Most known extrasolar planets (exoplanets) have been discovered using the radial velocity1,2 or transit3 methods. Both are biased towards planets that are relatively close to their parent stars, and studies find that around 17–30\% (refs 4, 5) of solar-like stars host a planet. Gravitational microlensing6–8, on the other hand, probes planets that are further away from their stars. Recently, a population of planets that are unbound or very far from their stars was discovered by microlensing9. These planets are at least as numerous as the stars in the Milky Way10. Here we report a statistical analysis of microlensing data (gathered in 2002–07) that reveals the fraction of bound planets 0.5–10 AU (Sun–Earth distance) from their stars. We find that 17–29\% of stars host Jupiter-mass planets (0.3–10 MJ, where MJ = 318 M\textsubscript{\textregistered} and M\textsubscript{\textregistered} = Earth’s mass). Cool Neptunes (10–30 M\textsubscript{\textregistered}) and super-Earths (5–10 M\textsubscript{\textregistered}) are even more common: their respective abundances per star are 52 ±22\% and 62 ±35\%. We conclude that stars are orbited by planets as a rule, rather than the exception.

Gravitational microlensing is very rare: fewer than one star per million undergoes a microlensing effect at any time. Until now, the planet-search strategy7 has been mainly split into two levels. First, wide-field survey campaigns such as the Optical Gravitational Lensing Experiment (OGLE; ref. 11) and Microlensing Observations in Astrophysics (MOA; ref. 12) cover millions of stars every clear night to identify and alert the community to newly discovered stellar microlensing events as early as possible. Then, follow-up collaborations such as the Probing Lensing Anomalies Network (PLANET; ref. 13) and the Microlensing Follow-Up Network (μFUN; refs 14, 15) monitor selected candidates at a very high rate to search for very short-lived light curve anomalies, using global networks of telescopes.

To ease the detection-efficiency calculation, the observing strategy should remain homogeneous for the time span considered in the analysis. As detailed in the Supplementary Information, this condition is fulfilled for microlensing events identified by OGLE and followed up by PLANET in the six-year time span 2002–07. Although a number of microlensing planets were detected by the various collaborations between 2002 and 2007 (Fig. 1), only a subset of them are consistent with the PLANET 2002–07 strategy. This leaves us with three compatible detections: OGLE 2005-BLG-071Lb (refs 16, 17) a Jupiter-like planet of mass M = 3.8 M\textsubscript{\textregistered} and semi-major axis a ≈ 3.6 AU; OGLE 2007-BLG-349Lb (ref. 18), a Neptune-like planet (M ≈ 0.2 M\textsubscript{\textregistered}, a ≈ 3.8 AU); and the

Figure 1 | **Survey-sensitivity diagram.** Blue contours, expected number of detections from our survey if all lens stars have exactly one planet with orbit size a and mass M. Red points, all microlensing planet detections in the time span 2002–07, with error bars (s.d.) reported from the literature. White points, planets consistent with PLANET observing strategy. Red letters, planets of our Solar System, marked for comparison: E, Earth; J, Jupiter; S, Saturn; U, Uranus; N, Neptune. This diagram shows that the sensitivity of our survey extends roughly from 0.5 AU to 10 AU for planetary orbits, and from 5 M\textsubscript{\textregistered} to 10 M\textsubscript{\textregistered}. The majority of all detected planets have masses below that of Saturn, although the sensitivity of the survey is much lower for such planets than for more massive, Jupiter-like planets. Low-mass planets are thus found to be much more common than giant planets.

