Quantitative Evaluation Method of Physical Fitness Factor Indicators in Youth Endurance Running Events

Bailing Guo¹ and Changlei Zhou²

¹Department of Leisure Services and Sports, Pai Chai University, Daejeon Metropolitan City 302735, Republic of Korea
²College of Sports and Health, Linyi University, Linyi 276000, Shandong, China

Correspondence should be addressed to Changlei Zhou; zhouchanglei@lyu.edu.cn

Received 28 June 2022; Revised 3 August 2022; Accepted 11 August 2022; Published 30 August 2022

Abstract

Adolescents are in a critical period of physical and intellectual development, and their growth represents the future of a country. However, with the rapid development of social economy and science and technology, sports and health-related education has not been fully developed, and due to some deviations in the current school curriculum, the physical quality of young people generally declines. Endurance running is a comprehensive index to measure a person’s physical fitness. It reflects the basic motor function of the matrix. It is a must-test item in the physical fitness test of young people. However, the level of endurance running has shown a downward trend in recent years. In the current endurance running training, there are many disadvantages such as extensive training methods, low efficiency, and human errors during detection. In order to improve the performance of endurance running, this paper establishes the index system of endurance running elements by introducing the concept of healthy physical fitness. Based on the elements of endurance running, this paper established the detection system and compared it with the standard test method. The data showed that \(P < 0.001 \), indicating that the test results of the two were consistent. The detection system in this paper is suitable for the detection of physical fitness index elements. Then, the endurance running performance of the selected 124 adolescents was combined with the physical fitness index elements, and the correlation was analyzed, indicating that the endurance running level is closely related to the human body shape, cardiopulmonary function, muscle strength, and endurance level. Systematic testing and quantitative results showed that body mass index was significantly correlated with endurance running performance in adolescents (\(P < 0.01 \)). Also, the number of vertical jumps in place was significantly correlated with the number of sit-ups completed (\(r = 0.55, P < 0.01 \)). This strongly suggests that it is important to quantitatively evaluate the fitness factor indicators of endurance running in adolescents.

1. Introduction

In recent years, the physical quality of Chinese adolescent students has generally declined. Some scholars believe that this may be due to the lack of research on related theories of physical health education and countermeasures, resulting in the current situation of adolescent physical decline. Endurance running, as a compulsory item in the physical education examination in China, comprehensively considers the cardiorespiratory function of students. However, endurance running has a high risk of exercise, the training method is single, and young people have certain resistance to endurance running. At the same time, the current youth physical fitness testing system lacks detailed indicators that reflect students' endurance running level, resulting in untargeted training in endurance running and slow performance improvement. In order to solve the problem of low training efficiency at present, this paper introduces the concept of healthy physical fitness, and establishes the index of physical fitness elements of endurance running, which can help students evaluate the level of endurance running and improve the effect of training.

Physical fitness is a new concept in sports health that has had a major impact on the field of sports and health. From an exercise perspective, physical fitness is now considered a comprehensive measure of health. Fitness is the effective
performance of the human body in performing its functions effectively and efficiently. In a word, physical fitness is a test index of physical health from the perspective of human function and skills, and it is closely related to the ability to deal with emergencies.

Based on the above thinking, this paper evaluates the physical fitness factor indicators of adolescents’ endurance running, hoping to obtain the best test indicators of the physical fitness of adolescents’ endurance running on the basis of experimental investigation. In addition, in order to avoid the influence of human error, a detection model is also established in this paper. By comparing with the data results of conventional detection methods, it is found that the system in this paper is suitable for physical fitness detection, and then, it is applied to the detection of endurance running events. The correlation analysis was carried out in combination with the endurance running performance of 124 adolescents, showing that BMI, VO2max, and endurance running performance were significantly correlated, with \(P < 0.01 \). The effective number of vertical jumps in place and the number of completed sit-ups belong to the comprehensive reflection of muscle strength and endurance. Its correlation coefficient is around 0.5, and \(P < 0.01 \), indicating that it has a significant correlation with endurance running performance, and has a strong linear correlation.

