κ-METRIZABLE COMPACTA AND SUPEREXTENSIONS

VESKO VALOV

Abstract. A characterization of κ-metrizable compacta in terms of extension of functions and usco retractions into superextensions is established.

1. Introduction

In this paper we assume that all topological spaces are compact Hausdorff and all single-valued maps are continuous.

Our main result is a characterization of κ-metrizable compacta (see Theorem 1.1 below) similar to the original definition of Dugundji spaces given by Pelczynski [12] (recall that the class of κ-metrizable spaces was introduced by Shchepin [17] and it contains Dugundji spaces). This characterization is based on a result of Shapiro [16, Theorem 3] that a compactum X is κ-metrizable if and only if for every embedding of X in a compactum Y there exists a monotone extender u: C+(X) → C+(Y), i.e. u(f)|X = f for each f ∈ C+(X) and f ≤ g implies u(f) ≤ u(g).

Here, by (X) and C+(X)) we denote all continuous, respectively, continuous and non-negative functions on X. Following [16], we say that a map u: C(X) → C(Y) is: (i) monotone; (ii) homogeneous; (iii) weakly additive, if for every f, g ∈ C(X) and every real number k we have: (i) u(f) ≤ u(g) provided f ≤ g; (ii) u(k · f) = k · u(f); (iii) u(f + k) = u(f) + k. Properties (i), (ii) and (iii) imply that for every f ∈ C(X) and g ∈ C+(X) the following hold: u(1) = 1, u(0) = 0 and u(g) ≥ 0.

We also introduce and investigate the covariant functor S: S(X) is the space of all monotone, homogeneous and weakly additive maps ϕ: C(X) → R with the pointwise convergence topology. It is easily

1991 Mathematics Subject Classification. Primary 54C65; Secondary 54F65.

Key words and phrases. Dugundji spaces, κ-metrizable spaces, spaces with closed binary normal subbases, superextensions.

Research supported in part by NSERC Grant 261914-08. The first version of this paper was completed during the author’s stay at the Faculty of Mathematics and Informatics (FMI), Sofia University, during the period June-July 2009. The author acknowledges FMI for the hospitality.
seen that the map \(x \to \delta_x, x \in X \), where each \(\delta_x \) is defined by \(\delta_x(f) = f(x), f \in C(X) \), is an embedding of \(X \) into \(S(X) \). It appears that \(\kappa \)-metrizable compacta are exactly \(S \)-injective compacta in the sense of Shchepin \cite{19}. The functor \(S \), being a subfunctor of the functor \(O \) introduced by Radul \cite{14}, has nice properties. For example, \(S \) is open and weakly normal (see Section 2).

Here is the characterization of \(\kappa \)-metrizable compacta mentioned above.

Theorem 1.1. For a compact space \(X \) the following conditions are equivalent:

(i) \(X \) is \(\kappa \)-metrizable;

(ii) For any embedding of \(X \) in a compactum \(Y \) there exists a monotone, homogeneous and weakly additive extender \(u : C(X) \to C(Y) \);

(iii) For any embedding of \(X \) in a compactum \(Y \) there exists a continuous map \(r : Y \to S(X) \) such that \(r(x) = \delta_x \) for all \(x \in X \).

(iv) For any embedding of \(X \) in a compactum \(Y \) there exists an usco map \(r : Y \to \lambda X \) such that \(r(x) = \eta_x \) for all \(x \in X \);

Theorem 1.1 remains valid if \(S \) is replaced by the functor \(O \), see Theorem 4.2.

Recall that supercompact spaces and superextensions were introduced by de Groot \cite{5}. A space is **supercompact** if it possesses a binary subbase for its closed subsets. Here, a collection \(S \) of closed subsets of \(X \) is **binary** provided any linked subfamily of \(S \) has a non-empty intersection (we say that a system of subsets of \(X \) is **linked** provided any two elements of this system intersect). The supercompact spaces with binary **normal** subbase will be of special interest for us. A subbase \(S \) is called normal if for every \(S_0, S_1 \in S \) with \(S_0 \cap S_1 = \emptyset \) there exists \(T_0, T_1 \in S \) such that \(S_0 \cap T_1 = \emptyset = T_0 \cap S_1 \) and \(T_0 \cup T_1 = X \). A space \(X \) possessing a binary normal subbase \(S \) is called **normally supercompact** \cite{10} and will be denoted by \((X, S)\).

