Thermodynamic, Physical, and Structural Characteristics in Layered Hybrid Type (C$_2$H$_5$NH$_3$)$_2$MCl$_4$ ($M = ^{59}$Co, 63Cu, 65Zn, and 113Cd) Crystals

Ae Ran Lim

Analytical Laboratory of Advanced Ferroelectric Crystals and Department of Science Education, Jeonju University, Jeonju 53069, Korea; aeranlim@hanmail.net or arlim@jj.ac.kr; Tel.: +82-(0)63-220-2514

Received: 29 February 2020; Accepted: 14 April 2020; Published: 15 April 2020

Abstract: The thermal, physical, and molecular dynamics of layered hybrid type (C$_2$H$_5$NH$_3$)$_2$MCl$_4$ ($M = ^{59}$Co, 63Cu, 65Zn, and 113Cd) crystals were investigated by thermogravimetric analysis (TGA) and magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy. The temperatures of the onset of partial thermal decomposition were found to depend on the identity of M. In addition, the Bloembergen–Purcell–Pound curves for the 1H spin-lattice relaxation time T_{1p} in the rotating frames of CH$_3$CH$_2$ and NH$_3$, and for the 13C T_{1p} of CH$_3$ and CH$_2$ were shown to exhibit minima as a function of the inverse temperature. These results confirmed the rotational motion of 1H and 13C in the C$_2$H$_5$NH$_3$ cation. Finally, the T_{1p} values and activation energies E_a obtained from the 1H measurements for the H-Cl···M ($M = $ Zn and Cd) bond in the absence of paramagnetic ions were larger than those obtained for the H-Cl···M ($M = $ Co and Cu) bond in the presence of paramagnetic ions. Moreover, the E_a value for 13C, which is distant from the M ions, was found to decrease upon increasing the mass of the M ion, unlike in the case of the E_a values for 1H.

Keywords: crystal growth; organic-inorganic hybrid compound; (C$_2$H$_5$NH$_3$)$_2$CoCl$_4$; thermodynamic; MAS NMR

1. Introduction

Layered hybrid compounds have drawn great attention as a new generation of high performance materials due to their interesting physical and chemical properties obtained through the combination of organic and inorganic materials at the molecular level [1–3]. They consist of a wide range of inorganic anion chains, alternating with a large variety of organic cations as building blocks. The organic component of the hybrid complex provides several useful properties, such as structural flexibility and optical properties, while the inorganic part is responsible for the mechanical and thermal stabilities, in addition to interesting magnetic and dielectric transitions [4,5]. The diversity of such hybrid materials is therefore large, and so offers a wide range of structures, properties, and potential applications [6–11]. More specifically, hybrid layered compounds based on the perovskite structure are interesting materials due to their potential application in solar cells [2,3]. However, the toxicity and chemical instability of halide perovskites limit their use. As a result, the replacement of the lead in present in the perovskite structure with alternative cost-effective materials that are environmentally friendly, less-toxic, and more readily available (e.g., transition metals) is necessary for the extended application of perovskites in solar cells [3]. The structure of (C$_n$H$_{2n+1}$NH$_3$)$_2$MCl$_4$ compounds, where $n = 1, 2, 3$. . . and M represents a divalent metal ($M = $ Co$^{2+}$, Cu$^{2+}$, Zn$^{2+}$, and Cd$^{2+}$), has been described as a sequence of alternating organic-inorganic layers [2,3,12]. The structures of (C$_2$H$_5$NH$_3$)$_2$MCl$_4$ crystals with $n = 2$ are similar within each group but dissimilar between groups due to differences between either the inorganic or organic components. For example, the inorganic frames where $M = $ Cu$^{2+}$ and Cd$^{2+}$ are...
corner-sharing MCl₆ octahedra, while those of $M = \text{Co}^{2+}$ and Zn$^{2+}$ are simple MCl₄ tetrahedra [13]. In addition, the organic chains are joined by weak hydrogen bonds between the NH₃ groups and the Cl ions. Indeed, the structural geometries and molecular dynamics of the organic molecules within the layered hybrid structures are important for determining the influence of temperature on the structural phase transitions.

As an example, (C₂H₅NH₃)₂CoCl₄ crystallizes as an orthorhombic structure, which undergoes a reversible phase transition at 235 K [14]. In addition, (C₂H₅NH₃)₂CuCl₄ undergoes phase transitions at 236, 330, 357, and 371 K [7,15–19], its crystal structure at room temperature is orthorhombic [20]. In contrast, (C₂H₅NH₃)₂ZnCl₄ undergoes five phase transitions at 231, 234, 237, 247, and 312 K [21], crystallizing as an orthorhombic system at room temperature [22]. Finally, (C₂H₅NH₃)₂CdCl₄ undergoes structural phase transitions at 114, 216, 358, and 470 K [9,23,24], whereby the room temperature orthorhombic phase has the Abma space group [23]. The structure of the organic component consists of a double layer of alkylammonium ions with the charged nitrogen atoms oriented to the nearest MCl₄ tetrahedra or MCl₆ octahedra. The phase transition temperatures, lattice constants, structures, and space groups for the four crystals are summarized in Table 1.

