A new simplified method for efficient extraction of solar cells and modules parameters from datasheet information

Fahmi F. MuhammadSharif *

* Department of Physics, Faculty of Science and Health, Koya University, 44023 Koya, Kurdistan Region-F.R., Iraq
Email: fahmi982@gmail.com
Tel.: +9647501168841

Abstract

An accurate and straightforward estimation of solar cells and modules parameters from the manufacturer’s datasheet is essential for the performance assessment, simulation, design, and quality control. In this work, a simple and efficient technique is reported to extract the parameters of solar cells and modules, namely ideality factor (n), series resistance (R_s), shunt resistance (R_{sh}), photocurrent (I_{ph}) and saturation current (I_o), from datasheet information. The method is based on defining the peak position of the function $f(n, R_{sh}) = n (R_{sh,max} - R_{sh})$, at which the five parameters are extracted. It was validated on four different technologies of solar cells and modules, including Poly-Si, Mono-Si, thin film and multijunction. Results showed that a simple and efficient extraction of the parameters can be realized by using this technique compared to that of the reported methods in literature.

Keywords: Solar cell, PV module, parameter extraction, simple approach, datasheet information.

1. Introduction

Solar energy is a promising resource to fulfil the future demand of human on energy owing to its diverse utilization, cleanliness, environmentally friendliness and freely abundancy. The conversion of sunlight energy to electricity is implemented by means of solar cells and modules.
in a technology known as photovoltaic (PV) technology. There are different types of solar
modules available on the market, namely mono-crystalline silicon, multi-crystalline and
amorphous [1-3]. Modeling of the current-voltage \((I-V)\) characteristics of solar modules is
essential for the performance assessment, simulation, design, and quality control [4-7]. This
can only be achieved if the parameters of these devices are accurately determined. Estimating
the parameters of PV modules is also vital to predict the energy yield [8], to build algorithms
for maximum power point trackers (MPPTs) [9,10], to develop plug-in hybrid electric vehicles
(PHEVs) [11], to address the degradation and aging issues in PV devices [12,13] and to
understand the outdoor operation of PV panels in various environmental conditions [14]. The
parameters of solar cells and modules are ideality factor \((n)\), series resistance \((R_s)\), shunt
resistance \((R_{sh})\), photocurrent \((I_{ph})\) and saturation current \((I_o)\). Because these parameters are
highly sensitive to the irradiance, light energy, cells temperature and aging [15-17,5,18-20],
researchers usually face a big challenge in modelling the \(I-V\) characteristics of solar modules
in different environmental conditions.

Along this line, researchers usually depend on two main datasets to determine the parameters
of solar cells and modules. The first dataset is the experimentally measured \(I-V\) data, while the
second dataset is obtained from the datasheet information, which is provided by the
manufacturers of the solar cells and modules. It is known that the parameters of solar modules
can be accurately extracted from the measured \(I-V\) data [21-25]. However, the datasheet
information does not include the measured \(I-V\) data of the module. Alternatively, manufacturers
of solar cells and modules provide a datasheet information, which includes the short circuit
current \((I_{sc})\), open circuit voltage \((V_{oc})\), voltage at maximum power \((V_{m})\), current at maximum
power \((I_{m})\) and temperature coefficients of current, voltage and power at standard test condition
(STC). Consequently, methods that depend on the datasheet information to determine the solar
module parameters are of great importance for the researchers, technicians, end-users and PV
designers in order to assess the solar modules under diverse conditions, thereby predicting the performance of PV systems before their real implementation [26].

The challenge is therefore how one simply and efficiently extract the parameters of solar cells and modules from the datasheet information [27,28]. Researchers proposed different analytical and numerical methods to determine these parameters with the help of single-diode model (SDM) [29-31,28,32,27]. Also, evolutionary and heuristic algorithms were utilized to extract the parameters of solar modules [33-44], but these techniques suffer from a high computational cost and reduced stability. We previously reported two computational methods that can be used to efficiently determine the modules parameters from measured I-V data [21,22]. However, these methods are not applicable to extract the parameters from datasheet information. A review of literature revealed that iterative approaches can be adopted to achieve a simpler estimation of the parameters compared to that of the computational and deterministic methods. For instance, Sera et al. involved R_s, R_{sh} and n iteratively, thereby extracting the rest of parameters [45]. On the other hand, Villalva et al. considered a random value for the ideality factor while iterating the values of R_s and R_{sh} to the point where the simulated and experimental power are coincided at STC [46]. Chaibi et al. reported a simplified method to extract the PV parameters by iterating only the shunt resistance [47]. However, in order to determine the parameters, minimum and maximum R_{sh} values are required to be selected manually based on the type of the investigated solar module technology. We have observed that the accuracy of simulated current is highly sensitive to the values of n and R_s, but less sensitive to the I_{ph}, I_o and R_{sh} [22]. Taking into account the strong dependency of all the parameters on the ideality factor, we came to the hypothesis that iterating the ideality factor (n), in fine-tuned steps, might be helpful in achieving a simpler, more accurate and computationally cost-effective approach to determine the electrical parameters of solar cells and modules using datasheet information only. Therefore, in the current work, a new method is reported to determine the parameters of...
solar cells and modules from the datasheet information. The approach is initialized by a fine-tuned iteration of ideality factor through which all other parameters are extracted without any prior initialization or limitations to the values of R_s and R_{sh}.

