Genome-wide expressions in autologous eutopic and ectopic endometrium of fertile women with endometriosis

Meraj A Khan¹, Jayasree Sengupta¹, Suneeta Mittal² and Debabrata Ghosh¹*

Abstract

Background: In order to obtain a lead of the pathophysiology of endometriosis, genome-wide expression analyses of eutopic and ectopic endometrium have earlier been reported, however, the effects of stages of severity and phases of menstrual cycle on expression profiles have not been examined. The effect of genetic heterogeneity and fertility history on transcriptional activity was also not considered. In the present study, a genome-wide expression analysis of autologous, paired eutopic and ectopic endometrial samples obtained from fertile women (n = 18) suffering from moderate (stage 3; n = 8) or severe (stage 4; n = 10) ovarian endometriosis during proliferative (n = 13) and secretory (n = 5) phases of menstrual cycle was performed.

Methods: Individual pure RNA samples were subjected to Agilent’s Whole Human Genome 44K microarray experiments. Microarray data were validated (P < 0.01) by estimating transcript copy numbers by performing real time RT-PCR of seven (7) arbitrarily selected genes in all samples. The data obtained were subjected to differential expression (DE) and differential co-expression (DC) analyses followed by networks and enrichment analysis, and gene set enrichment analysis (GSEA). The reproducibility of prediction based on GSEA implementation of DC results was assessed by examining the relative expressions of twenty eight (28) selected genes in RNA samples obtained from fresh pool of eutopic and ectopic samples from confirmed ovarian endometriosis patients with stages 3 and 4 (n = 4/each) during proliferative and secretory (n = 4/each) phases.

Results: Higher clustering effect of pairing (cluster distance, cd = 0.1) in samples from same individuals on expression arrays among eutopic and ectopic samples was observed as compared to that of clinical stages of severity (cd = 0.5) and phases of menstrual cycle (cd = 0.6). Post hoc analysis revealed anomaly in the expression profiles of several genes associated with immunological, neuracrine and endocrine functions and gynecological cancers however with no overt oncogenic potential in endometriotic tissue. Dys-regulation of three (CLOCK, ESR1, and MYC) major transcription factors appeared to be significant causative factors in the pathogenesis of ovarian endometriosis. A novel cohort of twenty-eight (28) genes representing potential marker for ovarian endometriosis in fertile women was discovered.

Conclusions: Dysfunctional expression of immuno-neuro-endocrine behaviour in endometrium appeared critical to endometriosis. Although no overt oncogenic potential was evident, several genes associated with gynecological cancers were observed to be high in the expression profiles in endometriotic tissue.

Keywords: Computational analysis, Endometriosis, Differential display, Gene expression, GSEA

*Correspondence: debabrata.ghosh1@gmail.com

1Department of Physiology, All India Institute of Medical Sciences, New Delhi, India

Full list of author information is available at the end of the article

© 2012 Khan et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Background
Endometriosis is a complex disorder involving pathogenesis and clinical presentation of ectopically implanted endometrium [1]. It is generally assumed that elucidation of molecular expressional specificities of eutopic and ectopic endometrium may provide leads towards a better understanding of the pathophysiology of the disorder [2]. To this end, several studies exploring the differential expression of genes between autologous eutopic and ectopic endometrium from patients with endometriosis have been reported, however, with no specific comparison for stages of severity, fertility history and phases of menstrual cycle [3–7], except a recent report [8]. Moreover, it is notable that two types of endometriosis, namely ovarian endometriosis and peritoneal endometriosis reportedly show differential characteristics [4,9]. Furthermore, there is evidence to support the idea that deep infiltrating endometriosis also show differential pathophysiology as compared to ovarian and peritoneal endometriosis [10,11]. In the present study, we examined a genome-wide large-scale transcript survey of autologous, paired eutopic and ectopic endometrial samples obtained from fertile women suffering from moderate to severe ovarian endometriosis, and excluded cases of peritoneal endometriosis and deep infiltrating endometriosis. We assumed that the present model of subject selection would reduce the impact of biological noise derived from genetic and pathogenetic heterogeneity and subfertility-associated variability on the transcriptional activity in the target tissue. We report here for the first time that clustering effect of expressional arrays among eutopic and ectopic samples was higher for genetic homogeneity (i.e. pairing of eutopic and ectopic samples from same individuals) than that of clinical stages of severity and phases of menstrual cycle. Based on the present transcriptomics data, we have also hypothesized that dysfunctional immuno-neuro-endocrine behaviour in endometrium was associated with the pathogenesis of endometriosis. Additionally, we did not observe an overt oncogenic potential in the expressional profiles in endometriotic tissue, however, several genes associated with gynecological cancers were highly expressed in the eutopic and ectopic endometrium. Finally, a novel cohort of 28 genes was identified, the expression of which carry potential marker value for endometriosis in fertile women. A flow diagram of the experimental design is shown in Figure 1.

Methods
Subjects and tissue samples
The present study was approved by the Ethics Committee on the Use of Human Subjects, All India Institute of Medical Sciences (AIIMS), New Delhi. The patients enrolled in the Department of Obstetrics and Gynecology – AIIMS and showing evidence of endometriotic lesions, adhesions and endometriotic cyst were selected to participate in the present study. All the patients were reportedly fertile and referred from the Pain Clinics, and had voluntarily agreed to donate their samples after understanding the purpose of the proposed study. Signed informed consent was obtained from each participant of this study. As shown in Figure 1, twenty-six (26) normally cycling and proven fertile women (age: 24–45 y) with history of pregnancy and with at least one living biological offspring, and body mass indices within normal ranges (20–22 k/m²) having ovarian endometriosis were selected for the present study. Confirmation of ovarian endometriosis and exclusion of other types of endometriosis was achieved from reports of pelvic imaging based on ultrasound, MRI and/or diagnostic laparoscopy as described elsewhere [8]. Severity stages 3 and 4 of the disease condition were defined at the time of surgical laparoscopy [8] according to rASRM protocol [12]. Selected subjects (n = 18; shown as ‘E’ in Additional file 1: Table S1) contributed their eutopic (shown as ‘A’ in Figure 2) and ectopic (shown as ‘B’ in Figure 2) samples during proliferative (days 9–14) phase (n = 17) and secretory (days 17–24) phase (n = 8) of menstrual cycle as described elsewhere [8]. Additional paired samples collected from different group of subjects (n = 8; shown as ‘Ep’ in Additional file 1: Table S1) with confirmed ovarian endometriosis as described above and with classified menstrual (proliferative: n = 4; secretory: n = 4) phases and severity stages 3 (n = 4) and 4 (n = 4) were employed for validating the prediction as described below. A small piece from each specimen was processed for chemical fixation in neutral buffered formaldehyde (4%, w/v) for subsequent confirmation of phase of cycle, state of pathology and cell types from eutopic and ectopic samples, and the residual portions were transported on ice to the laboratory within 10 minutes of collection for further processing for RNA extraction.

