Tuning the thermogelation and rheology of poly(2-oxazoline)/poly(2-oxazine)s based thermosensitive hydrogels for 3D bioprinting.

Malik Salman Haider†,‡, Taufiq Ahmad‡, Mengshi Yang‡, Chen Hu‡, Lukas Hahn‡, Philipp Stahlhut‡, Jürgen Groll‡, and Robert Luxenhofer†,§,*

†Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Röntgenring 11, 97070 Würzburg, Germany

‡Department of Functional Materials in Medicine and Dentistry, Institute for Functional Materials and Biofabrication and Bavarian Polymer Institute, Julius-Maximilians-University Würzburg, Pleicherwall 2, 97070 Würzburg, Germany

§Soft Matter Chemistry, Department of Chemistry and Helsinki Institute of Sustainability Science, Faculty of Science, University of Helsinki, PB 55, 00014 Helsinki, Finland

Keywords: poly(2-ethyl-2-oxazoline), shear thinning, shape fidelity, cyto-compatibility, bio-printability,

Correspondence to: malik.haider@uni-wuerzburg.de, robert.luxenhofer@helsinki.fi
Abstract

As one kind of “smart” material, thermogelling polymers find applications in biofabrication, drug delivery and regenerative medicine. In this work, we report a thermosensitive poly(2-oxazoline)/poly(2-oxazine) based diblock copolymer comprising thermosensitive/moderately hydrophobic poly(2-n-propyl-2-oxazine) (pPrOzi) and thermosensitive/moderately hydrophilic poly(2-ethyl-2-oxazoline) (pEtOx). Hydrogels were only formed when block length exceeded certain length (≈ 200 repeat units). The tube inversion and rheological tests showed that the material has reversible sol-gel transition above 25 wt.% concentration. Rheological tests further revealed a gel strength around 3 kPa, high shear thinning property and rapid shear recovery after stress, which are highly desirable properties for extrusion based three dimensional (3D) (bio) printing. Attributed to the rheology profile, well resolved printability and high stackability (with added laponite) was also possible. (Cryo) scanning electron microscopy exhibited a highly porous, interconnected, 3D network. The sol-state at lower temperatures (in ice bath) facilitated the homogeneous distribution of (fluorescently labelled) human adipose derived stem cells (hADSCs) in hydrogel matrix. Post-printing live/dead assays revealed that the hADSCs encapsulated within the hydrogel remained viable (≈ 97%). This thermoreversible and (bio) printable hydrogel demonstrated promising properties for its utility in tissue engineering applications.
Introduction

Recent innovations in biomaterials have had a huge impact on all aspects of tissue engineering, regenerative medicine and drug delivery, resulting in development of “smart” biomaterials (responsive to external stimuli e.g. temperature, pH, light etc.) [1, 2]. Because of rapidly growing interests in precision medicine, emergence of gene/immune therapies and advancements in three dimensional (3D) (bio) printing, there is an increasing demand for smart biomaterials.

A thermogel is a stimuli-responsive “smart” material which responds to change in temperature, above or below the critical temperature by a (typically reversible) sol-gel transition. The gelation process is mainly due to the development of supramolecular structures yielding 3D, physically crosslinked networks because of hydrogen bonding, coulomb or hydrophobic interactions or simple entanglement [3]. In the majority of cases, the transition takes place upon increase in temperature [4] but inverse gelation has also been observed [5-8]. These are highly versatile materials and repetitively proposed for multiple applications in biomedical, pharmaceutical and food industry. Apart from thermogelling natural polymers [9], few synthetic polymers also exhibit this behaviour [10]. In this context, poly(N-isopropylacrylamide) [11, 12] and few members of Pluronics® family (also known as poloxamers) (ABA triblock copolymer where A is hydrophilic poly(ethylene glycol) (PEG) and B is thermoresponsive/hydrophobic poly(propylene glycol) (PPG)) [13] are most frequently discussed, however the biodegradability [14-16] and limited cytocompatibility [17] has remained the associated issues. A very interesting multiblock terpolymer from PEG, PPG and poly(ε-caprolactone) has been recently investigated for its utilization as a vitreous substitute [18].
Polymers of cyclic imino ethers, particularly poly(2-oxazoline)s (POx) and poly(2-oxazine)s (POzi) [19] with a thermoresponsive profile [20, 21] have attained significant attention in the past decade [21, 22]. POx has shown huge potential in tissue engineering [23-26], drug delivery [27-33] and 3D (bio) printing [22, 34]. They are structural isomers of polypeptides, are synthetically relatively easily accessed and are highly tunable in their physico-chemical characteristics [35]. POx with fewer than four carbons in their side chain are water soluble. Regardless of temperature, poly(2-methyl-2-oxazoline) (pMeOx) is soluble in water while poly(2-ethyl-2-oxazoline) (pEtOx), poly(2-propyl-2-oxazoline) (pPrOx), poly(2-isopropyl-2-oxazoline) (piPrOx) and poly(2-cyclopropyl-2-oxazoline) (pcPrOx) exhibit lower critical solution temperature (LCST) type behaviour and temperature dependent aqueous solubility [36, 37]. Among these, pMeOx and pEtOx have been studied thoroughly as highly hydrophilic polymers which is discussed as one potential alternative to PEG, because of non-toxic and non-immunogenic nature, low unspecific organ uptake and rapid clearance (at right size) [23, 38-40]. Grube et al. explained the solution properties of POx in comparison to PEG, both pMeOx and pEtOx with same molar mass (as PEG) were less solvated and physically more compact. These results further suggested that on basis of absolute physico-chemical properties, POx are an interesting alternative to PEG [41]. In various attempts to control the protein adsorption and cell adhesion on the biomaterials, the POx particularly pMeOx, pEtOx and pMeOzi (poly(2-methyl-2-oxazine)) showed better performance than PEG [42-44].

A plethora of studies show the utilization of pMeOx and pEtOx as hydrophilic polymer for the development of hydrogels [26, 45-47], electrospun fibres [48], polymer brushes [49], nanoparticles [50], micelles for drug delivery [51-56] and for melt electrowriting [57]. Bloksma et al. also investigated the thermoresponsive behaviour of few POzi based homopolymers [20]. Interestingly though, there are few reports that solely address the thermogelation of
pure POx/POzi based systems. Inspired by the Pluronics family, Zahoranova et al. studied various ABA and BAB triblock copolymers based on pMeOx (A) and pPrOx (B) but no thermogelation could be observed up-to 30 wt.% concentration at the investigated temperature range of 10 to 50°C [58]. More recently, Lübтов et al. reported on the development of ABA triblock copolymer comprised of pMeOx (A) and poly(2-iso-butyl-2-oxazoline) (piBuOx) (B) which form thermogels at 20 wt.% but its rheological characteristics, in particular its low yield stress were not conducive for 3D printing [46]. In addition, Hahn et al. reported on several ABA POx/POzi-based triblock copolymer exhibiting inverse gelation [6, 59-61]

While both pMeOx and pEtOx (and more recently pMeOzi) are routinely considered as potential alternative to PEG or other hydrophilic polymers, these two polymers have shown distinct physico-chemical solution properties. Recently, we have observed that by replacing pMeOx with pEtOx as hydrophilic block (A) can dramatically reduce the drug loading efficiency of ABA type POx/POzi based triblock copolymer micelles [55]. Previously, we synthesized POx/POzi based thermogelling bioink composed of pMeOx (no LCST) as A and thermoresponsive poly(2-propyl-2-oxazine) (pPrOzi) (LCST ≈ 12°C) as B (pPrOzi-b-pMeOx) [45]. The aqueous solution of pPrOzi-b-pMeOx hydrogel exhibited reversible thermogelation above 20 wt.% concentration. This hydrogel proved to be cytocompatible and (bio) printable. Herein, we replaced pMeOx with pEtOx in this type of block copolymer and investigated how the rheological and thermogelling properties of the resultant AB diblock copolymer (pPrOzi-b-pEtOx) are affected. The morphology, cytocompatibility and (bio) printability of the hydrogel were further evaluated.
Materials and Methods

Materials

All substances for the preparation of the polymers were purchased from Sigma-Aldrich (Steinheim, Germany) or Acros (Geel, Belgium) and were used as received unless otherwise stated. The monomers 2-n-propyl-2-oxazine (PrOzi) and 2-ethyl-2-oxazoline (EtOx) were prepared following the procedure by Witte and Seeliger [62]. All substances used for polymerization, specifically methyl trifluoromethylsulfonate (MeOTf), EtOx, PrOzi and benzonitrile (PhCN), were refluxed over calcium hydride or phosphorus pentoxide and distilled and stored under argon. Laponite XLG was purchased from BYK-chemical GmbH (Wesel, Germany). Human adipose-derived stem cells (hADSCs) were purchased from Lonza (Basel, Switzerland). Dulbecco’s modified eagle medium (DMEM) + GlutaMAX and Fetal bovine serum (FBS) were obtained from Gibco (Darmstadt, Germany) and Penicillin and streptomycin (P/s) solution were purchased from Biochrom AG (Berlin, Germany).

