Methicillin-Resistant Staphylococcus aureus in the Oral Cavity: Implications for Antibiotic Prophylaxis and Surveillance

Eric S Donkor1 and Fleischer CN Kotey1,2

1Department of Medical Microbiology, College of Health Sciences, University of Ghana, Accra, Ghana. 2FleRhoLife Research Consult, Teshie, Accra, Ghana

ABSTRACT: The oral cavity harbors a multitude of commensal flora, which may constitute a repository of antibiotic resistance determinants. In the oral cavity, bacteria form biofilms, and this facilitates the acquisition of antibiotic resistance genes through horizontal gene transfer. Recent reports indicate high methicillin-resistant Staphylococcus aureus (MRSA) carriage rates in the oral cavity. Establishment of MRSA in the mouth could be enhanced by the wide usage of antibiotic prophylaxis among at-risk dental procedure candidates. These changes in MRSA epidemiology have important implications for MRSA preventive strategies, clinical practice, as well as the methodological approaches to carriage studies of the organism.

KEYWORDS: MRSA, antibiotics, prophylaxis, oral, dental

Introduction

Antibiotic resistance among oral microbiota is a growing concern, but has received little attention in the literature. Metagenomic studies of the oral cavity based on high-throughput sequencing have enabled us to glean insights into the resistome of the microbiome at this site. Antimicrobial resistance genes (ARGs) appear to be a natural feature of the oral microbiome, and is independent of antibiotic exposure to a large extent. Consequently, the oral microbiome serves as a significant reservoir for these genes, which are transferred to pathogenic microbes by horizontal gene transfer (HGT). In the oral cavity, bacteria form biofilms, and this facilitates the acquisition of ARGs and their HGT. Thus, it may be worthwhile investigating antibiotic resistance of microbial pathogens that inhabit the oral cavity. In this paper, the authors review antibiotic resistance in the oral flora with regard to methicillin-resistant Staphylococcus aureus (MRSA), and highlight the implications for antibiotic prophylaxis and surveillance.

Oral Microbial Flora

The mouth is home to an excess of 700 bacterial species, which are adapted to its inherently distinct ecological niches. More than 50% of these species colonize the periodontal pocket, and the remnants are distributed across other sites of the oral cavity. In the mouth of any given person, approximately 100-200 of these 700 plus species are present, with 50 of these harbored in the periodontal pocket. Some of the common oral flora belong to the genera Enterococcus, Peptostreptococcus, Streptococcus, Staphylococcus, Actinomyces, Corynebacterium, Eubacterium, Lactobacillus, Bacteroides, Porphyromonas, Treponema, Fusobacterium, etc.

Even though the ecology of the oral flora is highly diversified, it has the hallmark of high equilibrium called microbial homeostasis. This is of chief relevance to oral health, since it ensures that the numbers of potentially pathogenic microbes are curtailed. Substantial agitations in the oral environment, including pH changes, disrupt the microbial homeostasis, and promote pathological conditions, such as dental caries and periodontitis. Moreover, orthodontic appliances, degree of dentition, denture wearing, periodontitis, dental caries, dietary habits, pregnancy, and use of antibiotics are also known to influence this homeostasis.

To illustrate, several lines of evidence indicate that the makeup of elements, ruggedness, and other physicochemical properties of the exteriors of orthodontic appliances are capable of putting the oral microbial adhesion, interaction, and diversity in disarray. A study by Naranjo et al. for instance, reported that the populations of Tannerella forsythia, Fusobacterium spp., Prevotella nigrescens, Prevotella intermedia, and Porphyromonas gingivalis increased following orthodontic appliance replacement. Another study, Ronsani et al., demonstrated that Cr+3, Fe+2, and Ni+2 metal cations, which frequently leak out from orthodontic appliances, increased the biomass of Candida albicans biofilms. As regards the influence of diet, intake of dry-food diets has been demonstrated to have significant correlates with oral Porphyromonas spp. A similar report has been made for vitamin C and Fusobacterium. Diets that are rich in sugar have also been noted to be significantly associated with oral carriage of Fusobacterium nucleatum and Streptococcus mutans. Moreover, oral administration of antibiotics—such as amoxicillin, ciprofloxacin, clindamycin,
and azithromycin—have been documented to alter microbial diversity and counts, such as a proximate reduction in the populations of throat *Actinomyces* spp.44-46 With regard to dental caries, children with a relatively good oral health have been demonstrated to have a significantly more diverse oral microbiome than those with severe dental caries.53

Generally, there is very scanty information on the interaction of *S. aureus* and therefore MRSA, with the oral microbiota. In an in vitro study, Lima et al54 showed that *S. aureus* complexes with *Porphyromonas gingivalis* and *Fusobacterium nucleatum*. Further investigation of the *F. nucleatum*-*S. aureus* relationship demonstrated that the adhesin RadD, which is present on the outer-membrane, is somewhat involved in the configuration of the complexes, and that the RadD-mediated relationship induces increased staphylococcal global regulator gene, sarA, expression.

