Interactions between the otitis media gene, Fbxo11, and p53 in the mouse embryonic lung

Hilda Tateossian¹, Susan Morse¹, Michelle M Simon¹, Charlotte H Dean¹,² and Steve DM Brown¹*

¹ MRC Mammalian Genetics Unit, Harwell, OX11 0RD, UK
² Leukocyte Biology, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK

*Correspondence: s.brown@har.mrc.ac.uk

Keywords: otitis media, FBXO11, p53, TGF-β, lung

SUMMARY STATEMENT

Genetic interactions between Fbxo11 and p53 illustrate the cross-talk of TGF-β and p53 signalling pathways in epithelial development, with implications for the underlying molecular pathology of otitis media.
ABSTRACT

Otitis Media with effusion (OME) is the most common cause of hearing loss in children and tympanostomy to alleviate the condition remains the commonest surgical intervention in children in the developed world. Chronic and recurrent forms of OM are known to have a very significant genetic component, however, until recently little was known of the underlying genes involved. The Jeff mouse mutant develops deafness due to a chronic proliferative otitis media and is encoded by the Fbxo11 gene, a member of the F-box family. We previously reported that Fbxo11 is involved with the regulation of transforming growth factor beta (TGF-β) signalling by regulating the levels of phospho-Smad2 in the epithelial cells of palatal shelves, eyelids and airways of the lungs. It has been proposed that FBXO11 regulates the cell’s response to TGF-β through the ubiquitination of CDT2. Additional substrates for FBXO11 have been identified, including p53. Here, we have studied both the genetic and biochemical interactions between FBXO11 and p53 in order to better understand the function of FBXO11 in epithelial development and its potential role in otitis media. We show that p53 homozygous mutants and double mutants exhibit similar epithelial developmental defects to Fbxo11 homozygotes. FBXO11 and p53 interact in the embryonic lung and mutation in Fbxo11 prevents the interaction with p53. Both p53 and double mutants show raised levels of pSMAD2, recapitulating that seen in Fbxo11 homozygotes. Overall, our results support the conclusion that FBXO11 regulates the TGF-β pathway in the embryonic lung via cross-talk with p53.
INTRODUCTION

Otitis media with effusion (OME) is the commonest cause of hearing loss in children with significant effects on language development and learning, accompanied by behavioural problems. It is the most common cause of surgery for children in the developing world involving the insertion of tympanostomy tubes. Genetic studies in the human population demonstrate that there is a significant genetic component to chronic OME (COME) (Casselbrant et al., 1999; Rovers et al., 2002; Daly et al., 2004; Casselbrant et al., 2009; Hafren et al., 2012b) but very little is known about the underlying genes and pathways involved. However, a number of single gene mutations in mouse give rise to chronic otitis media phenotypes, in some cases accompanied by a spectrum of other disorders (Rye et al., 2011a) and provide important tools for understanding the pathways and mechanisms underlying chronic middle ear inflammatory disease.

We have studied three mouse models of COME, Jeff (Hardisty-Hughes et al., 2006), Junbo (Parkinson et al., 2006), and a knockout of the Tgif1 gene (Tateossian et al., 2013). The Jeff and Junbo mutants carry mutations in the Fbxo11 and Evi1 genes respectively, and all three genes impact upon TGF-β signalling. EVI1 is a co-repressor of SMAD3, while TGIF1 functions as a regulator of the TGF-β signalling pathway. The development of COME in these mutants may reflect the interplay between TGF-β and hypoxia signalling pathways (Cheeseman et al., 2011). Hypoxia is a feature of inflamed microenvironments and there is cross-talk between TGF-β and HIF-1α signalling pathways. We investigated the occurrence of hypoxia and HIF mediated responses in Junbo and Jeff mutants and showed cellular hypoxia in middle ear mucosa and middle ear lumen white blood cells (Cheeseman et al., 2011).
Our previous studies of the Jeff mutant indicate that FBXO11 is involved in controlling TGF-β signalling by regulating the levels of pSMAD2 in embryonic epithelial cells (Tateossian et al., 2009). While Jeff heterozygous mice develop deafness due to chronic proliferative otitis media (Hardisty et al., 2003; Hardisty-Hughes et al., 2006), Jeff homozygotes display developmental epithelial abnormalities including underdeveloped lungs (Tateossian et al., 2009). The TGF-β signalling pathway is integral for normal lung development with all three TGF-β isoforms expressed in embryonic lung (Bartram and Speer, 2004). It has been shown that they can negatively regulate lung branching morphogenesis in early lung development (Sakurai and Nigam, 1997; Liu et al., 2000). In contrast, downregulation of TGFβRII stimulates embryonic lung branching in vitro (Zhao et al., 1996). SMAD2 and 3 knockouts have markedly different phenotypes with knockout of SMAD2 leading to early embryonic lethality (Weinstein et al., 1998) whilst SMAD3 knockouts survive to term but show airspace enlargement and abnormal alveolarization (Chen et al., 2005). In adult lungs, TGF-β signalling is a key driver of remodelling after injury in diseases such as asthma, Idiopathic fibrosis (IPF) and Chronic obstructive pulmonary disease (COPD). In addition, SNPs in both SMAD3 and TGFβRII have been associated with lung function changes in a recent genome-wide association study (Postma and Timens, 2006; Moffatt et al., 2010; Liao et al., 2014; Pain et al., 2014).

FBXO11 is a member of the F-box family of proteins that are the substrate recognition components of the SCF ubiquitin-ligase complexes containing Skp1, Cullin, Rbx1/Roc1/Hrt1, and an F-box protein. These proteins are important regulators of many cellular processes such as DNA replication, mitosis, DNA repair, transcription, cell differentiation and cell death (Cardozo and Pagano, 2004). FBXO11 has been identified as an E3 ligase for p53, which can promote the neddylation and suppress transcriptional activity of
p53 (Abida et al., 2007). FBXO11 has also been shown to target the oncoprotein BCL6 (B cell lymphoma 6) for degradation (Duan et al., 2012). The recent identification of FBXO11 as a regulator of TGF-β signalling by controlling CDT2 activity has revealed a new avenue of TGF-β regulation (Abbas et al., 2013a; Abbas et al., 2013b; Rossi et al., 2013). The CRL4(Cdt2) E3 ubiquitin ligase is a known regulator of cell-cycle progression and genome stability. CDT2 was found to be degraded by CUL1-FBXO11 (CRL1FBXO11) that results in stabilization of p21 and SET8. It has been proposed that the epithelial defects in Jeff mice may arise from impaired SET8 levels (Abbas et al., 2013b). Since SET8 appears to promote SMAD2 de-phosphorylation, by an unknown mechanism, the high levels of pSMAD2 observed in Jeff mutants could reflect a compromised FBXO11/CDT2/SET8 pathway (Abbas et al., 2013a).

