Anomalous metamagnetic-like transition in a FeRh/Fe3Pt interface occurring at $T \approx 120$ K in the field-cooled-cooling curves for low magnetic fields

S. Salem-Sugui, A. D. Alvarenga, R. D. Noce, R. B. Guimarães, C. Salazar Mejia et al.

Citation: AIP Advances 2, 032168 (2012); doi: 10.1063/1.4754154
View online: http://dx.doi.org/10.1063/1.4754154
View Table of Contents: http://aipadvances.aip.org/resource/1/AAIDBI/v2/i3
Published by the AIP Publishing LLC.

Additional information on AIP Advances
Journal Homepage: http://aipadvances.aip.org
Journal Information: http://aipadvances.aip.org/about/journal
Top downloads: http://aipadvances.aip.org/most_downloaded
Information for Authors: http://aipadvances.aip.org/authors
Anomalous metamagnetic-like transition in a FeRh/Fe$_3$Pt interface occurring at $T \approx 120$ K in the field-cooled-cooling curves for low magnetic fields

S. Salem-Sugui Jr., A. D. Alvarenga, R. D. Noce, R. B. Guimarães, C. Salazar Mejia, H. Salim, and F. G. Gandra

1 Instituto de Física, Universidade Federal do Rio de Janeiro, 21941-972 Rio de Janeiro, RJ, Brazil
2 Instituto Nacional de Metrologia, Qualidade e Tecnologia, 25250-020 Duque de Caxias, RJ, Brazil
3 Instituto de Química, UNESP, 1801-400, Araraquara, SP, Brazil
4 Instituto de Física, Universidade Federal Fluminense, 24210-346, Niterói, RJ, Brazil
5 Instituto de Física, UNICAMP, Campinas, SP, Brazil

(Received 12 March 2012; accepted 31 August 2012; published online 13 September 2012)

We report on the magnetic properties of a special configuration of a FeRh thin film. An anomalous behavior on the magnetisation vs. temperature was observed when low magnetic fields are applied in the plane of a thin layer of FeRh deposited on ordered Fe$_3$Pt. The anomalous effect resembles a metamagnetic transition and occur only in the field-cooled-cooling magnetisation curve at temperatures near 120 K in samples without any heat treatment.

The Fe$_{1-x}$Rh$_x$ system with $x \approx 0.5$ crystalize in the CsCl structure under certain heat-treatment conditions. In this cubic phase, equiatomic FeRh is antiferromagnetic and exhibits a metamagnetic magnetostructural phase transition at ambient temperature. The transition temperature is however highly sensitive to small changes out of the equiatomic stoichiometry and microstructural scale. The magnetostructural phase transition is of first order kind with a volume expansion of about 1% when entering in the ferromagnetic phase and a temperature hysteresis of the order of 10 K. These characteristics make thin films of the FeRh system to present a good potential for applications as micro-electromechanical devices.

In this work, we study Fe$_{1-x}$Rh$_x$ in the composition $x \approx 0.5$ as obtained by electrodeposition on a foil of ordered Fe$_3$Pt. The electrodeposition occurred in galvanostatic conditions from a bath composed of: 0.01 Molar Fe$_2$(SO$_4$)$_3$, 0.001–0.0001 Molar Rh$_2$(SO$_4$)$_3$, 0.1 Molar K$_2$SO$_4$ and 0.05 Molar Sodium citrate (Na$_3$C$_6$H$_5$O$_7$). The final film thickness of FeRh falls in the range of 30-50 nm, depending on the applied current density, which was varied from 1 to 5 mA cm$^{-2}$, and the charge for preparing all deposits was kept to 10 C. An EG-G PAR potentiostat-galvanostat, model
273, served as a constant current source. The electrodeposition occur under previously established conditions producing an approximately equiatomic deposition of Fe and Rh. The Fe₃Pt substrate with ≈ 3 μm thickness was obtained by cold-rolling a previously prepared arc-melted sample. The ordered phase of the Fe₃Pt foil was achieved after an appropriated heat treatment as described in Ref. 13. A foil with 0.6 × 0.5 cm² (m = 0.00271 g) of the final film was used in the measurements.

