Identification of culturable microalgae diversity in the River Nile in Egypt using enrichment media

Amal A. Badr¹ and Walid M. Fouad¹,²*

¹Biotechnology Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt.
E-mail: Amal.badr@aucegypt.edu
²Department of Biology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt.
E-mail: wfouad@aucegypt.edu

Abstract

This study aimed to morphologically identify the highest possible microalgae biodiversity in a sample collected from the River Nile using the culture-based method. Water samples were cultured on the two commonly used media BG-11 and BBM media to obtain a broad spectrum of microalgae biodiversity. Likewise, the effects of nutrients concentration and vitamin supplements to BG-11 and BBM for supporting the maximum diversity of culturable microalgae were tested. Cell counts and morphology-based identification were conducted to evaluate the population diversity. A total of 35 species have been identified using the two media combined. The standard BG-11 and BBM media enriched 25 and 27 species, respectively, while the reduced nutrient concentration of BG-11 and BBM had a species richness of 19 and 24, respectively. The vitamin-enriched media each sustained BG-11⁺Vit (23) and BBM⁺Vit (20). We found that some algae species were uniquely identified on the reduced nutrient concentration or vitamin-enriched media. The results of this study report the current algae diversity in the Nile demonstrating that the usage of single-culture media for algal enrichment would result in underestimating the species richness. The diversity identified can be used as a reference for continuous monitoring of the River Nile microalgae diversity in Cairo.

Keywords: River Nile, Freshwater, Biodiversity, Morphological identification, BG-11 medium, BBM medium
The River Nile in Egypt, the longest river in the world, yet, the available reports on microalgae populations had a low emphasis on diversity. Limited reports, however, indirectly addressed microalgae biodiversity while screening for high-lipid producing microalgae from the River Nile (Abd El-Karim et al., 2016; and Abdo et al., 2013). Others confronted the microalgae biodiversity in polluted locations with the aim of identifying microalgae that have properties of biosorption of heavy metals (Shanab et al., 2012). In the previous study mentioned, the water samples from heavy metal polluted locations were cultured on BG-11 and BBM to obtain unialgal species; three species were then isolated and tested on different heavy metal-containing media. Therefore, only algal species capable of growing on the standard BG-11 or BBM were identified and, therefore, further tested. The Rosetta branch and Damietta region are relatively the most studied regions of the River Nile in Egypt for microalgae related research. Some reports studied the biodiversity (Abd El-Karim et al., 2016; and Gharib, 2006) by analyzing the fatty acid composition of the algal cells and concluded that microalgae are the chief contributors of carbon cycling and organic matter in surface sediments in the Damietta and Rosetta Branch of the River Nile. However, no microalgae identification was performed prior to fatty acid composition analysis. To our knowledge, microalgae biodiversity in the River Nile has not been investigated in greater Cairo. In terms of the usage of culture media to enrich microalgae diversity from environmental samples several studies have been previously reported in the literature with the aim of isolation, identification (either microscopically or molecular level identification) and maintenance of microalgae species (Abou-Shanab et al., 2011; Cho et al., 2013; Edwin et al., 2019; Ilavarasi et al., 2011; and Lee et al., 2014). Both Blue-Green Medium (BG-11) and Bold’s Basal Medium (BBM) are two media commonly used for identification and maintaining population diversity due to its ability to sustain a wider range of species.

Therefore, in this study, our aim was to investigate the microalgal biodiversity present in the River Nile in greater Cairo governorate through the enrichment of the collected sample using BG-11 and BBM as an easy and inexpensive approach for microalgae biodiversity analysis. Furthermore, our aim was to examine the effect of nutrients concentrations alongside media enrichment with vitamins on algae population diversity. We found that the usage of multiple algal growth media approach for algae enriching from environmental samples reviled a more comprehensive range of diversity compared to the usage of the single-media approach.

2. Material and methods
2.1. Sampling site and collection
The environmental sample collected for this investigation was from the River Nile in the Cairo governate, Egypt (30°00'55.4"N; 31°13'41.8"E). Two liters of surface water were collected from the location; one liter of the sample has been utilized for water physiochemical analysis. The temperature of the samples was measured at the sampling site using a thermometer, and the pH of the water samples was measured in the lab using a pH meter. The samples were kept in the refrigerator (4°C) until further analysis. The experiments were repeated twice using samples from the same location.

2.2. Physical and chemical analysis
The physicochemical analysis was performed to assess the composition of the natural habitat of the microalgae identified in the water samples from each location. Salinity, pH and electrical conductivity (EC) were measured using a multimeter-probe (330i, WTW, Germany), and the presence of cation and anions such as sodium, chloride, sulfate, potassium, and calcium were measured according to standard methods (ASTM D 4327, 2011). Total ammonia, nitrate, and phosphorus were measured based on standard methods (Rice and Franson, 2005).

2.3. Experimental design and culturing conditions
All the media components have been purchased from PhytoTechnology Laboratories® (Shawnee Mission, Kansas, USA). The media was prepared according to the manufacturer recommendations unless stated otherwise, and the pH of each media was adjusted before autoclaving as following: BG-11 (7.15) and BBM (6.6). Finally, the media was autoclaved at 121 °C for 20 min. For algae growth conditions, transparent 600 ml plastic bottles were used to support a culturing volume of 400 ml. Each Nile water sample was separated into three testing conditions, further details will be mentioned below, and each condition was performed with three replicates. Hence, each replica was inoculated with 40 ml of the River Nile water sample. All cultures were maintained for three weeks in a JSR-Growth Chamber 3-Side Illumination (model JSPC-960C2) at 22 ±1 °C. The light/ dark regimen was adjusted to 12:12 h at a light intensity of 28 μmol photons m⁻² s⁻¹.
We tested the impact of three different factors on supporting algal population growth and diversity from the Nile water sample. The chemical composition of the growing media was examined, and we have chosen the two commonly used algae growth media BG-11 (Andersen et al., 2005) and BBM (Nichols and Bold, 1965). Detailed chemical composition of both BG-11 and BBM are listed in Table 1. To reduce the dominance of the competitive species and provide an intermediate ground for the less competitive species to coexist in the population, we have reduced the nutrient concentration to 0.1× of the original media concentration as the second tested factor (Graham and Duda, 2011). Therefore, treatments denoted as BG-110.1× and BBM0.1× represent 0.1× concentrations of BG-11 and BBM media, respectively.

