Size Effect on the Magnetic Phase in Sr$_4$Ru$_3$O$_{10}$

Yan Liu
Chinese Academy of Sciences, China

Jiyong Yang
Chinese Academy of Sciences, China

Weike Wang
Chinese Academy of Sciences, China

Haifeng Du
Chinese Academy of Sciences, China

Wei Ning
Chinese Academy of Sciences, China

See next page for additional authors

Follow this and additional works at: https://uknowledge.uky.edu/cam_facpub

Part of the Materials Science and Engineering Commons, and the Physics Commons

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Repository Citation

Liu, Yan; Yang, Jiyong; Wang, Weike; Du, Haifeng; Ning, Wei; Ling, Langsheng; Tong, Wei; Qu, Zhe; Yang, Zhaorong; Tian, Minling; Cao, Gang; and Zhang, Yuheng. "Size Effect on the Magnetic Phase in Sr$_4$Ru$_3$O$_{10}$" (2016). *Center for Advanced Materials Faculty Publications*. 4.
https://uknowledge.uky.edu/cam_facpub/4

This Article is brought to you for free and open access by the Center for Advanced Materials at UKnowledge. It has been accepted for inclusion in Center for Advanced Materials Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
Size Effect on the Magnetic Phase in Sr₄Ru₃O₁₀

Digital Object Identifier (DOI)
https://doi.org/10.1088/1367-2630/18/5/053019

Notes/Citation Information
Published in New Journal of Physics, v. 18, article 053019, p. 1-6.

© 2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Authors
Yan Liu, Jiyong Yang, Weike Wang, Haifeng Du, Wei Ning, Langsheng Ling, Wei Tong, Zhe Qu, Zhaorong Yang, Minling Tian, Gang Cao, and Yuheng Zhang

This article is available at UKnowledge: https://uknowledge.uky.edu/cam_facpub/4
Size effect on the magnetic phase in Sr$_4$Ru$_3$O$_{10}$

This content has been downloaded from IOPscience. Please scroll down to see the full text.

2016 New J. Phys. 18 053019
(http://iopscience.iop.org/1367-2630/18/5/053019)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 128.163.8.74
This content was downloaded on 06/09/2017 at 14:52

Please note that terms and conditions apply.

You may also be interested in:

Unusual magneto-thermal properties in Sr4Ru3O10
Pramod Kumar, Naresh Kumar and Rachana Kumar

Observation of topological Hall effect in Mn2RhSn films
K G Rana, O Meshcheriakova, J Kübler et al.

Neutron diffraction study of triple-layered Sr4Ru3O10
Veronica Granata, Lucia Capogna, Manfred Reehuis et al.

Skew scattering dominated anomalous Hall effect in Cox(MgO)100x granular thin films
Qiang Zhang, Yan Wen, Yuelei Zhao et al.

Scaling of the anomalous Hall effect in lower conductivity regimes
J. Karel, C. Bordel, D. S. Bouma et al.

Lifshitz transition mediated electronic transport anomaly in bulk ZrTe5
Hang Chi, Cheng Zhang, Genda Gu et al.

Hall-effect characterization of the metamagnetic transition in FeRh
M A de Vries, M Loving, A P Mihai et al.

Universal scaling of the anomalous Hall effect
Xiaoqian Zhang, Wei Wang, Kejie Wang et al.

Incoherence–coherence crossover and low-temperature Fermi-liquid-like behavior in AFe2As2 (A=K, Rb, Cs): evidence from electrical transport properties
Z J Xiang, N Z Wang, A F Wang et al.
Size effect on the magnetic phase in \(\text{Sr}_4\text{Ru}_3\text{O}_{10} \)

Yan Liu\(^1\), Jiyoung Yang\(^1\), Weike Wang\(^1\), Haifeng Du\(^1,3\), Wei Ning\(^1\), Langsheng Ling\(^1,3\), Wei Tong\(^1\), Zhe Qu\(^1\), Zhaorong Yang\(^1,4\), Mingliang Tian\(^1,5\), Gang Cao\(^1\) and Yuheng Zhang\(^1,4,5\)

