Symmetric functions and Springer representations∗

Syu KATÔ†

December 17, 2021

Dedicated to the memory of Tonny Albert Springer

Abstract

The characters of the (total) Springer representations are identified with the Green functions by Kazhdan [Israel J. Math. 28 (1977)], and the latter are identified with Hall-Littlewood’s Q-functions by Green [Trans. Amer. Math. Soc. (1955)]. In this paper, we present a purely algebraic proof that the (total) Springer representations of GL(n) are Ext-orthogonal to each other, and show that it is compatible with the natural categorification of the ring of symmetric functions.

Introduction

Let G be a connected reductive algebraic group over an algebraically closed field with a Borel subgroup B. Let W be the Weyl groups of G, and let $\mathcal{N} \subset \text{Lie} G$ denote the variety of nilpotent elements. The cohomology of a fiber of the Springer resolution

$$
\mu : T^*(G/B) \rightarrow \mathcal{N},
$$

affords a representation of W. This is widely recognized as the Springer representation [24], and it is proved to be an essential tool in representation theory of finite and p-adic Chevalley groups [16, 13, 17, 18, 12]. Here and below, we understand that the Springer representation refers to the total cohomology of a Springer fiber instead of the top cohomology, commonly seen in the literature.

In [10], we found a module-theoretic realization of Springer representations that is axiomatized as Kostka systems. For $G = GL(n)$, it takes the following form: Let

$$
A = A_n := \mathbb{C}S_n \ltimes \mathbb{C}[X_1, \ldots, X_n]
$$

be a graded ring obtained by the smash product of the symmetric group S_n and a polynomial algebra $\mathbb{C}[X_1, \ldots, X_n]$ such that $\deg S_n = 0$ and $\deg X_i = 1$ ($1 \leq i \leq n$). Let $A\text{-}\text{gmod}$ be the category of finitely generated graded A-modules. Let hom_A, end_A, and ext_A denote the graded versions of Hom_A, End_A, and Ext_A, respectively. The set of simple graded A-modules is parametrized by $
abla \mathcal{S}_n$ (up to grading shift), and is denoted as $\{L_{\lambda}\}_{\lambda \in \nabla \mathcal{S}_n}$. We have a projective cover $P_{\lambda} \rightarrow L_{\lambda}$ as graded A-modules.

∗MSC2010: 14N15, 20G44
†Department of Mathematics, Kyoto University, Oiwake Kita-Shirakawa Sakyo Kyoto 606-8502 JAPAN E-mail: syuchan@math.kyoto-u.ac.jp
Theorem A. For each $\lambda \in \text{Irr}\, \mathfrak{S}_n$, we have two modules \tilde{K}_λ and K_λ in A_n-gmod with the following properties:

1. We have a sequence of A_n-module surjections $P_\lambda \twoheadrightarrow \tilde{K}_\lambda \twoheadrightarrow K_\lambda \twoheadrightarrow L_\lambda$, where the first map is obtained by annihilating all graded Jordan-Hölder components L_μ such that $\mu \nleq \lambda$ with respect to the dominance order on $\text{Irr}\, \mathfrak{S}_n$;

2. The graded ring $\text{end}_A(\tilde{K}_\lambda)$ is a polynomial ring. The (unique) graded quotient $\text{end}_A(\tilde{K}_\lambda) \to \mathbb{C}_0 \cong \mathbb{C}$ yields $K_\lambda \cong \mathbb{C}_0 \otimes_{\text{end}_A(\tilde{K}_\lambda)} \tilde{K}_\lambda$;

3. We have the following ext-orthogonality:

$$\text{ext}^i_A(\tilde{K}_\lambda, K_\mu^*) \cong \mathbb{C}^{\delta_i, \delta_{\lambda, \mu}}.$$

Remark B. If we identify $\lambda \in \text{Irr}\, \mathfrak{S}_n$ with a partition, and hence with a nilpotent element $x_\lambda \in \mathcal{N} \subset g\mathfrak{f}(n, \mathbb{C})$ via the theory of Jordan normal form, then we have

$$K_\lambda \cong H^*(\mu^{-1}(x_\lambda), \mathbb{C}) \quad \text{and} \quad \tilde{K}_\lambda \cong H^*_\text{stabGL}(n, \mathbb{C})(x_\lambda) (\mu^{-1}(x_\lambda), \mathbb{C})$$

with a suitable adjustment of conventions ([10, 11]).

Theorem A follows from works of many people ([9, 8, 27, 15, 14, 2, 5]) in several different ways as well as an exact account ([10, 11]) that works for an arbitrary G. All of these proofs utilize some structures (geometry, cells, or affine Lie algebras) that is hard to see in the category of graded A-modules.

The main goal of this paper is to give a new proof of Theorem A based on a detailed analysis of K_λ^* due to Garsia-Procesi [6] and some algebraic results from [14, 10]. This completes author’s attempt [10, Appendix A] to give a proof of Theorem A inside the category of graded A-modules.

As a byproduct, we obtain an interesting consequence: We call $M \in A$-gmod (resp. $M \in A \otimes A$-gmod) to be Δ-filtered (resp. Δ-filtered) if M admits a decreasing separable filtration (resp. finite filtration) whose associated graded is isomorphic to the direct sum of $\{K_\lambda\}_\lambda$ (resp. direct sum of $\{L_\lambda \otimes K_\mu\}_{\lambda, \mu}$) up to grading shifts.

Theorem C. The induction of graded A-modules sends the external tensor product of P_λ and a Δ-filtered module to a Δ-filtered module. Dually, the restriction of graded A_n-modules sends a Δ-filtered module of A_n ($= A_0 \otimes A_n$) to a Δ-filtered module of $A_r \otimes A_{n-r}$ ($0 \leq r \leq n$).

