Phylogenetic diversity in fim and mfa gene clusters between Porphyromonas gingivalis and Porphyromonas gulae, as a potential cause of host specificity

Kaori Fujiiwara-Takahashi, Takayasu Watanabe, Masahiro Shimogishi, Masaki Shibasaki, Makoto Umeda, Yuichi Izumi and Ichiro Nakagawa

Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Department of Chemistry, Nihon University School of Dentistry, Tokyo, Japan; Department of Oral Implantology and Regenerative Dental Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Department of Periodontology, Graduate School of Dentistry, Osaka Dental University, Osaka, Japan; Oral Care Perio Center, Southern TOHOKU General Hospital, Southern TOHOKU Research Institute for Neuroscience, Fukushima, Japan; Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan

ABSTRACT

Background: Periodontopathic bacteria Porphyromonas gingivalis in humans and Porphyromonas gulae in animals are phylogenetically close and commonly have FimA and Mfa1 fimbriae. However, little is known about how fimA and mfa1 are phylogenetically different between P. gingivalis and P. gulae. Here, we examined phylogenetic diversity in their fim and mfa gene clusters.

Methods: Twenty P. gulae strains were isolated from the periodontal pocket of 20 dogs. For their genomic information, along with 64 P. gingivalis and 11 P. gulae genomes, phylogenetic relationship between the genotypes of fimA and mfa1 was examined. Variability of amino acid sequences was examined in the three-dimensional structure of FimA. The distance between strains was calculated for fim and mfa genes.

Results: Some fimA genotypes in P. gulae were close to particular types in P. gingivalis. Two types of mfa1 were classified as 70-kDa and 53-kDa protein-coding mfa1. The variable amino acid positions were primarily at the outer part of FimA. The genes encoding the structural proteins and the main component were similarly distant from the reference strain in P. gingivalis, but not in P. gulae.

Conclusions: The differences in the gene clusters between P. gingivalis and P. gulae may result in their host specificity.

Introduction

The genus Porphyromonas contains Gram-negative anaerobic bacilli, and was formerly classified in the genus Bacteroides [1]. Species in the genus Porphyromonas are prevalent in the oral cavity of mammals [2–5]. Among them, Porphyromonas gingivalis is most widely known as a periodontopathic bacterium in humans [6]. Compared to other human oral bacteria, P. gingivalis has been extensively studied and characterized because it is one of the few oral bacteria that can be isolated and cultured, and produces various virulent factors such as proteases [6]. P. gingivalis is classified as a member of the red complex species, which are highly detectable in deep periodontal pockets [7]. In recent, P. gingivalis was called a keystone species, which has substantial effects on a bacterial community despite its low abundance [8], and is therefore still influential in the etiology of periodontitis.

Porphyromonas gingivalis, on the other hand, is a species that is phylogenetically close to P. gingivalis and exists in animals such as dogs, cats, and monkeys [9]. In the etiology of dog periodontitis, P. gulae has similar characteristics as those of P. gingivalis in being highly detectable at the periodontitis sites [10] and in modulating the host immune system [11]. P. gulae and P. gingivalis are highly similar in the nucleotide sequence of 16 S rRNA gene, but their genomes are homologous in only nearly one-half of the entire length [9]. Despite the difference in nearly one-half of their genomes, P. gulae and P. gingivalis are highly close in the genus Porphyromonas, which was demonstrated by the examination of core genome-based phylogenetic relationships between various Porphyromonas species [12]. Although the host specificity of P. gulae and P. gingivalis may result from genomic differences between them, little is

CONTACT Takayasu Watanabe watanabe.takayasu@nihon-u.ac.jp Department of Chemistry, Nihon University School of Dentistry, Tokyo, Japan

This article has been republished with minor changes. These changes do not impact the academic content of the article.

Both the authors have equally contributed to this article.

Present address: Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima-shi, Kagoshima, Japan.

© 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
known about how host specificity and genomic differences are linked.

P. gulae and *P. gingivalis* both have fimbriae on the cell surface. Fimbriae of *P. gingivalis* are the virulence factor for adhering to a host cell and tissue as the first step of colonization [6]. In *P. gingivalis*, fimbriae are classified as FimA fimbriae and Mfa1 fimbriae [13]. FimA is assembled into the polymer with the expression of accessory proteins FimBCDE [14]. The genes encoding FimA and accessory proteins are located in tandem to form the fim gene cluster [14]. Mfa1 fimbriae are similarly expressed by the mfa gene cluster, including mfa1 for the major subunit of Mfa1 fimbriae and mfa2345 for accessory proteins [15]. In addition to the gene cluster, FimA assembly is also regulated in trans by the genes fimSR. FimSR form a two-component system and are encoded distant from the gene cluster [16,17].