Table 1. The phase transition temperatures, T_C, lattice constants, structures, and space groups of (C₂H₅NH₃)₂MCl₄ ($M = \text{Co, Cu, Zn, and Cd}$) crystals at room temperature.

M	T_C (K)	Lattice Constant (Å)	Structure	Space Group		
Co	235	a = 10.025	b = 7.403	c = 17.603	orthorhombic	Pnma
Cu	236, 330, 357, 371	a = 7.47	b = 7.35	c = 21.18	orthorhombic	Pbca
Zn	231, 234, 237, 247, 312	a = 10.043	b = 7.397	c = 17.594	orthorhombic	Pna2₁
Cd	114, 216, 358, 470	a = 7.354	b = 7.478	c = 22.11	orthorhombic	Abma

Based on our previously reported nuclear magnetic resonance (NMR) results, the molecular dynamics of the cation present in (C₂H₅NH₃)₂MCl₄ ($M = \text{Cu, Zn, and Cd}$) crystals were discussed in terms of temperature-dependent chemical shifts and spin-lattice relaxation times $T_{1\rho}$ in the rotating frames for the ^1H and ^{13}C nuclei [25–27].

Thus, to better elucidate the thermal stability in (C₂H₅NH₃)₂CoCl₄ single crystals grown by the slow evaporation method, we herein describe the use of thermogravimetric analysis (TGA), in addition to structural analysis by variable-temperature ^1H magic angle spinning (MAS) NMR spectroscopy and ^{13}C cross-polarization (CP/MAS) NMR spectroscopy. Furthermore, the spin-lattice relaxation times $T_{1\rho}$ in the rotating frames are measured for the ^1H and ^{13}C nuclei to better understand the physical and structural properties of (C₂H₅NH₃)₂CoCl₄. The obtained results are compared with those of the previously reported (C₂H₅NH₃)₂CuCl₄, (C₂H₅NH₃)₂ZnCl₄, and (C₂H₅NH₃)₂CdCl₄, and the properties dependent on the characteristics of the metal anion and the organic cation are identified.

2. Results and Discussion

2.1. Thermal Stability

The thermal stabilities of the various (C₂H₅NH₃)₂MCl₄ were examined by TGA, and the results are presented in Figure 1. Upon comparison of the TGA results with the possible chemical reactions taking place, the solid residues formed for (C₂H₅NH₃)₂MCl₄ were calculated based on Equations (1)–(4) [28]:

\[
\begin{align*}
(C₂H₅NH₃)₂CoCl₄ & \rightarrow (C₂H₅NH₂)₂CoCl₂ (s) + 2\text{HCl (g)} \\
\text{Residue: (C₂H₅NH₃)₂CoCl₂/(C₂H₅NH₃)₂CoCl₄} & = 74.03\% \\
(C₂H₅NH₃)₂CuCl₄ & \rightarrow \text{CoCl₂ (s) + 2HCl (g) + 2(C₂H₅NH₂ (g))} \\
\text{Residue: CoCl₂/(C₂H₅NH₃)₂CoCl₄} & = 46.24\%
\end{align*}
\]
(C₂H₅NH₃)₂CuCl₄ → (C₂H₅NH₂)₂CuCl₂ (s) + 2HCl (g)
Residue: (C₂H₅NH₂)₂CuCl₂/(C₂H₅NH₃)₂CuCl₄ = 75.49%

(C₂H₅NH₃)₂Cl₂ → (C₂H₅NH₂)₂Cl₂ (s) + 2HCl (g) + 2(C₂H₅NH₂) (g)
Residue: CuCl₂/(C₂H₅NH₃)₂CuCl₄ = 45.19%

(C₂H₅NH₃)₂ZnCl₄ → (C₂H₅NH₂)₂ZnCl₂ (s) + 2HCl (g)
Residue: (C₂H₅NH₂)₂ZnCl₂/(C₂H₅NH₃)₂ZnCl₄ = 75.64%

(C₂H₅NH₃)₂ZnCl₂ → ZnCl₂ (s) + 2HCl (g) + 2(C₂H₅NH₂) (g)
Residue: ZnCl₂/(C₂H₅NH₃)₂ZnCl₄ = 45.53%

(C₂H₅NH₃)₂CdCl₄ → (C₂H₅NH₂)₂CdCl₂ (s) + 2HCl (g)
Residue: (C₂H₅NH₂)₂CdCl₂/(C₂H₅NH₃)₂CdCl₄ = 78.95%

(C₂H₅NH₃)₂CdCl₂ → CdCl₂ (s) + 2HCl (g) + 2(C₂H₅NH₂) (g)
Residue: CdCl₂/(C₂H₅NH₃)₂CdCl₄ = 52.92%

Figure 1. Thermogravimetric analysis (TGA) curve for crystals of (C₂H₅NH₃)₂MCl₄ (M = Co, Cu, Zn, and Cd).

