An ecologically motivated image dataset for deep learning yields better models of human vision

Johannes Mehrera, Courtney J. Spoererb, Emer C. Jonesa, Nikolaus Kriegeskorteb, and Tim C. Kietzmannaa,c,
draft version 1

Edited by J. Anthony Movshon, New York University, New York, NY, and approved January 12, 2021 (received for review June 13, 2020)

Deep neural networks provide the current best models of visual information processing in the primate brain. Drawing on work from computer vision, the most commonly used networks are pretrained on data from the ImageNet Large Scale Visual Recognition Challenge. This dataset comprises images from 1,000 categories, selected to provide a challenging testbed for automated visual object recognition systems. Moving beyond this common practice, we here introduce ecoset, a collection of >1.5 million images from 565 basic-level categories selected to better capture the distribution of objects relevant to humans. Ecoset categories were chosen to be both frequent in linguistic usage and concrete, thereby mirroring important physical objects in the world. We test the effects of training on this ecologically more valid dataset using multiple instances of two neural network architectures: AlexNet and vNet, a novel architecture designed to mimic the progressive increase in receptive field sizes along the human ventral stream. We show that training on ecoset leads to significant improvements in predicting representations in human higher-level visual cortex and perceptual judgments, surpassing the previous state of the art. Significant and highly consistent benefits are demonstrated for both architectures on two separate functional magnetic resonance imaging (fMRI) datasets and behavioral data, jointly covering responses to 1,292 visual stimuli from a wide variety of object categories. These results suggest that computational visual neuroscience may take better advantage of the deep learning framework by using image sets that reflect the human perceptual and cognitive experience. Ecoset and trained network models are openly available to the research community.

Results

To quantify the agreement between representations found in DNNs and the brain, we use representational similarity analysis (RSA; 15), which characterizes a system’s population code by means of a representational dissimilarity matrix (RDM, correlation distance). DNNs were shown the same stimuli as human observers (16) and fMRI data were acquired while observers viewed these stimuli. To test whether training DNNs on ecoset rather than ILSVRC 2012 might help to better explain cortical representations in human higher-visual cortex, we train various network instances on both ecoset and ILSVRC 2012 and compare their internal representations against data from two independent functional magnetic resonance imaging (fMRI) studies of human vision (12, 13) as well as human behavioral data (14).

Significance

Inspired by core principles of information processing in the brain, deep neural networks (DNNs) have demonstrated remarkable success in computer vision applications. At the same time, networks trained on the task of object classification exhibit similarities to representations found in the primate visual system. This result is surprising because the datasets commonly used for training are designed to be engineering challenges. Here, we use linguistic corpus statistics and human concreteness ratings as guiding principles to design a resource that more closely mirrors categories that are relevant to humans. The result is ecoset, a collection of 1.5 million images from 565 basic-level categories. We show that ecoset-trained DNNs yield better models of human higher-level visual cortex and human behavior.
by the brain RDM. We therefore did not perform any model fitting [i.e., reweighting (1) or linear encoding of the DNN activation profiles (3)], which would enable a model with a different distribution of features to nevertheless perform well (17). The effects of training on ecoset rather than ILSVRC 2012 were tested using two separate network architectures: AlexNet (version 2, 18), one of the most frequently used computer vision networks in computational neuroscience, and vNet, a novel 10-layer convolutional DNN that mimics the progressive increase in foveal receptive field sizes along multiple areas of the human ventral stream (V1, V2, V3, hV4, LO, TO, pFUS, and mFUS; see Materials and Methods) as previously estimated by population receptive field mapping (19, 20). While computer vision networks, engineered for task performance, exist in large variety and complexity, testing ecoset on biologically more realistic models brings both the architecture and training set into closer alignment with the task of modeling brain function. Such networks thereby constitute a more rigorous test for the effects of changing the training data. To account for individual differences among DNNs (21), 10 network instances per architecture, each initialized with different random weights, were trained on each dataset (see Materials and Methods for details, please note the effect reversal observed in earlier layers, all of which, however, provide an overall worse model of HVC). Despite no parameter fitting, the predictive power of layer seven of ecoset-trained AlexNet was on par with human observers (matching the lower bound of the noise ceiling, i.e., the predictive performance of the grand average computed over all other participants). Similar effects were observed for vNet, which exhibits significantly higher alignment with HVC representations when trained on ecoset in layers eight to 10 (permutation test, \(P < 0.01 \), Bonferroni corrected; peak similarity at layer eight, 98.3% of the lower bound of the noise ceiling). In the final network layers, ecoset training led to an increase of up to 13 percentage points in the explained proportion of explainable variance (the latter estimated as the lower bound of the noise ceiling) for AlexNet and 17 percentage points for vNet (the total variance explained increased by 15% for AlexNet and up to 21% for vNet).

