Calculation of Five Thermodynamic Molecular Descriptors by Means of a General Computer Algorithm Based on the Group-Additivity Method: Standard Enthalpies of Vaporization, Sublimation and Solvation, and Entropy of Fusion of Ordinary Organic Molecules and Total Phase-Change Entropy of Liquid Crystals

Rudolf Naef 1,* and William E. Acree Jr. 2

1 Department of Chemistry, University of Basel, Basel 4003, Switzerland
2 Department of Chemistry, University of North Texas, Denton, TX 76203, USA; acree@unt.edu

* Correspondence: rudolf.naef@unibas.ch; Tel.: +41-619-119-273

Received: 22 May 2017; Accepted: 22 June 2017; Published: 25 June 2017

Abstract: The calculation of the standard enthalpies of vaporization, sublimation and solvation of organic molecules is presented using a common computer algorithm on the basis of a group-additivity method. The same algorithm is also shown to enable the calculation of their entropy of fusion as well as the total phase-change entropy of liquid crystals. The present method is based on the complete breakdown of the molecules into their constituting atoms and their immediate neighbourhood; the respective calculations of the contribution of the atomic groups by means of the Gauss-Seidel fitting method is based on experimental data collected from literature. The feasibility of the calculations for each of the mentioned descriptors was verified by means of a 10-fold cross-validation procedure proving the good to high quality of the predicted values for the three mentioned enthalpies and for the entropy of fusion, whereas the predictive quality for the total phase-change entropy of liquid crystals was poor. The goodness of fit (Q^2) and the standard deviation (σ) of the cross-validation calculations for the five descriptors was as follows: 0.9641 and 4.56 kJ/mol ($N = 3386$ test molecules) for the enthalpy of vaporization, 0.8657 and 11.39 kJ/mol ($N = 1791$) for the enthalpy of sublimation, 0.9546 and 4.34 kJ/mol ($N = 373$) for the enthalpy of solvation, 0.8727 and 17.93 J/mol/K ($N = 2637$) for the entropy of fusion and 0.5804 and 32.79 J/mol/K ($N = 2643$) for the total phase-change entropy of liquid crystals. The large discrepancy between the results of the two closely related entropies is discussed in detail. Molecules for which both the standard enthalpies of vaporization and sublimation were calculable, enabled the estimation of their standard enthalpy of fusion by simple subtraction of the former from the latter enthalpy. For 990 of them the experimental enthalpy-of-fusion values are also known, allowing their comparison with predictions, yielding a correlation coefficient R^2 of 0.6066.

Keywords: enthalpy of vaporization; enthalpy of sublimation; enthalpy of solvation; entropy of fusion; total phase-change entropy; tpc entropy; group-additivity method

1. Introduction

The reliable prediction of certain properties/descriptors of a molecule prior to its synthetic preparation has always been the goal of theoretical and experimental scientists, be it that they wanted to focus their experimental working hours on the synthesis of worthwhile compounds, be it that they...
wanted to verify their experimental results by means of the predictions. Among the many approaches, from the most elaborate ones such as the time-consuming ab initio methods to the fastest semiempirical self-consistent field procedures, one has turned out to be the most versatile and accurate and is not even quantum-theory-related: the atomic group-additivity method. A recent paper [1] demonstrated its versatility in that it enabled the calculation of mutually totally unrelated descriptors such as heat of combustion, solubility, refractivity, polarizability and toxicity by means of one single computer algorithm. This approach marks the endpoint, so to speak, of the various earlier group-additivity methods focusing on specific fields of application such as the prediction of the logPO/W values [2,3], the molar refractivity [4], the molecular polarizability [5,6], or—closer to the present goal—the “simultaneous” evaluation of the logP, the aqueous solubility and the brain/blood distribution ratio logBB using individual parameter sets [7]. It is no secret, however, that the unsuccessful attempts in paper [1] to reliably predict just the latter descriptor, logBB, put a damper on the expectation of a universal applicability of the present atomic group-additivity method. Yet, the exceptionally high prediction quality for the heat of combustion values across the entire structural spectrum of compounds presented in paper [1]—showing a cross-validated correlation coefficient of better than 0.9999 for 1965 compounds—at least gave rise to the hope that this method might successfully be extended to further thermodynamic descriptors.

The standard enthalpies of vaporization and sublimation were the first targets to be examined, not only because of their importance in chemical and environmental science, but also because a great deal of groundwork had already been done by Acree, Jr. and Chickos [8], who collected a large number of experimental vaporization and sublimation data covering more than a century. Several attempts to estimate the standard enthalpies of vaporization and sublimation have already been published: Roux et al. [9] evaluated the standard phase-change enthalpies of molecules from their experimental phase-change enthalpies at any given temperatures using their estimated heat capacity at room temperature. In cases where the number of experimental data was insufficient, they extrapolated the data from compounds with known experimental values. This estimation method, however, was limited to the vaporization enthalpy of liquid hydrocarbons. Similarly, Chickos et al. [10,11] estimated the vaporization enthalpies of larger even-numbered linear n-alkanes from a series of smaller ones [12,13] using their temperature dependence of the gas chromatographic retention time. A further indication of the potential applicability of the group-additivity method to predict the heats of vaporization and sublimation was found in the high correlation of the chain length of the homologues of saturated and unsaturated fatty acids with their experimental values [14].

Determination of the enthalpy of solvation has recently been based on the Abraham solute parameters model [15–18], the model consisting of a linear equation of five parameters relating to the molecule’s excess molar refraction, the polarity/dipolarity, solute hydrogen-bond acidity and hydrogen-bond basicity, and the McGowan (i.e., molecular) volume. These parameters have been derived from the molecular structure of a series of compounds using multilinear regression analysis and artificial neural networks [19]. Earlier, Cabani et al. [20] described a group-contribution method for the estimation of the enthalpy, Gibbs free energy and heat capacity of liquids of non-ionic solutes in water, limiting the method for the calculation of the group contributions to compounds with not more than one heteroatom and then applying correction parameters for molecules containing more than one heteroatom.

The entropy of fusion (often—and more logically—called entropy of phase change or even better: entropy of melting) of ordinary organic molecules as well as its special manifestation with liquid crystals, called total phase-change entropy, generally mean the entropy of the transition of a molecule from its most stable crystalline form to the isotropic melt. While for ordinary molecules this transition in most cases occurs in one step or two consecutive steps upon addition of thermal energy, this process is much more complex with liquid crystals in that they know several intermediate, semi-crystalline phases melting at considerably different temperatures. In the first case, occurrence of more than one melting step may be explained by polymorphism of the crystalline form, their various
polymorphic forms often showing distinct differences in their fusion enthalpies. In the second, the various semi-crystalline forms can be stable over a considerable temperature range, thus consuming a large amount of thermal energy prior to their next phase change. The thermodynamic consequences of the difference in the melting processes between ordinary molecules and compounds exhibiting liquid crystal properties forced Chickos et al. [21] and Acree, Jr. et al. [22] to treat these two categories of compounds as separate entities in their collective volumes.

The present work, being a continuation of the principle to calculate the molecular descriptors published earlier [1], will show the extendability of the approach to reliably predict the enthalpies of vaporization, sublimation and solvation, as well as the entropy of fusion. In order to clearly distinguish the phase-change entropy of ordinary compounds from that of liquid crystals, the term “entropy of fusion” will remain reserved for the former, while for the latter the well-established term “total phase-change entropy” will be used throughout.

2. General Procedure

All the calculations are based on a knowledge database encompassing at present more than 28,500 records, containing the compounds in their geometry-optimized 3D form and carrying all the required (and several more) data. The database includes—besides ordinary organic molecules—organic salts, ionic liquids, liquid crystals and metal-organic compounds.

The algorithm for the calculation of the present descriptors follows the atom-group additivity principle outlined in detail in the earlier paper [1]. Consequently, the naming and meaning of the atom groups in the parameters tables is the same, the tables being complemented by further atom groups, where necessary, following the rules described in Table 1 of [1]. The results of the evaluation of the atom-group contributions are stored in a separate parameters list for each descriptor. The only difference to the earlier work lies in the addition of a further special group as a consequence of attempts to optimize calculations of the group contributions for the entropies of fusion, where it turned out that the difference between the experimental values of open-chained and cyclical compounds was not resolvable by the given ordinary atom groups themselves. Therefore, a special group called “Endocyclic bonds” has been introduced which counts the number of endocyclic bonds in a molecule but is restricted to single bonds to take account of their reduced freedom of mobility within a ring system (bonds of higher order are by themselves restricted). Its treatment within the calculation is identical to the one described for all the other special groups.

Once the group contributions have been evaluated as described earlier, the prediction of the descriptors follows the general Equation (1), where \(a_i \) and \(b_j \) are the contributions, \(A_i \) is the number of occurrences of the \(i \)th atom group, \(B_j \) is the number of occurrences of the special groups and \(C \) is a constant:

\[
Y = \sum_i a_i A_i + \sum_j b_j B_j + C
\]

It is immediately evident that this equation excludes prediction of descriptors for molecules for which not all atom groups are present in the corresponding parameters table. Yet, a further limitation is given by the condition that only atom groups are valid for consideration that have been represented by at least three independent molecules in the parameters-evaluation process. The number of molecules representing a given atom group is listed in the rightmost column of the parameters tables shown below. The remaining atom groups represented by less than three molecules are kept in the parameters tables solely for future use in this continuing project (and to invite researchers experimenting in these areas to focus on compounds carrying these atom groups). The calculations are generally restricted to molecules containing the elements H, B, C, N, O, P, S, Si and/or halogen.

Plausibility tests have been carried out for each of the atom-group additivity parameters evaluations applying a 10-fold cross-validation procedure as described in [1], making sure that each compound has been used once as a test sample in the process. The results of these calculations are condensed in row A to H at the end of each parameters table. In the corresponding correlation
3. Results

3.1. General Remarks

(1) The experimental values of enthalpies and entropies are temperature-dependent. Any relationship within these properties or with other ones only make sense if they are referenced to the same temperature. The usual temperature of reference is 298.15 K, and thus it was ensured in this work that experimental data from literature were only accepted if they had been either measured at or adjusted to the standard temperature of 298.15 K and standard pressure of 100 kPa.

(2) All lists of molecules used in the atom-group parameters evaluations have been collected in standard SDF files, stored in the supplementary material, ready to be imported by external chemistry software. The supplementary material also provides the lists of results containing molecule names, experimental, training and cross-validation values. Beyond this, it also contains lists of experimental outliers.

3.2. Enthalpy of Vaporization

Experimental data of vaporization enthalpies have essentially been extracted for this work from the large collection of Acree, Jr. and Chickos [8] and Chickos et al. [10–14], supplemented by recent data from a number of further authors publishing experimental vaporization values of several acetophenones [23], aliphatic tertiary amines [24], azidomethyl-N-nitrooxazolidines [25], benzamides [26], benzocaine [27], bisabolol and menthol [28], crown ethers [29], N,N-dialkyl monoamides [30], fenpropidin and phencyclidine [31], flavors [32], long-chain fluorinated alcohols [33], whiskey- and metha-lactone [34], halogenated fluorenes [35], ibuprofen and naproxen [36], imidazo[1,2-a]pyrazine and phthalazine [37], insect pheromones [38], morpholines [39], organo(thio)phosphates [40], dialkyl phthalates [41], nitrogen heteroaromatics [42], phenylimidazoles [43], 2-acetyltiophene [44], dicarboxylic n-pentyl esters [45], and cyclic amines, ethers and alcohols [46]. The result of the atom-group parameters, based on 3581 compounds, is summarized in Table 1. Several tentative calculations with or without inclusion of certain special groups outlined in Table 2 of the earlier paper [1] revealed a minor improvement of the goodness of fit upon inclusion of the “atom group” responsible for intramolecular acid-base bonds, named “H/H Acceptor”, as well as of those reserved for saturated and unsaturated pure hydrocarbons, called “Alkane/No. of C atoms” and “Unsaturated HC/No. of C atoms”, which add a correction value for each carbon atom.

Entry	Atom Type	Neighbours	Contribution	Occurrences	Molecules
1	Const		8.61	3581	3581
2	B	C3	21.55	2	2
3	B	N2Cl	33.19	1	1
4	B	NC12	28.59	1	1
5	B	O2Cl	28.23	2	2
6	B	OC12	25.53	1	1
7	B	S3	76.74	4	4
8	C sp³	H3C	3.07	5380	2388
9	C sp³	H3N	15.65	242	133
10	C sp³	H3N(+)	31.33	2	2
11	C sp³	H3O	16.71	372	263
12	C sp³	H3S	14.44	31	25
13	C sp³	H3P	9.04	6	4
Table 1. Cont.