Experimental procedure
The methodological details of RNA extraction followed by the estimation of its yield and purity using standard electrophoretic and spectrophotometric protocols and its RIN score using the Agilent 2100 Bioanalyzer, RNA 6000 Nano LabChip kit and Agilent 2100 Expert Software (Agilent Technologies, Santa Clara, CA, USA) have been given elsewhere [8,13]. Individual RNA samples from eutopic and ectopic tissue samples (n = 18) from confirmed stages 3 (n = 8) and 4 (n = 10) collected during proliferative (n = 13) and secretory (n = 5) phases and having RIN scores >8.0 were subjected to whole transcriptome array experiment using the Agilent Whole Human Genome 60-mer 4X44K microarray according to the manufacturer’s recommendations. Thus, seven (7)
samples could not be used either for insufficient RNA yield or RIN scores (see Additional file 1: Table S1 for the subject details of the selected samples). Hybridized arrays were scanned with Agilent’s G2505B microarray scanner system and the raw data were imported into GeneSpring 11.5.0 software (Agilent Technologies, Santa Clara, CA, USA) for further analysis. Pearson’s correlation coefficients done to assess the reliability of data obtained from two separate hybridization runs for same RNA preparation for four (4) eutopic and ectopic samples confirmed the reproducibility assurance (P < 0.01) among hybridizations. Analysis of the data retrieved
from separate chips with the same RNA samples yielded QC statistics highly concordant with that of the manufacturer, and it revealed more than 95% confidence level.

Data analysis
Unsupervised and supervised hierarchical clustering analysis (HCA), and non-hierarchical K-mean cluster analysis of expression arrays were performed with the help of GeneSpring software 11.5.0. Analysis of variance followed by pair-wise differential (>3-fold at P < 0.01) expression (DE) for specific genes between eutopic and ectopic samples, as well as, between proliferative and secretory phases, and between clinical stage 3 and stage 4 of severity for eutopic endometrium, and for ectopic
endometrium, respectively were done using multiple comparison tests as described elsewhere [14].

Post-hoc analysis

Networks and enrichment analysis were done using gene lists obtained from the above analyses and based on a priori setting of a cut-off threshold (pFDR(p) = 0.05) with the help of the GeneSpring11.5.0 software and Metacore platform (GeneGo, St. Joseph, MI, USA). The K-mean clusters were further used for differential co-expression (DC) analyses and analyzed in terms of Gene Ontology (GO) enriched categories using GeneSpring11.5.0 software. Gene Set Enrichment Analysis (GSEA) version 3.7 was applied to each of the K-mean clusters independently to examine at FDR \(\leq 0.25 \) for not less than 10 genes for a set with a maximum of 1000 permutation whether pre-annotated BROAD gene sets [15]: C1 (cytogenetic sets), C2 (functional sets), C3 (regulatory sets), C4 (cancer neighborhood sets), and C5 (gene ontology sets) could identify any interesting information in the DC sets [16].

Quantification of candidate gene expression by real time RT-PCR

In order to validate the microarray data, relative expression of arbitrarily chosen seven (7) selected genes (ATX, DDHD1, DYNLT1, FTH1, LAMR1, MIER2, and WDR87) in eutopic and ectopic samples collected from all patients were performed using Taqman multiplexing technology on iCycler iQ™ real time RT-PCR detection system (BioRad, Hercules, CA, USA). GAPDH was selected as an endogenous control based on its observed expression consistency in arrays on data analysis. All primers and probes were designed on Beacon Designer software7.0 (Labware Scientific Inc., Milipitas, CA, USA) based on SYBR green chemistry and obtained from Qiagen (Cologne, Germany). QuantiTect Reverse Transcription kit for cDNA synthesis and QuantiFast SYBR green PCR kit for PCR amplification from Qiagen (Cologne, Germany) were used according to the protocol given by the manufacturer. The estimates of relative expression ratios between groups and copy numbers for target transcripts in complex RNA samples were obtained as described above.

Results

The data sets are available at NCBI-GEO website [19]. A distribution histogram of the number of probes and genes for different ranges of expression in autologous, paired eutopic and ectopic samples obtained from eighteen (18) fertile women with confirmed ovarian endometriosis is shown in Figure 2A. Total numbers and per cent estimates of probes/gene expressed in eutopic and ectopic samples in optimized scale are shown in Table 1. On average, ~75% and ~50% of expressed genes showed marked signal in eutopic and ectopic samples, respectively.

Table 1 Descriptive analysis of array data

Parameter	Estimate	Per cent
Number of probes (genes)	41000	40%
Number of hybridized probes (genes)		
Eutopic	35646	87%
(25987)	(88)	
Ectopic	35587	87%
(26222)	(89)	
Number of high expressed probes (genes)		
Eutopic	23267	65%
(19168)	(74)	
Ectopic	15912	45%
(13681)	(52)	

*Hybridization signal more than mean optimized background signal ± 2SD.

^b >0 in normalized log₂ scale.
Unsupervised HCA yielded marked segregation of samples into two major clustering branches with clustering cohesion being highest (cluster distance, cd: 0.1) between paired samples from same subjects. However, clustering cohesion was only moderate in samples which were classified based on either severity stages (cd: 0.5) or phases of menstrual cycle (cd: 0.6) (Fig. 2B). Supervised HCA revealed that the ectopic location of tissue had a higher clustering effect (cd:

(A) Eutopic-to-ectopic

Gene Symbol	Fold Change Stage 3	Stage 4
LAMC2	4.3	3.5
RASEF	3.7	6.9
TACSTD2	3.1	3.1

Gene Symbol	Fold Change Proliferative	Secretory
EGR3 | 3.7 | -3.4 |
ERBB3 | 3.2 | 3.7 |
LAMC2 | 3.4 | 5.7 |
MATN4 | 3.1 | 5.1 |

(B) Clinical stages 3-to-4

Gene Symbol	Fold Change Eutopic	Ectopic
ALAS1	-5.9	13.7
ALDH1L2	14.2	14.8
ALMS1P	7.6	7.9
APIB1	12.9	6.8
C10orf64	7.0	7.1
C11orf64	17.4	20.9
C6orf	10.9	33.2
C20orf12	4.7	3.8
CALCCOC2	4.5	6.1
CCN1	9.6	12.8
CCNT2	4.0	5.6
CSRNP1	5.5	14.4
DAGL8	3.1	6.5
DNAH7	7.5	14.2
EAF1	6.9	12.8
EFCAB6	7.9	16.8
EVC2	7.2	7.8

Gene Symbol	Fold Change Eutopic	Ectopic
FAM93B	17.9	10.8
FAM154B	6.0	13.6
FBXO9	6.0	10.2
FLGT1	9.2	9.3
GIC5	9.1	19.9
GK5	5.2	5.3
GOT2	7.1	6.1
HDHD1A	6.1	3.7
KCNK12	15.5	9.3
KRT222	6.0	10.3
MAGEA10	9.5	13.1
NFIB	6.9	8.3
NOB1	5.0	6.0
NOS1AP	12.9	13.8
NRM	6.7	4.0
NT5C1B	16.5	34.0
PKNOX2	5.2	8.1

Gene Symbol	Fold Change Eutopic	Ectopic
PPFIA1	4.9	6.4
PRK5	-5.6	-7.3
RBMX	6.4	6.3
RFX5	7.7	7.5
S1PR5	7.3	15.5
SOCS5	9.5	9.9
STAT2	6.4	5.6
TBCEL	5.9	6.3
TP53N2P2	3.9	8.2
WARS3R	5.4	3.8
ZNF135	9.0	4.4
ZNF257	7.8	17.7
ZNF274	6.3	15.2
ZNF343	4.7	9.0
ZNF551	3.9	4.4
ZRANB2	4.1	6.0

(C) Proliferative-to-secretory phases

Gene Symbol	Fold Change Eutopic	Ectopic
ADAM8	-3.6	-3.1
DCA4F	3.5	-3.3
PDLM5	-3.7	-3.9
UGDH	4.9	-3.9

Figure 3 Venn analysis of distribution of differentially expressed (DE) genes in eutopic-to-ectopic analysis. Distribution of DE genes in (A) eutopic and ectopic samples of stage 3 and stage 4, and proliferative and secretory phases, (B) stage 3-to-stage 4 for eutopic and ectopic samples, and (C) proliferative-to-secretory phases for eutopic and ectopic samples. Common genes among comparative groups are detailed in respective tables along with the vector of regulation and fold changes. The number of genes with relative up-regulation and down-regulation are shown by respective arrows. For details of DE genes, see Additional file 3: Table S3. Note that the areas in the Venn distribution analysis are not drawn to scale.
0.2) than that of phases of cycle (cd: 0.3), but not than that of the clinical stages of severity (cd: 0.1).

