Tests of star formation metrics in the low-metallicity galaxy NGC5253 using ALMA observations of H30α line emission

DOI:
10.1093/mnras/stx1837

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Bendo, G., Miura, R. E., Espada, D., Nakanishi, K., Beswick, R., D'Cruze, M., Dickinson, C., & Fuller, G. (2017). Tests of star formation metrics in the low-metallicity galaxy NGC5253 using ALMA observations of H30α line emission. Monthly Notices of the Royal Astronomical Society, 472(1), 1239-1252. Advance online publication. https://doi.org/10.1093/mnras/stx1837

Published in:
Monthly Notices of the Royal Astronomical Society

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester's Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.
Tests of star formation metrics in the low metallicity galaxy NGC 5253 using ALMA observations of H30α line emission

G. J. Bendo1,2, R. E. Miura3, D. Espada3, K. Nakanishi3,4, R. J. Beswick1, M. J. D’Cruze1, C. Dickinson1, G. A. Fuller1,2
1 Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
2 UK ALMA Regional Centre Node
3 National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo, 181-8588, Japan
4 The Graduate University for Advanced Studies (Sokendai), 2-21-1 Osawa, Mitaka, Tokyo 181-0015, Japan

ABSTRACT
We use Atacama Large Millimeter/submillimeter Array (ALMA) observations of H30α (231.90 GHz) emission from the low metallicity dwarf galaxy NGC 5253 to measure the star formation rate (SFR) within the galaxy and to test the reliability of SFRs derived from other commonly-used metrics. The H30α emission, which originates mainly from the central starburst, yields a photoionizing photon production rate of (1.9±0.3)×1052 s−1 and an SFR of 0.087±0.013 M⊙ yr−1 based on conversions that account for the low metallicity of the galaxy and for stellar rotation. Among the other star formation metrics we examined, the SFR calculated from the total infrared flux was statistically equivalent to the values from the H30α data. The SFR based on previously-published versions of the Hα flux that were extinction corrected using Paα and Paβ lines were lower than but also statistically similar to the H30α value. The mid-infrared (22 μm) flux density and the composite star formation tracer based on Hα and mid-infrared emission give SFRs that were significantly higher because the dust emission appears unusually hot compared to typical spiral galaxies. Conversely, the 70 and 160 μm flux densities yielded SFR lower than the H30α value, although the SFRs from the 70 μm and H30α data were within 1–2σ of each other. While further analysis on a broader range of galaxies are needed, these results are instructive of the best and worst methods to use when measuring SFR in low metallicity dwarf galaxies like NGC 5253.

Key words: galaxies: dwarf - galaxies: individual: NGC 5253 - galaxies: starburst - galaxies: star formation - radio lines: galaxies

1 INTRODUCTION
Star formation in other galaxies is typically identified by looking at tracers of young stellar populations, including either photoionizing stars, ultraviolet-luminous stars, and supernovae. The most commonly-used star formation tracers are ultraviolet continuum emission; Hα (6563 Å) and other optical and near-infrared recombination lines; mid- and far-infrared continuum emission; and radio continuum emission. However, each of these tracers have disadvantages when used to measure star formation rates (SFRs). Ultraviolet continuum and optical recombination line emission directly trace the young stellar populations, but dust obscuration typically affects the SFRs from these tracers. Near-infrared recombination line emission is less affected by dust obscuration, but it is still a concern in very dusty starburst galaxies. Dust continuum emission in the infrared is unaffected by dust obscuration except in extreme cases, but since this emission is actually a tracer of bolometric stellar luminosity and not just the younger stellar population, it may yield an overestimate of the SFR if many evolved stars are present. Radio continuum emission traces a combination of free-free continuum emission from photoionized gas and synchrotron emission from supernova remnants, so proper spectral decomposition is needed to accurately convert radio emission to SFR. Additionally, the cosmic rays that produce synchrotron emission will travel significant distances through the ISM, making radio emission appear diffused relative to star formation on scales of ~100 pc (Murphy et al. 2006a,b).

Higher-order recombination line emission at millimetre and submillimetre wavelengths, which is produced by the same photoionized gas that produce Hα and other optical and near-infrared recombination lines, can also be used to measure SFRs. Unlike ultraviolet, optical, and near-infrared star formation tracers, these millimetre and submillimetre recombination lines are not affected by dust extinction, but unlike infrared and radio synchrotron emission, the recombination lines directly trace the photoionizing stars. Recombination line emission can also be observed at centimetre and longer wavelengths, but the line emission at these longer wavelengths is generally affected by a combination of masing effects and opacity issues in the photoionized gas, while the millimetre and submillimetre lines are not (Gordon & Walmsley 1990).
The primary reason why these millimetre and submillimetre recombination lines are not used more frequently as star formation tracers is because the emission is very faint. Before the Atacama Large Millimeter/submillimeter Array (ALMA) became operational, millimetre and submillimetre recombination line emission has only been detected within three other galaxies: M82 (Seaquist et al. 1994, 1996), NGC 253 (Puxley et al. 1997), and Arp 220 (Anantharamaiah et al. 2000). ALMA, however, has the sensitivity to potentially detect this emission in many more nearby galaxies, including many nearby luminous infrared galaxies and other starbursts (Scoville & Murchikova 2013). Detections of recombination line emission from the first three cycles of ALMA observations include measurements of the H40α (99.02 GHz) emission from the centre of NGC 253 (Meier et al. 2015; Bendo et al. 2015b) and H42α (85.69 GHz) emission from the centre of NGC 4945 (Bendo et al. 2016) as well as a marginal detection of H26α (353.62 GHz) in Arp 220 (Scoville et al. 2015).

The NGC 253 and 4945 analyses included comparisons of SFRs from ALMA recombination line and free-free emission to other star formation tracers in radio and infrared emission. The results illustrated some of the challenges in measuring star formation rates in other wavebands. SFRs from radio continuum emission calculated using one of the conversions given by Condon (1992) or Murphy et al. (2011) yielded results that differed significantly from the ALMA data. Recombination line emission at centimetre or longer wavelengths often produced much less accurate results. For NGC 253 specifically, some of the SFRs from recombination line emission at these longer wavelengths were 3 times lower than what was determined from the ALMA data, which indicated that the longer wavelength lines may be affected by gas opacity effects. The SFR from the mid-infrared data for the central starburst in NGC 4945 was 10 times lower than the SFR from the H42α or free-free emission, but the SFR from the total infrared flux was consistent with the ALMA-based SFRs. This suggests that the centre of NGC 4945 is so dusty that even the mid-infrared light from the dust itself is heavily obscured.

While the results for NGC 253 and 4945 have revealed some of the limitations of other star formation tracers, the analyses have mainly focused on radio or infrared data. The dust extinction is so high in the central starbursts in both galaxies that comparisons of millimetre recombination line emission to ultraviolet or Hα emission is not worthwhile. Such comparisons need to be performed using a less dusty object.

NGC 5253 is a nearby blue compact dwarf galaxy within the M83/Centaurus A Group (Karachentsev et al. 2007) that hosts a starburst nucleus. Most published distances for the galaxy range from 3 to 4 Mpc; we use a distance of 3.15±0.20 Mpc (Freedman et al. 2001). Because the starburst is both very strong and relatively nearby, it has been intensely studied at multiple wavelengths, including Hα, infrared, and radio emission, making it an ideal object to use in a comparison of SFRs from millimetre recombination line data to SFRs from data at other wavelengths. Radio recombination line emission from NGC 5253 has been detected previously by Mohan et al. (2001) and Rodriguez-Rico et al. (2007) at lower frequencies, but they indicated that adjustments for masing and gas opacity would need to be taken into account to calculate SFR. As millimetre recombination line emission is unaffected by these issues, it can provide more accurate measurements of the SFR.

We present here ALMA observations of the H30α line at a rest frequency of 231.90 GHz, with which we derive a SFR that directly traces the photoionizing stars while not being affected by dust attenuation. We compare the ALMA-based SFR to SFRs from other wavebands to understand their effectiveness, and we also examine the efficacy of SFRs based on combining Hα emission (a tracer of unobscured light from star forming regions) with infrared emission (a tracer of light absorbed and re-radiated by dust). The ALMA observations and the SFRs derived from the line are presented in Section 2. SFRs from optical, infrared, and radio emission as well as composite SFRs based on multiple wavebands are derived and compared to the H30α values in Section 3. Section 4 provides a summary of the results.