Methods:

Diblock Copolymer Synthesis

The polymerization and workup procedures were carried out as described previously [45, 62]. As a general synthetic procedure, the initiator MeOTf was added to a dried and argon flushed flask and dissolved in the respective amount of solvent (PhCN). The monomer PrOzi was added to the reaction mixture and heated to 120°C for approximately 12 hours. Reaction progress was controlled by 1H-NMR-spectroscopy. After complete consumption of PrOzi monomer, the mixture was cooled to room temperature and the monomer for the second block i.e. EtOx was added. The reaction mixture was heated to 110°C for 4-6 h. After complete
monomer consumption was confirmed, termination was carried out by the addition of 1-Boc-piperazine (PipBoc) at 50°C and kept on stirring for 6 hours. Subsequently, potassium carbonate was added and the mixture was stirred at 50°C for further 4 hours. The solvent was removed at reduced pressure under schlenk line. The dried polymer mass was dissolved in deionized (DI) water in ice, followed by process of rotary evaporation resulting in concentrated polymer solution. The polymer solution was transferred to a dialysis bag (MWCO 10 kDa, cellulose acetate) and dialyzed against DI water for 48 hours. The polymer solution was recovered from the dialysis bag and lyophilized, finally obtained as white powder.

Nuclear Magnetic Resonance

Deuterated solvents for NMR analysis were obtained from Deutero GmbH (Kastellaun, Germany). NMR spectra were recorded on a Fourier 300 (300.12 MHz), Bruker Biospin (Rheinstetten, Germany) at 298 K. The spectra were calibrated to the signal of residual protonated solvent (CDCl₃ at 7.26 ppm). All the data were analysed by using the MNova software.

Gel Permeation Chromatography (GPC)

GPC (HFIP) was performed on an Agilent 1260 Infinity System, Polymer Standard Service (Mainz, Germany) with HFIP containing 3 g/L potassium trifluoroacetate; having precolumn: PSS PFG 7µm, 5 cm length, 0.8 cm diameter followed by one AppliChrom ABOA HFIP-P-350 30 cm length, 0.8 cm diameter main column. The columns were kept at 40°C and flow rate was 0.3 ml/min (HFIP). Prior to each measurement, samples were dissolved in HFIP and filtered through 0.2 µm PTFE filters, Roth (Karlsruhe, Germany). Conventional calibration was
performed with PEG standards (0.1 – 1,000 kg/mol) and data was processed with Win-GPC software.

Dialysis

The synthesized polymer was dialysed by using Spectra/Por membranes with a molecular weight cutoff (MWCO) of 10 kDa (material: cellulose acetate) obtained from neoLab (Heidelberg, Germany). Deionized water (DI) water was renewed after 1 h, 4 h and every 12 h subsequently, until end of dialysis (48 h).

Differential Scanning Calorimetry (DSC)

DSC was performed on DSC 204 F1 Phoenix equipped with a CC200 F1 Controller, (NETZSCH, Selb, Germany). The dynamic scans were recorded in nitrogen atmosphere with a heating rate of 10 K/min (25°C – 200°C) and subsequently cooled to -50°C (10 K/min). The samples were heated and cooled two additional times from -50°C to 200°C (10 K/min) (three heating and 2 cooling cycles). For DSC studies, samples (8 to 10 mg) were placed into flat-bottom aluminum pans with crimped-on lids (pierced on the top).

Thermogravimetric Analysis (TGA)

Thermogravimetric analysis was performed on TG 209 F1 IRIS, NETZSCH (Selb, Germany). The powdered polymer samples (10-15 mg) were placed in aluminium oxide crucibles (NETZSCH Selb, Germany) and heated under synthetic air from 30°C to 900°C with the heating rate of 10 K/min while detecting the mass loss.

Rheology Measurements

Rheological measurements were performed using the MCR 301 rheometer from Anton Paar (Ostfildern, Germany) using a 25 mm diameter parallel-plate geometry and a Peltier system for temperature control. First, under a constant angular frequency and strain of 10 rad/sec
and 0.5% respectively, the temperature sweeps from 5 to 60°C were carried out at a heating rate of 0.05 °C/sec to study the thermogelling behavior. Second, amplitude sweeps in the oscillation strain range of 0.01-500% was performed at a constant angular frequency of 10 rad/sec, from which the linear viscoelastic (LVE) range was determined. Third, the frequency sweep was performed in an angular frequency range of 0.1-500 rad/sec at a certain strain of 0.5% (within the LVE range obtained from the amplitude sweep). Finally, the steady-state shear flow from 0.01 to 1000/sec of shear rate were performed to characterize the shear thinning behavior. The structure recovery properties were investigated utilizing the rotational approach with alternating (5 cycles) low (0.1/sec) and high (100/sec) amplitude strain (100 sec each). Except for the temperature sweep, all tests were performed at 25 °C. A solvent trap was utilized in all experiments to prevent drying.

Scanning Electron Microscopy

The 30 wt.% pPrOzi100-b-pEtOx100 hydrogel was frozen with liquid nitrogen and lyophilized afterwards. The lyophilized hydrogel was mounted on aluminum sample holders with conductive carbon tape and sputtered with a 4 nm layer of platinum in a sputter coater (Leica Microsystems ACE 400, Wetzlar, Germany). The morphology of the samples was subsequently analyzed using a Crossbeam 340 field emission scanning electron microscope (Carl Zeiss Microscopy, Oberkochen, Germany) by setting the acceleration voltage ETH to 2 kV, and detection of secondary electrons (SE) was performed with an Everhart-Thornley detector. The obtained images were further processed in imageJ software (1.46r, revised edition).

Cryo-Scanning Electron Microscopy

The 30 wt.% pPrOzi100-b-pEtOx100 hydrogel was also visualized with cryo-SEM. Samples were rapidly frozen in slushed nitrogen at ~210 °C after placing them between aluminum plates (d
with a 2 mm notch for sample fixation. All the following transfer steps were performed at −140 °C with a EM VCT100 cryo-shuttle (Leica Microsystems). To generate a freshly fractured hydrogel surface, one of the aluminum plates was knocked off and freeze etched for 15 min at −85 °C under high vacuum (<1 × 103 mbar) in a Sputter Coater machine (ACE 400, Leica Microsystems). Afterward, samples were sputtered with 3 nm platinum and transferred to the SEM chamber (Crossbeam 340, Zeiss). Images of the hydrogel surface morphology were taken at −140 °C using an acceleration voltage of 2-8 kV. The images were further processed in ImageJ software (1.46r, revised edition). The same process was also applied for cell-laden hydrogels.

3D-Printing of Hydrogel

Hydrogel printing experiments were performed using the extrusion-based 3D bioprinter BIO X from CELLINK (Gothenburg, Sweden) equipped with pneumatic driven print head and a 0.25 mm inner diameter precision needle (25G). The extrusion pressure and printing speed was controlled and varied according to different user-defined printing structures, which were programmed by G-code. The ice-cold pPrOzi100-b-pEtOx100 solution was loaded as the ink into a printing cartridge and kept in 4°C fridge before printing to eliminate air bubbles. The pPrOzi100-b-pEtOx100 filled printing cartridge was mounted in the 3D printer and driven pneumatically through the nozzle to print the hydrogel on a petri dish placed on 37 °C print-bed.

Biological Studies

Cell Culture

For biological evaluation, human adipose derived stems cells (hADSCs) were cultured in DMEM + GlutaMAX supplemented with 10% FBS and 5% P/S under standard culture
conditions (37°C and 5% CO₂). At 80 to 90% confluence, the cells were rinsed with phosphate buffer saline (PBS pH 7.4) and passaged using trypsin as detachment agent. The cell suspension was centrifuged for 5 minutes and the cell pellet was resuspended in culture media. The exact number of cells were obtained by manual cell counting.

Polymer Sterilization and Bioink Preparation: Prior to each cell experiment, the weighed amount of polymer was sterilized under UV light (254 nm) for 1 hour followed by addition of cell culture media. The polymer dispersion was kept in fridge at 4°C until a clear solution was obtained. The cell suspension was added to the liquefied hydrogel kept in ice bath followed by 10 minutes of continuous slow manual rotation for homogenous distribution of cells (avoid using vortex mixer, it can damage the cells). The cell count was kept at 0.5 million cells/ml of hydrogel for all experiments unless otherwise stated. The cell laden bioink was transferred to the printing cartridge and used accordingly.

Cell Distribution

To observe the cell distribution in hydrogel, the human adipose derived stem cells (hADSCs) were initially labelled with green fluorescent dye (cell tracker Green CMFDA from invitrogen). In brief, the harvested cell pellet (1 million cells/ml) was resuspended with fluorescent reagent and incubated for 30 minutes in serum free media according to the manufacturer’s instructions. After centrifugation, the labelling solution was removed followed by addition of fresh pre-warmed media and cells were incubated for additional 30 minutes. The labelled hADSCs cells were dispersed in the prepared hydrogel as explained earlier. The serpentine line like construct was printed, visualized and photographed under fluorescent microscope (Zeiss Axioimager Z1 microscope) at λ_{Ex} and λ_{Em} of 492 and 517 nm, respectively.

