MIRKOVIC-VILONEN CYCLES AND POLYTOPES FOR A SYMMETRIC PAIR

JIUZU HONG

ABSTRACT. Let G be a connected, simply-connected, and almost simple algebraic group, and let σ be a Dynkin automorphism on G. Then (G, G^σ) is a symmetric pair. In this paper, we get a bijection between the set of σ-invariant MV cycles (polytopes) for G and the set of MV cycles (polytopes) for G^σ, which is the fixed point subgroup of G; moreover, this bijection can be restricted to the set of MV cycles (polytopes) in irreducible representations. As an application, we obtain a new proof of the twining character formula.

1. Introduction

Let G be a connected semisimple algebraic group over \mathbb{C}, and let G be the affine Grassmannian of G. Let G_λ be the $G(\mathbb{C}[t])$-orbit on G corresponding to a dominant coweight λ on G. Let IC_λ be the spherical perverse sheaf supported on G_λ. V. Ginzburg [G] and Mirković-Vilonen [MV] set up the geometric Satake correspondence, which says that the category of spherical perverse sheaves on G is equivalent to the category of finite dimensional representations of the Langlands dual group G^\vee of G; in particular, the irreducible representation $V(\lambda)$ of G^\vee with highest weight λ is identified with the cohomology group $H^*(G, IC_\lambda)$. Furthermore, Mirković and Vilonen [MV] discovered Mirković-Vilonen cycles which affords a natural basis of $V(\lambda)$.

In [A], Anderson studied the moment polytopes of Mirković-Vilonen cycles, which are called Mirković-Vilonen polytopes, and showed that these polytopes could be used to understand the combinatorics of representations of G^\vee. In [K1], Kamnitzer gave an explicit combinatorial description of the MV cycles and polytopes. He showed that canonical basis and MV cycles are governed by the same combinatorics, i.e MV cycles \leftrightarrow MV polytopes \leftrightarrow canonical basis, are bijections.

Let σ be a nontrivial Dynkin automorphism of G. We have a Dynkin automorphism on G^\vee induced from σ. Let G^σ be the identity component of fixed point group of σ on G. Let λ be a σ-invariant dominant coweight of G, which can also be viewed as a dominant coweight of G^σ. Let $V(\lambda)$ be the irreducible representation of G^\vee with highest weight λ. We have a natural action of σ on $V(\lambda)$ induced from the action of the automorphism on G^\vee, which fixes the highest weight vector in $V(\lambda)$. For a σ-invariant coweight μ for G, σ acts on the weight space $V_\mu(\lambda)$. The twining character is defined to be $\sum_{\sigma(\mu)=\mu} \text{trace}(\sigma|_{V_\mu(\lambda)}) e^\mu$. It is related to the character of the irreducible representation of $(G^\sigma)^\vee$ with highest weight λ through the twining character formula, which is attributed to Jantzen [J] under the name of Jantzen theorem in [KLP]. Though there are many proofs in the literature (for example [J], [N], [KLP]), it seems that there is no satisfactory explanation for why Langlands dual appears in this formula.

In this paper, we consider the action of σ on MV cycles and MV polytopes. The main result of the paper is to give an explicit bijection between σ-invariant MV cycles (polytopes) for G to MV cycles (polytopes) for G^σ. In terms of polytopes, it sends σ-invariant MV polytopes P for G, to P^σ, which is a MV polytope for G^σ. The bijection can be restricted to MV cycles (polytopes) in irreducible representation space.

In this paper, we also show that the automorphism on G^\vee from Tannakian formalism is a Dynkin automorphism. On $V(\lambda)$, there are two actions of σ, where one is induced from G^\vee, and the other
one is induced from the action of \(\sigma \) on MV cycles. We show that both of them agree, then we get a new proof of twining character formula through geometric Satake correspondence.

I would like to thank Professor T.Tanisaki for his contributions to the paper, including ideas, discussions and useful comments; I also appreciate his careful reading and enormous help on the improvement of writing. I am very indebted to Professor N.Xi for his support and encouragement on my mathematics study, and also much help to the paper. Finally, I would like to thank Professor G.Lusztig for some beneficial conversations during his stay in China in July, 2007.

The paper was written during the author’s visit to Hebrew University in Jerusalem under the support of Marie Curie Research Training Network. During the writing of this paper, I heard that Professor S.Naito and D.Sagaki have given a closely related result almost at the same time [NS1][NS2].

I would like to thank the referee for very helpful comments.

2. Dynkin automorphism

2.1. Notations. Let \(G \) be a connected, simply-connected and almost simple algebraic group of rank \(\ell \) over \(\mathbb{C} \). Let \(T \) be a maximal torus of \(G \) and let \(X^* = \text{Hom}(T, \mathbb{C}^\times) \), \(X_\ast = \text{Hom}(\mathbb{C}^\times, T) \) denote the weight and coweight lattices of \(T \). Then we have a natural perfect pairing \(\langle \cdot, \cdot \rangle : X_\ast \times X^* \to \mathbb{Z} \). Let \(W = N(T)/T \) denote the Weyl group.

Let \(I = \{1, \ldots, \ell\} \) denote vertices of the Dynkin diagram of \(G \). Let \(B \) be a Borel subgroup of \(G \) containing \(T \). Let \(\alpha_1, \alpha_2, \ldots, \alpha_\ell \) and \(\alpha_1^\vee, \alpha_2^\vee, \ldots, \alpha_\ell^\vee \) be simple roots and simple coroots of \(G \) with respect to \(B \), respectively. Then \(\alpha_{ij} = (\alpha_i^\vee, \alpha_j) \) is the entry of the Cartan matrix of \(G \). Note that \((X_\ast, X^*, \langle \cdot, \cdot \rangle, \alpha_i^\vee, \alpha_i; i \in I)\) is the root datum of \(G \). Let \(\lambda_1, \ldots, \lambda_\ell \in X_\ast \otimes \mathbb{R} \) be fundamental weights.

For \(i \in I \), let \(x_i: \mathbb{C} \to G \) and \(y_i: \mathbb{C} \to G \) be root homomorphisms (corresponding to \(\alpha_i \) and \(-\alpha_i \), respectively) which together with \(T \), \(B \) form a pinning of \(G \).

Let \(s_1, \ldots, s_\ell \in W \) be the set of simple reflections. Let \(w_0 \) be the longest element of \(W \), and let \(m \) be its length.

We use \(\geq \) for the usual partial order on \(X_\ast \), so that \(\mu \geq \nu \) if and only if \(\mu - \nu \) is a sum of positive coroots. More generally, for each \(w \in W \), we have the twisted partial order \(\geq_w \) on \(X_\ast \), where \(\mu \geq_w \nu \) if and only if \(w^{-1} \cdot \mu \geq w^{-1} \cdot \nu \).

A reduced word for an element \(w \in W \) is a sequence of indices \(i = (i_1, \ldots, i_k) \in I^k \) such that \(w = s_{i_1} s_{i_2} \cdots s_{i_k} \) is a reduced expression. In this paper, a reduced word will always mean a reduced word for \(w_0 \), where \(w_0 \) is the longest element in \(W \).

2.2. Group structure of \(G^\sigma \). Let \(\sigma: I \to I \) be a nontrivial bijection, satisfying \(a_{\sigma(i)\sigma(j)} = a_{ij} \) for all \(i, j \in I \). We assume that there are automorphisms \(\sigma: X^* \to X^* \) and \(\sigma: X_\ast \to X_\ast \) of \(\mathbb{Z} \)-modules satisfying \(\sigma(\alpha_i) = \alpha_{\sigma(i)} \) and \(\sigma(\alpha_i^\vee) = \alpha_{\sigma(i)}^\vee \) for any \(i \in I \). Then \(\sigma \) induces an automorphism \(\sigma: G \to G \) of algebraic groups, such that \(\sigma(x_i(a)) = x_{\sigma(i)}(a) \) and \(\sigma(y_i(a)) = y_{\sigma(i)}(a) \) (\(\forall i \in I \)). We call \(\sigma \) a Dynkin automorphism on \(G \). In particular, we have \(\sigma(B) = B \) and \(\sigma(T) = T \).

