XPO1 Gene Therapy Attenuates Cardiac Dysfunction in Rats with Chronic Induced Myocardial Infarction

María García-Manzanares1,2 · Estefanía Tarazón2 · Ana Ortega2 · Carolina Gil-Cayuela2 · Luis Martínez-Dolz2,3 · Josè Ramón González-Juanatey4 · Francisca Lago4 · Manuel Portolés2 · Esther Roselló-Lletí2,5 · Miguel Rivera2

Received: 14 May 2019 / Accepted: 11 November 2019 / Published online: 25 November 2019
© The Author(s) 2019

Abstract
Transcriptomic signature of XPO1 was highly expressed and inversely related to left ventricular function in ischemic cardiomyopathy patients. We hypothesized that treatment with AAV9-shXPO1 attenuates left ventricular dysfunction and remodeling in a myocardial infarction rat model. We induced myocardial infarction by coronary ligation in Sprague-Dawley rats (n = 10), which received AAV9-shXPO1 (n = 5) or placebo AAV9-scramble (n = 5) treatment. Serial echocardiographic assessment was performed throughout the study. After myocardial infarction, AAV9-shXPO1-treated rats showed partial recovery of left ventricular fractional shortening (16.8 ± 2.8 vs 24.6 ± 4.1%, P < 0.05) and a maintained left ventricular dimension (6.17 ± 0.95 vs 4.70 ± 0.93 mm, P < 0.05), which was not observed in non-treated rats. Furthermore, lower levels of EXP-1 (P < 0.05) and lower collagen fibers and fibrosis in cardiac tissue were observed. However, no differences were found in the IL-6 or TNFR1 plasma levels of the myocardium of AAV9-shXPO1 rats. AAV9-shXPO1 administration attenuates cardiac dysfunction and remodeling in rats after myocardial infarction, producing the gene silencing of XPO1.

Keywords Gene silencing · Myocardial infarction · Ventricular function · XPO1

Abbreviations
AAV Adeno-associated virus vector
EXP-1 Exportin-1
FS Fractional shortening
IL-6 Interleukin-6
Introduction

Coronary heart disease carries significant morbidity and is the leading cause of death across all diseases of the circulatory system [1]. After myocardial infarction, adverse ventricular remodeling associated with a higher probability of heart failure and mortality occurs [2, 3], and numerous cellular and molecular pathways are affected [4–7], such as the existence of various alterations in the molecular machinery of nuclear-cytoplasmic transport [8, 9], which precisely regulates the bidirectional selective protein flow between the nucleus and the cytoplasm.

Previous studies have shown that several molecules that participate in nuclear-cytoplasmic transport (Exportin-1 [EXP-1], IMP-β3, Nup160) are intimately related to a reduced left ventricular (LV) function in human ischemic cardiomyopathy. The transcriptomic signature of these alterations has been found and has been identified that changes in gene expression, specifically of XPO1 that encodes EXP-1, were highly related to LV dysfunction in patients with ischemic cardiomyopathy [10].

The short hairpin RNA (shRNA) can be used to silence specific genes and is a powerful tool in studies pertaining to loss of gene function and characterization. The highly cardiotropic adeno-associated virus vector (AAV), with high affinity for the heart and down to other organs, can be introduced simply by intravenous injection [11, 12]. In particular, AAV9 has a great potential as a valuable tool for cardiac therapy in cardiovascular disease experimental models for RNA interference and gene therapy [13].

We hypothesize that manipulation of gene deregulation has therapeutic value in myocardial infarction. We aim to investigate whether highly significant relationship between XPO1 and ventricular function is a component of causality. Therefore, we have developed a rodent myocardial infarction experimental model to show whether AAV9-shXPO1 silencing agent induces recovery of myocardial function.

Methods

Ethics Statement

The project was approved by the Biomedical Investigation Ethics Committee of Hospital La Fe. The investigation conforms to the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH Publication No. 85-23, revised 1996), and the National (RD 53/2013) and European Directive (2010/63/EC). All surgery was performed using accurate anesthesia and analgesia veterinary protocols, to minimize animal suffering. All animal procedures are reported following ARRIVE (Animal Research: Reporting of In Vivo Experiments) guidelines and included as Supplementary Data (Online Resource 1).

