Gravitational waves from PSR J0537–6910

12 University of Cambridge, Cambridge CB2 1TN, United Kingdom
13 Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany
14 University of Birmingham, Birmingham B15 2TT, United Kingdom
15 Center for Interdisciplinary Exploration & Research in Astrophysics (CIERA), Northwestern University, Evanston, IL 60208, USA
16 Instituto Nacional de Pesquisas Espaciais, 12227-010 São José dos Campos, São Paulo, Brazil
17 Gravity Exploration Institute, Cardiff University, Cardiff CF24 3AA, United Kingdom
18 Gran Sasso Science Institute (GSSI), I-67100 L’Aquila, Italy
19 INFN, Laboratori Nazionali del Gran Sasso, I-67100 Assergi, Italy
20 INFN, Sezione di Pisa, I-56127 Pisa, Italy
21 Università di Pisa, I-56127 Pisa, Italy
22 International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru 560089, India
23 Gravitational Wave Science Project, National Astronomical Observatory of Japan (NAOJ), Mitaka City, Tokyo 181-8588, Japan
24 Advanced Technology Center, National Astronomical Observatory of Japan (NAOJ), Mitaka City, Tokyo 181-8588, Japan
25 University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
26 NCSA, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
27 Università di Napoli “Federico II”, Complesso Universitario di Monte S. Angelo, I-80126 Napoli, Italy
28 Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
29 University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
30 Department of Physics, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
31 Research Center for the Early Universe (RESCEU), The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
32 SUPA, University of Strathclyde, Glasgow G1 1XQ, United Kingdom
33 Dipartimento di Matematica e Informatica, Università di Udine, I-33100 Udine, Italy
34 INFN, Sezione di Trieste, I-34127 Trieste, Italy
35 Embry-Riddle Aeronautical University, Prescott, AZ 86301, USA
36 Université de Paris, CNRS, Astroparticule et Cosmologie, F-75006 Paris, France
37 Institute for Cosmic Ray Research (ICRR), KAGRA Observatory, The University of Tokyo, Kashiwa City, Chiba 277-8582, Japan
38 Accelerator Laboratory, High Energy Accelerator Research Organization (KEK), Tsukuba City, Ibaraki 305-0801, Japan
39 Earthquake Research Institute, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
40 Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91191 Orsay, France
41 European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy
42 University of Florida, Gainesville, FL 32611, USA
43 Chennai Mathematical Institute, Chennai 600113, India
44 Department of Mathematics and Physics, Hirosaki University, Hirosaki City, Aomori 036-8561, Japan
45 Columbia University, New York, NY 10027, USA
46 Kamioka Branch, National Astronomical Observatory of Japan (NAOJ), Kamioka-cho, Hida City, Gifu 506-1205, Japan
47 The Graduate University for Advanced Studies (SOKENDAI), Mitaka City, Tokyo 181-8588, Japan
48 INFN, Sezione di Roma, I-00185 Roma, Italy
49 Univ. Grenoble Alpes, Laboratoire d’Annecy de Physique des Particules (LAPP), Université Savoie Mont Blanc, CNRS/IN2P3, F-74941 Annecy, France
50 Nikhef, Science Park 105, 1098 XG Amsterdam, Netherlands
51 Korea Institute of Science and Technology Information (KISTI), Yuseong-gu, Daejeon 34141, Korea
52 National Institute for Mathematical Sciences, Daejeon 34047, South Korea
53 INFN Sezione di Torino, I-10125 Torino, Italy
54 International College, Osaka University, Togyonaka City, Osaka 560-0043, Japan
55 School of High Energy Accelerator Science, The Graduate University for Advanced Studies (SOKENDAI), Tsukuba City, Ibaraki 305-0801, Japan
56 University of Oregon, Eugene, OR 97403, USA
57 Syracuse University, Syracuse, NY 13244, USA
58 Université de Liège, B-4000 Liège, Belgium
59 University of Minnesota, Minneapolis, MN 55455, USA
60 Università degli Studi di Milano-Bicocca, I-20126 Milano, Italy
61 INFN, Sezione di Milano-Bicocca, I-20126 Milano, Italy
62 INAF, Osservatorio Astronomico di Brera sede di Merate, I-23807 Merate, Lecco, Italy
63 LIGO Hanford Observatory, Richland, WA 99352, USA
64 Institut de Ciències del Cosmos, Universitat de Barcelona, C/ Martí i Franquès 1, Barcelona, 08028, Spain
65 LIGO, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Gravitational waves from PSR J0537−6910

