HALF SPACE THEOREM FOR THE ALLEN-CAHN EQUATION

YONG LIU, KELEI WANG, AND JUNCHENG WEI

Abstract. We prove the following half-space theorem for Allen-Cahn equation: Let \(n = 2 \) or \(3 \) and \(u \) be a bounded solution of Allen-Cahn equation \(\Delta u + u - u^3 = 0 \) in \(\mathbb{R}^n \) such that the level set \(\{ u = 0 \} \) is contained in a half space \(\{ x_n > 0 \} \). Then \(u \) must be one-dimensional.

1. Introduction and main results

We consider rigidity results for bounded entire solutions of the Allen-Cahn equation
\begin{equation}
-\Delta u = u - u^3, \quad (x_1, \ldots, x_n) \in \mathbb{R}^n.
\end{equation}

For \(n = 1 \), (1) has a heteroclinic solution \(H(x) = \tanh \left(\frac{x}{\sqrt{2}} \right) \). Up to a translation and rotation, this is the unique monotone increasing solution in \(\mathbb{R} \).

De Giorgi ([5]) conjectured that for \(n \leq 8 \), if a solution to (1) is monotone in one direction, then up to translation and rotation it must be one dimensional. This conjecture has been proved to be true for \(n = 2 \) (Ghoussoub-Gui [10]), \(n = 3 \) (Ambrosio-Cabre [3]), and for \(4 \leq n \leq 8 \) (Savin [12]), under an additional limiting condition
\[\lim_{x_n \to \pm \infty} u(x', x_n) = \pm 1. \]

On the other hand, for \(n \geq 9 \), Del Pino, Kowalczyk and the third author ([6]) constructed counterexamples, i.e. monotone solutions which are not one-dimensional.

The second rigidity result concerns the global minimizers: Savin [12] proved that global minimizers are one-dimensional up to dimensions \(n \leq 7 \). In dimension 8 we ([11]) constructed counterexamples, i.e. global minimizers which are not one-dimensional. For related results on rigidity of solutions to Allen-Cahn, we refer to [2, 4, 7, 9] and the references therein.

In this short note we prove the following half-space rigidity result:

Theorem 1. (Half space theorem) Let \(n \) be 2 or 3. Suppose \(\{ u > 0 \} \) is contained in \(\{ x_n > 0 \} \). Then \(u \) is one-dimensional.

Note that if \(\{ u = 0 \} \) is empty, then using comparison, we can show that \(u = \pm 1 \). Hence we can assume without loss of generality that \(\{ u = 0 \} \) is nonempty. The assumption \(\{ u > 0 \} \) is contained in \(\{ x_n > 0 \} \) is equivariant to \(\{ u = 0 \} \) is contained in \(\{ x_n > 0 \} \). Note that here we don’t assume that the nodal set \(\{ u = 0 \} \) is an epigraph. For rigidity results in the epi-graph case we refer to [8] and the references therein.

We remark that the half space theorem is not true for minimal hypersurfaces in \(\mathbb{R}^n \) with \(n \geq 4 \), for example the higher dimensional catenoid. However, for Allen-Cahn equation, this is still open in higher dimensions. (In view of the construction
of solutions concentrated on higher dimensional catenoid [1], we turn to believe that half space theorem should be true for all \(n \geq 4. \)

2. THE CASE OF \(n = 2 \)

We first give a simple proof when \(n = 2. \)

Proof. We can assume that there exists a sequence \((t_n^+, s_n^+)\) with \(t_n^+ \to +\infty \) such that \(u(t_n^+, s_n^+) = 0 \) and \(s_n^+ \to 0. \)

Then using sweeping principle, we see that locally around \((t_n^+, s_n^+)\), \(u \) converges to the one dimensional solution \(H(x_2) \).

For each \(x_1 \), we define \(g(x_1) = \min \{ t : u(x_1, t) = 0 \} \).

Note that \(g(x_1) > 0. \) Let us set \(\alpha = \lim \inf_{x_1 \to -\infty} g(x_1). \)

We first assume \(\alpha < +\infty. \) (The case of \(\alpha = +\infty \) is similar and easier). There exists a sequence \((t_n^-, s_n^-)\) with \(t_n^- \to -\infty \) such that \(u(t_n^-, s_n^-) = 0 \) and \(s_n^- \to \alpha. \) Still using sweeping principle, we know that locally around \((t_n^-, s_n^-)\), \(u \) converges to the one dimensional solution \(H(x_2) \).

