Research Article

Competitive Effects of Permeability and Gravity on the Drying-Out Process during CO₂ Geological Sequestration in Saline Aquifers

Jie Ren,1 Yuan Wang,2 and Di Feng3

1College of Mechanics and Materials, Hohai University, Nanjing, China
2College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing, China
3College of Civil and Transportation Engineering, Hohai University, Nanjing, China

Correspondence should be addressed to Yuan Wang; wangyuanhhu@163.com

Received 30 November 2021; Accepted 8 January 2022; Published 2 February 2022

Academic Editor: Yonghui Wu

Copyright © 2022 Jie Ren et al. Exclusive Licensee GeoScienceWorld. Distributed under a Creative Commons Attribution License (CC BY 4.0).

Salt precipitation from the drying-out process has a profound effect on the well injectivity during the storage of carbon dioxide (CO₂) in deep saline aquifers. Both gravity and reservoir heterogeneity have a significant impact on CO₂-plume behavior and CO₂ storage capacities. The collective effect of gravity and heterogeneity on the drying-out process by site-scale numerical simulation based on the Sleipner project had been investigated. Three site-scale permeability heterogeneous models and a fracture model had been built; simulation results showed that the gravity effect significantly increased the solid saturation at the injection well in the homogeneous model; changing the position of the injection well can change the distance that gravity can act and affect the amount of salt precipitation near the injection well. A novel conclusion is gravity and heterogeneity showed a mutual resistance relationship when considering the collective effect of gravity and heterogeneity on solid saturation. Gravity effects reduced the amount of salt deposited in the fracture model; at low CO₂ injection rate, gravity force dominated CO₂ flow; increased rock heterogeneity suppressed the production of salt precipitates; at high CO₂ injection rate, viscous force dominated flow; and increased heterogeneity increased salt precipitation. This research is of important guiding significance for the design of site screening and injection schemes from the perspective of avoiding a large amount of salt precipitation and pressure build-up.

1. Introduction

It has been reported that unless there are immediate, rapid, and large-scale reductions in greenhouse gas emissions, limiting warming to close to 1.5°C or even 2°C will be beyond reach [1]. Greenhouse gases (GHG) mainly include carbon dioxide (CO₂), nitrous oxide (N₂O), methane (CH₄), perfluorocarbons (PFCs), sulphur hexafluoride (SF₆), and hydrofluorocarbons (HFCs). Among all the greenhouse gases, CO₂ stands out as the most important GHG due to its excessive amount in the atmosphere compared to others [2]. The atmospheric concentration of CO₂ as of 2021 was at about 414 ppm, growing 100 ppm compared to that of 1958 [3]. In the near term, the effect of controlling the greenhouse effect by shifting the energy mix to less carbon-intensive alternative fuels and improving energy efficiency is limited [2]. Carbon-neutral and net-zero carbon emissions are a consensus long-term goal to reduce “global warming” [4, 5]. Carbon Capture and Storage (CCS) is one of the effective technologies to mitigate the global warming effect [6, 7]. CCS involves capturing CO₂ from energy-related sources, compressing it, transporting it to a suitable storage location, and storing it in deep geological formations [8, 9]. CCS is currently the only technology that allows the continued use of fossil fuels while reducing CO₂ emissions to the atmosphere [10].

The suitable geological formations that can carry out the CCS project include deep ocean, saline aquifers, depleted oil and gas reservoirs, unmineable coal seams, oil and gas reservoirs, and carbonation [10–15]. Deep saline aquifers are the
most effective storage site due to their high storage capacity [16–18]. When CO₂ is injected into deep saline aquifers, the mutual solubility of the CO₂-brine system increases the complex drying-out (water loss due to evaporation) and salting-out (salt precipitation begins to form due to the increase in brine saturation) process, once salts precipitate, the porosity and permeability diminish [19]. Salt precipitation can influence injectivity in a geological formation; monitoring pressure build-ups is a common method to evaluate the impact of CO₂ injection on well injectivity [20]. Some site tests [21–23] demonstrated the influences of salt precipitation on well injectivity.

Several laboratory studies have been performed by many scholars on the formation drying-out and salt precipitation with CO₂ sequestration. Of these studies, the position of salt precipitation in pores and the influence law of salt precipitation in pores on rock porosity and permeability are obtained by selecting cores with similar sites, changing fluid salinity, and the CO₂ injection strategy [24–28]. On the other hand, some scholars also use microfluidic models to study the mechanism of salt precipitation, especially the effect of the structure of the pore space on the location of salt precipitation and the process of accumulating salt precipitation generation [29–32]. However, it is found that the results of these experiments are controversial. Some scholars believe that salting has a great impact on CO₂ injection [25, 27, 33], while others believe that it has little impact [34] and even improves injectivity [35]. Ott et al. [36] believe that the reason for the dispute is that experimental domains have a limited volume and mass of salt that can be transported and precipitated within the domain, most of the experiments were carried out in a single primary drainage process, and small-scale tests underestimated the effect of precipitation. What is more, due to the limitation of scale, it is difficult for laboratory tests to consider the effects of gravity and the real heterogeneity of rock on the distribution of multiphase in the CO₂-brine system [37]. In fact, according to the monitoring data of the site, when CO₂ is injected into the deep saline aquifers, the salt precipitation range can be tens of meters, and the gas migration front can reach hundreds of meters to kilometers [21, 22]. Therefore, the field-scale numerical experiment is helpful to overcome the scale defects of laboratory research.

The physical properties of the matrix and fluid and the interaction of various forces in the displacement process are the main factors controlling fluid flow in porous media [38]. In recent years, it has been widely studied to explore the influence of different parameters on the spatial distribution of CO₂ and brine [39]. The influence of different parameters on the salting-out process can be analyzed when the phase change involving the (dis)appearance of solid salt is recognized and the permeability changes from precipitation and salt dissolution [40]. These numerical simulation studies consider the sensitivity parameter including injection rate, initial brine saturation, salinity, water content, capillary pressure, relative permeability, temperature, and permeability [19, 41–46]. Recent research shows that capillary-driven backflow is considered a key mechanism that determines regimes of salt precipitation [47–49]. Norouzi et al. [50] performed a comprehensive sensitivity analysis on a wide range of parameters, including relative permeability and capillary pressure curves; injection flow rate and temperature; and initial salinity, porosity, and reservoir temperature to support the role of capillary pressure and capillary-driven backflow in salt precipitation.

