Local shrinkage rules, Lévy processes and regularized regression

Nicholas G. Polson

University of Chicago, USA

and James G. Scott

University of Texas at Austin, USA

[Received October 2010. Revised July 2011]

Summary. We use Lévy processes to generate joint prior distributions, and therefore penalty functions, for a location parameter \(\beta = (\beta_1, \ldots, \beta_p) \) as \(p \) grows large. This generalizes the class of local–global shrinkage rules based on scale mixtures of normals, illuminates new connections between disparate methods and leads to new results for computing posterior means and modes under a wide class of priors. We extend this framework to large-scale regularized regression problems where \(p > n \), and we provide comparisons with other methodologies.

Keywords: Lévy processes; Normal scale mixtures; Partial least squares; Principal components regression; Shrinkage; Sparsity

1. Introduction

In recent years there has been considerable interest in the subject of choosing a joint prior distribution, or equivalently a penalty function, for a high dimensional location vector \(\beta = (\beta_1, \ldots, \beta_p) \). Much of this work has been motivated by problems in high dimensional regularized regression, where we observe data \(y = X\beta + \epsilon \) and wish to estimate \(\beta \). Good examples of recent Bayesian research in this area are Park and Casella (2008) and Hans (2009), who explored Bayesian versions of the traditional lasso penalty.

In the case where the number of regressors is moderate, the use of normal variance mixtures to generate exchangeable joint distributions for \(\beta \) has been studied in detail. Such priors arise from a hierarchical model where

\[
(y | \beta, \sigma^2) \sim N(X\beta, \sigma^2 I),
\]

\[
(\beta_j | \tau^2, \lambda_j^2) \sim N(0, \tau^2 \lambda_j^2),
\]

\[
\lambda_j^2 \sim p(\lambda_j^2),
\]

\[
(\tau^2, \sigma^2) \sim p(\tau^2, \sigma^2),
\]

with the \(\lambda_j^2 \)'s known as the local shrinkage parameters. The following section reviews several recent proposals along these lines.
The analogous classical formulation is to identify a penalty function with the log-prior:
\[
g(\beta_j) = -\log\{p(\beta_j|\tau^2)\},
\]
\[
p(\beta_j|\tau^2) = \int_0^{\infty} p(\beta_j|\tau^2, \lambda_j^2) p(\lambda_j^2) \, d\lambda_j.
\]

On observing data \(y\), \(\beta\) is chosen to minimize
\[
l(\beta) = \|y - X\beta\|^2 + \nu \sum_{i=1}^{p} g(\beta_j),
\]
where the regularization parameter \(\nu\) is a function of \(\tau\) and \(\sigma\). The minimizing choice of \(\beta\) is equivalent to the joint posterior mode under the Bayesian formulation.

Our interest in this framework arises from the intersection of two challenges: one theoretical and the other practical.

(a) The usual variance–mixture approach provides an insufficiently general understanding of how priors, penalty functions and Bayesian variable selection are related. For example, some penalty functions lack variance–mixture equivalents (e.g. Fan and Li (2001)), whereas some variance mixtures lead to penalty functions without closed form representations (e.g. Carvalho et al. (2010)). Meanwhile, Bayesian variable selection, involving a complex prior and a large discrete space of submodels, would seem a world apart from either approach.

(b) As \(p\) grows large, many potentially useful approaches become computationally intractable or yield answers whose quality is difficult to assess by using standard tools.

In this paper, we explore an alternative to the traditional framework by constructing joint priors for \(\beta\) by using Lévy processes. This provides a unifying probabilistic structure for penalized regression and variable selection from both Bayesian and classical viewpoints.

Even within this new framework, a complete theory that is capable of completely solving both challenges listed above remains beyond our reach. Nonetheless, we shall argue that the Lévy process view offers several insights that are highly relevant to statistical practice. First, our approach embeds finite dimensional normal variance mixtures in a wider class of infinite dimensional, non-Gaussian joint distributions. It therefore provides an intuitive framework for asymptotic analysis on existing priors and penalties, as well as a device for generating previously unexplored options (such as the Meixner and \(z\)-distributions that are discussed in Section 3). The use of Lévy processes in high dimensional Bayesian modelling has been gaining in popularity (e.g. Wolpert and Taqqu (2005) and Wolpert et al. (2010)). Our approach differs from this line of work, in that we wish to use the theory of Lévy processes to provide a general framework of penalty functions, shrinkage priors with exchangeable structure and the relationship between them. Sections 3 and 4 will explore these relationships in detail, whereas Section 5 will demonstrate their statistical relevance.

Second, we show that both Bayesian variable selection and the pure shrinkage approach of something like the lasso can be subsumed into a unified theoretical framework. Connections between these two approaches are important because of the acute computational difficulties that are associated with the high dimensional variable selection problem. Indeed, Section 5 describes an asymptotic sense in which the two models agree on certain important features.

Finally, our framework provides new insight on how the two quantities that are most typically of interest—the posterior mode and mean of \(\beta\)—can be computed. We prove a theorem characterizing the posterior mean for \(\beta\) in terms of the Lévy measure of the subordinator that is used to construct the joint prior \(p(\beta)\). This theorem can be used to understand the issue of
Bayesian robustness for a much wider class of priors than those for which existing tools are sufficient (see Pericchi and Smith (1992) and Griffin and Brown (2010)). We also show how the Lévy process approach leads to a simple mode finding algorithm, analogous to the local linear approximation of Zou and Li (2008).

Sections 6 and 7 illustrate applications of the approach in high dimensional regression problems, including those where \(p > n \), by placing local shrinkage priors on certain linear combinations of the \(\beta_j \)s. These linear combinations are given by the right-singular vectors of the design matrix. Our approach therefore builds on the work of Frank and Friedman (1993), Clyde et al. (1996), Denison and George (2000), West (2003) and Maruyama and George (2010), who provide a unified framework for ridge regression (RR), principal component regression (PCR), partial least squares (PLS), the \(g \)-prior and generalized \(g \)-priors. We generalize this framework still further by combining it with the idea of using local shrinkage priors derived from Lévy processes.

2. Local shrinkage priors

The class of joint priors \(p(\beta) \) based on exchangeable normal variance mixtures (2)–(4) includes widely known forms such as the \(t \)- and the double-exponential distributions along with some of the following, more recent, proposals:

(a) normal–Jeffreys, where \(p(\beta_j) \propto |\beta_j|^{-1} \) (Figueiredo, 2003; Bae and Mallick, 2004), which arises from placing a Jeffreys prior on each local variance, \(p(\lambda_j^2) \propto 1/\lambda_j^2 \);
(b) normal–exponential–gamma, where \(\lambda_j^2 \sim \text{Exp}(r) \), and where there is a second-level \(\text{Ga}(c, 1) \) prior for the exponential rate parameter \(r \) (Griffin and Brown, 2005); marginally, this gives \(p(\lambda_j^2) \propto (1 + \lambda_j^2)^{-c-1} \);
(c) normal–gamma and normal–inverse Gaussian, where the local variances receive gamma or inverse Gaussian mixing densities (Caron and Doucet, 2008; Griffin and Brown, 2010);
(d) horseshoe prior, a special case of a normal–inverted beta class, where \(\lambda_j^2 \sim \text{IB}(a, b) \) has an inverted beta distribution (Carvalho et al., 2010; Polson and Scott, 2010);
(e) generalized double Pareto, which has a Laplace-like spike at zero and polynomial tails (Armagan et al., 2010).

Full posterior inference under these priors can be viewed as a Bayesian analogue of penalized likelihood estimation. For a more extensive bibliography, see Polson and Scott (2011).

These priors are typically used when \(\beta \) is expected to be sparse. A natural question is why should Bayesians consider such an approach to a sparse problem, when these local shrinkage priors do not explicitly allow for the possibility that some of the \(\beta_j \)s are 0 with positive prior probability? At least three reasons suggest themselves.

First, suppose that one proceeds in the traditional Bayesian way, by averaging over different submodels in proportion to their posterior probabilities. These model-averaged coefficients will be non-zero with probability 1 under the sampling distribution for \(y \), regardless of \(\beta \), and hence may be practically indistinguishable from the posterior mean of \(\beta \) under a carefully chosen shrinkage prior.

Second, many Bayesians oppose testing point null hypotheses and would rather shrink than select, on the grounds that point nulls are unrealistic. Sparse shrinkage priors offer a compromise. They discount the possibility that \(\beta_j = 0 \), yet they sift signals from noise more aggressively than a traditional elliptical prior.

Finally, the pure shrinkage answer can offer computational gains over Bayesian model averaging. For a normal linear model with conjugate priors, the difference may be small. But, for cases where marginal likelihoods of different regression hypotheses cannot be computed in
closed form, the difference may be substantial, and the shrinkage approach can be used to approximate the model-averaged solution.

To illustrate this third argument, we simulated data from a probit model with \(p = 25 \) and \(n = 500 \):

\[
y_i = \mathbf{1}_{z_i > 0} \quad \text{for } i = 1, \ldots, n, \\
z \sim N(X\beta, I),
\]

where \(\beta \) contained 20 0s along with five non-zero entries, all equal to \(\sqrt{5} \)—a so-called ‘r-spike signal’ with \(r = 5 \) and \(\|\beta\|^2 = p \). The rows of \(X \) were simulated from a multivariate normal distribution whose covariance matrix was drawn from an inverse Wishart distribution, centred at \(I_p \) and with \(p + 2 \) degrees of freedom.

We simulated 100 data sets from this model and compared four approaches for estimating \(\beta \) by using the probit link function:

(a) maximum likelihood, using the `glm` function in R (R Development Core Team, 2009);
(b) the lasso penalty, with \(\nu = \sqrt{\{2 \log(p)\}} \) as in Candes and Tao (2007) and thus denoted lasso-CT;
(c) the lasso penalty, with \(\nu \) chosen by cross-validation and thus denoted lasso-CV;
(d) the horseshoe posterior mean estimator (Carvalho et al., 2010), which is a recent example of a pure shrinkage approach designed to estimate sparse signals.