Recall that the graded modules

$$\bigoplus_{n \geq 0} K(A_n\text{-gmod}) \subset \mathbb{Q}(q) \otimes \bigoplus_{n \geq 0} K(\mathfrak{S}_n\text{-mod}),$$

are Hopf algebras by Zelevinsky [28], that is identified with the ring Λ of symmetric functions up to scalar extensions (Theorem 1.1). In particular, this ring is equipped with four bases $\{s_\lambda\}_\lambda$, $\{Q_\lambda\}_\lambda$, $\{Q_\lambda\}_\lambda$, and $\{S_\lambda\}_\lambda$, usually referred to as the Schur functions, the Hall-Littlewood P-functions, the Hall-Littlewood Q-functions, and the big Schur functions, respectively ([19]). We exhibit a natural character identification (that we call the twisted Frobenius characteristic)

$$\begin{array}{c|ccccc}
\text{Modules of } A & P_\lambda & \tilde{K}_\lambda & K_\lambda & L_\lambda & S_\lambda \\
\text{Basis of } \Lambda & s_\lambda & Q_\lambda & Q_\lambda & S_\lambda & (0.1)
\end{array}$$

2
that intertwines the products with inductions, and the coproducts with restrictions. (The complete symmetric functions and the elementary symmetric functions are expanded positively by the Schur functions, and hence corresponds to a direct sum of projective modules in this table).

Under this identification, Theorem C implies that the multiplication of a Schur function in Λ exhibits positivity with respect to the Hall-Littlewood functions (Corollary 2.39). In addition, we deduce a homological interpretation of skew Hall-Littlewood functions (Corollary 2.40).

In a sense, our exposition here can be seen as a direct approach to an algebraic avatar of the Springer correspondence. We note that interpreting sheaves appearing in the Springer correspondence as constructible functions produces totally different algebraic avatar of the Springer correspondence via Hall algebras (as pursued in Shimoji-Yanagida [22]). Although our Hopf algebra structure is closely related to the Heisenberg categorification (cf. [1]), the author was not able to find a result of this kind in the literature. Nevertheless, he plans to write a follow-up paper that covers the relation with the Heisenberg categorification in an occasion.

Finally, the author was very grateful to find related [25] during the preparation of this paper.

1 Preliminaries

A vector space is always a C-vector space, and a graded vector space refers to a \mathbb{Z}-graded vector space whose graded pieces are finite-dimensional and its grading is bounded from the below. Tensor products are taken over C unless stated otherwise. We define the graded dimension of a graded vector space as

$$\text{gdim } M := \sum_{i \in \mathbb{Z}} q^i \dim_C M_i \in \mathbb{Q}(\langle q \rangle).$$

In case $\dim M < \infty$, we set $M^* := \bigoplus_{i \in \mathbb{Z}} (M^*)_i$, where $(M^*)_i := (M_{-i})^*$ for each $i \in \mathbb{Z}$. We set $[n]_q := \frac{1-q^n}{1-q}$ for each $n \in \mathbb{Z}_{>0}$.

For a C-algebra A, let $A\text{-mod}$ denote the category of finitely generated left A-modules. If A is a graded algebra in the sense that $A = \bigoplus_{i \in \mathbb{Z}_{\geq 0}} A_i$ and $A_i A_j \subset A_{i+j}$ ($i, j \in \mathbb{Z}_{\geq 0}$), then we denote by $A\text{-gmod}$ the category of finitely generated graded A-modules. We also have a full subcategory $A\text{-fmod}$ of $A\text{-gmod}$ consisting of finite-dimensional modules.

For a graded algebra A, the category $A\text{-gmod}$ admits an autoequivalence $\langle n \rangle$ for each $n \in \mathbb{Z}$ such that $M = \bigoplus_{i \in \mathbb{Z}} M_i$ is sent to $M \langle n \rangle := \bigoplus_{i \in \mathbb{Z}} (M \langle n \rangle)_i$, where $(M \langle n \rangle)_i = M_{i-n}$. For $M, N \in A\text{-gmod}$, we set

$$\text{hom}_A(M, N) := \bigoplus_{j \in \mathbb{Z}} \text{hom}_A(M, N)_j, \quad \text{hom}_A(M, N)_j := \text{Hom}_{A\text{-gmod}}(M \langle j \rangle, N),$$

$$\text{ext}^i_A(M, N) := \bigoplus_{j \in \mathbb{Z}} \text{ext}^i_A(M, N)_j, \quad \text{ext}^i_A(M, N)_j := \text{Ext}^i_{A\text{-gmod}}(M \langle j \rangle, N).$$

In particular, $\text{hom}_A(M, N)$ and $\text{ext}^i_A(M, N)$ are graded vector spaces if $\dim A_i < \infty$ for each $i \in \mathbb{Z}_{\geq 0}$. Moreover, $\text{hom}_A(M, N)_j$ consists of graded A-module homomorphisms that raise the degree by j.
For $M \in \text{A-gmod}$, the head of M (that we denote by $\text{hd } M$) is the maximal semisimple graded quotient of M, and the socle of M (that we denote by $\text{soc } M$) is the maximal semisimple graded submodule of M.

For a decreasing filtration

$$M = F_0M \supset F_1M \supset F_2M \supset \cdots$$

of graded vector spaces, we define its k-th associated graded piece as $\text{gr}_k^f M := F_k M / F_{k+1} M$ ($k \geq 0$). We call such a filtration separable if $\bigcap_{k \geq 0} F_k M = \{0\}$.

For an exact category \mathcal{C}, let $[\mathcal{C}]$ denote its Grothendieck group. For $M \in \mathcal{C}$, we have its class $[M] \in [\mathcal{C}]$. In case \mathcal{C} admits the grading shift functor $\langle n \rangle$ ($n \in \mathbb{Z}$), an element $f = \sum_n a_n q^n \in \mathbb{Z}[q^{\pm 1}]$ ($a_n \in \mathbb{Z}_{\geq 0}$) defines the direct sum

$$M \oplus f := \bigoplus_{n \in \mathbb{Z}} (M \langle n \rangle)^{\oplus a_n} \quad M \in \mathcal{C}.$$

We may represent a number that is not important by $\star \in \mathbb{Z}[q^{\pm 1}]$.