The conditions for capillary-driven backflow are capillary pressure gradient larger than the viscous pressure gradient [36, 51]. Therefore, how to break the balance between capillary pressure and viscous pressure is the key point for salting out. Capillary number (Cₘ) is used to quantify the influence of capillary dispersion, and it is defined as different expressions [11, 52–54]; changing parameters in the capillary number equation (such as injection rate of nonwetting phase and fluid viscous) has been shown to affect the stability of the two-phase displacement patterns [55, 56].

The gravitational effect regulated by density difference becomes highly essential in the real porous media system since it is not flat and horizontal [57]. The pore-scale study conducted by Suekane et al. [58] finds that the effect of buoyancy on fingering growth activity in immiscible two-phase flow displacements and buoyancy stabilizes or destroys fluid motion depending on fluid characteristics, injection direction, and capillary-viscous force competition. The gravity number (N_g) is used to quantify the influence of the gravitational effect [38, 54]. In the CO₂-brine system, buoyancy-dominated flow between CO₂ and brine indicated increased vertical CO₂ migration and brine counterflow, as well as localized salt precipitation; the buoyancy effect is one of the most critical parts in affecting the distribution of both the CO₂ plume and the salt precipitation associated with it [59].

Reservoir heterogeneity has an impact on CO₂-plume migration and trapping capacity [60]. Han et al. [61] conducted numerical simulations to explore the systematic effects of permeability heterogeneity on CO₂ trapping mechanisms and found that permeability heterogeneity influences buoyancy-driven CO₂ migration. The research by Green and Ennis-King [62] finds that the heterogeneity in the reservoir rock acts to retard buoyant migration by increasing the tortuosity of the migration pathways.

In summary, gravity and formation heterogeneity have been shown to have a substantial impact on saturation in deeper regions [37]. Both gravity and reservoir heterogeneity significantly impact CO₂ injectivity and migration and need to be incorporated into reservoir simulations to provide accurate predictions of both CO₂-plume behavior and CO₂ storage capacities. This is of important guiding significance for site screening and injection scheme design from the perspective of avoiding a large amount of salt precipitation and pressure build-up. In this paper, the collective effect of gravity and heterogeneity on the drying-out process will be investigated by site-scale numerical simulation. The Sleipner site project was used as a research background for numerical simulations. In Section 2, different permeability heterogeneous models are built. In Section 3, numerical simulations are performed based on the models in Section 2. The results of the numerical simulation are given in Section 4.
2. Methodology

2.1. Model Setup. The schematic model used in this research was based on the CO₂ injection project at the Sleipner Vest field in the Norwegian sector of the North Sea [63]. The system was idealized as a symmetric two-dimensional (2D) domain perpendicular to the horizontal injection well with a screen length of 100 m (Figure 1) [40]. Two sand layers and two shale layers were chosen to do the simulation (the area enclosed by a dashed line in Figure 1), and the thickness of the formation site was idealized at 88 m.

Three different models were set to characterize the sandstone layer formation, and "sand" was used to simplify the meaning of "sandstone" (homogeneous model, fracture model, and three permeability heterogeneous models). The gas phase can rarely invade into cap rock (shale layer) due to the low permeability; the shale layer formation was kept as a homogeneous model. The homogeneous model in this research was the 52 m thick homogeneous sand formation overlaid by the 36 m thick homogeneous shale caprock. Hydrogeological parameters of sand formation and shale formation are given in Table 1. A 500 m horizontal fracture was built near the well in the sand formation to express the simple fracture model (Figure 2). In this paper, the fracture was set as a solid unit to represent the fracture characteristics by setting as large porosity as possible and certain permeability; hydrogeological parameters of the fracture are given in Table 1.

As for different heterogeneous models, the Sequential Gaussian Simulation (SGS) method was used to generate spatially correlated property fields [64]. The values generated by GSLIB (var) represent the logarithm (base 10) of the property, \(\text{var} = \log_{10}(k) \), where \(k \) means permeability [65]. The "var = 0" means that there is no modifier for the original rock permeability, a positive number means that the permeability increases, and a negative number means that the permeability decreases. In this study, three different permeability change intervals were set to characterize the strength of heterogeneity. Interval (-1.6, 1.2) indicated low heterogeneity of the sand layer, interval (-3.5, 2.5) indicated medium heterogeneity, and interval (-5, 4) indicated high heterogeneity. Permeability distributions of three models are given in Figure 3. The specific method was shown in Finsterle and Kowalsky's [66] research. In Figure 3, the homogeneous shale layer remains unchanged, the red circled area indicates a low-permeability zone near the injection well.

Table 1: Parameters used in the simulation: permeability \(k \), porosity \(p \), salinity \(X_{\text{NaCl}} \), temperature \(T \), injection rate \(q \), and injection time \(t \).

Parameters	Values
\(k \)	Shale: 10 mD, sand: 3 D, fracture: 100 D
\(p (-) \)	Shale: 0.1025, sand: 0.35, fracture: 0.99
\(X_{\text{NaCl}} (-) \)	0.032
\(T (°C) \)	37
\(q (\text{kg/s}) \)	0.1585
\(t (s) \)	\(3.1536 \times 10^7\)

Figure 1: Schematic representation and idealized 2D schematic representation of geometry for CO₂ injection in Sleipner Vest field formation.

Figure 2: Schematic representation of the fracture model.
2.2. Space Discretization. The model grid was generated with the MESHMAKER module of TOUGH2 as a horizontal (X-Z) grid [67]. The geological model had an X and Z dimension of 6,000 m × 88 m. The drying-out phenomenon is not expected to occur throughout the reservoir, but only close to the injection point. Therefore, the mesh of the model was only densified near the injection well. The space discretization for the 2D grid is presented in Figure 4. In the x-axis direction, the grid is divided into 28 units. In a 20 m region around the injection well, there are 6 units with unit sizes of 1 m, 1 m, 2 m, 4 m, 4 m, and 8 m. From 20 to 1,500 m, there are 13 units with unit sizes of 15 m, 20 m, 30 m, 40 m, 50 m, 50 m, 100 m, 150 m, 50 m, 150 m, 300 m, 50 m, and 475 m. From 1,500 to 6,000 m, the unit is the coarsest, with 500 m and 9 units in total. Along the z-axis, the grid is divided into 10 units; the unit sizes from top to bottom are 3 m, 6 m, 12 m, 6 m, 2.5 m, 1 m, 2.5 m, 6 m, 6 m, and 7 m, respectively.

