Dietary supplements for lipedema

GABRIELE BONETTI1,*, KAREN L. HERBST2, KRISTIANA DHULI3, AYSHA KARIM KIANI4, SERENA MICHELINI4, SILVIA MICHELINI4, MARIA RACHELE CECCARINI5, SANDRO MICHELINI5, MAURIZIO RICCI5, MARINA CESTARI6,7, MICHELA CODINI6, TOMMASO BECCARI8, FRANCESCO BELLINATO9, PAOLO GISONDI10, MATTEO BERTELLI11,12,
1 MAGI’S LAB, Rovereto (TN), Italy; 2 Total Lipedema Care, Beverly Hills California and Tucson Arizona, USA; 3 MAGI EUREGIO, Bolzano, Italy; 4 Unit of Physical Medicine, Sapienza University of Rome, Rome, Italy; 5 Neurosurgery, University of Tor Vergata, Rome, Italy; 6 Department of Pharmaceutical Sciences; University of Perugia, Perugia, Italy; 7 Vascular Diagnostics and Rehabilitation Service, Marino Hospital, ASL Roma 6, Marino, Italy; 8 Division of Rehabilitation Medicine, Azienda Ospedaliero-Universitaria, Ospedali Riuniti di Ancona, Italy; 9 Study Centre Pianeta Linfedema, Terni, Italy; 10 Lymphology Sector of the Rehabilitation Service, USL Umbria 2, Terni, Italy; 11 Section of Dermatology and Venereology, Department of Medicine, University of Verona, Verona, Italy; 12 MAGISNAT, Peachtree Corners (GA), USA

Keywords
- Weight loss in lipedema
- Dietary supplements
- Fat burning supplements
- Fat burners

Summary

Lipedema is a chronic and progressive disease that mostly manifests in females as the abnormal distribution of subcutaneous adipose connective tissue, usually coupled with bruising, pain, and edema. Lipedema molecular pathophysiology is currently not clear, but several studies suggest that genetics and hormonal imbalance participate in lipedema pathogenesis. Women with lipedema present in some cases with elevated body mass index, and the appearance of obesity in addition to lipedema, where the obesity can cause serious health issues as in lipedema-free individuals with obesity, such as diabetes and cardiovascular disorders. Unlike obesity, lipedema tissue does not respond well to diet or physical exercise alone. Therefore, in this review we discuss the effect of various dietary supplements that, along with diet and physical exercise, cause fat burning and weight loss, and which could potentially be important in the treatment of lipedema. Indeed, an effective fat burner should convert stored fats into energy, mobilize and break down triglycerides in adipocytes, boost metabolism and inhibit lipogenesis. Common ingredients of fat burning supplements are green tea, caffeine, chromium, carnitine, and conjugated linoleic acid. The use of fat burners could act synergistically with a healthy diet and physical exercise for decreasing adipose tissue deposition in patients with lipedema and resolve related health issues. The effects of fat burners in human studies are sometimes contradictory, and further studies should test their effectiveness in treating lipedema.

Introduction

Lipedema is a chronic and progressive disease that is characterized by the abnormal distribution of subcutaneous adipose connective tissue causing disproportionate and painful limbs [1]. Usually, it develops in females during their time of puberty or other times of hormonal, shape and weight change, including menopause or childbirth. Lipedema is characterized by the symmetrical enhancement of nodular subcutaneous adipose connective tissue on the lower body and arms, while leaving the upper trunk, hands, and feet unaffected. Lipedema tissue often affects the lower abdomen, thighs, buttocks, and calves. In about 80% of cases, lipedema can also affect the arms, whereas the hands and feet are not affected [2]. Although lipedema greatly affects women’s health around the world, it remains either undiagnosed or misdiagnosed as other similar diseases, such as obesity or lymphedema [3]. Polygenic susceptibility along with lymphatic, hormonal and microvascular disorders might be at least partially responsible for the development of lipedema. Moreover, lipedema can progress to the point where lymphedema develops. The major causes for the onset of lymphedema include genetic susceptibility, lymphatic vessel malformations, surgery and trauma [4].

