DERIVED HEAT TRACE ASYMPTOTICS FOR THE DE RHAM AND DOLBEAULT COMPLEXES

J. ÁLVAREZ LÓPEZ AND P. GILKEY

Tribute to Louis Nirenberg

Abstract. We examine the derived heat trace asymptotics in both the real and the complex settings for a generalized Witten perturbation. If the dimension is even, in the real context we show the integral of the local density for the derived heat trace asymptotics is half the Euler characteristic of the underlying manifold. In the complex context, we assume the underlying geometry is Kähler and show the integral of the local density for the derived heat trace asymptotics defined by the Dolbeault complex is a characteristic number of the complex tangent bundle and the twisting vector bundle. We identify this characteristic number if the real dimension is 2 or 4. In both the real and complex settings, the local density differs from the corresponding characteristic class by a divergence term.

Keywords: Witten deformation, local index density, de Rham complex, Dolbeault complex, derived heat trace asymptotics.

Subject Classification: 58J20

1. Introduction

1.1. Motivation. Let h be a smooth function on a compact Riemannian manifold $M = (M, g)$ without boundary of dimension m. In this context, Witten [26] defined a perturbed de Rham differential $d_h := d + \text{ext}(dh)$ where $\text{ext} \cdot \cdot \cdot$ denotes left exterior multiplication. Since $d_h = e^{-h} \circ d \circ e^h$, d_h is gauge equivalent to d and consequently the Betti numbers are unchanged. Let $\text{int} \cdot \cdot \cdot$ denote left interior multiplication. The perturbed de Rham co-differential is given by $\delta_h := \delta + \text{int}(dh)$ and the perturbed Laplacian is given by $\Delta_h := d_h \delta_h + \delta_h d_h$. For a generic metric g, Δ_h and Δ will not be gauge equivalent and their spectra will be different. Witten obtained the Morse inequalities by analyzing the spectral asymptotics of the family of operators Δ_{sh} as $s \to \infty$ when h is a Morse function; we also refer to subsequent work of Bismut and Zhang [6] and of Helffer and Sjöstrand [17]. One can replace dh by a real closed 1-form ω to define $d_\omega := d + \text{ext}(\omega)$. Since d_ω need not be gauge equivalent to d, the twisted Betti numbers β^ω_p can be different. However the numbers β^ω_p defined by the family $s \to s \omega$ for $s \in \mathbb{R}$ have well defined ground values which are called the Novikov numbers and only depend upon the cohomology class defined by ω in de Rham cohomology. If ω is of Morse type, these Novikov numbers satisfy a generalized Morse inequality; we refer to work of Braverman and Farber [7], Pazhitnov [22], and other authors [8, 11, 16, 20].

We studied the local index density for Witten deformation of the de Rham and Dolbeault complexes in two previous papers. In [1], we used invariance theory to show that the local index density of the twisted de Rham complex is the Euler form if m is even, and vanishes if m is odd; in particular, it does not depend on ω. A different proof of this result was given previously by the first author, Kordyukov, and Leichtnam [3], where it was applied to study certain trace formulas for foliated
flows. Let \((E, h)\) be a Hermitian vector bundle over a Kähler manifold \((M, g, J)\). In analogy to the real setting, one may introduce the perturbed Dolbeault operator \(\partial_\omega = \partial + \text{ext}(\omega)\) mapping \(C^\infty(E \otimes \Lambda^{p,q}(M)) \to C^\infty(E \otimes \Lambda^{p,q+1}(M))\) where \(\omega\) is a \(\partial\) closed form of type \(1,0\). If \(\omega = 0\), it follows from the work of Atiyah, Bott, and Patodi \cite{AtiyahBottPatodi1973} and the work the second author \cite{Gilkey84, Gilkey87} that the local index density is \(\{\text{Td}(M, g, J) \wedge \text{ch}(E, h)\}_m\) as we shall explain presently; this result can fail if the metric is not assumed to be Kähler. In \cite{Gilkey87}, we showed that the index density of \(\partial_\omega\) exhibits non-trivial dependence on \(\omega\); we summarize the results of \cite{Gilkey84, Gilkey87} below in Theorem 1.1.

Günther and Schimming \cite{GuntherSchimming87} defined a sequence of secondary heat invariants for the de Rham complex of which the first is called the derived heat invariant. In a different form, this invariant was used by Ray and Singer \cite{RaySinger72} to study the analytic torsion. In the perturbed setting, define \(a^{\text{det}}_{m,n} := \sum_p (-1)^p \cdot a_{m,n}(x, \Delta^\omega_p)\), where \(\Delta^\omega_p\) is the restriction of \(\Delta_\omega\) to forms of degree \(p\), and \(a_{m,n}(x, \Delta^\omega_p)\) is its heat trace invariant of order \(n\). Another version of this invariant, \(a^{\text{Dol}}_{m,n}\), is similarly defined for the Witten-Novikov perturbation of the Dolbeault complex in the Kähler setting. Our results for these invariants are given below in Theorem 1.2.

We summarize those results as follows. Consider first the Riemannian setting. Let \(E_{m,2k}\) denote the Euler invariant of order \(2k\) (see Section 1.3). We prove that \(a^{\text{det}}_{m,n}\) vanishes if \(n < m - 1\), and exhibits a nontrivial dependence on \(\omega\) for even \(n \geq m\). We show that \(a^{\text{det}}_{m,n-1} = E_{m,m-1}\) if \(m\) is odd, and that \(\int_M a^{\text{det}}_{m,m} \text{dvol} = \frac{m}{2} \int_M E_{m,m} \text{dvol}\) if \(m\) is even. In particular, \(\int_M a^{\text{det}}_{m,m} \text{dvol}\) is independent of \(\omega\), which is relevant in \cite{Gilkey90} to study certain zeta invariants associated to closed 1-forms (our original motivation). In the Kähler setting, the situation is more complicated. We show that \(a^{\text{Dol}}_{m,0} = 0\) if \(n < m - 2\), and that \(a^{\text{Dol}}_{m,n}\) exhibits a nontrivial dependence on \(\omega\) for even \(n \geq m - 2\). We describe \(a^{\text{Dol}}_{m,m-2}\) as a perturbation of \(\frac{1}{(m-1)!} g(\text{Td}(M, g, J) \wedge \text{ch}(E, h), \Omega^{m-1})\).

We prove that \(\int_M a^{\text{Dol}}_{m,m} \text{dvol}\) is a characteristic invariant independent of \(\omega\). We determine \(\int_M a^{\text{Dol}}_{m,m} \text{dvol}\) in general if \(m = 2\) or \(m = 4\) in terms of characteristic classes of the complex tangent bundle of \(M\) and the twisting bundle \(E\). This is a global result as the local invariants \(a^{\text{Dol}}_{m,n}\) exhibit non-trivial dependence on the twisting \((1,0)\) form \(\omega\).

1.2. The real setting

Let \(\mathcal{M} := (M, g, \omega)\) where \((M, g)\) is an \(m\)-dimensional Riemannian manifold without boundary which is equipped with an auxiliary real closed 1-form \(\omega\). Let \(\text{dvol}\) be the associated Riemannian measure on \(M\). Let \(\mathcal{F}^p_{m,n}\) be the space of smooth \(p\)-form valued invariants which are homogeneous of weight \(n\) in the derivatives of the metric and \(\omega\); we refer to Section 2 for a precise definition. These spaces vanish for \(p + n\) odd. The First Theorem of Invariants of Weyl \cite{Weyl1918} shows that such invariants can be expressed in terms of contractions of indices in pairs and alternations of \(p\) indices where the indices range from 1 to \(m\). Let \(R_{ijkl}\) be the components of the curvature tensor and let \(\omega_i\) be the components of \(\omega\). The scalar curvature \(\tau \in \mathcal{F}^0_{m,2}\), and norm squared \(\|\omega\|^2 \in \mathcal{F}^0_{m,2}\) take the form

\[
\tau = \sum_{i,j,k,l=1}^m g^{ij} g^{jk} R_{ijkl} \quad \text{and} \quad \|\omega\|^2 = \sum_{j,k=1}^m g^{jk} \omega_j \omega_k .
\]

The restriction map \(\tau : \mathcal{F}^p_{m,n} \to \mathcal{F}^p_{m-1,n}\) is defined by restricting the range of summation to range from 1 to \(m - 1\) rather than from 1 to \(m\). We shall discuss the restriction map further in Section 2.
13. The Euler form. Let $E_{m,2k}$ be the integrand of the Chern-Gauss-Bonnet Theorem \[8\]:

$$E_{m,2k} := \sum_{i_1,\ldots,i_k,j_1,\ldots,j_k=1}^{m} \frac{(-1)^k}{\sqrt{\pi^k k!}} g(e^{i_1} \wedge \cdots \wedge e^{i_k}, e^{j_1} \wedge \cdots \wedge e^{j_k})$$

$$R_{i_1i_2j_1j_2} \cdots R_{i_{k-1}i_kj_{k-1}j_k} \in \mathcal{J}_{m,2k}^0.$$

This element is universal; $r(E_{m,2k}) = E_{m-1,2k}$ for any m. One has, for example,

$$E_{m,2} := (4\pi)^{-1} \tau$$

and

$$E_{m,4} := (32\pi^2)^{-1} \{ \tau^2 - 4\|\rho\|^2 + \|R\|^2 \}$$

where ρ is the Ricci tensor. Similar formulas for $E_{m,6}$ and $E_{m,8}$ can be found in Pekonen \[23\]. Let δ be the co-derivative

$$\delta : \mathcal{J}_{m,n-1}^1 \to \mathcal{J}_{m,n}^0.$$

14. The Kähler setting. Let $K := (M, g, J, E, h, \omega)$ where (M, g, J) is a Kähler manifold of real dimension $m = 2m$, (E, h) is a holomorphic vector bundle over M which is equipped with a Hermitian fiber metric h, and ω is a ∂ closed $(1,0)$ form. Let Ω be the Kähler form of K; $d\text{vol} = \frac{1}{m!} \Omega^m$. Let $\mathcal{R}_{m,n}^k$ be the corresponding space of invariants in the complex setting; we refer to Section 1.4 for precise details. These spaces vanish for $k + n$ odd. Again, we have a natural restriction map $r : \mathcal{R}_{m,n}^k \to \mathcal{R}_{m-2,n}^k$. We can pair form valued invariants with an appropriate power of the Kähler form to obtain scalar invariants; if $P \in \mathcal{R}_{m,2k}^k$ then $g(P, \Omega^k) \in \mathcal{R}_{m,2k}^0$. For example, if $k = m$, then the Hodge $*$ operator takes the form $*P = \frac{1}{m!} g(P, \Omega^m)$.

