The critical point and the p-norm of A_s and C-matrices

Ludovick Bouthat*, Javad Mashreghi

Département de mathématiques et de statistique, Université Laval, Québec, QC, Canada, G1K 0A6

Abstract

The L-matrix $A_s = [1/(n+s)]$ was introduced in [1]. As a surprising property, we showed that its 2-norm is constant for $s \geq s_0$, where the critical point s_0 is unknown but relies in the interval $(1/4, 1/2)$. In this note, using some delicate calculations we sharpen this result by improving the upper and lower bounds of the interval surrounding s_0. Moreover, we show that the same property persists for the p-norm of A_s matrices. We also obtain the 2-norm of a family of C-matrices with lacunary sequences.

Keywords: Operator norm, sequence spaces, infinite matrices

2000 MSC: 15A60

1. Introduction

We encountered the L-matrices in studying the Hadamard multipliers in function spaces [2]. Characterizing $\mathcal{M}(X)$, the multiplier algebra of a Banach space X of analytic functions on the open unit disc \mathbb{D}, is a very important subject in various studies of function spaces, e.g., zero sets, invariant subspaces, and cyclic elements [3]. In [2], it is shown that $h(z) = \sum_{n=0}^{\infty} c_n z^n$ is a Hadamard multiplier for every superharmonically weighted Dirichlet Space

*Corresponding author

Email addresses: ludovick.bouthat.1@ulaval.ca (Ludovick Bouthat), javad.mashreghi@mat.ulaval.ca (Javad Mashreghi)
if and only if the infinite matrix

\[T_h = \begin{pmatrix}
 c_1 - c_0 & c_2 - c_1 & c_3 - c_2 & c_4 - c_3 & \cdots \\
 0 & c_2 - c_1 & c_3 - c_2 & c_4 - c_3 & \cdots \\
 0 & 0 & c_3 - c_2 & c_4 - c_3 & \cdots \\
 0 & 0 & 0 & c_4 - c_3 & \cdots \\
 \vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}, \]

acts as a bounded operator on \(\ell^2 \). This observation led to deeper study of \(C \)-matrices and \(L \)-matrices in [1] and [4], which are interesting subjects by themselves. More generally, it is often important to determine if an infinite matrix act as a bounded operator on some sequence space. Famous examples include the infinite Hilbert matrix [5] or the Cesàro matrix [6] which are important tools in approximation theory and in the study of divergent sequence, respectively.

Let \((a_n)_{n \geq 0}\) be a sequence of complex numbers. Then the infinite matrix

\[A = \begin{pmatrix}
 a_0 & a_1 & a_2 & a_3 & \cdots \\
 a_1 & a_2 & a_3 & \cdots \\
 a_2 & a_2 & a_3 & \cdots \\
 a_3 & a_3 & a_3 & \cdots \\
 \vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}, \]

is called an \(L \)-matrix. Abusing the notation, we will write \(A = [a_n] \) and, despite being slightly confusing, a general element of \(A \) will be denoted by \(a_{ij} \), where \(i \) and \(j \) run through \(\{0, 1, 2, \ldots\} \). Note that due to connections to function space theory and Taylor series of analytic functions on \(D \), the indices starts from zero. See also [4, Page 42] for another class of \(L \)-matrices, used in the theory of large linear systems. The infinite matrix

\[C = \begin{pmatrix}
 a_0 & 0 & 0 & \cdots \\
 a_1 & a_1 & 0 & \cdots \\
 a_2 & a_2 & a_2 & \cdots \\
 a_3 & a_3 & a_3 & a_3 & \cdots \\
 \vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}, \]

is also called a \(C \)-matrix, which as in the previous case will be denoted by \(C[a_n] \).
To the best of our knowledge, the first instance of an L-matrix being used in the literature is in 1983 in an article from Choi [8]. In this note, the author used the special L-matrix A_1 to show that the infinite Hilbert matrix act as a bounded operator on ℓ^2. He even suggest that this is perhaps the quickest way to show the boundedness of the infinite Hilbert matrix as an operator from ℓ^2 to ℓ^2.

The C-matrices have received considerable attention over the past 30 years. Because of the close relation with the L-matrices, we will keep the notation C-matrices in this paper; however in most of the literature they are referred to by the name terraced matrices. This name seems to have been introduced by Rhaly in his note from 1989 [9]. The same author then published six more articles on this subject, with his latest being in 2013 [10]. Other examples of studies of the C-matrices include Roades [11], who provide lower bounds of p-norms of these matrices under certain restrictions on p, Almasri [12] show that the C-matrix defined by the sequence $1/n^\alpha$ is p-summing if and only if $\alpha > 1$, and Durna & Yildirim [13] introduced and studied the generalized terraced matrices.