2. Related Work

As an important concept in the field of sports theory, physical fitness has always been a hot spot tracked by relevant researchers. Firstly, Huang H took the lead in establishing the development process of physical fitness assessment for Chinese children and adolescents. Secondly, according to the specific program design, the children and adolescents’ grade indicators are used and optimized to verify the children and adolescents’ physical condition grade model [1]. Due to the poor physical fitness of current children, Kozakevych V K’s experiment aimed to examine the physical health of school-age children and to identify risk factors for their interference. It was found that more than 60% of teens now have low and below-average levels of physical fitness. According to the multivariate model, the level of physical fitness was positively affected by the level of material wealth (\(+0.251\)) , mother’s education level (\(+0.295\)) , nutritional balance (\(+0.204\)) , and residence time in fresh air (\(+0.106\)) , and negatively affected by parental harmful habits (\(-0.167\)) [2]. Youm S has developed an automated radiofrequency identification (RFID)-based scoring system for the Progressive Aerobic Cardiovascular Endurance Run (PACER) and 6-minute walk tests. The proposed system is able to accurately test many students or candidates on a large scale and can significantly reduce the burden on test administrators [3]. Yassine designed to examine the effects of plyometric training on the physical performance of prepubertal soccer players on stable (SPT) versus unstable (UPT) surfaces. If the goal is to further enhance the static balance, UPT has advantages over SPT [4]. The above-mentioned research on physical fitness test has a limited entry point, and most of them are based on the health level, and the guidance for the article is relatively general.

For the research on the relevant physical fitness index elements of adolescents, relevant explorations have been carried out in various fields. The primary objective of Man X was to examine associations between adolescent health-related PF, skills-related PF, depression, and academic achievement. Findings have suggested that people who are physically fit and exhibit positive mental functioning may achieve better academic achievement in adolescence [5]. Gontarev S aimed to analyze the relationship between cardiorespiratory fitness and obesity, blood pressure, and hypertension in adolescents. In conclusion, these results should be considered when developing strategies and recommendations to improve adolescents’ lifestyle and health [6]. The purpose of Ucok K was to compare maximal aerobic capacity (VO2 max), muscle strength, trunk flexibility, total energy expenditure, daily physical activity, resting metabolic rate (RMR), and body composition and body fat distribution in diabetic patients and healthy controls [7]. Tan S explored the effects of exercise training on body composition, cardiovascular function, and physique in obese and lean 5-year-old children. Well-trained obese children improved performance in the long jump, the 10-meter 4 shuttle run, and the 3-meter balance beam walk, while well-trained lean children improved more physical activity [8]. The above-mentioned related researches on the elements of physical fitness indicators are mostly from the perspective of disease and health, and their relevance to the article is low.

3. Exploration Methods Related to Endurance Running

3.1. Physical Fitness Required for Endurance Running.

Endurance running, also known as middle- and long-distance running, is an effective method to evaluate the cardiorespiratory function and endurance level of students [9, 10]. Additionally, running is associated with physical flexibility, coordination, balance, and other qualities. When a running motion as shown in Figure 1 occurs, the movement and coordination of human muscles, bones, and joints are required [11].

From the perspective of related research, endurance running is a complex exercise that integrates the human movement system, respiratory energy supply system, nervous system, and endocrine system, and these factors are closely related to the body [12, 13]. Exploring the relationship between the physical fitness and long-distance running, and constructing a physical fitness index system for long-distance running, is extremely important for improving the level of long-distance running, and has a certain value for cultivating students [14]. At the same time, the study of the fitness factor in endurance running can also contribute to the promotion of sports and generate a national sporting boom.

