Aberrant Functional Connectivity in Resting State Networks of ADHD Patients Revealed by Independent Component Analysis (ICA)

CURRENT STATUS: UNDER REVISION

Huayu Zhang
Shandong University of Science and Technology

Yue Zhao
Shandong University of Science and Technology and Shandong First Medical University & Shandong Academy of Medical Sciences

Weifang Cao
Shandong First Medical University & Shandong Academy of Medical Sciences

Dong Cui
Shandong First Medical University & Shandong Academy of Medical Sciences

Qing Jiao
Shandong First Medical University & Shandong Academy of Medical Sciences

Weizhao Lu
Shandong First Medical University & Shandong Academy of Medical Sciences

Hongyu Li
Shandong University of Science and Technology

Jianfeng Qiu
Shandong First Medical University & Shandong Academy of Medical Sciences

jfqiu100@gmail.com Corresponding Author
ORCiD: https://orcid.org/0000-0002-8049-3743

DOI: 10.21203/rs.2.16761/v1

SUBJECT AREAS
Computational Neuroscience Developmental Neuroscience

KEYWORDS
fMRI; RSNs; ADHD; functional connectivity; ICA.
Abstract
Background ADHD is one of the most common psychiatric disorders in children and adolescents. Altered functional connectivity has been associated with ADHD symptoms. This study aimed to investigate abnormal changes in the functional connectivity of resting-state brain networks (RSNs) among adolescent patients with different subtypes of ADHD. Methods: The data were obtained from the ADHD-200 Global Competition, including fMRI data from 88 ADHD patients (56 patients of ADHD-Combined and 32 patients of ADHD-Inattentive, ADHD-I) and 67 Typically-Developing Controls (TD-C). Group ICA was utilized to research aberrant brain functional connectivity within different subtypes of ADHD. Results: Compared with TD-C group, the clusters of decreased functional connectivity were located in the left inferior occipital gyrus (p=0.0041) and right superior occipital gyrus (p=0.0011) of DAN, supplementary motor area (p=0.0036) of ECN, left supramarginal gyrus (p=0.0081) of SN, middle temporal gyrus (p=0.0041) and superior medial frontal gyrus (p=0.0055) of DMN in ADHD-C group. In the ADHD-I group, decreased functional connectivity was found in the right superior parietal gyrus (p=0.0017) of DAN and left middle temporal gyrus (p=0.0105) of DMN. The decreased functional connectivity of ADHD-C group was found in superior temporal gyrus (p=0.0062) of AN, inferior temporal gyrus (p=0.0016) of DAN, dorsolateral superior frontal gyrus (p=0.0082) of DMN compared to ADHD-I group. All the clusters surviving at p<0.05 (AlphaSim correction). Conclusion: The results suggested that decreased functional connectivity within the DMN and DAN was responsible, at least in part, for the symptom of inattention in ADHD-I patients. Similarly, we believed that the impaired functional connectivity within networks may contribute to the manifestations of ADHD-C patients, including inattention, hyperactivity/impulsivity, and unconscious movements.

Background
Attention-deficit/ hyperactivity disorder (ADHD) emerges as a common contributor to neurodevelopmental disorders, as well as frequent psychological and behavioral problems among children (1). The global prevalence of ADHD is about 5.29%. According to the previous studies, any variation in prevalence estimates was caused by the methodological characteristics of different
researches, instead of the discrepancies in the actual distribution of ADHD (2). There are a great number of adolescent ADHD patients in the world, thus it is very important for the management and treatment of ADHD patients. ADHD is mainly characterized by symptoms of inattention, impulsivity, and hyperactivity. The current practice in the diagnosis of ADHD is mainly according to the levels of symptoms listed in DSM-IV (3) and is usually conducted by the parents or teachers, which is subjective. Typically, ADHD can be categorized into three subtypes: hyperactive-impulsivity (ADHD-HI), persistent inattention (ADHD-I), and a combination of both (ADHD-C) (4, 5). This disorder is often accompanied by learning difficulties or conduct disorders (6, 7), which can greatly affect the interpersonal skills and academic performance of patients who suffer from it. Many studies have pointed out that the subjective diagnosis is difficult to draw a line between normal level and the level of ADHD symptoms that need treatment (8). Thus, the researches of the objective diagnosis of ADHD are of great significance. And the researches of ADHD have become a hot topic in medicine and psychology in recent years.