2 ALMA DATA

2.1 Observations and data processing

Observations were performed with both the main (12 m) array and the Morita (7 m) Array with baselines ranging from 8 to 1568 m. The observations with both arrays consist of two pointings centered on positions 13:39:55.9 -31:38:26 and 13:39:56.8 -31:38:32 in J2000 coordinates, which were used to map both emission from the compact central starburst and more diffuse, extended emission from gas to the southeast of the centre (see Miura et al. in preparation). Additional data are also available from ALMA total power observations, but since the H30α emission is from a very compact source, the total power data will not substantially improve the detection of the line emission. Moreover, inclusion of the total power data will complicate the data processing procedure, and these data currently cannot be used for continuum imaging. Hence, we did not include the total power data in our analysis.

General information about each execution block used to construct the H30α image cube and continuum image is listed in Table 1. Information about the spectral set-up for each spectral window in each execution block is given in Table 2.

The visibility data for each execution block was calibrated separately using the Common Astronomy Software Applications (CASA) version 4.7.0. To begin with, we applied amplitude corrections based on system temperature measurements to all data, and we applied phase corrections based on water vapour radiometer measurements to the 12 m data. For the data with baselines greater than 1000 m, we also applied antenna position corrections. Following this, we visually inspected the visibility data and flagged data with noisy or abnormal phase or amplitude values as well as atmospheric lines centered at 231.30 GHz. Next, we derived and applied calibrations for the bandpass, phase, and amplitude. The Butler-JPL-Horizons 2012 models were used to obtain the flux densities for Callisto and Titan. J1427–4206 is one of the 43 quasars routinely monitored for flux calibration purposes as described within the ALMA Technical Handbook (Magnum & Warmels 2016). The GETALMAFLUX task within the Analysis Utilities software package was used to calculate the flux density of J1427–4206 based on measurement in the ALMA Calibrator Source Catalogue. The version of the Butler-JPL-Horizons 2012 models implemented in CASA 4.7.0 is known to produce inaccurate results for Ceres, so the data for the bandpass calibrator J1427–4206 and the estimated flux density from the GETALMAFLUX task were used to flux calibrate the 15 June 2014 observation. The uncertainty in band 6 flux calibration is specified in the ALMA Proposer’s Guide (Andreadi et al. 2016) as 10%, but because the uncertainty in the estimated
Table 1. ALMA observation information.

Array	Unique identifier	Observing dates	On-source observing time (min)	Usable antennas	uv coverage (m)	Bandpass calibrator	Flux calibrator	Phase calibrator
Morita	A002/X8440e0/X29c6	15 Jun 2014	30.7	9	8-48	J1427-4206	Ceres	J1342-2900
Morita	A002/X9652ea/X5c3	10 Dec 2014	30.7	9	9-45	J1337-1257	Callisto	J1342-2900
12 m	A002/X966ceu/X25de	11 Dec 2014	8.5	37	13-336	J1337-1257	Callisto	J1342-2900
12 m	A002/Xa5df2c/X50ce	18 Jul 2015	13.2	39	14-1512	J1337-1257	J1427-4206	J1342-2900
12 m	A002/Xa5df2c/X52fa	18 Jul 2015	15.8	39	14-1568	J1337-1257	Titan	J1342-2900

Table 2. ALMA spectral window settings.

Array	Unique identifier	Frequency range (GHz)	Bandwidth (GHz)	Number of channels
Morita	A002/X8440e0/X29c6	229.216 - 231.208	1.992	2040
		230.577 - 232.569	1.992	2040
		243.594 - 245.586	1.992	2040
Morita	A002/X9652ea/X5c3	229.247 - 231.239	1.992	2040
		230.608 - 232.601	1.992	2040
		243.627 - 245.619	1.992	2040
12 m	A002/X966ceu/X25de	229.306 - 231.181	1.875	1920
		230.667 - 232.542	1.875	1920
		243.686 - 245.561	1.875	1920
12 m	A002/Xa5df2c/X50ce	229.270 - 231.145	1.875	1920
		230.630 - 232.505	1.875	1920
		243.647 - 245.522	1.875	1920
12 m	A002/Xa5df2c/X52fa	221.269 - 231.144	1.875	1920
		230.630 - 232.505	1.875	1920
		243.647 - 245.522	1.875	1920

* These values are the observed (sky) frequencies and not rest frequencies.

flux densities for J1427-4206 was 15%, we used 15% as the final calibration uncertainty.

The H30α image was created after subtracting the continuum from the visibility data in the spectral window containing the line. The continuum was determined by fitting the visibility data at approximately 230.7-231.2 GHz and 231.7-232.5 GHz (in the Barycentric frame of reference) with a linear function; this frequency range avoids not only the H30α line but also the atmospheric absorption feature centered at 231.30 GHz. After this, we concatenated the continuum-subtracted data and then created a spectral cube using CLEAN within CASA. We used Briggs weighting with a robust parameter of 0.5, which is the standard weighting used when producing ALMA images of compact sources like the H30α source in NGC 5253. After creating the image, we applied a primary beam correction. The spectral channels in the cube have a width of 10 MHz (equivalent to a velocity width of 12.9 km s$^{-1}$) and range from sky frequencies of 231.40 to 231.80 GHz in the Barycentric frame. The pixels have a size of 0.05 arcsec, and the imaged field was 100×100 arcsec. The reconstructed beam has a size of 0.21×0.19 arcsec.

We also created a 231.6 GHz (observed frame) continuum image using the data from 230.7-231.2 GHz and 231.7-232.5 GHz. We could have used the data from the spectral windows covering the CO and CS lines. However, the potentially steep slope of the continuum at these frequencies (see the discussion in Section 2.2), problems with observations on the shortest baselines in the spectral window covering the 243.6-245.6 GHz frequency range, and the relatively broad CO line emission made it difficult to create reliable continuum images using all spectral windows. Because we found evidence for extended continuum emission, we used natural weighting when creating the final image. The image dimensions are the same as for the H30α image cube. The beam size is 0.28×0.25 arcsec.

As a test of the flux calibration, we imaged J1427-4206 and J1337-1257 (another quasar monitored by ALMA for flux calibration purposes) using the same parameters that we used for creating the H30α image cube. The measured flux densities differ by <10% from the GETALMA_FLUX estimates, which is below our assumed flux calibration uncertainty of 15%.

We also checked the astrometry of each of the two longest-baseline observations by imaging the astrometry check source (J1339-2620) using the same parameters as for the continuum image, fitting the peak with a Gaussian function, and comparing the position to the coordinates in the ALMA Calibrator Source Catalogue. The positions match to within one pixel, or 0.05 arcsec. Equations in the ALMA Technical Handbook (Magnum & Warmels 2016) yield a smaller value, but we will use 0.05 arcsec as the astrometric uncertainty.

2.2 H30α and 231.6 GHz continuum images

Figure 1 shows the 231.6 GHz (sky frequency) continuum and H30α spectral line images of the central 8×8 arcsec of NGC 5253. The H30α image is the integral of the continuum-subtracted flux between sky frequencies of 231.55 and 231.65 GHz. Both sources show a very bright central peak at a right ascension of 13:39:55.965 and declination of -31:38:24.36 in J2000 coordinates. No significant H30α emission is observed outside of the central peak. The best-fitting Gaussian function to the H30α image has a FWHM 0.27×0.21 arcsec, indicating that the H30α source may have a de-
Figure 1. Images of the central 8×8 arcsec of NGC 5253 in 231.6 GHz (sky frequency) continuum emission (top) and H30α line emission (bottom). The contours in each image show the 2σ, 3σ, 5σ, 10σ, and 100σ detections levels in each image, where σ is 1.0 Jy arcsec$^{-2}$ for the 231.6 GHz image and 0.69 Jy km s$^{-1}$ arcsec$^{-2}$ for the H30α image. The red ovals at the bottom right of each panel show the FWHM of the beam (0.28×0.25 arcsec for the 231.6 GHz image and 0.21×0.19 arcsec for the H30α image).

convolved angular size of ∼0.15 arcsec. In the continuum image, a second unresolved source to the northeast of the centre is clearly detected at the 10σ level. Several other compact sources are detected in continuum at the 3-5σ level, including a few sources outside the region shown in Figure 1, and some diffuse emission near the 3σ level is seen around the central peak, most notably immediately to south of the centre.

