Detecting diseases of neglected seminal vesicles using imaging modalities: A review of current literature

Gautam Dagur¹ M.Sc., Kelly Warren¹ Ph.D., Yiji Suh¹ B.Sc. Student, Navjot Singh¹ B.Sc. Student, Sardar A. Khan¹,² M.D.

1. Department of Physiology and Biophysics, SUNY at Stony Brook, New York, USA.
2. Department of Urology, SUNY at Stony Brook, New York, USA.

Corresponding Author:
Sardar Ali Khan, HSC Level 9 Room 040 SUNY at Stony Brook, Stony Brook, NY 11794-8093.
Email: skysalik@gmail.com
Tel: (+1) 6319870132

Received: 17 November 2015
Revised: 13 February 2016
Accepted: 16 March 2016

Abstract

Seminal vesicles (SVs) are sex accessory organs and part of male genitourinary system. They play a critical role in male fertility. Diseases of the SVs, usually results in infertility. Diseases of the SVs are extremely rare and are infrequently reported in the literature. We address the current literature of SV pathologies, symptoms, diagnosis, and treatment options. We review the clinical importance of SVs from PubMed. The current imaging modalities and instrumentation that help diagnose SV diseases are reviewed. Common pathologies including, infection, cysts, tumors, and congenital diseases of the SVs are addressed. Many times symptoms of hematospermia, pain, irritative and obstructive lower urinary tract symptoms, and infertility are presented in patients with SV diseases.

Key words: Seminal vesicles, Infertility, Hematospermia, Transrectal ultrasound.

Introduction

Seminal vesicles (SVs) are part of male genitourinary system. Male genital organs include the penis, testes, excretory genital ducts, vas deferens, SVs, prostate, and bulbourethral glands. SV is considered accessory gland which plays a major role in male fertility. Male genital organs work collectively to produce and excrete semen, composed of mature spermatozoa (1). SV pathophysiology and imaging modalities have not been well described in major textbooks. SVs diseases are extremely rare and are infrequently reported in literature, however, the importance of SV diseases is emphasized in this article. Here we address the current literature of SV pathologies, symptoms, diagnosis, and treatment options.

The purpose of this study is to bring awareness of critical importance of SV diseases to the clinicians attention.

Clinical examination of seminal vesicles

Two parts of clinical examination include symptoms (Table I) and physical diagnosis.

Table I. Clinical symptoms secondary to seminal vesicles diseases (Irritative and obstructive lower urinary tract symptoms)

Symptom	Other Symptoms
Odynorgasmia (2)	Pelvic Pain
Painful ejaculation	Groin Pain (8)
Hematospermia	Anal Tenesmus (9)
Decreased Ejaculate	Abdominal Pain
Hematuria	Constipation (4)
Oligospermia	Epididymitis
Azoospermia	Emphysematous-Epididymitis (5)
Seminal Hyperviscosity (3)	Syncope (6)
	Rectal Obstruction (7)

Physical examination of seminal vesicles

Digital rectal examination (DRE) can potentially help obtain clinical index of suspicion when diseases of SVs are present. However DRE is not the best means to suspect SVs disease. SVs are infrequently palpable when the bladder is distended. Palpation is also dependent on the length of index finger as they are located retrovesical and above the prostate gland. DRE is a good indicator of enlarged SV cysts (14).

Imaging modalities

Transrectal ultrasound

Transrectal ultrasound (TRUS) should be the first-line modality for genitourinary tract imaging because it is minimally an invasive imaging modality, inexpensive, high availability, decreased need for sedation, dynamic evaluation capabilities, extension of physical diagnosis and no radiation is involved. Normal transverse imaging of SVs shows elongated mass found superior to the
prostate. Oblique imaging, shows SVs joining with the terminal portion of vas deferens, forming the ejaculatory duct (15). TRUS is an extension of DRE when clinical symptoms are suggestive of seminal vesicle diseases.

Computed tomography
Computed tomography (CT) produces a three-dimensional image of internal body structure, constructed using by a series of plane cross-sectional images. Contrast-enhanced CT, shows SVs as fluid-filled structures, with a thin septa. This modality remains the most helpful in recognizing many SV abnormalities (15).

Magnetic resonance imaging
Magnetic resonance imaging (MRI) is another helpful form of modality to recognize SV abnormalities. Using low signal intensity T1-weighted and high signal intensity T2-weighted images shows normal SVs as elongated fluid-filled structure with thin septa (15).

Positron emission tomography
Positron emission tomography (PET) may localize tumors of the SVs (16).

Diagnostic instrumentation
Two current diagnostic instrumentations used for SVs include, transurethral seminal vesiculoscopy and cystoscopy (17, 18).

Embryology
During the 5th wk of gestation, the ureteric bud develops from the mesonephric duct. During the 7th wk of gestation, the testes develop and differentiate the male genital system. SVs, initially starts as a bulbous swelling of distal mesonephric duct during the 12th wk gestation. SVs are retro-vesicle to the uro-genital sinus (19).

Anatomy
SVs are bilateral glands. They are 5-7 cm long. SVs are rounded at the superior position and tapered inferiorly. SVs are found dorsal to the bladder, and inferior and lateral to the vas deferens. Bilateral arrangement of the SVs, results in a “V” shape. Ureters are located superior and in between SVs. SVs are located superior to prostate gland. SVs lie at the inferior-most aspect of recto-vesical space in pelvic cavity. SV ducts marge with ampulla of vas deferens and form the ejaculatory duct which opens into the prostatic urethra (1).