S. aureus and MRSA: Epidemiological and Clinical Significance

Staphylococcus aureus is considered a commensal as well as a human pathogen. As a commensal, *S. aureus* is principally isolated from the anterior nares, although it colonizes other anatomical sites, the mouth inclusive.55 Oral *S. aureus* could have their origins in the oral cavity itself; they could also transit to the mouth from their ecological niche in the anterior nares, using the oropharynx as a conduit.56 Prevalence of oral *S. aureus* tends to vary from one population to another—in healthy dentate adults, reports have indicated carriage prevalence that range from 24% to 84%,17,57 and 48% in denture wearers.58 Higher carriage prevalence of *S. aureus* in patients with a predisposition to joint infections may provide a basis for considering the mouth as a seedbed for the hematogenous spread of the bacterium to compromised joint spaces.

For a period in the mid-twentieth century (early 1940s), infections of *S. aureus* were managed with the newly discovered antibiotic penicillin, which at the time, seemed a kind of panacea for the treatment of a multitude of ailments. Its relevance as an antibiotic penicillin, which at the time, seemed a kind of panacea for the treatment of a multitude of ailments. Its relevance as an antibiotic penicillin, which at the time, seemed a kind of panacea for the treatment of a multitude of ailments. Its relevance as an antibiotic penicillin, which at the time, seemed a kind of panacea for the treatment of a multitude of ailments. Its relevance as an antibiotic penicillin, which at the time, seemed a kind of panacea for the treatment of a multitude of ailments. Its relevance as an antibiotic penicillin, which at the time, seemed a kind of panacea for the treatment of a multitude of ailments. Its relevance as an antibiotic penicillin, which at the time, seemed a kind of panacea for the treatment of a multitude of ailments. Its relevance as an antibiotic penicillin, which at the time, seemed a kind of panacea for the treatment of a multitude of ailments. Its relevance as an antibiotic penicillin, which at the time, seemed a kind of panacea for the treatment of a multitude of ailments. Its relevance as an antibiotic penicillin, which at the time, seemed a kind of panacea for the treatment of a multitude of ailments. Its relevance as an antibiotic penicillin, which at the time, seemed a kind of panacea for the treatment of a multitude of ailments. Its relevance as an antibiotic penicillin, which at the time, seemed a kind of panacea for the treatment of a multitude of ailments. Its relevance as an antibiotic penicillin, which at the time, seemed a kind of panacea for the treatment of a multitude of ailments. Its relevance as an antibiotic penicillin, which at the time, seemed a kind of panacea for the treatment of a multitude of ailments. Its relevance as an antibiotic penicillin, which at the time, seemed a kind of panacea for the treatment of a multitude of ailments. Its relevance as an antibiotic penicillin, which at the time, seemed a kind of panacea for the treatment of a multitude of ailments. Its relevance as an antibiotic penicillin, which at the time, seemed a kind of panacea for the treatment of a multitude of ailments. Its relevance as an antibiotic penicillin, which at the time, seemed a kind of panacea for the treatment of a multitude of ailments. Its relevance as an antibiotic penicillin, which at the time, seemed a kind of panacea for the treatment of a multitude of ailments. Its relevance as an antibiotic penicillin, which at the time, seemed a kind of panacea for the treatment of a multitude of ailments. Its relevance as an antibiotic penicillin, which at the time, seemed a kind of panacea for the treatment of a multitude of ailments. Its relevance as an antibiotic penicillin, which at the time, seemed a kind of panacea for the treatment of a multitude of ailments. Its relevance as an antibiotic penicillin, which at the time, seemed a kind of panacea for the treatment of a multitude of ailments. Its relevance as an antibiotic penicillin, which at the time, seemed a kind of panacea for the treatment of a multitude of ailments. Its relevance as an antibiotic penicillin, which at the time, seemed a kind of panacea for the treatment of a multitude of ailments. Its relevance as an antibiotic penicillin, which at the time, seemed a kind of panacea for the treatment of a multitude of ailments. Its relevance as an antibiotic penicillin, which at the time, seemed a kind of panacea for the treatment of a multitude of ailments. Its relevance as an antibiotic penicillin, which at the time, seemed a kind of panacea for the treatment of a multitude of ailments. Its relevance as an antibiotic penicillin, which at the time, seemed a kind of panacea for the...
traditionally considered a nosocomial pathogen, has surfaced in the community within the past twenty years, and accounts for several types of community-acquired infections.99,100,115,116 These strains adapted to communities, called community-associated MRSA (CA-MRSA), are often isolated from individuals devoid of healthcare-exposure specific risk factors.117 Epidemiologically, CA-MRSA and HA-MRSA are considered to be different from each other,118,119 and Table 1 shows some clinical and genetic differences between them. However, this epidemiological distinction can be blurred by the fact that both genotypes are being observed in healthcare and community infections interchangeably.120 Moreover, CA-MRSA infections could also be caused by livestock-associated MRSA (LA-MRSA).121 LA-MRSA is initially associated with livestock (such as pigs, cattle, and chicken) and differs genotypically from HA-MRSA and CA-MRSA.121 Globally, among the known LA-MRSA strains, CC398 is the most widely disseminated, followed by CC9.121

