BONDAŁ-ORŁOŚ FULLY FAITHFULNESS CRITERION FOR
DELIGNE-MUMFORD STACKS

BRONSON LIM AND ALEXANDER POLISHCHUK

Abstract. Suppose $F: \mathcal{D}(X) \to \mathcal{T}$ is an exact functor from the bounded derived category of coherent sheaves on a smooth projective variety X to a triangulated category \mathcal{T}. If F possesses a right adjoint, then the Bondal-Orlov criterion gives a simple way of determining if F is fully faithful. We prove a natural extension of this theorem to the case when X is a smooth and proper DM stack with projective coarse moduli space.

1. Introduction

1.1. Bondal-Orlov Criterion. Suppose X is a smooth projective scheme over an algebraically closed field k of characteristic zero and $F: \mathcal{D}(X) \to \mathcal{T}$ is an exact functor, with \mathcal{T} a triangulated category. One is often interested in checking whether F embeds $\mathcal{D}(X)$ as a full triangulated subcategory of \mathcal{T}. If F admits a right adjoint G, then the following well-known Bondal-Orlov Criterion is the primary tool used, [BO95, Bri99].

Theorem 1.1. The functor F is fully faithful if, and only if, it admits a right adjoint G, with $G \circ F$ of Fourier-Mukai type, and

- for any closed point $x \in X$, one has
 $$\text{Hom}_\mathcal{T}(F(O_x), F(O_x)) = k;$$
- for any pair of closed points $x, y \in X$ one has
 $$\text{Hom}_\mathcal{T}(F(O_x), F(O_y)[i]) = 0 \text{ unless } x = y \text{ and } 0 \leq i \leq \dim(X).$$

This theorem has been extended to the quasi-projective and gerby projective setting, to the case when X is allowed to have some singularities, and to the case of positive characteristic [HRLMnSs09, Ss09, LM17, Căl02].

Recent interest in derived categories of Deligne-Mumford stacks warrants an investigation of a similar criterion for this category. In this article, we extend the Bondal-Orlov criterion to the class of smooth and proper Deligne-Mumford stacks with projective coarse moduli.

In the case of stacks the notion of a k-point has to be replaced by that of a generalized point, (x, ξ), where $x : \text{Spec}(k) \to X$ is a morphism and ξ is an irreducible representation of $\text{Aut}(x)$, see Proposition 2.2. These pairs are considered up to an isomorphism. For each generalized point, (x, ξ) there is a natural coherent sheaf $O_{x,\xi}$ on X, which is an analog of the skyscraper sheaf (see Sec. 2.2).

2010 Mathematics Subject Classification. Primary 14F05; Secondary 13J70.
Key words and phrases. Derived Categories, Fourier-Mukai Functors.
Theorem 1.2. Let \mathcal{X} be a smooth and proper DM-stack with projective coarse moduli space over an algebraically closed field k of characteristic zero. Suppose $F: \mathcal{D}(\mathcal{X}) \rightarrow \mathcal{T}$ is an exact functor with a right adjoint $G: \mathcal{T} \rightarrow \mathcal{D}(\mathcal{X})$ such that $G \circ F$ is of Fourier-Mukai type. Then F is fully-faithful if and only if

- for each generalized point (x, ξ) of \mathcal{X}, one has
 $\text{Hom}_\mathcal{T}(F(O_{x,\xi}), F(O_{x,\xi})) = k$;

- for each pair of generalized points x, y, one has
 $\text{Hom}_\mathcal{T}(F(O_{x,\xi}), F(O_{y,\eta}[i])) = 0$ unless $x \simeq y$ and $0 \leq i \leq \dim(\mathcal{X})$; and
 $\text{Hom}_\mathcal{T}(F(O_{x,\xi}), F(O_{y,\eta})) = 0$ unless $(x, \xi) \simeq (y, \eta)$.

Remark 1.1. Note that the natural dg-enhancement of $\mathcal{D}(\mathcal{X})$ is saturated. Thus, in the case when the triangulated category \mathcal{T} admits a dg enhancement and F lifts to the dg level, the conditions that F admits a right adjoint and $G \circ F$ is of Fourier-Mukai type are automatic (see [Gen17, Theorem 1.3], [BFN08, Theorem 1.2]).