3. Modeling Approach

For the boundary conditions, the right boundary was fixed at constant pressure to allow flow in and out; the other three boundaries were set as no-flow boundaries (Figure 1). For the initial conditions, the formation temperature (T) was set at 37°C to maintain the isothermal condition. The injection well was 1,020 m below the ground, so the pressure was approximately 11 MPa in the injection well. The q in the field project was approximately 10^6 tons per year, corresponding to q = 0.3170 kg/s in the simulation, and q was 0.1585 kg/s for the half space in this study [40]. The total simulation time is specified as 1 year. Other parameters used in this simulation are listed in Table 1. Relative permeability function, capillary function, and porosity-permeability relationship were three governing equations of salt transport.
Table 2: Governing equations of salt transport and flow behavior.

Description	Equation	Parameters
Relative permeability function, van Genuchten-Mualem model [68, 69]	$k_{il} = \left\{ \begin{array}{ll} \sqrt{S_s} \left(1 - \left(1 - \left(S_s^{1/\lambda} \right)^{1/\lambda} \right)^2 \right) & \text{if } S_s < S_h, \ 0 \leq k_{il} \leq 1 \\ 1 & \text{if } S_i \geq S_h \\ 1 - k_{il} & \text{if } S_{gr} = 0 \\ \left(1 - S_{gr} \right)^2 \left(1 - S_h^{1/\lambda} \right) & \text{if } S_{gr} > 0 \end{array} \right.$	$\lambda = 0.4, S_h = 0.2, S_i = 1.0, S_{gr} = 0.05$
Capillary pressure function, van Genuchten function [69]	$P_{cap} = -P_o \left(S^{1/\lambda} - 1 \right)^{1-\lambda} - P_{max} \leq P_{cap} \leq 0$	$\lambda = 0.4, S_h = 0.2, P_{max} = 107 \text{ Pa}$
Porosity-permeability relationship for tube-in-series model [70]	$\frac{k_{il}}{k_i} = \theta^2 \frac{1 - \Gamma \left(\frac{1 - \phi_i}{\phi_i} \right)^{1/\Gamma}}{1 - \theta^{1/\Gamma} \left(\frac{1 - \phi_i}{\phi_i} \right)^{1/\Gamma}}$	$\phi_i = 0.8, \Gamma = 0.8$

Table 3: Description of sensitivity scenarios: gravity g, distances between the injection well and cap rock D.

Case	g (m/s2)	D (m)	Model
Case 1	—	30	Homogeneous
Case 1-1	9.81	30	Homogeneous
Case 1-2	9.81	42	Homogeneous
Case 1-3	9.81	12	Homogeneous
Case 1-4	9.81	8	Homogeneous
Case 2	—	30	Fracture
Case 2-1	—	30	Var (-1.6~1.2)
Case 2-2	—	30	Var (-3.5~2.5)
Case 2-3	—	30	Var (-5~4)
Case 3	9.81	30	Fracture
Case 3-1	9.81	30	Var (-1.6~1.2)
Case 3-2	9.81	30	Var (-3.5~2.5)
Case 3-3	9.81	30	Var (-5~4)

and flow behavior; the selection of equations and the selection of relevant parameters are shown in Table 2.

In Table 2, k_{il} is the liquid relative permeability, λ is the empirical parameter related to core size distribution, S_i is the liquid saturation, S_h is the liquid saturation when saturated, S_{gr} is the residual gas saturation, S_{gr} is the residual liquid saturation, k_{ig} is the gas relative permeability, P_{cap} is the capillary pressure, P_0 is the air entry pressure, P_{max} is the maximum capillary pressure, k_i is the initial permeability, Γ is the fractional length of the pore bodies, and ϕ_i is the fraction of original porosity at which permeability is reduced to zero.

In this paper, the gravity effect and the heterogeneity effect were two main factors of sensitivity analysis (SA) during case studies; solid saturation (S_s) was used as the response variable for SA. Descriptions of different simulation cases are given in Table 3. Parameter D means the distances between the injection well and the caprock; it is related to the gravity effect on S_s; the specific content is given in Section 4.1.1.

4. Simulation Results and Discussion

Numerical simulations were performed using the TOUGH2 code and the related fluid characteristic module ECO2N [40, 67]. The TOUGH2-ECO2N module was used to simulate the value of S_s in the injection well when CO$_2$ was injected into deep saline aquifers. ECO2N represents a mixture of three phases: a liquid phase rich in water, a gas phase rich in CO$_2$, and a solid salt. The simulation time was 3.1536 \times 107 s (1 year) and did not consider temperature changes in the system. The results of the numerical simulation are given below.

4.1. Effect of Gravity on S_s. Case 1 and Case 1-1 were contrasted together to research the effect of gravity. Gas saturation (S_g) mainly gas CO$_2$ saturation) and S_s were given as contour maps after 3.1536 \times 107 s simulation. The injection well was chosen as the monitoring point, the time evolution of S_s and the mass of salt at the injection well were picked up from the simulation output file by [66], and the mass of salt denotes salt mass in the aqueous phase and solid phase. Figure 5 shows the simulation result of Case 1; Figure 6 shows the simulation result of Case 1-1. Due to the salt-gas phenomenon that occurs particularly in and close to the borehole [24], Figure 7 shows the comparison result of two cases at the monitoring point (injection well).

In Figure 5(a), gas phase (CO$_2$) invades into sand formation evenly in the horizontal direction while there is no gravity effect. In the vertical direction, the caprock blocks the gas invasion into the upper layer due to its low permeability. After 1-year simulation, the maximum CO$_2$ migration line is about 2,200 m from the injection well in the horizontal direction (Figure 5(a)). Salt precipitation occurred mainly near the injection well (0~6 m in the horizontal direction, -72~60 m in the vertical direction). The maximum value of S_s is located in the injection well; the S_s values in each element are in the range of 0 to 0.1056 (Figure 5(b)). Like the S_s contour map, the S_s contour map also shows symmetrical features. In Figure 6(a), the distribution of the gas phase is asymmetric when it comes to the gravity situation, and the
distribution of CO₂ presents the shape of a funnel. CO₂ is gathering at the bottom of the shale formation due to the buoyancy and low permeability of the caprock. The maximum CO₂ migration line is about 3,000 m from the injection well. The preferential flow of CO₂ and the gathering of CO₂ at the bottom of the shale formation can be attributed to the effect of gravity. The preferential flow caused by gravity leads to a higher salt accumulation near the injection well (Figure 6(b)) compared to the case without gravity (Figure 5(b)); S_s values near the well are at the range of 0 to 0.1584. The contour map of S_s also shows asymmetrical features; the S_s distribution has an upward trend due to the gravity effect.