Figure 1 shows a low angle (2 degrees) X-ray diffraction (XRD) curve obtained from the FeRh surface of the film and the inset shows usual XRD curves obtained in the same FeRh surface film and in the Fe₃Pt foil used as substrate. It is important to mention that the FeRh structure could not be resolved by means of usual XRD, as shown in the inset of Fig. 1. The double plot in the inset of Fig. 1 evidences the one-to-one match of the peaks of the ordered Fe₃Pt cubic structure in both diffraction curves. The low angle XRD data was refined for the peaks indicated in Fig. 1, following the Rietveld method with the MAUD software and using ICSD data base. The low angle diffraction curve was obtained about one year after the diffraction curve presented in the inset of Fig. 1 was obtained and, besides the Fe₃Pt peaks, it also shows a signal due to Fe₃O₄, which is absent in the diffraction curve show in the inset figure. This fact evidences that Fe₃O₄ grow on the FeRh surface as a result of surface oxidation. Despite that, it was possible to identify small peaks in the low angle diffraction curve belonging to the FeRh cubic structure (CsCl type) with lattice parameter a = 2.98 Å , as calculated from the FeRh peaks indicated in Fig. 1.

Magnetisation data were obtained by using a PPMS-9T Quantum-Design magnetometer. All data were obtained with the magnetic field applied parallel to the plane of the films. Isofield curves, $M_{\text{vs.}} T$, and isothermal curves, $M_{\text{vs.}} H$, were all obtained after cooling the studied sample from

![Figure 1. Low angle XRD of the FeRh face. The Inset shows X-ray diffractions of Fe₃Pt and FeRh-Fe₃Pt films. Perpendicular bars appearing below XRD in the main figure and its inset represent the peaks resolved for each correspondent structure.](image)
FIG. 2. Magnetisation curves for $H = 100$ Oe for Fe$_3$Pt and FeRh-Fe$_3$Pt films. The inset shows a plot of M_{fch}-M_{zfc} vs. T as obtained for each compound.

300 K, in zero applied magnetic field (zfc), but in the presence of the earth’s magnetic field, to a desired temperature. After that, for the isofield M vs. T curves, a magnetic field was applied reaching the desired value without overshooting. The zfc (zero-field-cooled) data was then collected by heating the sample at fixed increments of temperature up to 300 K, which was followed by the fcc (field-cooled-cooling) sequence with same δT increments down to 1.8 K. Finally, a fch (field-cooled-heating) process ends the sequence at 300 K. These procedures correspond to a cycle starting with a zfc (zero-field-cooled) curve obtained by heating from 1.8 K up to 300 K followed by a fcc (field-cooled-cooling) curve followed by a fch (field-cooled-heating) respectively. These data were obtained for fields ranging from 20 Oe to 10 kOe. For isothermals M vs. H curves, magnetisation is measured as the magnetic field increases (or decreases depending on the branch of the hysteresis curve) at fixed increments.