Let \(G^\sigma \) be the fixed point group of \(\sigma \) on \(G \), and let \(T^\sigma \) and \(B^\sigma \) be the fixed point groups of \(T \) and \(B \), respectively. Then \(G^\sigma \), \(B^\sigma \) and \(T^\sigma \) are connected, moreover \(G^\sigma \) is almost simple algebraic group, under our assumptions on \(G \), see \cite{SI}. We call \((G, G^\sigma)\) a symmetric pair.

We set \(X^*_\eta = \{ \lambda \in X_\ast | \sigma(\lambda) = \lambda \} \), and \(X^*_\eta \) is the character lattice of \(\lambda \). We have a perfect pairing \(X^*_\eta \times X^*_\eta \to \mathbb{Z} \) denoted again by \(\langle \cdot, \cdot \rangle \). Let \(\mathcal{I}_\eta \) be the set of \(\sigma \)-orbits on \(I \).

For any \(\eta \in \mathcal{I}_\eta \), let \(\alpha_{ij}^\eta = 2h \sum_{i \in I_\eta} \alpha_i^\vee \in X^*_\eta \), where \(h \) is the number of unordered pairs \((i, j)\) such that \(i, j \in \eta \), \(\alpha_i + \alpha_j \in \Phi \). Note that \(h = 1 \), if \(\eta = \{i, j\} \) and \(a_{ij} = -1 \); \(h = 0 \), otherwise. Let \(\theta: X^* \otimes \mathbb{R} \to X^*_\eta \otimes \mathbb{R} \) be the natural surjection induced from the perfect pairing \(\langle \cdot, \cdot \rangle : X_\ast \times X^* \to \mathbb{Z} \).
Set $\alpha_\eta = \theta(\alpha_i)$, and $\lambda_\eta = \frac{1}{k}\theta(\lambda_i)$, where i is any element of η. We have the following proposition (see [KLP], [J]).

Proposition 2.1. $(X^*_n, X^*_n, \alpha'_n, \alpha_n)$ is a root datum of G^σ.

Define $x_\eta = \prod_{i \in \eta} x_i: \mathbb{C} \to G^\sigma$, by $x_\eta(a) = \prod_{i \in \eta} x_i(a)$, if η has only one element, or $\forall \ i, j \in \eta$, with $i \neq j$, $a_{ij} = 0$; define $x_\eta: \mathbb{C} \to G^\sigma$, by $x_\eta(a) = x_i(a)x_j(2a)x_i(a)$, if $\eta = \{i, j\}$, $a_{ij} = -1$. We have the following lemma, see [LI].

Lemma 2.2. Let x_1, x_2 be two simple root subgroup homomorphisms of G of type A_2 corresponding to α_1 and α_2. Then we have $x_1(a_1)x_2(a_2)x_1(a_3) = x_2(a_2a_3)x_1(a_1 + a_3)x_2(a_1a_3)$.

From this lemma, we see easily that x_η is a group homomorphism. Similarly, we can define y_η, so that x_η and y_η are homomorphisms from \mathbb{C} to G^σ. Since $tx_\eta(a)t^{-1} = x_\eta(\alpha_\eta(t)a)$, x_η is a root subgroup homomorphism of G^σ with root α_η. We have

Proposition 2.3. $(\sigma^*, B^\sigma, x_\eta, y_\eta; \eta \in I_\eta)$ form a pinning of G^σ.

Clearly, $\sigma: G \to G$ induces an automorphism of W denoted again by σ, satisfying $\sigma(s_i) = s_{\sigma(i)}$ for any $i \in I$. Let $W^\sigma = \{w \in W|\sigma(w) = w\}$. For any $\eta \in I_\eta$ we define $s_\eta \in W^\sigma$ to be the longest element in the subgroup of W generated by $\{s_i; i \in \eta\}$. It is known that W^σ is a Coxeter group on the generators $\{s_{\eta}; \eta \in I_\eta\}$. Any element $w \in W^\sigma$ can be restricted to X^*_n. Under this restriction, we can see that W^σ is identified with the Weyl group of G^σ. For $w \in W^\sigma$, we denote by $\ell_\sigma(w)$ the length of w in the Coxeter group W^σ.

3. **MV cycles and MV polytopes for the symmetric pair**

3.1. **Action of σ on Affine Grassmannian.** Let $O = \mathbb{C}[t]$, and let K be the quotient field of O. Let G and G_σ be affine Grassmannian of G and G^σ respectively. As the sets of rational points over \mathbb{C}, $G = G(K)/G(O)$, and $G_\sigma = G(K)^\sigma/G(O)^\sigma$. A coweight μ in X_* gives a point in G, denoted by \mathfrak{t}^μ. It is known that \mathfrak{t}^μ is a fixed points for the action of T on G. In fact all the fixed points of T are given in this way.

For a given dominant coweight λ, we set $G^\lambda = G(O) \cdot t^\lambda$. We have the decomposition $G = \bigsqcup_{\mu \in X^+_n} G^\lambda$, where X^+_n is the set of dominant coweights.

Let N be the unipotent radical of B. For $w \in W$, we set $N_w = wNw^{-1}$. For $w \in W$ and $\mu \in X_*$, define the semi-infinite cells by $S^\mu_w = N_w(K) \cdot \mathfrak{t}^\mu$. For simplicity, we set $S^\mu = S^\mu_w = N(K) \cdot \mathfrak{t}^\mu$. We have $G = \bigsqcup_{\mu \in X_\sigma} S^\mu$. The semi-infinite cells have the simple containment relation, $S^\mu_\sigma = \bigsqcup_{\nu \leq \mu} S^\nu_\sigma$. We see that if $S^\mu_\sigma \cap S^\nu_\sigma \neq \emptyset$, then $\nu \leq \mu$.

We have the closed embedding $i: G_\sigma \hookrightarrow G$. Since $\sigma(S^\lambda) = S^{\sigma(\lambda)}$, we have $G^\sigma = \bigsqcup_{\lambda \in X^2_\sigma} (S^\lambda)^\sigma$.

Set $U := \{g(t^{-1}) \in G(\mathbb{C}[t^{-1}])|g(0) = 1\}$. Then the fixed point set $U^\sigma = \{g(t^{-1}) \in G^\sigma(\mathbb{C}[t^{-1}])|g(0) = 1\}$. For a coweight λ, set $S(\lambda) := N(\mathbb{C}[t, t^{-1}]) \cap t^\lambda U t^{-\lambda}$ and $S_\sigma(\lambda) := N(\mathbb{C}[t, t^{-1}]) \cap t^\lambda U^\sigma t^{-\lambda}$. The following result should be well-known.

Lemma 3.1. Let $\lambda \in X_*$. Then the group $S(\lambda)$ acts simply-transitively on S^λ, i.e., $S(\lambda) \simeq S^\lambda$, with the map $g \mapsto g \cdot \mathfrak{t}^\lambda$.

Proposition 3.2. The fixed point subvariety of the action of σ on G is exactly identified with G_σ.

Proof. From Lemma 3.1, we are reduced to show $S(\lambda)^\sigma = S_\sigma(\lambda)$ for $\lambda \in X^*_\sigma$, and it is easy to see, since $S(\lambda)^\sigma = N(\mathbb{C}[t, t^{-1}])^\sigma \cap (t^\lambda U t^{-\lambda})^\sigma = N^\sigma(\mathbb{C}[t, t^{-1}]) \cap t^\lambda U^\sigma t^{-\lambda} = S_\sigma(\lambda)$.
Corollary 3.3. For λ a σ-invariant, and w a σ-invariant element in W, we have $(G^\lambda)^\sigma = G^\lambda$, $\overline{G^\lambda} = G^\lambda$, $(S^\mu_w)^\sigma = (S^\mu_w)^\lambda$, and $\overline{S^\mu_w} = (S^\mu_w)^\lambda$.