In previous studies, resting-state functional MRI (rs-fMRI) has been widely used to examine the brain of ADHD patients (9, 10). In studies of brain function using rs-fMRI, abnormalities were found in the prefrontal cortex, anterior cingulated cortex, putamen, temporal cortex, and cerebellum (11, 12). The rs-fMRI has become a research hotspot among more and more scientists, it has achieved obvious results in many fields, such as neuroscience, spiritual science, biological science, and statistics, and it is helpful for the diagnosis and treatment of ADHD (13, 14). A growing literature shows that communication abnormalities among and within neural networks may underlie ADHD (15). Rs-fMRI can effectively identify such network abnormalities, and it's unconstrained yet reliable. In rs-fMRI experiments, subjects are awake and are asked to simply rest while lying in the MRI scanner, so brain activity can be considered ‘spontaneous’ rather than stimulus- or task-driven. As previously mentioned, most researchers focused on DMN, while less attention was paid to other brain networks or differences between two types of ADHD. So, we speculated that auditory network (AN), dorsal attention network (DAN), executive control network (ECN), salience network (SN), and sensorimotor network (SMN) are also related to ADHD, and we compared the differences in the functional
connectivity (FC) of six resting-state brain networks (RSNs) between two ADHD subtypes.

In the present study, the Group ICA, a data-driven approach, was adopted to extract the components (16). Independent component analysis (ICA) is a widely used method for the statistical analysis of fMRI data (17, 18). Without any prior information, this method can effectively determine the functional characteristics of mutually correlated brain components (19). We hope to find out the differences in these RSNs among patients with different subtypes of ADHD by comparing the FC of the six RSNs between the three groups. We speculate that the symptoms of ADHD patients are associated with abnormal FC of these RSNs.

Methods

2.1 Subjects

Public fMRI data were downloaded from the ADHD-200 Global Competition (http://fcon_1000.projects.nitrc.org/indi/adhd200/index.html) and selected exclusively from the New York University (NYU) Child Study Center. In accordance with HIPAA guidelines and 1000 Functional Connectomes Project protocols, all datasets are anonymous, with no protected health information included. For both ADHD and TD subjects, the inclusion criteria included: an age of 7–17 years, no history of neurological disease, and no diagnosis of either schizophrenia or affective disorder, an image covering at least 95% of the brain, and an IQ score > 80, and head movement is less than 2.0. Subjects were enrolled if they were right-handed and the information was complete (e.g., age, Verbal IQ, or Performance IQ). Finally, fMRI data from a total of 155 volunteers aged between 7 and 17 were collected, including 67 Typically-Developing Controls (TD-C), 56 ADHD-C patients and 32 ADHD-I patients (the number of ADHD-HI group was too small to be studied). IBM SPSS software (Armonk, NY, v. 22.0) was used for statistical analysis. One-way analysis of variance was performed on age, ADHD index, verbal IQ, performance IQ, and Full IQ, and chi-square test was used to evaluate the difference of gender among 3 groups, a p-value of <0.05 was considered statistically significant, as shown in Table 1. The symptoms of ADHD were assessed using the Conners Parent Rating Scale-Revised, Long version (CPRS-LV).

The fMRI data were acquired using a single-shot echo-planar imaging (GRE-EPI) sequence with the
following imaging parameters: repetition time (TR)=2000 ms; echo time (TE)=15 ms; flip angle (FA)=90°; FOV read=240 mm; slice thickness=4 mm; number of slices=33; and voxelsize = 3×3×4 mm³, time points = 176, acquisition matrix=80×80.

2.2 Data preprocessing

The original data of fMRI were preprocessed by using a public toolbox named DPABI (for Data Processing & Analysis of Brain Imaging, http://rfmri.org/dpabi). The preprocessing steps were as follows: 1) Remove the first 10 volumes to ensure that the BOLD signal was stable; 2) Slice Timing, correct the difference due to the acquisition time between slices in the volume; 3) head motion correction; 4) Normalization, the data were registered to the EPI standard template and resampled to 3.0*3.0*3.0mm³, 5) spatial smoothing with a 6 mm full width at half maximum (FWHM) Gaussian kernel (20). Subjects whose head movement exceeded 2.0mm were excluded.

2.3 ICA and Determine RSNs

We conducted group independent component analysis (ICA) using Group ICA/IVA of fMRI Toolbox (GIFT, http://mialab.mrn.org/software/). We chose ICA because of its effectiveness at separating signal from noise (21). Six independent components (ICs) were selected as corresponding to major RSNs.

