A new explicit formula for Kerov polynomials

P. Petrullo and D. Senato

Dipartimento di Matematica e Informatica, Università degli Studi della Basilicata,
via dell’Ateneo Lucano 10, 85100 Potenza, Italia.
p.petrullo@gmail.com, domenico.senato@unibas.it

Abstract

We prove a formula expressing the Kerov polynomial Σ_k as a weighted sum over the lattice of noncrossing partitions of the set $\{1, \ldots, k+1\}$. In particular, such a formula is related to a partial order \leq_{irr} on the Lehner’s irreducible noncrossing partitions which can be described in terms of left-to-right minima and maxima, descents and excursions of permutations. This provides a translation of the formula in terms of the Cayley graph of the symmetric group S_k and allows us to recover the coefficients of Σ_k by means of the posets P_k and Q_k of pattern-avoiding permutations discovered by Bóna and Simion. We also obtain symmetric functions specializing in the coefficients of Σ_k.

keywords: symmetric group, symmetric functions, Cayley graph, Kerov polynomials, noncrossing partitions.

AMS subject classification: 05E10, 06A11, 05E05

1 Introduction

The n-th free cumulant R_n can be thought as a function $R_n : \lambda \in \mathcal{Y} \to R_n(\lambda) \in \mathbb{Z}$, defined on the set of all Young diagrams \mathcal{Y}, which we identify with the corresponding integer partition, and taking integer values [2]. Indeed, after a suitable representation of a Young diagram λ as a function in the plane \mathbb{R}^2, it is possible to determine the sequences of integers x_0, \ldots, x_m and y_1, \ldots, y_m, consisting of the x-coordinates of the minima and maxima of λ, respectively. In this way, if we set

$$\mathcal{H}_\lambda(z) = \frac{\prod_{i=0}^m (z-x_i)}{\prod_{i=1}^m (z-y_i)},$$

then $R_n(\lambda)$ is the coefficient of z^{n-1} in the formal Laurent series expansion of $\mathcal{K}_\lambda(z)$ such that

$$\mathcal{K}_\lambda(\mathcal{H}_\lambda(z)) = \mathcal{H}_\lambda(\mathcal{K}_\lambda(z)) = z.$$
It can be shown that $R_1(\lambda) = 0$ for all λ. So, the k-th Kerov polynomial is a polynomial $\Sigma_k(R_2, \ldots, R_{k+1})$ which satisfies the following identity,

$$\Sigma_k(R_2(\lambda), \ldots, R_{k+1}(\lambda)) = (n)_k \frac{\chi^\lambda(k, 1^{n-k})}{\chi^\lambda(1^n)},$$

where $\chi^\lambda(k, 1^{n-k})$ denotes the value of the irreducible character of the symmetric group \mathfrak{S}_n indexed by the partition λ on k-cycles. Two remarkably properties of Σ_k have to be stressed. First, it is an “universal polynomial”, that is it does not depend on λ nor on n. Second, its coefficients are nonnegative integers. A combinatorial proof of the positivity of Σ_k is quite recent and is due to Féray [7]. Such a proof was then simplified by Doléga, Féray and Śniady [5]. Until now, several results on Kerov polynomials have been proved and conjectured, see for instance [3, 9, 11, 16] and [8] for a more detailed treatment.

Originally, free cumulants arise in the noncommutative context of free probability theory [14], and their applications in the asymptotic character theory of the symmetric group is due mainly to Biane. In 1992, Speicher [15] showed that the formulae connecting moments and free cumulants of a noncommutative random variable X obey the M"obius inversion on the lattice of noncrossing partitions of a finite set. This result highlights the strong analogy between free cumulants and classical cumulants, which are related to the moments of a random variable variable X, defined on a classical probability space, via the M"obius inversion on the lattice of all partitions of a finite set. More recently, Di Nardo, Petrullo and Senato [6] have shown how the classical umbral calculus provides an alternative setting for the cumulant families which passes through a generalization of the Abel polynomials.

In 1997, it was again Biane [1] to show that the lattice NC_n of noncrossing partitions of $\{1, \ldots, n\}$ can be embedded into the Cayley graph of the symmetric group \mathfrak{S}_n. So that, it seems reasonable that a not too complicated expression of the Kerov polynomials involving noncrossing partitions, or the Cayley graph of \mathfrak{S}_n, would exist. In particular, such a formula, conjectured in [2], appeared with a rather implicit description into the papers [5, 7].

In this paper, we state an explicit formula expressing Σ_k as a weighted sum over the lattice NC_{k+1}. In particular, we introduce a partial order \preceq_{irr} on the subset NC_{irr} of NC_n consisting of the noncrossing partitions having 1 and $k+1$ in the same block. Then, we prove that

$$\Sigma_k = \sum_{\tau \in NC_{irr, k+1}} \left[\sum_{\pi: \tau \preceq_{irr} \pi} (-1)^{\ell(\pi)-1} W_\tau(\pi) \right] R_\tau,$$

where $\ell(\pi)$ is the number of blocks of π, $W_\tau(\pi)$ is a suitable weight depending on τ and π, and $R_\tau = \prod_B R_{|B|}$, B ranging over the blocks of τ having at least 2 elements.

2
Since each \(\pi \in NC_{k+1} \) is obtained from a given \(\pi' \in NC_k \) simply by inserting \(k + 1 \) in the block containing 1, then the Biane embedding can be used to translate the formula in terms of the Cayley graph of the symmetric group \(\mathfrak{S}_k \).