2. Methodology

The equation of single-diode model (SDM) used to simulate the I-V characteristic of solar cells is given by:

$$I = I_{ph} - I_o \left[\exp \left(\frac{V + IR_s}{aV_t} \right) - 1 \right] - \frac{(V + IR_s)}{R_{sh}} \quad \ldots \quad \ldots \quad (1)$$

where a is the ideality factor of the solar cell, I_o is the saturation current in dark condition and V_t is the thermal voltage ($k_B T / q$). The k_B is Boltzmann’s constant, T is the cell’s temperature in Kelvin, q is the elementary charge, while R_s and R_{sh} are the series and shunt resistance, respectively. Because PV module is composed of N_s series connected cells, the value of a in Equation 1 is replaced by $n = N_s \times a$ in the subsequent mathematical operations.

Based on the characteristic curve of solar cells, it is possible to derive three formulas from Equation 1, considering the boundary conditions at open circuit voltage (V_{oc}), short circuit current (I_{sc}) and maximum power (P_m) as follows, respectively:

$$0 = I_{ph} + I_o - I_o \exp \left(\frac{V_{oc}}{nV_t} \right) - \frac{V_{oc}}{R_{sh}} \quad \ldots \quad \ldots \quad (2)$$

$$I_{sc} = I_{ph} + I_o - I_o \exp \left(\frac{R_s I_{sc}}{nV_t} \right) - \frac{R_s I_{sc}}{R_{sh}} \quad \ldots \quad \ldots \quad (3)$$

$$I_m = I_{ph} + I_o - I_o \exp \left(\frac{R_s I_m + V_m}{nV_t} \right) - \frac{R_s I_m}{R_{sh}} - \frac{V_m}{R_{sh}} \quad \ldots \quad \ldots \quad (4)$$

Subtracting Equation 2 from 3 and solving for the saturation current (I_o), one can get:

$$I_o = \frac{I_{sc} - \frac{V_{oc}}{R_{sh}} + \frac{R_s}{R_{sh}} I_{sc}}{\exp \left(\frac{V_{oc}}{nV_t} \right) - \exp \left(\frac{R_s I_{sc}}{nV_t} \right)} \quad \ldots \quad \ldots \quad (5)$$
A safe approximation is to neglect \(\exp \left(\frac{R_s I_{sc}}{nV_t} \right) \) due to its very small value \([48,31,49,50]\). Hence, Equation 3 and 5 can be respectively reduced to:

\[
I_{ph} = I_{sc} - I_o + \frac{R_s I_{sc}}{R_{sh}} \quad \ldots \ldots \ldots (6)
\]

\[
I_o = \frac{I_{sc} - \frac{V_{oc}}{R_{sh} + \frac{R_s}{R_{sh}} I_{sc}}}{\exp \left(\frac{V_{oc}}{nV_t} \right)} \quad \ldots \ldots \ldots (7)
\]

It is known that when the internal impedance \((Z_{in})\) of the solar cell is equal to the impedance of the external load \((Z_{out})\), maximum power \((P_m)\) is delivered, that is where:

\[
Z_{in} = Z_{out} = \frac{V_m}{I_m} \quad \ldots \ldots \ldots (8)
\]

Moreover, from the single-diode model, the impedance function can be represented by:

\[
\frac{R_{sh} r_d}{R_{sh} + r_d} + R_s = \frac{V_m}{I_m} \quad \ldots \ldots \ldots (9)
\]

Where \(r_d\) is the dynamic resistance of the diode at \(P_{max}\), which can be determined from the first derivative of the diode voltage with respect to its current as follows:

\[
r_d = \left. \frac{dV_D}{dI_D} \right|_{P_m} = \frac{nV_t}{I_o \exp \left(\frac{R_s I_m + V_m}{nV_t} \right)} \quad \ldots \ldots \ldots (10)
\]

