ANTI-ALZHEIMER ACTIVITY OF TACRINE LOADED METHOXYPOLY (ETHYLENE GLYCOL) POLY(CAPROLACTONE) NANOPARTICLES

FELIX JOE V1*, SATHESH KUMAR S2
1Department of Pharmaceutics, Shree Devi College of Pharmacy, Mangalore, Karnataka, India. 2Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Chennai, Tamil Nadu, India. Email: felixjoe@gmail.com

Received: 10 October 2018, Revised and Accepted: 11 December 2018

INTRODUCTION

Alzheimer’s disease (AD) is the most widely recognized age-related neurodegenerative issue described by the loss of neurons, extracellular broken-down plaques, and intracellular neurofibrillary tangles [1]. The inside factor of the plaques is β-amyloid peptide (amyloid-β [Aβ]), which is distinguished to meet up to structure “dangerous” oligomers that might be basic in starting AD pathology [2]. Aβ is produced after ordered cleavage of the amyloid forerunner protein (APP) inside the transmembrane zone, in this manner, the cut peptides keep up some layer penetrating property. The amphiphilic Aβ can trap specific entanglement to phospholipid bilayers with very high comparability, implying that the cell film of neurons might be an essential focus of Aβ [3]. Aβ have be answer to shape ionic pores, straight prompting cell expiry or setting off the apoptotic motioning among interaction with the parameter of calcium homeostasis [4]. Aβ can likewise alter the physicochemical property of neuronal films (e.g., film smoothness), and initiate layer destabilization and permeabilization [5]. Both layer Aβ relations and harmfulness seem, by all accounts, to be adjusted by the initiation layer destabilization and permeabilization [5]. Both layer Aβ relations and harmfulness seem, by all accounts, to be adjusted by the

METHODS

Tacrine hydrochloride was procured from Sigma-Aldrich (St. Louis, MO), and β-Amyloid was procured from Sigma-Aldrich (St. Louis, MO).

RESULTS: Treatment with Aβ-induced cytotoxicity showed a 54% decrease in cell viability. Drug-treated with TMPCN-3 showed greater intracellular accumulation. In the invasive study TMPCN-3 nanoparticles, the SH-SYSY cells (73%) were decreased when compared to the control cells (91%). In vivo therapeutic efficacy of drug-loaded nanoparticles was studied in mice, Morris water maze task shows polymeric nanoformulations indicates critical change execution (expanded memory maintenance) when contrasted with control, step down condition maintains a considered space from response created by the memory change and polymeric nanoformulations, and after that taken by tacrine and control the quantity of errors are lower. The nanoformulations distributed massive decreasing in acetylcholine esterase level brain homogenate.

Conclusion: Tacrine-loaded methoxypoly(ethylene glycol) poly(caprolactone) reveals that the in vitro cell line believes emphasized the reduced risk of tacrine loaded nanoparticles as there is a significant decrease half maximal inhibitory concentration and higher covention of drug in the glial cells and by in vivo reflects was confirmed that nanoformulation indicated improved memory.

Keywords: 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay, SH-SYSY cells, Tacrine hydrochloride, β-Amyloid.

© 2018 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) DOI: http://dx.doi.org/10.22159/ajpcr.2018.v11s4.31730

APP 7 ANNUAL CONVENTION & INDO - US CONFERENCE ON "Modern Trends, Current Challenges and Future Scenario of Pharmaceutical Sciences and Technology" 27th July 2018
were then washed with PBS and fixed using 4% formaldehyde at room temperature for 15 min. Subsequently, the cells were washed with PBS for 3 times and stained with Hoechst dye (1 mg/ml) for 30 min. The cells were washed with phosphate-buffered saline for 3 times before the coverslips were mounted onto the microscope slides and visualized using an Olympus fluorescence microscope [9].

In vivo toxicity of drug delivery system, the fluctuation in

The section was fitted with a detail of a 500 mm×250 mm×250 mm. The mechanical assembly is comprised of yellow acrylic material with the midpoint of one quadrant. On the 5th day after the injection of Aβ, several trials were conducted. In each training trial, the time taken by the mice to escape on to the platform was recorded [10]. Several trials were conducted. In each training trial, the time taken by the mice to escape on to the platform was recorded [10].

