Synergistic and Additive Effect of Oregano Essential Oil and Biological Silver Nanoparticles against Multidrug-Resistant Bacterial Strains

Sara Scandorieiro¹, Larissa C. de Camargo¹, Cesar A. C. Lancheros², Sueli F. Yamada-Ogatta², Celso V. Nakamura³, Adilton G. de Oliveira⁴, Célia G. T. J. Andrade⁵, Nelson Duran⁶, Gerson Nakazato¹ and Renata K. T. Kobayashi¹*

¹ Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, Universidade Estadual de Londrina, Londrina, Brazil, ² Laboratory of Molecular Biology of Microorganisms, Department of Microbiology, Center of Biological Sciences, Universidade Estadual de Londrina, Londrina, Brazil, ³ Laboratory of Technological Innovation in Drug and Cosmetics Development, Department of Basic Health Sciences, Center of Health Sciences, Universidade Estadual de Maringá, Maringá, Brazil, ⁴ Laboratory of Microbial Ecology, Department of Microbiology, Center of Biological Sciences, Universidade Estadual de Londrina, Londrina, Brazil, ⁵ Laboratory of Electron Microscopy and Microanalysis, Department of General Biology, Center of Biological Sciences, Universidade Estadual de Londrina, Londrina, Brazil, ⁶ Institute of Chemistry, Universidade Estadual de Campinas, Campinas, Brazil

Bacterial resistance to conventional antibiotics has become a clinical and public health problem, making therapeutic decisions more challenging. Plant compounds and nanodrugs have been proposed as potential antimicrobial alternatives. Studies have shown that oregano (Origanum vulgare) essential oil (OEO) and silver nanoparticles have potent antibacterial activity, also against multidrug-resistant strains; however, the strong organoleptic characteristics of OEO and the development of resistance to these metal nanoparticles can limit their use. This study evaluated the antibacterial effect of a two-drug combination of biologically synthesized silver nanoparticles (bio-AgNP), produced by Fusarium oxysporum, and OEO against Gram-positive and Gram-negative bacteria, including multidrug-resistant strains. OEO and bio-AgNP showed bactericidal effects against all 17 strains tested, with minimal inhibitory concentrations (MIC) ranging from 0.298 to 1.193 mg/mL and 62.5 to 250 µM, respectively. Time-kill curves indicated that OEO acted rapidly (within 10 min), while the metallic nanoparticles took 4 h to kill Gram-negative bacteria and 24 h to kill Gram-positive bacteria. The combination of the two compounds resulted in a synergistic or additive effect, reducing their MIC values and reducing the time of action compared to bio-AgNP used alone, i.e., 20 min for Gram-negative bacteria and 7 h for Gram-positive bacteria. Scanning electron microscopy (SEM) revealed similar morphological alterations in Staphylococcus aureus (non-methicillin-resistant S. aureus, non-MRSA) cells exposed to three different treatments (OEO, bio-AgNP and combination of the two), which appeared cell surface blebbing. Individual and combined treatments showed reduction in cell density and decrease in exopolysaccharide matrix compared to untreated bacterial cells. It indicated that this composition have an antimicrobial activity against S. aureus by disrupting cells. Both compounds showed very low hemolytic activity, especially at MIC levels. This study
INTRODUCTION

Bacterial antimicrobial resistance to most conventional antibiotics has become a clinical and public health problem. Infections due to multidrug-resistant microorganisms, such as bacteria that produce extended-spectrum β-lactamases (ESBL) and carbapenemases (Klebsiella pneumoniae carbapenemase, KPC) and MRSA can be challenging to control leading to high treatment costs, therapeutic failure and death (Silva and Lincopan, 2012; Cantas et al., 2013).

ESBL and KPC hydrolyze the β-lactam ring resulting in an inactive antimicrobial (Queenan and Bush, 2007; Drawz and Bonomo, 2010). ESBLs mediate resistance to most β-lactams, mainly in Gram-negative bacteria (Dhillon and Clark, 2012; Silva and Lincopan, 2012). In these cases, carbapenem antibiotics, such as imipenem, meropenem, and ertapenem, are drugs of choice for treatment. However, carbapenemases reduce treatment options because they inactivate penicillins, cephalosporins, monobactams, and carbapenems (Queenan and Bush, 2007).

Usually ESBLs and KPC are encoded by genes carried by mobile genetic elements which also carry resistance genes to other antimicrobial agents, contributing to the emergence of multidrug resistance and its rapid spread between different strains and species (Pitout, 2012; Silva and Lincopan, 2012; Patel and Bonomo, 2013; Shaikh et al., 2015). ESBL- and KPC-producing strains usually exhibit resistance to quinolones, tetracyclines, cotrimoxazol, trimethoprim, and aminoglycosides (Dhillon and Clark, 2012; Pitout, 2012; Patel and Bonomo, 2013).

In Gram-positive bacteria, the most common mechanism of resistance to β-lactams occurs due a mutant transpeptidase gene. Methicillin resistance in S. aureus occurs because of the mecA gene, which encodes transpeptidases that have low affinity for β-lactam antibiotics (Rice, 2012). MRSA strains can harbor resistance genes for other antimicrobials besides mecA, reducing treatment options (Turlej et al., 2011).

Multiresistant bacteria have been found in foods for human consumption, streams and effluents and thus it is a hospital, community, and environmental problem (Prado et al., 2007; Fontes et al., 2011; Silva and Lincopan, 2012; Rubin et al., 2014; Koga et al., 2015). As soon as new β-lactams are widely used, new β-lactamases are also discovered (Bush, 2010; Kong et al., 2010; Shaikh et al., 2015). Therefore, there is crucial need for research and development of new drugs with potential to combat resistant strains to minimize their selection.

Compounds from natural sources such as animals, plants, and microorganisms have been proposed as potential antimicrobial alternatives (Mandal and Mandal, 2011; Cardozo et al., 2013; Biasi-Garbin et al., 2015). Spice essential oils have been documented as being antimicrobial (Burt, 2004; Du et al., 2009; Betancourt et al., 2012; Nazzaro et al., 2013). Oil phenolic substances are mainly responsible for antibiotic properties (Rhayour et al., 2003; Burt, 2004; Nostro et al., 2007; Hyldgaard et al., 2012).

Studies on the antibacterial mechanisms of action of plant essential oils, including the OEO, suggest that hydrophobic bioactive compounds cause damage to cell membrane, increase cell permeability, affect ATP production, act on protein synthesis, cause cellular pH disturbance, induce cytoplasmic changes and interfere with quorum sensing (Helander et al., 1998; Ultee et al., 1999; Lambert et al., 2001; Ryhour et al., 2003; Souza et al., 2010, 2013; Szabó et al., 2010; Hyldgaard et al., 2012).

OEO, extracted mainly from the leaves of the herb O. vulgare by ecofriendly methods, has been reported as having broad antibacterial activity (Burt, 2004; Busatta et al., 2007; Betancourt et al., 2012). Other biological activities such as antifungal, antiviral, antioxidant and antinancer have been described for OEO (Cervato et al., 2000; Kalemba and Kunicka, 2003; Hyldgaard et al., 2012; Gautam et al., 2014; Gilling et al., 2014; Sobral et al., 2014).

Carvacrol and thymol are the main components of OEO (Nostro et al., 2004; Cleff et al., 2008; Hyldgaard et al., 2012; Stojković et al., 2013), and the antimicrobial activity of this oil varies according to their amounts. Synergistic and additive interactions between carvacrol and thymol have been reported (Bassolé and Juliani, 2012; Hyldgaard et al., 2012); furthermore, a mixture of compounds with antimicrobial activity could minimize the selection of resistant strains. Studies have shown that OEO has the potential to prevent food from being contaminated and control worrisome hospital infections (Nostro et al., 2004; Si et al., 2008; Barros et al., 2009; Amrouni et al., 2014; Honorório et al., 2015). Despite the potential antimicrobial activity of OEO, its strong taste and smell seem to limit its use, so alternatives are needed to minimize or eliminate such undesirable characteristics (Burt, 2004; Alvarez et al., 2014).

Silver has been used for millennia to treat wounds and eye infections and to preserve food and water (Alexander, 2009). Nanotechnology has proved to be a useful tool for solving biomedical problems. Silver nanoparticles have been intensively studied as antimicrobial agents, including their use against for the first time the synergistic and additive interaction between OEO and bio-AgNP produced by F. oxysporum against multidrug-resistant bacteria, such as MRSA, and β-lactamase- and carbapenemase-producing Escherichia coli and Acinetobacter baumannii strains. These results indicated that this combination can be an alternative in the control of infections with few or no treatment options.

