Evaluating landscape metrics for characterising hydrological response to storm events in urbanised catchments

James D. Miller, Elisabeth Stewart, Tim Hess and Tim Brewer

Centre for Ecology and Hydrology, Wallingford, Oxfordshire, UK; School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire, UK

ABSTRACT

Hydrological response of an urban catchment to storm events is determined by a number of factors including the degree of urbanisation and distribution and connectivity of urbanised surfaces. Therefore, the ability of spatially averaged catchment descriptors to characterise storm response is limited. Landscape metrics, widely used in ecology to quantify landscape structure, are employed to quantify urban land-cover patterns across a rural-urban gradient of catchments and attribute hydrological response. Attribution of all response metrics, except peak flow, is improved by combining lumped catchment descriptors with spatially explicit landscape metrics. Those representing connectedness and shape of suburban and natural greenspace improve characterisation of percentage runoff and storm runoff. Connectivity and location of urban surfaces are more important than impervious area alone for attribution of timing, validating findings from distributed hydrological modelling studies. Findings suggest potential improvements in attribution of storm runoff in ungauged urban catchments using landscape metrics.

1. Introduction

The process of urbanisation involves hydrological and hydraulic changes to catchment rainfall-runoff relationships through the progressive loss of pervious surfaces and natural drainage pathways and their replacement with impervious surfaces and artificial drainage. Such changes decrease infiltration and localised soil storage, thereby increasing runoff volume (Yang and Zhang 2011). Combined with more rapid conveyance of runoff from artificial drainage (Burns et al. 2012) this results in a more flashy response with earlier flood peaks (Graf 1977), reduced baseflow (Braud et al. 2013) overall increased peak flow (Ogden et al. 2011; Miller et al. 2014) and increased downstream fluvial flooding (Fletcher, Andrieu, and Hamel 2013).

Catchment impervious area is widely recognised and used as an indicator for characterising the impacts of urbanisation on hydrology (Lee and Heaney 2004; Dams et al. 2013). It is conceptually easy to understand (Lim 2016) but simplifies the complex urban processes of hydrological response resulting from spatial elements of land-cover distribution and connectivity (Shuster et al. 2005; Redfern et al. 2016). Empirical studies are generally constrained to characterising urbanisation with lumped catchment values such as total impervious area (Sillanpää and Koivusalo 2015) or urban extent (Putro et al. 2016) and disregard spatial variability. Likewise, most statistical flood estimation methods rely on lumped catchment representations that simplify spatial properties into a catchment-wide approximation of that system (e.g. Flood Estimation Handbook: IH 1999; Kjeldsen 2010). Yet high-resolution monitoring technologies and distributed hydrological models have facilitated research beyond the effects of catchment imperviousness alone, revealing the importance of considering both the connectivity of impervious areas (Roy and Shuster 2009; Ebrahimian, Wilson, and Gulliver 2016) and the spatial distribution of these surfaces (Gironás et al. 2009; Zhou et al. 2014; Zhang and Shuster 2014; Du et al. 2015). Such methods certainly benefit from using spatial analysis methods to characterise land-cover distribution in order to estimate rainfall-response characteristics (L’homme, Bouvier, and Perrin 2004; Rodriguez, Cudennec, and Andrieu 2005; Rodriguez, Andrieu, and Creutin 2003) note morphology-based methods potential for evaluating urbanisation impacts. Miller and Brewer (2018) have shown the potential for improved characterisation of storm runoff for attribution methods that rely on lumped catchment representations.

The role of spatial metrics for analysing and modelling urban land use change has long been an area of active research (Herold, Coulcelis, and Clarke 2005). Landscape metrics were developed as a means to characterise the composition and spatial configuration of patches of land-cover typologies to link to ecological processes (Turner, Garner, and O’Neill 2001) and thus offer potential improvements over lumped catchment descriptors. These are calculated using software that can process spatial data and derive variable metrics for characterising the distribution, shape and connectivity of land cover. Ecologists have long applied spatially explicit landscape metrics (LMs) to study ecosystem dynamics (Brady et al. 1979) and they are increasingly being used in hydrological studies (Schröder 2006; Yuan et al. 2015) where combining established landscape...
metrics alongside hydrologically relevant metrics is an emerging area of investigation for characterisation of catchment properties affecting hydrological response (Van Nieuwenhuyse et al. 2011; Miller and Brewer 2018; Oudin et al. 2018).

In this study, we aim to evaluate the performance of lumped urban catchment descriptors and spatially explicit landscape metrics for explaining inter-catchment variation in storm runoff in small urbanised catchments. To achieve this, there are a number of related objectives that are methodological steps within the paper: (1) to quantify differences in inter-catchment rainfall-runoff behaviour across a range of urbanised catchments; (2) to characterise catchment properties using a range of catchment descriptors and landscape metrics; and (3) to identify the relative performance of catchment descriptors and landscape metrics for explaining rainfall-runoff response. The findings will be used to assess what landscape metrics can tell us regarding the role that spatial layout of urban surfaces has on storm runoff response and their potential role in statistical procedures for flood frequency estimation and other lumped-catchment hydrological applications.

