A WINTGEN TYPE INEQUALITY FOR SURFACES IN 4D NEUTRAL PSEUDO-RIEMANNIAN SPACE FORMS AND ITS APPLICATIONS TO MINIMAL IMMERSIONS

BANG-YEN CHEN

Abstract. Let M be a space-like surface immersed in a 4-dimensional pseudo-Riemannian space form \mathbb{R}^4_{2c} with constant sectional curvature c and index two. In the first part of this article, we prove that the Gauss curvature K, the normal curvature K^D, and mean curvature vector H of M satisfy the general inequality: $K + K^D \geq \langle H, H \rangle + c$. In the second part, we investigate space-like minimal surfaces in \mathbb{R}^4_{2c} which satisfy the equality case of the inequality identically. Several classification results in this respect are then obtained.

1. Introduction.

Let \mathbb{E}^m_t denote the pseudo-Euclidean m-space equipped with pseudo-Euclidean metric of index t given by

$$g_t = -\sum_{i=1}^{t} dx_i^2 + \sum_{j=t+1}^{n} dx_j^2,$$

where (x_1, \ldots, x_m) is a rectangular coordinate system of \mathbb{E}^m_t.

We put

$$S^k_s(c) = \left\{ x \in \mathbb{E}^{k+1}_s : \langle x, x \rangle = \frac{1}{c} > 0 \right\},$$

$$H^k_s(c) = \left\{ x \in \mathbb{E}^{k+1}_s : \langle x, x \rangle = \frac{1}{c} < 0 \right\},$$

where \langle , \rangle is the associated inner product. Then $S^k_s(c)$ and $H^k_s(c)$ are complete pseudo-Riemannian manifolds of constant curvature c and with index s, which are known as pseudo-Riemannian k-sphere and the pseudo-hyperbolic k-space, respectively. The pseudo-Riemannian manifolds $\mathbb{E}^k_s, S^k_s(c)$ and $H^k_s(-c)$ are called pseudo-Riemannian space forms.

A vector v is called space-like (respectively, time-like) if $\langle v, v \rangle > 0$ (respectively, $\langle v, v \rangle < 0$). A vector v is called light-like if it is nonzero and it satisfies $\langle v, v \rangle = 0$. A surface M in a pseudo-Riemannian manifold is called space-like if each nonzero tangent vector is space-like.

2000 Mathematics Subject Classification. Primary: 53C40; Secondary 53C50.

Key words and phrases. Inequality, minimal surface, pseudo-hyperbolic 4-space, Gauss curvature, normal curvature.
Let M be a space-like surface immersed in a 4-dimensional pseudo-Riemannian space form $R^2_4(c)$ with constant sectional curvature c and index 2. In section 3, we recall a minimal immersion of $H^2(-\frac{1}{3})$ into the neutral pseudo-hyperbolic 4-space $H^4_2(-1)$ discovered recently by the author in [4]. In section 4, we prove that the Gauss curvature K, the normal curvature K^D, and mean curvature vector H of M in $R^2_4(c)$ satisfy the following general inequality:

\[K + K^D \geq \langle H, H \rangle + c. \tag{1.4} \]

In this section, we also show that there exist many minimal space-like surfaces which satisfy the equality case of this inequality. In section 5, we investigate space-like minimal surfaces in the neutral pseudo-hyperbolic 4-space $H^4_2(-1)$ which satisfy the equality case of (1.4). Several classification results in this respect are then obtained.

2. Preliminaries.

2.1. Basic formulas and definitions. Let $R^2_4(c)$ denote the 4-dimensional neutral pseudo-Riemannian space form of constant curvature c and with index two. Then the curvature tensor \tilde{R} of $R^2_4(c)$ is given by

\[\tilde{R}(X,Y)Z = c \left(\langle X, Z \rangle Y - \langle Y, Z \rangle X \right) \]

for vectors X,Y,Z tangent to $R^2_4(c)$. Let $\psi : M \to R^2_4(c)$ be an isometric immersion of a space-like surface M into $R^2_4(c)$. Denote by ∇ and $\tilde{\nabla}$ the Levi-Civita connections on M and $R^2_4(c)$, respectively.

For vector fields X,Y tangent to M and vector field ξ normal to M, the formulas of Gauss and Weingarten are given respectively by (cf. [1], [2], [9]):

\[\tilde{\nabla}_X Y = \nabla_X Y + h(X,Y), \]
\[\tilde{\nabla}_X \xi = -A_\xi X + D_X \xi, \]

where $\nabla_X Y$ and $A_\xi X$ are the tangential components and $h(X,Y)$ and $D_X \xi$ are the normal components of $\tilde{\nabla}_X Y$ and $\tilde{\nabla}_X \xi$, respectively. These formulas define the second fundamental form h, the shape operator A, and the normal connection D of M in $R^2_4(c)$.

