Introduction

Ectomycorrhizae is an association of fungus and feeder roots (root hairs) in which the fungus grows intercellularly in cortical region penetrating the epidermis by secreting proteolytic enzymes and developing extensively outside the root forming a network of hyphae called as ‘Fungal sheath’ (Harting net) or ‘Fungus Mantle’ which is of variable thickness and color. Harting net is the distinguishing feature of Ectomycorrhizae and is a hyphal network that extends into the root penetrating between the epidermal and cortical cells of ectomycorrhizal plants. This network is a site of nutrient exchange between the fungus and the host plant.

Ectomycorrhizae mostly belongs to Phyla Basidiomycota and Ascomycota. It differs in their ability to associate with different host species. Some fungal species are restricted to specific genera. Some fungi may be able to form ectomycorrhizae with wide range of host species which may be limited in distribution by habitat requirements.
It absorbs and stores plant nutrients like nitrogen, phosphorus, potassium and calcium etc in their mantle thereby help in better forest stand, establishment of high yielding forests, land reclamation and establishment of exotic plant species. It benefits host plants by faster growth, increased uptake of essential nutrients such as phosphorus and inorganic nitrogen. It improves tolerance to biotic and abiotic stress, and also to toxic metals than the non-mycorrhizal plants. (Manohara chary, 2005). Ectomycorrhizal association helps plants to overcome different kinds of stress such as soil salinity, alkalinity and acidity. Ectomycorrhizal diversity with important trees of India is still in the exploratory phase. Therefore an attempt is made to study ectomycorrhizal association with forest trees of FC&RI, Mettupalayam.

Materials and Methods

Area of sample collection

Forest College and Research Institute, Mettupalayam in Tropical Thorn Forest at foot hills of Niligiris, Jackanari Reserve forest, Tamilnadu, India located in the state of Coimbatore district. FC&RI is located at a latitude of 11° 20’ N and at a longitude of 76° 56’ E. Average rainfall is around 922 mm. In fig-1, general characteristics was observed using Hand-Lens and other important taxonomic characteristics like colour, shape, cap and stipe were observed.

Counting the number of ECM fungal basidiomata/fruit bodies in different Blocks

Prevalence Index was calculated using the formula.

\[
\text{ECM prevalence} (%) = \frac{\text{Total no. of basidiomata in each genus identified}}{\text{Total no. of basidiomata identified}} \times 100
\]

Results and Discussion

Twelve different groups of fruiting bodies of ECM fungi were identified and their prevalence index ranged between 40-80%

Table 1 List of ectomycorrhizal fungi found associated with trees of FCRI with an indication of the Block where the observation was made with morphological Features

Figure	Characters
![Figure](image1.jpg)	*Mycena pura*
Common name: Lilac bonnet
Nature: Poisonous
Occurrence – July and December
Stem - Pink to white, Slender, fine white woolly patches.
Cap – Convex upto 3 cm in diameter. Yellow to pink, radial lines pointing towards the edge.
Location: Block - A and Block – J in the Rhizosphere of *Acacia* trees |

| **Amanita**
| Nature : Poisonous
| Occurrence – December
| Cap – Fruiting bodies with white to brown colour, stipe thick and white in colour
| Location - Block F in the Rhizosphere of Simarouba trees |

| **Mycenaaurantio marginata**
| Common name : Golden edge bonnet
| Nature : Poisonous
| Occurrence – July and December
| Cap – Fruiting bodies have a bell-shaped to conical cap up to 3 cm in diameter, very slender stipe up to 5-8 cm long with hairy outgrowth
| Gills – Orange in colour
| Location - Block F in the Rhizosphere of Simarouba trees |

| **Coprinus comatus**
| Common name : Shaggy ink cap
| Nature : Edible
| Occurrence –November
| Stipe - White, long very thin , presence of ring , base enlarged.
| Cap - Finger shaped, long cylindrical cap starting to melt from the bottom edges into a conical shape.
| Occurrence – Block A - , Block C in the rhizosphere of Neem & Eucalyptus |

| **Ganoderma lucidum**
| Common name : Lingzhi mushroom –
| Nature :edible
| Occurrence – November and December
| Cap - soft , cork like surface , kidney-shaped, Presence of minute pores.
| Location – Block A - , Block C in the rhizosphere of Neem, Dalbergia &Eucalyptus |
Scleroderma sp
- **Common name:** Earth ball
- **Nature:** Edible
- **Occurrence:** November
- **Stipe:** Very small.
- **Cap:** Thick, Brown, covered.
- **Occurrence:** Block A, Block C in the rhizosphere of Neem & Eucalyptus

