EXPONENTIAL MIXING PROPERTY FOR AUTOMORPHISMS OF COMPACT KÄHLER MANIFOLDS

HAO WU

ABSTRACT. Let f be a holomorphic automorphism of a compact Kähler manifold. Assume moreover that f admits a unique maximal dynamic degree d_p with only one eigenvalue of maximal modulus. Let μ be its equilibrium measure. In this paper, we prove that μ is exponentially mixing for all d.s.h. test functions.

1. Introduction and main results

Let (X, ω) be a compact Kähler manifold of dimension k and let f be a holomorphic automorphism of X. Denote by f^* the pull-back operator acting on the Hodge cohomology groups $H^{p,q}(X, \mathbb{C})$. Recall that the dynamic degree of order q of f is the spectral radius of f^*. Khovanskii-Teissier-Gromov [9] proved that the function $q \mapsto \log d_q$ is concave. Thus there are integers $0 \leq p \leq p' \leq k$ such that

$$1 = d_0 < \cdots < d_p = \cdots = d_{p'} > \cdots > d_k = 1.$$

When $p = p'$ and in addition, when f^* acting on $H^{p,p}(X, \mathbb{C})$, admits only one eigenvalue of maximal modulus (necessary equal to d_p), there is a unique invariant probability measure $\mu := T_+ \wedge T_-$, where T_+ is the Green (p,p)-current of f and T_- is the Green $(k-p,k-p)$-current of f^{-1}. They satisfy $f^*(T_+) = d_p T^+$ and $f_*(T_-) = d_{k-p} T_-$. Moreover, for any positive closed (p,p)-current (resp. $(k-p,k-p)$-current) S of mass 1, we have $d_p^{-n} (f^n)^* S$ (resp. $d_{k-p}^{-n} (f^{-n})_* S$) converge to T_+ (resp. T_-). And T_+ (resp. T_-) is the unique positive closed current in the class $\{T_+\}$ (resp. $\{T_-\}$) (see [8]). The measure μ is called the equilibrium measure of f.

Recall that a function is quasi-plurisubharmonic (quasi-p.s.h for short) if locally it is the difference of a plurisubharmonic (p.s.h. for short) function and a smooth one. The following theorem is our first main result.

Theorem 1.1. Let f be a holomorphic automorphism on a compact Kähler manifold X of dimension k and let μ be its equilibrium measure. Let d_q be the dynamic degree of order q, $0 \leq q \leq k$. Assume that there is a integer p such that d_p is strictly large than other dynamic degrees and d_p admits only one eigenvalue of maximal modulus d_p. Then μ is exponentially mixing for bounded quasi-p.s.h. observables. More precisely, if δ is a constant such that $\max \{d_{p-1}, d_{p+1} \} < \delta < d_p$ and all the eigenvalues of f^*, acting on $H^{p,p}(X, \mathbb{C})$, except $d_{p'}$ are strictly smaller than δ, then there exists a constant $c > 0$, such that

$$\left| \int (\varphi \circ f^n) \psi \, d\mu - \left(\int \varphi \, d\mu \right) \left(\int \psi \, d\mu \right) \right| \leq c \left(\frac{d_p}{\delta} \right)^{-n/2} \|\varphi\|_{L^\infty} \|\psi\|_{L^\infty}$$

for all $n \geq 0$ and all bounded quasi-p.s.h. functions φ and ψ satisfy $d\varphi \geq -\omega, d\psi \geq -\omega$.

Another version of Theorem 1.1 has been proved in [7] for $\varphi, \psi \in C^2$ and it can be extended to C^α case, $0 < \alpha \leq 2$, using interpolation theory between Banach spaces. In this case, one considers the new system $(z, w) \mapsto (f^{-1}(z), f(w))$ on $X \times X$ and the test function $\varphi(z)\psi(w)$, which plays a linear “role” in the new system. Since $\varphi(z)\psi(w)$ is of class C^2 and in particular, it is Hölder continuous, some estimates of super-potentials on the currents with Hölder continuous super-potentials imply the desired result.

However, when φ and ψ are not of class of C^2, then same idea can not be directly applied since $\varphi(z)\psi(w)$ is not Hölder continuous in this case. In this paper, we do some regularization of quasi-p.s.h. functions, then we combine the idea above with some techniques in [11].

Recall that a function u on X with values in $\mathbb{R} \cup \{\pm \infty\}$ is said to be d.s.h. if outside a pluripolar set it is equal to a difference of two quasi-p.s.h. functions. Two d.s.h. functions are identified when they are equal out of a pluripolar set. Denote the set of d.s.h. functions by $\text{DSH}(X)$. Clearly it is a vector space and equips with a norm

$$
\|u\|_{\text{DSH}} := \left| \int_X u \omega^2 \right| + \min \|T^\pm\|,
$$

where the minimum is taken on all positive closed $(1, 1)$-currents T^\pm such that $dd^c u = T^+ - T^-$. A positive measure ν on X is said to be moderate if ν has no mass on pluripolar sets and for any bounded family \mathcal{F} of d.s.h. functions on X, there are constants $\alpha > 0$ and $c > 0$ such that

$$
\nu\{z \in X : |\psi(z)| > M\} \leq ce^{-\alpha M}
$$

for $M \geq 0$ and $\psi \in \mathcal{F}$ (see [3, 4, 6]). The papers [3, 8] show that if f is a holomorphic automorphism of a compact Kähler surface or more generally, on a compact Kähler manifold, then the equilibrium measure μ of f is moderate. Using the moderate property of μ and following the same approach as in the proof of Corollary 1.3 in [11], we get the following theorem, which removes the boundedness conditions of φ and ψ.