Post-Printing Live and Dead Assay
The Live/Dead viability assay was used to assess cell viability in the printed scaffolds according to the manufacturer’s instructions. Initially the harvested hADSCs pellet was dispersed in live/dead reagent solution prepared in cell culture media (calcein-AM (1:1000) and ethidium bromide (1:500), respectively). After 5 minutes of incubation, the cell suspension was added to the ice cold liquid hydrogel and mixed (as explained earlier). In brief, 2 constructs with cell laden bioink were printed and samples were examined and photographed by a fluorescent microscope (Zeiss Axioimager Z1 microscope). The live and dead cells appeared as green and red at excitation/emission wave length of 492/517 and 528/617 nm, respectively. The cell viability was reported as the ratio of the number of live cells to the total number of cells in each image counted with ImageJ software (1.46r, revised edition). From each scaffold (n=1), live cells with green fluorescence in cytosol or dead cells with red fluorescence in nuclei were counted at 4 different locations with in each construct.

Results and Discussion

Synthesis, Characterization and Rheology

To date, few reports investigated the thermogelation of pure POx or POx/POzi based systems [6, 45, 46, 58, 63]. Very recently, Monnery and Hoogenboom reported a POx based BAB triblock copolymer with the degree of polymerization (DP) ranging from 50-100 and up to 1000 repeats units for pPrOx and pEtOx (B and A, respectively), with reversible thermal gelation. The hydrogel formation (above 20 wt.%) was only observed when the pEtOx had extremely high DP (i.e. pPrOx_{100}-b-pEtOx_{700}-b-pPrOx_{100}) [63], in contrast for pPrOz_{i-b-pMeOx} diblock, the gelation was observed at much lower DP (i.e. pPrOz_{i-b-pMeOx_{500}}) [45]. It was further confirmed that the fine tuning of T_{cp} with respect to the block length is necessary for the development of thermoresponsive hydrogels [63]. Investigating the impact of polymer
concentration on T_{cp} of various AB diblock copolymers, A being EtOx while switching the B to poly(2-heptyl-2-oxazoline) (HepOx), poly(2-butyl-2-oxazoline) (BuOx) or iPrOx, Hijazi et al. suggested that the copolymer with lower differences in their hydrophobicity might be best suited for development of thermoswitchable hydrogels [64, 65].

In the present contribution, we have synthesized a thermoresponsive diblock copolymer which is based on thermosensitive pEtOx as hydrophilic (A) and pPrOzi more hydrophobic, yet still thermoresponsive block (B), respectively. As discussed previously, replacing the pMeOx with pEtOx in ABA triblock copolymers, significantly affected (reduced) the drug loading for the same drug [56] while presently, the thermogelling properties of AB diblock copolymer were investigated while exchanging the pMeOx with pEtOx.

Initially, we synthesized pPrOzi-b-pEtOx diblock copolymer with the degree of polymerization of fifty for each block (i.e. pPrOzi$_{50}$-b-pEtOx$_{50}$). The polymer was analysed by 1H-NMR, GPC and DSC. The 1H-NMR spectra was in good agreement with targeted block length for individual block (Figure 1a) with dispersity $Đ \approx 1.3$. DSC thermogram showed a single distinct glass transition (T_g) at 23°C suggesting that no (micro)phase separation (Figure 1b) occurs in the solid. Previously, we had observed the similar behaviour for the POx/POzi based ABA triblock copolymers [66]. Tube inversion test is the simplest test to see if a self supporting hydrogel is formed or not. This was done with 25 and 30 wt.% pPrOzi$_{50}$-b-pEtOx$_{50}$ solution by keeping at room temperature and 37°C (to simulate the body temperature) (Figure 1c). Both polymer solutions appeared as highly viscous liquids and no macroscopic gel was observed in vials as the material flowed under its own weight.
Figure 1: a) Chemical structure and 1H-NMR spectra (CDCl$_3$, 300 MHz, 298K) of pPrOzi$_{50}$-b-pEtOx$_{50}$ with the signal assignment of all major peaks. b) Heat flow during several heating and cooling cycles (10 K/min) of differential scanning calorimetry, green vertical line indicating the glass transition point. c) Visual appearance of the 25 and 30 wt.% polymer solution at room temperature and 37°C, the red dotted lines are showing the liquid meniscus. d) Temperature dependent rheology from 5 to 60°C (at heating rate of 0.05°C/sec) of the 25 and 30 wt.% block copolymer solution with storage modulus (G') and loss modulus (G'').

Whether the gel is formed or not was further studied by temperature dependent rheological measurements of 25 and 30 wt.% pPrOzi$_{50}$-b-pEtOx$_{50}$ polymer solution. Initially, dynamic oscillation temperature sweeps from 5°C to 60°C were carried out (Figure 1d). The gel point is usually defined as the crossover point of storage modulus (G') and loss modulus (G'') and corresponding temperature as gel temperature (T_{gel}). No gelation was observed in the temperature range of 5°C to 37°C. However, for both concentrations rapid increase in G' and G'' was observed at 23°C and 12°C, respectively. The increase in G'' at 12°C can be correlated to the T_{cp} of the pPrOzi block [20]. Additionally, at slightly higher temperatures, a T_{gel} was eventually observed at 39°C and 42°C for 25 and 30 wt.% polymer solution, respectively.
However, the resulting gel was not very stable as G' and G'' start to decrease and the gel liquefied again at around $52^\circ C$. In comparison, a 20 wt.% solution of pPrOzi$_{50}$-b-pMeOx$_{50}$ exhibited a sharp sol-gel transition and a G' value of 4 kPa (at $27^\circ C$) indicating the formation of relatively stiffer gel [45].

![Chemical structure and 1H-NMR spectra (CDCl$_3$, 300 MHz, 298K) of pPrOzi$_{100}$-b-pEtOx$_{100}$ with the signal assignment of all major peaks.](image)

![Heat flow occurring during the several consecutive heating and cooling cycle (10 K/min) of differential scanning calorimetry, green vertical line indicating the glass transition point.](image)

![Weight loss occurring during thermogravimetric analysis of pPrOzi$_{100}$-b-pEtOx$_{100}$. Samples were heated from 30 to 900°C at the heating rate of 10 K/min.](image)

Figure 2:

As previously discussed, the length of each block in block copolymers can significantly impact the gelation behaviour [63-65]. Accordingly, we synthesized a new diblock copolymer with...
chain length of hundred repeat units for each block i.e. \(p\text{PrOzi}_{100} \)-\(p\text{EtOx}_{100} \). The \(^1\text{H}\)-NMR spectra showed the desired block length (≈ 100) (Figure 2a) with dispersity \(D \approx 1.4 \).

Previously, for the diblock copolymer \(p\text{PrOzi}_{100} \)-\(p\text{MeOx}_{100} \), we had observed two \(T_g \) values, corresponding to the \(T_g \) values of the two homopolymers (\(p\text{PrOzi} \approx 10°C \) and \(p\text{MeOx} \approx 77°C \)) suggesting immiscibility and microphase separation of two individual blocks (Figure S1) [45, 67]. In contrast, the DSC thermogram of \(p\text{PrOzi}_{100} \)-\(p\text{EtOx}_{100} \) showed only a single \(T_g \) at ≈ 26°C (slightly higher in comparison to \(p\text{PrOzi}_{50} \)-\(p\text{EtOx}_{50} \) \(T_g \approx 23°C \)) suggesting that no microphase separation (Figure 2b) occurs in this case. This finding is particularly interesting as Hoogenboom recently reported that \(p\text{EtOx} \) and \(p\text{PrOx} \) homopolymers show immiscibility when the molar mass exceeded 10 kg/mol (i.e. \(\text{DP} = 100 \)) [68]. One might have expected that \(p\text{EtOx} \) and \(p\text{PrOzi} \) would be less miscible than \(p\text{EtOx} \) and \(p\text{PrOx} \), but in the present case we have block copolymers at hand, while Hoogenboom and co-workers studied homopolymer blends, which can be expected to phase separate more readily. Thermogravimetric analysis (TGA) showed the commonly known good thermal stability of POx and POzi with major losses occurring \(\geq 360°C \) (Figure 2c).

After successful synthesis and characterization, the visual appearance of the aqueous solutions of \(p\text{PrOzi}_{100} \)-\(p\text{EtOx}_{100} \) at various concentrations (1, 10, 15, 20, 25 and 30 wt.%) was noted. Up to 15 wt.%, all solutions were turbid at room temperature indicating the presence of mesoglobules or larger self-assemblies responsible for light scattering (Figure 3a; 1st row). For the homologue \(p\text{PrOzi}_{100} \)-\(p\text{MeOx}_{100} \), dynamic and static light scattering suggested formation of polymersomes [69]. We can only speculate at this point that this is likely to be the case here, too. In contrast, in ice cold water, all the samples were optically transparent. This can be attributed to the \(T_{cp} \) of \(p\text{PrOzi} \) block (13°C as homopolymer) [20]. Similar
observations were made for pPrOzi-b-pMeOx based diblock copolymer (turbid below 10 wt.%) [45]. Above 15 wt.% all the tested concentrations were optically clear, at 20 wt.% the solution appeared as highly viscous yet flowable liquid. Self supporting, optically clear hydrogels were observed at 25 and 30 wt.% polymer solution at room temperature (Figure 3a; 2nd row). In contrast to pMeOx, pEtOx also exhibits thermoresponsive solubility behavior in water. Lin and colleagues reported T_{cp} values in water ranging between 61-69°C, which where highly dependent on molar mass and concentration [70].