Consider the region

\[
\Omega_n := \{(x_1, x_2) : s_n^- < x_1 < s_n^+, -\infty < x_2 < \alpha \}.
\]

Let \(X = (0, 1). \) Pohozaev type identity tells us that

\[
\int_{\partial \Omega_n} \left(\frac{1}{2} |\nabla u|^2 + F(u) \right) X \cdot \nu - (\nabla u \cdot X)(\nabla u \cdot \nu) \, ds = 0.
\]

Let \(\Omega_{n,1} \) be the upper boundary of \(\Omega_n. \) Then

\[
\int_{\Omega_{n,1}} \left[\frac{1}{2} |\nabla u|^2 + F(u) - |\partial_{x_2} u|^2 \right] \, ds \to 0, \quad \text{as } n \to +\infty.
\]

Hence on \(\Omega_{n,1}, \) we infer from Modica estimate that \(|\nabla u|^2 = 2F(u). \) This implies that \(u \) is the one dimensional solution \(H(x_2). \) \(\square \)

3. THE CASE OF \(n = 3 \)

Next, we shall consider the case of dimension 3. The arguments in this section could also be applied in the 2d case. Let \(\Omega = \Omega_{r_0} \) be the cylinder

\[
\left\{(x, y, z) : z < 1, \quad r = \sqrt{x^2 + y^2} < r_0 \right\}.
\]

Let \(X = (0, 0, 1). \) Then we have the following Pohozaev’s identity on \(\Omega: \)

\[
\int_{\partial \Omega} \left(\frac{1}{2} |\nabla u|^2 + F(u) \right) X \cdot \nu - (\nabla u \cdot X)(\nabla u \cdot \nu) \, ds = 0.
\]

Let \(B_1 \) be the vertical part of the boundary \(\partial \Omega, \) and \(B_2 \) be horizontal part. We denote the integrand by \(I. \)
Note that
\[
\int_{B_1} I = \int_{B_2} I.
\]
We define
\[
g(r_0) = -\int_{B_1} I.
\]
Since \(I \geq 0\) on \(B_2\), \(g\) is monotone increasing. Define
\[
\alpha = \lim_{r_0 \to +\infty} g(r_0).
\]
Then \(0 \leq \alpha \leq +\infty\).

We have, at \(z = 1\), using \((2)\),
\[
\int_0^{2\pi} \int_0^{+\infty} \frac{1}{2} ru_r^2 drd\theta \leq \alpha.
\]
Let us define the function \(K(s, z) = \int_0^{2\pi} \int_0^s ru_r^2 drd\theta\). The half space assumption yields suitable exponential decay of \(u_r\) along the \(z\)-direction, from which we get the following key property of \(K\).

Lemma 2. There exist universal positive constants \(C\), such that for \(z \leq 0\),
\[
K(l, z) \leq CK(l + 10 \ln l, 0) + C, \text{ for } l \text{ large.}
\]

Proof. The function \(u_x\) satisfies
\[
-\Delta u_x + (3u^2 - 1) u_x = 0.
\]
Note that \(u^2\) converges to 1, uniformly and exponentially in \(z\).

