Few-Shot Learning for Clinical Natural Language Processing Using Siamese Neural Networks

David Oniani¹, Sonish Sivarajkumar², Yanshan Wang¹,²,³
¹Department of Health Information Management, ²Intelligence Systems Program, ³Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA

Abstract

Clinical Natural Language Processing (NLP) has become an emerging technology in healthcare that leverages a large amount of free-text data in electronic health records (EHRs) to improve patient care, support clinical decisions, and facilitate clinical and translational science research. Recently, deep learning has achieved state-of-the-art performance in many clinical NLP tasks. However, training deep learning models usually requires large annotated datasets, which are normally not publicly available and can be time-consuming to build in clinical domains. Working with smaller annotated datasets is typical in clinical NLP and therefore, ensuring that deep learning models perform well is crucial for the models to be used in real-world applications. A widely adopted approach is fine-tuning existing Pre-trained Language Models (PLMs), but these attempts fall short when the training dataset contains only a few annotated samples. Few-Shot Learning (FSL) has recently been investigated to tackle this problem. Siamese Neural Network (SNN) has been widely utilized as an FSL approach in computer vision, but has not been studied well in NLP. Furthermore, the literature on its applications in clinical domains is scarce. In this paper, we propose two SNN-based FSL approaches for clinical NLP, including Pre-Trained SNN (PT-SNN) and SNN with Second-Order Embeddings (SOE-SNN). We evaluated the proposed approaches on two clinical tasks, namely clinical text classification and clinical named entity recognition. We tested three few-shot settings including 4-shot, 8-shot, and 16-shot learning. Both clinical NLP tasks were benchmarked using three PLMs, including Bidirectional Encoder Representations from Transformers (BERT), Bidirectional Encoder Representations from Transformers for Biomedical Text Mining (BioBERT), and Bio + Clinical BERT (BioClinicalBERT). The experimental results verified the effectiveness of the proposed SNN-based FSL approaches in both NLP tasks.

Introduction

Deep Neural Networks (DNNs), due to their performance [1], currently dominate both Computer Vision (CV) and Natural Language Processing (NLP) literature. However, fully utilizing the capabilities of DNNs requires large training datasets. Researchers have also tried to reduce the complexity of the DNN models to obtain comparable performance when the size of training dataset is small [2]. The Few-Shot Learning (FSL) paradigm is an alternative attempt to tackle the problem with scarce training instances. The goal of FSL is to efficiently learn from a small number of “shots” (i.e., data samples or instances). The number of samples usually ranges from 1 to 100 per class [3] [4]. There is a growing interest in the Artificial Intelligence (AI) research community in FSL and several different strategies have been developed for FSL, including Bowtie Networks [5], Induction Networks [6], and Prototypical Networks [7].

A Siamese Neural Network (SNN), sometimes called a twin neural network, is an Artificial Neural Network (ANN) that uses two parallel, weight-sharing machine learning models in order to compute comparable embeddings. The SNN architecture has shown good results as an FSL approach in computer vision for similarity detection [8] and duplicate identification [9]. Yet, its usage in NLP has been understudied and, to the best of our knowledge, there have not been any studies investigating SNNS for clinical NLP.

In SNNS, neural networks need to be trained to compute embeddings. In NLP, deep learning has achieved the state-of-the-art performance since it could generate comprehensive embeddings to encode both semantic and syntactic information. The main use of deep learning in NLP is to represent the language in a vectorized form (i.e., embeddings) so that the vector representation can be used for different NLP tasks, for example, natural language generation, text classification, and semantic textual similarity. Thus, embeddings play a key role in applying deep learning to NLP. Having a robust embedding-generation mechanism is crucial for most NLP tasks. Since the context of words, sentences, and more generally, text is important to learn meaningful embeddings, context-aware embedding-generation models, such
as BERT \[10\], often show promising results. Furthermore, depending on the domain, the context also varies. For this purpose, engineers and researchers have built domain-specific, specialized models to be used for downstream tasks. Examples of such models include BioBERT \[11\] trained from biomedical literature texts and BioClinicalBERT trained from clinical texts \[12\]. Leveraging these contextual embeddings for FSL has rarely been studied in clinical NLP.

