Background/objective
Tropospheric ozone (O_3) is a major secondary air pollutant with a deleterious impact on plant growth and development. Elevated O_3 significantly reduces photosynthesis and productivity in several C_4 crops, such as maize, switchgrass, and sugarcane. However, less is known about how it affects sorghum, an emerging C_4 bioenergy crop that is well-adapted to marginal environments and produces high biomass. This study investigated how elevated O_3 affects photosynthesis, biomass, and nutrient composition of a number of sorghum genotypes. Tests were also conducted to see if elevated O_3 altered the relationship between stomatal conductance and environmental conditions.

Approach
- Studies were conducted under fully open-air field conditions using free-air concentration enrichment (FACE) technology, which allows for long-term, continuous exposure to elevated O_3 and monitoring of plant traits under natural conditions with little or no perturbation of other environmental factors.
- To further test the effects of elevated O_3 on photosynthetic traits of sorghum lines under controlled environmental conditions, a growth chamber experiment was performed using four genotypes.

Results
- Sorghum genotypes showed significant variability in plant functional traits, including photosynthetic capacity, leaf N content and specific leaf area, but responded similarly to O_3.
- At FACE, elevated O_3 did not alter net CO$_2$ assimilation (A), stomatal conductance (g_s), stomatal sensitivity to the environment, chlorophyll fluorescence and plant biomass, but led to reductions in the maximum carboxylation capacity of phosphoenolpyruvate and increased stomatal limitation to A.

Significance
To our knowledge, this is the first study to examine how elevated O_3 affects photosynthesis and biomass in bioenergy sorghum genotypes, and it provides important information for exploring O_3 sensitivity among C_4 species and identifying O_3 resistant bioenergy feedstocks. The results of this study suggest that bioenergy sorghum is tolerant to O_3 and could be used to enhance biomass productivity in O_3 polluted regions, and thus can provide abundant and sustainable energy under future climate scenarios.

Li, S., et al. 2021. "Bioenergy Sorghum Maintains Photosynthetic Capacity in Elevated Ozone Concentrations." *Plant Cell Environ.* 44(3), 729-746. DOI: https://doi.org/10.1111/pce.13962.