Transcriptional regulation and chromatin dynamics at DNA double-strand breaks

Sunwoo Min1,2✉, Jae-Hoon Ji3, Yungyeong Heo1,2 and Hyeseong Cho1,2✉

© The Author(s) 2022

In eukaryotic cells, DNA damage can occur at any time and at any chromatin locus, including loci at which active transcription is taking place. DNA double-strand breaks affect chromatin integrity and elicit a DNA damage response to facilitate repair of the DNA lesion. Actively transcribed genes near DNA lesions are transiently suppressed by crosstalk between DNA damage response factors and polycomb repressive complexes. Epigenetic modulation of the chromatin environment also contributes to efficient DNA damage response signaling and transcriptional repression. On the other hand, RNA transcripts produced in the G1 phase, as well as the active chromatin context of the lesion, appear to drive homologous recombination repair. Here, we discuss how the ISWI family of chromatin remodeling factors coordinates the DNA damage response and transcriptional repression, especially in transcriptionally active regions, highlighting the direct modulation of the epigenetic environment.

INTRODUCTION

Eukaryotic transcription, DNA replication, and DNA repair occur simultaneously within the nucleus, requiring coordinated regulation and control in multiple layers of complex mechanisms. DNA damage and repair can occur at any time and at any locus in the nucleus, including loci at which active transcription is taking place. Thus, mechanisms to prevent collision between the DNA transcription and DNA repair machineries are essential to preserve genomic integrity1–3. The chromatin context is mainly organized by chromatin remodeling factors, which tighten and loosen the chromatin structure4, and histone modifiers, which can turn transcription on or off at damaged loci. The spatial and temporal regulation of histone modifications upon DNA damage mainly depends on both chromatin remodeling factors and histone modifiers.

Here, we briefly summarize the DNA damage response to DNA double-strand breaks (DSBs) and the DNA repair pathway and discuss how transcription is controlled upon DNA damage, particularly emphasizing the role played by chromatin dynamics. We focus on the role of histone modifications and the ISWI family of chromatin remodeling factors in DSB-induced transcriptional silencing and consider the functional implication of transcriptional repression, especially in transcriptionally active regions, highlighting the direct modulation of the epigenetic environment.

The DNA damage response and DNA repair

The human genome is continuously exposed to endogenous and exogenous inducers of DNA damage; however, the genome is protected against such insults by multiple, interdependent DNA repair pathways collectively known as the DDR5. Many DDR signaling and repair factors have been identified, and recently, their functions on the chromatin structure have received much attention (Fig. 1). Upon DNA damage, DSBs are detected by DSB sensors such as the MRE11 endonuclease and recruit NB51 and Rad50 to form the MRN complex. MRN bound to DNA recruits the ATM kinase, which is subsequently activated by autophosphorylation. Activated ATM phosphorylates histone H2AX at S139 to form γH2AX, which allows further recruitment of the mediator protein MDC1 (mediator of DNA damage checkpoint protein 1)6,7. MDC1 further enhances the recruitment of the MRN/ATM complex and propagates γH2AX up to 1–2 megabase pairs in cis to the DSB8–10. γH2AX propagation recruits RNF8-UBC13, which promotes K63-linked polyubiquitylation of H1, which is in turn recognized by RNF16811. RNF168 monoubiquitinates H2A at K13/15 and amplifies K63-linked polyubiquitin chains, generating a platform for repair factors12,13. H2A ubiquitination at K13/15 is recognized by the DSB repair protein 53BP114. 53BP1 further recognizes H4K20me2, whose level remains unchanged upon DNA damage. RNF8 and RNF168 indirectly promote 53BP1 recruitment by ubiquitinating H4K20me2-binding factors, L3MBTL1, and trigger the dissociation of L3MBTL1 from chromatin, which unmasks H4K20me2 and allows 53BP1 recruitment15. Furthermore, RNF168-mediated K63-linked polyubiquitin chains on histones recruit RAP80 and the BRCA1/BARD1 complex16–18. Thus, histone modifications, such as ubiquitination, phosphorylation, and methylations, are crucial to the sequential recruitment of DFR factors and repair factors. DSB repair largely occurs via two major DSB repair pathways: nonhomologous end joining (NHEJ) and homologous recombination (HR). It is accepted that DSB repair pathway choice is dependent on the cell cycle status, with NHEJ driven by S3BP1-RIF1 in the G1 phase19–22 and HR driven by BRCA1 in the S/G2 phases, when the homologous template is present. Pathway choice is, in part, determined by DSB end resection23,24. Cell cycle-dependent phosphorylation and
ubiquitination of CtIP is important for DNA end resection, which favors HR\(^{25,26}\). Furthermore, the transcriptional status of chromatin can affect pathway choice\(^{27}\). Recently, Nakamura et al. reported that H4K20 methylation levels oscillate during the cell cycle and that changes in H4K20 methylation determine whether BRCA1 or S3BP1 is recruited to DSB sites in pre- or postreplicative cells. During the G1 phase, H4K20me1/2 is recognized by S3BP1, while H4K20me0 newly incorporated in the S phase recruits BRCA1-BARD1 to DSB sites and opposes S3BP1 function\(^{28}\). Furthermore, BARD1 interacts with HP1-mediated H3K9me2 in response to DNA damage and retains the BRCA1 complex to promote HR and inhibit NHEJ\(^{29}\). From this perspective, chromatin dynamics becomes more critical in the DNA damage response and DNA repair.

