A narrative review of herbal preparations against RNA viruses

Eghbal Jasemi¹,², Saeideh Momtaz¹,²,⁴, Reza Ghaffarzadegan¹, Amir Hossein Abdolghaffari¹,²,⁴, Mohammad Abdollahi²

¹ Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran, Iran.
² Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
³ Department of Toxicology and Pharmacology, School of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
⁴ Gastrointestinal Pharmacology Interest Group, Universal Scientific Education and Research Network, Tehran, Iran.

Abstract

Objective

Although several therapeutics were designed to control infectious diseases, viral infections are still fatal. Currently, evidence extracted from in vivo, in vitro, and in silico studies support the antiviral activity of many herbs scientifically; however, the therapeutic potential of many other herbs is still unknown. Plants and their products may potentially control the propagation of viruses in a variety of conditions.

Methods

Data were extracted from PubMed, Scopus, Google Scholar, and Science Direct from 1983 to 2020. We gathered a list of plant extracts, phytochemicals, and herbal formulations that can inhibit RNA viral infections, mainly those that are originated from the coronaviruses family. We also provided an overview of their inhibitory mechanism of actions.

Results

Plant families, including Lamiaceae, Asteraceae, and Myrtaceae, contain the highest number of species with anti-coronaviruses activities, respectively.

Conclusions

It can be suggested that the combination of these antiviral ingredients with each other, any synthetic compound, or already approved drugs or inhibitors can be a novel approach for antiviral therapies.

Keywords

viruses, coronaviruses, herbal extracts, phytochemicals, essential oils

Introduction

Viruses are microscopic particles ranging in size from 30 to 300 nm, lacking typical cellular structures. They are not able to reproduce outside the living host cell and are more like a large chemical compound. For this reason, they are also called compulsive intracellular parasites. Viruses can infect hosts ranging from bacteria to animals, plants to humans.¹⁻³ Viruses rely on host cell surface receptors to enter the cell and employ host cellular machinery to replicate, assemble, and release new virus particles. Each virus has a specific mechanism to infect the host through the attachment of the virus to host cell membrane via binding of molecules of the outer surface of the virion to a receptor molecule on the host cell (protein or carbohydrate); penetration and uncoating of the virus and subsequent release of the virions into host cell; reverse transcription of viral RNA into DNA (i.e., Retroviruses); integration of the viral DNA into host cell genome; use of the cellular system to produce mRNA coding for viral proteins (early genes); synthesis and assembly of nucleocapsids (late genes); release of the naked virions by cell lysis. Alternatively, viruses with envelopes can be released by a process known as budding, in which the nucleocapsid is wrapped by the membrane and pinched off⁴⁻⁸ (Fig. 1).

As of now, viral infections are significant threats to human and animal health, imposing a tremendous economic burden. During the past two decades, the epidemic of Ebola virus, chikungunya virus, Zika virus, Yellow fever, the severe acute respiratory syndrome (SARS) virus and the Middle East Respiratory Syndrome Coronavirus (MERS-CoV), influenza, Nipah and henipaviral diseases, and Lassa fever raised significant challenges for public health authorities all over the world, highlighting the emerge of strategies to predict, prevent, or control the pathogens geographic spread, and the human-to-human transmission.⁹ In the 21st century, three members of the β-coronavirus genus caused deadly infections in humans. In 2002, the outbreak of SARS-CoV began in northern China and extended globally. After that, MERS-CoV spread out in the Middle East in 2012, and lately, SARS-CoV-2 (COVID-19) was reported on December 30, 2019, in Wuhan City, Hubei Province, China. SARS is an 80–160 nm single-stranded positive RNA virus surrounded by a coat containing the E2 virus binding protein, the E1 matrix protein, and the nucleocapsid N protein. To date, no proven effective therapeutics or vaccines exist for human coronaviruses infections.¹⁰ Current treatment options for coronavirus infections include medications such as Lopinavir/Ritonavir, Oseltamivir, Chloroquine, Hydroxychloroquine, Remdesivir, Favipiravir; nucleoside analogs; neuraminidase (NA) inhibitors; peptide (EK1); abidol; RNA synthesis inhibitors (such as TDF, 3TC); anti-inflammatory drugs (such as hormones and other molecules); angiotensin-converting enzyme inhibitors or angiotensin receptor blockers; and Chinese traditional medicine such ShuFengJieDu Capsules and Lianhuaqingwen Capsule. A patent review study offered that proteases inhibitors (since proteases are essential for viruses replication), monoclonal antibodies, and interferons (INFs) are definite targets for coronavirus infection treatment. This study also concluded that traditional formulations containing natural compounds might help to improve symptoms of infection such as fever, cough, sore throat, and shortness of breath.¹¹,¹² A recent
study reported that some natural products such as lycorine, homoharringtonine, silvestrol, ouabain, tylophorine, and 7-methoxycryptopleurine may possess potential antiviral activities at nanomolecular equivalent concentrations. Natural isolates or extracts such as scutellarein, silvestrol, tryptanthrin, saikosaponin B2, lectins such as griffithsin, lycorine and polyphenolics including quercetin, myricetin, caffeic acid, psoralidin and isobavachalcone were also shown to be active against human coronaviruses. Given the significance of natural products, particularly herbal preparations and phytochemicals, on viral infections, we tried to collect a list of plant species/bioactive components or antiviral herbal medicine formulations that are capable of combating viral infections in RNA viruses with emphasize on coronaviruses. We also provided a summary of different types of viruses and the family of coronaviruses.

Methods

Study design

Data were extracted from PubMed, Scopus, Google Scholar, and Science Direct, using the keywords “antiviral” OR “coronavirus” OR “RNA virus” OR “herbals” OR “plant species” OR “herbal preparation” OR “herbs” OR “herbal formulation” in the title/summary and the keywords “plant, herb, phytochemistry” in the whole text. The research results were included in the study, regardless of the time limitation. The final articles used in the current review were from 1983 to 2020. 32% of the references were from 2015 until 2020. Two persons independently evaluated studies and non-English and duplicates were excluded. We avoided studies on DNA viruses and focused on RNA viruses, specifically the coronavirus family. We also prioritized our work over studies that examined the antiviral mechanisms of plants and their derivatives.

Data extraction

A summary of information including the name of plants, essential oil, phytochemical compounds, and herbal formulation, method of study such as in vitro or in vivo, the model used in the assay, dosage of treatment, and finally the results of the study are presented in two tables.

Study selection and characteristics

Out of a total of 930 studies, 440 studies were deleted due to irrelevant title and abstract, 186 studies were excluded in repetitive, and 50 non-English studies were left out. In total, 22 studies remained to review the full text. A further 53 studies were discontinued due to the irrelevance of criteria in this study.

Types of viruses

Viruses only reproduce within individual species. Therefore, to facilitate the study, they are divided into vertebrate viruses, invertebrate viruses, bacterial viruses (bacteriophage), and plant viruses, depending on the type of host. Virus families are classified by the suffix–viridae. Today, viruses are classified considering to three major characteristics: nature and structure of the genome, viral symmetry nucleocapsids (icosahedral or helical), and general morphology. Nevertheless, other features are also used to viral classification: size, physiochemical properties; mechanisms of gene expression and virus replication; serological relationships; host and tissue susceptibility; and pathology. Vertebrate viruses are often classified according to their genomic content (DNA or RNA) (Table 1), single- or double-stranded, and linear or annular.

Double-stranded DNA (dsDNA) viruses

There are many viruses with the dsDNA genome that infect mammals. They are divided into seven families: Hepadnaviridae, Polyomaviridae, Papillomaviridae, Adenoviridae, Herpesviridae, Poxviridae, and Asfarviridae. With the exception of the Poxviridae and Asfarviridae families, all families have members that can cause persistent infection in humans or animals. Hepadenoviruses, polyomaviruses, papillomaviruses, and viral herpes are causally linked to human cancers. This suggests that dsDNA viruses have many ways of disrupting and influencing cell division. Many details of their reproduction cycle indicate that they evolved from retroviruses. Genomic content of these viruses enter the host cell nucleus and mimics the genome of the host cell. Typically, the viral genome is replicated from the host cell using a DNA polymerase, and the viral genome is transcribed from the host cell by RNA polymerase. The resulting transcripts are then
transported to the cytoplasm and are replicated by the host cell ribosomes. Several replicated viral DNA molecules are converted to virions. Virions contain an entire virus particle, consisting of an outer protein shell called a capsid and an inner core of nucleic acid. Virions use the machinery of host cells to complete their life cycle and target other host cells, initiating new infection cycles.

Single-stranded DNA (ssDNA) viruses

This type of virus is often identified by the presence of two genes; a gene for viral nucleocapsid protein and another gene as a DNA replication enzyme. Once these viruses enter the cells, viral ssDNA converts to dsDNA using host cell DNA polymerase using the 3' end of viral DNA as the base template for transcription, resulting in the production of viral proteins. Then replicated viral DNA is reconverted into an ssDNA genome, which later might form virions. Parvoviruses in dogs and cats belong to the ssDNA virus family.

(+) Single-stranded RNA or (+) ssRNAs viruses

This class is by far the largest group of viruses (i.e., many common cold viruses and the poliovirus) and has consequently has considerable variation in terms of size, structure, organization, and observed replication strategy. ssRNAs are also known as picornaviruses because they have small RNA genomes. The ssRNA genome can act as an mRNA molecule, thus called “+”. However, there are several common themes in genome organization, particularly unsegmented and single open reading frame (ORF) genomes, where the proteolytic lysis of a long “polyprotein” leads to mature gene products. Non-segmented genomes with multiple ORFs require two rounds of translation or subgenomic mRNA to express structural and non-structural proteins. According to this situation, there are multi-part genomes, each component has a single ORF. The virus genome in this class range in size from 5 kb (i.e., leviviruses) to 30 kb (i.e., coronaviruses).

(-) Single-stranded RNA or (-) ssRNAviruses

The negative-strand RNA viruses are a broad group of animal viruses that comprise several important human pathogens, including influenza, measles, mumps, rubies, respiratory syncytial, Ebola, and hantaviruses. All these viruses are enveloped viruses whose genomes is consists of either one (in paramyxoviruses, rhabdoviruses, filoviruses, and Borrelia disease virus) or several (in orthomyxoviruses, bunyaviruses and arenaviruses) RNA segments. The virus carries its RNA-dependent RNA polymerase, which is responsible for the transcription and replication of the viral genome in the infected cell.