In parallel, it is also known that the TGF-β and p53 pathways cooperate and a number of genes are under the joint control of p53 and SMADs (Atfi and Baron, 2008). For example, p53 physically interacts with SMAD2 in vivo and both are recruited at distinct cis-regulatory elements on a common target promoter, leading to synergistic activation of transcription (Cordenonsi et al., 2003). Mutant p53 can attenuate the ability of TGF-β1 to induce the expression of genes encoding p21, PAI-1 (plasminogen activator inhibitor), MMP2 (matrix metalloproteinase) and SM22 (smooth muscle specific 22 kDa protein) (Kalo et al., 2007). It has also been found that Ras signaling induces p53 N-terminal phosphorylation, enabling the interaction of p53 with activated SMADs and subsequent recruitment of the complex to specific TGF-β responsive target promoters (Cordenonsi et al., 2007).
This extensive cross-talk between TGF-β and p53 signalling pathways suggested a potential role for p53 signalling in epithelial development. Examining the interactions between TGF-β and p53 signalling pathways in epithelial development will help inform us about the molecular mechanisms impacting on epithelial function in the middle ear. We hypothesised that embryonic epithelial development may be controlled by FBXO11, through its regulation of the TGF-β pathway, in cooperation with p53. We therefore studied in detail the genetic and biochemical interactions of Fbxo11 and p53 in the developing mouse lungs, an organ which has similar properties to the middle ear (Takahashi, 2001) and for which we have previously demonstrated that FBXO11 has an important role in modulating TGF-β signalling. Our results support the conclusion that FBXO11 regulates TGF-β signalling in murine embryonic lung through interactions with the p53 pathway.
RESULTS

Developmental abnormalities in p53 deficient mice

It has been reported that a mutation in the p73 gene, a close relative of p53, results in the development of OM (Yang et al., 2000). We have tested the p53 knockout mice for hearing loss by clickbox and in addition we have analysed histological sections of the bullae of the mutant mice. We did not detect any difference in the hearing ability between p53 mutant mice and wild types at the age of two months. Assessing the bulla sections of p53 mutant heterozygote and homozygote mice revealed no histological changes in the middle ear of either genotype.

Mice deficient for p53 on a mixed genetic background have been reported as developmentally normal (Donehower et al., 1992). However, outcrossing the mice on a 129/sv background resulted in embryonic lethality due to defects in neural tube closure (Sah et al., 1995) and additional developmental abnormalities are reported on a 129/Ola background (Armstrong et al., 1995). Due to the variable phenotypes observed on different backgrounds, we first undertook a detailed investigation of embryogenesis in our p53 mutant colony. We noted that in p53 mice maintained on a C57BL/6J background, a significant proportion of homozygotes die before weaning. The surviving homozygotes composed 14.3% (25/175) of the mice from heterozygote intercrosses, less than the expected 25% ($\chi^2 = 10.71429, p = 0.0011, df = 1$). Only three out of the 25 adult homozygote mice were female. At embryonic day 18.5 (E18.5), 4 out of 10 homozygote embryos had developmental abnormalities. All four affected embryos had severely abnormal lung architecture, in addition one had eyelids open and exencephaly and two had cleft palate (Fig. 1); phenotypes that hitherto have not been reported in p53 deficient mice. Of these four embryos, three were female and one male. This is consistent with previous reports that some developmental
defects in p53 deficient mice, like exencephaly, are known to be female specific (Sah et al., 1995).

To analyse the lung phenotype of the embryos we measured the width and counted the number of the airways as described previously (Yates et al., 2013). The E18.5 p53 homozygote lungs showed significantly reduced airspace width (p = 4.33E-06; Fig. 2A,B) and a significantly reduced number of airspaces compared to wild type littermates (p = 0.0024; Fig. 2A,C). The remaining six embryos had less disrupted lung histology and a milder lung phenotype. These phenotypic features closely resemble those observed in Jeff homozygotes (Hardisty-Hughes et al., 2006; Tateossian et al., 2009) and likely account for the perinatal mortality of p53 deficient mice.

Fbxo11 and p53 interact genetically

Given the similarities between Fbxo11 and p53 phenotypes, and our hypothesis regarding potential interactions between FBXO11 and p53, we tested for genetic interactions between these two loci. In our previous study, intercrosses of Jeff heterozygotes and p53 homozygotes on a C57BL/6J background produced compound heterozygotes, most of which survived (Tateossian et al., 2009). However, in this study, using Jeff mice on a mixed C3H/HeH-C57BL/6J background lead to reduced survival of compound heterozygotes, (19/146, χ² = 11.1872 p = 0.0008, df = 1). The average weight of the compound mutants was the same as the average weight of Jeff heterozygotes (Fig. S1).

Given that our previous work examining interactions between Fbxo11 and TGF-β signalling had focused on the lungs as one of the most severely affected organs (Tateossian et al., 2009), we chose to investigate interactions between Fbxo11 and p53 in the same organ. At E18.5 half of the double heterozygotes examined (5/10) had severely affected lungs and cleft palate, a phenotype similar to that of Jeff homozygote mice (Tateossian et al., 2009), mice
heterozygous for both *Jeff* and *Smad2* (Tateossian et al., 2009) and some *p53* homozygote mice. The average width (p = 0.00001; Fig. 2A,B) and number (p = 0.0019; Fig. 2A,C) of airspaces in severely affected double heterozygotes was significantly lower than in wild types, recapitulating the lung phenotype of the *Jf/Jf* embryos and of the affected *p53/p53* embryos, indicating a genetic interaction between *Fbxo11* and *p53*. Surviving double heterozygotes looked phenotypically normal and we therefore intercrossed them. *Jf/Jf p53/p53* and *Jf/Jf p53/+* embryos were examined at E18.5, E17.5 and E16.5. At E16.5 we did not find any *Jf/Jf p53/p53* homozygotes indicating that they die before embryonic day 16.5 and we found one *Jf/Jf p53/+* embryo of normal size ($\chi^2 = 2.172414 \ p = 0.140506, df = 1$), suggesting that *Jf/Jf p53/+* mutants die after E17.5 (Table S1).

FBXO11 and p53 are in a complex with CUL1 in the embryonic mouse lung

In order to assess the biochemical interactions between FBXO11 and p53 in developing epithelia we focused our analysis on the lung. Due to its small size, protein analysis, such as immunoprecipitation, of middle ear epithelia is difficult. However, both the middle ear and the lungs have significant similarities in structure and function (Takahashi, 2001). In our previous study, we were not able to demonstrate a biochemical interaction between *p53* and *Fbxo11* in lung (Tateossian et al., 2009). Given the genetic interaction reported here, we significantly modified our approach to again look for a biochemical interaction including the use of alternative antibodies. Total protein from E15.5 wild type lungs was immunoprecipitated with an antibody which detects both forms of FBXO11 and we found that p53 does coimmunoprecipitate with FBXO11 (Fig. 3A, top and second panel). The size of the p53 band (71 kDa) suggested that the protein is modified. It has been shown that FBXO11 promotes the neddylation of p53 at Lys-320 and Lys-321 (Abida et al., 2007). NEDD8 is 9kDa and therefore the expected size of FBXO11-neddylated p53 is 71kDa. By
employing a NEDD8 antibody we demonstrated that p53 is neddylated when complexed with FBXO11 in the E15.5 mouse lung (Fig. 3A, third panel) and in addition the NEDD8 antibody detects a band with the size of about 71kDa in the p53 immunoprecipitate (Fig. 3A, bottom panel). We also undertook reverse immunoprecipitation using a rabbit anti p53 antibody. We found that only the larger isoform of FBXO11 (103 kDa) coimmunoprecipitates with p53 in the mouse lung (Fig. 3A, fourth panel). To test whether the Jeff mutation prevents the association of FBXO11 with p53 we conducted an immunoprecipitation with total protein isolated from E15.5 Jeff homozygote lungs. The FBXO11 antibody precipitated FBXO11 from the mutant embryonic lungs (Fig. 3B, second panel) but not p53 (Fig. 3B, first panel).

