Mathematical Modeling of Interleukin-35 Promoting Tumor Growth and Angiogenesis

Kang-Ling Liao1,*, Xue-Feng Bai2, Avner Friedman1,3

1 Mathematical Biosciences Institute, The Ohio State University, Columbus, Ohio, United States of America, 2 Department of Pathology and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America, 3 Department of Mathematics, The Ohio State University, Columbus, Ohio, United States of America

Abstract

Interleukin-35 (IL-35), a cytokine from the Interleukin-12 cytokine family, has been considered as an anti-inflammatory cytokine which promotes tumor progression and tumor immune evasion. It has also been demonstrated that IL-35 is secreted by regulatory T cells. Recent mouse experiments have shown that IL-35 produced by cancer cells promotes tumor growth via enhancing myeloid cell accumulation and angiogenesis, and reducing the infiltration of activated CD8⁺ T cells into tumor microenvironment. In the present paper we develop a mathematical model based on these experimental results. We include in the model an anti-IL-35 drug as treatment. The extended model (with drug) is used to design protocols of anti-IL-35 injections for treatment of cancer. We find that with a fixed total amount of drug, continuous injection has better efficacy than intermittent injections in reducing the tumor load while the treatment is ongoing. We also find that the percentage of tumor reduction under anti-IL-35 treatment improves when the production of IL-35 by cancer is increased.

Introduction

Interleukin-35 (IL-35) is a member of the IL-12 cytokine family. It is produced in human cancer tissues such as in melanoma, B cell lymphoma [1], lung cancer, colon cancer, esophageal carcinoma, hepatocellular carcinoma, cervical carcinoma, and colorectal cancer [2,3], and it plays important roles in tumor progression and tumor immune evasion [1]. Fox3⁺ regulatory T cells (Treg) are common in tumor microenvironment [4,5], where they induce immune-suppression. They do so by producing various cytokines, including TGF-β, IL-10 [6], and IL-9 [7], thereby promoting tumor growth. It was also shown that Treg secrete IL-35 [8-14]. IL-35 functions through IL-35R on various cell types, and is a potent immune-suppressor. Indeed, Treg-derived IL-35 was shown to inhibit antitumor T cell response [15], whereas IL-35-deficient Treg have significantly reduced activity to inhibit antitumor T cell response [15]. IL-35 inhibits tumor growth via enhancing myeloid cell accumulation and angiogenesis, and reducing the infiltration of activated CD8⁺ T cells into tumor microenvironment. In the present paper we develop a mathematical model based on these experimental results. We include in the model an anti-IL-35 drug as treatment. The extended model (with drug) is used to design protocols of anti-IL-35 injections for treatment of cancer. We find that with a fixed total amount of drug, continuous injection has better efficacy than intermittent injections in reducing the tumor load while the treatment is ongoing. We also find that the percentage of tumor reduction under anti-IL-35 treatment improves when the production of IL-35 by cancer is increased.

These experimental results suggest that blocking IL-35 may be an effective therapeutic approach to human cancer. To explore this possibility we develop in the present paper a mathematical model and then conduct in silico experiments to evaluate to what extend blocking IL-35 reduces tumor growth. The model consists of a system of partial differential equations (PDEs) that involve interactions among cells (tumor cells, MDSCs, T cells, Treg, endothelial cells) and cytokines (M-CSF, TGF-β, VEGF, IL-35). We first consider the situation which corresponds to experiments in Wang et al. [1]. In these experiments two kinds of plasmacytoma cells were injected into wild type mice: tumor cells that have been transfected with IL-35 [IL58-IL-35] so that tumor secretes high amount of IL-35 into the microenvironment, and “normal” plasmacytoma cells [IL58-Ctrl] that secrete very small amount of IL-35. There is also a small amount of IL-35 produced by MDSC [17,18] as well as IL-35 produced by Treg [8-14]. We show that the model simulations agree with the experimental data in [1]. We also introduce, in this model, the effect of a drug which inhibits production of IL-35, and simulate various protocols for administering the drug. We find, that administering the drug frequently in small amounts yields better results than administering it infrequently in larger amounts. We also find that the percentage of tumor reduction under anti-IL-35 drug improves when the production of IL-35 by cancer is increased.

* Email: liao.92@mbi.osu.edu

Citation: Liao K-L, Bai X-F, Friedman A (2014) Mathematical Modeling of Interleukin-35 Promoting Tumor Growth and Angiogenesis. PLoS ONE 9(10): e110126.

Received April 8, 2014; Accepted September 17, 2014; Published October 30, 2014

Copyright: © 2014 Liao et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper.

Funding: This work is supported, in part, by the National Science Council of Taiwan, R. O. C. (http://web1.nsc.gov.tw/) under No. NSC 101-2917-I-564-062, the National Science Foundation, Division of Mathematical Sciences (http://www.nsf.gov/) under Agreement DMS. 0931642, the National Cancer Institute (http://www.cancer.gov/) under RSG-09-188-01-LIB. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.
Results

Mathematical model

The mathematical model is based on the network schematically shown in Figure 1. Cancer cells secrete M-CSF which attracts MDSCs; cancer cells and MDSCs secrete VEGF which triggers angiogenesis by attracting endothelial cells and enhancing their proliferation. The additional roles of MDSC are described in the caption of Figure 1. In particular, MDSC, inhibits the activation CD8+ T cells via IL-10 and a variety of other mechanisms.

As mentioned in the Introduction, Wang et al. [1] considered two kinds of tumor cells injected into mice: J558-IL-35 and J558-Ctrl. In the case of J558-IL-35, IL-35 is produced mostly by tumor cells, less by Treg, and little by MDSC. In the case of J558-Ctrl, cancer cells produce very small amount of IL-35 so that IL-35 mainly comes from Treg and MDSC. MDSC secretes TGF-β and IL-10 which promote Treg [19,20], and there is a positive feedback loop

\[T_{\text{reg}} \rightarrow \text{IL-35} \rightarrow \text{MDSC} \rightarrow T_{\text{reg}}, \]

where the last activation is activated by TGF-β and IL-10.

We use the network described in Figure 1 to construct a system of partial differential equations. In order to simplify the computations we assume that the tumor and all the variables are radially symmetric. The variables of the model and their dimension are listed below.

- \(c(r,t) \) : tumor cell density, \(\text{cell/cm}^3 \)
- \(q(r,t) \) : M-CSF concentration, \(\text{pg/cm}^3 \)
- \(M(r,t) \) : Myeloid derived suppressor cell (MDSC) density, \(\text{cell/cm}^3 \)
- \(I_{35}(r,t) \) : Interleukin – 35 concentration, \(\text{pg/cm}^3 \)
- \(R(r,t) \) : regulatory T cell density, \(\text{cell/cm}^3 \)
- \(I_{\beta}(r,t) \) : TGF-β concentration, \(\text{pg/cm}^3 \)
- \(T(r,t) \) : T cell density, \(\text{cell/cm}^3 \)
- \(h(r,t) \) : VEGF concentration, \(\text{pg/cm}^3 \)
- \(e(r,t) \) : endothelial cell (EC) density, \(\text{cell/cm}^3 \)
- \(w(r,t) \) : oxygen concentration, \(\text{pg/cm}^3 \)

We proceed to write down the differential equation of each of the variables. Most of the parameters are taken from the literatures, as indicated; in Methods we explain how the remaining parameters were estimated.

Tumor cell (c). The density \(c(r,t) \) of tumor cells satisfies the following equation:
The parameters in Equation (1) are listed in Table 1. The first term on the right-hand side is the diffusion of M-CSF (the third and fourth terms) [23–25]. It was reported in [1], that MDSCs do not undergo chemotaxis driven by M-CSF, and MDSCs undergo dispersion as well as chemotaxis driven by M-CSF (the third and fourth terms) [23–25].

The first term on the right-hand side of Equation (3) represents the death of tumor cells by necrosis and apoptosis, respectively. The last term represents the killing of tumor cells by T cells [23].

The equation for the concentration of IL-35 is the following:

\[
\frac{dI_{35}}{dt} = D_{I_{35}} \frac{\partial}{\partial r} \left(r^2 \frac{\partial I_{35}}{\partial r} \right) + x_{I_{35}} c - \mu_{I_{35}} R.
\]

Experiments indicate that IL-35 can be produced by Treg [8–14]. IL-35 possesses EBI3 and IL-12p35 subunits [1,11,13,14,27]. In human model, it has been shown that EBI3 was expressed in tumor infiltrating dendritic cells [17,18], which is a subpopulation of MDSCs, and in lung cancer cells [2,3,16], whereas IL-12p35 was detected in EBI3+ tumor cells [17,18]. Hence, cancer cells

Table 1. Parameters for the tumor cell equation.