Double-stranded RNA (dsRNA) viruses

Double-stranded RNA (dsRNA) molecules belong to a limited group of viruses such as Reoviruses with 10 different dsRNAs in their genomes. These viruses also contain the RNA replication enzyme as a part of the virus structure. This enzyme transcribes positive RNA strands and helps the virus to complete the steps of its replication cycle alone, such as rotaviruses.

(+) ssRNA retroviruses

The retroviruses encompass a large family of infectious agents (Retroviridae) unified by a typical virion structure and mode of replication. Retroviruses genomes may serve as mRNA, consisting of a dimer of identical single-stranded RNA molecules, each 7–10 kb in length. Viruses with genomes higher than 8 kb are those that have other genes in addition to Gag, Pol, and Env. They use an enzyme called reverse transcriptase, giving them the unique property of transcribing their RNA into DNA after entering a cell. Once the virus enters the cell, instead of the RNA (+) strand, the virion RNA is used as a template to create a DNA copy of the viral genome through a viral enzyme called reverse transcriptase. This viral DNA becomes integrated into the host-cell DNA. Such viral DNA is called a “provirus”, identical to the genes of host cells. This integrated provirus is transcribed into RNA (+) and is transported to the cytoplasm to be utilized for the synthesis of viral proteins, or as a genome for new viruses. Retroviruses are in effect retrograde because the flow of genetic information is reversed compared with the normal pathway of molecular biosynthesis: DNA to RNA and then to protein. These viruses are referred to as Human Endogenous Retroviruses or HERVs. HIV is a retrovirus and a member of the lentivirus. Approaches to counter virus infection should be adjusted according to the specific viral characteristics. To this end, today’s medicines hit targets that minimize the risk of disease by disrupting the viral functions of the virus. Table 2 provides a summary of current medications with their mechanism of action for viral infections. There are several therapeutic targets for these drugs, which are also used to design new drugs. Considering the side effects of chemical drugs, the search for new drugs with similar properties and fewer side effects could fix a significant part of the health problems area.

Coronaviruses; structure, genome, and lifecycle

The family Coronaviridae includes the genus *Coronavirus* and *Torovirus*. Coronaviruses belong to the family Coronaviridae, suborder Coronivirinae, order Nidovirales, and realm Riboviria. Coronaviruses are large enveloped positive-sense, ssRNA viruses of vertebrates by importance in medical and veterinary diseases. The same other RNA viruses,
Coronaviruses are highly mutant. However, the mutation rate might be somewhat lower than other RNA viruses because of its genome-encoded exonuclease, enabling the viruses to become more virulent and to extend more efficiently through different hosts.32 Coronaviruses are likely to have a seasonal distribution and may cause asymptomatic as well as lower and upper respiratory tract infections.33 It has been reported that human coronaviruses can infect neurons since viral RNA has been detected in the brain of patients with multiple sclerosis.34 Interest in this family of viruses has increased in recent years due to the identification of a newly emerging coronavirus as the causative agent of SARS and MERS.35,36 Until the appearance of SARS in 2003, only four human low-pathogenic; HCoV-OC43, HCoV-HKU1, HCoV-NL63, and HCoV-229E, were recognized, of which types 229E and OC43 constitute a significant cause of the common cold and therefore were not high precedence for centralized research.37-39 Coronaviruses contain three significant proteins in their structure: the very large (200 K) glycoprotein S (spike) is the major inducer of neutralizing antibody, which forms the large (15–20 nm) peplomers in the virus envelope; an unusual transmembrane protein (M); and an internal phosphorylated nucleocapsid protein (N). Moreover, there is a tiny transmembrane protein E, and some coronaviruses contain another coat protein with hemagglutination and esterase (HE) functions.40,41 Their 30-kb (+) ssRNA is the largest known RNA virus genome with G+C contents varying from 32\% to 43\%. The viral genome contains distinctive features, including a unique N-terminal fragment within the spike protein. SARS-CoV-2 binds to ACE2 (the angiotensin 2 converting enzyme) via its S protein and enables the virus to penetrate and infect cells. To complete the virus entrance into the cells, the S protein must be enzymatically prepared by a protease, for example, protease TMPRSS2 in the case of SARS-CoV and SARS-CoV-2. TMPRSS2 facilitates the linkage of the virus receptor (S protein) to its cellular ligand (ACE2)43,44 (Fig. 1). Since the S glycoprotein is surface-exposed and mediates the virus entry into host cells, also, the ACE2 could mediate SARS-CoV-2 S-mediated entry into cells, they both are the main targets of ongoing vaccine and therapeutic design efforts and for neutralizing polyclonal antibodies upon infection.45 Within the host cell, the virus undergoes uncoating, and then the genome

Table 2. Antiviral mechanisms of compounds as therapeutic targets in medical applications.

Antiviral mechanism	Target virus (es)	Compounds approved	Selected compounds in development for the indicated target virus	Reference
Virus adsorption inhibitors	HIV, Herpesviruses (HSV), CMV, RSV, and other enveloped viruses	-	Polysulphates, polysulphonates, polycarboxylates, polyoxometalates, chiconic acid, zintevir, cosalane derivatives, negatively charged albumins	51-55
Viral DNA polymerase inhibitors	HSV-1 & -2, VZV, CMV, EBV, HHV-6, -7, -8	Acyclovir, valaciclovir, ganciclovir, valganciclovir, penciclovir, famciclovir, brivudin, foscarnet	Bicyclic furopyrimidine nucleoside analogues, A5021, cyclohexylguanidine	56-58
Reverse transcriptase	HIV	-	Emtricitabine, armodoxvir Enivirine, UC781, DPC083, TMC125 (R165335)	59-63
Virus–cell fusion inhibitors	HIV, RSV, and other paramyxoviruses	-	HIV: AMD3100, TAK779 and T20 derivatives	64-66
Acyclic nucleoside phosphonates	DNA viruses (polyoma, papilloma-, herpes-, adeno- and poxviruses), HIV, HBV	CMV: cidofovir HIV: tenofovir	HBV: adefovir	67-69
Viral protease inhibitors	HIV, herpesviruses, rhinoviruses, HCV	HIV: saquinavir, ritonavir, indinavir, nefinavir, amprenavir, lopinavir	HIV: atazanavir, mozenavir, tipranavir Human rhinovirus: AG7088	70-74
Inhibitors of processes associated with viral RNA synthesis	HIV, HCV	-	-	75
Viral neuraminidase inhibitors	Influenza A and B virus	Zanamivir, oseltamivir§	RWJ270201	76-79
IMP dehydrogenase inhibitors	HCV, RSV	Ribavirin	Mycophenolic acid, ECAR, VX497	80-82
S-adenosylhomocysteine hydrolase	(-) RNA hemorrhagic fever viruses (for example, Ebola)	-	-	83,84
is transcribed and translated. As mentioned earlier, the positive-stranded viral RNA serves as mRNA for the translation of the two large ORFs (ORF 1a and 1b), each coding for the RNA polymerase units, depending on the RNA. Upon cleavage, these proteins convert to the active RNA polymerase, forming a full-length complementary RNA (negative sense). Cytoplasmic membranes are the site of coronavirus replication and transcription. These membranes modulate both continuous and discontinuous RNA synthesis through a viral replica, a large protein complex encoding the 20 kb replicase gene. Based on the genome size, numerous genetic recombination can happen between different but related coronavirus genomes, which is a critical mechanism for the genetic diversity of coronaviruses in nature. During maturation and assembly, protein S is co-translationally inserted into the rough endoplasmic reticulum (RER) and is glycosylated with N-linked glycans. Glycosylation is a crucial stage for protein S function and transportation. Protein S forms trimers before being exported from ER, and then interacts with proteins M and E to translocate to the site of virus assembly. SARS-CoV expresses another structural protein which is called 3a. This protein is associated with both the intracellular and plasma membranes, and can induce programmed cell death (apoptosis). Protein S is crucial for virus entry, but not for its assembly.86,87

Herbal preparations and antiviral mechanisms

Medicinal herbs, especially those used in folk medicine, have been highly regarded in the treatment of viral diseases because they contain bioactive substances that can be used to produce antiviral drugs with minimal side effects. Several secondary plant metabolites such as essential oils, flavonoids, saponins, tannins, alkaloids, lignans, terpenes, and phenolic acids shown significant antiviral activities against various viruses. Indeed, those elements that interfere with certain stages of viral biosynthesis, for example, the replication cycle, are the best for clinical antiviral approaches. Low concentrations and minimum effects on host cell machinery are the main privileges of these drugs, which ultimately leads to cure of infected cells. On the other hand, virucidal drugs denature viral structural proteins or glycoproteins, which results in a total loss of the infectivity of the viral particles. The therapeutic approach, as well as herbal derivatives, could apply different strategies to inhibit virus function. It is known that both protein and lipid–protein of capsids must protect the nucleic acid inside the virus from the harmful substances, and facilitate the surface absorption of the virion into the host cell. The invasion of a cell by a viral particle always depends on its specific and close connection to one of the surface components of the host cell’s plasma membrane.88 Some plants use this mechanism to abolish the virus entry into the host cell by blocking their attachments to the cell surface.89 Most RNA viruses propagate in the cytoplasm because they have all the enzymes needed for in their genome.90 This step may be a therapeutic target for some herbal compounds due to their inhibitory effects.90 The HIV protease enzyme is responsible for the proteolytic cleavage between gag and gag-pol precursor polypeptide, which in turn converts them into functional forms and ensures the viral maturation and infectivity. The HIV polymerase inhibitors show their activity at the end of virus replication and therefore interfere with active virus formation functionally.91,92 Many active plant compounds act as HIV protease inhibitors are shown in in-vitro assays.93 Besides, the HIV integrase enzyme performs two main functions: the entry of pre-viral complexes into the nuclear pores and then the integration of the viral DNA genome into the host cell chromosome.94 The effectiveness of some herbs in inhibiting this enzyme has reduced the DNA genome into the host cell chromosome.