Recently, the study of the p-norm of different infinite matrices has been an active research area in computational mathematics. For example, Ilkhan [14] study the p-norms of some matrix operators on Fibonacci weighted difference sequence space. Jevtić and Karapetrović [15] obtained some result on the infinite Hilbert matrix on spaces of Bergman-type. A related matrix is the so-called multiplicative Hilbert matrix M, the infinite matrix with entries $(\sqrt{mn \log(mn)})^{-1}$, where $m, n \geq 2$. In their note, Brevig and al. [16] obtained some results on the p-norm of this matrix and even more. As a final example, we mention Chalendar and Partington [17] who showed in their article that if T is a bounded operator on H^2, then under certain natural conditions it will act as a bounded operator on $H^2(\beta)$ and it will satisfy the inequality $\|T\|_{H^2} \leq \|T\|_{H^2(\beta)}$.

3
2. Main results

In [1], we studied the L-matrix

$$A_s = \begin{bmatrix} \frac{1}{n+s} \\ \frac{1}{n+s} & \frac{1}{1+s} & \frac{1}{2+s} & \frac{1}{3+s} & \cdots \\ \frac{1}{n+s} & \frac{1}{1+s} & \frac{1}{2+s} & \frac{1}{3+s} & \cdots \\ \frac{1}{n+s} & \frac{1}{1+s} & \frac{1}{2+s} & \frac{1}{3+s} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

and, surprisingly enough, we could precisely determine the norm for some values of s. As a matter of fact, we showed that

$$\|A_s\|_{\ell^2 \to \ell^2} = 4, \quad (s \geq \frac{1}{2}). \quad (2.1)$$

Since $a_0 = 1/s$, we certainly have

$$\|A_s\|_{\ell^2 \to \ell^2} \geq \frac{1}{s} > 4, \quad (0 < s < \frac{1}{4}).$$

Therefore, in the light of (2.1), an interesting question is to determine the critical point s_0, where

$$s_0 := \inf \{ s : \|A_s\|_{\ell^2 \to \ell^2} = 4 \}.$$

From the previous observations, we know that

$$\frac{1}{4} \leq s_0 \leq \frac{1}{2}.$$

We sharpen these estimations as follows.

Theorem 2.2. We have

$$\frac{\sqrt{6(8 + 3\sqrt{3})} - \sqrt{3} - 3}{12} \leq s_0 \leq \frac{1}{2\sqrt{2}}.$$

The above upper and lower estimations are highly non-trivial and involve delicate calculations.

We also study the p-norm of A_s defined as

$$\|A_s\|_{\ell^p \to \ell^p} := \sup_{x \neq 0} \frac{\|A_s x\|_p}{\|x\|_p}.$$

In this case, the same interesting phenomenon persist, albeit for $s \geq 1$.

4
Theorem 2.3. Let \(s \geq 1 \). We have
\[
\|A_s\|_{\ell^p \to \ell^p} = \frac{p^2}{p-1}, \quad (1 < p < \infty).
\]
\[
(2.4)
\]
Lastly, we study the 2-norm of a special family of \(C \)-matrices with lacunary coefficient. To show that the necessary condition \(a_n = O(1/\sqrt{n}) \) for the \(L \)-matrix \(A = [a_n] \) to be a bounded operator on \(\ell^2 \) is sharp, we introduced in [4] the \(L \)-matrices with lacunary coefficients. We say that the sequence \((a_n) \) is lacunary if there is a constant \(\rho > 1 \) and a subsequence \((n_j)_{j \geq 1} \) of positive integers such that
\[
\frac{n_{j+1}}{n_j} \geq \rho
\]
and \(a_n = 0 \) except possibly for indices \(n \in \{n_j : j \geq 1 \} \). In particular, we introduced the special Cesàro type matrix \(C = C[a_n] \) defined by
\[
a_{N^j} = \frac{1}{N^{j/2}}, \quad (j \geq 1),
\]
\[
(2.5)
\]
and \(a_n = 0 \) for other values of \(n \), where \(N \geq 2 \) in a fixed integer. Then we showed that
\[
\frac{\sqrt{N}}{\sqrt{N} - 1} \leq \|C\|_{\ell^2 \to \ell^2} \leq \frac{\sqrt{N}}{\sqrt{N} - 1}.
\]
This estimation is not far from being optimal. However, with more elaborate calculation, it is possible to precisely determine \(\|C\|_{\ell^2 \to \ell^2} \).

