I. INTRODUCTION

Beryllium (Be) is a widely-used material in space science, plasma physics, and nuclear science because of its high stiffness, low opacity, and high thermal conductivity [1, 2]. It serves as an ablator material in internal confinement fusion (ICF) experiments, as it withstands extreme conditions of several megabar and thousands of Kelvin under shock conditions [3–7]. This has triggered a number of studies to investigate its phase diagram, equation of state (EOS) and physical properties. Precise knowledge of the beryllium EOS and phase diagram is of vital importance for understanding the dynamical response of ICF capsules after the shock pulse and to control the growth of hydrodynamic instabilities in the ablator [8–10].

Over the past decades, several theoretical and experimental studies have been performed in order to understand the phase diagram and EOS of beryllium. Theoretical studies suggest that at 0 K and high pressure, Be transforms from the hcp to the bcc structure [8, 11–20]. Calculations using the linear-muffin-tin-orbital (LMTO) method [11] as well as ab initio pseudopotential simulations [12] have predicted this transition to occur between 100–200 GPa. Meyer et al. [13] implemented the augmented-spherical-wave method (ASW) in combination with a quantum statistical model and found that the bcc structure would become more stable at ∼300 GPa. Palanivel et al. [14] used the full-potential linear muffin-tin orbital (FP-LMTO) method together with the local density approximation (LDA) and found the transition pressure at 180 GPa. Sinko et al. [15] predicted this transition to occur at 270 GPa using FP-LMTO method with generalized gradient approximation (GGA) functional. Kadas et al. [21] used the exact muffin-tin orbitals (EMTO) method to derive a transition pressure of 240 GPa. Recent predictions from first-principles calculations range from 390 to 420 GPa [8, 16–18], while Coe et al. found a transition pressure of 325 GPa [20] based on a multiphase equation of state (EOS).

From experiments at room temperature, Ming et al. reported a phase transition from hcp to distorted-hcp [22] between 8.6 and 14.5 GPa based on x-ray diffraction measurements, while Vijayakumar et al. [23] claimed the existence of a new orthorhombic phase from their measurements of electrical resistivity. However, more recent experiments that employed either x-ray diffraction [24–27] or Raman spectroscopy methods [25, 28] confirmed that the hcp phase is stable up to 200 GPa.

The phase boundary between hcp and bcc Be at higher temperatures is also a matter of debate. Calculations predict a negative Clapeyron slope along the phase boundary, meaning that the transition temperature decreases with increasing pressure [8, 17–19]. The quasi-harmonic approximation (QHA), a standard method to calculate free energies at high temperature, has been used to study the vibrational properties of Be at high temperature, but this approach does not consider the anharmonic effects [17–19]. Under the QHA, the free energy of solids at high temperatures is obtained from phonon frequencies. Robert et al. [16] predicted a solid phase boundary...
with lower transition temperatures using QHA, with the hcp-bcc-liquid triple point located at 85 GPa and 3400 K. Another work, also based on the QHA, by Luo et al. [17] reported similar results using the LDA functional. A recent work by Xian et al. [19] used a different method, based on phonon quasiparticles, to calculate free energies and found that this phase boundary shifts towards higher temperatures compared to QHA estimations made by Robert et al., promoting the triple point to 165 GPa and 4200 K. Benedict et al. [8] calculated the free energy using QHA and a global EOS model, which led to much higher transition pressures. Regarding experiments at high temperature, Laziki et al. [27] performed x-ray diffraction measurements in a laser-heated diamond anvil cell to study the hcp phase of beryllium up to 205 GPa and 4000 K, and found no evidence of a bcc phase. The experimental shock Hugoniot curve measured by McCoy et al. did not show signatures of a bcc phase either before the onset of melting.

Various simulation methods have been applied to study the melting line of beryllium at high pressure and temperature. Both the heat-until-it-melts [18] and the two-phase methods [8] have been used to predict the melting temperature of Be at high pressure, while the Modified Embedded Atom Model (MEAM) has been implemented to explore large-scale phenomena of melting under both hydrostatic and shock compression conditions [29]. Although it is often regarded as an upper limit for the melting temperature, the heat-until-it-melts simulations gave results consistent with two-phase simulations [8, 18]. Experimental data under these extreme conditions remains scarce, making it difficult to verify predictions from the various simulation methods.

Due to the high dispersion in theoretical predictions and scarce experimental data, the intersection between the shock Hugoniot and the melting curve is not well constrained yet. Knudson et al. [30] compressed beryllium in the Z-machine, measuring the sound speed along the shock Hugoniot curve from shock waves induced by a magnetically-launched flyer plate. They showed that the shock Hugoniot curve first crosses the hcp-bcc transition line at ~175 GPa, and then intersects the melting line at ~205 GPa. McCoy et al. [9] performed similar measurements, in which they also identified the onset of melt along the Hugoniot at ~205 GPa, but found no conclusive evidence of bcc phase prior to melting. In this case, the experimental setup was not able to resolve the hcp-bcc solid-solid phase transition, due to the similarity of the sound velocities between the two phases. A recent theoretical work by Coe et al. [20] found a phase boundary between hcp and bcc phases with lower transition pressures, leading to a Hugoniot curve intersecting the hcp-bcc phase boundary at 150 GPa and the melting line at 205 GPa. They noticed that the phase transition at 150 GPa was correlated with a decrease in sound speed.

A small region of stable β-Be (bcc) on the phase diagram, slightly below melting line at low pressure, has been proposed by some authors in previous papers [18, 31, 32]. It has been suggested that prior to melting under ambient pressure, beryllium transforms from hcp to bcc phase at around 1530 K, accompanied by a volume reduction of 6% [31, 33–35]. The slope of this hcp-bcc solid phase boundary at ambient pressure has been reported to be either negative [33, 34] or positive [35] in different studies. Robert et al. [16, 18] addressed the existence of this small bcc region below the melting line by monitoring the change of phonon frequencies of the T_f mode at the N point with temperature, while Lu et al. [32], using phonon quasiparticles to describe the anharmonic effects, predicted the boundary of this region to have a positive Clapeyron slope of 41 ± 4 K/GPa and to disappear at 11 GPa. By contrast, recent x-ray diffraction experiments on diamond anvil cell have not found any evidence for this small bcc region [27]. All these discrepancies motivate further work on the phase diagram of Be, where a proper treatment of the anharmonic effects may be fundamental in order to accurately determine the nature of the hcp-bcc transition at high pressures, as well as the melting curve.

In this work, we used the thermodynamic integration technique [36, 37] to investigate the phase diagram of beryllium, obtaining the free energy of the hcp, bcc, and liquid phases from first-principles molecular dynamic simulations. The thermodynamic integration technique captures the full anharmonicity of the crystal, making this study the first attempt to calculate free energies of beryllium without relying on the quasiharmonic approximations or its extensions. We compare our resulting solid-solid phase boundary with a recent study based on the phonon quasiparticle method [19] and with other works based on the quasiharmonic approach, demonstrating that the QHA tends to underestimate the stability of hcp phase, lowering the hcp-bcc transition pressure as well as the hcp-bcc-liquid triple point. We also derive the melting line for pressures up to 1600 GPa, where we found a melting temperature of 10000 K, as well as the shock Hugoniot curve, which is found to be in good agreement with shock wave experiments.

Our Hugoniot curve intersects the melting line at 235 GPa and 4900 K, consistent with previous theoretical works of dynamical loading by nonequilibrium molecular dynamics (NEMD), where amorphous [38] or recrystallized structures [29] form well below the equilibrium melting curve. These disordered structures could possibly explain the discrepancy of onset pressure of melt along Hugoniot in shock experiments (~205 GPa) [9, 30]. In addition, we derived an isentrope that intersects the melting line at low pressures, and find that beryllium compressed along this thermodynamic path would span over a large section of melting line, a temperature interval as large as 7000 K. We suggest that the melting curve of Be could be measured, in principle, by a single quasi-isentropic ramp compression experiment, where the solid and liquid phases would coexist as the sample is compressed.
II. METHOD