Physical fitness is defined as an individual’s ability to perform adequate daily tasks, enjoy leisure time, and adapt to emergencies and stress [15, 16]. When classified by type, the physique can be divided into healthy physique and sports
physique. As the name suggests, physical fitness is the physical fitness related to the body's sensitivity, regulation, balance, and other physical capabilities [17, 18]. Figure 2 shows how each element of physical fitness works.

Through optimal fitness training, students gain insight into how to acquire healthy fitness and healthy fitness acquisition skills, as well as ways to apply fitness principles into practice [19]. In addition, from the above operating principles we can also see that good physical performance cannot be achieved without the close cooperation of all body parts.

3.2. Preliminary Construction of the Physical Fitness Factor Index System. Cardiorespiratory endurance, strength and body composition, and physical flexibility are four commonly used test methods for healthy physique in the United States [20]. Maintaining a good state in these areas means that a person’s physical level is good. In other words, you have the ability to exercise safely [21]. In recent years, the government has determined different inspection items for citizens of different ages to fully understand people’s health status. At present, the physical fitness-level test items of Chinese adolescents are shown in Table 1.

4. Quantitative Detection Experiment of Physical Fitness Factors

In order to better detect the indicators of physical fitness factors required for endurance running, this paper builds a measurement system from the detection of physical fitness factors that affect endurance running performance. The Kinect sensor and the force measuring platform based on the pressure sensor are used to build an information collection module, and an intelligent youth physical fitness factor index test platform is constructed.

4.1. Construction of the Hardware Part of the System. The system detection platform built in this paper adopts the JHBM-7-V-type load cell. Its working principle is based on the piezoresistive principle. With the increase in the force on the sensor, the resistance value basically decreases linearly. The detection platform is mainly composed of signal acquisition and its amplification module, A/D conversion module, communication module, main control chip, and host computer. It has the function of collecting the signal of the weighing sensor and uploading it to the host computer. The overall block diagram is shown in Figure 3.

The software of the lower computer is based on the Keil MDK integrated development environment, and is developed using the C language. Combined with the hardware circuit, it realizes the acquisition and processing of sensor data, and the communication with the upper computer.

The main functions of the upper computer software include the following: sending pressure information collection instructions to the upper computer, receiving the pressure signal obtained by the lower computer, and calculating the center position of the sole pressure according to the pressure value of the pressure sensor.

4.2. Construction of the System Software Part. The detection station in this paper uses the Kinect sensor, and the depth image obtained by the Kinect can extract the human skeleton model in real time. This system uses the Kinect for Windows SDK2.0 as the development tool for driving the Kinect and related data acquisition. During use, the application must detect and discover the Kinect sensors linked to the device, and before these sensors can be used, they must be initialized and only then can data be generated. It should be pointed out that the origin positions of the image coordinate system and the actual space coordinate system are not uniform, and the spatial positions of the depth camera and the color camera are not completely coincident, so coordinate conversion is required during use. However, the Kinect sensor script provides a conversion method for the depth image coordinate system, the color image coordinate system, and the bone space coordinate system. The conversion relationship is shown in Figure 4, and it can also be converted according to the knowledge of space geometry.

When we stand behind the Kinect, facing away from it, the right side is positive on the x-axis, the top is positive on the y-axis, and the z-axis is pointing towards us, which is the same as the definition of a normal coordinate system. The depth image obtained by the Kinect contains a lot of jitter noise; that is, there is random noise in the depth value of the image pixel position, which is called the flicker effect. This phenomenon causes certain errors in the measurement using depth information, so the depth map needs to be filtered in real time.

The extracted joints have jitter in a certain range; especially, the jitter of the joints is large. In order to obtain more stable bone data, this paper firstly performs smooth filtering on the joint position, which is the premise of using bone data. The smoothing algorithm for skeletal data is
described in detail below. Considering the smoothing effect and filtering real-time requirements, this paper uses the Kalman filtering algorithm to filter the bone data. Its idea is to update the state variable information iteratively and recursively when new data are obtained, which is an optimal estimation method.

