THE L^2 WEAK SEQUENTIAL CONVERGENCE OF RADIAL MASS CRITICAL NLS SOLUTIONS WITH MASS ABOVE THE GROUND STATE.

CHENJIE FAN

Abstract. We study the non-scattering L^2 solution u to the radial mass critical nonlinear Schrödinger equation with mass just above the ground state, and show that there exists a time sequence $\{t_n\}_{n}$, such that $u(t_n)$ weakly converges to the ground state Q up to scaling and phase transformation. We also give some partial results on the mass concentration of the minimal mass blow up solution.

1. Introduction

In this work, we study the Cauchy Problem to the focusing mass critical NLS at regularity L^2

$$
\begin{cases}
 iu_t + \Delta u = -|u|^{4/d}u, \\
 u(0, x) = u_0 \in L^2(\mathbb{R}^d).
\end{cases}
$$

(1.1)

Here d denotes the dimension. We assume $d = 1, 2, 3$ to reduce technicalities, but the results should hold for general dimension as well.

Equation (1.1) has three conservation laws:

- **Mass:**
 $$M(u(t, x)) := \int |u(t, x)|^2 dx = M(u_0),$$
 (1.2)

- **Energy:**
 $$E(u(t, x)) := \frac{1}{2} \int |\nabla u(t, x)|^2 dx - \frac{1}{2 + \frac{4}{d}} \int |u(t, x)|^{2 + \frac{4}{d}} dx = E(u_0),$$
 (1.3)

- **Momentum:**
 $$P(u(t, x)) := \Im(\int \nabla u(t, x) \overline{u(t, x)} dx) = P(u_0),$$
 (1.4)

and the following symmetries:

1. Space-time translation: If $u(t, x)$ solves (1.1), then $\forall t_0 \in \mathbb{R}, x_0 \in \mathbb{R}^d$, we have $u(t - t_0, x - x_0)$ solves (1.1).

2. Phase transformation: If u solves (1.1), then $\forall \theta_0 \in \mathbb{R}$, we have $e^{i\theta_0}u$ solves (1.1).

3. Galilean transformation: If $u(t, x)$ solves (1.1), then $\forall \xi \in \mathbb{R}^d$, we have $u(t, x - \xi t)e^{i\frac{\xi^2}{4}(x - \frac{\xi}{2}t)}$ solves (1.1).

‡ Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139-4307 USA. email: cjfan@math.mit.edu.

†† The author is partially supported by NSF Grant DMS 1069225, DMS 1362509 and DMS 1462401.
(4) Scaling: If \(u(t, x) \) solves (1.1), then \(\forall \lambda \in \mathbb{R}_+ \), we have \(u_\lambda(t, \frac{x}{\lambda}) \) solves (1.1).

(5) Pseudo-conformal transformation: If \(u(t, x) \) solves (1.1), then \(\frac{1}{t^d} \bar{u}(\frac{1}{t}, \frac{x}{t}) e^{-i|x|^2/4t} \) solves (1.1).

Throughout the whole article, we assume

\[
\|Q\|_2 \leq \|u_0\|_2 \leq \|Q\|_2 + \alpha.
\] (1.5)

Here \(\alpha \) is some universal small constant, which will be determined later and \(Q \) is the unique \(L^2 \), positive solution to the elliptic PDE

\[
-\Delta Q + Q = |Q|^{4/d}Q.
\] (1.6)

We remark \(Q e^{it} \) solves (1.1) if and only if \(Q \) solves (1.6). \(Q \) is smooth and decays exponentially.

1.1. Main Results. In this work we show the following:

Theorem 1.1. Assume \(u \) is a radial solution to (1.1), with \(\|u\|_2 \) satisfying (1.5), which does not scatter forward. Let \((T^-(u), T^+(u)) \) be its lifespan, then there exist a time sequence \(t_n \to T^+ \), and a family of parameters \(\lambda_{*,n}, \gamma_{*,n} \) such that

\[
\lambda_{*,n}^{d/2} u(t_n, \lambda_{*,n} x) e^{-i\gamma_{*,n}} \rightharpoonup Q \text{ in } L^2.
\] (1.7)

See Definition 2.4 for the precise notion of scattering forward.

If one further assume \(\|u\|_2 = \|Q\|_2 \), then we can upgrade the above to

Theorem 1.2. Assume \(u \) is a radial solution to (1.1), with \(\|u\|_2 = \|Q\|_2 \), which does not scatter forward. Let \((T^-(u), T^+(u)) \) be its lifespan, then there exists a sequence \(t_n \to T^+ \), and a family of parameters \(\lambda_{*,n}, \gamma_{*,n} \) such that

\[
\lambda_{*,n}^{d/2} u(t_n, \lambda_{*,n} x) e^{-i\gamma_{*,n}} \to Q \text{ in } L^2.
\] (1.8)

Remark 1.3. Most of the proof for Theorem 1.1 and Theorem 1.2 written in this work can be obtained for the nonradial case as well. Indeed, only one step (Lemma 4.12) cannot be generalized to the nonradial case. In particular, we do not use Sobolev embedding or weighted Strichartz estimate for radial solutions. Moreover, our results hold in fact for solutions which are symmetric across any \(d \) linearly independent hyperplanes. Nevertheless, the idea in this work is not enough to cover the nonradial case. We will investigate this case in a future work.

We also obtain some partial results for the minimal mass blow up solution to (1.1) at regularity \(L^2 \), not necessarily radial.

Theorem 1.4. Let \(u \) be a general \(L^2 \) solution to (1.1) that blows up at finite time \(T \) and such that \(\|u(t)\|_2 = \|Q\|_2 \). Then there exist sequences \(x_n, t_n \) such that

\[
\int_{|x-x_n| \leq (T-t_n)^{2/3}} |u|^2 \geq \|Q\|_2.
\] (1.9)

We will give the proof of Theorem 1.4 in Appendix A.
Remark 1.5. If one further assumes that the initial data is in \(H^1\) and with same mass as \(Q\), then (1.9) holds even if one changes the power \(2/3\) to \(1\). Indeed, the \(H^1\) minimal mass blow up solution is determined by \([M+93]\) and can be written down explicitly.

Remark 1.6. Though not explicitly stated in the literature, it is not hard to combine concentration compactness and Dodson’s scattering result in [Dod15], (see also Theorem 2.8), to show that if \(u\) is a general solution to the (1.1), which blows up in finite time \(T\), then there exist \(t_n \to T\), and \(x_n \in \mathbb{R}^d\), such that

\[
\int_{|x-x_n| \leq (T-t_n)^{1/2}} |u|^2 \geq \|Q\|_2^2.
\]

However, as far as we are concerned, it is always of interest to improve the above estimate to at least

\[
\int_{|x-x_n| \leq (T-t_n)^{1/2}} |u|^2 \geq \|Q\|_2^2.
\]

Estimate (1.11), for \(u_0 \in H^1\) and satisfying (1.5), should follow using a rigidity result due to Raphaël [Rap05], which is highly nontrivial.

1.2. Background. Equation (1.1) is called focusing since its associated energy is not coercive, and it is called mass critical since its mass conservation law is invariant under scaling symmetry. Both focusing and defocusing NLS are locally well posed in \(L^2\), [CW89], see also [Caz03], [Tao06]. And it is an active research topic to understand the long time dynamic.

It is known that the solution to the defocusing NLS with arbitrary \(L^2\) data does not break down and scatters to some linear solution, [Dod12].

On the other hand, the focusing problem, (1.1), is known to have more complicated dynamics, and the solution may break down in finite time, [Gla77]. It is of great interest to understand the blow up phenomena, rather than just showing the existence of blow up. We remark that since we are working on the critical space \(L^2\) and pseudo conformal symmetry\(^1\) is a symmetry in \(L^2\), finite time blow up solutions and non-scattering solutions are essentially the same.

We recall that the ground state \(Q\) gives a threshold of scattering dynamic. Indeed, it is known that any solution to (1.1) scatters to a linear solution if the initial data has mass strictly below the ground state, [Dod15]. See also previous work [Wei83].

The main purpose of this article is to understand the possible long time dynamic of (1.1) for solution with mass at or just above the threshold \(\|Q\|_2^2\), hence assumption (1.5).

Under assumption (1.5), the finite time blow up solution to (1.1) at regularity \(H^1\) has been extensively studied in recent years. We recall the work of [LPSS88] [Per01], [MR+05b], [MR03], [MR06], [MR04], [Rap05], [MR05a] regarding the so-called log-log blow up dynamic. If one assumes the initial data is in \(H^1\), with negative energy and satisfies assumption (1.5), then one can upgrade the sequential convergence in Theorem 1.1 to convergence as \(t \to T^+\), [MR04]. It is also shown in [MR04] that for general \(H^1\) solution to (1.1) satisfying (1.5), without the sign condition in the energy, Theorem 1.1 also holds. Regarding Theorem 1.2 if one

\(^1\)This symmetry, however, is not a symmetry in \(H^1\).

\(^2\)Note that finite time blow up should be understood as one of the long time dynamics rather than a short time dynamic.
assumes the initial data is in H^1 and blows up in finite time, then the convergence holds as $t \to T^+$ thanks to Merle’s complete classification of minimal mass blow up solutions. Moreover, in Theorem 1.2 if one assumes u is radial and in H^1, $d = 2, 3$, and u is global, $\|u\|_2 = \|Q\|_2$, then one can still obtain convergence as $t \to T^+$, due to [LZ12]. [LZ12] indeed shows such solution must be a solitary wave. When $d \geq 4$, (our work mainly deals with $d = 1, 2, 3$), if one assumes u is radial and in L^2, $\|u\|_2 = \|Q\|_2$, global in both sides, then [LZ10] shows such solution must be a solitary wave.

The main purpose of this work is to extend these results, (except the 4 dimensional result [LZ10]), to the lower L^2 regularity.

We point out if one only wants to show some sequential weak convergence but does not want to characterize the limit profile, then assumption (1.3) or radial assumption may not be necessary, and the method in [DKM15] should be applicable to prove these kinds of results. Indeed, it is pointed out in [DKM13], their methods and strategy should be able to handle general dispersive equations once a suitable profile decomposition is available. However, assumption (1.3) and the radial assumption are very important for us to determine that the limit profile is indeed Q.

Results with type similar to Theorem 1.1 Theorem 1.2 will also appear naturally when one consider the mass concentration phenomena of finite time blow up solutions to (1.1), we refer to [MT90], [Caz03], [Naw90], [HK05], [CRSW04], [Tzi06], [VZ07], [Bou98], [Ker06], [BV07] and reference in their works.

Finally, we point out that our work is also motivated by the recent progress in the soliton resolution conjecture for the energy critical wave, (where more complete and general results are available), see [DKMT1], [DKM12b], [DKM13], [DKM16a], [DKM12a], [DKM15], [CKLS14], [DKM16a], [DJKM16], [DKM16b] and the references therein.

1.3. Notation. Throughout this work, α is used to denote a universal small number, $\delta(\alpha)$ is a small number depending on α such that $\lim_{\alpha \to 0} \delta(\alpha) = 0$. We use C to denote a large constant, it usually changes line by line.

We write $A \lesssim B$ when $A \leq C B$, for some universal constant C, we write $A \gtrsim B$ if $B \lesssim A$. We write $A \sim B$ if $A \lesssim B$ and $B \lesssim A$. As usual, $A \lesssim_\sigma B$ means that $A \leq C_\sigma B$, where C_σ is a constant depending on σ.

We use the usual functional spaces L^p, we will also use the Sobolev space H^1. We sometimes write L^p for $L^p(\mathbb{R}^d)$, and similarly for the other spaces. We also use $L^q_t L^p_x$ to denote $L^q(I; L^p(\mathbb{R}^d))$. When a certain function is only defined on $I \times \mathbb{R}^d$, we also use the notation $L^q(I; L^p(\mathbb{R}^d))$. Sometimes we use $\|f\|_p$ to denote $\|f\|_{L^p}$. We also use $\|u\|_2$ to denotes the $\|u(0)\|_2$, when u is a solution to the Schrödinger equation with initial data u_0, since L^2 is preserved under Schrödinger flow.