The influenza virus NA causes the release of the virus from the host cell surface by catalysis a breakdown in the silicic acid attached to glycoprotein and glycolipid.95,96 The inhibition of this enzyme can be considered as one of the therapeutic targets in medicinal plant studies.97,98 It is well evidenced that many plants contain ribosome-inactivating proteins (RIPs) with N-glycosidase activity that can affect ribosomal function through depurination of large ribosomal RNAs in infected cell and Inhibition of viral protein synthesis. RIPs...
can inhibit viral mRNA and DNA replication. Depurination is defined as inactivation of ribosomes by removal of a specific adenine from the sarcin/ricin (S/R) loop of the large rRNA, thereby inhibiting translation. To date, RIPs were shown effective against HIV, HBV, and HSV. For example, Trichosanthin (Trichosanthes kirilowii), PAP (Pokeweed americana), GAP31 (Gelonium multiflorum) and MAP30 (Momordica charantia) have been reported to inhibit HIV-1 replication in vitro.\(^{98, 99}\) In following sections, we prepared a list of herbal preparations, essential oils, and phytochemicals that were able to inhibit the activity of the coronavirus family.

Herbal extracts

To date, numerous herbal preparations were investigated against various types of viruses. Table 3 represents plant species, and those were shown valid on coronaviruses.

Morus spp.

Antiviral properties of the leaves and the stem bark of the mulberry tree (Morus spp.) were evaluated in human coronavirus (HCoV 229E) in L-132 cells. It was shown that Morus spp. reduced the viral titer and the cytopathogenic effects. The hydroalcoholic extract of the leaves exhibited the highest antiviral activity. The inhibition percentage of viral infectivity ranged from 34% to 36% for the aqueous stem bark extracts and from 37% to 45% for the hydromethanolic stem bark extracts. In comparison, this inhibition ranged from 67% to 100% for the hydromethanolic extracts of leaves.\(^{101}\)

Echinacea purpurea

Antiviral potential of E. purpurea examined against HCoV 229E and the highly pathogenic MERS- and SARS-CoVs in vitro. HCoV-229E was irreversibly inactivated when exposed to Echinaforce (a commercial standardized extract of E. purpurea) at an IC\(_{50}\) of 3.2 µg/ml. Pre-treatment of cell lines had only a marginal effect on virus propagation at 50 µg/ml.\(^{102}\)

Uvaria angolensis

The methanolic extract of the stem bark of U. angolensis inhibited both the HIV-1 RNase H enzyme and the reverse transcriptase activities with IC\(_{50}\) values of 1.0 ± 0.2 and 0.62 ± 0.15 µg/ml, respectively. RDS1643 and Efavirenz were considered as control of RNase H inhibitor and reverse transcriptase, respectively. The IC\(_{50}\) values for RDS1643 were measured as 2.7 ± 0.2 µg/ml.\(^{103}\)

Pometia pinnata

Leaf and bark of P. pinnata have traditionally been used to treat fever and fester. The ethanolic extracts of P. pinnata (Sapindaceae) leaves have shown one of the most potent inhibitory activity against HIV-1 integrase in vitro with an IC\(_{50}\) value of 8.8 µg/mL. In this study, proanthocyanidin A2 was isolated as an anti-HIV-1 integrase compound, with an IC\(_{50}\) value of 30.1 µM.\(^{104}\)

Anthemis hyalina

Antimicrobial activities of different species in the genus Anthemis have been documented. Treating HeLa CEACAM1 cells infected coronavirus MHV-A59 with the ethanolic extract of Anthemis hyalina decreased the proliferation and function of this virus. However, this herb has a positive effect on IL-8 secretion and expression of transient receptor potential proteins (TRP) family genes, and its primary role was reducing the viral load.\(^{105}\)

Phyllanthus amarus

The hydroalcoholic extract of P. amarus leaves inhibited the interaction of HIV-1 envelope gp120 protein with its CD40 cell receptor up to 50%. Inhibition of virus envelope protein gp120 binding to the cellular receptor CD4 was the primary mechanism underlying the blocked virus entry. The extract also showed an inhibitory effect on other enzymes of the virus, such as reverse transcriptase, integrase, and protease.\(^{106}\)

Glycine max or Black soybean

An aqueous/ethanol extract of black soybean inhibited respiratory tract viruses such as human adenovirus type 1, coxsackie B1, and influenza A in Vero, HeLa, MDCK, and FL cell lines in a dose-dependent manner. Ethanolic extract from black soybean demonstrated dose-dependent inhibitory activity against human adenovirus type 1 replication. The antiviral index was about 1.5 mg/ml, and significant activity was recorded at 3.5 mg/ml.\(^{107}\)

Sambucus nigra

In a placebo-controlled randomized, double-blind study, oral administration of elderberry (Sambucus nigra) extract was shown to be an effective, safe, and cost-saving healing agent in influenza patients. In this study, patients received 15 ml of elderberry syrup for 5 days, and they recorded their symptoms on a visual analog scale. Compared with placebo, respiratory influenza symptoms improved 4 days earlier, and their need for medication decreased.\(^{108}\)

Geranium sanguineum

Geranium sanguineum belonging to Geraniaceae is one of the medicinal plants rich in polyphenols, which reduces infection of various types of influenza viruses (H7N1, H7N7, and H3N2) in chicken embryo fibroblasts, MDCK cell lines and ICR mice (10 mg/kg in mice). n-butanol/ethanol and the ethanol/acetic acid fractions showed the highest antiviral effects in vitro and in vivo, respectively.\(^{109}\)

Boehmeria nivea

Boehmeria nivea root extract reduced Hepatitis B virus (HBV) replication in vitro (in HepG2 2.2.15 cell). Real-time PCR, Southern blot and Northern blot techniques were used in this study to assay viral gene expression and replication.\(^{110}\)

Polygonum cuspidatum

Different extracts of P. cuspidatum was shown to inhibit various viruses. This effect was associated with the presence of a class of the chemical group called anthraquinones. Anthraquinones have been reported to possess antiviral and virucidal activities against various types of viruses. Ethanolic extract of P. cuspidatum inhibited the HBV replication in a dose-dependent manner in the stable HepG2 2.2.15 hepatoblastoma cell line.\(^{111}\)

Guazuma ulmifolia

G. ulmifolia, also known as mutamba, has therapeutic effects such as wound healing, antiulcerogenic, hypoglycemic and
Table 3. Medicinal plants investigated against coronaviruses and related viruses.

Scientific name	Family	Mechanism	Herbal product	Type of study	Effective dosage	Cell type/animal model	Virus	Reference	
Morus spp.	Moraceae	Inhibition of viral infectivity	Leaves and stem bark extract	In vitro	5 µg/mL	L-132	coronavirus (HCoV 229E)	(102)	
Echinacea purpurea	Asteraceae	Virucidal activity	Herbal extract	In vitro	3.2 µg/mL	Huh-7 Vero A9	MERS- and SARS-CoVs	(103)	
Anthemis hyalina	Asteraceae	Decrease virus load and IL-8 decrease TRP genes expression	Ethanol extract	In vitro	-	HeLa ceacami	Coronavirus	(105)	
Sambucus nigra	Adoxaceae	Improve symptoms and overall wellbeing	Herbal extract	A Clinical trial	15 ml of syrup four times a day, for 5 days	-	Influenza		(108)
Uvaria angolensis	Annonaceae	HIV-1 RNase H enzyme and reverse transcriptase activity	Methanol stem bark extract	In vitro	1.0 ± 0.2 and 0.62 ± 0.15 µg/mL	AS49	HIV-1	(104)	
Pomelia pinnata	Sapindaceae	Activity against HIV-1 integrase	Ethanol leaves extract	In vitro	8.8 µg/mL	-	HIV-1	(95)	
Boehmeria nivea	Urticaceae	Inhibit HBV DNA secretion into supernatant	Root extract	In vitro	10 mg/L	HepG2 2.2.15 human hepatoblastoma	HBV	(110)	
Polygonum cuspidatum	Polygonaceae	Increase expression of HBsAg decrease HBV DNA in the suspension	Ethanol extract	In vitro	30 µg/mL	HepG2 2.2.15 human hepatoblastoma	HBV	(111)	
Guazuma ulmifolia	Malvaceae	Inhibited replication block the synthesis of viral antigens	Herbal extract	In vitro	5 mg/mL	Hep-2 (human larynx carcinoma) cells	Poliovirus-1 & BovineHerpesvirus	(112)	
Olea europaea	Oleaceae	Decrease VHSV titers and viral protein accumulation inhibits replication, modulate host cell gene expression profile	Leaf extract	In vitro	0.6–1 mg/mL	Epithelio ma papulosum cyprind M12 cell line	Hemorrhagic septicaemia virus (VHSV) and HIV-1	(114, 140)	
Phyllanthus amarus	Phyllanthaceae	Block the interaction of HIV-1 gp120 with CD4	Herbal extract	In vitro & ex vivo	1 mg/ml in vitro 1200 mg; single dose in human	MT4 cells	HIV-1	(106)	
Trichilia glabra	Meliaceae	Reduction in VSV titer	Leaf methanolic extract	In vitro	0.25 mg/mL	Vero cells	Vesicular stomatitis virus (VSV) and HSV-1	(101)	
Glycine max	Fabaceae	Inhibit virus replication	Herbal extract	In vitro	0.1-5 mg/mL	HeLa cells FL cells MDCK cells Vero cells	Human adenovirus type 1, coxsackie B1 and influenza A	(107)	
Scientific Name	Family	Type of Preparation	ID	Effective Concentration					
----------------	--------	---------------------	----	-------------------------					
Azadirachta indica	Meliaceae	Leaf extract	107	0.25 mg/ml					
Eucalyptus camaldulensis	Myrtaceae	Essential oil	107	0.85±0.15 μg/ml					
Artemisia princeps	Asteraceae	Essential oil	107	0.1% (v/v) (essential oil)					
Mosla dianthera	Lamiaceae	Essential oil	107	0.85±0.15 μg/ml					
Heterothalamus alienus, Buddleja cordobensis	Asteraceae & Scrophulariaceae	Essential oil	107	0.1±0.008 μg/ml					
Cordothymus capitatus, Origanum dictamnus, Salvia fruticosa	Lamiaceae	1.8-cineole, α-pinene, 1,8-cineole, α-pinene	107	15 mL/L					
Melaleuca alternifolia	Myrtaceae	Essential oil	107	0.0006 % (v/v)					
Laurus nobilis	Lauraceae	Essential oil (β-ocimene, 1,8-cineole, α-pinene, and β-pinene)	107	120 mg/ml					
Lippia junelliana, Lippia turbinate	Verbenaceae & Asteraceae	Essential oil	107	VC₉₀= 14–20 ppm					
Eupatorium patens	Asteraceae	Essential oil	107	VC₉₀= 150 ppm					
Cinnamomum zeylanicum, Daucus carota, Eucalyptus globulus, Rosmarinus officinalis	Lauraceae, Apiaceae, Myrtaceae, Lamiaceae	Reduced viral units virion envelope structures	107	-					
Fortunella margarita	Rutaceae	Fruits and leaves	107	6.77 μg/mL (fruits)					
Melissa officinalis	Lamiaceae	Essential oil	107	0.5-0.1 mg/ml					
Pogostemon cablin	Lamiaceae	Essential oil	107	10-80 mg/kg					
Trachyspermum ammi	Apiaceae	Essential oil	107	0.5mg/ml					
Aloe vera (L.)	Asphodelaceae	3CL²⁰ inhibitory	107	428 μg/mL					
antimicrobial. *G. ulmfoli* extract inhibited poliovirus-1 replication by 26% in HEP-2 cells and restricted the synthesis of viral antigens in the infected cell culture.112