Lipedema does not respond well to restrictive diets, contrary to usual forms of obesity. Thus, lipedema leads to a disproportionate increase in lower body tissue that stubbornly retains its shape (waist to ankles) after diets or bariatric surgery. Lipedema is not restricted to just subcutaneous adipose connective tissue, in fact, women with lipedema had significantly lower muscle strength and a non-significant, but clinically relevant lower exercise-endurance capacity than women with obesity [5]. Excess subcutaneous adipose connective tissue and lower muscle function results in later stages, patients with lipedema with an elevated body mass index, increasing the risk of developing severe obesity with metabolic complications, which in turn worsens the symptoms of lipedema [1, 6-8]. The Mediterranean diet and ketogenic diet have been proposed for lipedema treatment, showing weight loss in both cases but failure to reduce pain with either intervention, and failure to reduce percent fat after the Mediterranean diet. [9, 10] The ketogenic diet trial was small; hence no evidence-based diet has been recommended for the treatment of lipedema. It is suggested that hypocaloric nutrition should be accompanied by suitable dietary supplements and exercise to overcome diet resistance and to manage weight gain in lipedema [8].
If a patient with lipedema develops obesity, it can cause similar serious health issues as in individuals with obes-
ity but without lipedema. For example, it could trigger insulin resistance [2] resulting in hyperglycemia leading
to the development of type 2 diabetes, which could fur-
ther damage organs of the body as well as reduce quality
of life. Moreover, obesity increases the risk of develop-
ing high blood pressure, hypercholesterolemia and in-
creased blood clotting tendency that leads to higher risk
of stroke and heart attacks [11-14].
In order to define an effective treatment option for li-
pedema, knowing the physiological process of subcuta-
neous adipose connective tissue deposition and reduc-
tion of muscle function and energy utilization is of out-
most importance. Excess protein, fat and carbohydrates
that are consumed daily can be converted into stored or
ectopic fat though the process of lipogenesis in adipose
tissue and the liver, and normally stored in adipose tissue
as triacylglycerol [15-17]. When consumption of macro-
nutrients, especially fat and carbohydrates, is in excess,
fat can also be stored ectopically in muscle, liver, and
other depots in the body [18]. Fat must be released from
adipocytes through complex enzymatic/hormonal path-
ways in order to be utilized for energy production. When
adipocytes are stimulated, they release triacylglycerol
into the bloodstream as free fatty acids (FFA) via lip-
olysis. Then, FFA are transported by the blood stream
to energy requiring tissues, especially muscles, and finally
enter mitochondria where they are utilized for energy
production [15, 19].
Dietary supplements that reduce adipose tissue and in-
crease muscle (lean mass) could be an effective ally in
the management of lipedema. Reduction of adipose tis-
ue and increase in lean mass could improve body im-
age, reduce pain, and improve mobility for patients with
lipedema. The use of specific dietary supplements could
help in reducing body fat and increasing lean mass thus
preventing the invasive practice of microcannular tumes-
cent lipedema reduction surgery including suction lipe-
tomy, which is currently the most effective treatment for
lipedema [20].

Fat-burning supplements

Fat-burning supplements are a specific type of dietary
supplement that stimulates the fat burning process by
several mechanisms. They can boost energy expenditure,
increase fat metabolism, increase weight loss, increase
oxidation of fats during exercise, as well as make long-
term adjustments in metabolic pathways that enhance
fat metabolism. Indeed, a good fat burner supplement
should [15, 21, 22]:

• stimulate conversion of stored fats into energy;
• stimulate mobilization and break down of stored tria-
cylglycerol from adipocytes;
• increase metabolism to burn stored fats;
• inhibit adipocyte enlargement via lipogenesis.
The efficacy of fat-burning supplements is supported by
several studies. Indeed, weight loss induced by supple-
mentation and diet together can be significantly high-
er than weight loss from diet alone [23]. In a study by
Falcone et al., addition of thermogenic supplements
containing caffeine, conjugated linoleic acid (CLA),
multi-vitamins, and protein, to a hypocaloric diet with
high-protein content for a period of 3 weeks resulted in
97% additional reduction in body weight and 35% addi-
tional fat loss when compared with the same diet alone.
Thus, dietary supplements can increase overall weight
loss, including fat loss [23].

Classes of fat-burning supplements

As described by El-Zayat et al., fat burners may be di-
vided into several classes based on their mechanism of
action: energy enhancers, protein and amino acids supple-
ments, adrenergic enhancers, and lean mass en-
hancers [15]. Moreover, they can be comprised of sever-
al ingredients, each of which has its own mechanism of
action. The main ingredients of fat burning supplements
are green tea, caffeine, chromium, carnitine, and CLA.
They can also include herbal stimulants such as ephed-
rine, pyruvate, yohimbine, and chitosan. Fat-burning
supplements stimulate weight loss through several mo-
lecular mechanisms, mainly boosting metabolism and
suppressing appetite [22, 24-26].

