Imp is required for timely exit from quiescence in *Drosophila* type II neuroblasts

Jordan A. Munroe¹, Mubarak H. Syed²*, Chris Q. Doe¹*

¹ Institute of Neuroscience, Howard Hughes Medical Institute, Univ. of Oregon, Eugene, OR, United States of America, ² Department of Biology, Univ. of New Mexico, Albuquerque, NM, United States of America

* cdoe@uoregon.edu (CQD); FlyGuy@unm.edu (MHS)

Abstract

Stem cells must balance proliferation and quiescence, with excess proliferation favoring tumor formation, and premature quiescence preventing proper organogenesis. *Drosophila* brain neuroblasts are a model for investigating neural stem cell entry and exit from quiescence. Neuroblasts begin proliferating during embryogenesis, enter quiescence prior to larval hatching, and resume proliferation 12-30h after larval hatching. Here we focus on the mechanism used to exit quiescence, focusing on “type II” neuroblasts. There are 16 type II neuroblasts in the brain, and they undergo the same cycle of embryonic proliferation, quiescence, and proliferation as do most other brain neuroblasts. We focus on type II neuroblasts due to their similar lineage as outer radial glia in primates (both have extended lineages with intermediate neural progenitors), and because of the availability of specific markers for type II neuroblasts and their progeny. Here we characterize the role of Insulin-like growth factor II mRNA-binding protein (Imp) in type II neuroblast proliferation and quiescence. Imp has previously been shown to promote proliferation in type II neuroblasts, in part by acting antagonistically to another RNA-binding protein called Syncrip (Syp). Here we show that reducing Imp levels delays exit from quiescence in type II neuroblasts, acting independently of Syp, with Syp levels remaining low in both quiescent and newly proliferating type II neuroblasts. We conclude that Imp promotes exit from quiescence, a function closely related to its known role in promoting neuroblast proliferation.

Introduction

The generation of neuronal diversity is essential for proper brain assembly and function. This is particularly true for the primate cortex, which derives from a specialized neural stem cell called outer radial glia (oRG). These stem cells are thought to have driven cortical expansion and diversity during evolution [1–3], but how they regulate their proliferation remains incompletely understood.

One way to help understand oRG lineages is to use model organisms that contain neural stem cells with lineages similar to oRGs, which can be used to generate testable hypotheses for investigating primate oRG lineages. In *Drosophila*, there is a small pool of 16 neural stem cells in the brain (eight stem cells per brain lobe), called type II neuroblasts (TIINBs), that undergo a lineage similar to primate oRGs to generate neurons [4–6] (Fig 1A). In primates these oRGs...
generate neurons of the cortex; in *Drosophila* the TIINBs generate neurons of the adult central complex (CX), a region important for navigation, sleep, and sensorimotor integration [7]. Like oRGs, TIINBs undergo repeated asymmetric divisions to produce a series of transit amplifying cells called Intermediate Neural Progenitor (INPs), which themselves undergo a more limited division pattern to generate a series of ganglion mother cells (GMCs) which undergo a single terminal division to produce pairs of neurons and/or glia (Fig 1A, left) [4–6].

Neuronal diversity is generated at each step in the TIINB lineage. TIINBs change gene expression over time as they generate distinct INPs, with some genes limited to early lineage expression such as insulin-like growth factor II mRNA-binding protein (Imp), Chinmo, and Lin-28; other genes are only expressed late in the lineage such as the RNA-binding protein Syncrip (Syp), Broad, and E93 [8, 9]. These genes are called candidate temporal transcription factors (TTFs) or temporal identity factors due to their potential role in specifying different neuronal fates based on their time of birth. Subsequently, each individual INP undergoes a TTF cascade to generate molecularly distinct GMCs [10–12]. Thus, the TIINBs appear to be an excellent model for understanding oRG lineages in primates.

