PHARMACOLOGICAL ACTIVITY OF ULVA LACTUCA POLYPHENOLS FRACTION: HEPATOPROTECTIVE AND ANTIOXIDANT ACTIVITIES AGAINST PARACETAMOL-INDUCED LIVER DAMAGE IN RATS

RAVINDRAN NT*, MOHAMED SADIQ A
Department of Biochemistry, Adhiparasakthi College of Arts and Science (Autonomous), Kalavai, Tamil Nadu, India.
Email: ntraveendir@gmail.com
Received: 06 December 2018, Revised and Accepted: 01 February 2019

INTRODUCTION
Liver is an essential organ which is involved in detoxification of the exogenous xenobiotics, drugs and endogenous bile pigments, viral infections, and chronic alcoholism. While performing several detoxifications, liver is subjected to stress, leading to liver diseases resulting in liver damage and serious health problems and death. The liver regulates many important metabolic functions. Hepatic injury is associated with distortion of these metabolic functions [1]. Liver damage is a common pathology, which in most cases, involves oxidative stress and is characterized by a progressive evolution from steatosis to chronic hepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma [2]. As oxidative stress plays a central role in liver pathologies and their development, the use of antioxidants has been proposed as therapeutic agents to counteract liver damage.

In spite of advancements in modern medicine, hepatoprotective drugs are quite limited. The extended usage of remedies available in modern medicine is associated with severe side effects. The development of new molecules effective in treating or preventing hepatic damage remains a challenge in the field of drug development [3]. It is generally recognized that indigenous drugs used traditionally by ethnic tribes or societies across the world can provide relief to patients with hepatic disorders. As a result, a conscious effort is undertaken to screen indigenous drugs used traditionally in different regions of the world, especially India and China. Plant-based drugs exhibiting hepatoprotective and antioxidant activities have been isolated from many species. A well-known potential hepatoprotective drug is, silymarin, isolated from Silybum marianum.

In recent times, the pharmaceutical and agri-food industries have been responsible for a great expansion in the demand for marine alga due to their significant applications as ingredients in functional foods and richness in antioxidant ingredients. It has been reported that marine alga are rich source of bioactive compounds such as terpenoids, phlorotannins, fucoidans, sterols and glycolipids, and the extracts or isolated pure components from marine alga possess a wide range of pharmacological properties such as anticancer, antibacterial, antifungal, anti-inflammatory, anticoagulant, antioxidant, antihypoglycemic, hypolipidemic, antimalanogenic, hepatoprotective, and neuroprotective activities [4,5]. Apart from these, marine alga are also a rich resource of dietary iodine and fibers which can also play a major role in improving the nutritional quality [6].

The green marine alga Ulva lactuca, commonly known as sea lettuce, has long been used as food and as a traditional medicinal agent to treat helminthic infections, fever, urinary diseases, and dyspepsia [7]. U. lactuca is rich in flavonoids and has potent antioxidant properties [8]. The hepatoprotective nature of U. lactuca against liver injury induced by D-galactosamine/endotoxin in rats has been established [9]. U. lactuca has also been shown to have potent hypcholesterolemic and antioxidant effects [10], antibacterial activity [11], nephroprotective activity [12], neuroprotective activity [13], and alpha-amylase and alpha-glucosidase inhibitory activity [14].

In view of these reports, the present investigation has been undertaken to evaluate the hepatoprotective and antioxidant activities of the polyphenols fraction of U. lactuca against paracetamol intoxicated liver damage in rat. Marine alga U. lactuca was selected for the present study.

ABSTRACT
Objective: The objective of this study was to assess the activity Ulva lactuca polyphenols fraction in protecting the liver damage induced by high dose of paracetamol.

Methods: This study was performed using Wistar albino rats divided into six groups. Group 1 was the normal group. Groups 2, 3, 4, 5, and 6 received paracetamol (2 g/kg) for 7 days. In addition to paracetamol, Groups 3, 4, 5, and 6 received silymarin (100 mg/kg), U. lactuca polyphenols fraction at the doses of 50, 100, and 200 mg/kg, respectively, for 7 days. On the 8th day, serum and liver samples were collected from the animals and the hepatoprotective and antioxidant activities were assessed by studying the levels of liver marker enzymes, bilirubin, protein, reduced glutathione, and antioxidant enzymes.