An inverse relationship between carriage of *S. aureus* and *Streptococcus pneumoniae* has been reported in children in several epidemiological studies from various geographical regions.122-124 Selva et al125 described an interesting mechanism through which *S. pneumoniae* produces hydrogen peroxide and kills *S. aureus*. The inverse relationship between the two organisms seems to suggest that the massive vaccination with pneumococcal conjugate vaccines that is on-going globally may cause an upward shift in *S. aureus* carriage, with the consequence of an increase in the incidence of *S. aureus* diseases, and therefore MRSA.

Occurrence of MRSA in the Oral Cavity

Recent reports indicate high *S. aureus* and MRSA carriage rates in the oral cavity.126,127 Although it is unclear whether these reported high rates are as a consequence of increased focus on *S. aureus* and MRSA, it is noted that MRSA carriage in the mouth may constitute a reservoir for subsequent colonization of other anatomical sites or for cross-infection to other people. Evidence from several studies indicate that MRSA appears to preferentially colonize denture surfaces in the mouth. As an example, Tawara et al128 reported a 10% MRSA carriage rate on the dentures of unselected denture wearing patients; these colonizers were refractory to standard denture cleaning agents. In another study, eradication of persistent MRSA carriage from denture wearers was successful only after heat sterilizing or remaking of the dentures that had become persistently colonized.128 A recent study by Vanzato et al126 reported carriage rates of 47.6% and 4.1% for *S. aureus* and MRSA respectively in the oral cavity of healthcare workers. Also, quite recently, an MRSA carriage study conducted among dental students in Italy reported a carriage rate of 1.9% (n = 3) in the mouth; the total carriage prevalence was 3.2% (n = 5), representing a composite of oral, nasal, and skin carriage.129 Furthermore, in a retrospective study spanning a ten-year period, McCormack et al130 reported 10% of *S. aureus* isolated from the oral cavity to be MRSA. In an earlier study involving an elderly institutionalized veteran population, it was demonstrated that 19% of them had MRSA carriage in the mouth, whereas 20% were nasal carriers.127 Of interest, 4% of the proven MRSA oral carriers were culture negative for nasal carriage.127 This insightful observation partly explains why decolonization exercises that target nasal carriage alone are replete with failure. Moreover, good oral care is reported to lower risks of oral and bloodstream infections.131 Hence it is not surprising that poor oral care has been suggested as part of the risk factors for carriage of, and subsequent infection with, MRSA, that is given little attention.132 This observation made by Small et al132 was probably partly informed by an earlier report on the decline in ventilator-associated pneumonia risks among patients in intensive care, by virtue of decontamination of their mouths with 2% (w/v) chlorhexidine,133 as well as the outcome of an in vitro study in which within 30 seconds, MRSA isolates from both oral and non-oral sources were killed with a 0.2% (w/v) chlorhexidine gluconate mouthwash.134

PARAMETER	CA-MRSA	HA-MRSA
Genetic traits	Panton-Valentine Leukocidin gene, Staphylococcal Cassette chromosome IV (most common—USA300, USA400)	Various Staphylococcal cassette chromosome (most common—USA100, USA200)
Part of body affected	Skin, Lungs	Site of implant; Surgical site; Blood stream
Resistance gene	SCCmec Type IV, V	SCCmec Types I, II, III
Panton-Valentine Leukocidin producer	Frequent (almost 100%)	Rare (5%)
Risk population	Young, otherwise healthy patients (most common); no recent hospitalizations; anyone	Immunocompromised individuals; residency in long term care facilities; recent hospitalizations; dialysis patients; recent surgery
Antibiotic used in management	Doxycycline, Clindamycin and Cotrimoxazole often used.	First-line antibiotics used include vancomycin. Additional newer antimicrobial agents: daptomycin, linezolid and tigecycline.

Adapted from Popovich et al118 and Bassetti et al119
The potential of chlorhexidine application in selecting for resistant strains among organisms constituting the oral microbiome has however been previously reported, hence warranting a measure of caution in its usage. Nonetheless, blending nasal application of 2% mupirocin with refined oral hygiene practices—such as applying chlorhexidine oral rinses—merits consideration when designing strategies for clearing MRSA from the upper respiratory tract, especially, among persistent carriers. However, given the failure of decolonization of some persistent USA300 MRSA carriers using a similar rigorous approach during the first CA-MRSA outbreak in France, it is important to have realistic expectations of decolonization approaches; regardless of the degree of decolonization efforts, decolonization should not be perceived as a fool-proof strategy. In fact, an earlier study had reported successful decolonization at a rate of 65%. These reports underscore the need for further investigations on the significance of the mouth as an impediment to MRSA decolonization.