Parameter	Description	Dimensional	Reference
\(D_c\)	Diffusion coefficient of tumor cells	\(4.32 \times 10^{-6} \text{ cm}^2/\text{day}\)	[22,25] & estimated
\(c^*\)	Carrying capacity of tumor cells	\(10^6 \text{ cell/cm}^3\)	[22,47,55]
\(\mu_c\)	Apoptosis rate of tumor cell	\(4.15 \times 10^{-3}/\text{day}\)	[22,66]
\(\eta_t\)	Killing rate of tumor cells from T cells	\(3.1574 \times 10^{-6} \text{ cell/day}\)	[55,56] & estimated
\(\lambda_1\)	Maximal proliferation rate of tumor cells	\(2.5/\text{day}\)	[22,25,67] & estimated
\(\lambda_2\)	Maximal necrosis rate of tumor cells	\(8.3 \times 10^{-1}/\text{day}\)	[22,25,55,67]
\(w_h\)	Lower bound of oxygen in necrotic	\(3.57 \times 10^8 \text{ pg/cm}^3\)	[22,68]
\(w_n\)	Lower bound of oxygen in extremely hypoxic	\(10^6 \text{ pg/cm}^3\)	[22,53,68]
\(w_0\)	Normal oxygen level	\(4.65 \times 10^5 \text{ pg/cm}^3\)	[22,68]
and MDSCs could be other sources of IL-35 in human and mouse cancer. Accordingly, we include the production of IL-35 by cancer cells (the second term), T_{reg} (the third term), and MDSCs (the fourth term). For J558-IL-35 mouse model, we take γ_{35} large enough and γ_{35} small enough such that, in our simulations, γ_{35} is relatively much larger than $\beta_{35} R$, and $\gamma_{35} M$ is significantly smaller than $\beta_{35} R$. On the other hand, in the J558-Cml mouse model, we modify γ_{35} to be a much smaller than the value in J558-IL-35 case so that the production of IL-35 by tumor cells is significantly smaller than the productions of IL-35 by T_{reg} and MDSCs. The parameters in Equation (4) are listed in Table 4.

Regulatory T cell (R). The equation for the density of regulatory T cells is given by

$$\frac{\partial R}{\partial t} = D_R \frac{\partial^2 R}{\partial r^2} + \frac{\delta M}{M + \sigma_R} \frac{M}{(\text{indirect}) \text{activation by MDSC}} - \delta R = \frac{I_{\beta}}{I_{\beta} + \sigma_R} - \mu_R R.$$

T_{reg} is activated by TGF-β (the third term on the right-hand side) and by IL-10. IL-10 is secreted by MDSC [19,20] and, for simplicity, we do not introduce IL-10 explicitly, and represent the activation of T_{reg} by IL-10 by the term $\frac{\delta M}{M + \sigma_R}$. The parameters in Equation (5) are listed in Table 5.

TGF-β (I_{β}). The equation for the concentration of TGF-β is the following:

$$\frac{\partial I_{\beta}}{\partial t} = D_{I_{\beta}} \frac{\partial^2 I_{\beta}}{\partial r^2} + \frac{\nu_{C}}{C} + \frac{\nu_{R}}{R} - \frac{\mu_{R} I_{\beta}}{C}.$$

TGF-β is secreted by tumor cells (second term) [28–35] and T_{reg} (third term) [36–38]. The parameters in Equation (6) are shown in Table 6.

Activated CD8$^+$ T cell (T). Cytotoxic T cells (CTL), or CD8$^+$ T cells, satisfy the equation:

$$\frac{\partial T}{\partial t} = D_T \frac{\partial^2 T}{\partial r^2} + \frac{\delta M}{M + \sigma_R} \frac{M}{(\text{indirect}) \text{activation by IL-12}} - \frac{1}{C} \frac{\partial (a_3 M)}{\partial r} - \frac{\beta_2(a_3 M)}{(a_3 M) + r_3} \frac{M}{2} \frac{\partial I_{\beta}}{\partial r} - \mu_T T.$$

MDSC secretes MCP-1 which exerts chemotactic force on macrophages [39,40], while macrophages secrete IL-12 which

Table 2. Parameters for the M-CSF equation.

Parameter	Description	Dimensional	Reference
D_M	Diffusion coefficient of M-CSF	1.728×10^{-1} cm2/day	[22,25,55,67,70]
α_M	Production rate of M-CSF by tumor cell	2.7648×10^{-5} pg/cell/day	[22,55,71,72]
ρ_M	Decay rate of M-CSF	4.1472/day	[22,73]

Table 3. Parameters for the MDSC equation.

Parameter	Description	Dimensional	Reference
σ_0	Source of MDSC	1.10345×10^5 cell/cm3/day	[56,58] & estimated
σ_1	Maximal production rate via I$_{35}$	6.55518×10^5/day	[1] & estimated
σ_M	Diffusion coefficient of MDSC	10^5 pg/cm3/day	estimated
α_M	Diffusion coefficient of MDSC	4.32×10^{-6} cm2/day	[22,25,26] & estimated
k_M	Chemotaxis rate of MDSC for M-CSF	5.2×10^{-7} cm3/pg/day	[25,55]
τ_M	Polarization rate of MDSC	7.5×10^{-1}/day	[56]
M_0	Density of myeloid precursor cells	8×10^3 cell/cm3	[56,58]
ρ_M	Density of myeloid precursor cells	7.5×10 pg/cm3	[56,58]
ρ_M	Decay rate of MDSC	3×10^{-2}/day	[58,59]
activates CD4+ T cells [41] and CD4+ T cells produce IL-2 [42,43] which activates CD8+ T cells. The activation of CD8+ T cells is inhibited by TGF-β [44–46]. For simplicity we combine all these process by attributing the chemotactic force or CD8+ T cells and activation source of CD8+ T cells to MDSC (the terms in square brackets in Equation (7)). The factor $s_M(\phi_M + a_1 M)$ represents the fact that MDSC suppresses CD8+ T cells proliferation by amino acid metabolism. The parameters in Equation (7) are listed in Table 7.

VEGF (h). The concentration of VEGF evolves according to the equation

$$\frac{\partial h}{\partial t} = D_h \frac{\partial}{\partial r} \left(r \frac{\partial h}{\partial r} \right) + \lambda_2(w) c x \frac{I_{35} + k_1}{I_{35} + \sigma_9} + \lambda_3(w) M \frac{q + k_2}{q + q_0} - \mu_s h,$$

where $\lambda_2(w) = \lambda_3 \phi(w)$ and $\lambda_3 = \lambda_\phi \phi(w)$ depend on the oxygen concentration w, as follows:

$$\phi(w) = \begin{cases} 0 & \text{if } w < w_h, \\ \exp(10(w - w_h)) - 1 & \text{if } w_h \leq w < w^*, \\ 1 - 0.7(w - w^*)/(w_0 - w^*) & \text{if } w^* \leq w \leq w_0, \\ 0.3 & \text{if } w > w_0, \end{cases}$$

and $w^*(w_h, w_0)$ is the threshold at which the hypoxic effect on VEGF production by tumor cells and MDSCs is maximal. The function $\phi(w)$ is chosen such that tumor cells and MDSCs can secrete VEGF under mild hypoxic conditions. The second term on the right-hand side of Equation (8) represents the VEGF produced by tumor cells and enhanced by I_{35} [1], and the third term accounts for VEGF produced by MDSCs and enhanced by M-CSF [47]; accordingly, the ratios k_1/σ_9 and k_2/q_0 should be small. The parameters in Equation (8) are listed in Table 8.

Endothelial cell (EC) (e). The equation of the density of EC includes dispersion, chemotaxis by VEGF, and proliferation by VEGF:

$$\frac{\partial e}{\partial t} = D_e \frac{\partial}{\partial r} \left(r \frac{\partial e}{\partial r} \right) + \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial h}{\partial r} \right) + \lambda_1(1 - \frac{e}{e_1}) \frac{h - h_1}{h_0} H(h - h_1).$$

Here e_1 is the maximal density of EC inside the tumor, and $H(\cdot)$ is defined by

$$H(h - h_1) = \begin{cases} 1 & \text{if } h \geq h_1, \\ 0 & \text{if } h < h_1. \end{cases}$$

The last term, taken from [22], reflects the fact that VEGF induces proliferation of EC when the concentration of VEGF is higher than the threshold h_1. The parameters in Equation (9) are given in Table 9.

Oxygen (w). We model the concentration of oxygen by the equation:

Parameter	Description	Dimensional	Reference
D_h	Diffusion coefficient of I_{35}	1.25×10^{-3} cm2/day	[60] & estimated
σ_9	Production rate of I_{35} from tumor	10^{-5} pg/cell/day for J558-IL-35 mouse	[1,16–18] & estimated
s_9	Production rate of I_{35} from tumor	10^{-6} pg/cell/day for J558-Ctrl mouse	[1] & estimated
h_9	Production rate of I_{35} from Treg	1.67×10^{-3} pg/cell/day	[34] & estimated
γ_9	Production rate of I_{35} from MDSC	10^{-4} pg/cell/day	[17,18] & estimated
μ_9	Decay rate of I_{35}	2/day	[61–63] & estimated

Table 4. Parameters for the IL-35 equation.

Table 5. Parameters for the Treg equation.

Parameter	Description	Dimensional	Reference
$D_{t_{reg}}$	Diffusion coefficient of I_{35}	4.32×10^{-4} cm2/day	[22,25] & estimated
$\phi_{t_{reg}}$	Maximal activation rate of I_{35} by MDSC	1.25×10^6 cell/cm3/day	estimated
$\sigma_{t_{reg}}$	Rate of Treg production	10^7 cell/cm3	estimated
$\phi_{t_{reg}}$	Maximal activation rate of Treg by TGF-β	3.327×10^6 cell/cm3/day	[38] & estimated
$\sigma_{t_{reg}}$	Maximal rate of Treg production	2.4×10^7 pg/cm3	[38,64] & estimated
$\mu_{t_{reg}}$	Decay rate of Treg	10^{-1}/day	[34,74,75]

Table 4. Parameters for the Treg equation.