Theorem 2.6. Let \(N \geq 2 \) be a fixed positive integer, and let \(C \) be defined by (2.5). Then
\[
\|C\|_{\ell^2 \to \ell^2} = \frac{\sqrt{N} - 1}{\sqrt{N} - 1}.
\]

3. Approximating \(s_0 \)

In this section, we present the proof of Theorem 2.2. Theorem 2 from [4] tells us that if \(A = [a_n] \) is an \(L \)-matrix and that there is a sequence of strictly decreasing positive numbers \(\delta_n, n \geq 0 \), such that
\[
\Delta := \sup_{n \geq 1} \frac{(|a_n| + \delta_{n-1})(|a_n| + \delta_n)}{\delta_{n-1} - \delta_n} < \infty.
\]
Then \(A \in \mathcal{L}(\ell^2) \) and, moreover,

\[
\|A\|_{\ell^2 \rightarrow \ell^2} \leq \max\{\delta_0 + |a_0|, \Delta\}.
\]

Consider the sequence \((\delta_n)\) defined by \(\delta_n = (n+s+\frac{1}{2})^{-1} \).

Then we know that

\[
\|A_s\|_{\ell^2 \rightarrow \ell^2} \leq \max\left\{ \delta_0 + |a_0|, \frac{|a_n| + \delta_{n-1}|a_n| + \delta_n}{\delta_{n-1} - \delta_n} (n \geq 1) \right\} = \max\left\{ \frac{1}{s + \frac{1}{2}} + \frac{1}{s}, 4 - \frac{1}{4(n+s)^2} (n \geq 1) \right\} = \max\left\{ \frac{1}{s + \frac{1}{2}} + \frac{1}{s}, 4 \right\}.
\]

Observe that \(f(s) := \frac{1}{s + \frac{1}{2}} + \frac{1}{s} \) is a strictly decreasing function. Thus, if \(s \geq \frac{1}{2\sqrt{2}} \), we have

\[
f(s) \leq f\left(\frac{1}{2\sqrt{2}}\right) = 4.
\]

Hence, we conclude that \(\|A_s\|_{\ell^2 \rightarrow \ell^2} \leq 4 \) whenever \(s \geq \frac{1}{2\sqrt{2}} \). Moreover, from the previous observations, we have \(\|A_s\|_{\ell^2 \rightarrow \ell^2} \geq 4 \) whenever \(s \leq 1/2 \) so we conclude that \(s_0 \leq \frac{1}{2\sqrt{2}} \). It is easy to show that the method outlined above is optimal for sequences \((\delta_n)\) of the form \(\delta_n = \alpha/(n + \beta) \).

Finding a good lower bound for the number \(s_0 \) turned out to be harder than the upper bound, mainly due to the fact that we do not have a similar result to Theorem 2 from [1] for lower bounds. However, we can show that

\[
s_0 \geq \frac{\sqrt{6(8 + 3\sqrt{3})} - \sqrt{3} - 3}{12} =: s^* \approx 0.347
\]

by using the fact that \(\|A_s\|_{\ell^2 \rightarrow \ell^2} \geq \|A_s x\|_2 / \|x\|_2 \) for every \(x \in \ell^2 \) and by carefully choosing the entries of the sequence \(x \). Note that the upper bound is \(s_0 \leq 1/(2\sqrt{2}) \approx 0.354 \).

Since for \(s < \frac{1}{4}, \) we have \(\|A_s\|_{\ell^2 \rightarrow \ell^2} \geq a_0 > 4, \) we assume without loss of generality that \(s \geq \frac{1}{4} \). Let \(x = (x_n) \) be a sequence of real numbers defined by

\[
x_n = \begin{cases}
1 & \text{if } n = 0, \\
s(n+s)K_n & \text{if } n \geq 1,
\end{cases}
\]
where
\[K_n = \frac{\Gamma(\beta)\Gamma(n + \beta - \alpha)}{\Gamma(n + \beta + 1)\Gamma(\beta - \alpha + 1)} \]

and
\[\alpha = \frac{2}{4 + \varepsilon - \sqrt{(4 + \varepsilon)\varepsilon}}, \quad \beta = \frac{s^2}{\alpha((4 + \varepsilon)s - 1)}. \]

