DEGREES OF SYMMETRIC GROTHENDIECK POLYNOMIALS AND CASTELNUOVO-MUMFORD REGULARITY

JENNA RAJCHGOT, YI REN, COLLEEN ROBICHAUX, AVERY ST. DIZIER, AND ANNA WEIGANDT

Abstract. We give an explicit formula for the degree of the Grothendieck polynomial of a Grassmannian permutation and a closely related formula for the Castelnuovo-Mumford regularity of the Schubert determinantal ideal of a Grassmannian permutation. We then provide a counterexample to a conjecture of Kummini-Lakshmibai-Sastry-Seshadri on a formula for regularities of standard open patches of particular Grassmannian Schubert varieties and show that our work gives rise to an alternate explicit formula in these cases. We end with a new conjecture on the regularities of standard open patches of arbitrary Grassmannian Schubert varieties.

1. Introduction

Lascoux and Schützenberger [10] introduced Grothendieck polynomials to study the K-theory of flag varieties. Grothendieck polynomials have a recursive definition, using divided difference operators. The symmetric group S_n acts on the polynomial ring $\mathbb{Z}[x_1, x_2, \ldots, x_n]$ by permuting indices. Let s_i be the simple transposition in S_n exchanging i and $i+1$. Then define operators on $\mathbb{Z}[x_1, x_2, \ldots, x_n]$

$\partial_i = \frac{1 - s_i}{x_i - x_{i+1}}$ and $\pi_i = \partial_i(1 - x_{i+1}).$

Write $w_0 = n \ n - 1 \ldots 1$ for the longest permutation in S_n (in one-line notation) and take

$G_{w_0}(x_1, x_2, \ldots, x_n) = x_1^{n-1}x_2^{n-2}\ldots x_{n-1}.$

Let $w_i := w(i)$ for $i \in [n]$. Then if $w_i > w_{i+1}$, we define $G_{s_i w} = \pi_i(G_w)$. We call $\{G_w : w \in S_n\}$ the set of Grothendieck polynomials. Since the π_i's satisfy the same braid and commutation relations as the simple transpositions, each G_w is well defined.

Grothendieck polynomials are generally inhomogeneous. The lowest degree of the terms in G_w is given by the Coxeter length of w. The degree (i.e. highest degree of the terms) of G_w can be described combinatorially in terms of pipe dreams (see [3, 7]), but this description is not readily computable. We seek an explicit combinatorial formula. In this paper, we give such an expression in the Grassmannian case. Our proof relies on a formula of Lenart [11].

One motivation for wanting easily-computable formulas for degrees of Grothendieck polynomials (for large classes of $w \in S_n$) comes from commutative algebra: formulas for degrees of Grothendieck polynomials give rise to closely related formulas for Castelnuovo-Mumford regularity of associated Schubert determinantal ideals. Recall that Castelnuovo-Mumford
regularity is an invariant of a homogeneous ideal related to its minimal free resolution (see Section 4 for definitions). Formulas for regularities of Schubert determinantal ideals yield formulas for regularities of certain well-known classes of generalized determinantal ideals in commutative algebra. For example, among the Schubert determinantal ideals are ideals of \(r \times r \) minors of an \(n \times m \) matrix of indeterminates and one sided ladder determinantal ideals. Furthermore, many other well-known classes of generalized determinantal ideals can be viewed as defining ideals of Schubert varieties intersected with opposite Schubert cells, so degrees of specializations of double Grothendieck polynomials govern Castelnuovo-Mumford regularities in these cases. Thus, one purpose of this paper is to suggest a purely combinatorial approach to studying regularities of certain classes of generalized determinantal ideals.

2. Background on Permutations

We start by recalling some background on the symmetric group. We follow [12] as a reference. Let \(S_n \) denote the symmetric group on \(n \) letters, i.e. the set of bijections from the set \([n] := \{1, 2, \ldots, n\}\) to itself. We typically represent permutations in one-line notation.

The permutation matrix of \(w \), also denoted by \(w \), is the matrix which has a 1 at \((i, w_i)\) for all \(i \in [n] \), and zeros elsewhere.

The Rothe diagram of \(w \) is the subset of cells in the \(n \times n \) grid
\[
D(w) = \{(i, j) \mid 1 \leq i, j \leq n, \ w_i > j, \ \text{and} \ \ w_j^{-1} > i\}.
\]
Graphically, \(D(w) \) is the set of cells in the grid which remain after plotting the points \((i, w_i)\) for each \(i \in [n] \) and striking out any boxes which appear weakly below or weakly to the right of these points. The essential set of \(w \), denoted \(\text{Ess}(w) \), is the subset of the diagram
\[
\text{Ess}(w) = \{(i, j) \in D(w) \mid (i + 1, j), (i, j + 1) \notin D(w)\}.
\]
Each permutation has an associated rank function defined by
\[
r_w(i, j) = |\{(i', w_{i'}) \mid i' \leq i, w_{i'} \leq j\}|.
\]
We write \(\ell(w) := |D(w)| \) for the Coxeter length of \(w \).

Example 2.1. If \(w = 63284175 \in S_8 \) (in one-line notation) then \(D(w) \) is the following:

Here \(\text{Ess}(w) = \{(1, 5), (2, 2), (4, 5), (4, 7), (5, 1), (7, 5)\} \).

