Local and bulk 13C hyperpolarization in nitrogen-vacancy-centred diamonds at variable fields and orientations

Gonzalo A. Álvarez1,*, Christian O. Bretschneider1,*, Ran Fischer2,*, Paz London2, Hisao Kanda3, Shinobu Onoda4, Junichi Isoya5, David Gershoni2 & Lucio Frydman1

Polarizing nuclear spins is of fundamental importance in biology, chemistry and physics. Methods for hyperpolarizing 13C nuclei from free electrons in bulk usually demand operation at cryogenic temperatures. Room temperature approaches targeting diamonds with nitrogen-vacancy centres could alleviate this need; however, hitherto proposed strategies lack generality as they demand stringent conditions on the strength and/or alignment of the magnetic field. We report here an approach for achieving efficient electron-13C spin-alignment transfers, compatible with a broad range of magnetic field strengths and field orientations with respect to the diamond crystal. This versatility results from combining coherent microwave- and incoherent laser-induced transitions between selected energy states of the coupled electron-nuclear spin manifold. 13C-detected nuclear magnetic resonance experiments demonstrate that this hyperpolarization can be transferred via first-shell or via distant 13Cs throughout the nuclear bulk ensemble. This method opens new perspectives for applications of diamond nitrogen-vacancy centres in nuclear magnetic resonance, and in quantum information processing.

1 Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel. 2 Department of Physics, Technion, Israel Institute of Technology, Haifa 32000, Israel. 3 National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. 4 Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan. 5 Research Center for Knowledge Communities, University of Tsukuba, 1-2 Kasuga, Tsukuba, Ibaraki 305-8550, Japan. * These authors contributed equally to this work. Correspondence and requests for materials should be addressed to L.F. (email: Lucio.Frydman@weizmann.ac.il).
Nuclear spins are central actors in nuclear magnetic-resonance (NMR) spectroscopy and imaging (MRI), providing important information at the molecular, micro- and mesoscopic levels for a wide variety of physical, chemical and biological processes. Owing to their long relaxation times, nuclear spins are also promising vehicles for storing and manipulating quantum information, making them useful resources for potential quantum devices that extend the limits of classical computers. Many of these uses derive from the weakness of nuclear spin interactions, making NMR methods remarkably noninvasive but also the observation of NMR signals challenging and characterized by intrinsically low signal-to-noise ratios. Dynamic nuclear polarization can bypass these limitations by transferring spin polarization from electrons to nuclei; for this process to be even more efficient cryogenic temperature operations are usually required, leading to nuclear polarization enhancements encompassing several orders of magnitude. Electronic spins in nitrogen-vacancy (NV) centres are also promising alternatives for polarizing nuclear spins at room-temperature conditions. Hitherto proposed electron-to-nuclear polarization transfer methods, however, have so far demanded finely tuned energy-matching conditions, both in terms of field strength and of its orientation with respect to the diamond crystal to perform efficiently. These prerequisites pose an obstacle for utilizing these methods in generic applications, including the use of diamond powders as tracers in biological MRI injection studies, or as sources to hyperpolarize nuclei including the use of diamond powders as tracers in biological processes. This achievement of steady-state 13C polarization is here demonstrated over a range of magnetic field strengths and orientations as well as of electron–nuclear hyperfine (HF) interaction imposed by the spin-1 nature of the NV centre. This selective MW addressing is combined with the incoherent spin repopulation effects introduced by the optical pumping process to produce an imbalance between the populations of the coupled nuclear spins. This achievement of steady-state 13C polarization is here demonstrated over a range of magnetic field strengths and orientations as well as of electron–nuclear HF interactions, both in optical studies of single NV centres and in shuttled NMR measurements of bulk samples. Moreover, by exploiting the versatility of this new approach, light is shed on the role played by HF-imposed spin–diffusion barriers in the achievement of bulk nuclear spin hyperpolarization.