We also define two slight different versions of the Foata bijection which give rise to a description of \(\leq \text{irr} \) in terms of left-to-right minima and maxima of permutations. Moreover, the maps \(\theta \) and \(f \), studied by Bóna and Simion \([4]\), allow us to compute \(\Sigma_k \) via the posets \(P_k \) and \(Q_k \) of pattern-avoiding permutations ordered by inclusion of descents sets and excedances sets respectively.

Finally, the special structure of the weight \(W_f(\pi) \) makes we able to determine symmetric functions \(g_\mu(x_0, \ldots, x_{k-1}) \) that specialized in \(x_i = i \) return the coefficient of \(\prod_{i \geq 2} R_i^m_i \) in \(\Sigma_k \), for every integer partition \(\mu \) of size \(k+1 \) having \(m_i \) parts equal to \(i \).

2 Kerov polynomials

Let \(n \) be a positive integer and let \(\lambda = (\lambda_1, \ldots, \lambda_l) \) be an integer partition of size \(n \), that is \(1 \leq \lambda_1 \leq \cdots \leq \lambda_l \) and \(\sum \lambda_i = n \). As is well known, the Young diagram of \(\lambda \) (in the French convention) is an array of \(n \) left-aligned boxes, whose \(i \)-th row consists of \(\lambda_i \) boxes. Denote by \(\mathcal{Y}_n \) the set of all Young diagram of size \(n \), and set \(\mathcal{Y} = \bigcup \mathcal{Y}_n \). From now on, an integer partition and its Young diagram will be denoted by the same symbol \(\lambda \).

After a suitable representation of a Young diagram \(\lambda \) as a function in the plane \(\mathbb{R}^2 \), it is possible to determine the sequences of integers \(x_0, \ldots, x_m \) and \(y_1, \ldots, y_m \), consisting of the \(x \)-coordinates of its minima and maxima respectively. Then, by expanding the rational function

\[
\mathcal{H}_\lambda(z) = \frac{\prod_{i=0}^m (z - x_i)}{\prod_{i=1}^m (z - y_i)}
\]

as a formal power series in \(z^{-1} \) one has

\[
\mathcal{H}_\lambda(z) = z^{-1} + \sum_{n \geq 1} M_n(\lambda) z^{-(n+1)}.
\]

The integer \(M_n(\lambda) \) is said to be the \(n \)-th moment of \(\lambda \). Now, define \(\mathcal{K}_\lambda(z) = \mathcal{H}_\lambda^{-1}(z) \), that is \(\mathcal{K}_\lambda(\mathcal{H}_\lambda(z)) = \mathcal{H}_\lambda(\mathcal{K}_\lambda(z)) = z \), and consider its expansion as a formal Laurent series,

\[
\mathcal{K}_\lambda(z) = z^{-1} + \sum_{n \geq 1} R_n(\lambda) z^{n-1}.
\]

Then, the integer \(R_n(\lambda) \) is named the \(n \)-th free cumulant of \(\lambda \). It is not difficult to see that \(M_1(\lambda) = R_1(\lambda) = 0 \) for all \(\lambda \).

By setting

\[
\mathcal{M}_\lambda(z) = z^{-1}\mathcal{H}_\lambda(z^{-1}) \quad \text{and} \quad \mathcal{R}_\lambda(z) = z\mathcal{K}_\lambda(z),
\]

we obtain two formal power series in \(z \),

\[
\mathcal{M}_\lambda(z) = 1 + \sum_{n \geq 1} M_n(\lambda) z^n \quad \text{and} \quad \mathcal{R}_\lambda(z) = 1 + \sum_{n \geq 1} R_n(\lambda) z^n,
\]

3
such that
\[\mathcal{M}_\lambda(z) = R_\lambda(z \mathcal{M}_\lambda(z)). \quad (2.1) \]

Let \(\lambda \) and \(\mu \) be two partitions of size \(n \), and denote by \(\chi^\lambda(\mu) \) the value of the irreducible character of \(S_n \) indexed by \(\lambda \) on the permutations of type \(\mu \). So that, if \(\mu = (k, 1^{n-k}) \), that is \(\mu_1 = k \) and \(\mu_2 = \cdots = \mu_{n-k+1} = 1 \), then the value of the normalized character \(\hat{\chi}^\lambda \) on the \(k \)-cycles of \(S_n \) is given by
\[\hat{\chi}^\lambda(k, 1^{n-k}) = (n)_k \frac{\chi^\lambda(k, 1^{n-k})}{\chi^\lambda(1^n)}, \]
where \((n)_k = n(n-1) \cdots (n+k-1)\). The \(k \)-th Kerov polynomial is a polynomial \(\Sigma_k \), in \(k \) commuting variables, which satisfies the following identity,
\[\Sigma_k(R_2(\lambda), \ldots, R_{k+1}(\lambda)) = \hat{\chi}^\lambda(k, 1^{n-k}). \]

If we think of \(R_n(\lambda) \) as the image of a map \(R_n : \lambda \in \mathcal{Y} \to R_n(\lambda) \in \mathbb{Z} \), then also Kerov polynomials become maps \(\Sigma_k = \Sigma_k(R_1, \ldots, R_{k+1}) \), which are polynomials in the \(R_n \)'s, such that \(\Sigma_k(\lambda) = \hat{\chi}^\lambda(k, 1^{n-k}) \).

Since the coefficients of \(\Sigma_k \) do not depend on \(\lambda \) nor on \(n \), but only on \(k \), such polynomials are said to be “universal”. A second remarkably property of Kerov polynomials is that all their coefficients are positive integers. This fact is known as the “Kerov conjecture” \([10]\). The first proof of the Kerov conjecture was given with combinatorial methods by Féray \([7]\). The same author with Doléga and Śniady \([5]\) have then simplified the proof. The following formula for \(\Sigma_k \) is due to Stanley \([16]\).

