Magnetic resonance imaging in mood disorders: a bibliometric analysis from 1999 to 2020

Mingzhou Gao1,3 · Hui Sun2 · Xunshu Cheng1 · Dongmei Gao1,3 · Mingqi Qiao1,3

Received: 24 January 2021 / Accepted: 7 April 2021 / Published online: 6 May 2021
© The Author(s) 2021

Abstract
Objective Globally, mood disorders are highly prevalent, and are associated with increased morbidity and mortalities. Magnetic resonance imaging is widely used in the study of mood disorders. However, bibliometric analyses of the state of this field are lacking.

Methods A literature search in the web of science core collection (WoSCC) for the period between 1945 and 2020 returned 3073 results. Data extracted from these publications include, publication year, journal names, countries of origin, institutions, author names and research areas. The bibliometric method, CiteSpace V and key words analysis were used to visualize the collaboration network and identify research trends, respectively.

Results Since it was first reported in 1999, the use of magnetic resonance imaging in studies on mood disorders has been increasing. Biological psychiatry is the core journal that has extensively published on this topic, while the UNIV PITTSBURGH, USA, has the highest published papers on this topic. Keyword analysis indicated that studies on depression, bipolar disorders, and schizophrenia, with a focus on specific brain regions, including amygdala, prefrontal cortex and anterior cingulate cortex are key research topics.

Conclusion Brain structure and network, sex differences, and treatment-associated brain changes are key topics of future research.

Keywords Mood disorders · Depression · Anxiety · Citespace · f-MRI

Introduction
Mood disorders are a class of psychiatric conditions that alter moods, energy and motivation. This group of disorders include depression, bipolar disorder, premenstrual syndrome, premenstrual dysphoric disorder, and the autism spectrum of disorders among others. Globally, mood disorders affect > 300 million people with devastating consequences [1, 2]. Previous studies have reported the clinical prevalence of mood disorders [3, 4], with children, adolescents, elderly people and patients with neurological conditions being prone to depressive disorders [5, 6]. The pathophysiology of mood disorders is complex and not properly elucidated [7, 8]. Moreover, it is influenced by genetic and environmental factors that may disrupt neurotransmitter homeostasis [7, 8]. Therefore, mood disorders may result from negative feelings that leave a lasting influence on mental processes associated with perception, cognition and motor systems [9, 10]. In affective disorders, brain morphological alterations largely occur on the fronto-limbic cortex, hippocampus and amygdala. These structures modulate an individual’s emotional and cognitive function, and mood disorder manifestation [11]. Neuroimaging has revealed that brain networks that control emotional behaviors can also influence mood disorder pathophysiology [12].

Mingzhou Gao and Hui Sun have contributed equally to this work and should be considered co-first authors.

Dongmei Gao
gcy_112@163.com

Mingqi Qiao
qmingqi@163.com

1 College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China

2 School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei Province, China

3 Research and Innovation Team of Emotional Diseases and Syndromes in Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
in vivo neuroimaging techniques have, therefore, greatly improved our understanding of mood disorder pathophysiology [13].

There are various clinical imaging techniques, such as PET, DTI [14], ASL [15], and 1H-MRS [16]. However, magnetic resonance imaging (MRI), one of the neuroimaging techniques that are widely used in neuroscience to visualize neural activities, and to identify mental disease biomarkers [17] has unique advantages. In particular, MRI is now widely used to evaluate mood disorders [18, 19], such as depression [20] and premenstrual dysphoric disorder [21]. Advances in this technology will enable quantification of biochemical components of a functioning brain that are not detectable [22]. However, despite progress in the use of MRI to study mood disorders, accompanying bibliometric analysis is lacking.

Bibliometrics is a statistical analysis and quantitative tool for identifying research hotspots and frontiers in a particular field within a short time by extracting quantitative information on study distributions by country/region, institution, author, and journal [23]. Now, bibliometric methods in CiteSpace have been widely used in medical fields, such as acupuncture [24] and regenerative medicine [25]. The CiteSpace software was invented by Professor Chaomei Chen in early 2004. It is based on scientometrics and knowledge visualization, and is effective in mining scientific literature for identifying research hotspots and frontiers in a particular field within a short time by extracting quantitative information on study distributions by country/region, institution, author, and journal [23]. Now, bibliometric methods in CiteSpace have been widely used in medical fields, such as acupuncture [24] and regenerative medicine [25]. The CiteSpace software was invented by Professor Chaomei Chen in early 2004. It is based on scientometrics and knowledge visualization, and is effective in mining scientific literature for critical information. It is used to establish co-occurrence network maps of authors, keywords, institutions, countries, and subject categories as well as co-citation networks of cited authors, cited references, and cited journals. For any discipline of interest, CiteSpace can greatly inform on basic knowledge, identify seminal studies in the area, uncover current research themes, and contextualize research advances [26].

Therefore, this study aimed at comprehensively analyzing the current status and developing trends of related references derived from Web of Science database from 1999 to 2020 in global research on mood disorders by magnetic resonance imaging through a bibliometric and visual analysis.

