AN APPLICATION OF λ-METHOD
ON INEQUALITIES OF SHAFER-FINK’S TYPE

Branko J. Malešević

Abstract. In this article λ-method of Mitrinović-Vasić [1] is applied to improve
the upper bound for the arc sin function of L. Zhu [4].

1. Inequalities of Shafer-Fink’s type

D. S. Mitrinović in [1] considered the lower bound of the arc sin function, which
belongs to R. E. Shafer. Namely, the following statement is true.

Theorem 1.1 For 0 ≤ x ≤ 1 the following inequalities are true:

\[
\frac{3x}{2 + \sqrt{1 - x^2}} \leq \frac{6(\sqrt{1 + x} - \sqrt{1 - x})}{4 + \sqrt{1 + x} + \sqrt{1 - x}} \leq \arcsin x.
\]

(1)

A. M. Fink proved the following statement in [2].

Theorem 1.2 For 0 ≤ x ≤ 1 the following inequalities are true:

\[
\frac{3x}{2 + \sqrt{1 - x^2}} \leq \arcsin x \leq \frac{\pi x}{2 + \sqrt{1 - x^2}}.
\]

(2)

B. J. Malešević proved the following statement in [3].

Theorem 1.3 For 0 ≤ x ≤ 1 the following inequalities are true:

\[
\frac{3x}{2 + \sqrt{1 - x^2}} \leq \arcsin x \leq \frac{\pi - 2x}{\pi - 2 + \sqrt{1 - x^2}} \leq \frac{\pi x}{2 + \sqrt{1 - x^2}}.
\]

(3)

The main result of the article [3] can be formulated with the next statement.

Proposition 1.4 In the family of the functions:

\[
f_b(x) = \frac{(b + 1)x}{b + \sqrt{1 - x^2}} \quad (0 \leq x \leq 1),
\]

according to the parameter b > 0, the function \(f_2(x) \) is the greatest lower bound of
the \(\arcsin x \) function and the function \(f_{2/(\pi - 2)}(x) \) is the least upper bound of the
\(\arcsin x \) function.
L. Zhu proved the following statement in [4].

Theorem 1.5 For \(x \in [0, 1] \) the following inequalities are true:

\[
\frac{3x}{2 + \sqrt{1 - x^2}} \leq \frac{6(\sqrt{1 + x} - \sqrt{1 - x})}{4 + \sqrt{1 + x} + \sqrt{1 - x}} \leq \arcsin x
\]

(5)

\[
\leq \frac{\pi(\sqrt{2} + \frac{1}{2})(\sqrt{1 + x} - \sqrt{1 - x})}{4 + \sqrt{1 + x} + \sqrt{1 - x}} \leq \frac{\pi x}{2 + \sqrt{1 - x^2}}
\]

In this article we further improve the upper bound of the \(\arcsin \) function. Namely, in the next section we will give proof of the following theorem:

Theorem 1.6 For \(x \in [0, 1] \) the following inequalities are true:

\[
\frac{3x}{2 + \sqrt{1 - x^2}} \leq \frac{6(\sqrt{1 + x} - \sqrt{1 - x})}{4 + \sqrt{1 + x} + \sqrt{1 - x}} \leq \arcsin x
\]

(6)

\[
\leq \frac{\pi(\sqrt{2} - \sqrt{2})}{\pi - 2\sqrt{2}}(\sqrt{1 + x} - \sqrt{1 - x})
\]

\[
\leq \frac{\sqrt{2}(4 - \pi)}{\pi - 2\sqrt{2}} + \sqrt{1 + x} + \sqrt{1 - x}
\]

\[
\leq \frac{\pi(\sqrt{2} + \frac{1}{2})(\sqrt{1 + x} - \sqrt{1 - x})}{4 + \sqrt{1 + x} + \sqrt{1 - x}} \leq \frac{\pi x}{2 + \sqrt{1 - x^2}}
\]

Remark 1.7 Using numerical method from [5] we have the following conclusions:

1º. For values \(x \in (0, 0.387 266 274 \ldots) \) the following inequality is true:

(7) \(\arcsin x < \frac{\pi}{2 + \sqrt{1 - x^2}} < \frac{\pi(\sqrt{2} + \frac{1}{2})(\sqrt{1 + x} - \sqrt{1 - x})}{4 + \sqrt{1 + x} + \sqrt{1 - x}} \),

and for values \(x \in (0.387 266 274 \ldots, 1) \) the following inequality is true:

(8) \(\arcsin x < \frac{\pi(\sqrt{2} + \frac{1}{2})(\sqrt{1 + x} - \sqrt{1 - x})}{4 + \sqrt{1 + x} + \sqrt{1 - x}} < \frac{\pi}{2 + \sqrt{1 - x^2}} \).