We use the standard Littlewood-Paley projection operator $P_{<N}, P_{>N}$, we quickly recall the definition here. Let ψ be a bump function which equals to 1 when $|x| \leq 1,$ and vanishes for $|x| \geq 2$, one define the multiplier $P_{<N}$ as

$$\hat{P}_{<N} f(\xi) := \psi(\frac{x}{N}) \hat{f}(\xi).$$ \hspace{1cm} (1.12)

And $P_{>N} = 1 - P_{<N}$.

We use $<,>$ to denote the usual L^2 (complex) inner product.

Finally, for a solution $u(t,x)$, we use $(T^- u, T^+ u)$ to denote its lifespan.
2. Preliminary

We present the preliminary for this work, experts may skip this section in the reading.

2.1. Local well posedness (LWP) and stability.

2.1.1. Classical Strichartz estimates. The local well posedness of (1.1) is established using the classical Strichartz Estimates. We recall them below. Consider the linear Schrödinger equation:

\[
\begin{cases}
iu_t + \Delta u = 0, \\
u(0, x) = u_0 \in L^2(\mathbb{R}^d).
\end{cases}
\]

(2.1)

We use \(e^{it\Delta}\) to denote the linear propagator. One has estimates

\[
\|e^{it\Delta}u_0\|_{L^2_{t,x}} \lesssim \|u_0\|_{L^2_x},
\]

(2.2)

\[
\left\| \int_0^t e^{i(t-s)\Delta}f(s, x)ds \right\|_{L^{2(d+2)/d}_{t,x} \cap L^\infty} \lesssim \|f\|_{L^{2(d+2)/d}_{t,x}}.
\]

(2.3)

We refer to [Caz03], [KT98], [Tao06] and reference therein for a proof.

Remark 2.1. Strichartz estimate holds in more general case, indeed one has

\[
\left\| \int_0^t e^{i(t-s)\Delta}f(s, x)ds \right\|_{L^{q}_{t}L^{r}_{x}} \lesssim \|f\|_{L^{\tilde{q}'}_{t}L^{\tilde{r}'}_{x}},
\]

(2.4)

where \((q, r), (\tilde{q}, \tilde{r})\) is admissible in the sense \(\frac{2}{q} + \frac{d}{r} = \frac{d}{2}\) and \((q, r, d), (\tilde{q}, \tilde{r}, d) \neq (2, \infty, 2)\). We fix \((q, r) = (\tilde{q}, \tilde{r}) = \left(\frac{2(d+2)}{d}, \frac{2(d+2)}{d}\right)\) for simplicity. Similarly, the local well posedness and stability holds in more general sense.

In the rest of this section, we quickly recall the classical results in the local well posedness theory without proof. We refer to [CW88], [CW90], [Tao06], [Caz03] and the reference there in for a proof.

2.1.2. Local existence.

Theorem 2.2. Given \(u_0\) in \(L^2\), there exists \(T = T(u_0)\) such that there is a unique solution \(u(t, x)\) to (1.1) with initial data \(u_0\) in the following sense:

\[
u(t, x) = e^{it\Delta}u_0 + i \int_0^t e^{i(t-\tau)\Delta}(|u|^{4/d}u(\tau))d\tau, \quad t \in [0, T]
\]

(2.5)

Formula (2.5) holds in space \(C([0, T]; L^2) \cap L^{2(d+2)/d}_{t,x}([0, T] \times \mathbb{R}^d)\).

2.1.3. Blow up criteria. We have the following blow up criteria.

Proposition 2.3. Given a solution \(u\) with initial data \(u_0\), assume \((T_- , T_+)\) is the maximal time interval \(u\) can be defined on, if \(T_+\) is finite, then

\[
\|u\|_{L^{2(d+2)/d}_{t,x}([0, T_+] \times \mathbb{R}^d)} = \infty
\]

(2.6)

Similarly results holds for \(T_-\).

Now, we can define the notion of scattering.

Definition 2.4. We say a solution \(u\) to (1.1) scatters forward if \(T^+ = \infty\) and \(\|u\|_{L^{2(d+2)/d}_{t,x}([0, T_+] \times \mathbb{R}^d)} < \infty\). Similarly, we define the notion of scattering backward. If \(u\) scatters both backward and forward, then we say \(u\) scatters.
2.1.4. Small data theory.

Proposition 2.5. There exists \(\epsilon_0 > 0 \) such that if the initial data \(u_0 \in L^2 \) and satisfy

\[
\|e^{it\Delta}u_0\|_{L^2_{t,x}((d+2)/d)} \leq \epsilon_0 \tag{2.7}
\]

then the solution to (1.1) with initial data \(u_0 \) is global and one has estimate

\[
\|u(t,x)\|_{L^2_{t,x}((d+2)/d)} \lesssim \|u_0\|_2. \tag{2.8}
\]

Remark 2.6. By Strichartz estimate (2.2), it is clear that (2.7) holds when \(\|u_0\|_2 \) is small enough.

2.1.5. Stability. We state a stability result about (1.1). This kind of argument is standard nowadays. One may refer to Lemma 3.9, lemma 3.10 in \cite{CKS08}.

Proposition 2.7. Let \(I \) be a compact interval, and \(0 \in I \). Let \(\tilde{u} \) be a near-solution to (1.1) in the sense

\[
i\tilde{u}_t + \Delta \tilde{u} + |\tilde{u}|^{4/d} \tilde{u} = e, \tag{2.9}
\]

and the following estimate holds

\[
\|\tilde{u}\|_{L^2_{t}(d+2)/d(I \times \mathbb{R})} \leq M, \tag{2.10}
\]

\[
\|\tilde{u}\|_{L^\infty_t L^2(x)} \leq E, \tag{2.11}
\]

\[
\|e\|_{L^{2(d+2)/d+4}(I \times \mathbb{R})} \leq \epsilon, \tag{2.12}
\]

where \(\epsilon < \epsilon_1 := \epsilon_1(M_1, M_2) \). Assume further there exists \(t_0 \in I \) and \(u_0 \in L^2 \) such that

\[
\|\tilde{u}(t_0) - u_0\|_2 < \epsilon. \tag{2.13}
\]

Then, there exists a unique solution \(u(t,x) \) to the Cauchy Problem

\[
\begin{cases}
iu_t + \Delta u + |u|^{4/d} u = 0, \\
u(t_0) = u_0,
\end{cases} \tag{2.14}
\]

such that

\[
\|u - \tilde{u}\|_{L^{2(d+2)/d}(I \times \mathbb{R}) \cap L^\infty_t L^2(x)} \lesssim M_1, M_2 \epsilon. \tag{2.15}
\]

In particular

\[
\|u\|_{L^{2(d+2)/d}(I \times \mathbb{R})} \lesssim M_1, M_2. \tag{2.16}
\]

2.2. Scattering below the mass of the ground state. The dynamic of (1.1) for initial data with mass blow up the ground state is known, due to the following Theorem by Dodson \cite{Dod15}.

Theorem 2.8 (Dodson). Consider the Cauchy Problem (1.1), with the initial data \(u_0 \) such that

\[
\|u_0\|_{L^2} < \|Q\|_{L^2}. \tag{2.17}
\]

The solution \(u \) to (1.1) is global, further more it scatters

\[
\|u(t,x)\|_{L^2_{t,x}((d+2)/d)} < \infty. \tag{2.18}
\]
2.3. Concentration compactness. Strichartz estimates (2.2) lacks compactness due to the symmetry of equation (2.1). Note the aforementioned symmetries for the nonlinear equation (1.1) also hold for the linear equation. Profile decomposition is the tool to remedy this.

Let us start with the following definition,

Definition 2.9. Let $G := \{ g = g_{x_0,t_0,\xi_0,\lambda_0} | x_0, t_0, \xi_0 \in \mathbb{R}, \lambda_0 \in \mathbb{R}^+ \}$, where $g_{x_0,\xi_0,\lambda_0,\xi_0}$ is a map $L^2(\mathbb{R}) \to L^2(\mathbb{R})$:

$$g_{x_0,\xi_0,\lambda_0, t_0}(x) := \frac{1}{\lambda_0^\frac{d}{2}} e^{-ix\xi_0} (e^{i(-\frac{t_0}{\lambda_0^2})\Delta} f)(x).$$

(2.19)

Remark 2.10. G is a group acting on L^2 and for any $g \in G, f \in L^2$, $\| g \cdot f \|_2 = \| f \|_2$.

2.3.1. Profile decomposition. One has

Proposition 2.11 (Theorem 5.4 [BV07], Theorem 4.2 [TVZ08], Theorem 2 [MV98]). Let $\{u_n\}_{n=1}^\infty$ be bounded in $L^2(\mathbb{R}^d)$, then up to extracting subsequence, there exist a family of L^2 functions ϕ_j, $j = 1, 2, \cdots$ and group elements $g_{j,n} \in G$, where $g_{j,n} = (g_{j,n})_{x_j,n,\xi_j,n,\lambda_j,n, t_j,n}$, such that for all $l = 1, 2, \cdots$ we have the decomposition

$$u_n = \sum_{j=1}^l g_{j,n} \phi_j + \omega^l_n,$$

(2.20)

(here (2.20) defines ω^l_n.) And the following properties hold

- Asymptotically orthogonality of the group elements: For any $j \neq j'$, one has

$$\frac{\lambda_{j,n}}{\lambda_{j',n}} + \frac{\lambda'_{j',n}}{\lambda_{j,n}} + \left| \frac{x_{j,n} - x_{j',n}}{\lambda_{j,n}} \right| + \left| \lambda_{j,n} (\xi_{j,n} - \xi_{j',n}) \right| + \left| \frac{t_{j,n} - t_{j',n}}{\lambda_{j,n}^2} \right| \xrightarrow{n \to \infty} 0.$$

(2.21)

- Asymptotically orthogonality of mass:

$$\forall l \geq 1, \lim_{n \to \infty} \left| M(u_n) - \sum_{j \leq l} M(\phi_j) - M(\omega^l_n) \right| = 0.$$

(2.22)

- Asymptotically orthogonality of Strichartz norm:

$$\forall j \neq j', \lim_{n \to \infty} \left\| e^{it\Delta} (g_{j,n} \phi_j) e^{it'\Delta} (g_{j',n} \phi_{j'}) \right\|_{L^2_{t,x} L^{(d+2)/d}_{x}} = 0.$$

(2.23)

- Smallness of remainder term:

$$\lim_{l \to \infty} \limsup_{n \to \infty} \left\| e^{it\Delta} \omega^l_n \right\|_{L^2_{t,x} L^{2(d+2)/d}_{x}} = 0.$$

(2.24)

- Weak limit condition of the remainder term:

$$\forall j \leq l, g_{j,n}^{-1} \omega^l_n \to 0 \text{ in } L^2_x$$

(2.25)

According to Proposition 2.11 we define

Definition 2.12. A linear profile is a function $f \in L^2$ and a sequence $\{g_n\}_n \subset G$, or equivalently a function $f \in L^2$ with parameters $\{x_n, \xi_n, \lambda_n, t_n\}_n \subset \mathbb{R} \times \mathbb{R} \times \mathbb{R}^+$.

Up to extracting subsequence and adjusting the profile, for every profile decomposition as in Proposition 2.11 we always assume without loss of generality that $\lim_{n \to \infty} -\frac{t_{j,n}}{\lambda_{j,n}^2} = 0$ or equal to $\pm \infty$. This leads to the following standard definition:
Definition 2.13. We call a profile \(f \) with parameter \(\{x_n, \xi_n, \lambda_n, t_n\}_n \)
- Compact profile if \(t_n \equiv 0 \),
- Forward scattering profile if \(-\frac{t_n}{\lambda_n^2} = \infty \),
- Backward scattering profile if \(-\frac{t_n}{\lambda_n^2} = -\infty \).

