Genome Skimming Contributes to Clarifying Species Limits in *Paris* Section *Axiparis* (Melanthiaceae)

Yunheng Ji^{1,2,*}, Jin Yang^{1,3}, Jacob B. Landis^{4,5}, Shuying Wang^{1,3}, Lei Jin^{1,6}, Pingxuan Xie^{1,6}, Haiyang Liu¹, Jun-Bo Yang^{8,*} and Ting-Shuang Yi^{8,*}

¹CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China; ²Yunnan Key Laboratory for Integrative Conservation of Plant Species With Extremely Small Population, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China; ³School of Life Sciences, Yunnan University, Kunming, China; ⁴Section of Plant Biology and the L. H. Bailey Hortorium, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States; ⁵BTI Computational Biology Center, Boyce Thompson Institute, Ithaca, NY, United States; ⁶School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; ⁷State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China; ⁸Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China

Paris L. section *Axiparis* H. Li (Melanthiaceae) is a taxonomically perplexing taxon with considerable confusion regarding species delimitation. Based on the analyses of morphology and geographic distribution of each species currently recognized in the taxon, we propose a revision scheme that reduces the number of species in *P*. sect. *Axiparis* from nine to two. To verify this taxonomic proposal, we employed a genome skimming approach to recover the plastid genomes (plastomes) and nuclear ribosomal DNA (nrDNA) regions of 51 individual plants across the nine described species of *P*. sect. *Axiparis* by sampling multiple accessions per species. The species boundaries within *P*. sect. *Axiparis* were explored using phylogenetic inference and three different sequence-based species delimitation methods (ABGD, mPTP, and SDP). The mutually reinforcing results indicate that there are two species-level taxonomic units in *P*. sect. *Axiparis* that exhibit morphological uniqueness, non-overlapping distribution, genetic distinctiveness, and potential reproductive isolation, providing strong support to the proposed species delimitation scheme. This study confirms that previous morphology-based taxonomy overemphasized intraspecific and minor morphological differences to delineate species boundaries, therefore resulting in an overestimation of the true species diversity of *P*. sect. *Axiparis*. The findings clarify species limits and will facilitate robust taxonomic revision in *P*. sect. *Axiparis*.

Keywords: plastome, ribosomal DNA, taxonomy, *Paris* Linn., species delimitation

INTRODUCTION

Species delimitation is the crucially important first step for designing research in many fields of biology (Mace, 2004). Traditionally, species boundaries are defined by taxonomists based on the analysis of morphological variation (Lewin, 1981; Henderson, 2005), which has resulted in massive disagreements over species identification and delimitation due to either phenotypic plasticity or
lack of taxonomically robust morphological characters at the species level (Hebert et al., 2003; De Queiroz, 2007). To compensate, additional data types, such as molecular and ecological profiles, are needed to explicitly decipher species boundaries (Sites and Crandall, 1997; Sites and Marshall, 2003; Ellis et al., 2006; Bickford et al., 2007; Duminil and Michele, 2009; Su et al., 2015; Eisenring et al., 2016; Lambert et al., 2017; Sukumaran and Knowles, 2017; Cheng et al., 2020; Ma et al., 2020).

Analysis of DNA sequence variation can provide useful information for identifying and delineating species (Brower et al., 1996; Hebert et al., 2003; Kress et al., 2005; Pons et al., 2006; Hollingsworth et al., 2009, 2011, 2016; Hollingsworth, 2011; Duminil et al., 2012; Puillandre et al., 2012). With next-generation DNA sequencing (NGS) technologies, genome-wide sequence variation has begun to replace one or a few sequence loci for the identification and delimitation of plant species (Li et al., 2015; Coissac et al., 2016; Hollingsworth et al., 2016). The genome skimming approach, which uses NGS technologies to generate multi-copy and highly repetitive genome components, such as whole plastid genomes (plastomes) and nuclear ribosomal DNA (nrDNA) clusters via relatively low coverage genome sequencing (Straub et al., 2012), has been increasingly used for species identification and delimitation in recent years (Nock et al., 2011; Kane et al., 2012; Dodsworth, 2015; Li et al., 2015; Ruhsam et al., 2015; Firetti et al., 2017; Fu et al., 2019, 2021; Ji et al., 2019a, 2020, 2021; Knope et al., 2020; Šlipko et al., 2020; Su et al., 2021). Compared with restriction-site associated DNA sequencing (RAD-seq; Miller et al., 2007; Baird et al., 2008), another NSG-based technique that is extensively used to generate genomic data for plant species identification and delimitation (e.g., Wu et al., 2018; Donkpegan et al., 2020; Ma et al., 2020; Zhou et al., 2020; Li et al., 2021), the promising advantage of using genome skimming for species identification and delimitation is the avoidance of problems encountered with RAD-seq (Kane et al., 2012; Hollingsworth et al., 2016), such as only applying to diploids and generating asymmetric data between distinctly related taxa.

This study focuses on Paris Linn. sect. Axiparis H. Li (Melanthiaceae), a taxonomically perplexing plant group that includes nine described species distributed from Central China to the Himalayas (Li, 1998; Ji et al., 2006, 2019b; Huang et al., 2016). Since the description of the first two species (Paris vaniotii and P. forrestii) of the section (Léveillé, 1906; Takhtajan, 1983), a total of four (P. axialis, P. guizhouensis, P. lihengiana, and P. variabilis) and three (P. dulongensis, P. rugosa, and P. tengchongensis) species whose morphologies are similar to P. vaniotii and P. forrestii respectively have been described (Li, 1984, 1992; He, 1990; Ji et al., 2017; Xu et al., 2019; Yang et al., 2019). The rapid accumulation in the number of species over the last 40 years has led to considerable taxonomic confusion in P. sect. Axiparis. After critical examination of types and specimens assigned to these species, it was found that, except for slight differences in leaf shape and size (Figure 1), these recently described species exhibit high levels of similarity in flower, fruit, and seed morphology with P. vaniotii and P. forrestii (Ji, 2021). Remarkably, leaf shape and size of foliar displays have high levels of intraspecific variation that sometimes far exceeds the divergence used for species diagnosis (Ji, 2021). Also noteworthy, we found that P. dulongensis, P. rugosa, and P. tengchongensis share the morphological similarity of stamens numbering twice as many as the sepal number (two-whorled stamens), and being geographically distributed from the Hengduan Mountains (Southwestern China) to the Himalayas (Figure 2). Comparatively, P. axialis, P. guizhouensis, P. lihengiana, P. vaniotii, and P. variabilis, have stamens numbering three times that of the sepal number (three-whorled stamens), and these species are distributed from Central China to the Wumeng Mountains in Southwestern China (Figure 2).