\(^1\) High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, Anhui, People’s Republic of China
\(^2\) University of Science and Technology of China, Hefei 230031, Anhui, People’s Republic of China
\(^3\) Hefei Science Center, Chinese Academy of Sciences, Hefei 230031, Anhui, People’s Republic of China
\(^4\) Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People’s Republic of China
\(^5\) Center for Advanced Materials, Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA

E-mail: jyyang@hmfl.ac.cn and tianml@hmfl.ac.cn

Keywords: \(\text{Sr}_4\text{Ru}_3\text{O}_{10} \), metamagnetic transition, size effect, Hall effect

Abstract

High quality \(\text{Sr}_4\text{Ru}_3\text{O}_{10} \) nanoflakes are obtained by the scotch tape-based micro-mechanical exfoliation method. The metamagnetic transition temperature \(T_m \text{ flake} \) is found to decrease in line with the decrease of thickness, while the ferromagnetic (FM) phase, the ordinary, and anomalous Hall effects (OHE and AHE) are independent on the thickness of the flake. Analysis of the data demonstrates that the AHE reflects the FM nature of \(\text{Sr}_4\text{Ru}_3\text{O}_{10} \) and the decrease of thickness favors the Ru moments aligned in the \(ab \)-plane, which induces a decrease of the metamagnetic transition temperature compared with the bulk.

1. Introduction

Ruthenium oxide perovskites \(\text{Sr}_n\text{Ru}_n\text{O}_{3n+1} \) \((n = 1, 2, 3, \infty) \) are strongly correlated materials involving complex interactions between the charge, spin, orbit and lattice degrees of freedom. Their ground states present a rich of exotic physical properties, such as the unconventional spin-triplet superconductivity in \(\text{Sr}_2\text{RuO}_4 \) \((n = 1) \) [1], the quantum criticality and nematicity in \(\text{Sr}_2\text{Ru}_2\text{O}_7 \) \((n = 2) \) [2–4], and the spontaneous itinerant ferromagnetism in the infinite layer of \(\text{Sr}_2\text{RuO}_4 \) \((n = \infty) \) [5, 6]. \(\text{Sr}_4\text{Ru}_3\text{O}_{10} \) is the \(n = 3 \) member of the \(\text{Sr}_n\text{Ru}_n\text{O}_{3n+1} \) family. It belongs to quasi-two-dimensional metal with an orthorhombic unit cell, which is composed of triple layers of corner-shared RuO\(_6\) octahedra separated by double rock-salt Sr-O layer [7]. This member has attracted considerable attention in recent years due to its unique magnetic properties [7–17]. By applying a magnetic field \(H \) \((0.01 \text{T}) \) along the \(c \)-axis, the temperature dependent magnetization \(M_T(T) \) exhibits a FM transition at a Curie temperature \(T_C \sim 105 \text{ K} \), followed by another sharp transition at temperature \(T_m \text{ bulk} \) of about \(\sim 50 \text{ K} \) with a large irreversibility. In contrast, by applying a field \((H = 0.01 \text{T}) \) within the \(ab \)-plane, the \(M_{ab}(T) \) displays a weak cusp at \(T_C \) and a pronounced peak at \(T_m \text{ bulk} \) with a much smaller irreversibility, and below about \(20 \text{ K} \), the \(M_{ab} \) is almost unmeasurable [7, 8]. Interestingly, if the in-plane field reaches a critical field \(H_c \), a rapid increase of \(M_{ab} \) in a narrow range of magnetic field is observed on the \(M-H \) curves at temperatures below \(T_m \text{ bulk} \), and the \(H_c \) increases with the decrease of temperature \((H_c \sim 2 \text{ K} \sim 2 \text{ T}) \) [8]. This transition is considered to be the metamagnetic transition.