Keywords: oregano oil, biological silver nanoparticles, multidrug-resistant bacteria, synergism, antibacterial

Abbreviations: OEO, oregano essential oil; bio-AgNP, biological synthesized silver nanoparticle; RBC, red blood cells.
multidrug-resistant bacteria (Li et al., 2010; Cardozo et al., 2013; Naqvi et al., 2013; Ansari et al., 2014; Bibbs et al., 2014; Palanisamy et al., 2014; Singh et al., 2014; Subashini et al., 2014; Theophel et al., 2014). Through nanotechnology, it has been possible to revive the use of silver to combat resistant bacteria. Nanoscale enhances the antibacterial activity of silver even at low concentrations; nanometer metallic particles show altered physical, chemical and biological properties compared to conventional silver, due to their high surface-to-volume ratio (Nowack et al., 2011; Rai et al., 2012; Herman and Herman, 2014). Furthermore, silver nanoparticles have been reported to be less toxic than silver ions to host (de Lima et al., 2012).

The bactericidal mechanism of silver nanoparticles is not clearly understood; however, it is believed that there is a multiple mechanism of action (Herman and Herman, 2014). Researchers have suggested that silver nanoparticles cause cell membrane disintegration and increase cell surface permeability, inactivate bacterial enzymes by interaction with thiol groups, deplete levels of intracellular ATP, cause DNA damage and induce free radical formation (Feng et al., 2000; Díbrov et al., 2002; Lok et al., 2006; Li et al., 2010; Kim et al., 2011; Theophel et al., 2014).

Although silver nanoparticles show excellent antimicrobial activity, silver-resistant bacteria have been described; and these microorganisms can quickly develop resistance to silver nanoparticles by genetic alterations (Losasso et al., 2014; Graves et al., 2015).

The combination of several antimicrobials seems to be the best strategy for controlling emergence of antibiotic-resistant microorganisms (Fischbach, 2011; Bass et al., 2015; Bollenbach, 2015). Many studies show additive or synergistic antibacterial effects of silver nanoparticles combined with alternative (eugenol, phenazine-1-carboxamide, and cinnamaldehyde) and conventional (ampicillin, kanamycin, erythromycin, chloramphenicol, amoxicillin, ciprofloxacin, and moxifloxacin; Li et al., 2005; Fayaz et al., 2010; Cardozo et al., 2013; Ghosh et al., 2013; Theophel et al., 2014; Biasi-Garbin et al., 2015) antimicrobial compounds. Synergistic and additive antimicrobial effects have been reported for OEO or its components combined with eugenol, linalool, menthol, cinnamaldehyde, Thymus vulgaris essential oil, Rosmarinus officinalis essential oil, gentamicin, polymyxin, kanamycin, levofloxacin or many others (Rosato et al., 2007; Si et al., 2008; de Souza et al., 2009; Bassolé and Juliani, 2012; Stojković et al., 2013; Honório et al., 2015).

Biological systems have been extensively used for rapid and eco-friendly biosynthesis of silver nanoparticles; instead of using chemical reagents, these processes involve fungi, bacteria, plants and other organisms or biomolecules (Sastrty et al., 2003; Durán et al., 2005, 2011; Sankar et al., 2013; Singh et al., 2014). This study evaluated, for the first time, the antibacterial effect of a two-drug combination composed of bio-AgNP synthesized by F. oxysporum and OEO against standard and resistant Gram-positive and Gram-negative strains.

MATERIALS AND METHODS

Bacterial Strains

All antimicrobial assays were performed against reference strains from American Type Culture Collection (ATCC) provided by the Laboratory of Basic and Applied Bacteriology of Londrina State University (Londrina, Paraná, Brazil), and clinical strains provided from Londrina University Hospital (Londrina, Paraná, Brazil). The standard bacterial strains used were as follows: methicillin-sensitive S. aureus (ATCC 25923), Streptococcus mutans (ATCC 25175), E. coli (ATCC 25922), K. pneumoniae (ATCC 10031), K. pneumoniae (ATCC 700603), Salmonella enterica serovar Enteritidis (ATCC 13076), S. enterica serovar Typhimurium UK-1 (ATCC 68169) and MRSA N315 provided by Dr. Elza Masae Mamizuka (São Paulo University, São Paulo – SP, Brazil). Several clinical isolates obtained from Londrina University Hospital were also tested (Table 1). Four isolates of ESBL-producing E. coli and two isolates of carbapenemase-producing E. coli from urinary tract infections (provided by Dr. Eliana Carolina Vespero, Londrina University Hospital, Londrina); one isolate of carbapenem-resistant A. baumannii from inguinal-rectal swabs (provided by Dr. Floristher Elaine Carrara Marroni, Londrina Clinics Hospital, Londrina) and two isolates of MRSA strains from secretions-general discharges (provided by Dr. Marcia Regina Eches Perugini, Londrina University Hospital, Londrina). The bacterial strains were stored in 25% glycerol (Merck) at −80°C.

Antimicrobial Agents

Oregano Essential Oil

OEO was obtained from Ferquima Industry and Commerce of Essential Oils (São Paulo, Brazil). This oil (batch 224) was extracted by steam distillation and its density (0.954 g/mL) and composition (main components: 71% carvacrol, 3% thymol, 4.5% gamma terpinene, 3.5% para-cymene, and 4% beta-caryophyllene) were described in a technical report. A stock solution of 50% OEO was prepared in dimethylsulfoxide (DMSO, Sigma–Aldrich; v/v). DMSO maximum concentration in assays was 1%.

Silver Nanoparticles

Bio-AgNP were prepared according to a previously established method (Durán et al., 2005, 2006). This method of production has been patented (Patent, 2006, PI 0605681-4A2; http://www.inpi.gov.br). Briefly, bio-AgNP were obtained after reduction of silver nitrate by F. oxysporum, strain 551, from the culture collection of the Molecular Genetics Laboratory of ESALQ-USP (Piracicaba, São Paulo, Brazil). F. oxysporum was cultivated on media containing 0.5% (w/v) yeast extract (Neogen), 2% (w/v) malt extract (Neogen), 2% (w/v) agar (Neogen) and distilled water at 28°C for 7 days. After growth, the fungal biomass was added to distilled water at 0.1 g/mL and incubated at 28°C for 72 h. Afterwards, the solution components were separated by filtration. AgNO₃ (Nuclear) at 1 mM was added to fungal-free solution, and the system was incubated for several hours at 28°C in the absence of light. Periodically, aliquots of the solution system were removed and absorptions were measured using an ultraviolet-visible spectrophotometry (Varian Cary 50 Probe); the peak at 440 nm corresponded to the surface plasmon resonance of silver nanoparticles. After bio-AgNP purification, diameter was determined by photon correlation spectroscopy using ZetaSize NanoZS (Malvern), and zeta potential measurement was performed using the same instrument.
TABLE 1 | Susceptibility to antibiotics of clinical strains.

S. aureus	PEN	OXA	CIP	RIF	GEN	STR	TET	ERY	CLI	LNZ	SXT
MRSA 101	R	R	R	S	S	S	S	R	R	S	S
MRSA 107	R	R	R	S	R	S	R	S	S	R	R

E. coli	PTZ	CEP	CFZ	CTX	CAZ	CPM	AZT	IPM	MRP	ERT	NOR	CIP	LVX	GEN	AMI	SXT	NIT
ESBL 167	S	R	R	R	R	R	S	S	S	R	R	S	R	S	R	S	
ESBL 169	S	R	R	R	S	S	R	S	S	S	S	S	S	S	S	S	
ESBL 176	S	R	–	–	S	S	–	–	–	–	–	–	–	–	–	–	
KPC 131	R	–	R	S	S	R	R	R	R	–	R	–	S	–	–	–	
KPC 133	I	–	R	S	R	S	R	–	–	S	–	–	–	–	–	–	

A. baumannii	PTZ	AMS	CTX	CAZ	CPM	AZT	IPM	MRP	ERT	CIP	LVX	GEN	AMI	SXT	NIT	
CR 01	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

AMI, amikacin; AMS, ampicillin + sulbactam; AZT, aztreonam; CAZ, ceftazidime; CEP, cephalothin; CFZ, cefazolin; CIP, ciprofloxacin; CLI, clindamycin; CPM, cefepime; CTX, cepotaxime; ERY, erythromycin; ETP, ertapenem; GEN, gentamicin; IPM, imipenem; LNZ, linezolid; LVX, levofloxacin; MRP, meropenem; NOR, norfloxacin; OXA, oxacillin; PEN, penicillin; PTZ, piperacillin + tazobactam; RIF, rifampin; STR, streptomycin; SXT, trimethoprim + sulfamethoxazole; TET, tetracycline.

