Zn-Coordinated Lipid Nanocapsules with High Physical Stability and Water-Responsive Morphological Change

Wuxiao Ding, Masaru Aoyagi, Mitsutoshi Masuda and Masaki Kogiso*

Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 JAPAN

Abstract: A novel lipid nanocapsule with high physical stability and the ability to undergo a water-responsive morphological change was prepared using a facile method from inexpensive and simple materials such as a glycylglycine-containing lipid and zinc acetate. The zinc-coordinated nanocapsule is comprised of solid bilayer membranes, which are stabilized by polyglycine-II type hydrogen-bond network and Zn-lipid coordination resulting in a high thermal stability in the dry state. The nanocapsules can easily encapsulate guest molecules such as methylene blue in the hollow space by dissolving the molecules in ethanol during preparation. When placed in an aqueous environment, the nanocapsules showed distinctive morphological changes and subsequent release of the methylene blue.

Key words: nanocapsule, lipid, nanovesicle, self-assembly, stimuli-response

1 Introduction

Nanocapsules like lipid nanovesicles have shown practical applications in medicines, food, pesticides, and daily-care products\(^1\)\(^-\)\(^3\). They can deliver not only hydrophobic agents embedded in their hydrophobic membrane, but also hydrophilic agents encapsulated in the closed nanospace\(^4\)\(^,\)\(^5\). Amphiphilic phospholipids and surfactants self-assembled into nanovesicles with a liquid crystalline bilayer membrane, where the hydrocarbon chains assemble through a weak hydrophobic interaction\(^6\)\(^-\)\(^8\). This weak interaction was detrimental to their morphological stability and drug retention ability above room temperature\(^25^\circ C\) that resulted from membrane fluidity\(^9\)\(^,\)\(^10\). Therefore, the physical stability of the nanovesicles is an important problem to be investigated. To date, stabilization techniques such as the addition of preserving agents or crosslinking of the bilayer membrane have been developed\(^9\)\(^,\)\(^11\)\(^,\)\(^12\).

In the meanwhile, the lipid nanovesicles can be designed to be unstable under specific conditions, called stimuli-response\(^13\). The nanovesicles respond to stimuli through different mechanisms such as membrane destabilization, opening of pores on the membrane, and by morphological transformations\(^14\)\(^-\)\(^17\). Since the physical stability and stimuli-response of the self-assembled nanovesicles were both directed by non-covalent intermolecular interactions\(^18\)\(^,\)\(^19\), a precise design of these non-covalent intermolecular interactions is necessary for achieving a balanced physical stability and stimuli-response. To the best of our knowledge, lipid nanovesicles possessing both features have not yet been reported. Such nanovesicles are expected to have advantages such as retention of their morphology for long-term storage and ability for on-demand release of encapsulated molecules.

We previously reported that simple glycylglycine-containing lipids formed metal-coordinated nanotubes in an ethanol-water mixture\(^20\)\(^,\)\(^21\). Hydrogen bonding and metal coordination increased the physical stability of the lipid bilayers, and also triggered a morphological change from plates into nanotubes. These nanotubes have been shown to be potential drug carriers at both the cellular level and in animals\(^22\)\(^,\)\(^23\). However, encapsulation of the drug was inefficient since the cylindrical space within the nanotubes is open.

Here, we report on the selective and quantitative formation of a metal-coordinated lipid nanocapsule with a vesicular structure in ethanol (Fig. 1). The structure was evaluat-
ed by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and thermogravimetric analyses (TGA). The physical stabilities at 25°C and at an elevated temperature were investigated. Finally, the encapsulation of functional molecules such as methylene blue and its release accompanying a morphological change were also investigated.

2 Materials and Methods

2.1 Materials

The lipid was synthesized as previously reported\[20\]. Zinc acetate dihydrate, ethanol (99.5 vol%), and methylene blue (MB) were purchased from Wako Pure Chemical Industries, Ltd., and used without further purification.