Results

The MW-driven-relaxation-aided polarization transfer scheme. Figure 1a defines the relevant system and active interactions that will be used to introduce our polarization transfer proposal. The system involves a single NV $S=1$ spin exhibiting a ground-state zero-field splitting $D_0 = 2.87$ GHz. This electronic spin is coupled to nearby or distant 13C nuclear spins ($I=1/2$) through HF interactions and can be optically pumped to populate the electronic $m_s=0$ level. The application of a weak static magnetic field ($\gamma B_0 \ll D_0$) induces an additional splitting of the electronic/nuclear states, leading to the energy-level diagram in Fig. 1b. Our scenario assumes a selective MW irradiation that solely addresses the electron $|0\rangle \leftrightarrow |−1\rangle$ spin transitions, allowing one to treat the system as a four-level manifold (Fig. 1b). The nuclear spin components of the eigenstates associated with $m_{1s}=0$ ($|β_i\rangle$ and $|β_i\rangle$) and $m_{1s}=−1$ ($|x_1\rangle$ and $|x_1\rangle$) have different quantization axes because of the asymmetry imposed by a HF interaction that is absent if the electron state is $m_s=0$ and present if $m_s=−1$. As further discussed in Methods and Supplementary Note 1, the corresponding eigenenergies exhibit splittings $δ$ and $Δ$ for the 0 and $−1$ manifolds, respectively. Notice that this asymmetry is due to the $S=1$ nature of the NV centre, and not due to particular details of couplings within the sample. These differences in level splitting and in quantization axes among nuclear spins that are initially unpolarized are here exploited to hyperpolarize them.

Different polarization transfer routes can be activated by irradiating this HF-coupled system. We discriminate these depending on the relative MW field strength $Ω$ vis-a-vis the energy splittings $δ$ and $Δ$, determining which eigenstates will participate in the dynamics. In the selective $Ω \ll Δ$ regime (Fig. 1c), the MW-induced transitions involve solely two directly addressed eigenstates. Therefore, the population of a third, non-addressed state associated with the $m_s=0$ manifold grows systematically as driven by the laser-induced relaxation processes. This generates an imbalance between the $|0, β\rangle$ and $|0, β\rangle$ populations, equivalent to a nuclear polarization whose direction is defined by the $m_s=0$ eigenstate manifold. As the MW power increases, a $Δ$-regime where transitions are induced among three eigenstates is reached (Fig. 1c). We describe this $δ\lesssim Ω \ll Δ$ regime in a basis set $\{0, x_1, s, |0, x_1, −1, z_1\}$; here $|0, x_1\rangle$ is a dark state for the MW in the sense that $0 = 0$, and $|0, x_1\rangle$ is a bright state $0 = 1/\sqrt{2}$ that is addressed by the MW. Owing to the different HF properties associated with $m_s=0$ and $m_s=−1$ and $|0, z_1\rangle$ and $|0, z_1\rangle$ are not, and therefore they oscillate at an effective nuclear Larmor frequency $Ω$. As further detailed in Methods and in Supplementary Note 1, this precession takes place around an effective field defined by the quantization axis of the $|0, β\rangle$ states. This field is given by the nuclear Zeeman axis if the non-secular terms of the HF coupling can be disregarded; if this is not possible, a second-order perturbation approach can be used to account for the Hamiltonian determining the effective precession field (see Supplementary Figs 1–4). The combined action of this nuclear precession, the MW irradiation and the laser-driven relaxation results in a redistribution of the initial populations over the three-level system, biasing the bright nuclear-state population, over its dark counterpart. For the example in Fig. 1c, a net nuclear magnetization pointing along the $|x_1\rangle$ quantization axis, defined at weak fields by the spin’s HF coupling to $m_s=−1$, is then obtained. Finally, as the MW power is further increased, a broadband regime where the electron state is flipped without regards to the nuclear spin state is reached; in such an instance no nuclear polarization enrichment is predicted.