Figure 2 displays the M vs. T curves obtained with a magnetic field $H = 100$ Oe applied on a pure Fe$_3$Pt thin foil and on the film stack Fe$_{1-x}$Rh$_x$-Fe$_3$Pt (both films with approximately same mass). The curves of each system are shifted along the Y-axis for better presentation. Figure 2 allows the visualization of the overall effect of the thin FeRh layer deposited on the Fe$_3$Pt foil. It is possible to see that the fcc and fch curves in Fe$_3$Pt are much closer below 200 K than in the film stack. For FeRh-Fe$_3$Pt, a separation between the fcc and fch curves starts below ≈ 220 K, followed by an anomaly in the fcc curve appearing as temperature drops below ≈ 120 K, with a jump at 100 K. It is interesting to observe that both fcc and fch curves for FeRh-Fe$_3$Pt virtually join together below the jump in the magnetisation at 100 K. One may interpret the anomaly in the fcc curve of the film stack as a metamagnetic transition, similar to that observed in pure FeRh but with a composition out of the equiatomic stoichiometry. However, the later can not explain the fact that the fch curve of the film stack evolves continuously as T increases above 100 K, with values lying well below the fcc curve (this up to temperatures near 220 K). As mentioned, the fcc and fch curves for pure Fe$_3$Pt are
much closer when compared to the large separation of the same curves in the film stack, evidencing
the effect of the FeRh layer in the fch curve in the temperature region 100 K–220 K. The same effect
seems to explain the reduction in the magnetisation of the zfc curve of the film stack relatively to
the zfc curve of Fe3Pt (for Fe3Pt, the reduction in magnetization observed in the zfc curve below
230 K is a consequence of a misalignment of the domains, since as the temperature (or field) is
increased the domains become more aligned). The zfc curve of the film stack, which lies well below
the correspondent fch curve, also evolves continuously from 1.8 K up to 220 K. To better exemplify
this discussion, it is plotted in the inset of Fig. 2 results of the subtraction between the fch and zfc
magnetisation curves of Fe3Pt, and between the fch and zfc curves of FeRh-Fe3Pt (both from Fig. 2).
As it is possible to see in this inset, the resulting $\Delta M = M_{fch} - M_{zfc}$ of each system show quite
similar values and behavior with temperature, highly suggesting that the effect which reduces the
fch magnetisation in the FeRh-Fe3Pt film, also reduces the correspondent zfc magnetisation. These
facts may suggest that the deposited FeRh layer has an approximately equiatomic stoichiometry
which, if isolated, would show the metamagnetic transition near 220 K. In that case, the anomaly
in the fcc curve observed near 120 K when cooling the film in a low magnetic field, as well the
continuously increasing of magnetisation observed in the fch curve (and in the zfc curve) when
heating the sample from temperatures below the “jump”, might be explained, possibly, in terms of
the magnetic coupling between the ferromagnetic Fe3Pt bulk and the antiferromagnetic thin layer
of FeRh. Within this scenarios, the differences between the Fe3Pt and FeRh-Fe3Pt curves of Fig. 2
are due to the exchange antiferromagnetic-ferromagnetic coupling, which favor a metamagnetic-like
transition occurring near 120 K, only when cooling the film in a fcc curve. It is also interesting to
note in Fig. 2 that, contrary to what occurs for FeRh-Fe3Pt, the fch curve for Fe3Pt lies somewhat
above the fcc curve.

Figure 3 shows isofield curves for FeRh-Fe3Pt sample with $H = 100$ Oe (Fig. 3(a)), 1 kOe
(Fig. 3(b)) and 10 kOe (Fig. 3(c)) (Figure 3(a) is the same of Fig. 3 and it is included here for the sake
of comparison). It is possible to see on Figures 3(a) and 3(b), the anomaly in magnetisation occurring
on the fcc curves, where M starts dropping to lower values (with some apparent discontinuity) as
temperature is cooled down below \approx 120 K. The size, temperature, and width of the anomaly in the
fcc magnetisation curves do not show considerable changes with field. For $H = 10$ kOe (Fig. 3(c)),
the anomalous effect is absent (it is suggestive that this high field overcomes the antiferromagnetic-
ferromagnetic exchange coupling) and, interestingly, the zfc curve appears above the fcc and fch
curves while the zfc curves in Figs. 3(a) and 3(b) appears below the fcc and fch curves. These
differences are probably related to the alignment of ferromagnetic domains, which depends on the
strength of the magnetic field. As already mentioned, it is interesting to note that, for temperatures
above 120 K, the fcc curves in Figs. 3(a) and 3(b) lie well above the zfc and fch curves, though
the fcc curves match almost perfectly the fch curves below 100 K. The later suggest the existence
of some antiferromagnetic ordering (within the FeRh thin layer) occurring below 100 K. One may
understand this fact as a coexistence of two phases below 100 K, an antiferromagnetic phase due to
the FeRh thin layer and a ferromagnetic phase due to the bulk Fe3Pt, which is dominant.