The genotypes of fimA have been used for easily classifying *P. gingivalis* strains. Six genotypes of fimA (i.e., types I, Ib, II, III, IV, and V) have been classified, and are associated with the virulence of *P. gingivalis* [18]. By contrast, the genotypes of Mfa1 fimbriae were unknown until the 53-kDa protein was revealed as a variant of the Mfa1 protein [19]. Two genotypes of mfa1 are currently to be considered, as 70-kDa protein-coding mfa1 and 53-kDa protein-coding mfa1 [19]. On the other hand, fimA in *P. gulae* strains were first classified as types A and B, independently of the *P. gingivalis* genotypes [20], and type C fimA was then identified [21]. However, the mfa1-based genotyping is impractical for *P. gulae*; therefore, the distribution of the mfa1 genotypes among *P. gulae* strains remains unknown. Moreover, the phylogenetic diversity of fim- and mfa-related genes, other than fimA and mfa1, has not been described.

Antigenicity in bacteria is diversified by mutations in the genes encoding surface proteins [22]. The antigenicity of fimbriae between *P. gingivalis* and *P. gulae* may differ immunogenetically and in the style of host immunity evasion, and thus may cause a difference in the host specificity between the two species. We then hypothesized that the fimbrial gene clusters of *P. gingivalis* and *P. gulae* would be a genomic spot where the genetic differences would be detectable between the two species. In this study, we investigated how the fimA and mfa1 genotypes were distributed among strains. We also examined the relationship between strains in the nucleotide sequence similarity of fim- and mfa-related genes. We newly obtained *P. gulae* strains and their draft genome sequences to compare their fimbrial gene clusters with the genomic information of *P. gingivalis* and *P. gulae* in the public database.

Materials and methods

Sample collection

Twenty dogs with periodontitis were recruited for this study at the Fujita Animal Hospital (Saitama, Japan) from 2008 to 2010. All owners provided informed consent for participation. Under general anesthesia, a sterile paper point was inserted into the periodontal pocket for 20 seconds and was then transferred to an anaerobic transport medium [23]. The sample was transported to the laboratory in Tokyo Medical and Dental University (Tokyo, Japan) and stored at −80°C until use. This study was approved by the Dental Research Ethics Committee of Tokyo Medical and Dental University (Tokyo, Japan; approval number 572).

Bacterial strains and culture conditions

Each sample was placed onto a trypticase soy agar plate containing 30 g/L trypticase soy broth (Becton-Dickinson, Franklin Lakes, NJ, USA), 5% defibrinated horse blood (Nippon Bio-Test Laboratories, Tokyo, Japan), 1 mg/mL yeast extract (Nacalai Tesque, Kyoto, Japan), 5 µg/mL hemin (Sigma-Aldrich, St. Louis, MO, USA), and 0.5 µg/mL menadione (Nacalai Tesque). The plate was anaerobically incubated at 37°C in 10% CO₂, 10% H₂, and 80% N₂. To obtain a strain of *P. gulae* from each sample, a black-pigmented colony was selected on the plate and taxonomically identified using 16S rRNA gene sequencing with the ABI 3100 genetic analyzer (Applied Biosystems, Foster City, CA, USA). The *P. gulae* strains were 20 in total and were named by connecting ‘FJ’ and distinct numbers (Table 1).

Determination of the draft genome sequences

Genomic DNA was extracted from the 20 *P. gulae* strains, and their draft genome sequences were determined and annotated, as described previously [24]. The sequence reads were deposited in the DNA Data Bank of Japan under the accession number DRA006235. The complete or draft genome sequences of 64 *P. gingivalis* strains, 11 *P. gulae* strains, and *P. asaccharolytica* DSM 20707 were downloaded from the GenBank, and annotated with the same conditions used for the aforementioned 20 genomes. The number of genomes used in this study was 64 for *P. gingivalis* and 31 for *P. gulae* in total (Table 1). The genome of *P. asaccharolytica* DSM 20707 was used as an outgroup, as described in the next section.
Table 1. Strains of *P. gingivalis* and *P. gulae* used in this study.