Entry	Atom Type	Neighbours	Contribution	Occurrences	Molecules
14	C sp\(^3\)	H\(_2\)Si	5.87	136	53
15	C sp\(^3\)	H\(_2\)BC	-3.07	6	2
16	C sp\(^3\)	H\(_2\)C2	4.67	10,588	2030
17	C sp\(^3\)	H\(_2\)CN	15.00	430	243
18	C sp\(^3\)	H\(_2\)CN(+)	29.15	10	9
19	C sp\(^3\)	H\(_2\)CO	15.79	1147	779
20	C sp\(^3\)	H\(_2\)CS	15.50	159	101
21	C sp\(^3\)	H\(_2\)P	6.87	6	2
22	C sp\(^3\)	H\(_2\)F	6.67	2	11
23	C sp\(^3\)	H\(_2\)C\(_2\)Cl	14.13	76	65
24	C sp\(^3\)	H\(_2\)CBr	16.69	24	21
25	C sp\(^3\)	H\(_2\)CJ	20.90	29	26
26	C sp\(^3\)	H\(_2\)CSi	2.01	134	54
27	C sp\(^3\)	H\(_2\)N\(_2\)	28.27	5	3
28	C sp\(^3\)	H\(_2\)NO	20.46	4	4
29	C sp\(^3\)	H\(_2\)O\(_2\)	27.43	19	16
30	C sp\(^3\)	H\(_2\)O\(_2\)	22.40	1	1
31	C sp\(^3\)	H\(_2\)OF	18.90	1	1
32	C sp\(^3\)	H\(_2\)OCl	23.06	2	2
33	C sp\(^3\)	H\(_2\)OSi	10.30	1	1
34	C sp\(^3\)	H\(_2\)S\(_2\)	24.08	2	2
35	C sp\(^3\)	H\(_2\)SSi	6.66	9	9
36	C sp\(^3\)	H\(_2\)Si\(_2\)	2.87	2	1
37	C sp\(^3\)	HC\(_3\)	3.54	939	615
38	C sp\(^3\)	HC\(_2\)N	12.69	75	64
39	C sp\(^3\)	HC\(_2\)N(+)	28.39	3	3
40	C sp\(^3\)	HC\(_2\)O	14.99	243	203
41	C sp\(^3\)	HC\(_2\)S	13.61	26	22
42	C sp\(^3\)	HC\(_2\)Si	7.20	6	4
43	C sp\(^3\)	HC\(_2\)F	5.96	7	6
44	C sp\(^3\)	HC\(_2\)Cl	9.66	40	38
45	C sp\(^3\)	HC\(_2\)Br	12.12	21	16
46	C sp\(^3\)	HC\(_2\)J	18.79	4	4
47	C sp\(^3\)	HC\(_2\)N(+)	47.10	3	3
48	C sp\(^3\)	HCO\(_2\)	25.39	25	22
49	C sp\(^3\)	HCO\(_2\)Cl	20.93	1	1
50	C sp\(^3\)	HC\(_2\)F	7.10	15	14
51	C sp\(^3\)	HC\(_2\)Cl	12.61	15	15
52	C sp\(^3\)	HC\(_2\)Cl	16.96	23	22
53	C sp\(^3\)	HC\(_2\)Br	18.23	1	1
54	C sp\(^3\)	HNO\(_2\)	32.31	1	1
55	C sp\(^3\)	HO\(_3\)	37.33	4	4
56	C sp\(^3\)	HO\(_2\)F	17.06	7	7
57	C sp\(^3\)	HO\(_2\)Cl	20.49	1	1
58	C sp\(^3\)	HS\(_2\)Cl	23.89	1	1
59	C sp\(^3\)	C\(_4\)	1.92	335	274
60	C sp\(^3\)	C\(_3\)N	12.60	28	23
61	C sp\(^3\)	C\(_3\)N(+)	26.15	4	4
62	C sp\(^3\)	C\(_3\)O	12.21	135	116
63	C sp\(^3\)	C\(_3\)S	13.69	18	16
64	C sp\(^3\)	C\(_3\)F	2.94	31	19
65	C sp\(^3\)	C\(_3\)Cl	7.77	8	6
66	C sp\(^3\)	C\(_3\)Br	11.95	3	3
67	C sp\(^3\)	C\(_3\)J	19.63	2	2
68	C sp\(^3\)	C\(_2\)NO	20.34	1	1
Entry	Atom Type	Neighbours	Contribution	Occurrences	Molecules
-------	-----------	------------	--------------	-------------	-----------
69	C sp³	C2NF	8.88	1	1
70	C sp³	C2O2	23.16	35	27
71	C sp³	C2OF	18.38	3	3
72	C sp³	C2F2	4.75	328	70
73	C sp³	C2FC1	8.73	5	5
74	C sp³	C2Cl2	13.35	5	5
75	C sp³	CN3(+)	46.89	3	3
76	C sp³	CNF2	15.25	15	6
77	C sp³	CNF2(+)	30.77	3	2
78	C sp³	CN2F(+)	28.25	4	3
79	C sp³	CO3	28.48	6	6
80	C sp³	COF2	20.61	4	4
81	C sp³	COCl2	12.70	2	1
82	C sp³	COF2	13.65	36	30
83	C sp³	COCl2	20.61	4	4
84	C sp³	CNF2	15.25	3	3
85	C sp³	CNF2(+)	30.77	3	2
86	C sp³	CN2F(+)	28.25	4	3
87	C sp³	CO3	28.48	6	6
88	C sp³	COF2	20.61	4	4
89	C sp³	COCl2	12.70	2	1
90	C sp³	CNF2	15.25	3	3
91	C sp³	CNF2(+)	30.77	3	2
92	C sp³	CN2F(+)	28.25	4	3
93	C sp³	CO3	28.48	6	6
94	C sp³	COF2	20.61	4	4
95	C sp³	COCl2	12.70	2	1
96	C sp³	COF2	13.65	36	30
97	C sp³	COCl2	20.61	4	4
98	C sp³	CNF2	15.25	3	3
99	C sp³	CNF2(+)	30.77	3	2
100	C sp³	CN2F(+)	28.25	4	3
101	C sp³	CO3	28.48	6	6
102	C sp³	COF2	20.61	4	4
103	C sp³	COCl2	12.70	2	1
104	C sp³	COF2	13.65	36	30
105	C sp³	COCl2	20.61	4	4
106	C sp³	COF2	20.61	4	4
107	C sp³	COCl2	12.70	2	1
108	C sp³	COF2	13.65	36	30
109	C sp³	COCl2	20.61	4	4
110	C sp³	CNF2	15.25	3	3
111	C sp³	CNF2(+)	30.77	3	2
112	C sp³	CN2F(+)	28.25	4	3
113	C sp³	CO3	28.48	6	6
114	C sp³	COF2	20.61	4	4
115	C sp³	COCl2	12.70	2	1
116	C sp³	COF2	13.65	36	30
117	C sp³	COCl2	20.61	4	4
118	C sp³	COF2	20.61	4	4
119	C sp³	COCl2	12.70	2	1
120	C sp³	COF2	13.65	36	30
121	C sp³	COCl2	20.61	4	4
122	C sp³	COF2	20.61	4	4
123	C sp³	COCl2	12.70	2	1
Table 1. Cont.

Entry	Atom Type	Neighbours	Contribution	Occurrences	Molecules
124	C sp²	=CN2	9.12	3	2
125	C sp²	CN=N	28.80	16	16
126	C sp²	CN=N (+)	11.32	2	2
127	C sp²	CN=O	35.35	47	47
128	C sp²	C=NO	22.79	5	5
129	C sp²	CN=S	18.27	3	2
130	C sp²	C=NS	17.49	1	1
131	C sp²	C=NCl	11.93	1	1
132	C sp²	=CNCI	22.67	2	1
133	C sp²	CO=O	17.20	684	594
134	C sp²	=COS	17.48	1	1
135	C sp²	C=OS	12.33	9	9
136	C sp²	=COF	15.53	1	1
137	C sp²	C=Cl	15.41	11	9
138	C sp²	C=Br	22.28	3	3
139	C sp²	C=I	25.82	2	2
140	C sp²	=CF2	-0.26	3	3
141	C sp²	=CFCl	9.81	3	2
142	C sp²	=CCI	17.52	6	5
143	C sp²	N2=N	29.25	2	2
144	C sp²	N2=O	35.05	3	3
145	C sp²	N=NS	13.50	5	5
146	C sp²	NO=O	33.48	3	3
147	C sp²	=NOCl	24.27	1	1
148	C sp²	NS=S	44.39	2	2
149	C sp²	O2=O	31.57	13	13
150	C sp²	O=OCl	22.73	2	2
151	C sp³	S2=S	34.03	1	1
152	C aromatic	H:C2	4.64	4749	928
153	C aromatic	H:C:N	11.74	118	70
154	C aromatic	H:C:N(+)	22.04	2	1
155	C aromatic	H:N2	15.36	7	5
156	C aromatic	:C3	6.67	233	69
157	C aromatic	C:C2	5.29	1053	618
158	C aromatic	C:C:N	9.94	38	30
159	C aromatic	:C2N	14.44	140	115
160	C aromatic	:C2N(+)	24.38	33	31
161	C aromatic	:C2:N	10.60	21	14
162	C aromatic	:C2O	8.04	443	253
163	C aromatic	:C2S	9.47	30	25
164	C aromatic	:C2Si	4.67	10	8
165	C aromatic	:C2F	4.45	143	72
166	C aromatic	:C2Cl	9.43	429	146
167	C aromatic	:C2Br	12.49	149	69
168	C aromatic	:C2J	19.48	29	26
169	C aromatic	:C:N	16.72	2	2
170	C aromatic	:C:NO	13.67	4	3
171	C aromatic	:C:NF	14.34	1	1
172	C aromatic	:C:NCl	15.74	3	3
173	C aromatic	:C:NBr	25.24	1	1
174	C aromatic	N:N2	20.19	5	2
175	C aromatic	N:2O	16.44	2	2
176	C sp	H=C	2.42	15	14
177	C sp	C=C	6.05	62	33
178	C sp	=C2	5.50	4	4
Entry	Atom Type	Neighbours	Contribution	Occurrences	Molecules
-------	-----------	------------	--------------	-------------	-----------
179	C sp	C=N	17.38	72	70
180	C sp	#CCl	9.31	3	2
181	C sp	=N=O	10.44	6	5
182	C sp	=N=S	23.08	3	3
183	N sp\(^1\)	H2C	2.30	78	58
184	N sp\(^1\)	H2C(pi)	8.05	61	59
185	N sp\(^1\)	H2N	19.23	8	7
186	N sp\(^1\)	H2S	28.18	2	2
187	N sp\(^1\)	HC2	−11.34	59	56
188	N sp\(^1\)	HC2(pi)	−1.94	27	26
189	N sp\(^1\)	HC2(2pi)	−2.43	21	21
190	N sp\(^1\)	HCN	−0.76	3	2
191	N sp\(^1\)	HCN(pi)	−13.33	3	3
192	N sp\(^1\)	HCN(2pi)	4.97	1	1
193	N sp\(^1\)	HCS(pi)	5.34	7	7
194	N sp\(^1\)	HCSi	−4.02	6	6
195	N sp\(^1\)	HSi2	1.94	1	1
196	N sp\(^1\)	BC2	−31.30	3	2
197	N sp\(^1\)	C3	−30.50	111	101
198	N sp\(^1\)	C3(pi)	−25.56	37	31
199	N sp\(^1\)	C3(2pi)	−22.95	52	50
200	N sp\(^1\)	C3(3pi)	−27.03	13	13
201	N sp\(^1\)	C2N	−19.64	4	3
202	N sp\(^1\)	C2N(+)	0.00	1	1
203	N sp\(^1\)	C2N(pi)	−27.16	3	2
204	N sp\(^1\)	C2N(+)pi	3.24	4	4
205	N sp\(^1\)	C2N(2pi)	−24.28	4	4
206	N sp\(^1\)	C2N(3pi)	−26.84	2	2
207	N sp\(^1\)	C2O	8.24	1	1
208	N sp\(^1\)	C2P	−17.98	5	2
209	N sp\(^1\)	C2Si	−19.79	12	8
210	N sp\(^1\)	CN2(2pi)	−36.43	1	1
211	N sp\(^1\)	CN2(+)2pi	16.44	1	1
212	N sp\(^3\)	CF2	−4.56	2	2
213	N sp\(^3\)	CF2(2pi)	−12.61	1	1
214	N sp\(^3\)	CSi2	−17.81	1	1
215	N sp\(^3\)	Si3	−1.79	1	1
216	N sp\(^2\)	H=C	1.29	2	2
217	N sp\(^2\)	C=C	−10.46	85	82
218	N sp\(^2\)	C=N	−5.89	19	10
219	N sp\(^2\)	C=N(+)	−2.79	15	13
220	N sp\(^2\)	=CN	18.81	9	9
221	N sp\(^2\)	=CO	10.27	17	14
222	N sp\(^2\)	=CF	0.00	1	1
223	N sp\(^2\)	N=N	15.91	5	3
224	N sp\(^2\)	O=O	0.59	7	7
225	N aromatic	=C2	−5.10	104	78
226	N aromatic	=C:N	5.35	8	4
227	N(+) sp\(^3\)	C2NO(-)	0.00	1	1
228	N(+) sp\(^2\)	CO=O(-)	−2.09	78	56
229	N(+) sp\(^2\)	C=NO(-)	−19.89	3	3
230	N(+) sp\(^2\)	NO=O(-)	0.35	6	5
231	N(+) sp\(^2\)	O2=O(-)	9.02	17	11
Table 1. Cont.

Entry	Atom Type	Neighbours	Contribution	Occurrences	Molecules
232	N(+) aromatic	:C2O(-)	0.00	1	1
233	N(+) sp	C#C(-)	-8.48	2	2
234	N(+) sp	=N2(-)	5.96	12	10
235	O	HC	14.55	322	288
236	O	HC(pi)	20.98	174	157
237	O	HN	0.00	1	1
238	O	HN(pi)	19.03	2	2
239	O	HO	23.75	5	5
240	O	HSi	26.41	1	1
241	O	BC	-17.91	5	3
242	O	C2	-17.86	424	270
243	O	C2(pi)	-13.29	744	629
244	O	C2(2pi)	-7.15	145	120
245	O	CP	0.00	7	7
246	O	CN(pi)	2.17	17	11
247	O	CN(2pi)	-2.82	9	9
248	O	CO	-8.76	54	20
249	O	CS	2.45	18	9
250	O	CP	-2.71	104	42
251	O	CP(pi)	1.25	7	5
252	O	CSi	-11.39	79	29
253	O	CSi(pi)	-14.85	37	13
254	O	N2(2pi)	-0.72	3	3
255	O	OSi	4.23	9	4
256	O	P2	16.68	1	1
257	O	Si2	-6.52	15	4
258	P3	C3	-6.83	3	3
259	P3	C2O	2.71	1	1
260	P3	N3	-7.09	1	1
261	P3	N2Cl	10.64	1	1
262	P3	O3	-4.07	1	1
263	P4	HO2=O	9.23	2	2
264	P4	CO2=O	5.40	3	3
265	P4	O3=O	-3.86	16	15
266	P4	O3=S	1.10	9	9
267	P4	O2=OS	1.77	4	4
268	P4	O2S=S	1.73	8	8
269	S2	HC	1.49	33	29
270	S2	HC(pi)	6.23	1	1
271	S2	HP	23.50	3	3
272	S2	BC	-24.53	12	4
273	S2	C2	-10.51	67	65
274	S2	C2(pi)	-2.71	23	22
275	S2	C2(2pi)	0.53	44	44
276	S2	CS	-0.35	16	8
277	S2	CS(pi)	2.39	2	1
278	S2	CP	-1.99	9	9
279	S2	Si2	-3.40	1	1
280	S4	C2=O	22.60	4	4
281	S4	C2=O2	27.80	9	9
282	S4	C2F2	-5.92	1	1
283	S4	CN=O2	1.94	9	9
284	S4	C=O2S	37.54	2	1
285	S4	O2=O	-3.83	5	5
286	S4	O2=O2	4.79	4	4
287	Si	H3C	0.00	1	1
The total number of atom groups in Table 1, required to take account of the complete set of 3581 molecules for which experimental vaporization data are known, is 302. However, the condition to restrict their applicability to those resting on at least three independent molecules, reduces the number of “valid groups” to 187, as is shown in row A of Table 1. Accordingly, the number of compounds viable for the evaluation of the result of the complete training set and of the test sets in the 10-fold cross-validation calculation was reduced to 3460 and 3381, respectively, as listed in the right-most column. The high correlation coefficients R^2 and Q^2 of the training and the cross-validated sets (rows B and F) of better than 0.96 and the small difference between them is clear proof of the viability of the present group-additivity model for the prediction of the enthalpy of vaporization. Furthermore, the small standard deviations for the training and test sets of 4.3 and 4.56 (rows D and H) also speaks for the model’s accuracy. In order to put these deviations into perspective with the reality of the experimental practice, a few examples should be given for comparison: the compilation of Acree and Chickos [8] presented eight values for 1-butanol ranging from 48.4 to 55.2 kJ/mol, seven values for methyl t-amyl ether ranging from 33.5 to 35.8 kJ/mol, and four values for ethylenediamine of between 41 and 54.4 kJ/mol. It goes without saying, therefore, that the standard errors of the group-parameters calculations (lines D and H in the parameters table), covering the complete set of available data, are always larger than the individual errors and, thus better reflect the general uncertainty of the experimental data.