For the M = Co, Cu, Zn, and Cd species, the first mass losses were observed at approximately 378, 430, 460, and 550 K, respectively, which represent the onset of partial thermal decomposition, T_d. From the results calculated using the molecular weights, mass losses of 25.97, 24.51, 24.36, and 21.05% for the different M ions were attributed to decomposition of the 2HCl moieties. These results are consistent with the TGA experiment results shown by dotted lines in Figure 1. Moreover, the final decomposition product is MCl₂, which corresponds to mass losses of 53.76, 54.81, 54.47, and 47.08%. These results indicate some differences between the calculated and experimental values. The difference between the calculation and experimental value of the final decomposition product is presumably dependent on the heating rate in the TGA experiment. Another difference is thought to be due to experimental conditions in air or N₂ atmosphere. The decomposition temperature, T_d, and mass loss of 2HCl, and final decomposition product for four crystals are summarized in Table 2.
was observed upon increasing temperature to 360 or 460 K, although melting was observed to be distinguished, and the superimposed peak was rather broad; at 300 and 370 K, single peaks were suggested by Lee [29].

Table 2. The decomposition temperature, T_d, mass loss of 2HCl, and final decomposition product MCl_2 for four crystals.

M	T_d (K)	Weight Loss of 2HCl (%) (cal. Value)	Weight Loss of 2HCl (%) (exp. Value)	Final Decomposition Product (%) (cal. Value)
Co	378	25.97	26.09	53.76
Cu	430	24.51	24.84	54.81
Zn	460	24.36	23.17	54.47
Cd	550	21.05	21.00	47.08

Optical polarizing microscopy was used in order to determine whether these transformations are structural phase transitions or chemical reactions, as presented in Figure 2. In the case of (C$_2$H$_5$NH$_3$)$_2$CoCl$_4$, the crystals are blue at room temperature, and no change in the crystal state was observed upon increasing temperature to 360 or 460 K, although melting was observed to commence at 465 K. In contrast, the (C$_2$H$_5$NH$_3$)$_2$CuCl$_4$ crystals are dark yellow at room temperature, although they present a slightly inhomogeneous hue due to surface roughness. Upon increasing the temperature, the crystal color changed from dark yellow (300 K), to brown (380 K), to dark brown (450 and 500 K), and start melting was observed at 530 K. Interestingly, the crystals of (C$_2$H$_5$NH$_3$)$_2$ZnCl$_4$ remained colorless and transparent (300, 450, and 460 K), and melting was observed between 470 and 475 K. Similarly, in the case of (C$_2$H$_5$NH$_3$)$_2$CdCl$_4$, the crystals remained colorless and transparent between 300 and 480 K, although they became slightly opaque at approximately 540 K, prior to becoming fully opaque close to 570 K. Here, the sample temperatures shown in Figure 2 were kept constant during 2 min each temperature. For all four crystals, it was apparent that the phenomenon above T_d was not related to any structural phase transitions, but rather to a thermal decomposition, suggested by Lee [29].

![Figure 2](image_url)

Figure 2. The states of single crystals according to the temperature (a) (C$_2$H$_5$NH$_3$)$_2$CoCl$_4$, (b) (C$_2$H$_5$NH$_3$)$_2$CuCl$_4$, (c) (C$_2$H$_5$NH$_3$)$_2$ZnCl$_4$, (d) (C$_2$H$_5$NH$_3$)$_2$CdCl$_4$.

2.2. Investigation of the Structural Properties and Molecular Dynamics by 1H MAS NMR

The 1H MAS NMR spectra of (C$_2$H$_5$NH$_3$)$_2$CoCl$_4$ were recorded at a range of temperatures as shown in Figure 3. More specifically, at 300 and 370 K, the 1H signals for C$_2$H$_5$ and NH$_3$ could not be distinguished, and the superimposed peak was rather broad; at 300 and 370 K, single peaks were
observed at $\delta = 1.68$ and $\delta = 0.02$ ppm, respectively. In Figure 3, the spinning sidebands for the protons of C$_2$H$_5$NH$_3$ are marked with asterisks. At 420 and 430 K, signals with chemical shifts of $\delta = 1.76$ and 4.36 ppm, and $\delta = 1.79$ and 4.37 ppm, were observed, respectively, which represent the protons of the C$_2$H$_5$ and NH$_3$ ions. In addition, at these higher temperatures, the obtained signals became more intense, and the full-width at half-maximum (FWHM) values narrowed significantly, which were attributed to a high internal mobility.

Figure 3. 1H magic angle spinning (1H MAS) NMR spectra of (C$_2$H$_5$NH$_3$)$_2$CoCl$_4$ at 300 K, 370 K, 420 K, and 430 K. The spinning sidebands for central peak are marked with asterisk.