Species	Strain	Data source
Porphyromonas gulae	ATCC 33277	NC_010729
Porphyromonas gulae	ATCC 59377	DRX019659
Porphyromonas gulae	W50	AJZ501
Porphyromonas gulae	W83	NC_002950
Porphyromonas gulae	D3	DRX019660
Porphyromonas gulae	D4	DRX019661
Porphyromonas gulae	D5	DRX019665
Porphyromonas gulae	D8	DRX019663
Porphyromonas gulae	D9	DRX019664
Porphyromonas gulae	D12	DRX019665
Porphyromonas gulae	D26	DRX019666
Porphyromonas gulae	D14	DRX019667
Porphyromonas gulae	D15	DRX019668
Porphyromonas gulae	D16	DRX019669
Porphyromonas gulae	D17	DRX019670
Porphyromonas gulae	D18	DRX019671
Porphyromonas gulae	D19	DRX019672
Porphyromonas gulae	D22	DRX019673
Porphyromonas gulae	D23	DRX019674
Porphyromonas gulae	D28	DRX019675
Porphyromonas gulae	D29	DRX019676
Porphyromonas gulae	D45	DRX019677
Porphyromonas gulae	D32	DRX019678
Porphyromonas gulae	D33	DRX019679
Porphyromonas gulae	D34	DRX019680
Porphyromonas gulae	D39	DRX019685
Porphyromonas gulae	D40	DRX019682
Porphyromonas gulae	D41	DRX019683
Porphyromonas gulae	PC9	DRX019684
Porphyromonas gulae	PC13	DRX019685
Porphyromonas gulae	F12	DRX019666
Porphyromonas gulae	KS14	DRX019687
Porphyromonas gulae	L1	DRX019688
Porphyromonas gulae	L2	DRX019689
Porphyromonas gulae	US4	DRX019690
Porphyromonas gulae	TDC59	DRX019690
Porphyromonas gulae	TDC60	NC_015571
Porphyromonas gulae	TDC117	DRX019691
Porphyromonas gulae	TDC129	DRX019692
Porphyromonas gulae	TDC222	DRX019693
Porphyromonas gulae	TDC225	DRX019694
Porphyromonas gulae	TDC243	DRX019695
Porphyromonas gulae	TDC260	DRX019696
Porphyromonas gulae	TDC275	DRX019697
Porphyromonas gulae	TDC280	DRX019698
Porphyromonas gulae	HG184	DRX019697
Porphyromonas gulae	HG564	DRX019700
Porphyromonas gulae	HG1025	DRX019701
Porphyromonas gulae	HW24D1	DRX019702
Porphyromonas gulae	ES0101	DRX019703
Porphyromonas gulae	ES0132	DRX019704
Porphyromonas gulae	OS30-2	DRX019705
Porphyromonas gulae	OS54-1	DRX019706
Porphyromonas gulae	OS561	DRX019707
Porphyromonas gulae	OMC2314	DRX019708
Porphyromonas gulae	CA5	DRX019709
Porphyromonas gulae	JCVI-SC001	APMB01
Porphyromonas gulae	F0185	AWVC01
Porphyromonas gulae	F0566	AWVD01
Porphyromonas gulae	F0568	AWVD01
Porphyromonas gulae	F0569	AUWV01
Porphyromonas gulae	F0570	AWUW01
Porphyromonas gulae	WH24D1	AWVE01
Porphyromonas gulae	HG666	CP007756
Porphyromonas gulae	S02	ASVY01
Porphyromonas gulae	F33	DRX009791
Porphyromonas gulae	F11	DRX009792
Porphyromonas gulae	F19	DRX009793
Porphyromonas gulae	F26	DRX009794
Porphyromonas gulae	F36	DRX009795
Porphyromonas gulae	F37	DRX009796
Porphyromonas gulae	F38	DRX009797
Porphyromonas gulae	F40	DRX009798
Porphyromonas gulae	F44	DRX009799
Porphyromonas gulae	F45	DRX009800
Porphyromonas gulae	F46	DRX009801
Porphyromonas gulae	F50	DRX009802

(Continued)
For the *P. gingivalis* and *P. gulae* strains that were previously unclassified by the *fimA* and/or *mfa1* genotypes, the genotypes were determined, based on the phylogenetic relationship with other strains in the trees. In this study, the 70-kDa and 53-kDa protein-coding *mfa1* were called ‘type 70’ and ‘type 53,’ respectively. The amino acid sequences of *FimA* and 87 in total 607 positions (14.3%) in *Mfa1*.

Strain/isolate	fimA genotype	Data source
ATCC 51700	A	A2897918
D024	A	A8663087
D025	A	A8663088
D028	A	A8663089
D034	A	A8663090
D035	A	A8663091
D036	A	A8663092
D042	A	A8663093
D043	A	A8663094
D060	A	A8663095
D066	A	A8663096
D067	A	A8663097
D068	A	A8663098
D069	C	A8679295
C03Db8	A	LC372924
C04Db3	A	LC372925
C05Db10	A	LC372926
C20Db1	A	LC372927
C20Db2	A	LC372928
C20Db3	A	LC372929
YC98	A	LC372930
YC18a	A	LC372931
YC21a	A	LC372932
YC35p3	C	LC372933
C03Db9	B	LC372934
C13Db2	B	LC372935
YC34p1	B	LC372936
YC35a	B	LC372937
C26Db4	C	LC372938

Calculation of pairwise distance from *fim* and *mfa1* CDSs

The following CDSs were identified in the 64 *P. gingivalis* genomes and 31 *P. gulae* genomes: the CDSs in the *fim* gene cluster (*fimABCDEF*) and *mfa1* gene cluster (*mfa12345*), and the CDSs of the two-component system for regulating FimA fimbriation (*fimSR*). In each of these CDSs, the nucleotide sequences were aligned by using MAFFT, and the K80 pairwise distance from *P. gingivalis* ATCC 33277 was calculated by using R v3.5.2. The distance matrix was visualized as a heat map by using R.