Differential expression (DE)

Additional file 3: Table S3 gives the list of the genes along with their differential expression (DE) patterns under different categories based on expressional arrays in autologous, paired eutopic and ectopic samples obtained from 18 fertile women with ovarian endometriosis. Figure 3 shows the number of genes with DE in different categories of comparison and the lists of common genes in it. Table 2 highlights the enriched categories of pathways for the common genes from above-mentioned DE analysis between eutopic and ectopic endometrium. It appeared that different signaling pathways associated with immune response, several neuronal processes, and ERBB family signaling pathways were commonly selected. A summary of DE analysis of the non-common genes showing differential display under different categories and their enrichment analysis are shown in Table 3. Collectively, it appeared that informational flow for a wide array of pathways involving cellular signaling, apoptosis and survival, cytoskeleton remodeling, chemotaxis, cell adhesion, immune response and several neurophysiological processes were affected.

K-mean clusters and differential co-expression (DC)

As shown in Figure 4, K-mean cluster analysis identified four clusters of expression patterns and profiles based on normalized hybridization signals for all expressed genes in all samples. The genes in cluster 1 (K1) did not show any specific expression pattern, while other three clusters showed overt patterns for menstrual cycle phases and severity stages. A large number of genes belonging to cluster 2 (K2) showed over-expression in severity stage 4 secretory phase endometrium (Fig. 4B). The co-expressed genes in cluster 3 (K3) and cluster 4 (K4) showed very similar patterns with an overall higher expression in stage 3 as compared to stage 4 endometrium samples irrespective of cycle phases.

Table 4 shows the pathways-based enrichment analysis of groups of genes in four (4) K-mean clusters revealing differential co-expression (DC) profiles between paired eutopic and ectopic endometrial tissues. It essentially substantiated the observation obtained from DE analysis that transcriptomic signals related to cell cycle, signal transduction, cytoskeleton remodeling, apoptosis and survival, chemotaxis, cell adhesion, and immune response were affected in the pathogenesis process of endometriosis.

Gene-set enrichment analysis (GSEA)

Table 5 provides a summary of the results of GSEA implementation on co-expressed genes with differential display (DC) in the four K-mean clusters. In K4, one (1) cytoband i.e. C1 set and two (2) gene ontology i.e. C5 sets were selected. More over, three (3) DC gene sets – one each in K1, K2 and K4, respectively – were selected under BROAD regulatory gene motif sets, C3. It is notable that two (2) selected regulatory motif sets belonging to K1 and K2 were significantly (p < 0.0001) associated with ectopic sample as evident from their negative normalized enrichment scores (NES). Further, four (4) DC gene sets – two (2) each in K1 and K4, respectively –

Table 2 Enriched common genes showing differential changes under different categories of comparisons

Description of comparison (Number of genes)	Gene in enriched category (Gene symbol)	Enriched pathways (p-value)
Eutopic-to-ectopic	ERBB3	Activation of astroglia proliferation (0)
Stage 3 & Stage 4 (3)		Cdk5 mediated cell death and survival (0)
Proliferative & Secretory (4)		ERBB family signaling (0)
	ERBB3, LAMC2	Membrane bound ESR1 interaction with growth factor signaling (<0.01)
		Ligand-independent activation of ESR1 and ESR2 (<0.01)
Stages 3-to-4	STAT2	Alpha6/beta-4 integrins in carcinoma progression (<0.01)
Eutopic & Ectopic (50)		Immune response involving IL-15 and IFN signaling (<0.02)
Proliferative-to-Secretry	NOS1AP	Angiotensin signaling via STATs (<0.03)
Eutopic & Ectopic (4)	AP1B1	nNOS signaling in neuronal process (<0.03)
	SOCS5	Immune response involving regulation of T cell function by CTLA-4 (<0.04)
	GOT2	Immune response involving IL-4 signaling (<0.04)

*a see Figure 2, *A, *B and *C.
Specific analysis	Nature of differential change	Top enriched pathways	[Gene symbol(s) of major candidate(s)]	(p-value)
Pooled	Up-regulated [50]	WNT signaling	[NRCAM, WNT16]	(0)
		DNA damage-induced responses and apoptosis	[CHEK1]	(<0.01)
		Role of 14-3-3 proteins in cell cycle regulation	[CHEK1]	(<0.02)
		Cadherins mediated cell adhesion	[CHP]	(<0.03)
		Endothelial cell contacts by non-junctional mechanisms	[CHP]	(<0.03)
		Role of SCF complex in cell cycle regulation	[CHEK1]	(<0.03)
		ATM/ATR regulation of cell cycle	[CHEK1]	(<0.04)
		nNOS signaling in neuronal synapses	[RASD1]	(<0.03)
		Activation of astroglial cell proliferation by ACM3	[ERBB3]	(<0.04)
		G-protein signaling in RhoA regulation pathway	[ARHGAP26]	(<0.04)
	Down-regulated [41]	Regulation of glucose and lipid metabolism	[APOE]	(0)
		GDNF signaling	[ITGB1]	(<0.04)
		Immune response involving antigen presentation by MHC class I	[HLA-C]	(0.05)
		Chemotaxis involving CCR4-induced leukocyte adhesion	[ITGB1]	(<0.05)
Stage 3	Up-regulated [4]	No specific enriched category identified		
Stage 4	Up-regulated [31]	Cell contraction involving relaxin and GPCRs		
	Down-regulated [48]	Cytoskeleton remodeling involving RalB and RaIa regulation pathway	[RALGDS]	(<0.01)
		Clathrin coated vesicle formation	[MYO1D]	(<0.02)
		Transcriptional silencing involving HP1 family	[PFDN5]	(<0.02)
		G-protein signaling involving interaction among Ras-family GTPases and K-RAS/N-RAS/H_RAS regulation pathway	[RALGDS]	(<0.03)
	Cell contraction involving relaxin and GPCRs	[ADCY6, EDNRA, RXFP1]	(0)	
	Development involving endothelin-1/EDNRA signaling	[ADCY6, EDNRA]	(0)	
	DNA damage induced apoptosis and DNA repair	[NBN]	(<0.01)	
	Beta-2 adrenergic dependent CFTR expression	[ADCY6]	(<0.01)	
	Regulation of lipid metabolism	[PPARA]	(<0.02)	
	Alpha-1 adrenergic receptor signalling	[ADCY6]	(<0.02)	
Table 3 Estimates and enriched categories of differentially regulated non-common genes (Continued)