To check for possible effects in the temperature region around 100 K, we plot in Fig. 4(a)
isothermal $M_{s} vs. H$ curves obtained from 80 K to 130 K. The main figure shows a 150 Oe window
plot of the original $M(H)$ curves presented in the inset. It is possible to see that each curve of
Fig. 4(a) exhibit a typical ferromagnetic hysteresis behavior with a perfect symmetric coercive
fields. It is also possible to see that the coercive field increases monotonically as temperature
decreases.

One should note that the isofields $M_{s} vs. T$ curves of Fig. 3 show a maximum in the magnetisation
located approximately at 240–250 K. To check for possible effects related to this maximum on
$M_{s} vs. H$ curves we obtained few isothermals for temperatures around 250 K which are presented in
Fig. 4(b). The curves in Fig. 4(b) show a typical ferromagnetic hysteresis behavior with no apparent
change in the magnetisation isothermals as the maximum in the $M_{s} vs. T$ curves, when $T \approx 250$ K, is
crossed. We mention (not shown) that we check for a possible frequency dependence of the anomaly
(metamagnetic-like transition) by measuring ac susceptibility curves for three different frequencies:
50, 500 and 2000 Hz; with an ac magnetic field of 1 Oe and a dc magnetic field of 20 Oe. The
resulting curves of the susceptibility amplitude versus temperature did not show any frequency
FIG. 3. Magnetisation curves as obtained for the FeRh-Fe3Pt film for: (a) 100 Oe; (b) 1 kOe; (c) 10 kOe.
FIG. 4. (a) Isothermal M vs. H curves obtained at temperatures around 100 K plotted in a 150 Oe window. The inset shows the original M vs. H curves; (b) Isothermal M vs. H curves obtained for several temperatures around 250 K.

FIG. 5. Magnetisation curves as obtained for the FeRh-Fe$_3$Pt film for 100 Oe with 4 months delay.

dependent effect. We also mention that we search for time relaxation effects when in the fcc curve near the anomalous transition above 120 K, but no magnetic relaxation was observed.

Although the metamagnetic-like transition observed here may have a different nature for bulk FeRh and thin films, it is interesting to compare the size of the jump occurring at \approx 100 K. From
Fig. 3, the jump is estimated to be $\approx 5 \times 10^3$ emu/cm3 for a 50 nm thickness while the size of the antiferromagnetic-ferromagnetic (AF-F) transition observed in FeRh in Ref. 7 is of the order of 1.2×10^3 emu/cm3, but at a $T \approx 350$ K. It should be mentioned that an AF-F transition was observed in a Fe$_{48}$Rh$_{52}$ film10 at $T \approx 100$ K, also with a size of the order of 1.2×10^3 emu/cm3. So the “size” of the metamagnetic-like transition observed here for the FeRh-Fe$_3$Pt film appears to be 4 times bigger than the AF-F transition observed for pure FeRh. This discrepancy might be also in part due to an under-estimative of our FeRh sample thickness. It should be mentioned that an increasing in the FeRh magnetisation above the antiferromagnetic transition has been observed in a FeRh/FePt thin film.10

Figure 5 depicts two measurements obtained in the same sample at same conditions but with approximately 4 months delay between each other. A comparison of both curves clearly shows the aging effect which shifted the onset temperature of the anomaly to a lower temperature (≈ 20 degrees below), broadened its width and reduced the size of the apparent discontinuity (by $\approx 30\%$). We lack, at moment, on an explanation for this aging effect.

In conclusion we obtained a Fe$_{1-x}$Rh$_x$-Fe$_3$Pt with $x \approx 0.5$ system by electrodeposition of FeRh on a Fe$_3$Pt ordered foil. The resulting film stack show, prior to further heat-treatments, an anomaly in the magnetisation when the sample is cooled in a magnetic field from 300 K down to lower temperatures, after reaching 300 K with the same applied field from a zero-field-cooled heating cycle from 1.8 K. The anomalous magnetisation is reproducible and appears at temperatures close to 120 K, from fields as low as 20 Oe up to fields as high as 1 kOe, and resembles a metamagnetic transition.