Substituting Equation 10 into 9 and performing some mathematical manipulations, it yields:

\[
I_o \exp \left(\frac{R_s I_m + V_m}{nV_t} \right) = \frac{nV_t (I_m - \frac{V_m}{R_{sh}} + \frac{R_s I_m}{R_{sh}})}{V_m - R_s I_m} \quad \ldots \ldots \ldots (11)
\]

Furthermore, by subtracting Equation 2 from 4 and inserting Equation 7 one can achieve:

\[
I_o \exp \left(\frac{R_s I_m + V_m}{nV_t} \right) = I_{sc} - I_m + \frac{R_s}{R_{sh}} (I_{sc} - I_m) - \frac{V_m}{R_{sh}} \quad \ldots \ldots \ldots (12)
\]

Now, from Equation 11 and 12 an explicit formula for \(R_{sh}\) is obtained:

\[
R_{sh} = \frac{V_m^2 + R_s^2 (I_{sc} I_m - I_m^2) + R_s (nV_t I_m - I_{sc} V_m) - nV_t V_m}{R_s (I_m^2 - I_{sc} I_m) + V_m (I_{sc} - I_m) - nV_t I_m} \quad \ldots \ldots \ldots (13)
\]

Another explicit form of \(R_{sh}\) can be derived from Equation 6 and 4 to achieve:

\[
I_{ph} + I_o = I_{sc} + \frac{R_s I_{sc}}{R_{sh}} = I_m + I_o \exp \left(\frac{R_s I_m + V_m}{nV_t} \right) + \frac{R_s I_m}{R_{sh}} + \frac{V_m}{R_{sh}} \quad \ldots \ldots \ldots (14)
\]
By substituting Equation 7 into Equation 14 and solving for R_{sh}, one can get:

$$R_{sh} = \frac{R_s I_{sc} A - V_{oc} A - R_s I_{sc} + R_s I_m + V_m}{I_{sc} - I_m - I_{sc} A} \ldots \ldots \ldots (15)$$

where $A = \exp\left(\frac{R_s I_m + V_m - V_{oc}}{n V_t}\right)$.

Now, by equating Equation 13 and 15, an implicit form of R_s can be derived, which is:

$$R_s = \frac{V_{oc} V_m (I_{sc} - I_m) + n V_t (I_{sc} V_m - I_m V_{oc}) - V_m^2 I_{sc} + \frac{n V_t V_m (2I_m - I_{sc})}{A}}{I_{sc} I_m (V_{oc} - V_m) - I_m^2 V_{oc}} \ldots \ldots \ldots (16)$$

From Equation 13 and 16, it is obvious that the value of R_s and R_{sh} can be efficiently determined if and only if the ideality factor is accurately identified. A review of literature showed that it is hard to find the accurate value of ideality factor as its value is highly dependent on the parasitic resistances [51,52]. Hence, researchers utilized some approximate equations to determine the value of ideality factor [53-57]. This is ultimately led to inaccurate extraction of the other parameters due to their dependence on the ideality factor. Therefore, in the current work, the value of ideality factor is iterating in fine steps in order to determine the five parameters as accurate as possible, following the detailed procedure which is given in the next subsection.

It is worth to mention that the proposed technique utilizes the main datasheet information provided by the manufacturer, as shown in Table 1. The accuracy and robustness of the proposed method is validated on four different technologies of PV modules, namely mono-crystalline, poly-crystalline, thin film and hybrid/multilayer. One can see that there are three unknown parameters to be determined from Equation 13 and 16, namely n, R_s and R_{sh}. Therefore, the target is to reduce them to two unknown parameters. This is realized by iterating the value of n in Equation 16 and 13 respectively to determine R_s (using fzero function in MATLAB) and R_{sh}. Later on, the values of I_{ph} and I_o can be extracted at the accurate value of n using Equation 6 and 7, respectively.

Table 1. The utilized datasheet information provided by the manufacturer at STC.
An interesting correlation was observed between R_{sh} and n (see Figure 1), from which an empirical formula was derived and used to determine the value of ideality factor and shunt resistance as follows:

$$f(n, R_{sh}) = n(R_{sh, max} - R_{sh}) \quad \ldots \ldots \ldots (17)$$

Where $R_{sh, max}$ is the maximum positive value of shunt resistance over the iterated interval of the ideality factor, where $0 < R_{sh} \leq R_{sh, max}$ is held. It has been found that at the knee point on the curve of R_{sh} versus n, i.e. at the peak value of $f(n, R_{sh})$, as shown in Figure 1 for the representative SM55 PV module, minimum relative error was obtained between the datasheet and calculated currents. Therefore, the values of n and R_{sh} are first extracted at the peak of $f(n, R_{sh})$ and then they are used to determine the other parameters. The implementation steps of the proposed technique are shown in Figure 2.