Nuclear hyperpolarization in the vicinity of the NV centre. To demonstrate these features, the local 13C polarization achieved via this HF-mediated polarization transfer was probed by optically detected magnetic resonance experiments on a single NV centre coupled to a first-shell 13C nuclear spin, characterized by a strong HF coupling $Δ \approx 130$ MHz. The 13C polarization was measured on a crystal lattice rotated on purpose away from the external magnetic field by arbitrary Azimuthal and polar angles. The electron spin state was initialized to the $m_s=0$ state by laser light and simultaneously irradiated with MWs for 30 μs. The eigenstate populations were then optically measured by monitoring the fluorescence emitted by the NV electronic transitions, as a function of the MW frequency $ω$ over a range covering the various transition frequencies (Fig. 2; see Methods, Supplementary Notes 2–4 and Supplementary Figs 5–8 for...
Figure 1 | MW-driven \(^{13}\text{C} \) polarization derived from optically pumped nitrogen-vacancy centres. (a) Spin-1 NV electronic defect strongly coupled to a \(^{13}\text{C} \) nucleus (black circle), irradiated simultaneously by MW (orange lightning bolt) and laser fields (green beam). The optically pumped NV-spin (green sphere) transfers its polarization to the coupled nucleus (dark blue sphere) and eventually to the remaining \(^{13}\text{C} \) (the bulk) by interactions within a dipolar spin network (light blue spheres). The red spheres are unpolarized nuclei. (b) Energy-level diagram of the electron defect, hyperfine coupled to a \(^{13}\text{C} \) in presence of a potential magnetic field \(B_0 \) (without MW fields). The dashed box shows the energy levels addressed, and stresses an initial state containing equal populations on the lower \(|0, \beta_{\text{i}}\rangle \), \(|0, \beta_{\text{j}}\rangle \) eigenstates after optical pumping. (c) Spin dynamical regimes determined by the relation between the MW power and the energy splittings. The solid black lines only represent the eigenstates \(|0, \beta_{\text{i}}\rangle \), \(|0, \beta_{\text{j}}\rangle \), \(-1, x_{\text{i}}\rangle \) and \(-1, x_{\text{j}}\rangle \) of the system in the selective regime; in the remaining cases these lines represent states \(|0, x_{\text{i}}\rangle \), \(|0, x_{\text{j}}\rangle \), \(-1, x_{\text{i}}\rangle \) and \(-1, x_{\text{j}}\rangle \) that are relevant for the MW selection rules, but where \(|0, x_{\text{i}}\rangle \) and \(|0, x_{\text{j}}\rangle \) are linear superpositions of the eigenstates \(|0, \beta_{\text{i}}\rangle \) and \(|0, \beta_{\text{j}}\rangle \). Blue vertical arrows represent the MW excitation on resonance with the transition \(|0, \beta_{\text{i}}\rangle \leftrightarrow |1, x_{\text{i}}\rangle \); circular green arrows represent an effective Larmor precession with frequency \(\delta \), while curly red arrows represent a laser-induced relaxation-like process conserving the nuclear spin state but driving the incoherent \(-1, x_{\text{i}}\rangle \rightarrow |0, x_{\text{i}}\rangle \) optical pumping. The filled and coloured circles schematize the populations of each state resulting from these dynamics. Although not explicitly shown in these energy-level diagrams, the electronic and nuclear spins involved in these manifolds are also coupled by dipole–dipole interactions to the \(^{13}\text{C} \) ensemble via a spin-coupling network, enabling further polarization transfers to the bulk (a).