The **superextension** \(\lambda X \) of \(X \) consists of all maximal linked systems of closed sets in \(X \). The family

\[
U^+ = \{ \eta \in \lambda X : F \subset U \text{ for some } F \in \eta \},
\]

\(U \subset X \) is open, is a subbase for the topology of \(\lambda X \). It is well known that \(\lambda X \) is normally supercompact. Let \(\eta_x, x \in X \), be the maximal linked system of all closed sets in \(X \) containing \(x \). The map \(x \to \eta_x \) embeds \(X \) into \(\lambda X \). The book of van Mill \cite{10} contains more information about normally supercompact space and superextensions, see also Fedorchuk-Filippov’s book \cite{4}.
The paper is organized as follows. Section 2 is devoted to the functor S. In Section 3 we investigate the connection between κ-metrizable compacta and spaces with a closed binary subbase. As corollaries we obtain Ivanov’s results from [7] and [8] concerning superextensions of κ-metrizable compacta, as well as, results of Moiseev [11] about closed hyperspaces of inclusions. The proof of Theorem 1.1 is established in the final Section 4.

2. Monotone, homogeneous and weakly additive functionals

The space $S(X)$ is a subset of the product space $\mathbb{R}^{C(X)}$ identifying each $\varphi \in S(X)$ with $(\varphi(f))_{f \in C(X)} \in \mathbb{R}^{C(X)}$. Let us also note that, according to [14, Lemma 1], every monotone weakly additive functional is a non-expanding. So, all $\mu \in S(X)$ are continuous maps on $C(X)$.

Proposition 2.1. Let X be a compact space. Then $S(X)$ is a compact convex subset of $\mathbb{R}^{C(X)}$ containing the space $P(X)$ of all regular probability measures on X.

Proof. It can be established by standard arguments that $S(X)$ is a convex compact subset of $\mathbb{R}^{C(X)}$. Since $P(X)$ is the space of all monotone linear maps $\mu : C(X) \to \mathbb{R}$ with $\mu(1) = 1$, equipped with the pointwise topology, $P(X)$ is a subspace of $S(X)$.

Obviously, for any map $f : X \to Y$ between compact spaces the formula $(S(f)(\mu))(h) = \mu(h \circ f)$, where $\mu \in S(X)$ and $h \in C(Y)$, defines a map $S(f) : S(X) \to S(Y)$. Moreover, $S(g \circ f) = S(g) \circ S(f)$. So, S is covariant functor in the category COMP of compact spaces and (continuous) maps.

We say that a covariant functor F in the category COMP is *weakly normal* if it satisfies the following properties:

- (a) F preserves injective maps (F is monomorphic);
- (b) F preserves surjective maps (F is epimorphic);
- (c) F preserves intersections ($F(\bigcap_{\alpha \in A} X_\alpha) = \bigcap_{\alpha \in A} F(X_\alpha)$ for any family of closed subsets X_α of a given compactum X);
- (d) F is continuous (F preserves limits of inverse systems);
- (e) F preserves weight of infinite compacta;
- (f) F preserves points and the empty set.

The above properties were considered by Shchepin [19] who introduced the import notion of a *normal functor*: a weakly normal functor preserving preimages of sets. We already mentioned that the functor
S is subfunctor of the functor O of order preserving functionals introduced by Radul [14]. Since O is weakly normal [14], we conclude that S is injective, preserves weight, points and the empty set.

Theorem 2.2. The functor S is weakly normal, but not normal.

Proof. We follow the corresponding proof from [14] for the functor O. First, let us show S is surjective. Suppose $f: X \to Y$ is a surjective map between compacta and $\nu \in S(Y)$. Denote by A the subspace of $C(X)$ consisting of all functions $h \circ f$, $h \in C(Y)$. A has the following properties: $0_X \in A$ and A contains both $\varphi + k$ and $k\varphi$ for any constant $k \in \mathbb{R}$ provided $\varphi \in A$ (such A will be called a weakly additive homogeneous subspace of $C(X)$). We define a monotone, weakly additive and homogeneous functional $\mu': A \to \mathbb{R}$ by $\mu'(f \circ h) = \nu(h)$. If μ' can be extended to a functional $\mu \in S(X)$, then $S(f)(\mu) = \nu$. So, next claim completes the proof that S is epimorphic.

Claim. Let $\mu': A \to \mathbb{R}$ be a monotone, weakly additive and homogeneous functional. Then μ' can be extended to a monotone, weakly additive and homogeneous functional $\mu: C(X) \to \mathbb{R}$.

