Laplacian Immanantal polynomials and the GTS poset on Trees

Mukesh Kumar Nagar
Department of Mathematics
Indian Institute of Technology, Bombay
Mumbai 400 076, India.
email: mukesh.kr.nagar@gmail.com

Sivaramakrishnan Sivasubramanian
Department of Mathematics
Indian Institute of Technology, Bombay
Mumbai 400 076, India.
email: krishnan@math.iitb.ac.in

March 13, 2022

Abstract: Let T be a tree on n vertices with Laplacian L_T and let GTS_n be the generalized tree shift poset on the set of unlabelled trees on n vertices. Inequalities are known for coefficients of the characteristic polynomial of L_T as we go up the poset GTS_n. In this work, we generalize these inequalities to the q-Laplacian L_q^0 of T and to the coefficients of all immanantal polynomials.

Keywords: Tree, GTS$_n$ poset, q-Laplacian, immanantal polynomial

AMS Subject Classification: 05C05, 15A69, 06A06

1 Introduction

Csikvári in [10] defined a poset on the set of unlabelled trees with n vertices that we denote in this paper as GTS_n. Among other results, he showed that going up on GTS_n has the following effect: the coefficients of the characteristic polynomial of the Laplacian L_T of T decrease in absolute value. In this paper, we prove the following more general result about immanantal polynomials of the q-Laplacian matrix of trees
Theorem 1 Let T_1 and T_2 be trees with n vertices and let T_2 cover T_1 in GTS_n. Let $L^q_{T_1}$ and $L^q_{T_2}$ be the q-Laplacians of T_1 and T_2 respectively. For $\lambda \vdash n$, let

$$f_{\lambda}^{L^q_{T_1}}(x) = d_\lambda(xI - L^q_{T_1}) = \sum_{r=0}^{n} (-1)^r c_{\lambda,r}^{L^q_{T_1}}(q)x^{n-r}$$

and

$$f_{\lambda}^{L^q_{T_2}}(x) = d_\lambda(xI - L^q_{T_2}) = \sum_{r=0}^{n} (-1)^r c_{\lambda,r}^{L^q_{T_2}}(q)x^{n-r}.$$

Then, for all $\lambda \vdash n$ and for all $0 \leq r \leq n$, we assert that $c_{\lambda,r}^{L^q_{T_1}}(q) - c_{\lambda,r}^{L^q_{T_2}}(q) \in \mathbb{R}^+[q^2]$.

For a positive integer n, let $[n] = \{1, 2, \ldots, n\}$. Let \mathfrak{S}_n be the group of permutations of $[n]$. Let χ_λ be the irreducible character of the \mathfrak{S}_n over \mathbb{C} indexed by the partition λ of n. We refer the reader to the book by Sagan [26] as a reference for results on representation theory that we use in this work. We denote partitions λ of n as $\lambda \vdash n$. This means we have $\lambda = \lambda_1, \lambda_2, \ldots, \lambda_l$ where $\lambda_i \in \mathbb{Z}$ for all i with $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_l > 0$ and with $\sum_{i=1}^{l} \lambda_i = n$. We also write partitions using the exponential notation, with multiplicities of parts written as exponents. Since characters of \mathfrak{S}_n are integer valued, we think of χ_λ as a function $\chi_\lambda : \mathfrak{S}_n \to \mathbb{Z}$. Let $\lambda \vdash n$ and let $A = (a_{i,j})_{1 \leq i,j \leq n}$ be an $n \times n$ matrix. Define its immanant as

$$d_\lambda(A) = \sum_{\psi \in \mathfrak{S}_n} \chi_\lambda(\psi) \prod_{i=1}^{n} a_{i,\psi_i}.$$

It is well known that $d_{1^n}(A) = \det(A)$ and $d_n(A) = \text{perm}(A)$ where $\text{perm}(A)$ is the permanent of A.

For an $n \times n$ matrix A, define $f_{\lambda}^A(x) = d_\lambda(xI - A)$. The polynomial $f_{\lambda}^A(x)$ is called the immanantal polynomial of A corresponding to $\lambda \vdash n$. Thus, in this notation, $f_{\lambda}^A(x)$ is the characteristic polynomial of A. Let T be a tree with n vertices with Laplacian matrix L_T and define

$$f_{\lambda}^{L_T}(x) = d_\lambda(xI - L_T) = \sum_{r=0}^{n} (-1)^r c_{\lambda,r}^{L_T}x^{n-r}$$

(1)

where the $c_{\lambda,r}^{L_T}$'s are coefficients of the Laplacian immanantal polynomial of T in absolute value. Immanantal polynomials were studied by Merris [21] where the Laplacian immanantal polynomial corresponding to the partition $\lambda = 2, 1^{n-2}$ (also called the second immanantal polynomial) of a tree T was shown to have connections with the centroid of T. Botti and Merris [6] showed that almost all trees share a complete set of Laplacian immanantal polynomials. When $\lambda = 1^n$, Gutman and Pavlovic [16] conjectured the following inequality which was proved by Gutman and Zhou [17] and independently by Mohar [24].

Theorem 2 (Gutman and Zhou, Mohar) Let T be any tree on n vertices and let S_n and P_n be the star and the path trees on n vertices respectively. Then, for $0 \leq r \leq n$, we have

$$c_{1^n,r}^{L_{S_n}} \leq c_{1^n,r}^{L_{T}} \leq c_{1^n,r}^{L_{P_n}}.$$

Thus, in absolute value, any tree T has coefficients of its Laplacian characteristic polynomial sandwiched between the corresponding coefficients of the star and the path trees. Mohar actually
proves stronger inequalities than this result, see Csikvári [11, Section 10] for information on Mohar’s stronger results. Much earlier, Chan, Lam and Yeo in their preprint [9], proved the following.

Theorem 3 (Chan, Lam and Yeo) Let T be any tree on n vertices with Laplacian L_T and let S_n and P_n be the star and the path trees on n vertices respectively. Then, for all $\lambda \vdash n$ and $0 \leq r \leq n$,

$$c_{\lambda,r}^{L_S} \leq c_{\lambda,r}^{L_T} \leq c_{\lambda,r}^{L_P}. \quad (2)$$

In this work, we consider the q-Laplacian matrix L_T^q of a tree T on n vertices. It is defined as $L_T^q = I + q^2(D - I) - qA$ where q is a variable, D is the diagonal matrix with degrees on the diagonal and A is the adjacency matrix of T. L_T^q can be defined for arbitrary graphs G analogously and it is clear that when $q = 1$, $L_T^q = L_G$. The matrix L_T^q has occurred previously in connection with the Ihara-Selberg zeta function of G (see Bass [5] and Foata and Zeilberger [13]). For trees, L_T^q has connections with the inverse of T’s exponential distance matrix (see Bapat, Lal and Pati [2]). As done in (1), define

$$f_{\lambda}^{L_T^q}(x) = d_{\lambda}(xI - L_T^q) = \sum_{r=0}^{n} (-1)^r c_{\lambda,r}^{L_T^q}(q)x^{n-r}. \quad (3)$$

We consider the following counterpart of inequalities like (2) when each coefficient is a polynomial in the variable q: we want the difference $c_{\lambda,r}^{L_T^q}(q) - c_{\lambda,r}^{L_S}(q) \in \mathbb{R}^+[q]$. That is, the difference polynomial has only positive coefficients. This is the standard way to get q-analogue of inequalities. Similarly, we want $c_{\lambda,r}^{L_P}(q) - c_{\lambda,r}^{L_T^q}(q) \in \mathbb{R}^+[q]$.

We mention a few lines about our proof of Theorem 1. In [11, Theorem 5.1], Csikvári gives a “General Lemma” from which he infers properties about polynomials associated to trees. In that lemma, the following crucial property is needed when dealing with characteristic polynomials of matrices. Let $M = A \oplus B$ be an $n \times n$ matrix that can be written as a direct sum of two square matrices. Then, clearly $\det(M) = \det(A) \det(B)$. This property is sadly not true for other immanants.

That is, $d_{\lambda}(M) \neq d_{\lambda}(A)d_{\lambda}(B)$ (indeed, the definition of $d_{\lambda}(A)$ is not clear when $\lambda \vdash n$ and A is an $m \times m$ matrix with $m < n$). We thus combinatorialise the immanant as done by Chan, Lam and Yeo [9] and express the immanantal polynomial in terms of matchings and vertex orientations.

Section 2 gives preliminaries on the GTS_n poset and Section 3 gives the necessary background on B-matchings, B-vertex orientations and their connection to coefficients of immanantal polynomials. We give our proof of Theorem 1 in Section 4 and draw several corollaries in Sections 5, 6 and 7 involving the q^2-analogue of vertex moments in a tree, q,t-Laplacian matrices which include the Hermitian Laplacian of T and T’s exponential distance matrices.

2 The poset GTS_n

Though Csikvári in [10] defined the poset on unlabelled trees with n vertices, we will label the vertices of the trees according to some convention (see Remark 16). We recall the definition of this poset.
Definition 4 Let T_1 be a tree on n vertices and x, y be two vertices of T_1. Let $P_{x,y}$ be the unique path in T_1 between x and y. Assume that x and y are such that all the interior vertices (if they exist) on $P_{x,y}$ have degree 2. Let z be the neighbour of y on the path $P_{x,y}$. Consider the tree T_2 obtained by moving all neighbours of y except z to the vertex x. This is illustrated in Figure 1. This move helps us to partially order the set of unlabeled trees on n vertices. We denote this poset on trees with n vertices as GTS_n. We say T_2 is above T_1 in GTS_n or that T_1 is below T_2 in GTS_n and denote it as $T_2 \geq_{GTS_n} T_1$. The poset GTS_6 is illustrated in Figure 2.