Physiology
SVs contains many highly granular cells, which produce a yellowish, alkaline fluid. This fluid contains fructose, proteins, and vitamin C. Testosterone level plays a significant role on these cells. They dictate the size and activity levels of the cells. The fructose of fluid provides energy for the spermatzoa motility. This fluid accounts for 50% of ejaculate total volume. Rest the seminal fluid volume comes from the prostate gland, ampulla of vas deferens and lesser amounts from the bulbourethral glands, Cowper’s glands (20).

Diseases of the Seminal Vesicles

Congenital

Seminal vesicle agenesis
SV agenesis is a congenital anomaly, where there is a complete or partial absence of one or both SVs. This anomaly may result in infertility (21). Patients are generally asymptomatic. Only symptom patients demonstrate is infertility (21, 22). First line modality to diagnosis of patients with SV agenesis is TRUS (22). CT is used to confirm the TRUS findings (23). No treatment options are available for the SV agenesis correction.

Zinner syndrome
Zinner syndrome is presentation of SV cysts with ipsilateral renal agenesis and ectopic ureter insertion into SV cyst. This tends to asymptomatic, and is diagnosed when the patient presents with pelvic pain during ejaculation. DRE was not able to identify the issue, but suggested dilated epididymis and vas deferens. CT and MRI revealed the presence of a cyst near the right SV and absent right kidney. Transrectal cyst aspiration was used to remove the cyst. Injection of a sclerosing agent revealed an ectopic ureter (24). Robotic or robotic-assisted laparoscopic resection was used to remove the ectopic ureter (24, 25). Congenital SV cyst is usually categorized with Zinner syndrome (26).

Seminal vesicle hypoplasia
Hypoplasia of the SVs can be unilateral or bilateral. Raviv et al used TRUS for patients
who presented with azoospermia, determining bilateral hypoplasia of SVs (27). However, MRI provided precise diagnosis of SV defect, better than TRUS (28).

Seminal vesicles secondary to cystic fibrosis

In patients with cystic fibrosis, SVs may be absent, hypoplastic, and/or with lack of prostaglandin and fructose (29).

Cystic Seminal megavesicles

Seminal megavesicles, or giant cysts of SVs, present secondary to autosomal dominant polycystic kidney disease (ADPKD). Reig et al. identified patients with ADPKD have an average diameter of SV tubule 4.2 mm, ranging 1.7-30 mm, whereas patients without ADPKD and cysts have a diameter of SV tubule 3.1 mm, ranging from 1.7-6.8 mm (30). Patients with seminal megavesicles may present with infertility. TRUS was enough to diagnose the patient presenting with azoospermia secondary to seminal megavesicles (31).

Seminal vesicle hydatid cyst

SVs Hydatid cyst is a rare disease. It may go undetected due to nonspecific symptoms. Vasilieos et al. presented a case of patient with urinary retention secondary to hydatid cyst, or echinococcal cyst, of the SVs. Diagnosis was done using TRUS, CT, and MRI. Surgical excision of cyst is the best option but must be done with caution to avoid puncturing and parasite spillage in retroperitoneal space (32). Other symptoms seen secondary to hydatid cyst includes dysuria, nocturia, frequency, and tenesmus, as seen in a case presented by Tuygun et al (33).

Seminal vesicle hemorrhage

Hematospermia is a main symptom secondary to SVs hemorrhage. Hasegawa et al. conducted a study to determine the etiology of hematospermia. MRI was useful to find any abnormalities. Hasegawa et al. concluded one reason for hematospermia could be hemorrhage of the SVs (34).

Hypotonic seminal vesicles

Hypotonic SVs can result in infertility. Infertility is due to diabetic autonomic neuropathy of SVs, decreasing the secretion of seminal fluids. La Vignera et al. determined that duration of diabetes correlates to neuropathy level. It was concluded that patients with diabetes greater than 15 yrs, had a greater atony of SVs due to neuropathy (35). Potentially treating diabetes early on, can prevent long term infertility.

Infection

Seminal vesicle abscess

SVs abscess is a rare pathology that is rarely encountered (36). It is an infection that develops on SVs due to bacterial or viral microorganisms. Patients suffering from SVs abscess present with many urogenital symptoms (37). Abscesses of the SVs may develop secondary to a surgical procedure due to infection. SVs abscess may be developed secondary to vasectomy, tuberculosis, and prostate biopsy (38-41). There are different diagnostic modalities present to diagnosis SVs abscess, CT, MRI, but TRUS should be primary means of diagnosis (41-44). Cui et al. described another modality, transurethral seminal vesiculoscopy, which is used to diagnosis and treat hematospermia secondary to SVs (17). Drainage of abscess is the most common means of treatment (44).

