RINGS WITH EACH RIGHT IDEAL AUTOMORPHISM-INVARIANT

M. TAMER KOŠAN, TRUONG CONG QUYNH AND ASHISH K. SRIVASTAVA

Abstract. In this paper, we study rings having the property that every right ideal is automorphism-invariant. Such rings are called right a-rings. It is shown that (1) a right a-ring is a direct sum of a square-full semisimple artinian ring and a right square-free ring, (2) a ring R is semisimple artinian if and only if the matrix ring $M_n(R)$ for some $n > 1$ is a right a-ring, (3) every right a-ring is stably-finite, (4) a right a-ring is von Neumann regular if and only if it is semiprime, and (5) a prime right a-ring is simple artinian. We also describe the structure of an indecomposable right artinian right non-singular right a-ring as a triangular matrix ring of certain block matrices.

1. Introduction

The study of rings characterized by homological properties of their one-sided ideals has been an active area of research. Rings for which every right ideal is quasi-injective (known as right q-rings) were introduced by Jain, Mohamed and Singh in [22] and have been studied in a number of other papers ([3], [4], [5], [16]-[26], [29] and [30]) by Beidar, Byrd, Hill, Ivanov, Koehler and Mohamed. In [23] Jain, Singh and Srivastava studied rings whose each right ideal is a finite direct sum of quasi-injective right ideals and called such rings right Σ-q rings. Jain, López-Permouth and Syed in [21] studied rings with each right ideal quasi-continuous and in [6] Clark and Huynh studied rings with each right ideal, a direct sum of quasi-continuous right ideals.

Recall that a module M is called quasi-injective if M is invariant under any endomorphism of its injective envelope; equivalently, any homomorphism from a submodule of M to M extends to an endomorphism of M. As a natural generalization of these modules Dickson and Fuller initiated study of modules which are invariant under any automorphism of their injective envelope [7]. These modules have been recently named as automorphism-invariant modules by Lee and...
Zhou in [28]. In [9] Er, Singh and Srivastava have shown that a module \(M \) is automorphism-invariant if and only if any monomorphism from a submodule of \(M \) to \(M \) extends to an endomorphism of \(M \). And in [13] Guil Asensio and Srivastava have shown that automorphism-invariant modules satisfy the full exchange property and these modules also provide a new class of clean modules. The decomposition of automorphism-invariant modules has been described in [9]. If \(M \) is an automorphism-invariant module, then \(M \) has a decomposition \(M = A \oplus B \) where \(A \) is quasi-injective and \(B \) is square-free. Recall that a module \(M \) is called \textit{square-free} if \(M \) does not contain a nonzero submodule \(N \) isomorphic to \(X \oplus X \) for some module \(X \). See [1], [12], [13], [15], [34] and [35] for more details on automorphism-invariant modules.

Rings all of whose right ideals are automorphism-invariant are called \textit{right a-rings} ([35]). Since every quasi-injective module is automorphism-invariant, the family of right \(a \)-rings includes right \(q \)-rings. The goal of this paper is to study these right \(a \)-rings. We extend the results in [22] for this new class of rings and show that

1. A right \(a \)-ring is a direct sum of a square full semisimple artinian ring and a right square-free ring (Theorem 3.4);

2. A ring \(R \) is semi-simple artinian if and only if the matrix ring \(M_n(R) \) for some \(n > 1 \) is an \(a \)-ring (Theorem 3.6);

3. If \(R \) is a right \(a \)-ring, then \(R \) is stably-finite, that is, every matrix ring over \(R \) is directly-finite (Theorem 4.3).

4. A right \(a \)-ring is von Neumann regular if and only if it is semiprime (Theorem 4.2), and a prime right \(a \)-ring is simple artinian (Theorem 4.7).

We also characterize indecomposable non-local right CS right \(a \)-rings. It is shown that

5. Let \(R \) be an indecomposable, non-local ring. Then \(R \) is a right \(q \)-ring if and only if \(R \) is right CS and a right \(a \)-ring (Theorem 4.9).

Let \(\Delta \) be a right \(q \)-ring with an essential maximal right ideal \(P \) such that \(\Delta/P \) is an injective right \(\Delta \)-module. In a right \(q \)-ring, every essential right ideal is two-sided by [22, Theorem 2.3]. Hence \(\Delta/P \) is a skew field. Let \(n \) be an integer with \(n \geq 1 \), let \(D_1, D_2, \ldots, D_n \) be skew fields and \(\Delta \) be a right \(q \)-ring, all of whose idempotents are central and the right \(\Delta \)-module \(\Delta/P \) is not embedable into \(\Delta \Delta \). Next, let \(V_i \) be \(D_i-D_{i+1} \)-bimodule such that

\[
\dim(\{V_i\}_{D_{i+1}}) = 1
\]
for all $i = 1, 2, \ldots, n-1$, and let V_n be a D_n-Δ-bimodule such that $V_nP = 0$ and $\dim(\{V_n\}_{\Delta/P}) = 1$.

We denote by $G_n(D_1, \ldots, D_n, \Delta, V_1, \ldots, V_n)$, the ring of $(n+1) \times (n+1)$ matrices of the form

$$
G_n(D_1, \ldots, D_n, \Delta, V_1, \ldots, V_n) := \begin{pmatrix}
D_1 & V_1 & & \\
& D_2 & V_2 & \\
& & D_3 & V_3 \\
& & & \ddots \\
& & & & D_n & V_n \\
& & & & & \Delta
\end{pmatrix}.
$$

Consider the ring $G(D, \Delta, V)$. In [4, Theorem 4.1], it is shown that $G(D, \Delta, V)$ is a right q-ring. Note that if we consider transpose then it is a left q-ring. In the present paper, we obtain that

1. $G_n(D_1, \ldots, D_n, \Delta, V_1, \ldots, V_n)$ is a right a-ring all of whose idempotents are central, where Δ is a right a-ring, $\dim(D_i\{V_i\}) = \dim(\{V_i\}_{D_{i+1}}) = 1$ for all $i = 1, 2, \ldots, n-1$ and $\dim(D_n\{V_n\}) = \dim(\{V_n\}_{\Delta/P}) = 1$ (Theorem 5.2).