Azadirachta indica

Azadirachta indica (Neem) is grown in tropical countries and has been reported to possess anti-inflammatory, antipyrretic, and hypoglycemic activities. The aqueous extract of the leaves of *A. indica* inhibited Dengue virus type-2 (DEN-2) \textit{in vitro} C6/36 cell line and \textit{in vivo} (mice).113

Olea europaea

Olive leaf extract inhibited replication of viral hemorrhagic septicaemia virus (VHSV).114 The extract also inhibited acute infection and cell-to-cell transfer of HIV-1 virus in MT2 cell line.115

Aloe vera

A set of experiments suggested that *A. vera* has potent anti-viral activity. *A. vera* contains bioactive virucidal compounds such as anthraquinones. As mentioned, anthraquinones like some antiviral drugs (Lopinavir, Ritonavir), alone or in combination with other medications, can target SARS-CoV-2 protease 3CLPro.116 Acemannan is the predominant acetylated polysaccharide mannan extracted from *A. vera* gel and has been approved by the US FDA for the treatment of HIV-1 in humans. Acemannan inhibits glycosylation of viral proteins and inhibits cell fusion and suppression of virus release.117

Essential oils

Essential oils contain a large number of compounds and may target several purposes. However, in most cases, synergistic mechanisms are involved in their antimicrobial activity. Studies have shown essential oils are complex mixtures of lipophilic and volatile secondary metabolites isolated from plants such as monoterpenes (hydrocarbon and oxygenated monoterpenes), sesquiterpenes (hydrocarbon and oxygenated sesquiterpenes), and/or phenylpropanoids that are responsible for a broad biological functions such as antimicrobial, antioxidant, anti-inflammatory, anticancer, cancer chemoprotective, repellent and insecticidal, allelopathic, cytotoxicity, and anti-viral activities.118, 119

Laurus nobilis

The essential of the leaves of *L. nobilis* has been shown to have potent antiviral activity against coronavirus SARS. The most important compounds in the essence of this herb include β-ocimene, 1,8-cineole, α-pinene, and β-pinene. The IC\textsubscript{50} of *L. nobilis* was measured 120 mg/ml with a selective index of 4.2 (SI, IC\textsubscript{50}/IC\textsubscript{90}).120

Mosla dianthera

This herb is used as an aromatic herb in traditional medicine in the treatment of cough, colds, fever, bronchitis, nasal hyperemia, and headache. The effect of the essential oil of this herb on mice infected by influenza A was investigated. It was found that this essence has significant effects, including reducing viral lung titers, inhibiting pneumonia, lowering serum levels of IFN-γ and interleukin 4 (IL-4), and enhancing the antioxidant activity in lung tissue of mice infected with influenza A.121

Coridothymus capitatus, Origanum dictamnus and Salvia fruticosa

A mixture of aromatic plant essential oils consisted of *C. capitatus*, *O. dictamnus*, and *S. fruticosa* was tested against the H1N1 influenza virus and HRV14 rhinovirus in HeLa and MDCK cells. It was found that this compound caused a defect in the nucleoprotein trafficking of the virus \textit{in vitro}, thereby, has the potential to be used as a herbal drug against respiratory system viruses such as H1N1 influenza and rhinovirus HRV14.112

Melaleuca alternifolia

The antiviral effect of this essence on the MDCK cell line was investigated using plaque reduction assay. The results of this study confirmed the antiviral activity of the essence of *M. alternifolia* against influenza A subtype H1N1, which was implicated to the presence of terpinen-4-ol, as the essence active ingredient.122

Eucalyptus camaldulensis

The essential oil of *E. camaldulensis* reduced the proliferation of Coxsackie B4, rotavirus, and herpes simplex virus (HSV). Moreover, the methanolic extract of this plant attenuated the activity of HSV, varicella zoster, poliovirus, and echovirus.124-126

Artemisia princeps

The essential oil of *A. princeps* var. orientalis and its bioactive components, including Borneol, Athujone, and Camphor, were studied on two noroviruses; MNV-1 and calcivirus-F9 by time-of-addition plaque assays. The *A. princeps* essence at concentrations of 0.1 and 0.01 inhibited the growth of calicivirus-F9 and MNV-1 by 48% and 64% (v/v), respectively. Borneol and Camphor showed no antiviral activity, whereas Athujone, the major compound of the essence, strongly and dose-dependently inhibited virus infection.127, 128

Heterothalamus alienus and Buddleja cordobensis

In a study on seven herbs (*Pectis odorata*, *Gaillardia megapotamica*, *Heterothalamus alienus*, *Aloysis triphylla*, *Artemisia mendozana*, *Jungia polita*, *Buddleja cordobensis*) indigenous to the South America, their cellular properties (cytotoxicity) and their inhibitory effects on HSV-1, Dengue Virus Type 2 (DENV-2) (causing Dengue fever, Dengue hemorrhagic fever, and Dengue shock syndrome), and Junin virus (JUNV) (the cause of Argentine hemorrhagic fever) were evaluated. The strongest association between cytotoxicity and antiviral activities was observed for the essence of *Hetero-thalamus alienus* and B. cordobensis against JUNV virus.129

Lippia junelliana and Lippia turbinata

The essential oils of South American species named as *L. junelliana* and *L. turbinata* could temperature- and time-dependently inhibit JUNV in Vero cells \textit{in vitro} (VC\textsubscript{50}: 14–20 ppm).130

Eupatorium patens

The essential oil of the leaves, flowers, and fruits of *E. patens* (Asteraceae), indigenous to South America, potently restrained the DEN-2 replication (VC\textsubscript{50}: 150 ppm). The
main components of the essential oil were D-germacrene; β-caryophyllene; bicyclogermacrene; α-pinene; caryophyllene oxide.130

Cinnamomum zeylanicum, Daucuscarota, Eucalyptus globulus and Rosmarinus officinalis

The blend of essential oil of these herbs inhibited H1N1 subtype of influenza virus function, probably through interfering the formation of the virus coat and inhibiting its DNA polymerase enzyme. For H1N1, a reduction was greater than 99%,131-135

Fortunella margarita

The essential oil compound of the fruit and leaves of *F. margarita* was found effective against avian influenza virus subtype H5N1 in MDCK cell line, which was associated with the presence of α-terpineol in its fruit. The fruit essential oil has been shown to be more effective and caused an 80% inhibition of the virus activity.134

Melissa officinalis

The inhibitory effect of the essential oil of *M. officinalis* on the avian influenza H9N2 subtype was investigated in the MDCK cell line. It has been found that this herb has a synergistic effect in inhibiting the H9N2 virus with Noseltamivir. *M. officinalis* can interact with cell surface proteins (i.e., masking the cell surface), thereby blocking the virus binding to cellular receptors.135

Pogostemon cablin

The antiviral activity of the essential oil obtained from *P. cablin* has been demonstrated against H1N1 and H2N2 influenza virus. Oral administration of *P. cablin* essential oil in mice has also been shown to protect against influenza virus infection by enhancing the immune response and decreasing the systemic and pulmonary inflammatory response.136-138

Trachyspermum ammi

The essential oil of *T. mumammi* was found efficient against the Japanese encephalitis virus (JEV) in *vitro*. JEV titration was determined by plaque assay, and the antiviral activity of this plant was measured in *vitro* using a plaque reduction neutralization test. Treatment of Vero cell line with this essential oil in both pre- and post-exposure treatments reduced the virus titers by 80% and 40%, respectively.139

Herbal active biochemicals

Cinnamaldehyde

Cinnamaldehyde, an abundant aromatic phenylpropanoid in *Cinnamomi cortex* (*Cinnamomum verum*) has been studied for its potential properties against the influenza virus. The results of reverse transcription (RT-PCR) and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analyses showed that cinnamaldehyde inhibited the synthesis of influenza virus proteins at the post-transcriptional level. In mice infected with influenza virus, inhalation (50 mg in the cage daily) and nasal inoculation (250 g for each rat daily) of this compound over 8 days increased the survival rate from 20% to 100% and 70%, respectively. Importantly, inhalation of cinnamaldehyde reduced virus titers in the bronchoalveolar lavage on the sixth day after infection142 (Table 4).

5,7,3',4'-tetrahydroxy-2'-(3,3-dimethylallyl) isoflavone

5,7,3', 4'-tetrahydroxy-2'- (3,3-dimethylallyl) isoflavone, is extracted from *Psorothamnus arborescens*. The anti-leishmanial property of this compound has already been proven in the scientific literature. Chymotrypsin virus-like cysteine protease enzyme (3CL\(^{pro}\)) is an essential factor for the replication cycle of coronavirus, representing a potential target for the treatment of such disease. This compound has a high affinity to the catalytic domain of 3CL\(^{pro}\) enzyme. It also can bind receptor-binding residues of the 3CL\(^{pro}\) enzyme (Table 4).

1,2,3,4,6-penta-O-galloyl-β-D-glucoside

A compound called 1,2,3,4,6-penta-O-galloyl-β-D-glucoside, extractable from the aerial parts of *Saxifraga melanocentra*, is responsible for the anti-hepatitis C virus (HCV) effect of the herb. The compound was also a potent inhibitor of the HCV serine protease enzyme143 (Table 4).

Myricitrin and Scutellarin

Myricitrin can be obtained from a plant called *Myrica cerifera*. It also can bind to and inhibit the catalytic domain of 3CL\(^{pro}\) enzyme with high affinity. Modeling analysis also showed that Scutellarin or Myristine from *Scutellaria baicalensis* could directly link the ATP/ADP binding site of the SARS-CoV virus helicase enzyme (nsP13), thereby preventing direct binding of ATP/ADP to it. In particular, Myricetin interferes with the ATPase activity of the SARS-CoV protein helicase. It is likely to do so by directly interacting with essential residues of the ATPase domain, such as N265, Y269, and R443146, 147 (Table 4).