![Figure 3: a) Visual appearance of aqueous pPrOzi_{100}-b-pEtOx_{100} diblock polymer solutions (1 to 30 wt.%) at room temperature. b) Visual appearance of 25 wt.% polymer solution at different temperatures. Doted red lines are added for better visibility of colourless liquid or hydrogel meniscus.]

According to Hoogenboom, Schubert and colleagues, pEtOx homopolymers with degree of polymerization less than hundred do not exhibit T_{cp} (below 100°C) but a chain length dependent decrease in T_{cp} (94 to 66°C) was observed when chain length is greater than...
hundred [35, 71]. Accordingly, upon heating the 25 wt.% pPrOzi\textsubscript{100}-\textit{b}-pEtOx\textsubscript{100} hydrogel to 70°C, it immediately turned opaque which was reversed upon cooling (Figure 3b).

Throughout heating and cooling, the gel character was maintained, i.e. no syneresis was observed. This opacity can be correlated to the T_{cp} and dehydration of pEtOx at this temperature. It can be expected that the T_{cp} of pEtOx is lower in the block copolymer compared to the homopolymer [72]. Rheological properties of solutions of 15 wt.% or more were investigated in dependence of temperature (5 to 60°C). After gelation, G' reached a plateau at values of 3 (at 30°C) and 1.5 kPa (at 25°C) for 30 and 25 wt.% polymer solution, respectively (Figure 4a). While many other thermogelling polymers solutions from literature are weaker ($G' < 1$ kPa) [73, 74], the homologue 20 wt.% pPrOzi\textsubscript{50}-\textit{b}-pMeOx\textsubscript{50} based hydrogel is in fact somewhat stronger ($G' \approx 4$ kPa) [45]. The loss factor ($\tan \delta = G''/G'$) informs on the ratio of elastic vs. viscous property of the material ($\tan \delta < 1$, more elastic and $\tan \delta > 1$, more viscous). At both concentrations (30 and 25 wt.%), rather low $\tan \delta$ values of ≈ 0.07 and 0.16, respectively, were obtained.

Figure 4: a) Temperature dependent rheology from 5 to 60°C of the 15, 20, 25 and 30 wt.% diblock copolymer solution with storage modulus (G') and loss modulus (G''). b) Graphical representation of the reduction in gelation temperature (T_{gel}) with the increasing polymer concentration (in wt.%). Lines between data points are guide for the eyes only.
Accordingly, once formed, the pEtOx based hydrogels show a slightly higher elastic character compared to those bearing a pMeOx hydrophilic block (\(\tan \delta \approx 0.2\)) [45]. The crossover point for \(G'\) and \(G''\) was also observed for 20 and 15 wt.% polymer solution at 35 and 41°C, respectively. However, the resultant gel at such concentration was very weak (\(G' < 0.2\) kPa). Overall, the temperature sweep (5 to 60°C) showed an inverse relationship between \(T_{gel}\) and polymer concentration i.e. for 30, 25, 20 and 15 wt.% polymer solution, the obtained \(T_{gel}\) was 13, 15, 35 and 41°C (Figure 4b). In case of pPrOzi-b-pEtOx, increasing DP from 50 to 100 resulted in a stable hydrogel while in case of pPrOzi-b-pMeOx based hydrogels, without a significant change in \(G'\) values, the \(T_{gel}\) was decreased from 27 to 17°C, respectively [45].

To assess the linear viscoelastic (LVE) region (stable values for \(G'\) and \(G''\)), an amplitude sweep was conducted with constant angular frequency of 10 rad/s and increasing amplitude of 0.01 to 500% (Figure 5a). Within the LVE range, this test confirmed the occurrence of only elastic rather than plastic deformations (which can lead to damage of sample). With \(G' > G''\) for 30 and 25 wt.% polymer samples, the viscoelastic solid character of the material is confirmed. The sharp drop in \(G'\) indicate a brittle fracturing behaviour meaning that the gel is not broken down homogeneously but rather into larger pieces. At first the \(G''\) arose sharply, after a peak maximum, the curve again dropped steeply. The common interpretation of the rise in \(G''\) in zone 1 (exemplified with 30 wt.% polymer solution, black dashed lines) is the occurrence of micro-cracks while the overall structural integrity is maintained as \(G'\) remains constant and dominant over \(G''\) (Figure 5a) [75, 76]. For the present materials, one might rather assume that small domains start to liquify under the increasing stress, increasing the loss modulus but retaining the storage modulus until further breakdown of the network. With further increasing amplitude (zone 2) individual micro cracks grew further forming the macro-cracks resulting in the flow of entire material (\(G'' > G':\) fluid state). The 20 wt.% solution showed
minor differences in \(G' \) and \(G'' \) values but at very low amplitude sweep, crossover point was observed which is indicative of fluid state, while \(G'' > G' \) in case of 15 wt.% confirmed the free flowing liquid (Figure S2a). Yield stress (or linearity limit) is defined as the value of shear stress at the limit of LVE region while flow point is represented as the value of shear stress at the crossover point of \(G' \) and \(G'' \) (where, \(G' = G'' \)). In the region between yield stress and flow point where \(G' \) is still greater than \(G'' \), the material has already lost the initial structural strength but still displays the properties of solid material. Further increase in shear stress (above flow point) eventually leads to a flow of material (\(G'' > G' \)). In (bio) printing, these are crucial factors which are usually correlated to the collapse and shape fidelity of structures being printed. The yield stress and flow point values of 30 and 25 wt.% pPrOzi\(_{100}\)-b-pEtOx\(_{100}\) hydrogels were extracted from amplitude sweep measurements (Figure 5b). Increasing the polymer concentration from 25 to 30 wt.% led to an increase in yield stress (from 110 to 310 Pa) and flow point values (from 160 to 520 Pa), respectively. A frequency sweep revealed little frequency dependency in the investigated range (0.1-100 rad/sec) within the LVE range and 0.1 % strain. Only at lowest frequencies and 25 wt.%, the \(\tan \delta \) approached unity (Figure 5c).

When extrusion based applications such as 3D (bio) printing and injectable drug depots are desired, shear thinning and fast structure recovery are important factors to assess. For pPrOzi\(_{100}\)-b-pEtOx\(_{100}\) hydrogels the viscosity decreased profoundly as shear rate increased (0.01 to 1000, 1/sec) at both 30 and 25 wt.% (Figure 5d). The flow index \(n \) in the power-law expression described by Ostwald-de Waele (\(n < 1 \) indicate shear thinning) and consistency index \(K \) characterize the gels [77]. The presently studied materials can be clearly modeled using the power-law expression using very low flow and rather high consistency indices (\(n \approx 0.16 \) and 0.27, \(K \approx 380 \) and 152, for 30 and 25 wt.% hydrogel, respectively) (Figure 5d; dashed lines). The structure recovery was investigated using a rotational approach with an angular
frequency of 10 rad/sec and temperature of 25°C (Figure 5e). At first, a low amplitude strain regime of 0.1/sec was applied for 100 sec followed by higher amplitude strain of 100/sec for 100 sec (5 cycles). At both tested concentrations, a sharp decrease in viscosity at high shear rate was recovered instantly upon cessation of shear rate. Together, pronounced shear thinning and rapid recovery facilitate extrusion through fine nozzles with shape fidelity after leaving the nozzle, relevant for 3D printing of bioink or for drug delivery applications.