F-box proteins are one of the core subunits of the SCF complex. Cullins are the other important unit providing a scaffold for the complex. We sought to determine the interaction of FBXO11 with CUL1 and CUL4 in E15.5 lungs. We used two FBXO11 antibodies; antibody 177A which recognises only the larger FBXO11 isoform, and 178A which detects both isoforms (Fig. 3C). As expected the 178A antibody recognised a single 103 kDa band in the 177A immunoprecipitation corresponding to the large FBXO11 isoform (ENSMUSP00000005504) while in the 178A immunoprecipitation it recognised two bands, the large 103 kDa isoform but also the small 95 kDa isoform (ENSMUSP00000130379) (Figure 3D, bottom panel). Surprisingly, we found that CUL4 was coimmunoprecipitated with the 178A FBXO11 antibody but not 177A, suggesting that the small isoform of FBXO11 is in a complex with CUL4 (Fig. 3D, second panel). It has been reported that the short isoform of FBXO11 binds CDT2 and plays the key role in CDT2 degradation in the FBXO11/CDT2/SET8 pathway (Abbas et al., 2013b). CDT2 also binds to CUL4 through the Cullin 4-RING ubiquitin ligase. We found that CDT2 was also coimmunoprecipitated with the 178A FBXO11 antibody (Fig. 3D, third panel). It is possible that the short isoform of FBXO11 is binding to CDT2 in mouse lung tissue as part of this complex and as a
consequence CUL4 is coimmunoprecipitated. A CUL1 antibody detected two bands in both immunoprecipitations using 177A and 178A indicating that the larger isoform, which interacts with p53, is in a SCF complex with CUL1 (Fig. 3D, top panel).

Structural analysis demonstrates possible interactions between FBXO11 and p53

Following the demonstration that the Jeff mutation interferes with the interaction between FBXO11 and p53, we sought to better understand the structural relationship between the FBXO11/p53 protein-protein interaction. FBXO11 is a 930-amino acid long F-box protein that contains a proline rich domain and the F-box domain at the N-terminus, three central CASH (carbohydrate binding proteins and sugar hydrolyses) domains and a zinc finger domain at the C-terminus. The Jeff mutation, a non-conservative glutamine to leucine change (Hardisty-Hughes et al., 2006), is located at the beginning of the second CASH domain (Fig. 4A). CASH domains are found in over 1000 proteins and consist of repeats of approximately 7 to 11 right handed beta-helixes (Ciccarelli et al., 2002). Structural analysis demonstrates the possible biochemical basis for FBXO11 interaction with the transactivation domain of p53. Utilising protein docking predictions we found that the second CASH domain forms a deep hydrophobic cleft into which the alpha-helix present in the N-terminus transactivation domain of p53 may bind (Fig. 4B,D). A similar lock and key mechanism is seen with the MDM2-p53 interaction (Kussie et al., 1996; Moll and Petrenko, 2003). MDM2 (murine double minute 2) is one of the regulators of p53 and acts as an E3 ligase to promote p53 ubiquitination and neddylation. MDM2 interacts with the transactivation domain of p53 (Kussie et al., 1996) and ubiquitinates and neddylates amino acids at the C-terminus of p53. FBXO11 is also known to promote the neddylation of amino acids localized in the C-terminus of p53 (Abida et al., 2007). Our structural analysis predicted a possible interaction of FBXO11 with the transactivation domain of p53, similar to the one seen with MDM2. The
Jeff mutation is centrally located within the hydrophobic cleft. We therefore hypothesise that the non-polar leucine might disrupt hydrogen bonds within the binding site (Fig. 4C,E) weakening FBXO11’s affinity for p53.

FBXO11 neddylates p53 in the developing lung

It has previously been shown that NEDD8 conjugation to the C-terminus of p53 does not change the subcellular localisation of p53 in H1299 cells (Abida et al., 2007). Immunohistochemical analysis of p53 in wild type and Jf/Jf embryonic lungs by immunohistochemistry showed p53 is predominantly localised in the nucleus of the epithelial cells of the airways, suggesting that the mutation in FBXO11 does not alter localisation of p53 (Fig. 5A,B). Western blot analysis with p53 antibody on wild type and mutant lung tissue detected three main bands at approximately 53; 60 and 71 kDa (Fig. 5C). It is well known that the p53 protein is post-translationally modified in several ways. The 53 kDa band probably corresponds to unmodified p53 or phosphorylated/acetylated p53. The 60 kDa band could be either monoubiquitynated (ubiquitin is 8.5kDa) or monosumoylated p53 (SUMO proteins are 12kDa). However, a SUMO-1 antibody recognised some sumoylated proteins but not of the same size (60kDa) in embryonic lung lysates (Fig. 5E). This result suggests that the 60 kDa protein could correspond to the monoubiquitylated p53. Probing the Western blot with a NEDD8 antibody identified at least three proteins sized between 71 and 90 kDa which are neddylated in lung lysates, including a 71kDa band (Fig. 5F). Two proteins are known to promote p53 neddylation, MDM2 and FBXO11. Three lysine residues in the C-terminus of p53 are required for neddylation of p53 by MDM2 (Xirodimas et al., 2004; Xirodimas, 2008) and two by FBXO11 (Abida et al., 2007). Given the size of NEDD8 (9 kDa), the FBXO11 interaction with a 71 kDa modified form of p53 detected by us and that NEDD8 antibody recognised a 71 kDa band in the p53 pulldown (see above), we conclude that the 71 kDa band
corresponds to neddylated p53. We observed decreased levels of neddylated p53 in Jf/Jf lungs compared to wild types (p = 0.016) (Figure 5C,D), supporting the conclusion that FBXO11 neddylates p53 in wild type developing lungs. While there was a significant reduction in neddylated p53 in Jf/Jf homozygotes, there were no significant changes in other forms of p53 in the homozygous mutant. Neddylated p53 protein levels were also significantly reduced in E15.5 Jf/+, p53/+ embryonic lungs compared to wild type. Interestingly this reduction was only observed in the severely affected double heterozygotes (where cleft palate was also present) (Fig. S2). Our data strongly suggests that FBXO11 regulates the activity of p53 in the embryonic lung.

Levels of pSMAD2 in p53/p53 mutant and Jf/+ p53/+ double mutant embryonic lungs

We reported that FBXO11 modulates the TGF-β signalling pathway in the developing mouse by regulating SMAD2 activity (Tateossian et al., 2009). To determine whether pSMAD2 is also upregulated in embryonic p53 homozygote we performed immunohistochemistry. Because the intensity was different between the wild type and the mutant tissues we quantified the staining by counting the epithelial cells with nuclear stain in the airways. The percentage of pSMAD2 positive epithelial cells was significantly higher in p53/p53 lungs, 88% (226/256), compared to wild types, 68% (181/260) (p = 0.0012) (Fig. 6A,B). In addition this increase was quantified by Western blotting (p = 0.0002) (Fig. 6C,D).

We also examined the levels of pSMAD2 in Jf/+ p53/+ double mutant E15.5 embryonic lungs. We analysed embryonic lung lysates from mildly and severely affected double mutants. We detected a significant increase in the levels of pSMAD2 in severely affected double mutants compared to wild types (p = 0.0291) and compared to mildly affected Jf/+ p53/+ embryos (p = 0.0223) (Fig. 6E,F).
Differences in the levels of p21 and PAI-1 in wild type and Jeff mutant tissues

To investigate further the relationship between FBXO11 and p53 in the developing mouse, we wished to assess whether FBXO11 might inhibit the activity of p53 in the developing lung. First, we examined FBXO11 levels in both Fbxo11 and p53 wild type and mutant tissues. No significant difference was seen between the wild type and Jf/Jf lungs for either of the two FBXO11 isoforms (Fig. 7A). We also did not detect significant differences in the levels of either FBXO11 isoform between wild type and mutant p53 lungs (Fig. S3A).