If $T_2 \geq_{GTS_n} T_1$ and there is no tree T with $T \neq T_1, T_2$ such that $T_2 \geq_{GTS_n} T \geq_{GTS_n} T_1$, then we say T_2 covers T_1 (see Figure 1). If either x or y is a leaf vertex in T_1, then it is easy to check that T_2 is isomorphic to T_1. If neither x nor y is a leaf in T_1, then T_2 is said to be obtained from T_1 by a proper generalized tree shift (PGTS henceforth). Clearly, if T_2 is obtained by a PGTS from T_1, then, the number of leaf vertices of T_2 is one more than the number of leaf vertices of T_1. Csikvári in [10] showed the following.

Lemma 5 (Csikvári) Every tree T with n vertices other than the path, lies above some other tree T' on GTS_n. The star tree on n vertices is the maximal element and the path tree on n vertices is the minimal element of GTS_n.

Figure 2: The poset GTS_6 on trees with 6 vertices.
\section{B-matchings and B-vertex orientations}

As done in earlier work \cite{25}, we use matchings in T to index terms that arise in the computation of the immanant $d_\lambda (\mathcal{L}_T^q)$. A dual concept of vertex orientations was used to get a near positive expression for immanants of \mathcal{L}_T^q.

In this work, we need to find $f_{\lambda}^{c_B}(x) = d_\lambda (xI - \mathcal{L}_T^q)$. As done by Chan, Lam and Yeo \cite{9}, we index terms that occur in the computation of $f_{\lambda}^{c_B}(x)$ by partial matchings that we term as B-matchings. Let T have vertex set V and edge set E. Let $B \subseteq V$ with $|B| = r$ and let F_B be the forest induced by T on the set B. A B-matching of T is a subset $M \subseteq E(F_B)$ of edges of F_B such that each vertex $v \in B$ is adjacent to at most one edge in M. If the number of edges in M equals j, then M is called a j-sized B-matching in T. Let $\mathcal{M}_j(B)$ denote the set of j-sized B-matchings in T. For vertex v, we denote its degree $\deg_T(v)$ in T alternatively as d_v. For $M \in \mathcal{M}_j(B)$, define a polynomial weight $\text{wt}_{B,M}(q) = q^{2j} \prod_{v \in B-M} [1 + q^2(d_v - 1)]$. Define

$$m_{B,j}(q) = \sum_{M \in \mathcal{M}_j(B)} \text{wt}_{B,M}(q) \quad \text{and} \quad m_{r,j}(q) = \sum_{B \subseteq V, |B| = r} m_{B,j}(q).$$

Define $\chi_\lambda(j)$ to be the character $\chi_\lambda(\cdot)$ evaluated at such a permutation with cycle type $2^j, 1^{n-2j}$. The following lemma is straightforward from the definition of immanants.

\textbf{Lemma 6} Let T be a tree on vertex set $[n]$ with q-Laplacian \mathcal{L}_T^q. Let $\lambda \vdash n$ and let $0 \leq r \leq n$. Then, the coefficient $c_{\lambda,r}^q$ as defined in \cite{3} equals

$$c_{\lambda,r}^q(q) = \sum_{j=0}^{[r/2]} \chi_\lambda(j)m_{r,j}(q).$$

\textbf{Proof:} Let $B \subseteq [n]$ with $|B| = r$. Then, clearly $c_{\lambda,r}^q(q) = d_\lambda \left[\begin{array}{cc} \mathcal{L}_T^{q|[B]|B} & 0 \\ 0 & I \end{array} \right]$, where $\mathcal{L}_T^{q|[B]|B}$ is the sub-matrix of \mathcal{L}_T^q induced on the rows and columns with indices in the set B and I is the $n - r \times n - r$ identity matrix. Further, it is clear that $c_{\lambda,r}^q(q) = \sum_{B \subseteq [n], |B| = r} c_{\lambda,B}^q(q)$.

Note that there is no cycle in T, and hence in the forest F_B. Thus, each permutation $\psi \in \mathfrak{S}_n$ which in cycle notation has a cycle of length strictly greater than 2, will satisfy $\prod_{i=1}^{\ell_i} \ell_i \psi_i = 0$. Therefore, only permutations $\psi \in \mathfrak{S}_n$ which fix the set $[n] - B$ and have cycle-type $2^j, 1^{n-2j}$ contribute to $c_{\lambda,B}^q(q)$. It is easy to see that such permutations can be identified with j-sized B-matchings in F_B and that this correspondence is reversible.

Recall $\mathcal{M}_j(B)$ is the set of j-sized B matchings in T. Clearly, the contribution to $c_{\lambda,B}^q(q)$ from permutations which fix $[n] - B$ and have cycle-type $2^j, 1^{n-2j}$ is $\chi_\lambda(j)m_{B,j}(q)$. Thus, we see that

$$c_{\lambda,B}^q(q) = \sum_{j=0}^{[r/2]} \chi_\lambda(j)m_{B,j}(q).$$

(4)

Summing over various B’s of size r completes the proof. \qed
3.1 \textit{B}-vertex orientations

As done by Chan, Lam and Yeo \cite{9}, we next express coefficients of the immanantal polynomial as a sum of almost positive summands where the summands are indexed by partial vertex orientations that we term as \textit{B}-vertex orientations.

Let T be a tree with vertex set $V = [n]$. For $B \subseteq [n]$, we orient each vertex $v \in B$ to one of its neighbours (which may or may not be in B). Such vertex orientations are termed as \textit{B}-vertex orientations. Let O be a \textit{B}-vertex orientation. Each $v \in B$ has d_v orientation choices. We depict the orientation O in pictures by drawing an arrow on the edge from v to its oriented neighbour and directing the arrow away from v. We do not distinguish between O and its picture from now on. In O, edges thus get arrows and there may be edges which have two arrows, one in each direction (see Figures 4, 6 and 7 for examples). We call such edges as \textit{bidirected arcs} and let $\text{bidir}(O)$ denote the set of bidirected arcs in O. We extend this notation to vertices $v \in B$ and say $v \in \text{bidir}(O)$ if $\{u, v\} \in \text{bidir}(O)$ for some $u \in B$. We also say $v \in B$ is free in O if $v \in B - \text{bidir}(O)$ and denote by $\text{free}(O)$ the set of free vertices of O.

In T, let $\mathcal{O}_{B,i}^T$ be the set of B-orientations O, such that O has i bidirected arcs. We need to separate the case $B = V$ from the cases $B \neq V$. First, let $B \neq V$. For such a $B \subseteq V$, let $m = \min_{v \in [n] - B} v$ be the minimum numbered vertex outside B and let $O \in \mathcal{O}_{B,i}^T$. For each $v \in \text{free}(O)$, as there is a unique path from v to m in T, we can tell if v is oriented “towards” m or if v is oriented “away from” m. Formally, for $O \in \mathcal{O}_{B,i}^T$, define a 0/1 function $\text{away} : \text{free}(O) \to \{0, 1\}$ by

$$\text{away}(v) = \begin{cases} 1 & \text{if } v \text{ is oriented away from } m, \\ 0 & \text{if } v \text{ is oriented towards } m. \end{cases}$$

For each $O \in \mathcal{O}_{B,i}^T$ assign the following non-negative integer:

$$\text{Aw}^T_{B}(O) = 2i + 2 \sum_{v \in \text{free}(O)} \text{away}(v).$$

Define the generating function of the statistic $\text{Aw}^T_{B}(\cdot)$ in the variable q as follows:

$$a^T_{B,i}(q) = \sum_{O \in \mathcal{O}_{B,i}^T} q^{\text{Aw}^T_{B}(O)}, \quad (5)$$

$$a^T_{r,i}(q) = \sum_{B \subseteq V, |B| = r} a^T_{B,i}(q) = \sum_{B \subseteq V, |B| = r} \sum_{O \in \mathcal{O}_{B,i}^T} q^{\text{Aw}^T_{B}(O)}. \quad (6)$$

Example 7 Let T_2 be the tree given in Figure 3 and let $B = \{2, 4, 6, 7, 8\}$ with $|B| = r = 5$. Below we give $a^T_{B,i}(q)$ for i from 0 to $\lfloor r/2 \rfloor$.

i	0	1	2
$a^T_{B,i}(q)$	$1 + 2q^2 + q^4$	$q^2(1 + 2q^2 + q^4)$	0
Remark 8 For any tree T and all r, j, it is easy to see from the definitions that both $m_{r,j}(q)$ and $a_{r,i}^T(q)$ are polynomials in q^2.

