Cryopreservation Decreases Receptor PD-1 and Ligand PD-L1 Coinhibitory Expression on Peripheral Blood Mononuclear Cell-Derived T Cells and Monocytes

D. E. Campbell,* N. B. Tustin, E. Riedel, R. Tustin III, J. Taylor, J. Murray, and S. D. Douglas

*Corresponding author. Mailing address: Division of Allergy and Immunology, The Children’s Hospital of Philadelphia, 34th St. & Civic Center Blvd., Philadelphia, PA 19104. Phone: (215) 590-2353. Fax: (215) 590-3044. E-mail: campbelld@email.chop.edu.

The Joseph Stokes Jr. Research Institute, the Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania

Received 26 June 2009/Returned for modification 29 July 2009/Accepted 27 August 2009

The B7-CD28 immunoglobulin superfamily of costimulatory and coinhibitory ligands and their cell receptors play a critical role in modulating immune responses. Imbalances in these immune regulatory signals occur in pathological conditions characterized by chronic antigenic stimulation. Clinical studies often rely on the use of cryopreserved peripheral blood mononuclear cells (PBMC) to evaluate cellular immune responses. The impact of cryopreservation on these coinhibitory ligands and their cell receptors is unknown. In our studies, cryopreservation significantly reduced the expression of both PD-1 and PD-L1 on PBMC-derived CD3+/CD8+ T cells and CD45+/CD14+ monocytes obtained from adult control subjects. Blockade of PD-1, PD-L1, and PD-L2 using both freshly isolated and cryopreserved PBMC led to higher levels of phytohemagglutinin (PHA) and Candida-induced gamma interferon (IFN-γ), interleukin-2 (IL-2), and tumor necrosis factor alpha (TNF-α) with no effect on IL-10 production. Coinhibitory signaling blockade of freshly isolated, PHA-stimulated PBMC from normal adult controls and human immunodeficiency virus (HIV)-infected subjects led to increased production of IL-4 and IL-5. Candida-stimulated PBMC preferentially induced IFN-γ and TNF-α production, with reduced production of IL-2 and IL-10. This is in contrast to high levels of IFN-γ, IL-2, and TNF-α production with PHA-stimulated cells. The effects of coinhibitory blockade on PHA and Candida-induced lymphoproliferation were varied, with freshly isolated PBMC from adult control subjects and HIV-infected patients yielding higher levels of lymphoproliferation in response to PD-1/PD-L1 blockade. Immune function studies employing cryopreserved cells may lead to increased T-cell effector cytolytic and regulatory immune responses.

PD-1 is a member of the CD28/CTLA-4 subfamily of the immunoglobulin (Ig) superfamily. Upon interaction with its natural ligands (PD-L1 and PD-L2, members of the B7 family) expressed on T cells, B cells, and macrophages/dendritic cells, as well as viral-infected target cells, PD-1 abrogates the effector function of both immunoregulatory CD4 T cells and TH-1 cytolytic CD8 T cells while promoting the induction of TH-2 cytokines, such as interleukin-10 (IL-10) (7). Blockade of these interactions with antibodies directed against PD-1 or its ligands restores TH-1 immunoregulatory and T-cell cytolytic functions (1, 5, 8, 16). These coinhibitory receptors and ligands, along with their costimulatory counterparts (CD28/CD80), have a regulatory role in immune responses (13). Pathological conditions characterized by chronic antigenic stimulation elevate coinhibitory signaling and antigen-specific anergy (4, 15). Clinical studies often rely on cryopreserved cells in order to monitor immune function. The possible alteration of coinhibitory receptor/ligand expression on cryopreserved T cells is suggested by recent studies that compared levels of PD-1 expression on T-cell subsets as improved markers of human immunodeficiency virus (HIV) disease progression using fresh versus cryopreserved samples (9). PD-1 expression on T-cell subsets using freshly prepared samples had a greater predictive value for HIV disease progression than CD38 expression on T cells or viral load, a correlation that was lost using cryopreserved samples. The downregulating effect of cryopreservation on other T-cell markers, such as CCR5 and CD62L, has also been described (6). This study describes the impact of cryopreservation on PD-1/PD-L1 expression on T-cell subsets and monocytes in a cohort of adult control donors. In addition, the influence of PD-1/PD-L1/PD-L2 blockade on mitogen- and antigen-induced TH-1/TH-2 cytokine production and lymphoproliferation is evaluated with adult control subjects and with a cohort of HIV-infected adult subjects on maintenance antiretroviral therapy.

