Fast radio bursts (FRBs) are millisecond-duration flashes of radio waves that are visible at distances of billions of light years. The nature of their progenitors and their emission mechanism remain open astrophysical questions. Here we report the detection of the multicomponent FRB 20191221A and the identification of a periodic separation of 216.8(1) ms between its components, with a significance of 6.5σ. The long (roughly 3 s) duration and nine or more components forming the pulse profile make this source an outlier in the FRB population. Such short periodicity provides strong evidence for a neutron-star origin of the event. Moreover, our detection favours emission arising from the neutron-star magnetosphere, as opposed to emission regions located further away from the star, as predicted by some models.

Operating on the Canadian Hydrogen Intensity Mapping Experiment (CHIME), CHIME/FRB is an ongoing experiment to find and study a large number\(^1\) of FRBs. CHIME is a cylindrical north–south-oriented transit radio interferometer observing in the 400–800-MHz range. On detection of a FRB, the so-called intensity data, that is, the total intensity of the signal as a function of time and frequency, are stored. Furthermore, channelized complex voltages (referred to as baseband data) with full polarization information are stored for a subset of FRBs (see Methods).

In less than 0.5% of the events detected by CHIME/FRB, five or more separate components are visible in the pulse profiles\(^7\) obtained by summing all frequency channels of an intensity dataset after correcting for the effects of the dispersion measure (DM). Particularly notable is FRB 20191221A, with a total duration of roughly 3 s and at least nine overlapping components (Fig. 1 and Table 1). No other FRB candidate observed by CHIME/FRB contains a comparable or greater number of subcomponents. As the detection pipeline of CHIME/FRB is not optimized to find bursts longer than 128 ms, it is possible that some events with comparable duration eluded detection. However, FRB 20191221A was identified using the individual peaks in its profile. Therefore, we expect the fraction of missed long-duration events to be small if single peaks can be identified in their pulse profiles. A detailed analysis of the completeness of the CHIME/FRB search pipeline has been presented elsewhere\(^7\).

Notable peaks are visible in the power spectrum of FRB 20191221A obtained by performing a fast Fourier transform (FFT) on its pulse profile (Fig. 2), indicating a possible periodicity in the times of arrival (ToAs) of single components of the pulse profile. To confirm this, individual subcomponents have been fitted with a Gaussian function convolved with a single exponential to account for scattering, a pulse broadening caused by the propagation of the radio waves in turbulent plasma\(^8\). The resulting ToAs have been used to perform a timing analysis around the initial period derived from the power spectrum. A simple timing model with two free parameters, a period and an

\(^{1}\) Department of Physics, McGill University, Montréal, Québec, Canada. \(^{2}\) McGill Space Institute, McGill University, Montréal, Québec, Canada. \(^{3}\) Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV, USA. \(^{4}\) Center for Gravitational Waves and Cosmology, West Virginia University, Morgantown, WV, USA. \(^{5}\) Department of Physics, University of Toronto, Toronto, Ontario, Canada. \(^{6}\) Dunlap Institute for Astronomy & Astrophysics, University of Toronto, Toronto, Ontario, Canada. \(^{7}\) David A. Dunlap Department of Astronomy & Astrophysics, University of Toronto, Toronto, Ontario, Canada. \(^{8}\) Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, NY, USA. \(^{9}\) Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada. \(^{10}\) Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada. \(^{11}\) Dominion Radio Astrophysical Observatory, Herzberg Research Centre for Astronomy and Astrophysics, National Research Council Canada, Penticton, British Columbia, Canada. \(^{12}\) Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada. \(^{13}\) Department of Computer Science, Math, Physics, & Statistics, University of British Columbia, Kelowna, British Columbia, Canada. \(^{14}\) Department of Physics and Astronomy, West Virginia University, Morgantown, WV, USA. \(^{15}\) MIT Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA, USA. \(^{16}\) Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA. \(^{17}\) Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA, USA. \(^{18}\) Institute of Astronomy and Astrophysics, Academia Sinica, Taipei, Taiwan. \(^{19}\) Canadian Institute for Theoretical Astrophysics, Toronto, Ontario, Canada. \(^{20}\) Department of Physics, Yale University, New Haven, CT, USA. \(^{21}\) Canadian Institute for Advanced Research, Toronto, Ontario, Canada. \(^{22}\) Anton Pannekoek Institute for Astronomy, University of Amsterdam, Amsterdam, The Netherlands. \(^{23}\) Sidrat Research, Toronto, Ontario, Canada. \(^{24}\) National Radio Astronomy Observatory, Charlottesville, VA, USA. \(^{25}\) Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Mumbai, India. \(^{26}\) National Centre for Radio Astrophysics, Pune, India. *A list of authors and their affiliations appears at the end of the paper.

e-mail: danielemichilli@gmail.com
The spurious detection probability calculated for the 216.8(1)-ms period of FRB 20191221A is 6.7×10^{-11}. Therefore, the periodicity is robust with high confidence.

We found two other notable sources, FRBs 20210206A and 20210213A, that are formed by five and six components and show possible periodicities of 2.8(1) and 10.7(1) ms, respectively. However, the spurious detection probabilities of 0.2 and 0.02 measured for their periodicities do not allow us to exclude a chance coincidence. Therefore, we do not use them in our analysis but we present them in Methods. From this sample, it is unclear whether FRBs with periodic components may represent a separate and rare class or whether a larger number of FRBs would show periodic behaviours if sufficiently many components were detected.

Millisecond to second periodicities may suggest that the bursts are generated by Galactic radio pulsars that have been misidentified as extragalactic. However, FRB 20191221A has a measured DM about four times larger than the maximum value expected by models of the Milky Way electron content. We searched for evidence of ionized or star-forming regions in the direction of the FRB that could account for the excess DM but found none. We conclude that the source is probably extragalactic.

No further bursts have been detected from FRB 20191221A up to 10 March 2021 above a signal-to-noise ratio (S/N) of 9 at a position consistent within $\Delta RA = 2.2^\circ \cos^2(Dec)$ and $\Delta Dec = 1^\circ$ of these three sources using an algorithm built on a density-based spatial clustering of applications with noise (DBSCAN). The nominal DM range threshold for the clustering was set to 13 pc cm$^{-3}$, corresponding to the largest DM uncertainty in the real-time pipeline of CHIME/FRB. CHIME/FRB continues to monitor the sky location of these FRBs daily for further possible bursts.

Multicomponent bursts that are associated with repeating sources of FRBs often exhibit downward-drifting sub-bursts; however, all of the components forming FRB 20191221A show a similar spectrum. This is visible in about 5% of the FRB population detected by CHIME/FRB. It must be noted that the spectrum of FRB 20191221A is affected by the telescope response, mainly owing to the detection at a location offset from the centre of a formed beam, which produces strong bandpass effects (see Methods).