The correlation diagram in Figure 1, showing a fairly even distribution of the vaporization data along the regression line, also reveals a narrow overlap of the cross-validated test data with those of the training set. The related histogram in Figure 2, exhibiting a nearly perfect Gaussian bell curve, proves the evenness of the distribution of the deviations of both test and training data about the regression line. The analysis of the distribution of the deviations yielded the following result: 79.2% of the presently 3460 tested compounds deviated by less than or equal to one cross-validated standard error of 4.56 kJ/mol, whereas 6.8% exceeded a deviation of twice that standard error. Beyond this, 32 molecules had to be viewed as outliers as their deviation surpassed by at least four times this standard deviation.
Despite the detailed distinction of the atom groups in Table 1, resulting in an extended list of groups of which about one third is "invalid," the still large number of "valid" atom groups enabled the calculation of reliable enthalpy-of-vaporization data for 78.2% of the complete set of compounds in the database.

3.3. Enthalpy of Sublimation

Figure 1. Correlation Diagram of the Enthalpy-of-Vaporization Data ($N = 3460; R^2 = 0.9677; Q^2 = 0.9640$; regression line: intercept = 1.9756, slope = 0.9681).

Figure 2. Histogram of the Enthalpy-of-Vaporization Data ($S = 4.56$ kJ/mol; Exp. values range: 15.6–177.2 kJ/mol).
Despite the detailed distinction of the atom groups in Table 1, resulting in an extended list of groups of which about one third is “invalid”, the still large number of “valid” atom groups enabled the calculation of reliable enthalpy-of-vaporization data for 78.2% of the complete set of compounds in the database.

3.3. Enthalpy of Sublimation

The enthalpy of sublimation is the sum of the enthalpies of vaporization and fusion, provided that all of them are referenced to the same temperature. This precondition has been thoroughly followed when selecting experimental data from literature. Again, as in the previous section, the main contribution of experimental sublimation values has been provided by the compendium of Acree, Jr. et al. [8], supplemented by a number of later publications, referencing the heat of sublimation of acetophenones [23], substituted benzenamides [26], crown ethers [29], long-chain fluorinated alcohols [33], halogenated fluorenes [35], tricyclic nitrogen heteroaromatics [42], polyphenylbenzenes [47], adamantylidenediamantane [48], cyclic \(N,N' \)-thioureas [49], indole-3-carboxylic acids [50], vanillyl alcohol [51], alkanoylphenols [52], adamantanes [53], six-membered ring aliphatics [54], fluoroquinolones [55], oxazolidinones [56], nitrogen-containing substituted adamantanes [57], 2,7-di-t-butylfluorene [58] and nitroimidazoles [59].

Table 2. Atom Groups and their Contributions (in kJ/mol) for Heat-of-Sublimation Calculations.

Entry	Atom Type	Neighbours	Contribution	Occurrences	Molecules
1	Const		21.03	1960	1960
2	B	C3	65.82	2	2
3	C sp\(^3\)	H3C	5.99	1322	623
4	C sp\(^3\)	H3N	26.96	143	87
5	C sp\(^3\)	H3N(+)	98.98	1	1
6	C sp\(^3\)	H3O	28.51	181	122
7	C sp\(^3\)	H3S	30.06	7	6
8	C sp\(^3\)	H2C2	6.88	2602	508
9	C sp\(^3\)	H2CN	21.98	224	116
10	C sp\(^3\)	H2CN(+)	27.46	13	11
11	C sp\(^3\)	H2CO	29.62	242	134
12	C sp\(^3\)	H2CS	23.29	50	31
13	C sp\(^3\)	H2CF	15.91	1	1
14	C sp\(^3\)	H2CCl	17.59	3	3
15	C sp\(^3\)	H2CBr	22.76	5	4
16	C sp\(^3\)	H2CJ	21.83	3	2
17	C sp\(^3\)	H2N2	43.95	18	6
18	C sp\(^3\)	H2NCl	36.29	1	1
19	C sp\(^3\)	H2O2	53.35	25	13
20	C sp\(^3\)	H2O3	54.78	1	1
21	C sp\(^3\)	H2S2	47.45	6	4
22	C sp\(^3\)	HBC2	36.17	3	1
23	C sp\(^3\)	H3C	2.28	509	190
24	C sp\(^3\)	H2CN	14.28	34	30
25	C sp\(^3\)	H2CN(+)	21.01	9	9
26	C sp\(^3\)	H2CO	24.27	82	47
27	C sp\(^3\)	H2CS	17.59	14	11
28	C sp\(^3\)	H2CF	5.18	1	1
29	C sp\(^3\)	H2C1	11.49	7	2
30	C sp\(^3\)	H2Br	0.95	1	1
31	C sp\(^3\)	HCN2	39.48	8	2
32	C sp\(^3\)	HCN2(+)	39.93	2	2
33	C sp\(^3\)	HCN2O	34.73	2	1

Entry	Atom Type	Neighbours	Contribution	Occurrences	Molecules
34	C sp³	HCNS	20.56	2	1
35	C sp³	HCO₂	39.96	3	3
36	C sp³	HCF₂	-0.19	1	1
37	C sp³	HCCl₂	15.78	1	1
38	C sp³	HN₃(+)	37.31	1	1
39	C sp³	HO₃	72.23	3	3
40	C sp³	C⁴	-4.25	209	137
41	C sp³	C₃N	5.87	18	13
42	C sp³	C₃N(+)	18.44	14	11
43	C sp³	C₃O	15.18	40	31
44	C sp³	C₃S	6.40	5	5
45	C sp³	C₃F	1.89	3	3
46	C sp³	C₃Cl	-8.06	1	1
47	C sp³	C₃Br	2.34	1	1
48	C sp³	C₂N₂(+)	34.78	7	6
49	C sp³	C₂O₂	39.73	8	8
50	C sp³	C₂S₂	37.28	4	1
51	C sp³	C₂F₂	7.07	62	8
52	C sp³	CN₃(+)	43.89	19	12
53	C sp³	CN₂F₂(+)	25.98	1	1
54	C sp³	CO₃	57.42	2	2
55	C sp³	CF₃	-4.71	27	23
56	C sp³	CCl₃	16.10	3	2
57	C sp³	CN₃F(+)	44.00	1	1
58	C sp³	O₄	73.43	1	1
59	C sp²	H₂=CN	7.97	12	12
60	C sp²	H₂=CN	5.10	452	213
61	C sp²	H₂=CN	35.49	21	19
62	C sp²	HC=NI(+)	72.64	7	7
63	C sp²	H=CN	32.79	83	69
64	C sp²	H=CN	20.74	15	15
65	C sp²	H=CN	16.89	16	14
66	C sp²	H=CN	15.22	49	36
67	C sp²	H=CN	55.52	19	18
68	C sp²	H=CN	35.41	4	3
69	C sp²	H=CN	40.91	1	1
70	C sp²	H=CN	33.85	2	2
71	C sp²	H=CN	3.91	78	61
72	C sp²	C₂=CN	30.47	35	26
73	C sp²	C₂=CN	13.76	5	5
74	C sp²	C₂=CN	26.81	57	48
75	C sp²	C₂=CN	41.65	7	7
76	C sp²	C₂=CN	15.10	200	161
77	C sp²	C₂=CN	22.08	40	31
78	C sp²	C₂=CN	18.21	3	3
79	C sp²	C₂=CN	15.64	36	27
80	C sp²	C₂=CN	16.81	2	2
81	C sp²	C₂=CN	11.02	9	5
82	C sp²	C₂=CN	34.06	2	2
83	C sp²	C₂=CN	32.46	1	1
84	C sp²	C₂=CN	64.94	6	6
85	C sp²	C₂=CN	60.65	4	4
86	C sp²	C₂=CN	54.51	27	25
87	C sp²	C₂=CN	44.16	3	3
88	C sp²	C₂=CN	39.66	234	194
Entry	Atom Type	Neighbours	Contribution	Occurrences	Molecules
-------	-----------	------------	--------------	-------------	-----------
89	C sp²	C=NO	42.74	2	2
90	C sp²	CN=S	39.85	8	7
91	C sp²	C=NS	34.89	1	1
92	C sp²	=CNS(+)	41.29	2	2
93	C sp²	=CNCl	38.14	4	3
94	C sp²	CO=O	34.06	424	345
95	C sp²	CO=O(-)	80.89	22	22
96	C sp²	C=OCl	29.03	1	1
97	C sp²	CS=S	56.97	3	3
98	C sp²	N₂=N	80.72	4	4
99	C sp²	N₂=N(+)	65.95	6	5
100	C sp²	N₂=O	59.57	76	70
101	C sp²	N₂=S	66.62	29	29
102	C sp²	N=NS	51.62	22	22
103	C sp²	NO=O	52.79	8	8
104	C sp²	=NO2	61.12	1	1
105	C sp²	N=OS	48.27	1	1
106	C sp²	NO=S	58.04	11	11
107	C sp²	=NOS	52.75	1	1
108	C sp²	NS=S	60.83	5	3
109	C sp²	=NS2	64.37	1	1
110	C sp²	O₂=O	41.40	7	7
111	C sp²	=O₅S	41.22	2	2
112	C sp²	OS=S	73.06	1	1
113	C sp²	S₂=O	49.39	5	5
114	C aromatic	H:C₂	5.36	7115	1269
115	C aromatic	H:C:N	18.20	150	96
116	C aromatic	H:C:N(+	28.26	48	28
117	C aromatic	H:N₂	23.27	7	5
118	C aromatic	B:C₂	-25.04	3	1
119	C aromatic	:C₂	5.51	454	155
120	C aromatic	C:C₂	3.12	1684	835
121	C aromatic	C:C:N	11.10	80	48
122	C aromatic	C:C:N(+)	16.04	33	21
123	C aromatic	:C₂N	22.21	354	258
124	C aromatic	:C₂N(+)	28.67	169	134
125	C aromatic	:C₂:N	17.03	79	61
126	C aromatic	:C₂:N(+)	18.05	35	20
127	C aromatic	:C₂O	20.46	617	387
128	C aromatic	:C₂P	-1.63	12	4
129	C aromatic	:C₂S	16.31	80	64
130	C aromatic	:C₂F	4.45	77	42
131	C aromatic	:C₂Cl	12.48	424	166
132	C aromatic	:C₂Br	14.66	63	43
133	C aromatic	:C₂J	20.68	31	27
134	C aromatic	:C₂Si	4.80	10	2
135	C aromatic	C:N₂	28.80	4	2
136	C aromatic	:C:N:N	29.72	11	9
137	C aromatic	:C:N:N(+)	33.74	3	2
138	C aromatic	:C:NO	41.44	13	12
139	C aromatic	:C:NO(+)	33.50	5	5
140	C aromatic	:C:NCI	21.70	18	13
141	C aromatic	:C:NBr	31.31	3	2
142	C aromatic	N:N₂	43.11	13	8
143	C aromatic	:N₂O	39.92	3	1
144	C aromatic	:N₂S	36.08	3	3
Entry	Atom Type	Neighbours	Contribution	Occurrences	Molecules
-------	-----------	------------	--------------	-------------	-----------
145	C aromatic	:N2Cl	35.90	3	3
146	C sp²	=C2	6.39	3	2
147	C sp²	#C	3.24	14	7
148	C sp²	#N	16.49	96	67
149	C sp²	#N(+)(+)	11.33	4	3
150	C sp²	#S	28.03	2	2
151	C sp²	=NP	0.15	28	12
152	C sp³	H2C	5.03	23	12
153	N sp³	H2C(pi)	6.38	223	199
154	N sp³	H2N	17.97	10	8
155	N sp³	H2S	41.98	1	1
156	N sp³	HC2	−23.83	14	13
157	N sp³	HC2(pi)	−13.51	72	55
158	N sp³	HC2(2pi)	−20.10	200	165
159	N sp³	HCN	−0.15	2	1
160	N sp³	HCN(pi)	6.71	14	9
161	N sp³	HCN(2pi)	−6.84	25	25
162	N sp³	HCS(pi)	−15.10	20	20
163	N sp³	C3	−51.07	16	11
164	N sp³	C3(pi)	−53.90	59	49
165	N sp³	C3(2pi)	−60.80	72	54
166	N sp³	C3(3pi)	−61.26	18	14
167	N sp³	C2N(pi)	−7.05	6	3
168	N sp³	C2N(+)(pi)	−5.52	24	9
169	N sp³	C2N(2pi)	−36.36	4	4
170	N sp³	C2N(3pi)	−20.13	1	1
171	N sp³	C2N(2pi)	−54.74	3	3
172	N sp³	C2N(3pi)	−49.13	4	2
173	N sp³	C2S	−32.77	79	74
174	N sp³	C2F(2pi)	−64.78	1	1
175	N sp³	CN2(pi)	−30.74	4	3
176	N sp³	CN2(2pi)	−49.40	3	3
177	N sp³	CN2(+)(2pi)	3.72	1	1
178	N sp³	CNF(2pi)	−34.74	5	4
179	N sp²	C=C	−32.77	79	74
180	N sp²	C=N	−4.54	13	9
181	N sp²	C=N(+)(+)	−15.43	5	5
182	N sp²	=CN	−4.63	38	36
183	N sp²	=CN(+)(+)	36.68	1	1
184	N sp²	=O	−12.04	9	9
185	N sp²	=P	−49.18	1	1
186	N sp²	=CO	−16.24	18	13
187	N sp²	=CS	−26.78	10	8
188	N sp²	N=N	12.19	21	13
189	N sp²	N=O	0.00	10	6
190	N sp²	=NO	−6.67	2	1
191	N aromatic	:C2	−14.01	208	145
192	N aromatic	:C:N	−4.98	4	2
193	N(+)(+) sp³	H3C	2.77	13	13
194	N(+)(+) sp³	H2C2	−82.36	3	3
195	N(+)(+) sp²	C≡CO(-)	−68.61	7	7
196	N(+)(+) sp²	C≡NO	−26.37	10	5
197	N(+)(+) sp²	C≡NO(-)	−11.30	3	3
198	N(+)(+) sp²	CO=O(-)	−4.38	270	163
199	N(+)(+) sp²	=CO2(-)	2.17	5	5
200	N(+)(+) sp²	NO=O(-)	0.15	28	12
Table 2. Cont.

