On P-Essential Submodules

Haithab A. Shahad*, Nuhad Salim Al-Mothafar

Department of Mathematics, College of Education for Science, University of Baghdad

Received: 31/1/2021 Accepted: 26/6/2021

Abstract

Let R be a commutative ring with unity and let A be an R-module. We call an R-submodule H of A as P-essential if $H \cap L \neq 0$ for each nonzero prime submodule P of A and $0 \neq L \subseteq P$. Also, we call an R-module A as P-uniform if every non-zero submodule H of A is P-essential. We give some properties of P-essential and introduce many properties to P-uniform R-module. Also, we give conditions under which a submodule H of a multiplication R-module A becomes P-essential. Moreover, various properties of P-essential submodules are considered.

Keywords: Essential submodules, Uniform modules, Fully prime modules, multiplications modules.

1- Introduction

Let R be a commutative ring with unity and let A be a unitary R-module. A non-zero submodule H of A is called essential if $H \cap L \neq 0$ for each non-zero submodule L of A [1]. A is called uniform if every non-zero submodule H of A is essential [1]. In (2019), Ahmad and Ibrahiem studied a new concept, which is named H-essential submodules [2]. Ali and Nada [3] introduced the concept of semi-essential submodules as a generalization of the class of essential submodules. They stated that a nonzero submodule H of A is called semi-essential, if $H \cap P \neq 0$ for each nonzero prime submodule P of A. In section two, we introduce a P-essential submodule concept as a generalization of the essential submodule concept. We call an R-submodule H of A as P-essential if $H \cap L \neq 0$ for each nonzero prime submodule P of A and $0 \neq L \subseteq P$. Our main concerns in this section are to give characterizations for P-

*Email: hshahad@uowasit.edu.iq
essential submodules and generalize some known properties of essential submodules to P-essential submodules. In section three, we give conditions under which a submodule \(H \) of a faithful multiplication \(R \)-module \(A \) becomes P-essential. In section four, we present the P-uniform module concept as a generalization of the uniform concept. We also generalize a characterization and some properties of uniform modules to P-uniform modules.

2- P-Essential Submodules

Recall that a non-zero submodule \(H \) of an \(R \)-module \(A \) is called essential if \(H \cap L \neq 0 \) for each submodule \(L \) of \(A \) [1].

Definition(2-1)

Let \(A \) be an \(R \)-module and \(P \) be a non-zero prime submodule of \(A \). A submodule \(H \) of \(A \) is said to be P-essential, written as \(\leq_{pe} A \), if for every proper submodule \(L \) of \(P \), then \(H \cap L = 0 \), which implies that \(L = 0 \).

Or, a non-zero submodule \(H \) of \(A \) is called P-essential, if \(H \cap L \neq 0 \) \(\forall \neq L \subseteq P \).

Remarks and Examples(2-2)

1- Every essential submodule is P-essential submodule, but the converse is not true in general.

For example, consider \(A = \mathbb{Z}_{24} \) as \(\mathbb{Z} \)-module, \(\mathbb{Z}_{24} \) is essential submodule of \(A \), but \(\mathbb{Z}_{24} \), since \(\mathbb{Z}_{24} \) are proper submodules of \(\mathbb{Z}_{24} \), but \(\mathbb{Z}_{24} \) are P-essential in \(\mathbb{Z}_{24} \), since \(\mathbb{Z}_{24} \) are not essential in \(\mathbb{Z}_{24} \), since \(\mathbb{Z}_{24} \) are P-essential in \(\mathbb{Z}_{24} \), but \(\mathbb{Z}_{24} \) are not P-essential in \(\mathbb{Z}_{24} \).

2- A submodule of a P-essential submodule needs not to be P-essential.

For example, let \(A = \mathbb{Z}_{24} \) be a \(Z \)-module, \(\mathbb{Z}_{24} \) is P-essential submodule of \(\mathbb{Z}_{24} \), but \(\mathbb{Z}_{24} \) and \(\mathbb{Z}_{24} \) are not P-essential in \(\mathbb{Z}_{24} \).