2.3.2. Nonlinear approximation. To deal with the nonlinear equation (1.1), one needs the notion of nonlinear profile.

Definition 2.14. Given a linear profile, i.e. a function \(f \in L^2 \) and a sequence \(\{g_n\}_n \subset G \), or equivalently a function \(f \in L^2 \) with parameters \(\{x_n, \xi_n, \lambda_n, t_n\}_n \subset \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}_+ \times \mathbb{R} \). We say \(U \) is the nonlinear profile associated with this linear profile if \(U \) is a solution to nonlinear Schrödinger equation

\[
i U_t + \Delta U + |U|^{4/d}U = 0, \tag{2.26}
\]

and satisfy the estimate

\[
\lim_{n \to \infty} \left\| U(-\frac{t_n}{\lambda_n^2}) - e^{i\frac{t_n}{\lambda_n^2} \Delta} f \right\|_2 = 0. \tag{2.27}
\]

(2.27) is only required for \(n \) large enough. For (2.27) to make sense, we require \(U \) is defined in a neighborhood \(\mathbb{R}^d \) of \(\lim_{n \to \infty} -\frac{t_n}{\lambda_n^2} \).

Remark 2.15. Given a linear profile, the associated nonlinear profile exists and is unique. The existence and uniqueness of the nonlinear profile basically relies on the local well posedness theory of (1.1). This is quite standard, see Notation 2.6 in [DKM11].

Now, we state a nonlinear approximation for NLS. Though we do not give the detailed proof here, we point out it is essentially the consequence of asymptotically orthogonality (2.21) and the classical stability theory Proposition 2.7, see [BV07], [MV98], [TVZ08] for more details.

Proposition 2.16. Assume that \(\{u_n\}_n \) admits a profile decomposition with profiles \(\phi_j; \{x_{j,n}, \xi_{j,n}, \lambda_{j,n}, t_{j,n}\}_j \) as in Proposition 2.11. Let us consider a sequence of Cauchy problems for a sequence of initial time \(\{t_n\}_n \),

\[
\begin{cases}
 i\partial_t v_n(t, x) + \Delta v_n(t, x) + |v_n|^{4/d}v_n(t, x) = 0, \\
 v_n(t_n, x) = u_n.
\end{cases} \tag{2.28}
\]

For each fixed \(j \), let \(\Phi_{j,n}(t, x) \) be the associated nonlinear profile to \(\phi_j \). Let

\[
\Phi_{j,n} := \frac{1}{\lambda_{j,n}^2} e^{i\xi_{j,n} \cdot x} e^{-i|\xi_{j,n}|^2} \phi_j \left(\frac{t - t_{j,n}}{\lambda_{j,n}^2}, \frac{x - x_{j,n} - 2\xi_{j,n} t}{\lambda_{j,n}} \right).
\]

If for any \(\{\tau_n\}_n \) such that:

\[
\forall j > 0, \quad \Phi_j \text{ scatters forward or } \lim_{n \to \infty} \frac{\tau_n - t_{j,n}}{\lambda_{j,n}^2} < T_+(\Phi_j), \tag{2.29}
\]

(One may extract a subsequence again so that the above limit exists),

then for \(n \) large enough, \(v_n, \Phi_{j,n} \) are defined in \([t_n, t_n + \tau_n] \).

\[\text{In profile decomposition, one usually needs to extract subsequence many times, we always assume that } \lim_{n \to \infty} -\frac{t_n}{\lambda_n^2} \text{ exits or equal to } \pm \infty. \text{ We also define the neighborhood of } \infty \text{ as } (M, \infty) \text{ for any } M, \text{ similarly we define the neighborhood of } -\infty.\]
Moreover, let
\[
\gamma_n^l := v_n - \sum_{j=1}^l \Phi_{j,n} - e^{it_n \Delta} \omega_n^l,
\]
then one has
\[
\limsup_{l \to \infty} \limsup_{n \to \infty} \| \gamma_n^l \|_{L^\infty([t_n,t_n+\tau_n] \cap L^2((d+2)/d \times \mathbb{R}) \cap L^2(\mathbb{R}^d))} = 0.
\]
Furthermore, (2.21) implies that \(\forall l > 0 \)
\[
\| \sum_{j=1}^l \Phi_{j,n} \|_{L^2((d+2)/d \times \mathbb{R}^d)} \leq \sum_{j=1}^l \| \Phi_j \|_{L^2((d+2)/d \times \mathbb{R}^d)} + o_n(1)
\]
In particular, if for any \(j \), \(\Phi_j \) scatters forward, then for \(n \) large enough, the associated solution to (1.1) with initial data \(u(t_n) \) also scatters forward.

We remark here similar results holds for energy critical wave and energy critical NLS, see [BG99], [Ker01].

2.4. Variational characterization of ground state. Let us first recall the classical Gagliardo-Nirenberg inequality.

Lemma 2.17. Let \(v \in H^1 \), then
\[
E(v) \geq \frac{1}{2} \int |\nabla v|^2 \left[1 - \left(1 - \frac{\|v\|_2^2}{\|Q\|_2^2} \right)^{4/d} \right]
\]
It gives the variational characterization of the ground state \(Q \).

Lemma 2.18. Let \(v \in H^1 \), and
\[
\int |v|^2 = \int Q^2, \quad E(v) = 0
\]
then
\[
v(x) = \lambda_0^{N/2} Q(\lambda_0 x + x_0) e^{i\gamma_0}.
\]
In [MR+05b], Merle and Raphaël apply concentration compactness type techniques to generalize the above into the following:

Lemma 2.19. Let \(v \in H^1 \), there exists \(\alpha_0 > 0 \), such that for all \(\alpha < \alpha_0 \), there exists \(\delta(\alpha) > 0 \), such that if
\[
\|v\|_2 \leq \|Q\|_2 + \alpha, \quad E(v) \leq \alpha \|\nabla v\|_2^2,
\]
then there exists \(\lambda_0 = \frac{\|\nabla Q\|_2^2}{\|Q\|_2^2}, x_0 \in \mathbb{R}^d, \gamma_0 \in \mathbb{R} \) such that
\[
\| \frac{1}{\lambda_0^{N/2}} u(x - x_0) e^{i\gamma_0} - Q \|_{H^1} \leq \delta(\alpha).
\]
and, \(\lim_{\alpha \to 0} \delta(\alpha) = 0 \).
3. The Dynamic of Non-positive Energy Solution

Throughout this section, we assume the solution u to (1.1) has H^1 initial data and satisfies (1.5).

The dynamics of non-positive energy solutions are extensively studied in the series work of Merle and Raphaël, [MR+05b], [MR03], [MR06], [MR04], [Rap05], [MR05a]. We will apply their results in this work. However, we will work from an L^2 based viewpoint rather than H^1 viewpoint.

Merle and Raphaël show all strictly negative energy solutions blows up according to the so-called log-log dynamic, we restate their results as the following,

Theorem 3.1. Assume u is a solution to (1.1) with H^1 initial data, nonpositive energy, and satisfying assumption (1.5), assume further $\|u\|_2 \neq \|Q\|_2$ if u is of zero energy, then u blows up in finite time according to the so-called log-log law

$$u(t,x) = \frac{1}{\lambda^{d/2}(t)}(Q+\epsilon)(\frac{x-x(t)}{\lambda})e^{\gamma(t)}, x(t) \in \mathbb{R}^d, \gamma(t) \in \mathbb{R}, \lambda(t) \in \mathbb{R}^+, \|\epsilon\|_{H^1} \leq \delta(\alpha)$$

with estimate

$$\lambda(t) \sim \sqrt{\frac{T-t}{\ln|\ln T-t|}}.$$ \hspace{1cm} (3.2)

$$\lim_{t \to T} \int (|\nabla\epsilon(t,x)|^2 + \epsilon(t,x)|^2 e^{-|x|}) = 0.$$ \hspace{1cm} (3.3)

Remark 3.2. We do not directly use (3.2). Our results rely on the fact such solution will blow up in finite time and the mechanism of blow up is ejecting mass out of the singular point, i.e. the control (3.3).

One may refer to [MR+05b], [MR03], [MR06] for a full proof of Theorem 3.1 when the solution is of strictly negative energy. When the solution if of zero energy, one may refer to Theorem 3 in [MR06], see also Theorem 4 and Proposition 5 in [MR04].

For estimate (3.3), which is most relevant to our work, one may refer to the formula above (3.7) in page 52 of [MR06]. Strictly speaking, the term appears in [MR06] is \tilde{Q}_b rather than the ground state Q, but \tilde{Q}_b is just small modification of Q, and converges to Q in a strong way as $b \to 0$, see Proposition 1 in [MR06]. And $b \to 0$ as $t \to T$, see, again, the formula above (3.7) in page 52 of [MR06].

Now, for the purpose of our work, we write a corollary of Theorem 3.1.

Corollary 3.3. Assume u is a solution to (1.1) with H^1 initial data, nonpositive energy, and satisfying assumption (1.5), assume further $\|u\|_2 \neq \|Q\|_2$ if u is of zero energy, then there exists $\delta = \delta(u) > 0$, such that $\forall A > 1$, there exists $T_1 < T^+(u)$, $x_1 \in \mathbb{R}^d, t_1 > 0$, such that

$$\int_{|x-x_1| \leq t_1} |u(T_1, x)|^2 \geq \delta, \quad \int_{|x-x_1| \geq A t_1} |u(T_1, x)|^2 \geq \delta$$

(3.4)

See proof in Section 5.

4. An overview for the proof for Theorem 1.1 Theorem 1.2

We give an overview for the proof of Theorem 1.1, Theorem 1.2. We mainly focus on the proof the Theorem 1.1. Indeed, Theorem 1.2 follows from Theorem 1.1 due to the following classical fact:
Lemma 4.1. Let H be an Hilbert space, if $v_n \to v_0$ and $\|v_n\|_H = \|v\|_H$, then $v_n \to v_0$. (4.1)

4.1. Introduction. Ever since the work of Kenig and Merle, [KM06], [KM08], there is a road map to approach results of type Theorem 1.1 which includes three ingredients:

1. concentration compactness theorems
2. variational characterization of ground state
3. rigidity theorems

Concentration compactness relies on the study of the linear operator $e^{it\Delta}$ and remedies the lack of compactness of classical Strichartz estimate caused by the symmetry of the system.

The concentration compactness will help us reduce the study of the original problem to the study of so-called almost periodic solution, i.e. solution of the form

$$u(t, x) = \frac{1}{\lambda^d/2(t)} P_t(\frac{x - x(t)}{\lambda(t)}) e^{ix\xi(t)}, \lambda(t) > 0, x(t), \xi(t) \in \mathbb{R}^d;$$

(4.2)

$\{P_t\}_t$ precompact family in $L^2(\mathbb{R}^d)$.

Such strategy is also called Liouville Theorem in the literature, see for example, [MR04].

Variational characterization will help us understand why ground state Q is special. Thus, help us see the profile Q in the study of (4.2).

Rigidity theorem will tell us the so called almost periodic solution is special, and one may expect a powerful enough rigidity theorem should fully characterize solutions to (1.1) of type (4.2), though we cannot achieve this in this work.

4.2. Step 1: First extraction of profile. First, we will use the profile decomposition and a minimization argument in [DKM15] to show the following:

Lemma 4.2. Let u be a solution, not necessarily radial, satisfying the assumption of Theorem 1.1 then there exists a sequence $t_n \to T^+(u)$, such that $u(t_n)$ admits a profile decomposition with profiles $\{\phi_j, \{x_{j,n}, \lambda_{j,n}, \xi_{j,n}, t_{j,n}\}_n\}_j$, and there is a unique compact profile, we assume it is ϕ_1, such that

- $\|\phi_1\|_2 \geq \|Q\|_2$,
- The associated nonlinear profile Φ_1, is an almost periodic solution in the sense of (4.2), and it does not scatter forward nor scatter backward.

See Section 6 for a proof.