A. Ab Initio Molecular Dynamics

We performed density functional molecular dynamics (DFT-MD) simulations using the Vienna Ab initio Simulation Package (VASP) [39] with projector augmented-wave (PAW) [39–41] method and a canonical ensemble regulated with a Nosé-Hoover thermostat [42, 43]. To describe the exchange-correlation effects, we used the Perdew–Burke–Ernzerhof (PBE) functional with generalized gradient approximation [44]. Electronic wave functions are expanded in a plane-wave basis with an energy cut-off as high as 1,000 eV. The molecular dynamics simulations were performed in 128- (4 × 4 × 4) and 144-atoms (4 × 3 × 3) orthorhombic supercells for bcc and hcp phases, respectively. Liquid simulations were done in cubic cells with 128 atoms. We considered 400 bands to account for partial electronic occupations. We performed density functional molecular dynamics (DFT-MD) simulations using the Vienna Ab initio Simulation Package (VASP) [39] with projector augmented-waves (PAW) [39–41] method and a canonical ensemble (1)

\[F_{\text{DFT}} = F_{\text{Ein}} + \Delta F_{\text{Ein} \rightarrow \text{cl}} + \Delta F_{\text{cl} \rightarrow \text{DFT}} \]

where \(F_{\text{Ein}} \) is Helmholtz free energy of an Einstein crystal with same density. This technique allows to obtain the Helmholtz free energy difference between a DFT system and a reference system for which the free energy is known. We chose the Einstein crystal, where all atoms vibrate with the same harmonic frequency around their lattice sites, as our reference system for the solid. A gas of non-interacting particles was chosen as the reference system when we calculate the Gibbs free energy of the liquid. We performed the calculation of Helmholtz free energy difference between the Einstein crystal and the DFT system in two steps, each involving a TDI integral

\[\Delta F_{a \rightarrow b} = \int_0^1 \langle U_b(r_i) - U_a(r_i) \rangle \lambda d\lambda, \]

where the angle brackets \(\langle \ldots \rangle \lambda \) represents the ensemble average generated in simulations with the hybrid potential \(U_\lambda = \lambda U_b + (1-\lambda)U_a \) at constant volume and temperature [48]. The classical system is governed by a combination of harmonic and pair forces. Both are adjusted to match the forces of a DFT trajectory [50, 51]. After we find the average force between each pair of Be atoms in bins of radial separation, we fit a pair potential using a cubic spline function. Five evenly spread values of \(\lambda \) (0, 0.25, 0.5, 0.75, 1.0) were chosen in order to resolve the integral from DFT to the classical system to complete this thermodynamic step. To compute the Helmholtz free energy difference between the system governed by classical pair forces and the Einstein crystal, namely \(\Delta F_{\text{Ein} \rightarrow \text{cl}} \), we performed a thermodynamic integration involving multiple classical Monte Carlo simulations to sample a large number of values of \(\lambda \). The Gibbs free energy, \(G_{\text{DFT}} = F_{\text{DFT}} + PV \), is then obtained by adding the pressure term, \(PV \).

Frenkel and Ladd [36] introduced a correction to the free energy of an Einstein crystal to account for the missing degrees of freedom in a solid with a fixed center of mass [37, 52]. However, Navascués et al. [53] showed that the magnitude of the actual correction should be much smaller. A recent study of the phase diagram of MgO [54] showed that the Frenkel correction introduced a significant finite-size error that affected the predicted B1-B2 phase boundary if the simulations of B1 and B2 phases were performed with a small number of particles. Without the Frenkel correction, the results of small and large cells were much more consistent. In this study, we also obtained inconsistent results if we included the Frenkel correction, namely, an overestimation of the stability field of the solid phases that resulted in melting temperatures that are incompatible with previous results [8, 16]. Therefore, we did not apply this correction to any of our results. We found that our hcp-bcc phase boundary would not be affected by this correction because we used a comparable number of particles for both phases.

B. Thermodynamic Integration

To determine phase diagram, we calculate the Gibbs free energy for each phase. We used a two-step coupling constant integration (CCI) technique to compute the Helmholtz free energy [48, 49]. The full energetics of a solid phase is then described as

\[F_{\text{DFT}} = F_{\text{Ein}} + \Delta F_{\text{Ein} \rightarrow \text{cl}} + \Delta F_{\text{cl} \rightarrow \text{DFT}} \]

where \(F_{\text{Ein}} \) is Helmholtz free energy of an Einstein crystal with same density. This technique allows to obtain the Helmholtz free energy difference between a DFT system and a reference system for which the free energy is known. We chose the Einstein crystal, where all atoms vibrate with the same harmonic frequency around their lattice sites, as our reference system for the solid. A gas of non-interacting particles was chosen as the reference system when we calculate the Gibbs free energy of the liquid. We performed the calculation of Helmholtz free energy difference between the Einstein crystal and the DFT system in two steps, each involving a TDI integral

\[\Delta F_{a \rightarrow b} = \int_0^1 \langle U_b(r_i) - U_a(r_i) \rangle \lambda d\lambda, \]

where the angle brackets \(\langle \ldots \rangle \lambda \) represents the ensemble average generated in simulations with the hybrid potential \(U_\lambda = \lambda U_b + (1-\lambda)U_a \) at constant volume and temperature [48]. The classical system is governed by a combination of harmonic and pair forces. Both are adjusted to match the forces of a DFT trajectory [50, 51]. After we find the average force between each pair of Be atoms in bins of radial separation, we fit a pair potential using a cubic spline function. Five evenly spread values of \(\lambda \) (0, 0.25, 0.5, 0.75, 1.0) were chosen in order to resolve the integral from DFT to the classical system to complete this thermodynamic step. To compute the Helmholtz free energy difference between the system governed by classical pair forces and the Einstein crystal, namely \(\Delta F_{\text{Ein} \rightarrow \text{cl}} \), we performed a thermodynamic integration involving multiple classical Monte Carlo simulations to sample a large number of values of \(\lambda \). The Gibbs free energy, \(G_{\text{DFT}} = F_{\text{DFT}} + PV \), is then obtained by adding the pressure term, \(PV \).

Frenkel and Ladd [36] introduced a correction to the free energy of an Einstein crystal to account for the missing degrees of freedom in a solid with a fixed center of mass [37, 52]. However, Navascués et al. [53] showed that the magnitude of the actual correction should be much smaller. A recent study of the phase diagram of MgO [54] showed that the Frenkel correction introduced a significant finite-size error that affected the predicted B1-B2 phase boundary if the simulations of B1 and B2 phases were performed with a small number of particles. Without the Frenkel correction, the results of small and large cells were much more consistent. In this study, we also obtained inconsistent results if we included the Frenkel correction, namely, an overestimation of the stability field of the solid phases that resulted in melting temperatures that are incompatible with previous results [8, 16]. Therefore, we did not apply this correction to any of our results. We found that our hcp-bcc phase boundary would not be affected by this correction because we used a comparable number of particles for both phases.

C. K-point correction

We found that a 2 × 2 × 2 k-point grid in combination with our 128 and 144 atom supercells was not sufficient to obtain converged internal energies. However, using larger supercells or denser k-point grids in DFT-MD simulations would be too time consuming. In order to compensate for this drawback, we corrected the un-converged energies using the free energy perturbation (FEP) method, where the internal energy is recalculated for a smaller number of snapshots with a denser k-point grid, as explained in Ref. [45], and used it to correct the free energy by

\[\frac{F_{\text{DFT}}^{\text{high} \ k} - F_{\text{DFT}}^{\text{low} \ k}}{k_B T} = -\ln \left\langle \exp \left(-\frac{U_{\text{DFT}}^{\text{high} \ k} - U_{\text{DFT}}^{\text{low} \ k}}{k_B T} \right) \right\rangle_{\text{low} \ k} \]

where \(F_{\text{DFT}}^{\text{high} \ k} \) stands for Helmholtz free energy derived with the higher number of k-points (4 × 4 × 4) and \(F_{\text{DFT}}^{\text{low} \ k} \) for Helmholtz free energy calculated with lower number of k-points (2 × 2 × 2). The average \(\left\langle \ldots \right\rangle_{\text{low} \ k} \) represents an
ensemble average that is obtained from the time-averaged MD trajectories that are generated with a smaller number of k-points. We took one snapshot every 500 steps for each DFT-MD simulation and redervived the internal energies by performing self-consistent DFT calculations using $4 \times 4 \times 4$ (which has been tested to be converged for both solid phases) and $2 \times 2 \times 2$ Monkhorst-Pack k-point grids. $U_{\text{DFT}}^{\text{high} k}$ and $U_{\text{DFT}}^{\text{low} k}$ denote the internal energy of those configurations computed with high and low number of k-points, respectively. The energy difference is almost the same for all the snapshots, so the free energy correction is close to the arithmetic average of the energy differences. K-point correction has also been implemented in previous theoretical works of up-sampled thermodynamic integration [55, 56]. We compared both methods and got similar free energy corrections.