1.2. Outline of the paper. The proof will proceed similarly to the proof of the original Bondal-Orlov criterion in [Huy06, Section 7.1]. We collect the relevant background material in Section 2. The key technical idea is to use the trade-off between nontrivial generic stabilizer and “gerbyness”. This was observed by Bergh-Gorchinskiy-Larsen-Lunts in [BGLL17] in the form of an equivalence of the category of G-equivariant coherent sheaves corresponding to an ineffective action of a finite group G, with some “gerby” category. We call this BGLL equivalence and recall the details in Section 3. We complete the proof in Section 4.

Conventions. Throughout k will be an algebraically closed field of characteristic zero. Unless otherwise stated, our stacks will be smooth and proper over k with projective coarse moduli. All functors are assumed to be derived. The bounded derived category of coherent sheaves on \mathcal{X} is denoted by $\mathcal{D}(\mathcal{X})$.

Acknowledgments. A.P. is supported in part by the NSF grant DMS-1700642 and by the Russian Academic Excellence Project ‘5-100’. He is grateful to Jarod Alper for an enlightening discussion.

2. Preliminaries on DM Stacks and Triangulated Categories

2.1. Serre Duality. Since our stacks are smooth and proper, the exotic inverse image functor

$$p^!:\mathcal{D}(\text{Spec}(k)) \rightarrow \mathcal{D}(\mathcal{X})$$

is defined, see [Nir08], and we set $\omega_{\mathcal{X}} = p^!O_{\text{Spec}(k)}$ to be the dualizing sheaf on \mathcal{X}. Moreover, the associated endofunctor $S: \mathcal{D}(\mathcal{X}) \rightarrow \mathcal{D}(\mathcal{X})$ given by

$$S(\mathcal{F}) = (\mathcal{F} \otimes \omega_{\mathcal{X}})[\dim(\mathcal{X})]$$

is a Serre functor for $\mathcal{D}(\mathcal{X})$.
2.2. **Points.** By a closed point of \(X \), we mean a morphism \(x : \mathrm{Spec}(k) \to X \). Any closed point gives rise to a closed substack \(\iota_x : \text{BAut}(x) \to X \) called the *residual gerbe* at \(x \). Here, \(\text{Aut}(x) \) is the finite stabilizer group of \(x \) and \(\text{BAut}(x) \cong \text{pt}/\text{Aut}(x) \) is the classifying stack.

For any finite group \(G \), Maschke’s Theorem gives a completely orthogonal decomposition

\[
\mathcal{D}(BG) = \bigoplus_{\xi \in \text{Irr}(G)} \mathcal{D}(\text{Spec}(k)) \otimes \xi.
\]

For any closed point, \(x : \text{Spec}(k) \to X \), and irreducible representation, \(\xi \in \text{Irr}(\text{Aut}(x)) \), we denote by \(O_{x,\xi} \) the sheaf \(\iota_x^* (O_{\text{Spec}(k)} \otimes \xi) \). We will think of the pair \((x, \xi) \) as a *generalized point* with structure sheaf \(O_{x,\xi} \).

2.3. **Fourier-Mukai Functors.** Let \(X, Y \) be smooth and proper DM stacks of finite type over \(k \) with generically trivial stabilizers. Any object \(P \in \mathcal{D}(X \times Y) \), determines an exact functor \(\Phi_P : \mathcal{D}(X) \to \mathcal{D}(Y) \) defined by the formula

\[
\Phi_P(E) = \pi_Y^*(\pi_X^*(E) \otimes P).
\]

We will say that an exact functor \(F : \mathcal{D}(X) \to \mathcal{D}(Y) \) is of *Fourier-Mukai type* or an *integral functor* if \(F \cong \Phi_P \) for some \(P \in \mathcal{D}(X \times Y) \). Since Serre duality holds in this setting, we have the standard formulas for the left and right adjoint. Namely, let us set

\[
P_L = P^\vee \otimes \pi_X^* \omega_X \quad \text{and} \quad P_R = P^\vee \otimes \pi_Y^* \omega_Y.
\]

Proposition 2.1. Let \(F = \Phi_P : \mathcal{D}(X) \to \mathcal{D}(Y) \). Then \(G = \Phi_{P_L} \) and \(H = \Phi_{P_R} \) are left and right adjoint functors to \(F \), respectively.

