INTRODUCTION

One of urgent and relevant challenges, facing humanity, is overcoming the consequences of planet climate changes. At present there are evident changes in the seasonal rainfall distribution in Ukraine’s territory, there are more frequent temperature anomalies, experts forecast a rise in the level of the Sea of Azov and the Black Sea, desertification of southern and south-eastern regions of the country. There is also actual threat of considerable decrease in water resources and deterioration of water quality. Due to these conditions, the issues of ensuring the purity of water sources and their safety for economic use become especially relevant.

Water is known to be one of the main paths of dissemination for many dangerous infectious and invasive diseases of humans and animals. A special place in this group of pathogenic microorganisms is taken by Leptospira interrogans spirochetes (Stimson 1907) Wenyon (1926). A wide range of hosts [1–6] and considerable ecological flexibility conditions pervasive dissemination of these pathogenic spirochetes. The cases of leptospirosis – a disease, caused by L. interrogans, are

© O. M. ZHUKORSKYI, N. P. TKACHUK, O. V. HULAI, V. V. HULAI, 2019

EXPERIMENTAL ECOLOGICAL RESEARCH ON THE RELATIONSHIPS OF PATHOGENIC MICROORGANISMS WITH ALGAE

O. M. Zhukorskyi ¹, N. P. Tkachuk ², O. V. Hulai ³, V. V. Hulai ³

¹ National Academy of Agrarian Sciences of Ukraine, 9, Omelianovycha-Pavlenka Str, Kyiv, Ukraine 01010
² Institute of Agroecology and Environmental Economics, NAAS of Ukraine, 12, Metrologichna Str., Kyiv, Ukraine, 03143
³ Volodymyr Vynnychenko Central Ukrainian State Pedagogical University, 1, Shevchenko Str, Kropyvnytskyi, Ukraine, 25006

E-mail: o_zhukorskiy@ukr.net, ol.gulay42@gmail.com*, tkachuknatalja777@gmail.com, vit.gulay@gmail.com

Received September 17, 2019 / Received October 27, 2019 / Accepted November 19, 2019

Aim. The ecological relationships between Leptospira interrogans spirochetes and Chlamydomonas proteus algae and the response explicitness of individual serological types of leptospires to the allelopathic effect of algae were to be investigated during the experiment. Methods. C. proteus algae monocultures were cultivated on the Fitzgerald’s medium in the Zehnder and Gorham’s modification. Sterile filtrates of their cultures were diluted with the nutrient medium in the ratio of 1 : 10, 1 : 100, 1 : 1,000, 1 : 10,000. Leptospires were cultivated on the Terskih and Korthof’s medium with the addition of 10 % inactivated sheep blood serum. The test samples contained diluted culture filtrates of algae and leptospires. The control samples were the environment for algae and leptospires cultivation. Results. In the samples with the 1 : 10 – 1 : 100 dilution of algae filtrates, the content of leptospires in the test samples was significantly lower than in the control samples, indicating their moderate and weak inhibition. There were no statistically significant differences between spirochete culture densities in the test and control samples with the dilutions of 1 : 1,000–1 : 10,000 algae filtrates. Conclusions. In the experiment, a topical type of ecological interspecies relationships is formed between L. interrogans and green species of C. proteus algae, which is realized through the release of biologically active substances into the habitat by C. proteus. According to the increasing sensitivity to the allelopathic effect of C. proteus, serological types of leptospires formed a row: Tarassovi, Icterohaemorrhagiae, Pomona, Grippotyphosa, Australis, Sejroe, Canicola, Hebdomadis.

Keywords: Leptospira interrogans, Chlamydomonas proteus, ecological relationships.

DOI:
EXPERIMENTAL ECOLOGICAL RESEARCH ON THE RELATIONSHIPS
currently registered in many countries on all the
continents, except for Antarctica [7–16].