Figure 2 shows the location of the H30α source (which coincides with the location of the peak in 231.6 GHz emission) relative to other sources detected in observations with comparable angular resolutions. The H30α source lies within 0.04 arcsec of the peak in 43 GHz emission measured by Turner & Beck (2004), which has the same position as the brightest 15 and 23 GHz sources detected in the high angular resolution radio observations presented by Turner et al. (2000). This offset is smaller than the astrometric uncertainty of 0.05 arcsec that we are using for the ALMA data. Turner et al. (2000) also reported the detection of a second 23 GHz source at a location 0.21 arcsec east of the H30α source, although this source is not detected at 15 GHz, and it also is either a very weak detection or non-detection in the 43 GHz images shown by Turner & Beck (2004). The difference between the peak fluxes of the primary and secondary 23 GHz sources is ∼6×. If this secondary source has a corresponding H30α source, it would be difficult to separate the emission of this secondary source from the brighter H30α source given the small angular separation between the sources compared to the FWHM of the ALMA beam and the much lower flux expected from the secondary source relative to the brighter source. Additional millimetre or radio observations with better angular resolutions and better sensitivities would be needed to confirm that the secondary source is present.

The two brightest Hα and Paα (1.876 μm) sources that were identified by Calzetti et al. (2015) using Hubble Space Telescope straddle the H30α source. These sources, which were labelled clusters 5 and 11, have counterparts to sources identified by Calzetti et al. (1997), Alonso-Herrero et al. (2004), Harris et al. (2004), and de Grijs et al. (2013). Calzetti et al. (2015) had suggested that the brightest radio continuum sources actually corresponded to cluster 11 (as originally suggested by Alonso-Herrero et al. (2004)), that the secondary 23 GHz source detected by Turner et al. (2000) at 23 GHz corresponds to cluster 5 and that the offset between the radio and optical/near-infrared data was related to systematic effects in the astrometry systems used to create the images. It is therefore possible that the H30α source detected in the ALMA data corresponds to cluster 11. However, clusters 5 and 11 are separated by a distance of 0.46 arcsec, so they should have been resolved into two separate components in the H30α map. The Paα fluxes measured by Calzetti et al. (2015) differ by only ∼25%, but after they attempt to correct for dust absorption using models that account for the intermixing of the stars and dust, the line fluxes are expected to differ by ∼6×. The peak of the H30α source is detected by ALMA at the 18σ level, so a second photoionization region with at least
Figure 3. Plots of the integrated 231.6 GHz continuum flux density (top) and integrated H30α flux (bottom) as a function of the radius of the measurement aperture. The uncertainties in the continuum measurement related to random noise in the image are smaller than the width of the line.

...one-sixth the flux of the main source would be detected at the 3σ level.

It is possible that the second source is even fainter than expected relative to the primary H30α source, which could occur if the primary source is more obscured than expected. Alternately, it is possible that both sources lie at ends of a larger star forming complex that is heavily obscured in the optical and near-infrared bands, although the 0.46 arcsec separation between the two optical/near-infrared sources is larger than the ∼0.15 arcsec size of the H30α source we derived, which makes this second scenario less likely.

The coincidence of the H30α emission with the 231.6 GHz continuum emission provides additional support for the possibility that the central star forming region is very heavily obscured. As discussed below, the 231.6 GHz continuum emission is expected to contain a combination of dust and free-free emission, although the relative contributions of each may be very uncertain. If the 231.6 GHz emission is primarily from dust, then we would expect the optical and near-infrared light to be heavily obscured where most of the photoionizing stars are also located and for the Paα and Hα emission to be more easily detected at the fringes of the region. In fact, Calzetti et al. (2015) noted that the Paα emission is offset relative to the Hα emission in their cluster 11, which would be consistent with this interpretation of the millimetre continuum and recombination line emission. However, if the 231.6 GHz emission includes substantial free-free emission, then we would expect to easily detect a second photoionization region, even one that is 20× fainter than the central photoionizing region.

To understand the distribution of the continuum and H30α emission, we measured integrated fluxes within apertures with radii varying from 0.1 arcsec, which is equivalent to the radius of the beam, to 9 arcsec, which is the radius at which we begin to measure artefacts related to the negative sidelobes of the central source. These curve-of-growth profiles are shown in Figure 3. Most of the H30α flux from the unresolved central source falls within a radius of 0.3 arcsec, so we will use the measurements of the line flux from within that radius as the total flux. The integrated continuum emission peaks at a radius of ∼8.5 arcsec. Emission on angular scales larger than 17 arcsec is either resolved out, strongly affected by the negative sidelobes, or affected by the high noise at the edge of the primary beam. While differences in the signal-to-noise ratio may explain why the continuum emission is detected at a larger radius than the H30α line, it is also possible that a significant fraction of the continuum emission may originate from dust within NGC 5253 that is distributed more broadly than the photoionized gas.

The 231.6 GHz continuum flux density within a radius of 8.5 arcsec is 104±16 mJy. A few other continuum flux densities at comparable frequencies have been published. These measurements as well as details about the data are listed in Table 3.

The ALMA measurement is very close to the Swedish-ESO Submillimetre Telescope (SEST) measurement from Vanzi & Sauvage (2004). While the Vanzi et al. measurement is for a smaller aperture and a higher frequency than the ALMA measurement, adjustments for both the measurement aperture and spectral slope should potentially cancel out.

The Meier et al. (2002) flux density from the Owens Valley Radio Observatory (OVRO) and Miura et al. (2015) flux density from the Submillimeter Array (SMA) are both lower than the ALMA measurements by 2–3×. Both measurements have high uncertainties related to either calibration or detection issues, which could partly explain the mismatch between these data and ours. The Miura et al. (2015) measurement is also for a smaller area; when we use a similar aperture to their beam size, we obtain a flux density of 47±7 mJy, which is near their measurement. However, it is also likely that the OVRO and SMA data were insensitive to the faint, extended continuum emission from this source because of a combination of limited uv coverage and the broader beam size. The extended emission observed by OVRO and SMA could have been smeared into the negative sidelobes of the central source or could have been redistributed on spatial scales larger than the largest angular scales measurable by the arrays. The ALMA observations, which used both short and long baselines, can recover structures on the same angular scales as OVRO and SMA while not spreading the emission onto scales where it is not recoverable by the interferometer, and since the ALMA data have a smaller beam, any negative sidelobes will not cover a significant fraction of the diffuse, extended emission within a radius of 8.5 arcsec of the centre.

We therefore think the ALMA flux density, which is consistent with the SEST measurement, should be fairly reliable. Having said this, we will emphasize that much of the continuum emission in our image has a surface brightness at <5σ; more sensitive measurements would be needed to confirm our results.

The emission at 231.6 GHz could originate from a variety of sources. The amount of dust emission at 231.6 GHz can be estimated by extrapolating the modified blackbody function from Rémy-Ruyer et al. (2013) that was fit to the 100-500 µm Herschel Space Observatory data. This gives a flux density of 63 mJy, but the uncertainties in the parameters for the best fitting function indicate that the uncertainty is ∼2×. Free-free emission as well as a few more exotic emission mechanisms could contribute to the emission at 231.6 GHz. While a more in-depth analysis of the SED is beyond the scope of this paper, we discuss this topic further in Section 3.1.
Table 3. Continuum measurements of NGC 5253 at 230-250 GHz.

Reference	Telescope	Frequency (GHz)	Beam FWHM (arcsec)	Flux Density (mJy)	Aperture Diameter (arcsec)
[this paper]	ALMA	231.6	0.28 ± 0.25	104 ± 16	17
Meier et al. (2002)	OVRO	233.3	6.5 ± 4.5	46 ± 10	20
Vanzì & Sauvage (2004)	SEXT	250	11	114 ± 4	11
Miura et al. (2015)	SMA	230	11 × 4	34 ± 9	11 × 4

Figure 4. The continuum-subtracted spectrum of the centre of NGC 5253 showing the H30α line emission. This spectrum was measured within a region with a radius of 0.5 arcsec. The green line shows the best-fitting Gaussian function, which has a mean relativistic velocity in the Barycentric frame of 391±2 km s\(^{-1}\) and a FWHM of 68±3 km s\(^{-1}\).

...391±2 km s\(^{-1}\) and a FWHM of 68±3 km s\(^{-1}\). The integral of the line is 0.86 Jy km s\(^{-1}\) with a measurement uncertainty of 0.04 Jy km s\(^{-1}\) and a calibration uncertainty of 0.13 Jy (15%). The spectral window covering the H30α line does not include any other detectable spectral lines. Miura et al. (in preparation) will discuss the CO (2-1) line emission and any other spectral lines detected in the other spectral window.

2.3 SFR from the H30α data

For this analysis, we assume that the nuclear starburst detected in H30α data contains most of the photoionizing stars in the galaxy and that a SFR derived from it will be representative of the global SFR. While the source is near the brightest clusters found in Hα and Paα emission, fainter <5 Myr clusters and diffuse emission are found outside the central starburst (Calzetti et al. 2004, 2015; Harris et al. 2004). Although most of this emission should fall within the region imaged by ALMA, the lack of H30α emission detected from these fainter sources could cause the SFR from the H30α emission to be biased downwards. Given the central concentration of the Hα and Paα emission, however, the bias may not be too severe to significantly affect comparisons to other star formation tracers.