Step down inhibitory avoidance

The mechanical assembly is comprised of yellow acrylic material with a detail of a 500 mm×250 mm×250 mm. The section was fitted with a progression of parallel 0.2-cm bore bronze bars divided 10 mm separated. A 70 mm wide, 25 mm high, and 250 mm long stage were set at the focal point of the floor. In the instructional meeting, 0.4-mA, 2.0-s mixed foot shock was given for the mice instantly in the wake of venturing down and putting their four paws on the ground. In test sessions no foot shock given and advance down inactivity is marked with a cut off time of 300 s. One preliminary advance down inhibitory avoidance in mice

Histopathological studies

After 8-day behavior, the brains of distinct collections were perfusion fixed with 4% paraformaldehyde in 0.1M phosphate buffer. The brains were detached and post-fixed in the same protective overnight at 4°C. The brains were then fixed in paraffin and discolored with Hematoxylin-Eosin. The hippocampal lesions were evaluated microscopically at ×40 exaggerations [12].

In vivo therapeutic efficacy of drug-loaded nanoparticles

The mice (n=18) were divided into three different groups each consisting of six mice in each group. Except for normal control group, the drug was administered through intraperitoneal route (i.p) after drug administration to all the groups. The protocol was followed for 9 days.

Animal grouping

Total number of animals used was 18 mice which was divided into three groups:

- **Group-1** consists of six animals; the control group received normal saline (0.5 ml/kg b.w.p.o).
- **Group-2** consists of six animals; drug group received a solution of tacrine in normal saline (5 mg/kg b.w.p.o).
- **Group-3** consists of six animals; TMPCN-3 group received tacrine-loaded methoxypoly(ethylene glycol) poly(caprolactone) (mPEG-PCL) nanoparticles dose equivalent to 5 mg/kg b.w. of tacrine by peroral route.

Morris water maze test

The experiment was performed in an apparatus with a circular water tank (diameter= 100cm; height= 35cm). The water was filled into a distance of 15 cm, and the temperature was maintained at 28°C. The water was completed by adding milk powder. A platform (diameter = 4.5 cm; height = 14.5 cm) was submerged 0.5 below the water surface and placed at the midpoint of one quadrant. On the 5th day after the injection of Aβ, several trials were conducted. In each training trial, the time taken by the mice to escape on to the platform was recorded [10].

Dissection and homogenization

On day 9, after behavioral valuations, animals were sacrificed by execution before deep anesthesia. The brains were detached, forebrain was dissected out, and cerebellum was removed. Brain was put on ice and rinsed with ice-cold isotonic saline. A (10%/v/v) homogenate was arranged in 0.1M phosphate buffer (pH 7.4). The homogenate was centrifuged at 10,000 g for 15 min, and aliquots of supernatant were separated and used for biochemical assessment [12].

Results

In vitro cell line studies

MTT assay

MTT cell viability test was accomplished to determine the cytotoxicity of TMPCN-3 nanoparticles in SH-SYSY cells. The half maximal inhibitory concentration ([IC₅₀]) value of the pure drug, plain nanoformulation, and TMPCN-3 was found to be 6.9 µg, >100 µg, and 4.3 µg TMPCN-3 nanoformulation which showed that enhanced in the reduction of the IC₅₀ value of TMPCN-3 nanoformulation. The plain nanoparticles did not display serious cytotoxicity in which cell viability of >73% was achieved in SH-SYSY cells. The graphical representation of percentage cell viability for plain nanoparticles and drug-loaded with mPEG-PCL (TMPCN-3) nanoformulation was shown in Figs. 1 and 2.

Cellular uptake of drug-loaded nanoparticles (Hoechst dye)

The uptake of TMPCN-3 nanoparticles in SH-SYSY cells was analyzed by fluorescence magnifying lens. Cells treated with TMPCN-3 FIG 1: Percentage of cell viability of plain nanoformulation

Joe and Kumar
Asian J Pharm Clin Res, Vol 11, Special Issue 4, 2018, 175-179
demonstrated higher intracellular accumulation. The properties of drug-loaded nanoparticle were shown in Fig. 3.

