Enabling Efficient Distributed Spatial Join on Large Scale Vector-Raster Data Lakes

SEBASTIÁN VILLARROYA1, JOSÉ R. R. VIQUEIRA1, JOSÉ M. COTOS1, AND JOSÉ A. TABOADA.1

1COGRADE, Centro Singular de Investigación en Tecnoloxías Intelixentes (CiTIUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, SPAIN (e-mail: s.villarroya, jrr.viqueira, manel.cotos, joseangel.taboada@usc.es)

Corresponding author: Sebastián Villarroya (e-mail: s.villarroya@usc.es).

This work was supported in part by the Spanish Ministry of Science and Innovation under National Project PID2019-105221RB-C42 Storage and processing of massive geospatial data for smart and sustainable urban transport (MaGiST), and the Galician Government under Grant ED431B 2021/16.

ABSTRACT
Both the increasing number of GPS-enabled mobile devices and the geographic crowd-sourcing initiatives, such as Open Street Map, are determinants for the large amount of vector spatial data that is currently being produced. On the other hand, the automatic generation of raster data by remote sensing devices and environmental modeling processes was always leading to very large datasets. Currently, huge data generation rates are reached by improved sensor observation systems and data processing infrastructures. As an example, the Sentinel Data Access System of the Copernicus Program of the European Space Agency (ESA) was publishing 38.71 TB of data per day during 2020. This paper shows how the assumption of a new spatial data model that includes multi-resolution parametric spatial data types, enables achieving an efficient implementation of a large scale distributed spatial analysis system for integrated vector-raster data lakes. In particular, the proposed implementation outperforms the state-of-the-art Spark-based spatial analysis systems by more than one order of magnitude during vector-raster spatial join evaluation.

INDEX TERMS
Large-Scale Data Analysis, Spatial Analytics, Spatial Data Management, Vector-Raster Data Analysis.

1. INTRODUCTION

TWO major types of spatial datasets exist, namely vector and raster datasets. Vector datasets contain data of spatial entities, including the vector geometries that represent their location and shape in space. Much research effort has been devoted to vector spatial data management, which led to mature and standardized spatial DBMS solutions \cite{1}, \cite{2}. Raster datasets contain the spatial or spatio-temporal distribution of variables such as air temperature, elevation above sea level, population density, etc. In general, they have the form of large 2D, 3D or 4D arrays of numeric real data, therefore they do not fit well with traditional database technologies. Although some specific scientific array data management solutions already exist \cite{3}, \cite{4}, most applications still rely on specific scientific file formats and ad-hoc programming.

The amount of available vector spatial data is increasing exponentially, mainly due to the generalized use of GPS-enabled mobile devices and to the arising of geographic crowd-sourcing initiatives. Examples of huge datasets obtained from GPS-enabled location-based applications are the approximately 250 million geo-tagged tweets generated per day in 2020 and the approximately 700K taxi trips stored per day in the NYC TLC trip record dataset during 2019. Another source of vector spatial data are the geographic crowd-sourcing initiatives. An example of such initiatives is the Open Street Map project, which provides access to a spatial vector dataset of about 1 TB. Raster datasets were always very large, because they are generated by automatic means, including remote sensing devices and environmental modeling processes. However, the advances in the hardware of sensor observation systems and data processing infrastructures are given rise to the increase of the raster data generation rate up to unprecedented levels. As an example, the Sentinel Data Access System of the Copernicus Program of the European Space Agency (ESA) was publishing 38.71
TB of data per day during 2020. As another example, the National Oceanographic and Atmospheric Administration (NOAA) of the U.S. Department of Commerce generates tens of terabytes of data per day from satellites, radars, ships, weather models and other sources.

To cope with the processing of the above data deluge, the arising of modern large scale data storage and processing technologies has caused the emergence of a new architectural trend in the development of Business Intelligence infrastructures, called the Data Lake [5]. Contrary to what happens in traditional data warehouses, in a Data Lake the data is stored without the need of a predefined schema designed to give response to an available list of queries. Data Lakes are created by inserting all the available raw data, regardless of its type, format and semantics, being flexible enough to enable future analysis tasks which are still not witnessed. Data lakes are implemented with Big Data technologies, including distributed file systems like HDFS for data storage and large scale data processing technologies like Apache Hadoop [6], for batch query processing, and Apache Spark [7] for on-line analytics.

Large scale spatial analysis in spatial Data Lakes is currently achieved by spatial extensions of either Apache Hadoop [8], [9] or Apache Spark [10]–[16]. In general, the available data storage features may be extended with i) spatial data types for vector geometries (points, linestrings, polygons, etc.), ii) spatial partitioning methods and iii) spatial indexing techniques. Besides, the data processing engine may be extended with new spatial operations and spatially enabled query optimization strategies. From all the above solutions, only GeoTrellis [15] has been designed to support raster data, and none of them enables the efficient integration of vector and raster spatial analysis. In particular, to support spatial joins between vector and raster data, raster data has to be recorded as point data (one point object for each raster cell). Although data storage may still be efficient due to the data compression facilities incorporated in current distributed columnar data storage formats like Apache Parquet [17], data processing may not leverage the sampling nature of raster data to devise more efficient algorithms for spatial operations.

In this paper, it is shown how the assumption of an already existing integrated vector-raster data model approach enables the efficient implementation of a large scale vector-raster spatial on-line data analysis system on top of Apache Spark. In particular, it is shown through exhaustive experimentation how specific optimizations enable achieving response times for vector-raster spatial joins that are more than an order of magnitude faster than those achieved by currently available Spark-based spatial analysis systems.

More specifically, the contributions of the present work are resumed as follows.

