GENDER BASED DIFFERENCES IN THE BLEEDING TIME AND CLOTTING TIME AND THEIR RELATIONSHIP WITH THE BLOOD GROUPS

Silpa Gantela1, T. Mahathi2

1Associate Professor, Department of Physiology, Katuri Medical College.
2Assistant Professor, Department of Pathology, Katuri Medical College.

ABSTRACT

It is extraordinary that 100 years after the work of Karl Landsteiner (1900) on blood grouping, the scene is different and numerous studies have been carried out on association of blood groups with diseases.

METHODS

In order to add to the existing knowledge on the subject, we studied 150 normal healthy subjects (Medical students) to find out the probable relationship between Blood groups and gender with bleeding time & clotting time. Blood group determination was done by mixing the sample of blood with antisera A and B and Anti D antisera and was confirmed by looking for clumping of RBCs under the microscope. Bleeding time was estimated by Duke Method and clotting time was estimated by capillary tube method.

RESULTS

In our study, we observed that the O blood group individuals are having greater bleeding time and clotting time than the non O blood group individuals. Females had more bleeding time and clotting time than males.

CONCLUSION

So, through this research, the fact that there is a Gender based difference in the Bleeding time and Clotting time is proven. The relationship between bleeding time and clotting time with the blood groups was also studied.

KEYWORDS

Bleeding time, Clotting Time, Blood Groups.

HOW TO CITE THIS ARTICLE: Gantela S, Mahathi T. “Gender based differences in bleeding time and clotting time and their relationship with blood groups.” Journal of Evolution Research in Human Physiology 2015; Vol. 1, Issue 1, July-December 2015, Page: 10-13.

INTRODUCTION

In the year 1900 scientist Karl Landsteiner identified the ABO system of blood group which was the starting of Blood banking and Transfusion medicine.1 The clinical significance of the ABO blood group system extends beyond transfusion medicine and several reports have suggested an important involvement in the development of cardiovascular, oncological and other diseases associated with hypercoagulability.2-3 Some of the stranger and more ridiculous associations, including a more pronounced hangover in group A individuals, better teeth in group O persons, personality traits, the intelligence quotient, the socioeconomic profile of the population, and digestion were all reviewed by George Garratty and were also published in highly respected journals, such as Nature in 1973 and 1984, or in several books, the last of which in 1999.4-6 Bleeding time is the time taken from the puncture of the blood vessel to the stoppage of bleeding.

Clotting time is the time taken from the puncture of the blood vessel to the formation of the fibrin thread. Evaluation of haemostasis is an essential factor for surgeons and anaesthetists before undertaking any surgical procedure.

Hence it is a routine pre-operative test for hospitals. Almost 13 clotting factors and von willebrand factor is associated with the coagulation process. A clear correlation has been established between the ABO phenotype and the level of two proteins in blood clotting i.e. factor VIII and von Willebrand factor (vWF). The relationship between bleeding time, clotting time and blood groups is important in certain clinical conditions like epistaxis cardiac surgery or thrombosis etc. Studies have reported that half of the epistaxis patients had blood group O and blood group O was associated with a lower expression of vWF (Von Willebrand factor) as compared with non O groups. A longer bleeding time was demonstrated in patients with group O compared with non O groups.5

AIM & OBJECTIVES

The objective of the present study is
1. To assess the distribution of blood groups.
2. To find out if there is any relationship of gender with bleeding time and clotting time.
3. To find out if there is any definite relationship between the blood groups and bleeding time and clotting time in our population.

Methodology describing the potential Risks and Benefits
This observational study was conducted in the department of Physiology in Katuri Medical College. In our institution it is mandatory for all the medical students to do their blood grouping, bleeding time and clotting time during their 1st year of study as a part of their training program. Informed consent

Financial or Other, Competing Interest: None.
Submission 08-12-2015, Peer Review 09-12-2015, Acceptance 13-12-2015, Published 14-12-2015.
Corresponding Author:
Dr. Silpa Gantela,
Flat 003, Sri Surya Chandra Residency,
Brodipet 1/18, Guntur.
E-mail: shilpa.gantela@gmail.com
was taken from every student participating in the study. The available detail reports of 215 medical students will be analyzed in respect of age, sex, blood group, bleeding time and clotting time.