The capability of pathogenic leptospires to exist in
fresh water for a long time, forming natural sources
of infection, makes these microorganisms extremely
dangerous, especially in conditions of deficient water
resources.

At present there are no effective mechanisms of re-
covering the territory from \textit{L. interrogans}, except me-
liorative draining measures. However, such radical ac-
tions are not always reasonable both from ecological
and economic standpoint. The biological method of
combating pathogenic microorganisms in environmen-
tal objects opens new perspectives in this direction.
However, its elaboration and application require the
clarification of many issues, related to the existence of
\textit{L. interrogans} in different types of freshwater sources
and the place of these microorganisms in a complicated
network of biotic relationships between hydrobionts.

A considerable part of primary biological products
in freshwater bodies is created by different species of
algae. They are also one of the main sources of biologi-
cally active substances (BAS) for hydrobiocenoses,
ensuring complicated allelopathic interactions between
higher plants, algae and bacterial microflora.

Water bodies are an extremely complicated and dy-
namic environment for \textit{L. interrogans} [15] which cre-
ates considerable methodological difficulties in plan-
ning, conducting experiments, and interpreting the
obtained results \textit{in situ}. The aforementioned and insuf-
icient scientific data create conditions, due to which
the study of ecological relationships between patho-
genic microorganisms (\textit{L. interrogans}) and freshwater
algae should be conducted in \textit{in vitro} experiments un-
der controlled laboratory conditions.

The main aim of this study was to investigate the
specificities of ecological relationships between patho-
genic leptospires and algae – \textit{Chlamydomonas proteus}
Pringsheim 1930, and to compare the response of dif-
f erent serological types of \textit{L. interrogans} to the effect of
BAS, produced by this species of algae. Hopefully, the
obtained data will facilitate more complete investigation
on the specificities of biotic relationships of pathogenic
leptospires in natural water bodies and provide sufficient
data for further elaboration of efficient methods to de-
crease the potential of natural leptospirosis sources.

MATERIALS AND METHODS

Unialgal monocultures of green algae, \textit{C. proteus},
were cultivated in Erlenmeyer flasks of 250 cc on the
Fitzgerald’s medium in the Zehnder and Gorham’s
modification [18] at 22–25 °C and 12-hour-long photo-
period of artificial illumination with 25 klx fluorescent
lamps.

The Terskih and Korthof’s medium, containing 10 %
inactivated sheep blood serum, was used to cultivate
leptospires.

The cultures of spirochetes of 7–14 days with the ac-
cumulation of 50–100 leptospires per vision field, with
characteristic morphology, active mobility and no signs
of autoagglutination were used in the experiment. The
experiments were conducted with cultures of the fol-
lowing strains of leptospires (Table 1), which are most
widespread in Ukraine’s territory, and used as antigens
during laboratory diagnostics of leptospirosis in the se-
rological reaction of microagglutination and lysis.

Culture solutions of algae were passed through sterile
cellulose filters with pore diameter of 0.2 μm (Sartorius,
Germany). This method of sample preparation allowed
removing the symbiotic microflora, notable for \textit{C. pro-
teus} cultures, and preventing the destruction of biologi-
cally active substances (BAS), released by algae.

The experiment, studying the allelopathic effect of
green algae on pathogenic leptospires, simulated the

Table 1. \textit{L. interrogans} spirochete strains, used in the study

Serological group	Serological variant	Strain	Legend
Australis	bratislava	Yez bratislava	Australis
Canicola	canicola	Hond Utrecht IV	Canicola
Grippotyphosa	grippotyphosa	Moskva V	Grippotyphosa
Hebdomadis	kabura	Kabura	Hebdomadis
Icterohaemorrhagiae	copenhageni	M 20	Icterohaemorrhagiae
Pomona	pomona	Pomona	Pomona
Sejroe	pollonica	493 Poland	Sejroe
Tarassovi	tarassovi	Perepelicyn	Tarassovi
conditions of freshwater bodies on the territory of leptospirosis sources. In particular, the gradient of BAS concentration, released by algae in natural conditions, was presented in experimental samples by the following dilutions of C. proteus filtrates – 1 : 10, 1 : 100, 1 : 1,000, and 1 : 10,000. Control samples contained sterile culture Fitzgerald’s medium in the Zehnder and Gorham’s modification.