Glycyrrhizin and Licorine

Glycyrrhizin, the bioactive component of Licorice and Lycorine from red spider lily (*Lycoris radiata*), exhibited a potent anti-SARS-CoV Corona activity. However, the effective concentration of Glycyrrhizin (EC\(_{50}\)) for inhibiting viral infection was very high (EC50 300 mg/L). Glycyrrhizin was most effective when given both during and after the adsorption period148, 149 (Table 4).

Quercetin

Quercetin is the most abundant dietary plant pigment flavonoid (i.e., in onion and garlic). It was reported that this compound inhibited the activity of 3CL\(^{pro}\) of SARS-CoV with a FRET method. Its shown quercetin has low toxicity to the cells in *vitro*. Their MERS-CoV 3CL\(^{pro}\) inhibitory activity is lower than their corresponding compounds at 40 μM150 (Table 4).

Baicalein

Scutellaria baicalensis is one of the genus that may use as a source of this flavonoid. Ethanolic extract of *S. baicalensis* inhibited SARS-CoV-2 3CL\(^{pro}\) activity in *vitro* and the replication of SARS-CoV-2 in Vero cells with an EC50 of 0.74 μg/mL. Baicalein strongly inhibited SARS-CoV-2 3CL\(^{pro}\) activity with an IC\(_{50}\) of 0.39 μM151 (Table 4).
Table 4. **Antiviral phytochemicals effective on RNA viruses.**

Compound	Source	Herbal family	Virucidal target	Type of study	Effective dosage	Cell type/animal model	Virus	Reference
Myricitrin	*Myrica cerifera*	Myricaceae	3CLpro inhibitory (a necessary protease for viral growth)	3D structure simulation	-	-	SARS-CoV-2	146
Scutellarin	*Scutellaria baicalensis*	Lamiaceae	Helicase (nsP13) inhibitory	in vitro	0.86 ± 0.48 μM	MCF10A	SARS-CoV-2	147
Glycyrrhizin and Licorine	*Lycoris radiate*	Amaryllidaceae	Inhibit CPE (virus-induced cytopathic effect) replication inhibitor	MTS assay	15.07±1.2 nM	Vero	SARS-CoV-2	148, 149
Cinnamaldehyde	*Cinnamomi cortex*	Myricaceae	Survival rate (in vivo) protein synthesis (in vitro)	In vivo & in vitro	7.1 μM	Vero	Coronavirus	143, 144
5,7,3’, 4’-tetrahydroxy-2’- (3,3-dimethylallyl) isoflavone	*Psorothamnus arborescens*	Fabaceae	Virucidal activity	in vitro	7.1 μM	Vero	Coronavirus	144
Quercetin	-	-	3CLpro inhibitory	in vitro	40 μM	*E. coli* BL21	SARS-CoV	150
Baicalensis	*Scutellaria baicalensis*	Lamiaceae	3CLpro inhibitory	in vitro	0.39 μM	Vero	SARS-CoV-2	151
Sennoside A	*Rheum palmatium L. and Rheum officinale Baill.*	Polygonaceae	Reverse Transcriptase RNase H, RT-associated functions Integrase	in vitro	2–5 μM	Jurkat	HIV-1	152
Tetra-O-galloyl-β-D-glucose	Chinese herbs	-	Virucidal activity	in vitro	4.5 M	Vero	SARS-CoV	153
Luteolin	*Onopordum illyricum L.*	Asteraceae	RNase HRT-associated	in vitro	12.8 μM	Jurkat	HIV-1	154
Tryptanthrin	*Strobilanthes cusia*	Acanthaceae	Inhibits early and late stages of replication, by blocking viral RNA synthesis and papain-like protease 2 activity.	in vitro	1.52 μM	LLC-MK2	Coronavirus NL63	155
Tellimagrandin	*Eugenia caryophyllata,*	Myrtaceae	Virus-Cell Fusion	in vitro	16.12 ± 1.98 mg/ml	syncytia	HIV-1	159
Globoidnan A	*Eucalyptus globoeada*	Myrtaceae	HIV-1 integrase activity	in vitro	0.64 μM	HuT78 T-cell	HIV-1	160
Ginkgolic acid	Chinese herbal medicines	-	Inhibited HIV protease activity	in vitro	3.12 μg/ml	Jurkat cells	HIV-1	93
Kaempferol derivatives	-	-	Block the 3a channel proteins	in vitro	2.3 μM	Xenopus oocyte	coronavirus	156
Saikosaponins	-	-	Absorption and penetration of the virus	in vitro	25 mmol/L	MRC-5	coronavirus	158
1,2,3,4,6-penta-O-galloyl-β-D-glucoside	*Saxifraga melanocentra*	Saxifragaceae	Inhibits NS3 serine protease	in vitro	0.1-0.001 mg/ml	Cos7 cells	Hepatitis C virus	145
Artesunate	*Artemisia annua*	Asteraceae	Inhibition of HIV-1 replication	in vitro	600 nM	-	-	157
Sennoside A

Sennoside A from dried roots of *Rheum palmatum* L. and *Rheum officinale* Bail. is HIV-1 RT inhibitor effective phytochemical on both HIV-1 Reverse Transcriptase and RNase H RT-associated functions in biochemical assays. Besides, Sennoside A affected the HIV-1 integrase activity in vitro and HIV-1 replication in Jurkat cell line. Sennoside A inhibited both HIV-1 RT-associated functions with IC\(_{50}\) values of 2-5 μM range.\(^{(115)}\) (Table 4).

Tetra-O-galloyl-β-D-glucose

This small molecule from Chinese herbs exhibited prominent anti-SARS-CoV activity with a EC\(_{50}\) concentration of 4.5 M in Vero E6 cells\(^{(115)}\) (Table 4).

Luteolin

Among seven compounds isolated from *Onopordum illyricum* L., Luteolin was the most effective on HIV-1 RNase H RT-associated function in a low concentration without cytotoxicity (IC\(_{50}\) of 12.8 μM)\(^{(116)}\) (Table 4).

Tryptanthrin

The antiviral activity of Tryptanthrin isolated from *Strobilanthes cusia* was investigated against coronavirus NL63 in LLC-MK2 cell line. Tryptanthrin effectively inhibited the cytopathic effect and virus yield (IC\(_{50}\) = 1.52 μM) in HCoV-NL63-infected cells. This molecule prevented the early and late stages of HCoV-NL63 replication, mainly by blocking the viral RNA genome synthesis and papain-like protease 2 activity\(^{(115)}\) (Table 4).

Kaempferol derivatives

These phytochemicals have a potency to block the 3a channel proteins of coronaviruses. The YxxΦ domain of 3a channel is a protein internalization signal which is involved in clathrin-mediated endocytosis, therefore its involved in virus cell entry. In a research study, using Xenopus oocyte for heterologous expression and applied voltage-clamp techniques, the glycoside juglanin (carrying an arabinose residue) was found as the most effective kaempferol derivatives with an IC\(_{50}\) value of 2.3 μM for Inhibition of the 3a-mediated current\(^{(116)}\) (Table 4).

Artesunate

Bioingredients of *Artemisia annua* can play potential protective roles against infections by viruses, specifically HSV-1, HBV, HCV, bovine viral diarrhea virus, and Epstein-Barr virus. It was demonstrated that 10 days administration of artesunate (a semi-synthetic derivative of artemisinin used to treat malaria) at 600 nM inhibited HIV-1 replication\(^{(117)}\) (Table 4).

Saikosaponins

Among saikosaponins (A, B2, C, and D) tested on coronavirus 229E in human fetal lung fibroblasts, saikosaponin B2 demonstrated a potent anticonviral activity at a concentration of 25 mmol/L. Although, the mode of action of this compound possibly involved interference in the early stage of viral replication such as absorption and penetration of the virus\(^{(118)}\) (Table 4).

Tellimagrandin

Initially, the interaction between the HIV envelope glycoprotein gp120 and the cell membrane protein CD4 results in virus-cell fusion. Out of isolated compounds from *Eugenia caryophyllata*, tellimagrandin significantly inhibited the virus-cell fusion and syncytia formation in HIV-1 with an IC\(_{50}\) value of 16.12±1.98 mg/ml\(^{(109)}\) (Table 4).

Ginkgolic acid

In Jurkat cells, ginkgolic acid (31.2 μg/ml) isolated from Ginkgo leaves, inhibited the HIV protease activity by 60% in a dose-dependent manner. Moreover, ginkgolic acid treatment (50 and 100 μg/ml) effectively inhibited the HIV infection at day 7 dose-dependently\(^{(119)}\) (Table 4).

Globoidnan A

It was reported that Globoidnan A, a lignan obtainable from *Eucalyptus globidea*, can interfere with HIV-1 integrase activity. This compound was found to inhibit the combined 3’ processing and strand transfer activity of HIV integrase with an IC\(_{50}\) = 0.64 μM\(^{(109)}\) (Table 4).