Chan, Lam and Yeo in [9] showed for the Laplacian L_T of a tree T, a relation involving numerical counterparts of $m_{B,j}(q)$’s and $a_{r,i}^T(q)$’s. Chan and Lam [8] had already proved this identity for the special case when $B = [n]$. Earlier, we had in [25, Theorem 11] obtained a q-analogue of this identity when $B = [n]$. There, care had to be taken to define $a_{[n],0}^T(q) = 1 - q^2$. We give a q-analogue below in Lemma 9 when B can be an arbitrary subset. In [25], since $B = [n]$, there was no vertex outside B and hence m could not be defined. There, the lexicographically minimum edge of the matching M was used in place of m. It is easy to see that we could have used the lexicographically minimum edge of M when $B \neq [n]$ as well. From now onwards, we are free from this restriction $B \neq [n]$. Since the proof is identical to that of [25, Theorem 11], we omit it and merely state the result.

Lemma 9 Let T be a tree with vertex set $[n]$ and B be an r-subset of $[n]$. Then,

$$m_{B,j}(q) = \sum_{i=j}^{\lfloor r/2 \rfloor} \binom{i}{j} a_{B,i}^T(q).$$

Moreover, $m_{r,j}(q) = \sum_{i=j}^{\lfloor r/2 \rfloor} \binom{i}{j} a_{r,i}^T(q)$.

Chan and Lam in [7] showed the following non-negativity result on characters summed with binomial coefficients as weights. Let $n \geq 2$ and let $\lambda \vdash n$. Recall $\chi_\lambda(j)$ is the character χ_λ evaluated at a permutation with cycle type $2^j, 1^{n-2j}$.

Lemma 10 (Chan and Lam) Let $\lambda \vdash n$ and let $\chi_\lambda(j)$ be as defined above. Let $0 \leq i \leq \lfloor n/2 \rfloor$. Then $\sum_{j=0}^{i} \chi_\lambda(j) \binom{i}{j} = \alpha_{\lambda,i} 2^i$, where $\alpha_{\lambda,i} \geq 0$. Further, if $\lambda = k, 1^{n-k}$, then $\alpha_{\lambda,i} = \binom{n-i-1}{k-i-1}$.

Combining Lemmas 9 and 10 with Lemma 6 gives us the following Corollary whose proof we omit. This gives an interpretation of the coefficient $c_{\lambda,r}^L(q)$ in the immanantal polynomial as a functions of the $a_{r,i}^T(q)$’s. Since all the $a_{r,i}^T(q)$’s except $a_{[n],0}^T(q)$ have positive coefficients, this is an almost positive expression.

Corollary 11 For $0 \leq r \leq n$, the coefficient of the immanantal polynomial of L_T^r in absolute value is given by

$$c_{\lambda,r}^L(q) = \sum_{i=0}^{\lfloor r/2 \rfloor} \alpha_{\lambda,i} 2^i a_{r,i}^T(q),$$

where $\alpha_{\lambda,i} \geq 0$, $\forall \lambda \vdash n, i$.

Combining (4), Lemmas 10 and 9 gives us another corollary when the partition is $\lambda = 1^n$, which we again merely state.

Corollary 12 When $\lambda = 1^n$, we have $\alpha_{\lambda,i} = \begin{cases} 1 & \text{if } i = 0 \\ 0 & \text{otherwise} \end{cases}$. Further, let $B \subseteq [n]$ with $|B| = r$.

Then,

$$\det(L_T^r[B|B]) = a_{B,0}^T(q).$$

Moreover, $c_{1^n,r}^L(q) = a_{r,0}^T(q)$.

7
Remark 13 Let tree T have vertex set $[n]$ and let $B \subseteq [n]$ with $|B| = n-1$. Then, for all $q \in \mathbb{R}$, $a_{B,0}^T(q) = 1$. This implies that $a_{n-1,0}^T(q) = n$.

Let $B \subseteq [n]$ with $|B| = r$. Let $L_T^B/B|B|$ denote the $r \times r$ submatrix of L_T^B induced on the rows and columns indexed by B. From Corollary 12 we get $\det(L_T^B/B|B)) \geq 0$ when $B \neq [n]$. When $B = [n]$, Bapat, Lal and Pati [2] have shown that $\det(L_T^B) = 1 - q^2$. As remarked in Section 1 when $q \in \mathbb{R}$ with $|q| \leq 1$, the matrix L_T^B is positive semidefinite.

Remark 14 By Sturm’s Theorem (see [14]), the number of negative eigenvalues of L_T^B equals the number of sign changes among the leading principal minors. When $|q| > 1$, the number of sign changes equals 1 by Corollary 12. This gives a short proof of a result of Bapat, Lal and Pati [2] Proposition 3.7] that the signature of L_T^B is $(n-1, 1, 0)$ when $|q| > 1$, where signature of a Hermitian matrix A is the vector (p, n, z) with p, n being the number of positive, negative eigenvalues of A respectively and z being the nullity of A.

Remark 15 By [5], for any T, all $a_{B,i}^T(q) \in \mathbb{R}^+[q]$ when $B \neq [n]$. In [25] Corollary 13, it was shown that $a_{n,i}^T(q) \in \mathbb{R}^+[q]$ when $i > 0$. By definition, $a_{n,0}^T(q) = 1 - q^2$ has negative coefficients. In [25] Theorem 2.4], it was shown that $c_{n,t}^\lambda(q) \in \mathbb{R}^+[q]$ for all $\lambda \vdash n$ except $\lambda = 1^n$.

By these and Corollary 11 it is easy to see that barring $c_{n,t}^\lambda(q)$, which equals $1 - q^2$, $c_{n,t}^\lambda(q) \in \mathbb{R}^+[q]$ for all $\lambda \vdash n$ and for all $0 \leq r \leq n$. Thus all statements in this work can be made about $c_{n,t}^\lambda(q)$ or alternatively about the absolute value of the coefficient of x^{n-r} in $f_{\lambda}^\chi(x)$ (which equals $(-1)^r c_{n,t}^\chi(q)$).

4 Proof of Theorem 1

We begin with a few preliminaries towards proving Theorem 1. Let T_1 and T_2 be trees on n vertices with $T_2 \geq_{GTS} T_1$. We assume that both T_1 and T_2 have vertex set $V = [n]$.

Remark 16 Since immanants are invariant under a relabelling of vertices (see Littlewood’s book [19] or Merris [22]), without loss of generality, we label the vertices of T_1 as follows: first label the vertices on the path p_k as 1, 2, ..., k in order with 1 being the closest vertex to X and k being the closest vertex to Y. Then, label vertices in X with labels $k+1, k+2, \ldots, k + |X|$ in increasing order of distance from vertex 1 (say in a breadth-first manner starting from vertex 1) and lastly, label vertices of Y from $n - |Y| + 1$ to n again in increasing order of distance from vertex 1. See Figure 3 for an example.

Recall our notation $a_{B,i}^{T_1}(q)$ and $a_{B,i}^{T_2}(q)$ for the trees T_1 and T_2 respectively. Also recall $O_{B,i}^{T_1}$ denotes the set of B-orientations in T_1 with i bidirected-arcs and let $O_{B,i}^{T_1} = \bigcup_{B \subseteq V, |B| = r} O_{B,i}^{T_1}$. Recall that $O_{B,i}^{T_2}$ is defined analogously. It would have been nice if for all $B \subseteq V$ with $|B| = r$ and for all $0 \leq i \leq \lfloor r/2 \rfloor$, we could prove that $a_{B,i}^{T_1}(q) - a_{B,i}^{T_2}(q) \in \mathbb{R}^+[q^2]$. Unfortunately, this is not true as the example below illustrates.
Example 17 Let T_2 and T_1 be the trees given in Figure 3. Let $B = \{1, 4, 6, 7, 8\}$ and let $i = 2$. It can be checked that $a_{B,i}^T(q) = 2q^4 + q^6$ and that $a_{B,i}^T(q) = q^4$.

Nonetheless, by combining all sets B of size r, we will for all r, i construct an injective map $\gamma : \mathcal{O}_{r,i}^{T_2} \rightarrow \mathcal{O}_{r,i}^{T_1}$ that preserves the “away” statistic. For each r, note that there are $\binom{n}{r}$ sets B that contribute to $\mathcal{O}_{r,i}^{T_2}$ and $\mathcal{O}_{r,i}^{T_1}$. We partition the r-sized subsets B into three disjoint families and apply three separate lemmas. Recall that vertices 1 and k are the endpoints of the path P_k used in the definition of the poset GTS_n. The first family consists of those sets B with both 1, $k \not\in B$.

Lemma 18 Let $B \subseteq [n]$, $|B| = r$ be such that both 1, $k \not\in B$. Then, there is an injective map $\phi : \mathcal{O}_{B,i}^{T_2} \rightarrow \mathcal{O}_{B,i}^{T_1}$ such that $\text{Aw}_{B}^{T_2}(O) = \text{Aw}_{B}^{T_1}(\phi(O))$. Thus, for all $0 \leq i \leq \lfloor r/2 \rfloor$, we have $a_{B,i}^{T_1}(q) - a_{B,i}^{T_2}(q) \in \mathbb{R}^+[q^2]$.

Proof: Let $O \in \mathcal{O}_{B,i}^{T_2}$. Clearly, $1 = \min_{\nu \in [n] - B} \nu$ and for O, define $O' = \phi(O)$ as follows. In O', for each vertex $\nu \in B$, assign the same orientation as in O. Clearly, $O' \in \mathcal{O}_{B,i}^{T_1}$, and it is clear that ϕ is an injective map from $\mathcal{O}_{B,i}^{T_2}$ to $\mathcal{O}_{B,i}^{T_1}$. Further, it is easy to see that $\text{Aw}_{B}^{T_2}(O) = \text{Aw}_{B}^{T_1}(\phi(O))$, hence proving that $a_{B,i}^{T_1}(q) - a_{B,i}^{T_2}(q) \in \mathbb{R}^+[q^2]$, completing the proof.