The magnetization recovery traces for both the C$_2$H$_5$ and NH$_3$ protons in (C$_2$H$_5$NH$_3$)$_2$CoCl$_4$ can be described by a single exponential function $^{[30,31]}$ $\frac{P(t)}{P_0} = \exp(-t/T_{1\rho})$ (5)

where $P(t)$ is the magnetization as a function of the spin-locking pulse duration t, and P_0 is the total nuclear magnetization of the proton at thermal equilibrium. The recovery traces of the 1H nuclei for delay times ranging from 1 μs to 50 ms at 300 K are presented in the inset of Figure 4. Here, the asterisks represent spinning sidebands for the center peak. The $T_{1\rho}$ values were obtained from the slopes of the delay time vs. the signal intensity, and were plotted as a function of the inverse temperature in Figure 4. As shown, the $T_{1\rho}$ values sharply decrease close to 430 K, while near the phase-transition temperature T_C, no changes are evident. At higher temperatures, the $T_{1\rho}$ values for the C$_2$H$_5$ and NH$_3$ protons were comparable within the range of error, and from the slope of $T_{1\rho}$ vs. the inverse temperature, the activation energy E_a for the rotational motion below 400 K was determined to be $E_a = 3.11 \pm 0.15$ kJ/mol.
where the quantities \(f(\omega) \) are spectral density functions, i.e., Fourier transforms of the time correlation functions. \(\omega_H \) and \(\omega_C \) are the Larmor frequencies of proton and carbon, respectively, and \(\omega_1 \) is the frequency of the spin-locking field. The parameter \(\tau_C \) is a characteristic correlation time, that is, the time scale of the motion of the \(\text{C}_2\text{H}_3 \) and \(\text{NH}_3 \) ions. \(F \) is defined as a relaxation constant:

\[
T_{1\rho}^{-1} = F[4f(\omega_1) + f(\omega_H - \omega_C) + 3f(\omega_C) + 6f(\omega_H + \omega_C) + 6f(\omega_H)]
\]

\[
f(\omega_1) = \tau_C/(1 + \omega_1^2\tau_C^2),
\]

\[
f(\omega_H - \omega_C) = \tau_C/[1 + (\omega_H - \omega_C)^2\tau_C^2],
\]

\[
f(\omega_C) = \tau_C/(1 + \omega_C^2\tau_C^2),
\]

\[
f(\omega_H + \omega_C) = \tau_C/[1 + (\omega_H + \omega_C)^2\tau_C^2],
\]

\[
f(\omega_H) = \tau_C/(1 + \omega_H^2\tau_C^2).
\]
\[F = (N/20)(\gamma_H \gamma_C h/\tau_{H-C})^2 \] \hspace{1cm} (7)

where \(\gamma_H \) and \(\gamma_C \) are the proton and carbon gyromagnetic ratios, respectively, \(N \) is the number of directly bound protons, \(\tau_{H-C} \) is the H–C internuclear distance, and \(h \) is the reduced Planck constant. The obtained data were analyzed assuming that \(T_{1\rho} \) has a minimum at \(\omega_1 \tau_C = 1 \), and the BPP relationship was applied between \(T_{1\rho} \) and the characteristic frequency \(\omega_1 \). The value of the relaxation constant \(F \) was therefore obtained using Equation (7). From these results, the temperature dependences of the \(\tau_C \) values for the rotational motions of \(\text{C}_2\text{H}_5 \) and \(\text{NH}_3 \) were calculated from the \(F \) values. The temperature dependence of \(\tau_C \) follows the simple Arrhenius equation:

\[\tau_C = \tau_0 \exp(E_a/RT) \] \hspace{1cm} (8)

where \(E_a \) is the activation energy, \(\tau_0 \) is the high temperature limit of the correlation time, \(T \) is the temperature, and \(R \) is the gas constant. The slope of the linear portion of the semi-log plot represents the \(E_a \), and the \(E_a \) for the rotational motion can be obtained from the log \(\tau_C \) vs. 1000/T curve. Thus, the calculated \(E_a \) values for the four compounds are summarized in Table 3; the activation energies for molecular motion in the presence of paramagnetic \(\text{Co}^{2+} \) and \(\text{Cu}^{2+} \) ions were smaller than those for the species containing \(\text{Zn}^{2+} \) and \(\text{Cd}^{2+} \).

![Figure 5](image)

Figure 5. \(^1\text{H} \) spin-lattice relaxation times \(T_{1\rho} \) in the rotating frame in \((\text{C}_2\text{H}_5\text{NH}_3)_2\text{MCl}_4\) (\(\text{M} = \text{Cu}, \text{Zn}, \) and \(\text{Cd} \)) as a function of inverse temperature.

Table 3. The spin-lattice relaxation times, \(T_{1\rho} \), and activation energies, \(E_a \), for \(^1\text{H} \) and \(^{13}\text{C} \) of \((\text{C}_2\text{H}_5\text{NH}_3)_2\text{MCl}_4\) (\(\text{M} = \text{Co}, \text{Cu}, \text{Zn}, \) and \(\text{Cd} \)) crystals.