Transcriptional silencing in the DNA damage response

When DSBs occur at or near an actively transcribed region of chromatin, the transcription of genes in cis to the damage site is silenced\(^{30}\). The ATM kinase has been proposed as a master regulator of transcription, recruiting polycomb repressive complex (PRC) to halt transcription\(^{2} \) (Fig. 2). H2A ubiquitination at K119 by PRC is the canonical histone marker for transcriptional repression. H2A-K119 ubiquitination extends more than 14 kb from the break site\(^{31}\), a more dynamic change than that in H3K27me3 mediated by EZH2\(^{32-34}\). ATM phosphorylates the transcription elongation factor ENL, allowing its interaction with PRC1\(^{35}\) and repressing transcription elongation. EYA3 similarly contributes to transcriptional repression at DNA damage sites upon phosphorylation by ATM/ATR\(^{36,37}\). The E3 ubiquitin ligase UBR5 is recruited by PRC1 and interacts with the FACT complex to transiently suppress FACT activity, blocking transcription at UV lesions and DSB sites\(^{38}\). Later, the same group reported that the deubiquitinase OTUD5 similarly regulates SPT16 enrichment and blocks Pol II elongation at DSB sites\(^{39}\). Chromatin remodeling factors are also involved in transcriptional silencing: both BAF180, a subunit of the PBAF chromatin remodeling complex, and the BRG1 ATPase are required for the recruitment of PRC\(^{2} \). BRD7, another subunit of the PBAF complex, is phosphorylated by the ATM kinase, and this phosphorylated BRD7 interacts with MRN/PRC2, promoting H2A-K119 ubiquitination\(^{40}\). Thus, the ATM kinase activates signaling cascades for both DDR and DSB-induced transcriptional silencing by phosphorylating multiple substrates.

