REVIEW ARTICLE

Adult skin acute stress responses to short-term environmental and internal aggression from exposome factors

T. Passeron,1,2,* C.C. Zouboulis,3 J. Tan,4,5 M.L. Andersen,6 R. Katta,7,8 X. Lyu,9 L. Aguilar,10 D. Kerob,11 A. Morita,12 J. Krutmann,13,14 E.M.J. Peters15,16

1Department of Dermatology, University Hospital Centre Nice, Côte d’Azur University, Nice, France
2INSERM U1065, team 12, C3M, Nice, France
3Departments of Dermatology, Venerology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany
4Windsor Clinical Research Inc., Windsor, ON, Canada
5Department of Medicine, University of Western Ontario, London, Canada
6Department of Psychobiology, Universidade Federal de São Paulo (UNIFESP)/Escola Paulista de Medicina, São Paulo, Brazil
7Volunteer Clinical Faculty, Baylor College of Medicine, Houston, Texas, USA
8McGovern Medical School at UT Health, Houston, Texas, USA
9Department of Dermatology, Anzhen Hospital, Capital Medical University, Beijing, China
10L’Oréal Advanced Research, Aulnay-sous-bois, France
11Laboratoires Vichy, Levallois Perret, France
12Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
13IUF Leibniz Research Institute for Environmental Medicine, Dusseldorf, Germany
14Medical faculty, Heinrich-Heine-University, Dusseldorf, Germany
15Department of Psychosomatic Medicine and Psychotherapy, Justus-Liebig University, Gießen, Germany
16Charité Center 12 (CC12) for Internal Medicine and Dermatology, Berlin, Germany
*Correspondence: T. Passeron. Email: Thierry.Passeron@unice.fr

Abstract
Exposome factors that lead to stressed skin can be defined as any disturbance to homeostasis from environmental (meteorological factors, solar radiation, pollution or tobacco smoke) and/or internal exposure (unhealthy diet, hormonal variations, lack of sleep, psychosocial stress). The clinical and biological impact of chronic exposome effects on skin functions has been extensively reviewed, whereas there is a paucity of information on the impact of short-term acute exposure. Acute stress, which would typically last minutes to hours (and generally no more than a week), provokes a transient but robust neuroendocrine-immune and tissue remodelling response in the skin and can alter the skin barrier. Firstly, we provide an overview of the biological effects of various acute stressors on six key skin functions, namely the skin physical barrier, pigmentation, defences (antioxidant, immune cell-mediated, microbial and microbiome maintenance), structure (extracellular matrix and appendages), neuroendocrine and thermoregulation functions. Secondly, we describe the biological and clinical effects on adult skin from individual exposome factors that elicit an acute stress response and their consequences in skin health maintenance. Clinical manifestations of acutely stressed skin may include dry skin that might accentuate fine lines, oily skin, sensitive skin, pruritus, erythema, pale skin, sweating, oedema and flares of inflammatory skin conditions such as acne, rosacea, atopic dermatitis, pigmentation disorders and skin superinfection such as viral reactivation. Acute stresses can also induce scalp sensitivity, telogen effluvium and worsen alopecia.

Received: 1 April 2021; revised: 30 April 2021; Accepted: 18 May 2021

Conflict of interest
DK is an employee of Vichy Laboratoires (L’Oréal), and LA is an employee of L’Oréal. All other authors have received honoraria as advisory board members for Vichy Laboratoires.

Funding source
An advisory board and editorial assistance were supported by Vichy Laboratoires.
Introduction

The skin is one of the largest and most diverse barrier organs of the human body with the epidermis constituting the first line of defence against environmental stressors, e.g. meteorological factors (extreme heat, cold, humidity), solar radiation including ultraviolet radiation (UVR), pollution or tobacco smoke. At the same time, the skin is also affected by internal stressors, e.g. an unhealthy diet, hormonal variations, lack of sleep and psychosocial stress. Together, these challenges to the skin homeostasis constitute the skin exposome, a term which refers to the totality of exposures to such non-genetic factors encountered by an individual over their lifetime.1,2 The clinical and biological impact of chronic exposome aggressions on skin functions has been extensively reviewed,1–6 whereas there is a paucity of information on the immediate effects of short-term acute exposure, which is the aim of this review.

Exposome factors that lead to acutely stressed skin can be defined as any acute disturbance to homeostasis after environmental and/or internal exposure. Acute stress, which would typically last minutes to hours (and generally no more than a week in humans), thereby provokes a transient but robust response. This response from the key skin functions, including the skin barrier, pigmentation, defences (biochemical and immune/cellular), structure (extracellular matrix and skin appendages), neuroendocrine and thermoregulation functions, is aimed at protection or rapid elimination of the disturbance and return to homeostasis. In the present review, focussing on adult skin, we describe individual exposome factors that elicit an acute stress response and their corresponding impact on the key skin functions.

Skin functions affected by acute stress responses

Acute environmental and internal stressors can affect several skin functions. An overview of six key skin functions and their role in acute stress responses is shown in Fig. 1. Upon exposure to acute stress, these skin functions are coordinated by a transient activation of multiple biological mechanisms, some of which will be specific to different stressors, whereas others will be common to all of the stressors we review, as discussed below.

1 The epidermal physical barrier is the main mechanical defence against extrinsic factors including toxic damage, allergens and microbes, while it is also responsible for maintaining stratum corneum hydration by preventing unregulated trans-epidermal water loss (TEWL).7–9 The initial step in the repair response to an acute stressor is rapid secretion (within minutes) of the contents of the lamellar bodies from the outer stratum granulosum cells.10 Rapidly acting skin barrier disruption recovery mechanisms include greater epidermal cell proliferation and lipogenesis, and increased adhesion molecule expression.11

2 Skin pigmentation protects the basal keratinocytes from UV-induced DNA damage.12 The UVB-induced DNA damage in keratinocytes promotes the activation of the p53 protein that binds the pro-opiomelanocortin (POMC)
promoter and ultimately induces the secretion of alpha-melanocyte-stimulating hormone (α-MSH) that stimulates the MC1R melanocortin receptor on the melanocytes and activates the melanogenesis.13 High energy visible light directly triggers pigmentation by stimulating a specific receptor called Opsin 3 at the melanocyte membrane.14

3 The skin’s defence mechanisms are aimed at damage control. The biochemical defences to acute stress include antioxidant response, DNA repair and cellular osmolyte strategies.15 An increase in reactive oxygen species (ROS) can induce the expression of matrix metalloproteinases (MMP) and promote the degradation of collagen, which can be attenuated by antioxidants. Immune cell-mediated defences are coordinated with the neuroendocrine response.16,17 Acute stress primarily includes the innate immune system of the skin, involving antimicrobial peptides, Langerhans cells (LC), mast cells, monocytes and granulocytes as well as the epidermal keratinocytes and structural cells present deeper in the dermis, such as endothelial cells and fibroblasts.18 Among them, the LC in the epidermis coordinate the role of stressor recognition. Acute stress additionally triggers the recruitment of natural killer (NK) cells, phagocytic cells, basophils and neutrophils into the dermis by the release of pro-inflammatory cytokines. Immune activating damage-associated molecular patterns (DAMPs), e.g. alarmins, activate Toll-like receptor (TLR) signalling,19 and increased production of pro-inflammatory cytokines such as interleukin-1 (IL-1) β and tumour necrosis factor (TNF)-α.7 Mediators of subsequent acquired, adaptive innate immunity are pro-inflammatory cytokines of T helper cell type 1 (Th1).