15. The ring of characteristic forms. Let c_k, ch_k, and T_d be the kth Chern class, Chern character, and Todd class, respectively (see \[18\]). For example,

$$c_0 = \text{dim}(E), \quad c_1 = c_1, \quad c_2 = \frac{1}{2}(c_1^2 - 2c_2), \quad c_3 = \frac{1}{6}(c_1^3 - 3c_1c_2 + 3c_3),$$

$$T_0 = 1, \quad T_1 = \frac{1}{2}, \quad T_2 = \frac{1}{24}, \quad T_3 = \frac{1}{288}.$$

Let $T_c M := (T_c M, J)$ be the associated complex tangent bundle. We decompose the graded ring of characteristic forms

$$\mathcal{C}_m := \mathbb{C}[c_1(T_c M), \ldots, c_m(T_c M), c_1(E, h), \ldots, c_m(E, h)]$$

into homogeneous components $\mathcal{C}_m = \oplus_k \mathcal{C}_m^k$ where $\mathcal{C}_m^k \subset \mathcal{R}_{m,2k}^k$.

16. The Witten deformation. In the real setting, let $d_{\omega} := d + \text{ext}(\omega)$ be the Witten deformation of the exterior derivative; the adjoint is then $d_{\omega}^* := \delta + \text{int}(\omega)$. We may decompose $\Delta_M = \oplus_p \Delta_p^M$, where $\Delta_M := d_{\omega} \delta_{\omega} + \delta_{\omega} d_{\omega}$ is the associated Laplacian and where Δ_M^p is a self-adjoint elliptic operator of Laplace type on $C^\infty(\Lambda^p(M))$. Similarly, in the complex setting, let $\partial_{\omega} = \partial + \text{ext}(\omega)$ define the deformation of the Dolbeault operator; the adjoint is then $\partial_{\omega}^* = \delta'' + \text{int}(\omega)$. Decompose $\Delta_K = \oplus_{p,q} \Delta_{K}^{p,q}$ where $\Delta_K := 2(\partial_{\omega} \delta_{\omega}^p + \delta_{\omega}^p \partial_{\omega}^q)$ is the associated Laplacian and where $\Delta_{K}^{p,q}$ is a self-adjoint operator of Laplace type on $C^\infty(\Lambda^{p,q}(M) \otimes E)$.

17. The local index density. If Δ is an operator of Laplace type on a compact Riemannian manifold of dimension m, let $a_{m,n}(x, \Delta)$ be the local heat trace asymptotics. If $f \in C^\infty(M)$, then

$$\text{Tr}_{L^2} \{ f e^{-t\Delta} \} \sim \sum_{n=0}^\infty \int_M f(x) a_{m,n}(x, \Delta) \text{dvol} \quad \text{as} \quad t \downarrow 0.$$
The invariants \(a_{m,n}(x,\Delta) \) vanish for \(n \) odd. We introduce the local index densities for the de Rham complex and Dolbeault complex by setting:

\[
e_{m,n}(x) := \sum_p (-1)^p a_{m,n}(x,\Delta_M^p) \in \mathfrak{J}_{m,n}^0,
\]

\[
e_{m,n}(x) := \sum_p (-1)^p a_{m,n}(x,\Delta_K^{0,p}) \in \mathfrak{K}_{m,n}^0.
\]

A cancellation argument due to Bott yields:

\[
\begin{align*}
\int_M e_{m,n}(x) \, d\text{vol}(g) &= \begin{cases}
0 & \text{for } n \neq m \\
\text{Euler characteristic}(M) & \text{for } n = m
\end{cases} , \\
\int_M e_{m,n}(x) \, d\text{vol}(g) &= \begin{cases}
0 & \text{for } n \neq m \\
\text{arithmetic genus}(M, E) & \text{for } n = m
\end{cases} .
\end{align*}
\]

Let \(\Im(\omega) \) be the imaginary part of \(\omega \). Set \(\Theta := \sum_k \frac{1}{k!\pi^k} (d\Im(\omega))^k \). We have the following previous results \[1, 2\] of the authors.

Theorem 1.1. \(a_{m,n}^{\text{deR}} \) and \(a_{m,n}^{\text{Dol}} \) are defined by

\[
e_{m,n}^{\text{deR}} := \sum_p (-1)^p a_{m,n}(x,\Delta_M^p) \in \mathfrak{J}_{m,n}^0,
\]

\[
e_{m,n}^{\text{Dol}} := \sum_p (-1)^p a_{m,n}(x,\Delta_K^{0,p}) \in \mathfrak{K}_{m,n}^0.
\]

Remark 1.2. We note that this result for \(a_{m,n}^{\text{Dol}} \) can fail in the Hermitian setting. Although Equation (1a) continues to hold if \((M, g, J)\) is only assumed Hermitian, it is necessary to restrict to the context of Kähler geometry to identify the local index density with a characteristic form even if \(E \) is trivial and \(\omega = 0 \). We refer to Gilkey, Nikčević, and Polhjanpelto \[14\] for details.

1.8. Derived invariants.

The following is the first in a sequence of invariants introduced by Günther and Schimming \[15\] in the real category (see the discussion on page 181 of Gilkey \[16\]): a related invariant appears in the discussion by Ray and Singer \[24\] of analytic torsion. Define

\[
\begin{align*}
\delta_{m,n}^{\text{deR}} := \sum_p (-1)^p a_{m,n}(x,\Delta_M^p) \in \mathfrak{J}_{m,n}^0, \\
\delta_{m,n}^{\text{Dol}} := \sum_p (-1)^p a_{m,n}(x,\Delta_K^{0,p}) \in \mathfrak{K}_{m,n}^0.
\end{align*}
\]

Theorem 1.3.

1. Let \(M = (M, g, J) \) be a Riemannian manifold which is equipped with an auxiliary closed 1-form \(\omega \).
 - (a) If \(n < m - 1 \), then \(a_{m,n}^{\text{deR}} = 0 \).
 - (b) If \(m \) is odd, then \(a_{m,n-1}^{\text{deR}} = \mathcal{E}_{m,m-1} \) is independent of \(\omega \).
 - (c) If \(m \) is even, then \(a_{m,n}^{\text{deR}} = \frac{m}{2} \mathcal{E}_{m,m} + \delta Q_{m,m-1}^{1} \) for \(Q_{m,m-1}^{1} \in \mathfrak{J}_{m,m-1}^1 \).

2. Let \(K = (M, g, J, E, h, \omega) \) where \((M, g, J)\) is a Kähler manifold, \((E, h)\) is a holomorphic Hermitian vector bundle over \(M \), and \(\omega \) is an auxiliary \(\partial \) closed form of type \((1,0) \).
 - (a) If \(n < m - 2 \), \(a_{m,n}^{\text{Dol}}(K) = 0 \).
 - (b) If \(n = m - 2 \), \(a_{m,m-2}^{\text{Dol}} = \frac{1}{(m-1)!} g(Td(M, g, J) \wedge ch(E, h) \wedge \Theta, \Omega^{m-1}) \).
 There exists \(Q_{m,m-3}^{1} \in \mathfrak{J}_{m,m-3}^1 \) so
 \[
 a_{m,m-2}^{\text{Dol}} = \frac{1}{(m-1)!} g(Td(M, g, J) \wedge ch(E, h), \Omega^{m-1}) + \delta Q_{m,m-3}^{1}.
 \]
 - (c) We have \(a_{m,m}^{\text{Dol}} = \frac{1}{m!} g(R_m^m, \Omega^m) + \delta Q_{m,m-1}^{1} \) for \(Q_{m,m-1}^{1} \in \mathfrak{J}_{m,m-1}^1 \) and \(R_m^m \in \mathfrak{E}_m^m \).
Assertion (1c) and Assertion (2c) show that \(\int_M \omega_{m,m} \text{dvol} \) is a characteristic number which is independent of \(\omega \) in the Riemannian setting and \(\int_M \omega_{m,m} \text{dvol} \) is a characteristic number which is independent of the structures in the Kähler setting. In Theorem 1.3 (2b), we may eliminate \(\Theta \) at the cost of introducing an additional divergence term. The divergence terms are in general present. We have, for example, \(Q_{1,1}^2 = (2\pi)\frac{1}{2} \Theta \) in Assertion (2b). We will establish the following result in Section 4. It shows, in particular, that \(\omega_{m,m} \) is not a multiple of \(\omega_{m,m} \).

Theorem 1.4. Use Theorem 1.3 to express \(\omega_{m,m} = \frac{1}{m^4} g(R^m, \Omega^m) + \delta Q_{1,m-1}^4 \) for \(Q_{1,m-1}^4 \in \mathcal{R}_{1,m-1} \) and \(R^m \in \mathcal{C}_m \).