Finally, we finish our paper with a structure theorem for an indecomposable right artinian right non-singular right a-ring as a triangular matrix ring of certain block matrices.

Throughout this article all rings are associative rings with identity and all modules are right unital unless stated otherwise. For a submodule N of M, we use $N \leq M$ ($N < M$) to mean that N is a submodule of M (respectively, proper submodule), and we write $N \leq^e M$ and $N \leq^g M$ to indicate that N is an essential submodule of M and N is a direct summand of M, respectively. We denote by $Soc(M)$ and $E(M)$, the socle and the injective envelope of M, respectively. For any term not defined here the reader is referred to [2] and [31].

2. An Example

As already mentioned any right q-ring is a right a-ring. Recall that right q-rings are precisely those right self-injective rings for which every essential right ideal is a two sided ideal [22]. So, in particular, any commutative self-injective ring is a q-ring and hence an a-ring. Now we would like to present some examples of right a-rings that are not right q-rings. First, we have the following useful observation.

Lemma 2.1. A commutative ring is an a-ring if and only if it is an automorphism-invariant ring.
\textit{Proof.} Let R be a commutative automorphism-invariant ring and I be an ideal of R. There exists an ideal U of R such that $I \oplus U$ is essential in R. Then $E(R) = E(I \oplus U)$. Let φ be an automorphism of $E(R)$. Clearly, $\varphi(1) \in R$. Now, for all $x \in I \oplus U$, we have $\varphi(x) = \varphi(1)x \in I \oplus U$. So $\varphi(I \oplus U) \leq I \oplus U$ which implies that $I \oplus U$ is an automorphism-invariant module. Since direct summand of an automorphism-invariant module is automorphism-invariant, it follows that I is automorphism-invariant. This shows that R is an a-ring. The converse is obvious. \hfill \Box

In view of the above, we have the following example of a-ring which is not a q-ring.

\textbf{Example 2.2.} Consider the ring R consisting of all eventually constant sequences of elements from F_2 (see [9, Example 9]). Clearly, R is a commutative automorphism-invariant ring as the only automorphism of its injective envelope is the identity automorphism. Hence R is an a-ring by the above lemma. But R is not a q-ring because R is not self-injective.

3. Some characterizations of a-rings

In this section we will prove some characterizations for right a-rings. These equivalent characterizations will be easier to use.

\textbf{Proposition 3.1.} The following conditions are equivalent for a ring R:

(1) R is a right a-ring.

(2) Every essential right ideal of R is automorphism-invariant.

(3) R is right automorphism-invariant and every essential right ideal of R is a left T-module, where T is a subring of R generated by its unit elements.

\textit{Proof.} (1) \Rightarrow (2) This is obvious.

(2) \Rightarrow (3) By the hypothesis, R is a right automorphism-invariant ring. Let I be an essential right ideal of R. Then $E(I) = E(R)$. Let T be a subring of R generated by its units. Then T is a subring of $\text{End}(E(R))$, and so $TI = I$.

(3) \Rightarrow (1) Let I be an essential right ideal of R. Then $E(I) = E(R)$. If φ of $E(R)$ is an automorphism, then $\varphi(R) = R$ which implies that $\varphi(1)$ is a unit of R. By (3), we have $\varphi(1)I \leq I$ and so $\varphi(I) \leq I$. \hfill \Box

\textbf{Corollary 3.2.} Let $R = S \times T$ be a product of rings. Then R is a right a-ring if and only if S and T are a-rings.
Let M be a right module over a ring R. The singular submodule $Z(M)$ of M is defined as $Z(M) = \{m \in M : \text{ann}_r(m) \text{ is an essential right ideal of } R\}$. The singular submodule of the right R-module R_R is called the (right) singular ideal of the ring R and denoted by $Z(R_R)$, that is, $Z(R_R) = \{x \in R : r_R(x) \cap H \neq 0 \text{ for every nonzero right ideal } H \text{ of } R\}$. It is well known that $Z(R_R)$ is indeed an ideal of R.

Lemma 3.3. Let R be a right a-ring and A, B right ideals of R with $A \cap B = 0$ and $A \simeq B$. Then

1. A and B are semisimple and injective.
2. The right ideals A and B are nonsingular.

Proof. (1) Let A and B be right ideals of a right a-ring R with $A \cap B = 0$ and $A \simeq B$. Let D be a complement of $A \oplus B$ in R_R. Then $(A \oplus B) \oplus D \leq^e R_R$. It follows that $E((A \oplus B) \oplus D) \leq^e E(R_R)$. On the other hand, $E((A \oplus B) \oplus D)$ is a direct summand of $E(R_R)$ and so $E((A \oplus B) \oplus D) = E(R_R)$. We have $E((A \oplus B) \oplus D) = E(A) \oplus E(B) \oplus E(D)$. Thus $E(R_R) = E(A) \oplus E(B) \oplus E(D)$ which means that we have a decomposition $E(R_R) = E(A) \oplus E(B) \oplus C$ for some $C \leq E(R_R)$. Note that $E(A) \simeq E(B)$ and R is right automorphism-invariant. By [28, Lemma 7], we get

$$R_R = (R \cap E(A)) \oplus (R \cap E(B)) \oplus (R \cap C).$$

We also have $B \cap (R \cap E(A)) = 0$ and $A \cap [(R \cap E(B)) \oplus (R \cap C)] = 0$. Since R is a right a-ring, the modules $B \oplus [R \cap E(A)]$ and $A \oplus [(R \cap E(B)) \oplus (R \cap C)]$ are automorphism-invariant. By [28, Theorem 5], B is $[R \cap E(A)]$-injective and A is $[(R \cap E(B)) \oplus (R \cap C)]$-injective. Note that $A \simeq B$. Thus A is R-injective (injective). Let $\varphi : A \to B$ be an isomorphism and U be a submodule of A. Clearly, $U \simeq \varphi(U)$. Let $V = \varphi(U)$. Then $U \cap V = 0$ and $U \simeq V$. By a similar argument as above, we have U and V are injective modules. It follows that U is a direct summand of A. Thus both A and B are semisimple modules.

