Some effectivity results over primitive divisors of elliptic divisibility sequences

Matteo Verzobio

Abstract

Let P be a non-torsion point on an elliptic curve in minimal form defined over a number field and consider B_n the sequence of the denominators of $x(nP)$. We prove that every term of the sequence of the B_n has a primitive divisor for n greater than an effectively computable constant.

1 Introduction

Let E be an elliptic curve, in minimal form, defined by the equation

$$y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6,$$

with the coefficients in a number field K. Take $P \in E(K)$ a non-torsion point. Let us define

$$(x(nP)) = \frac{A_n}{B_n}$$

with A_n and B_n two relatively prime integral ideals. We want to understand when a term of the sequence $\{B_n\}_{n>0}$ has a primitive divisor, i.e., when there exists a prime ideal p such that

$$p \nmid B_1B_2\cdots B_{n-1} \text{ but } p \mid B_n.$$

In [4], Silverman proved that if E is defined over \mathbb{Q}, then B_n has not a primitive divisors for n large enough. This result was generalized for every number field K in [1]. For some class of curves there is some effective results, for example in [2] it was proved that if E is defined over \mathbb{Q} and $E(\mathbb{Q})[2]$ is not trivial, then B_n has a primitive divisor for every n even and bigger than an effective computable constant. We will generalize these results.

Theorem 1. There exists a constant $K(E, P)$, effectively computable, such that B_n has a primitive divisor for $n > K(E, P)$. The constant can be written as

$$K(E, P) := \max\{H(P)^{1/[K:\mathbb{Q}]}, K_E\},$$

with K_E depending only on E.

1
2 Preliminaries

Let M_K be the set of all places of K, take $\nu \in M_K$ and $|\cdot|_{\nu}$ be the absolute value associated to the valuation ν, normalized as in [5, VIII.5]. Let $D = [K : \mathbb{Q}]$ and n_{ν} be the degree of the local extension K_{ν}/\mathbb{Q}_{ν}. Given $x \in K^*$, define

$$h_{\nu}(x) := \max\{0, \log |x|_{\nu}\}$$

and

$$h(x) := \frac{1}{[K : \mathbb{Q}]} \sum_{\nu \in M_K} n_{\nu} h_{\nu}(x).$$

Moreover, for every point $R \neq O$ of the elliptic curve, we define

$$h_{\nu}(R) := h_{\nu}(x(R))$$

and the height of the point as

$$h(R) := h(x(R)).$$

So,

$$h(R) = \frac{1}{[K : \mathbb{Q}]} \sum_{\nu \in M_K} n_{\nu} h_{\nu}(R).$$

Given a point R in $E(K)$, we define the canonical height as in [5, Proposition VIII.9.1], i.e.

$$\hat{h}(R) = \lim_{N \to \infty} 4^{-N} h(2^N R).$$

First of all, we recall the properties of the height and of the canonical height that will be necessary in this paper. For the details see [5, Chapter VIII].

- There exists an effectively computable constant C_E such that, for every $R \in E(K)$,

 $$|h(R) - \hat{h}(R)| \leq C_E.$$

- The canonical height is quadratic, i.e.

 $$\hat{h}(nR) = n^2 \hat{h}(R)$$

 for every R in $E(K)$.

- For every non-torsion point $R \in E(K)$,

 $$\hat{h}(R) > 0.$$

The minimum of the canonical height for non-torsion points exists and it is effectively computable.
Take \(p \) a prime over a valuation \(\nu \in M^0_K \), that is the set of finite valuations. Given a point \(Q \) in \(E(K) \), it is easy to show that \(Q \) reduces to the identity modulo \(p \) if and only if \(\nu(x(Q)) < 0 \). The group of points of \(E(K_p) \) that reduce to the identity modulo \(p \) is a group that is isomorphic to a formal group, as proved in [3] Proposition VII.2.2]. Let \(Q \) be a point in this group and then, using the equation defining the elliptic curve, it is easy to show that \(3\nu(x(Q)) = 2\nu(y(Q)) \) and therefore

\[
2\nu\left(\frac{x(Q)}{y(Q)}\right) = -\nu(x(Q)) > 0.
\]

We want to use the work in [5].