Remark 4.3. One may compare this step to the procedure of reduction to the minimal blow up solution in the study of defocusing problem.

Remark 4.4. Due to the assumption (1.5), there cannot be more than one profile with mass no less than $\|Q\|_2^2$.

4.3. Step 2: Second extraction of Profile. We need to do some further modification of profile, the following step is very standard when one wants to prove scattering type results. By arguing exactly as Section 4 of [TVZ08], we will have
Lemma 4.5. Let Φ_1 be the nonlinear profile as in Lemma 4.2, with lifespan (T^-, T^+). Then, according to Lemma 4.2,

$$\Phi_1(t, x) = \frac{1}{\lambda_1^d}(t)P(t) e^{ix\xi_1(t)}.$$ \hspace{1cm} (4.3)

Moreover, there exists $\{t_n\}_{n \in (T^-, T^+)}$, such that

$$P(t_n) \to P_0 \text{ in } L^2,$$ \hspace{1cm} (4.4)

And the solution w to (1.1) with initial data P_0 or \bar{P}_0 satisfies

$$w(t, x) = N^{d/2}(t)L(t)(x - x(t)))e^{ix\xi(t)}, t \geq 0, N(t) \leq 1 \hspace{1cm} \text{ (4.5)}$$

And $\{L_t\}$ is a precompact L^2 family.

Indeed, such a solution w, sometimes also called minimal blow up solution, already partially falls into the framework of Dodson’s work [Dod12], [Dod15].

4.4. Step 3: Fast Cascade case. We exclude the so-called fast cascade, i.e. the case

$$\int_0^\infty N^3(t) < \infty.$$ \hspace{1cm} (4.6)

In this regime, for $d = 3$, Dodson’s long time Strichartz estimate, Theorem 1.24 in [Dod12] will indeed imply w is not only a L^2 solution, but an H^1 solution, see Theorem 3.13 in [Dod12], and furthermore, the energy is zero, see (3.86), (3.87) and Remark 3.14 in [Dod12]. Long time Strichartz estimate also holds for $d = 1, 2$, with extra technical difficulty, see for [Dod16], [Dod]. See Theorem 1.9 in [Dod15] for a summary.

Thus, we have

Lemma 4.6 (Dodson). Consider w as in Lemma 4.5, assume further \text{(4.6)}, then $w(0) \in H^1$ and $E(w) = 0$.

We then have

Lemma 4.7. Consider w as in Lemma 4.5, \text{(4.6)} cannot hold.

Proof. The case $\|w\|_2 = \|Q\|_2$ is impossible since by Lemma 1.6 w is in H^1 and with zero energy, thus, by Lemma 2.18, $w = \frac{1}{\lambda_0}Q(x - x_0/\lambda_0)e^{ix\xi}$, and the solution is just a standing wave which implies $N(t) \sim 1$ and $\int_0^\infty N(t)^3 = \infty$. The case $\|Q\| < \|w\|_2 < \|Q\|_2 + \alpha$ is impossible because by Theorem 5.1 such solution must blow up in finite time. \hfill \Box

4.5. Step 4: Quasisoliton case. It is in this step that we need radial assumption. Since we are considering radial solution, then w in (1.5) must also be radial, which imply that $x(t), \xi(t) \equiv 0$.

Remark 4.8. Since all we need is $x(t), \xi(t) \equiv 0$, we may just assume u is symmetric across d linear independent planes. The observation that if u is symmetric across d linear independent planes then $x(t), \xi(t) \equiv 0$ has been pointed out by Dodson [Dod12].

Now, we are left with the case $\int_0^\infty N^3(t) = \infty$, which is usually called Quasisoliton case in the literature. We will show in this case, it must be that $\|w(0)\|_2 = \|Q\|_2$.

Lemma 4.9. It is impossible that \(w\) is of form (4.5), \(x(t), \xi(t) \equiv 0, \|Q\|_2 < \|w(0)\|_2 \leq \|Q\|_2 + \alpha, \) and \(\int_0^\infty N^3(t) = \infty.\)

And we will further show

Lemma 4.10. Assume \(w\) is of form (4.5), \(x(t), \xi(t) \equiv 0, \|w(0)\|_2 = \|Q\|_2, \) and \(\int_0^\infty N^3(t) = \infty,\) then there exist sequences \(t_n,\) and parameters \(\lambda_n, \gamma_n\) such that
\[
\lim_{n \to \infty} \|\lambda_n^{d/2} w(t_n, \lambda_n x) e^{i \gamma_n} - Q\|_2 = 0.
\] (4.7)

Remark 4.11. It is very natural to conjecture that under the same assumption of Lemma 4.10, \(w\) is essentially standing wave \(Qe^{it}.\) This will be related to the classification of finite time blow up solution to (1.1) with mass \(\|u_0\|_2 = \|Q\|_2.\) Such solutions, if one further assume the initial data is in \(H^1,\) are completely determined by the result of Merle, \([M^+93]\). At the level of \(L^2,\) it seems to be a very hard problem.

To understand the proof of Lemma 4.9, Lemma 4.10, one needs to understand how Dodson handles the case \(\|w(0)\|_2 < \|Q\|_2, [Dod15].\) We will give a rather detailed sketch of Dodson’s arguments in Section 7. Basically, one needs to use Virial identity to explore the decay of the solution and one needs to perform frequency cut-off to explore the coerciveness of energy. We will show the following:

Lemma 4.12. Assume \(w\) is of form (4.5), \(x(t), \xi(t) \equiv 0, \) and \(\int_0^\infty N^3(t) = \infty,\) then there exist sequences \(t_n \leq T_n, R_n \gg 1, \int_{T_n}^{T_n + T_n} N^3(t) = K_n,\) such that
\[
E(\chi(\frac{x}{R_n}) P_{\leq CK_n} w(t_n)) \leq \frac{1}{n} \|\nabla \chi(\frac{x}{R_n}) P_{\leq CK_n} w(t_n)\|_2^2,
\] (4.8)
where \(\chi\) is smooth bump function localized around the origin.

We will use Lemma 4.12 Lemma 2.18 and Corollary 3.3 to deduce Lemma 4.9 Lemma 4.10.

See Section 7 for the proof of Lemma 4.12 Lemma 4.9 and Lemma 4.10.

4.6. Step 5: Approximation argument and conclusion of the proof. To conclude the proof of Theorem 1.1 we use Lemma 4.2 to reduce the dynamics of \(u\) to the unique compact profile \(\varphi_1,\) and its associated solution \(\Phi_1.\) Then we use Lemma 4.5 to reduce the dynamic of \(\Phi_1\) to the the almost periodic solution \(w,\) and we use Lemma 4.7 Lemma 4.9 to derive that one must have
\[
\|w\|_2 = \|Q\|_2, \quad \int_0^\infty N^3(t) = \infty.
\] (4.9)
And finally, such solution is characterized by Lemma 4.10. We show the detail in Section 8.

5. Proof of Corollary 3.3

We prove Corollary 3.3 here. Let \(u\) be as in Corollary 3.3. First, if \(u\) is of strictly negative energy, by Lemma 2.18 we have
\[
\|u\|_2 > \|Q\|_2
\] (5.1)
If \(u\) is of zero energy, then (5.1) is already in the assumption of Corollary 3.3
Thus, we can assume
\[\|u\|_2^2 = \|Q + \epsilon\|_2^2 = \|Q\|_2^2 + \delta_0. \]
(5.2)

Note mass is a conservation law. By choosing \(\alpha\) in Assumption 1.5, \(\delta_0 \ll \int |x| \leq 1 |Q|^2 \, dx\). We will choose the \(\delta(u)\) in Corollary 3.3 as \(\frac{\delta_0}{2}\).

Since \(Q\) is of exponential decay, we have that, by (3.3), when \(t\) is close to \(T^+(u)\) enough,
\[< |Q|, |\epsilon(t, x)| > \ll \delta_0. \]
(5.3)

By (5.2), we obtain
\[\int |\epsilon|^2 \lesssim \frac{3}{4} \delta_0. \]
(5.4)

On the other hand, by (5.3)
\[\int_{|x| \leq 1} |Q + \epsilon|^2 \geq \delta_0/2. \]
(5.5)

Now fix any \(A > 1\), using the trivial estimate
\[\int_{|x| \leq A} |\epsilon|^2 \lesssim e^A \int |\epsilon|^2 e^{-|x|}. \]
(5.6)

By (5.3), and \(T_1\) close to \(T^+(u)\), we have
\[\int_{|x| \leq A} |\epsilon|^2 \ll \delta_0 \]
(5.7)

Thus combine (5.3), (5.7) and (5.4), we have by triangle inequality that
\[\int_{|x| \geq A} |Q + \epsilon|^2 \geq \delta_0/2. \]
(5.8)

Let \(l_0, x_0\) in Lemma 3.3 be \(x(T_1), \lambda(T_1)\), then the Corollary follows.

6. PROOF OF LEMMA 4.2

Lemma 4.2 should be compared with the reduction to minimal mass blow up solutions for scattering type problem. Most arguments below are standard in concentration compactness, see for example [KM06], [KM08], thus we just sketch it. We will also use a minimization procedure from [DKM15], which makes the whole proof more clear for us. We remark that we do not use the fact that \(u\) is radial here.

First, for any \(\tilde{t}_n \to T^+\), up to extracting subsequence, we may assume \(u(\tilde{t}_n)\) admits profile decomposition with profiles \(\{\psi_j, \tilde{x}_{j,n}, \tilde{\lambda}_{j,n}, \tilde{\xi}_{j,n}, \tilde{t}_{j,n}\}_n\). If \(\forall j\), we have \(\|\psi_j\|_2 < \|Q\|_2\), then by Theorem 2.16 and the nonlinear approximation argument Proposition 2.10, one would derive that \(u\) scatters forward, which contradicts our assumption. Thus, there is at least one profile with mass no less than \(\|Q\|_2^2\).

On the other hand, by the asymptotically orthogonality of the mass, (2.22), and our assumption 1.3, there can only be one profile with mass no less than \(\|Q\|_2^2\). By reordering the profile if necessary, we assume the first profile \(\psi_1\) is the unique profile with
\[\|\psi_1\|_2 \geq \|Q\|_2. \]
(6.1)

Remark 6.1. By Assumption 1.3 and the asymptotically orthogonality of mass, all other profiles has mass \(\ll 1\), which implies there associated nonlinear profile is global and scattering by the small data theory, Proposition 2.5.
Furthermore, ψ_1 must be a compact profile. Indeed, if ψ_1 is a forward scattering profile, using the nonlinear approximation Proposition 2.16 we have that u scatter forward, a contradiction. If ϕ_1 is a backward scattering profile, then we use Proposition 2.16 for the initial data $u(t_n)$, but run the (1.1) backwards rather than forwards, then we will get a uniform bound for $\|u\|_{L^{2(+d+2)/d}[0,t_n \times \mathbb{R}^d]}$, which again implies u scatters forward, a contradiction. See [KM06] for similar arguments for energy critical wave, see also [KM08]. Since ψ_1 is a compact profile, we do not distinguish between ψ_1 and its associated nonlinear profile Ψ_1, which is the solution to (1.1) with initial data ψ_1.

Finally, we remark ψ_1 is not uniquely determined by the times sequence $\{t_n\}_n$, since one may scale or translate the profile, however, the L^2 norm of ψ_1 is uniquely determined, since L^2 is invariant under those symmetry.

To find a sequence $\{t_n\}$ such that its associated profile decomposition satisfy Lemma 4.2, we mimic the minimization procedure in Section 4 of [DKM15]. Though that paper deals with energy critical wave and energy critical Schrödinger, most arguments there are quite general and works whenever there is a satisfying profile decomposition technique.

One will need the so-called double profile decomposition at the technique level, which maybe compared to the diagonal technique which is used in the proof Arzelà-Ascoli Lemma.