We measured accuracy in estimating \(\beta \) by squared error loss. Table 1 shows the median and mean sum of squared errors realized over the 100 simulations. The pure shrinkage Bayesian model outperformed the alternatives by a wide margin.

Bayesian model averaging would be difficult here: the marginal likelihood for a given sub-model cannot be computed in closed form, even assuming a conditionally conjugate prior for \(\beta \). Either high dimensional numerical integration or a Laplace approximation must be used instead. By contrast, a pure shrinkage model is no more difficult to fit for binary data than it is for continuous data, using the simple trick of data augmentation.

This example motivates the question of how we should choose a prior \(\pi(\lambda_j^2) \), or equivalently a penalty function, since different choices can lead to large differences in performance. The oracle property provides a unifying framework for evaluating procedures under a classical framework; many criteria have been proposed for accomplishing the same goal under a Bayesian framework. To our knowledge only the lasso has been studied extensively under both paradigms.

One interesting question is how can we translate between the Bayesian and penalized likelihood formulations? In the following section, we use the theory of Lévy processes to establish

Parameter	Maximum likelihood	Lasso-CT	Lasso-CV	Horseshoe
Median sum of squared errors	19.0	15.3	12.3	0.7
Mean sum of squared errors	68.6	15.4	11.7	1.6
a series of three (successively more general) characterizations of shrinkage priors and their relationship with penalty functions.

3. Priors and penalties from Lévy processes

3.1. Normal variance mixtures and subordinated Brownian motion

Our goal is to provide a framework in which important features of a prior for a high dimensional location vector β can be studied in terms of the Lévy measure $\mu(dx)$ of some Lévy process. This perspective gives applied modellers a large toolbox for constructing prior distributions or penalty functions with specific desired properties.

This approach is most readily introduced via the special case of expressions (2)–(4) that was studied by Caron and Doucet (2008) and Griffin and Brown (2010), where the normal–gamma prior for β is seen to be the finite dimensional marginal distribution of a variance–gamma process.

Let $T(s)$ be a standard gamma process having marginal distribution $T(s) \sim \text{Ga}(s, 1)$ at time $s > 0$. Because the gamma distribution is self-similar, for any value of p

$$T(\nu) \overset{D}{=} \sum_{j=1}^{p} \lambda_j^2$$

if $(\lambda_j^2 | \nu) \sim \text{IID Ga}(\nu/p, 1)$, or equivalently if the λ_j^2s are identified with the increments of T:

$$\lambda_j^2 \overset{D}{=} T\left(\nu \frac{j}{p}\right) - T\left(\nu \frac{j-1}{p}\right).$$

As p diverges, we may identify each local variance λ_j^2 with precisely one of the countable jumps in the sample path of the gamma process. A tangential but interesting fact is that, if we were to normalize the λ_j^2s by their sum $T(\nu)$, we would obtain the joint distribution for the weights in a Dirichlet process mixture model (Kingman, 1975).

The gamma process is just one example of a subordinator, or a one-dimensional Lévy process that is non-decreasing with probability 1. If $T(s)$ is a subordinator and $W(s)$ is a standard Wiener process, then the Lévy process $Z(s) = W\{T(s)\}$ is an example of subordinated Brownian motion observed on a random irregular timescale, which is a construction that was first explored by S. Bochner in the 1950s. The increments of T yield the local variances $\{\lambda_j^2\}$, whereas the increments of Z give us the regression coefficients $\{\beta_j\}$. When T is a gamma subordinator, Z is called a variance–gamma process.

Subordinated Brownian motion is the natural infinite dimensional generalization of a normal variance mixture. Specifying the subordinator is equivalent to specifying the mixing measure $p(\lambda_j^2)$.

In this way, we may define a joint distribution for β by way of a single quantity: the marginal distribution of a subordinator T at time $s = \nu$. We may generate other joint distributions for β via the same device of slicing up a subordinator into its increments, and identifying these increments with the variances $\{\lambda_j^2\}$ in a conditionally normal joint distribution for β. If, for example, $T(\nu)$ is inverse Gaussian, then each β_j will have a normal–inverse Gaussian distribution (see, for example, Barndorff-Nielsen (1997)).

An important feature of subordinators is that they are infinitely divisible. This ensures that our construction remains sensible even in the infinite dimensional limit. For example, suppose that we identify the local variances λ_j^2 of p different β_js with the increments of T, a subordinator, observed on a regular grid. This p-variate random variable can then be described a priori
in terms of the behaviour of a single random variable T, which specifies an easily interpretable aggregate feature of the β-sequence—namely the sum of the local variances. If we were then to consider $2p \beta_j$s instead, but wished to retain the same aggregate features of the (now longer) β-sequence, we must merely slice up the increments of the original subordinator on a finer grid.

Self-similarity is a more restrictive but very appealing property. It will ensure that, as p grows and we divide the subordinator into arbitrarily fine increments, the probabilistic structure of the local precisions remains the same—a useful fact if we wish to study a procedure’s asymptotic properties. For an extensive discussion and further bibliography of asymptotic theory regarding Lévy processes, see Aït-Sahalia and Jacod (2009).

3.2. Penalty functions and subordinators

Not all interesting penalties can be easily interpreted in the same way as the normal–gamma penalty. For example, the lasso corresponds to an exponential mixing distribution for λ^2_j. Yet a sum of exponentials is not itself exponential, making it difficult to interpret the lasso prior as the increments of subordinated Brownian motion.

Luckily the theory of subordinators can be used in a slightly different way to obtain an alternative characterization of priors and penalty functions. Stated informally: all totally monotone penalty functions that vanish at zero correspond to priors that can be represented in terms of a subordinator. For certain penalties, this subordinator naturally corresponds to the precision, rather than the variance, of a conditionally normal prior. We present this construction in the following theorem, which provides a rich source of new penalty functions with explicit Bayesian formulations as mixtures of familiar distributions. Throughout the following discussion, we let t denote a dummy argument involving β_j.

Theorem 1. Let $\psi(t)$, $t > 0$, be a non-negative, real-valued, totally monotone function such that $\lim_{t \to 0} \{\psi(t)\} = 0$.

(a) Suppose that these conditions are met for $t = f(\beta_j)$. Then the prior distribution $p(\beta_j|s) \propto \exp\{-s \psi\{f(\beta_j)\}\}$, where $s > 0$, is the moment-generating function of a subordinator $T(s)$, evaluated at $f(\beta_j)$, whose Lévy measure satisfies

$$
\psi(t) = \int_0^\infty \{1 - \exp(-tx)\} \mu(dx). \quad (6)
$$

(b) Suppose that these conditions are met for $t = \beta_j^2/2$. Then $p(\beta_j|s) \propto \exp\{-s \psi(\beta_j^2/2)\}$, where $s > 0$, is a mixture of normal distributions given by

$$
p(\beta_j|s) \propto \int_0^\infty N(\beta_j|0, T^{-1}) T^{-1/2} p(T) dT, \quad (7)
$$

where $p(T)$ is the density of the subordinator T, observed at time s, whose Lévy measure $\mu(dx)$ satisfies condition (6).

As an example, consider the bridge estimator, for which $\log\{p(\beta_j)\} = -\nu |\beta_j|^\alpha$. Write this instead as $-\nu (\beta_j^2/2)^{\alpha/2}$, in which case the conditions of theorem 1 are met for $\alpha \in (0, 2]$. The resulting normal mixture is easily recognized as the moment-generating function, evaluated at $t = \beta_j^2/2$, of a positive α-stable subordinator T with stability index $\alpha/2$, observed at time $s = \nu$. This provides a very simple proof of the fact that the exponential–power priors are normal mixtures (West, 1987).

The special case of the lasso ($\alpha = 1$) leads to a stable($\frac{1}{2}$) law for T. This is equivalent to an inverse Gaussian representation of the lasso prior on the precision scale:
\[
\exp(-\nu|\beta_j|) = \int_0^\infty \exp\left(-\frac{T\beta_j^2}{2}\right) \frac{\nu}{\sqrt{(2\pi T^3)}} \exp\left(-\frac{\nu^2}{2T}\right) dT,
\]

\[
\text{IN}(0, \nu) \overset{D}{=} \sum_{j=1}^p \text{IN}(0, \nu/p).
\]

The inverse Gaussian distribution \(\text{IN}\), moreover, is self-similar: a sum of \(p\) inverse Gaussian precision terms is still inverse Gaussian, which is an analytically convenient property which the lasso fails to exhibit on the \(\lambda_j^2\)-scale. This provides an alternative to the lasso’s well-known characterization in terms of an exponential mixing distribution for \(\lambda_j^2\).

Though we do not consider the point at length, part (b) can be extended to the case where \(t = |\beta_j|^b, b \in (0, 2]\), subject to further mild regularity conditions on \(\psi\). The prior \(p(\beta_j)\) will be a mixture of exponential–power distributions—itself a mixture of normal distributions, in which case the law of iterated expectation will be enough to establish the result.

We can also consider a mixture or Rao–Blackwellized penalty function as follows. Suppose that we define

\[
g(\beta) = -\log \left(E \left[C_\nu \exp \left\{ -\nu \sum_{j=1}^p \psi(t_j) \right\} \right] \right),
\]

where the expectation is under a prior \(p(\nu)\), and where \(C_\nu\) is the normalization constant in \(p(\beta|\nu)\). Suppose that \(\psi(t)\) satisfies the conditions of the previous theorem and that the prior for \(\nu\) can be described in the same way by a subordinator \(T(s)\) with Lévy measure \(\mu(dx)\). Then, since \(T\) is a subordinator, its moment-generating function is

\[
M_s(t) = E[\exp\{-tT(s)\}] = \exp\{-s\chi(t)\},
\]

\[
\chi(t) = \int_0^\infty \{1 - \exp(-tx)\} \mu(dx).
\]

To compute the mixture penalty function, simply evaluate this moment-generating function for \(T(1)\) at \(t = \sum_{i=1}^p \psi(t_j)\) to give

\[
g(\beta) = \chi \left\{ \sum_{i=1}^p \psi(\beta_j^2) \right\},
\]

where we have absorbed a factor of \(C_{\nu}^{-1}\) into the implicit prior for \(\nu\), to cancel with the normalization constant from \(p(\beta|\nu)\).