Category	Description	Gene(s)	p-value	
Mu- and kappa-type opioid receptor mediated physiological process	ADCY6	<0.03		
Mucin expression via IL-6, IL-17 signaling pathways	TRAF3IP2	<0.04		
G-protein signaling	ADCY6	<0.04		
Down-regulated [3]	Transport from Golgi and ER to the apical membrane	PPIA	0	
Intracellular cholesterol and sphingolipids transport	PPIA	<0.01		
Proliferative phase	Up-regulated [109]	RAS regulation pathway	BCR, RASGRF1	0
TC21 regulation pathway	BCR, RASGRF1	0		
Regulation of CDC42 activity	BCR, FGFRI	<0.01		
Sin3 and NuRD mediated transcription regulation	CHD3, SIN3A	<0.01		
GDNF family signaling	GFRA2, NRTN	<0.01		
Phospholipid metabolism	GPD2, NRTN	<0.02		
Immune response involving CD40 signaling	IRF1, TRAF3IP2	<0.02		
Down-regulated [20]	Cytoskeleton remodeling involving α-1A adrenergic receptor	LAMB1, MYL12B	<0.01	
Dependent inhibition of PI3K and regulation of actin by Rho GTPases	MYL12B	<0.01		
Cell contraction involving δ-type opioid receptor, 51P2 receptor, ACM	MYL12B	<0.01		
Development associated MAG dependent inhibition of neurite outgrowth	MYL12B	<0.01		
Development associated with TGF-beta dependent induction of EMT via RhoA, PI3K and ILK	TPM1	<0.01		
Cell adhesion involving histamine H1 receptor	MYL12B	<0.01		
Cell adhesion and chemotaxis involving integrins	LAMB1, MYL12B	<0.01		
Chemotaxis involving inhibitory action of lipoxins on IL-8 and leukotriene B4-induced neutrophil migration	MYL12B	<0.01		
GPCRs in platelet aggregation	MYL12B	<0.02		
Immune response involving CCR3 signaling in eosinophils	MYL12B	<0.02		
Oxidative phosphorylation	UQCR11	<0.03		
Secretory phase	Up-regulated [17]	Transport involving RAN regulation pathway	TNPO1	<0.01
Immune response involving MIF-JAB1 signaling	PGR	<0.01		
nNOS signaling in neuronal synapses and circadian rhythm	RASD1	<0.02		
Cell cycle associated spindle assembly and chromosome separation	TNPO1	<0.02		
Regulation of lipid metabolism	TNPO1	<0.02		
Regulation of glycogen metabolism	AGL	<0.02		
Progesterone mediated maturation	PGR	<0.02		
Down-regulated [122]	Up-regulated [182]			
----------------------	---------------------			
Cell adhesion associated ECM remodeling	Cytoskeleton remodeling involving ACM3 and ACM4			
TGF-beta receptor signaling in development	G-protein signaling involving regulation of cAMP levels by ACM			
Development associated Slit-Robo signaling	Transcription involving Tubby signaling and HP1 family			
Insulin mediated regulation of translation	Regulation of lipid metabolism involving G-alpha(q) regulation			
Leukotriene 4 biosynthesis and metabolism	Cell contacts by non-junctional mechanisms			
Chemotaxis involving inhibitory action of lipoxins on IL-8 and leukotriene B4-induced neutrophil migration	NIMDA –dependent neurophysiological process			
Endoplasmic reticulum stress response pathway	Cell cycle at metaphase check point			
Immune response involving CCR3 signaling in eosinophils	G-protein signaling involving Rap1A regulation pathways			
GTP-XTP metabolism	Regulation of translation through EIF4F activity			
Cytoskeleton remodeling via RalB regulation pathway	Regulation of translation by alpha-1 adrenergic receptors			
	Development involving endothelin-1/EDNRB signaling			
	Cytoskeleton remodeling via FAK signalin			
	Immune response involving PGE2 common pathways			
	Immune response involving IL-17 signaling pathways			
	Cell contraction via oxytocin signaling			
	Transcription via PPAR pathway			
	Regulation of lipid metabolism through alpha-1 adrenergic receptors signaling via arachidonic acid			

Khan et al. Reproductive Biology and Endocrinology 2012, 10:84
http://www.rbej.com/content/10/1/84
Table 3 Estimates and enriched categories of differentially regulated non-common genes (Continued)

Down-regulated [48]	Cell cycle regulation involving SCF complex [CDC34, NEDD8, UBA52] (0)
	p53 regulation involving SUMO [UBA52] (0)
	Regulation of degradation and traffic of CFTR [DYNLL1, UBA52] (0)
	WNT signaling pathway involving degradation of bete-catenin [UBA52] (0)
	Transcriptional silencing involving HP1 family [PFD5NS] (0)
	p53 regulation involving SUMO [UBA52] (<0.02)
	Regulation of degradation and traffic of CFTR [DYNLL1, UBA52] (0)
	WNT signaling pathway involving degradation of bete-catenin [UBA52] (0)
	Transcriptional silencing involving HP1 family [PFD5NS] (0)
	Immune response involving IL-12 and MIF-JAB1 signaling pathways [UBA52] (0)
	Angiotensin signaling via beta-arrestin [CLTA, UBA52] (0)
	ATM/ATR regulation of G1/S and G2/M checkpoints [UBA52] (0)
	NGF signaling for apoptosis and survival and activation of NF-kB [EPB41L1] (0)
	Neurophysiological process involving GABA-A receptor life cycle [CLTA] (0)
	Regulation of translation initiation [EIF1, RPL7, RPL12, RPL15, RPL21, RPL22, RPL29, RPS3A, RPS10, RPS14, UBA52] (0)
	Transition and termination of DNA replication [UBA52] (0)
	Activin A signaling regulation [UBA52] (0)
	Up-regulated [665]
	Beta-2 adrenergic-dependent CFTR expression [ADCY2, ADRB3, CREB1, PRKAR1B, PRKAR2B] (0)
	Mu-type opioid receptor mediated neurophysiological process [ADCY2, ADCY5, CREB1, HPCA, PRKAR1B, PRKAR2B] (0)
	Development involving alpha-1 and beta-adrenergic receptors signaling via cAMP and PKA signaling [ADCY2, ADCY5, AKT3, CREB1, FOXO3, GAB1, PRKAR1B, PRKAR2B, VWHAE] (0)
	Cell adhesion involving ephrin signaling [ADAM10, EFNA5, EPHA4, EPHB6] (0)
	Transport involving RAB3 regulation pathway [DMXL2, RAB3B] (0)
	Neurophysiological process involving corticoliberin signaling via CRHR1 [ADCY2, ADCY5, CACNA1C, CREB1, PRKAR2B, V1L] (0)
	Signal transduction involving cAMP and PKA signaling [ADCY2, ADCY5, CACNA1C, CREB1, PRKAR1B, PRKAR2B, PCTK1] (0)
	G-protein signaling involving G-Protein beta/gamma signaling cascades [ADCY2, ADCY5, AKT3, PRKAR1B, PRKAR2B] (0)
	G-protein signaling involving RhoA regulation pathway [ARHGFE2, EFNA5, EPHA4, MCF2L] (0)
	eNOS activity in cell contraction [ADCY5, CACNA1C, PRKAR1B, PRKAR2B, PRKG1] (0)
	MAG-dependent inhibition of neurite outgrowth [NGFR, PSEN2, RASGRF1] (0)
	Neurophysiological process involving delta-type opioid receptor [ADCY2, CREB1, HPCA, PRKAR1B, PRKAR2B] (0)
	Neurophysiological process involving HTR1A receptor signaling [ADCY2, ADCY5, HPCA, HTR1A, PRKAR1B, PRKAR2B] (0)
	Neurophysiological process involving melatonin signaling [ADCY2, ADCY5, CREB1, PRKAR1B, PRKAR2B, RORA] (0)
Table 3 Estimates and enriched categories of differentially regulated non-common genes (Continued)	
--	
Neurophysiological process involving dopamine D2 receptor signaling	[ADCY2, ADCY5, CACNA1C, PRKAR1B, PRKAR2B]
Neurophysiological process in circadian rhythm	[ADCA1H, CLOCK, CREB1, CACNA1C, RORA]
Alpha-2 adrenergic receptor regulation of ion channels	[ADCY5, AKT3, CACNA1C, PRKAR1B, PRKAR2B]
NGF signaling pathway in apoptosis and survival	[AKT3, CAD, GAB1]
Transcription involving CREB pathway	
Role of activin A in cell differentiation and proliferation	[ADCY2, ADCY5, CREB1, NR5A1/SF1, PRKAR1B, PRKAR2B]
GH-RH signaling	[ADCY2, ADCY5, CACNA1C, CREB1, PRKAR1B, PRKAR2B]
ZNF202 in regulation of expression of genes involved in atherosclerosis	[ADRB3, APOE2, LPL]
Regulation of lipid metabolism by niacin and isoprenaline	[ADCY2, ADCY5, ADRB3, PRKAR1B, PRKAR2B]
Ligand-independent activation of ESR1 and ESR2	[ADCY2, ADCY5, AKT3, PRKAR1B, PRKAR2B]
Relaxin signaling pathway	[ADCY5, AKT3, CREB1, PRKAR1B, PRKAR2B]
Melanocyte development and pigmentation	[AKT3, CREB1, PRKAR1B, PRKAR2B, PRKG1]