122 OzGrav, Charles Sturt University, Wagga Wagga, New South Wales 2678, Australia
123 Department of Physics, Tamkang University, Danshui Dist., New Taipei City 25137, Taiwan
124 Department of Physics and Institute of Astronomy, National Tsing Hua University, Hsinchu 30013, Taiwan
125 University of Chicago, Chicago, IL 60637, USA
126 Department of Physics, Center for High Energy and High Field Physics, National Central University, Zhongli District, Taoyuan City 32001, Taiwan
127 Dipartimento di Ingegneria Industriale (DIIN), Università di Salerno, I-84084 Fisciano, Salerno, Italy
128 Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan
129 Institut de Physique des 2 Infinis de Lyon (IP2I), CNRS/IN2P3, Université de Lyon, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France
130 Seoul National University, Seoul 08826, South Korea
131 Pusan National University, Busan 46241, South Korea
132 King’s College London, University of London, London WC2R 2LS, United Kingdom
133 INAF, Osservatorio Astronomico di Padova, I-35122 Padova, Italy
134 University of Arizona, Tucson, AZ 85721, USA
135 Rutherford Appleton Laboratory, Didcot OX11 0DE, United Kingdom
136 Université libre de Bruxelles, Avenue Franklin Roosevelt 50 - 1050 Bruxelles, Belgium
137 Universitat de les Illes Balears, IAC3—IEEC, E-07122 Palma de Mallorca, Spain
138 Université Libre de Bruxelles, Brussels 1050, Belgium
139 Departamento de Matemáticas, Universitat de València, E-46100 Burjassot, València, Spain
140 Texas Tech University, Lubbock, TX 79409, USA
141 The Pennsylvania State University, University Park, PA 16802, USA
142 University of Rhode Island, Kingston, RI 02881, USA
143 The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
144 Bellevue College, Bellevue, WA 98007, USA
145 Scuola Normale Superiore, Piazza dei Cavalieri, 7 - 56126 Pisa, Italy
146 MTA-ELTE Astrophysics Research Group, Institute of Physics, Eötvös University, Budapest 1117, Hungary
147 Maastricht University, 6200 MD, Maastricht, Netherlands
148 Universität Hamburg, D-22761 Hamburg, Germany
149 IGFAE, Campus Sur, Universidade de Santiago de Compostela, 15782 Spain
150 University of Portsmouth, Portsmouth, PO1 3FX, United Kingdom
151 The University of Sheffield, Sheffield S10 2TN, United Kingdom
152 Laboratoire des Matériaux Avancés (LMA), Institut de Physique des 2 Infinis (IP2I) de Lyon, CNRS/IN2P3, Université de Lyon, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France
153 Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy
154 INFN, Sezione di Milano Bicocca, Gruppo Collegato di Parma, I-43124 Parma, Italy
155 Physik-Institut, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
156 Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
157 West Virginia University, Morgantown, WV 26506, USA
158 Montclair State University, Montclair, NJ 07043, USA
159 Colorado State University, Fort Collins, CO 80523, USA
160 Institute for Nuclear Research, Hungarian Academy of Sciences, Bem l’er 18/c, H-4026 Debrecen, Hungary
161 CNR-SPIN, c/o Università di Salerno, I-84084 Fisciano, Salerno, Italy
162 Scuola di Ingegneria, Università della Basilicata, I-85100 Potenza, Italy
163 Observatori Astronòmic, Universitat de València, E-46980 Paterna, València, Spain
164 The University of Utah, Salt Lake City, UT 84112, USA
165 Kenyon College, Gambier, OH 43022, USA
166 Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, Netherlands
167 Department of Astronomy, The University of Tokyo, Mitaka City, Tokyo 181-8588, Japan
168 Faculty of Engineering, Niigata University, Nishi-ku, Niigata City, Niigata 950-2181, Japan
169 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology (APM), Chinese Academy of Sciences, Xiao Hong Shan, Wuban 430071, China
170 University of Szeged, Dóm tér 9, Szeged 6720, Hungary
171 Universiteit Gent, B-9000 Gent, Belgium
172 University of British Columbia, Vancouver, BC V6T 1Z4, Canada
173 Tata Institute of Fundamental Research, Mumbai 400005, India
174 INAF, Osservatorio Astronomico di Capodimonte, I-80131 Napoli, Italy
We present a search for continuous gravitational-wave signals from the young, energetic X-ray pulsar PSR J0537–6910 using data from the second and third observing runs of LIGO and Virgo. The search is enabled by a contemporaneous timing ephemeris obtained using NICER data. The NICER ephemeris has also been extended through 2020 October and includes three new glitches. PSR J0537–6910 has the largest spin-down luminosity of any pulsar and is highly active with regards to glitches. Analyses of its long-term and inter-glitch braking indices provided intriguing evidence that its spin-down energy budget may include gravitational-wave emission from a time-varying mass quadrupole moment. Its 62 Hz rotation frequency also puts its possible gravitational-wave emission in the most sensitive band of LIGO/Virgo detectors. Motivated by these considerations, we search for gravitational-wave emission at both once and twice the rotation frequency. We find no signal, however, and report our upper limits. Assuming a rigidly rotating triaxial star, our constraints reach below the gravitational-wave spin-down limit for this star for the first time by more than a factor of two and limit gravitational waves from the $l = m = 2$ mode to account for less than 14% of the spin-down energy budget. The fiducial equatorial ellipticity is limited to less than about 3×10^{-5}, which is the third best constraint for any young pulsar.

Deceased, August 2020.