- An implementation of the multi-resolution parametric spatial data types, the data structures and the operations of the data model is undertaken, using Apache Parquet [17] as the base data storage technology and Apache Spark [7] as the underlying large scale on-line data processing framework.
- An optimization strategy for vector-raster spatial join is designed and implemented, which leverages the special nature of raster data to enable the use of equi-join, instead of the spatial theta-join required by other approaches. The use of efficient algorithms for equi-join (sort-merge join and hash join) in Spark makes the present solution much faster than others, that need to implement spatial indexed nested-loop joins.
- A comparison through experimentation of the performance of the evaluation of the spatial join between vector (polygon) and raster data structures was performed between state of the art spark-based spatial analysis solutions. Response time, shuffle reads and writes costs, and peak execution memory consumption were measured. The present solution outperforms the fastest state of the art implementations by more than an order or magnitude, with a peak memory consumption which is in the order of the smallest ones.

The remainder of this paper is organized as follows. Section II provides an overview of other pieces of related work. The design of the data types, data structures and operations of the adopted vector-raster integrated data model is outlined in Section III. Section IV describes the implementation of the data model structures and operations on top of Apache Parquet and Apache Spark. The design and implementation of the optimization strategy for vector-raster spatial join evaluation is explained in Section V. Section VI discusses the results of the experimental evaluation that compares the performance of the present and state of the art implementations. Section VII concludes the paper and outlines issues for future work.

II. RELATED WORK

Most of the research undertaken in the area of Spatial Data Management has been focusing the effort in the effective and efficient management of spatial entity datasets, where vector representations for entity geometries are always considered. As a result of the above research, mature spatial SQL-based DBMSs [1], [2] are currently available, which implement the spatial part of the ISO SQL/MM standard [18]. Further on research has lead to the incorporation of spatial data management in modern columnar DBMSs [19] and NoSQL systems [20], [21].

Regarding raster data, current applications use to adopt specific data storage formats and processing libraries. The emergence of efficient scientific array data management systems such as Rasdaman [3] and SciDB [4] has opened the possibility to enable general purpose declarative raster data analysis. However, although some of the above spatial DBMS already incorporate specific raster data storage features, and despite of the existence of specific array data managers, to the best of these authors knowledge, effective and efficient declarative integrated management of vector and...
raster data has not been achieved by any available implementation.

If we restrict to data modeling, the integrated management of relational and array data is the aim of the SciQL [22] approach. However, spatial semantics are not implicitly included in array data, and the model becomes complex due to the combination of relational with array structures. On the other hand, integrated multiresolution spatial semantics are incorporated in MAPAL (Mapping Analysis Language), defined in the scope of the design of SODA [23], a framework for Spatial Observation Data Analysis. The authors do not report on any available MAPAL implementation that proves the viability of the approach. The data model assumed by the present implementation is based on the MAPAL data model.

Regarding large scale spatial data analysis, many systems have been already implemented. In general, all of them extend some already existing high performance data processing framework, either Apache Hadoop [6] or Apache Spark [7]. Data storage structures may be extended with spatial data representations, spatial partitioning and spatial indexing, whereas the data processing engine may be extended with new spatial operations and spatially enabled optimization strategies.

Hadoop GIS [8] enables running large scale spatial queries on top of Hadoop. A more efficient approach is adopted by SpatialHadoop [9], which extends Hadoop with spatial features at both storage and MapReduce layers. SpatialHadoop has been extended to provide native support for spatio-temporal data [24].

The broad majority of the most recent approaches are based on Apache Spark [7]. A nice survey that includes a performance comparison of the most relevant implementations is available in [25]. GeoSpark [10] extends Spark Resilient Distributed Datasets (RDD) with spatial data types, spatial partitioning and spatial indexing. On top of the Spatial RDD layer, spatial query processing is implemented with specific algorithms for spatial range, join and KNN queries.

The SpatialSpark [11] prototype implements spatial join queries on Spark. Different geometric types are supported, including points and polygons. Various spatial partitioning alternatives are provided and spatial indexing is done using R-trees. Range queries and both spatial and distance joins are supported.

Magellan [12] achieves distributed spatial analytics by extending SparkSQL [26] with spatial data types, such as points, linestrings and polygons, and predicates such as within and contains. Spatial indexing and spatial query processing is supported through the use of z-order curves.

Spatial query operators such as spatial range, spatial kNN, spatial join and kNN join are provided by LocationSpark [13] as a spatial query API on top of Apache Spark. It incorporates advanced query scheduling features that enables efficient management of query skew (uneven distribution of queries in space). As in most implementations, spatial indexing is used globally for spatial partitioning (either Grid Files or Quadtrees may be chosen) and also locally inside each partition (either R-trees, Quadtrees or Grid Files). Finally, the recording of statistics on data access is used to cache in memory most frequently used data.

Simba [14] (Spatial In-Memory Big Data Analysis) extends SparkSQL [26] with spatial data types and functions. It supports spatial indexing, both at global and local level, and it implements a cost-based query optimizer for effective spatial query plan selection.

GeoTrellis [15] is a high performance geoprocessing engine and programming toolkit, aimed at providing support for high performance geoprocessing web services. Contrary to all the above implementations, GeoTrellis supports both vector and raster data, however, integrated analysis of both through vector-raster joins operations is not supported.

Large scale spatio-temporal data analysis on top of Spark is implemented by Stark [16]. The implementation includes spatio-temporal operators for filter and join with different predicates, a kNN search operator and spatial partitioning and indexing.

In summary, many systems have been implemented to support the efficient spatial analysis of vector spatial data, including spatial DBMSs [1], [2], [19]. NoSQL systems [20], [21] and many high performance distributed solutions based on either Hadoop [8], [9] or Spark [10]–[16]. Besides, scientific array data management systems [3], [4] may be used to perform analysis over raster datasets. However, integrated and efficient analysis of very large vector-raster datasets, through the support of vector-raster spatial joins, is not provided by any available solution.

III. DATA STRUCTURES AND OPERATIONS

The integrated data model for vector and raster data follows the approach proposed in [23] for heterogeneous spatio-temporal observation data. Data types, structures and operations are formalized below.