Theorem 1.2. Let f be a holomorphic automorphism of positive entropy on a compact Kähler surface X and let d_1 be the dynamic degree of order of 1. Then the equilibrium measure μ is exponentially mixing for all d.s.h observables. More precisely, if δ is a constant satisfies $1 < \delta < d_1$, then for any two d.s.h. functions φ and ψ, there exists a constant $c > 0$ such that

$$
\left| \int (\varphi \circ f^n) \psi d\mu - \left(\int \varphi d\mu \right) \left(\int \psi d\mu \right) \right| \leq c(d_1/\delta)^{-n/2}
$$

for all $n \geq 0$.

Now we consider a particular case. When X is a compact Kähler surface and f is of positive entropy, Gromov [10] and Yomdin [12] showed that the entropy is equal to $\log d_1$. Thus in this case, $d_1 > 1$. Moreover, Cantat [11] proved that the eigenvalues of f^*, acting on $H^{1,1}(X, \mathbb{C})$, are $d_1, 1/d_1$ and others with modulus 1. Thus we get the following corollary.
Corollary 1.3. Let f be a holomorphic automorphism of positive entropy on a compact Kähler surface X. Then the equilibrium measure μ is exponentially mixing for all d.s.h. observables.

In this paper, the symbols \lesssim and \gtrsim stand for inequalities up to a multiplicative constant.

Acknowledgements: This work was supported by the grant: AcRF Tier 1 R-146-000-248-114 from National University of Singapore.

2. Super-potentials of currents

In this section, we will introduce the notion called super-potential. The readers may refer to [5, 8] for details. Some estimates of super-potentials on a family of currents with Hölder continuous super-potentials also be obtained at the end of this section.

Denote by D^q the real space that generated by all positive closed (q,q)-currents on X.

Define a norm $\| \cdot \|_*$ on D^q by

$$\| \Omega \|_* := \min \{ \| \Omega^+ \| + \| \Omega^- \| \},$$

where $\| \Omega^\pm \| := \langle \Omega^\pm, \omega^{k-q} \rangle$ are the mass of Ω^\pm, and the minimum is taken over all the positive closed currents Ω^\pm with $\Omega = \Omega^+ - \Omega^-$. Observe that $\| \Omega^\pm \|$ only depend on the cohomology classes of Ω^\pm in $H^{q,q}(X, \mathbb{R})$. We have the following lemma.

Lemma 2.1. Let Ω be a real ddc-exact (q,q)-current on X and assume $\Omega \geq -S$ for some positive closed (q,q)-current S, then $\| \Omega \|_* \leq 2 \| S \|$.

Proof. Note that $\Omega + S$ is a positive closed current and we can write Ω as

$$\Omega = (\Omega + S) - S.$$

The mass of $\Omega + S$ is $\| S \|$ because Ω is ddc-exact. \qed

We introduce the $*$-topology on D_q: for a sequence of currents S_n in D_q, we say S_n converge to a current S in D_q if S_n converge to S in the sense of currents and if $\| S_n \|_*$ are uniformly bounded. Note that smooth forms are dense in D_q for this topology.

Let D^0_q be the subspace of D_q which contains all the currents of class $\{0\}$ in $H^{q,q}(X, \mathbb{R})$. It is not hard to see D^0_q is closed under the above topology.

Now we define the super-potential of a current $S \in D_q$. Fix a basis of $H^{q,q}(X, \mathbb{R})$, denoted by $\{ \alpha \} := \{ \{ \alpha_1 \}, \ldots, \{ \alpha_t \} \}$. We can assume all the α_j are smooth forms. For any $R \in D^0_{k-q+1}$, there exists a real $(k-q, k-q)$-current U_R such that $ddc U_R = R$. We call U_R a potential of R. After adding some closed form to U_R we can assume $\langle U_R, \alpha_j \rangle = 0$ for all $1 \leq j \leq t$, after that we say U_R is α-normalized. If in addition, R is smooth, then we can choose U_R smooth.

The α-normalized super-potential U_S of S is a linear functional on the smooth forms in D^0_{k-q+1}, and it is defined by

$$U_S(R) := \langle S, U_R \rangle,$$
where U_R is a smooth α-normalized potential of R. Note that $\mathcal{U}_S(R)$ does not depend on the choice of U_R.

If \mathcal{U}_S can be extended continuously to a linear functional on \mathcal{D}_{k-q+1} for the \star-topology we defined above, then we say S has a continuous super-potential. If $S \in \mathcal{D}_q$, then \mathcal{U}_S does not depend on the choice of α. If S is smooth, then it has a continuous super-potential and we have $\mathcal{U}_S(R) = \mathcal{U}_R(S)$, where \mathcal{U}_R is the super-potential of R. The equality still holds when we only assume S has a continuous super-potential (see [8]).