R, resistant; S, susceptible; I, intermediate; (-), not tested.

MRSA, methicillin-resistant S. aureus.

ESBL, extended-spectrum beta-lactamases; KPC, K. pneumoniae carbapenemase; RC, carbapenem-resistant.

101, 107, 169, 176, 192, 131, 133, and 01 are strain numbers at Laboratory of Basic and Applied Bacteriology-Universidade Estadual de Londrina.

Antibacterial Activity of OEO and Bio-AgNP Separately

MIC was determined by the broth dilution method according to Clinical and Laboratory Standards Institute guidelines (CLSI, 2012), with necessary modifications. Tested concentrations of OEO and bio-AgNP ranged from 0.075 to 9.540 mg/mL and 0.037 to 0.596 mg/mL and from 7.81 to 125 µM, respectively. Finally bacteria at 5 × 10^5 CFU/mL were grown in MHB with both antimicrobial agents in combination at 37°C for 24 h. Sterility and growth controls were performed as in the MIC determination assay described above. The interaction of both compounds was analyzed by fractional inhibitory concentrations index (FICI) according Chin et al. (1997), using the following equation: FICI = MIC_OEO + MIC_Bio-AgNP, where FIC = MIC_combination/MIC_individual. FICI is interpreted as “synergistic” when ≤0.5, as “additive” when >0.5 and ≤1, as “indifferent” (no interaction) when >1 and <4 and as “antagonist” when ≥4. All assays were carried out in triplicate, at least on three different occasions and against Gram-positive and Gram-negative bacteria, including multidrug-resistant strains.

Time-Kill Assay

Time-kill assay was carried out using the viable cells count method, according to NCCLS (1999), with modifications. Three conditions of treatments were tested, bacterial cultures treated with OEO, bio-AgNP and their combination; and a bacterial culture without antimicrobial agent served as growth control. At ten time points (0 h, 30 s, 10 min, 20 min, 30 min, 2 h, 4 h, 7 h, 10 h, and 24 h) of incubation at 37°C, 10 µL from serial dilutions of treated and untreated cultures were transferred to MHA and CFU/mL were determined. All assays were carried out in triplicate, and at least on two different occasions, with three bacterial strains (S. aureus ATCC 25923, E. coli ATCC 25922 and carbapenemase-producing E. coli 131).

Scanning Electron Microscopy

S. aureus (ATCC 25923, non-MRSA) at 10^9 CFU/mL were prepared in MHB and added to five tubes (5 mL of bacterial inoculum each). S. aureus was exposed to three different...
treatments; OEO at 0.594 mg/mL was added to the first tube, bio-AgNP at 250 µM were added to the second tube and the two compounds combined were added to the third tube (OEO at 0.297 mg/mL and bio-AgNP at 125 µM, 2x synergistic MIC values to account for the increased cell density used for SEM analyses). Incubation times at 37°C varied for each treatment, 30 min for OEO and 6 h for bio-AgNP and combination of antimicrobials. Two untreated controls were prepared, one with 30 min incubation and another with 6 h. After incubation, 20 µL of each sample were spotted onto poly-L-lysine (Sigma-Aldrich)-coated glass slides. Each slide containing treated or untreated bacteria was fixed (for 20 h) by immersion in 1 mL of 0.1 M sodium cacodylate buffer (pH 7.2) containing 2.5% glutaraldehyde and 2% paraformaldehyde. All samples were then post-fixed in 1% osmium tetroxide for 2 h. All reagents for both chemical fixations were provided from Electron Microscopy Sciences. Post-fixed cells were dehydrated in an ethanol gradient (Sigma-Aldrich) (70, 80, 90 and 100°CGL), critical point-dried using CO₂ (BALTEC CPD 030 Critical Point Dryer), coated with gold (BALTEC SDC 050 Sputter Coater) and observed under a scanning electron microscope (FEI Quanta 200).

Cytotoxicity Assay with Human Red Blood Cells (RBC) and HEp-2 cells

Hemolytic activity of OEO and bio-AgNP was determined according to Izumi et al. (2012), with necessary modifications. Blood was collected in heparinized tubes (Vacutainer) from a healthy human donor with voluntary consent, which was approved by the human ethics committee (CAAE 47661115.0.0000.5231, No. 1268.019 – UEL). Erythrocytes were separated by centrifugation (5000 rpm, 4°C, 5 min) and were prepared in phosphate-buffered saline (0.1 M PBS, pH 7.2) at 6% (v/v). PBS was composed of 0.9% (w/v) sodium chloride (Merck), 0.2 M monobasic sodium phosphate (Chemco) and 0.2 M dibasic sodium phosphate (Nuclear). In 96-well plates, 100 µL of RBC at 6% were added to 100 µL of PBS with different concentrations of compounds individually and in combination. After 3 h of incubation at 37°C, supernatants were read at 550 nm to monitor release of hemoglobin. Triton X-100 (Sigma-Aldrich) at 1% was used as control for 100% hemolytic activity, and hemolysis percentage was calculated for each compound concentration.

Cytotoxicity to the human laryngeal epithelial carcinoma cell line HEp-2 was performed by the colorimetric dimethylthiazol diphenyl tetrazolium bromide (MTT, Sigma-Aldrich) assay in 96-well plates, according to the manufacturer’s recommendations. HEp-2 cells were grown in RPMI medium 1640 (Gibco) at 37°C in 5% CO₂ to form a monolayer. Non-adherent cells were removed using PBS and confluent cells were treated with different concentrations of compounds individually and in combination for 24 h at 37°C in 5% CO₂. After incubation, the medium was removed and each well was washed with PBS. MTT solution (10 µL per well at 1.250 g/mL) was added to all wells, and plates were incubated at 37°C for 2 h. MTT solubilization solution (Sigma-Aldrich) containing 10% Triton X-100 in acidic isopropanol (0.1 N HCl) was added to each well (90 µL per well) to dissolve the dark blue crystals (formazan). After 15 min homogenization, the plate was read at 570 nm. Untreated HEp-2 cells were used as control for 100% viability, and viability percentage was calculated for each compound concentration.

In both cytotoxicity assays, the concentrations of OEO and bio-AgNP ranged 0.037–9.540 mg/mL and 1.95–250 µM, respectively. The 50% cytotoxic concentration (CC₅₀) was defined as the antimicrobial concentration required to reduce cell viability by 50% compared to untreated control. CC₅₀ of each compound was determined by regression analysis for both cell lines, RBC and HEp-2 tumor cells.

Statistical Method

Results of MIC and time kill assay were analyzed using Wilcoxon or Kruskal-Wallis test followed by Dunn’s test. Analyses were performed using R Statistical Software, version 3.1.0 (Foundation for Statistical Computing, Vienna, Austria). Values of p < 0.05 were considered significant.

RESULTS

Bio-AgNP Characterization

Average bio-AgNP size and zeta potential were 77.68 nm and −34.6 mV, respectively (Supplementary Material).

MIC and Antimicrobial Interaction

OEO and bio-AgNP inhibited the growth of all bacterial strains tested, including multidrug-resistant strains. The mean MIC for OEO was 0.526 ± 0.130 mg/mL and the mean MBC was 0.500 ± 0.158 mg/mL, MIC and MBC ranged from 0.298 to 1.193 mg/mL (Table 2). The mean MIC for bio-AgNP was 129.17 ± 55.25 µM ranging from 62.5 to 250µM, and the mean MBC was 154.17 ± 110.46 µM ranging from 62.5 µM to 500 µM (Table 2). There was no statistical difference between standard and multidrug-resistant strains with regard to MIC values of the two individual compounds (p > 0.05). No significant difference (p > 0.05) was observed between Gram-positive and Gram-negative sensitivity to OEO, where both bacterial groups were susceptible to this natural compound. Bio-AgNP showed better activity against Gram-negative bacteria (p < 0.05), where the mean MIC was 125 ± 56.53 µM in contrast to Gram-positive mean MIC, which was 225 ± 55.90 µM.

In combination, OEO and bio-AgNP showed significantly lower MIC values when compared with individual treatment (p < 0.05), where the two compounds together resulted in synergistic or additive antibacterial activity (Table 3).

Time-Kill Curve

OEO reduced the number of CFU/mL rapidly. For all three strains tested (S. aureus ATCC 25923, E. coli ATCC 25922, KPC-producing E. coli), after 10 min of treatment with OEO at MIC (0.596 mg/mL), there were no viable cells (p < 0.05; Figures 1–3). The bacterial inhibition by OEO was immediate, where after 30 s of treatment, there was a 0.57 log (p < 0.05), 1.54 log (p < 0.05), and 0.27 log (p < 0.05) reduction of S. aureus ATCC 25923.
TABLE 2 | Mean of minimal inhibitory and bactericidal concentrations of oregano essential oil and biological silver nanoparticles.