Figure 5: a) Amplitude sweep at an angular frequency of 10 rad/sec, zone 1 and 2 (exemplified only for 30 wt.%) indicating the hydrogel's gradual transition from solid to liquid state under applied strain. b) Yield and flow point values obtained from amplitude sweep c) Frequency sweep at an applied strain of 0.1 %. d) Viscosity depending on the applied shear rate at 25°C representing the shear thinning behaviour including power law fit. e) Structure recovery property under alternative applied shear rate of 0.1 and 100/sec. All of the experiments were performed for 25 (blue) and 30 wt.% (black) pPrOzi100-b-pEtOx100 diblock polymer hydrogels.
SEM and cryo-SEM Analysis

For tissue engineering applications, the printed scaffolds should provide a 3D environment with sufficient porosity to ensure nutrient and oxygen supply to the encapsulated cells. To obtain insights into the morphology and microarchitecture of hydrogels, the images of the 30 wt.% pPrOzi100-b-pEtOx100 lyophilized gel were obtained by SEM. The lyophilized gel exhibited a highly porous rather heterogeneously distributed network of capillary channel (Figure 6a) and the top view showed randomly distributed micropores, probably produced because of water sublimation (Figure S3). As currently discussed in scientific community, factors such as pore formation by water evaporation during lyophilization and/or ice crystal formation during slow freezing can strongly influence appearance of a freeze-dried hydrogel and might cause artifacts [78]. To elude such possibilities, the cryogenic SEM (cryo-SEM) was also conducted. During the sample preparation for cryo-SEM, the slush nitrogen provided the sufficient cooling rates resulting in faster cooling and reduction of crystallization artifacts. The cryo-SEM revealed that the intrinsic hydrogel morphology was preserved and pPrOzi100-b-pEtOx100 hydrogel exhibited highly homogenous, honeycomb-like porous structure in the submicrometer range (Figure 6b). Generally, the high porosity is significant for drug delivery and biomedical applications due to its capacity to facilitate drug loading and release, also offering void space for oxygen and nutrient transport for cell proliferation.
Figure 6: Visualization of the a) morphology of 30 wt.% lyophilized hydrogel by scanning electron microscopy (SEM) and b) freshly prepared hydrogel by cryo-SEM (acceleration voltage ETH: 2 kV).

3D-Printing of Hydrogels

The printability of pPrOz100-b-pEtOx100 based hydrogel was assessed using extrusion-based 3D printing. As this polymer formed hydrogel at/above 25 wt.%, the printing experiments were performed at 25 and 30 wt.% polymer concentration. The filament fusion test was done to assess the shape fidelity, strand fusion and undesired spreading of the printed construct. A 2D pattern of one meandering filament with stepwise increasing strand distances from 0.5 to 0.75, 1, 1.25 and 1.5 mm was printed (Figure 7a). Even at the lowest distance, the printed filament did fuse only at a few points but mainly remained separated, above this distance,
the filaments were fully separated. To assess filament stability and sagging under its own weight when suspended, a filament collapse test was performed on a serrated mold with stepwise increasing gaps of 1, 2, 4, 8 and 16 mm. At 30 wt.% concentration, the suspended hydrogel filament strand did show some sagging but remained continuous even at the longest distance of 16 mm (Figure 7b), while at 25 wt.% the filament collapsed in the case of the 16 mm gap. The printability and shape fidelity were further assured by printing various shapes such as a serpentine line pattern, five-pointed star and a 2-layered 5 x 5 strand grid (Figure 8a). The sharp filament corners (in serpentine like line and star) and intersections in the grid were all well resolved. In the case of pPrOzi-b-pMeOx based diblock copolymer, Hu et al. showed that such kind of printability and shape fidelity was achieved by the addition of clay (Laponite XLG 1.2-2 wt.%) while the polymer alone exhibited a lower quality printing, albeit at 20 wt.% diblock concentration [67].

Figure 7: 3D-printibility assessment of pPrOzi₁₀₀-b-pEtOx₁₀₀ based hydrogel by a) film fusion test (25 wt.%) by printing a stepwise increasing strand to strand distance of 0.5, 0.75, 1.0, 1.25, 1.5 mm (pressure; 80 kPa, speed; 2mm/sec) and b) filament collapse test (30 wt.%) by using a serrated mold of increasing gap (pressure; 120 kPa, speed; 6mm/sec), red dashed line is added for eye guidance. The screen shots of the designed structures were directly taken from Repetier software during G-Code writing.
Printability and Rheology of POx-Laponite Hybrid Hydrogels

In fact, laponite is routinely applied as rheology modifier [79, 80] and has shown potential in biomedical applications [81]. It forms disc like particles when dispersed in water. It is non-toxic and capable to enhance the biological activities like cell adhesion and proliferation [82, 83]. As a cyto-compatible additive, it can not only improve mechanical strength and printability [84] of the bioink but also biological effects [85]. The development of multilayered successive alternating structure (high stackability) is one of the most desirable characteristics for (bio) printing of the constructs for tissue engineering applications. In order to observe the stackability, the pristine hydrogel (25 wt.% pPrOzi_{100}-b-pEtOx_{100}) and a hybrid hydrogel (with 1 wt.% additional laponite XLG) were printed. For pristine hydrogel, printing layers greater than 3 lead to slight flattening of the scaffold (Figure S4a) while with only 1 wt.% laponite XLG a 12 layered star was easily printed with good shape fidelity and no collapse of the high single filament stacks (Figure 8b). Cryo-SEM of the hybrid hydrogel revealed the uniform microporous structure and pore size of the hydrogel (Figure S4b) is apparently not affected by the presence of the laponite.

Rheology of a material is generally a good predictor for printability [86]. Like for many other polymers [67, 81, 84, 87], in this particular case, the laponite also improved the printability (in terms of stackability) of pEtOx based hydrogel. To correlate the rheology with printability, the rheological profile of hybrid hydrogel (under same set of conditions as previously explained) was obtained and compared to pristine hydrogel. No significant difference was observed in T_{gel}, while the storage modulus increased from 1.5 kPa for pristine hydrogel to 3 kPa for hybrid (at 25°C), indicating a stiffer gel, which may be attributed to the physical
interaction between polymer and laponite (Figure S5a). The loss factor \(\tan \delta \) decreased from 0.16 (pristine) to 0.05 (hybrid) indicating a higher elastic character.

![Figure 8](image)

Figure 8: a) 3D printability of 25 wt.% pPrOzi\(_{100}\)-b-pEtOx\(_{100}\) based hydrogel with various forms like serpentine line, a star and a double layer grid (pressure; 90 kPa, speed 2 mm/sec) (left to right). b) 3D printability of 25 wt.% pPrOzi\(_{100}\)-b-pEtOx\(_{100}\) based hydrogel with 1 wt.% laponite XLG (12 layered star) (pressure; 120 kPa, speed 1 mm/sec). The screen shots of the designed structures were directly taken from Repetier software during G-code writing.

No significant differences were observed in overall LVE range of both pristine and hybrid hydrogel. However, the yield point values for hybrid hydrogel (190 Pa) was found to be higher than pristine hydrogel (110 Pa) (Figure S5b and c) which is likely to be one important factor responsible for improved stackability. The dynamic frequency sweep experiment revealed that \(G' \) value of hybrid hydrogel remained stable and higher than \(G'' \) value throughout the investigated frequency range indicative of typical gel phase (Figure S5d) while pristine hydrogel at low shear frequency appeared to be in transition phase of gelation. In comparison
to pristine hydrogel, the steady state flow test revealed more pronounced shear thinning behaviour for hybrid hydrogel (Figure S5e) which is particularly interesting and beneficial for (bio) printing, as cells are more prone to mechanical disruption caused by extrusion pressure from the printing cartridge. Shear thinning is beneficial to reduce shear stress (if the yield points are sufficiently low). A structure recovery test was also performed to investigate the effect of clay on reversible sol-gel transition under episodes of high and low strain values (Figure S5f). Cyclic strain sweeps revealed that at high and low strains, the hybrid hydrogel was capable of transitioning from predominantly elastic to viscous material. In summary, the addition of small amount of clay significantly improved the rheological properties of pPrOzi$_{100}$-b-pEtOx$_{100}$ hydrogels (and in turn printability) without compromising the innate thermogelling behaviour. In most cases, the interaction of clay with polymers is indirectly explored rather than directly investigating the interactions at molecular levels. Very recently, Le Coeur et al. studied the interactions of clay with pMeOx and PEG by NMR and small angle neutron scattering [87]. The results revealed that pMeOx had stronger interaction with clay than PEG. At this point, we have only investigated a single combination of hybrid hydrogel, which showed promising results. By further tuning the polymer and clay ratio, it may be possible for further tailoring the rheological properties. Additionally, it will be very interesting to study in depth the effects of addition of laponite to pPrOzi-b-pMeOx and pPrOzi-b-pEtOx based hydrogels, as the potentially different interactions between the polymers and the clay nanoparticles may affect the rheological properties quantitatively different. Very recently we have observed that pPrOzi-b-pMeOx/clay combination has proved to be highly efficient fugitive support material [88] for poorly printable sodium alginate [89]. We anticipate that pPrOzi-b-pEtOx/clay combination also hold the similar potential and can be explored as fugitive support material for variety of polymers. However, such detailed investigation of polymer/clay
interactions and application of pPrOzi-b-pEtOx as fugitive material are separate studies at their own and are beyond the scope of current contribution.

Biological studies

Besides the seeded cells, the scaffold providing a 3D micro-environment to the cells is an essential element in tissue engineering. An appropriate scaffold should provide a room for homogeneous distribution of cells, should be cyto-compatible, non-toxic and promote the cell’s proliferation and differentiation. The generally excellent cyto-compatibility of POx-based polymers has been repeatedly shown while POzi-based polymers were studied to a lesser extent [22, 29, 34, 66, 90]. The cyto-compatibility of a certain polymer class must be assessed based on a defined set of experiments, cell-type and should never be generalized but rather verified on case by case basis.