1. Probing Lensing Anomalies Network (PLANET) Collaboration, Institut d’Astrophysique de Paris, Université Pierre & Marie Curie, UMR7095 UPMC-CNRS 98 bis boulevard Arago, 75014 Paris, France.
2. Université Pierre et Marie Curie, UMR7095 UPMC-CNRS 98 bis boulevard Arago, 75014 Paris, France.
3. Zentrum für Astronomie, Universität Heidelberg, Königstuhl 17, 69120 Heidelberg, Germany.
4. European Southern Observatory, Alonso de Córdoba 3107, Vitacura, Casilla 19001, Santiago, Chile.
5. Scottish Universities Physics Alliance (SUPA), University of St Andrews, School of Physics & Astronomy, North Haugh, St Andrews, KY16 9SS, UK.
6. University of Tasmania, School of Maths and Physics, Private bag 37, GPO Hobart, Tasmania 7001, Australia.
7. South African Astronomical Observatory, PO Box 9 Observatory 7935, South Africa.
8. Perth Observatory, Walton Road, Bickley, Perth 6076, Australia.
9. Niels Bohr Institute and Centre for Star and Planet Formation, Juliane Mariesvej 30, 2100 Copenhagen, Denmark.
10. Optical Gravitational Lensing Experiment (OGLE) Collaboration, Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warsaw, Poland.
11. Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warsaw, Poland.
12. University of Notre Dame, Physics Department, 225 Nieuwland Science Hall, Notre Dame, Indiana 46550, USA.
13. Institute of Geophysics and Planetary Physics, Lawrence Livermore National Laboratory, PO Box 808, California 94550, USA.
14. Department of Physics, University of Rijeka, Omladinska 14, 51000 Rijeka, Croatia.
15. Technical University of Vienna, Department of Computing, Wiedner Hauptstrasse 10, 1040 Vienna, Austria.
16. Laboratoire d’Astrophysique de Bordeaux (LATT), Université de Bordeaux, CNRS, 33400 Talence, France.
17. European Southern Observatory Headquarters, Karl-Schwarzschild-Strasse 2, 85748 Garching, Germany.
18. NASA Exoplanet Science Institute, Caltech, MS 100-22, 770 South Wilson Avenue, Pasadena, California 91125, USA.
19. Microlensing Observations in Astrophysics (MOA) Collaboration, Department of Earth and Space Science, Osaka University, Osaka 560-0043, Japan.
20. Department of Earth and Space Science, Osaka University, Osaka 560-0043, Japan.
21. University of Concepción, Departamento de Física, Casilla 160-C, Concepción, Chile.
22. Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK.
23. Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
Among the 98 events monitored, 43 met our quality-control criteria and semi-major axis microlensing events. It provided the number of planets that our survey obtained by summing the detection efficiencies over all individual order, \(f\), the mass-error bars reported in the literature) are plotted in Fig. 2c. The abilities of the mass for the three detections (computed according to \(f\)) do not explicitly depend on \(f\), where \(a\) are the parameters to be derived and \(d\) are the labelled contours show the corresponding expected number of detections. The figure shows that the core sensitivity covers the typical mass range of 0.14–1.0 \(M_\oplus\) (see Supplementary Fig. 3).

To derive the actual abundance of exoplanets from our survey, we proceeded as follows. Let the planetary mass function, \(f(\log a, \log M)\) = \(dN/(d\log a \times d\log M)\), where \(N\) is the average number of planets per star. We then integrate the product \(f(\log a, \log M) S(\log a, \log M)\) over \(\log a\) and \(\log M\). This gives \(E(f)\), the number of detections we can expect from our survey. For \(k\) (fractional) detections, the model then predicts a Poisson probability distribution \(P(k|E) = e^{-E}E^k/k!\). A Bayesian analysis assuming an uninformative uniform prior \(P(\log f) = 1\) finally yields the probability distribution \(P(\log f|k)\) that is used to constrain the planetary mass function.

Although our derived planet-detection sensitivity extends over almost three orders of magnitude of planet masses (roughly 5 \(M_\oplus\), to 10 \(M_\oplus\), it covers fewer than 1.5 orders of magnitude in orbit sizes (0.5–10 \(\text{AU}\)), thus providing little information about the dependence of \(f\) on \(a\). Within these limits, however, we find that the mass function is approximately consistent with a flat distribution in \(\log a\) (that is, \(f\) does not explicitly depend on \(a\)). The planet-detection sensitivity integrated over \(\log a\), or \(S(\log M)\), is displayed in Fig. 2b. The distribution probabilities of the mass for the three detections (computed according to the mass-error bars reported in the literature) are plotted in Fig. 2c (black curves), as their sum (red curve).

To study the dependence of \(f\) on mass, we assume that to the first order, \(f\) is well-approximated by a power-law model: \(f = f_0 (M/M_a)^\alpha\), where \(f_0\) (the normalization factor) and \(\alpha\) (the slope of the power-law) are the parameters to be derived and \(M_a\), a fiducial mass (in practice, the pivot point of the mass function). Previous works\(^{8,25–27}\) on planet frequency have demonstrated that a power law provides a fair description of the global behaviour of \(f\) with planetary mass. Apart from the constraint based on our PLANET data, we also made use in our analysis of the previous constraints obtained by microlensing; an estimate of the normalization\(^{19}\) \(f_0 (0.36 \pm 0.15)\) and an estimate of the slope\(^{25}\) \(\alpha (-0.68 \pm 0.2)\), displayed respectively as the blue point and the blue lines in Fig. 2. The new constraint presented here therefore relies on

![Figure 2](image)
giants21 found that fewer than 33\% of M dwarfs have a Jupiter-like planet between 1.5–4 AU, and even lower limits of 18\% have been reported29,30. These limits are compatible with our measurement of 1.5\% for masses ranging from Saturn to 10 times Jupiter, in the same orbit range.

