Vinorelbine plus trastuzumab combination as first-line therapy for HER 2-positive metastatic breast cancer patients: an international phase II trial

A Chan*,1, M Martin2, M Untch3, MG Gil4, V Guillem-Porta5, M Wojtkiewicz6, P Kellokumpu-Lehtinen7, HL Sommer8, V Georgoulas9, N Battelli10, M Pawlicki11, D Aubert12, T Bourlard12, J Gasmi12, G Villanova12 and L Petruzelka13 on behalf of the Navelbine® Herceptin® Project

1Mount Hospital and Royal Perth Hospital, Perth, Australia; 2Hospital Clinico San Carlos, Madrid, Spain; 3Klinikum Grosshadern, München, Germany; 4Instituto Catala d’Oncologia, Hospitalet de Llobregat, Barcelona, Spain; 5Instituto Valenciano de Oncologia, Valencia, Spain; 6Oncology Department, Medical University and Regional Cancer Centre, Bialystok, Poland; 7Medical School, Tampere University Central Hospital, Pikanlinna, Finland; 8Klinikum Universität München, München, Germany; 9Peripheral General Hospital Iraklion, Stavrakia and Voutes, Iraklion, Greece; 10Azienda Ospecciali Umberto I, Ancona, Italy; 11Centrum Onkologii W Krakowie, Krakow, Poland; 12Institut de Recherche Pierre Fabre, Boulonne-Billancourt, France; 13General Teaching Hospital, Prague, Czech Republic

The aim of this international phase II trial was to determine the efficacy and safety profile of weekly vinorelbine plus trastuzumab as first-line chemotherapy for women with HER 2-overexpressing metastatic breast cancer. Sixty-nine patients with tumours overexpressing HER 2 received vinorelbine: 30 mg m⁻² week⁻¹ and trastuzumab: 4 mg kg⁻¹ on day 1 as a loading dose followed by 2 mg kg⁻¹ week⁻¹ starting on day 8. Sixty-two patients were evaluable for response and 69 patients were evaluable for toxicity. The overall response rate was 62.9%. The median time to response was 8.4 weeks, the median duration of response was 17.5 months, the median progression-free survival was 9.9 months (95% CI, 5.6 – 12.1) and the one-year progression-free survival was 39.1%. The median survival for all patients was 23.7 months (95% CI, 18.4 – 32.6). This regimen was safe: grade 3–4 neutropenia were observed over 17.7% of courses in 83.8% of patients, with only two episodes of febrile neutropenia (0.1%) in two patients (2.9%). Only one patient discontinued treatment due to grade 3 symptomatic cardiac dysfunction that resolved with therapy. Vinorelbine plus trastuzumab is one of the most active treatment regimens for patients with HER 2-positive metastatic breast cancer and demonstrates a very favourable safety profile allowing prolonged treatment with long-term survival. This study has been presented in part at the following conferences: The San Antonio Breast Cancer Symposium, San Antonio, TX, USA, 2003; The American Society of Clinical Oncology, Orlando, FL, USA, 2005.

Keywords: trastuzumab; vinorelbine; first-line chemotherapy; HER 2-positive metastatic breast cancer
conducted with this regimen as first-line therapy or in heavily
pretreated patients with metastatic breast cancer. These studies
consistently demonstrated high efficacy with limited toxicities
(Burstein et al, 2001, 2003; Jahanzeb et al, 2002; Bayo-Calero et al,
2004; Bernardo et al, 2004).
This international, open-label, phase II study was designed to
evaluate the efficacy and safety of this combination as first-line
treatment for metastatic breast cancer.