Herein, we investigated the cell distribution and the impact of printing process on the cell survival in this new material. The 30 wt.% pPrOzi$_{100}$-b-pEtOx$_{100}$ hydrogels used for biological studies were prepared in cell culture medium. Initially, the rheological properties of the hydrogels prepared in media were investigated to screen out any additional effect of media. The cell culture media based hydrogels did not significantly impact the rheological properties (Figure S6) when compared to water based hydrogels so the same handling and printing conditions were used. This highlights to benefit of using a non-ionic bioink, as it is not likely to be affected by physiologically relevant proteins, salt concentrations and pH values.

When it comes to biological studies, as a proof of concept, fibroblasts are a commonly used cell type which are quite robust and can relatively withstand harsh processing steps during experiments. Herein, we used human adipose derived stem cells (hADSCs) which have gained wide focus in (bio) printing, not only to show the cyto-compatibility of developed material for
a somewhat more sensitive cell line, but also to pave way to future tissue engineering applications, where stem cells will be preferably used. The fluorescently labelled hADSCs were mixed in the hydrogels (as explained in methods section) followed by printing and imaging. Important to note, the printability was not influenced by the presence of cells and shape fidelity was entirely preserved. The homogenous cell distribution was observed throughout the printed construct (Figure 9a). The low viscosity of thermoresponsive hydrogel facilitated the cell distribution just by gently mixing at low temperature (as explained earlier). The cell laden bioink was further visualized with cryo-SEM to observe the lodging of hADSCs in the hydrogel and to observe (if any) change in overall morphology of hydrogel itself because of cell culture media.

![Figure 9: a) Stitched fluorescence microscopic image of the cells distribution in single printed serpentine like line, cells were labelled with fluorescent dye b) Cryo-SEM image of the cells laden 30 wt.% bioink with representative images (1, 2, 3) showing individual cells (arrows are also indicating the presence of cells) (acceleration voltage ETH: 8 kV).](image-url)
Cryo-SEM of the cell laden bioink revealed a random distribution of the cells within hydrogel matrix showing cell interior with various organelles (Figure 9b) and no apparent change in porous structure of the hydrogel was observed. The images also make very clear that the pores of the hydrogel are much smaller than the cell diameter. Besides the homogenous distribution of cells in the hydrogels, the measurement of cell viability in the printed scaffolds is relevant. There are multiple factors like printing pressure, nozzle inner diameter and shear profile of hydrogel etc. that can directly affect the cells viability and proliferation. The cell mechanical disruption is the direct consequence of pressure gradient/shear stress produced during bioink extrusion from the nozzle. In this regard, post printing live and dead assay was performed to evaluate the proportion of living (green) and dead (red) cells. Two constructs (serpentine line and a star) were printed and visualized under fluorescence microscope (Figure 10 a, b). A high extent of viable cells (97 and 98% in serpentine line and a star shape, respectively) confirmed that the printing parameters did not affect the cell viability. For better visibility, the few dead cells (red) in each individual region are highlighted in Figure S7.

![Figure 10: Live (green) and dead (red) viability assay of post-printing cell laden 30 wt. % bioink a) serpentine line and b) a star. Number of the live and dead cells were counted from cellular fluorescence images at four different places in individual construct by imageJ software. The images are presented as merged for live and dead cells. Dashed white lines are added for eye guidance (scale bar in fluorescence images is 0.2 mm).](image-url)
Conclusion

In summary, thermosensitive pPrOzi$_{100}$-b-pEtOx$_{100}$ based diblock copolymer was successfully synthesized by living cationic ring opening polymerization and was further characterized by 3H-NMR, GPC, DSC and TGA. The pPrOzi$_{100}$-b-pEtOx$_{100}$ aqueous solution (i.e. 30 wt.%) underwent reversible sol-gel transition at T_{gel} around 13°C. Stable and optically clear hydrogels with microporous structure and relatively high mechanical strength of $G' \approx 3$ kPa (at 30 wt.%) were obtained. At the same time this material is highly shear thinning with good structure recovery properties. Additionally, with extrusion based 3D printing technique, various 2D and 3D patterns with high resolution and shape fidelity could be printed. The stem cells could be efficiently encapsulated into the hydrogels and this material appeared to be cyto-compatible in post-printing cell experiments.

The newly synthesized diblock pPrOzi-b-pEtOx as a structural variant to a previously reported pPrOzi-b-pMeOx polymer has potential for further exploration. Although, pMeOx and pEtOx are routinely addressed as better alternative and similar material [39, 40, 83] when compared to PEG but it will be interesting to see more of direct comparison of both polymers at molecular level. Advanced applications in biofabrication still may benefit from new smart materials which should be tunable with respect to physicochemical and rheological properties, (bio) printability and cyto-compatibility. With this diblock copolymer, we have dispensed an alternative platform which satisfies most demands needed in the context of biofabrication. Additionally, the highly tunable character of POx with respect to rich chemistry enable us to introduce crosslinking and/or bio (functionalization) albeit that the range of applications will be affected by the relatively high necessary concentrations. Considering this,
the present materials could be of interest as a fugitive additive to be combined with other bioinks, to improve their printability or as a drug delivery platform.

Associated Content:

Supporting information

Author Information

Notes: RL is listed as inventor on a patent pertinent to some materials in the present work. The authors declare no other competing financial interest.

Author Contributions: Conceptualization; M.S.H. and R.L., Study design; M.S.H., Synthesis and Characterization; M.S.H., T.A., M.Y. and P.S., Writing original draft; M.S.H., Reviewing-editing-polishing; all authors. All authors have read and agreed to final version of manuscript.

Acknowledgement

M.S.H. is grateful to higher education commission of Pakistan and German academic exchange services (HEC-DAAD Pakistan) for the award of PhD scholarship. C. H. and M.Y. thank China Scholarship Council (CSC) for the financial support for doctoral studies. The authors would like to gratefully acknowledge Deutsche Forschungsgemeinschaft (DFG) for financial support under project number 398461692-TRR 225, subproject A03 (awarded to R.L.) and for funding the crossbeam scanning electron microscope Zeiss CB 340 (INST 105022/58-1 FUGG) within the DFG State Major Instrumentation Programme.

References:

[1] P.S. Kowalski, C. Bhattacharya, S. Afewerki, R. Langer, Smart biomaterials: Recent advances and future directions, ACS Biomater. Sci. Eng. 4(11) (2018) 3809-3817.
[2] X.J. Loh, P.L. Chee, C. Owh, Biodegradable thermogelling polymers, Small Methods 3(3) (2019) 1800313.
[3] A.H. Karoyo, L.D. Wilson, Physicochemical properties and the gelation process of supramolecular hydrogels: A review, Gels 3(1) (2017) 1.

[4] K. Al Khateb, E.K. Ozhmukhametova, M.N. Mussin, S.K. Seilkhanov, T.K. Rakhypbekov, W.M. Lau, V.V. Khutoryanskiy, In situ gelling systems based on Pluronic F127/Pluronic F68 formulations for ocular drug delivery, Int. J. Pharm. 502(1-2) (2016) 70-79.

[5] H. Ye, C. Owh, X.J. Loh, A thixotropic polyglycerol sebacate-based supramolecular hydrogel showing UCST behavior, RSC Advances 5(60) (2015) 48720-48728.

[6] L. Hahn, M. Maier, P. Stahlhut, M. Beudert, V. Flegler, S. Forster, A. Altmann, F. Töppke, K. Fischer, S. Seiffert, B. Böttcher, T. Lühmann, R. Luxenhofer, Inverse thermogelation of aqueous triblock copolymer solutions into macroporous shear-thinning 3D printable inks, ACS Appl. Mater. Interfaces 12(11) (2020) 12445-12456.

[7] S. Wellnghoff, J. Shaw, E. Baer, Polymeric materials from the gel state. The development of fringed micelle structure in a glass, Macromolecules 12(5) (1979) 932-939.

[8] L. Hahn, E. Karakaya, T. Zorn, B. Sochor, M. Maier, P. Stahlhut, S. Forster, K. Fischer, S. Seiffert, A.-C. Pöppler, R. Detsch, R. Luxenhofer, An Inverse Thermogelling Bioink Based on an ABA Type Poly (2-Oxazoline) Amphiphile, 2021, 10.26434/chemrxiv.14317205.v1.

[9] S. Chatterjee, P.-C.-I. Hui, C.-w. Kan, Thermoresponsive hydrogels and their biomedical applications: Special insight into their applications in textile based transdermal therapy, Polymers 10(5) (2018) 480.

[10] K.J. Hogan, A.G. Mikos, Biodegradable thermoresponsive polymers: Applications in drug delivery and tissue engineering, Polymer 211 (2020) 123063.

[11] H.G. Schild, Poly(N-isopropylacrylamide): experiment, theory and application, Prog. Polym. Sci. 17(2) (1992) 163-249.

[12] R.A. Stile, W.R. Burghardt, K.E. Healy, Synthesis and characterization of injectable poly(N-isopropylacrylamide)-based hydrogels that support tissue formation in vitro, Macromolecules 32(22) (1999) 7370-7379.

