Research Article

An Advanced In Vitro Model to Assess Glaucoma Onset

Sergio C. Saccà¹, Sara Tirendi²,³, Sonia Scarfì⁴, Mario Passalacqua², Francesco Oddone⁵, Carlo E. Traverso¹,⁶, Stefania Vernazza²,⁵# and Anna M. Bassi²,³#

¹IRCCS, San Martino General Hospital, Ophthalmology Unit, Genoa, Italy; ²Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; ³Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Italy; ⁴Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy; ⁵IRCCS, Fondazione G.B. Bietti, Rome, Italy; ⁶Eye Clinic of Genoa, San Martino General Hospital, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy

Abstract

Glaucoma is the second leading cause of blindness worldwide. Currently, glaucoma treatments aim to lower intraocular pressure by decreasing aqueous humor production or increasing aqueous humor outflow through pharmacological approaches or trabeculectomy. The lack of an effective cure requires new therapeutic strategies. We compared the biological responses of a three-dimensional trabecular meshwork model with or without perfusion bioreactor technology to better understand the early molecular changes induced by prolonged oxidative stress conditions induced by repeated daily peroxide exposure. We used standard 3D cultures of trabecular meshwork cells in Matrigel cultured under either static and dynamic conditions for one week. We studied changes in F-actin expression and organization in the cells, cellular metabolic activity, proinflammatory gene expression, expression of pro- and anti-apoptotic proteins, PARP-1 cleavage, and NFκB activation in the model. We demonstrate that the dynamic conditions improve the adaptive behavior of 3D trabecular meshwork cultures to chronic oxidative stress via offsetting pathway activation.

1 Introduction

Glaucoma is a neurodegenerative disease that affects 3.54% of the population aged 40-80 years (Tham et al., 2014). There are several variants of this eye disease including primary open angle glaucoma (POAG), primary angle closure glaucoma, secondary glaucoma, and developmental glaucoma. Whereas in POAG, a high-tension form of glaucoma, there is an increase in the intraocular pressure (IOP), IOP is no longer considered the sole factor indicating the worsening of glaucoma in other forms of the disease, because glaucoma onset and progression can also occur within the normal IOP range (Kim and Park, 2019). Indeed, retinal ganglion cell (RGC) death depends on a wide range of molecular events that underlie the pathogenesis of glaucoma, and it is therefore crucial to further investigate the molecular mechanisms involved in RGC apoptosis in order to counteract this process.

Oxidative stress (OS) is regarded to be the cause of pathological outcomes including ischemic, oxidative, and inflammatory events that underlie glaucoma pathogenesis. The most common cause of the high-tension glaucoma cascade starts with OS at the trabecular meshwork (TM), which is the first element of the conventional outflow pathway (Saccà et al., 2016b). In fact, since the TM is the tissue most sensitive to OS, i.e., damage caused in the anterior chamber of the eye (Izzotti et al., 2009), many different outcomes, such as TM mitochondrial dysfunction, inflammatory cytokine release, impairment of extracellular matrix (ECM) components and their turnover, cellular senescence promotion and a consequent loss of cellularity, and others, ensue (Zhao et al., 2016; Kim and Kim, 2018). The resulting endothelial dysfunction, which affects the endothelial cells of the trabecular meshwork occurs in both normal-tension glaucoma and high-tension glaucoma (Saccà et al., 2019). Although the mechanisms by which the apoptotic signals develop towards RGCs are not yet known, it has been hypothesized that the glaucomatous effects on TM cells, with or without an increase of IOP, affect their gene and protein expression, generating molecular sig-

contributed equally

This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is appropriately cited.

Received September 28, 2019; Accepted January 23, 2020; Epub January 27, 2020, © The Authors, 2020.

Correspondence: Stefania Vernazza, PhD
Department of Experimental Medicine (DIMES)
University of Genoa
via L.B. Alberti 2, 16132 Genoa, Italy
(stefania.vernazza@yahoo.it)
nals, which, on reaching the head of the optic nerve, contribute to RGC death (Saccà et al., 2016a).

Most of the studies carried out this far to mimic different glaucomatous situations have used a variety of animal models (i.e., mouse, rat, rabbit, pig, cat, dog and monkey models). However, the obvious anatomical and morphological differences between animal and human eyes, together with the inflammation pathway triggered in the experimental approaches used to induce prolonged or transient elevation of intraocular pressure in animals, indicate that instead human-specific models of glaucoma are highly desirable (Bouhenni et al., 2012; Langley et al., 2017).

There is a growing interest in reliable 3D TM models as platforms to test new therapeutics because, unlike 2D cell cultures, they mimic the true nature of TM tissue in terms of morphology and environment (Brancato et al., 2018; Vernazza et al., 2019). In this regard, ex vivo models arising both from human and animal sources are the most widely used (Gonzalez et al., 2013; Li et al., 2019). However, the scarce availability of primary tissue limits their use in perfusion studies and drug testing (Waduthanthri et al., 2019). Therefore, 3D in vitro TM models could represent a good starting point to study several molecular features of glaucoma.