Table 1 | Properties of FRB 20191221A

Parameter	20191221A
MJDa	58838.20638077, 58838.20630684
RAa J2000 (°)	44.6(1), 38.4(2)
Deca J2000 (°)	79.74(2), 79.73(3)
P (°)	128.60(2), 127.56(4)
σ (°)	18.30(2), 17.78(3)
DM (pc cm$^{-3}$)	368(6)
Period (ms)	216.8(1)
Period significance (σ)	6.5
Average width (ms)	4(1)
Scattering (ms)	340(10)
Fluenceb (Jy)	1.2(4)×103
Peak fluxb (Jy)	2.0(10)
Exposurec (h)	340.1(2), 106(4)

Uncertainties are reported at the 1σ confidence level. The arrival time is that of the brightest sub-burst at the barycentre of the Solar System and infinite frequency. The dispersion measure (DM) is calculated to maximize the peak signal-to-noise ratio in the time series. The scattering timescale is referenced to the centre of the band, that is, around 600 MHz. Fluence is for the full band-averaged profile and peak flux is the maximum in the profile (with 1-ms time resolution).

aTwo localization regions are equally probable and both positions are reported.

bThese are lower limits as detailed in Methods.

cFor circumpolar sources ($\delta>-70^\circ$), the two entries correspond to exposure in the upper and lower transits, respectively.
Our modelling of the pulse profile of FRB 20191221A, as shown in Fig. 1 and described in detail in Methods, shows that its single components have a relatively narrow width of 4(1) ms on average, even though they overlap owing to an extreme scattering timescale \(t_s = 340(10) \) ms at 600 MHz. Although this estimate may be affected by unresolved features in the profile mimicking an exponential decay, it is clear that the FRB emission experienced strong scattering, markedly in excess of the Galactic contribution expected given its sky position, pointing to propagation through a turbulent plasma. The pulse width corrected for the pulse broadening corresponds to a duty cycle of about 1.8%, consistent with Galactic radio pulsars. It is worth noting that all of the emission from this FRB is consistent with single components overlapping owing to the large scattering and no envelope of emission is required in our fit, whose residuals are consistent with noise, as can be seen in Fig. 1.

Leading theories for the origin of FRBs are related to magnetars and are divided into models in which the emission is either generated in the magnetosphere of the star or triggered in plasma regions by a flare of the star. The detection of periodicity is naturally explained by the first class of magnetar models and it has been extensively observed in Galactic neutron stars, albeit with orders of magnitude lower luminosities. By contrast, the second class of models does not necessarily predict a millisecond modulation in the emitted signal.

The periodic structures in the bursts could be explained by a rotating neutron star with beamed emission similar to Galactic radio pulsars in which, for an unknown reason, a train of single pulses has an abnormally high luminosity for a short period of time. The period and jitter in the TOAs observed for FRB 20191221A are compatible with those seen in Galactic pulsars. Alternatively, bright radio pulsars and magnetars sometimes show microstructures in some of their single pulses with profiles that are similar to those of the FRBs reported previously in Galactic magnetars.

One unlikely scenario to explain the larger radio luminosity of the FRB compared with Galactic sources is that it may represent the observation of a gravitationally microlensed extragalactic pulsar. Alternatively, the single components of periodic FRBs could be generated by the magnetospheric interaction of merging neutron stars. These possibilities are explored in Methods, along with suggested tests of these models. In the meantime, CHIME/FRB is continuing to detect hundreds of FRBs, which should allow for more periodicities to be detected in the near future.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41586-022-04841-8.
9. Cordes, J. M. & Lazio, T. J. W. NE2001.I. A new model for the galactic distribution of free electrons and its fluctuations. Preprint at https://arxiv.org/abs/astro-ph/0207156 (2002).
10. Yao, J. M., Manchester, R. N. & Wang, N. A new electron-density model for estimation of pulsar and FRB distances. Astrophys. J. 835, 29 (2017).
11. Anderson, L. D. et al. The WISE catalog of Galactic H II regions. Astrophys. J. Suppl. 212, 1 (2014).
12. Green, D. A. A revised catalogue of 294 Galactic supernova remnants. J. Astrophys. Astron. 40, 36 (2019).
13. Avedisova, V. S. A catalog of star-forming regions in the galaxy. Astron. Rep. 46, 193–205 (2002).
14. Dong, F. Finding New Pulsars Using CHIME/FRB Single Pulse Events. Master’s thesis, Univ. British Columbia (2021).
15. Hessels, J. W. T. et al. FRB 121102 bursts show complex time–frequency structure. Astrophys. J. Lett. 876, L23 (2019).
16. Pleunis, Z. et al. Fast radio burst morphology in the first CHIME/FRB catalog. Astrophys. J. 923, 1 (2020).
17. The CHIME/FRB Collaboration et al. Observations of fast radio bursts at frequencies down to 400 megahertz. Nature 566, 230–234 (2019).
18. Manchester, R. N., Hobbs, G. B., Teoh, A. & Hobbs, M. The Australia telescope national facility pulsar catalogue. Astron. J. 129, 1993–2006 (2005).
19. The CHIME/FRB Collaboration et al. A bright millisecond-duration radio burst from a Galactic magnetar. Nature 587, 54–58 (2020).
20. Bochenek, C. D. et al. A fast radio burst associated with a Galactic magnetar. Nature 567, 59–62 (2020).
21. Camilo, F. et al. Transient pulsed radio emission from a magnetar. Nature 442, 892–895 (2006).
22. Craft, H. D., Cornella, J. M. & Drake, F. D. Submillisecond radio intensity variations in pulsars. Nature 218, 1122–1124 (1968).
23. Pearlman, A. B., Majid, W. A., Prince, T. A., Kocz, J. & Horváth, S. Pulse morphology of the galactic center magnetar PSR J1745–2900. Astrophys. J. 866, 160 (2018).
24. Hankins, T. H. Microsecond intensity variations in the radio emissions from CP 0950. Astrophys. J. 169, 487–494 (1971).
25. Wadiasingh, Z. & Chirenti, C. Fast radio burst trains from magnetar oscillations. Astrophys. J. Lett. 903, L38 (2020).
26. Huppenkothen, D. et al. Quasi-periodic oscillations in short recurring bursts of the soft gamma repeater J1024+4724. Astrophys. J. 787, 128 (2014).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Methods

CHIME/FRB sensitivity beams

The CHIME radio telescope is a transit interferometer formed by 1,024 dual-polarization antennas observing in the 400–800-MHz range. The field of view of single antennas summed together incoherently is defined as the primary beam of the telescope, whose full width at half maximum sensitivity spans about 110° in the N–S direction and 1.3(2.5)° in the E–W direction at the top (bottom) of the observing bandwidth. The telescope antennas can be added coherently to produce a formed (or synthesized) beam in one or more directions and increase the telescope sensitivity towards those directions. Formed beams have a size between about 0.3° and 0.7°, depending on the observing frequency and zenith angle. Therefore, their sensitivity and bandpass vary spatially more rapidly than those of the primary beam.