From our derived planetary mass function, we estimate that within 0.5–10 AU (that is, for a wider range of orbital separations than previous studies), on average 17\% of stars host a 'Jupiter' (0.3–10 M\textsubscript{J}) and 52\%22 of stars host Neptune-like planets (10–30 M\textsubscript{J}). Taking the full range of planets that our survey can detect (0.5–10 AU, 5 M\textsubscript{J} to 10 M\textsubscript{J}), we find that on average every star has 1.6\% of planets. This result is consistent with every star of the Milky Way hosting (on average) one planet or more in an orbital-distance range of 0.5–10 AU. Planets around stars in our Galaxy thus seem to be the rule rather than the exception.

Received 19 January; accepted 28 October 2011.

1. Mayor, M. & Queloz, D. A Jupiter-mass companion to a solar-type star. Nature 378, 355–359 (1995).
2. Marcy, G. W. & Butler, R. P. A planetary companion to 70 Virginis. Astrophys. J. 464, L147–L151 (1996).
3. Charbonneau, D., Brown, T. M., Latham, D. W. & Mayor, M. Detection of planetary transits across a Sun-like star. Astrophys. J. 529, L43–L46 (2000).
4. Howard, A. et al. Planet occurrence within 0.25 AU of Solar-type stars from Kepler. Astrophys. J. (submitted); preprint at http://arxiv.org/abs/1103.2541 (2011).
5. Mayor, M. et al. The HARPS search for southern extra-solar planets XXXIV. Occurrence, mass distribution and orbital properties of super-Earths and Neptune-mass planets. Astron. Astrophys. (submitted); preprint at http://arxiv.org/abs/1109.2497 (2011).
6. Mao, S. & Paczynski, B. Gravitational microlensing by double stars and planetary systems. Astrophys. J. 374, L37–L40 (1991).
7. Gould, A. & Loeb, A. Discovering planetary systems through gravitational microlenses. Astrophys. J. 396, 104–114 (1992).
8. Bennett, D. P. & Rhie, S. H. Detecting Earth-mass planets with gravitational microlensing. Mon. Not. R. Astron. Soc. 284, 172–188 (1997).
9. Wambsganss, J. Discovering Galactic planets by gravitational microlensing: magnification patterns and light curves. Mon. Not. R. Astron. Soc. 217, 1209–1218 (2000).
10. Sumi, T. et al. Unbound or distant planetary mass population detected by gravitational microlensing. Nature 473, 349–352 (2011).
11. Udalski, A. The Optical Gravitational Lensing Experiment. Real time data analysis systems in the OGLE-III survey. Acta Astron. 53, 291–305 (2003).
12. Bond, I. A. et al. Real-time difference imaging analysis of MOA Galactic bulge observations during 2000. Mon. Not. R. Astron. Soc. 327, 866–880 (2001).
13. Albrow, M. et al. The 1995 pilot campaign of PLANET: searching for microlensing anomalies through precise, rapid, round-the-clock monitoring. Astrophys. J. 509, 687–702 (1998).
14. Gould, A. et al. Microlens OGLE-2005-BLG-169 implies that cool Neptune-like planets are common. Astrophys. J. 644, L37–L40 (2006).
15. Gaudi, B. S. et al. Discovery of a Jupiter/Saturn analog with gravitational microlensing. Science 313, 927–930 (2006).
16. Udalski, A. et al. A Jovian-mass planet in microlensing event OGLE-2005-BLG-071. Astrophys. J. 668, L109–L112 (2007).
17. Dong, S. et al. OGLE-2005-BLG-071Lb, the most massive M dwarf planetary companion? Astrophys. J. 695, 970–987 (2009).
18. Gould, A. et al. Frequency of solar-like systems and of ice and gas giants beyond the snow line from high-magnification microlensing events in 2005–2008. Astrophys. J. 720, 1073–1089 (2010).
19. Beaulieu, J.-P. et al. Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing. Nature 439, 437–440 (2006).
20. Kubas, D. et al. Limits on additional planetary companions to OGLE-2005-BLG-390L. Astron. Astrophys. 483, 317–324 (2008).
21. Gaudi, B. S. et al. Microlensing constraints on the frequency of Jupiter-mass companions: analysis of 5 years of PLANET photometry. Astrophys. J. 566, 463–499 (2002).
22. Einstein, A. Lens-like action of a star by the deviation of light in the gravitational field. Science 84, 506–507 (1936).
23. Dominik, M. Stochastic distributions of lens and source properties for observed galactic microlensing events. Mon. Not. R. Astron. Soc. 367, 669–692 (2006).
24. Cassan, A. An alternative parameterisation for binary-lens caustic-crossing events. Astron. Astrophys. 491, 587–595 (2008).
25. Sumi, T. et al. A cold Neptune-mass planet. OGLE-2007-BLG-368Lb: cold Neptunes are common. Astrophys. J. 710, 1641–1653 (2010).
26. Howard, A. et al. The occurrence and mass distribution of close-in super-Earths, Neptunes, and Jupiters. Science 330, 653–659 (2010).
27. Cumming, A. et al. The Keck Planet Search: Detectability and the minimum mass and orbital period distribution of extrasolar planets. Publ. Astron. Soc. Pacific 120, 531–554 (2008).
28. Pollack, J. B. et al. Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124, 62–86 (1996).
29. Tsapras, Y. et al. Microlensing limits on numbers and orbits of extrasolar planets from the 1998–2000 OGLE events. Mon. Not. R. Astron. Soc. 343, 1131–1144 (2003).
30. Snodgrass, C. et al. The abundance of Galactic planets from OGLE-III 2002 microlensing data. Mon. Not. R. Astron. Soc. 351, 967–975 (2004).