[13] P. Alexandridis, T.A. Hatton, Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling, Colloids Surf. A Physicochem. Eng. Asp. 96(1-2) (1995) 1-46.

[14] Z. Cui, B.H. Lee, C. Pauken, B.L. Vernon, Degradation, cytotoxicity, and biocompatibility of NIPAAm-based thermosensitive, injectable, and bioresorbable polymer hydrogels, J. Biomed. Mater. Res. A 98(2) (2011) 159-166.

[15] A. Galperin, T.J. Long, S. Garty, B.D. Ratner, Synthesis and fabrication of a degradable poly(N-isopropyl acrylamide) scaffold for tissue engineering applications, J. Biomed. Mater. Res. A 101(3) (2013) 775-786.

[16] B.M. Watson, F.K. Kasper, P.S. Engel, A.G. Mikos, Synthesis and characterization of injectable, biodegradable, phosphate-containing, chemically cross-linkable, thermoresponsive macromers for bone tissue engineering, Biomacromolecules 15(5) (2014) 1788-1796.

[17] J.R. Thonhoff, D.I. Lou, P.M. Jordan, X. Zhao, P. Wu, Compatibility of human fetal neural stem cells with hydrogel biomaterials in vitro, Brain Res. 1187 (2008) 42-51.

[18] Z. Liu, S.S. Liow, S.L. Lai, A. Ali-Shaik, G.E. Holder, B.H. Parikh, S. Krishnakumar, Z. Li, M.J. Tan, J. Gunaratne, Retinal-detachment repair and vitreous-like-body reformation via a thermogelling polymer endotamponade, Nat. Biomed. Eng. 3(8) (2019) 598-610.

[19] M.M. Bloksma, U.S. Schubert, R. Hoogenboom, Poly(cyclic imino ether)s Beyond 2-Substituted-2-oxazolines, Macromol. Rapid Commun. 32(18) (2011) 1419-1441.

[20] M.M. Bloksma, R.M. Paulus, H.P.C. van Kuringen, F. van der Woerd, H.M. Lambermont- Thijs, U.S. Schubert, R. Hoogenboom, Thermoresponsive Poly(2-oxazine)s, Macromol. Rapid Commun. 33(1) (2012) 92-96.

[21] C. Weber, R. Hoogenboom, U.S. Schubert, Temperature responsive bio-compatible polymers based on poly(ethylene oxide) and poly(2-oxazoline), Prog. Polym. Sci. 37(5) (2012) 686-714.
conjugates with doxorubicin for cancer therapy: in vitro and in vivo evaluation and direct comparison to poly [N-(2-hydroxypropyl) methacrylamide] analogues, Biomaterials 146 (2017) 1-12.

[41] M. Grube, M.N. Leiske, U.S. Schubert, I. Nischang, POx as an alternative to PEG? A hydrodynamic and light scattering study, Macromolecules 51(5) (2018) 1905-1916.

[42] R. Konradi, B. Pidhatika, A. Mühlebach, M. Textor, Poly (2-methyl-2-oxazoline): a peptide-like polymer for protein-repellent surfaces, Langmuir 24(3) (2008) 613-616.

[43] N. Zhang, T. Pompe, R. Luxenhofer, C. Werner, R. Jordan, Poly (2-oxazoline) bottle-rush brushes for the control of protein adsorption and cell adhesion, Polymer Preprints 53(1) (2012) 301.

[44] G. Morgese, B. Verbraeken, S.N. Ramakrishna, Y. Gomber, E. Cavalli, J.G. Rosenboom, M. Zenobi-Wong, N.D. Spencer, R. Hoogenboom, E.M. Benetti, Chemical Design of Non-Ionic Polymer Brushes as Biointerfaces: Poly(2-oxazoline)s Outperform Both Poly(2-oxazoline)s and PEG, Angew. Chem. 57(36) (2018) 11667-11672.

[45] T. Lorson, S. Jaksch, M.M. Lübtow, T. Jüngst, J. Groll, T. Lühmann, R. Luxenhofer, A thermogelling supramolecular hydrogel with sponge-like morphology as a cytocompatible bioink, Biomacromolecules 18(7) (2017) 2161-2171.

[46] M.M. Lübtow, M. Mrlik, L. Hahn, A. Altmann, T. Lühmann, R. Luxenhofer, Temperature-Dependent Rheological and Viscoelastic Investigation of a Poly(2-methyl-2-oxazoline)-b-poly(2-iso-butyl-2-oxazoline)-b-poly(2-methyl-2-oxazoline)-Based Thermogelling Hydrogel, J. Funct. Biomater. 10(3) (2019) 36.

[47] T. Wloka, S. Czich, M. Kleinsteuber, E. Moek, C. Weber, M. Gottschaldt, K. Liefeith, U.S. Schubert, Microfabrication of 3D-hydrogels via two-photon polymerization of poly(2-ethyl-2-oxazoline) diacrylates, Eur. Polym. J. 122 (2020) 109295.

[48] O.I. Kalooglu-Altan, Y. Li, R. McMaster, A. Shaw, Z. Hou, M. Vergaelen, R. Hoogenboom, T.R. Dargaville, K. De Clerck, Crosslinking of electropun and bioextruded partially hydrolyzed poly(2-ethyl-2-oxazoline) using glutaraldehyde vapour, Eur. Polym. J. 120 (2019) 109218.

[49] J.-J. Kang, K. Shehu, C. Sachse, F.A. Jung, C.-H. Ko, L.C. Barnsley, R. Jordan, C.M. Papadakis, A molecular brush with theremoresponsive poly(2-ethyl-2-oxazoline) side chains: a structural investigation, Colloid Polym. Sci. 299(2) (2020) 193-203.

[50] M. Dirauf, C. Grune, C. Weber, U.S. Schubert, D. Fischer, Poly(ethylene glycol) or poly(2-ethyl-2-oxazoline)–A systematic comparison of PLGA nanoparticles from the bottom up, Eur. Polym. J. 134 (2020) 109801.

[51] Y. Han, Z. He, A. Schulz, T.K. Bronich, R. Jordan, R. Luxenhofer, A.V. Kabanov, Synergistic combinations of multiple chemotherapeutic agents in high capacity poly(2-oxazoline) micelles, Mol. Pharm. 9(8) (2012) 2302-2313.

[52] A. Schulz, S. Jaksch, R. Schubel, E. Wegener, Z. Di, Y. Han, A. Meister, J. Kressler, A.V. Kabanov, R. Luxenhofer, Drug-induced morphology switch in drug delivery systems based on poly(2-oxazoline), ACS nano 8(3) (2014) 2686-2696.

[53] M.M. Lübtow, L. Hahn, M.S. Haider, R. Luxenhofer, Drug specificity, synergy and antagonism in ultrahigh capacity poly(2-oxazoline)/poly(2-oxazine) based formulations, J. Am. Chem. Soc. 139(32) (2017) 10980-10983.

[54] M.M. Lübtow, M.S. Haider, M. Kirsch, S. Klisch, R. Luxenhofer, Like Dissolves Like? A Comprehensive Evaluation of Partial Solubility Parameters to Predict Polymer-Drug Compatibility in Ultra-High Drug Loaded Polymer Micelles, Biomacromolecules 20(8) (2019) 3041-3056.

[55] M.S. Haider, M.M. Lübtow, S. Endres, S. Forster, V.J. Flegler, B. Böttcher, V.O. Aseyev, A.-C. Pöppler, R. Luxenhofer, Think beyond the core: The impact of the hydrophilic corona on the drug solubilization using polymer micelles, ACS Appl. Mater. Interfaces 12(22) (2020) 24531-24543.

[56] M.M. Lübtow, S. Ochter, S. Quader, E. Jeanclós, A. Cubukova, M. Krafft, M.S. Haider, C. Schulte, L. Meier, M. Rist, In Vitro Blood–Brain Barrier Permeability and Cytotoxicity of an Atorvastatin-Loaded Nanoformulation Against Glioblastoma in 2D and 3D Models, Mol. Pharm. 17(6) (2020) 1835-1847.
[57] G. Hochleitner, J.F. Hümmer, R. Luxenhofer, J. Groll, High definition fibrous poly(2-ethyl-2-oxazoline) scaffolds through melt electrospinning writing, Polymer 55(20) (2014) 5017-5023.

[58] A. Zahoránová, M. Mrlik, K. Tomanová, J. Kronke, R. Luxenhofer, ABA and BAB Triblock Copolymers Based on 2-Methyl-2-oxazoline and 2-n-Propyl-2-oxazoline: Synthesis and Thermoresponsive Behavior in Water, Macromol. Chem. Phys. 218[13] (2017) 1700031.

[59] L. Hahn, L. Keßler, L. Polzin, L. Fritze, H. Helten, R. Luxenhofer, ABA Type Amphiphiles with Poly(2-Benzhydryl-2-Oxazine) Moieties: Synthesis, Characterization and Inverse Thermogelation, 2021, 10.26434/chemrxiv.14322194.v1.