1.1 Partitions and the ring of symmetric functions

We employ [19] as the general reference about partitions and symmetric functions. We briefly recall some key notions there. The set of partitions is denoted by \mathcal{P}, and the set of partitions of $n \in \mathbb{Z}_{\geq 0}$ is denoted by \mathcal{P}_n. Each of \mathcal{P}_n is equipped with a partial order \leq such that (n) is the largest element. We extend the order \leq to the whole \mathcal{P} by declaring that elements of \mathcal{P}_n and \mathcal{P}_m are comparable only if $n = m$. Let $m_i(\lambda)$ be the multiplicity of i, let $\ell(\lambda)$ be the partition length, and let $|\lambda|$ be the partition size of $\lambda \in \mathcal{P}$. The conjugate partition of $\lambda \in \mathcal{P}$ is denoted by λ'. We set

$$n(\lambda) := \sum_{i \geq 1} (i-1) \lambda_i = \sum_{i \geq 1} \binom{\lambda_i}{2}.$$

For $\lambda \in \mathcal{P}_n$ and $1 \leq j \leq \ell(\lambda) + 1$, let $\lambda^{(j)} \in \mathcal{P}_n$ be the partition of $(n + 1)$ obtained by rearranging $\{\lambda_i\}_{i \neq j} \cup \{\lambda_j + 1\}$, and for $1 \leq j \leq \ell(\lambda)$, we set $\lambda_{(j)}$ be the partition of $(n - 1)$ obtained by rearranging $\{\lambda_i\}_{i \neq j} \cup \{\lambda_j - 1\}$. We set

$$b_\lambda(q) = \prod_{j \geq 1} \left(1 - q \cdots (1 - q^{m_j(\lambda)})\right).$$

Let Λ be the ring of symmetric functions with their coefficients in \mathbb{Z}. Let Λ_q be its scalar extension to $\mathbb{Q}(q)$. We have direct sum decompositions $\Lambda = \bigoplus_{n \geq 0} \Lambda_n$ and $\Lambda_q = \bigoplus_{n \geq 0} \Lambda_q,n$ into the graded components. The ring Λ is equipped with four distinguished bases

$$\{h_\lambda\}_{\lambda \in \mathcal{P}}, \quad \{s_\lambda\}_{\lambda \in \mathcal{P}}, \quad \{e_\lambda\}_{\lambda \in \mathcal{P}}, \quad \text{and} \quad \{m_\lambda\}_{\lambda \in \mathcal{P}},$$

called (the sets of) complete symmetric functions, Schur functions, elementary symmetric functions, and monomial symmetric functions, respectively. We have equalities

$$h_1 = s_{(1)} = e_1 = m_{(1)}, \quad h_n = s_{(n)}, \quad \text{and} \quad e_n = s_{(1^n)} \quad n \in \mathbb{Z}_{>0}.$$
We have a symmetric inner product \((\bullet, \bullet)\) on \(\Lambda\) such that
\[
(s_\lambda, s_\mu) = (h_\lambda, m_\mu) = \delta_{\lambda,\mu}, \quad \lambda, \mu \in \mathcal{P}.
\]
The ring \(\Lambda\) has a structure of a Hopf algebra with the coproduct \(\Delta\) satisfying
\[
\Delta(h_n) = \sum_{i+j=n} h_i \otimes h_j, \quad \text{and} \quad \Delta(e_n) = \sum_{i+j=n} e_i \otimes e_j
\]
and the antipode \(S\) satisfying
\[
S(h_n) = (-1)^n e_n, \quad \text{and} \quad S(e_n) = (-1)^n h_n.
\]
The antipode \(S\) preserves the inner product \((\bullet, \bullet)\).

1.2 Zelevinsky’s picture for symmetric groups

For a (not necessarily non-increasing) sequence \(\lambda = (\lambda_1, \lambda_2, \ldots) \in \mathbb{Z}_+^\infty\) such that \(\sum_j \lambda_j = n\), we define the subgroup
\[
\mathcal{S}_\lambda := \prod_{j \geq 1} \mathcal{S}_{\lambda_j} \subset \mathfrak{S}_n.
\]
We usually omit 0 in \(\lambda = (\lambda_1, \lambda_2, \ldots)\). Each \(\lambda \in \mathcal{P}_n\) defines an irreducible representation of \(L_\lambda\) of \(\mathfrak{S}_n\). We normalize \(L_\lambda\) such that
\[
L_n \simeq \text{triv}, \quad \text{and} \quad L_{(1^n)} \simeq \text{sgn}.
\]
For \(0 < r < n\), we have induction/restriction functors
\[
\text{Ind}_{r,n} : \mathbb{C}\mathcal{S}_{(r,n-r)}\text{-mod} \ni (M, N) \mapsto \mathbb{C}\mathcal{S}_n \otimes_{\mathbb{C}\mathcal{S}_{(r,n-r)}} (M \boxtimes N) \in \mathbb{C}\mathcal{S}_n\text{-mod}
\]
\[
\text{Res}_{r,n} : \mathbb{C}\mathcal{S}_n\text{-mod} \rightarrow \mathbb{C}\mathcal{S}_{(r,n-r)}\text{-mod},
\]
where the latter is the natural restriction. They induce corresponding maps between the Grothendieck groups that we denote by the same letter.

