TeV dark matter and the DAMPE electron excess

Xuewen Liu* and Zuwei Liu†

School of Physics, Nanjing University, Nanjing, 210093, China

The recent high energy electron and positron flux observed by the DAMPE experiment indicates possible excess events near 1.4 TeV. Such an excess may be evidence of dark matter annihilations or decays in a dark matter subhalo that is located close to the solar system. We give here an analysis of this excess from annihilations of Dirac fermion dark matter which is charged under a new $U(1)_{X}$ gauge symmetry. The interactions between dark matter and the standard model particles are mediated the $U(1)_{X}$ gauge boson. We show that dark matter annihilations from a local subhalo can explain the excess with the canonical thermal annihilation cross section. We further discuss the constraints from the relic density, from the dark matter direct detection, from the dark matter indirect detection, from the cosmic microwave background, and from the particle colliders.

1. INTRODUCTION

Recently, evidence for excess electron and positron events near 1.4 TeV has been reported by the DAMPE experiment [1]. Such an excess was not found previously by the AMS-02 [2–4] and by the Fermi-LAT [5]. In the recent paper by the CALET experiment [6], the electron and positron events in the two energy bins near 1 TeV also appear higher than expected. Due to the better energy resolution of the DAMPE experiment ($\sim 1\%$ for 1 TeV electrons and positrons) than AMS-02, Fermi-LAT, and CALET, the TeV electron and positron flux can be measured with better accuracy by the DAMPE experiment than measured previously by other experiments. In the DAMPE data, the electron and positron excess events occur only in one energy bin near 1.4 TeV. The localized feature in the energy spectrum of the excess events hints a nearby source of the high energy electrons and positrons. Inspired by this excess, studies with dark matter (DM) explanation [7–9] and with astrophysical explanation [10, 11] have been carried out. In this paper, we study the possibility of attributing the excess of the TeV electrons and positrons to the DM annihilations in the vicinity of the solar system.

2. THE MODEL

We consider a $U(1)_{X}$ extension of the standard model (SM) with X_{μ} as the new gauge boson, and χ as the Dirac DM particles which is charged under the $U(1)_{X}$ gauge symmetry. The new Lagrangian terms are

$$\mathcal{L} = \frac{1}{4} X_{\mu \nu} X^{\mu \nu} - \frac{1}{2} M_{X}^{2} X_{\mu} X^{\mu} + X_{\mu} J^{\mu},$$

where X_{μ} is the new gauge boson, $X_{\mu \nu}$ is the field strength, M_{X} is the X boson mass. The X boson is assumed to couple to the DM fermions and to the Dirac DM in the vector current form, $J_{\mu} = g_{f} \gamma_{\mu} f + g_{\chi} \chi \gamma_{\mu} \chi$.

In this paper, we consider three scenarios: (1) DM annihilates into $e^{+}e^{-}$ only via an s-channel exchange of the X_{μ} boson (assuming only $g_{e} \neq 0$); (2) DM annihilates into all SM final states universally via the s-channel X_{μ} boson; (3) DM annihilates into a pair of on-shell X bosons which subsequently decay into SM fermions.

The annihilation cross section for the $\chi \chi \to X \to \bar{f} f$ process is given by

$$\sigma v = \frac{N_{f} g_{\chi}^{2} g_{f}^{2}}{6\pi} \frac{s + 2m_{\chi}^{2}}{(s - M_{X}^{2})^{2} + M_{X}^{2} \Gamma_{X}^{2}}$$

where $N_{f} = 1(3)$ for leptons (quarks), Γ_{X} is the total decay width of the X boson, and we have neglected the mass of the final state SM particle. The partial decay width of the X boson is $\Gamma(X \to \bar{f} f) = N_{f} g_{f}^{2} M_{X}/(12\pi)$. If the DM annihilation occurs away from the X resonance and the X boson has a narrow decay width, i.e., $\Gamma_{X} \ll M_{X}$, one has $\sigma v \simeq N_{f} g_{\chi}^{2} g_{f}^{2}/(m_{\chi}^{2} \pi(x^{2} - 4)^{2})$ where $x = M_{X}/m_{\chi}$. For the case in which the X boson only couples to leptons, in order to obtain the desired 1 pb annihilation cross section, one has $\sqrt{|g_{e} g_{\chi}|} \simeq 0.37 \sqrt{x^{2} - 4}$ where $x = M_{X}/(1.5 \text{ TeV})$, if the DM annihilation occurs away from the X resonance.