MATERIALS AND METHODS

Eligibility criteria

Eligible patients were female ≥ 18 years, with histologically proven
metastatic breast carcinoma. Other inclusion criteria included
Karnofsky performance status (KPS) score ≥70%, at least one
bidimensionally measurable lesion according to the World Health
Organisation (WHO) criteria and a life expectancy >16 weeks.
Adjuvant chemotherapy containing an anthracycline was allowed
if the total cumulative dose of doxorubicin or epirubicin did not
exceed 360 and 720 mg m⁻², respectively. A disease-free interval
of more than 6 months between the last dose of adjuvant
chemotherapy and documentation of relapse was needed. Patients
were required to give written informed consent before study-
specific procedures were performed and to be able to comply with
the protocol for the duration of the study. Patients were required
to have normal cardiac function with left ventricular ejection
fraction (LVEF) measured by echocardiography or multigated
acquisition scan (MUGA scan) no more than 10% below the
normal limit of the institution.
Patients were ineligible if they had local relapse only, prior
chemotherapy in the metastatic setting, previous treatment with
vinca alkaloid or trastuzumab, grade >2 peripheral neuropathy,
serious illness or medical conditions such as cardiac disease,
unstable diabetes, uncontrolled hypercalcaemia or active infection.
Patients were also excluded if they were pregnant or lactating, had
central nervous system or leptomeningeal metastases, had
participated in another clinical trial with any investigational drug
within 30 days prior to the study inclusion or had a history of
another malignancy, except cured basal cell carcinoma of the skin
or excised carcinoma in situ of the cervix.
Patients were required to have adequate bone marrow
(haemoglobin value ≥10 g dl⁻¹, absolute neutrophil count
≥1.5 × 10⁹ l⁻¹ and platelet count ≥100 × 10⁹ l⁻¹), renal (serum
creatinine ≤130 μmol l⁻¹) and liver function (serum bilirubin
≤1.5 × upper normal limit (UNL), serum glutamic–oxalic
transaminase (SGOT) or serum glutamic–pyruvic transaminase
(SGPT) ≤2.5 UNL, unless liver involvement).
The HER 2 status of primary or metastatic tumours was assessed
by immunohistochemistry (IHC) and fluorescent in situ
hybridisation (FISH) on formalin-fixed paraffin-embedded tissue. Because of
the possibility of discrepancy between local laboratories for the
HER 2 testing with IHC, a centralised testing was implemented
(Professor Josef Rüschoff, Institute of Pathology, Kassel,
Germany). Immunohistochemistry was performed using the DAKO
Hercept® Test, and FISH analysis was performed using the PathVysion HER 2 probe kit Vysis®. Patients with HER 2 staining
assessed 3+ by IHC were eligible for the study, while those with
IHC 2+ required confirmation by FISH.

Dose modifications

There was no dose adjustment for trastuzumab. The infusion was
stopped if the patient developed chills, fever, allergic reaction or
any grade 3–4 toxicities. Trastuzumab administration was also
withheld in the event of a decline in LVEF value either ≥20% of
absolute units from baseline to a value above the lower normal
limit for the centre, or >10% of absolute units to a value below the
lower normal limit for the centre. Trastuzumab therapy was
reintroduced 1 month later if there was no further decline in LVEF.
Trastuzumab was permanently interrupted if New York Heart
Association (NYHA) class III/IV cardiac function impairment
occurred.
Vinorelbine was postponed for 1 week in case of grade ≥3
neutropenia. Following one delay of vinorelbine, the dose of
vinorelbine was permanently decreased to 25 mg m⁻² week⁻¹ for
the remainder of study treatment. In the event of grade >2
peripheral neuropathy, vinorelbine was permanently discontinued.
In case of increased SGOT/SGPT to 5.1–20.0 UNL, or bilirubin at
1.5–3.0 UNL, vinorelbine administration was postponed for 1
week and permanently discontinued in case of three consecutive
delays or SGOT/SGPT value >20.0 UNL and/or total bilirubin
value >3 UNL. Patients who experienced grade 3 or 4 neutropenia
with or without fever were allowed to receive a granulocyte colony-
stimulating factor in the subsequent cycles at the investigator’s
discretion.