Table 5. Parameters for the Treg equation.
where the constant with a positive parameter \(\lambda \) are listed in Table 10.

Equation (10) are listed in Table 10.

We assume that the MDSC is higher at the center and negligible near the boundary.

We assume that the tumor is radially symmetric and is contained in a sphere \(0 \leq r \leq L \), where \(L = 1.5 \text{ cm} \).

We next introduce the initial and boundary conditions for each of the variables.

Initial conditions. We assume that the tumor cells are concentrated initially near \(r = 0 \), and take

\[
\hat{c}(r,0) = \begin{cases}
 c_0(e^{-r/\epsilon} - e^{-L_0/\epsilon}) & \text{if } 0 \leq r \leq L_0 \\
 0 & \text{if } L_0 < r \leq L,
\end{cases}
\]

(11)

with a positive parameter \(\epsilon \), \(0 < \epsilon \leq 1 \), and scaling parameters \(c_0 = 7.2 \times 10^3 \text{ cell/cm}^3 \) and \(L_0 = 0.5 \text{ cm} \). Since M-CSF is secreted by tumor cells, we take the initial concentration of M-CSF to be similar to the density of tumor cells,

\[
g(0,0) = \begin{cases}
 \frac{2q}{\mu_q}c_0(e^{-r/\epsilon} - e^{-L_0/\epsilon}) & \text{if } 0 \leq r \leq L_0 \\
 0 & \text{if } L_0 < r \leq L,
\end{cases}
\]

where the constant \(2q/\mu_q \) comes from the steady state equation for \(q \).

Since tumor cells are concentrated at the center \(r = 0 \), we assume that the MDSC is higher at the center and negligible near the boundary \(r = L \),

\[
M(r,0) = \begin{cases}
 \frac{\sigma_M}{\mu_M}(e^{-r/\epsilon} - e^{-L_0/\epsilon}) & \text{if } 0 \leq r \leq L_0 \\
 0 & \text{if } L_0 < r \leq L,
\end{cases}
\]

where the constant \(\sigma_M/\mu_M \) comes from the steady state equation of Equation (3). We assume that initially there are no activated CD8\(^+\) T cells, and take

\[
T(r,0) = 0 \text{ if } 0 \leq r \leq L.
\]

The activation of T\(_{reg}\)'s and the productions of I\(_{35}\) and VEGF are triggered by tumor cells and MDSCs; accordingly, we take

\[
R(r,0) = \begin{cases}
 \frac{\delta_M + \delta_{\beta}}{\mu_R}(e^{-r/\epsilon} - e^{-L_0/\epsilon}) & \text{if } 0 \leq r \leq L_0 \\
 0 & \text{if } L_0 < r \leq L,
\end{cases}
\]

\[
I_{35}(r,0) = \begin{cases}
 I_{35}^0(e^{-r/\epsilon} - e^{-L_0/\epsilon}) & \text{if } 0 \leq r \leq L_0 \\
 0 & \text{if } L_0 < r \leq L,
\end{cases}
\]

\[
h(r,0) = \begin{cases}
 h_0(e^{-r/\epsilon} - e^{-L_0/\epsilon}) & \text{if } 0 \leq r \leq L_0 \\
 0 & \text{if } L_0 < r \leq L,
\end{cases}
\]

and \(I_{35}^0 = 10^2 \text{ pg/cm}^3 \), and \(h_0 = 10^3 \text{ pg/cm}^3 \). Similarly, \(I_{\beta} \) is produced by tumor cells and T\(_{reg}\)'s, so accordingly we take

\[
I_{\beta}(r,0) = \begin{cases}
 I_{\beta}^0(e^{-r/\epsilon} - e^{-L_0/\epsilon}) & \text{if } 0 \leq r \leq L_0 \\
 0 & \text{if } L_0 < r \leq L,
\end{cases}
\]

where \(I_{\beta}^0 = 2.4 \times 10^3 \text{ pg/cm}^3 \).

Endothelial cells migrate into the tumor from the surrounding normal healthy tissue, so we take

\[
e(r,0) = \begin{cases}
 e_0(e^{-r/\epsilon} - e^{-L_0/\epsilon}) & \text{if } 0 \leq r \leq L_0 \\
 e_0 & \text{if } L_0 < r \leq L,
\end{cases}
\]

where \(e_0 \) is the density of endothelial cell in normal healthy tissue. Finally, since endothelial cells represent capillaries through which oxygen is delivered, we prescribe

\[
w(r,0) = \begin{cases}
 w_0(e^{-r/\epsilon} - e^{-L_0/\epsilon}) & \text{if } 0 \leq r \leq L_0 \\
 w_0 & \text{if } L_0 < r \leq L,
\end{cases}
\]

where \(w_0 \) is the oxygen concentration in normal healthy tissue.

Boundary conditions. Since we assume radial symmetry, the first \(r \)-derivative of each variable vanishes at \(r = 0 \). We assume no-flux condition at \(r = L \) for all the variables except for the oxygen and endothelial cells, and we take

\[
\frac{\partial c}{\partial r}(r,0) = 0 \text{ if } 0 \leq r \leq L,
\]

\[
\frac{\partial e}{\partial r}(r,0) = 0 \text{ if } 0 \leq r \leq L,
\]

\[
\frac{\partial w}{\partial r}(r,0) = 0 \text{ if } 0 \leq r \leq L.
\]
Table 7. Parameters for the CD8\(^+\) T equation.

Parameter	Description	Dimensional	Reference
\(D_T\)	Diffusion coefficient of T cells	\(4.32 \times 10^{-6} \text{ cm}^2/\text{day}\)	[22,25] & estimated
\(r_M\)	Chemotaxis rate of T cell from MCP-1	\(5 \times 10^6 \text{ pg/cm}^3\)	[58,77] & estimated
\(\beta_1\)	Production rate of IL-10 by MDSC	\(8.64 \times 10^{-4} \text{ cm}^2/\text{pg/day}\)	[78–80] & estimated
\(\beta_2\)	Activation rate from IL-12	\(2.5 \times 10^{-3} \text{ cell/cm}^3/\text{day}\)	[58,77] & estimated
\(\alpha_1\)	Production rate of IL-10 by MDSC	\(2 \text{ pg/cell}\)	estimated
\(\alpha_2\)	Chemotaxis rate of MCP-1 by MDSC	\(10^{-2} \text{ pg/cell}\)	estimated
\(\alpha_3\)	Production rate of IL-12 by MDSC	\(10^{-2} \text{ pg/cell}\)	estimated
\(c_s\)	Production rate of IL-10 by MDSC	\(7.5 \times 10 \text{ pg/cm}^3\)	[56,77] & estimated
\(g_p\)	Production rate of IL-10 by MDSC	\(2.9 \times 10^{3} \text{ pg/cm}^3\)	[34] & estimated
\(\mu_T\)	Death rate of T cells	\(3 \times 10^{-1} \text{/day}\)	[58,81–85]

\[
\begin{align*}
\frac{\partial v}{\partial r} + \mu (v - w) &= 0 \quad \text{at} \quad r = L, \\
\frac{\partial e}{\partial r} + \mu (e - c_0) &= 0 \quad \text{at} \quad r = L
\end{align*}
\]

(12)

where \(\mu\) is the flux rate of EC from healthy normal tissue into the tumor microenvironment.

Parameters nondimensionalization. We nondimensionalize the Equations (1)–(10) by the following scaling:

\[
\begin{align*}
\tilde{r} &= r/L_0, \quad \tilde{t} = t/\tau, \\
\tilde{c} &= c/c_0, \quad \tilde{q} = q/q_0, \quad \tilde{M} = M/M_0, \quad \tilde{I}_35 = I_{35}/I_{35}^0, \quad \tilde{R} = R/R_0, \\
\tilde{T} &= T/T_0, \quad \tilde{h} = h/h_0, \quad \tilde{w} = w/w_0, \\
\{\tilde{D}_c, \tilde{D}_q, \tilde{D}_M, \tilde{D}_{I35}, \tilde{D}_R, \tilde{D}_I, \tilde{D}_{h}, \tilde{D}_c, \tilde{D}_u\}
\end{align*}
\]

**Parameters for the CD8\(^+\) T equation.

Table 8. Parameters for the VEGF equation.

Parameter	Description	Dimensional	Reference
\(D_h\)	Diffusion coefficient of VEGF	\(8.64 \times 10^{-1} \text{ cm}^2/\text{day}\)	[22,55,86,87]
\(k_1\)	Critical value of \(I_{35}\)	\(3.7 \times 10^5 \text{ pg/cm}^3\)	estimated
\(q_0\)	Critical value of M-CSF	\(3.7 \times 10^5 \text{ pg/cm}^3\)	estimated
\(k_2\)	Critical value of M-CSF	\(10^3 \text{ pg/cm}^3\)	[22,55]
\(k_3\)	Decay rate of VEGF	\(3.7 \times 10^5 \text{ pg/cm}^3\)	estimated
\(\mu_h\)	Decay rate of VEGF	\(10^8 \text{ pg/cm}^3\)	[22,57]
\(h_6\)	Production rate of IL-10 by MDSC	\(2.86 \times 10^{-4} \text{ pg/cell/day}\)	[22,55] & estimated
\(\lambda_6\)	Production rate of IL-10 by MDSC	\(1.58 \times 10^{-3} \text{ pg/cell/day}\)	[22,55]
\(\psi^\prime\)	Production rate of IL-10 by MDSC	\(4.185 \times 10^6 \text{ pg/cm}^3\)	[22,55] & estimated

\[\text{doi:10.1371/journal.pone.0110126.t007}\]
Table 9. Parameters for the EC equation.