Table 1: Chemical composition of the BG-11 and BBM media used for microalgae population growth. The concentration of salts in mg L-1

Components	BG-11	BBM
Boric Acid	2.86	11.42
Calcium Chloride, Anhydrous	27.18	18.87
Citric Acid, Anhydrous	6	-
Cobalt Nitrate \(\cdot 6\text{H}_2\text{O}\)	0.049	0.49
Cupric Sulfate \(\cdot 5\text{H}_2\text{O}\)	0.079	1.57
EDTA, Disodium Salt	1	63.61
Ferric Ammonium Citrate	6	-
Ferrous Sulfate \(\cdot 7\text{H}_2\text{O}\)	-	4.98
Magnesium Sulfate \(\cdot 7\text{H}_2\text{O}\)	75	-
Magnesium Sulfate, Anhydrous	-	36.63
Manganese Chloride \(\cdot 4\text{H}_2\text{O}\)	1.81	1.44
Potassium Hydroxide	-	31
Potassium Phosphate, Dibasic	40	75
Potassium Phosphate, Monobasic	-	175
Sodium Carbonate, Anhydrous	20	-
Sodium Chloride	-	25
Sodium Molybdate \(\cdot 2\text{H}_2\text{O}\)	0.39	1.19
Sodium Nitrate	1500	250
Zinc Sulfate \(\cdot 7\text{H}_2\text{O}\)	0.222	8.82

Algae are assumed to depend on the bacterial synthesis for vitamins such as vitamin B\textsubscript{1} (thiamine), vitamin B\textsubscript{7} (biotin) and vitamin B\textsubscript{12} (cobalamin) (Barra et al., 2014; Croft et al., 2006; Hiibel et al., 2015; and Krohn-Molt et al., 2013, 2017). Hence, vitamins-enrichment of the normal nutrient salt concentration of BG-11 and BBM media was also tested and designated as BG-11+Vit and BBM+Vit, respectively. The vitamin mix was added to reach the following final concentrations: D-biotin 0.05 mg L-1, folic Acid 0.5 mg L-1, glycine (Free Base) 2 mg L-1, myo-inositol 100 mg L-1, nicotinic acid (free acid) 5 mg L-1, pyridoxine•HCl 0.5 mg L-1 and thiamine • HCl 0.5 mg L-1. Media of normal concentration, containing no vitamin, was run in parallel for comparison.
2.4. Growth analysis

Microalgae population growth was monitored by performing a cell count every four days using a Neubauer Improved Hemocytometer counting chamber. Cell count was performed under Zeiss Axiostar plus light microscope at 400× magnification based on (Edler and Elbrächter, 2010; and Reza Moheimani et al., 2013). Briefly, each bottle was well mixed by shaking, and 500 µL was transferred from each bottle into a 1.5 ml Eppendorf, and 10 µL was loaded onto the hemocytometer. Each replica was sampled twice for counting using the center region of the hemocytometer, and an average was used to calculate the cell density of each replica.

2.5. Identification and classification of microalgae

The identification of microalgae was based on the morphological characteristics observed under a bright-field microscope (Bellinger and Sigee, 2010; and Bock, 1971). The strains were examined under a light microscope (Leica) using the software LAS EZ (Leica DM 500). Briefly, each bottle was mixed by shaking, and a volume of 500 µL was transferred from each bottle into a 1.5 ml Eppendorf, a few drops were loaded onto a slide and was observed under 400× magnification. Identification of the microalgae species was performed per microscopic fields in the multiple of 10 when no new species have been identified after the 10 fields; the diversity analysis is completed.

2.6. Alpha diversity indices

The relative abundance of each genus was used in calculating the diversity indices. The total number of microalgae was summed up and represented as Species richness (S), diversity index was calculated using the Shannon-Wiener index (H') (Equation 1) (Shannon, 1948), and dominance concentration were evaluated by the Simpson’s diversity index (D) (Equation 2) (Hillebrand and Sommer, 2000; Simpson, 1949). In the equations below, i represents the species proportion relative to the total species number (p_i). Species Evenness (E) was calculated using (Equation 3) (Davari et al., 2011).

$$H' = -\sum_{i=1}^{S} (p_i \times \ln p_i)$$

Equation 2. Simpson’s Diversity Index (D)

$$D = \frac{1}{\sum_{i=1}^{S} p_i^2}$$

Equation 3. Species Evenness (E)

$$E = \frac{H'}{\ln(S)}$$

2.7. Statistical analysis

All cell cultures were performed in triplicate. Growth curves and statistically significant differences between treatments were computed by t-test using GraphPad Prism version 7.00 (La Jolla, California, USA).

