Experimental study of sit-to-stand kinematics in healthy, osteoarthritic and prosthetic knee

D Tarnita¹, A Petcu¹, V Ontica², D Prunoiu Diana¹, D N Tarnita³

¹University of Craiova, România
²Emergency Hospital Floreasca, Bucharest
³University of Medicine and Pharmacy, Craiova

E-mail: tarnita.daniela@gmail.com

Abstract. The purpose of this study was to evaluate changes in movement patterns during a sit-to-stand (STS) task before and after total knee replacement (TKR), the impact of the prosthesis on the kinematic parameters of sit-to-stand flexion movement and to compare biomechanical outcomes after TKR to a control group. A sample of seven healthy control subjects and five patients suffering of knee osteoarthritis (KOA) participated in three-dimensional motion analysis. Although there were significant improvements in movement 4 months after TKR, patients continued to demonstrate smaller moments on the prosthetic knee compared to non-operated and to control knees.

1. Introduction

Human movements are the most bioinspired movements applied for the design of humanoid robots, advanced prosthetic limbs, rehabilitation devices such as orthotic devices or exoskeletons used for medical applications, especially in the rehabilitation of pathological gait, and robotic structures used in minimally invasive surgery [1-20].

Standing up from a seated position is an essential condition for walking and therefore for the functional independence of an individual [21-23]. The mechanical difficulty of the STS movement is likely to present a substantial challenge to population groups with reduced muscle strength [22], with high chance of instability and a higher risk of falling as the body rapidly changes from a stable seated position to a position with a relatively small base of support and a higher centre of mass [24]. Considering the difficulty of the task and its importance to mobility, the STS movement is relevant for people involved in rehabilitation.

However, for individuals with compromised mobility the STS movement can be problematic [25-27]. It has been reported that people who have difficulties in standing up from a seated position are more likely to fall during walking [28-30]. The inability to stand was related to death among the elderly people [29-31]. Standing-sitting on a chair is a complex biomechanical daily activity that involves the movement of all body segments. In order to stand up from the chair a person needs, at the same time, sufficient mobility, the strength of the lower limbs (force generation capacity) and the balance to allow the center of the mass to move forward and upward from the stable seated position in the orthostatic position (standing) on a small support base [29]. When standing from the chair it is necessary to develop adequate torques in each lower limb joint to maintain the stability of the person by locating the vertical component of the reaction force with the ground in the support area.
Osteoarthritis of knee (OAK) is an important chronic disease of middle aged and elderly people and one the most common joint disease affecting 30% of adults over 50 years of age [34]. Depending on the stage of cartilage degradation, OAK is unstable, lax and affects the entire lower limbs’ movements. It can be caused by various factors: misalignment, injury, joint trauma, immobilization and the hypermobility genetics and obesity and it involves a degenerative process of femoral and tibial cartilages of the knee joint [35–38].

The purpose of the standing-sitting experimental test is to compare the variation range and the amplitude of the flexion-extension angle for the knees of the subjects in the healthy sample and for the osteoarthritic knee of the patients before Total Knee Replacement (TKR) and after TKR surgery. The influence of TKR surgery on the osteoarthritic knee on the flexion-extension movement is studied.

2. Experimental protocol

2.1 Subjects

Measurements were performed on a sample of 9 healthy subjects without pain or musculoskeletal disorders and a sample of 5 patients with a high degree of osteoarthritis in one knee. In the case of patients, the measurements were made before the total knee replacement (TKR) surgery and after 4 month from TKR. The Ethics Committee of the University of Craiova approved the research. Tests performed by healthy subjects were conducted in the Biomechanical Research Laboratory of the Research Platform of the University of Craiova, INCESA, while the patients performed the tests in the Department of Orthopedics-Traumatology of the Emergency County Hospital of Craiova. The tests were performed the day before the TKR surgery, and 4 months later in order to analyze the evolution of the patients and the impact of the prosthesis on the kinematic parameters of sit-to-stand flexion movement. In Table 1 and Table 2 the mean values and standard deviations for anthropometric data of healthy subjects and of patients affected by OA are presented.