In the real-time search for FRBs, 1,024 beams are formed on the sky within the primary beam through a FFT (FFT beams)23. The total intensity measured by these FFT beams as a function of time and frequency is referred to as intensity data. Intensity data have a time resolution of 0.98304 ms and are divided into 16,384 channels. Furthermore, for a part of the detected FRBs, about 100 ms of baseband complex voltages are also stored6. The baseband data have a time resolution of 2.56 μs, are divided into 1,024 frequency channels and contain full polarization information. Thanks to the phase information available in baseband data, synthesized beams can be formed to virtually any position on the sky within the field of view of the telescope25.

Sources of interest

We initially identified FRB 20191221A as an interesting source owing to the number of peaks in its pulse profile. Only intensity data were stored for this source. We then visually inspected the sample of events detected by CHIME/FRB for other similar sources. We found none with comparable characteristics and the closest for the number of components were found to be FRBs 20210206A and 20210213A (Extended Data Fig. 1). We repeated the timing analysis performed previously for FRB 20191221A. The results are summarized in Extended Data Fig. 2. FRB 20210206A is formed by five separate components whose inferred period of 2.8(1) ms has a spurious detection probability as high as 0.2, making it uncertain at best. FRB 20210213A is formed by six separate components whose inferred period of 10.7(1) ms has a spurious detection probability of 0.02, which is higher than the previous source but still not conclusive. For this reason, and given the large jitter of the timing residuals visible in Extended Data Fig. 2, we consider the periodicities detected in these two bursts to be only suggestive and we did not use them in our analysis. However, these FRBs demonstrate the existence of a broad distribution in the number of components in burst profiles, with some sources showing possible periodic separations. Hints of shorter periodic separations of around 0.3, 2.3 and 415 μs in the components of other FRBs have also been recently presented29–31.

Periodicities of 16.3 and 157 days in the activity levels of two FRBs have been previously reported32,33. However, these periodicities do not represent an actual time delay between subsequent bursts. This, and the very different timescales, argue that the two phenomena are unrelated.

Both intensity and baseband data are available for FRBs 20210206A and 20210213A. This allowed us to localize the sources with sufficient precision to form beams in these directions and, therefore, limit the effect of their bandpass26. Therefore, the lack of emission above about 500 MHz seen for FRB 20210213A is astrophysical. The DM of FRB 20210213A is about ten times the expected Galactic contribution, placing it at a supposed redshift of 0.1 but with the caveat that its extragalactic nature is less certain, given the larger uncertainty of models at low latitudes35. As opposed to FRB 20191221A, FRBs 20210206A and 20210213A show narrower widths and shorter scattering timescales (see Extended Data Table 1) typical of the FRB population34. The baseband data also allowed us to study the polarization properties of FRBs 20210206A and 20210213A. A rotation measure (RM) of +193.6(1) rad m⁻² has been measured for FRB 20210206A, suggesting a notable extragalactic contribution. On the other hand, FRB 20210213A seems to be unpolarized. Possible reasons for this are discussed in the following, together with a detailed description of the polarization analysis.

Properties of the bursts

To localize a FRB with CHIME/FRB intensity data, we fit the spectra of the burst detected in different FFT beams with a model of the CHIME/FRB beams and an underlying burst spectrum using a Markov chain Monte Carlo (MCMC) method44. The model of the CHIME/FRB beams contains a description of both the synthesized37 and the primary7 beams and the underlying spectrum is modelled as a Gaussian. The free parameters are therefore the width, mean and amplitude of the underlying Gaussian model spectrum, along with the sky position. We use a flat prior on the position of the event that spans 5° either side of meridian in E–W, whereas in N–S, the prior spans the extent of the beams that detected the event. The position and uncertainties are derived from the 2D posterior distribution (in ‘x’, the E–W coordinate, and ‘y’, the N–S coordinate) marginalized over the parameters of the Gaussian spectral model. As FRB 20191221A did not have baseband data available, the position reported in Table 1 is derived from the intensity localization described in this present. The posterior probability distribution is double-peaked in the E–W direction and, therefore, two positions are reported for the event.

A detailed description of the algorithm used to obtain the sky position of FRBs by using baseband data has been presented elsewhere26. In summary, a grid of partially overlapping beams is produced around the intensity localization and a total S/N value is calculated in each beam. The resulting intensity map of the signal is fitted with a mathematical model describing the telescope response to determine the source position. The localization and its uncertainties have been calibrated with a sample of sources with a known position to account for any unmodelled systematics26.

Flux and fluence calculations are determined using the intensity data for each burst with the same method presented in previous CHIME/FRB papers32,38–41. In summary, meridian transits of steady sources with known spectra are used to sample the conversion between beamformer units and Janskys (Jy) as a function of frequency across the N–S extent of the primary beam. For each burst, the beamformer to Jansky conversion closest in zenith angle (assuming N–S symmetry) is applied to the intensity data to obtain a dynamic spectrum in physical units roughly corrected for N–S primary beam variations. Flux values are obtained from integrating the burst extent in the band-averaged time series and peak flux values are taken to be the maximum value within the burst extent (at 0.98304-ms resolution). Uncertainties are estimated using steady source observations. The calibration procedure described above does not correct for burst attenuation owing to the synthesized beam pattern and E–W primary beam profile. Fluxes and fluxes derived from this method are best interpreted as lower limits, with an uncertainty on the limiting value. This is what we report in Table 1 for FRB 20191221A. However, for bursts that have a baseband localization, we can achieve more realistic fluence results by using the beam model to scale between the location of the calibrator at the time of transit and the location of each FRB. This is what we report in Extended Data Table 1 for FRBs 20210206A and 20210213A.

The exposure of the CHIME/FRB system to the sources reported in this work was determined for the interval from 28 August 2018 to 1 March 2021. For each source, the exposure is calculated by summing the duration of daily transits across the full width at half maximum region of the synthesized beams at 600 MHz. Two of the three sources, having declinations >+70°, transit through the primary beam twice per day.
These sources have their upper and lower transit exposures calculated separately, as the beam response for the two transits is different. While calculating the total exposure, we include daily transits for which the CHIME/FRB detection pipeline was fully operational, which is determined using recorded system metrics. Transits occurring on days when the detection pipeline was being tested or upgraded are not included. Furthermore, system sensitivity varies on a day-to-day basis owing to daily gain calibration, as well as changes in the detection pipeline and the radio-frequency interference environment. We evaluate the variation in sensitivity for each sidereal day using observations of 120 Galactic pulsars with the CHIME/FRB system\(^{39,40}\). For each source, transits for which the sensitivity varied by more than 10% from the median in the aforementioned observing interval are excised from the total exposure.