The samples were introduced the same volume of pathogenic leptospire cultures, here the inoculates of each serological type were taken from one volume. It ensured the same density of leptospires in the experiment and control at the beginning of the experiment. The study was conducted in 40 μm chambers.

The character and explicitness of the effect of green algae, C. proteus, secretions on pathogenic leptospires was evaluated, comparing the content of spirochetes in the experimental and control samples, here the density of cultures in the control was accepted as 100 % [19].

RESEARCH RESULTS

Explicit inhibition of experimental cultures of L. interrogans was observed in the experimental samples, containing cultural filtrates of C. proteus in 1:10 dilution (Table 2). For instance, after 24 h since the beginning of the experiment, the content of spirochetes was determined in the experimental and control samples, using direct calculation in 40 μm chambers.

Using the criteria of estimating the effect of ecological factors on populations (cultures) of microorganisms [19], we would like to note that according to the experiment results, the leptospire cultures of serological types Pomona, Canicola, Hebdomadis, Sejroe, Icterohaemorrhagiae, Grippotyphosa, Australis were exposed to moderate inhibition due to the allelopathic effect of C. proteus. The leptospire cultures of serological type Tarassovi had weak inhibition. According to the increasing sensitivity to the allelopathic effect of C. proteus, serological types of leptospires formed the following row: Tarassovi – 22.0 % (an index of the effect of ecological factor (A), Icterohaemorrhagiae – 29.0 %, Pomona – 29.6 %, Grippotyphosa – 33.6 %, Australis – 35.4 %, Sejroe – 36.2 %, Canicola – 39.0 %, Hebdomadis – 42.2 %.

Lower density of L. interrogans, compared to the control, was noted in another group of experimental samples, containing cultural filtrates of C. proteus in 1 : 100 dilution. For instance, it was determined that the density of leptospire cells in the tests, taken from the experimental samples, was as follows (% from the control): Tarassovi – 89.4 %, Pomona – 86.2 %, Canicola – 86.4 %. The leptospire cultures of different serological variants, ×10⁶/cc

Table 2. The density of L. interrogans cultures in the experiment on the effect of cultural filtrates of C. proteus in 1 : 10 dilution
Density of cultures of different serological variants, ×10⁶/cc
Serological Type

Sejroe
Hebdomadis
Tarassovi
Pomona
Grippotyphosa
Canicola
Icterohaemorrhagiae
Australis
t_c
P

*Note. Hereinafter: E – experiment; C – control; M – mean arithmetic; t – Student’s coefficient; t_c – critical value of parameter t; P – probability rate.
EXPERIMENTAL ECOLOGICAL RESEARCH ON THE RELATIONSHIPS

la – 78.5%, Hebdomadis – 82.8%, Sejroe – 85.3%, Icterohaemorrhagiae – 83.4%, Grippotyphosa – 80.3%, Australis – 76.8% (Table 3).

The analysis of the obtained data demonstrated that the content of cultural filtrates of C. proteus in the medium in 1 : 100 dilution caused weak inhibition of leptospires of serological types – Hebdomadis, Icterohaemorrhagiae, Pomona, Grippotyphosa, Canicola, Sejroe, Australis. Here the index of the effect of ecological factor was as follows: Pomona – 13.8%, Sejroe – 14.7%, Icterohaemorrhagiae – 16.5%, Hebdomadis – 17.2%, Grippotyphosa – 19.7%, Canicola – 21.5%, Australis – 23.2%. At the same time, no explicit effect of experimental algae secretions was determined in the samples with leptospire cultures of serological type Tarassovi.