Following the proof of [14] Lemma 2, we consider the pairs (B, μ_B), where $B \supseteq A$ and μ_B are, respectively, a weakly additive homogeneous subspace of $C(X)$ and a monotone weakly additive homogeneous functional on B. We introduced a partial order on these pairs by $(B, \mu_B) \leq (C, \mu_C)$ iff $B \subseteq C$ and μ_C extends μ_B. Then, according to Zorn Lemma, there exists a maximal pair (B_0, μ_0). If $B_0 \neq C(X)$, take any $\varphi_0 \in C(X) \setminus B_0$ and let B_0^+ (resp., B_0^-) to be the set of all $\varphi \in B_0$ with $\varphi \geq \varphi_0$ (resp., $\varphi \leq \varphi_0$). Because μ_0 is monotone, there exists $p \in \mathbb{R}$ such that $\mu_0(B_0^-) \leq p \leq \mu_0(B_0^+)$. Then B_0 is disjoint with the set $\{k\varphi + c : k, c \in \mathbb{R}\}$ and $D = B_0 \cup \{k\varphi + c : k, c \in \mathbb{R}\}$ is a weakly additive homogeneous subspace of $C(X)$. Define the functional $\mu: D \to \mathbb{R}$ by $\mu|B_0 = \mu_0$ and $\mu(k\varphi + c) = kp + c$ for all constants k, c. It is easily seen that μ is a monotone, weakly additive and homogeneous functional on D extending μ_0. This contradicts the maximality of (B_0, μ_0). Hence, $B_0 = C(X)$.

Therefore, S is epimorphic. Combining this fact with continuity of the functor O (see [14]), we obtain that S is also continuous. The arguments from the proof of [14, Lemma 5 and Proposition 5] imply that S preserves intersections. So, S is weakly normal. The example provided in [14] that O does not preserve preimages shows (without any modification) that S also does not preserve intersections.

Since S is monomorphic, for any $\mu \in S(X)$ the set $\text{supp}(\mu) = \bigcap \{H \subset X : H \text{ is closed and } \mu \in S(H)\}$ is well defined and is called support of
μ. Since \(S \) is continuous and epimorphic, next corollary follows from [19] Proposition 3.5].

Corollary 2.3. The set \(S_\omega(X) = \{ \mu \in S(X) : \text{supp}(\mu) \text{ is finite} \} \) is dense in \(S(X) \) for any compactum \(X \).

Theorem 2.4. A surjective map \(f : X \to Y \) is open if and only if the map \(S(f) : S(X) \to S(Y) \) is open.

Proof. We say that a subset \(A \subset S(X) \) is \(\kappa \)-bedding if \(\mu \) for every \(\mu \in A \) similarly sup \(\eta \in S(X) \). We obtain the following corollary.

Proof. Following the arguments from the proof of [15, Theorem 1]. \(\square \)

Because \(\kappa \)-metrizable compacta are exactly the compacta which can be represented of the limit of an inverse sigma-spectrum with open bonding projections [19], we obtain the following corollary.

Corollary 2.5. A compactum \(X \) is \(\kappa \)-metrizable if and only if \(S(X) \) is \(\kappa \)-metrizable.

Proposition 2.6. For every compact space \(X \) there exists an embedding \(i : \lambda X \to S(X) \) such that \(i(\eta_x) = \delta_x, x \in X \). Moreover, \(i(\lambda X) \neq S(X) \) provided \(X \) is disconnected.

Proof. Following the proof of [16, Theorem 3], one can show that for every \(\eta \in \lambda X \) and \(f \in C(X) \) we have

\[
(1) \quad \max_{F \in \eta} \min_{x \in F} f(x) = \min_{F \in \eta} \max_{x \in F} f(x)
\]

and the equality \(\varphi_\eta(f) = \max_{F \in \eta} \min_{x \in F} f(x) \) defines a monotone homogeneous and weakly additive map \(\varphi_\eta : C(X) \to \mathbb{R} \). So, \(\varphi_\eta \in S(X) \) for every \(\eta \in \lambda X \). Moreover, \(\varphi_\eta(f) = \max_{F \in \eta} \min_{y \in F} f(y) = f(x) \) for any \(x \in X \). Therefore, we obtain a map \(i : \lambda X \to S(X), i(\eta) = \varphi_\eta \) with \(i(\eta_x) = \delta_x, x \in X \). To prove the first part of the proposition we need to show that \(i \) is injective and continuous.

Let \(\eta \in \lambda X \) and \(W \) be a neighborhood of \(\varphi_\eta \) in \(S(X) \). We can assume that \(W \) consists of all \(\varphi \in S(X) \) such that \(|\varphi_\eta(f) - \varphi(f(\xi))| < \epsilon_i \) for some functions \(f_\xi \in C(X) \) and \(\epsilon_i > 0 \). Let \(U_i = \{ x \in X : f_i(x) > \varphi_\eta(f_i) - \epsilon_i \} \) and \(V_i = \{ x \in X : f_i(x) < \varphi_\eta(f_i) + \epsilon_i \} \). Because of (1), for each \(i \leq k \) there exist \(F_i, H_i \in \eta \) such that \(F_i \subset U_i \) and \(H_i \subset V_i \). Then \(G = \bigcap_{i=1}^k (U_i^+ \cap V_i^+) \) is a neighborhood of \(\eta \) in \(\lambda X \), and \(i(\xi) \in W \) for all \(\xi \in G \). So, \(i \) is continuous.
Suppose $\eta \neq \xi$ are two elements of λX. Then there exist $F_0 \in \eta$ and $H_0 \in \xi$ with $F_0 \cap H_0 = \emptyset$. Let $f \in C_+(X)$ be a function such that $f \leq 1$, $f(F_0) = 1$ and $f(H_0) = 0$. Consequently, $\varphi_\eta(f) = \max_{F \in \eta} \min_{x \in F} f(x) = 1$ and $\varphi_\xi(f) = \min_{H \in \xi} \max_{x \in H} f(x) = 0$. Hence, i is injective.

