Seed Size Correlates with Germination Traits in *Terminalia arjuna* Genotypes

Hemant Kumar*, S.B. Lal, A.M. Wani, Rajiv Umrao, Neelam Khare and Neeta Shweta Kerketta

College of Forestry, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad 211007, U.P., India

*Corresponding author

A B S T R A C T

Seed size emerged as a governing characteristic for germination parameters and seedling establishment owing to best evolutionary traits of plant which impart major contribution in genetic diversity. Large size increased germination rate and seedling survival, accelerated germination timing, and enhanced seedling growth. Present experiment is carried out to assess the seed size correlates with germination characteristics in *Terminalia arjuna*. The findings suggest that the seedling vigour is a fixed positive function of seed size needs to be reconsidered. Germination of large seeds recorded slightly higher than small size and ranges from 68.33 to 43.33%. Mean daily germination value ranged between 1.81 to 2.85, Peak value of germination ranged between 3.15 to 4.59, Germination value ranged between 5.79 to 13.67 and germination speed ranged between 3.71 to 5.88. The existence of conflicting selection might explain the occurrence of an optimal seed size in some plant species without invoking a seed number-size trade-off. Hence, it is recommended to use only medium and large size seeds for growing, because they do result in higher germination behavior and seedling establishment.

Keywords

Terminalia arjuna, Seed size correlation, Germination parameters, Genotypes.

Article Info

Accepted: 23 June 2017
Available Online: 10 August 2017

Introduction

The most successful tree improvement programme is that where proper seed sources were used. The loss from using the wrong sources can be great and even disastrous. Size of seed is best evolutionary traits of plant which impart major contribution in genetic diversity (Aniszewski *et al*., 2001). The good quality seeds are those which have genetic purity, physical purity, health standards, germiniaibility and moisture percentage in accordance with the minimum seed certification standards. Provenance-dependent variations in seed size are also recorded (Ellison, 2001; Dlamini, 2011). Successful establishment of seedlings depends on seed size and contributes competition among the plants (Zhang, 1998), however fruit pulp adhering to the seeds has been found to have an inhibitory effect on germination in this species. Comparatively fewer large and many small seeds produced by most of the plant species (Stevenson *et al*., 2005). Smaller seeds with sufficient number are useful for dispersal over wide areas. On the other hand, the energy potential of large seeds is considered to emerge better in most of the...
habitats (Stevenson et al., 2005). Large seeds show better germination parameter and establishment potential of seedlings as compared with medium and small seeds (Murali, 1997; Negi and Todaria, 1997; Khan and Shankar, 2001; Mwase and Mvula, 2011). Consideration of seed traits may be a useful aspect for propagation and conservation of valuable plants (Khurana and Singh, 2001). Terminalia arjuna is commonly propagated through seeds hence the seed size trait in seedling emergence has been highly acknowledged for the development of quality planting stock.

Materials and Methods

The investigation was carried out in Research Farm of College of Forestry SHUAT, Allahabad, Uttar Pradesh during 2014-15 to find the association between seed size and germination parameter The experimental site at elevation of 98 m above sea level at 28.87° N latitude and 81.15° E longitude. The characteristics of the soil are sandy loam in order to Inceptisol soil. The research area has a sub-tropical climate with extremes of summer and winter. During the summer season, the temperature reaches up to 46-48°C, while during winter season, especially in the month of Nov. and Jan. temperature drops down to as low as 1-2°C. During winter, frost and during summer, hot scorching wind are common features. The average rainfall in this area is around 882 mm, during the monsoon i.e. June to Sept, with a few occasional light showers and drizzles are seen in the winter also.