Consider the example of bridge estimation with an \(\alpha\)-stable prior for the regularization parameter. Specifically, let \(\log \{p(\beta_j|\nu)\} = -\nu|\beta_j|\), and let \(T\) be an \(\alpha\)-stable subordinator \(T_\alpha(s), 0 < \alpha < 1\), observed at time \(s = 1\). Then \(\psi(t) = \sqrt{(t^2)}\), and \(\chi(t) = |t|^\alpha\). Therefore the mixture penalty function is

\[
\chi \left\{ \sum_{i=1}^p \psi(\beta_j^2) \right\} = \left(\sum_{i=1}^p |\beta_j| \right)^\alpha,
\]

with no nuisance parameters left to estimate.

3.3. Non-linear time changes and further examples

An even more general approach for building priors from time-changed Brownian motion is to specify

(a) a self-similar random variable \(z = D \sum z_j\),

(b) a subordinator \(T(s)\) with Lévy measure \(\mu(dx)\),

(c) a mixture of exponential distributions on \(\lambda_j^2\),

(d) the law of iterated expectation will be enough to establish the result.

3.3. Non-linear time changes and further examples

An even more general approach for building priors from time-changed Brownian motion is to specify

(a) a self-similar random variable \(z = D \sum z_j\),

(b) a subordinator \(T(s)\) with Lévy measure \(\mu(dx)\),

(c) a mixture of exponential distributions on \(\lambda_j^2\),

(d) the law of iterated expectation will be enough to establish the result.
(b) a transformation \(u \) mapping \(z_j \) to the positive reals (typical examples are the identity, inverse and logarithmic) and

(c) Brownian motion observed at random time increments \(\delta_j = u(z_j) \).

This approach encompasses many other examples of time-changed Brownian motion that have not previously been studied in the presence of sparsity. These examples collectively support the power and generality of the approach that is considered here. For example, Barndorff-Nielsen and Shephard (2001) studied the class of normal–modified stable processes, where the mixing distribution is based on exponential and power tempering (or tilting) of a positive \(\alpha \)-stable subordinator. Another interesting generalization is the normal–Lamperti distribution with mixing density

\[
p(\lambda_i^2) = \frac{\sin(\pi \alpha)}{\pi} \frac{(\lambda_i^2)^{\alpha-1}}{(\lambda_i^2)^{2\alpha} + 2(\lambda_i^2)^\alpha \cos(\pi \alpha) + 1}, \quad \lambda_i^2 > 0.
\]

The transformation \(u \) accommodates cases where the mixing distribution \(p(\lambda_i^2) \) is not obviously self-similar. The horseshoe prior of Carvalho et al. (2010) provides an example. In the usual hierarchical representation of this prior, one specifies a standard half-Cauchy distribution for the local scales: \(\lambda_i \sim C^+(0, 1) \). This corresponds to

\[
p(\lambda_i^2) \propto (\lambda_i^2)^{-1/2}(1 + \lambda_i^2)^{-1},
\]

which is an inverted beta (or beta prime) distribution denoted \(\text{IB}(\frac{1}{2}, \frac{1}{2}) \). This generalizes to the wider class of normal–inverted beta mixtures (Polson and Scott, 2010), where \(\lambda_i^2 \sim \text{IB}(a, b) \). These mixtures satisfy the weaker property of being self-decomposable: if \(\lambda_i^2 \sim \text{IB}(a, b) \), then, for every \(0 < c < 1 \), there is a random variable \(\varepsilon_c \) independent of \(\lambda_i^2 \) such that

\[
\lambda_i^2 = c\lambda_i^2 + \varepsilon_c
\]

in distribution.

We omit the proof of the fact that the inverted beta distribution is self-decomposable; see example 3.1 in Bondesson (1990). The consequence of this fact is that the horseshoe prior can be represented directly as subordinated Brownian motion. The proof is not constructive, however, as the subordinator itself is not available in closed form. The difficulty becomes plain on inspecting the characteristic function of an inverted beta distribution:

\[
\phi(t) = \frac{\Gamma(a+b)}{\Gamma(b)} U(a, 1-b, -it),
\]

where \(U(x, y, z) \) is a Kummer function of the second kind. A characteristic function of this form makes it very difficult to compute the distribution of sums of inverted beta random variables.

Representing the horseshoe prior in terms of the increments of a self-similar Lévy process can be done straightforwardly, however, on the log-variance scale, just as a self-similar representation of the lasso model can be found on the precision scale.

Suppose that \(\lambda_i^2 \sim \text{IB}(a, b) \). Then

\[
\lambda_i^2 \overset{D}{=} \frac{\kappa_i}{1 - \kappa_i},
\]

where \(\kappa_i \sim \text{Be}(a, b) \). Following Fisher (1935), if \(z_i = \log\{\kappa_i/(1 - \kappa_i)\} \), then

\[
p(z_i) = \frac{1}{B(a, b)} \frac{\exp(z_i)^a}{\{1 + \exp(z_i)\}^{a+b}},
\]

where \(B(a, b) \) is the beta function. More generally we may assume that \(z_i \sim Z(a, b, \mu, \sigma) \), which is a \(z \)-distribution with density

\[
p(z_i) = \frac{1}{B(a, b)} \frac{\exp(z_i)^a}{\{1 + \exp(z_i)\}^{a+b}},
\]

where \(B(a, b) \) is the beta function. More generally we may assume that \(z_i \sim Z(a, b, \mu, \sigma) \), which is a \(z \)-distribution with density
Local Shrinkage Rules

\[p(z_i) = \frac{2\pi}{\sigma B(a, b)} \exp \left\{ \frac{(z_i - \mu)/\sigma}{1 + \exp\left\{ \frac{(z_i - \mu)/\sigma}{\sigma} \right\}} \right\}^{a+b} \]

and characteristic function

\[\phi(t) = \frac{B(a + i\sigma t/2\pi, b - i\sigma t/2\pi)}{B(a, b)} \exp(i\mu t) \] (8)

for \(a > 0, b > 0, \sigma > 0 \) and \(\mu \in \mathbb{R} \).

The \(z \)-distribution can then be recognized as the special case the generalized \(z \)-distribution, which has characteristic function

\[\phi(t) = \left\{ \frac{B(a + i\sigma t/2\pi, b - i\sigma t/2\pi)}{B(a, b)} \right\}^{2\delta} \exp(i\mu t) \]

for \(\delta > 0 \) (Grigelionis, 2001). This distribution has parameters \((a, b, \mu, \sigma, \delta)\) and can also be characterized by its Lévy triple \(\{A, 0, \mu(x) \, dx\} \), where

\[A = \frac{\sigma \delta}{\pi} \int_{0}^{2\pi/\sigma} \exp(-bx) - \exp(-ax) \frac{dx}{1 - \exp(-x)} + \mu, \]

and

\[\mu(x) = \begin{cases} 2\delta \exp(2\pi bx/\sigma) / x \{1 - \exp(2\pi x/\sigma)\}, & \text{if } x > 0, \\ 2\delta \exp(2\pi ax/\sigma) / |x| \{1 - \exp(2\pi x/\sigma)\}, & \text{if } x < 0. \end{cases} \]

The characteristic function of a generalized \(z \)-distribution makes its self-similarity plain: if \(z_i \sim \text{IID GZ}(a, b, \mu, p, \sigma, 1/2p) \), then

\[\sum_{i=1}^{p} z_i \stackrel{D}{=} z, \]

where \(z \sim \text{Z}(a, b, \mu, \sigma) \). We thus have a self-similar representation, on the log-variance scale, of the normal–inverted beta class.

This result is of limited use except in special cases where the density of the generalized \(z \)-increments is known, which will not hold in general. Luckily the horseshoe prior, where \(a = b = \frac{1}{2} \), corresponds to just such a special case—as do all symmetric cases where \(\kappa \sim \text{Be}(a, 1 - a) \) and \(\lambda^2 = \kappa / (1 - \kappa) \).

To see this, let \(z \sim \text{Z}(a, 1 - a, \mu, \sigma) \) for \(a \in (0, 1) \). Then standard manipulations of the characteristic function (8) give

\[\phi(t) = \frac{\cos(c/2)}{\cosh((\sigma t - ic)/2)} \exp(i\mu t), \]

where \(c = \pi(2a - 1) \). This is recognizable as the characteristic function of a Meixner process, \(z \sim \text{Meix}(\sigma, c, \frac{1}{2}, \mu) \) (Grigelionis, 1999). The density and Lévy measure of a Meixner random variable are

\[p(z) = \frac{2\cos(c/2)}{\sigma \pi} \exp \left\{ \frac{c(z - \mu)/\sigma}{\Gamma \left\{ \frac{1}{2} + \frac{i(z - \mu)/\sigma}{\sigma} \right\}^2 \right\}, \] (10)

\[\mu(dx) = \frac{\exp(cx/\sigma)}{2x \sinh(\pi x/\sigma)} dx. \] (11)

For the horseshoe prior, \(a = 1 - a \) and therefore \(c = 0 \).
A Meixner process is self-similar: if $z_i \sim \text{Meix}(a, c, 1/2p, \mu/p)$, then
\[\sum_{i=1}^{p} z_i \overset{D}{=} z \sim \text{Meix}(a, c, 1/2, \mu). \]

When $a = 1$ and $\mu = 0$, then the random variable $T^D = \exp(z)$ will have an IB$(a, 1 - a)$ distribution, as required. Therefore, the most intuitive way of passing to a limit under the horseshoe prior is to continue dividing the random variable T, on the log-variance scale, into arbitrarily many self-similar increments.