Theorem 2. [6] Lemma 10] Take \(\nu \in M^0_K \), let \(p \) be the prime associated to \(\nu \) and \(p = p \cap \mathbb{Z} \). Suppose \(\nu(x(Q)) < 0 \). Define \(z = x(Q)/y(Q) \) and so \(\nu(z) > 0 \). Put \([n]z = x(nQ)/y(nQ) \). There exist \(b, j, h \) and \(w \) in \(\mathbb{Z}^0 \cup \{ \infty \} \), depending on \(E, \nu \) and \(Q \), such that

\[
\nu([n]z) = \begin{cases}
2^j \nu(z) + \frac{b^j-1}{b-1}h + \nu((n) - j\nu(p) + w & \text{if } \nu(n) j\nu(p) + \frac{b^{\nu(n)/\nu(p)}-1}{b-1}h & \text{if } \nu(n) = j\nu(p).
\end{cases}
\]

(1)

In particular, if \(\nu \nmid 2 \) and \(\nu \) does not ramify, then

\[
\nu([n]z) = \nu(z) + \nu(n).
\]

Proposition 3. Take \(\nu \in M^0_K \) and \(q \) a rational prime. Suppose \(\nu(x(\frac{n}{q}P)) < 0 \). Then,

\[
h_\nu(nP) - h_\nu\left(\frac{n}{q}P\right) \leq \begin{cases}
2h_\nu(q) & \text{or} \\
\frac{2h_\nu(q)}{C} & \text{or}
\end{cases}
\]

with \(C \) a constant that can be written in the form \(C = \hat{h}(P)D_1 + D_2 \), with \(D_1 \) and \(D_2 \) that depend only on \(E \) and \(K \). The second case can happen only if \(\nu \) is unramified or divides \(2 \).

Proof. Let \(S \) be the set of finite absolute value such that \(\nu \mid 2 \) or \(\nu \) ramifies. Observe that, if \(\nu(x(Q)) < 0 \), then

\[
h_\nu(x(Q)) = \log |x(Q)|_\nu = -2\log \left|\frac{x(Q)}{y(Q)}\right|_\nu = -2\log |z(Q)|_\nu.
\]

Suppose \(\nu \) finite and not in \(S \). So,

\[
h_\nu(x(nP)) = -2\log |z(nP)|_\nu
\]

\[
= -2\log \left|z\left(\frac{n}{q}P\right)\right|_\nu - 2\log |q|_\nu
\]

\[
= h_\nu\left(\frac{n}{q}P\right) + 2h_\nu(q).
\]

3
Suppose now $\nu \in S$. Let n_p be the smallest integer such that $n_p P$ reduces to the identity modulo p. Put $z' = [n_p]z$ and $n/n_p = n'$. We want to study $\nu([n']z')$.

Suppose $\nu(n'/q) \leq j\nu(p)$. Therefore,

$$\nu([n]z) = \nu([n']z') \leq \nu([p^j+1]z')$$

and thus

$$h_\nu(nP) \leq h_\nu([p^j+1]n_p P) \leq h(p^j+1)n_p P \leq (p^j+1)n_p 2^j h(P) + C_E.$$

Using the definition of j in [6, Lemma 10], it is easy to show that $j \leq \log_2 D$ and so p^j+1n_p can be bounded by a constant depending only on E and K. If instead $\nu(n'/q) > j\nu(p)$, then

$$\nu([n]z) - \nu([n/q]z) = \nu([n']z') - \nu([n'/q]z') = \nu(q)$$

and we conclude as in the first case.

Define

$$\rho(n) = \sum_{p \mid n} \frac{1}{p^2}$$

and $\omega(n)$ as the number of prime divisors of n. It is easy to prove, by direct computation,

$$\rho(n) \leq \sum_{p \text{ prime}} \frac{1}{p^2} < \frac{1}{2}.$$

Lemma 4. If B_n has not a primitive divisor, then there exists an immersion $K \hookrightarrow \mathbb{C}$ such that

$$\log |x(nP)| \geq \hat{h}(P)n^2(1 - \rho(n)) - 2\log n - C_E(\omega(n) + 1) - \#SC$$

where with $|x(nP)|$ we mean the absolute value in the immersion.

