Analiza kretanja vibracionog valjka
Polidor Bratu¹, Carmen Debeleac¹,²
¹Dunarea de Jos” University of Galati, Engineering Faculty of Braila (Romania)

U izgradnji cesta, oprema za zbivanje poput vibracionih valjki koristi se i za tlo ili za smeše. U ovom je radu opisan numerički i dinamički model sistema valjak-tlo. Model uzima u obzir najvažnije parametre posebno za vibro valjak, odnosno za materijal ceste. Tlo se smatra elastičnim medijem. Program u Matlab / Simulink 7 razvijen je za rešavanje sistema diferencijalnih jednadžina koje opisuju kretanje vibracionog valjka. U radu su napravljene analize stabilnog kretanja valjka tokom procesa sabijanja pomoću povezanosti tehnoloških parametara mašine i parametara tla. Rezultati simulacije prikazani su u obliku dijagrama pomeranja i brzine vibracionog valjka.

Keywords: vibracioni valjak, zemljište, interakcija, dinamička analiza.

1. UVODNA RAZMATRANJA
Zbijanje tla je složen postupak zavisan od uticaja tehnoloških parametara opreme za zbijanje i svojstava slojeva putea. Povezanost svih ovih faktora dovodi do postizanja optimalnog stepena zbijanja nakon minimalnog broja prolaza valjka. Analiza procesa sabijanja i implicitnog kontakta između valjka i tla [1] zahteva:
- poznavanje matematičkih modela koji opisuju ponašanje sistema mašina-tlo [2], [4];
- pisanje i rešavanje diferencijalne jednadžine kretanja glavnih podsklopa (valjak, šasija);
- validaciju rezultata dobijenih numeričkim postupkom simulacije na bazi eksperimentalnih ispitivanja.

Pored toga, efikasnost sabijanja je zadovoljavajuća ako poznajemo vrednosti vertikalnih ubrzanja šasije I valjka u toku procesa sabijanja.

2. MATEMATIČKI MODEL INTERAKCIJE VALJAK-TLO
Vibracioni valjak može se na pojednostavljen način opisati sistemom sa dva stepena slobode (slika 1). Kretanje je definisano pomeranjem vibracionog valjka (k₂) i pomeranjem šasije (k₁). Glavni parametri sistema valjak-tlo prikazani su u Tabeli 1.

Vibracioni sistem smešten u vibracionom valjku proizvodi oscilatorne sile sa amplitudom
\[F_0 = m_0 \omega^2 \] \hspace{0.5cm} (1)
dde \(\omega = 2\pi f \) predstavlja frekvenciju oscilovanja.

![Slika 1: Dinamički model interakcije valjak-tlo](image)

Sistem	Parametri	Oznaka	
sistem	valjak-tlo	masa šasije	\(m_1 \)
		masa valjka	\(m_2 \)
		ekscentrične mase	\(m_0 \)
vibracioni sistem	ekscentričnost	\(e \)	
	učestanost	\(f \)	
tlo	koeficijent krutosti	\(k_1 \)	
	koeficijent prigušenja	\(c_1 \)	
sistem	vešanja	koeficijent krutosti	\(k_2 \)
		koeficijent prigušenja	\(c_2 \)

Kontakt adresa autora: “Dunarea de Jos” University of Galati, Calea Domneasca, no.47, Galati, Romania, cbordea@ugal.ro
Diferencijalne jednačine kretanja za dve mase (m_1 i m_2) uslovljenim dejstvom dinamičke sile data su izrazom [2]

\[\begin{cases}
 m_1 \ddot{x}_1 + c_1 \dot{x}_1 + k_1 x_1 - c_1 \dot{x}_2 - k_1 x_2 = 0 \\
 m_2 \ddot{x}_2 + (c_1 + c_2) \dot{x}_2 + (k_1 + k_2) x_2 - c_1 \dot{x}_1 - k_1 x_1 = m_0 \omega^2 \sin \omega t
\end{cases} \]

ili u matričnom obliku

\[
\begin{bmatrix}
 m_1 & 0 \\
 0 & m_2
\end{bmatrix}
\begin{bmatrix}
 \ddot{x}_1 \\
 \ddot{x}_2
\end{bmatrix}
+
\begin{bmatrix}
 c_1 & -c_1 \\
 -c_1 & c_1 + c_2
\end{bmatrix}
\begin{bmatrix}
 \dot{x}_1 \\
 \dot{x}_2
\end{bmatrix}
+
\begin{bmatrix}
 k_1 & -k_1 \\
 -k_1 & k_1 + k_2
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2
\end{bmatrix}
= m_0 \omega^2 \sin \omega t
\]