3. Results

3.1. Physical and chemical characteristics of the environmental water sample

The composition of the environmental water sample was assessed to evaluate the natural conditions of the water sampled from the studied site of the River Nile in the Cairo governate (Table 2). The pH for the sample obtained was about 7.50. The temperature measured in-situ was 21°C. The electrical conductivity measured was 450 µS cm⁻¹. Sodium and chloride were the highest minerals in the water with a concentration of 28.5 and 78.1 mg L⁻¹, respectively, on the other hand, potassium was the lowest mineral present in the water sample (5.1 mg L⁻¹). Nitrate and ammonia levels were 4.97 and 2.03 mg L⁻¹, respectively, while sulfate was 49.95 mg L⁻¹.
3.2. Effect of manipulating media on microalgae growth and population diversity

3.2.1. Effect of the standard media composition

The standard concentration of the commonly used media in microalgae culturing and diversity analysis in research (BG-11 and BBM) were tested to evaluate the capability of each media in sustaining the maximum algal diversity from a freshwater environmental sample. Identification was performed based on morphological features by microscopic visualization of the microalgae; representative images of some microalgae are presented in Figure 1. Both BG-11 and BBM supported similar population cell densities and were not significantly different (p > 0.05) (Figure 2A). However, BBM maintained the growth of a slightly diverse population of 27 species compared to 25 species in BG-11 (Table 3, Figure 3A). A part from the 21 species that were commonly identified in both BG11 and BBM media, each media supported the growth of unique species. BG11 exclusively supported the growth of Botryococcus sudetica, Golenkinia sp., Melosira sp. and Pseudanabaena limnetica. On the other hand, Microcystis sp., Actinastrum hantzschii, Chlamydamonas sp., Codiastrum microporum, Cylindropermum sp. Lagerheimia ciliate and Microcystis sp. were uniquely identified on BBM media (Table 3) In total 31 species were identified using the two media combined (Figure 3A).

The Shannon-Wiener’s index (H’), although similar between BG-11 and BBM, 1.92 and 1.73, respectively. BG-11 had a higher H’ index and evenness (E) 0.60 (Table 4). Moreover, the Simpson’s diversity index (D), also

| Table 2: Physicochemical analysis of the water samples collected from Cairo governate, Egypt |
|---------------------------------|------------------|
| Physicochemical Parameters | |
| pH | 7.50 |
| Electrical Conductivity (µS/cm) | 450 |
| Total Dissolved Solids (ppm) | 287.0 |
| Chemical Parameters | mg L⁻¹ |
| HCO₃⁻ | 92.1 |
| Cl⁻ | 78.1 |
| SO₄²⁻ | 49.95 |
| Ca²⁺ | 22.6 |
| Mg²⁺ | 27.0 |
| Na⁺ | 28.5 |
| K⁺ | 5.1 |
| NO₃⁻ | 4.97 |
| NH₄⁺ | 2.03 |
| Iron | 0.066 |
| Phosphorus | <1.5' |
| Manganese | <0.5' |
| Zinc | <0.2' |
| Copper | <0.2' |
| Boron | <0.3' |

Note: * Unit (µg L⁻¹)
Figure 1: Micrographs of some of the identified microalgae species in the River Nile under 400×. (a) Actinastrum hantzschii; (b) Monoraphidium litorale; (c) Aphanathece smithii; (d) Chlorella vulgaris; (e) Coelastrium microporum; (f) Coelosphaerium kuetzingianum; (g) Crucigenia tetrapedia; (h) Botrydiopsis; (i) Dictyosphaerium ehrenbergianum; (j) Euglena wangi; (k) Lagerheimia ciliate; (l) Leptolyngbya fragilis; (m) Merismopedia tenuissima; (n) Micractinium püssillum; (o) Mougeotia rotundagulata; (p) Nacivula sp.; (q) Oocystis marssonii; (r) Oscillatoria sp.; (s) Pediastrum angulosum; (t) Scenedesmus dimorphus; (u) Scenedesmus quadricauda; (v) Selenastrum capricornutum; (w) Staurastrum gracile; (x) Tetraedron tumidulum. Scale bar: 10µm.

Figure 2: Growth curves studying the effect of media on microalgae growth. Monitoring of microalgae growth in culture. (A) Growth curve for the 1x of the tested media: BG-11 (black) and BBM (grey). (B) Growth curve of reduced media BG-11 0.1× and BBM 0.1×. (C) Growth curve of the media enriched with vitamins. Data represent means ± SD of three replicas per medium. Samples were cultured in an environmentally controlled growth chamber under a light intensity of 28 µmol m⁻²s⁻¹ with 12:12 h, light:dark cycle at 22 ± 1 °C.
Figure 2 (Cont.)
Figure 3. Venn diagram illustrating the shared/unique species between the tested conditions: normal media concentration (1 × media), reduced nutrient media (0.1 × media), and media enriched with vitamins (Vitamins). (A) Venn diagram summarizing the number of species identified using the standard BG-11 and BBM media only, (B) Venn diagram for the shared and unique species identified using BG-11 media and the three tested conditions, (C) Venn diagram for the shared and unique species identified in all tested BBM conditions.