MATERIALS AND METHODS

Preparation and cryopreservation of PBMC. Peripheral whole-blood samples collected in K2 EDTA were obtained from 10 consenting adult control subjects (three males and seven females, ages 19 to 49) and from 10 consenting HIV-infected adult subjects on maintenance antiretroviral therapy who are followed at the University of Pennsylvania HIV Clinic. Because blood samples from HIV-infected subjects arrived in our laboratory in the late afternoon, samples from both HIV-infected subjects and healthy adult controls were held overnight at room temperature for processing the next day. Peripheral blood mononuclear cells (PBMC) were isolated by routine Ficoll-Hypaque density gradient sedimentation. In addition, the evaluation of freshly prepared PBMC, cells were cryopreserved and later thawed for evaluation using methods previously described (18).

Flow cytometry immunophenotyping. Three-color flow cytometry was used to evaluate PD-1 and PD-L1 expression on CD3/CD8- and CD3+/CD8+ T lymphocytes and CD45+/CD14+ monocytes using freshly prepared and cryopreserved PBMC from adult control subjects. The directly conjugated murine monoclonal antibodies used included allophycocyanin (APC)-conjugated anti-CD3,
peridinin chlorophyll protein (PerCP)-conjugated anti-CD8, PerCP-conjugated anti-CD45, APC-conjugated anti-CD14, and phycoerythrin (PE)-conjugated murine isotype control antibody (BD PharMingen, San Diego, CA). PE-conjugated anti-CD3 and anti-PD-L1 antibodies were obtained from eBiosciences, San Diego, CA. Sterile and azide-free antibodies prepared against PD-1, PD-L1, and PD-L2 (eBiosciences, San Diego, CA) assay was used to measure TH-1/TH-2 cytokines in culture fluids of PHA and Candida-stimulated PBMC at multiple time points (24, 48, and 72 h poststimulation). Fresh and cryopreserved whole-blood-derived PBMC obtained from 10 consenting adult control subjects and 10 consenting HIV-infected subjects (obtained through the University of Pennsylvania HIV Clinic) were cultured in the presence and absence of combinations of monoclonal antibodies (eBioscience, Inc., San Diego, CA) directed against the coinhibitory receptor (PD-1) and its ligands (PD-L1 and PD-L2), as well as costimulatory receptors (CD28 and CD40). PBMC were cultured at a cell density of 1×10^6/ml in RPMI 1640 media containing 10% pooled normal human AB sera at 37°C under 5% CO2. Aliquots (70 µl) of culture supernatants were removed from 1-ml cultures at 24, 48, and 72 h and frozen at −70°C until evaluated for TH-1/TH-2 cytokines by CBA assay according to the manufacturer's instructions.

Lymphoproliferative responses in the presence and absence of coinhibitory antibodies. Lymphoproliferative responses to PHA and *Candida* were evaluated using freshly isolated and cryopreserved whole-blood-derived PBMC obtained from consenting healthy adult control subjects and HIV-infected adults followed at the University of Pennsylvania HIV Clinic. Cells were maintained in culture for 6 days (using suboptimal PHA concentrations) in the presence and absence of coinhibitory antibodies directed against PD-1, PD-L1, and PD-L2 (eBiosciences, San Diego, CA). Cells (1×10^6 cells in 0.2 ml RPMI containing 10% pooled normal human AB sera) were cultured in triplicate at 37°C under 5% CO2 for 6 days in the presence and absence of all three antibodies, each having a final concentration of 1 µg/ml. The cultures were accumulated for CD3 expression on unstimulated and PHA-stimulated PBMC-derived CD3 T cells. Freshly prepared PBMC from an adult control were cultured for 3 days with and without PHA (20 µg/ml final concentration).

Blocking Anti-CD3 Antibody (µg/ml)

![Blocking Anti-CD3 Antibody](http://cvi.asm.org/)

FIG. 2. Flow cytometric evaluation of competitive binding of various concentrations of unlabeled functional anti-CD3 antibodies with a constant concentration of PE-conjugated anti-CD3 antibodies for CD3 receptors on 2×10^6 PHA-stimulated PBMC.

