This is a repository copy of *The transcriptional landscape of the cultured murine middle ear epithelium in vitro*.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/173574/

Version: Published Version

Article:
Mulay, A., Chowdhury, M., James, C. et al. (2 more authors) (2021) The transcriptional landscape of the cultured murine middle ear epithelium in vitro. Biology Open, 10 (4). bio056564. ISSN 2046-6390

https://doi.org/10.1242/bio.056564

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
The transcriptional landscape of the cultured murine middle ear epithelium in vitro

Apoorva Mulay1, Md Miraj K. Chowdhury1, Cameron T. James1, Lynne Bingle2 and Colin D. Bingle1,3,*

ABSTRACT

Otitis media (OM) is the most common paediatric disease and leads to significant morbidity. Although understanding of underlying disease mechanisms is hampered by complex pathophysiology, it is clear that epithelial abnormalities underpin the disease. The mechanisms underpinning epithelial remodelling in OM remain unclear. We recently described a novel in vitro model of mouse middle ear epithelial cells (mMEECs) that undergoes mucociliary differentiation into the varied epithelial cell populations seen in the middle ear cavity. We now describe genome wide gene expression profiles of mMEECs as they undergo differentiation. We compared the gene expression profiles of original (uncultured) middle ear cells, confluent cultures of undifferentiated cells and cells that had been differentiated for 7 days at an air liquid interface (ALI). >5000 genes were differentially expressed among the three groups of cells. Approximately 4000 genes were differentially expressed between the original cells and day 0 of ALI culture. The original cell population was shown to contain a mix of cell types, including contaminating inflammatory cells that were lost on culture. Approximately 500 genes were upregulated during ALI induced differentiation. These included some secretory genes and some enzymes but most were associated with the process of ciliogenesis. The data suggest that the in vitro model of differentiated murine middle ear epithelium exhibits a transcriptional profile consistent with the mucociliary epithelium seen within the middle ear. Knowledge of the transcriptional landscape of this epithelium will provide a basis for understanding the phenotypic changes seen in murine models of OM.

KEY WORDS: In vitro, Middle ear, Otitis media, Transcriptomics

INTRODUCTION

Otitis media (OM), a group of inflammatory diseases of the middle ear, is the leading cause of paediatric surgery and the most frequent reason for the prescription of antibiotics (Bakaletz, 2010; Woodfield and Dugdale, 2008). It can have both acute and chronic (recurrent) presentations the consequences of which may be life-long. Over 80% of children develop at least one incidence of OM by 3 years of age and over 700 million cases occur world-wide per year (Monasta et al., 2012). Children with recurrent episodes of OM are at risk of developing hearing loss and it is estimated that, globally, over 100 million people have hearing loss due to OM. Consequently, the disease is a major paediatric clinical problem that produces significant morbidity and quality-of-life issues across the world, with the major burden being seen in children in developing countries (Monasta et al., 2012).

The middle ear epithelium and its secretions are involved in maintaining homeostasis and sterility within the middle ear cavity (MEC). Multiple host defence proteins have been shown to help protect the middle ear cavity. For example, we recently identified BPIFA1 as an abundant secretory protein produced by the middle ear epithelium and showed that loss of the gene exacerbated disease severity in an established model of OM (Mulay et al., 2018). Furthermore, loss of the gel forming mucin, MUC5B has also been shown to cause OM (Roy et al., 2014). OM can be considered to be a disease of the middle ear epithelium. The epithelial lining of the middle ear cavity varies according to the location (Luo et al., 2017; Tucker et al., 2018). The epithypnum is lined by squamous epithelium while the middle ear proper is lined by cuboidal epithelium and the hypotympanum by ciliated columnar epithelium. Phenotypic changes throughout the middle ear epithelium are key to the pathophysiology of OM (Tucker et al., 2018; Thompson and Tucker, 2013). Current knowledge suggests that OM is caused by an unrestrained response by the middle ear epithelium to an exogenous trigger, often a pathogen (Juhan et al., 2008; Kurabi et al., 2016). This is associated with excess production of secretory proteins from the abnormal epithelium, which along with an important contribution of inflammatory cells, produce middle ear exudates (Bakeletz, 2010). The mechanisms underpinning the epithelial remodelling remain unclear but a complex interaction between the epithelium, unrestrained inflammatory cells and otopathogens, results in the development of an abnormal mucociliary epithelium that contributes to the development of the characteristic exudates.