Parameter	Description	Dimensional	Reference
D_e	Diffusion coefficient of EC	4.32×10^{-6} cm2/day	[22,25,57] & estimated
k_s	Chemotaxis force of EC by VEGF	4.1472×10^{-7} cm3/pg/day	[22,87] & estimated
λ_{12}	Proliferation rate by VEGF	5.83×10^{-1}/day	[88] & estimated
c_1	Maximal density of EC inside the tumor	7.5×10^7 cell/cm3	[22] & estimated
h_0	Scaling parameter for VEGF	10^3 pg/cm3	[89] & estimated
h_i	Threshold concentration of VEGF	1.48×10^3 pg/cm3	[90] & estimated

$$\begin{align*}
\{\dot{\lambda}_1(w), \dot{\lambda}_2(w), \dot{\lambda}_3(w), \dot{\lambda}_6(w)\} = & \tau \{\dot{\lambda}_1(w), \dot{\lambda}_2(w), c_0 \lambda_3(w)/h_0, M^0 \lambda_6(w)/h_0\}, \\
\{\dot{\lambda}_7, \dot{\lambda}_8, \dot{\lambda}_9, \dot{\lambda}_{10}, \dot{\lambda}_{11}, \dot{\lambda}_{12}\} = & \tau \{c_0 \lambda_7/w_0, T_0 \lambda_8, M^0 \lambda_9, R_0 \lambda_{10}, c_0 \lambda_{11}, \lambda_{12}\}, \\
\sigma_0 = & \tau \sigma_0/M^0, \sigma_1 = \tau \sigma_1, \sigma_3 = \sigma_3/I_{35}^0, \sigma_M = \sigma_M/q_0, \sigma_R = \\
& \sigma_R/M^0, \sigma_B = \sigma_B/I_B^0, \\
\beta_1 = & M^0 \beta_1/L_0^2, \beta_2 = \tau \beta_2/T_0, \gamma_{35} = \tau M^0 \gamma_{35}/I_{35}^0, \eta_c = T_0 \tau_\eta_c, \\
\tilde{a}_1 = & 1, \tilde{a}_2 = 1, \tilde{a}_3 = 0.01, \tilde{e}^* = e^*/c_0, \tilde{e}_3 = c_3/M^0, \tilde{e}_M = c_M/I_{35}^0, \\
\dot{M}_0 = & 1, \\
\dot{k}_1 = & k_1/L_{35}^0, \dot{k}_2 = k_2/q_0, \dot{e}_1 = e_1/e_0, \dot{h}_1 = h_1/h_0, \dot{s}_M = s_M/M^0, \\
\dot{s}_B = & s_B/I_B^0, \\
\end{align*}$$

$c_0 = 7.2 \times 10^8$ cell/cm3, $T_0 = R_0 = 10^5$ cell/cm3, $M^0 = 2 \times 10^8$ cell/cm3,

$e_0 = 2.5 \times 10^6$ cell/cm3, $w_0 = 4.65 \times 10^3$ pg/cm3,

$q_0 = h_0 = 10^3$ pg/cm3, $I_{35}^0 = 10^2$ pg/cm3, $I_B^0 = 2.4 \times 10^3$ pg/cm3.

The dimensional and nondimensional form of the model equations in the nondimensional form are as follows:

Numerical simulation

In accordance with the experiments in Wang et al. [1], we consider two types of mice plasmacytoma J558 cells in wild type mice:

(\(\bullet\)) J558-Ctrl tumor cells that secrete a very small amount of I_{35}

(\(\bullet\)) J558-IL-35 tumor cells that secrete a large amount of I_{35}

We use matlab with $dr = 1/40$ and $dt = 7/216000$ in nondimensional variables (i.e., $dr = 1/80$ cm and $dt = 7/226000$ day in dimensional variables). Figure 2 displays the spatial distributions of tumor cell density in cases (\(\bullet\))--(\(\bullet\)) at different times. We note that, in Figure 2, as time goes on, tumor cells migrate toward the boundary $r = 1.5$ cm, where oxygen is rich while tumor cell density is lower near the center $r = 0$ cm, where oxygen is sparse. The migration speeds of these two cases (\(\bullet\))--(\(\bullet\)) are similar to each other, but tumor cells with larger I_{35} production (i.e., J558-IL-35 case) have higher peak during migration.

Table 10. Parameters for the oxygen equation.

Parameter	Description	Dimensional	Reference
k_7	Delivery rate of oxygen	6.3936×10^7 pg/cell/day	[55]
D_o	Diffusion coefficient of oxygen	4.32×10^{-2} cm2/day	[25,55,69,87]
k_8	Consumption rate by T cells	1.61568×10^{-6} cm3/cell/day	[55,65] & estimated
k_9	Consumption rate by MDSC	1.61568×10^{-6} cm3/cell/day	[55,56,65] & estimated
k_{10}	Consumption rate by Treg	1.61568×10^{-6} cm3/cell/day	[55,65] & estimated
k_{11}	Consumption rate by tumor cells	1.728×10^{-8} cm3/cell/day	[55,91,92]
The results of Wang et al. [1] were reported 2 weeks after injection of tumor cells into mice. Hence, we compare our simulations at the end of the second week with the results in [1]. In Figure 3(C), the ratio for MDSC of J558-IL-35 to J558-Ctrl is 2, combining these results (Figures seven B, seven D, and seven E in [1]), we find that this ratio (for Treg/CD8+ T cells) is 0.54. From our Figures 3(E) and 3(H), we compute the ratio of J558-IL-35 to J558-Ctrl to be 0.56. Thus in all the above three cases we get a very good quantitative fit with the experimental results of Wang et al. [1]. Finally, from Figure 3(A), we see that for tumor cells the ratio of J558-IL-35 to J558-Ctrl is 2.4, which is somewhat less than the ratio for the tumor volume of B16-IL-35 mice to B16-Ctrl mice in Figure three F in [1], and significantly less for J558-IL-35 mice. This discrepancy may be explained by the fact that in vivo the

\[
\frac{\partial c}{\partial t} = D_e \frac{\partial}{\partial r} \left(r \frac{\partial c}{\partial r} \right) + \lambda_1(w)c(1 - \frac{c}{C_0}) - \lambda_2(w)c - \mu ec - \etaTCc
\]

\[
\frac{\partial q}{\partial t} = D_q \frac{\partial}{\partial r} \left(r \frac{\partial q}{\partial r} \right) + \frac{\alpha ec}{\eta M} - \mu q
\]

\[
\frac{\partial M}{\partial t} = \frac{\partial}{\partial r} \left(\frac{\partial M}{\partial r} \right) + \rho_0 + \frac{\alpha_1 M_0 \times I_{35}}{I_{35} + \rho_1} + D_M \frac{\partial}{\partial r} \left(r \frac{\partial M}{\partial r} \right) - \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 k_{35} M \frac{\partial q}{\partial r} \right)
\]

\[
\frac{\partial I_{35}}{\partial t} = D_{I_{35}} \frac{\partial}{\partial r} \left(r \frac{\partial I_{35}}{\partial r} \right) + \frac{\alpha_1 c}{\rho_{35} + \rho_{35}} + \beta_{35} R + \gamma_{35} M - \mu_{35} I_{35}
\]

\[
\frac{\partial R}{\partial t} = D_R \frac{\partial}{\partial r} \left(r \frac{\partial R}{\partial r} \right) + \frac{\delta M M}{M + \sigma_R} + \frac{\delta R I_{35}}{I_{35} + \sigma_R} - \mu_{35} R
\]

\[
\frac{\partial I_{35}}{\partial t} = D_{I_{35}} \frac{\partial}{\partial r} \left(r \frac{\partial I_{35}}{\partial r} \right) + \frac{\alpha_1 c}{\rho_{35} + \rho_{35}} + \beta_{35} R + \gamma_{35} M - \mu_{35} I_{35}
\]

which is the same as Figure five A in [1]. In Figure 3(H), the ratio for VEGF of J558-IL-35 to J558-Ctrl is 17, which is the approximately same as Figure four D in [1]. Next, we compare the ratio for Treg/CD8+ T cells of J558-IL-35 to J558-Ctrl with the result in [1]. But, in [1], they only showed the percentages of CD8+/CD45+, of CD4+/CD45+, and of Foxp3+/CD4+. By
Table 11. Model parameters and units.