2. Method

2.1. Study area and hydrological monitoring

The study area focuses on two towns of similar climate and geology in the south of the UK (Figure 1) located within the River Thames catchment (Figure 1, inset). Both towns have an Environment Agency (EA) gauging station and rain gauge recording at a 15 min resolution. We additionally monitored flow in 16 locations that represent catchments of varying urbanisation. Flow and rainfall was measured between 2011 and 2016: flow at a 5 min resolution using in-situ ultrasonic instruments, rainfall at a 15 min resolution across eight locations spread over the two towns using tipping bucket rain gauges. Miller and Hess (2017) provide a detailed description of equipment and data processing. The total dataset of 18 sites were separated into calibration (11) and validation (7) catchments (Figure 1) – whereby storm responses across the grouped calibration sites were not observed to be directly impacted or materially similar to response observed at other calibration sites.

Both Swindon (population 210,000) and Bracknell (population 77,000) catchments are rapidly urbanising urban centres typical of UK post-World War II development and of progressive peri-urbanisation. In addition to urbanisation, hydrology is affected by hydraulic infrastructure including sewage treatment works (STW) outfalls (Figure 1) and for Bracknell local retention ponds.

2.2. Storm event data

The variable pattern of rainfall-runoff response across the catchments was quantified using storm event data captured and was characterised by a suitable range of hydrological metrics (Table 1) using the methods outlined by Miller and Hess (2017). This involved first isolating storm events using rainfall depth and intensity thresholds. An automated baseflow separation method was used to isolate the surface runoff hydrograph, based on identifying the starting point of the hydrograph rising limb and applying a linear interpolation to the end of stormflow. Finally, visual analysis was undertaken to

![Figure 1](image-url)
filter out erroneous events and ensure only single-peak events were selected.

2.3. Catchment descriptors and landscape metrics
A number of catchment descriptors and landscape metrics were selected to provide characterisation of catchment properties (Table 2). Both catchment descriptors and landscape metrics were based on 50 m resolution mapping of UK land cover. Suburban and Urban classes were taken from the UK Land Cover Map updated for 2015 (LCM2015: Rowland et al. 2017), following Morton et al. (2011), and represent the varying intensity of urban development – Suburban areas having a mix of housing and green space, while Urban is dominated by continuous development and minor greenspace. Likewise, the combined Grassland/woodland/arable class is a collation of these broad classes from LCM2015 to represent the non-urban terrestrial areas. Using data and methods outlined by Miller and Brewer (2018), a further class of Natural Greenspace was introduced that differentiated from areas of urban green space that can be highly compacted. The Water class mapped all ponds/wetlands/lakes/reservoirs using high-resolution mapping of elevation and water, downscaled to 50 m.

The eight catchment descriptors selected are those used for estimating floods in ungauged catchments in the UK (IH 1999; Kjeldsen 2007) and provide characterisation of catchment geometry, climate, geology, soil hydrology, and urban extent (Table 2). The 11 selected landscape metrics were identified by Miller and Brewer (2018) as uncorrelated and highly descriptive of urban spatial form and function with regard to catchment hydrological function. These include the proximity index (PX), which indexes the hydrological distance of all Urban/Suburban patches to the outlet, alongside the one landscape-level metric (CONTAG) and nine other metrics based on four class-level landscape metrics that relate to either Suburban (LPI\textsubscript{SUB}, CONTIG\textsubscript{SUB}, CLUMPY\textsubscript{SUB}, COHESION\textsubscript{SUB}), Urban (LPI\textsubscript{URB}, CONTIG\textsubscript{URB}, CLUMPY\textsubscript{URB}, COHESION\textsubscript{URB}) or Natural Greenspace (CONTIG\textsubscript{NAT}) land-cover classes (Table 2).

The majority of landscape metrics were derived using the Fragstats software package (McGarigal and Marks 1994) which is one of the number of tools available for quantifying landscape structure through geospatial analysis of land cover (Frazier and Kedron 2017). Fragstats was selected as it is a relatively accessible tool that works with raster data and contains all required metrics (McGarigal, Tagil, and Cushman 2009) and has demonstrated performance in urban areas (Grafius et al. 2016). Its inability to deal with non-Euclidean distances (e.g. flow length pathways), required using ArcGIS to quantify PX using methods outlined by Miller and Brewer (2018).

2.4. Calibration and validation of linear models
The approach to characterising hydrological response using the various landscape metrics and catchment descriptors follows a standard multivariate linear model optimization method as employed in similar studies (e.g. Oudin et al. 2018) and UK flood estimation methods (IH 1999). A log-linear regression model (Kjeldsen 2010) was best suited, as it allowed the attribution of hydrological data to a number of catchment variables.

Table 1. Hydrometeorological storm response metrics used in the study to quantify variability in catchment responses to storm events.
Response metric