(2) Let a be an arbitrary element of $Z(A)$. Then aR is an injective module since it is a direct summand of A. It follows that $aR = eR$ for some $e^2 = e \in R$. Therefore $e \in Z(A)$ and so $e = 0$. Thus $a = 0$ which shows $Z(A) = Z(B) = 0$.

Recall that two modules M and N are said to be orthogonal if no submodule of M is isomorphic to a submodule of N. A module M is said to be a square module if there exists a right module N such that $M \simeq N^2$. A submodule N of a module M is called square-root in M if N^2 can be embedded in M. A module M is called square-free if M contains no non-zero square roots and M is called square-full if every submodule of M contains a non-zero square root in M.

RINGS WITH EACH RIGHT IDEAL AUTOMORPHISM-INVARIANT
As a consequence of the above lemma, we are now ready to prove a useful decomposition theorem for any right a-ring.

Theorem 3.4. A right a-ring is a direct sum of a square-full semisimple artinian ring and a right square-free ring.

Proof. By [9, Theorem 3], there exists a decomposition $R = A \oplus B \oplus C$ where $A \simeq B$ and the module C is square-free which is orthogonal to $A \oplus B$. Let $X := A \oplus B$ and $Y := C$. Now X is square-full. In fact, let U be a non-zero arbitrary submodule of X. There exist either non-zero submodules U_1 of U and V_1 of A such that $U_1 \simeq V_1$ or non-zero submodules U_2 of U and V_2 of B such that $U_2 \simeq V_2$. It follows that U_1^2 or U_2^2 can be embedded in X. That means U contains a square root in X.

By Lemma 3.3, A and B are injective semisimple modules and so X is injective and semisimple. Next we show that X and Y are ideals of R. Since X is semisimple which is orthogonal to Y, we have $\text{Hom}(X,Y) = 0$. Assume that $\varphi: Y \to X$ is a non-zero homomorphism. Then $Y/\text{Ker}(\varphi) \simeq \text{Im}(\varphi)$ is projective (since $\text{Im}(\varphi)$ is a direct summand of X). It follows that there exists non-zero submodule K of Y such that $\text{Ker}(\varphi) \cap K = 0$. So $K \simeq \varphi(K)$, a contradiction with orthogonality of X and Y. Therefore $\text{Hom}(Y,X) = 0$.

Thus $R = X \oplus Y$, where X is a square-full semisimple artinian ring and Y is a right square-free ring. \square

Corollary 3.5. An indecomposable ring R containing a square is a right a-ring if and only if R is simple artinian.

By $M_n(R)$, we denote the ring of $n \times n$ matrices over the ring R.

Theorem 3.6. Let $n > 1$ be an integer. The following conditions are equivalent for a ring R:

1. $M_n(R)$ is a right q-ring for every $n > 1$.
2. $M_n(R)$ is a right q-ring for some $n > 1$.
3. $M_n(R)$ is a right a-ring for every $n > 1$.
4. $M_n(R)$ is a right a-ring for some $n > 1$.
5. R is semisimple artinian.

Proof. The implications (1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) are obvious.

(4) \Rightarrow (5) Assume that R is not semi-simple artinian. Then there exists an essential right ideal, say B, of R such that $B \neq R$. Define $E := \{ \sum a_{ij}e_{ij} : a_{1j} \in B, 1 \leq j \leq n \text{ and } e_{ij} \in R, 1 \leq i, j \leq n \}$ where e_{ij} ($1 \leq i, j \leq n$) are the units of $M_n(R)$. Then clearly E is an essential right ideal of $M_n(R)$. Consider the unit
RINGS WITH EACH RIGHT IDEAL AUTOMORPHISM-INARIANT

This is a contradiction by Proposition 3.1.

(5) ⇒ (1) This is obvious.

The following example shows that there exists automorphism-invariant rings which are not right \(a\)-rings.

Example 3.7. Let \(R = \mathbb{Z}_{p^n}\), where \(p\) is a prime. It is well known that \(R\) is self-injective. By [37, Theorem 8.3], \(M_m(R)\) is right self-injective (for all \(m > 1\)). Thus, for instance, \(M_m(\mathbb{Z}_{p^2})\) is a right automorphism-invariant ring but it is not a right \(a\)-ring for any \(m > 1\).

4. Special classes of right \(a\)-rings

In this section, we will consider some special classes of rings, for example, simple, semiprime, prime and CS and characterize as to when these rings are right \(a\)-rings. We begin this section with a simple observation.

Lemma 4.1. Let \(A\) and \(B\) be right ideals of a right \(a\)-ring \(R\) with \(A \cap B = 0\). Then the following conditions hold:

1. If \(\varphi : A \rightarrow B\) is a nonzero homomorphism, then
 (i) \(\varphi(A)\) is a semisimple module.
 (ii) \(\varphi(A)\) is simple if \(B\) is uniform.
2. If \(e\) is a non-trivial idempotent of \(R\) such that \(eR(1-e) \neq 0\), then \(\text{Soc}(eR) \neq 0\).

Proof. (1)(i). Let \(U\) be an arbitrary essential submodule of \(B\). Then \(E(U) = E(B)\) and \(U \oplus A\) is automorphism-invariant. It follows that \(U\) is \(A\)-injective. On the other hand, there exists a homomorphism \(\bar{\varphi} : E(A) \rightarrow E(B)\) such that \(\bar{\varphi}|_A = \varphi\). It follows that \(\bar{\varphi}(A) \leq U\) and so \(\varphi(A) \leq U\). This shows that \(\varphi(A) \leq \text{Soc}(B)\).
Recall that a ring \(R \) is called von Neumann regular if for every \(a \in R \), there exists some \(b \in R \) such that \(a = aba \). A ring \(R \) is said to be prime if the product of any two nonzero ideals of \(R \) is nonzero and a ring \(R \) is called semiprime if it has no nonzero nilpotent ideals.