Numerically determined constant \(c = 0.387 266 274 \ldots \) is the unique number where the previous bounds have the same values over \((0, 1)\).

2º. For values \(x \in (0, 1) \) the following inequality is true:

(9) \(\arcsin x < \frac{\pi(\sqrt{2} - \sqrt{2})}{\pi - 2\sqrt{2}}(\sqrt{1 + x} - \sqrt{1 - x}) \)

\[
\leq \frac{\sqrt{2}(4 - \pi)}{\pi - 2\sqrt{2}} + \sqrt{1 + x} + \sqrt{1 - x} \leq \frac{\pi}{2 + \sqrt{1 - x^2}}.
\]
2. The main results

In this article, using \(\lambda \)-method of Mitrinović-Vasić we give an analogous statement to Proposition \[1.4\]. Let us notice that from inequality given by L. Zhu \[4\]:

\[
\frac{6(\sqrt{1+x} - \sqrt{1-x})}{4 + \sqrt{1+x} + \sqrt{1-x}} \leq \text{arcsin} \, x \leq \frac{\pi (\sqrt{2} + \frac{1}{2}) (\sqrt{1+x} - \sqrt{1-x})}{4 + \sqrt{1+x} + \sqrt{1-x}},
\]

for \(x \in [0, 1] \), we can conclude that the function \(\varphi(x) = \text{arcsin} \, x \) has a lower bound and upper bound in the family of the functions:

\[
\Phi_{\alpha,\beta}(x) = \alpha(\sqrt{1+x} - \sqrt{1-x}) + \frac{1}{\beta + \sqrt{1+x} + \sqrt{1-x}} (0 \leq x \leq 1),
\]

for some values of parameters \(\alpha, \beta > 0 \). Next for \(x = 0 \) it is true that \(\Phi_{\alpha,\beta}(0) = 0 \), for \(\alpha, \beta > 0 \). On the other hand, for values \(x \in (0, 1] \) it is true:

\[
\Phi_{\alpha_1,\beta_1}(x) > \Phi_{\alpha_2,\beta_2}(x) \iff \alpha_1 \beta_2 - \alpha_2 \beta_1 > (\alpha_2 - \alpha_1)(\sqrt{1+x} + \sqrt{1-x}),
\]

for \(\alpha_{1,2}, \beta_{1,2} > 0 \). Let us apply \(\lambda \)-method of Mitrinović-Vasić on the considered two-parameters family \(\Phi_{\alpha,\beta}(x) \) in order to determine the bounds of the function \(\varphi(x) \) under the following conditions:

\[
\Phi_{\alpha,\beta}(0) = \varphi(0) \quad \text{and} \quad \frac{d}{dx}\Phi_{\alpha,\beta}(0) = \frac{d}{dx}\varphi(0).
\]

It follows that \(\alpha = \beta + 2 \). In that way we get one-parameter subfamily:

\[
f_{\beta}(x) = \Phi_{\beta+2,\beta}(x) = \frac{(\beta + 2)(\sqrt{1+x} - \sqrt{1-x})}{\beta + \sqrt{1+x} + \sqrt{1-x}} (0 \leq x \leq 1),
\]

according to the parameter \(\beta > 0 \). For that family the condition \[13\] is true:

\[
f_{\beta}(0) = \varphi(0) \quad \text{and} \quad \frac{d}{dx}f_{\beta}(0) = \frac{d}{dx}\varphi(0).
\]

Additionally, we have:

\[
\frac{d^2}{dx^2}f_{\beta}(0) = \frac{d^2}{dx^2}\varphi(0) \quad \text{and} \quad \frac{d^3}{dx^3}f_{\beta}(0) = \frac{d^3}{dx^3}\varphi(0) + \frac{4 - \beta}{4(2+\beta)}
\]

and

\[
\frac{d^4}{dx^4}f_{\beta}(0) = \frac{d^4}{dx^4}\varphi(0) \quad \text{and} \quad \frac{d^5}{dx^5}f_{\beta}(0) = \frac{d^5}{dx^5}\varphi(0) + \frac{3(128 + 18\beta - 13\beta^2)}{16(2+\beta)^2}.
\]