Example 2.1. Let \(X \) be a DM stack, then the diagonal object \(\Delta^* O_X \in \mathcal{D}(X \times X) \) is a kernel for the identity functor

\[
\Phi_{\Delta^* O_X} \cong \text{Id} : \mathcal{D}(X) \to \mathcal{D}(X).
\]

Note that \(\Delta : X \to X \times X \) is finite and so the argument in [Huy06, Example 5.4(i)] carries over exactly.

2.4. **Spanning classes.** Recall that a *spanning class* in a triangulated category \(\mathcal{T} \) is a subclass of objects \(\Omega \subset \mathcal{T} \) such that for all \(t \in \mathcal{T} \) we have:

\[
\text{Hom}_\mathcal{T}(\omega[i], t) = 0 \quad \text{for all } i \in \mathbb{Z} \quad \text{and for all } \omega \in \Omega \quad \text{implies } t = 0;
\]

\[
\text{Hom}_\mathcal{T}(t, \omega[i]) = 0 \quad \text{for all } i \in \mathbb{Z} \quad \text{and for all } \omega \in \Omega \quad \text{implies } t = 0.
\]

In the (quasi-)projective setting, the structure sheaves of closed points form a spanning class. We need an analogue in the stacky setting. The following proposition seems to be well known and follows analogously to [Huy06]. We include the proof for completeness and for lack of a suitable reference.

Proposition 2.2. The subclass of objects

\[
\Omega_{\text{pt}} = \{ O_{x,\xi} \mid x : \text{Spec}(k) \to X \text{ and } \xi \in \text{Irr}(\text{Aut}(x)) \}
\]

form a spanning class in \(\mathcal{D}(X) \).
Proof. By Serre duality, it suffices to show that if \(\mathcal{F} \in \mathcal{D}(\mathcal{X}) \) is not zero, then there exists a \(\mathcal{O}_{x,\xi} \) and \(i \in \mathbb{Z} \) such that
\[
\text{Hom}(\mathcal{F}, \mathcal{O}_{x,\xi}[i]) \neq 0
\]
Since \(\mathcal{F} \neq 0 \) and is bounded, there exists a maximal \(m \) such that \(m \)-th cohomology sheaf \(\mathcal{H}^m \) is nonzero. Now using the spectral sequence
\[
E_2^{r,q} = \text{Hom}(\mathcal{H}^{-r}, \mathcal{O}_{x,\xi}[p]) \Rightarrow \text{Hom}(\mathcal{F}, \mathcal{O}_{x,\xi}[p+q])
\]
we see that the differentials with source \(E_r^{0,-m} \) are zero for all \(r \geq 2 \) and, similarly to the non-stacky case, all the differentials with target \(E_\infty^{0,-m} \) are also trivial. Thus, \(E_\infty^{0,-m} = E_2^{0,-m} \). Since \(\mathcal{H}^m \) is a sheaf, there exists a residual gerbe \(\iota_x : B\text{Aut}(x) \to \mathcal{X} \) such that \(\iota_x^* \mathcal{H}^m \neq 0 \).

Since \(\iota_x^* \mathcal{H}^m \neq 0 \), there exists an irreducible representation \(\xi \) and a nonzero morphism \(\mathcal{H}^m \to \mathcal{O}_{\text{Spec}(k)} \otimes \xi \). Since
\[
E_\infty^{0,-m} = E_2^{0,-m} = \text{Hom}(\mathcal{H}^m, \mathcal{O}_{x,\xi}) \neq 0,
\]
we conclude \(\text{Hom}(\mathcal{F}, \mathcal{O}_{x,\xi}[-m]) \neq 0 \) as desired.

\[\square\]

Remark 2.1. The spanning class in Proposition 2.2 should be thought of as a refinement of the spanning class
\[
\Omega = \{ \mathcal{O}_Z | Z \text{ is a closed substack of } \mathcal{X} \text{ and } \pi(Z) \text{ is a closed point in } X \}
\]
where \(\pi : \mathcal{X} \to X \) is the coarse moduli, see [CT08].

Recall that spanning classes can be used to check fully-faithfulness of exact functors.

Proposition 2.3 ([Bri99]). Suppose \(F : \mathcal{T} \to \mathcal{T}' \) is an exact functor with a left and right adjoint. Then \(F \) is fully-faithful if and only if there exists a spanning class \(\Omega \subset \mathcal{T} \) such that \(\omega, \omega' \in \Omega \) and so that
\[
\text{Hom}_T(\omega, \omega'[i]) \to \text{Hom}_{T'}(F(\omega), F(\omega')[i])
\]
is an isomorphism for all \(i \).