Bacteria	OEO (mg/mL)	bio-AgNP (µM)
	MIC MBC	MIC MBC
S. aureus (ATCC 25923)	0.596 0.596	250.0 250.0
S. mutans (ATCC 25175)	0.596 0.596	125.0 250.0
E. coli (ATCC 25922)	0.596 0.596	62.50 62.50
E. coli ESBL 167	0.596 0.596	125.0 125.0
E. coli ESBL 169	0.596 0.596	125.0 125.0
E. coli ESBL 176	0.596 0.596	125.0 125.0
E. coli ESBL 192	0.596 0.596	125.0 125.0
E. coli KPC 131	0.596 0.596	125.0 125.0
E. coli KPC 133	0.596 0.596	125.0 125.0
A. baumannii CR 01	0.298 0.298	125.0 125.0
MRSA N315	0.596 0.596	250.0 250.0
MRSA 101	1.193 1.193	250.0 500.0
MRSA 107	1.193 1.193	250.0 500.0

OEO, oregano essential oil; bio-AgNP, biological silver nanoparticles.

MIC, minimal inhibitory concentration; MBC, minimal bactericidal concentration.

ATCC, American Type Culture Collection.

MRSA, methicillin-resistant S. aureus.

ESBL, extended spectrum beta-lactamase; KPC, K. pneumoniae carbapenemase.

CR, Carbapenem-resistant.

ESBL, extended spectrum beta-lactamase; KPC, K. pneumoniae carbapenemase.

* S. enterica Typhimurium ATCC 68169.

101, 107, 167, 169, 176, 192, 131, 133, and 01 are strain numbers at Laboratory of Basic and Applied Bacteriology-Universidade Estadual de Londrina.

table 2

(Figure 1), E. coli ATCC 25922 (Figure 2), and carbapenemase-producing E. coli (Figure 3) cell populations, respectively.

Bio-AgNP at MIC (250 µM) showed bactericidal effect at 24 h to S. aureus ATCC 25923 (p < 0.05; Figure 1). After 10 h of treatment, the S. aureus cell population decreased by 0.57 log (p < 0.05); and between 10 and 24 h of treatment, there was a 4.73 log reduction (p < 0.05). Gram-negative bacteria lost total viability after 4 h of incubation with bio-AgNP at 62.5 and 125 µM for E. coli ATCC 25922 (Figure 2) and carbapenemase-producing E. coli (Figure 3), respectively (p < 0.05). In both Gram-negative bacteria, after 2 h of exposure to bio-AgNP, there was a significant decrease in CFU/mL, 3.3 and 2.31 log reduction in standard E. coli (Figure 2) and KPC-producing E. coli (Figure 3), respectively (p < 0.05).

The combination of OEO and bio-AgNP led to faster reduction of CFU/mL than in individual treatment with bio-AgNP. Against S. aureus ATCC 25923, the combination of the two compounds at synergistic MIC (0.149 mg/mL and 62.5 µM for OEO and bio-AgNP, respectively) showed bacteriostatic activity (data not shown). But the combination with additive MIC values (0.298 mg/mL OEO and 125 µM bio-AgNP) against S. aureus ATCC 25923 caused a 3.48 log decrease in cell population in 2 h (p < 0.05) and resulted in no viable bacterial cells at 7 h (p < 0.05; Figure 1).

TABLE 3 | Combinatory effect of oregano essential oil and biological silver nanoparticles and both minimal inhibitory concentrations in combination.

Bacteria	OEO (mg/mL)	Bio-AgNP (µM)	FICI
	MIC MBC	Mic MBC	
S. aureus (ATCC 25923)	0.149 0.50	62.50 62.50	S
S. mutans (ATCC 25175)	0.075 0.48	62.50 62.50	A
E. coli (ATCC 25922)	0.298 0.50	15.62 75.0	A
E. coli ESBL 167	0.149 0.50	15.62 75.0	A
E. coli ESBL 169	0.149 0.50	15.62 75.0	A
E. coli ESBL 176	0.149 0.50	15.62 75.0	A
E. coli ESBL 192	0.149 0.50	15.62 75.0	A
E. coli KPC 131	0.075 0.50	12.50 37.5	A
E. coli KPC 133	0.075 0.50	12.50 37.5	A
A. baumannii CR 01	0.149 0.50	15.62 75.0	A
MRSA N315	0.075 0.50	12.50 37.5	A
MRSA 101	0.596 0.62	62.50 62.50	A
MRSA 107	0.596 0.62	62.50 62.50	A

OEO, oregano essential oil; bio-AgNP, biological silver nanoparticles.

MIC, minimal inhibitory concentration; MBC, minimal bactericidal concentration.

ATCC, American Type Culture Collection.

MRSA, methicillin-resistant S. aureus.

ESBL, extended spectrum beta-lactamase; KPC, K. pneumoniae carbapenemase.

CR, Carbapenem-resistant.

* S. enterica Typhimurium ATCC 68169.

101, 107, 167, 169, 176, 192, 131, 133, and 01 are strain numbers at Laboratory of Basic and Applied Bacteriology-Universidade Estadual de Londrina.

FICI, fractional inhibitory concentration index.

FICI index were interpreted as follows: ≤ 0.5, synergy; > 0.5 to 1.0, addition; > 1.0 to < 4.0, indifference; and ≥ 4, antagonism.

(3), Synergistic interaction; (A), Additive interaction.

Against standard E. coli (ATCC 25922), OEO and bio-AgNP at additive MIC (0.298 mg/mL and 15.62 µM, respectively) caused a 2.3 log decrease (p < 0.05) within 10 min of treatment and there were no viable cells after 20 min (p < 0.05; Figure 2). At 30 min of incubation with synergistic MIC values (0.075 mg/mL and 31.25 µM for OEO and bio-AgNP, respectively), the population of carbapenemase-producing E. coli decreased 2.7 log (p < 0.05) and after 2 h there was a total reduction of bacterial population (p < 0.05; Figure 3).

Scanning Electron Microscopy

To investigate antimicrobial activity against S. aureus ATCC 25923 (non-MRSA) by OEO, bio-AgNP and combination of the two treatment, the morphology changes were investigated with SEM. Untreated cells showed their unique shapes (spherical shaped) 30 min (Figure 4A) and 6 h (Figure 4B) after incubation. Inset images showed, seen clearly in the higher magnification, intact surface of S. aureus ATCC 25923 (non-MRSA) by OEO, bio-AgNP and combination of the two compounds at synergistic MIC (0.149 mg/mL and 62.5 µM for OEO and bio-AgNP, respectively) showed bacteriostatic activity (data not shown). But the combination with additive MIC values (0.298 mg/mL OEO and 125 µM bio-AgNP) against S. aureus ATCC 25923 caused a 3.48 log decrease in cell population in 2 h (p < 0.05) and resulted in no viable bacterial cells at 7 h (p < 0.05; Figure 1).

Inset images showed, seen clearly in the higher magnification, intact surface of S. aureus ATCC 25923 (non-MRSA) by OEO, bio-AgNP and combination of the two compounds at synergistic MIC (0.149 mg/mL and 62.5 µM for OEO and bio-AgNP, respectively) showed bacteriostatic activity (data not shown). But the combination with additive MIC values (0.298 mg/mL OEO and 125 µM bio-AgNP) against S. aureus ATCC 25923 caused a 3.48 log decrease in cell population in 2 h (p < 0.05) and resulted in no viable bacterial cells at 7 h (p < 0.05; Figure 1).
FIGURE 1 | Time-kill curves of *S. aureus* 25923 (ATCC) exposed to OEO and bio-AgNP individually and in combination at MIC values. Bacteria at 5×10^5 CFU/mL were exposed to three different treatments; OEO alone (0.596 mg/mL), bio-AgNP alone (250 µM), and OEO + bio-AgNP (0.298 mg/mL + 125 µM). Control indicates bacterial growth without antimicrobial compounds. Values of CFU/mL are the mean ± standard deviation.