1. Let \(\mathcal{M} = (M,g,J,E,h) \) where \((M,g,J) \) is a Kähler manifold and \((E,h) \) is a Hermitian vector bundle.
 a. If \(m = 2 \), \(R^2_2 = \frac{1}{2} c_1(T_e M) h_0(E) + \frac{c_1(E)}{2} \).
 b. If \(m = 4 \), \(R^4_4 = \left(\frac{1}{2} T_d + \frac{1}{4} T_1 \right) c_2(T_e M) h_0(E) + \frac{1}{2} c_1(T_e M) c_1(E) + h_2(E) \).

2. Let \(\mathcal{M} = \mathcal{M}_1 \times \cdots \times \mathcal{M}_m \) where \(\mathcal{M}_i = (M_i, g_i, J_i) \) are Riemann surfaces and \((E_i, h_i) \) are Hermitian line bundles.
 a. If \((M_i, g_i, J_i) \) are flat tori, \(R^m_0(\mathcal{M}) = \frac{1}{2} m \omega_{m,m} (\mathcal{M}) = \frac{1}{4} m \text{ch}_m(E) \).
 b. If \((E_i, h_i) \) is trivial for all \(i \), \(R^m_0(\mathcal{M}) = \frac{1}{4} m \text{ch}_m(\mathcal{M}) = \frac{1}{4} m T_d(T_e M) \).

2. Spaces of invariants

2.1. Spaces of local formula in the real setting

It is necessary to be a bit careful concerning what we mean by a local formula. Let \(x = (x^1, \ldots, x^m) \) be local coordinates centered at a point \(P \) of \(M \). Let \(U = (i_1, \ldots, i_a) \) be a collection of indices. Decompose \(\omega = \omega \text{d}x^i \). Set \(|U| := a \), \(\partial_i := \frac{\partial}{\partial x^i} \),

\[
\begin{align*}
\partial^U := \partial_{i_1} \ldots \partial_{i_a}, \quad g_{ij} := g(\partial_i, \partial_j), \quad g_{ij/|U|} := \partial_i^U g_{ij}, \\
\omega_{ij/|U|} := \partial_i^U \omega_{ij}, \quad \text{weight} \{g_{ij/|U|}\} = |U|, \quad \text{weight} \{\omega_{ij/|U|}\} = 1 + |U|.
\end{align*}
\]

Let \(M_m(\mathbb{R}) \) be the ring of \(m \times m \) real matrices. Let \(\mathcal{O}_m \subset M_m(\mathbb{R}) \) be the open subset of matrices \(g \) so that \(g \) defines a positive definite inner product. Let

\[
\mathcal{R} := C^\infty(\mathcal{O}_m)[g_{ij/|U|}, \omega_{ij/|U|}]_{|U| > 0}.
\]

These are the local formulas in the derivatives of the metric and of \(\omega \) with coefficients which are smooth functions of the Riemannian metric \(g \) which we will be considering. The weight induces a natural grading on \(\mathcal{R} \) and we may decompose \(\mathcal{R}_m = \oplus_n \mathcal{R}_{m,n} \) into the polynomials which are homogeneous of weight \(n \). If \(P \in \mathcal{R}_m \), we can evaluate \(P \) in a coordinate system in the obvious fashion; we say \(P \) is invariant if the value of \(P \) is independent of the particular local coordinate system chosen and we let \(\mathcal{J}_m \subset \mathcal{R}_m \) be the ring of invariant local formulae; we may decompose \(\mathcal{J}_m = \oplus_n \mathcal{J}_{m,n} \) where \(\mathcal{J}_{m,n} \subset \mathcal{R}_{m,n} \). The space of \(p \)-form valued invariants \(\mathcal{J}_{p,m,n} \) is defined similarly.

Clearly we can express the curvature tensor \(R \) and its covariant derivatives in terms of the derivatives of the metric. Conversely, in geodesic coordinates, we can express the derivatives of the metric in terms of the covariant derivatives of the curvature tensor. The *weight of the curvature tensor* \(R \) is 2 since it is linear in the second derivatives of the metric and quadratic in the first derivatives of the metric. We increase the weight by 1 for every explicit covariant derivative which appears. Thus, for example, the scalar curvature \(\tau \) and \(||\omega||^2 \) have weight 2 while the square of the norms \(||\rho||^2 \) and \(||R||^2 \) of the Ricci tensor and full curvature tensor, respectively, have weight 4. Similarly, \(||\nabla R||^2 \) has weight 6 and \(\mathcal{E}_{m,2k} \) has weight \(2k \).
2.2. Spaces of local formulae in the complex setting. The situation is considerably more delicate here and we must proceed with some care. Let \((M, g, J)\) be a Hermitian manifold; we assume \(J^2 g = g\) but do not impose the Kähler condition. Let \((E, h)\) a holomorphic vector bundle over \(M\) of dimension \(\ell\). Fix a point \(P\) of \(M\). Choose local holomorphic coordinates \(z = (z^1, \ldots, z^m)\) centered at \(P\) and a local holomorphic frame \(\vec{s} = (s_1, \ldots, s_\ell)\) for \(E\). Let \(U = (\alpha_1, \ldots, \alpha_\ell)\) and \(V = (\beta_1, \ldots, \beta_\ell)\) be collections of indices. Expand \(\omega = \omega_\alpha dz^\alpha\) and \(\bar{\omega} = \bar{\omega}_{\bar{\beta}} dz^{\bar{\beta}}\). Set

\[
[U] := a, \quad [V] := b, \quad \partial_\alpha := \frac{\partial}{\partial z^\alpha}, \quad \partial_{\bar{\beta}} := \frac{\partial}{\partial \bar{z}^\beta}, \quad \partial_{z;U} = \partial_{\bar{\beta}}, \ldots \partial_{\bar{\beta}}, \quad g_{\alpha\bar{\beta}} := g(\partial_\alpha, \partial_{\bar{\beta}}), \quad h_{p\bar{q}U} := h(s_p, s_q).
\]

Introduce the following notation for the derivatives of the structures involved:

\[
g_{\alpha\beta}/UV := \partial_\alpha \partial_{\bar{\beta}} g(\partial_\alpha, \partial_{\bar{\beta}}), \quad h_{p\bar{q}/UV} := \partial_\alpha \partial_{\bar{\beta}} h(s_p, s_q), \quad \bar{\omega}_\alpha/UV := \partial_\alpha \partial_{\bar{\beta}} \bar{\omega}_{\bar{\beta}/VU}, \quad \bar{\omega}_{\bar{\beta}/UV} := \partial_\alpha \partial_{\bar{\beta}} \bar{\omega}_{\bar{\beta}/VU}.
\]

(2.a)

If \([U] = 0\), there are no holomorphic derivatives, if \([V] = 0\), there are no anti-holomorphic derivatives, and if \([U] + [V] = 0\), there are no derivatives at all. We have

\[
\partial \omega = -\omega_{\alpha/\bar{\beta}} dz^\alpha \wedge d\bar{z}^\beta \quad \text{and} \quad \partial \bar{\omega} = \bar{\omega}_{\bar{\beta}/\alpha} dz^{\bar{\beta}} \wedge d\bar{z}^\alpha.
\]

Consequently, the variables \(\{\omega_\alpha, \omega_{\alpha/\bar{\beta}}, \bar{\omega}_{\bar{\beta}}, \bar{\omega}_{\bar{\beta}/\alpha}\}\) are tensorial unlike the remainder of the variables defined in Equation (2.a). Define

\[
\text{weight}\{g_{\alpha\beta}/UV\} = \text{weight}\{h_{p\bar{q}/UV}\} = [U] + [V],
\]

\[
\text{weight}\{\omega_{\alpha}/UV\} = \text{weight}\{\bar{\omega}_{\bar{\beta}/UV}\} = 1 + [U] + [V].
\]

Let \(M_k(\mathbb{C})\) be the ring of \(k \times k\) complex matrices. Let \(\mathcal{U} \subset M_m(\mathbb{C}) \otimes M_r(\mathbb{C})\) be the open subset consisting of all the matrices \((g, h)\) so that \(g\) and \(h\) define positive definite Hermitian inner products. We consider the polynomial ring

\[
\mathcal{P}_m := C^\infty(\mathcal{U}|g_{\alpha\beta}/UV, h_{p\bar{q}/UV}, \omega_{\alpha}/UV, \bar{\omega}_{\bar{\beta}/UV}, \omega_\alpha, \bar{\omega}_{\bar{\beta}}|U + |V| > 0).
\]

As in the real setting, we say that \(P \in \mathcal{P}_m\) is invariant if the evaluation is independent of the particular coordinate system \(z\) and frame \(\vec{s}\) chosen. Let \(\mathcal{R}_m\) be the ring of invariants in the Kähler context; \(\mathcal{R}_m\) is a graded ring and we may use the weight to decompose \(\mathcal{R}_m = \oplus_n \mathcal{R}_m,n\) into the polynomials which are homogeneous of weight \(n\). For example, \(a_{m,n}(\Delta^{p,q}) \in \mathcal{R}_m,n\). The spaces \(\mathcal{R}_m,n\) of \(p\)-valued forms of homogeneous weight \(n\) are defined similarly. For example, \(dw \in \mathcal{R}_m,2\).

2.3. Homotheties. The weight of a polynomial describes its behaviour under homotheties. The following is immediate from the definition and could be used to give an equivalent definition of the weight.

Lemma 2.1.

1. Let \(P \in \mathcal{R}_{m,k}^p\). Then \(P(x, c^2g, \omega) = c^{p-k}P(x, g, \omega)\).
2. Let \(P \in \mathcal{R}_{m,k}^p\). Then \(P(x, c^2g, J, h, \omega) = c^{p-k}P(x, g, J, E, h, \omega)\).