For any $0 < l < \infty$, we define a norm $\| \cdot \|_{\mathcal{E}^{-l}}$ and a distance dist_l on \mathcal{D}_p by

$$\| \Omega \|_{\mathcal{E}^{-l}} := \sup_{\| \Phi \|_{\mathcal{E}^{-1}} \leq 1} |\langle \Omega, \Phi \rangle| \quad \text{and} \quad \text{dist}_l(\Omega, \Omega') := \| \Omega - \Omega' \|_{\mathcal{E}^{-l}},$$

where Φ is a smooth test form of bidegree $(k - q, k - q)$ on X. For $0 < l < l' < \infty$, on any $\| \cdot \|_*$-bounded subset of \mathcal{D}_p, we have

$$\text{dist}_{l'} \leq \text{dist}_l \leq c_{l,l'}(\text{dist})^{l/l'}$$

for some positive constant $c_{l,l'}$ (see [8]).

For $S \in \mathcal{D}_q$ and constants $l > 0, 0 < \lambda \leq 1, M \geq 0$, a super-potential \mathcal{U}_S of S is said to be (l, λ, M)-Hölder continuous if it is continuous and it satisfies

$$|\mathcal{U}_S(R)| \leq M \| R \|_{\mathcal{E}^{-l}}^\lambda$$

for all $R \in \mathcal{D}_{k-q+1}$ with $\| R \|_* \leq 1$. If $l' > 0$ is another constant, the above identity for dist_l and $\text{dist}_{l'}$ implies that \mathcal{U}_S is also (l',λ,M')-Hölder continuous for some constants λ' and M' independent of S. And this definition does not depend on the normalization of the super-potential. We need the following two lemmas (see [7]).

Lemma 2.2. Let $R \in \mathcal{D}_{k-p+1}$ with $\| R \|_* \leq 1$ and \mathcal{U}_R is $(2, \lambda, M)$-Hölder continuous. There is a constant $A > 0$ independent of R, λ and M such that the super-potential \mathcal{U}_S of S satisfies

$$|\mathcal{U}_S(R)| \leq A(1 + \lambda^{-1} \log^+ M),$$

for any $S \in \mathcal{D}_p$ with $\| S \|_* \leq 1$, where $\log^+ := \max\{0, \log\}$.

Lemma 2.3. Let f, p be as in Theorem [7] and let $R \in \mathcal{D}_{k-p+1}$ whose super-potential \mathcal{U}_R is $(2, \lambda, M)$-Hölder continuous. Then there is a constant $A_0 \geq 1$ independent of R, λ, M such that the super-potential $\mathcal{U}_{f(R)}$ of $f(R)$ is $(2, \lambda, A_0 M)$-Hölder continuous.

We will use the above two lemmas to show the following result. A simple version was shown in [7], Proposition 3.1], which is crucial in the proof of exponential mixing theorem for \mathcal{C}^α observables for $0 < \alpha \leq 2$. Since T_+ is the unique positive current in $\{T_+ \}$, if $S \in \mathcal{D}_p$, then $d_p(f^n)^*(S)$ converge to a multiple of T_+.

Proposition 2.4. Let f, d_p, δ be as in Theorem [7] and $S \in \mathcal{D}_p$. Let r be the constant such that $d_p(f^n)^*(S)$ converge to rT_+. Let $R_\epsilon, 0 < \epsilon \leq 1/2$ be a family of currents in \mathcal{D}_{k-p+1} with $\| R_\epsilon \|_* \leq 1$ whose super-potentials \mathcal{U}_{R_ϵ} are $(2, \lambda, \epsilon^{-2})$-Hölder continuous. Let \mathcal{U}_n and \mathcal{U}_+ be the α-normalized super-potential of $d_p^{-n}(f^n)^*(S)$ and T_+ respectively. Then there exists a constant $c > 0$ such that

$$|\mathcal{U}_n(R_\epsilon) - r\mathcal{U}_+(R_\epsilon)| \leq -c\log \epsilon(d_p/\delta)^{-n}$$

for all n and ϵ.

EXPONENTIAL MIXING PROPERTY FOR AUTOMORPHISMS OF COMPACT KÄHLER MANIFOLDS 4
Proof. It was shown in [7, Section 3] and [8, Section 4] that for $S \in D^0_p$ smooth and closed, we have $|\mathcal{U}_n(R) - r^k \mathcal{U}_n(R)| \lesssim (d_p/\delta)^{-n}$ for all $R \in D^0_{k-p+1}$ with $||R||_* \leq 1$. So we can subtract a smooth closed (p, p)-form from S and assume that $S \in D^0_p$ and $r = 0$.

Fix a constant δ_0 such that $\max\{d_{p-1}, d_{p+1}\} < \delta_0 < \delta$. Then δ_0 satisfies the same properties of δ as in Theorem [1.1]. By Poincaré duality, the dynamic degree d_δ of f is equal to the dynamic degree $d_{k-p}(f^{-1})$ of f^{-1}. Since the mass of a positive current can be computed cohomologically, we have $|\mathcal{U}_n(R_\epsilon)| \lesssim \delta_0^n ||R_\epsilon||_*$.

Define $R_{n, \epsilon} := c^{-1} \delta_0^{-n} (f^n)_\ast (R_\epsilon)$ where $c \geq 1$ is a fixed constant large enough such that $||R_{n, \epsilon}||_* \leq 1$ for all n and ϵ. By Lemma [2.3], the super-potential of $R_{n, \epsilon}$, denoted by $\mathcal{U}_{R_{n, \epsilon}}$, is $(2, \lambda, A_0^n \epsilon^{-2})$-Hölder continuous for some $A_0 \geq 1$. On the other hand, since $S \in D^0_p$, by definition we have $\mathcal{U}_n(R_\epsilon) = \mathcal{U}_S((f^n)_\ast (R_\epsilon)) = c(d_p/\delta_0)^{-n} \mathcal{U}_S(R_{n, \epsilon})$.