3. Grassmannian Grothendieck Polynomials

A partition is a weakly decreasing sequence of nonnegative integers \(\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_k) \). We define the length of \(\lambda \) to be \(\ell(\lambda) = |\{h \in [k] \mid \lambda_h \neq 0\}| \) and the size of \(\lambda \), denoted \(|\lambda| \), to be \(\sum_{i=1}^{k} \lambda_i \). Write \(\mathcal{P}_k \) for the set of partitions of length at most \(k \). Here, we conflate partitions with their Young diagrams, i.e. the notation \((i, j) \in \lambda\) indicates choosing the \(j \)th box in the \(i \)th row of the Young diagram of \(\lambda \).
We say $w \in S_n$ has a **descent** at position k if $w_k > w_{k+1}$. A permutation $w \in S_n$ is **Grassmannian** if w has a unique descent. To each Grassmannian permutation w, we can uniquely associate a partition $\lambda \in \mathcal{P}_k$:

$$\lambda = (w_k - k, \ldots, w_1 - 1),$$

where k is the position of the descent of w.

Let w_λ denote the Grassmannian permutation associated to λ. It is easy to check that

$$|\lambda| = \ell(w_\lambda) = |D(w_\lambda)|.$$

Define $\mathcal{YTab}(\lambda)$ to be the set of fillings of λ with entries in $[k]$ so that

- entries weakly increase from left-to-right along rows and
- entries strictly increase from top-to-bottom along columns.

For a partition λ, the **Schur polynomial** in k variables is

$$s_\lambda(x_1, x_2, \ldots, x_k) = \sum_{T \in \mathcal{YTab}(\lambda)} \prod_{i=1}^k x_i^{\# \text{‘} s \text{ in } T}. $$

Definition 3.1. Let $\lambda, \mu \in \mathcal{P}_k$ so that $\lambda \subseteq \mu$. Denote by $\mathcal{Tab}(\mu/\lambda)$ the set of fillings of the skew shape μ/λ with entries in $[k]$ such that

- entries strictly increase left-to-right in each row,
- entries strictly increase top-to-bottom in each column, and
- entries in row i are at most $i - 1$ for each $i \in [k]$.

For ease of notation, let $\mathcal{G}_\lambda := \mathcal{G}_{w_\lambda}$.

Theorem 3.2. \cite{11, Theorem 2.2} For a Grassmannian permutation $w_\lambda \in S_n$,

$$\mathcal{G}_\lambda(x_1, x_2, \ldots, x_k) = \sum_{\substack{\mu \in \mathcal{P}_k \\ \lambda \subseteq \mu}} a_{\lambda\mu} s_\mu(x_1, x_2, \ldots, x_k)$$

where $(-1)^{|\mu|-|\lambda|}a_{\lambda\mu} = |\mathcal{Tab}(\mu/\lambda)|$ and k is the unique descent of w_λ.

Example 3.3. The Grassmannian permutation $w = 24813567$ corresponds to $\lambda = (5, 2, 1)$. By Theorem 3.2

$$\mathcal{G}_{(5,2,1)}(x_1, x_2, x_3) = s_{(5,2,1)} - 2s_{(5,2,2)} - s_{(5,3,1)} + 2s_{(5,3,2)} - s_{(5,3,3)}.$$

This corresponds to the tableaux:

![Tableaux](image)

Definition 3.4. We say a partition μ is **maximal** for λ if $\mathcal{Tab}(\mu/\lambda) \neq \emptyset$ and $\mathcal{Tab}(\nu/\lambda) = \emptyset$ whenever $|\nu| > |\mu|$.

The following lemma can be obtained from the proof of \cite{11, Theorem 2.2}, but we include it for completeness.

Lemma 3.5. Fix a partition $\lambda \in \mathcal{P}_k$. Define μ by setting $\mu_1 = \lambda_1$, and $\mu_i = \min\{\mu_{i-1}, \lambda_i + (i - 1)\}$ for each $1 < i \leq k$. Then μ is the unique partition that is maximal for λ.

Lemma 3.5. If \(\mu/\lambda \) has strictly increasing rows, \(\rho/\lambda \) has at most \(i-1 \) boxes in row \(i \) for each \(i \). That is, \(\rho_i \leq \lambda_i + (i-1) \) for each \(i \). It follows that \(\rho_i \leq \mu_i \) for each \(i \). Thus, uniqueness of \(\mu \) will follow once we show that \(\mu \) is maximal for \(\lambda \). It suffices to produce an element \(T \in \text{Tab}(\mu/\lambda) \).

We will denote by \(T(i,j) \) the filling by \(T \) of the box in row \(i \) and column \(j \) of \(\mu \). For each \(i \) and \(j \) with \(\lambda_i < j \leq \mu_i \), set

\[
T(i,j) = i + j - \mu_i - 1.
\]

It is easily seen that \(T \) strictly increases along rows with \(T(i,j) \in [i-1] \) for each \(i \). To see that \(T \in \text{Tab}(\mu/\lambda) \), it remains to note that \(T \) strictly increases down columns. Observe

\[
T(i,j) - T(i-1,j) = \mu_{i-1} - \mu_i + 1 > 0.
\]

\[\square\]

Example 3.6. If \(\lambda = (10, 10, 9, 7, 7, 2, 1) \), the unique partition \(\mu \) maximal for \(\lambda \) is \(\mu = (10, 10, 10, 10, 10, 7, 7) \). Below is the tableau \(T \in \text{Tab}(\mu/\lambda) \) constructed in the proof of Lemma 3.5

```
  1 2 3 4 5 6
  2
  1 2 3
  4
```

Definition 3.7. Given a partition \(\lambda = (\lambda_1, \ldots, \lambda_k) \), let \(P(\lambda) = (P_1, P_2, \ldots, P_k) \) be the set partition of \([k]\) such that \(i, j \in P_h \) if and only if \(\lambda_i = \lambda_j \), and \(\lambda_i > \lambda_j \) whenever \(i \in P_h \) and \(j \in P_l \) with \(h < l \).

