Association of serum creatinine with hepatic steatosis and fibrosis: a cross-sectional study

Juan Ma¹, Zhongcao Wei¹, Qian Wang², Xiaolan Lu², Zhihua Zhou², Ruohan Li⁴, Qiuai Shu¹, Yixin Liu¹, Jinhai Wang¹*, Na Liu¹* and Haitao Shi¹*

Abstract

Background: Recent studies have shown that chronic kidney disease (CKD) prevalence is significantly higher in patients with hepatic steatosis (HS); however, it remains unclear whether HS is associated with serum creatinine (SCr). We aimed to explore the association between SCr levels and HS in a Chinese population.

Methods: We performed a cross-sectional study among 56,569 Chinese individuals. SCr level, other clinical and laboratory parameters, abdominal ultrasound and noninvasive fibrosis scores were extracted, and the fibrosis 4 score (FIB-4) was calculated.

Results: A total of 27.1% of the subjects had HS. After 1:1 propensity score matching (PSM) according to sex and age, we included 13,301 subjects with HS and 13,301 subjects without HS. SCr levels were significantly higher in the HS group than in the non-HS group [73.19 ± 15.14(μmoI/L) vs. 71.75 ± 17.49(μmoI/L), p < 0.001]. Univariate and multivariate regression analyses showed a positive association between SCr and the prevalence of HS. Stepwise regression analysis showed that the association between SCr and HS was independent of other metabolic syndrome components. The prevalence of HS increased significantly with increasing SCr levels. Metabolism-related indicators and liver enzymes were significantly higher in the HS group than in the non-HS group; furthermore, these parameters increased with increasing SCr levels. FIB-4 was significantly higher in the HS group than in the non-HS group but did not show an increasing trend with increasing SCr levels.

Conclusions: Our results showed an independent association between SCr level and HS risk in a Chinese population.

Keywords: Metabolic syndrome, Hepatic steatosis, Serum creatinine, Hepatic fibrosis

Introduction

Hepatic steatosis (HS) is defined as the intracellular accumulation of triglycerides in more than 5% of hepatocytes [1]. HS is the most common chronic liver disease, and its incidence has been increasing in recent years [2]. HS has been shown to be strongly associated with obesity, insulin resistance, inflammation, and even cardiovascular disease (CVD) and chronic kidney disease (CKD) [3–9]. While HS can be benign, it is often associated with the development of inflammation and progression to fibrosis and cirrhosis. Recent studies have shown that at least a quarter of patients with HS develop fibrosis within 6 years, and their mortality rates increase by ~ 10% within 20 years, primarily due to cancer and cirrhosis [10, 11]. Recently, extrahepatic complications have attracted increasing attention as risk factors for diabetes mellitus, atherosclerosis and metabolic syndrome. In particular, the role of HS in the pathogenesis of CKD has attracted widespread attention [12–14]. Studies have shown an increased...
prevalence and incidence of CKD in patients with HS [15].

Serum creatinine (SCr), a biosynthetic product of phosphocreatine metabolism in muscle, is widely used in clinical practice to assess renal function and is more direct and readily available than glomerular filtration rate (GFR). Several clinical studies have shown that even within the normal range, higher SCr is strongly associated with the risk of several diseases, such as cardiovascular disease and diabetes [16, 17]. Currently, few clinical studies have investigated the relationship between HS and SCr levels and HS-accompanied fibrosis. The relationship between SCr levels in individuals with HS and HS-accompanied fibrosis is still uncertain. Understanding this aspect may lead to further interpretation of the underlying mechanisms of HS and HS-accompanied fibrosis and may be of clinical importance for prevention. We performed the first cross-sectional study to investigate the changes in SCr levels in a large Chinese population of subjects with ultrasound-confirmed HS and HS-accompanied fibrosis.

**Patients and methods**

**Study population**

The study cohort consisted of 56,569 individuals who voluntarily visited the Health Promotion Centre of Second Affiliated Hospital of Xi’an Jiaotong University for regular health examinations between January and December 2020. The Second Affiliated Hospital of Xi’an Jiaotong University, a large general hospital located in northwest China, has a wide coverage of medical checkups, and the attended population extends throughout the northwest. Individuals with complete data on age, sex, body mass index (BMI), fasting blood glucose (FBG), systolic blood pressure (SBP), diastolic blood pressure (DBP), SCr, triglycerides (TGs), high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c), FBG and SCr. Abdominal ultrasound was performed by two experienced technicians on an EUB-6500 Hitachi ultrasound machine (Hitachi, Tokyo, Japan).