[60] L. Hahn, T. Zorn, J. Kehrrein, T. Kielholz, B. Sochor, E.S. Lisitsyna, N. Durandin, T. Laaksonen, V. Aseyev, C. Sotriffer, M. Windbergs, A.-C. Pöppler, R. Luxenhofer, Unravelling a novel sol-gel transition mechanism in polymer self-assemblies: An order-order transition based on specific molecular interactions between hydrophilic and hydrophobic polymer blocks, 2021, 10.26434/chemrxiv.14362892.v1.

[61] L. Hahn, E. Karakaya, T. Zorn, B. Sochor, M. Maier, P. Stahlhut, S. Forster, K. Fischer, S. Seiffert, A.-C. Pöppler, R. Detsch, R. Luxenhofer, An Inverse Thermogelling Bioink Based on an ABA Type Poly(2-Oxazoline) Amphiphile, 2021, 10.26434/chemrxiv.14317205.v1.

[62] H. Witte, W. Seeliger, Cyclische imidsäureester aus nitrilen und aminoalkoholen, Leibigs Ann. 1974 (1974) 996-1009.

[63] B.D. Monnery, R. Hoogenboom, Thermoresponsive hydrogels formed by poly(2-oxazoline) triblock copolymers, Polym. Chem. 10(25) (2019) 3480-3487.

[64] Q. Zhang, C. Weber, U.S. Schubert, R. Hoogenboom, Thermoresponsive polymers with lower critical solution temperature: from fundamental aspects and measuring techniques to recommended turbidimetry conditions, Mater. Horiz. 4(2) (2017) 109-116.

[65] M. Hijazi, M. Schmidt, H. Xia, J. Storkmann, R. Plothe, D. Dos Santos, U. Bednarzick, C. Krumm, J.C. Tiller, Investigations on the thermoresponsive behavior of copoly(2-oxazoline)s in water, Polymer 175 (2019) 294-301.

[66] M.M. Lübtow, L. Keßler, A. Appelt-Menzel, T. Lorson, N. Gangloff, M. Kirsch, S. Dahms, R. Luxenhofer, More Is Sometimes Less: Curcumin and Paclitaxel Formulations Using Poly(2-oxazoline) and Poly(2-oxazine)-Based Amphiphiles Bearing Linear and Branched C9 Side Chains, Macromol. Biosci. 18(11) (2018) 1800155-1800172.

[67] C. Hu, L. Hahn, M. Yang, A. Altmann, P. Stahlhut, J. Groll, R. Luxenhofer, Improving Printability of a Thermoresponsive Hydrogel Biomaterial Ink by Nanoclay Addition, J. Mater. Sci. 56 (2021) 691–705.

[68] E. Schoolaert, R. Merckx, J. Becelaere, M. Everaerts, J.F. Van Guyse, O. Sedlacek, B.G. De Geest, G. Van den Mooter, D.R. D’hooge, K. De Clerck, Immiscibility of chemically alike amorphous polymers: Phase separation of poly (2-ethyl-2-oxazoline) and poly (2-n-propyl-2-oxazoline), Macromolecules 53(17) (2020) 7590-7600.

[69] T. Lorson, Novel poly (2-oxazoline) based bioinks, Doctoral Thesis, Würzburg University, Würzburg, 2019, 10.25972/OPUS-18051.

[70] P. Lin, C. Clash, E. Pearce, T. Kwei, M. Aponte, Solubility and miscibility of poly(ethyl oxazoline), J. Polym. Sci. Part B 26 (1988) 603-619.

[71] R. Hoogenboom, M.T. Hanneke, J.H.C.J. Mark, M.v.L. Bart, M.W.M. Fijten, U.S. Schubert, Tuning the LCST of poly(2-oxazoline)s by varying composition and molecular weight: alternatives to poly(N-isopropylacrylamide) ?, Chem. Commun. (44) (2008) 5758-5760.

[72] S. Huber, N. Hutter, R. Jordan, Effect of end group polarity upon the lower critical solution temperature of poly(2-isopropyl-2-oxazoline), Colloid Polym. Sci. 286(14) (2008) 1653-1661.

[73] C. Li, N.J. Buurma, I. Haq, C. Turner, S.P. Armes, V. Castelletto, I.W. Hamley, A.L. Lewis, Synthesis and characterization of biocompatible, thermoresponsive ABC and ABA triblock copolymer gelators, Langmuir 21(24) (2005) 11026-11033.
[74] S. Xuan, C.-U. Lee, C. Chen, A.B. Doyle, Y. Zhang, L. Guo, V.T. John, D. Hayes, D. Zhang, Thermoreversible and injectable ABC polypeptoid hydrogels: controlling the hydrogel properties through molecular design, Chem. Mater. 28(3) (2016) 727-737.

[75] T. Mezger, The rheology handbook: for users of rotational and oscillatory rheometers, European Coatings 2020.

[76] S. Sathaye, A. Mbi, C. Sonmez, Y. Chen, D.L. Blair, J.P. Schneider, D.J. Pochan, Rheology of peptide-and protein-based physical hydrogels: Are everyday measurements just scratching the surface?, Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 7(1) (2015) 34-68.

[77] M.V. Ghica, M. Hîrjău, D. Lupuleasa, C.-E. Dinu-Pîrvu, Flow and thixotropic parameters for rheological characterization of hydrogels, Molecules 21(6) (2016) 786.

[78] Z. Kaberova, E. Karpushkin, M. Nevoralová, M. Vetrík, M. Šlouf, M. Dušková-Smrčková, Microscopic structure of swollen hydrogels by scanning electron and light microscopies: Artifacts and reality, Polymers 12(3) (2020) 578.

[79] J.L. Dávila, M.A. d’Ávila, Laponite as a rheology modifier of alginate solutions: Physical gelation and aging evolution, Carbohydr. Polym. 157 (2017) 1-8.

[80] Y. Jin, Y. Shen, J. Yin, J. Qian, Y. Huang, Nanoclay-based self-supporting responsive nanocomposite hydrogels for printing applications, ACS Appl. Mater. Interfaces 10(12) (2018) 10461-10470.

[81] S.S. Das, K. Hussain, S. Singh, A. Hussain, A. Faruk, M. Tebyetekerwa, Laponite-based nanomaterials for biomedical applications: A review, Curr. Pharm. Des. 25(4) (2019) 424-443.

[82] D. Choi, J. Heo, J.A. Milan, R.O. Oreffo, J.I. Dawson, J. Hong, Y.-H. Kim, Structured nanofilms comprising Laponite® and bone extracellular matrix for osteogenic differentiation of skeletal progenitor cells, Mater. Sci. Eng. C 118 (2021) 111440.

[83] A. Mignon, D. Pezzoli, E. Prouvé, L. Lévesque, A. Arslan, N. Pien, D. Schaubroeck, J. Van Hoorick, D. Mantovani, S. Van Vlierberghe, Combined effect of Laponite and polymer molecular weight on the cell-interactive properties of synthetic PEO-based hydrogels, Reactive and Functional Polymers 136 (2019) 95-106.

[84] J.L. Dávila, M.A. d’Ávila, Rheological evaluation of Laponite/alginate inks for 3D extrusion-based printing, Int. J. Adv. Manuf. Tech. 101(1) (2019) 675-686.

[85] T. Ahlfeld, G. Cidonio, D. Kilian, S. Duin, A. Akkineni, J. Dawson, S. Yang, A. Lode, R. Oreffo, M. Gelinsky, Development of a clay based bioink for 3D cell printing for skeletal application, Biofabrication 9(3) (2017) 034103.

[86] A. Corker, H.C.-H. Ng, R.J. Poole, E. García-Tuñón, 3D printing with 2D colloids: Designing rheology protocols to predict ‘printability’ of soft-materials, Soft Matter 15(6) (2019) 1444-1456.

[87] C. Le Coeur, C. Lorthioir, A. Feoktystov, B. Wu, G. Volet, C. Amiel, Laponite/poly(2-methyl-2-oxazoline) hydrogels: Interplay between local structure and rheological behaviour, J. Colloid Interface Sci. 582 (2021) 149-158.

[88] C. Hu, T. Ahmad, M.S. Haider, L. Hahn, P. Stahlhut, J. Groll, R. Luxenhofer, A Thermogelling Organic-Inorganic Hybrid Hydrogel with Excellent Printability, Shape Fidelity and Cytocompatibility for 3D Bioprinting, 2021, 10.26434/chemrxiv.14447676.

[89] J. Hazur, R. Detsch, E. Karakaya, J. Kaschta, J. Teßmar, D. Schneidereit, O. Friedrich, D.W. Schubert, A.R. Boccaccini, Improving alginate printability for biofabrication: Establishment of a universal and homogeneous pre-crosslinking technique, Biofabrication 12(4) (2020) 045004.

[90] Z. Kronkova, T. Lorson, J. Kronek, R. Luxenhofer, Cytotoxicity of 2-oxazines and poly(2-oxazine)s in mouse fibroblast, 2018, 10.26434/chemrxiv.5793990.v1.