Finally, applying Lemma [2.2], we obtain

$$|\mathcal{U}_n(R_\epsilon)| = c(d_p/\delta_0)^{-n} |\mathcal{U}_S(R_{n, \epsilon})| \lesssim (d_p/\delta_0)^{-n} \left(1 + \lambda^{-1} \log^+ (A_0^n \epsilon^{-2})\right) \lesssim - \log (d_p/\delta)^{-n}.$$

This finishes the proof. \qed

3. Exponentially mixing of μ

From now on, let f and d_p be as in Theorem [1.1] and let S be a positive closed (p, p)-current of mass 1 on X. Define a sequence of currents S_n by $S_n := d_p^{-n} (f^n)_\ast (S)$. We know that S_n converge to T_\ast. Denote by \mathcal{U}_n and \mathcal{U}_\ast the be the α-normalized super-potentials of $d_p^{-n} (f^n)_\ast (S)$ and T_\ast respectively.

Fix a bounded quasi-p.s.h. function ϕ on X such that $dd^c \phi \geq -\omega$. We consider the same regularization of ϕ as in [2, Theorem 2.1], with minor modifications of the proofs, which shows that there exists a family of smooth functions $\phi_\epsilon, 0 < \epsilon \leq 1/2$ such that $dd^c \phi_\epsilon \geq -\omega$, and ϕ_ϵ decreases to $\phi_0 := \phi$ when ϵ decreases to 0. And ϕ_ϵ satisfies the following two estimates:

$$||\phi_\epsilon - \phi||_{L^1(\omega^k)} \lesssim \epsilon \quad \text{and} \quad ||\phi_\epsilon||_{L^2} \lesssim \epsilon^{-2}. \quad (3.1)$$

Notice that the first estimate may not hold if we remove the boundedness condition of ϕ.

We define a sequence of functions h_ϵ and h on $[0, 1/2]$ by

$$h_\epsilon(\epsilon) = \mathcal{U}_n(\ddbar \phi_\epsilon \wedge T_-) \quad \text{and} \quad h(\epsilon) = \mathcal{U}_\ast(\ddbar \phi_\epsilon \wedge T_-).$$

By definition, $h_\epsilon(\epsilon) = \langle S_\epsilon \wedge T_-, \phi_\epsilon \rangle + \gamma_\epsilon$ and $h(\epsilon) = \langle T_\ast \wedge T_-, \phi_\epsilon \rangle = \langle \mu, \phi_\epsilon \rangle + \gamma_\epsilon$, where γ_ϵ is a constant depends on ϵ such that $(\phi_\epsilon + \gamma_\epsilon) \wedge T_-$ is the α-normalized potential of $dd^c \phi_\epsilon \wedge T_-$. Observe that h_ϵ converge pointwise to h on $[0, 1/2]$.

On the other hand, note that $\{\omega^k\}$ is a basis of $H^{k,k}(X, \mathbb{R})$. We consider the $\{\omega^k\}$-normalized super potential of $\mu = T_\ast \wedge T_-$. Define the function $g(\epsilon) := \mathcal{U}_\mu(\ddbar \phi_\epsilon) = \langle T_\ast \wedge T_-, \phi_\epsilon \rangle - \langle \omega^k, \phi_\epsilon \rangle$.

We have the following lemma.

Lemma 3.1. The function g is Hölder continuous at 0, i.e. $|g(\epsilon) - g(0)| \lesssim \epsilon^\alpha$ for some $\alpha > 0.$
Proof. Dinh-Sibony [8] showed that $T_+ \wedge T_-$ has a Hölder continuous super-potential. Thus by definition, we have
\[|g(\epsilon) - g(0)| \leq M \text{dist}_2(\mathcal{F}_{\epsilon}, \mathcal{F})^\alpha \]
for some constants $\alpha, M > 0$.

Since ϕ_ϵ is decreasing when ϵ decreases, by definition and estimates (3.1) we have
\[\text{dist}_2(\mathcal{F}_{\epsilon}, \mathcal{F}) = \sup_{\|\Phi\|_{\mathcal{F}} \leq 1} \langle \mathcal{F}_{\epsilon} - \mathcal{F}, \Phi \rangle = \sup_{\|\Phi\|_{\mathcal{F}} \leq 1} \langle \phi_\epsilon - \phi, d\Phi \rangle \]
\[\leq \|\phi_\epsilon - \phi\|_{L^1(\omega^k)} \lesssim \epsilon. \]

Therefore,
\[|g(\epsilon) - g(0)| \leq M \text{dist}_2(\mathcal{F}_{\epsilon}, \mathcal{F})^\alpha \lesssim \epsilon^\alpha. \]

We complete the proof of this lemma. \(\square\)

Since ϕ_ϵ is smooth for every $\epsilon \neq 0$, in particular it is Hölder continuous. We can easily get the estimates of $h_n(\epsilon)$ for $\epsilon \neq 0$ by using Proposition 2.4. Combining with the above lemma we have the following key proposition.