2.2 Preparation and characterization of the Zn-coordinated nanocapsules

Zinc acetate dihydrate (0.549 g, 2.5 mmol) solution in ethanol (30 mL) was added into the lipid (1.71 g, 5 mmol) dispersion in ethanol (10 mL) at room temperature. After 4 h, the resultant Zn-coordinated nanocapsules were collected by filtration and dried in vacuum. The morphology of the nanocapsules was confirmed by scanning transmission electron microscopy (STEM, Hitachi S-4800). The detailed structure was characterized by FT-IR, XRD, and TGA analyses.

2.3 Encapsulation and release of methylene blue (MB)

A model guest, MB, was added into the lipid dispersion before the addition of zinc acetate dihydrate. After reacting for 4 h, free MB was completely removed by filtration and washed with ethanol until the filtrate turned colorless. The MB-encapsulated nanocapsules were dried in vacuum and granulated into fine powders for measuring the encapsulation efficiency (the weight ratio of MB to the lipid) and the release profile.

One hundred milligrams of MB-encapsulated nanocapsules was vigorously dispersed separately in 10 mL of water and phosphate buffered saline (PBS buffer) (pH 7.4). The dispersions were stirred at 200 rpm at 37°C. At 10 min, 30 min, 1 h, 4 h, 7 h, and 22 h, 1 mL of the dispersions was sampled and filtered through syringe filters (pore size 450 nm) for measuring the absorbance at 663 nm.

3 Results and Discussion

3.1 Formation of Zn-coordinated nanocapsule and its physical stability in the dry state.

As-synthesized lipid solid dispersed in ethanol has a plate morphology. The addition of zinc acetate dihydrate into the lipid/ethanol dispersion exclusively transformed it into a sphere after reacting for 4 h (Fig. 2). The sphere shows a homogenous diameter of 120 ± 10 nm. Since the spherical lipid aggregates seem to have hollow space (Fig. 2B), they might be a vesicle or a reverse vesicle. The metal-coordinated nanotubes formed in a water-alcohol dispersion have hydrophilic metal-carboxylate groups on the outside, since they showed catalytic activity\[24\]. The hollow sphere should be a vesicle, since it had FT-IR spectrum and XRD almost identical to those of the metal-coordinated nanotubes\[21\]. Compared to multiple processes needed for the preparation of liposomes\[1\] and metal-coordinated nanovesicles as previously reported\[25, 26\], the present nanocapsules show advantages such as the one-step synthesis of lipids and the one-step formation of the homoge-
neous nanocapsule. Based on the preparation conditions described in the previous section, mass production (such as kilograms at a 10 L-reaction scale) of the nanocapsule is foreseeable.

To investigate the physical stability, the dry nanocapsules were mounted on the carbon grid and stored in air for 1 month at 25°C or for 20 min at 120°C. STEM observations revealed that the vesicular morphology was strongly retained under both conditions (Fig. S1). Compared with phospholipid nanovesicles that usually show a phase transition temperature lower than 65°C and need preserving agents to retain their morphology in the dry state, the present nanovesicles have advantages of high physical stability up to at least 120°C in a dry state without using any preserving agents.

3.2 Structural characterization of the Zn-coordinated nanocapsules

Structural characterization of the nanocapsules was carried out using FT-IR, XRD, and TGA (Fig. 3). The Zn-coordinated nanocapsules showed almost the same FT-IR spectrum and XRD as those of the nanotubes, which were prepared in the ethanol-water mixture. In the FT-IR of the nanocapsules, two peaks at 1652 and 1665 cm\(^{-1}\) indicated the formation of zinc-carboxylate complexes. Two peaks at 1637 and 1025 cm\(^{-1}\) ascribable to the amide I band and a skeletal vibrational band of the glycine moiety, respectively, indicated that the glycylglycine residues formed polyglycine-II type hydrogen-bond network. XRD of the nanocapsules showed periodic diffractions in the small angle region, indicating a solid bilayer repeat distance of 4.6 nm. Since the membrane thickness of the nanocapsules is 20-25 nm as estimated from STEM images, the membrane consists of 4-5 bilayers. Due to the relatively high crystalline nature, homogeneous nanocapsules could be produced. Such strong interactions and the thick solid bilayer membrane will contribute to the high physical stability of the nanocapsules.