Note that if \(\lambda = (\lambda_1, \ldots, \lambda_k) = (\lambda_1^{p_1}, \ldots, \lambda_k^{p_k}) \) in exponential notation, then \(p_h = |P_h| \) for each \(h \in [r] \). In the following definition, we describe a decomposition of \(\lambda \) into rectangles.

Definition 3.8. Let \(\lambda = (\lambda_1, \ldots, \lambda_k) \) be a partition and \(P(\lambda) = (P_1, P_2, \ldots, P_r) \). Set \(m_h = \min P_h \) for each \(h \). Define \(R(\lambda) = (R_1, R_2, \ldots, R_r) \) by setting

\[
R_h := \left\{(i, j) \in \lambda \mid i \in \bigcup_{l=1}^{h} P_l \text{ and } \lambda_{m_{h+1}} < j \leq \lambda_{m_h}\right\},
\]

where we take \(\lambda_{m_{r+1}} := 0 \).

Set \(\lambda^{(h)} \) to be the partition

\[
\lambda^{(h)} = \bigcup_{j=1}^{h} R_j
\]

for \(h \in [r] \). Equivalently, for \(h \in [r - 1] \), \(\lambda^{(h)} = (\lambda_1 - \lambda_i, \lambda_2 - \lambda_i, \ldots, \lambda_{i-1} - \lambda_i) \) where \(i = \min P_{h+1} \), and \(\lambda^{(r)} = \lambda \). Set \(\lambda^{(0)} := \emptyset \).

Example 3.9. For \(\lambda \) as in Example 3.6, one has \(P_1 = \{1, 2\} \), \(P_2 = \{3\} \), \(P_3 = \{4, 5\} \), \(P_4 = \{6\} \), and \(P_5 = \{7\} \). The sets in \(R(\lambda) \) are outlined below, with \(R_1 \) the rightmost rectangle and \(R_5 \) the leftmost. Considering \(h = 2 \), \(\lambda^{(h)} = R_1 \cup R_2 = (10 - 7, 10 - 7, 9 - 7) = (3, 3, 2) \).
Definition 3.10. For any \(n \geq 1 \), let \(\delta^n \) denote the staircase shape \(\delta^n = (n, n-1, \ldots, 1) \). Given a partition \(\mu \), let
\[
sv(\mu) = \max \left\{ k \mid \delta^k \subseteq \mu \right\}.
\]
The partition \(\delta^{sv(\mu)} \) is called the Sylvester triangle of \(\mu \).

Proposition 3.11. Suppose \(\mu \) is maximal for \(\lambda \) and \(P(\lambda) = (P_1, \ldots, P_r) \). If \(i \in P_{h+1} \) for some \(0 \leq h < r \), then
\[
\mu_i = \lambda_i + sv(\lambda^{(h)}).
\]

Proof. By Lemma 3.5, \(\mu_1 = \lambda_1 \) and \(\mu_i = \min\{\mu_{i-1}, \lambda_i + (i-1)\} \) for \(1 < i \leq k \). Clearly \(P(\lambda) \) refines \(P(\mu) \): if \(\lambda_i = \lambda_j \), then \(\mu_i = \mu_j \). Example 3.6 shows this refinement can be strict. Hence, it suffices to prove the statement when \(i = \min P_{h+1} \). We work by induction on \(h \).

When \(h = 0 \), \(i = \min(P_1) = 1 \). Since \(\lambda_1 = \mu_1 \), the result follows. Suppose the claim holds for some \(h - 1 \). We show the claim holds for \(h \). Let \(i = \min P_{h+1} \). Then it suffices to show that
\[
\lambda_i + sv(\lambda^{(h)}) = \min\{\mu_{i-1}, \lambda_i + (i-1)\}.
\]
Since \(i = \min P_{h+1} \), it follows that \(i-1 \in P_h \). By applying the inductive assumption to \(\mu_{i-1} \),
\[
\min\{\mu_{i-1}, \lambda_i + (i-1)\} = \min\{\lambda_{i-1} + sv(\lambda^{(h-1)}), \lambda_i + (i-1)\}.
\]
By Equations (2) and (3), the proof is complete once we show
\[
sv(\lambda^{(h)}) = \min\{(\lambda_{i-1} - \lambda_i) + sv(\lambda^{(h-1)}), i-1\}.
\]
Let \(\omega, \ell \) respectively denote the (horizontal) width and (vertical) length of \(R_h \), and set \(M = sv(\lambda^{(h-1)}) \). Equation (4) is equivalent to proving
\[
sv(\lambda^{(h)}) = \min\{\omega + M, \ell\}.
\]
By definition, \(\lambda^{(h)} = R_h \cup \lambda^{(h-1)} \), so it is straightforward to see that
\[
sv(\lambda^{(h)}) \leq \min\{\omega + M, \ell\}.
\]
Let \((M, c) \) be the southwest most box in the northwest most embedding of \(\delta^M \subseteq \lambda^{(h-1)} \), with the indexing inherited from \(\lambda \).