Example 2.2. It is worth giving some examples to illustrate Lemma 2.1. We work in the real setting. Let \(||\omega||^2_g := g^{ij}\omega_i\omega_j\). Since \(\omega_i\) has weight 1, \(||\omega||^2_g\) has weight 2 so \(||\omega||^2_g \in \mathcal{R}_{m,2}\). If we rescale the metric and set \(g_{<ij} = c^2 g_{ij}\), then \(g^{<ij} = c^{-2} g^{ij}\) so \(||\omega||^2_g = c^{-2}||\omega||^2_{g'}\). The components of the curvature tensor \(R_{ijkl}'\) have weight 2 since they are linear in the 2-jets of the metric and quadratic in the 1-jets of the metric. The Levi-Civita connection is unchanged if we rescale the metric and thus \(R_{abijkl} = R_{g'ijkl}\). Let \(\tau_g \in \mathcal{R}_{m,2}^0\) be the scalar curvature. We compute that \(\tau_{g'} = g^{jkl}R_{ijkl}' = c^{-2}g^{jkl}R_{ijkl}' = c^{-2}\tau_g\). We have \(d\tau_g \in \mathcal{R}_{m,3}\) and \(d\tau_{g'} = c^{-2}d\tau_g\).
2.4. The restriction map. As noted in the introduction, a spanning set for the space of invariants in the real setting is given by contraction of indices in pairs and alternations of indices where the indices range from 1 to \(m \); there is an analogous result in the complex setting. If \(P \in \mathcal{S}_m \), \(r(P) \in \mathcal{S}_{m-1} \) is defined by restricting the range of summation to range from 1 to \(m - 1 \). Although Weyl’s First Theorem of Invariants yields a spanning set, it is not a basis as one has the Bianchi identities and higher order analogues. Thus it is not immediately obvious that the restriction map is independent of the particular expression of an invariant in terms of a Weyl spanning set. To get around this difficulty, it is convenient to use a slightly different more geometric formalism. Let \(T^1 = (S^1, d\theta^2, 0) \) be the circle with the flat structures. If \(\mathcal{N} \) is an \(m - 1 \) dimensional structure, one forms the \(m \) dimensional structure

\[
\mathcal{M} = \mathcal{N} \times T^1 := (N \times S^1, ds_N^2 + d\theta^2, \pi_N^1 \omega_N).
\]

Let \(\iota_p(x) = (x, \theta) \) be an inclusion of \(N \) in \(N \times S^1 \); the particular basepoint \(\theta \) chosen is irrelevant since \(T^1 \) is homogeneous. Then \(r(P) \in \mathcal{S}_{m-1} \) is characterized by the identity

\[
 r(P)(\mathcal{N}) := \iota_p^*P(\mathcal{N} \times T^1).
\]

In the complex setting, the invariance theory is that of the unitary group rather than the orthogonal group and one sums over pairs of holomorphic and anti-holomorphic indices where the indices range from 1 to \(m \). Instead of considering \(T^1 \) one considers the flat 2-torus \(T^2 \) but the remainder of the analysis is the same and one obtains:

Lemma 2.3.

1. \(r \) is a well defined map from \(\mathcal{S}_{m,n} \) onto \(\mathcal{S}_{m-1,n} \).
2. \(r \) is a well defined map from \(\mathcal{R}_{m,n} \) onto \(\mathcal{R}_{m-2,n} \).

We introduce the ring

\[
\Xi_m := \mathbb{C}[\text{ch}_k(TM, J, g), \text{ch}_k(E, h), dw, d\bar{\omega}, \omega],
\]

We may decompose \(\Xi_m := \oplus_k \Xi^k_m \), where \(\Xi^k_m \subset \mathcal{R}^k_{m,k} \). We refer to [1] for the proof of Assertions (1) and to [2] for the proof of Assertions 2 in the following result; it is necessary to restrict to the Kähler setting.

Lemma 2.4.

1. In the Riemannian setting, we have that:
 a. \(r : \mathcal{S}_{m,n}^0 \to \mathcal{S}_{m-1,n}^0 \) is injective if \(n < m \).
 b. If \(m \) is even, then \(\ker(r : \mathcal{S}_{m,m}^0 \to \mathcal{S}_{m-1,m}^0) = E_{m,m} \cdot \mathbb{R} \).
2. In the Kähler setting, we have that:
 a. \(r : \mathcal{R}_{m,n}^0 \to \mathcal{R}_{m-2,n}^0 \) is injective if \(n < m \).
 b. \(\ker(r : \mathcal{R}_{m,m}^0 \to \mathcal{R}_{m-2,m}^0) = \mathbb{R} \Xi_m \).

We have the following useful result.

Lemma 2.5. \(r(a_{m,n}^{\text{deR}}) = -(4\pi)^{-1/2}a_{m-1,n}^{\text{deR}} \) and \(r(a_{m,n}^{\text{Dol}}) = -(4\pi)^{-1}a_{m-1,n}^{\text{Dol}} \).

Proof. Although the lemma in the real setting follows from work of Günther and Schimming [13], we shall give a direct proof in the interests of completeness. Let \(\mathcal{M}_m = \mathcal{N}_{m-1} \times T^1 \). We compute:

\[
 \Lambda^p M = \Lambda^p N \oplus \Lambda^{p-1} N \wedge d\theta,
\]

\[
 \Delta^p_M = \{ \Delta^p_N \otimes \text{id} + \text{id} \otimes \Delta^p_N \} \oplus \{ \Delta^p_{N} \otimes \text{id} + \text{id} \otimes \Delta^p_{N} \},
\]

\[
 a_{m,n}(x, \theta, \Delta^p_M) = (4\pi)^{-1/2} \{ a_{m-1,n}(x, \Delta^p_N) + a_{m-1,n}(x, \Delta^{p-1}_{N}) \},
\]

\[
 \sum_p (-1)^p p \cdot a_{m,n}(x, \theta, \Delta^p_M)
\]
\[
= (4\pi)^{-1/2} \sum_p (-1)^p p \cdot \left\{ a_{m-1,n}(x, \Delta_X^p) + a_{m-1,n}(x, \Delta_X^{p-1}) \right\}
\]
\[
= (4\pi)^{-1/2} \sum_p (-1)^p a_{m-1,n}(x, \Delta_X^p) \{ p - (p + 1) \}.
\]

Assertion 1 now follows from Equation (2b); the argument is the same for the Dolbeault complex.

\[\square\]

2.5. Low dimensional computations. We refer to [1] for the following result:

Lemma 2.6. \(a_{1,2}^{deR} = \frac{-\delta \omega}{\sqrt{\pi}}\) and \(a_{2,2}^{Dol} = \frac{r}{8\pi} - \delta(R(\omega)).\)

3. **The proof of Theorem 1.3 (1A, 2A)**

Let \(n < m - 1\). By Lemma 2.4, \(r(a_{m,n}^{deR}) = a_{m-1,n}^{deR}\). By Theorem 1.1, \(a_{m-1,n}^{deR} = 0\).

By Lemma 2.4, \(r: J_{m,n} \to J_{m-1,n}\) is injective for \(n < m\). This shows that \(a_{m,n}^{deR} = 0\) which establishes Theorem 1.3 (1a); the proof of Theorem 1.3 (2a) is the same in the Kähler setting.

\[\square\]

4. **The proof of Theorem 1.3 (1B, 2B)**

By Theorem 1.1, \(a_{2k,2k}^{deR} = E_{2k,2k}\). By Lemma 2.5, \(r(a_{2k+1,2k}^{deR}) = -(4\pi)^{-1/2}a_{2k,2k}^{deR}\).

By Lemma 2.4, \(r: J_{2k+1,2k} \to J_{2k,2k}\) is injective. By construction, we have that \(rE_{2k+1,2k} = E_{2k,2k}\). Assertion (1b) follows. The same argument in the Kähler setting shows

\[a_{Dol, m-2}^{m,n} = \frac{1}{(m-1)!} g(Td(M, g, J) \wedge ch(E, h) \wedge \Theta, \Omega^{m-1})\]

which establishes the first part of Assertion 2b. It is immediate from the definition that \(\Theta = 1 + d\Phi, \) since Td and ch are closed,

\[\{ Td(M, g, J) \wedge ch(E, h) \wedge \Theta \}_{m-2} = \{ Td(M, g, J) \wedge ch(E, h) \}_{m-2} + d\{ Td(M, g, J) \wedge ch(E, h) \wedge \Phi \}_{m-3}.
\]

Taking the inner product with \(\frac{1}{(m-1)!} \Omega^{m-1}\) is just the Hodge \(*\) operator in complex dimension \(m-1\). Thus

\[\frac{1}{(m-1)!} g(Td(M, g, J) \wedge ch(E, h) \wedge \Theta, \Omega^{m-1}) = \frac{1}{(m-1)!} g(Td(M, g, J) \wedge ch(E, h), \Omega^{m-1}) + \delta Q_{m-2,m-3}^1\]

(4.4)

for \(Q_{m-2,m-3}^1 = \ast\{ Td(M, g, J) \wedge ch(E, h) \wedge \Phi \}_{m-3}.\) We have \(\delta r = r \phi.\) By Lemma 2.3, we can lift Equation (4.4) to a corresponding equation in complex dimension \(m\) and complete the proof of Assertion (2b).

\[\square\]

Remark 4.1. This gives an explicit description of the 1-form \(Q_{m,m-3}^1\) of Theorem 1.3 (2b) as the unique element \(Q_{m,m-3}^1 \in R_{m,m-3}\) such that \(r(Q_{m,m-3}^1) = \ast\{ Td \wedge ch \wedge \Phi \}_{m-3} \in R_{m-2,m-3}^1.\)

5. **The proof of Theorem 1.3 (1C)**

We continue our discussion by generalizing a result of Gilkey [13] (see Assertion 4 of Lemma 2.9.1 on page 210) from the context of purely metric invariants to invariants which also depend upon the derivatives of \(\omega.\)