On average, the observing time corresponding to the excised transits amounted to 4% of the exposure for each source. The uncertainty in the source declination is a source of error in the measurement of the exposure. The source declination dictates where the transit path cuts across a synthesized beam, with the transit duration being maximum if the path crosses the beam center and zero if the path lies between two beams\(^{40}\). We estimate the resulting uncertainty in the exposure by generating a uniform grid of positions within the 68% confidence localization region for each source. The reported exposure in Table 1 and Extended Data Table 1 is the average for these sky positions, with the error corresponding to the standard deviation.

Modelling of pulse profiles

FRB 20191221A is composed of several peaks overlapping owing to a broadening caused by scattering. To properly calculate the periodic separation among its components, it is important to avoid human bias in selecting notable peaks in the pulse profile. We reduced human bias in the following way. First, we smoothed the pulse profile using the Savitzky–Golay filter as implemented in SciPy (https://scipy.org/). The filter requires two input parameters, the window length and the polynomial order. We explored the space of the two parameters up to a window of 600 ms and a polynomial order of 12. For each combination, separate peaks in the smoothed pulse profiles were identified from local maxima if the peaks were wider than three bins to avoid noise spikes.

We grouped together different combinations of parameters yielding the same number of peaks, noting their location in the profile and excluding values lower than 7 peaks and higher than 14 peaks as visually implausible. For each value of the peak number between 7 and 14, the different peak locations resulting from each of the initial parameter combinations were grouped with a kernel density estimator, varying its window until we obtain the expected number of peaks. We apply this method to obtain seven combinations of initial peak positions composed of 7 to 14 peaks. We model each peak using the exponentially modified Gaussian described by\(^{36}\)

\[
f(t; \mu, w, \tau) = \frac{A}{2t} \exp\left(\frac{\mu - t + 2\sigma^2}{t^2}\right) \erfc\left(\frac{(\mu - t)\tau + w}{w\tau - \sqrt{2}}\right). \tag{1}
\]

in which \(\erfc\) is the complementary error function, \(A\) is the signal amplitude, \(\mu\) and \(w\) are the Gaussian mean and width, respectively, and \(\tau\) is the scattering timescale. For each number of peaks, the pulse profile is modelled with a sum of one exponentially modified Gaussian function per peak through a MCMC sampling using emcee\(^{46}\) with wide uniform priors for all parameters. The scattering timescale is set to be the same for all peaks, whereas the other parameters are allowed to vary.

The resulting \(\chi^2_{\text{red}}\) values, presented in Extended Data Fig. 3, are used to select the number of peaks yielding the best model. We estimate the minimum variation in the \(\chi^2_{\text{red}}\) value that we can measure confidently given the number of free parameters \(N\) as

\[
\sigma = \frac{\chi^2_{\text{red}}}{N}. \tag{2}
\]

As can be seen in Extended Data Fig. 3, the model with nine components has the smallest \(\chi^2_{\text{red}}\) that deviates substantially from the previous values. Therefore, we choose this as the best model to reproduce the data and use its parameters in our analysis. Choosing a different number of peaks in the profile leads to values of the significance of the periodicity that are still very high, especially for a number of peaks between 9 and 12.

For FRBs 20210206A and 20210213A, the components forming these two events do not overlap. Therefore, it was not necessary to perform the method described above. Instead, we directly used the locations of the peaks in the smoothed profiles as initial conditions for the MCMC sampling using the same model described above. The scattering timescale and average width of the resulting models are presented in Table 1 and Extended Data Table 1, whereas the peak positions (or ToAs) relative to the first one in each profile are reported in Extended Data Table 2.

Timing analysis

The periodicities of the three FRBs were initially investigated through a power spectrum of the pulse profile. This has been computed as the absolute square of the FFT of the pulse profiles. The FFT has been calculated with the implementation offered by the SciPy module.

The resulting power spectra presented in Fig. 2 and Extended Data Fig. 2 show clear peaks for the three sources. The periods corresponding to the most prominent peaks in the power spectra have been refined through more timing analysis. We ran a least-squares fit as implemented in SciPy using a simple model with the period and an arbitrary overall phase as the only free parameters, calculating residuals as the modulo of ToAs (reported in Extended Data Table 2) and the period. The results of these fits are the values reported in Table 1 and Extended Data Table 1.

Significance of the periodicity: \(S\) score

The following steps were used to estimate the significance of the periodicity calculated for each of the three sources and reported in Table 1 and Extended Data Table 1.

First, for each event, we use the ToAs reported in Extended Data Table 2 to compute a statistic \(S\) that is sensitive to periodicity. The construction of \(S\) is described below.

Then, to assign a statistical significance, we use a frequentist approach.

We evaluate the statistic \(S\) on simulated events and rank the ‘data’ value \(S_{\text{data}}\) within the ensemble of simulated values \(S_{\text{sim}}\) obtaining a \(p\)-value. The results are summarized in Extended Data Table 3.

Last, for FRB 20191221A, there is an extra step. With \(10^8\) simulations, we find that none of the \(S_{\text{sim}}\) values exceed \(S_{\text{data}}\). This shows directly that the level of periodicity in this nine-component event is extraordinarily unlikely to occur by random chance. To assign a \(p\)-value, we fit an analytic model probability density function (PDF) to the tail of the \(S_{\text{sim}}\) distribution and integrate the model PDF.

In the rest of this section, we describe the details in the above steps. To motivate the definitions that follow, consider Extended Data Fig. 4. Each point is one pulse in the nine-component event, with the ToA \(t_i\) on the y-axis. The values on the x-axis are the nine-element integer-valued vector

\[
n_i = (0, 2, 3, 5, 7, 8, 9, 10, 12) \tag{3}
\]

Periodicity appears in Extended Data Fig. 4 as the points falling nearly on a straight line. Note that there are four ‘gaps’ in this example, that is, pulse periods in which no pulse is observed (either because it is physically absent or buried in the noise). Each gap is represented by consecutive entries in \(n_i\) that differ by 2 (rather than 1). Based on this picture, we construct statistics as follows. For a fixed choice of gap vector \(n\), we fit the points \((n_i, t_i)\) in Extended Data Fig. 4 to a straight line

\[
t_i = f^{-1} n_i + T_0 + \eta. \tag{4}
\]
in which this equation defines the residuals r_i and the parameters (f, T_i) have been chosen to minimize $\sum_i r_i^2$. Note that this fitting procedure weights all ToAs equally and does not use statistical errors on ToAs. We define a statistic

$$\hat{S} = \max_n (\hat{L}[n])$$

By construction, $\hat{L}[n]$ measures the extent to which the points fall on a straight line for a fixed choice of gap vector n. We define the periodicity-sensitive statistic \hat{S} by trying all possible values of $n_	ext{SS}$

$$\hat{S} = \max_n (\hat{L}[n])$$

The maximum in the equation is taken over all trial gap vectors n_i with $\leq G$ gaps, in which G is an input parameter to the pipeline. More formally, we take the maximum over integer-valued vectors n_i such that $n_i = 0, n_i < n_i$ and $n_i < n_i + p + G$, in which $p = \text{len}(n)$ is the number of peaks. The number of such vectors is $N_{\text{trials}} = (G + p + 1)! / G! (p - 1)!$

By default, we choose $G = |G_{\text{gap}}| + 1$, in which $|G_{\text{gap}}|$ is the number of gaps that are empirically seen in each event. This is a conservative choice, which deliberately ensures that N_{trials} is a few times larger than the value obtained with $G = |G_{\text{gap}}|$ (see Extended Data Table 3).