Hydrograph shape
Rainfall runoff timing

Table 2. Catchment descriptors and landscape metrics used for characterising catchment properties (full details on derivation provided in Supplementary Material Table 1).
Catchment Descriptors
AREA
SAAR
FARL
BFHOST
URBEXT
PROPWET
DPRBAR
DPSBAR
Landscape Metrics
CONTIG
LPI
CLUMPY
COHESION
CONTAG
PX
Using data from the 11 calibration catchments (Figure 1) the best performing model variables were identified using ‘leaps’ regression subset selection (Lumley 2017). Leaps identifies the best combination of variables for performing a linear regression of the observed response metric, using an efficient ‘branch-and-bound’ algorithm that systematically searches for the optimal solution. This algorithm uses a systematic enumeration of solutions that explore branches of a tree that represent possible subsets of the solution, each branch being checked against bounds of the optimal solution. Given the relatively small subset of calibration catchments and variables, the adjusted r-squared (R^2adj) performance criterion, with an associated weighting based on data frequency (events captured), was used to account for the number of predictor variables in the model relative to the number of data points. A further check for consistency, and to ensure no over-fitting, was undertaken by extracting the Akaike information criterion (AIC) scores (Akaike 1987) for model variants. Leaps was bounded to selecting the best three subsets of variables at each level of complexity, from one to four variables, in order to identify patterns in model complexity and between catchment descriptors and landscape metrics selected. This first stage involved using only catchment descriptors as a baseline for comparing model performance. The second stage added landscape metrics to see if there was improved performance when landscape metrics are additionally considered. This approach also facilitated identification of which catchment descriptors were supplemented. The model with the highest R^2adj and lowest AIC was then taken forward to fit model parameters. The second stage of model development involved fitting parameters for the optimal combination of catchment descriptor or landscape metric variables identified for each response metric across the 11 calibration catchments. We employed the weighted least squares regression method (Ruppert and Wand 1994), applying a weighting factor based on a number of events captured for each site, as this was most suitable given the limited number of catchment descriptors and landscape metrics selected. The model with the highest R^2adj and lowest AIC was then taken forward to fit model parameters.

Table 3. Catchment average values for storm event metrics – subset by Calibration (11) and Validation (7) catchments.

Site ID	AREA (km^2)	Freq	Qmax (m^3 s^-1)	DR (mm)	PR (%)	TP (h)	LPP (h)	TiCC (h)	
Calibration									
EA_39052	51.96	52	3.45	2.3	18.2	12.4	7.5	3.1	8.4
B1	18.37	50	0.61	1.7	12.4	18.0	14.9	10.5	13.5
B2	12.49	30	1.30	1.8	16.5	4.7	5.2	1.2	5.3
B3	12.55	12	2.50	3.9	34.0	3.5	5.7	1.6	4.1
EA_39087	82.5	72	6.14	3.5	25.6	15.8	15.3	10.7	14.2
S1	28.97	27	2.67	4.4	29.4	11.4	8.4	4.5	8.2
S2	3.24	30	0.14	1.5	10.5	21.8	12.6	8.8	11.0
S3	5.98	53	0.74	3.2	31.4	5.7	6.0	2.2	4.9
S7	0.54	39	0.43	2.4	22.5	0.5	3.6	0.3	1.0
S9	0.27	34	0.15	2.5	21.0	0.8	3.7	0.3	2.5
S10	0.49	39	0.27	1.7	16.1	0.8	3.5	0.3	0.9
Validation									
B4	33.66	34	0.93	1.1	9.8	13.3	10.2	6.4	9.2
B5	37.5	37	1.74	2.2	15.4	14.4	10.6	6.6	10.0
B6	58.24	51	4.26	3.0	216.133	9.6	5.1	9.5	
S4	3.09	74	0.45	3.0	24.9	5.5	6.9	3.4	5.5
S5	2.18	56	1.50	2.9	26.4	0.8	3.8	0.7	1.2
S6	35.2	18	4.49	6.0	43.9	17.7	9.3	5.6	10.5
S7	2.16	56	0.37	2.3	213.29	4.9	1.4	3.5	

3. Results
3.1. Storm event data

Table 3 details the mean values for all hydrological metrics across the 18 selected catchments for the events captured during the monitoring period. The large variability in size of catchments selected (0.27 km^2 – 82.5 km^2) means there is a wide range of all non-normalized metric values. Importantly, for the analysis that follows, the data indicate a wide range of hydrological responses has been captured across the sites, with a balanced proportion of events between the calibration (438) and validation (326) catchments.

3.2. Catchment characterisation

Land-cover mapping of the five main classes is illustrated in Figure 2. Table 4 details the derived catchment descriptor and landscape metric values for each catchment. Urbanisation clearly varies across the selected catchments and reveals Swindon to have much higher Urban coverage across the town centre and peripheral industry/business parks than Bracknell, reflected in generally higher URBEXT values (Table 4). Bracknell has a much higher number of urban waterbodies (Water: Figure 2) compared to Swindon, resulting in lower catchment FARL values (Table 4). Likewise, mapping of Natural Greenspace (Figure 2) shows these areas are clearly present in varying degrees of extent and distribution across the 18 catchments/sub-catchments. In general, individual patches of Natural Greenspace are not large but notable exceptions include the urban B2 and S8 and the rural B1 catchments, and EA_39052 which has a large patch located near to the catchment outlet.

The majority of catchment descriptors and landscape metrics (Table 4) have high variability between the selected calibration/validation catchments (e.g. AREA, URBEXT, PX) while only two have little variation across catchments (SAAR, PROPWET) and three have general low variability but with outlier values (BFIHOST, CONTAG, CLUMPY_SUB). Landscape metrics...
based on Suburban and Urban land-cover patches vary considerably compared to the catchment descriptor URBEXT.

3.3. Identifying model variables and testing models

The best performing combination of catchment descriptors and landscape metrics for each metric were identified using the ‘regsubsets’ plot (Figure 3) in leaps (Lumley 2017) and by comparing results with the associated AIC. The use of AIC scores provided a further means of differentiating between model selections and isolating the optimal model variables for both Q_{max}, PR and T_{LC}, where more than one combination had resulted in the same recorded R^2_{adj}.