For each normal vector $\xi \in T_x^\perp M$, A_ξ is a symmetric endomorphism of the tangent space $T_x M, x \in M$. The shape operator and the second fundamental form
are related by

\[\langle h(X,Y), \xi \rangle = \langle A_\xi X, Y \rangle. \] (2.4)

The mean curvature vector \(H \) of \(M \) in \(\mathbb{R}^4_2(c) \) is defined by

\[H = \left(\frac{1}{2} \right) \text{trace } h. \] (2.5)

The mean curvature of \(M \) in \(\mathbb{R}^4_2(c) \) is defined to be \(\sqrt{-\langle H, H \rangle} \).

The equations of Gauss, Codazzi and Ricci are given respectively by

\[R(X,Y)Z = \langle X,Z \rangle Y - \langle Y,Z \rangle X + A_{h(Y,Z)}X - A_{h(X,Z)}Y, \] (2.6)
\[(\bar{\nabla}_X h)(Y,Z) = (\bar{\nabla}_Y h)(X,Z), \] (2.7)
\[\langle R^D(X,Y)\xi, \eta \rangle = \langle [A_\xi, A_\eta]X, Y \rangle, \] (2.8)

for vector fields \(X,Y,Z \) tangent to \(M \) and \(\xi \) normal to \(M \), where \(\bar{\nabla}h \) is defined by

\[(\bar{\nabla}_X h)(Y,Z) = D_X h(Y,Z) - h(\nabla_X Y, Z) - h(Y, \nabla_X Z), \] (2.9)

and \(R^D \) is the curvature tensor associated with the normal connection \(D \), i.e.,

\[R^D(X,Y)\xi = D_X D_Y \xi - D_Y D_X \xi - D_{[X,Y]} \xi. \] (2.10)

For a space-like surface \(M \) in \(\mathbb{R}^4_2(c) \), the normal curvature \(K^D \) is given by

\[K^D = \langle R^D(e_1, e_2)e_3, e_4 \rangle. \] (2.11)

A surface \(M \) in \(\mathbb{R}^4_2(c) \) is called a parallel surface if \(\bar{\nabla}h = 0 \) holds identically. An immersion \(\psi \) of a surface \(M \) in a pseudo-hyperbolic 4-space \(\mathbb{R}^4_2(c) \) is called full if \(\psi(M) \) does not lies in any totally geodesic submanifold of \(\mathbb{R}^4_2(c) \).

The surface \(M \) in \(\mathbb{R}^4_2(c) \) is called totally umbilical if the second fundamental form \(h \) of \(M \) satisfies \(h(X,Y) = g(X,Y)\xi, \forall X,Y \in TM \), for some normal vector field \(\xi \).

For an immersion \(\psi: M \rightarrow H^4_2(-1) \) of \(M \) into \(H^4_2(-1) \), let

\[\phi = \iota \circ \psi : M \rightarrow \mathbb{E}^5_3 \]

 denote the composition of \(\psi \) with the standard inclusion \(\iota : H^4_2(-1) \rightarrow \mathbb{E}^5_3 \) via (1.3).

Denote by \(\tilde{\nabla} \) and \(\nabla \) the Levi-Civita connections of \(\mathbb{E}^5_3 \) and of \(M \), respectively. Let \(h \) be the second fundamental form of \(M \) in \(H^4_2(-1) \). Since \(H^4_2(-1) \) is totally umbilical with one as its mean curvature in \(\mathbb{E}^5_3 \), we have

\[\tilde{\nabla}_X Y = \nabla_X Y + h(X,Y) + \phi \] (2.12)

for \(X,Y \) tangent to \(M \).
2.2. Connection forms. Let \(\{e_1, e_2\} \) be an orthonormal frame of the tangent bundle \(TM \) of \(M \). Then we have
\[
\langle e_1, e_1 \rangle = \langle e_2, e_2 \rangle = 1, \quad \langle e_1, e_2 \rangle = 0.
\]
We may choose an orthonormal normal frame \(\{e_3, e_4\} \) of \(M \) in \(R^3_2(c) \) such that
\[
\langle e_3, e_3 \rangle = \langle e_4, e_4 \rangle = -1, \quad \langle e_3, e_4 \rangle = 0.
\]
For the orthonormal frame \(\{e_1, e_2, e_3, e_4\} \), we put
\[
\nabla_X e_1 = \omega^2_1(X)e_2, \quad D_X e_3 = \omega^3_3(X)e_4,
\]
where \(\omega^2_1 \) and \(\omega^3_3 \) are the connection forms of the tangent and the normal bundles.