Recently, natural polymer scaffolds such as collagen-chondroitin sulfate and matrix-based Matrigel® have been used to study 3D-TM cell behavior under physiological and stress conditions and to mimic in vitro 3D-TM organization (Bouchemi et al., 2017; Osmond et al., 2017; Vernazza et al., 2019). Given its biological composition based on basement membrane components (i.e., laminin, collagen IV, heparin sulfate proteoglycans and entactin), matrix degrading enzymes, their inhibitors, and numerous growth factors, Matrigel® has been used to perform the endothelial cell tube assay, grow 3D cancer cultures, perform the invasion assay, and to support organoid assembly and the expansion of undifferentiated human embryonic stem cells (Kohen et al., 2009; Hughes et al., 2010; Benton et al., 2014).

The aim of the present study was to define a more realistic in vitro model to study glaucoma onset and its outcomes by improving standard 3D-culture performance. For this purpose, we applied millifluidic bioreactor technology to 3D human trabecular meshwork cell (HTMC) in vitro models with the aim of allowing a continuous medium supply at a constant flow rate without exposing the cells to a high shear force (Giusti et al., 2014; Berger et al., 2018). We then analyzed the proinflammatory and proapoptotic effects of repeated administration of hydrogen peroxide in 3D-HTMC embedded in Matrigel® cultured under either static or dynamic conditions for one week.

2 Materials and methods

Cell culture

HTMC from normal healthy human adult eyes and Trabecular Meshwork Growth Medium (TMGM) were acquired from Cell Application Inc. (San Diego, CA, USA). Cell Application Inc. laboratory provided an official report of evidence that the HTMC cells express several markers related specifically to a trabecular phenotype and respond to dexamethasone treatment by increasing protein level expression of fibronectin, α-smooth muscle actin, myocilin, and the cross-linked actin networks (CLAN)1. HTMCs were cultured according to consensus recommendations reported by Keller et al. (2018) and were maintained at 37°C in a humidified atmosphere containing 5% CO2. All cell cultures were used at passages 2 to 6 and were found to be mycoplasma-free during regular checks with the Reagent Set Mycoplasma Euroclone (Euroclone® Milan, Italy).

The 3D-cultures were set up as previously described2 by embedding HTMC in 100% Corning® Matrigel® Matrix (Corning Life Sciences, Tewksbury, MA USA) at a density of 2×10⁶/cm² seeded directly into a LiveBox1 (IVTech S.r.l. – Massarosa, Italy) bioreactor culture chamber, 1.7 cm² growth area/dish, and culturing them in either static or flow conditions (Vernazza et al., 2019).

Dynamic 3D-HTMC system

To study 3D-HTMC behavior under dynamic conditions, we used a sophisticated model of milli-scaled multi-organ devices in a single flow configuration (LB1, IVTech srl) (Ucciferri et al., 2014). The device is composed of a peristaltic pump (LF, IVTech srl), transparent culture chambers, and a mixing bottle, all equipped with inlet and outlet pipes on the sides that allow them to be interconnected. After seeding, each culture chamber containing the embedded cells was filled with 1 mL culture medium and placed in an incubator for 24 h. The next day, the mixing

Fig. 1: Perfusion bioreactor circuit diagram

From the mixing bottle (C), the medium is pumped by the action of the peristaltic pump (A), through the perfusion chamber where 3D-HTMCs were seeded (B), then it returns to the medium reservoir, completing the circuit. The image represents only one circuit, but the flow system includes two head pumps connected with at least four perfusion chambers (kindly provided by IVTech srl).

1 https://www.cellapplications.com/human-trabecular-meshwork-cells-htmc
2 https://doi.org/10.17504/protocols.io.574g9qw
bottle was filled with 9 mL culture medium and the circuit was filled using the peristaltic pump. The culture medium circulated in the closed circuit at a constant flow rate of 70 µL/min with basal perfusion. The flow rate was chosen to overcome diffusional limitations and to avoid Matrigel® degradation over time (Fig. 1). The medium was then replaced every 72 hours during the experimental time of 7 days.

Chronic stress condition

Prolonged oxidative stress was induced in both 3D-models over the course of a week by adding 500 µM H₂O₂ to each well once a day for 2 h, followed by 22 h of recovery, according to Poehlmann et al. (2013) and Kaczara et al. (2010). All molecular analyses on static and dynamic 3D-HTMC cultures were conducted once cells were freed from Corning® Matrigel® Matrix (Corning Life Sciences, Tewksbury, MA USA) by Corning Cell Recovery (Corning Life Sciences), according to the manufacturer’s instructions.