Theorem 1.1 (Zelevinsky [28]). We have a \(\mathbb{Z}\)-module isomorphism
\[
\Psi_0 : \bigoplus_{n \geq 0} [\mathbb{C}\mathcal{S}_n\text{-mod}] \ni [L_\lambda] \mapsto s_\lambda \in \Lambda.
\]
with the following properties: For \(M \in \mathbb{C}\mathcal{S}_r\text{-mod}\) and \(N \in \mathbb{C}\mathcal{S}_n\text{-mod}\), we have
\[
\Psi_0(\text{Ind}_{r,n} [M \boxtimes N]) = \Psi_0([M]) \cdot \Psi_0([N]), \quad \sum_{s=0}^n \Psi_0(\text{Res}_{s,n-s} [N]) = \Delta([N]).
\]
In particular, we have
\[
h_r \cdot \Psi_0([N]) = \Psi_0(\text{Ind}_{r,n} [L_{(r)} \boxtimes N]), \quad e_r \cdot \Psi_0([N]) = \Psi_0(\text{Ind}_{r,n} [L_{(1^r)} \boxtimes N]).
\]
1.3 The algebra A_n and its basic properties

We follow [10, §2] here. We set

$$A_n := \mathbb{C}S_n \ltimes \mathbb{C}[X_1, \ldots, X_n],$$

where S_n acts on the ring $\mathbb{C}[X_1, \ldots, X_n]$ by

$$(w \otimes 1)(1 \otimes X_i) = (1 \otimes X_{w(i)})(w \otimes 1) \quad w \in S_n, 1 \leq i \leq n.$$

We usually denote w in place of $w \otimes 1$, and $f \in \mathbb{C}[X_1, \ldots, X_n]$ in place of $1 \otimes f$.

The ring A_n acquires the structure of a graded ring by

$$\deg w = 0, \quad \deg X_i = 1 \quad w \in S_n, 1 \leq i \leq n.$$

The grading of the ring A_n is non-negative, and the positive degree part $A_n^+ := \bigoplus_{j \geq 0} A_n^j$ defines a graded ideal such that $A_n/A_n^+ \cong \mathbb{C}S_n \cong A_n^0$. In particular, each L_λ can be understood to be a graded A_n-module concentrated in degree 0.

The assignments $w \mapsto w^{-1}$ ($w \in W$) and $X_i \mapsto X_i$ ($1 \leq i \leq n$) define an isomorphism $A_n \cong A_n^{op}$. Therefore, if $M \in A_n$-mod, then M^* acquires the structure of a graded A_n-module. We have $(L_\lambda)^* \cong L_\lambda$ for each $\lambda \in \mathcal{P}_n$ as S_n is a real reflection group.

For each $\lambda \in \mathcal{P}_n$, we have an idempotent $e_\lambda \in \mathbb{C}S_n$ such that $L_\lambda \cong \mathbb{C}S_n e_\lambda$. We set $P_\lambda := A_n e_\lambda$.

Proposition 1.2 (see [10] §2). The modules $\{L_\lambda(\langle j \rangle)\}_{\lambda \in \mathcal{P}_n, j \in \mathbb{Z}}$ is the complete collection of simple objects in A_n-gmod. In addition, P_λ is the projective cover of L_λ in A_n-gmod for each $\lambda \in \mathcal{P}_n$.

We define

$$\tilde{K}_\lambda := \frac{P_\lambda}{\sum_{\mu \gtrless \lambda, f \in \text{hom}_A(P_\mu, P_\lambda)} \text{Im} f} \quad \text{and} \quad K_\lambda := \frac{\tilde{K}_\lambda}{\sum_{j > 0, f \in \text{hom}_A(P_\lambda, \tilde{K}_\lambda)} \text{Im} f}.$$

For each $M \in A_n$-gmod, we set

$$[M : L_\lambda]_q := \text{gdim hom}_A(P_\lambda, M) = \sum_{i \in \mathbb{Z}} q^i \dim \text{hom}_S(L_\lambda, M_i) \in \mathbb{Z}(q).$$

In case the $q = 1$ specialization of $[M : L_\lambda]_q$ makes sense, we denote it by $[M : L_\lambda]$.

Lemma 1.3 (see [10] §2). For each $\lambda \in \mathcal{P}_n$, we have

$$[K_\lambda : L_\mu]_q = \begin{cases} 0 & \lambda \not\leq \mu, \\ 1 & \lambda = \mu, \end{cases} \quad [\tilde{K}_\lambda : L_\mu]_q \in \begin{cases} 0 & \lambda \not\leq \mu, \\ 1 + q\mathbb{Z}[q] & \lambda = \mu. \end{cases}$$

Proof. Immediate from the definition. ∎

For $0 \leq r \leq n$, we consider the subalgebra

$$A_{r,n-r} := \mathbb{C}S_{(r,n-r)} \ltimes \mathbb{C}[X_1, \ldots, X_n] \cong A_r \otimes A_{n-r} \subset A_n.$$
We have induction/restriction functors
\[
\text{ind}_{r,n} : A_{r,n} \to A_n \otimes A_{r,n}, \quad M \mapsto A_n \otimes A_{r,n}M, \quad M \in A_n\text{-gmod},
\]
\[
\text{res}_{r,n} : A_n\text{-gmod} \to A_{r,n}\text{-gmod}.
\]
Since \(A_n\) is free of rank \(\frac{n!}{r!(n-r)!}\) over \(A_{r,n}\), we find that the both functors are exact, and preserves finite-dimensionality of the modules. We sometimes omit the functor \(\text{res}_{r,n}\) from notation in case there are no possible confusion.