Uvođenjem Laplasove transformacije u jednačinu (3) za početne uslove dobija se:

\[
\begin{bmatrix}
 A_1 \\
 A_2
\end{bmatrix}
\begin{bmatrix}
 x_1(s) \\
 x_2(s)
\end{bmatrix}
= \begin{bmatrix}
 0 \\
 1
\end{bmatrix} F(s)
\]

gde je

\[
[A] = \begin{bmatrix}
 m_1 s^2 + c_1 s + k_1 & -c_1 s - k_1 \\
 -c_1 s - k_1 & m_2 s^2 + (c_1 + c_2) s + k_1 + k_2
\end{bmatrix}
\]

Zavisnosti će biti prikazane preko pomeranja dve mase dinamičkog sistema

\[
\begin{bmatrix}
 X_1(s) \\
 X_2(s)
\end{bmatrix}
= [A]^{-1} \begin{bmatrix}
 0 \\
 1
\end{bmatrix} F(s) \quad (6)
\]

gde je determinant amatrice A potrebna za određivanje $[A]^{-1}$

\[
det(A) = m_1 s^2 + c_1 s + k_1 \left[m_2 s^2 + (c_1 + c_2) s + k_1 + k_2\right] - (c_1 s + k_1)^2 \quad (7)
\]

Ukoliko pretpostavimo da det (A) mora biti nula, moguće je analizirati karakterističnu jednačinu (7).

U nedostatku spoljne sile i prigušenja, jednačine kretanja masa m_1 i m_2 postaju:

\[
\begin{bmatrix}
 m_1 & 0 \\
 0 & m_2
\end{bmatrix}
\begin{bmatrix}
 \ddot{x}_1 \\
 \ddot{x}_2
\end{bmatrix}
+ \begin{bmatrix}
 k_1 & -k_1 \\
 -k_1 & k_1 + k_2
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2
\end{bmatrix}
= 0 \quad (8)
\]

Rešenja jednačine (8) su

\[
x_1 = A_1 \sin(\omega t + \varphi_1) \quad (9)
\]
\[
x_2 = A_2 \sin(\omega t + \varphi_2)
\]

tako da jednačina (8) postaje

\[
\begin{bmatrix}
 A_1 \\
 A_2
\end{bmatrix}
= \begin{bmatrix}
 0 \\
 0
\end{bmatrix}
\]

gde je

\[
[A]^* = \begin{bmatrix}
 m_1 \omega^2 + k_1 & -k_1 \\
 -k_1 & m_2 \omega^2 + k_1 + k_2
\end{bmatrix}
\]

Ukoliko pretpostavimo da $det (A^*)$ mora biti nula, dobijaju se izraz za spostvene vrednosti sistema mašina-tlo

\[
m_1 m_2 \omega^4 - \omega^2 \left(m_1 k_1 + m_2 k_1 + m_1 k_2\right) + k_1 k_2 = 0 \quad (12)
\]

čije je rešenje

\[
\omega_{1,2} = \sqrt{\frac{a \pm \sqrt{a^2 - b^2}}{2m_1 m_2}} \quad (13)
\]

U jednačini (13) uvedeni parametri su dati u obliku:

\[
a = m_1 k_1 + m_2 k_1 + m_1 k_2 \\
b = \left(4k_1 k_2 m_1 m_2\right)^{0.5}
\]

Prikaz spostvenih vrednosti dinamičkog sistema dobijenih analitičkim putem prikazan je na slici 1, i dovodi do određivanja rezonance oscilovanja [5]. Poznavanje ovih vrednosti, zajedno sa setom eksperimentalnih podataka, nudi mogućnost procene koeficijenta prigušivanja za analizirani sistem [6], [3].

3. NUMERIČKA SIMULACIJA

Važan aspekt analize procesa sabijanja je stabilnost funkcije kretanja sistema valjak-žemlja po glavnim parametrima dva podistema u kontaktu [7], [8]. Na primer, nadalje su predstavljeni rezultati numeričke simulacije za neke slučajeve koji bi trebalo da budu reprezentativni.

Za simulaciju interakcije mašina-tlo korišćeni su sledeći podaci: $m_1=2000$ kg; $m_2=2800$ kg; $f=30$ Hz; $c_1=106$ Ns/m; $k_1=3.5x10^8$ N/m; $c_2=5$ Ns/m; $k_2=4.5x10^6$ N/m. Premotavaju se da je material u kontaktu pesak.