![Figure 1. Plot of R_{sh} versus n and $f(n, R_{sh})$ for the representative SM55 PV module.](image-url)
3. Results and Discussion

Validation of the proposed method was first performed by extracting the parameters of three PV modules, namely mono-Si (SM55), poly-Si (KC200GT) and thin film (ST40), while the obtained results were compared to that of the datasheet information and those reported in literature using different techniques. By considering the datasheet information shown in Table 1 for each of the modules and a simple iteration of ideality factor, the electrical parameters were determined, as shown in Table 2.
Table 2. Computed parameters using the proposed iterative technique at STC.

PV module (Type)	SM55 (Mono-Si)	KC200GT (Poly-Si)	ST40 (Thin film)
\(n \)	1.256	1.192	1.992
\(R_s (\Omega) \)	0.381	0.212	0.899
\(R_{sh} (\Omega) \)	479.2	388.6	278.2
\(I_o (A) \)	2.816E-8	1.675E-8	6.519E-6
\(I_{ph} (A) \)	3.453	8.184	2.687
Relative error	1.040%	1.87%	2.66%

Consequently, the calculated parameters were employed to simulate the \(I-V \) characteristics for each technology. Later on, the \(I-V \) curves were compared to that extracted from the manufacturer datasheet [5,58] and those reported in literature by iterative methods under the changes of irradiance and temperature [47,59,19,46]. In order to quantitatively investigate the accuracy of the proposed technique, the maximum relative errors between calculated and manufacturer currents were determined and compared to those achieved by other researchers for the PV modules under different irradiance levels, as shown in Table 3. One can notice from the results that the proposed method has performed very well for both mono- and poly-Si PV modules at low and high irradiance levels. Generally, the calculated results well matched with the datasheet results and outperformed those reported in literature for all types of the PV modules, as shown in Figure 2 and Table 3. However, it was somehow weak against the thin film-based PV module (ST40). Comparably, the parameters determined from the methods proposed by El Achouby et al. and Zaimi et al. [19,59] were found not to be applicable for thin film PV modules due to large errors, while they are more accurate for the mono- and poly-Si technologies.
Table 3. Maximum relative error of the proposed method and those reported in literature applied on different PV technologies at temperature 25 °C and varied irradiance.

PV module (Type)	Irradiance (W/m²)	This work	Chaibi et al. [47]		
	200	400	600	800	1000
SM55 (Mono-Si)					
200	1.71%	4.94%	2.31%		
400					
600	1.71%	2.02%			
800	0.44%	0.89%			
1000	1.04%	1.41%			
KC200GT (Poly-Si)					
200	3.97%	4.38%			
400					
600	3.93%	4.19%			
800	1.82%	2.38%			
1000	1.87%	2.19%			
ST40 (Thin film)					
200	2.01%	2.40%			
400					
600	1.24%	0.98%			
800	1.86%	2.13%			
1000	1.66%	1.73%			

![Graph showing the comparison of current (A) against voltage (V) at different irradiance levels for PV modules.](image-url)
Figure 2. The datasheet and simulated I-V curves of the SM55 PV module under (a) uniform change of irradiance and fixed $T = 25\, ^\circ\text{C}$, and (b) uniform change of temperature and $G = 1000\, \text{W/m}^2$.

Figure 3 and 4 show the simulated I-V curves for KC200GT and ST40 PV modules that were produced from the parameter’s estimation by the proposed approach, the method of Chaibi’s et al. and datasheet based I-V. It can be seen that the proposed iterative method is well fitting the measured data at varied irradiance and temperature. Noteworthy, there has been less deviation of the calculated curves from those of the measured ones at low temperatures and high irradiances, implying efficient response of the proposed method compared to those reported in literature.
Figure 3. The datasheet and simulated I-V curves of the KC200GT PV module under (a) uniform change of irradiance and fixed $T = 25 \, \text{°C}$, and (b) uniform change of temperature and $G = 1000 \, \text{W/m}^2$.
Figure 4. The datasheet and simulated I-V curves of the ST40 PV module under (a) uniform change of irradiance and fixed $T = 25 \, ^\circ\text{C}$, and (b) uniform change of temperature and $G = 1000 \, \text{W/m}^2$.

Table 4 shows the maximum relative error between the datasheet and proposed method for different PV technologies at irradiance 100 W/m2 and varied temperature. Compared to the other methods, it is noticeable that the proposed method is performing better in the low temperature range of PV modules. However, at high temperatures the Chaibi’s et al. method is
more efficient. Interestingly, the proposed approach has performed well for thin film PV technology even at relatively high temperatures of about 50 °C.