The Kalman filter mainly contains the equation of state transition.

\[\dot{X}_t = DX_{t-1} + H_{t-1} \]

(1)

Among them, \(\dot{X}_{t-1} \) represents the estimated value of the bone data at time \(t-1 \), \(\dot{X}_t \) is the estimated value of the bone data at time \(t \), and \(D \) is the transition matrix of the state, which is also the basis for the algorithm to predict the state variables. \(H_{t-1} \) is the estimated error value.
The calculation expression of the observed value is as follows:

\[G_z = FM\dot{X} + U_X. \]

(2)

Among them, \(G_z \) represents the observed value of the skeleton data at time \(X \), and \(U_X \) represents the measurement error. \(F \) is the observation matrix.

Iterative process: according to the state prediction at time \(X-1 \), the state at time \(X \) is expressed as follows:

\[\dot{M}_X = DM_{X-1} + Ce_{X-1}. \]

(3)

\(\dot{M}_X \) represents the prior state estimate of the skeleton data at time \(x-1 \), and \(M_X \) represents the posterior state estimate of the skeleton data at time \(X \), and \(e_{X-1} \) represents the input quantity that can be selected and controlled, \(C \) represents the gain. However, in practical applications, there is generally no control input, so these two items can be ignored.

Mean squared error prediction is given by the following equation:

\[\hat{Q}_X = DQ_{X-1}D^T + P. \]

(4)

In the prediction equation, \(\hat{Q}_{X-1} \) is the a priori estimated covariance of the data at time \(X \), \(Q_X \) is the a posteriori estimated covariance of the data at time \(X \), and \(P \) is the covariance of the excitation noise in the process, that is, the error between the transition matrix and the actual process.

Filter gain expression is given by the following equation:

\[R_X = \hat{Q}_XF^T(F\hat{Q}_XF^T + N). \]

(5)

\(N \) represents the covariance when measuring noise.

Filter estimation expression is given by the following equation:

\[\dot{M}_X = \hat{M}_X + R_X(G_Z - FM\hat{X}). \]

(6)

The mean squared error follows the mean:

\[\hat{Q}_X = (K - R_XF)\hat{Q}_X. \]

(7)

The first step is to confirm the transition state matrix \(D \), which is obtained according to the formula:

\[K(s) = K(s - 1) + C(s - 1)\Delta s + 0.5i(s - 1)\Delta s^2, \]

\[C(s) = C(s - 1) + i(s - 1)\Delta s, \]

\[i(s) = i(s - 1). \]

Among them, \(s \) is the representation value of displacement, \(c \) is velocity, and \(i \) is acceleration.

Assuming a value \(\Delta s = 1 \), the matrix expression for the above equation is as follows:

\[
\begin{bmatrix}
K(s) \\
C(s) \\
i(s)
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 0.5 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{bmatrix} \ast \begin{bmatrix}
K(s - 1) \\
C(s - 1) \\
i(s - 1)
\end{bmatrix}.
\]

(9)

Then, the state estimator of the system in this paper is given by the following equation:

\[\dot{M}_X = [K_{ax}, K_{bx}, K_{nx}, C_{ax}, C_{bx}, C_{nx}, i_{ax}, i_{bx}, i_{nx}]. \]

(10)

The observations are as follows:

\[G_z = [K_{ax}, K_{bx}, K_{nx}]. \]

(11)

So, the transition matrix \(D \) is expressed as

\[
D = \begin{bmatrix}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}.
\]

(12)

The measurement matrix \(F \) is expressed as follows:

\[
F = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{bmatrix}.
\]

(13)

The other parameters are as follows:

\[Q_0 = 0.01, P = 0.001, r = 0.01. \]

(14)

The Kalman filtering allows the optimal estimation of the system state from the system input and output observations. Taking hand joints as experimental samples, the effect of the Kalman filtering is shown in Figure 5. This enables further smoothing of the hand joints.