3.2. MV cycles and MV polytopes. Let μ_1, μ_2 be coweights with $\mu_1 \geq \mu_2$. Following Anderson [A], an irreducible component of $S^{\mu_1}_w \cap S^{\mu_2}_w$ is called an MV cycle with coweight (μ_1, μ_2). This definition of an MV cycle is a generalization of the original one in [MV]. X_σ acts on G by $\nu \cdot L := t^\nu \cdot L$. Since T normalizes N_w, we see that $\nu \cdot S^\mu_w = S^{\mu+\nu}_w$. If A is a component of $S^{\mu_1}_w \cap S^{\mu_2}_w$, then $\nu \cdot A$ is a component of $S^{\mu_1+\nu}_w \cap S^{\mu_2+\nu}_w$. Hence X_σ acts on the set of all MV cycles. The orbit of an MV cycle with coweight (μ_1, μ_2) is called a stable MV cycle with coweight $\mu_2 - \mu_1$. Note that a stable MV cycle with coweight μ has a unique representative with coweight $(\nu, \nu + \mu)$ for a fixed coweight ν.

Let MVC_G denote the set of stable MV cycles for G, and let MVC_G^w denote the set of those with coweight μ. For a T-invariant closed subvariety A of the affine Grassmannian, let $\Phi(A) \subset t_\mathbb{R} := X_\sigma \otimes \mathbb{R}$ be the moment polytope of A, which is exactly the convex hull of $\{\mu \in X_\sigma | t^\mu \in A\}$.

If A is an MV cycle with coweight (μ_1, μ_2), then we say that $\Phi(A)$ is an MV polytope with coweight (μ_1, μ_2). The action of X_σ on the set of MV cycles gives an action of X_σ on the set of MV polytopes. It is easy to see that $\nu \cdot P = P + \nu$. The orbit of X_σ on an MV polytope with coweight (μ_1, μ_2) is called a stable MV polytope with coweight $\mu_2 - \mu_1$.

Let MVP_G be the set of stable MV polytopes for G, and let MVP_G^w be the set of stable MV polytopes for G with coweight μ. As mentioned in [A], there is a natural bijection between MVC_G and MVP_G. Let C be an MV cycle, and $[C]$ be its stable MV cycle. Let P_C be the corresponding MV polytope of C, and P_C be its stable MV polytope. If there is no confusion, we write C (resp. P) for both MV cycle (or polytope) and stable MV cycle (resp. polytope).

Suppose we are given a collection of coweights $\mu_\bullet = (\mu_w)_{w \in W}$ such that $\mu_w \leq_w \mu_w$ for all $v, w \in W$. Then we define the corresponding pseudo-Weyl polytope by:

$$P(\mu_\bullet) := \cap_w C^w = \{\alpha | \alpha \cdot w \cdot \lambda_i \leq \langle \mu_w, w \cdot \lambda_i \rangle, \forall w \in W, \text{ and } i \in I\}.$$

For a collection $(\mu_w)_{w \in W}$ with coweights such that $\mu_y \leq_w \mu_w$, for any $y, w \in W$, set $A(\mu_\bullet) = \cap_w S^\mu_w$, and let Conv$(\mu_\bullet)$ be the convex hull of $(\mu_w)_{w \in W}$ in $t_\mathbb{R}$. $A(\mu_\bullet)$ is called a GGMS stratum, and it is a candidate of MV cycles. If it is not empty, then the moment polytope of $A(\mu_\bullet)$ is exactly Conv(μ_\bullet) (see Lemma 2.3, [K1]), which also coincides with $P(\mu_\bullet)$. That is, Conv$(\mu_\bullet) = P(\mu_\bullet)$.

The following theorem gives a criterion for the closure of a GGMS stratum to be an MV cycle.

Theorem 1 (Kamnitzer [K1]). Let $(\mu_w)_{w \in W}$ be the set with coweights, such that $\mu_y \leq_w \mu_w$, for any $y, w \in W$. Then $A(\mu_\bullet) = \cap_w S^\mu_w$ is an MV cycle if and only if Conv(μ_\bullet) is an MV polytope.

Let P be an MV polytope with vertices $(\mu_w)_{w \in W}$. Then P is the moment polytope of an MV cycle $\cap_w S^\mu_w$. In this case, $\sigma(\cap_w S^\mu_w) = \cap_w S^\sigma(\mu_w)$ is also an MV cycle, and its moment polytope is exactly Conv$(\sigma(\mu_{\sigma^{-1}(w)}))$. Hence it is an MV polytope with vertices $(\sigma(\mu_{\sigma^{-1}(w)}))_{w \in W}$, which coincides with P.

Lemma 3.4. Let $(\mu_w)_{w \in W}$ be the vertices of an MV polytope P, and let $A(\mu_\bullet)$ be the corresponding GGMS stratum, such that $A(\mu_\bullet)$ is an MV cycle. Then the following statements are equivalent:

1. P is σ-invariant.
2. $A(\mu_\bullet)$ is σ-invariant.
3. $A(\mu_\bullet)$ is σ-invariant.
4. $\sigma(\mu_w) = \mu_{\sigma(w)}$, $\forall w \in W$.

Proof. Since MV cycles are parametrized by MV polytopes bijectively, it is easy to see that the moment polytope of $\sigma(\cap_w S^\mu_w)$ is $\sigma(P)$. So P is σ-invariant if and only if $A(\mu_\bullet)$ is σ-invariant, i.e.,

(1) \Leftrightarrow (2).
Assume \(A(\mu) \) is \(\sigma \)-invariant. Then \(\overline{NS_w} = \overline{S^\sigma(w^{-1}(w))} \). Since \(\overline{S^\sigma(w)} \) and \(\overline{S^\sigma(w^{-1}(w))} \) are locally closed, we have \((\overline{S^\sigma(w)}) \cap (\overline{S^\sigma(w^{-1}(w))}) \neq \emptyset \). It implies that, \(\forall w \in W, S^\sigma_w \cap S^\sigma(w^{-1}(w)) \neq \emptyset \). Hence \(\mu_w = \sigma(\mu_{w^{-1}}) \), \(\forall w \in W \). So \((2) \Rightarrow (4)\).

It is easy to see \((3) \Leftrightarrow (4)\), and \((4)\) implies \((1)\) immediately.

3.3. Lusztig datum. Let \(i \) be a reduced word, and \(n_\bullet \in \mathbb{N}^m \). Recall some results in [K1]. We define \(\{\mu_w\}_{0 \leq k \leq m} \) inductively by \(\mu_0 = 0 \) and \(\mu_{w_k} = \mu_{w_{k-1}} - n_k w_{k-1}^{-1}(\alpha_i \mathbf{x}) \), for any \(1 \leq k \leq m \). Then \(A^I(n_\bullet) = \overline{S^\mu(w)} \). If \(n_\bullet \) is an \(\sigma \)-invariant, then \(\overline{A^I(n_\bullet)} \) is dense in \(\overline{A^I(n_\bullet)} \).

We give a necessary and sufficient condition on the \(i \)-Lusztig datum \(n_\bullet \), so that \(P \) is \(\sigma \)-invariant.

Proposition 3.5. Let \(w_0 = s_{\eta_1} s_{\eta_2} \cdots s_{\eta_m} \) be a reduced expression of \(w_0 \) relative to the Coxeter group \(W^\sigma, \) where \(\eta_1, \eta_2, \cdots, \eta_m \), are orbits of \(\sigma \) in \(I \). For each \(\eta \), we fix a reduced expression of \(s_\eta \) as an element of \(W \), and denote by \(\overline{\mu}_{w_\eta} \), \(\mu_{w_\eta} \) the corresponding MV polytope of type \(R_\eta \). Then \(P \) is \(\sigma \)-invariant if and only if \(n_1 = n_2 = \cdots = n_r, \) \(n_{r+1} = n_{r+2} = \cdots = n_{r+r_2}, \cdots \), where \(r_\eta \) is the length of \(s_\eta \) as an element of \(W \).

Proof. For any orbit \(\eta \) of \(\sigma \), let \(R_\eta \) be the root system generated by \(\{\alpha_i; i \in \eta\} \). Let \(W_\eta \) be the Coxeter group generated by \(\{s_i; \text{ for } i \in \eta\} \). Then \(s_\eta \) is the longest element in \(W_\eta \).