3- If \(H_1 \) and \(H_2 \) are P-essential submodules of \(A \), then \(H_1 \cap H_2 \) needs not be to P-essential of \(A \).

For example, let \(A = \mathbb{Z}_{24} \) and \(\mathbb{Z}_{24} \) be \(Z \)-module, \(\mathbb{Z}_{24} \) is P-essential submodule of \(\mathbb{Z}_{24} \), but \(\mathbb{Z}_{24} \) is not P-essential of \(\mathbb{Z}_{24} \).

4- The sum of two P-essential submodules of an \(R \)-module \(A \) is also P-essential submodule.

Proof: Let \(A \) be an \(R \)-module and \(L \) and \(K \) be two P-essential submodules of \(A \). Note that \(L \subseteq K \), since \(L \leq_{pe} A \), implies that \(L \cap K \leq_{pe} A \).

6- A semi-essential submodule needs not to be P-essential submodule, as we see in the following example:

Consider \(\mathbb{Z}_{12} \) as \(\mathbb{Z} \)-module, \(\mathbb{Z}_{12} \) is semi-essential [3], but it is not P-essential where \(P = \mathbb{Z}_{12} \) and \(\mathbb{Z}_{12} \cap \mathbb{Z}_{12} = \mathbb{Z}_{12} \), but \(\mathbb{Z}_{12} \cap \mathbb{Z}_{12} = \mathbb{Z}_{12} \).

Proposition (2-3)

Let \(A \) be an \(R \)-module, \(P \) be a prime submodule of \(A \), and \(K \) be any submodule of \(A \). If \(\leq_{pe} A \), then \(K \leq_{pe} A \) if and only if \(K \leq_{e} A \).

Proof: Suppose that \(K \leq_{pe} A \). Let \(P \) be a prime submodule of \(A \) and let \(L \leq P \) such that \(K \cap L = \mathbb{Z} \), implies that \(K \cap (P \cap L) = \mathbb{Z} \). Since \(P \cap L \leq P \) and \(K \leq_{pe} A \), then \(P \cap L = \mathbb{Z} \).

By hypothesis, \(P \leq_{e} A \), thus \(L = \mathbb{Z} \) which implies that \(K \leq_{e} A \). The converse is obvious.

Proposition (2-4)

A non-zero submodule \(K \) of \(A \) is P-essential if and only if for each non-zero submodule \(L \) of a submodule \(P \), \(\exists x \in L \) and \(r \in R \) such that \(0 \neq rx \in K \), where \(P \) is a prime submodule of \(A \). The proof is easy and hence is omitted.

Proposition(2-5)
Let A be an R-module and let H_1, H_2 be submodules of A such that $H_1 \leq H_2$. If H_1 is P-essential submodule of A, then H_2 is a P-essential submodule of A.

Proof

Let P be a prime submodule of A, $0 \neq L \leq P$. By using proposition (2-4), $x \in L, r \in R$. Since $H_1 \leq_{pe} A$, then $0 \neq r x \in H_1 \leq H_2$, implies that $H_2 \leq_{pe} A$.

The converse of prop.(2-5) is not true in general; for example:

Consider \mathbb{Z}_{24} as a \mathbb{Z}-module and $\bar{4}$ is a submodule of $\bar{6}$. By remarks and example (2-2)(3), $\bar{4} \leq_{pe} \mathbb{Z}_{24}$, but $\bar{4} \notin_{pe} \bar{6}$, since $\bar{6} \cap \bar{6} = \{0\}$ and $\bar{4} \neq \{0\}$.

Corollary(2-6)

Let H_1 and H_2 be submodules of A. If $H_1 \cap H_2$ is P-essential submodule of A, then H_1 and H_2 are P-essential.

Proof

By using proposition (2-5), since $H_1 \cap H_2 \leq H_1$ and $H_1 \cap H_2 \leq_{pe} A$, so $H_1 \leq_{pe} A$. In the same way, $H_2 \leq_{pe} A$.