Proof. Suppose B_n has not a primitive divisor and take ν finite. We know that, if $h_\nu(nP) > 0$, then $h_\nu(n/q_\nu P) > 0$ for some prime q_ν. So,

$$\sum_{\nu | \infty} n_\nu \nu(nP) = \sum_{\nu \in S} n_\nu h_\nu(nP) + \sum_{\nu \in M_k \setminus S} n_\nu h_\nu(nP)$$

$$\leq \sum_{\nu \in M_k \setminus S} n_\nu h_\nu(n/q_\nu P) + 2n_\nu h_\nu(q_\nu) +$$

$$+ \sum_{\nu \in S} n_\nu h_\nu(n/q_\nu P) + 2n_\nu h_\nu(q_\nu) + DC$$

$$\leq D\#SC + \sum_{q \mid n} Dh(n/q P) + 2Dh(q).$$

4
Thus,

\[
\frac{1}{[K : \mathbb{Q}]} \sum_{\nu | \infty} n_\nu h_\nu(nP) = \hat{h}(nP) - \frac{1}{[K : \mathbb{Q}]} \sum_{\nu | \infty} n_\nu h_\nu(nP) \\
\geq n^2 \hat{h}(P) - C_E - 2h(n) - \sum_{q | n} \left(\hat{h}(n/qP) + C_E \right) - \#SC \\
\geq \hat{h}(P)n^2(1 - \rho(n)) - 2\log n - C_E(\omega(n) + 1) - \#SC.
\]

Since \(h_\nu(nP) \geq 0 \) for all \(\nu \) and \(\sum_{\nu | \infty} n_\nu = D \), then at least one of the \(h_\nu(nP) \), for \(\nu | \infty \), is bigger than

\[
\hat{h}(P)n^2(1 - \rho(n)) - 2\log n - C_E(\omega(n) + 1) - \#SC.
\]

Now, we briefly recall the properties of the complex component of \(E \). For the details see [5, Chapter VI]. There is an isomorphism \(\phi : \mathbb{C}/\Lambda \rightarrow E(\mathbb{C}) \) for \(\Lambda \) a lattice with

\[
x(\phi(z)) = \varphi(z) := \frac{1}{z^2} + \sum_{\omega \in \Lambda \setminus \{0\}} \frac{1}{(z - \omega)^2} + \frac{1}{\omega^2}.
\]

We will assume that the lattice \(\Lambda \) is generated by 1 and a complex number \(\tau \). Define \(\Lambda_1 \) as the set of points \(w \) of \(\mathbb{C} \) such that 0 is the element of \(\Lambda \) nearest to \(w \). If \(z \in \Lambda_1 \), then it is easy to show that there is an effectively computable constant \(C_1 \geq 1 \), depending only on \(E \), such that

\[
\left| \sum_{\omega \in \Lambda \setminus \{0\}} \frac{1}{(z - \omega)^2} + \frac{1}{\omega^2} \right| \leq C_1.
\]

3 Proof of the theorem

Proof of Theorem Suppose that \(B_n \) has not a primitive divisor. Assume \(n \geq \max\{70000, D\} \). We take the immersion \(K \hookrightarrow \mathbb{C} \) such that it holds the inequality of Lemma [4]. With \(|\cdot| \) we denote the absolute value relative to the immersion. Consider the isomorphism \(\mathbb{C}/\Lambda \cong E(\mathbb{C}) \) as defined at the end of the previous section and take \(z \in \Lambda_1 \) such that \(\phi(z) = P \). If \(|x(nP)| < 2C_1 \), then

\[
\log 2C_1 \geq \log |x(nP)| \\
\geq \hat{h}(P)n^2(1 - \rho(n)) - 2\log n - C_E(\omega(n) + 1) - \#SC.
\]
Assume now $|x(nP)| \geq 2C_1$ and let δ be the n-torsion point of C/Λ nearest to z. Then,

$$|nz - n\delta| \leq \frac{1}{\sqrt{|x(nP)| - C_1}}$$

since $n(z - \delta) \in \Lambda_1$. Therefore,

$$|z - \delta|^2 \leq \frac{1}{n^2(|x(nP)| - C_1)} \leq \frac{1}{|x(nP)|}.$$

We want to apply the work in [3].

Theorem 5 (Corollary 2.16, [3]). Suppose that Λ is generated by 1 and τ. There exist two effective constants K_1 and K_2, depending only on E with the following properties. Let $\log V_1 := \max\{K_1, h(P)\}$ and $\log V_2 = K_1$. Fix $n \in \mathbb{N}$ such that $\log n > \max\{\log V_1, \log V_2\}$/D. For all integers $0 \leq m_1, n_1, m_2, n_2 \leq n$ with $n_1, n_2 \neq 0$ we have

$$\log |z - \frac{m_1}{n_1}\tau - \frac{m_2}{n_2}| > -K_2D^6(\log n + \log D)(\log \log n + 1 + \log D)^3 \log V_1 \log V_2$$

where $\phi(z) = P$.