Entry	Atom Type	Neighbours	Contribution	Occurrences	Molecules
201	N(+) sp²	O2=O(-)	6.00	14	6
202	N(+) aromatic	H:C2	-46.79	6	6
203	N(+) aromatic	:C2O(-)	-7.10	56	40
204	N(+) sp	C=O(-)	-14.36	3	3
205	N(+) sp	H:C2	0.00	4	3
206	N(+) sp	=N2(-)	19.14	2	2
207	O	H	4.49	143	92
208	O	HC(pi)	8.19	1439	924
209	O	HO	29.95	4	4
210	O	C2	-39.23	94	37
211	O	C2(pi)	-31.33	292	201
212	O	C2(2pi)	-24.06	147	121
213	O	CN(pi)	0.00	2	1
214	O	CN(2pi)	4.91	1	1
215	O	CO(pi)	-27.16	8	6
216	O	CP(pi)	-16.12	3	1
217	O	N2(2pi)	5.87	4	4
218	O	N2(+)(2pi)	6.27	5	5
219	P3	C3	16.70	2	2
220	P3	S3	-66.68	1	1
221	P4	C3=N	0.00	1	1
222	P4	C3=O	-30.50	1	1
223	P4	C3=S	46.30	1	1
224	P4	C2	-22.69	19	12
225	S2	HC	-2.58	1	1
226	S2	HC(pi)	18.47	2	2
227	S2	C2	-22.69	19	12
228	S2	C2(2pi)	-7.94	59	49
229	S2	CN(pi)	34.96	1	1
230	S2	CN(2pi)	29	1	1
231	S2	CO(pi)	-5.89	2	2
232	S2	C2=O	-4.26	27	27
233	S2	CN=O2	9.20	20	20
234	Si	C4	2.02	1	1
235	Si	C3Si	-0.67	2	1
236	Si	H	-8.63	107	89
237	Si	H Acceptor	-0.53	849	59
238	Alkane	No. of C atoms	-0.10	2679	148
A	Based on	Valid groups	154		1960
B	Goodness of fit	R²	0.8887		1866
C	Deviation	Average	7.81		1866
D	Deviation	Standard	10.33		1866
E	K-fold cv	K	10		1791
F	Goodness of fit	Q²	0.8657		1791
G	Deviation	Average (cv)	8.56		1791
H	Deviation	Standard (cv)	11.39		1791

The correlation coefficients R² and Q² (rows B and F at the bottom of Table 2) exhibit a higher scatter of the experimental data in comparison with the heat-of-vaporization data. The increased
uncertainty might be partly ascribed to the fact that in many cases molecules form several crystal structures at different temperatures, having different enthalpies of fusion, and that, therefore, the starting point of the measurements is not clearly defined. In other cases the molecules may not be completely crystalline due to impurities. Another reason may be that while many of the compounds in the enthalpy of the vaporization dataset of the previous chapter are liquid at ambient room temperature and the vaporization measurements have been performed at temperatures not too far removed from 298.15 K, requiring only a small correction back to this reference temperature, the enthalpy of sublimation measurements, on the other hand, are often carried out at higher temperatures where the compounds are more volatile. In these cases, the uncertainty in the correction term needed to extrapolate the experimental value back to the reference temperature is higher and increases with the difference between the experimental and the reference temperature. The consequences of these uncertainties are reflected in the spread of experimental data originating from different authors for the same compounds: for example, for the enthalpy of sublimation of anthracene, there are seven values given in the 2010 Acree and Chickos compilation [8] that range from 88.3 to 93.3 kJ/mol, and for coumarin there are two values for the same property that range from 83.1 to 95.4 kJ/mol.

Figure 3 demonstrates the larger scatter of the data about the regression line, leading to a cross-validated standard deviation of 11.39 (see row H in Table 2), i.e., 2.5 times larger than for the heat of vaporization. Figure 4 visualizes the error distribution, showing that, according to an analysis, 74% of the molecules’ predicted values differ by less one cv-standard deviation and only 5.6% by more than twice that amount. Only 16 compounds had to be declared as outliers because their experimental value exceeded four times the cv-standard deviation. One compound, norcamphor, had to be excluded from calculation because its experimental enthalpy of sublimation was lower than its experimental enthalpy of vaporization, an obviously impossible finding.

![Figure 3. Correlation Diagram of the Enthalpy-of-Sublimation Data (N = 1866; R² = 0.8887; Q² = 0.8657; regression line: intercept = 12.0233, slope = 0.8884).](image-url)
The lower number of “valid” atom groups of 154, as shown in row A of Table 2, led to the slightly reduced amount of 75.9% of the molecules in the representative database for which the heat of sublimation was calculable.

3.4. Enthalpy of Fusion

It seems obvious to try to apply the atom-group additivity method as described in the preceding chapters for the prediction of the enthalpy of fusion, all the more as several authors [21,60] have already used this principle very successfully. However, since the presented predictions of the enthalpies of sublimation and vaporization rest exclusively on experimental values at 298 K, it is legitimate to refer to the simple Equation (2) which defines a molecule’s enthalpy of fusion at standard conditions as the difference between its enthalpy of sublimation and its enthalpy of vaporization:

$$\Delta H^{\circ}_{\text{fus}}(298 \text{ K}) \text{ calc.} = \Delta H^{\circ}_{\text{sub}}(298 \text{ K}) \text{ calc.} - \Delta H^{\circ}_{\text{vap}}(298 \text{ K}) \text{ calc.}$$

(2)

Accordingly, the standard deviation of the thus evaluated enthalpy of fusion can be calculated by means of the error-propagation equation for the sum of two cross-validation standard errors $Q^2(\Delta H^{\circ}_{\text{sub}})$ (=11.39 kJ/mol) and $Q^2(\Delta H^{\circ}_{\text{vap}})$ (=4.56 kJ/mol), resulting in a standard deviation σ for the calculated enthalpy of fusion of 12.27 kJ/mol. Evidently, this deviation is largely dominated by the uncertainty of the experimental heats of sublimation and, thus would gain the most upon the provision of more accurate sublimation data.

How well do the predictions of Equation (2) compare to experimental heat-of-fusion data? In order to answer this question more than 1200 experimental values have been inserted into the database, taken from Acree’s compendium publication [8], complemented by recent values for crown ethers [29],...
fluorinated alcohols [33], adamantanes [53], 2-chloro-3-(trifluoromethyl)pyridine [61], cyanatophenyl derivatives [62], diphenylamines [63], fatty acids [64], pyridinecarbothioamides [65], isoniazid [66] and phenylthiazole-thione [67]. Figure 5 shows a comparison of the experimental with the predicted values, independently calculated by means of Equation (2). After removal of the worst 28 outliers the correlation coefficient R^2 for the remaining 990 samples (for which both the experimental and predicted values were available) was calculated to 0.60. This rather low value is at least in part explicable by findings outlined in several papers revealing that for certain compounds experimental values originating from different authors often scatter over a large range. For instance, Eckert et al. [64] graphically demonstrated for various fatty acids that the value of their enthalpy of fusion varied drastically over a period of up to 80 years of repeated examination. Some examples: the enthalpy of fusion for palmitic acid randomly varied over the years between ca. 41 and 60 kJ/mol, and for stearic acid the range, varying between ca. 45 and 74 kJ/mol, was even wider. Analogous observations were made by Leitner and Jurik [68], who discovered similar discrepancies by different authors also for small molecules, exemplified by paracetamol and aspirin, for which the published values varied between 26 and 34.1, and between 29.89 and 32.92 kJ/mol, respectively. Figure 5, also demonstrating that the overwhelming number of experimental data is concentrated in the narrow range of below 40 kJ/mol, provides another explanation for the difficulty to enable exact predictions. The related histogram in Figure 6 nevertheless proves a satisfyingly even distribution of the deviations about the regression line drawn in Figure 5. Thanks to the broad applicability of the “valid” number of atom-group parameters for both the heat of sublimation as well as the heat of vaporization, Equation (2) enabled the estimation of the heat of fusion of 68% of the database’s molecules.

Figure 5. Correlation Diagram of the Enthalpy-of-Fusion Data ($N = 990; R^2 = 0.6066$; calculated values evaluated by means of Equation (2)).
Literature referencing experimental enthalpy-of-solvation data is relatively scarce. The most yielding source was found in Mintz et al.’s [69] paper on the application of the Abraham model mentioned earlier on gaseous solutes dissolved in water and 1-octanol. Further studies were made on N-methylimidazole [70], urea and its derivatives [71–73], thiourea and its derivatives [74], carboxamides and their N-substituted derivatives [75–78], and uracil and its alkyl-, amino-, nitro- and halosubstituted derivatives [79–82]. Of the accordingly limited number of 465 compounds having experimental enthalpy-of-solvation values for water as solvent in their datalist, 436 have been entered into the calculation of the atom-group parameters, resulting in 61 valid groups allowing the evaluation of the cross-validated prediction of the solvation enthalpy of 373 compounds with a cv-goodness of fit of 0.9546 and a corresponding standard deviation Q^2 of 4.34 kJ/mol as is shown in aggregated manner in Table 3.

Table 3. Atom Groups and their Contributions (in kJ/mol) for Heat-of-Solvation Calculations.

Entry	Atom Type	Neighbours	Contribution	Occurrences	Molecules
1	Const		−13.33	436	436
2	C sp³	H3C	−4.44	483	265
3	C sp³	H3N	−31.51	47	28
4	C sp³	H3N(+)	−31.22	1	1
5	C sp³	H3O	−15.38	34	29
6	C sp³	H3S	−12.79	7	4
7	C sp³	H2C2	−3.86	506	186
8	C sp³	H2CN	−31.29	55	37
9	C sp³	H2CN(+)	−22.60	2	2
10	C sp³	H2CO	−15.26	178	90
Entry	Atom Type	Neighbours	Contribution	Occurrences	Molecules
-------	-----------	------------	--------------	-------------	-----------
11	C sp³	H₂CS	-12.03	9	6
12	C sp³	H₂CF	-6.02	1	1
13	C sp³	H₂CCI	-8.52	15	11
14	C sp³	H₂CBr	-11.73	1	1
15	C sp³	H₂CJ	-13.80	2	2
16	C sp³	H₂O₂	-14.86	1	1
17	C sp³	HCl	-2.51	45	35
18	C sp³	H₂CN	-29.99	6	5
19	C sp³	H₂CN(+)	-20.74	1	1
20	C sp³	H₂CO	-14.95	32	29
21	C sp³	H₂F	-5.77	1	1
22	C sp³	H₂CCI	-8.53	1	1
23	C sp³	H₂CJ	-14.39	1	1
24	C sp³	HCF₂	-5.07	3	3
25	C sp³	HCCl₂	-11.02	5	4
26	C sp³	C₂	0.43	10	10
27	C sp³	C₃N	-24.37	3	3
28	C sp³	C₃O	-16.23	6	6
29	C sp³	C₃Cl	-1.29	1	1
30	C sp³	C₃Br	1.24	1	1
31	C sp³	C₃J	-7.51	1	1
32	C sp³	C₂F₂	-5.12	2	2
33	C sp³	CO₂	0.74	1	1
34	C sp³	CF₃	-2.85	11	9
35	C sp³	CF₂Cl	-3.44	3	2
36	C sp³	CFCl₂	-12.04	1	1
37	C sp³	CCl₃	-12.64	2	2
38	C sp²	H₂=C	-2.93	15	13
39	C sp²	H=C	-2.16	26	20
40	C sp²	H=O	-16.45	9	9
41	C sp²	HzC	-13.78	17	13
42	C sp²	H=CO	-10.21	1	1
43	C sp²	HzS	-6.13	2	1
44	C sp²	HzCCI	-7.34	5	3
45	C sp²	HzCBr	-10.70	2	2
46	C sp²	HzO	-33.05	4	4
47	C sp²	HO₂	-14.45	7	7
48	C sp²	C₂=C	1.28	11	11
49	C sp²	C=CN	-15.51	2	2
50	C sp²	C=CN(+)	-39.48	1	1
51	C sp²	C₂=O	-17.65	20	20
52	C sp²	C=CF	-6.97	2	2
53	C sp²	C=CCI	-31.39	1	1
54	C sp²	C=CBr	-28.79	1	1
55	C sp²	C=CJ	-31.42	1	1
56	C sp²	=CN₂	-32.45	3	3
57	C sp²	=CN=O	-39.35	30	30
58	C sp²	=CNCl	-30.33	1	1
59	C sp²	CO₂	-17.24	63	52
60	C sp²	=CF₂	0.44	3	2
61	C sp²	=CCI₂	-11.89	2	2
62	C sp²	N₂=O	-35.29	25	25
63	C sp²	N₂=S	-41.79	6	6
64	C aromatic	H:C₂	-2.84	437	100
65	C aromatic	H:C:N	-14.82	29	18
66	C aromatic	.C3	-3.23	13	6
Due to the limited number of compounds, the histogram in Figures 7 and 8 reveals a slightly distorted Gaussian bell form. Nevertheless, the analysis of the error distribution reveals that 78.8% of the compounds deviated by less than one cv-standard deviation, whereas for only 5% the deviation was larger than twice this value. The small number of only 61 valid atom groups limited the range of compounds in the database eligible for a heat-of-solvation prediction to 40%. As an informational note, the Abraham model used by Mintz et al. [69] described the enthalpy-of-solvation data of the 369 compounds in their data set to within a standard deviation of 4.04 kJ/mol, which is slightly larger than our standard deviation of 3.53 kJ/mol based on a data set of 388 compounds. Beyond this, of the
thermodynamic properties considered here and in the previous paper [1], the Abraham model can only predict enthalpies of solvation.

The observant reader may have noticed that the goodness of fit of the heat-of-solvation calculation is better than that for the heat of sublimation, although the experimental source for the former is the difference between the heat of solution and the heat of sublimation (or vaporization). Hence, one would expect that the uncertainty of the heat of sublimation would be reflected in the goodness of fit of the heat of solvation. The reason as to why this is not the case lies in the nature of the experimental measurements which reduces the chemical diversity: while the determination of the heat of sublimation in principle allows molecules of nearly any size and complexity, the solvation experiments are limited to mostly simple organic liquids and solids having only one, two or three functional groups because these molecules had to exhibit sufficient solubility in water to enable the measurement and they had to readily dissolve within a reasonable amount of time. This precondition eliminated compounds with poor water solubility, in other words many of the larger species. These limitations are also visible in the scope of the experimental enthalpy values: while the range for the heat of sublimation is between about 30 and 330 kJ/mol, for the heat of solvation it is only between about \(-12\) and \(-150\) kJ/mol, i.e., much smaller. It is reasonable to presume that if the solvation experiments would include structurally complex compounds, the correlation deviations would be larger. This size limitation has also a negative effect on the diversity of the atom groups, as can be seen in Table 3, row A, where the number of “valid” groups, available for the calculation of the heat of solvation, is only 61 in relation to 154 (see Table 2, row A) for the heat of sublimation.