2.5. Some Lemmas. We need to the following criterion for a complex to be a sheaf, flat over the base, as in [Bri99].

Lemma 2.1. Let \(\pi : \mathcal{S} \to \mathcal{T} \) be a morphism of DM stacks, and for each closed point \(t : \text{Spec}(k) \to \mathcal{T} \), let \(j_t : \mathcal{S}_t \to \mathcal{S} \) denote the inclusion of the fiber \(\mathcal{S}_t = \mathcal{S} \times_{\mathcal{T}} \text{Spec}(k) \). Let \(\mathcal{Q} \) be an object of \(\mathcal{D}(\mathcal{S}) \) such that for all \(t : \text{Spec}(k) \to \mathcal{T} \), the derived restriction \(j_t^!(\mathcal{Q}) \) is a sheaf on \(\mathcal{S}_t \). Then \(\mathcal{Q} \) is a sheaf on \(\mathcal{S} \), flat over \(\mathcal{T} \).

Proof. We remark that \(\mathcal{Q} \) is a sheaf, flat over \(\mathcal{T} \), if and only if the base change to an étale cover on the source and on the target is a sheaf, flat over the base. In this case, this is [Bri99] Lemma 4.3).

Specifically, pick an étale cover from a scheme \(p_T : \mathcal{T} \to \mathcal{T} \). Then the morphism \(t : \text{Spec}(k) \to \mathcal{T} \) lifts to \(t' : \text{Spec}(k) \to \mathcal{T} \). Set \(\mathcal{S}_T = \mathcal{S} \times_{\mathcal{T}} \mathcal{T} \) and so for any \(t \in \mathcal{T}(k) \), we can set \(\mathcal{S}_t \cong \mathcal{S}_T \times_{\mathcal{T}} \text{Spec}(k) \). Let \(p_S : \mathcal{S}_T \to \mathcal{S} \) be an étale cover of \(\mathcal{S}_T \)

\[\text{We are using that } k \text{ is algebraically closed here.}\]
and $S_t = S_T \times_T \text{Spec}(k)$. Thus we have the following diagram where all squares are Cartesian

$$
\begin{array}{ccc}
S_t & \longrightarrow & S_T \\
\downarrow & & \downarrow p_T \\
S_t & \stackrel{s}{\longrightarrow} & S_T & \stackrel{p_T'}{\longrightarrow} & S \\
\downarrow \pi'' & & \downarrow \pi' & & \downarrow \pi \\
\text{Spec}(k) & \stackrel{t'}{\longrightarrow} & T & \stackrel{p_T}{\longrightarrow} & T
\end{array}
$$

Thus Q is a sheaf, flat over T if and only if $Q' = (p_T' \circ p_S)^* Q$ is a sheaf, flat over T. The statement now follows from loc. cit. □

By the derived pullback of an object $F \in \mathcal{D}(X)$ to a generalized point $O_{x,\xi}$, we will mean the following. Take the derived restriction $\iota_x^* F \in \mathcal{D}(B \text{Aut}(x))$ and then use the decomposition in (1) to project $\iota_x^* F$ onto the ξ-isotypical component. We will abbreviate this as $\iota_{x,\xi}^* F$.

Lemma 2.2. Let $x \in \mathcal{D}(X)$ be a point, and $F \in \mathcal{D}(X)$. Suppose

$$\text{Hom}(F, \mathcal{O}_{y,\eta}[i]) = 0$$

for $i \in \mathbb{Z}$, all points $y \neq x$, and all $\eta \in \text{Irr}(\text{Aut}(y))$, and

$$\text{Hom}(F, \mathcal{O}_{x,\xi}[i]) = 0$$

for $i \notin [0, \dim(X)]$ and all $\xi \in \text{Irr}(\text{Aut}(x))$.

Then F is a sheaf supported at x.

Proof. Let $\pi: U \rightarrow X$ be an étale cover. If $\pi^* F$ is a sheaf concentrated at $\pi^{-1}(x)$, then F must also be a sheaf concentrated at x. But by the argument in [Huy06, Lemma 7.2] and our assumptions, the object $\pi^* F$ is a sheaf concentrated at $\pi^{-1}(x)$. □

3. Ineffective group actions and twisted sheaves

We will use the following description of $\mathcal{D}[X/G]$ from [BGLL17, Theorem 5.5(i)] in terms of sheaves twisted by a Brauer class.