D. Phonon Free Energies

In order to derive the transition pressure between hcp and bcc phases at $T = 0$ K, we decompose free energy of the solid into three contributions,

$$F(V, T) = E_0(V) + F_i(V, T) + F_e(V, T), \quad (4)$$

where E_0 is internal energy of the perfect lattice structure and F_i, the thermal contribution of the vibrating nuclei, can be expressed as:

$$F_i(V, T) = \sum_{q, s} \left\{ \frac{1}{2} \hbar \omega_{qs} + k_B T \ln \sum_{q, s} [1 - \exp(-\hbar \omega_{qs}/k_B T)] \right\}, \quad (5)$$

where ω_{qs} corresponds to the phonon eigenfrequency with vector q of branch s in the Brillouin zone. The electronic contribution to the free energy, $F_e(V, T)$, is negligible compared to the other two terms [8, 17, 19], so we do not consider it for this calculation. At $T = 0$ K, the second term of Eq. (5) vanishes and only first term contributes. In this study, we applied the density functional perturbation theory (DFPT) method [57] to investigate the phonon eigenfrequencies of the solid phases and their corresponding zero-point energy. To perform these phonon calculations, we chose a k-point grid of $7 \times 7 \times 7$ with an energy cutoff of 1100 eV, such that the precision in the free energy is within 0.5 meV/atom. Phonon eigenfrequencies are derived from the diagonalization of the dynamical matrix, which was obtained in a $31 \times 31 \times 31$ q-mesh grid through Fourier interpolation using the Phonopy software [58].

III. RESULTS AND DISCUSSION

A. Gibbs free energy and phase diagram

We used thermodynamic integration to obtain the Gibbs free energy difference between the different phases of beryllium as a function of pressure for a number of temperatures. The pressure at which the Gibbs free energy difference goes to zero marks the phase transition. Fig. 1 shows all thermodynamic (density - temperature) conditions where we performed TDI calculations. In Fig. 3 we show this difference for a temperature of $T = 3000$ K as an example. As we observe, the k-point correction is necessary, as it shifts the predicted melting pressure to a lower value by more than 50 GPa. The Gibbs free energy difference, $\Delta G \equiv G_{\text{hcp}} - G_{\text{bcc}}$, increases with pressure and after a critical transition pressure, this difference changes sign and bcc becomes the more stable phase.

The contribution of the different terms ΔE, $P \Delta V$, and $-T \Delta S$ to the Gibbs free energy, as we can see in Fig. 3, shows that the entropic term is comparable to the pressure term, and that the the hcp phase has always lower energy than bcc.

The entropic term contributes with more than 20 meV/atom to the total Gibbs free energy, being crucial in the determination of the hcp-bcc transition pressure. As we can see from the upper panel of Fig. 3, underestimating the Gibbs free energy by 10 meV can make a differ-
ence in the transition pressure as large as ~ 80 GPa. The slope of the Gibbs free energy difference, $(\partial \Delta G/\partial P)_T = \Delta V \approx \Delta G/\Delta P \approx 0.1$ meV/GPa = 0.016 Å3 is consistent with the volume difference between hcp and bcc phases that we get from our 3000 K isotherms, $\Delta V = V_{hcp} - V_{bcc} = 4.080 \text{ Å}^3 - 4.064 \text{ Å}^3 = 0.016 \text{ Å}^3$/atom at the transition pressure of $P = 271$ GPa. In the lower panel of Fig. 3, we can see that both entropy and pressure terms favor and help stabilize the bcc structure. Since the TDI calculations are performed at constant volume and temperature, a correction must be applied to the Gibbs free energies in order to evaluate both terms of $\Delta G = G_{hcp} - G_{bcc}$ at the same target pressure, P_T. This correction is given by $G(P_T, T_0) = G_0 + \int_{P_0}^{P_T} V(P) dP$, where the integration is performed along the isotherm $T = T_0$ and $G_0 = F_0 + P_0V_0$ is the Gibbs free energy at the volume V_0 chosen for the TDI calculation. We show two of our isotherms $T = 1000$ K and 3000 K in Fig. 4. We chose to plot $PV^{1/3}$ as a function of V to enhance the differences in pressure between the two phases which are actually small. At a density $\rho = 4 \text{ g cm}^{-3}$ and $T = 1000$ K, the pressures of the hcp and bcc phases are 269 and 264 GPa. When the densities of both phases are compared for a pressure of 300 GPa at 1000 to 3000 K, the bcc phase is found to be 2.0% and 2.2% denser, respectively. The density of the bcc phase is always higher than that of the hcp under the same (P, T) condition. Overall, we could judge from Fig. 4, bcc phase has a lower PV term in Gibbs free energy at high temperature of thousands of Kelvin.

To analyze the finite-size effect of our simulations, we repeated our TDI calculations using larger supercells with 700 and 686 atoms for the hcp and bcc phases, respectively. We used the Γ point to sample the Brillouin zone, but applied the k-point correction as described in the previous section. We perform our TDI calculation at $P = 280$ GPa and $T = 3000$ K as an example. In Fig. 2, we shown that the Gibbs free energy decreases with system size. However, when we increased the number of atoms from 128 to 686 in our bcc simulations and from 144 to 700 in our hcp simulations, the Gibbs free energy difference did not change within the error bars. Similarly when we extrapolated our results to infinite size, the resulting Gibbs free energy difference was consistent with those that we originally derived from our simulations with smaller system sizes (see Fig. 2). Same conclusion holds for $T = 1000$ K and $P = 410$ GPa (see Supplementary Material). Based on these two examples, we conclude that our predictions are sufficiently well converged with respect to system size.

In Fig. 5, we show the transition pressures obtained from our TDI calculations and compare our derived phase diagram with previous simulations and experiments. As we can see in the figure, the quasihomogeneous approximation (light blue solid line by Luo et al. [17] and dashed yellow curve by Robert et al. [18]) underestimates the transition pressure from hcp to bcc beryllium at high temperature. This phase boundary has also been derived in a recent paper using phonon quasiparticles, fitted from the Fourier transform of velocity autocorrelation function [19]. When anharmonic effects from the phonon quasiparticles are considered, hcp becomes more stable and the transition pressure gets larger compared with QHA. According to the results from their study [19], the hcp-bcc-liquid triple point is located at 165 GPa and 4200 K, at higher pressure and temperature than those suggested by the QHA method, 85 GPa and 3400 K. Our TDI calculations also point towards similar results, with hcp being more stable compared to QHA results, occupying a larger area of the phase diagram.

FIG. 2. Finite size effect on the Gibbs free energy per atom at $P = 280$ GPa and $T = 3000$ K.

FIG. 3. Gibbs free energy difference, $\Delta G \equiv G_{hcp} - G_{bcc}$, between hcp and bcc phases along the $T = 3000$ K isotherm. The different contributions to $\Delta G = \Delta E + P\Delta V - T\Delta S$ are shown in the lower panel.
diagram of MgO, an important material in planetary science, where a B1-B2 solid-solid phase boundary, similar to the hcp-bcc boundary in Be, also exhibits a negative Clapeyron slope [54, 59, 60]. It turns out than anharmonic effects play an important role in promoting B1-B2 transition pressure, especially at high temperature, compared with conventional QHA methods [61–64]. To capture anharmonic effects in MgO at high temperature, Boates et al. [59] calculated the entropy from the vibrational spectrum derived from the velocity autocorrelation function, Bouchet et al. [60] calculated the vibrational free energy using the temperature-dependent effective potential (TDEP) method [65], while Soubiran and Militzer [54] performed a complete thermodynamic integration. The shape of the B1-B2 solid-solid phase boundary in the MgO phase diagram changes significantly when entropy contributions that go beyond QHA are considered, as anharmonic effects stabilize the B1 phase considerably. Our results for beryllium show that, as it occurs with MgO, the slope of the solid-solid phase boundary is actually steeper than what QHA predicts, which enhances the regime of stability of the low-pressure phase in both cases. This is in agreement with previous diamond anvil cell [27] and shock wave [9] experiments, where no bcc structure was detected, and all of their measured state points lie within our hcp domain. A fit to our hcp-bcc solid phase boundary leads to a triple point located at 164.7 GPa and 4314 K.

B. Melting curve

For a given temperature, we derive the melting pressure by equating the Gibbs free energy of the liquid and solid phases. For temperatures below 4300 K, the solid phase considered is hcp because, as we will demonstrate, this phase is more stable than the bcc phase at these conditions. For higher temperatures, the bcc phase becomes more stable, so we compute the Gibbs free energy difference between liquid and bcc phases. Our TDI calculations also allows us to obtain the Gibbs free energy of the liquid, which we use to obtain the melting curve. At each temperature, we derive the melting pressure by equating the Gibbs free energy of the liquid and solid phases. The melting points obtained from these calculations are shown in Figs. 1 and 5. We fitted our melting curve with the Simon-Glatzel equation [66],

$$T_m(P) = T_0 \left(1 + \frac{P}{a}\right)^{1/c},$$

starting from the experimental value of $T_0 = 1564$ K [31], and found the parameters $a = 15.6032$ GPa and $c = 2.6065$. In Fig. 8, we compare our melting curve with experiments and other ab initio calculations. Predictions from ab initio simulations using the two-phase [8] and HUM methods [18] (pink squares and green triangles in Fig. 8, respectively) are consistent with our melting points [8, 18]. Thus, the predictions from thermodynamic integration and two-phase method agree with each other, at least at low temperatures below 6000 K.