![Figure 7](image-url)

Figure 7. Correlation Diagram of the Enthalpy-of-Solvation Data \((N = 388; R^2 = 0.9731; Q^2 = 0.9546; \) regression line: intercept = \(-1.4422\), slope = 0.9759).
The cross-validation calculation with 2637 samples resulted in a very satisfying goodness of fit. The large number of valid atom groups, on the other hand, enabled the calculation of the entropy of fusion for 81.8% of the database’s compounds. Various tentative calculations including or excluding certain special groups revealed a distinct improvement of the goodness of fit of the optimization process, if the group "Endocyclic bonds" was involved, which counts all single endocyclic bonds in a molecule. However, for small molecules containing small rings this group parameter tended to overcompensate the decrease of freedom of mobility and, therefore, the three special groups “Angle60”, “Angle90” and “Angle102” were added as counter-correctives. The cross-validation calculation with 2637 samples resulted in a very satisfying goodness of fit Q^2 of 0.8727 and a standard deviation of 17.93 J/mol/K. In Table 4 the results of these calculations are summarized. Fifty-five compounds had to be removed from the calculations as their experimental values deviated from prediction by more than three times the cv-standard deviation. The large number of valid atom groups, on the other hand, enabled the calculation of the entropy of fusion for 81.8% of the database’s compounds.

3.6. Entropy of Fusion

The entropy of fusion under this subtitle is defined as the entropy change associated with the phase change from the crystalline to the isotropic liquid state of a molecule without passing any intermediate anisotropic, semiliquid phases. In most cases this transition indeed occurs in one stage, but several molecules, on addition of heat, undergo a change from one crystalline phase to a second or even third energetically less stable phase prior to melting. In the following, the entropy-of-fusion values cited in the tables are the sum of all the entropies associated with these solid-solid phase changes including the final solid-liquid phase change. The main source for these values was found in the comprehensive collection of Chickos, Acree and Liebman [21] and in its update [60]. More recent entropy-of-fusion data were found for long-chain fluorinated alcohols [33], halogenated fluorenes [35], di- and tri(cyanatophenyl)alkanes and -silanes [62], 2-cyano-4′-methylbiphenyl [83], diphenyl cyclohexyl-phosphoramidate [84] and 3,4-dinitrofurazanfuroxan [85]. The complete set of compounds with experimental entropy-of-fusion values amounted to a total of 2809 used for the evaluation of the atom-group parameters, yielding 188 valid atom groups. The entropy of fusion under this subtitle is defined as the entropy change associated with the phase change from the crystalline to the isotropic liquid state of a molecule without passing any intermediate anisotropic, semiliquid phases.

Figure 8. Histogram of the Enthalpy-of-Solvation Data ($S = 4.34 \text{ kJ/mol}$; exp. values range: -149.51—13.7 kJ/mol).
Table 4. Atom Groups and their Contributions (in J/mol/K) for Entropy-of-Fusion Calculations.

Entry	Atom Type	Neighbours	Contribution	Occurrences	Molecules
1	Const	C3	31.12	2809	2809
2	B	CO2	12.34	2	2
3	B	H3B	-4.93	3	1
4	C sp³	H2BC	4.93	3	1
5	C sp³	H3C	1.90	2944	1402
6	C sp³	H3N	15.63	279	149
7	C sp³	H3N(+)	7.07	2	2
8	C sp³	H3O	14.42	366	232
9	C sp³	H3P	21.07	3	3
10	C sp³	H3S	12.93	35	31
11	C sp³	H3Si	8.19	283	46
12	C sp³	H2C2	8.46	8600	1239
13	C sp³	H2CN	14.85	505	257
14	C sp³	H2CN(+)	19.09	29	21
15	C sp³	H2CO	14.52	952	473
16	C sp³	H2CP	17.50	3	2
17	C sp³	H2CS	16.77	166	83
18	C sp³	H2CF	12.36	1	1
19	C sp³	H2CCl	10.67	30	24
20	C sp³	H2CBr	11.79	24	17
21	C sp³	H2CJ	3.10	2	2
22	C sp³	H2CJi	8.50	62	20
23	C sp³	H2N2	5.03	20	11
24	C sp³	H2NO	8.98	8	7
25	C sp³	H2NS	43.70	4	4
26	C sp³	H2O2	22.34	23	14
27	C sp³	H2S2	29.21	7	5
28	C sp³	H2SCl	22.89	1	1
29	C sp³	H2Si2	12.02	6	3
30	C sp³	HC3	0.64	817	388
31	C sp³	HC2N	18.09	117	103
32	C sp³	HC2N(+)	-9.91	16	16
33	C sp³	HC2O	10.63	357	226
34	C sp³	HC2S	9.80	18	13
35	C sp³	HC2F	8.23	2	2
36	C sp³	HC2Cl	10.38	22	10
37	C sp³	HC2Br	8.94	5	4
38	C sp³	HC2Si	-14.02	1	1
39	C sp³	HCNO	23.14	7	6
40	C sp³	HCNS	23.70	1	1
41	C sp³	HCO2	19.18	30	26
42	C sp³	HCOCl	19.13	2	1
43	C sp³	HCFO	4.20	4	4
44	C sp³	HCCI	-10.16	1	1
45	C sp³	HCCl2	9.01	10	9
46	C sp³	HCCIBr	-3.80	1	1
47	C sp³	C4	-0.23	435	256
48	C sp³	C3N	14.87	22	20
49	C sp³	C3N(+)	12.86	6	5
50	C sp³	C3O	4.63	81	74
51	C sp³	C3S	16.54	6	6
52	C sp³	C3F	18.64	14	12
53	C sp³	C3Cl	9.23	14	9
54	C sp³	C3Br	3.44	2	2
55	C sp³	C3J	31.10	1	1
56	C sp³	C4	-0.23	435	256
Table 4. Cont.

Entry	Atom Type	Neighbours	Contribution	Occurrences	Molecules
58	C sp³	C2N2	52.69	3	2
59	C sp³	C2N2(+)	4.24	7	6
60	C sp³	C2NO	34.66	1	1
61	C sp³	C2NF	47.27	1	1
62	C sp³	C2NCl(+)	13.35	1	1
63	C sp³	C2O2	13.44	47	29
64	C sp³	C2S2	10.13	1	1
65	C sp³	C2F2	–0.09	262	37
66	C sp³	C2Cl2	10.32	9	7
67	C sp³	CN3(+)	7.29	6	5
68	C sp³	CNF2	6.86	7	3
69	C sp³	COF2	–3.57	4	3
70	C sp³	CS3	30.36	4	1
71	C sp³	CSF2	41.61	2	1
72	C sp³	CSCl2	46.90	2	2
73	C sp³	CF3	3.38	91	76
74	C sp³	CF2Cl	–1.55	6	5
75	C sp³	CF2Br	8.94	4	3
76	C sp³	CFCl2	–6.89	3	2
77	C sp³	CC13	0.92	17	16
78	C sp³	NF3	11.04	1	1
79	C sp³	O2F2	20.23	1	1
80	C sp³	OF3	2.25	2	2
81	C sp³	SF3	24.96	4	4
82	C sp³	SCI3	46.90	1	1
83	C sp³	SiCl3	14.20	1	1
84	C sp²	H2=C	5.49	84	76
85	C sp²	HC=C	2.46	607	323
86	C sp²	HC=N	–0.81	48	40
87	C sp²	H=CN	3.18	44	37
88	C sp²	HC=O	8.29	18	18
89	C sp²	H=CO	5.29	19	17
90	C sp²	H=CS	–1.85	43	33
91	C sp²	H=CCI	10.11	3	3
92	C sp²	H=CSI	2.92	3	3
93	C sp²	H=CN=N	9.78	30	22
94	C sp²	H=NO	–10.23	3	3
95	C sp²	H=NO	21.94	1	1
96	C sp²	H=NS	1.04	4	4
97	C sp²	HO=O	14.63	2	2
98	C sp²	C2=C	0.30	212	166
99	C sp²	C2=N	7.33	35	33
100	C sp²	C2=N(+)	2.31	1	1
101	C sp²	C=CN	–2.70	51	45
102	C sp²	C=CN(+)	0.00	2	1
103	C sp²	C2=O	1.57	386	298
104	C sp²	C=CO	5.58	70	52
105	C sp²	C=CS	0.18	38	25
106	C sp²	C=CCI	3.68	20	13
107	C sp²	C=CBr	45.90	1	1
108	C sp²	C=CN2	12.85	17	17
109	C sp²	=CN2(+)	6.14	1	1
110	C sp²	=CN2	1.47	25	19
111	C sp²	=CNO	–1.47	6	4
112	C sp²	CN=O	0.63	366	234
113	C sp²	C=NO	9.33	5	5
114	C sp²	C=N5	7.20	7	7
Entry	Atom Type	Neighbours	Contribution	Occurrences	Molecules
-------	-----------	------------	--------------	-------------	-----------
115	C sp²	CN=S	-2.87	10	8
116	C sp²	=C=Cl	0.25	1	1
117	C sp²	CO=O	5.68	718	546
118	C sp²	O=O(κ)	-16.84	19	19
119	C sp²	C=OF	9.78	3	2
120	C sp²	C=OCl	14.97	2	1
121	C sp²	C=OS	16.72	1	1
122	C sp²	=CS2	-7.29	12	2
123	C sp²	=SCl	2.93	3	2
124	C sp²	=SBr	-4.03	1	1
125	C sp²	CF₂	11.60	3	2
126	C sp²	CFCl	1.87	1	1
127	C sp²	CCl₂	5.32	9	8
128	C sp²	CBr₂	46.05	1	1
129	C sp²	N₂=O	11.87	9	9
130	C sp²	N₂=O	-3.48	90	84
131	C sp²	N=NO	3.41	1	1
132	C sp²	N₂=S	0.55	32	31
133	C sp²	N₂=S	-3.08	23	23
134	C sp²	NO=O	0.38	62	60
135	C sp²	N₂=O	20.86	2	2
136	C sp²	NO=O	-2.08	8	8
137	C sp²	N₂=S	25.24	3	3
138	C sp²	N₂=S	-12.86	2	2
139	C sp²	O₂=O	-9.60	10	10
140	C sp²	O₂=S	6.53	1	1
141	C aromatic	B:C₂	-47.51	5	5
142	C aromatic	H:C₂	2.57	8600	1498
143	C aromatic	H:C:N	1.17	108	68
144	C aromatic	H:N₂	-1.12	5	3
145	C aromatic	C3	-1.60	481	153
146	C aromatic	C:C₂	-2.58	2198	1062
147	C aromatic	C:C:N	5.44	46	38
148	C aromatic	C₂N	-0.38	524	389
149	C aromatic	C₂:N	-5.26	33	20
150	C aromatic	C₂:N(+)	4.26	203	144
151	C aromatic	C₂O	2.82	853	532
152	C aromatic	C₂P	-2.68	12	5
153	C aromatic	C₂S	0.30	98	73
154	C aromatic	C₂Si	3.80	45	21
155	C aromatic	C₂F	4.24	150	69
156	C aromatic	C₂Cl	5.68	860	318
157	C aromatic	C₂Br	4.73	92	57
158	C aromatic	C₂J	6.30	26	19
159	C aromatic	C:N:N	5.87	28	27
160	C aromatic	C:N(+)	0.05	2	1
161	C aromatic	C:NO	3.76	9	7
162	C aromatic	C:NS	2.70	2	1
163	C aromatic	C:NCI	9.38	8	8
164	C aromatic	N:N₂	-9.59	85	40
165	C aromatic	N:O₂	-5.16	4	2
166	C aromatic	N₂S	-2.43	5	5
167	C aromatic	N₂Cl	19.07	8	7
168	C sp	H#C	2.83	26	23
169	C sp	C#C	-0.52	183	83
170	C sp	C#C	7.54	4	4
171	C sp	C#N	2.66	120	94
Table 4. Cont.

Entry	Atom Type	Neighbours	Contribution	Occurrences	Molecules
172	C sp	#CSi	3.40	3	2
173	C sp	N=N	-16.19	1	1
174	C sp	=N2	23.07	1	1
175	C sp	#NO	6.78	10	4
176	C sp	=N=O	14.08	6	3
177	N sp³	H2C	9.39	34	21
178	N sp³	H2C(pi)	7.89	190	160
179	N sp³	H2N	0.92	5	5
180	N sp³	H2P	-16.37	1	1
181	N sp³	H2S	10.07	7	7
182	N sp³	HC2	-1.65	20	20
183	N sp³	HC2(pi)	-9.81	190	133
184	N sp³	HC2(2pi)	4.73	204	169
185	N sp³	HCN	-5.80	4	3
186	N sp³	HCN(pi)	-2.85	8	6
187	N sp³	HCN(+)(pi)	16.06	4	2
188	N sp³	HCN(2pi)	0.95	12	11
189	N sp³	HCO(pi)	30.19	1	1
190	N sp³	HCP	-6.83	2	2
191	N sp³	HCS	17.10	2	2
192	N sp³	HCS(pi)	9.38	22	22
193	N sp³	HSi2	1.67	7	2
194	N sp³	C3	-32.04	41	37
195	N sp³	C3(pi)	-17.08	137	97
196	N sp³	C3(2pi)	-12.64	136	108
197	N sp³	C3(3pi)	4.26	22	20
198	N sp³	C2N	-18.10	3	3
199	N sp³	C2N(pi)	-6.67	7	5
200	N sp³	C2N(+)(pi)	20.95	32	17
201	N sp³	C2N(2pi)	-3.87	15	14
202	N sp³	C2N(3pi)	1.17	6	6
203	N sp³	C2N(+)(2pi)	-0.16	12	12
204	N sp³	C2O	-41.10	5	5
205	N sp³	C2O(pi)	9.25	39	15
206	N sp³	C2O(2pi)	29.03	1	1
207	N sp³	C2P	7.24	1	1
208	N sp³	C2S	-25.22	3	3
209	N sp³	C2S(pi)	-22.07	1	1
210	N sp³	C2S(2pi)	-6.25	3	3
211	N sp³	CF2	-2.10	6	2
212	N(+) sp³	H2C2	4.33	19	19
213	N(+) sp³	C3O(-)	-33.09	1	1
214	N sp²	H=C	16.94	3	3
215	N sp²	C=C	-7.28	122	101
216	N sp²	C=N	-11.24	64	32
217	N sp²	C=N(+)+	10.95	10	7
218	N sp²	=CN	-0.51	38	31
219	N sp²	=CO	0.98	32	31
220	N sp²	=CS	-4.17	3	2
221	N sp²	N=N	-0.32	10	6
222	N sp²	N=O	18.24	4	2
223	N aromatic	.C2	5.43	222	128
224	N aromatic	.C=N	-4.60	6	3
225	N(+) sp²	C=N=O(-)	-19.90	4	4
226	N(+) sp²	CO=O(-)	1.45	248	163
227	N(+) sp²	=CO2(-)	-3.88	1	1
Entry	Atom Type	Neighbours	Contribution	Occurrences	Molecules
-------	-----------	------------	--------------	-------------	-----------
228	N(+) sp²	NO=O(-)	−1.33	48	31
229	N(+) sp²	O₂=O(-)	1.85	7	5
230	N(+) sp	C=O(-)	10.24	1	1
231	N(+) sp	=N₂(-)	2.76	6	3
232	O	H₂C	−2.00	452	254
233	O	H₃C(p)	3.39	478	400
234	O	H₂N	0.63	36	12
235	O	H₃N(p)	−1.02	19	19
236	O	H₂P	−8.39	2	1
237	O	H₂S	60.03	5	2
238	O	H₂C	0.00	5	5
239	O	H₂N	0.00	5	5
240	O	C₂	−4.67	357	135
241	O	C₂(p)	−5.72	740	513
242	O	C₂(2p)	−3.04	267	217
243	O	C₂	−20.33	4	4
244	O	C₂(p)	0.00	1	1
245	O	C₂(2p)	1.82	12	11
246	O	C₂(+)	0.47	7	5
247	O	C₂	1.80	8	4
248	O	C₂	−6.11	47	25
249	O	C₂(p)	6.35	20	17
250	O	C₂(p)	1.11	3	3
251	O	C₂	−12.94	5	2
252	O	N₂(2p)	0.00	1	1
253	O	N₂(2p)	0.00	1	1
254	O	Si₂	2.53	84	24
255	P₃	C3	−6.01	3	2
256	P₄	C₃=O	−6.07	1	1
257	P₄	C=OF₂	−1.93	1	1
258	P₄	C=OFCl	−4.92	1	1
259	P₄	C=OCl₂	6.84	1	1
260	P₄	N₂O=O	6.11	1	1
261	P₄	N₂O=O	−7.48	1	1
262	P₄	N₂O=S	6.11	1	1
263	P₄	O₃=S	−5.29	2	2
264	P₄	O₃=S	−3.13	13	12
265	P₄	CO₂=O	0.00	1	1
266	P₄	CO₂=S	7.66	2	2
267	P₄	O₂S=S	−5.52	7	7
268	S₂	H₂C	−0.29	19	19
269	S₂	H₂C(p)	−11.91	2	2
270	S₂	C₂	−10.10	74	47
271	S₂	C₂(p)	1.44	44	37
272	S₂	C₂(2p)	8.54	74	60
273	S₂	C₂	0.00	3	3
274	S₂	CN(p)	5.57	1	1
275	S₂	CN(p)	1.49	8	4
276	S₂	CN(p)	0.18	6	4
277	S₂	CN(p)	0.00	8	8
278	S₂	N₂(2p)	−3.71	1	1
279	S₂	C₂=O	−10.46	6	4
280	S₂	C₂=O	−10.18	22	22
281	S₂	CN=O	1.23	31	31
282	S₂	CO₂=O	0.00	8	5
283	S₂	CO₂=O	4.07	2	2
284	S₂	N₂=O	4.49	2	2
Table 4. Cont.