Prvo, korišćena je dinamička sila (F_0) sa frekvencijom od 30 Hz I promenljive amplitude sa statickim momentum eksentrične mase m_0. Vreme simulacije je 400 ms.

Na slici 2 prikazan je dijagram promene kontaktne sile između valjak-peska,a na slici 3 kretanje u fazi javnoj ravni sistema.
4. ZAKLJUČAK

Na osnovu dijagrama sa slike 2 može se doći do zaključaka koji su prisutni iz razloga tehnološki parametri valjka nisu u uzajamnoj vezi sa karakteristikama terena:

- Kontaktna sila između valjka i zemljišta ima samo pozitivnu vrednost što znači da je kontakt permanentan (linearan), slika 2 i Slika 3a;
- Kontaktna sila ima kratko vreme trajanja kada je vrednost nula što znači da je kontakt trenutni (nelinearan). Slika 2 i slika 3b.

Slika 2: Zavisnost kontakte sile od vremena

\[M_{st}=0.5 \, \text{kgm}^2; \quad \cdots \cdots \; M_{st}=2.5 \, \text{kgm}^2; \quad \cdots \cdots \; M_{st}=5 \, \text{kgm}^2; \]

Slika 3: Fazna ravan

\[a) \; M_{st}=0.5 \, \text{kgm}^2; \; b) \; M_{st}=2.5 \, \text{kgm}^2. \]

- U poslednjem slučaju, nejednakost dodira dovodi do nestabilnog kretanja valjka pod dinamičkim silama. Zaključno, poznavajući svojstva tla, računarska simulacija omogućava uspostavljanje stabilnih i optimalnih režima za radni proces.

LITERATURA

[1] Anderegg, R., Von Felten, D., “Nonlinear Dynamic of Compaction Equipment – an Overview (in German)”, Österreichische Ingenieur- und Architekten-Zeitschrift (OIaz), 150. Jg., Heft 4-5/2005, p. 145-149, 2005.
[2] Bratu, P., “Mecanica teoretica”; Impuls Publishing House, Bucharest, Romania, 2008.
[3] Brandl, H., „Compaction of Soil and Other Granular Materials Used in Construction Work”; Građevinar 54 (2002) 9, Zagreb, Hrvatska, 2002, pp. 513-527.
[4] Debeleac, C., "On the efficiency of compacting equipment", The Annals of “Dunarea de Jos” University of Galati, Vol.2, Issue XVI, Fascicle XIV Mechanical Engineering, ISSN 1224-5615, 2010, pp.51-54.
[5] Debeleac, C., "Cap. 4 On computational dynamics of tool - soil interaction", Research Trends in Mechanics,
vol. 4, Romanian Academy Publishing House, Bucharest, Romania, 2010, pp. 83-108.

[6] Gorman, P.B., "Exploring the Relationship Between Roller Vibration and Soil Compaction", M.S. Thesis, University of Oklahoma, 2003.

[7] Nicoara, E.T., "Influence of Moisture Content on Dynamic Behavior of Sand Under Vibratory Roller Compaction", M. Sc. Thesis, IHE Delft, 2001.

[8] Popa, G., Nicoara, S.V., ,,Study of Soil – Vibratory Roller Response”’, Ovidius University Press, 3,4(2002)1, Timisoara, Romania, 2003, pp. 151-156.
The Analysis of Vibratory Roller Motion
Polidor Bratu¹, Carmen Debeleac¹,*
¹Dunarea de Jos” University of Galati, Engineering Faculty of Braila (Romania)

In road building, the compaction equipment like rollers with single or tandem vibratory drum are used both for soil or mixture. A numerical and dynamical model of the drum-soil system is described in this paper. The model takes into account the most important parameters specifically for vibratory roller and, respectively for road pavement material. The soil is considered by an elastic medium. A program in Matlab / Simulink 7 was developed to solve the system of differential equations, which describe the vibratory roller movement. In paper the authors make a study of the roller’s stable motion during the compaction process through correlation of the machine’s technological parameters with soil parameters. The simulation results are presented as diagrams of displacement and velocity of the vibratory drum.

Keywords: vibratory roller, soil, interaction, dynamic analysis.

1. INTRODUCTION

The soil compaction is a complex process influenced by the technological parameters of compaction equipment and the properties of road system layer’s. The correlation of all these factors leads to obtaining an optimal compaction degree after a minimum roller’s passes.

The analysis of compaction process and implicit of the contact between drum and ground [1] supposes:
- knowing of mathematical models, which describe the behavior of machine-ground system [2], [4];
- writing and solving of differential equation of motion for the main subassemblies (drum, chassis);
- validation of results obtained by numerical simulation process based on experimental tests.