The H30α flux can be converted to a photoionizing photon production rate \(Q \) using

\[
Q(\text{H30α}) = 3.99 \times 10^{20} \left(\frac{\alpha_B}{\text{cm}^3 \text{s}^{-1}} \right)^{\nu} \left(\frac{\nu}{\text{GHz}} \right)^{\nu-1} \left(\frac{D}{\text{Mpc}} \right)^2 \int f_\nu (\text{line}) d\nu
\]

based on equations from Scoville & Murchikova (2013). The effective recombination coefficient (\(\alpha_B \)) and emissivity (\(\nu_\nu \)) terms in this equation depend on the electron density and temperature. Both term varies by less than 15% for electron densities between 10\(^2\) and 10\(^3\) cm\(^{-3}\). The terms do vary significantly with electron temperature between 3000 and 15000 K, and the resulting \(Q \) can change by a factor of ~2.4 depending on which temperature is selected. In analyses at lower frequencies, where the continuum emission is dominated by free-free emission, it is possible to use the line-to-continuum ratio to estimate electron temperatures. However, thermal dust emission comprises a significant yet poorly-constrained fraction of the 231.6 GHz continuum emission in the central starburst, so this method would produce questionable results. Instead, we use 11500 K for the electron temperature, which is based on [OIII] measurements near the centres of the brightest optical recombination line sources within NGC 5253 from Kobulnicky et al. (1997), López-Sánchez et al. (2007), Guseva et al. (2011), and Monreal-Ibero et al. (2012). For the electron density, we use 600 cm\(^{-3}\), which is the mean of electron densities based on measurements of the [OII] and [SII] from these same regions as given by López-Sánchez et al. (2007), Guseva et al. (2011), and Monreal-Ibero et al. (2012). Although the electron density measurements from these three studies vary by a factor of ~3, probably because of issues related to the position and size of the measurement apertures as discussed by Monreal-Ibero et al. (2012), the resulting \(Q \) values should be unaffected by the relatively large disagreement in these measurements. Dust extinction could have affected both the electron temperature and density estimates, but we do not expect extinction affects to alter the data to a degree where our calculations are affected. We interpolated among the \(\alpha_B \) and \(\nu_\nu \) terms published by Storey & Hummer (1995) to calculate specific values for these terms based on our chosen electron temperature and density. Based on these terms and our H30α flux, we calculated \(Q \) to be (1.9±0.3) × 10\(^{22}\) s\(^{-1}\).

The \(Q \) value can be converted to SFR (in \(M_\odot \) yr\(^{-1}\)) using a simple scaling term, but this term depends upon the characteristics of the stellar population within the star forming regions. Using Starburst99 (Leitherer et al. 1999), Murphy et al. (2011) derived a scaling term of 7.29 × 10\(^{-54}\) for solar metallicity (defined in older versions of Starburst99 as Z=0.020) and a Kroupa (2002) initial mass function (IMF). However, the conversion factor is dependent on metallicity. Monreal-Ibero et al. (2012) reported that

\(^8\) The Kroupa IMF used in Starburst99 is defined as having an index of 2.3 between 0.1 and 0.01 \(M_\odot \) (the IMF upper mass boundary) and 0.5 \(M_\odot \) and an index of 1.3 between 0.5 and 0.1 \(M_\odot \) (the IMF lower mass boundary).
Table 4. Conversions between Q and SFR.

Model	Conversion from Q to SFR $(M_\odot \text{ yr}^{-1} / (s^{-1}))$
Solar metallicity, no stellar rotation	7.29×10^{-54}
$Z=0.0056^a$, no stellar rotation	5.40×10^{-54}
$Z=0.0056^b$, with stellar rotation	4.62×10^{-54}

a This conversion is from Murphy et al. (2011).

b These conversions are based on a scale where solar metallicity is 0.014.

Most current conversions, including all of the ones we used, are calibrated for a Kroupa IMF. However, the SFR equations are usually calibrated for solar metallicities and do not account for stellar rotation. We therefore report SFRs both using the original equations for solar metallicity and using conversions modified for the metallicity of NGC 5253. For the lower metallicity scenario, we include SFRs with and without incorporating stellar rotation effects. All corrections are derived using version 7.0.1 of the Starburst99 models and are applicable to scenarios with a Kroupa IMF and continuous star formation older than 10 Myr. The corrections for stellar rotation are the average of values for no rotation and 40% of the break-up velocity.

3.1 Comparisons of H30α results to other results from millimetre and radio data

The H30α results can be compared to some of the published Q based on other radio data analyses. To start with, two papers have published analyses based on radio recombination lines. Mohan et al. (2001) published multiple values of Q based on different models applied to Hβ2α (8.31 GHz) data; these Q values range from 0.9×10^{22} to $2 \times 10^{22} \text{ s}^{-1}$ when rescaled for a distance of 3.15 Mpc. Rodríguez-Rico et al. (2007) using H3α (42.95 GHz) data obtained a Q of $1.2 \times 10^{22} \text{ s}^{-1}$. Most of these measurements are lower than the value of $(1.9 \pm 0.3) \times 10^{22} \text{ s}^{-1}$ from the H30α data, although Model IV from Mohan et al. (2001) produced a slightly higher Q, and most other results differ by less than $2 \times$. Both the Mohan et al. (2001) and Rodríguez-Rico et al. (2007) Q values are based on models that have attempted to account for masing and gas opacity effects, but it is possible that they were not always able to correct for these effects accurately. Nonetheless, some fine-tuning of the models of the lower frequency recombination line emission may yield more accurate Q and SFR values from the higher order recombination lines.

A series of analyses of the 23 - 231 GHz continuum emission published by Turner et al. (2000), Meier et al. (2002), Turner & Beck (2004), and Miura et al. (2015) treated the emission at these frequencies as originating mainly from free-free emission. Based on this assumption, these observations gave Q values ranging from 2.4×10^{22} to $4.8 \times 10^{22} \text{ s}^{-1}$ after being rescaled for a distance of 3.15 Mpc. Some of these values are significantly higher than the value of $(1.9 \pm 0.3) \times 10^{22} \text{ s}^{-1}$ from the H30α line emission. As discussed in Section 2.2, thermal dust emission could produce more than half of the observed emission at 231 GHz, and this probably resulted in the high Q values calculated by Meier et al. (2002) and Miura et al. (2015) based on photometry as similar frequencies. The highest Q from Turner & Beck (2004) is based on 43 GHz emission measured within a region with a diameter of 1.2 arcsec. Rodríguez-Rico et al. (2007) determined that only ~20% of the 43 GHz emission originated from a region with a diameter of 0.4 arcsec, comparable to the region where we detected H30α emission. If we adjust the value of Q from Turner & Beck (2004) to account for the aperture effects, the value drops to ~$1.0 \times 10^{22} \text{ s}^{-1}$, which is nearly $2 \times$ lower than what we measure from the H30α source.

Meier et al. (2002) and Rodríguez-Rico et al. (2007) both indicate that optical thickness effects could alter the free-free emission, which complicates the conversion from continuum emission to Q. Additionally, it is possible that other emission sources that are not understood as well from a physical standpoint, such as the “submillimetre excess” emission that has been identified in many other low-metallicity dwarf galaxies (e.g. Galametz et al. 2011; Rémy-Ruyer et al. 2013) or anomalous microwave emission (e.g. Murphy et al. 2010; Dickinson et al. 2013), could contribute to the emission...
in the millimetre bands. The data from the analysis in our paper are insufficient for determining how any of these phenomena affect the radio or millimetre emission from NGC 5253 or affect the calculation of Q from radio or millimetre data. A deeper analysis of the SED, potentially including the reprocessing and analysis of ALMA 86 - 345 GHz data acquired in 2014 and later as well as a re-examination of archival radio data from the Very Large Array, would be needed to identify the various emission components in the 1-350 GHz regime as well as to determine how to convert the continuum emission to SFR. However, this is beyond the scope of our paper.