The converse of the previous corollary is not true in general, as shown in remarks and examples(2-2)(5).

Proposition(2-7)

Let A be an R-module and let H_1 and H_2 be submodules of A. If H_1 is an essential submodule of A and H_2 is a P-essential submodule of A, then $H_1 \cap H_2$ is also P-essential submodule of A.

Proof

Let P be prime submodule of A and let $0 \neq L$ submodule of P. Since H_2 is P-essential submodule of A, thus $H_2 \cap L \neq \{0\}$. And since H_1 is an essential submodule of A, then $H_1 \cap (H_2 \cap L) \neq \{0\}$, so $(H_1 \cap H_2) \cap L \neq \{0\}$. This implies that $H_1 \cap H_2$ is P-essential submodule of A.

Proposition(2-8)

Let A and B be R-modules and let $f: A \to B$ be an epimorphism. If K is a P-essential submodule of A, then $f^{-1}(K)$ is a $f^{-1}(P)$-essential of A.

Proof

We know that if P is a prime submodule of B then $f^{-1}(P)$ is a prime submodule of A [4]. Let $0 \neq L \leq f^{-1}(P)$ and $f^{-1}(K) \cap L \neq \{0\}$. To prove that $L = 0$, then $K \cap f(L) \neq \{0\}$.

Since K is P-essential in B and $f(L) \leq P$, then $f(L) = 0$, implies $L \leq f^{-1}(0) = \ker f \leq f^{-1}(K)$. But $f^{-1}(K) \cap L \neq \{0\}$, that is $L \neq 0$. Thus $f^{-1}(K)$ is a $f^{-1}(P)$-essential submodule of A.

Remark(2-9): Let $f: A \to \hat{A}$ be an isomorphism. If $H \leq_{pe} A$, then $f(H) \leq_{pe} \hat{A}$.

Proof: Let P be a prime submodule of A and let L be a non-zero submodule of P. Since f is an epimorphism, then $f^{-1}(L)$ is a submodule of $f^{-1}(P)$ which is prime submodule of A by [4]. But $\leq_{pe} A$, then $H \cap f^{-1}(L) \neq \{0\}$. On the other hand, f is a monomorphism, thus $f(H) \cap L \neq \{0\}$. This completes the proof.

Proposition(2-10)

If K is a submodule of an R-module A and P_1, P_2 are prime submodules of A, such that $0 \leq P_1 \leq P_2$. If $K \leq_{pe} P_1$, then $K \leq_{pe} P_2$.

Proof: Let $L_2 \leq P_2$ such that $K \cap L_2 = \{0\}$. To prove that $L_2 = 0$. $\exists i : P_1 \to P_2$, since $L_2 \leq P_2$, hence $i^{-1}(L_2) \leq P_1$. $i^{-1}(K \cap L_2) = i^{-1}(L_2) = \{0\}$, implies that $\cap i^{-1}(L_2) = \{0\}$.

Since $\leq_{pe} A$, hence $i^{-1}(L_2) = L_2 = \{0\}$.

Proposition(2-11)

Let C, K, P be submodules of an R-module A and P is prime submodule of $A, K \leq C$. $K \leq_{pe} A$ if and only if $K \leq_{(P \cap C)e} A$ and $C \leq_{pe} A$.

4918
Proof: (⇒) Since P is prime in A, $C \leq A$, then $(P \cap C)$ is prime in C [4]. Let $L \leq (P \cap C)$ with $\cap L = \langle 0 \rangle$. To prove that $L = \langle 0 \rangle$, since $L \leq P$, $K \leq pe A$, hence $L = \langle 0 \rangle$. Let $T \leq P$ with $\cap C = \langle 0 \rangle$, implies that $T \cap K = \langle 0 \rangle$ (the hypothesis has been modified in the proposition). Since $\leq pe A$, then $T = 0$.