Materials and methods

Data collection and screening

Online literature search was performed in web of science core collection (WoSCC). To minimize bias from daily database updates, the search was done on the same day (April 29th, 2020) using the following search terms: (TS = (Disorder, Mood) OR TS = (Disorders, Mood) OR TS = (Mood Disorder) OR TS = (Affective Disorders) OR TS = (Affective Disorder) OR TS = (Disorder, Affective) OR TS = (Disorders, Affective)) AND ((Functional MRI) OR TS: (Functional MRIs) OR TS: (MRIs, Functional) OR TS: (Functional Magnetic Resonance Imaging) OR TS: (Magnetic Resonance Imaging, Functional) OR TS: (Spin Echo Imaging) OR TS: (Echo Imaging, Spin) OR TS: (Echo Imagings, Spin) OR TS: (Imaging, Spin Echo) OR TS: (Imagings, Spin Echo) OR TS: (Spin Echo Imagings) OR TS: (Imaging, Magnetic Resonance) OR TS: (NMRI) OR TS: (Imaging, NMR) OR TS: (Tomography, NMR) OR TS: (Tomography, MR) OR TS: (MR Tomography) OR TS: (NMRI) OR TS: (Imaging, NMR) OR TS: (Tomography, NMR) OR TS: (Tomography, MR) OR TS: (MR Tomography) OR TS: (Spin Echo Imaging) OR TS: (Imaging, Chemical Shift) OR TS: (Chemical Shift Imagings) OR TS: (Imagings, Chemical Shift) OR TS: (Shift Imaging, Chemical) OR TS: (Shift Imagings, Chemical) OR TS: (Chemical Shift Imaging) OR TS: (Tomography, Proton Spin) OR TS: (Proton Spin Tomography) OR TS: (Magnetization Transfer Contrast Imaging) OR TS: (MRI Scans) OR TS: (MRI Scan) OR TS: (Scan, MRI) OR TS: (Scans, MRI) OR TS: (Scans, MRI) OR TS: (IMRIS) OR TS: (MRIs, Functional) AND Literature type: (Article). Indices = SCI-EXPANDED, SSCI, CCR-EXPANDED, IC time span = all years. Only published articles were selected, and publication language was unrestricted (Fig. 1).

Through descriptive analysis, we characterized the selected studies by publication year, country, journal, and authors and then constructed knowledge maps using the CiteSpace software (version 5.3.R4). Finally, citation growth rate or keywords were evaluated using burst in CiteSpace V.

Results and discussion

General information of publications

Due to its quality curation of research studies, WoS is a reliable source of studies for bibliometric analysis of scientific literature [27, 28]. Our first round of literature search found 54,346 and 331,162 reports on mood disorders and MRI, respectively. Among them, a total of 3073 original publications involving MRI in mood disorder studies were selected for further analysis. There was an increase in the number of publications on this topic between 1999 (28) and 2019 (236). Notably, in the last 4 months of 2020, 66 original studies were published (Fig. 2a). Citation scores of these studies for the 1999 (16) and 2019 (14,915) years exhibited a significant increase. An increase in citation scores by 4039 resulted in a total score of 142,188, with an h-index of 166 and on average, 46.27 references per item (Fig. 2b). These results indicate that MRI is increasingly becoming popular as a mood disorder research tool.

 Springer
Funding analysis

Adequate research funding is crucial for scientific advancement and development of future researchers [29]. Research grant applications is critical in advancing one’s academic career [30]. The 3073 published studies included in this study were supported by a total of 2976 grants. The top 10 funders were United States department of health human services (1000), NIH (999), NIH national institute of mental health (NIMH) (651), national natural science foundation of China (193), Narsad (151), German research foundation (DFG) (148), medical research council (MRC), UK (138), NIH national center for research resources NCRR (114), NIH national institute on drug abuse (NIDA) (76) and Wellcome trust (75) (Table 1). Among the top 10 funders, six are American. Prior to world war II, public research funding was scarce, and was mainly directed at aeronautical and agricultural research. Recently, improved government funding has accelerated basic research, including in China.

Journal analysis

Journal analysis simplifies identification, tracking, and focus on relevant research in topics of interest. The 3073 studies included in this study are published in 467 different journals. Among them, 185 studies are in biological psychiatry, 175 studies are in the journal of affective disorders, 169 studies are in psychiatry research, 169 studies are in neuroimaging, 103 studies are in neuroimage, 102 studies are in bipolar disorders, 76 studies are in psychological medicine, 72 studies are in human brain mapping, 72 studies are in PLoS one, and 69 studies are in the American journal of psychiatry.