FIGURE 2 | Time-kill curves of *E. coli* 25922 (ATCC) exposed to OEO and bio-AgNP individually and in combination at MIC values. Bacteria at 5×10^5 CFU/mL were exposed to three different treatments; OEO alone (0.596 mg/mL), bio-AgNP alone (62.5 µM) and OEO + bio-AgNP (0.298 mg/mL + 15.62 µM). Control indicates bacterial growth without antimicrobial compounds. Values of CFU/mL are the mean ± standard deviation.

in cell density and caused morphological changes (Figure 4D). Inset show, in the higher magnification, cells walls covered with substance resulting from serious disruptions in the surface of *S. aureus* ATCC 25923 (Figure 4D - inset). Cells treated with combination of OEO plus bio-AgNP (Figure 4E) showed very deformed cells, with cell debris and damages appeared as cell surface blebbing after 6 h treatment (Figure 4E - inset). Treatments with OEO plus bio-AgNP showed a decrease in cell density, exopolysaccharide, morphology changes, and cell destruction, compared to the non-treated cells. It indicated that this composition have an antimicrobial activity against *S. aureus* by disrupting cells.

Cytotoxicity Assay in Human RBC and HEp-2 cells

Results of MTT assay showed that OEO was toxic to tumor cells (HEp-2 cells), reducing cell metabolism by 50% or more at concentrations higher than 0.075 mg/mL (Figure 5A). But this essential oil was less toxic to RBC, and the CC50 was 7.519 mg/mL (Figure 5A). CC50 of bio-AgNP in HEp-2 cells was 97.22 µM (Figure 5B), and very low hemolytic activity was observed even at the highest concentration tested (250 µM; Figure 6B).

The compounds in combination were non-toxic to HEp-2 cells at concentrations of 0.075 mg/mL and 31.25 µM to OEO and bio-AgNP respectively, or at lower values concentrations. The combination of 0.075 mg/mL of OEO and 125 µM or 62.5 µM of bio-AgNP showed toxicity to HEp-2 cells (Table 4). However, the combination of OEO and bio-AgNP was non-toxic to RBC at all concentrations tested (Table 5).
FIGURE 4 | Scanning electron micrograph of antibacterial effect of OEO and bio-AgNP alone and in combination against S. aureus ATCC 25923 (non-MRSA). (A) Untreated control after 30 min incubation. (B) Untreated control after 6 h incubation. (C) Treated cells with OEO at 0.596 mg/mL for 30 min. (D) Treated cells with bio-AgNP at 250 µM for 6 h. (E) Treated cells with combination of OEO and bio-AgNP at 0.298 mg/mL and 125 µM, respectively, for 6 h. Micrographs (A–E) show cell density and exopolysaccharide matrix (15,000 x). Inset images show detail of morphological alterations of treated cells and typical cell morphology of untreated controls (30,000 x). Arrows: morphological changes (surface protrusions) and cellular debris. Arrowheads: exopolysaccharide.

FIGURE 5 | HEp-2 cell viability at different concentrations of OEO and bio-AgNP individually. (A) HEp-2 cell exposed to OEO alone ranging from 0.075 to 9.540 mg/mL. (B) HEp-2 cell exposed to bio-AgNP alone ranging from 1.95 to 250 µM. Percentage values of cell viability are the mean ± standard deviation.

DISCUSSION

This study showed that OEO has potent bactericidal activity at low concentration with fast action, in agreement with previous studies (Burt and Reinders, 2003; Souza et al., 2010; Betancourt et al., 2012; Alvarez et al., 2014). Busatta et al. (2007) reported for OEO MIC values of 0.23 and 0.46 mg/mL against methicillin-sensitive S. aureus and E. coli ATCC 25922 respectively. Betancourt et al. (2012) found for OEO a MIC of 0.780 mg/mL against S. enterica and 3.125 mg/mL against E. coli. OEO MIC values obtained in our study ranged from 0.298 to 1.193 mg/mL (Table 2), which were in line with literature results. Our analysis showed that OEO at a low concentration was bactericidal against all multidrug-resistant bacteria tested, with MBC values of 0.298 mg/mL against A. baumannii, 0.596 mg/mL against ESBL and KPC-producing E. coli isolates and 1.193 mg/mL against both clinical MRSA isolates.

Time-kill assays showed that OEO reduced cell populations nearly 5 log (after 10 min of treatment) in all three bacterial strains tested ($p < 0.05$), so our results indicated that OEO acted within a few minutes against S. aureus ATCC 25923 (Figure 1), E. coli ATCC 25922 (Figure 2), and KPC-producing E. coli (Figure 3). Burt and Reinders (2003) showed that when E. coli O157:H7 at 5×10^5 CFU/mL were exposed to OEO (0.06%, v/v), there were no viable cells after 1 min of treatment. In a study with S. aureus isolated from food, Barros et al. (2009) found that OEO at MIC (0.06%, v/v) caused 3 log reduction of initial inoculum (10^8 CFU/mL) after 2 h of treatment. In our study using an equal initial inoculum (S. aureus at 10^8 CFU/mL) and same OEO concentration (0.596 mg/mL; corresponding to 0.06%, v/v), there were no viable cells after 30 min ($p < 0.05$), due to a 8 log reduction of S. aureus ATCC 25923 population (data not shown).

Some studies have found that terpenoid compounds from OEO are more active against Gram-positive bacteria...
FIGURE 6 | Hemolytic activity of different concentrations of OEO and bio-AgNP individually. (A) Human erythrocytes exposed to OEO alone ranging from 0.075 to 9.540 mg/mL. (B) Human erythrocytes exposed to bio-AgNP ranging from 1.95 to 250 µM. Values of hemolysis percentage are the mean ± standard deviation.

TABLE 4 | HEp-2 cell viability at different concentrations of oregano essential oil (OEO) and biological silver nanoparticles (bio-AgNP) in combination.

Combination	Tested concentrations	Viable cells (%)	
OEO (mg/mL)	bio-AgNP (µM)		
A1	0.596	125.0	0.95 ± 0.69
A2	0.596	62.50	1.36 ± 0.59
A3	0.596	31.25	0.99 ± 0.15
A4	0.596	15.62	1.27 ± 0.40
B1	0.298	125.0	1.18 ± 0.20
B2	0.298	62.50	1.72 ± 0.57
B3	0.298	31.25	1.04 ± 0.20
B4	0.298	15.62	1.99 ± 4.64
C1	0.149	125.0	7.80 ± 2.00
C2	0.149	62.50	21.81 ± 12.19
C3	0.149	31.25	22.94 ± 14.00
C4	0.149	15.62	72.01 ± 17.60 \(^{NC}\)
D1	0.075	125.0	38.68 ± 8.49
D2	0.075	62.50	51.61 ± 3.25
D3	0.075	31.25	94.24 ± 3.67 \(^{NC}\)
D4	0.075	15.62	100 ± 0.00 \(^{NC}\)
E1	0.037	125.0	61.54 ± 6.92 \(^{NC}\)
E2	0.037	62.50	82.27 ± 10.55 \(^{NC}\)
E3	0.037	31.25	100 ± 0.00 \(^{NC}\)
E4	0.037	15.62	100 ± 0.00 \(^{NC}\)

Concentrations of OEO (mg/mL) in combination: A, 0.596; B, 0.298; C, 0.149; D, 0.075; E, 0.037.

Concentrations of bio-AgNP (µM) in combination: (1) 125; (2) 62.5; (3) 31.25; (4) 15.62. \(^{NC}\), non-cytotoxic, ±, standard deviation.

Many studies suggest that essential oils affect the bacterial cell membrane resulting in growth inhibition, since this structure supports the most essential functions in prokaryotes. Bennet et al. (2004) reported cell surface changes such as curling and cracks in Saccharomyces cerevisiae treated with thymol. Lambert et al. (2001) suggested that OEO inhibits bacterial growth due to damage to membrane integrity, affecting pH homeostasis and equilibrium of inorganic ions. Suzuki et al. (2015) found physical damage and morphological alterations in Staphylococcus epidermidis treated with OEO products. Souza et al. (2010) showed loss of 260 nm-absorbing material and release of potassium ions of S. aureus cells treated with OEO, results suggesting increased membrane permeability. In our study, SEM observations confirmed physical damage and considerable morphological alteration as cell surface blebbing in S. aureus ATCC 25923 (non-MRSA) cells exposed to OEO for 30 min (Figure 4C), compared to control (untreated bacteria) showing no morphological changes after 30 min (Figure 4A). This analysis by electron microscopy revealed a decrease in cell density of OEO-treated bacteria sample when compared to control sample, according with time kill results at 30 min of incubation (data not shown).

In our RBC toxicity assay, OEO CC\(_{50}\) was 7.519 mg/mL (Figure 6A). OEO did not appear to be toxic to RBC, since MIC values ranged from 0.037 mg/mL to 1.193 mg/mL (Tables 2, 3).
TABLE 5 | Hemolytic activity of oregano essential oil (OEO) and biological silver nanoparticles (bio-AgNP) in combination.