Entry	Atom Type	Neighbours	Contribution	Occurrences	Molecules
285	Si	H3C	0.00	1	1
286	Si	HC2O	−77.65	3	3
287	Si	HCO2	18.28	1	1
288	Si	C4	−12.05	23	18
289	Si	C3O	−15.58	14	9
290	Si	C3Cl	−8.02	2	2
291	Si	C3Si	−6.42	6	3
292	Si	C2N2	0.00	7	2
293	Si	C2O2	1.03	75	18
294	Si	C2Cl2	−1.79	2	2
295	Si	C2Si2	−10.09	34	5
296	Si	CC3	4.04	8	7
297	Si	O4	13.30	1	1
298	H	H Acceptor	6.31	153	128
299	Angle60		0.54	120	33
300	Angle90		2.37	138	29
301	Angle102		0.12	1131	342
302	Endocyclic bonds	No. of single bonds	−4.42	5302	680
A	Based on	Valid groups	188		2809
B	Goodness of fit	R^2	0.8875		2701
C	Deviation	Average	12.33		2701
D	Deviation	Standard	16.72		2701
E	K-fold cv	K	10		2637
F	Goodness of fit	Q^2	0.8727		2637
G	Deviation	Average (cv)	13.23		2637
H	Deviation	Standard (cv)	17.93		2637

The correlation diagram in Figure 9 exhibits a large concentration of the entropy values in the range between 0 and ca. 140 J/mol/K; values of 200 J/mol/K or more are exclusively reserved for molecules carrying long, mostly un-branched methylene or poly-ether chains. The histogram (Figure 10) reveals a slight overweight of the positive deviations, indicating a minor trend to predict too low values.

Figure 9. Correlation Diagram of the Entropy-of-Fusion Data ($N = 2701; R^2 = 0.8874; Q^2 = 0.8727$; regression line: intercept = 8.6540; slope = 0.8883).
3.7. Total Phase-Change Entropy of Liquid Crystals

Liquid crystals are a class of molecules characterized by the special feature to often exhibit several distinct semiliquid states between their crystalline and isotropic liquid phases, i.e., anisotropic phases which are stable over an extended temperature range. Depending on their intermediate structure these phases are either called meso, cholesteric, smectic or nematic. This strange self-associative behaviour has typically been found with compounds the molecular structure of which contains rigid moieties and highly flexible pendant alkyl or polyether chains of various length, but also with molecules where certain parts exhibit strong intermolecular hydrogen bonds besides moieties of intermolecular inertness. Due to the variability of their entire melting processes resulting from their structural characteristics, the only common entropy term to possibly be generally applicable is the total phase-change entropy, defined as “the sum of all the entropy changes associated with phase transitions occurring from \(T = 0 \) K to the clearing temperature, \(T = T_{iso} \)” [22]. This definition only differs from the one given for the entropy of fusion in the previous chapter, in that here not only the potential solid–solid entropy-phase changes but also the entropy changes of the semiliquid intermediate phases are considered. Based on this definition, only the total phase-change entropy data of liquid crystals have been entered into the evaluation of the related atom-group parameters. The only source for these data was the large collection of more than 3000 compounds in the compendium work of Acree, Jr. and Chickos [22]. The parameters calculation finally rested on 2686 compounds, yielding a direct goodness of fit \(R^2 \) of 0.6094 and a cross-validated goodness \(Q^2 \) of 0.5804 with a standard deviation of 32.79, as condensed at the bottom of Table 5. (In order to compare these data directly with those of the entropy-of-fusion calculation, the special groups “Angle60” and “Angle90” are kept in the parameters list although obviously no compound met any of these two criteria, i.e., bond angle \(\leq 90 \) or \(< 60 \).) These data compare favourably with those of Acree and Chickos [22], who reported a correlation coefficient of only 0.35 for 627 liquid crystals. The present results, however, required the removal of 56 compounds from the evaluation of the parameters, as their deviation from prediction was much larger than three times the cv-standard deviation.
Table 5. Atom Groups and their Contributions (in J/mol/K) for Total Phase-Change Entropy Calculations.

Entry	Atom Type	Neighbours	Contribution	Occurrences	Molecules
1	Const		60.14	2686	2686
2	C sp\(^3\)	H3C	5.33	5873	2490
3	C sp\(^3\)	H3N	16.05	12	6
4	C sp\(^3\)	H3O	2.66	195	172
5	C sp\(^3\)	H3Si	3.08	110	5
6	C sp\(^3\)	H2C2	4.04	30,650	2478
7	C sp\(^3\)	H2CN	–1.70	286	114
8	C sp\(^3\)	H2CO	–0.01	3584	1901
9	C sp\(^3\)	H2CS	–8.01	68	42
10	C sp\(^3\)	H2CCI	–27.41	2	2
11	C sp\(^3\)	H2CBr	–10.24	3	3
12	C sp\(^3\)	H2CJ	30.88	1	1
13	C sp\(^3\)	H2CSi	–2.48	6	3
14	C sp\(^3\)	HC3	–9.84	1088	414
15	C sp\(^3\)	HC2N	–17.47	4	4
16	C sp\(^3\)	HC2O	–19.96	428	324
17	C sp\(^3\)	HC2S	–42.59	18	18
18	C sp\(^3\)	HC2Cl	–12.96	53	53
19	C sp\(^3\)	HC2Br	6.97	4	4
20	C sp\(^3\)	HCO2	7.19	34	28
21	C sp\(^3\)	HCF2	–21.83	11	11
22	C sp\(^3\)	C4	–0.53	212	120
23	C sp\(^3\)	C3O	12.06	10	10
24	C sp\(^3\)	C3F	–25.29	2	2
25	C sp\(^3\)	C2F2	4.67	272	57
26	C sp\(^3\)	CF2	–1.17	5	5
27	C sp\(^3\)	CF3	–8.30	67	54
28	C sp\(^3\)	OF3	24.11	2	2
29	C sp\(^3\)	SF3	–196.06	1	1
30	C sp\(^2\)	H2=C	14.81	58	56
31	C sp\(^2\)	HC=C	–2.97	946	440
32	C sp\(^2\)	HC=N	–2.07	922	704
33	C sp\(^2\)	HC=N(+)	32.39	9	9
34	C sp\(^2\)	HC=O	15.32	6	6
35	C sp\(^2\)	H=CN	–16.69	43	41
36	C sp\(^2\)	H=CO	–2.30	28	28
37	C sp\(^2\)	H=CS	–4.67	2	2
38	C sp\(^2\)	H=NS	74.91	1	1
39	C sp\(^2\)	C2=C	–13.21	186	160
40	C sp\(^2\)	C2=N	9.17	17	17
41	C sp\(^2\)	C2=O	2.80	266	202
42	C sp\(^2\)	C=CN	2.69	28	21
43	C sp\(^2\)	C=CO	–53.38	21	21
44	C sp\(^2\)	C=CS	–5.66	340	150
45	C sp\(^2\)	C=CF	31.70	10	5
46	C sp\(^2\)	CN=N	–13.68	15	15
47	C sp\(^2\)	CN=O	–1.75	326	171
48	C sp\(^2\)	C=NO	–39.68	45	30
49	C sp\(^2\)	CN=S	–6.95	8	6
50	C sp\(^2\)	C=NS	38.49	105	77
51	C sp\(^2\)	=CNS	–47.14	22	11
52	C sp\(^2\)	CO=O	8.07	3115	1580
53	C sp\(^2\)	=COS	128.10	5	5
54	C sp\(^2\)	C=OS	5.46	91	81
55	C sp\(^2\)	=SCl	15.27	9	9
56	C sp\(^2\)	=CSJ	10.36	2	2
57	C sp\(^2\)	N=NS	–11.16	72	72
58	C sp\(^2\)	NO=O	38.80	6	6
59	C sp\(^2\)	=NOS	96.96	24	12
Table 5. Cont.

Entry	Atom Type	Neighbours	Contribution	Occurrences	Molecules
60	C sp²	O2=O	26.06	3	3
61	C aromatic	H:C2	3.37	28,602	2538
62	C aromatic	H:C:N	0.02	151	82
63	C aromatic	H:C:N(+)	9.49	12	6
64	C aromatic	:C3	8.40	322	107
65	C aromatic	C:C2	9.58	7933	2410
66	C aromatic	C:C:N	38.40	89	61
67	C aromatic	:C2N	13.66	1886	1124
68	C aromatic	:C2N(+)	5.68	135	119
69	C aromatic	:C2:N	16.73	34	33
70	C aromatic	:C2O	4.24	5711	2230
71	C aromatic	:C2S	29.84	116	105
72	C aromatic	:C2Si	10.60	4	2
73	C aromatic	:C2F	4.38	525	266
74	C aromatic	:C2Cl	3.87	191	151
75	C aromatic	:C2Br	2.55	24	23
76	C aromatic	:C2J	35.42	9	9
77	C aromatic	C:N2	43.02	27	21
78	C aromatic	C:NCl	51.42	2	2
79	C aromatic	N:N2	17.88	6	3
80	C aromatic	:N2O	31.16	4	4
81	C sp	H=C	15.40	1	1
82	C sp	H=C	1.90	929	304
83	C sp	=C2	15.98	9	9
84	C sp	O=N	4.72	229	212
85	C sp	#CO	29.96	2	1
86	C sp	=N=O	0.85	3	2
87	C sp	=N=S	15.48	42	42
88	C sp	#NS	7.49	26	26
89	N sp³	H2C	12.08	5	5
90	N sp³	H2C(pi)	66.66	6	6
91	N sp³	HC2(pi)	18.61	17	9
92	N sp³	HC2(2pi)	4.58	233	143
93	N sp³	HCN(pi)	6.67	6	3
94	N sp³	HCN(2pi)	42.99	12	12
95	N sp³	HCS(pi)	157.30	1	1
96	N sp³	C3	75.12	10	10
97	N sp³	C3(pi)	20.84	64	33
98	N sp³	C3(2pi)	8.12	34	25
99	N sp³	C3(3pi)	29.75	24	14
100	N sp²	C=C	14.07	1014	778
101	N sp²	C=N	9.88	722	295
102	N sp²	C=N(+)	8.87	32	32
103	N sp²	=CN	40.91	206	94
104	N sp²	=CO	33.53	26	26
105	N aromatic	:C2	18.59	169	125
106	N aromatic	:C:N	17.07	12	3
107	N(+) sp²	CO=O(-)	0.77	94	78
108	N(+) sp²	C=CO(-)	3.27	9	9
109	N(+) sp²	C=NO(-)	0.00	32	32
110	N(+) aromatic	:C2O(-)	23.39	6	6
111	O	HC	20.86	186	70
112	O	HC(pi)	16.46	202	156
113	O	C2	1.72	100	57
114	O	C2(pi)	0.12	3901	2718
115	O	C2(2pi)	-2.52	2419	1340
116	O	CN(2pi)	-4.06	26	26
117	S2	HC(pi)	-10.11	2	2
118	S2	C2	12.90	18	18
Table 5. Cont.

Entry	Atom Type	Neighbours	Contribution	Occurrences	Molecules
119	S2	C2(pi)	14.58	55	42
120	S2	C2(2pi)	15.10	379	314
121	S4	CN=O2	-36.49	1	1
122	Si	C3Si	0.00	10	5
123	Si	C2Si2	-3.55	45	5
124	H	H Acceptor	-17.84	151	107
125	Angle60		0.00	0	0
126	Angle90		0.00	0	0
127	Angle102		7.37	513	138
128	Endocyclic bonds	No of single bonds	-1.14	3024	309
A	Based on	Valid groups	108	2686	
B	Goodness of fit	R^2	0.6094	2663	
C	Deviation	Average	23.83	2663	
D	Deviation	Standard	31.62	2663	
E	K-fold cv	K	10	2643	
F	Goodness of fit	Q^2	0.5804	2643	
G	Deviation	Average (cv)	24.65	2643	
H	Deviation	Standard (cv)	32.79	2643	

Nevertheless, it was to be expected that the additional entropy terms relating to the semiliquid phases would blur the picture in comparison with the previous chapter, since not only each homologous series of liquid crystals but even individual molecules proceed via different melting pathways. This feature is even observable in the list of outliers where several entire homologous series had to be removed. As a consequence of this inhomogeneity, the scatter of the total phase-change entropy of the liquid crystals in Figure 11 is extraordinarily high, but, as the histogram in Figure 12 shows, is evenly distributed about the regression line. This, and the close similarities of R^2 and Q^2 as well as of the direct and the cross-validated standard deviations, collected at the bottom of Table 5, may lead to the assumption that the associated atom-group parameters are reliable enough for phase-change entropy predictions within the class of liquid crystals. Two homologous examples may prove whether this assumption is justified.