For each hydrological metric, the plot lists the catchment descriptors and landscape metrics along the x-axis and the y-axis indicate the model performance using R^2_{adj} to two decimal places. Four levels of model complexity are included (each separated by a horizontal dashed line), from one variable (M1) to four variables (M4), and the plot showing the three best performing models for each level of complexity (and associated R^2_{adj}). The shaded rectangles indicate which variables are included in the given model and increasing shading indicates a higher R^2_{adj}. Those of similar value are ranked by subsequent decimal places. Figure 3(a) plots the results of only using the eight catchment descriptors, while Figure 3(b) plots the eight catchment descriptors alongside the 11 landscape metrics (separated by a vertical line).

3.4. Model development and validation

The fitted model equations for estimating each response metric from selected variables are detailed in Table 5, alongside their respective performance (R^2_{adj}). For those response metrics found to be non-normally distributed (Q_{max}, T_{PP}, T_{LC}) the fitted model equation takes the exponentiated form of the log-transformed model and includes the optimal variable transformations. The linear models on which all equations were based were found to meet linear model assumptions. Table 6 details the observed metric values for each validation site against values derived using the equations in Table 5, alongside comparative predictive performance (MSE) for equations using either calibration or validation data. These results reveal a number of insights:

- **Q_{max}** – Model fit is good and three catchment descriptors were shown to be significant, while the additional landscape metric CONTIGMAT is not. The fitted model performs well across the validation sites compared to calibration with no tendency to over- or underpredict Q_{max} but certain sites are poorly predicted (B4, B6, S6).

- **DR** and **PR** – Both models show that a combination of landscape metrics and catchment descriptors provides the optimal model of good fit, with all selected variables being significant. The high significance of CONTIGMAT in both the DR and PR models highlights the potentially important role of urban green space for explaining the amount of runoff generated in the urbanised catchments. Validation performance drops considerably as a result of significant over prediction of runoff volume in S4 and S8 and underpredict in S6.

- **θ** – All selected variables are shown to be highly significant but the equation applied to validation data results in a large drop in predictive performance compared to calibration data mainly due to underprediction of flood duration in S6. There is also one result (S5) indicating a negative value.

- **TP**, T_{PP} and T_{LC} – Fitted models show a similar pattern in variable selection and high model predictive performance but
| Site ID | AREA (km²) | DPLBAR (km) | BFHOST | SAAR (mm) | FARL | URBEXT | DPSBAR | PROPWET | PX | CONTAG | LPISUB | CONTIGSUB | CLUMPYSUB | COHESIONSUB | LPI | CONTIGMAT | COHESIONMAT | | |
|---|
| EA_39052 | 51.96 | 7.46 | 0.36 | 676 | 0.86 | 0.19 | 24.7 | 0.29 | 3.55 | 47.89 | 3.66 | 0.40 | 0.81 | 93.77 | 26.88 | 0.36 | 0.81 | 98.42 | 0.60 |
| B1 | 18.37 | 4.77 | 0.29 | 679 | 0.88 | 0.09 | 25.3 | 0.29 | 1.15 | 50.96 | 0.15 | 0.37 | 0.54 | 59.62 | 11.89 | 0.39 | 0.74 | 93.65 | 0.53 |
| B2 | 12.49 | 3.9 | 0.51 | 686 | 0.94 | 0.19 | 21.5 | 0.29 | 1.69 | 58.08 | 1.44 | 0.38 | 0.74 | 78.94 | 41.75 | 0.37 | 0.85 | 98.89 | 0.63 |
| B3 | 12.55 | 3.75 | 0.43 | 672 | 0.92 | 0.37 | 17.9 | 0.29 | 2.76 | 52.81 | 13.30 | 0.48 | 0.83 | 95.90 | 51.63 | 0.36 | 0.78 | 99.24 | 0.64 |
| B4 | 33.66 | 6.22 | 0.36 | 680 | 0.9 | 0.12 | 25.8 | 0.29 | 2.07 | 49.96 | 0.53 | 0.38 | 0.68 | 74.27 | 17.11 | 0.39 | 0.80 | 96.74 | 0.64 |
| B5 | 37.5 | 6.52 | 0.34 | 678 | 0.87 | 0.13 | 22.5 | 0.29 | 1.85 | 50.35 | 0.63 | 0.38 | 0.71 | 80.54 | 19.15 | 0.38 | 0.80 | 97.19 | 0.64 |
| B6 | 58.24 | 7.84 | 0.34 | 674 | 0.87 | 0.17 | 30.2 | 0.29 | 2.84 | 48.34 | 3.26 | 0.37 | 0.81 | 93.38 | 23.95 | 0.37 | 0.81 | 98.20 | 0.65 |
| EA_39087 | 82.5 | 9.31 | 0.39 | 698 | 0.95 | 0.23 | 27.4 | 0.34 | 3.95 | 55.55 | 8.10 | 0.42 | 0.83 | 96.77 | 11.73 | 0.40 | 0.83 | 97.41 | 0.55 |
| S1 | 28.97 | 5.82 | 0.38 | 707 | 0.97 | 0.23 | 35.8 | 0.34 | 3.88 | 57.48 | 10.96 | 0.36 | 0.82 | 96.23 | 6.66 | 0.36 | 0.76 | 95.09 | 0.47 |
| S2 | 3.24 | 2.12 | 0.67 | 712 | 0.85 | 0.03 | 33.8 | 0.34 | 0.2 | 76.41 | 0.00 | 0.00 | 0.00 | 0.00 | 6.26 | 0.39 | 0.69 | 81.36 | 0.00 |
| S3 | 5.98 | 2.84 | 0.32 | 683 | 1.07 | 0.57 | 33.4 | 0.34 | 1.68 | 61.72 | 31.27 | 0.34 | 0.85 | 97.68 | 50.79 | 0.44 | 0.74 | 98.38 | 0.00 |
| S4 | 3.09 | 2.11 | 0.43 | 688 | 1.03 | 0.33 | 14 | 0.34 | 1.38 | 68.04 | 1.05 | 0.55 | 0.82 | 70.68 | 79.31 | 0.89 | 0.66 | 99.64 | 0.84 |
| S5 | 2.18 | 1.79 | 0.43 | 688 | 1.03 | 0.39 | 33.7 | 0.34 | 3.53 | 52.52 | 9.91 | 0.40 | 0.77 | 85.53 | 38.82 | 0.57 | 0.70 | 96.05 | 0.17 |
| S6 | 35.2 | 6.29 | 0.36 | 705 | 0.96 | 0.29 | 40.6 | 0.34 | 4.28 | 55.45 | 13.56 | 0.40 | 0.83 | 97.06 | 10.43 | 0.40 | 0.81 | 95.98 | 0.47 |
| S7 | 0.54 | 0.95 | 0.56 | 692 | 1.04 | 0.45 | 24.2 | 0.34 | 1.54 | 52.68 | 3.65 | 0.44 | 0.70 | 66.01 | 48.86 | 0.69 | 0.19 | 94.72 | 0.00 |
| S8 | 2.16 | 1.79 | 0.34 | 684 | 1.03 | 0.31 | 27.3 | 0.34 | 1.07 | 52.68 | 1.50 | 0.60 | 0.94 | 74.81 | 70.47 | 0.63 | 0.72 | 98.88 | 0.84 |
| S9 | 0.27 | 0.69 | 0.37 | 685 | 1.51 | 0.51 | 28.9 | 0.34 | 0.66 | 62.34 | 0.00 | 0.00 | 0.00 | 0.00 | 99.08 | 0.83 | 0.00 | 99.95 | 0.00 |
| S10 | 0.49 | 0.6 | 0.54 | 686 | 1.03 | 0.37 | 35 | 0.34 | 2 | 93.82 | 0.00 | 0.00 | 0.00 | 0.00 | 6.66 | 0.36 | 0.76 | 95.09 | 0.00 |
only DPLBAR is significant in all three calibrated models, while PX is significant in two. For both TP and T_{LPP} the fitted model applied to the validation catchments resulted in increased predictive performance over calibration data reflecting generally good
predictive ability across all sites. For T_{LC} the performance dropped considerably with poor predictive performance across most sites and one negative value (S5).