Rat Myocardial Infarction Model

Adult male Sprague-Dawley rats weighting 300–400 g were anesthetized and left anterior descending (LAD) coronary artery ligation was performed \((n = 10)\) with polypropylene non-absorbable sutures (Premilene® Braun) to induce chronic myocardial infarction (Online Resource 1). Tetrazolium staining was performed in transversal slices from infarcted hearts 6 h after LAD coronary artery banding in preliminary myocardial infarction rats to ensure technical procedure [14]. Four months later, a group of infarcted rats showing left ventricular systolic dysfunction received intravenous AAV9-shXPO1 gene therapy \((n = 5)\), and another received intravenous placebo AAV9-scramble \((n = 5)\) (see below). Age-matched non-infarcted sham rats \((n = 5)\) served as healthy non-failing rats, not

![Fig. 1 Study protocol timeline. Baseline functional echocardiographic parameters were evaluated (stage 0) in rats before the experimental procedure. Functional parameters were studied in sham and LAD (left anterior descending) coronary artery ligation animals after procedure (stage I). Four months later, the animals were administered with either adeno-associated virus vector silencing XPO1 gene (AAV9-shXPO1) or placebo (AAV9-scramble) particles. After gene therapy, changes in functional parameters were evaluated by echocardiography 2 (stage II) and 5 (stage III) months later.](image-url)
receiving any treatment. The experimental design of these
groups and the experimental procedure (Fig. 1) were per-
formed based on previous studies focused on this field of
research [15–17].

Gene Therapy

AAV9-shXPO1 and placebo AAV9-scramble were
manufactured by Creative Biogene (Shirley, NY). Based on
previous literature, different AAV9 particles were adminis-
tered (5 × 10^{11} genomes) [13] by tail vein injection at 16 weeks
after infarction in infarcted rats (AAV9-shXPO1, n = 5;
AAV9-scramble, n = 5). Five months after vector delivery,
the rats were killed, and tissue (heart, brain, skeletal muscle,
and liver) and peripheral blood samples were obtained. All
samples were stored at −80 °C until protein extraction.

Echocardiographic Assessment

A non-invasive transthoracic echocardiographic method was
used to evaluate the morphology and function of the left ven-
tricle. Echocardiography was performed on anesthetized ani-
mals with ketamine and valium (26 and 6 mg/kg, respectively)
and so their anterior chest was shaved. Heart functional pa-
rameters were analyzed with a two-dimensional mode using
Philips EnVisor M2540A Ultrasound System before the LAD
ligation and AAV9-shXPO1/AAV9-scramble administration
as well as 2 and 5 months after gene therapy.

Tissue Sampling

Frozen samples from AVV9-scramble (n = 5) and AAV9-
shXPO1 (n = 5) groups (50 mg of heart, brain, skeletal mus-
cle, and liver) were homogenized in a total protein extraction
buffer (2% SDS, 10 mM EDTA, 6 mM Tris-HCl, pH 7.4) with
protease inhibitors (25 μg/ml aprotinin and 10 μg/ml
leupeptin) in a FastPrep-24 homogenizer with specifically de-
signed Lysing Matrix D tubes (MP Biomedicals, USA). The
homogenates were centrifuged and the supernatants were
aliquoted. The protein content of the aliquots was determined
by Peterson’s modification [18] of the Lowry method using
bovine serum albumin (BSA) as standard. Cardiac samples
were obtained from left ventricles, including infarcted area
[19].

Western Blot Analysis

Protein samples for detection of EXP-1 and GAPDH were
separated using Bis-Tris Midi gel electrophoresis with 4–
12% polyacrylamide under reducing conditions. Description
of Western blot procedure is extensively described by Ortega
et al. [20]. The primary detection antibodies used were anti-
Exportin-1 (611833) mouse monoclonal antibody (1:50) from
BD Transduction Laboratories™, and anti-GAPDH (ab9484)
mouse monoclonal antibody (1:1000) obtained from Abcam
and used as a loading control.

The bands were visualized using an acid phosphatase–
conjugated secondary antibody and nitro blue tetrazolium/5-
bromo-4-chloro-3-indolyl phosphate (NBT/BCIP, Sigma-
Aldrich, St. Louis, USA) substrate system. Finally, the bands
were digitalized using an image analyzer (DNR Bio-
Imaging Systems, Israel) and quantified with the GelQuant
Pro (v. 12.2) program. All the experiments were performed in
triplicate.