Suppose first that \(\ell \geq \omega + M \). Since \(R_h \) is a rectangle, \((\omega + M, c - \omega) \in \lambda^{(h)} \). Then \(\delta^{\omega+M} \subseteq \lambda^{(h+1)} \) and Equation (4) follows. Otherwise, it must be that \(\ell - M < \omega \). Since \(R_h \) is a rectangle, \((\ell, c - \ell + M) \in \lambda^{(h)} \). Thus, \(\delta^\ell \subseteq \lambda^{(h+1)} \) and Equation (4) follows.

Theorem 3.12. Suppose \(w_\lambda \in S_n \) is a Grassmannian permutation. Let \(P(\lambda) = (P_1, \ldots, P_r) \). Then
\[
\deg(\mathcal{G}_\lambda) = |\lambda| + \sum_{h \in [r-1]} |P_{h+1}| \cdot sv(\lambda^{(h)}).
\]
Proof. By Theorem 3.2 and Lemma 3.5, the highest nonzero homogeneous component of G_λ is $a_\lambda s_\mu$ where μ is maximal for λ. Since $\deg(s_\mu) = |\mu|$, Proposition 3.11 implies the theorem, using the fact that $sv(\lambda(0)) = 0$. □

Example 3.13. Returning to λ as in Example 3.6, Theorem 3.12 states that $\deg(G_\lambda) = |\lambda| + \sum_{h=1}^{\lambda} |P_{h+1}| \cdot sv(\lambda(h)) = 46 + (1 \cdot 1 + 2 \cdot 3 + 1 \cdot 5 + 1 \cdot 6) = 46 + 18 = 64$.

4. CASTELNUOVO-MUMFORD REGULARITY OF GRASSMANNIAN MATRIX SCHUBERT VARIETIES

In this section, we recall some basics of Castelnuovo-Mumford regularity and then use Theorem 3.12 to produce easily-computable formulas for the regularities of matrix Schubert varieties associated to Grassmannian permutations.

4.1. Commutative algebra preliminaries. Let $S = \mathbb{C}[x_1, \ldots, x_n]$ be a positively \mathbb{Z}^d-graded polynomial ring so that the only elements in degree zero are the constants. The multigraded Hilbert series of a finitely generated graded module M over S is

$$H(M; t) = \sum_{a \in \mathbb{Z}^d} \dim_K(M_a) t^a = \frac{K(M; t)}{\prod_{i=1}^n (1 - t^{a_i})}, \quad \deg(x_i) = a_i,$$

where if $a_i = (a_i(1), \ldots, a_i(d))$, then $t^{a_i} = t_1^{a_i(1)} \cdots t_d^{a_i(d)}$. The numerator $K(M; t)$ in the expression above is a Laurent polynomial in the t_i’s, called the K-polynomial of M. For more detail on K-polynomials, see [13, Chapter 8].

We are mostly interested in the case where S is standard graded, that is, $\deg(x_i) = 1$, and the case where $M = S/I$ where I is a homogeneous ideal with respect to the standard grading. Note that, in this case, the K-polynomial is a polynomial in a single variable t. There is a minimal free resolution

$$0 \to \bigoplus_j S(-j)^{\beta_{i,j}(S/I)} \to \bigoplus_j S(-j)^{\beta_{h-1,j}(S/I)} \to \cdots \to \bigoplus_j S(-j)^{\beta_{0,j}(S/I)} \to S/I \to 0$$

where $l \leq n$ and $S(-j)$ is the free S-module obtained by shifting the degrees of S by j. The Castelnuovo-Mumford regularity of S/I, denoted $\text{reg}(S/I)$, is defined as

$$\text{reg}(S/I) := \max\{j - i | \beta_{i,j}(S/I) \neq 0\}.$$

This invariant is measure of complexity of S/I and has multiple homological characterizations. For example, $\text{reg}(S/I)$ is the least integer m for which $\text{Ext}^j(S/I, S)_n = 0$, for all j and all $n \leq -m - j - 1$ (see [2, Proposition 20.16]). We refer the reader to [2, Chapter 20.5] for more information on regularity.

Let $K(S/I; t)$ denote the K-polynomial of S/I with respect to the standard grading. Assume that S/I is Cohen-Macaulay and let ht_sI denote the height of the ideal I. Then,

$$\text{reg}(S/I) = \deg K(S/I; t) - ht_sI.$$

See, for example, [11, Lemma 2.5] and surrounding explanation. In this paper, we will use this characterization of regularity.
4.2. Regularity of Grassmannian matrix Schubert varieties. Let X be the space of $n \times n$ matrices with entries in \mathbb{C}, let $\bar{X} = (x_{ij})$ denote an $n \times n$ generic matrix of variables, and let $S = \mathbb{C}[x_{ij}]$. Given an $n \times n$ matrix M, let $M_{[i,j]}$ denote the submatrix of M consisting of the top i rows and left j columns of M. Given a permutation matrix $w \in S_n$ we have the matrix Schubert variety

$$X_w := \{ M \in X \mid \text{rank } M_{[i,j]} \leq \text{rank } w_{[i,j]} \},$$

which is an affine subvariety of X with defining ideal

$$I_w := \langle (r_w(i,j) + 1) - \text{size minors of } \bar{X}_{[i,j]} \mid (i,j) \in \mathcal{E}ss(w) \rangle \subseteq S.$$

The ideal I_w, called a Schubert determinantal ideal, is prime [4] and is homogeneous with respect to the standard grading of S.