The metamagnetic transition observed in \(\text{Sr}_4\text{Ru}_3\text{O}_{10} \) below \(T_m \text{ bulk} \) contains rich physics associated with the lattice, spin, orbit, and electronic inhomogeneity, which has not been well understood. Firstly, this transition is accompanied by strong spin-lattice coupling [9, 14, 18]. The crystal structure undergoes a significant change when the applied in-plane field crosses over the critical field \(H_c \) [9, 14]. Secondly, the occurrence of the transition is possibly through a phase separation process with magnetic domain formation, for the in-plane magnetoresistivity near \(H_c \) exhibits large hysteresis or multiple ultra-sharp steps at extreme low temperatures \((< 1 \text{ K}) \) [10, 11, 12]. Thirdly, the angle-resolved magnetization and magnetoresistivity suggest the metamagnetic transition is orbit-dependent, where the Ru 4d\(_{x^2-y^2}\) orbit is responsible for the metamagnetic transition while the 4d\(_{xy}\) orbit is ferromagnetic in the ground state [12, 13]. The understanding of the metamagnetic transition in
Sr$_4$Ru$_3$O$_{10}$ is challenged by recent neutron study, where the Ru moments at zero field and below T_c are found to be FM-aligned along the c-axis only, there is no any signature of either long-range antiferromagnetic (AFM) or FM order in the ab-plane \cite{14}. However, the neutron data cannot exclude a possibility that the metamagnetism is a field-induced short-range AFM order to FM transition. To date, the magnetic nature of Sr$_4$Ru$_3$O$_{10}$ below T_m bulk is still unclear and remains elusive.

In this work, we present the electrical transport measurements of two mechanically exfoliated Sr$_4$Ru$_3$O$_{10}$ nanoflakes with thickness of 31 nm and 260 nm. It finds that the metamagnetic transition temperature, T_m flake, in the flake is much smaller than the bulk, T_m bulk \sim 50 K, and decreases with decreasing thickness, but its saturation field H_s along the c-axis increases with the decrease of thickness, indicating the Ru moment in the thinner sample is more difficult to be aligned along the c-direction. However, the FM transition, the ordinary and anomalous Hall effects are independent on the thickness, where the dominant carriers derived from the ordinary Hall coefficient R_h are always hole-type and the anomalous Hall conductivity σ_{xy}^A follows the typical scaling law $\sigma_{xy}^A \propto \sigma_{xx} \varphi$ (σ_{xx}: longitudinal conductivity) with different scaling exponent, φ \sim 1, 0 and 1.6, as the increase of temperature T. The decrease of the metamagnetic transition temperature thus cannot be attributed to the changes of the unit cell or the electronic structures, but can be understood by the shape anisotropy induced rearrangement of the Ru moments due to the size effect.

2. Experimental

Sr$_4$Ru$_3$O$_{10}$ single crystal is grown by the flux technique \cite{8}. The temperature dependent magnetization of the bulk crystal along the c-axis measured under 0.01 T is shown in figure 1 (a), which is well consistent with those reported previously \cite{7, 8}. The characteristic temperatures T_m bulk \sim50 K and T_c \sim 105 K of the single crystal are indicated by the arrows. The Sr$_4$Ru$_3$O$_{10}$ flakes are obtained by the scotch tape-based micro-mechanical exfoliation from the bulk single crystal, and then transferred to a silicon substrate covered with 300 nm-thick silicon dioxide on the top of the surface. The thickness, d, of the flake is determined by atomic force microscopy. Conventional six terminal electrical contacts are made using electron-beam lithography (EBL) technique. To