Next, we investigated levels of a number of proteins that are regulated by both pSMAD2 and p53. These included p21, PAI-1 and MMP2. We detected significantly elevated levels of p21 in Jeff homozygote lungs compared to wild type tissue (p = 0.0262) (Fig. 7B). We observed significant reduction in the protein levels of the inactive form of PAI-1 (50kDa) (p = 0.0251) and a significant increase in the level of active PAI-1 (43kDa) (p = 0.0486) in Jf/Jf lung lysate compared to wild type (Fig. 7C). We did not detect a difference in the protein levels of either the pro-form (72kDa) or the active form (64kDa) of MMP2 between wild type and mutant tissues on Western blots (Fig. 7D). In contrast, protein levels of p21, PAI-1 and MMP-2 were unchanged in p53/p53 embryonic lungs compared to littermate lungs (Fig. S3B-D). However, we observed a significant increase in levels of p21 protein in severely affected Jf/+ p53/+ double mutants compared to wild type (p = 0.0004) and to mildly affected embryos (p = 0.0093) (Fig. 6E,G).
No difference in protein levels of BCL6, CDT2 and SET8 in wild type and mutant Jeff and p53 tissues

An additional avenue that we wished to investigate was whether Fbxo11 might regulate the ubiquitin-mediated degradation of B-cell lymphoma 6 protein (BCL6). FBXO11 was found to be mutated in multiple diffuse large B-cell lymphoma cell lines and this inactivation correlates with increased levels and stability of BCL6 (Duan et al., 2012). However, we did not detect any significant difference in the protein levels of BCL6 in wild type and Jeff mutant lysates (Fig. 7E). It appears that in the mouse embryonic lung FBXO11 does not control the degradation of BCL6. Similarly, there was no difference in the levels of BCL6 between wild type and p53 mutant embryonic lungs (Fig. S3E). Finally, given the known role of FBXO11 in regulating TGF-β signalling through the degradation of CDT2 and the consequent stabilisation of the substrates SET8 and p21 (Abbas et al., 2013b; Rossi et al., 2013), we examined protein levels of CDT2 and SET8 in Jeff and p53 mutants. We found no significant difference in the steady state levels of either CDT2 or SET8 between wild-type and Jeff or p53 mutant tissues (Fig. 7F,G and Fig. S3F,G).
DISCUSSION

In order to better understand the pathobiology of OM, a variety of genetic studies have been undertaken to identify loci that contribute to susceptibility to COME. A number of candidate gene association studies have been reported (Hafren et al., 2012a). One such study demonstrated significant association with FBXO11, with replication of this finding within an independent cohort (Rye et al., 2011b). A previous study by Segade et al. (Segade et al., 2006) also reported a nominal association at this locus. MacArthur et al. (MacArthur et al., 2014) reported associations at the SMAD2 and SMAD4 loci, mediators of the TGF-β signalling pathway, along with associations at the TLR4 and MUC5B loci. These studies are consistent with our findings on the underlying genes and pathways involved with OME in the mouse models Jeff, Junbo and Tgif1, each of which carry a mutation in genes known to be involved in the regulation of the TGF-β signalling pathway.

In addition to candidate gene association studies, there have been two GWAS studies described (Rye et al., 2012; Allen et al., 2013). Rye et al. identified significant associations at several loci including CAPN14, GALNT14, BPIFA3 and BPIFA1 identifying novel candidate genes for further analysis. Interestingly, a mouse model of BPIFA1 was recently shown to demonstrate an increased susceptibility to OM (Bartlett et al., 2015). In a second GWAS study (Allen et al., 2013) a novel susceptibility locus on chromosome 2 was identified, with the relevant SNP lying in the intergenic region between CDCA7 and SP3.

Overall, the reported association and GWAS studies underline the power of mouse models in identifying candidate genes and pathways, as well as validating the functionality of the human loci identified (Daly et al., 2004; Casselbrant et al., 2009; Rye et al., 2011a; MacArthur et al., 2014). In this study we have focused on the Fbxo11 gene that is mutated in
the OM model, Jeff (Hardisty-Hughes et al., 2006) and identified as a potential OM susceptibility locus within two separate association studies (Segade et al., 2006; Rye et al., 2011b). We have now studied its genetic and biochemical interactions with p53 in order to elaborate its role within epithelia and its potential impact on the development of OM.

A variety of studies have demonstrated a critical role for FBXO11 in the regulation of TGF-β signalling. In vivo studies of the Jeff mutant have demonstrated markedly elevated levels of pSMAD2 associated with a variety of developmental epithelial abnormalities, including cleft palate, eyes open at birth and lung abnormalities (Tateossian et al., 2009). Recently, two important studies demonstrated a new role for FBXO11 in ubiquitin-dependent degradation of CDT2 that is critical for TGF-β pathway responses, including cell cycle exit (Abbas et al., 2013a; Rossi et al., 2013). Moreover, p53 has been shown to be neddylated by FBXO11 in vitro (Abida et al., 2007) and given the cross-talk between TGF-β and p53 signalling pathways there is the potential for impacts on TGF-β signalling outputs via the interaction between p53 and FBXO11 in vivo. We surmised from our studies on the Jeff mutant that aspects of embryonic epithelial development are controlled by FBXO11 through its regulation of the TGF-β pathway in cooperation with p53. Given the availability of FBXO11 and p53 mutants we have undertaken a genetic approach to studying the pathways and mechanisms involved, including examining the genetic and biochemical interactions between these two factors. The middle ear and the airway epithelia have a number of biological properties in common (Takahashi, 2001), and therefore we have focused our studies on the developing lung.

Surprisingly, a detailed study of lung development in p53 mutants identified an epithelial defect in a large proportion of homozygotes (around 40%). This phenotype had not been reported before and while it was not fully penetrant, we observed a significant number of
homozygous mutants with abnormal lung architecture showing a smaller number of airways of reduced size. This phenotype was associated with a very significant increase in levels of pSMAD2 in the developing lung and a large increase in the number of epithelial cells positive for pSMAD2. These features replicate those found in the Jeff mutant, though in the Jeff mutant the penetrance of the lung phenotype is much higher. In the absence of p53 in the developing lung, we saw no effects on the protein expression of downstream genes, such as p21 and PAI-1. Cell line studies show that mutant p53 attenuates the ability of the TGF-β signalling pathway to induce the expression of genes such as p21 and PAI-1 (Cordenonsi et al., 2003).

We adopted various enhancements to investigating FBXO11/p53 interactions and found that, in contrast to our previous report, here we were able to show that FBXO11 interacts with and neddylates p53 in the developing lung. In Jeff, mutant FBXO11 fails to interact with p53 and there is a significant reduction in neddylated p53, though there is no evidence for a corresponding increase in active p53. The Jeff mutant, as with the p53 mutant, shows raised levels of pSMAD2 (Tateossian et al., 2009). Moreover, in the presence of normal levels of p53, we find that levels of p21 and PAI-1 are significantly raised.

Given the similar developmental phenotypes shared by the Jeff and p53 mutants, we examined the phenotypes of double heterozygote Jf/+ p53/+ mutant mice. The double heterozygotes showed defects in lung architecture, with extraordinary similarities to both Jeff and p53 homozygous mutants, including a reduced number and smaller airways. The phenotypic outcome in the double mutant was not fully penetrant, only half of the double mutants were severely affected. The phenotypes observed in the double mutant demonstrate a genetic interaction between the Fbxo11 and p53 loci. Moreover, as with the Jeff homozygote,
we see increased levels of p21 and pSMAD2 in the double heterozygote compared to wild type. This implies a similar impact upon downstream pathways that could reflect a number of factors. These include lowered levels of FBXO11 that might be expected to lead to increased activation of p53, even with the lower levels of p53 found in the heterozygous state. However, it is clear that the effects of the Fbxo11 and p53 mutants are additive, and that the reduction in FBXO11 levels does not wholly compensate for the lower levels of p53 in the double heterozygote in terms of phenotypic outcomes.