S. aureus is implicated in several infective oral pathologies, including angular cheilitis, parotitis, and mucositis, and also in dental implant failure. Generally, very few studies have reported on MRSA clinical infections in the oral cavity, and were inconclusive as to whether the isolation of MRSA reflected disease or carriage. In the 10-year retrospective study from 1998 to 2007 at the Oral Microbiology Laboratory, Glasgow Dental Hospital (highlighted earlier), 11,312 specimens from patients with oral infections were investigated, of which *S. aureus* was isolated from 1986 (18%). Among the *S. aureus* isolates, 10% (204) were identified to be MRSA, which were of EMRSA-15 or EMRSA-16 lineage. The authors indicated that detection rates of *S. aureus* and MRSA might reflect increased carriage rather than disease association. Tuzuner-Oncul et al published a case report on a 35-year-old man with osteomyelitis of the mandible involving intraoral and external purulent discharges, which were culture-positive for MRSA. Although the infecting MRSA strain demonstrated in vitro susceptibility to clarithromycin, vancomycin, clindamycin, and azithromycin, the patient did not respond to the post-operative treatment involving intramuscular fixation of the jaws, local irrigation with rifampicin, and parenteral infusion with clindamycin.

The Implications of MRSA Oral Carriage for Antibiotic Prophylaxis Among Dental Procedure Candidates

Dental procedures have long been associated with an aftermath of disseminated infections, including bacteremia, infective endocarditis, and sepsis. There have been arguments that such infections could probably be of oral origin. Hence in individuals undergoing dental procedures, its resistance to amoxicillin undermines the administration of amoxicillin as prophylaxis in these at-risk populations. Moreover, the organism that has usually been implicated in dental procedure-associated bacteremia and endocarditis is *Streptococcus viridans*, which may be more amenable to antibiotics than MRSA, owing to the propensity for extensive antimicrobial resistance of the latter. Hence a shift in the predominant causative agent to MRSA, arising from selective pressure, may worsen the prognosis of at-risk populations who develop such disseminated infections. It is possible that the evolution of MRSA in the oral cavity had been influenced by the widespread usage of amoxicillin for prophylaxis; this hypothesis may require an in-depth analysis for a conclusive assertion to be made. Moreover, selecting for other antimicrobial resistance-prone organisms constituting the microbiome, other than MRSA, such as the enterococcus could result in an invariably similar outcome.

Also worth considering is the 3% rate of untoward drug reactions accounted for by amoxicillin, which reportedly doubles as a five-fold risk factor for anaphylactic shock-related deaths. Besides these, the estimated cost for amoxicillin prophylaxis for patients with hip and knee prostheses alone is in excess of $50 million.

Another factor that renders the administration of antibiotic prophylaxis to these at-risk populations somewhat obsolete stems from the recent reports which have demonstrated that everyday oral care practices, such as tooth-brushing, frequently result in transient bacteremia that is not significantly lower than what is observed following single-tooth extraction, and poses more risks for those at risk for infective endocarditis. Interestingly, such bacteremia resulting from routine oral care is not pre-managed with antibiotic prophylaxis, as that is impractical. Hence it seems somewhat far-fetched to prescribe...
antibiotic prophylaxis for dental procedure candidates, especially since the risks of releasing infective endocarditis-causing bacteria into circulation could be reduced by 4–8 folds when optimum routine oral care is adopted. All these are fraught with the fact that infective endocarditis is rare. That said, MRSA carriage studies may need to concurrently screen for identified knowledge gaps. Principally, researchers undertaking Subsequent studies in the area could focus on filling these

evidence of MRSA in the oral cavity reflects disease or carriage. S. aureus, and therefore MRSA, with the oral interaction of than previously. It is important to note that the recently updated guidelines for antibiotic prophylaxis in dental procedures consider very specific categories of at-risk individuals. These include patients with prosthetic cardiac valve, previous infective endocarditis, congenital heart disease, heart transplant, and rheumatic heart disease that carry a high risk of endocarditis. Currently, antibiotic prophylaxis is not routinely recommended for patients with prosthetic joints who are undergoing dental treatment.

Conclusions and Future Perspectives

The increasing presence of MRSA in the oral cavity is an immense public health threat that cannot be downplayed, given its potential for enhanced MRSA transmission. Moreover, it introduces new dimensions to the already intensified debates on whether or not to administer antibiotic prophylaxis to at-risk dental procedure candidates. Probably, the choice needs to be made on a case by case basis. It follows then that newer therapeutic agents are needed more urgently than previously.