FMRI dataset 2 (13) consists of cortical responses to 92 objects from a diverse set of categories shown against a gray background, recorded from each of 15 human participants. Testing against these data revealed that layers five to seven of ecoset-trained AlexNet more closely mirrored HVC representations (permutation test, \(P < 0.01 \), Bonferroni corrected, Fig. 2B, middle row). For vNet, significant benefits for ecoset trained AlexNet was on par with human observers (matching the lower bound of the noise ceiling, i.e., the predictive performance of the grand average computed over all other participants). Similar effects were observed for vNet, which exhibits significantly higher alignment with HVC representations when trained on ecoset in layers eight to 10 (permutation test, \(P < 0.01 \), Bonferroni corrected; peak similarity at layer eight, 98.3% of the lower bound of the noise ceiling). In the final network layers, ecoset training led to an increase of up to 13 percentage points in the explained proportion of explainable variance (the latter estimated as the lower bound of the noise ceiling) for AlexNet and 17 percentage points for vNet (the total variance explained increased by 15% for AlexNet and up to 21% for vNet).
training were observed in layer 10 (permutation test, $P < 0.01$, Bonferroni corrected). Layer 10 of ecoset-trained vNet performed at 59.3% of the lower bound of the noise ceiling (i.e., the predictive performance of the average of 14 held out participants) and layer seven of AlexNet performed at 54.8%. In the final network layers, ecoset training led to an increase of up to 12 percentage points in the explained proportion of explainable variance for AlexNet and 9 percentage points for vNet (the total variance explained increased by 70% for AlexNet and 37% for vNet). Together, the benefits of training with ecoset, as observed for both architectures and both datasets, are consistent with the interpretation that the visuo-semantic representations of human HVC in part reflect the distribution of categories in human language (see SI Appendix, Fig. S2 for results on early visual cortex [V1-V3] and visual areas V4/LO1-3, while benefits of ecosec training generalize to visual areas of intermediate complexity, no coherent difference in performance across training sets was observed for early visual areas).

To exclude explanations based on dataset differences in the number of categories and number of images per category, we created “trimmed” versions of both ecoset and ILSVRC 2012 while controlling for these factors. We then trained 10 vNet instances on each and compared their internal representations analogous to the original analyses. Replicating our previous results in this more conservative control, we observed significant benefits of training vNet with ecoset compared to ILSVRC 2012 in layers seven to 10 for both fMRI datasets 1 and 2 (Fig. 2A and B, bottom row, all $P < 0.05$, Bonferroni corrected).

Next, we compared our ecosec-trained networks (AlexNet v2 and vNet) against high-performance, large-scale computer vision DNNs that represent the state of the art in computational neuroscience (1–3). These included the original, pretrained AlexNet (23), VGG-19 (24), and DenseNet-169 (25). Compared to vNet
(10 layers, 28 M parameters), VGG-19 and DenseNet-169 are deeper, and AlexNet and VGG-19 have substantially more parameters (61 M for the original AlexNet and 144 M for VGG-19 because of their fully connected layers, which contain 96% and 86% of parameters for the original AlexNet and VGG-19, respectively). For each DNN, we selected the layer that best predicted the fMRI data for further analyses (all possible layers used as candidates for AlexNet and VGG-19 and all concatenation layers for DenseNet-169). We find that ecoset-trained vNet and ecoset-trained AlexNet v2 significantly outperformed all tested pretrained computer vision models in terms of predicting human HVC representations ($P < 0.05$, bootstrapped CIs, Fig. 3). This was true for both fMRI datasets tested.

To better understand why ecoset-trained DNNs perform better in predicting human HVC, we separately compared the representational dissimilarities of each experimental stimulus to all other experimental stimuli across DNN models and brain data [i.e., we performed the previous analyses on each column of the respective RDM separately instead of on the whole RDM at once (26)]. Focusing on the final layers of AlexNet and vNet, which had previously shown clear improvements for both fMRI datasets, we found significant predictive advantages for animate objects (human and animal) over inanimate objects (manmade and natural objects). That is, ecoset training resulted in better alignment of the representational dissimilarities for animate objects, including the relations among animate objects as well as the relations to inanimate objects. This effect was highly consistent across both network architectures and datasets (permutation tests of the interaction effect, testing whether the benefits of ecoset training were larger for predictions of representational dissimilarities of animate rather than inanimate objects, all $P < 0.01$; see SI Appendix, Fig. S3 and Supplementary Text for details). These results indicate that ecoset training may yield more brain-like representations for animate object categories as well as their relation to inanimate objects, mirroring large-scale organizational principles found in the human ventral stream (26, 27). Interestingly, this effect arises despite ILSVRC having a higher percentage of animate objects (39% in ILSVRC versus 19% in ecoset). This raises the possibility that the advantage of using ecoset originates from a more appropriate selection of object

![Fig. 3. Comparing ecoset-trained DNNs to the state of the art. (A) Target RDMs from human HVC shown together with RDMs extracted from various deep neural network models (best layer selected for each with dataset 1 on the left and dataset 2 on the right). (B) Agreement with human HVC plotted against model parametric complexity. vNet and AlexNet v2, both trained on ecoset, significantly outperform state of the art DNN models pretrained on ILSVRC 2012 (DenseNet-169, VGG-19, and the original AlexNet). Error bars shown in blue and red indicate 95% CI.](https://doi.org/10.1073/pnas.2011417118)
categories as well as from the requirement for object categorization on the basic level instead of a larger set of subordinate category distinctions.