Combination	Tested concentrations	Hemolysis (%)	
	OEO (mg/mL)	bio-AgNP (µM)	
A1	0.596	125.0	6.49 ± 2.29NC
A2	0.596	62.50	2.86 ± 0.11NC
A3	0.596	31.25	1.95 ± 0.11NC
A4	0.596	15.62	0.49 ± 0.19NC
B1	0.298	125.0	7.56 ± 1.16NC
B2	0.298	62.50	2.60 ± 1.39NC
B3	0.298	31.25	0.77 ± 0.37NC
B4	0.298	15.62	0.19 ± 0.39NC
C1	0.149	125.0	8.44 ± 0.98NC
C2	0.149	62.50	4.58 ± 0.29NC
C3	0.149	31.25	0.19 ± 0.17NC
C4	0.149	15.62	1.26 ± 0.19NC
D1	0.075	125.0	7.75 ± 0.92NC
D2	0.075	62.50	2.67 ± 0.73NC
D3	0.075	31.25	0.42 ± 0.19NC
D4	0.075	15.62	0.00 ± 0.00NC
E1	0.037	125.0	5.81 ± 2.27NC
E2	0.037	62.50	1.57 ± 0.27NC
E3	0.037	31.25	0.42 ± 0.59NC
E4	0.037	15.62	0.00 ± 0.00NC

Concentrations of OEO (mg/mL) in combination: A, 0.596; B, 0.298; C, 0.149; D, 0.075; E, 0.037. Concentrations of bio-AgNP (µM) in combination: (1) 125; (2) 62.5; (3) 31.25; (4) 15.62. NC, non-cytotoxic; ±, standard deviation.

The lack of cytotoxicity of OEO to erythrocytes has also been found by other investigators. Mancini et al. (2014) reported no hemolytic activity of OEO against bovine erythrocytes, and Cacciatore et al. (2015) showed that carvacrol derivatives did not produce human blood hemolysis at their MIC values. OEO was toxic to HEp-2 cells (Figure 5A), and there are previous studies using tumor cells, including HEp-2 cells, that reported the antitumor activity of OEO or its components (Mehdi et al., 2011; Gautam et al., 2014; Sobral et al., 2014).

Due to its strong antimicrobial property, OEO has potential to replace antibiotics in the food industry and can be incorporated in cosmetic products, among other applications (Alvarez et al., 2014; Suzuki et al., 2015). However, the high volatile character and undesirable organoleptic features can limit its use; therefore, alternatives to solve these limitations are required (Burt, 2004; Alvarez et al., 2014; Hernández-Hernández et al., 2014).

In this study, bio-AgNP exhibited broad-spectrum antibacterial action, inhibiting growth of both Gram-positive and -negative bacteria, in agreement with the literature (Busatta et al., 2007; Jain et al., 2009; Kim et al., 2011). The mean MIC value obtained in our study (129 µM) was according with previous studies using silver nanoparticles produced by F. oxysporum that reported MIC value of 125 µM (Cardozo et al., 2013; Biasi-Garbin et al., 2015). However, we found that Gram-positive bacteria were more tolerant to silver nanoparticles because bio-AgNP MIC values were higher (Table 2) and time of action was slower, compared to Gram-negative bacteria (Figures 1–3), as reported in other studies (Jain et al., 2009; Durán et al., 2010; Agnihotri et al., 2014). Kim et al. (2011) showed that Gram-negative bacteria were more susceptible to silver nanoparticles compared to Gram-positive strains, where there was increased bactericidal activity in time kill assay, loss of protein through the membrane and inactivation of lactate dehydrogenase (LDH), besides marked morphological changes.

The size of the nanoparticles is a key point in their antibacterial activity, where many studies show that antibacterial activity is particle size dependent; antimicrobial activity of nanoparticles increases with smaller size (Panacek et al., 2006; Ayala-Núñez et al., 2009; Agnihotri et al., 2014), and this fact accounts for the variation in MIC data between different studies, limiting comparison.

Our analysis by SEM showed surface protrusions on bio-AgNP treated S. aureus cells (non-MRSA) (Figure 4D). Kim et al. (2011) reported that bacterial cells treated with silver nanoparticles had irregular fragments on the surface, a large protein leakage and decrease in bacterial growth; suggesting that fragments can be lost cytoplasmic material resulting in damage to the membrane with a consequent increase in permeability. Studies also report that silver ions have an affinity for thiol groups and may damage respiratory enzymes of cytoplasmic membrane (Holt and Bard, 2005; Li et al., 2010).

In our RBC toxicity assay, bio-AgNP were not cytotoxic to human blood cells (Figure 6B). Our metal compound did not exhibit cytotoxic effect on RBC at the concentrations studied, 250 µM (37.5 µg/mL) to 1.95 µM (0.29 µg/mL), so it was not possible to calculate CC50 for human erythrocytes. Spectrophotometric analysis of supernatants indicated that bio-AgNP did not increase absorbance, demonstrating that little hemoglobin was released from the RBC. Choi et al. (2011) showed that the silver nanoparticles at 700 µg/mL lysed 50% of RBC. According to ASTM E2524-08 (2013)1 standards, hemolysis > 5% indicates damage to RBC; in our study, the highest bio-AgNP concentration tested (250 µM) showed only 1.4% hemolysis. Our MTAG assay results showed that bio-AgNP was toxic to HEp-2 cells only at high concentrations (CC50 = 97.22 µM), often above that needed to inhibit bacterial growth. Some authors have reported antitumor activity of silver nanoparticles, supporting our finding of bio-AgNP being more toxic to HEp-2 cells than to RBC (Devor and Bhimba, 2012; Antony et al., 2013).

Despite the effective antimicrobial action of bio-AgNP with broad spectrum activity and low cytotoxicity, bacteria can easily develop resistance to these nanoparticles by simple genetic changes (Graves et al., 2015). Thus, alternative studies to work around this problem are needed.

Combined drug treatment is recommended as a strategy to control antimicrobial resistance (Fischbach, 2011; Bollenbach, 2015). Li et al. (2005) observed a synergistic effect of silver nanoparticles and antibiotics in treating S. aureus infections, and the results showed a decrease in the MIC of the antibiotic alone.

1ASTM E2524-08 (2013). Standard Test Method for Analysis of Hemolytic Properties of Nanoparticles. Available online at: http://www.astm.org/Standards/E2524.htm [Accessed October 17, 2015].
nanoparticles combined with amoxicillin against E. coli, and other studies have shown a synergistic interaction with other natural alternative compounds such as cinnamaldehyde (Ghosh et al., 2013), eugenol (Biasi-Garbin et al., 2015), and phenazine-1-carboxamide (Cardozo et al., 2013).

Other studies have shown that the OEO acts in synergism with some conventional antimicrobials such as gentamicin against S. aureus 29213, E. coli 25922, and A. baumannii 19606 (Rosato et al., 2010), or has an additive effect in combination with amoxicillin, polymyxin, and lincomycin against ESBL-producing E. coli (Si et al., 2008). OEO shows synergistic effects with natural substances such as essential oil of Thymus vulgaris and Rosmarinus officinalis (Stojkovic et al., 2013; Honório et al., 2015).

In the literature, OEO (Nostro et al., 2004; Si et al., 2008; Amrouni et al., 2014) and silver nanoparticles (Cardozo et al., 2013; Singh et al., 2014; Subashini et al., 2014) were shown to be active against multidrug-resistant bacteria. But this study showed, for the first time, synergistic and additive effects of a combination of OEO and bio-AgNP against bacterial strains, including MRSA and beta-lactamase-or carbapenemase-producing bacteria. Synergistic and additive drug interactions may be potential strategies for controlling resistance evolution, since administration of multiple drugs may disrupt several bacterial functions and thus minimize selection of resistant strains (Yeh et al., 2009; Bollenbach, 2015). In combination, both compounds were effective at concentrations that individually do not affect human erythrocyte (Figure 5), and their synergistic or additive effects neither impact such cells (Table 5). However, OEO combined with bio-AgNP was cytotoxic to HEp-2 (Table 4); as observed for these compounds individually. The combination also showed antibacterial activity in short time (Figures 1–3). Furthermore, the undesirable organoleptic characteristics of OEO are decreased, since the synergistic or additive interaction reduces the concentration of both compounds.

Our results highlight the powerful action of OEO combined with bio-AgNP against Gram-negative bacteria, including those producing ESBL and carbapenemases (Table 3, Figures 2, 3). The combination of the two substances also showed activity against Gram-positive bacteria, since the FICI indicated synergistic and additive interactions (Table 3), and SEM confirmed this antimicrobial action through changes in the S. aureus (non-MRSA) cell surface and decrease in cell density (Figure 4E) compared to control (Figure 4B).