Down-regulated [18]

Immune response involving antigen presentation by MHC class I	[PDIA3]	(<0.01)
Vitamin B6 metabolism	[PHPT1]	(<0.02)
Blood coagulation and platelet degranulation	[F13A1]	(<0.03)
Cholesterol and sphingolipids intracellular transport	[PPIA]	(<0.03)
GSL metabolism		(<0.05)

Eutopic

Cell cycle at initiation of mitosis and regulation of G1/S transition	[LMNB2, PPP2R3A]	(<0.01)
Dopamine D2 receptor transactivation of PDGF receptor	[PPP2R3A]	(<0.01)
Apoptosis and survival involving caspase cascade, FAS signaling cascade and HTR1A signaling and anti-apoptosis by external signals via NF-kB	[LMNB2, PPP2R3A]	(<0.01)
G-protein signaling involving regulation CDC42 activity	[ARHGAP17]	(<0.01)
Gultamate regulation of Dopamine D1A receptor signaling	[PPP2R3A]	(<0.01)
PKA signaling	[PPP2R3A]	(<0.02)

Down-regulated [56]

Translation involving regulation of EIF2	[PPP1CC]	(0)
DNA damage involving NHEJ mechanisms of DSBs repair	[CSNK2A2]	(<0.02)
Cytoskeleton remodeling involving activin A	[FNTA]	(<0.02)
Olfactory transduction	[OR2H1]	(<0.02)
Cell cycle involving chromosome condensation in prometaphase, sister chromatic cohesion, regulation of S phase and initiation of mitosis	[HIST1H1C]	(<0.03)
were selected under BROAD cancer gene neighborhood sets, C4. Table 5 also shows the major gene families selected in GSEA and names of the genes showing differential display in the comparison between eutopic and ectopic endometrium.

Expressional cohort of marker genes
Table 6 provides the list of selected twenty eight (28) genes that appeared significant from combined analysis of GSEA-selected gene sets followed by DC analysis and from DE analysis of microarray data of 18 paired samples. Table 6 also shows that the validity of the prediction value of the expressional cohort based on quantitative analysis in a different set of autologous, paired eutopic and ectopic samples obtained from a separate group of 8 subjects was markedly high.

Discussion
The awareness that whole genome expression array analysis may yield high dimension knowledge towards deciphering patho-etiology of complex diseases [20,21] has prompted several groups of investigators to employ this approach to examine the transcriptomics basis of endometriosis using eutopic and ectopic samples [3-9]. Although significant and interesting observations have emerged from these reports, these studies did not include the possible impact of one or more of the factors like the demographic characteristics, position of endometriosis, fertility history, severity stages and phases of menstrual cycle influencing the genomic expression in eutopic and ectopic tissues [2,8,22]. In the present study, we have examined the whole genome transcriptomics of autologous, paired eutopic and ectopic samples obtained from fertile Indian women with ovarian endometriosis of known clinical severity and phases of menstrual cycle but with no history of previous treatment for endometriosis at the time of tissue collection. We analyzed the expression profiles to delineate the impact of stages of severity and phases of cycle in eutopic and ectopic samples. We observed that clustering effect on expression arrays was maximum in paired samples, followed by stages of clinical severity and positional cue. The phase of menstrual cycle exhibited minimal clustering effect on expressional profiles in the experimental samples.

Generally, we observed that eutopic tissue yielded a normal frequency distribution histogram of gene expressions for different levels of expression and that an overall higher numbers of genes in eutopic endometrium expressed higher transcriptomic signals as compared to ectopic samples; ectopic samples yielded a truncated frequency distribution histogram. Furthermore, higher numbers of genes bearing expression levels at the high

Table 3 Estimates and enriched categories of differentially* regulated non-common genes (Continued)
Cadherin mediated cell adhesion [PTPRF] (<0.03)
GABA-A receptor mediated neurophysiological process [PPP1C] (<0.03)
MAG-dependent inhibition of neurite outgrowth [MAG] (<0.05)
Cell adhesion via PLAU signaling [CSNK2A2] (<0.05)
Ectopic Up-regulated [0]
Down-regulated [91]
G-protein signaling involving Rap2A regulation pathway and G-protein alpha-s signaling cascade [PRKAR2B, RAPGEF3] (0)
Glycolysis and gluconeogenesis [ENO2] (0)
cAMP-Ca++2-dependent signal transduction [PRKAR2B, RAPGEF3] (<0.01)
G protein mediated regulation of MAPK-ERK signaling [PRKAR2B, RAPGEF3] (<0.01)
Development involving MAG, PACAP signaling, activin A, A2A and A2B receptor signaling and Hedgehog signaling [MYH14, NANO8, NTF3, PRKAR2B, RAPGEF3] (<0.01)
Regulation of eNOS activity [PRKAR2B] (<0.01)
CCR3 signaling in eosinophils [FGR, MYH14] (<0.02)
NMDA dependent neurophysiological process [PRKAR2B, RAPGEF3] (<0.03)
CFTR expression, maturation and activity [HSPA6, PRKAR2B] (<0.03)

* > 3-fold at P < 0.01.
and at the low ends of the frequency distribution were observed in ectopic tissues as compared to eutopic tissues. We believe that implementation of appropriate computational models based on Shannon’s noise-signal entities and probability of size of loss of signals may yield in the future new leads about the global genomic expression pattern in the ectopic tissue [23,24]. It is notable in this regard that: (i) a large number (~0.7 K) of genes were silenced in the ectopic tissue at stage 4 condition as compared to stage 3, and (ii) expressional clustering cohesion was very high (cd: 0.07) between the eutopic and ectopic endometrium in stage 4 disease condition. Taken together, it is suggestive of high degree of pathognomonicity in stage 4 eutopic endometrium [8,25].

Major highlights in the previous studies on large scale expressional array analysis were to explore the gene-specific DE in paired analysis between eutopic and ectopic endometrium with an assumption that a 2-fold change at P < 0.05 between two groups of tissue samples was sufficiently significant for further analysis. As pointed out elsewhere, this may give rise to different sets of biases and inadequacies in interpretation and discovery [26,27]. To circumvent these acknowledged insufficiencies, we have employed a 3-fold change at P < 0.01 as the pre-set filter for DE of individual genes between groups followed by pathway networks based enrichment analysis, and for DC analysis of K-mean based expressional clusters followed by gene set enrichment analysis (GSEA) model [16] to interpret the present transcriptomics data.