Expanding our previous analyses of cortical representations in human HVC to behavior, we tested whether ecoset training also yields network internal representations that more closely mirror human perceptual judgments. We used behavioral data obtained via inverse multidimensional scaling (inverse MDS), a task in which participants perform multiple two-dimensional (2D) arrangements of real-world objects to indicate their perceived similarity (14, 28). The stimulus set used in this experiment was equivalent to the stimuli from fMRI dataset 2. For each participant, inverse MDS results in a perceptual RDM of equivalent format to the previously analyzed dissimilarity matrices. Mirroring our previous analysis approach, no model fitting was performed to align DNN and behavioral data. Ecoset-trained networks significantly outperformed ILSVRC-trained network instances in their alignment with human perceptual judgments (Fig. 2C). This was true for both AlexNet (significant benefits in layers four to seven, permutation test, \(P < 0.05 \), Bonferroni corrected; peak similarity at layer seven, 62.1% of the lower bound of the noise ceiling) and vNet (significant benefits in layers eight to 10, permutation test, \(P < 0.01 \), Bonferroni corrected; peak similarity at layer 10, 59.5% of the lower bound of the noise ceiling). In the final network layer, ecoset training led to an increase of 6.8 percentage points in the explained proportion of explainable variance for AlexNet and 5.7 percentage points for vNet (the total variance explained increased by 21% for AlexNet and 19% for vNet). Significant benefits in later network layers were also observed for vNets trained on the trimmed ILSVRC and ecoset datasets, which control the number of images and categories (SI Appendix, Fig. S4). Moreover, in line with previous reports of alignment between perceptual judgments and human inferior temporal cortex (14), we find a significant correlation between our networks' ability to mirror human HVC and human perceptual judgments (\(\rho_{\text{vNet}} = 0.996; \text{AlexNet } \rho = 0.987; \text{all } P < 0.001; \text{robust } \rho \) (Fig. 2D).

Finally, the human visual system contains multiple higher-level visual regions in which neurons exhibit selectivity for images of faces (5). To test in how far face selectivity is mirrored in our network models, we searched for face-selective units by task training in silico electrophysiology experiments in which we contrast the units’ responsiveness to images showing either faces or places and computed the percentage of units with significant face selectivity for each network layer and network instance (see Materials and Methods). Although faces are not a separate object category, we reasoned that the existence of related ecoset categories, such as woman, man, and child, would naturally lead to the more prominent emergence of face-selective units in higher-level network representations. Indeed, we observe that the deepest network layers of both architectures exhibit both the highest percentage of face-selective units as well as a significant increase when training on ecoset rather than ILSVRC (Wilcoxon signed-rank test across network instances, \(P < 0.05 \), Bonferroni corrected for the number of layers per network, SI Appendix, Fig. S5). For AlexNet, the average percentage of face-selective units increased from 9.3 to 12.2%, and for vNet, we observed an increase from 4.3 to 6.9%.

Conclusions

Ecoset provides an alternative to ILSVRC 2012 by featuring a more ecologically valid distribution of categories based on spoken word frequency and human concreteness ratings. We have shown that training deep neural networks on ecoset, instead of the commonly used data from ILSVRC, produces DNN representational spaces that are not only more consistent with those found in human HVC but that also align better with human perceptual judgments. The size of these statistically significant benefits is modest, but as we have shown here, they replicate across two architectures, trained instances of these architectures, two brain-activity data sets, and human similarity judgments. Moreover, the observed benefits for predicting representational geometries of animate objects (including response similarities among animate objects as well as between animate and inanimate objects) was consistent across network architectures and datasets.

As a step in the direction of increasing the biological plausibility of deep network architectures, we here designed vNet such that the model receptive field sizes mirror the progression of foveal receptive field sizes across the human visual hierarchy. Future work should explore in how far the interplay of ecoset and the introduction of further biological details, such as recurrence (30–34), skip connections, and more biologically more realistic learning rules can further improve model predictions (6, 8). Another aspect worth considering is the learning objective. We here trained all DNNs to optimize for categorization performance. While this task is undoubtedly of ecological relevance, the explanatory power of unsupervised objectives (35–37), semantically better-informed training targets, and their interplay with ecoset will be worth considering going forward.

To test our networks against brain data, we here focused on similarities between representations learned by DNNs and the ones found in human HVC across two separate and diverse fMRI datasets. Whereas dataset 1 focused on stimulus variety (1,200 natural scenes shown to each participant), dataset 2 relied on high repetition rates for fewer stimuli (92 segmented objects). We think that this dataset diversity is an important aspect for evaluating new computational resources, such as ecoset and vNet. Although we observed significant benefits of training on ecoset in all cases, it should be noted that the lower bound of the noise ceiling of dataset 1 in particular is comparably low, likely due to individual differences among the small number of participants and because of our choice of using single-trial responses to individual images rather than averaging images showing the same object categories. The resulting variability in lower-bound estimates needs to be taken into account when interpreting the observed high network performance. Individual differences also exist among DNNs (21), and it will be of interest to relate these two phenomena.