Recall that \(n_\eta \) is the length of the edge connecting \(\mu_{w_{k-1}} \) and \(\mu_{w_k} \), i.e. \(\mu_{w_k} - \mu_{w_{k-1}} = -n_{k} w_{k-1}^{-1}(\alpha_i \mathbf{x}) \). The convex hull of \(\{\mu_w; w \in W_\eta\} \) forms an MV polytope for an algebraic group of type \(R_\eta \). We denote it by \(P_{\eta 1} \). From \(\mu_{w_{1}} \cdots, \mu_{w_{r_\eta}} \), we get a Lusztig datum \((n_1, n_2, \cdots, n_{r_\eta}) \) along the chosen reduced word of \(s_\eta \). The convex hull of \(\{\mu_w; w = s_\eta y, \text{ for } y \in W_{\eta_0}\} \) forms an MV polytope of type \(R_\eta \). We denote it by \(P_{\eta 2} \). From \(\mu_{w_{1}} \cdots, \mu_{w_{r_\eta}} \), we get a Lusztig datum \((n_{r_\eta+1}, n_{r_\eta+2}, \cdots, n_{r_\eta+r_2}) \) along the chosen reduced word of \(s_{\eta_2} \). Similarly, we get subsequently MV polytopes \(P_{\eta 3}, \cdots, P_{\eta m} \), with type \(R_{\eta_3}, \cdots, R_{\eta_m} \). We also get their corresponding Lusztig data along the chosen reduced words of \(s_{\eta_i} \).

Now let us return to the proof. If \(P \) is \(\sigma \)-invariant, we have \(\sigma(\mu_w) = \mu_{\sigma(w)} \), for all \(w \in W \), by Lemma 3.4. Applying Lemma 3.4, we see that \(P_{\eta k} \) for all \(k \), are \(\sigma \)-invariant.

Let us that there are two possibilities: \(A_2 \) and \(A_1 \times A_1 \times \cdots \times A_1 \) (with \(l \) copies of \(A_1 \), where \(l = 2 \) or 3) for \(R_\eta \). Hence the sufficient part is reduced to the following two cases which are easy to check.

1. \(A_2 \), if \(P \) is \(\sigma \)-invariant, then \(n_1 = n_2 = n_3 \).
2. \(A_1 \times A_1 \times \cdots \times A_1 \), if \(P \) is \(\sigma \)-invariant, then \(n_1 = n_2 = \cdots = n_l \).

Conversely, from \(A^I(n_\bullet) = \cap_k S^\mu_{w_k} \), we have \(\sigma(A^I(n_\bullet)) = A^I(n_\bullet) \), where \(j = (\sigma(i_1), \sigma(i_2), \cdots, \sigma(i_m)) \).

From the condition of \(n_\bullet \), it is easy to see \(R^I(n_\bullet) = n_\bullet \). Hence their closures coincide, i.e. the corresponding MV cycle of this \(i \)-Lusztig datum is \(\sigma \)-invariant. By Lemma 3.4, \(P \) is \(\sigma \)-invariant.
 \(\square \)
3.4. The bijection between MV cycles (polytopes) for a symmetric pair. Let P be a $σ$-invariant MV polytope for G. In this subsection, we will show that $P^σ$ is an MV polytope for $G^σ$, and then we get the bijection between MV polytopes for a symmetric pair.

Consider the symmetric pair (A_4, B_2). For the longest element in the Weyl group W, we have reduced expressions $w_0 = s_1s_4 \cdot s_2s_3s_2 \cdot s_1s_4 = s_2s_3s_2 \cdot s_1s_4 \cdot s_2s_3s_2 \cdot s_1s_4$. We get two reduced words $ι_σ$ and $ι'_σ$ for $G^σ$ from these two expressions of w_0. From $ι_σ$ and $ι'_σ$, we naturally get 2 reduced words for $G, i = (1, 4, 2, 3, 2, 1, 4, 2, 3, 2)$, $i' = (2, 3, 2, 1, 4, 2, 3, 2, 1, 4)$, respectively. Let n_*, n'_* be Lusztig data along i and i' for P, respectively. According to Proposition 3.5, we may write n_* and n'_* as follows

\[n_* = (n_1, n_2, n_3, n_4, n_5, n_6) \in \mathbb{N}^{10}, \]

\[n'_* = (n'_1, n'_2, n'_3, n'_4, n'_5, n'_6) \in \mathbb{N}^{10}, \]

where n_k, n'_k are non-negative integers.

Set $n^σ_*(i) = (n_1, n_2, n_3, n_4)$. By sending n_* to $n^σ_*$, we get a bijection between $ι$-Lusztig data of $σ$-invariant MV polytopes for G and $ι'$-Lusztig data of MV polytopes for $G^σ$. We shall show this bijection is intrinsic, and independent of the choice of reduced words. Note that the above procedure works for general case.

For any subvariety $Y \subset G$, we set $Y^σ := \{ y \in Y | σ(y) = y \}$.

Let $B(n_*^σ) = \{(b_*) \in K^{ℓ(w_0)} | val(b_*) = n_k, \forall k \}$ and $B_σ(n^σ_*) = \{(b_*) \in K^{ℓσ(w_0)} | val(b_*) = n^σ_k, \forall k \}$, where val is the valuation function on K. Define a map $j_σ$ from $B_σ(n^σ_*)$ to $B(n_*^σ)$ by $j_σ(b_1, b_2, b_3, b_4) = (b_1, b_2, 2b_2, b_3, b_3, b_4, 2b_4, b_4)$. We get two $ι$ and $ι'$ are reduced words of G resulting from the reduced words of $G^σ$, $ι_σ$ and $ι'_σ$ respectively, in the sense of Proposition 3.5.

Lemma 3.6. Let n_* be a $σ$-invariant $ι$-Lusztig datum. Then $A^ι(n_*^σ) = A^ι'(n^σ_*)$.

Proof. We only show this lemma for the pair (A_4, B_2), and the following argument works in general.

Let $ι : A^ι(n^σ_*) \hookrightarrow G$ be the natural imbedding, which is the restriction of $ι : G_σ \hookrightarrow G$. We have surjections $ι_ι : B_σ(n^σ_*) \twoheadrightarrow A^ι(n^σ_*)$, and $ι_ι : B(n_*^σ) \rightarrow A^ι(n_*^σ)$, which are given by

\[π_ι(b_1, b_2, b_3, b_4) = [η_ιw^{-1}(x_{ι_1}(b_1)x_{ι_2}(b_2)x_{ι_3}(b_3)x_{ι_4}(b_4))], \]

\[π_ι(b_1, b_2, b_3, b_4, 2b_4, b_4) = \]

\[[η_ιw^{-1}(x_{ι_1}(b_1)x_{ι_2}(b_2)x_{ι_3}(2b_2)x_{ι_2}(b_2) \cdot x_1(b_3)x_3(2b_3)x_2(b_3) \cdot x_2(b_4)x_3(2b_4)x_2(b_4))]. \]

where $x_{ι_1}$ and $x_{ι_2}$ are root subgroup homomorphisms for $G^σ$, and we denote by $\lceil \rceil$ the projection from $G(Κ)$ to G. For the definition of $η_ιw$, see (section 4.4, [11]). Since $x_1(b_1)x_3(b_3) = x_{ι_1}(b_1), x_2(b_2)x_2(b_2) = x_{ι_2}(b_2)$, for $ι = 1$ or 3, and $x_2(b_2)x_2(b_2) = x_{ι_2}(b_2)$, for $ι = 2$ or 4, we can see that $ι \circ ι_ι = π_ι \circ j_σ$, i.e., we have the following commutative diagram

\[\begin{array}{ccc}
B_σ(n^σ_*) & \xrightarrow{j_σ} & B(n_*^σ) \\
\downarrow π_ι & & \downarrow π_ι \\
A^ι(n^σ_*) & \xrightarrow{ι} & A^ι(n_*^σ).
\end{array} \]

Since $π_ι(B_σ(n^σ_*)) = A^ι(n^σ_*)$, we have $A^ι(n^σ_*) \subset A^ι(n_*^σ)^σ$.