3. COSMIC RAY PROPAGATION

The propagation of the electrons and positrons can be described by the following diffusion equation

$$\partial_{t} f - \partial_{E}(b(E)f) - D(E) \nabla^{2} f = Q$$

where $f = dN/(dE dV)$ is the electron energy spectrum, $b(E) = -dE/dt$ is the energy loss coefficient, $D(E)$ is the diffusion coefficient, and $Q = Q(x, E, t)$ is the source term. We take $b(E) = b_{0}(E/GeV)^{\delta}$ with $b_{0} = 10^{-16}$ GeV/s and $D(E) = D_{0}(E/GeV)^{\delta}$. The diffusion coefficient $D(E)$ depends on the height $2L$ in the z direction of the cylindrical diffusion zone which is usually assumed for the Milky Way galaxy. We adopt the medium case in Ref. [12] such that $L = 4$ kpc, $D_{0} = 11$ pc2/kyr, and $\delta = 0.7$. For the steady-state case, the Green function of
the diffusion equation is given by [13–15]

\[G(x, E; x_s, E_s) = \frac{\exp \left[- \frac{(x - x_s)^2}{\lambda^2} \right]}{b(E) (\pi \lambda^2)^{3/2}}, \]

(4)

where \(\lambda \) is the propagation scale which is given by

\[\lambda^2 = 4 \int_{E_s}^{E} dE' \frac{D(E')}{b(E')}. \]

(5)

By using the Green function, the general solution to the diffusion equation can be computed via

\[f(x, E) = \int d^3 x_s \int dE_s G(x, E; x_s, E_s) Q(x_s, E_s). \]

(6)

For DM annihilations, the source function of electrons and positrons is given by

\[Q(x, E) = \frac{1}{4} \frac{\rho^2(x)}{m_\chi} \langle \sigma v \rangle \frac{dN}{dE}, \]

(7)

where \(\rho(x) \) is the DM mass density, \(m_\chi \) is the DM mass, \(\langle \sigma v \rangle \) is the velocity-averaged annihilation cross section, \(dN/dE \) is the energy spectrum of electrons and positrons per annihilation, and the 1/4 factor is due to the Dirac nature of the DM (1/2 for Majorana DM). The electron and positron flux per unit energy from DM annihilations is given by \(\Phi(x, E) = u f(x, E)/(4\pi) \) where \(u \) is the electron velocity; the unit of the flux is \(1/(\text{GeV} \cdot \text{cm}^2 \cdot \text{s} \cdot \text{sr}) \) [12].

4. ELECTRON FLUX FROM A LOCAL SUBHALO

We consider an ultra-faint DM subhalo which is located \(\lesssim 1 \text{ kpc} \) away from us. We assume a NFW density profile [16] for the subhalo

\[\rho(r) = \rho_s \frac{(r/r_s)^{-\gamma}}{(1 + r/r_s)^{3-\gamma}}. \]

(8)

The distance between the subhalo and us is denoted as \(d_s \) which is taken to be in the range (0.1-1) kpc. In the following we consider two different sets of parameters \((\gamma, \rho_s, r_s, d_s) = (1, 1, 1, 1) \) (denoted as SHA) and \((0.5, 100, 0.1, 0.3) \) (denoted as SHB) where \(\rho_s \) is in GeV/cm\(^3\), and \(r_s \) and \(d_s \) are in kpc [17–19].