By [6, Theorem A], we have $K(S/I_w; t) = \mathfrak{G}_w(1-t, \ldots, 1-t)$, which has the same degree as $\mathfrak{G}_w(x_1, \ldots, x_n)$, since the coefficients in homogeneous components of single Grothendieck polynomials have the same sign (see, for example, [6]). Thus,

$$\text{reg}(S/I_w) = \deg \mathfrak{G}_w(x_1, \ldots, x_n) - h_t \mathfrak{I}_w = \deg \mathfrak{G}_w(x_1, \ldots, x_n) - |D(w)|,$$

where the second equality follows because

$$h_t \mathfrak{I}_w = \text{codim}_X X_w = |D(w)|$$

by [4]. We now turn our attention to the case where w is a Grassmannian permutation and retain the notation from the previous section.

Corollary 4.1. Suppose $w_\lambda \in S_n$ is a Grassmannian permutation. Let $P(\lambda) = (P_1, \ldots, P_r)$. Then

$$\text{reg}(S/I_{w_\lambda}) = \sum_{h \in [r-1]} |P_{h+1}| \cdot \text{sv}(\lambda^{(h)}).$$

Proof. This is immediate from Theorem 3.12 Equation (6), and Equation (11).

Example 4.2. Continuing Example 3.13 Corollary 4.1 states that $\text{reg}(S/I_{w_\lambda}) = 18$.

Example 4.3. The ideal of $(r+1) \times (r+1)$ minors of a generic $n \times m$ matrix is the Schubert determinantal ideal of a Grassmannian permutation $w \in S_{n+m}$. Indeed, w is the permutation of minimal length in S_{n+m} such that rank $w_{[n,m]} = r$.

The corresponding partition is $\lambda = (m-r)^{(n-r)}0^r$. We have $\lambda^{(1)} = (m-r)^{(m-r)}$ and so $\text{sv}(\lambda^{(1)}) = \min\{m-r, n-r\}$. Furthermore, $|P_2| = r$. Therefore,

$$\text{reg}(S/I_w) = r \cdot \min\{m-r, n-r\} = r \cdot (\min\{m,n\} - r).$$

We claim no originality for the formula in Example 4.3; minimal free resolutions of ideals of $r \times r$ minors of a generic $n \times m$ matrix are well-understood (see [9] or [14, Chapter 6]).

5. On the regularity of coordinate rings of Grassmannian Schubert varieties intersected with the opposite big cell

In this section, we discuss a conjecture of Kummini-Lakshmibai-Sastry-Seshadri [8] on Castelnuovo-Mumford regularity of coordinate rings of certain open patches of Grassmannian Schubert varieties. We provide a counterexample to the conjecture, and then we state and prove an alternate explicit formula for these regularities. We end with a conjecture on regularities of coordinate rings of standard open patches of arbitrary Schubert varieties in Grassmannians.
5.1. Grassmannian Schubert varieties in the opposite big cell. Fix \(k \in [n] \) and let \(Y \) denote the space of \(n \times n \) matrices of the form

\[
\begin{bmatrix}
M & I_k \\
I_{n-k} & 0
\end{bmatrix},
\]

where \(M \) is a \((k \times (n-k)) \) matrix with entries in \(\mathbb{C} \) and \(I_k \) is a \(k \times k \) identity matrix. Let \(P \subseteq GL_n(\mathbb{C}) \) denote the maximal parabolic of block lower triangular matrices with block rows of size \(k, (n-k) \) (listed from top to bottom). Then the Grassmannian of \(k \)-planes in \(n \)-space, \(\text{Gr}(k, n) \), is isomorphic to \(P \setminus GL_n(\mathbb{C}) \). Further, the map \(\pi : GL_n(\mathbb{C}) \to \text{Gr}(k, n) \) given by taking a matrix to its coset mod \(P \) induces an isomorphism from \(Y \) onto an affine open subvariety \(U \) of \(\text{Gr}(k, n) \) (often called the opposite big cell).

Let \(B \subseteq GL_n(\mathbb{C}) \) be the Borel subgroup of upper triangular matrices. Schubert varieties \(X_w \) in \(P \setminus GL_n(\mathbb{C}) \) are closures of orbits \(P \setminus PwB \), where \(w \in S_n \) is a Grassmannian permutation with descent at position \(k \). Let \(Y_w \) denote the affine subvariety of \(Y \) defined to be \(\pi^{-1}_Y(X_w \cap U) \).

Let \(\tilde{Y} \) denote the matrix that has the form given in (7) with variables \(m_{ij} \) as the entries of \(M \). Then, the coordinate ring of \(Y \) is \(\mathbb{C}[Y] = \mathbb{C}[m_{ij} \mid i \in [k], j \in [n-k]] \), and the prime defining ideal \(J_w \) of \(Y_w \) is generated by the essential minors of \(\tilde{Y} \). That is,

\[
J_w = \langle (r_w(i, j) + 1) - \text{size minors of } \tilde{Y}_{[i,j]} \mid (i, j) \in \text{Ess}(w) \rangle.
\]

5.2. A conjecture, counterexample, and correction. We now consider a conjecture of Kummini-Lakshmibai-Sastry-Seshadri from [8] on regularities of coordinate rings of standard open patches of certain Schubert varieties in Grassmannians. We show that this conjecture is false by providing a counterexample, and then state and prove an alternate explicit combinatorial formula for these regularities. This latter result follows immediately from our Corollary 4.1.