We next consider those B with $|\{1, k\} \cap B| = 1$. We use the notation B for r-sized subsets with $1 \in B$, $k \not\in B$ and B' for r-sized subsets with $k \in B'$, $1 \not\in B'$. The next lemma below considers such subsets B' and those B-orientations O with $O(1) \in X \cup P_k$. Note that for such B-orientations O, $\min_{\nu \in [n] - B} \nu \in P_k$.

Lemma 19 Let $O \in \mathcal{O}_{B,i}^{T_2}$, where $1 \in B$, $k \not\in B$ and let $O(1)$ denote the oriented neighbour of vertex 1 in O. If $O(1) \in X \cup P_k$, then there exists an injective map $\mu : \mathcal{O}_{B,i}^{T_2} \rightarrow \mathcal{O}_{B,i}^{T_1}$ such that $\text{Aw}_{B}^{T_2}(O) = \text{Aw}_{B}^{T_1}(\mu(O))$. Similarly, let $B' \subseteq V$ be such that $1 \not\in B'$, $k \in B'$. Then, there is an injective map $\nu : \mathcal{O}_{B,i}^{T_2} \rightarrow \mathcal{O}_{B,i}^{T_1}$ such that for $P \in \mathcal{O}_{B,i}^{T_2}$, $\text{Aw}_{B}^{T_2}(P) = \text{Aw}_{B}^{T_1}(\nu(P))$.

Proof: The proof for both cases are similar. Let $O \in \mathcal{O}_{B,i}^{T_2}$ and let $O(1) \in X \cup P_k$. In this case, the same injection of Lemma 18 works. That is, we form O' by assigning all vertices of B the same orientation as in O. Clearly, $O' \in \mathcal{O}_{B,i}^{T_1}$ and $\text{Aw}_{B}^{T_2}(O) = \text{Aw}_{B}^{T_1}(O')$.

Similarly, let $P \in \mathcal{O}_{B,i}^{T_2}$. Form P' by assigning all vertices of B' the same orientation as in P. Clearly, $\text{Aw}_{B}^{T_2}(P) = \text{Aw}_{B}^{T_2}(P')$. Note that in both P and P', the orientation of k equals $k - 1$ as k is a leaf vertex in T_2. The proof is complete.

Figure 3: Two labelled trees with $T_2 \geq_{\text{GTS}_n} T_1$ and T_2 covering T_1.
We continue to use the notation B for an r-sized subset of V with $1 \in B$. We now handle B-orientations $O \in \mathcal{O}_{B,i}^{T_2}$ with $O(1) \in Y$.

Lemma 20 Let B be an r-sized subset of $[n]$ with $1 \in B$, $k \notin B$. Define $B' = (B - \{1\}) \cup \{k\}$. Let $O \in \mathcal{O}_{B,i}^{T_2}$ with $O(1) \in Y$. There is an injective map $\delta : \mathcal{O}_{B,i}^{T_2} \to \mathcal{O}_{B',i}^{T_1}$ such that $\mathcal{A}_B^{T_2}(O) = \mathcal{A}_B^{T_2}(\delta(O))$. Futher, if $N = \delta(O)$, then we have $N(k) = O(1)$.

Proof: The proof is identical to the proof of \cite[Lemma 7]{25}. We hence only sketch our proof. In T_1, define $m' = \min_{v \in [n] - B'} v$ and recall that $m = \min_{v \in [n] - B} v$ in T_2. Since $1 \notin B'$, note that in T_1, we have $m' = 1$. Thus, we reverse the orientation of some vertices in T_2 on the subpath from $(1, m)$ of P_k. To decide the vertices whose orientations are to be reversed, we break the $(1, m)$ path into segments separated by bidirected arcs. In each segment, if the ℓ-th closest vertex to m in T_2 was oriented “towards m”, then in T_1, orient the ℓ-th closest vertex to 1 “towards 1”. Likewise, if the ℓ-th closest vertex to m in T_2 was oriented “away from m”, then in T_1, orient the ℓ-th closest vertex to 1 “away from 1”.

See Figure 4 for an example, where the letter “t” is used to denote a vertex whose orientation is towards m and “a” is used to denote a vertex whose orientation is away from m. This convention of “t” and “a” will be used in later figures as well. For the example in the Figure 4, note that $k = 9$. If δ is the map described above, then it is clear that $\mathcal{A}_B^{T_2}(O) = \mathcal{A}_B^{T_2}(\delta(O))$ and that $(\delta(O))(k) = O(1)$. The proof is complete.

![Figure 4: Illustrating the injection when $O(1) \in Y$, $m \in P_k$.](image)

Corollary 21 Let $B \subseteq V$ with $1 \in B$, $k \notin B$ and define $B' = (B - \{1\}) \cup \{k\}$. For all i, there is an injection $\omega : \mathcal{O}_{B,i}^{T_2} \cup \mathcal{O}_{B',i}^{T_2} \to \mathcal{O}_{B,i}^{T_1} \cup \mathcal{O}_{B',i}^{T_1}$. Thus, $a_{T_1}\omega(q) = a_{T_2}(q) - a_{B',i}(q) - a_{B,i}(q) \in \mathbb{R}^{+[q^2]}$.

Proof: If $O \in \mathcal{O}_{B,i}^{T_2}$ is such that $O(1) \in X \cup P_k$, use Lemma 19. On the other hand, if $O(1) \in Y$, then we use Lemma 20. Let $O' = \omega(O)$. Note that in this case, vertex k is oriented with $O'(k) \in Y$.

Similarly, if $O \in \mathcal{O}_{B',i}^{T_2}$, then, we use Lemma 19. Note that in this case if $O' = \omega(O)$, then $O'(k) = k - 1 \in P_k$. Thus, the case mentioned in the earlier paragraph and this case are disjoint and hence ω is an injection.

Our last family consists of subsets B with both $1, k \in B$. Define another subset $B' \subseteq [n]$ using B as follows: Let $B_{xy} = B \cap (X \cup Y)$ and let $B_p = B \cap P_k$. The set B' will be used when $m \in P_k$. In this case, $m = \min_{v \in P_k \setminus B} v$ is the minimum vertex outside B in P_k. Define $l = \max_{v \in P_k \setminus B} v$ to be the maximum numbered vertex in P_k not in B. Define $m' = k + 1 - l$ and $l' = k + 1 - m$. Form $B_p'^l$ by taking the union of the three sets $A' = \{1, \ldots, m' - 1\}$, $C' = \{l' + 1, \ldots, k\}$ and
\[m' - m + x : x \in B \cap \{ m+1, \ldots, l-1 \} \]. See Figure \(\theta \) for an example. Define \(B' = B_{xy} \cup B'_p \). Clearly, both \(1, k \in B' \) and \((B')' = B \).

Lemma 22 Let \(B \subseteq [n] \) be such that both \(1, k \in B \) and let \(B' \) be as defined above. For all \(i \), there is an injective map \(\theta : \mathcal{O}'_{B,i} \cup \mathcal{O}'_{B',i} \to \mathcal{O}_{B,i} \cup \mathcal{O}_{B',i} \) that preserves the away statistic. Thus, \(a_{B,1,i}(q) + a_{B',1,i}(q) - a_{B,2,i}(q) - a_{B',2,i}(q) \in \mathbb{R}^+[q^2] \).

Proof: We denote the orientation of vertex 1 in \(O \) as \(O(1) \). Given \(B \), recall \(m = \min_{v \in B} v \) is the minimum vertex outside \(B \) and that we have labelled vertices on the path \(P_k \) first, vertices in \(X \) next and vertices of \(Y \) last. There are nine cases based on \(m \) and \(O(1) \). Only one of the nine cases will involve \(B \) getting changed to \(B' \). For now, let \(O \in \mathcal{O}'_{B,i} \). Define a map \(\theta : \mathcal{O}_{B,i} \to \mathcal{O}_{B,i} \) as follows. Let \(O \in \mathcal{O}'_{B,i} \). We construct a unique \(O' \in \mathcal{O}_{B,i} \) by using the algorithms tabulated below. Though it seems that there are a large number of cases, the underlying moves are very similar.

For vertices \(u, v, a, b \), we explain an operation that we denote as \(\text{reverse_on_path}(u, v; a, b) \) that will be needed when \(m \in Y \). We will always have \(d_{u,v} = d_{a,b} \) in \(T_1 \) where \(d_{u,v} \) is the distance between vertices \(u \) and \(v \) in \(T_1 \). Further, all vertices \(w \) on the \(u, v \) path \(P_{u,v} \) in \(T_1 \) will be in \(B \) and hence be oriented. \(\text{reverse_on_path}(u, v; a, b) \) will change orientations of all vertices on \(P_{u,v} \). We will use this operation in all the three cases when \(m \in Y \). Due to our labelling convention and the fact that \(m \in Y \), all vertices of \(P_k \cup X \) will be contained in \(B \). In \(T_2 \), vertex \(m \) has vertex 1 as its closest vertex among the vertices in \(P_k \), whereas in \(T_1 \), vertex \(m \) has vertex \(k \) as its closest vertex among those in \(P_k \). Define vertices on \(P_{u,v} \) as \(u = u_1, u_2, \ldots, u_s = v \) and the vertices on the \((a, b) \) path as \(a = a_1, a_2, \ldots, a_s = b \). In \(O \), if vertex \(a_i \) is oriented “towards \(m \)”, then orient vertex \(u_{s+1-i} \) “towards \(m \)” and likewise if vertex \(a_i \) is oriented “away from \(m \)”, then orient vertex \(u_{s+1-i} \) “away from \(m \)”. We give the map \(\theta \) using several algorithms below.