Keywords: gravitational waves — pulsars: general — pulsars: individual (PSR J0537–6910) — stars: neutron

1. **INTRODUCTION**

The young (1–5 kyr) energetic pulsar PSR J0537–6910 (Wang & Gotthelf 1998; Chen et al. 2006) resides in the Large Magellanic Cloud at a distance of 49.6 kpc (Pietrzyński et al. 2019). Its pulsations are only detectable at X-ray energies, and the pulsar was first observed by Marshall et al. (1998) using the Rossi X-ray Timing Explorer (RXTE) during searches for pulsations from the remnant of SN1987A. Further observations with RXTE, prior to its decommissioning in early 2012, revealed that PSR J0537–6910 often undergoes sudden changes in rotation frequency, i.e., glitches, at a rate of more than three per year, and exhibits interesting inter-glitch behavior (Marshall et al. 2004; Middleditch et al. 2006; Andersson et al. 2018; Antonopoulou et al. 2018; Ferdman et al. 2018). Observations of the pulsar resumed in 2017 using the Neutron star Interior Composition Explorer (NICER) on board the International Space Station (Gendreau et al. 2012), and these observations from 2017–2020 revealed further glitches and continuation of timing behavior seen with RXTE (Ho et al. 2020b).

PSR J0537–6910 is a particularly intriguing potential gravitational-wave source. It is the fastest-spinning known young pulsar (with rotation frequency $f_{\text{rot}} = 62$ Hz), which places its gravitational-wave frequency f (e.g., at twice f_{rot}; see Section 2.1) in the most sensitive band of ground-based gravitational-wave detec-
The spin-down limit of PSR J0537–6910 for the first time, which means that the minimum amplitude we could detect in our analysis is lower than the one given by assuming all of the pulsar’s rotational energy loss is converted to gravitational waves (see Section 2.1). In other words, we can now obtain physically meaningful constraints.

Figure 1. Interglitch braking index \(n_{ig} \) calculated from the spin parameters of each segment between glitches as a function of time since the last glitch. Large and small circles denote NICER and RXTE values, respectively, with the former from Tables 1 and 2 and from Ho et al. (2020b) and latter from Antonopoulou et al. (2018). Errors in \(n_{ig} \) are 1σ uncertainty. Orange horizontal dotted lines indicate braking index \(n = 5 \) and \(7 \), which are expected for pulsar spin-down by gravitational-wave emission due to an ellipticity and r-mode oscillation, respectively. Green dot-dashed and dashed lines indicate exponential decay to \(n = 5 \) with best-fit time-scale of 24 d and to \(n = 7 \) with best-fit time-scale of 21 d, respectively.

2. SEARCH METHOD

2.1. Model of gravitational-wave emission

The first model considered here allows for gravitational-wave emission at once and twice the spin frequency simultaneously, which has been searched for previously (Pitkin et al. 2015; Abbott et al. 2017, 2019a, 2020), and can result from a triaxial star spinning about an axis that is not its principal axis (Jones 2010, 2015). The amplitudes of each harmonic at once and twice the spin frequency of the star, denoted \(h_{21}(t) \) and \(h_{22}(t) \),
respectively, can be written as
\begin{align}
 h_{21} &= -\frac{C_{21}}{2} \left\{ F^D_+ (\alpha, \delta, \psi; t) \sin \iota \cos \cos \Phi(t) + \Phi_{21}^C \right\} \\
 &\quad + F^X_+ (\alpha, \delta, \psi; t) \sin \iota \sin \Phi(t) + \Phi_{21}^C \right\}, \quad (1) \\
 h_{22} &= -C_{22} \left\{ F^D_+ (\alpha, \delta, \psi; t)(1 + \cos^2 \iota) \cos [2\Phi(t) + \Phi_{22}^C] \\
 &\quad + 2F^X_+ (\alpha, \delta, \psi; t) \cos \iota \sin [2\Phi(t) + \Phi_{22}^C] \right\}. \quad (2)
\end{align}

Here, \(C_{21} \) and \(C_{22} \) are dimensionless constant component amplitudes, and \(\Phi_{21}^C \) and \(\Phi_{22}^C \) are phase angles. \(F^D_+ \) and \(F^X_+ \) are antenna or beam functions and describe how the two polarization components of the signal project onto the detector (see, e.g., Jaranowski et al. 1998). Angles \((\alpha, \delta) \) are the right ascension and declination of the source, while angles \((\iota, \psi) \) specify the orientation of the star’s spin axis relative to the observer. \(\Phi(t) \) is the rotational phase of the source.

The second model is a special case of the first model and is used for gravitational-wave emission at only twice the rotational frequency \((C_{21} = 0) \), implying a triaxial star that is spinning about a principal axis, such as its \(z \)-axis. In this case, it is simpler to write the gravitational-wave amplitude in terms of the dimensionless value \(h_0 \), where in equation (2) the substitution \(C_{22} = -h_0/2 \) would be made (Abbott et al. 2019a) with the sign change just to maintain consistency with the model from Jaranowski et al. (1998). The cause of such gravitational-wave emission is a deviation from axial symmetry, which can be written in terms of a dimensionless equatorial ellipticity \(\varepsilon \), defined in terms of the star’s principal moments of inertia \((I_{xx}, I_{yy}, I_{zz})\):

\[\varepsilon \equiv \frac{|I_{xx} - I_{yy}|}{I_{zz}}. \quad (3) \]

The gravitational-wave amplitude is directly proportional to the ellipticity:

\[h_0 = \frac{16\pi^2G}{c^4} \frac{I_{zz} \varepsilon}{d} f_{\text{rot}}^2, \quad (4) \]

where \(d \) is the star’s distance from the Earth. When setting upper limits, we use a fiducial value for the \(z \)-component of the moment of inertia, i.e., \(I_{zz}^{\text{fid}} = 10^{38} \text{ kg m}^2 \). The combination of the ellipticity and fiducial moment of inertia can be cast in terms of the mass quadrupole moment of the \(l = m = 2 \) mode of the star via \(Q_{22} = \sqrt{15/8\pi} I_{zz} \varepsilon \) (Owen 2005). The gravitational-wave amplitude \(h_0 \) can be compared to the spin-down limit amplitude \(h_0^{\text{sd}} \), which is the gravitational-wave amplitude produced assuming that the entire rotational energy loss of the pulsar is converted into gravitational waves:

\[h_0^{\text{sd}} = \frac{1}{d} \left(\frac{5G I_{zz} |f_{\text{rot}}|}{2c^3} \right)^{1/2}. \quad (5) \]

Our results for the single harmonic case are quoted in terms of \(h_0^{\text{sd}} \).