Theorem 4.2. A right \(a \)-ring is von Neumann regular if and only if it is semiprime.

Proof. Let \(R \) be a right \(a \)-ring. By [13, Proposition 1], \(J(R) = Z(R_R) \).

\((\Rightarrow)\) Since \(R \) is von Neumann regular, it is well known that every ideal of \(R \) is idempotent. Hence \(R \) is semiprime.

\((\Leftarrow)\) Assume that \(R \) is semiprime. Since \(R \) is right automorphism-invariant, \(R/J(R) \) is von Neumann regular. Now we proceed to show that \(J(R) = 0 \). In fact, for any \(x \in J(R) \), there exists an essential right ideal \(E \) of \(R \) such that \(xE = 0 \). Since \(R \) is a right \(a \)-ring, \(uE \leq E \) for all units \(u \) in \(R \) by Lemma 3.1. It follows that \((RxR)E \leq E \) and so \((RxR)E \leq xE = 0 \), and so either \(xRxR \leq P \) or \(E \leq P \) for all prime ideal \(P \) of \(R \). Let \(\{P_i\}_{i \in I} \) and \(\{P_j\}_{j \in J} \) be families of all prime ideals of \(R \) such that \(xRxR \leq P_i \) for all \(i \in I \) and \(xRxR \leq P_j \) for all \(j \in J \). Taking \(X = \cap_{i \in I} P_i \) and \(Y = \cap_{j \in J} P_j \). Since \(R \) is semiprime, \(X \cap Y = 0 \). Moreover, we have \(E \leq Y \) and so \(y \leq e R_R \). If \(xRxR \neq 0 \), there exists \(r_1, r_2 \in \bar{R} \) such that \(xr_1xr_2 \neq 0 \). Then there is \(y \in \bar{R} \) such that \(xrx_1r_2y \neq 0 \) and \(xrx_1r_2y \in Y \), a contradiction. Thus \(xRxR = 0 \). Furthermore, as \(R \) is semiprime, we have \(x = 0 \). This completes the proof. \(\square \)

Recall that a ring \(R \) is called directly-finite if \(xy = 1 \) implies \(yx = 1 \) for all \(x, y \in \bar{R} \). Assume that \(R \) is a right \(a \)-ring. By Theorem 3.1, we have a decomposition \(R = S \times T \), where \(S \) is semi-simple artinian and \(T \) is square-free. Since \(S \) and \(T \) are directly-finite rings, one infers that the ring \(R \) is also directly-finite. Next, we will see that a right \(a \)-ring is not only directly-finite but it is stably-finite. If for a ring \(R \), every matrix ring \(M_n(R) \) is directly finite then \(R \) is called a stably-finite ring.
A ring R is called right quasi-duo (left quasi-duo) if every maximal right ideal (every maximal left ideal) is two-sided. It is still an open problem whether quasi-duo rings are left-right symmetric or not.

Theorem 4.3. Every right a-ring is stably-finite.

Proof. Let R be a right a-ring. Then $R = S \times T$, where S is semi-simple artinian and T is square-free. By [15, Theorem 15], T is a right quasi-duo ring. Then $M_n(R) = M_n(S \oplus T)$. Thus $M_n(R) \cong M_n(S) \oplus M_n(T)$. Clearly, $M_n(S)$ is directly finite. Now we proceed to show that $M_n(T)$ is directly finite. Let $\{M_i\}$ be the set of maximal right ideals of the quasi-duo ring T. Then each M_i is a two-sided ideal and $J(T) = \cap M_i$. Clearly, each T/M_i is a division ring. Thus $M_n(T)/M_n(M_i) \cong M_n(T/M_i)$ is a simple artinian ring which is clearly directly finite. Consider the natural ring homomorphism $\varphi : M_n(T) \to \prod_i M_n(T/M_i)$. We have $\ker(\varphi) = M_n(J(T)) = J(M_n(T))$. Since each $M_n(T/M_i)$ is directly finite, $\prod_i M_n(T/M_i)$ is directly finite and consequently, $M_n(T)/J(M_n(T))$ is directly finite being a subring of a directly finite ring. Hence $M_n(T)$ is directly finite. Thus $M_n(R)$ is directly finite and therefore R is stably-finite. □

A ring R is called unit-regular if, for every element $x \in R$, there exists a unit $u \in R$ such that $x = xux$. We can now have the following result.

Corollary 4.4. Every von Neumann regular right a-ring is unit-regular.

Corollary 4.5. The ring of linear transformations $R := \text{End}(V_D)$ of a vector space V over a division ring D is a right a-ring if and only if the vector space is finite-dimensional.

Proof. If V is an infinite-dimensional vector space over D then End(V_D) is not unit-regular. So the result follows from above corollary. □

A ring R is said to be strongly regular if for every $a \in R$, there exists some $b \in R$ such that $a = a^2b$.

Proposition 4.6. Let R be a semi-prime right a-ring with zero socle. Then R is strongly regular.

Proof. Assume that R is a semi-prime right a-ring. Clearly, R is von Neumann regular. Let e be an idempotent in R. Suppose $(1 - e)Re \neq 0$. Then $\text{Soc}((1 - e)R) \neq 0$, a contradiction. Hence $(1 - e)Re = 0$ and this shows that e is a central idempotent (see [11, Lemma 2.33]). Because every idempotent of R is central, R is strongly regular. □
Theorem 4.7. Let R be a prime ring. Then R is a right a-ring if and only if R is a simple artinian ring.