Assume n_* is of coweight $µ$. It is known that $X(µ) = S^σ_0 \cap S^w_µ = \bigcup A^ι(n_*)$, where the union is taken over n_*, such that n_* is an $ι$-Lusztig datum with coweight $µ$. Hence we have

\[X(µ)^σ = \bigcup A^ι(n_*)^σ, \]

where $A^ι(n_*)$ appear in the right hand side.
Corollary 3.7. Let $P = \text{Conv}(\mu) = \bigcup A^1(\mu)$, where the union is taken over μ such that μ is an i_σ-Lusztig datum with coweight μ.

Let $m_\bullet = (m_1, m_2, m_3, m_4)$ be an i_σ-Lusztig datum, such that $\overline{A^1(m_\bullet)}$ is an MV cycle for G^σ with coweight μ. Let $n''_\bullet = (n_1, n_2, n_3, n_4)$. Then n''_\bullet is σ-invariant, and hence $A^1(n_\bullet) \subset A^1(n''_\bullet)^\sigma$. By comparing decompositions of $X(\mu)^\sigma$ in [1] and [2], we obtain $A^1(n_\bullet)^\sigma = A^1(n''_\bullet)^\sigma$.

Remark 3.1. From this lemma, we see that the closure of the fixed point set of σ on some open subset of a σ-invariant MV cycle C is an MV cycle for G^σ. We believe that the fixed point set of σ on σ-invariant MV cycle for G is an MV cycle for G^σ.

Corollary 3.7. If $A^1(n_\bullet)^\sigma$ is not σ-invariant, then $A^1(n''_\bullet)^\sigma$ is empty.

Lemma 3.8. If n_\bullet is a σ-invariant i-Lusztig datum, and $R_i^1(n_\bullet) = n'_\bullet$, then $(A^1(n_\bullet) \cap A^1(n''_\bullet))^\sigma$ contains an open dense subset.

Proof. We can change i to i' by combining several braid d-moves.

If $(\cdots, i_k, i_{k+1}, i_{k+2}, i_{k+3}, \cdots) \mapsto (\cdots, i_k, i_{k+2}, i_{k+1}, i_{k+3}, \cdots, i_{k+4}, \cdots)$, $(d = 2)$, define a rational map from $B(n_\bullet)$ to $B(n''_\bullet)$, by

$(\cdots, b_k, b_{k+1}, b_{k+2}, b_{k+3}, \cdots) \mapsto (\cdots, b_k, b_{k+2}, b_{k+1}, b_{k+3}, \cdots)$.

If $(\cdots, i_k, i_{k+1}, i_{k+2}, i_{k+3}, i_{k+4}, \cdots) \mapsto (\cdots, i_k, i_{k+2}, i_{k+1}, i_{k+4}, i_{k+3}, \cdots)$, $(d = 3)$, then we define a rational map from $B(n_\bullet) \cap B(n''_\bullet)$ by

$(\cdots, b_k, b_{k+1}, b_{k+2}, b_{k+3}, b_{k+4}, \cdots) \mapsto (\cdots, b_k, b_{k+2}b_{k+3}, b_{k+4}b_{k+1} + b_{k+3}b_{k+2}, b_{k+4}, b_{k+3}, \cdots)$.

It is well-known that, by several braid d-moves, we can arrive at Y from i. Let $i \mapsto i_1 \mapsto i_2 \mapsto \cdots \mapsto i'$ be one such path, where \mapsto represents a braid d-move. For a path from i to i', we denote the rational map f by combining those in each step defined above. Assume $f(b_1, \cdots, b_m) = (b'_1, \cdots, b'_m)$. It is easy to see that b'_k is a rational function with numerator and denominator as nonzero polynomials with nonnegative integral coefficients. Consider the diagram

\[
\begin{array}{ccc}
B(n_\bullet) & \xrightarrow{f} & B(n''_\bullet) \\
\downarrow \pi_1 & & \downarrow \pi_1 \\
A^1(n_\bullet) & \xrightarrow{f} & A^1(n''_\bullet)
\end{array}
\]

where π_1 is as in the proof of Lemma 3.6 and dashed arrows denote rational maps. We have $\pi_1 = \pi_1 \circ f$.

Let F be the product of all denominators appearing in every step of d-moves, so it is a nonzero polynomial with nonnegative integral coefficients. Let $U = \{(b_1, \cdots, b_m) \in B(n_\bullet) | F(b_1, \cdots, b_m) \neq 0\}$. Then f is well-defined on U, and so $\pi_1(U) \subset A^1(n_\bullet) \cap A^1(n''_\bullet)$.

There exists $y \in U$, such that $\pi_1(y) \in \pi_1(U) \subset A^1(n_\bullet) \cap A^1(n''_\bullet)$, and if $\pi_1(y)$ is σ-invariant. Hence $(A^1(n_\bullet) \cap A^1(n''_\bullet))^\sigma$ is nonempty. Since π_1 is an open map, $\pi_1(U)$ is open in $A^1(n_\bullet)$. We only show it in the case of (A_{4}, B_{2}). Since $A^1(n_\bullet)$ is σ-invariant, we have $n_\bullet = (\bar{n}_1, \bar{n}_2, \bar{n}_3, \bar{n}_4, \bar{n}_5, \bar{n}_6)$. Now take $y = (t^{\bar{n}_1}, t^{\bar{n}_2}, t^{\bar{n}_3}, t^{\bar{n}_4}, t^{\bar{n}_5}, t^{\bar{n}_6}) \in B(n_\bullet)$, then $F(y) \neq 0$. In the general case, we have the similar argument.

Since $A^1(n_\bullet)$ is irreducible by Lemma 3.6, we have $(A^1(n_\bullet) \cap A^1(n''_\bullet))^\sigma$ is dense in $A^1(n''_\bullet)^\sigma$.

\[
\text{Lemma 3.9. Let } \text{Conv}(\mu_w) = \text{Conv}(\mu_{w'}) \subset W^\sigma. \text{ If } \text{the MV polytope } P = \text{Conv}(\mu_w) \text{ is } \sigma-\text{invariant, then } P^\sigma = \text{Conv}(\mu_{w'}) \subset W^\sigma.
\]
Proof. Since P is σ-invariant, we have $\sigma(\mu_w) = \mu_w$, for $w \in W^\sigma$. We can easily see that σ acts trivially on Conv$(\mu_w)_{w \in W^\sigma}$, so Conv$(\mu_w)_{w \in W^\sigma} \subset P^\sigma$.

For the converse, the perfect pairing $(X_+ \otimes \mathbb{R}) \times (X_- \otimes \mathbb{R}) \to \mathbb{R}$ descends to $(X_+ \otimes \mathbb{R}) \times (X_- \otimes \mathbb{R}) \to \mathbb{R}$ (see Section 2.2). Note that $t^\sigma_\mathbb{R}$ can be identified with $X_+ \otimes \mathbb{R}$.

For any $\beta \in P^\sigma \subset P$, and $w \in W^\sigma$, we have $\langle \beta, w \cdot \lambda_i \rangle \leq \langle \mu_w, w \cdot \lambda_i \rangle$. By descent, we have $\langle \beta, w \cdot \lambda_\eta \rangle \leq \langle \mu_w, w \cdot \lambda_\eta \rangle$, for all orbit η of σ in I, where λ_η is the fundamental weight for G^σ corresponding to λ_η, for $i \in I$. Since $P^\sigma \subset t^\sigma_\mathbb{R}$, we see that

$$P^\sigma \subset \{ \beta \in t^\sigma_\mathbb{R} | \langle \beta, w \cdot \lambda_\eta \rangle \leq \langle \mu_w, w \cdot \lambda_\eta \rangle, \forall \eta, \forall w \in W^\sigma \}.$$

The right hand side is exactly Conv$(\mu_w)_{w \in W^\sigma}$.

\[\square \]

Theorem 3.10. If P is a σ-invariant MV polytope for G, then P^σ is an MV polytope for G^σ.