Study assessments

Screening assessments were performed at baseline in all patients
within 28 days before study treatment, including medical history,
physical examination, performance status, HER 2 testing,
electrocardiogram, LVEF, chest X-ray, tumour measurements by
computed tomography (CT), abdominal ultrasound, bone scan
and brain CT scan. On day 1 of each 4-week cycle, physical
examination and performance status were assessed and haematol-
ogical and blood chemistry measurements were carried out.
Additional radiological imaging was performed as clinically
indicated.
Complete blood cells counts were performed weekly within 2
days before vinorelbine administration. LVEF measurement was
repeated every 6 months and at any time if clinically indicated.
Objective responses were assessed every 8 weeks until progres-
sion, or less than 8 weeks if early progression was suspected. The
best overall response achieved, using the standard WHO criteria
tumour response, was reported for each patient. A complete
response (CR) required complete disappearance of all previously
detectable disease with no appearance of new lesions, and partial
response (PR) required at least a 50% decrease of the sum of the
products of the two greatest perpendicular diameters of all
measurable lesions, with no appearance of new lesions or
progression of any lesion. Both CR and PR had to be confirmed
4 weeks later. Stable disease (SD) was defined as less than 50% decrease or a less than 25% increase in the size of one or more
measurable lesions. Progressive disease was defined as ≥25% or
more increase of previously described lesions, or appearance of

Treatment plan

Treatment was given on a weekly basis (1 cycle = 4 weeks of
treatment). The initial trastuzumab infusion was administered
intravenously at the dose of 4 mg kg⁻¹ over 90 min on day 1. The
patient remained under medical supervision for 1 h following
completion of the first infusion. Subsequent weekly trastuzumab
courses were given at 2 mg kg⁻¹ over 30 min. The postinfusion
observation period for the second infusion was shortened to
30 min and was withheld over subsequent administrations
provided no adverse events occurred.
Vinorelbine was administered after trastuzumab infusion at
30 mg m⁻² weekly over 6–10 min. The first dose of vinorelbine was
administered 2 h after the trastuzumab infusion. Patients were to
receive at least 8 weeks of treatment (two cycles).
Diphenhydramine and paracetamol premedication were optional.
Treatment was continued until disease progression, unacceptable toxicity or patient’s refusal to continue.
new lesions. An Independent Review Panel confirmed all responses. Clinical benefit was defined as patients achieving CR, PR or SD maintained for a minimum of 6 months.

Adverse events and medical history were recorded throughout the study. The WHO criteria were used to grade the adverse events.

Statistical analysis

The one-sample multiple testing procedure for phase II clinical trials described by Fleming was used. Based on a type I error rate of 5% and a 95% power to reject the null hypothesis of a 20% objective response rate (complete or partial), a sample size of 60 evaluable patients was needed.

All registered patients were included in the intent-to-treat (ITT) analysis; patients who received at least one administration of study treatment were analysed for safety. The objective response was the main end point for this study. The Kaplan–Meier method was applied on overall survival, progression-free survival, duration of response and time to treatment failure.

RESULTS

Patients’ characteristics

Between October 2000 and June 2002, 69 patients with metastatic breast cancer screened for HER 2 status and fulfilling the eligibility criteria were enrolled in the study at 20 sites from 13 countries. Seven out of 69 patients were not evaluable for response, but were included in the ITT analysis; two patients were not assessable as a result of premature study discontinuation (one patient withdrew from the study after the first therapy administration due to an adverse event, the second one died during the first cycle from sepsis), one patient had bone metastases only which was not assessable, another patient had no measurable disease as defined in the protocol and three other patients were not eligible due to relapse within 6 months from early-stage chemotherapy. Therefore, 62 patients with measurable disease were assessable for disease response as per protocol.