Let us consider the model problem
\[
\begin{cases}
-\Delta \phi + \phi = 0, \\
\phi(x, y, 0) = |u_x(x, y, 0)|.
\end{cases}
\]
To estimate \(\phi\), we take the Fourier transform in \((x, y)\) variable to obtain
\[
\phi(x, y, z) = \phi(x, y, 0) \ast \left(e^{-\sqrt{[\xi]^2 + 1}z} \right).
\]
Let us denote
\[
G(x, y, z) = \left(e^{-\sqrt{[\xi]^2 + 1}z} \right).
\]
Then
\[
\phi(x, y, z) = \int_{R^2} \phi(s, t, 0) G(x - s, y - t, z) dsdt.
\]
Note that we are interested in the estimate of \(\phi\) in the region
\[
D = D_l := \{(x, y) : x^2 + y^2 \leq l\}.
\]
Let us write
\[
\phi = \left(\int_{|s, t| \geq l + 10 \ln l} + \int_{|s, t| \leq l + 10 \ln l} \right) \phi(s, t, 0) G(x - s, y - t, z) dsdt
\]
\[
\quad := \phi_1 + \phi_2.
\]
For \((x, y)\) in this region \(\Omega\), due to the exponential decay of \(G\) in the first two variables, we have
\[
|\phi_1| \leq Ct^{-5}.
\]
We have in mind that \(\phi \) resembles \(u \). Observe that
\[
\int_0^{2\pi} \int_0^l ru^2_r dr d\theta = \int_{\Omega} (u_x^2 + u_y^2).
\]
Now with the previous estimate at hand, we deduce using Cauchy-Schwarz that
\[
\int_D \phi^2 dx dy \leq \int_{\Omega} \left(\int_{|s,t| \leq l + a \ln l} \phi(s,t,0) G(x-s, y-t, z) ds dt \right)^2 dxdy
\]
\[
\leq \int_{\Omega} \left\{ \int_{|s,t| \leq l + a \ln l} \phi^2(s,t,0) Gds dt \int Gdtds \right\} dxdy
\]
\[
\leq C \int_{|s,t| \leq l + a \ln l} \phi^2(s,t,0) ds dt.
\]
The estimates for \(\phi_1 \) and \(\phi_2 \) together with maximum principles concludes the proof.

□

Let us now define
\[
f(s) = \int_0^s \int_{-\infty}^0 \int_0^{2\pi} u_r u_z d\theta dz dr.
\]
Furthermore, we introduce \(t = s + 10 \ln s \).

Lemma 3. As \(t \to +\infty \),
\[
\frac{f(t) - f(s)}{f(t)^3} \to 0.
\]

Proof. We have, using the fact that \(g(s) \to +\infty \),
\[
f(t) = \int_1^t \frac{g(s)}{s} ds \geq C \ln t.
\]
On the other hand, since \(t = s + 10 \ln s \),
\[
f(t) - f(s) = \int_s^{s+10\ln s} \frac{g(s)}{s} ds.
\]
We observe that \(g(s) = s \int_{-\infty}^1 \int_0^{2\pi} u_r u_z d\theta dz \leq Cs \). Hence
\[
f(t) - f(s) \leq C \ln s.
\]
We then conclude that
\[
\frac{f(t) - f(s)}{f(t)^3} \leq C \frac{\ln s}{(\ln t)^3} \to 0, \text{ as } t \to +\infty.
\]

□

Proposition 4. The constant \(\alpha = 0 \).

Proof. We assume to the contrary that \(\alpha > 0 \).
Using the fact that \(|u_z| \leq C e^{-\beta |z|} \), we get

□
\[f(s) \leq C \int_{-\infty}^{0} \sqrt{\left(\int ru^2 \int \frac{u^2}{r} \right) dz} \]
\[= C \int_{-\infty}^{0} \sqrt{K(s, z) e^{-\beta|z|} \ln sdz} \]
\[\leq C \int_{-\infty}^{0} \sqrt{(K(s + a \ln s, 0) + 1) e^{-\beta|z|} \ln sdz} \]
\[\leq C \sqrt{f'(s + a \ln s) s \ln s}. \]

That is,
\[f'(s + 10 \ln s) \geq \frac{C f^2(s)}{s \ln s}. \]

Hence we find that
\[f'(t) \geq \frac{C f(t)^2}{t \ln t} = \frac{C f(t)^2 f(s)^2}{f(t)^2 t \ln t} \]
\[= \frac{C f(t)^2}{t \ln t} + \frac{C}{t \ln t} \left(\frac{f(s)}{f(t)} \right)^2 - 1 \]
\[= \frac{C f(t)^2}{t \ln t} + \frac{C}{t \ln t} \left(1 - \frac{f(t) - f(s)}{f(t)} \right)^2 - 1 \]
\[\geq \frac{C f(t)^2}{t \ln t} - \frac{C}{t \ln t} \frac{f(t) - f(s)}{f(t)}. \]