The ability to identify the function of different epithelial cell types and their products within the middle ear has limited our understanding of phenotypic changes underpinning OM development. Research into the pathogenesis of OM is limited because of difficulties in accessing appropriate samples, at an early stage in the disease process. Most studies have involved sampling the middle ear fluid (Preciado et al., 2010) or been restricted to whole animal challenge studies (Preciado et al., 2013; Davidos et al., 2018; Del-Pozo et al., 2019; Hernandez et al., 2015; MacArthur et al., 2013) We recently described the establishment of an air liquid interface (ALI) culture system to model the mouse middle ear epithelium in vitro (Mulay et al., 2016, 2019). We showed that a ‘basal cell-like’ population of middle ear epithelial cells underwent differentiation during ALI culture to generate a complex mucosal tissue that had characteristics of the native middle ear epithelium (Mulay et al., 2016, 2019). We could also show that these cells were readily infected by the otopathogen, non-typeable Haemophilus influenzae (Mulay et al., 2016), confirming their potential utility as a model for infection studies. We now describe
genome-wide gene expression profiles of these cells as they undergo differentiation to provide an understanding of the transcriptional landscape of this complex epithelium when grown in vitro.

RESULTS
We previously showed that mouse middle ear epithelial cells (mMEECs) undergo a process of mucociliary differentiation over a period of 14 days when cultured at the ALI. In this study we used cells that were isolated from mouse bullae and cultured for 7 days at the ALI (shown schematically in Fig. 1A). We used end point PCR to confirm that the cells switched on genes associated with differentiated secretory (Bpifa1) and ciliated cells (Tekt1) within 3 days of establishment of ALI culture (Fig. 1B). We then used gene expression array analysis to compare the gene expression profiles of matched, triplicate samples of original (uncultured) middle ear cells, confluent cultures of undifferentiated cells (day 0 of ALI) and cells that had been differentiated for 7 days at the ALI (Table 1). The original cells used to initiate the cultures would be expected to contain a mixture of cells including different epithelial cells along with inflammatory and blood cells recovered from the tissue during isolation.

Principal Component Analysis (Fig. 2A) showed that the three different sample groups were clustered together, although the original cell sample exhibited the greatest variability. The 20 most highly expressed at each time point are listed in Table 1. In the original cells four of these genes represented haemoglobin genes and the three top secretory protein gene were Bpifa1, Lyz2 and Bpi fb1. At day 0 of culture all but one of the top 20 genes were structural, with the exception of Lcn2. By day 7 of ALI culture the most highly expressed genes included multiple secretory protein genes including, Lcn2, Reg3g, Bpifa1, Cp, Llf and Tfi. This expression data is in keeping with our previous proteomic data that identified these as being amongst the most abundant proteins in apical secretions from ALI cells (Table 1) (Mulay et al., 2016). Other highly expressed genes are not necessarily associated with epithelial cell specific function but rather are probably highly expressed in multiple cell types and may be considered to encode protein with ‘house-keeping’ functions.

Following Robust MultiArray Average (RMA) normalisation (Phipson et al., 2016) differential gene expression was undertaken using Limma (Smyth, 2004) This analysis (Fig. 2B) revealed that a total of 5261 genes were differentially expressed amongst the three different groups with an absolute fold change of >2 and a Limma adjusted P-value of <0.05. The heat map clearly shows that samples from the different time points group together but also shows some level of variability between individual samples. When comparing different time points 1580 genes were significantly more highly expressed in the original cells compared to the day 0 cultures whereas 2400 genes were more highly expressed in the day 0 cells compared to the original cells (Table S1). The most highly differentially expressed genes in the original samples were, Lipf, Hbb-bs, Hbb-bt, Bpi fb1 and Lyz1, whereas in the day 0 cells they were Arg1, Sorbs2,
RESEARCH ARTICLE

Table 1. The top 20 genes from each set of samples are listed in descending level of expression. Data was log transformed. The presumptive function of each gene is also outlined. The proteome column shows the ranking of each secreted protein in the day 15 proteome of ALI mMEECs cells taken from Mulay et al., 2016.