Our procedure for simulating ToAs has two parameters: a mean spacing \bar{d} and a dimensionless 'exclusion' parameter $0 \leq \chi \leq 1$, defined by

$$\chi = \frac{\text{Minimum allowed spacing between pulses}}{\text{Mean spacing} \bar{d} \text{ between pulses}}.$$

We simulate a sequence $t_1 < \cdots < t_p$ of ToAs by independently randomly generating arrival time differences $d_i = (t_i - t_{i-1})$ from the uniform probability distribution $p(d)$ defined by

$$p(d) = \frac{1}{2\bar{d} - 2\chi\bar{d}} \quad \text{if} \quad \chi\bar{d} \leq d \leq (2 - \chi)\bar{d}$$

$$= 0 \quad \text{otherwise}.$$

We also tried an exponential distribution but found that it gives lower p-values (higher significance). To be conservative, we use the uniform distribution throughout. When we assign a statistical significance by ranking S_{data} within a histogram of S_{sim} values, we find that the value of \bar{d} does not affect the statistical significance, whereas the statistical significance decreases as χ is increased in the simulations. However, the statistical significance is not strongly dependent on χ for a reasonable range of the parameter. Therefore, we choose $\chi = 0.2$ to represent our analysis.

For FRB 20191221A, there is an extra step. With 10^6 simulations, we find that none of the S_{sim} values exceed S_{data}. Therefore, we fit the 10^6 largest values S_i of the S_{sim} distribution to an analytic PDF of the form

$$p(S) = e^{-S}S^\nu$$

by maximizing the likelihood $\prod_i P(S|d, \nu)$. The analytic PDF $p(S)$ is an excellent visual fit to the tail of the S_{sim} distribution. More quantitatively, a Kolmogorov–Smirnov test shows no statistical difference between $p(S)$ and the simulations (p-value 0.58). To assign a bottom-line p-value, we integrate the analytic PDF from $S = S_{\text{data}}$ to $S = \infty$. This gives a p-value of 6.7×10^{-5}, corresponding to Gaussian significance 6.5σ.

The preceding derivation of the statistic \hat{S} was heuristic, based on intuition from Extended Data Fig. 4. However, \hat{S} can also be interpreted as a likelihood ratio statistic. This provides a systematic derivation and also shows that \hat{S} is near optimal. Let H_0 be the null hypothesis that the ToAs t_i are Gaussian distributed with mean T and variance σ. In this model, the conditional likelihood of obtaining ToAs t_i given model parameters (T, σ) is

$$p(t_i|H_0, T, \sigma) = \prod_i \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left(-\frac{(t_i - T)^2}{2\sigma^2} \right)$$

Then a short calculation shows that the \hat{S} statistic is the log-likelihood ratio of the two models, after maximizing all model parameters

$$\hat{S} = \frac{\text{max logP(T|H_0, T, \sigma)} - \text{max logP(t|H_0, T, \sigma)}}{n\sigma^2}$$

As a further test of our pipeline, we applied the \hat{S} statistic to CHIME/ Pulsar43 observations of the bright pulsar PSR B1919+21. If we select three pulses with one gap, periodicity is detected at approximately the 3σ level. If we select four pulses or more with either one or two gaps, periodicity is detected at $\approx 4\sigma$.

Rayleigh (Z_n^2) periodicity analysis

We have shown in the previous section that the \hat{S} statistic is nearly optimal for determining the statistical significance of the periodicity observed in each FRB. However, we also calculated the significance through a different statistic that is commonly used in studies of periodicities of high-energy pulsars, the Rayleigh (Z_n^2) statistic44,46. In general, the Z_n^2 test statistic is defined as

$$Z_n^2 = \sum_{k=1}^N \left[\sum_{j=1}^n \cos k\phi_j \right]^2 + \left[\sum_{j=1}^n \sin k\phi_j \right]^2$$

in which N is the number of peaks, n is the number of harmonics and ϕ_j is the phase of each ToA t_j. The phase of each ToA is determined using $\phi_j = v \nu$, in which v is the modulation frequency. In the following analysis, we use $n = 1$ harmonics in equation (14), which corresponds to the Rayleigh test, and the ToAs listed in Extended Data Table 2. All of the ToAs were weighted equally in our analysis.

We performed a blind search for periodicity using the Z_n^2 test statistic defined in equation (14) and the ToAs listed in Extended Data Table 2. The number of frequency trials used to search for periodicity was determined by the time resolution (Δt) and the duration (T) of the data containing each of the bursts. The time resolution and duration of the data used to perform the Rayleigh test were $\Delta t = 7.86432$ ms and $T = 4.215$ s for FRB 20191221A, $\Delta t = 81.92$ ms and $T = 19.6608$ s for FRB 20210206A, and $\Delta t = 327.68$ ms and $T = 81.92$ ms for FRB 20210213A, respectively. We searched for evidence of periodicity by calculating the Z_n^2 test statistics at a range of trial frequencies $v \in [\Delta v, v_{\text{min}}]$, in which $\Delta v = 1/T$ is the nominal frequency resolution of each dataset, $v_{\text{min}} = v_{\text{amp}}/2 = 1/(2\Delta t)$ is the Nyquist frequency and v_{amp} is the sampling frequency of the data. In addition, we oversample the frequency grid by a factor of $O = 5$. The results of this calculation are presented in Extended Data Table 3.