We write it in the form
\[\frac{f'(t)}{f(t)^2} \geq \frac{C}{t \ln t} - \frac{C}{t \ln t} \left(\frac{f(t) - f(s)}{f(t)^2} \right). \]

Now we obtain, for some \(t_0 \),
\[\frac{f'(t)}{f(t)^2} \geq \frac{C}{t \ln t}, \text{ for } t \geq t_0. \]

This inequality can be written as
\[(f^{-1})' + C \ln \ln t)' \leq 0, \text{ for } t \geq t_0. \]

It follows that the function
\[\frac{1}{f(t)} + C \ln \ln t \]

is decreasing. But we know that \(f \) is positive and \(\frac{1}{f(t)} + C \ln \ln t \) tends to infinity as \(t \) goes to \(+\infty \). This is a contradiction.

The fact that \(\alpha = 0 \) together with the Pohozaev identity implies that \(|\nabla u|^2 = 2F(u)|, \text{ for } z = 1, \text{ which tells us that } u \text{ is one-dimensional. The proof of the half space theorem is thus completed.} \]

Acknowledgement. The research of J. Wei is partially supported by NSERC of Canada. Part of the paper was finished while Y. Liu was visiting the University of British Columbia in 2019. He appreciates the institution for its hospitality and
financial support. K. Wang is supported by “the Fundamental Research Funds for the Central Universities”.

REFERENCES

[1] Oscar Agudelo, Manuel del Pino, and Juncheng Wei. Higher-dimensional catenoid, Liouville equation, and Allen-Cahn equation. Int. Math. Res. Not. IMRN (23):7051-7102, 2016.

[2] G. Alberti; L. Ambrosio; X. Cabre, On a long-standing conjecture of E. De Giorgi: symmetry in 3D for general nonlinearities and a local minimality property. Special issue dedicated to Antonio Avantaggiati on the occasion of his 70th birthday. Acta Appl. Math. 65 (2001), no. 1-3, 9–33.

[3] L. Ambrosio; X. Cabre, Entire solutions of semilinear elliptic equations in R3 and a conjecture of De Giorgi. J. Amer. Math. Soc. 13 (2000), no. 4, 725–739.

[4] X. Cabre, Uniqueness and stability of saddle-shaped solutions to the Allen-Cahn equation. J. Math. Pures Appl. (9) 98 (2012), no. 3, 239-256.

[5] E. De Giorgi, Convergence problems for functionals and operators, Proc. Int. Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978), 131188, Pitagora, Bologna (1979).

[6] M. del Pino; M. Kowalczyk; J. Wei, On De Giorgi’s conjecture in dimension $N \geq 9$. Ann. of Math. (2) 174 (2011), no. 3, 1485–1569.

[7] A. Farina, E. Valdinoci, The state of the art for a conjecture of De Giorgi and related problems, in: Recent Progress on Reaction–Diffusion Systems and Viscosity Solutions, World Sci. Publ., Hackensack, NJ, 2009, pp. 74–96.

[8] A. Farina and E. Valdinoci, Flattening results for elliptic PDEs in unbounded domains with applications to overdetermined problems Archive for rational mechanics and analysis 195 (2010), no. 3, 1025-1058.

[9] A. Farina, B. Sciunzi, E. Valdinoci, Bernstein and De Giorgi type problems: new results via a geometric approach. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) Vol. VII (2008), 741-791.

[10] N. Ghoussoub; C. Gui, On a conjecture of De Giorgi and some related problems. Math. Ann. 311 (1998), no. 3, 481–491.

[11] Y. Liu, K. Wang and J. Wei, Global minimizers of Allen-Cahn equation in dimensions $n \geq 8$ J.Math Pure Appl. 108 (2017), no. 6, 818840.

[12] O. Savin, Regularity of flat level sets in phase transitions. Ann. of Math. (2) 169 (2009), no. 1, 41–78.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA, HEFEI, ANHUI, CHINA
E-mail address: liuyong@ncepu.edu.cn

SCHOOL OF MATHEMATICS AND STATISTICS, WUHAN UNIVERSITY, WUHAN, HUBEI, CHINA
E-mail address: wangkelei@whu.edu.cn

DEPARTMENT OF MATHEMATICS UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, BC V6T 1Z2, CANADA
E-mail address: jcwei@math.ubc.ca