Table 1. Mean values and standard deviations of healthy subjects’ anthropometric data

	Age [years]	Weight [kg]	Height [cm]	Leg length [cm]	Hip–knee length [cm]	Knee–ankle length [cm]
Average	30.26	75.6	172.54	83.53	44.03	39.5
St. Dev.	3.73	6.18	4.12	4.37	3.14	2.59

Table 2. Mean values and standard deviations of OAK patients’ anthropometric data

	Age [years]	Weight [kg]	Height [cm]	Leg length [cm]	Hip–knee length [cm]	Knee–ankle length [cm]
Average	52.4	80.6	173.2	83.2	44.4	38.8
St. Dev.	4.04	15.71	10.26	11.58	6.66	5.36

2.2 Equipment

The data gathering and processing system used is the Biometrics system [39, 40], which is commonly used for dynamic motion analysis, in research, medical bioengineering, traumatology, prosthesis, as assessment systems and in clinical rehabilitation programs, as well as in sports medicine and sports performance. This system is complete package of static and dynamic measurement sensors and instruments useful in clinical activities, research centers, or any location away from the biomechanics laboratory, such as a workplace or gym or medical recovery, or a sports ground. DataLOG MWX8 is the equipment developed by Biometrics Ltd to monitor and gather data outside the lab. It allows data gathering both in analogue and digital format by connecting a transfer cable connector to one of the 8 channels of the DataLOG and the second transfer cable connector to the electrogoniometers which are sensors used to study the biomechanics of human joints.
The equipment used during the tests consists of the following components (Figure 2):
- 2 electrogonometers SG 110 (Biometrics Ltd), mounted with the purpose of measuring the angles of flexion-extension angles of both ankle joints;
- 4 electrogonometers SG 150 (Biometrics Ltd), mounted with the purpose of measuring flexion-extension angles in the knees and hips joints;
- 2 DataLOG (Biometrics Ltd UK), for the 6 electrogoniometers.

In Figure 3 is a schematic diagram for the experimental determination of the angle Φ of the knee, according with the system acquisition schedule Biometrix.

$$\phi = \pi - \alpha$$
$$\phi = \alpha_1 + \alpha_2$$

Figure 1. Equipment DataLOG MWX8.

Figure 2. Components of the equipment.

Figure 3. Schematic diagram for the experimental determination of the angle Φ of the knee.
2.3 Results
All people in the experiment executed 20 consecutive standing-sitting cycles.

The data files containing the angular amplitudes of both movements of each lower limb joint, in sagittal plane and in frontal plane, were obtained during the sit-to-stand movement for each person from the report generated by the acquisition system. In Figure 4 are presented consecutive cycles of the bending angles corresponding to the repeated sit-lift movements extracted from the seat as files from Biometrics for both lower limbs.

For more accurate results, given the natural biological variability from one movement cycle to another, but also from one individual to another, fourteen consecutive sit-to-stand cycles were selected for each subject, eliminating the first three and last three cycles. These reduced data files were introduced into the SimiMotion software and were normalized by interpolation and reported on the abscissa at a scaled range of 0 to 100%.

![Figure 4](image.png)

Figure 4. The consecutive cycles of the bending angles corresponding to the repeated sit-lift movements.

For each subject, the normalized curves of the flexion angles corresponding to each of 14 cycles, as well as the curve corresponding to the mean cycle were obtained. In Figure 5, the curves obtained for
patient 1 by using SimiMotion software are shown. Similar diagrams were obtained for all patients and for all healthy subjects.
Figure 5. Mean cycle of standing-sitting on the chair for: a) right ankle; b) right knee; c) right hip; d) left ankle; e) left knee; f) left hip.