Bulk hyperpolarization at variable fields and orientations. The polarized NV centre is embedded in a network of dipole–dipole-interacting nuclear spins, allowing an eventual propagation of the hyperpolarization throughout the nuclear bulk ensemble (Fig. 1a). Achieving an effective \(^{13}\text{C} \) polarization enhancement throughout an entire diamond could have important practical NMR and MRI consequences as the source of polarization for samples in contact with the diamond, as well as for tracing purposes. Consequently, we investigated whether distant \(^{13}\text{C} \) spins can benefit from the polarization transfer mechanisms observed in Fig. 2 at a local level. The bulk macroscopic \(^{13}\text{C} \) magnetization was directly measured by mechanically shuttling the diamond from low fields, where MW and laser fields were applied to accomplish the electron–nuclear polarization transfer, into a 4.7-T magnet enabling bulk \(^{13}\text{C} \) NMR detection (Fig. 3a,b). Figure 3c presents results arising from a typical experiment, showing the dependence of the ensemble \(^{13}\text{C} \) magnetization on the MW frequency \(\omega \). For consistency, measurements were carried out with the polarizing \(B_0 \) field...
aligned along one of the NV centre orientations, meaning that the remaining three orientations of the crystal form an angle of $\approx 109^\circ$ away from the field direction. The nuclear polarization spectrum (Fig. 3c) shows two regions of enhancement, corresponding to the aligned and non-aligned orientations of the NV defects. Both regions show similar patterns of multiple positive and negative peaks, corresponding to different HF couplings and MW-induced transitions. Both 13C patterns contain major central peaks, and minor outer peaks detuned by ≈ 60 MHz from their centres. The central peaks correspond to bulk 13C nuclei being hyperpolarized via $\lesssim 20$-MHz HF interactions, that is, via 13C spins positioned at or beyond the NV’s second shell27,28. The outer peaks also correspond to bulk 13C polarization, but arriving this time via first-shell 13Cs whose HF splitting is ≈ 130 MHz (refs 26,29). In this instance, the bulk 13C magnetization exhibits a sign-flip pattern characteristic of the selective regime, akin to the local 13C polarization pattern shown in Fig. 2c, although these are bulk 13C resonances detected on the whole diamond, and not single-spin measurements. This demonstrates that 13C ensemble hyperpolarization can be derived via either nuclear–nuclear dipole couplings involving distant spins to the electron, or via first-shell 13C spins. The latter is a remarkable fact, given that in this case the build-up of bulk polarization needs to overcome the >60-MHz detuning characterizing the first-shell sites acting as polarization transfer bridgehead. The timescales that are then needed to achieve a bulk polarization build-up, ~ 30 s, are orders of magnitude longer than the first-shell electron-13C polarization transfer time ($<\text{ms}$, see Supplementary Note 4 and Supplementary Fig. 7). This difference in timescales explains how a low-concentration, highly detuned species such as the first-shell 13C suffices to polarize the bulk sample examined by the NMR experiments (see Supplementary Note 5 for a rough estimation of the number of polarized 13C). Figure 4 further demonstrates the versatility of the method to yield bulk nuclear hyperpolarization, as evidenced by the achievement of enhanced 13C NMR signals over a broad range of polarizing magnetic fields and of MW powers. Notice that the nuclear polarization reveals a systematic increase as a function of B_0 (Fig. 4a), as well as a clear optimum for the MW power (Fig. 4b) consistent with a transition from a selective regime in which the polarization grows with MW power to a Λ-regime in which it decreases with the MW power (see inset and Supplementary Note 4). Interference effects between a hyperpolarization driven by an excited-state level anticrossing$^{13-15}$ and the MW-induced transfer scheme introduced here are seen at fields of ≈ 50 mT. In contrast to the MW-induced transfer, the anticrossing-based technique requires that the electron/nuclear Zeeman energy detuning conditions be smaller than the dominant HF interaction. The relatively narrow range of magnetic field values compatible with this transfer scheme is thus in contrast to the MW-induced transfer processes, where matching requirements are relaxed as the MW frequency can be tuned to an array of electronic–nuclear frequency transitions (for example, Fig. 4a).

Discussion

A versatile method for hyperpolarizing nuclear spin ensembles at room temperature using NV centres in diamond was proposed...
Figure 3 | Acquiring ensemble 13C polarization spectra for varying NV orientations with respect to \(B_0 \). (a) Opto-NMR set-up and (b) detection sequence used in these experiments. During the polarization transfer phase, the entire single-crystal diamond is irradiated with laser light and MW underneath the NMR magnet at a low \(B_0 \). The hyperpolarized diamond is then shuttled (in <1 s) into a 4.7-T superconducting magnet to directly detect its macroscopic 13C magnetization via a spin-echo sequence. The low \(B_0 \) magnetic field is aligned to one of the nitrogen-vacancy-centre orientations (in red), while the other three orientations (in blue) subtend an angle of \(\approx 109^\circ \) with respect to the field. (c) Typical 13C polarization enhancement patterns observed by NMR as a function of the MW frequency \(\omega \) with signals normalized with respect to the thermal 13C response at 4.7 T (inset). The left part of the plot corresponds to the nuclear polarization generated by \(|m_z = 0 \rangle \rightarrow |m_z = -1 \rangle \) MW transitions for the aligned orientation (red circles), while the right part corresponds to nuclear polarization enhanced via the three non-aligned, equivalent orientations (blue circles). The \(\approx 1:3 \) intensity ratio reflects the relative abundances of aligned and non-aligned sites in the diamond’s tetrahedral structure. In each of the patterns, the central peaks represent bulk nuclear hyperpolarization pumped via 13C spins coupled with hyperfine interactions lower than 20 MHz, while the outer peaks originate from first-shell 13Cs whose hyperfine splitting is \(\approx 130 \) MHz (refs 26,29). The antiphase structure of each of these peaks corresponds to the MW transitions \(|0, \beta_z \rangle \rightarrow | -1, x_1 \rangle \) and \(|0, \beta_z \rangle \rightarrow | -1, x_1 \rangle \) at one side of the central peaks, and to the \(| -1, x_1 \rangle \) state at the other side. The inset shows NMR spectra obtained for a thermally polarized sample, and at the maxima of the central peaks for the aligned and non-aligned orientations. p.p.m. refers to parts-per-million of the high-field NMR 13C resonance frequency, which in our case is 50.5 MHz.