NICER observations of PSR J0537–6910 allow for the ephemeris of the pulsar to be determined, which means we know the expected signal frequency and its evolution. With this information, we can perform a targeted search for gravitational waves from this pulsar based on the two signal models discussed, with the phase tracking of that of the pulsar rotation.

2.2. NICER data

In Ho et al. (2020b), timing analysis is performed on **NICER** data of PSR J0537–6910 from 2017 August 17 to 2020 April 25, with eight glitches detected during this timespan and the last three glitches during O3. Here we present an update and results on timing analysis since the work of Ho et al. (2020b). In particular, data from 2020 May 12 to October 29 is analyzed using the methodology as described in Ho et al. (2020b). Our analysis reveals continuing accelerated spin-down (see Table 1) and three subsequent glitches (see Table 2 and Figure 2), including the smallest glitch of PSR J0537–6910 yet detected using **NICER**. Note that the timing model of segment 8 uses three additional subsequent times-of-arrival (TOAs) beyond those in Table 1 of Ho et al. (2020b) and, as a result, the epoch and other parameters of the model differ; e.g., the longer timespan and lower \(n_{\text{ig}} \) of segment 8 result in a different position in Figure 1 compared to Figure 6 of Ho et al. (2020b). Meanwhile, the relatively short timespan of segment 9 means the timing model for this segment is not able to constrain \(f_{\text{rot}} \). For the most recent glitch 11, its magnitude is large \((\Delta f_{\text{rot}} = 33.9 \mu \text{Hz}) \), which suggests the time to the next glitch will be long \((\sim 200 \pm 20 \text{ d}; \text{Ho et al. 2020b})\). If the interglitch period is indeed long, then **NICER** measurements could eventually yield \(n_{\text{ig}} \lesssim 7 \) for segment 11, which would lend further support for gravitational-wave emission (see Section 1 and Figure 1).

The gravitational-wave search performed here uses the timing model of Ho et al. (2020b). The differences between the model of Ho et al. (2020b) and the model presented here are well within the former’s uncertainties, and thus use of the latter would not yield significantly different results.
2.3. **LIGO and Virgo data**

We use a combination of data from the second and third observing runs of the Advanced LIGO (Aasi et al. 2015) and Virgo (Acernese et al. 2015) gravitational wave detectors. During O2, LIGO Livingston (L1) and LIGO Hanford (H1) took data from 2016 November 30 to 2017 August 25 and had duty factors of $\sim 57\%$ and $\sim 59\%$, respectively (including commissioning breaks), while Virgo took data from 2017 August 1 to 2017 August 25 with a duty factor of $\sim 85\%$. As noted in Section 2.2, NICER data start on 2017 August 17, and thus one set of searches we undertake uses only about six days of O2 data overlapping with the NICER data in addition to the O3 data. Alternatively, we can consider a more optimistic and much longer time-series of O2 data by taking advantage of the correlation between glitch size and time-to-next-glitch seen for PSR J0537–6910 (Middleditch et al. 2006; Antonopoulou et al. 2018; Ferdman et al. 2018; Ho et al. 2020b). Assuming a (unobserved) glitch occurred on 2017 March 22 with the same size as the largest NICER glitch (i.e., glitch 2 with $\Delta f_{\text{rot}} = 36 \mu\text{Hz}$), we would expect a subsequent glitch 224 d later (at 68\% confidence) on 2017 November 1, which is the earliest estimated date at which glitch 1 occurred (see Figure 2 and Ho et al. 2020b). Thus 2017 March 22 to November 1 is the longest period over which we would expect PSR J0537–6910 to not have undergone a glitch and the NICER ephemeris to be valid. O3 lasted from 2019 April 1 to 2020 March 27, with a one-month pause in data collection in October 2019. The three detectors’ datasets H1, L1, and V1 had duty factors of $\sim 76\%$, $\sim 77\%$, and $\sim 76\%$ respectively during O3.

In the case of a detection, calibration uncertainties limit our ability to provide robust estimates of the amplitude of the gravitational-wave signal and corresponding ellipticity (Abbott et al. 2017). Even without a detection, these uncertainties affect the estimated instrument sensitivity and inferred upper limits. The uncertainties vary over the course of a run but do not change by large values, so we do not explicitly consider time-dependent calibration uncertainties in our analysis. For further information on O2 calibration techniques, see discussions in Abbott et al. (2019a).