The Gauss curvature \(K \) and the normal curvature \(K^D \) of \(M \) are related with the connection forms \(\omega^2_1 \) and \(\omega^3_3 \) by
\[
d\omega^2_1 = -K(\ast 1), \quad d\omega^3_3 = -K^D(\ast 1),
\]
where \(\ast \) is the Hodge star operator of \(M \).

2.3. Ellipse of curvature. The ellipse of curvature of a surface \(M \) in \(R^3_2(c) \) is the subset of the normal plane defined as
\[
\{h(v,v) \in T^\perp_p M : |v| = 1, v \in T_p M, \ p \in M\}.
\]
To see that it is an ellipse, we consider an arbitrary orthogonal tangent frame \(\{e_1, e_2\} \). Put \(h_{i,j} = h(e_i, e_j), i, j = 1, 2 \) and look at the following formula
\[
h(v,v) = H + \frac{h_{11} - h_{22}}{2} \cos 2\theta + h_{12} \sin 2\theta, \quad v = \cos \theta e_1 + \sin \theta e_2.
\]
As \(v \) goes once around the unit tangent circle, \(h(v,v) \) goes twice around the ellipse. The ellipse of curvature could degenerate into a line segment or a point.

The center of the ellipse is \(H \). The ellipse of curvature is a circle if and only if the following two conditions hold:
\[
|h_{11} - h_{22}|^2 = 4|h_{12}|^2, \quad \langle h_{11} - h_{22}, h_{12} \rangle = 0.
\]

3. A minimal immersion of \(H^2(-\frac{1}{4}) \) into \(H^4_2(-1) \).

In this section, we recall a minimal immersion of \(H^2(-\frac{1}{4}) \) into \(H^4_2(-1) \) discovered recently in [3].

Consider the map \(\phi : \mathbb{R}^2 \to \mathbb{R}^5_3 \) defined by
\[
\phi(s,t) = \left(\sinh \left(\frac{2s}{\sqrt{3}} \right) - \frac{t^2}{3} - \left(\frac{7}{8} + \frac{t^4}{18} \right) e^{\frac{2s}{\sqrt{3}}}, t + \left(\frac{t^3}{3} - \frac{t}{4} \right) e^{\frac{2s}{\sqrt{3}}} \right) e^{\sqrt{3}t}, \quad \left(\frac{1}{2} + \frac{t^2}{2} e^{\frac{2s}{\sqrt{3}}}, t + \left(\frac{t^3}{3} + \frac{t}{4} \right) e^{\frac{2s}{\sqrt{3}}}, \sinh \left(\frac{2s}{\sqrt{3}} \right) - \frac{t^2}{3} - \left(\frac{1}{8} + \frac{t^4}{18} \right) e^{\frac{2s}{\sqrt{3}}} \right).
\]
The position vector \(x \) of \(\phi \) satisfies \(\langle x, x \rangle = -1 \) and the induced metric via \(\phi \) is \(g = ds^2 + e^{\frac{2s}{\sqrt{3}}}dt^2 \). Thus, \(\phi \) defines an isometric immersion \(\psi_\phi : H^2(-\frac{1}{4}) \to H^4_2(-1) \).
of the hyperbolic plane \(H^2(\frac{-1}{3}) \) of constant curvature \(-\frac{1}{3}\) into \(H^4_2(\frac{-1}{3}) \). This surface satisfies \(K^D = 2K = -\frac{2}{3} \). So, we have \(K + K^D = -1 \).

It was proved in [4] that, up to rigid motions, \(\psi : H^2(\frac{-1}{3}) \to H^4_2(\frac{-1}{3}) \) is the only parallel minimal space-like surface lying fully in \(H^4_2(\frac{-1}{3}) \).

Recently, B.-Y. Chen and B. D. Suceavă proved in [5] the following classification theorem.

Theorem 3.1. Let \(\psi : M \to H^4_2(\frac{-1}{3}) \) be a minimal immersion of a space-like surface \(M \) into \(H^4_2(\frac{-1}{3}) \). If the Gauss curvature \(K \) and the normal curvature \(K^D \) of \(M \) are constant, then one of the following three statements holds.

1. \(K = -1, K^D = 0 \), and \(\psi \) is totally geodesic.

2. \(K = K^D = 0 \) and \(\psi \) is congruent to an open part of the minimal surface defined by

\[
L(u, v) = \frac{1}{\sqrt{2}} (\cosh u, \cosh v, 0, \sinh u, \sinh v).
\]

3. \(K^D = 2K = -\frac{2}{3} \) and \(\psi \) is congruent to an open part of the minimal surface \(\psi : H^2(\frac{-1}{3}) \to H^4_2(\frac{-1}{3}) \) induced from (3.1).