Lemma 5.1. Let \(P \in J_{m,n}\) where \(n \neq m.\) Suppose \(\int_M P(x, g, \omega) \text{dvol}(g)\) is independent of \((g, \omega)\) for all closed \(m\)-dimensional manifolds \(M.\) Then there exists \(Q_{m,n-1} \in J_{m,n-1}\) so that \(P = \delta Q_{m,n-1}.\)
Proof. Let \(f \in \mathcal{C}^{\infty}(M) \) and \(\epsilon \in \mathbb{R} \). We consider the conformal variation
\[
P_1(f, g, \omega) = \partial_\epsilon \left\{ P(x, e^{2\epsilon f}g, \omega) \operatorname{dvol}(e^{2\epsilon f}g) \right\}_{\epsilon=0}.
\]
Since \(P_1 \) is linear in the jets of \(f \), we have that
\[
P_1(f, g, \omega) = \sum_k \sum_{i_1, \ldots, i_k} f_{i_1, \ldots, i_k} Q^{i_1, \ldots, i_k}(g, \omega) = \sum_k \sum_{i_1, \ldots, i_k} Q^{i_1, \ldots, i_k}(g, \omega) f_{i_1, \ldots, i_k}.
\]
We integrate by parts formally to express
\[
P_1 = \delta Q + \sum_k \sum_{i_1, \ldots, i_k} (-1)^k f Q^{i_1, \ldots, i_k} P_{i_1, \ldots, i_k},
\]
By assumption,
\[
0 = \partial_\epsilon \left\{ \int_M P(x, e^{2\epsilon f}g, \omega) \operatorname{dvol}(e^{2\epsilon f}g) \right\}_{\epsilon=0} = \int_M P_1(f, g, \omega) \operatorname{dvol}(g)
\]
\[
= \int_M f \sum_k \sum_{i_1, \ldots, i_k} (-1)^k Q^{i_1, \ldots, i_k} P_{i_1, \ldots, i_k} \operatorname{dvol}(g).
\]
Since \(f \) was arbitrary,
\[
\sum_k \sum_{i_1, \ldots, i_k} (-1)^k Q^{i_1, \ldots, i_k} P_{i_1, \ldots, i_k} = 0.
\]
Thus \(P_1(f, g, \omega) = \delta Q(f, g, \omega) \). We set \(f = 1 \) to see
\[
P_1(1, g, \omega) = \delta Q(1, g, \omega).
\]
We have that \(\operatorname{dvol}(e^{2\epsilon g}) = e^{mc} \operatorname{dvol}(g) \). Since \(P \) is homogeneous of weight \(n \), Lemma \(2.1 \) yields \(P(x, e^{2\epsilon g}, \omega) \operatorname{dvol}(e^{2\epsilon g}) = e^{(m-n)\epsilon} P(x, g, \omega) \operatorname{dvol}(g) \). Differentiating this identity shows \(P_1 = (m-n)P \); the Lemma now follows from Equation (5.a).

We now establish Assertion (1c) of Theorem 1.3. Let \(P = r(a_{m,m}^{\text{deR}}) \in \mathcal{T}^{0}_{m-1,m} \). By Lemma 2.4 \(P \) is a multiple of \(a_{m-1,m}^{\text{deR}} \). The hypothesis of Lemma 5.1 is satisfied by Equation (5.a). Consequently, Lemma 5.1 shows that \(r(a_{m,m}^{\text{deR}}) = \delta Q_{m-1,m}^{1} \). By Lemma 2.4 we may choose \(Q_{m-1,m}^{1} \) so \(r(Q_{m-1,m}^{1}) = Q_{m-1,m}^{1} \). Since \(\delta r = r \delta \), \(r(a_{m,m}^{\text{deR}} - \delta Q_{m-1,m}^{1}) = 0 \). We use Lemma 2.4 to see that
\[
a_{m,m}^{\text{deR}} - \delta Q_{m-1,m}^{1} = c(m) \mathcal{E}_{m,m}.
\]
To evaluate the coefficient \(c(m) \), we may take \(\omega = 0 \) and use (local) Poincare duality to see that \(a_{m,m}(\Delta_{\mathcal{A}}^{K}) = a_{m,m}(\Delta_{\mathcal{M}}^{m-p}) \). Consequently, we may show that \(c(m) = \frac{1}{2}m \) by computing:
\[
2a_{m,m}^{\text{deR}} = \sum_p (-1)^p \left\{ a_{m,m}(x, \Delta_{\mathcal{A}}^{p}) + a_{m,m}(x, \Delta_{\mathcal{M}}^{m-p}) \right\}
\]
\[
= \sum_p (-1)^p a_{m,m}(x, \Delta_{\mathcal{A}}^{p}) \{ p + m - p \} = m \cdot a_{m,m}^{\text{deR}}.
\]
Suppose \(m = 2 \). We use Lemma 2.4 to see \(-4\pi)^{-1/2} a_{1,2}^{\text{deR}} = (2\pi)^{-1} \delta \omega \). Consequently, \(r(Q_{2,1}^{1}) \) is non-zero. \(\square \)
6. The proof of Theorem 1.3 (2c)

There are several fundamental differences between the real and the complex settings and we must treat the variables \(\{\omega_a, \bar{\omega}_\beta\} \) differently from the other variables. In Section 6.1, we introduce some additional notation. Section 6.2 is devoted to showing that in fact the heat trace invariants \(a_{m,n}(\Delta^{p,q}) \) do not involve the \(\{\omega_a, \bar{\omega}_\beta\} \) variables but only the derivatives of positive order in \(\omega \) are present; this uses a gauge renormalization. This is in marked contrast to the real setting. In Section 6.3, we complete the analysis; again, there is a subtlety in that the conformal variation of a Kähler metric need no longer be Kähler. Consequently, we pass (temporarily) to the Hermitian setting.

6.1. Spaces of invariants. We adopt the notation of Section 2.2. Recall that \(U \subset M_m(\mathbb{C}) \otimes M_l(\mathbb{C}) \) is the open subset consisting of all the matrices \((g,h)\) so that \(g \) and \(h \) define positive definite Hermitian inner products. We adjoin variables successively to the ground ring \(C^\infty(U) \) to define the sub-rings:

\[
U_m := C^\infty(U)[g_{\alpha\beta}/U\bar{V}, \ h_{pq}/U\bar{V}]|U|+|V|>0, \quad \mathfrak{U}_m := U_m[\omega_{\alpha}/U\bar{V}, \bar{\omega}_{\beta}/U\bar{V}]|U|+|V|>0.
\]

We explicitly exclude the variables \(\{\omega_a, \bar{\omega}_\beta\} \) from \(U_m \) and \(\mathfrak{U}_m \). Let \(U_{m,n} \subset U_m \) and \(\mathfrak{U}_{m,n} \subset \mathfrak{U}_m \) be the subspaces of weight \(n \). We impose no assumption of invariance as we are simply interested in the nature of the polynomials for the moment. Let \(\text{End}(\Lambda^{p,q}(M) \otimes E; \mathfrak{U}) \) and \(\text{End}(\Lambda^{p,q}(M) \otimes E; \mathfrak{U}) \) be the vector space of endomorphisms of \(\Lambda^{p,q}(M) \otimes E \) with coefficients in the rings \(\mathfrak{U} \) and \(\mathfrak{U} \), respectively.

6.2. Normalizing the gauge. The variables \(\{\omega_a, \bar{\omega}_\beta\} \) are troublesome and we eliminate them from consideration as follows. We work in the Hermitian setting as we have imposed no conditions on \(\Omega \).

Lemma 6.1. \(a_{m,n}(x, \Delta^{p,q}) \in \mathfrak{U}_{m,n} \), i.e., \(a_{m,n}(x, \Delta^{p,q}) \) does not involve the variables \(\{\omega_a, \bar{\omega}_\beta\} \).

Proof. We may decompose

\[
\bar{\partial}_\omega = \text{ext}(dz^\bar{\beta}) \left\{ \partial_{\bar{\beta}} + \bar{\omega}_{\bar{\beta}} \right\} \quad \text{and} \quad \delta^\omega = \text{int}(dz^\omega) \left\{ -\partial_\omega + \omega_a \right\} + \mathcal{L}
\]

where \(\mathcal{L} \in \text{End}(\Lambda(M) \otimes E; \mathfrak{U}_{m,n,1}) \) arises by taking the adjoint of \(\bar{\partial} \) and is linear in the first derivatives of \(g \) and \(h \); \(\mathcal{L} \) and \(\text{int}(dz^\omega) \) lower the anti-holomorphic index \(q \) by 1 and \(\text{ext}(dz^\bar{\beta}) \) raises the anti-holomorphic index \(q \) by 1. We define:

\[
\mathcal{E}_1^{p,q} := \text{ext}(dz^\bar{\beta}) \text{int}(dz^\omega)\omega_{\alpha/\bar{\beta}} \in \text{End}(\Lambda^{p,q}(M) \otimes E; \mathfrak{U}_{m,2}), \quad \mathcal{E}_2^{p,q} := \text{int}(dz^\omega)\text{ext}(dz^\bar{\beta})\bar{\omega}_{\beta/\alpha} \in \text{End}(\Lambda^{p,q}(M) \otimes E; \mathfrak{U}_{m,2}),
\]

\[
\mathcal{L}^{p,q,\alpha} := \text{ext}(dz^\bar{\beta})\partial_{\bar{\beta}}[\text{int}(dz^\omega)] \in \text{End}(\Lambda^{p,q}(M) \otimes E; \mathfrak{U}_{m,1}), \quad \mathcal{L}^{p,q,\bar{\beta}} := \text{ext}(dz^\bar{\beta})\mathcal{L} + \mathcal{L}\text{ext}(dz^\bar{\beta}) \in \text{End}(\Lambda^{p,q}(M) \otimes E; \mathfrak{U}_{m,1}),
\]

\[
\mathcal{Q}^{p,q} := \text{ext}(dz^\bar{\beta})\partial_{\bar{\beta}}[\mathcal{L}] \in \text{End}(\Lambda^{p,q}(M) \otimes E; \mathfrak{U}_{m,2}).
\]