(\Leftarrow) Let $L \leq P$ such that $L \cap K = \langle 0 \rangle$, then $(L \cap K) \cap C = \langle 0 \rangle$, implies that $(L \cap C) \cap K = \langle 0 \rangle$, $L \cap C \leq P \cap C$ and $K \leq (P \cap C) pe A$, hence $L \cap C = \langle 0 \rangle$. Since $\leq pe A$, then $L = \langle 0 \rangle$, thus $K \leq pe A$.

In the following proposition, we give the transitive property for non-zero P-essential submodules.

Proposition (2-12)

Let A, B, C be R –modules such that $A \leq B \leq C$. If $A \leq pe B$ and $B \leq pe C$, then $A \leq pe C$.

Proof: Let P be a prime submodule of C and let L be a submodule of P such that $A \cap L = 0$. Note that $0 = A \cap L = (A \cap L) \cap B = A \cap (L \cap B)$. If $B \leq L$ then $0 = A \cap (L \cap B) = A \cap B$, hence $A \cap B = 0$, but $A \leq B$, so $A \cap B = A$, which implies that $A=0$. But this is a contradiction. Thus $B \not\leq L$ and $L \cap B \leq P$. But $A \leq pe B$, therefore $L \cap B = 0$, and since $B \leq pe C$, then $L = 0$, that is $A \leq pe C$.

The converse of proposition (2-12) is not true in general, as the following example shows:

Consider Z_{24} as Z-module, the submodule $\langle 6 \rangle$ is P-essential of Z_{24}, by remarks and examples (2-2). But $\langle 6 \rangle > \langle 2 \rangle$ is not P-essential submodule of $\langle 2 \rangle$ where $\langle 2 \rangle \leq Z_{24}$.

Recall that an R-module A is fully prime, if every proper submodule of A is a prime submodule [2].

Proposition (2-13)

Let $A = A_1 \oplus A_2$ be a fully prime R-module where A_1 and A_2 are submodules of A, and let $0 \neq K_1 \leq A_1$ and $0 \neq K_2 \leq A_2$. Then $K_1 \oplus K_2$ is P-essential of $A_1 \oplus A_2$ if and only if K_1 is a P-essential submodule of A_1 and K_2 is a P-essential submodule of A_2.

Proof

(\Rightarrow) Since A is a fully prime module, then by [5], $K_1 \oplus K_2$ is an essential submodule of $A_1 \oplus A_2$ and by [6, proposition (5-20)], K_1 is an essential submodule A_1 and K_2 is an essential submodule of A_2. But since every essential submodule is a P-essential, so we are done.

(\Leftarrow) It follows similarly.

Proposition (2-14)

Let A be an R-module and let H_1 and H_2 be P-essential submodules of A such that $H_1 \cap H_2 \neq 0$, then $H_1 \cap H_2$ is P-essential submodule of A.

Proof

Let P be a prime submodule of A and let $L \leq P$ such that $(H_1 \cap H_2) \cap L = 0$. This implies that $H_2 \cap (H_1 \cap L) = 0$. If $H_1 \leq L$, then we have a contradiction with the assumption, thus $H_1 \not\leq L$. This implies that $H_1 \cap L$ is a submodule of A [5]. Since H_2 is P-essential submodule of A and, by our assumption, $H_1 \cap L$ is a submodule of A, then $H_1 \cap L = 0$. But H_1 is P-essential submodule of A, therefore $L = 0$, hence $H_1 \cap H_2$ is P-essential submodule of A.

3- P-Essential Submodules in Multiplication Modules

An R-module A is called multiplication if every submodule H of A is of the form IA for some ideal I of R [7] and an R-module A is called faithfull if $ann(A) = 0$. In this section, we give a condition under which a submodule H of A is a faithful multiplication R-module that becomes P-essential.

Theorem (3-1)

Let A be a faithful multiplication R-module and H be a submodule of A. Then H is P-essential of A if and only if I is P-essential of R.