Poly (ADP-ribose) polymerase 1 (PARP1) is another master regulator of transcriptional silencing at DSBs; this enzyme catalyzes the synthesis of PAR chains on histone and nonhistone proteins at DSBs (Fig. 3)\(^{42,43}\). The generation of these negatively charged PAR chains enables the relaxation of chromatin and facilitates the movement of the chromatin remodeler ALC1, which promotes nucleosome eviction at damaged chromatin\(^{44}\). PAR chains similarly facilitate the movement of the DDR factors MRE11 and RNFL168 to DSB sites\(^{45,46}\), while PARylation of RNFL168 promotes the recruitment of the chromatin remodeler SMARCA5 (SNF2H) to damaged chromatin. PARP1 activity is also required for the recruitment of PRC and NuRD complexes, which create a transient repressive chromatin structure\(^{47}\). PARP1-mediated H2A-K119 ubiquitination appears to be regulated by the noncanonical PRC FRRUC (FBXL10-RNF68-RNF2 ubiquitin ligase complex)\(^{48}\). In addition, PARP1 regulates the chromatin remodeling factors ZMYND8 and NuRD\(^{39}\). KDM5A-mediated H3K4me3 demethylation recruits the ZMYND8-NuRD complex to damaged chromatin and supports DSB-induced transcriptional silencing\(^{49}\). Interestingly, NELF-E acts as a negative transcription elongation factor, moving to DSB sites near transcriptionally active regions in a PARP-dependent manner. The recruitment of NELF-E is important for DSB-induced transcriptional silencing\(^{50}\). In addition, the DYRK1B kinase is recruited to DSB sites in a PARP-dependent manner and phosphorylates the histone methyltransferase EHMT2 at T346 to promote transcriptional silencing\(^{51}\). Indeed, PARylation at DSB sites is also important for the recruitment of CDYL1, which binds to PAR moieties and recruits EZH2. The recruitment of EZH2 promotes H3K27me3 at DSB sites and, eventually, transcriptional silencing\(^{52}\). Thus, both ATM and PARP recruit PRC and multiple chromatin-bound proteins to turn off RNAPII elongation for DSB-induced transcriptional silencing, while PARylation by PARP enzymes at DSB sites remodels the chromatin landscape to allow transcriptional repressors to bind. In addition, RNAPII is directly regulated by proteasomal degradation at DSB sites in a manner mediated by DNA-PK. Upon DNA-PK inhibition, RNAPII bypasses
DNA breaks and remains at transcribed loci for transcriptional elongation. Recently, WWP2 was identified as an RNAPII-degrading E3 ligase, synthesizing K48-linked ubiquitin chains. Recently, Steurer et al. reported that genome-wide degradation of promoter-bound RNAPII is mediated by VCP proteasomal degradation after UV irradiation. Thus, degradation of RNAPII upon DNA damage may be the subsequent event after stalling of RNAPII at actively transcribed loci.

Lannelli et al. reported transcriptional repression following the induction of endogenous DNA damage in the DiA cell line. This group used multiple approaches to monitor the transcription status after DNA damage and found that transcription is highly repressed at the sites proximal to DSBs, and this repression decreases upon movement away from the lesion. However, ChIP-seqs showed greater enrichment of RNAPII at sites of damage, while the γH2AX density was decreased at sites of DNA damage, suggesting that DNA damage-induced transcription, such as the transcription of DNA damage response RNAs (DDRNAs) and damage-induced long noncoding RNAs (dilncRNAs), is ongoing at sites of DNA damage. These RNAs are known to recruit DDR factors and form DDR foci.

Recently, the same group reported that a preinitiation complex (PIC) is formed at sites of DSBs to allow DDRNA transcription and that RNA synthesis at DSBs is an important step in the formation of 53BP1 condensates by liquid–liquid phase separation. Thus, preexisting transcription is coordinate regulated upon DNA damage. To prevent collision between these two machineries, cells typically pause the transcription of coding RNAs at DSB sites by turning off active RNAPII at the gene locus until the DNA damage is completely repaired. Meanwhile, active transcription of ncRNAs at sites of DNA damage promotes the recruitment of DDR factors and efficient DNA repair.

Transcription-coupled DSB repair

We have discussed the crosstalk between the RNAPII machinery and DDR factors. This regulatory mechanism prevents aberrant transcription and improper DNA repair at actively transcribed regions and maintains genomic integrity. Transcription-coupled repair of DNA damage is well documented, especially during repair of UV-induced damage. DNA damage by UV induces 6–4 photoproducts and cyclopyrimidine dimers, which are mainly repaired by nucleotide excision repair (NER). At transcribed loci, the transcription machinery can assist in the repair of UV-induced damage by so-called transcription-coupled nucleotide excision repair (TC-NER). This repair pathway is critical for the removal and repair of UV lesions and to prevent the occurrence of mutations in coding regions.

Transcription-coupled DSB repair was first proposed in yeast, when it was observed that DSBs within active genes were repaired more quickly than DSBs in inactive genes. Later, Wei et al. showed that transcription-coupled DSB repair specifically occurs during the G0/G1 phase in mammals. HR factors such as RAD51C, RAD52, and RPA1 are recruited to transcriptionally active damage sites, and this recruitment is highly dependent on CSB, one of the factors required for TC-NER. Furthermore, the repair of ROS-induced strand breaks is mediated by actively transcribed RNA, which is required for retention of the HR factor RAD52. The interaction between CSB and RAD52 in response to ionizing radiation depends on the presence of an RNA transcript. These events occur primarily in the G0/G1 phase but not in the S phase, which suggests that RNA transcripts can be used as a template for HR in nonreplicating or postmitotic cells. In addition, there is crosstalk between transcription machineries and HR factors at DSBs located within actively transcribed DNA. More recently, it has
been shown that CSB recognizes R-loops at transcribed loci, with ROS-induced R-loops recruiting RAD52 and RAD51 through a noncanonical BRCA1/2-independent HR pathway. R loops at transcriptionally active sites recognized by Rad52 also recruit XPG and antagonize RIF1-53BP1 complex formation in the G2 phase. In the G2 phase, BLM is preferentially recruited to DSBs at transcriptionally active genes and contributes to end resection and HR repair. These data suggest that DSBs in actively transcribed regions of the genome require a unique repair mechanism as a result of the presence of both the transcription and DNA repair machineries at damaged loci.