The second part of this proposition follows directly because $S(X)$ is always connected (as a convex set in $\mathbb{R}^{C(X)}$) while λX is disconnected provided so is X. \qed

3. κ-METRIZABLE COMPACTA AND SUPEREXTENSIONS

Recall that a compactum X is openly generated [19] if X is the limit space of an inverse sigma-spectrum with open projections. Shchepin [17] proved that any κ-metrizable compactum is openly generated. On the other hand, every openly generated compactum is κ-metrizable (see [19]) which follows from Ivanov’s result [7] that λX is a Dugundji space provided X is openly generated. We are going to use Ivanov’s theorem in the proof of Theorem 1.1 next section. That’s why we decided to establish in this section an independent proof of a more general fact, see Proposition 3.2. Part of this proof is Lemma 3.1 below. Recall that Lemma 3.1 was established by Shirokov [21] but his proof is based on Ivanov’s result mentioned above. Our proof of Lemma 3.1 is based on the Shchepin results [18] about inverse systems with open projections.

We say that a subset X of Y is regularly embedded in Y if there exists a correspondence e from the topology of X into the topology of Y such that $e(\emptyset) = \emptyset$, $e(U) \cap X = U$, and $e(U) \cap e(V) = \emptyset$ provided $U \cap V = \emptyset$.

Lemma 3.1. Let X be an openly generated compactum. Then every embedding of X in a space Y is regular.

Proof. It suffices to show that every embedding of X in a Tychonoff cube I^A is regular, where $|A| = w(X)$. This is true if X is metrizable, see [9] §21, XI, Theorem 2]. Suppose the statement holds for any openly generated compactum of weight $< \tau$, and let $X \subset I^A$ be an openly generated compactum of weight $|A| = \tau$. Then X is the limit space of a well ordered inverse system $S = \{X_\alpha, p_\beta^\alpha, \beta < \alpha < \omega(\tau)\}$ such that all projections $p_\alpha: X \to X_\alpha$ are open surjections and all X_α are openly generated compacta of weight $< \tau$, see [19]. Here, $\omega(\tau)$ is the first ordinal of cardinality τ. For any $B \subset A$ let π_B be the projection from I^A to I^B, and $p_B = \pi_B|X : X \to \pi_B(X)$. According to Shchepin’s spectral theorem [17], we can assume that there exists an increasing transfinite sequence $\{A(\alpha) : \alpha < \omega(\tau)\}$ of subsets of A such
that $A = \bigcup \{ A(\alpha) : \alpha < \omega(\tau) \}$, $X_\alpha = p_{A(\alpha)}(X)$ and $p_\alpha = p_{A(\alpha)}$. By [18], X has a base \mathcal{B} consisting of open sets $U \subseteq X$ with finite rank $d(U)$. Here,

$$d(U) = \{ \alpha : p_{\alpha+1}(U) \neq (p_\alpha^{\alpha+1})^{-1}(p_\alpha(U)) \}.$$

For every $U \in \mathcal{B}$ let $A(U) = \{ \alpha_0, \alpha, \alpha + 1 : \alpha \in d(U) \}$, where $\alpha_0 \in A$ is fixed. Obviously, X is a subset of $\prod \{ X_\alpha : \alpha < \omega(\tau) \}$. For every $U \in \mathcal{B}$ we consider the open set $\gamma_1(U) = \prod \{ X_\alpha : \alpha \in A(U) \}$ defined by

$$\gamma_1(U) = \prod \{ p_\alpha(U) : \alpha \in A(U) \} \times \prod \{ X_\alpha : \alpha \in A \setminus A(U) \}.$$

Now, let

$$\gamma(W) = \bigcup \{ \gamma_1(U) : U \in \mathcal{B} \text{ and } \overline{U} \subseteq W \}, W \in \mathcal{T}_X.$$

Claim. The following conditions hold: (i) $\gamma(W_1) \cap \gamma(W_2) = \emptyset$ whenever W_1 and W_2 are disjoint open sets in X; (ii) $\gamma(W) \cap X = W$, $W \in \mathcal{T}_X$.