Specifically, the gravity effect caused additional salt precipitation in the injection well; the value of S_s is increased ΔS_{sG} (+0.0529) due to the gravity effect (Figure 7(a)). In this paper, positive values are used to indicate a rising trend, and negative values indicate a decreasing trend. In Figure 7(b), the mass of salt in the injection well is increased ΔM_{G} (+22.8 kg) when considering the gravity effect. The consensus mechanism about the salt aggravating near the injection well is the brine backflow around the well caused by the capillary difference [43]. In Figure 7, the value of S_s and the mass of salt are in the same trend of change; the change in the mass of salt can be observed by the change in S_s.

4.1.1. Changes in Distances between the Injection Well and the Caprock (D). In a certain storage formation, the scope
of buoyancy can be changed by setting injection well at different locations (Figure 8). In addition to the location of the injection wells in the project ($D = 30$ m), the location of the other three injection wells was established to perform an analogy analysis (Case 1-2, Case 1-3, and Case 1-4). Parameters used for simulation were consistent with Case 1 and Case 1-1. The simulation results are given below.

In Figure 9, the gravity effect makes a significant increase of S_e at the injection well in all four case studies. ΔS_{eg1}, ΔS_{eg2}, ΔS_{eg3}, and ΔS_{eg4} mean the S_e increment caused by gravity effect in four different D simulations. S_e decreases with the decrease of parameter D when considering the gravity effect in homogeneous simulations (red line in Figure 9). However, the location of the well has a very small effect on S_e when the gravity effect is ignored (blue line in Figure 9). The increment of S_e caused by the gravity effect is weakened with the decrease of D (from $\Delta S_{eg1}^1 = +0.0677$ to $\Delta S_{eg1}^2 = +0.0529$, $\Delta S_{eg2}^1 = +0.0418$, and $\Delta S_{eg3}^1 = +0.0056$). Compared to Figure 6(a), the contour map of CO$_2$ is not changed obviously when the location of the injection well is changed, they all show the shape of the funnel, and the maximum migration line of CO$_2$ is about 3,000 m from the injection well (Figure 10). The above results indicate that salt precipitation can be reduced by shortening the distance from the injection well to the caprock (D), without affecting the CO$_2$ storage efficiency.

In the laboratory experiment, the limit size of the sample would limit the flow caused by gravity, and it would obtain a much smaller S_e value to compare to the real site situation.

4.2. Effect of Formation Heterogeneity on S_e

4.2.1. The Fracture Model. In Case 2, a single horizontal factual of 525 m long and 1 m wide near the injection well was built (Figure 2); hydrogeological parameters of the fracture model are given in Tables 1 and 2. This section only considers the effect of formation heterogeneity on S_e and does not consider the gravity effect. The simulation results are given below after a 1-year simulation.

In Figure 11(a), the fast flow of CO$_2$ due to the horizontal fracture is visible and the fracture is filled with CO$_2$ after a 1-year simulation ($S_e = 1.0$). The maximum migration line of CO$_2$ is about 2,800 m in the horizontal direction, which is larger than that in the homogeneous model in Figure 5(a). In Figure 11, the black circle areas show low S_e zones. The low S_e zones in Figure 11(a) indicate high liquid saturation (S_l) zones, and local high S_e zones are formed in both the upper and lower parts of the fracture. In Figure 11(b), the local fast flow in the fracture makes the value of S_e unusually high in the injection well. Except for injection wells, there is no salt precipitation in other areas (in Figure 11(b), the S_e only appear in the injection well mesh). The S_e value shows a linear rise to 0.746 in the injection well when the simulation ends (Figure 12(a)). However, the increase in salt precipitation did not reach a steady state. If the simulation time prolongs to t_e, the S_e value could rise to 1.0 and lead to the complete blocking of the pore space at the time of 4.4384 \times 107 s (t_e in Figure 12(b); t_e means the time that salt precipitation no longer increases; t_e means 2-year simulation time). The S_e difference compared to the homogeneous model in the 1-year simulation is $\Delta S_{eg} = +0.6400$ (Figure 12(a)). In Figure 12(b), the increment of S_e caused by the fracture in this study can reach the maximum $\Delta S_{eg} = +0.8940$ if the simulation time has been extended. This complete blockage of the fracture structure is observed by several laboratory experiments, and solid precipitates mainly near the well where a high gas flow rate is maintained [30, 71, 72]. It is necessary to avoid fractures near the injection well when choosing the storage site although these fractures will not lead to CO$_2$ leakage.

4.2.2. Permeability Heterogeneous Models. Case 2-1, Case 2-2, and Case 2-3 were joined together to research the effect of heterogeneity with three permeability heterogeneous models. Different grid permeabilities were used to display the formation heterogeneity. Three different permeability distributions are given in Figure 3. The different permeability change intervals indicate different heterogeneities. The parameters used for the simulation are given in Tables 1 and 2. The simulation results are given below.

Compared to Figure 5(a), contour maps of S_e in Figure 13 are all showing asymmetrical properties. Compared to simulation conditions, the difference in CO$_2$ distribution is mainly

![Figure 8: Idealized 2D schematic representation of the formation in this study for four different well locations.](image-url)

![Figure 9: S_e value at the injection well for different D.](image-url)
attributed to the influence of heterogeneity. In Figure 13(a), S_g in the lower part of the sand formation is greater than that in the upper part of the formation, because there are high-permeability channels in the lower part (Figure 3(a)). More low-permeability zones will be formed with increasing formation heterogeneity (Figures 3(b) and 3(c)). These low-permeability zones will be formed low S_g areas, and more liquid is surrounded by gas, which indicates the preferential flow in the heterogeneous sand formation (Figure 13(b) and Figure 13(c)). Like the preferential flow caused by gravity, the preferential flow caused by the heterogeneity of the formation also increases the distance of CO_2 migration, from 2,200 m in the homogeneous model (Figure 5(a)) to 2,800 m in the heterogeneity model (Figure 13).