Figure 4. Species relative abundance graph comparing between 1 × Media, 0.1 × Media and vitamin-enriched media of BBM and BG-11.
Table 3: List of the morphologically identified algal species across the six deferent media

Sp.	Species	1 × Media	0.1 × Media	Vitamin Enriched Media
		BG-11	BG-11	BG-11
		BBM	BG-11	BBM
1	Anabaena sp.	+	+	+
2	Actinastrum hantzschii	-	+	+
3	Monoraphidium litorale	+	+	+
4	Aphanothece smithii	+	+	+
5	Botrydiopsis arhiza	-	-	-
6	Botryococcus sudetica	+	-	-
7	Chlamydomonas sp.	-	+	+
8	Chlorella vulgaris	+	+	+
9	Chroococcus sp.	+	+	+
10	Coelastrum microporum	-	+	+
11	Coelosphaerium kuetzingianum	-	-	+
12	Crucigenia tetrapedia	+	+	+
13	Cylindropermum sp.	-	+	+
14	Dictyosphaerium ehrenbergianum	+	+	+
15	Elakatothrix sp.	-	-	-
16	Euglena wangi	+	+	-
17	Golenkinia sp.	+	-	-
18	Lagerheimia ciliata	-	+	-
19	Leptolyngbya fragilis	+	+	+
20	Melosira sp.	+	-	-
21	Merismopedia sp.	+	+	+
22	Micractinium pussillum	+	+	+
23	Mirocytis sp.	-	+	-
24	Mugeotia rotundagulata	+	+	+
25	Oocystis marssonii	+	+	+
26	Oscillatoria sp.	+	+	-
27	Pediastrum angulosum	+	+	-
28	Nacivula sp.	+	+	+
29	Pseudanabaena limnetica	+	-	+
30	Scenedesmus sp.	+	+	+
31	Selenastrum capricornutum	+	+	+
32	Stauroastrum gracile	+	+	-
33	Tetraedron tumidulum	+	+	+
34	Tetraselmis sp.	-	-	+
35	Tetraspora sp.	+	+	+

Total number of species identified: 25, 27, 19, 24, 23, 20
3.2.2. Influence of reduced nutrient salts

The aim of testing a low nutrient concentration of the media was to provide an intermediate nutrient disturbance and provide enough enrichment through the addition of low concentration of the tested culture media. BG-11 (BG-110.1×) and BBM (BBM0.1×) to support the growth of less competitive species. BG-110.1×-enriched 19 species, while BBM0.1× supported the growth of 24 species (Table 3). The cell density of both the tested media had no statistical differences observed (p>0.05). The aim of using the reduced nutrient media was not to obtain high biomass. However, the population growth was evaluated with the sole purpose of making sure that the cell growth was not hindered by the alteration of nutrient concentration (Figure 2B). Eighteen microalgae species were commonly identified on BG-110.1× and BBM0.1× media (Table 3). Six species were only identified on BBM0.1×, and one species (Pediastrum) was found only on BG-110.1× and not BBM0.1× (Table 3). When compared to the standard BG-11 and BBM media, two species, Chlamydomonas sp. and Cylindrospermum sp., appeared on BBM0.1× and were not present in the standard BBM media (Figure 3C). Out of the two reduced media tested, BBM0.1× had a higher Shannon index (\(H\)), (2.12), over BG-110.1× (2.07). Will the evenness (E) was higher in BG-110.1× (0.70) than BBM0.1× (0.67) (Table 4). When comparing the evenness of the two reduced media and the standard media used, the higher evenness observed in the reduced media can be attributed to the more evenly distributed of relative abundance of species in the reduced media over the standard media (Figure 4). Moreover, the reduced media had the highest calculated \(H\) and E values, and the lowest D index, when compared between the standard and vitamin-enriched media.

3.2.3. Effect of vitamin enrichment

The effect of vitamin enrichment of the original concentration of BG-11 and BBM on the cell density and environmental sample diversity identification was studied. The algae population growth observed on the BG-110.1× was higher than that of the BBM0.1× (Figure 2C). The diversity indices of the BG-110.1× and BBM0.1× indicated that BG-110.1× supported a higher genera richness (23), while BBM0.1× enriched 20 genera. Comparing BG-110.1× with BBM0.1×, 18 genera were commonly identified on both media. While five genera were exclusively identified on BG-110.1×, only two genera were uniquely identified on BBM0.1× (Table 3). A total of 18 microalgae species were commonly identified on both the standard 1× BG-11 and BG-110.1×. While BBM media lacked eight species that were previously identified on the standard BBM, the Closterium kuetzingianum was only identified on the \(+\text{Vit}\) media. BG-110.1× solely helped identify four microalgae species over the standard BG-11 media, out of which Cylindrospermum sp. was commonly identified in the BG-110.1×-media (Figure 3B). On the other hand, six genera were missing from the BG-110.1× and were identified on 1×BG-11 (Figure 3B, Table 3). Even though BG-110.1× had a higher genera richness over the BBM0.1× media, the values of Shannon-Wiener (\(H\)) and Species evenness (E) index were relatively low in the BG-110.1×, indicating the absence of heterogeneity between the number of individual species. This is also supported by the high Simpson’s index (D) of 0.40.

Table 4: Diversity indices of algal population grown on six different media

Alpha Diversity Index	1× Media	0.1× Media	Vitamin-Enriched Media			
	BG-11	BBM	BG-11	BBM	BG-11	BBM
S	25	27	19	24	23	20
\(H'\)	1.92	1.73	2.07	2.12	1.38	1.87
E	0.60	0.53	0.70	0.67	0.44	0.62
D	0.20	0.31	0.17	0.17	0.40	0.25

Note: (S), Species richness index; (\(H'\)), Shannon-Wiener diversity index; (E), Species evenness index; and (D) Simpson’s diversity index.
(Table 4) which reflects the presence of a dominant species in the BG-11 as observed in (Figure 4), with Chlorella being the dominant genus.

4. Discussion

We have selected the two commonly used algae growth media BG-11 (Andersen et al., 2005) and BBM (Nichols and Bold, 1965) to assess their strength and limitations in supporting the growth of freshwater microalgae from an environmental sample. The water analysis of the water sample indicated that the River Nile water quality and nutrients content are suitable to encourage the life of a great diversity of aquatic organisms. However, the nutrients content is not high to cause algal bloom or the loss of species diversity due to any toxicity in the water (Behar, 1996; and UNESCO/WHO/UNEP, 1996).

