Development and Characterization of Seven Polymorphic Microsatellite Loci in *Bembidion atrocaeruleum* (Coleoptera: Carabidae)

Matt J. O’Callaghan,1,2 Debra S. Finn,1,3 Mike Williams,4 and Jonathan P. Sadler1

1School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
2Corresponding author, e-mail: m.j.ocallaghan@bham.ac.uk
3Department of Zoology, Oregon State University, Corvallis, Oregon, US
4Environment Agency, Exminster House, Exeter, United Kingdom

ABSTRACT. We isolated seven polymorphic microsatellite loci from a ground beetle (*Bembidion atrocaeruleum*, Coleoptera, Carabidae (Stephens, 1826)) associated with naturally and regularly disturbed floodplain habitat in northwest Europe. Loci were tested on 157 individuals collected from five distinct habitat patches across two adjacent drainage basins in Wales, United Kingdom, to assess their potential for revealing population structure across a relatively short spatial extent. Alleles per locus ranged from 4 to 12. For a central representative population, expected heterozygosity ranged from 0.23 to 0.78 (mean: 0.63), and observed heterozygosity ranged from 0.16 to 0.94 (mean: 0.56). Analysis of molecular variance indicated significant structure among populations, even when one locus potentially containing null alleles was removed. These loci have the potential to aid the study of dispersal mechanisms of this important riparian species along and between river corridors, a recurring question in floodplain conservation studies. In addition, given the diversity of the *Bembidion* genus, they may have utility in the study of sister species.

Key Words: Coleoptera, *Bembidion*, microsatellite, floodplain, disturbance

Bembidion atrocaeruleum (Coleoptera, Carabidae) (Stephens 1828) is a widespread but highly specialized ground beetle associatively excluded with coarse riparian sediments, having a largely montane distribution across Europe (Luff 1998). It is associated with patchy habitat, subject to frequent flood disturbance. This habitat type supports a high diversity of specialist species, many of which are rare, and in some cases endemic (Eyre et al. 2000, Anderson and Hanssen 2005, Sadler and Bates 2008). The habitat is vulnerable to anthropogenic degradation, through alteration of hydrology (Petts and Gurnell 2005) or river channel (Florsheim et al. 2008), and the ability of specialist species to colonize alternative habitat patches between rivers and catchments is poorly understood. *B. atrocaeruleum* uses environmental cues to instigate short flights (maximum 200 m) between habitat patches (Bates et al. 2006), but data on dispersal potential across greater distances are lacking. Microsatellite loci have been identified in other carabids (e.g., Keller and Largader 2003, Contreras-Díaz et al. 2006), but this represents the first attempt to identify them within the *Bembidion* genus that we are aware of.

Materials and Methods

Tissue samples from 10 individuals collected from a single centrally located site on the River Severn, United Kingdom, were used by Genetic Identification Services (Chatsworth, CA) to construct four microsatellite-enriched libraries with the magnetic bead-based enrichment procedure described by Jones et al. (2002). Libraries were prepared in parallel using Biotin-CA (15), Biotin-GA (15), Biotin-AAC (12), and Biotin-ATG (12) to capture oligonucleotides. Sequencing of randomly selected recombinant clones and primer design followed Jones et al. (2002). Primers for 24 microsatellite loci of high quality and with suitable flanking regions were tested and screened for polymorphism on respective corresponding clones using an amplification reaction mixture consisting of 1× Biolute Buffer (from 10× stock solution supplied by the manufacturer), 2 mM MgCl₂, 0.2 mM dNTPs, 6 μM each primer, 0.025 U/μl Biolase DNA Polymerase (Bioline US, Taunton, MA), and 0.2 ng/μl clonal template DNA in 50 μl of final reaction volume. Polymerase chain reaction (PCR) consisted of an initial 3-min denaturation at 94°C, followed by 35 cycles of denaturation (94°C, 40s), annealing (55°C, 40s), and extension (72°C, 30 s), with final extension time of 4 min at 72°C. As a simple screening procedure, PCR products were run on a 3.5% agarose gel stained with ethidium bromide. This approach revealed clear polymorphism in 13 of the 24 screened loci.