Seminal vesiculitis

Seminal vesiculitis is the SVs inflammation. It is a common disease of male urogenital tract. Its pathogenesis is unclear, but the lack of semenogelin I secretion is believed to be the cause of seminal vesiculitis, as it has antibacterial properties to prevent bacterial inflammation (45). Patients with seminal vesiculitis present with hematospermia, discomfort and pain in lumbosacral or perineal region, irritative and obstructive urinary symptoms, decreased semen volume, and/or azoospermia (46). CT and MRI diagnose the complication and transurethral surgery corrected the issue (46). TRUS can diagnosis cases of seminal vesiculitis, as well (47). Furuya et al. determined that patients with urethritis are likely to have seminal vesiculitis, suggesting a close relationship between them (48). It is also known that epididymitis is possible along with seminal vesiculitis (49).

Seminal vesicle cyst infection

SV cyst infection occurs because of bacterial infection and can result in many
complications. Palmer et al reported a case of patient presenting symptoms of perineal pain and fever. The patient had come in earlier with methicillin-sensitive staphylococcus aureus bacterium, and was treated with antibiotics. CT revealed an expansion of a SV cyst, and MRI was used to confirm the diagnosis as infected cyst. Cyst was drained and it was determined that methicillin-sensitive bacterium was the cause of infection and the patient was discharged on vancomycin (50). Xu et al study revealed hematospermia due to SV cyst infection. Transvesical removal of mass was an effective surgical procedure to alleviate the disease (51).

Solid

Most benign and malignant tumors of SVs appear to be solid on TRUS. However, the cystic component may be present (Table II).

Table II. Benign and malignant tumors of seminal vesicles
Benign
Mixed Epithelial-Stromal Tumor (52)
Primitive Neuroectodermal Tumor (54)
Leiomyoma (56)
Phyllodes Tumor (58)
Basal Cell Hyperplasia (53)
Cystadenoma (61)
Malacoplasia (63)
Stromal Tumor (65)
Multilocular Adenomyoma (67)
Cystic Schwannoma (69)
Mammary-Type Myofibroblastoma (71)
Schwannoma (73)
Primary Myxoid Solitary Fibrous Tumor (75)
Neurilemmoma (77)
Hemangiopericytoma (79)
Fibromuscular Hyperplasia (81)
Benign Mesenchymoma (83)
Malignant
Intraepithelial Neoplasia (53)
Primary Seminal Vesicle Carcinoma (55)
Malignant Solitary Fibrous Tumor (57)
Primary Squamous Cell Carcinoma (59)
Primary Yolk Sac Tumor (60)
Primary Bilateral Carcinoma (62)
Primary Extragastrointestinal Stromal Tumor (64)
Primary Adenocarcinoma (66)
Neuroendocrine Carcinoma (68)
Primary Leiogynosarcoma (70)
Primary Diffuse Large B-Cell Lymphoma (72)
Primary Burkitt Lymphoma (74)
Primary Rhabdomyosarcoma (76)
Transitional Cell Carcinoma In Situ (78)
Primary Seminoma (80)
Primary Angiosarcoma (82)
Primary Carcinoid tumor (84)
Round-Cell Sarcoma (85)

Primary adenocarcinoma of seminal vesicle

Adenocarcinoma is a malignant tumor formed from glandular structures in epithelial tissue. Adenocarcinoma of SVs (ASVs) is considered an extremely rare malignancy. Secondary spread of this disease is common. There are very few cases reported worldwide, approximately fewer than 100 cases (86). Etiology of this pathology is unclear, but patients present symptoms of obstructive uropathy, hematuria, and hematospermia (87-89). Diagnosis of ASVs is difficult, as they are negative for prostate-specific antigen and prostate-specific acid phosphatase. Immunophenotype of ASVs are positive for cancer antigen 125 and 7 (55). Primary diagnostic steps include, DRE identifies as a mass, which requires further examination, and TRUS and biopsy (89, 90). MRI, CT with contrast, after histopathology, determine the mass as SVs adenocarcinoma. Best course of treatment for ASVs is postoperative chemotherapy and hormonal therapy (55, 91, 92). Prognosis of ASVs is very poor, and metastasis usually results in death (55, 92).

Adenosarcoma-like tumor of seminal vesicle

Adenosarcoma-like tumor of the SVs is a rare pathology. Patients with this pathology present with increased frequency and painful defecation, acute urinary retention due to bladder outlet obstruction, and hematospermia (93, 94). Chheda et al described a recurrent case of adenosarcoma-like SVs tumor, the patient complained of increased frequency of micturition and dysuria (93). CT is the best means of diagnosis for this pathology (93, 94). Exploratory laparotomy with wide excision of the mass, and chemotherapy are used to treat the patients (93).

Seminal vesicles amyloidosis

SVs amyloidosis is the build-up of amyloid proteins in SVs commonly found in older men, and is more prominent with age (95). It is associated with hematuria, hematospermia, and prostatitis (95-98). Amyloidosis of SVs is commonly found after TRUS guided prostate biopsy (96). Yang et al presented seven patients with SV amyloidosis. Patients that underwent immunohistological study, were positive for amyloid P, Therefore, it was not systemic.
Diseases of neglected seminal vesicles

Amyloidosis (96, 99). Though it is possible to develop systemic amyloidosis in SVs (100). TRUS should be the first line of diagnostic modality, as it can show SV amyloidosis (101). T2-weighted MRI is another imaging modality that can assist in diagnosis of this pathology (97). To treat amyloidosis, laparoscopic resection can eliminate the pathology (101).