Remark 3.1. If \(M \) is a space-like totally geodesic surface in \(H^4_2(\frac{-1}{3}) \), then the surface is congruent to an open part of the surface in \(H^4_2(\frac{-1}{3}) \) induced from (3.3) via (1.3).

4. A Wintgen Type Inequality for Space-like Surfaces in \(R^4_2(c) \).

We need the following result for later use.

Theorem 4.1. Let \(M \) be a space-like surface in a 4-dimensional neutral pseudo-Riemannian space form \(R^4_2(c) \) of constant sectional curvature \(c \). Then we have

\[
K + K^D \geq \langle H, H \rangle + c
\]

at every point in \(M \).

The equality sign of (4.1) holds at a point \(p \in M \) if and only if, with respect to some suitable orthonormal frame \(\{e_1, e_2, e_3, e_4\} \) at \(p \), the shape operators at \(p \) take the forms:

\[
A_{e_3} = \begin{pmatrix} 2\gamma + \mu & 0 \\ 0 & \mu \end{pmatrix}, \quad A_{e_4} = \begin{pmatrix} 0 & \gamma \\ \gamma & 0 \end{pmatrix}.
\]

Proof. Assume that \(\psi : M \to R^4_2(c) \) is an isometric immersion of a space-like surface \(M \) into a pseudo-Riemannian space form \(R^4_2(c) \) of constant sectional curvature \(c \).

If \(p \in M \) is totally geodesic point, i.e., \(h(p) = 0 \), then we have \(K(p) = -1 \) and \(K^D(p) = 0 \). So we have \(K + K^D = c \) at \(p \).
If \(p \in M \) is a non-totally geodesic point, then we may choose an orthonormal frame \(\{e_1, e_2, e_3, e_4\} \) at \(p \) such that the shape operators at \(p \) satisfy

\[
A_{e_3} = \begin{pmatrix} \alpha & 0 \\ 0 & \mu \end{pmatrix}, \quad A_{e_4} = \begin{pmatrix} \delta & \gamma \\ \gamma & -\delta \end{pmatrix}
\]

for some functions \(\alpha, \gamma, \delta, \mu \), with respect to \(\{e_1, e_2, e_3, e_4\} \).

From (2.4), (2.13), (2.14) and (4.3) we know that the second fundamental form of \(\psi \) satisfies

\[
h(e_1, e_1) = -\alpha e_3 - \delta e_4, \quad h(e_1, e_2) = -\gamma e_4, \quad h(e_2, e_2) = -\mu e_3 + \delta e_4.
\]

(4.4)

It follows from (4.4) and the equation of Gauss that the Gauss curvature \(K \), the normal curvature \(K^D \) and the mean curvature vector \(H \) of \(M \) at \(p \) satisfy

\[
K(p) = -\alpha \mu + \gamma^2 + \delta^2 + c,
\]

(4.5)

\[
K^D(p) = \gamma(\mu - \alpha),
\]

(4.6)

\[
H(p) = \frac{\alpha + \mu}{2} e_3.
\]

(4.7)

From (4.5)-(4.7) we have

\[
K(p) + K^D(p) = (H(p), H(p)) + \frac{1}{4}(2\gamma - \alpha + \mu)^2 + \delta^2 + c
\]

(4.8)

\[
\geq (H(p), H(p)) + c.
\]

Consequently, we obtain inequality (4.1).

If the equality case of (4.1) holds at \(p \in M \), then (4.8) implies that we have \(\delta = 0 \) and \(\alpha = 2\gamma + \mu \). Hence, we derive (4.2) from (4.3).

Conversely, if we have (4.2) at \(p \in M \), then it is easy to verify that the equality sign of (4.1) holds at \(p \). \(\square \)

Remark 4.1. Inequality (4.1) is a pseudo-hyperbolic version of an inequality of P. Wintgen obtained in [10] (see, also [8]).

Remark 4.2. Every space-like totally umbilical surface in \(\mathbb{R}^{4}_{2}(c) \) satisfies the equality case of (4.1) identically.

Remark 4.3. It follows from Theorem 4.1 that if a space-like surface \(M \) in \(\mathbb{R}^{4}_{2}(c) \) satisfies the equality case of inequality (4.1) identically, then \(M \) is a Chen surface (in the sense of [6, 7]).

Remark 4.4. It follows from Theorem 4.1 and conditions in (2.18) that if a space-like surface \(M \) in \(\mathbb{R}^{4}_{2}(c) \) satisfies the equality case of inequality (4.1) identically, then it has circular ellipse of curvature.