Interestingly, both the z-distribution and the Meixner process can themselves be represented as mixtures of normal distributions. The mixing distribution for the z is an infinite convolution of exponentials, which is a potentially interesting generalization of the lasso model (Barndorff-Nielson et al., 1982). For the mixing distribution of the Meixner process, see Madan and Yor (2006).

4. General Lévy process case

We have encountered two ways in which a subordinator can be used to generate joint distributions for β, or equivalently penalty functions:

(a) by subordinating Brownian motion to $T(s)$, leading to a Lévy process $Z(s)$ whose increments are identified with the components of β_j;

(b) by using the subordinator’s Laplace exponent $\psi(t)$ as a penalty function, which sometimes leads to a tractable mixture representation for the corresponding prior $p(\beta_j|\nu) \propto \exp\{-\nu\psi(t)\}$.

In general Bayesians have focused on the finite dimensional analogue of the first approach, whereas frequentists have focused on the second approach, although many researchers have focused on explicit translations of a classical estimator into a Bayesian model (e.g. Park and Casella (2008) and Hans (2009)).

An encompassing formulation involving Lévy processes is available. This is most easily understood in the case of an orthogonal design matrix X, in which case we define $\tilde{y} = X'y$. Let $\Delta = \nu p^{-1}$, and let
\[\beta_j \overset{d}{=} Z(j\Delta) - Z((j-1)\Delta) \]
for some arbitrary Lévy process $Z(s)$ having Lévy measure $\mu(dx)$, assumed to be defined over the interval $[0, \nu]$. Then, on observing $\tilde{y} = (\tilde{y}_1, \ldots, \tilde{y}_p)$ with $\tilde{y}_j \sim N(\beta_j, \sigma^2)$, identify \tilde{y} with the increments of the interlacing process $Y(s) = Z(s) + \sigma_p W(s)$:
\[\tilde{y}_j \overset{d}{=} Y(j\Delta) - Y((j-1)\Delta). \]

The observations are themselves the increments of a Lévy process: a superposition of signals or jumps identified with $Z(s)$, and noise identified with a scaled Wiener process $W(s)$.

The Bayesian local shrinkage framework of equations (2)–(4) is to specify the distribution of the increment $\delta = Z(j\Delta) - Z((j-1)\Delta)$ as a Gaussian mixture. In general the corresponding Lévy measure will not be known. Unless the mixing distribution belongs to some convolution closed family (such as the gamma or inverse Gaussian), we shall not know the distribution of increments at other ‘timescales’, and asymptotic analysis may be difficult.

The above construction says, in effect, that we can proceed by specifying the Lévy measure directly, with the two subordinator-based approaches being intermediate cases. Indeed, by the Lévy–Khinchine theorem, any model that preserves the conditional independence property of
the β_js will fall into this framework, since any stationary càdlàg process with independent increments is completely characterized by its Lévy measure.

By casting the finite dimensional problem in terms of the marginal distributions of a suitable infinite dimensional problem, the Lévy process view provides an intuitive framework for asymptotic calculations. Such analysis can be done under one, or both, of two assumptions: that we observe the process longer, or that we observe it on an ever finer grid. Each scenario corresponds quite naturally to a different assumption about how the signal-to-noise ratio behaves asymptotically.

Finally, it is possible to generalize these methods still further, following along the lines of the non-parametric function estimation strategy that was proposed by Wolpert et al. (2010), who considered priors for kernel weights based on a stochastic integral of a generator function with respect to a random measure, which allows for the incorporation of spatial marks, periodicities and further covariates in the prior (see also Clyde and Wolpert (2011)). Since our interest is in priors for β that maintain exchangeability among the regression coefficients and thus correspond to traditional penalty functions, we do not pursue this approach here.

5. Statistical relevance of the Lévy process view

5.1. Lévy processes and the two-groups model

We now describe, in a more precise way, the result that was mentioned in Section 1: that Bayesian variable selection and pure shrinkage solutions like the lasso can both be viewed as special cases of the same encompassing framework.

The familiar discrete mixture or ‘two-groups’ model specifies that each β_j is either in or out of the model with some prior inclusion probability:

$$\beta_j \sim w p(\beta_j) + (1-w)\delta_0,$$

where δ_0 is a Dirac measure. This is the typical assumption that is used in Bayesian model selection, model averaging and multiple testing (see George and Foster (2000) and Scott and Berger (2010)).

The two-groups model arises as a special case of the Lévy process framework: namely when $Z(s)$ has a finite Lévy measure and is therefore a compound Poisson process. Under this assumption,

$$Y(s) = \sum_{i=1}^{N(s)} J_i + \sigma W(s),$$

where $N(s)$ is a Poisson process with rate θ governing the number of jumps that occur by time s, and each J_i is an independent draw from some jump distribution.

With probability 1, a compound Poisson process will have a finite number of jumps on any finite interval. These jumps correspond to the non-zero signals in β; all other increments of $Z(s)$ will be 0. The Lévy density of $Z(s)$ describes the distribution of the signals, whereas the jump rate (which can be identified in terms of the total mass of the Lévy density) describes their relative abundance in the cohort of β_js under consideration.

To illustrate the connection, suppose that $J_i \sim N(0, \eta^2)$, and that we follow the previous line of reasoning by equating the regression coefficients β_j with the increments of $Z(s)$ on a discrete grid of size Δ. Then, with probability $w = 1 - \exp(-\theta \Delta)$, β_j will correspond to an interval where at least one jump has occurred. Moreover, each non-zero β_j will arise from a normal distribution:
\[
\beta_j \sim N(0, \tau^2),
\]
\[
\tau^2 = \sum_{k=1}^{\infty} w_k^2 \eta^2 / w^2,
\]
where \(w_k = (k!)^{-1} (\Delta \theta)^k \exp(-\Delta \theta) \) is the probability of seeing \(k \) jumps. In essence, the missing \(k = 0 \) term corresponds to the null hypothesis of no jumps, yielding \(\beta_j = 0 \).

The discrete mixture prior is an example of a finite activity process where the total Lévy measure is finite. But we could also use an infinite activity process, where the Lévy measure is merely \(\sigma \) finite. This would mean that the underlying process had an infinite number of very tiny jumps—in other words, that no \(\beta_j \)s are 0, but that most are of insignificant size compared with \(\sigma \). The pure shrinkage (‘one-group’) model and the two-groups model can therefore be subsumed into this single framework.

An interesting question is how different are the one-group and two-group models, asymptotically (i.e. as \(p \to \infty \), and therefore \(\Delta \to 0 \))? Observe that, under the two-groups model where \(Z(s) \) is a compound Poisson process with jump density \(g \),
\[
P(|\beta_j| > \varepsilon) = \Delta \theta \int_{\Omega(\varepsilon)} g(x) \, dx + o(\Delta),
\]
where \(\Omega(\varepsilon) = (-\infty, \varepsilon) \cup (\varepsilon, \infty) \). This decreases linearly in \(\Delta \), at a rate that is governed by the jump activity \(\theta \) of the Poisson process.

Meanwhile, if \(Z(s) \) is instead a pure jump Lévy process with Lévy measure \(\mu \), then
\[
P(|\beta_j| > \varepsilon) = \Delta \int_{\Omega(\varepsilon)} \mu(dx) + o(\Delta).
\]
Any Lévy process necessarily assigns finite measure to the set \(\Omega(\varepsilon) \) for \(\varepsilon > 0 \), so this probability also decreases linearly in \(\Delta \). In this sense, the class of priors derived from the increments of a Lévy process encompasses those priors that can be made to mimic asymptotically the one-group model in terms of the measure that they assign to \(\Omega(\varepsilon) \) for any \(\varepsilon > 0 \). An interesting comparison is with the work of Berger and Delampady (1987), especially their discussion concerning the validity of approximating interval null hypotheses by point null hypotheses.

5.2. Representation of the posterior mean

Much of the research on penalized likelihood estimation concerns methods for finding sparse posterior modes in high dimensional regression problems. Yet the posterior mean is the estimator that minimizes posterior expected loss under the squared error loss function and can lead to improved predictions compared with the posterior mode (see Efron (2009)). It is therefore interesting to compare the behaviour of the posterior mean estimator under different joint distributions for \(\beta \).

We again consider the orthogonal design case, or the exchangeable normal means problem. Recall the following result from Pericchi and Smith (1992). If \(p(y - \beta) \) is a normal likelihood of known variance \(\sigma^2 \), \(p(\beta) \) is the prior for \(\beta \) (subject to some mild regularity conditions) and \(m(y) = \int p(y - \beta) \, p(\beta) \, d\beta \) is the predictive density for \(y \), then
\[
E(\beta|y) = y + \sigma^2 \frac{d}{dy} \ln\{m(y)\}.
\]

This result is useful for the insight that it gives about an estimator’s behaviour in situations where \(y \) is very different from the prior mean. In particular, it shows that ‘Bayesian robustness’ may be achieved by choosing a prior for \(\beta \) such that the derivative of the log-predictive-density is
bounded as a function of \(y \). Models meeting the slightly stronger condition that \(E(\beta|y) - y \to 0 \) for large \(|y| \) are said to have redescending score functions.

We generalize this result as follows.

Theorem 2. Let \(p(|y - \beta|) \) be a likelihood that is symmetric in \(y - \beta \). Let \(\psi(t) \) be a penalty function satisfying the conditions of theorem 1 for \(t = \beta^2 / 2 \), and for which the corresponding subordinator \(T = T(s), s > 0 \), has a prior \(p(T) \) satisfying \(E(T^{-1}) < \infty \). Define the following size-biased pseudodensity and corresponding marginals:

\[
p^*(T) = \frac{T^{-1} p(T)}{E(T)};
\]

\[
p^*(\beta) = \int_0^\infty \exp(-T \beta^2 / 2) p^*(T) \, dT;
\]

\[
m^*(y) = \int_0^\infty p(y - \beta) \, p^*(\beta) \, d\beta.
\]

Then

\[
E(\beta|y) = E(T^{-1}) \frac{m^*(y)}{m(y)} \frac{\partial}{\partial y} \ln \{m^*(y)\}.
\]

Special cases of this theorem have appeared repeatedly in the literature; see Masreliez (1975), Polson (1991), Mitchell (1994), Carvalho et al. (2010) and Griffin and Brown (2010). These results have been used to characterize ‘good’ mixing distributions \(p(\lambda^2_j) \) in the traditional global–local shrinkage model. The important insight is that the sparse signal detection problem is essentially the same as the outlier sensitivity problem, which is a classic topic of interest in robust Bayesian statistics.