Results: U. lactuca polyphenols fraction, at the tested doses, restored the levels of all serum markers and enzymes (aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, lactate dehydrogenase, γ-glutamyl transferase, total bilirubin, total protein, cholesterol, triglycerides, and reduced glutathione) and liver homogenate markers (reduced glutathione, superoxide dismutase, catalase, and glutathione peroxidase) significantly, in dose-dependent manner.

Conclusion: This study suggests that U. lactuca polyphenols fraction has a hepatoprotective effect against paracetamol-induced liver damage and possesses antioxidant activities.

Keywords: Hepatoprotective activity, Antioxidant activity, Paracetamol, Marine alga, Edible alga, Ulva lactuca, Polyphenols fraction.
as it is an edible marine alga, easily available in the Gulf of Mannar Coast of Mandapam.

MATERIALS AND METHODS

Collection of marine alga sample

Fresh marine alga *U. lactuca* was collected from the intertidal regions of the Mandapam coast of Gulf of Mannar. The taxonomic identification of species was done using standard literature and taxonomic keys. The alga was identified and authenticated by the Principal Scientist, Central Salt and Marine Chemical Research Institute, Mandapam Camp. The collected samples were cleaned well with the seawater until unnecessary impurities, adhering sand particles, and extraneous matter such as epiphytes, pebbles, and shells were removed, and it was brought to the laboratory in sterile plastic bags containing seawater to prevent evaporation. It was then washed thoroughly with tap water and distilled water to remove the surface salty materials. It was air dried for 1 week and later ground in an electric mixer. The powdered samples were subsequently stored in the refrigerator for further use.

Extraction of polyphenols fraction from *U. lactuca*

The powdered samples were then extracted with 80% ethanol for 24 h under continuous shake at 20°C. The extracts were then concentrated in a rotary evaporator under reduced pressure at 40°C [15]. The solid mass obtained was stored at 4°C. At the time of administration to the rats, the polyphenols fraction was dissolved in distilled water to required concentration.

Experimental animals

Male Swiss albino mice weighing 20–25 g and male Wistar albino rats weighing 150–200 g were used for the study. The animals were maintained in well-ventilated rooms with 12:12 light/dark cycle, 24±2°C temperature, and 30–70% relative humidity, in polycarbonate cages. Standard rat rodent pellets (M/s. Hindustan Lever Ltd., Mumbai) and water were provided *ad libitum*. Animals were acclimatized to the laboratory conditions 1 week before the initiation of the study. The study was approved by the Institutional Animal Ethical Committee (IAEC) constituted for the purpose of CPCSEA (IAEC/APCAS/01/2015/01).

Acute toxicity studies

Acute oral toxicity was performed according to OECD-423 guidelines [16]. Male Swiss albino mice weighing 20–25 g selected by random sampling technique were used in the study. The animals were fasted overnight, provided only water after which polyphenols fraction was administered to the groups (3 mice/group) orally at the required concentration. The animals were fasted overnight, provided only water after which polyphenols fraction was dissolved in distilled water to required concentration. At the time of administration to the rats, the polyphenols fraction was dissolved in distilled water to required concentration. They were then observed for toxic symptoms such as behavioral changes, locomotion, convulsions, and mortality.

Induction of hepatic damage

Liver damage was induced in rats by paracetamol (acetaminophen) suspended in 0.5% Tween-80 and administered p.o., at a dose of 2 g/kg body weight.

Experimental design

Male Wistar albino rats (male) weighing between 150 and 200 g were divided into six groups of six animals each. The weight range of the animals was equally distributed throughout the groups.

- **Group 1**: Control rats received distilled water orally for 7 days.
- **Group 2**: Treated with paracetamol (2 g/kg) for 7 days.
- **Group 3**: Treated with paracetamol (2 g/kg) and silymarin (100 mg/kg) dissolved in water for 7 days.
- **Group 4**: Treated with paracetamol (2 g/kg) and *U. lactuca* polyphenols fraction (50 mg/kg) dissolved in water for 7 days.
- **Group 5**: Treated with paracetamol (2 g/kg) and *U. lactuca* polyphenols fraction (100 mg/kg) dissolved in water for 7 days.
- **Group 6**: Treated with paracetamol (2 g/kg) and *U. lactuca* polyphenols fraction (200 mg/kg) dissolved in water for 7 days.