The range of the maximum values of the 14 cycles and the maximum value of the mean cycle of each subject are shown in Table 3, while for the patients they are presented in table 4 (before TKR surgery) and in table 5 (4 months after TKR surgery).

Table 3. Variation intervals of the maximum mean cycle values and the mean cycle maximum value of flexion angle when standing-sitting on the chair for normal right knee of each subject

	Subject 1	Subject 2	Subject 3	Subject 4	Subject 5	Subject 6	Subject 7	Subject 8	Subject 9
Maximum value range of cycles	101.46-110.73	100.25-104.48	96.57-99.58	101.32-104.98	97.36-98.85	96.38-99.14	100.29-103.17	100.43-102.64	99.63-102.17
Max values for mean cycle	104.28	103.14	98.36	103.65	97.92	98.06	101.82	101.56	100.35

Table 4. Variation intervals of the maximum mean cycle values of each patient and the mean cycle maximum value of flexion angle when standing-sitting on the chair for osteoarthritic knee (right knee) of each patient

	Patient 1	Patient 2	Patient 3	Patient 4	Patient 5
Maximum value range of cycles	81.35-83.23	81.68-84.44	80.46-82.84	80.28-83.53	80.34-82.14
Max values for mean cycle	82.13	82.45	81.72	82.25	80.76
Table 5. Variation intervals and maximum value of the maximum mean cycle of flexion angle during stand-to-sit for patients’ prosthetic knee

Patient	Maximum value range of cycles	Max values for mean cycle
Patient 1	89.82-93.46	91.73
Patient 2	88.24-93.33	92.56
Patient 3	89.77-94.56	93.93
Patient 4	84.78-90.26	88.64
Patient 5	87.42-89.16	88.92

In Figure 6 are presented the sample’s mean cycles of flexion-extension angle, corresponding to stand-to-sit and sit-to-stand test for a) the healthy knee, b) the osteoarthritic knee (before TKR surgery), c) the prosthetic knee (4 months after TKR surgery).

Figure 6. Mean flexion cycle at sample level, corresponding to standing-sitting test for a) the normal knee; b) the osteoarthritic knee (before TKR surgery); c) the prosthetic knee (4 months after TKR surgery).

3. Discussions

The minor differences obtained by comparing the shape and the amplitude of the consecutive cycles show a good repeatability of the experimental test required for the healthy subjects and for patients. There were no great differences in the shape of the knee flexion-extension curve during the experimental test. OA knees had a lower flexion angle than healthy knees. There is a difference of about 20° between the flexion-extension amplitude of the average cycle of healthy sample and of patients sample before TKR, and the difference in the amplitude is about 10° if the comparison is made with the prosthetic knee after 4 month from TKR surgery. This is explained by the reduction in the possibility of flexion caused by osteoarthritis, by the influence of the pain of the diseased knee and by the tendency of the body to maintain stability at the time of reaching a higher flexion angle.

4. Conclusions

This paper presents a study of influence of TKR surgery on an osteoarthritic knee on the kinematical parameters of the knee flexion-extension on a sample of patients suffering of osteoarthritic knee disease. The TKR surgery represents a solution for OA treatment, which improves the quality of knee movement by stabilizing the joints and increasing the range of motion of knee flexion-extension, reducing pain and the minimizing the knee joint stresses. The influence of the prosthetic device was positive on the movement rehabilitation. The experimental tests show that there is an improvement in knee movement after TKR surgery and alleviating the pain caused by the destruction of the knee cartilages. In addition, the peak amplitude value of OAK flexion-extension movement significantly increased, being closer to the amplitude of healthy knee.