In the subsequent experiments with an even higher dilution index for cultural filtrates of C. proteus – 1 : 1,000, the difference between the density of leptospire cultures in the experiment and control was as follows: Tarassovi – 92.3%, Pomona – 88.9%, Canicola – 93.8%, Hebdomadis – 89.4%, Sejroe – 90.6%, Icterohaemorrhagiae – 89.3%, Grippotyphosa – 91.8%, Australis – 87.8% (Table 4).

The results demonstrated that according to the accepted criterion of estimating the effect of ecological

| Table 3. The density of L. interrogans cultures in the experiment on the effect of cultural filtrates of C. proteus in 1 : 100 dilution |
|Density of cultures of different serological variants, ×10⁶/cc |
Sejroe	Hebdomadis	Tarassovi	Pomona	Grippotyphosa	Canicola	Icterohaemorrhagiae	Australis
E	C	E	C	E	C	E	C
15.20	16.30	9.60	10.90	7.00	8.40	6.70	7.10
15.50	18.20	10.70	12.40	7.40	8.20	6.60	7.60
13.30	17.50	9.30	11.70	7.70	7.50	6.90	8.00
14.60	15.10	9.90	13.30	7.20	8.60	6.00	7.80
12.90	16.70	10.50	12.10	6.80	7.70	6.40	7.30
M *							
14.30	16.76	10.00	12.08	7.22	8.08	6.52	7.56
15.86	19.76	10.34	13.18	5.76	6.90	7.94	10.34
t	3.33	4.37	3.30	4.65	4.93	5.80	6.41
tcr	3.36; P = 0.01						

| Table 4. The density of L. interrogans cultures in the experiment on the effect of cultural filtrates of C. proteus in 1 : 1,000 dilution |
|Density of cultures of different serological variants, ×10⁶/cc |
Sejroe	Hebdomadis	Tarassovi	Pomona	Grippotyphosa	Canicola	Icterohaemorrhagiae	Australis
E	C	E	C	E	C	E	C
13.70	16.30	11.30	10.90	7.90	8.40	7.20	7.10
15.90	18.20	9.90	12.40	7.60	8.20	6.90	7.60
16.60	17.50	10.50	11.70	6.90	7.50	6.50	8.00
15.50	15.10	11.60	13.30	7.40	8.60	6.30	7.80
14.20	16.70	10.70	12.10	7.50	7.70	6.70	7.30
M *							
15.18	16.76	10.80	12.08	7.46	8.08	6.72	7.56
18.14	19.76	12.36	13.18	6.16	6.90	9.08	10.34
t	2.09	2.58	2.34	3.72	1.88	1.65	4.54
tcr	3.36; P = 0.01						
The density of *L. interrogans* cultures in the experiment on the effect of cultural filtrates of *C. proteus* in 1 : 10,000 dilution

Sejroe	Hebdomadis	Tarassovi	Pomona	Grippotyphosa	Canicola	Icterohaemorrhagiae	Australis
E	C	E	C	E	E	E	E
17.20	16.30	12.50	10.90	8.30	8.40	7.50	7.10
15.70	18.20	11.30	12.40	7.50	8.20	6.70	7.60
16.90	17.50	10.20	11.70	7.70	7.50	7.00	8.00
14.40	15.10	11.20	13.30	8.00	8.60	7.80	7.80
15.30	16.70	11.40	12.10	7.40	7.70	7.10	7.30
				22.20	21.40	14.90	13.30
				22.50	20.90	15.50	12.10
				19.80	19.50	14.80	12.50
				21.20	18.70	12.80	14.30
				18.60	18.30	13.10	13.70
				20.86	19.76	14.22	13.18
				6.98	6.90	10.10	11.20
				10.90	11.70	9.30	9.40
				14.40	17.50	10.90	11.20
				16.90	18.30	10.60	9.90

\[M^*\] 15.90 16.76 11.32 12.08 7.78 8.08 7.22 7.56 20.86 19.76 14.22 13.18 6.98 6.90 9.88 10.34

\[t\] 1.16 1.41 1.13 1.34 0.74 1.56 0.45 0.31

\[t_0 = 3.36; P = 0.01\]