Energy enhancers

Fat-burning energy enhancers are usually caffeine or cat-
echins. Caffeine is found in coffee, soft drinks, tea, cola
nuts, and cocoa, and it can act as an energy enhancer and
an exercise performance booster. Caffeine has the abil-
ity to increase stored fat release and the rate of calorie
burn [15, 27-29]. Caffeine stimulates fat loss at the level
of adipocytes and myocytes, mainly acting synergisti-
cally with beta-adrenergic drugs and neurotransmitters.
Indeed, beta-adrenergic receptors stimulate fat loss and
increase calorie burning, while alpha2-adrenergic recep-
tors have the opposite function [30, 31].
Catechins are often derived from green tea. They have
anti-obesity effects and their effect in weight loss is sus-
tained by several human studies [32, 33]. Indeed, they
stimulate fat oxidation and energy expenditure, decreas-
ing dietary fat-induced weight gain. Their action is prob-
ably due to an increase in sympathetic neuronal activity,
which in turn activates hepatic fat oxidation [34].

Protein and amino acids supplements

Protein supplements are utilized to create and maintain
a positive nitrogen balance during the day without se-
verely elevating caloric intake. They include whey pro-
tein and casein [15]. Whey protein is reported to help
in building muscles, increasing strength, controlling
appetite, improving endurance, aiding in weight loss,
and boosting energy levels [35]. Casein provides all
the essential amino acids required for exercise-induced
growth of tissue. Casein also forms a gel within the
stomach that causes it to slowly digest so that the ami-
o acids/peptides are steadily absorbed over a longer
period of time [36].
Adrenergic enhancers

Estrogens are thought to play a key role in the development of lipedema. Aromatase, produced by adipocytes, is an enzyme that converts androgens to estrogen. When mice had the aromatase gene knocked out, body weight gain and obesity-related metabolic complications occurred in both genders. This suggests that an optimal estrogen to testosterone ratio is important, and with increased lipedema tissue, this ratio may be high [37]; thus, dietary supplements that modify hormonal levels could be an effective strategy for lipedema treatment. Testosterone is a key molecule in the pathophysiology of weight gain and obesity. Indeed, it increases lean mass and decreases fat mass, where low testosterone levels are associated with energy imbalance, insulin resistance and dyslipidemia [38]. Supplementation of molecules that act on adrenergic receptors might help in increasing metabolic rate and fat burning, and in accelerating weight loss in women with lipedema. Adrenergic enhancers comprise 7-Keto dehydroepiandrosterone (DHEA) and yohimbine. 7-Keto-DHEA causes long-term changes in body levels of epitestosterone, testosterone, estradiol as well as other steroid hormones. It stimulates thermogenesis, diverting store fats in ATP and heat production [39, 40]. Yohimbe derives from the bark of *Pausinystalia yohimbe*. It is an alpha-2 receptor antagonist, and it accelerates weight loss, increasing testosterone levels, blood flow, thermogenesis, and fatty acid oxidation [15, 41-43].

Lean mass enhancers

The wide class of lean mass enhancers comprise several molecules that stimulate lean mass production through different molecular mechanisms. A non-exhaustive list, comprising their mechanism of action, is reported below in Table I [15]. Further studies will be needed to confirm their effects in humans, considering that a systematic review by Pittler & Ernst doubted the efficacy of several molecules, such as chitosan and pyruvate, in reducing body weight [41].

Fat-burning foods

Certain foods can help in the fat burning process by enhancing metabolism and suppressing appetite. Indeed, food consumption normally increases body weight, but certain foods stimulate lipolysis if coupled with regular exercise and sufficient water intake [15]. Fat-burning foods comprise good fats, medium chain triglycerides, and meat and dairy proteins. Good fats are lipids from several sources, among which are avocados, nuts, fish and vegetable oils [15]. These foods are rich in beta-sitosterol, oleic acids and omega-3 polyunsaturated fatty acids, and they accelerate fat burning and decrease triglycerides and LDL cholesterol levels [52, 53]. Medium chain triglycerides are found in cow butter, palm oil and coconut oil. They are easily digested and absorbed and are directly used for energy. Thus, foods rich in medium chain triglycerides suppress appetite and stimulate body fat loss [54]. Finally, meat and dairy proteins require a complex digestion and absorption processes, which burns energy. They stimulate satiety and use energy for their conversion and storage as fats, therefore meat and dairy they are excellent fat-burning foods [15, 55].