The values of Z_n^2 for the three events were converted to significance values by randomly generating arrival time differences using Monte Carlo simulations. Owing to the high significance of the periodicity in FRB 20191221A, we used $N_{\text{sim}} = 10^6$ Monte Carlo simulations in our analysis of this event. For the other two events (FRBs 20210206A and
Monte Carlo simulations were used to determine the significances. Using the measured ToAs, we construct random realizations of arrival time differences by drawing from a uniform probability distribution defined by equation (9). For each event, we perform separate sets of simulations for exclusion parameters $0 \leq \chi \leq 0.5$, defined according to equation (8). The value of χ determines the time separation between the simulated ToAs. In the limit $\chi = 1$, the simulated ToAs become perfectly periodic, so we restrict $\chi \leq 0.5$. These values of χ are used to impose a minimum time separation between ToAs in the simulations. The statistical significance of the periodicities is not strongly affected by the choice of these values of χ, so we select $\chi = 0.2$ in this analysis. We compare the distribution of maximum Z^2 test statistics obtained from each set of simulations, for a given value of χ, to the Z^2 value obtained using the measured ToAs. The false-alarm probability and equivalent Gaussian significance are calculated using

$$P_{\text{FA}} = 1 - \text{CDF}(Z^2) = 1 - \left[1 - P(Z^2 > Z^2_{\text{sim}}) \right].$$

in which v_0 is the putative periodicity determined from the ToAs measured from each event.

In this analysis, the tail-fitting procedure described above is not used. Instead, the false-alarm probabilities are calculated on the basis of the number of Monte Carlo simulations that have a maximum Z^2 test statistic that exceeds the Z^2 value obtained using the measured ToAs. We find that the periodicity observed from FRB 20191221A has a significance of 6.2σ using this method. The equivalent significance of the periodicities observed from FRBs 20210206A and 20210213A are both $<1\sigma$ using the Rayleigh (Z^2) statistic (see Extended Data Table 3).

Polarization analysis

Full polarization information is stored for FRBs 20210206A and 20210213A. The polarization analysis follows a similar procedure to that previously applied to other CHIME-detected FRBs. In particular, an initial RM estimate is made by applying RM synthesis to the Stokes Q and U data of each burst. The Stokes spectrum is extracted by integrating the polarized signal over the burst duration, in which time and frequency limits have been manually adjusted to optimize the RM detection.

For FRB 20210206A, RM synthesis results in an unambiguous RM detection. This detection is refined by applying a Stokes QU-fitting routine that directly fits for the modulation between Stokes Q and U from Faraday rotation, as well as the modulation between U and V introduced by an instrumental delay between the two linear polarizations. Optimal values are determined numerically through nested sampling, a Monte Carlo method that seeks to optimize the likelihood function given a model and data. Further details on the CHIME/FRB polarization analysis pipeline are presented elsewhere. The instrumental delay, once fitted for, can be used to produce a delay-corrected spectrum. The RMs produced from these two independent methods agree with the measurement uncertainties. An RM of $+193.6(1)$ rad m$^{-2}$ is given by QU-fitting and used to produce the polarized burst profile shown in Extended Data Fig. 5. We estimate a Galactic contribution of $RM_{\text{g}} = -150(33)$ rad m$^{-2}$ along the sightline of FRB 20210206A, suggesting a notable extragalactic source of Faraday rotation.

Conversely, FRB 20210213A, shows an absence of polarized signal. Applying RM synthesis produces no clear RM detection over the range $-2,000 \leq \text{RM} \leq 2,000$ rad m$^{-2}$. For [RM] values beyond this range, bandwidth depolarization from Faraday rotation within a single frequency channel becomes important at the native channelization of CHIME/FRB baseband data. We developed an algorithm that uses a phase-coherent method of correcting for bandwidth depolarization in data for which the electric field phase is retained. Using this method, we search out to [RM] values as large as 10^6 rad m$^{-2}$ by applying coherent derotation to a sparse grid of trial RMs followed by an incoherent search at neighbouring RM values. In principle, this method extends detectable RMs to arbitrarily large values. In practice, artefacts introduced in the channelization of CHIME/FRB baseband data reduce sensitivity to polarized signals at larger [RM] values. Given the low S/N of this burst, it remains possible that this event shows a large [RM] that simply goes undetected owing to the deleterious effect of the channelization procedure. We test this possibility by using simulated data to determine the loss of S/N with increasing RM. Using a simulated burst with properties similar to that of FRB 20210213A (such as S/N, sub-band), we evaluate the performance of our coherent derotation algorithm over a range of RM values. We find no marked loss of polarized signal out to RM values as large as $200,000$ rad m$^{-2}$. Therefore, if this event does indeed show an RM within this range, a substantial fraction of the signal must be unpolarized ($\gtrsim 50\%$) for us not to detect it given the S/N of the event. Conversely, we rule out the possibility of [RM] values larger than about $200,000$ rad m$^{-2}$ by detecting a lack of splitting in the burst morphology potentially caused by extreme RM values.

We note that ionospheric RM has not been corrected for in our analysis, but it does not exceed a few rad m$^{-2}$.

Model of gravitational lensing

As a possible explanation for the magnification that would be necessary to observe a radio pulsar located in another galaxy, we explore the observability of a pulsar that is gravitationally microlensed. In this model, pulses from a radio pulsar in a binary system are magnified in intensity by the gravitational field of its companion. The magnification would be modulated in time such that the signal from the pulsar would be convolved with a bell-shaped curve. The pulse profiles detected for the three FRBs presented here are qualitatively consistent with this morphology.

We consider a binary system with a pulsar of mass $M_p = 1M_{\odot}$ and explore the parameter space of lensing masses, system alignment and orbital separations to explain the properties of the three FRBs.

We use a test pulsar at a distance of 1 Gpc (approximately the DM-inferred distance of FRB 20210213A) emitting periodic pulses with a luminosity of 1 Jy km$^{-2}$, comparable with Galactic radio pulsars. Without any magnification, such a pulsar would be observed on Earth with a peak flux of about 10^{-12} Jy. Therefore, a magnification $\mu \gtrsim 10^3$ is needed to explain the fluxes of around 1 Jy observed for the three FRBs reported here.

We constrain the parameter space by first requiring the lens mass M_{tot} to be able to magnify the pulsar

$$\mu \leq \frac{4\pi G M_{\text{tot}} f}{c^3},$$

in which G is the gravitational constant and f is the observed frequency.

The orbital separation of the binary system D_{ls} and its alignment are constrained by requiring that we only observe the magnification curve for the duration of the event Δt. The minimum alignment angle β of the binary system can be calculated as

$$\mu = \frac{\beta^2 + 2 \theta^2}{\beta^2 + 4 \theta^2},$$

in which the Einstein angle θ_E is defined as

$$\theta_E = \frac{4 GM_{\text{tot}} D_{\text{ls}}}{c^2 D_{\text{ls}} D_{\text{ol}}},$$

in which D_{ls} is the distance between the observer and the source, D_{ol} is the distance between the observer and the lens and D_{ls} is the orbital separation that we want to constrain. β is further constrained by

$$\beta \geq \omega \Delta t,$$

in which ω is the orbital angular velocity of the lens, defined as
\[\omega = \sqrt{\frac{GM_{\text{ens}}}{D_{\text{obs}}(M_{\odot} + M_{\text{ens}})^2}} \]

(20)

and \(\Delta t \) is the duration of time in which the pulsar is magnified enough to be detected above the noise floor. We use equations (16), (17) and (19) to constrain the properties of the binary system and plot the parameter space shown in Extended Data Fig. 6.