Overall, we conclude that loss of function of protein in either FBXO11 or p53, leads to developmental epithelial abnormalities in the lung, which are associated with raised pSMAD2 levels. In addition, in double heterozygous mutants we also observe developmental epithelial abnormalities that are associated with significantly raised pSMAD2 levels. In the Jeff mutant, where normal levels of p53 are maintained, we see significant increases in p21 and PAI-1 associated with the increases in pSMAD2, but this is not the case in the p53 mutant, where p53 is absent. However, in the double heterozygote, where p53 is present, albeit at reduced levels, we also see significantly raised levels of p21. Taking the data together we conclude that FBXO11 regulates the TGF-β pathway in the embryonic lung via cross-talk with p53 signalling.

Regulation of the TGF-β pathway by FBXO11 in the developing lung could reflect influences by the FBXO11/CDT2/SET8 pathway recently identified or via other routes, or a combination of both. We studied the levels of CDT2 and SET8 in the developing lung in both wild type and mutant Fbxo11 and p53 mice. We found no significant change in the steady state levels of these proteins in either mutant. Ubiquitin-dependent regulation of CDT2 by FBXO11 occurs via an SCF complex incorporating the cullin-1 RING ubiquitin ligase, and
we confirmed in FBXO11 pull-downs that cullin-1 is present in developing lung tissue. It has been shown that the short isoform of FBXO11 binds cullin-1 and CDT2 and is critical for CDT2 degradation (Abbas et al., 2013b). CDT2 is a substrate receptor for the cullin-4 ubiquitin ligase promoting cell cycle progression through the degradation of SET8 and p21. Surprisingly we found that an antibody that recognises both the short and long isoforms of FBXO11, pulls down cullin-4 whereas an antibody recognising the long isoform only does not. Moreover this same antibody also pulls down CDT2. This suggests that the small form of FBXO11 (which does not interact with p53) binds to CDT2 within the cullin-4 RING ligase complex, as well as binding cullin-1. Despite the interactions between FBXO11 and CDT2 in the developing lung, there is no effect on levels of CDT2 or SET8. Moreover, the increase in levels of p21 seen in the Jeff mutant cannot be explained by this pathway as knockdown of FBXO11 would be expected to lead to significant reductions in levels of p21 as well as SET8.

In conclusion, our results support the hypothesis that FBXO11 regulates the TGF-β pathway in the embryonic lung via cross-talk with p53, emphasising the interplay of these two pathways and a critical role of p53 in epithelial development with consequent implications for the underlying pathological mechanisms of OM.
MATERIALS AND METHODS

Mice

Jeff mutant mice were kept on a mixed C3H/HeH-C57BL/6J background as it was not possible to maintain them on a congenic C57BL/6J background. p53 mice were maintained on a C57BL/6J background. The colonies were genotyped as previously described (Donehower et al., 1992; Hardisty-Hughes et al., 2006). All animal experimentation was approved by the Animal Welfare and Ethical Review Body at MRC, Harwell.

Histology

Embryo samples were fixed in 10% buffered formaldehyde. Three-micrometer-thick paraffin sections were obtained and stained with haematoxylin and eosin for morphological assessment.

Antibodies

The following primary antibodies were used: p53 (9282), pSMAD2 (3101), NEDD8 (2754), SET8 (C18B7), SUMO-1 (4930), Cell Signaling; p53 (FL-393 sc-6243), p21 (C-19; sc-397), PAI-1 (H-135; sc-8979), BCL-6 (N-3; sc-858), CUL1 (H-213 sc-11384) and CUL4 (H-66 sc-10782), Santa Cruz; FBXO11 (A301-178A and A301-177A), Bethyl Laboratories; MMP2 (RPCA-MMP2), EnCor Biotechnology Inc.; CDT2 (OAAB00993), AVIVA Systems Biology; pSMAD2 (AB3849), Millipore; actin (A 2066), Sigma. RAW 264.7 whole cell lysate (sc-2211), Santa Cruz and A549 cell lysate, Cell Signaling were used as positive controls for the antibodies.

Immunoprecipitation

The E15.5 embryos were removed from the uterus of the pregnant mice and transferred in to
cold PBS containing cocktail of protease and phosphatase inhibitors (04 693 124 001 and 04 906 837 001), Roche. The lungs were then dissected out and the protein samples were prepared as previously described (Tateossian et al., 2009). For 2.5 mg total protein extract 12.5 µg of antibody was used for the immunoprecipitation using Dynabeads protein G kit (10007D, Invitrogen) as described by the manufacturer. Rabbit IgG (P120-101 Bethyl Laboratories) was used as a negative control in IP experiments.

Western blot

Tissue lysates were resolved in 4-12% or 12% NuPAGE Bis-Tris gels and immunoprecipitates in 7% NuPAGE Tris Acetate gels (Invitrogen). They were all blotted onto nitrocellulose membrane (Invitrogen) and immunostained. Immunoprecipitates were assayed using ReliaBLOT kit (WB120, Bethyl Laboratories). Antibody dilutions for lung lysates were as follows: FBXO11, 1:2000, p53, 1:500, pSMAD2 (3101, Cell Signaling) 1:500, p21, 1:1000, PAI-1, 1:1000, MMP-2, 1:500, BCL-6, 1:1000, SET8, 1:500, NEDD8, 1:150 and CDT2, 1:250. Antibody dilutions for immunoprecipitates were: FBXO11, 1:400, p53, 1:25, CUL1, 1:100 and CUL4, 1:100. ECL detection system (GE Healthcare) was used.

Immunohistochemistry

For immunohistochemical analysis of E15.5 lungs, the Vectastain Elite ABC kit (Vector Laboratories, PK 6101) was used according to manufacturer’s instructions. Sections were incubated with the p53 antibody, 1:100 or pSMAD2 antibody (AB3849, Millipore), 1:200 overnight at 4°C. DAB+ chromogen system (DAKO K3468) was used to develop the specific signals and slides were counterstained with haematoxylin. Some sections were incubated with serum instead of primary antibody as negative controls.
Data analysis

A chi squared test was used to compare the difference between the observed and the expected number of p53 knockout mice and double mutant mice. In other experiments data was analysed using unpaired two tailed Student’s t-tests. A p value < 0.05 was considered significant and p < 0.001 highly significant.

ACKNOWLEDGEMENTS

The authors would like to thank the staff of the Mary Lyon Centre for animal husbandry, in particular Andy Hinton, Lisa Ireson, Lucie Vizor, Nichola Chrobot and Sara Wells; Caroline Barker, Adele Seymour and Jennifer Corrigan for histology services; Kevin Glover and Steve Thomas for assistance in preparing the figures; the staff of the Genotyping and Mutation detection Screens Core facility for genotyping, in particular Adele Traynor. The authors are also grateful to Lawrence Donehower for the p53 knockout mice.

COMPETING INTERESTS

The authors declare that they have no competing or financial interests.

AUTHOR CONTRIBUTIONS

H.T. and S.D.M.B. conceived and designed the experiments. H.T. and S.M. performed the experiments. M.S. conducted the computer modelling. C.H.D. contributed to analysing the data. H.T., C.H.D. and S.D.M.B. wrote the paper.

FUNDING

This work was funded by the Medical Research Council, UK.
REFERENCES

Abbas, T., Keaton, M. and Dutta, A. (2013a). Regulation of TGF-beta signaling, exit from the cell cycle, and cellular migration through cullin cross-regulation: SCF-FBXO11 turns off CRL4-Cdt2. Cell cycle 12, 2175-2182.

Abbas, T., Mueller, A. C., Shibata, E., Keaton, M., Rossi, M. and Dutta, A. (2013b). CRL1-FBXO11 promotes Cdt2 ubiquitylation and degradation and regulates Pr-Set7/Set8-mediated cellular migration. Molecular cell 49, 1147-1158.