Enzyme-Linked Immunoassay and Histological
Analysis

EXP-1 tissue (heart, brain, skeletal muscle, and liver) levels
and IL-6 and TNFR1 plasmatic levels were determined by
enzyme-linked immunosorbent assay in triplicate using the
ELISA Kit for Exportin-1 (EXP-1), interleukin-6 (IL-6), and
tumor necrosis factor receptor 1 (TNFR1) from Cloud-Clone
Corp. (Katy, TX, USA). Additionally, Masson’s trichrome
staining was performed to observe fibrotic myocardium.

Statistical Methods

The Kolmogorov-Smirnov test was used to analyze the distri-
bution of the variables. All variables were normally distribut-
ed. Data are presented as mean value ± standard deviation.
Comparisons of variables were analyzed using two-way
ANOVA and Student’s t test. Significance was accepted at the
P < 0.05 level. All statistical analyses were performed
using SPSS software v. 20, 2012 for Windows (IBM SPSS
Inc., Chicago, IL, USA).

Results

XPO1 Silencing, AAV9-shXPO1 Specificity,
and Histological Analysis

To determine the efficacy of XPO1 silencing and specificity of
the AAV9-shXPO1 vector, we measured EXP-1 levels in dif-
ferent explanted tissues of rats by Western blot. Compared
with the AVV9-scramble group, the AVV9-shXPO1 group
showed lower EXP-1 levels in cardiac tissue (100 ± 16 vs
76 ± 9 arbitrary units, au, P < 0.05) (Fig. 2a). Both the
AVV9-scramble and the AVV9-shXPO1 groups had similar
EXP-1 levels in the skeletal muscle, liver, and brain (100 ± 31
vs 109 ± 26 au, 100 ± 28 vs 103 ± 25 au, and 100 ± 14 vs 110
± 17 au, P > 0.05; respectively) (Fig. 2b–d). We also con-
firmed lower left ventricular EXP-1 expression levels by
ELISA analysis in the AVV9-shXPO1 group (2.29 ± 0.18 vs
1.67 ± 0.12 ng/ml, P < 0.05) (Fig. 3). Additionally, IL-6 and
TNFR1 plasmatic levels show no significant differences between AAV9-scramble and AAV9-shXPO1 groups (IL-6, 35.68 ± 5.47 vs 38.59 ± 7.77 pg/ml, \(P = 0.510 \); TNFR1, 2.74 ± 0.43 vs 2.93 ± 0.38 ng/ml, \(P = 0.470 \), respectively). No secondary effects produced by the AAV9-shXPO1 vector were observed. Masson’s trichrome staining shows differences in collagen fibers and fibrosis among the myocardium of AAV9-shXPO1 and AAV9-scramble rats (Fig. 4).

Echocardiographic Assessment

Cardiac function in infarcted and sham rats was measured by non-invasive transthoracic echocardiography to evaluate ventricular function and diameter. Echocardiographic measurements were taken prior to surgery and treatment of rats (stage 0), after coronary ligation (stage I) and 2 (stage II) and 5 (stage III) months after AAV9 injection.

The rats were under strict supervision of highly qualified personnel, maintaining precise control of the anesthesia of the animal, with low intragroup variation heart rate throughout the follow-up (sham 353 ± 16, AAV9-shXPO1 367 ± 12, and AAV9-scramble 450 ± 25 beats/min).

We found differences in echocardiographic parameters depending on the stage but not regarding study groups. As shown in Fig. 5, fractional shortening (FS) of the AAV9-shXPO1 infarcted rat group was 31.3 ± 8.6% at stage 0,
16.8 ± 2.8% at stage I, 16.4 ± 2.4% at stage II, and 24.6 ± 4.1% at stage III ($P<0.05$ compared with stage I, Fig. 5a). The AAV9-scramble rat group had a FS of 30.8 ± 7.6% at stage 0, 16.7 ± 2.7% at stage I, 16.5 ± 2.5% at stage II, and 16.5 ± 2.6% at stage III. Sham rats had normal FS (31.1 ± 8.0%, stage 0) that is maintained throughout the study.

LV end-systolic (LVESD) and LV end-diastolic diameters (LVEDD) of AAV9-shXPO1 rats were 2.57 ± 0.60 mm and 3.73 ± 0.63 mm, at stage 0, 5.10 ± 0.79 mm and 6.17 ± 0.95 mm at stage I, 5.03 ± 0.87 mm and 6.14 ± 1.14 mm at stage II, and 3.52 ± 0.88 mm and 4.70 ± 0.93 mm at stage III ($P<0.01$ and $P<0.05$ compared with stage I, Fig. 5b, c), respectively. Sham rats had normal LVESD (2.53 ± 0.61 mm) and LVEDD (3.75 ± 0.59 mm) that are maintained throughout the study.