and demonstrated. The method relies on the combined action of continuous laser light and MW irradiation, and exploits the asymmetries of the HF interaction imparted by the spin-1 nature of the NV centre. This allows us to transfer spin order from the electronic \(m_s = 0 \) state to the nuclei, by exploiting the evolution triggered on selectively irradiating \(|0 \rangle \leftrightarrow | \pm 1 \rangle \) transitions. Nuclear spin hyperpolarization is thus obtained for a broad range of magnetic field strengths and arbitrary field orientations with respect to the diamond lattice, as well as for a wide range of HF interactions. These principles may facilitate a number of applications. One entails facilitating the use of pre-polarized diamonds in NMR experiments owing to the ease with which NV electrons can be optically pumped by comparison with cryogenic-based high-field counterparts. This easing of the hyperpolarization conditions should also facilitate the use of these samples in multiscan acquisition of the kind desirable in \textit{in vivo} MRI scans. Our scheme provides an approach for optically detected nanoscale NMR/MRI of polarized nuclear spin ensembles that complements methods based on spin noise thermal fluctuations.33,32–35. The fact that the method works for different orientation and strengths of the magnetic field can be exploited for polarizing diamond powders, leading to an alternative route to NMR measurements that complements the ones based on thermal polarization. Further studies on the basis of frequency sweeps are in progress to evaluate the efficiency of the nuclear spin polarization process in powders at higher fields. Alternatively, approaching a zero magnetic field might be advantageous, since all orientations would then become nearly equivalent and addressable in a simultaneous manner. In addition to potential NMR/MRI uses, this method could be useful for dissipative nuclear-state preparation in ensemble quantum memories, for quantum information processing.36–39. Hyperpolarizing nuclear spin ensembles in solid-state systems also provides a tool to study condensed matter and many-body physics phenomena of cold bodies, where quantum effects (for example, quantum phase transitions) are more sharply manifested.40–43. The concepts here used might also find applicability in other kinds of cross-polarization scenarios,
where the 13C polarization grows with MW power within the selective ESLAC region polarization transfer was observed, deriving from the guide to the eye. Within the shaded excited-state level anticrossing D mechanism proceeded with opposing signs. Within this region, the blue proposed MW-induced transfer scheme. These two nuclear polarization couplings. This provides a new tool for understanding the targeting first-shell nuclear spins strongly shifted by HF throughout the bulk ensemble by spin-diffusion—even when was shown that nuclear hyperpolarization can be extended other spins.

Methods

Single-crystal sample. For the single NV detection experiments the sample used was a commercially available, untreated, type IIa, electronic-grade natural abundance 13C diamond crystal (dimension: $2 \times 2 \times 0.3 \text{ mm}^3$). For the NMR experiments, an isotopically enriched (10% 13C) type Ib high-pressure, high-temperature diamond was used. The enriched crystal was grown by the temperature gradient method at a temperature of 1,700 K from Ni-2 wt% Ti solvent using a powder mixed of 13C-enriched and natural abundance graphic carbon. These samples were irradiated at room temperature (2 MeV, 10 h, total fluence $8 \times 10^{17} \text{ cm}^{-2}$) and annealed (2 h, 1,000°C). Subsequent examination using confocal laser microscopy confirmed that the two most abundant paramagnetic impurities consisted of electrically neutral single substitutional nitrogen atoms (P_1), and charged nitrogen atoms next to a lattice vacancy forming an optically active centre (NV$^-$). The concentrations of these impurities were both <5 p.p.m. (part-per-million). In both samples, we estimate a T_2^* \approx 5 ms for the NV electron spin in the electronic ground state. Whereas single NV centre experiments on natural abundance 13C samples revealed a T_2^* \approx 2.5 ms (ref. 48), for the 13C-enriched crystal we estimate using optically detected magnetic resonance (ODMR) a $T_2^* \approx$ 12 ns for the NV centre in the ground state at the polarizing fields. For the single NV centre experiments, a T_2^* \approx 20 ms was measured for the nuclear spin. In the 13C-enriched diamond crystal, bulk 113C T_1 relaxation times ranged from 5 to 20 s depending on the magnetic field strength at the polarizing fields (1–100 mT). At the detection field $B_0 = 4.7$ T used in the 13C bulk studies, T_1 relaxation was \approx 10 min and $T_2^* \approx$ 160 \pm 50 ms.

