Pitfalls in diagnosis with the use of circulating tumor-derived epidermal growth factor receptor mutations in lung cancer harboring pretreatment T790M

Daiki Ogawara¹, Hiroshi Soda¹, Takayuki Suyama¹, Masataka Yoshida³, Tatsuhiko Harada¹, Yuichi Fukuda¹ & Hiroshi Mukae²

1 Department of Respiratory Medicine, Sasebo City General Hospital, Nagasaki, Japan
2 Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan

Keywords
Circulating tumor DNA; liquid biopsy; lung cancer; pretreatment T790M.

Abstract
The circulating tumor DNA (ctDNA) assay has recently been approved for the selection of EGFR-tyrosine kinase inhibitors as first-line treatment in lung cancer. However, it remains to be determined whether this assay can detect all complex EGFR mutations within a single tumor. We report a case of an elderly woman with stage IV lung adenocarcinoma, in which EGFR mutation assays detected L858R and pretreatment T790M from a tissue biopsy. In contrast, the circulating tumor DNA assay detected L858R, but not pretreatment T790M in the plasma, regardless of the fact that similar amounts of each mutation were present in the biopsy specimen. Treatment with afatinib was not effective, but subsequent treatment with osimertinib remarkably regressed the tumor. Our findings indicate that physicians should accurately evaluate EGFR-tyrosine kinase inhibitor-insensitive mutations using tissue samples in the first-line setting, even when L858R and exon 19 deletions are detected in the plasma.

Introduction
Both the therascreen (Qiagen, Hilden, Germany) and cobas (Roche, Basel, Switzerland) assays used to determine circulating tumor DNA (ctDNA) of L858R and exon 19 deletions have been approved for use with first-generation EGFR-tyrosine kinase inhibitors (TKIs) in the European Union and the United States. Multiple EGFR mutations are sometimes observed in a single tumor.¹ ² Mutations resistant to EGFR-TKIs, such as T790M and exon 20 insertions, are in part derived from pre-existing subclones before treatment.³ The anti-tumor activity of EGFR-TKIs varies with the kind of EGFR mutation, and the results of ctDNA assay may thus influence the choice of EGFR-TKI.⁴ However, whether this assay can detect all components of complex EGFR mutations in the same tumor is undetermined. We herein report a case of lung adenocarcinoma containing both L858R and pretreatment T790M, known as de novo T790M, in which the ctDNA assay detected only L858R. Additionally, treatment with the third-generation EGFR-TKI osimertinib, but not the second-generation EGFR-TKI afatinib, regressed this lung cancer containing pretreatment T790M.

Case report
A 65-year-old, never-smoking woman was referred to our hospital for evaluation of a lung nodule that was detected on chest radiography. A chest computed tomography scan showed a 34 mm solid nodule in the right lower lobe with multiple small nodules in both lungs, evidence of lymphangitic carcinomatosis in the right lower lobe, and enlargement of the subcarinal and left supraclavicular lymph nodes (Fig 1a,b). Transbronchial biopsy revealed poorly differentiated adenocarcinoma, with immunostaining positive for TTF-1 and negative for P40. She was eventually diagnosed with stage IV (cT4N3M1a) lung adenocarcinoma with pulmonary metastases by systemic survey including positron emission tomography and magnetic resonance imaging. The cobas EGFR mutation test v2 conducted using the biopsy specimen detected the L858R mutation and the...
pretreatment T790M mutation, whereas the same test conducted using the plasma sample detected only L858R (Table 1). In order to semi-quantitate the amount of each EGFR mutation in the tissue specimen, the PCR-invader method (BML Inc., Tokyo, Japan) was used. As previously reported, the amount of each EGFR mutation was estimated as follows: (fluorescence of the specimen with detection probe for mutation sequences) − (fluorescence of the normal control with the same probe) × 2. The relative fluorescent intensity was 3.3 × 10^4 units for L858R and 2.8 × 10^4 units for pretreatment T790M, suggesting that the amount of each mutation did not differ considerably. The patient received afatinib at a dose of 40 mg once daily. However, the lung lesions enlarged, and new lung metastases appeared four weeks after the initiation of therapy (Fig 1c,d). Serum cytokeratin 19 fragment (CYFRA21-1) levels increased from 3.6 ng/mL to 5.4 ng/mL (reference value < 3.5 ng/mL). The treatment regimen was thus subsequently changed to osimertinib, at a dose of 80 mg once daily. The tumor began to reduce in size one week later, and a partial response was achieved six weeks later. The serum CYFRA 21-1 levels decreased to 1.3 ng/mL. The patient’s lung cancer has remained progression-free for seven months (Fig 1e,f). Written informed consent for the publication of this case report was obtained from the patient.