**Definitions**

HS was diagnosed by liver ultrasonography performed on all subjects by expert physicians using the EUB-6500 Hitachi ultrasound machine, who were unaware of the study objectives and laboratory results. Diagnostic indicators of HS included liver brightness, hepatorenal contrast, intrahepatic vascularity, ultrasound presentation of the liver parenchyma and diaphragm. All participants underwent a physical examination at the Health Screening Center of the Second Affiliated Hospital of Xi’an Jiaotong University. BMI was defined as weight in kilograms divided by height in meters squared (kg/m²). SBP and DBP were measured by the same sphygmomanometer. Hepatic steatosis was defined using abdominal ultrasound. The severity of liver fibrosis was assessed non-invasively by the FIB-4 score (FIB-4 = age × AST (IU/L)/[platelet count (× 109/L) × ALT (IU/L)]^1/2). The lower and upper limits of FIB-4 were 1.3 and 2.67, respectively [18].

GFR is the primary function of the kidney and is measured to assess overall health status. The Chronic Kidney Disease Epidemiology Collaborative (CKD-EPI) equation is based on the creatinine replacement formula[19]. The
The correlates of HS through univariate and multivariate statistical analyses were performed using SPSS software version 23.0 for Windows (SPSS Inc., Chicago, IL, USA).

Results

Characteristics of the study subjects

A total of 56,569 subjects were ultimately included in this study. The demographic and clinical characteristics of the pre- and post-PSM study populations are shown in Table 1. Before PSM, there were 41,213 participants in the non-HS group and 15,356 participants in the HS group, with a rate of HS prevalence of 27.1%. Before PSM, age and sex showed significant differences between the two groups. However, these indicators became similar after PSM. Before PSM, compared with the non-HS group, BMI, SBP, DBP, FBG, TC, LDL-c, ALT, AST and FIB-4 levels were significantly increased (all \( p < 0.05 \)), while TGs and HDL-c were not significantly different in HS subjects. This statistical regularity was also maintained between the two groups after PSM. As expected, after PSM, the SCr level in the HS group was significantly higher than that in the non-HS group \([73.19 \pm 15.14(\mu \text{mol/L}) \text{ vs. } 71.75 \pm 17.49(\mu \text{mol/L}), \ p < 0.001]\), respectively.

Relevant factors for the prevalence of HS

In the univariate analysis, factors associated with HS prevalence included BMI, SBP, DBP, FBG, TC, LDL-c, and other parameters. Table 1 shows the demographic and biochemical characteristics before and after Propensity Score Matching (PSM).