A. DATA TYPES

Besides the conventional data types typically supported by any data management system, the proposed model incorporates multiresolution parametric 2D spatial data types, which consist of fixed precision versions of those already proposed by the spatial part of the ISO SQL/MM standard [18]. If P (Precision) and R (Resolution) are two integer numbers (P, R ∈ ℤ), then amongst other, the following two parametric spatial data types are incorporated (⊥ is used to denote the null value).

- **Point2D(P,R):**
 \[\{(x · R, y · R) | x, y ∈ ℤ ∧ −10^P < x, y < 10^P\} ∪ \{⊥\}. \]

- **Polygon2D(P,R):** Vector polygons whose borders are defined by sequences of elements of Point2D(P,R).

It is noticed that data type Polygon2D(P,R) enables the integrated representation of both vector points and raster cells.
following a functional database approach [27]. Thus, Fig. 1 illustrates the representation of a collection of municipalities within an Extensional MappingSet with signature

\[\text{Municipality(MunCode | Name : CString, Geo : Polygon2D(9, 10)),} \]

where \(\text{MunCode} \) is a Dimension over data type Integer, that records municipality identification codes. Extensional Mappings Name and Geo yield respectively the name and geometry of the municipality corresponding to each identification code. Regarding raster fields, they are elegantly represented by Extensional Mappings whose domain is a 2D Sampling. Thus, Extensional MappingSet \(\text{Topo} (\text{Loc12m|Elevation} : \text{Real}) \) in Fig. 1 represents a raster field of elevation above sea level. The bounds and resolution of raster domain are recorded in the 2D Sampling \(\text{Loc12m(Ps : Point2D(6, 12), Pe : Point2D(6, 12)}) \).

It is important to remark that, in general, the values of a Dimension have to be explicitly recorded in order to represent it, as it is the case of Dimension MunCode above. However, in the case of a 2D Sampling such as Loc12m above, it is enough to store the bound values (Ps and Pe in the example), since all the other may be automatically generated.

C. OPERATIONS

The set of operations on Dimensions and Extensional Mappings that enable integrated vector-raster spatial analysis is introduced in this subsection.

1) Dimension operations

They enable scanning Dimensions from storage, generate 2D Samplings from constants, performing set operations between Dimensions, and obtaining Dimensions from Extensional MappingSet projections.

- ScanDimension[name]. Scans the Dimension called name from the storage.
- SamplingDimension[name](\(K_1, K_2\)). Generates a new 2D Sampling name(\(K_1, K_2\)) using as bounds the values of Constants \(K_1\) and \(K_2\).
- Union(\(D_1, D_2\)). If neither \(d_1\) nor \(d_2\) is a 2D Sampling then it obtains a new Dimension by performing the set union between Dimensions \(d_1\) and \(d_2\). If either of \(d_1\) or \(d_2\) is a 2D Sampling then the result is the 2D Sampling with minimum extension that contains both \(d_1\) and \(d_2\).
- Intersection(\(D_1, D_2\)). Obtains a new Dimension by performing the set intersection between Dimensions \(D_1\) and \(D_2\). Contrary to the case of operation Union, the result is a 2D Sampling only if both \(D_1\) and \(D_2\) are 2D Samplings.
- ProjectDimension[s|c](\(MS\)). Operand \(MS\) is an Extensional MappingSet, parameter \(s\) is a reference to either a Dimension or a Extensional Mapping of \(MS\), and parameter \(c\) is a reference to an Extensional Mapping of \(MS\) of a Boolean type. The result is a new Dimension containing all the values of \(s\) where \(c\) has true value.
2) Extensional MappingSet operations

They generate new Extensional MappingSets from existing Dimensions, Extensional MappingSets and Constants.

- **Product**[**name**](**D_1**, **D_2**, ..., **D_n**). Generates a new Extensional MappingSet, without Extensional Mappings, whose domain is the Cartesian product **D_1** × **D_2** × ... × **D_n**.
- **Product**(**MS, D**). The domain of the result Extensional MappingSet is extended to the Cartesian product between the domain of **MS** and **D**.
- **ProjectMappingSet**[**s_1**, **s_2**, ..., **s_n**](**MS**). The result Extensional MappingSet has the same domain of **MS**, but only the mappings of **MS** referenced by **s_1**, ..., **s_n**.
- **IMappings**[**m_1**, **m_2**, ..., **m_n**](**MS**). Enables the evaluation of primitive intensional mappings over the Extensional Mappings and Dimensions of **MS**. Each **m_i** in the list of parameters is an expression of the form

 \[M = pm(s_1, s_2, ..., s_m) \]

 where **M** is the name for a new Extensional Mapping that will be added to **MS**, **pm** is a primitive mapping supported by the systems and each **s_i** is a reference to either a Dimension or an Extensional Mapping of **MS**.

- **EMapping**[**m**](**MS**, **MS**). Enables the evaluation of an Extensional MappingSet of **MS** over the Dimensions and Extensional Mappings of **MS**. The expression **m** has the form

 \[M = em(s_1, s_2, ..., s_n) \]

 where **M** is the name for a new Extensional Mapping that will be added to **MS**, **em** is the name of an Extensional Mapping of **MS** and each **s_i** is a reference to either a Dimension or Extensional Mapping of **MS**. To be able to do the evaluation, the domain of **MS** must be composed of a sequence of Dimensions **D_1** × **D_2** × ... × **D_n** such that the data type of each **D_i** is compatible with the data type of the relevant **s_i**.

- **KMapping**[**name**](**MS**, **K**). Appends a new Extensional Mapping called name to **MS** with a Constant value **K**.