Lemma 6.2. Assume $\{f^n_p\}_{n,p}$ are uniformly bounded in L^2, assume for all p, f^n_p admits a profile decomposition with profiles $\{g^n_p\}$ such that there exits $\{\eta_j\}_j$ such that for all p,

$$\sum_j \eta_j < \infty, \quad \|e^{it\Delta}g^n_j\| \leq \eta_j. \quad (6.2)$$

And assume for all j, $\{e^{it\Delta}g^n_j(0)\}_p$ admits a profile decomposition with profile $h_{j,k}$, then up to extracting subsequence, there exists $n_p \to \infty$ such that $\{f^n_{n_p}\}_p$ admits a profile decomposition with profile $\{h_{j,k}\}_{j,k}$.

Remark 6.3. According to asymptotically orthogonality of mass (2.22), we have that for all j,k, $\|h_{j,k}\|_2 \leq \|g_j\|_2$.

Remark 6.4. We will not need to check condition (6.2) in our work, because for all the profile decompositions involved in our work, if we reorder the profiles such that $\|g_j\| \geq \|g_{j'}\|, \forall j \geq j'$, we always have $\|g_1\|_2 \leq \sqrt{2\|Q\|_2}$, and $\|g_n\|_2 \lesssim \sqrt{\frac{1}{n-1}}$, \forall $n \geq 2$, thus (6.2) automatically holds.

Lemma 6.2 is the natural generalization of Lemma 3.16 in [DKM15] for equation (1.1). we refer to [DKM15] for a proof. (Though the proof there is written for energy critical wave, it also works here.)

Now let us go back to the proof of Lemma 4.2.

Let A be the set of the time sequence $\{\tilde{t}_n\}_n$ such that $\lim_{n \to \infty} \tilde{t}_n = T^+(u)$ and $\{u(\tilde{t}_n)\}_n$ admits a profile decomposition. Let ϕ_1 be the profile with mass no less than $\|Q\|_2^2$. Recall that ϕ_1 may not be uniquely determined by the time sequence, but $\|\phi_1\|_2$ is. We define a map for $s = \{\tilde{t}_n\}_n \in A$ to \mathbb{R} as

$$\mathcal{E}(s) = \|\phi_1\|_2 = \|\Psi_1\|_2 \quad (6.3)$$

We have that (6.1) implies

$$\inf_{s \in A} \mathcal{E} \geq \|Q\|_2. \quad (6.4)$$
We now claim there exists an $s_0 \in A$ such that
\[\mathcal{E}(s_0) = \inf_{s \in A} \mathcal{E}. \] (6.5)
In fact, by Lemma 6.2, there exists $\mathcal{E}(s_p) \to \inf_{s \in A} \mathcal{E}$, then apply the double profile decomposition Lemma 6.2, one will find $\{u(t_n^p)\}$ admits a profile decomposition and $\mathcal{E}(\{t_n^p\}) = \inf_{s \in A} \mathcal{E}$.

Let us finish the proof of Lemma 4.2. Let $s_0 = \{t_n\}$, and $u(t_n)$ admits a profile decomposition with profiles $\{\phi_j, \{x_{j,n}, \xi_{j,n}, \lambda_{j,n}, t_{j,n}\}_j\}$, the associated unique nonlinear profile with mass above ground state be Φ_1, clearly Φ_1 satisfy
\[\|Q\|_2 \leq \|\Phi_1\|_2 \leq \|Q\|_2 + \alpha. \] (6.6)

We further claim Φ_1 must be an almost periodic of form (1.2). Indeed, if not, then there exists time sequence $\{a_n\}$ within the life span of Φ_1 such that $\Phi_1(a_n)$ admits a profile decomposition and any profile has mass strictly smaller than $\|\Phi_1\|_2$, then using the nonlinear approximation Proposition 2.16 and double profile decomposition Lemma 6.2, it is easy to see up to picking a subsequence, $u(t_n + \lambda_2 a_n)$ that admits a profile decomposition and $\mathcal{E}(\{t_n + \lambda_2 a_n\}) < \mathcal{E}(s_0)$, a contradiction. This concludes the proof.

7. Proof for Subsection 4.5

We prove Lemma 4.12, Lemma 4.9, Lemma 4.10 here.

To prove Lemma 4.12, one needs to use the proof in [Dod15]. We do a review of the argument in [Dod15] here.

7.1. A quick review of Dodson’s work [Dod15].

7.1.1. warm up and energy tensor. One is recommended to use the associated energy tensor to do computation. We use Einstein summation convention.

Let
\[iu_t + \Delta u = -|u|^{p-1} u. \] (7.1)
(Note in our case, $p = 1 + 4/d$.)

and let
\[T_{00} = T_{00}(u) := |u|^2, \quad T_{0j} = T_{0j} = 2\Re u_j \bar{u}, \]
\[T_{kj} = T_{jk} = 4\Re u_j \bar{u}_k - \delta_{kj} \Delta |u|^2 - 2 \frac{p-1}{p+1} |u|^{p+1}, \] (7.2)

Then,
\[\partial_t T_{00} + \partial_j T_{0j} = 0, \partial_k T_{0j} + \partial_j T_{0k} = 0. \] (7.3)

Let us recall Virial identity as an example. The computation here is just formal, we assume a priori all the quantities in the following computation is finite.

\[\partial_t \int |x|^2 |u|^2 = \partial_t \int |x|^2 T_{00} = \partial_k \int |x|^2 \partial_k T_{00} \]
\[= \partial_t \int \partial_j |x|^2 T_{0j} = \int \partial_j \partial_k |x|^2 T_{j,k} = 16E(u). \] (7.4)

Almost all results regarding the long time dynamic of (1.1) rely on (7.4) in some sense. Intuitively, when $E(u)$ is positive, (which is always the case when $\|u\|_2 < \|Q\|_2$), then $\int |x|^2 |u|^2$ will grow to infinity. On the other hand, since the
mass \(\int |u|^2 \) is conserved, this implies that mass are ejected to infinity, which should be understood as a dispersion effect.

We further summarize the last three identities in (7.4).
\[
\frac{d}{dt} \int x_j T_{0j} \equiv \frac{d}{dt} \int x_j \Im u_j \bar{u} = \frac{1}{2} \int \partial_k x_j T_{jk} \equiv 4E(u). \tag{7.5}
\]

7.1.2. A sketch of Dodson’s work

Using (7.5), Dodson shows

Proposition 7.1. it is impossible that (4.5) holds with \(N^3(t) = \infty \) and
\[
\|w\|_2 < \|Q\|_2 - \eta, \text{ for some } \eta > 0 \tag{7.6}
\]
unless \(w \equiv 0 \)

We will use \(d = 3 \) here to present a sketch for the proof of Proposition 7.1. We only do the case \(\xi(t), x(t) = 0 \), (recall \(\xi(t), x(t), N(t) \) in (4.5)) \(4 \)

First subcase: \(\xi(t) \equiv 0, x(t) \equiv 0, N(t) \sim 1 \)

Let \(T_K \) be the unique time such that
\[
\int_0^{T_K} N^3(t) = K. \tag{7.7}
\]

All the analysis below is in \([0, T_K]\) for \(w \) as in (4.5).

We first consider the subcase \(\xi(t) \equiv 0, x(t) \equiv 0, N(t) \sim 1 \) for \(w \) in (4.5). We remark that \(x(t), \xi(t) \equiv 0 \) when one only considers radial solutions. Now the solution is like a soliton, without dispersion. It is very natural to apply (7.5) to get a contradiction. However, \(w \) is not in \(H^1 \), so one cannot directly use mass constriction (7.6) to use the coerciveness of energy and one does not have the extra integrability of \(xu \) to make sense the left side of (7.5). So, very naturally, one needs to do truncation in space and frequency.

We need a cut off version of \(x \), for technical reason, we will need a \(\psi(x) \) such that \(\psi(x) = 1 \) for \(|x| \leq 1 \), and \(\psi(x) \lesssim \frac{1}{|x|} \), and \(\partial_k \psi(x)x_j \) is semi positive definite \(5 \)

We also define the Fourier truncation, \(I := I_K \equiv \mathbb{P}_{\leq CK} \), here \(C \) is some fixed large constant. Let \(F(v) := -|v|^{d/4}v \). Now note
\[
(i\partial_t + \Delta) Iw = I(F(w)) = F(I(w)) + \{I(F(w)) - F(Iw)\}. \tag{7.8}
\]

Let \(M(t) \) be the truncated version of \(\int x_j \Im w_j \bar{w} \), (\(M \) denotes Morawetz action in the literature):
\[
M(t) = \int \psi(x/R) x_j \Im I_K w_j I_K \bar{w}. \tag{7.9}
\]

Since \(\int |w|^2 \) is bounded, one immediately obtain that
\[
|M(t)| \lesssim RK. \tag{7.10}
\]

Recall (4.5), using the fact that \(w = N(t)^{d/2} L_t(N(t)x) \), \(N(t) \sim 1 \) and \(\{L_t\} \) is a precompact in \(L^2 \), it is easy to upgrade the above to
\[
|M(t)| \lesssim Ro(K). \tag{7.11}
\]

4 Indeed, the computation is easier for \(d = 1 \) or \(d = 2 \), however, Dodson’s work DDod15 implicitly use his long time Strichartz estimate, which involves extra technical difficulty for \(d = 1, 2 \).

5 This is not hard, indeed, one first constructs some convex \(f(x) \) which is like \(|x|^2 \) near the origin, slowly grows for \(|x| \geq 2 \), and take \(\psi(x)x_j = \partial_j f(x) \). Note we do not need \(f \) to be uniformly strictly convex.
Now computing the derivative of $M(t)$, one has
\[
\frac{d}{dt} M(t) = E_1 + \int \partial_k (\psi(x/R)) x_j \frac{1}{2} T_{jk}(Iw)
\]
\[
= E_1 + \int \partial_j \partial_k (\psi(x/R)) x_j \frac{1}{2} (4R Iw_j Iw_k - \delta_{kj} \Delta |Iw|^2 - \frac{2 \cdot 4/d}{4/d + 2} |Iw|^2 + 2)
\]
\[
= E_1 + E_2 + E_3 + 4 \int_{|x| \leq R} \left(\frac{1}{2} |\nabla w|^2 - \frac{1}{2 + \frac{4}{d}} |w|^{2+4/d} \right),
\]
(7.12)

Here E_1, E_2, E_3 are as the following.
\[
E_1 = -i \int \psi \left(\frac{x}{R} \right) x \left(\left\{ IF(w) - F(Iw) \right\} \nabla Iw + Iw \nabla \left\{ IF(w) - F(Iw) \right\} \right) \tag{7.13}
\]
\[
E_2 = \int |\Delta \delta_{jk} \psi(x/R) x_j| (-\delta_{kj} |Iw|^2),
\]
(7.14)
\[
E_3 = \int_{|x| \geq R} \partial_k (\psi(x/R) x_j) \frac{1}{2} (4R Iw_j Iw_k - \frac{2 \cdot 4/d}{4/d + 2} |Iw|^2 + 2). \tag{7.15}
\]

Here E_1 is caused by the commutator type error in (7.8).

One needs to explore the coerciveness of $\int_{|x| \leq R} \frac{1}{2} |\nabla Iw|^2 - \frac{1}{2 + \frac{4}{d}} |Iw|^6$, thus one needs to introduce an extra smooth cut-off function $\chi(x)$ which is 1 for $|x| \leq \frac{R}{10}$, and vanishes for $|x| \geq 1$. Then
\[
\int_{|x| \leq R} \frac{1}{2} |\nabla Iw|^2 - \frac{1}{2 + \frac{4}{d}} |Iw|^6 \geq E(\chi(x/R) Iw) \tag{7.16}
\]

We remark that strictly speaking, (7.16) is not completely right, since we neglect the error caused by the commutator $(\nabla(x Iw) - I \nabla Iw)$, since this is just a sketch, we omit this technical point, one should refer to [Dod12] for more details.