\(\text{M} \)	\(^1\text{H} T_{1\rho} \) (ms)	\(E_a \) (kJ/mol)	\(^{13}\text{C} T_{1\rho} \) (ms)	\(E_a \) (kJ/mol)
\(\text{Co} \)	0.01–2	3.11 (for \(\text{C}_2\text{H}_5\text{NH}_3 \))	0.1–10	45.98 (for \(\text{CH}_3 \))
\(\text{Cu} \)	7–20	12.19 (for \(\text{C}_2\text{H}_5 \) below 240 K)	1–100	21.35 (for \(\text{CH}_3 \))
&	8.33 (for \(\text{NH}_3 \) below 240 K)	&	19.72 (for \(\text{CH}_3 \))	
\(\text{Zn} \)	2–200	39.41 (for \(\text{C}_2\text{H}_5\text{NH}_3 \) above 290 K)	6–100	21.13 (for \(\text{C}_2\text{H}_5 \))
&	57.59 (for \(\text{C}_2\text{H}_5\text{NH}_3 \) below 290 K)	&	18.05 (for \(\text{CH}_3 \))	
\(\text{Cd} \)	2–100	22.63 (for \(\text{C}_2\text{H}_5\text{NH}_3 \))	5–100	18.05 (for \(\text{CH}_3 \))
2.3. Investigation of the Structural Properties and Molecular Dynamics by 13C CP/MAS NMR

The structural analysis of $(C_2H_5NH_3)_2CoCl_4$ was also performed using 13C CP/MAS NMR over a range of increasing temperatures. Thus, the two peaks corresponding to the CH$_3$ and CH$_2$ species at 360 K were observed at chemical shifts of $\delta = 49.65$ and 176.55 ppm, respectively, as shown in the inset of Figure 6. The CH$_3$ and CH$_2$ results obtained by 13C MAS NMR were distinguished in that the chemical shift corresponding to CH$_2$ could not be observed at low temperatures. In these experiments, the chemical shift of CH$_3$ remained relatively constant, while that of CH$_2$ decreased with increasing temperature, and a sharp decrease was observed close to 420 K.

![Figure 6](image)

Figure 6. 13C chemical shift in CH$_3$ and CH$_2$ groups in $(C_2H_5NH_3)_2CoCl_4$ as a function of temperature (inset: 13C MAS NMR spectrum at 360 K).

To obtain the corresponding 13C T_{1p} values, the nuclear magnetization recovery traces were measured as a function of the delay time. The signal intensities of the magnetization recovery curves for 13C were analyzed by a single exponential function of Equation (5) at all temperatures, and the 13C T_{1p} values for CH$_3$ and CH$_2$ in $(C_2H_5NH_3)_2CoCl_4$ were plotted as a function of inverse temperature (see Figure 7). Indeed, the 13C T_{1p} curve for CH$_3$ at low temperatures can be reproduced by the BPP theory [32], and the BPP curve shows a minimum of 0.57 ms at 260 K. This characteristic of T_{1p} means that distinct molecular motions existed. The correlation time was then obtained using Equation (6), and the activation energy was obtained from these results. More specifically, the E_a for the rotational motion was determined to be 45.98 ± 1.78 kJ/mol from the log τ_C vs. 1000/T curve shown in Figure 7.

The T_{1p} values of the previously reported $(C_2H_5NH_3)_2MCl_4$ ($M = Cu$, Zn, and Cd) (see Figure 8) were compared with those of $(C_2H_5NH_3)_2CoCl_4$ determined herein. In addition, the molecular motions influenced by 13C T_{1p} in $(C_2H_5NH_3)_2CoCl_4$ were found to exhibit BPP trends, unlike in the case of the 1H T_{1p} results. Furthermore, for $(C_2H_5NH_3)_2CuCl_4$, the temperature dependences of the 13C T_{1p} values for CH$_2$ and CH$_3$ appeared similar, and the BPP curves for CH$_2$ and CH$_3$ showed minima at 190 K. The T_{1p} curve for $(C_2H_5NH_3)_2ZnCl_4$ can be also represented by the BPP theory, with a minimum being observed at 260 K in the curve. Finally, in case of $(C_2H_5NH_3)_2CdCl_4$, the T_{1p} curves show minima at 260 and 250 K for CH$_3$ and CH$_2$, respectively. The 13C T_{1p} and E_a values obtained from the 13C results for the four compounds are summarized in Table 2, whereby it is apparent that the 13C T_{1p} values for compounds containing paramagnetic ions are shorter than those without paramagnetic ions,
since the relaxation time should be inversely proportional to the square of the magnetic moment of the paramagnetic ions. Therefore, the T_{1P} values of $(\text{C}_2\text{H}_5\text{NH}_3)_2\text{MCl}_4$ ($M = \text{Co}$ and Cu) were driven by fluctuations of the magnetic dipoles of the paramagnetic Co^{2+} and Cu^{2+} species, and the E_a values for ^{13}C decreased upon increasing the mass of the M^{2+} ion, unlike in the case of the ^1H E_a values. These differences are due to variations in the electronic structures of the M^{2+} ions, and in particular, the d electrons, which screen the nuclear charge from the motion of the outer electrons.

Figure 7. ^{13}C spin-lattice relaxation times in the rotating frame for CH_3 and CH_2 groups in $(\text{C}_2\text{H}_5\text{NH}_3)_2\text{CoCl}_4$ as a function of inverse temperature (inset: Arrhenius plots of the natural logarithm of the correlation time for CH_3 as a function of inverse temperature).