Another important aspect of TIINB lineages is how their pattern of proliferation is regulated to generate large populations of neurons without tumorigenesis. TIINBs begin their lineage in the embryonic brain, followed by a period of quiescence at the transition from embryo to first larval instar (L1), and then proliferation resumes between 12–30 hours after larval hatching [13, 14]; subsequently all times refer to hours after larval hatching. This is similar to the pattern of proliferation-quiescence-proliferation exhibited by most other embryonic larval neuroblast lineages [15, 16]. Previous work has shown that neuroblast quiescence is achieved through the accumulation of nuclear Prospero (Pros) [16, 17], and upon exit from quiescence each TIINB will generate ~60 INPs that produce hundreds of neurons and glia throughout larval development [4–6, 18–20]. Previous work has shown that Syp recruits the mediator complex and Pros to drive the mushroom body (MB) NBs into decommissioning [21]. This terminal exit from the cell cycle is also driven by the loss of proliferation and differentiation due to low Imp expression [21, 22]. High Imp expression in early larval life promotes neuroblast proliferation via the stabilization of *myc* and *chinmo* RNAs as well as inhibition of the mediator complex [9, 21, 23]. This makes Imp an attractive candidate for studying how TIINBs initiate exit from quiescence. Here we focus on the role of Imp in regulating neuroblast proliferation in TIINB lineages, where we identify a novel role for Imp in promoting TIINB exit from quiescence.

Results

Type II neuroblasts exhibit a high-to-low Imp protein gradient overtime

Previous work has shown that Imp forms a high-to-low RNA and protein gradient in all assayed neuroblast populations [23], but at just a few timepoints. Here we used *Pointed-gal4 (pnt-gal4)*, which is expressed in all TIINBs, crossed to *UAS-GFP* to identify TIINBs and co-stained for Imp at 12h intervals throughout larval stages, from 24h to 96h after larval hatching; note that all times subsequently refer to hours after larval hatching (Fig 1B). We found that Imp protein forms a gradient from high to low over the first 60h of larval life, becoming virtually undetectable from 72-96h (Fig 1B–1F). We conclude that Imp levels drop continuously in TIINBs during larval life.

ImpRNAi and Imp overexpression have opposing effects on the timing of the Imp protein gradient in type II neuroblasts

To alter the Imp protein gradient, we performed Imp RNAi in TIINBs. We used *pnt-gal4 UAS-impRNAi* to reduce Imp protein levels specifically in TIINB lineages. We found that Imp
Fig 1. Quantification of the Imp gradient in type II neuroblasts. (A) Type II neuroblast lineage (left) [4–6] and outer radial glial lineage (right), adapted from [26]. (B,C) Imp protein forms a high-to-low gradient in type II neuroblasts during larval life.
RNAi in TIINBs significantly reduced Imp protein levels, although an Imp protein gradient persisted, effectively shifting the Imp gradient to earlier times in development (Fig 2A and 2C–2E). In contrast, overexpression of Imp within TIINB lineages results in higher levels of Imp, without abolishing its gradient, effectively shifting the Imp gradient to later times in development (Fig 2B–2E). We conclude that Imp RNAi or Imp overexpression reduces or increases Imp protein levels, respectively, and thus they are effective tools for manipulating Imp protein levels in TIINBs.

pnt-gal4 UAS-GFP can be used to selectively label proliferating type II neuroblasts

Imp has been shown to promote neuroblast proliferation, and the decline in Imp levels in late larva contributes to termination of neuroblast proliferation [21, 22]. Here we asked a related question: does reduction in Imp levels in TIINBs delay exit from quiescence? Proliferating versus quiescent TIINBs can be distinguished by expression of *pnt-Gal4 UAS-GFP, Deadpan (Dpn) and Cyclin E (CycE): proliferative neuroblasts in interphase are GFP+Dpn+CycE+ whereas quiescent neuroblasts are GFP-Dpn+CycE- [15, 16]. We found that *pnt-Gal4 UAS-GFP* was only expressed by proliferating TIINBs (Fig 3A; quantified in 3C), and no quiescent neuroblasts expressed *pnt-Gal4 UAS-GFP* (Fig 3B; quantified in 3C). This allowed us to quantify how many of the 16 TIINBs were proliferating, and infer the remainder were quiescent (see below). We conclude that *pnt-gal4 UAS-GFP* can be used to identify proliferating TIINBs (Fig 3D).

