Electronic supplementary information

Yan Zhang, a Lingqian Kong, b Xiuping Ju b Hongmei Du a, Jinsheng Zhao*, a Yu Xie*c

a Shandong Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng, 252059, P. R. China.
b Dongchang College, Liaocheng University, Liaocheng, 252059, P. R. China.
c College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China.

*Correspondence: j.s.zhao@163.com (Jinsheng Zhao); xieyu_121@163.com (Yu Xie)
Figure S1. (a) 1H NMR spectrum of 6,12-bis(4-bromophenyl)-5,11-dioctyl-5,11-dihydroindolo[3,2-b]carbazole in CDCl$_3$, solvent peak at $\delta = 7.26$ ppm was marked by “x”, (b) 13C NMR spectrum of 6,12-bis(4-bromophenyl)-5,11-dioctyl-5,11-dihydroindolo[3,2-b]carbazole in CDCl$_3$, solvent peak at $\delta = 77.01$ ppm was marked by “X”.
Figure S2. 1H NMR spectra of (a) PDTCZ-1 and (b) PDTCZ-2 in CDCl$_3$. Solvent and tetramethylsilane peaks were marked by “x”, “y” respectively.