Let us notice that for the family of the functions \(f_{\beta}(x) \), on the basis of \[12\], for values \(x \in (0, 1] \) the following equivalence is true:

\[
f_{\beta_1}(x) > f_{\beta_2}(x) \iff \beta_1 < \beta_2,
\]
for $\beta_{1,2} > 0$. Let us emphasize that there is a better upper bound $f_{b_1}(x)$ than upper bound $\Phi_{\pi(\sqrt{x+1/2}),4}(x)$ of the function $\varphi(x)$ over $(0,1]$. It is true that the parameter $\beta = b_1$ fulfils:

(19) \[f_{b_1}(1) = \varphi(1) = \frac{\pi}{2} \]

hence:

(20) \[b_1 = \frac{\sqrt{2}(4 - \pi)}{\pi - 2\sqrt{2}} = 3.876452527 \ldots < 4. \]

Let us prove that the function $f_{b_1}(x)$ is the upper bound of the function $\varphi(x)$ over $[0,1]$. Let us define the function:

(21) \[h(x) = f_{b_1}(x) - \varphi(x) \]

for $0 \leq x \leq 1$. For the function $h(x)$ we introduce two substitutions $x = \cos t$ ($t \in [0, \frac{\pi}{2}]$) and $t = 4 \arctg u$ ($u \in [0, \frac{\pi}{8}]$) respectively, and we get a new function:

(22) \[w(u) = h(\cos(4 \arctg u)) = \frac{\sqrt{2}(b_1 + 2)(u^2 + 2u - 1)}{(\sqrt{2} - b_1)u^2 - 2\sqrt{2}u - b_1 - \sqrt{2}} - \frac{\pi}{2} + 4 \arctg u \]

for $0 \leq u \leq \tan \frac{\pi}{8} = \sqrt{2} - 1$. Then:

(23) \[
\frac{d}{du} w(u) = \left(\left(4b_1^2 + 2\sqrt{2}b_1^2 - 8b_1 - 4\sqrt{2}b_1 - 8 \right) u^4 + \left(-4\sqrt{2}b_1^2 + 8\sqrt{2}b_1 - 32 \right) u^3 + \right.
\left. \left(8b_1^2 - 16b_1 - 16 \right) u^2 + \left(-4\sqrt{2}b_1^2 + 8\sqrt{2}b_1 + 32 \right) u + \right.
\left. \left(-4\sqrt{2}b_1^2 - 8b_1 + 4\sqrt{2}b_1 - 8 \right) \right) / \left(\left(u^2 + 1 \right) \left(b_1 u^2 - 2u^2 + 2\sqrt{2}u + b_1 + \sqrt{2} \right) \right). \]

All solutions of the equation $\frac{d}{du} w(u) = 0$ are determined by terms:

(24) \[
\begin{align*}
 u_{1,4} & = \frac{2\sqrt{2} \mp \sqrt{-b_1^4 + 4b_1^4 + 4b_1^2 - 16b_1}}{b_1^2 - 2b_1 + 2\sqrt{2} - 4}, \\
 u_{2,3} & = \sqrt{2} - 1;
\end{align*}
\]

or by numerical values: $u_1 = 0.0869 \ldots$, $u_{2,3} = 0.4142 \ldots$, $u_4 = 0.8400 \ldots$. The function $w(u)$ has local maximum at the point u_1 and $w(0) = w(\sqrt{2} - 1) = 0$. Hence $w(u) \geq 0$ for $u \in [0, \sqrt{2} - 1]$. Therefore the function:

(25) \[
\begin{align*}
 f_{b_1}(x) = & \frac{\pi(2 - \sqrt{2})}{\pi - 2\sqrt{2}} \left(\sqrt{1 + x} - \sqrt{1 - x} \right) \\
 & \frac{\sqrt{2}(4 - \pi)}{\pi - 2\sqrt{2}} + \sqrt{1 + x} + \sqrt{1 - x}.
\end{align*}
\]
An application of Lambda-method on inequalities of Shafer-Fink’s type

is the upper bound of \(\varphi(x) \) over \([0, 1]\). Let us notice that, for values \(x \in (0, 1] \), on the basis (12), the following inequalities are true:

\[
\varphi(x) < f_{b_1}(x) = \Phi_{b_1+2,b_1}(x) < \Phi_{\pi(\sqrt{2}+1/2),4}(x).
\]

Let us prove that the function \(f_{b_1}(x) \) is the least upper bound of the function \(\varphi(x) \) from the family (14). The following implication is true:

\[
b_1 < b = \Rightarrow f_{b_1}(1) < f_b(1) = \varphi(1) = \frac{\pi}{2}.
\]

Hence for \(b > b_1 \) the function \(f_b(x) \) is not the upper bound for the function \(\varphi(x) \) over \([0, 1]\). According to the previous consideration we can conclude that the function \(f_{b_1}(x) \) is the least upper bound of the function \(\varphi(x) \) over \([0, 1]\).