Results

Phylogenetic relationship based on the *fimA* and *mfa1* nucleotide sequences

In the phylogenetic tree based on *fimA*, types I, II, III were distant from types IV and V (Figure 1). Type Ib could not be distinguished from type I; we therefore did not distinguish between types I and Ib, and considered both of them as type I in this study. Types A, B, and C for *P. gulae* strains were close to types I, III, and IV, respectively, for *P. gingivalis*. On the other hand, the phylogenetic tree, based on *mfa1*, had whole branches that were nearly five times longer than those of the tree based on *fimA* (Figure 1). Type 70 was considerably far from type 53, and *P. gulae* and *P. gingivalis* strains were mixed in the tree topology of each type. Based on the phylogenetic relationship, the *fimA* and *mfa1* genotypes were determined (Table 1), whereas the *fimA* genotype of Co5 and the *mfa1* genotypes of D34 and FJ81 were not classifiable because the corresponding CDSs could not be identified in these strains, possibly due to the limitation of data assembly.

Diversity in amino acid sequences of FimA and Mfa1

In each *fimA* and *mfa1* genotype, the amino acid sequences of their encoding proteins were highly conserved although the variation in amino acids at a position within the genotype was observed throughout (Figure 2). Most of the positions variable within the genotype seemed common among genotypes. The number of conserved positions, at which a single amino acid was exclusively observed among genotypes, was 143 in total 418 positions (34.2%) in *FimA* and 87 in total 607 positions (14.3%) in *Mfa1*. The N-terminal end of *FimA* and *Mfa1* were highly conserved among genotypes. In the crystal structure of *FimA*, the conserved positions were primarily located at the inner part of the protein (Figure 3), indicating that the positions variable among genotypes were primarily located at the outer part of *FimA*.

Genome-based phylogeny and the *fimA* and *mfa1* genotypes

In the phylogenetic tree based on 336 common CDSs, 31 *P. gulae* strains were clearly separated from 64 *P. gingivalis* strains (Figure 4). When the *fimA* and *mfa1* genotypes were considered in the phylogeny, the genotypes did not have a clear relationship with
the tree topology. In *P. gingivalis*, *fimA* type II was distributed among the strains, and was mixed with other types such as types I, III, and IV, in the tree topology. Types 70 and 53 of *mfa1* were also mixed throughout the *P. gingivalis* strains. These situations were similarly observed in *P. gulae*. A remarkable finding was that *P. gulae* FJ70 did not have any *fimA* genotypes for *P. gulae* but did had type II *fimA* for *P. gingivalis*.

The distribution of *fimA* and *mfa1* genotypes was reflected in the K80 distances in *fimA* and *mfa1* (Figure 4). In the heat map, strains with *fimA* types I and A had mostly white boxes for *fimA*, whereas the *fimA* boxes for types IV, V, and C were darkened. The *mfa1* boxes were light for type 70 and darkened for type 53, although the boxes for type 70 showed a diversity in gradation, based on the distance from ATCC 33277.

Distances based on the nucleotide sequences of the fim and mfa CDSs

In *P. gingivalis*, the three CDSs *fimX*, *pgmA*, and *fimB* were nearly identical in their nucleotide sequences among the strains (Figure 4). These CDSs in *P. gulae* were rather distant from *P. gingivalis* but were nearly identical among the *P. gulae* strains. Similar situations were observed for *fimSR*, although the *P. gulae* strains were divided into two groups, based on their distances from ATCC 33277. One of these two groups contained six strains (i.e., FJ55, FJ38, FJ19, COT-052_OH3439, FJ46, and FJ115), whereas the other group contained the remaining *P. gulae* strains. The two groups were separated by the genome-based phylogeny and by their distances from ATCC 33277, based on *fim*-related CDSs.

The distances based on three *fim*-related CDSs (i.e., *fimCDE*) appeared to be associated with the *fimA*-based distances in most *P. gingivalis* strains (Figure 4). *P. gingivalis* SJD2 was exceptionally far from ATCC 33277 when using *fimCDE*-based distances, and nearly identical to ATCC 33277 when using *fimA*-based distances. By contrast, the *fimCDE*-based distances in *P. gulae* showed a rather opposite relationship to the *fimA*-based distance. *P. gulae* strains with a low distance of *fimCDE* from ATCC 33277 (i.e., the aforementioned group consisting of six strains) were far from ATCC 33277 in the *fimA*-based distance. On the other hand, the *mfa234*-based distances were associated with the *mfa1*-based distance in *P. gingivalis* and in *P. gulae*. Possibly because of insufficient assembly of genomes, the CDSs encoding *mfa5* could not be identified in 40 of 64 *P. gingivalis* strains and in 27 of 31 *P. gulae* strains.