Table 4. Maximum relative error of the proposed method and those reported in literature applied on different PV technologies at irradiance 100 W/m² and varied temperature.

PV module (Type)	Temperature (°C)	This work	Chaibi et al. [47]
	20	0.64%	1.02%
SM55 (Mono-Si)	40	0.76%	0.78%
	60	2.75%	0.62%
	20	1.87%	2.19%
KC200GT (Poly-Si)	40	2.60%	1.24%
	60	1.02%	1.90%
ST40 (Thin film)	25	3.55%	1.44%
	50	1.14%	1.31%
	75	2.10%	2.39%

To further validate the proposed method, parameters determination was also performed for a hybrid/multijunction PV module, thin triple-junction CTJ30, which consists of three series cells tested at STC [60]. Table 5 includes the datasheet based I-V data, which was extracted by Origin pro digitalize software, and the calculated currents using the proposed method. As such, the electrical parameters of the PV module were determined to be $n = 1.028$, $R_s = 0.055 \ \Omega$, $R_{sh} = 425 \ \Omega$, $I_0 = 2.83E-15 \ \text{A}$ and $I_{ph} = 0.473 \ \text{A}$ with the relative error of about 2.86%. Figure 5 shows a comparison of the calculated I-V curve to that of the datasheet I-V for the CTJ30 PV module investigated at STC. One can see that the simulation result is very well matched with the measured data, where a small deviation can be noticed along the whole dataset except the MPP at which a relatively increased deviation is noticed. Concludingly, the proposed technique is highly effective to determine the parameters of all types of solar cells and modules easily and efficiently by using the datasheet information.
Table 5. Determined parameters of CTJ30 PV module at STC using the proposed technique.

Voltage (V)	Datasheet current (A)	Calculated current (A)	Absolute error
0.000	0.473	0.4730	0.0000
0.139	0.472	0.4728	0.0008
0.297	0.472	0.4727	0.0007
0.445	0.472	0.4726	0.0006
0.577	0.471	0.4724	0.0014
0.722	0.471	0.4723	0.0013
0.880	0.471	0.4721	0.0011
1.022	0.470	0.4720	0.0020
1.189	0.470	0.4718	0.0018
1.344	0.470	0.4717	0.0017
1.489	0.470	0.4715	0.0015
1.640	0.469	0.4714	0.0024
1.779	0.468	0.4712	0.0032
1.940	0.467	0.4708	0.0038
2.078	0.465	0.4694	0.0044
2.204	0.461	0.4644	0.0034
2.314	0.452	0.4487	0.0033
2.385	0.428	0.4223	0.0057
2.420	0.401	0.3997	0.0013
2.458	0.367	0.3637	0.0033
2.484	0.332	0.3297	0.0023
2.504	0.300	0.2969	0.0031
2.520	0.264	0.2658	0.0018
2.539	0.227	0.2223	0.0047
2.552	0.197	0.1880	0.0090
2.561	0.159	0.1618	0.0028
2.574	0.122	0.1203	0.0017
2.587	0.084	0.0741	0.0099
2.600	0.045	0.0229	0.0221
2.610	0.000	-0.020	0.0200

Average relative error 2.86%

Figure 5. The datasheet and simulated I-V curve of the CTJ30 PV module at STC.
In comparison to the reported methods in terms of simplicity, a qualitative assessment was performed considering the required datasheet information as input, the initial values to proceed with the iterations and the applicability of the method to various PV technologies. Table 6 shows the analysis of the investigation, where the proposed approach requires only the iteration of ideality factor with respect to the series and shunt resistances. Besides, it uses a simple mathematical approach to determine the value of ideality factor, while most of the other approaches utilize a complex computation or a reduced equation which leads to underestimate the value of \(n \). In conclusion, the proposed technique can efficiently and simply determine the parameters at different variations of temperature and irradiance.

Table 6: Comparison of the proposed method with other iterative methods reported in literature.