In addition to acquiring better fMRI datasets to further underpin the generality of the effects observed [more data per subject, more stimulus variety including diverse object poses and orientations (38), higher field, higher contrast-to-noise ratio], a promising avenue of future research is large-scale, in silico neurophysiology, which could be used to better understand how unit selectivity changes as a result of training with ecologically more valid input statistics. Here, we presented a first foray into this domain by showing that ecoset training leads to an increase in face-selective units in final network layers. Moving further into the domain of behavior, it will be of interest to perform in-depth tests of ecoset-trained networks (supervised or unsupervised) to compare their task performance and error distributions against human behavioral data (39–42).

To enable rapid adoption by the community, ecoset is openly available for research purposes at https://dx.doi.org/10.24433/CO.4784989.v1. We also provide all trained vNet and AlexNet v2 instances along with a web interface that allows users to extract activation patterns and RDMs in response to their own stimulus sets. In addition to use cases in computational neuroscience, we expect ecoset to be useful to the machine learning community where it provides a challenging computer vision benchmark.
Materials and Methods

Ecoset Dataset. Overview. This section provides an in-depth description of ecoset category and image selection procedures. Please refer to SI Appendix, Table S1 for a list of 565 ecoset categories together with their word frequency, concreteness rating, frequency concreteness index (FCI), and the corresponding number of images.

Ecoset was created as a large-scale image resource for deep learning and human visual neuroscience more generally (see ref. 43 for a related dataset designed for experimental work in psychology and neuroscience). A total of 565 categories were selected based on the following: 1) their word frequency in American television and film subtitles (SUBLLEX US, 10), 2) the percentage of concreteness by human observers (5), and 3) the availability of a minimum of 700 images. Images were sourced via the overall ImageNet database (the same resource used for ILSVRC 2012) or obtained under CC BY-NC-SA 2.0 license from Bing image search and Flickr. Thorough data cleaning procedures were put in place to remove duplicates and to assure an expected misclassification rate per category of <4%.

Category Selection. The aim of ecoset was to provide the community with a dataset that contains ecologically more valid categories than typical computer vision datasets that were designed toward engineering goals. Starting from all nouns in the English language, two parameters were used to guide the selection process. First, the frequency at which a given noun occurs in a linguistic corpus of spoken language was used as a proxy for concept importance. Second, human ratings of each noun’s concreteness were used to focus on nouns that have a physical realization and which can therefore be readily visualized (compare for example the nouns “strawberry” and “hope,” which are at opposing ends of the concreteness spectrum). Only nouns with an associated concreteness rating of 4.0 or higher were considered for inclusion. We then combined the two selection parameters, frequency, and concreteness by defining an FCI (defined below). This enabled us to focus on the most common, most concrete nouns of the English language.

Estimates of noun frequency were based on a linguistic corpus consisting of American television and film subtitles (SUBLLEX US, 10). Concreteness estimates were publicly available (11). These data were collected via Amazon Mechanical Turk, asking participants to rate words (40,000 total) with regard to their concreteness on a five-level Likert scale. Frequency estimates and concreteness ratings were each standardized to a range between 0 and 1. FCI was subsequently defined as the average standardized frequency and concreteness. It ranges from 0 to 1. We computed the FCI for all words contained in the concreteness rating dataset (11) and processed the 3,500 nouns with the highest FCI rating in depth.

\[
FCI = 0.5 \times \frac{\text{word frequency}}{\max(\text{word frequency})} + 0.5 \times \frac{\text{concreteness}}{\max(\text{concreteness})}
\]

Only nouns that describe basic-level categories were considered for inclusion. Please note that the definition of basic-level categories is a matter of an ongoing scientific debate, and basic-level judgments can vary across individuals (44). Because of its inherently subjective nature, the classification of human visual neuroscience more generally (see ref. 43 for a related dataset). To compute the actual image-based overlap between ecoset and ILSVRC, we ran a similar analysis used for duplicate removals, as described in detail below, across both datasets (ecoset and ILSVRC). We find that only 12.7% of images in ecoset also appear in ILSVRC 2012, indicating little overlap between the two datasets. To find images matching a given ecoset category, we used the ImageNet web interface to manually search for appropriate WordNet synsets to be included. Multiple synsets could be selected as sources for a given category.

As additional resources for finding images, we used Bing and Flickr image searches based on the category names, synonyms, and their translations into other languages (French, Spanish, Italian, and German). Image search via Flickr and Bing was constrained to images under CC BY-NC-SA 2.0 license. For the Flickr application programming interface (API), we chose option one (NonCommercial-ShareAlike License), and for the Bing API we chose the option “share,” both referring to CC BY-NC-SA 2.0. In the final ecoset dataset, 5.1% of images were obtained via Bing and 1.4% were obtained via Flickr.