Figure 14 shows the time evolution of S_s in the injection well for three different heterogeneity models and one homogeneous model. Compared with the S_s value in the homogeneous model, the heterogeneous model causes a significant increase in S_s at the injection well. As heterogeneity increases, the increase in S_s increases from $\Delta S_{sH1} (+0.0045)$ to $\Delta S_{sH2} (+0.0077)$ and $\Delta S_{sH3} (+0.0080)$ (Figure 14). This means that the stronger the heterogeneity, the more salt precipitates at the injection well. This is consistent with previous research [73]. When the results of gravity effects are compared with the results of heterogeneity effects, the independent influence of formation heterogeneity on the S_s value is much lower than that of gravity effect and fracture heterogeneity effect in this study.

4.3. Combining Gravity and Heterogeneity Effect. Gravity and heterogeneity exist at the same time in a real site project. Case 3, Case 3-1, Case 3-2, and Case 3-3 were joined to
investigate the collective effect of heterogeneity and gravity on the value of S_h. Schematic diagrams of heterogeneous models are shown in Figure 3. The simulation results are given below after a 1-year simulation.

In Figure 15, there are two significant preferential flows in the sand formation. The gathering of CO$_2$ at the bottom of shale formation means the preferential flow is caused by gravity; the local high S_h flow passage in the horizontal direction means the preferential flow caused by fracture (Figure 15(a)), and the asymmetric sawtooth migration of CO$_2$ means the preferential flow caused by heterogeneity (Figures 15(b)–15(d)). The maximum CO$_2$ migration lines in these three different heterogeneity models are all more than 2,200 meters. However, this distance decreases with increasing heterogeneity, which shows the opposite result in Figure 13. Compared to Figure 6(a), the joining of gravity and heterogeneity decreases the CO$_2$ migration line in the horizontal direction; heterogeneity shows a resistance effect of the CO$_2$ migration line caused by the gravity effect.

The fracture is full of gas, and the upper and lower parts of the fracture are areas of high water saturation (Figure 15(a)). The black circle area in the figure is the area of high water saturation; the phenomenon of residual trapping of liquid is more obvious in the case of stronger heterogeneity (Figure 15(d)). These high water saturation zones could supply the additional mass of salt to the injection well in 2-year simulation.

Figure 12: Time evolution of S_h and mass of salt at the injection well: (a) time evolution of S_h; (b) time evolution of S_h at the injection well in 2-year simulation.

by quest
Simulation results of case studies are given below. Figure 17 is the value at the injection well for different injection rates in three different models; the minimum heterogeneity model is used here (permeability change interval is -1.6~1.2). \(\Delta S_{sG}, \Delta S_{sG}^4, \Delta S_{sG}^5,\) and \(\Delta S_{sG}^6\) indicate the increment caused by gravity effect; \(\Delta S_{sH1}, \Delta S_{sH1}^4, \Delta S_{sH1}^5,\) and \(\Delta S_{sH1}^6\) mean the increment caused by the minimum heterogeneity effect. The value of \(\Delta S_s\) decreased as \(q\) increased in all three models; this is a common result of many scholars [19, 43, 44, 73, 76]. The gravity effect and the heterogeneity effect both can cause the \(S_s\) to increase at the injection well in all four \(q\) simulations. However, the increase of \(q\) would reduce the \(S_s\) value increment caused by the gravity effect (from \(\Delta S_{sG} = +0.0520\) to \(\Delta S_{sG}^6 = +0.0010\)) and heterogeneity effect (from \(\Delta S_{sH1} = +0.0045\) to \(\Delta S_{sH1}^6 = +0.0012\)). The increase in

Figure 13: Contour map of \(S_g\) of three different heterogeneity models: (a) low heterogeneity, permeability change interval is -1.6~1.2; (b) medium heterogeneity, permeability change interval is -3.5~2.5; (c) high heterogeneity, permeability change interval is -5~4.

Figure 14: Time evolution of \(S_s\) at the injection well for three different heterogeneity models.
S value caused by gravity is greater than that caused by heterogeneity in situations of 0.1585 kg/s, 0.22 kg/s, and 0.28 kg/s, which means that gravity has a dominant effect on solid aggravation. The difference in increment caused by gravity and heterogeneity in each q simulation is slowly shrieking. When it comes to the situation of 0.35 kg/s, the increase in the S value caused by gravity (ΔS_G = +0.0010) becomes smaller than that caused by heterogeneity (ΔS_H1 = +0.0012); the gravity no longer has a dominant effect on solid aggravation. This is mainly due to the high q that decrease gravity dominant, and the viscous force began to show a dominant force.

Figure 15: Contour map of S_g of four different heterogeneity models when considering gravity effect: (a) fracture heterogeneity; (b) low heterogeneity; (c) medium heterogeneity; (d) high heterogeneity.

Figure 16: Time evolution of S_s at the injection well for four different heterogeneous models: (a) time evolution of S_s for fracture heterogeneity; (b) time evolution of S_s at the injection well for three different heterogeneous models when considering the gravity effect.
In Figure 18, \(\Delta S_{\text{GH1}} \), \(\Delta S_{\text{GH2}} \), and \(\Delta S_{\text{GH3}} \) mean the \(S_s \) increment in three heterogeneous models compare to the homogeneous model when the gravity is considered. The \(S_s \) value is increased with the heterogeneity enhancement (from \(\Delta S_{\text{GH1}} = +0.0022 \) to \(\Delta S_{\text{GH2}} = +0.0037 \) and \(\Delta S_{\text{GH3}} = +0.0039 \)). This means that the stronger the heterogeneity, the more salt precipitates, which is similar to Figure 14 and opposite to Figure 16(b). The only difference between Figures 18 and 16(b) is the value of \(q \).

5. Conclusions

This paper researched the effect of gravity and heterogeneity on salt precipitation by using the numerical simulation method. The effect of gravity on salt precipitation was studied by changing the position of the injection well and determining whether to consider gravity. The effect of heterogeneity on \(S_s \) was studied by building four different heterogeneous models. The collective effect of gravity and heterogeneity on \(S_s \) was studied, which provides more information on the effect of formation heterogeneity. The main conclusions obtained from this study are as follows:

(i) Gravity has a great effect on preferential flow, which would influence the accumulation of salt precipitation near the injection well. The preferential flow caused by the gravity effect increased the \(S_s \) value in the injection well and changed the solid distribution in the sand layer compared to the simulation without the gravity effect. The influence of gravity could be reduced by changing the position of the injection well, that is, reducing the distance from the injection well to the caprock. Furthermore, in
the laboratory experiment, the limited size of the sample would underestimate the effect of gravity on S_s. This would underestimate the effect of salt precipitation compared to actual site conditions.