The patient’s characteristics are described in Table 1. Median age was 53 years (range 30–74 years), more than 70% of patients had KPS ≥70% and the median time between initial diagnosis and relapse was 17.8 months. Nearly all patients (97.1%) had tumour HER 2 status 3+ determined by IHC, while two patients required confirmation with FISH. The majority of patients had visceral metastasis (75.4%). Sixty-five per cent of patients had prior neo/adjuvant chemotherapy including anthracycline in the majority of cases.

Clinical efficacy

Independent review panel observed an objective response rate of 62.9% among the 62 evaluable patients (95% CI, 49.7–74.8), including 14.5% of CRs. Stable disease was observed in 19.4% of patients. The clinical benefit (CR + PR + SD ≥6 months) was 72.6% (95% CI, 61.5–83.7) Table 2. In the ITT population, the objective response rate was of 58% (95% CI, 45.5–69.8).

Patients who had received prior adjuvant chemotherapy with anthracyclines or anthracyclines and taxanes had similar objective response rates (61.9 and 54.5%, respectively), as well as those with or without visceral involvement (63.8 and 60% of objective response rates, respectively) Table 2. Patients anticipated to have a worse prognosis, with a disease-free interval of less than 12 months, had an overall objective response rate of 71.4%. The median follow-up of patients was 36.2 months. The median time to response was 8.4 weeks (7.1–31.3 weeks) and the median duration of response was 17.5 months (95% CI, 12.1–23.0). The time to treatment failure was 6 months (95% CI, 5.3–8.6), the progression-free survival was 9.9 months (95% CI, 5.6–12.1) and the median overall survival for all patients was 23.7 months (95% CI, 18.4–32.6) (Table 3; Figures 1 and 2).

Twenty-six patients received further radiotherapy, 24 patients received hormonotherapy and 39 patients received further chemotherapy.

Table 1	Patient’s characteristics	
Characteristic	N	(%)
Included	69	100
Age (years)		
Median	53	97.1
Range	30–74	2.9
KPS ≥70%	69	51.1
HER 2 testing		
IHC 3+	67	20.0
IHC 2+/FISH+	2	49.3
Prior hormonotherapy	34	65.2
Prior chemotherapy		
Neoadjuvant	5	29.0
Adjuvant	30	44.9
Both	10	55.1
Chemotherapy regimen		
Anthracycline based	23	49.7
Anthracycline+taxane	13	31.9
CMF	9	29.0
Metastatic sites ≥2	22	75.4
Lymph nodes	35	44.9
Visceral (lung/liver)	52	62.9
Liver	38	20.0
Lung	20	49.7
Bone	31	61.5
Disease-free interval from diagnosis to first relapse (months)		
Median	17.8	74.8
Range	0–202.7	

CMF = cyclophosphamide methotrexate 5-fluorouracil; FISH = fluorescent in situ hybridisation; IHC = immunohistochemistry; KPS = Karnofsky performance status.

Table 2	Antitumour efficacy		
Best overall response (Independent Review Panel)	N	(%)	
Evaluable patients	62		
CR	9	49.7	
PR	30	74.8	
Objective response (CR+PR) (95% CI)	39	29.0	
SD	12	61.5	
Clinical benefit (CR+PR+SD ≥6 months) (95% CI)	45	83.7	
PD	11	17.7	
Prognostic factors of response rate (patients)			
Prior chemotherapy regimen			
No prior adjuvant/neoadjuvant (23)	16	69.6	
Anthracycline based (21)	13	61.9	
Anthracycline+taxane (11)	6	54.5	
Visceral involvement (liver/lung)	30	63.8	
Yes (47)	9	60.0	
No (15)	9	75.0	
Stage IV at diagnosis (12)	9		

CI = confidence interval; CR = complete response; PD = progressive disease; PR = partial response; SD = stable disease.
mainly due to haematological toxicity, whereas trastuzumab treatment was delayed more than 3 days or cancelled in 6.7% of administrations mainly due to investigator’s decision or patient’s convenience.