- **AggMapping**[**gb**][**ob**][**c**][**ag_1**, **ag_2**, ..., **ag_n**](**MS**). Generates a new Extensional MappingSet by computing aggregates over part of the domain of **MS**. Parameter **gb** is a sequence of Dimensions strictly contained in the domain of **MS**. Parameter **ob** is an order by specification expression composed of pairs (s, o), where s references either a Dimension or Extensional Mapping of **MS** and o is an ordering direction, either Ascending or Descending. Parameter **c** is an Extensional Mapping of **MS** of a Boolean data type. Each **ag_i** is an expression of the form

 \[M = aggregateMapping(s_1, s_2, ..., s_m) \]

 where **aggregateMapping** is a primitive aggregate mapping supported by the system, such as **sum**, **avg**, **count**, **rank**, etc. and each **s_i** is a reference to either a Dimension or Extensional Mapping of **MS**. The domain of the result Extensional MappingSet is defined by **gb** Dimensions, and it has an Extensional Mapping recording the result of each **ag_i** expression. The aggregate mapping is evaluated only over elements where c is true. The order by specification **ob** is optional and required for some aggregate Mappings like **rank**.

Complex spatial analysis tasks may be expressed with combinations of the above operations. A practical example that will be used to describe important optimizations is given below, which uses the data shown in Fig. 1 to obtain the average of elevation inside each municipality.

1) **D_1** = ScanDimension(MunCode)
2) **D_2** = ScanDimension(Loc12m)
3) **MS_1** = Product(**D_1**, **D_2**)
4) **MS_2** = EMapping[Geo = Geo(MunCode)]
 (MS_1, Municipality)
5) **MS_3** = IMapping[c = contains(Geo, Loc12m)]
 (MS_2)
6) **MS_4** = EMapping[ele = Elevation(Loc12m)]
 (MS_3, Topo)
7) **MS_5** = AggMapping[MunCode][**[c]**
 [avgElev = avg(elev)](**MS_4**)

IV. DISTRIBUTED IMPLEMENTATION

An implementation of the data structures and operations introduced in Section III in a distributed large scale data processing platform is described in the following subsections. The platform used is based on the combination of the column-oriented distributed Apache Parquet [17] data format with the large scale data analysis engine Apache Spark [7].

A. DATA STRUCTURES IMPLEMENTATION

Efficient structures to record both data and metadata of Dimensions and Extensional MappingSets have been implemented. Structures for both primary (in-memory) and secondary (disk) storage are described in the following subsections. To enable the recording of values of the spatial data types in Spark and Parquet, relevant Spark User Defined Types (UDT) where first implemented.

1) Disk structures

A Catalog recording relevant metadata of Dimensions and Extensional MappingSets is stored in disk and loaded in main memory on system startup. Fig. 2 illustrates the contents of the Catalog with the metadata corresponding to the example of municipalities and elevation data of Fig. 1.

Besides the name, data type and size, stored metadata for Dimensions includes a boolean property that specifies whether the Dimension is a 2D Sampling or not. The values of the bounds (start and end value) of 2D Samplings are directly recorded in the Catalog. On the other hand, for non-sampling Dimensions, the path to the file with the data is required instead. For each Extensional MappingSet, the Catalog records its name, a reference to each Dimension of its domain and the path to the data file. The name and data type of each Extensional Mapping is also recorded in the Catalog.
The data of each non-sampling Dimension and each Extensional MappingSet is stored in a Parquet file. A Dimension Parquet file has two columns, one to record the actual Dimension values and another one that records an automatically generated reference of a long integer type. This reference column is used to enable late materialization [28] of Dimension values, as it will become clear later.

Regarding Extensional MappingSet data, the relevant Parquet file contains one column of the appropriate data type per Extensional Mapping plus an additional reference column. Each different value of the reference column is actually referencing a combination of values of the Dimensions of the Extensional MappingSet domain. More precisely, if $D_1 \times D_2 \times \ldots \times D_n$ is the domain of an Extensional MappingSet MS, then a reference RMS inside the Extensional MappingSet MS may be obtained from the references RD_i inside each specific Dimension D_i and vice-versa as follows:

$$RMS = \sum_i \left(RD_i \times \prod_{j>i} \text{size}(D_j) \right)$$

$$RD_i = \left[\frac{RMS \mod \prod_{k>i} \text{size}(D_k)}{\prod_{k>i} \text{size}(D_k)} \right]$$

Due to the above, combinations of the domain for which all the Extensional Mappings are undefined do not need to be recorded and late materialization [28] of Extensional Mappings is still enabled.

The compression techniques and appropriate encoding systems enabled by the Parquet storage format provides a drastic reduction of the storage payload. Besides, the use of fixed precision parametric spatial data types enables also the optimization of the storage for vector geometries, since integer values of appropriate sizes may now be used to store the coordinates, contrary to the double precision real values used by other approaches.

2) In-memory structures

An appropriate structure, composed of data and metadata (header) areas, has been defined to record Dimensions and Extensional MappingsSets in main memory. The header includes metadata such as name, size and data type. A boolean attribute IsStored is recorded in the header to identify whether the Dimension has been obtained form disk or generated in memory as a result of some operation. Attribute StorageName references the name of the Dimension stored in the Catalog. A boolean attribute IsMaterialized is used to identify Dimensions materialized in main memory. Dimensions are materialized only when their specific values are needed for some computations [28]. Notice that the references of a Dimension may be generated in memory, as soon as they are required, from its size. The references and values of a Dimension are recorded in memory in a Spark DataFrame. Fig. [3] shows the header and DataFrame of three Dimensions, a materialized stored Dimension, a non-materialized stored Dimension, and a materialized non stored Dimension. Notice that a non materialized non stored Dimension has no sense.

Fig. [4] illustrates the in-memory metadata and data structures of the Municipality Extensional MappingsSet of Fig. [1]. The header records metadata of both Dimensions and Extensional MappingsSets.
tensional Mappings. Dimension metadata is the same to that recorded for isolated Dimensions, which was explained above. Regarding Extensional Mappings, the name and data type is recorded in the header. Besides, the expression that was used to compute the Extensional Mapping is also recorded, to avoid duplicate computations during query evaluation. If a new Extensional Mapping has to be computed with an expression that is already in the header, the computation is avoided and the new name is simply added to the list of names of the Extensional Mapping. Finally, the list of Dimensions of the Extensional MappingSet domain from which the Extensional Mapping is directly dependent is also referenced. Notice that some computed Extensional Mappings might not depend on the whole domain, and this information is very useful during the evaluation of the AggMapping operation, as it will be explained in the following subsection.