### Table 1: Demographic and biochemical characteristics before and after Propensity Score Matching (PSM)

| Variables         | Before PSM (n = 41,213) | After PSM (n = 13,301) | \( p \)          | Non-HS (n = 13,301) | HS (n = 13,301) | OR (95% CI) | \( p \)          |
|-------------------|--------------------------|------------------------|-----------------|---------------------|-----------------|-------------|-----------------|
| Male (%)          | 23,613 (57.3)            | 8153 (53.1)            | < 0.0001        | 7465 (56.1)         | 7417 (55.8)     | 0.985 (0.938–1.034) | 0.540          |
| Age (years)       | 41.64 ± 14.30            | 43.03 ± 14.10          | < 0.0001        | 43.49 ± 14.71       | 43.45 ± 14.33   | 1.000 (0.998–1.010) | 0.830          |
| BMI (kg/m²)       | 23.86 ± 3.45             | 24.10 ± 3.44           | < 0.0001        | 23.69 ± 3.43        | 24.10 ± 3.57    | 1.034 (1.027–1.042) | < 0.0001       |
| SBP (mmHg)        | 122.39 ± 15.68           | 123.54 ± 16.11         | < 0.0001        | 121.54 ± 16.16      | 123.62 ± 16.07  | 1.008 (1.007–1.010) | < 0.0001       |
| DBP (mmHg)        | 78.52 ± 10.52            | 79.27 ± 11.10          | < 0.0001        | 78.54 ± 10.83       | 79.26 ± 11.07   | 1.006 (1.004–1.008) | < 0.0001       |
| FBG (mg/dL)       | 5.34 ± 1.19              | 5.60 ± 1.16            | < 0.0001        | 5.30 ± 1.19         | 5.61 ± 1.13     | 1.319 (1.284–1.355) | < 0.0001       |
| TC (mmol/L)       | 4.36 ± 0.87              | 4.43 ± 0.84            | < 0.0001        | 4.31 ± 0.85         | 4.44 ± 0.84     | 1.214 (1.179–1.251) | < 0.0001       |
| TG (mmol/L)       | 1.51 ± 1.21              | 1.54 ± 1.23            | 0.110           | 1.55 ± 1.24         | 1.56 ± 1.16     | 1.010 (0.990–1.030) | 0.352          |
| HDL-c (mmol/L)    | 1.25 ± 0.03              | 1.25 ± 0.31            | 0.680           | 1.23 ± 0.29         | 1.24 ± 0.30     | 1.073 (0.989–1.165) | 0.088          |
| LDL-c (mmol/L)    | 2.63 ± 0.74              | 2.65 ± 0.75            | 0.018           | 2.60 ± 0.70         | 2.66 ± 0.73     | 1.133 (1.096–1.172) | 0.001          |
| ALT (U/L)         | 23.40 ± 19.75            | 24.39 ± 18.15          | < 0.0001        | 22.24 ± 18.08       | 24.38 ± 18.36   | 1.027 (1.023–1.030) | < 0.0001       |
| AST (U/L)         | 22.64 ± 10.08            | 23.21 ± 8.75           | < 0.0001        | 22.36 ± 9.83        | 24.23 ± 8.86    | 1.007 (1.005–1.008) | < 0.0001       |
| SCr (μmol/L)      | 71.51 ± 18.21            | 73.18 ± 15.46          | < 0.0001        | 71.75 ± 17.49       | 73.19 ± 15.14   | 1.006 (1.005–1.008) | < 0.0001       |
| eGFR [mL/ (min×1.73 m²)] | 125.50 ± 55.56         | 123.77 ± 51.84        | 0.001           | 102.45 ± 15.66      | 100.97 ± 15.39  | 0.995 (0.994–0.995) | < 0.0001       |
| FIB-4             | 1.03 ± 0.68              | 1.05 ± 0.73            | < 0.0001        | 1.10 ± 0.71         | 1.14 ± 0.76     | 1.064 (1.029–1.100) | < 0.0001       |

Data are presented as the means ± standard deviations (SDs), number (percentage). ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; CI, confidence interval; DBP, diastolic blood pressure; FBG, fasting blood glucose; FIB4, fibrosis 4 score; HDL-c, high-density lipoprotein cholesterol; HS, Hepatic steatosis; LDL-c, low-density lipoprotein cholesterol; OR, odds ratio; SBP, systolic blood pressure; SCr, serum creatinine; TC, total cholesterol; TG, triglycerides; eGFR, Glomerular filtration rate.

* denotes the multiplicative relationship.
ALT, AST, SCr, and FIB-4, as shown in Table 1. To investigate the independent correlates of HS prevalence, after PSM, we further used multivariate logistic regression analysis to determine the independent determinants of HS, including BMI (odds ratio [OR]: 1.017, 95% confidence intervals [CI]: 1.007 ~ 1.025, \( p < 0.05 \)), FBG (OR: 1.304, 95% CI: 1.267 ~ 1.341, \( p < 0.001 \)), TC (OR: 1.523, 95% CI: 1.421 ~ 1.643, \( p < 0.001 \)), LDL-c (OR: 0.689, 95% CI: 0.640 ~ 0.760, \( p < 0.05 \)), SCr (OR: 1.005, 95% CI: 1.004 ~ 1.007, \( p < 0.001 \)), AST (OR: 1.062, 95% CI: 1.055 ~ 1.070, \( p < 0.001 \)), ALT (OR: 0.979, 95% CI: 0.976 ~ 0.982, \( p < 0.001 \)) and FIB-4 (OR: 0.786, 95% CI: 0.752 ~ 0.821, \( p < 0.001 \)), as shown in Fig. 2.

**Logistic regression analysis for the association of SCr with HS**

As shown in Table 2, multiple logistic analysis indicated SCr was positively associated with the prevalence of HS (OR: 1.012, 95% CI: 1.010–1.014, \( p < 0.001 \)) after adjustment for age and sex (Model 1). After further adjustment for BMI, SBP, DBP, TGs, TC, HDL-c, LDL-c, and FBG, the association between SCr and HS remained significant (OR: 1.010, 95% CI: 1.008–1.013, \( p < 0.001 \), Model 2). In addition, SCr still showed a significant association with HS after additional adjustment for ALT, AST and FIB-4 (OR: 1.010, 95% CI: 1.007–1.012, \( p < 0.001 \), Model 3).