Our result extends this long line of research to provide a more general expression for the posterior mean. It uses the subordinator representation to characterize the posterior mean corresponding to any penalty function meeting the regularity conditions of theorem 1. The intuition is essentially that, whenever a prior is chosen such that \(m^*(y) \) has a small derivative in a large neighbourhood of the origin, the posterior mean will strongly shrink small observations to 0. The result also directly describes an estimator’s sensitivity to aberrant observations—i.e. signals—in terms of the corresponding Lévy measure, rather than the prior for the local shrinkage parameter \(\lambda^2_j \).

Extending the general approach to non-orthogonal designs is straightforward, but algebraically involved. It follows closely the method of proof that was pursued by Masreliez (1975) and Griffin and Brown (2010).

5.3. Finding sparse solutions via the posterior mode

Using theorem 1, we can also develop simple EM algorithms for estimating the posterior mode of \(\beta \) under a wide variety of models.

First, we may express a wide variety of problems as mixtures of RRs, following along the lines of Caron and Doucet (2008) and Armagan et al. (2010). If we take \(f(\beta_j) = \frac{1}{2} \beta^2_j \) as in the previous theorem, then a similar line of reasoning leads to an algorithm for finding the mode, rather than the mean. Under the conditions of theorem 1, suppose that we have

\[
\exp\{-\nu (\beta^2_j / 2)\} = \int_0^\infty \exp(-T_j \beta^2_j / 2) p(T_j) \, dT_j.
\]

Given a set of augmentation variables \(\{T_j\} \), the conditional log-posterior distribution becomes
\[I(\beta) = \sum_{i=1}^{n} l_i(\beta) - \sum_{j=1}^{p} T_j \beta_j^2 / 2, \]

where \(l_i \) is the log-likelihood contribution associated with observation \(i \). For a normal likelihood, this will be the log-density of a normal posterior whose mode is the generalized ridge estimator

\[\hat{\beta} = (X'X + \nu^2 T)X'y, \]

where \(T = \text{diag}(T_1, \ldots, T_p) \).

This provides the M-step. Moreover, since the complete-data log-likelihood is linear in \(T_j \), its expected value given a current estimate \(\hat{\beta} \) is

\[Q(\beta) = \sum_{i=1}^{n} l_i(\beta) - \sum_{j=1}^{p} E(T_j|\beta_j) \beta_j^2 / 2. \]

This expectation can be computed by differentiating equation (14) under the integral sign to give

\[E(T_j|\beta_j) = \frac{\psi'(\beta_j^2 / 2)}{|\beta_j|}. \]

Plugging in the current estimate \(\hat{\beta}_j \) gives the E-step.

A second algorithm that is motivated by theorem 1 generalizes the local linear approximation approach of Zou and Li (2008). Suppose that we take \(f(\beta_j) = |\beta_j| \). Then, if \(\psi(|\beta_j|) \) meets the conditions of theorem 1, it is the log-moment-generating-function of a subordinator \(T_j \equiv T(\nu) \), and

\[\exp\{-\nu \psi(|\beta_j|)\} = \int_0^{\infty} \exp(-T_j|\beta_j|) p(T_j) \, dT_j, \]

\[-\nu \psi(|\beta_j|) = \log\left\{ \int_0^{\infty} \exp(-T_j|\beta_j|) p(T_j) \, dT_j \right\}. \]

Recall that the time \(\nu \) at which the subordinator is observed corresponds to the global regularization parameter, which is assumed to be given. Taking derivatives with respect to \(\beta_j \) inside the integral sign gives us the identity

\[\text{sgn}(\beta_j) \nu \psi'(|\beta_j|) = E(T_j|\beta_j). \]

Here the expectation is with respect to the conditional posterior

\[p(T_j|\beta_j) \propto \exp(-T_j|\beta_j|) p(T_j). \]

Moreover, observe that the complete-data log-likelihood using \(T_j \) as an augmentation variable takes a simple form:

\[l(\beta) = \sum_{i=1}^{n} l_i(\beta) - \sum_{j=1}^{p} T_j |\beta_j|. \]

This expression in linear in \(T_j \), which suggests a simple EM algorithm. Suppose that we have a current estimate \(\beta_j^{(g)} \). For the E-step, we take the conditional expectation of the likelihood \(l(\beta) \) with respect to \(p(T_j|\beta_j) \) to obtain the objective function

\[Q(\beta) = \sum_{i=1}^{n} l_i(\beta) - \sum_{j=1}^{p} E(T_j|\beta_j) |\beta_j|, \]

where \(E(T_j|\beta_j) = \text{sgn}(\beta_j) \nu \psi'(|\beta_j|) \). This is the usual convex optimization problem that is encountered in finding a lasso solution, meaning that the M-step can be solved painlessly, using
standard methods. The lasso is already in this form without the need for augmentation variables, but other models that are representable as mixtures of double-exponential distributions are just as simple to fit.

An illuminating comparison is with the local linear approximation algorithm of Zou and Li (2008), specifically their equations 2.7 and 2.10. Specifically, our theorem 1 generalizes equation 2.10 to cases beyond Laplace transforms of double-exponential distributions and provides a probabilistic interpretation for all penalty functions in the class by expressing the corresponding Bayesian scale–mixture models in terms of an underlying Lévy measure. This probabilistic interpretation also leads to the expressions for the posterior mean that were derived in the previous subsection.

6. Regularized regression when \(p < n \)

6.1. Connections between ridge regression, principal components regression, partial least squares and the g-prior

Thus far we have considered Lévy processes for constructing high dimensional joint prior distributions for regression coefficients in a manner than maintains the exchangeability of the \(\beta_j \)'s. This nests the traditional local shrinkage approach in expressions (2)–(4), which has been considered by many researchers. We now consider the more general case where the object of inferential interest is not necessarily \(\beta \), but a set of linear combinations thereof—an approach that will generalize more easily to the \(p > n \) case. In particular we specify priors in the co-ordinate system defined by the principal components of \(X'X \), although in principle other linear combinations follow the same template. This will illuminate connections between the work of Frank and Friedman (1993), West (2003), Maruyama and George (2010) and ours on Lévy processes.

Let \(X = UDW' \) represent the singular value decomposition of the design matrix \(X \). If \(n > p \), then \(X \) is of full column rank, and \(D = \text{diag}(d_1, \ldots, d_p) \) is a diagonal matrix of non-zero singular values ordered \(d_1 > \ldots > d_p \). Both \(U \) and \(W \) are orthogonal matrices, of dimensions \(n \times p \) and \(p \times p \) respectively. Moreover, \(W \) is also the matrix of eigenvectors \(\{ w_j \} \) for the cross-product matrix \(S = X'X \), with corresponding eigenvalues \(d_j^2 \).

The original regression relationship may be re-expressed in the orthogonalized space as \(y = Z\hat{\alpha} + \epsilon \), where \(Z = UD \) and \(\alpha = W'\beta \). The ordinary least squares (OLS) estimate for \(\alpha \) is \(\hat{\alpha} = (Z'Z)^{-1}Z'y = D^{-1}U'y \).

Following Frank and Friedman (1993), the shrinkage structures for many common regularization approaches can be understood by expanding their solutions in the original co-ordinate system in terms of the eigenvectors \(\{ w_1, \ldots, w_p \} \) and the OLS coefficients \(\hat{\alpha} \):

\[
\hat{\beta}^M = \sum_{j=1}^{p} \kappa_j^M \hat{\alpha}_j w_j.
\]

Here \(M \) denotes the method, and the \(\kappa_j^M \)'s are method-specific shrinkage weights that scale the OLS solution along each of the directions \(w_j \).

Both RR and PCR use shrinkage weights that do not depend on the response values \(y \). The RR solution is \(\kappa_{j}^{RR} = d_j^2/(\nu + d_j^2) \) for a fixed regularization parameter \(\nu \), whereas the \(K \)-component PCR solution is

\[
\kappa_{jK}^{PCR} = \begin{cases}
1, & d_j^2 \geq d_k^2, \\
0, & d_j^2 < d_k^2.
\end{cases}
\]
The posterior mean under the g-prior also fits in this shrinkage structure; it corresponds to $\kappa^g_j = g/(1 + g)$, thereby shrinking the solution vector along all eigendirections by a common factor.

The shrinkage weights under PLS, in contrast, depend non-linearly on the response values y through the OLS solution $\hat{\alpha}$. Using the expressions in Frank and Friedman (1993), for the K-component solution we have

$$\kappa_{PLS}^j = \sum_{k=1}^K \theta_k d^2_j,$$

where $\theta = \{\theta_1, \ldots, \theta_K\}'$ is equal to $W^{-1}\eta$, with

$$\eta_k = \sum_{j=1}^p \hat{\alpha}_j^2 d^{2(k+1)}_j$$

and

$$W_{kl} = \sum_{j=1}^p \hat{\alpha}_j^2 d^{2(k+l+1)}_j.$$

6.2. Bayesian interpretation

These four procedures differ only in the way that they scale the OLS estimates for the regression parameter in the orthogonal co-ordinate system defined by W. It is therefore natural to consider them as special cases of an encompassing local shrinkage model along the lines of the previous sections.