Suppose $W_1 \cap W_2 = \emptyset$. To prove condition (i), it suffices to show that $\gamma_1(U_1) \cap \gamma_1(U_2) = \emptyset$ for any pair $U_1, U_2 \in \mathcal{B}$ with $\overline{U}_i \subseteq W_i, i = 1, 2$. Indeed, we fix such a pair and let $\beta = \max \{ A(U_1) \cap A(U_2) \}$. Then β is either α_0 or $\max \{ d(U_1) \cap d(U_2) \} + 1$. In both cases $d(U_1) \cap d(U_2) \cap [\beta, \omega(\tau)) = \emptyset$. According to [18] Lemma 3, section 5, $p_\beta(U_1) \cap p_\beta(U_2) = \emptyset$. Since $\beta \in A(U_1) \cap A(U_2)$, $\gamma_1(U_1) \cap \gamma_1(U_2) = \emptyset$.

Obviously, $W \subseteq \gamma(W) \cap X$ for all $W \in \mathcal{T}_X$. So, condition (ii) will follow as soon as we prove that $\gamma(W) \cap X \subseteq W$. Fix $x \in \gamma(W) \cap X$ and let $U \in \mathcal{B}$ such that $x \in \gamma_1(U)$ and $\overline{U} \subseteq W$. Define $\beta(U) = \max d(U) + 1$. Then $p_\alpha(x) \in p_\alpha(U)$ for all $\alpha \leq \beta(U)$. Since $\alpha \not\in d(U)$ for all $\alpha \geq \beta(U)$, we have $(p_\beta(U))^{-1}(p_\beta(U)(x)) \subseteq p_\alpha(U)$ for $\alpha > \beta(U)$. Hence, $p_\alpha(x) \in p_\alpha(U)$ for all α. The last relation implies that $x \notin U$, so $x \in W$. This completes the proof of the claim.

We are going to show that $\prod \{ X_\alpha : \alpha \in A \}$ is regularly embedded in $\prod \{ \mathbb{P}^{A(\alpha)} : \alpha \in A \}$. According to our assumption, each X_α is regularly embedded in $\mathbb{P}^{A(\alpha)}$, so there exists a regular operator $e_\alpha : \mathcal{T}_{X_\alpha} \to \mathcal{T}_{\mathbb{P}^{A(\alpha)}}$. Let \mathcal{B}_1 be a base for $\prod \{ X_\alpha : \alpha \in A \}$ consisting of sets of the form $V = \prod \{ U_\alpha : \alpha \in \Gamma(V) \} \times \prod \{ X_\alpha : \alpha \in A \setminus \Gamma(V) \}$ with $\Gamma(V) \subseteq A$ being a finite set. For every $V \in \mathcal{B}_1$ we assign the open set $\theta_1(V) \subset \prod \{ \mathbb{P}^{A(\alpha)} : \alpha \in A \setminus \Gamma(V) \}$,

$$\theta_1(V) = \prod \{ e_\alpha(U_\alpha) : \alpha \in \Gamma(V) \} \times \prod \{ \mathbb{P}^{A(\alpha)} : \alpha \in A \setminus \Gamma(V) \}.$$
Now, we define a regular operator θ between the topologies of $\prod\{X_\alpha : \alpha \in A\}$ and $\prod\{\mathbb{I}_A(\alpha) : \alpha \in A\}$ by

$$\theta(G) = \bigcup\{\theta_1(V) : V \in \mathcal{B}_1 \text{ and } V \subset G\}.$$

Since, according to Claim 1, X is regularly embedded in $\prod\{X_\alpha : \alpha \in A\}$ and γ is the corresponding regular operator, the equality $e_1(W) = \theta(\gamma(W)), W \in \mathcal{T}_X$, provides a regular operator between the topologies of X and $\prod\{\mathbb{I}_A(\alpha) : \alpha \in A\}$. Finally, because $X \subset \mathbb{I}^A \subset \prod\{\mathbb{I}_A(\alpha) : \alpha \in A\}$, we define $e : \mathcal{T}_X \to \mathcal{T}_{\mathbb{I}^A}$,

$$e(W) = \bigcup\{e_1(W) \cap \mathbb{I}^A : W \in \mathcal{T}_X\}.$$

So, X is regularly embedded in \mathbb{I}^A. \hfill \Box

Proposition 3.2. Let X be an openly generated compact space possessing a binary closed subbase \mathcal{S}. Then X is a Dugundji space. Moreover, if in addition X is connected and \mathcal{S} is normal, then X is an absolute retract.

