COLD NUCLEAR MATTER EFFECTS ON J/ψ PRODUCTION AT RHIC: COMPARING SHADOWING MODELS

E. G. FERREIRO1, F. FLEURET2, J. P. LANSBERG3, A. RAKOTOZAFINDRABE4
1Departamento de Física de Partículas, Universidade de Santiago de Compostela
E-15782 Santiago de Compostela, Spain
2Laboratoire Leprince Ringuet, CNRS-IN2P3, École Polytechnique, 91128 Palaiseau, France
3SLAC National Accelerator Laboratory, Theoretical Physics, Stanford University,
Menlo Park, CA 95025, USA
4IRFU/SPhN, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France

We present a wide study on the comparison of different shadowing models and their influence on J/ψ production. We have taken into account the possibility of different partonic processes for the c¯c-pair production. We notice that the effect of shadowing corrections on J/ψ production clearly depends on the partonic process considered. Our results are compared to the available data on dAu collisions at RHIC energies. We try different break up cross section for each of the studied shadowing models.

1 Introduction

The interest devoted to J/ψ production has not decreased for the last thirty years. It is motivated by the search of the transition from hadronic matter to a deconfined state of QCD matter, the so-called Quark-Gluon Plasma (QGP). The high density of gluons in the QGP is expected to hinder the formation of quarkonium systems, by a process analogous to Debye screening of the electromagnetic field in a plasma1.

The results on J/ψ production measured by the PHENIX experiment at the BNL Relativistic Heavy Ion Collider (RHIC) show a significant suppression of the J/ψ yield in AuAu collisions at \(\sqrt{s_{NN}}=200 \text{ GeV} \)2. Nevertheless, PHENIX data on dAu collisions3 have also pointed out that Cold Nuclear Matter (CNM) effects play an essential role at these energies.

All this reveals that, in fact, the interpretation of the results obtained in nucleus-nucleus collisions relies on a good understanding and a proper subtraction of the CNM effects, known to impact the J/ψ production in proton(deuteron)-nucleus collisions, where the deconfinement can not be reached.

It is our purpose here to develop an exhaustive study of these effects. This includes shadowing, i.e. the modification of the parton distribution of a nucleon in a nucleus, and final-state nuclear absorption.

Moreover, we have recently noticed4 that the impact of gluon shadowing on J/ψ production does depend on the partonic process producing the c¯c and then the J/ψ. Because of this, we have included here two different production mechanism: \(g + g \rightarrow c\bar{c} \rightarrow J/\psi (+X) \), that corresponds to the picture of the Colour Evaporation Model (CEM) at LO, and \(g + g \rightarrow J/\psi + g \), as in the Color Singlet Model (CSM), but including the s-channel cut contributions.

In practice, we have proceeded as follows: we have developed a Glauber Monte-Carlo code where we have interfaced the two different partonic processes for c¯c with the CNM effects, namely the shadowing and nuclear absorption, in order to get the J/ψ production cross sections for pA and AA collisions. We have considered four different models for the shadowing effects. We shall compare our results with the experimental measurements on dAu collisions presently available at RHIC.
2 The Model

To describe the J/ψ production in nucleus collisions, our Monte-Carlo framework is based on the probabilistic Glauber model, the nuclear density profiles being defined with the Woods-Saxon parameterisation for any nucleus $A > 2$ and the Hulthen wavefunction for the deuteron. The nucleon-nucleon inelastic cross section at $\sqrt{s_{NN}} = 200$ GeV is taken to $\sigma_{NN} = 42$ mb and the average nucleon density to $\rho_0 = 0.17$ nucleons/fm3. For each event (for each AB collision) at a random impact parameter b, the Glauber Monte-Carlo model allows us to determine the number of nucleons in the path of each incoming nucleon, therefore allowing us to easily derive the number N_{coll} of nucleon-nucleon collisions and the total number N_{part} of nucleons participating into the collision. In order to study the J/ψ production, we need to implement in our Monte Carlo the following ingredients: the partonic process for the $c\bar{c}$ production and the CNM effects.

2.1 Partonic process for the $c\bar{c}$ production

Most of the studies of J/ψ production rely on the assumption that the $c\bar{c}$ pair is produced by the fusion of two gluons carrying some intrinsic transverse momentum k_T. The partonic process being a $2 \rightarrow 1$ scattering, the sum of the gluon intrinsic transverse momentum is transferred to the $c\bar{c}$ pair, thus to the J/ψ since the soft hadronisation process does not modify the kinematics. This corresponds to the picture of the Colour Evaporation Model (CEM) at LO. In such approaches, the transverse momentum of the J/ψ entirely comes from the intrinsic transverse momentum of the initial gluons.