If two DM particles with 1.5 TeV mass annihilate in the subhalo via \(\chi \chi \rightarrow e^+e^- \) only with \(\langle \sigma v \rangle = 3 \times 10^{-26} \text{ cm}^3/\text{s} \), the electron flux at \(E = 1.4 \text{ TeV} \) is \(E^3 \Psi_{\text{exp}} = 0.2(47) \text{ GeV}^2/(\text{m}^2 \cdot \text{s} \cdot \text{sr}) \) for the SHA (SHB) case. Thus, in order to produce the right amount of electrons and positrons observed by the DAMPE experiment, we will adopt the SHB assumption throughout the paper.

5. COSMIC RAY BACKGROUND

To understand the cosmic ray (CR) background is essential for astrophysical observations. To know the background predictions precisely in the measurement of the satellite experiments is the major challenge of the current DM indirect search experiments. Usually the CR background can be modelled via the broken power-law forms. We adopt the parameterization formulas as in Ref. [20] where the background electron and positrons consists of three components: the primary electrons from the DM sources, \(\phi_{\text{primary}} \), the secondary positrons/electrons originating from interactions between the primary CR and the interstellar medium, \(\phi_{\text{secondary}} \), and the extra source, for example pulsars or DM, \(\phi_{\text{source}} \). For the primary electrons, the flux is parameterized as \(\phi_{\text{primary}} = CE^{-\alpha}/(1 + (E/E_0)^\beta) \); the secondary positron flux takes the same formula as the primary electron but with different coefficients. The extra sources contains an exponential cut-off scale \(E_c \), which takes the form \(\phi_{\text{source}} = CE^{-\gamma} \exp(-E/E_c) \). The total flux for positrons is given by \(\phi_{\text{e}} = \phi_{\text{primary}} + \phi_{\text{source}} \), and the total flux for electrons is given by \(\phi_e = \phi_{\text{primary}} + 0.6 \phi_{\text{secondary}} + \phi_{\text{source}} \) [20]. In our analysis, we used the electron plus positron flux measured in DAMPE to fit the various coefficients. The best fit model is given as follows: for the primary electrons, \(C = 16.67 \text{ GeV}^2 \text{ m}^{-2} \text{ s}^{-1} \text{ sr}^{-1} \) \(\alpha = 1.20, \beta = 2.10, E_0 = 4.98 \text{ GeV} \); for the secondary electron/positron flux, \(C = 0.80 \text{ GeV}^2 \text{ m}^{-2} \text{ s}^{-1} \text{ sr}^{-1} \), \(\alpha = 0.76, \beta = 2.51, E_0 = 1.40 \text{ GeV} \); for the additional source, \(C = 0.99 \text{ GeV}^2 \text{ m}^{-2} \text{ s}^{-1} \text{ sr}^{-1} \), \(\gamma = 2.32, E_c = 686.75 \text{ GeV} \).

6. DAMPE DATA FITTING

We use \(\Psi_B + \Psi_\chi \) to fit the DAMPE data, where \(\Psi_B \) is the CR background, and \(\Psi_\chi \) is the DM contribution from both the Milky Way (MW) halo and the nearby subhalo. We carry out a \(\chi^2 \) analysis

\[\chi^2 = \sum_i \left(\frac{E_i^3 \Phi_i^{\text{th}} - E_i^3 \Phi_i^{\text{exp}}}{\delta_i^2} \right)^2, \]

(9)

where \(\Phi_i^{\text{th}} = \Psi_B + \Psi_\chi \) is the predicted spectrum of electron plus positron, \(\Phi_i^{\text{exp}} \) is the experiment data observed by the DAMPE experiment, and \(\delta_i \) is the uncertainties reported by the DAMPE experiment. For the DM signal, we use PPPC4DM ID [21, 22] to generate the energy spectrum for the source function.

Fig. (1) shows the DMAP data and the various contributions to the electron flux. Here we analyze the \(\chi \chi \rightarrow X \rightarrow e^+e^- \) annihilation channel only, and a delta function energy spectrum \(dN/dE = 2\delta(E - m_\chi) \) is employed for the injection source. The DM annihilation cross section is taken to be \(\langle \sigma v \rangle = 3 \times 10^{-26} \text{ cm}^3/\text{s} \) and mass \(m_\chi = 1.5 \text{ TeV} \). As shown in Fig. (1), the DAMPE excess events are well fitted with the hard spectrum from a
local DM subhalo if DM pair-annihilates into e^-e^+. For comparison, we also calculate the electron and positron flux from DM annihilations in the MW halo, which, however, is two order of magnitude smaller and exhibits a rather flat spectrum over a much larger energy range.