Discussion

The relationship between the *fimA* genotypes and the observable phenotypes of *P. gingivalis* was reported nearly two decades ago. *P. gingivalis* strains with type II or IV were virulent, whereas strains with type I or III were mostly avirulent [35]. In particular, type II FimA was known to be highly virulent, compared to the other types with regard to adhesion to and invasion into host cells [36] and causing subcutaneous abscess in mice [37]. The *fimA* genotypes and phenotypes of *P. gulae* were also associated with each other, as shown in mouse abscess models; the *P. gulae*
Figure 2. Variation in the amino acid sequences of FimA and Mfa1. The amino acid sequences of fimA (a) and mfa1 (b), as visualized using WebLogo, are shown. The alignment of the sequences is shown for each of eight fimA genotypes (a) and five mfa1 potential genotypes (b). Based on the phylogeny in Figure 1(b), the mfa1 genotypes 70 and 53 are divided into the clusters of each species. The cluster of P. gulae type 53 is further divided into putative subtype-a and subtype-b, which represent the upper and lower phylogroup, respectively, in Figure 1(b). The alignment is shown from the amino acid position 1 of N-terminal end to the last of C-terminal end, and for each 100 amino acids. In each genotype, the variation in amino acids at each position is indicated by the proportion of vertical length of characters. In particular strains, the absence of amino acids at a position is indicated by the width of characters. The positions where only a single amino acid exists among genotypes are colored.
strains with type B have been reported as more virulent than type A [20], and strains with type C were more virulent than strains with types A and B [21]. On the other hand, in this study, we demonstrated that the fimA types for P. gulae were phylogenetically close to certain fimA types for P. gingivalis (Figure 1). We observed that types A, B, and C in P. gulae were close to types I, III, IV, respectively, in P. gingivalis. A close relationship was also observed in the alignment of the amino acid sequences (Figure 2). The signal peptide of FimA was highly conserved, whereas the N-terminal extension, the region cleaved by the gingipain at the arginine residue first appearing in the N-terminal end [15,38], was variable at most positions among the genotypes. The close relationship was partially consistent with the aforementioned relationship that the type II and IV strains in P. gingivalis and the type B and C strains in P. gulae were virulent whereas the type I and III strains in P. gingivalis and the type A strain in P. gulae were less virulent. The relationship and differences in fimA in the phylogeny among genotypes may be explained by localizing the variable positions, primarily at the outer part of FimA (Figure 3). The inner part of FimA may have been highly conserved to maintain the basic structure of protein, whereas the outer part may have allowed the substitution of amino acids to diversify the antigenicity of the fimbriae. Although no novel fimA type was observed in P. gulae, other than the three fimA types A, B, and C, only P. gulae FJ70 had the fimA type II that was considered to be unique to P. gingivalis. This may be a variant of type B, based on the close relationship among types II, III, and B in the fimA-based phylogeny (Figure 1) and in the similarity in amino acid sequences (Figure 2). It may also be a novel type for P. gulae that has not been described previously. This exceptional type will be further examined in the future by collecting the corresponding P. gulae

Figure 3. Conserved amino acid positions in the crystal structure of FimA. The three-dimensional structure of FimA of P. gingivalis W83 is shown. The conserved amino acid positions where only a single amino acid exists among genotypes are indicated by red. The N- and C-terminals are indicated.
Figure 4. Phylogenetic tree based on the amino acid sequences of common CDSs, the fimA and mfa1 genotypes, and heat map for K80 distances of fim and mfa CDSs from P. gingivalis ATCC 33277. The tree based on 336 common CDSs in 64 P. gingivalis strains and 31 P. gulae strains is shown. The outgroup P. asaccharolytica DSM 20707 is not shown. The scale bar represents substitutions per amino acid site. The names of strains are on the right side of the tree. The genotypes of fimA are indicated by colored circles on the right side of the names of strains. For each fim-related CDS, the K80 distance values are indicated by the color gradient in the heat map. Black boxes in the heat map indicate the absence of the corresponding CDSs. The mfa1 genotypes and the K80 distance values for each mfa-related CDS are shown on the far right.
strains, with a possibility of their infection from dogs to humans, and vice versa.

With regard to the mfa1 genotypes, we demonstrated that types 70 and 53 were the major types and prevalent among the P. gulae and P. gingivalis strains. Type 70 seemed a major mfa1 genotype for P. gingivalis, whereas most P. gulae strains had type 53 (Figure 4). In a previous study, the relationship between the fimA and mfa genotypes was weakly observed in P. gingivalis, such as type II strains harboring type 70 mfa1 rather than type 53, and mfa1 was absent in the type V strains [13]. These previous findings were consistent with our observation that most of type II strains were type 70 in the mfa1 genotypes, but were not consistent with the presence of mfa1 in P. gingivalis strains with type V fimA. The topology of the mfa1-based tree suggested that each type, especially type 53, may be further classified into subtypes or distinct types (Figure 1). This concept will be considered with the phenotypic differences in P. gulae strains between the potential subtypes. Although two mfa1 genotypes may possibly be further subtyped, a clear separation between the two genotypes was remarkable for detecting them as major mfa1 genotypes. A signal peptide of Mfa1 at the N-terminal end was highly conserved and most positions in the N-terminal extension [39] were variable among genotypes in similar manner as FimA. However, the positions conserved among all genotypes were fewer for Mfa1 than for FimA (Figure 2), despite the length of Mfa1 being longer than that of FimA. The difference in the extent of amino acid variation between FimA and Mfa1 may have resulted in the higher number of fimA genotypes than that of mfa1 genotypes. Identifying the crystal structure of Mfa1 will help in understand how the variation of amino acids occurs in the three-dimensional structure of protein and how this variation has a role in the function of fimbriae.