Proof. Let μ_i be the reduced word i_σ for G^σ, and let n^σ_i be the corresponding i_σ-Lusztig datum of P.

Let \mathcal{I} be the fixed reduced word for G from i_σ, in the sense of Proposition 3.9. Let $J = \{ (i', n'_{i'}) | i' \}$ be a reduced word for G from some reduced word i'_σ for G^σ, and $R^{i'}_{\mathcal{I}}(n^\sigma_i) = n^\sigma_i$. We have $\cap_{(i', n'_{i'})} A^{i'}(n^\sigma_i)$ contains an open and dense subset of $A^{i'}(n^\sigma_i)$ from Lemma 3.8 since the intersection of finite open dense subsets is still open and dense.

Recall $A^{i'}(n^\sigma_i) = \cap S_{w_k}$, and $A^{i'}_{\mathcal{I}}(n^\sigma_i) = \cap (S_{w_k})_{\mathcal{I}}$. By Lemma 3.6 we have $(\cap_{(i', n'_{i'})} A^{i'}(n^\sigma_i))^{\mathcal{I}} = \cap (A^{i'}(n^\sigma_i))^{\mathcal{I}} = A^0(\mu_w)_{w \in W^\sigma}$, where $A(\mu_w)_{w \in W^\sigma} = \cap_{w \in W^\sigma} (S_{w_k})_{\mathcal{I}}$. The last equality holds, since for any $w \in W^\sigma$, there exists some reduced word i'_σ of G^σ and some integer k, such that $w = w_k$. Therefore, we have $A^{i'}_{\mathcal{I}}(n^\sigma_i) = A^0(\mu_w)_{w \in W^\sigma} = (\cap_{(i', n'_{i'})} A^{i'}(n^\sigma_i))^{\mathcal{I}} = A^0(\mu_w)_{w \in W^\sigma}$. That means, the moment polytope of the MV cycle $A^{i'}_{\mathcal{I}}(n^\sigma_i)$ is Conv$(\mu_w)_{w \in W^\sigma}$, which is exactly P^σ, by Lemma 3.6. Hence P^σ is really an MV polytope for G^σ.

\[\square \]

Corollary 3.11. Let (i, n_i) and $(i', n_{i'})$ be two σ-invariant Lusztig data. If $R^{i'}_{\mathcal{I}}(n^\sigma_i) = n^\sigma_i$, then $R^{i'}_{\mathcal{I}}(n^\sigma_{i'}) = n^\sigma_i$

Theorem 3.12. We have a bijection $\theta_P : MVP_G \to MVP_{G^\sigma}$, given by $P \to P^\sigma$, which preserves coweights. Induced from θ_P, we have a bijection $\theta_G : MVC_G \to MVC_{G^\sigma}$

Proof. Let P be a σ-invariant MV polytope for G. By Theorem 3.10 we have a well-defined map $\theta_P : MVP_G \to MVP_{G^\sigma}$ by $\theta_P(P) = P^\sigma$.

Fix a reduced word i_σ for G^σ. Let i be a reduced word coming from i_σ. For any MV polytope for G (resp. G^σ), we have the corresponding i (resp. i_σ) Lusztig datum. According to Proposition 3.9, θ_P is injective. Let Q be any MV polytope for G^σ, and let m_i be the i_σ-Lusztig datum of Q. By Lemma 3.6 and its proof, there exists a unique i-Lusztig datum n_i such that $A^i(n_i)$ is contained in $A^{i'}(n^\sigma_i)$, and n_i is σ-invariant. Let P_Q be the MV polytope of $A^i(n_i)$. We have $P_Q = Q$, since P_Q has the same i-Lusztig datum as Q. So θ_P is surjective.

Hence θ_P is a bijection, and it is easy to see that it preserves the coweights of MV polytopes.

\[\square \]

3.5. The bijection in highest weight case. Let λ, μ be σ-invariant coweights, we set $X(\lambda, \mu) := S^\lambda \cap S^\mu$, and $X(\mu - \lambda) = S^\mu \cap S^\mu - \lambda$. In this subsection, we have the same assumptions on the i and i_σ as in Subsection 3.4.

The following lemma is given by Anderson [A].
Lemma 3.13. An irreducible component of \(X(\lambda, \mu) \) is contained in \(\overline{G^\lambda} \) if and only if it appears as basis in \(V_p(\lambda) \).

First of all, we have a decomposition:

\[
X(\lambda, \mu) = \lambda \cdot X(\mu - \lambda) = \bigsqcup_{n} \lambda \cdot A^i(n),
\]

where the union is taken over \(n \) which are i-Lusztig data with coweight \(\mu - \lambda \). Then

\[
S^A_{\lambda} \cap S_{\mu}^{w_0} \cap \overline{G^\lambda} = \bigsqcup_{1} \lambda \cdot A^i(n) \cup \bigsqcup_{2} (\lambda \cdot A^i(n) \cap \overline{G^\lambda}),
\]

where the first union 1 is taken over those \(n \) in \(\{3\} \) such that \(\lambda \cdot A^i(n) \subset \overline{G^\lambda} \); the second union 2 is taken over those \(n \) in \(\{3\} \) such that \(\lambda \cdot A^i(n) \not\subset \overline{G^\lambda} \).

If \(\lambda \cdot A^i(n) \not\subset \overline{G^\lambda} \), then \(\lambda \cdot A^i(n) \cap \overline{G^\lambda} \) is of lower dimension than \(A^i(n) \).

From decomposition \(\{4\} \) and Corollary \(\{5\} \) we have

\[
S^A_{\lambda} \cap S_{\mu}^{w_0} \cap \overline{G^\lambda} = (S^A_{\lambda})^\sigma \cap (S_{\mu}^{w_0})^\sigma \cap \overline{G^\lambda})^\sigma = \bigsqcup_{3} \lambda \cdot A^i(n)^\sigma \cup \bigsqcup_{4} (\lambda \cdot A^i(n) \cap \overline{G^\lambda})^\sigma,
\]

where the first union 3 is taken over those \(n \) in \(\{3\} \), such that \(\lambda \cdot A^i(n) \subset \overline{G^\lambda} \) and \(n \) is \(\sigma \)-invariant; the second union 4 is taken over those \(n \) in \(\{3\} \), such that \(\lambda \cdot A^i(n) \not\subset \overline{G^\lambda} \) and \(n \) is \(\sigma \)-invariant. From the point view of \(G^\sigma \), we also have a decomposition

\[
(S^A_{\lambda})^\sigma \cap (S_{\mu}^{w_0})^\sigma \cap \overline{G^\lambda})^\sigma = \bigsqcup_{5} \lambda \cdot A^i(m) \cup \bigsqcup_{6} (\lambda \cdot A^i(m) \cap \overline{G^\lambda})^\sigma,
\]

where the first union 5 is taken over \(m \) which are \(i^\sigma \)-Lusztig data with coweight \(\mu - \lambda \), satisfying \(\lambda \cdot A^i(m) \subset \overline{G^\lambda} \); the second union 6 is taken over \(m \) which are \(i^\sigma \)-Lusztig data with coweight \(\mu - \lambda \), satisfying \(\lambda \cdot A^i(m) \not\subset \overline{G^\lambda} \).

If \(\lambda \cdot A^i(m) \not\subset \overline{G^\lambda} \), then \(\lambda \cdot A^i(m) \cap \overline{G^\lambda} \) is of lower dimension than \(A^i(m) \).

Lemma 3.14. \(\overline{G^\lambda} = \cap S_{w}^{w^{-\lambda}} \).

Proof. We know \(\cap S_{w}^{w^{-\lambda}} \) is an MV cycle with coweight \((\lambda, w_0 \cdot \lambda) \), and it is contained in \(\overline{G^\lambda} \). Since both of them are of the same dimension \(2(\lambda, \rho) \), and both of them are irreducible, we have \(\overline{G^\lambda} = \cap S_{w}^{w^{-\lambda}} \).

