測定による仕事取り出しに基づく量子Jarzynski等式

東大理, 理研 A, 東大生研 B
森國洋平, 田島裕康 A, 羽田野直道 B

Quantum Jarzynski equality of measurement-based work extraction

Dept. Phys., U. Tokyo, ARIKEN, B IIS, U. Tokyo
Yohei Morikuni, Hiroyasu Tajima A and Naomichi Hatano B

近年、実験技術の発展により従来の熱力学が想定していない微小な熱機関が実現されるようになっている [1,2]。このような熱機関を理解するために、統計力学の考え方とミクロな力学法則のダイナミクスを用いて解析が行われている。このとき問題となるのは、熱力学的な「仕事」をどのようにミクロな力学法則と結びつけるかである。内部系が量子系である場合、仕事を受ける操作者の影響があるため、特に難しい問題である。

このような研究において主に用いられる方法として、操作者の影響を量子内部系のハミルトニアンのパラメータによる時間変化で表現する方法がある [3,4]。この方法においては、量子内部系のダイナミクスはユニタリー発展で記述され、また、「仕事」の量は量子内部系のエネルギー減少量と等しいと定義される。これは熱力学の考えに基づいた、「微小な量子内部系 + マクロな操作者」のモデルを定式化したものである。しかし、この方法には次のような問題がある：(1) 実際には内部系は操作者と常に相互作用しているため、厳密にはユニタリーで記述することができない、(2) エネルギー減少が実際の「仕事」として使用するエネルギーであるのか明らかでない。この方法はこのような問題点があるものの、熱力学と整合した結果 [4,5] が得られるため受け入れられてきた。

「量子的な内部系 + マクロな操作者」のモデルで定式化する場合、最も自然な記述の方法はダイナミクスを測定プロセスで記述し、「仕事」は測定プロセスによる測定結果に対応しているとすることである。なぜならば、量子力学において量子系からマクロな系への影響は測定過程として定式化されるからである。この考えは林・田島によって定式化されている [6]。

今回、我々はこの方法で Jarzynski 等式がどのようなになるのかを見た。その結果、強いエネルギー保存を仮定したとき、

\[\langle e^{\beta W} \rangle = \gamma e^{-\beta \Delta F} \]

が得られた。ここで、\(W \) は操作者が得た仕事、\(\beta \) は逆温度、\(\Delta F \) は内部系の自由エネルギーの変化、\(\gamma \) は外部系の影響、\(\langle \cdots \rangle \) は得た仕事についての期待値を表している。これは従来導かれた Jarzynski 等式と比べ、\(\gamma \) による補正が必要であることを示している。

[1] S. Toyabe, T. Sagawa, M. Ueda, E. Muneyuki and M. Sano, Nat. Phys. 6, 988 (2010).
[2] A. Shuoming et al., Nat. Phys. 11, 193 (2014).
[3] Y. Morikuni and H. Tasaki, J. Stat. Phys. 43, 1 (2011).
[4] M. Campisi, P. Hänggi and P. Talkner, Rev. Mod. Phys. 83, 771 (2011).
[5] H. Tasaki, arXiv:cond-mat/0009206 (2000).
[6] M. Hayashi and H. Tajima, arXiv:1504.06150 (2015).