Inclusion Criteria

150 Medical students from First MBBS.

Exclusion Criteria

Students with any history of bleeding disorders and who are using Drugs like NSAIDS are excluded from the study.

BENEFITS

1. Having a non-O blood group is associated with an increased risk of VTE (17) and that the addition of thrombolysis increases the thrombotic risk conferred by non-O group alone by almost 3-fold. This simple information may help to identify groups of patients at high risk suitable for counselling, further testing or closer monitoring.

2. The O blood group individuals can be educated on the role of blood group in the epistaxis and proper preventive measures can be taken. Blood group determination was done by mixing the sample of blood with antisera A and B and Anti D antisera and was confirmed by looking for clumping of RBCs under the microscope. Bleeding time was estimated by Duke Method and clotting time was estimated by capillary tube method.

DUKES METHOD

It is convenient and commonly used method. The stop watch is set at zero. The tip of the finger is cleaned thoroughly with spirit and allowed to dry. A puncture is made deep enough (About 3-4mm) to ensure free flow of blood without squeezing. Immediately the stop watch is started. The time of puncture of the finger is referred as zero time. 30 seconds later the escaping blood is dried on the edge of a clean piece of filter paper. This procedure is repeated every 30 seconds using a fresh area of the paper until bleeding ceases and no further blood spot appears on the filter paper. Therefore, each blot of blood on the filter paper represents 30 seconds flow of blood. The total number of blood spots on the filter paper are counted and multiplied by ½. This will give the bleeding time in minutes. Normal bleeding time by this method is 2-6 minutes.

Capillary glass tube method

This is the most convenient and commonly used method in practice. The tip of the finger is cleaned thoroughly with spirit and allowed to dry. A puncture is made deep enough (About 3-4mm) to ensure free flow of blood without squeezing. The time of puncture of the finger is referred as zero time. When a large drop of blood has collected, the capillary tube will be inserted into the drop holding tube such that its other end will be at a lower level. Blood will flow rapidly into the capillary tube. The capillary tube must be held in between the palm of the hand, so as to maintain it under body temperature. At the end of one minute, break off about one centimetre of the tube form one end and notice if a thread of fibrin connects the broken ends of the tube. If there is no fibrin thread, repeat the procedure every 30 seconds till a fibrin thread appears. The appearance of Fibrin thread of about 5 mm length indicates that the blood has clotted. The total time taken from the time of puncture (Zero time) till the formation of a fibrin thread is the clotting time. Normal value of clotting time by this method is 3-8 minutes.

Finally bleeding time and clotting time of different blood groups was compared and statistical analysis was done.

DISCUSSION

Plenty of publications in medical-scientific literature deal with Gender based differences in the bleeding time and clotting time and their relationship with the blood groups. Studies have reported that half of the epistaxis patients had blood group O and blood group O was associated with a lower expression of vWF (Von Willebrand factor) as compared with non O groups. A longer bleeding time was demonstrated in patients with group O compared with non O groups. (5)

In a study done by Dr. Sasekala, M, Dr. P. Saikumar titled Relationship Between Bleeding Time And Clotting Time And Gender Difference And Varying Blood Groups In UG Medical Students, clotting time was prolonged in group B persons than the blood group O which was statistically significant (p<0.02) whereas bleeding time was significantly more in AB group persons than in persons with blood group O and there was no significant difference in clotting time and bleeding time in both the sexes. (6)

Another publication titled Blood Group Distribution and Its Relationship with Bleeding Time and Clotting Time: A Medical School Based Observational Study among Nepali, Indian and Sri Lankan Students. (7) published in Nepal Journal of Epidemiology suggests that O blood group is predominant in Nepalese students while Blood group B was the most common blood group in the Indian students. They also found higher BT and CT in females, more prominent in Indians, so this gender disparity is an additional risk factor for them.

In a study on Gender Based Blood Group Distribution and Its Relationship With Bleeding Time And Clotting Time In Medical Students. (8) by Nadera Yasmeen, Imtiaz Ali and Rashid Shaikh published in Biomedical and pharmacology journal it is found that O blood group is more prevalent in both the sexes (25% in males and 14.5% in females) than A, B and AB. Clotting time is found to be more in O Blood group in females, whereas bleeding time in different blood groups did not show any change in both the sexes.

