Aneurisma da veia de galeno: relato de caso

Galen vein aneurysm: case report

Pedro Henrique Matias Peres¹, Paulo Roberto Margotto¹

Resumo

A malformação aneurismática da veia Galeno (MAVG) é uma anomalia rara, contabilizando menos de 1% de todas as malformações vasculares cerebrais congênitas, mas representando 30% destas em idade pediátrica. É uma malformação arteriovenosa cerebral, de desenvolvimento pré-natal, que se inicia antes das dez semanas de gestação, e que resulta da formação de fistulas arteriovenosas entre a circulação coroideia e a veia mediana prosencefálica, um vaso embrionário precursor da veia de Galeno, que se torna dilatado. Apresentamos um caso raro desta malformação e a sua evolução após tratamento com embolização endovascular.

Abstract

An aneurysm malformation of the Galen vein is a rare anomaly, accounting for less than 1% of all congenital cerebral vascular malformations, but representing 30% of these in the pediatric age. It is a cerebral arteriovenous malformation, prenatal development, which begins before ten weeks of gestation, and results from the formation of arteriovenous fistulas between the choroidal circulation and the median prosencephalic vein, an embryonic vessel precursor of the Galen vein, which becomes dilated. We present a rare case of this malformation and its evolution after treatment with endovascular embolization.

Palavras-chave:
Aneurisma, Malformações da Veia de Galeno, Malformações Vasculares, Insuficiência Cardíaca, Embolização Terapêutica.

Keywords:
Aneurysm, Vein of Galen Malformations, Vascular Malformations, Heart Failure, Embolization, Therapeutic.

¹ Universidade Católica de Brasília, Departamento de Medicina - Brasilia - DF - Brasil.

Endereço para correspondência:
Pedro Henrique Matias Peres.
Universidade Católica de Brasília - Departamento de Medicina. Q5 07 - Lote 01, EPCT - Taguatinga, Brasília - DF, Brasil. CEP: 71966-700. E-mail: pedromhperes@gmail.com

DOI: 10.25060/residpediatr-2020.v10n1-70
INTRODUÇÃO

A malformação aneurismática da veia Galeno (MAVG) é uma anomalia rara, representando menos de 1% de todas as malformações vasculares cerebrais congênitas, mas representando 30% destas em idade pediátrica2,3. É uma malformação arteriovenosa cerebral, de desenvolvimento pré-natal, que se inicia antes das dez semanas de gestação, e que resulta da formação de fistulas arteriovenosas entre a circulação coroideia e a veia mediana prosencefálica, um vaso embrionário precursor da veia de Galeno, que se torna dilatado1,3-5.

A gravidade da MAVG é variável e as manifestações clínicas podem ser distintas consoante a idade de apresentação2,5. O período pré-natal pode apresentar-se com sinais de insuficiência cardíaca, hidrocefalia (pela congestão venosa que condiciona), ou oligohidrâmios, uma consequência do baixo fluxo renal (secundário à insuficiência cardíaca)1,10. No período neonatal a apresentação clínica mais frequente é a insuficiência cardíaca de alto débito, podendo raramente ter outras formas de apresentação, nomeadamente enterocolite necrosante, secundária à hipoperfusão intestinal2,7.

RELATO DE CASO

Recém-nascido (RN), previamente diagnosticado com malformação fetal por ecografia realizada durante o pré-natal, evidenciando: Aneurisma de veia de Galeno com dilatação de sistema venoso e cardiomegalia, sugerindo insuficiência cardíaca. Ducto venoso com aumento de índice de pulsatividade (IP).

Sexo masculino, nascido com idade gestacional de 30 semanas e 1 dia, por cesariana, pesando 3000 gramas, apresentação cefálica, líquido amniótico claro, bolsa rota rompida no ato, procedimento realizado em Hospital Materno Infantil de Brasília/DF. Não havia circular de cordão. Foi recebido em campos estéreis, chorou forte logo ao nascer, clampeamento tardio de cordão. Levado ao berço aquecido, secado, aspirada boca e vias aéreas superiores, verificando a veia de Galeno no setor de hemodinâmica do IHB-DF. Durante o procedimento, evoluiu com parada cardíaca por provável hipovolemia e ictus hiperdinâmico. Foi colocado em ventilação mecânica (VM), aumentada dose de furosemida, associada à noradrenalina (substituída por dobutamina, após 6ª dia). Realizado ecocardiograma no 7º dia, evidenciando sinais de hipertensão pulmonar e boa função ventricular. Seguindo em VM com FiO2 de 25% / delta P (dP) de 14 / Tempo inspiratório (Tl) de 0,38 / PEEP 6.0 / frequência inspiratória (FR) de 45. Em uso de dobutamina, furosemida, espinonolactona e sedoanalgésia (fentanil e Midazolam). Transferido, no 8º dia, para o Instituto Hospital de Base - DF (IHB-DF), para procedimento de embolização de aneurisma da veia de Galeno.