Discussion

In this case study, conventional ctDNA assay was able to detect the L858R mutation, but not the pretreatment T790M mutation using a plasma sample. There are various mechanisms by which DNA from cancer cells is released into the bloodstream, including cellular events such as apoptosis, necrosis, and even direct secretion. There are two possible reasons for the discrepancy in the detection of EGFR mutations by the methods used in this study. Either there were a smaller number of cancer cells containing the pretreatment T790M mutation within the tumor, or there was less release of DNA from such cells. Arguing against the former possibility, however, the semi-quantitative DNA analysis of the biopsy specimen in this study indicated that the representation of L858R and pretreatment T790M mutations was similar.

Another possible factor for this discrepancy is that reduced DNA release may reflect the cell biology. A preclinical study using lung cancer cell lines revealed that cell growth is slower in subclones with post-treatment acquired T790M than parental cells. Accordingly, detection in plasma samples has been reported to be lower for acquired T790M than for L858R or exon 19 deletions. The sensitivity of ctDNA assays ranges from 71% to 87% for exon 19 deletions and L858R, whereas the sensitivity is 61% to 81% for post-treatment acquired T790M (Table 2). These
findings suggest that DNA containing acquired T790M was less prone to being shed into the bloodstream as a result of the indolent cell growth of T790M subclones. However, little is known about the discrepancy in the detection of pretreatment T790M between ctDNA and tissue DNA and the relationship between pretreatment T790M and post-treatment acquired T790M. Further studies are required to clarify the cell biology and clinical significance of pretreatment T790M.

Another important finding from this study is that osimertinib treatment was shown to have anti-tumor activity against a lung cancer harboring both L858R and pretreatment T790M mutations, whereas afatinib was not effective. The in vitro anti-tumor activity of EGFR-TKIs varies with the kind of EGFR mutation. Clinically available EGFR-TKIs, with the exception of osimertinib, are all less effective against cell lines carrying T790M, while the existence of more than 25% of cells harboring T790M has been shown to strongly decrease the in vitro anti-tumor activity of erlotinib. In clinical trials, afatinib has shown weak activity in lung cancer patients with pretreatment T790M. In 14 lung cancer patients carrying pretreatment T790M, the overall response rate and median progression-free survival were 14.3% and 2.9 months, respectively. In contrast, osimertinib shows promising results in patients carrying the mutation. A phase 1 expansion study of osimertinib has revealed a partial response in all five lung cancers harboring pretreatment T790M, with the duration of response > 12 months.

In conclusion, to the best of our knowledge, this article is the first to report that the results of the conventional ctDNA assay may not reflect pretreatment T790M of complex EGFR mutations within a lung tumor. In order to select the optimal first-line therapy for lung cancer

| Table 1 Analysis of EGFR mutations in tissue and plasma samples |
|-----------------|-----------------|-----------------|
| EGFR mutations | Tissue | Plasma |
| Exon 18 G719X | ND | ND |
| Exon 19 deletions | ND | ND |
| Exon 20 S768I | ND | ND |
| Exon 20 insertions | ND | NE |
| Exon 20 T790M | Detected | 2.8 |
| Exon 21 L858R | Detected | 3.3 |
| Exon 21 L861Q | ND | ND |

ND, not detected; NE, not evaluated.

| Table 2 Performance of ctDNA assays for detection of post-treatment EGFR mutations in lung cancer as reported in the literature |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| EGFR mutations | Methods | Number of samples | Sensitivity (%) | Specificity (%) | References |
| Exon 19 deletions | Cobas | 551 | 85 | 98 | Jenkins9,10 |
| L858R | | | 76 | 98 | |
| Acquired T790M | | | 61 | 79 | |
| Exon 19 deletions | Cobas | 110 | 71 | 100 | Karlovich11 |
| L858R | | | 78 | 100 | |
| Acquired T790M | | | 64 | 98 | |
| Exon 19 deletions | Cobas | 72 | 82 | 97 | Thress12 |
| L858R | | | 87 | 97 | |
| Acquired T790M | | | 73 | 67 | |
| Exon 19 deletions | BEAMing | 216 | 82 | 98 | Oxnard13 |
| L858R | | | 86 | 97 | |
| Acquired T790M | | | 70 | 69 | |
| Exon 19 deletions | BEAMing | 72 | 82 | 97 | Thress12 |
| L858R | | | 87 | 97 | |
| Acquired T790M | | | 81 | 58 | |
| Exon 19 deletions | ddPCR | 54 | 81 | 100 | Sacher14 |
| L858R | | | 78 | 100 | |
| Acquired T790M | | | 77 | 63 | |
| L858R/exon 19 deletions | ddPCR | 41 | 76 | 88 | Takahama15 |
| Acquired T790M | | | 65 | 70 | |

BEAMing, beads, emulsion, amplification, and magnetics; ctDNA, circulating tumor DNA; ddPCR, droplet digital-PCR.
Disclosure

No authors report any conflict of interest.