While at low temperatures our melting curve agrees well with the predictions from two-phase simulations, the
extrapolated melting line of Benedict et al. (pink dashed line in Fig. 8) [8] results in higher melting temperatures. This difference can be attributed to the fact that only two melting points were reported in their two-phase simulations. However, the HUM method [18], which is often regarded as the upper limit of melting temperature, also leads to melting temperatures that are consistent with ours at low pressures. The melting curve fitted to the HUM data from Robert et al. [18], which goes below our melting curve in Fig. 8, shows a large offset with their own data at the highest pressures. For instance, their fitted melting curve shows that the melting temperature at 320 GPa is ∼5200 K, which is 800 K below their actual melting data point (bcc phase) and ∼300 K below our melting line.

A recent study that used both the hysteresis method (HM) as well as thermodynamic integration with a modified embedded atom model (MEAM) parameterization [29] reported a melting line that is several hundred Kelvin above ours. This shows that this empirical potential [67–69] cannot fully capture the atomic interactions as well as DFT. Conversely, a recent study based on an EOS model [20] proposed a melting line lower than all the reported melting curves so far. They compared their theoretical EOS predictions with DAC experiments [27] and showed that discrepancies in the EOS appear along the isochores at high temperature, implying that their melting line should be steeper than what they predict [20]. Overall, we obtain a melting curve that is in reasonable agreement with previous predictions from two-phase and HUM simulations, and we extended it to much higher pressures.

C. Transition pressure at \(T = 0 \) K

We derived the \(c/a \) ratio of the hcp structure at zero Kelvin as a function of pressure, which is shown in Fig. 6. As we can observe, as compression increases the \(c/a \) ratio rises, converging to the ideal value of \(\sqrt{8/3} \approx 1.633 \). At ambient pressure and zero temperature, we obtain a \(c/a \) ratio of 1.577, in close agreement with the experimental value 1.568 [25, 27, 71]. The deviation from the ideal value at ambient conditions can be attributed to the large hybridisation of s and p orbitals [72, 73]. As pressure increases, the \(p_x, p_y \) and \(p_z \) bands tend to become degenerate, making Be closer to ideal hcp rigid packing at high pressures [15, 16, 73]. In our simulations, we assume \(c/a \) ratio is constant along each isochore, because the value of this ratio has little impact on the calculated free energy of hcp Be [19].

We calculated the energy of the bcc and hcp structures as a function of pressure at \(T = 0 \) K to determine where the phase transition occurs. We used a dense \(k \)-point grid (43 \(\times \) 43 \(\times \) 43) to sample the Brillouin zone of the primitive cell and included the zero point energy by performing DFPT phonon calculations. We fit the cold curve of hcp and bcc beryllium with a 4th order Birch-Murnaghan equation of state, as shown in Fig. 7. We observe that the energy of hcp phase of beryllium is lower compared to bcc, but the difference decreases as pressure increases. We found that \(V_0 = 7.99 \, \text{Å}^3 \) and the bulk modulus of Be at \(P = 0 \) GPa in the hcp phase is \(B_0 = 112.96 \, \text{GPa} \) and \(B_0' = 3.61 \), close to previous experiments [1, 24, 25, 27] and theoretical predictions [8, 15, 16, 18, 26, 70]. From our fitted EOS for the bcc phase, we find \(V_0 = 7.92 \, \text{Å}^3 \), \(B_0 = 111.52 \, \text{GPa} \) and \(B_0' = 3.64 \). We determined the relative enthalpy between the two phases and find that the transition from hcp to bcc occurs at 405 GPa, consistent with recent theoretical predictions [8, 17–19] (see Fig. 1).
D. Hugoniot calculations and EOS

![Hugoniot calculations and EOS](image)

FIG. 8. Melting line and shock Hugoniot curve of Be. Blue diamond: phase diagram by TDI in this work; Orange thick line: Hugoniot by ab-initio MD in this work; Upper red triangle: Melting temperature at ambient pressure [31]; Cyan dotted curve: Hugoniot by SEASAME 2024 [74]; Dashed red curve: Hugoniot by Benedict et al. [8]; Pink squares: melting temperature by Benedict et al. using two-phase method [8]; Green lower triangle: heat-until-it-melts by Robert et al. [18]; Red circles: melting temperature by Dremov et al. using heat-until-it-melts method [29]; Red curve: TDI by Dremov et al. using MEAM model [29]; Green dotted line: melting line by Coe et al. [20]; Open star: point along the nucleation phase boundary derived from classical nucleation theory.

In Fig. 8, we show the shock Hugoniot curve of Be that we have obtained by solving the Rankine-Hugoniot condition

\[
(E - E_0) + \frac{1}{2}(V - V_0)(P + P_0) = 0, \quad (7)
\]

where \(E_0, V_0\) and \(P_0\) are the internal energy, volume and pressure of hcp phase of beryllium at ambient pressure and 300 K. Our Hugoniot curve is in good agreement with shock wave experiments [9] and with predictions from other theoretical works [8, 18]. Our Hugoniot curve intersects the hcp-bcc phase boundary at around 200 GPa and 4000 K, showing a very small offset due to the phase transition. The intersection with the melting line occurs at 235 GPa and 4900 K, and the Hugoniot curve reappears in the liquid region around 276 GPa, with an offset of around 40 GPa. Shock experiments suggest that the onset of melting along the Hugoniot curve occurs at 205 GPa and around 4000 K, based on the criteria that the longitudinal and bulk sound speed are equal [9, 20, 30]. This leads to melting temperatures lower than ours, but this criterion may not represent a valid condition for melting at equilibrium. It has been suggested that this could be attributed to a phenomenon called “cold melting” [29, 38, 75–77]. In cold melting, disordered structures such as recrystallized grains or amorphous solid form right after the shock front, leaving behind a metastable system instead. Dremov et al. [29] considered this effect and corrected the shock Hugoniot curve using large-scale MD simulations, resulting in an intersection with the melting line around 250 GPa and 5000 K [29], consistent with our simulations.

Hugoniotstat MD simulations by Thompson et al. [38] predict that Hugoniot crosses melting line at 230 GPa and 5000 K, consistent with our result.

We also derived an isentrope for beryllium from the entropies that we obtain from our TDI simulations. This is relevant to ramp compression experiments, where the compression is assumed to follow a quasi-isentropic path [78, 79]. If the sample is isentropically compressed from the liquid, it will hit the melting line and remain in a solid/liquid mixture until the pressure is high enough to solidify the sample entirely. If the sample is ramp-compressed further, it will follow a solid isentrope, unless plastic work heating increases the temperature to a significant degree. Here we compute the thermodynamic path of such a ramp compression experiment. As initial conditions, we considered liquid Be at 2000 K and 5 GPa (\(\rho = 1.66 \text{ g cm}^{-3}\)), where we obtained an entropy of \(S = 7.9 \text{ kJ B/atom}\) from our TDI calculations. Then, using the EOS table that we have generated with our simulations, we solve the thermodynamic equation

\[
\left(\frac{\partial T}{\partial V}\right)_S = -T \frac{\partial P}{\partial T}
\]

(8)

to generate isentrope \(S = 7.9 \text{ kJ B/atom}\) for both solid and liquid phases.

As we can see in Fig. 9, this isentrope intersects the melting line at 3000 K and reappears in the solid bcc region at around 10000 K (1590 GPa, 7.00 g cm\(^{-3}\)), a temperature gap of 7000 K. The slope of the melting line is steeper than that of the isentrope, suggesting that isentropic compression should always encounter partial crystallization if pressure is high enough, and that recrystallization of Be during isentropic release in shock decay experiments should not be observable [80, 81].

These results imply that isentropic ramp compression experiments should generate a solid-liquid mixture and remain in such a state over a \(T, \rho, P\) interval of approximately 7000 K, 4.7 g cm\(^{-3}\) and 1550 GPa before the mixture freezes completely at a compression ratio of 3.05-fold from ambient density. The intensity of the X-ray diffraction peaks would surge as the fraction of the solid increases at higher compression. On the other hand, the Debye-Waller effect [82, 83] would broaden the peaks. Nevertheless, a long section of the melting line could, in principle, be measured with a ramp compression experiment if accurate temperature measurements become available.
In Fig. 10, we show how the volume and entropy differences between the solid and liquid phase change along the melting line and compare their ratio with the slope of our fitted melting curve, as given by the Clausius–Clapeyron relation,

$$\left. \frac{dT}{dP} \right|_m = \frac{V_{\text{lin}} - V_{\text{sol}}}{S_{\text{lin}} - S_{\text{sol}}}. \tag{9}$$

We obtain consistent results from both approaches, which differ by less than 10% in the pressure range investigated.