Supplementary Information is linked to the online version of the paper at www.nature.com/nature.

Acknowledgements Support for the PLANET project was provided by the HOLMES grant from the French Agence Nationale de la Recherche (ANR), the French National Centre for Scientific Research (CNRS), NASA, the US National Science Foundation, the Lawrence Livermore National Laboratory/National Nuclear Security Administration/Department of Energy, the French National Programme of Planetology, the Program of International Cooperation in Science France–Australia, the German Research Foundation, the Instrument Center for Danish Astronomy and the Danish Natural Science Research Council. The OGLE collaboration is grateful for funding from the European Research Council Advanced Grants Program. K.Ho. acknowledges support from the Qatar National Research Fund. M.D. is a Royal Society University Research Fellow.

Author Contributions A.C. led the analysis and conducted the modelling and statistical analyses. A.Ca. and D.K. selected light curves from 2002–07 PLANET/OGLE microlensing seasons, analysed the data and wrote the Letter and Supplement. D.K. computed the magnification maps used for the detection-efficiency calculations. J.-P.B. and Ch.C. wrote the software for online data reduction at the telescopes. J.-P.B. led the PLANET collaboration, with M.D., J.G., J.M. and A.W.; P.F. and M.D.A. contributed to online and offline data reduction. M.D. contributed to the conversion efficiencies to physical parameter space and developed the PLANET real-time display system with A.W., M.D.A. and Ch.C.; K.Ho. and A.Ca. developed and tested the Bayesian formula for fitting the two-parameter power-law mass function. J.G. edited the manuscript, conducted the main data cleaning and managed telescope operations at Mount Canopus (1 m) in Hobart. J.W. wrote the original magnification maps software, discussed the main implications and edited the manuscript. J.M., A.W. and U.G.J., respectively managed telescope operations in South Africa (South African Astronomical Observatory 1 m), Australia (Perth 0.61 m) and La Silla (Dutch 0.94 m). A.U. led the OGLE campaign and provided the final OGLE photometry. D.P.B., V.B., S.B., J.A.R.C., A.C., K.H.C., S.D., D.D.P., I.D., P.F., K.H.L., N.K., S.K., J.-B.M., R.M., K.R.P., K.-S., C.V., D.W., B.W. and M.Z. were involved in the PLANET observing strategy and/or PLANET data acquisition, reduction, real-time analysis and/or commented on the manuscript. T.S. commented on the manuscript. M.K.S., M.K., R.P., I.S., K.J., G.P. and L.W. contributed to OGLE data.

Author Information Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests. Readers are welcome to comment on the online version of this article at www.nature.com/nature. Correspondence and requests for materials should be addressed to A.C. (cassan@iap.fr).