To assess the potential for detecting population structure both among local habitats along the River Severn and between the River Severn and adjacent River Wye, we initially attempted to amplify all 13 polymorphic loci across five populations (central Severn, three Severn tributaries, and one Wye population; *n* = 29–32 each). Forward primers were tagged with dyes obtained from Applied Biosystems (Foster City, CA; Table 1). PCR mixtures and program were as above, products were run on a 3,730 automated sequencer (Applied Biosystems), and genotyping was performed in GENEMAPPER v 4.0 (Applied Biosystems). Only 7 of the 13 loci amplified product in the natural populations, and we report on these 7 polymorphic loci here (but see Table 2 for sequences of the six failed primer pairs).

Results

Number of alleles per locus ranged from 4 to 12 (Table 1), and overall *F*ₜₛ = 0.025 (*P* < 0.01), as calculated via Analysis of Molecular Variance (AMOVA) with an infinite allele model in Arlequin version 3.5.1.2 (Excoffier and Lischer 2010). Six of 10 pairwise *F*ₛₜ values were significant (*P* < 0.05, Table 2). Arlequin analysis revealed no evidence for linkage disequilibrium between any loci, either across the full sample extent or within individual populations. Arlequin was also used to perform exact tests of Hardy–Weinberg equilibrium for each locus in each population. Observed and expected heterozygosities did not differ significantly at any locus except D101, which showed a significant homozygosity excess in all five populations (Table 1 for central Severn population), probably due to null alleles. Therefore, AMOVA was rerun including only the six loci that consistently demonstrated Hardy–Weinberg equilibrium. Excluding D101, overall *F*ₜₛ = 0.005.
The population dynamics of patchily distributed riparian invertebrates, their responses to disturbance events, and the potential for recolonization routes after these events are important questions in floodplain regions. Two within the Severn region, and one between the Severn and Wye (from two catchments, Severn [S] and Wye [W]).

Table 1. Details of seven microsatellite loci isolated from B. atrocaeruleum

Locus	Primer sequence 5′–3′	Dye	Repeat motif	NA	Size range	H_o	H_e	P
Ba-A108	F: AACGCACTTGGCAGCTTGATA R: ATGGGCACTTACCATATAATC	NED	Di	NA	9	0.72	0.56	0.19
Ba-C1	F: ACCGCCCTAATGATGAC R: TCTGGTGCTGCTGTCAC	6FAM	Tri		~	0.78	0.81	0.57
Ba-C2	F: ATATGCACTCGAAACACGAC R: GCTGAGATAGTGAGGAATG	HEX	Tri	12	129–165	0.78	0.94	0.64
Ba-C102	F: AGCCAAAACACGATATAGG R: CAACCATCATTGGTTCGA	HEX	Tri	4	186–195	0.48	0.44	0.72
Ba-C103	F: CTTGCTGTAGATATGTTG R: AGGCCGTGTAGCTGCGAAC	6FAM	Tri	7	262–282	0.23	0.25	0.26
Ba-C104	F: TCGTTTTTCTCAGTACG R: CATCACCCGATACTACACAC	NED	Tri	9	198–220	0.78	0.74	1
Ba-D101	F: ACCAATCGTGTTCTGTTGTG	NED	Tri	10	244–263	0.66	0.16	<0.001**

All anneal temperatures were 55°C. N_o, number of alleles per locus; H_o, observed heterozygosity; H_e, expected heterozygosity; P, exact test P value.