Proof. Assume that R is a prime right a-ring. In view of Theorem 3.4, we obtain that either R is a simple artinian ring or R is a square-free ring. So, it suffices to consider the case that R is a square-free prime right a-ring. By Theorem 1.2, R is a von Neumann regular ring. Since R is square-free, all idempotents of R are central and hence R is a strongly regular ring. Now as every prime strongly regular ring is a division ring, the result follows. □

In particular, from the above theorem it follows that every simple right a-ring is artinian.

A module M is said to satisfy:

CS-condition if every submodule of M is essential in a direct summand of M.

weak CS-condition if every semisimple submodule of M is essential in a direct summand of M.

C2-condition if every submodule of M isomorphic to a direct summand of M is itself a direct summand of M.

C3-condition if whenever M_1 and M_2 are direct summands of M and $M_1 \cap M_2 = 0$ then $M_1 \oplus M_2$ is a direct summand of M.

A module M is called a continuous module if it satisfies CS and C2 conditions; M is called a quasi-continuous module if it satisfies CS and C3 conditions (see [31]); and M is called a CS module (weak CS module) if it satisfies the CS (weak CS) condition (see [36]).

Next, we consider right weak CS right a-rings.

Proposition 4.8. Let R be a right weak CS right a-ring. If e is a primitive idempotent of R such that $eR(1-e) \neq 0$, then eRe is a division ring and $eR(1-e)$ is the only proper R-submodule of eR.

Proof. By Lemma 4.1, $Soc(eR) \neq 0$. Since R is right automorphism-invariant, R is right C2 by [9]. By [10, Theorem 1.4], eR is also a weak CS module. Firstly, we show that $Soc(eR)$ is a simple module which is essential in eR. Since eR is a weak CS module, $Soc(eR)$ is essential in a direct summand of eR. But eR is
an indecomposable module which implies that $Soc(eR)$ is essential in eR. For any nonzero arbitrary element $a \in Soc(eR)$, we obtain that aR is essential in eR (because eR is an indecomposable weak CS module). It follows that $Soc(eR) \leq aR$ and so $Soc(eR) = aR$. Thus $Soc(eR)$ is a simple module. Therefore eR is uniform. Since a uniform automorphism-invariant module is quasi-injective, eR is quasi-injective. Thus $eRe \cong \text{End}(eR)$ is a local ring, i.e. e is a local idempotent of R.

Next we show that $eR(1-e)$ is the only proper submodule of eR. Since $eR(1-e) \neq 0$, one infers $eR(1-e) \subset Soc(eR)$ by Lemma 4.1. Hence $eR(1-e) = Soc(eR)(1-e)$.

We next show that $eJ(R)e$ is a submodule of eR. Since R is right automorphism-invariant, $J(R) = Z(R_R)$ by [13, Proposition 1] and so $J(R)Soc(eR) = 0$. Now $(eJ(R)e)Soc(eR) = eJ(R)Soc(eR) = 0$ and so $(eJ(R)e)(eR(1-e)) = 0$. On the other hand, we have

$$eJ(R)eRe = eJ(R)e(Re + R(1-e)) = eJ(R)eRe \subset eJ(R)e.$$

Hence $eJ(R)e$ is an R-submodule of eR. Since $Soc(eR)$ is simple, we have $eJ(R)e \cap Soc(eR) = 0$ or $Soc(eR) \leq eJ(R)e$. Suppose $Soc(eR) \leq eJ(R)e$. Then $eR(1-e) = Soc(eR)(1-e) \leq eJ(R)e(1-e) = 0$, a contradiction. It follows that $eJ(R)e \cap Soc(eR) = 0$. Thus $eJ(R)e = 0$.

Let I be a proper submodule of eR. Since eR is local, $I \leq eJ(R)$ and so $Ie = 0$. On the other hand, we have $I(1-e) \leq eR(1-e)$ which implies that $I \leq eR(1-e) = Soc(eR)$. Thus $I = 0$ or $I = Soc(eR)$. In particular, we have $Soc(eR)e = 0$. Therefore $eR(1-e) = Soc(eR)(1-e) = Soc(eR)$.

As a consequence, we have the following.

Theorem 4.9. Let R be an indecomposable, non-local ring. The following conditions are equivalent:

1. R is a right q-ring.
2. R is a right CS and a-ring.

Proof. This follows from previous proposition and [17, Theorem 3].

5. Two structure theorems

In this section we would like to describe two structures of right a-rings. In the case of right q-rings, Byrd [5] and Ivanov ([17], [18]) gave a description of right
q-rings but their characterizations turned out to be not complete. Finally, the structure of right q-rings was completely described by Beidar et al in \cite{4}.

Theorem 5.1. (Beidar, Fong, Ke, Jain, \cite{4}) A right q-ring R is isomorphic to a finite direct product of right q-rings of the following types:

1. Semisimple artinian ring.
2. $H(n; D; \text{id}_D)$ where id_D is the identity automorphism on division ring D.
3. $G(n; \Delta; P)$ where Δ is a right q-ring whose all idempotents are central.
4. A right q-ring whose all idempotents are central.

Here

$$H(n; D; \alpha) = \begin{bmatrix}
D & V & 0 & 0 \\
0 & D & V & 0 \\
& & D & V \\
V(\alpha) & 0 & & D
\end{bmatrix},$$

where V is one-dimensional both as a left D-space and a right D-space, $V(\alpha)$ is also a one-dimensional left D-space as well as a right D-space with right scalar multiplication twisted by an automorphism α of D, i.e., $vd = v \cdot \alpha(d)$ for all $v \in V, d \in D$, and

$$G_n(n; \Delta; P) := \begin{pmatrix}
D & V \\
D & V \\
& D & V \\
& & D & V \\
& & & \Delta
\end{pmatrix},$$

where V is as above and Δ is a right q-ring with maximal essential right ideal P and hence $D = \Delta/P$ is a division ring.

Now, using the above defined notations, we give the following descriptions the structure of right a-rings.