Animals were kept starved overnight on the 7th day. The next day all the animals were sacrificed under light ether anesthesia. Blood was collected by direct cardiac puncture into sterilized dry centrifuge tubes and allowed to coagulate for 30 min at 37°C. The clear serum was separated at 2500 rpm for 10 min and subjected to various biochemical estimations.

Biochemical estimations

The separated serum was subjected to biochemical estimation of different parameters such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), γ-glutamyl transferase (γ-GT), total bilirubin, total protein, cholesterol, triglycerides, and reduced glutathione.

The antioxidant status

One hundred milligram of liver tissue was weighed and homogenate was prepared in 10 ml Tri-chloroacetic acid buffer (0.5 M; pH 7.4) at 4°C. The homogenate was centrifuged and the supernatant was used for the estimation of reduced glutathione and asay of antioxidant enzymes such as superoxide dismutase, catalase, and glutathione peroxidase.

RESULTS AND DISCUSSION

All the doses (5, 50, 300, and 2000 mg/kg) of *U. lactuca* polyphenols fraction tested for acute oral toxicity studies were found to be non-toxic. According to the OECD-423 guidelines for acute oral toxicity, the LD₅₀ dose of 2000 mg/kg and above is categorized as unclassified. *U. lactuca* polyphenols fraction did not produce any mortality even at the highest dose (2000 mg/kg) employed, and hence, *U. lactuca* polyphenols fraction was considered to be safe for further pharmacological screening. Three submaximal doses (50, 100, and 200 mg/kg) were employed for further pharmacological investigations.

Liver is the largest organ and is a target for toxicity due to its role in clearing and metabolizing chemicals through the process of detoxification. Drug-induced liver disorders occurring frequently can be life threatening and mimic all forms of liver diseases. Paracetamol is also a drug which is capable of causing liver disorders, if it is given continuously.

The paracetamol-induced liver disorders were treated with *U. lactuca* polyphenols fraction for 7 days. Estimating the activities of serum marker enzymes such as AST, ALT, ALP, γ-GT, and LDH is a tool for determining the statistical significance of difference between experimental groups. *p<0.05* was considered to be statistically significant.

There was a significant increase (*p<0.01*) in the levels of AST, ALT, ALP, LDH, γ-GT, total bilirubin, total cholesterol, and triglycerides and a significant decrease (*p<0.01*) in total protein and plasma reduced glutathione in paracetamol-treated animals from those of the control group. Administration of *U. lactuca* polyphenols fraction (50, 100, and 200 mg/kg) decreased the reduced levels of AST, ALT, ALP, LDH, γ-GT, total bilirubin, total cholesterol, and triglycerides in a dose-dependent manner (*p<0.01*). The levels of total protein and plasma reduced...
The polyphenols fraction treated

Parameters	Group I	Group II	Group III	Group IV	Group V	Group VI
ALT (IU/L)	48.50±2.09	161.00±7.26	52.17±1.92	65.00±3.07	58.00±2.74	52.83±2.49
AST (IU/L)	82.00±3.71	213.67±10.45	84.83±4.13	111.83±5.37	99.83±4.79	90.83±4.25
ALP (IU/L)	153.00±6.60	291.3±11.80	139.5±6.61	101.83±9.52	162.33±8.50	147.5±7.23
LDH (IU/L)	110.33±4.75	182.17±8.69	112.67±5.36	140.00±7.30	125.00±6.52	113.67±5.86
γ-GT (IU/L)	3.18±0.15	6.58±0.31	3.25±0.17	4.17±0.31	3.72±0.29	3.58±0.18
Total bilirubin (mg/dL)	0.78±0.04	2.48±0.13	0.80±0.04	1.02±0.06	0.90±0.05	0.82±0.05
Total protein (g/dL)	3.73±0.35	5.03±0.26	7.25±0.30	5.80±0.29	6.50±0.33	7.23±0.39
Total cholesterol (g/dL)	96.33±4.33	200.17±8.98	101.33±5.22	130.50±5.73	116.50±5.12	105.83±4.37
Triglycerides (g/dL)	86.33±4.09	286.50±1.01	89.00±4.55	115.00±6.19	102.67±5.53	93.33±4.78
Reduced glutathione (mg/dL)	32.80±1.31	17.50±0.99	30.83±1.21	22.63±1.10	25.50±1.10	28.33±1.22