(ii) Formation heterogeneity has a significant effect on S_s. The fracture model is the most common heterogeneous model used in both laboratory experiments and site-scale simulations. The fracture near the injection well caused an abnormal increase in salt precipitation when not considering the gravity effect. If the injection time is long enough, the maximum S_s value can increase to 1.0. Three different permeability heterogeneous models had been built according to the permeability range. When the gravity effect is not considered, the preferential flow of the formation increased with increasing heterogeneity; the stronger the heterogeneity, the greater the amount of precipitation near the well.

(iii) There is a competitive effect between gravity and heterogeneity on the value of S_s. The gravity effect decreases S_s in the fracture model. When it comes to heterogeneous models with gravity, salt precipitation decreases with increasing heterogeneity. This conclusion is opposite to simulation results without gravity effect in heterogeneous models. Fracture heterogeneity would always keep a dominant effect on S_s due to the high S_s increase at the single effect simulation; gravity effect can limit preferential flow caused by the fracture. Formation heterogeneity has a low effect on S_s compared to the gravity effect in a low q situation. The heterogeneity effect can limit the preferential flow caused by gravity.

(iv) In addition to reducing the distance from the injection well to the caprock, the gravity effect can also be reduced by changing the dominant flow caused by gravity. At high q, viscous forces will control fluid distribution, and gravity forces will not dominate the flow. When heterogeneity becomes the dominant effect on S_s, the amount of salt precipitation and the intensity of heterogeneity are positively correlated, which means that the S_s value will increase with the increases in heterogeneity.

(v) The results of this article can give some inspiration to the site project. Reducing the distance from the injection well to the caprock can effectively reduce salt precipitation at the injection well. Fractures near injection wells must be avoided, and they can lead to large accumulations of salt deposits. At low q, gravity forces will dominate CO$_2$ flow; heterogeneity, in turn, inhibits the growth of salt precipitation in injection wells. Regions with strong heterogeneity can be chosen to inject when the q cannot be increased. At high q, viscous forces dominate the CO$_2$ flow, and selecting a relatively homogeneous formation injection helps reduce salt precipitation. If possible, increased q can effectively reduce salt precipitation under certain formation conditions.

Nomenclature

- D: Distances between the injection well and caprock
- g: Gravity
- k: Permeability
- k_0: Initial permeability
- k_r: Absolute permeability
- k_r': Relative permeability
- k_{rg}: Gas relative permeability
- k_{rl}: Liquid relative permeability
- N_{gv}: Gravity/viscous ratio
- p: Porosity
Data Availability

All data generated or analyzed during this study are included in this published article.

Conflicts of Interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Acknowledgments

The research was supported by the National Natural Science Foundation of China (No. U1765204) and the Jiangsu Planned Projects for Postdoctoral Research Funds (No. 2020Z006).

References

[1] IPCC, “Summary for policymakers,” in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 2021.

[2] S. Kumar, J. Foroozesh, K. Edlmann, M. G. Rezk, and C. Y. Lim, “A comprehensive review of value-added CO2 sequestration in subsurface saline aquifers,” Journal of Natural Gas Science and Engineering, vol. 81, article 103437, 2020.

[3] UC San Diego, “Scripps Institution of Oceanography at UC San Diego,” https://keelingcurve.ucsd.edu/.

[4] J. Rogelj, M. Schaeffer, M. Meinshausen et al., “Zero emission targets as long-term global goals for climate protection,” Environmental Research Letters, vol. 10, no. 10, article 105007, 2015.

[5] E. Ajoma, T. S. Saira, T. Sungkachtar, and F. le-Hussain, “Effect of miscibility and injection rate on water-saturated CO2 injection,” Energy, vol. 217, article 119391, 2021.

[6] IPCC, IPCC Special Report on Carbon Dioxide Capture and Storage, Cambridge University Press, Cambridge, UK, 2005.

[7] S. Pye, F. G. N. Li, J. Price, and B. Fais, “Achieving net-zero emissions through the reframing of UK national targets in the post-Paris Agreement era,” Nature Energy, vol. 2, no. 3, article 17024, 2017.

[8] S. Bachu, “CO2 storage in geological media: role, means, status and barriers to deployment,” Progress in Energy and Combustion Science, vol. 34, no. 2, pp. 254–273, 2008.

[9] M. J. Bickle, “Geological carbon storage,” Nature Geoscience, vol. 2, no. 12, pp. 815–818, 2009.

[10] M. A. Celia, “Geological storage of captured carbon dioxide as a large-scale carbon mitigation option,” Water Resources Research, vol. 53, no. 5, pp. 3527–3533, 2017.

[11] L. K. Abidoye, K. J. Khudaida, and D. B. Das, “Geological carbon sequestration in the context of two-phase flow in porous media: a review,” Critical Reviews in Environmental Science and Technology, vol. 45, no. 11, pp. 1105–1147, 2015.

[12] M. Godec, V. Kuuskraa, T. Van Leeuwen, L. Stephen Melzer, and N. Wildgust, “CO2 storage in depleted oil fields: the worldwide potential for carbon dioxide enhanced oil recovery,” Energy Procedia, vol. 4, pp. 2162–2169, 2011.

[13] J. Q. Shi and S. Durucan, “CO2 storage in deep unminable coal seams,” Oil & Gas Science and Technology, vol. 60, no. 3, pp. 547–558, 2005.

[14] A. V. Negrini, D. Zhu, and C. Y. Liu, “An integrated framework for optimizing CO2 sequestration and enhanced oil recovery,” Environmental Science & Technology Letters, vol. 1, no. 1, pp. 9–15, 2014.

[15] J. M. Matter and P. B. Kelemen, “Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation,” Nature Geoscience, vol. 2, no. 12, pp. 837–841, 2009.

[16] J. Bradshaw, S. Bachu, D. Bonijoly et al., "CO2 storage capacity estimation: issues and development of standards," International Journal of Greenhouse Gas Control, vol. 1, no. 1, pp. 62–68, 2007.

[17] D. Y. C. Leung, G. Caramanna, and M. M. Maroto-Valer, “An overview of current status of carbon dioxide capture and storage technologies,” Renewable and Sustainable Energy Reviews, vol. 39, pp. 426–443, 2014.