Figure 8. ^{13}C spin-lattice relaxation times T_{1P} in the rotating frame in $(\text{C}_2\text{H}_5\text{NH}_3)_2\text{MCl}_4$ ($M = \text{Cu}$, Zn, and Cd) as a function of inverse temperature.
3. Materials and Methods

Single crystals of \((\text{C}_2\text{H}_5\text{NH}_3)_2\text{MCl}_4\) \((M = \text{Co}, \text{Cu}, \text{Zn}, \text{and Cd})\) were grown from \(\text{CH}_3\text{CH}_2\text{NH}_2\cdot\text{HCl} \) (ethylamine hydrochloride, Aldrich 98%), and \(\text{CoCl}_2\) (cobalt chloride, Aldrich 97%), \(\text{CuCl}_2\) (copper chloride, Aldrich 97%), \(\text{ZnCl}_2\) (zinc chloride, Aldrich 98%), and \(\text{CdCl}_2\) (cadmium chloride, Aldrich 99.99%), respectively, which were weighed in stoichiometric proportions at 300 K. These crystals were obtained by slow evaporating aqueous solutions containing of \(\text{CH}_3\text{CH}_2\text{NH}_2\cdot\text{HCl}\) and \(\text{MCl}_2\) in the molar ratio of 2:1.

The thermodynamic properties were measured by TGA (TA, Q600) and optical polarizing microscopy. The differential scanning calorimetry (DSC) and TGA data were recorded between 300 and 770 K under a N\(_2\) atmosphere using a heating rate of 10 °C/min.

The \(^1\text{H}\) MAS NMR and \(^{13}\text{C}\) CP/MAS NMR spectra for the rotating frame of \((\text{C}_2\text{H}_5\text{NH}_3)_2\text{MCl}_4\) were measured at the Larmor frequencies of 400.13 and 100.61 MHz, respectively, using a Bruker 400 MHz Avance II+ NMR spectrometer (BRUKER, Germany) at the Korea Basic Science Institute, Western Seoul Center. The powder samples were placed in a 4 mm MAS probe, and the MAS rate was set at 10 kHz for the \(^1\text{H}\) MAS and \(^{13}\text{C}\) CP MAS measurements to minimize any overlap of the spinning sidebands with respect to the central peak. The chemical shifts are listed using tetramethylsilane (TMS) as an internal reference. The spin-lattice relaxation times \(T_{1p}\) for the rotating frame of \((\text{C}_2\text{H}_5\text{NH}_3)_2\text{MCl}_4\) were determined using a \(\pi/2-\tau\) sequence by variation of the spin-locking pulses. The NMR spectra and \(T_{1p}\) values were recorded between 180 and 430 K.

4. Conclusions

We herein discussed the thermodynamic, physical, and structural properties of \((\text{C}_2\text{H}_5\text{NH}_3)_2\text{MCl}_4\) \((M = \text{Co}, \text{Cu}, \text{Zn}, \text{and Cd})\) layered hybrid materials, where we replaced Pb with nontoxic M metals for the production of lead-free perovskite solar cells, and investigated their potential toward solar cell applications based on NMR studies.

The temperature of \(T_d\) and the degree of mass loss for the decomposition of the 2HCl moieties were both found to depend on the M ion present in the structure. Furthermore, the cation dynamics in layered \((\text{C}_2\text{H}_5\text{NH}_3)_2\text{MCl}_4\) single crystals were investigated as a function of temperature by \(^1\text{H}\) MAS NMR and \(^{13}\text{C}\) CP/MAS NMR experiments. To obtain detailed information regarding the cation dynamics of these crystals, the \(T_{1p}\) values for both \(^1\text{H}\) and \(^{13}\text{C}\) were obtained, revealing that these atoms undergo rotational motion.

The reason why \(^1\text{H}\) \(T_{1p}\) of \(\text{C}_2\text{H}_5\) is longer than \(^1\text{H}\) \(T_{1p}\) of \(\text{NH}_3\) is as follows; the rotational motion for \(\text{C}_2\text{H}_5\) is activated, and that for \(\text{NH}_3\) at the end of the organic cation is less strongly activated. In addition, the reason why \(^{13}\text{C}\) \(T_{1p}\) of \(\text{CH}_2\) is longer than \(^{13}\text{C}\) \(T_{1p}\) of \(\text{CH}_3\) is as follows; the amplitude of the cation motion is enhanced at its \(\text{CH}_3\) end, and the central \(\text{CH}_2\) moiety is fixed to the \(\text{NH}_3\) group in the organic cation.

Overall, it was found that all components of this series exhibit an orthorhombic structure at room temperature. However, the lattice constants of the crystals containing \(\text{Co}^{2+}\) and \(\text{Zn}^{2+}\) ions differed from those of the crystals containing \(\text{Cu}^{2+}\) and \(\text{Cd}^{2+}\) ions. It was also found that the inorganic frames of the \(M = \text{Cu}^{2+}\) and \(\text{Cd}^{2+}\) species are corner-sharing \(\text{MCl}_6\) octahedra, while those of \(M = \text{Co}^{2+}\) and \(\text{Zn}^{2+}\) are simple \(\text{MCl}_4\) tetrahedra. Finally, it was concluded that the physical properties of these species depend on the characteristics of the organic cation and the inorganic metal ion, but are independent of the arrangements of the \(\text{MCl}_4\) tetrahedra and the \(\text{MCl}_6\) octahedra. The presence of different paramagnetic ions and different lattice constants may also account for these differences.