The data of each Dimension and Extensional Mapping of a given Extensional MappingSet is recorded in-memory in a Spark Dataframe. As in the case of isolated Dimensions, each Dimension of the domain may need two Dataframe columns, one to record the values and another one to record references. In the case of Extensional Mappings, one column is always needed to record the values, but additionally, if those values reference values already recorded in some Dimension then additional reference columns may also be recorded. The fact that one or various Dimensions are referenced by a specific Extensional Mapping must also be recorded in the header, to enable the interpretation of the relevant Dataframe columns.

B. OPERATIONS IMPLEMENTATION

Spark Dataframe operations are used to implement those operations defined in Subsection III-C. Implementation details are given below.

1) Dimension operations

- **ScanDimension[name]**. Accesses the Catalog to locate the stored metadata for the Dimension called name and generates the references column in the in-memory structure, using the Dimension size and Spark operation Range.

- **SamplingDimension[name](K_1, K_2)**. Generates an in-memory (non stored) materialized 2D Sampling, called name, from the values of K_1 and K_2. The coordinates of the 2D Sampling Point2D elements are generated by combining Spark operations Range and Join (equivalent to a Cartesian Product when called with no conditions), before they are recorded in the column of the relevant Point2D Spark UDT.

- **Union(D_1, D_2)**. Always returns a materialized non stored Dimension. If at least one of the input Dimensions is a 2D Sampling, then the result 2D Sampling is computed from the minimum and maximum values of coordinates of elements recorded in those input Dimensions. Different scenarios for the evaluation of this operation with involved 2D Samplings are shown in Fig. 5. If both Dimensions are non-sampling, then the operation is implemented using the operations **UnionAll** and **DropDuplicates** of Spark Dataframes. Fig. 6 illustrates this operation between two non sampling spatial Dimensions.

- **Intersection(D_1, D_2)**. Again, it always returns a materialized non-stored Dimension. If any of the Dimensions is non-sampling, then the operation is implemented using Dataframe operation **Intersect**. These cases are illustrated in Fig. 7. On the other hand, if both Dimensions are 2D Samplings, the bounds of the result are directly computed from the input bounds and next the result 2D Sampling is generated as in operation **SamplingDimension**. This case is illustrated in Fig. 8.

- **ProjectDimension[s][c](MS)**. This operation generates a non stored Dimension. To implemented it, first the **Filter** Dataframe operator is applied to the Dataframe of MS to evaluate condition c and discard relevant tuples. Next, Dataframe operation **Select** is used to project on the desired columns, referenced by s, and finally operation **DropDuplicates** is executed to eliminate duplicates from the result. Notice that duplicates have to be eliminated regardless of whether the Dimension is materialized or not.
Dimensions of the domain of MS2, the evaluation of \(em \) is performed with an equi-join operation between MS1 and MS2 where each column of references of each \(D_i \) in MS2 is equal to a relevant column of references of \(s_i \) in MS1. Such reference columns of MS1 have to be obtained from each Dimension \(D_i \) before the equi-join is performed.

- \(KMapping[\text{name}](MS, K) \). A new column containing the same value in all rows is generated from \(K \) and passed as parameter to the Dataframe operator `WithColumn` to be added to the DataFrame of MS.

- \(AggMapping[\text{gb}][\text{ob}][\text{c}][a_1, a_2, \ldots, a_n](MS) \). Implementation of this method is as follows. First, the DataFrame operation `Filter` is applied to MS to discard element for which condition \(c \) do not hold. Next, DataFrame operation `Select` is used to drop from MS those Dimensions not referenced in input argument \(gb \) and those \(Ext\text{ensional Mappings} \) whose domain contains Dimensions not present in input argument \(gb \) (except those referenced by aggregated mappings). Notice that non-materialized Dimensions referenced by aggregated mappings must be materialized. Then, the DataFrame operator `GroupBy` prepares the DataFrame of MS for the subsequent application of relevant aggregate mappings by using DataFrame operator `Agg`. Appropriate aggregate mappings, implemented as UDFs, are used by this operator. Aggregate mappings that require an order by specification like `rank` are not supported yet.

V. VECTOR-RASTER SPATIAL JOIN OPTIMIZATION

The evaluation of Cartesian Products in \(Ext\text{ensional MappingSet} \) operation `Product`, involving either Dimension reference columns or raster points, makes the implementation described in the previous Section highly inefficient. However, the optimization of the data structures, with the incorporation of compact representations for reference ranges and raster geometries, enables the implementation of vector-raster spatial join efficiently, by avoiding the theta-joins that must be used in other approaches. This optimization is illustrated below with the help of the query example introduced in Subsection II.C.

It is first noticed that, actually, steps [1-5] of the example are performing a spatial join with spatial predicate `Contains` between municipality polygons and topo raster elements. In step (1), `Dimension MunCode` is scanned and therefore, a DataFrame with as many references as the size of the `Dimension` is generated (314 elements in this example). It is noticed that, actually, \(em \) points to a \(Dimension \) or an \(Ext\text{ensional Mapping} \) of \(MS1 \), and each \(s_i \) is the name of either a `Dimension` or an \(Ext\text{ensional Mapping} \) of \(MS1 \). If \(D_1, \ldots, D_m \) are the

\[\text{mean time} = \text{mean time of the \(\text{left} \) DataFrame operation} \times \text{mean time of the \(\text{right} \) DataFrame operation} \]

\[\text{mean time} = \text{mean time of the \(\text{left} \) DataFrame operation} \times \text{mean time of the \(\text{right} \) DataFrame operation} \]

2) \(Ext\text{ensional MappingSet} \) operations

- `Product[\text{name}](D_1 \ldots D_n)`. The Cartesian Product of the input Dimensions is generated using the Dataframe `Join` operation.