The fimA-related proteins FimCDE are accessory components that bind to the FimA polymer as a part of the fimbrial structure [40–42], and seem to be functionally different from other fimA-related proteins. The two-component system proteins FimSR regulate the transcriptional expression of the fim gene cluster [17,43], and FimB regulates fimbriation as a terminator [44]. The functions of FimX and PgmA are not fully characterized [42], although PgmA is suggested to be the usher [14]. The relationship between fimA and fimCDE in P. gingivalis with respect to the distances from ATCC 33277 (Figure 4) possibly reflected the functional difference between FimCDE and the other fimA-related proteins. In P. gingivalis, fimCDE may have phylogenetically evolved together with fimA, whereas the other fimA-related CDSs may have retained their gene structure to keep regulatory or supportive functions for fimbriation. The mfa-related CDSs mfa345 were similarly associated with mfa1 with respect to the distances from ATCC 33277 (Figure 4). Mfa345 binds to the Mfa1 polymer as a part of the fimbrial structure, similar to FimCDE [15,39]. mfa2 also showed a weak relationship with mfa1 with respect to distance, although Mfa2 contributes to the regulation of fimbrial length and is not included in the actual fimbrial structure [15,45]. The structural and regulatory CDSs of Mfa1 fimbriae in P. gingivalis may have evolved in a similar manner as FimA fimbriae.

However, fimA and fimCDE in P. gulae did not show a clear relationship with each other with respect to their distances from ATCC 33277 (Figure 4), despite that mfa1 and mfa345 showed a similar relationship to P. gingivalis. The distances, based on fimCDE and fimSR, seemed to reflect the phylogenetic distance from P. gingivalis, whereas the distances based on fimA were irrelevant to the phylogeny between P. gulae and P. gingivalis. The combination of fimA distant from P. gingivalis and fimA-related CDSs close to P. gingivalis, and vice versa, may characterize P. gulae as a species independent from P. gingivalis and lead to its unique habitats segregated from P. gingivalis. In P. gingivalis, homologous recombination was suggested to shape the genetic diversity among the strains [46–48]. Chromosomes in other P. gingivalis cells are potential sources of the recombination partner, transferred by conjugation [49,50]. Natural competence is also important for recombination by introducing extracellular DNA, which is released from P. gingivalis cells [47,51]. Although it has been still unknown whether these mechanisms are also valid in P. gulae, homologous recombination that would occur within P. gingivalis or P. gulae and would occur between P. gingivalis and P. gulae across the hosts, may be a possible reason for the phylogenetic differentiation of fimbrial genes between P. gingivalis and P. gulae, thereby resulting in the difference in host specificity.

Conclusions
We demonstrated the relationship of the fimA genotypes between P. gingivalis and P. gulae, and the two mfa1 genotypes that were clearly separated from each other. In addition, we observed that fimA and fimCDE in P. gingivalis were similarly distant from the reference strain, whereas the distance of fimA was inversely related to the distance of fimCDE in P. gulae. A genomic region of a clustered regularly interspaced short palindromic repeat (CRISPR) array generally has the function of acquired immunity [52], whereas the CRISPR arrays in P. gingivalis were suggested to regulate homologous recombination of the genome with the DNA introduced from nonself P. gingivalis cells [24]. The function of arrays in P. gulae has not been described but may have similar role as the arrays in P. gingivalis, considering their phylogenetic closeness. Future studies will elucidate how the CRISPR arrays in
P. gulae are involved in genetic diversification and in the differentiation of the fim and mfa gene clusters.

Acknowledgments

Supercomputing resource was provided by the Human Genome Centre at the Institute of Medical Science (the University of Tokyo, Tokyo, Japan; http://sc.hgc.jp/shirokane.html). We thank Keiichi Fujita (Fujita Animal Hospital, Saitama, Japan) for sample collection.

Data availability

The sequence reads obtained in this study are available in the DNA Data Bank of Japan under the accession number DRA006235.

Disclosure statement

The authors declare that they have no competing interests.

Funding

This work was supported by KAKENHI from the Japan Society for the Promotion of Science (Tokyo, Japan; grant numbers JP23932008, JP12J05796, JP14J02840, JP26861544, and JP16K08015); Japan Society for the Promotion of Science (Tokyo, Japan; grant numbers JP23932008, JP12J05796, JP14J02840, JP26861544, and JP16K08015); Japan Society for the Promotion of Science [JP23932008, JP12J05796, JP14J02840, JP26861544, JP16K08015]; Japan Society for the Promotion of Science [JP23932008];

ORCID

Takayasu Watanabe http://orcid.org/0000-0001-5487-8191
Ichiro Nakagawa http://orcid.org/0000-0001-6552-1702

References

[1] Shah HN, Collins MD. Proposal for reclassification of *Bacteroides asaccharolyticus*, *Bacteroides gingivalis*, and *Bacteroides endodontalis* in a new genus, *Porphyromonas*. Int J Syst Bacteriol. 1988;38(1):128–131.