It can be seen from Figure 5 that although there are certain fluctuations in the data curve between the effect of the Kalman filtering and the observed value, the data difference is small. On the whole, the filtering effect of the Kalman algorithm is consistent with the effect of the observed value. It shows that the Kalman filter algorithm filters out the hand joint jitter, smoothes the joint position information, and provides a guarantee for the accuracy of the subsequent index measurement.

4.3. Determination of Physical Fitness and Body Mass Index

Determination of height and weight: generally speaking, the measurement of body mass index is mainly carried out through the detection platform constructed in this paper. The height measurement method can be obtained using the Kinect.

Determination of waist, abdomen, and lower limb muscle fitness indicators: muscle fitness is a very important physical fitness in endurance running, of which waist, abdomen, and lower limb muscle fitness play an important role. In this paper, the number of sit-ups completed is used to measure the strength and endurance of the waist and abdominal muscles, while the muscle strength of the lower body is measured by the maximum height of jumping in place, and the muscle endurance of the lower body is measured by the number of jumps in place.

Determination of flexibility index: sitting and standing body forward flexion are the international common methods for evaluating flexibility, which mainly reflect the extension of the hamstrings, tendons, muscles, and joints of the trunk and the back of the thigh. Flexibility is not only an important part of healthy physical fitness, but also promotes the
explosion of strength and speed, which plays an important role in improving athletic ability and preventing sports injuries. Using the Kinect sensor, one end of the sensor is fixed to the ground and the other end is set at the start of forward bending in the station stereo.

Balance ability index determination: balance ability includes static and dynamic balance ability. Static balance refers to the ability of a limb to maintain a fixed posture, and dynamic balance refers to the ability to return to its own balance under external disturbances. The quality of balance ability reflects the functional level of receptors and nervous system on the one hand, and the development level of executive organs such as skeletal muscles on the other hand.

In this paper, two sensors are used to detect the same vertical jumping action. If both of them detect valid results, the average of the two test results is taken as the testee’s score for this jump. If the Kinect has a false detection or missed detection, the result obtained by the force tester will be used as the testee’s jump result.

5. Physical Fitness Test Results

5.1. Data Sources and Basic Information. In this paper, 124 adolescents were selected as the measurement objects for the indicators of physical fitness elements required for endurance running, and they were divided into two groups. The experimental group adopted the testing platform established in this paper. The platform is equipped with two kinds of sensors, and the control group uses conventional sports testing equipment, such as height scales, sitting body flexion tester, vertical jump height test device, and stopwatch, and other equipment takes turns to measure. All test subjects were tested in the experimental group and the control group in the same place. In order to ensure the physical recovery of the experimental subjects, the interval between each test is about 30 minutes. All the scores of all subjects in the two tests were recorded, and the basic conditions of the subjects are shown in Table 2.

Due to the differences in the age distribution and gender of the subjects, more accurate results can be obtained for subsequent experiments. The subjects’ height, weight, and BMI were statistically analyzed this time, and the results are shown in Figure 6.

In Figure 6, the average age of the subjects is 12.95 ± 1.96 years, the height is 1.6 ± 0.09 m, the weight is 53.5 ± 10.2 kg, and the BMI is 20 ± 3.0 kg/m². There were significant differences in height and weight among different age groups of the same gender, height (P < 0.01 for males, P < 0.01 for females), and weight (P < 0.01 for males, P < 0.01 for females). BMI increased slightly with age (P > 0.05 for males, P > 0.05 for females). From the analysis of different genders in the same age group, there was no statistical difference in height and weight between men and women at the age of 11 (P > 0.05). However, from the age of 12, the two indicators of males were significantly higher than those of females. In terms of height, the 12-year-old male was 1.63 ± 0.06 m and the female was 1.57 ± 0.04 m (P < 0.05); then 13-year-old male was 1.71 ± 0.05 m and the female was 1.61 ± 0.04 m (P < 0.001); and the 14-year-old male was 1.67 ± 0.06 m and the female was 1.58 ± 0.04 m (P < 0.001).