3.1. BGLL Equivalence with twisted sheaves

Suppose G is a finite group and X is a smooth quasi-projective G-variety. Let us denote by $N \subset G$ the kernel of the action so that $H = G/N$ acts effectively on X. In [BGLL17], the authors describe the category $\mathfrak{Coh}[X/G]$ in terms of twisted H-equivariant sheaves on $\text{Irr}(N) \times X$. We recall this now.

Let V be any representation of G and consider the algebra

$$A := \text{End}_N(V)^{op}$$

We will assume that V is an N-generator, i.e., V contains all irreducible representations of N. For example, $V = k[G]$ would work.

Let Z be the center of the group algebra of N,

$$Z := Z(k[N]),$$

and let

$$\text{Irr}(N) := \text{Spec}(Z)$$
denote the scheme of irreducible representations (discrete under our assumptions). The group H acts naturally on $\text{Irr}(N)$, and A is an H-equivariant Azumaya algebra over $\text{Irr}(N)$ (via the natural embedding $Z \to A$). Hence, A determines an H-equivariant Brauer class $\alpha \in \text{Br}^H(\text{Irr}(N))$.

We equip $\text{Irr}(N) \times X$ with the diagonal H-action, and denote by $\pi_1 : \text{Irr}(N) \times X \to \text{Irr}(N)$ and $\pi_2 : \text{Irr}(N) \times X \to X$ the natural (H-equivariant) projections. Let us consider the sheaf of algebras

$$A := A \otimes_k O_X \simeq \pi_2^*(\pi_1^* A)$$

on X, equipped with an H-equivariant structure.

Since π_2 is a finite morphism, we have an equivalence of categories

$$\pi_2^* : \text{Coh}^H(\text{Irr}(N) \times X, \pi_1^* A) \simeq \text{Coh}^H(\text{Irr}(N) \times X, \pi_1^* A) \xrightarrow{\sim} \text{Coh}^H(X, A).$$

Set $V := V \otimes_k O_X$ and define

$$\text{Hom}_N(V, -) : \text{Coh}^G(X) \to \text{Coh}^H(X, A).$$

Theorem 3.1 (BGLL Equivalence). There is an equivalence of categories

$$\text{Coh}^G(X) \simeq \text{Coh}^H(\text{Irr}(N) \times X, \pi_1^* A).$$

given by $\pi_2^{-1} \circ \text{Hom}_N(V, -)$.

Let us consider the stack quotient

$$X_N = [(\text{Irr}(N) \times X)/H]$$

which has trivial generic automorphism group. The H-equivariant class $\pi_1^* \alpha$ defines an element $\bar{\alpha}$ in the Brauer group $\text{Br}(X_N)$, so we can rewrite the above equivalence as

$$\text{Coh}^G(X) \simeq \text{Coh}(X_N, \bar{\alpha}).$$

3.2. **BGLL Equivalence and generalized points.** Let us assume in addition that H acts freely on X, so that X_N is the usual space (not a stack).

For each generalized point (x, ξ), we set \bar{x} to be the image in X/H. Then $(\xi, \bar{x}) \in X_N$ is a k-point of X_N. The corresponding skyscraper sheaf $O_{(\xi, \bar{x})}$ can be viewed as an $\bar{\alpha}$-twisted sheaf on X_N.

Lemma 3.1. Under the BGLL equivalence above, the structure sheaves of generalized points $O_{x, \xi}$ are mapped to the skyscraper sheaves $O_{(\xi, \bar{x})}$ viewed as twisted sheaves.

Proof. Recall that for a generalized point (x, ξ), one has $O_{x, \xi} = \iota_{x*}(\xi)$. Thus,

$$\text{Hom}_N(V, O_{x, \xi}) \cong \iota_{x*} \text{Hom}_N(V, \xi) \cong \iota_{x*}(V \otimes \xi^{-1})^N \otimes \xi$$

where the rightmost ξ is there to remember the A-action. The image under π_1^{-1} will then be $O_{(\xi, \bar{x})}$. \qed

3.3. **BGLL Equivalence and Fourier-Mukai Functors.** Let Q be a $G \times G$-equivariant sheaf on $X \times X$. Then Q determines, under the BGLL equivalence, a twisted sheaf Q' on $X_N \times X_N$.

Lemma 3.2. Suppose Q is flat over X via the first projection, then Q' is flat over X_N over the first projection.