Admittedly, there is very limited data to inform on the interaction of S. aureus, and therefore MRSA, with the oral microbiota, and the extent to which the oral cavity mediates S. aureus- and MRSA-caused endocarditis as a sequel to dental procedures. Additionally, it is largely unclear whether the presence of MRSA in the oral cavity reflects disease or carriage. Subsequent studies in the area could focus on filling these identified knowledge gaps. Principally, researchers undertaking MRSA carriage studies may need to concurrently screen for oral and nasal colonization.

REFERENCES

1. Carr VR, Witherden EA, Lee S, et al. Abundance and diversity of resistomes differ between healthy human oral cavities and gut. Nat Commun. 2020;11:693.

2. Madsen JS, Burnhole M, Hansen LH, et al. The interconnection between biofilm formation and horizontal gene transfer. FEMS Immunol Med Microbiol. 2012;65:183-195.

3. Cook LC, Dunny GM. Effects of biofilm growth on plankid copy number and expression of antibiotic resistance genes in Enterococcus faecalis. Antimicrob Agents Chemother. 2013;57:1850-1856.

4. KrooJE, Wotjowicz AJ, Rogers LM, et al. Invasion of E. coli biofilms by antibiotic resistance plasmids. Plasmid. 2013;70:110-119.

5. Savage VJ, Chopra I, O'Neil AJ. Staphylococcus aureus biofilms promote horizontal transfer of antibiotic resistance. Antimicrob Agents Chemother. 2013;57:1968-1970.

6. Strugeon E, Tilloy V, Ploy M-C, et al. The stringent response promotes antibiotic resistance dissemination by regulating integrase expression in biofilms. MBio. 2016;7:e00868-16.

7. Hall CW, Mah T-F. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev. 2017;41:276-301.

8. Berger D, Rakhamimova A, Pollack A, Loewy Z. Oral biofilms: development, regulation, and analysis. High Throughput. 2018;7:24. doi:10.3390/ht7030024.

9. Kurumitsu HK, He X, Lu X, Anderson MH, Shi WY. Interspecies interactions within oral microbial communities. Microbiol Mol Biol Rev. 2007;71:653-670. doi:10.1128/MMBR.00024-07.

10. Paster BJ, Olsen I, Aas JA, Dewhirst FE. The breath of bacterial diversity in the human periodontal pocket and other oral sites. Periodontology 20000. 2006; 42:80-87.

11. Slots J, Moenbo D, Langebaek J, Frandsen A. Microbiology of periodontal diseases. a review. Oral Microbiol Immunol. 1990;5:1-2.

12. Slots J, Haraldsen G, Børresen H, et al. The oral microbiota in health and disease. J Dent Res. 1989;68:1298-1302.

13. Bradshaw DJ, Marsh PD. Dental plaque as a biofilm and a microbial community – implications for health and disease. BMC Oral Health. 2006;6:S14. doi:10.1186/1472-6831-6-S1-S14.

14. Lazarvic V, Whiteson K, Franse P, Scharenberg J. The salivary microbiome, assessed by a high-throughput and culture-independent approach. J Integ OMICS. 2018;1:28-35.

15. Coyte KZ, Schuster J, Roster KR. The ecology of the microbiome: networks, competition, and stability. Science. 2015;350:663-666. doi:10.1126/science.aad2602.

16. Bradshaw DJ, McKee AS, Marsh PD. Effects of carbohydrate pulses and pH on population shifts within oral microbial communities in vitro. J Dent Res. 1999;78:1391-1397.

17. Bradshaw DJ, Marsh PD. Analysis of pH-driven disruption of oral microbial communities in vitro. Caries Res. 1998;32:456-462.

18. Bradshaw DJ, Marsh PD, Hodgson RJ, Visser JM. Effects of glucose and fluoride on competition and metabolism within in vitro dental bacterial communities and biofilms. Caries Res. 2002;36:81-86.

19. Bloom RH, Brown LR. A study of the effects of orthodontic appliances on the oral microbial flora. Oral Surg Oral Oral Pathol Oral Radiol Endod. 1964;17:658-667.

20. Grunau RV, Ridgeway j, Goh MC, Cobbourn MT, Eliaes T. Effect of orthodontic treatment on the subgingival microbiota: a systematic review and meta-analysis. Orthod Craniofacial Res. 2018;21:175-185.

ORCID iD

Eric S Donkor https://orcid.org/0000-0002-9368-0636
30. Socransky SS, Mangelian SD. The oral microbiota of man from birth to senil- ity. J Periodontol. 1984;55:426-496. doi:10.1902/jop.1984.55.453-496.

31. Loesche WJ. Role of streptococcus mutans in human dental decay. Caries Res. 1971;1:483-486. doi:10.1159/000196156.

32. O'Connell LE, Robertson D, Nile CJ, et al. The oral microbiome of denture wearers is influenced by levels of natural dentition. PLoS ONE 2015;10:e0137717. doi:10.1371/journal.pone.0137717.