The lower bound of the function \(f_4(x) \) of the function \(\varphi(x) \) over \([0, 1]\), which belongs to R. E. Shafer, according to formulas (15) - (17), has at \(x = 0 \) the root of the fifth order. Let us prove that the function \(f_4(x) \) is the greatest lower bound of the function \(\varphi(x) \) from the family (14). For fixed \(b \in (b_1, 4) \) let us define the function:

\[
g(x) = \begin{cases}
\alpha & : x = 0, \\
\frac{f_b(x) - \varphi(x)}{x^3} & : x \in (0, 1];
\end{cases}
\]

with the constant:

\[
\alpha = \frac{d^3 f_b(0) - d^3 \varphi(0)}{6} = \frac{4 - b}{24(2 + b)} > 0.
\]

The function \(g(x) \) is continuous over \([0, 1]\) and the following is true:

\[
g(0) > 0 \quad \text{and} \quad g(1) < 0.
\]

Therefore we can conclude that there is \(c_b \in (0, 1) \) such that \(g(c_b) = 0 \). Let us notice that \(g(0) > 0 \) and \(g(c_b) = 0 \). Then, there is some point \(\xi_b \in (0, c_b) \) such that \(g(\xi_b) > 0 \) \((g \in C[0, c_b])\). This is sufficient for conclusion that, for each \(b \in (b_1, 4) \), the function \(f_b(x) \) is not the lower bound of the function \(\varphi(x) \) over \([0, 1]\). According to the previous consideration we can conclude that the function \(f_4(x) \) is the greatest lower bound of the function \(\varphi(x) \) over \([0, 1]\).

On the basis of the previous consideration the following statement is true.

Proposition 2.1 In the family of the functions:

\[
f_b(x) = \Phi_{b+2,b}(x) = \frac{(b + 2)(\sqrt{1 + x} - \sqrt{1 - x})}{b + \sqrt{1 + x} + \sqrt{1 - x}} \quad (0 \leq x \leq 1),
\]

according to the parameter \(b > 0 \), the function \(f_4(x) \) is the greatest lower bound of the arc sin \(x \) function and the function \(f_{\sqrt{\pi(4-\pi)/(\pi-2\sqrt{\pi})}}(x) \) is the least upper bound of the arc sin \(x \) function.
Remark 2.2 Let us emphasize that Theorem 1.6 has been recently considered in [6] and [7]. In the article [7] a simple proof of Theorem 1.6 based on "L'Hospital rule for monotonicity" is obtained.

REFERENCES

[1] D. S. Mitrinović, P. M. Vasić: Analytic inequalities. Springer–Verlag 1970.

[2] A. M. Fink: Two inequalities, Univ. Beograd. Publ. Elektrotehn. Fak., Ser. Mat. 6 (1995), 48–49. (http://pefmath.etf.bg.ac.yu/)

[3] B. J. Malešević: An application of λ-method on Shafer-Fink’s inequality, Univ. Beograd. Publ. Elektrotehn. Fak., Ser. Mat. 8 (1997), 90–92. (http://pefmath.etf.bg.ac.yu/)

[4] L. Zhu: On Shafer-Fink inequalities, Mathematical Inequalities & Applications, Vol. 8, Number 4, (2005), 571–574. (http://www.mia-journal.com/)

[5] B. J. Malešević: One method for proving inequalities by computer, Journal of Inequalities and Applications, Vol. 2007, Article ID 78691, 8 pages, 2007. doi:10.1155/2007/78691. (http://www.hindawi.com/journals/jia/)

[6] L. Zhu: A solution of a problem of Oppeheim, Mathematical Inequalities & Applications, Vol. 10, Number 1, (2007), 57-61. (http://www.mia-journal.com/)

[7] L. Zhu: On Shafer-Fink Type Inequality, Accepted in Journal of Inequalities and Applications, Vol. 2007, ID 67430. (http://www.hindawi.com/journals/jia/)

University of Belgrade, (Received 09/30/2006)
Faculty of Electrical Engineering, (Revised 05/08/2007)
P.O.Box 35-54, 11120 Belgrade, Serbia
malesevic@etf.bg.ac.yu, malesh@eunet.yu