4919
Assume that H is P-essential submodule of A, let P be a prime ideal of R and $L \leq P$ such that $I \cap L = 0$. Since A is a faithful multiplication R-module, then $(I \cap L)A = IA \cap LA = 0$. Now, PA is a prime submodule of A, $LA \leq PA$ and $(IA = H$ is P-essential submodule of A), implies that $LA = 0$. Since A is finitely generated faithful multiplication R-module, then $L = 0$. Therefore, I is a P-essential submodule. Conversely, let P be a prime submodule of A and L be a submodule of P such that $H \cap L = 0$. Since A is multiplication, then there exists an ideal B of R such that $L = BA$ [8]. Hence $H \cap L = IA \cap BA = (I \cap BA)A = 0$. But A is faithful, so $I \cap B = 0$. Since I is a P-essential ideal of R, then $B = 0$, therefore $L = BA = 0$, thus H is a P-essential submodule of A.

Theorem (3-2)

Let A be a faithful multiplication R-module. Then H is a P-essential submodule of A if and only if $[H: < x >]$ is a P-essential ideal of R for each $x \in A$.

Proof

Assume that H is P-essential submodule. Since A is faithful multiplication R-module, then $[H: A]$ is a P-essential of R, by Theo.(3-1). But $[H: A] \subseteq [H: < x >]$ for each $x \in A$, so $H = [H: A]A \subseteq [H: < x >]A$, [7]. Hence $[H: < x >]A$ is P-essential by Proposition (2-5), hence $[H: < x >]$ is a P-essential ideal of R by Theorem (3-1).

Proposition (3-3)

Let A be a finitely generated, faithful and multiplication R-module. If $I \leq_{pe} J$, then $IA \leq_{pe} JA$ for every ideals I and J of R.

Proof

Let P be a prime submodule of JA such that $P = KA$ for some prime ideal K of R and $K \subseteq J$, [8] and let L be a submodule of P such that $LA \cap L = 0$. Since A is a multiplication module, then $L = EA$ for some ideal E of R. So $E \cap EA = 0$, implies that $(I \cap E)A = 0$. Since A is a faithfull module, then $E = 0$. Since $EA \leq KA$ and A is finitely generated, faithful and multiplication, so by [8], $E \leq K$. Since I is a P-essential ideal of J, then $E = 0$ and hence $L = 0$. That is, $IA \leq_{pe} JA$.

Proposition (3-4)

Let A be a non-zero multiplication R-module with only one maximal submodule H. If $H \neq 0$, then H is an essential (hence P-essential) submodule of A.

Proof

Let L be a submodule of A with $L \cap H = 0$. If $L = A$, then $H \cap A = 0$, hence $H = 0$, which is a contradiction. Thus L is a proper submodule of A, and since A is a non-zero multiplication module, so by [8], L is contained in some maximal submodule of A. But A has only one maximal submodule, which is H. Thus $L \subseteq H$, implies that $L = 0$, that is H is an essential (hence P-essential) submodule of A.

Recall that a non-zero R-module A is called fully essential if every non-zero semi-essential submodule of A is an essential submodule of A, [5].

Definition (3-5): A non-zero R-module A is called fully P-essential if every non-zero P-essential submodule of A is an essential submodule of A. A ring R is called fully P-essential if every non-zero P-essential ideal I of R is essential ideal of R.

Examples (3-6):

1. Z_9 as a Z-module is fully P-essential Z-module.
2. Z_{12} as a Z-module is not fully P-essential, since the submodule $<3>$ of Z_{12} is P_2-essential where $P_2 = <3>$, but not essential since $<3> \cap <4> = <0>$ but $<4> \neq <0>$.
3. Every fully essential is fully P-essential.

The following theorem gives the hereditary of fully P-essential property between R-module A and the ring R.

4920
Theorem (3-7)

Let A be a non-zero faithful and multiplication R-module, then A is a fully P-essential module if and only if R is a fully P-essential ring.