In Fig. (2), we overlay signals from different DM models with the 14 high energy bins in the DAMPE data. Instead of using the global fitting background used in Fig. (1), a simple power law (PL) background $CE^{-\gamma}$ is employed for the TeV electrons. The best fit PL has $C = 2.4 \times 10^4 \text{ GeV}^2 \text{ m}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$ and $\gamma = 0.78$ and the minimum $\chi^2 = 20.4$. We consider three different annihilation modes: (A) $\chi\chi \rightarrow X \rightarrow e^+e^-$, (B) $\chi\chi \rightarrow XX \rightarrow 2e^+2e^-$, (C) $\chi\chi \rightarrow X \rightarrow f\bar{f}$. In the case A and the case B, the X boson couples only electrons; in the case C, the X boson couples to all SM fermions with universal couplings.

For different DM annihilation channels, we employ $\Phi_B + FP\Phi_\chi$ to fit the 14 high energy data points, where $\Phi_B = CE^{-\gamma}$, Φ_χ is the flux corresponding to the canonical thermal cross section $\sigma v = 3 \times 10^{-26} \text{ cm}^3/\text{s}$, F is an overall floating parameter. The DM mass is fixed at 1.5 TeV for case A and C, 3 TeV for case B. For case A, we find $C = 4.7 \times 10^4 \text{ GeV}^2 \text{ m}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$, $\gamma = 0.89$ and $F = 1.03$, with the minimum $\chi^2 = 9.0$ which is improved by $\Delta \chi^2 = 11.4$ from the background-only PL fitting. In the case B, $\chi\chi \rightarrow XX \rightarrow 2e^+2e^-$, the energy spectrum of electron and positron is a box-shaped distribution [23–28] which depends on the mass gap $\Delta m = m_\chi - M_X$ which should be small to explain the sharp energy spectrum in the DAMPE data. We take $\Delta m = 2 \text{ GeV}$ and $F = 0.4$ which has $\chi^2 = 15.3$ ($\Delta \chi^2 = 5.1$). In the case C, $\chi\chi \rightarrow X \rightarrow f\bar{f}$, we used PPH4DMID to compute the energy spectrum. In our model, the branching ratio $BR = 1/24(1/8)$ for each lepton (quark) final state. We find that $\chi^2 = 9.4$ ($\Delta \chi^2 = 11$) for $F = 24$. The flux in the case C overlaps with case A, indicating that the electron channel is the dominant mode.

7. COLLIDER CONSTRAINTS

If the X boson couples to both quarks and leptons, one can also search for the resonance in the dilepton signal at the LHC. ATLAS collaboration also used the four-fermion contact interaction Lagrangian to interpret the most recent LHC results on dilepton signals [29]

$$\mathcal{L} = \frac{4\pi}{\Lambda^2} \eta_{ij}(\bar{q}_i\gamma^\mu q_j)(\bar{f}_j\gamma^\mu f_j),$$

(10)

where $i,j = L,R$ for different chiral interactions, and $\eta_{ij} = \pm$ denotes constructive and destructive interferences with the DM processes. In our model, $\Lambda = \sqrt{4\pi M_X/|g_\eta g_\ell|}$. The most stringent 95% C.L. lower limit on Λ analyzed using the recent ATLAS data [29] comes from the $\ell\ell$ final state for the LL chiral interaction in the constructive case, $\Lambda > 40$ TeV, which gives rise to a constraint $\sqrt{|g_\eta g_\ell|} < 0.09(M_X/\text{TeV})$.