Conclusion

Lipedema is a chronic disease that results in the abnormal distribution of subcutaneous adipose tissue but also the loss of function of muscle. In some cases, obesity arises in later lipedema stages, leading to serious health issues. Lipedema adipose tissue is usually not responsive to diet and exercise, thus invasive techniques such as suction lipectomy are usually required. The use of fat-burning supplements and lean mass enhancers could improve the process of weight loss and but also increase muscle mass and possibly muscle function. Indeed, these supplements are known to increase fat mass loss boosting energy expenditure, increasing fat metabolism, and impairing fat absorption, which may in turn improve muscle function indirectly. Therefore, the use of dietary supplements could be a valid alternative to invasive techniques for the reduction of adipose tissue and related issues in lipedema patients. Human studies are needed to confirm their effectiveness in lipedema and to select the most effective dietary supplements.

TABLE I. Sources and mechanism of action of lean body enhancers.

Molecule	Source	Mechanism of action	References
Chitosan	Crustaceans	Reduces fat absorption	[40,41]
L-Carnitine	Chemical catalyst that is synthesized by human kidneys, brain, and liver	Participates in fatty acid transport into mitochondria during the breakdown of fats	[44,45]
Chromium	Trace mineral found in meat, grain, nuts	Reduces insulin resistance	[41,46]
Ephedrine	The plant *Ephedra sinica*	Stimulates sympathetic neuronal action	[47]
Synephrine	Citrus fruits	Stimulates thermogenesis	[48,49]
Pyruvate	Intermediate of glycolysis	Reduces appetite and fatigue, increases energy levels and muscle glycogen stores	[24,41]
Conjugated Linoleic Acid	Meat & dairy products	Transports dietary fats to cells for lipolysis	[50,51]
Acknowledgements

This research was funded by the Provincia Autonoma di Bolzano in the framework of LP 15/2020 (dgp 3174/2021).

Conflicts of interest statement

Authors declare no conflict of interest.

Author's contributions

Gabriele Bonetti, Karen L. Herbst: These authors contributed equally to this work. MB: study conception, editing and critical revision of the manuscript; GB, KLH, contributed equally to this work. MB: study conception, editing and critical revision of the manuscript; GB, KLH, KB, FB, PG: literature search, editing and critical revision of the manuscript. All authors have read and approved the final manuscript.