Skin microbiota play an integral role in the maturation and homeostatic regulation of keratinocytes and host immune networks. The skin microbiome and skin-resident memory T cells may abrogate the immunosuppressive response following acute stress.20,21

4 Defensive structures of the skin, especially the extracellular matrix, densely innervated and vascularized dermis and subcutis (nerve fibres), and skin appendages (hair follicles, sebaceous glands, sweat glands), provide the second line of defence from foreign intruders as well as internal damage. Sebaceous and eccrine glands secrete increased amounts of sebum and sweat in response to acute stress leading to moist, cool and slippery skin.

A heightened neuroendocrine-immune response to acute stressors (e.g. heat, trauma, infestations) clinically manifests as erythema, oedema and hypersensitive responses such as pruritus or pain. The skin is one of the most densely innervated organs of the body.22–24 Acute stress activates the sympathetic axis of the autonomous nervous system (SA), which reacts very quickly and leads to a transient release of adrenaline from the adrenals and a local release of noradrenaline from peripheral adrenergic nerve fibres. The SA triggers activation of the endocrine hypothalamic–pituitary–adrenal axis (HPA), resulting in a transient release of cortisol from the adrenals into the blood stream, while the release of corticotrophin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH) and cortisol from skin cells form a local equivalent of the central HPA.25 Skin homeostasis is maintained by the additional activation of the cholinergic axis of the autonomic nervous system (CA). In addition, neuropeptides are either released from sensory nerve fibres or produced locally. Substance P (SP) and calcitonin gene related peptide (CGRP) are the main neuropeptides that modulate immediate-type skin hypersensitivity reactions. This neuronal neuropeptidergic axis (NNA) response to acute stress regulates multiple tissue remodelling and inflammatory processes, some of which are acutely inflammatory such as mast cell activation and subsequent neurogenic inflammation,18,26,27 while others down-regulate inflammatory processes. Acute stressors can induce the neurotrophic factors such as artemin, nerve growth factor (NGF) or brain derived neurotrophic factor (BDNF) which contribute to hyper-innervation, allokinesis and inflammation via, e.g. the aryl hydrocarbon receptor (AhR) and neurotrophin receptors. Acute stress triggers peripheral vasoconstriction by activating transient receptor potential (TRP) channels associated with neurogenic inflammation causing pale skin as well as rapid mobilization of immune cell trafficking into the skin.28,29 It also leads to the release of melatonin, which contributes to immunomodulation, thermoregulation and tumour control.

6 Blood vessels and fat have a role in sympathetically mediated vasoconstriction and flushing under acute stress, causing a rapid drop in skin temperature.30

Biological and clinical effects of distinct skin stressors

Acute solar radiation

Acute solar radiation not only stimulates pigmentation and induces DNA damage but also promotes oxidative stress, inflammation (e.g. sunburn, photosensitivity, photoallergy, flares of photodermatoses), decreased immunity against microbial challenges (e.g. herpes labialis photo-immunosuppression with viral reactivation), Koebner phenomenon after acute sunburn, barrier function alteration, osmolyte strategy and microbiome alteration.

The damage response effect of UVR on the skin immune system has recently been reviewed.19 The first-line defence of UV-induced oxidative stress is the acute activation of the oxidative pentose phosphate pathway to increase NADPH production, which is essential to prevent oxidative damage.31 Exposure to
UVB (290–315 nm) or UVA (340–400 nm) radiation significantly stimulates osmolyte uptake to protect cells against oxidative stress. UVR can compromise epidermal barrier function causing skin dryness and enabling the penetration of bacteria and allergens. Immediate short-term response to UVR-induced damage is mediated by the innate immune system of the skin and involves epidermal keratinocytes, melanocytes, LC, dermal endothelial cells, fibroblasts, mast cells, dendritic cells (DC), resident lymphocytes and neural elements, with subsequent recruitment of myeloid cell types, such as neutrophils, monocytes and macrophages. In a mouse model, a single high dose of UV was shown to produce a deep inflammatory state characterized by the production of pro-inflammatory cytokines and chemokines. Sunburn from acute UVB exposure is characterized by the induction of immune suppression and acute inflammation. UVR induces the release of DAMPs that activate TLR signalling. Acute UVR rapidly activates skin-resident T cells through mechanisms involving the release of ATP from keratinocytes to limit DNA damage in keratinocytes. UVR induces the epidermal recruitment of DC that compensate for the depletion of LC in human skin. The effect of T cells depends on the activation state of LC by UVR. In response to UVB exposure, Treg cells are induced to maintain skin homeostasis and participate in epithelial stem cell differentiation of hair follicle cycles. The skin microbiome may abrogate the immunosuppressive response following acute UV exposure. Alternatively, direct UV-induced DNA and membrane damage to the microbiome may result in pathogen associated molecular patterns that interfere with UV-induced immune suppression. In addition, acute UV exposure causing flushing and vasodilatation can decrease blood pressure. Beneficial effects of acute UV exposure include synthesis of vitamin D, release of opioid factors and decrease in pain.

Acute solar radiation exposure leads to tanning and endothelial cell differentiation of hair follicle cycles. The skin microbiome may abrogate the immunosuppressive response following acute UV exposure. Alternatively, direct UV-induced DNA and membrane damage to the microbiome may result in pathogen associated molecular patterns that interfere with UV-induced immune suppression. In addition, acute UV exposure causing flushing and vasodilatation can decrease blood pressure. Beneficial effects of acute UV exposure include synthesis of vitamin D, release of opioid factors and decrease in pain.

Acute UV exposure may inhibit the function of antigen-presenting cells, induce T cells with suppressor activity and induce the release of immunosuppressive cytokines and the latter phenomenon is mainly responsible for systemic immunosuppression. Acute UV total body exposure, psychosocial stress and hormonal variations can all cause a comparable mast cell activation and release of IL-6 cytokine release with systemic effects.

Acute pollution

Airborne pollutants induce cutaneous oxidative stress and have been shown to damage skin barrier integrity by altering TEWL, inflammatory signalling, stratum corneum pH and the skin microbiome. Short-term pollutant exposure has been linked to xerosis, pruritus and exacerbation of atopic dermatitis symptoms.

After 4 h exposure to volatile organic compounds (VOC), epidermal barrier damage was observed within 48 h in sensitized subjects with atopic eczema.

In an ex vivo skin model, diesel exhaust particles increased skin pigmentation, expression of pigmentation related genes and induced expression of MMP and pro-inflammatory cytokines and these hyperpigmentation and inflammaging effects were reduced by application of an antioxidant mixture.