More than 3000 mature fruits were collected from different parts of the crown of an individual plus tree selected from 30 different locations of state Uttar Pradesh (Table 1 and Figure 1). The fruits were cleaned and stored in muslin bags at ambient conditions before sowing. All lots were dried under similar temperature and humidity to reach constant weight. Observations on fruit characters were taken of plus tree and replication wise. Dark brown, matured (ripened) seeds of T. arjuna, were collected from different parts of Uttar
Pradesh in the month of March 2014. For taking observations on fruit characters, 30 fruits / tree was collected randomly from different parts of the tree and average of 30 fruits measurement was recorded for fruit length, width and fruit weight for sorting and seedling establishment in the nursery. The seed sample comprised large and small seeds, which were separated out for experimental purpose. All the seeds were weighed (digital electronic balance, Mx 7000 series) and the length and diameter (Digital Vernier calipers) of the seeds were also measured. Air-dried seeds of each category were given pre-germination treatments of 2 days of water soaking and sown in triplicate (each replicate containing 20 seeds) under nursery conditions (in black 100 × 152 mm polybags (containing soil, farmyard manure [FYM], and sand in a ratio of 1:1:1) at a depth of 20 mm in the first week of July.

The seeds were regularly monitored in terms of the onset of germination and number of seedlings established, over a period of 12 months. Values obtained for weights, lengths and diameters of all seeds in each replicate were averaged. The number of days required for onset of germination, seedling emergence, mean time for the onset of germination (MGT) and percent seedling emergence in each replicate per seed-size category were averaged. Single factor-analysis of variance (ANOVA) for germination traits in relation to seed size was calculated.

The data were subjected to statistical analysis appropriate to the design and significance of different sources of variations was tested by Fisher’s and Snedecor’s F-test at probability level of 0.05 (Chandel, 1984) to obtain information on the mean performance and to assess the correlation of seed characteristics and total emergence of seedlings (%). Standard errors (SE) for the values obtained were calculated. Mean germination time was calculated by slightly modifying the formula suggested by Butola and Badola (2004).

Results and Discussion

Large size increased germination rate and seedling survival, accelerated germination timing, and enhanced seedling growth. Germination of large seeds recorded slightly higher than small size and ranges from 68.33 to 43.33%. Mean daily germination value ranged between 1.81 to 2.85. Peak value of germination ranged between 3.15 to 4.59, Germination value ranged between 5.79 to 13.67and germination speed ranged between 3.71 to 5.88. Most of the germination parameters of large, medium and small seeds have slight differences and varied non-significantly. Mean Germination Time (MGT) for the seedlings from large, medium and small seeds was comparable. Seed characteristics such as weight, length and diameter were positively correlated with the germination parameter of seeds (Table 2 and Fig. 2). Perusal of data represented in table 2, a greater number of seedlings germination from the large seeds followed by medium while relatively lower seedlings germination were established from small seeds. Significant variations were observed among the numbers of seedlings established from different sized. Seed size emerged as a governing characteristic for germination and seedling establishment in *T. arjuna*. Higher germination have been reported for the large seeds compared with medium and small seeds laboratory conditions (Negi and Todaria, 1997), similar to the trend currently observed under nursery conditions. However, different species of *Terminalia* may exhibit similar, or diverse, germination responses in relation to seed size and pre-treatments (Agboola et al., 1993; Murali, 1997; Schiotz et al., 2006; Shivanna et al., 2007; Likoswe et al., 2008; Amri, 2010).
Table 1 Details of morphological observations of thirty plus trees of *Terminalia arjuna* collected from different locations (S1–S30)