Theorem 2.1. Let \(R(z) = 1 + \sum_{n \geq 2} R_n z^n \). If
\[F(z) = \frac{z}{R(z)} \quad \text{and} \quad G(z) = \frac{z}{F(z^{-1})(z^{-1})}, \]
then we have
\[\Sigma_k = -\frac{1}{k} [z^{-1}]_\infty \prod_{j=0}^{k-1} G(z-j). \quad (2.2) \]

More precisely, if \([z^n]f(z)\) denotes the coefficient of \(z^n \) in the formal power series \(f(z) \), then \([z^{-1}]_\infty f(z) = [z] f(z^{-1}) \). This way, identity \((2.2)\) states that \(\Sigma_k \) is obtained by expressing the right-hand side in terms of the free cumulants \(R_n \)'s.

Moreover, if \(M(z) = 1 + \sum_{n \geq 1} M_n z^n \), then by virtue of \((2.1)\) we have \(z G(z)^{-1} = M(z^{-1}) \), and \((2.2)\) can be rewritten in the following equivalent form,
\[\Sigma_k = -\frac{1}{k} [z^{k+1}]_\infty \prod_{j=0}^{k-1} \frac{1-jz}{M(1-jz)}, \quad (2.3) \]
3 Irreducible noncrossing partitions

A partition of a finite set S is an unordered sequence $\pi = \{A_1, \ldots, A_t\}$ of its nonempty subsets, such that $A_i \cap A_j = \emptyset$, if $i \neq j$, and $\cup A_i = S$. We say that a partition τ refines a partition π, in symbols $\tau \leq \pi$, if and only if each block of π is union of blocks of τ. Moreover, if $T \subset S$, the restriction of a partition π of S to T is the partition $\pi|_T$ obtained by removing from π all the elements which do not belong to T.

There is a beautiful formula, due to Speicher [15], related to a special family of set partitions, which gives the expression of the moments M_n's in terms of their respective free cumulants R_n's. Let us recall it.

Denote by $[n]$ the set $\{1, \ldots, n\}$. A partition $\pi = \{A_1, \ldots, A_t\}$ of $[n]$ is said to be a noncrossing partition if and only if $a, c \in A_i$ and $b, d \in A_j$ implies $i = j$, whenever $1 \leq a < b < c < d \leq n$. The set of all the noncrossing partitions of $[n]$ is usually denote by NC_n. Its cardinality equals the n-th Catalan number $C_n = \frac{1}{n+1} \binom{2n}{n}$. Now, if for all $\pi = \{A_1, \ldots, A_t\} \in NC_n$ we set $R_{\pi} = R_{|A_1|} \cdots R_{|A_t|}$, then the formula of Speicher states that

$$M_n = \sum_{\pi \in NC_n} R_{\pi}.$$

A noncrossing partition π of $[n]$ is said to be irreducible if and only if 1 and n lies in the same block of π. To the best of our knowledge, irreducible noncrossing partitions were introduced by Lehner [12]. According to Lehener’s notation, the set of all irreducible noncrossing partitions of $[n]$ will be denoted by NC_{n}^{\irr}.

By taking the sum of the monomials R_{π}’s, π ranging in NC_{n}^{\irr} instead of NC_n, one defines a quantity B_n known as a boolean cumulant (see [12]),

$$B_n = \sum_{\pi \in NC_{n}^{\irr}} R_{\pi}.$$

(3.1)

In particular, if $B(z) = \sum_{n \geq 1} B_n z^n$, then we have

$$\mathcal{M}(z) = \frac{1}{1 - B(z)}.$$

(3.2)

Note that, a partition of NC_{n+1}^{\irr} is obtained from a partition of NC_n simply by inserting $n + 1$ in the block containing 1. This fixes a bijection between NC_n and NC_{n+1}^{\irr}, which proves that $|NC_{n+1}^{\irr}| = |NC_n| = C_n$. If μ is an integer partition of size n, let $\ell(\mu)$ denote the number of its parts μ_i’s, and define NC_{μ}^{\irr} to be the subset of NC_{μ}^{\irr} consisting of all the partitions of type μ, namely the partitions $\pi = \{A_1, \ldots, A_t\}$ such that the sequence $(|A_1|, \ldots, |A_t|)$ is a rearrangement of μ. It can be shown that, if exactly $m_i(\mu)$ parts of μ are equal to i, and if $m(\mu)! = m_1(\mu)! \cdots m_n(\mu)!$, then we have

$$|NC_{\mu}^{\irr}| = \frac{(n - 2)^{\ell(\mu) - 1}}{m(\mu)!}.$$

(3.3)
The notion of noncrossing partition can be given for any totally ordered set \(S \). In particular, \(NC_S^{irr} \) will denote the set of all the noncrossing partitions of \(S \), such that the minimum and the maximum of \(S \) lies in the same block. Let us introduce a partial order on \(NC_S^{irr} \).

Definition 3.1. Let \(\tau, \pi \in NC_S^{irr} \). We set \(\tau \leq_{irr} \pi \) if and only if \(\tau \leq \pi \) and the restriction \(\tau|_A \) of \(\tau \) to each block \(A \) of \(\pi \), is in \(NC_A^{irr} \). In particular, we say that \(\pi \) covers \(\tau \) if and only if \(\tau \leq_{irr} \pi \) and \(\pi \) is obtained by joining two blocks of \(\tau \).