From the entropy of fusion in Fig. 10, we can estimate the kinetic (nucleation) effects during the solidification of liquid beryllium at high pressure. It has been reported that a thermodynamically metastable crystal phase may dominate the initial growth of a solidifying cluster in the liquid [84, 85]. The Gibbs free energy of the solid cluster in the liquid during supercooling is determined not only by the thermodynamic bulk free energy but also by the interfacial Gibbs free energy, γ_I, which is proportional to the characteristic Turnbull coefficient, α, in the Gibbs-Thompson (GT) limit [86],

$$\gamma_I = \alpha \frac{\Delta H_m}{V_s^{2/3}}, \tag{10}$$

where $A_I^{\text{sphere}} = (36\pi)^{1/3}(N_v v_s)^{2/3}$ represents the surface area of the cluster in equilibrium with the surrounding liquid. V_s is the specific volume of the solid. The Turnbull coefficient of hcp, α_{hcp}, is assumed to be higher than that of the bcc phase [85, 87]. Considering the size limitation of current ab initio MD simulations, as well as the scarcity of data on the Turnbull coefficient of different beryllium phases, it is challenging to calculate the kinetic nucleation boundary with high precision. We estimate $\alpha_{\text{hcp}}/\alpha_{\text{bcc}} = 1.15$ based on previous studies that predicted the Turnbull coefficient of the bcc crystals to be approximately 10–20% lower than that of fcc or hcp crystals [85].

The kinetic phase boundary is defined as the state where two phases share the same nucleation rate. In classical nucleation theory (CNT), this rate can be expressed as [85],

$$J_S(T_c) = \sqrt{\frac{\Delta G''_S(T_c)}{2\pi k_B T_c} [N_S(T_c)]^{2/3} \frac{\tau}{v_L} \exp \left(- \frac{\Delta G_S(T_c)}{k_B T_c} \right)}, \tag{11}$$

where τ is the rate of attachment to a unit area of the cluster, which we set equal for both phases, $\tau_{\text{hcp}} = \tau_{\text{bcc}}$. The excess Gibbs free energy, ΔG_S, at the temperature T_c is defined as

$$\Delta G_S(T) = N_S \frac{\Delta H_m}{T_m} (T - T_m) + \alpha (36\pi N_S^2)^{1/3} \Delta H_m, \tag{12}$$

where $\Delta G''_S$ is the curvature of the excess Gibbs free energy with respect to cluster size. Minimizing the Gibbs free energy, we obtain the critical cluster size,

$$N_S = \frac{32\pi}{3} \left(\frac{\alpha T_m}{T_m - T} \right)^3. \tag{13}$$

After equating the nucleation rates of both phases, $J_S^{\text{hcp}}(T^*) = J_S^{\text{bcc}}(T^*)$, we derived one point along the
kinetic phase boundary (see open near star the triple point in Fig. 8). The bcc phase is predicted to exhibit a larger nucleation rate than the thermodynamically preferred hcp phase and may thus dominate the initial nucleation process. The nucleation temperature, T^*, may be expressed by

$$
\frac{T^* - T_{nuc}^{hcp}}{T^* - T_{nuc}^{bcc}} = \frac{T_{nuc}^{hcp}}{T_{nuc}^{bcc}} \sqrt{\left(\frac{\alpha_{hcp}}{\alpha_{bcc}} \right)^3 \frac{\Delta H_{nuc}^{hcp}}{\Delta H_{nuc}^{bcc}}}.
$$

(14)

We derived one point on the hcp-bcc nucleation boundary: $P = 137$ GPa and ~ 3700 K, just 300 K below the melting curve. Above this boundary, the hcp phase crystallizes more quickly, while when the sample is cooled rapidly to a temperature below this boundary, the bcc polymorph is predicted to form.

E. Gap along the isentrope derived from the logarithmic phonon moment

In this section, we provide a simple method that allows us to obtain an approximated expression for the temperature difference between the solid and liquid entropies without relying on expensive TTI calculations. This difference is important to understand the relationship of isentropes and the melting line that is relevant for ramp compression experiments, which are assumed to be quasi-isentropic. Starting with a liquid isentrope, such experiments may intersect and follow the melting line, as the sample remains in a solid-liquid mixed state before it enters the solid phase.

We start with the assumption that, at low pressures, beryllium has an entropy of fusion of $\Delta S_{liq} = S_{sol} \approx 0.9 \, k_B/atom$ [88, 89] close to the “universal” entropy of fusion of 0.8 k_B suggested by Wallace [83].

When the isentrope intersects the melting line at a given temperature T_1, the liquid has density ρ_1 and an entropy $S_{liq}(\rho_1, T_1)$. The thermodynamic path with the same entropy in the solid regime appears at a higher density ρ_2 with a temperature T_2, and $S_{sol}(\rho_2, T_2) = S_{liq}(\rho_1, T_1)$. Since we assume that the entropy of fusion is known, we can calculate the entropy gain in the solid by

$$
\Delta S = S_{sol}(\rho_2, T_2) - S_{sol}(\rho_1, T_1) = S_{liq}(\rho_1, T_1) - S_{sol}(\rho_1, T_1) \approx 0.9 \, k_B/atom.
$$

(15)

The entropy of the solid phase at a given density and temperature can be obtained from the ion-thermal contribution of the free energy in Eq. (4), which takes the form $F_i(V, T) = 3k_BT \ln[\theta_0(T)]$ for temperatures higher than the characteristic Debye temperature [8]. Its derivative with respect to temperature leads to

$$
S_{sol}(V, T) = 3k_B \ln \left(\frac{T}{\theta_0(V)} \right) + 3k_B,
$$

(16)

where θ_0 is logarithmic moment of the phonon density of states (PDOS) at the volume V, defined by [8, 18, 83],

$$
\ln \left[k_B \theta_0(V) \right] = \int_0^\infty g(\omega) \ln \omega \, d\omega.
$$

(17)

Here, $g(\omega)$ is the phonon density of states, and the logarithmic phonon moment, θ_0, is a good approximation of the Debye temperature, $\theta(V)$.

The entropy derived from this free energy accounts only for the vibrational entropy, which dominates over the electronic entropy even at the high temperatures we are interested in. To confirm this, we calculate the electronic entropy using Mermin functional [90],

$$
S_{el}(T) = -k_B \int n(\epsilon) [f_i \ln f_i + (1-f_i) \ln (1-f_i)] \, d\epsilon
$$

(18)

where $n(\epsilon)$ corresponds to electronic density of states and $f_i(\epsilon)$ is the Fermi-Dirac distribution function at temperature T. Our calculations indicate that, at these conditions, the electronic entropy only accounts for less than 2% of entropy of entire system.

If the melting curve is not known, one can obtain an approximate value for the melting temperature from the Lindemann criterion, which relates the melting temperature to the Grüneisen parameter, γ, of the solid phase through the expression [91, 92]

$$
\frac{d \ln T_m}{d \ln V} = -2 \left(\gamma(V) - \frac{1}{3} \right),
$$

(19)

where

$$
\gamma \equiv -\frac{d \ln \theta_0(V)}{d \ln V}
$$

(20)

and $\theta_0(V)$ is the logarithmic phonon moment of order $n = 0$ at the volume V. A good approximation for γ is to assume that it depends linearly on the volume of the solid phase, namely, $\gamma = AV + B$, which allows to obtain an analytical expression for the logarithmic phonon moment [8, 93] from Eq. (20),

$$
\theta_0(V) = \theta_0(V^*) \left(\frac{V}{V^*} \right)^{-B} \exp \left[-A(V - V^*) \right].
$$

(21)

In the same way, it allows us to obtain an analytical expression for the melting curve from Eq. (19),

$$
T_m(V) = T^* \left(\frac{V}{V^*} \right)^{-2B+\frac{2}{3}} e^{-2A(V - V^*)}.
$$

(22)

We performed DFPT phonon calculations [57] to obtain the PDOS, which we integrate using Eq. (17) to derive the logarithmic phonon moment of the bcc phase, $\theta_0(V)$, for a number of volumes. The resulting values were used to fit the parameters A, B, V^* and θ_0(V^*) in Eq. (21), obtaining $V^* = 6.868 \, \text{Å}^3$, $\theta_0(V^*) = 1039.86 \, \text{K}$, $A = 0.101 \, \text{Å}^{-3}$, and $B = 0.515$, consistent with the...
values obtained by Benedict et al [8]. The value of T^* is obtained from the melting temperature of Be at ambient conditions ($V_0 = 8.09$ Å3/atom) by setting $T_m(V_0) = T_0 = 1564 \, K$. We found $T^* = 2490 \, K$ a good fitting parameter.