A combined total of 35 culturable microalgal species were microscopically identified from the River Nile location in Cairo using the six different media conditions. Thirteen species were commonly present in all media conditions, while 22 other species displayed differential growth based on the media composition. Using either of the standard BG-11 or BBM media alone would have resulted in missing 10 and eight microalgae species, respectively. However, a total of 31 species would have been identified if both BG-11 and BBM media were used together. A practice that is not usually practiced, since most reported studies utilized either one of these two media to isolate microalgae from an environmental sample as an initial step followed by culturing the isolates on different media to obtain axenic cultures (Bajwa et al., 2017; Rizza et al., 2017; and Yee et al., 2019). Another approach utilizes the screening of microalgae using solidified media (Lee et al., 2014; and Liu et al., 2019), which can be complicated because using a solidified media can hinder growth due to influence by neighboring colonies, as well as the limitation caused by the available surface area of the culturing plate (Yee et al., 2019).

Taking a closer look at the media composition of the two-standard media used, BG-11 and BBM, BG-11 contains a higher nitrogen content, while BBM is richer in phosphorus and potassium content. Additionally, BBM media contain about 10 times more cobalt than BG-11, as well as two times more cupric sulfate. In contrast, BG-11 contains citric acid and citrate as a carbon source for microalgae, and BBM does not contain a carbon source. Research conducted on media impact usually investigates the effect of macro- and micronutrients of BG-11 and BBM on biomass and lipid production and not on diversity enrichment (Gour et al., 2018; and Zhang et al., 2019). Furthermore, several reports promote BG-11 due to its high nitrogen concentration media over BBM (Bajwa et al., 2017; and Sharma et al., 2016) since BG-11 contains about six times more nitrate. The high nitrogen concentration in BG-11 leads to the increase of biomass, as observed in Figure 2. However, this increase in biomass does not necessarily mean an increase in the enrichment of biodiversity. Previous reports indicate that nitrogen uptake by microalgae is negatively affected as a result of phosphorus limitation (Xin et al., 2010). Therefore, the high nitrogen content in BG-11 may not be efficiently up-taken by the microalgae due to the low P concentration in the media. While BBM media has a relatively lower N content, the P content is higher than BG-11, which could lead to the effective uptake of N in microalgae and hence the support of growing various species. This was observed in the diversity analysis, where the total number of species identified on BBM media is higher compared to the BG-11 at the standard and the reduced nutrients. Micronutrients such as cobalt and copper in BBM are 10 and 20 times higher, respectively and could be another reason for the increase in higher S (species richness) in BBM over BG-11, as cobalt and copper are also considered limiting nutrients (Zhang et al., 2019).

The calculated Shannon index (H’), although similar between a 1× BG-11 and 1× BBM, 1.92 and 1.73, respectively indicate the presence of rich diversity and a better distribution of individuals of each taxon. When compared to a previous study on the River Nile in Cairo district in 1976 and 1982, the H’ index reported was between 0.18-1.06 throughout the study period (Shehata and Bader, 1985). However, Shehata and Bader (1985) performed diversity analysis directly from the water sample using a microscope and Sedgwick-Rafter cell without algal population enrichment. They reported H’ index in the current study range from of 1.38 to 2.12 and higher across all tested media compared to the previously reported H’ index between 1976 and 1982 which might be due to an increase in eutrophication of the River Nile from farmlands due to agriculture practices, hence increasing the nutrient content in the River Nile (Kim and Chae, 2016; and Mitchell and Buzzell, 1971). The physicochemical analysis of the water samples used in the current study confirmed at least 10 times nitrate and ammonia concentration compared to that reported between the years 1978 and 1979 (Shehata and Bader, 1985).

For both BG-11 and BBM, Chlorella and Scenedesmus were the abundance species; however, these species were distributed more evenly in BG-11; hence the evenness index calculated for BG-11 was higher than for
BBM media. Scenedesmus and Chlorella have been previously reported to be used in a Chlorella/Scenedesmus microalgae consortium to treat wastewater due to their similar growth rate pattern of under various nutrient concentrations (Koreivienė et al., 2014; and Wan et al., 2016). However, changing the culturing condition of both BG11 and BBM significantly influenced Scenedesmus and Chlorella dominance, discussed below:

Furthermore, the culturing of the environmental samples on a reduced nutrient media and vitamin-enriched media lead to the identification of three species exclusively in BBM 0.1× media, and one species was present only in response to vitamins addition to either of BG11 or BBM medium. These four species, Botrydiopsis arhiza, Coelosphaerium kuetzingianum Elakatohrix sp., and Tetraselmis sp., would have been completely overlooked if only the standard BG11 and BBM were used. To provide support to the less competitive species through an intermediate nutrient disturbance, yet, provide enough nutrients, the addition of low concentration of the BG-11 (BG-11 0.1×), and BBM (BBM 0.1×) was studied. Species such as Pseudanabaena limnetica, consistently appeared in the BG-11 media of all tested conditions; however, Pseudanabaena limnetica and Tetraselmis sp. have been previously reported to grow and withstand low nutrient conditions, and hence they were able to grow under the decreased dominance of the Chlorophyta in BG-11 0.1× and BBM 0.1× (Fabregas et al., 1984; and Gao et al., 2018). The appearance of certain species in the reduced nutrient media could be due to the presence of an even distribution of species, and this was supported by the diversity indices. The calculated Shannon-Weiner Index (H') and Evenness (E) were higher in the 0.1x media than in the 1x media tested. The even distribution of genera in the 0.1x media can also be clearly observed in Figure 4. The decrease of the dominance of specific genera, such as, Chlorella vulgaris, Merismopedia sp. and Scenedesmus sp. that were observed in the 1x concentration of BG-11 and BBM, contributed to the decrease of the dominance index (D), in BG-11 0.1× (0.17) and BBM 0.1× (0.17), when in comparison to the dominance index of the standard BG-11 (0.20) and BBM (0.31). The reduced media may have enabled other less competitive species to coexist and grow as the competition with dominant genera is reduced due to less preferred conditions (Dickinson and Murphy, 1998; Fraser et al., 2014; and Graham and Duda, 2011). The species identified in the reduced nutrient concentration indicates that they adapted to the current experimental nutrient profile. Therefore, they can be used as potential strains that can be utilized in limited nutrients applications and would reduce the need for adding nutrients, reducing the cost of culturing microalgae for applications (Hiibel et al., 2015).