for \(\varepsilon > 0. \) Using Stirling’s formula, we see that
\[K_n \approx n^{\alpha - 1} \]
and thus
\[x_n \approx n^{\alpha}, \]
since \(x_n \approx nK_n. \) Therefore, since
\[\alpha = \frac{2}{4 + \varepsilon - \sqrt{(4 + \varepsilon)\varepsilon}} > \frac{1}{2} \quad \iff \quad \varepsilon > 0, \]
we have \(x \in \ell^2. \) Write \(y = A_s x. \) Hence,
\[
y_n = a_n \sum_{j=0}^{n} x_j + \sum_{j=n+1}^{\infty} a_j x_j
= a_n + s \left(a_n \sum_{j=1}^{n} (j + s)K_j + \sum_{j=n+1}^{\infty} K_j \right)
= a_n + s \frac{\Gamma(\beta)}{\Gamma(\beta - \alpha + 1)} \left(a_n \sum_{j=1}^{n} (j + s) \frac{\Gamma(j + \beta - \alpha)}{\Gamma(j + \beta + 1)} \right)
+ \sum_{j=n+1}^{\infty} \frac{\Gamma(j + \beta - \alpha)}{\Gamma(j + \beta + 1)}. \]

We know from a combinatorial identity that
\[
\sum_{j=1}^{n} \frac{\Gamma(j + b)}{\Gamma(j + c)} = \frac{\Gamma(n + b + 1)}{(1 + b - c)\Gamma(n + c)} - \frac{\Gamma(b + 1)}{(1 + b - c)\Gamma(c)}. \]

Thus, we can use this fact to find that
\[
y_n = (4 + \varepsilon)s \frac{\Gamma(n + b - \alpha + 1)\Gamma(\beta)}{(n + s)\Gamma(n + \beta)\Gamma(\beta - \alpha + 1)}; \quad (n \geq 0). \]

Observe that for \(n = 0, \) we have \(y_0 = 4 + \varepsilon \) so \(y_0 \geq (4 + \varepsilon)x_0. \) We will now show that this inequality is true for all \(n \geq 1, \) as long that \(\frac{1}{4} \leq s < s^*. \) We can write
\[
y_n = (4 + \varepsilon)\frac{(n + \beta - \alpha)(n + \beta)}{(n + s)^2} x_n, \quad (n \geq 1). \]
Thus we need to show that
\[(n + \beta - \alpha)(n + \beta) \geq (n + s)^2, \text{ i.e., that}
\]
\[h_{\varepsilon,s}(n) := (2(\beta - s) - \alpha)n + \beta(\beta - \alpha) - s^2 \geq 0, \quad (n \geq 1). \tag{3.1}\]
Observe that \(\alpha, \beta\) are right-continuous function relative to \(\varepsilon\) at \(\varepsilon = 0\). Hence, if we define \(g(\varepsilon) := 2(\beta - s) - \alpha\), we have
\[|g(\varepsilon) - g(0)| < \eta \]
provided that \(0 < \varepsilon < \mu\), where \(\mu = \mu(\eta) > 0\). However, \(g(0) = \frac{1 - 8s^2}{2(4s - 1)} > 0\) if \(\frac{1}{4} < s < s^*\); thus we can set \(\eta = g(0)\) to be assured that there exist an \(\varepsilon\) small enough so that \(g(\varepsilon) > 0\).

We have just shown that the leading coefficient of (3.1) is non-negative. Therefore, we just have to make sure that \(h_{\varepsilon,s}(1) \geq 0\) to make sure that (3.1) hold. Similarly to what we just did, we can write \(f(\varepsilon) := h_{\varepsilon,s}(1)\) and observe that \(f\) is a right continuous function relative to \(\varepsilon\) at \(\varepsilon = 0\). So if \(f(0) > 0\), we are assured that there exist a small enough \(\varepsilon\) such that \(f(\varepsilon) = h_{\varepsilon,s}(1) \geq 0\).

A computation gives us
\[f(0) = \frac{-24s^4 - 24s^3 + 8s^2 + 4s - 1}{2(4s - 1)^2}.\]

Now, a simple analysis of this equation shows that \(f(0) > 0\) for \(\frac{1}{4} \leq s \leq s^*\), with equality if and only if \(s = s^*\). Hence, \(y_n \geq (4 + \varepsilon)x_n\) for every \(n \geq 0\), provided that \(s < s^*\) and \(\varepsilon\) is small enough.

Since \(y = A_s x\) is a positive sequence and \(x \in \ell^2\),
\[\|A_s x\|_2^2 = \sum_{n=0}^{\infty} y_n^2 \geq (4 + \varepsilon)^2 \sum_{n=0}^{\infty} x_n^2 = (4 + \varepsilon)^2 \|x\|_2^2,\]
if \(\varepsilon\) is small enough and \(s < s^*\). It follows that \(\|A\|_{\ell^2 \to \ell^2} > 4\) for all \(s \in (0, s^*)\) and thus, \(s_0 \geq s^*\).