Figure 1. (a) Magnetization as a function of temperature measured along the c-axis at 0.01 T of the Sr$_4$Ru$_3$O$_{10}$ single crystal under zero- or field cooling condition. (b) SEM image of a Sr$_4$Ru$_3$O$_{10}$ flake (d = 260 nm) with patterned electrodes. (c) and (d) are, respectively, the temperature dependence of the longitudinal resistivity ρ_{xx} of the Sr$_4$Ru$_3$O$_{10}$ flakes with different thickness d; the insets are, respectively, the blow-up of the ρ_{xx}-T curves in low-T range measured under in-plane fields.
ensure ohmic contacts, we etch the e-beam patterned contact areas for a few seconds by in situ Ar-plasma to remove the possible residual PMMA resist firstly, and then deposit 5 nm Ti and 150 nm Au working as the electrical leads by thermal evaporation. With this process, the successful rate for ohmic contacts is higher than 90%, and the resistance ratio between the contact resistance and the sample is usually less than 15%. The scanning electron microscope (SEM) image of a device with patterned electrode is shown in figure 1(b). The longitudinal resistivity (ρxx) and the Hall resistivity (ρxy) are measured as functions of temperature (T) and external magnetic field (H) by a physical property measurement system (PPMS, Quantum Design). The ρxx is measured by the standard four-probe configuration, where the contact resistance is believed to be negligible. The Hall resistance ρxy is determined from ρxy = [ρxy(H)−ρxy(−H)]/2 in order to subtract the longitudinal component of ρxx arising from the small misalignment of the transverse contacts.

3. Results and discussion

Figures 1(c) and (d) show ρxx versus T curves of two flakes (d = 31 and 260 nm) measured at zero magnetic field. For each flake, the ρxx decreases monotonically as T decreases. The residual resistance ratio, $\text{RRR} = \rho_{xx}(300 \, \text{K})/\rho_{xx}(2 \, \text{K})$, of each flake reaches about 60 (data not shown), indicating the crystals are high quality, where the residual resistivity of both flakes at 2 K is about 3.77 μΩ cm (d = 31 nm) or 4.15 μΩ cm (d = 260 nm). Two anomalies on the resistivity can be clearly identified from the magnetoresistivity (MR) measured under various in-plane magnetic fields H as shown in figure 2, where MR is defined as $\rho_{xx}(H)/\rho_{xx}(0)$. The data is obtained by the zero field cooling from above 160 K to exclude the influence of the field history. The ‘valley’ observed on the MR-T curves is as expected due to the itinerant FM nature of Sr4Ru3O10 [8], which is caused by the suppression of carrier scattering from spin fluctuations under in-plane magnetic field [19]. The Tc is determined to be ~106 K and 101 K for the 31 nm- and 260 nm-thick flakes, respectively, from the negative maximum of the ‘valley’ [19], which is almost independent on the thickness and consistent with the bulk. With decreasing T below Tc, the Sr4Ru3O10 undergoes another transition called the metamagnetic transition at about $T_m^\text{flake} = 25 K$ and 37 K for the 31 nm- and 260 nm-thick flakes, below T_m^flake the MR shows a positive behavior, while above which the MR is always negative due to the FM nature of Sr4Ru3O10. This feature is consistent with that reported in the bulk [11], except for the T_m^bulk is almost 20 K lower than the $T_m^\text{flake} \sim 50 K$. It finds that the metamagnetic transition temperature decreases with decreasing the thickness of the flake, while the T_c remains unchanged. Previously, both the electronic and lattice structures have been suggested to be the driving force for the formation of the metamagnetic phase [7, 12–15]. A fact that our sample preparation process does not make any variations of the electronic or lattice structures provides an indication that the metamagnetic transition in Sr4Ru3O10 should have an origin of internal magnetic orders, which maybe changed as the decrease of thickness. To understand the mechanism in detail, we performed the Hall effect study on the flakes.

Figure 3 shows the H-dependence of ρxy at various temperatures, where H is applied perpendicular to the ab-plane of the flake. As a FM nature of Sr4Ru3O10 below T_c, both the OHE and AHE make contributions to the total Hall resistivity [20], characterized by the ‘knee’ profile as shown in figure 3. At temperatures far above T_c, the
OHE resistivity ρ_{xy} governs the total ρ_{xy} with a linear dependence of $\rho_{xy} = R_0 H$ (e.g. see the dashed line in figure 3(d)), which is due to the orbital effect of H on the carriers, here R_0 is the ordinary Hall coefficient. With decreasing T, the AHE gradually dominates the ρ_{xy}, and the AHE resistivity ρ_{xy}^A reaches a maximum at about 80 K. Then ρ_{xy}^A decreases rapidly with the further decrease of T and becomes extremely small at 10 K but can still be recognized (e.g. see the dashed line in figure 3(c)). In spite of the FM-induced hysteresis behavior in the low field range, the trace of the observed ρ_{xy} at a fixed temperature can be well described by the equation of $\rho_{xy} = R_0 H + \rho_{xy}^A$, which contains both the OHE and AHE components. The ordinary Hall coefficient R_0 can be extracted from the high field slope, i.e. $d\rho_{xy}/dH$ for $H = 5$ T, of the Hall isotherm, and the ρ_{xy}^A below T_c can be simultaneously obtained by extrapolating the linear term to the zero field.