\(O(1) = 2 \in P_k \)	\(m \in P_k \)	\(m \in X \)	\(m \in Y \)
Use algorithm 1	Use algorithm 1	Use algorithm 1	Use algorithm 2
\(O(1) = x \in X \)	Use algorithm 1	Use algorithm 1	Use algorithm 4
\(O(1) = y \in Y \)	Use algorithm 5	Use algorithm 3	Use algorithm 2

Algorithm 1: This is a trivial copying algorithm. Define \(O' = \theta(O) \) with \(O' \in \mathcal{O}_{B,i} \) as follows. In \(O' \), retain the same orientation for all vertices \(v \in B' \). It is clear that \(\text{Aw}_{B,1}(O) = \text{Aw}_{B,1}(O') \).

Algorithm 2: Since \(m \in Y \), by our labelling convention, this means all the vertices of \(P_k \) and \(X \) are in \(B \). Form \(O' = \theta(O) \) with \(O' \in \mathcal{O}_{B,i} \) by first copying the orientation \(O \) for each vertex. Then perform \(\text{reverse_on_path}(1, k; 1, k) \). This is illustrated in Figure \(\theta \) when \(O(1) = 2 \) and \(m \in Y \) and in Figure \(\theta \) when both \(O(1), m \in Y \). It is clear that \(\text{Aw}_{B,1}(O) = \text{Aw}_{B,1}(O') \).

Algorithm 3: We have \(m \in X \) and \(O(1) \in Y \). Recall that we have labelled the vertices of \(X \) in increasing order of distance from vertex 1. We claim that there exists a unique edge \(e = \{ x, y \} \) on the path from 1 to \(m \) satisfying the following two conditions:

1. There is no arrow on \(e \). That is, either both \(x, y \in B \) with \(O(x) \neq y \) and \(O(y) \neq x \) or \(x \in B \) and \(y = m \).
2. Among such edges, \(x \) is the closest vertex to 1 distancewise (that is, \(e \) is the unique closest edge to 1).

That there exists such an edge \(e \) satisfying condition (1) above is easy to see. Condition (2) is just a labelling of vertices of such an edge. Further, we label the vertices on the path from 1 to \(x \) in increasing order of distance from vertex 1 as \(1, x_1, x_2, \ldots, x_l = x \). (See Figure 7 for an example.)

It is easy to see that \(O(x_1) = 1 \) and \(O(x_i) = x_{i-1} \) for \(2 \leq i \leq l \) and recall that \(O(1) \in Y \). Form \(O' = \theta(O) \) with \(O' \in O_{B,i}^T \) as follows. Vertices of \(B \) not on the path from \(x_l \) to \(k \) in \(T_1 \) get the same orientation as in \(O \). We orient the last \(l + 1 \) vertices in \(T_1 \) on the \(x_l \) to \(k \) path \(P_{x_l,k} \) away from \(m \), and then orient the first \(k - 1 \) vertices on \(P_{x_l,k} \) as they were on \(P_k \). See Figure 7 for an example. As \(k = 6 \) and \(l = 3 \), the last \(l + 1 \) vertices on the \((x_3,6)\) path means that the last 4 vertices are oriented away from \(m \). The orientation of the remaining vertices is inherited from \(T_2 \).

It is clear that \(|\text{bidir}(O)| = |\text{bidir}(O')| \) and that \(Aw_{B}^{T_2}(O) = Aw_{B}^{T_1}(O') \).

Algorithm 4: We have \(O(1) \in X \) and \(m \in Y \). As done in Algorithm 3, find the closest edge \(e = \{x, y\} \) to vertex 1 with \(e \) having no arrow on the 1 to \(m \) path. As before, label \(e \) as \(\{x, y\} \) with \(x \) being closer to 1 than \(y \), and label the vertices on the path from 1 to \(x \) as \(1, x_1, x_2, \ldots, x_l = x \) (see Figure 8).
It is easy to see that $O(x_i) = 1$ and $O(x_i) = x_{i-1}$ for $2 \leq i \leq l$. Note that there is a continuous string of $l + 1$ vertices that are oriented away from m. Form $O' = \theta(O)$ with $O' \in \mathcal{O}_{B,i}^{T^1}$ as follows. Vertices of B not on the path from x_i to k in T_i get the same orientation as in O. The closest $l + 1$ vertices of B on the path from 1 to x_i in T_i get oriented away from m. Denote the path comprising the last $k - 1$ vertices on the $(1, x_i)$-path as P_i. Let α, β be the first and last vertices of P_i. Perform reverse_on_path($\alpha, \beta; 2, k$). See Figure 8 for an example. It is clear that $Aw_B^{T^2}(O) = Aw_B^{T^1}(O')$.

Algorithm 5: We have $O(1) = y \in Y$ and $m \in P_k$. Recall $B' = B_{xy} \cup B_{pr}$. Recall $l = \max_{e \in P, v \in B} v$. Note that the minimum vertex $m' \notin B'$ will be $m' = k + 1 - l$. Form $O' = \theta(O)$ with $O' \in \mathcal{O}_{B,i}^{T^i}$ as follows. Note that in T_2, there is a continuous sequence A of $m - 1$ oriented vertices from 1 to $m - 1$ and another continuous sequence C of $k - l$ oriented vertices from $l + 1$ to k in the path P_k (see Figure 9 for an example). Similarly, in T_1, there is a continuous sequence A' of $m' - 1$ oriented vertices from 1 to $m' - 1$ and another continuous sequence C' of $k - l'$ oriented vertices from $l' + 1$ to k in the path P_k.

It is easy to see that $|A| = |C'|$ and $|C| = |A'|$. If vertex $s \in A$ is oriented away from (or towards) m in O, then in O' orient vertex $k + 1 - s$ away from (or towards respectively) m'. Likewise, if vertex $s \in C$ is oriented away from (or towards) m in O, then in O' orient vertex $k + 1 - s$ away from (or towards respectively) m'.

Lastly, in O' copy the orientation of vertices in B that lie between m and l in T_2 as they were to the vertices in B' between m' and l' in T_1. Formally, if vertex $s \in P_k$ with $m < s < l$ is oriented away from (or towards) m in O, then in O' orient vertex $(m' - m) + s$ away from (or towards respectively) m'.

For vertices $s \in B_p$, see Figure 9 for an example. Clearly, $|\text{bidir}(O)| = |\text{bidir}(O')|$ and $Aw_B^{T^2}(O) = Aw_B^{T^1}(O')$. This completes Algorithm 5.

When $B = [n]$, note that all vertices are oriented and hence there exists at least one bidirected edge. In this case, we have $Aw_B(O) = \text{away}(O, e)$, where as defined in [25], $\text{away}(O, e)$ is found with respect to the lexicographic minimum bidirected edge $e \in O$. If the lexicographic edge is $e = \{u, v\}$, we let $m = \min(u, v)$ be the smaller numbered vertex among u, v. We find the statistic $\text{away}(O, e)$ with respect to m. It is simple to note that among the nine cases, the following will not occur when $B = [n]$ due to our labelling convention:

1. $m \in X$ and $O(1) \in P_k$,
2. $m \in Y$ and $O(1) \in P_k$ and
3. $m \in Y$ and $O(1) \in X$.

In the remaining cases, we follow the same algorithms. It is easy to see that the pair $(m, O(1))$ is different in all the nine cases. We do not change B in eight cases, except in Algorithm 5. Thus, we get an injection in these eight cases. When Algorithm 5 is run, we get an injection from $\mathcal{O}_{B,i}^{T^2}$.
to $O_{B',i}^{T_1}$ and similarly we get an injection from $O_{B',i}^{T_2}$ to $O_{B,i}^{T_1}$. Thus, we get an injection from $O_{B',i}^{T_2} \cup O_{B,i}^{T_2}$ to $O_{B,i}^{T_1} \cup O_{B',i}^{T_1}$, completing the proof.

With these Lemmas in place, we can now prove Theorem 1.

Proof: (Of Theorem 1) We group the set of r-sized subsets B into three categories: those without 1, k, those with either 1 or k and those with both 1, k. By Lemmas 18, 22 and Corollary 21 it is clear that there is an injective map from $O_{r,i}^{T_2}$ to $O_{r,i}^{T_1}$ for all r and i. By Corollary 11, $c_{\lambda,r}^{L_{q}^{T_2}}(q) - c_{\lambda,r}^{L_{q}^{T_1}}(q) \in \mathbb{R}^{+}[q^2]$ for all λ, r.

Corollary 23 Setting $q = 1$ in L_{q}^{T}, we infer that for all r, the coefficient of x^{n-r} in the immanantal polynomial of the Laplacian L_{T} of T decreases in absolute value as we go up GTS$_n$. Using Lemma 5, we thus get a more refined and hence stronger result than Theorem 3.