Post-hoc analysis of expressional signals in eutopic and ectopic tissues under different sets of categorical comparison revealed that several signaling pathways related to immune response were commonly affected in eutopic and ectopic endometrium. The results from the present study support the observation made by Zhao et al. based on GSEA of archival transcriptomics data sets of
endometriosis that the main canonical pathways putatively involved in the process of endometriosis were related to that of immune and inflammatory diseases [27]. Additionally, we hypothesize from the results of the present study that functional connectivity between over-expression of CLOCK and inflammatory disorder, as well as, between over-expression of genes associated with lipid metabolism and inflammation at the local tissue level are operative in the pathogenesis of endometriosis [28-30]. We also observed that neuronal processes involving nNOS signaling pathways and GABA synthesis and metabolism were commonly expressed in both tissue types and a large number of genes involving several signaling pathways (corticoliberin, opioid receptors, serotonin receptors, melatonin, dopamine receptor, neuronal cell adhesion, NGF) associated with neurophysiological processes were up-regulated in stage 3 ectopic endometrium. Earlier the possible involvement of neuroendocrine processes in the pathogenesis of endometriosis has been implicated [31-34]. Pathways and networks based enrichment analysis of DE of individual genes and DC of gene cohorts in four clusters in the present study revealed that expression of genes in pathways directly and indirectly associated with cell apoptosis and survival, cytoskeleton remodeling, chemotaxis and cell adhesion were differentially affected in eutopic and ectopic samples. Involvement of these pathways in endometriosis has earlier been reported by several groups based on different experimental models [35-38]. The pathogenesis of endometriosis has also been associated with excessive production of estrogens by up-regulated expression of aromatase and 17β-HSD type 1, and suppression of 17β-HSD types 2 and 4, collectively resulting in an increased ratio of estradiol-17β to estrone in ectopic tissues [39-42]. It has however been reported by others that mRNA and protein expressions of aromatase were minimal in ectopic tissues [42,43]. Our transcriptomics data also failed to identify any overt change in the expression of genes for aromatase (CYP19A1) and 17β-HSD (HSD17B1-B17) in

Cluster identity (Total number of genes)	Enriched category (p-value)	Gene symbols of major candidate genes	(Vector of differential)
Cluster 1, K1 (3210) [208: 120/88]	Cell cycle (<0.01)	CCNB1, CDC45L, CENPF, NCAPD3, RADS1 (up); CCND2, MYL9, ORC6L, TNPO1 (down)	
	IGF-1 receptor signalling (<0.01)	IGF2 (up), IGFBP5, CCND2 (down)	
	Cytoskeleton remodelling involving regulation of actin (<0.02)	MYH9, MYL9 (down)	
	O-glycan biosynthesis (<0.02)	GALNT1, GALNT7 (down)	
	Immune response (<0.02)	PGR (up), CCND2 (down)	
	G-protein signalling in TC21 regulation pathway (<0.02)	RRS2 (up), RASGRP2 (down)	
	DNA damage (<0.03)	NBN, RAD51 (up), CCND2 (down)	
	Neurite outgrowth (<0.05)	MYH9, MYL9 (down)	
	Regulation of glucose and lipid metabolism (<0.05)	CYP51A1, FOXA (up), TNPO1 (down)	
	G-protein signalling in Rap1 regulation pathway (<0.05)	KRIT1 (up), RASGRP2 (down)	
	Progesterone action (<0.05)	CCNB1, PGR (up)	
	Signal transduction:	Erk interactions (<0.04)	
		DUSP4 (up)	
		AKT signaling (<0.05)	
		HSP90AA1 (up), CCDD2 (down)	
Cluster 2, K2 (8194) [148: 0/148]	Immune response (0)	ACTG1, C3, C4B, C1QB, HLA-C, PTPN11, SHP2 (down)	
	Cell adhesion (0)	ACTG1, ITGB1, PTPN11, SHP2 (down)	
	Regulation of CFTR (0)	ACTG1, HSPA8, PSMB1, TSG101, UBC (down)	
	Signal transduction involving activin A signalling regulation (0)	BAMBI, H3F3A, UBC (down)	
	Slt-Robo signalling (<0.01)	ACTG1, ROB1 (down)	
	Cytoskeletal remodelling (<0.01)	ACTG1, DSTN, RALGDS (down)	
	Glutathione metabolism (<0.01)	GSTM5, MGST3 (down)	
	Chemotaxis (<0.02)	ACTG1, GNG4, ITGB1 (down)	
	Apoptosis and survival (<0.02)	HSPA8, ACTG1 (down)	
	Glucose and lipid metabolism (<0.03)	APOE (down)	
	Neurite outgrowth (<0.03)	ACTG1, DSTN (down)	
	N-glycan biosynthesis (<0.04)	GALT, GANAB (down)	

Table 4 Estimates and description of top scored enriched categories of differentially regulated (eutopic-to-ectopic) co-expressed (DC) genes (Continued)
endometriosis. However, our observation that genes (NR5A1, STAR) for steroidogenic factor (SF1) and steroidogenic acute regulatory protein (StAR), which are known to be significant regulators of steroidogenesis [44,45] were highly expressed in the ectopic endometrium substantiates previous reports [46–48].

An over-expression of ERBB3 in proliferative phase eutopic endometrium and secretory phase ectopic endometrium was seen in the present study; it has been associated with ligand-independent activation of estrogen receptors (ESR1 and ESR2) in target tissues [49]. However, ERBB3 was up-regulated in eutopic tissues as compared to ectopic tissues in pooled analysis. The activation of ESRs and relative down-regulation of progesterone receptor (PGR) in the secretory phase ectopic endometrium substantiates previous reports [46–48].

Collectively, it appears that the results of our study corroborate well with the previous reports and lead us to hypothesize that eutopic endometrium which is transcriptionally dysfunctional in mediating immune-
neuro-endocrine responses may bear vulnerability to give rise to endometriotic lesion if deposited ectopically. Subsequently, the ectopically placed endometrial tissue with positional input and under fluctuating levels of sex steroid hormones in vulnerable subjects may develop differential expression repertoire related to cell survival, adhesion, migration and growth resulting in endometriotic lesion [51,52]. Moreover, it appears that a pathways-network of several transcription factors including CLOCK-ESR1-MYC may be involved at the transcriptomic level towards pathoetiology of ovarian endometriosis.

Table 6 Selected genes expression of which bear predictable leads to ovarian endometriosis among Indian women

Gene symbol (GenBank ID)	Fold changea	Microarrayb RT-PCRc
Up-regulated in eutopic tissue		
General		
3HMGN2 (NM_005517)	4.8±1.0	2.4±0.3
[High-mobility group nucleosomal binding domain 2]		
MK67 (NM_002417)	3.4±0.9	4.6±1.8
[Ki-67-like antigen]		
NRCAM (NM_001037132)	4.5±1.6	2.1±0.5
[Neuronal cell adhesion molecule]*		
PARG (NM_003631)	3.8±2.1	3.4±1.5
[Poly (adp-ribose) glycohydrolase]		
TMPO (NM_001032283)	3.1±1.9	2.8±1.1
[Thymopoietin]		
Stage 3		
ATP2A2 (NM_001681)	5.1±1.9	8.6±3.5
[ATPase, Ca++ transporting, cardiac muscle, slow twitch 2]		
CHIA (NM_021797)	3.4±1.3	7.3±1.5
[Chitinase, acidic]		
DAPK2 (NM_014526)	6.2±2.3	9.7±1.8
[Death-associated protein kinase 2]*		
ERC1 (NM_178040)	6.8±1.5	10.8±3.0
[Eiks/rab6-interacting family member 1]*		
TACC2 (NM_206862)	13.7±3.2	6.4±2.0
[Transforming, acidic coiled-coil containing protein 2]		
ZBTB22 (NM_005453)	5.2±2.7	12.3±3.1
[Zinc finger and BTB domain containing 22]*		
Proliferative phase		
BAG5 (NM_001015049)	4.2±1.9	6.5±4.1
[Bcl2-associated athanogene 5]		
CDC3 (NM_031299)	3.9±1.5	9.9±6.6
[Cell division cycle associated 3]		
EGR3 (NM_004430)	3.7±1.0	5.3±1.4
[Early growth response 3]*		
FGF8P1 (NM_005130)	5.7±2.1	7.3±2.7
[Fibroblast growth factor binding protein 1]		
TPM3 (NM_001043352)	3.4±1.9	6.3±3.4
[Tropomyosin 3]		