Proposition 3.2. Let h_n, h, S, S_n and ϕ be as above. We have
\[\langle S_n \wedge T_-, \phi \rangle - \langle T_+ \wedge T_-, \phi \rangle \lesssim (d_p/\delta)^{-n}. \]

Proof. Again, we fix a constant δ_0 such that $\max\{d_{p-1}, d_{p+1}\} < \delta_0 < \delta$. By Lemma 2.4, $\|dd^c\phi_\epsilon\|_* \leq 2$ for all ϵ, thus $\|dd^c\phi_\epsilon \wedge T_-\|_*$ are uniformly bounded for $1 < \epsilon \leq 1/2$. Since $\|\phi_\epsilon\|_{\mathcal{Y}} \lesssim \epsilon^{-2}$ and T_- has a Hölder continuous super-potential (see [8]), by [8, Proposition 3.4.2], $dd^c\phi_\epsilon \wedge T_-$ has a $(2, \lambda, M\epsilon^{-2})$-Hölder continuous super-potential for some constant λ and M. Multiplying ϕ by some constant allows us to assume $M = 1$ and $\|dd^c\phi_\epsilon \wedge T_-\|_* \leq 1$ for all $0 < \epsilon \leq 1/2$. Applying Proposition 2.4 to the family $dd^c\phi_\epsilon \wedge T_-$ instead of R_ϵ, we get that for $0 < \epsilon \leq 1/2,
\[h_n(\epsilon) - h(\epsilon) \lesssim -\log \epsilon (d_p/\delta_0)^{-n}. \]

Combine this with estimates (3.1) and Lemma 3.1, we have
\[h_n(0) - h(0) = \langle S_n \wedge T_-, \phi \rangle - \langle T_+ \wedge T_-, \phi \rangle \leq \langle S_n \wedge T_-, \phi_\epsilon \rangle - \langle T_+ \wedge T_-, \phi_\epsilon \rangle \]
\[= \langle S_n \wedge T_-, \phi_\epsilon \rangle - \langle T_+ \wedge T_-, \phi_\epsilon \rangle + \langle T_+ \wedge T_-, \phi_\epsilon \rangle - \langle T_+ \wedge T_-, \phi \rangle \]
\[= h_n(\epsilon) - h(\epsilon) + g(\epsilon) + \langle \omega^k, \phi_\epsilon \rangle - \langle \omega^k, \phi \rangle \]
\[\lesssim -\log \epsilon (d_p/\delta_0)^{-n} + \epsilon^\alpha + \epsilon \]

Finally, since $\alpha \leq 1$, by taking $\epsilon := (d/\delta_0)^{-n/\alpha}$, we get
\[h_n(0) - h(0) \lesssim n \log (d_p/\delta_0) (d_p/\delta_0)^{-n} + (d_p/\delta_0)^{-n} \lesssim (d_p/\delta)^{-n}. \]

The proof is complete. \(\square\)

Now we can start to prove Theorem 1.1.

Proof of Theorem 1.1: Multiplying φ and ψ by some constant allows us to assume $\|\varphi\|_{L^\infty} \leq 1/2$ and $\|\psi\|_{L^\infty} \leq 1/2$. It is sufficient to prove Theorem 1.1 for n even because
applying it to φ and $\psi \circ f$ gives the case of odd n. Using the invariance of μ, it is enough to show that

$$|\langle \mu, (\varphi \circ f^n)(\psi \circ f^{-n}) \rangle - \langle \mu, \varphi \rangle \langle \mu, \psi \rangle| \leq c(d_p/\delta)^{-n}$$

for some $c > 0$. It is equivalent to prove

$$\langle \mu, (\varphi \circ f^n)(\psi \circ f^{-n}) \rangle - \langle \mu, \varphi \rangle \langle \mu, \psi \rangle \leq c(d_p/\delta)^{-n}$$

and

$$\langle \mu, (\varphi \circ f^n)(-\psi \circ f^{-n}) \rangle - \langle \mu, \varphi \rangle \langle \mu, -\psi \rangle \leq c(d_p/\delta)^{-n}.$$

For $j = 1, 2$, we define

$$\varphi_j^+ = \varphi^2 + j\varphi + A, \quad \varphi_j^- = \varphi^2 + j\varphi - A, \quad \psi_j^+ = \psi^2 + j\psi + A, \quad \psi_j^- = -\psi^2 - j\psi + A,$$

where A is a positive constant whose value will be determined later. Consider the following eight functions on $X \times X$:

$$\Phi_{jl}^+(z, w) = \varphi_j^+(z)\psi_l^+(w), \quad \Phi_{jl}^-(z, w) = \varphi_j^-(z)\psi_l^-(w),$$

where $j, l = 1, 2$.

Lemma 3.3. The functions Φ_{jl}^\pm are quasi-p.s.h. on $X \times X$ for A large enough.