Corollary 24 Let T_1, T_2 be trees on n vertices with respective q-Laplacians $L_{q}^{T_1}, L_{q}^{T_2}$. Let $T_2 \geq_{\text{GTS}_n} T_1$ and let $d_\lambda(L_{q}^{T_i})$ denote the immanant of $L_{q}^{T_i}$ for $1 \leq i \leq 2$ corresponding to the partition $\lambda \vdash n$. By comparing the constant term of the immanantal polynomial, for all $\lambda \vdash n$, we infer $d_\lambda(L_{q}^{T_2}) \leq d_\lambda(L_{q}^{T_1})$. This refines the inequalities in Theorem 3.

5 q^2-analogue of vertex moments in a tree

Merris in [21] gave an alternate definition of the centroid of a tree T through its vertex moments. He then showed that the sum of vertex moments appears as a coefficient of the immanantal polynomial of L_T corresponding to the partition $\lambda = 2, 1^{n-2}$. In this section, we define a q^2-analogue of vertex moments and through it, the centroid of a tree. We then show that the sum of q^2-analogue of the vertex moments of all vertices appears as a coefficient in the second immanantal polynomial of L_{q}^{T}. Thus, by Theorem 1, the sum of the q^2-analogue of vertex moments decreases as we go up on GTS$_n$. We further show that as we go up on GTS$_n$, the value of the minimum q^2-analogue of the vertex moments also decreases.

The following definition of vertex moments is from Merris [21]. Let T be a tree with vertex set $[n]$. For a vertex $i \in [n]$, define $\text{Moment}^T(i) = \sum_{j \in [n]} d_j d_{i,j}$ where d_j is the degree of vertex j in T and $d_{i,j}$ is the distance between vertices i and j in T. Define the q^2-analogue of the distance $d_{i,j}$...
between vertices i and j to be $[d_{i,j}]_{q^2} = 1 + q^2 + (q^2)^2 + \cdots + (q^2)^{d_{i,j} - 1}$ and define for all $i \in [n]$, $[d_{i,i}]_{q^2} = 0$. We define the q^2-anologue of the moment of vertex i of T as

$$\text{Moment}^T_{q^2}(i) = \sum_{j \in [n]} [1 + q^2(d_j - 1)][d_{i,j}]_{q^2}. \tag{7}$$

Fix $q \in \mathbb{R}$, $q \neq 0$. Vertex i is called the centroid of T if $\text{Moment}^T_{q^2}(i) = \min_{j \in [n]} \text{Moment}^T_{q^2}(j)$. We clearly recover Merris’ definition of moments when we plug in $q = 1$ in (7). Merris showed that his definition of centroid coincides with the usual definition of the centroid of a tree T. In [4], Bapat and Sivasubramanian while studying the third immanant of L^q_T proved a lemma that we need. The following lemma is obtained by setting $s = q^2$ in [4] Lemma 3.

Lemma 25 (Bapat and Sivasubramanian) Let T be a tree with vertex set $V = [n]$ and let $i \in [n]$. Then,

$$\sum_{j \in [n]} q^2(d_j - 1)[d_{i,j}]_{q^2} = \sum_{j \in [n]} [d_{i,j}]_{q^2} - (n - 1). \tag{8}$$

The following alternate expression for $\text{Moment}^T_{q^2}(i)$ is easy to derive using Lemma 25 and the definition (7). As the proof is a simple manipulation, we omit it.

Lemma 26 Let T be a tree with vertex set $[n]$ and let $i \in [n]$. Then,

$$\text{Moment}^T_{q^2}(i) = (n - 1) + 2q^2 \sum_{j \in [n]} (d_j - 1)[d_{i,j}]_{q^2}. \tag{9}$$

The following lemma gives an algebraic interpretation for the q^2-anologue of vertex moments in T.

Lemma 27 Let T be a tree with vertex set $[n]$. Let $i \in [n]$ be a vertex and let $B = [n] - \{i\}$. Then,

$$\text{Moment}^T_{q^2}(i) = (n - 1)a^T_{B,0}(q) + 2a^T_{B,1}(q). \tag{10}$$

Proof: Clearly for $B = [n] - \{i\}$, we have a unique B-orientation $O \in O_{B,0}$ with $Aw^T_O(O) = 0$. This is the orientation where every vertex $j \in [n] - i$ gets oriented towards i. Thus $a^T_{B,0}(q) = 1$.

We will show that $a^T_{B,1}(q) = q^2 \sum_{j \in [n]} (d_j - 1)[d_{i,j}]_{q^2}$ and appeal to (9). By (8), equivalently, we need to show that

$$a^T_{B,1}(q) = \sum_{j \in [n]} [d_{i,j}]_{q^2} - (n - 1) = q^2 \sum_{j \in [n], j \neq i}[d_{i,j} - 1]_{q^2}.$$

Root the tree T at the vertex i and recall $B = [n] - \{i\}$. Thus $m = i$. Let O be a B-orientation with one bidirected arc $e = \{u, v\}$ where we label the edge e such that $d_{i,v} = d_{i,u} + 1$. That is, u occurs on the path from i to v in T. Since $n - 1$ vertices are oriented and one edge is bidirected, there must be one edge without any arrows (when seen pictorially). It is easy to see that all edges $f \in T$ not on the path $P_{i,u}$ from i to u must be oriented towards i. Moreover, it is clear that the
edge \(f \) without arrows must be on the path \(P_{i,u} \). Thus, our choice lies in orienting vertices in \(P_{i,u} \) such that one edge does not get any arrows. Let \(f = \{x, y\} \) with \(x \) being on the path from \(i \) to \(y \) in \(T \) (\(x \) could be \(i \) or \(y \) could be \(u \)). Thus, there are \(d_{i,u} - 1 \) choices for the edge \(f \). In \(O \), clearly, all vertices from \(y \) till \(u \) on the path \(P_{i,u} \) must be oriented away from \(i \). Hence the contribution of all such orientations will be \(q^2 + q^4 + \ldots + q^{2d_{i,u} - 2} \). Thus vertex \(u \) contributes \(q^2[d_{i,u} - 1]q^2 \) to \(a_{B,1}(q) \). Summing over all vertices \(u \) completes the proof.

Theorem 28 Let \(T \) be a tree with vertex set \([n]\) and \(q\)-Laplacian \(\mathcal{L}_q \). Let \(\lambda = 2, 1^{n-2} \vdash n \). Then,

\[
\ell_T^{\lambda} = \sum_{i=1}^{n} \text{Moment}^T_q(i).
\]

Proof: Summing (10) over all \(B \) with cardinality \(n - 1 \), we get

\[
\sum_{i=1}^{n} \text{Moment}^T_q(i) = (n - 1)\alpha_{n-1,0}(q) + 2\alpha_{n-1,1}(q) = \ell_T^{\lambda}
\]

where the last equality follows from Corollary [11] and Lemma [10] with \(k = 2 \). The proof is complete.

On setting \(q = 1 \) in Theorem 28 we recover Merris’ result [21, Theorem 6]. From Theorem 1 and Theorem 28 we get the following.

Theorem 29 Let \(T_1 \) and \(T_2 \) be trees with \(n \) vertices and let \(T_2 \) cover \(T_1 \) in \(\text{GTS}_n \). Then,

\[
\sum_{i=1}^{n} \text{Moment}^T_{q^2}(i) \leq \sum_{i=1}^{n} \text{Moment}^T_{q^2}(i).
\]

Theorem 29 implies that the sum of the vertex moments decreases as we go up on the poset \(\text{GTS}_n \). We next show that the minimum value of the \(q^2 \)-analogue of vertex moments also decreases as we go up on \(\text{GTS}_n \).

Lemma 30 Let \(T_1 \) and \(T_2 \) be two trees with vertex set \([n]\) such that \(T_2 \) covers \(T_1 \) in \(\text{GTS}_n \). Then, for all \(q \in \mathbb{R} \), we have \(\min_{i \in [n]} \text{Moment}^T_{q^2}(i) \leq \min_{j \in [n]} \text{Moment}^T_{q^2}(j) \).

Proof: Let \(l \in [n] \) be the vertex in \(T_1 \) with \(\text{Moment}^T_{q^2}(l) = \min_{i \in [n]} \text{Moment}^T_{q^2}(i) \). Let \(l \in X \cup Y \cup P_{[k/2]} \) (see Figure 1 for \(X \), \(Y \) and \(P_k = P_{x,y} \)). Here \(P_{[k/2]} \) is the path \(P_k \) restricted to the vertices 1, 2, \ldots, \([k/2]\]. Then, using the fact that the distance \(d_{x,y} \) is \(d_{x,y} \geq d_{x,y} \) for all pairs \((x,y) \in X \times Y \), we have

\[
\text{Moment}^T_{q^2}(l) \geq \text{Moment}^T_{q^2}(l) \geq \min_{i \in [n]} \text{Moment}^T_{q^2}(i).
\]

If \(l \geq [k/2] \) then \(\text{Moment}^T_{q^2}(l) \geq \text{Moment}^T_{q^2}(k + 1 - l) \geq \min_{i \in [n]} \text{Moment}^T_{q^2}(i) \). Thus we can find a vertex \(i \) in \(T_2 \) such that \(\text{Moment}^T_{q^2}(i) \geq \text{Moment}^T_{q^2}(i) \), completing the proof.
Corollary 31 Let T_1, T_2 be two trees on n vertices with $T_2 \succeq_{GTS_n} T_1$. Then, for all $q \in \mathbb{R}$, the minimum q^2-analogue of the vertex moments of T_2 is less than the minimum q^2-analogue of the vertex moments of T_1.