Among air pollutants, ozone is one of the most toxic due to its unstable structure and is able to initiate oxidative reactions and activate inflammatory response, leading to the onset of several skin conditions. In vivo and in vitro studies have shown that short-term acute exposure to ozone impacts skin defences by production of ROS, biomolecule oxidation (lipid peroxidation and protein carbonylation), depletion of cellular antioxidant defences, cell stress and cytotoxicity.

Ozone can induce inflammasome activation in a redox dependent manner in a mouse model, which may play a role in pollution-induced inflammatory skin conditions. When human forearm skin was exposed to ozone for 2 h, vitamin E decreased 70% with a concomitant increase in lipid hydroperoxides and a 50% decrease in the residual skin microflora in the superficial stratum corneum without producing a visible clinical response. Ozone reacts with skin lipids and squalene peroxidation by-products cause cytotoxic, pro-inflammatory, immunological events and may lead to irritation, comedones and inflammatory acne. Toxic effects of ozone are mediated through free radical reactions, leading to lipid peroxidation. In a clinical study in which skin was exposed ozone (0.8 ppm three times daily for 5 days), skin biopsies showed...
significant increases in α-β unsaturated aldehyde 4-hydroxynonenal and 8-iso-prostaglandin-F(2α) protein adducts, while topical application of vitamin C appeared to prevent this oxidative modification of proteins.80

Short-term exposure to NO2 or VOC caused significantly increased TEWL in both healthy individuals and those with atopic dermatitis.56,67 A time-series study showed increased outpatient visits for acne vulgaris in Beijing when there was high air pollution (particulate matter [PM]10, PM2.5, SO2, NO2).68 Various organic components of pollutants interact with the AhR in keratinocytes to elicit an epidermal hyper-innervation via induction of the neurotrophic factor artemin that causes nerve growth hypersensitivity, pruritus and an atopic dermatitis pathology.69 Furthermore, retrospective time-series studies on large populations of patients showed a relationship between a rising incidence of emergency department visits for urticaria and atopic dermatitis with an increased ambient level of ozone,70 PM and SO2.71 An effect of air pollution and meteorological factors (temperature and humidity) on the number of hospital outpatient visits for atopic dermatitis was also observed.72

Combined acute challenges of UV and pollution
UV may act synergistically with particulate matter, causing an acute skin response with increased tissue peroxidation and decreased cutaneous α-tocopherol causing additive oxidative stress in the stratum corneum.73,74 Ozone, PM and UV radiation synergistically increased oxidative stress and oxinflammation changes in human skin explants.59,64

Abrupt meteorological changes (humidity and temperature)
Dry environmental conditions can markedly enhance epidermal structure and function.75 In hairless mice exposed 1–2 weeks in a dry environment (<10% relative humidity [RH]), TEWL was significantly lower, while epidermal hyperplasia, lamellar body secretory system and lamellar membranes were all increased, and barrier recovery was accelerated when compared to a humid environment (>80% RH).75 A clinical study on dry facial skin found a higher dryness score with low temperatures, high wind speed and low humidity, and 15 min of exposure to cold and dry air led to a reduction in skin hydration.76 These data suggest that lower temperatures lead to a decrease in skin hydration and TEWL and that this effect is stronger at low RH. Furthermore, a study to evaluate the effect of RH on the facial skin of Japanese volunteers observed lower skin conductance, lower elasticity and increased mean area of fine wrinkles after 30 min at low humidity (40% RH) compared to higher humidity (70% RH, all \(P < 0.05 \)).77

In an ex vivo study, stratum corneum water content increased 50% in vivo and pliability of skin when the temperature was raised from 20 to 35°C at RH below 60%.78

Low humidity and low temperatures decrease skin barrier function and increase susceptibility towards mechanical stress, while the skin also becomes more reactive towards skin irritants and allergens as pro-inflammatory cytokines and cortisol are released by keratinocytes, and the number of dermal mast cells increases.79 Cold and dry weather appear to increase the prevalence and risk of flares in patients with atopic dermatitis.67,79 However, cold alone for short periods of time (six cycles of 4°C for 90 s) did not affect TEWL or skin irritation.80

Acute exposure to heat can cause erythema ab igne, a reticulated, hyperpigmentation of the skin.81

Acute psychosocial stress
While chronic stress generally leads to pathogenic immune responses,82,83 acute stress may induce a defensive response coordinated by a momentary and transient activation of the multiple stress response systems including activation of pro-inflammatory mediators with immune-enhancing effects. Acute psychosocial stress induces activation of the SA, HPA and NNA, triggering vasconstriction, neurogenic inflammation and pro-inflammatory mediator release and subsequently the anti-inflammatory CA in an attempt to maintain homeostasis.16,30,82 Inflamasome activation, upregulation of NK cell activity and upregulated release of Th1 cytokines via peripheral SA activation and via sensory nerves can protect against acute infectious agents as well as skin cancers,84 this may contribute to better control of viral infections.84 In mice, short-term restrain stress before UV exposure also led to greater cutaneous T-cell attracting chemokine, IFN-γ gene expression and higher infiltrating T cell numbers.85 Of note, physical pain (3-min cold pressor pain stimulus) can cause acute psychological stress. Subjects who reported higher pain showed faster skin barrier recovery, and greater increase in norepinephrine (but not cortisol for HPA activation) was also associated with faster recovery and mediated the impact of pain on skin barrier repair.86,87 The immune-enhancing effect of acute stress is hence homeostatic. However, if the stress is intense or buffering resources low, the heightened neuroendocrine-immune response becomes toxic and clinically manifests as erythematosus rashes, oedema, pruritus or intense pain. Low neuropeptide oxytocin levels and high pro-inflammatory cytokines are associated with both stress and pain, which may explain how psychological distress affects pain at skin level in patients with traumatic stress symptoms from burn wounds.88

Acute psychosocial stress may negatively affect skin structure by inhibiting hair growth under the influence of the HPA via cortisol release in addition to a SP-mast cell pathway.18,89 Increased oxidative stress and redox impairment due to psychosocial stress could affect levels of pro-inflammatory cytokines, as reported after short-term (minutes) stress when students were preparing for an examination.90
Autoimmune diseases, such as alopecia areata and vitiligo, may be triggered by acute stress with altered innate and adaptive responses and increased oxidative stress.91 Acute emotional stress may precipitate alopecia areata by activation of overexpressed type 2β CRH receptors around the hair follicles leading to intense local inflammation.92

Acute psychosocial stress may reactivate skin infectious diseases (herpes zoster, herpes labialis, herpes genitalis) via SA activation leading to increased vulnerability to infectious diseases due to skin barrier impairment and immune defence, as well as modified microbiota.93

Acute emotional distress could lead to increased levels of glucocorticoids (GC) and androgens inducing increased sebum production in acne as well as increasing production and release of CRH from dural nerves and sebocytes.94–96 Increases in proinflammatory cytokines, SP and lipids due to stress may also contribute to aggravation of acne.97–99 Accordingly, in 22 subjects with acne vulgaris, severity was aggravated by emotional stress (evaluated 3 days before and 7 days after an examination).100