4. Discussion

4.1. Landscape metrics for characterising storm response

4.1.1. Peak flow and runoff volume

Landscape metrics provide only minor added value over catchment descriptors for attribution of peak flows in urbanised catchments as peak flow is primarily a function of catchment area, and to a lesser degree, urbanised area. This suggests spatial layout, in combination with catchment and urbanised area, can improve characterisation of peak flow, but the effect might not be significant compared to these key lumped catchment values. This contrasts with observations from Miller and Brewer (2018) and modelling results from Mejía and Moglen (2009). While data were limited, this warrants further investigation as there is considerable interest in using spatial planning of green infrastructure within a catchment to specifically reduce floods (Jiang, Zevenbergen, and Ma 2018).

Variable selection and fitting for hydrograph metrics of runoff volume – PR and DR – showed the optimal combination included landscape metrics representing the connectedness and shape of Suburban and Natural Greenspace patches, alongside lumped catchment descriptors indicative of urban extent and climate or soils. This suggests that connectivity and extent of urbanised and pervious surfaces within an urbanised catchment are important variables driving the volume of runoff, and are mediated by location-specific catchment hydrological functions. This validates findings from other studies that have found that connectivity is an important determinant of runoff volume (Lee and Heaney 2004; Krebs, Rimpiläinen, and Salminen 2013) and that pervious surfaces have notable effects on runoff volume (Ellis and Revitt 2010; Jarden, Jefferson, and Grieser 2015).

4.1.2. Runoff timing

Combining landscape metrics representing the connectivity and location of urbanised surfaces alongside catchment descriptors greatly improved the attribution of runoff timing. Flood duration (θ) was particularly well characterised by a combination of information on catchment length and connectivity and the hydrological location of the dominant urbanised surface classes within catchments. This shows that the physical connectedness of the predominant suburban class is a driving factor, alongside flow path length, for explaining the flashiness of storm runoff for the selected catchments. A similar finding was reported by Mejía and Moglen (2010) when using a dedicated modelling framework. Time-to-peak (TP) was also well characterised using a combination of information on catchment length alongside layout and connectivity of urban patches (PX) and percentage of landscape comprised by the largest patch (LPi). The optimal combination provided good predictive ability across the range of catchment shapes, sizes and levels of urbanisation. Conversely, the lack of any catchment descriptor or landscape metric that might characterise attenuation of runoff (e.g. $BFHOST$, $FARL$, $CONTIG_{NAT}$) was surprising. Features such as retention ponds and greenspace are generally thought to slow down the speed of runoff and delay runoff peaks (Woods Ballard et al. 2015) and are installed across Bracknell for this purpose. The inclusion of $PROPWET$ suggests it is important to consider general patterns of catchment wetness irrespective of urbanised surfaces that are generally considered to reduce this influence (Shuster et al. 2005).