Proof. We only show Φ_{11}^+ is quasi-p.s.h. because the other cases can be obtained in the same way. By a direct computation (see also Lemma 3.1 in [11]), we have

$$i\partial\bar{\partial}\Phi_{11}^+ = (\varphi^2 + \psi + A)((2\varphi + 1)i\partial\varphi + 2i\partial\varphi \wedge \bar{\partial}\varphi) + (2\varphi + 1)(2\psi + 1)i\partial\varphi \wedge \bar{\partial}\psi + (2\varphi + 1)(2\psi + 1)i\partial\psi \wedge \bar{\partial}\varphi + (\varphi^2 + \varphi + A)((2\psi + 1)i\partial\varphi \wedge \bar{\partial}\psi + 2i\partial\psi \wedge \bar{\partial}\varphi)$$

Combining with the identity

$$i\partial\varphi \wedge \bar{\partial}\varphi + i\partial\psi \wedge \bar{\partial}\psi + i\partial\psi \wedge \bar{\partial}\varphi + i\partial\varphi \wedge \bar{\partial}\psi = i\partial(\varphi + \psi) \wedge \bar{\partial}(\varphi + \psi) \geq 0,$$

we get

$$i\partial\bar{\partial}\Phi_{11}^+ \geq (\varphi^2 + \psi + A)(2\varphi + 1)^2i\partial\varphi \wedge (\varphi^2 + \varphi + A)(2\psi + 1)\partial\bar{\partial}\psi$$

$$+ (2\varphi^2 + 2\varphi + 2A - (2\varphi + 1)(2\psi + 1))i\partial\varphi \wedge \bar{\partial}\varphi$$

$$+ (2\varphi^2 + 2\varphi + 2A - (2\varphi + 1)(2\psi + 1))i\partial\psi \wedge \bar{\partial}\psi.$$

Recall that we assume $\|\varphi\|_{L^\infty} \leq 1/2$ and $\|\psi\|_{L^\infty} \leq 1/2$. So $2\varphi + 1 \geq 0, 2\psi + 1 \geq 0$. We take A large enough such that $\varphi^2 + \psi + A, \varphi^2 + \varphi + A, 2\varphi^2 + 2\varphi + 2A - (2\varphi + 1)(2\psi + 1), 2\varphi^2 + 2\varphi + 2A - (2\varphi + 1)(2\psi + 1)$ are all positive. Since φ and ψ are quasi-p.s.h. on X and $i\partial\varphi \wedge \bar{\partial}\varphi$, $i\partial\psi \wedge \bar{\partial}\psi$ are positive, we get that Φ_{11}^+ is quasi-p.s.h. on $X \times X$.

We choose A large enough such that all the Φ_{jl}^\pm are bounded and quasi-p.s.h. on $X \times X$. Note that the choice of A is independent of φ and ψ. Define $\overline{\omega} := \pi_1^*\omega + \pi_2^*\omega$, where π_1, π_2 are the two canonical projections of $X \times X$ onto its factors. Then $\overline{\omega}$ is the canonical Kähler form on $X \times X$. From the computation in Lemma 3.3, we deduce that $dd^c\Phi_{11}^+ \geq -3A\overline{\omega}$. By Lemma 2.1, we get $\|dd^c\Phi_{11}^+\|_* \leq 6A$ on $X \times X$.

Next we consider the automorphism F of $X \times X$ which is defined by

$$F(z, w) := (f^{-1}(z), f(w)).$$

By using Kähler formula, we obtain that the dynamic degree of order k of F is equal to d^*_p (see also [7, Section 4]), and the dynamical
degrees and the eigenvalues of F^n on $H^{k,k}(X \times X, \mathbb{R})$, except d_p^2, are strictly smaller than $d_p\delta$. Hence F satisfy the conditions of f in Theorem 1.1.

It is not hard to see that the Green (k,k)-currents of F and F^{-1} are $T_+ \otimes T_+$ and $T_+ \otimes T_-$ respectively, and they satisfies $F^*(T_+ \otimes T_-) = d_p^2(T_- \otimes T_+), F_*(T_+ \otimes T_-) = d_p^2(T_+ \otimes T_-).$ In particular, they have Hölder continuous super-potentials. Let Δ denote the diagonal of $X \times X$. Then $[\Delta]$ is a positive closed (k,k)-current on $X \times X$. With the help of F, we get the following estimates.

Lemma 3.4. There exists a constant $c > 0$ such that

\[
\langle \mu, (\varphi_j^+ \circ f^n)(\psi_i^+ \circ f^{-n}) \rangle - \langle \mu, \varphi_j^+ \rangle \langle \mu, \psi_i^+ \rangle \leq c(d_p/\delta)^{-n}
\]

and

\[
\langle \mu, (\varphi_j^- \circ f^n)(\psi_i^- \circ f^{-n}) \rangle - \langle \mu, \varphi_j^- \rangle \langle \mu, \psi_i^- \rangle \leq c(d_p/\delta)^{-n}
\]

for all j, l and n.