Confocal analysis

At each selected time point, the 3D-HTMCs, cultured and treated as mentioned above, were set in 4% paraformaldehyde and permeabilized with 0.3% Triton X-100 (Sigma Aldrich®, Milan, Italy). Nuclei were stained with To-Pro™-3 Iodide 642/641 (Thermofisher Scientific Inc., Monza, Italy) and the actin cytoskeleton was visualized using Phalloidin Alexa Fluor 488 (Cell Signaling Technology, Danvers, USA). Fluorescence signals were captured at 60X magnification, by Leica TSC SP microscope (Leica Microsystems, Wetzlar, Germany). Both fluorescence signals and F-actin intensity were quantified by Fiji® software, an open-source platform for biological image analysis. Signals from different fluorescent probes were taken in sequential scan settings (3D reconstruction images).

Alamar Blue assay

The metabolic activity of the 3D-HTMCs was assessed daily using the AB assay (Invitrogen™, Thermo Fisher Scientific Inc., Monza, Italy) within the last 4 h of the 22 h recovery time, during which medium circulation was stopped, according to the manufacturer’s instructions. In short, 10% (v/v) AB solution was added to each well and, after 4 h of incubation, resazurin reduction was quantified spectrophotometrically at wavelengths of 570 and 630 nm. The results were expressed as fold reduction activity of treated vs untreated 3D-HTMCs.

RNA extraction, cDNA synthesis and qPCR analyses

3D-HTMCs (5×10⁵) were treated as described above. A gene expression profile was obtained at 48 h by qPCR analysis and compared to control cells. Total RNA was extracted using the RNeasy Micro Kit (Qiagen, Milan, Italy) according to the manufacturer’s instructions. A NanoDrop spectrophotometer (Nanodrop Technologies, Wilmington, DE, USA) was used to quantify the RNA. cDNA was synthesized using SuperScript™ III First Strand Synthesis System (ThermoFisher Scientific). Primers (Tab. 1) were designed using the Beacon Designer 7.0 software (Premier Biosoft International, Palo Alto CA, USA) and obtained from TibMolBiol (Genova, Italy). PCR reactions were performed as described elsewhere (Vernazza et al., 2019). Values were normalized to ubiquitin (reference gene) mRNA expression. Data was analyzed using the DNA Engine Opticon® 3 Real-Time Detection System Software program (3.03 version) and, in order to calculate the relative gene expression compared to an untreated (control) calibrator sample, the comparative threshold Ct method (Aarskog and Vedeler, 2000) was used within the Gene Expression Analysis for iCycler iQ Real Time Detection System software (Bio-Rad) (Vandesompele et al., 2002).

Human apoptosis array

Apoptosis was investigated by the semi-quantitative detection of 43 human apoptotic proteins on a customized Human Apoptosis Array C1 chip (RayBio®; Norcross, GA) (Tab. 2), according to the manufacturer’s instructions. The intensity of the protein array signals was analyzed using a BIORAD Geldoc 2000, and each

Tab. 1: Primer sequences used for real time quantitative polymerase chain reaction analysis

Gene	GenBank	Forward	Reverse
IL-1α	NM_000575.4	CAATCTGTGTCTCTGAGTATC	TCAACCGTCTCTTCTTCA
IL-1β	NM_000576.2	TGAAGGCTTATACAGTGCGCAATG	GTAGTTGTTGCGAGATTGCG
IL-6	NM_001318095.1	CAGATTTGAGAAGTGAGAGAAC	CGCAGAATGAGATGAGTTGTC
MMP-1	NM_001145938.1	GGTGATGAAGCAGCCGGCAATG	CAGAGGTTGACATTACGAGGATG
MMP-3	NM_002422.5	TAAATATCCCTTACACCTAAGTCAGTCTCT	AGATTACGCTCAAGTCC
MMP-9	NM_004994.2	AAACCTACGGCAGCAGG	CGACGTCTCCACCGATCCT
TNFα	NM_000594.4	GTGAGGAGGAGCAACATC	GAGCCAGAGAGAGGTTGAG
TGF-β2	NM_00135599.3	AACCCTCTACACTACTCACTACA	CGTGTCATCATCATTATACCATCAGCATC
Ubiquitin C	NM_021009.7	ATTTGGTGCGAGTTCAGTCTTGT	TGCTTGGACATCTCGATGAGT
HPRT1	NM_000194.3	GGTGACGCGGATAATCCAAAGAAG	TTCTATTAGTCAAGGCGCATCCT
Total proteins were extracted from HTMCs as described elsewhere (Vernazza et al., 2019) and were resolved in Any kD™ mini precast gel (Bio-Rad Laboratories, Inc., Hercules, CA, USA) in SDS-PAGE running buffer. Blots were incubated with antibodies to PARP1, phospho-NF-κB p65 and Ser 536 (Cell Sig-
In contrast, the metabolic activity of 3D-dynamic HTMCs remained comparable to that of untreated cultures over the first 24 hours. Repeated OS exposure then resulted in a significant decrease in the metabolic activity (by about 20% vs untreated dy-namic cultures), which recovered slowly to return to levels comparable with untreated cultures at 144 h and 168 h.