Due to the above-mentioned aspects, P. sect. Axiparis is in great need of taxonomic revision. In this study, we attempt to use genome skimming to establish a basic understanding of species boundaries in this taxonomically perplexing taxon. Specifically, we generated complete plastomes and nrDNA sequences by sampling multiple accessions per species within P. sect. Axiparis via low coverage genome sequencing. Based on phylogenetic inference and multiple sequence-based species delimitation methods, we aim to test our taxonomic proposal that reduces the number of species in P. sect. Axiparis from nine to two (Paris forrestii s.l. and P. vaniotii s.l.).

MATERIALS AND METHODS

Plant Samples, Illumina Sequencing, Assembly, and Annotation

In total, we sampled 51 individual plants including representatives of each of the nine described species of P. sect. Axiparis, in which 46 accessions were newly sequenced in the present study (Table 1). Voucher specimens and leaf tissue were collected from the field. For each taxon, multiple individuals within a species representing different localities were included, and at least one accession was harvested from the type locality. The sampling strategy entirely covers the nine species’ distribution ranges and allows robust exploring of species-level monophyly and species boundaries within P. sect. Axiparis to critically test for our taxonomic proposal.

Total genomic DNA for each accession was isolated from ∼10 mg silica gel dried leaf tissues using cetyltrimethylammonium bromide (CTAB; Doyle and Doyle, 1987). Approximately 5 μg of purified genomic DNA was used to construct PCR-free shotgun libraries with a TruSeq DNA Sample Prep Kit (Illumina, Inc., San Diego, CA, United States) according to the manufacturer’s instructions. Paired-end (150 bp) sequencing was performed on the Illumina HiSeq 2500 platform.
Ji et al. Species Delimitation in Paris Section Axiparis

FIGURE 1 | Nine nominal species within Paris section Axiparis, showing their leaf size and shape variations. Paris axialis (A), P. dulongensis (B), P. forrestii (C), P. guizhouensis (D), P. lihengiana (E), P. rugosa (F), P. tengchongensis (G), P. vaniotii (H), and P. variabilis (I).

(Illumina, Inc., San Diego, CA, United States) to generate approximately two giga base pairs (Gbp) of raw data for each sample. Remarkably, Paris is a fairly distinctive angiosperm genus in possessing giant genomes (Pellicer et al., 2014; Ji, 2021), and the minimum documented genome size in the genus (P. bashanensis, 1C = 28.73 Gbp; Ji, 2021) is much larger than the mean genome size of angiosperms (1C = 5.7 Gbp; Pellicer et al., 2014). Due to the relatively low sequencing coverage and lack of nuclear genome reference, it is difficult to recover a sufficient number of unlinked and single-copy nuclear loci from the genome skimming data. Therefore, only complete plastomes and nrDNA sequences were assembled in this study for phylogenetic reconstruction and species delimitation analyses.

Shotgun reads of each sample were deposited in NCBI short-read archive (SRA), with accession numbers being shown in Supplementary Table 1. Trimmomatic v0.40 (Bolger et al., 2014) was used to remove low-quality reads and adaptors from the Illumina raw reads with default parameters. The filtered reads were assembled into complete plastomes and nrDNA clusters with the GetOrganelle pipeline v1.7.5.0 (Jin et al., 2020) on a Linux system, using the previously published complete plastome (MN125565) and nrDNA sequence (MN174877) of
FIGURE 2 Distribution of the nine nominal species within Paris section Axiparis.

P. forrestii (Ji et al., 2019b) as the reference. The assembled plastomes were annotated using the online software Geseq v2.03 (Tillich et al., 2017), with default parameters. The transfer RNA (tRNA) genes were further verified using tRNAscan-SE v2.0 (Lowe and Chan, 2016) with default parameters. For nrDNA annotation, the ribosomal RNA genes (26S, 18S, and 5.8S ribosomal RNA genes) and boundaries with the intergenic transcribed spacer (ITS) regions were annotated and defined by comparison with the reference in Geneious v10.2.3 (Kearse et al., 2012).

Data Analyses

The complete plastom and entire nrDNA clusters (including 18S rRNA, ITS1, 5.8S rRNA, ITS2, and 26S rRNA) were aligned using MAFFT v7.450 (Katoh and Standley, 2013). The alignments of sequences were deposited the online database Treebase, and only single nucleotide polymorphisms (SNPs) were included in phylogenetic and species delimitation analyses. Partition homogeneity tests (Farris et al., 1994) were performed with PAUP* 4.0b10 (Swofford, 2002) to determine the degree of congruence between the concatenated plastome and nrDNA matrices, as well as between coding (18S rRNA, 5.8S rRNA, and 26S rRNA) and non-coding regions (ITS1 and ITS2) of nrDNA sequences, using a heuristic tree search algorithm for 500 replicates.

Phylogenetic relationships were inferred using both maximum likelihood (ML) and Bayesian inference (BI) methods, based on which we tested whether the nine described species within *P. sect. Axiparis* are monophyletic units. Previous studies revealed that ancient intergeneric hybridization may have occurred between *Trillium* and *P. sect. Paris* (resulting in the speciation of *P. japonica*: *P. sect. Kinugasa*), and past intersectional hybridization likely took place between *P. sect. Axiparis* and *P. sect. Euthyra* (Ji et al., 2019b; Ji, 2021). Given that such reticulate relationships may result in phylogenetic errors (Philippe et al., 2011), we selected *P. thibetica* (complete plastome: MN125569; nrDNA: MN174890; Ji et al., 2019b) as the outgroup, which represents *P. sect. Thibeticae*, the closest relative of *P. sect. Axiparis* (Ji et al., 2006, 2019b; Ji, 2021). The best-fit sequence substitution model (GTR + G for concatenated plastome matrix, and GTR + 1 + G for concatenated nrDNA matrix) were determined by Modeltest v3.7 (Posada and Crandall, 1998) using the Akaike information criterion (Posada and Buckley, 2004). The ML analysis was performed with RAxML-HPC BlackBox v8.1.24 (Stamatakis, 2006). The best-scoring ML tree for each dataset was produced with 1,000 bootstrap (BS) replicates to provide support values for each node. The BI tree was inferred using MrBayes v3.2 (Ronquist et al., 2012). Two independent Markov chain Monte Carlo (MCMC) runs were performed with one million generations, sampling every 100 generations, with the initial 25% of the sampled trees as burn-in. Posterior probability (PP) values were computed based on the remaining trees.

1http://purl.org/phylo/treebase/phyloresolver/study/TB2:S29422
TABLE 1 | Plant samples used in this study with voucher information and GenBank accession numbers.