**Statistically significant.

Table 2. Sequences for primer pairs designed from clones that failed to amplify product in natural populations

Locus	Primer sequence 5′–3′	Dye	Repeat motif	NA	Size range	H_o	H_e	P
Ba-A6	F: TAAGCCACCTTGCTGTA R: TAGCTGGCTGTTGTTTC	NED	Di	NA	9	0.72	0.56	0.19
Ba-A110	F: CACACCGAACAACAGATA R: TAGCTGGCTGTTGTTTC	6FAM	Tri		9	0.78	0.81	0.57
Ba-B1a	F: ACGAGAGCTGCGAGAAT G: GACCAATGGACGTCCCTCC	6FAM	Tri	7	262–282	0.23	0.25	0.26
Ba-B3	F: GTTTGCCGACAAAGATAGCT G: GGCTCCCTCTACAAATACCC	NED	Tri	9	198–220	0.78	0.74	1
Ba-B103b	F: AGCGACAATACCTATTTACTG R: TGCGTTACAAACAAACTAGCC	NED	Tri	10	244–263	0.66	0.16	<0.001**
Ba-B111	F: GCAGGAGGATAGGTGAGT G: TCGAGCAGAGAAGATTTGTG	NED	Tri	10	244–263	0.66	0.16	<0.001**

(P = 0.04), and 3/10 pairwise F_ST values were significant (Table 3), two within the Severn region, and one between the Severn and Wye regions.

The ecohydrology of invertebrates associated with exposed riverine sediments. The population dynamics of patchily distributed riparian invertebrates, their responses to disturbance events, and the potential for recolonization routes after these events are important questions in floodplain conservation biology, particularly given the globally threatened status of natural floodplain systems (Tockner and Stanford 2002). The ability of these microsatellite loci to detect significant structure among B. atrocaeruleum populations across a minimal spatial extent suggests their strong potential for their use in addressing these questions, in addition, the diversity of the Bembidion genus may give these primers some utility in sister species.

Acknowledgments

We are grateful for the input of Faye Hughes and Lorraine Wallace in the Functional Genomics and Proteomics Facility, University of Birmingham, also Kenneth Jones, Greg Sadowski, and Fred Fernando at Genetic Identification Services, CA. This study was funded by the Environment Agency, England and Wales.

References Cited

Anderson, J., and O. Hanssen. 2008. Riparian beetles, a unique but vulnerable element in the fauna of Fennoscandia. Biodivers. Conserv. 14: 3497–3524.

Bates, A., J. Sadler, and A. Fowles. 2006. Condition-dependent dispersal of a patchily distributed riparian ground beetle in response to disturbance. Oecologia 150: 50–60.

Contreras-Diaz, H. G., J. Pestano, N. M. Suarez, P. Oromi, and C. Juan. 2006. Microsatellite loci in the Canary Islands endemic ground beetle Trechus flavicollis and their applicability to cave-dwelling related species. Mol. Ecol. Notes 6: 54–56.

Excoffier, L., and H. E. L. Lischer. 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour 10: 564–567.

Eyre, M., M. Luff, and D. Lott. 2000. Records of rare and notable species from riverine sediments in Scotland and northern England. Coleopterist 9: 25–38.

Florsheim, J. L., J. F. Mount, and A. Chin. 2008. Bank erosion as a desirable attribute of rivers. Bioscience 58: 519–529.

Jones, K. C., and K. F. Levine, et al. 2002. Characterization of 11 polymorphic tetranucleotide microsatellites for forensic applications in California elk (Cervus elaphus canadensis). Mol. Ecol. Notes 2: 425–427.

Keller, I., and C. R. Largiader. 2003. Five microsatellite DNA markers for the ground beetle Abax parallelepipedus (Coleoptera, Carabidae). Mol. Ecol. Notes 3: 113–114.

Luff, M. L. 1998. Provisional atlas of the ground beetles (Coleoptera: Carabidae) of the British Isles. Biological Records Centre, Huntingdon, United Kingdom.

Petts, G. E., and A. M. Gurnell. 2005. Dams and geomorphology: Research progress and future directions. Geomorphology 71: 27–47.

Sadler, J., and A. Bates. 2008. The ecohydrology of invertebrates associated with exposed riverine sediments. In P. Wood, D. Hannah, and J. Sadler (eds.), Hydroecology and ecohydrology: past, present and future. John Wiley & Sons Ltd, Chichester.

Tockner, K., and J. Stanford. 2002. Riverine flood plains: present state and future trends. Environ. Conserv. 29: 308–330.

Received 2 April 2013; accepted 29 October 2013.