An identical statement about the maximum q^2-analogue of vertex moments is not true as shown in the following example.

Example 32 Let T_1, T_2 be trees on the vertex set [8] given in Figure 10. Vertices 2 and 3 are both centroid vertices in T_1, while in T_2, the centroid is vertex 1. The q^2-analogue of their vertex moments are as follows: $\text{Moment}_{T_1}(2) = \text{Moment}_{T_2}(3) = 9 + 2q(7 + 3q^2)$ and $\text{Moment}_{T_2}(1) = 9 + 2q^2(2 + q^2)$. The q^2-analogue of vertex moments of leaf vertices of T_1 and T_2 are as follows.

$$\text{Moment}_{T_1}(i) = 9 + 2q^2(8 + 5q^2 + 4q^4 + 3q^6) \text{ for } i = 5, 6, 7, 8, 9, 10.$$
$$\text{Moment}_{T_2}(i) = 9 + 2q^2(8 + 2q^2 + q^4) \text{ for } i = 5, 6, 7, 8, 9, 10.$$
$$\text{Moment}_{T_2}(4) = 9 + 2q^2(8 + 7q^2 + 6q^4).$$

When $q = 1$, the moments of vertices of T_1 and T_2 are given in Figure 10 alongside the vertices. Clearly, when $q = 1$, $\max_{j \in [8]} \text{Moment}_{T_2}(j) = 51 \leq 49 = \max_{j \in [8]} \text{Moment}_{T_1}(j)$.

![Figure 10: q^2-moments of vertices of T_1 and T_2 when $q = 1$.](image)

Associated to a tree are different notions of “median” and “generalized centers”, see the book [18]. It would be nice to see the behaviour of these parameters as one goes up GTS_n.

6 q, t-Laplacian $\mathcal{L}_{q,t}$ and Hermitian Laplacian of a tree T

All our results work for the bivariate Laplacian matrix $\mathcal{L}_{q,t}$ of a tree T on n vertices defined as follows. Let T be a tree with edge set E. Replace each edge $e = \{u, v\}$ by two bidirected arcs, (u, v) and (v, u). Assign one of the arcs, say (u, v) a variable weight q and its reverse arc, a variable weight t and let $A_{n \times n} = (a_{i,j})_{1 \leq i,j \leq n}$ be the matrix with $a_{u,v} = q$ and $a_{v,u} = t$. Assign $a_{u,v} = 0$ if $\{u, v\} \not\in E$.

Let $D_{n \times n} = (d_{i,j})$ be the diagonal matrix with entries $d_{i,i} = 1 + qt(\deg(i) - 1)$. Define $\mathcal{L}_{q,t} = D - A$. Note that when $q = t$, $\mathcal{L}_{q,t} = \mathcal{L}_T^q$ and that when $q = t = 1$, $\mathcal{L}_{q,t} = L_T$ where L_T is the usual combinatorial Laplacian matrix of T.

It is easy to see that our proof relies on the fact that the difference in the coefficients of the immmanantal polynomial is a non-negative combination of the $a_{r,i}^T(q)$’s which are polynomials in
q^2 and that $q^2 \geq 0$ for all $q \in \mathbb{R}$. When $B = [n]$, bivariate versions of $m_{n,j}(q,t)$ and $a^T_{n,j}(q,t)$ were defined in [25]. Define bivariate versions $m_{r,j}(q,t)$ and $a^T_{r,j}(q,t)$ as done in Section 5 but replace all occurrences of q^2 with qt.

With this definition, it is simple to see that all results go through for $\mathcal{E}_{q,t}$, the q,t-Laplacian of T whenever $q,t \in \mathbb{R}$ and $qt \geq 0$ or $q,t \in \mathbb{C}$ and $qt \geq 0$. One special case of $\mathcal{E}_{q,t}$ is obtained when we set $q = i$ and $t = -i$ where $i = \sqrt{-1}$. In this case, the weighted adjacency matrix becomes the Hermitian adjacency matrix of T with edges oriented in the direction of the arc labelled q. The Hermitian adjacency matrix is a matrix defined and studied by Bapat, Pati and Kalita [11] and later independently by Liu and Li [20] and by Guo and Mohar [15]. With these complex numbers as weights, $\mathcal{E}_{q,t}$ reduces to what is defined as the Hermitian Laplacian of T by Yu and Qu [27]. We get the following corollary of Theorem 1.

Corollary 33 Let T_1, T_2 be trees on n vertices with $T_2 \geq_{GTS_n} T_1$. Then, in absolute value, the coefficients of the immanantal polynomials of the Hermitian Laplacian of T_1 are larger than the corresponding coefficient of the immanantal polynomials of the Hermitian Laplacian of T_2.

Let T be a tree on n vertices with Laplacian L_T and q,t-Laplacian $\mathcal{E}_{q,t}$. When $q = z \in \mathbb{C}$ with $z \neq 0$, and $t = 1/q$ then it is simple to see that the matrix $\mathcal{E}_{q,t}$ need not be Hermitian. In this case, for all $i \geq 0$, we have $a^T_{r,i}(q)_{q=1} = a^T_{r,i}(z,1/z)$. This implies that for all $\lambda \vdash n$ and for $0 \leq r \leq n$, $c^L_{\lambda,r} = c^\mathcal{E}_{\lambda,r}$. Thus, we obtain the following simple corollary.

Corollary 34 Let T be a tree on n vertices with Laplacian L_T and q,t-Laplacian $\mathcal{E}_{q,t}$. Then, for all $z \in \mathbb{C}$ with $z \neq 0$ and for all $\lambda \vdash n$

$$f^\mathcal{E}_{\lambda,1/z}(x) = f^L_{\lambda,T}(x).$$

7 Exponential distance matrices of a tree

In [2], Bapat, Lal and Pati introduced the exponential distance matrix \mathcal{E}_T of a tree T. In this section, we prove that when $q \neq \pm 1$, the coefficients of the characteristic polynomial of \mathcal{E}_T, in absolute value decrease when we go up GTS_n. We show a similar relation on immanants of \mathcal{E}_T indexed by partitions with two columns. We recall the definition of \mathcal{E}_T from [2]. Let T be a tree with n vertices. Then, its exponential distance matrix $\mathcal{E}_T = (e_{i,j})_{1 \leq i,j \leq n}$ is defined as follows: the entry $e_{i,j} = 1$ if $i = j$ and $e_{i,j} = q^{d_{i,j}}$ if $i \neq j$, where $d_{i,j}$ is the distance between vertex i and vertex j in T. For $\lambda \vdash n$, define

$$f^\mathcal{E}_T(x) = d_\lambda(xI - \mathcal{E}_T) = \sum_{r=0}^{n} (-1)^r c^\mathcal{E}_{\lambda,r}(q)x^{n-r}. \quad (11)$$

We need the following lemma of Bapat, Lal and Pati [2].

Lemma 35 (Bapat, Lal and Pati) Let T be a tree with n vertices. Let $\mathcal{E}_{q,T}$ and \mathcal{E}_T be the q-Laplacian and exponential distance matrix of T respectively. Then, $\det(\mathcal{E}_T) = (1 - q^2)^{n-1}$ and if $q \neq \pm 1$, then

$$\mathcal{E}_T^{-1} = \frac{1}{1 - q^2} \mathcal{E}_{q,T}.$$
Using Jacobi’s Theorem on minors of the inverse of a matrix (see DeAlba’s article [12, Section 4.2]), we get the following easy corollary, whose proof we omit.

Corollary 36 Let T be a tree with n vertices. Let \mathcal{L}_T^q and ED_T be the q-Laplacian and exponential distance matrix of T respectively. Let $q \neq \pm 1$. Then, for $0 \leq r \leq n$

$$c_{1^n,r}^{\mathsf{ED}_T}(q) = (1 - q^2)^{r-1} c_{1^n,n-r}^{\mathcal{L}_T^q}(q),$$

where $c_{1^n,n-r}^{\mathcal{L}_T^q}(q)$ is the coefficient of $(-1)^{n-r} x^r$ in $f_{1^n}^{\mathcal{L}_T^q}(x)$.

The following corollary is an easy consequence of Theorem 1 and Corollary 36, we omit its proof.

Corollary 37 Let T_1 and T_2 be two trees with n vertices such that $T_2 \geq_{\text{GTS}_n} T_1$. Then, for all $q \in \mathbb{R}$ with $q \neq \pm 1$ and for $0 \leq r \leq n$,

$$\left| c_{1^n,r}^{\mathsf{ED}_{T_2}}(q) \right| \leq \left| c_{1^n,r}^{\mathsf{ED}_{T_1}}(q) \right|.$$

In particular, for an arbitrary tree T with n vertices,

$$\left| c_{1^n,r}^{\mathsf{ED}_{\mathcal{L}_T^q}}(q) \right| \leq \left| c_{1^n,r}^{\mathsf{ED}_{\mathcal{L}_T^q}}(q) \right| \leq \left| c_{1^n,r}^{\mathsf{ED}_{\mathcal{L}_T^q}}(q) \right|.$$

We give some results for the immanant $d_\lambda(\mathsf{ED}_T)$, when $\lambda \vdash n$ is a two column partition. That is $\lambda = 2^k, 1^{n-2k}$ with $0 \leq k \leq \lfloor n/2 \rfloor$. When λ is a two column partition of n, Merris and Watkins in [23] proved the following lemma for invertible matrices.

