') > \Pi_{1,c}(G)$ and $\Pi_2(G') < \Pi_2(G)$, we are done.

If $q \geq k + 1$, we have $N(u_1) = \{u_2, u_3...u_{k+1}\}$, $N(v_1) = \{v_2, v_3...v_{k+1}\}$ by the facts that
$p \geq q$ and $G[S \cup V(C_1)]$, $G[S \cup V(C_2)]$ are k-paths. We construct a new graph G^* such that $V(G^*) = V(G)$, $E(G^*) = E(G) - \{v_i v_j\} + \{u_j v_1\}$ for $i \in [2, k + 1]$, $j \in [1, k]$. And by Fact 2 and the definition of $\prod_{1,c}(G), \prod_2(G)$, we obtain

\[
\frac{\prod_{1,c}(G)}{\prod_2(G)} = \frac{\prod_{i=2}^{k+1} d(v_i)\prod_{i=1}^{k} d(u_j)}{\prod_{i=2}^{k} [d(v_i) - 1]\prod_{i=1}^{k} [d(u_j) + 1]} = 1,
\]
\[
\frac{\prod_{1,c}(G^*)}{\prod_2(G^*)} = \frac{\prod_{i=2}^{k+1} d(v_i)\prod_{i=1}^{k} d(u_j)}{\prod_{i=2}^{k} [d(v_i) - 1]\prod_{i=1}^{k} [d(u_j) + 1]} = 1.
\]

Then, $\prod_{1,c}(G) = \prod_{1,c}(G^*)$, $\prod_2(G) = \prod_2(G^*)$ and $q = s$ in G^*, then by the induction hypothesis, there exists a k-tree G' such that $|S_1(G')| = |S_1(G)| - 1$, $\prod_{1,c}(G') > \prod_{1,c}(G)$ and $\prod_2(G') < \prod_2(G)$, we are done. \square

Now, we turn to prove the main results of the paper.

Proof of Theorem 2. For any k-tree T_n^k, if $|S_1(T_n^k)| = n - k$, then $T_n^k \cong S_{k,n-k}$, we are done. And if $|S_1(T_n^k)| \leq n - k - 1$, we can recursively use Lemma 1 to make $\prod_{1,c}(T_n^k)$ decreasing until $|S_1(T_n^k)| = n - k$. Thus, we have $T_n^k \cong S_{k,n-k}$ for $\prod_{1,c}(T_n^k)$ to arrive the minimal value.

By Lemma 2, if $\prod_{1,c}(T_n^k)$ get the maximal, then every hyper pendent edge is a k-path, and by Lemma 3, $|S_1(T_n^k)| = 2$, implying that $T_n^k \cong P_n^k$ for $\prod_{1,c}(T_n^k)$ to arrive the maximal value. \square

Proof of Theorem 3. For any k-tree T_n^k, if $|S_1(T_n^k)| = n - k$, then $T_n^k \cong S_{k,n-k}$, we are done. And if $|S_1(T_n^k)| \leq n - k - 1$, we can recursively use Lemma 1 to make $\prod_2(T_n^k)$ increasing until $|S_1(T_n^k)| = n - k$, then we have $T_n^k \cong S_{k,n-k}$ for $\prod_2(T_n^k)$ to arrive the maximal value.

By Lemma 2, if $\prod_2(T_n^k)$ get the minimal, every hyper pendent edge is a k-path, and by Lemma 3, $|S_1(T_n^k)| = 2$. Then this k-tree is a k-path, that is, $T_n^k \cong P_n^k$ for $\prod_2(T_n^k)$ to arrive the minimal value. \square

References

[1] L. W. Beineke, R. E. Pippert, The number labeled k-dimentional trees, J. Combin. Theory 6 (1969), 200-205.

[2] D. de Cacn D, An upper bound on the sum of squares of degrees in a graph. Discrete Math 185 (1998), 245-248.

[3] J. Estes, B. Wei, Sharp bounds of the Zagreb indices of k-trees. J Comb Optim (2012), DOI 10.1007/s10878-012-9515-6.
[4] I. Gutman, Multiplicative Zagreb indices of trees, Bull.Soc.Math. Banja Luka, ISSN 0354-5792 (p), ISSN 1986-521X (o), Vol. 18 (2011), 17-23.

[5] F. Harary, E. M. Plamer, On acyclic simplicial complexes, Mathematika 15 (1968), 115-122.

[6] A. Hou, S. Li, l. Song, B. Wei, Sharp bounds for Zagreb indices of maximal outerplanar graphs. J Comb Optim 22 (2011), 252-269.

[7] H. Narumi, M. Hatayama, Simple topological index. A newly devised index characterizing the topological nature of structural isomers of saturated hydrocarbons. Mem. Fac. Engin. Hokkaido Univ. 16 (1984), 209-214.

[8] s. Nikolić, G. Kovačević, Milicčević, A., Trinajstić, N., The Zagreb indices 30 years after. Croat. Chem. Acta 76 (2003), 113-124.

[9] L. Song, W. Staton, B. Wei, Independence polynomials of k-tree related graphs. Discrete Appl Math 158(2010), 943-950.

[10] R. Todeschini, D. Ballabio, V. Consonni, Novel molecular descriptors based on functions of new vertex degrees. In: Novel molecular structure descriptors - Theory and applications I. (I. Gutman, B. Furtula, eds.), Univ. Kragujevac (2010), pp. 73 - 100.

[11] R. Todeschini, V. Consonni, New local vertex invariants and molecular descriptors based on functions of the vertex degrees. MATCH commun. Math. Comput. Chem. 64 (2010), 359-372.

[12] Q, Zhao, S. Li, On the maximum Zagreb index of graphs with k cut vertices. Acta Appl. Math. 111 (2010), 93-106.