On the other hand, The enhancement of BG-11 and BBM media with vitamins to provide the microalgae with the necessary micronutrients that are usually produced by their bacterial partner (Ji et al., 2019) did not drastically improve the culture-based method in diversity identification. Even though all species identified using the vitamins-enriched media were previously identified either on the standard or reduced media, both BG-11 vit and BBM vit exclusively identified Coelosphaerium kuetzingianum.

5. Conclusion
In conclusion, the results demonstrated that the culture-based method for the identification of microalgae has great potential, and the utilization of several media compositions can help reveal a greater diversity that is already present in the environmental samples studied. Moreover, our work also reveals that there is still room for further media recipe modification to aid the culture-based diversity identification method. This research also provides a reference for research conducted on the microalgae diversity present in the River Nile in Cairo. This is important for continuous monitoring and protecting of the biodiversity present in the section of the River Nile surrounded by the highest populated city in Egypt. This is especially needed at this time for constant monitoring of the influence of the Ethiopian grand renaissance dam on the nutrients flow in downstream countries. Monitoring algae diversity in the river provides insight on the water quality, the impact of human activity on natural resources, and enable conservation biology.

Acknowledgment
A. A. B. was supported by Abdulla Al-Ghurair Foundation of Education and by The American University in Cairo Fellowship. This research was funded by The American University Research Grants. The authors sincerely thank Dr. Bala Rathinasabapathi, Horticultural Sciences Department, University of Florida for the critical revision of the manuscript.

Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Conflicts of Interest
The authors have no conflicts of interests, financial or otherwise, to declare. No informed consent, human or animal rights are applicable.

References
Abd El-Karim, M. S., Mahmoud, A. M. A. and Ali, M. H. H. (2016). Fatty acids composition and sources of organic matter in surface sediments of four river Nile sub-branches, Egypt. Journal of Fisheries and Aquatic Science, 11(3), 216-224. https://doi.org/10.3923/jfas.2016.216.224

Abdo, S. M., Ahmed, E., El-enin, S. A., Din, R. S., El, Diwani, G. El, and Ali, G. (2013). Growth rate and fatty acids profile of 19 microalgal strains isolated from River Nile for biodiesel production. Journal of Algal Biomass Utilization, 4(4), 51-59.

Abou-Shanab, R. A. I., Hwang, J. H., Cho, Y., Min, B. and Jeon, B. H. (2011). Characterization of microalgal species isolated from fresh water bodies as a potential source for biodiesel production. Applied Energy, 88(10), 3300-3306. https://doi.org/10.1016/j.apenergy.2011.01.060

Andersen, R. A., Berges, J. A., Harrison, P. J. and Watanabe, M. M. (2005). Recipes for freshwater and seawater media. In Algal Culturing Techniques (pp. 429-538). Elsevier/Academic Press. https://doi.org/10.1016/b978-012088426-1/50027-5

ASTM D 4327. (2011). Standard test method for anions in water by suppressed ion chromatography. American Society for Testing Materials, 1-12. https://doi.org/10.1520/D4327-11.2

Bajwa, K., Bishnoi, N. R., Kirrolia, A., Sharma, J. and Gupta, S. (2017). Comparison of various growth media composition for physio-biochemical parameters of biodiesel producing microalgal species (Chlorococum aquaticum, Scenedesmus obliquus, Nannochloropsis oculata and Chlorella pyrenoidosa). European Journal of Biotechnology and Bioscience, 5(6), 27-31.

Barra, L., Chandrasekaran, R., Corato, F. and Brunet, C. (2014). The challenge of ecophysiological biodiversity for biotechnological applications of marine microalgae. In Marine Drugs. 12(3) 1641-1675. https://doi.org/10.3390/md12031641

Behar, S. (1996). Testing the Waters: Chemical and Physical Vital Signs of a River. River Watch Network. https://books.google.com.eg/books?id=Uo9_AAAACAAJ

Bellinger, E.G. and Sigee, D.C. (2010). Freshwater Algae: Identification and use as bioindicators. In Freshwater Algae: Identification and Uses as Bioindicators. Wiley-Blackwell. https://doi.org/10.1002/9780470689554

Bock, J. H. (1971). How to know the freshwater Algae. G. W. Prescott. The American Biology Teacher, 33(4), 244-244. https://doi.org/10.2307/443440

Cho, D. H., Ramanan, R., Kim, B. H., Lee, J., Kim, S., Yoo, C., Choi, G. G., Oh, H. M. and Kim, H. S. (2013). Novel approach for the development of axenic microalgal cultures from environmental samples. Journal of Phycology, 49(4), 802-810. https://doi.org/10.1111/jpy.12091

Croft, M. T., Warren, M. J. and Smith, A. G. (2006). Algae need their vitamins. In Eukaryotic Cell. 5(8), 1175-1183. https://doi.org/10.1128/EC.00097-06

Davari, N., Jouri, M. and Ariapour, A. (2011). Comparison of measurement indices of diversity, richness, dominance, and evenness in rangeland ecosystem (Case Study: Jvaherdeh-Ramesar). Journal of Rangeland Science, 2(1), 389-398.