Invasion study
As shown in Fig. 4, there is a critical drop in the capacity of the treated cells to move into the unfilled space related with control in SH-SY5Y cells, and the amount of cells crossed Matrigel in the drug behavior was significantly reduced when compared with control cells. SH-SY5Y cells were diminished in the TMPCN-3 nanoparticles. This outcome suggested that TMPCN-3 treatment exhibited a substantial effect on the cellular viability and it inhibited the invasion in SH-SY5Y cells.

In vivo studies
The step-down condition maintains a calculated distance from reaction created by the memory change. Polymeric nanoformulations, and subsequently taken by tacrine and control the quantity of errors is higher as shown in Fig. 5.

The brain homogenate produced the absorbances/min is higher in control and followed by standard, and then the nanoformulations produced a substantial decrease in acetylcholine esterase level in brain homogenate as shown in Fig. 6.

The control considerably delayed mean latency and retention mean latency, which leads to produce the cognitive impairment. The polymeric nanoformulations showed significant improvement performance (increased memory retention) as shown in Fig. 7.

DISCUSSION
AD is a dynamic neurodegenerative issue. The pathology of AD is described by abnormal accumulation of the proteins Aβ and hyperphosphorylated tau [14]. The impact of RS4252 on amyloid β1–40 prompted restraint of MTT decrease and found that RS-4252 can possibly altogether enhance the amyloid β1–40 incited cytotoxicity. The compound has the profile of a β-sheet breaker since hindrance of fibril arrangement is one of the conceivable remedial treatment for Alzheimer’s ailment. HeLa cells demonstrated a significant level of phosphorylated protein kinase-B without amyloid β1–40 after brooding with MTT for 30 min. The aggregate sum of protein kinase-B does not change in any of the groups [15]. The size and number of vacuoles indicated a positive association with Aβ focus and term of Aβ42 treatment by Aβ42, cells developed regularly to conversion despite the fact that there was across the board arrangement of cytoplasmic vacuoles. There was no reduction on the cell film inside the day and age tried despite the fact that treatment of Aβ42 for 72 h brought about cell damage related with down-directed metabolic capacity. Hindrance on the decrease framework or the esterase movement is a generally late and genuine occasion related with diminish in cell feasibility that may be known to the perpetual cytotoxicity due to long-hatching with expanded measure of Aβ42, like the constant neurodegeneration caused in any event mostly by the expansion of harmful Aβ42 in AD patients’ cerebrum [16]. For all fibrillar arrangements, there was a noteworthy abatement in MTT decrease at 0.01 μM protein (conversely, treatment of the cardiomyocytes with non-fibrillar rV6 proteins brought about a maximal 15% lessening in MTT decrease at 1 μM protein, in respect to control). Non-amyloid elastin fibrils required 1 μM protein to cause a huge 25% decline in MTT to decrease [17]. The cell nanoparticles take-up in general change of medication ingestion or focusing on conveyance stays unclear. Nanoparticles take-up ponders saw in Caco-2 cells could be considered to connect with in vivo circumstances. These demonstrate that piece of nanoparticles take-up on bioavailability change of little atoms is restricted, and the level of nanoparticles ingested by means of the nanoparticles transcytosis component. Impressively more noteworthy tissue take-up for biodegradable nanoparticles, for example, poly lactic-poly glycolic corrosive copolymer nanoparticles and lecithin-covered nanoparticles have been observed [18]. The utilization of these center shell nanospheres as another fluorescent cell tracker test for predominant in vitro and in vivo imaging due to their extraordinary optical properties. The cytotoxic impacts of the LFCNs on the mitochondrial movement of cells were expanded in connection to the expanding LFCNs focus. LFCNs at on a grouping of 640 lg/mL can be considered to have low cytotoxicity [19]. The inclusion of phospholipid into AOT–alginate nanoparticles enhance their uptake/intracellular accumulation, and metabolic restraint ponders proposed that phone disguise of nanoparticles is interceded by endocytosis. The nanoparticles are disguised by the folate receptor-interceded endocytosis component; endocytosis pathway may result in an imperative increment in the cell