[18] D. Zhu, S. Peng, S. Zhao, M. Wei, and B. Bai, “Comprehensive review of sealant materials for leakage remediation technology in geological CO2 capture and storage process,” Energy & Fuels, vol. 35, no. 6, pp. 4711–4742, 2021.

[19] S. Hurter, J. G. Berge, and D. Labregere, “Simulations for CO2 injection projects with compositional simulator,” in SPE Offshore Europe Oil and Gas Conference and Exhibition, Aberdeen, Scotland, U.K, 2007.

[20] S. H. Hajiabadi, P. Bedrikovetsky, S. Borazjani, and H. Mahani, “Well Injectivity during CO2 geosequestration: a review of hydro-physical, chemical, and geomechanical effects,” Energy & Fuels, vol. 35, no. 11, pp. 9240–9267, 2021.

[21] G. Baumann, J. Hennings, and M. De Lucia, “Monitoring of saturation changes and salt precipitation during CO2 injection using pulsed neutron-gamma logging at the Ketzin pilot site,” International Journal of Greenhouse Gas Control, vol. 28, pp. 134–146, 2014.
[22] S. Grude, M. Landrø, and J. Dvorkin, “Pressure effects caused by CO₂ injection in the Tubaen Fm., the Snøhvit field,” *International Journal of Greenhouse Gas Control*, vol. 27, pp. 178–187, 2014.

[23] S. Talman, A. R. Shokri, R. Chalaturnyk, and E. Nickel, *Salt Precipitation at an Active CO₂ Injection Site*, John Wiley & Sons, Ltd, 2020.

[24] N. Muller, R. Qi, E. Mackie, K. Pruess, and M. J. Blunt, “CO₂ injection impairment due to halite precipitation,” *Energy Procedia*, vol. 1, no. 1, pp. 3507–3514, 2009.

[25] G. Bacci, S. Durucan, and A. Korre, “Experimental and numerical study of the effects of halite scaling on injectivity and seal performance during CO₂ injection in saline aquifers,” *Energy Procedia*, vol. 37, pp. 3275–3282, 2013.

[26] T. D. Rathnaweera, P. G. Ranjith, and M. S. A. Perera, “Effect of salinity on effective CO₂ permeability in reservoir rock determined by pressure transient methods: an experimental study on Hawkesbury sandstone,” *Rock Mechanics and Rock Engineering*, vol. 48, no. 5, pp. 2093–2110, 2015.

[27] Y. Tang, R. Yang, Z. Du, and F. Zeng, “Experimental study of formation damage caused by complete water vaporization and salt precipitation in sandstone reservoirs,” *Transport in Porous Media*, vol. 107, no. 1, pp. 205–218, 2015.

[28] D. Zhang, Y. Kang, A. P. S. Selvadurai, and L. You, “Experimental investigation of the effect of salt precipitation on the physical and mechanical properties of a tight sandstone,” *Rock Mechanics and Rock Engineering*, vol. 53, no. 10, pp. 4367–4380, 2020.

[29] M. Kim, A. Sell, and D. Sinton, “Aquifer-on-a-chip: understanding pore-scale salt precipitation dynamics during CO₂ sequestration,” *Lab on a Chip*, vol. 13, no. 13, pp. 2508–2518, 2013.

[30] R. Miri, R. van Noort, P. Aagaard, and H. Hellevang, “New insights on the physics of salt precipitation during injection of CO₂ into saline aquifers,” *International Journal of Greenhouse Gas Control*, vol. 43, pp. 10–21, 2015.

[31] D. He, P. Jiang, and R. Xu, “Pore-scale experimental investigation of the effect of supercritical CO₂ injection rate and surface wettability on salt precipitation,” *Environmental Science & Technology*, vol. 53, no. 24, pp. 14744–14751, 2019.

[32] S. Seo, M. Mastiani, M. Hafez et al., “Injection of in-situ generated CO₂ microbubbles into deep saline aquifers for enhanced carbon sequestration,” *International Journal of Greenhouse Gas Control*, vol. 83, pp. 256–264, 2019.

[33] Y. Peysson, L. André, and M. Azaroual, “Well injectivity during CO₂ storage operations in deep saline aquifers—part 1: experimental investigation of drying effects, salt precipitation and capillary forces,” *International Journal of Greenhouse Gas Control*, vol. 22, pp. 291–300, 2014.

[34] A. Berntsen, J. Todorovic, M. Raphaug et al., “Salt clogging during supercritical CO₂ injection into a downscaled borehole model,” *International Journal of Greenhouse Gas Control*, vol. 86, pp. 201–210, 2019.

[35] H. Ott, S. M. Roels, and K. de Kloe, “Salt precipitation due to supercritical gas injection: I. Capillary-driven flow in unimodal sandstone,” *International Journal of Greenhouse Gas Control*, vol. 43, pp. 247–255, 2015.

[36] H. Ott, J. Snipe, and K. de Kloe, “Salt precipitation due to supercritical gas injection: II. Capillary transport in multi porosity rocks,” *International Journal of Greenhouse Gas Control*, vol. 105, article 103233, 2021.

[37] Z. Moreno and A. Rabinovich, “Impact of sub-core-scale heterogeneity on meter-scale flow and brine displacement in drainage by CO₂,” *Water Resources Research*, vol. 57, no. 1, article e2020WR028332, 2021.

[38] D. Zhou, F. J. Fayers, and F. M. Orr, “Scaling of multiphase flow in simple heterogeneous porous media,” *SPE Reservoir Engineering*, vol. 12, no. 3, pp. 173–178, 1997.

[39] J. Jing, Y. Yang, Z. Tang, and F. Wang, “Impacts of salinity on CO₂ spatial distribution and storage amount in the formation with different dip angles,” *Environmental Science and Pollution Research*, vol. 26, no. 22, pp. 22173–22188, 2019.

[40] K. Pruess, *ECO2N: A TOUGH2 Fluid Property Module for Mixtures of Water, NaCl, and CO₂*, Lawrence Berkeley National Laboratory, Berkeley, 2005.

[41] T. Giorgis, M. Carpita, and A. Battistelli, “2D modeling of salt precipitation during the injection of dry CO₂ in a depleted gas reservoir,” *Energy Conversion and Management*, vol. 48, no. 6, pp. 1816–1826, 2007.