33. Könnönen E, Aiskainen S, Alaluusa S, et al. Are certain oral pathogens part of normal oral flora in denturing edentulous subjects? Oral Microbial Immunol. 1991;16:119-122.

34. Ryu M, Ueda T, Saito T, Yasui M, Ishihara K, Sakurai K. Oral environmental factors affecting number of microbes in saliva of complete denture wearers. J Oral Rehabil. 2010;37:194-201. doi:10.1111/j.1365-2842.2009.02042.x.

35. Marsh PD, Head DA, Davine DA. Ecological approaches to oral biofilms: context control without killing. Caries Res. 2015;49:46-54.

36. Bibby BG. Lactobacillus and dental caries. Br Dent J. 1961;175:739.

37. Austin LB, Zeldow BJ. Quantitative changes in salivary Lactobacillus bacteria associated with age. J Dent Res. 1961;40:717.

38. Kostecka F. Relationship of the teeth to the normal development of microbial normal oral flora in denture-wearing edentulous subjects? Mirobiol Rev. 1971;42:485-496. doi:10.1902/jop.1971.42.8.485.

39. Tanner AC, Kent RL Jr, Holgerson PL, et al. Microbiota of severe early childhood caries before and after therapy. J Dent Res. 2011;90:1298-1305.

40. Murech EZ. Diet, oral hygiene practices and dental health in autistic children in Riyadh, Saudi Arabia. Oral Health Dent Manag. 2014;13:91-96.

41. Adler CJ, Malik R, Browne GV, Norris JM. Diet may influence the oral microbiome composition in cats. Microbiome. 2016;4:23-32.

42. Kato I, Vasquez A, Moyerbrailean G, et al. Nutritional correlates of human oral microbiome. Microbiome. 2016;4:39-51.

43. Daghi N, Daghi R, Darwin S, Baroudi K. Oral microbial shift: factors affecting the microbiome and prevention of oral disease. J Contemp Dent Prac. 2017;18:90-123.

44. Eliades T, Eliades G, Brantley WA. Microbial attachment on orthodontic appli- cations: I. Wettability and early pellicle formation on bracket materials. Am J Orthodont Dentofacial Orthop. 1995;108:351-360.

45. Surjak JP, Reid G, Wood SM, McConnell RJ, van der Mei HC, Busscher HJ. Bacterial adhesion to dental amalgam and three resin composites. J Dent Res. 1995;23:171-176.

46. Bos R, van der Mei HC, Busscher HJ. Physico-chemistry of initial microbial adhesive interactions – its mechanisms and methods for study. FEMS Microbiol Rev. 1999;23:179-230.

47. Anhourn P, Nathanson D, Hughes CV, Socransky S, Feres M, Chou LL. Microbial profile on metallic and ceramic bracket materials. Angle Orthod. 2002;72:338-343.

48. Naranjo AR, Trivino M, Jaramillo A, Betancourth M, Botero J. Changes in the early pregnancy period in Japanese women. J Dent Res. 2007;60:42-48.

49. Jensen SO, Lyon BR. Genetics of antimicrobial resistance in Staphylococcus aureus. Future Microbiol. 2009;4:565-582.

50. Malachowa N, DeLeo FR. Mobile genetic elements of Staphylococcus aureus. Cell Microbiol. 2006;8:209-220.

51. Jemili-Ben JM, Bourtiba-Ben BI, Ben RS. Identification of staphylococcal cassette chromosome mec encoding meca gene in methicillin-resistant Staphylococcus aureus isolates at Charles Nicolle Hospital of Tunis. Pathol Biol. 2006;54:453-455.

52. Randami BN, Bes M, Mougner H, et al. Detection of meca gene in methicillin-resistant Staphylococcus aureus strains from multiple patients and multiple antibiotic resistance in the Panton-Valentine leukocidin genes in an Algiers hospital. Antimicrob Agents Chemother. 2006;50:1083-1085.

53. Dunol M, Peters C, Schablon A, Nienhaus A. MRSA carriage among healthcare workers in non-outbreak settings in Europe and the United States: a systematic review. BMC Infect Dis. 2014;14:363.

54. Chambers HF. Methicillin resistance in staphylococci: molecular and biochemi- cal basis and clinical implications. Clin Microbiol Rev. 1997;10:781-791.

55. Han LL, McDougal LK, Gorwitz RJ, et al. High frequencies of clindamycin and tetracycline resistance in methicillin-resistant Staphylococcus aureus pulsed-field type USA300 isolates collected at a Boston ambulatory health center. J Clin Microbiol. 2007;45:1350-1352.