Begin with the g-prior, which is an explicitly Bayesian model wherein $\beta \sim N\{0, \sigma^2 g(X'X)^{-1}\}$ a priori, or equivalently $\alpha \sim N(0, \sigma^2 g D^{-2})$. This prior biases the direction of α along the axes of the principal component co-ordinate system.

RR also has a well-known Bayesian interpretation as the posterior mean under the conjugate normal prior $\beta \sim N(0, \sigma^2 \tau^2 I)$, where the global variance $\tau^2 = 1/\nu$. This prior is agnostic with respect to the orientation of the regression vector, depending only on its Euclidean norm.

These procedures, along with PCR, are all special cases of a more general prior:

$$(\alpha | \sigma^2, \tau^2, \Lambda) \sim N(0, \sigma^2 \tau^2 \Lambda), \quad (16)$$

where τ^2 is a global variance component and $\Lambda = (\lambda^2_1, \ldots, \lambda^2_p)$ is a diagonal matrix of local variance components. The posterior distribution of α under this prior is conditionally normal, with mean

$$m_j = \kappa_j \hat{\alpha}_j = \frac{\tau^2 \lambda^2_j d^2_j}{1 + \tau^2 \lambda^2_j d^2_j} \hat{\alpha}_j,$$

with the α_js being mutually independent given τ^2, σ^2 and the data.

The classical g-prior therefore corresponds to $\tau^2 = g$ and $\lambda_j \equiv d^2_j$. RR corresponds to $\lambda_j = 1$. And PCR corresponds to

$$\lambda^2_j = \begin{cases} \infty, & d^2_j \geq d^2_K, \\ 0, & d^2_j < d^2_K \end{cases}$$

for the K-component solution.

Rather than estimating α under fixed choices of the local variances λ^2_j, the natural fully Bayesian approach is to use the shrinkage weights
where the expectation is over the posterior distribution of local and global variance components.

Different choices for the priors \(p(\lambda^2_j) \) and \(p(\tau^2) \) can centre the Bayesian model at different classical regularization approaches, while still allowing the data to dictate otherwise. Choosing \(p(\lambda^2_j) \) to concentrate near 1, for example, will centre the model near the classical ridge solution. In contrast, if \(\lambda^2_j \equiv d^2_j \gamma^2_j \), then choosing \(p(\gamma^2_j) \) to concentrate near 1 will centre the model near the \(g \)-prior. Placing a further prior on \(\tau^2 \) will replicate the mixtures of \(g \)-priors that were studied by Liang et al. (2008).

Mixing over a further prior \(p(\Lambda) \), however, will lead to even more flexible mixtures of \(g \)-priors. In particular, the classical \(g \)-prior prefers coefficient vectors that line up with the principal components, and further mixing over local variance components helps to make the model robust against this assumption.

Even the PCR solution can be chosen as an approximate centring model by selecting a prior \(p(\lambda^2_j) \) such that \(p(\kappa_j) \) concentrates simultaneously near 0 and 1. For example, if \(\tau^2 = 1 \) and \(\lambda^2_j \) follows an inverted beta (or beta prime) distribution \(IB(\frac{1}{2}, \frac{1}{2}) \), then \(\kappa_j \) will have a \(Be(\frac{1}{2}, \frac{1}{2}) \) prior, whose density function is unbounded both at 0 and at 1 as required. Marginally this leads to a horseshoe prior for \(\alpha_j \) (Carvalho et al., 2010).

PLS, in contrast, cannot be interpreted in this framework. To see this, observe that the shrinkage weights are identified with the prior variance components via \(\kappa_j = \tau^2 \lambda^2_j d^2_j = \frac{\tau^2 \lambda^2_j d^2_j}{1 + \tau^2 \lambda^2_j d^2_j} \).

Under PLS, some of the shrinkage weights \(\kappa_j^{PLS} \) may be larger than 1. Such weights cannot arise from a valid (non-negative) configuration of \(\lambda^2_j \) and \(\tau^2 \). Therefore, PLS cannot be the optimal solution under any prior that is expressible as a global–local scale mixture of normal distributions.

6.3 When should the full Bayesian model work better?: some intuition and examples

RR, PCR and PLS are all operationally similar. They bias the coefficient vector away from directions in which the predictors have low sampling variance—or, equivalently, away from the ‘least important’ principal components of \(X \). This leads to a favourable bias–variance trade-off in the performance of the resulting estimator. The \(g \)-prior and mixtures of \(g \)-priors, in contrast, shrink along all eigendirections equally, and usually not by very much.

Neither of these approaches need work well. When the underlying regression signal is ‘eigensparse’—i.e. when only some of the linear combinations of \(\beta_j \)s given by \(W \) are meaningful for predicting \(y \)—then we should shrink different components of \(\hat{\alpha} \) by different amounts. This makes the \(g \)-prior inappropriate.

Yet, as many previous researchers have noted, there is no logical reason that \(y \) cannot be strongly associated with the low variance principal components of \(X \). RR and PCR will both do poorly in these situations: RR will necessarily shrink more along low variance directions, whereas PCR must include all the higher variance directions \((j < K)\) to include a lower variance direction \((K)\).

The intuition behind the fully Bayes model (16) is that the shrinkage weights \(\kappa_j \) should indeed be unequal, but that they can be learned from the data and need not be monotonic in \(d^2_j \). The fully Bayes shrinkage weights, moreover, will depend not merely on \(X \). They will also depend non-linearly on \(y \), and on each other through their mutual dependence on \(\tau^2 \).

Consider three illustrative examples. Although there are many options to explore by using the results of previous sections, in all cases we have assumed for illustration that \(\tau^2 \sim IB(\frac{1}{2}, \frac{1}{2}) \).
and that $\lambda_j^2 \sim IB(\frac{1}{2}, \frac{1}{2})$, thereby specifying a geometric Meixner process prior for α (see Section 3.3).

First, we analysed the data from Fearn (1983), consisting of 24 samples of ground wheat. The response variable is the protein concentration in the wheat, whereas the predictors (L1–L6) are measurements of the samples’ reflection of near infrared radiation (R), measured at six wavelengths between 1680 and 2310 nm. The predictors are referred to as ‘log-values’, since they are measured on a log$(1/R)$-scale. The goal is to find a linear combination of log-values that predicts protein concentration. Both the response and the predictors were centred and rescaled to have variance 1.

The log-values are highly multicollinear, with the smallest pairwise correlation being 0.925. Despite the fact that RR is intended for just these multicollinear situations, here it performs quite poorly. As Fearn (1983) explained, this happens because the first principal component places nearly equal weight on all six log-values (Table 2). The variation that is described by this component—essentially the sample average of the log-values—is due mainly to differences in particle size. It carries little information about protein content and yet is prefentially treated

Predictor	Results for the following principal components:					
	1	2	3	4	5	6
L1	0.411	0.213	0.265	-0.353	0.422	0.642
L2	0.410	0.342	-0.446	-0.079	0.465	-0.542
L3	0.411	0.266	-0.367	-0.209	-0.743	0.173
L4	0.411	-0.028	0.731	-0.127	-0.221	-0.481
L5	0.396	-0.874	-0.242	-0.126	0.067	0.023
L6	0.411	0.05	0.05	0.891	0.013	0.182
Variance	5.868	0.101	0.019	0.012	<0.001	<0.001

Table 2. The six principal component variances and loadings for the wheat protein concentration data

Component	α	$\hat{\alpha}$	D
1	-0.10	-0.11	91.83
2	-0.02	-0.50	1.41
...			
11	0.42	1.36	0.98
12	12.10	12.16	0.91
13	0.04	0.13	0.85
...			
19	0.39	-1.35	0.60
20	0.00	-1.87	0.58

Table 3. Subset of the true orthogonalized coefficient vector, least squares estimate $\hat{\alpha}$ and eigenvalues for example 3, where X is a five-factor model
as the ‘most important’ predictor by the ridge estimator. Contrasting log-values are associated with ‘less important’ principal components, and yet these contrasts—mostly the second, third and fourth—are far more useful for predicting protein concentration. RR shrinks these components more aggressively than the other methods. Also observe the large amount of uncertainty surrounding the higher order shrinkage factors.

Second, we analysed data on the softening temperature y of $n = 99$ ash samples originating from different biological sources. The predictor matrix comprises $p = 16$ observed mass concentrations for the ash samples’ constituent molecules. The measurements are highly multicollinear,

![Fig. 1. Comparison on three data sets in terms of how much the four methods shrink each principal component (\(\xi\), posterior means and 75% credible intervals under the fully Bayesian model; \(\cdots\), RR; \(\cdots\), PLS; \(\cdots\), PCR): (a) wheat data; (b) ash data; (c) synthetic factor data]
with the eigenvalues of the correlation matrix for X spanning 10 orders of magnitude. The data are available in the R package chemometrics and have been centred and scaled.

Finally, we analysed synthetic data where X corresponds to a factor model, i.e. each row x'_i satisfies

$$x_i = B f_i + \xi_i,$$

where the loadings matrix B is $p \times k$, $f_i \sim N(0, I)$ is $k \times 1$, $\xi_i \sim N(0, \psi I)$ is $p \times 1$ and $k < p$. The predictors that arise from this structure will exhibit multicollinearity and, when ψ is small compared with the entries in B, this multicollinearity will be very pronounced. In a factor model, moreover, it need not be that y will be associated most strongly with the high variance principal components of X.

We generated data where $p = 20$, $n = 100$, $k = 5$ and $\psi = 0.1$, with all the entries of B set to 1. The resulting coefficient vector, least squares estimate and eigenvalues D are excerpted in Table 3. Principal component 12 is clearly the outlier: it is a strong predictor of y, and yet its corresponding variance is two orders of magnitude smaller than the largest variance.

Fig. 1 compares the shrinkage structures of RR, PCR, PLS and the Bayesian model for all three of these data sets. The components are ordered from left to right along the x-axis from highest variance 1 to lowest variance p, whereas the shrinkage coefficients κ (equation (15)) are along the y-axis. The tuning parameters for the non-Bayesian methods were chosen by cross-validation.