- `Product(MS, D)`. Again, the Dataframe operation `Join` is used to perform the Cartesian product between the Dataframes of MS and D.

- `ProjectMappingSet[s_1, \ldots, s_n](MS)`. Dataframe operation `Select` is here used to project from the input MS Dataframe the columns referenced by parameters \(s_i \). Given that \(Ext\text{ensional Mappings} \) are always materialized, non-materialized Dimensions referenced by \(s_i \) must be materialized before applying the operator `Select`.

- \(IMappings[m_1, m_2, \ldots, m_n](MS) \). Firstly, one SQL-like expression is generated for each \(m_i \). Then, Dataframe operator `SelectExpr` can be used to evaluate them and generate one new column per `Intensional Mapping` expression. Notice that primitive mappings must be available as Spark User Defined Functions (UDFs) in order to be called by operator `SelectExpr`.

- `EMapping[\text{m}](MS1, MS2)`. Remember that input parameter \(m \) is an expression of the form

\[M = em(s_1, \ldots, s_n), \]

where \(em \) references an \(Ext\text{ensional Mapping} \) of MS2, and each \(s_i \) is the name of either a `Dimension` or an \(Ext\text{ensional Mapping} \) of MS1. If \(D_1, \ldots, D_m \) are the
to the ScanDimension of step (2), whose compact result for Dimension Loc12m is depicted in Fig. 9(b).

Operation Product in step (3) was very costly before the above described optimization, and it can now be applied without any problem, since each Dataframe contains just one row. The result Dataframe for Extensional MappingSet MS1 is depicted in Fig. 9(c), and as it may be observed in the figure, it maintains the compact range representation for Dimension references.

In step (4), the Geo Extensional Mapping of Municipality has to be evaluated for each MunCode of MS1. To be able to perform this evaluation with operation EMapping, references are needed for MunCode. To obtain those references this operation must unnest the compact range representation of the references. Next, those references may be used to generate references for Extensional MappingSet Municipality, which will be used in an equi-join operation to attach the Geo Extensional Mapping to the Dataframe of MS2. Such a Dataframe, with the unnested references column for Muncode and the Geo column is depicted in Fig. 9(d).

The Intensional Mapping Contains that has to be evaluated by operation IMapping in step (5) needs materialized Municipality polygons and raster points. Municipality polygons were already obtained in the previous step, however, raster points are still not available in the input Dataframe. To minimize the number of rows generated by this operation, Contains has to be optimized to be applied between polygons and raster geometries (rectangles). To achieve this, each raster element in the Dataframe is decomposed in rectangles using the minimum bounding rectangle of each Municipality polygon. This rectangle decomposition, which is based on the regular decomposition of space followed by Quadtrees and z-curves is illustrated in Fig. 10. The decomposition process stops when one of the following condition holds: 1) the rectangle is inside the polygon, 2) the rectangle is outside the polygon, and 3) the rectangle size reaches the raster resolution. The rectangles that are inside the relevant polygon will have a True value in the new Extensional Mapping c. The Dataframe of the result Extensional MappingSet, which contains raster rectangles and c boolean values is depicted in Fig. 9(e).

It is noticed that the data recorded in the Dataframe of Extensional MappingSet MS3 of Fig. 9(e) contains actually the spatial join between the raster points and the vector polygons, although raster points are represented in a compact format in the form of rectangles. It is also notice that up to this point, there system did not executed any costly Cartesian Product or theta-Join operation, and of course it did not needed any spatial indexed nested-loop join algorithm, which is the one commonly used in other approaches.

Finally, although the spatial join has already been performed, it is useless if the elevation data is not obtained from disk. This is done in step (6), where Extensional Mapping Evaluation has to be evaluated for each raster point of Loc12m in MS3. Given that only points with c value True are used by the AggMapping operation in step (7), a last optimization consists in only obtaining from disk elevations for those points. To achieve this, first the rows with $C = True$ must be unnested to generate all the required Loc12m references. Those references are used in a subsequent equi-join operation to obtain the required elevation data from disk.

The performance of this optimized set of operations is compared in the next section with the spatial join between municipality polygons and raster points that is supported by most of the available Spark-based spatial large scale analysis systems.
VI. EXPERIMENTAL EVALUATION

A. EXPERIMENTAL SETUP

All the experiments were conducted on a Big Data cluster consisting of 16 nodes. Each node has the following features: 2 x CPU 2.2GHz, 384 GB RAM 2400MT/s and 32 TB HDD 6Gbps. Spark applications were deployed in cluster mode. The resource manager was YARN. Two different versions of Spark, 1.6 and 2.2, were used.

For this experiment, elevation data at different spatial resolutions is used as input raster data, whereas a combustion model dataset is used as input vector polygon data. Spatial resolutions (in meters) of raster datasets and relevant size (number of points) are shown in Table 1. Polygon dataset contains 11057 polygons, with an average of 175 points in the boundary of each polygon.

To ensure a fair comparison between the different distributed spatial data processing frameworks, the input dataset has been pre-processed. Since some existing frameworks do not support columns of non-spatial data types, additional input columns storing non spatial values (e.g., elevation values column) have not been included in the analysis tasks for the remainder solutions, only for the solution proposed in the present paper. Furthermore, since LocationSpark only enables spatial processing of rectangular polygons, each input polygon has been replaced by its Minimum Bounding Rectangle (MBR). Fig 11 shows the MBR dataset used in this experiment. Additionally, since the rest of existing solutions do not provide integrated raster-polygon data analysis, location points within the elevation raster are translated to a set of 2D points for each tested solution.

To test the performance of each solution for different workloads, the Spatial Join operation has been executed between the combustion model MBRs and the raster datasets shown in Table 1. All frameworks were tested with the following Spark configuration:

- **master**: yarn
- **deploy-mode**: cluster
- **driver-memory**: 8G
- **executor-memory**: 8G

B. PERFORMANCE COMPARISON

The most relevant distributed spatial processing systems in the state of art developed on top of Spark (i.e., GeoSpark [10], LocationSpark [13], SpatialSpark [11] and Stark [16]) have been selected to be compared against the proposed solution.