Funding: This research was supported by the Basic Science Research program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science, and Technology (2016R1A6A1A03012069, 2018R1D1A1B07041593).

Conflicts of Interest: The authors declare no conflict of interest.
References

1. Rao, C.N.R.; Cheetham, A.K.; Thirumurugan, A. Hybrid inorganic-organic materials: A new family in condensed matter physics. J. Phys. Condens. Matter 2008, 20, 83202–83223. [CrossRef]

2. Aramburu, J.A.; García-Fernandez, P.; Mathiesen, N.R.; García-Lastra, J.M.; Moreno, M. Changing the usual interpretation of the structure and ground state of Cu\(^{2+}\)-layered perovskites. J. Phys. Chem. C 2018, 122, 5071–5082. [CrossRef]

3. Elseman, A.M.; Shalan, A.E.; Sajid, S.; Rashad, M.M.; Hassan, A.M.; Li, M. Copper-substituted lead perovskite Molecules 2020.

4. Kurmoo, M. Magnetic metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1353–1379. [CrossRef]

5. Zhang, W.; Xiong, R.-G. Ferroelectric metal-organic frameworks. Chem. Rev. 2012, 112, 1163–1195. [CrossRef]

6. Zolfaghari, P.; de Wijs, G.A.; de Groot, R.A. The electronic structure of organic-inorganic hybrid compounds: (NH\(_4\))\(_2\)CuCl\(_4\), (CH\(_3\)NH\(_3\))\(_2\)CuCl\(_4\) and (C\(_2\)H\(_5\)NH\(_3\))\(_2\)CuCl\(_4\). J. Phys. Condens. Matter 2013, 25, 295502–295512. [CrossRef]

7. Mohamed, C.B.; Karoui, K.; Jonni, F.; Guidara, K.; Rhaïem, A.B. Electrical properties and conduction mechanism of (C\(_2\)H\(_5\)NH\(_3\))\(_2\)CuCl\(_4\) compound. J. Mol. Struct. 2015, 1082, 38–48. [CrossRef]

8. Supravysa, E.; Nugroho, A.A.; Polyaev, A.O.; Palstra, T.T.; Watanabe, I. Search for potential minimum positions in metal-organic hybrids, (C\(_2\)H\(_5\)NH\(_3\))\(_2\)CuCl\(_4\) and (C\(_2\)H\(_5\)CH\(_2\)HCH\(_3\)NH\(_3\))\(_2\)CuCl\(_4\) by using density functional theory. J. Phys. Conf. Ser. 2014, 551, 12054–12060.

9. Yadav, R.; Swain, D.; Kundu, P.P.; Nair, H.S.; Narayana, C.; Elizabeth, S. Dielectric and Raman investigations of structural phase transitions in (C\(_2\)H\(_5\)NH\(_3\))\(_2\)CdCl\(_4\). Phys. Chem. Chem. Phys. 2015, 17, 12207–12214. [CrossRef]

10. Lefi, R.; Nasr, F.B.; Guermazi, H. Structural, optical properties and characterization of (C\(_2\)H\(_5\)NH\(_3\))\(_2\)CdCl\(_4\), (C\(_2\)H\(_5\)NH\(_3\))\(_2\)CuCl\(_4\) and (C\(_2\)H\(_5\)NH\(_3\))\(_2\)Cd\(_{0.5}\)Cu\(_{0.5}\)Cl\(_4\) compounds. J. Alloys Compd. 2017, 696, 1244–1254. [CrossRef]

11. Nasr, F.B.; Lefi, R.; Guermazi, H. Analysis of high temperature phase transitions of copper doped (C\(_2\)H\(_5\)NH\(_3\))\(_2\)CdCl\(_4\) perovskite. J. Mol. Struct. 2018, 1165, 236–245. [CrossRef]

12. Caretta, A.; Donker, M.C.; Polyaev, A.O.; Palstra, T.T.M.; van Loosdrecht, P.H.M. Photoinduced magnetization enhancement in two-dimensional weakly anisotropic Heisenberg magnets. Phys. Rev. B Condens. Matter Mater. Phys. 2015, 91, 20405–20410. [CrossRef]

13. Guo, L.; Xu, S.; Zhao, G.; Liu, H. The structural significance of the interlayer distances of the layered hybrids (C\(_n\)H\(_{2n+1}\)NH\(_3\))\(_2\)MCl\(_4\). J. Phys. Chem. Solids 2012, 73, 688–695. [CrossRef]

14. Sen, A.; Roy, S.; Peter, S.C.; Paul, A.; Waghmare, U.V.; Sundaresan, A. Order-disorder structural phase transition and magnetocaloric effect in organic-inorganic halide hybrid (C\(_2\)H\(_5\)NH\(_3\))\(_2\)CoCl\(_4\). J. Solid State Chem. 2018, 258, 431–440. [CrossRef]