In all three cases, there appears to be a tendency for both PCR and RR to overshrink coefficients corresponding to low variance eigendirections. On the ash data set, components 7 and 9 seem to be important, whereas, for the factor model, component 12 is known to be the most important. Yet all are shrunk nearly to 0 by RR and PCR. For the sake of variance reduction, too much bias is introduced.

PLS, in contrast, can identify important low variance components. Yet it does so by including many other unimportant low variance components. For the sake of bias reduction, too much variance is introduced.

The fully Bayesian model seems to blend the best of both these techniques. It can successfully pick out important coefficients corresponding to low variance eigendirections. Yet, at the same time, it can squelch the other unimportant components. Intuitively, this combination should make for a favourable bias–variance trade-off in larger problems.

7. Regression when $p > n$

7.1. Generalization to large p cases

Suppose now that the design matrix X is of rank $r < p$ and has singular value decomposition $X = U D W'$ with $D = \text{diag}(d_1, \ldots, d_r)$, again ordered from largest d_1 to smallest d_r. The approach of the previous section works just as before, with no essential modification:

$$(\hat{\alpha} | \sigma^2) \sim N(\alpha, \sigma^2 D^{-2}),$$

$$(\alpha | \sigma^2, \tau^2, \Lambda) \sim N(0, \sigma^2 \tau^2 \Lambda),$$

$$\lambda_j^2 \sim p(\lambda_j^2),$$

$$\sigma^2, \tau^2 \sim p(\sigma^2, \tau^2),$$

where $\alpha = W' \beta$ and $\hat{\alpha}$ is the corresponding OLS estimate. Instead of a p-dimensional vector to estimate, we now have an r-dimensional vector. Moreover, because we have orthogonalized the coefficients, the elements of α are conditionally independent in the posterior distribution,
given τ^2 and σ^2. We are faced with a simple normal means problem, with the only complication being that the singular values d_j enter the likelihood.

This approach is also related to the work of Maruyama and George (2010), who proposed a modification of the standard g-prior (Zellner, 1986) for use in Bayesian variable selection when $p > n$. Suppose that

$$p(\beta) = \prod_{j=1}^{r} p_j(w_j^T \beta | g, \sigma^2).$$

Each $p_j(w_j^T \beta | g, \sigma^2)$ is a normal density,

$$N\left\{ w_j^T \beta | 0, \frac{\sigma^2}{d_j^2} f_j (1 + g) - \frac{\sigma^2}{d_j^2} \right\}$$

where w_j is the jth right-singular vector of X, and where $f_j > 1$ is necessary to ensure positive definiteness.

The seemingly strange form of density (18) harks back to Strawderman (1971). Structurally, it is essentially the same prior considered above, with a slight modification made to ensure that the marginal distribution $p(y)$ is analytically convenient (see section 4.7.10 of Berger (1985)). Maruyama and George (2010) recommended mixing over a prior for g while fixing $f_j = d_j^2 / d_r^2$ in density (18). This approximately corresponds to a similar fixed choice for the λ_j^2's in equation (16).

Under this prior, there is a closed form expression for the Bayes factor between any two submodels of the full p-variable model. This allows us to perform full Bayesian model selection even when $p > n$.

Our proposal is an alternative generalization that is appropriate for pure shrinkage solutions: one that incorporates additional mixing over local variances λ_j^2. If we treat W as the canonical pseudoinverse that maps back to the original co-ordinate system, then the implied prior for $\beta = W \alpha$ is a singular normal distribution:

$$(\beta | \Lambda, \tau^2, \sigma^2) \sim N(0, \sigma^2 \tau^2 W \Lambda W').$$

To see the connection with the g-prior more explicitly, suppose that $\lambda_j^2 = d_j^{-2}$ and that $n > p$, such that X is of full column rank. It is easily verified that $W D^{-2} W' = (X'X)^{-1}$, leading to the original g-prior with $g \equiv \tau^2$. Other researchers have considered the same generalization, but with simple conjugate priors for λ_j^2—e.g. Clyde et al. (1996), Denison and George (2000) and West (2003). Our approach differs in our emphasis placed on the choice of prior for λ_j^2, for which the developments earlier in the paper are clearly relevant.

Under this model, the (conditional) posterior mean estimator for α_j is, just as before, given by

$$\frac{\tau^2 \lambda_j^2 d_j^2}{1 + \tau^2 \lambda_j^2 d_j^2} \hat{\alpha}_j,$$

which is a generalized Bayesian version of the classic ridge estimator.

7.2. Assessing out-of-sample predictive performance

In the following simulation studies, we investigate the performance of the Bayesian model that was proposed above. We use the horseshoe prior, whereby τ and each λ_j receive independent half-Cauchy priors. We now sketch a brief rationale for this choice. Intuitively, the vectors $\{w_j\}$ can be thought of as contrasts. A nice ‘default’ Bayesian model would express the prior belief
that certain contrasts of the β-sequence will be strong predictors of y, and that some will be weak predictors. The horseshoe prior does just this: it will shrink most α_js very strongly, as the posterior mass for τ tends to concentrate near zero. Yet it will leave unshrunk those α_js corresponding to contrasts that predict y well—even, it is to be hoped, those that correspond to low variance principal components—since the heavy tails of the half-Cauchy prior will allow certain λ_js to be quite large.

As test cases, we used the following seven data sets, all of which had more predictors than observations. Only one of the seven data sets is simulated; the other six are from chemometrics or genomics. All are available on request from the authors, and the six real data sets are available from the R packages pls, chemometrics and mixOmics:

(a) factor (the only simulated data set considered)—both X and y were generated jointly from a standard Bayesian factor model, with y loading most heavily on the lowest variance factors;
(b) nutrimouse—observations of 40 mice where hepatic fatty acid concentrations are regressed on the expression of 120 potentially relevant genes measured in liver cells;
(c) cereal—chemometric observations of 15 cereal molecules where starch content is regressed on near infrared spectra at 145 wavelengths;
(d) yarn—samples of 28 polyethylene terephthalate yarns, where the density of the yarn sample is regressed on measurements of near infrared spectra at 268 wavelengths;
(e) gasoline—octane numbers of 60 gasoline samples along with near infrared spectra at 401 wavelengths;
(f) multidrug—the X-matrix comprises observations of the activity of 853 drugs on 60 different human cell lines, expressed as the concentration at which each drug leads to a 50% inhibition of growth for each cell line; the y-variable is the measured expression of ABC3A (an adenosine triphosphate binding cassette transporter) in each cell line;
(g) liver—the X-matrix contains the expression scores for 3116 genes in 64 rat subjects; the y-variable is the cholesterol concentration in the liver.

We compare the Bayesian model with the three basic techniques (PLS, RR and PCR), along with a new technique called sparse PLS (Chun and Keleş, 2010) aimed at simultaneous dimension reduction and variable selection. This final method is implemented in the R package spls.

To test these five methods, we split each of the seven data sets into training and test samples, with 75% of the observations used for training. We then fit each model by using the training data, with tuning parameters for the non-Bayesian methods chosen by tenfold cross-validation on the training data alone. We then compared out-of-sample predictive performance on the hold-out data, measured by sum of squared prediction errors. In each case the y-variable was centred, and the X-variables were centred and scaled.

All our results in Table 4 represent the average sum of squared prediction error incurred over 50 different training–test splits. There are several interesting things to note here. Firstly, the Bayes method seems to be the overall winner. It was the outright best on four data sets, tied for best on one data set and was second best on the other two data sets. Surprisingly, the next-best method seems to be a venerable classic: RR. The newest method, sparse PLS, was either worst or second worst on all seven data sets.

The two cases where the Bayesian method offered the biggest improvements—the factor data and the yarn data—are also instructive. In these cases, the y-variable was most strongly associated with smaller variance contrasts w_j or, in other words, those contrasts which are associated with smaller singular values d_j. Much as we saw in the previous section, classic methods like RR and PCR perform poorly when this is so, whereas the Bayesian model is quite robust.
Table 4. Average out-of-sample predictive error on 50 different training–test splits for seven data sets where \(p > n \)

Data set	n	p	Bayes	PLS	PCR	RR	Sparse PLS
factor	50	100	45.8	66.9	69.2	358	97.6
nutrimouse	40	120	394	428	467	394	462
cereal	15	145	45.2	46.9	46.3	42.2	46.5
yarn	28	268	2.63	6.89	20.2	4.18	53.8
gasoline	60	401	0.82	0.87	0.93	0.72	1.04
multidrug	60	853	139	152	173	143	160
liver	64	3116	1340	1457	1475	1407	1470

†Bayes: the local shrinkage model with horseshoe priors. The smallest entry in each row is in italics.

In other cases (notably the cereal, gasoline and nutrimouse data sets), the signal-to-noise ratio seems to be either so favourable or so poor that all the methods do almost equally well. This suggests that the extra variance that is induced by mixing over local \(\lambda_j^2 \)'s does not pose difficulty for the Bayesian model.

8. Final remarks

The study of oracle properties provides a unifying framework in the classical literature for the study of regularized regression, but no such framework exists for Bayesians. In this paper, we have offered a few elements that might form the beginnings of such a framework. By identifying \(\beta \) (or \(\alpha \)) with the increments of a discretely observed Lévy process, we have embedded the finite dimensional problem in a suitable infinite dimensional generalization. This provides a natural setting in which the dimension \(p \) grows without bound. In particular, theorem 1 establishes mappings between Lévy processes, penalty functions, priors and scale mixtures of well-known distributions. This offers a convenient way of generating infinitely divisible probability distributions with known probabilistic structure, giving Bayesian statisticians a much larger toolbox for building shrinkage models like the kind explored in Section 7.