We consider the category \(A := \bigoplus_{n \geq 0} A_n\text{-gmod}\). We define
\[
\text{ind} := \bigoplus_{r,s} \text{ind}_{r,s} : A \times A \to A,
\]
\[
\text{res} := \bigoplus_{r,s} \text{res}_{r,s} : A \to A \otimes A.
\]

Lemma 1.4. We embed \(\mathcal{S}_n\text{-mod}\) into \(A_n\text{-gmod}\) by regarding \(M \in \mathcal{S}_n\text{-mod}\) as a semisimple graded \(A_n\)-module concentrated in degree \(0\) for each \(n \in \mathbb{Z}_{\geq 0}\). Then, we have
\[
\text{Ind}_{r,s} = \text{ind}_{r,s} \quad \text{and} \quad \text{Res}_{r,s} = \text{res}_{r,s} \quad r, s \in \mathbb{Z}_{\geq 0}
\]
on \(\bigoplus_{n \geq 0} \mathcal{S}_n\text{-mod}\). In particular, \([A]\) can be understood as a (Hopf) subalgebra of \(\mathbb{C}(q) \otimes \Lambda = \Lambda_q\) by extending the scalar in Theorem 1.1. \(\blacksquare\)

The following three theorems are quite well-known to experts.

Theorem 1.5 (Frobenius-Nakayama reciprocity). For \(M \in A_{r,n}\text{-gmod}\) and \(N \in A_n\text{-gmod}\), it holds
\[
\text{ext}^k_{A_n}(\text{ind}_{r,n} M, N) \cong \text{ext}^k_{A_{r,n}}(M, \text{res}_{r,n} N) \quad k \in \mathbb{Z}.
\]

Proof. This follows from the fact that \(A_n\) is a free \(A_{r,n}\)-module by the classical Frobenius reciprocity as \(\text{ind}_{r,n}\) sends a projective resolution of \(M\) to a projective resolution of \(\text{ind}_{r,n} M\). \(\blacksquare\)

Theorem 1.6. For \(M, N \in A_n\text{-fmod}\), it holds
\[
\text{ext}^k_{A_n}(M, N) \cong \text{ext}^k_{A_n}(N^*, M^*), \quad k \in \mathbb{Z}.
\]

Proof. We borrow terminology from [7, §2.2]. We have natural isomorphism
\[
\text{hom}_{A_n}(M, N) \cong \text{hom}_{A_n}(N^*, M^*).
\]
Since the derived functors of the both sides (defined in an appropriate ambient categories) are \(\delta\)-functors in each variables, it suffices to see that they are universal \(\delta\)-functors. By approximating \(N\) by its injective envelope (and hence \(N^*\) by its projective cover), we find that the both sides are effacable on the second variables. Thus, they must coincide by [7, 2.2.1 Proposition]. \(\blacksquare\)

Theorem 1.7. The global dimension of \(A_n\) is finite. In particular, every \(M \in A_n\text{-gmod}\) admits a graded projective resolution of finite length.

Proof. See McConnell-Robson-Small [21, p. 7.5.6].

We have a \(\mathbb{Z}[q^\pm 1]\)-bilinear inner product \((\cdot, \cdot)_E\) on \([A]\) prolonging
\[
A_n\text{-gmod} \times A_n\text{-fmod} \ni (M, N) \mapsto \sum_{i \geq 0} (-1)^i gdim \text{ext}^i_{A_n}(M, N^*)^* \in \mathbb{Q}(q).
\]
Lemma 1.8. The pairing $(\bullet, \bullet)_{EP}$ is a well-defined symmetric form on $[A]$.

Proof. Since the Euler-Poincaré form respects the short exact sequences, the form $(\bullet, \bullet)_{EP}$ must be additive with respect to both variables.

By the arrangement of duals in the definition of $(\bullet, \bullet)_{EP}$, we find that replacing M with $M \langle n \rangle$ and replacing N with $N \langle n \rangle$ both result in multiplying q^n ($n \in \mathbb{Z}$). As the category A has finite direct sums, we conclude that $(\bullet, \bullet)_{EP}$ must be $\mathbb{Z}[q^{\pm 1}]$-bilinear.

We have

$$[A_n\text{-}gmod] = \bigoplus_{\lambda \in P_n} \mathbb{Z}[q^{\pm 1}][P_{\lambda}] \subset \bigoplus_{\lambda \in P_n} \mathbb{Q}(q)[L_{\lambda}]$$

by Proposition 1.2. In particular, $\langle L_{\lambda}, L_{\mu} \rangle_{EP} \in \mathbb{Q}(q)$ ($\lambda, \mu \in P_n$) uniquely determines a well-defined $\mathbb{Q}(q)$-bilinear form $(\bullet, \bullet)_{EP}$ that restricts to $[A]$. It is symmetric by Theorem 1.6.

2 Main results

Keep the setting of the previous section.

Definition 2.1. Fix $0 \leq r \leq n$. A Δ-filtration (resp. $\underline{\Delta}$-filtration) of $M \in A_n\text{-}gmod$ is a decreasing separable filtration

$$M = F_0 M \supset F_1 M \supset F_2 M \supset \cdots$$

of graded A_n-modules (resp. graded $A_{r,n} - r$-modules) such that

$$\text{gr}^F_k M \in \{ \tilde{K}_\lambda \langle m \rangle \}_{\lambda \in P_n, m \in \mathbb{Z}} \quad \text{(resp. } \text{gr}^F_k M \in \{ L_\mu \boxtimes K_{\nu} \langle m \rangle \}_{\mu \in P_r, \nu \in P_{n-r}, m \in \mathbb{Z}})$$

for each $k \geq 0$. In case M admits a Δ-filtration, then we set

$$(M : \tilde{K}_\lambda)_q := \sum_{k=0}^{\infty} \sum_{m \in \mathbb{Z}} q^m \chi(\text{gr}^F_k M \cong \tilde{K}_\lambda \langle m \rangle),$$

where $\chi(X)$ takes value 1 if the proposition X is true, and 0 otherwise.

Lemma 2.2 ([10] §2 or [14]). The multiplicity $(M : \tilde{K}_\lambda)_q$ does not depend on the choice of Δ-filtration.