In addition, the compaction efficiency it is appreciated if we know the values of chassis and drum vertical accelerations during on compaction process.

2. MATHEMATICAL MODEL OF ROLLER-GROUND INTERACTION

The vibratory roller can be describing, in simplified way, by a system with two degree of freedom (Figure 1). The roller’s motion is defined by the vibratory drum displacement (x₂) and chassis’ displacement (x₁). The main parameters of roller-ground system are show in Table 1.

The vibration system maintained into roller drum produces oscillatory force with amplitude

\[F_0 = m_0 \omega^2 \] \hspace{1cm} (1)

where \(\omega = 2\pi f \) represents the force pulsation.

*Coresponding author: "Dunarea de Jos” University of Galati, Calea Domneasca, no.47, Galati, Romania, cbordea@ugal.ro

![Figure 1: Dynamic model of roller-ground interaction](image-url)
The differential equations of motion for the two mass (m₁ and m₂) under dynamic force action are the next forms [2]

\[
\begin{align*}
 m_1\ddot{x}_1 + c_1\dot{x}_1 + k_1x_1 - c_1\dot{x}_2 - k_1x_2 &= 0 \\
 m_2\ddot{x}_2 + (c_1 + c_2)\dot{x}_2 + (k_1 + k_2)x_2 - c_1\dot{x}_1 - k_1x_1 &= m_0\omega^2\sin\omega t
\end{align*}
\] (2)

or in matrix writing

\[
\begin{pmatrix}
 m_1 & 0 \\
 0 & m_2
\end{pmatrix}
\begin{pmatrix}
 \ddot{x}_1 \\
 \ddot{x}_2
\end{pmatrix}
+ \begin{pmatrix}
 c_1 & -c_1 \\
 -c_1 & c_1 + c_2
\end{pmatrix}
\begin{pmatrix}
 \dot{x}_1 \\
 \dot{x}_2
\end{pmatrix}
+ \begin{pmatrix}
 k_1 & -k_1 \\
 -k_1 & k_1 + k_2
\end{pmatrix}
\begin{pmatrix}
 x_1 \\
 x_2
\end{pmatrix}
= \begin{pmatrix}
 0 \\
 0
\end{pmatrix}m_0\omega^2\sin\omega t
\] (3)

Applying Laplace transformation to the Eq. (3) in zero conditions it’s obtained:

\[
\begin{pmatrix}
 [A]
 \begin{pmatrix}
 X_1(s) \\
 X_2(s)
 \end{pmatrix}
 = \begin{pmatrix}
 0 \\
 1
 \end{pmatrix}F(s)
\] (4)

where

\[
[A] = \begin{pmatrix}
 m_1s^2 + c_1s + k_1 & -c_1s - k_1 \\
 -c_1s - k_1 & m_2s^2 + (c_1 + c_2)s + k_1 + k_2
\end{pmatrix}
\] (5)

Relation will be given by the displacements of the two masses of dynamical system is

\[
\begin{pmatrix}
 X_1(s) \\
 X_2(s)
\end{pmatrix}
= [A]^{-1}\begin{pmatrix}
 0 \\
 1
\end{pmatrix}F(s)
\] (6)

where determinant of matrix A useful for evaluation of \([A]^{-1}\) is:

\[
\text{det}(A) =
\begin{pmatrix}
 m_1s^2 + c_1s + k_1 & -c_1s - k_1 \\
 -c_1s - k_1 & m_2s^2 + (c_1 + c_2)s + k_1 + k_2
\end{pmatrix}
- (c_1s + k_1)^2
\] (7)

If we suppose that det (A) must be null, it is possible the polls evaluation of the characteristic equation (7). In absence of external force and amortisation, motion equation of m₁ and m₂ becomes:

\[
\begin{pmatrix}
 m_1 & 0 \\
 0 & m_2
\end{pmatrix}
\begin{pmatrix}
 \ddot{x}_1 \\
 \ddot{x}_2
\end{pmatrix}
+ \begin{pmatrix}
 k_1 & -k_1 \\
 -k_1 & k_1 + k_2
\end{pmatrix}
\begin{pmatrix}
 x_1 \\
 x_2
\end{pmatrix}
= \begin{pmatrix}
 0 \\
 0
\end{pmatrix}
\] (8)