Seminal vesicle angiosarcoma

Angiosarcoma of the SVs is an extremely rare and malignant tumor. This cancer arises from inner lining of blood vessels. Chang et al described a patient presenting with groin pain and pain in left lower quadrant. CT used to reveal the mass in SV. TRUS-guided biopsy confirms angiosarcoma. Angiosarcoma treatment of SV is involved neoadjuvant chemotherapy, which decreases the size of mass, and surgical resection of tumor (102).

Calculi of seminal vesicle

Calculi of the SVs are an extremely rare pathology. A stone develops in SVs which results in obstruction. A common symptom seen in patients with SV calculus is hematospermia (17). Painful ejaculation can be seen following SV calculus (103). To determine the cause of hematospermia, TRUS was used because of its noninvasive nature (104). Other imaging modalities used to diagnose the cause of hematospermia are endorectal MRI and CT, though it is not common in studies reported (105, 106). It is possible for a calculus to develop in SV after transurethral resection of ejaculatory duct, as described by Vellayappan et al possibly secondary to urinary reflux (106). A method to treat, as well as diagnosis calculus of SVs is transurethral seminal vesiculoscopy, when combined with finasteride it is a safe method to treat hematospermia secondary to SV calculus, as described by Cui et al (17). Laparoscopy is another means to treat SV calculus (107).

Calcification of seminal vesicles

Calcification of SVs was first described in 1906 (108). This is not a common pathology and its incidence is unknown. It is usually seen secondary to radiation, diabetes mellitus, tuberculosis, schistosomiasis, and more. Calcification can occur unilaterally or bilaterally (109-113). Calcification of SVs can present as hematuria, dysuria, hematospermia, and flank pains (109, 111). Another symptom presented in patients is azoospermia (114). TRUS revealed a lesion with SVs calcification. It was confirmed using CT (115). There is no specific treatment of SVs calcification. Treatment should be designed for underlying cause of calcification (110).

Cystadenoma of seminal vesicles

SVs cystadenoma is a benign tumor, an extremely rare pathology. Most tumors of SVs tend to be malignant. Cystadenoma are generally asymptomatic (116). Arora et al presented a case of a patient with lower abdominal pain and obstructive urinary symptoms. DRE revealed a soft, painless mass but used TRUS and MRI to diagnosis the pathology. Surgical excision was conducted to remove the mass (117). Lee et al reported another case of cystadenoma of SVs, using CT to diagnose the mass (116).

Seminal vesicle leiomyoma

Leiomyoma is a benign tumor of smooth muscle found on SVs. This is a rare pathology. Miyalima et al reported a case of patient presenting with lower abdominal discomfort (56). Abdominal discomfort and pain of the lower back are common symptoms of SVs leiomyoma, and urinary symptoms (56, 118, 119). Diagnosing leiomyoma of SVs is involved CT and/or MRI of abdomen in almost all cases (56, 118, 122). In the cases found, TRUS was not used to diagnose the pathology. Surgical approach is the only way to treat the appearance of this pathology, and conduct follow-up to determine if the patient is disease free (56, 122).

Schwannoma of seminal vesicles

Schwannoma of SVs is a tumor that develops on Schwann cells of SV. It is a rare disorder. Patients with Schwannoma of the SVs can be asymptomatic, or present with hydronephrosis, lower urinary tract symptoms, or lower abdominal pain (69, 123-125). In many cases, diagnosing can be accidental, as in case reported by Fievet et al (126). Mass can be detected using TRUS, CT, and MRI (69, 123, 124). Arun et al diagnosed the mass using cystoscopy after TRUS and CT did not provide visible separation of prostate and SV (123). Surgical excision, laparoscopic surgery, of the tumor is the first line approach for treatment (69, 123).
Neuroendocrine carcinoma of seminal vesicle

Neuroendocrine carcinoma of SVs (NCSVs) are primary tumor of SVs that are malignant. Prognosis of NCSV is extremely poor and patients usually die by a disease (68). A unique manifestation of NCSV is Lambert Eaton syndrome (LES). LES is an autoimmune disease that leads to degeneration of neuromuscular junction (127). Kreiner et al reported a case of patient with SV mass, detected using CT and PET for LES evaluation. TRUS-guided biopsy identified a poorly differentiated neuroendocrine carcinoma. Treatment suggested for pathology was chemotherapy and surveillance (16). Other symptoms seen secondary to NCSV is obstructive uropathy (128).

Seminal vesicle phyllodes tumor

Phyllodes tumor, also known as mixed epithelial-stromal tumors, encompasses low, intermediate and high-grade tumors. This tumor is benign in most cases, sometimes it may become malignant (52). Some symptoms presented secondary to phyllodes tumor of SVs include flank pain, on either side depending on which SV has the mass, urinary obstruction, and hematospermia (58, 129, 130). TRUS, CT, and MRI can aid in identifying a large mass on seminal vesicle. Seminal vesiculectomy remove the tumor from SVs (129).

Seminal vesicle primitive neuroectodermal tumor

SV primitive neuroectodermal tumor is rare, with an unclear origin. DRE and TRUS can detect a mass present but further diagnostic imaging is necessary. De Paula et al reported a case of patient showing a solid mass after CT. After declining TRUS-biopsy, the patient returned complaining of rectal stricture and urinary obstructive symptoms. Biopsy suggested primitive neuroectodermal tumor. Patient was treated with two cycles of chemotherapy, and then underwent laparotomy to excise the mass (131).