Gene Symbol	Avg (log2)	Function	Gene Symbol	Avg (log2)	Function	Gene Symbol	Avg (log2)	Function	Proteome
Hba-a1; Hba-a2	18.84	Oxygen transport	Lcn2	19.58	Iron sequestration	Lcn2	19.58	Iron sequestration	4th
Hba-a2; Hba-a1	18.84	Oxygen transport	Clu	19.44	Chaperone	Clu	19.49	Chaperone	
Bpif1	18.81	Host defence	Ly6e	19.38	TCR signalling	Ly6e	19.39	TCR signalling	3rd
Lyr2	18.81	Antibacterial	Cd81	19	Tetranspanin	Reg3g	19.37	Antibacterial	
Cldn4	18.81	Tight Junction	Bsg	18.85	Immunoglobulin superfamily	Cyp2f2	19.31	Metabolism	
Bpifb1	18.81	Host defence	Ly6a	18.82	Lipid raft signalling	Bpifb1	19.24	Host defence	7th
Bpifb1	18.77	scavenger receptor	Eno1; Eno1b	18.79	Glycocalyx	Cp	19.17	Metal transport	5th
Hbb-b; Hbb-b1	18.77	Oxygen transport	Mt1	18.77	Metal binding	Cbr2	19.03	Carboxylic metabolism	
Eif1	18.71	Translation	Spr2a2; Spr2a1	18.75	Barrier function	Ltf	18.92	Metal transport	1st
Lipf	18.67	Lipase	Cbr2	18.63	Carboxylic metabolism	Tmem176b	18.79	Dendritic cells	
Hbb-b; Hbb-b1	18.67	Oxygen transport	Serinc3	18.51	Viral Restriction	Trf	18.78	Metal transport	2nd
Rnmp	18.65	Ribonuclease	Itm2b	18.5	Amyloid binding	Gsto1	18.63	Glutathione transferase	
Tmsb4x	18.62	Actin			polymerisation	Tmsb4x	18.47	Actin polymerisation	
Ly6a	18.62	Lipid raft signalling							
Dusp1	18.57	Phosphatase	Dad1	18.41	Glycosylation	Serinc3	18.61	Viral restriction	
Mt1	18.55	Metal binding	Mt2	18.35	Metal binding	Gstm1	18.58	Glutathione transferase	
Cyr61	18.43	ECM signalling	Igfop7	18.27	IGF regulation	Bsg	18.51	Immunoglobulin superfamily	
Mt2	18.33	Metal binding	Gsto1	18.23	Glutathione transferase	Dad1	18.5	Glycosylation	
Wfdc18	18.19	Protease inhibitor	Rgs6	18.22	Ribosome	Itm2b	18.48	Amyloid binding	
Ly6e	18.17	TCR signalling	Rpi12; Snora65	18.2	Ribosome	Lyc2	18.36	Antibacterial	22nd
S100a8	18.17	Transporter	Rpi28	18.14	Ribosome	Cdh1	18.27	Tetraspanin	

Srs5a1, Vsnl1 and Lox. When day 0 cells were compared to day 7 ALI cells many fewer genes were differentially expressed. 489 genes were upregulated as the cells differentiated whereas expression of 385 genes were significantly reduced (Table S2). The most highly differentially expressed genes in the day 7 samples were, *Lye2, Aldh1a1, Spata18, Cdh3* and *Lrrc34*, whereas in the day 0 cells they were *Ppib* (*Cxc17), *Lgsals1* (*Galect1*), *I1la, Nidfa412* and *2610528A11Rik* (*Gpr15l*). Comparisons between the original cells and the day 7 ALI cells showed that 2408 genes were upregulated whereas 1215 genes were downregulated (Table S3). The most highly differentially expressed genes in the day 7 samples were, *Fetub, Sorbs2, Rgs5, Serpina7* and *Ken16*, whereas in the original cells they were *Lipf, Bpifb1, Hbb-bs, Hbb-bt*, and *Hba-a2*.

To gain more information from the differential gene expression data sets we subjected them to gene ontology analysis using clusterProfiler (Yu et al., 2012). For this analysis we were most interested in understanding the processes that occurred as epithelial cells became confluent during the submerged culture period and what happened when the cells underwent differentiation. With this in mind we focused our analysis on identifying genes upregulated as the cells became confluent and also on those that were upregulated as the cells differentiated. The top biological processes enriched as the cells reached confluence at day 0 included those associated with cell division, cell migration and cell activation (Fig. 2C). In the day 7 cells the majority of pathways identified were associated with aspects of ciliogenesis or ciliary function (Fig. 2D). Close inspection of the differential gene list from this time point allowed the identification of many genes that are shown to be associated with cilia, including *Spata18, Cdh3, Lrrc34, Dnmlb2, Lrguk, Dynlrb*, *Cdc6l, Dhrs9, Spef2*, and *ccdc146*. Tek1 the gene we use as a ciliated cell specific marker in our end-point PCR reactions was the twenty-sixth most differentially expressed in this list (Table S2). We used end-point PCR with RNA extracted from a different batch of cells to confirm that *Spata18, Cdh3* and *dynlrb2* were upregulated during the process of differentiation (Fig. 2E).