The used group ICA approach and tests with simulation data are described in detail in publications by the research group of Dr. Calhoun (22, 23, 24). This toolbox implements a group approach comprising estimation of the independent components (ICs) on concatenated data and followed by a computation of the subject-specific spatial maps and time courses (25). Usually, there are three main steps: (a) compression of the data; (b) estimation of the ICs in an aggregate dataset; (c) back reconstruction of the ICs.

Regarding the data reduction, the dimensionality of the data was reduced using principal components analysis (PCA). The number of independent hemodynamic sources was estimated using the minimal length description criterion (MLD), indicating 20 ICs for our functional dataset, which is sufficient to capture the most frequently observed large-scale resting-state networks (26). Then, using the Infomax algorithm, which was repeated 20 times in the ICASSO to obtain a more reliable estimation
result, maximally independent components were estimated, and the data were transformed into a linear mixing matrix and 20 ICs. The individual ICs were back reconstructed by multiplying the section of data corresponding to each subject by that mixing matrix. The ICs were then transformed to z score values, which provide an index of the degree of synchronization of the BOLD signal in that voxel with the time course of the relevant component.

The RSNs components were subsequently selected via an automated process that defines the components that most closely matched the RSNs for each individual subject, based on spatial correlation analyses with the RSNs templates. All templates represent regions that have repeatedly been implicated in the RSNs.

There were six RSNs of our interest, including auditory network (AN), dorsal attention network (DAN), default mode network (DMN), executive control network (ECN), salience network (SN), and sensorimotor network (SMN). All RSN templates were created by virtue of WFU_PickAtlas (https://www.nitrc.org/projects/wfu_pickatlas/) in the SPM toolbox based on centroid coordinates and radii. The component with the largest correlation coefficient was selected as the RSN we interested in. Totally, six components were identified. In order to verify whether the 6 ICs of each group were zero, a one-sample t-test was performed and according to the settings in the previous study (27), we set a threshold of p<0.05. As shown in Figure 1.

2.4 Statistical Analysis

According to the number of the original subjects, the selected ICs (z-score value) were reclassified into three groups. The Resting-State fMRI Data Analysis Toolkit plus V1.2 (RESTplus V1.2, http://restfmri.net/forum/RESTplusV1.2) was the toolbox of our choice for statistical analysis. In order to verify whether the six ICs differed between the three groups, Analysis of Variance (ANOVA) on ICs (AlphaSim correction, P<0.05) was performed with the result of one-sample t-test as an explicit mask, where age and gender were controlled as covariates. The differences between the groups of ICs were obtained by two-sample t-test (AlphaSim correction, P<0.05, Cluster>10) with the result of ANOVA as an explicit mask. Similarly, age and gender were eliminated as covariates. Finally, a Spearman correlation analysis was performed between the ADHD index and mean signals of ICs that we
delineated as ROIs.

Results

3.1 ANOVA showed differences between the three groups

The ANOVA results for all ICs were shown in Figure 2 and Table 2, it shows the brain regions where there may be differences between the six ICs in the three groups of subjects. The regions depicted in red-yellow showed in Fig 2 indicated that there were differences in RSNs between the three groups. The F values and p values of the most significant difference in each RSN were shown in Table 2. As shown in Fig 2, brain regions with significant differences appeared in superior temporal gyrus of AN, superior parietal gyrus and occipital lobe of DAN, middle temporal gyrus and superior medial frontal gyrus of DMN, supplementary motor area of ECN, precentral gyrus of SMN, as well as supramarginal gyrus of SN.

3.2 Comparison between groups

The results of two-sample t-test were shown in Table 3, which shows the differences between the groups of 6 ICs.

3.2.1 The differences between ADHD-C and TD-C

Compared with the TD-C group, decreased FC was found in DAN, ECN, SN, and DMN of the ADHD-C group (shown in Figure 3). The clusters of weaker connectivity were located in the left inferior occipital gyrus (p=0.0041) and right superior occipital gyrus (p=0.0011) of DAN, supplementary motor area (p=0.0036) of ECN, left supramarginal gyrus (p=0.0081) of SN, middle temporal gyrus (p=0.0041) and superior medial frontal gyrus (p=0.0055) of DMN, with all areas surviving at p<0.05 (AlphaSim correction). However, the RSNs with considerably enhanced FC in ADHD-C were not observed.