For both lag-time metrics (T_{lag}, T_{100}) runoff timing was primarily a function of flow path length ($DPLBAR$) and the location and connectivity of urban patches (PX). The higher model fit and significance of selected variables for T_{LC} was expected as we would expect less inter-event variability in centroid-to-centroid values than peaks, which would be highly influenced by the spatial and temporal distribution of rainfall between events (Institute of Hydrology 1999). The tendency to underpredict for Swindon sites, and over-predict across the larger Bracknell catchments suggests that either, $PROPWET$ does not enable this model to account for climate/soil differences, or, that the overall greater role of attenuation ponds in Bracknell is not being well characterised, with $FARL$ not being a selected variable.

4.1.3. Performance limitations in validation catchments

Poor performance in application of calibrated models to validation sites was observed for Q_{max} runoff volume (DR, PR), and two time-based metrics (θ, T_{LC}). Overall the validation results are indicative that a much larger pool of variably urban catchments could...
improve calibration, to reduce such catchment specific variability, but also that more indicative features are required to be mapped and further characterised in more urban relevant landscape metrics. Likewise, there is acceptance in UK flood estimation methods that many of the catchment descriptors used are not correct for small urban catchments (Kjeldsen, Miller, and Packman 2013; Vesuviano and Miller 2018), where fundamental hydrological processes are highly affected and hydraulic infrastructure alters runoff. The effect of such changes could explain many of the performance limitations, as features including storm drainage and artificial transfer of water have not been represented in either the catchment descriptors or landscape metrics used, and which are likely catchment specific and possibly not captured in the calibration catchments. It must also be noted that the methodological approach used, which followed those used in the UK flood estimation methods (Institute of Hydrology 1999; Kjeldsen 2010) may not be optimal.

Low predicted Q_{max} values for B6 and S6 could result from there being more runoff than expected due to STW outflows diverting significant storm water flows from other contributing areas, in effect increasing the natural drainage catchment area. STW outfalls have been shown to have a range of impacts on both the quality and quantity of storm runoff (Braud et al. 2013; Hale et al. 2014; McGarne et al. 2016). Conversely, the high predicted Q_{max} values for B4 are viewed as resulting from an underestimation of the attenuating effects of waterbodies, with FARL not included in fitted models. Studies have pointed to the important role that urban waterbodies play in reducing flood peaks (Meierdiercks et al. 2010) but there is evidence to suggest that the level of control measures in many urban catchments could be insufficient to influence hydrological response (Bell et al. 2016). This contradiction could be why FARL was not included in the fitted models as expected.

Volume results from catchments S4 and S8 both suggest the catchments have features that act to significantly reduce the volume of runoff generated compare to what has been predicted. Both contain a large area of green space that is viewed as having significant surface water storage potential during floods. This underestimation of this area's effect is likely due to a lack of calibration sites with such a large relative area of Natural Greenspace. The role of such spaces is well covered in the literature (Gill et al. 2007) given their perceived role in acting like a sponge for runoff from urban areas (Jiang, Zevenbergen, and Ma 2018). However, given that they may not be as effective when soils are wet (Nied et al. 2016) the use of mean metric values across the monitoring period may be masking their potential contribution in drier periods.

The poor prediction and underestimation of flood duration and centroid lag-time in S4, S5 and S6, and in particular the negative values for site S5, suggests the calibrated model was not suitable for these sites. The model formulas for both (Table 5) suggest an overestimation of PX effects on reducing response times. The negative value for S5 is further suggestive that the model was not able to deal with a catchment so heavily dominated by large-scale storm drainage and this with such short response times relative to its size. The wider literature suggest form and function of storm drainage networks can accelerate runoff and increase peak flows (Meierdiercks et al. 2010; Ogden et al. 2011).

4.2. Landscape metrics for hydrological applications

The retention and significance of URBEXT in all quantity-based models indicate that total coverage of impervious surfaces is a more important factor in runoff generation and peak flows than the distribution and layout of such surfaces, as reflected in the general literature (Krebs, Rimpiläinen, and Salminen 2013; Shuster et al. 2005). Conversely, the replacement of URBEXT with PX, even in simpler models, clearly indicates that layout, connectivity and location of urban surfaces can be more important than impervious area alone for characterising the timing of runoff. The lack, or unexpected pattern, of variability in runoff timing across a range of urban development found in some studies, when only considering imperviousness or URBEXT (e.g. Gallo et al. 2013; Miller and Hess 2017), could be in part due to such effects. This suggests that proximity index (PX) could be an improved measure of urbanisation for characterising the spatial effects on runoff timing in spatially averaged ‘lumped’ catchment hydrological applications. In particular, such spatially explicit and hydrologically relevant landscape metrics could have a role for calibrating runoff timing parameters in national flood estimation methods that rely on lumped catchment models, such as the UK industry-standard Revitalised Flood Hydrograph (ReFH) model (EA 2009; Kjeldsen 2007; Kjeldsen, Miller, and Packman 2013).