Chromatin-based DSB repair

Another layer of the regulatory mechanism invoked upon DNA damage at actively transcribed loci is the chromatin-based choice of DSB repair pathway. Histone modifiers can act as decision-makers, decorating chromatin to block or allow transcription. The Legube group has studied chromatin-based DSB repair using the DIvA cell line, in which endogenous DNA damage can be induced at transcriptionally active or inactive loci. Aymard et al. showed that DSBs in transcriptionally active chromatin undergo resection, recruiting the HR factor Rad51, and these events depend on preexisting histone marks associated with active transcription, such as H3K36me3. The chromatin-based DSB repair pathway choice was further demonstrated by comprehensive mapping of histone modifications at DSB sites using ChIP-seq. Chromatin environments were found to influence the choice between HR and NHEJ, showing the importance of chromatin in DSB repair.

At transcriptionally active loci, DSBs cluster mainly during the G1 phase and delay repair. High-throughput genome-wide sequencing revealed DSB clusters after DSB induction during the G1 phase, and this clustering required the MRN complex and LINC complex, delaying repair by NHEJ and favoring repair by HR. Thus, actively transcribed chromatin favors HR repair, recruiting Rad51 in the S phase, which allows the transcribed chromatin to be repaired by the error-free HR repair pathway in the S and G2 phases. Thus, chromatin architecture plays an important role in the choice of DSB repair pathway and maintains genomic stability at actively transcribed regions.

Chromatin remodeling factors in the DNA damage response at actively transcribed loci

Chromatin context and architecture are established by chromatin remodeling complexes and histone modifiers. Chromatin remodeling factors were initially identified as transcriptional regulators that compact or loosen chromatin during transcription. Four families of chromatin remodeling factors have been identified in mammals: SWI/SNF, ISWI, NuRD and INO80. Chromatin remodeling by these
Fig. 4 ISWI chromatin remodeling complexes in DSB-induced transcriptional silencing and repair. Histone modifications such as H2AX Y142 phosphorylation and H2A(X) K118 acetylation are enriched at actively transcribed regions. These histone modifications are regulated upon DNA damage. H2AX Y142 is dephosphorylated by the ATM-mediated EYA phosphatase and promotes DSB-induced transcriptional silencing. H2A(X) K118 acetylation is removed at DSB sites by the RSF1-HDAC1 complex to silence active transcription to support DSB repair. Deacetylation of H2A(X) at K118 and ubiquitylation of H2A(X) at K119 amplify γH2AX signaling at DSB sites and recruit MDC1 for propagation of DNA damage signaling in the G1 phase. After DNA breaks are repaired by repair factors, WSTF rephosphorylates H2AX at Y142 and activates transcription and RNA-templated DSB repair by recruiting RAD51 in the G1 phase.
factors similarly affects chromatin dynamics upon DNA damage. Most chromatin remodeling factors are involved in DSB repair, especially in the propagation of γH2AX. Chromatin compaction/relaxation is critical for the recruitment of DSB repair factors and activation of the DDR. The ATM kinase regulates chromatin relaxation to allow the DSB signal and silence transcription in cis to DSB sites. Chromatin remodeling factors also regulate chromatin architecture, which controls ongoing transcription at DSB sites. The PBAF complex, a member of the SWI/SNF family, was the first chromatin remodeling factor identified that silenced active transcription upon DNA damage. The PBAF complex subunit BAF180, in the SWI/SNF family, is phosphorylated by ATM and recruits PRC1 and PRC2 for DSB-induced transcriptional silencing and DSB repair. Later, the same group reported that cohesin, in cooperation with PBAF, represses transcription near DSBs. Another subunit in the PBAF complex, BRD7, is phosphorylated by ATM and recruits the chromatin remodeling complex NuRD. The subunits in the NuRD complex, such as HDAC1, normally repress transcription; thus, the recruitment of the NuRD complex may have pivotal roles in subsequent transcriptional silencing at transcribed loci. Recently, ISWI chromatin remodeling complexes were found to be critical for DSB-induced transcriptional silencing and repair pathway that is favorable for accurate DSB repair. Advanced NGS techniques have allowed researchers to visualize chromatin transition may be required, depending on the chromatin environment, and it can aid in the selection of a DSB repair pathway that is favorable for accurate DSB repair. Advanced NGS techniques have allowed researchers to visualize chromatin changes following treatment with various stimuli and to analyze the chromatin-associated factors involved in these changes. Hi-C techniques have also unveiled the chromatin architecture under certain cellular conditions. Chromatin versatility is spatially and temporally controlled by chromatin remodelers that may read the status of chromatin to allow them to recruit appropriate histone modifiers at the right time and the right place. However, how specificity is granted to these abundant chromatin remodelers is currently unknown. In addition, further study into how chromatin remodeling factors and histone modifiers deal directly with RNA in R-loops and chromatin clusters is required to show how chromatin architecture, together with the regulation of chromatin dynamics, drives DNA repair at actively transcribed loci.