The LEPII experiment also constrain the new physics models via the contact interaction operators, in which the constraint is expressed in terms of lower bound on the new physics scale Λ. The LEPII group finds that $\Lambda_{VV} > 15.9$ TeV in the $e^-e^+ \rightarrow e^-e^+$ process at 95 % C.L. [30] [31]. The theoretical value of Λ_{VV} predicted in our model is $\Lambda_{VV} = \sqrt{\pi M_X/g_\ell}$; thus the constraints on the electron coupling is given $g_e \lesssim 0.11(M_X/\text{TeV})$.

Figure 1: The DAMPE electron data and the DM signals via $\chi\chi \rightarrow e^+e^-$. The black line represents the fitted background; the red line is the contribution from a local DM subhalo; The dashed gray line is contribution from the Milky Way halo. $m_\chi = 1.5 \text{ TeV}$ and $\langle \sigma v \rangle = 3 \times 10^{-26} \text{ cm}^3/\text{s}$.

Figure 2: The 14 high energy bins in the DAMPE data and contributions from various DM models. The background is given by a simple power law $CE^{-\gamma}$ with $C = 2.4 (4.7) \times 10^4 \text{ GeV}^2 \text{ m}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$ and $\gamma = 0.78 (0.89)$, for the background (background plus signal) fitting. The red solid, magenta dash-dotted and green dashed lines correspond to the DM contributions from the processes $\chi\chi \rightarrow X \rightarrow e^+e^-$, $\chi\chi \rightarrow XX \rightarrow 2e^+2e^-$, and $\chi\chi \rightarrow X \rightarrow f\bar{f}$ respectively. The annihilation cross section is $\langle \sigma v \rangle = 3 \times 10^{-26} \text{ cm}^3/\text{s}$, and the DM mass is taken to be 1.5 TeV for e^+e^- and $f\bar{f}$ cases, 3 TeV for the $4e$ case. To generate the observed electron excess, an overall factor of 24 (0.4) is multiplied for the $f\bar{f}$ (4e) channel.
8. DM DIRECT DETECTION CONSTRAINTS

PandaX experiment [32] provides the best constraints to DM-proton spin-independent (SI) cross section for the 1.5 TeV DM, $\sigma_{\chi p}^{SI} \lesssim 1.7 \times 10^{-45} \text{ cm}^2$. The theoretical prediction of the SI DM-proton cross section in our model is $\sigma_{\chi p} = \mu_{\chi p}^2 g_e^2 g_p/(\pi M_X^4)$ where $g_p = 2g_u + g_d$. The above SI cross section upper limit provides a constraint on the coupling $\sqrt{|g_p g_e|} \lesssim 6 \times 10^{-2}(M_X/\text{TeV})$.

If the X boson only couples to the SM electrons, we need consider the DM direct detection limits due to electron recoils. Ref. [33] analyzed the Xenon10 and Xenon100 results to constrain the interaction cross section between DM and electron; for the 1.5 TeV DM, the upper bound on the cross section between DM and the free electron is $\sigma_{\chi e} < 3 \times 10^{-38} \text{ cm}^2$. The theoretical prediction of the DM-electron cross section in our model is $\sigma_{\chi e} = \mu_{\chi e}^2 g_X^2 g_e^2/(\pi M_X^4)$ [33]. Thus the upper bound on the couplings is $\sqrt{|g_X g_e|} \lesssim 1.8 \times 10^2(M_X/\text{TeV})$.

To interpret the direct limit, we only assume the DM contribution from the MW halo. Although the DM density from the subhalo can be significant, its contribution to the DM direct detection signal is offset by the smaller velocity dispersion in the subhalo and the lack of the relative motion with respect to Earth, since the subhalo is also assumed to rotate around the Galactic Center.

9. DM INDIRECT DETECTION CONSTRAINTS

For the 1.5 TeV DM annihilating into two SM particles, H.E.S.S. data [34] constrain the annihilation cross sections: $\langle \sigma v \rangle < 2(6) \times 10^{-26} \text{ cm}^3/s$ for the $\tau^+\tau^-$ (W^+W^-) channel, which is based on 10 years of the inner 300 pc of the Galactic Center region assuming the Einasto profile. This provides a very strong constraint on the case where the X boson couple universally to all SM fermions.

