Enhancement-mode Ga\textsubscript{2}O\textsubscript{3} wrap-gate fin field-effect transistors on native (100) \(\beta\)-Ga\textsubscript{2}O\textsubscript{3} substrate with high breakdown voltage

Kelson D. Chabak, Neil Moser, Andrew J. Green, Dennis E. Walker Jr., Stephen E. Tetlak, Eric Heller, Antonio Crespo, Robert Fitch, Jonathan P. McCandless, Kevin Leedy, Michele Baldini, Gunter Wagner, Zbigniew Galazka, Xiuling Li, and Gregg Jessen

Citation: Appl. Phys. Lett. 109, 213501 (2016); doi: 10.1063/1.4967931
View online: http://dx.doi.org/10.1063/1.4967931
View Table of Contents: http://aip.scitation.org/toc/apl/109/21
Published by the American Institute of Physics

Articles you may be interested in

Intrinsic electron mobility limits in \(\beta\)-Ga2O3
Appl. Phys. Lett. 109, 212101 (2016); 10.1063/1.4968550

Characterization of channel temperature in Ga2O3 metal-oxide-semiconductor field-effect transistors by electrical measurements and thermal modeling
Appl. Phys. Lett. 109, 193503 (2016); 10.1063/1.4966999

Elemental redistributions at structural defects in Cu(In,Ga)Se2 thin films for solar cells
Appl. Phys. Lett. 120, 205301 (2016); 10.1063/1.4967731

First-principles calculations of the near-edge optical properties of \(\beta\)-Ga2O3
Appl. Phys. Lett. 109, 212104 (2016); 10.1063/1.4968822
Enhancement-mode Ga$_2$O$_3$ wrap-gate fin field-effect transistors on native (100) β-Ga$_2$O$_3$ substrate with high breakdown voltage

Kelson D. Chabak, 1,2 Neil Moser, 3 Andrew J. Green, 4 Dennis E. Walker, Jr., 1 Stephen E. Tetlak, 1 Eric Heller, 5 Antonio Crespo, 1 Robert Fitch, 1 Jonathan P. McCandless, 4 Kevin Leedy, 1 Michele Baldini, 6 Gunter Wagner, 6 Zbigniew Galazka, 6 Xiuling Li, 2 and Gregg Jessen 1

1Air Force Research Laboratory, Sensors Directorate, Wright-Patterson AFB, Ohio 45433, USA
2Department of Electrical and Computer Engineering, Micro and Nanotechnology Laboratory, University of Illinois-Urbana-Champaign, Urbana, Illinois 61801, USA
3Department of Electrical and Computer Engineering, George Mason University, Fairfax, Virginia 22030, USA
4Wyle Laboratories, Inc., 4200 Colonel Glenn Hwy, Beavercreek, Ohio 45431, USA
5Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Ohio 45433, USA
6Leibniz-Institut für Kristallzüchtung, Max-Born-Str. 2, D-12489 Berlin, Germany

(Received 9 September 2016; accepted 7 October 2016; published online 21 November 2016)

Sn-doped gallium oxide (Ga$_2$O$_3$) wrap-gate fin-array field-effect transistors (finFETs) were formed by top-down BCl$_3$ plasma etching on a native semi-insulating Mg-doped (100) β-Ga$_2$O$_3$ substrate. The fin channels have a triangular cross-section and are approximately 300 nm wide and 200 nm tall. FinFETs, with 20 nm Al$_2$O$_3$ gate dielectric and \sim2 μm wrap-gate, demonstrate normally-off operation with a threshold voltage between 0 and $+1$ V during high-voltage operation. The I_{ON}/I_{OFF} ratio is greater than 105 and is mainly limited by high on-resistance that can be significantly improved. At $V_G = 0$, a finFET with 21 μm gate-drain spacing achieved a three-terminal breakdown voltage exceeding 600 V without a field-plate. © 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4967931]

Gallium oxide (Ga$_2$O$_3$) is emerging as a potential disruptive electronic material for high-voltage electronics applications. The excitement of this material is due to its (1) ultra-wide bandgap of \sim4.8 eV with \sim8 MV/cm theoretical critical field strength, (2) up to four-inch native substrate availability and capability of melt-growth synthesis, and (3) a wide range of n-type doping achievable by halide vapor phase epitaxy (HVPE), molecular beam epitaxy (MBE), low-pressure chemical vapor deposition (LPCVD), metal-organic chemical vapor deposition (MOCVD), and metal-organic vapor phase epitaxy (MOVPE). The β-phase Ga$_2$O$_3$ unit crystal has a monoclinic structure and is reported as the most thermally stable and conducive for the single-crystal homoepitaxial growth. For heterogeneous integration, a notable cleavage plane is located along the (100) crystal plane, which has incited nanomembrane research for integration with arbitrary substrates and two-dimensional semiconductors.