Treatment-related toxicity

The most frequent haematological toxicity (WHO grading) was neutropenia, with grade 3–4 neutropenia observed in 83.8% of patients over 301 (17.7%) administrations. Neutropenia was usually brief, infrequently associated with infections and was not cumulative (data not shown). There were only two episodes (0.1%) of febrile neutropenia in two patients (2.9%). One of these patients died from neutropenic sepsis. Grade 3 anaemia was reported in only two (2.9%) patients over three (0.2%) courses. No grade 2, 3 or 4 thrombocytopenia was reported (Table 4).

Nonhaematological toxicities were mild. The most common nonhaematological toxicity (WHO grade 3/4) attributed to study treatment was grade 3 asthenia in six patients (8.8%) and infection in four patients (5.9%). Other side effects were rare: grade 3 peripheral neuropathy and constipation were noticed in two patients each (2.9%) (Table 5).

Cardiac toxicity

Eligible patients received study treatment with LVEF no more than 10% below the normal limit of the institution. The mean LVEF at baseline was 63.8% (95% CI, 62.1–65.6), and the minimum value during treatment remained similar at a mean of 59.1% (95% CI, 55.9–61.7) (Figure 3).

One patient experienced a decline of LVEF to 38% with symptomatic cardiac failure 4 months after study initiation. She was aged 68 years old with a history of hypertension. Vinorelbine administration was postponed for 2 weeks and trastuzumab treatment was permanently discontinued. Following initiation of antifailure treatment, the symptoms resolved with the LVEF normalising at 58%. Three other patients experienced asymptomatic decline in LVEF to 41, 46 and 44%, respectively. The therapy was interrupted for 4 weeks and only reintroduced after LVEF increased to \geq50%.

DISCUSSION

Trastuzumab combined with chemotherapy is the standard of care for women with HER 2-overexpressing metastatic breast cancer. However, the optimal chemotherapeutic agent to combine with trastuzumab is not established. Ideally, chemotherapy–trastuzumab combinations should produce durable response rates with minimal toxicity. In particular, the known cardiac toxicity of trastuzumab would preclude its use with an agent also known to be cardiotoxic. Data from preclinical models have demonstrated synergistic interaction between trastuzumab and vinorelbine (Pegram et al, 2004). Several phase II studies have been conducted in the first-line setting or after progression to other chemotherapy. This doublet has produced consistent response rates ranging from 60 to 86%, with a satisfactory tolerance profile (Burstein et al, 2001, 2003; Jahanzeb et al, 2002; Bernardo et al, 2004; Bayo-Calero et al, 2004).

The current study evaluated the combination of vinorelbine (30 mg m$^{-2}$ week$^{-1}$) and trastuzumab (4 mg kg$^{-1}$ on day 1 followed by 2 mg kg$^{-1}$ week$^{-1}$ starting on day 8) as first-line therapy for HER 2-positive metastatic breast cancer patients. This is the first international phase II trial with centralised HER 2 testing evaluating this combination.

The short disease-free interval of 17.8 months and prior use of adjuvant anthracyclines with or without taxane chemotherapy in 52.2% of patients underlies the aggressive nature of disease in this
population under study. The clinical benefit of 72.6% with a median duration of response of 17.5 months compares favourably with other trastuzumab combinations (Seidman et al, 2001; Esteva et al, 2002; Marty et al, 2005). The duration of efficacy of the current combination is reflected by the 39.1% disease-free survival rate at 1 year. By 9 November 2005, two patients were still on treatment with vinorelbine and trastuzumab after 3.5 – 3.6 years, respectively.