A retrospective study on Relationship of Bleeding Time and Clotting Time with Blood Groups. (9) was carried out in Dept. of physiology at Punjab Institute of Medical Sciences Jalandhar, Punjab on 215 medical students. The results were analysed and It was found that BT in blood group B was significantly raised as compared to other blood groups (p<0.01). However the correlation between CT of different blood group was not significant.

A clear correlation has been established between the ABO phenotype and the level of two proteins in blood clotting factor VIII and von Willebrand factor (vWF). Individuals with blood group O have about 25% less factor VIII and vWF in their plasma, thus increasing their clotting time and may cause excessive bleeding. (10)

More consistent data are available in the literature regarding the ABO blood group-related risk of venous thromboembolism (VTE). For instance, Wauthrecht and colleagues, (18) found a significantly higher frequency of non-O blood group in 369 patients with a diagnosis of deep vein
thrombosis as compared with the frequency in 49,373 healthy blood donors (70.6% vs 53.9%, p<0.001).

A study on Risk of gastric cancer,19 and peptic ulcers in relation to ABO blood type: a cohort study confirmed that blood group A is indeed associated with a higher risk of gastric cancer compared to blood group O.

The relationship between blood group and epistaxis among the patients coming to Tribhuvan University Teaching Hospital, Kathmandu with idiopathic epistaxis was studied. A total of 235 patients coming to the Emergency Department or Department of Otorhinolaryngology with active nose bleeding in were included. ABO blood grouping was performed. Nearly half (45.5%) of the patients belonged to O-group followed by A-group others. O-group people were also had longer bleeding time (20) compared to other blood groups. Female individuals having comparatively increased bleeding time and clotting time than the Blood group A is indeed associated with a higher risk of gastric cancer.

RESULTS

In our study, we observed that the O blood group individuals are having greater bleeding time and clotting time than the non O blood group individuals. There was statistical significance among the ABO groups with clotting time below 4 minutes and above 4 minutes showing p = 0.001. Again there was statistical significance among the ABO groups with bleeding time below 5 minutes and above 5 minutes showing p = 0.002.

82.75% of the females had bleeding time greater than 5 minutes and 68.90% of the females had clotting time >4 minutes. The student “t” test for bleeding time among male and female individuals showed a statistically significant value of p = 0.001 and for the clotting time the P value was p = 0.02, which was also statistically significant.

Gender	<5 min	>5 min
Female 58	10 (17.24%)	48 (82.75%)
Male 42	35 (83.3%)	7 (16.67%)

Table 1: Graph showing bleeding time below and above 4 mins on various Blood groups

Gender	<4 min	>4 min
Female 58	18 (31.03%)	40 (68.96%)
Male 42	36 (85.71%)	6 (14.29%)

Table 2: Gender difference in clotting time

Blood group	<5 min	>5 min
O (66)	(16) 24 %	(50) 76%
A (25)	(17) 68%	(8) 32%
B (30)	(22) 72%	(8) 28%
AB (29)	(24) 83%	(5) 17%

Table 3: Distribution of bleeding time in different blood groups

Limitations to the Study

The results were statistically significant, however because we only looked at Katuri medical college students these findings may not translate to subjects of other areas.

CONCLUSION

This current research activity on Gender based differences in the Bleeding time and Clotting time and their relationship with the Blood groups will surely help bring awareness amongst all individuals about the inherited risk they are exposed to. This study on association of blood grouping with bleeding and clotting time will bring more awareness to the health care communities in prevention of the above diseases by appropriate measures in the concerned individuals. Health care ministries might want to sponsor researches on blood grouping to prevent complications like post-surgical haemorrhages.