Aside from the calculations described above, a widely-used conversion between radio continuum emission and SFR relies upon the empirical correlation between 1.4 GHz emission, which is an easily-observable radio continuum band, and far-infrared emission. We can only find published 1.4 GHz flux densities integrated over an area much broader than the aperture used for the H_α measurement, and the radio emission is very extended compared to the central starburst (e.g. Turner et al. 1998; Rodríguez-Rico et al. 2007). Hence, any SFR calculated using the available globally-integrated flux density will also be affected by aperture effects, so it would be inappropriate to list it alongside the other SFRs in Table 6. Having said this, if we use

$$\text{SFR}(1.4 \text{ GHz}) = 0.0760 \left[\frac{D}{\text{Mpc}} \right]^2 \left[\frac{f_{\nu}(1.4 \text{ GHz})}{\text{Jy}} \right] \text{ M}_\odot \text{ yr}^{-1}, \quad (2)$$

which is based on the conversion from Murphy et al. (2011), and the globally-integrated measurement of 84.7 ± 3.4 mJy from the 1.4 GHz NRAO VLA Sky Survey (Condon et al. 1998), we obtain a SFR of 0.064 ± 0.003 M$_\odot$ yr$^{-1}$.

The SFR from the 1.4 GHz emission is lower than the SFR from the H_α data even though the 1.4 GHz emission is measured over a much larger area. The 1.4 GHz band has been calibrated as a star formation tracer using data for solar metallicity galaxies and relies upon a priori assumptions about the relative contributions of free-free and synchrotron emission to the SED. The ratio of these forms of emission can vary between spiral and low mass galaxies, but the relation between infrared and radio emission has been found to be nearly linear in low metallicity galaxies in general (e.g. Bell 2003; Wu et al. 2007, and references therein). In NGC 5253 specifically, the relative contribution of synchrotron emission to the 1.4 GHz band is very low (Rodriguez-Rico et al. 2007), which is probably sufficient to cause the SFR from the globally-integrated 1.4 GHz measurement to fall below the SFR from the nuclear H_α measurement as well as the SFR from the total infrared flux (see Section 3.2).

In any case, it appears that Equation 2 is not suitable for NGC 5253, as it evidently deviates from the empirical relations between radio emission and either infrared flux or SFR. An SFR based on the spectral decomposition of the SED and the analysis of its components would potentially yield more accurate results, but as we stated above, this analysis is beyond the scope of this paper.

3.2 Comparisons of H_α and infrared dust continuum results

3.2.1 SFR calculations

For calculating SFRs based on infrared flux densities, we used globally-integrated values, mainly because the infrared emission appears point-like in most data and because no data exist with angular resolutions comparable to the ALMA data. Figures 1 and 3

Waveband	Solar metallicity	SFR (M$_\odot$ yr$^{-1}$)a	Correction factora
H_α	no stellar rotation	0.14 ± 0.02	0.74
Infrared	with stellar rotation	0.090 ± 0.03	0.63

a Derived SFRs should be multiplied by these correction factors.

For the SFR calculations, we used the H_α flux densities corrected for Galactic extinction. The extinction corrections for these data were calculated and applied by Calzetti et al. (2015).
show that a significant fraction of the cold dust emission originates from an extended region outside the central starburst. However, the 8 µm image from Dale et al. (2009) shows that most of the emission in that band (a combination of hot dust and polycyclic aromatic hydrocarbon (PAH) emission as well as a small amount of stellar emission) originates from a central unresolved source with a diameter smaller than 2 arcsec. The emission at mid-infrared wavelengths should be very compact and therefore should be directly related to the luminosity of the central starburst seen in H30α emission. The SFR from the total infrared emission could be affected by diffuse dust heated by older stellar populations outside the centre and therefore could be higher. While we do not apply any corrections for this diffuse dust, we discuss the implications of this more in Section 3.2.2.

We calculated SFRs based on flux densities measured in individual bands as well as total infrared fluxes based on integrating the SED between 12 and 500 µm, which covers most of the dust continuum emission. Table 7 shows the data we used in this analysis.

For the 12 and 22 µm bands, we made measurements within Wide-field Infrared Survey Explorer (WISE; Wright et al. 2010) images from the AllWISE data release. Although 24 µm flux densities based on Spitzer data have been published by Engelbracht et al. (2008) and Dale et al. (2009), the centre of NGC 5253 is saturated in the 24 µm image (Bendo et al. 2012). Hence, we used the WISE 22 µm data instead and assumed that the conversions from WISE 22 µm flux densities to SFR will be the same as for Spitzer 24 µm data. The 12 and 22 µm flux densities were measured within circles with radii of 150 arcsec; this is large enough to encompass the optical disc of the galaxy as well as the beam from the central source, which has a FWHM of 12 arcsec at 22 µm (Wright et al. 2010). The backgrounds were measured within annuli with radii of 450 and 500 arcsec and subtracted before measuring the flux densities. Calibration uncertainties are 5% at 12 µm and 6% at 22 µm. Colour corrections from Wright et al. (2010), which change the flux densities by ≤10%, are applied based on spectral slopes proportional to ν−3 at 12 µm and ν−2 at 22 µm, which is based on the spectral slopes between 12 and 22 and between 22 and 70 µm.

For the 70, 100, 160, 250, 350, and 500 µm measurements, we used the globally-integrated flux densities measured from Herschel data by Rémy-Ruyer et al. (2013). These data include no colour corrections, so we applied corrections equivalent to that for a point-like modified blackbody with a temperature of 30 K and an emissivity that scales as νβ, which is equivalent to the shape of the modified blackbody fit by Rémy-Ruyer et al. (2013) to the data. The 70, 100, and 160 µm colour corrections, which change the flux densities by ≤5%, are taken from Müller et al. (2011)9, and the 250, 350, and 500 µm colour corrections, which change the flux densities by ~10%, are taken from Valtchanov (2017)10. These colour-corrected data are listed in Table 7.

While multiple methods have been derived for calculating the total infrared flux using a weighted sum of flux densities measured in multiple other individual bands (e.g. Dale et al. 2002; Boquien et al. 2010; Galametz et al. 2013; Dale et al. 2014), most of these derivations are calibrated for galaxies with SEDs similar to those of spiral galaxies. The dust in NGC 5253 is much hotter than in most spiral galaxies, and in particular, the 22/70 µm ratio of 0.38 in NGC 5253 is higher than the 24/70 µm ratio of 0.05-0.10

Table 7. Infrared data for NGC 5253.

Wavelength (µm)	Flux density\(^a\) (Jy)
12	1.86 ± 0.08
22	12.4 ± 0.7
70	33.0 ± 1.6
100	33.2 ± 1.6
160	22.4 ± 1.2
250	7.3 ± 0.6
350	3.3 ± 0.3
500	1.04 ± 0.09

Figure 5. A graphical depiction of the SFRs for NGC 5253. These are values calculated using corrections to account for the metallicity of NGC 5253 (Z = 0.0056) and stellar rotation effects; they correspond to the values in the rightmost column in Table 6. Uncertainties for the individual data points (when they are larger than the symbols in this plot) correspond to the measurement uncertainties and uncertainties related to the correction factors in Table 5 but do not include uncertainties in the conversion factors between the fluxes and SFR. The grey band corresponds to the mean and 1σ uncertainties in the SFR from the H30α data.

\(^a\) http://herschel.esac.esa.int/Docs/SPIRE/spire_handbook.pdf

\(^b\) http://herschel.esac.esa.int/wiki/pub/Public/PacsCalibrationWeb/Report_v1.pdf
found in many spiral galaxies (e.g. Dale et al. 2007; Bendo et al. 2012). We therefore calculated the total infrared flux by first linearly interpolating between the logarithms of the monochromatic flux densities as a function of the logarithm of the wavelength and then integrating under the curve. This gave a total infrared flux of $(3.2 \pm 0.2) \times 10^{14}$ Jy Hz, with the uncertainties derived using a Monte Carlo analysis.

Most conversions from infrared emission to SFR work given the assumption that star forming regions produce most of the observed bolometric luminosity of galaxies and that dust absorbs and re-radiates virtually all of the emission from the star forming regions. Additionally, the conversions of measurements from individual infrared wavebands to SFR is based on the assumption that the SED does not change shape and that the flux densities in the individual band scale linearly with the total infrared flux. For this analysis, we used

\[
\text{SFR}(22 \mu m) = 2.44 \times 10^{-16} \left(\frac{D}{\text{Mpc}} \right)^2 \left(\frac{\nu f(22 \mu m)}{\text{Jy Hz}} \right)
\]

(3)

from Rieke et al. (2009),

\[
\text{SFR}(70 \mu m) = 7.04 \times 10^{-17} \left(\frac{D}{\text{Mpc}} \right)^2 \left(\frac{\nu f(70 \mu m)}{\text{Jy Hz}} \right)
\]

(4)

from Calzetti et al. (2010),

\[
\text{SFR}(160 \mu m) = 1.71 \times 10^{-16} \left(\frac{D}{\text{Mpc}} \right)^2 \left(\frac{\nu f(160 \mu m)}{\text{Jy Hz}} \right)
\]

(5)

from Calzetti et al. (2010), and

\[
\text{SFR}(\text{total infrared}) = 4.66 \times 10^{-17} \left(\frac{D}{\text{Mpc}} \right)^2 \left(\frac{f(\text{total infrared})}{\text{Jy Hz}} \right)
\]

(6)

from Kennicutt & Evans (2012) based on derivations from Hao et al. (2011) and Murphy et al. (2011). The SFRs calculation using these equations are listed in Table 6.