[2] Finegold SM, Barnes EM. Report of the ICSB taxonomic subcommittee on Gram-negative anaerobic rods. Int J Syst Bacteriol. 1977;27:388–391.

[3] TJM VS, van Winkelhoff AJ, Mayrand D, et al. *Bacteroides endodontalis* sp. nov., an asaccharolytic black-pigmented *Bacteroides* species from infected dental root canals. Int J Syst Bacteriol. 1984;34:118–120.

[4] Collins MD, Love DN, Karjalainen J, et al. Phylogenetic analysis of members of the genus *Porphyromonas* and description of *Porphyromonas cangerfallai* sp. nov. and *Porphyromonas cansulci* sp. nov. Int J Syst Bacteriol. 1994;44:674–679.

[5] Coykendall AL, Kaczmarek FS, Slots J. Genetic heterogeneity in *Bacteroides asaccharolyticus* (Holdeman and Moore 1970) Finegold and Barnes 1977 (Approved Lists, 1980) and proposal of *Bacteroides gingivalis* sp. nov. and *Bacteroides macacae* (Slots and Genco) comb. nov. Int J Syst Bacteriol. 1980;30:559–564.

[6] Lamont RJ, Jenkinson HF. Life below the gum line: pathogenic mechanisms of *Porphyromonas gingivalis*. Microbiol Mol Biol Rev. 1998;62:1244–1263.

[7] Socransky SS, Haffajee AD, Cugini MA, et al. Microbial complexes in subgingival plaque. J Clin Periodontol. 1998;25:134–144.

[8] Hajishengallis G, Darveau RP, Curtis MA. The Keystone-pathogen hypothesis. Nat Rev Microbiol. 2012;10:717–725.

[9] Fournier D, Mouton C, Lapierre P, et al. *Porphyromonas gulae* sp. nov., an anaerobic, gram-negative coccobacillus from the gingival sulcus of various animal hosts. Int J Syst Evol Microbiol. 2001;51:1179–1189.

[10] Senhorinho GN, Nakano V, Liu C, et al. Detection of *Porphyromonas gulae* from subgingival biofilms of dogs with and without periodontitis. Anaerobe. 2011;17:257–258.

[11] Lenzo JC, O’Brien-Simpson NM, Orth RK, et al. *Porphyromonas gulae* has virulence and immunological characteristics similar to those of the human periodontal pathogen *Porphyromonas gingivalis*. Infect Immun. 2016;84(9):2575–2585.

[12] O’Flynn C, Deusch O, Darling AE, et al. Comparative genomics of the genus *Porphyromonas* identifies adaptations for heme synthesis within the prevalent canine oral species *Porphyromonas cangingivalis*. Genome Biol Evol. 2015;7:3397–3413.

[13] Nagano K, Hasegawa Y, Iijima Y, et al. Distribution of *Porphyromonas gingivalis* fimA and mfa1 fimbrial genotypes in subgingival plaques. Peer J. 2018:e5581.

[14] Nagano K, Abiko Y, Yoshida Y, et al. *Porphyromonas gingivalis* FimA fimbriae: roles of the fim gene cluster in the fimbrial assembly and antigenic heterogeneity among fimA genotypes. J Oral Biosci. 2012;54(3):160–163.

[15] Kloppsteck P, Hall M, Hasegawa Y, et al. Structure of the fimbrial protein Mfa4 from *Porphyromonas gingivalis* in its precursor form: implications for a donor-strand complementation mechanism. Sci Rep. 2016;6:22945.

[16] Hayashi J, Nishikawa K, Hirano R, et al. Identification of a two-component signal transduction system involved in fimbriation of *Porphyromonas gingivalis*. Microbiol Immunol. 2000;44(4):279–282.

[17] Nishikawa K, Yoshimura F, Duncan MJ. A regulation cascade controls expression of *Porphyromonas gingivalis* fimB via the FimR response regulator. Mol Microbiol. 2004;54(2):546–560.

[18] Enersen M, Nakano K, Amano A. *Porphyromonas gingivalis* fimB fimbriae. J Oral Microbiol. 2013;5.

[19] Nagano K, Hasegawa Y, Yoshida Y, et al. A major fimbrillin variant of Mfa1 fimbriae in *Porphyromonas gingivalis*. J Dent Res. 2015;94:1143–1148.

[20] Nomura R, Shirai M, Kato Y, et al. Diversity of fimA fimbriae among clinical isolates of *Porphyromonas gingivalis* carrying a new fimA genotype. Vet Microbiol. 2012;161:196–205.

[21] Foley J. Mini-review: strategies for variation and evolution of bacterial antigens. Comput Struct Biotechnol J. 2015;13:407–416.

[22] Takeuchi Y, Umeda M, Ishizuka M, et al. Prevalence of periodontopathic bacteria in aggressive periodontitis patients in a Japanese population. J Periodontol. 2003;74:1460–1469.

[23] Watanabe T, Nozawa T, Aikawa C, et al. CRISPR regulation of intraspecies diversification by limiting
IS transposition and intercellular recombination. Genome Biol Evol. 2013;5:1099–1114.