The solution for the Eq. (8) are

\[
\begin{align*}
 x_1 &= A_1\sin(\omega t + \varphi_1) \\
 x_2 &= A_2\sin(\omega t + \varphi_2)
\end{align*}
\] (9)

and Eq.(8) becomes

\[
[A^*] = \begin{pmatrix}
 m_1\omega^2 + k_1 & -k_1 \\
 -k_1 & m_2\omega^2 + k_1 + k_2
\end{pmatrix}
\] (10)

where

\[
[A^*] = \begin{pmatrix}
 m_1\omega^2 + k_1 & -k_1 \\
 -k_1 & m_2\omega^2 + k_1 + k_2
\end{pmatrix}
\]

If we suppose that det (A*) must be null, then we obtained the expressions for eigenvalues of roller-ground system

\[
m_1m_2\omega^4 - \omega^2(m_1k_1 + m_2k_1 + m_1k_2) + k_1k_2 = 0
\] (11)

with solutions

\[
\omega_{1,2} = \sqrt{\frac{a \pm \sqrt{a^2 - b^2}}{2m_1m_2}}
\] (12)

In Eq. (13) we make the next notations:

\[
\begin{align*}
 a &= m_1k_1 + m_2k_1 + m_1k_2 \\
 b &= (4k_1k_2m_1m_2)^{0.5}
\end{align*}
\] (13)

Evaluation on analytical way of eigenvalues of dynamical system depicted into Figure 1 leads to finding of pulsations resonance [5]. The knowing of these values, in completion with a set of experimental data offers the possibility of damping coefficient evaluation for the analysed system [6], [3].

3. NUMERICAL SIMULATION

An important aspect of compaction process study consists on stability analysis of roller-ground system motion function by main parameters of two subsystems in contact [7], [8]. For example, in the next are presented the results of numerical simulation for some cases supposed to be representative.

For simulation roller-ground interaction, following data are used: \(m_p=2000\) kg; \(m_e=2800\) kg; \(f=30\) Hz; \(c_p=106\) Ns/m; \(c_e=3.5\times108\) N/m; \(c_p=5\) Ns/m; \(c_e=4.5\times106\) N/m. We supposed that the ground material is sand.

Firstly, it has been used since exciter dynamic force \((F_0)\) with frequency of 30 Hz and variable amplitude function by static torque of eccentric mass \(m_p\). Simulation time was 400 ms.
In Figure 2 was show the diagram of contact force variation between roller-sand and Figure 3 the motion into phases plane for the system.

4. CONCLUSIONS

Based on diagrams from figure 2, we can observe some aspects which appear because the roller technological parameters are not correlated with terrain characteristics:

- the contact force between drum and soil have only positive values that means the contact is permanently (linear), as can be seen in Figure 2 and Figure 3a);
- the contact force have short duration time when his value is null that means the contact is temporary (nonlinear), such as Figure 2 and Figure 3b).

In the last case, the nonuniformity of contact deals to the instable motion of roller under dynamical forces.

In conclusion, knowing the soil properties, the computer simulation enables to establish the stable and optimal regimes for working process.

REFERENCES

[1] Anderegg, R., Von Felten, D., “Nonlinear Dynamic of Compaction Equipment – an Overview (in German)”, Österreichische Ingenieur-und Architekten-Zeitschrift (ÖIAZ), 150. Jg., Heft 4-5/2005, p. 145-149, 2005.
[2] Bratu, P., "Mecanica teoretica", Impuls Publishing House, Bucharest, Romania, 2008.
[3] Brandl, H., „Compaction of Soil and Other Granular Materials Used in Construction Work“, Građevinar 54 (2002) 9, Zagreb, Hrvatska, 2002, pp. 513-527.
[4] Debeleac, C., "On the efficiency of compacting equipment", The Annals of “Dunarea de Jos” University of Galati, Vol.2, Issue XVI, Fascicle XIV Mechanical Engineering, ISSN 1224-5615, 2010, pp.51-54.

[5] Debeleac, C., "Cap. 4 On computational dynamics of tool - soil interaction", Research Trends in Mechanics, vol. 4, Romanian Academy Publishing House, Bucharest, Romania, 2010, pp. 83-108.

[6] Gorman, P.B., "Exploring the Relationship Between Roller Vibration and Soil Compaction", M.S. Thesis, University of Oklahoma, 2003.

[7] Nicoara, E.T., "Influence of Moisture Content on Dynamic Behavior of Sand Under Vibratory Roller Compaction", M. Sc. Thesis, IHE Delft, 2001.

[8] Popa, G., Nicoara, S.V., "Study of Soil – Vibratory Roller Response", Ovidius University Press, 3,4(2002)1, Timisoara, Romania, 2003, pp. 151-156.