5. References

[1] Doroftei I, Stirbu B 2014 Application of Ni-Ti shape memory alloy actuators in a walking micro-robot Mechanika 20(1) pp 70-79
[2] Racu (Cazacu) C M, Doroftei I 2015 Ankle rehabilitation device with two degrees of freedom and compliant joint IOP Conference Series Materials Science and Engineering 95

[3] Tarnita D, Tarnita DN, Bizdoaca N, Popa D 2009 Contributions on the dynamic simulation of the virtual model of the human knee joint Materials Science and Engineering Technology, Special Edition Biomaterials 40(1-2) pp 73-81

[4] Bizdoaca N G, Petrisor A, Bizdoaca E 2008 Conventional control and fuzzy control algorithms for shape memory alloy based tendons robotic structure WSEAS Transactions on Systems and Control 3(2) pp 115-124

[5] Bizdoaca N G, Degeratu S, Niculescu M, Pana D 2004 Shape memory alloy based robotic ankle Proceedings of 4th international carpathian control conference Zakopane, Poland, pp 715-720

[6] Tarnita D, Catana M, Dumitru N, Tarnita D N 2016 Design and Simulation of an Orthotic Device for Patients with Osteoarthritis New Trends in Medical and Service Robots Springer Publishing House pp 61-77

[7] Pisla D, Gherman B, Plitea N et al 2011 Parasurg hybrid parallel robot for minimally invasive surgery Chirurgia vol 106(5) pp 619-625

[8] Tarnita D, Marghitiu D 2017 Nonlinear dynamics of normal and osteoarthritic human knee Proceedings of the Romanian Academy pp.353-360

[9] Copilusi C et al 2010 Cam Mechanism Kinematic Analysis Used in a Human Ankle Prosthesis Structure World Congress on Engineering (WCE 2010) London UK Jun 30-Jul

[10] Tarnita D, Catana M, Tarnita D N 2014 Contributions on the modeling and simulation of the human knee joint with applications to the robotic structures In New trends on Medical and service robotics challenges and solutions mechanisms and machine science 20 pp 283-297

[11] Vaida C, Birlescu I, Pisla A, Ulici I, Tarnita D, Carbone D, Pisla D 2020 Systematic design of a parallel robotic system for lower limb rehabilitation in IEEE Access pp 34522-34537

[12] Gherman B, Birlescu I, Plitea N, Carbone G, Tarnita D, Pisla D 2019 On the singularity-free workspace of a parallel robot for lower-limb rehabilitation Proceedings of the Romanian Academy 20(4) pp 383-391

[13] Tarnita D, Pisla D et al 2019 Static and Dynamic Analysis of Osteoarthritic and Orthotic Human Knee J Bionic Eng 16

[14] Berceanu C et al 2010 About an experimental approach used to determine the kinematics of the human Journal of the Solid State Phenomena Robotics and Automation Systems pp 45-50

[15] Tarnita D et al 2016 Applications of Nonlinear Dynamics to Human knee movem on Plane & Inclined Treadmill New trends in medical & service robots pp 59-73

[16] Wheeler J, Woodward C, Ucovich R 1985 Rising from a chair influence of age and design Phys Ther 65 pp 22 – 26

[17] Popa D, Tarnita D, Iordachita I 2005 Study Method For Human Knee Applicable To Humanoid Robots International Workshop on Robotics in Alpe-Adria-Danube Region RAAD May pp 485-490

[18] Tarnita D, Geonea I, Petcu A, Tarnita D N 2018 Numerical Simulations and Experimental Human Gait Analysis Using Wearable Sensors New Trends in Medical and Service Robots Springer pp 289-304

[19] Alexandru C 2012 Optimal design of the mechanical systems using parametric technique & MBS (multi-body systems) software Adv Mater Res pp 463-464

[20] Tarnita D, Berceanu C, Tarnita C 2010 The three-dimensional printing–a modern technology used for biomedical prototypes Materiale plastice 47 pp 328-334

[21] Kerr K M, White J A, Barr D A, Mollan R A B 1994 Standardization and definitions of the sit-stand-sit movement cycle Gait Posture 2 pp 182-190

[22] Kelley D, Dainis A, Wood G 1976 Mechanics and muscular dynamics of rising from a seated position In Komi PV (ed) Biomechanics University Park Press pp 127 - 134