Proof. Suppose X is an openly generated compactum with a binary closed subbase \mathcal{S} and X is embedded in \mathbb{I}^τ for some τ. By Lemma 3.1, X is regularly embedded in \mathbb{I}^τ, so there exists a regular operator $e : \mathcal{T}_X \to \mathcal{T}_{\mathbb{I}^\tau}$. Define the set-valued map $r : \mathbb{I}^\tau \to X$ by

$$r(y) = \bigcap\{\mathcal{I}_S(\overline{U}) : y \in e(U), U \in \mathcal{T}_X\} \text{ if } y \in \bigcup\{e(U) : U \in \mathcal{T}_X\}$$

and $r(y) = X$ otherwise,

where \overline{U} is the closure of U in X and $\mathcal{I}_S(\overline{U}) = \bigcap\{S \in \mathcal{S} : \overline{U} \subset S\}$. Since e is regular, for every $y \in \mathbb{I}^\tau$ the system $\gamma_y = \{U \in \mathcal{T}_X : y \in e(U)\}$ is linked. Consequently, $\omega_y = \{S \in \mathcal{S} : \overline{U} \subset S \text{ for some } U \in \gamma_y\}$ is also linked, so $r(y) = \bigcap\{S : S \in \omega_y\} \neq \emptyset$.

It is easily seen that $r(x) = x$ for all $x \in X$. Moreover, r is usc. Indeed, let $r(y) \subset W$ with $y \in \mathbb{I}^\tau$ and $W \in \mathcal{T}_X$. Then there exist finitely many $U_i \in \mathcal{T}_X, i = 1, 2, \ldots, k$, such that $y \in \bigcap_{i=1}^k e(U_i)$ and $\bigcap_{i=1}^k \mathcal{I}_S(U_i) \subset W$. Obviously, $r(y') \subset W$ for all $y' \in \bigcap_{i=1}^k e(U_i)$. So, r is an usc retraction from \mathbb{I}^τ onto X. According to [2], X is a Dugundji space.

Suppose now X is connected and \mathcal{S} is a binary normal subbase for X. By [10], any set of the form $\mathcal{I}_S(F)$ is \mathcal{S}-convex (a set $A \subset X$ is \mathcal{S}-convex if $\mathcal{I}_S(x, y) \subset A$ for all $x, y \in A$). So, each $r(y)$ is an \mathcal{S}-convex set. According to [10], Corollary 1.5.8, all closed \mathcal{S}-convex subsets of X are also connected. Hence, the map r, defined by (2), is connected-valued. Consequently, by [2], X is an absolute extensor in dimension 1, and there exists a map $r_1 : \mathbb{I}^\tau \to \exp X$ with $r_1(x) = \{x\}$ for all
$x \in X$, see [3, Theorem 3.2]. Here, $\exp X$ is the space of all closed subsets of X with the Vietoris topology. On the other hand, since X is normally supercompact, there exists a retraction r_2 from $\exp X$ onto X, see [10, Corollary 1.5.20]. Then the composition $r_2 \circ r_1 : I^r \to X$ is a (single-valued) retraction. So, $X \in AR$. □

Corollary 3.3. ([7],[8]) λX is a Dugundji space provided X is an openly generated compactum. If, in addition, X is connected, then λX is an absolute retract.

Proof. It is easily seen that λ is a continuous functor preserving open maps, see [4]. So, λX is openly generated. Since λX has a binary normal subbase, Proposition 3.2 completes the proof. □

A closed subset A of $\exp X$ is called an inclusion hyperspace if for every $A \in A$ and every $B \in \exp X$ the inclusion $A \subset B$ implies $B \in A$. The space of all inclusion hyperspaces with the inherited topology from $\exp^2 X$ is closed in $\exp^2 X$ and it is denoted by GX [11].

Corollary 3.4. ([11]) GX is a Dugundji space provided X is an openly generated compactum. If, in addition, X is connected, then GX is an absolute retract.

Proof. Since G is a continuous functor preserving open maps [22], GX is openly generated if X is so. On the other hand, GX has a binary subbase [13]. Hence, by Proposition 3.2, GX is a Dugundji space. Suppose X is connected and openly generated. Then GX is a connected Dugundji space. Hence, $\lambda(GX)$ is an absolute retract. Moreover, there exist natural inclusions $GX \subset \lambda(GX) \subset G^2X = G(GX)$, and a retraction from G^2X onto GX, see [13, Lemma 2]. Consequently, $GX \in AR$ as a retract of $\lambda(GX)$. □

4. **Proof of Theorem 1.1**

We begin this section with the following lemma.

Lemma 4.1. Let X be a compact regularly embedded subset of a space Y. Then there exists an usco map $r : Y \to \lambda X$ such that $r(x) = \eta_x$ for all $x \in X$.