Since the matrices \(\text{ext}(dz^\bar{\beta}) \) are constant with respect to the coordinate frame, we do not need to introduce their derivatives. Note that \(\mathcal{E}_1^{p,q} \) and \(\mathcal{E}_2^{p,q} \) are invariantly defined while \(\mathcal{L}^{p,q,\alpha}, \mathcal{L}^{p,q,\bar{\beta}}, \) and \(\mathcal{Q}^{p,q} \) are not invariantly defined but rather depend on \((\bar{z}, \bar{s}) \). We use the identity

\[
\text{int}(dz^\omega)\text{ext}(dz^\bar{\beta}) + \text{ext}(dz^\bar{\beta})\text{int}(dz^\omega) = g^{\alpha\bar{\beta}}
\]

to express \(\Delta^{p,q} := 2\delta^\omega \partial_\omega + 2\partial_\omega \delta^\omega \) in the form:
\[\Delta^{p,q} = 2g^{\alpha\beta}\{-\partial_\alpha\partial_\beta + \omega_\alpha\partial_\beta - \omega_\beta\partial_\alpha + \omega_\alpha\bar{\omega}_\beta\} + 2\mathcal{L}^{p,q}_{a}\{\partial_\alpha + \omega_\alpha\} + 2\mathcal{L}^{p,q}_{\beta}\{\partial_\beta + \omega_\beta\}. \]

Fix a point \(P \) and let \(\xi := \omega_\alpha(P)z^\alpha - \bar{\omega}_\beta(P)z^\beta \). Since \(\xi \) is purely imaginary, \(\Delta^{p,q}_\xi := e^{-\xi}\Delta^{p,q}e^\xi \) is defined by a unitary change of gauge. We compute

\[\Delta^{p,q}_\xi = 2g^{\alpha\beta}\{-\partial_\alpha\partial_\beta + (\omega_\alpha - \omega_\alpha(P))\partial_\beta - (\bar{\omega}_\beta - \bar{\omega}_\beta(P))\partial_\alpha\} + 2\mathcal{L}^{p,q}_{a\alpha}\{\partial_\alpha + \omega_\alpha - \omega_\alpha(P)\} + 2\mathcal{L}^{p,q}_{\beta}\{\partial_\beta + \omega_\beta - \bar{\omega}_\beta(P)\}. \]

Since \(\Delta^{p,q} \) and \(\Delta^{p,q}_\xi \) differ by a gauge transformation, \(a_{m,n}(\Delta^{p,q}) = a_{m,n}(\Delta^{p,q}_\xi) \). It is immediate that the symbol of \(\Delta^{p,q}_\xi \) and all the derivatives of the symbol of \(\Delta^{p,q}_\xi \) at \(P \) do not involve the \(\omega_\alpha \) and \(\bar{\omega}_\beta \) variables. Consequently, \(a_{m,n}(\Delta^{p,q}_\xi) \in \mathfrak{V}_{m,n} \). \(\square \)

Remark 6.2. We have exploited a fundamental difference between the deformed real Laplacian and the deformed complex Laplacian that relates to gauge freedom. We illustrate this as follows. Suppose \(m = 1 \). We work on the circle. Let \(\omega = adx \) for \(a \in \mathbb{R} \). Then \(\partial_a = \partial_x + a \) and \(\partial_a = -\partial_x + a \); \(\Delta^0_a = \Delta_1^a = \partial_a\partial_a = -(\partial_x^2 + a^2) \) is already normalized optimally since there is no first order term and, unlike in the complex setting, it is not possible to make a change of gauge that eliminates the dependence of the symbol on \(a \).

6.3. Conformal variations

If \(g \) is a Kähler metric, then the conformal variation \(e^{2\gamma}g \) need no longer be Kähler. However, this variation remains within the class of Hermitian manifolds. Since Equation \(1.4 \) continues to hold for Hermitian manifolds, the argument given to prove Lemma 5.1 shows that we may express \(Q_{m,n}^{Dol} = \delta Q_{m-2,n-1} \) in the class of Hermitian and hence in the class of Kähler manifolds. Thus we may choose \(Q_{1,m,1} \) so that

\[a_{m,m}^{Dol} - \delta Q_{m,m-1} \in \ker(r) \].

The integration by parts procedure discussed in Section 5 arises from a conformal variation of \(g \); thus although additional derivatives of \(\omega \) may be introduced, the number of derivatives of \(\omega \) are not reduced. Thus \(Q \in \mathfrak{V}_{m,n-1} \) and we have \(a_{m,m}^{Dol} - \delta Q \in \mathfrak{V}_{m,n} \). Let

\[SS_m := \mathbb{C}[\text{ch}_m(TM, J, g), \text{ch}_m(E, h), d\omega, d\bar{\omega}] \subset \mathfrak{T}_m \]

be obtained by omitting the \(\{\omega_\alpha, \bar{\omega}_\beta\} \) variables. We restrict to the Kähler setting to obtain

\[a_{m,m}^{Dol} - \delta Q \in \mathfrak{S}_m \cap \mathfrak{V}_m = \mathfrak{S}_m^m \].

Since we have omitted the \(\{\omega_\alpha, \bar{\omega}_\beta\} \) variables, and since \(\text{ch}_m \) is a closed differential form, we complete the proof of Theorem 1.3 by computing

\[SS_m^m = \mathfrak{C}_m + d\{\omega \wedge SS_{m}^{m-2} + \bar{\omega} \wedge SS_{m}^{m-2}\}, \]

\[\ast SS_m^m = \ast \mathfrak{C}_m + \delta \{\omega \wedge SS_{m}^{m-2} + \bar{\omega} \wedge SS_{m}^{m-2}\} \].

7. The proof of Theorem 1.3

Let \(\Delta^{p,q}_E \) be the complex Laplacian with coefficients in \(E \). Let \(\Delta^0 \) be the real Laplacian. If \(P \) is a local invariant, let \(P[\mathcal{M}] = \int_M P(\mathcal{M}) \) dv. We will use the following results in our analysis. Assertion 1 is immediate from the definition, Assertions (2,3) are Serre-duality, and Assertions (4,5) follow by specializing the Hirzebruch-Riemann-Roch Theorem.

Theorem 7.1. Let \(E \) be a holomorphic vector bundle over a Kähler manifold \(\mathcal{M} \).

1. \(\Delta^{p,q}_E = \Delta^{q,p}_0 \otimes E. \)
(2) There is a conjugate linear isomorphism intertwining $\Delta_P^{p,q}$ and $\Delta_{E}^{m-p,m-q}$.
(3) Complex conjugation intertwines $\Delta_P^{p,q}$ and $\Delta_{E}^{q,p}$; $\Delta^{*} = \overline{\otimes}_{p+q=n} \Delta_{E}^{p,q}$.
(4) If $m=2$, index$(\partial) = \{ \frac{1}{2} c_1(T_eM) \text{ch}_0(E) + c_1(E) \}[M].$
(5) If $m=4$, index$(\partial) = \{ \text{Td}_2(T_eM) \text{ch}_0(E) + c_1(T_eM) \text{ch}_1(E) + \text{ch}_2(E) \}[M].$

We use Leibnitz’s formula to establish the following result.

Lemma 7.2. Let \mathcal{M}_1 have real dimension n_1. Then
\[a_{m_1 + m_2, m_1 + m_2}^{\text{Dol}}[\mathcal{M}_1 \times \mathcal{M}_2] = a_{m_1, m_1}^{\text{Dol}}[\mathcal{M}_1] a_{m_2, m_2}^{\text{Dol}}[\mathcal{M}_2] + a_{m_1, m_1}^{\text{Dol}}[\mathcal{M}_1] a_{m_2, m_2}^{\text{Dol}}[\mathcal{M}_2]. \]

Proof. Set $\mathfrak{A}_{m,n}[\mathcal{M}] := \sum_{p} (-1)^{p} a_{m,n}(\Delta^{(0,p)})[\mathcal{M}] s^{p}$. We then have
\[a_{m_1, m_1}^{\text{Dol}}[\mathcal{M}] = \mathfrak{A}_{m_1, m_1}^{\text{Dol}}[\mathcal{M}]|_{s=1} \text{ and } a_{m_2, m_2}^{\text{Dol}}[\mathcal{M}] = \partial_{s}(\mathfrak{A}_{m_2, m_2}^{\text{Dol}}[\mathcal{M}])|_{s=1}. \]

This then yields that
\[\mathfrak{A}_{m_1, m_1}^{\text{Dol}}[\mathcal{M}_1 \times \mathcal{M}_2](s) = \sum_{n_1 + n_2 = n} \mathfrak{A}_{m_1, m_1}^{\text{Dol}}[\mathcal{M}_1](s) \cdot \mathfrak{A}_{m_2, m_2}^{\text{Dol}}[\mathcal{M}_2](s). \] (7.a)

We differentiate Equation (7.a) and set $s = 1$ to obtain
\[a_{m_1, m_1}^{\text{Dol}}[\mathcal{M}] = \sum_{n_1 + n_2 = m} a_{m_1, n_1}^{\text{Dol}}[\mathcal{M}_1] \cdot a_{m_2, n_2}^{\text{Dol}}[\mathcal{M}_2] + a_{m_1, n_1}^{\text{Dol}}[\mathcal{M}_1] \cdot a_{m_2, n_2}^{\text{Dol}}[\mathcal{M}_2]. \]

We have that $a_{m_1, n_1}^{\text{Dol}}[\mathcal{M}_1] = 0$ if $m_1 \neq n_1$ and $a_{m_2, n_2}^{\text{Dol}}[\mathcal{M}_2] = 0$ if $m_2 \neq n_2$. We may therefore safely set $n_1 = m_1$ and $n_2 = m_2$ in the above identity to complete the proof of Lemma 7.2. \(\square \)