Acute psychosocial stress, sleep deprivation and nutritional factors all have an effect on epidermal barrier integrity, host immune response and neurogenic factors, which can result in worsening of seborrhoeic dermatitis.101 In psoriasis, stress promotes acute inflammation, driven by TNF-α and epithelial hyperplasia through the SA and NNA.102 Adults with atopic dermatitis show blunted HPA responsiveness to acute stress but hyperreactivity of the SA103 and an association between onset or flare of atopic dermatitis lesions and psychosocial stress has been observed.104

If acute psychosocial stress persists and becomes chronic, it can cause severe and long-lasting health problems in the case of chronicification, as reviewed elsewhere.16,105 Briefly, this stimulates a persistent increase in endogenous GCs that compromises permeability barrier homeostasis, stratum corneum cohesion, wound healing and epidermal innate immunity in normal skin. Stress and skin barrier injury then lead to better penetration of pathogenic microbes and increase vulnerability to cutaneous infectious diseases, such as superficial viral infections, mycosis and impetigo. This maladaptive state of the brain–skin connection may underlie inflammatory skin diseases caused or aggravated by stress, e.g. acne, rosacea, atopic dermatitis and psoriasis.49,100,102

Acute sleep deprivation

Sleep loss results in an elevation of cortisol levels the next evening.106 Acute total sleep deprivation significantly increases stress-related hormones (with dysregulation of the HPA and activation of the NNA), making it difficult to differentiate between effects of stress and acute sleep deprivation.107

Acute stress and one night of sleep deprivation may cause skin barrier impairment8 that could aggravate skin dryness, intensify itch and worsen atopic dermatitis.108–110

Sleep deprivation may increase oxidative stress and release of ROS.111 Circadian imbalance could elevate levels of several potential somnogenic cytokines, including TNF-α, interleukin (IL)-10 and C-reactive protein, that could be related to cortisol dysregulation due to poor sleep.107 An impact on the immune system from lack of sleep could manifest as autoimmune diseases.112 In Caucasian women (56 women aged 25–35 and 55 women aged 55–65 years old), fatigue from a working day induced mild changes in facial signs (infraorbicular dark circles) and slightly accentuated wrinkles.113 In another study, in Chinese women (aged 20–40 years old), fatigue induced dull and tired-looking skin and these signs were more pronounced in the older women aged 31–40 years old.114

Acute sleep deprivation induced changes in thermoregulation in rats resulting in a decreased peripheral surface temperature due to SA activation during acute stress.115 However, two nights of sleep deprivation with or without energy restriction did not impair the thermal response to cold in human subjects.116,117

Acute nutrition/alcohol intake

Certain foods and dietary patterns can trigger acute changes that lead to visible skin effects. For example, consumption of alcohol, hot beverages, spicy food, capsaicin and cinnamaldehyde activate TRP channels, contributing to facial erythema and rosacea.118–120 Changes in sebaceous gland composition have been documented after 5 to 7 days of fasting. In one trial, human subjects showed a marked change in forehead skin lipids, with suppression of sebaceous gland synthesis of all lipids (apart from squalene).121

Other acute effects include biochemical and cellular changes, hormonal changes, changes in the gut microbiome and inflammatory cytokine effects. These acute changes may all impact skin disease, either directly or indirectly, even if clinical lesions will not necessarily be acutely visible. For example, large shifts in the gut microbiome have been documented to occur within 24 h, with potential implications on skin innate immunity and inflammation.122

In acne, three major dietary components have been studied for their clinical impacts. These include hyperglycaemic carbohydrates, dairy products and certain patterns of fat consumption, including increases in saturated and trans fats and fewer ω-3 polyunsaturated fatty acids (PUFAs).123 In the cascade of events, cytokine production is acutely triggered by diet and the cellular changes occur acutely (inflammation, keratinocyte proliferation, hyperseborrhoea), as do hormonal effects, although clinically apparent acne lesions may not be acutely visible. Diet-mediated changes include an increase in sebum production as well as a change in sebum composition.124 This promotes the overgrowth of Cutibacterium acnes and increases levels of free palmitate. Free palmitate stimulates an inflammatory cascade, with resulting increases in IL-1β, Th17 differentiation and IL-17-mediated keratinocyte proliferation.123,125
Acute stress	Skin function affected	Main biological mechanisms	Clinical manifestations
Solar radiation	Barrier	TEWL	Dryness
Defences	Pigmentation	Melanogenesis	PIHP, tanning, melasma exacerbation, dark spots
Defences	Oxidative stress, DNA damage, inflammation, decrease in epidermal Langerhans cells, Treg expansion, microbiome alteration, photomunosuppression	Sunburn, photosensitivity, photoallergy, actinic keratoses, viral reactivation, herpes labialis. Improvement of some dermatoses (psoriasis, atopic dermatitis), Koebner phenomenon, photodermatoses (e.g. polymorphous light eruption)	
Neuroendocrinology	Pigmentation	Neurogenic inflammation, upregulation of CRH, vitamin D synthesis, opioid release, decreased blood pressure	Pruritus, hypersensitivity, atopic dermatitis, rosacea
Thermoregulation function and systemic effect	Pigmentation	Vasodilatation	Fever, erythema, rosacea flushes
Skin structure	Hyaluronic acid degradation from epidermis and dermis extracellular matrix degradation via oxidative stress	Dryness, wrinkles, skin laxity	
Pollution	Barrier	Change in sebum, squalene peroxidation	Dryness, skin sensitivity
Defences	Pigmentation	Pigmentation	Flares of acne, atopic dermatitis
Defences	Oxidative stress, microbiome alteration, pro-inflammatory immune response	Flares of acne, atopic dermatitis	
Neuroendocrinology	Pigmentation	Neurotrophic factor artemin	Pruritus, flares of atopic dermatitis
Pollution and ultraviolet radiation	Defences	Oxidative stress, pigmentation, inflammation	Photocaging, dark spots and wrinkles
Meteorological changes	Barrier	TEWL, sebum production	Dryness, oily skin and scalp, pruritus, flares/improvement of atopic dermatitis, psoriasis
Structure	Hypersudation		Sweat
Defences	Inflammation		Skin sensitivity, flares of atopic dermatitis, rosacea
Psychosocial stress	Barrier	TEWL, tight junction dysfunction	Dryness, transgression of microbes, toxins, allergens
Structure		Piloerection, sweating, hair loss by anagen termination and telogen effluvium, alopecia	
Defences	Oxidative stress, inflammation, immune suppression	Flares of acne, rosacea, psoriasis, alopecia areata, vitiligo, seborrhoeic dermatitis, atopic dermatitis, skin superinfection, viral reactivation	
Neuroendocrinology	Neurogenic inflammation, hyperinnervation, upregulation of CRH	Erythema, oedema, pruritus, pain	
Thermoregulation	Vasodilatation		Pale skin, hypothermia, redness
Sleep deprivation	Barrier	TEWL	Dryness, dullness
Defences	Oxidative stress, inflammation	Pruritus, flares of psoriasis, atopic dermatitis, seborrhoetic dermatitis, acne, skin superinfection, viral reactivation	
Nutrition	Barrier	Lipid/ sebum production	Dry skin, oily skin
Defences	Antioxidant, inflammation, allergic reactions, microbiome	Acne, atopic dermatitis, systemic contact dermatitis	
Neuroendocrinology		Flushing, rosacea exacerbations	
Hormonal variations	Skin barrier	Hypersudation	Oily skin, dry skin
Structure		Telogen effluvium, androgenic alopecia	
Defences	Oxidative stress, melatonin (antioxidant), oxytocin, inflammation	Acne, atopic dermatitis, aphous ulcers	
Neuroendocrinology	Stimulation of the HPA, GC, modulation of skin neuropeptides	Progesterone dermatitis	
Hormonal variations have also been documented. In human subjects, a 7-day controlled feeding trial reported short-term effects of a low glycaemic load diet, suggesting that increases in dietary glycaemic load may increase the biological activity of sex hormones and IGF-1. Another randomized controlled crossover trial documented a significant increase in acne lesions (14.8 lesions) in a group consuming chocolate versus a jelly bean group (−0.7 lesions, \(P < 0.0001 \)), when evaluated 48 h later. The authors noted that dairy was a confounding factor, but hypothesized that chocolate components modulating cytokine production led to inflammation. Food allergies are another example of acute effects and may worsen atopic dermatitis due to immediate-type IgE-mediated hypersensitivity (rarely in adults; reactions occur within hours), systemic contact dermatitis (reactions typically occur 24–48 h later) or delayed eczematous reactions (24–48 h later).