Proof. Let $e : T_X \to T_Y$ be a regular operator between the topologies of X and Y. Define $r : Y \to \lambda X$ by

$$r(y) = \bigcap \{(U)^+ : y \in e(U), U \in T_X\} \text{ if } y \in \bigcup \{e(U) : U \in T_X\},$$

and $r(y) = \lambda X$ otherwise,
where \(\overline{U} \) is the closure of \(U \) in \(X \) and \((\overline{U})^+ \subset \lambda X \) consists of all \(\eta \in \lambda X \) with \(\overline{U} \in \eta \). Since \(e \) is regular, for every \(y \in Y \) the system \(\{U \in \tau_X : y \in e(U)\} \) is linked. Consequently, \(\{\overline{U} : y \in e(U)\} \) is also linked and consists of closed sets in \(X \). Hence, \(\bigcap \{\overline{(U)}^+ : y \in e(U), U \in \tau_X\} \neq \emptyset \). So, \(r \) has non-empty compact values. It is easily seen that \(r(x) = \eta_x \) for all \(x \in X \). One can show (as in the proof of Proposition 3.2) that \(r \) is usc.

\[\Box \]

Proof of Theorem 1.1 (i) \(\Rightarrow \) (ii) We follow the proof of [16, Theorem 3]. The equality (1) provides a monotone homogeneous and weakly additive extender \(u_1 : C(X) \to C(\lambda X) \). Consider the space \(Z \) obtained by attaching \(\lambda X \) to \(Y \) at the points of \(X \). Then \(\lambda X \) is a closed subset of \(Z \) and, since \(\lambda X \) is a Dugundji space (see Corollary 3.3), there exists a linear monotone extension operator \(u_2 : C(\lambda X) \to C(Z) \) with \(u_2(1) = 1 \). Then \(u(f) = u_2(u_1(f))|Y, f \in C(X) \), defines a monotone homogeneous and weakly additive extender \(u : C(X) \to C(Y) \).

(ii) \(\Rightarrow \) (iii) Suppose \(X \) is a subset of \(Y \) and \(u : C(X) \to C(Y) \) is a monotone homogeneous and weakly additive extender. Define \(r : Y \to S(X) \) by \(r(y)(f) = u(f)(y) \), where \(y \in Y \) and \(f \in C(X) \). It is easily seen that \(r \) is continuous and \(r(x) = \delta_x \) for all \(x \in X \).

(iii) \(\Rightarrow \) (iv) Let \(r_2 : Y \to S(X) \) be a continuous map with \(r_2(x) = \delta_x \) for all \(x \in X \). The equality \(u(f)(\psi) = \varphi(f) \) defines a monotone extension \(u : C(X) \to C(S(X)) \). Then, by [11, Theorem 4.1], \(X \) is regularly embedded in \(S(X) \). So, according to Lemma 4.1, there exists an usco map \(r_1 : S(X) \to \lambda X \) such that \(r_1(\delta_x) = \eta_x, x \in X \). Then \(r = r_1 \circ r_2 : Y \to \lambda X \) is the required map.

(iv) \(\Rightarrow \) (i) Let \(X \) be embedded in \(\mathbb{I}^4 \) for some \(A \) and \(r : \mathbb{I}^4 \to \lambda X \) be an usco map with \(r(x) = \eta_x, x \in X \). For every open \(U \subset X \) define \(e(U) = \{y \in \mathbb{I}^4 : r(y) \subset U^+\} \). Since \(U^+ \) is open in \(\lambda X \) and \(r \) is usc, \(e(U) \) is open in \(\mathbb{I}^4 \). Moreover, \(e(U) \cap X = U \) and \(e(U) \cap e(V) = \emptyset \) provided \(U \) and \(V \) are disjoint. So, \(X \) is regularly embedded in \(\mathbb{I}^4 \). Finally, by [21], \(X \) is \(\kappa \)-metrizable.

Now, we consider the functor \(O \) of order preserving functionals introduced by Radul [14]. Recall that a map \(\varphi : C(X) \to \mathbb{R} \) is called order preserving if it is monotone, weakly additive and \(\varphi(1_X) = 1 \). Theorem 4.2 below follows from Theorem 1.1. Indeed, since \(S \) is a subfunctor of \(O \) we have embeddings \(X \subset S(X) \subset O(X) \) for every compactum \(X \). This implies implications (i) \(\Rightarrow \) (ii) and (ii) \(\Rightarrow \) (iii) of Theorem 4.2. The proofs of implications (iii) \(\Rightarrow \) (vi) and (vi) \(\Rightarrow \) (i) are the same.