Proof. We only show the lemma holds for φ^+_1 and ψ^+_1, the proofs of others are similar. For the automorphism F, consider the sequence of currents $d_p^{-n}(F^n)^*\mu$, which are currents of mass 1. Apply Proposition 3.2 to $d_p^{-2n}(F^n)^*[\Delta], T_+ \otimes T_-$ and Φ_{11}^+ instead of S_n, T_- and ϕ, we get

\[
\langle d_p^{-2n}(F^n)^*[\Delta] \wedge (T_+ \otimes T_-), \Phi_{11}^+ \rangle - \langle (T_- \otimes T_+) \wedge (T_+ \otimes T_-), \Phi_{11}^+ \rangle \lesssim (d^2/(d\delta))^{-n}.
\]

On the other hand, by definition, we have

\[
\langle d_p^{-2n}(F^n)^*[\Delta] \wedge (T_+ \otimes T_-), \Phi_{11}^+ \rangle = \langle [\Delta], d_p^{-2n}(F^n)*[(T_+ \otimes T_-) \wedge \Phi_{11}^+] \rangle
\]

\[
= \langle [\Delta] \wedge (T_+ \otimes T_-), \Phi_{11}^+ \rangle
\]

\[
= \langle (T_+ \wedge T_-), (\varphi_1^+ \circ f^n)(\psi_1^+ \circ f^{-n}) \rangle,
\]

and

\[
\langle (T_- \otimes T_+) \wedge (T_+ \otimes T_-), \Phi_{11}^+ \rangle = \langle \mu \otimes \mu, \Phi_{11}^+ \rangle = \langle \mu, \varphi_1^+ \rangle \langle \mu, \psi_1^+ \rangle.
\]

This finishes the proof of this lemma. \qed

End of the proof of Theorem 1.1 Consider $\alpha_{11}^+ = 2, \alpha_{22}^+ = \alpha_{11}^- = \alpha_{22}^- = 1$ and $\alpha_{21}^+ = \alpha_{12}^+ = \alpha_{21}^- = \alpha_{12}^- = 0$. A direct computation gives

\[
\sum_{j,l=1,2} \left(\alpha_{jl}^+(\varphi_j^+ \circ f^n)(\psi_l^+ \circ f^{-n}) + \alpha_{jl}^-(\varphi_j^- \circ f^n)(\psi_l^- \circ f^{-n}) \right)
\]

\[
= (\varphi \circ f^n)(\psi \circ f^{-n}) + \beta_1\varphi^2 \circ f^n + \beta_2\psi^2 \circ f^{-n} + \beta_3\varphi \circ f^n + \beta_4\psi \circ f^{-n} + \beta_5
\]

for some constants $\beta_t, 1 \leq t \leq 5$. We now apply this identity and Lemma 3.4. Observe that the invariance of μ implies that the terms involving β_t cancel each other out. We obtain

\[
\langle \mu, (\varphi \circ f^n)(\psi \circ f^{-n}) \rangle - \langle \mu, \varphi \rangle \langle \mu, \psi \rangle \leq \left(\sum_{j,l=1,2} (\alpha_{jl}^+ + \alpha_{jl}^-) \right) c d^{-n} = 6 c d^{-n}.
\]

Similarly, taking $\gamma_{11}^- = 2, \gamma_{11}^+ = \gamma_{21}^- = \gamma_{12}^+ = \gamma_{22}^- = 1$ and $\gamma_{22}^+ = \gamma_{21}^+ = \gamma_{12}^- = 0$, we get

\[
\langle \mu, (\varphi \circ f^n)(-\psi \circ f^{-n}) \rangle - \langle \mu, \varphi \rangle \langle \mu, -\psi \rangle \leq \left(\sum_{j,l=1,2} (\gamma_{jl}^+ + \gamma_{jl}^-) \right) c d^{-n} = 6 c d^{-n}.
\]
The above two inequalities imply inequality (3.2) and finish the proof of Theorem 1.1.

Using the moderate property of μ and the technical of replacing δ by δ_0, we can prove Theorem 1.2.

Proof of Theorem 1.2. It is enough to prove this theorem for all negative quasi-p.s.h. functions φ and ψ. Multiplying them by some constant allows us to assume $dd^c\varphi \geq -\omega, dd^c\psi \geq -\omega$ and $\langle \mu, |\varphi| \rangle \leq 1, \langle \mu, |\psi| \rangle \leq 1$. Define
\[
\varphi_1 := \max\{\varphi, -M\}, \quad \psi_1 := \max\{\psi, -M\},
\]
and
\[
\varphi_2 := \varphi - \varphi_1, \quad \psi_2 := \psi - \psi_1.
\]

Then φ_1 and ψ_1 are bounded quasi-p.s.h. functions which satisfy $dd^c\varphi_1 \geq -\omega, dd^c\psi_1 \geq -\omega$. Fix a constant δ_0 such that $1 < \delta_0 < \delta$. Applying Theorem 1.1 to φ_1 and ψ_1, we get
\[
\left| \int (\varphi_1 \circ f^n) \psi_1 \, d\mu - \left(\int \varphi_1 \, d\mu \right) \left(\int \psi_1 \, d\mu \right) \right| \leq \left(\frac{d_1}{\delta_0} \right)^{-n/2} M^2.
\]

On the other hand, since μ is moderate, we can repeat the same proof of Corollary 1.3 in [11] and get for some $\alpha > 0$,
\[
\|\varphi_2\|_{L^1(\mu)} \lesssim e^{-\alpha M/2}, \quad \|\psi_2\|_{L^1(\mu)} \lesssim e^{-\alpha M/2}, \quad \|\varphi_2\|_{L^2(\mu)} \lesssim e^{-\alpha M/2}, \quad \|\psi_2\|_{L^2(\mu)} \lesssim e^{-\alpha M/2}.
\]