The catalysts hindrance might be fundamentally impressed impeded LTM contrasted with the control animals which was essentially high in the took care of vehicle-infused assemble [24]. If there should be an impression in healthy over edge footshock-90 min after 3-min investigation after the nonshock boxes were caused [22]. Rats prepared with 0.5 mA - i.e., a gentle over edge footshock-90 min after 3-min investigation after the past, did not indicate extensive changes in execution for STM. Higher measurements of scopolamine were important to debilitate memory. Scopolamine would influence the tactile view and consideration at bring down measurements [0.1 mg/kg], and learning and memory at higher dosages [4 mg/kg] [23]. Total cortical AChE movement was significantly brought down by 29% in the tween-infused mice [26]. Total cortical AChE movement was higher in the cerebrum of both ordinary and alloxan diabetic rats when contrasted with alternate districts of the notice. Both the grown-up and matured mice of control and focused on bunches demonstrated extensive learning. In charge and focused on mice were directed in both untrained (not subjected to uninvolved shirking test) and in addition prepared (latent evasion test) gathering of grown-up and matured [27]. AChE degrades the neurotransmitter acetylcholine, creating choline, and an acetic acid derivation gathering. In brain activities changes of antioxidant enzymes, glutathione and thickbarbitalic acid reactive substances contents in all the experimental groups of rat [26]. In intense organizations of L-tyrosine in 10 and 30-day-old rats indicated expanded AChE action in serum and all assessed cerebrum zones when contrasted with control bunch [29]. The impact of zinc chloride, cadmium acetic acid derivation, mercury chloride, and lead acetic acid derivation was examined. Hurt movement in zebra fish mind. In spite of the fact that a slight enlarge of the movement after 24 h overview, zinc chloride did not impact the chemical activity. So also to zinc chloride, cadmium acetic acid derivation does not adjust the protein movement in the fixation tried [26]. For spatial learning, one of the better measures proposed was estimating the aggregate separation. Different measures are time or separation in the objective annulus (the space between two concentric circles), characterized by lines moving the outside and inside edges of the stage, separately. The amount of direct swims (number of paths within a preset corridor from the start to the goal) or circle swims (a swim trajectory that approximates a decreasing radius arc of a circle from the start point to the hidden platform and circling is less than 360°), jump-offs, deflections, swim overs. Alternate measures are essential particularly when testing creatures that have been as of late regulated a medication that can disturb sensorimotor capacity [31]. The hippocampus is engaged with spatial memory. There are a few different parts of the undertaking that do not draw in spatial memory: The pressure required with the assignment, the comprehension of the standards of the errand. Hormones effects affect hippocampal subordinate errand execution, hippocampal life systems, and hippocampal cell work. A few conditions are low estradiol and progesterone, high estradiol and progesterone, and middle estradiol and progesterone in testing solitary animals [32]. Examination of escape idleness, the time the mouse took to locate the concealed stage, uncovered a noteworthy reduction after some time in the securing stage. Expanded dependence on spatial systems to find the stage is solid with the arrangement a psychological spatial. Mice had been prepared with four preliminaries for each day invested more energy in the stage quadrant than in all others. This demonstrates running improves securing on the water maze task. Increased neurogenesis in the spriters adds to learning. A few different components that advance generation of new neurons are likewise related with improved learning [33]. Treatment with hormones, for example, estrogen, expands cell expansion, and enhances memory work. The variables that decrease neurogenesis, for example, corticosterone treatment, stress, and maturing, are connected with lessened execution on spatial learning assignments [34]. In vitro cytotoxicity assay, the violacein exhibits significant activity against A549 lung cancer cell line [35]. Ethanolic extract has no cytotoxic activity, and the other extracts had moderate to weak cytotoxic activity on NIH-3T3 and HeLa cell lines using MTT assay [36]. Human neuroblastoma SH-SY5Y cells, some carboline alkaloids induce apoptosis as well as necrosis [37].