To minimize the probability that all images in the ecose set dataset are unique, a duplicate removal procedure was implemented. This was designed to not only spot exact duplicates but also more subtle variations, including different sizes or different aspect ratios. Duplicate removal was performed for each category separately. First, we cropped the center square of all images of the category, resized them to 128×128 pixels, and performed a principal component analysis (PCA) preserving 90% of the variance across all images and then shuffled all image points. For the purpose of this analysis, the classification of some of the images used to train the DNN models contained nudity. These images were removed in creating the publicly available version of ecoset to allow for more straightforward adoption by all community members. Images were marked for removal if the probability of containing not safe for work (NSFW) material exceeded 0.8, estimated using a DNN trained for NSFW detection (Yahoo (45), https://github.com/yahoo/opensfw). Note that only 118 (out of >1.5 million) images had to be removed.

Trimmed dataset versions. Ecoset and ILSVRC 2012 differ in the number of categories (565 versus 1,000) and in the distribution of the number of images per category. These differences might confound their ability to predict neural data. To control for this possibility, we created “trimmed” versions of both datasets that are identical in the number of categories and the distribution of the number of images per category. For this, we selected all 565 categories from ecoset and a subset of 565 randomly chosen categories from ILSVRC 2012. To hold the number of images per category equal across trimmed image sets, while retaining the maximally possible number of images, the following procedure was implemented. First, we ordered the 565 categories of ecoset and trimmed ILSVRC 2012 according to category size and paired the categories from the sorted list across images sets (e.g., “boat” and “highway” paired as smallest categories from ecoset and ILSVRC, respectively). For each category pair, one from each dataset, we then selected the larger category and randomly removed images to match the number of images in the smaller category. As a result, trimmed ecose and trimmed ILSVRC both
contain 565 categories and follow the same distribution of category sizes with minimally 600 to maximally 1,300 images per category in the respective training sets.

Limitations of ecological validity. As stated above, the category selection of ecoset was based on human concreteness ratings and word frequencies in a corpus consisting of American television and film subtitles. This undoubtedly biases the category selection toward Western cultures. Image inclusion was based on the availability via Bing/Flickr search results as well as the existence of relevant ImageNet categories. Images depicting people, specifically the categories "man," "woman," and "child," were not sampled according to census distributions (age, ethnicity, gender, etc.). Moreover, ecoset image and category distributions do not reflect the naturalistic, egocentric visual input typically encountered in the everyday life of infant and adults (46, 47).

Deep Neural Network Architectures.

vNet. The vNet architecture, as introduced here, was designed such that the effective kernel sizes across network layers mirror the progressive increase of average receptive field (RF) sizes along multiple areas of the human ventral stream (Fig. 4A). As model targets, we chose human V1, V2, V3, hV4, LO, TO, pFUS, and mFUS. As a substantial part of the human ventral stream lies anterior to these eight regions, including object- and concept-selective regions (48–50), we included two more layers to the final network while following the same incremental trends in RF size. The network’s total field of view was set to 3° of visual angle, and the human receptive field sizes were defined based on population receptive field estimates obtained at an eccentricity of 0.75° visual angle to mirror the average foveal RF size (19, 20). Each vNet layer consists of a convolution operation, dropout, max pooling, group norm, and a ReLU nonlinearity (no max pooling for the input and layers [1, 2, 5, and 6]). Each of 10 network instances per training set was trained for 80 epochs using Adam as optimizer, group normalization, a minibatch size of 256, and dropout with a probability of 0.2. The networks reached an average top-one test performance of 65.3% for ecoset and 59.3% for ILSVRC 2012. A weighted loss was used to correct for dataset imbalances in the number of images across object categories.

AlexNet v2 (retrained). To compare the effects of training on ecoset versus ILSVRC 2012 on more commonly used deep neural network architecture, we...
retrained AlexNet in its 2014 refined version (18). The most important difference of this version, apart from slightly different numbers of feature maps in the first two layers, is the use of data instead of model parallelization. All training hyperparameters were chosen as closely as possible to the original publication (learning rate 0.01, dropout 0.5, minibatch size 128, momentum 0.9, and weight decay 0.0005). Varying the random seed for the initial network weights, we trained 10 network instances each on both datasets. Networks were trained for 90 epochs. The retrained AlexNet instances reached an average top-one accuracy of 62.8% on ecocet and 58.1% on ILSVRC 2012. A weighted loss was used to correct for dataset imbalances in the number of images across object categories.

Off-the-shelf computer vision networks (original AlexNet, DenseNet, VGG19). In addition to training refined AlexNet (v2) and vNet instances on ecocet and ILSVRC 2012, we tested other commonly used network architectures from the domain of computer vision for their ability to mirror representations in human IT. These included VGG19 (24), DenseNet-169 (25), and the original 2012 AlexNet architecture (23). DenseNet and VGG19 were obtained via Keras applications. Original AlexNet was obtained via the Caffe model zoo ("bvlc_alexnet").

DNN RDM extraction. To compare the network internal representations to those observed in human ventral stream areas, we presented the networks with the same two stimulus sets that were presented to the human participants in the imaging experiments. We then computed layer-based network RDMs for each instance by calculating all pairwise distances between the high-dimensional network responses (using correlation distance as the fMRI data).