3.3 qPCR

In order to compare cytokine production, MMP regulation, and ECM gene expression after OS treatment on 3D-HTMCs cultured in static vs dynamic conditions, the cells were treated as described above for 48 h. Gene expression levels of IL-1α, IL-1β, IL6, TNFα, TGFβ, MMP1, MMP3, MMP9, COL1A1 and FN1 were analyzed by qPCR (Fig. 4).

OS-treated 3D-dynamic HTMCs showed an up-regulation of IL-1β, TGFβ, MMP1, MMP3 and MMP9 compared both to untreated cultures and OS-treated 3D-static HTMCs. OS-treat-
ed 3D-static HTMCs evidenced a significant increase only for IL-1α levels compared both to untreated cultures and OS-treated 3D-dynamic HTMCs.

3.4 Human apoptosis array

After prolonged OS, multiple markers of the apoptosis pathway were analyzed on both 3D-HTMC models using a microarray for 43 pro- or anti-apoptotic proteins. In Figure 5, we report only the levels of those proteins that were significantly modulated in one or in both 3D-HTMC models.

At the 48 h timepoint, 3D-static HTMCs evidenced a significant increase of pro-apoptotic BID, BIM, Caspase 3, p53, Smac, TNF-R1 proteins. This modulation was even stronger at 72 h for all above proteins, except for proapoptotic p53 and Smac. Regarding antia apoptotic molecules, there was a significant increase in Survivin, IGFBP1 and IGF1 at the 48 h timepoint, and a stronger increase in BCL2, BCLw, survivin, x IAP, CD 40 and IGF1 at 72 h. These modulations of pro- and anti-apoptotic markers had all returned to baseline in 3D-static cultures at 168 hours.

In dynamic conditions, at the 48 h timepoint, pro-apoptotic BAD, BID, BAX, BIM, CytoC, Smac and TNFa/TNFα/TNFR1, TNFα/TNFR2 protein levels were significantly increased compared to those of control cultures. At 72 h, the the levels of almost all markers had returned to baseline levels, except for TNFα, TNFa/TNFα/TNFα/TNFR1, TNFα/TNFR2 which were even higher at 168 h. As for anti-apoptotic patterns, only IGFBP1 evidenced a significant increase at 48 h, while BCL2, BCLw, Hsp70, CD40, IGFBP1 and IGF1 were increased up to 3-fold at 168 h.

3.5 Western blot analysis

Analysis of PARP-1 cleavage was performed on 3D-HTMCs after 168 h chronic exposure to peroxide (Fig. 6). A marked and significant increase of PARP-1 cleavage levels was detected only in 3D-static HTMC cultures, while in 3D-dynamic HTMCs no PARP-1 cleavage was detectable (Panel A).

NF-κB transactivation, as an inflammatory/anti-apoptotic response marker, was analyzed in terms of the ratio between the levels of phospho-NF-κB p65, the activated form of NF-κB, versus total NF-κB (Panel B). A remarkable NF-κB activation occurred only in 3D-HTMC cultured in dynamic conditions.

4 Discussion

The aim of the study was to develop a relevant 3D in vitro model of HTMC using Matrigel® and bioreactor technologies to explore, in a more physiological way, the first molecular changes in the human trabecular meshwork during prolonged oxidative stress.

There are several inducible glaucoma animal models that allow evaluation of ganglion cell axon damage through the experimental increase of IOP or direct damage of the optic nerve (Burgoyne, 2015; Ishikawa et al., 2015; Struебing and Geisert, 2015; Evangelho et al., 2019). However, these approaches explain only part of the molecular mechanisms of glaucoma and, until today, the only clinically modifiable risk factor remains IOP. Species-specific differences may lead to overestimation of
effects or oversight of fundamental issues, and therefore results from animal experiments cannot always be translated to humans. There is therefore a pressing need for translationally-relevant human biology-based advanced models to help us better understand the disease in humans at multiple biological scales. This information then may be arranged into adverse outcome pathway constructs.

In the last few years, 3D-cultures together with 3D-culture techniques have allowed the development of increasingly physiologically relevant species-specific in vitro models of diseases. In particular, the development of techniques allowing perfusion flows ranging from milli- to micro-fluidics has enhanced the performance of 3D-cultures. Indeed, Ucciferri et al. (2014) and Ahluwalia (2017) reported that cells and tissues cultured in vitro under specific conditions maintain power law metabolic scaling, confirming the physiological relevance of these downscaled in vitro systems.

In the small dimension bioreactor scenario, cell-culture chambers only a few milliliters in volume (i.e., “milli-fluidic” chambers) simulate physiological environmental conditions, exposing cells to a flow that is comparable with the human circulation (Giusti et al., 2014), using a peristaltic pump. In this way, cells can interact with each other in a physiological manner.