Secondary carcinoma of seminal vesicles

Diseases arising from different organs, may extend to SVs, from distant or local regions of the body. Disease that metastatize to SVs include, melanoma, renal cell carcinoma, testicular tumor, hepatocellular carcinoma, prostate carcinoma, rectal carcinoma, and bladder carcinoma (132-138).

Seminal vesicles fistula

SVs fistula is secondary to rectal adenocarcinoma and may present with rare symptoms of diarrhea and pneumaturia. Treatment of this rare complication includes administration of metronidazole (12). Patients with SVs fistula present themselves secondary to iatrogenic resection of cancer, Crohn’s disease, and neoplastic infiltration (12, 139).

Conclusion

SVs are part of male genitourinary systems, and play a critical role in aiding the motility of sperm, therefore are necessary for male fertility. Diseases of SVs can result in male infertility. Patients suffering from diseases of SVs present with a diverse number of symptoms like hematospermia, pain, irritative and obstructive lower urinary tract symptoms. There are a variety of categories that incorporate the SVs diseases. These categories are congenital, cystic, infection, solids, and fistula. We addressed the methods of diagnosis of SVs diseases, both imaging modalities and instrumentalation.

Conflict of interest

The authors declare they have no conflict of interest.

References

1. Aboul-Azm TE. Anatomy of the human seminal vesicles and ejaculatory ducts. Arch Androl 1979; 3: 287-292.
2. Donnellan P, Breathnach O, Crown JP. Odynorgasmia. Scand J Urol Nephrol 2001; 35: 158.
3. Du Plessis SS, Gokul S, Agarwal A. Semen hyperviscosity: causes, consequences, and cures. Front Biosci 2013; 5: 224-231.
4. Ates Y, Kilcilier G, Bedir S, Aslan M, Kilcilier M, Tuzun A, et al. Large vesicula seminalis cyst: a very rare cause of constipation and male infertility. Kaohsiung J Med Sci 2007; 23: 318-320.
5. Coulier B, Ramboux A, Malgague P. Emphysematous epididymitis as presentation of unusual seminal vesicle fistula secondary to sigmoid diverticulitis: case report. Abdom Imaging 2005; 30: 113-116.
6. Ozer T, Gundogdu S, Ozer Y, Mahmutyazicioglu K, Savranlar A, Ozdemir H. Echinococcosis involving
the liver, retrovesical and seminal vesicle presented with syncope. *Int J Urol* 2004; 11: 922-924.

7. Altunrende F, Kim ED, Klein FA, Waters WB. Seminal vesicle cyst presenting as rectal obstruction. *Urology* 2004; 63: 584-585.

8. Kelm J, Duchow J, Anagnostakos K, Schneider G, Kohn D, Ahlhelm F. [Vesiculitis seminalis-a rare diagnosis in case of chronic groin pain]. *Sportverletz Sportschaden* 2003; 17: 84-87. (In German)

9. Callewaert P, De Coster M, Vuylsteke P, De Man R, Brijs S, Baert L. Anal tenesmus caused by seminal vesicle cyst. *Urology* 1997; 49: 139-141.

10. Mammen KJ, Ho KM, Fellows GJ. Cysts of seminal vesicles presenting as intra-abdominal swellings. *Br J Urol* 1995; 76: 141-143.

11. Khan A, Ahmed M, Talati J. Seminal vesicle cystic dilatation masquerading as proctalgia fugax. *Br J Urol* 1989; 64: 428-429.

12. Kitazawa M, Hiraguri M, Maeda C, Yoshiki M, Horigome N, Kaneko G. Seminal vesicle-rectal fistula secondary to anastomotic leakage after low anterior resection for rectal cancer: a case report and brief literature review. *Int Surg* 2014; 99: 23-27.

13. Inoue K, Higaki Y, Yoshida H. Inguinal hernia of seminal vesicle cyst. *Int J Urol* 2004; 11: 1039-1040.

14. van Meegen MA, Kokke F, Dick P, Fockens P, Bennenga MA. A seminal vesicle cyst palpable in the rectum. *Endoscopy* 2006; 38 (Suppl.): E7.

15. Ramchandani P, Banner MP, Pollack HM. Imaging of the seminal vesicles. *Semin Roentgenol* 1993; 28: 83-91.

16. Kreiner B, Denzinger S, Ganzer R, Fritsche HM, Kreiner B, Denzinger S, Ganzer R, Fritsche HM, Burger M, Wieland WF, et al. Neuroendocrine carcinoma of the seminal vesicles presenting with Lambert Eaton syndrome: a case report. *J Med Case Rep* 2010; 4: 320.

17. Cui QZ, Wang YC, Du J, Zhou HJ, Yu ZY, Gao EJ, et al. [Transurethral seminal vesiculoscopy combined with fine-needle aspiration for recurrent hematospermia]. *Zhonghua Nan Ke Xue* 2014; 20: 436-442.

18. He Q, Xia M, Bai Y, Zhang JW, Wang JJ, Wang HT. [Diagnosis and treatment of seminal vesicle cyst]. *Zhonghua Yi Xue Za Zhi* 2012; 92: 982-983. (In Chinese)

19. Williams JL, Sago AL. Ureteral ectopia into seminal vesicle: embryology and clinical presentation. *Urology* 1983; 22: 594-596.