CONCLUSION

The prepared tacrine-loaded mPEG-PCL reveals that the in vitro cell line studies confirmed the reduced toxicity of tacrine-loaded nanoparticles as there are a significant reduction IC50 value and higher aggregation of the drug in the glial cells and by in vivo studies it was confirmed that nanoformulation showed enhanced memory. Furthermore, patient

![Fig. 6: Scopolamine-induced acetylcholine esterase level in brain](image1)

![Fig. 7: Scopolamine-induced memory deficits in Morris water maze task](image2)
studies are required for the prepared drug delivery system.

REFERENCES

1. Huang Y, Mucke L. Alzheimer mechanisms and therapeutic strategies. Cell 2012;148:1204-22.
2. Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: Lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 2007;8:101-12.
3. Arise N, Pollard HB, Rojas E. Beta-amyloid Ca(2+)-channel hypothesis for neuronal death in Alzheimer disease. Mol Cell Biochem 1994;140:119-25.
4. Dong Z, Saikumar P, Weinberg JM, Venkatachalam MA. Calcium in cell injury and death. Annu Rev Pathol 2006;1:405-34.
5. Grösgen S, Grimm MO, Friess P, Hartmann T. Role of amyloid beta in lipid homeostasis. Biochim Biophys Acta 2010;1801:966-74.
6. Yu X, Zheng J. Cholesterol promotes the interaction of Alzheimer β-amyloid monomer with lipid bilayer. J Mol Biol 2012;421:561-71.
7. Schneider A, Schulz-Schaeffer W, Hartmann T, Schulz JB, Simons M. Cholesterol depletion reduces aggregation of amyloid-beta peptide in hippocampal neurons. Neurobiol Dis 2006;23:573-7.
8. Cui Y, Xu Q, Chow PK, Wang D, Wang CH. Transferrin-conjugated nanoparticles uptake in various cell lines and in-vitro toxicity and cellular uptake studies of luminescent functionalized core-shell nanospheres. Saudi J Biol Sci 2017;24:1392-403.
9. Salatin S, Yari Khosroushahi A. Overviews on the cellular uptake of polysaccharide colloidal nanoparticles. J Cell Mol Med 2017;21:1668-86.
10. Borba Filho GL, Zenki KC, Kalinine E, Baggio S, Pettenazzo L, Zimmer ER, et al. A new device for step-down inhibition avoidance task-effects of low and high frequency in a novel device for passive inhibition avoidance task that avoids bioimpedance variations. PLoS One 2015;10:e0116000.
11. Atucha E, Roosendaal B. The inhibitory avoidance discrimination task to investigate accuracy of memory. Front Behav Neurosci 2015;9:60.
12. Coletta NC, Sintcofsky M, Komissie EE, Gonzalez EN, Quiffeldt JA, Jersalinsky DA, et al. Amnesia of inhibitory avoidance by scopolamine is overcome by previous open-field exposure. Learn Mem 2014;21:634-45.
13. Appleyard ME, Taylor SC, Little HJ. Acetylcholinesterase activity in regions of mouse brain following acute and chronic treatment with a benzodiazepine inverse agonist. Br J Pharmacol 1990;101:599-604.
14. Paul R, Borah A. Global loss of acetylcholinesterase activity with mitochondrial complexes inhibition and inflammation in brain of hypercholesterolemic mice. Sci Rep 2017;7:17922.
15. Costa M, Bernardi J, Costa L, Fiuzzi T, Brandao R, Pereira M. N-acetyl cysteine decreases mice brain acetyl cholinesterase activity: An in vitro kinetic study. Enz Eng 2015;5:1-6.
16. Ahmed N, Tarannum S. Acetylcholinesterase activity in the brain of alloxan diabetic albino rats: Presence of an inhibitor of this enzyme activity in the cerebral extract. Int J Diabetes Dev Citries 2009;29:174-7.
17. Khan RA, Khan MR, Sairum S. Brain antioxidant markers, cognitive performance and acetylcholinesterase activity of rats: Efficiency of Sonchus asper. Behav Brain Funct 2012;8:21.
18. Ferreira GK, Carvalho-Silva M, Gonçalves CL, Vieira JS, Scaini G, Ghedin FV, et al. L-tyrosine administration increases acetylcholinesterase activity in rats. Neurochem Int 2012;61:1370-4.