The following theorem is not new (see Remark 2.4). Nevertheless, the author feels it might worth to report a yet another proof based on Garsia-Procesi [6], that differs significantly from other proofs and is carried out within the category of A_n-modules:

Theorem 2.3. Let $\lambda, \mu \in P_n$. We have the following:

1. For each $\lambda \in P_n$, the graded ring $\text{end}_{A_n}(\tilde{K}_\lambda)$ is a polynomial ring generated by homogeneous polynomials of positive degrees;

2. The module \tilde{K}_λ is free over $\text{end}_{A_n}(\tilde{K}_\lambda)$, and we have

$$\mathbb{C}_0 \otimes_{\text{end}_{A_n}(\tilde{K}_\lambda)} \tilde{K}_\lambda \cong K_\lambda,$$

where \mathbb{C}_0 is the unique graded one-dimensional quotient of $\text{end}_{A_n}(\tilde{K}_\lambda)$;
3. We have the Ext-orthogonality:

\[\text{ext}^1_{A_n}(K_\lambda, K_\mu^*) \cong \mathbb{C}^\oplus \delta_{\lambda, \mu} \delta_{i, 0}; \]

4. Each \(P_\lambda \) admits a \(\Delta \)-filtration, and we have \((P_\lambda : K_\mu)_q = [K_\mu : L_\lambda]_q \).

Proof. Postponed to §2.4.

Remark 2.4. Theorem 2.3 is originally proved in [10, 11] essentially in this form by using the geometry of Springer correspondence (that works for arbitrary Weyl groups with arbitrary cuspidal data). Theorem 2.3 also follows from results of Haiman [9, 8] that employ the geometry of Hilbert schemes of points on \(\mathbb{C}^2 \). We also have two algebraic proofs of Theorem 2.3, one is to use a detailed study of two-sided cells of affine Hecke algebras by Xi [27] together with König-Xi [15] and Kleshchev [14], and another is an analogous result for affine Lie algebras (Chari-Ion [2]) together with Feigin-Khoroshkin-Makedonskyi [5].

We exhibit applications of Theorem 2.3 in §2.5.

2.1 Garsia-Procesi’s theorem

For each \(I \subset [1, n] \) and \(|I| \geq r \geq 1 \), let \(e_r(I) \) be the \(r \)-th elementary symmetric function with respect to the variables \(\{X_i\}_{i \in I} \). For \(\lambda \in \mathcal{P}_n \), we set

\[d_r(\lambda) := \lambda'_1 + \cdots + \lambda'_r \quad (1 \leq r \leq n). \]

We set

\[C_\lambda := \{e_r(I) \mid r \geq t \geq r - d_r(\lambda), |I| = r, I \subset [1, n]\}. \]

Let \(I_\lambda \subset \mathbb{C}[X_1, \ldots, X_n] \) be the ideal generated by \(C_\lambda \) (originally introduced in [26]).

Definition 2.5. We set \(R_\lambda := \mathbb{C}[X_1, \ldots, X_n]/I_\lambda \), and call it the Garsia-Procesi module.

Lemma 2.6 ([6] §3). The algebra \(R_\lambda \) admits a structure of graded \(A_n \)-module generated by \(L_{(n)} \). In addition, \([R_\lambda : L_{(n)}]_q = 1 \).

Proof. Since \(R_\lambda \) is the quotient of \(P_{(n)} \), it suffices to see that the ideal \(I_\lambda \) is graded and \(S_n \)-stable. Since \(C_\lambda \) consists of homogeneous polynomials and it is stable under the \(S_n \)-action, we conclude the first assertion. For the second assertion, it suffices to notice that \(C_\lambda \) contains all the elementary symmetric polynomials in \(\mathbb{C}[X_1, \ldots, X_n] \), and hence \(I_\lambda \) contains all the positive degree part of \(C[X_1, \ldots, X_n]^{S_n} \).

Theorem 2.7 (Garsia-Procesi [6] §1). Let \(\lambda \in \mathcal{P}_n \). The \(\mathbb{C}[X_1, \ldots, X_n] \)-module \(R_\lambda \) admits a decreasing filtration

\[R_\lambda = F_0 R_\lambda \supset F_1 R_\lambda \supset \cdots \supset F_{\ell(\lambda)} R_\lambda = \{0\} \tag{2.1} \]

such that \(gr^F R_\lambda \cong R_{\lambda^{(j+1)}}^{(j)} \) for \(0 \leq j < \ell(\lambda) \). In addition, this filtration respects the \(S_{n-1} \)-action, and hence can be regarded as an \(A_{1,n-1} \)-module filtration. □
Theorem 2.8 ([6] Theorem 3.1 and Theorem 3.2). Let $\lambda \in \mathcal{P}_n$. It holds:

1. We have $(R_\lambda)_{n(\lambda)+1} = \{0\}$;
2. We have a \mathfrak{S}_n-module isomorphism $R_\lambda \cong \text{ind}_{\mathfrak{S}_\lambda}^{\mathfrak{S}_n} \text{triv}$.

In particular, we have $[R_\lambda : L_\mu] \neq 0$ only if $\lambda \leq \mu$. \hfill \qed

In view of [19, (2.1)], we have the Hall-Littlewood P- and Q-functions in Λ_q indexed by \mathcal{P}, that we denote by Q^\vee_λ and Q_λ, respectively (we changed notation of P-functions to Q^\vee in order to avoid confusion with projective modules). They satisfy the following relation:

$$Q^\vee_\lambda = b^{-1}_\lambda Q_\lambda \in \Lambda_q.$$ (2.2)

We also have the big Schur function ([19, (4.6)])

$$S_\lambda := \prod_{i<j} (1 - qR_{ij}) Q_\lambda,$$

where R_{ij} are the raising operators.