Remark 4.5. The minimal surface given by \(\psi_{\phi} : H^{2}(-\frac{1}{3}) \rightarrow H_{2}^{4}(-1) \) discovered in [1] satisfies the equality case of (4.1) identically (with \(H = 0, c = -1 \)).
Remark 4.6. On the neutral pseudo-Euclidean 4-space \mathbb{E}_4^2 equipped with the metric (4.9)

$$g_2 = -dx_1^2 - dx_2^2 + dx_3^2 + dx_4^2,$$

we may consider the canonical complex coordinate system $\{z_1, z_2\}$ with

$$z_1 = x_1 + ix_2, z_2 = x_3 + ix_4.$$

The complex structure on \mathbb{E}_4^2 obtained in this way is called the standard complex structure on \mathbb{E}_4^2. In this way, we can regard \mathbb{E}_4^2 as a Lorentzian complex plane \mathbb{C}_1^2.

Lemma 4.1. Every space-like holomorphic curve in \mathbb{C}_1^2 satisfies the equality case of inequality (4.1) identically (with $H = c = 0$).

Proof. Let $\psi : M \to \mathbb{C}_1^2$ be a holomorphic space-like curve in \mathbb{C}_1^2. Let e_1 be a unit tangent vector field of M. Then $e_2 = Je_1$ is a unit tangent vector field of M which is perpendicular to e_1. Consider an orthonormal normal frame $\{e_3, e_4\}$ of M in \mathbb{C}_1^2 with $e_4 = Je_3$. Then it follows from $\tilde{\nabla}_X J = 0$ that

$$A_{e_4}X = JA_{e_3}X, \ \forall X \in TM.$$

(4.10)

By applying (4.10) we know that the shape operator A satisfies

$$A_{e_3} = \begin{pmatrix} a & b \\ b & -a \end{pmatrix}, \quad A_{e_4} = \begin{pmatrix} -b & a \\ a & b \end{pmatrix}$$

(4.11)

for some functions a, b, with respect to $\{e_1, e_2, e_3, e_4\}$.

By applying (4.11) we obtain $H = 0$ and $K = -K^D = 2(a^2 + b^2)$. Therefore, we obtain the equality case of (4.1) identically. \qed

5. AN APPLICATION TO MINIMAL SURFACES IN $H_4^2(-1)$.

Recall that a function f on a space-like surface M is called logarithm-harmonic, if $\Delta(\ln f) = 0$ holds identically on M, where $\Delta(\ln f) := *d*(\ln f)$ is the Laplacian of $\ln f$ and $*$ is the Hodge star operator. A function f on M is called subharmonic if $\Delta f \geq 0$ holds everywhere on M.

In this section, we establish the following simple geometric characterization of the minimal immersion $\psi_\phi : H_4^2(-\frac{1}{3}) \to H_4^2(-1)$ given in section 3.

Theorem 5.1. Let $\psi : M \to H_4^2(-1)$ be a non-totally geodesic, minimal immersion of a space-like surface M into $H_4^2(-1)$. Then

$$K + K^D \geq -1$$

(5.1)

holds identically on M.

If $K + 1$ is logarithm-harmonic, then the equality sign of (5.1) holds identically if and only if $\psi : M \to H_4^2(-1)$ is congruent to an open portion of the immersion
\(\psi : H^2(-1/3) \to H^4_2(-1) \) which is induced from the map \(\phi : \mathbb{R}^2 \to \mathbb{E}_3^5 \) defined by

\[
\phi(s, t) = \left(\sinh \left(\frac{2s}{\sqrt{3}} \right) - \frac{t^2}{3} - \left(\frac{7}{8} + \frac{t^4}{18} \right) e^{\frac{2t}{\sqrt{3}}}, t + \left(\frac{t^3}{3} - \frac{t}{4} \right) e^{\frac{2t}{\sqrt{3}}} \right).
\]

(5.2)

Proof. Assume that \(\psi : \mathbb{M} \to H^4_2(-1) \) is a non-totally geodesic, minimal immersion of a space-like surface \(\mathbb{M} \) into \(H^4_2(-1) \). Then the mean curvature vector \(H \) vanishes identically. Thus, we obtain inequality (5.1) from (4.1).

From now on, let us assume that \(\mathbb{M} \) is a minimal space-like surface in \(H^4_2(-1) \) which satisfies the equality case of (5.1) identically. Then Theorem ?? implies that there exists an orthonormal frame \(\{ e_1, e_2, e_3, e_4 \} \) such that the shape operators take the following special forms:

\[
A_{e_3} = \begin{pmatrix} \gamma & 0 \\ 0 & -\gamma \end{pmatrix}, \quad A_{e_4} = \begin{pmatrix} 0 & \gamma \\ \gamma & 0 \end{pmatrix}.
\]

(5.3)

Hence, after applying (2.4), (2.13) and (2.14), we obtain

\[
h(e_1, e_1) = -\gamma e_3, \quad h(e_1, e_2) = -\gamma e_4, \quad h(e_2, e_2) = \gamma e_3.
\]

(5.4)