FSL is critical for clinical NLP as annotating a large training dataset is costly. Furthermore, such annotation often requires involving domain experts. It is not uncommon to have a few clinical text samples annotated by physicians. One example could be clinical notes with annotations of a rare disease with the number of samples naturally limited due to the nature of the disease. Despite such challenges in the clinical domain, the importance of using AI in clinical applications cannot be understated. AI could not only assist physicians in their decision-making and facilitate clinical and translational research, but also significantly reduce the need for manual work. Therefore, in this study, we propose an FSL approach based on SNNs to tackle clinical NLP tasks with only a few annotated training samples. Two SNN-based FSL approaches have been proposed, including Pre-Trained SNN (PT-SNN) and SNN with Second-Order Embeddings (SOE-SNN). For every approach, three different transformer models – BERT, BioBERT, BioClinicalBERT – have been utilized. We evaluated the proposed approaches on two clinical tasks, namely clinical sentence classification and clinical named entity recognition. Clinical text classification refers to the classification of clinical sentences based on pre-defined classes. Named Entity Recognition (NER) is a subtask of Information Extraction (IE) that seeks to identify entities mentioned in clinical texts. We show that SNN-based approaches outperform the baseline models in few-shot settings for both tasks. Finally, we discuss the limitations and future work.

Background and Related Work

There have been studies evaluating the usability of SNNs for image classification. Mahajan et al. used SNNs for the classification of high-dimensional radiomic features extracted from MRI images \[13\]. Hunt et al. applied SNNs for the classification of electrograms \[14\]. Zhao et al. have utilized SNNs for hyperspectral image classification \[15\].

In the context of FSL, SNNs have been used by Torres et al. for one-shot, Convolutional Neural Networks (CNNs) based classification in order to optimize the discovery of novel compounds based on a reduced set of candidate drugs \[16\]. Droghini et al. employed SNNs for few-shot human fall detection purposes using images \[17\]. However, none of these studies used SNN-based FSL for NLP.

There is only a recent study by Müller et al \[18\] that explored SNNs for FSL in NLP and demonstrated the high performance of pretrained SNNs that embed texts and labels. To the best of our knowledge, none of the studies referenced above are using SNNs to perform FSL in the clinical NLP domain.

Materials

We perform both clinical text classification and clinical named entity recognition. For few-shot clinical text classification, we use sentences from the MIMIC-III \[19\] database and classify sentences into 4 different classes classes. As for few-shot clinical named entity recognition, we use the i2b2 (Informatics for Integrating Biology and the Bedside) 2006 de-identification challenge dataset \[20\] and do binary classification of one-word entities. The datasets were preprocessed in order to be used in few-shot experiments.

MIMIC-III

For sentence classification, the sentences were obtained from the MIMIC-III database. We used the same dataset as in the HealthPrompt paper by Sivarajkumar and Wang \[21\], but with classes suitable for 4-shot, 8-shot, and 16-shot experiments. We got the following classes: ADVANCED.LUNG.DISEASE (245 samples), ADVANCED.HEART.DISEASE (117 samples), CHRONIC.PAIN.FIBROMYALGIA (48 samples), and ADVANCED.CANCER (34 samples).

In total, we had 444 samples in our dataset. Since we performed 4, 8, and 16 shot experiments, the train size varied and was 16, 32, and 64 samples with the test sizes of 428, 412, and 380 samples respectively. The dataset had two columns: text and label corresponding to the sentence and label respectively.
2006 i2b2 De-Identification Challenge Dataset

The i2b2 (Informatics for Integrating Biology and the Bedside) organized clinical NLP challenge in 2006 with de-identification track focused on identifying Protected Health Information (PHI) from clinical narratives. The i2b2 2006 challenge developed a corpus of de-identified records such that there is one record per patient.

The dataset has both training and testing sets, which are separate from each other. This allows for a more transparent comparison reporting of benchmarks and statistics. One limitation that we also discuss in the “Future Work” section is that we filtered out all multi-word entities and only perform a one-word NER. We also note this in “Discussion” section.

Both training and testing sets are XML files comprised of text, some of which contain PHI tags. One example of such text is the following:

\[
\text{\textless PHI TYPE=\textit{DATE}\textgreater}11/28\text{/PHI}\text{/03 02:25 PM}
\]

Here, we have text where 11/28 is a PHI, whose type is DATE. The goal is to correctly identify this named entity. While the original dataset does contain classes for PHI tags (e.g., DATE in this case), we do not use them as separate classes for NER, but only to identify word as a named entity. But similar to sentence classification, we do sample equal number of samples based on class.