56. Courvalin P. Vancomycin resistance in Gram-positive cocci. Clin Infect Dis. 2006;42:525-534.

57. Long KS, Voster B. Resistance to linezolid caused by modifications at its binding site on the ribosome. Antimicrob Agents Chemother. 2012;56:603-612.

58. Gardette S, Tomasz A. Mechanisms of vancomycin resistance in Staphylococcus aureus. J Clin Invest. 2014;124:2836-2840.

59. Shore AC, Lazaris A, Kinney FM, et al. First report of cfr-carrying plasmids in the pandemic sequence type 22 methicillin-resistant Staphylococcus aureus staphylococcal cassette chromosome mec type IV clone. Antimicrob Agents Chemother. 2016;60:3007-3015.

60. Foster TJ. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. PEMS Microbiol Rev. 2017;41:430-449. doi:10.1093/semi/fox007.

61. Zeng D, Debabov D, Hartsell TL, et al. Approved glycopeptide antibacterial drugs: mechanism of action and resistance. Spring Hare Perspect Med. 2016;6:1026989.
139. Goldberg MH. Infections of the salivary glands. In: Topazian RG, Goldberg MH, eds. Management of infections in the oral and maxillofacial regions. Philadelphia, PA: Saunders; 1981: 293-311.

140. Bagg J, Sweeney MP, Harvey-Wood K, Wiggins A. Possible role of Staphylococcus aureus in severe oral mucositis among elderly dehydrated patients. Microb Ecol Health Dis. 2006;16:95-101.

141. Krenstrom M, Svensson B, Hellman M, Persson GR. Early implant failures in patients treated with Bränemark system titanium dental implants: a retrospective study. Int J Maxillofac Implants. 2001;16:201-207.

142. Rokadiya S, Malden NJ. An implant periapical lesion leading to acute osteomyelitis with isolation of Staphylococcus aureus. Br Dent J. 2008;205:489-491.

143. Tuzuner-Oncul AM, Ungor C, Dede U, Kisiocsi RS. Methicillin-resistant Staphylococcus aureus (MRSA) osteomyelitis of the mandible. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107:e1-e4.

144. Lofthus JE, Waki MY, Jolkovsky DL, et al. Bacteremia following subgingival irrigation and scaling and root planing. J Periodontol. 1991;62:602-607. doi:10.1902/jop.1991.62.10.602.

145. Okabe K, Nakagawa K, Yamamoto E. Factors affecting the occurrence of bacteremia associated with tooth extraction. Int J Oral Maxillofac Surg. 1995;24:239-242.

146. Li X, Kolltveit KM, Tronstad L. Systemic diseases caused by oral infection system diseases caused by oral infection. Clin Microbiol Rev. 2000;13:547-558.

147. Lockhart PB, Brennan MT, Sasser HC, Fox PC, Paster BJ, Bahrani-Mougeot FK. Bacteremia associated with toothbrushing and dental extraction. Circulation. 2008;117:3118-3125.

148. Durack T. Prevention of bacterial endocarditis. N Engl J Med. 1995;332:38-44. doi:10.1056/NEJM199501053320107.

149. Ervedi N, Biren S, Kadir T, Acar A. Investigation of bacteremia following orthodontic debanding. Angle Orthodontist. 2000;70:11-14.

150. Ervedi N, Acar A, Gökmen B, Kadir T. Investigation of bacteremia after orthodontic banding and debanding following chlorhexidine mouth wash application. Angle Orthodontist. 2001;71:190-194.

151. Sultan AS, Zimering Y, Petruzillo G, et al. Oral health status and risk of bacteremia following alloplastic hemopoesis cell transplantation. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2012;115:253-260. doi:10.1016/j.ooos.2012.06.003.

152. Forner L, Larsen T, Kilian M, Holmstrup P. Incidence of bacteremia after chewing, tooth brushing and scaling in individuals with periodontal inflammation. J Clin Periodontol. 2006;33:401-407.

153. Wilson W, Taubert KA, Gewitz M, et al. Prevention of infective endocarditis: guidelines from the American Heart Association Rheumatic Fever, Endocarditis, and Kawasaki Disease Committee, Council on Cardiovascular Disease in the Young, and the Co. Circulation. 2007;116:1736-1754.

154. Habib G, Hoen B, Turnier P, et al. Guidelines on the prevention, diagnosis, and treatment of infective endocarditis (new version 2009): the Task Force on the Prevention, Diagnosis, and Treatment of Infective Endocarditis of the European Society of Cardiology (ESC). Endorsed by the Europe. Eur Heart J Suppl. 2009;10:2369-2413.

155. Thorhill MJ, Dayer M, Lockhart PB, et al. A change in the NICE guidelines on antibiotic prophylaxis. Br Dent J. 2016;221:112-114.