CONCLUDING REMARKS

In this review, we summarized the regulatory mechanisms of the DDR and DNA repair at actively transcribed loci. DNA DSBs in actively transcribed chromatin need particular attention to prevent aberrant RNA transcript production and allow efficient, error-free DNA repair. Chromatin dynamics play an important regulatory role in preventing collision between the DNA repair and transcription machineries, leading to accurate DNA repair. Specific histone modifications establish the chromatin environment and recruit chromatin remodeling factors and histone modifiers to modulate chromatin dynamics. Upon DNA damage, a chromatin transition may be required, depending on the chromatin environment, and it can aid in the selection of a DSB repair pathway that is favorable for accurate DSB repair. Advanced NGS techniques have allowed researchers to visualize chromatin changes following treatment with various stimuli and to analyze the chromatin-associated factors involved in these changes. Hi-C techniques have also unveiled the chromatin architecture under certain cellular conditions.

Chromatin versatility is spatially and temporally controlled by chromatin remodelers that may read the status of chromatin to allow them to recruit appropriate histone modifiers at the right time and the right place. However, how specificity is granted to these abundant chromatin remodelers is currently unknown. In addition, further study into how chromatin remodeling factors and histone modifiers deal directly with RNA in R-loops and chromatin clusters is required to show how chromatin architecture, together with the regulation of chromatin dynamics, drives DNA repair at actively transcribed loci.

REFERENCES

1. Capozzo, I., Iannelli, F., Francia, S. & d'Adda di Fagagna, F. Express or repress? The transcriptional dilemma of damaged chromatin. FEBS J. 284, 2133–2147 (2017).
Clouaire, T. & Legube, G. A Snapshot on the Cis Chromatin Response to DNA Double-Strand Breaks. Trends Genet. 35, 330–345 (2019).

Marnef, A., Cohen, S. & Legube, G. Transcription-Coupled DNA Double-Strand Break Repair: Active Genes Need Special Care. J. Mol. Biol. 429, 1277–1288 (2017).

Clapier, C. R. & Cairns, B. R. The biology of chromatin remodeling complexes. Annu. Rev. Biochem. 78, 273–304 (2009).

Jackson, S. P. & Bartek, J. The DNA-damage response in human biology and disease. Nature 461, 1071–1078 (2009).

Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S. & Bonner, W. M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 273, 5585–5586 (1998).

Stucki, M. et al. MDC1 directly binds phosphorylated histone H2AX to regulate nuclear responses to DNA double-strand breaks. Cell 123, 1213–1226 (2005).

Lucas, K. et al. Mdc1 couples DNA double-strand break recognition by Nbs1 with its H2AX-dependent chromatin retention. EMBO J. 23, 2674–2683 (2004).

Rogakou, E. P., Boon, C., Redon, C. & Bonner, W. M. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J. Cell Biol. 146, 905–916 (1999).

Thorslund, T. et al. Histone H1 couples initiation and amplification of ubiquitin signalling after DNA damage. Nature 527, 389–393 (2015).

Doil, C. et al. RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins. Cell 136, 435–446 (2009).