It follows from (2.15), (5.3) and the equation of Codazzi that

\[
e_1 \gamma = -2\gamma \omega^2_1(e_2) + \gamma \omega^4_3(e_2),
\]

(5.5)

\[
e_2 \gamma = 2\gamma \omega^2_1(e_1) - \gamma \omega^4_3(e_1).
\]

(5.6)

Since the star operator satisfies

\[
*(d\gamma) = -(e_2 \gamma)\omega^1 + (e_1 \gamma)\omega^2,
\]

Eqs. (5.3) and (5.4) imply that

\[
*d\gamma = \gamma (\omega^4_3 - 2\omega_2^2).
\]

(5.7)

Thus, we find from (2.10) and (5.7) that

\[
\Delta \gamma = \gamma (2K - K^D) + \frac{*(d\gamma \wedge *d\gamma)}{\gamma},
\]

(5.8)

where \(\Delta \gamma \) is the Laplacian of \(\gamma \) defined by \(\Delta \gamma = *d*d\gamma \).

From (5.8) we deduce that

\[
\Delta \gamma = \gamma (2K - K^D) + \frac{|d\gamma|^2}{\gamma}.
\]

(5.9)

On the other hand, it follows from

\[
\Delta(\ln(K + 1)) = *d*d(\ln(K + 1)), \quad K = 2\gamma^2 - 1
\]
that
\[
\Delta(\ln(K + 1)) = \frac{(K + 1)\Delta K - * (dK \wedge *dK)}{(K + 1)^2}
= \frac{2\gamma^2(4|d\gamma|^2 + 4\gamma \Delta\gamma) - 16\gamma^2|d\gamma|^2}{(K + 1)^2}
= \frac{2\gamma \Delta\gamma - 2|d\gamma|^2}{\gamma^2}.
\]
(5.10)

Therefore, (5.9) and (5.10) yield
\[
(5.11) \Delta(\ln(K + 1)) = 2(2K - K^D).
\]

Now, let us assume that \(K + 1\) is a logarithm-harmonic function, then Eq. (5.11) gives \(K^D = 2K\). Hence, after combining this with the equality case of (5.1), we obtain that \(K^D = 2K = -\frac{2}{3}\). Therefore, by applying Theorem 3.1 we conclude that, up to rigid motions of \(H^2_2(-1)\), the minimal surface is an open portion of the minimal surface \(\psi_\phi : H^2_2(-\frac{1}{3}) \to H^2_2(-1)\) induced from the map (3.1).

The converse can be verified by direct computation. □

Corollary 5.1. Let \(\psi : M \to H^2_2(-1)\) be a minimal immersion of a space-like surface \(M\) of constant Gauss curvature into \(H^2_2(-1)\). Then the equality sign of (5.1) holds identically if and only if one of the following two statements holds.

1. \(K = -1, K^D = 0\), and \(\psi\) is totally geodesic.
2. \(K^D = 2K = -\frac{2}{3}\) and \(\psi\) is congruent to an open part of the minimal surface \(\psi_\phi : H^2_2(-\frac{1}{3}) \to H^2_2(-1)\) induced from (3.1).

Proof. Let \(\psi : M \to H^2_2(-1)\) be a minimal immersion of a space-like surface \(M\) into \(H^2_2(-1)\). If the Gauss curvature \(K\) is constant and the equality sign of (5.1) holds, then both \(K\) and \(K^D\) are constant. Therefore, by applying Theorem 3.1 we obtain either Case (1) or Case (2).

The converse is trivial. □

6. **Space-like minimal surfaces in \(E^4_2\) satisfying the equality.**

It follows from Lemma 4.1 that there exist infinitely many non-totally geodesic, minimal space-like surfaces in \(E^4_2\) which satisfy the equality case of inequality (4.1) identically (with \(H = c = 0\)).

On the other hand, we have the following.

Proposition 6.1. Let \(\psi : M \to E^4_2\) be a minimal immersion of a space-like surface \(M\) into the pseudo-Euclidean 4-space \(E^4_2\). Then
\[
(6.1) K \geq -K^D
\]
holds identically on \(M\).

If \(M\) has constant Gauss curvature, then the equality sign of (6.1) holds identically if and only if \(M\) is a totally geodesic surface.
Let $\psi : M \to \mathbb{E}^4_2$ be a minimal immersion of a space-like surface M into \mathbb{E}^4_2. Then inequality \((6.1)\) follows immediately from Theorem \(\text{??}\).