Up-regulated in ectopic tissue		
General		
BAP1 (NM_004656)	12.6±3.3	13.9±3.4
[BRCA1 associated protein-1]*		
CBLL1 (NM_024814)	6.2±2.5	6.1±2.5
[Cas-Br-M (murine) ecotropic retroviral transforming sequence-like 1]		
CLOCK (NM_004898)	9.0±2.6	5.3±0.6
[Clock homolog (mouse)]*		
EPB41L1 (NM_012156)	3.1±1.6	2.6±1.2
[Erythrocyte membrane protein band 4.1-like 1]		
LPL (NM_000237)	5.5±2.9	7.2±2.9
[Lipoprotein lipase]		
PPAT (NM_002703)	5.8±2.9	5.6±3.4
[Phosphoribosyl pyrophosphate amidotransferase]		
SCAMP1 (NM_004866)	10.5±3.2	6.0±2.6
[Secretory carrier membrane protein 1]		
SFRS1 (NM_001078166)	8.7±3.6	6.6±2.2
[Splicing factor, arginine/serine-rich 1]		
USP46 (NM_022832)	4.0±1.8	3.7±1.1
[Ubiquitin specific peptidase 46]		
YWHAE (NM_006761)	3.4±2.7	3.3±1.8
[Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, epsilon]		
ZNF644 (NM_012169)	4.4±1.0	5.1±2.9
[Zinc finger protein 644]		

*aBetween eutopic and ectopic samples, shown as mean± SD.
bBased on GSEA implementation on DC results and their DE analysis (n = 18).
cBased on transcript numbers from RT-PCR analysis of RNA samples from a different set of autologous paired eutopic and ectopic tissues (n = 8).
*Genes selected in gene families identified in GSEA gene sets (see Table 5).
(Fig. 5). Further studies are warranted to test this hypothesis.

Endometriosis, by definition, is a benign disease, however, there are a few reports indicating risk of malignant transformation in endometriosis [53-55]. In the present study, we observed a general suppression in the expression of genes associated with cell cycle and DNA damage repair in both eutopic and ectopic endometrium in fertile women with endometriosis. Interestingly, there is a recent report indicating a better survival rate for women with endometriosis for all malignancies combined, and specifically for ovarian and breast cancer, while it was poorer in malignant melanoma [56]. While the present results revealing the lack of overt oncogenic potential in endometriotic tissue concur with some of the earlier reports [6-8], genes (CHEK1, ERBB family, laminin gamma and Ki-67) associated with gynecological cancers [57-60] were highly expressed in autologous, paired eutopic and ectopic tissues. Thus, the possibility of inducement of oncogenic transformation through critical phase transition [61] in the course of endometriosis disease progression cannot be ruled out, especially in the high risk population [62,63].

Finally, we have identified for the first time a cohort of twenty-eight (28) genes with high degree of predictability index for ovarian endometriosis in fertile women. We believe this cohort of genes can be used for further study to discover pathophysiology of ovarian endometriosis.

Figure 5 Knowledge-based construction of the pathways-network of transcription factors putatively associated with pathogenesis of endometriosis. The transcription factors were identified from GSEA implementation on co-expressed genes. It is notable that CLOCK, ESR1, and MYC (shown inside blue dotted rectangle) are differentially co-expressed in endometriosis as shown in Table 5.
Conclusions

Expressional profiles between paired eutopic and ectopic samples showed markedly higher cohesion compared with that of clinical stages of severity and phases of menstrual cycle. Endometriotic endometrium displayed anomalies expressional balance for several genes associated with immunological, neuracrine and endocrine functions. Although no overt oncogenic potential in endometriotic tissue was observed, expressions of a few genes (CHEK1, ERBB family, laminin gamma and Ki-67) were up-regulated. A novel cohort of twenty-eight (28) genes representing potential markers for ovarian endometriosis in fertile women was discovered.

Additional files

Additional file 1: Table S1. Summary of subject profiles.
Additional file 2: Table S2. Primers used in real-time PCR reactions.
Additional file 3: Table S3. List of differentially regulated genes.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

MAK contributed to the conception, designing, acquisition, analysis and interpretation of data and the drafting process of the manuscript. SM contributed to the sample acquisition, and results interpretation process of the manuscript. All authors read and approved the final manuscript.

Acknowledgements

The authors wish to express sincere thanks to Professor Linda Gudic, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, California, USA for her suggestions related to the study and the manuscript. The authors also acknowledge the positive impact of the comments and suggestions received from the reviewers in the course of adjudication of the manuscript. The Department of Biotechnology, Government of India (Project No. N-915) provided funding support to the study.

Author details

1Department of Physiology, All India Institute of Medical Sciences, New Delhi, India. 2Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, New Delhi, India.