Iterative methods	Required data	Initial values	Complexity	Module technology
Chaibi et al. [47]	\(I_m, V_m, P_m, I_{sc}, V_{oc}, R_{sh} \)	\(R_{sh} \)	Low	Poly-Si, Mono-Si, Thin-film
This work	\(I_m, V_m, I_{sc}, V_{oc}, N_{cell}, V_{th} \)	\(n \)	Very low	Poly-Si, Mono-Si, Thin-film, Hybrid

4. Conclusions

A simple iterative method was successfully implemented on different PV technologies to determine their parameters from datasheet information only. It has been found that with the help of iterating the ideality factor, it is possible to build a fruitful correlation between \(R_{sh} \) and \(n \), which has led to derive an empirical formula through which all the parameters were determined at the peak value of the function. It was seen that the proposed method outperformed the other iterative techniques reported in literature, especially at high irradiances and low temperatures which presented a competitive accuracy despite its simplicity. The proposed technique is highly effective to determine the parameters of all types of solar cells and modules easily and efficiently by using the datasheet information.
Funding statement
This work did not receive a financial support.

Conflicts of interest
The author declares that there is no conflict of interest regarding the publication of this paper.

Author contributions
Conceptualization, Methodology, Formal analysis and investigation, Writing - original draft preparation, Writing - review and editing: Fahmi F. Muhammadsharif

Availability of data and material
The data and material are available within the manuscript.

Compliance with ethical standards
Not applicable

Consent to participate
Not applicable

Consent for Publication
The corresponding author transfers to Springer the non-exclusive publication rights and he warrants that the contribution is original and that he has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors. This transfer of publication rights covers the non-exclusive right to reproduce and
distribute the article, including reprints, translations, photographic reproductions, microform, electronic form (offline, online) or any other reproductions of similar nature.

Acknowledgment

The author should like to thank Assoc. Prof. Dr. Yassine Chaibi at Moroccan School of Engineering Sciences for providing some datasets to validate this work.

References

1. McEvoy AJ, Castaner L, Markvart T (2012) Solar cells: materials, manufacture and operation. Academic Press,

2. Li Z-S, Zhang G-Q, Li D-M, Zhou J, Li L-J, Li L-X (2007) Application and development of solar energy in building industry and its prospects in China. Energy Policy 35 (8):4121-4127

3. Otte K, Makhova L, Braun A, Konovalov I (2006) Flexible Cu (In, Ga) Se 2 thin-film solar cells for space application. Thin Solid Films 511:613-622

4. Maouhoub N (2018) Photovoltaic module parameter estimation using an analytical approach and least squares method. Journal of Computational Electronics. doi:10.1007/s10825-017-1121-5

5. Chaibi Y, Allouhi A, Malvoni M, Salhi M, Saadani R (2019) Solar irradiance and temperature influence on the photovoltaic cell equivalent-circuit models. Solar Energy 188:1102-1110

6. Chen Z, Chen Y, Wu L, Cheng S, Lin P, You L (2019) Accurate modeling of photovoltaic modules using a 1-D deep residual network based on IV characteristics. Energy Conversion and Management 186:168187-

7. Zhang C, Zhang Y, Su J, Gu T, Yang M (2020) Performance prediction of PV modules based on artificial neural network and explicit analytical model. Journal of Renewable and Sustainable Energy 12 (1):013501

8. Müller B, Hardt L, Armbruster A, Kiefer K, Reise C (2016) Yield predictions for photovoltaic power plants: empirical validation, recent advances and remaining uncertainties. Progress in Photovoltaics: Research and Applications 24 (4):570-583

9. Tajuddin M, Arif M, Ayob S, Salam Z (2015) Perturbative methods for maximum power point tracking (MPPT) of photovoltaic (PV) systems: a review. International Journal of Energy Research 39 (9):1153-1178
10. Verma D, Nema S, Shandilya A, Dash SK (2016) Maximum power point tracking (MPPT) techniques: Recapitulation in solar photovoltaic systems. Renewable and Sustainable Energy Reviews 54:1018-1034

11. Hu X, Zou Y, Yang Y (2016) Greener plug-in hybrid electric vehicles incorporating renewable energy and rapid system optimization. Energy 111:971-980

12. Neubauer C, Samieipour A, Oueslati S, Danilson M, Meissner D (2019) Ageing of kesterite solar cells 1: Degradation processes and their influence on solar cell parameters. Thin Solid Films 669:595-599

13. Domanski K, Alharbi EA, Hagfeldt A, Grätzel M, Tress W (2018) Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells. Nature Energy 3 (1):61

14. Gaglia AG, Lykoudis S, Argiriou AA, Balaras CA, Dialynas E (2017) Energy efficiency of PV panels under real outdoor conditions—An experimental assessment in Athens, Greece. Renewable energy 101:236-243

15. Ahmad Z, Touati F, Muhammad FF, Najeeb MA, Shakoor RA (2017) Effect of ambient temperature on the efficiency of the PCPDIB: PC71BM BHJ solar cells. Applied Physics A 123 (7):486. doi:10.1007/s00339-017-1098-8