For instance, let \(\tau = \{\{1, 5\}, \{2, 3\}, \{4\}\}, \pi = \{\{1, 2, 3, 5\}, \{4\}\} \) and \(\pi' = \{\{1, 5\}, \{2, 3, 4\}\} \). Then \(\tau, \pi, \pi' \in NC_5^{irr} \) and \(\tau \) refines both \(\pi \) and \(\pi' \). However, \(\tau \leq_{irr} \pi \) and in particular \(\pi \) covers \(\tau \), while it is not true that \(\tau \leq_{irr} \pi' \), since \(\tau|_{\{2, 3, 4\}} = \{\{2, 3\}, \{4\}\} \) is not irreducible.

The singletons (i.e. blocks of type \(\{i\} \)) of the noncrossing partitions will play a special role. For all \(\tau \in NC_n \) we denote by \(U(\tau) \) the subset of \([n]\) consisting of all the integers \(i \) such that \(\{i\} \) is a block of \(\tau \), while \(\tilde{\tau} \) will be the partition obtained from \(\tau \) by removing the singletons. When \(\tau, \pi \in NC_n^{irr} \) and \(\tau \leq_{irr} \pi \), then \(\pi_\tau \) is the restriction of \(\pi \) to \(U(\tau) \). Note that \(\pi_\tau \in NC_{U(\tau)} \).

We define a tree-representation for the partitions of \(NC_n^{irr} \) in the following way. Assume \(\tau = \{A_1, \ldots, A_l\} \in NC_n^{irr} \) and \(\min A_i < \min A_{i+1} \). Construct a labeled rooted tree \(t_\tau \) by the following steps,

- choose \(A_1 \) as the root of \(t_\tau \),
- if \(2 \leq i < j \leq l \) then draw an edge between \(A_i \) and \(A_j \) if and only if \(j \) is the lowest integer such that \(\min A_i < \min A_j < \max A_j < \max A_i \),
- label each edge \(\{A_i, A_j\} \) with \(\min A_j \).

For example, if \(\tau = \{\{1, 2, 7, 12\}, \{3, 5, 6\}, \{4\}, \{8, 9\}, \{10, 11\}\} \) then \(t_\tau \) is the following tree,

![Tree Representation](attachment:image.png)

Now, let \(E(\tau) \) be the set of labels of \(t_\tau \), and choose \(j \in E(\tau) \). We denote by \(t_{\tau,j} \) the tree obtained from \(t_\tau \) by deleting the edge labeled by \(j \) and joining its nodes (i.e. joining the blocks). In the following, we will say that \(t_{\tau,j} \) is the tree
obtained from \(t_\tau \) by “removing” \(j \). Hence, \(t_{\tau,3} \) is given by
\[
\{1, 2, 3, 5, 6, 7, 12\}
\]
\[
4 \quad 8 \quad 10
\]
\[
\{4\} \quad \{8, 9\} \quad \{10, 11\}
\]

Of course, \(t_{\tau,j} \) is the tree-representation of an irreducible noncrossing partition, here denoted by \(\tau_{(j)} \), whose blocks are the nodes of \(t_{\tau,j} \). By construction, we have \(\tau \leq_{\text{irr}} \tau_{(j)} \) and \(E(\tau_{(j)}) = E(\tau) - \{j\} \). More generally, given a subset \(S \subseteq E(\tau) \), we denote by \(\tau_S \) the only partition whose tree \(t_{\tau,S} \) is obtained from \(t_\tau \) by removing all labels in \(S \) successively. We remark that \(\tau_S \) depends only on the set \(S \) and not on the order in which labels are chosen. In the example, if \(S = \{3, 8\} \) then \(t_{\tau,S} \) is the tree below,
\[
\{1, 2, 3, 5, 6, 7, 8, 9, 12\}
\]
\[
4 \quad 10
\]
\[
\{4\} \quad \{10, 11\}
\]

This way, we have \(\tau_S = \{\{1, 2, 3, 5, 6, 7, 8, 9, 12\}, \{4\}, \{10, 11\}\} \). The following proposition is easy to prove.

Proposition 3.1. Let \(\tau, \pi \in \text{NC}_n^{\text{irr}} \). Then, we have \(\tau \leq_{\text{irr}} \pi \) if and only if \(\pi = \tau_S \) for some \(S \subseteq E(\tau) \). In particular, if \(\ell(\tau) \) is the number of blocks of \(\tau \), then we have
\[
|\{\pi \mid \tau \leq_{\text{irr}} \pi\}| = |2^{E(\tau)}| = 2^{\ell(\tau) - 1},
\]
\(2^{E(\tau)} \) denoting the powerset of \(E(\tau) \), and
\[
|\{\pi \mid \pi \text{ covers } \tau\}| = |E(\tau)| = \ell(\tau) - 1.
\]

3.1 The Cayley graph of \(\mathfrak{S}_n \)

We start recalling some known results relating noncrossing partitions to the symmetric group in order to describe the partial order \(\leq_{\text{irr}} \) in terms of permutations.

The Cayley graph of \(\mathfrak{S}_n \) is the graph whose nodes are the elements of \(\mathfrak{S}_n \) and \(w, u \in \mathfrak{S}_n \) are connected by an edge if and only if there exists a transposition \(t \) such that \(u = wt \).

Denote by \(T_n \) the set of all transpositions of \(\mathfrak{S}_n \) and for all \(w \in \mathfrak{S}_n \) let \(\ell_T(w) \) denote the minimum number of transpositions in \(T_n \) whose product equals \(w \). If we set \(u \leq_T w \) if and only if \(\ell_T(w) = \ell_T(u) + \ell_T(u^{-1}w) \), then we obtain a partial order on \(\mathfrak{S}_n \), sometimes called the absolute order, whose Hasse diagram can be identified with the Cayley graph.