Fig. 12 shows the execution times of each solution for the spatial join between the polygon dataset and the elevation raster at different spatial resolutions (12m - 400m). A 40-executors configuration has been used in this experiment. GeoSpark and Stark, Fig. 12 (a), showed the slowest performance. For a proper chart representation, the execution time of Stark for a spatial resolution of 12 meters (7484 s) has not been depicted. LocationSpark and SpatialSpark, Fig. 12 (b), showed a similar behavior. SpatialSpark suffered a Java Heap Memory Overflow at a spatial resolution of 12 meters. Both SpatialSpark and LocationSpark performed more than 4 times faster than Stark for spatial resolutions below 50 meters. The proposed solution, named MapalSpark in the figures, showed the fastest performance, Fig. 12 (c). For a spatial resolution of 12 meters, MapalSpark performed more than one order of magnitude faster than LocationSpark, and more than 2 orders of magnitude faster than Stark.

In addition to the test for different data loads, a scalability test was also performed. For this test a spatial resolution of 50 meters was selected. Scalability behavior of tested solutions for cluster configurations with different number of nodes are plotted in Fig. 13. Although showing the slowest behavior again Stark, Fig. 13 (a), has a good scalability performance from 2 to 16 executors. Then, execution times remain constant. GeoSpark showed similar execution times to Stark but its scalability behavior is much worse. Again, LocationSpark and SpatialSpark, Fig. 13 (b), showed similar execution times. Regarding scalability behavior, SpatialSpark is better than LocationSpark from 2 to 16 executors. Then SpatialSpark remains almost constant but LocationSpark keeps improving until 40 executors. MapalSpark execution times are the fastest again, Fig. 13 (c). Scalability behavior of MapalSpark is very good from 2 to 48 executors. Then, it remains also constant.

Additional performance parameters have been studied. **Shuffle Read Cost** provides information about the amount of data read by executors at the beginning of a Spark stage.

Spatial Resolution (meters)	Size (# cells)
200	1165824
100	4661184
50	18653375
25	74622330
12.5	29872418

TABLE 1: Spatial resolution and number of points of raster datasets.
Fig. 14 (a) depicts the shuffle read costs of tested solutions for the scalability experiment. Notice that we found that shuffle read costs are equal to shuffle write costs for all solutions, contrary to what is shown in [25], where shuffle read costs showed to be bigger than shuffle read costs for SpatialSpark. As expected, shuffle read cost remained constant regardless the number of executors because the data load also remained constant (spatial resolution of 50 meters has been fixed). The best solution is Stark, it showed no shuffle costs at all. LocationSpark and MapalSpark showed a similar behavior with a cost about 500MB. SpatialSpark and GeoSpark also showed a similar behavior with a cost near to 2500MB.

Fig. 14 (b) shows the shuffle read costs for the data load experiment. The best behavior was showed by LocationSpark with less than the half of the cost of MapalSpark for a spatial resolution of 12 meters.

The Peak Execution Memory is the maximum memory consumption in any stage during the execution. It was already shown in [25], that the best peak execution memory of the remainder solutions is obtained by LocationSpark, much far better than other solutions. Thus, Fig. 14 (c) shows the comparison between LocationSpark and MapalSpark for the scalability experiment. Peak execution memory remains constant in both solutions. In this case, MapalSpark shows a better behavior. For the data load experiment, Fig. 14 (d), LocationSpark showed a better behavior for spatial resolutions of 200 and 100 meters. As spatial resolution increases, LocationSpark performance decreases whereas MapalSpark shows a better support for high data loads.

VII. CONCLUSIONS

In this paper it is shown how the use of an integrated data model for vector and raster spatial data enables the implementation of large scale vector-raster spatial analysis systems that outperform the state of the art by more than an order of magnitude. In particular, a naive implementation of the model on top of a combination of Apache Parquet with Apache Spark is described. Next, it is shown how an optimization strategy based on compact range representation for data references and raster points enables achieving the performance results reported above. Performance comparison is done through experiments with different configuration for both the spatial resolution of the raster dataset and the number of nodes of the cluster. Beyond the impressive response times, the proposed solution shows also good behavior in shuffle read and write cost and in peak memory consumption, being competitive in general with the best current solutions. Future work is mainly related to the completion of a prototype system that combines the proposed optimizations with spatial partition and indexing techniques, achieve efficient implementations of other operators such as range queries, joins with different predicates, and kNN queries.
Figure 14: Shuffle Read Cost and Peak Execution Memory Consumption.

REFERENCES

[1] R. O. Obe and L. S. Hsu, *PostGIS in Action*, 2nd ed. Greenwich, CT, USA: Manning Publications Co., 2015.

[2] A. G. Ravi Kothuri, *Euro Beinat, Pro Oracle Spatial for Oracle Database 11g*. Apress, 2007.

[3] P. Baumann, A. Dehmel, P. Furtado, R. Ritsch, and N. Widmann, “The Multidimensional Database System RasDaMan,” in *Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data*, ser. SIGMOD ’98. New York, NY, USA: ACM, 1998, pp. 575–577. [Online]. Available: http://doi.acm.org/10.1145/276304.276386

[4] P. G. Brown, “Overview of sciDB: Large Scale Array Storage, Processing and Analysis,” in *Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data*, ser. SIGMOD ’10. New York, NY, USA: ACM, 2010, pp. 963–968. [Online]. Available: http://doi.acm.org/10.1145/1807167.1807271

[5] B. S. Alice LaPlante, *Architecting Data Lakes: Data Management Architectures for Advanced Business Use Cases*. O’Reilly, 2016.

[6] C. Lam, *Hadoop in Action*. Manning Publications, 2010.