No 3º dia de vida foi realizado ecocardiograma, evidenciando sinais de hipertensão pulmonar acentuada, iniciou-se furosemida. Apresentou aumento do desconforto respiratório, piora da perfusão periférica e ictus hiperdinâmico. Foi colocado em ventilação mecânica (VM), aumentada dose de furosemida, associada à noradrenalina (substituída por dobutamina, após 6ª dia). Realizado ecocardiograma no 7º dia, evidenciando sinais de hipertensão pulmonar e boa função ventricular. Seguindo em VM com FiO2 de 25% / delta P (dP) de 14 / Tempo inspiratório (Tl) de 0,38 / PEEP 6.0 / frequência inspiratória (FR) de 45. Em uso de dobutamina, furosemida, espinonolactona e sedoanalgésia (fentanil e Midazolam). Transferido, no 8º dia, para o Instituto Hospital de Base - DF (IHB-DF), para procedimento de embolização de aneurisma da veia de Galeno.

No 3º dia de vida foi realizado ecocardiograma, evidenciando sinais de hipertensão pulmonar acentuada, iniciou-se furosemida. Apresentou aumento do desconforto respiratório, piora da perfusão periférica e ictus hiperdinâmico. Foi colocado em ventilação mecânica (VM), aumentada dose de furosemida, associada à noradrenalina (substituída por dobutamina, após 6ª dia). Realizado ecocardiograma no 7º dia, evidenciando sinais de hipertensão pulmonar e boa função ventricular. Seguindo em VM com FiO2 de 25% / delta P (dP) de 14 / Tempo inspiratório (Tl) de 0,38 / PEEP 6.0 / frequência inspiratória (FR) de 45. Em uso de dobutamina, furosemida, espinonolactona e sedoanalgésia (fentanil e Midazolam). Transferido, no 8º dia, para o Instituto Hospital de Base - DF (IHB-DF), para procedimento de embolização de aneurisma da veia de Galeno.

No 3º dia de vida foi realizado ecocardiograma, evidenciando sinais de hipertensão pulmonar acentuada, iniciou-se furosemida. Apresentou aumento do desconforto respiratório, piora da perfusão periférica e ictus hiperdinâmico. Foi colocado em ventilação mecânica (VM), aumentada dose de furosemida, associada à noradrenalina (substituída por dobutamina, após 6ª dia). Realizado ecocardiograma no 7º dia, evidenciando sinais de hipertensão pulmonar e boa função ventricular. Seguindo em VM com FiO2 de 25% / delta P (dP) de 14 / Tempo inspiratório (Tl) de 0,38 / PEEP 6.0 / frequência inspiratória (FR) de 45. Em uso de dobutamina, furosemida, espinonolactona e sedoanalgésia (fentanil e Midazolam). Transferido, no 8º dia, para o Instituto Hospital de Base - DF (IHB-DF), para procedimento de embolização de aneurisma da veia de Galeno.

No 3º dia de vida foi realizado ecocardiograma, evidenciando sinais de hipertensão pulmonar acentuada, iniciou-se furosemida. Apresentou aumento do desconforto respiratório, piora da perfusão periférica e ictus hiperdinâmico. Foi colocado em ventilação mecânica (VM), aumentada dose de furosemida, associada à noradrenalina (substituída por dobutamina, após 6ª dia). Realizado ecocardiograma no 7º dia, evidenciando sinais de hipertensão pulmonar e boa função ventricular. Seguindo em VM com FiO2 de 25% / delta P (dP) de 14 / Tempo inspiratório (Tl) de 0,38 / PEEP 6.0 / frequência inspiratória (FR) de 45. Em uso de dobutamina, furosemida, espinonolactona e sedoanalgésia (fentanil e Midazolam). Transferido, no 8º dia, para o Instituto Hospital de Base - DF (IHB-DF), para procedimento de embolização de aneurisma da veia de Galeno.

Figura 1. A adição do Doppler mostrou turbilhamento do fluxo sanguíneo, evidenciando o caráter vascular da lesão.