Proof

(\Rightarrow) Assume that A is a fully P-essential module and let I be a non-zero P-essential ideal of R, then IA is a submodule of A, say H. This implies that H is a P-essential submodule of A. Since $I \neq 0$ and A is faithful module, then $H \neq 0$. But A is a fully P-essential module, thus H is an essential submodule of A. Since A is a faithful and multiplication module, therefore I is an essential ideal of R [8], that is R is a fully P-essential ring.

(\Leftarrow) Suppose that R is a fully P-essential ring and let $0 \neq H \subseteq_{pe} A$. Since A is a multiplication module, then $H = IA$ for some P-essential ideal of R. By assumption, I is an essential ideal of R. But A is faithful and multiplication module, then H is an essential submodule of A [8]. Thus A is fully P-essential module.

4- P-Uniform Modules

Recall that a non-zero R-module A is called uniform if every non-zero submodule of A is essential [9]. Recall that a non-zero R-module A is called semi-uniform if every non-zero submodule of A is semi-essential [10]. In this section, we give a P-uniform module concept as a generalization of the uniform module concept. We also generalize some properties of uniform modules to P-uniform modules.

Definition (4-1)

A non-zero R-module A is called P-uniform if every non-zero submodule of A is P-essential. A ring R is called P-uniform if A is a P-uniform R-module.

Remarks (4-2)

1- Each uniform R-module is P-uniform, but the converse is not true in general. For example, Z_{15} as a Z-module is P-uniform but not uniform since $<3> \cap <5> = <0>$, while $<5> \neq <0>$; see remarks and examples (2,2), (2).

2- Each simple R-module A is P-uniform. But the converse is not true in general. For example, Z_9 is a P-uniform Z-module where $= <3>$, but not simple Z-module.

3- Z_{12} as a Z-module is not P-uniform, where $P = <2>$ is prime submodule of Z_{12}, $<3> \cap <4> = <0>$ and $<4> \subseteq_{pe} <2>$.

4- We can note that a semi-uniform R-module needs not to be P-uniform, as shown in the following example:

The Z-module Z_{36} is semi-uniform [3], but not P_1-uniform and not P_2-uniform, where $P_1 = <2>$, $P_2 = <3>$, since $<18> \cap <12> = <0>$, but $<12> \neq <0>$, as in the following table:

$H \subseteq A$	e^{ss}	$p_2 - e^{ss}$	$p_2 - e^{ss}$	Semi-ess
Z_{26}	\checkmark	\checkmark	\checkmark	\checkmark
(2)	\checkmark	\checkmark	\checkmark	\checkmark
(3)	\times	\checkmark	\times	\checkmark
(4)	\checkmark	\checkmark	\checkmark	\checkmark
(6)	\checkmark	\times	\checkmark	\checkmark
(9)	\times	\times	\times	\checkmark
(12)	\times	\times	\times	\checkmark
(18)	\times	\times	\times	\checkmark

Proposition (4-3)

Let A be an R-module, then A is uniform if and only if A is P-uniform and fully P-essential.

Proof:

(\Rightarrow) It is clear.

(\Leftarrow) Let H be a non-zero submodule of A. Since A is P-uniform module, then $H \subseteq_{pe} A$. But A is fully essential module, then $H \subseteq_e A$, implies that A is uniform module.
Theorem(4-4)
Let \(A \) be a faithful multiplication \(R \)-module, then \(A \) is a \(P \)-uniform \(R \)-module if and only if \(R \) is a \(P \)-uniform ring.

Proof
Suppose that \(A \) is \(P \)-uniform and let \(E \) be a non-zero ideal of \(R \). Thus \(EA \) is \(P \)-essential submodule of \(A \). By theorem (3-1), \(E \) is a \(P \)-essential ideal of \(R \). Conversely, assume that \(R \) is \(P \)-uniform and \(H \) is a submodule of \(A \). Since \(A \) is multiplication, then there exists an ideal \(B \) of \(R \) such that \(H = BA \). But \(R \) is \(P \)-uniform, so \(B \) is \(P \)-essential. Thus \(H \) is \(P \)-essential by theorem(3-1).