For the pair-annihilation case, $\chi\chi \rightarrow XX$, the most stringent constraint comes from the H.E.S.S. data [35] [34], which is stronger than the limits from the Fermi-LAT data in the direction of the dwarf spheroidal galaxies [36] and from the Planck CMB data which is sensitive to energy injection to the CMB from DM annihilations [37] [38]. The H.E.S.S. limit in the $\chi\chi \rightarrow 4\ell$ channel is $\langle \sigma v \rangle < 6(20) \times 10^{-25} \text{ cm}^3/s$ in the $m_\chi \sim M_X$ ($m_\chi \gg M_X$) case, for the 3 TeV DM. The required DM annihilation cross section for the DAMPE excess in the 4ℓ case is consistent with the above H.E.S.S. constraint.

The IceCube experiment [39] sets an upper bound on the annihilation cross section for various SM channels by analyzing the neutrino signal $\langle \sigma v \rangle < O(1) \times 10^{-22} \text{ cm}^3/s$, which is much larger than the annihilation cross section needed for the DAMPE excess.

10. PARAMETER SPACE

For the electrophilic case in which the X boson only couples to the electrons, to satisfy the LEPII and direct detection constraints, we select a benchmark model point as follows $(\delta m,g_\chi,g_\ell) = (10 \text{ GeV}, 10^{-3}, 1)$. The DM annihilation at the halo is $\sigma v \approx 30 \text{ pb}$; the DM annihilation at $v = 1/4$ (the typical temperature for DM thermal freeze-out) is $\sigma v \approx 0.3 \text{ pb}$ which is smaller than 1 pb. However, since the annihilation cross section depends on the velocity of the DM, one has to take into account the thermal average at the freeze-out. Such an enhancement of the halo annihilation was studied previously in the context of PAMELA positron excess [40–42]. Fig. (3) shows the relic density line and the ATLAS and PandaX constraints for the universal X case near the resonance region. The benchmark model point is consistent with all constraints as shown in Fig. (3). The universal case is in tension with the H.E.S.S. constraint for the $\tau^+\tau^-$ channel with an Einasto profile. However, for a different DM profile, the tension with the H.E.S.S. constraint could be alleviated.

For the case where DM annihilates into a pair of on-shell X bosons, since the coupling between the X boson and the SM particles can be significantly small, the only relevant constraint comes from the indirect detection limits. In our case, the most stringent constraint comes from the H.E.S.S. data, which, however, is one order of magnitude higher than the thermal annihilation cross section. In order to produce a narrow energy spectrum for the injection source function in this case, the mass difference between the DM and the X boson has to be very small, which compress the phase space of the DM annihilation.

![Figure 3: Constraints on the parameter space ($\delta m, g_\chi$) for the $g_\ell = 1$ case. The blue, red lines correspond to the ATLAS and PandaX upper bounds; the black line indicates the parameter space that can generate the correct DM relic density.](image-url)
so that $\sigma v(\chi \chi \to X X)$ is very small for perturbative g_X coupling. Thus one has to be in the non-perturbative region of the parameter space to generate a large annihilation cross section and a narrow energy spectrum for this scenario.

11. CONCLUSIONS

We have proposed a simple dark matter model to explain the high energy electron excess events recently observed by the DAMPE experiment. The morphology of the energy spectrum of the excess events hints a local source for the high energy electrons. We investigated the possibility of the DM annihilations in a local subhalo which is 0.3 kpc away from us to generate such an excess. Three scenarios in the model were investigated. The case where DM only annihilates into e^+e^- provides a good fitting to the excess while satisfying the various constraints. In the case where the X boson couples universally with all SM fermions, DM has to annihilate near the X boson resonance to generate a much larger annihilation cross section to explain the excess. In the case where DM annihilates into on-shell X bosons, in order to produce the sharp excess in the energy spectrum, the mass gap between the DM and the X boson has to be in the GeV range.