Taxa	Locality	Voucher*	GenBank accessions
Complete plastome	**Ribosomal DNA**		
Ribosomal DNA			
Paris axialis	Daguan, Yunnan, China	Ji YH 2019049	MW229127
P. axialis	Shuifu, Yunnan, China	Ji YH and Yang CJ 042	MW229087
P. axialis	Yilang, Yunnan, China	Ji YH and Yang CJ 047	MW229099
P. axialis	Zhenxiong, Yunnan, China	Ji YH and Yang CJ 052	MW229086
P. dulongensis	Gongshan, Yunnan, China	Yang CJ and Zhou GH 001	MW229123
P. dulongensis	Gongshan, Yunnan, China	Yang CJ and Zhou GH 004	MW229126
P. dulongensis	Lushui, Yunnan, China	Ji YH 20166521	MW229091
P. dulongensis	Tengchong, Yunnan, China	Ji YH 2016627	MW229115
P. dulongensis	Tengchong, Yunnan, China	Ji YH 2016628	MW229103
P. dulongensis	Tengchong, Yunnan, China	Ji YH 2016629	MW229090
P. dulongensis	Gongshan, Yunnan, China	Ji H and Ji YH 056	MW229094
P. dulongensis	Gongshan, Yunnan, China	Li H 57**	MN125666
P. forrestii	Tengchong, Yunnan, China	Wang ZM 001	MW229119
P. forrestii	Tengchong, Yunnan, China	Wang ZM 002	MW229117
P. forrestii	Jumla, Tibet, China	Zhou GH 002	MW229121
P. forrestii	Chayu, Tibet, China	Yang CJ and Zhou GH 014	MW229124
P. forrestii	Chayu, Tibet, China	Yang CJ and Zhou GH 015	MW229122
P. forrestii	Jumla, Tibet, China	Li JX s. n.	MW229125
P. forrestii	Changning, Yunnan, China	Ji YH 2016657	MW229111
P. forrestii	Changning, Yunnan, China	Ji YH 2016650	MW229088
P. forrestii	Gongshan, Yunnan, China	Zhou GH s. n.**	MN125565
P. forrestii	Fugong, Yunnan, China	Li FR s. n.	MW229106
P. guizhouensis	Shuicheng, Guizhou, China	Ji YH 2016602	MW229093
P. guizhouensis	Daoshen, Guizhou, China	Ji YH 2016603901	MW229085
P. guizhouensis	Daofang, Guizhou, China	Ji YH 2016646	MW229096
P. hengiana	Weixin, Yunnan, China	Ji YH 2016652	MW229114
P. hengiana	Yanjin, Yunnan, China	Ji YH 2018031	MW229107
P. hengiana	Daguan, Yunnan, China	Ji YH 2018041	MW229108
P. rugosa	Fengqing, Yunnan, China	Ji YH 2016650	MW229082
P. rugosa	Fengqing, Yunnan, China	Ji YH 2016651	MW229083
P. rugosa	Changning, Yunnan, China	Ji YH 2016624	MW229084
P. rugosa	Changning, Yunnan, China	Ji YH 2016625**	MN125570
P. rugosa	Tengchong, Yunnan, China	Ji YH 2019033	MW229120
P. rugosa	Tengchong, Yunnan, China	Ji YH 2019034	MW229128
P. rugosa	Gongshan, Yunnan, China	Ji YH 2019067	MW229118
P. rugosa	Longyang, Yunnan, China	Yang FJ s. n.	MW229092
P. tengchongensis	Tengchong, Yunnan, China	Ji YH 2017211	MW229098
P. tengchongensis	Tengchong, Yunnan, China	Ji YH 2017212	MW229089
P. tengchongensis	Tengchong, Yunnan, China	Ji YH 2018038	MW229065
P. tengchongensis	Tengchong, Yunnan, China	Ji YH 201803902**	MN125584
P. tengchongensis	Tengchong, Yunnan, China	Ji YH 2018040	MW229113
P. tengchongensis	Tengchong, Yunnan, China	Ji YH 2017013	MW229112
P. tengchongensis	Tengchong, Yunnan, China	Ji YH 2016391	MW229116
P. variabilis	Guangyuan, Sichuan, China	Ji YH 2016671	MW229109
P. variabilis	Xin Ning, Hunan, China	Ji H 052**	MW229102
P. variabilis	Nanxian, Chongqing, China	Ji YH 2016693	MW229104
P. variabilis	Guanyang, Guangxi, China	Ji YH 2016652	MW229110
P. variabilis	Weining, Guizhou, China	Ji YH and Yang CJ 028	MW229097
P. variabilis	Shuifu, Yunnan, China	Ji YH and Yang CJ 039	MW229105
P. variabilis	Yanjin, Yunnan, China	Ji YH and Yang CJ 049	MW229100
P. variabilis	Zhenxiong, Yunnan, China	Ji YH and Qiu Bin 004	MW229101

*Voucher specimens are deposited at the Herbarium of Kunming Institute of Botany, Chinese Academy of Sciences (KUN). **The complete plastomes and nrDNA sequences of these samples were sequenced in previous studies (Ji et al., 2019b, 2020).*

Frontiers in Plant Science | www.frontiersin.org 5 April 2022 | Volume 13 | Article 832034
Relying on reciprocal monophyly alone to delineate species boundaries likely under-represents true species-level diversity (Ence and Carstens, 2011; Rannala and Yang, 2013). The development of some coalescence-based species delimitation methods, such as Bayesian Phylogenetics and Phylogeography (BPP; Rannala and Yang, 2013), and spedeSTEM (Ence and Carstens, 2011), provide the solution to this issue since these methods do not require reciprocal monophyly of any species in a given gene tree. Both BPP and spedeSTEM are only suitable for processing genomic segments no longer than 500 or 1,000 bp (Ence and Carstens, 2011; Rannala and Yang, 2013), and thus cannot be used to analyze either complete plastomes or entire nrDNA sequences. Accordingly, we used the following approaches to explore species boundaries within P. sect. Axiparis: (1) the distance-based method automatic barcode gap discovery (ABGD; Puillandre et al., 2011), (2) the tree-based method multi-rate Poisson tree processes model (mPTP; Kapli et al., 2017), and (3) the coalescence-based method species delimitation plugin (SDP; Masters et al., 2011) in Geneious v.10.2.3 (Kearse et al., 2012). The outgroup (P. thibetica) sequences were removed from the species delimitation analyses.