Expression of OM associated genes in the in vitro mouse middle ear epithelium

One of the potential uses of our in vitro model, is that it may be useful for the study of genes associated with OM. Multiple genetic association studies have been undertaken to identify human genes associated with OM (Allen et al., 2013; Rye et al., 2012; Einarsdottir...
Fig. 2. Genome wide transcriptional analysis of differentiating mMEECs. (A) PCA analysis was used to show the relatedness of the different samples used in the study. (B) The heatmap shows differentially expressed genes identified by Limma. Genes used in the analysis were >2-fold differentially expressed. (C,D) Gene ontology analysis of the most highly differentially expressed genes are displayed for day 0 versus original cells (C) and day 7 versus day 0 (D). (E) A representative end-point RT-PCR showing expression of Oaz1, Cdhr3, Spata18 and Dynlrb2 in cDNA from mMEEC original cells isolated from the middle ear cavity, ALI day 0, 3 and 7 cells. Negative control samples contained no cDNA. (F) Microarray derived data of relative expression of candidate OM associated genes in day 0 and day 7 cells. *P >0.05; **P >0.01 using log transformed data. Human and mouse candidate genes are identified.
et al., 2016; Giese et al., 2020). Additionally, loss of function of multiple genes have been shown to lead to the development of OM-like phenotypes in mice (Rye et al., 2011; Bhutta et al., 2017). Expression of three well validate human OM associated genes Fdcl1 (van Ingen et al., 2016), Fut2 (Santos-Cortez et al., 2018) and A2ml1 (BC048546) (Santos-Cortez et al., 2015) was detected in the mMEECs with the highest expression being for BC048546 in the day 7 differentiated cells (Fig. 2F). Expression of four OM associated genes identified through ENU mutagenesis screening: Tgf1 (Tateossian et al., 2013), Fbxo11 (Hardisty-Hughes et al., 2006), Mecom (Parkinson et al., 2006) and Nisch (Crompton et al., 2017) is clearly seen in both the undifferentiated and differentiated cells, with Mecom (Evil), the gene mutated in the Jumbo+/- OM mouse model (Mulay et al., 2018; Parkinson et al., 2006), being most differentially expressed during differentiation. The expression of a further, representative group of genes associated with murine OM was shown to be variable with Ogr1 (Kerschner et al., 2013) being essentially not expressed in the cells whereas Rpl38 (Noben-Traut and Latoche, 2011) was the most highly expressed (data not shown).

This simple analysis shows that, although there was not clear differentiation associated changes in many of these genes, this data set will be useful to understand something about the epithelial expression of OM candidate genes.

DISCUSSION

The mucosal lining of the middle ear cavity covers the entire surface and varies according to the location (Luo et al., 2017; Tucker et al., 2018). Cellular morphology can be simple squamous, cuboidal or columnar depending on the location and can have tracts of ciliated cells interspersed with secretory cells. We recently described a method to differentiate primary mMEECs at an air liquid interface. The mucosal lining of the middle ear cavity covers the entire surface and involves the concerted action of multiple pathways that regulate the levels of the original after 7 days of differentiation. Bpifb1 is a marker of a population of goblet cells in the upper respiratory tract and nasopharynx of mice (Musa et al., 2012) and is present in human COME exudates (Preciado et al., 2010). Consistent with the gene expression data we did not detect BpiFB1 in apical secretions from mMEECs (Mulay et al., 2016). We assume that perhaps the Bpifb1 signal comes from a ‘goblet’ cell population that is not cultured in our system. Other goblet cell markers, including Tff2 and Muc5B (Montoro et al., 2018) (but not the other gel forming mucin gene, Muc5AC) also exhibited a similar expression pattern. It is possible that these cells may emanate from the eustachian tube.