Previous studies (Bouchemi et al., 2017; Vernazza et al., 2019) have shown that 3D-HTMC cultures are more physiological models than 2D-cultures. To further improve our 3D-HTMC cul-

Fig. 5: Expression of pro- and anti-apoptotic proteins at 48, 72 and 168 h in 3D-HTMCs cultured in static or dynamic conditions and subjected to repeated daily 500 μM H2O2 treatment
Analysis of pro- and anti-apoptotic protein levels (Panel A and Panel B, respectively) in 3D-HTMCs cultured in static and dynamic conditions were performed after 48, 72 and 168 h by Human Antibody Array C1 (RayBio® C-series). Only significantly modulated markers are reported in the graphs. The light blue dotted line represents the protein level of untreated HTMC for each protein examined. Twelve individual models were arrayed (six static 3D-HTMCs plus six dynamic 3D-HTMC) and per experiment the intensity of the Positive Control Spot was used to normalize signal responses for comparison of results across multiple arrays. *p < 0.05; **p < 0.01; ***p < 0.001 vs respective untreated cultures (one-way ANOVA).

Fig. 6: PARP1 cleavage levels and NF-κB levels at 168 h in 3D-HTMCs cultured in static or dynamic conditions and subjected to repeated daily 500 μM H2O2 treatment
The analysis was performed on 3D static (left panel) and 3D dynamic (right panel) cultures by immunoblotting. Bars represent the ratio of cleaved PARP1 and phosphoNF-κBp65/NF-κB, and are expressed as arbitrary units (AU). Data represent the mean ±SD of 2 independent experiments, running in triplicate. """p < 0.0001; **p < 0.01 vs untreated 3D cultures and §p < 0.0001 3D-HTMC treated vs 3D-HTMC control cultures (two-way ANOVA).
ture, we applied dynamic flow using the millifluidic technique and compared the biological responses of the cells cultured under dynamic conditions to those of cells cultured under static conditions to repeated oxidative stress, which is closely linked both to TM pathological changes and glaucoma (Saccà and Izzotti, 2014; Zhao et al., 2016).

The emergence of an aqueous humor outflow resistance is ascribed to cytoskeletal reorganization, and changes in cell shape, contractile properties, and cell-to-cell/ECM attachments (Xiang et al., 2010). Thus, we analyzed changes to 3D-HTMC morphology by confocal microscopy after repeated exposures to peroxide (Fig. 2). F-actin was chosen as cytoskeleton marker because it is abundant in TM cells. In our experimental conditions, at the 72 and 168 h timepoints, actin microfilaments appeared thinned and nuclei were enlarged in both static and dynamic 3D-HTMCs culture models compared to untreated cultures. These morphological changes confirmed that, besides biomechanical insults (Saccà et al., 2016b), prolonged OS can modify TM cell shape (i.e., F-actin cytoskeleton reorganization), likely through changes in gene expression.

Actin cytoskeleton depolymerization is one of the ROS mechanisms by which cell barrier functions may be impaired (Boardman et al., 2004). The reduction of F-actin intensity at 72 h showed the same trend for both the static and dynamic culture conditions. However, at 168 h, only 3D-HTMC treated under dynamic conditions showed a partial recovery of F-actin intensity. This could be due to the better nutrient supply provided by the bioreactor system (Stapulionis et al., 1997).

Moreover, the expression of IL-1α, IL-1β, IL-6, TNFα and TGFβ3 was investigated by qPCR. At the 48 h time point, we found significant up-regulation of TGF-β1 and IL-1β, two crucial markers involved both in ECM remodeling (Pulliero et al., 2014; Lv et al., 2017) and in glaucoma acute inflammatory response (Taurone et al., 2015; Wang et al., 2017), but only in 3D-dynamic HTMC cultures.

The ECM changes in the TM play an important role in increasing both aqueous humor outflow resistance and IOP (Fig. 4, panel A). Indeed, several molecular factors interact with one another to promote ECM synthesis or its degradation, changing its basic properties (Fuchshofer and Tamm, 2009). Therefore, the expression of MMP, COL1A1 and FN1 was also evaluated. The results indicate that the peroxide exposure only changed the expression of cellular proteases in order to counteract OS-induced outflow resistance (Micheal et al., 2013; Singh et al., 2015) in 3D-dynamic HTMC. However, the expression of adhesion molecules did not show significant differences compared to the untreated 3D HTMC models, even though 3D-HTMC subjected to oxidative stress and cultured under dynamic conditions showed a significant COL1A1 up-regulation (p < 0.01) compared to 3D-HTMC treated under static conditions. These results highlight that more physiological culture conditions are better able to mimic homeostatic TM cell responses found in vivo to adjust outflow resistance (Wang et al., 2001; Acott and Kelley, 2008). Thus, it is conceivable that our model mimics in vivo conditions found at early stages of glaucoma.