Stewart, G. S. et al. The RIDDLE syndrome protein mediates a ubiquitin-proteasome-dependent signaling cascade at sites of DNA damage. Cell 146, 420–434 (2009).

Fradet-Turcotte, A. et al. 53BP1 is a reader of the DNA-damage-induced H2A Lys 15 ubiquitin mark. Nature 499, 50–54 (2013).

Acs, K. et al. The AAA-ATPase VCP/p97 promotes 53BP1 recruitment by removing ubiquitin conjugates on damaged chromatin to allow accumulation of repair proteins. Cell 136, 435–446 (2009).

Kim, H., Chen, J. & Yu, X. Ubiquitin-binding protein RAP80 mediates BRCA1-dependent DNA damage response. Science 316, 1202–1205 (2007).

Bunting, S. F. et al. 53BP1 inhibits homologous recombination in Brca1-deleted cells by blocking resection of DNA breaks. EMBO J. 29, 197–211 (2010).

Chern, L., Nievera, C. J., Lee, A. Y. & Wu, X. Cell cycle-dependent complex formation of BRCA1.CITP controls DNA repair pathway choice. Mol. Cell 49, 872–883 (2013).

Chapman, J. R. et al. RFF1 is essential for 53BP1-dependent nonhomologous end joining and suppression of DNA double-strand break resection. Mol. Cell 49, 858–871 (2013).

Di Virgilio, M. et al. RIF1 prevents resection of DNA breaks and promotes immunoglobulin class switching. Science 339, 711–715 (2013).

Zimmermann, M., Lottersberger, F., Buonomo, S. B., Sfeir, A. & Lange, T. 53BP1 regulates DSBR repair with RIF1 to control S- end resection. Science 339, 700–704 (2013).

Bunting, S. F. et al. 53BP1 inhibits homologous recombination in BRCA1-deleted cells by blocking resection of DNA breaks. Cell 141, 243–254 (2010).

Bouwman, P. et al. 53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers. Nat. Struct. Mol. Biol. 17, 688–695 (2010).

Chen, L., Nievera, C. J., Lee, A. Y. & Wu, X. Cell cycle-dependent complex formation of BRCA1.CITP.MRN is important for DNA double-strand break repair. J. Biol. Chem. 283, 7713–7720 (2008).

Lafraunchi, I. et al. APC/C(Cdh1) controls CITP stability during the cell cycle and in response to DNA damage. EMBO J. 33, 2860–2879 (2014).

Clouaire, T. & Legube, G. DNA double strand break repair pathway choice: a chromatin based decision? Nuc. (Calcitral) 6, 107–113 (2015).

Nakamura, K. et al. H2AX20me recognition by BRCA1-BARD1 directs homologous recombination to sister chromatids. Nat. Cell Biol. 21, 311–318 (2019).

Wu, W. et al. Interaction of BARD1 and HIP1 is Required for BRCA1 Retention at Sites of DNA Damage. Cancer Res. 75, 1311–1321 (2015).

Shanbhag, N. M., Rafalska-Metcalf, I. U., Balane-Bolivar, C., Janicki, S. M. & Greenberg, R. A. ATM-dependent chromatin changes silence transcription in cis to DNA double-strand breaks. Cell 141, 970–981 (2010).

Uckelmann, M. & Simonis, T. K. Histone ubiquitination in the DNA damage response. DNA Repair. 56, 52–101 (2012).

Tamburri, S. et al. Histone H2AX191 Mono-Ubiquitination Is Essential for Polycoty-Mediated Transcriptional Repression. Mol. Cell 77, 840–856 (2020).

Schuettenegger, B., Bourbon, H. M., Di Croce, L. & Cavalli, G. Genome Regulation by Polycoty and Trithorax: 70 Years and Counting. Cell 171, 34–57 (2017).