The ABGD analyses were conducted with the online server\(^1\) with default settings (Pmin = 0.001, Pmax = 0.1, Steps = 10, X = 1.5, Nb = 20). All three genetic distance models (JC69, K2P, and uncorrected P-distances) specified by the program were used. Next, we used the mPTP v0.2.3 algorithm (Kapli et al., 2017), an improvement to PTP (Zhang et al., 2013), to delineate species boundaries and to estimate the posterior probability (PP) values for the putative species. The mPTP analyses were performed on the web server\(^2\) with standard default settings (The MCMC algorithm was conducted for 0.1 million generations, sampling every 100 generations and a 10% burn-in), using the inferred ML trees of plastome and nrDNA as inputs since the branch lengths of ML tree represent expected numbers of substitutions per site. Based on ML and BI trees of the concatenated plastome and nrDNA matrices, we performed SDP analyses to generate species delimitation scheme in P. sect. Axiparis. The distinctiveness of these candidate species proposed by SDP analyses was estimated using Rosenberg’s \(P_{\text{AB}}\): the probability of reciprocal monophyly under a random coalescent model (Rosenberg, 2007), and Rodrigo’s \(P_{\text{RD}}\): the probability that a clade has the observed degree of distinctiveness due to a random coalescent process (Rodrigo et al., 2008).

RESULTS

Genome Skimming

The summary of low coverage genome sequencing and assembly of plastome and nrDNA sequences is presented in Supplementary Table 1. Plastome assembly generated the complete plastome of all samples, which possess a typical quadripartite structure, with the sequence length varying from 156,061 to 157,653 bp. The plastomes identically contain 114 genes, including 80 protein-coding genes, 30 tRNA genes, and four plastid rRNA genes (Supplementary Table 2). In addition, the assembly of nrDNA entirely covered 18S, ITS1, 5.8S, ITS2, and 26S regions in all accessions, with the sequence length being either 5,851 or 5,852 bp. DNA sequences of the newly generated plastomes and nrDNA sequences in this study were deposited in GenBank, with accession numbers being shown in Table 1.

Phylogenetic Inferences

Alignment of the plastome sequences yielded a matrix of 160,681 positions, in which we identified 1,724 variable sites (1.07%) with 1,192 (0.74%) being parsimoniously informative (Supplementary Table 3). The ML (Figure 3A) and BI (Figure 3B) analyses of the concatenated plastome matrix produced similar tree topologies except that several shallow nodes with low BS support collapse in BI tree. Two diverging clades were recovered in P. sect. Axiparis: Clade I (BS = 100%, PP = 1.00) comprises accessions of P. dalongensis, P. forrestii, P. rugosa, and P. tengchongensis, and Clade II (BS = 100%, PP = 1.00) includes accessions of P. axialis, P. guizhouensis, P. lihengiana, P. variotii, and P. variabilis. Strikingly, none of the nine nominal species within P. sect. Axiparis were recovered as a monophyletic unit in either ML or BI phylogeny.

Although partition homogeneity tests detected significant conflicts (\(p < 0.01\)) between the nrDNA and plastome phylogenies, the coding (18S rRNA, 5.8S rRNA, and 26S rDNA) and non-coding regions (ITS1 and ITS2) of nrDNA sequences are congruent with each other in the tree topology (\(p > 0.05\)). Therefore, we concatenated both coding and non-coding regions of nrDNA sequences for phylogenetic and species delimitation analyses. The concatenated nrDNA matrix possessed 193 variable sites (3.30%) with 1,192 (0.74%) being parsimoniously informative (Supplementary Table 3). ML (Figure 4A) and BI (Figure 4B) analyses generated congruent tree topologies despite that some weakly supported shallow nodes in ML tree collapse in BI phylogeny. The nrDNA trees recovered two major clades within P. sect. Axiparis, corresponding to those inferred from the plastomes but with slightly lower support values (clade I: BS = 98%, PP = 1.00; clade II: BS = 97%, PP = 1.00). Similar to the plastome phylogeny, analyses of nrDNA sequences failed to resolve any of the nine nominal species within P. sect. Axiparis as a monophyletic unit.

Species Delimitation Scenarios

Overall, ABGD, mPTP, and SDP analyses of the concatenated plastome and nrDNA matrices produced highly congruent results that are reflected in the phylogenetic trees (Figures 3, 4). The ABGD analyses of the concatenated plastome (Table 2) and nrDNA (Table 3) matrices resulted in a stable count \((n = 2)\) of species division with a range of prior intraspecific values (plastomes: \(P = 0.001000-0.004642\); nrDNA: \(P = 0.002000-0.007573\)) with JC69, K2P, and P-distances initial and recursive partitions. One proposed species includes individuals of P. dalongensis, P. forrestii, P. rugosa, and P. tengchongensis, while the other comprises individuals of P. axialis, P. guizhouensis,
FIGURE 3 | Phylogenetic tree of Paris section Axiparis based on Maximum likelihood (ML, A) and Bayesian inference (BI, B) analyses of complete plastomes. Numbers above branches indicate ML bootstrap (BS) percentages and Bayesian posterior probabilities (PP). Species delimitation schemes proposed by automatic barcode gap discovery (ABGD), multi-rate Poisson tree processes model (mPTP), and species delimitation plugin (SDP) of Geneious are reflected on the tree topology.

P. lihengiana, P. vaniotii, and P. variabilis (Figures 3, 4). The mPTP analyses yielded the same delimitation proposal as ABGD: all individuals were grouped into two species-like entities that coincide with the two clades recovered by our phylogenetic analyses (Figures 3, 4), and both received strong posterior support (Table 4). Similarly, the SDP analyses showed that either plastome or nrDNA matrix, excluding the outgroup, comprised two putative species (corresponding to Clade I and Clade II in the inferred phylogenetic tree; Figures 3, 4), which were distinctive with $P_{RD} < 0.05$, and significant with $P_{AB} < 10^{-5}$ (Table 5).