3.2.2 The differences between ADHD-I and TD-C

According to the areas shown in Figure 4, decreased FC was found in the ADHD-I patients in comparison to TD-C group, including the right superior parietal gyrus (p=0.0017) of DAN and the left middle temporal gyrus (p=0.0105) of DMN. In contrast, stronger FC was observed within three RSNs, including the supramarginal gyrus (p=0.0027) of AN, the precentral gyrus (p=0.0024) of SMN and the
medial frontal gyrus (p=0.0265) of DMN.

3.2.3 The differences between ADHD-C and ADHD-I

Compared to ADHD-I group, the weaker FC was mainly distributed in the superior temporal gyrus (0.0062) of AN, inferior temporal gyrus (p=0.0016) of DAN, as well as dorsolateral superior frontal gyrus (p=0.0082) of DMN. However, an increase in the FC was found in middle temporal gyrus (p=0.0051) of DMN, as illustrated in Figure 5.

3.3 Correlation Analysis

The above results have demonstrated a significant area of FC abnormalities in RSNs in ADHD patients. A Spearman correlation analysis was performed between ADHD index and mean signals of ICs that we delineated as ROIs, in order to verify whether the ADHD index of the two groups of ADHD patients was associated with FC abnormalities. All the correlation analysis was performed in the ADHD-C and ADHD-I group. Opposite relationship with ADHD index was only found in the left supplementary motor area of ECN in the ADHD-C group (r = -0.267, p = 0.047). And there was no significant difference in this result (p > 0.05) after a multiple comparison correction.

Discussion

In this research, the Group ICA was performed and both subtypes of ADHD patients showed impaired FC in major RSNs compared with TD-C. We found that the FC of the DAN, ECN, SN, and DMN was significantly reduced in ADHD-C patients, including the right inferior occipital gyrus and the superior occipital gyrus of DAN, supplementary motor area of ECN, left supramarginal gyrus of SN, middle temporal gyrus and superior medial frontal gyrus of DMN.

Many previous studies have demonstrated that there were abnormal functional connections within the DMN of ADHD patients, especially the temporal lobe (28, 29, 25). DMN is a commonly used brain network in fMRI studies and is considered to be associated with a wide range of neuropsychiatric diseases (30). In our study, compared with TD-C group, both subtypes of ADHD patients showed reduced FC in the occipital lobe of DAN and the middle temporal gyrus of DMN. However, in the superior medial frontal gyrus of DMN, the two groups performed inversely. Although people believed the opposite trend in DMN and DAN activity (31, 32), Matthew L. Dixon proved that there is no
anticorrelation between some subsystems and DMN (33). These could explain our findings that reduced FC occurred simultaneously in DAN and DMN. There were also differences in FC between the two groups of ADHD subtypes. Patients with ADHD-C showed more reduced FC, such as inferior temporal gyrus of DAN and superior frontal gyrus of DMN. Only a portion of the middle temporal gyrus of DMN has shown an enhanced FC. The one explanation of the difference may be the diverse clinical symptoms between the two subtypes of ADHD patients. DMN activates more when people remain silent or rest state (30). While DAN is routinely activated when people perform attention-demanding cognitive tasks (34). Thus, we speculated that abnormal changes in FC exhibited by DMN and DAN may be related to attention deficit in ADHD patients, which has been proven by some previous research (35, 36).

When comparing the ADHD-I to the TD-C group, we found that there were a few regions showing enhanced FC, such as supramarginal gyrus of AN and precentral gyrus of SMN. Previous studies have found that patients with ADHD were more sensitive to sound, which may be related to the enhanced FC in AN (5). Jean-Arthur has reported that ADHD patients had perceptual inundation (37). To our best knowledge, there are few studies focused on the changes of AN and SMN. And few voxels in these regions were found in our study, which may be due to differences in sample size. Thus, we have not made more discussions about these regions.