Biane \([\Pi]\) has shown that the lattice \((\text{NC}_n, \leq) \) can be embedded into the Cayley graph of \(\mathfrak{S}_n \) through a map, here denoted by \(\beta \), such that \(\tau \leq \pi \) if
and only if $\beta(\tau) \leq_T \beta(\pi)$. This embedding has a quite simple description. If $A = \{i_1, \ldots, i_h\} \subseteq [n]$ and $1 < \cdots < i_h$, let $\beta(A) = (i_1 \cdots i_h) \in S_n$. Then, set $\beta(\tau) = \beta(A_1) \cdots \beta(A_t)$ whenever $\tau = \{A_1, \ldots, A_t\}$. This way, if $NC(S_n) = \{\beta(\tau) \mid \tau \in NC_n\}$, then $NC(S_n)$ is the interval $[id_n, c_n] = \{w \in S_n \mid \underline{id}_n \leq_T w \leq_T \underline{c}_n\}$ where $\underline{id}_n = (1) \cdots (n)$ and $\underline{c}_n = (1 \cdots n)$. Moreover, it is easy to see that if $NC_{irr}(S_n) = \{\beta(\tau) \mid \tau \in NC_{irr}\}$, then $NC_{irr}(S_{n+1}) = \{(1n+1w \mid w \in NC(S_n))\}$.

Incidentally, the Biane map β allows us to obtain a further enumerative result. Indeed, consider the expression of a permutation w as a product of its disjoint cycles, $w = (i_1,1 \cdots i_{1,n_1}) \cdots (i_{l,1} \cdots i_{l,n_l})$. For $1 \leq h \leq l$ define

$$T_{(i_1,1 \cdots i_{h,n_h})} = \{(i j) \in T_n \mid i_1 \leq j < i_{h,n_h}\},$$

and then set

$$T_w = \bigcup_{1 \leq h \leq l} T_{(i_1,1 \cdots i_{h,n_h})}.$$

Now, the following proposition is easy to prove.

Proposition 3.2. Let $\tau, \pi \in NC_{irr}^\ast$, $u = \beta(\tau)$ and $w = \beta(\pi)$. Then, π covers τ if and only if there exists $t \in T_w$ such that $u = wt$. In particular, we have

$$|\{\tau \in NC_{irr}^\ast \mid \pi \text{ covers } \tau\}| = |T_w| = \sum_{A \in \tau} \binom{|A| - 1}{2}.$$

3.2 Left-to-right minima and maxima

Let $w = w_1 \cdots w_n$ be a permutation of S_n written as a word, that is $w_i = w(i)$. A left-to-right maximum of w is an integer w_i such that $w_j < w_i$ for all $j < i$. Analogously, a left-to-right minimum of w is an integer w_i such that $w_j > w_i$ for all $j < i$. Of course, every $w \in S_n$ has a trivial left-to-right minimum in 1, and a trivial left-to-right maximum in n. Denote by Max(w) and Min(w) the sets of all the nontrivial left-to-right maxima and left-to-right minima of w, respectively.

There is a well known bijection, named the Foata bijection, showing that the number of permutations in S_n with k cycles equals the number of permutations in S_n with k left-to-right maxima. In this paper we use two slight different versions of the Foata bijection which we are going to describe.

Let $w = (i_{1,1} \cdots i_{1,n_1}) \cdots (i_{l,1} \cdots i_{l,n_l}) \in NC_{irr}(S_n)$. Arrange the cycles of w in decreasing order of their minima from left to right, and define \tilde{w} to be the permutation (in the word notation) obtained by removing the parenthesis. Clearly, the minimum of each cycle in w is a left-to-right minimum of \tilde{w}. Moreover, it is easy to see that the map $w \to \tilde{w}$ is a bijection.

Now, consider the same permutation w. First, arrange the cycles in decreasing order of their maxima from left to right. If w' is the word obtained by
removing the parenthesis, then let \hat{w} denote the reflection of w with respect to its middle-point, that is $\hat{w}_1 = w'_{n-i+1}$. This way, the maximum of each cycle of w is a left-to-right-maximum of \hat{w}, and the map $w \to \hat{w}$ is a bijection too. Note also that, if $\beta(\tau) = w$, then we have $\min(\hat{w}) \cap \max(\hat{w}) = U(\tau)$. In fact, $\min(\hat{w}) \cap \max(\hat{w})$ consists of the fixed points of w, that is the singletons of τ.

For example, consider $w = (1 \ 2 \ 10) \ (4) \ (5 \ 6 \ 7) \ (3) \ (8 \ 9) \in NC_n^{irr}(\mathfrak{S}_{10})$. By arranging the cycles in decreasing order of their minima we have $w = (8 \ 9) \ (5 \ 6 \ 7) \ (4) \ (3) \ (1 \ 2 \ 10)$, then $\hat{w} = 89567431210$ and $\min(\hat{w}) = \{3,4,5,8\}$.

Therefore, if we arrange the cycles in decreasing order of their maxima we obtain $w = (1 \ 2 \ 10) \ (8 \ 9) \ (5 \ 6 \ 7) \ (4) \ (3)$, so that $w' = 12108956743$ and finally $\hat{w} = 34765981021$. This way, $\max(\hat{w}) = \{3,4,7,9\}$.

Proposition 3.3. Let $\tau, \pi \in NC_n^{irr}$, $w = \beta(\tau)$ and $u = \beta(\pi)$. If $\tau \leq \pi$ then $\min(\hat{u}) \subseteq \min(\hat{w})$ and $\max(\hat{u}) \subseteq \max(\hat{w})$. Moreover, once fixed τ, the maps $\pi \in \{\pi \mid \tau \leq \pi\} \to \min(\hat{u})$ and $\pi \in \{\pi \mid \tau \leq \pi\} \to \max(\hat{u})$ are bijections.