Now, using (7.13) and the important condition (7.10), one has
\[
E(\|I \chi(x/R) Iw\|) \geq c_0(\eta) (\|I \chi(x/R) Iw\|^{4/d+2} + \|\nabla(\chi(x/R) Iw)\|^2). \tag{7.17}
\]

Error E_2, E_3 will be estimated by
\[
|E_2| \lesssim \frac{1}{R^2} \int_{|x| \geq R} |Iw|^2, \tag{7.18}
\]
\[
|E_3| - \int_{|x| \geq R} \partial_k (\psi(x/R) x_j) \frac{1}{2} (4R Iw_j Iw_k) \lesssim \int_{|x| \geq R} |Iw|^{2+4/d} \tag{7.19}
\]

Note since $\partial_k (\psi(x_j)$ is semipositive definite, we have
\[
E_3 \geq -C_1 \int_{|x| \geq R} |Iw|^{4/d+2} \text{ for some } C_1 > 0.
\]

E_1 is estimated by the commutator type estimate, see Lemma 4.7 in [Dod12].
\[
\|I_K F(w) - F(I_K w)\|_{L^2 L^{2d+2} L^{2d+2} [0, T_K]} \lesssim o_K(1). \tag{7.20}
\]

The proof of the above relies on Dodson’s long time Strichartz estimate, Theorem 1.24 in [Dod12], which is indeed the key ingredient in [Dod12].
Thus,
\[
\int_0^{T_K} E_1 \lesssim R_0(K) \| \nabla I_K w \|_{L^2 L_x^{2d/d-2}}.
\]
(7.21)

And the long time Strichartz estimate will further give, see Lemma 4.5 in [Dod12],
\[
\| \nabla I_K w \|_{L^2 L_x^{2d/d-2}} \lesssim K.
\]
(7.22)

Thus,
\[
\int_0^{T_K} |E_1| \geq R_0(K(1) K.
\]
(7.23)

We remark that the long time Strichartz estimate is purely analytic, does not relies on the energy structure, i.e. the difference between focusing and defocusing does not matter here.

To summarize,
\[
\int_0^{T_K} |E_1| \geq R_0(K(1) K.
\]
(7.23)

In the last step, we plugged in the estimate (7.19).

Now, integrate in time on \([0, T_K]\) plug in the estimate for \(E_1, (7.23)\), and estimate for \(E_2, (7.18)\), we recover the estimate (3.26) [Dod15].

\[
\int_0^{T_K} \frac{dM(t)}{dt} \geq 4E(\chi(x/R)Iw) + E_1 + E_2 + E_3
\geq c_0(\eta)\| \chi(x/R)Iw \|_{L_t^{4/d+2}} + E_1 - |E_2| - C_1 \int_{|x| \geq R} \|Iw\|^{4/d+2}
\]
(7.24)

In the last step, we plugged in the estimate (7.19).

Now, integrate in time on \([0, T_K]\) plug in the estimate for \(E_1, (7.23)\), and estimate for \(E_2, (7.18)\), we recover the estimate (3.26) [Dod15].

\[
\int_0^{T_K} \frac{dM(t)}{dt} \geq \int_0^{T_K} c_0(\eta)\chi(x/R)Iw \|_{L_t^{4/d+2}}^2 - \int_0^{T_K} \sup_t \frac{1}{R^2} \|Iw(t)\|_{L_x^{2}}^2 - \int_0^{T_K} \int_{|x| \geq R} Iw(t,x)^6 - R_0(K(1) K.
\]
(7.25)

Estimate (7.25) is enough to give a contradiction and conclude \(u\) must be zero, one is refer to [Dod15], in particular (3.26) in [Dod15] for more details. We sketch some standard arguments below for the convenience of the readers.

The left side of (7.25) is controlled by \(R_0(K)\), by estimate(7.11).

On the other hand, since we assume \(N(t) \sim 1\), \(\int_0^{T_K} N(t)^3 = K\), thus
\[
\int_0^{T_K} \sup_t \frac{1}{R^2} \|u(t)\|_{L_x^{2}}^2 \lesssim \frac{1}{R^2} K.
\]
(7.26)

And, recall again \(u\) is of form (4.5), \(N(t) \sim 1\), then for any time interval \(J\) of length \(\sim 1\), local theory of (1.1) gives \(\int_J \|u\|_{L_x^{4/d+2}} \sim 1\). Now using the fact \(u\) is of form (7.26), i.e. all the mass of \(u\) is uniformly concentrated in physical space and frequency space, we obtain
\[
\int_J \chi(x/R)Iw \|_{L_x^{4/d+2}} \sim 1, \int_J \int_{|x| \geq R} \|Iw(t,x)\| \lesssim o_R(1).
\]
(7.27)

Thus, the right side of (7.25) is bounded below by
\[
c_0(\eta)K - \tilde{C} \frac{K}{R^2} - o_R(K) - R_0(K).
\]
(7.28)

Here \(\tilde{C}\) is some universal constant. Now one obtains that \(R_0(K) \geq c_0(\eta)K - \frac{\tilde{C} K}{R^2} - o_R(K) - R_0(K)\), a contradiction.

6the numerics here are slightly different, because in [Dod15], that part is done for \(d = 1\), and the error caused by \(E_1\) is neglected in this step but treated later.
The key point to conclude a contradiction by using $Ro(K) \geq c_0(\eta)K - \tilde{C}_K - o_R(K) - Ro(K)$ is that here $c_0(\eta)$ in (7.11) does not depend on R or K, so one can first choose R large enough, then one further choose K large enough to get a contradiction.

General Case: $\xi(t), x(t) \equiv 0$

Now, for general case with $\xi(t), x(t) = 0$, (which covers all general radial solution), it is very natural to define the Morawetz action as

$$M(t) := \int \psi \left(\frac{xN(t)}{R} \right) xN(t) \Im \nabla IwI \bar{w}. \quad (7.29)$$

However, if one directly relies on the above Morawetz action to argue as previously, one will facethe problem that one does not have good control about $N(t)$. This is handled by Dodson using so called "upcoming algorithm", basically he constructs some slowly oscillating $N(t) \lesssim \tilde{N}(t)$ according to the behavior of $\tilde{N}(t)$, and constructs Morawetz action as

$$M(t) = \int \psi \left(\frac{x\tilde{N}(t)}{R} \right) x\tilde{N}(t) \Im \nabla IwI \bar{w} \quad (7.30)$$

The proof left follows in principle as the previous subcase where $N(t) \sim 1$, see section 4 in [Dod15] for more details.

As emphasized in the end of the previous case, the key part and the only part Dodson’s proof using the fact $\|u\|_2 < \|Q\|_2 - \eta$ is that this will gives a universal constant $c_0(\eta)$ such that

$$E(\chi(\tilde{N}(t)x/R)Iw) \geq c_0(\eta)\|\nabla \chi(\tilde{N}(t)x/R)Iw\|_2^2 + \|\chi(\tilde{N}(t)x/R)Iw\|_2^{4/d+2}. \quad (7.31)$$

7.2. Proof of Lemma 4.12

The proof of Lemma 4.12 is by contradiction. Indeed, if Lemma 4.12 does not hold, then one recovers (7.31) even the mass of w is not under the ground state. Then, one argue as the proof of Proposition 4.11 which we just reviewed in the previous subsection, to conclude $w = 0$, which is clearly a contradiction since $\|w\|_2 \geq \|Q\|_2$.

Remark 7.2. Proposition 4.11 holds for general non radial solution by using a version of interaction Morawetz estimate. Ever since [CKS+08], there are a lot of works using interaction version of certain estimates to show results for general solutions rather than radial solution, such as [Dod12], [Dod15] and many others. However, we cannot have a natural useful generalization of Lemma 4.12 here. It seems to us if one directly follows the arguments in [Dod15], where a nonradial version Proposition 4.11 is proved, one can only conclude that there exists a sequence $t_n \leq T_n$, $R_n \gg \frac{1}{N(t_n)}$, ξ_n, x_n, $\int_0^{T_n} N^3(t) = K_n$, such that

$$E(\chi(\frac{x - x_n}{R_n})P_{\leq CK_n}e^{-i\xi_n x}w(t_n)) \leq \frac{1}{n}\|\nabla \psi(\frac{x - x_n}{R_n})P_{\leq CK_n}e^{-i\xi_n x}w(t_n))\|_2^2 \quad (7.32)$$

Formula (7.32) is of no use to us, because we do not have control of x_n, thus we are not ensured $\chi(\frac{x - x_n}{R_n})P_{\leq CK_n}e^{-i\xi_n x}w(t_n)$ contains almost all the mass of w as $n \to \infty$, which will be critical later.
7.3. Proof of Lemma 4.10. Lemma 4.10 is implied by Lemma 4.12 with the help of Lemma 2.19. We present a short proof here. Recall \(w \) is of form (4.5), and since we are consider radial solution, we have \(\xi(t) = 0, x(t) = 0 \). Since \(R_n \gg \frac{1}{N(t_n)} \), \(K_n \gg 1 \) and \(\{L_t\}_t \) is a precompact \(L^2 \) family, we easily have

\[
\|w(t_n) - \chi(x/R_n)P_{\leq CK_n}w(t_n)\|_{L^2} \xrightarrow{n \to \infty} 0. \tag{7.33}
\]

Now let \(\hat{w}_n := \chi(x/R_n)P_{\leq CK_n}w(t_n) \). Clearly, to prove Lemma 4.10 we only need to show there exists \(\lambda_n, \gamma_n \) such that

\[
\lambda_n^{d/2}w_n(\lambda_n x) e^{i\gamma_n} \to Q \text{ in } L^2. \tag{7.34}
\]

But (7.34) follows from Lemma 2.19 because

\[
\|w_n\| \leq \|w\|_2 \leq \|Q\|_2 + \frac{1}{n}, \tag{7.35}
\]

\[
E(w_n) \leq \frac{1}{n} \|\nabla w_n\|_2^2.
\]

7.4. Proof of Lemma 4.9. Now we turn to the proof of Lemma 4.9. Note we restrict ourselves to radial solutions. Let \(t_n, K_n, R_n \) be as in Lemma 4.12 let \(v_n = \chi(x/R_n)P_{\leq CK_n}u(t_n), \lambda_n = \frac{\|\nabla Q\|_2}{\|v_n\|_2} \). We apriori have

\[
\|v_n\|_2 \leq \|Q\|_2 + \alpha, \quad \alpha \text{ small enough,} \tag{7.36}
\]

Thus, when \(n \) is large enough, \(1/n \leq \alpha \), thus by Lemma 2.19 we can find a sequence of \(\gamma_n \), such that

\[
\|\frac{1}{\lambda_n^d}v_n(\frac{x}{\lambda_n}) e^{i\gamma_n} - Q\|_{H^1} \leq \delta(\alpha) \leq 1. \tag{7.37}
\]

Note the space translation parameter in Lemma 2.19 will not appear because our functions are all radial.

Also recall \(w(t) = N(t)^{d/2}L_e(N(t)x), L_t \) is a precompact \(L^2 \) family, \(N(t) \leq 1 \), thus the condition \(K_n \gg 1, R_n \gg \frac{1}{N(t_n)} \) implies

\[
\|w(t_n) - v_n\|_2 = o_n(1) \tag{7.38}
\]

and further it implies that \(\{\frac{1}{N(t_n)^{d/2}}v_n(\frac{x}{N(t_n)})\}_n \) is a precompact \(L^2 \) family.

Thus, by (7.37) we have \(N(t_n) \sim \lambda_n \). Now let \(f_n = \{\frac{1}{N(t_n)^{d/2}}v_n(\frac{x}{N(t_n)})\}_n \), we have that

1. \(f_n \) is a precompact \(L^2 \) sequence.
2. \(f_n \) is uniformly bounded.
3. \(E(f_n) \lesssim \frac{1}{n} \). (This contains the possibility that \(E(f_n) \) is negative).