DISCUSSION

The advancement of molecular-based approaches has brought about great progress in species delimitation (Wiley and Mayden, 2000; Sites and Marshall, 2003; De Queiroz, 2007). Concomitantly, a wide variety of species delimitation methods have been developed, especially over the past 20 years (Yang and Rannala, 2010; Ence and Carstens, 2011; Masters et al., 2011; Puillandre et al., 2011; Rannala and Yang, 2013; Zhang et al., 2013). However, no method is perfect and each has specific weaknesses. For instance, ABGD is problematic when species are represented with only a few specimens (Puillandre et al., 2011, 2012). In some cases, mPTP may lead to an overestimation of species numbers (Song et al., 2018; Huang et al., 2020). Given that factors such as recent diversification, radiative speciation, and restricted intraspecific gene flow may result in the absence of reciprocal monophyly among closely related species (Ruhsam et al., 2015; Hollingsworth et al., 2016); SDP may yield biased delimitation schemes since it primarily relies on reciprocal monophyly to explore species
FIGURE 4 | Phylogenetic tree of Paris section Axiparis based on Maximum likelihood (ML, A) and Bayesian inference (BI, B) analyses of nuclear ribosomal DNA (nrDNA). Numbers above branches indicate ML bootstrap (BS) percentages and Bayesian posterior probabilities (PP). Species delimitation schemes proposed by automatic barcode gap discovery (ABGD), multi-rate Poisson tree processes model (mPTP), and species delimitation plugin (SDP) of Geneious are reflected on the tree topology.

boundaries (Masters et al., 2011). Accordingly, multiple methods should be simultaneously employed to develop a robust species delimitation framework, given that using different delimitation approaches allows accommodations for the weaknesses of each approach (Hebert et al., 2004; Fujita et al., 2012; Aguilar et al., 2013; Kekkonen and Hebert, 2014; Mutanen et al., 2015). However, previous studies using a single or few sequence regions have indicated that employing multiple methods on the same dataset always produced incongruent delimitation proposals (Camargo et al., 2012; Mutanen et al., 2015; Jacobs et al., 2018; Jirapatrasilp et al., 2019) likely due to the inadequacies of available genetic information to properly delineate species boundaries (Carstens and Satler, 2013; Jacobs et al., 2018).

High variability of key diagnostic morphological characters makes species delimitation a particularly difficult task, and thus has led to considerable taxonomic confusion in P. sect. Axiparis. This study aims to critically test our taxonomical proposal that only recognizes two broadly defined species (vs. nine narrowly defined species) in P. sect. Axiparis. To achieve this goal, we employed genome skimming to recover complete plastomes and nrDNA sequences that contain more evolutionarily informative variation than a single or few sequence...
TABLE 2 | The number of putative species recognized by Automatic Barcode Gap Discovery (ABGD) analyses among 51 complete plastomes using three distance metrics.

Subst. model	X Partition	Prior intraspecific divergence (P)
		0.001000 0.001668 0.002783 0.004642
P	Initial	2 2 2 2
JC69	Initial	2 2 2 2
K2P	Initial	2 2 2 2
	Recursive	2 2 2 2

TABLE 3 | The number of putative species recognized by Automatic Barcode Gap Discovery (ABGD) analyses among 51 nrDNA sequences using three distance metrics.

Subst. model	X Partition	Prior intraspecific divergence (P)
		0.002000 0.002790 0.003892 0.005429
P	Initial	2 2 2 2
JC69	Initial	2 2 2 2
K2P	Initial	2 2 2 2
	Recursive	2 2 2 2

TABLE 4 | Posterior delimitation probability of two putative species proposed by mPTP analyses of complete plastomes and nuclear ribosomal DNA (nrDNA) sequences.

Putative species	Posterior delimitation probability	
	Plastomes	nrDNA
Clade I	1.00	1.00
Clade II	1.00	1.00

TABLE 5 | Species delimitation plugin (SDP) analyses show the distinctiveness [Rodrigo’s P_{ABG}] and significance [Rosenberg’s P_{ABB}] of the two clades recovered by phylogenetic analyses of complete plastomes and nuclear ribosomal DNA (nrDNA) as species-level taxonomic units.

Phylogenetic Putative inference	Complete plastomes	nrDNA sequences		
	Rodrigo’s P_{RD}	Rodrigo’s P_{AB}	Rosenberg’s P_{RD}	Rosenberg’s P_{AB}
Bi tree Clade I	<0.05 5.9 × 10^{-16}	<0.05 5.9 × 10^{-16}		
Bi tree Clade II	<0.05 3.2 × 10^{-16}	<0.05 3.2 × 10^{-16}		
ML tree Clade I	<0.05 9.1 × 10^{-16}	<0.05 9.1 × 10^{-16}		
ML tree Clade II	<0.05 9.1 × 10^{-16}	<0.05 9.1 × 10^{-16}		

regions for phylogenetic and species delimitation analyses. Based on the concatenated plastome and nrDNA matrices, we not only investigated the species-level monophyly of the nine narrowly defined species by sampling multiple individuals per species, but also explored species boundaries using multiple sequence-based species delimitation methods (ABGD, mPTP, and SDP). To determine the robustness of the delimitation proposals generated by ABGD, mPTP, and SDP analyses, we also examined to what extent these methods generate congruent results.

Phylogenetic analyses recovered none of the nine narrowly defined species within P. sect. Axiparis as a monophyletic unit, suggesting that the genetic differentiation among them is low. By contrast, both plastome and nrDNA phylogenies recovered two well-supported clades that possess fairly distinct morphological traits (Figures 3, 4) and distribution ranges (Figure 2). Although members of P. sect. Axiparis represent recently diverged entities with their origins estimated no earlier than the late Miocene (Ji et al., 2019b), ABGD, mPTP, and SDP analyses based on different models generated consistent proposals in delineating species boundaries. Briefly, the ABGD analyses (Tables 2, 3) partitioned all the samples into two clusters comprised of individuals having two-whorled and (Clade I) three-whorled stamens (Clade II). This implies that there are likely two distinct species within P. sect. Axiparis with significant genetic gaps between them (Puillandre et al., 2012). Moreover, the mPTP analyses grouped all accessions into two putative species with high posterior delimitation probability, coinciding with the results found in the ABGD analyses (Figures 3, 4, and Table 4). The putative species boundaries proposed by ABGD and mPTP analyses are further validated by the SDP analyses: with P_{AB} value < 0.05 and the P_{AB} value < 10^{-5} (Table 5), both of the two candidate species can be recognized as evolutionarily distinctive entities (Rosenberg, 2007; Rodrigo et al., 2008). These reciprocally reinforcing results suggest that only two species-level taxonomic units can be recognized in P. sect. Axiparis, providing robust support to our taxonomic proposal to reduce P. axialis, P. guizhouensis, P. lihengiana, and P. variabilis as the synonyms of P. variabilis, and to expand the species boundary of P. forrestii to accommodate P. dulangensis, P. rugose, and P. tengchongensis.