The data, obtained during the experiments of studying the effect of *C. proteus* filtrates in 1 : 10,000 dilution on the cultures of serological groups of leptospires under investigation, demonstrated that there was no statistically reliable difference between the density of *L. interrogans* cells in the experiment and the control (Table 5). Therefore, at this concentration of BAS, secreted by green algae, in the aqueous medium, leptospires were not affected by the allelopathic impact from them.

DISCUSSION

The results of studies demonstrated that the pathogenic spirochetes of *L. interrogans* responded explicitly to the allelopathic effect of green algae *C. proteus* only under sufficiently high content of BAS, secreted by the latter during their existence, in the aqueous medium (1 : 10 – 1 : 100). Similar conditions may occur in natural sources of leptospirosis, water bodies, during a warm season in the period of mass propagation of this type of algae, when the content of BAS, secreted by them, is the highest. As green algae *C. proteus* affect *L. interrogans* spirochetes via the change in characteristics of their existence medium, ecological interspecies relationships between them should be deemed topical. At the same type, it should be noted that leptospire cultures of serological types, used in the studies, demonstrated different sensitivity to the presence of similar concentrations of BAS from algae in the medium. Thus, according to the increasing sensitivity to the allelopathic effect of algae, the investigated serological types formed the following row: Tarassovi, *Icterohaemorrhagiae*, Pomona, Grippotyphosa, Australis, Sejroe, Canicola, Hebdomadis. The mechanisms, conditioning similar differences in the response to ecological factors of different serological groups of leptospires, are yet to be studied in the full detail. However, their adaptive significance was absolutely evident – a complicated intraspecies structure of *L. interrogans* determined wide ecological flexibility of this species, which allows it to exist in different environmental conditions and ensures the resistance to the effect of many ecological factors.

CONCLUSIONS

In the experiment, a topical type of ecological interspecies relationships is formed between *L. interrogans* and green species of *C. proteus* algae, which is realized through the release of biologically active substances into the habitat by *C. proteus*. Explicit inhibition of leptospire cultures under investigation was observed only in the samples with low dilutions of 1 : 10 – 1 : 100 algae filtrates. Pathogenic leptospires practically did not respond to the presence of BAS from algae in the medium under the filtrate dilution indices of 1 : 1,000 – 1 : 10,000. The serological types of leptospires, used in the experiment, demonstrated different sensitivity to the presence of BAS, secreted by *C. proteus*,
Experimental ecological research on the relationships between pathogenic microorganisms and water plants.

Eco-Experimental studies on the relationships development of pathogenic microorganisms with water plants. This study was not financed by any specific grant from financing institutions in the state, commercial or non-commercial sectors. There was no conflict of interests while conducting the investigations and publishing the results.

Logical plasticity of commercial sectors.

Leptospira interrogans is a leptospirosis factor requiring further research.

Logical plasticity of commercial sectors.

Results of experiments on the relationships development of pathogenic microorganisms with water plants.

Key words: Leptospira interrogans, Chlamydomonas proteus, ecological relationships.

 цель. Выяснить в эксперименте эко-экологические связи между спiroхетами Leptospira interrogans и водорослями Chlamydomonas proteus, а также выраженность реакции отдельных серологических типов лептоспир на аллергопатическое влияние водорослей. Методы. Монокультуры водорослей C. proteus выращивали на среде Фитцджеральда в модификации Цендера и Герма. Стерильные фильтраты их культур резервуировали поживным середовищем с содержанием Leptospira interrogans, L. monophaga, L. biflexa, L. sejroe, L. canicola, L. pomona, L. australis, L. hebdomadis.