Imp is required for timely exit from quiescence in type II neuroblasts

High Imp expression early in larval development promotes neuroblast proliferation, while late, low Imp expression leads to neuroblast decommissioning [21, 22]. We wanted to know if high Imp expression early in larval life promoted TIINB exit from quiescence. To answer this question, we decreased Imp levels specifically in TIINB lineages and quantified the number of proliferating TIINBs at intervals from 24h to 96h. We used *pnt-gal4 UAS-GFP* to identify proliferating TIINBs, *UAS-ImpRNAi* (to reduce Imp levels), and Dpn to mark all neuroblasts (proliferating or quiescent). In wild type, at 24h ~8 of the 16 TIINBs are *pnt-Gal4 UAS-GFP*+ and thus have exited quiescence, with the remainder still in quiescence. By 36h, all 16 TIINBs have exited quiescence and are proliferative (Fig 4A and 4B). In contrast, following Imp RNAi, only ~2 TIINBs have exited quiescence at 24h, and it takes until 72h for all 16 TIINBs to exit quiescence and become proliferative (Fig 4A and 4B). We also wanted to see if Imp RNAi delayed exit from quiescence in specific TIINB lineages--e.g. the pair of lateral DL neuroblasts or dorsomedial DM neuroblasts--but each class had an indistinguishable time of exit from quiescence. We conclude that Imp promotes exit from quiescence in TIINBs.

To determine if higher levels of Imp could drive precocious exit from quiescence, we used *pnt-gal4* to drive *UAS-Imp* specifically in TIINB lineages. This manipulation results in significantly more Imp protein in TIINBs (Fig 2), but overexpression of Imp does not induce precocious exit from quiescence in TIINBs (Fig 4C and 4D). We conclude that Imp is necessary but not sufficient to drive TIINB exit from quiescence.

Because Imp promotes exit from quiescence, we asked whether quiescent TIINBs have low Imp and proliferating TIINBs have high Imp levels. Interestingly, we observed comparable
Fig 2. Imp RNAi and Imp overexpression result in reduced or increased Imp protein levels. Wild type Imp levels are shown in Fig 1. (A) Imp RNAi within type II neuroblasts (inset: pnt-gal4 UAS-GFP) leads to lower Imp levels without disrupting the protein gradient; quantified in

PLOS ONE | https://doi.org/10.1371/journal.pone.0272177 December 15, 2022 5 / 12
levels of Imp in proliferating TIINBs (Fig 4E, first column; quantified in 4F) and quiescent TIINBs (Fig 4E, second column; quantified in 4F). Because Imp and Syp can cross-repress each other [23], we assayed Syp levels in proliferating and quiescent TIINBs. As expected, we found Syp to be expressed at lower levels than Imp in both proliferating and quiescent TIINBs (Fig 4E, third and fourth columns; quantified in 4F). Previous work has shown little to no Syp expression in early TIINBs; the very low levels of Syp seen here may be due to more sensitive acquisition methods than used previously [8]. Interestingly, Syp levels in quiescent TIINBs were slightly higher than Syp levels in proliferative TIINBs (Fig 4F), showing a correlation between higher Syp levels and neuroblast quiescence. We conclude that Imp is expressed in quiescent neuroblasts and is necessary but not sufficient for timely exit from quiescence (Fig 4G).

Discussion

It is well documented in previous studies that Imp is expressed in a temporal gradient in many central brain neuroblasts [8, 9, 22, 23]. In this study we have confirmed the Imp gradient in TIINBs from 24h – 96h and have quantified Imp levels in wild type as well as after Imp RNAi knockdown or Imp overexpression. While both knockdown and overexpression show significant changes in Imp levels, the Imp gradient is maintained throughout larval life in all cases. Interestingly, at 36h Imp overexpression levels are lower than WT control levels, but only at this timepoint. This suggests a post-transcriptional ‘homeostatic’ mechanism that reduces Imp levels when they are experimentally increased. A possible explanation for this is Imp targeting by microRNA let-7. let-7 targets Imp in Drosophila male testis [24] and is present in MB NBs where it targets the temporal transcription factor Chinmo, which is also present in TIINBs [25]. Thus, let-7 may regulate Imp in TIINBs and should be explored in future work.