The heat trace invariants are additive with respect to direct sums, i.e.
\[a_{m,n}(\Delta^{p,q})(M,g,J,E_1 \oplus E_2,h_1 \oplus h_2) = a_{m,n}(\Delta^{p,q})(M,g,J,E_1,h_1) + a_{m,n}(\Delta^{p,q})(M,g,J,E_2,h_2). \]

Since a_{m_1,m_2}^{Dol} and a_{m_1,m_2}^{Dol} can be expressed in terms of characteristic classes, only the Chern character $\text{ch}(E)$ enters. If E is a line bundle, then $\text{ch}_k(E,h) = \frac{1}{k!} c_k^p(E,h).$

7.1 The proof of Theorem 1.4 (1a).
Suppose that $m = 2$. There exist constants α^p and β^q so that $a_{2,2}(\Delta^{E}) = \alpha^0 c_1(T_eM) \text{ch}_0(E) + \beta^0 c_1(E)$. We have $c_1(E^*) = -c_1(E)$. Since $\Lambda^{1,0}(M)$ is the dual of T_eM, $c_1(\Lambda^{1,0}(M)) = -c_1(T_eM)$. We suppose $\dim E = 1$ and use Theorem 7.1 to compute:
\[\{ \alpha^1 c_1(T_eM) + \beta^1 c_1(E) \}[M] = a_{2,2}(\Delta^{0,1}_E)[M] \]
\[= a_{2,2}(\Delta^{0,0}_E)[M] = a_{2,2}(\Delta^{0,0}_A(\overline{\otimes}_{E}))[M] \]
\[= \{ \alpha^0 c_1(T_eM) + \beta^0 c_1(\Lambda^{1,0}(M)) + \beta^0 c_1(E^*) \}[M] \]
\[= \{ (\alpha^0 - \beta^0) c_1(T_eM) - \beta^0 c_1(\Lambda^{1,0}(M)) \}[M]. \]

Consequently, $\alpha^1 = \alpha^0 - \beta^0$ and $\beta^1 = -\beta^0$. Therefore,
\[\text{index} \partial_E = \frac{1}{2} \{ c_1(T_eM) + c_1(E) \}[M] = a_{2,2}^{\text{Dol}}[M] \]
\[= \{ (\alpha^0 - \alpha^1) c_1(T_eM) + (\beta^0 - \beta^1) c_1(E) \}[M] \]
\[= \{ \beta^0 c_1(T_eM) + 2\beta^0 c_1(E) \}[M]. \]
Consequently, $\beta^0 = \frac{1}{2}$ and $\beta^1 = -\frac{1}{2}$. Let S^2 be the unit sphere in \mathbb{R}^3 with the usual metric and complex structure; $\tau = 2$ and $\text{vol}(S^2) = 4\pi$. We compute
\[
\frac{1}{2\pi} \tau [S^2] = 1 = \text{index}(\partial)[S^2] = \frac{1}{2}c_1[S^2]
\]
so $c_1(S^2) = \frac{1}{2\pi} \tau$. Take E trivial. McKeen and Singer [19] (see also Patodi [21]) computed $a_{2,2}(\Delta^0)$. Together with Theorem (7.1), this shows
\[
a_{2,2}(\Delta^0,0) = a_{2,2}(\Delta^0) = \frac{1}{2\pi} \tau = \frac{1}{8} c_1(T_e),
\]
\[
a_{2,2}(\Delta^0,1) = \frac{1}{2} a_{2,2}(\Delta^1) = \frac{1}{2 \cdot 2^2 \pi} (-4 \tau) = -\frac{1}{8} c_1(T_e).
\]
Thus $\alpha^0 = \frac{1}{8}$ and $\alpha^1 = \alpha^0 - \beta^0 = \frac{1}{8} - \frac{1}{2} = -\frac{1}{8}$. \hfill \qed

7.2. The proof of Theorem (1.3) (1b). Suppose $m = 4$. Let $\mathcal{M} = (M, g, J, E, h)$ be a complex surface. There exist constants α and β and a characteristic class $P_2(T_e M)$ so that
\[
d_{4,4}^\text{Dol}[\mathcal{M}] = \{P_2(T_e M) \text{ch}_0(E) + \alpha c_1(T_e M) c_1(E) + \beta \text{ch}_2(E)\}[\mathcal{M}].
\]
Let $\mathcal{M} = \mathcal{M}_1 \times \mathcal{M}_2$. Suppose first that \mathcal{M}_i are flat tori and (E_i, h_i) are line bundles with $c_1(E_i)[\mathcal{M}_i] \neq 0$. Then
\[
c_1(T_e(M))[\mathcal{M}] = 0, \quad \{P_2(T_e M) \text{ch}_0(E)\}[\mathcal{M}] = 0, \quad \text{ch}_2(E_i \otimes E_2)[\mathcal{M}] = c_1(E_1)[\mathcal{M}_1] \cdot c_1(E_2)[\mathcal{M}_2].
\]
Thus Theorem (7.1), Lemma (7.2) and Theorem (1.4) (1a) yield
\[
\beta c_1(E_1)[\mathcal{M}_1] \cdot c_1(E_2)[\mathcal{M}_2] = \beta \text{ch}_2(E_i \otimes E_2)[\mathcal{M}] = a_{4,4}^\text{Dol}[\mathcal{M}]
\]
\[
= a_{2,2}^\text{Dol}[\mathcal{M}_1] \cdot a_{2,2}^\text{Dol}[\mathcal{M}_2] + a_{2,2}^\text{Dol}[\mathcal{M}_1] \cdot a_{2,2}^\text{Dol}[\mathcal{M}_2] + c_1(E_1)[\mathcal{M}_1] \cdot \frac{1}{2} c_1(E_2)[\mathcal{M}_2]
\]
\[
= c_1(E_1)[\mathcal{M}_1] \cdot c_1(E_2)[\mathcal{M}_2].
\]
This shows that $\beta = 1$. Suppose $\mathcal{M}_1 = S^2$, E_1 is trivial, M_2 is the flat torus, and $c_1(E_2)[\mathcal{M}_2] \neq 0$. Then $P_2(T_e M) \text{ch}_0(E) = P_2(T_e M_1 \oplus 1) \text{ch}_0(E) = 0$ and $\text{ch}_2(E) = \text{ch}_2(E_2) = 0$. Thus
\[
\alpha c_1(T_e M_1)[\mathcal{M}_1] \cdot c_1(E_2)[\mathcal{M}_2] = a_{4,4}^\text{Dol}[\mathcal{M}]
\]
\[
= a_{2,2}^\text{Dol}[\mathcal{M}_1] \cdot a_{2,2}^\text{Dol}[\mathcal{M}_2] + a_{2,2}^\text{Dol}[\mathcal{M}_1] \cdot a_{2,2}^\text{Dol}[\mathcal{M}_2] + c_1(T_e M_1)[\mathcal{M}_1] \cdot \frac{1}{2} c_1(E_2)[\mathcal{M}_2]
\]
\[
= c_1(E_1)[\mathcal{M}_1] \cdot c_1(E_2)[\mathcal{M}_2].
\]
This shows that $\alpha = \frac{1}{2} + \frac{1}{2} = \frac{1}{2}$. Therefore, we have that
\[
a_{4,4}^\text{Dol}[\mathcal{M}] = \{P_2(T_e M) \text{ch}_0(E) + \frac{1}{2} c_1(T_e M) c_1(E) + \text{ch}_2(E)[\mathcal{M}].
\]

(7.b)

We now use Serre duality. Let $E = 1 \oplus \Lambda^2,0(T_e M)$. We have
\[
a_{4,4}^\text{Dol}(\mathcal{M}) = -a_{4,4}(\Lambda_{1,0}^2,0) + 2a_{4,4}(\Delta_1^{0,2})
\]
\[
= -a_{4,4}(\Delta^{0,1}_{1,0} + 2a_{4,4}(\Delta_1^{0,2})) + 2a_{4,4}(\Delta_1^{0,2})
\]
\[
= -a_{4,4}(\Delta^{0,1}_{2,0} + 2a_{4,4}(\Delta_2^{0,0})
\]
\[
= 2a_{4,4}(\Lambda_{1,0}^2) - 2a_{4,4}(\Delta_1^{0,1}) + 2a_{4,4}(\Delta_2^{0,0}) - 2a_{4,4}(\Delta_1^{0,1})
\]
\[
= 2a_{4,4}(\Delta_1^{0,0}) - 2a_{4,4}(\Delta_2^{0,0}) = 2a_{4,4}^\text{Dol}(\mathcal{M}).
\]

(7.c)

We add the expressions of the second and third lines of Equation (7.3) to see
\[
2a_{4,4}^\text{Dol}(\mathcal{M}) = 2a_{4,4}(\Lambda_{1,0}^2) - 2a_{4,4}(\Delta_1^{0,1}) + 2a_{4,4}(\Delta_2^{0,0}) = 2a_{4,4}^\text{Dol}(\mathcal{M}).
\]

(7.d)

We use Equation (7.3), Equation (7.2), and Theorem (1.4) to see
\[
\{P_2(T_e M) \text{ch}_0(E) + \frac{1}{2} c_1(T_e M) c_1(E) + \text{ch}_2(E)[\mathcal{M}]
\]
\[
= \{T \text{d}_2(T_e M) \text{ch}_0(E) + \frac{1}{2} c_1(T_e M) c_1(E) + \text{ch}_2(E)[\mathcal{M}].
\]

We have $\text{ch}_0(E) = 2$ and $\text{ch}_1(E) = c_1(\Lambda^{2,0}) = -c_1(T_e M)$. Consequently
\[
P_2(T_e M) = \text{td}_2(T_e M) + \frac{1}{2}(\frac{1}{2} - \frac{1}{2})(-c_1^2(T_e M)) = \text{td}_2(T_e M) + \frac{1}{2}c_1^2(T_e M).
\]