Abida, W. M., Nikolaev, A., Zhao, W., Zhang, W. and Gu, W. (2007). FBXO11 promotes the Neddylation of p53 and inhibits its transcriptional activity. J Biol Chem 282, 1797-1804.

Allen, E. K., Chen, W. M., Weeks, D. E., Chen, F., Hou, X., Mattos, J. L., Mychaleckyj, J. C., Segade, F., Casselbrant, M. L., Mandel, E. M. et al. (2013). A genome-wide association study of chronic otitis media with effusion and recurrent otitis media identifies a novel susceptibility locus on chromosome 2. Journal of the Association for Research in Otolaryngology: JARO 14, 791-800.

Armstrong, J. F., Kaufman, M. H., Harrison, D. J. and Clarke, A. R. (1995). High-frequency developmental abnormalities in p53-deficient mice. Current biology: CB 5, 931-936.

Atfi, A. and Baron, R. (2008). p53 brings a new twist to the Smad signaling network. Sci Signal 1, pe33.

Bartlett, J. A., Meyerholz, D. K., Wohlford-Lenane, C. L., Naumann, P. W., Salzman, N. H. and McCray, P. B., Jr. (2015). Increased susceptibility to otitis media in a Splunc1-deficient mouse model. Disease models & mechanisms.

Bartram, U. and Speer, C. P. (2004). The role of transforming growth factor beta in lung development and disease. Chest 125, 754-765.

Cardozo, T. and Pagano, M. (2004). The SCF ubiquitin ligase: insights into a molecular machine. Nature reviews. Molecular cell biology 5, 739-751.

Casselbrant, M. L., Mandel, E. M., Fall, P. A., Rockette, H. E., Kurs-Lasky, M., Bluestone, C. D. and Ferrell, R. E. (1999). The heritability of otitis media: a twin and triplet study. Jama 282, 2125-2130.

Casselbrant, M. L., Mandel, E. M., Jung, J., Ferrell, R. E., Tekely, K., Szatkiewicz, J. P., Ray, A. and Weeks, D. E. (2009). Otitis media: a genome-wide linkage scan with evidence of susceptibility loci within the 17q12 and 10q22.3 regions. BMC Med Genet 10, 85.

Cheeseman, M. T., Tyrer, H. E., Williams, D., Hough, T. A., Pathak, P., Romero, M. R., Hilton, H., Bali, S., Parker, A., Vizor, L. et al. (2011). HIF-VEGF pathways are critical for chronic otitis media in Junbo and Jeff mouse mutants. PLoS genetics 7, e1002336.

Chen, H., Sun, J., Buckley, S., Chen, C., Warburton, D., Wang, X. F. and Shi, W. (2005). Abnormal mouse lung alveolarization caused by Smad3 deficiency is a developmental antecedent of centrilobular emphysema. American journal of physiology. Lung cellular and molecular physiology 288, L683-691.

Ciccarelli, F. D., Copley, R. R., Doerks, T., Russell, R. B. and Bork, P. (2002). CASH—a beta-helix domain widespread among carbohydrate-binding proteins. Trends in biochemical sciences 27, 59-62.

Cordenonsi, M., Dupont, S., Maretto, S., Insinga, A., Imbriano, C. and Piccolo, S. (2003). Links between tumor suppressors: p53 is required for TGF-beta gene responses by cooperating with Smads. Cell 113, 301-314.

Cordenonsi, M., Montagner, M., Adorno, M., Zacchigna, L., Martello, G., Mamidi, A., Soligo, S., Dupont, S. and Piccolo, S. (2007). Integration of TGF-beta and Ras/MAPK signaling through p53 phosphorylation. Science 315, 840-843.
Daly, K. A., Brown, W. M., Segade, F., Bowden, D. W., Keats, B. J., Lindgren, B. R., Levine, S. C. and Rich, S. S. (2004). Chronic and recurrent otitis media: a genome scan for susceptibility loci. *Am J Hum Genet* 75, 988-997.

Donehower, L. A., Harvey, M., Slagle, B. L., McArthur, M. J., Montgomery, C. A., Jr., Butel, J. S. and Bradley, A. (1992). Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. *Nature* 356, 215-221.

Duan, S., Cermak, L., Pagan, J. K., Rossi, M., Martinengo, C., di Celle, P. F., Chapuy, B., Shipp, M., Chiarle, R. and Pagano, M. (2012). FBXO11 targets BCL6 for degradation and is inactivated in diffuse large B-cell lymphomas. *Nature* 481, 90-93.

Hafren, L., Kentala, E., Einarsdottir, E., Kere, J. and Mattila, P. S. (2012a). Current knowledge of the genetics of otitis media. *Current allergy and asthma reports* 12, 582-589.

Hafren, L., Kentala, E., Jarvinen, T. M., Leinonen, E., Onkamo, P., Kere, J. and Mattila, P. S. (2012b). Genetic background and the risk of otitis media. *Int J Pediatr Otorhinolaryngol* 76, 41-44.

Hardisty-Hughes, R. E., Tateossian, H., Morse, S. A., Romero, M. R., Middleton, A., Tymowska-Lalanne, Z., Hunter, A. J., Cheeseman, M. and Brown, S. D. (2006). A mutation in the F-box gene, Fbxo11, causes otitis media in the Jeff mouse. *Human molecular genetics* 15, 3273-3279.

Hardisty, R. E., Erven, A., Logan, K., Morse, S., Guionaud, S., Sancho-Oliver, S., Hunter, A. J., Brown, S. D. and Steel, K. P. (2003). The deaf mouse mutant Jeff (Jf) is a single gene model of otitis media. *Journal of the Association for Research in Otolaryngology: JARO* 4, 130-138.

Kalo, E., Buganim, Y., Shapira, K. E., Besserglick, H., Goldfinger, N., Weisz, L., Stambolsky, P., Henis, Y. I. and Rotter, V. (2007). Mutant p53 attenuates the SMAD-dependent transforming growth factor beta1 (TGF-beta1) signaling pathway by repressing the expression of TGF-beta receptor type II. *Mol Cell Biol* 27, 8228-8242.

Kussie, P. H., Gorina, S., Marechal, V., Elenbaas, B., Moreau, J., Levine, A. J. and Pavletich, N. P. (1996). Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. *Science* 274, 948-953.

Liao, S. Y., Lin, X. and Christiani, D. C. (2014). Genome-wide association and network analysis of lung function in the Framingham Heart Study. *Genetic epidemiology* 38, 572-578.

Liu, J., Tseu, I., Wang, J., Tanswell, K. and Post, M. (2000). Transforming growth factor bet2, but not beta1 and beta3, is critical for early rat lung branching. *Developmental dynamics: an official publication of the American Association of Anatomists* 217, 343-360.

MacArthur, C. J., Wilmot, B., Wang, L., Schuller, M., Lighthall, J. and Trune, D. (2014). Genetic susceptibility to chronic otitis media with effusion: candidate gene single nucleotide polymorphisms. *The Laryngoscope* 124, 1229-1235.

Moffatt, M. F., Gut, I. G., Demenais, F., Strachan, D. P., Bouzigon, E., Heath, S., von Mutius, E., Farrall, M., Lathrop, M., Cookson, W. O. et al. (2010). A large-scale, consortium-based genomewide association study of asthma. *The New England journal of medicine* 363, 1211-1221.

Moll, U. M. and Petrenko, O. (2003). The MDM2-p53 interaction. *Molecular cancer research: MCR* 1, 1001-1008.

Pain, M., Bermudez, O., Lacoste, P., Royer, P. J., Botturi, K., Tissot, A., Brouard, S., Eickelberg, O. and Magnan, A. (2014). Tissue remodelling in chronic bronchial diseases: from the epithelial to mesenchymal phenotype. *European respiratory review: an official journal of the European Respiratory Society* 23, 118-130.