156. Hook EW, Kaye D. Prophylaxis of bacterial endocarditis. J Chronic Dis. 1962;15:635-646.

157. National Institute for Health and Care Excellence (NICE 2008). Prophylaxis Against Infective Endocarditis: Antimicrobial Prophylaxis Against Infective Endocarditis in Adults and Children Undergoing Intervventional Procedures. London: Centre for Clinical Practice at NICE.

158. Farbod F, Kanaan H, Farbod J. Infective endocarditis and antibiotic prophylaxis prior to dental/oral procedures: latest revision to the guidelines by the American Heart Association published April 2007. Int J Oral Maxillofac Surg. 2009;38:626-631. doi:10.1016/j.iomms.2009.03.717.

159. Franchioli M, Bille J, Glaser MP, Moreillon P. β-lactam resistance mechanisms of methicillin-resistant Staphylococcus aureus. J Infect. 1999;163:514-523.

160. Groppo FC, Castro FM, Pacheco AB, et al. Antimicrobial resistance of Staphylococcus aureus and oral streptococci strains from high-risk endocarditis patients. Gen Dent. 2005;53:410-413.

161. Pathak A, Marothi Y, Iyer RV, et al. Nasal carriage and antimicrobial susceptibility of Staphylococcus aureus in healthy preschool children in Ujjain, India. BMC Pediatr. 2010;10:100. doi:10.1186/1471-2431-10-100.

162. Abbas-Montazeri E, Khosravi AD, Peizabadi MM, et al. The prevalence of methicillin resistant Staphylococcus aureus (MRSA) isolates with high-level mupirocin resistance from patients and personnel in a burn center. Burns. 2013;39:650-654. doi:10.1016/j.burns.2013.02.005.

163. Jamal S, Saad U, Haftz S. Can amoxicillin clavulanate be used for treating MRSA? J Pharmaceut Res. 2017;1:21-23.

164. Fowler VG, Scheld WM, Baver AS. Endocarditis and intravascular infections. In: Mandell GL, Bennett JE, Dolin R, eds. Principles and Practice of Infectious Diseases. Philadelphia, PA: Elsevier Churchill Livingstone; 2005: 975-1021.

165. Helovuo H, Hakkarainen K, Pauujo K. Changes in the prevalence of subgingival enteric rods, staphylococci and yeasts after treatment with penicillin and erythromycin. Oral Microbiol Immunol. 1993;8:75-79.

166. Lockhart PB, Brennan MT, Fox PC, et al. Decision-making on the use of antimicrobial prophylaxis for dental procedures: a survey of infectious disease consultants and review. Clin Infect Dis. 2002;34:1621-1626.

167. Ashrafian H, Bogle RG. Antimicrobial prophylaxis for endocarditis: emotion or science? Heart. 2007;93:5-6.

168. Lockhart PB, Blizzard J, Maslow AL, Brennan MT, Sasser H, Carew J. Drug cost implications for antibiotic prophylaxis for dental procedures. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2013;115:345-353. doi:10.1016/j.ooos.2012.10.008.

169. Maharaj B, Coovadia Y, Vayet AC. An investigation of the frequency of bacteremia following dental extraction, tooth brushing and chewing. Cardiovasc J Afr. 2012;23:340-344. doi:10.5830/CVJA-2012-016.

170. Kornell J,款式 P, Tobias A, Scully C, Donos N. Periodontal health status and bacteremia from daily oral activities: systematic review/meta-analysis. J Clin Periodontol. 2012;39:213-228. doi:10.1111/j.1600-051X.2011.01784.x.

171. Mougeot FK, Saunders SE, Brennan MT, Lockhart PB. Associations between bacteremia from oral sources and distant site infections: tooth brushing versus single tooth extraction. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2015;119:430-435. doi:10.1016/j.ooos.2015.01.009.

172. Lockhart PB, Brennan MT, Thornhill M, et al. Poor oral hygiene as a risk factor for infective endocarditis-related bacteremia. J Am Dent Assoc. 2009;140:1238-1244.

173. Hoen B, Duval X. Clinical practice. Infective endocarditis. N Engl J Med. 2013;368:1425-1433.

174. Dayer MJ, Jones S, Prendergast B, Baddour LM, Lockhart PB, Thornhill MH. Incidence of infective endocarditis in England, 2000-13: a secular trend, interrupted time-series analysis. Lancet. 2015;385:1219-1228.

175. Keller K, von Bardeleben RS, Ostad MA, et al. Temporal trends in the prevalence of infective endocarditis in Germany between 2005 and 2014. Am J Cardiol. 2017;119:317-322. doi:10.1016/j.amjcard.2016.09.035.

176. Antibiotic Expert Groups. Therapeutic guidelines: antibiotics. Version 15. Melbourne: Therapeutic Guidelines Limited; 2014.

177. Daly CG. Antibiotic prophylaxis for dental procedures. Aust Prev. 2014;40:184-188.

178. Joint Formulary Committee. British National Formulary 67. London: BMJ Group and Pharmaceutical Press; 2014: 355.