Table 1. Timing model parameters for segments between epochs of new glitches of PSR J0537–6910. Columns from left to right are segment number, timing model epoch, segment start and end dates, number of times-of-arrival, rotation frequency and its first two time derivatives, interglitch braking index, and timing model residual and goodness-of-fit measure. Number in parentheses is 1\(\sigma\) uncertainty in last digit. Segments 1–7 are presented in Ho et al. (2020b).

Segment	Epoch	Start	End	TOAs	f_{rot}	\dot{f}_{rot}	\ddot{f}_{rot}	n_{ig}	Residual RMS	χ^2/dof
8	58931	58871.5	58991.2	17	61.908808739(3)	$-1.997535(7)$	1.06(8)	16(1)	173.7	9.9
9	59020	58995.6	59046.3	11	61.907273376(2)	$-1.99699(4)$	[1]\(^a\)	—	147.8	6.7
10	59074	59050.4	59098.7	10	61.906345448(5)	$-1.99762(2)$	3.6(8)	56(13)	60.9	1.5
11	59129	59108.7	59150.7	11	61.905434556(6)	$-1.99809(3)$	2.2(13)	34(20)	72.3	2.1

\(^a\) \dot{f}_{rot} is fixed at 10^{-20} Hz s\(^{-1}\).

Table 2. Parameters of new glitches of PSR J0537–6910. Columns from left to right are glitch number and epoch, change in rotation phase and changes in rotation frequency and its first two time derivatives at each glitch. Number in parentheses is 1\(\sigma\) uncertainty in last digit. Glitches 1–7 are presented in Ho et al. (2020b).

Glitch	Glitch epoch	$\Delta \phi$	Δf_{rot}	$\Delta \dot{f}_{\text{rot}}$	$\Delta \ddot{f}_{\text{rot}}$
8	58868(5)	0.08(12)	24.0(1)	$-2.3(6)$	$-5(1)$
9	58993(3)	0.06(12)	0.4(1)	$-0.3(8)$	—
10	59049(3)	$-0.22(2)$	8.46(3)	$-1.3(5)$	—
11	59103(5)	0.42(2)	33.958(7)	$-2.0(3)$	—
Abbott et al.

Figure 2. Glitch Δf_{rot} (top) and $\dot{\Delta} f_{rot}$ (bottom) as functions of time. Glitch numbers and values from Table 2 and Ho et al. (2020b). Errors in Δf_{rot} are 1σ uncertainty, while errors in $\dot{\Delta} f_{rot}$ are not shown because they are generally smaller than the symbols. Shaded regions denote second observing run (O2) and third observing run (O3) of LIGO/Virgo. Vertical long and short-dashed lines indicate two possible start dates of O2 data used in present work (see Section 2.3).

The full raw strain data from the O2 run is publicly available from the Gravitational Wave Open Science Center¹ (Vallisneri et al. 2015; Abbott et al. 2019c). For the LIGO O3 data set, the analysis uses the “C01” calibration. The C01 calibration has estimated maximum amplitude and phase uncertainties of ∼7% and ∼4 deg, respectively (Sun et al. 2020), which we use as conservative estimates of the true calibration uncertainty near the frequencies analyzed here. For the Virgo O3 data set, we use the “V0” calibration with estimated maximum amplitude and phase uncertainties of 5% and 2 deg, respectively. We note that the signal frequencies analyzed in L1 and H1 data are close to the US power-line frequencies of 60 and 120 Hz. However, these disturbances do not affect our analysis and results since we consider only a narrow band around the expected signal frequency, as can be seen in the relatively clean amplitude spectral densities of Figure 3.

2.4. Search pipeline

The time-domain Bayesian method performs a coherent analysis of the interferometers’ data, meaning that we analyze the entire data set with an effective single Fourier Transform, thereby preserving the phase information. First, the raw strain data are heterodyned (Dupuis & Woan 2005) using the expected signal phase evolution, known precisely from the electromagnetic timing ephemeris. Then a low-pass filter with a knee frequency of 0.25 Hz is applied, and the data are downsampled so that the sampling time is one minute, compared to 60 microseconds originally. This heterodyning is performed for an expected signal whose frequency is at once or twice the rotational frequency of the pulsar. The heterodyned data is the input to a nested sampling algorithm that is a part of the LALINFERENCE package (Veitch & Vecchio 2010; Veitch et al. 2015), which infers the unknown signal parameters depending on the model of gravitational-wave emission.

PSR J0537–6910 glitched three times over the course of the gravitational-wave observations (see Figure 2). For each glitch, we assume an unknown phase offset between the electromagnetic and gravitational-wave phase. The individual phase offsets of multiple glitches that occurred between O2 and O3 cannot be disentangled, so only one phase offset is included for these glitches. This means that we introduce four additional phase parameters when performing parameter estimation.