At 24h wild type larval brains show ~8–10 TIINBs active, and all 16 TIINBs (8 neuroblasts per brain lobe) are active and proliferating by 36h. Imp knockdown results in only ~2–4 TIINBs at 24h and all 16 TIINBs are not proliferating until 72h. This late exit from quiescence shows that Imp is necessary for timely exit from quiescence. Previous studies have shown that high levels of Imp in TIINBs are required to maintain large neuroblast size and proliferative activity through the stabilization of myc RNA [22], and overexpression of Imp in neuroblasts can extend proliferation [21, 22]. Our results add to these findings by showing that Imp is required for TIINB timely exit from quiescence. Additionally, Imp knock down in TIINBs promotes early exit from cell cycle at the end of larval life [21]. Imp overexpression in TIINBs did not change the rate at which TIINBs exit from quiescence. Thus, Imp is necessary but not sufficient for exit from quiescence. These findings suggest that a minimum level of Imp is required for the exit from quiescence. A potential mechanism for this would be a negative feedback loop driven by over-expression of Imp, which could lead to over-proliferation if not regulated. Again, a candidate factor for regulation of Imp levels as TIINBs exit quiescence is let-7.

It is interesting that Pnt-gal4 is not expressed in quiescent neuroblasts, yet is able to drive UAS-ImpRNAi at sufficient levels to maintain quiescence. Type II NBs are proliferative in the embryo, then go quiescent, and normally resume proliferation in 12-30h old larvae. We propose that pnt-gal4 is expressed in the embryo type II neuroblasts where it drives UAS-ImpRNAi
Fig 3. Pointed-gal4 UAS-GFP+ TIINBs have exited quiescence and are proliferative. (A) Type II neuroblasts are circled and identified by pnt-gal4 UAS-GFP (green), Dpn (magenta), and reconfirmed as proliferative by CycE (cyan) at 24h. Scale bar is 5 μm. (B) pnt-gal4 UAS-GFP

24h ALH

TIINB>GFP	Dpn	CycE
Proliferating		
Quiescent		

C:

% TypeIINB (pnt>GFP)

D:

TIINB

Proliferating

Quiescent

GFP+ Dpn+ CycE+

GFP- Dpn+ CycE-

GFP+ Dpn+ CycE-

GFP- Dpn+ CycE-

Fig 3. Pointed-gal4 UAS-GFP+ TIINBs have exited quiescence and are proliferative. (A) Type II neuroblasts are circled and identified by pnt-gal4 UAS-GFP (green), Dpn (magenta), and reconfirmed as proliferative by CycE (cyan) at 24h. Scale bar is 5 μm. (B) pnt-gal4 UAS-GFP
which persists into larval stages due to perdurance of Gal4 and Imp RNAi, thus extending quiescence. As Imp RNAi levels begin to rise (due to lack of pnt-gal4 UAS-ImpRNAi expression) the neuroblasts resume proliferation. We see no evidence for a second wave of quiescence due to re-expression of pnt-gal4.

We quantified Imp levels in both quiescent and proliferative TIINBs to see how they varied and saw no change. We also wanted to compare Syp levels to Imp levels in quiescent and proliferative TIINBs. Syp is required for the entrance into quiescence and decommissioning [21], but it was unknown what Syp levels are in TIINBs nearing the end of quiescence early in larval life. We compared Syp levels in proliferating TIINBs to quiescent TIINBs but found that Syp levels were significantly lower than Imp levels, consistent with their cross-repressive regulation. Interestingly, Syp levels in quiescent TIINBs were higher than Syp levels in proliferative TIINBs, showing a correlation between high Syp levels and neuroblast quiescence, and consistent with earlier work showing Syp is required to elevate levels of nuclear Prospero and initiate neuroblast decommissioning [21].