\hfill \qed
7.3. The proof of Theorem 1.4 (2a,2b). Let \(M := N_1 \times \cdots \times N_m \) where \((N_i, g_i, J_i)\) are flat tori of real dimension 2 and \((E_i, h_i)\) are Hermitian line bundles over \(N_i\). Let \(E = E_1 \otimes \cdots \otimes E_m \). Then \(\text{ch}_m(E) = c_1(E_1) \cdots c_1(E_m) \). We apply Lemma 7.2 and Theorem 1.4 to prove Theorem 1.4 (2a) by computing

\[
\begin{align*}
\alpha^D_{m,m}[M] &= \prod c_1(E_i)[N_i], \\
\alpha^{\text{Dol}}_{m,m}[h_i][N_i] &= \frac{1}{2}(1 + s)c_1(E_i)[N_i], \\
\alpha^D_{m,m}[M] &= \partial_s \{ \alpha^{\text{Dol}}_{m,m}(s)[M] \} |_{s=1} = \partial_s \{ 2^{-m}(1 + s)^m \prod c_1(E_i)[N_i] \} |_{s=1} \\
&= \frac{1}{2} m \text{ch}_m(E)[M] = \frac{1}{2} m^{\text{Dol}}_{m,m}[M].
\end{align*}
\]

Similarly, let \(M_i \) be arbitrary Riemann surfaces and let \((E_i, h_i)\) be trivial. We complete the proof of Theorem 1.4 (2b) by computing

\[
\begin{align*}
\alpha^D_{m,2}[M] &= 2^{-m} \prod c_1(T_i)[M_i], \\
\alpha^{\text{Dol}}_{m,2}[M] &= \partial_s \{ \alpha^{\text{Dol}}_{m,2}(s)[M_i] \} |_{s=1} = \partial_s \{ 6^{-m}(1 + 2s)^m \prod c_1(T_i)[M_i] \} |_{s=1} \\
&= \frac{1}{2} m^{\text{Dol}}_{m,2}[M].
\end{align*}
\]

\(\square\)

Research Support. Research partially supported by grants PID2019-105138GB-C21 (Spain) and MTM2017-89686-P (AEI/FEDER, UE).

This paper is dedicated to the memory of Professor L. Nirenberg. Gilkey writes: Profesor L. Nirenberg was my thesis advisor and mentor. My thesis dealt with a heat equation proof of the index theorem for geometrical elliptic complexes; one of the chapters dealt with the Dolbeault complex in the Kähler setting. Much has happened since I received my Ph. D. in 1972 from Harvard and I have revisited the topic several times subsequently. But it seems appropriate to revisit the topic for what I expect will be one final time with my colleague Professor Álvarez López who is an expert on the Witten deformation and a valued collaborator and friend. The years 1969–1972 when I was on “travelling guidance” from Harvard studying with Professor Nirenberg at NYU were tumultuous ones as that was the Vietnam war era with an occupation of the Courant Institute and many anti-war protests. Professor Nirenberg helped me obtain student deferments that enabled me to complete my degree and on those grounds alone I owe him a debt of gratitude I can never repay. But in addition, he offered me wise professional and personal guidance and in all manner enriched my life and helped me launch my mathematical career. It is an honor to dedicate this paper to his memory as I near the end of my own career in mathematics. He launched me on a wonderful journey through life.

Álvarez López writes: It is a great honor for me to participate in a scientific contribution to the memory of Louis Nirenberg. The first time I heard his name was in a PhD course, around 1985, studying the celebrated Newlander-Nirenberg integrability condition for the Dolbeault complex. After that I continued to discover the enormous importance and variety of his achievements, which made him one of the most relevant mathematicians of the 20th century. It was a very pleasant surprise when Peter Gilkey told me that Louis Nirenberg had been his thesis advisor. I was fortunate to collaborate with Peter Gilkey, and to have that indirect connection with Louis Nirenberg.

References

[1] J. Álvarez-López and P. Gilkey, “The local index density of the perturbed de Rham complex”, http://arxiv.org/abs/2004.02243 (to appear in the Czechoslovak Math. J.)

[2] J. Álvarez-López and P. Gilkey, “The Witten deformation of the Dolbeault complex”, http://arxiv.org/abs/2007.15889

[3] J. A. Álvarez López, Y. A. Kordyukov, and E. Leichtnam, “A trace formula for foliated flow”, in preparation.
[4] J. A. Álvarez López, Y. A. Kordyukov, and E. Leichtnam, “Asymptotic triviality of zeta invariants of closed 1-forms”, in preparation.

[5] M. F. Atiyah, R. Bott, and V. K. Patodi, “On the heat equation and the index theorem”, Invent. Math. 13 (1973), 279–330; errata 28 (1975), 277–280. Zbl 0257.58008, MR650828, doi:10.1007/BF01425417; Zbl 0301.58018, MR650829, doi:10.1007/BF01425562.

[6] J.-M. Bismut and W. Zhang, “An extension of a theorem by Cheeger and Müller”, Astérisque, Vol. 205, Soc. Math. France (1992). Zbl 0781.58039, MR1185803.

[7] M. Braverman, and M. Farber, “Novikov type inequalities for differential forms with non-isolated zeros”, Math. Proc. Camb. Phil. Soc. 122 (1997), 357–375. Zbl 0894.58012, MR1458239, doi:10.1017/S0305004197001734.

[8] S. Chern, “A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds”, Ann. Math. (2) 45 (1944), 741–752. Zbl 0060.38103, MR11027, doi:10.2307/1969302.

[9] D. Burghelea and S. Haller, “On the topology and analysis of a closed one form. I. (Novikov’s theory revisited)”, Essays on geometry and related topics, Vol. 1, 2, Monogr. Enseign. Math., Vol. 38, Enseignement Math., Geneva, 2001, pp. 133–175. Zbl 1017.57013, MR1929325.

[10] D. Burghelea, and S. Haller, “Dynamics, Laplace transform and spectral geometry”, J. Topol. 1 (2008), 115–151. Zbl 1156.57022, MR2365654, doi:10.1112/jtopol/jtm005.

[11] P. Gilkey, “Curvature and the eigenvalues of the Laplacian for elliptic complexes”, Adv. Math. 10 (1973), 344–382. Zbl 0259.58010, MR324731, doi:10.1016/0001-8708(73)90119-9.

[12] P. Gilkey, “Curvature and the eigenvalues of the Laplacian for Kähler manifolds”, Adv. Math. 11 (1973), 311–325. Zbl 0285.53044, MR334290, doi:10.1016/0001-8708(73)90014-5.

[13] P. Gilkey, “Invariance Theory, the heat equation, and the Atiyah-Singer index theorem 2nd ed.”, CRC Press (1995). Zbl 0856.58001, MR1396308, doi:10.1201/9780203749791.

[14] P. Gilkey, S. Nikčević, and J. Pohjanpelto, “The local index formula for a Hermitian manifold”, Pac. J. Math. 180 (1997), 51–56. Zbl 0885.58091, MR1474893, doi:10.2140/pjm.1997.180.51.

[15] P. Günther and R. Schimming, “Curvature and spectrum of compact Riemannian manifolds”, J. Diff. Geo. 12 (1977), 599-618. Zbl 0399.58017, MR0512929, doi:10.4310/jdg/1214434229.

[16] F. R. Harvey and G. Minervini, “Morse Novikov theory and cohomology with forward supports”, Math. Ann. 335 (2006), 787–818. Zbl 1109.57019, MR2232017, doi:10.1007/s00208-006-0765-4.

[17] B. Helffer, and J. Sjöstrand, “Puits multiples en mecanique semi-classique IV: Edude du complexe de Witten”, Commun. Partial Differ. Equations 10 (1985), 245–340. Zbl 0597.35024, MR800682, doi:10.1080/03605308508820237.

[18] F. Hirzebruch, “Topological methods in algebraic geometry”, Springer-Verlag (Berlin) 1966. Zbl 0138.42001, MR0202713, doi:10.1007/978-3-662-30697-0.

[19] H. P. McKean and I. M. Singer, “Curvature and the eigenvalues of the Laplacian”, J. Diff. Geo. 1 (1967), 43–69. Zbl 0198.44301, MR0217739, doi:10.4310/jdg/1214427880.

[20] G. Minervini, “A current approach to Morse and Novikov theories”, Rend. Mat. Appl., VII. Ser. 36 (2015), 95–195. MR3532533, Zbl 1361.58007.

[21] V. K. Patodi, “Curvature and the eigenforms of the Laplace operator”, J. Diff. Geo. 5 (1971), 233–249. Zbl 0211.53901, MR0292114, doi:10.4310/jdg/1214429791.

[22] A. Pazhitnov, “An analytic proof of the real part of Novikov’s inequalities”, Soviet Math., Dokl. 35 (1987), 456–457. Zbl 0647.57025, MR891557.

[23] O. Pekonen, “The Einstein field equation in a multidimensional universe”, Gen. Relativity Gravitation 20 (1988), 667–670. MR952017, doi:10.1007/BF00758971.

[24] D. B. Ray and I. M. Singer, “R-torsion and the Laplacian on Riemannian manifolds”, Adv in Math 7 (1971), 145–210. Zbl 0239.58014, MR0295381, doi:10.1016/0001-8708(71)90045-4.

[25] H. Weyl, “The classical groups”, Princeton Univ. Press, Princeton (1946) (8th printing). Zbl 1024.20502, MR1488158, doi:10.2307/j.ctv3hh48t.

[26] E. Witten, “Supersymmetry and Morse theory”, J. Differ. Geom. 17 (1982), 661-692. Zbl 0499.53056, MR683171, doi:10.4310/jdg/1214437492.