The first transistor devices by homoepitaxial Ga$_2$O$_3$ were demonstrated with a Sn-doped Ga$_2$O$_3$ channel grown by MBE on (010) semi-insulating β-Ga$_2$O$_3$ substrates. Metal-oxide-semiconductor field-effect transistors (MOSFETs) followed later with a Si-doped channel and ohmic contacts by implantation with breakdown exceeding 750 V with a field-plate. Most recently, Sn-doped Ga$_2$O$_3$ MOSFETs homoepitaxially grown by MOVPE on (100) semi-insulating β-Ga$_2$O$_3$ achieved a record-high 3.8 MV/cm critical field strength surpassing GaN and SiC bulk theoretical field strengths. For power electronics applications, a normally-off transistor is preferred for safe high-voltage operation and to mitigate off-state power dissipation. To achieve a high-current density, Ga$_2$O$_3$ MOSFETs require high doping concentration resulting in a negative threshold voltage (V_{TH}). To shift toward positive V_{TH}, non-planar fin-shaped channels offer enhanced electrostatic control of the channel by depleting it from the side walls without sacrificing doping. Achieving dense, parallel arrays of fin channels is most easily achieved by top-down plasma etching though reports of fin channels formed by metal-catalyzed wet-etching and self-assembly are promising to avoid plasma etch damage.

GaN-based fin-channel field-effect transistors (finFETs) have been reported with Si-doped GaN junctionless and high-electron mobility AlGaN/GaN heterostructure channels where the gate wraps around fins with enhanced electrostatics to nearly or fully deplete the channel. However, the main drawbacks for GaN are cost and the availability of native substrates for low-defect density homoepitaxial growth. In this letter, we present a finFET with arrays of parallel Sn-doped Ga$_2$O$_3$ fin channels formed by top-down plasma etching to achieve normally-off operation on a native (100) semi-insulating β-Ga$_2$O$_3$ substrate. The results show the feasibility of wrap-gate architecture to shift the V_{TH} to positive values while maintaining volume current densities for consideration in future high-voltage device design.

Fin-array field-effect transistors (finFET) devices were fabricated from a 300-nm Sn-doped Ga$_2$O$_3$ channel grown homoepitaxially by MOVPE on a 100-nm Mg-doped semi-insulating (100) β-Ga$_2$O$_3$ substrate. First, arrays of \sim300-nm wide fin channels with a \sim900-nm pitch were formed by electron beam lithography followed by 150-nm Cr
metal evaporation as the hard mask. A second 200-nm Cr hard mask was superimposed on the fin mask by projection lithography to create bulk mesa contacts for source and drain electrodes. Both Cr layers were etched by inductively coupled plasma (ICP) etching using BCl3 chemistry. \(^{24}\) The etch conditions were 120 W reactive ion etching (RIE) power and 300 W coil power with 20 sccm BCl3 and 16 mTorr chamber pressure. The etch selectivity of Ga2O3:Cr was approximately ~2:1. To sufficiently remove the entire 300-nm channel between fins, an over-etch was required, which completely etched the fin Cr mask resulting in triangular-shaped fins. Residual Cr on the source and drain mesas was removed by commercially available Cr wet-etchant. Ohmic contacts consisted of Ti/Al/Ni/Au (20/100/50/50 nm) rapidly annealed for 1-min at 470°C in nitrogen. A 20-nm Al2O3 gate dielectric was deposited by atomic layer deposition (ALD) at 250°C and patterned by fluorine-based RIE to allow for Ni/Au (20/480 nm) interconnects and ~2 μm long optical gate metal evaporation. Finally, a second 20-nm ALD Al2O3 layer was deposited and patterned on the sample to passivate the etched Ga2O3 surfaces between interconnects. The fabrication process is illustrated in Fig. 1(a).