Materials and methods

Fly stocks

; UAS-myr::GFP; pointed-Gal4
; UAS-myr::GFP; pointed-Gal4
; UAS-ImpRNAi
UAS-Imp; Sco/Cyo
; UAS-myr::GFP; pointedGal4

Antibodies and immunostaining

We used the following antibodies: chicken GFP (Abcam, Eugene OR 1:1000), rabbit Imp (McDonald lab, UT Austin, 1:1000), rabbit Syp (Desplan lab, NYU, 1:1000), rat Deadpan (Dpn; Abcam, Eugene OR 1:20), rabbit Cyclin E (CycE; Santa Cruz Biotech, #C1209, 1:500), guinea pig Asense (Wang lab, Duke, 1:500), and secondary antibodies were from Thermo-fisher, Eugene OR used at manufacturer’s recommendation. All larvae were raised at 25°C and dissected in Hemolymph Like buffer 3.1 (HL3.1) (NaCl 70mM, KCl 5mM, CaCl2 1.5mM, MgCl2 4mM, sucrose 115mM, HEPES 5mM, NaHCO3 10mM, and Trehalose 5mM in double distilled water). Larvae were grown to specified time points, dissected, mounted on poly-D-lysine coated slips (Neuvitro, Camas, WA), and incubated for 30 minutes in 4% paraformaldehyde solution in Phosphate Buffer Saline (PBS) with 1% Triton-X (1% PBS-T) at room temperature. Larval brains were washed twice with 0.5% PBS-T and incubated for 1–7 days at 4°C in a blocking solution of 1% goat serum (Jackson ImmunoResearch, West Grove, PA), 1% donkey serum (Jackson ImmunoResearch, West Grove, PA), 2% dimethyl sulfoxide in organosulfur (DMSO), and 0.003% bovine serum albumin (BSA) (Fisher BioReagents, Fair Lawn, NJ Lot #196941). Larval brains were incubated overnight at 4°C in a solution of primary antibodies in 0.5% PBS-T. Larval brains were washed for at least 60 minutes in 0.5% PBS-T at room temperature, and then incubated overnight at 4°C in a solution of secondary antibodies in 0.5% PBS-T. Brains were washed in 0.5% PBS-T for at least 60 minutes at room temperature.
Brains were dehydrated by going through a series of 10-minute washes in 30%, 50%, 70%, and 90% EtOH, and two rounds of 10 minutes in 100% EtOH and two rounds of 10 minutes in xylene (MP Biomedicals, LLC, Solon, OH, Lot# S0170), then mounted in dibutyl phthalate in xylene (DPX; Sigma-Aldrich, cat. no. 06522). Brains sat in DPX for at least 48 hours at 4˚C or 72 hours (48 hours at room temperature and 24 hours at 4˚C) before imaging.

Imaging and statistical analysis

All Imp data were collected with identical confocal settings; all Syp data were collected with identical confocal settings. Fluorescent images were collected on Zeiss LSM 800. TIINBs were counted using the cell counter plugin in FIJI (https://imagej.net/software/fiji/). Imp pixel density in each TIINB was calculated in FIJI. In FIJI, TIINBs were manually selected in a 2D plane at the largest cross section of the TIINB with the polygon lasso tool, and the area and Raw Integrated Density (RID) was measured. The nucleus of each TIINB went through the same analysis steps. Imp is cytoplasmic and measuring fluorescence in the nucleus functioned as background subtraction. Imp levels were normalized to cell area using the equation:

\[
\text{Normalized Imp Level} = \frac{\text{Cell Body RID} - \text{Nucleus RID}}{\text{Cell Body Area} - \text{Nucleus Area}}
\]

Two-tailed student t-tests were used to compare two sets of data. *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001. All graphs and statistical analysis were done in Prism (GraphPad Software, San Diego, CA). Note that we were unable to quantify Imp fluorescence in quiescent TIINBs in Imp RNAi flies because quiescent TIINBs cannot be distinguished from quiescent Type I neuroblasts.

Figure production

Images for figures were taken in FIJI. Figures were assembled in Adobe Illustrator (Adobe, San Jose, CA). Any changes in brightness or contrast were applied to the entire image.

Acknowledgments

We thank Noah Dillon and Gonzalo Morales Chaya for comments on the manuscript, and Adam Fries for help with developing a fluorescent analysis method.

Author Contributions

Conceptualization: Jordan A. Munroe, Chris Q. Doe.