From the invariance of μ, we have that $\|\varphi_2 \circ f^n\|_{L^p(\mu)} = \|\varphi_2\|_{L^p(\mu)}$ and $\|\psi_2 \circ f^n\|_{L^p(\mu)} = \|\psi_2\|_{L^p(\mu)}$ for $1 \leq p \leq \infty$. We do the following direct computation,
\[
\left| \langle \mu, (\varphi \circ f^n) \psi \rangle - \langle \mu, \varphi \rangle \langle \mu, \psi \rangle \right| = \left| \langle \mu, (\varphi_1 \circ f^n + \varphi_2 \circ f^n)(\psi_1 + \psi_2) \rangle - \langle \mu, \varphi_1 \rangle \langle \mu, \psi_1 \rangle + \langle \mu, \varphi_2 \rangle \langle \mu, \psi_2 \rangle \right|
\]
\[
\leq \left| \langle \mu, (\varphi_1 \circ f^n) \psi_1 \rangle - \langle \mu, \varphi_1 \rangle \langle \mu, \psi_1 \rangle \right| + \left| \langle \mu, (\varphi_1 \circ f^n) \psi_2 \rangle - \langle \mu, \varphi_1 \rangle \langle \mu, \psi_2 \rangle \right| + \left| \langle \mu, (\varphi_2 \circ f^n) \psi_1 \rangle - \langle \mu, \varphi_2 \rangle \langle \mu, \psi_1 \rangle \right| + \left| \langle \mu, (\varphi_2 \circ f^n) \psi_2 \rangle - \langle \mu, \varphi_2 \rangle \langle \mu, \psi_2 \rangle \right|
\]
\[
\leq \langle \mu, \varphi_1 \rangle \langle \mu, \psi_1 \rangle + M \|\varphi_2\|_{L^1(\mu)} + M \|\psi_2\|_{L^1(\mu)} + M \|\varphi_2\|_{L^2(\mu)} \|\psi_2\|_{L^2(\mu)} + \frac{M}{\delta_0} \|\varphi_2\|_{L^1(\mu)} \|\psi_2\|_{L^1(\mu)}
\]
\[
\leq \left(\frac{d_1}{\delta_0} \right)^{-n/2} M^2 + (2M + 2)e^{-\alpha M/2} + 2e^{-\alpha M}.
\]

Taking $M = \left(n \log \left(\frac{d_1}{\delta_0} \right) \right)/\alpha$, we obtain the estimate
\[
\left(\frac{d_1}{\delta_0} \right)^{-n/2} M^2 + (2M + 2)e^{-\alpha M/2} + 2e^{-\alpha M} \lesssim n^2 \left(\frac{d_1}{\delta_0} \right)^{-n/2} \lesssim \left(\frac{d_1}{\delta} \right)^{-n/2}.
\]

Therefore,
\[
\left| \int (\varphi \circ f^n) \psi \, d\mu - \left(\int \varphi \, d\mu \right) \left(\int \psi \, d\mu \right) \right| \lesssim \left(\frac{d_1}{\delta} \right)^{-n/2}.
\]

The proof is finished.
References

[1] Serge Cantat. Dynamique des automorphismes des surfaces K3. *Acta Math.*, 187(1):1–57, 2001.

[2] Tien-Cuong Dinh, Xiaonan Ma, and Viêt-Anh Nguyên. Equidistribution speed for Fekete points associated with an ample line bundle. *Ann. Sci. Éc. Norm. Supér. (4)*, 50(3):545–578, 2017.

[3] Tien-Cuong Dinh, Viêt-Anh Nguyên, and Nessim Sibony. Exponential estimates for plurisubharmonic functions and stochastic dynamics. *J. Differential Geom.*, 84(3):465–488, 2010.

[4] Tien-Cuong Dinh and Nessim Sibony. Dynamique des applications d’allure polynomiale. *J. Math. Pures Appl. (9)*, 82(4):367–423, 2003.

[5] Tien-Cuong Dinh and Nessim Sibony. Super-potentials of positive closed currents, intersection theory and dynamics. *Acta Math.*, 203(1):1–82, 2009.

[6] Tien-Cuong Dinh and Nessim Sibony. Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings. In *Holomorphic dynamical systems*, volume 1998 of *Lecture Notes in Math.*, pages 165–294. Springer, Berlin, 2010.

[7] Tien-Cuong Dinh and Nessim Sibony. Exponential mixing for automorphisms on compact Kähler manifolds. In *Dynamical numbers—interplay between dynamical systems and number theory*, volume 532 of *Contemp. Math.*, pages 107–114. Amer. Math. Soc., Providence, RI, 2010.

[8] Tien-Cuong Dinh and Nessim Sibony. Super-potentials for currents on compact Kähler manifolds and dynamics of automorphisms. *J. Algebraic Geom.*, 19(3):473–529, 2010.

[9] M. Gromov. Convex sets and Kähler manifolds. In *Advances in differential geometry and topology*, pages 1–38. World Sci. Publ., Teaneck, NJ, 1990.

[10] Mikhail Gromov. On the entropy of holomorphic maps. *Enseign. Math. (2)*, 49(3-4):217–235, 2003.

[11] Hao Wu. Exponential mixing property for Hénon-Sibony maps of \mathbb{C}^k. *arXiv e-prints*, page arXiv:1910.02437, Oct 2019.

[12] Y. Yomdin. Volume growth and entropy. *Israel J. Math.*, 57(3):285–300, 1987.

Department of Mathematics, National University of Singapore - 10, Lower Kent Ridge Road - Singapore 119076

E-mail address: e0011551@u.nus.edu