CiteSpace journal co-citation analysis identified 1029 highly cited journals and 10,270 network lines. Biological psychiatry was the most cited journal (Fig. 3). Moreover, Biological psychiatry, Neuroimage, American journal of psychiatry, Archives of General Psychiatry, and Journal of neuroscience published many groundbreaking studies that influenced research direction (Tables 2 and 3). Biological psychiatry is society of biological psychiatry’s official journal that is geared towards enhancing research excellence in areas studying the nature, causes, mechanisms, and management of thought, emotion, or behavioral disorders. Biological psychiatry is highly regarded in psychiatric neuroscience and was ranked 2nd among psychiatric journals in 2019 by google scholar, with an impact factor of 7.27.
Scientific Research Collaboration Analysis

Research collaboration is crucial in interdisciplinary research and helps overcome scientific challenges, leading to major research breakthroughs. Research collaboration network refers to the appearance of authors from different research institutions, or countries (regions) in the same paper.

Author analysis

CiteSpace analysis uncovered 919 nodes (corresponding to 919 prolific authors), and 1642 cooperative lines, indicating intense collaboration between authors (Fig. 4). Node size is directly proportional to the number of publications, while connecting line thickness is directly proportional to the level of collaboration. Phillips ML was the most productive author, with 59 publications, followed by Soares JC (54), Pine DS (48), Brambilla P (44), Drevets WC (42), Leibenluft E (40), Heinz A (33), Keshavan MS (33), Strakowski SM (32) and Birmaher B (31).
Co-author networks are used to analyze joint research in any field of interest. We found a total of 1029 highly cited authors and 1468 network lines, with Drevets WC being top, with 761 co-authorships (Fig. 5, Table 4).

Country analysis

CiteSpace analysis identified 57 countries and regions, with 70 collaboration links (Fig. 6), indicating high cross-country (region) research links. Top countries by publication numbers were USA, Germany, England, China, Canada, Italy, Netherlands, Australia, Brazil and Switzerland. Interestingly, while Germany is the 2nd (481 publications), no German institutions are in the top 10 list of institutions (Fig. 6, Table 5).

Institutional analysis

CiteSpace analysis identified 40 research institutions and nine collaborations in the co-institute network. Based on the number of publications, the top 10 institutions were University of Pittsburgh, Harvard University, NIMH, King’s College London, University of California, Los Angeles, Stanford University, Yale University, University of California San Diego, University of Sao Paulo and McLean Hospital (Fig. 7, Table 5).

Research area analysis

The studies included covered a total of 50 research fields, including immunology (171), followed by cell biology (65), and biochemistry-molecular biology (60). The top 20 research fields involving MRI use in mood disorders are

Table 2 Top 10 journals involving MRI use in mood disorder studies

Rank	Journal	Freq	CiteScore	% of 3073 CiteScore
1	Biological Psychiatry	185	6.024	7.27
2	Journal of Affective Disorders	175	5.698	4.20
3	Psychiatry Research Neuroimaging	169	5.503	2.70
4	Neuroimage	103	3.354	6.13
5	Bipolar Disorders	102	3.321	4.27
6	Psychological Medicine	76	2.475	5.77
7	Human Brain Mapping	72	2.345	5.11
8	Plos One	72	2.345	3.02
9	American Journal of Psychiatry	69	2.247	6.03
10	Neuropsychopharmacology	67	2.182	6.22

Table 3 Top 10 Cited journals related to MRI use in mood disorder studies

Rank	Journal	Freq	CiteScore	Country or region of publication
1	Biol Psychiat	2573	7.27	United States
2	Neuroimage	2417	6.13	United States
3	Am J Psychiat	2243	6.03	United States
4	Arch Gen Psychiat	2057	0.00	United States
5	J Neurosci	1694	5.83	United States
6	P Natl Acad Sci USA	1606	8.58	United States
7	Psychiat Res-Neuroim	1468	2.70	Netherlands
8	Hum Brain Mapping	1458	5.11	United States
9	J Affect Disorders	1441	4.2	Netherlands
10	Neuropsychopharmacol	1353	6.22	England
shown in Table 6. Neurosciences, neurology and psychiatry were the main research areas (Table 6).

Cited reference analysis

Analysis of cited reference co-citation identified 324 nodes and 555 links (Fig. 8). The top 10 cited publications on
MRI use in mood disorders focused on depression, schizophrenia and post traumatic stress disorder. With a citation frequency of 123, “Brain Structural and Functional Abnormalities in Mood Disorders: Implications for Neurocircuitry Models of Depression”, ranked first (Table 7).

Research hotspots and frontiers

Within any given time period, knowledge maps of keywords co-occurrence reflect hot topics, while trending keywords indicate frontier topics. We used CiteSpace V to evaluate keywords in titles, abstracts, as well as article keyword sections, and to build keyword co-occurrence networks.