In conclusion, the combination of bio-AgNP with OEO resulted in synergistic and additive antimicrobial activities against the multidrug-resistant bacterial strains of E. coli, A. baumannii and MRSA. Therefore bio-AgNP combined with OEO has potential to be applied in industry (cosmetics, food and pharmaceutical, for example) and clinical and hospital settings (i.e., for treating wounds and burns infections, or for disinfecting hospital to combat resistant strains as A. baumannii).

AUTHOR CONTRIBUTIONS

SS, conception and drafting of the work, analysis and interpretation of results, writing of this manuscript. LD, conception of the work, analysis of the results (especially with essential oil assays and time-kill curves), review critically of this manuscript. CC, conception and analysis of MTT assay. SY, conception and analysis of MTT assay. CN, design of SEM methodology, image acquisition, analysis and interpretation of SEM results. AD, design of SEM methodology, image acquisition, analysis and interpretation of SEM results. CA, design of SEM methodology, image acquisition, analysis, and interpretation of SEM results. ND, biosynthesis and characterization of silver nanoparticles. GN, analysis and interpretation of results, review critically of this manuscript, final approval of the manuscript version to be published. RK, design of the work, drafting the work, analysis and interpretation of results, guidance in all stages of the work, review critically, and correction of this manuscript, final approval of the manuscript version to be published.

ACKNOWLEDGMENTS

This study was supported by CNPq BIOTEC 402728/2013-0 and Postgraduate Program in Microbiology of Universidade Estadual de Londrina. SS was funded by a student scholarship from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). The authors thank Dr. Carlos Nozawa for providing the HEp-2 cells. Dr. A. Leyva helped with English editing of the manuscript. Laboratory of Electron Microscopy and Microanalysis of Universidade Estadual de Londrina for performing the electron micrographs.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fmicb.2016.00760

REFERENCES

Agnihotri, S., Mukherji, S., and Mukherji, S. (2014). Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv. 4, 3974–3983. doi: 10.1039/C3RA44507K
Alexander, J. W. (2009). History of the medical use of silver. Surg. Infect. 10, 289–292. doi: 10.1089/sir.2008.9941
Alvarez, M. V., Ortega-Ramirez, L. A., Gutierrez-Pacheco, M. M., Bernal-Mercado, A. T., Rodriguez-Garcia, I., Gonzalez-Agullar, G. A., et al. (2014). Oregano essential oil-pectin edible films as anti-quorum sensing and food antimicrobial agents. Front. Microbiol. 5:699. doi: 10.3389/fmicb.2014.00699
Amrouni, S., Touati, M., Hadef, Y., and Djahoudi, A. (2014). Effet de l’huile essentielle d’Origanum vulgare et de Thymus citriodorus sur Pseudomonas aeruginosa Vim-2 carbapénemase. Phytothérapie 12, 309–313. doi: 10.1007/s10298-014-0842-x
Ansari, M. A., Khan, H. M., Khan, A. A., Cameotra, S. S., Saquib, Q., and Musarrat, J. (2014). Gum arabic capped silver nanoparticles inhibit biofilm formation by
multi-drug resistant strains of *Pseudomonas aeruginosa*. J. Basic Microbiol. 54, 688–699. doi: 10.1002/jobm.201300748

Antony, J. J., Sithika, M. A. A., Joseph, T. A., Suriyakalaa, U., Sankarganesan, A., Siva, D., et al. (2013). *In vivo* antimicrobial activity of bio-synthesized silver nanoparticles using *Ficus religiosa* as a nanofactory in DAL induced mice model. Collids Surf. B Biointerfaces 108, 185–190. doi: 10.1016/j.colsurfb.2013.02.041

Ayala-Núñez, N. V., Villegas, H. H. L., Turrent, L. C. I., and Padilla, C. R. (2009). *Bush*, K. (2010). *Bench-to-bedside review: the role of beta-lactamases in antibiotic-resistant*... *Antimicrob. agents chemother.* 41, 850–852.

Chin, N. X., Weitzman, I., and Della-Latta, P. (1997). *In vitro* activity of fluvastatin, a cholesterol-lowering agent, and synergy with fluconazole and itraconazole against candida species and *Cryptococcus neoformans*. *Antimicrob. agents chemother.* 41, 850–852.

Choi, J., Reipa, V., Hitchens, V. M., Goering, P. L., and Malinauskas, R. A. (2011). Physicochemical characterization and *in vitro* hemolysis evaluation of silver nanoparticles. *Toxicol. Sci.* 123, 133–143. doi: 10.1093/toxsci/kfr149

Clev, M. B., Meinerz, A. R., Sallis, E. S., Antunes, T. A., Mattie, A., Rodrigues, M. R., et al. (2008). Toxicidade pré-clínica em doses repetidas do óleo essencial do *Origanum vulgare* L. (Oregano) em ratas Wistar. *Lat. Am. J. Pharm.* 27, 704–709.

DLSI (2012). *Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically*. Available online at http://antimicrobianos.com.ar/ATB/wp-content/uploads/2012/11/03-CLSI-M07-A9-2012.pdf [Accessed October 17, 2015].

del Lim, R., Seabra, A. B., and Durán, N. (2012). Silver nanoparticles: a brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles. *J. Appl. Toxicol.* 32, 867–879. doi: 10.1002/jat.2780

devi, J. S., and Bhimba, B. V. (2012). Anticancer activity of silver nanoparticles synthesized by the seaweed *Ulva lactuca* in vitro. *J. Nanomedicine. Biotherapeutic Discov.* 01:242. doi: 10.4172/scientifereports.242

Dhillon, R. H. P., and Clark, J. (2012). ESBL: a clear and present danger? *Crit. Care Res. Pract.* 2012:625170. doi: 10.1155/2012/625170

Dibrov, P., Dzioba, J., Gosink, K. K., and Hase, C. C. (2002). Chemiosmotic mechanism of antimicrobial activity of Ag+ in *Vibrio cholerae*. *Antimicrob. Agents Chemother.* 46, 8–11. doi: 10.1128/aac.46.8.2668-2670.2002

Dormon, H. J., and Deans, S. G. (2000). Antimicrobial agents from plants: antibacterial activity of plant volatile oils. *J. Appl. Microbiol.* 88, 308–316. doi: 10.1046/j.1365-2672.2000.00969.x

drawz, S. M., and Bonomo, R. A. (2010). Three decades of β-lactamase inhibitors. *Clin. Microbiol. Rev.* 23, 160–201. doi: 10.1128/CMR.00037-09

du, W. X., Olsen, C. W., Avena-Bustillos, R. J., McHugh, T. H., Levin, C. E., Mandrell, R., et al. (2009). Antibacterial effects of allspice, garlic, and oregano essential oils in tomato films determined by overlay and vapor-phase methods. *J. Food Sci.* 74, 390–397. doi: 10.1111/j.1750-3841.2009.01289.x

durán, N., Alves, O. L., Esposito, E., de Souza, G. I., and Marcató, P. D. (2006). *Processo de produção de nanopartículas de prata estabilizadas por proteínas*... [Accessed October 17, 2015].

durán, N., Mercado, P. D., Durán, M., Yadav, A., Gade, A., and Rai, M. (2011). Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants. *Appl. Microbiol. Biotechnol.* 90, 1609–1624. doi: 10.1007/s00218-010-2949-8

fayaz, A. M., Balaji, K., Girilal, M., Yadav, R., Kalachevna, P. T., and Venkatesan, R. (2010). Biogenic synthesis of silver nanoparticles and their synergetic effect with antibiotics: a study against Gram-positive and Gram-negative bacteria. *Nanomed. Nanotechnol. Biol. Med.* 6, 103–109. doi: 10.1016/j.nanomo.2009.04.006

feng, Q., Wu, J., Chen, G. Q., Cui, F. Z., Kim, T. N., and Kim, J. O. (2000). A mechanistic study of the antibacterial effect of silver ions on *Escherichia coli* and *Staphylococcus aureus*. *J. Biomed. Mater. Res. 52, 662–668. doi: 10.1002/(SICI)1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3

Fischbach, M. A. (2011). Combination therapies for combating antimicrobial resistance. *Crit. Opin. Microbiol.* 14, 519–523. doi: 10.1016/j.micb.2011.08.003

Cervato, G., Carabelli, M., Gervasio, S., Cittera, A., Cazzola, R., and Cestaro, B. (2000). Antioxidant properties of (Oregano vulgare) leaf extracts. *J. Food Biochem.* 24, 453–465. doi: 10.1111/j.1745-451X.2000.tb00715.x