4. The \(p\)-norm of \(A_s\)

In this section, we present the proof of Theorem \[\text{[2.3]}\]. Parallel to the definition of \(A_s\), consider the generalized Cesàro matrix
\[C_s = \begin{pmatrix}
\frac{1}{s} & 0 & 0 & 0 & \cdots \\
\frac{1}{1+s} & \frac{1}{1+s} & 0 & 0 & \cdots \\
\frac{1}{2+s} & \frac{1}{2+s} & \frac{1}{2+s} & 0 & \cdots \\
\frac{1}{3+s} & \frac{1}{3+s} & \frac{1}{3+s} & \frac{1}{3+s} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix},\]
and the generalized Copson matrix C_{s}^{tr}. We know from [18] that, for $s \geq 1$,

$$
\|C_{s}\|_{\ell^{p} \to \ell^{p}} = q.
$$

It also follows that

$$
\|C_{s}^{tr}\|_{\ell^{p} \to \ell^{p}} = \|C_{s}\|_{\ell^{q} \to \ell^{q}} = p
$$

where q is the Hölder conjugate of p, i.e., $1/p + 1/q = 1$.

As the first step, note that each of the entries of A_{s} are positive and less than or equal to those of $C_{s} + C_{s}^{tr}$. Hence, we have

$$
\|A_{s}\|_{\ell^{p} \to \ell^{p}} \leq \|C_{s} + C_{s}^{tr}\|_{\ell^{p} \to \ell^{p}} \leq \|C_{s}\|_{\ell^{p} \to \ell^{p}} + \|C_{s}^{tr}\|_{\ell^{p} \to \ell^{p}} = q + p = pq = \frac{p^{2}}{p-1}.
$$

We then proceed to show that $\|A_{s}\|_{\ell^{p} \to \ell^{p}} \geq \frac{p^{2}}{p-1}$. Let

$$
x_{m} := \left(s^{-\frac{1}{p}}, (1 + s)^{-\frac{1}{p}}, (2 + s)^{-\frac{1}{p}}, \ldots, (m + s)^{-\frac{1}{p}}, 0, 0, \ldots \right)^{tr},
$$

We then have

$$
\|A_{s}x_{m}\|_{\ell^{p} \to \ell^{p}}^{p} \geq \sum_{n=0}^{m} \frac{1}{n + s} \left(\frac{1}{n + s} \sum_{k=0}^{n-1} (k + s)^{-\frac{1}{p}} + \sum_{k=n}^{m} (k + s)^{-\frac{1}{p}} \right)^{p} \geq \sum_{n=0}^{m} \frac{1}{n + s} \left(\frac{1}{n + s} \int_{0}^{n} (x + s)^{-\frac{1}{p}} dx + \int_{n}^{m+1} (x + s)^{-\frac{1}{p}} dx \right)^{p} = (pq)p \sum_{n=0}^{m} \frac{1}{n + s} \left(1 - \frac{1}{p} \left(\frac{s}{n + s} \right)^{\frac{1}{q}} - \frac{1}{q} \left(\frac{m + s + 1}{n + s} \right)^{-\frac{1}{p}} \right)^{p}.
$$

Since the summand in the second line of the chain of equations is positive,

$$
\left(1 - \frac{1}{p} \left(\frac{s}{n + s} \right)^{1/q} - \frac{1}{q} \left(\frac{m + s + 1}{n + s} \right)^{-1/p} \right)
$$

must also be positive. Hence, we can use Bernoulli inequality to deduce that $\|A_{s}x_{m}\|_{\ell^{p} \to \ell^{p}}^{p}$ is

$$
\geq (pq)^{p} \sum_{n=0}^{m} \frac{1}{n + s} \left(1 - \frac{1}{p} \left(\frac{s}{n + s} \right)^{\frac{1}{q}} + \frac{1}{q} \left(\frac{m + s + 1}{n + s} \right)^{-\frac{1}{p}} \right) = (pq)^{p} \|A_{s}x_{m}\|_{\ell^{p} \to \ell^{p}}^{p} - \gamma_{m},
$$

where

$$
\gamma_{m} := (pq)^{p} \sum_{n=0}^{m} \frac{1}{n + s} \left(\left(\frac{s}{n + s} \right)^{\frac{1}{q}} + \frac{p}{q} \left(\frac{m + s + 1}{n + s} \right)^{-\frac{1}{p}} \right).
$$
This implies that
\[\| A_s \|^p_{\ell^p \to \ell^p} \geq \frac{\| A_s x_m \|^p_{\ell^p \to \ell^p}}{\| x_m \|^p_{\ell^p \to \ell^p}} \geq (pq)^p - \frac{\gamma_m}{\| x_m \|^p_{\ell^p \to \ell^p}}. \]