Research hotspots

Keyword visual knowledge map analysis revealed 130 nodes and 431 links (Fig. 9). With the strongest citation burst keywords being: f-MRI, depression, bipolar disorder, amygdala, mood disorder, prefrontal cortex, brain, major depression, schizophrenia, MRI, emotion, disorder, functional connectivity, meta-analysis, activation, abnormality, major depressive disorder, mood, anterior cingulate cortex, and magnetic resonance imaging (Table 8).
Key diseases of mood disorders

Individuals experience various emotions, such as sadness, irritation, happiness, and elation. However, people with mood disorders often experience strong emotions, for unusually long periods of time to the extent that emotions negatively impact their daily routines. Depression and bipolar disorders are the main mood disorders. Our analysis revealed 658 and 570 studies on depression and bipolar disorder, respectively. Depression is a significant clinical and public health concern [31] and its pathophysiology has not been clearly elucidated. Environmental as well as cellular and molecular factors trigger functional, and/or structural brain alterations [32] that may contribute to these disorders. Cognitive behavioral therapy is the best-studied psychotherapeutic approach, although its mechanisms of action are unknown [33]. Bipolar disorder is characterized by recurrent episodes of elevated moods and depression, along with changes in activity levels. Bipolar (affective) disorder, (previously manic depressive illness) is extremely difficult to manage [34]. Additionally, major depression and schizophrenia are major research topics. Schizophrenia is a heterogeneous psychiatric disorder with wide-ranging clinical and biological manifestations [35].
Key brain regions associated with mood disorders

Neuroimaging is increasingly becoming important in the study of the pathophysiology of mood disorders, with most studies focusing on the amygdala, prefrontal cortex and anterior cingulate cortex. The involvement of amygdala in major depression pathogenesis has been reported in previous studies [36]. While amygdala volume alterations have been implicated in mood disorders [37], Tomas et al. suggested that amygdala volume changes may reflect underlying illness or represent artifacts from medication or comorbidities [38]. The prefrontal cortex (PFC), which is involved in thinking and behavioral regulation has also been implicated in depression [39, 40]. Based on anatomical connectivity and functional specialization, the prefrontal cortex is divided into two subregions: ventromedial prefrontal cortex (vmPFC) and dorsolateral sectors (dlPFC) [41]. The human anterior cingulate cortex (ACC) is involved in response to pain affecting oneself, or others. However, its mechanisms of activity are poorly understood [42]. The mean gray matter volume of the "subgenual" ACC (sgACC) cortex is abnormally low in individuals with major depressive disorder (MDD) and bipolar disorder [43]. Psychopathic traits have been negatively correlated with amygdala-ventral anterior cingulate cortex connectivity for angry versus neutral faces [44]. The anterior cingulate cortex may influence initiation, motivation, and goal-directed behaviors [45].

Research frontiers

Keyword bursts provide a means of forecasting research direction. CiteSpace V analysis of burst keywords revealed 209 burst terms and 40 keywords by the end of 2020, and predicted the research hotspots shown in Fig. 10.

![Figure 9](image_url)
Fig. 9 Keyword co-occurrence map of MRI use in mood disorder studies from 1999 to 2020. Node size represents keyword co-occurrence frequency. Node size corresponds to keyword frequency

Year	Title	Source	Author	Freq	Burst	Degree
2008	Brain Structural and Functional Abnormalities in Mood Disorders: Implications for Neurocircuitry Models of Depression	Brain Struct Funct	Drevets WC	123	28.46	2
2012	Spurious but Systematic Correlations in Functional Connectivity MRI Networks Arise From Subject Motion	Neuroimage	Power JD	121	31.96	6
2010	Resting-state Functional MRI in Depression Unmasks Increased Connectivity Between Networks via the Dorsal Nexus	P Natl Acad Sci USA	Sheline YI	112	20.51	8
2007	Resting-state Functional Connectivity in Major Depression: Abnormally Increased Contributions From Subgenual Cingulate Cortex and Thalamus	Biol Psychiat	Greicius MD	104	24.1	4
2011	Emotional Processing in Anterior Cingulate and Medial Prefrontal Cortex	Trends Cogn Sci	Etkin A	93	22.46	4
2010	Neurocircuitry of Mood Disorders	Neuropsychopharmacol	Price JL	92	15.28	3
2008	A Neural Model of Voluntary and Automatic Emotion Regulation: Implications for Understanding the Pathophysiology and Neurodevelopment of Bipolar Disorder	Mol Psychiat	Phillips M	88	16.1	1
2003	Neurobiology of emotion perception II: implications for major psychiatric disorders	Biol Psychiat	Phillips ML	86	29.2	3
2013	Diagnostic and Statistical Manual of Mental Disorders (DSM)	Diagn Stat Man Ment	American Psychiatric Association	86	29.21	2
1997	Subgenual Prefrontal Cortex Abnormalities in Mood Disorders	Nature	Drevets WC	83	42.41	6
Discovering abnormal brain structure and network