Выводы. В эксперименте между L. interrogans и водорослью C. proteus формируется топический тип экологических межвидовых связей, который реализуется через выделение последним в среду обитания биологически-активных веществ. За возрастанием чувствительности к аллерго-

Agricultural Science and Practice Vol. 6 No. 3 2019 61
пауческому влиянию C. proteus серологические типы лептоспир образовывают ряд: Tarassovi, Icterohae-mor-rhagiae, Pomona, Grippotyphosa, Australis, Sejroe, Canico-la, Hebdomadis.

Ключевые слова: Leptospira interrogans, Chlamydomonas proteus, экологические взаимосвязи.

СПИСОК ЛИТЕРАТУРЫ
1. Vieira AS, DaAndrea PS, Vilela RDV, Loretto D, Jaeger LH, Carvalho-Costa FA, Lilienbaum W. Pathogenic Leptospira species are widely disseminated among small mammals in Atlantic Forest biome. Transboundary and Emerging Diseases. 2019;66(3):1195–201. doi: 10.1111/tbed.13135.
2. Rockwell KE, Thompson D, Maddox C, Mitchell MA. Blanding’s turtles (Emydoidea blandingii) as a reservoir for Leptospira spp. PLoS One. 2019;14(6):e0210688. doi: 10.1371/journal.pone.0210688.
3. Xiao X, Zhou SH, Jiang N, Tian DZ, Zhou ZM, Zhang M, Ke H, Jiang XC, Lv WL, Gao QH. First record of Leptospira and Blastocystis infections in captive flying squirrels (Trogopterus xanthipes) from Enshi County, China. Acta Tropica. 2019;197:105065. doi: 10.1016/j.actatropica.2019.105065.
4. Marquez A, Ulivieri T, Benoît E, Koddjo A, Lattard V. House Mice as a Real Sanitary Threat of Human and Animal Leptospirosis: Proposal for Integrated Management. Biomed Res. Inter. 2019;2019-ID: 3794876. doi: 10.1155/2019/3794876.
5. Zhang C, Xu J, Zhang T, Qiu H, Li Z, Zhang E, Li S, Chang YF, Guo X, Jiang X, Zhu Y. Genetic characteristics of pathogenic Leptospira in wild small animals and livestock in Jiangxi Province, China, 2002–2015. PLoS Neglected Tropical Diseases. 2019;13(6):e0007513. doi: 10.1371/journal.pntd.0007513.
6. Kumar S, Lata KS, Sharma P, Bhairappanavar S, Soni S, Das J. Inferring pathogen-host interactions between Leptospira interrogans and Homo sapiens using network theory. Scientific Reports. 2019;9(1):1434. doi: 10.1038/s41598-018-38329-1.
7. Hamond C, Silveira C, Buroni F, Suanes A, Nieves C, Salaberry X, Arioz V, Costa RA, Rivero R, Giannitti F, Zarantonello L. Leptospira interrogans serogroup Pomona serovar Kennewicki infection in two sheep flocks with acute leptospirosis in Uruguay. Transbound Emerg Dis. 2019;66(3):1186–94. doi: 10.1111/tbed.13133.
8. Neela VK, Azhari NN, Joseph N, Mimie NP, Ramli SNA, Mustapha NF, Ishak SN, Mohd-Taib FS, Yusof MA, Desa MN, Bashiru G, Sekawi Z. An outbreak of leptospirosis among reserve military recruits, Hulu Perdik, Malaysia. Eur. J. Clin. Microbiol. Infect. Dis. 2019;38(3):523–28. doi: 10.1007/s10096-018-03450-6.
9. Blasdell KR, Morand S, Perera D, Firth C. Association of rodent-borne Leptospira spp. with urban environments in Malaysian Borneo. PLoS Neglected Tropical Diseases. 2019;13(2):e0007141. doi: 10.1371/journal.pntd.0007141.