Up to extracting a subsequence, we may assume \(f_n \) strongly converges to \(f_0 \) in \(L^2 \), in particular, with (7.38), we obtain

\[
\|f_0\|_2 = \|w\|_2, \|Q\|_2 < \|f\|_2 < \|Q\|_2 + \alpha \tag{7.39}
\]

Now, by Fatou’s Lemma, \(\|f_0\|_{H^1} \leq \lim inf_n \|f_n\|_{H^1} \).

By interpolation\footnote{Note we do not need the radial Sobolev embedding here} between \(L^2 \) and \(H^1 \), \(\|f_n\|_{L^{2/d+2}} \to \|f_0\|_{L^{2/d+2}} \).

Thus, we have the condition

\[
E(f_0) \leq \lim inf E(f_n) \leq 0 \tag{7.40}
\]

Now, to summarize, with (7.38), strong convergence of \(f_n \) to \(f_0 \) in \(L^2 \), we have

\[
\|f_0\|_2 = \|w\|_2, \|Q\|_2 < \|f\|_2 < \|Q\|_2 + \alpha \tag{7.39}
\]

Now, by Fatou’s Lemma, \(\|f_0\|_{H^1} \leq \lim inf_n \|f_n\|_{H^1} \).

By interpolation\footnote{Note we do not need the radial Sobolev embedding here} between \(L^2 \) and \(H^1 \), \(\|f_n\|_{L^{2/d+2}} \to \|f_0\|_{L^{2/d+2}} \).

Thus, we have the condition

\[
E(f_0) \leq \lim inf E(f_n) \leq 0 \tag{7.40}
\]
• w is an almost periodic solution,
$$w(t) = N^{d/2}(t)L_d(N(t), x), t \geq 0, N(t) \leq 1.$$
• L_{t_0} converges strongly in L^2 to f.
• f is in H^1, and if of nonpositive energy.

These three property is enough to derive a contradiction, we prove something slightly more general for the convenience of future work.

The proof we are left with will not depend on that the radial property, we only need that w is almost periodic in the sense that
$$w(t) = \frac{1}{\lambda(t)}L_d(\frac{x-x(t)}{\lambda(t)})e^{ix\xi(t)}, t \geq 0. \quad (7.41)$$

Let F be the solution to (1.1) with initial data f, then by Theorem 3.1, F will blow up in finite time $T^+ > 0$, and according to Corollary 3.3 there exists $\delta_0 = \delta_0(F) > 0$, such that for $\forall A > 0$, there exists $T_A < T^+, x_0 \in \mathbb{R}^d$
$$\int_{|x-x_0| \leq t_0} |F(T_A, x)|^2 \geq \delta_0, \int_{|x-x_0| \geq A t_0} |F(T_A, x)|^2 \geq \delta_0. \quad (7.42)$$

And note by standard local theory of (1.1),
$$\|F(t, x)\|_{L^2_t([x_0-x_0]^d)[0, t] \times \mathbb{R}^d} \leq C_A < \infty. \quad (7.43)$$

Remark 7.3. Note here δ_0 is fixed once w is fixed, and A can be chosen arbitrary large (by choosing $T = T_A$ close to T^+ enough.)

On the other hand, since w is an almost periodic solution of form (7.41), we claim

Lemma 7.4. Assume w is of form (7.41), then, for any $\delta > 0$, there exists $A = A_{\delta}$ such that if for some $z_0 \in \mathbb{R}^d, t_0 \in \infty, h_0 > 0$ such that
$$\int_{|x-x_0| \leq h_0} |w(t_0)|^2 \geq \frac{\delta}{2}, \quad (7.44)$$

then we must have
$$\int_{|x-x_0| \geq A t_0} |w(t_0, x)|^2 dx \leq \frac{\delta}{2}. \quad (7.45)$$

Lemma (7.4) will be proven in Subsection 7.3, let us assume it at the moment and finish the proof of Lemma 4.9. Let us fix $\delta_0 = \delta_0(w)$, and picking $\delta_1 = \delta_0/2$, and let $A = A_{\delta_1}$ as in Lemma 7.4 that (7.44) holds, and as mentioned before, we can use Corollary 3.3 to find $T = T_A$ such that (7.42) holds and we emphasize again (7.43) holds.

Now since $L_{t_n} \to F(0)$ in L^2, then for $\forall \epsilon > 0$, there exists $n_0 = n_0(\epsilon)$ such that
$$\|L_{t_n} - F(0)\|_2 < \epsilon \quad (7.46)$$

Using the stability argument, Proposition 2.7, by choosing ϵ small enough, (according to C_A), then (1.1) with initial data L_{t_0} has a solution, we call it v, which exists in $[0, T_A]$, such that
$$\|v(T_A) - w(T_A)\|_2 \leq \delta_0/10. \quad (7.47)$$

By (7.42) and triangle inequality, we have
$$\int_{|x-x_0| \leq t_0} |v(T_A, x)|^2 \geq \delta_0/2, \int_{|x-x_0| \geq A t_0} |w(T_A, x)|^2 \geq \delta_0/2. \quad (7.48)$$
On the other hand, since \(v(t) \) solves \((1.1) \) in \([0, T_A] \) with initial data \(L_{t_0} \), and \(w(t) \) solves \((1.1) \) with \(w(t_{n_0}) = \frac{1}{\lambda(t_{n_0})} L_{t_{n_0}}(\frac{x-x_0}{\lambda(t_{n_0})}) e^{ix\xi(t_{n_0})} \), by the local well posedness theory (uniqueness of the solution), we have \(w \) is defined in \([t_{n_0}, t_{n_0} + \lambda(t_{n_0})^2 T_A] \), and

\[
\begin{align*}
\int_{|x-x_0| \leq \lambda(t_{n_0})} |w(\tilde{t}_{n_0}, x)|^2 &\geq \delta_0 / 2, \\
\int_{|x-x_0| > \lambda(t_{n_0})} |w(\tilde{t}_{n_0}, x)|^2 &\geq \delta_0 / 2
\end{align*}
\]

This contradicts Lemma \(7.4 \). To finish the proof of Lemma \(4.7 \), we are left with the proof of Lemma \(7.4 \) which will be done in the following subsection.

7.5. **Proof of Lemma \(7.4 \)** Indeed, we only need to prove Lemma \(7.4 \) for \(w(t) = L_t, t \geq 0 \). Since the statement of Lemma already takes space translation into account, and the \(t_0 \) takes care of the scaling, and the phase \(e^{ix\xi(t)} \) plays no role in this argument.

Thus, we reduce the proof to following Lemma

Lemma 7.5. For a precompact \(L^2 \) family \(\{L_t\}_{t \geq 0}, \) (not necessarily radial), \(\forall \delta > 0 \) there exists \(A > 0 \) such that if for some \(l_0 > 0 \),

\[
\int_{|x| \leq l_0} |L_{t_0}|^2 \geq \delta,
\]

then

\[
\int_{|x| > A l_0} |L_{t_0}|^2 \leq \delta.
\]

Proof. Since \(\{L_t\} \) is precompact in \(L^2 \), by standard approximation argument, one may without loss of generality may assume \(L^t \) is uniformly bounded and their support are uniformly compact. Thus \(7.50 \) implies \(1 \leq l_0 \), since \(L_t \) is uniformly bounded. Thus, when \(A \) is large enough, clearly \(7.52 \) holds.

8. **Proof of Theorem \(1.1 \)**

Let \(\Phi_1, w \) be as in Lemma \(4.9 \). Recall we have that \(\{u(t_n)\} \) admits profile decomposition with profiles \(\{\phi_j, \{x_{j,n}, \lambda_{j,n}, \xi_{j,n}, t_{j,n}\}_n\}_j \). Since now we only consider radial solution, we indeed have \(x_{j,n} = \xi_{j,n} = 0 \).

And as explained in Subsection \(4.6 \) we have

\[
\|w\|_2 = \|Q\|_2, \int N(t)^3 = \infty
\]

Thus, by Lemma \(4.10 \) there exists a time sequence \(s_n \) and parameter \(\{\lambda_n, \gamma_n\}_n \) such that

\[
\lim_{n \to \infty} \|\lambda_n^{d/2} w(s_n, \lambda_n x) - Q e^{-i\gamma_n}\|_2 = 0.
\]
Weak Convergence 24

We point out there is a slight abuse of notation in Lemma 4.2, Lemma 4.5, and Lemma 4.10. The time sequences \(\{ t_n \}_{n} \) in these lemmas are not necessarily same. From now on, we change the time sequence in Lemma 4.10 to \(\{ s_n \}_{n} \), and change the time sequence in Lemma 4.5 to \(\{ l_n \}_{n} \).

Note by extracting subsequence, we may without loss of generality assume the \(\gamma_n \) in (8.2) satisfy \(\gamma_n \equiv \gamma_0 \). Note phase symmetry is a compact symmetry in \(L^2 \).

We claim (8.2) implies Lemma 8.1. There exists a time sequence \(\{ h_n \}_{n} \) such that \(\Phi_1(h_n) \) admits a profile decomposition with profiles \(\{ v_j \}_{j} \). (We will not track the associated parameters here.) Moreover, there is a profile, we call it \(v_1 \) such that \(v_1 = Q e^{i \gamma_0} \).

Remark 8.2. Since \(\| \Phi_1 \|_2 = \| w \|_2 = \| Q \|_2 \), this indeed implies \(v_1 \) is the only profile and one can conclude similar strong convergence results as in (8.2).

Proof of Lemma 8.1. Recall \(P_{l_n}, P_0, w, \Phi \) in Lemma 4.5. Recall we have already changed the notation \(t_n \) to \(l_n \) in Lemma 4.5. Without loss of generality, we assume in Lemma 4.5, the initial data of \(w \) is \(P_0 \). Indeed, since \(P_{l_n} \to P_0 \), this implies \(\Phi(l_n) \) admits a profile decomposition with only one profile \(P_0 \), and with stability argument, Proposition 2.7 or Proposition 2.16, it further implies \(\{ \Phi(l_n + \lambda_1(l_n^2) s_p) \}_{p} \) admits profile decomposition \(w(s_p) \) for each \(p \), also note \(\{ w(s_p) \} \) admits a profile decomposition with only one profile \(Q e^{i \gamma_0} \) by (8.2), thus by Lemma 6.2 there exists a sequence \(\{ n_p \}_{p} \), such that \(\Phi_1(l_{n_p} + \lambda(l_{n_p})^2 s_p) \) admits a profile decomposition, one of the profile is \(Q e^{i \gamma} \).

To finish the proof of Theorem 1.1, let \(h_p \) be as in Lemma 8.1, one simply argues as in the proof of Lemma 8.1 we just did, and use Lemma 6.2 to do double profile decomposition for \(\{ u(t_n + \lambda_{l_n}^2 t_n h_p) \}_{n,p} \).

9. Acknowledgment

The author is very grateful to his adviser, Gigliola Staffilani for consistent support and encouragement and very careful reading of the material, and a lot of helpful discussion. Part of the material is based upon work supported by the National Science Foundation under Grant No. 0932078000 while the author was in residence at the Mathematical Sciences Research Institute in Berkeley, California, during Fall 2015 semester. The author benefits a lot in his stay in MSRI. Part of the material is finished when the author was attending the Nonlinear Evolution Problem workshop in MFO, Oberwolfach Research Institute for Mathematics, which is a good place to do research.