It is enough now to show that \(\gamma_m / \| x_m \|^p_{\ell^p \to \ell^p} \to 0 \) whenever \(m \to \infty \). First, note that
\[\lim_{m \to \infty} \| x_m \|^p_{\ell^p \to \ell^p} = \lim_{m \to \infty} \sum_{n=0}^m \frac{1}{n+s} = \infty. \quad (4.1) \]

Moreover, we have
\[\gamma_m = (pq)^p \sum_{n=0}^m \left(\frac{1}{n+s} \left(\frac{s}{n+s} \right)^{\frac{1}{q}} + p \frac{1}{q} \frac{1}{n+s} \left(\frac{m+s+1}{n+s} \right)^{-\frac{1}{p}} \right) \]
\[\leq c_1 \sum_{n=0}^m (n+s)^{-1/q-1} + c_2 (m+s+1)^{-1/p} \sum_{n=0}^m (n+s)^{1/p-1} \]
\[\leq c'_1 (m+s+1)^{-1/q} + c'_2 (m+s+1)^{-1/p} (m+s+1)^{1/p} \]
\[\leq c'_1 (s+1)^{-1/q} + c'_2. \]

Thus, the sequence \(\gamma_m \) is bounded and there exist a constant \(c \) such that \(\gamma_m \leq c \) for every \(m \geq 0 \). Hence,
\[0 \leq \frac{\gamma_m}{\| x_m \|^p_{\ell^p \to \ell^p}} \leq \frac{c}{\| x_m \|^p_{\ell^p \to \ell^p}}. \]

From (4.1), it follows that \(\gamma_m / \| x_m \|^p_{\ell^p \to \ell^p} \to 0 \) whenever \(m \to \infty \). Therefore, \(\| A_s \|_{\ell^p \to \ell^p} \geq pq = \frac{p^2}{p-1} \) and we are done.

5. The norm of a special lacunary C-matrix

In this section, we present the proof of Theorem 2.6. Suppose that \(y = C x \). Then, we have
\[N^{n/2} y = \sum_{j=0}^N x_j + \sum_{j=N+1}^{N^2} x_j + \cdots + \sum_{j=N^{n-1}+1}^N x_j \]
and $y_k = 0$ for the other indices k. By Cauchy–Schwartz,

$$N^{n/2}y_{N^n} \leq (N + 1)^{\frac{1}{2}} \left(\sum_{j=0}^{N} x_j^2 \right)^{\frac{1}{2}} + (N^2 - N)^{\frac{1}{2}} \left(\sum_{j=N+1}^{N^2} x_j^2 \right)^{\frac{1}{2}} + \cdots + (N^n - N^{n-1})^{\frac{1}{2}} \left(\sum_{j=N^{n-1}+1}^{N^n} x_j^2 \right)^{\frac{1}{2}}.$$

Once more, use the Cauchy–Schwartz inequality to get

$$N^{n/2}y_{N^n} \leq \left[(N + 1)^{t} + (N^2 - N)^{\frac{1}{2}} + \cdots + (N^n - N^{n-1})^{\frac{1}{2}} \right]^2.$$

Write

$$B_n := (N + 1)^{t} + (N^2 - N)^{\frac{1}{2}} + \cdots + (N^n - N^{n-1})^{\frac{1}{2}}$$

$$= (N + 1)^{t} + \sqrt{N - 1} \frac{\sqrt{N^n} - \sqrt{N}}{\sqrt{N} - 1}.$$

Then, for each $0 \leq t \leq 1$, we have

$$y^2_{N^n} \leq \frac{B_n(N + 1)^{1-t}}{N^n} \sum_{j=0}^{N} x_j^2 + \frac{B_n \sqrt{N^2 - N}}{N^n} \sum_{j=N+1}^{N^2} x_j^2 + \cdots + \frac{B_n \sqrt{N^n - N^{n-1}}}{N^n} \sum_{j=N^{n-1}+1}^{N^n} x_j^2.$$

Therefore,

$$\|Cx\|_2^2 = \sum_{n=0}^{\infty} y_n^2 = \sum_{n=1}^{\infty} y_{N^n}^2$$

$$\leq \eta_0 \sum_{j=0}^{N} x_j^2 + \eta_1 \sum_{j=N+1}^{N^2} x_j^2 + \eta_2 \sum_{j=N^2+1}^{N^3} x_j^2 + \cdots, \quad (5.1)$$
where

\[
\eta_0 = \sum_{n=1}^{\infty} \frac{B_n(N+1)^{1-t}}{N^n} = \sum_{n=1}^{\infty} \frac{1}{N^n} \left((N+1)^t + \sqrt{N} - 1 \frac{\sqrt{N} - \sqrt{N}^n}{1 - \sqrt{N}} \right)
\]