We also make use of restricted and unrestricted priors when performing the analysis. In the first case, we use estimates of the orientation of the pulsar relative to the Earth based on a model fit of the observed pulsar wind nebulae torus (Ng & Romani 2008), which imply narrow priors in our analysis on the polarization and inclination angles. From these we use a Gaussian prior on ψ of 2.2864 ± 0.0384 rad and a bimodal Gaussian prior on ι with modes at 1.522 ± 0.016 and 1.620 ± 0.016 rad (see Jones 2015, for reasons behind the bimodality). This range of ι would suggest the pulsar’s rotation axis is almost perpendicular to the line-of-sight, which would in turn lead to a linearly polarized gravitational-wave signal dominated by the ‘+’ polarization mode. The second case assumes a uniform isotropic prior on the axis direction, which therefore does not rely on the above modeling of observations. The initial signal phase and glitch phase offsets all use uniform priors over their full ranges. For the single harmonic search, we parameterize

¹ https://www.gw-openscience.org/data
the signals using the mass quadrupole Q_{22} and distance. As a conservative approach, we use an unphysical flat prior on Q_{22} with a lower bound at zero and an upper bound of $5 \times 10^{27} \text{ kg m}^2$, which is well above the largest upper limits found in Abbott et al. (2019a). For the distance, we use a Gaussian prior with mean of 49.59 kpc and standard deviation of 0.55 kpc based on the value given in Pietrzyński et al. (2019), combining the statistical and systematic errors in quadrature. For the dual harmonic search, which uses the amplitudes C_{21} and C_{22} rather than the physical parameters of Q_{22} and d, we use flat priors that are bounded between zero and 1×10^{-22}, which is again well above the limit implied in Abbott et al. (2019a). To analyze multiple detectors’ data sets simultaneously, we combine the product of the likelihoods calculated for each detector (Dupuis & Woan 2005).

The outputs of the analysis are posterior distributions of the parameters of interest, which are $h_0/Q_{22}/\varepsilon$ for the single harmonic search and C_{21} and C_{22} for the dual harmonic search, and of the angles $\cos \iota$ and ψ for both choices of priors. In Section 3, we present results on the amplitude parameters marginalized over the rest of the parameter space.

3. RESULTS

Results from our searches do not show evidence for gravitational-wave emission from PSR J0537–6910 via the two models that we assume. An amplitude spectral density obtained after the heterodyne correction is displayed in Figure 3 for each of the three detectors. If a loud continuous gravitational-wave signal was present, we would expect to see a narrow line feature in the spectrum. The amplitude spectral densities also give an estimation of the sensitivity of the search.

Though no gravitational waves are detected, we can still determine upper limits on possible gravitational-wave emission from PSR J0537–6910. Here we use 95% credible upper bounds on the amplitude parameters based on their marginalized probability distributions. The dimensionless gravitational-wave amplitude h_0 and coefficients C_{21} and C_{22} are constrained for the single and dual harmonic searches, respectively. For the single harmonic search, h_0 can be mapped to a limit on the maximum ellipticity ε using equation (4). In Table 3 we show the different constraints for both searches using all O3 data and the last ~ 6 days of O2 data (see Section 2.3). In addition to the detector calibration uncertainties discussed in Section 2.3, we estimate that the statistical uncertainty on the upper limits due to the use of a finite number of posterior samples is on the order of 1%.

Figure 3. Two-sided amplitude spectral density (ASD) after heterodyning, low pass filtering, and downsampling the raw strain data for the $l = m = 2$ gravitational-wave mode. Different color lines indicate the Hanford (H1), Livingston (L1), and Virgo (V1) detectors.

Table 3. 95% upper limits on gravitational-wave strain, ellipticity, and other quantities based on unrestricted (UR) and restricted (R) choices for priors on polarization and inclination angles. Results here come from analyzing all O3 data and the last 6 days of O2 data.

Prior	$h_0^{95\%}$	$\varepsilon^{95\%}$	$h_0^{95\%}/h_0^{90\%}$	$C_{21}^{95\%}$	$C_{22}^{95\%}$
	(10^{-26})	(10^{-5})	(10^{-26})	(10^{-26})	(10^{-27})
UR	1.1	3.4	0.37	2.2	5.6
R	1.0	3.1	0.33	1.8	5.0

Figure 4 shows the marginalized posterior probability distributions on the pulsar ellipticity and h_0 for the single harmonic search with unrestricted and restricted source orientation priors. The posteriors show significant support at ellipticities of zero, indicating no evidence of a signal at current sensitivities. We therefore show 95% credible upper limits on the ellipticity for both prior choices along with the fiducial spin-down limit.

Figure 5 shows a similar posterior distribution on the dimensionless amplitudes C_{21} and C_{22} for the dual harmonic model. For this model, no evidence of gravitational waves is found, so an upper limit at 95% is indicated in both panels of this figure. The model given
by Equation (1) means that the value of C_{21} becomes completely unconstrained when $\sin \epsilon = 0$. For the unrestrained orientation prior result shown in the left panel of Figure 5, this leads to a long high amplitude tail in the C_{21} posterior distribution. In Figures 4 and 5, we see that the amplitude posteriors can peak away from zero. This behavior was unsurprising and can occur even for pure Gaussian noise. Even with these peaks, the posteriors are still entirely consistent with zero ellipticity. For example, for the unrestrained posterior distribution shown in Figure 4, a value of zero ellipticity is within the minimum 66% credible interval around the mode.

The results presented above use all O3 data in combination with about 1 week of O2 data, when NICER was operating and monitoring PSR J0537–6910. We also conducted searches using only O3 data or using O3 data plus O2 data from 2017 March 22 to the end of O2. The latter analysis assumes no glitches occurred during the additional time and represents the estimated maximum time that can be safely included without a contemporaneous timing model (see Section 2.3). For only O3 data, we obtain h_0 and ε limits that are worse by $\sim 7\%$ for UR and unchanged for R from those shown in Table 3 for which a small amount of O2 data is used. For O3 data plus the extra O2 data, we obtain amplitude limits that are improved by $\lesssim 20\%$ compared to those shown in Table 3.