Assume that the equality case of \((6.1)\) holds identically. Then Theorem \(\text{??}\) implies that there exists an orthonormal frame \(\{e_1, e_2, e_3, e_4\}\) such that the shape operator A takes the special forms:

\begin{align*}
Ae_3 &= \begin{pmatrix} \gamma & 0 \\ 0 & -\gamma \end{pmatrix}, \\
Ae_4 &= \begin{pmatrix} 0 & \gamma \\ \gamma & 0 \end{pmatrix}.
\end{align*}

\(\text{(6.2)}\)

From \(\text{(6.2)}\) and the equation of Codazzi we find

\begin{align*}
e_1\gamma &= -2\gamma \omega^2_1(e_2) + \gamma \omega^3_3(e_2), \\
e_2\gamma &= 2\gamma \omega^2_1(e_1) - \gamma \omega^4_3(e_1).
\end{align*}

\(\text{(6.3)}\) \(\text{and} \ (6.4)\)

If the Gauss curvature K is a nonzero constant, then the function γ is a nonzero constant. In this case, \(\text{(6.3)}\) \(\text{and} \ (6.4)\) imply that

\begin{equation}
2\omega^2_1 = \omega^4_3.
\end{equation}

\(\text{(6.5)}\)

Thus, after taking exterior differentiation of \(\text{(6.3)}\) \(\text{and} \ (6.4)\), we obtain $2K = K^D$. Combining this with the equality of \(\text{(6.1)}\) yields $K = 0$, which is a contradiction. Therefore, we must have $K = 2\gamma^2 = 0$. Consequently, M is totally geodesic in \mathbb{E}^4_2.

The converse is trivial. \(\square\)

Proposition 6.2. Let $\psi : M \to \mathbb{E}^4_2$ be a minimal immersion of a space-like surface M into \mathbb{E}^4_2. We have

1. If the equality sign of \(\text{(6.1)}\) holds identically, then K is a non-logarithm-harmonic function.

2. If M contains no totally geodesic points and the equality sign of \(\text{(6.1)}\) holds identically on M, then $\ln K$ is subharmonic.

Proof. Assume that M is a minimal space-like surface in \mathbb{E}^4_2 which satisfies the equality case of \(\text{(6.1)}\), i.e., $K = -K^D$ identically. Then Theorem \(\text{??}\) implies that there exists an orthonormal frame $\{e_1, e_2, e_3, e_4\}$ such that the shape operator A takes the special forms given by \(\text{(6.2)}\).

From \(\text{(6.2)}\) and the equation of Codazzi we obtain \(\text{(6.3)}\) \(\text{and} \ (6.4)\). Thus, we may apply the same arguments as in section 5 to obtain that

\begin{equation}
\Delta(\ln K) = 2(2K - K^D)
\end{equation}

at each non-totally geodesic point. Hence, after combining this with $K = -K^D$, we obtain $K = 0$. But this is impossible, since in this case $\ln K$ is undefined. This proves statement (1).
Next, assume that M contains no totally geodesic points and that the equality sign of (6.1) holds identically on M. Then, we find from (6.2), (6.6) and $K = -K^D$ that

$$\Delta(\ln K) = 6K = 12\gamma^2 > 0,$$

which implies that $\ln K$ is a subharmonic function. This proves statement (2). □

7. Space-like minimal surfaces in $S^4_2(1)$ satisfying the equality.

Now, we study space-like minimal surfaces in $S^4_2(1)$ satisfying the equality case of inequality (4.1).

Proposition 7.1. Let $\psi : M \to S^4_2(1)$ be a minimal immersion of a space-like surface M into the neutral pseudo-sphere $S^4_2(1)$. Then

$$(7.1) \quad K + K^D \geq 1$$

holds identically on M.

If M has constant Gauss curvature, then the equality sign of (7.1) holds identically if and only if M is a totally geodesic surface.

Proof. Assume that $\psi : M \to S^4_2(1)$ is a minimal immersion of a space-like surface M into $S^4_2(1)$. Then inequality (4.1) in Theorem ?? reduces to inequality (7.1).

Suppose that the equality case of (7.1) holds identically on M, then Theorem ?? implies that there exists an orthonormal frame $\{e_1, e_2, e_3, e_4\}$ such that the shape operator A takes the following special forms:

$$(7.2) \quad A_{e_3} = \begin{pmatrix} \gamma & 0 \\ 0 & -\gamma \end{pmatrix}, \quad A_{e_4} = \begin{pmatrix} 0 & \gamma \\ \gamma & 0 \end{pmatrix}.$$

Hence, by applying (2.4), (2.13) and (2.14), we know that the second fundamental form h satisfies

$$(7.3) \quad h(e_1, e_1) = -\gamma e_3, \quad h(e_1, e_2) = -\gamma e_4, \quad h(e_2, e_2) = \gamma e_3.$$

It follows from (7.3) that the Gauss curvature of M is given by $K = 1 + 2\gamma^2$. Now, let us assume that the Gauss curvature K is constant. Then γ is constant. Let us suppose that M is non-totally geodesic in $S^4_2(1)$. Then, by applying (7.3) and the equation of Codazzi, we find

$$(7.4) \quad 2\omega_1^2 = \omega_3^2.$$

Thus, after taking exterior differentiation of (7.4) and applying (2.10), we obtain

$$(7.5) \quad 2K = K^D.$$

By combining (7.5) with the equality of (7.1), we get $K^D = \frac{2}{\gamma}$.