System Hamiltonian. At room temperature, the NV centre energy-level structure exhibits an electronic triplet as the ground state (3A_2-3E). The quantum Hamiltonian of a single NV defect (S) and one 13C nucleus (I) can thus be described as $H = D_0 S_z^2 + 3I_z B - g_I B \cdot S + B \cdot I \cdot A \cdot S$. Here $D_0 = 2.87$ GHz is the zero-field splitting term g_I and g_I the electronic and nuclear magnetic ratios, B is the magnetic field vector and A a HF tensor that depends on the specific NV and nearby 13C spin49. For simplicity, we consider first a magnetic field B aligned with the axis of the zero-field tensor D_0 and the secular approximation $[D_0 \pm |g_I B_0| \gg A_{uv}]$. The Hamiltonian simplifies to $H = D_0 S_z^2 + \gamma_I S_z g_I B_0 + \gamma_I B_0 S \cdot I + A_{uv} S \cdot I$, where the axis x was chosen such that $A_{uv} = 0$. The feature enabling the magnetization transfers illustrated in Fig. 1 is that in the $m_z = 0$ manifold the eigenstates have a nuclear component $|\beta_1, |I\rangle$ and $|\beta_2, |I\rangle$ exhibiting a nuclear Zeeman splitting $\delta = \gamma_B B_0$, whereas in the $m_z = -1$ manifold the $|\alpha_1, |I\rangle$ and $|\alpha_2, |I\rangle$ nuclear eigenstates of the components are quantized on a different axis determined by the HF tensor for weak magnetic fields ($\gamma_B B_0 \ll A_{uv}$). For the $|\beta_1, |I\rangle$ states the eigenstate splitting δ may also depend on non-secular corrections of the HF coupling, which may also lead to an effective tilt of the nuclear spin quantization away from the magnetic field B (see Supplementary Figs 1 and 2). By contrast, the $|\alpha_1, |I\rangle$ states are not significantly modified by non-secular HF terms if $|D_0| \ll \gamma_B B_0 \gg A_{uv}$ and the non-secular condition far from the level anticrossings$^{13–15}$ (we do not consider here the more complicated scenario when the level anticrossing conditions are fulfilled, see Supplementary Fig. 2 for further details). If the magnetic field is not aligned with the D_0 tensor, the level structure discussed in Fig. 1 remains even if the definitions of $|\beta_1, |I\rangle$ and $|\beta_2, |I\rangle$ will change25; the crucial characteristic is that they will still have different quantization axes and different eigenstate splittings δ and Δ (see Supplementary Figs 3 and 4). For more details on the eigenstates, energy splittings and the participation of them on the polarization dynamics please refer to Supplementary Note 1.

Single NV optical set-up. The single NV detection was conducted on a home-built confocal microscope. Continuous wave green laser light ($\lambda = 532$ nm) was coupled into a single mode optical fibre and focused on the diamond sample by an oil-immersion microscope objective (Olympus, numerical aperture = 1.35). The objective was placed on a three-axis piezo stage (Npoint) enabling a scan range of the x, y, z axes of $250 \times 250 \times 25 \mu m$ with a resolution of $\approx 1 \text{ nm}$. The emerging red fluorescence signal was focused into a single-photon counting module (Perkin-Elmer, dark count rate 100 counts s$^{-1}$). To induce transitions within the ground-state triplet during the polarization and detection sequences, MW fields were produced by two copper wires attached to the diamond (diameter $\approx 50 \mu m$). During the hyperpolarization process, the laser intensity was reduced to \approx 5% of its saturation back to avoid light-induced nuclear-state depopulation12,50 (see Supplementary Note 4 and Supplementary Fig. 8).

Populations and polarization in single NV centre experiments. The eigenstates of the populations were obtained by performing a series of complementary measurements involving selective MW irradiation on eigenstate-specific transition frequencies, followed by an optical readout of the NV centre populations (see Supplementary Note 2 and Supplementary Fig. 1 for further details). With the help of the experiments and a linear system of equations, the populations of the three active eigenstates ($0, |\beta_1, |I\rangle$ and $|1, |I\rangle$) could be reconstructed. To perform these calculations, the fluorescence levels at the end of the different polarization sequences were measured, and properly normalized by executing the schemes with and without MW irradiation (Supplementary Fig. 6). In the selective regime, the MW Rabi frequency $\Omega = 1.4$ MHz was lower than the HF splitting with the 14N nuclear spin (2.16 MHz)31. Therefore, to address the latter’s three nuclear spin
orientations simultaneously, the MW source was further modulated to create the three corresponding frequencies spaced by 2.16 MHz (see Supplementary Note 3). The curves in Fig. 2 were acquired consecutively. The observed NMR signal consists of a single optically enhanced 13C nuclear spin qubit in diamond. 11. King, J. P., Coles, P. J. & Reimer, J. A. Optical polarization of 13C nuclei in diamond through nitrogen vacancy centers. Phys. Rev. B 81, 073201 (2010).

