complication of the ear that requires surgical correction. The author introduces simple method, the z-plasty with criss-cross flap technique, which is aesthetically acceptable, preserves more volume of the helix of the ear, not producing dog ear or heavy scar and is easy to perform.

Reference Citations:
1. F. Blancodavila, H.C. Vascones. The cleft earlobe—a review of methods of treatment. Ann Plast Surg. 1994;33:677–680.
2. J.H. Xu, H. Shen, X.Y. Hong. The aesthetic repair of complete traumatic cleft earlobe with a three-flap method. Ann Plast Surg. 2010;65:318–320.
3. S. Kang, S.J. Moon, H. Suh. Traumatic cleft earlobe repair: using a double triangular flap for differently sized components on either side of the cleft. Aesth Plast Surg. 2013;37:1163–1166.

A New Technique in Correction of Hypoplastic Pixie Earlobe

Presenter: Jee Hoon Kim, MD, PhD

Affiliation: Dr. Kim Aesthetic Surgery Center, Seoul

INTRODUCTION: Most ear lobules with congenital pixie earlobe deformities are small because of their hypoplastic nature. This small earlobe makes it more looks like a pixie deformity. Ultimately, sufficient 2-dimensional expansion of hypoplastic earlobe camouflage pixie ear. Numerous surgical techniques have been introduced to correct pixie earlobe deformities. However, several of these techniques result in visible scars of the ear lobules and coccyx for demofat harvest as well as not correcting hypoplastic earlobe. We here report a new technique of using a conchal cartilage grafting combined to restore the normal ear lobule contour in patients with hypoplastic pixie earlobe deformities. This new technique results in no visible scar on anterior and inferior aspect of ear and definite enlargement of small earlobe to correct pixie ear.

METHODS: Between August 2015 and May 2016, 8 ears of 4 patients were corrected using this technique. 2 patients were women and 2 were men. The operation was performed under local anesthesia. Skin incision on the posterior surface of ear was done until earlobe. We harvested conchal cartilage from posterior incision and bolster suture was done. In the case of multiple pierced lobules, pierced fistulas are excised. A subcutaneous tunnel was made in the lobule through the posterior skin incision line. The prepared cartilage was inserted into the lobule pocket and the imbedded cartilage was immobilized using bolster suture with 5-0 Nylon sutures between anterior and posterior surface of the earlobe.

RESULTS: All patients healed uneventfully, without any complications. The patients have been followed up for a period ranging from 5 months to 11 months after the operation. We estimated the extended length of the earlobe by measuring the longest distance between the outlines of the preoperative and postoperative ear lobules when the patterns of the contours of preoperative and postoperative ear lobules were overlapped. We found that the mean length of the extended earlobe was 4.2 mm (range, 3–5.5 mm). The final esthetic results were gratifying to the patients, as well as to the surgeon.

CONCLUSION: Our new technique is a feasible alternative surgical option for the correction of hypoplastic pixie earlobe deformities to avoid visible scarring on the anterior or inferior aspects of the ear lobe. Moreover, this method can sufficiently widen 2-dimensional earlobe surface, compared with complicated dermofat grafting.

Reference Citations:
1. Hoeffin SM. Simple repair of a pixie earlobe. Plast Reconstr Surg. 2001;107:1623–1624.
2. Khoo BC. The pixie earlobe: a method of correction. Plast Reconstr Surg. 1985;76:636–638.
3. Park C. A new method for the correction of small pixie earlobe deformities. Ann Plast Surg. 2007;59:273–276.
4. Kim YS, Kook DB, Hwang E. A Novel Method for Correction of the Hypoplastic Pixie Earlobe Deformity: VY Advancement Flap and Dermofat Graft. Ann Plast Surg. 2016;76:483–4.