Daniel von Rhein proved that SN plays a role in supervision and decision when the brain processes external stimulus (27). The main functions of the SN are to integrate information from different modalities such as sensory information and bodily states in order to establish goal-directed behavior and to process emotion-related information. Combined with our findings, the reduced FC of the SN in ADHD-C patients just confirmed the conclusion of Daniel von Rhein (27). In addition, it has been demonstrated that the ECN participated in multiple advanced cognitive tasks and played an important role in adaptive cognitive control (38). The decreased FC in ECN may explain why ADHD-C patients fail to control their emotions and exhibit impulsive aggression or other conduct disorders (39, 40). Two subtypes of ADHD patients also differ in FC of ECN. In the ADHD-C group, superior frontal gyrus of ECN showed weaker FC. We speculate that this change may explain why ADHD-C patients are more
hyperactive than ADHD-I patients.

Conclusions
In conclusion, group ICA was interrelated analytical methods employed in the present study for evaluating FC of ADHD in adolescents. We found these major RSNs in both subtypes of ADHD patients showed FC changes compared with TD-C group, and there were also differences in FC between the two subtypes of ADHD patients. Our study is good at understanding the abnormal changes in the resting state network of different subtypes of adolescent ADHD patients, which is helpful for the management of adolescent ADHD patients. In the future, the researches combined multi-model imaging, such as structural MRI, diffusion tensor imaging and fMRI, were necessary to comprehensively investigate the brain changes in adolescents with ADHD. These further researches will contribute to the management and treatment of ADHD in adolescents.

Limitations
In this study, one of the limitations of our study was the absence of any psychological assessment of cognitive parameters associated with ADHD. And there was a big difference in the number of the three groups, which was likely to have an impact on the results of statistical analysis. On the other hand, the six RSN templates were created by WFU_PickAtlas in the SPM toolbox directory based on centroid coordinates and radii. There must be a certain difference between our templates and the actual anatomical RSNs, which would affect the accuracy of results.

Abbreviations
ADHD: attention-deficit/ hyperactivity disorder
ADHD-C: ADHD-Combined
ADHD-HI: ADHD-Hyperactive-impulsivity
ADHD-I: ADHD-Inattentive
AN: auditory network
DAN: dorsal attention network
DMN: default mode network
DSM-IV: the fourth edition of the Diagnostic and Statistical Manual of Mental Disorders
ECN: executive control network
FA: flip angle
FC: functional connectivity
FOV: field of view
HIPAA: Health Insurance Portability and Accountability Act
ICA: independent component analysis
MRI: magnetic resonance imaging
ROI: region of interest
rs-fMRI: resting-state functional MRI
RSNs: resting-state brain networks
SMN: sensorimotor network
SN: salience network
TD-C: typically-developing controls
TE: echo time
TR: repetition time

Declarations
Ethics approval and consent to participate: In accordance with HIPAA guidelines and 1000 Functional Connectomes Project protocols, all datasets are anonymous, with no protected health information included.
Consent for publication: Not applicable.
Availability of data and material: The datasets analysed during the current study are available in the [ADHD-200 Global Competition] repository, [http://fcon_1000.projects.nitrc.org/indi/adhd200/index.html]
Competing interests: The authors declare that they have no competing interests.
Funding: This study was supported by grants from National Key Research and Development Program (2016YFC0103400) and J. Qiu was supported by the Taishan Scholars Program of Shandong Province. The funders had no role in study design, data analysis, decision to publish, or preparation of the manuscript.
Authors' contributions: HYZ and YZ were major contributors in writing the manuscript. HYL and JFQ conceived and designed the experiments. The other authors played an important role in data analysis. All authors read and approved the final manuscript.

Acknowledgements: We thank the ADHD-200 Consortium and the ADHD-200 Global Competition organizers for their work and sharing their data generously. Thanks for the support of National Key Research and Development Program (2016YFC0103400), and J. Qiu was supported by the Taishan Scholars Program of Shandong Province.