During the 7-day period when the cells were grown at the ALI the most striking signature seen across differentially expressed genes was one of cilia and ciliogenesis. Amongst the top differentially expressed genes were also some secretory protein genes. This observation confirms that the cultured cells underwent mucociliary differentiation. This gene signature is consistent with our previous IF studies that showed the presence of ciliated, secretory and basal cells in the cultures (Mulay et al., 2016). These *in vitro* data are also consistent with *in vivo* studies that have shown the presence of cuboidal epithelial cells expressing secretory proteins alongside regions of ciliated cells (Luo et al., 2017; Tucker et al., 2018). Although some of the ciliated cell signature genes are reasonably well studied such as, Spata18 (Bornstein et al., 2011) and Cdhr3 (Everman et al., 2019), only Dynlrb2 has been identified in the ear (Ryan et al., 2020). The process multiciliogenesis is very complex and involves the concerted action of multiple pathways that regulate hundreds of genes that together make up the ciliary architecture (Choksi et al., 2014). It may be that some aspects of multiciliogenesis in this location involve unique genes. It will be interesting to apply comparative analysis with data from other murine multiciliated tissues to see if such unique genes exist.

One of the limitations of this study is that is provides bulk gene expression data from the epithelial model in total. It does not provide any cell specific gene expression information. However, the data presented here do complement the recent scRNAseq data generated from murine middle ear mucosa *in vivo* (Ryan et al., 2020). Sequencing of single cell suspensions isolated from middle ear mucosa overlying the bullar bone identified seventeen distinct cells types on the basis of transcriptional signatures. Five of these (representing over 50% of total cells recovered) were designated as epithelial cells. One expressing Dynlrb2 represented ciliated cells, one expressing Krt14 represented basal cells, and three represented some type of secretory cells. These appeared to be closely related and expressed relatively few genes exclusively. The analysis did not identify a goblet cell population mirroring what we see in our data. Further analysis of the data might allow for a subdivision of epithelial cell types as has been reported in the murine trachea (Montoro et al., 2018; Chu et al., 2019) and nasal passages (Ziegler et al., 2020). Alternatively, the epithelial cell population may well differ between geographical location. It will be important to address this cell specificity in the future.

Multiple mouse models are available for the study of OM. These include mice deficient in genes such as Tgf1, Mecom/Evil, Fbxo11, Tbr4, Eda and Eadar (Tateossian et al., 2013; Hardisty-Hughes et al., 2006; Parkinson et al., 2006; Crompton et al., 2017; Kerschner et al.,
of other disease-causing mutations, for example in genes associated with primary ciliary dyskinesia, an autosomal recessive genetic disorder that causes defects in the action of cilia and can result in OM (Mata et al., 2014). Ultimately, it will be interesting to compare our validated human OM susceptibility gene, which is present in the murine middle ear (Santos-Cortez et al., 2015). Our data suggests that the differentiated mMEEC culture system might have utility for reproducing the OM phenotype of these mouse mutants in vitro and enable comparative studies between unaffected and diseased cultures. Our data can also be used to understand the expression and localisation of other disease-causing mutations, for example in genes associated with primary ciliary dyskinesia, an autosomal recessive genetic disorder that causes defects in the action of cilia and can result in OM (Mata et al., 2014). Ultimately, it will be interesting to compare our data with that seen in human middle ear cells cultured in a similar manner (Chen et al., 2019).

Although our data provides a transcriptional signature of the murine middle ear epithelium as it undergoes the process of mucociliary differentiation in vitro, it is missing any protein data. We recognise that it is proteins that drive cellular processes such a differentiation and generating a proteomic signature of this process is important as gene expression is not always correlated with protein translation (Edfors et al., 2016). Our previous proteomic analysis of apical secretions from similar cultures did identify many of the genes we identified in of expression data set (Mulay et al., 2016).

In conclusion, we have presented data describing the gene expression changes in primary murine middle ear cells as they become differentiated when cultured at an ALI. Consistent with our established understanding of the cellular composition of the middle ear this signature describes a mucociliary epithelium. This data set provides a complete transcriptome of the in vitro middle ear epithelium when cultured in a manner than encourages differentiation. This will be a valuable tool for understanding the role played by candidate genes in the middle ear and during the development of OM.

MATERIALS AND METHODS

Ethics statement

All animal experiments were performed at the University of Sheffield in accordance with the UK Animals (Scientific procedures) Act, authorized under a UK Home Office License (project license number is P4802B/8AC) and approved by the animal project review committee of the University of Sheffield. 8–10-week-old C57BL/6 mice of mixed sex were used in this study. Mice were housed in ventilated cages under specific pathogen free conditions. Mice were euthanised by overdose of pentobarbitone followed by exsanguination.