Acute hormonal variations

The skin is itself an endocrine organ, and all its components are constantly regulated by hormones. The main hormones that affect the skin include sex hormones (oestrogens, progesterone, androgens), neuroendocrine hormones (GC, CRH, melatonin) and others (thyroid, growth hormones). Acute postpartum hormonal variations may cause telogen effluvium. Skin and hair follicles express melatonin that is a powerful antioxidant to combat ROS from acute stress responses. Oxytocin is released during labour and is a neuroendocrine mediator in human skin homoeostasis and modulates key processes which are dysregulated in atopic dermatitis such as proliferation, inflammation and oxidative stress responses.

Progesterone dermatitis hypersensitivity symptoms are associated with the progesterone surge during the luteal phase of the menstrual cycle or after exposure to exogenous progestins. Hormonal variations can induce stimulation of the HPA, GC and modulation of skin neuropeptides. Premenstrual variations in hormones have been reported to cause acne flares, aphthous ulcers and exacerbation of atopic dermatitis symptoms.

Medications and procedures

Procedures such as peels, botulinum neurotoxin, soft tissue fillers, lasers and microdermabrasion may cause skin barrier disruption, inflammation, PIHP and skin superinfection. Topical retinoids can cause retinoid irritation dermatitis, skin irritation, dryness and erythema due to skin barrier alteration, especially in the first days/weeks. Topical and systemic retinoids have been reported to alter sebum quantity and quality and affect the facial skin microbiome, e.g. by reducing or eradicating the anaerobe Cutibacterium acnes which is involved in the complex pathogenesis of acne vulgaris. Antibiotic use for acne and acute bacterial skin infections may alter the skin microbiome.

Acute stress challenges to skin during the COVID-19 pandemic

The use of face masks, gloves and repeated hand sanitization has been associated with high rates of adverse skin reactions among healthcare professionals with reports of acute and chronic dermatitis, secondary infection and aggravation of underlying skin diseases such as acne, seasonal facial dermatitis, seborrhoeic dermatitis and rosacea. Antibiotic use for acne and acute bacterial skin infections may alter the skin microbiome.

How to prevent and improve stressed skin

Understanding the pathogenesis of a maladaptive stress response is essential for the development of therapeutic strategies to improve skin health during acute exposome stress exposure.

Table 1 Continued

Acute stress	Skin function affected	Main biological mechanisms	Clinical manifestations
Medications and procedures	Skin barrier	Inflammation, antimicrobial response; changes in microbiome	Irritation, dryness and erythema
Mask use, disinfectants, frequent washing	Barrier and defence	Skin temperature, sebum, TEWL	Dryness, pruritus, skin sensitivity, erythema, acne and rosacea flares
The main biological effects of these acute stressors on skin include skin barrier alteration, subclinical microinflammation, inflammation, immunosuppression, DNA damage, melanogenesis, alteration of sebum and sweat production. The main clinical consequences include skin dryness or oiliness, dullness, redness, skin sensitivity, pruritus, sweating, flares of inflammatory skin conditions, skin superinfections such as viral reactivations, skin hyperpigmentation, as well as scalp sensitivity and hair loss. Repeated acute stressors may lead to enduring clinical effects contributing to skin ageing or skin cancers.

Global prevention measures include:
1. Avoidance of sunburn by adequate sun protection, e.g. sunscreen use, sun avoidance, protective clothing.
2. Adopting a healthy lifestyle, e.g. sleeping well, eating a well-balanced diet, acquiring stress management skills, the use of psychosocial interventions.
3. Reinforcing the skin physical barrier and defences against exposome factors with, e.g. antioxidants, antipollution products, probiotics, moisturizers, unsaturated fatty acids.

Conclusions
Cutaneous perturbations created by acute exposures induce responses to protect the organism and re-establish homeostasis. The main biological effects and resulting clinical manifestations of these acute exposures to individual external and internal exposome factors are summarized in Table 1. In adult skin, any acute stress effects should be contextualized against the background of chronic exposome exposures, especially in the case of chronic diseases, as well as the genome of the individual. Further research is required to elucidate individual effects from multiple stressors and may lead to a greater understanding of clinical presentations of skin disease at different times.

Acknowledgements
Writing and editorial assistance for the preparation of this manuscript was provided by Helen Simpson, PhD, ISMPP CMPP, of My Word Medical Writing and funded by Vichy Laboratoires.