Comparison of Efficiency of Z Plasty and Diamond Shape Excision for Correction of Secondary Deformities in Unilateral Cleft Lip Patients

Presenter: Nuh Evin, MD

Co-Authors: Seyda Guray Evin, MD; Osman Akdag, MD; Mehtap Karamese, MD; Zekeriya Tosun, MD
Affiliation: Selcuk University, Konya

INTRODUCTION: Many different methods have been described for the revision of cleft lip scars in patients with unilateral cleft lip. The aim of this study is to compare Z plasty and diamond shape excision that commonly used techniques to correct secondary lip deformities.

METHODS: 10 patients and 8 patients were operated diamond shape excision and Z plasty respectively in 2013–2016. Patients photos after lip revision were studied with facial symmetry program and by having the symmetry of the non-cleft side; a normal lip appearance without cleft was obtained. In the late period after surgery, VAS (visual analogue scale) was performed to determine the satisfaction rates of operation. When looking at the scale, patients were given 10 points for their photographs without cleft lip and the pre-revision photographs are considered 0 point. By the surgeon, the non-clefted lips and post-revision lips were overlaid in the 2015 version of Adobe Reader Photoshop CC program, and the asymmetry of the vermillion and the filtral colon distances were determined. The surgical outcome was evaluated by the surgeon. The result is excellent if there is a difference less than 0.5 mm, good result if difference between 0.5 and 1 mm, bad result is if the difference is more than 1 mm. Whether there is a statistically difference in patient and surgeon satisfaction between the two surgical techniques was evaluated by using the PearsonÂ’s squared test in the scale data in the SPSS 15 analysis.

RESULTS: There was no statistical significance between the patients and surgeon satisfaction rates and two surgical procedures.

CONCLUSION: Z plasty and diamond shape excision are the most commonly used methods for correcting the secondary cleft lip deformity. These methods, which have no difference in terms of surgeon and patient satisfaction, can be used according to shape of the deformity.

Co-Authors: Anmol S. Chattha, BA; Klaas H.J. Ultee, PhD; Salim Afshar, DMD, MD; Samuel J. Lin, MD, MBA

Affiliation: Beth Israel Deaconess Medical Center / Harvard Medical School, Boston, MA

INTRODUCTION: Cleft defects are among the most common congenital abnormalities in the US.¹ Increasing centralization of specialist services, including cleft service delivery, is occurring worldwide, with the aim of improving the provision of cost-efficient, quality services.²³ The aim of this study is to investigate the impact of hospital volume on complications, charges and length of stay after cleft palate repair in the US.

METHODS: A retrospective analysis of the Kids’ Inpatient Database (KID) was undertaken. Children ≤3 years of age undergoing cleft palate repair in 2012 were identified. Hospital volume was categorized by cases per year as low (LV, 0–14), intermediate (IV, 15–46) or high (HV, 47–99); differences in hospital charges and length of stay (LOS) were determined using a gamma log-link generalized linear model. Logistic regression was used to assess hospital volume as a predictor of overall complications.

RESULTS: Data for 2,389 children were retrieved: 24.9% (595) of cases were LV, 50.1% (1,196) were IV and 25.0% (596) were HV. There were significant differences in ethnicity (p<0.001), co-morbidity number (p=0.002), hospital bed size (p<0.001) and concomitant procedure performed (cleft lip, p=0.025, or myringotomy, p=0.041) between LV, IV and HV centers. HV centers were more frequently located in the West (71.9%) compared with LV (19.9%) or IV (24.5%) centers (p<0.001 for hospital region). Median household income was more commonly highest quartile in HV centers compared with IV or LV centers (24.5% vs. 19.9%) or IV (24.5%) centers (p<0.001 for hospital region). Median hospital costs for LV centers ($9,682 vs. $8,378, p<0.001) but no significant difference in cost for IV centers ($9,260, p=0.103). Intermediate and LV centers had a significantly greater LOS when compared with HV centers (1.97 vs. 2.10 vs. 1.74, p<0.001).

Association of Hospital Surgical Volume with Outcomes in Cleft Repair: A Kids’ Inpatient Database Analysis

Presenter: Alexandra Bucknor, MBBS, MRCS, MSc