While this study has found only limited evidence for applying landscape metrics to better characterise the hydrological effects of natural green space in urban areas, the potential for spatially explicit metrics such as PX is evident to improve the poor performance of time-based metrics in certain validation catchments with large areas of such greenspace was indicative. Empirical research is limited and primarily set at local or plot scales (e.g. Jarden, Jefferson, and Grieser 2015) the science at catchment scales is emerging and based primarily on modeling, showing that spatial distribution of green infrastructure affects relative effectiveness in urban areas (Loperfido et al. 2014; Bell et al. 2016) and could be more important than overall coverage (Fry and Maxwell 2017). Golden and Hoghooghi (2017) find this is an area of fertile research and suggest that novel measurements and big data are required.

4.3. Study limitations and further research

The limited number of sites, and their size and relative levels of urbanisation, means the statistical analyses are not representative of, and cannot be immediately applied to, larger catchments with more dense urban centres or types of development. Further, the lack of any extreme storm events limits any investigation into whether the patterns observed would change with more intense storms. Wider testing of the landscape metrics used here across a range of catchment sizes and levels of urbanisation, alongside additional metrics to represent storm drainage and green infrastructure, is required to determine if landscape metrics could improve the operational methods and is a key area for further research. An additional area would be the potential application for lumped hydrological modelling and performance comparison with distributed methods.
5. Conclusions

This study assessed the potential of spatially explicit landscape metrics compared to lumped catchment descriptors for explaining storm runoff from urbanised catchments. This had not been previously explored and provided an opportunity to empirically test whether findings from the limited modelling studies are reflected in empirical data at catchment scales and whether landscape metrics could lead to improvements in lumped catchment attribution studies and flood estimation.

The study showed that attribution of the volume and timing of storm runoff using lumped urban catchment descriptors, such imperviousness or urban extent, could be significantly improved in combination with more spatially explicit landscape metrics capable of representing the connectivity, layout and location of urban surfaces. It was also demonstrated that landscape metrics applied to areas of natural green space within urban areas can be useful for explaining the volume of runoff generated in storm events. These observations suggest potential improvements in modelling design flood events or water resources in ungauged catchments where models rely on lumped catchment parameters. Landscape metrics pose significant potential for bridging the gap between the spatial limitations of more simple lumped modelling approaches and the more complex but data-intensive limitations of distributed modelling approaches. Landscape metrics could also provide a less data-intensive and more repeatable means of investigating how the spatial configuration of green infrastructure and urban land-use interacts with hydrological response.

Acknowledgements

The authors would like to acknowledge Michael Hutchins (CEH) for his support in the monitoring network and Gianni Vesuviano (CEH) for his contributions to the coding for selecting event metrics.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by the Natural Environment Research Council.

ORCID

Tim Brewer http://orcid.org/0000-0002-8245-5361

References

Akaike, H. 1987. “Factor Analysis and AIC.” In Selected Papers of Hidetugu Akaike, edited by E. Parzen, K. Tanabe, and G. Kitagawa, 371-386. Springer Series in Statistics (Perspectives in Statistics). New York, NY: Springer.

Bell, C. D., S. K. McMillan, S. M. Clinton, and A. J. Jefferson. 2016. “Hydrologic Response to Stormwater Control Measures in Urban Watersheds.” Journal of Hydrology 541: 1488–1500. doi:10.1016/j.jhydrol.2016.08.049.

Boorman, D. B., J. M. Hollis, and A. Lilly. 1995. “Hydrology of soil types: A hydrologically-based classification of the soils of United Kingdom.” Institute of Hydrology, United Kingdom.

Brady, R. F., T. Tobias, P. F. Eagles, J. M. Ohmer, B. Veale, and R. S. Dormy. 1979. “A Typology for the Urban Ecosystem and its Relationship to Larger Biogeographical Landscape Units.” Urban Ecology 4 (1): 11–28. doi:10.1007/0-304-00097-9/00020-2.

Braud, I. F., Breil, F., Thollet, M. Lagouy, F. Branger, C. Jaccqueminet, S. Kermnadi, and K. Mickel. 2013. “Evidence of the Impact of Urbanization on the Hydrological Regime of a Medium-sized Periurban Catchment in France.” Journal of Hydrology 485: 5–23. doi:10.1016/j.jhydrol.2012.04.049.

Burn, D. H., and D. B. Boorman. 1993. “Estimation of Hydrological Parameters at Ungauged Catchments.” Journal of Hydrology 143 (4): 429-454. doi:10.1016/0022-1694(93)90203-L.

Burns, M. J., T. D. Fletcher, C. J. Walsh, A. R. Ladson, and B. E. Hatt. 2012. “Hydrologic Shortcomings of Conventional Urban Stormwater Management and Opportunities for Reform.” Landscape and Urban Planning 105 (3): 230–240. doi:10.1016/j.landurbplan.2011.12.012.

Dams, J., J. Dujardin, R. Reggers, I. Bashir, F. Canters, and O. Batelaan. 2013. “Mapping Impervious Surface Change from Remote Sensing for Hydrological Modeling.” Journal of Hydrology 485: 84–95. doi:10.1016/j.jhydrol.2012.09.045.

Du, S., P. Shi, A. Van Rompaey, and J. Wen. 2015. “Quantifying the Impact of Impervious Surface Location on Flood Peak Discharge in Urban Areas.” Natural Hazards 76 (3): 1457–1471. doi:10.1007/s11069-014-1463-2.