On the other hand, it follows from (2.11) and (7.2) that $K^D = -2\gamma^2 \leq 0$, which contradicts to $K^D = \frac{2}{\gamma}$. Consequently, M must be totally geodesic in $S^4_2(1)$.

Conversely, if M is totally geodesic in $S^4_2(1)$, then we have $K = 1$ and $K^D = 0$. So, we get $K + K^D = 1$, which is exactly the equality case of (7.1). \qed

Finally, we prove the following.

Proposition 7.2. Let $\psi : M \to S^4_2(1)$ be a minimal immersion of a space-like surface M into $S^4_2(1)$. We have

1. If the equality sign of (7.1) holds identically, then $K - 1$ is non-logarithm-harmonic.
2. If M contains no totally geodesic points and if the equality case of (7.1) holds, then $\ln(K - 1)$ is subharmonic.

Proof. Assume that M is a minimal space-like surface of $S^4_2(1)$ which satisfies the equality case of (7.1) identically. Then we have $K + K^D = 1$. Moreover, from Theorem 5 we know that there exists an orthonormal frame $\{e_1, e_2, e_3, e_4\}$ such that the shape operator A satisfies

\begin{equation}
A_{e_3} = \begin{pmatrix}
\gamma & 0 \\
0 & -\gamma
\end{pmatrix},
A_{e_4} = \begin{pmatrix}
0 & \gamma \\
\gamma & 0
\end{pmatrix}.
\end{equation}

Hence, we may applying the same arguments as in section 5 to obtain that

\begin{equation}
\Delta(\ln(K - 1)) = 2(2K - K^D).
\end{equation}

If $K - 1$ is logarithm-harmonic, then Eq. (7.7) yields $K^D = 2K$. Thus, after combining this with the equality $K + K^D = 1$, we obtain

\begin{equation}
K^D = \frac{2}{3}.
\end{equation}

On the other hand, we find from (7.6) that $K^D = -2\gamma^2 \leq 0$, which contradicts to (7.8). Consequently, $K - 1$ cannot be a logarithm-harmonic function. This proves statement (1).

Next, assume that M contains no totally geodesic points and if the equality case of (7.1) holds. Then, we find from (7.6) and (7.7) that

\begin{equation}
\Delta(\ln(K - 1)) = 4(3\gamma^2 + 1) > 0.
\end{equation}

Hence, $\ln(K - 1)$ is a subharmonic function. This proves statement (1). \qed

References

[1] B. Y. Chen, *Geometry of Submanifolds*, Mercer Dekker, New York, 1973.
[2] B.-Y. Chen, *Total Mean Curvature and Submanifolds of Finite Type*, World Scientific, New Jersey, 1984.
[3] B.-Y. Chen, Riemannian submanifolds, *Handbook of Differential Geometry*, Vol. I, 187–418, North-Holland, Amsterdam, 2000 (eds. F. Dillen and L. Verstraelen).
[4] B.-Y. Chen, A minimal immersion of hyperbolic plane in neutral pseudo-hyperbolic 4-space and its characterization, Arch. Math. 94 (2010), 291–299.
[5] B.-Y. Chen and B. D. Suceavă, Space-like minimal surfaces of constant curvature in pseudo-hyperbolic 4-space $H^2_2(-1)$, *Taiwan. J. Math.* **15** (2011), no. 2, 523–541.

[6] S. Decu, M. Petrović–Torgašev and L. Verstraelen, On the intrinsic Deszcz symmetries and the extrinsic Chen character of Wintgen ideal submanifolds, *Tamkang J. Math.* **41** (2010), no. 2, 109–116.

[7] L. Gheysens, P. Verheyen and L. Verstraelen, Characterization and examples of Chen submanifolds, *J. Geom.* **20** (1983), 47–62.

[8] I. V. Guadalupe and L. Rodriguez, Normal curvature of surfaces in space forms, *Pacific J. Math.* **106** (1983), 95–103.

[9] B. O’Neill, *Semi-Riemannian Geometry with Applications to Relativity*, Academic Press, New York, 1982.

[10] P. Wintgen, Sur l’inégalité de Chen-Willmore, *C. R. Acad. Sci. Paris*, **288** (1979), 993–995.

Department of Mathematics, Michigan State University, East Lansing, Michigan 48824–1027, USA

E-mail address: bychen@math.msu.edu