Proof. Note that, the labels of the tree t_τ are exactly the nontrivial minima of the cycles of w, that is $E(\tau) = \min(\hat{w})$. Moreover, if we define a new label on t_τ by replacing $\min A_j$ with $\max A_j$, then Proposition 3.1 is again true. So, the proof follows by means of Proposition 3.1.

\[\square \]

3.3 Descents, excedances and pattern-avoiding permutations

An integer $i \in [n-1]$ is a descent for a permutation $w = w_1 \ldots w_n \in \mathfrak{S}_n$ if $w_i > w_{i+1}$, while it is called an excedance of w if $w_i > i$. We denote by $\text{Des}(w)$ the set of all the descents of w, and by $\text{Exc}(w)$ the set of all its excedances.

Consider the poset NC_n under the refinement order. Following Bóna and Simion [4], let P_n denote the set of all 132-avoiding permutations of \mathfrak{S}_n, and let Q_n denote the set of all 321-avoiding permutations of \mathfrak{S}_n. A partial order can be introduced on P_n and Q_n by assuming $u \leq w$ in P_n (resp. in Q_n) if and only if $\text{Des}(u) \subseteq \text{Des}(w)$ (resp. $\text{Exc}(u) \subseteq \text{Exc}(w)$). Then, there are two order-preserving bijections $f : NC_n \to P_n$ and $\theta : NC_n \to Q_n$ with the following properties:

- $i \geq 1$ is a descent of $f(\tau)$ if and only if $i+1$ is the minimum of its block in τ,
- $i \geq 1$ is an excedance of $\theta(\tau)$ if and only if $i+1$ is the minimum of its block in τ.

We also observe that, if $\tau \in NC_n^{irr}$ and if $w = f(\tau)$, then $w_{n+1} = n + 1$. Analogously, if $w = \theta(\tau)$ then $w_{n+1} = n + 1$. Finally, this says that the image of NC_n^{irr} under f (resp. θ) can be identified with P_n (resp. Q_n).
4 Kerov polynomial formula

By means of the results of Section 2 and Section 3, we are able to give a new formula for the Kerov polynomial Σ_k. In particular, such a formula is related to the order \preceq_{irr} on the irreducible noncrossing partitions of the set $[k+1]$. Furthermore, the map β makes we able to compute Kerov polynomials via the Cayley graph of \mathcal{S}_k.

Let j be a nonnegative integer and denote by $\lambda \boxplus j$ the image of the diagram λ under the translation of the plane given by $x \rightarrow x + j$. The i-th minimum and maximum of $\lambda \boxplus j$ are $x_i + j$ and $y_i + j$ respectively, so that

$$H_{\lambda \boxplus j}(z) = \prod_{m=0}^{n} z - (x_i + j) \prod_{i=1}^{m} z - (y_i + j)$$

and $M_{\lambda \boxplus j}(z) = \frac{1}{1 - jz} \frac{z}{1 - jz}$.

In this way we may rewrite (2.3) as follows,

$$\Sigma_k(R_2(\lambda), \ldots, R_{k+1}(\lambda)) = -\frac{1}{k} [z^{k+1}] \prod_{j=0}^{k-1} \frac{1}{M_{\lambda \boxplus j}(z)}. \quad (4.1)$$

Now, let $R_n(\lambda \boxplus j)$ denote the n-th free cumulant of $\lambda \boxplus j$, that is the coefficient of z^n in the formal power series $R_{\lambda \boxplus j}(z)$ such that $M_{\lambda \boxplus j}(z) = R_{\lambda \boxplus j}(z)$. Hence, it is immediate to verify that $R_{\lambda \boxplus j}(z) = jz + R_{\lambda}(z)$, or equivalently

$$R_n(\lambda \boxplus j) = R_n(\lambda) + j\delta_{1,n}, \quad (4.2)$$

where $\delta_{1,n}$ is the Kronecker delta.

Theorem 4.1 (The formula for Kerov polynomials). We have

$$\Sigma_k(R_2(\lambda), \ldots, R_{k+1}(\lambda)) = \sum_{\tau \in NC^{\text{irr}}_{k+1}} \sum_{\pi : \tau \preceq_{\text{irr}} \pi} (-1)^{\ell(\pi) - 1} W_\tau(\pi) R_\tau, \quad (4.3)$$

where

$$W_\tau(\pi) = \frac{1}{k!} \sum_{w \in \mathcal{S}_k} (w(1) - 1)^{|A_1|} \cdots (w(k) - 1)^{|A_k|},$$

if $\pi = \{A_1, \ldots, A_l\}$ and $A_i = \emptyset$ for $i > l$.

Proof. Let $B_n(j)$ denote the n-th boolean cumulant $B_n(\lambda \boxplus j)$ of $\lambda \boxplus j$. Since $R_1(\lambda) = 0$, then from (3.1) and (4.2) we deduce

$$B_n(j) = \sum_{\pi \in NC_n^{\text{irr}}} j^{u(\pi)} R_\pi(\lambda), \quad (4.4)$$

where $u(\pi) = |U(\pi)|$. Via (3.2) we have $[z^n] (M_{\lambda \boxplus j}(z))^{-1} = -B_n(j)$, then the right-hand side in (4.1) is equal to

$$\sum_{\mu} (-1)^{\ell(\mu) - 1} m(\mu)! k^{\ell(\mu)} \sum_{w \in \mathcal{S}_k} \prod_{i=1}^{k} B_{\mu_i}(w(i) - 1).$$
Here $\mu = (\mu_1, \ldots, \mu_l)$ ranges over all the integer partitions of size $k + 1$ with at most k parts, and $\mu_i = 0$ if $i > \ell(\mu)$. However, by taking into account \[\ref{eq:4.3}\] we may rewrite it in the following form,