Appendix A. Proof of Theorem 1.4

As shown in the proof of Lemma 4.2, such solution \(u \) is of form

\[
 u(t, x) = \frac{1}{\lambda^{d/2}(t)} V_t \left(\frac{x - x(t)}{\lambda(t)} \right) e^{i \xi(t)}, \tag{A.1}
\]

\(\{ V_t \} \) is a compact \(L^2 \) family and \(\| V_t \|_2 = \| Q \|_2 \). We assume \(u \) blows up in finite time \(T \). To prove Theorem 1.4, we need only exclude the possibility

\[
 \lambda(t) \gtrsim (T - t)^{2/3}. \tag{A.2}
\]
Assume (A.2) holds, do a (inverse) pseudo conformal transformation of u, we will get a solution v such that

$$v(\tau, y) = \frac{1}{\tau^{d/2}} u(T - \frac{1}{\tau}, \frac{y}{\tau}) e^{i \frac{1}{4} \sqrt{\frac{N(\tau)}{\tau}} |y|^2} = N^{d/2}(\tau) W(\tau) (N(\tau) y + y(\tau)) e^{i \xi(\tau) y}$$ \hspace{1cm} (A.3)

Where

$$N(\tau) = \frac{1}{\tau} \frac{1}{\lambda(T - \frac{1}{\tau})},$$

$$W(\tau) (z) = V_{T - \frac{1}{\tau}} (z) e^{i \frac{1}{4} \sqrt{\frac{N(\tau)}{\tau}} |z|^2} e^{-i (x(T - \frac{1}{\tau}))^2},$$

$$y(\tau) = \tau x(T - \frac{1}{\tau}), \xi(\tau) = \frac{\xi(T - \frac{1}{\tau})}{\tau} + 2x(T - \frac{1}{\tau})$$ \hspace{1cm} (A.4)

Note the exact value of $y(\tau), \xi(\tau)$ actually do not matter.

We obtain by (A.2)

$$N(\tau) \leq \frac{1}{\tau} \lesssim \frac{1}{\tau^{2/3}} \lesssim \left(\frac{1}{\tau} \right)^{1/3+}$$ \hspace{1cm} (A.5)

On the other hand, one has the scaling lower bound

$$\lambda(t) \lesssim (T - t)^{1/2}$$ \hspace{1cm} (A.6)

Thus, $N(\tau) \geq \tau^{-1/2}$,

This further implies $W(\tau)$ is also precompact in L^2, since multiplying $e^{i \frac{1}{4} \sqrt{\frac{N(\tau)}{\tau}} |z|^2}$ is a compact perturbation. This contradicts Lemma 4.7, since now we have $\int_0^\infty N^3(\tau) < \infty$.

REFERENCES

[BG99] Hajer Bahouri and Patrick Gérard. High frequency approximation of solutions to critical nonlinear wave equations. *American Journal of Mathematics*, 121(1):131–175, 1999.

[Bou98] Jean Bourgain. Refinements of strichartz inequality and applications to 2D-NLS with critical nonlinearity. *International Mathematics Research Notices*, 1998(5):253–283, 1998.

[BV07] Pascal Bégout and Ana Vargas. Mass concentration phenomena for the L^2-critical nonlinear Schrödinger equation. *Transactions of the American Mathematical Society*, 359(11):5257–5282, 2007.

[Caz03] Thierry Cazenave. *Semilinear Schrödinger equations*, volume 10. American Mathematical Soc., 2003.

[CKLS14] Raphael Cote, Carlos E Kenig, Andrew Lawrie, and Wilhelm Schlag. Profiles for the radial focusing 4d energy-critical wave equation. *arXiv preprint arXiv:1402.2307*, 2014.

[CRS+08] James Colliander, Markus Keel, Gigliola Staffilani, Hideo Takaoka, and Terence Tao. Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in \mathbb{R}^3. *Annals of Mathematics*, pages 767–865, 2008.

[CRSW04] Jim Colliander, Sarah Raynor, Catherine Sulem, and J Douglas Wright. Ground state mass concentration in the L^2-critical nonlinear Schrodinger equation below H^1. *arXiv preprint math/0409585*, 2004.

[CW88] Thierry Cazenave and Fred B Weissler. The cauchy problem for the nonlinear Schrödinger equation in H^1. *manuscripta mathematica*, 61(4):477–494, 1988.

[CW89] Thierry Cazenave and Fred B Weissler. Some remarks on the nonlinear Schrödinger equation in the critical case. In *Nonlinear semigroups, partial differential equations and attractors*, pages 18–29. Springer, 1989.

[CW90] Thierry Cazenave and Fred B Weissler. The cauchy problem for the critical nonlinear Schrödinger equation in hs. *Nonlinear Analysis: Theory, Methods & Applications*, 14(10):807–836, 1990.
Weak Convergence

[DJKM16] Thomas Duyckaerts, Hao Jia, Carlos Kenig, and Frank Merle. Soliton resolution along a sequence of times for the focusing energy critical wave equation. arXiv preprint arXiv:1601.01871, 2016.

[DKM11] Thomas Duyckaerts, Carlos E Kenig, and Frank Merle. Universality of blow-up profile for small radial type ii blow-up solutions of the energy-critical wave equation. Journal of the European Mathematical Society, 13(3):533–599, 2011.

[DKM12a] Thomas Duyckaerts, Carlos Kenig, and Frank Merle. Profiles of bounded radial solutions of the focusing, energy-critical wave equation. Geometric and Functional Analysis, 22(3):639–698, 2012.

[DKM12b] Thomas Duyckaerts, Carlos E Kenig, and Frank Merle. Universality of the blow-up profile for small type ii blow-up solutions of the energy-critical wave equation: the nonradial case. Journal of the European Mathematical Society, 14(5):1389–1454, 2012.

[DKM13] Thomas Duyckaerts, Carlos Kenig, and Frank Merle. Classification of radial solutions of the focusing, energy-critical wave equation. Cambridge Journal of Mathematics, 1(1):75–144, 2013.

[DKM15] Thomas Duyckaerts, Carlos Kenig, and Frank Merle. Profiles for bounded solutions of dispersive equations, with applications to energy-critical wave and schrödinger equations. Communications on Pure & Applied Analysis, 14(4), 2015.

[DKM16a] Thomas Duyckaerts, Carlos Kenig, and Frank Merle. Concentration-compactness and universal profiles for the non-radial energy critical wave equation. Nonlinear Analysis: Theory, Methods & Applications, 138:44–82, 2016.

[DKM16b] Thomas Duyckaerts, Carlos Kenig, and Frank Merle. Scattering profile for global solutions of the energy-critical wave equation. arXiv preprint arXiv:1601.02107, 2016.

[DKM16c] Thomas Duyckaerts, Carlos E Kenig, and Frank Merle. Solutions of the focusing non-radial critical wave equation with the compactness property. Annali della Scuola Normale Superiore di Pisa. Classe di scienze, 15(1):731–808, 2016.

[Dod] Ben Dodson. Global well-posedness and scattering for the defocusing, L^2-critical, nonlinear schrödinger equation when $d = 2$, preprint, 2010. arXiv preprint arXiv:0912.2467.

[Dod12] Benjamin Dodson. Global well-posedness and scattering for the defocusing, critical nonlinear schrödinger equation when $d = 3$. Journal of the American Mathematical Society, 25(2):429–463, 2012.

[Dod15] Benjamin Dodson. Global well-posedness and scattering for the mass critical nonlinear schrödinger equation with mass below the mass of the ground state. Advances in Mathematics, 285:1589–1618, 2015.

[Dod16] Benjamin Dodson. Global well-posedness and scattering for the defocusing, L^2-critical, nonlinear schrödinger equation when $d = 1$. American Journal of Mathematics, 138(2):531–569, 2016.

[Gla77] Robert T Glassey. On the blowing up of solutions to the cauchy problem for nonlinear schrödinger equations. Journal of Mathematical Physics, 18:1794–1797, 1977.

[HK05] Taoufik Hmidi and Sahbi Keraani. Blowup theory for the critical nonlinear schrödinger equations revisited. International Mathematics Research Notices, 2005(46):2815–2828, 2005.

[Ker01] Sahbi Keraani. On the defect of compactness for the strichartz estimates of the schrödinger equations. Journal of Differential equations, 175(2):353–392, 2001.

[Ker06] Sahbi Keraani. On the blow up phenomenon of the critical nonlinear schrödinger equation. Journal of Functional Analysis, 235(1):171–192, 2006.

[KM06] Carlos E Kenig and Frank Merle. Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear schrödinger equation in the radial case. Inventiones mathematicae, 166(3):645–675, 2006.

[KM08] Carlos E Kenig and Frank Merle. Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation. Acta Mathematica, 201(2):147–212, 2008.

[KT98] Markus Keel and Terence Tao. Endpoint strichartz estimates. American Journal of Mathematics, pages 955–980, 1998.

[LPSS88] MJ Landman, GC Papanicolaou, C Sulem, and PL Sulem. Rate of blowup for solutions of the nonlinear schrödinger equation at critical dimension. Physical Review A, 36(8):3837, 1988.
[LZ10] Dong Li and Xiaoyi Zhang. Regularity of almost periodic modulo scaling solutions for mass-critical nls and applications. *Analysis & PDE*, 3(2):175–195, 2010.

[LZ12] Dong Li and Xiaoyi Zhang. On the rigidity of solitary waves for the focusing mass-critical nls in dimensions \(d \geq 2 \). *Science China Mathematics*, 55(2):385–434, 2012.

[M+93] Frank Merle et al. Determination of blow-up solutions with minimal mass for nonlinear schrödinger equations with critical power. *Duke Mathematical Journal*, 69(2):427–454, 1993.

[MR03] Frank Merle and Pierre Raphael. Sharp upper bound on the blow-up rate for the critical nonlinear schrödinger equation. *Geometric & Functional Analysis GAFA*, 13(3):591–642, 2003.

[MR04] Frank Merle and Pierre Raphael. On universality of blow-up profile for \(L^2 \) critical nonlinear schrödinger equation. *Inventiones mathematicae*, 156(3):565–672, 2004.

[MR05a] Frank Merle and Pierre Raphael. Profiles and quantization of the blow up mass for critical nonlinear schrödinger equation. *Communications in mathematical physics*, 253(3):675–704, 2005.

[MR+05b] Frank Merle, Pierre Raphael, et al. The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear schrodinger equation. *Annals of mathematics*, 161(1):157, 2005.

[MR06] Frank Merle and Pierre Raphael. On a sharper lower bound on the blow-up rate for the \(L^2 \) critical nonlinear schrödinger equation. *Journal of the American Mathematical Society*, 19(1):37–90, 2006.

[MT90] Frank Merle and Yosio Tsutsumi. \(L^2 \) concentration of blow-up solutions for the nonlinear schrödinger equation with critical power nonlinearity. *Journal of differential equations*, 84(2):205–214, 1990.

[MV98] Frank Merle and Luis Vega. Compactness at blow-up time for \(L^2 \) solutions of the critical nonlinear schrödinger equation in 2D. *International Mathematics Research Notices*, 1998(8):399–425, 1998.

[Naw90] Hayato Nawa. Mass concentration phenomenon for the nonlinear schrödinger equation with the critical power nonlinearity ii. *Kodai Mathematical Journal*, 13(3):333–348, 1990.

[Per01] Galina Perelman. On the blow up phenomenon for the critical nonlinear schrödinger equation in 1d. *Nonlinear dynamics and renormalization group (Montreal, QC, 1999)*, 27:147–164, 2001.

[Rap05] Pierre Raphael. Stability of the log-log bound for blow up solutions to the critical non linear schrödinger equation. *Mathematische Annalen*, 331(3):577–609, 2005.

[Tao06] Terence Tao. *Nonlinear dispersive equations: local and global analysis*, volume 106. American Mathematical Soc., 2006.

[TVZ08] Terence Tao, Monica Visan, and Xiaoyi Zhang. Minimal-mass blowup solutions of the mass-critical nls. In *Forum Mathematicum*, volume 20, pages 881–919, 2008.

[Tzi06] Nikolaos Tzirakis. Mass concentration phenomenon for the quintic nonlinear schrödinger equation in one dimension. *SIAM journal on mathematical analysis*, 37(6):1923–1946, 2006.

[VZ07] Monica Visan and Xiaoyi Zhang. On the blowup for the \(L^2 \)-critical focusing nonlinear schrödinger equation in higher dimensions below the energy class. *SIAM Journal on Mathematical Analysis*, 39(1):34–56, 2007.

[Wei83] Michael I Weinstein. Nonlinear schrödinger equations and sharp interpolation estimates. *Communications in Mathematical Physics*, 87(4):567–576, 1983.