References
1. Krutmann J, Bouloc A, Sore G, Bernard BA, Passeron T. The skin aging exposome. J Dermatol Sci 2017; 83(3): 152–161.
2. Passeron T, Krutmann J, Andersen ML, Katta R, Zouboulis CC. Clinical and biological impact of the exposome on the skin. J Eur Acad Dermatol Venereol 2020; 34(Suppl 4): 4–25.
3. Dreno B, Bettoli V, Aravisskaia E, Sanchez Viera M, Bouloc A. The influence of exposure on acne. J Eur Acad Dermatol Venereol 2018; 32(5): 812–819.
4. Cecchi L, D’Amato G, Amnesi-Maesano I. External exposome and allergic respiratory and skin diseases. J Allergy Clin Immunol 2018; 141(3): 846–857.
5. Stefanovic N, Flohr C, Irvine AD. The exposome in atopic dermatitis. Allergy 2020; 75(1): 63–74.
6. Gracia-Cazaña T, González S, Parrado C, Juarranz Á, Gilaberte Y. Influence of the Exposome on Skin Cancer. Acta Dermato-Venereologica 2020; 111(6): 460–470.
7. Altemus M, Rao B, Dhabhar FS, Ding W, Granstein RD. Stress-induced changes in skin barrier function in healthy women. J Invest Dermatol 2001; 117(2): 309–317.
8. Schmuth M, Feingold KR, Elias PM. Stress test of the skin: the cutaneous permeability barrier treadmill. Exp Dermatol 2020; 29(1): 112–113.
9. Maarouf M, Maarouf CL, Tosiopoulou G, Shi VY. The impact of stress on epidermal barrier function: an evidence-based review. Br J Dermatol 2019; 181(6): 1129–1137.
10. Feingold KR. Thematic review series: skin lipids. The role of epidermal lipids in cutaneous permeability barrier homeostasis. J Lipid Res 2007; 48(12): 2531–2546.
11. Bälsler K, Brandner JM. Tight junctions in skin inflammation. Pflugers Arch 2017; 469(1): 3–14.
12. Plonka PM, Passeron T, Brenner M et al. What are melanocytes really doing all day long? J Exp Dermatol 2009; 18(9): 799–819.
13. Cui R, Widiang HR, Feige E et al. Central role of p53 in the suntan response and pathologic hyperpigmentation. Cell 2007; 128(5): 853–864.
14. Regazzi et al. C, Sormani I, Debye A et al. Melanocytes sense blue light and regulate pigmentation through opsin-3. J Invest Dermatol 2018; 138(1): 171–178.
15. Warskulat U, Reinen A, Grether-Beck S, Krutmann J, Häussinger D. The osmolyte strategy of normal human keratinocytes in maintaining cell homeostasis. J Invest Dermatol 2004; 123(3): 516–521.
16. Peters EM. Stressed skin?–a molecular psychosomatic update on stress-causes and effects in dermatologic diseases. J Dtsch Derm Ges 2016; 14(3): 233–252, quiz 53.
17. Shepherd AJ, Downing JE, Miyan JA. Without nerves, immunology remains incomplete -in vivo veritas. Immunology 2005; 116(2): 145–163.
18. Shin H, Choi SJ, Cho AR, Kim DY, Kim KH, Kwon O. Acute stress-induced changes in follicular dermal papilla cells and mobilization of mast cells: implications for hair growth. Ann Dermatol 2016; 28(5): 600–606.
19. Bernard JJ, Gallo RL, Krutmann J. Photoimmunology: how ultraviolet radiation affects the immune system. Nat Rev Immunol 2019; 19(11): 688–701.
20. Patra V, Byrne SN, Wolf P. The skin microbiome: is it affected by UV-induced immune suppression? Front Microbiol 2016; 7: 1235.
21. Patra V, Wagner K, Arulampalam V, Wolf P. Skin microbiome modulates the effect of ultraviolet radiation on cellular response and immune function. iScience 2019; 15: 211–222.
22. Pereira MR, Leite PE. The involvement of parasympathetic and sympathetic nerves in the inflammatory reflex. J Cell Physiol 2016; 231(9): 1862–1869.
23. Buffoli B, Rinaldi F, Labanca M et al. Folicular dermal papilla cells of hair follicles and the immune system: implications for hair growth. Br J Dermatol 2020; 182(6): 686–696.
24. Roosterman D, Goerge T, Schneider SW, Bunnett NW, Steinhoff M. Neuronal control of skin function: the skin as a neuroimmunoendocrine organ. Physiol Rev 2006; 86(4): 1309–1379.
25. Slominski AT, Zmijewski MA, Skobowiat J, Zbytek B, Slominski RM, Steketee JD. Sensing the environment: regulation of local and global homeostasis by the skin’s neuroendocrine system. Adv Dent Res 2012; 21(2): 115–119.
26. Arck PC, Slominski A, Theoharides TC, Peters EM, Paus R. Neuroimmunology of stress: skin takes center stage. J Invest Dermatol 2006; 126(8): 1697–1704.
27. Singh LK, Pang X, Alexander N, Letourneau R, Theoharides TC. Acute immobilization stress triggers skin mast cell degranulation via corticotropin releasing hormone, neurotensin, and substance P: a link to neurogenic skin disorders. Brain Behav Immun 1999; 13(3): 225–239.
28. Ince LM, Weber J, Scheiermann C. Control of leukocyte trafficking by stress-associated hormones. Front Immunol 2016; 9: 3143.
29 Dhabhar FS. The short-term stress response - Mother nature’s mechanism for enhancing performance and protection under conditions of threat, challenge, and opportunity. Front Neuroendocrinol 2018; 49: 175–192.
30 Herborn KA, Graves JL, Jerem P et al. Skin temperature reveals the intensity of acute stress. Physiol Behav 2015; 152(Pt A): 225–230.
31 Kuehne A, Emmert H, Soehle J et al. Acute activation of oxidative pentose phosphate pathway as first-line response to oxidative stress in human skin cells. Mol Cell 2015; 59(3): 359–371.
32 Rockel N, Eser C, Grether-Beck S et al. The osmolyte taurine protects against ultraviolet B radiation-induced immunosuppression. J Immunol 2007; 179(6): 3604–3612.
33 Biniek K, Levi K, Dauskardt RH. Solar UV radiation reduces the barrier function of human skin. Proc Natl Acad Sci USA 2012; 109(42): 17111–17116.
34 Cela EM, Friedrich A, Paz ML, Vanzulli SL, Leoni J, González Maglio DH. Time-course study of different innate immune mediators produced by UV-irradiated skin: comparative effects of short and daily versus a single harmful UV exposure. Immunology 2015; 145(1): 82–93.
35 Achachi A, Vocanson M, Bastien P et al. UV radiation induces the epidermal recruitment of dendritic cells that compensate for the depletion of langerin(-) dendritic cells in human skin. J Invest Dermatol 2015; 135(8): 2058–2067.
36 Yamazaki S, Odanaka M, Nishioka A et al. Ultraviolet B-induced maturation of CD11b-type langerin(-) dendritic cells controls the expansion of Foxp3(+) regulatory T cells in the skin. J Immunol 2018; 200(1): 119–129.
37 Shime H, Odanaka M, Tsuji M et al. Proenkephalin(+) regulatory T cells expanded by ultraviolet B exposure maintain skin homeostasis with a healing function. Proc Natl Acad Sci USA 2020; 117(34): 20606–20705.
38 Ali N, Zirak B, Rodriguez BS et al. Regulatory T cells in skin facilitate epithelial stem cell differentiation. Cell 2017; 169(6): 1119–29 e11.
39 Weller RB. Sunlight has cardiovascular benefits independently of vitamin D. Blood Purif 2016; 41(1–3): 130–134.
40 Garmyn M, Young AR, Miller SA. Mechanisms of and variables affecting UVR photoadaptation in human skin. Photochem Photobiol Sci 2018; 17(12): 1932–1940.
41 Juzeniene A, Moan J. Beneficial effects of UV radiation other than via vitamin D production. Dermatoendocrinol. 2012; 4(2): 109–117.
42 Fell GL, Robinson KC, Mao J, Woolf CJ, Fisher DE. Skin β-endorphin mediates addiction to UV light. Cell 2014; 157(7): 1527–1534.
43 Ponzella L, Leone L, Greco G et al. Red light human hair phaeomelanin is a potent pro-oxidant mediating UV-independent contributory mechanisms of melanogenesis. Pigment Cell Melanoma Res 2014; 27(2): 244–252.
44 Slominski AT, Zmijewski MA, Plonka PM, Szafarski JP, Paus R. How UV light touches the brain and endocrine system through skin, and why. Endocrinology 2018; 159(5): 1992–2007.
45 Han M, Ban JJ, Bae JS, Shin CY, Lee DH, Chung JH. UV irradiation to mouse skin decreases hippocampal neurogenesis and synaptic protein expression via HPA axis activation. Sci Rep 2017; 7(1): 15574.
46 Fimmel S, Glas E, Zouboulis C. Possible interaction between neuropeptides and UV light in the development of rosacea. In Zouboulis CC, M et al. Ultraviolet B-induced maturation of CD11b-type langerin(-) dendritic cells controls the expansion of Foxp3(+) regulatory T cells in the skin. J Immunol 2018; 200(1): 119–129.
47 Shime H, Odanaka M, Tsuji M et al. Proenkephalin(+) regulatory T cells expanded by ultraviolet B exposure maintain skin homeostasis with a healing function. Proc Natl Acad Sci USA 2020; 117(34): 20606–20705.
48 Ali N, Zirak B, Rodriguez BS et al. Regulatory T cells in skin facilitate epithelial stem cell differentiation. Cell 2017; 169(6): 1119–29 e11.
49 Weller RB. Sunlight has cardiovascular benefits independently of vitamin D. Blood Purif 2016; 41(1–3): 130–134.
50 Garmyn M, Young AR, Miller SA. Mechanisms of and variables affecting UVR photoadaptation in human skin. Photochem Photobiol Sci 2018; 17(12): 1932–1940.
51 Juzeniene A, Moan J. Beneficial effects of UV radiation other than via vitamin D production. Dermatoendocrinol. 2012; 4(2): 109–117.
52 Fell GL, Robinson KC, Mao J, Woolf CJ, Fisher DE. Skin β-endorphin mediates addiction to UV light. Cell 2014; 157(7): 1527–1534.
53 Ponzella L, Leone L, Greco G et al. Red light human hair phaeomelanin is a potent pro-oxidant mediating UV-independent contributory mechanisms of melanogenesis. Pigment Cell Melanoma Res 2014; 27(2): 244–252.
54 Slominski AT, Zmijewski MA, Plonka PM, Szafarski JP, Paus R. How UV light touches the brain and endocrine system through skin, and why. Endocrinology 2018; 159(5): 1992–2007.
55 Han M, Ban JJ, Bae JS, Shin CY, Lee DH, Chung JH. UV irradiation to mouse skin decreases hippocampal neurogenesis and synaptic protein expression via HPA axis activation. Sci Rep 2017; 7(1): 15574.
56 Fimmel S, Glas E, Zouboulis C. Possible interaction between neuropeptides and UV light in the development of rosacea. In Zouboulis CC, M et al. Ultraviolet B-induced maturation of CD11b-type langerin(-) dendritic cells controls the expansion of Foxp3(+) regulatory T cells in the skin. J Immunol 2018; 200(1): 119–129.
57 Shime H, Odanaka M, Tsuji M et al. Proenkephalin(+) regulatory T cells expanded by ultraviolet B exposure maintain skin homeostasis with a healing function. Proc Natl Acad Sci USA 2020; 117(34): 20606–20705.
58 Ali N, Zirak B, Rodriguez BS et al. Regulatory T cells in skin facilitate epithelial stem cell differentiation. Cell 2017; 169(6): 1119–29 e11.
59 Weller RB. Sunlight has cardiovascular benefits independently of vitamin D. Blood Purif 2016; 41(1–3): 130–134.
60 Garmyn M, Young AR, Miller SA. Mechanisms of and variables affecting UVR photoadaptation in human skin. Photochem Photobiol Sci 2018; 17(12): 1932–1940.
61 Juzeniene A, Moan J. Beneficial effects of UV radiation other than via vitamin D production. Dermatoendocrinol. 2012; 4(2): 109–117.
62 Fell GL, Robinson KC, Mao J, Woolf CJ, Fisher DE. Skin β-endorphin mediates addiction to UV light. Cell 2014; 157(7): 1527–1534.
63 Ponzella L, Leone L, Greco G et al. Red light human hair phaeomelanin is a potent pro-oxidant mediating UV-independent contributory mechanisms of melanogenesis. Pigment Cell Melanoma Res 2014; 27(2): 244–252.
Adult skin acute stress responses