![Figure 11](image-url)
In Figure 13, the experimental total phase-change entropy data of the liquid-crystal homologues of 7-alkyl-2-(4-cyanophenyl)-fluorene (with alkyl = ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl and nonyl) are correlated with predicted values, revealing an excellent correlation coefficient R^2 of 0.9176. The slope of the regression line, however, is at 0.8830 considerably lower than 1.0. Figure 14 shows the analogous correlation of the homologues of 3-(4-alkyloxyphenylamino)-1-(2-(5-cyanothienyl))-2-propen-1-one (with alkyl = pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl and tetradecyl). Here, the correlation coefficient has been calculated to 0.0023 and the slope of the regression line is even slightly negative at -0.0364. These examples prove that the class of liquid crystals is too heterogeneous for the present atom-group additivity model to be applicable. Consequently, if even within the class of liquid crystals reliable predictions are impossible, attempts to do so outside this class would not make sense at all.
The application of a computer algorithm described in detail in an earlier paper [1], based on the atom-group additivity principle to calculate reliable values of the heat of combustion (and indirectly-formation), logP_{o/w}, logS, refractivity, polarizability and toxicity, has successfully been extended to the prediction of the heats of vaporization, sublimation and solvation, and the entropy of fusion of ordinary molecules as well as the total phase-change entropy of liquid crystals. The principle to only accept experimental vaporization and sublimation data measured at or reduced to standard conditions also enabled the indirect calculation of the standard heat of fusion by applying Equation (2). It has been shown, however, that this indirect approach leads to rather rough estimates, yet still comparable to the often large differences of experimental values originating from different authors. The limits of the present method have been reached in the attempt to predict the total phase-change entropy of liquid crystals. In contrast to ordinary molecules which allow the entropy of fusion to be determined in a mutually comparable manner due to a mostly straightforward, uniform melting process, liquid crystals have proven to be an inconsistent class of compounds in that their melting processes pass through several individual semiliquid phases, preventing a standardized approach for the prediction of their phase-change entropy.

On the whole, the present computer algorithm, integrated in a project called ChemBrain IXL, has proven its versatility in that any extension to calculate the presented and future descriptors only requires a few more lines of controlling code to include the corresponding tables and descriptor names. At present, the project covers thermodynamic (heats of combustion, formation, solvation, vaporization, sublimation and fusion as well as entropy of fusion), solubility-related (logP_{o/w} and logS), optics-related (refractivity), charge-related (polarizability) and environment-related (toxicity) descriptors. On the other hand, it also shows its limitations where the descriptor is either not addressable by the atom groups (e.g., with logBB) or does not describe a uniform characteristic (e.g., the total phase-change entropy). Yet, there is no limit to this ongoing project to extend the number of calculable descriptors beyond the present twelve, provided that there is a number of experimental
data available that are large enough and reliable. ChemBrain IXL is available from Neuronix Software (www.neuronix.ch, Rudolf Naef, Lupsingen, Switzerland).

Supplementary Materials: The following files are available online.

The entire set of experimental and calculated data of the heat-of-vaporization calculations is available under the name of “S1. Experimental and Calculated Heat-of-Vaporization Data Table.doc”; the corresponding list of compounds is added as an SD file named “S2. Compounds List for Heat-of-Vaporization Calculations.sdf” and the outliers list as an Excel file under the name “S3. Compounds List of Heat-of-Vaporization Outliers.xls”.

The list of compounds, their experimental and calculated data and 3D structures of the heat-of-sublimation calculations are available under the names of “S4. Experimental and Calculated Heat-of-Sublimation Data Table.doc” and “S5. Compounds List for Heat-of-Sublimation Calculations.sdf”. A list of the outliers has been added under the name of “S6. Compounds List of Heat-of-Sublimation Outliers.xls”.

The supplementary material also offers the list of molecules for the enthalpy-of-fusion calculations together with the experimental data under the file names “S7. Experimental and Calculated Heat-of-Fusion Data Table.doc” and “S8. Compounds List for Heat-of-Fusion Calculations.sdf”. The list of the outliers is available under the name of “S9. Compounds List of Heat-of-Fusion Outliers.xls”.

The heat-of-solvation result list, encompassing the molecule names, experimental and calculated data, are available under the name “S10. Experimental and Calculated Heat-of-Solvation Data Table.doc”; and the molecules list, encompassing their name and 3D coordinates is collected under the name “S11. Compounds List for Heat-of-Solvation Calculations.sdf”.

The list of compounds for entropy-of-fusion calculations, together with experimental and calculated data is provided under the name of “S12. Experimental and Calculated Entropy-of-Fusion Data Table.doc”. The related compounds’ 3D-structures are available in “S13. Compounds List for Entropy-of-Fusion Calculations.sdf”, the list of outliers in the Excel sheet called “S14. Compounds List of Entropy-of-Fusion Outliers.xls”.

The list of the experimental and calculated data for the total phase-change entropy calculations is provided under “S15. Experimental and Calculated Tpc-Entropy Data Table.doc”, the related compounds under the name “S16. Compounds List for Tpc-Entropy Calculations.sdf”, and the outliers list under the name “S17. Compounds List of Tpc-Entropy Outliers.xls”.

All the figures are available under the names given in the text as gif files, and the tables as doc files.

Acknowledgments: R. Naef is indebted to the library of the University of Basel for allowing him full and free access to the electronic literature database.

Author Contributions: R. Naef developed project ChemBrain and its entire software upon which this paper is based. R. Naef also fed the database, calculated and analysed the results and wrote the paper. W. E. Acree contributed all the experimental data and the majority of the literature references. Beyond this, R. Naef is deeply indebted to W. E. Acree for the many valuable discussions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Naef, R. A Generally Applicable Computer Algorithm Based on the Group Additivity Method for the Calculation of Seven Molecular Descriptors: Heat of Combustion, LogP_{O/W}, LogS, Refractivity, Polarizability, Toxicity and LogBB of Organic Compounds; Scope and Limits of Applicability. *Molecules* **2015**, *20*, 18279–18351. [CrossRef] [PubMed]

2. Ghose, A.K.; Crippen, G.M. Atomic physicochemical parameters for three-dimensional structure-directed quantitative structure-activity relationships I. Partition coefficients as a measure of hydrophobicity. *J. Comput. Chem.* **1986**, *7*, 565–577. [CrossRef]

3. Ghose, A.K.; Pritchett, A.; Crippen, G.M. Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships III: Modeling hydrophobic interactions. *J. Comput. Chem.* **1988**, *9*, 80–90. [CrossRef]

4. Ghose, A.K.; Crippen, G.M. Atomic Physicochemical parameters for three-dimensional-structure-directed quantitative structure-activity relationships 2. Modeling dispersive and hydrophobic interactions. *J. Chem. Inf. Comput. Sci.* **1987**, *27*, 21–35. [CrossRef] [PubMed]

5. Miller, K.J.; Savchik, J.A. A new empirical Method to calculate Average Molecular Polarizabilities. *J. Am. Chem. Soc.* **1979**, *101*, 7206–7213. [CrossRef]

6. Miller, K.J. Additivity methods in molecular polarizability. *J. Am. Chem. Soc.* **1990**, *112*, 8533–8542. [CrossRef]

7. Sun, H. A universal molecular descriptor system for prediction of LogP, LogS, LogBB, and absorption. *J. Chem. Inf. Comput. Sci.* **2004**, *44*, 748–757. [CrossRef] [PubMed]
8. Acree, W.E., Jr.; Chickos, J.S. Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds. Sublimation, Vaporization and Fusion Enthalpies from 1880 to 2010. J. Phys. Chem. Ref. Data 2010, 39, 043101. [CrossRef]
9. Roux, M.V.; Temprado, M.; Chickos, J.; Nagano, Y. Critically Evaluated Thermo-chemical Properties of Polycyclic Aromatic Hydrocarbons. J. Phys. Chem. Ref. Data 2008, 37, 1855. [CrossRef]
10. Chickos, J.; Wang, T.; Sharma, E. Hypothetical Thermodynamic Properties: Vapor Pressures and Vaporization Enthalpies of the Even n-Alkanes from C40 to C76 at T = 298.15 K by Correlation-Gas Chromatography. Are the Vaporization Enthalpies a Linear Function of Carbon Number? J. Chem. Eng. Data 2008, 53, 481–491. [CrossRef]
11. Chickos, J.; Lipkind, D. Hypothetical Thermodynamic Properties: Vapor Pressures and Vaporization Enthalpies of the Even n-Alkanes from C78 to C92 at T = 298.15 K by Correlation-Gas Chromatography. J. Chem. Eng. Data 2008, 53, 2432–2440. [CrossRef]
12. Chickos, J.; Hanshaw, W. Vapor Pressures and Vaporization Enthalpies of the n-Alkanes from C21 to C30 at T = 298.15 K by Correlation Gas Chromatography. J. Chem. Eng. Data 2004, 49, 77–85. [CrossRef]
13. Chickos, J.; Hanshaw, W. Vapor Pressures and Vaporization Enthalpies of the n-Alkanes from C31 to C38 at T = 298.15 K by Correlation Gas Chromatography. J. Chem. Eng. Data 2004, 49, 620–630. [CrossRef]
14. Wilson, J.; Gobble, C.; Chickos, J. Vaporization, Sublimation, and Fusion Enthalpies of Some Saturated and Unsaturated Long Chain Fatty Acids by Correlation Gas Chromatography. J. Chem. Eng. Data 2015, 60, 202–212. [CrossRef]
15. Abraham, M.H. Scales of Hydrogen-bonding: Their Construction and Application to Physicochemical and Biochemical Processes. Chem. Rev. 1993, 22, 73–83. [CrossRef]
16. Abraham, M.H.; Chadha, H.S.; Whinting, G.S.; Mitchell, R.C. Hydrogen-bonding. 32. An Analysis of Water-Octanol and Water-Alkane Partitioning and the AlogP Parameter of Seiler. J. Pharm. Sci. 1994, 83, 1085–1100. [CrossRef] [PubMed]
17. Abraham, M.H.; Zissimos, A.M.; Acree, W.E. Partition of solutes from the gas phase and from water to wet and dry di-n-butyl Ether: A linear free energy relationship analysis. Phys. Chem. Chem. Phys. 2001, 3, 3732–3736. [CrossRef]
18. Abraham, M.H.; Le, J. The Correlation and Prediction of the Solubility of Compounds in Water using an amended Solvation Energy Relationship. J. Pharm. Sci. 1999, 88, 868–880. [CrossRef] [PubMed]
19. Jover, J.; Bosque, R.; Sales, J. Determination of Abraham Solute Parameters from Molecular Structure. J. Chem. Inf. Comput. Sci. 2004, 44, 1098–1106. [CrossRef] [PubMed]
20. Cabani, S.; Gianni, P.; Mollica, V.; Lepori, L. Group contributions to the thermodynamic properties of non-ionic organic solutes in dilute aqueous solution. J. Sol. Chem. 1981, 10, 563–595. [CrossRef]
21. Chickos, J.S.; Acree, W.E., Jr.; Liebman, J.F. Estimating Solid-Liquid Phase Change Enthalpies and Entropies. J. Phys. Chem. Ref. Data 1999, 28, 1535–1673. [CrossRef]
22. Acree, W.E., Jr.; Chickos, J.S. Phase Change Enthalpies and Entropies of Liquid Crystals. J. Phys. Chem. Ref. Data 2006, 35, 1051–1330. [CrossRef]
23. Almeida, A.R.R.; Monte, M.J.S. Vapour pressures and phase transition properties of four substituted acetonaphenones. J. Chem. Thermodyn. 2016, 107, 42–50. [CrossRef]
24. Gobble, C.; Vikman, J.; Chickos, J.S. Evaluation of the Vaporization Enthalpies and Liquid Vapor Pressures of (R)-Deprenyl, (S)-Benzphetamine, Alverine, and a Series of Aliphatic Tertiary Amines by Correlation Gas Chromatography at T/K = 298.15. J. Chem. Eng. Data 2014, 59, 2551–2562. [CrossRef]
25. Miroshnichenko, E.A.; Kon’kova, T.S.; Pashchenko, L.L.; Matyushin, Y.N.; Inozemtsev, Y.O.; Tartakovskii, V.A. Energy characteristics of nitrooxazolidines and their radicals. Russ. Chem. Bull. Int. Ed. 2016, 65, 1876–1878. [CrossRef]
26. Emel’yanenko, V.N.; Zaitseva, K.V.; Nagrimanov, R.N.; Solomonov, B.N.; Verevkin, S.P. Benchmark Thermodynamic Properties of Methyl- and Methoxy-Benzamides: Comprehensive Experimental and Theoretical Study. J. Phys. Chem. A 2016, 120, 8419–8429. [CrossRef] [PubMed]
27. Gobble, C.; Gutterman, A.; Chickos, J.S. Some thermodynamic properties of benzocaine. Struct. Chem. 2013, 24, 1903–1907. [CrossRef]
28. Keating, L.; Harris, H.H.; Chickos, J.S. Vapor pressures and vaporization enthalpy of (−)-α-bisabolol and (d,l) menthol by correlation gas chromatography. J. Chem. Thermodyn. 2017, 107, 18–25. [CrossRef]
29. Sanchez-Bulás, T.; Cruz-Vásquez, O.; Hernández-Obregon, J.; Rojas, A. Enthalpies of fusion, vaporisation and sublimation of crown ethers determined by thermogravimetry and differential scanning calorimetry. *Thermochim. Acta* 2017, 650, 123–133. [CrossRef]

30. Panneerselvam, K.; Anthony, M.P.; Srinivasan, T.G.; Rao, P.R.V. Enthalpies of vaporization of N,N-dialkyl monamides at 298.15K. *Thermochim. Acta* 2009, 495, 1–4. [CrossRef]

31. Gobble, C.; Walker, B.; Chickos, J.S. The Vaporization Enthalpy and Vapor Pressure of Fenpropidin and Phencyclidine (PCP) at T/K = 298.15 by Correlation Gas Chromatography. *J. Chem. Eng. Data* 2016, 61, 896–902. [CrossRef]

32. Kozlovskiy, M.; Gobble, C.; Chickos, J.S. Vapor pressures and vaporization enthalpies of a series of esters used in flavors by correlation gas chromatography. *J. Chem. Thermodyn.* 2015, 86, 65–74. [CrossRef]

33. Costa, J.C.S.; Lima, C.F.R.A.C.; Mendes, A.; Santos, L.M.N.B.F. Fluorination effect on the thermodynamic properties of long-chain hydrocarbons and alcohols. *J. Chem. Thermodyn.* 2016, 102, 378–385. [CrossRef]

34. Simmons, D.; Chickos, J. Enthalpy of vaporization and vapor pressure of whiskey lactone and mentholactone by correlation gas chromatography. *J. Chem. Thermodyn.* 2017, 110, 65–70. [CrossRef]