16. Meneses-Rodríguez D, Horley PP, Gonzalez-Hernandez J, Vorobiev YV, Gorley PN (2005) Photovoltaic solar cells performance at elevated temperatures. Solar energy 78 (2):243-250

17. Muhammad FF, Ketuly KA, Yahya MY (2017) Effect of Thermal Annealing on a Ternary Organic Solar Cell Incorporating Gaq3 Organometallic as a Boosting Acceptor. Journal of Inorganic and Organometallic Polymers and Materials. doi:10.1007/s10904-017-0734-2

18. Anani N, Ibrahim H (2020) Adjusting the Single-Diode Model Parameters of a Photovoltaic Module with Irradiance and Temperature. Energies 13 (12):3226

19. El Achouby H, Zaimi M, Ibral A, Assaid E (2018) New analytical approach for modelling effects of temperature and irradiance on physical parameters of photovoltaic solar module. Energy Conversion and Management 177:258-271

20. Ahmed DR, Mohammed IR, Abdullah HM, Muhammadsharif FF, Sulaiman K, Alsoufi MS, Bawazeer TM (2021) The Correlation of Device Parameters with Illumination Energy to Explore the Performance of a Monocrystalline Silicon Solar Module. Silicon. doi:10.1007/s12633-021-00966-z

21. Muhammad FF, Karim Sangawi AW, Hashim S, Ghoshal S, Abdullah IK, Hameed SS (2019) Simple and efficient estimation of photovoltaic cells and modules parameters using approximation and correction technique. PloS one 14 (5):e0216201
22. Muhammadsharif FF, Hashim S, Hameed SS, Ghoshal S, Abdullah IK, Macdonald J, Yahya MY (2019) Brent’s algorithm based new computational approach for accurate determination of single-diode model parameters to simulate solar cells and modules. Solar Energy 193:782-798

23. Abdulrazzaq AK, Bognár G, Plesz B (2020) Evaluation of different methods for solar cells/modules parameters extraction. Solar Energy 196:183-195

24. Chenche LEP, Mendoza OSH, Bandarra Filho EP (2018) Comparison of four methods for parameter estimation of mono-and multi-junction photovoltaic devices using experimental data. Renewable and Sustainable Energy Reviews 2838-81:2823

25. Waly HM, Azazi HZ, Osheba DS, El-Sabbe AE (2019) Parameters extraction of photovoltaic sources based on experimental data. IET Renewable Power Generation 13 (9):1466-1473

26. Allouhi A, Saadani R, Buker M, Kousksou T, Jamil A, Rahmoune M (2019) Energetic, economic and environmental (3E) analyses and LCOE estimation of three technologies of PV grid-connected systems under different climates. Solar Energy 178:25-36

27. Senturk A, Eke R (2017) A new method to simulate photovoltaic performance of crystalline silicon photovoltaic modules based on datasheet values. Renewable energy 103:58-69

28. Yildiran N, Tacer E (2016) Identification of photovoltaic cell single diode discrete model parameters based on datasheet values. Solar Energy 127183-175:

29. Muhammad FF, Yahya MY, Hameed SS, Aziz F, Sulaiman K, Rasheed MA, Ahmad Z (2017) Employment of single-diode model to elucidate the variations in photovoltaic parameters under different electrical and thermal conditions. PLoS ONE 12 (8):e0182925

30. Orioli A, Di Gangi A (2016) A criterion for rating the usability and accuracy of the one-diode models for photovoltaic modules. Energies 9 (6):427

31. Cubas J, Pindado S, de Manuel C (2014) Explicit expressions for solar panel equivalent circuit parameters based on analytical formulation and the Lambert W-function. Energies 7 (7):4098-4115

32. Pindado S, Cubas J (2017) Simple mathematical approach to solar cell/panel behavior based on datasheet information. Renewable energy 103:729-738

33. Gong W, Cai Z (2013) Parameter extraction of solar cell models using repaired adaptive differential evolution. Solar Energy 94:209-220

34. Ishaque K, Salam Z (2011) An improved modeling method to determine the model parameters of photovoltaic (PV) modules using differential evolution (DE). Solar Energy 85 (9):2349-2359
35. Askarzadeh A, Rezazadeh A (2013) A new heuristic optimization algorithm for modeling of proton exchange membrane fuel cell: bird mating optimizer. International Journal of Energy Research 1204-1196:(10) 37

36. Askarzadeh A, Rezazadeh A (2013) Extraction of maximum power point in solar cells using bird mating optimizer-based parameters identification approach. Solar energy 90:123-133