Proof. We just need to check that the functor $\text{Hom}_N(V, -)$ preserves flatness as all of the other functors clearly do. But this is clear as V is a vector bundle. \qed
The last ingredient is a generalization of Bridgeland’s Hilbert scheme argument. For a smooth quasiprojective scheme S, we denote by $\text{Hilb}_\ell(S)$ the preimage of $S^{(\ell)}$ in the Hilbert scheme of length ℓ finite subschemes, $\text{Hilb}_\ell(S)$, where S is some compactification of S.

Let (Y, α) be a twisted smooth scheme and $\pi: U \to Y$ an étale cover trivializing α.

Lemma 3.3. Suppose Q is a coherent $\pi_\ast\alpha$-sheaf on $U \times Y$, for $\alpha \in \text{Br}(Y)$, which is flat over U. Suppose for each closed point $u \in U$, the following two conditions hold:

- $Q_u := Q \{u\} \times Y$ is concentrated at $\pi(u)$;
- $\text{Hom}(Q_u, \mathcal{O}_{\pi(u)}) = k$.

Then there exists an open subscheme U' of U such that the corresponding composite map $U' \to \text{Coh}(Y, \alpha) \xrightarrow{\pi^\ast} \text{Coh}(U)$ factors through a finite map to $\text{Hilb}_\ell(U)$, for some $\ell \geq 0$, where $\text{Coh}(Y, \alpha)$ is the stack of coherent (Y, α)-twisted sheaves.

Proof. Since Q_u is concentrated at $\pi(u)$, the support is a zero-dimensional subscheme of Y. As the étale topology is invariant under nilpotent extensions, Q_u is an honest sheaf. Bridgeland’s original argument shows that Q_u is the structure sheaf of a zero-dimensional subscheme.

Let Q' denote the induced family on $U \times U$. That is, Q' is the pullback of Q. Then for each $u \in U$, $Q'_u := Q' \{u\} \times U$ is the structure sheaf of a zero-dimensional subscheme with proper support over U. The local map $\mathcal{O}_U \to Q'_u$ extends to a section $H^0(U \times U, Q')$ which is surjective upon shrinking U to a smaller open set. Then we have the commutative diagram:

\[
\begin{array}{ccc}
U & \xrightarrow{Q} & \text{Coh}(Y, \alpha) \xrightarrow{\pi^\ast} \text{Coh}(U) \\
& & \downarrow \\
& & \text{Hilb}_\ell(U)
\end{array}
\]

\[\square\]

4. **Proof of Theorem 1.2**

We will proceed similarly to [Huy06, Section 7.1]. We have already shown that generalized points $\mathcal{O}_{x, \xi}$ are spanning in Proposition 2.2. We just need to show that the natural homomorphisms

\[\text{Hom}_{\mathcal{D}(X)}(\mathcal{O}_{x, \xi}, \mathcal{O}_{y, \zeta}[i]) \to \text{Hom}_T(F(\mathcal{O}_{x, \xi}), F(\mathcal{O}_{y, \zeta}))[i]\]

are isomorphisms for all generalized points $\mathcal{O}_{x, \xi}, \mathcal{O}_{y, \zeta}$ and any integer $i \in \mathbb{Z}$. The proof will occupy the remainder of this section.

4.1. **Reduction to** $G(F(\mathcal{O}_{x, \xi})) \cong \mathcal{O}_{x, \xi}$. As in the original proof, to prove (2), we have to show the bijectivity of the map

\[\text{Hom}_{\mathcal{D}(X)}(\mathcal{O}_{x, \xi}, \mathcal{O}_{y, \zeta}[i]) \to \text{Hom}_T(GF(\mathcal{O}_{x, \xi}), \mathcal{O}_{y, \zeta}[i])\]

induced by the adjunction morphism $G \circ F \to \text{Id}_{\mathcal{D}(X)}$.

If $GF(O_{x,\xi}) \cong O_{x,\xi}$, then either the adjunction morphism is zero or it is an isomorphism. But as in the original proof, it cannot be zero as

$$\text{Hom}_T(F(O_{x,\xi}), F(O_{x,\xi})) = k.$$

Thus, if we prove that $GF(O_{x,\xi}) \cong O_{x,\xi}$ then we can deduce that (2) is bijective.