References

[1] Buso G, Depairon M, Tomson D, Raffoul W, Vettor R, Mazzolai L. Lipedema: a call to action! Obesity 2019;27:1567-76. https://doi.org/10.1002/oby.22597
[2] Torre YS-D la, Waadrea R, Rosas V, Herbst KL. Lipedema: friend and foe. Horm Mol Biol Clin Investig 2018;33. https://doi.org/10.1015/hmbci-2017-0076
[3] Michelini S, Herbst KL, Preconce V, Manara E, Marceddu G, Dutaj A, Maltese PE, Paolacci S, Ceccarini MR, Becciu T, Sorrentino E, Aquilanti B, Vellutti V, Matera G, Gagliardi L, Miggiano GAD, Bertelli M. A multi-gene panel to identify lipedema-predisposing genetic variants by a next-generation sequencing strategy. J Pers Med 2022;12. https://doi.org/10.3390/jpm12020268
[4] Bonetti G, Paolacci S, Samaja M, Maltese PE, Michelini S, Michelini S, Michelini S, Ricci M, Cestari M, Dutaj A, Medori MC, Bertelli M. Low efficacy of genetic tests for the diagnosis of primary lymphedema prompts novel insights into the underlying molecular pathways. Int J Mol Sci 2022;23:7414. https://doi.org/10.3390/ijms23137414
[5] van Esch-Smeenge J, Damsta RJ, Hendrickx AA. Muscle strength and functional exercise capacity in patients with lipoedema and obesity: a comparative study. J Lymphoedema 2017;12:27-31.
[6] Paolacci S, Preconce V, Acquaviva F, Chiurazzi P, Fulcheri E, Pinelli M, Buffelli F, Michelini S, Herbst KL, Unfer V, Bertelli M. Genetics of lipedema: new perspectives on genetic research and molecular diagnoses. Eur Rev Med Pharmacol Sci 2019;23:5581-94. https://doi.org/10.26355/eurrev_2019071_18292
[7] Michelini S, Chiurazzi P, Marino V, Dell'Orco D, Manara E, Baglivo M, Fiorentino A, Maltese PE, Pinelli M, Herbst KL, Dutaj A, Bertelli M. Aldo-Keto Reductase 1C1 (AKR1C1) as the first mutated gene in a family with nonsyndromic primary lymphedema. Int J Mol Sci 2020;21. https://doi.org/10.3390/ijms21176264
[8] Kruppa P, Georgiou I, Biermann N, Prantl L, Klein-Weigel P, Ghods M. Lipedema—pathogenesis, diagnosis, and treatment options. Dtsch Arztebl Int 2020;117:396-403. https://doi.org/10.3238/arztebl.int.2020.0396
[9] Cannataro R, Michelini S, Ricolfi L, Caroleo M, Gallelli L, de Sarro G, Onorato A, Cione E. Management of lipedema with Ketogenic Diet: 22-Month Follow-Up. Life 2021;11:1402. https://doi.org/10.3390/life11121402
[10] Di Renzo L, Cinelli G, Romano L, Zomporelli S, Lou De Santis G, Nocerino P, Bigioni G, Arslin S, Cenname G, Puja A, Chiricolo G, De Lorenzo A. Potential effects of a modified Mediterranean Diet on body composition in lipedema. Nutrients 2021;13:358. https://doi.org/10.3390/nu13020358
[11] Vettori A, Paolacci S, Maltese PE, Herbst KL, Cestari, M, Michelini S, Michelini S, Samaja M, Bertelli M. Genetic determinants of the effects of training on muscle and adipose tissue homeostasis in obesity associated with lymphedema. Lympath Res Biol 2021;19:322-33. https://doi.org/10.1089/lbr.2020.0057
[12] Vettori A, Pompucci G, Paolini B, del Ciondo I, Bressan S, Dundar M, Kenanoglu S, Unfer V, Bertelli M. Geneo project genetic background, nutrition and obesity: a review. Eur Rev Med Pharmacol Sci 2019;23:1751-61. https://doi.org/10.26355/eurrev_201902_17137
[13] Dhuli K, Ceccharini MR, Preconce V, Maltese PE, Bonetti G, Paolacci S, Dutaj A, Guerri G, Marceddu G, Beccii T, Michelini S, Bertelli M. Improvement of quality of life by intake of Hydroxytyrosol in patients with lymphedema and association of lymphedema genes with obesity. Eur Rev Med Pharmacol Sci 2021;25:33-42. https://doi.org/10.26355/eurrev_202112_27331
[14] Camilleri G, Kiani AK, Herbst KL, Kaftaili J, Bernini A, Dhuli K, Manara E, Bonetti G, Stuppia L, Paolacci S, Dutaj A, Bertelli M. Genetics of fat deposition. Eur Rev Med Pharmacol Sci 2021;25:14-22. https://doi.org/10.26355/eurrev_202112_27329
[15] El-Zayat SR, Sibai H, El-Shamy KA. Physiological process of fat loss. Bull Natl Res Cent 2019;43:208. https://doi.org/10.1186/s42269-019-0238-z
[16] Kersten S. Mechanisms of nutritional and hormonal regulation of lipogenesis. EMBO Rep 2001;2:88-96. https://doi.org/10.1093/embo-reports/kve071
[17] Wood JD, Enser M, Fisher AV, Nute GR, Sheard PR, Richardson R, Hughes SI, Whittington FM. Fat deposition, fatty acid composition and meat quality: a review. Meat Sci 2008;78:343-58. https://doi.org/10.1016/j.meatsci.2007.07.019
[18] Trouwborst I, Brower SM, Gooossens GH, Blaak EE. Ectopic fat accumulation in distinct insulin resistant phenotypes; targets for personalized nutritional interventions. Frontiers Nutr 2018;5. https://doi.org/10.3389/fnut.2018.00077
[19] Manore MM. Dietary supplements for improving body composition and reducing body weight: where is the evidence? Int J Sport Nutr Exerc Metab 2012;22:139-54. https://doi.org/10.1123/jsnem.22.2.139
[20] Acheson KJ, Gremaud G, Meirim I, Montigon F, Krebs Y, Fay LB, Gay L-J, Schneider P, Schindler C, Tappy L. Metabolic effects of caffeine in humans: lipid oxidation or futile cycling? Am J Clin Nutr 2004;79:40-6. https://doi.org/10.1093/ajcn/79.1.40
[28] Dulloo AG, Geisser CA, Horton T, Collins A, Miller DS. Normal caffeine consumption: influence on thermogenesis and daily energy expenditure in lean and postobese human volunteers. Am J Clin Nutr 1989;49:44-50. https://doi.org/10.1093/ajcn/49.1.44