Dickinson, G. and Murphy, K. J. (1998). Ecosystems: A Functional Approach. Psychology Press.

Edler, L. and Elbrächter, M. (2010). Microscopic and molecular methods for quantitative phytoplankton. Microscopic and Molecular Methods for Quantitative Phytoplankton Analysis, 13-20. https://doi.org/10.1016/j.resp.2011.02.009

Edwin, N., Akhwale, J. K. and Mwirichia, R. (2019). Phylogenetic and morphological diversity of culturable cyanobacteria from Lake Magadi in Kenya. Afr. J. Bio. Sc., 1(4), 24-31. https://doi.org/10.33472/AfJBS.1.4.2019.24-31

Fabregas, J., Albalde, J., Herrera, C., Cabezas, B. and Veiga, M. (1984). Growth of the marinmicroalgat tetraselmin suecica in batch cultures with different salinities and nutrient concentrations. A quadula, 42(3-4), 207-215. https://doi.org/10.1016/0044-8486(84)90101-7
Frac, M., Jezierska-Tys, S. and Tys, J. (2010). Microalgae for biofuels production and environmental applications: A review. *African Journal of Biotechnology*, 9(54). https://doi.org/10.5897/ AJB2010.000-3349

Fraser, L.H., Jentsch, A. and Sternberg, M. (2014). What drives plant species diversity? A global distributed test of the unimodal relationship between herbaceous species richness and plant biomass. *Journal of Vegetation Science*, 25(5), 1160-1166. https://doi.org/10.1111/jvs.12167

Gao, J., Zhu, J., Wang, M. and Dong, W. (2018). Dominance and growth factors of pseudanabaena sp. in drinking water source reservoirs, Southern China. *Sustainability*, 10(11), 3936. https://doi.org/10.3390/ su10113936

Gharib, S. (2006). Phytoplankton dynamics in estuary of rosetta branch of River Nile, Egypt. *Egyptian Journal of Aquatic Biology and Fisheries*, 10(3), 201-232. https://doi.org/10.21608/ ejabf.2006.1871

Gour, R.S., Bairagi, M., Garlapati, V.K. and Kant, A. (2018). Enhanced microalgal lipid production with media engineering of potassium nitrate as a nitrogen source. *Bioengineered*, 9(1), 98-107. https://doi.org/10.1080/ 21655979.2017.1316440

Graham, J.H. and Duda, J.J. (2011). The humpbacked species richness-curve: A contingent rule for community ecology. In *International Journal of Ecology*. 2011, 1-15. https://doi.org/10.1155/2011/ 868426

Hiibel, S.R., Lemos, M.S., Kelly, B.P. and Cushman, J.C. (2015). Evaluation of diverse microalgal species as potential biofuel feedstocks grown using municipal wastewater. *Frontiers in Energy Research*, 3(May), 20. https://doi.org/10.3389/ fenrg.2015.00020

Hillebrand, H. and Sommer, U. (2000). Diversity of benthic microalgae in response to colonization time and eutrophication (Vol. 67). https://doi.org/10.1016/S0304-3770(00)00088-7

Ilavarasi, A., Mubarakali, D., PraveenKumar, R., Baldev, E. and Thajuddin, N. (2011). Optimization of various growth media to freshwater microalgae for biomass production. *Biotechnology*, 10(6), 540-545. https://doi.org/10.3923/ biotech.2011.540.545

Ji, X., Jiang, M., Zhang, J., Jiang, X. and Zheng, Z. (2018). The interactions of algae-bacteria symbiotic system and its effects on nutrients removal from synthetic wastewater. *Bioresource Technology*, 247, 44-50. https://doi.org/10.1016/j.biortech.2017.09.074

Kim, T. and Chae, C. (2016). Environmental Impact Analysis of Acidification and Eutrophication Due to Emissions from the Production of Concrete. *Sustainability*, 8(6), 578. https://doi.org/10.3390/ su8060578

Koreivienë, J., Valèiukas, R., Karosienë, J. and Baltrënas, P. (2014). Testing of Chlorella/Scenedesmus microalgae consortia for remediation of wastewater, CO2 mitigation and algae biomass feasibility for lipid production. *Journal of Environmental Engineering and Landscape Management*, 22(2), 105-114. https://doi.org/10.3846/ jeelm.2013.911182

Krohn-Molt, I., Alawi, M., Förstner, K.U., Wiegandt, A., Burkhardt, L., Indenbirken, D., Thieß, M., Grundhoff, A., Kehr, J., Tholey, A. and Streit, W.R. (2017). Insights into Microalga and bacteria interactions of selected phycosphere biofilms using metagenomic, transcriptomic, and proteomic approaches. *Frontiers in Microbiology*, 8(OCT). https://doi.org/10.3389/fmicb.2017.01941

Krohn-Molt, I., Wemheuer, B., Alawi, M., Poehlein, A., Güllert, S., Schmeisser, C., Pomerening-Röser, A., Grundhoff, A., Daniel, R., Hanelt, D. and Streit, W.R. (2013). Metagenome survey of a multispecies and alga-associated biofilm revealed key elements of bacterial-algal interactions in photobioreactors. *Applied and Environmental Microbiology*, 79(20), 6196-6206. https://doi.org/10.1128/AEM.01641-13