Theorem 5.2. Let $n \geq 1$ be an integer, D_1, D_2, \ldots, D_n be division rings and Δ be a right a-ring with all idempotents central and an essential ideal, say P, such that Δ/P is a division ring and the right Δ-module Δ/P is not embeddable into Δ_{Δ}. Next, let V_i be a D_i-D_{i+1}-bimodule such that

$$\dim(D_i\{V_i\}) = \dim(\{V_i\}_{D_{i+1}}) = 1$$
for all \(i = 1, 2, \ldots, n - 1 \), and let \(V_n \) be a \(D_n - \Delta \)-bimodule such that \(V_n P = 0 \) and
\[
\dim(D_n \{ V_n \}) = \dim(\{ V_n \}_{\Delta/P}) = 1.
\]
Then \(R := G_n(D_1, \ldots, D_n, \Delta, V_1, \ldots, V_n) \) is a right a-ring.

Proof. Let \(1 \leq i \leq n + 1 \) and \(e_i \) be the matrix whose \((i, i)\)-entry is equal to 1 and all the other ones are equal to 0. It is easy to see that \(e_j R e_{j+1} \) are minimal right ideals of \(R \) for all \(j = 1, 2, \ldots, n \). Let \(K \) be a right ideal of the ring \(\Delta \) and let \(\hat{K} \) to be the set of all matrices whose \((n + 1, n + 1)\)-entries are from \(K \) and all the other ones are equal to 0. Given \(1 \leq i \leq n \) and a right ideal \(K \) of \(\Delta \). By the proof of Proposition 2.16 of [3], we will use the following facts in the proofs below:

Fact 5.3. \(e_i R \) and \(\hat{K} \) are relatively injective. Also, \(e_i R e_{i+1} \) and \(\hat{K} \) are relatively injective.

Fact 5.4. \(\mathrm{Hom}(e_i R, \hat{K}) = 0 = \mathrm{Hom}(e_i R/\hat{K}, \hat{K}) \).

Fact 5.5. \(e_i R \) and \(e_j R \) are relatively injective for all \(j \neq i \). Also, \(e_i R e_{i+1} \) and \(e_j R \) are relatively injective for all \(j \neq i \).

Let \(U \) be an essential right ideal of \(R \). Then \(e_i R e_{i+1} \leq U \) for all \(i = 1, 2, \ldots, n \). Set \(W := \sum_{i=1}^{n} e_i R e_{i+1} \). Note that \(W \) is an ideal of \(R \) and \(W \leq U \). Since the factor ring \(R/W \) is isomorphic to the ring \((\oplus_{i=1}^{n} D_i) \oplus \Delta \) and \(U/W \) is a right ideal of \(R/W \), we conclude that there exists a partition \(I, J \) of the set \(\{1, 2, \ldots, n\} \) and a right ideal \(K \) of \(\Delta \) such that \(U = (\oplus_{i \in I} e_i R) \oplus (\oplus_{j \in J} e_j R_{j+1}) \oplus \hat{K} \).

Now we deduce the following useful conclusions.

(i) \(\oplus_{j \in J} e_j R_{j+1} \) is a semisimple right \(R \)-module and so \(\oplus_{j \in J} e_j R_{j+1} \) is quasi-injective.

(ii) \(\oplus_{i \in I} e_i R \) is a quasi-injective right \(R \)-module. In fact, by Fact 5.5, we only prove that each \(e_i R \) is a quasi-injective right \(R \)-module for all \(i \in I \). Note that \(e_i R e_{i+1} \) is only proper submodule of \(e_i R \). Let \(f : e_i R e_{i+1} \to e_i R \)
\[
\begin{pmatrix}
0 & 0 \\
0 & 0 \\
\vdots & \ddots & \ddots & \ddots \\
0 & 0 & \cdots & V_i \\
0 & 0 & \cdots & 0 \\
& \cdots & 0 & 0 \\
& & \cdots & 0 \\
& & & \cdots & 0 \\
& & & & \cdots & 0 \\
\end{pmatrix}
\]
be an \(R \)-homomorphism. Note that \(e_i R e_{i+1} = \{ V_i \}_{D_i+1} \). Then
\[
f(e_i R e_{i+1}) = e_i R e_{i+1}.
\]
Since \(\dim(D_i \{ V_i \}) = \dim(\{ V_i \}_{D_i+1}) = 1 \), there exists \(v_i \in
V_i such that \(D_i v_i = v_i D_{i+1} \). Assume that
\[
f(v_i) = \begin{pmatrix}
0 & 0 \\
0 & 0 \\
\ddots & v_i d_{i+1} \\
\vdots & \ddots & 0 & 0 \\
0 & \ddots & 0 & 0 \\
0 & \ddots & 0 & 0 \\
0 & \ddots & 0 & 0
\end{pmatrix}
\]
for some \(d_{i+1} \in D_{i+1} \). There exists \(d_i \in D_i \) such that \(d_i v_i = v_i d_{i+1} \). We consider the \(R \)-homomorphism \(\bar{f} : e_i R \rightarrow e_i R \) defined as left multiplication by
\[
\begin{pmatrix}
0 & 0 \\
0 & 0 \\
\ddots & d_i \\
\vdots & \ddots & 0 & 0 \\
0 & \ddots & 0 & 0 \\
0 & \ddots & 0 & 0 \\
0 & \ddots & 0 & 0
\end{pmatrix}
\]
then \(\bar{f} \) is an extension of \(f \). In case of \(e_n R \), it is similar.