Discussion

This study may provide a new therapeutic strategy based on gene therapy to restore ventricular function in patients with ischemic cardiomyopathy, which is the leading cause of death worldwide and lacking effective treatment [21]. In this study,
we report a successful delivery of an AAV-based gene therapy in a long-term chronic myocardial infarction rat model, which simulates the clinical features seen in patients with coronary heart disease after myocardial infarction. We have expanded the follow-up until 5 months after gene delivery, proving the long-term efficacy of the treatment and showing the safety of this procedure, since there was no evidence of side-effects in the animals.

EXP-1 mediates the nuclear export of proteins, rRNA, snRNA, and some mRNAs. Previous studies in patients with ischemic cardiomyopathy showed elevated expression levels of both EXP-1 mRNA and protein, and interestingly, these levels were inversely related with ejection fraction and positively correlated with LVESD and LVEDD [8, 9], i.e., higher EXP-1 expression is linked with LV function impairment. Hence, we intended to demonstrate the cause-effect of this relationship in this study through gene therapy, which may result in a useful approach for the treatment of heart disease [22–24]. Cardiac gene therapy uses vectors that can robustly, specifically, and persistently deliver therapeutic genetic materials to the heart without generating local and/or systemic toxicity. The adenoviral vectors represent an efficient but unstable gene delivery vector for the heart. Nonetheless, long-term myocardial transduction in adult animals has been accomplished with the development of AAV [25]. Research has established AAV9 as a cardiotropic vector superior to all the other serotypes in rodents, making it the most appropriate vector for gene delivery to the heart [11, 12]. Our results support this property of AAV9, since we observed that the cardiac tissue was the only sample analyzed where EXP-1 levels decreased in infarcted AAV9-shXPO1 rats compared with those in AAV9-scramble rats. Furthermore, we show the effectiveness and stability of the vector AAV9-shXPO1 as EXP-1 levels decreased in heart tissue 5 months after transduction. Regarding the magnitude of the effect, systematic or local, our results do not show differences in the inflammatory parameters studied in rats treated with AAV9-shXPO or AAV9-scramble.

LV function parameters are directly related to ventricular remodeling that occurs after injury of the heart muscle. Ventricular function of infarcted rats appeared to be in partial recovery following XPO1 silencing. At 2 months after injection (stage II), cardiac function in the rats was similar to that immediately after coronary ligation (stage I). Nevertheless, at 5 months after injection, the differences in these parameters were significant and resulted in improvements in the state of cardiac function in infarcted rats with XPO1 silencing. Furthermore, we have observed a decrease in fibrosis after treatment. This silencing could have similar effects at revascularization, recovering the hibernating myocardium and thereby improving ventricular function in infarcted rats. Although this partial recovery would be slower than that achieved by performing a bypass procedure, it is less invasive and harmful. We did not observe an improvement in the cardiac function of AAV9-scramble infarcted rats; these rats maintained similar parameters during the follow-up after coronary ligation.

Fig. 5 Echocardiographic parameters of infarcted AAV9-shXPO1 and AAV9-scramble rats measured before surgery and injection (stage 0), before injection (stage 1), and 2 (stage II) and 5 months (stage III) after vector injection. a Fractional shortening. b Left ventricular end-systolic diameter. c Left ventricular end-diastolic diameter. ###P < 0.001 stage 0 vs stages 1, 2, and 3 in AAV9-scramble; ***P < 0.001 stage 0 vs stages 1 and 2 in AAV9-shXPO1; *P < 0.05 and **P < 0.01 stage 3 vs stages 1 and 2 in AAV9-shXPO1
Study Limitations

In order to rationalize funding resources and minimize animal testing, we decided to compare only gene therapy responses in rats with chronic infarction, not studying AAV9-shXPO1 administration in healthy control rats [11]. For the development of the myocardial infarction model, a standardized protocol of veterinary pharmacology and surgery was followed; still, the manual procedure of coronary ligation may introduce some variability between infarcted rats.

Conclusions

In conclusion, AAV9-shXPO1 administration attenuates cardiac dysfunction in rats after myocardial infarction, producing the gene silencing of XPO1. This study provides a new therapeutic strategy based on gene therapy to restore ventricular function in patients with ischemic cardiomyopathy.

Clinical Relevance

This study offers a new way to restore cardiac function in patients who have suffered from myocardial infarction, by gene therapy through the silencing of XPO1.