DNN in silico electrophysiology. We estimated the percentage of face-selective cells in each layer of VNet and Alexnet by contrasting, for each network layer, the unit’s responsiveness to images showing either faces or places (50 stimuli each, taken from the ecocet test set). Units were deemed face selective if they exhibited a significantly higher response to faces than places (Wilcoxon rank-sum test $P < 0.05$, false discovery rate (FDR) corrected across all units across the whole network). For each network layer, we then test for significant differences in the percentage of face-selective units, using network instances as observations (results Bonferroni corrected for the number of layers per network at $P < 0.05$).

FMRI Data.

Overview. Data from human early visual cortex (EVC) and HVC were obtained from two FMRI datasets (12, 13). Acquisition and preprocessing details can be found in the corresponding publications. RSA was used to characterize human ventral stream representations in both regions of interest (ROIs). RDMs were computed for each participant and ROI using correlation distance.

To estimate observation noise in the respective fMRI dataset and ROI, the RDM of each participant was individually compared to the grand average RDM of the remaining participants. The average of these correlations is equivalent to the lower bound of the noise ceiling (1).

Dataset 1. This dataset consists of data from five healthy participants presented with a set of 1,200 photographs of natural objects with natural background. A total of 312 stimuli contain animate objects (eight humans) and 888 inanimate objects (64 plants). See Fig. 2 (left column) for exemplary images from this set. Low-level visual cortex was defined to include areas V1 to V3. HVC was manually delineated on the flattened surface of the individual participants to include the lateral occipital complex (LOC), fusiform face area (FFA), and parahippocampal place area (PPA).

Dataset 2. This dataset consists of data from 15 healthy participants who were presented photographs of 92 objects shown against a gray background (see Fig. 2, right column for examples). Stimuli were presented at 2.9° visual angle (13). The 92 images were sampled from human (12) and nonhuman faces (12) and bodies (12 and 12 each) as well as natural and manmade inanimate objects (23 and 21 images, respectively). EVC included areas V1 to V3, as defined in the Glasser atlas (31). HVC was defined to include regions along the IT and parahippocampal cortex, as defined in (30). For both ROIs, EVC and HVC, the 500 most visually responsive voxels were selected for subsequent analyses.

Statistical Comparisons between Human IT and DNN Representations. The following procedure was implemented to test whether training on ecocet rather than ILSVRC 2012 led to network internal representations that more closely mirror the ones found in early and high-level regions of the human ventral stream. For each dataset, we extracted brain RDMs from each participant and ROI as well as DNN-based RDMs for each network architecture, instance, and layer. For each ROI and dataset, we then iterated through all participants and correlated the upper triangle of the corresponding brain RDM with the network RDMs using the Spearman’s rank correlation coefficient (see Fig. 4B for a graphical depiction of the analysis pipeline for a single participant). As a summary statistic, we averaged the correlation values from all participants for each network instance and layer. This value describes the average RDM similarity of a given network instance and layer with all human participants. To test whether training on ecocet rather than ILSVRC 2012 led to significant differences in model alignment with representations in human IT, we took the RDM correlations obtained for each model instance and performed a permutation test in which we shuffled the dataset labels across network instances (10,000 iterations for vNet and all permutations for AlexNet v2). The test was performed for each network layer, architecture, and fMRI dataset separately. To control the family-wise error rate, we used a Bonferroni correction for the number of network layers (i.e., the number of tests performed for each network architecture, ROI, and dataset; vNet: 10 and AlexNet v2: seven). Moreover, we estimated the 95% CIs for the predictive performance of both architectures using bootstrapping of the network instances (1,000 samples).

Human Behavioral Data. In addition to testing our models against representations found in human fMRI, we compared our network internal representations for their agreement with behavioral data, obtained from human similarity judgments (14, 28). Using the same stimulus set as in fMRI dataset 2, participants were asked to communicate perceptual object similarity by arranging sets of multiple object images in 2D on a computer screen by mouse drag and drop. Combining data from multiple trials of this arrangement task, a perceptual similarity matrix can be computed for each of 16 participants. This matrix has the same format as the RDMs used previously. Statistical comparisons between perceptual and DNN dissimilarity matrices were performed in analogy to the previous fMRI analyses. The data were previously presented in ref. 14.

Data Availability. All materials presented in this paper (ecocet dataset, pre-trained networks, and test stimuli) are openly available for research purposes via CodeOcean (52): https://dx.doi.org/10.24433/CO.7489499.v1.