12. Dutt, M. V. G. et al. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316, 1312–1316 (2007).

13. Jacques, V. et al. Dynamic polarization of single nuclear spins by optical pumping of nitrogen-vacancy color centers in diamond at room temperature. Phys. Rev. Lett. 102, 057403 (2009).

14. Fischer, R. et al. Bulk nuclear polarization enhanced at room temperature by optical pumping. Phys. Rev. Lett. 114, 057601 (2015).

15. Wang, H.-J. et al. Sensitive magnetic control of ensemble nuclear spin hyperpolarization in diamond. Nat. Commun. 4, 1940 (2013).

16. Larouzi, A. & Meriles, C. A. Approach to dark spin cooling in a diamond nanocrystal. ACS Nano 7, 3403–3410 (2013).

17. Pagliero, D., Larouzi, A., Henshaw, J. D. & Meriles, C. A. Recursive polarization of nuclear spins in diamond at arbitrary magnetic fields. Appl. Phys. Lett. 105, 242402 (2014).

18. King, J. P. et al. Room-temperature in situ nuclear spin hyperpolarization from optically-pumped nitrogen vacancy centers in diamond. Preprint at http://arxiv.org/abs/1501.02897 (2015).

19. Chen, Q., Schwartz, L. S., Noko, F., Retzkj, A. & Pleinbo, M. B. Optical hyperpolarization of 13C nuclear spins in nanodiamond ensembles. Preprint at http://arxiv.org/abs/1504.02368 (2015).

20. Krueger, A. New carbon materials: biological applications of functionalized nanodiamond materials. Chem. Eur. J. 14, 1382–1390 (2008).

21. McGuinness, L. P. et al. Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nat. Nanotechnol. 6, 358–363 (2011).

22. Kucskó, G. et al. Nanometer-scale thermometer in a living cell. Nature 500, 54–58 (2013).

23. Abrams, D., Trusheim, M. E., Englund, D. R., Shattuck, M. D. & Meriles, C. A. Dynamic nuclear spin polarization of liquids and gases in contact with nanostructured diamond. Nano Lett. 14, 2471–2478 (2014).

24. Erez, N., Gordon, G., Nesi, M. & Kurizki, G. Thermodynamic control by frequent quantum measurements. Nature 452, 724–727 (2008).

25. Álvarez, G. A., Rao, D. D. B., Frydman, L. & Kurizki, G. Zeno and anti-zeno polarization control of spin ensembles by induced dephasing. Phys. Rev. Lett. 105, 160401 (2010).

26. Felton, S. et al. Hyperfine interaction in the ground state of the negatively charged nitrogen vacancy center in diamond. Phys. Rev. B 79, 075203 (2009).

27. Smeltzer, B., Childress, L. & Gali, A. 13C hyperfine interactions in the nitrogen-vacancy centre in diamond. New J. Phys. 13, 025021 (2011).

28. Dreaù, A., Maze, J.-R., Lesik, M., Roch, J.-F. & Jacques, V. High-resolution spectroscopy of single NV defects coupled with nearby 13C nuclear spins in diamond. Phys. Rev. B 85, 134107 (2012).

29. Shim, J. H. et al. Characterization of hyperfine interaction between single electron and single nuclear spins in diamond assisted by quantum beat from the nuclear spin. Preprint at http://arxiv.org/abs/1307.0257 (2013).

30. Gruber, A. et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276, 2012–2014 (1997).

31. Jenko, F., Gaebel, T., Popa, I., Gruber, A. & Wrachtrup, J. Observation of coherent oscillations in a single electron spin. Phys. Rev. Lett. 92, 076401 (2004).

32. Mamin, H. J. et al. Nanoscale nuclear magnetic resonance with a nitrogen-vacancy spin sensor. Science 339, 557–560 (2013).

33. Staudacher, T. et al. Nuclear magnetic resonance spectroscopy on a (5- nanometer) volume sample. Science 339, 561–563 (2013).