To state the conjecture from [8], we first translate the conventions from their paper to ours. Indeed, we use the same notation as the previous section and assume that \(w \in S_n \) is a Grassmannian permutation with unique descent at position \(k \). Suppose that \(w = w_1 w_2 \cdots w_n \) in one-line notation. Observe that \(w \) is uniquely determined from \(n \) and \((w_1, \ldots, w_k) \). Suppose further that for some \(r \in [k-1] \),

\[
w_{k-r+i} = n - k + i \quad \text{for all } i \in [r]
\]

and \(w_1 = 1 \). Let \(\tilde{w} \) be defined by \((\tilde{w}_1, \ldots, \tilde{w}_k) = (n-w_k+1, \ldots, n-w_1+1) \). Then we have

\[
(\tilde{w}_1, \ldots, \tilde{w}_k) = (k-r+1, k-r+2, \ldots, k, a_{r+1}, \ldots, a_{n-1}, n)
\]

for some \(k < a_{r+1} < \cdots < a_{n-1} < n \). Let \(a_r = k \) and \(a_k = n \). For \(r \leq i \leq k-1 \), define \(m_i = a_{i+1} - a_i \).

Conjecture 5.1 ([8 Conjecture 7.5]).

\[
\text{reg}(\mathbb{C}[Y]/J_w) = \sum_{i=r}^{k-1} (m_i - 1)i.
\]

Example 5.2. We consider [8 Example 6.1]. Let \(J \) be the ideal generated by 3 \(\times \) 3 minors of a \(4 \times 3 \) matrix of indeterminates. Then \(J = J_w \) for \(w = 1245367 \in S_7 \), where \(k = 4 \) and \(n = 7 \). Then \(\tilde{w} = (3, 4, 6, 7) \). Here we see that Equation (10) yields a regularity of 2. This matches the regularity we computed in Example 4.3.
We now show that Conjecture 5.1 is not always true.

Example 5.3. Let \(k = 4, n = 10, w = 145723689(10) \) so that \(\tilde{w} = (4, 6, 7, 10) \). Then \(\tilde{w} \) has the desired form. Furthermore, we have that \(m_1 = 2, m_2 = 1, m_3 = 3 \). Thus, by Conjecture 5.1 the regularity should be \((2 - 1)1 + (1 - 1)2 + (3 - 1)3 = 1 + 6 = 7 \). However, a check in Macaulay2 [3] yields a regularity of 5. In fact, \(J_w \), once induced to a larger polynomial ring, is a Schubert determinantal ideal for \(w \), so we can use our formula from Corollary 4.4. Notice \(w \) has associated partition \(\lambda = (3, 2, 2, 0) \). Then \(\lambda^{(1)} = (1) \) and \(\lambda^{(2)} = (3, 2, 2) \), giving \(\text{reg}(\mathbb{C}[Y]/J_w) = 2 \cdot \text{sv}(\lambda^{(1)}) + 1 \cdot \text{sv}(\lambda^{(2)}) = 2 \cdot 1 + 1 \cdot 3 = 5 \).

As illustrated in Example 5.3, our formula for the regularity of a Grassmannian matrix Schubert variety given in Corollary 4.4 corrects Conjecture 5.1 whenever the ideal \(J_w \) is equal (up to inducing the ideal to a larger ring) to the Schubert determinantal ideal \(I_w \). In fact, each Grassmannian permutation considered in [5] Conjecture 7.5 is of this form. This follows because all the essential set of such \(w \) is contained in \(w_{[k,n-k]} \) by Equation (9).

Corollary 5.4. Let \(w_\lambda \in S_n \) be a Grassmannian permutation with descent at position \(k \) such that \(w_1 = 1 \) and for some \(r \in [k-1], w_{k-r+i} = n-k+i \) for \(i \in [r] \). Let \(P(\lambda) = (P_1, \ldots, P_r) \). Then
\[
\text{reg}(\mathbb{C}[Y]/J_{w_\lambda}) = \sum_{h \in [r-1]} |P_{h+1}| \cdot \text{sv}(\lambda^{(h)}).
\]

5.3. A conjecture for the general case.

We end the paper with a conjecture for the regularity of \(\mathbb{C}[Y]/J_w \) where \(w \) is an arbitrary Grassmannian permutation with descent at position \(k \). We begin with some preliminaries.

First note that \(\mathbb{C}[Y]/J_w \) is a standard graded ring. Indeed, the torus \(T \subseteq GL_n(\mathbb{C}) \) of diagonal matrices acts on \(\mathbb{C}[Y] \) and on \(X_w \cap U \) by right multiplication. This action induces a \(\mathbb{Z}^n \)-grading on \(\mathbb{C}[Y] \) such that \(m_{i,j} \) has degree \(\bar{e}_i - \bar{e}_j \) and \(J_w \) is homogeneous. This \(\mathbb{Z}^n \)-grading can be coarsened to the standard \(\mathbb{Z} \)-grading because the \(T \)-action contains the dilation action\(^1\) embed \(\mathbb{C}^* \to T \) by sending \(z \in \mathbb{C}^* \) to the diagonal matrix that has its \((i,i)\)-entry equal to \(1 \) when \(1 \leq i \leq n-k \) and equal to \(z \) when \(n-k+1 \leq i \leq n \).