This multicentre study confirms the efficacy of vinorelbine with trastuzumab previously seen in other studies, with independent radiological review avoiding investigator assessment bias. Burstein reported 75% of response rates without grade 3 – 4 cardiac toxicity in a single centre trial of weekly vinorelbine (25 mg m\(^{-2}\)) and trastuzumab (4 mg kg\(^{-1}\) on day 1 then 2 mg kg\(^{-1}\) week\(^{-1}\)) used as first- and second-line therapy (Burstein et al, 2001). In a multi-institutional trial of the same schedule, the same author confirmed the efficacy of trastuzumab plus vinorelbine as first-line chemotherapy, with 68% of patients achieving an objective response and 39% of patients remaining free of disease progression at 1 year (Burstein et al, 2003). Jahanzeb et al (2002), in a trial of first-line vinorelbine and trastuzumab at the same schedule and doses as the current study, reported 78% of responses among 40 patients. In addition, the time to disease progression was extended to 17 months.

The results are in line with other reports using different chemotherapies in combination with trastuzumab. The objective response rate was of 50% in the study by Slamon et al (2001) with the combination of trastuzumab and paclitaxel and 61% in the study by Marty et al (2005) with trastuzumab plus docetaxel.

Table 4
Worst haematological WHO grades, by evaluable patient (N = 68\(^{a}\)) and by evaluable administration of vinorelbine+trastuzumab (N = 1705)

Haematological toxicity	Patients (overall incidence)	Grade 3, N (%)	Grade 4, N (%)	Grade 3, N (%)	Grade 4, N (%)
Anaemia	58 (85.3)	2 (2.9)	—	3 (0.2)	—
Leucopenia	63 (92.6)	39 (57.4)	6 (8.8)	159 (9.3)	13 (0.8)
Neutropenia	63 (92.6)	28 (41.2)	29 (42.6)	226 (13.3)	75 (4.4)
Febrile neutropenia\(^{a}\)	2 (2.9)	—	—	—	—
Thrombocytopenia	4 (5.9)	—	—	—	—

WHO = World Health Organisation. \(^{a}\)One patient with only one treatment administration was not evaluable for haematological toxicity. \(^{b}\)One of these patients died of neutropenic sepsis.

Table 5
Worst related nonhaematological WHO grades, by evaluable patient (N = 69) and by evaluable cycle (N = 613) of vinorelbine+trastuzumab

Nonhaematological toxicity	Patients (overall incidence)	Grade 3, N (%)	Grade 4, N (%)	Grade 3, N (%)	Grade 4, N (%)
Anorexia	18 (26.1)	2 (2.9)	—	3 (0.5)	—
Nausea/vomiting	42 (60.9)	1 (1.4)	—	1 (0.2)	—
Constipation	20 (29.0)	2 (2.9)	—	2 (0.3)	—
Diarrhoea	18 (26.1)	1 (1.4)	1 (1.4)	1 (0.2)	1 (0.2)
Stomatitis	27 (39.1)	2 (2.9)	—	—	—
Peripheral neuropathy	22 (31.9)	2 (2.9)	—	3 (0.5)	—
Anaesthesia	33 (47.8)	6 (8.7)	10 (1.6)	3 (0.5)	—
Chills	15 (21.7)	1 (1.4)	—	1 (0.2)	—
Hair loss	25 (36.2)	—	—	—	—
Cutaneous	14 (20.3)	1 (1.4)	—	1 (0.2)	—
Drug fever	23 (33.3)	1 (1.4)	—	1 (0.2)	—
Infection	18 (26.1)	4 (5.8)	—	5 (0.9)	—
Local venous toxicity	16 (23.2)	1 (1.4)	—	2 (0.3)	—

WHO = World Health Organisation.

Figure 3
Mean LVEF during treatment.

British Journal of Cancer (2006) 95(7), 788 – 793 © 2006 Cancer Research UK
The toxicities associated with vinorelbine and trastuzumab were predictable and manageable. Although grade 3 or 4 neutropenia occurred in 83.8% of patients, only two episodes (0.1%) of febrile neutropenia occurred (2.9% of patients).