While the conversion for total infrared flux is derived using STARBUST99 for solar metallicity and older (but unspecified) stellar evolutionary tracks, the conversions for the 22, 70, and 160 \(\mu m \) bands are based on part upon empirical relations between the emission in those individual bands and other star formation tracers. However, all of these conversions are based upon the assumption that the infrared flux as measured in an individual band or as integrated over a broad wavelength range will scale with the bolometric luminosity. Based on both the Geneva 1994 and 2012/13 tracks implemented in STARBUST99 version 7.0.1, the conversions factors in Equations 3-6 should be multiplied by 0.90 to correct for the lower metallicity in NGC 5253. To account for metallicity and rotation in the same way as we did for the recombination lines, the conversions need to be multiplied by 0.72. Versions of the SFRs with these corrections applied are listed in Table 6 alongside the value calculated assuming solar metallicity and no stellar rotation.

3.2.2 Discussion

The 22 \(\mu m \) flux density yielded a SFR that was \(\sim 3 \times \) higher than the H30\(\alpha \) SFR and is also significantly higher than the SFRs calculated using other methods. The aberrant SFR from the mid-infrared data is a consequence of the low metallicity of NGC 5253. As stated in the previous section, the conversions from flux densities in individual infrared bands to SFRs are based upon the key assumptions that the total infrared flux originates from light absorbed from star forming regions and that the individual bands will scale linearly with the total infrared flux. When the second condition is not met, the SFRs from individual infrared bands will be inaccurate. This problem had been anticipated for low metallicity galaxies like NGC 5253 (e.g. Calzetti et al. 2010). Low metallicity galaxies contain less interstellar dust, so the light from star forming regions is not attenuated as much as it is in larger galaxies. As a result, the dust that is present is irradiated by a relatively hard and strong radiation field, which makes the dust warmer than in spiral galaxies (Hunt et al. 2005; Engelbracht et al. 2008; Rosenberg et al. 2008; Hirashita & Ichikawa 2009; Rémy-Ruyer et al. 2013). The resulting change in the shape of the infrared SED results in biasing the SFR from 22 \(\mu m \) data upwards.

The 70 \(\mu m \) flux density yielded a SFR that was 1-2\(\sigma \) smaller than the H30\(\alpha \) value (depending on which versions from in Table 6 are compared), while the SFR from the 160 \(\mu m \) data was approximately half of the H30\(\alpha \) value. This change in the calculated SFR with increasing wavelength is clearly a consequence of the unusually hot dust within NGC 5253. The longer wavelength bands appear low in comparison to the total infrared flux, which is expected to scale with the bolometric luminosity, and the resulting SFRs from the 70 and 160 \(\mu m \) data are also lower. Additionally, longer wavelength infrared bands are typically expected to include emission from diffuse dust heated by older stars (e.g. Bendo et al. 2015a), which should affect the SFRs based on the data from the bands (Calzetti et al. 2010). However, if diffuse dust (particularly extended cold dust emission from outside the central starburst) was present, the SFRs should be biased upwards at longer wavelengths. The low SFRs from the 70 and 160 \(\mu m \) data indicate that the 70 and 160 \(\mu m \) bands contain relatively little cold, diffuse dust, at least compared to the galaxies used by Calzetti et al. (2010) to derive the relations between SFR and emission in these bands.

Notably, the difference between the SFRs from the total infrared and H30\(\alpha \) fluxes is less than 1\(\sigma \) or 5\% before any corrections for metallicity or stellar rotation are applied. This increases to 1.5-2\(\sigma \) or 20-30\% when the correction are applied, but given the number of assumptions behind the corrections as well as the calculation of the SFRs themselves, this match is actually very good. Aside from the potential calibration issues, the total infrared flux may also yield a slightly higher SFR because the dust emission could also include some energy absorbed from an older stellar population. However, given the low SFRs from the 70 and 160 \(\mu m \) bands, which would be more strongly affected by an older stellar population, it seems very unlikely that any such diffuse dust emission, especially extended dust emission outside the central starburst, contributes significantly to the total infrared flux. It is also possible that photionizing photons are directly absorbed by dust grains before they are absorbed by the ionized gas, which could cause a slight difference in the SFRs. None the less, calibration issues are probably one of the main reasons for any discrepancies between the SFRs from the H30\(\alpha \) and total infrared fluxes.

3.3 Optical and near-infrared recombination line data

3.3.1 SFR calculations

While the two central H\(\alpha \) and Pa\(\alpha \) sources are the brightest optical and near-infrared recombination line sources seen in this galaxy, multiple other fainter sources are also detected by Alonso-Herrero et al. (2004), Harris et al. (2004), and Calzetti et al. (2015), and diffuse extended emission is also present in the H\(\alpha \) image from Dale et al. (2009). While a comparison could be made between the global H\(\alpha \) and H30\(\alpha \) emission, the inclusion of these fainter sources would cause some inaccuracies. We therefore compared...
the SFR from the H30α data to the SFR from the near-infrared and optical line data from Calzetti et al. (2015). As indicated in Section 3.2, it is possible that the two central clusters identified by Alonso-Herrero et al. (2004) and Calzetti et al. (2015) are actually parts of one larger photoionization region, so we will use the sum of the optical and near-infrared fluxes from these two sources in our analysis.

Calzetti et al. (2015) published Hα, Paα, and Paβ fluxes that have been corrected for foreground dust extinction but not for intrinsic dust extinction within the galaxy. Using these data, they then derive the intrinsic dust extinction for the sources as well as extinction-corrected Hα fluxes. The corrections for cluster 5 assume a simple foreground dust screen, but cluster 11 is treated as a case where the line emission is attenuated both by a foreground dust screen and by dust intermixed with the stars. The sum of these corrected Hα fluxes, which are listed in Table 8, are used for computing one version of SFRs.

We also tested SFRs calculated by correcting Hα for dust attenuation by adding together the observed Hα emission (representing the unobscured emission) and infrared emission multiplied by a constant (representing the obscured Hα emission). Such constants have been derived for multiple individual infrared bands, including the Spitzer 8 and 24 μm bands and the WISE 12 and 22 μm bands, as well as the total infrared flux (e.g. Calzetti et al. 2005, 2007; Kennicutt et al. 2007; Zhu et al. 2008; Kennicutt et al. 2009; Lee et al. 2013). To be concise, we restrict our analysis to the WISE 22 μm and total infrared flux. The relations we used for these corrections are

\[f(\text{Hα})_{\text{corr}} = f(\text{Hα})_{\text{obs}} + 0.020\nu f_{\beta}(22\mu\text{m}) \]

and

\[f(\text{Hα})_{\text{corr}} = f(\text{Hα})_{\text{obs}} + 0.0024f(TIR), \]

which are from Kennicutt et al. (2009). Based on the dispersions in the data used to derive these relations, the uncertainty in the result from Equation 7 and 8 are 0.12 dex (32%) and 0.089 dex (23%), respectively. The sum of the uncorrected Hα fluxes for clusters 5 and 11 from Calzetti et al. (2015) as well as versions of these fluxes corrected using Equations 7 and 8 are listed in Table 8.

The Hα fluxes can be converted to SFR using

\[\text{SFR}(\text{Hα}) = \frac{6.43 \times 10^8}{M_\odot \text{yr}^{-1}} \left(\frac{D}{\text{Mpc}} \right)^2 \left(\frac{f(\text{Hα})}{\text{erg s}^{-1} \text{cm}^{-2}} \right) \]

from Murphy et al. (2011). This result is based on models from Starburst99 using a Kroupa IMF, solar metallicities, and older but unspecified stellar evolution tracks. The assumed \(T_e \) is 10000 K, which is close to the measured value in NGC 5253, so we will make no modifications to this conversion. The SFRs can be rescaled to correct for metallicity and stellar rotation effects in the same way that the SFR from the H30α was rescaled. The SFRs based on the three different extinction-corrected Hα fluxes are listed in Table 8.