The orbital inclination of the lensing system would need to be aligned to the line of sight within \(10^{-7} - 10^{-18} \) arcseconds, depending on the lens mass. The small required alignment angle implies a low probability to observe such an event despite the large trial factor provided by the number of galaxies within a Gpc distance. In addition, in this scenario, we would expect to detect a larger number of FRBs from gravitationally lensed pulsars in the nearby universe because they would require a lower magnification. Therefore, the absence of multipeaked, periodic FRBs with a small DM excess implies that it is unlikely that we have detected a gravitationally microlensed pulsar of average luminosity at a distance of 1 Gpc.

Model of merging compact objects

A different model that could produce periodic FRBs considers merging neutron stars that emit the FRB signal. One possible interaction of merging neutron stars to produce periodic FRBs is through a unipolar inductor process in which the companion orbiting through the magnetic field acts as a conductor driving a current loop. The latter accelerates electrons and positrons to emit curvature radiation\(^{11,12}\) in orbital frequencies ranging from a few Hz to kHz, corresponding to orbital separations of 10–1,000 km in the binary neutron star case. Another proposed mechanism to extract energy is through the magnetic braking and spin–orbital synchronization of merging binary neutron stars\(^{13,14}\). The coherent emission is proposed to arise from the magnetosphere in a manner roughly similar to isolated pulsars as the rotation rate of one of the neutron stars rapidly increases or decreases to synchronize with the binary rotation. In such a case, FRB emission may show several peaks corresponding to a favourable orbital phase for a range of orbital periods.

The loss of angular momentum and energy through gravitational wave radiation causes the compact object binary orbits to decay with a predictable relation between the orbital angular frequency \(\omega \) and time \(t \). We consider the equation\(^{15}\) for the instantaneous orbital angular frequency derivative (with \(c = \frac{1}{2} \))

\[\omega = \frac{96}{5} \eta m^3 \omega^{11/3} \left[1 - \frac{743}{336} + \frac{11}{4} \eta \right] (m\omega)^{2/3} + 4m\omega + \left[\frac{34}{18,144} + \frac{13,661}{2,016} + \frac{59}{18} \eta^2 \right] (m\omega)^{4/3} \]

(21)

Here \(m = m_1 + m_2 \) and \(\eta = m_1 m_2 / m^2 \) are the total mass and reduced mass, respectively, of two components of mass \(m_1 \) and \(m_2 \). We have assumed that spin–orbit and spin–spin coupling are negligible. As the orbital angular frequency is related to the observed pulse period by

\[P = \frac{2\pi}{\omega}, \]

(22)

it follows that

\[P = \frac{2\pi \omega}{\omega}. \]

(23)

For a given set of trial masses, \((m_1, m_2) \), we integrated numerically equation (21) twice to calculate the orbital phase \(\phi \), that is, we go from \(\omega(\omega, t) \rightarrow \omega(t) \rightarrow \phi(t) \). The initial orbital period was chosen to be larger than the periods measured for these FRBs and the system was evolved until \(\omega = 2\pi \times 10^4 \text{ rad s}^{-1} \), very close to the final merger. We numerically inverted \(\phi(t) \) to get \(t(\phi) \), the time of passage of the components through a specific orbital phase. We use this to fit the ToAs through the same procedure used to study the significance of the periodicity. We modified equation (4) as

\[t_i = t \left(2\pi n + \phi_i \right) + \tau_i, \]

(24)

in which \(\phi_i \) is an arbitrary initial phase and the integer-valued \(n \) vector is defined in equation (3). We fixed one of the components to be a neutron star with \(M_i = 1.4M_\odot \) and then searched the parameter space of \((m_i, \phi_i, n_i) \) to minimize the root-mean-square of the residuals \(\tau \). We find that FRB 20210206A cannot be explained by a merging neutron star model as the expected period derivative \(\dot{P} = 5 \times 10^{-15} \text{ s}^{-1} \) is not consistent with the observed peak separation. On the other hand, the ToAs for FRBs 20191221A and 20210213A are well fit by this model for a broad range of mass \(m_i \) (0.1–6\(M_\odot \) and 1.3–6\(M_\odot \), respectively) and the same allowed space of ‘gap vectors’ \(n_i \) as the previous fits. The putative separation of the neutron stars from their companions for these orbital fits would be 10–100 km and 1–10 km, respectively. These systems would be extremely short-lived. The timescale for these systems to merge from the FRB event time is about \(10^2–10^4 \) s and \(0.1–1 \) s, respectively, depending on the companion masses. An eventual future detection of repeating bursts from these FRB sources would disprove this model.

Data availability

The data used in this paper are stored in Hierarchical Data Format 5 files available at https://doi.org/10.11570/22.0003.

Code availability

The code used to model the signal from the sources presented in this publication, calculate their periodicities and plot the results is available at https://doi.org/10.11570/22.0003, together with the algorithms to calculate the \(S \) score and the Rayleigh statistic \(Z_1 \) used to estimate the significance of the periodicities.

27. Ng, C. et al. CHIME FRB: an application of FFT beamforming for a radio telescope. In 2017 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI/GRSS) (IEEE, 2017).
28. Michilli, D. et al. An analysis pipeline for CHIME/FRB full-array baseband data. Astrophys. J. 910, 147 (2021).
29. Nimmo, K. et al. Highly polarized microstructure from the repeating FRB 20180916B. Nat. Astron. 5, 594–603 (2021).
30. Majid, W. A. et al. A bright fast radio burst from FRB 20200120E with sub-100 nanosecond structure. Astrophys. J. Lett. 919, L6 (2021).
31. Pastor-Marazuela, I. et al. A fast radio burst with sub-millisecond quasi-periodic structure. Preprint at https://arxiv.org/abs/2202.08022 (2022).
32. The CHIME/FRB Collaboration et al. Periodic activity from a fast radio burst source. Nature 582, 351–355 (2020).
33. Rajwade, K. M. et al. Possible periodic activity in the repeating FRB 121102. Astrophys. J. Lett. 852, L6 (2019).
34. Bhardwaj, M. et al. A local universe host for the repeating fast radio burst FRB 20180306A. Astrophys. J. Lett. 919, L24 (2021).
35. Han, J. L. et al. The FAST Galactic Plane Pulsar Snapshot survey: I. Project design and pulsar discoveries. Res. Astron. Astrophys. 21, 107 (2021).
36. Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).
37. Masui, K. W. et al. Algorithms for FFT beamforming radio interferometers. Astrophys. J. 879, 16 (2019).
38. The CHIME/FRB Collaboration et al. A second source of repeating fast radio bursts. Nature 566, 235–238 (2019).
39. Joseph, A. et al. CHIME/FRB detection of the original repeating fast radio burst source FRB 20190127A. Astrophys. J. Lett. 882, L18 (2019).
40. The CHIME/FRB Collaboration et al. CHIME/FRB discovery of eight new repeating fast radio burst sources. Astrophys. J. Lett. 885, L24 (2019).
41. Fonseca, E. et al. Nine new repeating fast radio burst sources from CHIME/FRB. Astrophys. J. Lett. 891, L6 (2020).
42. McKinley, M. M. The analytical solution to the temporal broadening of a Gaussian-shaped radio pulse by multipath scattering from a thin screen in the interstellar medium. Publ. Astron. Soc. Pac. 126, 476 (2014).
Extended Data Fig. 1 | Radio signal from FRBs 20210206A and 20210213A.

