The Short-Side Advantage in Random Matching Markets

Linda Cai Clayton Thomas
Princeton University
Overview

- Stable matching market
 - “Doctors” being matched to “hospitals”
 - Each agent has preferences \succ_d over the other side
 - Stability of μ: No unmatched d, h with $h \succ_d \mu(d), d \succ_h \mu(h)$

- [Ashlagi, Kanoria, Leshno 17]: imbalance in the number of agents on each side profoundly effects (average behaviour of) these matchings
 - Even with n doctors and $n + 1$ hospitals

- Our paper: a simple proof of (some of) their results
Introduction
Background

- Stable matching markets
 - Stability of μ: No unmatched d, h with $h \succ_d \mu(d), d \succ_h \mu(h)$
- Critical in real world two-sided markets
 - Stability prevents “market unraveling” [Roth 2002]
- A vast classic literature investigates structure
 - [Gale and Shapley 1962], [Knuth 77], [Gusfield and Irving 89]
- Always exists a stable matching. In fact, there can be many
- How do we pick one?
In practice: *doctor-optimal* stable matching used
 - (It turns out this is unique)
Computed via doctor-proposing **Deferred Acceptance (DA):**
 (Until everyone matched): Doctors “propose” in order of their preference list, hospitals “tentatively accept” their highest-preference proposal they receive
Advantages:
 - Simple and fast algorithm
 - Good incentive properties
Still, choice of doctor-proposing feels arbitrary…
What matters for the matching?

- How different are the doctor and hospital optimal matchings?
- What determines who gets matched where?
What matters for the matching?

- [Wilson 72, Pittel 88 & 89]: what matters is who is proposing
 - Consider n doctors ranking each of n hospitals
 - Consider (uniformly) random preference lists
 - Proposers get their $\log n$th choice, receivers get $n/\log n$
 - Set of stable matchings is large: Agents have $\log n$ stable partners on average

- [Immorlica-Mahdian 05 & 15]: what matters is the length of preference lists
 - Motivated by fact that markets are too big to rank everyone
 - If each agent ranks $k = O(1)$ others (uniformly), then agents have unique stable partners w.h.p.
 - Doesn’t matter who proposes!

- [Ashlagi-Kanoria-Leshno 2017]: what matters is the balance of the market
[Ashlagi-Kanoria-Leshno 2017]:

- Say n doctors and $n + 1$ hospitals
- All doctors rank all hospitals (and vice-versa)
- **Theorem:** Agents have unique stable partners w.h.p.
- **Theorem:** Doctors get $O(\log n)$th choice, hospitals get $O(n / \log n)$th, regardless of who proposes

(Doctor’s $\mathbb{E}[\text{rank}])$	Doctor-optimal	Hospital-optimal
$n \times n$	$O(\log n)$	$O(n / \log n)$
$n \times (n + 1)$	$O(\log n)$	$O(\log n)$

- Agents on the *short side* at a large advantage
- Our contribution: simpler proofs!
Intuition
Deferred Acceptance

- Proposing-side “proposes” in order of their preferences
- Receiving-side “keeps the best proposal they’ve seen so far”
 - “Rejected” agents keep proposing
- Repeat (until all proposers matched or exhaust pref list)
 - Only way a proposer can go unmatched is if they are rejected by their entire list

\[
\begin{align*}
 &h_1 - d_1 \quad d_2 \\
 &h_2 - \\
 &h_3 - d_3 \quad d_4 \\
 &h_4 -
\end{align*}
\]
Intuition: a sharp transition

- Consider *hospital* proposing DA
 - Imagine each proposal made at random “online”
- If \(n \) hospitals propose to \(n \) doctors, \((balanced)\)
 \[\Rightarrow \text{terminate when every doctor receives a proposal}\]
- If \(n + 1 \) hospitals propose to \(n \) doctors, \((unbalanced)\)
 \[\Rightarrow \text{terminate when some specific hospital proposes to every doctor}\]
 - No hospital wants to go unmatched, creating “congestion”
Proof
Balanced Case