Parkinson, N., Hardisty-Hughes, R. E., Tateossian, H., Tsai, H. T., Brooker, D., Morse, S., Lalane, Z., MacKenzie, F., Fray, M., Glenister, P. et al. (2006). Mutation at the Evi1 locus in Junbo mice causes susceptibility to otitis media. *PLoS genetics* 2, e149.
Postma, D. S. and Timens, W. (2006). Remodeling in asthma and chronic obstructive pulmonary disease. *Proceedings of the American Thoracic Society* 3, 434-439.

Rossi, M., Duan, S., Jeong, Y. T., Horn, M., Saraf, A., Florens, L., Washburn, M. P., Antebi, A. and Pagano, M. (2013). Regulation of the CRL4(Cdt2) ubiquitin ligase and cell-cycle exit by the SCF(Fbxo11) ubiquitin ligase. *Molecular cell* 49, 1159-1166.

Rovers, M., Haggard, M., Gannon, M., Koeppen-Schomerus, G. and Plomin, R. (2002). Heritability of symptom domains in otitis media: a longitudinal study of 1,373 twin pairs. *American journal of epidemiology* 155, 958-964.

Rye, M. S., Bhutta, M. F., Cheeseman, M. T., Burgner, D., Blackwell, J. M., Brown, S. D. and Jamieson, S. E. (2011a). Unraveling the genetics of otitis media: from mouse to human and back again. *Mammalian genome : official journal of the International Mammalian Genome Society* 22, 66-82.

Rye, M. S., Warrington, N. M., Scaman, E. S., Vijayasekaran, S., Coates, H. L., Anderson, D., Pennell, C. E., Blackwell, J. M. and Jamieson, S. E. (2012). Genome-wide association study to identify the genetic determinants of otitis media susceptibility in childhood. *PloS one* 7, e48215.

Rye, M. S., Wiertsema, S. P., Scaman, E. S., Oommen, J., Sun, W., Francis, R. W., Ang, W., Pennell, C. E., Burgner, D., Richmond, P. et al. (2011b). FBXO11, a regulator of the TGFbeta pathway, is associated with severe otitis media in Western Australian children. *Genes and immunity* 12, 352-359.

Sah, V. P., Attardi, L. D., Mulligan, G. J., Williams, B. O., Bronson, R. T. and Jacks, T. (1995). A subset of p53-deficient embryos exhibit exencephaly. *Nature genetics* 10, 175-180.

Sakurai, H. and Nigam, S. K. (1997). Transforming growth factor-beta selectively inhibits branching morphogenesis but not tubulogenesis. *The American journal of physiology* 272, F139-146.

Segade, F., Daly, K. A., Allred, D., Hicks, P. J., Cox, M., Brown, M., Hardisty-Hughes, R. E., Brown, S. D., Rich, S. S. and Bowden, D. W. (2006). Association of the FBXO11 gene with chronic otitis media with effusion and recurrent otitis media: the Minnesota COME/ROM Family Study. *Archives of otolaryngology--head & neck surgery* 132, 729-733.

Takahashi, H. (2001). The Middle Ear: The Role of Ventilation in Disease and Surgery: Springer.

Tateossian, H., Hardisty-Hughes, R. E., Morse, S., Romero, M. R., Hilton, H., Dean, C. and Brown, S. D. (2009). Regulation of TGF-beta signalling by Fbxo11, the gene mutated in the Jeff otitis media mouse mutant. *Pathogenetics* 2, 5.

Tateossian, H., Morse, S., Parker, A., Mburu, P., Warr, N., Acevedo-Arozena, A., Cheeseman, M., Wells, S. and Brown, S. D. (2013). Otitis media in the Tgif knockout mouse implicates TGFbeta signalling in chronic middle ear inflammatory disease. *Human molecular genetics* 22, 2553-2565.

Weinstein, M., Yang, X., Li, C., Xu, X., Gotay, J. and Deng, C. X. (1998). Failure of egg cylinder elongation and mesoderm induction in mouse embryos lacking the tumor suppressor smad2. *Proc Natl Acad Sci U S A* 95, 9378-9383.

Xirodimas, D. P. (2008). Novel substrates and functions for the ubiquitin-like molecule NEDD8. *Biochem Soc Trans* 36, 802-806.

Xirodimas, D. P., Saville, M. K., Bourdon, J. C., Hay, R. T. and Lane, D. P. (2004). Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity. *Cell* 118, 83-97.

Yang, A., Walker, N., Bronson, R., Kaghad, M., Oosterwegel, M., Bonnin, J., Vagner, C., Bonnet, H., Dikkes, P., Sharpe, A. et al. (2000). p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. *Nature* 404, 99-103.
Yates, L. L., Schnatwinkel, C., Hazelwood, L., Chessum, L., Paudyal, A., Hilton, H., Romero, M. R., Wilde, J., Bogani, D., Sanderson, J. et al. (2013). Scribble is required for normal epithelial cell-cell contacts and lumen morphogenesis in the mammalian lung. *Developmental biology* **373**, 267-280.

Zhao, J., Bu, D., Lee, M., Slavkin, H. C., Hall, F. L. and Warburton, D. (1996). Abrogation of transforming growth factor-beta type II receptor stimulates embryonic mouse lung branching morphogenesis in culture. *Developmental biology* **180**, 242-257.
Fig. 1. Phenotype of p53 knockout mice.

(A) View of the palate of an E18.5 p53 homozygote embryo (p53/p53) and a control sibling (p53/+) embryo. The double headed arrow indicates the cleft palate. (B) Photograph of a p53/p53 E18.5 embryo with the eyelids open (arrow). (C) Sections through the lungs of an E18.5 p53 homozygote embryo (p53/p53) and a control sibling (p53/+) embryo showing the homozygous lung phenotype. Note the reduced number and width of airspaces in the affected p53/p53 homozygotes (see also Figure 2). Scale bars 200μm.
Fig. 2. Characterisation of lung phenotypes in p53/p53 homozygotes and Jf/+ p53/+ double heterozygote mice.

(A) Haematoxylin-eosin stained sections through E18.5 embryo lungs showing lung phenotypes from a variety of genotypes. Scale bars 1mm and 200 μm. (B) Comparisons of the width of 20 airspaces from three different regions for three embryos of each genotype. (C) Comparisons of the number of airspaces for three 4 x10^5 μm^2 regions for three embryos of each genotype. The sections were taken at random for the three embryos from each genotype. Bars: standard error of mean. **: p<0.01 and ***: p<0.001.
Fig. 3. Interaction of FBXO11 with p53.

(A) Protein lysate from E15.5 wild type embryonic lungs was used for immunoprecipitation using an FBXO11 (top, second and third panel) or a p53 (fourth panel) antibody. Normal rabbit IgG was used as a control (IgG). Western blots were probed with antibodies as indicated: p53 (panel 1); FBXO11 (178A which detects both large and small isoforms of FBXO11, 103 and 95 kDa) (panel 2 and 4); NEDD8 (panel 3 and 5). A degradation band observed with FBXO11 is indicated by an asterisk. (B) Protein lysate from E15.5 Jeff homozygote lungs was used for immunoprecipitation using an FBXO11 antibody (178A). Normal rabbit IgG was used as a control (IgG). The top panel was probed with a p53
antibody, the bottom with an FBXO11 antibody (178A). (C) Alignment of the fragments of
FBXO11 protein used to produce the 177A and 178A antibodies for FBXO11. The epitope
recognized by 177A maps to a region between residue 1 and 50 of human FBXO11 exclusive
to the large isoform of mouse FBXO11 (Fbxo11-001). The epitope recognized by 178A maps
to a region between residue 877 and 927 of human FBXO11 and is found in both mouse
isoforms (Fbxo11-001 and 004). (D) Protein lysate from E15.5 wild type embryonic lungs
was used for immunoprecipitation using two FBXO11 antibodies: 177A which detects the
large isoform of mouse FBXO11 (Fbxo11-001, 930 aa, 103 kDa) and 178A which detects
both large and small isoforms (Fbxo11-001, 930 aa, 103 kDa and Fbxo11-004, 855 aa, 95
kDa). The blots were probed with a CUL1, CUL4, CDT2 and 178A antibodies. A
degradation band of FBXO11 is indicated by an asterisk.
Fig. 4. Prediction of the FBXO11-p53 complex.