The codimension of \(Y_w \) in \(\mathbb{C}^n \) is equal to the number of boxes in the diagram \(D(w) \). So, to compute the regularity \(\text{reg}(\mathbb{C}[Y]/J_w) \), it remains to find the degree of the \(K \)-polynomial of \(\mathbb{C}[Y]/J_w \). By [15] Theorem 4.5, this \(K \)-polynomial can be expressed in terms of a double Grothendieck polynomial, \(\mathfrak{G}_w(x; y) \), which is defined as follows:
\[
\mathfrak{G}_w(x; y) = \prod_{i+j \leq n} (x_i + y_j - x_i y_j).
\]

The rest are defined recursively, using the same operator \(\pi_i \) and recurrence defined in Section 4. Note that if \(G_w(x; y) \) denotes the double Grothendieck polynomials in [6], we have \(G_w(x; y) = \mathfrak{G}_w(1 - x; 1 - \frac{1}{y}) \).

Let \(c = ((1-t), (1-t), \ldots, (1-t), 0, 0, \ldots, 0) \) be the list consisting of \(k \) copies of \(1-t \) followed by \(n-k \) copies of \(0 \), and let \(\tilde{c} = (0, 0, \ldots, 0, 1-\frac{4}{t}, 1-\frac{4}{t}, \ldots, 1-\frac{4}{t}) \) be the list consisting of \(n-k \) copies of \(0 \) followed by \(k \) copies of \(1 - \frac{1}{t} \). By [15] Theorem 4.5, the \(K \)-polynomial

\(^1\)More generally, coordinate rings of Kazhdan-Lusztig varieties \(X_w \cap X_v \subseteq B^- \backslash GL_n(\mathbb{C}) \) are standard graded when \(v \), the permutation defining the opposite Schubert cell \(X_v^o = B^- \backslash B_- v B_- \), is 321-avoiding. See [?; pg. 25] or [15] Section 4.1 for further explanation.
of \(S/J_w\) is the specialized double Grothendieck polynomial \(G_w(c; \bar{c})\). Consequently, we are reduced to computing the degree of this polynomial.

Example 5.5. Let \(w = 132\) and \(k = 2\). Then
\[
G_w(x; y) = (x_2 + y_1 - x_2y_1) + (x_1 + y_2 - x_1y_2) - (x_1 + y_2 - x_1y_2)(x_2 + y_1 - x_2y_1).
\]
Letting \(c = (1-t, 1-t, 0)\) and \(\bar{c} = (0, 1-\frac{1}{t}, 1-\frac{1}{t})\), one checks that \(G_w(c; \bar{c}) = (1-t)\) which is the \(K\)-polynomial of \(S/J_w\) with respect to the standard grading.

For the reader familiar with pipe dreams (see, e.g. [3] and [7]), we note that the degree of \(G_w(c; \bar{c})\) is the maximum number of plus tiles in a (possibly non-reduced) pipe dream for \(w\) with all of its plus tiles supported within the northwest justified \(k \times (n - k)\) subgrid of the \(n \times n\) grid. This follows from [15]. However, this is not a very explicit formula for degree.

We now turn to our conjecture. It asserts that the degree of the \(K\)-polynomial of \(\mathbb{C}[Y]/J_w\) for a Grassmannian permutation \(w \in S_n\) with descent at position \(k\) can be computed in terms of the degree of a Grothendieck polynomial of an associated vexillary permutation. This will be a much more easily computable answer than a pipe dream formula because the first, third, and fifth authors will give an explicit formula for degrees of vexillary Grothendieck polynomials in the sequel.

A permutation \(w \in S_n\) is **vexillary** if it contains no 2143-pattern, i.e. there are no \(i < j < k < l\) such that \(w_j < w_i < w_l < w_k\). For example, \(w = 325164\) is not vexillary since it contains the underlined 2143 pattern.

Suppose \(w_\lambda \in S_n\) is Grassmannian with descent \(k\). Define \(\lambda' = (\lambda_1, \ldots, \lambda_{\ell(\lambda)})\) and \(\phi(\lambda) = (\phi_1, \ldots, \phi_{\ell(\lambda)})\) as follows. For \(i \in [\ell(\lambda)]\),
\[
\phi_i = \begin{cases}
 i + \min\{(n - k) - \lambda_i, k - i\} & \text{if } \lambda_i > \lambda_{i+1} \text{ or } i = \ell(\lambda), \\
 \phi_{i+1} & \text{otherwise.}
\end{cases}
\]
A vexillary permutation \(v\) is determined by the statistics of a partition and a flag, computed using \(D(v)\) (see [12] Proposition 2.2.10). Thus, the partition \(\lambda'\) and flag \(\phi\) defined above from \(w_\lambda\) define at most one vexillary permutation.

Conjecture 5.6. Fix \(w_\lambda \in S_n\) Grassmannian with descent \(k\). Then \(\lambda', \phi(\lambda)\) define a vexillary permutation \(v\), and \(\deg(G_{w_\lambda}(c; \bar{c})) = \deg(G_v(x))\). In particular, \(\text{reg}(\mathbb{C}[Y]/J_{w_\lambda}) = \deg(G_v(x)) - |\lambda|\).