REFERENCES

1. Storry JR, Olsson ML. The ABO blood group system revisited: a review and update. Immunohematology. 2009;25:48–59.
2. Franchini M, Capra F, Targher G, et al. Relationship between ABO blood group and von Willebrand factor levels: from biology to clinical implications. Thromb J. 2007;5:14.[PMC free article]
3. Franchini M, Favaloro EJ, Targher G, Lippi G. ABO blood group, hypercoagulability, and cardiovascular and cancer risk. Crit Rev Clin Lab Sci. 2012;49:137–49.
4. Garratty G. Blood groups and disease: a historical perspective. Transfus Med Rev.2000;14:291–301.*D’Adamo PJ. Cook Right 4 Your Type. New York, NY (USA): GP Pumam’s Sons; 1999.
5. Welsby IJ, Jones R, Pyman J, Mark JB, Bradney CS, Phillips-Bute B, Mathew JP et al. Blood Coagulation and Fibrinolysis journal of thrombosis and hemostasis 2007; 18(9): 781-785.
6. Relationship Between Bleeding Time And Clotting Time Among Gender Difference And Varying Blood Groups In UG Medical Students Dr. Sasekala.M 1, Dr.P.Saikumar2 1 Journal of Dental and Medical Sciences Volume 10, Issue 6 (Sep.- Oct. 2013), PP 40-43.
7. Blood Group Distribution and Its Relationship with Bleeding Time and Clotting Time: A Medical School Based Observational Study among Nepali, Indian and Sri Lankan students Bedanta Roy, Indrajit Banerjee, Brijesh Sathian, Monami Mondal, Chandrau Gopal Saha Nepal Journal of Epidemiology Vol 1, No 4 (2011).
8. Gender Based Blood Group Distribution and Its Relationship With Bleeding Time and Clotting Time in Medical Students naderayasmeen, intiaz ali and rashid shaikh Biomedical & Pharmacology Journal Vol. 7(2), 619-621 (2014).
9. Relationship of Bleeding Time and Clotting Time with Blood Groups. Poonam G Kohli1, Harleen Kaur2, and Seema Maini. ISSN: 0975-8585 Research Journal of Pharmaceutical, Biological Sciences and Chemical March - April 2014 RJPBCS 5(2) Page No. 1780.

10. Gastric carcinoma Fuch CS, Mayer RJ. N Engl J Med 1995; 333: 32-41.

11. Reddy, V.M., M. Daniel, E. Bright, S.R. Broad and A.A. Moir, 2008. Is there an association between blood group O and epistaxis? J. Laryngol. Otol., 122: 366-368. DOI: 10.1017/S0022215107008560.

12. Daniel, M., M.C. Jaberoo, R.E. Stead, V.M. Reddy and A.A. Moir, 2006. Is admission for epistaxis more common in Caucasian than in Asian people? Preliminary study. Clin. Otolaryngol., 31: 386-389.

13. Mourant, A.E., 1983. Blood Relations: Blood Groups and Anthropology. Oxford University Press, New York, pp: 146 Am. J. Infect. Dis., 5 (2): 106-108, 2009.

14. Favaloro, E.J., S. Soltani, J. McDonald, E. Grezchnik, L. Easton and J.W. Favaloro, 2005. Reassessment of ABO blood group, sex and age on laboratory parameters used to diagnose Von Willebrand disorder: Potential influence on the diagnosis Vs the potential association with risk of thrombosis. Am. J. Clin. Pathol. 124: 910-917. http://www.ncbi.nlm.nih.gov/pubmed/16416741.

15. Gill, J.C., E.J. Brooks, P.J. Bauer, W.J. Marks Jr and R.R. Montgomery, 1987. The effect of ABO blood group on the diagnosis of Von Willebrand disease. Blood, 69: 1691-1695. http://www.ncbi.nlm.nih.gov/pubmed/3495304

16. Ghai, C.L., 1999. A Textbook of Practical Physiology. 5th Edn. Jaypee Brothers, New Delhi, Haematology, pp: 84-101.

17. Luca Spiezia, Elena Campello, Maria Bon, Tiziana Tison, Marta Milan, Paolo Simioni, and Paolo Prandoni. ABO blood groups and the risk of venous thrombosis in patients with inherited thrombophilia. Blood Transfusion. 2013 Apr; 11(2): 250–253.

18. Wautrecht JC, Galle C, Motte S, et al. The role of ABO blood groups in the incidence of deep vein thrombosis. Journal of Thrombosis & Haemostasis. 1998;79:688–9. [PubMed]

19. Edgren G, Hjalgrim H, Rostgaard K, et al. Risk of gastric cancer and peptic ulcers in relation to ABO blood type: a cohort study. Am J Epidemiol. 2010;172:1280–5. [PubMed]

20. Adhikari P1, Pramanik T, Pokharel R, Khanal SAdhikari P1, Pramanik T, Pokharel R, Khanal S. Relationship between blood group and epistaxis among Nepalese. Nepal Med Coll J. 2008 Dec;10(4):264-5.