[42] M. Zeidouni, M. Pooladi-Darvish, and D. Keith, “Sensitivity analysis of salt precipitation and CO₂-brine displacement in saline aquifers,” in *Society of Petroleum Engineers SPE International Conference on CO₂ Capture, Storage, and Utilization*, San Diego, California, USA, 2009.

[43] K. Pruess and N. Müller, “Formation dry-out from CO₂ injection into saline aquifers: 1. Effects of solids precipitation and their mitigation,” *Water Resources Research*, vol. 45, no. 3, article W03402, 2009.

[44] K. Kim, W. S. Han, J. Oh, T. Kim, and J. Kim, “Characteristics of salt-precipitation and the associated pressure build-up during CO₂ storage in saline aquifers,” *Transport in Porous Media*, vol. 92, no. 2, pp. 397–418, 2012.

[45] L. André, Y. Peysson, and M. Azaroual, “Well injectivity during CO₂ storage operations in deep saline aquifers—part 2: numerical simulations of drying, salt deposit mechanisms and role of capillary forces,” *International Journal of Greenhouse Gas Control*, vol. 22, pp. 301–312, 2014.

[46] E. Guyant, W. S. Han, K. Kim, M. Park, and B. Kim, “Salt precipitation and CO₂/brine flow distribution under different injection well completions,” *International Journal of Greenhouse Gas Control*, vol. 37, pp. 299–310, 2015.

[47] H. Alkan, Y. Cinar, and E. B. Ulker, “Impact of capillary pressure, salinity and in situ conditions on CO₂ injection into saline aquifers,” *Transport in Porous Media*, vol. 84, no. 3, pp. 799–819, 2010.

[48] S. M. Roels, N. El Chatib, C. Nicolaides, and P. L. J. Zitha, “Capillary-driven transport of dissolved salt to the drying zone during CO₂ injection in homogeneous and layered porous media,” *Transport in Porous Media*, vol. 111, no. 2, pp. 411–424, 2016.

[49] R. Miri and H. Hellevang, “Salt precipitation during CO₂ storage—a review,” *International Journal of Greenhouse Gas Control*, vol. 51, pp. 136–147, 2016.

[50] A. M. Norouzi, M. Babaei, W. S. Han, K. Kim, and V. Niasar, “CO₂-plume geothermal processes: a parametric study of salt precipitation influenced by capillary-driven backflow,” *Chemical Engineering Journal*, vol. 425, article 130031, 2021.

[51] G. Cui, S. Ren, Z. Rui, J. Ezekiel, L. Zhang, and H. Wang, “The influence of complicated fluid-rock interactions on the geothermal exploitation in the CO₂ plume geothermal system,” *Applied Energy*, vol. 227, pp. 49–63, 2018.
[52] J. M. Nordbotten, M. A. Celia, and S. Bachu, "Injection and storage of CO₂ in deep saline aquifers: analytical solution for CO₂ plume evolution during injection," *Transport in Porous Media*, vol. 58, no. 3, pp. 339–360, 2005.

[53] S. Taku Ide, K. Jessen, and F. M. Orr, "Storage of CO₂ in saline aquifers: effects of gravity, viscous, and capillary forces on amount and timing of trapping," *International Journal of Greenhouse House Gas Control*, vol. 1, no. 4, pp. 481–491, 2007.

[54] P. Heidari and H. Hassananzadeh, "Modeling of Carbon Dioxide Leakage from Storage Aquifers," *Fluids*, vol. 3, no. 4, p. 80, 2018.

[55] R. Lenormand, E. Touboul, and C. Zarcone, "Numerical models and experiments on immiscible displacements in porous media," *Journal of Fluid Mechanics*, vol. 189, pp. 165–187, 1988.

[56] G. Levoll, Y. Méheust, K. J. Målsøy, E. Aker, and J. Schmittbuhl, "Competition of gravity, capillary and viscous forces during drainage in a two-dimensional porous medium, a pore scale study," *Energy*, vol. 30, no. 6, pp. 861–872, 2005.

[57] Y. Méheust, G. Levoll, K. J. Målsøy, and J. Schmittbuhl, "Interface scaling in a two-dimensional porous medium under combined viscous, gravity, and capillary effects," *Physical Review*, vol. 66, no. 5, article 051603, 2002.

[58] T. Suekane, Y. Saito, and L. Jiang, "Non-wetting phase saturation after drainage from the wetting-phase-filled porous medium," *Journal of Fluid Science and Technology*, vol. 10, no. 2, article JFST0014, 2015.

[59] J. Piao, W. S. Han, S. Choung, and K. Kim, "Dynamic behavior of CO₂ in a wellbore and storage formation: wellbore-coupled and salt-precipitation processes during geologic CO₂ sequestration," *Geofluids*, vol. 2018, 20 pages, 2018.

[60] E. A. Al-Khdheeawi, S. Vialle, A. Barifcani, M. Sarmadivaleh, and S. Iglauer, "Impact of reservoir wettability and heterogeneity on CO₂-plume migration and trapping capacity," *International Journal of Greenhouse House Gas Control*, vol. 58, pp. 142–158, 2017.

[61] W. S. Han, S. Y. Lee, C. Lu, and B. J. McPherson, "Effects of permeability on CO2trapping mechanisms and buoyancy-driven CO2migration in saline formations," *Water Resources Research*, vol. 46, no. 7, article W07510, 2010.

[62] C. P. Green and J. Ennis-King, "Estimating breakthrough time during buoyant migration of CO₂ in a reservoir containing impermeable barriers," *Transport in Porous Media*, vol. 107, no. 1, pp. 281–298, 2015.

[63] N. Dubos-Sallée and P. N. J. Rasolofosaon, "Estimation of permeability anisotropy using seismic inversion for the CO₂ geological storage site of Sleipner (North Sea)," *Geophysics*, vol. 76, no. 3, p. WA63, 2011.

[64] C. V. Deutsch, *Amnealing techniques applied to reservoir modeling and the integration of geological and engineering (well test) data*, Stanford University, 1992.

[65] C. V. Deutsch and A. G. Journel, *GSLIB: Geostatistical Software Library and User's Guide*, Oxford University Press, Oxford, UK, Second edition, 1998.

[66] S. Finsterle and M. B. Kowalsky, *iTOUGH2-GSLIB User’s Guide*, Lawrence Berkeley National Laboratory, Berkeley, 2016.

[67] K. Pruess, C. Oldenburg, and G. Moridis, *TOUGH2 User’s Guide, Version 2*, Lawrence Berkeley National Laboratory, Berkeley, 2012.