20. Gonzalez GF. Function of seminal vesicles and their role on male fertility. *Asian J Androl* 2001; 3: 251-258.

21. Simpson WL Jr, Rausch DR. Imaging of male infertility: pictorial review. *Am J Roentgenol* 2009; 192 (Suppl.): 98-107.

22. Luo B, Dai YP, Wang DH, Luo DS, Deng CH, Wu RP. [Value of transrectal ultrasonography in the diagnosis of midline prostatic cysts]. *Zhonghua Nan Ke Xue* 2008; 14: 139-141. (In Chinese)

23. Dominguez C, Boronat F, Cunat E, Broseta E, Martinez R, Moreno B, et al. Agenesia of seminal vesicles in infertile males: ultrasonic diagnosis. *Eur Urol* 1991; 20: 129-132.

24. Haddock P, Wagner JR. Seminal vesicle cyst with ipsilateral renal agenesis and ectopic ureter (Zinner syndrome). *Urology* 2015; 85: 41-42.

25. Allobelli E, Boive AM, Falavolti C, Sergi F, Nguyen HT, Buscarini M. Robotic-assisted approach in the treatment for Zinner's Syndrome associated with ipsilateral megaureter and incomplete double-crossed ectopic ureter. *Int Urol Nephrol* 2013; 45: 635-638.

26. Sundar R, Sundar G. Zinner syndrome: an uncommon cause of painful ejaculation. *BMJ Case Rep* 2015; bcr2014207618.

27. Raviv G, Mor Y, Levron J, Shefi S, Zilberman D, Ramon J, et al. Role of transrectal ultrasonography in the evaluation of azoospermic men with low-volume ejaculate. *J Ultrasound Med* 2006; 25: 825-829.

28. Chiang HS, Lin YH, Wu YN, Wu CC, Liu MC, Lin CM. Advantages of magnetic resonance imaging (MRI) of the seminal vesicles and intra-abdominal vas deferens in patients with congenital absence of the vas deferens. *Urology* 2013; 82: 345-351.

29. Phillips G. Cystic fibrosis and reproduction. *Reprod Fertil Dev* 1998; 10: 113-119.

30. Reig B, Blumenfeld J, Donahue A, Prince MR. Seminal vesicles: embryology and clinical presentation. *Eur Urol* 1983; 22: 594-596.

31. Hendry WF, Rickards D, Pryor JP, Baker LR. Seminal megavesicles with adult polycystic kidney disease. *Hum Reprod* 1998; 13: 1567-1569.

32. Vasileios R, Athanasios P, Stavros T. Echinococcal cyst of the seminal vesicles: a case-report and literature review. *Int Urol Nephrol* 2002; 34: 527-530.

33. Tuygun C, Bakirtas H, Imamoglu MA, Sertcelik N, Zengin K, Bozkurt IH. The unusual mass of retrovesical space: a secondary hydatid cyst disease. *Sci World J* 2006; 6: 2481-2485.

34. Hasegawa N, Miki K, Kato N, Furuta N, Ohishi Y, Kondo N, et al. [Magnetic resonance images of hematospermia]. *Nihon Hinyokika Gakkai Zasshi* 1998; 89: 956-960.

35. La Vignera S, Condorelli RA, Di Mauro M, D'Agata R, Vicari E, Calogero AE. Seminal vesicles and diabetic neuropathy: ultrasound evaluation. *J Androl* 2011; 32: 478-483.

36. Saha S, Wright G, Arulampalam T, Corr J. An unusual groin mass. Seminal vesicle abscess: a case report. *Cases J* 2009; 2: 6531.

37. Madrid Garcia FJ, Madronero Cuevas C, Rivas Escudero JA, Parra Montaner L, Monsalve Rodriguez M, Garcia Alonso J. [Conservative treatment of a seminal vesicle abscess. Report of one case]. *Arch Esp Urol* 2004; 57: 438-440. (In Spanish)

38. Zagoria RJ, Papanicolaou N, Pfister RC, Stafford SA, Young R. HH. Seminal vesicle abscess after vasectomy: evaluation by transrectal sonography and CT. *AJR Am J Roentgenol* 1987; 149: 137-138.

39. Dewani CP, Dewani N, Bhatia D. Case report: unusual groin mass. Seminal vesicle abscess: a case report. *Br Med J* 1999; 319: 130-131.

40. Eastham JA, Spires KS, Abreo F, Johnson JB, Venable DD. Seminal vesicle abscess due to tuberculosis: role of tissue culture in making the diagnosis. *South Med J* 1999; 92: 328-329.

41. Bayne CE, Davis WA, Rothstein CP, Engel JD. Seminal vesicle abscess following prostate biopsy requiring transgluteal percutaneous drainage. *Can J Urol* 2013; 20: 6811-6814.
Diseases of neglected seminal vesicles

78. Montie JE, Wojno K, Klein E, Pearsall C, Levin H. Transitional cell carcinoma in situ of the seminal vesicles: 8 cases with discussion of pathogenesis, and clinical and biological implications. J Urol 1997; 158: 1895-1898.