TABLE 1. Influence of cryopreservation on PD-1/PD-L1 expression on PBMC-derived T-cell subsets and monocytes obtained from healthy adult control subjects

T cell or monocyte	Expression	Fresh	Cryo	P value
CD3+/CD4+/PD-1+	4.2 ± 1.8	3.6 ± 1.0	NS	
CD3+/CD4+/PD-L1+	10.1 ± 3.9	9.0 ± 3.3	NS	
CD3+/CD8+/PD-1+	7.4 ± 4.1	2.6 ± 1.5	0.001	
CD3+/CD8+/PD-L1+	5.6 ± 3.6	1.3 ± 0.7	0.006	
CD45+/CD14+/PD-1+	3.0 ± 1.5	0.5 ± 0.3	0.003	
CD45+/CD14+/PD-L1+	7.0 ± 4.4	2.2 ± 1.3	0.007	

* All data, with the exception of the P values, represent mean ± 1 standard deviation of the percent positive cells. $n = 10$ for all analyses. Cryo, cryopreserved; NS, not significant.
were pulsed with 1 μCi of [3H]TdR during the last 6 hours of culture. The cells were harvested onto a 96-well plate and dried overnight. Radiolabeling was measured with a TopCount scintillation counter (PerkinElmer, Inc., Shelton, CT). Mean counts per minute (cpm) were recorded for resting, PHA-stimulated, and Candida-stimulated cultures, with data expressed as net cpm (mean stimulated cpm – mean resting cpm).

Statistical analyses. The statistical analyses of differences in the levels of PD-1/PD-L1 expression on T-cell subsets and monocytes, lymphoproliferative responses, and cytokine levels between the various treatment groups were performed by the Student two-tailed t test for paired observations using GraphPad Prism version 5.01 software (GraphPad Software, Inc., La Jolla, CA). The Student two-tailed t test for unpaired observations was used in the analyses of cytokine levels of control and HIV-infected subjects.

RESULTS

Effect of cryopreservation on T-cell and monocyte PD-1 and PD-L1 expression. Table 1 summarizes PD-1 and PD-L1 expression on fresh versus cryopreserved, whole-derived PBMC obtained from healthy adult controls. Cryopreservation had little effect on both PD-1 and PD-L1 cell surface expression on CD3+/CD4+ T helper cells. A significant reduction in the detection of both molecules, however, was observed with CD3+/CD8+ T cells and CD45+/CD14+ monocytes.

PBMC treatment	Cohort	10 Control subjects	Expression	P value	10 HIV-infected subjects	Expression	P value
Fresh	PHA, no PD-1	9.4 ± 8.1	<0.0001		13.1 ± 6.6	<0.001	
	PHA with PD-1	17.9 ± 9.0			24.3 ± 6.8		
	Candida, no PD-1	19.3 ± 8.9	NS		23.9 ± 16.1	NS	
	Candida with PD-1	18.9 ± 10.1			31.6 ± 23.5		
Cryopreserved	PHA, no PD-1	16.3 ± 7.3	NS		13.0 ± 4.6	NS	
	PHA with PD-1	17.9 ± 10.7			19.7 ± 10.5		
	Candida, no PD-1	10.7 ± 6.3	NS		10.4 ± 8.7	NS	
	Candida with PD-1	13.8 ± 6.2			9.6 ± 11.5		

* All values represent the mean ± 1 standard deviation of the net cpm (10^3). NS, not significant.

Titration of functional anti-PD-1 antibody. In order to assess the blocking capacity of various concentrations of unlabeled functional anti-PD-1 antibody to be used in the cytokine induction and lymphoproliferation assays, PBMCs prepared from an adult control subject were placed in culture for 3 days in the presence of optimal PHA concentrations. Under these conditions, the vast majority of T cells express PD-1 and PD-L1 as assessed by flow cytometry using PE-conjugated anti-PD-1 and anti-PD-L1 antibody (Fig. 1). Fig. 2 illustrates an inverse linear relationship between increasing concentrations of unlabeled functional anti-PD-1 antibody and cell binding of a constant amount of PE-labeled antibody cell binding. The maximum amount of unlabeled antibody tested (20 μg/ml and a 5.2-μg/ml final concentration) provided 72% inhibition of PE-labeled antibody binding. The concentration selected for use in the cytokine induction and lymphoproliferation assays was a 1-μg/ml final concentration, which provided approximately 60% inhibition of the probe antibody cell binding.

Effect of coinhibitory blockade on PHA and Candida-induced lymphoproliferation. The influence of antibody blockade of coinhibitory receptor/ligand interactions on PHA and Candida-stimulated cultures, with data expressed as net cpm (mean stimulated cpm – mean resting cpm). The Student two-tailed t test for unpaired observations was used in the analyses of cytokine levels of control and HIV-infected subjects.