Table 1: Effect of Ulva lactuca polyphenols fraction on serum marker enzymes, protein, bilirubin, and reduced glutathione

Table 2: Effect of Ulva lactuca polyphenols fraction on liver homogenate reduced glutathione and antioxidant enzymes

Parameters	Group I	Group II	Group III	Group IV	Group V	Group VI
Liver reduced glutathione (mg/100 g wet tissue)	48.50±2.52	21.00±1.10	47.50±2.13	35.17±1.94	39.33±2.17	43.67±2.14
1Superoxide dismutase	8.25±0.45	4.30±0.23	8.02±0.46	6.18±0.39	6.93±0.43	7.70±0.24
2 Catalase	57.50±2.20	24.83±1.24	55.50±2.92	41.17±1.89	46.17±2.12	51.33±2.45
3Glutathione peroxidase	8.73±0.41	4.35±0.24	8.42±0.39	6.12±0.38	6.85±0.43	7.62±0.38

The authors declare that they have no conflicts of interest.

CONFLICTS OF INTEREST

The authors are thankful to the management of Adhiparasakthi College of Arts and Science (Autonomous), Kavai, India, for providing the facilities.

AUTHORS’ CONTRIBUTIONS

Ravindran NT designed study project and performed experiments. He was also involved in manuscript editing and finalization. Mohamed Sadiq A designed study project, contributed in experiment finalization and implementation, manuscript editing, and finalization.

ACKNOWLEDGMENT

The authors are thankful to the management of Adhiparasakthi College of Arts and Science (Autonomous), Kavai, India, for providing the facilities.
REFERENCES

1. Wolf PL. Biochemical diagnosis of liver disease. Indian J Clin Biochem 1999;14:59-90.

2. Anup S, Shinavandappa T. Hepatoprotective effect of the root extract of Decalepis hamiltonii against carbon tetrachloride-induced oxidative stress in rats. Food Chem 2010;118:411-7.

3. Ahmad I, Aqil F, Owais M. Modern Phytomedicine: Turning Medicinal Plants into Drugs. New York: John Wiley and Sons; 2006.

4. Liu L, Heinrich M, Myers S, Dworjanyn SA. Towards a better understanding of medicinal uses of the brown seaweed Sargassum in traditional Chinese medicine: A phytochemical and pharmacological review. J Ethnopharmacol 2012;142:591-619.

5. Chakraborty K, Paulraj R. Sesquiterpenoids with free radical scavenging properties from marine macroalga Ulva fasciata Delile. Food Chem 2010;122:31-41.

6. Gupta S, Abu-Ghannam N. Recent developments in the application of seaweeds or seaweed extracts as a means for enhancing the safety and quality attributes of foods. Innov Food Sci Emerg Technol 2011;12:600-9.

7. Kim IH, Lee DG, Lee SH, Ha JM, Ha BJ, Kim BJ et al. Antioxidant activities of red alga (Saccharina latissima) from Jeju Island. Alga 2006;21:149-56.

8. Reka P, Banu AT, Seethalakshmi M. Alpha amylase and alpha glucosidase inhibition activity of selected edible seaweeds from south coast area of India. Int J Pharm Pharm Sci 2017;9:64-8.

9. Heo SJ, Cha SH, Lee KW, Jeon YJ. Antioxidant activities of red alga from Jeju Island. Alga 2006;21:149-56.

10. Hassan S, El-Twab SA, Hetta M, Mahmoud B. Improvement of lipid profile and antioxidant of hypercholesterolemic albino rats by polysaccharides extracted from the green alga Ulva lactuca Linnaeus. Saudi J Biol Sci 2011;18:333-40.