Proposition(4-5)
Let \(A_1 \) and \(A_2 \) be two \(R \)-modules and let \(f:A_1 \rightarrow A_2 \) be an epimorphism. Then:
1- If \(A_1 \) is \(P \)-uniform \(R \)-module, then \(A_2 \) is also \(P \)-uniform \(R \)-module.
2- If \(A_2 \) is \(P \)-uniform \(R \)-module for each prime submodule \(P \) of \(A_1 \), then \(A_1 \) is \(f^{-1}(P) \)-uniform \(R \)-module.

Proof
1-Let \(H_2 \) be a non-zero submodule of \(A_2 \), then \(f^{-1}(H_2) \) is a non-zero submodule of \(A_1 \). Since \(A_1 \) is \(P \)-uniform \(R \)-module, thus \(f^{-1}(H_2) \) is a \(P \)-essential submodule of \(A_1 \). By remark(2-9), we get \(f(f^{-1}(H_2)) = H_2 \) is a \(P \)-essential submodule of \(A_2 \). Therefore, \(A_2 \) is \(P \)-uniform \(R \)-module.
2- Let \(H_1 \) be a non-zero submodule of \(A_1 \), then \(f(H_1) \) is a non-zero submodule of \(A_2 \). Since \(A_2 \) is \(P \)-uniform \(R \)-module, then \(f(H_1) \) is a \(P \)-essential submodule of \(A_2 \). By proposition(2-8), we get \(f^{-1}(f(H_1)) = H_1 \) is a \(f^{-1}(P) \)-essential submodule of \(A_1 \). Therefore, \(A_1 \) is \(f^{-1}(P) \)-uniform \(R \)-module.

Proposition(4-6)
Let \(A = A_1 \oplus A_2 \) be \(R \)-module, where \(A_1 \) and \(A_2 \) are \(R \)-modules. If \(A \) is \(P \)-uniform, then \(A_1 \) and \(A_2 \) are \(P \)-uniform modules.

Proof
Let \(H_1 \) be non-zero submodule of \(A_1 \), so \(H_1 \leq A \). But \(A \) is \(P \)-uniform, then \(H_1 \) is a \(P \)-essential submodule of \(A \). Thus, \(H_1 \) is a \(P \)-essential submodule of \(A_1 \). Therefore, \(A_1 \) is \(P \)-uniform \(R \)-module. In a similar way, we can proof that \(A_2 \) is a \(P \)-uniform \(R \)-module.

References
[1] Goodearl , K. R., “ Ring theory “ Marcel Dekker , New York, 1972.
[2] Ahmed ,M.A. and Ibrahim, T.A. (2019) “H-essential submodules and Homessential modules” Iraqi journal of science, vol.60, no. 6, pp. 1381-1386, 2019.
[3] Ali S. Mijbass and Nada K. Abdulla, “ Semi-essential submodule and Semi-uniform modules”. J. of Kirkuk University-Scientific studies, vol. 4, no. 1, pp. 48-58, 2009.
[4] Athab , E.A. “ Prime and semi-prime modules “ M. SC. Thesis, university of Baghdad, 1996.
[5] Ahmed, M.A. and Dakheel. Sh. O. “ S-maximal submodules “ J. of Baghdad for Science, Preprint, 2015.
[6] Anderson, F.W. and Fuller ,K.R. “ Rings and categories of modules “ Springer-Verlag , New York. Academic Press Inc. London, 1992.
[7] Barnard , A., “ Multiplication modules”. J. Algebra, vol. 71, pp. 174-178, 1981.
[8] El-Bast, Z.A. and Smith , P.F.” Multiplication modules”, Comm. Algebra , vol. 16, pp. 755-779, 1988.
[9] Abdullah, N.K. “ Semi-essential submodules and semi-uniform modules” M. Sc. Thesis. University of Tikrit, 2005.
[10] Ahmed ,M.A. “The dual notions of semi-essential submodule and semi-uniform modules” Iraqi Journal of Science, vol.59, no. 4B, pp. 2107-2116, 2018.