We used two files provided by the challenge: deid_surrogate_test_all_groundtruth_version2.xml and deid_surrogate_train_all_version2.xml. All of the PHIs except for AGE were used. AGE was excluded since the train file contained only 13 such tags, which is not enough for conducting 16-shot experiments. Finally, we had 8 classes: ID, HOSPITAL, DATE, PATIENT, LOCATION, DOCTOR, PHONE, NONPHI (class that represents non-PHI/non-named-entity words).

We split sentences into words and generated word-level contextual embeddings for every word. For the training set, we obtained 3,191 (named entities) and 16,036 (other terms, labeled NONPHI). For the testing set, we got 9,083 (named entities) and 39,319 (other terms, labeled NONPHI). While the entire test set was used in all experiments, only 32, 64, and 128 samples were taken from the training set for 4-shot, 8-shot, and 16-shot experiments respectively. All experiments were run on four NVIDIA RTX 8000 GPUs.

Methods

Sentence-Level Embeddings

For contextual, sentence-level embeddings, we used sentence-transformers [22] package. This package provides a set of intuitive and easy-to-use methods for computing dense vector representations of sentences, paragraphs, and images. The models are based on transformer networks such as BERT, RoBERTa [23], etc., and achieve state-of-the-art performance in various tasks. The generated sentence embeddings are such that similar texts are close in the latent space and can efficiently be found using cosine similarity.

\[
\text{cosine similarity}(A, B) = \frac{A \cdot B}{\|A\| \|B\|}
\]

Word-Level Embeddings

To generate contextual embeddings at the word level, we used Transformers package [24].

A tricky part of named entity recognition tasks with transformer models is that they rely on word piece tokenization, rather than word tokenization. For example, for a word such as Washington, it may get tokenized into three separate words Wash, ing, and ton. Then one approach could be to handle this by only training the model on the tag labels for the first word piece token of a word (i.e. only label "Wash"). This is what was done in the original BERT paper.
That being said, such approach does not work well if words that may have prefixes that can also be tokens. One such example can be a word proto-potato. In this case, tokenizer may split it into proto and potato and taking the first subword as the embedding of the entire word would have a semantically incorrect representation. Similarly, if we only took the last subword embedding, some words may have a suffix and we run into the same problem.

In order to solve this issue, we averaged out the embeddings for the subwords and took it as the representation for the word. Thus, we define the word embedding \(E_{\text{word}} \) with \(e_0, e_1, \ldots, e_n \) subwords as follows:

\[
E_{\text{word}} = \frac{\sum_{i=0}^{n} e_i}{n}
\]

(2)

Model Architecture

The SNN’s architecture leverages two parallel weight-sharing ML models (Fig. 1). In the forward pass, two samples are passed into the models and mapped down to the latent space. The embeddings in the latent space are then compared using a similarity function, as shown in (Eq. 3). The similarity function is also a parameter that can be fine-tuned and could range from Euclidean distance to Manhattan distance or cosine similarity. Depending on the similarity function, the similarity value can then be mapped onto the \((0, 1)\) interval by applying the Sigmoid function. Finally, a high similarity value means that the input samples likely belong to the same category, and vice versa.

\[
\text{out} = \sigma(\text{distance}(\text{emb}_1, \text{emb}_2))
\]

(3)

During the training process, SNN conducts representation learning [25] and attempts to have the best approximation for the input embeddings. The representation is learned by penalizing the loss if the model yields a high similarity value for inputs from different classes or if the model yields a low similarity value for inputs from the same class.

The SNN architecture naturally allows for data augmentation. For instance, in the case of 8-shot learning, the traditional training approach would involve passing 8 samples directly into the model. This approach is very limiting with such small number of samples. SNN takes a different route and instead, it considers unique comparisons within the training set. With the training set comprised of 8 unique samples, there are \(8 \times 7 / 2 = 28\) unique comparisons in total. Thus, instead of 8 training samples, we get 28, which is 3.5 times more. In case of 16 samples, the improvement is even more significant as the number of unique comparisons is 120 and there is 7.5-fold data augmentation.