The finFET has a centered two-finger gate layout with each gate finger wrapping along 48 fins. The total source to drain distance \(L_{SD}\) is ~4 μm, and the fin-array spans approximately ~3-μm of this source-drain distance. A tilted SEM image of the fin channels with wrap-gate and bulk-like ohmic contacts is shown in Fig. 1(b). The sidewall morphology appears relatively smooth as previously observed using high-power ICP plasma etching with BCl3. \(^{24}\) A representative cross-sectional SEM image of three fins is shown in Fig. 2(a). The darker contrast observed in the fin compared to the substrate is indicative of the Sn-doped channel and adequate electrical isolation between fins. Fig. 2(b) depicts that the fins are approximately ~300 nm at the base with tapered sidewalls joining at ~200 nm thickness. The 20-nm Al2O3 gate dielectric and Ni/Au gate metal conform to the fin on all sides.

The mobility and doping concentration of the fins were measured from on-wafer Van der Pauw (VdP) test structures and device C-V measurements. It is widely reported that ionized donor concentration, \(N_D\), can vary significantly from the chemical Sn-doping concentration. \(^{8,17}\) The sheet resistance \(R_{SH}\) and electron mobility \(\mu\) were measured on a VdP structure near the reported device as ~40 kΩ/sq and ~24 cm²/Vs, respectively. We observed the larger geometry of the Cr mask used for the VdP mesa etched slower compared to the Cr fin-array mask; therefore, the VdP mesa was protected during the fin-array definition process. A forward and reverse C-V measurement of the finFET is shown in Fig. 3 indicating ~0.8 V of hysteresis, which has been previously reported as mobile border traps in accumulation. \(^{25}\) In the inset, an \(N_D = 2.3 \times 10^{17}\) cm⁻³ was extracted from the linear region of 1/C² as a function of \(V_{GS}\). The area was estimated as \(L_G \times W_{fin} \times N_{fin}\) where \(W_{fin}\) is ~200 nm after considering a ~70 nm backside depletion width and using a 3:2 width-to-height triangular fin cross-section. Finally, the flat-band capacitance, \(C_{FB}\), can be calculated by the measured oxide capacitance \((C_{ox} \approx 2.25 \text{ fF})\) in series with the semiconductor capacitance \((C_S)\). \(^{26}\) The corresponding forward and reverse sweep flat-band voltage, \(V_{FB}\), is 1.3 V and 2.1 V, respectively.

In the absence of accurate models for Ga2O3, one-dimensional analytical expressions were used to estimate the depletion widths \(W_d\) on the two sides and bottom facet of the Sn-doped fins. The partial depletion width of the sides in the ungated region can be estimated by the built-in energy potential \((V_{bi})\) using the energy band lineup at the Al2O3/Ga2O3 interface \(^{20}\)

\[
E_G^{Al2O3} = E_{VBM}^{Al2O3} + \Delta E_C + (E_{Ga2O3}^{VBM} - E_F) + V_{bi},
\]

where \(E_G\), \(\Delta E_C\), and \(E_{VBM}\) are the bandgap, conduction band offset, and valence band maximum with respect to the Ga2O3 Fermi level energy \(E_F\), respectively. \(V_{bi}\) represents band-bending in the ungated Ga2O3 due to the presence of interface traps. Kamimura et al. reported on the Al2O3/Ga2O3 interface with \(E_G \approx 6.8\) eV, \(\Delta E_C \approx 1.5-1.7\) eV, \(^{25,27}\) and \(E_{VBM} \approx 3.8\) eV \(^{25}\) using XPS measurements. For \(N_D = 2.3 \times 10^{17}\) cm⁻³, the semiconductor \(E_C-E_F\) energy difference can be expressed as:

![Image](https://via.placeholder.com/150)

FIG. 1. (a) Fabrication process for Ga2O3 finFETs and (b) the tilted false-colored SEM image of a \(L_{SD} = 4 \mu m\) finFET depicting the geometry of Ga2O3 fin channels and contacts.
where \(\phi_s \) is the electron affinity of Ga\(_2\)O\(_3\) (\(\sim 3.5 \text{ to } 4.0 \text{ V} \)).\(^{27,30}\) However, this does not consider trap-assisted tunneling for thin Al\(_2\)O\(_3\) gate oxide,\(^{27}\) and it remains unclear how the \(V_{\text{bi}(g)} \) compensates for the band-bending normally induced by a gate contact without thorough XPS characterization of our particular interface. For a simple case, however, where both energy barriers are combined in the gated region, the \(V_{\text{bi}(g)} \) is \(\sim 2.5 \text{ V} \), which is reasonably close to the measured reverse sweep \(V_{\text{FB}} \). The maximum depletion width, \(W_d \), for each region is calculated by the following equation:

\[
W_d = \sqrt{\frac{2\varepsilon_{\text{r}}\varepsilon_0 W_{\text{fin}}(x) V_{\text{bi}(g)}}{qN_D}},
\]

where \(\varepsilon_r \) and \(\varepsilon_0 \) are the permittivity of free space and Ga\(_2\)O\(_3\) dielectric constant, respectively. This yields \(W_d \approx 83 \text{ nm} \) and \(\sim 110 \text{ nm} \) in the ungated and gated regions, respectively. A backside depletion width from the semi-insulating substrate is found to be \(\sim 70 \text{ nm} \), which is reasonably close to the measured mid-gap interface trap density reported by Green \etal\(^{27,30}\). Therefore, we estimate an undepleted fin with approximately \(\sim 26 \text{ nm} \) (base) \(\times \sim 17 \text{ nm} \) (height) in the ungated region contributes to the volume conduction mechanism in the finFET. In contrast, the depletion from the sides and substrate fully deplete the fin dimensions in the gated region to realize the normally-off operation. It should be noted that once \(V_{\text{GS}} > V_{\text{FB}} \), the finFET is operating in accumulation similar to non-planar normally-off junctionless GaN finFETs.\(^{20,32}\)

Fig. 4(a) shows the family of \(I_D - V_D \) curves from \(V_{\text{GS}} = +4 \text{ V} \) to \(0 \text{ V} \). At \(V_{\text{GS}} = +4 \text{ V} \), the on-current \((I_{\text{ON}}) \) reaches \(3.5 \mu\text{A} \). An upper bound on expected current in the partially depleted fin-arrays can be approximated by the open channel current density \((J_n) \) where \(V_{\text{DS}} < |V_{\text{GS}} - V_T| \) using the drift current equation

\[
J_n = q\mu N_D E_{\text{CH}},
\]

where \(E_{\text{CH}} = V_{\text{DS}}/L_{\text{CH}} \) is the potential across the source-drain channel \((L_{\text{CH}}) \). Using the partially depleted fin-array cross-sectional area at \(V_{\text{DS}} = 2 \text{ V} \) and \(L_{\text{CH}} = 3 \mu\text{m} \), \(J_n = 5.9 \text{ kA/cm}^2 \) or \(I_D \approx 1.3 \mu\text{A} \), which is close to the measured value in Fig. 4(a). For comparison, this simple analysis is also in agreement at \(V_{\text{DS}} = 1 \text{ V} \) \((I_{\text{DS}} = 0.55 \text{ mA}) \) for the planar Sn-doped Ga\(_2\)O\(_3\) MOSFET reported by Green \etal\(^{17}\) using the surface and sub- strate depletion widths with the reported \(N_D \) and Ti/Au gate.\(^{17}\) The gate width, \(W_G = W_{\text{fin}} N_{\text{fin}} \), is \(\sim 19 \mu\text{m} \) corresponding to an \(I_{\text{ON}} \approx 0.18 \mu\text{A/\mum} \). The low \(I_{\text{ON}} \) is a main limitation of the fin-array topology reported here, but can be drastically improved in the future with higher-mobility materials and on-resistance optimization. For this device, the gate swing was limited by the conduction band offset of Al\(_2\)O\(_3)/Ga\(_2\)O\(_3\), which can be improved with, for example, ALD SiO\(_2\).\(^{33}\) The gate leakage characteristics are shown in Fig. 4(b) and indicate ultra-low gate leakage near \(10^{-12} \text{ A} \) before an onset of trap-assisted tunneling at forward bias appears.\(^{27}\)