No 3º dia de vida foi realizado ecocardiograma, evidenciando sinais de hipertensão pulmonar acentuada, iniciou-se furosemida. Apresentou aumento do desconforto respiratório, piora da perfusão periférica e ictus hiperdinâmico. Foi colocado em ventilação mecânica (VM), aumentada dose de furosemida, associada à noradrenalina (substituída por dobutamina, após 6ª dia). Realizado ecocardiograma no 7º dia, evidenciando sinais de hipertensão pulmonar e boa função ventricular. Seguindo em VM com FiO2 de 25% / delta P (dP) de 14 / Tempo inspiratório (Tl) de 0,38 / PEEP 6.0 / frequência inspiratória (FR) de 45. Em uso de dobutamina, furosemida, espinonolactona e sedoanalgésia (fentanil e Midazolam). Transferido, no 8º dia, para o Instituto Hospital de Base - DF (IHB-DF), para procedimento de embolização de aneurisma da veia de Galeno.
min e dobutamina 8mcg/kg/min, com pressões arteriais (PAs) adequadas, mantendo taquicardia. Apresentou 2 picos febris de até 38ºC com taquicardia, sendo reduzida temperatura da incubadora e administrada 1 dose de dipirona. Teve crise convulsiva, sendo realizado dose de ataque de fenobarbital e deixado manutenção; sem novos episódios convulsivos. Seguiu com diurese aumentada em uso de furosemida, icterico, porém sem nível de fototerapia. Foi observado que o RN não apresentava movimentação de membro inferior esquerdo.

No 2º DPO de embolização parcial (30%) de aneurisma de veia de Galeno, seguiu grave, em VM com parâmetros moderados: pressão inspiratória (PI) de 16; PEEP de 6 e FiO2 de 40%, estável hemodinamicamente em uso de adrenalina (0,5mcg/kg/min) e dobutamina (5mcg/kg/min). Foi reduzida no início da tarde, com boa tolerância no momento. Não apresentou mais crises convulsivas. Houve um pico febril nos últimos controles de 37,8ºC, iniciou uso de cefepime e vancomicina desde o 1º DPO. Tolerando bem o início da dieta, até o momento sem distensão ou vômitos. Sem intercorrências no período. Realizado raio-X de tórax, evidenciando: cardiomegalia importante, com infiltrado peri-hilar discreto bilateral, sem áreas de condensação ou atelectasia.

RN evoluiu com piora hemodinâmica, sendo necessário aumento da epinefrina até 0,7mcg/kg/min, e também apresentou episódios de desaturação. Aumentado fentanil para 3mcg/kg/min, no entanto, ainda apresentou bradicardia com 77bpm com desaturação por +/-5min. Sendo realizado massagem cardíaca, adrenalinad, atropina e aumentados adrenalinad 1mcg/kg/min e parâmetros respiratórios: PI de 24; PEEP de 1cmH2O; FR de 45; FiO2 de 100%. Tempo inspiratório de: 0,4.

RN apresentou parada cardíaca, foi reanimado, aumentado adrenalina para 1mcg/kg/min. Ventilação mecânica com parâmetros elevados e Fio2 de 100%. Não houve sucesso nas manobras de reanimação, constatando óbito, após 1 mês e 5 dias de vida.

FIGURA 2. Dilatação cística cerebral pela ecografia transfontanelar.

DISCUSSÃO

O diagnóstico é efetuado na maioria dos casos no período neonatal, mas já a partir da 14ª semana de gestação é possível observar alterações na ecografia obstétrica. Pode ser visível uma dilatação cística cerebral ou estarem associadas alterações como a ventriculomegalia e o oligohidrâmnios (Figura 2). No recém-nascido a ecografia transfontanelar, com estudo de Doppler, revela-se importante no diagnóstico por ser um exame facilmente disponível, não invasivo e que não requer sedação.

Acredita-se que 94% dos casos são diagnosticados no período neonatal, isso se deve geralmente às manifestações de insuficiência cardíaca apresentadas pelo recém-nascido, como no caso descrito. O manejo da insuficiência cardíaca neste tipo de paciente é um desafio, contudo, sabe-se que os diuréticos e a restrição de volume, para reduzir a pré-carga, são os pilares do tratamento. O paciente aqui relatado, fez uso dos diuréticos e também de drogas vasoativas (DVA), para compensar o quadro de insuficiência cardiológica.

No estudo de Lasjaunias, o maior estudo de embolização transarterial (216 pacientes) com MAVG, o óbito ocorreu em 10,6% dos pacientes, apesar da embolização, ou como resultado desse procedimento. Dos sobreviventes, 74% tinham desenvolvimento neuropsicomotor normal, 15,6% apresentavam déficit cognitivo moderado e 10,4% apresentavam déficit cognitivo grave. A idade parece ser um importante fator prognóstico. A mortalidade neonatal foi de 52% em comparação com os 10,6% do conjunto de coorte. No caso apresentado, houve falecimento do paciente, corroborando com a pesquisa citada, em relação aos altos índices de mortalidade nos primeiros dias de vida.

