Meningioma is the most common intracranial tumor, and its prognosis is typically favorable. However, patients of malignant meningioma (WHO grade III) most often experience recurrence, undergo multiple surgical treatments, and have poor prognosis. No effective therapy for malignant meningioma has been established yet. We recently reported an efficacy of eribulin (Haraverin®) for glioblastoma. Eribulin is considered to target TERT, which is frequently mutated in its promoter. Since TERT promoter mutation is also found in malignant meningioma, this study aims at investigating the anti-tumor effect of eribulin against TERT promoter-mutation-harboring human malignant meningioma cell lines in vitro and in vivo.

Two meningioma cell lines IOMM-Lee and HKBMM were used in this study. In the viability assay and the flow cytometry, eribulin strongly inhibited cell proliferation by cell cycle arrest. Apoptotic cell death in malignant meningioma cell lines was confirmed by vital dye assay and immunoblotting. Moreover, wound healing assay revealed the suppression of tumor cell migration after eribulin exposure. To assess the effect of eribulin in vivo, orthotopic xenograft mouse models of both malignant meningioma cell lines were constructed. The intraperitoneal administration of eribulin significantly prolonged the survival of meningioma cell lines implanted in the brain (p<0.0001). Furthermore, apoptosis was histologically observed in brain tumor tissue by immunohistochemistry.

Thus, this study suggests that eribulin is a potential therapeutic agent for treating malignant meningioma.

IMMUNOLOGY (IM)

IM-03

CD206 EXPRESSION IN PERIPHERAL BLOOD-DERIVED INDUCED-MICROGLIA-LIKE CELLS AS A SURROGATE BIOMARKER FOR THE SPECIFIC IMMUNE MICROENVIRONMENT OF GLIOMA

Nobuhiro Hata1, Shunya Tataka1, Masahiro Ogihara2, Shogo Inamine3, Noritaki Sagara4, Nobukata Mukai5, Ryusuke Hatae1, Yuhei Sangatsuda1, Takahiro Kato1, Masahiro Mizoguchi1, Toshiki Seki1, The Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan

INTRODUCTION: As recent advancement of multimodal treatments including immune-check point inhibitors have not led to massive outcome improvement of glioma. Targeting the peculiar immune microenvironment of glioma is a promising approach to innovate a breakthrough treatment, however, there remains to be technical and ethical burdens for monitoring the bioactivities of immune cells in neural tissues. Herein, we examined the feasibility of non-invasive monitoring of glioma-associated microglia/macrophages (GAM) properties through utilization of our originally developed induced-microglia-like (iMG) cells technique. METHODS: We isolated primary microglia (pMG) from surgically-obtained brain tissues of 15 patients with neurosurgical diseases. We induced MG cells from monocytic cell cultures from their corresponding peripheral blood by MACS treatment. Expression profiles of representative markers for an M1 and M2 microglia phenotype were analyzed in both pMG and iMG cells by qPCR. RESULTS: q-PCR revealed that a significant correlation of expression level of microglial markers between pMG and the corresponding iMG in each patient. Synchronous upregulations of CD206 were exclusively detected in pMG and iMG cells in each patient. Synchronous upregulations of CD206 were exclusively detected in pMG and iMG cells in each patient. CONCLUSION: The present study suggested that iMG cells can be a less-invasive monitor tool for disease-related bioactivity of microglia, thereby seem to be utilized as an intermediate for investi-
gation of relationship between microglia and neuronal diseases including glioma. CD206 upregulation detected by iMG technique can surrogate the specific microenvironment of glioma surrounding tissues and might be utilized as a future biomarker of glioma.
Masahiro Mizoguchi1, Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan

INTRODUCTION: There exist controversies on recurrence and aggressiveness after use of first-line bevacizumab (BEV) which has been approved in Japan and proved to be beneficial. Therefore, we analyzed the clinical impact of BEV approval by investigating the overall clinical course and glioblastoma (GBM) relapse pattern.