As shown in Fig. 9, our values of θ_0 are in good agreement with previous studies [8, 18]. The resulting melting curve obtained from Eq. (22) is shown as the purple curve in Fig. 9 and it is consistent with our melting temperatures derived with TDI, which demonstrates that the approximations considered here work very well for predicting the melting temperatures. We can insert Eq. (16) in Eq. (15) to relate the two melting temperatures, T_1 and T_2, with the corresponding volumes of the solid, which results in

$$\Delta S = S_{sol}(V_2, T_2) - S_{sol}(V_1, T_1) = 3k_B \ln \left[\frac{T_2 \theta_0(V_1)}{T_1 \theta_0(V_2)} \right]$$ \hspace{1cm} (23)

$$= 3k_B \ln \left[\left(\frac{V_2}{V_1} \right)^{-B + \frac{2}{3}} e^{-A(V_2 - V_1)} \right].$$

This implies that

$$T_2 = \frac{\theta_0(V_2)}{\theta_0(V_1)} e^{\Delta S/3k_B} T_1.$$ \hspace{1cm} (24)

Considering that the melting temperature $T_1 = T_m(V_1)$ at which the isentrope intersects the melting line is known, we can infer the corresponding volume of the solid, V_1, from Eq. (22). Then, V_2 can be inferred from Eq. (23), assuming $\Delta S \approx 0.9 \, k_B$. With these parameters, we can use Eq. (24) to determine the temperature gap between the solid and liquid isentrope with the same entropy. Here, $T_1 = 2525 \, K$ and $V_1 = 6.812 \, Å^3$/atom (2.196 g cm$^{-3}$), which results in a temperature gap of $\Delta T = 7500 \, K$. This is just slightly higher that the actual gap of 7000 K that we obtain from our TDI calculations, as we can see in Fig. 9.

Therefore, the approximations that we have introduced here, based on phonon calculations coupled with a Lindemann form of the melting curve, work very well for predicting the temperature gap that arises when an isentrope intersects the melting line. We suggest that this approach can be used to estimate this gap for other materials and to predict the temperature interval over which ramp compression experiments follow the melting line.

F. Phonon density of state and quasi-phonon free energy

To obtain a measure of the anharmonic effects, we compare our free energies derived from TDI with those obtained from phonon-based methods. Using the **Dynaphopy** software [94, 95], we derived the contribution to the free energy of the quasi-phonon-particles from a power spectrum of the velocity autocorrelation function, $G_q(\omega) = \int_{-\infty}^{+\infty} \langle V_q(0)V_q(t) \rangle e^{i\omega t} \, dt$, \hspace{1cm} (25)

where q is a wave vector in Brillouin zone and $V_q(t)$ is the fourier transform of weighted velocity $\sqrt{M}v(t)$ along ab-initio MD trajectory at a given time t. The quantity in angle brackets corresponds to the velocity autocorrelation function defined as

$$\langle V_q(0)V_q(t) \rangle = \lim_{\tau \rightarrow \infty} \frac{1}{\tau} \int_0^\tau V_q(t')V_q(t' + t) \, dt'$$ \hspace{1cm} (26)

In Fig. 12 we plot the phonon density of states (PDOS) at $T = 0 \, K$ and 3000 K from dynamic matrix. Vibrational density of state and quasi-phonon-particle fitting have been carried out with the help of phonopy [58] and **Dynaphopy** [95]. PDOS at 3000 K was derived from the quasi-phonon-particle method for both hcp and bcc phases of beryllium at $\rho = 3.814 \, g \, cm^{-3}$. In contrast to the PDOS at 0 K, the PDOS of both phases at high temperature shifts towards lower frequencies, yielding phonon softening in both phases.

In order to better understand the anharmonic effects at finite temperature, we compared our entropies and free energy differences with those derived from the phonon quasiparticle method. We chose $T = 3000 \, K$ and $\rho = 3.814 \, g \, cm^{-3}$ as reference, marked as a red cross in Fig. 9. The entropy and free energy differences are shown in Table I.

As we can see from Table I, at $T = 3000 \, K$ and $\rho = 3.814 \, g \, cm^{-3}$, the free energy difference between the hcp and bcc phases of beryllium given by

![Graph showing logarithmic phonon moments with respect of volume. Blue circle: θ_0 (this work); Green diamond: θ_0 by Robert et al [18]; Orange squares: θ_0 by Benedict et al [8]; Red dashed line: curve fit assuming Grüneisen parameter $\gamma = -a \ln \theta_0$ linear with volume.](image-url)
the traditional quasiharmonic approximation method is 13.68 meV/atom. However, from the phonon quasiparticle method \[19, 32, 94, 96\] this difference is just 2.255 meV/atom, indicating a more stable hcp phase when anharmonic effects are taken into account, which agrees with previous experiments by either DAC \[27\] or shock wave experiments \[9\]. From our TDI results, we obtain a free energy difference between hcp and bcc beryllium of 1.026 meV/atom, close to the result suggested by the quasi-phonon method. Therefore anharmonic effects lower the free energy of hcp structure by more than 10 meV at 3.814 g cm\(^{-3}\) and 3000 K, which helps to explain the higher hcp-bcc transition pressure in our phase diagram Fig. 5. Thus, the anharmonic effects captured by TDI are well approximated by the quasiphonon method.

We further investigated the entropy of both phases at these conditions. Our results, summarized in Table I, show that the entropic term in the Gibbs free energy difference, \(G_{\text{hcp}} - G_{\text{bcc}}\), at \(T = 3000\) K is 25.7 meV/atom from our TDI calculations, 11 meV/atom smaller than that derived from QHA. Thus, the anharmonic effects on the entropy are stronger in the hcp structure compared to bcc, enhancing the stability of hcp structure.

In Fig. 13 we show how the electronic density of states (DOS) of Beryllium changes with pressure in the hcp, bcc, and liquid phases at 3000 K. We obtained the DOS from the analysis of the eigenenergies provided by Kohn-Sham DFT, as we have done in previous works \[98, 99\]. With a Brillouin zone sampled by Monkhorst-Pack method with \(2 \times 2 \times 2\) \(k\)-points sampling \[47\], we obtained smooth DOS curves by averaging over the MD-simulation snapshots and by applying a Gaussian smearing of 0.1 eV to the band energies. The DOS at every snapshot was aligned at its respective Fermi energy, and then we averaged all of them together. The average Fermi energy was then subtracted out and the integrated DOS was normalized to 1.

The K shell (1s) electrons form a sharp peak (not displayed in the figure) centered around 100 eV below the Fermi energy. The conduction band, formed by the L shell electrons, shows similar features for both the bcc and hcp phases. While the DOS of Be shows a minimum around the Fermi energy for the hcp phase, this minimum is shifted to energies above the Fermi energy in the liquid phase. In our EOS, we did not find signatures of pressure ionization that can be attributed to an energy minimum \[100, 101\], and no gap-opening occurred in our electronic DOS for the regime of pressures...
explored. However the density of states near the Fermi energy does decrease under compression, leaving a possibility for a gap opening at higher pressures.

IV. CONCLUSION

We performed a systematic investigation of the beryllium phase diagram under extreme conditions using the first principles thermodynamic integration method. At 0 K, we find that the hcp phase of beryllium transforms to the bcc phase at 405 GPa and that at higher temperatures, the Clapeyron slope of the hcp-bcc phase boundary is negative. We showed that the quasiharmonic approximation tends to underestimate the stability of the hcp phase. When the full anharmonicity is considered, we find a solid-solid phase boundary that is similar to that predicted by QHA at low temperatures, but is shifted to higher pressures with increasing temperature. Our triple point is located at 164.7 GPa and 4314 K, much higher pressure and temperature than the 85 GPa and 3400 K suggested by the quasiharmonic approximation.

By fitting the Fourier transform of the velocity auto-correlation function to obtain the phonon quasiparticles, we obtained the vibrational density of states at 3000 K and calculated corresponding free energy. The free energy difference between hcp and bcc phases calculated by the TDI method is much smaller than that derived by QHA and agrees well with the phonon quasiparticle method, consistent with our predictions of a larger hcp domain and higher hcp-bcc transition pressures.

We calculated the shock Hugoniot curve and found it to be consistent with previous shock experiments. Our Hugoniot crosses the solid-solid phase boundary at 200 GPa and 4000 K with small drop in temperature and encounters the melting line at 235 GPa and 4900 K. Previous shock Hugoniot experiments that predict a lower pressure for the onset melting from sound speed measurements may correspond to a case of “cold melting,” followed by recrystallization, yielding a premature measurement of the melting point.

Our melting line shows good agreement with two phase method and heat-until-it-melts simulations predictions below 6000 K, and is lower than that predicted by TDI simulations using the empirical MEAM model. Our derived melting temperatures extend the melting curve of beryllium up to a pressure of 1600 GPa.

We computed isentropes in the liquid and solid phases and found them to be shallower than our melting curve in pressure-temperature space. We predict the thermodynamic path of a hypothetical quasi-isentropic ramp compression experiment. Starting with a liquid isentrope, it would follow the melting line while the sample is in a solid-liquid mixed state before entering the solid phase. We predict Be to remain in a solid-liquid mixed state to be present over a large temperature interval of 7000 K. Based on the canonical value for the entropy of fusion, 0.9 kJ/atom, one can expect for other materials the solid-liquid state to be present over several thousand Kelvin. The magnitude also depends on the shape of the melting curve.