In this study we provide evidence that 3D-models, compared to 2D cultures commonly used for in vitro glaucoma studies, maintain tissue architecture, which represents an important hallmark for the tissue function maintenance found in vivo. However, a dynamic environment allows a better maintenance of cell structures than static culture conditions, also confirmed by confocal analysis, and this ability better supports cellular polarization, sustaining, as a consequence, long-term viability of the cells. Indeed, the modulation of apoptosis markers and NF-κB protein levels in 3D-dynamic HTMC cultures showed a more efficient adaptive response over time to OS-damage, compared to 3D-static models (Zahir and Weaver, 2004), and triggered the inflammation cascade, as happens in vivo during glaucoma occurrence.

We also observed an increase in pro-apoptotic proteins including BAD, BIM, BID, and cytochrome C in the 3D-dynamic HTMCs only at the earliest timepoint of pro-oxidant stimulus exposure, and a gradual increase over time of TNFα and TNFR1. However, at 168 h a stronger increase in anti-apoptotic markers, including survivin and IGFBP1 and also the cell proliferation activator TNFR2 was found to counterbalance the apoptotic response (Fig. 5). These results, together with the uncleaved PARP1, the increase of phosphoNF-κBp65 rate compared to total NF-κB level, and the healthy metabolic state are in favor of cell survival rather than apoptosis (Fig. 6).

On the other hand, 3D-static HTMC cultures evidenced an overexpression of BAD, BID and Caspase 3 and, to a lesser extent, also of TNRF1, as well as a marked induction of anti-apoptotic proteins such as BCL2, BCLw, survivin, x IAP, CD 40 and IGFl up to 72 h of OS-exposure. Nevertheless, after 168 h exposure to repeated sub-toxic stress, we reported PARP1 cleavage, no activation of NF-κB and a reduced metabolic activity leading to hypothesize that 3D-static HTMCs followed the apoptosis pathway (Fig. 3,6) (Elmore, 2007; Vanamée and Faustman, 2017).

In conclusion, dynamic 3D-HTMCs culture models allow for cellular function preservation over time. These features enable the cells to outlast prolonged stress attacks, and this is what is needed for a relevant in vitro model. Indeed, glaucoma is a chronic disease, which only shows effects a long time after the beginning of TM damage. This in vitro biodynamic platform can be further developed to become a useful tool to identify key events of damage onset and its long-term complications, such as blindness, by mimicking tissue-crosstalk with other tissues by joining different modules/chambers in series. In this way, it will be possible to analyze the stages of cell damage that underlie glaucoma and its adverse outcomes step-by-step.