Seed source	Location	Latitude	Longitude	Age of tree (years)	Tree height (m)	Tree girth (cm)	Fruit length (mm)	Fruit width (mm)
S1	Chamanbagh, Fatehpur	25°94'N	80°80'E	10-12	14.00	72.10	31.07	22.94
S2	Allen forest, Kanpur	26°50'N	80°30'E	12-18	16.00	85.90	27.04	20.27
S3	Cant, Varanasi	25°33'N	82°98'E	12-15	14.00	73.40	42.04	31.14
S4	Kendriya Vidyalaya, Basti	26°80'N	82°70'E	10-15	12.00	78.60	41.90	31.24
S5	Baghauchghat, Deoria	26.57'N	84°00'E	10-15	16.00	84.10	39.57	29.14
S6	Fazilnagar, Kushinagar,	26°68'N	84°05'E	15-17	12.00	78.10	39.77	29.10
S7	Kartaniaghat Range Office, Bahraich	28°33'N	81°13'E	12-16	14.00	114.20	38.77	29.04
S8	Irrigation Department, Gonda	27°13'N	81°95'E	15-17	12.00	74.30	29.17	21.70
S9	Kawwa Bagh Colony, Gorakhpur	26°75'N	83°38'E	11-14	10.00	73.10	31.77	23.77
S10	Gandhi Udhyan, Bareilly	28°34'N	79°43'E	10-13	15.00	77.20	25.67	19.24
S11	Railway station road, Sirathu, Kaushambhi	25°65'N	81°32'E	12-14	14.00	87.30	38.10	28.34
S12	Sitasamahitsthalsitamarhi, Bhadohi	25°27'N	82°26'E	11-12	14.00	112.10	32.87	24.53
S13	Kukrail, Lucknow	26°91'N	80°98'E	11-16	14.00	114.70	32.57	24.34
S14	U P Forest Corporation Lakhipur	27°94'N	80°79'E	14-15	11.00	82.20	31.27	23.27
S15	Company Garden Beribagh, Saharanpur,	29°97'N	77°56'E	12-16	11.00	102.30	23.84	18.24
S16	SHUATS, Allahabad	25°41'N	81°85'E	15-18	17.00	71.80	23.94	17.97
S17	Shahjahanpur road, Sitapur	27°58'N	80°65'E	11-15	12.00	85.30	22.90	17.17
S18	V.B.S Purvanchal University, Jaunpur	25°83'N	82°68'E	12-15	11.00	54.80	20.34	15.44
S19	Railway ground, Mau	25°94'N	83°56'E	12-17	10.00	75.70	21.10	15.94
S20	Obra forest, Sonbhadra	24°46'N	82°99'E	12-16	11.00	68.30	25.37	18.97
S21	Malka Park, Bulandshahar	28°41'N	77°85'E	15-18	11.00	98.10	25.20	18.77
S22	Deer park, Moradabad	28°82'N	78°81'E	10-14	10.00	62.80	29.04	21.60
S23	Company Garden, Pratapgarh	25°92'N	82°07'E	12-14	11.00	68.80	25.77	19.40
S24	Gandhi Park, Meerut Cantt	29°01'N	77°70'E	11-15	14.00	111.10	25.37	18.93
S25	Indira Gandhi Vanaspati Udyan, Raibareilly	26°20'N	81°25'E	12-15	11.00	102.20	33.57	24.97
S26	Barkachha, Mirzapur	25°05'N	82°60'E	12-15	10.00	96.30	14.80	12.48
S27	Lohiya park, Kanauj	27°01'N	79°92'E	11-16	11.00	66.20	22.33	16.60
S28	Katar Mill, Banda	25°51'N	80°34'E	11-16	10.00	61.70	23.44	17.60
S29	Dr. Bhimrao Ambedkar Park, Unnao	26°55'N	80°48'E	12-16	10.00	62.60	23.03	17.24
S30	Aarogya Dhaam Chitrakoot	25°16'N	80°86'E	11-16	14.00	90.20	24.94	18.60
Table 2: Seed size correlates with seedling emergence in *Terminalia arjuna* genotypes