In terms of body weight, the 12-year-old male was 52 ± 6.9 kg and the female was 50 ± 6.7 kg (P < 0.05); the 13-year-old male was 60 ± 8.1 kg and the female was 52 ± 11 kg (P < 0.05); and the 14-year-old male was 61 ± 13 kg and the female was 51 ± 5.9 kg (P < 0.01). The BMI of males in the same age group was slightly higher than that of females, but there was no significant difference between genders (P > 0.05).

5.2. Muscle Strength and Endurance Indicators of Waist, Abdomen, and Lower Limbs. In this paper, the physical fitness index of waist, abdomen, and lower limbs is measured, and the number of completed sit-ups is used to measure the strength and endurance of waist and abdomen muscles. The muscle strength of the lower body is measured by the maximum height of jumping in place, and the muscle endurance of the lower body is measured by the number of jumps in place. The test results of waist, abdomen, and lower limb muscle strength and endurance index are shown in Table 3.

The data in Figure 7 show that there is a significant difference between the number of sit-ups and the strength and endurance of the lumbar and abdominal muscles (r= 0.96, P < 0.01), which indicates that sit-ups can increase the endurance index of adolescents to some extent. Also, by
5.4. Balance Ability Index. In this paper, the measurement of balance ability, one of the physical fitness indicators, is measured by the standing time with one foot and eyes closed. The test results are shown in Table 5.

Table 5 shows the test results of the balance ability index, where $P < 0.001$, indicating that there is no significant difference in the test data of the two groups of subjects, which indicates that the consistency of the two groups of data is very good.

5.5. Simulation Case. The endurance running performance of 124 adolescents is taken as a sample to explore the relationship between physical fitness and endurance running. Among them, the system equipment collects the index data of body composition, lower limb muscle strength and endurance, waist and abdominal muscle endurance, flexibility, and balance ability. The endurance running performance of all experimental subjects was graded according to relevant indicators and divided into four grades: excellent, good, passing, and failing, corresponding to the numbers 4, 3, 2, and 1, respectively. The obtained endurance running data are graded, and the test graded data are shown in Figure 9.

The Pearson correlation coefficient is calculated for all test results and endurance running results, and the correlation analysis results are shown in Table 6.

It can be seen from Table 6 that BMI and VO2max are significantly correlated with endurance running performance, and the height and number of jumps in place, sit-ups, and endurance running performance are significantly correlated. Therefore, it can be concluded that if the BMI of the tester is in the range of thin to overweight, BMI and endurance running performance are positively correlated, indicating that the impact of body shape on endurance running performance is significant, but the two do not completely belong to the same category. There was a significant negative correlation between VO2max and endurance running performance, which was consistent with the findings of the literature. Due to differences in personal physique, psychological state, skills, and the characteristics of the race schedule, the relationship between the two is not significantly linear. The maximum height of vertical jump in situ measures the explosive power of human muscles, and it has a nonlinear negative correlation with endurance running performance. Explosive power plays a lesser role in long-distance running. It can be seen that the effective number of vertical jumps in situ and the number of completed sit-ups belong to the comprehensive reflection of muscle strength and endurance, and have a significant correlation with endurance running performance, and a strong linear correlation.

The bivariate correlation analysis of the influencing factors of endurance running found that the number of vertical jumps in place and the number of completed sit-ups were significantly correlated ($r 0.55, P < 0.01$), and the two were not statistically independent. From a physiological point of view, the muscles of the waist and abdomen and the muscles of the lower limbs work in coordination in many movements. However, the measurement actions and indicators selected in this paper cannot accurately reflect the difference between lower limb muscle fitness and core muscle fitness. Therefore,
this paper will keep one of the two, and choose the number of sit-ups that is more related to endurance running as the test index of muscle strength and endurance. To sum up, for healthy middle school students, the index system constructed in this paper includes the following: body mass index (BMI), maximum oxygen uptake (VO\textsubscript{2max}), jump height in place, and number of