72 Guo Q, Xiong X, Liang F et al. The interactive effects between air pollution and meteorological factors on the hospital outpatient visits for atopic dermatitis in Beijing, China: a time-series analysis. J Eur Acad Dermatol Venereol 2019; 33(12): 2362–2370.

73 Marrot L. Pollution and sun exposure: a deleterious synergy, mechanisms and opportunities for skin protection. Carr Med Chem 2018; 25(40): 5469–5486.

74 Souer J, Belaidi J-P, Chollet C et al. Photo-pollution stress in skin: Traces of pollutants (PAH and particulate matter) impair redox homoeostasis in keratinocytes exposed to UV-A. J Dermatol Sci 2017; 86(2): 162–169.

75 Denda M, Sato J, Masuda Y et al. Exposure to a dry environment enhances epidermal permeability barrier function. J Invest Dermatol 1998; 111(5): 858–863.

76 Ruer R, Lancin M, Nollent V, Bertin C. Methods to assess the protective efficacy of emollients against climatic and chemical aggressors. Dermatol Res Pract 2012; 2012: 864734.

77 Tsuchakura K, Hotta M, Fujimura T, Haketa K, Kitahara T. Effect of room humidity on the formation of fine wrinkles in the facial skin of Japanese. Skin Res Technol 2007; 13(2): 184–188.

78 Spencer TS, Linamene CE, Akers WA, Jones HE. Temperature dependence of water content of stratum corneum. Br J Dermatol 1975; 93(2): 159–164.

79 Engebretsen KA, Johansen JD, Kezic S, Linneberg A, Thyssen JP. The effect of environmental humidity and temperature on skin barrier function and dermatitis. J Eur Acad Dermatol Venereol 2016; 30(3): 223–249.

80 Fluur JW, Bornkessel A, Akengin A et al. Sequential application of cold and sodium lauryl sulphate decreases irritation and barrier disruption in vivo in humans. Br J Dermatol 2005; 152(4): 702–708.

81 Baltazar D, Brockman R, Simpson E, Kotsis-induced erythema ab igne. An Bras Dermatol 2019; 94(2): 253–254.

82 Pondeljak N, Lugovic-Mihic L. Stress-induced interaction of skin immune cells, hormones, and neurotransmitters. Clin Ther 2020; 42(5): 757–770.

83 Dhabhar FS. Acute stress enhances while chronic stress suppresses skin immunity. The role of stress hormones and leukocyte trafficking. Ann N Y Acad Sci 2000; 917: 876–893.

84 Peters EMJ, Schellowski M, Watzl C, Gimsa U. To stress or not to stress: Brain-behavior-immune interaction may weaken or promote the immune response to SARS-CoV-2. Neurobiol Stress 2021; 14: 100296.