79. Arya M, Hayne D, Brown RS, O’Donnell PJ, Mundy AR. Hemangiopericytoma of the seminal vesicle presenting with hypoglycemia. J Urol 2001; 166: 992.

80. Adachi Y, Rokuyo M, Kojima H, Nagashima K. Primary seminoma of the seminal vesicle: report of a case. J Urol 1991; 141: 857-859.

81. Hatcher PA, Tucker JA, Carson CC. Fibromuscular hyperplasia of the seminal vesicles. J Urol 1989; 141: 957-958.

82. Lamont JS, Hesketh PJ, de las Morenas A, Babayan RK. Primary angiosarcoma of the seminal vesicle. J Urol 1991; 146: 165-167.

83. Islam M. Benign mesenchymoma of seminal vesicles. Urology 1979; 13: 203-205.

84. Soyer P, Rougier P, Gad M, Roche A. Primary carcinoid tumor of the seminal vesicles: CT and MR findings. J Belgé Radiol 1991; 74: 117-119.

85. Polianichko MF, Ogorodnikova LS, Zaderin VP. Carcinoid tumor of the seminal vesicles: CT and MR imaging. J Urology 2001; 157: 1273-1277.

86. Martinez-Penuela JM. [Primary adenocarcinoma of the seminal vesicles]. Arch Esp Urol 2009; 62: 671-673. (In Spanish)

87. Lote H, Mannion E, Cook T, Cairns T, Savage P. Benign mesenchymoma of the seminal vesicles. J Med Case Rep 2013; 7: 59.

88. Martinez-Penuela A, Rosario Mercado M, Aldave J, Martinez-Penuela JM. [Primary adenocarcinoma of the seminal vesicles]. Arch Esp Urol 2009; 62: 671-673. (In Spanish)

89. Corriere JN, Jr. Painful ejaculation due to seminal vesicle amyloidosis. J Urol 1997; 157: 626.

90. Prando A. Endorectal magnetic resonance imaging in persistent hemosperma. Int Braz J Urology 2008; 34: 171-177.

91. Vellayappan BA, Tiang HY, Chua WJ, Consigliere DT. Seminal vesicle calculus after transurethral resection of ejaculatory duct. Can J Urol 2007; 14: 3595-3597.

92. Kinjo T, Nonomura D, Yamamoto Y, Yoneda S, Nomura H, Tei N, et al. [Primary adenocarcinoma of the seminal vesicle difficult to differentiate from rectal carcinoma: a case report]. Hinyokika Kiyo 2013; 59: 597-601. (In Japanese)

93. Chheda N, Bolegave M, Shet T, Tongaonkar H. Recurrent mullerian adenosarcoma like tumor of seminal vesicle. Indian J Pathol Microbiol 2010; 53: 342-344.

94. Baschinsky DY, Niemann TH, Maximo CB, Bahnsen RR. Seminal vesicle cystadenoma: a case report and literature review. Urology 1998; 51: 840-845.

95. Pitkanen P, Westermark P, Cornwell GG, 3rd, Murdoch W. Amyloid of the seminal vesicles. A distinctive and common localized form of senile amyloidosis. Am J Pathol 1983; 110: 64-69.

96. Yag Z, Laird A, Monaghan A, Seywright M, Ahmad I, Leung HY. Incidental seminal vesicle amyloidosis observed in diagnostic prostate biopsies--are routine investigations for systemic amyloidosis warranted? Asian J Androl 2013; 15: 149-151.

97. Kono M, Kurokawa T, Takata M, Komatsu K, Tsukahara K, Kurose N. [Localized amyloidosis of the seminal vesicle: a case report]. Hinyokika Kiyo 2011; 57: 99-101. (In Japanese)

98. Coyne JD, Kealy WF. Seminal vesicle amyloidosis: morphological, histochemical and immunohistochemical observations. Histopathology 1993; 22: 173-176.

99. Furuya S, Masumori N, Furuya R, Tsukamoto T, Isomura H, Tamakawa M. Characterization of localized seminal vesicle amyloidosis causing hemosperma: an analysis using immunohistochemistry and magnetic resonance imaging. J Urol 2005; 173: 1273-1277.

100. Argon A, Simsir A, Sariski B, Tuna B, Yorukoglu K, Nifiloglou GG, et al. Amyloidosis of seminal vesicles: incidence and pathologic characteristics. Turk Patoloji Derg 2012; 28: 44-48.

101. Vandwalle J, Dugardin F, Petit T, Surga N, Paul A, Petit J. [Haemosperma due to seminal vesicle amyloidosis. Treatment by laparoscopic vesiculectomy. A case report]. Prog Urol 2007; 17: 1382-1384. (In French)

102. Zhang K, Xiao TT, Chuang J, Lott MJ, Lallemiet CL. Angiosarcoma of the seminal vesicle: a case report of long-term survival following multimodality therapy. Rare Tumors 2014; 6: 5202.

103. Ramamurthy R, Periasamy S, Muttupalyam V. Primary malignancy of seminal vesicle: A rare entity. Indian J Urol 2011; 27: 137-139.

104. Amano T, Kunimi K, Ohkawa M. Transrectal ultrasonography of the prostate and seminal vesicles with hemosperma. Urol Int 1994; 53: 139-142.