In vivo neuroimaging of neural networks that putatively regulate normal emotions have shown that they are implicated in the pathogenesis of mood disorders [12]. Therefore, functional and structural brain pathology may contribute to mood disorders [46, 47]. Reduced gray matter volume has been reported in the posterior cingulate cortex and superior temporal gyrus in bipolar disorder [48], while white matter abnormalities have been associated with major depression [49]. Severe depression cases exhibit ventricular enlargement, sulcal widening, and reduced frontal lobe, hippocampus and caudate nucleus volumes [50]. Advances in brain imaging of mood disorders have been mainly due to studying regional brain abnormalities, and more recently, studying whole brain connectome. Various MRI strategies, including ‘functional’ MRI, which detects changes in blood flow to a specific area of the brain, blood-oxygen-level-dependent imaging (BOLD) fMRI, which examines changes in oxygenated or deoxygenated blood, and resting state fMRI have significantly improved our knowledge of neuronal activity. Mood disorder patients exhibit morphological abnormalities or morphometry in various visceromotor network structures [51]. Young MDD reported significant reduction in DRN-cingulate cortex connectivity relative to healthy controls and a correlation between DRN amygdala/hippocampus complex connectivity and depressive symptom severity [42]. Wayne C [46] proposed a neural model in which dysfunctions of MPFC and the circuits connecting it to other cortical and limbic structures account for mood disorder associated neural mechanisms.

Sex differences

Biological differences between sexes affect emotions and social behavior [52]. Lifetime depression and anxiety disorder rates are twice higher in women than men [53, 54]. Gender impacts mood and anxiety disorders and may, therefore, offer some insights into the mechanistic basis of affective disturbances in men and women [55–57]. Besides, women’s moods are significantly affected by changes in menstrual cycle. Depression, anxiety and irritability are the three most studied symptoms of PMDD in women of childbearing age [58]. During the perinatal period, mood disturbance are commonly reported by women [59]. Depression is a common complication of pregnancy and the postpartum period [60]. Moreover, menopausal transition is correlated with mood changes ranging from distress to minor depression to major depressive disorders in women [61]. The role of reproductive steroids in mood regulation among women may become the most potential research direction [62]. Given that sex differences affect various aspects of the brain, including its structure, function, and stress responses, studies should aim at establishing gender-associated differences that have an effect on mood disorders [63, 64].

Effect of treatment measures on brain activity

Effective therapies for emotional disorders are urgently needed. Although various pharmacological and non-pharmacological therapeutic approaches, including electroconvulsive therapy, cognitive behavioral therapy, ketogenic diets [65], circadian treatment [66], bright-light therapy [67] and drug naïve (ketamine, lithium salts) [68, 69] are available, their efficacies are widely varied between individuals.

Evidence-based medicine with meta-analysis

Meta-analysis may help discern important findings across disparate studies, thereby, providing actionable information to clinicians [70, 71]. For instance, multiple antidepressants are available for MDD, and their prescription should be informed by the best available data. A meta-analysis by Andrea Cipriani [72] on the relative efficacy and tolerability of 21 antidepressants used to treat major depressive disorders found that all antidepressants were more efficacious than placebo in adults. A meta-analysis study also showed that the relationship between creativity and mood disorders

| Table 8 Top 20 keywords of magnetic resonance imaging in mood disorders |
|---|---|---|---|---|
| Rank | Keyword | Freq | Rank | Keyword | Freq |
| 1 | fMRI | 862 | 11 | Emotion | 372 |
| 2 | Depression | 658 | 12 | Disorder | 365 |
| 3 | Bipolar disorder | 570 | 13 | Functional connectivity | 342 |
| 4 | Amygdala | 530 | 14 | Metanalysis | 323 |
| 5 | Mood disorder | 517 | 15 | Activation | 317 |
| 6 | Prefrontal cortex | 496 | 16 | Abnormality | 312 |
| 7 | Brain | 455 | 17 | Major depressive disorder | 301 |
| 8 | Major depression | 440 | 18 | Mood | 263 |
| 9 | Schizophrenia | 419 | 19 | Anterior cingulate cortex | 233 |
| 10 | MRI | 386 | 20 | Magnetic resonance imaging | 221 |
Keywords	Year	Strength	Begin	End	1999 - 2020
rumination	1999	4.6713	2014	2020	
nucleus accumben	1999	3.2264	2014	2020	
cortical thickness	1999	12.5126	2014	2020	
network	1999	14.3488	2014	2020	
comorbidity	1999	3.821	2014	2020	
social cognition	1999	4.3748	2015	2020	
ventral striatum	1999	5.9234	2015	2020	
brain network	1999	7.4338	2015	2020	
resting-state fmri	1999	9.1527	2015	2020	
functional connectivity	1999	5.3189	2015	2020	
neural basis	1999	3.226	2015	2020	
cortisol	1999	4.4794	2016	2020	
diagnosis	1999	4.5996	2016	2020	
state functional connectivity	1999	8.4492	2016	2020	
resting state	1999	6.0116	2016	2020	
default mode network	1999	17.7588	2016	2020	
empathy	1999	3.9855	2016	2020	
connectivity	1999	7.794	2016	2020	
impulsivity	1999	7.1919	2016	2020	
sex difference	1999	3.4206	2017	2020	
ptsd	1999	5.8121	2017	2020	
cognitive behavioral therapy	1999	5.0917	2017	2020	
chronic pain	1999	4.4911	2017	2020	
brain structure	1999	3.8852	2017	2020	
symptom	1999	5.2983	2017	2020	
resting state fmri	1999	7.2786	2017	2020	
emotion regulation	1999	11.5739	2017	2020	
electroconvulsive therapy	1999	3.514	2017	2020	
drug naive	1999	3.1432	2017	2020	
irritability	1999	3.1669	2018	2020	
scale	1999	10.2641	2018	2020	
segmentation	1999	5.2156	2018	2020	
stimulation	1999	3.9361	2018	2020	
sleep	1999	4.2231	2018	2020	
episodic memory	1999	3.3641	2018	2020	
mind	1999	3.6253	2018	2020	
trauma	1999	5.8078	2018	2020	
prevalence	1999	7.9204	2018	2020	
salience network	1999	6.1287	2018	2020	
metaanalysis	1999	11.8518	2018	2020	