Seed source (Genotypes)	Length (mm)	Width (mm)	100-Fruit weight (g)	Germ (%)	MDG	Peak Value	Germ Value	Germ Speed	
S1	30.40	22.07	234.13	46.67	1.94	3.28	6.39	4.11	
S2	26.47	19.53	259.00	55.00	2.29	3.76	8.79	4.81	
S3	41.20	30.00	310.40	65.00	2.71	4.25	11.58	5.38	
S4	41.00	30.00	321.87	60.00	2.50	3.93	9.82	4.89	
S5	33.13	24.13	412.00	58.33	2.43	3.83	9.33	5.01	
S6	44.53	32.47	490.67	56.67	2.36	3.78	9.12	4.83	
S7	38.00	27.80	238.07	66.67	2.78	4.33	12.10	5.88	
S8	28.60	20.87	262.13	45.00	1.88	3.15	5.90	4.06	
S9	31.13	22.80	304.27	48.33	2.02	3.21	6.46	3.71	
S10	25.13	18.47	277.20	50.00	2.09	3.60	7.82	4.27	
S11	37.40	27.27	313.00	48.33	2.02	3.46	7.08	4.43	
S12	32.13	23.53	313.80	61.67	2.57	4.02	10.53	5.36	
S13	31.80	23.27	216.40	50.00	2.08	3.59	7.79	4.32	
S14	30.60	22.27	202.27	50.00	2.08	3.67	7.87	4.39	
S15	23.40	17.20	203.67	55.00	2.29	3.45	8.02	4.92	
S16	23.40	17.27	213.00	50.00	2.08	3.26	6.80	4.45	
S17	22.60	16.53	208.73	65.00	2.71	4.04	11.19	5.58	
S18	20.00	15.00	231.67	60.00	2.50	3.93	10.18	5.15	
S19	20.80	15.27	154.00	58.33	2.43	3.87	9.59	5.04	
S20	24.87	18.20	163.07	58.33	2.43	3.73	9.17	5.20	
S21	24.67	18.00	161.87	68.33	2.85	4.59	13.67	5.82	
S22	28.40	20.73	169.47	43.33	1.81	3.21	5.79	3.71	
S23	25.27	18.53	177.27	61.67	2.57	4.12	11.01	5.52	
S24	24.87	18.33	184.27	50.00	2.08	3.29	6.87	4.15	
S25	32.87	23.93	113.27	56.67	2.36	3.60	8.56	4.99	
S26	14.87	10.88	114.07	48.33	2.02	3.29	6.65	3.96	
S27	21.93	16.13	122.93	56.67	2.36	3.57	8.46	4.62	
S28	23.07	17.07	125.40	53.33	2.22	3.47	7.77	4.62	
S29	22.53	16.47	138.27	51.67	2.15	3.38	7.40	4.28	
S30	24.40	17.80	175.27	51.67	2.15	3.37	7.27	4.40	
S. Ed. (±)	0.64	0.667	2.818	6.74	0.32	0.44	2.26	0.7	
C.D. (5%)	1.28	1.337	5.652	N/A	N/A	N/A	N/A	N/A	N/A
Fig. 1 Seed source *Terminalia arjuna* genotypes collected from 30 sites of Uttar Pradesh

Fig. 2 Seed size correlates with seedling emergence in *Terminalia arjuna* genotypes
The observed effect of fruit size on seedling vigour and growth might be a direct result, because large seeds had more reserves in their cotyledons, but also an indirect result because large acorns germinated earlier, prolonging the growing season and thereby enhancing both below- and aboveground biomass gain, as well as the vertical growth of the resulting seedling (Tripathi and Khan, 1990; Ke and Werger Seiwa, 1999; 1998, 2000).

On the basis of earlier and the present studies, it is concluded that, higher germination percentages from large seeds is a stable character in *T. arjuna*. These findings suggest that the general assumption that seedling vigour has a fixed positive function of seed/fruit size needs to be reconsidered. There may be conflict in selection of an optimal seed size in some plant species.

Therefore, it is also suggested that, prior to sowing, the seeds should be screened. This practice will help in overcoming the inhibitory effect of adherent pulp on seed germination – and consequently on seedling establishment and ultimately on the production of quality stock.

The present study concludes that there is a slight difference between the large and medium size seeds where significance differences among medium to small seed. The large seeds were repeatedly performed to a higher germinability than the medium and small sizes. The increased germination rate could be related to the larger amount of reserves available in the large seed than in the medium or small seeds. The findings of experiment also suggest that seed vigor also differ in seed size in genotypes.

Hence, it is recommended to use only medium and large size seeds for growing, because they do result in higher germination behavior and seedling establishment.

Acknowledgment

The authors are grateful to the College of Forestry & Environment, Sam Higginbottom University of Agriculture Technology and Sciences, (Formerly Allahabad Agriculture Institute), Allahabad, India for providing all necessary helps and facilities during the course of experiment and valuable comments of anonymous reviewers helped us a lot to improve this manuscript.