Parameter	Dimensional	Dimensionless
D_1	4.32×10^{-6} cm2/day	5.184×10^{-5}
D_2	1.728×10^{-1} cm2/day	2.073
D_M	4.32×10^{-6} cm2/day	5.184×10^{-5}
D_L	1.25×10^{-3} cm2/day	1.5×10^{-2}
D_R	4.32×10^{-6} cm2/day	5.184×10^{-5}
D_T	8.64×10^{-2} cm2/day	1.0368
D_Y	4.32×10^{-6} cm2/day	5.184×10^{-5}
D_0	8.64×10^{-2} cm2/day	1.0368
D_s	4.32×10^{-6} cm2/day	5.184×10^{-5}
s_8	2.7648×10^{-5} pg/cell/day	5.97197×10
s_{63}	7.5×10^{-1}/day	2.25
s_{55}	10^{-3} pg/cell/day for J558-IL-35 mouse	2.16×10^6 for J558-IL-35 mouse
s_{15}	10^{-7} pg/cell/day for J558-Ctrl mouse	2.16 for J558-Ctrl mouse
b_{55}	1.67×10^{-3} pg/cell/day	5
γ_{55}	10^{-4} pg/cell/day	6×10^2
δ_{55}	1.25×10^0 cell/cm3/day	3.75×10
δ_s	3.327×10^6 cell/cm3/day	99.81
q_L	3.1574×10^{-6} cm3/cell/day	9.47232×10^{-1}
q_0	5.51725×10^4 cell/cm3/day	8.2759×10^4
q_1	4.65518×10^3/day	1.39655×10^3
q_{55}	7.5×10 pg/cm3	7.5×10^{-2}
γ_R	10^2 cell/cm3	5×10^{-2}
σ_R	2.4×10^1 pg/cm3	1
σ_5	3.7×10^0 pg/cm3	3.7×10^0
λ_1	2.5/day	7.5
λ_2	8.3×10^{-1}/day	2.49
λ_3	2.86×10^{-4} pg/cell/day	6.1776×10^2
λ_4	1.58×10^{-1} pg/cell/day	9.48×10^2
λ_5	6.3936×10^2 pg/cell/day	1.03123×10
λ_6	1.61568×10^{-8} cm3/cell/day	4.84704×10^{-3}
λ_7	1.61568×10^{-8} cm3/cell/day	9.69408
λ_{10}	1.61568×10^{-8} cm3/cell/day	4.84704×10^{-3}
λ_{11}	1.728×10^{-6} cm3/cell/day	3.73248×10
λ_{12}	5.83×10^{-1}/day	1.75
ν_c	5.5×10^{-6} pg/cell/day	4.95
ν_R	9×10^{-7} pg/cell/day	1.125×10^{-4}
ν	1	1
ν_5	4.15×10^{-1}/day	1.245
ν_4	4.1472/day	1.24416×10
ν_M	3×10^{-2}/day	9×10^{-2}
ν_{55}	2/day	6
ν_{R}	10^{-1}/day	3×10^{-1}
ν_5	0.693/day	2.079
ν_Y	3×10^{-1}/day	9×10^{-1}
ν_6	1.08864×10/day	3.26592×10
μ	10/cm	5
arrival of MDSCs to the tumor microenvironment is somewhat delayed and therefore the number of CD8+ T cells in the control case is significantly less than in the J558-IL-35 case, while (for simplicity) our model does not include such a time delay.

The subunits of IL-35, EBI3 and IL-12p35, are highly expressed in cancers such as lung cancer, colorectal cancer, and esophageal carcinoma [2,3]. Anti-IL-35 drug blocks the expression of IL-35 and could be an agent in treating these cancers [48]. To determine the effect of anti-IL-35 drug on cancer growth, we proceed to introduce it, as a drug, into our model. If we denote its concentration by \(f(r,t) \) then all we need to do is to modify Equation (4) by

\[
\frac{\partial I_{35}}{\partial t} = D_{I_{35}} \frac{\partial}{\partial r} \left(\frac{\partial I_{35}}{\partial r} \right) + \frac{1}{f(r,t)} \left[\gamma_{I_{35}} C_{35} + \beta_{I_{35}} R + \gamma_{I_{35}} M - \mu_{I_{35}} I_{35} \right].
\]
Figure 2. Spatial distributions of tumor cells. (A), (B), (C), and (D) are the spatial distributions of tumor cells \(c(r,t) \) in the mice model at the end of the 2nd, 4th, 6th, and 8th weeks, respectively, for cases (i) and (ii). The thin curve is the initial value of tumor cells for the cases (i) and (ii). The solid curve is for J558-IL-35 tumor cells with large \(I_{35} \) production (case (ii)) and the dashed curve is for J558-Ctrl tumor cells (case (i)).

doi:10.1371/journal.pone.0110126.g002

Figure 3. Evolution of cells and cytokines for J558-IL-35 and J558-Ctrl mice models. Panels (A) to (J) show the profiles of the total numbers of tumor cells, M-CSF, MDSCs, \(I_{35} \), T\(_{reg}\), TGF-\(\beta \), CD8\(^+\) T cells, VEGF, endothelial cells, and oxygen, for cases (i) and (ii). The solid curve is for J558-IL-35 tumor cells with large \(I_{35} \) production (case (ii)) and the dashed curve is for J558-Ctrl tumor cells (case (i)).

doi:10.1371/journal.pone.0110126.g003
We make the pharmacokinetic assumption that \(f(r,t) \) decreases in \(r \) from the outer boundary of the tumor \((r = 0) \) towards the center of the tumor \((r = \text{r center of the tumor}) \), and take

\[
f(r,t) = F \times \frac{r^2 + a}{L^2 + a},
\]

where \(a = L^2 (\approx 2.25 \text{ cm}^2) \) and \(F = 10 \). We shall compare several dosing schedules:

(i) no dosing of anti-IL-35, i.e., \(f(r,t) = 1 \), for all \(t \) and \(0 \leq r \leq L \);

(ii) continuous dosing with anti-IL-35 at fixed level \(F \) for 2 months,

\[
f(r,t) = F \times \frac{r^2 + a}{L^2 + a}, \quad \text{for } 0 \leq r \leq L \text{ and } 0 \leq t \leq 2 \text{ months};
\]

(iii) intermittent dosing for 2 months, at double level \(2F \), one week at a time with one week spacing between dosing,

\[
f(r,t) = \begin{cases}
2F \times \frac{r^2 + a}{L^2 + a}, & \text{for } 0 \leq r \leq L \text{ and } t_2i \leq t < t_{2i+1}, \\
0, & \text{for } 0 \leq r \leq L \text{ and } t_{2i+1} \leq t < t_{2(i+1)},
\end{cases}
\]

for \(i = 0, 1, 2, 3 \), where \(t_0 = 0 \) and the length of each interval \([t_i, t_{i+1}] \) is one week.

We use matlab with \(dr = 1/80 \text{ cm} \) and \(dt = 7/24000 \text{ day} \) in dimensional variables. Figure 4 shows that the temporal growth of the total numbers of tumor cells, as functions of time, under

(A) \(\chi_{35} = 10^{-4} \text{ pg/cell/day}; \)

(B) \(\chi_{35} = 5 \times 10^{-4} \text{ pg/cell/day}; \)

and (C) \(\chi_{35} = 10^{-3} \text{ pg/cell/day}. \)

Figure 4 indicates that the continuous treatment has better efficacy in reducing tumor load than intermittent treatment when \(\chi_{35} \in [10^{-4} \text{ pg/cell/day}, 10^{-3} \text{ pg/cell/day}] \). Figure 4 also shows that the reduction rate by anti-IL-35 is larger when tumor cells secrete higher amount of IL-35 as in Lung cancer and colorectal cancer [2,3] than lower amount of IL-35 as in plasmacytoma [1]. Accordingly, as \(\chi_{35} \) increases, the reduction in total tumor population becomes increasingly significant.

Sensitivity analysis

In this section we perform sensitivity analysis on the parameters (in dimensional form) including those that were only roughly estimated and those that play important role in the model. We list these parameters with their ranges, baselines, and units in Table 13. We use the method described in Marino et al. [49], using the Latin hypercube sampling to generated 500 samples with \(dr = 1/40 \text{ cm} \) and \(dt = 7/12000 \text{ day} \).
Table 13. Parameters chosen for sensitivity analysis.

Parameter	Range	Baseline	Unit
γ_M	$[3.75 \times 10^{-1}, 1.5]$	7.5×10^{-1}	/day
δ_M	$[6.25 \times 10^{4}, 2.5 \times 10^{6}]$	1.25×10^{6}	cell/cm3/day
β	$[1.6635 \times 10^{6}, 6.654 \times 10^{6}]$	3.327×10^{4}	cell/cm3/day
α	$[10^{-4}, 10^{-3}]$	5×10^{-4}	pg/cell/day
β_35	$[8.35 \times 10^{-4}, 3.34 \times 10^{-3}]$	1.67×10^{-3}	pg/cell/day
γ	$[5 \times 10^{-4}, 2 \times 10^{-4}]$	10^{-4}	pg/cell/day
r_c	$[2.75 \times 10^{-6}, 1.1 \times 10^{-5}]$	5.5×10^{-6}	pg/cell/day
η	$[4.5 \times 10^{-1}, 1.8 \times 10^{-4}]$	9×10^{-1}	pg/cell/day
α_5	$[1.5787 \times 10^{-6}, 6.3148 \times 10^{-6}]$	3.1574×10^{-6}	cm3/cell/day
σ_0	$[2.75863 \times 10^4, 1.10345 \times 10^5]$	5.51725×10^4	cell/cm5
σ_1	$[2.32759 \times 10^2, 9.31036 \times 10^2]$	4.65518×10^2	/day
σ_2	$[5 \times 10^{5}, 2 \times 10^{10}]$	10^9	cell/cm5
σ_3	$[1.2 \times 10^{1}, 4.8 \times 10^{1}]$	2.4×10^{0}	pg/cm3
σ_4	$[1.85 \times 10^{6}, 7.4 \times 10^{4}]$	3.7×10^{0}	pg/cm3
κ_M	$[5 \times 10^{1}, 2 \times 10^{10}]$	10^6	pg/cm3
ϵ	$[1.45 \times 10^{5}, 5.8 \times 10^{6}]$	2.9×10^{1}	pg/cm3
κ_M	$[2.5 \times 10^{3}, 10^7]$	5×10^3	cell/cm5
α_1	$[1.4]$	2	pg/cell
α_2	$[5 \times 10^{-3}, 2 \times 10^{-2}]$	10^{-2}	pg/cell
κ_3	$[5 \times 10^{-1}, 2 \times 10^{-2}]$	10^{-2}	pg/cell
κ_4	$[1.85 \times 10^{5}, 7.4 \times 10^{4}]$	3.7×10^5	pg/cm3
κ_5	$[5, 20]$	10	pg/cm3
κ_6	$[1.25, 5]$	2.5	/day
κ_7	$[1.43 \times 10^{-4}, 5.72 \times 10^{-4}]$	2.86×10^{-4}	pg/cell/day
κ_8	$[7.9 \times 10^{-4}, 3.16 \times 10^{-3}]$	1.58×10^{-3}	pg/cell/day
κ_{10}	$[2.42352 \times 10^{-3}, 9.69408 \times 10^{-3}]$	4.84704×10^{-3}	cm3/cell/day
κ_{12}	$[8.75 \times 10^{-4}, 3.5]$	1.75	/day
e_1	$[3.75 \times 10^6, 1.5 \times 10^7]$	7.5×10^6	cell/cm5
b_1	$[7 \times 10^2, 2.96 \times 10^3]$	1.48×10^1	pg/cm3