19. Richetti SK, Rosenberg DB, Ventura-Lima J, Monserrat JM, Bogo MR, Bonan CD, et al. Acetylcholinesterase activity and antioxidant capacity of zebrafish brain is altered by heavy metal exposure. Neurotoxology 2011;32:116-22.
20. Vorbees CV, Williams MT. Morris water maze: Procedures for assessing spatial and related forms of learning and memory. Nat Protoc 2006;1:488-58.
21. Nunez J. Morris water maze experiment. J Vis Exp 2008;19:897.
22. Snow WM, Palavhan PS, Jordjevic J, McAllister D, Platt EE, Alashmali S, et al. Morris water maze training in mice elevates hippocampal levels of transcription factors nuclear factor (erythroid-derived 2)-like 2 and nuclear factor kappa B p65. Front Mol Neurosci 2015;8:70.
23. van Praag H, Christie BR, Sejnowski TJ, Gage FH. Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci U S A 1999;96:13427-31.
24. Vishnu TS, Palaniswamy M. Evaluation of Violacein produced by novel isolate Chromobacterium violaceum CV5 against HEPG2 and HLE human liver cancer cells. Asian J Pharm Clin Res 2018;11:187-89.
25. Colettta NC, Sintcofsky M, Komissie EE, Gonzalez EN, Quiffeldt JA, Jersalinsky DA, et al. Amnesia of inhibitory avoidance by scopolamine is overcome by previous open-field exposure. Learn Mem 2014;21:634-45.
26. Appleyard ME, Taylor SC, Little HJ. Acetylcholinesterase activity in regions of mouse brain following acute and chronic treatment with a benzodiazepine inverse agonist. Br J Pharmacol 1990;101:599-604.
27. Paul R, Borah A. Global loss of acetylcholinesterase activity with mitochondrial complexes inhibition and inflammation in brain of hypercholesterolemic mice. Sci Rep 2017;7:17922.
28. Costa M, Bernardi J, Costa L, Fiuzzi T, Brandao R, Pereira M. N-acetyl cysteine decreases mice brain acetyl cholinesterase activity: An in vitro kinetic study. Enz Eng 2015;5:1-6.
29. Ahmed N, Tarannum S. Acetylcholinesterase activity in the brain of alloxan diabetic albino rats: Presence of an inhibitor of this enzyme activity in the cerebral extract. Int J Diabetes Dev Citries 2009;29:174-7.
30. Khan RA, Khan MR, Sairum S. Brain antioxidant markers, cognitive performance and acetylcholinesterase activity of rats: Efficiency of Sonchus asper. Behav Brain Funct 2012;8:21.
31. Ferreira GK, Carvalho-Silva M, Gonçalves CL, Vieira JS, Scaini G, Ghedin FV, et al. L-tyrosine administration increases acetylcholinesterase activity in rats. Neurochem Int 2012;61:1370-4.
32. Richetti SK, Rosenberg DB, Ventura-Lima J, Monserrat JM, Bogo MR, Bonan CD, et al. Acetylcholinesterase activity and antioxidant capacity of zebrafish brain is altered by heavy metal exposure. Neurotoxology 2011;32:116-22.
33. Vorbees CV, Williams MT. Morris water maze: Procedures for assessing spatial and related forms of learning and memory. Nat Protoc 2006;1:488-58.
34. Nunez J. Morris water maze experiment. J Vis Exp 2008;19:897.
35. Snow WM, Palavhan PS, Jordjevic J, McAllister D, Platt EE, Alashmali S, et al. Morris water maze training in mice elevates hippocampal levels of transcription factors nuclear factor (erythroid-derived 2)-like 2 and nuclear factor kappa B p65. Front Mol Neurosci 2015;8:70.
36. van Praag H, Christie BR, Sejnowski TJ, Gage FH. Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci U S A 1999;96:13427-31.
37. Vishnu TS, Palaniswamy M. Evaluation of Violacein produced by novel isolate Chromobacterium violaceum CV5 against the cerebral and lung cancer cell. Asian J Pharm Clin Res 2018;11:229-04.
38. Purvi HK, Harish NK, Manan R. Cytotoxic effect of Corchorus depressus against HEPG2 and HLE human liver cancer cells. Asian J Pharm Clin Res 2018;11:187-89.