Cardiomyopathy, a serious toxicity associated with trastuzumab-based therapy, has been reported in 13% of patients receiving paclitaxel and trastuzumab (including severe events in 2% of patients) (Slamon et al, 2001). In the study by Marty et al (2005), one patient (1%) receiving trastuzumab and docetaxel experienced symptomatic heart failure, and another patient experienced symptomatic heart failure 5 months after discontinuation of trastuzumab while receiving an investigational anthracycline for 4 months. The favourable safety profile of the vinorelbine/trastuzumab combination has been observed in other trials: Burstein et al (2003) reported only one patient with grade 3 cardiac toxicity, whereas no grade 3–4 cardiac toxicity was seen by Jahanzeb et al (2002).

It is important to note that cardiac toxicity was reported in 4.7% of patients with trastuzumab monotherapy (Cobleigh et al, 1999). The 5.9% incidence of cardiac toxicity seen in the present study with only one patient (1.5%) experiencing symptomatic cardiac failure is therefore similar to that seen when trastuzumab is used alone, reflecting the absence of additional cardiac toxicity from vinorelbine. Twenty per cent of patients were treated for more than 1 year.

In conclusion, the vinorelbine/trastuzumab regimen is an effective and well-tolerated first-line therapy option for HER 2-overexpressing metastatic breast cancer patients. The shorter duration of administration without the need of a steroid premedication and lack of cumulative side effects with marginal cardiac toxicity provide strong argument for its choice as the control arm in future phase III trials including trastuzumab-based combinations.

ACKNOWLEDGEMENTS

We thank the following investigators of this trial: F Majois (Hospital Jolimont, Haine-Saint-Paul, Belgium), MO Bednarik (Masakikuv Oncologicky Ustav, Brno, Czech Republic), UR Kleeberg (Haematologisch-Onkologische Praxis Altona, Hamburg, Germany), K Wong (Medical Oncology Pte Ltd, Singapore), A Stewart (Christie Hospital, Manchester, UK), K Buser (Sonnenhof-Klinik Engerland, Bern, Switzerland) and G Westman (University Hospital, Malmö, Sweden). We are indebted to all the patients whose participation made this study possible, and to P Miquel and to Y Parlier for editorial assistance.

REFERENCES

Bayo-Calero JL, Mayordomo-Camara JI, Sanchez-Rovira P, Perez-Carrion R, Illaramendi JJ, Garcia-Bueno JJ, Gonzalez-Flores E, Crespo C, Ramos-Vazquez M, Garcia-Palomo A (2004) A multicenter study with trastuzumab and vinorelbine as first and second-line treatment in patients with HER 2-positive metastatic breast cancer. *Breast Cancer Res Treat* 88:Suppl 1: S207 (abstract 5069)

Berger MS, Locher GW, Saurer S, Gullick WJ, Waterfield MD, Groner B, Hynes NE (1998) Correlation of c-erbB-2 gene amplification and protein expression in human breast carcinoma with nodal status and nuclear grading. *Cancer Res* 48: 1238 – 1243

Bernardo G, Palumbo R, Bernardo A, Villani G, Melazzini M, Poggi G, Frascaroli M, Jedrychowska I (2004) Final results of a phase II study of weekly trastuzumab and vinorelbine in chemonaive patients with HER 2-overexpressing metastatic breast cancer. *Proc Am Soc Clin Oncol* 22: S9s (abstract 7311)

Burstein HJ, Harris LN, Kelly Marcom P, Lombard-Falls R, Havlin K, Overmoyer B, Friedlander RJ, Gargiulo J, Strenger R, Vogel CL, Ryan PD, Ellis MJ, Nunes RA, Bunnell CA, Campos SM, Hallor R, Gelman R, Winer EP (2003) Trastuzumab and vinorelbine as first-line therapy for HER 2-overexpressing metastatic breast cancer: multincenter phase II trial with clinical outcomes, analysis of serum tumor markers as predictive factors, and cardiac surveillance algorithm. *J Clin Oncol* 21: 2889 – 2895