Fig. 10 Top 40 Keywords with Citation Bursts from 2016 to 2020
varied according to the research methodology used [73]. Low doses of partial dopamine agonist therapies represent a relatively safe and effective alternative therapies [74]. Additionally, a meta-analysis showed that lithium, which is commonly used to manage mood disorders, may elevate the risk of low urine concentrations, hypothyroidism, hyperparathyroidism, and weight gain [75].

Conclusions

We performed a bibliometric analysis of publications involving the use of MRI in mood disorder studies over the last 2 decades. Within this period, the number of such publications rose rapidly. The US, England, and Canada have high publication rates and centrality in this area. Additionally, research collaborations on this topic are very active. Our findings reveal Soares JC as the most prolific author, while the US emerged as the global leader in research investment. Mounting evidence shows that MRI is an effective tool for elucidating neuronal activity. The US department of human health services is the leading funding agency on this topic. We also found that depression, bipolar disorder and schizophrenia are the major focus areas when evaluating major brain regions, including the amygdala, prefrontal cortex and anterior cingulate cortex. Our findings indicate that in future, studies will likely focus on brain structure and network, sex differences, brain changes upon treatment and meta-analyses.

Acknowledgements The authors would like to thank the Research and Innovation team of Emotional Diseases and Syndromes at Shandong University of Traditional Chinese Medicine for their support.

Author contributions GM and SH conceived the study and wrote the manuscript. GM, SH and CX collected and analyzed the data, contributed materials/analysis tools, prepared figures and/or tables and read the final draft. GD and QM contributed to study conception and its coordination. All authors read and approved the final manuscript.

Funding Prof. Mingqi Qiao received funding from National Science & Technology Major Project "Key New Drug Creation and Manufacturing Program" of China—NO. SQ2017ZX091064, while Prof. Dongmei Gao received funding from the National Natural Science Foundation of China—NO. 81001484 and 81473558.

Data availability The extracted data and statistical syntax are available from the first author upon reasonable request.

Declarations

Conflicts of interest The authors declare no conflict of interest.

Ethical approval This study is a literature review for which ethical approval was waived.