Ebrahimian, A., B. N. Wilson, and J. S. Gulliver. 2016. “Improved Methods to Estimate the Effective Impervious Area in Urban Catchments Using Rainfall-runoff Data.” Journal of Hydrology 536: 109–118. doi:10.1016/j.jhydrol.2016.02.023.

Ellis, J. B., and D. M. Revitt. 2010. “The Management of Urban Surface Water Drainage in England and Wales.” Water and Environment Journal 24 (1): 1–8. doi:10.1111/j.1747-6593.2009.00203.x.

Environment Agency. 2009. Flood Estimation Guidelines. Operational Instruction 197.08, Environment Agency.

Faraway, J. J. 2004. Linear Models with R. United States: Chapman & Hall/CRC.

Fletcher, T. D., H. Andrieu, and P. Hamel. 2013. “Understanding, Management and Modelling of Urban Hydrology and Its Consequences for Receiving Waters: A State of the Art.” Advances in Water Resources 51: 261–279. doi:10.1016/j.advwatres.2012.09.001.

Frazier, A. E., and P. Kedron. 2017. “Landscape Metrics: Past Progress and Future Directions.” Current Landscape Ecology Reports 2 (3): 63–72. doi:10.1007/s40823-017-0026-0.

Fry, T. J., and R. M. Maxwell. 2017. “Evaluation of Distributed BMPs in an Urban watershed—High Resolution Modeling for Stormwater Management.” Hydrological Processes 31 (15): 2700–2712. doi:10.1002/hyp.11177.

Gallo, E. L., P. D. Brooks, K. A. Lohse, and J. E. T. McClain. 2013. “Land Cover Controls on Summer Discharge and Runoff Solution Chemistry of Semi-arid Urban Catchments.” Journal of Hydrology 485: 37–53. doi:10.1016/j.jhydrol.2012.11.054.

Gill, S. E., J. F. Handley, A. R. Ennos, and S. Pauleit. 2007. “Adapting Cities for Climate Change: The Role of the Green Infrastructure.” Built Environment 33 (1): 115–133. doi:10.2148/benv.33.1.115.

Gironás, J., J. D. Niemann, L. A. Roesner, F. Rodríguez, and H. Andrieu. 2009. “A Morpho-climatic Instantaneous Unit Hydrograph Model for Urban Catchments Based on the Kinematic Wave Approximation.” Journal of Hydrology 377 (3–4): 317–334. doi:10.1016/j.jhydrol.2009.08.030.

Golden, H., and N. Hoghooghi. 2017. “Green Infrastructure and Its Catchment-scale Effects: An Emerging Science.” Wiley Interdisciplinary Reviews: Water 5 (February): e1254. doi:10.1002/wat2.1254.

Graf, W. L. 1977. “Network Characteristics in Suburbanizing Streams.” Water Resources Research 13 (2): 459–463. doi:10.1029/WR013i002p00459.

Grafius, D. R., R. Corstanje, P. H. Warren, K. L. Evans, S. Hancock, and J. A. Harris. 2016. “The Impact of Land Use/Land Cover Scale on Modelling Urban Ecosystem Services.” Landscape Ecology 31 (7): 1509–1522. doi:10.1007/s10980-015-0337-7.

Hale, R. L., L. Turnbull, S. R. Earl, D. L. Childers, and N. B. Grimm. 2014. “Stormwater Infrastructure Controls Runoff and Dissolved Material Export from Arid Urban Watersheds.” Ecosystems 18 (1): 62-75. Springer New York LLC.
Van Nieuwenhuyse, B. H. J., M. Antoine, G. Wyseure, and G. Govers. 2011. “Pattern-process Relationships in Surface Hydrology: Hydrological Connectivity Expressed in Landscape Metrics.” *Hydrological Processes* 25 (24): 3760–3773. doi:10.1002/hyp.8101.

Vesuviano, G., and J. D. Miller. 2018. “Design Flood Estimation and Utility of High-resolution Calibration Data in Small, Heavily Urbanised Catchments.” *Journal of Flood Risk Management* 12 (2): 1–13.

Woods Ballard, B., S. Wilson, H. Udale-Clarke, S. Illman, T. Scott, R. Ashley, and R. Kellagher. 2015. *The SuDS Manual*. Vol. 697. London: Ciria.

Yang, J. L., and G. L. Zhang. 2011. “Water Infiltration in Urban Soils and Its Effects on the Quantity and Quality of Runoff.” *Journal of Soils and Sediments* 11 (5): 751–761. doi:10.1007/s11368-011-0356-1.

Yuan, J., M. J. Cohen, D. A. Kaplan, S. Acharya, L. G. Larsen, and M. K. Nungesser. 2015. “Linking Metrics of Landscape Pattern to Hydrological Process in a Lotic Wetland.” *Landscape Ecology* 30 (10): 1893–1912. doi:10.1007/s10980-015-0219-z.

Zhang, Y., and W. Shuster. 2014. “Impacts of Spatial Distribution of Impervious Areas on Runoff Response of Hillslope Catchments: Simulation Study.” *Journal of Hydrologic Engineering* 19 (6): 1089–1100. doi:10.1061/(ASCE)HE.1943-5584.0000905.

Zhou, Y., Y. Wang, A. J. Gold, P. V. August, and T. B. Boving. 2014. “Assessing Impact of Urban Impervious Surface on Watershed Hydrology Using Distributed Object-oriented Simulation and Spatial Regression.” *GeoJournal* 79 (2): 155–166. doi:10.1007/s10708-013-9506-x.