Importantly, sequence-based delimitation results can only be considered a hypothesis that needs to be further validated with multiple data types, such as phenotypic and ecological information (Sukumaran and Knowles, 2017). In addition to morphological distinctiveness (two-whorled stamens vs. three-whorled stamens), there is a range of evidence robustly supporting the species delimitation scheme proposed by our data. Within Paris, significant conflict between the plastome and nrDNA trees was also detected in a previous study: although the plastome phylogeny recovered P. sect. Axiparis as a well-supported clade, it was resolved as non-monophyletic by nrDNA phylogeny (Ji et al., 2019b). By comparing differences in plastome and nrDNA tree topologies, ancient hybridization was proposed to have occurred between the common ancestor of P. luquanensis and P. mairei (P. sect. Euthyra) and that of P. dulangensis, P. forestii, P. rugose, and P. tengchongensis (Ji et al., 2019b). This implies that the two broadly defined species, namely P. forestii s.l. (syn. P. dulangensis, P. rugose, and P. tengchongensis) and P. variabilis (syn. P. axialis, P. guizhouensis, P. lihengiana, and P. variabilis), originated separately. Also noteworthy, P. forestii s.l. and P. variabilis s.l. possess allopatric geographic
distributions, between which there are great climatic differences. From the late Miocene onward, driven by the intensification of the East Asian monsoon in the summer (An et al., 2001), the species range of \textit{P. vaniotii} s.l. has been primarily governed by Pacific monsoon, whereas that of \textit{P. forrestii} s.l. has been mainly affected by Indian monsoon (Li et al., 2008; Yao et al., 2011; Figure 2). The long-term environmental and ecological heterogeneity resulted from climate differences between the two distinct monsoon regimes would block the regional gene flow and boosted vicariance in \textit{Paris} (Ji et al., 2019b). Based on phenology recorded in herbarium specimens and observation of plants cultivated in common gardens, it was found that the flowering of \textit{P. vaniotii} s.l. is approximately 30–40 days earlier than that of \textit{P. forrestii} s.l., and there is little overlap between their flowering periods (Ji, 2021). This implies that outcrossing between \textit{P. forrestii} s.l. and \textit{P. vaniotii} s.l. is nearly impossible under natural conditions, suggesting that reproductive isolation between them may have been formed under the combined effect of geographic isolation and habitat heterogeneity. Therefore, recognizing \textit{P. forrestii} s.l. and \textit{P. vaniotii} s.l. as distinct species under the unified species concept (De Queiroz, 2007) is reasonable, given that the species boundary proposed by our data reflects the unity of morphological uniqueness, non-overlapping species range, genetic distinctiveness, and reproductive isolation.

CONCLUSION

This study represents a guiding practical application of genome skimming for exploring species boundaries in taxonomically perplexing plant taxa, using not only phylogenetic inferences but also multiple sequence-based species delimitation methods. The analyses of concatenated plastome and nrDNA matrices yielded identical schemes in delineating species boundaries in \textit{Paris} sect. \textit{Axiparis}, which are highly congruent with morphological characteristics and geographic distributions. The results robustly support our revision proposal that reduces the number of species in \textit{P. sect. Axiparis} from nine to two, and confirm that previous morphology-based taxonomy (Li, 1984, 1992; He, 1990; Ji et al., 2017; Xu et al., 2019; Yang et al., 2019) overemphasized intraspecific and minor morphological differences to establish species, therefore resulted in over-splitting of species in \textit{P. sect. Axiparis}.

REFERENCES

Aguilar, C., Wood, P. L., Cusi, J. C., Guzmán, A., Huari, F., Lundberg, M., et al. (2013). Integrative taxonomy and preliminary assessment of species limits in the \textit{Liolaemus walkerii} complex (Squamata, Liolaemidae) with descriptions of three new species from Peru. Zoolog. Syst. 364, 47–91. doi: 10.3897/zootaxa.364.6109

An, Z. S., Kutzbach, J. E., Prell, W. L., and Porter, S. C. (2001). Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan plateau since Late Miocene times. Nature 411, 62–66. doi: 10.1038/s00376

Baird, N. A., Etter, P. D., Atwood, T. S., Currey, M. C., Shiver, A. L., Lewis, Z. A., et al. (2008). Rapid SNP discovery and genetic mapping using sequenced RAD markers. \textit{PLoS One} 3:e3376. doi: 10.1371/journal.pone.0003376

Bickford, D., Lohman, D. J., Sodhi, N. S., Ng, P. K., Meier, R., Winker, K., et al. (2007). Cryptic species as a window on diversity and conservation. \textit{Trends Ecol. Evol.} 22, 148–155. doi: 10.1016/j.tree.2006.11.004

Bolger, A. M., Lohse, M., and Usadel, B. (2014). Trimomatic: a flexible trimmer for Illumina sequence data. \textit{Bioinformatics} 30, 2114–2120. doi: 10.1093/bioinformatics/btu170

Brower, A. V. Z., DeSalle, R., and Vogler, A. (1996). Gene trees, species trees, and systematics: a cladistic perspective. \textit{Annu. Rev. Ecol. Syst.} 27, 423–450. doi: 10.1146/annurev.ecolsys.27.1.423

Camargo, A., Morando, M., Avila, L. I., and Sites, J. W. (2012). Species delimitation with ABC and other coalescent-based methods: a test of accuracy with simulations and an empirical example with lizards of the \textit{Liolaemus darwini} complex (Squamata: Liolaemidae). \textit{Evolution} 66, 2834–2849. doi: 10.1111/j.1558-5646.2012.01640.x

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online repositories. All the relevant accession numbers are included in Supplementary Table 1.

AUTHOR CONTRIBUTIONS

YJ, J-BY, and T-SY conceived and designed the research framework. YJ, JY, and LJ collected samples. JY, J-BY, SW, LJ, and PX collected and analyzed the data. YJ wrote the original draft manuscript. JL, T-SY, and HL revised and edited the final manuscript. All authors have read and agreed to the published version of the manuscript.

FUNDING

The present study was granted by the National Natural Science Foundation of China (31872673), the NSFC-Joint Foundation of Yunnan Province (U1802287), the Key R&D Program of Yunnan Province (202103AC100003), and a grant of the Large-scale Scientific Facilities of the Chinese Academy of Sciences (No. 2017-LSF-GBOWS-02).