Acknowledgments. We thank Lei Feng, Yue-Lin Sming Tsai, Qiang Yuan, Cun Zhang for helpful correspondence or discussions. The work is supported in part by the Nanjing University Grant 14902303 and by the China Postdoctoral Science Foundation under Grant No. BX201700116.

[1] G. Ambrosi et al. [DAMPE Collaboration], doi:10.1038/nature24475 arXiv:1711.10981 [astro-ph.HE].
[2] L. Accardo et al. [AMS Collaboration], Phys. Rev. Lett. 113, 121101 (2014).
[3] M. Aguilar et al. [AMS Collaboration], Phys. Rev. Lett. 113, 121102 (2014).
[4] M. Aguilar et al. [AMS Collaboration], Phys. Rev. Lett. 113, 221102 (2014).
[5] S. Abdollahi et al. [Fermi-LAT Collaboration], Phys. Rev. D 95, no. 8, 082007 (2017) [arXiv:1704.07195 [astro-ph.HE]].
[6] O. Adriani et al. (CALET Collaboration) Phys. Rev. Lett. 119, 181101 (2017).
[7] Y. Z. Fan, W. C. Huang, M. Spinrath, Y. L. S. Tsai and Q. Yuan, arXiv:1711.10995 [hep-ph].
[8] P. H. Gu and X. G. He, arXiv:1711.11000 [hep-ph].
[9] G. H. Duan, L. Feng, F. Wang, L. Wu, J. M. Yang and R. Zheng, arXiv:1711.11012 [hep-ph].
[10] Q. Yuan et al., arXiv:1711.10989 [astro-ph.HE].
[11] K. Fang, X. J. Bi and P. F. Yin, arXiv:1711.10996 [astro-ph.HE].
[12] M. Cirelli, R. Franceschini and A. Strumia, Nucl. Phys. B 800, 204 (2008) doi:10.1016/j.nuclphysb.2008.03.013 [arXiv:0802.3378 [hep-ph]].
[13] V. L. Ginzburg and S. I. Syrovatskii, The Origin of Cosmic Rays. Pergamon, Oxford, 1964.
[14] M. Kuhlen and D. Malyshev, Phys. Rev. D 79, 123517 (2009) doi:10.1103/PhysRevD.79.123517 [arXiv:0904.3378 [hep-ph]].
[15] T. Delahaye, J. Lavalle, R. Lineros, F. Donato and N. Forrêengo, Astron. Astrophys. 524, A51 (2010) doi:10.1051/0004-6361/201014225 [arXiv:1002.1910 [astro-ph.HE]].
[16] J. F. Navarro, C. S. Frenk and S. D. M. White, Astrophys. J. 490, 493 (1997) [astro-ph/9611107].
[17] J. Choquette, arXiv:1705.09676 [astro-ph.CO].
[18] M. G. Walker, M. Mateo and E. Olszewski, Astron. J. 137, 3100 (2009) doi:10.1088/0004-6256/137/2/3100 [arXiv:0811.0118 [astro-ph]].
[19] J. D. Simon and M. Geha, Astrophys. J. 670, 313 (2007) doi:10.1086/521816 [arXiv:0706.0516 [astro-ph]].
[20] X. Huang, Y. L. S. Tsai and Q. Yuan, Comput. Phys. Commun. 213, 252 (2017) [arXiv:1603.07119 [hep-ph]].
[21] M. Cirelli et al., JCAP 1103, 051 (2011) Erratum: [JCAP 1210, E01 (2012)] [arXiv:1012.4515 [hep-ph]].
[22] P. Ciafaloni, D. Comelli, A. Riotto, F. Sala, A. Strumia and A. Urbano, JCAP 1103, 019 (2011) [arXiv:1009.0224 [hep-ph]].
[23] A. Ibarra, S. Lopez Gehler and M. Pato, JCAP 1207, 043 (2012) doi:10.1088/1475-7516/2012/07/043 [arXiv:1205.0007 [hep-ph]].
[24] J. Mardon, Y. Nomura, D. Stolarski and J. Thaler, JCAP 0905, 016 (2009) doi:10.1088/1475-7516/2009/05/016 [arXiv:0901.2926 [hep-ph]].
[25] M. Abdullah, A. DiFranzo, A. Rajaraman, T. M. P. Tait, P. Tanedo and A. M. Wijangco, Phys. Rev. D 90, 035004 (2014) doi:10.1103/PhysRevD.90.035004 [arXiv:1404.6528 [hep-ph]].
[26] J. M. Cline, G. Dupuis, Z. Liu and W. Xue, JHEP 1408, 131 (2014) doi:10.1007/JHEP08(2014)131 [arXiv:1405.7691 [hep-ph]].
[27] P. Agrawal, B. Batell, P. J. Fox and R. Harnik, JCAP 1505, 011 (2015) doi:10.1088/1475-7516/2015/05/011 [arXiv:1411.2592 [hep-ph]].
[28] J. M. Cline, G. Dupuis, Z. Liu and W. Xue, Phys. Rev. D 91, no. 11, 115010 (2015) doi:10.1103/PhysRevD.91.115010 [arXiv:1503.08213 [hep-ph]].
[29] M. Aaboud et al. [ATLAS Collaboration], JHEP 1710, 182 (2017) doi:10.1007/JHEP10(2017)182 [arXiv:1707.02424 [hep-ex]].
[30] t. S. Electroweak [LEP and ALEPH and DELPHI and L3 and OPAL Collaborations and LEP Electroweak Working Group and SLD Electroweak Group and SLD Heavy Flavor Group], hep-ex/0312023.
[31] S. Schael et al. [ALEPH Collaboration], Eur. Phys. J. C 49, 411 (2007) doi:10.1140/epjc/s10052-006-0156-8 [hep-ex/0609051].
[32] X. Cui et al. [PandaX-II Collaboration], Phys. Rev. Lett. 119, no. 18, 181302 (2017) doi:10.1103/PhysRevLett.119.181302 [arXiv:1708.06917]
[33] R. Essig, T. Volansky and T. T. Yu, Phys. Rev. D 96, no. 4, 043017 (2017) doi:10.1103/PhysRevD.96.043017 [arXiv:1703.00910 [hep-ph]].