\[
= (N+1)^{1-t} \frac{(N+1)^t(\sqrt{N} - 1) + \sqrt{N} - 1}{(\sqrt{N} - 1)(N-1)},
\]

and

\[
\eta_k = \sum_{n=k+1}^{\infty} \frac{B_n \sqrt{N^{k+1}} - N^k}{N^n} = \sqrt{N} - 1 \sqrt{N}^k \sum_{n=k+1}^{\infty} \frac{B_n}{N^n}
\]

\[
= \frac{N-1}{(\sqrt{N} - 1)^2} + \left(\frac{(N+1)^t}{\sqrt{N+1}} - \frac{\sqrt{N}}{\sqrt{N} - 1} \right) \frac{1}{\sqrt{N}^k}, \quad (k \geq 1).
\]

The upper bound (5.1) is valid for any \(t \in [0,1] \). However, the optimal \(t \) is

\[
t = 1 - \log_{N+1} \sqrt{N - 1}
\]

for which \(\eta_k \) reduces to

\[
\eta_k = \frac{N-1}{(\sqrt{N} - 1)^2} - \frac{1}{(\sqrt{N} + 1)\sqrt{N}^k}, \quad (k \geq 0).
\]

Thus, we have

\[
\eta_k \leq \frac{N-1}{(\sqrt{N} - 1)^2}, \quad (k \geq 0).
\]

This special choice of \(t \) implies

\[
\|Cx\|_2^2 \leq \frac{N-1}{(\sqrt{N} - 1)^2} \left(\sum_{j=0}^{N} x_j^2 + \sum_{j=N+1}^{N^2} x_j^2 + \cdots \right) = \frac{N-1}{(\sqrt{N} - 1)^2} \|x\|_2^2.
\]

Hence,

\[
\|C\|_{\ell^2 \to \ell^2} \leq \frac{\sqrt{N-1}}{\sqrt{N-1}}.
\]

We now proceed to show that this upper bound is attained.
Let \(x := (x_k) \) be the following sequence: \(x_k \) equals 1 for indices between 0 and \(N \), and equals \(1/\sqrt{N} \) for every indices between \(N^n + 1 \) to \(N^{n+1} \), for \(n = 1, 2, \ldots, m \), and finally equals 0 everywhere else. Then

\[
\|x\|_2^2 = \sum_{j=0}^{N} x_j^2 + \sum_{j=N+1}^{N^2} x_j^2 + \cdots + \sum_{j=N^{m-1}+1}^{N^m} x_j^2 \\
= N + 1 + (N^2 - N) \frac{1}{\sqrt{N}} + \cdots + (N^m - N^{m-1}) \frac{1}{\sqrt{N^{m-1}}} \\
= 2 + (N - 1)m.
\]

Once more, write \(y = Cx \). Then

\[
N^{n/2} y_{N^n} = \sum_{j=0}^{N} x_j + \sum_{j=N+1}^{N^2} x_j + \cdots + \sum_{j=N^{n-1}+1}^{N^n} x_j \\
= N + 1 + (N^2 - N) \frac{1}{\sqrt{N}} + (N^3 - N^2) \frac{1}{\sqrt{N^2}} \\
+ \cdots + (N^n - N^{n-1}) \frac{1}{\sqrt{N^{n-1}}} \\
= (\sqrt{N} + 1)\sqrt{N^n} - (\sqrt{N} - 1),
\]

for every \(n \leq m \), and thus

\[
y_{N^n}^2 = \left((\sqrt{N} + 1) - \frac{\sqrt{N} - 1}{\sqrt{N^n}} \right)^2.
\]

Hence,

\[
\|Cx\|_2^2 \geq \sum_{n=1}^{m} y_{N^n}^2 = \sum_{n=1}^{m} \left((\sqrt{N} + 1) - \frac{\sqrt{N} - 1}{\sqrt{N^n}} \right)^2 \\
\geq (\sqrt{N} + 1)^2 m + c,
\]

for a certain constant \(c \) (for example, \(c = -2(\sqrt{N} + 1) \) works). Therefore,

\[
\|C\|_{\ell^2 \to \ell^2}^2 \geq \frac{\|Cx\|_2^2}{\|x\|_2^2} \geq \frac{(\sqrt{N} + 1)^2 m + c}{2 + (N - 1)m}
\]

13
for every $m \geq 1$. By letting $m \to \infty$, we get

$$\|C\|_{\ell^2 \to \ell^2}^2 \geq \frac{(\sqrt{N} + 1)^2}{N - 1} = \frac{N - 1}{(\sqrt{N} - 1)^2}.$$

Therefore,

$$\|C\|_{\ell^2 \to \ell^2} \geq \sqrt{\frac{N - 1}{\sqrt{N} - 1}},$$

and thus the equality follows.