The ordinary Hall coefficient R_0, as a function of temperature is shown in figure 4(a). R_0 is positive in the whole temperature range, indicating the dominant carriers in Sr$_4$Ru$_3$O$_{10}$ are holes. The R_0-T curves for both flakes present almost a same ‘S-shaped’-like behavior. Specifically, the $R_0(T)$ shows a maximum near $T_1 \sim 22$ K and a minimum near $T_2 \sim 60$ K below T_c, and these kinks show no direct correlation with the magnetic structures, such as the metamagnetic transition near T_m flake and the FM transition at T_c. Generally, the temperature dependent $R_0(T)$ in quasi-two-dimensional metal is related to the changes of the wave vector dependent electron mean free path or the reconstruction of the Fermi surface [21, 22]. The almost identical $R_0(T)$ in both flakes implies that the electronic structures are almost independent on the thickness of the flakes as expected. We noticed that both $R_0(T)$ display a similar T-dependent feature as the variations of the lattice

Figure 3. Hall resistivity ρ_{xy} of the Sr$_4$Ru$_3$O$_{10}$ flakes as a function of magnetic field H along the c-axis at various temperatures. (a), (b) are for $d = 31$ nm; (c), (d) for $d = 260$ nm.

Figure 4. (a) The temperature dependence of the ordinary Hall coefficient R_0. (b) The scaling relation between the anomalous Hall conductivity σ_{xy}^A and the longitudinal conductivity σ_{xx}. New J. Phys. 18 (2016) 053019 Y Liu et al.
In summary, we have investigated the transport property of two mechanically exfoliated Sr₄Ru₃O₁₀ nanoflakes. The result shows that the change of thickness has little effect on the FM phase, the OHE and AHE, but can modulate the metamagnetic transition temperature T_m significantly, which is about 25 K for the 31 nm-thick flake and 37 K for the 260 nm-thick flake, respectively. The identical Hall effect in the two flakes suggests the decrease of T_m cannot be attributed to the changes of the unit cell or the electronic structure. However, the reason for such change is possibly attributed to the large variation of the structures in Sr₄Ru₃O₁₀ as well. The result shows that the change of thickness has little effect on the FM phase, the OHE and AHE, but can modulate the metamagnetic transition temperature T_m significantly, which is about 25 K for the 31 nm-thick flake and 37 K for the 260 nm-thick flake, respectively. The identical Hall effect in the two flakes suggests the decrease of T_m cannot be attributed to the changes of the unit cell or the electronic structure. However, the reason for such change is possibly attributed to the large variation of the structures in Sr₄Ru₃O₁₀ as well.
we have found that the saturation field along the c-axis in the two flakes increases as the decrease of thickness, indicating the Ru moment is aligned closer to the ab-plane in the thinner flake due to the size effect, and the metamagnetic transition in Sr₄Ru₃O₁₀ is thus caused by a rearrangement of the Ru moments.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 11174294, 11174291, 11374302, 11304319, U1332209, U1332139, U1432251 and U1532153), and the program of Users with Excellence, the Hefei Science Center of CAS and the CAS/SAFEA international partnership program for creative research teams of China.