Burstein HJ, Kuter I, Campos SM, Gelman RS, Tribou L, Parker LM, Manola J, Younger J, Matulonis U, Bunnell CA, Partridge AH, Richardson PG, Clarke K, Shulman LN, Winer EP (2001) Clinical activity of trastuzumab and vinorelbine in women with HER 2-overexpressing metastatic breast cancer. *J Clin Oncol* 19: 2722 – 2730

Cobleigh MA, Vogel CL, Tripathy D, Robert NJ, Scholl S, Fehrenbacher L, Wolter JM, Paton V, Ashby M, Murphy M, Stewart SJ, Keefe D (2002) Cardiac dysfunction in the trastuzumab clinical trials experience. *J Clin Oncol* 20: 1215 – 1221

Cobleigh AD, Fornier MN, Esteva FJ, Tan L, Kaptain S, Bach A, Panagia KS, Arroyo C, Valero V, Currie G, Gilewski T, Theodoulou M, Moynahan ME, Moasser M, Sklarin N, Dickler M, D’Andrea G, Cristofanilli M, Rivera E, Hortobagyi GN, Norton L, Hudis CA (2001) Weekly trastuzumab and paclitaxel for metastatic breast cancer with analysis of efficacy by Her 2 immunophenotype and gene amplification. *J Clin Oncol* 19: 2587 – 2595

Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. *Science* 235: 177 – 182

Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, Levin WJ, Stuart SG, Udove J, Ullrich A (1989) Studies of the HER-2/neu antibody and chemotherapeutics agents used for treatment of human breast cancer. *Oncogene* 18: 2241 – 2251

Pegram M, Hsu S, Lewis G, Pietras R, Berty M, Sliewkowski M, Coombs D, Baby D, Kabbawar F, Slamon D (1999) Inhibitory effects of combinations of HER-2/neu antibody and chemotherapeutics agents used for treatment of human breast cancer. *Oncogene* 18: 739 – 749

Ravdin PM, Chamness GC (1995) The erb-B2 proto-oncogene as a prognostic and predictive marker in breast cancer: a paradigm for the development of other macromolecular markers – a review. *Gene* 159: 19 – 27

Seidman A, Hudis C, Pierri MK, Shah S, Paton V, Ashby M, Murphy M, Stewart SJ, Keefe D (2002) Cardiac dysfunction in the trastuzumab clinical trials experience. *J Clin Oncol* 20: 1215 – 1221

Seidman AD, Fornier MN, Esteva FJ, Tan L, Kaptain S, Bach A, Panagia KS, Arroyo C, Valero V, Currie G, Gilewski T, Theodoulou M, Moynahan ME, Moasser M, Sklarin N, Dickler M, D’Andrea G, Cristofanilli M, Rivera E, Hortobagyi GN, Norton L, Hudis CA (2001) Weekly trastuzumab and paclitaxel for metastatic breast cancer with analysis of efficacy by Her 2 immunophenotype and gene amplification. *J Clin Oncol* 19: 2587 – 2595

Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. *Science* 235: 177 – 182

Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, Levin WJ, Stuart SG, Udove J, Ullrich A (1989) Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. *Science* 244: 707 – 712

Slamon DJ, Leyland-Jones B, Shah S, Fuchs H, Paton V, Bajamonte A, Fleming T, Eiermann W, Wolter J, Pegram M, Baselga J, Norton L (2001) Use of chemotherapy plus a monoclonal anti-body against HER 2 for metastatic breast cancer that overexpresses HER 2. *N Engl J Med* 344: 783 – 792

Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L, Slamon DJ, Murphy M, Novotny WF, Burchmore M, Shah S, Stewart SJ, Press M (2002) Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER 2-overexpressing metastatic breast cancer. *J Clin Oncol* 20: 719 – 726