6. Concluding remarks

(i) The precise value of s_0 is still unknown. Find s_0?

(ii) In the light of Theorem 2.3, we define

$$s_0^{(p)} := \inf \{ s : \|A_s\|_{\ell^p \to \ell^p} = \frac{p^2}{p-1} \}.$$

That theorem ensures

$$s_0^{(p)} \leq 1.$$

Find $s_0^{(p)}$.

(iii) Find $\|A_s\|_{\ell^p \to \ell^q}$, where $p \neq q$.

(iv) As in the case $p = q$, does $\|A_s\|_{\ell^p \to \ell^q}$ remain constant for large values of s? If so, we define $s_0^{(pq)}$ by slightly modifying the definition of s_0^p given in (ii). Then how does $s_0^{(pq)}$ depend on the parameters p and q?

Declaration of competing interest

The authors declare that they have no competing interests.

Acknowledgment

For this work, the first author received the USRA research award. The second author was supported by the NSERC Discovery Grant (Canada).
References

[1] L. Bouthat, J. Mashreghi, The norm of an infinite L-matrix, Oper. Matrices 15 (1) (2021) 47–58. doi:10.7153/oam-2021-15-04.

[2] J. Mashreghi, T. Ransford, Hadamard multipliers on weighted Dirichlet spaces, Integral Equations Operator Theory 91 (6) (2019) Paper No. 52, 13. doi:10.1007/s00020-019-2551-1.

[3] J. Mashreghi, Representation theorems in Hardy spaces, Vol. 74 of London Mathematical Society Student Texts, Cambridge University Press, Cambridge, 2009. doi:10.1017/CBO9780511814525.

[4] L. Bouthat, J. Mashreghi, L-matrices with lacunary coefficients, Oper. Matrices. to appear.

[5] D. Hilbert, Ein Beitrag zur Theorie des Legendre’schen Polynoms, Acta Math. 18 (1) (1894) 155–159. doi:10.1007/BF02418278.

[6] G. H. Hardy, Divergent Series, Oxford, at the Clarendon Press, 1949.

[7] D. M. Young, Iterative solution of large linear systems, Academic Press, New York-London, 1971.

[8] M. D. Choi, Tricks or treats with the Hilbert matrix, Amer. Math. Monthly 90 (5) (1983) 301–312. doi:10.2307/2975779.

[9] H. C. Rhaly, Jr., Terraced matrices, Bull. London Math. Soc. 21 (4) (1989) 399–406. doi:10.1112/blms/21.4.399.

[10] H. C. Rhaly, Jr., Hyponormality-preserving finite rank perturbations of terraced matrices, J. Nigerian Math. Soc. 32 (2013) 281–288.

[11] B. E. Rhoades, Lower bounds for some matrices. II, Linear and Multilinear Algebra 26 (1-2) (1990) 49–58. doi:10.1080/03081089008817965.

[12] I. Almasri, Absolutely summing terraced matrices, Concr. Oper. 3 (1) (2016) 1–7. doi:10.1515/conop-2016-0001.

[13] N. Durna, M. Yildirim, Generalized terraced matrices, Miskolc Math. Notes 17 (1) (2016) 201–208. doi:10.18514/MMN.2016.1272.
[14] M. İlkhan, Norms and lower bounds of some matrix operators on Fibonacci weighted difference sequence space, Math. Methods Appl. Sci. 42 (16) (2019) 5143–5153. doi:10.1002/mma.5244

[15] M. Jevtić, B. Karapetrović, Hilbert matrix on spaces of Bergman-type, J. Math. Anal. Appl. 453 (1) (2017) 241–254. doi:10.1016/j.jmaa.2017.04.002

[16] O. F. Brevig, K.-M. Perfekt, K. Seip, A. G. Siskakis, D. Vukotić, The multiplicative Hilbert matrix, Adv. Math. 302 (2016) 410–432. doi:10.1016/j.aim.2016.07.019

[17] I. Chalendar, J. R. Partington, Norm estimates for weighted composition operators on spaces of holomorphic functions, Complex Anal. Oper. Theory 8 (5) (2014) 1087–1095. doi:10.1007/s11785-013-0340-4

[18] C.-P. Chen, D.-C. Luor, Z.-y. Ou, Extensions of Hardy inequality, J. Math. Anal. Appl. 273 (1) (2002) 160–171. doi:10.1016/S0022-247X(02)00232-9