Wang, H. et al. Role of histone H2A ubiquitination in Polycoty silencing. Nature 431, 873–878 (2004).
63. Yasuhara, T. et al. Human Rad52 Promotes XPG-Mediated R-loop Processing to Initiate Transcription-Associated Homologous Recombination Repair. *Cell* **175**, 558–570 e511 (2018).
64. Cohen, S. et al. A POLD3/BLM dependent pathway handles DSBs in transcribed chromatin upon excessive RNA:DNA hybrid accumulation. *Nat. Commun.* **13**, 2012 (2022).
65. Aymard, F. et al. Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks. *Nat. Struct. Mol. Biol.* **21**, 366–374 (2014).
66. Clouaire, T. et al. Comprehensive Mapping of Histone Modifications at DNA Double-Strand Breaks Deciphers Repair Pathway Chromatin Signatures. *Mol. Cell* **72**, 250–262.e256 (2018).
67. Aymard, F. et al. Genome-wide mapping of long-range contacts unveils clustering of DNA double-strand breaks at damaged active genes. *Nat. Struct. Mol. Biol.* **24**, 353–361 (2017).
68. Clapier, C. R., Iwasa, J., Cairns, B. R. & Peterson, C. L. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. *Nat. Rev. Mol. Cell Biol.* **18**, 407–422 (2017).
69. Lans, H., Marteijn, J. A. & Vermeulen, W. ATP-dependent chromatin remodeling in the DNA-damage response. *Epigenetics Chromatin* **5**, 4 (2012).
70. Price, B. D. & D’Andrea, A. D. Chromatin remodeling at DNA double-strand breaks. *Cell* **152**, 1344–1354 (2013).
71. Meisenberg, C. et al. Repression of Transcription at DNA Breaks Requires Cohesin throughout Interphase and Prevents Genome Instability. *Mol. Cell* **73**, 212–223 (2019).
72. Lai, A. Y. & Wade, P. A. Cancer biology and NuRD: a multifaceted chromatin-remodeling complex. *Nat. Rev. Cancer* **11**, 588–596 (2011).
73. Min, S. et al. The chromatin remodeler RSF1 coordinates epigenetic marks for transcriptional repression and DSB repair. *Nucleic Acids Res.* **49**, 12268–12283 (2021).
74. Min, S. et al. ATM-dependent chromatin remodeler Rsf-1 facilitates DNA damage checkpoints and homologous recombination repair. *Cell Cycle* **13**, 666–677 (2014).
75. Pessina, F. & Lowndes, N. F. The RSF1 histone-remodelling factor facilitates DNA double-strand break repair by recruiting centromeric and Fanconi Anaemia proteins. *Plos Biol.* **12**, e1001856 (2014).
76. Helfricht, A. et al. Remodeling and spacing factor 1 (RSF1) deposits centromere proteins at DNA double-strand breaks to promote non-homologous end-joining. *Cell Cycle* **12**, 3070–3082 (2013).
77. Helfricht, A. & van Attikum, H. Remodeling and spacing factor 1 (RSF1): a rising star in DNA repair. *Epigenomics* **6**, 261–265 (2014).
78. Lee, H. S. et al. Spatiotemporal coordination of the RSF1-PLK1-Aurora B cascade establishes mitotic signaling platforms. *Nat. Commun.* **12**, 5931 (2021).
79. Lee, H. S. et al. The chromatin remodeler RSF1 controls centromeric histone modifications to coordinate chromosome segregation. *Nat. Commun.* **9**, 3848 (2018).
80. Lee, H. S. et al. The chromatin remodeler RSF1 is essential for PLK1 deposition and function at mitotic kinetochores. *Nat. Commun.* **6**, 7904 (2015).
81. Min, S., Kim, K., Kim, S. G., Cho, H. & Lee, Y. Chromatin-remodelling factor, RSF1, controls p53-mediated transcription in apoptosis upon DNA strand breaks. *Cell Death Dis.* **9**, 1079 (2018).
82. Mamef, A. & Legube, G. R-loops as Janus-faced modulators of DNA repair. *Nat. Cell Biol.* **23**, 305–313 (2021).
83. Xu, Y. et al. Histone H2AZ controls a critical chromatin remodeling step required for DNA double-strand break repair. *Mol. Cell* **48**, 723–733 (2012).
84. Xu, Y. et al. The p400 ATPase regulates nucleosome stability and chromatin ubiquitination during DNA repair. *J. Cell Biol.* **191**, 31–43 (2010).

ACKNOWLEDGEMENTS
This work was supported by National Research Foundation (NRF) of Korea grants funded by the Korean government (Ministry of Science, ICT and Future Planning: NRF-2020R1A2C4002527, NRF-2021R1I1A1A01060852).

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION

Correspondence and requests for materials should be addressed to Sunwoo Min or Hyeseong Cho.

Reprints and permission information is available at http://www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.