According to the CKD-EPI\(_{\text{Scr}}\) equation, the eGFR was significantly decreased in HS group compared to non-HS group.

**HS increases with progressively higher SCr**

To investigate the relationship between SCr and the prevalence of HS, we divided the subjects into quartiles (Q) according to baseline SCr (Q1 < 62 \( \mu \)mol/L; Q2, 62 \( \leq \) Q2 \( \leq \) 71 \( \mu \)mol/L; 71 \( < \) Q3 \( \leq \) 81 \( \mu \)mol/L; Q4 > 81 \( \mu \)mol/L). As shown in Fig. 3, the prevalence of

---

**Table 2** Logistic regression analysis for the association of serum creatinine (SCr) with hepatic steatosis (HS)

| SCr   | OR (95%CI)   | P   |
|-------|-------------|-----|
| Model 1 | 1.012 (1.010–1.014) | <0.001 |
| Model 2 | 1.010 (1.008–1.013) | <0.001 |
| Model 3 | 1.010 (1.007–1.012) | <0.001 |

Model 1 was adjusted for age and gender. Model 2 was adjusted for the covariates of model 1 plus body mass index, systolic blood pressure, diastolic blood pressure, triglycerides, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, total cholesterol, and fasting blood glucose. Model 3 was adjusted for the covariates of model 2 plus alanine transaminase, aspartate transaminase and fibrosis 4 score. Odds ratios and 95% CIs were calculated per 1-SD increment of SCr. CI, confidence interval; OR, odds ratio; SCr, serum creatinine.

---

**Fig. 2** Forest diagram of Relevant factors for the incidence of hepatic steatosis (HS). HS, Hepatic steatosis; OR, odds ratio; CI, confidence interval. BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; TC, total cholesterol; TG, triglycerides; HDL-c, high-density lipoprotein cholesterol; LDL-c, low-density lipoprotein cholesterol; ALT, alanine aminotransferase; AST, aspartate aminotransferase; SCr, serum creatinine; FBG, fasting blood glucose; FIB4, fibrosis 4 score.
HS tended to increase with increasing SCr. Compared with subjects in Q1 of SCr (22.1%), the prevalence of HS in subjects in Q2, Q3 and Q4 was 23.3, 25.3 and 29.3%, respectively, with a significant trend (\( p < 0.05 \)).

### Metabolism-related parameters in subjects with different SCr quartiles

Compared to subjects in Q1, subjects in Q2, Q3 and Q4 had higher BMI, FBG, TC, TGs, HDL-c, LDL-c, SBP, and DBP (all \( p < 0.001 \)), as shown in Table 3.

### Association of SCr with liver enzymes or fibrosis in the HS group

The liver enzyme parameters and noninvasive fibrosis scores in HS subjects in different SCr quartiles are shown.

#### Table 3 Metabolism-related parameters in subjects with different serum creatinine (SCr) quartiles

| Variables | Q1 \( < 62 \text{ μmol/L} \) | Q2 \( 62–71 \text{ μmol/L} \) | Q3 \( 72–81 \text{ μmol/L} \) | Q4 \( > 81 \text{ μmol/L} \) | \( p \) |
|-----------|-----------------|-----------------|-----------------|-----------------|-----|
| BMI       | 22.57 ± 3.29    | 23.55 ± 3.48    | 24.49 ± 0.04    | 24.49 ± 3.29    | <0.001 |
| SBP       | 118.31 ± 16.18  | 122.45 ± 16.92  | 124.27 ± 15.11  | 125.50 ± 15.27  | <0.001 |
| DBP       | 75.67 ± 10.31   | 78.65 ± 11.11   | 80.40 ± 10.70   | 81.06 ± 10.88   | <0.001 |
| FBG       | 5.32 ± 1.20     | 5.47 ± 1.25     | 5.53 ± 1.22     | 5.50 ± 1.22     | <0.001 |
| LDL-C     | 2.53 ± 0.70     | 2.61 ± 0.71     | 2.67 ± 0.73     | 2.68 ± 0.72     | <0.001 |
| HDL-C     | 1.36 ± 0.30     | 1.27 ± 0.30     | 1.18 ± 0.28     | 1.13 ± 0.24     | <0.001 |
| TG        | 1.30 ± 1.17     | 1.50 ± 1.23     | 1.68 ± 1.18     | 1.75 ± 0.24     | <0.001 |
| TC        | 4.31 ± 0.82     | 4.38 ± 0.82     | 4.41 ± 0.82     | 4.40 ± 0.83     | <0.001 |

Data are presented as mean ± standard deviation (SDs). BMI, body mass index; DBP, diastolic blood pressure; FBG, fasting blood glucose; HDL-c, high-density lipoprotein cholesterol; LDL-c, low-density lipoprotein cholesterol; SBP, systolic blood pressure; TC, total cholesterol; TG, triglycerides.