Antiviral herbal medicine formulations

KangBingDu

KangBingDu (KBD) is a Chinese traditional medicinal formula in form of a classic oral liquid that has been modified based on the traditional Chinese “BaiHutang” and “QingWenBaiDuiYin” medicine formulations. KBD is often used to improve the clinical symptoms of viral diseases, especially the influenza virus. KBD is composed of Radix isatidis, Rhizoma phragmitis, Radix rehmanniae, Radix curcumae, Rhizoma amarenthraeneae, Rhizoma acori tatarinowii, Herba pogostemonis, Fructus forsythiae and Gypsum fibrosum. KBD significantly reduced the sensitivity of male Kunming mice to influenza viruses, which is evidenced by reduced mortality, decreased inflammation, and inhibited viral replication in the pulmonary system. In A549 cells, administration of KBD increased the protein expression of MAVS (mitochondrial antiviral signaling protein) and the levels of IFN-β protein and interferon-induced transmembrane-3 protein, resulting in inhibition of viral infection. It was shown that (R,S)-Goitrine, Mangiferine, Forsythine, and Forsythoside A were other active ingredients of KBD against the influenza virus. The mitochondrial antiviral signaling pathway was introduced as the primary mechanism of action of KBD.\(^{(161)}\)

Maxingshigan–yinqiaosan

In a prospective RCT, the efficacy and safety of Oseltamivir and a traditional Chinese mixture named “Maxingshigan–Yinqiaosan” in treatment of uncomplicated influenza H1N1 subtype were compared. Maxingshigan–yinqiaosan consisted of 12 herbs: Zhimahuang (honey-fried *Herba Ephedrae*); Zhihu (Rhizoma Amarenthaeneae); Qinghao (Fructus Forsythiae); Bohe (Fructus Forsythiae); Zhebeimu (*Bulbus Frutilarias Thunbergii*); Niubangzi (*Fructus Arctii Tosum*); and Gancao (Radix Et Rhizoma Glycercehize). Clinical interventions and control were given for 5 days with Oseltamivir, 75 mg twice daily; Maxingshigan–yinqiaosan, 200 mL 4 times daily; Oseltamivir and Maxingshigan–yinqiaosan, alone or together, reduced time of fever resolution in patients with H1N1 influenza.\(^{(162)}\)
Sheng Jiang San

Sheng Jiang San (SJS) is a Chinese multi-herbal formulation made of four herbs consist of *Rhei Radix et Rhizoma*, *Bombyx Batryticatus*, *Cicadae Periostracum*, and *Lagerstroemia speciosa*. The inhibitory effect of SJS against different strains of influenza virus A/WSN/33 (H1N1) on MDCK cells was examined. The IC_{50} of SJS was lower than 35 μg/ml against H1N1. SJS at 2 mg/ml inhibited the NA activity up to 80%. This enzyme cleaves terminal neuraminic acid residues of glycan structures on the surface of the infected cell, thereby facilitating the release and spread of viruses progeny to reach the surrounding uninfected cells. The IC_{50} of Oseltamivir acid was 250 μM against Neuraminidase. To evaluate the efficacy of SJS in the influenza virus, infected BALB/c mice were employed as in vivo model. Oral administration of 1 g/kg/day of SJS for 7 days, exhibited 50% protection of infected mice from H1N1 symptoms. SJS also significantly down-regulated tumor necrosis factor (TNF-α) and up-regulated IL-2 of influenza virus-induced mice.165

Lianhuaqingwen

Lianhuaqingwen (LH) is another Chinese plant medicine composed of 13 herbs with positive impact on SARS-CoV-2 by inhibiting viral replication. A research study revealed that LH significantly inhibited SARS-CoV-2 replication in Vero E6 cells (600 μg/ml) and markedly reduced mRNA transcription of pro-inflammatory cytokines (TNF-α, IL-6, CCL-2/MCP-1, and CXCL-10/IP-10).164 In addition, LH in the form of capsule (4 capsules, thrice daily for 14 days) in patients who were suffering Covid-19 conferred therapeutic effects by improving the recovery rate of symptoms, shortening recovery time, and improving the recovery of chest radiologic abnormalities.165

San Wu Huangqin Decoction

San Wu Huangqin Decoction (SWHD) is a Chinese compound formulation consists of *Sophora flavescens, Scutellaria baicalensis*, and *Rehmannia glutinosa*. This herbal formulation could effectively inhibit the influenza A/PR/8/34 (H1N1) virus at all steps of virus replication in vitro. The RNA expression of four H1N1 target viral proteins (hemagglutinin, NA, NP nucleoprotein, and matrix-2) was significantly down-regulated in MDCK cells. In vivo, SWHD at 23.40 and 11.70 g/kg significantly attenuated clinical symptoms, reduced mortality, and increased the survival time of infected animals. SWHD mediated the pulmonary index, viral titer, pathological changes in lung tissue, and expression of the main IFV proteins.166

Kabasura Kudineer

Cresset Flare is a software that used for molecular docking studies against the spike protein SARS-CoV-2. In silico molecular docking assay, examining pharmacokinetics parameters, have shown that six plant species in *Cuscuta Tinospora Cordifolia*, *Costus speciosus*, and *Plectranthus ambonicus* have potential to directly suppress the SARS-CoV-2 spike protein.169

Poly-herbal gel

The anti-HIV activity of an aqueous gel formula containing ethanolic extract of the heartwood of *Acacia catechu*, leaves of *Lagerstroemia speciosa*, and fruits of *Aegle marmelos*, *Phyllanthus emblica*, and *Terminalia chebula* was examined against CXCR4 tropic and CCR5 tropic viruses. The gel inhibited viral activity with IC_{50} values of 58.17 ± 4.4 and 63.54 ± 6.8 μg/ml for CXCR4 and CCR5, respectively. CXCR4 and CCR5 are two of several chemokine receptors used by the HIV to infect T CD4+ lymphocytes. Furthermore, this gel could inhibit three key enzymes of the HIV-1 reverse transcriptase, protease, and integrase enzymes significantly.168

Qing Fei Pai Du Tang

Qing Fei Pai Du Tang (QFPDT) is a Chinese medicinal preparation consisting of 21 plants derivation of 5 conventional formula. Some studies have reported the QFPDT inhibitory effect of QFPDT on COVID-19. By several mechanisms, QFPDT could prevent the progression of mild COVID-19 cases and shorten the average duration of symptoms and hospitalization. Necessary scientific studies, supported by network pharmacology, reviewed the possible therapeutic targets of QFPDT and its constituents, including *Ephedra sinica, Bupleurum chinense*, *Pogostemon cablin, Cinnamomum cassia*, and *Scutellaria baicalensis*. Their findings indicated that main herbs of QFPDT have antiviral effects via different mechanisms including direct effect on virus replication and autophagy; regulation of host pathways like Toll-like receptors, RIG-1-like helicases, AMP-activated protein kinase, phosphatidylinositol-3-kinase/protein kinase B or extracellular regulated kinase 1/2/mitogen-activated protein kinase signal pathways; elevation of the human defense system via T and B cell functions, and free radical scavenging activities by enhancing antioxidant enzymes. QFPDT also modulated inflammation conditions through suppression of inflammatory-related genes, signal pathways and cytokines.169

Chai-Ling

Chai-Ling decoction (CLD), derived from a modification of two decoctions, include *Xiao-Chai-Hu* (XCH) and *Wu-Ling-San* (WLS) decoction, has been used to treat early-stage of COVID-19. The possible mechanisms of CLD in COVID-19 were preliminarily investigated, relying on network pharmacology and molecular docking method. CLD might reduce the inflammatory response and improve lung damages of COVID-19 through interleukin 17 signaling, T helper cell 17 differentiation, tumor necrosis factor signaling, and hypoxia-inducible factor-1 signaling. Besides, molecular docking assay indicated that beta-sitosterol, kaempferol, and stigmastanol were the primary three components in CLD with the highest affinity to SARS-CoV-2 and ACE2.170

San Yao San

San Yao San Fang (SYSF) was shown effective in patients with COVID-19. The synergy of SYSF and Western interventions improved the recovery rate of COVID-19 symptoms such as fever, cough, and fatigue, and other symptoms such as headache, gastrointestinal symptoms, myalgia, dyspnoea, and chest tightness.171

Conclusion

Throughout history, humans have been dependent on plant/natural sources for the treatment of various infections. Over the last few decades, hundreds of plant and herb species were shown to have potential antiviral activities, which
References

1. Sinkovics J, Horvath J, Horak A. The origin and evolution of viruses (a review). Acta Microbiol Immunol Hung. 1998;45(3-4):349-90.
2. Woolhouse M, Scott F, Hudson Z, Howe R. Chase-Topping MJ. Trends in malaria. Human viruses: discovery and emergence. 2012;367(1604):2664-71.
3. Lodish H, Berk A, Zipursky S, Matsudaira P, Baltimore D, Darnell J. Viruses: Structure, function, and use. Molecular Cell Biology 4th edition: WH Freeman, 2000.
4. Moss B. HIV/AIDS Review. 2013;84(5):247-67.
5. Van BM, Debyser Z. HIV-1 integration: an interplay between HIV-1 integrase, cellular and viral proteins. 2005;71(1):26-43.
6. Kilcher S, Mercer JJ. DNA virus uncoating. 2015;479:578-90.
7. Hagan MF. Model: viral capsid assembly. 2014:155-118.
8. Lindenbach BD. Virion assembly and release. Hepatitis C Virus: From Molecular Virology to Antiviral Therapy. Springer, 2013: p. 199-218.
9. Krammer M, Cummings D, Funk S, Reiner R, Faru A, Pybus Q, et al. Reconstruction and prediction of viral disease epidemics. Epidemiol Infect. 2019:147.
10. Wallis AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veeler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020;181(2):281-92.e6.
11. Nascimento Junior JAC, Santos AM, Quintans-Júnior LJ, Walker CB, Borges UP, Sarafis MR. SARS, MERS and SARS-CoV-2 (COVID-19): a review. Expert Opin. Ther. Patents. 2020;just accepted.
12. Lu H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biochem Pharmacol. 2020;181(2):281-92.e6.
13. Islam MT, Sarkar C, El-Kersh DM, Jamaddar S, Uddin SJ, Shilpi JA, et al. Natural products and their derivatives against coronavirus: A narrative review of herbal preparations against RNA viruses. A narrative review of herbal preparations against RNA viruses. J Contemp Med Sci. 2020;7(1):1, January-February 2021: 6 – 22
14. Kraemer M, Cummings D, Funk S, Reiner R, Faru A, Pybus Q, et al. Reconstruction and prediction of viral disease epidemics. Epidemiol Infect. 2019:147.
15. Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veeler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020;181(2):281-92.e6.
16. Nascimento Junior JAC, Santos AM, Quintans-Júnior LJ, Walker CB, Borges UP, Sarafis MR. SARS, MERS and SARS-CoV-2 (COVID-19): a review. Expert Opin. Ther. Patents. 2020;just accepted.
17. Lu H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biochem Pharmacol. 2020;181(2):281-92.e6.
18. Islam MT, Sarkar C, El-Kersh DM, Jamaddar S, Uddin SJ, Shilpi JA, et al. Natural products and their derivatives against coronavirus: A narrative review of herbal preparations against RNA viruses. A narrative review of herbal preparations against RNA viruses. J Contemp Med Sci. 2020;7(1):1, January-February 2021: 6 – 22
19. Kraemer M, Cummings D, Funk S, Reiner R, Faru A, Pybus Q, et al. Reconstruction and prediction of viral disease epidemics. Epidemiol Infect. 2019:147.
A review of natural products against RNA viruses