11. Pushparaj A, Raabbin RS, Balasankar T. Antimicrobial activity of Kappaphycus alvarezi and Ulva lactuca extracts against humanpathogenic bacteria. Int J Curr Microbiol Appl Sci 2014;3:432-6.

12. Mahmoud HM, Hussein UL. Suppression of N-nitrosodiethylamine induced oxidative renal toxicity by sulphatedpolysaccharide and aqueous extract of Ulva lactuca in rats. Int J Pharm Pharm Sci 2014;6:248-53.

13. Suganthy N, Karatha Pandian S, Pandirea Devi K. Neuroprotective effect of seaweeds inhabiting South Indian coastal area (Hare Island, Gulf of Mannar marine biosphere reserve): Cholinesterase inhibitory effect of Hypnea valentiae and Ulva reticulata. Neurosci Lett 2010;468:216-9.

14. Reka P, Banu AT, Seethalakshmi M. Alpha amylase and alpha glucosidase inhibition activity of selected edible seaweeds from south coast area of India. Int J Pharm Pharm Sci 2017;9:64-8.

15. Heo SJ, Cha SH, Lee KW, Jeon YJ. Antioxidant activities of red alga from Jeju Island. Alga 2006;21:149-56.

16. Ecobichon DJ. The Basis of Toxicology Testing. 2nd ed. New York: CRC Press; 1997. p 43-60.

17. Reitman S, Frankel S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol 1957;28:56-63.

18. King EJ, Armstrong AR. Determination of serum and bile phosphatase activity. Can Med Assoc J 1934;31:56-63.

19. King J. The hydrolase and alkaline phosphatase. In: Practical Clinical Enzymology. London: Nestanrd Co. Ltd.; 1965. p. 191.

20. Rossalki SB, Rau D. Serum -glutamyl transpeptidase activity in alcoholism. Clin Chim Acta 1972;39:41-7.

21. Malloy HT, Evelyn EA. The determination of bilirubin with photoelectric colorimeter. J Biol Chem 1937;119:481-5.

22. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem 1951;193:265-75.

23. Parekh AC, Jung DH. Cholesterol determination with ferric acetate-uranyl acetate and sulfuric acid-ferrous sulfate reagents. Anal Chem 1970;42:1423-7.

24. Foster LB, Dunn RT. Stable reagents for determination of serum triglycerides by a colorimetric hantzsch condensation method. Clin Chem 1973;19:338-40.

25. Moron MS, Depierre JR, Mannervik B. Levels of glutathione, glutathione reductase and glutathione-S-transferase activity in rat lung and liver. Biochim Biophys Acta 1979;582:67-78.

26. Mira HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 1972;247:3170-5.

27. Takahara S, Hamilton BH, Neel JV, Kobara TY, Ogura Y, Nishimiuia ET. Hypocatalasemia, a new genetic carrier state. J Clin Invest 1960;39:610-9.

28. Rortruck JT, Pope AL, Ganther HE, Swanson AB. Selenium: Biochemical roles as a component of glutathione peroxidase. Science 1973;179:588-90.

29. Larrey D. Drug induced liver disease. J Hepatol 2003;32:77-88.

30. Watkins PB, Seef LB. Drug induced liver injury: Summary of a single topic clinical research committee. Hepatology 2006;43:618-31.

31. Mitra SK, Venkataramanna MV, Sundaram R, Gopumadhavan S. Protective effect of HD-03, a herbal formulation against various hepatotoxic agents in rats. J Ethnopharmacol 1998;63:181-6.

32. Dwivedi Y, Rastogi R, Garg NK, Dhandan DM. Prevention of paracetamol-induced hepatic damage in rats by picrolir, the standardized active fraction from Picorhiza kurroo. Phytother Res 1999;13:115-9.

33. Tewari S, Gupta V, Bhattacharya S. Comparative study of antioxidant potential of tea with and without additives. Indian J Physiol Pharmacol 2000;44:215-9.

34. Prasad VS, Venkatachalam SR, Chander R, Thomas P. Dietary antioxidants-natural defense against disease. Aravaidyan 1999;12:149-58.

35. Bandyopadhyay U, Das D, Banerjee KR. Reactive oxygen species: Oxidative damage and pathogenesis. Curr Sci 1999;77:658-66.