[25] Zhao Y, Wu J, Yang J, et al. PGAP: pan-genomes analysis pipeline. Bioinformatics. 2012;28:416–418.

[26] Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–780.

[27] Bruen TC, Philippe H, Bryant D. A simple and robust statistical test for detecting the presence of recombination. Genetics. 2006;172:2665–2681.

[28] Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol. 2006;23:254–267.

[29] Stamatakis A. RAxML version 8: a tool for phylogenetic inference and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313.

[30] Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci. 1992;8:275–282.

[31] Keane TM, Creevey CJ, Pentony MM, et al. Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evol Biol. 2006;6:29.

[32] Huson DH, Scornavacca C. Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst Biol. 2012;61:1061–1067.

[33] Iwashita N, Nomura R, Shirai M, et al. Identification and molecular characterization of Porphyromonas gulae fimA types among cat isolates. Vet Microbiol. 2019;229:100–109.

[34] Crooks GE, Hon G, Chandonia JM, et al. WebLogo: a sequence logo generator. Genome Res. 2004;14:1188–1190.

[35] Amano A, Nakagawa I, Okahashi N, et al. Variations of Porphyromonas gingivalis fimbriae in relation to microbial pathogenesis. J Periodontal Res. 2004;39:136–142.

[36] Nakagawa I, Amano A, Kuboniwa M, et al. Functional differences among FimA variants of Porphyromonas gingivalis and their effects on adhesion to and invasion of human epithelial cells. Infect Immun. 2002;70:277–285.

[37] Nakano K, Kuboniwa M, Nakagawa I, et al. Comparison of inflammatory changes caused by Porphyromonas gingivalis with distinct fimA genotypes in a mouse abscess model. Oral Microbiol Immunol. 2004;19:205–209.

[38] Hasegawa Y, Murakami Y. Porphyromonas gingivalis fimbriae: recent developments describing the function and localization of mfa1 gene cluster proteins. J Oral Biosci. 2014;56:86–90.

[39] Hall M, Hasegawa Y, Yoshimura F, et al. Structural and functional characterization of shaft, anchor, and tip proteins of the Mfa1 fimbria from the periodontal pathogen Porphyromonas gingivalis. Sci Rep. 2018;8:1793.

[40] Yoshimura F, Takahashi Y, Hibi E, et al. Proteins with molecular masses of 50 and 80 kilodaltons encoded by genes downstream from the fimbrin gene (fimA) are components associated with fimbriae in the oral anaerobe Porphyromonas gingivalis. Infect Immun. 1993;61:5181–5189.

[41] Nishiyama S, Murakami Y, Nagata H, et al. Involvement of minor components associated with the FimA fimbrins of Porphyromonas gingivalis in adhesions. Microbiology. 2007;153:1916–1925.

[42] Nagano K, Hasegawa Y, Abiko Y, et al. Porphyromonas gingivalis FimA fimbriae: fimbral assembly by fimA alone in the fim gene cluster and differential antigenicity among fimA genotypes. PLoS One. 2012;7:e43722.

[43] Nishikawa K, Duncan MJ. Histidine kinase-mediated production and autoassembly of Porphyromonas gingivalis fimbriae. J Bacteriol. 2010;192:1975–1987.

[44] Nagano K, Hasegawa Y, Murakami Y, et al. FimB regulates FimA fimbrination in Porphyromonas gingivalis. J Dent Res. 2010;89:903–908.

[45] Hasegawa Y, Iwami J, Sato K, et al. Anchoring and length regulation of Porphyromonas gingivalis Mfa1 fimbriae by the downstream gene product Mfa2. Microbiology. 2009;155:3333–3347.

[46] Frandsen EV, Poulsen K, Curtis MA, et al. Evidence of recombination in Porphyromonas gingivalis and random distribution of putative virulence markers. Infect Immun. 2001;69:4479–4485.

[47] Tribble GD, Kerr JE, Wang BY. Genetic diversity in the oral pathogen Porphyromonas gingivalis: molecular mechanisms and biological consequences. Future Microbiol. 2013;8:607–620.

[48] Dashper SG, Mitchell HL, Seers CA, et al. Porphyromonas gingivalis uses specific domain rearrangements and allelic exchange to generate diversity in surface virulence factors. Front Microbiol. 2017;8:48.

[49] Tribble GD, Lamont GJ, Progulske-Fox A, et al. Conjugal transfer of chromosomal DNA contributes to genetic variation in the oral pathogen Porphyromonas gingivalis. J Bacteriol. 2007;189:6382–6388.

[50] Naito M, Sato K, Shoji M, et al. Characterization of the Porphyromonas gingivalis conjugative transposon CTnPg1: determination of the integration site and the genes essential for conjugal transfer. Microbiology. 2011;157:2022–2032.

[51] Tribble GD, Rigney TW, Dao DH, et al. Natural competence is a major mechanism for horizontal DNA transfer in the oral pathogen Porphyromonas gingivalis. MBio. 2012;3:e00231–11.

[52] Marraffini LA, Sontheimer EJ. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet. 2010;11:181–190.