While we state this as a conjecture here, the first, third, and fifth authors will prove this in the sequel and furthermore give an explicit combinatorial formula for \(\deg(G_v(x))\), as mentioned above.

Example 5.7. Let \(k = 5\), \(n = 10\) and \(w_\lambda = 1489(10)23567\). Then \(\lambda' = (5, 5, 5, 5, 2)\) and \(\phi(\lambda) = (3, 3, 3, 5)\), which corresponds to the vexillary permutation \(v = 678142359(10)\). Thus Conjecture 5.6 states that \(\deg(G_{w_\lambda}(c; \bar{c})) = \deg(G_v(x)) = 18\), so \(\text{reg}(\mathbb{C}[Y]/J_{w_\lambda}) = 18 - 17 = 1\).

To compute this regularity directly, take \(R = \mathbb{C}[Y] = \mathbb{C}[m_{ij} \mid 1 \leq i, j \leq 5]\). Let \(G\) denote the set of \(2 \times 2\) minors of \(\begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \end{bmatrix}\), and let \(H\) be the set of entries in the bottom

\[\text{The conventions used in [15] differ from ours, so the given formula is a translation of their formula to our conventions.}\]
three rows of the matrix of variables $M = (m_{ij})_{1 \leq i,j \leq 5}$. Then $G \cup H$ is a minimal generating set of $J_{w_{\lambda}}$. The Eagon-Northcott complex is a minimal free resolution of $R/\langle G \rangle$:

$$0 \to R(-3)^2 \to R(-2)^3 \to R \to R/\langle G \rangle \to 0.$$

From this, one directly observes that the regularity of the R-module $R/\langle G \rangle$ is 1. Modding out $R/\langle G \rangle$ by the linear forms in H does not change the regularity (see, e.g. [2, Proposition 20.20]), and hence the regularity of $R/J_{w_{\lambda}}$ is also 1.

ACKNOWLEDGEMENTS

The authors would like to thank Daniel Erman, Reuven Hodges, Patricia Klein, Claudiu Raicu, Alexander Yong, and the anonymous referee for their helpful comments and conversations.

REFERENCES

[1] B. Benedetti and M. Varbaro, On the dual graphs of Cohen-Macaulay algebras, Int. Math. Res. Not. IMRN., 17 (2015), pp. 8085–8115.
[2] D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Vol. 150, Graduate Texts in Mathematics, Springer-Verlag, New York (1995), pp. xvi+785.
[3] S. Fomin and A. N. Kirillov, Grothendieck polynomials and the Yang-Baxter equation, Formal power series and algebraic combinatorics/Séries formelles et combinatoire algébrique, DIMACS, Piscataway, NJ (1994), pp. 183–189.
[4] F. Fulton, Flags, Schubert polynomials, degeneracy loci, and determinantal formulas, Duke Math. J., 65 (1992), no. 3, pp. 381–420.
[5] D. R. Grayson and M. E. Stillman, Macaulay2, a software system for research in algebraic geometry, Available at [http://www.math.uiuc.edu/Macaulay2/]
[6] A. Knutson and E. Miller, Gröbner geometry of Schubert polynomials, Ann. of Math., 161 (2005), no. 3, pp. 1245–1318.
[7] A. Lascoux, Subword complexes in Coxeter groups, Adv. Math., 184 (2004), no. 1, pp. 161–176.
[8] M. Kummini, V. Lakshmibai, P. Sastry, and C. S. Seshadri, Free resolutions of some Schubert singularities, Pacific J. Math., 279 (2015), no. 1-2, pp. 299–328.
[9] A. Lascoux, Syzygies des variétés déterminantales, Adv. in Math., 30 (1978), no. 3, pp. 202–237.
[10] A. Lascoux and M. P. Schützenberger, Structure de Hopf de l’anneau de cohomologie et de l’anneau de Grothendieck d’une variété de droiteaux, C. R. Acad. Sci. Paris Sér. I Math., 295 (1982), no. 11, pp. 629–633.
[11] C. Lenart, Combinatorial aspects of the K-theory of Grassmanians, Ann. Comb., 4 (2000), no. 1, pp. 67–82.
[12] L. Manivel, Symmetric functions, Schubert polynomials and degeneracy loci, SMF/AMS Texts and Monographs, Translated from the 1998 French original by John R. Swallow, American Mathematical Society, Providence (2001).
[13] E. Miller and B. Sturmfels, Combinatorial commutative algebra, Vol. 227, Graduate Texts in Mathematics, Springer-Verlag, New York (2005), pp. xiv+417.
[14] J. Weyman, Cohomology of vector bundles and syzygies, Vol. 149, Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge (2003), pp. xiv+371.
[15] A. Woo and A. Yong, A Gröbner basis for Kazhdan-Lusztig ideals, Amer. J. Math., 134 (2012), no. 4, pp. 1089–1137.
(JR) Dept. of Mathematics and Statistics, McMaster University, Hamilton, ON L8S 4K1, Canada
E-mail address: rajchgoj@mcmaster.ca

(YR) Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
E-mail address: yi.ren@chem.ox.ac.uk

(CR) Dept. of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
E-mail address: cer2@illinois.edu

(AS) Dept. of Mathematics, Cornell University, Ithaca, NY 14853, USA
E-mail address: ajs624@cornell.edu

(AW) Dept. of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA
E-mail address: weigandt@umich.edu