More generally, under \(N\)-way-\(K\)-shot-classification settings, for the dataset \(D_{\text{train}}\) with \(N\) class labels and \(K\) labeled samples for each class, the following holds after SNN-style augmentation:

\[
D_{\text{train SNN}} = \{(x_i, x_j) \mid x_i, x_j \in D_{\text{train}}, i < j\}
\]

(4)

\[
\text{size}(D_{\text{train SNN}}) = \frac{(NK)^2 - NK}{2}
\]

(5)

Hence, SNN reformulates the classification problem into a pairwise comparison problem, which has the benefit of obtaining more training data. This becomes increasingly important as the number of training samples decreases.
Pre-Trained SNN (PT-SNN)

In the first approach, we leverage the pre-trained language models (PLMs) to generate embeddings for the SNN, called Pre-Trained SNN (PT-SNN). We used three PLMs in this approach, namely BERT, BioBERT, and BioClinicalBERT, to generate embeddings for the input training samples. In the following, we illustrate how to use the PT-SNN in the testing step. Suppose we want to perform binary classification, we are given two classes C_1 and C_2, a training set D_{train}, and a testing set D_{test}. We first compute embeddings for all samples in both D_{train} and D_{test}. For every testing sample, using the generated embeddings, we compute the similarity with respect to every training sample and compute the mean similarity values for classes. For instance, mean similarity value for some sample $x \in D_{\text{test}}$ with respect to C_1 and C_2 might be 0.2 and 0.6 respectively. In this case, since 0.6 is greater than 0.2, we classify sample x as being in the class C_2. We have also tried using maximum similarity values per class instead of mean similarity scores, but since the observed results were similar, we only include results using the mean similarity approach.

Algorithm 1: Our Proposed Algorithm for SNN-Style Classification and Evaluation for Few-Shot Learning

Require: D_{train}: Train dataset
Require: E_{test}: Test dataset embeddings
Require: L_{test}: Test dataset labels
Require: d: Distance function
Require: epochs: Number of evaluation epochs
Require: RandSubset: A function that randomly subsets a dataset with the given seed and generates embeddings
Require: Mean: Calculates the mean of a vector
Require: GetMaxValueKey: A function that gets the key with the maximum value from the hash table
Require: ComputeMetrics: A function for computing evaluation metrics – precision, recall, and F-score

1. metrics ← empty hash table;
2. for $i \leftarrow 0$ to epochs do
3. $E_{\text{train}}, L_{\text{train}} \leftarrow \text{RandSubset}(D_{\text{train}}, \text{seed} = i)$;
4. predictions ← empty vector;
5. for each $e_{\text{test}} \in E_{\text{test}}$ do
6. similarity ← empty hash table;
7. for each $(e_{\text{train}}, l_{\text{train}}) \in \text{Zip}(E_{\text{train}}, L_{\text{train}})$ do
8. similarity.Key(l_{train}).Insert($d(e_{\text{train}}, e_{\text{test}})$);
9. end for
10. tmp ← empty hash table;
11. for each $(\text{key}, \text{val}) \in \text{similarity}$ do
12. tmp.Key(key) = Mean(val);
13. end for
14. predictions.Insert(GetMaxValueKey(tmp));
15. end for
16. precision, recall, f score = ComputeMetrics(predictions, L_{test});
17. metrics.Key("precision").Insert(precision);
18. metrics.Key("recall").Insert(precision);
19. metrics.Key("f score").Insert(precision);
20. end for
21. precision = Mean(metrics["precision"]);
22. recall = Mean(metrics["recall"]);
23. f score = Mean(metrics["f score"]);

Algorithm 1 presents the pseudocode that contains both the classification algorithm as well as evaluation approach. Here, epochs refers to the number of averaging epochs for addressing the instability issues. In our case, epochs is 3. d represents a distance function, which is cosine similarity in our case. It should be noted that the algorithm is
similar to K-Nearest Neighbors (KNN) \[26\] classification algorithm. Such a strategy for classification can be slow in cases where the training set is very large. However, the proposed approach is feasible in the FSL setting, where the number of annotated samples is limited. Thus, we do not expect significant performance drawbacks when the number of samples is not very large.

SNN With Second-Order Embeddings (SOE-SNN)

The second proposed approach is SNNs with second-order embeddings where we apply an additional Recurrent Neural Network (RNN) layer, such as Long-Short Term Memory (LSTM) or Gated Recurrent Unit (GRU) to the generated embeddings and then train the SNN model in the fashion described in the Model Architecture section (Fig. 2). In our experiments, we used bidirectional RNNs for producing second-order embeddings.