105. Moring C, Bach P, Kosciesza S, Goepel M. [A primary adenocarcinoma of the seminal vesicles: Case report of a rare malignancy]. Urologie A 2008; 47: 616-619. (In German).

106. Petri J. [Haemosperma due to seminal vesicle amyloidosis]. Arch Esp Urol 2009; 25: 143-145.
112. de Oliveira MJ, Nogueira VH, Mendes MG, dos Santos AR. [Unilateral calcification of vas deferens and seminal vesicle]. Actas Urol Esp 2009; 33: 105.

113. Gonzalez Ortega FJ, Duque Fernandez de Vega S, Garrido Pareja F. [Bilateral calcification of seminal vesicles and vas deferens]. Actas Urol Esp 2009; 33: 216. (In Spanish)

114. Yassa NA, Keesara S. Role of transrectal ultrasonography in evaluating the cause of azoospermia. Can Assoc Radiol J 2001; 52: 266-268.

115. Lin JZ, Wu HF, Wang JC, Le MZ, Yu HB, Zhou HT. Ectopic opening of cystic dilatation of the ejaculatory duct into enlarged prostatic utricle. J Androl 2012; 33: 574-577.

116. Lee CB, Choi HJ, Cho DH, Ha US. Cystadenoma of the seminal vesicle. Int J Urol 2006; 13: 1138-1140.

117. Arora A, Sharma S, Seth A. Unusual retrovesical cystic mass in a male patient. Urology 2013; 81: 23-24.

118. Tambo M, Fujimoto K, Hoshiyama F, Nakanishi M, Inoue T, Hirayama A, et al. [A case of retrovesical leiomyoma]. Hinyokika Kiyo 2004; 50: 497-499.

119. Ahmadzadeh M, Bosse A. Leiomyoma of the seminal vesicle mimicking tumoral extension of prostatic carcinoma. Acta Chir Belg 2009; 109: 811-814.

120. Shiotani T, Kawai N, Sato M, Minamiguchi H, Takeuchi T, Tanihata H, et al. Leiomyoma of the seminal vesicle. Jpn J Radiol 2009; 27: 218-220.

121. Vigno P, Bonacina P, Strada GR. Leiomyoma of the seminal vesicle mimicking tumoral extension of prostatic carcinoma. Arch Ital Urol Androl 2003; 75: 230-231.

122. Arun G, Chakraborti S, Rai S, Prabhu GG. Seminal vesicle schwannoma presenting with left hydroureteronephrosis. Urol Ann 2014; 6: 363-365.

123. Latchamsetty KC, Elterman L, Coogan CL. Schwannoma of a seminal vesicle. Urology 2002; 60: 515.

124. Flevet L, Boissier R, Villere J, Vidal F, Lechevallier E, Coulangé C. [Pelvic kystic schwannoma evolving a tumor of the right seminal vesicle]. Prog Urol 2010; 20: 660-664. (In French)

125. Weingarten TN, Araka CN, Mogensen ME, Sorensen JP, Marienau ME, Watson JC, et al. Lambert-Eaton myasthenic syndrome during anesthesia: a report of 37 patients. J Clin Anesth 2014; 26: 648-653.

126. Giordano S, Tolonen T, Tolonen T, Hirsimaki S, Kataja V. A pure primary low-grade neuroendocrine carcinoma (carcinoid tumor) of the prostate. Int Urol Nephrol 2010; 42: 683-687.

127. Xu LW, Wu HY, Yu YL, Zhang ZG, Li GH. Large phyllodes tumour of the seminal vesicle: case report and literature review. J Int Med Res 2010; 38: 1861-1867.

128. Khan MS, Zaheer LU, Ahmed K, Cahill D, Horsfield C, Rottenberg G, et al. Low-grade phyllodes tumour of the seminal vesicle treated with laparoscopic excision. Nat Clin Pract Urol 2007; 4: 395-400.

129. de Paula AA, Maltez AR, Mota ED. Small round blue cell tumor of seminal vesicle in a young patient. Int J Urol 2006; 13: 566-569.

130. Reisman Y, de Reijke TM. An unusual cause of irritable urinary bladder symptoms. Urol Int 2001; 66: 225-256.

131. Tornblom M, Fredriksson A, Larsson P, Zimmermann R, Hedenborg L. Seminal vesicle metastasis—an overlooked occurrence of testicular tumours? Br J Urol 1996; 77: 160-162.

132. Mai KT, Belanger EC, Al-Maghrabi HM, Robertson S, Wang D, Margnean C. Primary prostatic central zone adenocarcinoma. Pathol Res Pract 2008; 204: 251-258.

133. Smith JD, Nash GM, Weiser MR, Temple LK, Guillem JG, Paty PB. Multivisceral resections for rectal cancer. Br J Surg 2012; 99: 1137-1143.

134. Gakis G, Efstathiou J, Lerner SP, Cookson MS, Keegan KA, Guru KA, et al. ICUD-EAU International Consultation on Bladder Cancer 2012: Radical cystectomy and bladder preservation for muscle-invasive urothelial carcinoma of the bladder. Eur Urol 2013; 63: 45-57.

135. Yumura Y, Noguchi K, Moriyama M, Iwasaki A. Sudden decline in semen volume due to seminal vesicle fistula in a patient with Crohn’s disease: a case report. Urol J 2014; 11: 1356-1138.