ACKNOWLEDGMENTS

This work was in part supported by the National Science Foundation-Department of Energy (DOE) partnership for plasma science and engineering (grant DE-SC0016248) and the University of California Laboratory Fees Research Program (grant LFR-17-449059). FGC and BM acknowledge support from DOE-National Nuclear Security Administration (grant DE-NA0003842). Computational resources at the National Energy Research Scientific Computing Center were used. R. Jeanloz, F. Soubiran, and B.K. Godwal provided constructive comments.

[1] A. Migliori, H. Ledbetter, D. J. Thoma, and T. W. Darling, *Beryllium’s monocystal and polycystal elastic constants*, Journal of Applied Physics 95, 2436–2440 (2004).
[2] D. C. Wilson, et al., *The development and advantages of beryllium capsules for the National Ignition Facility*, Physics of Plasmas 5, 1953–1959 (1998).
[3] D. S. Clark, S. W. Haan, and J. D. Salmonson, *Robustness studies of ignition targets for the National Ignition Facility in two dimensions*, Physics of Plasmas 15 (2008).
[4] S. W. Haan, et al., *Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility*, Physics of Plasmas 18 (2011).
[5] A. N. Simakov, et al., *Optimized beryllium target design for indirectly driven inertial confinement fusion experiments on the national ignition facility*, Physics of Plasmas 21 (2014).
[6] J. L. Kline, et al., *First beryllium capsule implosions on the National Ignition Facility*, Physics of Plasmas 23 (2016).
[7] D. S. Clark, et al., *Capsule physics comparison of National Ignition Facility implosion designs using plastic, high density carbon, and beryllium ablators*, Physics of Plasmas 25 (2018).
[8] L. X. Benedict, et al., *Calculations of high-pressure properties of beryllium: Construction of a multiphase equation of state*, Physical Review B - Condensed Matter and Materials Physics 79, 1–9 (2009).
[9] C. A. McCoy, M. D. Knudson, and M. P. Desjarlais, *Sound velocity, shear modulus, and shock melting of beryllium along the Hugoniot*, Physical Review B 100, 1–13 (2019).
[10] J. L. Peterson, D. S. Clark, L. P. Masse, and L. J. Suter, *The effects of early time laser drive on hydra
dynamic instability growth in National Ignition Facility implosions, Physics of Plasmas 21 (2014). URL http://dx.doi.org/10.1063/1.4896708.
[11] A. McMahan, The α-β transition in $T = O$ high pressure beryllium, In AIP Conference Proceedings, vol. 78, 340–344 (American Institute of Physics, 1982).
[12] P. K. Lam, M. Y. Chou, and M. L. Cohen, Temperature- and pressure-induced crystal phase transitions in Be, Journal of Physics C: Solid State Physics 17, 2065–2073 (1984).
[13] J. Meyer-Ter-Vehn and W. Zittel, Electronic structure of matter at high compression: Isostuctural transitions and approach of the fermi gas limit, Physical Review B 37, 8674–8688 (1988).
[14] B. Palanivel, R. S. Rao, B. K. Godwal, and S. K. Sikka, On the relative stability of orthorhombic and hcp phases of beryllium at high pressures, Journal of Physics Condensed Matter 12, 8831–8836 (2000).
[15] G. V. Sin’ko and N. A. Smirnov, Relative stability and elastic properties of hcp, bcc, and fcc beryllium under pressure, Physical Review B 71, 214108 (2005). URL https://link.aps.org/doi/10.1103/PhysRevB.71.214108.
[16] G. Robert and A. Sollier, Equation of state and elastic properties of beryllium from first principles calculations, Journal of Physics C: Solid State Physics 14, 87–93 (1984).
[17] F. Luo, L. C. Cai, X. R. Chen, F. Q. Jing, and D. Alf, Ab initio calculation of lattice dynamics and thermodynamic properties of beryllium, Journal of Applied Physics 111 (2012).
[18] G. Robert, P. Legrand, and S. Bernard, Multi-phase equation of state and elastic modulus of solid beryllium from first principles, Physical Review B - Condensed Matter and Materials Physics 82 (2010). URL https://journals.aps.org/prb/pdf/10.1103/PhysRevB.82.104118.
[19] J. W. Xian, et al., Effect of anharmonicity on the hcp to bcc transition in beryllium at high-pressure and high-temperature conditions, Physical Review B 99, 1–12 (2019).
[20] J. D. Coe, S. P. Rudin, and B. Maiorov, Multiphase equation of state and thermoelastic data for polycrystalline beryllium, In AIP Conference Proceedings, vol. 070009, 070009 (2020). URL http://aip.scitation.org/doi/abs/10.1063/1.5000902.
[21] K. Kádas, L. Vitos, B. Johansson, and J. Kollár, Structural stability of β-beryllium, Physical Review B 75, 035132 (2007).
[22] L. C. Ming and M. H. Manghani, Isothermal compression and phase transition in beryllium to 28.3 GPa, Journal of Physics F: Metal Physics 14 (1984).
[23] V. Vijayakumar, B. K. Godwal, Y. K. Vohra, S. K. Sikka, and R. Chidambaram, On the high-pressure phase transition in beryllium metal, Journal of Physics F: Metal Physics 14 (1984).
[24] K. Nakano, Y. Akahama, and H. Kawaiumura, X-ray diffraction study of Be to megabar pressure, Journal of Physics Condensed Matter 14, 10569–10573 (2002).
[25] W. J. Evans, et al., X-ray diffraction and Raman studies of beryllium: Static and elastic properties at high pressures, Physical Review B - Condensed Matter and Materials Physics 72, 1–6 (2005).
[26] N. Velisavljevic, et al., Structural and electrical properties of beryllium metal to 66 GPa studied using designer diamond anvils, Physical Review B - Condensed Matter and Materials Physics 65, 1721071–1721074 (2002).
[27] A. Lazicki, A. Dewaele, P. Loubeyre, and M. Mezouar, High-pressure-temperature phase diagram and the equation of state of beryllium, Physical Review B - Condensed Matter and Materials Physics 86, 1–10 (2012).
[28] H. Olijnyk and A. P. Jephcoat, Raman spectra of beryllium to 23 GPa. Journal of Physics Condensed Matter 12, 8913–8918 (2000).
[29] V. V. Dremov, et al., Cold melting of beryllium: Atomic view on Z-machine experiments, Journal of Applied Physics 118, 035901 (2015). URL http://dx.doi.org/10.1063/1.4923430http://aip.scitation.org/doi/10.1063/1.4923430.
[30] M. D. Knudson, Megaamps, megagauss, and megabars: Using the sandia z machine to perform extreme material dynamics experiments, In AIP Conference Proceedings, vol. 1426, 35–42 (American Institute of Physics, 2012).
[31] A. Martin and A. Moore, The structure of beryllium, with particular reference to temperatures above 1200°C, Journal of the Less Common Metals 1, 85–93 (1959). URL https://linkinghub.elsevier.com/retrieve/pii/002258859000481.
[32] Y. Lu, et al., Premelting hcp to bcc Transition in Beryllium, Physical Review Letters 118 (2017). URL https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.118.145702.
[33] C. W. Pistorius, Phase relations and structures of solids at high pressures, Progress in Solid State Chemistry 11, 1–151 (1976).
[34] M. Francois and M. Contre, Conference internationale sur la metallurgie du beryllium, Universite de France, Grenoble, Paris (1965).
[35] A. Abey, Pressure phase lines and enthalpies for the cap alpha.-. beta. and beta.-liquid transitions in beryllium, Tech. Rep., Lawrence Livermore National Lab., CA (USA) (1984).
[36] D. Frenkel and A. J. C. Ladd, New Monte Carlo method to compute the free energy of arbitrary solids. Application to the fcc and hcp phases of hard spheres, The Journal of Chemical Physics 81, 3188–3193 (1984). URL http://aip.scitation.org/doi/10.1063/1.448024.
[37] J. M. Polson, E. Trizac, S. Pronk, and D. Frenkel, Finite-size corrections to the free energies of crystalline solids, Journal of Chemical Physics 112, 5339–5342 (2000).
[38] A. P. Thompson, J. M. D. Lane, and M. Desjarlais, Molecular dynamics simulation of dynamic response of beryllium, In AIP Conference Proceedings, vol. 1426, 1311–1314 (2012). URL http://aip.scitation.org/doi/abs/10.1063/1.3656522.
[39] G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Computational Materials Science 6, 15–50 (1996).
[40] P.E. Blöchl, Projector augmented-wave method, Physical Review B 50, 17953–17979 (1994).
[41] G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Physical Review B 59, 1758–1775 (1999). URL https://link.aps.org/doi/10.1103/PhysRevB.59.1758.
[42] S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, The Journal of...
[43] S. Nosé, Constant Temperature Molecular Dynamics Methods Limitations in simulations in the microcanonical ensemble, Progress of Theoretical Physics Supplement 1–46 (1991).