3.3.2 Discussion

The extinction-corrected Hα fluxes calculated by Calzetti et al. (2015) using Paα and Paβ line data yield SFRs that fall within 25% of the SFRs from the H30α data. Given that the extinction corrections changed the Hα fluxes by \(~\times 20\), that relatively complex dust geometries were used in calculating the corrections, and that the uncertainties in the extinction-corrected Hα fluxes are relatively high, this match is reasonably good. However, the fact that the SFR from the H30α is higher would indicate that the method of correcting the Hα flux could still be improved.

We discussed in Section 3.2 the non-detection of a second H30α source corresponding to the secondary star forming region seen in optical and near-infrared bands, which is labelled as cluster 5 by Calzetti et al. (2015). One possible explanation for this is that the optical/near-infrared sources lie at the ends of a much larger star forming complex that is heavily obscured in its centre. If this is the case, then the ratio of the area of the optical/near-infrared sources to the area of the much larger star forming complex should be roughly similar to the ratio of the SFR from the extinction-corrected Hα emission to the SFR from the H30α emission. Calzetti et al. (2015) do not list sizes for their sources, but they do state that they use measurement apertures with diameters of 0.25 arcsec, which we can treat as an upper limit on the source sizes. The hypothetical larger star forming complex would need to be 0.71 arcsec in size to encompass both optical/near-infrared regions. Based on the ratio of the area of the two smaller optical/near-infrared sources to the area of the hypothetical larger complex (which we can assume is spherical), the optical/near-infrared regions should yield a SFR that is only 25% of that from the H30α emission, not the 75% that we measure. This indicates that it is unlikely that both optical/near-infrared sources are part of one larger obscured complex centered on the H30α source.

The other possible reason for the non-detection of a second H30α source corresponding to cluster 5 from Calzetti et al. (2015) is that the difference in brightness between it and the brighter source (cluster 11) is higher than the factor of \(~\times 6\) derived from the analysis of the optical and near-infrared data. The results here indicate that the extinction correction for the Hα data applied by Calzetti et al. (2015) may indeed be too low, so it is possible that the difference in the extinction-corrected brightness between the two sources is much greater than implied by their analysis. In such a scenario, the second source would be too faint in recombination line emission to detect in the ALMA data at the 3σ level.

The SFR based on the composite Hα and 22 μm data yields a SFR that is highest among the three based on the Hα data, and it is also significantly higher than the SFR from the H30α flux. This is mostly likely a result of the unusually hot dust within NGC 5253, and the problem is similar to the direct conversion of 22 μm flux density to SFR discussed in Section 3.2. The extinction correction in Equation 7 was calibrated using spiral galaxies and, to some degree, relied on a linear relation between the amount of energy absorbed by dust and mid-infrared emission. Since that scaling relation does not apply well to NGC 5253, Equation 7 overcorrected the extinction.

In contrast, the composite Hα and total infrared flux yielded a SFR that was too low compared to the H30α value or most other
values listed in Table 6. Again, this is probably because the relation was calibrated using spiral galaxies. The emission from cold, diffuse dust heated by evolved stars seems to be a relatively small fraction of the total infrared emission in NGC 5253 in comparison to what is found in spiral galaxies. If Equation 8 is effectively calibrated to account for this cold dust, then it may yield an underestimation of the extinction correction in galaxies like NGC 5253. Also note that any attempt to correct the total infrared flux for extended emission outside the central starburst will simply make the SFR from Equation 8 more discrepant compared to values calculated from the H30α data or most other bands.

The relative sizes of the uncorrected Hα and infrared components in Equations 7 and 8 provide some additional insights into these extinction corrections. In both cases, the infrared component is dominant. In Equation 7, the observed Hα flux is equivalent to 2.6% of the 22 μm term, so using Equation 7 and 9 to calculate a SFR is effectively an indirect conversion of the 22 μm flux density to SFR. Meanwhile, the uncorrected Hα flux in Equation 8 is equal to 11.5% of the total infrared flux term, so using the resulting corrected Hα flux in Equation 9 is not quite as much like indirectly converting the total infrared flux to SFR.

Related to this, Kennicutt & Evans (2012) and references therein describe how infrared flux could be used correct ultraviolet flux densities in the same way as they correct Hα fluxes. However, when we investigated using such equations with the ultraviolet flux densities measured for the central two star clusters, we found that the infrared terms were >100× higher than the ultraviolet terms, which meant that any SFR based on combining ultraviolet and infrared data would effectively be independent of the ultraviolet measurements.

4 CONCLUSIONS

To summarize, we have used ALMA observations of H30α emission from NGC 5253, a low-metallicity blue compact dwarf galaxy, in a comparison with different methods of calculating SFR for the centre of this galaxy. We measure a Q (1.9±0.3)×10⁻²² s⁻¹, which is based on using a distance of 3.15 Mpc. Accounting for the low metallicity of the galaxy and stellar rotation, we obtain an SFR of 0.087±0.013 M⊙ yr⁻¹; with only the correction for metallicity, we obtain 0.102±0.015 M⊙ yr⁻¹.

In our analysis, we found three SFR measurements that best matched the H30α measurements and that seemed to be the most affected by the types of systematic effects that we could identify as causing problems with other bands.

The total infrared flux (calculated by integrating the SED between 12 and 500 μm) yielded a SFR that was very similar to the value from the H30α data. In other dusty low-metallicity starbursts like NGC 5253, the total infrared flux may yield the most accurate star formation rates as long care is taken to account for the unusual shapes of the SEDs for these galaxies.

The 70 μm band may be the best monochromatic infrared star formation tracer available, as it yielded a SFR that was closest to the SFRs from either the H30α and total infrared flux. However, given how the conversion of 70 μm flux to SFR depends on a linear relationship between emission in this band and the total infrared flux, it is not clear how reliable 70 μm emission would be for measuring SFR in other low metallicity galaxies where a relatively large but potentially variable fraction of the dust emission is at mid-infrared wavelengths.

The SFR from the Hα flux that was extinction corrected by Calzetti et al. (2015) using Paα and Paβ data was 25% lower than but consistent with the SFR from the H30α data. However, as we noted in Section 2.2, it is possible that some parts of the central star forming complex are completely obscured in the optical and near-infrared observations, which potentially illustrates the issues with examining star formation within dust starbursts, even at near-infrared wavelengths.

Most other star formation tracers that we examined seemed to be affected by systematic effects that cause problems when calculating SFRs.

Previously-published versions of the SFR based on millimetre and radio data yielded star formation rates with a lot of scatter relative to each other and relative to the SFR from the H30α data. At least some of the SFRs from radio continuum measurements are affected by incorrect assumptions about the nature of the emission sources in these bands. A new analysis of broadband archival radio and millimetre data is needed to produce better models of the SED and to covert emission from these bands into SFRs more accurately.

The 22 μm flux density by itself and the combined Hα and 22 μm metric produced SFRs that were exceptionally high compared to the value from the H30α data and compared to SFRs from other tracers. The main problem is that the dust in this low metallicity environment is thinner than in solar metallicity objects, so the dust that is present is exposed to a brighter and hotter radiation field. Consequently, the total dust emission is stronger in low metallicity environments, and the mid-infrared emission is stronger relative to total infrared emission. Based on these results, we strongly recommend not using any star formation tracer based on mid-infrared data for low metallicity galaxies.

Infrared emission at 160 μm yields a very low SFR. This is probably because the dust temperatures within NGC 5253 are relatively hot and because the conversion of emission in this band to SFR accounts for the presence of diffuse dust heated by older stars that is present in spiral galaxies but not in NGC 5253 and similar dwarf galaxies.

The composite Hα and total infrared star formation metric yielded a SFR that was too low. Again, this could be because the correction is calibrated using spiral galaxies that contain relatively higher fractions of diffuse, cold dust than NGC 5253. If such a metric were to be used for measuring star formation in low metallicity systems, it would need to be recalibrated.

This analysis represents the first results from using ALMA observations of hydrogen millimetre recombination line emission to test SFR metrics based on optical data, and it is also one of the first comparisons of SFR metrics for a low metallicity galaxy that has involved ALMA data. A more thorough analysis of star formation tracers observed in low metallicity galaxies is needed to understand whether the results obtained for NGC 5253 are generally applicable to similar objects. Further analysis of more ALMA recombination line observations combined with this and previous works on this subject (Bendo et al. 2015b, 2016) will allow us to create a broader picture of the reliability of various tracers of star formation in both nearby starbursts and more distant galaxies.