References
1 Polanczyk G, de Lima MS, Horta BL, Biederman J, Rohde LA. The worldwide prevalence of ADHD: a systematic review and metaregression analysis. Am J Psychiatry. 2007; 164(6):942–8.
2 Kobel M, Bechtel N, Specht K, Klarhöfer M, Weber P, Scheffler K, Opwis K, Penner IK. Structural and functional imaging approaches in attention deficit/hyperactivity disorder: does the temporal lobe play a key role? Psychiatry Res. 2010;183(3):230-6. doi: 10.1016/j.pscychresns.2010.03.010. Epub 2010 Aug 10.
3 American Psychiatric Association. (1994). Diagnostic and Statistical Manual of Mental Disorder, 4th Edn (Washington, DC: American Psychiatric Press;).
4 Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, et al. Correspondence of the brain's functional architecture during activation and rest. Proc. Natl. Acad. Sci. U.S.A. 2009;1060, 13040–13045. doi: 10.1073/pnas.0905267106. Epub 2009 Jul 20.
5 Allen EA, Erhardt EB, Wei Y, Eichele T, Calhoun VD. Capturing inter-subject variability with group independent component analysis of fMRI data: a simulation study. Neuroimage. 2012 Feb 15;59(4):4141-59. doi: 10.1016/
6 Hoekzema E, Carmona S, Ramos-Quiroga JA, Richarte Fernández V, Bosch R, Soliva JC, Rovira M, Bulbena A, Tobeña A, Casas M, Vilarroya O. An independent components and functional connectivity analysis of resting state fMRI data points to neural network dysregulation in adult ADHD. Hum Brain Mapp. 2014 Apr;35(4):1261-72. doi: 10.1002.
The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA. 2005;102:9673–9678.

Dai Dai, Jieqiong Wang, Jing Hua, and Huiguang He. Classification of ADHD children through multimodal magnetic resonance imaging. Front Syst Neurosci. 2012; 6: 63. doi: 10.3389.

Tang C, Wei Y, Zhao J, Nie J. Different Developmental Pattern of Brain Activities in ADHD: A Study of Resting-State fMRI. Dev Neurosci. 2018;40(3):246-257. doi: 10.1159/000490289.

Bos DJ, Oranje B, Achterberg M, Vlaskamp C1, Ambrosino S, de Reus MA, van den Heuvel MP, Rombouts SARB, Durston S. Structural and functional connectivity in children and adolescents with and without attention deficit/hyperactivity disorder. J Child Psychol Psychiatry. 2017 Jul;58(7):810-818. doi: 10.1111/jcpp.12712. Epub 2017 Mar 10.

Cao Q., Zang Y., Sun L., Sui M., Long X., Zou Q., Wang Y. (2006). Abnormal neural activity in children with attention deficit hyperactivity disorder: a resting-state functional magnetic resonance imaging study. Neuroreport 17, 1033–1036. 10.1097/01.wnr.0000224769.92454.5d.

Tian L., Jiang T., Wang Y., Zang Y., He Y., Liang M., Sui M., Cao Q., Hu S., Peng M., Zhuo Y. (2006). Altered resting-state functional connectivity patterns of anterior cingulate cortex in adolescents with attention deficit hyperactivity disorder. Neurosci. Lett. 400, 39–43. 10.1016/j.neulet.2006.02.022.

Yoo JH, Kim D, Choi J, Jeong B. Treatment effect of methylphenidate on intrinsic functional brain network in medication-naïve ADHD children: A multivariate analysis. Brain Imaging Behav. 2018 Apr;12(2):518-531. doi: 10.1007/s11682-017-9713-z.

Silk Tj, Malpas C, Vance A, Bellgrove MA. The effect of single-dose methylphenidate on resting-state network functional connectivity in ADHD. Brain Imaging Behav. 2017 Oct;11(5):1422-1431. doi: 10.1007/s11682-016-9620-8.

Shafritz, K.M., Marchione, K.E., Gore, J.C., Shaywitz, S.E., Shaywitz, B.A., 2004. The effects of methylphenidate on neural systems of attention in attention deficit/ hyperactivity disorder. American Journal of Psychiatry 161, 1990-1997.
Beckmann CF, De Luca M, Devlin JT, Smith SM. Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc London. 2005;360(1457):1001-1013.

von Rhein D, Beckmann CF, Franke B, Oosterlaan J, Heslenfeld DJ, Hoekstra PJ, Hartman CA, Luman M, Faraone SV, Cools R, Buitelaar JK1, Mennes M. Network-level assessment of reward-related activation in patients with ADHD and healthy individuals. Hum Brain Mapp. 2017;38(5):2359-2369. doi: 10.1002/hbm.23522. Epub 2017 Feb 8.

Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci. 2007 Sep;8(9):700-11.

van de Ven VG, Formisano E, Prvulovic D, Roeder CH, Linden DE. Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest. Hum Brain Mapp. 2004;22(3):165-78.

Shuo Miao, Junxia Han. Reduced Prefrontal Cortex Activation in Children with Attention-Deficit/Hyperactivity Disorder during Go/No-Go Task: A Functional Near-Infrared Spectroscopy Study. Front Neurosci. 2017;11:367. doi: 10.3389.