O RN foi submetido à embolização transarterial por embolização de circulação anterior. Essa é considerada a melhor opção para o tratamento desse tipo de lesão, deixando a cirurgia aberta para casos reservados ou raramente para complementação do tratamento endovascular. A embolização total da malformação não é necessária, tendo em vista que a obliteração parcial, de um terço à metade da lesão, assim como foi realizada no paciente descrito (foi embolizado 30%), já é suficiente para se atingir melhora clínica. Os materiais para embolização, como os coils e microbalões, podem ser utilizados no intuito de reduzirem o fluxo da fistula, permitindo o uso mais seguro de Onyx ou de cianoacrilato.

No procedimento endovascular, o paciente apresentou parada respiratória, sendo reanimado pela equipe da UTIP, retornando à atividade elétrica após 13 minutos. Porém, agravado ainda mais seu complexo quadro e vindo a falecer após 1 mês e 5 dias. Não tendo assim um desfecho favorável da patologia.
REFERÊNCIAS

1. Félix L, Souza AR, Queiroz AP, Diniz C, Lima M, Santos RE, et al. Ultrassonografia pré-natal no diagnóstico de aneurisma da veia de Galeno. Acta Med Port. 2010;23:505-10.
2. Gailloud P, O’Riordan D, Burger J, Levrier O, Jallo G, Tamargo R, et al. State of Art. Diagnosis and management of Vein of Galen aneurysmal malformations. J Perinatol. 2005 Aug;25(8):542-51.
3. Ozanne A, Alvarez H, Krings T, Lasjaunias P. Pathologie neurovasculaire malformative de l’enfant: malformations anéurysmales de la Veine de Galien, malformations artério-veineuses piales, malformations des sinus duraux. J Neuroradiol. 2007;34:145-66.
4. Bhattacharya J, Thammaroj J. Vein of Galen malformations. J Neurol Neurosurg Psychiatry. 2003 Mar;74(Suppl 1):i42-i44.
5. Recinos PF, Rahmathulla G, Pearl M, Recinos VR, Jallo GI, Gailloud P, et al. Vein of Galen malformations: epidemiology, clinical presentations, management. Neurosurg Clin N Am. 2012 Jan;23(1):165-77.
6. Lasjaunias PL, Chng SM, Sachet M, Alvarez H, Rodesch G, Garcia-Monaco R. The management of vein of Galen aneurysmal malformations. Neurosurgery. 2006 Nov;59(5 Suppl 3):S184-94.
7. Pinto IP, Teles A, Miranda N, Pinto R. Necrotising enterocolitis in a fullterm infant with reversed diastolic flow in the descending aorta: what is the diagnosis?. BMJ Case Rep. 2012 Dec;2012:bcr2012006182. DOI: https://doi.org/10.1136/bcr-2012-006182
8. Pearl M, Gregg L, Gandhi D. Cerebral venous development in relation to developmental venous anomalies and vein of Galen aneurysmal malformations. Semin Ultrasound CT MR. 2011;32(3):252-63.
9. Rao V, Mathuriya S. Pediatric aneurysms and Vein of Galen malformations. J Pediatr Neurosci. 2011;6(Suppl 1):S109-17.
10. Komiyama M, Nakajima H, Nishikawa M, Yamanaka K, Iwai Y, Yasui T, et al. Vein of Galen aneurysms. Experience with eleven cases. Interv Neuroradiol. 2001 Dec;7(Suppl 1):99-103.
11. Félix L, Souza AR, Queiroz AP, Diniz C, Lima M, Santos RE, et al. Ultrassonografia pré-natal no diagnóstico de aneurisma da veia de galeno. Acta Med Port. 2010;23(3):505-10.
12. Lasjaunias PL, Chang SM, Sachet M, Alvarez H, Rodesch G, Garcia-Monaco R. The management of vein of Galen aneurysmal malformations. Neurosurgery. 2006;59(5 Suppl 3):S184-94. - ref é igual a n. 6
13. Mortazavi MM, Griessenauer CJ, Foreman P, Shahripour RB, Shoja MM, Rozzelle CJ, et al. Vein of Galen aneurysmal malformations: critical analysis of the literature with proposal of a new classification system. J Neurosurg Pediatr. 2013;12(3):293-306. DOI: https://doi.org/10.3171/2013.5.PEDS12587
14. Demartini Junior Z, Santos MLT, Koppe GL, Cardoso-Demartini AA. Sinus thrombosis after endovascular treatment of vein of Galen aneurysmal malformation. Pediatr Neurosurg. 2017;52(2):136-9. DOI: https://doi.org/10.1159/000452806