$$
\frac{1}{k!} \sum_{\pi} (-1)^{\ell(\pi)} \sum_{w \in \mathcal{G}_k} \prod_{i=1}^{k} B_{|A_i|}(w(i) - 1),
$$

where $\pi = \{A_1, \ldots, A_l\}$ ranges over all the irreducible noncrossing partitions of $[k + 1]$ (which in fact have at most k blocks), and $A_i = \emptyset$ if $i > \ell(\pi)$. The second sum in the expression above equals, via identity \[\ref{eq:4.4}\], the following quantity,

$$
\sum_{\tau_1, \ldots, \tau_k \in \mathcal{G}_k} \sum_{w \in \mathcal{G}_k} (w(1) - 1)^{u(\tau_1)} \cdots (w(k) - 1)^{u(\tau_k)} R_{\tau_1}(\lambda) \cdots R_{\tau_k}(\lambda),
$$

where τ_i ranges over all $NC_{A_i}^{irr}$, with $NC_{\emptyset}^{irr} = \emptyset$. Now, if we set $\tau = \tau_1 \cup \cdots \cup \tau_k$, then $\tau \in NC_{\emptyset}^{irr} \subseteq \pi$ and $R_{\tau}(\lambda) = R_{\tau_1}(\lambda) \cdots R_{\tau_k}(\lambda)$. Finally, $u(\tau_i)$ is the number of singletons in $\tau_i = \tau_{i,1}$, that is the cardinality of the set $A_i \cap \mathcal{U}(\tau)$, which if nonempty is a block of π_τ. This completes the proof. \[\Box\]

So, for all integer partitions μ of size $k + 1$, if $\hat{\mu}$ is obtained from μ by removing all parts equal to 1, then the monomial $R_{\hat{\mu}} = R_{\mu_1} \cdots R_{\mu_l}$ occurs in Σ_k with a nonnegative coefficient. Thanks to \[\ref{eq:4.3}\] and Proposition 3.1 we known that such a coefficient is

$$
\sum_{\tau \in NC_{\hat{\mu}}^{irr}} \sum_{\pi: \tau \subseteq \pi \subseteq \mu} (-1)^{\ell(\pi)} W_\tau(\pi) = \sum_{\tau \in NC_{\hat{\mu}}^{irr}} \sum_{S \subseteq E(\tau)} (-1)^{|E(\tau)| - |S|} W_\tau(S),
$$

where $W_\tau(S) = W_\tau(\pi)$ if $\pi = \pi_S$.

However, via the map β the same coefficient can be recovered on the Cayley graph of \mathcal{G}_k. Indeed, if $u^* = (1 + k + 1)u$ for all $u \in NC(\mathcal{G}_k)$ then we may rewrite it in the following form,

$$
\sum_{u \in NC(\mathcal{G}_k)} \sum_{u^* \in NC_{\hat{\mu}}^{irr}(S_{\hat{\mu}})} (-1)^{\ell(u)} W_u(u),
$$

with $\ell(u)$ and $W_u(u)$ defined in the suitable way.

Proposition 3.3 provides connections between Kerov polynomials and left-to-right minima and maxima. While, the maps f and θ give relations between Σ_k and descents and excedances, and allow us to recover Σ_k from the posets P_k and Q_k of Bóna and Simion.

Now, let $\{x_0, \ldots, x_{k-1}\}$ be a set of commuting variables and consider the polynomial $\Omega_k(x_0, \ldots, x_{k-1})$ defined by

$$
\Omega_k(x_0, \ldots, x_{k-1}) = \frac{1}{k[k+1]} \prod_{j=0}^{k-1} \frac{1 - x_j z}{M(1-x_j z)},
$$
Of course, Ω_k is symmetric with respect to the x_i’s. Moreover, by virtue of (2.3) we obtain $\Omega_k(0, 1, \ldots, k - 1) = \Sigma_k$. A formula for $\Omega_k(x_0, \ldots, x_{k-1})$ is obtained simply by replacing j with x_j in (4.3). More precisely, if μ is an integer partition of size $k + 1$, then the coefficient of R^μ in the polynomial $\Omega_k(x_0, \ldots, x_{k-1})$ is given by

$$
\sum_{\tau \in NC^\mu_{(n)}} \sum_{S \subseteq E(\tau)} (-1)^{|E(\tau)| - |S|} W_\tau(S; x_0, \ldots, x_{k-1}),
$$

where $W_\tau(S; x_0, \ldots, x_{k-1})$ is simply obtained by replacing j with x_j in the definition of $W_\tau(S)$. Let $\lambda_\tau(S)$ denote the integer partition corresponding to the type of π_τ, with $\pi = \tau S$. Then, it is not difficult to see that the weight (4.5) satisfies

$$
k! W_\tau(S; x_0, \ldots, x_{k-1}) = m(\lambda_\tau(S))! (k - \ell(\lambda_\tau(S)))! m_{\lambda_\tau(S)}(x_0, \ldots, x_{k-1}),$$

$m_{\lambda_\tau(S)}(x_0, \ldots, x_{k-1})$ being the monomial symmetric function indexed by $\lambda_\tau(S)$ [13]. So that the coefficient of R^μ in $\Omega_k(x_0, \ldots, x_{k-1})$ is a symmetric function of degree $m_1(\mu)$. Denote it by $g^\mu(x_0, \ldots, x_{k-1})$ and assume

$$
g^\mu(x_0, \ldots, x_{k-1}) = \sum_{\lambda} g^{\mu, \lambda} m(\lambda_\tau(S))(x_0, \ldots, x_{k-1}).$$