a, b, Waterfall plots of the signal intensity (colour-coded) as a function of time and frequency. Frequency channels missing or masked owing to radio-frequency interference are replaced with off-burst median values and are indicated in red. Effects of dispersion have been removed and data have been plotted at the native frequency resolution of 390.625 kHz and at time resolutions of 0.16 and 0.32 ms, respectively.

c, d, In black, the pulse profiles obtained by averaging the frequency channels of the waterfall plots in which signal is visible. Peak locations are highlighted by vertical lines.

a, c, FRB 20210206A.
b, d, FRB 20210213A.
Extended Data Fig. 2 | Periodicity analysis of FRBs 20210206A and 20210213A.

a,b. Power spectrum obtained with a discrete Fourier transform of the pulse profile. Vertical pink lines indicate the periods reported in Extended Data Table 1.

c,d. Residuals of a timing analysis assuming that the peaks forming the FRB profile are separated by integer numbers times these periods, respectively. 1σ error bars are often smaller than the symbol sizes. Horizontal pink lines indicate a phase of zero around which residuals have been rotated.

e,f. Study of the statistical significance of the measured periodicity by using the periodicity-sensitive score \hat{S}. The grey histograms have been obtained with an ensemble of simulations, whereas the value measured for each FRB is represented with a vertical pink line. The corresponding probability of obtaining such a periodicity by chance is indicated on the plots.

- **e,** FRB 20210206A.
- **f,** FRB 20210213A.
Extended Data Fig. 3 | Reduced chi-square test as a function of the number of components used to model the profile of FRB 20191221A.

The vertical line highlights the chosen number of components, whereas the horizontal line is placed at the χ^2_{red} value for nine components. The minimum χ^2_{red} variation that can be measured confidently with our data is estimated with equation (2) and plotted as an error bar for each number of peaks.
Extended Data Fig. 4 | ToAs of the components of FRB 20191221A as a function of their measured cycle. The cycle is defined in equation (3). The periodicity appears clearly as the points fall nearly on the straight grey line, which highlights the trend expected for a period of 216.8 ms. Vertical lines mark gaps in which no pulse is observed within one period.
Extended Data Fig. 5 | Polarization profiles of FRB 20210206A.

a. The polarization angle (PA) values with 1σ error bars referenced to infinite frequency and rotated by an arbitrary angle. b. The total (I, black), linear (L, red) and circular (V, blue) intensities across the burst envelope.
Extended Data Fig. 6 | Parameters of a binary system producing a radio signal compatible with the FRBs presented here through gravitational lensing. The system, located at 1 Gpc, contains a 1\(M_\odot\) pulsar emitting 1 Jy pulses that are lensed by its companion. The allowed parameter space is shown with brighter colours as a function of the minimum alignment angle (colour-coded), companion mass and separation of the binary system.
Extended Data Table 1 | Properties of FRBs 20210206A and 20210213A

Parameter	20210206A	20210213A
MJD	59251.11021004	59258.46924637
RA J2000 (deg)	53.86(2)	192.6(1)
Dec J2000 (deg)	52.743(7)	83.28(2)
l (deg)	146.359(9)	122.97(2)
b (deg)	−2.503(8)	33.85(2)
DM (pc cm\(^{-3}\))	361.35(7)	482.5(2)
Period (ms)	2.8(1)	10.7(1)
Period significance (σ)	1.3	2.4
Average width (ms)	0.068(5)	0.42(4)
Scattering (ms)	1.25(2)	0.78(5)
Fluence (Jy ms)	47(14)	8.4(2.9)
Peak Flux (Jy)	5.7(1.8)	1.2(5)
Exposure\(^\ast\) (hours)	99.2(1)	196(4), 496.7(2)

All quantities have been calculated with baseband data except for fluences and fluxes. Uncertainties are reported at the 1σ confidence level. The arrival time is that of the brightest sub-burst at the barycentre of the Solar System and infinite frequency. The DM is calculated to maximize the peak S/N in the time series. The scattering timescale is referenced to the centre of the band, that is, around 600 MHz. Fluence is for the full band-averaged profile and peak flux is the maximum in the profile (with 1-ms time resolution).

\(^{\ast}\)For circumpolar sources (δ > +70°), the two entries correspond to exposure in the upper and lower transits, respectively.
Extended Data Table 2 | List of ToAs for the peaks forming each event

Component	20191221A	20210206A	20210213A
1	0(6)	0.00(1)	0.00(5)
2	430(9)	2.221(5)	10.53(8)
3	652(3)	4.974(6)	21.70(3)
4	1086.2(8)	8.358(8)	32.60(2)
5	1520(2)	13.580(9)	44.4(1)
6	1736(1)	52.48(5)	
7	1952(1)		
8	2171(2)		
9	2604(2)		

The ToA of each component is reported in milliseconds relative to the first peak. 1σ uncertainties on the last digit are indicated in parentheses.
Extended Data Table 3 | Statistical significance of the FRB periodicities

FRB	ToAs	Gaps	Trials	p-value (\hat{S})	σ (\hat{S})	P (ms)	Z_i^2	p-value (Z_i^2)	σ (Z_i^2)
20191221A	9	3	1365	6.7×10^{-11}	6.5	217.3	18.0	5.0×10^{-11}	6.22
20210206A	5	0	6	0.195	1.3	2.8	6.9	0.9998	0.0002
20210213A	6	1	15	0.019	2.4	10.8	9.7	0.57	0.58

For each FRB, we report the number of ToAs measured from the profile, the number of gaps and trials considered in the \hat{S}-periodicity analysis and the resulting probability and significance. The values in the last four columns are derived using the Rayleigh (Z_i^2) test and show the period obtained in the analysis, the resulting value of the test and the false-alarm probability and significance of the periodicities.