doi:10.1371/journal.pone.0110126.t013

Since we focus on how anti-IL-35 drug inhibits tumor growth, we calculate the partial rank correlation coefficients (PRCC) and p-value, corresponding to the ratio $C = \int_0^r c(r,t) r^2 dr / \int_0^r c(r,t) r^2 dr$ for $t = 2$ months, where $c(r,t)$ accounts for continuous treatment and $c(r,t)$ accounts for of no drug; C is a measure of the (relative) efficacy of the drug. In this analysis, all the parameters are chosen in the range from half to twofold of their baseline, except γ_35 which is chosen from 10^{-5} pg/cell/day to 10^{-3} pg/cell/day. Table 14 lists the PRCC and their p-values. Figure 3 plots the PRCC of the parameters with p-values smaller than 0.01. A negative PRCC (i.e. negative correlation) with p-value smaller than 0.01 means that increasing this parameter value will decrease the value of C and hence increase the (relative) efficacy of the drug. A positive PRCC with p-value smaller than 0.01 has the opposite meaning, that is, it will decrease the efficacy of the drug.

In Table 14, only η_s, e_1, λ_s, s_M, s_β, γ_35, and β_35 have negative PRCC with p-value smaller than 0.01. The most significant negatively correlated parameter is η_s. Larger λ_s increases the production of VEGF and larger γ_35 increases the production of I_{35} and both increase tumor load. The negative correlation of these parameters shows that the drug is more effective for tumor with higher rate of production of VEGF and IL-35. On the other hand, the negative correlation of η_s shows that the efficacy of the drug improves when the CD8$^+$ T cells are more effective in killing tumor cells. However, it is not true to conclude that, in general, the drug efficacy increases with larger tumor load, since larger η_s and s_β shrink the tumor load but yield better drug efficacy. Similar results hold for the parameters with positive PRCC. For example, larger λ_3 and s_β lead to higher tumor cell population while the tumor efficacy is decreased.

Discussion

IL-35 is the most anti-inflammatory cytokine within the IL-12 cytokine family. In this paper we addressed the questions to what extend IL-35 is involved in tumor microenvironment and how effective is anti-IL-35 drug in reducing tumor growth. It is well known that T_{reg}^5 are present in the tumor microenvironment.
and that they secrete IL-35 to promote tumor growth. Recent mouse experiments of Wang et al. [1] determined the extent to which IL-35 enhanced the MDSC population and the VEGF concentration, and at the same time decreased the CD8+ T cell population. Based on these experiments, we developed a mathematical model which includes in addition to tumor cells, MDSCs, CD8+ T cells, IL-35, and VEGF, also Treg, endothelial cells, oxygen concentration, TGF-β, and M-CSF that is produced by cancer cells. The model is described by a system of partial differential equations. The simulations of the model are in qualitative agreement with the experimental results of Wang et al. [1].

We next extended the model to include anti-IL-35 as an anti-cancer drug. We compared the efficacy of the drug under two schedules: continuous versus intermittent injections of the same total amount of the drug. We found that continuous injection has better efficacy while the treatment is ongoing. Since it is well known that some cancers including lung and colorectal cancers most likely secrete large amounts of IL-35, we also investigated the efficacy of the drug for such cancers. We found that the percentage of tumor reduction under anti-IL-35 drug improves when the production of IL-35 by cancer is increased.

There are currently only few experimental results by which our model can be tested. In recent experiments by Nicholl et al. [50] it was demonstrated that IL-35 promotes pancreatic cancer cells proliferation while anti-IL-35 reduces this promotion. More specifically, in Figure three of Nicholl et al. [50] it is shown that IL-35 [50 ng/ml] increases, on the average, by 100% the proliferation of colonies of several pancreatic cancer cell lines, while in the presence of anti-IL-35 (200 ng/ml) this increase is reduced to 50%. These in vitro results are in qualitative agreement with our results in Figure three (at week 8). Another example is taken from colorectal cancer in patients. As reported in Zeng et al. [2], Foxp3+ Treg increases linearly with IL-35, and this is in qualitative agreement with Figures 3D and 3E of our simulations. As more experimental and clinical data become available, we should be able to test our model in more quantitative way, so that the model can further be refined.

In this paper we focused on the role of IL-35, although Treg secrete besides IL-35 also other cytokines that promote tumor, such as IL-10 and IL-9 [7,51–54]; these were not included directly in the present model, since we wanted to base the model on the recent experimental data by Wang et al. [1]. When data for other cytokines become available to the same precision as, for instance, in [1], our model could then be extended to include these cytokines, and to obtain a more comprehensive evaluation of anti-IL-35 efficacy in combination with other drugs.

Methods

Estimate D_e, η_c and λ_1 in Equation (1)

We assume that the killing efficiency of tumor cells by CD8+ T cells is suppressed by IL-35 and that the proliferation rate of tumor cells is enhanced by IL-35. Accordingly in Equation (1), we choose smaller killing rate η_c [55,56] and larger proliferation rate λ_1 of tumor cells than in [22,55]. For simplicity, we take all cells to have the same diffusion coefficient, $D_e = D_M = D_R = D_T = D_c$, with $D_c = 4.32 \times 10^{-6} \text{cm}^2/\text{day}$ by [22,25,57].

Estimate c_M in Equation (3)

From Figures two B and three B in [1], we deduce that I_{35} grows slowly in time, and

$$I_{35}(0) \approx 1.8 \times 10^5 \text{pg/cm}^3 \text{ and } I_{35}(15) \approx 5.6 \times 10^5 \text{pg/cm}^3.$$ \hspace{1cm} (18)

We take $c_M = 10^6 \text{pg/cm}^3$ so that on the average $\frac{I_{35}}{I_{35} + c_M} \approx \frac{1}{5}$ for $0 < t < 15$ days.

Estimate σ_0, σ_1, and α_M in Equation (3)

In order to estimate σ_1, we use simplified forms of Equation (3):

$$\frac{dM}{dt} = \sigma_0 + \alpha_M \times \frac{qM_0}{\sigma_M + q} - \mu_M M,$$ \hspace{1cm} (19)

$$\frac{dM}{dt} = \sigma_0 + \sigma_1 M_0 \times \frac{I_{35}}{I_{35} + c_M} + \alpha_M \times \frac{qM_0}{\sigma_M + q} - \mu_M \tilde{M},$$ \hspace{1cm} (20)

for J558-Ctrl tumor cells and J558-IL-35 tumor cells, respectively. Taking the difference and recalling that on the average $\frac{I_{35}}{I_{35} + c_M} \approx \frac{1}{5}$ for $0 < t < 15$, we get, with $\mu_M = 0.03/\text{day}$ [58,59].

Table 14. The PRCC and p-value of parameters for sensitivity analysis.