References

1. Zhang Y, Wang Z, Hao X et al. Clinical characteristics and response to tyrosine kinase inhibitors of patients with non-small cell lung cancer harboring uncommon epidermal growth factor receptor mutations. Chin J Cancer Res 2017; 29: 18–24.

2. Watanabe M, Kawaguchi T, Isa S et al. Ultra-sensitive detection of the pretreatment EGFR T790M mutation in non-small cell lung cancer patients with an EGFR-activating mutation using droplet digital PCR. Clin Cancer Res 2015; 21: 3552–60.

3. Hata AN, Niederst MJ, Archibald HL et al. Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. Nat Med 2016; 22: 262–9.

4. Kobayashi Y, Mitsudomi T. Not all epidermal growth factor receptor mutations in lung cancer are created equal: Perspectives for individualized treatment strategy. Cancer Sci 2016; 107: 1179–86.

5. Costa DB. Kinase inhibitor-responsive genotypes in EGFR mutated lung adenocarcinomas: Moving past common point mutations or indels into uncommon kinase domain duplications and rearrangements. Transl Lung Cancer Res 2016; 5: 331–7.

6. Naoki K, Soejima K, Okamoto H et al. The PCR-invader method (structure-specific 5’ nuclease-based method), a sensitive method for detecting EGFR gene mutations in lung cancer specimens; comparison with direct sequencing. Int J Clin Oncol 2011; 16: 335–44.

7. Diaz LA Jr, Bardelli A. Liquid biopsies: Genotyping circulating tumor DNA. J Clin Oncol 2014; 32: 579–86.

8. Chmielecki J, Foo J, Oxnard GR et al. Optimization of dosing for EGFR-mutant non-small cell lung cancer with evolutionary cancer modeling. Sci Transl Med 2011; 3: 90ra59.

9. Jenkins S, Yang JC, Ramalingam SS et al. Plasma ctDNA analysis for detection of the EGFR T790M mutation in patients with advanced non-small cell lung cancer. J Thorac Oncol 2017; 12: 1061–70.

10. Jenkins S, Yang J, Ramalingam S et al. 134O_PR: Plasma ctDNA analysis for detection of EGFR T790M mutation in patients (pts) with EGFR mutation-positive advanced non-small cell lung cancer (aNSCLC). J Thorac Oncol 2016; 11 (4 Suppl): S153–4.

11. Karlovich C, Goldman JW, Sun JM et al. Assessment of EGFR mutation status in matched plasma and tumor tissue of NSCLC patients from a phase I study of rociletinib (CO-1686). Clin Cancer Res 2016; 22: 2386–95.

12. Thress KS, Brant R, Carr TH et al. EGFR mutation detection in ctDNA from NSCLC patient plasma: A cross-platform comparison of leading technologies to support the clinical development of AZD9291. Lung Cancer 2015; 90: 509–15.

13. Oxnard GR, Thress KS, Alden RS et al. Association between plasma genotyping and outcomes of treatment with osimertinib (AZD9291) in advanced non-small-cell lung cancer. J Clin Oncol 2016; 34: 3735–82.

14. Sacher AG, Paweletz C, Dahlberg SE et al. Prospective validation of rapid plasma genotyping for the detection of EGFR and KRAS mutations in advanced lung cancer. (Published erratum appears in JAMA Oncol 2016; 2: 1099.) JAMA Oncol 2016; 2: 1014–22.

15. Takahama T, Sakai K, Takeda M et al. Detection of the T790M mutation of EGFR in plasma of advanced non-small cell lung cancer patients with acquired resistance to tyrosine kinase inhibitors (West Japan Oncology Group 8014LTR study). Oncotarget 2016; 7: 58492–9.

16. Isebe K, Hata Y, Tochigi N et al. Usefulness of nonfluorescent digital PCR arrays to quantify T790M mutation in EGFR-mutant lung adenocarcinoma. Cancer Genomics Proteomics 2015; 12: 31–7.

17. Yang JC, Sequist LV, Geater SL et al. Clinical activity of afatinib in patients with advanced non-small-cell lung cancer harbouring uncommon EGFR mutations: A combined post-hoc analysis of LUX-lung 2, LUX-lung 3, and LUX-Lung 6. Lancet Oncol 2015; 16: 830–8.

18. Ramalingam S, Yang JC, Lee CK et al. LBA_1PR: Osimertinib as first-line treatment for EGFR mutation-positive advanced NSCLC: Updated efficacy and safety results from two phase I expansion cohorts. J Thor Oncol 2016; 11 (4 Suppl): S152.