Acknowledgments The authors thank the Animal Experimentation Platform of the IIS La Fe, for the technical support in this work.

Funding Information This study was funded by the National Institutes of Health “Fondo de Investigaciones Sanitarias del Instituto de Salud Carlos III” [PI16/01627, PI17/01925, PI17/01232]. “Consorcio Centro de Investigación Biomédica en Red, M.P.” [CIBERCV, under grant CB16/11/00261], and the European Regional Development Fund (FEDER).

Compliance with Ethical Standards

Conflict of Interest The authors declare that they have no conflict of interest.

Ethical Approval All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Mortality, G. B. D. (2015). Causes of death C: global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet, 385(9963), 117–171.
2. McMurray, J. J., & Pfeffer, M. A. (2005). Heart failure. Lancet, 365(9474), 1877–1889.
3. van der Laan, A. M., Nahrendorf, M., & Piek, J. J. (2012). Healing and adverse remodelling after acute myocardial infarction: role of the cellular immune response. Heart, 98(18), 1384–1390.
4. Phillips, D., Ten Hove, M., Schneider, J. E., Wu, C. O., Sebag-Montefiore, L., Aponte, A. M., Lygate, C. A., Wallis, J., Clarke, K., Watkins, H., et al. (2010). Mice over-expressing the myocardial creatine transporter develop progressive heart failure and show decreased glycolytic capacity. Journal of Molecular and Cellular Cardiology, 48(4), 582–590.
5. Rosca, M. G., & Hoppel, C. L. (2010). Mitochondria in heart failure. Cardiovascular Research, 88(1), 40–50.
6. Ortega, A., Rosello-Lleti, E., Tarazon, E., Gil-Cayuela, C., Lago, F., Gonzalez-Juanatey, J. R., Martinez-Dolz, L., Portoles, M., & Rivera, M. (2016). TRPM7 is down-regulated in both left atria and left ventricle of ischaemic cardiomyopathy patients and highly related to changes in ventricular function. ESC Heart Fail, 3(3), 220–224.
7. Rosello-Lleti, E., Tarazon, E., Barderas, M. G., Ortega, A., Molina-Navarro, M. M., Martinez, A., Lago, F., Martinez-Dolz, L., Gonzalez-Juanatey, J. R., Salvador, A., & Rivera, M. (2015). ATP synthase subunit alpha and LV mass in ischaemic human hearts. Journal of Cellular and Molecular Medicine, 19(2(4)), 442–451.
8. Cortes, R., Rosello-Lleti, E., Rivera, M., Martinez-Dolz, L., Salvador, A., Azorin, I., & Portoles, M. (2010). Influence of heart failure on nucleocytoplasmic transport in human cardiomyocytes. Cardiovascular Research, 85(3), 464–472.
9. Tarazon, E., Rivera, M., Rosello-Lleti, E., Molina-Navarro, M. M., Sanchez-Lazaro, I. J., Espana, F., Montero, J. A., Lago, F., Gonzalez-Juanatey, J. R., & Portoles, M. (2012). Heart failure induces significant changes in nuclear pore complex of human cardiomyocytes. PLoS One, 7(11), e48957.
10. Molina-Navarro, M. M., Rosello-Lleti, E., Tarazon, E., Ortega, A., Sanchez-Izquierdo, D., Lago, F., Gonzalez-Juanatey, J. R., Garcia-Pavia, P., Salvador, A., Montero, J. A., et al. (2013). Heart failure entails significant changes in human nucleocytoplasmic transport gene expression. International Journal of Cardiology, 168(3), 2837–2843.
11. Pacak, C. A., Mah, C. S., Thattaliyath, B. D., Conlon, T. J., Lewis, M. A., Cloutier, D. E., Zolotukhin, I., Tarantal, A. F., & Byrne, B. J. (2006). Recombinant adeno-associated virus serotype 9 leads to preferential cardiac transduction in vivo. Circulation Research, 99(4), e3–e9.
12. Inagaki, K., Fuess, S., Storm, T. A., Gibson, G. A., McTiernan, C. F., Kay, M. A., & Nakai, H. (2006). Robust systemic transduction with AAV9 vectors in mice: efficient global cardiac gene transfer superior to that of AAV8. Molecular therapy: the journal of the American Society of Gene Therapy, 14(1), 45–53.
13. Suckau, L., Fechner, H., Chemaly, E., Krohn, S., Hadri, L., Kochsokamper, J., Westermann, D., Bisping, E., Ly, H., Wang, X., et al. (2009). Long-term cardiac-targeted RNA interference for the treatment of heart failure restores cardiac function and reduces pathological hypertrophy. *Circulation*, 119(9), 1241–1252.