Reference	Title	Authors
Hoffmann M, Keine-Weber H, Schroder S, Krueger N, Herterl T, Erichsen S, et al.	SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor.	Cell. 2020.
Guo Y, Xiao Y, Liu Z, Tan Y, Chen S, Jin H-I, et al.	The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak—an update on the status.	Military Med Rev. 2020;7(1):1-10.
Wallis AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veisler D.	Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein.	Cell. 2020.
Solà I, Almazán F, Zúñiga S, Enjuanes L.	Continuous and discontinuous RNA synthesis in coronaviruses.	Annu Rev Virol. 2015;2:265-88.
Wu H-Y, Gu J-S, Yoo D, Vazak S, Urbach E, Brian DA.	Common RNA replication signals exist among group 2 coronaviruses: evidence for in vivo recombination between animal and human coronavirus molecules.	Virology. 2003;315(1):174-83.
Hussain S, Chen Y, Yang Y, Xu J, Peng Y, Wu Y, et al.	Identification of novel subgenomic RNAs and noncanonical transcription initiation signals of severe acute respiratory syndrome coronavirus.	J Virol. 2005;79(9):5288-95.
Qinfen Z, Jimming C, Xiaojin H, Huanying Z, Jicheng H, Ling F, et al.	The life cycle of SARS coronavirus in vero E6 cells.	J Med Virol. 2004;73(3):332-7.
van Boheemen S, de Graaf M, Lauber C, Bestebroer TM, Raj VS, Zaki AM, et al.	Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans.	MBio. 2012;3(6):e00473-12.
Baba M, Nakajima M, Schols D, Pauwels R, Balzarini J, De Clercq EJA.	Pentosan polysulfate, a sulfated oligosaccharide, is a potent and selective anti-HIV agent in vitro.	1988;6(6):335-43.
Baba M, Snoeck R, Pauwels R, De Clercq EJA, chemotherapy.	Sulfated polysaccharides are potent and selective inhibitors of various enveloped viruses, including herpes simplex virus, cytomegalovirus, vesicular stomatitis virus, and human immunodeficiency virus.	1988;32(11):1742-5.
Plyumers W, Neamati N, Panneconceau C, Fikvett K, Marchand C, Burke TR, et al.	Viral entry as the primary target for the anti-HIV activity of choric acid and its tetra-acetyl esters.	2000;58(3):641-8.
Wivroux M, Fikvett V, Plyumers W, Matthews B, Mandel K, Schols D, et al.	Polyonionic (se, polysulfonate) dendrimers can inhibit the replication of human immunodeficiency virus by interfering with both virus adsorption and later steps (reverse transcriptase/integrate) in the virus replicative cycle.	2000;58(5):1101-9.
Baranova E, Shastina N, Shvets V.	Polyanionic inhibitors of HIV adsorption.	2011;3(7):527.
Andrei G, De Clercq E, Snoeck R.	Viral genome replication.	Springer. 2009. p. 481-526.
Mcguigan C, Baruch I, Blewett S, Carangio A, Erichsen JT, Andrei G, et al.	Highly potent and selective inhibition of varicella-zoster virus by bicyclic furopyrimidine nucleosides bearing an aryl side chain.	2004;36(3):699-72.
Wang J, Freyee MN, Hendrix C, Andrei G, Snoeck R, De Clercq E, et al.	The cychoxene ring system as a furanose mimic: synthesis and antiviral activity of both enantiomers of cychoxeneylguanine.	2004;43(4):736-45.
Verweij-van Wissen C, Aarnoutse R, Burger DJJC.	Simultaneous determination of the HIV nucleoside analogue reverse transcriptase inhibitors lamivudine, didanosine, stavudine, zidovudine and abacavir in human plasma by reversed phase high performance liquid chromatography.	2005;816(1-2):121-9.
Richman DD, JAt.	Antiretroviral activity of emtricitabine, a potent nucleoside reverse transcriptase inhibitor.	2001;6(2):83-8.
Baba M, Snoeck R, Budina S, Combi V, De Clercq E, et al.	Viral adsorption and penetration by an aqueous extract from Rhododendron ferrugineum L. as antiviral principle against herpes simplex virus, and later steps (reverse transcriptase/integrase) in the virus replicative cycle.	2001;57(1):8-13.
Huggins J, Zhang Z-X, Bray MJT.	Antiviral therapy of filovirus infections: S-adenosylhomocysteine hydrolyase inhibitors inhibit Ebola virus in vitro and in a lethal mouse model.	1999;179(Supplement_1):S240-S7.
Picazo E, Giordanetto FJD.	Small molecule inhibitors of ebola virus in vitro and in a lethal mouse model.	1999;179(Supplement_1):S240-S7.
Huggins J, Zhang Z-X, Bray MJT.	Antiviral therapy of filovirus infections: S-adenosylhomocysteine hydrolyase inhibitors inhibit Ebola virus in vitro and in a lethal mouse model.	1999;179(Supplement_1):S240-S7.
Picazo E, Giordanetto F.	Small molecule inhibitors of ebola virus infection.	2015;20(2):277-86.
Brand A, McQuaid T, Jain J, Kwong A.	Broad-spectrum antiviral activity of the IMP dehydrogenase inhibitor VX-979: a comparison with ribavirin and demonstration of antiviral additivity with alpha interferon.	2000;44(8):859-66.
Parker WB.	Metabolism and antiviral activity of ribavirin.	2005;107(2):165-71.
Gish RG, KjaAcT.	Treating HCV with ribavirin analogues and ribavirin-like molecules.	2006;57(1):8-13.
Babu YS, Chand P, Bantia S, Kotian P, Dehghani A, El-Kattan Y, et al.	BCX-3507 is a novel, highly potent, orally active, and selective interferon-alpha receptor inhibitor of both conformational and positional adaptability in structure-based design.	2004;43(19):3482-6.
Mankland W, McQuaid T, Jain J, Kwong A.	Broad-spectrum antiviral activity of the IMP dehydrogenase inhibitor VX-979: a comparison with ribavirin and demonstration of antiviral additivity with alpha interferon.	2000;44(4):859-66.
Parker WB.	Metabolism and antiviral activity of ribavirin.	2005;107(2):165-71.
Dimitrov DS.	Virus entry: molecular mechanisms and biomedical applications.	Nat Rev Microbiol. 2004;2(2):109-22.
Gescher K, Kühn J, Hafez W, Louis A, Dietsker E, et al.	Inhibition of the IMP dehydrogenase inhibitor VX-497: a comparison with ribavirin and demonstration of antiviral additivity with alpha interferon.	2000;44(8):859-66.
Huggins J, Zhang Z-X, Bray MJT.	Antiviral therapy of filovirus infections: S-adenosylhomocysteine hydrolyase inhibitors inhibit Ebola virus in vitro and in a lethal mouse model.	1999;179(Supplement_1):S240-S7.
Picazo E, Giordanetto FJD.	Small molecule inhibitors of ebola virus infection.	2015;20(2):277-86.
Mankland W, McQuaid T, Jain J, Kwong A.	Broad-spectrum antiviral activity of the IMP dehydrogenase inhibitor VX-979: a comparison with ribavirin and demonstration of antiviral additivity with alpha interferon.	2000;44(4):859-66.
Parker WB.	Metabolism and antiviral activity of ribavirin.	2005;107(2):165-71.
De Clercq E, Holy A/JNRDo.	Acyclic nucleoside phosphonates: a key class of antiviral drugs.	2005;41(11):928-40.
De Clercq EJ, Ebp.	Acyclic nucleoside phosphonates: past, present and future: bridging chemistry to HIV, HIV, HCV, HPV, adenov., herpes-, and poxvirus infections: the phosphonate bridge.	2007;73(7):911-22.
De Clercq E, CiMrr.	Clinical potential of the acyclic nucleoside phosphonates cidofovir, adefovir, and tenofovir in treatment of DNA virus and retrovirus infections.	2003;16(4):569-96.
Anderson J, Schiffer C, Lee S-K, Swanstrom R.	Virus and host interactions critical for filoviral RNA synthesis as therapeutic targets.	2019;162:90-100.
Saeideh Momtaz et al.

97. Guabareva UV, Kaiser L, Hayden FG. Influenza virus neuraminidase inhibitors. The Lancet. 2000;355(9206):827-35.

98. McKeeley J, Gillerston B, Trifkov S, Brown LE, McKimm-Breschkin J. Influenza virus neuraminidase structure and function. Front Microbiol. 2019;10(9).

99. Xue H, ZHANG-DK, Yu-Ming G, Wu-Wen F, Qin D, ZHANG C-G, et al. Screening and evaluation of commonly-used anti-influenza Chinese herbal medicines based on anti-neuraminidase activity. Chin J Nat Med. 2016;14(10):794-800.

100. Hudak KA, Wang P, TUMER NE. A novel mechanism for inhibition of translation by poxvirus antiviral protein: depurination of the capped RNA template. RNA. 2000;6(3):369-80.

101. Kaur I, Gupta R, Pun M. Ribosome inactivating proteins from plants inhibiting viruses. Virol Sin. 2011;26(6):357-65.

102. Thabiti I, Albert Q, Philippot S, Dupire F, Westerhus B, Fontanyas S, et al. Advances in antiviral activity of monosur ssp. plant extracts: human coronavirus and virus-related respiratory tract infections in the spotlight. Molecules. 2020;25(8):1876.

103. Signer J, Jonsdottir H, Alibuchi W, Strasser M, Zust R, Ryener S. In vitro antiviral activity of Echinacea pallida preparation, against common cold coronavirus 229E and highly pathogenic MERS-CoV and SARS-CoV. Virology. 2020.

104. Doutt-Lohne K, Musa A, Ekh K, Tramontano E, Frau A, Boyom FF, et al. Uvaria angolesiana is a promising source of inhibitors of HIV-1 RT-associated RNA-dependent DNA polymerase and RNase H functions. Nat Prod Res. 2018;32(6):640-7.

105. Ulasi M, Gurses SA, Baykatkar R, Yurmatas O, Oztechu S, Icgi M, et al. The effects of Nigelia sativa (N) Anthems hyalina (Ah) and Citrus sinensis (Cs) extracts on the replication of coronavirus and the expression of TRP genes family. Mol Biol Rep. 2014;41(13):1703-11.

106. Notka F, Meier G, Wagner RJ. Concerted inhibitory activities of Phyllanthus amarus against HIV replication in vitro and ex vivo. 2004;64(2):93-102.

107. Yamani M, Taurusat K, Kimura M, Fukuada S, Murakami T, Kimura YJ. Biotechnology, et al. Antiviral activity of a hot water extract of black soybean against a human respiratory illness virus. 2003;67(5):1071-9.