(iii) \(\hat{K} = \hat{K}_1 \oplus \hat{K}_2 \), where \(\hat{K}_1 \) is a quasi-injective \(R \)-module and \(\hat{K}_2 \) is a square-free automorphism-invariant \(R \)-module. In fact, by Theorem 3.4 we have a decomposition \(\Delta = \Delta_1 \times \Delta_2 \), where \(\Delta_1 \) is semi-simple artinian and \(\Delta_2 \) is square-free. It follows that there exists a quasi-injective \(\Delta \)-module \(K_1 \) and a square-free \(\Delta \)-module \(K_2 \) such that \(K = K_1 \oplus K_2 \). Thus \(\hat{K} = \hat{K}_1 \oplus \hat{K}_2 \). Since \(e_{n+1} R (1 - e_{n+1}) = 0 \), we obtain that \(\hat{K}_1 \) is quasi-injective and \(\hat{K}_2 \) is square-free by [3] Lemma 2.3(6)]. Furthermore, by the hypothesis, \(\hat{K}_2 \) is automorphism-invariant.

Let \(X = \left(\bigoplus_{i \in I} e_i R \right) \oplus \left(\bigoplus_{j \in J} e_j R e_{j+1} \right) \oplus \hat{K}_1 \) and \(Y = \hat{K}_2 \). Then \(U = X \oplus Y \). By Facts 5.3, 5.4 and 5.5, \(X \) is quasi-injective, \(Y \) is automorphism-invariant square-free which is orthogonal to \(X \), and \(X \) and \(Y \) are relatively injective. By [34], \(U \) is automorphism-invariant. This shows that each essential right ideal of \(R \) is automorphism-invariant. Now, let \(A \) be any right ideal of \(R \). Let \(C \) be a complement of \(A \) in \(R \). Then \(A \oplus C \) is an essential right ideal of \(R \). Thus, as shown above, \(A \oplus C \) is automorphism-invariant and consequently, \(A \) is automorphism-invariant. This proves that \(R \) is a right \(a \)-ring.

We finish this paper by giving by another structure theorem for indecomposable right artinian right non-singular right \(a \)-ring as a triangular matrix ring of certain block matrices.
Theorem 5.6. Any indecomposable right artinian right nonsingular right weakly
CS right a-ring \(R \) is isomorphic to

\[
\begin{pmatrix}
M_{n_1}(e_1Re_1) & M_{n_1\times n_2}(e_1Re_2) & \cdots & M_{n_1\times n_k}(e_1Re_k) \\
0 & M_{n_2}(e_2Re_2) & \cdots & M_{n_2\times n_k}(e_2Re_k) \\
0 & 0 & \ddots & \vdots \\
0 & 0 & \cdots & M_{n_k}(e_kRe_k)
\end{pmatrix},
\]

where \(e_iRe_i \) is a division ring, \(e_iRe_i \cong e_jRe_j \) for each \(1 \leq i, j \leq k \) and \(n_1, \ldots, n_k \) are any positive integers. Furthermore, if \(e_iRe_j \neq 0 \), then

\[
\dim(e_iRe_i(e_iRe_j)) = 1 = \dim((e_iRe_j)_{e_jRe_j}).
\]

Proof. Let \(R \) be an indecomposable right artinian right nonsingular right weakly
CS right a-ring. We first show that \(eR \) is quasi-injective for any idempotent \(e \in R \). Since \(R \) is right artinian, we have \(\text{Soc}(eR) \neq 0 \). As \(R \) is right automorphism-invariant and right weak CS, \(eR \) is also a weak CS module. Therefore \(\text{Soc}(eR) \) is a simple module which is essential in \(eR \), and so \(eR \) is uniform. Therefore \(eR \) is quasi-injective. Now rest of the proof follows from Theorem 23 in [23]. For the
sake of completeness, we give the argument below.

Choose an independent family \(\mathcal{F} = \{e_iR : 1 \leq i \leq n \} \) of indecomposable right ideals such that \(R = \bigoplus_{i=1}^{n} e_iR \). After renumbering, we may write \(R = [e_1R] \oplus [e_2R] \oplus \cdots \oplus [e_kR] \), where for \(1 \leq i \leq k \), \([e_iR]\) denotes the direct sum of those \(e_jR \) that are isomorphic to \(e_iR \). Let \([e_iR]\) be a direct sum of \(n_i \) copies of \(e_iR \). Consider \(1 \leq i < j \leq k \). We arrange the summands \([e_iR]\) in such a way that \(l(e_jR) \leq l(e_iR) \). Suppose \(e_jRe_i \neq 0 \). Then we have an embedding of \(e_iR \) into \(e_jR \), hence \(l(e_jR) \leq l(e_iR) \). But by assumption \(l(e_jR) \leq l(e_iR) \), so \(l(e_jR) = l(e_iR) \), we get \(e_jR \cong e_iR \), which is a contradiction. Hence \(e_jRe_i = 0 \) for \(j > i \). Thus we have

\[
R \cong \begin{pmatrix}
M_{n_1}(e_1Re_1) & M_{n_1\times n_2}(e_1Re_2) & \cdots & M_{n_1\times n_k}(e_1Re_k) \\
0 & M_{n_2}(e_2Re_2) & \cdots & M_{n_2\times n_k}(e_2Re_k) \\
0 & 0 & M_{n_3}(e_3Re_3) & \cdots & M_{n_3\times n_k}(e_3Re_k) \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & M_{n_k}(e_kRe_k)
\end{pmatrix},
\]

where each \(e_iRe_i \) is a division ring, \(e_iRe_i \cong e_jRe_j \) for each \(1 \leq i, j \leq k \) and \(n_1, \ldots, n_k \) are any positive integers. Furthermore, if \(e_iRe_j \neq 0 \), then