[29] Shekelle PG. Efficacy and safety of ephedra and ephedrine for weight loss and athletic performance: a meta-analysis. JAMA 2003;289:1537-45. https://doi.org/10.1001/jama.289.12.1537

[30] Onsley J, Jacobson G, Narkowitz C, Backer V, Kalsen A, Kreiberg M, Jussens S, Bangsbo J, Hrostrup M. Beta2-Adrenergic stimulation increases energy expenditure at rest, but not during submaximal exercise in active overweight men. Eur J Appl Physiol 2017;117:1907-15. https://doi.org/10.1007/s00421-017-3679-9

[31] Lafontan M, Berlan M, Galitzky J, Montastruc JL. Alpha-2 adrenergic receptors in lipolysis: α2 antagonists and lipid-mobilizing strategies. Am J Clin Nutr 1992;55:219S-227S. https://doi.org/10.1093/ajcn/55.1.219a

[32] Johnson R, Bryant S, Huntley AL. Green tea and green tea catechin extracts: an overview of the clinical evidence. Maturitas 2012;73:280-7. https://doi.org/10.1016/j.maturitas.2012.08.008

[33] Ha E, Zemel MB. Functional properties of whey, whey components, and essential amino acids: mechanisms underlying health benefits for active people (Review). J Nutr Biochem 2003;14:251-8. https://doi.org/10.1016/S0955-2863(03)00305-5

[34] Maki KC, Reeves MS, Farmer M, Yasunaga K, Matsuo N, Katsuragi Y, Komikado M, Tokimitsu I, Wilder D, Jones F, Blumberg JB, Cartwright Y. Green tea catechin consumption enhances exercise-induced abdominal fat loss in overweight and obese adults. J Nutr 2009;139:264-70. https://doi.org/10.3944/jrn.108.098293

[35] Dangin M, Boirie Y, Guillet C, Beaufreire B. Influence of the protein digestion rate on protein turnover in young and elderly subjects. J Nutr 2012;152:3228S-3233S. https://doi.org/10.1093/jn/131.10.3228S

[36] Delbeke FT, van Eeoo P, van Thuyne W, Delbeke FT, van Eeoo P. Medium-chain Triglycerides. Mini Rev Med Chem 2004;4:847-59. https://doi.org/10.2174/1389557043403503

[37] Jones ME, Thorburn AW, Brittl KL, Hewitt KN, Wreford NG, Proietto J, Oz OK, Leury BJ, Robertson KM, Yao S, Simpson ER. Aromatase-Deficient (ArKO) mice have a phenotype of increased adiposity. Proc Natl Acad Sci USA 2000;97:12735-40. https://doi.org/10.1073/pnas.97.23.12735

[38] Lee E, Zemel MB. Functional properties of whey, whey components, and essential amino acids: mechanisms underlying health benefits for active people (Review). J Nutr Biochem 2003;14:251-8. https://doi.org/10.1016/S0955-2863(03)00304-6

[39] Stohs SJ, Safety, efficacy, and mechanistic studies regarding Keratolytic activity of K. microscopica and the role of keratinolytic enzymes in infected skin. J Nutr Biochem 2014;25:984-91. https://doi.org/10.3945/ajcn.113.077735

[40] Wanten G, Naber A. Cellular and physiological effects of Probiotics: a review. Nutrition 2006;9:400-7. https://doi.org/10.1089/jmf.2006.9.400