![FIG. 3. TH-1/TH-2 cytokine levels in culture fluids of PHA-stimulated adult control PBMC with and without coinhibitory blockade.](http://cvi.asm.org/)
Candida-induced lymphoproliferation, as assessed by $[^3H]$TdR uptake, is summarized in Table 2. Blockade of coinhibitory interactions resulted in significantly higher proliferative responses to PHA using freshly isolated PBMC from adult control subjects and HIV-infected patients.

Effect of coinhibitory blockade on PHA and Candida-induced TH-1/TH-2 cytokine production. Fig. 3 to 6 summarize results obtained in the study of coinhibitory blockade on TH-1/TH-2 cytokine production by freshly isolated and cryopreserved PBMC from adult control subjects and HIV-infected patients. Coinhibitory blockade of freshly isolated and cryopreserved PBMC from normal adult controls and HIV-infected patients resulted in significant increases in both PHA and Candida-induced IFN-γ, IL-2, and TNF-α production. No increase in IL-10 production was observed. PHA-stimulated, freshly isolated PBMC from normal adult controls and HIV-infected patients yielded significant increases in IL-4 and IL-5 with coinhibitory blockade, in contrast to the effect on IL-10 production. Further, PHA-induced IL-5 production by PBMC from HIV-infected patients was significantly higher than that observed with normal adult controls with or without coinhibitory blockade. Candida stimulation of both freshly isolated and cryopreserved PBMC resulted in levels of IFN-γ and TNF-α production similar to that achieved with PHA. IL-2 and IL-10 production with Candida stimulation was significantly reduced compared to PHA.

DISCUSSION

The delineation of hematopoietic cell surface molecules has led to further investigations of the effects of in vitro manipulation of PBMC on regulatory and effector immune function (3, 9). The Ig superfamily of coinhibitory/costimulatory molecules, which are expressed on both lymphoid and antigen-
proliferative responses to PHA and served PBMC. Our study indicates a pattern of enhanced lym-
filtration is in keeping with our observations of enhanced IL-2 production following coinhibitory receptor/ligand blockade of PHA and Candida-stimulated PBMC. PD-1/PD-L1 blockade of PHA and Candida-stimulated PBMC consistently resulted in significant increases in the TH-1 cytokines IFN-γ, TNF-α, and IL-2, with no impact on IL-10 production. The observed insensitivity of IL-10 production to PD-1/PD-L1 blockade par-
allels previous observations of increased IL-10 production and elevated coinhibitory receptor/ligand expression with disease progression in HIV infection (14, 17). Our findings of levels of PHA-induced, PBMC-derived IL-4 and IL-5 production in HIV-infected subjects that are significantly higher than those in healthy adult controls (with or without PD-1/PD-L1 block-
ade; Fig. 6) support previous observations of elevated Ig E levels and eosinophilia in HIV-infected subjects (2, 11, 12). A comparison of mitogen- and antigen-induced lymphoprolifera-
tive responses and TH-1/TH-2 cytokine production in the presence and absence of coinhibitory signaling blockade may lead to an improved functional immune measure for monitoring HIV disease progression or response to antiviral therapy and is the subject of further study.

ACKNOWLEDGMENTS

Overall support for the International Maternal Pediatric Adolescent AIDS Clinical Trials Group (IMPAACT) was provided by the National Institute of Allergy and Infectious Diseases (NIAID) (U01 AI068632), the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), and the National Institute of Mental Health (NIMH) (AI068632). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. This work was supported by the Statistical and Data Analysis Center at Harvard School of Public Health, under the National Institute of Allergy and Infectious Diseases cooperative agreement number 5 U01 AI41110 with the Pediatric AIDS Clinical Trials Group (PACTG) and number 1 U01 AI068616 with the IMPAACT Group. Support of the sites was provided by the National Institute of Allergy and Infectious Diseases (NIAID), and the NICHD International and Domestic Pediatric and Maternal HIV Clinical Tri-
als Network was funded by NICHD (contract number N01-DK-9/001-HHSN27200800001C). This study was performed by the Children’s Hospital of Philadelphia IMPAACT Specialty Laboratory.