Informed consent None required.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Rakofsky J, Rapaport M (2018) Mood disorders. Continuum (Minneap Minn) 24:804–827
2. Gordon-Lipkin E, Marvin AR, Law JK, Lipkin PH (2018) Anxiety and mood disorder in children with autism spectrum disorder and ADHD. Pediatrics 141:e20171377
3. Denton EJ et al (2018) Mood disorders are highly prevalent in patients investigated with a multiple sleep latency test. Sleep Breath 22:305–309
4. Uguz F, Yakut E, Aydogan S, Bayman MG, Gezginc K (2019) Prevalence of mood and anxiety disorders during pregnancy: a case-control study with a large sample size. Psychiatry Res 272:316–318
5. Tang MH, Pinsky EG (2015) Mood and affect disorders. Pediatri Rev 36:52–60 (quiz 61)
6. Deligianni F, Guo Y, Yang GZ (2019) From emotions to mood disorders: a survey on gait analysis methodology. IEEE J Biomed Health 23:2302–2316
7. Gruzdev SK, Yakovlev AA, Druzhkova TA, Guekht AB, Gulyaeva NV (2019) The missing link: how exosomes and miRNAs can help in bridging psychiatry and molecular biology in the context of depression, bipolar disorder and schizophrenia. Cell Mol Neurobiol 39:729–750
8. Lovheim H (2012) A new three-dimensional model for emotions and monoamine neurotransmitters. Med Hypotheses 78:341–348
9. Sanders RD, Gillig PM (2010) Gait and its assessment in psychiatry. Psychiatry (Edgmont) 7:38–43
10. Tarlaci S (2019) Quantum neurobiological view to mental health problems and biological psychiatry. J Psychopathol 25:70–84
11. Wilczynska K, Simonienko K, Konarzewska B, Szajda SD, Waszkiewicz N (2018) Morphological changes of the brain in mood disorders. Psychiat Pol 52:797–805
12. Phillips ML, Drevets WC, Rauch SL, Lane R (2003) Neurobiology of emotion perception II: implications for major psychiatric disorders. Biol Psychiatry 54:515–528
13. Matsumoto K (2016) Development of magnetic resonance-based functional imaging: the past, the present, and the future. Yaku-gaku Zasshi 136:1075–1080
14. El-Seroury L, Abdel Razeek AAK, Ezzat A, Eldawoodi H, El-Morsy A (2016) Assessment of diffusion tensor imaging metrics in differentiating low-grade from high-grade gliomas. Neurradiol J 29:400–407
15. Abdel Razeek AAK, Talaat M, El-Seroury L, Gaballa G, Abdel-salam M (2019) Clinical applications of arterial spin labeling in brain tumors. J Comput Assist Tomogr. 43:525–532
16. Razeek AAKA, Abdalla A, Ezzat A, Megahed A, Barakat T (2014) Minimal hepatic encephalopathy in children with liver
cirrhosis: diffusion-weighted MR imaging and proton MR spectroscopy of the brain. Neuroradiology 56:885–891
17. Tulay EE, Metin B, Tarhan N, Arkan MK (2019) Multimodal neuroimaging: basic concepts and classification of neuropsychiatric diseases. Clin EEG Neurosci 50:20–33
18. Ai T et al (2012) A historical overview of magnetic resonance imaging, focusing on technological innovations. Invest Radiol 47:725–741
19. Mathias LK, Monette PJ, Harper DG, Forester BP (2017) Application of magnetic resonance spectroscopy in geriatric mood disorders. Int Rev Psychiatry 29:597–617
20. Lai C-H (2019) The neural markers of MRI to differentiate depression and panic disorder. Prog Neuro-Psychoph 91:72–78
21. Petersen N, Ghabrehrai D, Rupin AJ et al (2019) Resting-state functional connectivity in women with PMDD. Transl Psychiatry 9(1):339
22. Budinger TF, Bird MD (2018) MRI and MRS of the human brain at magnetic fields of 14T to 20T: technical feasibility, safety, and neuroscience horizons. Neuroimage 168:509–531
23. Wang L, Xia E, Li H et al (2019) A bibliometric analysis of crowdsourcing in the field of public health. Int J Environ Res Public Health 16(20)
24. Liang YD et al (2017) Study of acupuncture for low back pain in recent 20 years: a bibliometric analysis via CiteSpace. J Pain Res 10:951–964
25. Chen CM, Hu ZG, Liu SB, Tseng H (2012) Emerging trends in regenerative medicine: a scientometric analysis in CiteSpace. Expert Opin Biol Ther 12:593–608
26. Chen C (2016) CiteSpace: a practical guide for mapping scientific literature
27. Bang CS, Lee JJ, Baik GH (2019) The most influential articles in Helicobacter pylori research: a bibliometric analysis. Helicobacter 24:e12589
28. Huang X, Fan X, Ying J, Chen S (2019) Emerging trends and research foci in gastrointestinal microbiome. J Transl Med 17:67
29. Farrokhyar F et al (2016) Impact of research investment on scientific productivity of junior researchers. Transl Behav Med 6:659–668
30. Squitieri L, Chung KC (2014) Funding research in the twenty-first century: current opinions and future directions. Hand clin 30(3):367–376
31. Wormser GP, Hassert AL (2019) Depression in the primary care setting. N Engl J Med 380:2278–2279
32. Krishnan V, Nestler EJ (2008) The molecular neurobiology of depression. Nature 455:894–902
33. Anthes E (2014) Depression: a change of mind. Nature 515:185–187
34. Anderson IM, Haddad PM, Scott J (2012) Bipolar disorder. BMJ 345:e5808
35. Tandon R et al (2013) Definition and description of schizophrenia in the DSM-5. Schizophr Res 150:3–10
36. Drevets WC (2003) Neuroimaging abnormalities in the amygdala in mood disorders. Ann N Y Acad Sci 985:420–444
37. Velakoulis D et al (2006) Hippocampal and amygdala volumes according to psychosis stage and diagnosis: a magnetic resonance imaging study of chronic schizophrenia, first-episode psychosis, and ultra-high-risk individuals. Arch Gen Psychiatry 63:139–149
38. Hajek T et al (2009) Amygdala volumes in mood disorders–meta-analysis of magnetic resonance volumetry studies. J Affect Disord 115:395–410