[41] Jones ME, Thorburn AW, Brittl KL, Hewitt KN, Wreford NG, Proietto J, Oz OK, Leury BJ, Robertson KM, Yao S, Simpson ER. Aromatase-Deficient (ArKO) mice have a phenotype of increased adiposity. Proc Natl Acad Sci USA 2000;97:12735-40. https://doi.org/10.1073/pnas.97.23.12735

[42] Pittler MH, Ernst E. Dietary supplements for body weight reduction: a systematic review. J Clin Nutr 2004;79:529-36. https://doi.org/10.1093/ajcn/79.4.529

[43] Ylitalo R, Lehtinen S, Wuolijoki E, Ylitalo P, Lehtimäki T, Chitosan. Arzneimittelforschung 2011;52:1-7. https://doi.org/10.1055/s-0031-1299848

[44] Zahorska-Markiewicz B, Krotkiewski M, Olszanecka-Glinianowicz M, Zurakowski A. Effect of Chitosan in complex management of obesity. Pol Merkur Lekarski 2003;11:129-32.

[45] Antont SD, Morrison CD, Cefalu WT, Martin CK, Coulson S, Geiselman P, Han H, White CL, Williamson A. Effects of Chromium Picolinate on food intake and satiety. Diabetes Technol Ther 2008;10:405-12. https://doi.org/10.1089/dia.2007.0292

[46] Pooyanjoo M, Mouhi M, Shab-Bidar S, Djanfarian K, Olyaeemanshe A. The Effect of L-αCamphor on weight loss in adults: a systematic review and meta-analysis of randomized controlled trials. Obes Rev 2016;17:970-6. https://doi.org/10.1111/obr.12436

[47] Tian H, Guo X, Wang X, He Z, Sun R, Ge S, Zhang Z, Chromium Picolinate supplementation for overweight or obese adults. Cochrane Database Syst Rev 2015. https://doi.org/10.1002/14651858.CD010063.pub2

[48] Yoo H-J, Yoon H-Y, Yee J, Gwak H-S. Effects of ephedrine-containing products on weight loss and lipid profiles: a systematic review and meta-analysis of randomized controlled trials. Pharmaceuticals 2021;14:1198. https://doi.org/10.3390/ph14111198

[49] Breidtolf L, Wedebey EB, Nikolov NG, Hallas-Møller T, Fieldard K. Raspberry Ketone in food supplements – high intake, few toxicity data – a cause for safety concern? Regul Toxicol Pharmacol 2015;73:196-200. https://doi.org/10.1016/j.yrtph.2015.06.022

[50] Stohs SJ, Safety, efficacy, and mechanistic studies regarding Keratolytic activity of K. microscopica and the role of keratinolytic enzymes in infected skin. J Nutr Biochem 2014;25:984-91. https://doi.org/10.3945/ajcn.113.077735

[51] Renham L, Mordey F, Rich S, Benchou J, Kurz X, Higenbottom T, Oakley C, Woutere E, Aubier M, Simonneau G, Begad B. Appetite-suppressant drugs and the risk of primary pulmonary hypertension. N Engl J Med 1996;335:609-16. https://doi.org/10.1056/NEJM199608293350901

[52] Kamphuis MMJW, Lejeune MPGM, Saris WHM, Westerterp-Plantenga MS. Effect of conjugated linoleic acid supplementation after weight loss on appetite and food intake in overweight subjects. Eur J Clin Nutr 2003;57:1268-74. https://doi.org/10.1038/sj.ejcn.1601684

[53] Sandhya VG, Rajamohan T. Beneficial effects of coconut water feeding on lipid metabolism in Cholesterol-fed rats. J Med Food 2014;16:581-6. https://doi.org/10.1089/jmf.2014.0578

[54] Aultman G, Naber A. Cellular and physiological effects of medium-chain Triglycerides. Mini Rev Med Chem 2004;4:847-57. https://doi.org/10.2174/1389557043403503

[55] Maher T, Sampson A, Goslawksa M, Pungaa-Irigrary C, Shafat A, Clegg ME. Food intake and satiety response after medium-chain Triglycerides ingested as solid or liquid. Nutrients 2019;11:1638. https://doi.org/10.3390/nu11071638

[56] Soerenes K, Thorning TK, Astrup A, Kristensen M, Lorenzen JK. Effect of dairy calcium from cheese and milk on fecal fat excretion, blood lipids, and appetite in young men. Am J Clin Nutr 2014;99:984-91. https://doi.org/10.3945/ajcn.113.077735