Elton A, Alcauter S, Gao W. Network connectivity abnormality profile supports a categorical-dimensional hybrid model of ADHD. Hum Brain Mapp. 2014 Sep;35(9):4531-43. doi: 10.1002.

Allen EA, Erhardt EB, Wei Y, Eichele T, Calhoun VD. Capturing inter-subject variability with group independent component analysis of fMRI data: a simulation study. Neuroimage. 2012 Feb 15;59(4):4141-59. doi: 10.1016

Calhoun VD, Adali T, Pearson GD, Pekar JJ. A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp. 2001 Nov;14(3):140-51.

Erhardt EB, Rachakonda S, Bedrick Ej, Allen EA, Adali T, Calhoun VD. Comparison of multi-subject ICA methods for analysis of fMRI data. Hum Brain Mapp. 2011 Dec; 32(12):2075-95. doi: 10.1002/hbm.21170. Epub 2010 Dec 15.

Matthew L. Dixona, Jessica R. Andrews-Hannab, R. Nathan Sprengc, Zachary C. Irvingd, Caitlin Millsa, ManeshGirna, Kalina Christoff. Interactions between the default network and dorsal attention network vary across default subsystems, time, and cognitive states. NeuroImage Volume 147, 15
26 Mueller AC, Candrian G, Kropotov JD, Ponomarev VA, Baschera GM. Classification of ADHD patients on the basis of independent ERP components using a machine learning system. Nonlinear Biomed Phys. 2010 Jun 3; 4 Suppl 1: S1. doi: 10.1186/1753-4631-4-S1-S1.

27 Valera EM, Faraone SV, Murray KE, Seidman LJ. Meta-analysis of structural imaging findings in attention-deficit/hyperactivity disorder. Biol Psychiatry. 2007; 610, 1361–1369.

28 De Martino F, Gentile F, Esposito F, Balsi M, Di Salle F, Goebel R, et al. Classification of fMRI independent components using IC-fingerprints and support vector machine classifiers. NeuroImage. 2007; 34(1):177–194. doi: 10.1016/j.neuroimage.2006.08.041.

29 Akansha Mohan, BA Aaron J. Roberto, MD, Abhishek Mohan, BS Aileen Lorenzo, MD, Kathryn Jones, MD, PhD, Martin J. Carney, BS, Luis Liogier-Weyback, MD, f Soonjo Hwang, MD, and Kyle A.B. Lapidus, MD, PhD. The Significance of the Default Mode Network (DMN) in Neurological and Neuropsychiatric Disorders: A Review. Yale J Biol Med. 2016 Mar; 89(1): 49–57.

30 Micoulaud-Franchi JA, Vaillant F, Lopez R, Peri P, Baillif A, Brandejsky L, Steffen ML, Boyer L, Richieri R, Cermolacce M, Bioulac S, Aramaki M, Philip P, Lancon C, Vion-Dury J. Sensory gating in adult with attention-deficit/hyperactivity disorder: Event-evoked potential and perceptual experience reports comparisons with schizophrenia. Biol Psychol. 2015 Apr; 107:16-23. doi: 10.1016.

31 Zikuan Chen and Vince Calhoun. Effect of Spatial Smoothing on Task fMRI ICA and Functional Connectivity. Front Neurosci. 2018 Feb 2; 12:15. doi: 10.3389.

32 Lingam R, Jongmans MJ, Ellis M, Hunt LP, Golding J, Emond A. Mental health difficulties in children with developmental coordination disorder. Pediatrics. 2012;129: e882–91. doi: 10.1542.

33 Hart H, Radua J, Nakao T, Mataix-Cols D, Rubia K. Meta-analysis of functional magnetic resonance imaging studies of inhibition and attention in attention-deficit/hyperactivity disorder: exploring task-specific, stimulant medication, and age effects. JAMA Psychiatry. 2013 Feb;70(2):185-98. doi: 10.1001

34 Shehzad Z, Kelly AC, Reiss PT, Gee DG, Gotimer K, Uddin LQ, Lee SH, Margulies DS, Roy AK, Biswal BB. The resting brain: unconstrained yet reliable. Cereb Cortex. 2009; 19:2209–2229. doi:
Tables