15. Kapustianyk, V.; Rudyk, V.; Partyka, M. Visible-spectroscopy study of the low dimensional (C\(_2\)H\(_5\)NH\(_3\))\(_2\)CuCl\(_4\) compound in the region of its low temperature phase transitions. Phys. Status Solidi B 2007, 244, 2151–2158. [CrossRef]

16. Kapustianik, V.B.; Bazhan, V.V.; Korchak, Y.M. Electronic spectra and crystal structure of the layered compounds (C\(_n\)H\(_{2n+1}\)NH\(_3\))\(_2\)CuCl\(_4\) (n=2, 3) in the region of their phase transitions. Phys. Status Solidi B 2002, 234, 674–688. [CrossRef]

17. Kleemann, W.; Schafer, F.J.; Karajamaki, E.; Laiho, R.; Levola, T. Brillouin scattering and crystal optical investigations of (C\(_2\)H\(_5\)NH\(_3\))\(_2\)CuCl\(_4\). Physica B 1983, 119, 269–278. [CrossRef]

18. Kapustianik, V.; Korchak, Y.; Polovinko, I.; Tchukvinskyi, R.; Czapla, Z.; Dacko, S. Electron-phonon interaction and phase transitions in (C\(_2\)H\(_5\)NH\(_3\))\(_2\)CuCl\(_4\) crystals. Phys. Status Solidi B 1998, 207, 95–101. [CrossRef]

19. Jahn, I.R.; Knorr, K.; Ihringer, J. The Jahn Teller effect and orientational order in (C\(_n\)H\(_{2n+1}\)NH\(_3\))\(_2\)CuCl\(_4\), n=1, 2, 3. J. Phys. Condens. Matter 1989, 1, 6005–6017. [CrossRef]

20. Steadman, J.P.; Willett, R.D. The crystal structure of (C\(_2\)H\(_5\)NH\(_3\))\(_2\)CuCl\(_4\). Inorg. Chem. Acta 1970, 4, 367–371. [CrossRef]

21. Mohamed, C.B.; Karoui, K.; Tabellout, M.; Rhaïem, A.B. Electrical, dielectric and optical properties of [C\(_2\)H\(_5\)NH\(_3\)]\(_2\)ZnCl\(_4\) compound. J. Alloys Compound 2016, 688, 407–415. [CrossRef]
Molecules 2020, 25, 1812

22. Mohamed, C.B.; Karoui, K.; Bulou, A.; Rhaiem, A.B. Raman studies of phase transitions in ferroelectric (C₂H₅NH₃)₂ZnCl₄. *Physica E* 2017, 87, 141–149. [CrossRef]

23. Mohamed, C.B.; Karoui, K.; Saidi, S.; Guidara, K.; Rhaiem, A.B. Electrical properties, phase transitions and conduction mechanisms of the [(C₂H₅)NH₃]₂ZnCl₄ compound. *Physica B* 2014, 451, 87–95. [CrossRef]

24. Hagemann, H.; Bill, H. Raman investigation on structural phase transitions in (C₂H₅NH₃)₂CdCl₄. *Chem. Phys. Lett.* 1982, 95, 582–585. [CrossRef]

25. Lim, A.R.; Joo, Y.L. Cation dynamics by ¹H and ¹³C MAS NMR in hybrid organic-inorganic (CH₃CH₂NH)₂CuCl₄. *RSC Advances* 2018, 8, 34110–34115. [CrossRef]

26. Lim, A.R. Thermal and structural properties, and molecular dynamics in organic-inorganic hybrid perovskite (C₂H₅NH₃)₂CdCl₄. *RSC Advances* 2019, 9, 38032–38037. [CrossRef]

27. Lim, A.R. Thermal decomposition and structural dynamics in perovskite (C₂H₅NH₃)₂CdCl₄ crystals. *J. Therm. Anal. Calori.* 2020, in press. [CrossRef]

28. Lim, A.R.; Kim, S.H. Study on paramagnetic interactions of (CH₃NH₃)₂CoBr₄ hybrid provskites based on nuclear magnetic resonance (NMR) relaxation time. *Molecules* 2019, 24, 2895. [CrossRef]

29. Lee, K.-S. Surface transformation of hydrogen-bonded crystals at high-temperatures and topochemical nature. *Ferroelectrics* 2002, 268, 369–374. [CrossRef]

30. Abragam, A. *The Principles of Nuclear Magnetism*; Oxford University Press: Oxford, UK, 1961.

31. Harris, R.K. *Nuclear Magnetic Resonance Spectroscopy*; Pitman Pub.: Durham, UK, 1983.

32. Bloembergen, N.; Purcell, E.M.; Pound, R.V. Relaxation effects in nuclear magnetic resonance absorption. *Phys. Rev.* 1948, 73, 679–712. [CrossRef]

33. Lim, A.R. Ionic dynamics of the cation in organic-inorganic hybrid compound (CH₃NH₃)₂MCl₄ (M=Cu and Zn) by ¹H MAS NMR, ¹³C CP MAS NMR, and ¹⁴N NMR. *RSC Advances* 2018, 8, 18656–18662. [CrossRef]

Sample Availability: Samples of the compounds (C₂H₅NH₃)₂MCl₄ are available from the authors.

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).