(A) Localisation of the *Jeff* mutation (Q578L) in the predicted protein structure of FBXO11 on Ensembl. (B-E) Cartoon representation of p53 (green) docked in the FBXO11 (grey) hydrophobic cleft to form the p53-FBXO11 complex. The wild type complex is on the left with the wild type residue (Q) coloured purple (B and D). The putative mutated complex found in the *Jeff* mutation is indicated on the right with the mutated amino acid (L) coloured orange (C and E). The mutated complex has an extended and distorted binding site, possibly contributing to the loss of binding to p53. Figure produced using The PyMOL Molecular Graphics System, Version 1.5.0.4 Schrödinger, LLC.
Fig. 5. Expression of p53 in embryonic lungs.

(A) Sections through E15.5 wild type (+/+) and Jeff homozygote (Jf/Jf) embryonic lungs stained with a p53 antibody (brown stain). The nuclei were counterstained with haematoxylin. In both, wild type and mutant epithelial cells of the airways, p53 is predominantly nuclear (arrow). Scale bars 20μm. (B) Comparisons of the percentage of cells positive for p53 in wild type and homozygote airways. In total 238 (+/+) and 211 (Jf/Jf) epithelial cells were counted from the airways of different regions of three embryos for each genotype. Bars: standard error of mean. No significant difference was found. (C) Equal
amounts of protein lysates from E15.5 wild type (+/+), heterozygous (Jf/+), and homozygous (Jf/Jf) lungs were subjected to PAGE, transferred and probed with a p53 antibody. The antibody detected three main bands (see Results) of which the 53kDa band represents unmodified or acetylated/phosphorylated p53; the 60kDa band likely represents monoubiquitinylated p53; and the 71kDa band corresponds to neddylated p53. (D) Comparisons of p53 levels across genotypes after normalising with an actin antibody. The results presented in the graph are from three independent experiments. Bars: standard error of mean. *: p<0.05. (E) Equal amounts of protein lysates from E15.5 wild type (+/+), heterozygous (Jf/+), and homozygous (Jf/Jf) lungs were subjected to PAGE, transferred and probed with a SUMO-1 antibody. The antibody did not detect bands with the size of 60kDa. A549 cell lysate was used as a positive control for the SUMO-1 antibody. (F) Equal amounts of protein lysates from E15.5 wild type (+/+), heterozygous (Jf/+), and homozygous (Jf/Jf) lungs were subjected to PAGE, transferred and probed with a NEDD8 antibody. The antibody detected at least three bands one of which was 71kDa.
Fig. 6. Expression of pSMAD2 and p21 in embryonic lungs.

(A) Sections through E15.5 wild type (+/+) and homozygous p53 (p53/p53) embryonic lungs stained with a pSMAD2 antibody (brown stain). The nuclei were counterstained with haematoxylin. In both wild type and mutant epithelial cells of the airways, pSMAD2 is predominantly nuclear (arrow). Scale bars 20 μm. (B) Comparisons of the percentage of cells positive for pSMAD2 in wild type (+/+) and p53 (p53/p53) homozygote airways. In total 260 epithelial cells in wild type and 256 epithelial cells in p53 homozygotes were counted from airways from different regions for three embryos from each genotype. (C) Equal amounts of protein lysates from E15.5 wild type (+/+), heterozygous (p53/+) and homozygous (p53/p53)
lungs were subjected to PAGE, transferred and probed with a pSMAD2 antibody. The antibody detected one main band at about 55kDa. (D) Comparisons of pSMAD2 levels across genotypes after normalising with an actin antibody. The results presented in the graph are from three independent experiments. (E) Equal amounts of protein lysates from E15.5 wild type (+/+ +/+), and mildly and severely affected double mutant (Jf/+ p53+/+) lungs were subjected to PAGE, transferred and probed with pSMAD2 and p21 antibodies. (F-G) Comparisons of pSMAD2 (F) and p21 (G) levels across genotypes. Data represents the analysis of four individual embryos from wild type (+/+ +/+), mildly and severely affected double heterozygote (Jf/+ p53+/+) lungs (based on the histological observation, without and with cleft palate respectively) after normalising with an actin antibody. Bars: standard error of mean. *: p<0.05, **: p<0.01 and ***: p<0.001.
Fig. 7. Protein expression analysis of E15.5 wild type, heterozygote (Jf/+) and homozygote (Jf/Jf) lungs.
Equal amounts of protein lysates were subjected to PAGE, transferred and probed with FBXO11 antibody (A), p21 antibody (B), PAI-1 antibody (C), MMP-2 antibody (D), BCL-6 (E), CDT2 antibody (F) and SET8 antibody (G). RAW 264.7 whole cell lysate was used as a positive control for all of the antibodies except for MMP2 where middle ear effusion lysate was used and for CDT2 where adult mouse spleen lysate was used. Graphs show comparisons of the Western blots for each antibody after normalising with an actin antibody. The results presented in the graphs are from three independent experiments for all the antibodies except for p21 where four independent experiments were used to present the data. Bars: standard error of mean. *: p<0.05.
TRANSLATIONAL IMPACT

Clinical issue

Otitis Media with effusion (OME) is the most common cause of hearing loss in children. Insertion of grommets into the tympanic membrane (tymanostomy) to alleviate the condition remains the commonest surgical intervention in children in the developed world. However, the mechanisms by which tympanostomy leads to improvement in the condition are not clear. Chronic and recurrent forms of OM are known to have a very significant genetic component, and until recently little was known of the underlying genes involved. The identification of mouse models of chronic OM has transformed our understanding of the genetic pathways involved and is highlighting new avenues and targets for therapeutic intervention. A number of the mouse models reported, including the mutants Jeff, Junbo and Tgif1, implicate the role of the TGF-β signalling pathway in predisposition to chronic otitis media, and highlight the role of hypoxia, a feature of inflamed microenvironments, and the cross-talk between the TGF-β pathway and the HIF-1α signalling pathway that is activated under hypoxia. It will be important to further study the interplay of TGF-β signalling with other pathways in OME and in particular their role in epithelial development more generally.

Results

In this study we have examined the interaction between FBXO11 and p53. We have demonstrated that p53 homozygote mutants develop epithelial developmental abnormalities. We also investigated the genetic and biochemical interaction of Fbxo11 with p53. Mice heterozygous for both genes, Fbxo11/+ p53/+, exhibit similar epithelial developmental defects to Jeff and p53 homozygotes. In mouse embryonic lungs FBXO11 co-immunoprecipitates with p53, and p53 is neddylated by FBXO11. Moreover, raised levels of phosphorylated SMAD2 levels are detected in p53 homozygotes and double mutant
embryonic lungs. Taken together these results support the hypothesis that FBXO11 regulates the TGF-β pathway via cross talk with p53.

Implications and future directions

This study highlights the role of FBXO11 and its interacting partner, p53, in epithelial development emphasising the potential interactions of TGF-β and p53 signalling in OME. It will be important to translate our findings of the interaction of FBXO11 and p53 signalling in lung development to the epithelial cells of the middle ear. This will further elaborate the pathways and mechanisms underlying chronic middle ear inflammatory disease.