REFERENCES

1. Barber, D. L., E. J. Wherry, D. Masopust, B. Zhu, J. P. Allison, A. H. Sharpe, G. J. Freeman, and R. Ahmed. 2006. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439:682–687.
2. Becker, Y. 2004. The changes in the T helper 1 (Th1) and T helper 2 (Th2) cytokine balance during HIV-1 infection are indicative of an allergic re-
3. response to viral proteins that may be reversed by Th2 cytokine inhibitors and immune response modifiers—a review and hypothesis. Virus Genes 285:18–19.
4. Berhan, D., F. Mortari, S. C. DeRosa, and M. Roederer. 2003. Optimized lymphocyte isolation methods for analysis of chemokine receptor expression. J. Immunol. Methods. 279:199–207.
5. Blank, C. T., F. F. Gajewski, and A. Mackensen. 2005. Interaction of PD-L1 on tumor cells with PD-1 on tumor-specific T cells as a mechanism of immune evasion: implications for tumor immunotherapy. Cancer Immunol. Immunother. 54:307–314.
6. Brown, J. A., D. M. Dorfman, F.-R. Ma, E. L. Sullivan, O. Munoz, C. R. Wood, E. A. Greenfield, and G. J. Freeman. 2003. Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production. J. Immunol. 170:1257–1266.
7. Constantini, A., S. Mancini, S. Giuliodoro, L. Butini, C. M. Regnery, G. Silvestri, and M. Montroni. 2003. Effects of cryopreservation on lymphocyte immunophenotype and function. J. Immunol. Methods. 278:145–155.
8. Day, C. L., D. E. Kaufmann, P. Kiepiela, J. A. Brown, E. S. Moodley, S. Reddy, E. W. Mackey, J. D. Miller, A. J. Leslie, C. DePierres, Z. Mncube, J. Duraiswamy, B. Zhu, Q. Eichbaum, M. Alltfeld, E. J. Wherry, H. M. Coova-
dia, P. J. Goulder, P. Klenerman, R. Ahmed, G. J. Freeman, and B. D. Walker. 2006. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443:350–354.
9. Freeman, G. J., E. J. Wherry, R. Ahmed, and A. H. Sharpe. 2006. Reinvig-
ating exhausted HIV-specific T cells via PD-1/PD-1 ligand blockade. J. Exp. Med. 203:2223–2227.
10. Holm, M., F. O. Pettersson, and D. Kvale. 2008. PD-1 predicts CD4 loss rate in chronic HIV-1 infection better than HIV RNA and CD38 but not in cryopreserved samples. Curr. HIV Res. 6:49–58.
11. Kaufmann, D. E., and B. D. Walker. 2009. PD-1 and CTLA-4 inhibitory cosignaling pathways in HIV infection and the potential for therapeutic intervention. J. Immunol. 182:5891–5897.
12. Price, P., N. M. Keane, S. Lee, A. F. Y. Lim, E. J. McKinnon, and M. A. French. 2006. AT2 cytokine environment may not limit T1 responses in high-risk pregnancy. J. Reprod. Med. 51:243–248.
13. Price, P., N. M. Keane, S. Lee, A. F. Y. Lim, E. J. McKinnon, and M. A. French. 2006. AT2 cytokine environment may not limit T1 responses in high-risk pregnancy. J. Reprod. Med. 51:243–248.
14. Sharpe, A. H., and G. J. Freeman. 2002. The B7-CD28 superfamily. Nat. Rev. Immunol. 2:116–126.
15. Stylianou, E., P. Aukrust, D. Kvale, F. Muller, and S. S. Froland. 1999. IL-10
in HIV infection: increasing serum IL-10 levels with disease progression—
down-regulatory effect of potent anti-retroviral therapy. Clin. Exp. Immunol. 116:115–120.
15. Trabattoni, D., M. Saresella, M. Biasin, A. Boasso, L. Piacentini, P. Ferrante, H. Dong, R. Maserati, G. M. Shearer, L. Chen, and M. Clerici. 2003. B7–H1 is upregulated in HIV infection and is a novel surrogate marker of disease progression. Blood 101:2514–2520.
16. Trautmann, L., L. Janbazian, N. Chomont, A. E. Said, S. Gimmig, B. Bessette, M.-R. Boulaskell, E. Delwurt, H. Sepulveda, R. S. Balderas, J.-P. Routy, E. K. Haddad, and R.-P. Sekaly. 2006. Upregulation of PD-1 expression on CD8+ T cells leads to reversible immune dysfunction. Nat. Med. 12:1198–1202.
17. Wang, X., Z. Zhang, S. Zhang, J. Fu, J. Yan, Y. Jin, H. Wu, and F.-S. Wang. 2008. B7–H1 up-regulation impairs myeloid DC and correlated with disease progression in chronic HIV-1 infection. Eur. J. Immunol. 38:3226–3236.
18. Weinberg, A., L. Zhang, D. Brown, A. Erice, B. Polsky, M. S. Hirsch, S. Owens, and K. Lamb. 2000. Viability and functional activity of cryopreserved mononuclear cells. Clin. Diagn. Lab. Immunol. 7:714–716.