#### Fig. 4 Liver enzyme parameters and fibrosis 4 score (FIB4) of in hepatic steatosis (HS) subjects in different serum creatinine (SCr) quartiles. a. Relationship between AST and quartiles of SCr concentration; b. Relationship between ALT and quartiles of SCr concentration; c. Relationship between FIB4 and quartiles of SCr concentration. AST, aspartate aminotransferase; ALT, alanine aminotransferase; FIB4, fibrosis 4 score.
in Fig. 4. Subjects in Q2, Q3 and Q4 had higher ALT and AST levels than subjects in Q1 (p < 0.001); furthermore, the concentrations of AST and ALT showed an increasing trend with increasing SCr levels. FIB-4 was significantly higher in the HS group than in the non-HS group; however, it did not show an increasing trend with the increasing concentration of SCr.

Discussion

To the best of our knowledge, this is the first study aimed at evaluating the association between elevated SCr levels and the risk of HS in a large population. In this retrospective study of a large Chinese population, we provide evidence that the risk of HS is positively associated with SCr levels. Further analysis showed that as SCr increased, liver enzyme levels increased, and fibrosis worsened. In addition, SCr level and the prevalence of HS were positively correlated.

HS is the most common chronic liver disease, and the prevalence of HS has been increasing in recent years. In our study, the prevalence of HS was 27.1%, which is consistent with the findings of previous studies [20], however, recent studies have shown that the prevalence of NAFLD and metabolic associated fatty liver disease (MAFLD) is as high as approximately 35–40% in the contemporary American population [21]. Our results showed that eGFR was significantly decreased in HS patients compared to the non-HS subject population. Several large-scale studies have reported that the prevalence of CKD in patients with HS ranges from 4 to 42% [22–24]. A recent meta-analysis that included 13 studies involving 1,222,032 individuals found that HS was significantly associated with an approximately 1.45-fold increased long-term risk of CKD stage ≥ 3 (HR = 1.43, 95% CI = 1.33–1.54; I² = 60.7%) [12]. In the general US population, liver fibrosis assessed using vibration controlled transient elastography (VCTE) is associated with CKD, specifically with a proteinuric phenotype, but not with traditional risk factors [25]. A study based on 8862 subjects reported that SCr levels were independently associated with HS [26]. Elevated SCr levels, even within the normal range, were associated with a higher risk of NAFLD [26]. Similarly, the current study demonstrates for the first time that elevated SCr levels are an independent risk factor for HS, and logistic regression analysis after adjusting for confounding factors suggests that SCr has a direct effect on HS.

SCr is the most commonly used biomarker of renal function [27]. In the last few years, the role of SCr in cardiovascular disease, type 2 diabetes, and centripetal obesity has been extensively studied [28–30]. Notably, the current analysis suggests that SCr is independently associated with HS. Undoubtedly, the earlier the diagnosis of mild kidney injury in HS, the greater the benefit to the patient, as treatment to reverse this process is most likely to be effective in preventing or slowing disease progression. Our study suggests that SCr is a suitable screening marker for identifying HS risk, in addition to being used for early detection of kidney injury.

The potential mechanisms by which SCr interacts with HS have not been fully elucidated, but several intertwined pathways have been proposed. First, SCr is a commonly used indicator of renal function and can also be used as an indicator of metabolic syndrome (MetS) and its related diseases, with higher SCr levels associated with a higher risk of MetS [31]. Similarly, our findings show that higher SCr levels are strongly associated with MetS components such as FBG, SBP, DBP, TGs and TC. LDL-c (OR: 0.689, 95% CI: 0.640 to 0.760, p < 0.05) in a multivariate regression analysis, a finding that we believe may be associated with abnormal liver metabolism. Studies have shown that an increasing number of patients with low LDL-C (< 5%) have been identified in patients with NAFLD [32]. Second, “multiple strikes” is the most widely supported theory for the pathophysiological features of NAFLD [33]. The pathogenesis involves increased circulating free fatty acids with excessive TG accumulation in the liver and insulin resistance (IR), which further promotes inflammatory factor release and endoplasmic reticulum stress. IR, inflammatory and oxidative mediators are commonly involved in the pathogenesis of NAFLD and MetS [34–37]. In addition, our study found that SCr levels were significantly correlated with the liver enzyme profiles of AST, ALT, and ALP, which are markers of liver injury. This finding was independent of IR and other features of MetS. ALT was inversely associated with HS in our finding (OR: 0.979, 95% CI: 0.976 to 0.982, p < 0.001). Previous studies have found a linear relationship between ALT and frailty [38], as well as muscle strength [39]. However, in NAFLD, the difference between histological severity and ALT elevation was not statistically significant [40]. Therefore, further prospective studies are warranted.