Fig. 4(c) shows the \(I_D - V_G \) characteristics at \(V_{\text{DS}} = 10 \text{ V} \). Despite \(I_{\text{ON}} \) limitations, the finFET has \(>10^5 \) \(I_{\text{ON}}/I_{\text{OFF}} \) ratio. The device reaches an off-state approaching \(10^{-12} \text{ A} \) Amps between 0 and \(+1 V_{\text{GS}} \) indicating enhancement-mode operation. To rule out the parasitic conduction in the substrate
between fins, an identical MOSFET with the epitaxial channel etched away was fabricated and shows minimal modulation of the remaining etched Si substrate. We attribute this parasitic modulation to uncompensated free carriers in the substrate being accumulated at the Al2O3/Si-Ga2O3 interface. The forward and reverse sweeps reveal trapping effects that may be a combination of the unoptimized Al2O3/Ga2O3 interface and density of interface traps (D_{it}) caused by the plasma etching of the fin side walls. Despite no surface treatment optimization, the subthreshold slope (SS) is 158 mV/dec, which is superior to previously reported Ga2O3 MOSFETs. The D_{it} can be estimated by the shift in forward and reverse V_{FB} from Fig. 3 using the following expression:

$$D_{it} = \frac{C_{ox}}{q \varepsilon_{Ga_2O_3}} V_{FB}^2,$$

where C_{ox} is approximately 3.9×10^{11} cm$^{-2}$ eV$^{-1}$ and $\varepsilon_{Ga_2O_3} \approx 3.8$ F/cm2. The area for C_{ox} is calculated using the measured C_{ox}, 20 nm thickness and a gate dielectric constant of 8.5; though, estimating the area using the sum of the fin side facets multiplied by L_{G} gives nearly the same value. This D_{it} value is similar to previously reported Al2O3/Ga2O3 and SiO2/Ga2O3 MOS capacitors on (-201) n^+-Ga2O3 substrates with $D_{it} < 1.0 \times 10^{12}$ cm$^{-2}$ eV$^{-1}$ after surface treatment optimization.33,34 The effect of surface plane orientation of the fin facets and the dielectric-Ga2O3 interface quality is unclear and requires further investigation.

To conclude, we have fabricated an enhancement-mode Ga2O3 MOSFET enabled by arrays of Sn-doped fins on a semi-insulating (100) β-Ga2O3 substrate. A V_{BK} exceeding 600-V at $V_{GS} = 0$ V off-state was demonstrated and represents the highest breakdown voltage measured without field-plate for β-Ga2O3 transistors, and the highest breakdown for any transistor technology utilizing non-planar device channels.20–22,35–37 Future work includes understanding the role of traps at the dielectric-Ga2O3 interface and optimizing on-resistance by reducing the fin channel length and using highly doped ohmic cap layer.