Scandoriero et al. *Antimicrobials: Oregano Oil and Silver Nanoparticles*... 12: doi: 10.1186/1476-0711-12-12

Saccharomyces cerevisiae... *J. Biomed. Mater. Res.* 52, 662–668. doi: 10.1002/(SICI)1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3... 662–668. doi: 10.1002/(SICI)1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3
Antimicrobials: Oregano Oil and Silver Nanoparticles

Fontes, L. C., Neves, P. R., Oliveira, S., Silva, K. C., Hachich, E. M., Sato, M. I. Z., et al. (2011). Isolation of Pseudomonas aeruginosa coproducing metallo-β-lactamase SPM-1 and 16S rRNA methylase RmdD in an urban river. *Antimicrob. Agents Chemother.* 55, 3063–3064. doi: 10.1128/AAC.01318-11

Gautam, N., Mantha, A. K., and Mittal, S. (2014). Essential oils and their constituents as anticancer agents: a mechanistic view. *Biomed. Res. Int.* 2014:154106. doi: 10.1155/2014/154106

Ghosh, I. N., Patil, S. D., Sharma, T. K., Srivastava, S. K., Pathania, R., and Navani, N. K. (2013). Synergistic action of cinnamaldehyde with silver nanoparticles against spore-forming bacteria: a case for judicious use of silver nanoparticles for antibacterial applications. *Int. J. Nanomed.* 8, 4721–4731. doi: 10.2147/IJN.S94649

Gilling, D. H., Kitajima, M., Torrey, J. R., and Bright, K. R. (2014). Antiviral efficacy and mechanisms of action of oregano essential oil and its primary component carvacrol against murine norovirus. *J. Appl. Microbiol.* 116, 1149–1163. doi: 10.1111/jam.12453

Graves, J. L., Jr., Tajkarimi, M., Cunningham, Q., Campbell, A., Nonga, H., Harrison, S. H., et al. (2015). Rapid evolution of silver nanoparticle resistance in *Escherichia coli*. *Front. Genet.* 6:42. doi: 10.3389/fgene.2015.00042

Helder, I. M., Alakomi, H.-L., Latva-Kala, K., Mattila-Sandholm, T., Pol, I., Smid, E. J., et al. (1998). Characterization of the action of selected essential oil components on Gram-negative bacteria. *J. Agric. Food Chem.* 46, 3590–3595. doi: 10.1021/jf80154m

Herman, A., and Herman, A. P. (2014). Nanoparticles as antimicrobial agents: their toxicity and mechanisms of action. *J. Nanosci. Nanotechnol.* 14, 946–957. doi: 10.1116/jnn.2014.9054

Hernández-Hernández, E., Regalado-González, C., Vázquez-Landaverde, P., Guerrero-Legarreta, I., and García-Almendárez, B. E. (2014). Microencapsulation, chemical characterization, and antimicrobial activity of Mexican *Lippia graveolens* (H. B. K.) and European (*Origanum vulgare L.*) oregano essential oils. *Sci. World J.* 2014:641814. doi: 10.1155/2014/641814

Holt, K., and Bard, A. (2005). The interaction of silver (I) ions with the respiratory chain of *Escherichia coli* was electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag⁺. *Biochemistry* 44, 13214–13223. doi: 10.1021/bi0508542

Honório, V. G., Bezerra, J., Souza, G. T., Carvalho, R. J. (2015). Inhibition of *Staphylococcus aureus* cocktail using the synergies of oregano and rosemary essential oils or carvacrol and 1,8-cineole. *Front. Microbiol.* 6:1223. doi: 10.3389/fmicb.2015.01223

Hylgaard, M., Mygind, T., and Meyer, R. L. (2012). Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. *Front. Microbiol.* 3:12. doi: 10.3389/fmicb.2012.00042

Izumi, E., Ueda-Nakamura, T., Veiga, V. F. Jr., Pinto, A. C., and Nakamura, C. V. (2012). Terpenes from copaiba demonstrated in vitro anti-parasitic and anti-inflammatory activity. *J. Med. Chem.* 55, 2994–3001. doi: 10.1021/jm201451h

Jain, J., Arora, S., Rajwade, J. M., Omray, P., Khandelwal, S., and Pankitkar, K. M. (2009). Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use. *Mol. Pharm.* 6, 1388–1401. doi: 10.1021/mp900056g

Kalenda, D., and Kunicka, A. (2003). Antibacterial and antifungal properties of *J. Afr. J. Biotechnol.* 39, 77–85.

Koga, V. L., Rodrigues, G. R., Scandorieiro, S., Vespero, E. C., Oba, A., and De Brito, B. G. (2015). Evaluation of the antibiotic resistance and virulence of *Escherichia coli* strains isolated from chicken carcasses in 2007 and 2013 from Paraná, Brazil. *Foodborne Pathog. Dis.* 12, 479–485. doi: 10.1089/fpd.2014.1888

Kong, K. F., Schneper, L., and Mathee, K. (2010). Beta-lactam antibiotics: from antibiosis to resistance and bacteriology. *APMIS* 118, 3–16. doi: 10.1111/j.1600-0463.2009.02563.x

Lambert, R. J. W., Skandamis, P. N., Coote, P. J., and Nychas, G. J. E. (2001). A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. *J. Appl. Microbiol.* 91, 453–462. doi: 10.1046/j.1365-2672.2001.01428.x

Li, P., Li, J., Wu, C., Wu, Q., and Li, J. (2005). Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles. *Nanotechnology* 16, 1912–1917. doi: 10.1088/0957-4484/16/9/082
Antimicrobials: Oregano Oil and Silver Nanoparticles

Scandorieiro et al.

Souza, E. L., Oliveira, C. E. V., Stamford, T. L. M., Conceição, M. L., and Gomes Neto, N. J. (2013). Influence of carvacrol and thymol on the physiological attributes, enterotoxin production and surface characteristics of Staphylococcus aureus strains isolated from foods. Braz. J. Microbiol. 44, 29–35. doi: 10.1590/S1517-83822013005000001

Stojković, D., Glačoćija, J., Ćirić, A., Nikolić, M., Ristić, M., and Šlijegović, J. (2013). Investigation on antibacterial synergy of Origanum vulgare and Thymus vulgaris essential oils. Arch. Biol. Sci. 65, 639–644. doi: 10.2298/ABS1302639S

Subashini, J., Khanna, V. G., and Kannabiran, K. (2014). Anti-ESBL activity of silver nanoparticles biosynthesized using soil Streptomyces species. Bioprocess Biosyst. Eng. 37, 999–1006. doi: 10.1007/s00449-013-1070-7

Suzuki, E. Y., Soldati, P. P., Chaves, M. G. A. M., and Nádia, R. B. (2015). Essential oil from Origanum vulgare Linnaeus: an alternative against microorganisms responsible for bad perpiration odor. J. Young Pharm. 7, 12–20. doi: 10.5530/jyp.2015.1.4

Szabó, M. Á., Varga, G. Z., Hohmann, J., Schelz, Z., Szegedi, E., Amaral, L., et al. (2010). Inhibition of quorum-sensing signals by essential oils. Phytother. Res. 24, 782–786. doi: 10.1002/ptr.3010

Theophel, K., Schacht, V. J., Schlüter, M., Schnell, S., Stingu, C. S., Schaumann, R., et al. (2014). The importance of growth kinetic analysis in determining bacterial susceptibility against antibiotics and silver nanoparticles. Front. Microbiol. 5:544. doi: 10.3389/fmicb.2014.00544

Traub, W. H., and Kleber, L. (1975). In vitro additive effect of polymyxin B and rifampin against Serretia marcescens. Antimicrob. Agents Chemother. 7, 874–876. doi: 10.1128/AAC.7.6.874

Turlej, A., Hryniewicz, W., and Empel, J. (2011). Staphylococcal Cassette Chromosome mec (SCCmec) classification and typing methods: an overview. Pol. J. Microbiol. 60, 95–103.

Ulte, A., Kets, E. P. W., and Smid, E. J. (1999). Mechanisms of action of carvacrol on the food-borne pathogen. Appl. Environ. Microbiol. 65, 4606–4610.

Yeh, P. J., Hegreness, M. J., Aiden, A. P., and Kishony, R. (2009). Drug interactions and the evolution of antibiotic resistance. Nat. Rev. Microbiol. 7, 460–466. doi: 10.1038/nrmicro2133

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2016 Scandorieiro, Camargo, Contreras, Yamada-Ogatta, Nakamura, Oliveira, Andrade, Duran, Nakazato and Kobayashi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.