Parameter	PRCC	p-value
γ_M	-0.0039409	> 0.01
D_M	-0.040652	> 0.01
δ_M	-0.045366	> 0.01
s_{15}	-0.15449	< 0.01
β_{35}	-0.12796	< 0.01
τ_M	0.055333	> 0.01
τ_c	0.17422	< 0.01
τ_R	0.021612	> 0.01
g_c	-0.7056	< 0.01
ρ_0	0.22963	< 0.01
ρ_1	0.074071	> 0.01
ρ_R	-0.03105	> 0.01
ρ_3	0.022536	> 0.01
c_{M0}	0.14064	> 0.01
l_M	0.12563	> 0.01
l_y	-0.20223	< 0.01
i_M	-0.25416	< 0.01
i_1	0.33607	< 0.01
i_2	-0.0067372	> 0.01
i_1	0.014791	> 0.01
k_1	0.06582	> 0.01
k_2	-0.070145	> 0.01
v_M	0.75819	< 0.01
v_S	-0.26421	< 0.01
v_S	-0.0097113	> 0.01
v_{10}	0.040952	> 0.01
v_{12}	-0.093337	> 0.01
c_1	-0.30227	< 0.01
b_1	0.28538	< 0.01

...
\[
\hat{M}(15) - M(15) = (\hat{M}(0) - M(0))e^{-0.45} + \frac{\sigma_1 M_0}{\hat{m}_M}(1 - e^{-0.45})
\]

and the first term of the right-hand side may be neglected since initially the density of MDSC is small [1]. From Figure five A in [1], we deduce that

\[
\hat{M}(15) \approx 18 \times 10^6 \text{ cell/cm}^3/\text{day} \quad \text{and} \quad M(15) \approx 9 \times 10^6 \text{ cell/cm}^3/\text{day}.
\]

Since \(M_0 = 8000 \text{ cell/cm}^3 [56,58]\), we get

\[
\sigma_1 = \frac{5}{8000 \text{ cell/cm}^3} \times \frac{0.03/\text{day} \times 9 \times 10^6 \text{ cell/cm}^3}{1 - e^{-0.45}} \\
\approx 465.518/\text{day}.
\]

We assume that, due to the secretion of IL-35, the production of MDSC in the present model is larger than the production assumed in [56], so we have taken \(\sigma_0\) and \(\sigma_M\) to be larger than in [56].

Estimate \(D_{35}\) and \(\mu_{35}\) in Equation (4)

Since IL-35 belongs to the IL-12 family, we assume that its diffusion coefficient and its degradation rate are the same as for IL-12 [60–63]:

\[
D_{35} = 1.25 \times 10^{-3} \text{ cm}^2/\text{day}, \\
\mu_{35} = 2/\text{day}.
\]

Estimate \(\zeta_{35}, \beta_{35}, \gamma_{35}\) in Equation (4)

In order to find \(\zeta_{35}\) for the J558-IL-35 mouse model, we use the simplified version of Equation (4) where only cancer cells produce \(I_{35}\), i.e., \(R = 0\) and \(M = 0\):

\[
\frac{dI_{35}(t)}{dt} = \zeta_{35}c - \mu_{35}I_{35}(t).
\]

If \(c\) is taken to be a constant, then

\[
I_{35}(t) = e^{-\mu_{35}t}I_{35}(0) + \frac{\zeta_{35}c}{\mu_{35}}(1 - e^{-\mu_{35}t}).
\]

In the in vivo experiments of Wang et al. [1] the initial number of cancer cells that were injected was \(5 \times 10^6\) and we assume that they occupy a volume of 50 mm³, so that

\[
c(0) = 10^8 \text{ cell/cm}^3.
\]

There is no data in [1] on the density of the tumor cells in day 15, but the tumor cells were observed to grow rapidly in the first 15 days. We assume that the average of the density of tumor cells in the first 15 days is very close to the maximal capacity \(10^9 \text{ cell/cm}^3\) and take, in (23), \(c = 10^9 \text{ cell/cm}^3\) for J558-IL-35 tumor cells. Recalling Equation (18), we get, with \(\mu_{35} = 2/\text{day}\) (Table 4),

\[
5.6 \times 10^5 \text{ pg/cm}^3 \approx e^{-15 \text{ day} \times 2/\text{day}} \times 1.8 \times 10^5 \text{ pg/cm}^3.
\]
Mathematical Modeling of Interleukin-35 in Tumor Growth

Estimate v_r and v_R in Equation (6)

We assume as before that the initial tumor occupies a volume of 50 mm3 and, accordingly, also T_{reg} occupies the same volume. In [34], the production of I_β by tumor cells and T_{reg} are $1.1 \times 10^{-4} \frac{pg}{day\cdot cell} \times \frac{1}{cm^3}$ and $1.8 \times 10^{-5} \frac{pg}{day\cdot cell} \times \frac{1}{cm^3}$, respectively. Hence,

\[v_r = 1.8 \times 10^{-5} \frac{pg}{day\cdot cell} \times \frac{1}{cm^3} \times 50 \, mm^3 = 9 \times 10^{-7} \, pg/cell/day, \]

\[v_R = 1.1 \times 10^{-4} \frac{pg}{day\cdot cell} \times \frac{1}{cm^3} \times 50 \, mm^3 = 5.5 \times 10^{-6} \, pg/cell/day. \]

Estimate s_M, β_1, β_2, a_1, a_2, a_3, c_5 in Equation (7)

Since IL-35 enhances the population of MDSC, the concentration of IL-10, which we represent by $a_1 M$, is larger than the one in [56]. Hence, we chose s_M to be larger than the corresponding value of s_M in [56]. Moreover, since IL-35 promotes tumor growth, we expect a stronger immune response by T cells than in [56] and hence we take β_1 and β_2 larger than the corresponding value in [56]. The parameter c_5 is taken from [56]. Since the chemotaxis and activation of CD8$^+$ T cells are indirect, we take a_2 and a_3 to be smaller than a_1: $a_1 = 2 \, pg/cell$ and $a_2 = a_3 = 0.01 \, pg/cell$.

Estimate k_1, k_2, a_β, λ_5, w_4 in Equation (8)

We take a_β to be the average of the concentration of IL-35 at times 0 and 15 days, so that $a_\beta = 3.7 \times 10^5 \, pg/cm^3$ by Equation (18). We assume that the productions of VEGF by tumor cells and MDSCs are small when there are no IL-35 and M-CSF, respectively, so we set $k_1 = 3.7 \times 10^2 \, pg/cm^3$ and $k_2 = 10 \, pg/cm^3$. Since in [1] I_{35} increases the concentration of VEGF significantly, we take λ_5 to be larger than the value in [56]. We also slightly modify the parameter value w_4 and function β used in [56].

Estimate D_e, k_b, λ_{12}, e_1, h_0, and h_1 in Equation (9)

We take values similar to those in [22,55].

Estimate λ_8, λ_9, and λ_{10} in Equation (10)

We assume that CD8$^+$ T cells, MDSCs, and T_{reg} have the same consumption rates of oxygen, so we take $\lambda_8 = \lambda_9 = \lambda_{10} = 1.61568 \times 10^{-8} \, cm^3/cell/day$ [55,56,65].

Author Contributions

Conceived and designed the experiments: KL, XB AF. Performed the experiments: KL, XB AF. Analyzed the data: KL, XB AF. Contributed reagents/materials/analysis tools: KL, XB AF. Wrote the paper: KL, XB AF.

References

1. Wang Z, Liu JQ, Liu Z, Shen R, Zhang G, et al. (2013) Tumor-derived IL-35 promotes tumor growth by enhancing myeloid cell accumulation and angiogenesis. J Immuno 190: 2415–2423.

2. Zeng JC, Zhang Z, Li TY, Liang YE, Wang HM, et al. (2013) Assessing the role of IL-35 in colorectal cancer progression and prognosis. Int J Clin Exp Pathol 6: 1806–1816.

3. Long J, Zhang X, Wena M, Kong Q, Lu Z, et al. (2013) B-35 over-expression increases apoptosis sensitivity and suppresses cell growth in human cancer cells. Biochemical and Biophysical Research Communications 430: 364–369.

4. Liyanage UK, Moore TT, Joo HG, Tanaka Y, Herrmann V, et al. (2002) Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 169: 2756–2763.

5. Wolf D, Wolf AM, Rumpold H, Fiegl H, Zeimet AG, et al. (2005) The expression of the regulatory T cell-specific forkhead box transcription factor foxp3 is associated with poor prognosis in ovarian cancer. Clin Cancer Res 11: 8326–8331.
3. Chaturvedi V, Collison LW, Guy CS, Workman CJ, Vignali DAA (2011) Regulation of antitumor immune responses by the il-12 family cytokines, il-12, il-23, and il-27. Clinical and Developmental Immunology 14: 832543.

4. Xu M, Mizoguchi I, Morishima N, Chiba Y, Mizuguchi J, et al. (2010) Regulatory t-cell inhibition versus depletion: A mathematical model of the role of the IL-12 family of cytokines. Bull Math Biol 72: 1417–1433.

5. Boelte KC, Gordon LE, Joyce S, Thompson MA, Yang L, et al. (2011) Rgs2 mediates pro-angiogenic function of myeloid derived suppressor cells in the tumor microenvironment via upregulation of mcp-1. PLoS ONE 11: e16534.

6. Koss SW, Heidmja J, Chanes C, Olofson J, Aarestad HJ (2007) Tumor-associated macrophages secrete ifn-γ and mcp-1 in head and neck squamous cell carcinoma tissue. Acta Otolaryngol 127: 352–359.

7. Robertson MJ, Ritz J (1996) Interleukin 12: biological and potential antitumor effects. Immunol Today 17: 139–144.

8. Lai YP, Eng CJ, Chen SC (2011) The roles of cd4+ t cells in tumor immunity. Immunological Reviews 2012: 457784.

9. Wagner H, Kromke M, Sollbach W, Scheurich P, Rollinghoff M, et al. (1982) Murine t-cell subsets and interleukin: relationships between cytotoxic t cells, helper t cells and accessory cells. Clin Haematol 11: 607–630.

10. Tiemessen MM, Kunzmann S, Schmidt-Weber CB, Garsen J, Bruijnzeel-Koomen CA, et al. (2005) Transforming growth factor-beta inhibits human antigen-specific cd4+ t cell proliferation without modulating the cytokine response. Int Immunol 15: 1495–1504.