108. Zakay-Rones Z, Thom E, Wollan T, Wadstein J. Randomized study of the antiviral activity of Echinaforce®, an Echinacea purpurea preparation, against severe human respiratory illness. 2000;355(9206):827-35.

109. Hudak KA, Wang P, TUMER NE. A novel mechanism for inhibition of translation by poxvirus antiviral protein: depurination of the capped RNA template. RNA. 2000;6(3):369-80.

110. Li YC, Peng SZ, Chen HM, Zhang FX, Xu PP, Xie JH, et al. Oral administration of Fortunella margarita, lour. swingle, growing in Egypt. J Appl Pharm Sci. 2012;2(9):727-33.

111. Micol V, Catarla N, Pérez-Fons L, Más V, Pérez L, Estepa AJ. The olive leaf extract exhibits antiviral activity against viral haemorrhagic septicaemia rhodobacteria (VHSR). 2005;66(3):129-36.

112. Lee-Huang S, Zhang L, Huang PL, Chang YT, Huang PL. Anti-HIV activity of olive leaf extract (OLE) and modulation of host cell gene expression by HIV-1 infection and OLE treatment. Biochem Biophys Res Commun. 2003;309(4):1026-7.

113. Mpiana PT, Ngbovia K-T-N, Thishangu D, Kilembje J, Mwanagonb D, Inkoto C, et al. Aloe vera (L.) Burm. F. as a potential anti-COVID-19 plant: a narrative review of herbal preparations against RNA viruses. 2020;7, No. 1, January-February 2021: 6 – 22

114. Wu Q-F, Wang W, Dai X-y, Wang Z-y, Shen Z-h, Ying H-z, et al. Chemical compositions and anti-influenza activities of essential oils from Mosla dioica. 2012;139(2):668-71.

115. Tsouli M, Printzos SA, Liasis C, Castanas E, Sourvinos G. Antiviral effect of an essential oil combination derived from three aromatic plants (Coridothymus capitatus (L) Rchb f, Origanum dictamnus L and Salvia frutcosa Mill) against viruses causing infections of the upper respiratory tract. J Herbal Med. 2019;17:18-100288.

116. Giarizzo A, Timpanaro R, Bisigano B, Fumero P, Bisigano G, Castro AJ. Lam. In vitro antiviral activity of Melaleuca alternifolia essential oil. 2009;49(6):306-8.

117. Abu-Jafar A, Hulehel MJ. UnCoV. Antiviral activity of Eucalyptus camaldulensis leaves ethanolic extract on herpes viruses infection. 2017;1:1-9.

118. Ademjyi CBA, Lawal TO, Mahady GB. In vivo susceptibility of Helicobacter pylori to extracts of Eucalyptus camaldulensis and Eucalyptus torelliana. 2009;47(1):109-102.

119. El-Baz FK, Mahmoud K, El-Seaoumy WS, Danweh O, El Gohary AJ. UnCoV. Antiviral–antimicrobial and schistosomicidal activities of Eucalyptus camaldulensis essential oils. 2015;31(1):262-8.

120. Chung MSJS, biotechnology. Antiviral activities of Artemisia princeps var. orientisil essential oil and its α-thujone against norovirus surrogates. 2010;27(6):1457-61.

121. Sinico C, De Logu A, Lai F, Valenti D, Manconi M, Loy G, et al. Liposomal incorporation of Artemisia arborescens L. essential oil and in vitro antiviral activity. 2005;59(1):161-8.

122. Duschatsky CB, Possetto ML, Talarico LB, García CC, Milich F, Almeida NV, et al. Evaluation of chemical and antiviral properties of essential oils from South American plants. 2005;16(4):247-51.

123. García C, Talarico L, Almeida N, Colombres S, Duschatsky C, Damonte EJP. Antiviral activities of essential oils from aromatic plants of San Luis, Argentina. 2003;17(9):1075-8.

124. Brochet A, Guilbaut A, Haddouli L, Roques C.M. Antibacterial, antifungal, and antiviral effects of three essential oil blends. 2017;64(6):e00459.

125. Astani A, Reching J, Schnitzler PJ. Comparative study on the antiviral activity of selected monoterpenes derived from essential oil. 2010;24(5):673-9.

126. Astani A, Reching J, Schnitzler PJ. Biotech. a. Screening for antiviral activities of isolated compounds from essential oils. 2011;2011.

127. Ibrahim NA, El-Hawy SS, Mohammad M, Fard M, Abdel-Wahed NAM, Ali M, et al. Chemical composition, antiviral against avian influenza (H5N1) virus and antimicrobial activities of the essential oils of the leaves and fruits of Fortunella margarita, lour. swingle, growing in Egypt. J App Pharm Sci. 2015;5:006-12.

128. Pourghaenari G, Nili H, Moattari A, Mohammad A, Iraji A. Antiviral activity of the oseltamivir and Melissa officinalis L. essential oil against avian influenza A virus (H9N2). Viruses. 2016;27(2):170-8.

129. Swamy MK, Simnath UR. A comprehensive review on the phytochemical constituents and pharmacological activities of pogostemon cablin benth: an aromatic medicinal plant of industrial importance. Molecules. 2015;20(5):8521-47.

130. Li YC, Peng SZ, Chen HM, Zhang FX, Xu PP, Xie JH, et al. Oral administration of patchouli alcohol isolated from Pogostemon herba augments protection against influenza viral infection in mice. Int Immunopharmacol. 2012;12(4):291-304.

131. Wu H, Li B, Wang X, Jin M, Wang G. Inhibitory effect and possible mechanism of action of patchouli alcohol against influenza A (H2N2) virus. Molecules. 2011;16(8):4699-501.

132. Roy S, Chauvedhi P, Chowdhary A. Evaluation of antiviral activity of essential oil of Trachyspermum Ammi against Japanese encephalitis virus. Pharmacognosy Res. 2015;7(3):263-7.

133. Lee-Huang S, Zhang L, Huang PL, Chang YT, Huang PLB. Communications BR. Anti-HIV activity of olive leaf extract (OLE) and modulation of host cell gene expression by HIV-1 infection and OLE treatment. 2003;307(4):1029-37.

134. Cella M, Riva D, Coulombel F, Menschi S. J. Viral activity presence in Trichilia gabra leaves. 2004;36(3):136-8.

135. Hayashi K, Imanishi N, Kashiwayama Y, Kawanou A, Terasawa K, Shimada Y, et al. Inhibitory effect of cinnamaldehyde, derived from Cinnamomum verum against H9N2, influenza A virus. Jpn J Pharmacol. 2009;105:597-602.

136. Zhou J, Xie G, Yan X. Encyclopedia of traditional Chinese medicines. Isol Compound A2: 2011;1455.
A narrative review of herbal preparations against RNA viruses

Saeideh Momtaz et al.

works for non-commercial purposes from the material, as long as the author of the original work is cited properly.

Kim HJ, Lee JS, Choo SY, Park YS, Lee KS, et al. Isolation of virus-cell fusion inhibitory components from Eugenia caryophyllata. Planta Med. 2016;82(5):472-80.

Li SY, Chen C, Zhang H, Guo H-Y, Wang H, Wang L, et al. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. 2005;67(1):18-23.

Cheng PW, Ng LT, Chang IC, Lin CC. Antiviral activity and safety profile of a polyherbal gel formulation as a candidate microbicide. J Herb Med. 2019;17-18:100284.

Yu M-S, Lee J, Kim S, Kim Y, Lim J, Kim J, et al. Identification of myricetin and isoflavones as potential MERS-CoV 3C-like protease inhibitors. Chem Biol Drug Design. 2019;94(6):2023-30.

Liu H, Ye F, Sun Q, Liang H, Li C, Lu R, et al. Scutellaria baicalensis extract and baicalin inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro. bioRxiv. 2020.

Yang HC, Kocak T, Wink M, et al. Antiviral activity of ursolic acid derivatives as antiviral drugs against the 3a channel protein of coronavirus. 2005;67(1):18-23.

Liu H, Ye F, Sun Q, Liang H, Li C, Lu R, et al. Scutellaria baicalensis extract and baicalin inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro. Planta Med. 2014;80(2-3):177-82.

Tsai YC, Lee CL, Yen HC, Chang YS, Lin YP, Huang SH, et al. Antiviral Action of Trepanythrin isolated from Strobilanthes cusia Leaf against Human Coronavirus NL63. Biomolecules. 2020;10(3).

Schwarz S, Sauter D, Wang K, Zhang R, Sun B, Kariothi A, et al. Kaempferol derivatives as antiviral drugs against the 3a channel protein of coronavirus. Planta Med. 2014;80(2-3):177-82.

Haq FI, Rowland M, Ahmad K, Rahman SU, Shah SMA, Suleman N, et al. Artemisia annua: Trials are needed for COVID-19. Phytother Res. 2020.

Cheng PW, Ng LT, Chang IC, Lin CC. Antiviral effects of saikosaponins and derivatives as antiviral drugs against the 3a channel protein of coronavirus. 2005;67(1):18-23.

Kim HJ, Lee JS, Woo ER, Kim MK, Yang BS, Yu YG, et al. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. 2003;61(19):2045-6.

Jo S, Kim H, Kim S, Shin DH, Kim MS. Characteristics of flavonoids as HIV-1 inhibitors. Chem Biol Drug Design. 2007;69(4):453-60.

Sanna C, Rigano D, Cortis P, Corona A, Ballero M, Parolin C, et al. Onopordum illyricum L., a Mediterranean plant, as a source of anti HIV-1 compounds. Plant Biosyst Int J Dealing Aspects Plant Bio. 2018;152(6):1274-81.

Liu H, Ye F, Sun Q, Liang H, Li C, Lu R, et al. Scutellaria baicalensis extract and baicalin inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro. Planta Med. 2014;80(2-3):177-82.

Liu H, Ye F, Sun Q, Liang H, Li C, Lu R, et al. Scutellaria baicalensis extract and baicalin inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro. Planta Med. 2014;80(2-3):177-82.

Liu H, Ye F, Sun Q, Liang H, Li C, Lu R, et al. Scutellaria baicalensis extract and baicalin inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro. Planta Med. 2014;80(2-3):177-82.

Liu H, Ye F, Sun Q, Liang H, Li C, Lu R, et al. Scutellaria baicalensis extract and baicalin inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro. Planta Med. 2014;80(2-3):177-82.