[44] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters 77, 3865–3868 (1996), URL https://link.aps.org/doi/10.1103/PhysRevLett.77.3865.

[45] M. Allen and D. Tildesley, Computer Simulation of Liquids (Oxford: Clarendon Pr, 1987).

[46] G. A. de Wijs, G. Kresse, and M. J. Gillan, Sequestration of noble gases in giant planet interiors, The Astrophysical Journal 81, 461–466 (1989).

[47] H. F. Wilson and B. Militzer, Application of the Embedded-Atom Method to Covalent Materials: A Semiempirical Potential for Silicon, Physical Review Letters 59, 2666–2669 (1987).

[48] H. F. Wilson and B. Militzer, Sequestration of noble gases in giant planet interiors, Phys. Rev. Lett. 104, 121101 (2010). URL https://link.aps.org/doi/10.1103/PhysRevLett.104.121101.

[49] F. González-Cataldo, H. F. Wilson, and B. Militzer, Ab Initio Free Energy Calculations of the Solubility of Silicon in Metallic Hydrogen and Application To Giant Planet Cores, The Astrophysical Journal 787, 79 (2014). URL http://stacks.iop.org/0004-637X/787/i=1/a=79?key=crossref.8ed04244ba9e558efb9e40081922b.

[50] S. Izvekov, M. Parrinello, C. J. Bumham, and G. A. Voth, Effective force fields for condensed phase systems from ab initio molecular dynamics simulation: A new method for force-matching, Journal of Chemical Physics 120, 10896–10913 (2004).

[51] H. F. Wilson and B. Militzer, Anharmonicity and Phase Diagram of Magnesium Oxide in the Megabar Regime, Physical Review Letters 125, 175701 (2020), URL https://doi.org/10.1103/PhysRevLett.125.175701.

[52] B. Grabowski, L. Ismer, T. Hickel, and J. Neugebauer, Ab initio up to the melting point: Anharmonicity and vacancies in aluminum, Physical Review B - Condensed Matter and Materials Physics 79, 1–16 (2009).

[53] A. I. Duff, et al., Improved method of calculating ab initio high-temperature thermodynamic properties with application to ZrC, Physical Review B - Condensed Matter and Materials Physics 91, 1–8 (2015).

[54] S. Baroni, S. De Gironcoli, A. Dal Corso, and P. Giannozzi, Phonons and related crystal properties from density-functional perturbation theory, Reviews of modern Physics 73, 515 (2001).

[55] A. Togo and I. Tanaka, First principles phonon calculations in materials science, Scr. Mater. 108, 1–5 (2015).

[56] J. Zhang, J. Zhu, N. Velisavljevic, L. Wang, and Y. Zhao, Thermal equation of state and thermodynamic Grüneisen parameter of beryllium metal, Journal of Applied Physics 114, 173509 (2013), URL http://aip.scitation.org/doi/10.1063/1.4828866.

[57] V. I. Levitas and R. Ravelo, Virtual melting as a new
mechanism of stress relaxation under high strain rate loading, Proceedings of the National Academy of Sciences of the United States of America 109, 13204–13207 (2012).

[76] M. M. Budzевич, V. V. Zhakhovsky, C. T. White, and I. I. Oleynik, Evolution of shock-induced orientation-dependent metastable states in crystalline aluminum, Physical Review Letters 109, 1–5 (2012).

[77] A. M. He, S. Q. Duan, J. L. Shao, P. Wang, and S. N. Luo, Local and bulk melting of shocked columnar nanocrystalline Cu: Dynamics, anisotropy, premelting, superheating, supercooling, and re-crystallization, Journal of Chemical Physics 139 (2013).

[78] D. C. Swift, et al., Shock formation and the ideal shape of ramp compression waves, Physical Review E 78, 066115 (2008).

[79] J. L. Brown, M. D. Knudson, C. S. Alexander, and J. R. Asay, Shockless compression and release behavior of beryllium to 110 GPa, Journal of Applied Physics 116 (2014), URL http://dx.doi.org/10.1063/1.4890232.

[80] B. Militzer, Ab initio investigation of a possible liquid-liquid phase transition in MgSiO3 at megabar pressures, High Energy Density Physics 9, 152–157 (2013), URL http://linkinghub.elsevier.com/retrieve/pii/S1574981812001322.

[81] E. J. Davies, et al., Silicate Melting and Vaporization During Rocky Planet Formation, Journal of Geophysical Research: Planets 125, 1–17 (2020), 2020.00998.

[82] M. J. Graf, High-Pressure Debye-Waller and Grüneisen Parameters of Gold and Copper 65, 65–68 (2004).

[83] D. C. Wallace, Thermodynamics of crystals, American Journal of Physics 40, 1718–1719 (1972).

[84] C. Desgranges and J. Delhommelle, Controlling polymorphism during the crystallization of an atomic fluid, Physical review letters 98, 235502 (2007).

[85] B. Sadigh, L. Zepeda-Ruiz, and J. L. Belof, Metastable–solid phase diagrams derived from polymorphic solidification kinetics, Proceedings of the National Academy of Sciences 118 (2021).

[86] D. Turnbull, Formation of crystal nuclei in liquid metals, Journal of Applied Physics 21, 1022–1028 (1950).

[87] D. Sun, M. Asta, J. Hoyt, M. Mendeleev, and D. Srolovitz, Crystal-melt interfacial free energies in metals: Fcc versus bcc, Physical Review B 69, 020102 (2004).

[88] R. M. German, Sintering theory and practice (1996).

[89] N. Yefimov, Handbook of non-ferrous metal powders: technologies and applications (Elsevier, 2009).

[90] N. D. Mermin, Thermal properties of the inhomogeneous electron gas, Physical Review 137, A1441 (1965).

[91] J. J. Gilvarry, The lindemann and grüneisen laws, Physical Review 102, 308 (1956).

[92] O. L. Anderson and D. G. Isaak, Calculated melting curves for phases of iron, American Mineralogist 85, 376–385 (2000).

[93] S. P. Rudin, M. Jones, and J. Johnson, Density functional theory calculations on eos and phase stability of beryllium, Joint 20th AIRAPT–43th EHPRG, June.

[94] D.-B. Zhang, T. Sun, and R. M. Wentzcovitch, Phonon quasiparticles and anharmonic free energy in complex systems, Physical review letters 112, 055501 (2014).

[95] A. Carreras, A. Togo, and I. Tanaka, Dynaphopy: A code for extracting phonon quasiparticles from molecular dynamics simulations, Computer Physics Communications 221, 221–234 (2017).

[96] T. Sun and P. B. Allen, Lattice thermal conductivity: Computations and theory of the high-temperature breakdown of the phonon-gas model, Physical Review B 82, 224305 (2010).

[97] Z.-C. Guo, F. Luo, and Y. Cheng, Phase transition and thermodynamic properties of beryllium from first-principles calculations, Computational Materials Science 84, 139–144 (2014), URL http://dx.doi.org/10.1016/j.commatsci.2013.12.013 https://linkinghub.elsevier.com/retrieve/pii/S0927025615000737 https://linkinghub.elsevier.com/retrieve/pii/S0927025613007623.

[98] F. González-Cataldo, F. Soubiran, and B. Militzer, Equation of state of hot, dense magnesium derived with first-principles computer simulations, Physics of Plasmas 27, 092706 (2020), URL http://aip.scitation.org/doi/10.1063/5.0017555http://arxiv.org/abs/2008.08459 URL http://aip.scitation.org/doi/10.1063/1.5126624http://aip.scitation.org/doi/10.1063/1.5126624.

[99] F. Soubiran, F. González-Cataldo, K. P. Driver, S. Zhang, and B. Militzer, Magnesium oxide at extreme temperatures and pressures studied with first-principles simulations, The Journal of Chemical Physics 151, 214104 (2019), URL https://doi.org/10.1063/1.5126624 URL https://aip.scitation.org/doi/10.1063/1.5126624.

[100] F. González-Cataldo and B. Militzer, Thermal and pressure ionization in warm, dense MgSiO3 studied with first-principles computer simulations, In AIP Conference Proceedings, vol. 2272, 090001 (2020), URL http://arxiv.org/abs/2002.12163http://aip.scitation.org/doi/10.1063/1.5000793 http://aip.scitation.org/doi/10.1063/1.5000793.

[101] F. González-Cataldo, F. Soubiran, H. Peterson, and B. Militzer, Path integral Monte Carlo and density functional molecular dynamics simulations of warm dense MgSiO3, Physical Review B 101, 024107 (2020), URL https://link.aps.org/doi/10.1103/PhysRevB.101.024107.