Isolation and differentiation of middle ear epithelial cells at air liquid interface

The protocol for primary culture and differentiation of mMEECs has been described in detail previously (Mulay et al., 2016, 2019). Five or six mice of mixed sexes (10–12 bullae) were used for each cell isolation. Following a directional adherence step that removes contaminating fibroblasts, the original cell population contains a mix of cell types including differentiated epithelial cells, multipotent ‘basal cell-like’ epithelial cells and inflammatory cells. 1×10^4 of these ‘original’ cells were plated on to rat tail collagen I coated 24-well, 0.4 µm pore sized transparent PET (Polyethylene Terephthalate) membranes in the presence of 10 µM of Rho Kinase inhibitor, Y-27,632 dihydrochloride (ROCKi, Tocris Bioscience). Cells were cultured to confluence in submerged culture and subsequently grown at the ALI for up to 7 days. Cells were lysed in 250 µl of Trizol reagent (Sigma-Aldrich) for RNA extraction at ALI day 0, day 3, and day 7. Fig. 1A gives a brief overview of the complete cell culture system.

RNA extraction and reverse transcription PCR (RT-PCR)

For end-point RT- PCR, total RNA was extracted from freshly isolated mMEECs before seeding (original) and cells at ALI days 0, 3 and 7 lysed in Trizol. RNA yield was determined using NanoDrop-1000 (Thermo Fisher Scientific). Residual genomic DNA was digested by DNase I treatment (Promega, cat. No-M6101) and 200 ng of RNA was reverse transcribed using AMV Reverse Transcriptase (Promega, cat. No-M9004). RT-PCR was performed with 1 µl of template cDNA and Maxima Hot Start Green PCR Master Mix (Thermo Fisher Scientific, cat. No-K1061). The cycling conditions were: 95°C for 5 min; denaturation: 94°C for 1 min (25–35 cycles); annealing: 60°C for 1 min; extension: 72°C for 1 min; final extension: 72°C for 7 min (MJ Research PTC-200). The primer pairs used are as follows: Bpifa1F, ACAGAGGAGCCGACGTCTAA; Bpifa1R, CCAAGGAAGCT- TAAAGGTC; Tekt1F, CAGTGGCAAGTGTAGACGAC; Tekt1R, TTCAC- CTGGATTTCCTCTCCTG; Oaz1F, ACAGAGGAGCCGACGTCTAA; Oaz1R, CCAAGGAAGCTAAAGGTC; Spata18F, CCAAGGAAGCTAAAGGTC; Spata18R, CATTACTGTCGACGGGAGAC; Dnlhr2F, CCAACAGGCGGATGACGAC; Dnlhr2R, ACTACATGTTGGTCTAAGTACA; Cdh3R, AGGTGGAAGGCCCATTAAAC; Cdh3R, ATGCCTGAGGAGCGCATG- AGG. The amplified PCR products were run on a 2% agarose gel containing 0.5 µg/ml ethidium bromide and bands visualised using a Bio-Rad ChemiDoc™ XRS+.

Clariom S mouse microarray

Samples of total RNA (n=3 at each time point) were checked for quantity and quality using the Nanodrop and Agilent Bioanalyser 600. Subsequently 200 ng was prepared for analysis on the Clariom S mouse GeneChip (Thermo Fisher Scientific) according to the manufacturers’ instructions. Briefly mRNA was converted to double stranded cDNA with the incorporation of a T7 polymerase binding site at the 3’ end of the RNA molecule. Antisense RNA was generated by utilization of the T7 polymerase. This was purified using a magnetic bead process and further quantified on the Nanodrop. 15 µg of the fragmented, prehybridized cDNA was used for hybridization of the labelled material to the oligonucleotide probes on the chip was achieved using a streptavidin-phycocerythrin cocktail. Gene chips were scanned on the Gene Chip 7000G scanner and the images collected as CEL files. Raw data from this study has been submitted to NCBI with the submission number GSE150764.

Bioinformatic analysis

Microarray data in CEL files was analysed using Affymetrix Expression Console. Gene level summary data were obtained using the RMA summarization method. Differentially expressed genes were identified using Limma (Smyth, 2004) with the criteria of absolute fold change>=2 and Limma adjusted P-value<0.05. Batch effect was included in the statistical models. P-values were adjusted with the Benjamini and Hochberg method (Benjamini and Hochberg, 1995). A gene can have more than one probe sets. If a gene had both up- and downregulated probe sets, it was removed from the list of differentially expressed genes. Multidimensional scaling plot were generated using Limma. Gene ontology analyses were performed using clusterProfiler (Yu et al., 2012).