References
Aarskog, N. and Vedeler, C. (2000). Real-time quantitative polymerase chain reaction. Hum Genet 107, 494-498. doi:10.1007/s004390000399
Acott, T. S. and Kelley, M. J. (2008). Extracellular matrix in the trabecular meshwork. Exp Eye Res 86, 543-561. doi:10.1016/j.exer.2008.01.013
Ahlulwalia, A. (2017). Allometric scaling in-vitro. Sci Rep 7, 42113. doi:10.1038/srep42113
Benton, G., Arnaoutova, I., George, J. et al. (2014). Matrigel: From discovery and ECM mimicry to assays and mod-
els for cancer research. *Adv Drug Deliv Rev* 79-80, 3-18. doi:10.1016/j.addr.2014.06.005
Berger, E., Magliaro, C., Paczia, N. et al. (2018). Millifluidic culture improves human midbrain organoid vitality and differentiation. *Lab Chip* 18, 3172-3183. doi:10.1039/C8LC00206A
Boardman, K. C., Aryal, A. M., Miller, W. M. et al. (2004). Actin re-distribution in response to hydrogen peroxide in airway epithelial cells. *J Cell Physiol* 199, 57-66. doi:10.1002/jcp.10451
Bouchemi, M., Roubeix, C., Kessal, K. et al. (2017). Effect of benzalkonium chloride on trabecular meshwork cells in a new in vitro 3D trabecular meshwork model for glaucoma. *Toxicol In Vitro* 47, 21-29. doi:10.1016/j.tiv.2017.02.006
Bouhenni, R. A., Dunmire, J., Sewell, A. et al. (2012). Animal models of glaucoma. *J Biomed Biotechnol* 2012, 692609. doi:10.1155/2012/692609
Brancato, V., Gioiella, F., Imparato, G. et al. (2018). 3D breast cancer microtissue reveals the role of tumor microenvironment on the transport and efficacy of free-doxorubicin in vivo. *Acta Biomater* 75, 200-212. doi:10.1016/j.actbio.2018.05.055
Buergoey, C. F. (2015). The non-human primate experimental glaucoma model. *Exp Eye Res* 141, 57-73. doi:10.1016/j.exer.2015.06.005
Elmore, S. (2007). Apoptosis: A review of programmed cell death. *Toxicol Pathol* 35, 495-516. doi:10.1080/01926230701320337
Engelhio, K., Mastronardi, C. A. and de-la-Torre, A. (2019). Experimental models of glaucoma: A powerful translational tool for the future development of new therapies for glaucoma in humans – A review of the literature. *Medicina (Mex)* 55, 280. doi:10.3390/medicina55060280
Fuchshofer, R. and Tamm, E. R. (2009). Modulation of extracellular matrix turnover in the trabecular meshwork. *Exp Eye Res* 88, 683-688. doi:10.1016/j.exer.2009.01.005
Giusti, S., Sbrana, T., La Marca, M. et al. (2014). A novel dual-flow bioreactor simulates increased fluorescein permeability in epithelial tissue barriers. *Biotechnol J* 9, 1175-1184. doi:10.1002/biot.201400004
Gonzalez, J. M., Hamm-Alvarez, S. and Tan, J. C. H. (2013). Analyzing live cellularity in the human trabecular meshwork. *Invest Ophthalmol Vis Sci* 54, 1039-1047. doi:10.1167/iovs.12-10479
Hughes, C. S., Postovit, L. M. and Lajoie, G. A. (2010). Matrixgel: A complex protein mixture required for optimal growth of cell culture. *Proteomics* 10, 1886-1890. doi:10.1002/pmic.200900758
Ishikawa, M., Yoshitomi, T., Zorumski, C. F. et al. (2015). Experimentally induced mammalian models of glaucoma. *Biomed Res Int* 2015, 281214. doi:10.1155/2015/281214
Izzotti, A., Saccà, S. C., Longobardi, M. et al. (2009). Sensitivity of ocular anterior chamber tissues to oxidative damage and its relevance to the pathogenesis of glaucoma. *Invest Ophthalmol Vis Sci* 50, 5251-5258. doi:10.1167/iovs.09-3871
Kaczara, P., Sarna, T. and Burke, J. M. (2010). Dynamics of H₂O₂ availability to ARPE-19 cultures in models of oxidative stress. *Free Radic Biol Med* 48, 1064-1070. doi:10.1016/j.freeradbiomed.2010.01.022
Keller, K. E., Bhattacharya, S. K., Borrás, T. et al. (2018). Consensus recommendations for trabecular meshwork cell isolation, characterization and culture. *Exp Eye Res* 171, 164-173. doi:10.1016/j.exer.2018.03.001
Kim, S. H. and Kim, H. (2018). Inhibitory effect of astaxanthin on oxidative stress-induced mitochondrial dysfunction – A mini-review. *Nutrients* 10, 1137. doi:10.3390/nu10091137
Kim, Y. W. and Park, K. H. (2019). Exogenous influ-ences on intraocular pressure. *Br J Ophthalmol* 2018, 313381. doi:10.1136/bjophthalmol-2018-313381
Kohen, N. T., Little, L. E. and Healy, K. E. (2009). Characterization of Matrigel interfaces during defined human embryonic stem cell culture. *Biointerphases* 4, 69-79. doi:10.1116/1.3274061
Langley, G. R., Adcock, I. M., Busquet, F. et al. (2017). Towards a 21st-century roadmap for biomedical research and drug discovery: Consensus report and recommendations. *Drug Discov Today* 22, 327-339. doi:10.1016/j.drudis.2016.10.011
Li, G., Lee, C., Agrahari, V. et al. (2019). In vivo measurement of trabecular meshwork stiffness in a corticosteroid-induced ocular hypertensive mouse model. *Proc Natl Acad Sci U S A* 116, 1714-1722. doi:10.1073/pnas.1814889116
Lv, X., Liu, S. and Hu, Z.-W. (2017). Autophagy-inducing natural compounds: A treasure resource for developing therapeutics against tissue fibrosis. *J Asian Nat Prod Res* 19, 101-108. doi:10.1080/10286020.2017.1279151
Micheal, S., Yousaef, S., Khan, M. I. et al. (2013). Polymorphisms in matrix metalloproteinases MMP1 and MMP9 are associated with primary open-angle and angle closure glaucoma in a Pakistani population. *Mol Vis* 19, 441-447.
Osmond, M., Bernier, S. M., Pantcheva, M. B. et al. (2017). Collagen and collagen-chondroitin sulfate scaffolds with uniaxially aligned pores for the biomimetic, three dimensional culture of trabecular meshwork cells. *Biotechnol Bioeng* 114, 915-923. doi:10.1002/bit.26206
Poehlmann, A., Reissig, K., Schönfeld, P. et al. (2013). Repeated H₂O₂ exposure drives cell cycle progression in an in vitro model of ulcerative colitis. *J Cell Mol Med* 17, 1619-1631. doi:10.1111/jcmm.12150
Pulliero, A., Seydel, A., Camoirano, A. et al. (2014). Oxidative damage and autophagy in the human trabecular meshwork as related with ageing. *PLoS One* 9, e98106. doi:10.1371/journal.pone.0098106
Saccà, S. C. and Izzotti, A. (2014). Focus on molecular events in the anterior chamber leading to glaucoma. *Cell Mol Life Sci* 71, 2197-2218. doi:10.1007/s00018-013-1493-z
Saccà, S. C., Gandolfi, S., Bagnis, A. et al. (2016a). From DNA damage to functional changes of the trabecular meshwork in aging and glaucoma. *Ageing Res Rev* 29, 26-41. doi:10.1016/j.arr.2016.05.012
Saccà, S. C., Gandolfi, S., Bagnis, A. et al. (2016b). The outflow pathway: A tissue with morphological and functional unity. *J Cell Physiol* 231, 1876-1893. doi:10.1002/jcp.25305
Saccà, S. C., Corazza, P., Gandolfi, S. et al. (2019). Substances of interest that support glaucoma therapy. *Nutrients* 11, 239. doi:10.3390/nu11020239
Singh, D., Srivastava, S. K., Chaudhuri, T. K. et al. (2015). Multifaceted role of matrix metalloproteinases (MMPs). *Front Mol Biosci* 2, 19. doi:10.3389/fmolb.2015.00019
Stapulionis, R., Kolli, S. and Deutscher, M. P. (1997). Efficient mammalian protein synthesis requires an intact F-actin system. *J Biol Chem* 272, 24980-24986. doi:10.1074/jbc.272.40.24980