10. Yatbantoong N, Chaityarat R. Factors Associated with Leptospirosis in Domestic Cattle in Salakphra Wildlife Sanctuary, Thailand. Int. J. Environ. Res. Public Health. 2019;16(6):E1042. doi: 10.3390/ijerph16061042.
11. Rahelinirina S, Bourhy P, Andriamiaramanana F, Garin B, Rajerison M. High Prevalence of Leptospira spp. in Rodents in an Urban Setting in Madagascar. Am. J. Trop. Med. Hyg. 2019;100(5):1079–81. doi: 10.4269/ajtmh.18-0642.
12. Briskin EA, Casanovas-Massana A, Ryff KR, Morales-Estrada S, Hamond C, Perez-Rodriguez NM, Benavidez KM, Weinberger DM, Castro-Arellano I, Wunder EA, Sharp TM, Rivera-Garcia B, Ko AI. Seroprevalence, risk factors, and rodent reservoirs of leptospirosis in an urban community of Puerto Rico, 2015. J. Infect. Dis. 2019;220(9):1489–97. doi: 10.1093/infdis/jiz339.
13. Aziz MA, Aung MS, Paul SK, Ahmed S, Haque N, Roy S, Al Amin M, Paul A, Miah MA, Alam MK, Islam MS, Hossain MA, Kobayashi N. First molecular identification of two Leptospira species (Leptospira interrogans and Leptospira wolfii) in Bangladesh. New Microbes New Infect. 2019;31:100570. doi: 10.1016/j.meninf.2019.100570.
14. Fischer S, Mayer-Scholl A, Immelt C, Spierling NG, Heuser E, Schmidt S, Reil D, Rosenfeld UM, Jacob J, Nichäker K, Ulrich RG. Leptospira Genomospecies and Sequence Type Prevalence in Small Mammal Populations in Germany. Vector Borne Zoonotic Dis. 2018;18(4):188–99. doi: 10.1089/vbz.2017.2140.
15. Dietrich M, Gamard Y, Lagadec E, Ramasindrazana B, Le Minter G, Guernier V, Benlali A, Rocamora G, Markotter W, Goodman SM, Delkagi K, Tortosa P. Biogeography of Leptospira in wild animal communities inhabiting the insular ecosystem of the western Indian Ocean islands and neighboring Africa. Emerg. Microbes Infect. 2018;7(1):57. doi: 10.1038/s41426-018-0059-4.
16. McVeà DA, Himsworth CG, Patrick DM, Lindsay LR, Kosoy M, Kerr T. Exposure to Rats and Rat-Associated Leptospira and Bartonella Species Among People Who Use Drugs in an Impoverished, Inner-City Neighborhood of Vancouver, Canada. Vector Borne Zoonotic Dis. 2018;18(2):82–8. doi: 10.1089/vbz.2017.2179.
17. Casanovas-Massana A, Pedra GG, Wunder EA, Jr Diggie PJ, Begon M, Ko AI. Quantification of Leptospira interrogans Survival in Soil and Water Microcosms. Appl Environ Microbiol. 2018;84(13):e00507-18. doi: 10.1128/AEM.00507-18.
18. Stone S, Adams MS, Stauber JL, Jolley DF, Warne MSJ. Development and application of a multispecies toxicity test with tropical freshwater microalgae. Environ Pollut. 2019:250:97–106. doi: 10.1016/j.envpol.2019.03.058.
19. Pat. No. 94462 Ukraine. MPK G01N 33/48 (2006/01). Method of evaluating the impact of ecological factors on populations (cultures) of microorganisms. O.V. Hulai, O.M. Zhukorskyi, V.I. Hulai, V.V. Hulai, N.P. Tkachuk; applicant and patent owner O.V. Hulai, O.M. Zhukorskyi, V.I. Hulai, V.V. Hulai, N.P. Tkachuk. No. u2014 06645; Pat. No. u2014 06645; appl. 13/06/14; publish. 10/11/14. Bull. No. 21. 4p.