We want to apply this theorem to our case. Observe that δ is in the form $\frac{m_1}{n_1}\tau + \frac{m_2}{n_2}$. So,

$$\log |z - \delta| \geq -K_2D^6(\log n + \log D)(\log \log n + 1 + \log D)^3 \log V_1 \log V_2$$

and then

$$\hat{h}(P)n^2(1 - \rho(n)) - 2\log n - C_E(\omega(n) + 1) - #SC \leq \log |x(nP)|$$

$$\leq -2\log |z - \delta| \leq 2K_2D^6(\log n + \log D)(\log \log n + 1 + \log D)^3 \log V_1 \log V_2.$$

As we will show, this inequality holds only for n small, since the LHS growth as n^2 and the RHS is logarithmic. Observe that $\omega(n) \leq \log_2 n$ and $(1 - \rho(n)) > 0.5$. Since $n > \max\{70000, D\}$, then

$$(\log n + \log D)(\log \log n + 1 + \log D)^3 \leq n.$$

Therefore, the inequality could hold only for

$$n < \frac{1}{(1 - \rho(n))n\hat{h}(P)} \left(2\log n + C_E(\omega(n) + 1) + #SC + 2K_2D^6(\log n + \log D)(\log \log n + 1 + \log D)^3 \log V_1 \log V_2\right)$$

$$< \frac{2}{\hat{h}(P)} \left(2C_E + 2 + 2D^6K_2 \log V_1 \log V_2 + #SC\right).$$
If $|x(nP)| \leq 2C_1$, then, proceeding as before, B_n can have a primitive divisor only for
\[
 n < \frac{2}{h(P)} \left(2C_E + 2 + 2 \log C_1 + \#SC \right).
\]
The constant K_2 is the constant C_4 of [Corollary 2.16, [3]] and it is independent from E. The constant K_1 can be taken as
\[
 K_1 := (\max_{z \in \Lambda_1} |z|)^2
\]
and let
\[
 J = \min_{R \in E(\mathbb{Q}) \setminus E_{\text{tor}}(\mathbb{Q})} \hat{h}(R).
\]
Observe that
\[
 \frac{h(P)}{\hat{h}(P)} \leq \frac{\hat{h}(P) + C_E}{\hat{h}(P)} \leq 1 + \frac{C_E}{J}.
\]
Thus, both the previous inequalities can hold only for
\[
 n \leq \frac{2}{J} \left(2C_E + 2 + 2D^6K_2K_1^2(J + C_E) + \#SD_1 + \#SJD_2 + \log 2C_1 \right) := C_5.
\]
Observe that C_5 depends only on E. So, B_n has a primitive divisor only for
\[
 n \leq \max \left\{ C_5, 70000, D, V_1^{1/D}, V_2^{1/D} \right\}.
\]
The constant is effectively computable since every constant involved is effective. We conclude using the definitions of V_1 and V_2. \qed

References

[1] J. Cheon and S. Hahn. The orders of the reductions of a point in the Mordell-Weil group of an elliptic curve. *Acta Arith.*, 88(3):219–222, 1999.

[2] Graham Everest, Gerard Mclaren, and Thomas Ward. Primitive divisors of elliptic divisibility sequences. *J. Number Theory*, 118(1):71–89, 2006.

[3] Noriko Hirata-Kohno. Formes linéaires de logarithmes de points algébriques sur les groupes algébriques. *Invent. Math.*, 104(2):401–433, 1991.

[4] Joseph H. Silverman. Wieferich’s criterion and the abc-conjecture. *J. Number Theory*, 30(2):226–237, 1988.

[5] Joseph H. Silverman. *The arithmetic of elliptic curves*, volume 106 of *Graduate Texts in Mathematics*. Springer, Dordrecht, second edition, 2009.
[6] Katherine E. Stange. Integral points on elliptic curves and explicit valuations of division polynomials. *Canad. J. Math.*, 68(5):1120–1158, 2016.

UNIVERSITÀ DI PISA, DIPARTIMENTO DI MATEMATICA, LARGO BRUNO PONTECORVO 5, PISA, ITALY

E-mail address: verzobio@student.dm.unipi.it