Theorem 2.9 ([6] §5, particularly (5.24)). For each $\lambda \in \mathcal{P}$, the polynomial

$$Q_\lambda := \sum \mu [K_\lambda : L_\mu] q \cdot S_\mu \in \Lambda_q$$

is the Hall-Littlewood’s Q-function. \hfill \qed

Theorem 2.10 ([19] (4.9)). There exists a $\mathbb{Q}(q)$-linear bilinear form $\langle \cdot , \cdot \rangle$ on Λ_q (referred to as the Hall inner product) characterized as

$$\langle Q^\vee_\lambda, Q_\mu \rangle = \delta_{\lambda,\mu} = \langle S_\lambda, s_\mu \rangle$$ (2.3)

for each $\lambda, \mu \in \mathcal{P}$. \hfill \qed

Lemma 2.11. For each $\lambda \in \mathcal{P}_n$, we have $[R_\lambda : L_\lambda] = q^{n(\lambda)}$.

Proof. By [19, p115] and the Frobenius reciprocity, L_λ contains a vector on which \mathfrak{S}_λ acts by sign representation. Since the Vandermonde determinant offers the minimal degree realization of the sign representations of each \mathfrak{S}_λ_j ($1 \leq j \leq \lambda_1$), we find that $\text{Hom}_{\mathfrak{S}_n}(L_\lambda, (R_\lambda)_m) \neq 0$ only if $m \geq n(\lambda)$. It must be strict by Theorem 2.8 1). \hfill \qed

Proposition 2.12 ([10] Theorem A.4 and Corollary A.3). We have

$$\text{ext}^1_{\mathcal{P}_n}(K_\lambda, L_\mu) = 0 \quad \lambda \not\geq \mu.$$

For each $\lambda \in \mathcal{P}_n$, the head of K_λ is L_λ, and the socle of K_λ is $L_{(n)} (n(\lambda))$.

Proof. By [10, Theorem A.4], the module K_λ is isomorphic to the module M_λ constructed there. They have the properties in the assertions by construction and [10, Theorem A.4]. \hfill \qed

Proposition 2.13 (De Concini-Procesi [4], Tanisaki [26]). We have an isomorphism $R^\ast_\lambda (n(\lambda)) \cong K_\lambda$ as graded A_n-modules.
Proof. By Lemma 2.11, \(R^*_\lambda(n(\mu)) \) is a graded \(A_n \)-module such that \(L_\lambda \subset \text{hd} R^*_\lambda(n(\mu)) \) and \([R^*_\lambda(n(\mu)) : L_\mu]_q = 0\) if \(\mu \not\succeq \lambda \) and \([R^*_\lambda(n(\mu)) : L_\lambda]_q = 1\). Thus, we obtain a map \(K_\lambda : R^*_\lambda(n(\mu)) \) of graded \(A_n \)-modules. This map is injective as they share \(L(\mu(n(\mu))) \) as their socles.

We prove that \(K_\lambda \subset R^*_\lambda(n(\mu)) \) is an equality for every \(\lambda \in \mathcal{P}_n \) by induction on \(n \). The case \(n = 1 \) is clear as the both are \(\mathbb{C} \). Thanks to Theorem 2.7 and the induction hypothesis, we deduce that a (graded) direct summand of the head of \(R^*_\lambda(n(\mu)) \) as \(A_{1,n-1} \)-module must be of the shape \(L_{\lambda(j)}(d) \) for \(1 \leq j \leq \ell(\lambda) \) and \(d \geq 0 \). The module \(L_{\lambda(j)}(d) \) arises as the restriction of a (graded) \(\mathfrak{S}_n \)-module \(L_\mu(d) \) (\(\mu \in \mathcal{P}_n \)) such that \(\lambda(j) = \mu(k) \) for \(1 \leq k \leq \ell(\mu) \). In case \(\mu = \lambda \), then \([R^*_\lambda(n(\mu)) : L_\lambda]_q = 1\) forces \(L_{\lambda(j)}(d) \subset L_\lambda \subset \text{hd} K_\lambda \subset \text{hd} R^*_\lambda(n(\mu)) \).

From this, it is enough to assume \(\mu \neq \lambda \) to conclude that \(L_{\lambda(j)}(d) \) does not yield a non-zero module of \(\text{hd} R^*_\lambda(n(\mu)) / L_\lambda \). By Theorem 2.8, we can assume \(\mu > \lambda \). Hence, \(\mu \) is obtained from \(\lambda \) by moving one box in the Young diagram to some strictly larger entries.

In case \(\mu \) is not the shape \((m^r) \), there exists \(1 \leq k \leq \ell(\mu) \) such that \(\mu(k) \neq \lambda(j) \) for every \(1 \leq j \leq \ell(\lambda) \). It follows that \(L_{\lambda(j)}(d) \subset L_\mu(d) \subset R^*_\lambda(n(\mu)) \) contains a \(\mathfrak{S}_n \)-module that is not in the head of \(R^*_\lambda(n(\mu)) \) as \(A_{1,n-1} \)-modules. Thus, this case does not occur.

In case \(\mu \) is of the shape \((m^r) \), then we have \(\lambda = (m^{r-1}(m-1), 1) \) and \(\lambda(j) = (m^{r-1}(m-1), 1) \). In this case, we have \(j = r + 1 \). In particular, grading shifts of \(R^*_\lambda(n(\mu)) \) appears in the filtration of \(R^*_\lambda(n(\mu)) \) afforded by Theorem 2.7 only once, and its head is a part of \(L_\lambda \) by counting the degree. Therefore, \(L_{\lambda(j)}(d) \) contributes zero in \(\text{hd} R^*_\lambda(n(\mu)) / L_\lambda \).

From these, we conclude that \(\text{hd} R^*_\lambda(n(\mu)) = L_\lambda \) by induction hypothesis. This forces \(K_\lambda = R^*_\lambda(n(\mu)) \), and the induction proceeds.