METHODS: We included 100 patients with IDH-wildtype GBM between September 2006 and February 2018 from our institution. They were subdivided into pre-BEV (n=51) and post-BEV (n=49) groups. Overall, progression-free, deterioration-free, and post-progression survivals (OS, PFS, DFS, and PPS, respectively) were compared. We analyzed the relapse pattern of 72 patients, whose radiographic progressions were confirmed.

RESULTS: Significant improvements in DFS (median DFS in the pre-BEV and post-BEV era were 8.5 and 13.8 months, P=0.0046), and PFS (7.5 and 9.9 months, P=0.0153) after BEV approval were observed. These survival prolongations were strongly correlated (r: 0.91, P<0.0001). Non-enhancing tumor emerged as a novel recurrence pattern in the post-BEV era (five of 33; 15.2%). Changes in relapse pattern did not significantly impact OS, DFS, and PFS. No significant difference in PPS between pre-BEV and post-BEV eras was observed (6.7 and 5.5 months, P=0.2319). The rate of early (within 6 months) focal recurrence was significantly lower (P=0.0155) in the post-BEV era (four of 33; 12.1%) than in the pre-BEV era (18 of 39; 46.2%). A significant decrease in early focal recurrence after BEV approval was observed exclusively in patients with unresectable tumors (P=0.0110). Treatment era was the only parameter significantly correlated with decreased early focal recurrence rate (P=0.0021, univariate analysis; P=0.0144, multivariate analysis).

CONCLUSIONS: We found that, first-line BEV in Japan for unresectable tumors has had a positive impact on the prevention of early progression and clinical deterioration of GBM without accelerating the clinical course after recurrence.

ACT-03 CLINICAL OUTCOME AND RADIOLOGICAL FINDINGS OF PATIENTS WITH RECURRENT GIOBLASTOMAS TREATED BY BEVACIZUMAB
Hajime Handa1, Ichiyo Shihabara1, Takuchiro Hude1, Toshiohiro Kumabe1, 1Department of Neurosurgery, Kitasato University School of Medicine, Japan

OBJECT: Seven years have passed since the approval of bevacizumab (BEV) in Japan. We retrospectively reviewed the clinical outcome and radiological findings of patients with recurrent glioblastomas (GB) treated by BEV.

METHOD: We reviewed 116 patients, including 27 cases of newly diagnosed GB and 89 cases of recurrent GB, treated by BEV during the study period between 2013 June and 2019 September. Cumulatively, 116 patients received 1672 cycles of BEV. Among those, we focused on 74 patients with newly diagnosed GB treated by BEV at recurrence to examine clinical characteristics, outcome, and radiological findings of T2-circumscribed or double-positive tumors. A dramatic response (Kanamaru et al., Acta Neuropathol Commun, 2019). All specific gene mutations such as BRAF V600E and TP53, young (pediatric) age (mean 45.2 years), and 5 men and 4 women were studied. Pathological diagnosis was epithelioid glioblastoma (GBM), giant cell GBM, anaplastic ependymoma, anaplastic meningioma, anaplastic large cell lymphoma, meningioma, choroid plexus carcinoma, and pineoblastoma. CANCERPLEXR was performed 7 times and F1 panel 4 times and the reasons included confirmation specific gene mutations such as BRAF V600E and TP53, young (pediatric) age and patient request. In one patient, by analyzing primary and recurrent insulatory hits, we were able to assess genetic hits involved in malignant transformation. Actionable targets were found in 4 (44%) of cases, and action was taken in only 1 epithelioid GBM patient with BRAF V600E mutation, albeit with dramatic response (Kanamaru et al., Acta Neuropathol Commun, 2019). All tumors were microsatellite stable. CONCLUSIONS: We are able to withstand tumor biology in rare brain tumors using 2 genome panels. We need to increase the percentage of patients actually treated. I will also like to touch briefly on how use genome panels for translational research on brain tumors.