References

[1] Mackenzie A P and Maeno Y 2003 The superconductivity of Sr₄Ru₃O₁₀ and the physics of spin-triplet pairing Rev. Mod. Phys. 75 657
[2] Grigera S A et al 2001 Magnetic field-tuned quantum criticality in the metallic ruthenate Sr₄Ru₃O₁₀ Phys. Rev. Lett. 87 227001
[3] Borzi R et al 2007 Formation of a nematic fluid at high fields in Sr₄Ru₃O₁₀ Science 315 214–7
[4] Lester C et al 2015 Field-tunable spin-density-wave phases in Sr₄Ru₃O₁₀ Nat. Mater. 14 373–8
[5] Klein L et al 1996 Anomalous spin scattering effects in the badly metallic itinerant ferromagnet SrRuO₃ Phys. Rev. Lett. 77 2274
[6] Koster G et al 2012 Structure, physical properties, and applications of SrRuO₃ thin films Rev. Mod. Phys. 84 253
[7] Crawford M et al 2002 Structure and magnetism of single crystal Sr₄Ru₃O₁₀: a ferromagnetic triple-layer ruthenate Phys. Rev. B 65 214412
[8] Cao G et al 2003 Competing ground states in triple-layered Sr₄Ru₃O₁₀: verging on itinerant ferromagnetism with critical fluctuations Phys. Rev. B 68 174409
[9] Gupta R et al 2006 Field- and pressure-induced phases in Sr₄Ru₃O₁₀: a spectroscopic investigation Phys. Rev. Lett. 96 067004
[10] Mao Z Q et al 2006 Phase separation in the itinerant metamagnetic transition of Sr₄Ru₃O₁₀ Phys. Rev. Lett. 96 077203
[11] Fobes D et al 2007 Phase diagram of the electronic states of trilayered ruthenate Sr₄Ru₃O₁₀ Phys. Rev. B 75 094429
[12] Jo Y J et al 2007 Orbital-dependent metamagnetic response in Sr₄Ru₃O₁₀ Phys. Rev. B 75 094413
[13] Fobes D et al 2010 Anisotropy of magnetoresistivities in Sr₄Ru₃O₁₀: evidence for an orbital-selective metamagnetic transition Phys. Rev. B 81 172402
[14] Granata V et al 2013 Neutron diffraction study of triple-layered Sr₄Ru₃O₁₀ J. Phys.: Condens. Matter. 25 056004
[15] Carleschi E et al 2014 Double metamagnetic transition in Sr₄Ru₃O₁₀ Phys. Rev. B 90 205120
[16] Cao G et al 2007 Anomalous itinerant magnetism in single-crystal Sr₄Ru₃O₁₀: a thermodynamic and transport investigation Phys. Rev. B 75 024429
[17] Xu Z et al 2007 Magnetic, electrical transport, and thermoelectric properties of Sr₄Ru₃O₁₀: evidence for a field-induced electronic phase transition at low temperatures Phys. Rev. B 76 094403
[18] Mirri C et al 2012 Anisotropic optical conductivity of Sr₄Ru₃O₁₀ Phys. Rev. B 85 235124
[19] Mishra S G 1990 Weak itinerant electron ferromagnets Mod. Phys. Lett. B 4 83–93
[20] Nagaosa N et al 2010 Anomalous Hall effect Rev. Mod. Phys. 82 1539
[21] Ong N P 1991 Geometric interpretation of the weak-field Hall conductivity in two-dimensional metals with arbitrary Fermi surface Phys. Rev. B 43 193
[22] Mackenzie A P et al 1996 Hall effect in the two-dimensional metal Sr₄Ru₃O₁₀ Phys. Rev. B 54 7425
[23] Onoda S, Sugimoto N and Nagaosa N 2006 Intrinsic versus extrinsic anomalous Hall effect in ferromagnets Phys. Rev. Lett. 97 126602
[24] Onoda S, Sugimoto N and Nagaosa N 2008 Quantum transport theory of anomalous electric, thermoelectric, and thermal Hall effects in ferromagnets Phys. Rev. B 77 165103
[25] Sangio S et al 2009 Anomalous Hall effect in Fe (001) epitaxial thin films over a wide range in conductivity Phys. Rev. B 79 014431