[34] H. Abdallah et al. [H.E.S.S. Collaboration], Phys. Rev. Lett. 117, no. 11, 111301 (2016) doi:10.1103/PhysRevLett.117.111301 [arXiv:1607.08142 [astro-ph.HE]].

[35] S. Profumo, F. S. Queiroz, J. Silk and C. Siqueira, arXiv:1711.03133 [hep-ph].

[36] M. Ackermann et al. [Fermi-LAT Collaboration], Phys. Rev. Lett. 115, no. 23, 231301 (2015) doi:10.1103/PhysRevLett.115.231301 [arXiv:1503.02641 [astro-ph.HE]].

[37] T. R. Slatyer, Phys. Rev. D 93, no. 2, 023527 (2016) doi:10.1103/PhysRevD.93.023527 [arXiv:1506.03811 [hep-ph]].

[38] T. R. Slatyer, Phys. Rev. D 93, no. 2, 023521 (2016) doi:10.1103/PhysRevD.93.023521 [arXiv:1506.03812 [astro-ph.CO]].

[39] M. G. Aartsen et al. [IceCube Collaboration], Eur. Phys. J. C 77, no. 9, 627 (2017) doi:10.1140/epjc/s10052-017-5213-y [arXiv:1705.08103 [hep-ex]].

[40] D. Feldman, Z. Liu and P. Nath, Phys. Rev. D 79, 063509 (2009) doi:10.1103/PhysRevD.79.063509 [arXiv:0810.5762 [hep-ph]].

[41] M. Ibe, H. Murayama and T. T. Yanagida, Phys. Rev. D 79, 095009 (2009) doi:10.1103/PhysRevD.79.095009 [arXiv:0812.0072 [hep-ph]].

[42] W. L. Guo and Y. L. Wu, Phys. Rev. D 79, 055012 (2009) doi:10.1103/PhysRevD.79.055012 [arXiv:0901.1450 [hep-ph]].