Theorem 4.2. For a compact space \(X \) the following conditions are equivalent:
(i) X is κ-metrizable;
(ii) For any embedding of X in a compactum Y there exists a monotone and weakly additive extender $u: C(X) \to C(Y)$ such that $u(1_X) = 1_Y$;
(iii) For any embedding of X in a compactum Y there exists a continuous map $r: Y \to O(X)$ such that $r(x) = \delta_x$ for all $x \in X$;
(iv) For any embedding of X in a compactum Y there exists an usco map $r: Y \to \lambda X$ such that $r(x) = \eta_x$ for all $x \in X$;

Let F be a covariant functor in the category of compact spaces and continuous maps. A compactum X is said to be F-injective \cite{19} if for any map $f: Y \to X$ and any embedding $i: Y \to Z$ there exists a map $g: F(Z) \to F(X)$ such that $F(f) = g \circ F(i)$. It is easily seen that if F has the property that for every X there exists an embedding $j_X: X \to F(X)$, then X is F-injective iff for every embedding of X in another compactum Y there exists a map $h: Y \to F(X)$ with $h(x) = j_X(x)$ for all $x \in X$. It follows from Theorem 1.1(iii) that κ-metrizable compacta are exactly the S-injective compacta.

Acknowledgments. The author would like to express his gratitude to the referee for several valuable remarks and suggestions which completely changed the initial version of the paper. The author is also indebted to Taras Radul for pointing out that S is a subfunctor of the functor O, and for providing his papers treating the properties of the functor O.

REFERENCES

[1] E. van Douwen, *Simultaneous extension of continuous functions*, Amsterdam 1975.
[2] A. Dranishnikov, *Multivalued absolute retracts and absolute extensors in dimensions 0 and 1*, Usp. Mat. Nauk 39, 5 (1984), 241–242 (in Russian).
[3] V. Fedorchuk, *Some geometric properties of covariant functors*, Usp. Mat. Nauk 39, 5 (1984), 169–208 (in Russian).
[4] V. Fedorchuk and V. Filippov, *General Topology: Basic constructions*, Moscow State University, Moscow 1988 (in Russian).
[5] J. de Groot, *Supercompactness and superextensions*, in: Contributions to extension theory of topological structures, Symp. Berlin 1967, Deutscher Verlag Wiss., Berlin (1969), 89–90.
[6] R. Haydon, *On a problem of Pełczyński: Milutin spaces, Dugundji spaces and $AE(0 \dim)$*, Studia Math. 52 (1974), 23–31.
[7] A. Ivanov, *Superextension of openly generated compacta*, Dokl. Akad. Nauk SSSR 259, 2 (1981), 275–278 (in Russian).
[8] A. Ivanov, *Solution of van Mill’s problem on the characterization of compacta, the superextension of which are absolute retracts*, Dokl. Akad. Nauk SSSR 262, 3 (1982), 526–528 (in Russian).
[9] K. Kuratowski, *Topology, vol. I*, Academic Press, New York; PWN-Polish Scientific Publishers, Warsaw 1966.

[10] J. van Mill, *Supercompactness and Wallman spaces*, Math. Centre Tracts **85**, Amsterdam 1977.

[11] E. Moiseev, *Spaces of closed hyperspaces of growth and inclusion*, Moscow Univ. Math. Bull. **43**, 3 (1988), 48–51.

[12] A. Pelczynski, *Linear extensions, linear averagings, and their applications to linear topological classification of spaces of continuous functions*, Dissert. Math. **58** (1968), 1–89.

[13] T. Radul, *The monad of inclusion hyperspaces and its algebras*, Ukr. Matem. Zhurnal **42**, 6 (1990), 806–811 (in Russian).

[14] T. Radul, *On the functor of order preserving functionals*, Comment. Math. Univ. Carol. **39**, 2 (1998), 609–615.

[15] T. Radul, *Topology of the space of order-preserving functionals*, Bull. Polish Acad. Sci **47**, 1 (1999), 53–60.

[16] L. Shapiro, *Extension operators for functions and normal functors*, Moscow Univ. Math. Bull. **47**, 1 (1992), 34–38.

[17] E. Shchepin, *Topology of limit spaces of uncountable inverse spectra*, Russian Math. Surveys **315** (1976), 155–191.

[18] E. Shchepin, *κ-metrizable spaces*, Math. USSR Izves. **14**, 2 (1980), 407–440.

[19] E. Shchepin, *Functors and uncountable degrees of compacta*, Uspekhi Mat. Nauk **36**, 3 (1981), 3–62 (in Russian).

[20] D. Shakhmatov and V. Valov, *A characterization of Dugundji spaces via set-valued maps*, Topology Appl. **74** (1996), 109–121.

[21] L. Shirokov, *An external characterization of Dugundji spaces and κ-metrizable compacta*, Dokl. Akad. Nauk SSSR **263**, 5 (1982), 1073–1077 (in Russian).

[22] A. Teleiko and M. Zarichnyi, *Categorical Topology of compact Hausdorff spaces*, Mathematical Studies, Monograph Series volume 5, VNTL Publishers, Lviv 1999.

Department of Computer Science and Mathematics, Nipissing University, 100 College Drive, P.O. Box 5002, North Bay, ON, P1B 8L7, Canada

E-mail address: veskov@nipissingu.ca