37. Askarzadeh A, dos Santos Coelho L (2015) Determination of photovoltaic modules parameters at different operating conditions using a novel bird mating optimizer approach. Energy Conversion and Management 89:608-614

38. Jervase JA, Bourdoucen H, Al-Lawati A (2001) Solar cell parameter extraction using genetic algorithms. Measurement Science and Technology 12 (11):1922

39. Zagrouba M, Sellami A, Bouaicha M, Ksouri M (2010) Identification of PV solar cells and modules parameters using the genetic algorithms: Application to maximum power extraction. Solar energy 84 (5):860-866

40. Oliva D, Cuevas E, Pajares G (2014) Parameter identification of solar cells using artificial bee colony optimization. Energy 72:93-102

41. Ye M, Wang X, Xu Y (2009) Parameter extraction of solar cells using particle swarm optimization. Journal of Applied Physics 105 (9):094502

42. Yeh W-C (2009) A two-stage discrete particle swarm optimization for the problem of multiple multi-level redundancy allocation in series systems. Expert Systems with Applications 36 (5):9192-9200

43. Yousri D, Rezk H, Fathy A (2020) Identifying the parameters of different configurations of photovoltaic models based on recent artificial ecosystem-based optimization approach. International Journal of Energy Research

44. Zhang Y, Ma M, Jin Z (2020) Backtracking search algorithm with competitive learning for identification of unknown parameters of photovoltaic systems. Expert Systems with Applications 160:113750

45. Sera D, Teodorescu R, Rodriguez P PV panel model based on datasheet values. In: 2007 IEEE international symposium on industrial electronics, 2007. IEEE, pp 2392-2396

46. Villalva MG, Gazoli JR, Ruppert Filho E (2009) Comprehensive approach to modeling and simulation of photovoltaic arrays. IEEE Transactions on power electronics 24 (5):1198-1208

47. Chaibi Y, Allouhi A, Salhi M (2020) A simple iterative method to determine the electrical parameters of photovoltaic cell. Journal of Cleaner Production:122363
48. Lineykin S, Averbukh M, Kuperman A (2014) An improved approach to extract the single-diode equivalent circuit parameters of a photovoltaic cell/panel. Renewable and Sustainable Energy Reviews 30:282-289

49. Zhang C, Zhang J, Hao Y, Lin Z, Zhu C (2011) A simple and efficient solar cell parameter extraction method from a single current-voltage curve. Journal of applied physics 110 (6):064504

50. Tong NT, Pora W (2016) A parameter extraction technique exploiting intrinsic properties of solar cells. Applied energy 176:104-115

51. da Luz CMA, Tofoli FL, dos Santos Vicente P, Vicente EM (2018) Assessment of the ideality factor on the performance of photovoltaic modules. Energy Conversion and Management 167:63-69

52. Yordanov GH, Midtgård O-M, Saetre TO Ideality factor behavior between the maximum power point and open circuit. In: 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), 2013. IEEE, pp 0729-0733

53. Maouhoub N (2018) Photovoltaic module parameter estimation using an analytical approach and least squares method. Journal of Computational Electronics:1-7

54. Ulapane NN, Dhanapala CH, Wickramasinghe SM, Abeyratne SG, Rathnayake N, Binduahewa PJ Extraction of parameters for simulating photovoltaic panels. In: 2011 6th International Conference on Industrial and Information Systems, 2011. IEEE, pp 539-544

55. Shinong W, Qianlong M, Jie X, Yuan G, Shilin L (2020) An improved mathematical model of photovoltaic cells based on datasheet information. Solar Energy 199:437-446

56. Cuce E, Cuce PM, Karakas IH, Bali T (2017) An accurate model for photovoltaic (PV) modules to determine electrical characteristics and thermodynamic performance parameters. Energy Conversion and Management 146:205-216

57. Gulkowski S, Diez JVM, Tejero JA, Nofuentes G (2019) Computational modeling and experimental analysis of heterojunction with intrinsic thin-layer photovoltaic module under different environmental conditions. Energy 172:380-390

58. Chaibi Y, Malvoni M, Allouhi A, Mohamed S (2019) Data on the I–V characteristics related to the SM55 monocry stalline PV module at various solar irradiance and temperatures. Data in brief 26

59. Zaimi M, El Achouchy H, Ibral A, Assaid E (2019) Determining combined effects of solar radiation and panel junction temperature on all model-parameters to forecast peak power and photovoltaic yield of solar panel under non-standard conditions. Solar Energy 191:341-359

60. CESI (2020) Thin Triple-Junction Solar Cell for Space Applications (CTJ30 – Thin). https://www.cesi.it/app/uploads/2020/03/Datasheet-CTJ30-Thin.pdf