However, such an effect is not sufficient to describe the P_T spectrum of quarkonia produced in hadron collisions\cite{3}. Most of the transverse momentum should have an extrinsic origin, i.e. the J/ψ’s P_T would be balanced by the emission of a recoiling particle in the final state. The J/ψ would then be produced by gluon fusion in a $2 \rightarrow 2$ process with emission of a hard final-state gluon. This emission, which is anyhow mandatory to conserve C-parity, has a definite influence on the kinematics of the J/ψ production. Indeed, for a given J/ψ momentum (thus for fixed y and P_T), the processes discussed above, i.e. $g + g \rightarrow c\bar{c} \rightarrow J/\psi (+X)$ and $g + g \rightarrow J/\psi + g$, will proceed on the average from gluons with different Bjorken-x. Therefore, they will be affected by different shadowing corrections. From now on, we will refer to the former scenario as the intrinsic scheme, and to the latter as the extrinsic scheme.

In the intrinsic scheme, the initial gluons carry a non-zero intrinsic transverse momentum, which is transferred to the J/ψ. Note that, following\cite{4}, we do not neglect the value of the J/ψ’s P_T in this simplified kinematics. In fact, in this scheme, we use the fits to the y and P_T spectra measured by PHENIX\cite{5} in pp collisions at $\sqrt{s_{NN}} = 200$ GeV as inputs of the Monte-Carlo. The measurement of the J/ψ momentum completely fixes the longitudinal momentum fraction carried by the initial partons:

$$x_{1,2} = \frac{m_T}{\sqrt{s_{NN}}} \exp(\pm y) \equiv x_{1,2}^0(y, P_T),$$ \hspace{1cm} (1)

with the transverse mass $m_T = \sqrt{M^2 + P_T^2}$, M being the J/ψ mass.

On the other hand, in the extrinsic scheme, information from the data alone – the y and P_T spectra – is not sufficient to determine x_1 and x_2. Indeed, the presence of a final-state gluon authorizes much more freedom to choose (x_1, x_2) for a given set (y, P_T). The four-momentum conservation explicitly results in a more complex expression of x_2 as a function of (x_1, y, P_T):

$$x_2 = \frac{x_1 m_T \sqrt{s_{NN}} e^{-y} - M^2}{\sqrt{s_{NN}} (\sqrt{s_{NN}} x_1 - m_T e^y)}.$$ \hspace{1cm} (2)

Equivalently, a similar expression can be written for x_1 as a function of (x_2, y, P_T). Even if the kinematics determines the physical phase space, models are anyhow mandatory to compute the
proper weighting of each kinematically allowed \((x_1, x_2)\). This weight is simply the differential cross section at the partonic level times the gluon Parton Distribution Functions (PDFs), i.e. \(g(x_1, \mu_f)g(x_2, \mu_f) d\sigma_{gg\rightarrow J/\psi+g}/dy dP_T dx_1 dx_2\). In the present implementation of our code, we are able to use the partonic differential cross section computed from any theoretical approach. For now, we use the one from\(^8\) which takes into account the \(s\)-channel cut contributions\(^9\) to the basic Color Singlet Model (CSM) and satisfactorily describes the data down to very low \(P_T\).

2.2 Shadowing

To get the \(J/\psi\) yield in \(pA\) and \(AA\) collisions, a shadowing-correction factor has to be applied to the \(J/\psi\) yield obtained from the simple superposition of the equivalent number of \(pp\) collisions. This shadowing factor can be expressed in terms of the ratios \(R_A^i\) of the nuclear Parton Distribution Functions (nPDF) in a nucleon of a nucleus \(A\) to the PDF in the free nucleon. We will consider three different shadowing models for comparation: EKS98\(^{10}\), EPS08\(^{11}\) and nDSg\(^{12}\) at LO.

These models provide the nuclear ratios \(R_A^i\) at a given initial value of \(Q^2_0\) which is assumed large enough for perturbative evolution to be applied: \(Q^2_0 = 2.25\) GeV\(^2\) for EKS98, \(Q^2_0 = 1.69\) GeV\(^2\) for EPS08 and \(Q^2_0 = 0.4\) GeV\(^2\)(0.26 GeV\(^2\)) for nDSg and perform their evolution through the DGLAP evolution equations to LO accuracy in the case of EKS98 and EPS08 and to LO and NLO accuracy in the case of nDSg. The spatial dependence of the shadowing is not given in the above models. However, it has been included in our approach, assuming that the inhomogeneous shadowing is proportional to the local density.\(^{13}\)

The nuclear ratios of the PDFs are then expressed by:

\[
R_A^i(x, Q^2) = \frac{f_A^i(x, Q^2)}{Af_{i\text{nucleon}}(x, Q^2)} , \quad f_i = q, \bar{q}, g .
\]