[7] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark: Cluster computing with working sets,” in *Proceedings of the 2Nd USENIX Conference on Hot Topics in Cloud Computing*, ser. HotCloud’10. Berkeley, CA, USA: USENIX Association, 2010, pp. 10–10. [Online]. Available: http://dl.acm.org/citation.cfm?id=1863103.1863113
[8] A. Aji, F. Wang, H. Yo, R. Lee, Q. Liu, X. Zhanga, and J. Salza, “HadoopGIS: A High Performance Spatial Data Warehousing System overMapReduce,” Proc. VLDB Endow., vol. 6, no. 9, pp. 1009–1020, Aug. 2013. [Online]. Available: http://dx.doi.org/10.14778/2536222.2536227

[9] A. Eldawy and M. F. Mokbel, “SpatialHadoop: A MapReduce framework for spatial data,” in 2015 IEEE 31st International Conference on Data Engineering, April 2015, pp. 1352–1363.

[10] J. Yu, J. Wu, and M. Sarwat, “Geospark: A cluster computing framework for processing large-scale spatial data,” in Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems, ser. SIGSPATIAL ’15. New York, NY, USA: ACM, 2015, pp. 70.1–70.4. [Online]. Available: http://dx.doi.org/10.1145/2820783.2820860

[11] S. You, J. Zhang, and L. Gruenwald, “Large-scale spatial join queryprocessing in Cloud,” in 2015 IEEE International Conference on Data Engineering Workshops, April 2015, pp. 34–41.

[12] “Magellan: Geospatial Analytics Using Spark,” https://github.com/hasnainmagellan accessed: 2018-10-24.

[13] M. Tang, Y. Yu, Q. Mallihi, M. Ouzzani, and W. G. Aref, “LocationSpark: A Distributed In-memory Data Management System for Big Spatial Data,” Proc. VLDB Endow., vol. 9, no. 13, pp. 1565–1568, Sep. 2016. [Online]. Available: http://dx.doi.org/10.14778/3007263.3007310

[14] D. Xie, F. Li, B. Yao, G. Li, L. Zhou, and M. Guo, “Simba: Efficient In-Memory Spatial Analytics,” in Proceedings of the 2016 International Conference on Management of Data, ser. SIGMOD ’16. New York, NY, USA: ACM, 2016, pp. 1071–1085. [Online]. Available: http://dx.doi.org/10.1145/2820801.2857525

[15] “GeoTrellis: A Geographic Data Processing Engine for High Performance Applications,” https://geotrellis.io/, accessed: 2018-10-24.

[16] S. Hagedorn and T. Räth, “Efficient spatio-temporal event processing withSTARK,” in Proceedings of the 20th International Conference on Extending Database Technology, EDBT 2017, Venice, Italy, March 21-24, 2017., pp. 570–573. [Online]. Available: https://doi.org/10.5441/002/edbt.2017.72

[17] “Apache Parquet,” https://parquet.apache.org/, accessed: 2018-10-24.

[18] D. Abadi, D. Myers, D. DeWitt, and S. Madden, “Materialization Strategies in a Column-Oriented DBMS,” in Data Engineering, 2007. ICDE 2007. IEEE 23rd International Conference on, April 2007, pp. 466–475.

[19] J. Yu, J. Wu, and M. Sarwat, “Geospark: A cluster computing framework for processing large-scale spatial data,” in Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems, ser. SIGSPATIAL ’15. New York, NY, USA: ACM, 2015, pp. 70.1–70.4. [Online]. Available: http://dx.doi.org/10.1145/2820783.2820860

[20] S. You, J. Zhang, and L. Gruenwald, “Large-scale spatial join queryprocessing in Cloud,” in 2015 IEEE International Conference on Data Engineering Workshops, April 2015, pp. 34–41.

[21] “Magellan: Geospatial Analytics Using Spark,” https://github.com/hasnainmagellan accessed: 2018-10-24.

[22] M. Tang, Y. Yu, Q. Mallihi, M. Ouzzani, and W. G. Aref, “LocationSpark: A Distributed In-memory Data Management System for Big Spatial Data,” Proc. VLDB Endow., vol. 9, no. 13, pp. 1565–1568, Sep. 2016. [Online]. Available: http://dx.doi.org/10.14778/3007263.3007310

[23] D. Xie, F. Li, B. Yao, G. Li, L. Zhou, and M. Guo, “Simba: Efficient In-Memory Spatial Analytics,” in Proceedings of the 2016 International Conference on Management of Data, ser. SIGMOD ’16. New York, NY, USA: ACM, 2016, pp. 1071–1085. [Online]. Available: http://dx.doi.org/10.1145/2820801.2857525

[24] “GeoTrellis: A Geographic Data Processing Engine for High Performance Applications,” https://geotrellis.io/, accessed: 2018-10-24.

[25] S. Hagedorn and T. Räth, “Efficient spatio-temporal event processing withSTARK,” in Proceedings of the 20th International Conference on Extending Database Technology, EDBT 2017, Venice, Italy, March 21-24, 2017., pp. 570–573. [Online]. Available: https://doi.org/10.5441/002/edbt.2017.72

[26] “Apache Parquet,” https://parquet.apache.org/, accessed: 2018-10-24.

[27] D. Abadi, D. Myers, D. DeWitt, and S. Madden, “Materialization Strategies in a Column-Oriented DBMS,” in Data Engineering, 2007. ICDE 2007. IEEE 23rd International Conference on, April 2007, pp. 466–475.
JOSÉ A. TABOADA is Associate Professor in the Department of Electronics and Computing at the Universidade de Santiago de Compostela (USC), Spain. He is member of the COGRADE (Computer Graphics and Data Engineering) research group of the USC and he is member of the CITIUS (Centro Singular de Investigación en Tecnoloxías Intelixentes) at the same university. He is graduated from the electronics program at the Faculty of Physics in 1990 and he received his PhD in Applied Physics in 1996 from the USC. He is author of numerous publications and he has been part of several national and European projects in the fields of Intelligent Systems. Other fields of interest include Big Data.