Analysis with \(n \) doctors proposing to \(n \) hospitals:

- Imagine each proposal made at random “online”
- DA terminates when all \(n \) hospitals receive a proposal
- When \(i \) hospital have receive a proposal, the next proposal goes to a new hospital with probability \((n - i) / n \)
- (Coupon collector)
- In expectation, this take total proposals:
 \[
 \frac{n}{n} + \frac{n}{n-1} + \frac{n}{n-2} + \ldots + \frac{n}{1} = n \cdot H_n \approx n \log n
 \]
- Thus, \(\log n \) proposals (i.e. average rank) per doctor
Lemma: [Immorlica, Mahdian 05]

- (Rural Hospital / Lone Wolf) Theorem: the set of matched agents is the same in every stable matching

- **Proposition:** A hospital h has a stable partner of rank better than $i \iff$ In (doctor proposing) DA, h receives a match even if h truncates their list after rank i

 - (\iff) (Fairly easy to check) if h matched and μ stable for truncated preferences, then μ stable for original prefs

 - (\implies) Similar, using Rural Hospital Theorem

\[
\text{h: } h_1, \ldots, h_i, h_{i+1}, \ldots
\]
Lemma: [Immorlica, Mahdian 05]

- **(Rural Hospital / Lone Wolf) Theorem**: the set of matched agents is the same in ever stable matching.
- **Proposition**: A hospital h has a stable partner of rank better than $i \iff$ In (doctor proposing) DA, h receives a match even if h truncates their list after rank i.
- **Lemma**: Consider doctor-proposing DA, where h truncates their entire list. Then h’s rank in hospital optimal match is the rank of the best proposal they receive.

\[h: \quad d_1, \ldots, d_i, d_{i+1}, \ldots \]

will reject all proposals
Lemma: Consider doctor-proposing DA, where \(h \) truncates their entire list. Then \(h \)’s rank in hospital optimal match is the rank of the best proposal they receive.

Consider \(n \) (proposing side) doctors and \(n + 1 \) hospital

If \(h \)’s list is empty, DA behaves essentially like the balanced case

- Terminates when \(n \) distinct non-\(h \) hospitals proposed to
- \(n \log n \) proposals total, i.e. \(\log n \) per hospital

In expectation, the best of these \(\log n \) random proposals is \(h \)’s rank \((n/\log n) \)th choice

\[\implies \] **Theorem:** hospital get no better than \(n/\log n \), even in hospital optimal outcome
New question: *number of distinct stable partners?*

Consider n (proposing side) doctors and $n + 1$ hospital

Consider DA, where h truncates their entire list

$\implies \Pr [h \text{ has multiple stable partners}] = \Pr [h\text{'s favorite prop came after } n - 1 \text{ hospital prop'ed to}]

- In expectation, $\Omega(\log(n))$ proposals before $n - 1$ hospitals proposed to, and $O(1)$ proposals after

$\implies \Pr [\cdot] = O(1/\log n)$

Theorem: An agent has a unique stable partner w.h.p.

(From here you can also bound doctor’s ranks)
Another intuition

- With n doctors and $n + 1$ hospitals, a hospital is essentially unneeded to form the matching
 - Settles for a partner “only $\log n$ better than random”
- [AKL] study “gap between doctor and hospital optimal”
 - Very powerful but complicated
- Our proof directly studies the hospital optimal
Lots of factors effect the market!

▶ Our focus: balance.
▶ Mentioned short lists

[Kanoria, Min, Qian 20]: Short lists and imbalance

[Gimbert, Mathieu, Mauras 20],
[Ashlagi, Braverman, Saberi, Thomas, Zhao 21]: models of a-priori quality of agents

[Beyhaghi, Tardos 21]: interview matchings

Still gaps in our understanding!

▶ Motivating question: why do people apply to “a few reach schools, several reasonable choices, and a safety school”?