ACKNOWLEDGMENTS. We thank the Cichy and Kamitani laboratories for sharing the fMRI data as well as Marieke Mur for access to her perceptual stimuli. The following procedure was implemented to test whether training on ecocet rather than ILSVRC 2012 leads to network internal representations that more closely mirror the ones found in early and high-level regions of the human ventral stream. For each dataset, we extracted brain RDMs from each participant and ROI as well as DNN-based RDMs for each network architecture, instance, and layer. For each ROI and dataset, we then iterated through all participants and correlated the upper triangle of the corresponding brain RDM with the network RDMs using the Spearman’s rank correlation coefficient (see Fig. 4B for a graphical depiction of the analysis pipeline for a single participant). As a summary statistic, we averaged the correlation values from all participants for each network instance and layer. This value describes the average RDM similarity of a given network instance and layer with all human participants. To test whether training on ecocet rather than ILSVRC 2012 led to significant differences in model alignment with representations in human IT, we took the RDM correlations obtained for each model instance and performed a permutation test in which we shuffled the dataset labels across network instances (10,000 iterations for vNet and all permutations for AlexNet v2). The test was performed for each network layer, architecture, and fMRI dataset separately. To control the family-wise error rate, we used a Bonferroni correction for the number of network layers (i.e., the number of tests performed for each network architecture, ROI, and dataset; vNet: 10 and AlexNet v2: seven). Moreover, we estimated the 95% CIs for the predictive performance of both architectures using bootstrapping of the network instances (1,000 samples).

Human Behavioral Data. In addition to testing our models against representations found in human fMRI, we compared our network internal representations for their agreement with behavioral data, obtained from human similarity judgments (14, 28). Using the same stimulus set as in fMRI dataset 2, participants were asked to communicate perceptual object similarity by arranging sets of multiple object images in 2D on a computer screen by mouse drag and drop. Combining data from multiple trials of this arrangement task, a perceptual similarity matrix can be computed for each of 16 participants. This matrix has the same format as the RDMs used previously. Statistical comparisons between perceptual and DNN dissimilarity matrices were performed in analogy to the previous fMRI analyses. The data were previously presented in ref. 14.

Data Availability. All materials presented in this paper (ecocet dataset, pre-trained networks, and test stimuli) are openly available for research purposes via CodeOcean (52): https://dx.doi.org/10.24433/CO.7489499.v1.