Acknowledgements

We acknowledge the significant contributions made to establishing the cell model by Professor Steve Brown and Professor Michael Cheeseman at MRC Harwell and thank Dr Paul Heath and Wenzin Wei, at Sheffield Institute for Translational Neuroscience (SiTraN), University of Sheffield, for running the arrays and performing the initial bioinformatic analysis.
Competition interests
The authors declare no competing or financial interests.

Author contributions
Conceptualization: A.M., L.B., C.D.B.; Methodology: A.M., L.B., C.D.B.; Validation: M.M.K.C., C.T.J.; Formal analysis: A.M., M.M.K.C., C.D.B.; Investigation: A.M., M.M.K.C., C.T.J.; Data curation: M.M.K.C.; Writing - original draft: M.M.K.C.; Writing - review & editing: A.M., M.M.K.C., C.T.J., L.B.; Visualization: C.D.B.; Supervision: L.B., C.D.B.; Project administration: C.D.B.; Funding acquisition: L.B., C.D.B.

Funding
A.M. was supported by a University of Sheffield PhD Studentship (supervised by C.D.B. and L.B.) and funds from MRC Harwell. Aspects of the culture experiments were supported by a Biotechnology and Biological Sciences Research Council (UK) (grant BB/KO09737/1 to C.D.B. and L.B.) and an Action on Hearing Loss Flex Grant to C.D.B. M.M.K.C. is supported by a Commonwealth Scholarship Commission PhD studentship (BDCS-2018-63). C.T.J. is supported by a University of Sheffield A*STAR PhD studentship.

Data deposition
Raw data from this study has been submitted to NCBI GEO with the submission number GSE150764.

Supplementary information
Supplementary information available online at https://bio.biologists.org/lookup/doi/10.1242/bio.056564.supplemental