TGA analysis clarified the difference between the nanocapsules and the nanotubes (Fig. 3). TGA of the nanotubes showed a 4.3% weight loss over 88°C, which corresponds to a loss of two water molecules. In contrast, the nanocapsules showed no significant weight loss before 230°C, suggesting that the nanocapsules did not contain any coordinated water molecules. Elemental analyses of the nanocapsules and the nanotube also supported these results. Both two nanostructures are formed from one zinc and two lipids. While the nanotube contains two water molecules, the nanocapsule did not have any water molecules (Table S1).

3.3 Release of MB from the nanocapsules with morphological changes

For the given conditions, the encapsulation efficiency of MB molecules in the nanocapsules was found to be around 8.7%, with MB primarily being confined to the closed nanospace. In water, the release of MB from the nanocapsules was slow; only 12% of MB was released at 22 h (Fig. 3A).
A morphological change into the nanotube was partly observed at 22 h in water (Fig. 4B). We considered that the release of MB mainly occurred during the morphological change from the nanocapsules into the open-ended nanotube. Based on the difference of the nanotube and the nanocapsules (Fig. 3C), we suppose that the hydration of zinc ions may be a driving force for the morphological change of the nanocapsules into the nanotube. In organic solvents like acetone and toluene, the nanocapsules retain their morphology even after one day.

In the PBS buffer, the release of MB from the nanocapsules was obviously facilitated, reaching 68% at 22 h (Fig. 4A). A complete morphological transformation into a sheet was confirmed at 22 h in PBS buffer (Fig. 4C). Since the outer d orbital of zinc (II) is completely filled (d⁰), the zinc-carboxylate coordination bond is not as strong as that formed with other transition metals. Because of an abundance of ions in the PBS buffer, an equilibrium between zinc and sodium should be attained easily, resulting in a faster morphological change and release than samples dispersed in pure water. Unlike the morphological transformation of the nanocapsules into nanotubes in water, the change in the morphology of the nanocapsules into a sheet in PBS buffer might proceed with a change in the lipid-Zn complex, such as a partial replacement of the zinc ions by sodium ions (Fig. S2).

4 Conclusions
A novel lipid nanocapsule with high physical stability and the ability to undergo a water-responsive morphological change was prepared using a facile method. In the absence of any preserving agents, the dry nanocapsules showed high physical stability for potential long-term storage of at least up to 1 month at room temperature. In pure water, the nanocapsules underwent a morphological change into a nanotube, which resulted in a sustained release of the encapsulated methylene blue. The nanocapsules transformed into a sheet and facilitated the release in PBS buffer. The Zn-coordinated nanocapsules may be useful for the sustained as well as stimuli-responsive release of drugs, pesticides, flavoring agents, and polymers, although the transformation mechanism is still under investigation.

Acknowledgements
This work was partly supported by JSPS-KAKENHI 24550226.

Supporting Information
This material is available free of charge via the Internet at http://dx.doi.org/10.5650/jos.ess.16132

References and notes
1) Samad, A.; Sultana, Y.; Aqil, M. Liposomal drug deliv-
Zn-Coordinated Lipid Nanocapsules with High Physical Stability and Water-Responsive Morphological Change

J. Oleo Sci. 65, (12) 1011-1016 (2016)

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429
Pharm. Sci. 10, 81-98 (2015).

Shimizu, T.; Kogiso, M.; Masuda, M. Noncovalent Formation of Polyglycine II-Type Structure by Hexagonal Self-Assembly of Linear Polymolecular Chains. J. Am. Chem. Soc. 119, 6209-6210 (1997).