The authors would like to acknowledge the support of bulk and epitaxial crystal growth by IKZ-Berlin and fabrication support by Mr. Jason Hickey and Mr. Andrew Browning at AFRL. X. Li acknowledges NSF DMR #1508140.
3H. Murakami, K. Nomura, K. Goto, K. Sasaki, K. Kawara, Q. T. Thieu, R. Togashi, Y. Kumagai, M. Higashiwaki, and A. Kuramata, Appl. Phys. Express 8(1), 015503 (2015).
4K. Sasaki, A. Kuramata, T. Masui, E. G. Villora, K. Shimamura, and S. Yamakoshi, Appl. Phys. Express 5(3), 035502 (2012).
5S. Ratiqie, L. Han, M. J. Tadjer, J. A. Freitas, Jr., N. A. Mahadik, and H. Zhao, Appl. Phys. Lett. 108(18), 182105 (2016).
6D. Shinohara and S. Fujita, Jpn. J. Appl. Phys. 47(9R), 7311 (2008).
7G. Wagner, M. Baldini, D. Gogova, M. Schmidbauer, R. Schewski, M. Albrecht, Z. Galazka, D. Klimm, and R. Fornari, Phys. Status Solidi A 211(1), 27 (2014).
8M. Baldini, M. Albrecht, A. Fiedler, K. Irmscher, D. Klimm, R. Schewski, and G. Wagner, J. Mater. Sci. 51(7), 3650 (2016).
9S. Geller, J. Chem. Phys. 33(3), 676 (1960).
10L. M. Foster and H. C. Stumpf, J. Am. Chem. Soc. 73(4), 1590 (1951).
11W. S. Hwang, A. Verma, H. P. Lee, V. Prostaneko, S. Rouvimov, H. G. Xing, A. Seabaugh, W. Haensch, C. Van de Walle, and Z. Galazka, Appl. Phys. Lett. 104(20), 203111 (2014).
12S. Ahn, F. Ren, J. Kim, S. Oh, J. Kim, M. A. Mastro, and S. J. Pearton, Appl. Phys. Lett. 109(6), 062102 (2016).
13J. Kim, S. Oh, M. A. Mastro, and J. Kim, Phys. Chem. Chem. Phys. 18(23), 15760 (2016).
14M. Higashiwaki, K. Sasaki, T. Kamimura, M. H. Wong, D. Krishnamurthy, A. Kuramata, T. Masui, and S. Yamakoshi, Appl. Phys. Lett. 103(12), 123511 (2013).
15M. H. Wong, K. Sasaki, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, IEEE Electron Device Lett. 37(2), 212 (2016).
16K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, Appl. Phys. Express 6(8), 086502 (2013).
17A. J. Green, K. D. Chabak, E. R. Heller, R. C. Fitch, M. Baldini, A. Fiedler, K. Irmscher, G. Wagner, Z. Galazka, S. E. Tetlak, A. Crespo, K. Leedy, and G. H. Jessen, IEEE Electron Device Lett. 37(7), 902 (2016).
18Y. Song, P. K. Mohseni, S. H. Kim, J. C. Shin, T. Ishihara, I. Adesida, and X. Li, IEEE Electron Device Lett. 37(8), 970 (2016).
19X. Miao, K. Chabak, C. Zhang, P. K. Mohseni, D. Walker, Jr., and X. Li, Nano Lett. 15(5), 2780 (2015).
20K.-S. Im, C.-H. Won, Y.-W. Jo, J.-H. Lee, M. Benedin, S. Cristoloaveanu, and J.-H. Lee, IEEE Trans. Electron Devices 60(10), 3012 (2013).
21B. Lu, E. Matioli, and T. Palacios, IEEE Electron Device Lett. 33(3), 360 (2012).
22K.-S. Im, V. Sindhuri, Y.-W. Jo, D.-H. Son, J.-H. Lee, S. Cristoloaveanu, and J.-H. Lee, Appl. Phys. Express 8(6), 066501 (2015).
23Z. Galazka, K. Irmscher, R. Uecker, R. Bertram, M. Pietsch, A. Kwasniewski, M. Naumann, T. Schulz, R. Schewski, and D. Klimm, J. Cryst. Growth 404, 184 (2014).
24J. E. Hogan, S. W. Kaun, E. Ahmadi, Y. Oshima, and J. S. Speck, Semicond. Sci. Technol. 31(6), 065006 (2016).
25T. Kamimura, K. Sasaki, M. H. Wong, D. Krishnamurthy, A. Kuramata, T. Masui, S. Yamakoshi, and M. Higashiwaki, Appl. Phys. Lett. 104(19), 192104 (2014).
26K. Piskorski and H. M. Przewlocki, in MIPRO, 2010 Proceedings of the 33rd International Convention (IEEE, 2010), pp. 37–42.
27T.-H. Hung, K. Sasaki, A. Kuramata, D. N. Nath, P. S. Park, C. Polchinski, and S. Rajan, Appl. Phys. Lett. 104(16), 162106 (2014).
28ATLAS SILVACO, The Simulation Standard (2013), p. 7.
29T. L. Duan, J. S. Pan, and D. S. Ang, Appl. Phys. Lett. 102(20), 201604 (2013).
30I. López, E. Nogales, P. Hidalgo, B. Mendoza, and J. Piqueras, Phys. Status Solidi A 209(1), 113 (2012).
31A. Chandra, C. E. C. Wood, D. W. Woodard, and L. F. Eastman, Solid-State Electron. 22(7), 645 (1979).
32K.-S. Im, Y.-W. Jo, J.-H. Lee, S. Cristoloaveanu, and J.-H. Lee, IEEE Electron Device Lett. 34(5), 381 (2013).
33K. Zeng, Y. Jia, and U. Singisetti, IEEE Electron Device Lett. 37(7), 906 (2016).
34H. Zhou, S. Alghmadi, M. Si, G. Qui, and P. Ye, IEEE Electron Device Letters 37(11), 1411 (2016).
35S. Takashima, Z. Li, and T. P. Chow, IEEE Trans. Electron Devices 60(10), 3025 (2013).
36F. Yu, D. Rümmel, J. Hartmann, L. Caccamo, T. Schimpke, M. Strassburg, A. E. Gad, A. Bakeh, H.-H. Wehmann, B. Witzigmann, H. W. Wasisto, and A. Waag, Appl. Phys. Lett. 108(21), 213503 (2016).