14. Fishbein, M. C., Meerbaum, S., Rit, J., Lando, U., Kannmatsuse, K., Mercier, J. C., Corday, E., & Ganz, W. (1981). Early phase acute myocardial infarct size quantification: validation of the triphenyl tetrazolium chloride tissue enzyme staining technique. *American Heart Journal*, 101(5), 593–600.

15. Aguero, J., Ishikawa, K., Hadri, L., Santos-Gallego, C. G., Fish, K. M., Kohlbrenner, E., Hammoudi, N., Kho, C., Lee, A., Ibanez, B., et al. (2016). Intratracheal gene delivery of SERCA2a ameliorates chronic post-capillary pulmonary hypertension: a large animal model. *Journal of the American College of Cardiology*, 67(17), 2032–2046.

16. An, R., Xi, C., Xu, J., Liu, Y., Zhang, S., Wang, Y., Hao, Y., & Sun, L. (2017). Intramyocardial injection of recombinant adeno-associated viral vector coexpressing PR39/adrenomedullin enhances angiogenesis and reduces apoptosis in a rat myocardial infarction model. *Oxidative Medicine and Cellular Longevity*, 2017, 1271670.

17. Ishikawa, K., Fish, K. M., Tilemann, L., Rapti, K., Aguero, J., Santos-Gallego, C. G., Lee, A., Karakikes, I., Xie, C., Akar, F. G., et al. (2014). Cardiac I-1 c overexpression with reengineered AAV improves cardiac function in swine ischemic heart failure. *Molecular Therapy : the journal of the American Society of Gene Therapy*, 22(12), 2038–2045.

18. Winters, A. L., & Minchin, F. R. (2005). Modification of the Lowry assay to measure proteins and phenols in covalently bound complexes. *Analytical Biochemistry*, 346(1), 43–48.

19. Sayour, A. A., Korkmaz-Icoz, S., Loganathan, S., Ruppert, M., Sayour, V. N., Olah, A., Benke, K., Brune, M., Benko, R., Horvath, E. M., et al. (2019). Acute canagliflozin treatment protects against in vivo myocardial ischemia-reperfusion injury in non-diabetic male rats and enhances endothelium-dependent vasorelaxation. *Journal of Translational Medicine*, 17(1), 127.

20. Ortega, A., Gil-Cayuela, C., Tarazon, E., Garcia-Manzanares, M., Montero, J. A., Cinca, J., Portoles, M., Rivera, M., & Rosello-Lleti, E. (2016). New cell adhesion molecules in human ischemic cardiomyopathy. PCDHGA3 implications in decreased stroke volume and ventricular dysfunction. *PloS One*, 11(7), e0160168.

21. Finegold, J. A., Asaria, P., & Francis, D. P. (2013). Mortality from ischaemic heart disease by country, region, and age: statistics from World Health Organisation and United Nations. *International Journal of Cardiology*, 168(2), 934–945.

22. Miyamoto, M. I., del Monte, F., Schmidt, U., DiSalvo, T. S., Kang, Z. B., Matsu, T., Guerrero, J. L., Gwathmey, J. K., Rosenzweig, A., & Hajjar, R. J. (2000). Adenoviral gene transfer of SERCA2a improves left-ventricular function in aortic-banded rats in transition to heart failure. *Proceedings of the National Academy of Sciences of the United States of America*, 97(2), 793–798.

23. Kumarswamy, R., Lyon, A. R., Volkman, I., Mills, A. M., Brethauer, J., Pahuja, A., Geers-Knorr, C., Kraft, T., Hajjar, R. J., Macleod, K. T., et al. (2012). SERCA2a gene therapy restores microRNA-1 expression in heart failure via an Akt/FoxO3A-dependent pathway. *European Heart Journal*, 33(9), 1067–1075.

24. Jessup, M., Greenberg, B., Mancini, D., Cappola, T., Pauly, D. F., Jaski, B., Yaroshinsky, A., Zsebo, K. M., Dittrich, H., Hajjar, R. J., et al. (2011). Calcium Uptregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID): a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure. *Circulation*, 124(3), 304–313.

25. Wasala, N. B., Shin, J. H., & Duan, D. (2011). The evolution of heart gene delivery vectors. *The Journal of Gene Medicine*, 13(10), 557–565.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.