![Figure 2: Siamese Neural Network with Second-Order Embeddings (SOE-SNN) Architecture.](image)

Specifically, we first obtain the embeddings for all training samples from the PLMs. All possible unique pairs of samples are then generated and given a label of 0 if the samples in the pair are of the same class or 1 if they come from different classes. During the training process, we use the Binary Cross Entropy (BCE) \[27\] and AdamW \[28\] as the loss function and the optimizer, respectively.

Model evaluation is done in the same manner as in pre-trained SNNs, where we compute mean similarity scores and average out the metrics over 3 testing epochs to handle the potential instability issues.

FSL Model Evaluation

Systematically evaluating FSL model performance can be tricky since fine-tuning or making predictions on small datasets could potentially suffer from instability \[29\]. To address this issue, we propose the averaging strategy for model evaluation. For every few-shot experiment (e.g., 4-shot, 8-shot, and 16-shot experiments), using randomized sampling, we sample 4, 8, or 16 samples per class and create a training dataset. We perform this \(M\) times and therefore, for every experiment, \(M\) randomly generated training sets are evaluated on the test set. Finally, the metrics are averaged out and reported as the final scores.

\[
\text{Metric} = \frac{\sum_{i=1}^{M} \text{Metric}_i}{M} \quad (6)
\]

In this paper, we choose \(M = 3\). Such approach gives a more robust view on the performance of the model in possibly unstable scenarios. We employ this strategy in all reported metrics. As for metrics, we choose precision, recall, and F-score.

Baseline Models

We use fine-tuned BERT, BioBERT, and BioClinicalBERT as the baseline models. Instead of approaching the problem from the SNN perspective, we use the 4, 8, and 16 samples per class directly in order to fine-tune the pre-trained transformer models.

This is done by adding an additional linear layer at the end of the transformer model. To achieve this, we, once again, used Transformers package \[24\].
Results

We present the results of 4-shot, 8-shot, and 16-shot experiments for few-shot text classification tasks – Sentence Classification (SC) and Named-Entity Recognition (NER). We used models based on BERT, BioBERT, BioClinicalBERT. The results are shown in Table 1. Note that PT-SNN, SOE-SNN, and FTT stand for Pre-Trained Siamese Neural Network, Siamese Neural Network with Second-Order Embeddings, and Fine-Tuned Transformer respectively.

Approach	Model	Shots	Precision (SC / NER)	Recall (SC / NER)	F-Score (SC / NER)
FTT	BERT	4	0.24 / 0.70	0.24 / 0.59	0.14 / 0.60
FTT	BioBERT	4	0.23 / 0.66	0.23 / 0.56	0.16 / 0.57
FTT	BioClinicalBERT	4	0.25 / 0.66	0.31 / 0.19	0.18 / 0.15
PT-SNN	BERT	4	0.49 / 0.87	0.37 / 0.45	0.37 / 0.49
PT-SNN	BioBERT	4	**0.53** / 0.87	**0.45** / 0.24	**0.46** / 0.18
PT-SNN	BioClinicalBERT	4	0.50 / **0.89**	0.42 / **0.64**	**0.43** / **0.68**
SOE-SNN	BERT	4	0.47 / 0.80	0.51 / 0.42	0.42 / 0.41
SOE-SNN	BioBERT	4	0.44 / 0.83	0.47 / 0.48	0.44 / 0.50
SOE-SNN	BioClinicalBERT	4	0.50 / 0.76	0.47 / 0.58	0.42 / 0.61
FTT	BERT	8	0.34 / 0.74	0.30 / 0.52	0.24 / 0.53
FTT	BioBERT	8	0.35 / 0.70	0.32 / 0.39	0.22 / 0.38
FTT	BioClinicalBERT	8	0.35 / 0.71	0.35 / 0.30	0.21 / 0.29
PT-SNN	BERT	8	0.62 / 0.87	0.45 / 0.37	0.47 / 0.37
PT-SNN	BioBERT	8	0.61 / 0.87	0.48 / 0.25	0.50 / 0.19
PT-SNN	BioClinicalBERT	8	0.64 / **0.88**	**0.44** / **0.55**	**0.49** / **0.59**
SOE-SNN	BERT	8	0.59 / 0.88	0.47 / 0.35	0.50 / 0.36
SOE-SNN	BioBERT	8	0.62 / 0.87	0.52 / 0.24	0.55 / 0.20
SOE-SNN	BioClinicalBERT	8	**0.65** / 0.88	**0.51** / 0.54	**0.55** / 0.60
FTT	BERT	16	0.23 / 0.76	0.31 / 0.54	0.14 / 0.55
FTT	BioBERT	16	0.35 / 0.71	0.33 / 0.40	0.18 / 0.39
FTT	BioClinicalBERT	16	0.39 / 0.74	0.37 / 0.37	0.27 / 0.34
PT-SNN	BERT	16	0.64 / 0.87	0.51 / 0.33	0.52 / 0.32
PT-SNN	BioBERT	16	0.65 / 0.87	0.55 / 0.25	0.56 / 0.20
PT-SNN	BioClinicalBERT	16	0.69 / 0.88	0.54 / 0.47	0.58 / 0.49
SOE-SNN	BERT	16	0.66 / 0.88	0.58 / 0.34	0.58 / 0.30
SOE-SNN	BioBERT	16	0.68 / 0.88	0.55 / 0.27	0.56 / 0.22
SOE-SNN	BioClinicalBERT	16	**0.71** / **0.90**	**0.55** / 0.50	**0.60** / **0.51**