To date, liver biopsy has been considered the gold standard for differentiating the severity of liver disease and estimating the degree of fibrosis [41]. However, liver biopsy is impractical in large epidemiological studies due to the invasive nature of the procedure, complications and poor patient acceptance. FIB-4, a simple index for assessing liver fibrosis, has been shown to reliably predict fibrosis and cirrhosis in NAFLD based on several laboratory tests [42]. Studies have shown that high FIB-4 scores are associated with an increased risk of generalized CKD [43]. In our study, we demonstrated for the first time that FIB-4 scores increased with increasing SCr levels. This finding demonstrates the increase in SCr levels with increasing fibrosis.
Although the cutoff value of FIB4 was proposed by Shah et al. [44], according to their findings, the mean value in non-NASH patients was lower than the mean value in the general NAFLD population. Therefore, it is important to be aware of the limitations of noninvasive fibrosis scoring in NAFLD, although the FIB4 index is a simple and inexpensive way to diagnose advanced fibrosis, but its limitations must be considered.

We have to acknowledge several potential limitations in our study. First, we used the FIB-4 score to assess the degree of liver fibrosis rather than liver biopsy. Second, our aim was to study the correlation between HS and SCr, regardless of the cause. This is a limitation of our study because we lack more precise information to determine the etiology of suffering from HS, such as non-alcoholic fatty liver, alcoholic fatty liver disease (AFLD), MAFLD, etc. Therefore, prospective studies are needed to determine whether SCr contributes to the development of HS.

Conclusions

Our cross-sectional study showed a significant association between SCr and HS. This finding suggests that we should pay more attention to SCr because of its predictive power for HS.

Abbreviations

ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; BMI: Body mass index; CI: Confidence interval, DBP: Diastolic blood pressure; FBG: Fasting blood glucose; FIB4: Fibrosis 4 score; HDL-c: High-density lipoprotein cholesterol; HS: Hepatic steatosis; LDL-c: Low-density lipoprotein cholesterol; OR: Odds ratio; PSM: Propensity score matching; SBP: Systolic blood pressure; SCr: Serum creatinine; TC: Total cholesterol; TG: Triglycerides; CKD-EPI: Chronic kidney disease epidemiology collaboration; eGFR: Glomerular filtration rate; NAFLD: Nonalcoholic fatty liver disease; MAFLD: Metabolic associated fatty liver disease; VCTE: Vibration controlled transient elastography; CKD: Chronic kidney disease; CVD: Cardiovascular disease.

Acknowledgements

We thank the participants and investigators who participated in the National Key Research and Development Program of China; Key Research and Development Program of Shaanxi Province.

Author contributions

Juan Ma, Jinhai Wang, Na Liu, and Haitao Shi take responsibility for the integrity of the data, interpretation, and analysis. Zhongcao Wei, Qian Wang, Xiaolan Ma, Jinhai Wang, Na Liu, and Haitao Shi take responsibility for the integrity of the data, interpretation, and analysis. Zhongcao Wei, Qian Wang, Xiaolan Ma, Jinhai Wang, Na Liu, and Haitao Shi take responsibility for the integrity of the data, interpretation, and analysis. Zhongcao Wei, Qian Wang, Xiaolan Ma, Jinhai Wang, Na Liu, and Haitao Shi take responsibility for the integrity of the data, interpretation, and analysis. Zhongcao Wei, Qian Wang, Xiaolan Ma, Jinhai Wang, Na Liu, and Haitao Shi take responsibility for the integrity of the data, interpretation, and analysis.

Funding

This study was supported by National Key Research and Development Program (2018YFC1311504) of China during the 13th Five-Year Plan Period and Key Research and Development Program of Shaanxi Province (2022SF-460).