Using data from LIGO/Virgo’s second and third observing runs, we searched for mass quadrupolar-sourced gravitational waves from the young, dynamic PSR J0537–6910 at once or twice the pulsar’s rotational frequency of 62 Hz. For the first time we reached below the gravitational-wave spin-down limit for PSR J0537–6910 and showed that gravitational-wave emission for a pure $l = m = 2$ mode accounts for less than 14% of the pulsar’s spin-down energy budget. We placed the third most stringent constraint on the ellipticity ($\varepsilon < 3 \times 10^{-5}$) of any young pulsar (behind only the Crab pulsar and B1951+32/J1952+3252; Abbott et al. 2019a, 2020). While this limit is much higher than those of old recycled millisecond pulsars (for which $\varepsilon < 10^{-8}$; Abbott et al. 2020), young pulsars such as PSR J0537–6910 and the Crab pulsar are important because they have much stronger magnetic fields (and are hotter) and thus might have greater ellipticities. The ellipticity constraint of PSR J0537–6910 is also near estimates of the maximum ellipticity that can be sustained by an elastically deformed neutron star crust (Johnson-McDaniel & Owen 2013; Caplan et al. 2018).

PSR J0537–6910 is a frequently glitching pulsar and potential source of continuous gravitational waves. The X-ray data from NICER gives us the necessary tools to account for the phase evolution of a gravitational-wave signal over time, which allows us to perform a fully coherent and sensitive search for such a signal. While our multi-messenger analysis focuses on gravitational waves from a time-varying mass quadrupole ($n = 5$), another search could be performed for gravitational waves from a r-mode fluid oscillation ($n = 7$) using wider-band techniques (e.g., Fesik & Papa 2020a,b, using O2 data). The strain sensitivity achieved in our analysis (1×10^{-26}) is also comparable to the $(2 - 3) \times 10^{-26}$ estimated in Andersson et al. (2018) for r-mode emission from PSR J0537–6910.

Finally, from the observed correlation between glitch size and time-to-next-glitch for PSR J0537–6910 (Middleditch et al. 2006; Antonopoulou et al. 2018; Ferdman et al. 2018; Ho et al. 2020b), we can hope to measure in the future low braking indices (7 or even lower) after the largest glitches. As noted above, braking indices of 5 and 7 are predicted by gravitational wave-emitting mechanisms. The observed evolution of n_{ig} to lower values than shown in Figure 1, which may occur after the effects of glitches on the pulsar’s spin-down behavior have decayed, may indicate that gravitational waves are continuously emitted between glitches. On the other hand, glitches may trigger detectable transient gravitational waves (Prix et al. 2011; Ho et al. 2020a; Yim & Jones 2020), and gravitational-wave searches at glitch epochs.

Figure 4. Posterior probability distribution for ellipticity and h_0 for the analyses with unrestricted and restricted priors on the pulsar orientation. The 95% credible upper limits are shown as vertical colored lines, while the spin-down limit is given by the vertical dashed black line.
of other pulsars have been conducted (Keitel et al. 2019). It is therefore vital to continue to monitor the spin evolution of PSR J0537−6910, not only to obtain the timing ephemeris and measure braking indices, but also to know when this pulsar undergoes a glitch. Since the spin period of PSR J0537−6910 is only detectable at X-ray energies, NICER is the only effective means to perform the necessary observations. Fortunately NICER is anticipated to operate until at least late 2022, overlapping with the fourth observing run of LIGO/Virgo and KAGRA (Aso et al. 2013), which is likely to begin in 2022 and continue into 2023.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Netherlands Organization for Scientific Research, for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, the Department of Science and Technology, India, the Science & Engineering Research Board (SERB), India, the Ministry of Human Resource Development, India, the Spanish Agencia Estatal de Investigación, the Vicepresidência e Conselleria d’Innovació, Recerca i Turisme and the Conselleria d’Educació i Universitat del Govern de les Illes Balears, the Conselleria d’Innovació, Universitats, Ciència i Societat Digital de la Generalitat Valenciana and the CERCA Programme Generalitat de Catalunya, Spain, the National Science Centre of Poland, the Swiss National Science Foundation (SNSF), the Russian Foundation for Basic Research, the Russian Science Foundation, the European Commission, the European Regional Development Funds (ERDF), the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the French Lyon Institute of Origins (LIO), the Belgian Fonds de la Recherche Scientifique (FRS-FNRS), Actions de Recherche Concertées (ARC) and Fonds Wetenschappelijk Onderzoek – Vlaanderen (FWO), Belgium, the Paris Île-de-France Region, the National Research, Development and Innovation Office Hungary (NKFIH), the National Research Foundation of Korea, Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation, the Natural Science and Engineering Research Council Canada, the Canadian Institute for Advanced Research, the Brazilian Ministry of Science, Technology, Innovations, and Communications, the International Center for Theoretical Physics South American Institute for Fundamental Research (ICTP-SAIFR), the Research Grants Council of Hong Kong, the National Natural Science Foundation of China (NSFC), the

![Figure 5. Posterior probability distributions for the amplitudes C_{21} and C_{22} with unrestricted and restricted priors on the pulsar orientation. The 95% credible upper limits are shown as vertical colored lines.](image)
Leverhulme Trust, the Research Corporation, the Ministry of Science and Technology (MOST), Taiwan and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, INFN and CNRS for provision of computational resources.