ACKNOWLEDGMENTS

We thank the reviewer for the constructive criticisms of this paper. GJB and GAF acknowledge support from STFC Grant ST/P000827/1. KN acknowledges support from JSPS KAKENHI Grant Number 15K05035. CD acknowledges funding from an ERC Starting Consolidator Grant (no. 307209) under FP7 and an STFC Consolidated Grant (ST/L000768/1). This paper makes use of the following ALMA data: ADS/JAO.ALMA#2013.1.00210.S.
REFERENCES

Alonso-Herrero A., Takagi T., Baker A. J., Rieke G. H., Rieke M. J., Imanishi M., Scoville N. Z., 2004, ApJ, 612, 222
Anantharamaiah K. R., Viallefond F., Mohan N. R., Goss W. M., Zhao J. H., 2000, ApJ, 537, 613
Andreani P. et al., 2016, ALMA Cycle 4 Proposer’s Guide and Capabilities, ALMA Doc. 4.2 Version 1.0, Joint ALMA Observatory, Santiago, Chile
Bell E. F., 2003, ApJ, 586, 794
Bendo G. J., Beswick R. J., D’Cruze M. J., Dickinson C., Fuller G. A., Muxlow T. W. B., 2015b, MNRAS, 450, L80
Bendo G. J. et al., 2012, MNRAS, 423, 197
Bendo G. J. et al., 2015a, MNRAS, 448, 135
Bendo G. J., Henkel C., D’Cruze M. J., Dickinson C., Fuller G. A., Karim A., 2016, MNRAS, 463, 252
Boquien M. et al., 2010, ApJ, 713, 626
Calzetti D. et al., 2005, ApJ, 633, 871
Calzetti D. et al., 2007, ApJ, 666, 870
Calzetti D. et al., 2010, ApJ, 714, 1256
Calzetti D. et al., 2015, ApJ, 811, 75
Calzetti D., Harris J., Gallagher J. S. III, Smith D. A., Conselice C. J., Homeier N., Kewley L., 2004, AJ, 127, 1405
Calzetti D., Meurer G. R., Bohlin R. C., Garnett D. R., Kinney A. L., Leitherer C., Storchi-Bergmann T., 1997, AJ, 114, 1834
Charbonnel C., Meynet G., Maeder A., Schaller G., Schaerer D., 1993, A&AS, 101, 415
Condon J. J., 1992, ARA&A, 30, 575
Condon J. J., Cotton W. D., Greisen E. W., Yin Q. F., Perley R. A., Taylor G. B., Broderick J. J., 1998, AJ, 115, 1693
Dale D. A. et al., 2007, ApJ, 655, 863
Dale D. A. et al., 2009, ApJ, 703, 517
Dale D. A., Helou G., 2002, ApJ, 576, 159
Dale D. A., Helou G., Magdis G. E., Armus L., Díaz-Santos T., Shi Y., 2014, ApJ, 784, 83
de Grijs, R., Anders, P., Zackrisson, E., Östlin, G., 2013, MNRAS, 431, 2917
Dickinson C., Paladini R., Verstraete L., 2013, AdAst, 2013, 134979
Engelbracht C. W., Rieke G. H., Gordon K. D., Smith J.-D. T., Werner M. W., Moustakas J., Willmer C. N. A., Vanzi L., 2008, ApJ, 678, 804
Ekström S. et al., 2012, A&A, 537, A146
Freedman W. L. et al., 2001, ApJ, 553, 47
Galametz M. et al., 2013, MNRAS, 431, 1956

Galametz M., Madden S. C., Galliano F., Hony S., Bendo G. J., Sauvage M., 2011, A&A, 532, A56
Georgy C., Ekström S., Meynet G., Massey P., Levesque E. M., Hirschi R., Eggenberger P., Maeder A., 2012, A&A, 542, A29
Gordon M. A., Walmsley C. M., 1990, ApJ, 365, 606
Guseva N. G., Izotov Y. I., Stasińska G., Fricke K. J., Henkel C., Papadopoulos, P. 2011, A&A, 529, A149
Hao C.-N., Kennicutt R. C. Jr., Johnson B. D., Calzetti D., Dale D. A., Moustakas J., 2011, ApJ, 741, 124
Harris J., Calzetti D., Gallagher J. S. III, Smith D. A., Conselice C. J., 2004, ApJ, 603, 503
Hirashita H., Ichikawa T. T., 2009, MNRAS, 396, 500
Hunt L., Bianchi S., Maiolino R., 2005, A&A, 434, 849
Karachentsev I. D. et al., 2007, ApJ, 671, 333
Kennicutt R. C. Jr. et al., 2009, ApJ, 703, 1672
Kennicutt R. C. Jr. Evans N. J. II, 2012, ARA&A, 50, 531
Kobulnicky H. A., Skillman E. D., Roy J.-R., Walsh J. R., Rosa M. R., 1997, ApJ, 477, 679
Kroupa P., 2002, Sci, 295, 82
Lee J. C., Hwang H. S., Ko J., 2013, ApJ, 774, 62
Leitherer C., Ekström S., Meynet G., Schaerer D., Agienko K. B., Levesque E. M., 2014, ApJS, 212, 14
Leitherer C. et al., 1999, ApJS, 123, 3
López-Sánchez A. R., Esteban C., García-Rojas J., Peimbert M., Rodríguez M., 2007, ApJ, 656, 168
Magnun J., Wärmels R., 2016, ALMA Cycle 4 Technical Hand- book Version 1.0, ALMA, Santiago
Meier D. S. et al., 2015, ApJ, 801, 63
Meier D. S., Turner J. L., Beck S. C., 2002, AJ, 124, 877
Miura R. E., Espada D., Sugai H., Nakaniishi K., Hirota A., 2015, PASP, 67, L1
Mohan N. R., Anantharamaiah K. R., Goss W. M., 2001, ApJ, 557, 659
Monreal-Ibero A., Walsh J. R., Vilchez J. M., 2012, A&A, 544, A60
 Müller T., Okumura K., Klaas U., 2011, PACS Photometer Passbands and Colour Correction Factors for Various Source SEDs, Version 1.0. Herschel Science Centre, Villanueva de la Cañada, Madrid, Spain
Murphy E. J. et al., 2006a, ApJ, 638, 157
Murphy E. J. et al., 2006b, ApJ, 651, L111
Murphy E. J. et al., 2010, ApJ, 709, L108
Murphy E. J. et al., 2011, ApJ, 737, 67
Puxley P. J., Mountain C. M., Brand P. W. J., Moore T. J. T., Nakai N., 1997, ApJ, 485, 143
Rémy-Ruyer A. et al., 2013, A&A, 557, A95
Rieke G. H., Alonso-Herrero A., Weiner B. J., Pérez-González P. G., Blaylock M., Donley J. L., Marcillac D., 2009, ApJ, 692, 556
Rodríguez-Rico, C. A., Goss, W. M., Turner, J. L., Gómez, Y., 2007, ApJ, 670, 295
Rosenberg J. L., Wu Y., Le Fioc’h E., Charmandaris V., Ashby M. L. N., Houck J. R., Salzer J. I., Willner S. P., 2008, ApJ, 674, 814
Schaerer D., Meynet G., Maeder A., Schaller G., 1999a, A&AS, 98, 523
Schaerer D., Charbonnel C., Meynet G., Maeder A., Schaller G., 1999b, A&AS, 102, 339
Shaller G., Schaerer D., Meynet G., Maeder A., 1992, A&AS, 96, 269
Scoville N. et al., 2015, ApJ, 800, 70
Scoville N., Murchikova L., 2013, ApJ, 779, 75
Seaquist E. R., Carlstrom J. E., Bryant P. M., Bell M. B., 1996,
Seaquist E. R., Kerton C. R., Bell M. B., 1994, ApJ, 429, 612
Storey P. J., Hummer D. G., 1995, MNRAS, 272, 41
Turner J. L., Ho P. T. P., Beck S. C., 1998, AJ, 116, 1212
Turner J. L., Beck S. C., 2004, ApJ, 602, L85
Turner J. L., Beck S. C., Ho P. T. P., 2000, ApJ, 532, L109
Valchanov I., ed., 2017, The Spectral and Photometric Imaging Receiver (SPIRE) Handbook, Version 3.1. Herschel Science Centre, Villanueva de la Cañada, Madrid, Spain
Vanzi L., Sauvage M., 2004, A&A, 415, 509
Wright E. L. et al., 2010, AJ, 140, 1868
Wu Y., Charmandaris V., Houck J. R., Bernard-Salas J., Lebouteiller V., Brandl B. R., Farrah D., 2008, AJ, 676, 970
Zhu Y.-N., Wu H., Cao C., Li H.-N., 2008, ApJ, 686, 155