The left-hand side of (4.5) assures us that, for every λ of size $m_1(\mu)$ we have

$$
g^{\mu, \lambda} = \frac{1}{k!} \sum_{\tau \in NC^\mu_{(n)}} \sum_{S \subseteq E(\tau)} (-1)^{|E(\tau)| - |S|} m(\lambda)! (k - \ell(\lambda))!,$$

hence the $g^{\mu, \lambda}$’s are rational numbers. Moreover, since $g^\mu(0, \ldots, k - 1)$ is the coefficient of R^μ in Ω_k, then the Kerov conjecture implies it is a nonnegative integer. Hence, we may check if the $g^{\mu, \lambda}$’s are nonnegative integers too. This is not true. In fact, we have

$$
g_{(3,1,1,1)} = \frac{14}{5} m_{(1,1,1,1)} - \frac{4}{5} m_{(1,2)} + \frac{4}{5} m_{(3)}.$$

More generally, the expansion of $g_{(3,1,1,1)}(x_0, \ldots, x_{k-1})$ in terms of all the classical basis of the ring of symmetric functions, namely elementary functions e_λ, complete homogeneous functions h_λ, power sum functions p_λ and Schur functions s_λ, have rational coefficients which are not positive integers. In fact we have,

$$
g_{(3,1,1,1)} = \frac{14}{5} h_{(1,1,1,1)} - 7 h_{(1,2)} + 5 h_{(3)} = \frac{4}{5} e_{(1,1,1,1)} - 3 e_{(1,2)} + 5 e_{(3)} = \frac{5}{3} p_{(1,1,1,1)} - p_{(1,2)} + \frac{2}{15} p_{(3)} = \frac{4}{5}s_{(1,1,1,1)} - \frac{7}{5} s_{(1,2)} + \frac{14}{5} s_{(3)}.$$
We conclude this paper by stating a second formula expressing Σ_k as a weighted sum over the whole NC_{k+1}. To this aim, let us introduce the notion of an irreducible component of a noncrossing partition.

Given $\tau \in NC_n$, let j_1 be the greatest integer lying in the same block of 1. Set $\tau_1 = \tau_{|j_1}$ so that τ_1 is an irreducible noncrossing partition of $[j_1]$. Now, let j_2 be the greatest integer lying in the same block of $j_1 + 1$ and set $\tau_2 = \tau_{|j_1+1,j_2}$. By iterating this process, we determine the sequence of irreducible noncrossing partitions τ_1, \ldots, τ_d, which we name the irreducible components of τ, such that $\tau = \tau_1 \cup \cdots \cup \tau_d$. For all $\tau \in NC_n$, we denote by $d(\tau)$ the number of its irreducible components. Note that, $d(\tau) = 1$ if and only if τ is an irreducible noncrossing partition. The proof of the following theorem is omitted.

Theorem 4.2. We have

$$\Sigma_k = \sum_{\tau \in NC_{k+1}} \left[(-1)^{d(\tau)-1} V_\tau \right] R_\tau,$$

where

$$V_\tau = \frac{1}{k} \sum_{i_1 < \cdots < i_d \leq k-1} i_{u(\tau_1)}(i_1) \cdots i_{u(\tau_d)}(i_d),$$

if $d = d(\tau)$.

References

[1] P. Biane, *Some properties of crossings and partitions*, Discrete Math. 175 (1997), 41-53.

[2] P. Biane, *Characters of the symmetric group and free cumulants*, Lecture Notes in Math. 1815 (2003), Springer, Berlin, 185-200.

[3] P. Biane, *On the formula of Goulden and Rattan for Kerov Polynomials*, Sém. Lothar. Combin. 55 (2006).

[4] M. Bóna, R. Simion, *A self-dual poset on objects counted by the Catalan numbers and a type-B analogue*, Discrete Math. 220 (2000), 35-49.

[5] M. Dolega, V. Féray and P. Śniady, *Explicit combinatorial interpretation of Kerov character polynomials as number of permutation factorizations*, arXiv: 0810.3209v2 (2008).

[6] E. Di Nardo, P. Petrullo and D. Senato, *Cumulants and convolutions via Abel polynomials*, preprint.

[7] V. Féray, *Combinatorial interpretation and positivity of Kerov’s character polynomials*, J. Algebraic Combin. 29 (2009), 473-507.

[8] V. Féray, *Ph.D. Thesis* (2009), available at http://feray.fr/valentin/soutenance.
[9] I.P. Goulden, A. Rattan, *An explicit form for Kerov’s character polynomials*, Trans. Amer. Math. Soc. 359 (2007), 3669-3685.

[10] S.V. Kerov, talk at IHP Conference (2000).

[11] M. Lassalle, *Two positive conjectures for Kerov polynomials*, Adv. in Appl. Math. 41 (2008), 407-422.

[12] F. Lehner, *Free cumulants and enumeration of connected partitions*, Europ. J. Combin. 22 (2002), 1025-1031.

[13] I.G. Macdonald, *Symmetric functions and Hall polynomials*, second ed., Oxford University Press, Oxford (1995).

[14] A. Nica and R. Speicher, *Lectures on the Combinatorics of Free Probability*, Cambridge University Press (2006).

[15] R. Speicher, *Multiplicative functions on the lattice on no-crossing partitions and free convolution*, Math. Ann., 298 (1994), 611-628.

[16] R.P. Stanley, *Kerov’s character polynomial and irreducible symmetric group characters of rectangular shape*, Transparencies from a talk at CMS meeting (2002), Quebec City.