Data curation: Jordan A. Munroe, Chris Q. Doe.

Formal analysis: Jordan A. Munroe, Mubarak H. Syed.

Funding acquisition: Jordan A. Munroe, Mubarak H. Syed, Chris Q. Doe.

Investigation: Jordan A. Munroe.
Methodology: Jordan A. Munroe.

Project administration: Mubarak H. Syed, Chris Q. Doe.

Supervision: Mubarak H. Syed, Chris Q. Doe.

Writing – original draft: Jordan A. Munroe, Chris Q. Doe.

Writing – review & editing: Jordan A. Munroe, Mubarak H. Syed, Chris Q. Doe.

References

1. Hansen DV, Lui JH, Parker PR, Kriegstein AR. Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature. 2010 Mar 25; 464(7288):554–61. https://doi.org/10.1038/nature08845 PMID: 20154730

2. Fietz SA, Kelav I, Vogt J, Wilisch-Brauninger M, Stenzel D, Fish JL, et al. OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling. Nat Neurosci. 2010 Jun; 13(6):690–9. https://doi.org/10.1038/nn.2553 PMID: 20436478

3. Noctor SC, Martinez-Cerdeno V, Ivic L, Kriegstein AR. Cortical neurons arise in asymmetric and symmetric division zones and migrate through specific phases. Nat Neurosci. 2004 Feb; 7(2):136–44. https://doi.org/10.1038/nn1172 PMID: 14703572

4. Boone JO, Doe CQ. Identification of Drosophila type II neuroblast lineages containing transit amplifying ganglion mother cells. Dev Neurobiol. 2008 Aug; 68(9):1185–95. https://doi.org/10.1002/dneu.20648 PMID: 18548484

5. Bowman SK, Rolland V, Betschinger J, Kinsey KA, Emery G, Knoblich JA. The tumor suppressors Brat and Numb regulate transit-amplifying neuroblast lineages in Drosophila. Dev Cell. 2008 Apr; 14(4):535–46. https://doi.org/10.1016/j.devcel.2008.03.004 PMID: 18342578

6. Bello BC, Izergina N, Caussinus E, Reichert H. Amplification of neural stem cell proliferation by intermediate progenitor cells in Drosophila brain development. Neural Dev. 2008; 3:5. https://doi.org/10.1186/1749-8104-3-5 PMID: 18284664

7. Turner-Evans DB, Jayaraman V. The insect central complex. Curr Biol. 2016 Jun 6; 26(11):R453–7. https://doi.org/10.1016/j.cub.2016.04.006 PMID: 27269718

8. Syed MH, Mark B, Doe CQ. Steroid hormone induction of temporal gene expression in Drosophila brain neuroblasts generates neuronal and glial diversity. eLife [Internet]. 2017 Apr 10;6. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28394252 https://doi.org/10.7554/eLife.26287

9. Ren Q, Yan CP, Liu Z, Sugino K, Mok K, He Y, et al. Stem cell intrinsic, Seven-up-triggered temporal factor gradients diversify intermediate neural progenitors. Curr Biol. 2017;in press. https://doi.org/10.1016/j.cub.2017.03.047 PMID: 28434858

10. Bayraktar OA, Doe CQ. Combinatorial temporal patterning in progenitors expands neural diversity. Nature. 2013 Jun 19; 498:445–55. https://doi.org/10.1038/nature12266 PMID: 23783519

11. Abduselamoglu MD, Eroglu E, Burkard TR, Knoblich JA. The transcription factor odd-paired regulates temporal identity in transit-amplifying neural progenitors via an incoherent feed-forward loop. VijayRaghavan K, Wang H, Sen S, editors. eLife. 2019 Jul 22; 8:e46566. https://doi.org/10.7554/eLife.46566 PMID: 31329099

12. Tang JLY, Hakes AE, Krautz R, Suzuki T, Contreras EG, Fox PM, et al. NanoDam identifies Homeo-brain (ARX) and Scarecrow (NKX2.1) as conserved temporal factors in the Drosophila central brain and visual system. Dev Cell. 2022 May 9; 57(9):1193–1207.e7. https://doi.org/10.1016/j.devcel.2022.04.008 PMID: 35483359

13. Álvarez JA, Díaz-Benjumea FJ. Origin and specification of type II neuroblasts in the Drosophila embryo. Dev Camb Engl. 2018 Apr 5;145(7):dev158394. https://doi.org/10.1242/dev.158394 PMID: 29567672

14. Walsh KT, Doe CQ. Drosophila embryonic type II neuroblasts: origin, temporal patterning, and contribution to the adult central complex. Dev Camb Engl. 2017 Dec 15; 144(24):4552–62.