ACT-07 CLINICAL TRIALS OF 11C-METHIONINE PET FOR BRAIN TUMORS
Shigeru Yamaguchi1, Tohru Shiga1, Kenji Hirata2, Shunsuke Terasaka3, Hiroyuki Kobayashi4, Eku Shimosegawa1, Naoya Kagawa1, Ryuichi Hirayama1, Manabu Kinoshita2, Haruhiko Kijima4, Masazumi Fujii1, Masahiro Ichikawa1, Noboru Oriuchi1, Yoji Kuge1, Nagara Tamaki1, 1Department of Neurosurgery, Faculty of Medicine, Hokkaido University, Sapporo, Japan

BACKGROUND: Although 11C-Methionine (MET) PET has widely used, 11C-MET tracer has not been approved in Japan. We conducted multi-center prospective clinical trials using MET for drug approval in diagnosis of brain tumors[Methods] Two trials using 11C-MET PET were performed in Hokkaido University, Osaka University and Fukushima Medical University: 1) Diagnostic accuracy in differentiating tumor recurrence from radiation injury after radiotherapy in brain tumors, 2) The diagnostic efficacy in newly-diagnosed gliomas. 1) The patients with suspected brain tumor recurred or underwent MET at 2-18 months post-bevacizumab (BEV) treatment. MET PET was performed on the target lesion showed MET and/or FDG uptake, the patients underwent target resection for pathological confirmation. Positive prediction values of each tracer uptake were assessed as primary outcome measure, and the sensitivities and specificities of each PET exams were also assessed. 2) The patients with suspected gliomas underwent MET PET. Tissue samples were performed from MET uptake lesions without contrast-enhancement on MRI in each patient, and evaluated the existence of tumor cells. Diagnostic additional value of MET PET on contrast-enhanced MRI was also investigated. Safety of MET PET was also assessed in each trial.[Result] 1) 57 cases were investigated. 38 cases underwent surgery and 32 cases (84%) were confirmed tumor recurrence histopathologically. MET and FDG uptake was in 32 recurrence cases were 100% and 50%, respectively. Sensitivities and specificities of tumor recurrence were 84% and 95% in MET, and 100% and 56% in FDG. 2) 53 glioma cases were enrolled. Viable tumor cells were proven in 98% in MET uptake lesion without contrast-enhancement. In 42 out of 53 cases (78%), MET PET depicted tumor area beyond the contrast-enhancement area on MRI. No severe adverse events were observed in both trials. [Conclusions] MET PET were effective in diagnosis of brain tumors, and safety of MET was demonstrated.

ACT-17 PROTOCOL DESIGN OF A MATRIX-TYPE OF NOVEL CLINICAL TRIAL FOR LOWER-GRADE GLIOMAS
Takashi Kijima1, Taichi Satoh1, Takashi Maruyama2, Takashi Komori1, Takazuku Kawamoto2, Faculty of Advanced Technology, Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University

BACKGROUND: Two cancer genome panels were approved for use in Japan in 2019, and their application in brain tumors are awaited. We have used CANCERPLEX and FoundationOne CDx (F1) panels for the realization of precision-based medicine in brain tumors. Patients and METHODS: From August 2017 to present, we have applied cancer genome panels in 11 times to tumors in 9 patients. We assessed patient data including age, sex, pathology, reason for using them, and the genetic marker name.

The concept of Lower-grade glioma including G2/3 is spreading. On the other hand, WHO grade is the criteria of clinical trials, and evidence is established for G2 with low risk and high risk, G3 alone or with G4. In Japan, JOCG 1303 and 1016 have been implemented for high-risk G2 and G3, respectively and will be finished next year. Therefore, we examined the feasibility and design of novel clinical trial for patients with grade 2/3 glioma.

INTRODUCTION: Differentiation between glioma grade 2 and 3 was performed based on histological findings. The current grade is an important prognostic factor due to its widespread use, economic efficiency, and data accumulation, but analog elements remain and the genetic marker is unknown. The concept of Lower-grade glioma including G2/3 is spreading. On the other hand, WHO grade is the criteria of clinical trials, and evidence is established for G2 with low risk and high risk, G3 alone or with G4. In Japan, JOCG 1303 and 1016 have been implemented for high-risk G2 and G3, respectively and will be finished next year. Therefore, we examined the feasibility and design of novel clinical trial for patients with grade 2/3 glioma.