Lemma 3.15. If \(\lambda \cdot A^i(n) \not\subset \overline{G^\lambda} \), and \(n \) is \(\sigma \)-invariant, then \((\lambda \cdot A^i(n) \cap \overline{G^\lambda})^\sigma \) is of lower dimension than \(A^i(n)^\sigma \).

Proof. With the same reason as in the proof of lemma \(\{3\} \) we can find an open subset \(U \subset B(n) \), such that \(\pi_1(U) \subset \cap (\cap_{i}A^i(n)) = \cap_{w} S_{w}^{w^{-\lambda}} \) is open in \(A^i(n) \).

Note that \((\cap \lambda \cdot S_{w}^{w^{-\lambda}}) \cap \overline{G^\lambda} \) is empty. Otherwise, if there exists a point \(p \in (\cap \lambda \cdot S_{w}^{w^{-\lambda}}) \cap \overline{G^\lambda} \), then

\[
p \in (\cap \lambda \cdot S_{w}^{w^{-\lambda}}) \cap \overline{G^\lambda} = (\cap \lambda \cdot S_{w}^{w^{-\lambda}}) \cap \cap S_{w}^{w^{-\lambda}} \subset (\cap \lambda \cdot S_{w}^{w^{-\lambda}}) \cap S_{w}^{w^{-\lambda}}.
\]

That is, \(\forall w \in W \), \(p \) must be contained in \(\lambda \cdot S_{w}^{w^{-\lambda}} \cap S_{w}^{w^{-\lambda}} \). From \(S_{w}^{w^{-\lambda}} = \bigsqcup_{\mu \leq w \cdot \lambda} S_{\mu}^{w} \), we have \(\mu_\lambda + \lambda \leq w \cdot \lambda \). We get that \(\text{Conv}(\mu_\lambda) + \lambda \subset \text{Conv}(W \cdot \lambda) \). According to Anderson’s theorem on multiplicity of weight space \(\overline{G^\lambda} \), we have \(\lambda \cdot A^i(n) \) is an MV cycle in \(V_p(\lambda) \). By Lemma 3.13 it is a contradiction to the condition that \(\lambda \cdot A^i(n) \not\subset \overline{G^\lambda} \). As in Lemma 3.8 there exists a point \(p \in \lambda \cdot A^i(n) \). So \(\lambda \cdot A^i(n)^\sigma \cap \overline{G^\lambda} \) has lower dimension than \(A^i(n)^\sigma \).
By Lemma 3.15, and by comparing the two decompositions (5) and (9), we have that the set \(\{ A^\tau(\nu) \} \) is \(\tau \)-invariant and of coweight \(\mu - \lambda \), and \(\lambda \cdot A^\tau(\nu) \subseteq G^\lambda \) is in bijection with the set \(\{ A^\tau(\nu) \} \) is of coweight \(\mu - \lambda \), and \(\lambda \cdot A^\tau(\nu) \subseteq G^\lambda \), by sending \(A^\tau(n) \to A^\tau(n)^\sigma \). We thus obtain the following theorem.

Theorem 3.16. We have a bijection \(\theta_G^\lambda : MVC_G(\lambda)^\sigma \to MVC_G(\lambda) \), which is the restriction of \(\theta_C \) in Theorem 3.12.

4. Twining character formula

Recall that \(\text{Perv}_{\mathcal{G}(G)}(\mathcal{G}) \) is a tensor category \([MV]\), and it is easy to see the tensor functor \(\sigma^* \) induced from the action of \(\sigma \) on affine Grassmannian is a tensor equivalence. From the functoriality of Tannakian formalism \([DX]\), we have a natural automorphism \(\tilde{\sigma} \) on \(G^\vee \).

Fix a \(\sigma \)-invariant coweight \(\lambda \), and choose an isomorphism \(\phi : IC_\lambda \simeq \sigma^*(IC_\lambda) \), which is compatible with the action of \(\sigma \) on \(MV \) cycles (as the basis of \(V(\lambda) \)).

Lemma 4.1. The action of \(\tilde{\sigma} \) on \(G^\vee \) is compatible with the natural action of \(\sigma \) on \(V(\lambda) \) induced from \(\phi \).

Proof. Let \(T \) be the functor from \(\text{Perv}_{\mathcal{G}(G)}(\mathcal{G}) \) to \(\text{Rep}(G^\vee) \), such that \(T(IC_\lambda) = (\rho_\lambda, V(\lambda)) \), where \(\rho_\lambda : G^\vee \to GL(V(\lambda)) \) is the corresponding representation.

From \(\sigma^* : \text{Perv}_{\mathcal{G}(G)}(\mathcal{G}) \to \text{Perv}_{\mathcal{G}(G)}(\mathcal{G}) \), we get \(T(\sigma^*(IC_\lambda)) = (\rho_\lambda \circ \tilde{\sigma}, V(\lambda)) \). Let \(\tilde{\sigma} \) be the functor from \(\text{Rep}(G^\vee) \) to \(\text{Rep}(G^\vee) \), by sending \((\rho_\lambda, V(\lambda)) \) to \((\rho_\lambda \circ \tilde{\sigma}, V(\lambda)) \). Then we have the following commutative diagram:

\[
\begin{array}{ccc}
\text{Perv}_{\mathcal{G}(G)}(\mathcal{G}) & \xrightarrow{T} & \text{Rep}(G^\vee) \\
\downarrow{\sigma^*} & & \downarrow{\tilde{\sigma}} \\
\text{Perv}_{\mathcal{G}(G)}(\mathcal{G}) & \xrightarrow{T} & \text{Rep}(G^\vee)
\end{array}
\]

By applying \(T \) to \(\phi : IC_\lambda \simeq \sigma^*(IC_\lambda) \), we obtain an isomorphism \(\sigma = T(\phi) : (\rho_\lambda, V(\lambda)) \to (\rho_\lambda \circ \tilde{\sigma}, V(\lambda)) \) in \(\text{Rep}(G^\vee) \). In other words, there exists a linear isomorphism \(\sigma : V(\lambda) \to V(\lambda) \) satisfying

\[
\sigma(\rho_\lambda(g) \cdot v) = (\rho_\lambda \circ \tilde{\sigma})(g) \cdot \sigma(v) = \rho_\lambda(\tilde{\sigma}(g)) \cdot \sigma(v), (g \in G^\vee, v \in V(\lambda)).
\]

\[\square\]

Theorem 4.2. \(\tilde{\sigma} \) is a Dynkin automorphism on \(G^\vee \).

Proof. Let \(\text{Vect}_X \) be the tensor category of \(X_\sigma \)-graded vector spaces. The action of \(\sigma \) on \(X_\sigma \) induces an tensor functor \(\sigma^* \) on \(\text{Vect}_X \). From Mirkovic-Vilonen’s paper \([MV]\), we know that there is a tensor functor \(F \) from \(\text{Perv}_{\mathcal{G}(G)}(\mathcal{G}) \) to \(\text{Vect}_X \), and it’s easy to see \(\sigma^* \) and \(\sigma^* \) are compatible with \(F \).

Applying Tannakian formalism, from \(F \) we get the forgetful functor from \(\text{Rep}(G^\vee) \) to \(\text{Rep}(T^\vee) \), where \(T^\vee \) is a torus of \(G^\vee \), and \(\sigma^*, \sigma^* \) induce automorphisms on \(G^\vee \) and \(T^\vee \), respectively. Since \(\sigma^* \) and \(\sigma^* \) are compatible with \(F \), we have \(\tilde{\sigma} \) preserve the torus \(T^\vee \), i.e, \(\tilde{\sigma}(T^\vee) = T^\vee \). It induces the action of \(\sigma \) on \(X^\vee(T^\vee) \).

Let \(B^\vee \) be the maximal subgroup of \(G^\vee \), which stabilizes the highest weight line \(V_\lambda(\lambda) \) in \(V(\lambda) \), for every \(\sigma \)-invariant dominant weight \(\lambda \). It’s easy to see \(B^\vee \) is a Borel subgroup of \(G \), and contains \(T^\vee \); furthermore, \(\sigma(B^\vee) = B^\vee \).