ACKNOWLEDGMENTS

We are grateful to Chengjin Yang, Guohua Zhou, Ren Zhao, Tingzhou Zhao, Zhangming Wang, Changming Yang, Yongxing Xiong, Guohai He, Yulong Li, Fengtian Lin, and Qiang Zhao for their help in sample collection.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpls.2022.832034/full#supplementary-material
Carstens, B. C., and Satler, J. D. (2013). The carnivorous plant described as *Sarracenia alata* contains two cryptic species. *Biol. J. Linn. Soc.* 109, 737–746. doi: 10.1111/bij.12093

Cheng, Z., Shu, H., Zhang, S., Luo, B., Gu, R., Zhang, R., et al. (2020). From folk taxonomy to species confirmation of *Acorus* (*Acoraceae*): evidences based on phylogenetic and metabolomic analyses. *Front. Plant Sci.* 11:965. doi: 10.3389/fpls.2020.00965

Coissac, E., Hollingsworth, P. M., Laverge, S., and Taberlet, P. (2016). From barcodes to genomes: extending the concept of DNA barcoding. *Mol. Ecol. 25*, 1423–1428. doi: 10.1111/mec.13549

De Queiroz, K. (2007). Species concepts and species delimitation. *Syst. Bot.* 31, 879–886. doi: 10.1002/0012-230X(200607)31:3<879::AID-SYNT8>3.0.CO;2-9

Dodsworth, S. (2015). Genome skimming for next-generation biodiversity analysis. *Syst. Bot.* 40, 560–568. doi: 10.1002/syst.21282

Firetti, F., Zuntini, A. R., Gaiarsa, J. W., Oliveira, R. S., Lohmann, L. G., and Panciatici, C. (2018). Deciphering the taxonomic designation of *Ottelia acuminata* (Hydrocharitaceae) using complete plastomes as super-barcodes. *Front. Plant Sci.* 9:1465. doi: 10.3389/fpls.2018.01465

Hollingsworth, P. M., Forrest, L. L., Spouge, J. L., Hajibabaei, M., Ratnasingham, S., Van der Bank, M., et al. (2009). A DNA barcode for land plants. *Proc. Natl. Acad. Sci. U.S.A.* 106, 12794–12797. doi: 10.1073/pnas.0908584106

Hollingsworth, P. M., Graham, S. W., and Little, D. P. (2011). Choosing and using a plant DNA barcode. *PloS One* 6:e19254. doi: 10.1371/journal.pone.0019254

Hollingsworth, P. M., Li, D. Z., Van der Bank, M., and Twyford, A. D. (2016). Telling plant species apart with DNA: from barcodes to genomes. *Philos. Trans. R. Soc. B Biol. Sci.* 371:20150338. doi: 10.1098/rstb.2015.0338

Huang, W., Xie, X., Luo, L., Liang, X., Wang, X., and Chen, X. (2020). An integrative DNA barcoding framework of ladybird beetles (*Coccinellidae*). *Sci. Rep.* 10:10063. doi: 10.1038/s41598-020-66874-1

Ji, Y., Li, X., Yang, Z., Yang, C., Yang, J., and Ji, Y. (2016). Analysis of complete chloroplast genome sequences improves phylogenetic resolution in *Paris* (*Melanthiaceae*). *Front. Plant Sci.* 7:1797. doi: 10.3389/fpls.2016.01797

Ji, Y., Fritsch, P. W., Li, H., Xiao, T., and Zhou, Z. (2006). Phylogeny and classification of *Paris* (*Melanthiaceae*) inferred from DNA sequence data. *Ann. Bot.* 98, 245–256. doi: 10.1093/aob/mcl095

Ji, Y., Liu, C., Yang, J., Jin, L., Yang, Z., and Yang, J. B. (2020). Ultra-barcoding discovers a cryptic species in *Paris yunnanensis* (*Melanthiaceae*), a medicinally important plant. *Front. Plant Sci.* 11:411. doi: 10.3389/fpls.2020.00411

Ji, Y., Liu, C., Yang, Z., Yang, L., He, Z., Wang, H., et al. (2019a). Testing and using complete plastomes and ribosomal DNA sequences as the next generation DNA barcodes in *Panax* (*Araliaceae*). *Mol. Ecol. Resour.* 19, 1333–1345. doi: 10.1111/1755-0998.13050

Ji, Y., Yang, L., Chase, M. W., Liu, C., Yang, Z., and Jiang, Y., et al. (2019b). Plastome plastogenomics, biogeography, and clad diversification of *Paris* (*Melanthiaceae*). *BMC Plant Biol.* 19:543. doi: 10.1186/s12870-019-02147-6

Ji, Y., Yang, C., and Huang, Y. (2017). A new species of *Paris sect. Atriparis* (*Melanthiaceae*) from Yunnan, China. *Phytotaxa* 306, 234–236. doi: 10.11164/phytotaxa.306.3.6

Ji, Y., Yang, J., Landis, J. B., Wang, S., Yang, Z., and Zhang, Y. (2021). Deciphering the taxonomic designation of *Ottelia acuminata* (Hydrocharitaceae) using complete plastomes as super-barcodes. *Front. Plant Sci.* 12:681270. doi: 10.3389/fpls.2021.681270

Jin, J. J., Yu, W. B., Yang, J. B., Song, Y., de Pamphilis, C. W., Yi, T. S., et al. (2020). GetOrganelle: a fast and versatile tool for accurate de novo assembly of organelle genomes. *Genome Biol.* 21:241. doi: 10.1186/s13059-020-02154-5

Jirapratasril, P., Backeljau, T., Prasankok, P., Chanabur, R., and Panha, S. (2019). Ungueting a mess of worms: species delimitations reveal morphological crypts and variability in Southeast Asian semi-aquatic earthworms (*Almidae, Glypheididae*). *Mol. Phylogenet. Evol.* 139:106531. doi: 10.1016/j.ympev.2019.106531

Kane, N., Sveinson, S., Dempewolf, H., Yang, J. Y., Zhang, D., Engels, J. M., et al. (2012). Ultra-barcoding in cacao (*Theobroma spp.*; *Malvaceae*) using whole chloroplast genomes and nuclear ribosomal DNA. *Am. J. Bot.* 99, 320–329. doi: 10.3732/ajb.1100570

Kapli, P., Lutteropp, S., Zhang, J., Kober, K., Pavlidis, P., Stamatakis, A., et al. (2017). Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. *Bioinformatics* 33, 1630–1638. doi: 10.1093/bioinformatics/btx625

Kato, K., and Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. *mol. Biol. Evol.* 30, 772–780. doi: 10.1093/molbev/mst010

Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., et al. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. *Bioinformatics* 28, 1647–1649. doi: 10.1093/bioinformatics/bts199

Kekkonen, M., and Hebert, P. D. (2014). DNA barcode-based delination of putative species: efficient start for taxonomic workflows. *Mol. Ecol. Resour.* 14, 706–715. doi: 10.1111/1755-0998.12233