\[
\dim(e_iRe_i(e_iRe_j)) = 1 = \dim((e_iRe_j)_{e_jRe_j}).
\]
References

[1] A. Alahmadi, A. Facchini, N. K. Tung, Automorphism-invariant modules, Rend. Sem. Mat. Univ. Padova, to appear.
[2] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Second edition, Springer, New York (1992).
[3] K. I. Beidar and S. K. Jain, The structure of right continuous right π-rings, Comm. Algebra 32(1) (2004), 315-332.
[4] K. I. Beidar, Y. Fong, W.-F. Ke, S. K. Jain, An example of right q-rings, Israel J. Math. 127 (2002), 303-316.
[5] K. A. Byrd, Right self-injective rings whose essential ideals are two-sided, Pacific J. Math. 82 (1979), 23-41.
[6] J. Clark, D. V. Huynh, Simple rings with injectivity conditions on one-sided ideals, Bull. Australian Math. Soc., 76 (2007), 315-320.
[7] S. E. Dickson, K. R. Fuller, Algebras for which every indecomposable right module is invariant in its injective envelope, Pacific J. Math. 31, 3 (1969), 655-658.
[8] N. V. Dung, D. V. Huynh, P. F. Smith, R. Wisbauer, Extending modules, Pitman Research Notes in Math., 313, Longman (1994).
[9] N. Er, S. Singh and A. K. Srivastava, Rings and modules which are stable under automorphisms of their injective hulls, J. Algebra 379 (2013) 223-229.
[10] N. Er, Direct sums and summands of weak CS-modules and continuous modules, Rocky Mountain J. Math. 29(2) (1999), 491-503.
[11] K. R. Goodearl, Ring Theory, Nonsingular Rings and Modules, Monographs on Pure and Applied Mathematics Vol. 33. Dekker, New York, 1976.
[12] P. A. Guil Asensio, D. Keskin Tütüncü and A. K. Srivastava, Modules invariant under automorphisms of their covers and envelopes, Israel J. Math., to appear.
[13] P. A. Guil Asensio, A. K. Srivastava, Automorphism-invariant modules satisfy the exchange property, J. Algebra 388 (2013), 101-106.
[14] P. A. Guil Asensio and A. K. Srivastava, Additive unit representations in endomorphism rings and an extension of a result of Dickson and Fuller, Ring Theory and Its Applications, Contemp. Math., Amer. Math. Soc., 609 (2014), 117-121.
[15] P. A. Guil Asensio, A. K. Srivastava, Automorphism-invariant modules, to appear in Proceedings of the conference on noncommutative rings and applications, Lens, France, Contemp. Math. AMS (2014).
[16] D. A. Hill, Semiperfect q-rings, Math. Annalen 200 (1973), 113-121.
[17] G. Ivanov, Non-local rings whose ideals are quasi-injective, Bulletin of the Australian Math. Soc. 6 (1972), 45 52.
[18] G. Ivanov, Non-local rings whose ideals are quasi-injective: Addendum, Bulletin of the Australian Math. Soc. 12 (1975), 159-160.
[19] G. Ivanov, On a generalization of injective von Neumann rings, Proc. Amer. Math. Soc. 124 (1996), 1051-1060.
[20] S. K. Jain, Rings whose cyclic modules have certain properties and the duals, in Ring Theory, Vol 25, Proceedings of the Ohio University Conference, 1976, Marcel Dekker, 1977.
[21] S. K. Jain, S. R. López-Permouth and R. Syed, Rings with quasi-continuous right ideals, Glasgow Math. Journal 41 (1999), 167-181.
[22] S. K. Jain, S. Mohamed and S. Singh, Rings in which every right ideal is quasi-injective, Pacific J. Math. 31 (1969), 73-79.
[23] S. K. Jain, S. Singh and A. K. Srivastava, On ∑-q-rings, J. Pure and App. Algebra 213(6) (2009), 969-976.
[24] S. K. Jain, A. K. Srivastava and A. A. Tuganbaev, Cyclic Modules and the Structure of Rings, Oxford Mathematical Monographs, Oxford Univ. Press, 2012.
[25] A. Koehler, Rings for which every cyclic module is quasi-projective, Math. Annalen 189 (1970), 407-419.
[26] A. Koehler, Rings with quasi-injective cyclic modules, Quart. J. Math. Oxford 25 (1974), 51-55.
[27] T. Y. Lam, A first course in noncommutative rings, Second edition, Graduate Texts in Mathematics, 131, Springer-Verlag, New York, (2001).
[28] T. K. Lee and Y. Zhou, Modules which are invariant under automorphisms of their injective hulls, J. Algebra Appl. 12(2) (2013), 9 pages.
[29] S. H. Mohamed, Rings whose homomorphic images are q-rings, Pacific J. Math. 35 (1970), 720-735.
[30] S. H. Mohamed, q-rings with chain conditions, J. London Math. Soc. 2 (1972), 455-460.
[31] S. H. Mohammed and B. J. Müller, Continuous and Discrete Modules, London Math. Soc. LN 147: Cambridge Univ. Press. (1990).
[32] W. K. Nicholson, Semiregular modules and rings. Canad. J. Math. 28(5) (1976), 1105-1120.
[33] W. K. Nicholson and M. F. Yousif, Quasi-Frobenius Rings, Cambridge Univ. Press. (2003).
[34] T. C. Quynh and M. T. Koğan, On automorphism-invariant modules, to appear in Journal of Algebra and its Application, (2014).
[35] S. Singh and A. K. Srivastava, Rings of Invariant Module Type and Automorphism-Invariant Modules, Ring Theory and Its Applications, Contemp. Math., Amer. Math. Soc. 609 (2014), 299-311.
[36] P. F. Smith, CS-modules and weak CS-modules, Noncommutative ring theory (Athens, OH, 1989), 99-115, Lecture Notes in Math., 1448, Springer, Berlin, 1990.
[37] Y. Utumi, On continuous rings and self injective rings, Trans. Amer. Math. Soc. 118 (1965), 1-11.

DEPARTMENT OF MATHEMATICS, GEBZE INSTITUTE OF TECHNOLOGY, 41400 GEBZE/KOCAELI, TURKEY
E-mail address: mtkosan@gyte.edu.tr tkosan@gmail.com

DEPARTMENT OF MATHEMATICS, DANANG UNIVERSITY, 459 TON DUC THANG, DANANG CITY, VIETNAM
E-mail address: tcquynh@dce.udn.vn; tcquynh@live.com
Department of Mathematics and Computer Science, St. Louis University, St. Louis, MO-63103, USA

E-mail address: asrivas3@slu.edu