The coroots of \(G_{\alpha_i}^\vee, i \in I \), can be viewed as the roots of \(G^\vee \), and send the root \(\alpha_i^\vee \) to \(\alpha_{\sigma(i)}^\vee \) automatically, since under the identification of \(X^\vee(T^\vee) \) and \(X_\sigma \), the actions of \(\sigma \) are compatible.

Let \(\mathfrak{g}^\vee \) be the Lie algebra of \(G^\vee \). Let \(\tau \) be the automorphism on \(\mathfrak{g}^\vee \) induced from \(\tilde{\sigma} \). From the following Lemma 4.3, we know \(\tau \) acts trivially on the simple root space \(\mathfrak{g}_{i}^\vee \), for \(i \) fixed by \(\sigma \). Lift \(\tau \) to \(\tilde{\sigma} \) on \(G^\vee \), then \(\tilde{\sigma} \) act trivially on the root subgroup \(U_{\alpha_i^\vee} \) and \(U_{-\alpha_i^\vee} \), for \(i, \sigma(i) = i \). Hence we are
able to find root subgroup homomorphisms $x_i^{\gamma} : \mathbb{C} \to G$ and $y_i^{\gamma} : \mathbb{C} \to G$, corresponding to α_i^{γ} and $-\alpha_i^{\gamma}$, such that $\sigma(x_i^{\gamma}(a)) = x_i^{\gamma}(\sigma(a))$ and $\sigma(y_i^{\gamma}(a)) = y_i^{\gamma}(\sigma(a))$ for all $i \in I$.

Hence σ is a Dynkin automorphism with respect to a pinning of G^{\vee}, where the actions of τ on G^{\vee} and σ on \mathbb{C}_G are compatible.

From Lemma 4.1 we have $\sigma([a,b]) = [\tau(a), \sigma(b)]$, for two arbitrary elements a and b in G^{\vee}. By Schur's lemma, we have $\tau = c \cdot \sigma$, for some constant c. Let γ be the corresponding coroot of highest root γ^{\vee}, so it is σ-invariant. Since $[e_{\gamma^{\vee}}, e_{-\gamma^{\vee}}] \in \mathbb{C} : \gamma$, we have $[e_{\gamma^{\vee}}, e_{-\gamma^{\vee}}] = \tau([e_{\gamma^{\vee}}, e_{-\gamma^{\vee}}]) = [\tau(e_{\gamma^{\vee}}), \tau(e_{-\gamma^{\vee}})] = c^2 \cdot [e_{\gamma^{\vee}}, e_{-\gamma^{\vee}}]$. Hence $c^2 = 1$.

If G^{\vee} is of type A_2n, there exist two adjacent simple roots α_i^{\vee} and α_j^{\vee}, such that $\sigma(i) = j$, for i and $j \in I$. Then we have $\tau([e_{\alpha_i^{\vee}}, e_{\alpha_j^{\vee}}]) = [e_{\alpha_i^{\vee}}, e_{\alpha_j^{\vee}}] = -[e_{\alpha_i^{\vee}}, e_{\alpha_j^{\vee}}]$. Since $\alpha_i^{\vee} + \alpha_j^{\vee}$ is also σ-invariant, it forces $c = -1$.

If G^{\vee} is of other type. Let $h_i = [e_{\alpha_i^{\vee}}, e_{-\alpha_i^{\vee}}]$. Since $\sigma([e_{\alpha_i^{\vee}}, e_{-\alpha_i^{\vee}}]) = [\tau(e_{\alpha_i^{\vee}}), \tau(e_{-\alpha_i^{\vee}})] = c \cdot [e_{\alpha_i^{\vee}}, e_{-\alpha_i^{\vee}}]$, we have $\sigma(h_i) = c \cdot h_{\sigma(i)}$. Then $\{h_i\}_{i \in I}$ is a basis of \mathbb{H}^{\vee}. Since there exists $i \in I$, such that $\sigma(i) = i$, when G^{\vee} is not of type A_2n, it’s easy to see $\text{trace}(\sigma|_{\mathbb{H}^{\vee}}) > 0$. Moreover, σ interchanges MV cycles on \mathbb{H}^{\vee}, so $\text{trace}(\tau|_{\mathbb{H}^{\vee}}) > 0$. We thus have $c = 1$.

Remark 4.1. We can give another construction of Dynkin automorphism on G^{\vee} which is compatible with the action of σ on \mathbb{C}_G cycles, by using Vasserot’s explicit construction of the action of dual group on cohomology of perverse sheaves [\math]. Moreover, this automorphism coincides with the one from Tannakian formalism.

Recall that twining character is defined to be $\chi^\sigma(V(\lambda)) := \sum_{\mu \in P(\lambda)^\sigma} \text{trace}(\sigma|_{V_\mu(\lambda)}) e^\mu$ for a Dynkin automorphism σ, where λ is σ-invariant.

Proposition 4.4.

$$\chi^\sigma(V(\lambda)) = \frac{\sum_{w \in W^{\sigma}} (-1)^{\ell(w)} e^{w(\lambda + \rho)}}{\sum_{w \in W^{\sigma}} (-1)^{\ell(w)} e^{w(\rho)}}.$$

Proof. Let $V^\sigma(\lambda)$ be the irreducible representation of $(G^\sigma)^{\vee}$ with highest weight λ. By Weyl character formula for G^σ, we have $\sum_{\mu \in P(\lambda)^\sigma} \dim V^\sigma_\mu(\lambda) e^\mu = \sum_{w \in W^{\sigma}} (-1)^{\ell(w)} e^{w(\lambda + \rho)}$.

Comparing with our definition of twining character for G, we see that it is equivalent to show $\text{trace}(\sigma|_{V_\mu(\lambda)}) = \dim V^\sigma_\mu(\lambda)$, for any $\mu \in P(\lambda)^\sigma$. By Lemma 4.1 $\text{trace}(\sigma|_{V_\mu(\lambda)}) = z(\text{MVC}_G^\mu(\lambda)^\sigma)$. Hence our proposition follows from Theorem 4.10.

References

[A] J. Anderson, A polytope calculus for semisimple groups, Duke Math. J. 116 (2003), 567-588.

[DM] P. Deligne and J. Milne, Tannakian categories in "Hodge cycles and motives", Springer, Lecture notes 900 (1982) 101-228.

[G] V. Ginzburg, Perverse sheaves on a loop group and Langlands duality, preprint arXiv:alg-geom/951107.

[J] J. C. Jantzen, Darstellungen Halbeinfacher Algebraischer Gruppen, Bonner Math. Schriften 67 (1973).

[K1] J. Kamnitzer, Mirkovic-Vilonen cycles and polytopes, preprint [arXiv:math.AG/0501365]
[KLP] S. Kumar, G. Lusztig and D. Prasad, Characters of simplylaced nonconnected groups versus characters of non-simplylaced connected groups, preprint arXiv: math.RT/0701615.

[L1] G. Lusztig, Total positivity in reductive groups, Lie theory and geometry, Progress in Math. 123, Birkhäuser Boston, (1994)

[MV] I. Mirković and K. Vilonen, Geometric Langlands duality and representations of algebraic groups over commutative rings, preprint [arXiv:math.RT/0401222].

[N] S. Naito, Twining character formula of Borel-Weil-Bott Type, J. Math. Sci. Univ. Tokyo, 9(2002), 637-658.

[NS1] S. Naito and D. Sagaki, Action of a diagram automorphism on Mirković-Vilonen polytopes, talk on conference at Karuizawa in June, 2007.

[NS2] S. Naito and D. Sagaki, A modification of the Anderson-Mirkovic conjecture for Mirkovic-Vilonen polytopes in types B and C, preprint arXiv: math.QA/0711.0071.

[ST] R. Steinberg, Endomorphism of linear algebraic groups. Memoirs of the American Mathematical Society, No.80 American Mathematical Society, Providence.

[V] E. Vasserot, The action of the dual group on the cohomology of perverse sheaves on the affine Grassmannian, preprint arXiv: math.AG/0005020.

Address: Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100080, China

Current Address: School of Mathematical Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel.

E-mail address: hjzzjh@gmail.com