39. Treadway MT et al (2015) Illness progression, recent stress, and morphology of hippocampal subfields and medial prefrontal cortex in major depression. Biol Psychiatry 77:285–294
40. Liu W et al (2017) The role of neural plasticity in depression: from hippocampus to prefrontal cortex. Neural Plast 2017:6871089
41. Koenigs M, Grafman J (2009) The functional neuroanatomy of depression: distinct roles for ventromedial and dorsolateral prefrontal cortex. Behav Brain Res 201:239–243
42. Cullis M et al (2019) Emotional mirror neurons in the rat’s anterior cingulate cortex. Curr Biol 29:2104
43. Drevets WC, Savitz J, Trimble M (2008) The subgenual anterior cingulate cortex in mood disorders. CNS Spectr 13:663–681
44. Ebwank MP et al (2018) Psychopathic traits influence amygdala-anterior cingulate cortex connectivity during facial emotion processing. Soc Cogn Affect Neurosci 13:525–534
45. Devinsky O, Morrell MJ, Vogt BA (1995) Contributions of anterior cingulate cortex to behaviour. Brain 118(Pt 1):279–306
46. Drevets WC, Price JL, Furry ML (2008) Brain structural and functional abnormalities in mood disorders: implications for neuropsychiatric models of depression. Brain Struct Funct 213:93–118
47. Anand A (2019) Editorial: functional and structural connectomics of mood disorders. Front Psychiatry 10:202
48. Nugent AC et al (2006) Cortical abnormalities in bipolar disorder investigated with MRI and voxel-based morphometry. Neuroimage 30:485–497
49. Tham MW, Woon PS, Sum MY, Lee TS, Sim K (2011) White matter abnormalities in major depression: evidence from post-mortem, neuroimaging and genetic studies. J Affect Disord 132:26–36
50. Schweitzer I, Tuckwell V, Ames D, O’Brien J (2001) Structural neuroimaging studies in late-life depression: a review. World J Biol Psychiatry 2:83–88
51. Drevets WC (2001) Neuroimaging and neuropathological studies of depression: implications for the cognitive-emotional features of mood disorders. Curr Opin Neurololo 11:240–249
52. Choleris E, Galea LAM, Sorhabji F, Frick KM (2018) Sex differences in the brain: implications for behavioral and biomedical research. Neurosci Biobehav Rev 85:126–145
53. Weissman MM et al (1996) Cross-national epidemiology of major depression and bipolar disorder. JAMA 276:293–299
54. Gater R et al (1998) Sex differences in the prevalence and detection of depressive and anxiety disorders in general health care settings: report from the World Health Organization Collaborative Study on Psychological Problems in General Health Care. Arch Gen Psychiatry 55:405–413
55. Hirsh AT, Waxenberg LB, Atchinson JW, Gremillion HA, Robinson ME (2006) Evidence for sex differences in the relationships of pain, mood, and disability. J Pain 7:592–601
56. Hankin BL (2009) Development of sex differences in depressive and co-occurring anxious symptoms during adolescence: descriptive trajectories and potential explanations in a multivariate prospective study. J Clin Child Adolesc Psychol 38:460–472
57. Rainville JR, Hodes GE (2019) Inflaming sex differences in mood disorders. Neuropsychopharmacology 44:184–199
58. Ko et al (2013) Depression, irritability, and anxiety in women with premenstrual dysphoric disorder. Int J Psychiatry Med 46:39–55
59. Bei B, Coo S, Trinder J (2015) Sleep and mood during pregnancy and the postpartum period. Sleep Med Clin 10:25–33
60. Becker M, Weinberger T, Chandy A, Schmukler S (2016) Depression during pregnancy and postpartum. Curr Psychiatry Rep 18:32
61. Alexander J et al (2007) Neurobehavioral impact of menopause on mood. Expert Rev Neurother 7:581–591
62. McEvoy K, Osborne LM (2019) Allopregnanolone and reproductive psychiatry: an overview. Int Rev Psychiatry 31:237–244
63. Altemus M, Sarvaiya N, Neill Epperson C (2014) Sex differences in anxiety and depression clinical perspectives. Front Neuroendocrinol. 35:320–330
64. Rubinow DR, Schmidt PJ (2019) Sex differences and the neurobiology of affective disorders. Neuropsychopharmacology 44:111–128
65. Brietzke E et al (2018) Ketogenic diet as a metabolic therapy for mood disorders: Evidence and developments. Neurosci Biobehav Rev 94:11–16
66. Huhne A, Welsh DK, Landgraf D (2018) Prospects for circadian treatment of mood disorders. Ann Med 50:637–654
67. Pail G et al (2011) Bright-light therapy in the treatment of mood disorders. Neuropsychobiology 64:152–162
68. Haussmann R, Lewitzka U, Severus E, Bauer M (2017) Correct treatment of mood disorders with lithium. Nervenarzt 88:1323–1334
69. Sanacora G et al (2017) A consensus statement on the use of ketamine in the treatment of mood disorders. JAMA Psychiat 74:399–405
70. Paul M, Leibovici L (2014) Systematic review or meta-analysis? Their place in the evidence hierarchy. Clin Microbiol Infect 20:97–100
71. Lee YH (2018) An overview of meta-analysis for clinicians. Korean J Intern Med 33:277–283
72. Cipriani A et al (2018) Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: a systematic review and network meta-analysis. Lancet 391:1357–1366
73. Taylor CL (2017) Creativity and Mood disorder: a systematic review and meta-analysis. Perspect Psychol Sci 12:1040–1076
74. Romeo B, Blecha L, Locatelli K, Benyamina A, Martelli C (2018) Meta-analysis and review of dopamine agonists in acute episodes of mood disorder: efficacy and safety. J Psychopharmacol 32:385–396
75. McKnight RF et al (2012) Lithium toxicity profile: a systematic review and meta-analysis. Lancet 379:721–728

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.