Test items	Group	Index	Number of samples
Number of sit-ups	Experiment	35.14 ± 9.88	31
	Control	35.9 ± 10	31
Maximum height of vertical jump in place	Experiment	33.7 ± 7.67	31
	Control	34.1 ± 7.51	31
Number of jumps in place	Experiment	15 ± 2.69	31
	Control	15.03 ± 2.9	31

![Figure 7: Data analysis results.](image)

Test items	Group	Index	Number of samples
Sitting forward bend	Experiment	22.87 ± 2.9	31
	Control	23.2 ± 2.3	31
Standing forward bend	Experiment	14.1 ± 6.8	31
	Control	13.55 ± 6.7	31

![Figure 8: Flexibility index analysis results.](image)

Classification	Test results
Test group	20.84 ± 11.8
Control group	21.5 ± 11.5
r value	0.996
P value	0.0007

![Table 5: Test results of balance ability index.](image)
sit-ups, indicating that the level of endurance running is closely related to the level of human body shape, cardiopulmonary function, muscle strength, and endurance.

6. Conclusions

The level of endurance running in young people is closely related to cardiorespiratory fitness, muscle strength, and endurance levels. At present, the problem of the physical decline of middle school students is prominent, and the performance indicators of endurance running projects are continuously lowered, which reflects that the current youth’s endurance quality is not optimistic. However, the training of endurance running is boring, the intensity is relatively high, the exercise risk is relatively high, the training effect is not significant, and it is difficult to improve performance. Based on the physical fitness theory, starting from the physical fitness detection indicators required for endurance running, and by referring to the relevant index system, this paper initially establishes the physical fitness detection element indicators required for endurance running, and verifies its scientificity through correlation analysis. In addition, a detection model is also constructed. By comparing with the conventional detection methods, the data results show that the two are consistent, and the detection model in this paper is suitable for daily detection.

Table 6: Relationship between physical fitness indicators and endurance running performance.

Endurance running test indicators	Pearson’s correlation coefficient	P value
VO2max	−0.61	<0.01
BMI	0.51	<0.01
Jump height	−0.42	<0.01
Number of jumps in place	0.52	<0.01
Sit-ups	0.53	<0.01
Sitting/standing forward bend	−0.41	>0.05
Balance ability	0.19	>0.05

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] H. Huang, “Retraction Note to: slope ecological restoration based on image classification and construction of sports fitness index,” Arabian Journal of Geosciences, vol. 14, no. 16, pp. 1–12, 2021.
[2] V. K. Kozakevych, L. S. Ziuzina, L. A. Zhuk, and L. D. Korovina, “The role of social and economic factors in the formation of the somatic health level in school-aged children,” Wiadomosci Lekarskie, vol. 71, no. 3 pt 1, pp. 537–541, 2018.
[3] S. Youm, Y. Jeon, S. H. Park, and W. Zhu, “RFID-based automatic scoring system for physical fitness testing,” IEEE Systems Journal, vol. 9, no. 2, pp. 326–334, 2015.
[4] Y. Negra, H. Chaabene, S. Sammoud et al., “Effects of plyometric training on physical fitness in prepuberal soccer athletes,” International Journal of Sports Medicine, vol. 38, no. 05, pp. 370–377, 2017.
[5] M. Xiang, X. Gu, A. Jackson, T. Zhang, X. Wang, and Q. Guo, “Understanding adolescents’ mental health and academic achievement: does physical fitness matter?” School Psychology International, vol. 38, no. 6, pp. 647–663, 2017.
[6] S. Gontarev, R. Kalac, V. Zivkovic, L. A. Velickovska, and B. Telai, “The association between high blood pressure, physical fitness and fatness in adolescents,” Nutricion Hospitalaria, vol. 34, no. 1, pp. 35–40, 2017.
[7] K. Ucok, H. Yalcinkaya, A. Acay et al., “Do patients with newly diagnosed type 2 diabetes have impaired physical fitness, and energy expenditures?” The Netherlands Journal of Medicine, vol. 73, no. 6, pp. 276–283, 2015.
[8] S. Tan, C. Chen, M. Sui, L. Xue, and J. Wang, “Exercise training improved body composition, cardiovascular function, and physical fitness of 5 year-old children with obesity or normal body mass,” Pediatric Exercise Science, vol. 29, no. 2, pp. 245–253, 2017.
[9] S. C. Jeng, C. W. Chang, W. Y. Liu, Y. J. Hou, and Y. H. Lin, "Exercise training on skill-related physical fitness in adolescents with intellectual disability: a systematic review and meta-analysis," *Disability and Health Journal*, vol. 10, no. 2, pp. 198–206, 2017.