4.2. **Reduction to injectivity of (2) for $i = 1$**. Fix a generalized point $O_{x,\xi}$ and suppose that the homomorphism in (2) is injective for $i = 1$.

By Lemma 2.2, $Q_{x,\xi} := G(F(O_{x,\xi}))$ is a sheaf supported at x. Since the adjunction map is not trivial, there is a surjection $\delta: Q_{x,\xi} \to O_{x,\xi}$. Indeed, it is not zero and ξ is irreducible, so it is surjective. We need to show δ is bijective. There is a short exact sequence

$$0 \to \text{Ker}(\delta) \to Q_{x,\xi} \xrightarrow{\delta} O_{x,\xi} \to 0$$

where $\text{Ker}(\delta)$ is supported at x as well.

To see $\text{Ker}(\delta) = 0$, it suffices to show $\text{Hom}(\text{Ker}(\delta), O_{x,\eta}) = 0$ for any $\eta \in \text{Irr}(\text{Aut}(x))$. But we have the identification $\text{Hom}(\text{Ker}(\delta), O_{x,\eta}) = \text{Ker}(\text{Hom}(O_{x,\xi}, O_{x,\eta}[1])) \to \text{Hom}(Q_{x,\xi}, O_{x,\eta}[1])$.

Thus, injectivity of (2) for $i = 1$ implies that $\text{ker}(\delta) = 0$, i.e., $Q_{x,\xi} \cong O_{x,\xi}$.

4.3. **Injectivity of (2) for $i = 1$ follows from generic injectivity for $i = 1$**. By assumption, $G \circ F$ is of Fourier-Mukai type given by some kernel Q_x. For any residual gerbe $\iota_x: G_x \to X$ the pullback $(\iota_x \times \text{id})^*(Q)$ is exactly

$$Q_x := G \circ F(O_x) = \bigoplus_{\xi} \xi^\vee \otimes Q_{x,\xi},$$

so it is a sheaf. Hence, by Lemma 2.1 Q is flat over \mathcal{X} (with respect to the first projection). Let $\varepsilon: Q \to \Delta_* O_{\mathcal{X}}$ be the adjunction morphism. This map is in fact surjective since $(\iota_x \times \text{id})^*(\varepsilon)$ is the surjective map

$$Q_x = \bigoplus_{\xi} \xi^\vee \otimes Q_{x,\xi} \to \bigoplus_{\xi} \xi^\vee \otimes O_{x,\xi} = O_x.$$

Thus, we have an exact sequence of coherent sheaves on $\mathcal{X} \times \mathcal{X}$

$$0 \to K \to Q \to \Delta_* O_{\mathcal{X}} \to 0.$$

It follows that K is flat over \mathcal{X} (via the first projection). If we assume injectivity of (2) for $i = 1$ and generic $x \in \mathcal{X}$ (and arbitrary ξ and η), then as above we deduce that for generic point x, one has $(\iota_x \times \text{id})^* K = 0$. Since K is flat over \mathcal{X}, it follows that $\mathcal{K} = 0$, and the adjunction morphism ε is an isomorphism.

4.4. **Generic injectivity for $i = 1$**. We want to prove that for generic x the natural maps (2) are injective for $i = 1$ (for all ξ and η). This is equivalent to the injectivity of the natural map

$$(3) \quad \text{Ext}^1(O_{x,\xi}, O_x) \to \text{Ext}^1(Q_{x,\xi}, Q_x).$$

By [Kre09], there is a Zariski open substack $\mathcal{Y} \subset \mathcal{X}$ of the form $\mathcal{Y} \cong [Y/G]$, where Y is a quasi-projective variety and G is a finite group. Let N be the kernel of the action and $H = G/N$. By shrinking Y, we can assume H acts freely. Set the quotient map to be $\pi_Y: Y \to \bar{Y} = Y/H$. Denote also by Q the sheaf Q restricted to $\mathcal{Y} \times \mathcal{Y}$.
By Theorem 3.1, there is an equivalence of categories between \(\mathcal{Coh}(\mathcal{Y}) \) and \(\alpha\)-twisted sheaves on \(\bar{Y}_N = \text{Irr}(N) \times \mathcal{Y} \), where \(\alpha \) is the corresponding Brauer class. Let \(Q' \) be the image of \(Q \) under the corresponding equivalence for the product. By Lemma 3.2, \(Q' \) is still flat over \(\pi_1 \). Let \(\pi: U \to \bar{Y}_N \) be an étale cover trivializing \(\alpha \), then the pullback of \(Q' \) to \(U \times \bar{Y}_N \) satisfies the conditions of Lemma 3.3. It follows that the corresponding map (abusively denoted by \(Q' \))