Table 1: Few-Shot Sentence Classification (SC) and Named-Entity Recognition (NER) Results.

Few-Shot Clinical Text Classification

In the 4-shot sentence classification task, the baseline, fine-tuned transformer, approach had the worst performance. PT-SNN and SOE-SNN both significantly outperformed fine-tuned transformer, with PT-SNN marginally outperforming SOE-SNN. The best model was BioBERT-based PT-SNN, with the precision of 0.53, recall of 0.45, and F-score of 0.46. The best FTT model was based on BioClinicalBERT and had the precision of 0.25, recall of 0.31, and F-score of 0.18. In order to measure the statistical significance of the difference between the best fine-tuned transformer approach (BioClinicalBERT-based model) and the best SNN-based approach, we perform the paired t-test. This is done by creating two vectors \[[\text{precision}_1, \text{recall}_1, \text{fscore}_1] \] and \[[\text{precision}_2, \text{recall}_2, \text{fscore}_2] \], calculating the difference vector \(d \), and then running one-sample t-test. Difference was significant with the p-value of 0.0377 (we take the 0.05 cutoff).

In 8-shot experiments, BioClinicalBERT-based SOE-SNN outperformed all other approaches, with the precision, recall, and F-score of 0.65, 0.51, and 0.55 respectively. PT-SNN came next with fine-tuned transformers having the worst performance. The best baseline model (BioClinicalBERT-based model) had the precision, recall, and F-score
values of 0.35, 0.35, and 0.21 respectively. After performing the paired t-test, we got the p-value of 0.0394. Thus, the difference is significant and the proposed approach is a substantial improvement over the baseline models.

As for 16-shot learning, BioClinicalBERT-based SOE-SNN outperformed all other models, with the precision, recall, and F-score of 0.71, 0.55, and 0.60 respectively. The worst performance, once again, was shown by the baseline (BioClinicalBERT-based) fine-tuned transformer model, with precision, recall, and F-score of 0.39, 0.37, and 0.27 respectively. After performing the paired t-test, we obtained the p-value of 0.0293 and hence, we conclude that the difference between the metrics is significant and therefore, the proposed approach significantly outperforms the baseline models.

Overall, it is clear that SNN-based approaches outperformed the baseline models and the difference in performance was significant in all cases. PT-SNN and SOE-SNN performed similarly and the difference in their performance was not statistically significant. It should also be noted that we measured statistical significance on the metrics directly and not on model outputs.

Few-Shot Clinical Named Entity Recognition

In 4-shot experiments, SNN-based model (BioClinicalBERT-based PT-SNN) had the best performance with the precision, recall, and F-score of 0.89, 0.64, and 0.68 respectively. The best baseline model was the BERT-based fine-tuned transformer with the precision of 0.70, recall of 0.59, and F-score of 0.60. The paired t-test got yielded the p-value of 0.1291, which is not statistically significant.