Availability of data and materials

Data are available upon reasonable request. The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee (Cardiff Metropolitan University Ethics committee—17/4/0328) and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The study was approved by the Ethics Committee of Second Affiliated Hospital of Xi’an Jiaotong University (No. 2022037). Given the retrospective nature of the study, we were granted a waiver of informed consent by the Institutional Review Board from the Second Affiliated Hospital of Xi’an Jiaotong University. All patients are anonymous and their information is not public.

Consent for publication

Consent for publication is not applicable.

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author details

1 Department of Gastroenterology, The Second Affiliated Hospital of Xi’an Jiaotong University, NO.157 Xiwu Road, Xi’an 710004, Shaanxi, China. 2 Health Management Department, The Second Affiliated Hospital of Xi’an Jiaotong University, NO.157 Xiwu Road, Xi’an 710004, Shaanxi, China. 3 Department of Gastroenterology, Shanghai Pudong Hospital, Fudan University, 2800 Gongwei Road, Huinan Town, Pudong, Shanghai 201399, China. 4 Department of Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, NO.157 Xiwu Road, Xi’an 710004, Shaanxi, China.

Received: 11 April 2022 Accepted: 20 July 2022

References

1. Ress C, Kaser S. Mechanisms of intrahepatic triglyceride accumulation. World J Gastroenterol. 2016;22(4):1644–73.
2. Li J, et al. Prevalence, incidence, and outcome of non-alcoholic fatty liver disease in Asia, 1999–2019: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2019;4(5):389–98.
3. Sun DQ, et al. MAFLD and risk of CVD. Metabolism. 2021;115: 154433.
4. Deprince A, Haas JT, Staels B. Dysregulated lipid metabolism links NAFLD to cardiovascular disease. Mol Metab. 2020;42: 101092.
5. Han Y, et al. Association of LDLR rs1433099 with the Risk of NAFLD and CVD in Chinese Han Population. J Clin Transl Hepatol. 2021;9(2):203–9.
6. Wattacherel J. Extrahepatic manifestations of nonalcoholic fatty liver disease. Gastroenterol Clin North Am. 2020;49(1):141–9.
7. Adams LA, et al. Non-alcoholic fatty liver disease and its relationship with cardiovascular disease and other extrahepatic diseases. Gut. 2017;66(6):1138–53.
8. Targher G, et al. Non-alcoholic fatty liver disease is independently associated with an increased prevalence of chronic kidney disease and proliferative/laser-treated retinopathy in type 2 diabetic patients. Diabetologia. 2008;51(3):444–50.
9. Cao Y, et al. The association between NAFLD and risk of chronic kidney disease: a cross-sectional study. Ther Adv Chronic Dis. 2021;12:20406223211048650.
10. Simon TG, et al. Mortality in biopsy-confirmed nonalcoholic fatty liver disease: results from a nationwide cohort. Gut. 2021;70(7):1375–82.
11. Adams LA, Ratziu V. Non-alcoholic fatty liver - perhaps not so benign. J Hepatol. 2015;62(5):1002–4.
12. Mantovani A, et al. Non-alcoholic fatty liver disease and risk of incident chronic kidney disease: an updated meta-analysis. Gut. 2022;71(1):156–62.
13. Cai X, et al. Non-alcoholic fatty liver disease is associated with increased risk of chronic kidney disease. Ther Adv Chronic Dis. 2021;12:20406223211024360.
14. Byrne CD, Targher G. NAFLD as a driver of chronic kidney disease. J Hepatology. 2020;72(4):785–801.
15. Musso G, et al. Fatty liver and chronic kidney disease: novel mechanistic insights and therapeutic opportunities. Diabetes Care. 2016;39(10):1850–45.
16. Hu Y, et al. The association between serum uric acid and diabetic complications in patients with type 2 diabetes mellitus by gender: a cross-sectional study. PeerJ. 2021;9:e10691.
17. Wang A, et al. Metabolic factors mediate the association between serum uric acid to creatinine ratio and cardiovascular disease. J Am Heart Assoc. 2021;10(23): e023054.
18. Wong VW, et al. Noninvasive biomarkers in NAFLD and NASH - current progress and future promise. Nat Rev Gastroenterol Hepatol. 2018;15(8):461–78.
19. Levey AS, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–12.
20. Chalasani N, et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American association for the study of liver diseases. Hepatology. 2018;67(1):328–57.