Received: 6 July 2012 Accepted: 28 August 2012 Published: 24 September 2012

References

1. Bulun SE. Endometriosis. New Engl J Med 2009, 360:268–279.
2. Rogers PAW, D’Hooghe TM, Fazleabas A, Gargett CE, Guidice LC, Montgomery GW, Rombauts L, Salamonsen LA, Zondervan KT. Priorities for endometriosis research: recommendations from an international consensus workshop. Reprod Sci 2009, 16:335–346.
3. Eyster KM, Boles AL, Bramian JD, Hansen KA. DNA microarray analysis of gene expression markers of endometriosis. Fertil Steril 2002, 77:398–402.
4. Eyster KM, Klinkova O, Kennedy V, Hansen KA. Whole genome deoxyribonucleic acid microarray analysis of gene expression in ectopic versus eutopic endometrium. Fertil Steril 2007, 88:1505–1533.
5. Hever A, Roth RB, Hevezi P, Marin ME, Acosta JA, Acosta H, Rojas J, Herrera R, Grigoriadis D, White E, et al. Human endometriosis is associated with plasma cells and over expression of B lymphocyte stimulator. Proc Natl Acad Sci (USA) 2007, 104:12451–12456.
6. Borghese B, Mondon F, Noel J, Fayt I, Mignot TM, Vaiman D, Chapron C. Gene expression profile for ectopic versus eutopic endometrium provides new insights into endometriosis oncogenic potential. Mol Endocrinol 2008, 22:2357–2362.
7. Zafrakas M, Tarlatzis BC, Streicher T, Pournaropoulos F, Wolffe U, Smeets SJ, Wittek B, Grimbizis G, Brakenhoff RH, Pantel K, et al. Genome-wide microarray gene expression, array-CGH analysis, and telomerase activity in advanced ovarian endometriosis: a high degree of differentiation rather than malignant potential. Int J Mol Med 2008, 21:335–344.
8. Khan MA, Sengupta J, Guidice LC, Mittal S, Kumar S, Datta Gupta S, Sharma R, Najjar AR, Ghost D. cDNA-based transcript analysis of autologous eutopic and ectopic endometrium of women with moderate and severe endometriosis. J Endocrinol 2011, 38–33.
9. Wu Y, Kajdacsy-Balla A, Strawn E, Basir Z, Halverson G, Jaiwalla P, Wang Y, Wang X, Ghost S, Guo SW. Transcriptional characterizations of differences between eutopic and ectopic endometrium. Endocrinology 2006, 147:232–246.
10. Cornillie FJ, Oosterlynck D, Lauweryns JM, Koninckx PR. Consensus workshop. Endometriosis research: recommendations from an International consensus workshop. Reprod Sci 2009, 16:1505–1516.
11. Ghosh D, Sharkey AM, Charnock-Jones DS, Smith SK, Sengupta J. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci (USA) 2005, 102:15545–15550.
12. Pfaffl MW, Horgan GW, Dempfle L. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acid Res 2002, 30:e36. 1–10.
13. Bustin SA. Quantification of mRNA using real time reverse transcription PCR (RT-PCR): trends & problems. J Mol Endocrinol 2002, 29:23–39.
14. Vercellini P, Frontino G, Pietropaolo G, Gattei U, Daguati R, Crosignani PG. Deep endometriosis: definition, pathogenesis and clinical management. J Am Assoc Gynecol Laparosc 2004, 11:153–161.
15. http://www.broadinstitute.org/gsea/msigdb.
16. Pan W: A comparative review of statistical methods for discovering differently expressed genes in replicated microarray experiments. Bioinformatics 2002, 18:546–554.
17. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci (USA) 2005, 102:15545–15550.
18. Aghajanova L, Giudice LC. Low-dose mifepristone administration on day 2 after ovulation on transcript profiles in implantation-stage endometrium of hens (mesosus monosus). Reproduction 2009, 138:357–370.
19. Cover TM, Thomas JA. Elements of Information Theory. New York: Wiley; 1991.
20. Zhao T, Carlton JM, Doyle J: Mutation, specialization, and hypersensitivity in highly optimized tolerance. Proc Natl Acad Sci (USA) 2002, 99:2049–2054.
21. Agahjanova L, Giudice LC. Molecular evidence for differences in endometrium in severe versus mild endometriosis. Reprod Sci 2011, 18:229–251.
22. Shi J, Walker MG. Gene set enrichment analysis (GSEA) for interpreting gene expression profiles. Curr Bioinformatics 2007, 2:133–137.
23. Zhao H, Wang Q, Bai C, He K, Pan Y. A cross-study gene set enrichment analysis identifies critical pathways in endometriosis. Reprod Biol Endocrinol 2009, 7:94.
24. Bellet MM, Sassone-Corsi P. Mammalian circadian clock and metabolism – epigenetic link. J Cell Sci 2010, 123:3837–3848.
25. Sancar A, Lindsey-Boltz LA, Kang T-H, Reardon JT, Lee JH, Ozturk N. Circadian clock control of the cellular response to DNA damage. FEBS Lett 2010, 584:2618–2625.
30. Prieur X, Rosset T, Ricote M: Lipotoxicity in macrophages: evidence from diseases associated with the metabolic syndrome. *Biochim Biophys Acta* 2010, 1801:327–337.

31. Tariverdian N, Theoharides TC, Siedentopf F, Gutierrez G, Jeschke U, Rabinovich GA, Blois SM, Arch PC: Neuro-endocrine-immune dissequilibrium and endometriosis: an interdisciplinary approach. *Semin Immunopathol* 2007, 29:195–210.

32. Tariverdian N, Rucke M, Szerkes-Bartho J, Blois SM, Karp EF, Sedemayr H, Siedentopf F, Arch PC: Neuro-endocrine circulation and endometriosis: progestogen derivative damps corticotrophin-releasing hormone-induced inflammation by peritoneal cells in vitro. *J Mol Med* 2010, 88:267–278.

33. Wang G, Tokushige N, Russell P, Dubinovsky S, Markham R, Fraser IS: Neuroendocrine cells in eutopic endometrium of women with endometriosis. *Hum Reprod* 2010, 25:287–291.

34. Asante A, Taylor RN: Endometriosis: the role of neuroangiogenesis. *Ann Rev Physiol* 2011, 73:163–182.

35. Nasu K, Yuge A, Tsuru A, Nishida M, Narahara H: Involvement of resistance to apoptosis in the pathogenesis of endometriosis. *Histoil Histopathol* 2009, 24:1181–1192.

36. Gentlini D, Vignaro P, Somigliana E, Vicentini LM, Vignali M, Busacca M, Di Biasso AM: Endometrial stromal cells from women with endometriosis reveal peculiar migratory behavior in response to ovarian steroids. *Fertil Steril* 2010, 93:706–715.

37. Stephens AN, Hannan NJ, Runczuk A, Meahan KL, Chen J, Nicholls PK, Rombauts LJ, Stanton PG, Robertson DM, Salamonsen LA: Post-translational modifications and protein-specific isoforms in endometriosis. *J Proteome Res* 2010, 9:2438–2449.

38. Adachi M, Nasu K, Tsuru A, Kawano Y, Narahara H: Attachment to extracellular matrices is enhanced in human endometrial stromal cells: a possible mechanism underlying the pathogenesis of endometriosis. *Eur J Obstet Gynecol Reprod Biol* 2010, 155:88–88.

39. Bulun SE, Imir G, Utsunomiya H, Thung S, Gurates B, Tamura M, Lin Z: Aromatase in endometriosis and uterine leiomyomata. *Cytokine* 2005, 31:65–72.

40. Dassen H, Punyadeera C, Kamps R, Delvoux B, Blois SM, Arch PC: Steroidogenesis in endometriosis and endometriotic stromal cells from women with endometriosis. *Hum Reprod* 2007, 22:3148–3158.

41. Smuc T, Hevir N, Ribic-Pucelj M, Husen B, Thole H, Rizner TL: Disturbed estrogen and progesterone action in ovarian endometriosis. *Mol Cell Endocrinol* 2009, 301:59–64.

42. Delvoux B, Groothuis G, D’Hooghe T, Kyama C, Dunsberman G, Rombaerts LJ, Stanton PG, Robertson DM, Salamonsen LA: Post-translational modifications and protein-specific isoforms in endometriosis. *J Proteome Res* 2010, 9:2438–2449.

43. Val P, Lefrancois-Martinez AM, Veysiere G, Matinez A: Sf-1 is a key player in the development and differentiation of steroidogenic tissues. *Nuc Recept 2003*, 1, 8.

44. Stocco DM: STAR protein and the regulation of steroid hormone biosynthesis. *Ann Rev Physiol* 2001, 63:193–213.

45. Bulun SE, Utsunomiya H, Lin Z, Yin P, Cheng YH, Pavone ME, Tokunaga H, Trukhacheva E, Attar E, Gurates S, et al: Steroidogenic factor-1 and endometriosis. *Mol Cell Endocrinol* 2009, 300:104–108.

46. Utsunomiya H, Cheng YH, Lin Z, Reierstad S, Yin P, Attar E, Xue Q, Imir G, Thung S, Trukhacheva E, et al: Upstream stimulatory factor-2 regulates steroidogenic factor-1 expression in endometriosis. *Mol Endocrinol* 2007, 22:904–914.

47. Tian Y, Kong B, Zhu W, Su S, Kan Y: Expression of steroidogenic factor 1 (SF-1) and steroidogenic acute regulatory protein (STAR) in endometriosis is associated with endometriosis severity. *J Int Med Res* 2009, 37:1389–1395.

48. http://www.genecode.com/map_2210.php.

49. Bulun SE, Cheng YH, Pavone ME, Xue Q, Attar E, Trukhacheva E, Tokunaga H, Utsunomiya H, Yin P, Luo X, et al: Estrogen receptor-b, estrogen receptor-a, and progesterone resistance in endometriosis. *Semin Reprod Med* 2010, 28:36–43.