In 8-shot settings, similar to the 4-shot scenario, BioClinicalBERT-based PT-SNN was the best model. The best baseline model was the BERT-based fine-tuned transformer. SNN-based model achieved the precision, recall, and F-score of 0.88, 0.55, and 0.59 respectively, while the fine-tuned transformer had those of 0.74, 0.52, and 0.53 respectively. The paired t-test got the p-value of 0.1446, which is not statistically significant.

As for 16-shot NER task, BioClinicalBERT-based SOE-SNN outperformed all other models, with precision, recall, and F-score of 0.90, 0.50, and 0.51 respectively. The best baseline model was the BERT-based fine-tuned transformer, which achieved the precision, recall, and F-score of 0.76, 0.54, and 0.55 respectively. The paired t-test got us the p-value of 0.7706, which is not statistically significant.

Overall, despite the results not being statistically significant, SNN-based approaches showed a noticeable performance improvement over fine-tuned transformers. It should also be noted that as the number of samples increased, metrics recall and F-score have decreased for the SNN-based approaches. This pattern was not observed in few-shot sentence classification tasks and could potentially be explained by lack of sufficient context in named entities and the number of named entities.

Discussion

There are several limitations of the work that can be addressed by further exploring few-shot learning and SNNs. First, one could compare the results to more traditional baseline models such as SVM, logistic regression, multinomial logistic regression, random forest, etc. Second, other datasets could also be used for evaluating the performance of SNNs in text classification. Third, we had a limitation when doing NER – particularly, we only considered one-word entities. Evaluating the performance of SNNs considering all entities could be interesting. Additionally, since we can perform both word-level and sentence-level classification, another interesting direction of research could be document classification, where a document is a collection of words and sentences. Furthermore, it is important to note that datasets for FSL and especially, for clinical FSL are difficult to find. Ge et al. [30], in their paper, have emphasized that “(68%) studies reconstructed existing datasets to create few-shot scenarios synthetically.” Hence, building the brand new FSL dataset and then evaluating the performance of proposed methods could also be an interesting future research direction.
Conclusion

We have conducted few-shot learning experiments evaluating the performance of SNN models on text classification tasks – SC and NER. SNN models were based on transformer models – BERT, BioBERT, and BioClinicalBERT. Fine-tuned variants of BERT, BioBERT, and BioClinicalBERT were used as the baseline models. Since performance evaluation on small datasets may suffer from instability, a special evaluation strategy was used. We conclude that SNN-based models outperformed the baseline fine-tuned transformer models for sentence classification tasks. The paired t-test was also performed, which showed that for SC tasks, SNN models significantly outperformed the baseline models. As for NER, SNN models, once again, outperformed the baseline models, yet the performance difference was not statistically significant. The limitations of the work have also been discussed alongside with potential future directions of research.

Acknowledgments The authors would like to acknowledge support from the University of Pittsburgh Momentum Funds, Clinical and Translational Science Institute Pilot Awards, the School of Health and Rehabilitation Sciences Dean’s Research and Development Award, and the National Institutes of Health through Grant UL1TR001857.

References

1. Terrence J. Sejnowski. The unreasonable effectiveness of deep learning in artificial intelligence. Proceedings of the National Academy of Sciences, 117(48):30033–30038, 2020.
2. L. Brigato and L. Iocchi. A close look at deep learning with small data. In 2020 25th International Conference on Pattern Recognition (ICPR), pages 2490–2497, Los Alamitos, CA, USA, jan 2021. IEEE Computer Society.
3. Mo Yu, Xiaoxiao Guo, Jinfeng Yi, Shiyu Chang, Saloni Potdar, Yu Cheng, Gerald Tesauro, Haoyu Wang, and Bowen Zhou. Diverse few-shot text classification with multiple metrics. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 1206–1215, New Orleans, Louisiana, June 2018. Association for Computational Linguistics.
4. Emmanuel Manousogiannis, Sepideh Mesbah, Alessandro Bozzon, Selene Baez, and Robert Jan Sips. Give it a shot: Few-shot learning to normalize ADR mentions in social media posts. In Proceedings of the Fourth Social Media Mining for Health Applications (#SMM4H) Workshop & Shared Task, pages 114–116, Florence, Italy, August 2019. Association for Computational Linguistics.
5. Zhipeng Bao, Yu-Xiong Wang, and Martial Hebert. Bowtie networks: Generative modeling for joint few-shot recognition and novel-view synthesis. In International Conference on Learning Representations, 2021.
6. Ruiying Geng, Binhua Li, Yongbin Li, Xiaodan Zhu, Ping Jian, and Jian Sun. Induction networks for few-shot text classification. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3904–3913, Hong Kong, China, November 2019. Association for Computational Linguistics.
7. Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.
8. Yi Wu and Wei Wang. Code similarity detection based on siamese network. In 2021 IEEE International Conference on Information Communication and Software Engineering (ICICSE), pages 47–51, 2021.
9. Marco Fisichella. Siamese coding network and pair similarity prediction for near-duplicate image detection. International Journal of Multimedia Information Retrieval, 11:159–170, 2022.
10. Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics.
11. Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang. BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics, 36(4):1234–1240, 09 2019.
12. Emily Alsentzer, John Murphy, William Boag, Wei-Hung Weng, Di Jindi, Tristan Naumann, and Matthew Mc-
Dermott. Publicly available clinical BERT embeddings. In Proceedings of the 2nd Clinical Natural Language Processing Workshop, pages 72–78, Minneapolis, Minnesota, USA, June 2019. Association for Computational Linguistics.