35. Oliveira, J.A.S.A.; Oliveira, T.S.M.; Gaspar, A.; Borges, F.; Ribeiro da Silva, M.D.M.C.; Monte, M.J.S. Study on the volatility of halogenated fluorenes. *Chemosphere* 2016, 157, 25–32. [CrossRef] [PubMed]

36. Maxwell, R.; Chickos, J. An Examination of the Thermodynamics of Fusion, Vaporization, and Sublimation of Ibuprofen and Naproxen by Correlation Gas Chromatography. *J. Pharm. Sci.* 2012, 101, 805–814. [CrossRef] [PubMed]

37. Mori, M.; Rath, N.; Gobble, C.; Chickos, J. Vaporization, Sublimation Enthalpy, and Crystal Structures of Imidazo[1,2-al]pyrazine and Phthalazine. *J. Chem. Eng. Data* 2016, 61, 370–379. [CrossRef]

38. Goodrich, S.; Hasanovic, J.; Gobble, C.; Chickos, J.S. Vaporization Enthalpies and Vapor Pressures of Some Insect Pheromones by Correlation Gas Chromatography. *J. Chem. Eng. Data* 2016, 61, 1524–1530. [CrossRef]

39. Freitas, V.L.S.; Silva, C.A.O.; Paiva, M.A.T.; Ribeiro da Silva, M.D.M.C. Energetic effects of alkyl groups (methyl and ethyl) on the nitrogen of the morpholine structure. *J. Therm. Anal. Calorim.* 2017, 121, 1059–1071. [CrossRef]

40. Althoff, M.A.; Grieger, K.; Härtel, M.A.C.; Karaghiosoff, K.L.; Klapötke, T.M.; Metzulat, M. Application of the Transpiration Method to Determine the Vapor Pressure and Related Physico-Chemical Data of Low Volatile, Thermolabile, and Toxic Organothio phosphates. *J. Phys. Chem. A* 2017, 121, 2603–2609. [CrossRef] [PubMed]

41. Gobble, C.; Chickos, J.; Verevkin, S.P. Vapor Pressures and Vaporization Enthalpies of a Series of Dialkyl Phthalates by Correlation Gas Chromatography. *J. Chem. Eng. Data* 2014, 59, 1353–1365. [CrossRef]

42. Brunetti, B.; Lapi, A.; Ciprioti, S.V. Thermodynamic study on six tricyclic nitrogen heterocyclic compounds by thermal analysis and effusion techniques. *Thermochim. Acta* 2016, 636, 71–84. [CrossRef]

43. Emel’yarenko, V.N.; Kaliner, M.; Strassner, T.; Verevkin, S.P. Thermochemical properties of different 1-(R-phenyl)-1H-imidazoles. *Fluid Phase Equilib.* 2017, 433, 40–49. [CrossRef]

44. Antón, V.; Artigas, H.; Muñoz-Embidi, J.; Artal, M.; Lafuente, C. Thermophysical study of 2-acetyliophene: Experimental and modelled results. *Fluid Phase Equilib.* 2017, 433, 126–134. [CrossRef]

45. Portnova, S.V.; Krasnykh, E.L.; Levanova, S.V. Temperature Dependences of Saturated Vapor Pressure and the Enthalpy of Vaporization of p-Pentyl Esters of Dicarboxylic Acids. *Russ. J. Phys. Chem. A* 2016, 90, 990–993. [CrossRef]

46. Lepori, L.; Matteoli, E.; Gianni, P. Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols. *J. Chem. Eng. Data* 2017, 62, 194–203. [CrossRef]

47. Lima, C.F.R.A.C.; Rodrigues, A.S.M.C.; Santos, L.M.N.B.F. Effect of Confined Hindrance in Polyphenylbenzenes. *J. Phys. Chem. A* 2017, 121, 2475–2481. [CrossRef] [PubMed]

48. Abboud, J.-L.M.; Alkorta, I.; Davalos, J.Z.; Koppel, I.A.; Koppel, I.; Martínez, S.; Mishima, M. The Thermodynamic Stability of Adamantylideneadamantane and Its Proton- and Electron-Exchanges. Comparison with Simple Alkenes. *Bull. Chem. Soc. Jpn.* 2016, 89, 762–769. [CrossRef]

49. Silva, A.L.R.; Ribeira da Silva, M.D.M.C. Comprehensive Thermochemical Study of Cyclic Five- and Six-Membered N,N’-Thioureas. *J. Chem. Eng. Data* 2017. [CrossRef]
50. Carvalho, T.M.T.; Amaral, L.M.P.F.; Morais, V.M.F.; Ribeiro da Silva, M.D.M.C. Energetic Effect of the Carboxylic Acid Functional Group in Indole Derivatives. J. Phys. Chem. A 2017, 121, 2980–2989. [CrossRef] [PubMed]

51. Freitas, V.L.S.; Lima, A.C.M.O.; Sapei, E.; Ribeiro da Silva, M.D.M.C. Comprehensive thermophysical and thermochemical studies of vanillyl alcohol. J. Chem. Thermodyn. 2016, 102, 287–292. [CrossRef]

52. Lopes, C.S.D.; Agapito, F.; Bernardes, C.E.S.; Minas da Piedade, M.E. Thermochemistry of 4-HOC₆H₄COR (R = H, CH₃, C₂H₅, n-C₃H₇, n-C₄H₉, n-C₅H₁₁, and n-C₆H₁₃) compounds. J. Chem. Thermodyn. 2017, 104, 281–287. [CrossRef]

53. Emel’yanenko, V.N.; Nagrimanov, R.N.; Solomonov, B.N.; Verevkin, S.P. Adamantanes: Benchmarking of thermochemical properties. J. Chem. Thermodyn. 2016, 101, 130–138. [CrossRef]

54. Chickos, J.S.; Acree, W.E., Jr. Total phase change entropies and enthalpies. An update on fusion enthalpies and their estimation. Thermochim. Acta 2009, 495, 5–13. [CrossRef]

55. Blokhina, S.; Sharapova, A.; Ol’khovich, M.; Perlovich, G. Sublimation thermodynamics of four fluoroquinolone antimicrobial compounds. J. Chem. Thermodyn. 2017, 105, 37–43. [CrossRef]

56. Flores, H.; Ledo, J.M.; Hernandez-Perez, J.M.; Marcedo, E.A.; Sandoval-Lira, J.; Amador, M.P. Thermochemical and theoretical study of 2-oxazolidinone and 3-acetyl-2-oxazolidinone. J. Chem. Thermodyn. 2016, 102, 386–391. [CrossRef]

57. Emel’yanenko, V.N.; Nagrimanov, R.N.; Verevkin, S.P. Benchmarking thermochemical experiments and calculations of nitrogen-containing substituted adamantanes. J. Thermal. Anal. Calorim. 2017, 128, 1535. [CrossRef]

58. Oliveira, J.A.S.A.; Freitas, V.L.S.; Notario, R.; da Silva, M.D.M.C.R.; Monte, M.J.S. Thermodynamic properties of 2,7-di-tert-butylfluorene—An experimental and computational study. J. Chem. Thermodyn. 2016, 101, 115–122. [CrossRef]

59. Carvalho, T.M.T.; Amaral, L.M.P.F.; Morais, V.M.F.; Ribeiro da Silva, M.D.M.C. Calorimetric and computational studies for three nitroimidazole isomers. J. Chem. Thermodyn. 2016, 105, 267–275. [CrossRef]

60. Chickos, J.S.; Acree, W.E., Jr. Total phase change entropies and enthalpies. An update on fusion enthalpies and their estimation. Thermochim. Acta 2009, 495, 5–13. [CrossRef]

61. Wang, L.; Xing, C.; Zhao, L.; Xu, L.; Liu, G. Measurement and correlation of solubility of 2-chloro-3-(trifluoromethyl)pyridine in pure solvents and ethanol + n-propanol mixtures. J. Mol. Liq. 2017, 238, 470–477. [CrossRef]

62. Guenthner, A.J.; Ramirez, S.M.; Ford, M.D.; Soto, D.; Boatz, J.A.; Ghiassi, K.B.; Mabry, J.M. Organic Crystal Engineering of Thermosetting Cyanate Ester Monomers: Influence of Structure on Melting Point. Cryst. Growth Des. 2016, 16, 4082–4093. [CrossRef]

63. Trache, D.; Khimeche, K.; Dahmani, A. Study of (Solid–Liquid) Phase Equilibria for Mixtures of Energetic Material Stabilizers and Prediction for Their Subsequent Performance. Int. J. Thermophys. 2013, 34, 226–239. [CrossRef]

64. Eckert, K.-A.; Dasgupta, S.; Selge, B.; Ay, P. Solid liquid phase diagrams of binary fatty acid mixtures—Palmitic/stearic with oleic/linoleic/linolenic acid mixture. Thermochim. Acta 2016, 630, 50–63. [CrossRef]

65. Blokhina, S.; Sharapova, A.; Ol’khovich, M.; Volkova, T.; Perlovich, G. Studying the sublimation thermodynamics of ethionamide and pyridinecarbothioamide isomers by transpiration method. Thermochim. Acta 2015, 622, 97–102. [CrossRef]

66. Freitas, V.L.S.; Lima, A.C.M.O.; Sapei, E.; Ribeiro da Silva, M.D.M.C. Comprehensive thermophysical and thermochemical studies of vanillyl alcohol. J. Chem. Thermodyn. 2016, 102, 287–292. [CrossRef]

67. Forte, A.; Meinguet, C.; Wouters, J.; Tilborg, A. Solid-State Investigation of Polymorphism and Tautomeration of Phenylthiazole-thione: A Combined Crystallographic, Calorimetric, and Theoretical Survey. Cryst. Growth Des. 2015, 15, 2461–2473. [CrossRef]

68. Leitner, J.; Jurik, S. DSC study and thermodynamic modelling of the system paracetamol–o-acetyl salicylic acid. J. Therm. Anal. Calorim. 2017. [CrossRef]

69. Mintz, C.; Clark, M.; Acre, W.E., Jr.; Abraham, M.H. Enthalpy of Solvation Correlations for Gaseous Solutes Dissolved in Water and in 1-Octanol Based on the Abraham Model. J. Chem. Inf. Model. 2007, 47, 115–121. [CrossRef] [PubMed]
70. Catalan, J.; Couto, A.; Gomez, J.; Saiz, J.L.; Laynez, J. Towards a solvent acidity scale: The calorimetry of the N-methyl imidazole probe. *J. Chem. Soc. Perkin Trans. 2* 1992, 7, 1181–1185. [CrossRef]
71. Spencer, J.N.; Hovick, J.W. Solvation of urea and methyl-substituted ureas by water and DMF. *Can. J. Chem.* 1988, 66, 562–565. [CrossRef]
72. Gatta, G.D.; Badea, E. Thermodynamics of Solvation of Urea and Some Monosubstituted N-Alkylureas in Water at 298.15 K. *J. Chem. Eng. Data* 2007, 52, 419–425. [CrossRef]
73. Rouw, A.; Somsen, G. Solvation and Hydrophobic Hydration of Alkyl-substituted Ureas and Amides in N,N-Dimethylformamide + Water Mixtures. *J. Chem. Soc. Faraday Trans. 1* 1982, 78, 3397–3408. [CrossRef]
74. Badea, E.; della Gatta, G.; Jozwiak, M.; Giancola, C. Hydration of Thiourea and Mono-, Di-, and Tetra-N-Alkylthioureas at Infinite Dilution: A Thermodynamic Study at a Temperature of 298.15 K. *J. Chem. Eng. Data* 2011, 56, 4778–4785. [CrossRef]
75. Stimson, E.R.; Schrier, E.E. Calorimetric Investigation of Salt-Amide Interactions in Aqueous Solution. *J. Chem. Eng. Data* 1974, 19, 354–358. [CrossRef]
76. Batov, D.V.; Zaichikov, A.M. Group Contributions to the Enthalpy Characteristics of Solutions of Formic and Acetic Acid Amides in Water-1,2-Propanediol Mixtures. *Russ. J. Gen. Chem.* 2003, 73, 511–518. [CrossRef]
77. Starzewski, P.; Wadsö, I.; Zielenkiewicz, W. Enthalpies of vaporization of some N-alkylamides at 298.15 K. *J. Chem. Thermodyn.* 1984, 16, 331–334. [CrossRef]
78. Morgan, K.M.; Kopp, D.A. Solvent effects on the stability of simple secondary amides. *J. Chem. Soc. Perkin Trans. 2* 1998, 2759–2763. [CrossRef]
79. Teplitsky, A.B.; Glukhova, O.T.; Sukhodub, L.F.; Yanson, I.K.; Zielenkiewicz, A.; Zielenkiewicz, W.; Kosinski, J.; Wierzchowski, K.L. Thermochromy of aqueous Solutions of alkylated Nucleic Acid Bases. IV. Enthalpies of 5-Alkyluracils. *Biophys. Chem.* 1982, 15, 139–147. [CrossRef]
80. Zielenkiewicz, W.; Sztener, P.; Kaminski, M. Vapor Pressures, Molar Enthalpies of Sublimation, and Molar Enthalpies of Solution in Water of Selected Amino Derivitives of Uracil and 5-Nitouracil. *J. Chem. Eng. Data* 2003, 48, 1132–1136. [CrossRef]
81. Zielenkiewicz, W.; Sztener, P. Vapor Pressures, Molar Enthalpies of Sublimation, and Molar Enthalpies of Solution in Water of 5-(Trifluoromethyl)Uracil. *J. Chem. Eng. Data* 2004, 49, 1197–1200. [CrossRef]
82. Zielenkiewicz, W.; Sztener, P. Thermodynamic Investigation of Uracil and Its Halo Derivatives. Enthalpies of Solution and Solvation in Methanol. *J. Chem. Eng. Data* 2005, 50, 1139–1143. [CrossRef]
83. Zhou, Y.; Wang, J.; Fang, B.; Guo, N.; Xiao, Y.; Hao, H.; Bao, Y.; Huang, X. Solubility and dissolution thermodynamic properties of 2-Cyano-4′-methylbiphenyl in binary solvent mixtures. *J. Mol. Liq.* 2017, 236, 298–307. [CrossRef]
84. Zhang, Q.-A.; Du, C.-J. Solubility of cyclohexyl-phosphoramic acid diphenyl ester in selected solvents. *J. Mol. Liq.* 2015, 211, 527–533. [CrossRef]
85. Zhao, F.-Q.; Pei, C.; Hu, R.-Z.; Yang, L.; Zhang, Z.-Z.; Zhou, Y.-S.; Yang, X.-W.; Yin, G.; Gao, S.L.; Shi, Q.-Z. Thermochemical properties and non-isothermal decomposition reaction kinetics of 3,4-dinitrofuranafuroxan (DNTF). *J. Hazard. Mat.* 2004, A113, 67–71.

Sample Availability: Sample Availability: Not available.