\[
Q': U \to \mathcal{Coh}(\bar{Y}_N, \alpha) \to \mathcal{Coh}(U)
\]

factors through a finite map to \(\text{Hilb}_\ell(U) \) (maybe after shrinking \(U \)). Thus \(Q' \) has generically injective tangent and so generically \(Q' \) defines an isomorphism:

\[
\text{Ext}^1_U(O_u, O_u) \cong T_uU \to T_{Q'_u} \text{Hilb}_\ell(U) \cong \text{Ext}^1_{\text{Hilb}_\ell(U)}(Q'_u, Q'_u).
\]

Finally, the following diagram is commutative:

\[
\begin{array}{ccc}
\text{Ext}^1_{\alpha}(O_{x,\xi}, O_{x,\xi}) & \xrightarrow{Q} & \text{Ext}^1_{\mathcal{Coh}(\alpha)}(Q_{x,\xi}, Q_{x,\xi}) \\
\text{Ext}^1_U(O_u, O_u) & \xrightarrow{Q'} & \text{Ext}^1_{\text{Hilb}_\ell(U)}(Q'_u, Q'_u) \\
\end{array}
\]

where \(u \) is such that \(\pi(u) = (x, \xi) \). This completes the proof as the two vertical arrows are generically isomorphisms.

References

[BFN08] David Ben-Zvi, John Francis, and David Nadler, *Integral Transforms and Drinfeld Centers in Derived Algebraic Geometry*, arXiv e-prints (2008), arXiv:0805.0157.

[BGGL17] Daniel Bergh, Sergey Gorchinskiy, Michael Larsen, and Valery Lunts, *Categorical measures for finite group actions*, arXiv e-prints (2017), arXiv:1709.00620.

[BO95] A. Bondal and D. Orlov, *Semiorthogonal decomposition for algebraic varieties*, eprint arXiv:alg-geom/9506012, June 1995.

[Bri99] Tom Bridgeland, *Equivalences of triangulated categories and Fourier-Mukai transforms*, Bull. London Math. Soc. 31 (1999), no. 1, 25–34. MR 1651025

[Câl02] Andrei Căldăraru, *Nonfine moduli spaces of sheaves on K3 surfaces*, Int. Math. Res. Not. (2002), no. 20, 1027–1056. MR 1902629

[CT08] Jiun-Cheng Chen and Hsian-Hua Tseng, *A note on derived McKay correspondence*, Math. Res. Lett. 15 (2008), no. 3, 435–445. MR 2407221

[Gen17] Francesco Genovese, *Adjunctions of quasi-functors between DG-categories*, Appl. Categ. Structures 25 (2017), no. 4, 625–657. MR 3669175

[HRLMnSdS09] Daniel Hernández Ruipérez, Ana Cristina LópezMartín, and Fernando Sancho de Salas, *Relative integral functors for singular fibrations and singular partners*, J. Eur. Math. Soc. (JEMS) 11 (2009), no. 3, 597–625. MR 2565443

[Huy06] D. Huybrechts, *Fourier-Mukai transforms in algebraic geometry*, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2006. MR 2241106

[Kre09] Andrew Kresch, *On the geometry of Deligne-Mumford stacks*, Algebraic geometry—Seattle 2005. Part 1, Proc. Sympos. Pure Math., vol. 80, Amer. Math. Soc., Providence, RI, 2009, pp. 259–271. MR 2483938

[LM17] A. C. López Martín, *Fully faithfulness criteria for quasi-projective schemes*, Collectanea Mathematica 68 (2017), no. 2, 219–227 (English).

[Nir08] Fabio Nironi, *Grothendieck Duality for Deligne-Mumford Stacks*, arXiv e-prints (2008), arXiv:0811.1955.

[SdS09] Fernando Sancho de Salas, *Koszul complexes and fully faithful integral functors*, Bull. Lond. Math. Soc. 41 (2009), no. 6, 1085–1094. MR 2575339
BL: Department of Mathematics, University of Utah, Salt Lake City, UT 84102, USA
E-mail address: bcl@uoregon.edu

AP: University of Oregon and National Research University Higher School of Economics
E-mail address: apolish@uoregon.edu