[23] Hughes M A, Myers B S, Schenkm an M L 1996 The role of strength in rising from a chair in the functionally impaired elderly Journal of Biomechanics 29 pp 1509-1513
[24] Dehail P et al. Kinematic and electromyographic analysis of rising from a chair during a Sit-to-Walk task in elderly subjects: role of strength Clin Biomech pp 1096–1103
[25] Nevitt M C, Cummings S R, Hudes E S 1991 Risk factors for injurious falls a prospective study J Gerontol 46 pp M164-M170
[26] Cheng P T, Chen C L, Wang C M, Hong W H 2004 Leg muscle activation patterns of sit-to-stand movement in stroke patients Am J Phys Med Rehabil 831 pp 10-16
[27] Guralnik J M, Simonsick E M, Ferrucci L, Glynn R J, Berkman L F, Blazer D G, Scherr, P A, Wallace R B 1994 A short physical performance battery assessing lower extremity function association with self-reported disability and prediction of mortality and nursing home admission J Gerontol 492 pp M85-M94
[28] Inkster L M, Eng J 2004 Postural control during a sit-to-stand task in individuals with mild Parkinson's disease Exp Brain Res 15 pp 33-38
[29] Hirvensalo M, Rantanen T, Heikkinen E 2000 Mobility difficulties and physical activity as predictors of mortality and loss of independence in the community-living older population J Am Geriatr Soc 48 pp 493–498
[30] Rodosky M W, Andriacchi T P, Andersson G B J 1989 The Influence Of Chair Height On Lower-Limb Mechanics During Rising Journal of Orthopaedic Research 7 pp 266-271
[31] Galli M et al 2008 Quantitative analysis of sit to stand movement: Experimental set-up definition and application to healthy and hemiplegic adults Gait & Posture 28 pp 80-85
[32] Lord S R. et al 2002 Sit-to-stand performance depends on speed balance and psychol status in addition to strength in older people J Gerontol A Biol Sci Med Sci pp 539-543
[33] Neamtu M C, Neamtu O, Mihnea M, Rusu I L 2018 Morphofunctional muscle changes influence on foot stability in multiple sclerosis during gait prediction The rehabilitation potential Journal of Back and Musculoskeletal Rehabilitation 3 pp 469-474
[34] Lidgren L. The bone and joint decade 2000 – 2010. Bulletin of the World Health Organization, 2003, 81, 629.
[35] Yang N H, Nayeb-Hashemi H, Canavan P K, Vaziri A. Effect of frontal plane tibiofemoral angle on the stress and strain at the knee cartilage during the stance phase of gait. Journal of Orthopaedic Research, 2010, 28, 1539–1547.
[36] Bae J Y, Park K S, Seon J K, Kwak D S, Jeon I, Song E K. Biomechanical analysis of the effects of medial meniscectomy on degenerative osteoarthritis. Medical & Biological Engineering Computing, 2012, 50, 53–60.
[37] Gustafson J A, Gorman S, Fitzgerald G K, Farrokhi, S. Alterations in walking knee joint stiffness in individuals with knee osteoarthritis and self-reported knee instability. Gait & Posture, 2016, 43, 210–215.
[38] Freisinger G M, Hutter E E, Lewis J, Granger J F, Glassman A H, Beal M D, Pan X L, Schmitt L C, Siston R A, Chaudhari A M W. Relationships between varus-valgus laxity of the severely osteoarthritic knee and gait, instability, clinical performance, and function. Journal of Orthopaedic Research, 2017, 35, 1644–1652.
[39] Tarnita D 2016 Wearable sensors used for human gait analysis Rom J Morphol Embryol 57(2) pp 373-382
[40] Tarnita D, Catana M., Tarnita DN 2013 Experimental measurement of flexion-extension movement in normal and osteoarthritic human knee, Romanian Journal of Morphology and embryology 54(2) pp 309–313