Appendix A: Proofs of main result

A.1. Proof of theorem 1

For part (a) of theorem 1, since \(\psi(t) \) is totally monotone, it has derivatives of all orders and satisfies

\[
(-1)^n \psi^{(n)}(t) \leq 0.
\]

Furthermore, since \(\lim_{t \to 0} \psi(t) = 0 \), then by Bernstein’s theorem \(\psi(t) \) corresponds to the Laplace exponent of some subordinator \(T(s) \) (see, for example, Cont and Tankov (2004), chapter 4), i.e. there is a subordinator \(T(s) \) with Lévy measure \(\mu(dx) \) whose moment-generating function can be written as

\[
M_T(t) = E\left[\exp\{-t \, T(s)\}\right] = \exp\{-s \, \psi(t)\},
\]

where \(\psi(t) \) is called the Laplace exponent and is given by its Lévy representation in equation (6).

We recognize the mixture-of-normals representation in part (b) as follows. Write the expectation in equation (19), evaluated at \(t = \beta_j^2/2 \), as
\[E[\exp\{-tT(s)\}] = \int_0^\infty \exp\{-\beta_j^2 T(s)/2\} p[T(s)] \, dT(s) \]
\[= \int_0^\infty \sqrt{T(s)} \exp\{-\beta_j^2 T(s)/2\} T(s)^{-1/2} p[T(s)] \, dT(s), \]

where \(p(T(s)) \) is the marginal density of the subordinator \(T \) observed at time \(s \). The expression \(T(s)^{-1/2} p(T(s)) \) is thus clearly proportional to a prior density for the precision \(T \) in a Gaussian mixture for \(\beta_j \).

This gives an explicit representation of the mixing density as the power-tilted density of the subordinator when \(\alpha = 2 \).

A.2. Proof of theorem 2

By definition, \(p(\beta) = \int_0^\infty \exp(-T\beta^2/2) p(T) \, dT \). Therefore

\[m(y) = \int p(y - \beta) \int_0^\infty \exp(-T\beta^2/2) p(T) \, dT \, d\beta. \]

The posterior mean is given by

\[E(\beta|y) = \frac{1}{m(y)} \int p(y - \beta) \beta \exp(-T\beta^2/2) p(T) \, dT \, d\beta \]
\[= \frac{1}{m(y)} \int p(y - \beta) d\{\exp(-T\beta^2/2)\} T^{-1} p(T) \, dT \, d\beta. \]

Using integration by parts yields

\[E(\beta|y) = \frac{E(T^{-1})}{m(y)} \int \frac{\partial}{\partial y} p(y - \beta) \exp(-T\beta^2/2) g^*(T) \, dT \, d\beta \]
\[= E(T^{-1}) \frac{m^*(y)}{m(y)} \frac{\partial}{\partial y} \ln\{m^*(y)\}. \]

References

Aït-Sahalia, Y. and Jacod, J. (2009) Estimating the degree of activity of jumps in high frequency data. *Ann. Statist.*, 37, 2202–2244.

Armagan, A., Dunson, D. and Lee, J. (2010) Bayesian generalized double Pareto shrinkage. *Technical Report*. Department of Statistical Science, Duke University, Durham.

Bae, K. and Mallick, B. (2004) Gene selection using a two-level hierarchical Bayesian model. *Bioinformatics*, 20, 3423–3430.

Barndorff-Nielsen, O. (1997) Normal inverse Gaussian distributions and stochastic volatility modeling. *Scand. J. Statist.*, 24, 1–13.

Barndorff-Nielsen, O., Kent, J. and Sorensen, M. (1982) Normal variance-mean mixtures and z distributions. *Int. Statist. Rev.*, 50, 145–159.

Barndorff-Nielsen, O. E. and Shephard, N. (2001) Normal modified stable processes. *Technical Report 2001-W6*. Nuffield College, University of Oxford, Oxford.

Berger, J. O. (1985) *Statistical Decision Theory and Bayesian Analysis*, 2nd edn. New York: Springer.

Berger, J. O. and Delampady, M. (1987) Testing precise hypotheses. *Statist. Sci.*, 2, 317–352.

Bondesson, L. (1990) Generalized gamma convolutions and complete monotonicity. *Probab. Theor. Reltd Flds*, 85, 181–194.

Candes, E. and Tao, T. (2007) The Dantzig selector: statistical estimation when \(p \) is much larger than \(n \). *Ann. Statist.*, 35, 2313–2351.

Caron, F. and Doucet, A. (2008) Sparse Bayesian nonparametric regression. In *Proc. 25th Int. Conf. Machine Learning*, pp. 88–95. New York: Association for Computing Machinery Press.

Carvalho, C. M., Polson, N. G. and Scott, J. G. (2010) The horseshoe estimator for sparse signals. *Biometrika*, 97, 465–480.

Chun, H. and Keles, S. (2010) Sparse partial least squares regression for simultaneous dimension reduction and variable selection. *J. R. Statist. Soc. B*, 72, 3–25.

Clyde, M., Desimone, H. and Parmigiani, G. (1996) Prediction via orthogonalized model mixing. *J. Am. Statist. Ass.*, 91, 1197–1208.

Clyde, M. and Worpel, R. (2011) Discussion on ‘Shrink globally, act locally: sparse Bayesian regularization and prediction’ (by N. G. Polson and J. G. Scott). In *Bayesian Statistics 9* (eds J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith and M. West). Oxford: Oxford University Press.
Cont, R. and Tankov, P. (2004) Financial Modelling with Jump Processes. Boca Raton: Chapman and Hall–CRC.

Denison, D. and George, E. (2000) Bayesian prediction using adaptive ridge estimators. Technical Report. Imperial College, London.

Efron, B. (2009) Empirical Bayes estimates for large-scale prediction problems. J. Am. Statist. Ass., 104, 1015–1028.

Fan, J. and Li, R. (2001) Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Statist. Ass., 96, 1348–1360.

Fearn, T. (1983) A misuse of ridge regression in the calibration of a near infrared reflectance instrument. Appl. Statist., 32, 73–79.

Figueiredo, M. (2003) Adaptive sparseness for supervised learning. IEEE Trans. Patt. Anal. Mach. Intell., 25, 1150–1159.

Fisher, R. A. (1935) The mathematical distributions used in the common tests of significance. Econometrica, 3, 353–365.

Frank, I. and Friedman, J. H. (1993) A statistical view of some chemometrics regression tools (with discussion). Technometrics, 35, 109–135.

George, E. I. and Foster, D. P. (2000) Calibration and empirical Bayes variable selection. Biometrika, 87, 731–747.

Grigelionis, B. (2001) Generalized Meixner type. Lith. Math. J., 41, 33–41.

Grigelionis, B. (2001) Processes of Meixner type. Lith. Math. J., 41, 239–251.

Hans, C. M. (2009) Bayesian lasso regression. Biometrika, 96, 835–845.

Kingman, J. F. C. (1975) Random discrete distributions (with discussion). J. R. Statist. Soc. B, 37, 1–22.

Liang, F., Paulo, R., Molina, G., Clyde, M. and Berger, J. (2008) Mixtures of g-priors for Bayesian variable selection. J. Am. Statist. Ass., 103, 410–423.

Madan, D. and Yor, M. (2006) CGMY and Meixner subordinators are absolutely continuous with respect to one sided stable subordinators. Technical Report arXiv:math/0601173. University of Maryland, College Park.

Maruyama, Y. and George, E. I. (2010) gBF: A fully Bayes factor with a generalized g-prior. Technical Report arXiv:0801.4410v2. University of Tokyo, Tokyo.

Marseliez, C. (1975) Approximate non-Gaussian filtering with linear state and observation relations. IEEE Trans. Autom. Control, 20, 107–110.

Mitchell, A. F. S. (1994) A note on posterior moments for a normal mean with double-exponential prior. J. R. Statist. Soc. B, 56, 605–610; correction, 57 (1995), 471.

Park, T. and Casella, G. (2008) The Bayesian lasso. J. Am. Statist. Ass., 103, 681–686.

Pericchi, L. R. and Smith, A. F. M. (1992) Exact and approximate posterior moments for a normal location parameter. J. R. Statist. Soc. B, 54, 793–804.

Polson, N. G. (1991) A representation of the posterior mean for a location model. J. R. Statist. Soc. B, 53, 605–610; correction, 57 (1995), 471.

Polson, N. G. and Scott, J. G. (2010) Local shrinkage rules. Technical Report. Department of Statistical Science, Duke University, Durham.

Polson, N. G. and Scott, J. G. (2011) Shrink globally, act locally: sparse Bayesian regularization and prediction. Statistical Sci., 26, 287–301.

Polson, N. G. and Scott, J. G. (2010) Large-scale simultaneous testing with hypergeometric inverted-beta priors. Technical Report. University of Texas at Austin, Austin. (Available from http://arxiv.org/abs/1010.5223.)

R Development Core Team (2009) R: a Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.

Scott, J. G. and Berger, J. O. (2010) Bayes and empirical-Bayes multiplicity adjustment in the variable-selection problem. Ann. Statist., 38, 2587–2619.

Strawderman, W. (1971) Proper Bayes minimax estimators of the multivariate normal mean. Ann. Statist., 42, 385–388.

West, M. (1987) On scale mixtures of normal distributions. Biometrika, 74, 646–648.

West, M. (2003) Bayesian factor regression models in the “large p, small n” paradigm. In Bayesian Statistics 7 (eds J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith and M. West), pp. 723–732. Oxford: Oxford University Press.

Wolpert, R. L., Clyde, M. A. and Tu, C. (2010) Stochastic expansions using continuous dictionaries: Lévy Adaptive Regression Kernels. Technical Report 2006-08. Department of Statistical Science, Duke University, Durham.

Zellner, A. (1986) On assessing prior distributions and Bayesian regression analysis with g-prior distributions. In Bayesian Inference and Decision Techniques: Essays in Honor of Bruno de Finetti (eds P. K. Goel and A. Zellner), pp. 233–243. Amsterdam: Elsevier.

Zou, H. and Li, R. (2008) One-step sparse estimates in nonconcave penalized likelihood models. Ann. Statist., 36, 1509–1533.