15. Chell JM, Brand AH. Nutrition-responsive glia control exit of neural stem cells from quiescence. Cell. 2010 Dec 23; 143(7):1161–73. https://doi.org/10.1016/j.cell.2010.12.007 PMID: 21183078

16. Lai SL, Doe CQ. Transient nuclear Prospero induces neuronal progenitor quiescence. eLife. 2014; 3. https://doi.org/10.7554/eLife.03363 PMID: 25364199

17. Maurange C, Cheng L, Gould AP. Temporal transcription factors and their targets schedule the end of neural proliferation in Drosophila. Cell. 2008 May 30; 133(5):891–902. https://doi.org/10.1016/j.cell.2008.03.034 PMID: 18510932
18. Bayraktar OA, Boone JQ, Drummond ML, Doe CQ. Drosophila type II neuroblast lineages keep Prospero levels low to generate large clones that contribute to the adult brain central complex. Neural Dev. 2010; 5:26. https://doi.org/10.1186/1749-8104-5-26 PMID: 20920301

19. Yu HH, Awasaki T, Schroeder MD, Long F, Yang JS, He Y, et al. Clonal development and organization of the adult Drosophila central brain. Curr Biol. 2013 Apr 22; 23(8):633–43. https://doi.org/10.1016/j.cub.2013.02.057 PMID: 23541733

20. Yang JS, Awasaki T, Yu HH, He Y, Ding P, Kao JC, et al. Diverse neuronal lineages make stereotyped contributions to the Drosophila locomotor control center, the central complex. J Comp Neurol. 2013 Aug 15; 521(12):2645–62. https://doi.org/10.1002/cne.23339 PMID: 23696496

21. Yang CP, Samuels TJ, Huang Y, Yang L, Ish-Horowicz D, Davis I, et al. Imp and Syp RNA-binding proteins govern decommissioning of Drosophila neural stem cells. Dev Camb Engl. 2013 Oct 1; 144 (19):3454–64. https://doi.org/10.1242/dev.149500 PMID: 28851709

22. Samuels TJ, Järvelin AI, Ish-Horowicz D, Davis I. Imp/IGF2BP levels modulate individual neural stem cell growth and division through myc mRNA stability. eLife. 2020 Jan 14; 9:e51529. https://doi.org/10.7554/eLife.51529 PMID: 31934860

23. Liu Z, Yang CP, Sugino K, Fu CC, Liu LY, Yao X, et al. Opposing intrinsic temporal gradients guide neural stem cell production of varied neuronal fates. Science. 2015 Oct 16; 350(6258):317–20. https://doi.org/10.1126/science.aad1886 PMID: 26472907

24. Toledano H, D’Alterio C, Czech B, Levine E, Jones DL. The let-7-Imp axis regulates ageing of the Drosophila testis stem-cell niche. Nature. 2012 May 23; 485(7423):605–10. https://doi.org/10.1038/nature11061 PMID: 22660319

25. Wu YC, Chen CH, Mercer A, Sokol NS. Let-7-complex microRNAs regulate the temporal identity of Drosophila mushroom body neurons via chinmo. Dev Cell. 2012 Jul 17; 23(1):202–9. https://doi.org/10.1016/j.devcel.2012.05.013 PMID: 22814608

26. Liu J, Liu W, Yang L, Wu Q, Zhang H, Fang A, et al. The Primate-Specific Gene TMEM14B Marks Outer Radial Glia Cells and Promotes Cortical Expansion and Folding. Cell Stem Cell. 2017 Nov 2; 21 (5):635–649.e8. https://doi.org/10.1016/j.stem.2017.08.013 PMID: 29033352