13. Li Q Chen D Zhang Z Fei B Mahajan A, Dormer J. Siamese neural networks for the classification of high-dimensional radiomic features. In SPIE Int Soc Opt Eng., volume 11, pages 159–170, 2020.

14. Bram Hunt, Eugene Kwan, Derek Dosdall, Rob S MacLeod, and Ravi Ranjan. Siamese neural networks for small dataset classification of electrograms. In 2021 Computing in Cardiology (CinC), volume 48, pages 1–4, 2021.

15. Shizhi Zhao, Wei Li, Qian Du, and Qiong Ran. Hyperspectral classification based on siamese neural network using spectral-spatial feature. In IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, pages 2567–2570, 2018.

16. Luis Torres, Nelson Monteiro, José Oliveira, Joel Arrais, and Bernardete Ribeiro. Exploring a siamese neural network architecture for one-shot drug discovery. In 2020 20th International Conference on Bioinformatics and Bioengineering (BIBE), pages 168–175, 2020.

17. Diego Droghini, Fabio Vesperini, Emanuele Principi, Stefano Squartini, and Francesco Piazza. Few-shot siamese neural networks employing audio features for human-fall detection. In Proceedings of the International Conference on Pattern Recognition and Artificial Intelligence, PRAI 2018, page 63–69, New York, NY, USA, 2018. Association for Computing Machinery.

18. Thomas Müller, Guillermo Pérez-Torró, and Marc Franco-Salvador. Few-shot learning with Siamese networks and label tuning. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 8532–8545, Dublin, Ireland, May 2022. Association for Computational Linguistics.

19. Alistair E.W. Johnson, Tom J. Pollard, Lu Shen, Li-wei H. Lehman, Mengling Feng, Mohammad Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G. Mark. Mimic-iii, a freely accessible critical care database. Scientific Data, 3, 2016.

20. Özlem Uzuner, Yuan Luo, and Peter Szolovits. Evaluating the State-of-the-Art in Automatic De-identification. Journal of the American Medical Informatics Association, 14(5):550–563, 09 2007.

21. Sonish Sivarajkumar and Yanshan Wang. Healthprompt: A zero-shot learning paradigm for clinical natural language processing, 2022.

22. Sentence transformers. [https://github.com/UKPLab/sentence-transformers]. Accessed: 2022-10-23.

23. Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Ro{bert}a: A robustly optimized {bert} pretraining approach, 2020.

24. Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 38–45, Online, October 2020. Association for Computational Linguistics.

25. Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8):1798–1828, 2013.

26. Evelyn Fix and J. L. Hodges. Discriminatory analysis. nonparametric discrimination: Consistency properties. International Statistical Review / Revue Internationale de Statistique, 57, 1989.

27. I. J. Good. Rational decisions. Journal of the Royal Statistical Society, 14:107–114, 1952.

28. Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Conference on Learning Representations, 2019.

29. Tianyi Zhang, Felix Wu, Arzoo Katiyar, Kilian Q Weinberger, and Yoav Artzi. Revisiting few-sample {bert} fine-tuning. In International Conference on Learning Representations, 2021.

30. Yao Ge, Yuting Guo, Yuan-Chi Yang, Mohammed Ali Al-Garadi, and Abeed Sarker. Few-shot learning for medical text: A systematic review, 2022.