Lee, K., Eisterhold, M.L., Rindi, F., Palanisami, S. and Nam, P.K. (2014). Isolation and screening of microalgae from natural habitats in the midwestern United States of America for biomass and biodiesel sources. *Journal of Natural Science, Biology and Medicine*, 5(2), 333-339. https://doi.org/10.4103/0976-9668.136178

Liu, P., Wei, J., Yang, K., Massey, I.Y., Guo, J., Zhang, C. and Yang, F. (2018). Isolation, molecular identification, and characterization of a unique toxic cyanobacterium Microcystis sp. found in Hunan Province, China. *Journal of Toxicology and Environmental Health, Part A*, 81(21), 1142-1149. https://doi.org/10.1080/ 15287934.2018.1532716

Magurran, A.E. and Dornelas, M. (2010). Biological diversity in a changing world. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 365(1558), 3593-3597. https://doi.org/10.1098/ rstb.2010.0296
May, R.M. (2002). *The future of biological diversity in a crowded world.* Current Science, 82(11), 1325-1331. http://www.jstor.org/stable/24105996

Mitchell, D. and Buzzell, J.C. (1971). *Estimating eutrophic potential of pollutants.* Journal of the Sanitary Engineering Division, 97(4), 453-465. https://cedb.asce.org/CEDBsearch/record.jsp?dockey=0018468

Nichols, H.W. and Bold, H.C. (1965). *Trichosarcina polymorpha Gen. et Sp. Nov.* Journal of Phycology, 1(1), 34-38. https://doi.org/10.1111/j.1529-8817.1965.tb04552.x

Reza Moheimani, N., Borowitzka, M.A., Isdepsky, A. and Fon Sing, S. (2013). Standard methods for measuring growth of algae and their composition. In M.A. Borowitzka and N.R. Moheimani (Eds.), Algae for Biofuels and Energy (pp. 265-284). Springer Netherlands. https://doi.org/10.1007/978-94-007-5479-9_16

Rice, E.W. and Franson, M.A.H. (2005). 21st Edition 2005 (A.D. Eaton, A.P.H. Association, A.W.W. Association, and W.P.C. Federation (eds.); 21. ed., c). American Public Health Assoc.

Rizza, L. S., Smachetti, M. E. S., Nascimento, M. D., Salermo, G. L., and Curatti, L. (2017). Bioprospecting for native microalgae as an alternative source of sugars for the production of bioethanol. Algal Research. 22, 140-147. https://doi.org/10.1016/j.algal.2016.12.021

Shanab, S., Essa, A. and Shalaby, E. (2012). Bioremoval capacity of three heavy metals by some microalgae species (Egyptian Isolates). Plant Signaling and Behavior, 7(3), 392-399. https://doi.org/10.4161/psb.19173

Shannon, C.E. (1949). *A mathematical theory of communication.* The Bell System Technical Journal, 27(4), 623-656. https://doi.org/10.1002/j.1538-7305.1948.tb00917.x

Sharma, A.K., Sahoo, P.K., Singhal, S. and Patel, A. (2016). Impact of various media and organic carbon sources on biofuel production potential from *Chlorella* spp. 3 Biotech, 6(2), 116. https://doi.org/10.1007/s13205-016-0434-6

Sharma, N.K. and Rai, A.K. (2011). Biodiversity and biogeography of microalgae: Progress and pitfalls. Environmental Reviews, 19(1), 1-15. https://doi.org/10.1139/A10-020

Shehati, S.A. and Bader, S.A. (1985). Effect of Nile River water quality on algal distribution at Cairo, Egypt. Environment International, 11(5), 465-474. https://doi.org/10.1016/0160-4120(85)90230-2

Simpson, E.H. (1949). Measurement of diversity. Nature, 163(4148), 688-688. https://doi.org/10.1038/163688a0

Thornton, J., Steel, A., and Rast, W. (1992). *Water Quality Assessments--A Guide to Use of Biota, Sediments and Water in Environmental Monitoring--Second Edition.* Chapter 8: Reservoirs. In Water Quality Assessments - A Guide to Use of Biota, Sediments and Water in Environmental Monitoring Water Quality Assessments - A Guide to Use of Biota, Sediments and Water in Environmental Monitoring - Second Edition Edited by Deborah Chapman (Vol. 5, Issue 1996, pp. 371–375). http://www.earthprint.com

Wan, D., Wu, Q. and Kuèa, K. (2016). *Chapter 42 Spirulina.* In R. C. Gupta (Ed.), *Naturaceuticals* (pp. 569-583). Academic Press. https://doi.org/10.1016/B978-0-12-802147-7.00042-5

Xin, L., Hong-ying, H., Ke, G., and Ying-Xue, S. (2010). Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga *Scenedesmus sp.* Bioresource Technology, 101(14), 5494–5500. https://doi.org/10.1016/j.biortech.2010.02.016

Yee, W., Tang, S.G.H., Phua, P.S.P. and Megawarnan, H. (2019). Long-term maintenance of 23 strains of freshwater microalgae on solid microbiological culture media: A preliminary study. Algal Research, 41, 101516. https://doi.org/10.1016/j.algal.2019.101516

Zhang, X., Li, B., Xu, H., Wells, M., Tefsen, B. and Qin, B. (2019). Effect of micronutrients on algae in different regions of Taihu, a large, spatially diverse, hypereutrophic lake. Water Research, 151, 500-514. https://doi.org/10.1016/j.watres.2018.12.023

Cite this article as: Amal A. Badr and Walid M. Fouad (2021). Identification of culturable microalgal diversity in the River Nile in Egypt using enrichment media. African Journal of Biological Sciences. 3(2), 50-64. doi: 10.33472/AFJBS.3.2.2021.50-64.