Lemma 38 (Merris, Watkins) Let A be an invertible $n \times n$ matrix. Then $\lambda \vdash n$ is a two column partition if and only if

$$d_\lambda(A) \det(A^{-1}) = d_\lambda(A^{-1}) \det(A).$$

Lemma 39 Let T be a tree with n vertices with q-Laplacian and exponential distance matrices \mathcal{L}_T^q and ED_T respectively. Then for all $q \in \mathbb{R}$ with $q \neq \pm 1$ and $\lambda \vdash 2^k, 1^{n-2k}$ for $0 \leq k \leq \lfloor n/2 \rfloor$

$$d_\lambda(\mathsf{ED}_T) = d_\lambda(\mathcal{L}_T^q)(1 - q^2)^{n-2}. $$

Proof: For all $q \in \mathbb{R}$ with $q \neq \pm 1$, ED_T is invertible. By Lemma 38 we have

$$d_\lambda(\mathsf{ED}_T) \det \left(\frac{1}{1 - q^2} \mathcal{L}_T^q \right) = d_\lambda \left(\frac{1}{1 - q^2} \mathcal{L}_T^q \right) \det(\mathsf{ED}_T).$$

Thus, $d_\lambda(\mathsf{ED}_T) \det(\mathcal{L}_T^q) = d_\lambda(\mathsf{ED}_T) \det(\mathcal{L}_T^q)$. Hence, $d_\lambda(\mathsf{ED}_T) = d_\lambda(\mathcal{L}_T^q)(1 - q^2)^{n-2}$, completing the proof.

Combining Lemma 39 and Theorem 1 gives us another corollary whose straightforward proof we again omit.

Corollary 40 Let T_1 and T_2 be two trees on n vertices with $T_2 \geq_{\text{GTS}_n} T_1$. Then, for all $q \in \mathbb{R}$ with $q \neq \pm 1$ and for all $\lambda \vdash 2^k, 1^{n-2k}$, we have

$$|d_\lambda(\mathsf{ED}_{T_2})| \leq |d_\lambda(\mathsf{ED}_{T_1})|. $$
7.1 \(q, t \)-exponential distance matrix

We consider the bivariate exponential distance matrix in this subsection. Orient the tree \(T \) as done above. Thus each directed arc \(e \) of \(E(T) \) has a unique reverse arc \(e_{rev} \) and we assign a variable weight \(w(e) = q \) and \(w(e_{rev}) = t \) or vice versa. If the path \(P_{i,j} \) from vertex \(i \) to vertex \(j \) has the sequence of edges \(P_{i,j} = (e_1, e_2, \ldots, e_p) \), assign it weight \(w_{i,j} = \prod_{e_k \in P_{i,j}} w(e_k) \). Define \(w_{i,i} = 1 \) for \(i = 1, 2, \ldots, n \). Define the bivariate exponential distance matrix \(ED_{q,t}^T = (w_{i,j})_{1 \leq i,j \leq n} \). Clearly, when \(q = t \), we have \(ED_{q,t}^T = ED_T^q \). Bapat and Sivasubramanian in [3] showed the following bivariate counterpart of Lemma 35.

Lemma 41 (Bapat, Sivasubramanian) Let \(T \) be a tree with \(n \) vertices and let \(L_{q,t}^T \) and \(ED_{q,t}^T \) be its \(q,t \)-Laplacian and \(q,t \) exponential distance matrix respectively. Then, \(\det(ED_{q,t}^T) = (1 - qt)^{n-1} \) and if \(qt \neq 1 \), then

\[
(ED_{q,t}^T)^{-1} = \frac{1}{1 - qt} L_{q,t}^T.
\]

It is easy to see that all results about \(ED_T \) go through for the bivariate \(q,t \)-exponential distance matrix \(ED_{q,t}^T \) when \(q,t \in \mathbb{R} \) with \(qt \neq 1 \) or when \(q,t \in \mathbb{C} \) with \(qt \neq 1 \). In particular, Corollary 40 goes through for the bivariate exponential distance matrix.

Acknowledgement

The first author acknowledges support from DST, New Delhi for providing a Senior Research Fellowship. The second author acknowledges support from project grant 15IRCCFS003 given by IIT Bombay.

References

[1] Bapat, B., Kalita, D., and Pati, S. On weighted directed graphs. *Linear Algebra and its Applications* 436 (2012), 99–111.

[2] Bapat, R. B., Lal, A. K., and Pati, S. A \(q \)-analogue of the distance matrix of a tree. *Linear Algebra and its Applications* 416 (2006), 799–814.

[3] Bapat, R. B., and Sivasubramanian, S. The Product Distance Matrix of a Tree and a Bivariate Zeta Function of a Graph. *Electronic Journal of Linear Algebra* 23 (2012), 275–286.

[4] Bapat, R. B., and Sivasubramanian, S. *The Third Immanant of q-Laplacian Matrices of Trees and Laplacians of Regular Graphs*. Springer India, 2013, pp. 33–40.

[5] Bass, H. The Ihara-Selberg Zeta Function of a Tree Lattice. *International Journal of Math.* 3 (1992), 717–797.
[6] Botti, P., and Merris, R. Almost All Trees Share a Complete Set of Immanantal Polynomials. *Journal of Graph Theory* 17, 4 (1993), 467–476. 2

[7] Chan, O., and Lam, T. K. Binomial Coefficients and Characters of the Symmetric Group. *Technical Report* 693 (1996), National Univ of Singapore. 7

[8] Chan, O., and Lam, T. K. Hook Immanantal Inequalities for Trees Explained. *Linear Algebra and its Applications* 273 (1998), 119–131. 7

[9] Chan, O., Lam, T. K., and Yeo, K. P. Immanantal Polynomials of Laplacian Matrix of Trees. Available on CiteSeerX http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.12.816 (1998). 3, 5, 6, 7

[10] Csinkvári, P. On a Poset of Trees. *Combinatorica* 30 (2) (2010), 125–137. 1, 3, 4

[11] Csinkvári, P. On a Poset of Trees II. *Journal of Graph Theory* 74 (2013), 81–103. 3

[12] DeAlba, L. M. Determinants and Eigenvalues. In *Handbook of Linear Algebra*, L. Hogben, Ed. Chapman & Hall CRC Press, 2007, ch. 4. 19

[13] Foata, D., and Zeilberger, D. Combinatorial Proofs of Bass’s Evaluations of the Ihara-Selberg Zeta function of a Graph. *Transactions of the AMS* 351 (1999), 2257–2274. 3

[14] Godunov, S. K. *Modern Aspects of Linear Algebra*. American Math. Society, 1991. 8

[15] Guo, K., and Mohar, B. Hermitian adjacency matrix of digraphs and mixed graphs. Available on arxiv https://arxiv.org/abs/1505.01321 (2015). 18

[16] Gutman, I., and Pavlović, L. On the Coefficients of the Laplacian Characteristic Polynomial of Trees. *Bulletin Académie Serbe des sciences et des art* 28 (2003), 31–40. 2

[17] Gutman, I., and Zhou, B. A connection between ordinary and Laplacian spectra of bipartite graphs. *Linear and Multilinear Algebra* 56 (3) (2008), 305–310. 2

[18] Kaul, H., and Mulder, H. *Advances in Interdisciplinary Applied Discrete Mathematics*. World Scientific Publishing Company, 2010. 17

[19] Littlewood, D. E. *The Theory of Group Characters and Matrix Representations of Groups*, 2nd ed. AMS, Chelsea, 2002. 8

[20] Liu, J., and Li, X. Hermitian-adjacency matrices and Hermitian energies of mixed graphs. *Linear Algebra and its Applications* 466 (2015), 182–207. 18

[21] Merris, R. The Second Immanantal Polynomial and the Centroid of a Graph. *Siam Jour. of Algeb. Discrete Methods* 7 (1986), 484–503. 2, 14, 16

[22] Merris, R. Immanantal invariants of graphs. *Linear Algebra and its Applications* 401 (2005), 67–75. 8
[23] Merris, R., and Watkins, W. Inequalities and identities for generalized matrix functions. Linear Algebra and Applns 64 (1985), 223–242. [19]

[24] Mohar, B. On the Laplacian coefficients of acyclic graphs. Linear Algebra and its Applications 722 (2007), 736–741. [2]

[25] Nagar, M. K., and Sivasubramanian, S. Hook immanantal and Hadamard inequalities for q-Laplacians of trees. Linear Algebra and Applications 523 (2017), 131–151. [5] [7] [8] [10] [13] [18]

[26] Sagan, B. E. The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions, 2nd ed. Springer Verlag, 2001. [2]

[27] Yu, G., and Qu, H. Hermitian Laplacian matrix and positive of mixed graphs. Applied Mathematics and Computation 269 (2015), 70–76. [18]