Table 1. Demographic characteristics of the samples.
	TD-C(n=67)	AC(n=56)	AI(n=32)	F/c^2 value	p value
Age	12.10±2.92	10.98±2.57	12.30±2.67	3.400a	0.036
Gender (Female)	67(30)	56(45)	32(20)	17.147b	<0.001
ADHD index	45.59±6.52	71.64±9.03	70.06±9.34	188.334a	<0.001
Verbal IQ	112.13±13.92	108.79±13.23	107.88±19.07	1.285a	0.280
Performance IQ	106.88±14.18	102.95±14.09	106.75±14.98	1.323a	0.269
Full-Scale IQ	110.75±14.01	106.79±13.68	108.44±15.97	1.183a	0.309

Notes: The data (except Gender) were shown in mean ± standard deviation, the Gender was shown in total (number of females);

a: one-way analysis of variance

b: chi-square test

Abbreviations: TD-C: Typically-Developing Controls; AC: ADHD-Combined patients; AI: ADHD-Inattentive patients; IQ, Intelligence Quotient.

Table 2. Analysis of Variance for all ICs

RSNs	F-value	p-value
AN	7.9462	0.006
ECN	6.8647	0.010
DMN	9.5813	0.002
DAN	16.6126	0.001
SMN	5.8913	0.016
SN	6.3573	0.013
Abbreviations: AN: auditory network; DAN: dorsal attention network; ECN: executive control network; SMN: sensorimotor network; SN: salience network.

Table 3. Regions exhibiting altered functional connectivity in ADHD patients

Voxels	MNI	t	p	Region (AAL)
	x	y	z	

AC<TD-C					
DAN	30	-5	-72	-6	-2.687 0.0041 Inferior occipital gyrus
DAN	28	2	-69	4	-3.139 0.0011 Superior occipital gyrus
ECN	10	-3	21	4	-2.730 0.0036 Supplementary motor area
SN	13	-5	-39	3	-2.436 0.0081 Supramarginal gyrus
DMN	59	-5	-30	-3	-2.687 0.0041 Middle temporal gyrus
DMN	59	-1	60	2	-2.583 0.0055 Superior medial frontal gyrus

AI<TD-C					
DAN	28	2	-72	5	-3.002 0.0017 Superior parietal gyrus
DMN	59	-6	-27	-3	-2.347 0.0105 Middle temporal gyrus

AI>TD-C							
AN	15	-5	-24	2	2.845 0.0027 Supramarginal gyrus		
SMN	17	-3	-21	5	2.893 0.0024 Precentral gyrus		
Network	TD-C	AC<AI	AN	AC>AI	DMN	Superior medial frontal gyrus	p-value
---------	------	-------	----	-------	-----	------------------------------	---------
DMN	59	9	54	2	1.958	0.0265	
AC<AI							
AN	29	-5	-36	1	2.550	0.0062	
DAN	44	-4	-60	-6	3.023	0.0016	
ECN	12	-9	24	4	2.986	0.0018	
DMN	59	-1	51	2	2.450	0.0082	
AC>AI							
DMN	59	-6	-24	-9	2.627	0.0051	

Abbreviations: TD-C: Typically-Development Controls; AC: ADHD-Combined patients; AI: ADHD-Inattentive patients; AN: auditory network; DAN: dorsal attention network; ECN: executive control network; SMN: sensorimotor network; SN: salience network.

Figures
Figure 1

Six components obtained from all subjects and the corresponding resting state networks.

AN: auditory network. DAN: dorsal attention network. DMN: default mode network. ECN: executive control network. SMN: sensorimotor network. SN: salience network.
Figure 2

The results of ANOVA. AN: auditory network. DAN: dorsal attention network. DMN: default mode network. ECN: executive control network. SMN: sensorimotor network. SN: salience network.
The difference between ADHD-C patients and healthy controls. Significant clusters are depicted in red-yellow at a threshold of $p<0.05$. The clusters depicted in blue shows reduced functional connectivity.
The differences between ADHD-I patients and healthy controls. Significant clusters are depicted in red-yellow at a threshold of p<0.05. The clusters depicted in red (DMN (right), AN and SMN) shows the enhanced functional connectivity. And the reduced functional connectivity in DAN and DMN (left) is depicted in blue.
Figure 5

The difference between ADHD-C patients and ADHD-I patients. Significant clusters are depicted in red-yellow at a threshold of $p < 0.05$ The clusters depicted in blue (AN, DAN, ECN and DMN (right)) shows the reduced functional connectivity. And the enhanced functional connectivity in DMN (left) is depicted in red.