This work was supported by MEXT, JSPS Leading-edge Research Infrastructure Program, JSPS Grant-in-Aid for Specially Promoted Research 26000005, JSPS Grant-in-Aid for Scientific Research on Innovative Areas 2905: JP17H06358, JP17H06361 and JP17H06364, JSPS Core-to-Core Program A. Advanced Research Networks, JSPS Grant-in-Aid for Scientific Research (S) 17H06133, the joint research program of the Institute for Cosmic Ray Research, University of Tokyo, National Research Foundation (NRF) and Computing Infrastructure Project of KISTI-GSDC in Korea, Academia Sinica (AS), AS Grid Center (ASGC) and the Ministry of Science and Technology (MoST) in Taiwan including AS-CDA-105-M06, Advanced Technology Center (ATC) of NAOJ, and Mechanical Engineering Center of KEK.

We thank all essential workers who put their health at risk during the COVID-19 pandemic, without whom we would not have been able to complete this work.

W.C.G.H. acknowledges support through grants 80NSSC19K1444 and 80NSSC21K0091 from NASA. C.M.E. acknowledges support from FONDECYT/Regular 1171421 and USA1899-Vridei 04193ISSSA-PAP (Universidad de Santiago de Chile, USACH). This work is supported by NASA through the NICER mission and the Astrophysics Explorers Program and uses data and software provided by the High Energy Astrophysics Science Archive Research Center (HEASARC), which is a service of the Astrophysics Science Division at NASA/GSFC and High Energy Astrophysics Division of the Smithsonian Astrophysical Observatory.

Facility: NICER

REFERENCES

Aasi, J., Abadie, J., Abbott, B. P., et al. 2014, ApJ, 785, 119, doi: 10.1088/0004-637X/785/2/119
Aasi, J., Abbott, B. P., Abbott, R., et al. 2015, CQGra, 32, 074001, doi: 10.1088/0264-9381/32/7/074001
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2019a, ApJ, 879, 10, doi: 10.3847/1538-4357/ab20cb
Abbott, B. P., Abbott, R., Acernese, F., et al. 2010, ApJ, 713, 671, doi: 10.1088/0004-637X/713/1/671
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017, ApJ, 839, 12, doi: 10.3847/1538-4357/aa67ff
Abbott, B. P., et al. 2017, Phys. Rev. D, 96, 122004, doi: 10.1103/PhysRevD.96.122004
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2019b, PhRvD, 99, 122002, doi: 10.1103/PhysRevD.99.122002
Abbott, R., Abbott, T. D., Abraham, S., et al. 2019c, arXiv:1912.11716
—. 2020, ApJL, 902, L21, doi: 10.3847/2041-8213/ab655
Acernese, F., Agathos, M., Aghanim, N., et al. 2015, CQGra, 32, 024001, doi: 10.1088/0264-9381/32/2/024001
Andersson, N., Antonopoulou, D., Espinoza, C. M., Haskell, B., & Ho, W. C. G. 2018, ApJ, 864, 137, doi: 10.3847/1538-4357/aad6eb
Andersson, N., Jones, D. I., & Ho, W. C. G. 2014, MNRAS, 442, 1786, doi: 10.1093/mnras/stu870
Antonopoulou, D., Espinoza, C. M., Kuiper, L., & Andersson, N. 2018, MNRAS, 473, 1644, doi: 10.1093/mnras/stx2429
Aso, Y., Michimura, Y., Somiya, K., et al. 2013, Phys. Rev. D, 88, 043007, doi: 10.1103/PhysRevD.88.043007
Caplan, M. E., Schneider, A. S., & Horowitz, C. J. 2018, PhRvL, 121, 132701, doi: 10.1103/PhysRevLett.121.132701
Caride, S., Inta, R., Owen, B. J., & Rajbhandari, B. 2019, PhRvD, 100, 064013, doi: 10.1103/PhysRevD.100.064013
Chen, Y., Wang, Q. D., Gotthelf, E. V., et al. 2006, ApJ, 651, 237, doi: 10.1086/507017
Dupuis, R. J., & Woan, G. 2005, PhRvD, 72, 102002, doi: 10.1103/PhysRevD.72.102002
Ferdman, R. D., Archibald, R. F., Gourgouliatos, K. N., & Kaspi, V. M. 2018, ApJ, 852, 123, doi: 10.3847/1538-4357/aaa198
Fesik, L., & Papa, M. A. 2020a, ApJ, 895, 11, doi: 10.3847/1538-4357/ab8193
—. 2020b, ApJ, 897, 185, doi: 10.3847/1538-4357/aba04e
Gendreau, K. C., Arzoumanian, Z., & Okajima, T. 2012, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8443, Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray, 844313, doi: 10.1117/12.926396
Glampedakis, K., & Gualtieri, L. 2018, Astrophysics and Space Science Library, Vol. 457, Gravitational Waves from Single Neutron Stars: An Advanced Detector Era Survey, ed. L. Rezzolla, P. Pizzochero, D. I. Jones, N. Rea, & I. Vidaña, 673, doi: 10.1007/978-3-319-97616-7_12