34. Loretz, M., Pezzagna, S., Meijer, J. & Degen, C. L. Nanoscale nuclear magnetic resonance with a 1.9-nm-deep nitrogen-vacancy sensor. Appl. Phys. Lett. 104, 033102 (2014).

35. Sushkov, A. O. et al. Magnetic resonance detection of individual proton spins using quantum reporters. Phys. Rev. Lett. 113, 197601 (2014).

36. Plenio, M., Huelga, S., Beige, A. & Knight, P. Cavity loss induced generation of entangled light from white noise. Phys. Rev. Lett. 88, 241304 (2002).

37. Plenio, M. & Huelga, S. Entangled light from white noise. Phys. Rev. Lett. 88, 241304 (2002).

38. Verstraete, F., Wolf, M. M. & Ignacio Cirac, J. Quantum computation and quantum-state engineering driven by dissipation. Nat. Phys. 5, 633–636 (2009).

39. Jin, Y. et al. Duitive production of a maximally entangled steady state of two-qubit bits. Nature 504, 415–418 (2013).

40. Ronnow, H. M. et al. Quantum phase transition of a magnet in a spin bath. Science 308, 389–392 (2005).

41. Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

42. Burrell, E. et al. Magnetic dipole ordering and quantum phase transition in an Fe9 molecular magnet. Phys. Rev. Lett. 107, 097203 (2011).

43. Kraemer, C. et al. Dipolar antiferromagnetism and quantum criticality in LiErF4. Science 336, 1416–1419 (2012).
44. Álvarez, G. A. & Suter, D. NMR quantum simulation of localization effects induced by decoherence. Phys. Rev. Lett. 104, 230403 (2010).
45. Richerme, P. et al. Non-local propagation of correlations in quantum systems with long-range interactions. Nature 511, 198–201 (2014).
46. Jurcevic, P. et al. Quasiparticle engineering and entanglement propagation in a quantum many-body system. Nature 511, 202–205 (2014).
47. Álvarez, G. A., Suter, D. & Kaiser, R. Localization-delocalization transition in the dynamics of dipolar-coupled nuclear spins. Science 349, 846–848 (2015).
48. Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater. 8, 383–387 (2009).
49. Slichter, C. Principles of Magnetic Resonance (Springer, 1996).
50. Jiang, L. et al. Coherence of an optically illuminated single nuclear spin qubit. Phys. Rev. Lett. 100, 073001 (2008).
51. Steiner, M., Neumann, P., Beck, J., Jelezko, F. & Wrachtrup, J. Universal enhancement of the optical readout fidelity of single electron spins at nitrogen-vacancy centers in diamond. Phys. Rev. B 81, 035205 (2010).
52. Fuchs, G. D., Falk, A. L., Dobrovitski, V. V. & Awschalom, D. D. Spin coherence during optical excitation of a single nitrogen-vacancy center in diamond. Phys. Rev. Lett. 108, 157602 (2012).

Acknowledgements
We thank Shimon Vega, Gershon Kurizki and Analia Zwick for stimulating discussions. We thank Fedor Jelezko and his group for guiding in constructing the single NV-centre confocal microscope, and for obtaining the type Ia sample. This work was supported by the DIP Project 710907, ERC Advanced Grant # 246754, the Kimmel Institute for Magnetic Resonance, IMOD, the Israel Science Foundation Grant 1142/13, the generosity of the Perlman Family Foundation, JST and JSPS KAKENHI (No.26246001). G.A.A. acknowledges the support of the European Commission under the Marie Curie Intra-European Fellowship for career Development Grant No. PIEF-GA-2012-328605.

Author contributions
G.A.A., R.F. and L.F. conceived the polarization transfer scheme. G.A.A., C.O.B., R.F., P.L. and L.F. designed the experimental approaches. P.L. and R.F. implemented and performed the single-spin experiments and analysed their data. C.O.B. and R.F. implemented the hardware set-up for the bulk-NMR experiments, and G.A.A. and C.O.B. performed them, including data processing. G.A.A. and R.F. performed the numerical simulations. G.A.A., C.O.B., R.F., P.L. and L.F. analysed and interpreted the data. H.K, S.O. and I.J. fabricated the NV centres in enriched diamond sample. G.A.A., C.O.B., R.F. and L.F. wrote the manuscript. All authors commented on the manuscript and contributed to discussions of its results.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Álvarez, G. A. et al. Local and bulk 13C hyperpolarization in nitrogen-vacancy-centred diamonds at variable fields and orientations. Nat. Commun. 6:8456 doi: 10.1038/ncomms9456 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/