References

Agboola, D.A. E.O. Etejere, M.O. Fawole. 1993. Effect of orientation and soil types on germination of seeds of some tropical forest tree species, Seed Research, 21, pp. 13-20

Amri. E.M., 2010. Germination of *Terminalia sericea* Buch ex DC seeds: effect of temperature regime, photoperiod, gibberellic acid and potassium nitrate, American-Eurasian Journal of Agricultural and Environmental Sciences, 8, pp. 722-727

Dlamini, C.S., 2011. Provenance and family variation in seed mass and fruit composition in *Sclerocarya birrea* sub-species *caffra*, Journal of Horticulture and Forestry, 39, pp. 286-293

Geritz, S. A. H. 1998. Co-evolution of seed size and seed predation. Evol. Ecol. 12:891–911.

Hewitt, N. 1998. Seed size and shade-tolerance: a comparative analysis of North America temperate trees. Oecologia 114:432–440.

Jakobsson, A. and O. Eriksson. 2000. A comparative study of seed number, seed size, seedling size and recruitment in grassland plants.

Jose, ‘ M. GO’ MEZ, 2004, Bigger is not always better: conflicting selective pressures on seed size in *quercus ilex*, Evolution, 58(1), pp. 71–80
Jurado, E. and M. Westoby. 1992. Seedling growth in relation to seed size among species of arid Australia. J. Ecol 80:407–416.
Ke, G., and M. J. A. Werger. 1999. Different responses to shade of evergreen and deciduous oak seedlings and the effect of acorn size. ActaOecologica 20:579–586.
Khan, M.L., U. Shankar(2001)Effect of seed weight, light regime and substratum micro site on germination and seedling growth of Quercus semiserrata Roxb, Tropical Ecology, 42, pp. 117-125
Moles, A.T., D.S. Falster, M.R. Leishmann, M. Westoby., 2004. Small seeded species produce more seeds per square meter of canopy per year but not per individual per lifetime, Journal of Ecology, 92, pp. 384-396
Murali, K.S., 1997. Patterns of seed size, germination and seed viability of tropical tree species in southern India, Biotropica, 29, pp. 271-279
Negi, A.K., N.P. Todaria, 1997.Effect of seed size and weight on germination pattern and seedling development of some multi-purpose tree species of Garhwal Himalaya, Indian Forester, 123, pp. 32-36
Purohit,V., J.S. Butola, C.P. Kuniyal, R.C. Sundriyal, 2012. Seed pulp significantly inhibits seedling emergence in Terminalia bellerica, Current Science, 103, p. 764-764
Rathore, P., R. Suthar, S.D. Purohit. 2008. Micro propagation of Terminalia bellerica Roxb. From juvenile explants, Indian Journal of Biotechnology, 7, pp. 246-249
Schiotz, M., M.V. Boesen, J. Nabe-Nielsen, M. Sorensen, J. Kollmann. 2006. Regeneration in Terminalia oblonga (Combretaceae) - a common timber tree from a humid tropical forest (La Chonta, Bolivia), Forest Ecology and Management, 225, pp. 306-312
Shivanna, H., H.C. Balachandra, N.L. Suresh (2007), Effect of pre-sowing treatment on germination of Terminalia bellerica (Ber), Karnataka Journal of Agricultural Sciences, 20, pp. 442-443
Stevenson, P.R., M. Pineda, T. Samper 2005. Influence of seed size on dispersal pattern of woolly monkey (Lagothrix lagotricha) at Tinigua Park Colombia, Oikos, 110, pp. 435-440
Tripathi, R. S., and M. L. Khan. 1990. Effects of seed weight and microsite characteristics on germination and seedling fitness in two species of Quercus in a subtropical wet hill forest. Oikos 57:289–296.
Zhang, J. (1998) Variation and allometry of seed weight in Aeschynomene Americana, Annals of Botany, 82, pp. 843-847
Zobel, B. and Talbert. J., 1984. Applied forest tree improvement.

How to cite this article:
Hemant Kumar, S.B. Lal, A.M. Wani, Rajiv Umrao, Neelam Khare and Neeta Shweta Keretta. 2017. Seed Size Correlates with Germination Traits in Terminalia Arjuna Genotypes. Int.J.Curr.Microbiol.App.Sci. 6(8): 2896-2903. doi: https://doi.org/10.20546/ijcmas.2017.608.346