The numerical parameterisation of \(R_A^i(x, Q^2)\) is given for all parton flavours. Here, we restrain our study to gluons since, at high energy, \(J/\psi\) is essentially produced through gluon fusion.\(^5\)

2.3 The nuclear absorption

The second CNM effect that we are going to take into account concerns the nuclear absorption. In the framework of the probabilistic Glauber model, this effect refers to the probability for the pre-resonant \(c\bar{c}\) pair to survive to the propagation through the nuclear medium and is usually parametrised by introducing an effective absorption cross section \(\sigma_{\text{abs}}\). It is our purpose here to compare different absorptive \(\sigma\) within the two partonic \(c\bar{c}\) production mechanisms –intrinsic and extrinsic– and for the three shadowing models cited above.

3 Results

In the following, we present our results for the \(J/\psi\) nuclear modification factor:

\[
R_{AB} = \frac{dN_{AB}^{J/\psi}}{\langle N_{\text{coll}} \rangle dN_{pp}^{J/\psi}} .
\]

\(dN_{AB}^{J/\psi}/(dN_{pp}^{J/\psi})\) is the \(J/\psi\) yield observed in \(AB (pp)\) collisions and \(\langle N_{\text{coll}}\rangle\) is the average number of nucleon-nucleon collisions occurring in one \(AB\) collision. In the absence of nuclear effects, \(R_{AB}\) should equal unity.

We will restrict ourselves to \(dAu\) collisions, since only CNM matter effects are at play here, so they provide the best field for the study of the shadowing and the nuclear absorption.
We have used PHENIX measurements of R_{dAu} in order to compare the different shadowing models. In Fig. 1, we have computed our results in the different shadowing frameworks for four σ_{abs} for each of the shadowing models considered in both the intrinsic and extrinsic scheme.

We have also evaluate the best fit for σ_{abs}, following the method used by PHENIX in\(^3\) and\(^4\). By using the data on R_{dAu} versus rapidity, we have obtained the best χ^2 for the EPS08 model, computed in the extrinsic scheme for a $\sigma_{abs} = 3.6\,\text{mb}$.

Figure 1: J/ψ nuclear modification factor in dAu collisions at $\sqrt{s_{NN}} = 200\,\text{GeV}$ versus y for the different shadowing models in the intrinsic (up) and extrinsic (down) scheme. For complementary figures see: http://phenix-france.in2p3.fr/software/jin/index.html

Acknowledgments

E. G. F. thanks Xunta de Galicia (2008/012) and Ministerio de Educacion y Ciencia of Spain (FPA2008-03961-E/IN2P3) for financial support.

1. T. Matsui and H. Satz, Phys. Lett. B 178 (1986) 416.
2. A. Adare et al., Phys. Rev. Lett. 98, 232301 (2007).
3. A. Adare et al., Phys. Rev. C 77 (2008) 024912.
4. E. G. Ferreiro, F. Fleuret, J. P. Lansberg and A. Rakotozafindrabe, Eur. Phys. J. C DOI 10.1140/epjc/s10052-008-0843-8, [arXiv:0809.4681](http://arxiv.org/abs/0809.4681) [hep-ph].
5. J. P. Lansberg, Int. J. Mod. Phys. A 21 (2006) 3857; J. P. Lansberg, Eur. Phys. J. C DOI 10.1140/epjc/s10052-008-0826-9, [arXiv:0811.4005](http://arxiv.org/abs/0811.4005) [hep-ph].
6. E. G. Ferreiro, F. Fleuret and A. Rakotozafindrabe, [arXiv:0801.4949](http://arxiv.org/abs/0801.4949) [hep-ph].
7. A. Adare et al., Phys. Rev. Lett. 98 (2007) 232002.
8. H. Haberzettl and J. P. Lansberg, Phys. Rev. Lett. 100 (2008) 032006.
9. J. P. Lansberg, J. R. Cudell and Yu. L. Kalinovsky, Phys. Lett. B 633 (2006) 301.
10. K. J. Eskola, V. J. Kolhinen and C. A. Salgado, Eur. Phys. J. C 9 (1999) 61.
11. K. J. Eskola, H. Paukkunen and C. A. Salgado, JHEP 0807 (2008) 102.
12. D. de Florian and R. Sassot, Phys. Rev. D 69 (2004) 074028.
13. S. R. Klein and R. Vogt, Phys. Rev. Lett. 91 (2003) 142301. [arXiv:nucl-th/0305046](http://arxiv.org/abs/nucl-th/0305046).
14. A. Adare et al., Phys. Rev. C 77 (2008) 064907.