85 Dhabhar FS, Saul AN, Daugherty C, Holmes TH, Bouley DM, Oberyzn TM. Short-term stress enhances cellular immunity and increases early resistance to squamous cell carcinoma. Brain Behav Immun 2010; 24(1): 127–137.

86 Graham JE, Song S, Engelnd CG. Acute pain speeds skin barrier recovery in healthy men and women. J Psychosom Res 2012; 73(6): 452–458.

87 Foley P, Kirschbaum C. Human hypothalamus-pituitary-adrenal axis responses to acute psychosocial stress in laboratory settings. Neurosci Biobehav Rev 2010; 35(1): 91–96.

88 Van Loey NE, Hofland H, Vlij M et al. Associations between traumatic stress symptoms, pain, and bio-active components in burn wounds. Psychoneuroendocrinol 2018; 96: 1–5.

89 Chebtoeac DV, Yemelyanov AY, Lavker RM, Budunova IV. Epithelial cells in the hair follicle bulge do not contribute to epidermal regeneration after glucocorticoid-induced cutaneous atrophy. J Invest Dermatol 2007; 127(12): 2749–2758.

90 Matalka KZ. Neuroendocrine and cytokines-induced responses to minutes, hours, and days of mental stress. Neuro Endocrinol Lett 2003; 24(5): 283–292.

91 Villasante Fricke AC, Mitova M. Epidemiology and burden of alopecia areata: a systematic review. Clin Cosmet Investig Dermatol 2015; 8: 397–403.

92 Katsarou-Katsari A, Singh LK, Theoharides TC. Alopecia areata and affected skin CRH receptor upregulation induced by acute emotional stress. Dermatology 2001; 203(2): 157–161.

93 Ives AM, Bertke AS. Stress hormones epinephrine and corticosterone selectively modulate herpes simplex virus 1 (HSV-1) and HSV-2 productive infections in adult sympathetic, but not sensory, neurons. J Viral 2017; 91(13): e00582.

94 Zouboulis CC, Böhm M. Neuroendocrine regulation of sebocytes – a pathogenetic link between stress and acne. Exp Dermatol 2004; 13(Suppl 4): 31–35.

95 Ganceviciene R, Böhm M, Fimmel S, Zouboulis CC. The role of neuropeptides in the multifactorial pathogenesis of acne vulgaris. Derma antennoderm 2009; 1(3): 170–176.

96 Zouboulis CC, Seltenmann H, Hiroi N et al. Corticotropin-releasing hormone: an autocrine hormone that promotes lipogenesis in human sebocytes. Proc Natl Acad Sci USA 2002; 99(10): 7148–7153.

97 Albuquerque RG, Rocha MA, Bagatin E, Tufik S, Andersen ML. Could adult female acne be associated with modern life? Arch Dermatol Res 2014; 306(8): 683–688.

98 McEven BS, Karatosones IN. Sleep deprivation and circadian disruption: stress, astoliosis, and autolistic load. Sleep Med Clin 2015; 10(1): 1–10.

99 Toyoda M, Nakamura M, Makino T, Kagoura M, Morohashi M. Sebaceous glands in acne patients express high levels of neutral endopeptidase. Exp Dermatol 2002; 11(3): 241–247.

100 Chiu A, Chon SY, Kimball AR. The response of skin disease to stress: changes in the severity of acne vulgaris as affected by examination stress. Arch Dermatol 2003; 139(7): 897–900.

101 Borda LJ, Wikramanayake TC. Seborrhoeic dermatitis and dandruff: a comprehensive review. J Clin Investig Dermatol 2015; 3(2).

102 Peters EM, Luehmann C, Klapp BF, Kruse J. The neuroimmune connection interferes with tissue regeneration and chronic inflammatory disease in the skin. Ann N Y Acad Sci 2012; 1262: 118–126.

103 Buske-Kirschbaum A, Ebrect M, Hellhammer DH. Blunted HPA axis responsiveness to stress in atopic patients is associated with the acuity and severeness of allergic inflammation. Brain Behav Immun 2010; 24(8): 1347–1353.

104 Seiffert K, Hilbert E, Schaechingh H, Zouboulis CC, Deter HC. Psychophysiologocal reactivity under mental stress in atopic dermatitis. Dermatol 2005; 210(4): 286–293.

105 Martin SF, Esser PR, Weber FC et al. Mechanisms of chemical-induced innate immunity in allergic contact dermatitis. Allergy 2011; 66(9): 1152–1163.

106 Leproult R, Copinshi G, Buxton O, Van Cauter E. Sleep loss results in an elevation of cortisol levels the next evening. Sleep 1997; 20(10): 865–870.

107 Wright KP, Drake AL, Frey DJ et al. Influence of sleep deprivation and circadian misalignment on cortisol, inflammatory markers, and cytokine balance. Brain Behav Immun 2015; 47: 24–34.

108 Xerfan EMS, Tomimori J, Andersen ML, Tufik S. Seborrhoeic dermatitis and dandruff: the role of redox regulation in the normal physiology and innate immunity in allergic contact dermatitis. Arch Dermatol Res 2010; 293(1): 91–96.

109 Fennner J, Silverberg NB. Skin diseases associated with atopic dermatitis. Clin Dermatol 2018; 36(5): 631–640.

110 Korkina L, Pastore S. The role of redox regulation in the normal physiology and inflammatory diseases of skin. Front Biosci (Eliit Ed) 2009; 1: 123–141.

111 Kahan V, Andersen ML, Tomimori I, Tufik S. Can poor sleep affect skin integrity? Med Hypotheses 2010; 75(6): 535–537.

112 Gómez-González B, Domínguez-Salazar E, Hurtado-Alvarado G et al. Role of sleep in the regulation of the immune system and the pituitary hormones. Ann N Y Acad Sci 2012; 1261: 97–106.

113 Flament F, Pierre J, Delhommeau K, Adam AS. How a working day-turbance and atopic dermatitis: a bidirectional relationship? Med Hypotheses 2020; 140: 109637.

114 Flamet F, Qiu H, Abric A, Charbonneau A. Assessing changes in some facial signs of fatigue in Chinese women, induced by a single working day. Int J Cosmet Sci 2019; 41(1): 21–27.
156 Yan Y, Chen H, Chen L et al. Consensus of Chinese experts on protection of skin and mucous membrane barrier for health-care workers fighting against coronavirus disease 2019. *Dermatol Ther* 2020; 33(4): e13310.

157 Lin P, Zhu S, Huang Y et al. Adverse skin reactions among healthcare workers during the coronavirus disease 2019 outbreak: a survey in Wuhan and its surrounding regions. *Br J Dermatol* 2020; 183(1): 190–192.

158 Montero-Vilchez T, Martinez-Lopez A, Cuenca-Barrales C, Rodriguez-Tejero A, Molina-Leyva A, Arias-Santiago S. Impact of gloves and mask use on epidermal barrier function in health care workers. *Dermatitis* 2021; 32(1): 57–62.

159 Han C, Shi J, Chen Y, Zhang Z. Increased flare of acne caused by long-time mask wearing during COVID-19 pandemic among general population. *Dermatol Ther* 2020; 33(4): e13704.