Strubeing, F. L. and Geisert, E. E. (2015). What animal models can tell us about glaucoma. *Prog Mol Biol Transl Sci* 134, 365-380. doi:10.1016/bs.pmbts.2015.06.003

Taurone, S., Ripandelli, G., Pacella, E. et al. (2015). Potential regulatory molecules in the human trabecular meshwork of patients with glaucoma: Immunohistochemical profile of a number of inflammatory cytokines. *Mol Med Rep* 11, 1384-1390. doi:10.3892/mmr.2014.2772

Tham, Y.-C., Li, X., Wong, T. Y. et al. (2014). Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. *Ophthalmology* 121, 2081-2090. doi:10.1016/j.ophtha.2014.05.013

Ucciferri, N., Sbrana, T. and Ahluwalia, A. (2014). Allometric scaling and cell ratios in multi-organ in vitro models of human metabolism. *Front Bioeng Biotechnol* 2, 74. doi:10.3389/fbioe.2014.00074

Vanamee, É. S. and Faustman, D. L. (2017). TNFR2: A novel target for cancer immunotherapy. *Trends Mol Med* 23, 1037-1046. doi:10.1016/j.molmed.2017.09.007

Vandesompele, J., De Preter, K., Pattyn, F. et al. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. *Genome Biol* 3, research0034.1. doi:10.1186/gb-2002-3-7-research0034

Vernazza, S., Tirendi, S., Scarfi, S. et al. (2019). 2D- and 3D-cultures of human trabecular meshwork cells: A preliminary assessment of an in vitro model for glaucoma study. *PLoS One* 14, e0221942. doi:10.1371/journal.pone.0221942

Waduthanthri, K. D., He, Y., Montemagno, C. et al. (2019). An injectable peptide hydrogel for reconstruction of the human trabecular meshwork. *Acta Biomater* 100, 244-254. doi:10.1016/j.actbio.2019.09.032

Wang, J., Harris, A., Prendes, M. A. et al. (2017). Targeting transforming growth factor-β signaling in primary open-angle glaucoma. *J Glaucoma* 26, 390-395. doi:10.1097/IJG.0000000000000627

Wang, N., Chintala, S. K., Fini, M. E. et al. (2001). Activation of a tissue-specific stress response in the aqueous outflow pathway of the eye defines the glaucoma disease phenotype. *Nat Med* 7, 304-309. doi:10.1038/85446

Xiang, Y., Li, B., Li, G.-G. et al. (2010). Effects of endothelin-1 on the cytoskeleton protein F-actin of human trabecular meshwork cells in vitro. *Int J Ophthalmol* 3, 61-63. doi:10.3892/issn.2222-3959.2010.01.14

Zahir, N. and Weaver, V. M. (2004). Death in the third dimension: Apoptosis regulation and tissue architecture. *Curr Opin Genet Dev* 14, 71-80. doi:10.1016/j.gde.2003.12.005

Zhao, J., Wang, S., Zhong, W. et al. (2016). Oxidative stress in the trabecular meshwork (Review). *Int J Mol Med* 38, 995-1002. doi:10.3892/ijmm.2016.2714

Conflict of interest

The authors declare that they have no conflicts of interest.

Acknowledgments

Dr Francesco Oddone and Dr Stefania Vernazza were supported by the Italian Ministry of Health and by Fondazione Roma, Rome, Italy. This work was funded by the award “Omkron Italia 2017 – Marco Centofanti Neuroprotection and Glaucoma”, Omikron srl, Rome, Italy.

We would like to express our gratitude to Ilaria Rizzato, University of Genoa, for revising the English of this paper and to IVTech srl for their technical supporting information.