Agaricus augustus
- **Common name:** Prince mushroom
- **Nature:** Edible
- **Occurrence:** November
- **Stipe:** White, scaly and thick.
- **Cap:** Large, Circular with Brown patches
- **Location:** Block C, Block F in the rhizosphere of Neem, Cassia & Eucalyptus

Macrolepiota procera
- **Common name:** Parasol
- **Nature:** Edible
- **Occurrence:** November
- **Stipe:** White, Flat with brown colouration, 8-10 cm height
- **Cap:** Circular Opening into a large flat parasol up to 30 cm.
- **Location:** Block A and Block J in the Rhizosphere of Acacia & Melia trees

Rusula
- **Common name:** White Brittegill
- **Nature:** Poisonous
- **Occurrence:** November
- **Cap:** Small, Pileus 3-5 cm diameter, convex, Presence of Brown ring.
- **Stipe:** Thick, White to Brown in colour
- **Location:** Block A and Block J in the Rhizosphere of Accacia & Melia trees
Laccaria
Common name : Waxy mushroom
Nature : Edibles
Occurrence – November
Cap : Small , Pileus 3-5 cm diameter ,convex.
Stipe : Small , Thin , White in colour
Location : Block - A and Block – F in the Rhizosphere of Accacia & Hardwikia trees

Table 2 List of ectomycorrhizal fungi found associated with trees in FC&RI with an indication of the tree rhizosphere where the observation was made and the season during which the observation was made

S.No	Trees and Location	Mycorrhizal Species
1	Block - A and Block – J in the Rhizosphere of Accacia trees	*Mycena pura*
2	Block F in the Rhizosphere of Simarouba trees	*Amanita*
3	Block F in the Rhizosphere of Simarouba trees	*Mycena aurantio marginata*
4	Block A - , Block C in the rhizosphere of Neem & Eucalyptus	*Coprinus comatus*
5	Block A - , Block C in the rhizosphere of Neem & Eucalyptus	*Scleroderma*
6	Block F in the Rhizosphere of Simarouba and Cassia trees	*Chlorophyl lummolybdites*
7	Block A - , Block C in the rhizosphere of Neem, Dalberga & Eucalyptus	*Ganoderma lucidum*
8	Block C - , Block F in the rhizosphere of Neem, Cassia , Casuarina & Eucalyptus	*Lycoperdon marginatum*
9	Block - A and Block – J in the Rhizosphere of Accacia & Meliatarees	*Macrolepiota procera*
10	Block C - , Block F in the rhizosphere of Neem, Cassia & Eucalyptus	*Agaricus augustus*
11	Block - A and Block – J in the Rhizosphere of Accacia & Meliatarees	*Rusulla*
12	Block - A and Block – F in the Rhizosphere of Accacia , Casuarina & Hardwikia trees	*Laccaria*
Table 3. Abundance of ectomycorrhiza associated with different tree species

S.No	Ectomycorrhizal species	Abundance (%)
1	Mycena pura	56
2	Amanita sp	40
3	Mycenaurantio marginata	45
4	Coprinus comatus	52
5	Scleroderma sp	70
6	Chlorophyl lummolybdites	35
7	Ganoderma lucidum	75
8	Lycoperdon marginatum	80
9	Macrolepiota proceria	40
10	Agaricus augustus	80
11	Rusella sp	75
12	Laccaria sp	75

Fig.1 Collection & preservation of fruiting bodies
The fruiting bodies were collected from Blocks A,F,C and J
References

Manoharachary CS, Singh KR, Adholeya A, Suryanarayanan TS, Rawat S, Johri BN. 2005. Fungal biodiversity: distribution, conservation and prospecting of fungi from India. Curr Sci 89: 58-71.

Sarbhoy AK, Agarwal DK, Varshney JL. 1996. Fungi of India 1982-1992. CBS Publishers and Distributors, New Delhi.

How to cite this article:

Tilak. M., Karthikeyan Subramanian, Keisar Lourdusamy, K. Sivakumar and Balasubramanian, P. 2020. Documentation of the Ectomycorrhizal Fungal Floral Diversity in Forest College and Research Institute, Jackanari Reserve forest, Tamil Nadu, India. *Int. J. Curr. Microbiol. App. Sci.* 9(05): 216-222. doi: https://doi.org/10.20546/ijcmas.2020.905.025