21. Ciardullo S, Pereghin G. Prevalence of NAFLD, MAFLD and associated advanced fibrosis in the contemporary United States population. Liver Int. 2021;41(6):1290–3.
22. Musso G, et al. Association of non-alcoholic fatty liver disease with chronic kidney disease: a systematic review and meta-analysis. PLoS Med. 2014;11(7): e1001680.
23. Sun K, et al. Fatty liver index, albuminuria and the association with chronic kidney disease: a population-based study in China. BMJ Open. 2018;8(1): e019097.
24. Liu H-W, Liu J-S, Kuo K-L. Association of nonalcoholic fatty liver and chronic kidney disease: an analysis of 37,825 cases from health checkup center in Taiwan. Ci ji yi xue za zhi Tzu-chi Med J. 2019;32(1):65–9.
25. Ciardullo S, et al. Liver fibrosis assessed by transient elastography is independently associated with albuminuria in the general United States population. Dig Liver Dis. 2021;53(7):866–72.
26. Niu Y, et al. Serum creatinine levels and risk of nonalcohol fatty liver disease in a middle-aged and older Chinese population: a cross-sectional analysis. Diabetes Metab Res Rev. 2022;38(2): e3489.
27. Kashani K, Rosner MH, Ostermann M. Creatinine: from physiology to clinical application. Eur J Intern Med. 2020;72:9–14.
28. Filippatos G, et al. Fibrinone and cardiovascular outcomes in patients with chronic kidney disease and type 2 diabetes. Circulation. 2021;143(6):540–52.
29. Liu S, et al. Urinary albumin-to-creatinine ratio levels are associated with subclinical atherosclerosis and predict CVD events and all-cause deaths: a prospective analysis. BMJ Open. 2021;11(3): e040890.
30. Qiu S, et al. Changes in creatinine-to-cystatin C ratio over 4 years, risk of diabetes, and cardiometabolic control: the China health and retirement longitudinal study. J Diabetes. 2021;13(12):1025–35.
31. Wang J, et al. Serum creatinine levels and risk of metabolic syndrome in a middle-aged and older Chinese population. Clin Chim Acta. 2015;440:177–82.
32. Hartz J, Hegele RA, Wilson DP. Low LDL cholesterol-Friend or foe? J Clin Lipidol. 2019;13(3):367–73.
33. Xian YX, Weng JP, Xu F. NAFLD vs. NASH: shared features and potential changes in epidemiology, pathophysiology, diagnosis, and pharmacotherapy. Chin Med J. 2020;134(1):8–19.
34. McCracken E, Monaghan M, Seereivanam S. Pathophysiology of the metabolic syndrome. Clin Dermatol. 2018;36(1):14–20.
35. Chen DZ, et al. The combined effect of nonalcoholic fatty liver disease and metabolic syndrome on osteoporosis in postmenopausal females in Eastern China. Int J Endocrinol. 2018;2018:2314796.
36. Hu YY, et al. The correlation between controlled attenuation parameter and metabolic syndrome and its components in middle-aged and elderly nonalcoholic fatty liver disease patients. Medicine. 2018;97(43): e12931.
37. Polyzos SA, et al. Circulating leptin in non-alcoholic fatty liver disease: a systematic review and meta-analysis. Diabetologia. 2016;59(1):30–43.
38. Iriana G, et al. Low blood ALT activity and high FRAIL questionnaire scores correlate with increased mortality and with each other. A prospective study in the internal medicine department. J Clin Med. 2018;7(11):386.
39. Chung SM, et al. Low alanine aminotransferase levels predict low muscle strength in older patients with diabetes: a nationwide cross-sectional study in Korea. Geriatr Gerontol Int. 2020;20(4):271–6.
40. Matteoni CA, et al. Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastroenterology. 1999;116(6):1413–9.
41. Bedossa P, Patel K. Biopsy and noninvasive methods to assess progression of nonalcoholic fatty liver disease. Gastroenterology. 2016;150(8):1811–1822.e4.
42. Lee J, et al. Prognostic accuracy of FIB-4, NAFLD fibrosis score and APRI for NAFLD-related events: a systematic review. Liver Int. 2021;41(2):261–70.
43. Kotoku K, et al. The association between decreased kidney function and FIB-4 index value, as indirect liver fibrosis indicator, in middle-aged and older subjects. Int J Environ Res Public Health. 2021;18(3):6980.
44. Shah AG, et al. Comparison of noninvasive markers of fibrosis in patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2009;7(10):1104–12.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.