References
Allen, E. K., Chen, W. M., Weeks, D. E., Chen, F., Hou, X., Mattos, J. L., Mychaleckyj, J. C., Segade, F., Casselbrant, M. L., Mandel, E. M. et al. (2013). A genome-wide association study of chronic otitis media with effusion and recurrent otitis media identifies a novel susceptibility locus on chromosome 2. J. Assoc. Res. Otolaryngol. 14, 791-800. doi:10.1007/s10163-013-0411-2
Azar, A., Piccinelli, C., Brown, H., Headon, D. and Cheeseman, M. (2016). Ectodysplasin signalling deficiency in mouse models of hypohidrotic ectodermal dysplasia leads to middle ear and nasal pathology. Hum. Mol. Genet. 25, 3564-3577. doi:10.1093/hmg/ddw202
Bakalez, L. O. (2010). Immunopathogenesis of polymicrobial otitis media. J. Leukoc. Biol. 87, 213-222. doi:10.1123/jlb.0909518
Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289-300. doi:10.1111/j.2517-6161.1995.tb02031.x
Bhaskaran, M., Chen, H., Chen, Z. and Liu, L. (2005). Hemoglobin is expressed in alveolar epithelial type II cells. Biochem. Biophys. Res. Commun. 333, 1348-1352. doi:10.1016/j.bbrc.2005.06.042
Bluta, M. F., Lambie, J., Hobson, L., Goel, A., Hafre R. E., Gale, R., Williams, D., Dean, C. H., Simon, M. M. et al. (2010). Immunopathogenesis of polymicrobial otitis media. BMCGenomics 11, 117-138. doi:10.1186/1471-2164-11-117
Kerschner, J. E., Hong, W., Taylor, S. R., Kerschner, J. A., Kham pang, P., Wregge, K. and North, P. E. (2013). A novel model of spontaneous otitis media with effusion (OME) in the Otxg1 knockout mouse. Int. J. Pediatr. Otorhinolaryngol. 77, 79-84. doi:10.1016/j.ijporl.2012.09.037
Kurabi, A., Pak, K., Ryan, A. F. and Wasserman, S. I. (2016). Immune immunity: orchestrating inflammation and resolution of otitis media. Curr. Allergy Asthma Rep. 16, 663-672. doi:10.1007/s11882-015-0585-2
Luo, W., Yi, H., Taylor, J., Li, J. D., Chi, F., Todd, N. W., Lin, X., Ren, D. and Chen, P. (2017). Cilia distribution and polarity in the epithelial lining of the mouse middle ear cavity. Sci. Rep. 7, 45870. doi:10.1038/srep45870
MacArthur, C. J., Hefeneider, S. H., Kempston, J. B. and Trune, D. R. (2006). CSH/HeJ mouse model for spontaneous chronic otitis media. Laryngoscope 116, 1071-1079. doi:10.1097/MLG.0b013e3181687773
Montoro, D., Haver, A. L., Bilton, M., Vinarsky, V., Lin, B., Birket, S. E., Yuan, F., Chen, S., Seung, H. U., Villoria, J. et al. (2018). A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature 560, 312-319. doi:10.1038/s41586-018-0395-7
Mula, A., Akram, K. M., Williams, D., Armes, H., Russell, C., Hood, D., Armstrong, S., Stewart, J. P., Brown, S. D., Bingle, L. et al. (2013). In an in vitro model of murine middle ear epithelium. Dis Model Mech 6, 77-84. doi:10.1242/dmm.026658
Mula, A., Hood, D. W., Williams, D., Russell, C., Brown, S. D. M., Bingle, L., Cheeseman, M. and Bingle, C. D. (2018). Loss of the homeostatic protein BPIFA1 leads to exacerbation of otitis media severity in the Jumbo mouse model. Sci. Rep. 8, 5128. doi:10.1038/s41598-018-11667-7
Mula, A., Akram, K., Bingle, L. and Bingle, C. D. (2019). Isolation and culture of primary mouse middle ear epithelial cells. Methods Mol. Biol. 1940, 157-168. doi:10.1007/978-1-4939-0938-3_18
Musa, M., Wilson, K., Sun, L., Mula, A., Bingle, L., Marriott, H. M., LeClair, E. E. and Bingle, C. D. (2012). Differential localisation of BPIFA1 (SPLUNC1) and BPIFB1 (LPLUNC1) in the nasal and oral cavities of mice. Cell Tissue Res. 350, 455-464. doi:10.1007/s00441-012-1490-9
Noben-Trauth, K. and Latchoumy, C. (2011). Ectopic mineralization in the middle ear and chronic otitis media with effusion caused by RPL3 deficiency in the Tail-short (Ts) mouse. J. Biol. Chem. 286, 3079-3089. doi:10.1074/jbc.M110.184598
Parkinson, N., Hardisty-Hughes, R. E., Tateossian, H., Tsai, H. T., Brooker, D., Morse, S., Lalane, Z., MacKenzie, F., Fray, M., Glenister, P. et al. (2006). Mutation at the Ev1 locus in Junbo mice causes susceptibility to otitis media. PloS Genet. 2, e149. doi:10.1371/journal.pgen.0020149

Phipson, B., Lee, S., Majewski, I. J., Alexander, W. S. and Smyth, G. K. (2015). Robust hyperparameter estimation protects against hypervariable genes and improves power to detect differential expression. Ann Appl Stat 10, 946-963. doi:10.1214/16-AOAS920

Preciado, D., Goyal, S., Rahimi, M., Watson, A. M., Brown, K. J., Hathout, Y. and Rose, M. C. (2013). NTHi improves power to detect differential expression. Ann Appl Stat 10, 946-963. doi:10.1214/16-AOAS920

Phipson, B., Lee, S., Majewski, I. J., Alexander, W. S. and Smyth, G. K. (2015). Robust hyperparameter estimation protects against hypervariable genes and improves power to detect differential expression. Ann Appl Stat 10, 946-963. doi:10.1214/16-AOAS920

Santos-Cortez, R. L. P., Chiong, C. M., Frank, D. N., Ryan, A. F., Giese, A. P. J., Bootpetch Roberts, T., Daly, K. A., Steritz, M. J., Ziegler, C., Allon, S. J., Nyquist, S. K., Mbano, I. M., Miao, V. N., Tzouanas, C. N., Cao, Y., Yousif, A. S., Bals, J., Hauser, B. M. et al. (2020). SARS-CoV-2 Receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell 181, 1016-1035. doi:10.1016/j.cell.2020.04.035
Table S1. Differential gene expression of MEECs Day 0 vs original

Click here to download Table S1

Table S2. Differential gene expression of MEECs Day 7 vs Day 0

Click here to download Table S2

Table S3. Differential gene expression of MEECs Day 7 vs original

Click here to download Table S3