11. Quatromoni JG, Suzuki E, Okusanya O, Judy BF, Bhojnagarwalla P, et al. (2013) The tuning of tgf-beta inhibition affects the generation of antigen-specific cd8+ t-cell responses. Eur J Immunol 33: 2560–2569.

12. Kendall M (1998) Dying to live: How our bodies fight disease. Cambridge University Press.

13. Yang WC, Ma G, Chen SH, Pan PY (2013) Polarization and reprogramming of regulatory t cells in the tumor microenvironment. J Immunol 189: 5638–5648.

14. Lecouter J, Lymphocytes secreting interleukin-10 and regulatory t cells are related to the left ventricular ejection fraction in coronary artery diseases. PLoS ONE 7: e25099.

15. Marino S, Hogue IB, Ray CJ, Kirschner DE (2006) A methodology for performing global uncertainty and sensitivity analysis in systems biology. J Theor Biol 244: 689–699.

16. Nicholl MB, Ledgewood CL, Chen X, Bai Q, Qin C, et al. (2014) Il-35 promotes pancreas cancer growth through enhancement of proliferation and inhibition of apoptosis: Evidence for a role as an autocrine growth factor. Cytokine: in press.

17. Charmasson E, Alzari P, Bisceglia M, et al. (2002) A mathematical model of the role of macrophages as vehicles for drug delivery to hypoxic tumor sites. J Theore Biol 254: 178–196.

18. Szomolay B, Eubank TD, Roberts RD, Marsh CB, Friedman A (2012) The influence of tumor environment on the induction of cd4+ memory t cells and interleukins: relationships between cytotoxic t cells, helper t cells and accessory cells. J Immunol 189: 5638–5648.

19. Nichol MB, Edgeducation CL, Chen X, Bai Q, Qin C, et al. (2014) Il-35 promotes pancreas cancer growth through enhancement of proliferation and inhibition of apoptosis: Evidence for a role as an autocrine growth factor. Cytokine: in press.

20. Maynard CL, Harrington LE, Janowska VS, Oliver JR, Zaidi CL, et al. (2007) Regulatory t cells expressing interleukin 10 develop from foxp3+ and foxp3− precursor cells in the absence of interleukin 10. Nature immunology 8: 931–941.

21. Patheri P, Awashti A, Poploska J, Gao W, Strom TB (2010) Human cd4+ memory t cells can become cd4+9+ t cells. PLoS ONE 5: e7067.

22. Schmitt EG, Haribhai D, Williams JB, Aggarwal P, Jia S, et al. (2012) Il-10 produced by induced regulatory t cells (irtgps) controls colitis and pathogenic excretion of staphylococcus aureus during immunotherapy. Immunity 39: 677–686.

23. Ackelius J (2013) Regulatory T cells play a key role in the immune response to patients with cancer. Clin Cancer Res 5: 9–16.

24. Dileo MV, Kellum JA, Frederikoj PJ (2009) A simple mathematical model of cytokine capture using a hemoadsorption device. Ann Biomed Eng 37: 222–229.

25. Sánchez-Hernández C, Guzmán-Ortega A, Aguilar-León D, Hernández-Pando R, Gómez-Lim M, et al. (2010) In vivo activity of plant-based interleukin-12 in the lung of balsam/c mouse. BMC Research Notes: doi: 10.1186/1756-0500-3-151.

26. Liu XM, Sun Y, Chang L, Bruner V, Qian J, et al. (1995) Decreased interleukin-12 (il-12) from activated cord versus adult peripheral blood mononuclear cells. J Immunol 155: 5630–5639.

27. Nicholls MJ, Venger V, Demay M, Velkovic-Kostantinov Z, Nikolic-Vukadinovic D (2005) Elevated plasma levels of tgf-beta1 in patients with locally advanced breast cancer related to other clinical stages. Archive of Oncology 11: 131–133.
65. Youn BS, Sen A, Behie LA, Gigi-Gabardo A, Hassell JA (2008) Scale-up of breast cancer stem cell aggregate cultures to suspension bioreactors. Biotechnol Prog 22: 801–810.

66. Breward CJW, Byrne HM, Lewis CE (2001) Modeling the interactions between tumor cells and a blood vessel in a microenvironment within a vascular tumor. European J Appl Math 12: 529–556.

67. Qian B, Deng Y, Hong Im J, Muschel RJ, Zou Y, et al. (2009) A distinct macrophage population mediated metastatic breast cancer cell extravasation, establishment and growth. PLoS ONE 4: e6563.

68. Vanpaule P, Mayer A, Briet S, Hockel M (2003) Oxygenation gain factor: a novel parameter characterizing the association between hemoglobin level and the oxygenation status of breast cancers. Cancer Res 63: 7634–7637.

69. Casciari JJ, Sotirchos SV, Sutherland RM (1988) Glucose diffusivity in multicellular tumor spheroids. Cancer Res 48: 3905–3909.

70. Owen MR, Sherratt JA (1998) Pattern formation and spatiotemporal irregularity in a model for macrophage tumor interactions. J Theore Biol 189: 63–80.

71. Oren H, Duman N, Abacioglu H, Ozkan H, Irken G (2001) Association between serum macrophage colony-stimulating factor levels and monocyte and thrombocyte counts in healthy, hypoxic, and septic term neonates. Pediatrics 108: 329–332.

72. Utting JC, Flanagan AM, Brandao-Burch A, Orriss IR, Aenett TR (2010) Hypoxia stimulates osteoclast formation from human peripheral blood. Cell Biochem Funct 28: 374–380.

73. Tang S, Liu H, Chen G, Rao Q, Geng Y, et al. (2000) Internalization and half-life of membrane-bound macrophage colony-stimulating factor. Chinese Sc Bull 45: 1697–1703.

74. Vukmanovic-Sejic M, Zhang Y, Cook J, Fletcher J, McQuaid A, et al. (2006) Human cd4+ cd25hi foxp3 regulatory t cells are derived by rapid turnover of memory populations in vivo. J Clin Invest 116: 2423–2433.

75. Yates A, Callard R (2001) Cell death and the maintenance of immunological memory. Discret Contin Dyn S 1: 43–59.

76. Kim Y, Friedman A (2010) Interaction of tumor with its micro-environment: a mathematical model. J Math Biol 72: 1029–1068.

77. Marino S, Kirschner DE (2004) The human immune response to mycobacterium tuberculosis in lung and lymph node. J Theor Biol 227: 463–486.

78. Abe R, Donnelly SC, Peng T, Bacala R, Metz CN (2001) Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. J Immunol 166: 7556–7562.

79. Kim Y, Lawler S, Nowicki MO, Chiocca EA, Friedman A (2009) A mathematical model for pattern formation of glioma cells outside the tumor spheroid core. J Theor Biol 260: 359–371.

80. Kim Y, Wallace J, Li F, Ostrowski M, Friedman A (2010) Transformed epithelial cells and fibroblasts/myofibroblasts interaction in breast tumor: a mathematical model and experiments. J Math Biol 61: 401–421.

81. Yue A, Callard R (2001) Cell death and the maintenance of immunological memory. Discret Contin Dyn S 1: 43–59.

82. Schugart RC, Friedman A, Zhao R, Sen CK (2008) Wound angiogenesis as a function of tissue oxygen tension: a mathematical model. PNAS 105: 2628–2633.

83. Chaplain MAJ, Giles SM, Sleeman BD, Jarvis RJ (1995) An mathematical analysis of a model for tumour angiogenesis. J Math Biol 33: 744–770.

84. Eubank TD, Roberts R, Galloway M, Wang Y, Cohn DE, et al. (2004) Gm-csf induces expression of soluble vegf receptor-1 from human monocytes and inhibits angiogenesis in mice. Immunity 21: 831–842.

85. Winslow GM, Roberts AD, Blackman MA, Woodland DL (2003) Persistence and turnover of antigen-specific cd4+ t cells during chronic tuberculosis infection in the mouse. J Immunol 170: 2046–2052.

86. Gabhann FM, Popel AS (2003) Model of competitive binding of vascular endothelial growth factor and placental growth factor to vegf receptors on endothelial cells. Am J Physiol Heart Circ Physiol 286: H153–H164.

87. Schugart RC, Friedman A, Zhao R, Sen CK (2008) Wound angiogenesis as a function of tissue oxygen tension: a mathematical model. PNAS 105: 2628–2633.

88. Chaplain MAJ, Giles SM, Sleeman BD, Jarvis RJ (1995) An mathematical analysis of a model for tumour angiogenesis. J Math Biol 33: 744–770.

89. Eubank TD, Roberts R, Galloway M, Wang Y, Cohn DE, et al. (2004) Gm-csf induces expression of soluble vegf receptor-1 from human monocytes and inhibits angiogenesis in mice. Immunity 21: 831–842.

90. Chaplain MAJ (1995) The mathematical modeling of tumour angiogenesis and invasion. Acta Biotheoret 43: 307–402.

91. Butterworth AE, Cater DB (1967) Effect of lypoic acid on oxygen uptake of tumor cells polymorphonuclear leucocytes lymphocytes and macrophages in vitro. Br J Cancer 21: 375–389.

92. Chen Y, Cairns R, Papandreou I, Koong A, Denko NC (2005) Oxygen consumption can regulate the growth of tumors, a new perspective on the warburg effect. PLoS ONE 4: e7033.