ACKNOWLEDGMENTS. We thank the Cichy and Kamitani laboratories for sharing the fMRI data as well as Marieke Mur for access to her perceptual similarity data. This project received funding from the Cambridge Trust (Vice Chancellor’s Award to J.M.), Biotechnology and Biological Sciences Research Council (BB/M01194/1 to E.C.J.), German Science Foundation (DFG grant “Dynavision” to T.C.K.), and the European Union’s Horizon 2020 Programme (Grant Agreement No. 720270, 785907 to N.K.).
14. M. Mur et al., Human object-similarity judgments reflect and transcend the primate-IT object representation. Front. Psychol. 4, 128 (2013).
15. N. Kriegeskorte, Representational similarity analysis—Connecting the branches of systems neuroscience. Front. Syst. Neurosci. 2, 4 (2008).
16. N. Kriegeskorte, J. Diedrichsen, Peeling the onion of brain representations. Annu. Rev. Neurosci. 42, 407–432 (2019).
17. K. R. Storrs, T. C. Kietzmann, A. Walther, J. Mehrer, N. Kriegeskorte, Diverse deep neural networks all predict human IT well, after training and fitting. bioRxiv [Preprint] (2020). https://doi.org/10.1101/2020.05.07.082743. (Accessed 11 May 2020).
18. A. Krizhevsky, One weird trick for parallelizing convolutional neural networks. arXiv [Preprint] (2014). https://arxiv.org/pdf/1404.5997v1.pdf. (Accessed 9 April 2014).
19. B. A. Wandell, J. Winawer, Computational neuroimaging and population receptive fields. Trends Cogn. Sci. 19, 349–357 (2015).
20. K. Grill-Spector, K. S. Weiner, K. Gomez, The functional neuroanatomy of vision. Annu. Rev. Neurosci. 34, 379–391 (2011).
21. J. Mehrer, C. J. Spoerer, N. Kriegeskorte, T. C. Kietzmann, Individual differences among deep neural network models. bioRxiv [Preprint] (2020). https://www.biorxiv.org/content/10.1101/2020.01.08.898288v1. (Accessed 11 February 2020).
22. P. Bao, L. She, M. McGill, D. Y. Tsao, A map of object space in primate inferotemporal cortex. Nature 583, 103–108 (2020).
23. A. Krizhevsky, I. Sutskever, G. E. Hinton, ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012).
24. K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition. arXiv [Preprint] (2014). http://export.arxiv.org/abs/1409.1556v6. (Accessed 17 October 2014).
25. G. Huang, Z. Liu, L. van der Maaten, K. Q. Weinberger, Densely connected convolutional networks. arXiv [Preprint] (2017). https://arxiv.org/abs/1608.06993. (Accessed 17 October 2019).
26. N. Kriegeskorte et al., Matching categorical object representations in inferior temporal cortex of man and monkey. Neuron 60, 1126–1141 (2008).
27. T. Konkle, A. Caramazza, Tripartite organization of the ventral stream by animacy and object size. J. Neurosci. 33, 10235–10242 (2013).
28. N. Kriegeskorte, M. Mur, M. D. S. Inverse, Inverse MDS: Inferring dissimilarity structure from multiple item arrangements. Front. Psychol. 3, 245 (2012).
29. C. R. Pernet, R. Wilcox, G. A. Rousselet, Robust correlation analyses: False positive and power validation using a new open source matlab toolbox. Front. Psychol. 3, 606 (2013).
30. T. C. Kietzmann et al., Recurrence is required to capture the representational dynamics of the human visual system. Proc. Natl. Acad. Sci. U.S.A. 116, 21854–21863 (2019).
31. K. Kar, J. Kubiulis, K. Schmidt, E. B. Isa, J. J. DiCarlo, Evidence that recurrent circuits are critical to the ventral stream’s execution of core object recognition behavior. Nat. Neurosci. 22, 974–983 (2019).
32. C. J. Spoerer, T. C. Kietzmann, J. Mehrer, I. Charset, N. Kriegeskorte, Recurrent neural networks can explain flexible trading of speed and accuracy in biological vision. PLoS Comput. Biol. 16, e1008125 (2020).
33. D. Linsley, J. Kim, A. Ashok, T. Serre, “Recurrent neural circuits for contour detection” in 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia (ICLR, 2020), p. 23.
34. R. S. van Bergen, N. Kriegeskorte, Going in circles is the way forward: The role of recurrence in visual inference. arXiv [Preprint] (2020). https://arxiv.org/abs/2003.12128. (Accessed 7 October 2020).
35. T. Konkle, G. A. Alvarez, Instance-level contrastive learning yields human brain-like representation without category-supervision. bioRxiv [Preprint] (2020). https://www. biorxiv.org/content/10.1101/2020.06.15.153247v1. (Accessed 16 September 2020).
36. C. Zhuang et al., Unsupervised neural network models of the ventral visual stream. bioRxiv [Preprint] (2021). https://www.biorxiv.org/content/10.1101/2020.06.16.155556v1. (Accessed 16 September 2020).
37. K. R. Storrs, R. W. Fleming, Unsupervised learning predicts human perception and misperception of gloss. bioRxiv [Preprint] (2020). https://www.biorxiv.org/content/10.1101/2020.04.07.026120v2. (Accessed 16 September 2020).
38. D. L. K. Yamins et al., Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proc. Natl. Acad. Sci. U.S.A. 111, 8619–8624 (2014).
39. R. Geirhos et al., Comparing deep neural networks against humans: Object recognition when the signal gets weaker. arXiv [Preprint] (2017). https://arxiv.org/abs/1706.06969v2. (Accessed 14 May 2018).
40. M. N. Hebart, C. Zheng, F. Pereira, C. I. Baker, Revealing the multidimensional mental representations of natural objects underlying human similarity judgments. Nat. Hum. Behav. 4, 1173–1185 (2020).
41. R. Geirhos, K. Meding, F. A. Wichmann, Beyond accuracy: Quantifying trial-by-trial behaviour of CNNs and humans by measuring error consistency. arXiv [Preprint] (2020). https://arxiv.org/abs/2006.16736v3. (Accessed 7 October 2020).
42. R. Rajalingham et al., Large-scale, high-resolution comparison of the core visual object recognition behavior of humans, monkeys, and state-of-the-art deep artificial neural networks. J. Neurosci. 38, 7255–7269 (2018).
43. M. N. Hebart et al., THINGS: A database of 1,854 object concepts and more than 26,000 naturalistic object images. PLoS One 14, e0223792 (2019).
44. J. W. Tanaka, M. Taylor, Object categories and expertise: Is the basic level in the eye of the beholder? Cognit. Psychol. 23, 457–482 (1991).
45. J. Mahadeokar, G. Pesavento, “Opening a source deep learning solution for detecting NSFW images” (2016). GitHub. https://github.com/yahoo/open_nsfw/blob/master/README.md. Accessed 8 February 2021.
46. J. Sullivan, M. Mei, A. Perfors, E. H. Wojcik, M. C. Frank, SAYCam: A large, longitudinal perspective experience with faces video-recorded in their typical, daily environment. Data Brief 29, 105070 (2019).
47. N. A. Sugden, M. C. Moulson, The infant’s face diet: Data on 3-month-old infant perspective experience with faces video-recorded in their typical, daily environment. PsyArXiv [Preprint] (2020). https://doi.org/10.31234/osf.io/syflf. (Accessed 6 January 2021).
48. M. A. Lambon Ralph, K. Sage, R. W. Jones, E. J. Mayberry, Coherent concepts are computed in the anterior temporal lobes. Proc. Natl. Acad. Sci. U.S.A. 107, 2717–2722 (2010).
49. D. Y. Tsao, S. Moeller, W. A. Freiwald, Comparing face patch systems in macaques and humans. Proc. Natl. Acad. Sci. U.S.A. 105, 19514–19519 (2008).
50. R. Rajimehr, J. C. Young, R. B. H. Tootell, An anterior temporal face patch in human cortex, predicted by macaque maps. Proc. Natl. Acad. Sci. U.S.A. 106, 1995–2000 (2009).
51. M. F. Glaser et al., A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016).
52. J. Mehrer, T. C. Kietzmann, Ecoset, CodeOcean capsule (2021). https://dx.doi.org/10.24433/CO.4794989.v1. Deposited 2 February 2021.