Knöpfe, M. L., Bellinger, M. R., Datlof, E. M., Gallacher, T. J., and Johnson, M. A. (2020). Insights into the Evolutionary History of the Hawaiian *Bidens* (*Asteraceae*) Adaptive Radiation Revealed Through Phylogenomics. *J. Hered.* 111, 119–137. doi: 10.1093/jhered/esaa066
Pellicer, J., Kelly, L. J., Leitch, I. J., Zomlefer, W. B., and Fay, M. F. (2014). A universe
Pons, J., Barraclough, T. G., Gomez-Zurita, J., Cardoso, A., Duran, D. P., Hazell,
Miller, M. R., Dunham, J. P., Amores, A., Cresko, W. A., and Johnson, E. A.
Ma, Z. Y., Wen, J., Tian, J. P., Gui, L. L., and Liu, X. Q. (2020). Testing
Li, L., Zhang, J., Lu, Z. Q., Zhao, J. L., and Li, Q. J. (2021). Genomic data reveal
Paris
Li, H. (1992). New taxa of the genus
Puillandre, N., Lambert, A., Brouillet, S., and Achaz, G. (2011). ABGD, Automatic
Philos. Trans.
Mace, G. M. (2004). The role of taxonomy in species conservation.
Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic
analyses with thousands of taxa and mixed models.
Bioinformatics
Swofford, D. L. (2002).
Tillich, M., Lehwark, P., Pellizzer, T., Ulbricht-Jones, E., Fischer, A., Bock, R., et al.
Daiswa
Daiswa
Yunnan, China.
Rosenberg, N. A. (2007). Statistical tests for taxonomic distinctiveness from
observations of monophyly. Evolution 61, 317–323. doi: 10.1111/j.1558-5646.
2007.00233.x
Ruhsam, M., Rai, H. S., Mathews, S., Ross, T. G., Graham, S. W., Rueberson, L. A., et al. (2015). Does complete plastid genome sequencing improve species discrimination and phylogenetic resolution in Araucaria? Mol. Ecol. Resour. 15, 1067–1078. doi: 10.1111/1755-0998.12375
Sites, J. W., and Crandall, K. A. (1997). Testing Species Boundaries in Biodiversity Studies. Conserv. Biol. 11, 1289–1297. doi: 10.1046/j.1523-1739.1997.96254.x
Sites, J. W., and Marshall, J. C. (2003). Delimiting species: a Renaissance issue in systematic biology. Trends Ecol. Evol. 18, 462–470. doi: 10.1016/S0169-5347(03)00184-8
Ślipiński, M., Mysczynski, K., Buczkoswka, K., Bączkiewicz, A., Szczezińska, M., and Sawicki, J. (2020). Molecular delimitation of European leafy liverworts of the genus Calluxegea based on plastid super-barcodes. BMC Plant Biol. 20:243. doi: 10.1186/s12870-020-02435-y
Song, C., Lin, X. L., Wang, Q., and Wang, X. H. (2018). DNA barcodes successfully delimit morphospecies in a superdiverse insect genus. Zool. Scr. 47, 311–324. doi: 10.1111/zsc.12284
Stamatakis, A. (2006). RAXML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxon and mixed models. Bioinformatics 22, 2688–2690. doi: 10.1093/bioinformatics/btl446
Straub, S. C., Parks, M., Weitemier, K., Fishbein, M., Cronn, R. C., and Liston, A. (2012). Navigating the tip of the genomic iceberg: next-generation sequencing for plant systematics. Am. J. Bot. 99, 349–364. doi: 10.3732/ajb.1100335
Su, N., Liu, B. B., Wang, J. R., Tong, R. C., Ren, C., Chang, Z. Y., et al. (2021). On the species delimitation of the Maddenia group of Prunus (Rosaceae): evidence from plastome and nuclear sequences and morphology. Front. Plant Sci. 12:743643. doi: 10.3389/fpls.2021.743643
Su, X., Wu, G., Li, L., and Liu, J. (2015). Species delimitation in plants using the Qihai-Tibet Plateau endemic Ormosia (Poinaceae: Tridentinae) as an example. Ann. Bot. 116, 35–48. doi: 10.1093/aob/mcv062
Sukumaran, J., and Knowles, L. L. (2017). Multispecies coalescent delimits structure, not species. Proc. Natl. Acad. Sci. U.S.A. 114, 1607–1612. doi: 10.1073/pnas.1607921114
Swofford, D. L. (2002). PAUP: Phylogenetic Analysis Using Parsimony (and other methods), 4.0 Beta. Sunderland, MA: Sinauer Associates.
Takhtajan, A. (1983). A revision of Daiswa (Trilliaceae). Brittonia 35, 255–270. doi: 10.2307/2800625
Tillich, M., Lehwark, P., Pellizer, T., Ulbricht-Jones, E., Fischer, A., Bock, R., et al. (2017). GeoSeq: Versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 45, W6–W11. doi: 10.1093/nar/gkw391
Wiley, E. O., and Mayden, R. (2000). "The evolutionary species concept," in Species Concepts and Phylogenetic Theory: A Debate, eds Q. D. Wheeler and R. Meyer (New York, NY: Columbia University Press), 70–89.
Wu, W., Ng, W. L., Yang, J. X., Li, W. M., and Ge, X. J. (2018). High DNA substitution.
Bioinformatics
Zhu, Z., Wei, N., Tan, Y., Peng, S., Ngumbau, V. M., Hu, G., et al. (2019). Paris lithoengiana (Melanthiaceae: Parideae), a new species from Yunnan, China. Phytotaxa 392, 045–053. doi: 10.11646/phytotaxa.392.14
Yang, Z., and Rannala, B. (2010). Bayesian species delimitation using multilocus sequence data. Proc. Natl. Acad. Sci. U.S.A. 107, 9264–9269. doi: 10.1073/pnas.0913022107
Yang, Z., Yang, C., and Ji, Y. (2019). Paris variabilis (Melanthiaceae), A new species from southwestern China. Phytotaxa 401, 190–198. doi: 10.11646/phytotaxa.401.3.4
Yao, Y. F., Bruch, A. A., Mosbrugger, V., and Li, C. S. (2011). Quantitative reconstruction of Miocene climate patterns and evolution in southern China based on plant fossils. Palaeogeogr. Palaeoclimatol. Palaeoecol. 304, 291–307. doi: 10.1016/j.palaeo.2010.04.012
Zhang, J., Kapli, P., Pavlidis, P., and Stamatakis, A. (2013). A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29, 2869–2876. doi: 10.1093/bioinformatics/btt499
Zhou, M., Yang, G., Sun, G., Guo, Z., Gong, X., and Pan, Y. (2020). Resolving complicated relationships of the Panax bipinnatifidus complex in southwestern China by RAD-seq data. Mol. Phylogenet. Evol. 149:106851. doi: 10.1016/j.ympev.2020.106851

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Ji, Yang, Landis, Wang, Jin, Xie, Liu, Yang and Yi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.