[10] T. H. Kim, J. S. Chang, and I. D. Kong, "Effects of exercise training on physical fitness and biomarker levels in breast cancer survivors," *J Lifestyle Med*, vol. 7, no. 2, pp. 55–62, 2017.

[11] J. B. Mello, G. A. K. Nagorny, M. D. C. Haiachi, A. R. Gaya, and A. C. A. Gaya, "Projeto Esporte Brasil: perfil da aptidão física relacionado ao desempenho esportivo de crianças e adolescentes," *Rev.bras.cineantropom.desempenho Hum*, vol. 18, no. 6, pp. 658–666, 2016.

[12] T. D. Do, C. M. Sommer, C. Melzig et al., "A novel method for segmentation-based semiautomatic quantitative evaluation of metal artifact reduction algorithms," *Investigative Radiology*, vol. 54, no. 6, pp. 365–373, 2019.

[13] Y. Di, M. Lu, M. Chen, Z. Chen, Z. Ma, and M. Yu, "A quantitative method for the similarity assessment of typhoon tracks," *Natural Hazards*, vol. 112, no. 1, pp. 587–602, 2022.

[14] H. Lubas, G. Grani, and E. F. Rezende, "Physical evaluation and operational situations of the military police: a correlational study of the physical fitness test and the PARE-test," *Journal of Physical Education*, vol. 87, no. 3, pp. 447–460, 2018.

[15] Y. S. Chen, J. H. Ma, and B. Li, "HLCC method for quantitative evaluation of CBCT image artifact," *Nuclear Electronics and Detection Technology*, vol. 37, no. 4, pp. 359–363, 2017.

[16] H. R. Zhang, "Quantitative evaluation method of the advancement of scramjet," *Kung Cheng Je Wu Li Hsueh Pao/ Journal of Engineering Thermophysics*, vol. 39, no. 3, pp. 513–518, 2018.

[17] S. Han, L. N. Zhang, Y. Q. Liu et al., "Quantitative evaluation method for the complementarity of wind–solar–hydro power and optimization of wind–solar ratio," *Applied Energy*, vol. 236, no. 15, pp. 973–984, 2019.

[18] L. Zhang and H. Zhou, "Application of QAMS method in quantitative evaluation of xuefu zhuyu pills," *Chinese Traditional and Herbal Drugs*, vol. 49, no. 7, pp. 1588–1593, 2018.

[19] C. Gao, M. Zha, and R. Jiang, "Evaluation method of comprehensive factor of fault scaling in volcanic rock area," *Zhongguo Shiyou Daxue Xuebao (Ziran Kexue Ban)/Journal of China University of Petroleum (Edition of Natural Science)*, vol. 41, no. 4, pp. 1–9, 2017.

[20] L. Cheng and H. Sun, "Reclamation suitability evaluation of damaged mined land based on the integrated index method and the difference-product method," *Environmental Science and Pollution Research*, vol. 26, no. 14, pp. 13691–13701, 2018.

[21] M. Dvorak, N. Eves, V. Bunc, and J. Balas, "Effects of parkour training on health-related physical fitness in male adolescents," *The Open Sports Sciences Journal*, vol. 10, no. 1, pp. 132–140, 2017.