2.2 Identification of the forms

Consider the twisted (graded) Frobenius characteristic map

\[
\Psi : [A] \ni [M] \mapsto \sum_{\mu} [M : L_\mu]_q \cdot S_\mu \in \Lambda_q.
\]

(2.4)

By Theorem 2.9, we have

\[
\Psi([K_\lambda]) = Q_\lambda \quad (\lambda \in \mathcal{P}).
\]

(2.5)

Lemma 2.14. For \(a, b \in A \), we have

\[
\Psi(\text{ind } (a \boxtimes b)) = \Psi(a) \cdot \Psi(b), \quad \text{and} \quad (\Psi \times \Psi)(\text{res } a) = \Delta(\Psi(a)).
\]

Proof. This is a straight-forward consequence of Lemma 1.4. The detail is left to the reader.

Proposition 2.15. We have

\[
\langle [K_\lambda], [K_\mu] \rangle_{EP} = \langle Q_\lambda, Q_\mu \rangle = \delta_{\lambda, \mu} b_\lambda.
\]

In particular, we have

\[
\langle a, b \rangle_{EP} = \langle \Psi(a), \Psi(b) \rangle \quad a, b \in [A].
\]

(2.6)
Remark 2.16. If we prove the identities in Corollary 2.18 directly, then one can prove (2.6) without appealing to [23, 10] by Proposition 2.17 and its proof.

Proof of Proposition 2.15. The equations in Theorem 2.10, that are equivalent to the Cauchy identity [19, (4.4)], are special cases of [23, Corollary 4.6]. It is further transformed into the main matrix equality of the so-called Lusztig-Shoji algorithm in [23, Theorem 5.4]. The latter is interpreted as the orthogonality relation with respect to $\langle \bullet, \bullet \rangle_{EP}$ in [10, Theorem 2.10]. In particular, Kostka polynomials defined in [19] and [23] are the same (for symmetric groups and the order \leq on P). This implies the first equality in view of (2.5). The second equality is read-off from the relation between Q_λ and Q_λ^\vee. The last assertion follows as $\{Q_\lambda\}_{\lambda \in P}$ forms a $Q(\langle q \rangle)$-basis of Λ_q, and the Hall inner product is non-degenerate.

Proposition 2.17. For each $\lambda \in P$, we have $\Psi([P_\lambda]) = s_\lambda$.

Proof. For each $\lambda, \mu \in P$, we have

$$\delta_{\lambda, \mu} = \langle s_\lambda, s_\mu \rangle = \langle s_\lambda, \Psi([L_\mu]) \rangle$$

by Theorem 2.10. On the other hand, we have

$$\delta_{\lambda, \mu} = \text{gdim hom}_{A_n}(P_\lambda, L_\mu) = \sum_{k \geq 0} (-1)^{k} \text{gdim ext}^k_{\lambda_n}(P_\lambda, L_\mu) = \langle [P_\lambda], [L_\mu] \rangle_{EP}.$$

As the Hall inner product is non-degenerate (Theorem 2.10) and is the same as the Euler-Poincaré pairing (Proposition 2.15), this forces $\Psi([P_\lambda]) = s_\lambda$.

Corollary 2.18. For each $\lambda \in P_n$, we have

$$s_\lambda = \sum_{\mu \in P_n} S_\mu \cdot \text{gdim hom}_{S_n}(L_\mu, P_\lambda)$$

$$= \sum_{\mu \in P_n} S_\mu \cdot \text{gdim hom}_{S_n}(L_\mu, L_\lambda \otimes \mathbb{C}[X_1, \ldots, X_n])$$

$$= \frac{1}{(1-q)(1-q^2)\cdots(1-q^n)} \sum_{\mu \in P_n} S_\mu \cdot \text{gdim hom}_{S_n}(L_\mu, L_\lambda \otimes R(1^n)).$$

Proof. In view of Proposition 2.17, the first equality is obtained by just expanding $[P_\lambda]$ using the definition of the twisted Frobenius characteristic. The second and the third equalities follow from

$$P_\lambda \cong L_\lambda \otimes \mathbb{C}[X_1, \ldots, X_n] \cong L_\lambda \otimes R(1^n) \otimes \mathbb{C}[X_1, \ldots, X_n]^{S_n}$$

as S_n-modules, where the latter isomorphism is standard ([3]).

Corollary 2.19. For each $M \in A_n$-gmod, we have

$$\Psi([M]) = \sum_\lambda \langle [M], [K_\lambda] \rangle_{EP} Q^\vee_\lambda.$$

Proof. This follows by $\Psi([K_\lambda]) = Q_\lambda$, Theorem 2.10, and Proposition 2.15.
2.3 \textbf{An end-estimate}

Lemma 2.20. For each $\lambda \in \mathcal{P}_n$, the \mathfrak{S}_n-module L_λ contains a unique non-zero \mathfrak{S}_λ-fixed vector (up to scalar).

\textit{Proof.} This follows from Theorem 2.8 2) and the Frobenius reciprocity. \hfill \square

For each $\lambda \in \mathcal{P}_n$, we set

$$A_\lambda := \bigotimes_{j=1}^{\ell(\lambda)} A_{\lambda_j} \subset A_n,$$

$$\widetilde{K}_\lambda^+ := A_n \otimes_{A_\lambda} (\widetilde{K}_{(\lambda_1)} \boxtimes \widetilde{K}_{(\lambda_2)} \boxtimes \cdots \boxtimes \widetilde{K}_{(\lambda_\ell)}). \quad (2.7)$$

Lemma 2.21. We have $\widetilde{K}_{(n)} \cong L_{(n)} \otimes \mathbb{C}[Y]$, where $\mathbb{C}[Y]$ is the quotient of the polynomial ring $\mathbb{C}[X_1, \ldots, X_n]$ by the submodule generated by degree one part that is complementary to $\mathbb{C}(X_1 + \cdots + X_n)$ as \mathfrak{S}_n-modules.

\textit{Proof.} We have $P_{(n)} \cong \mathbb{C}[X_1, \ldots, X_n]$. Its degree one part is $L_{(n)} \oplus L_{(n-1,1)}$ as \mathfrak{S}_n-modules, and quotient out by $L_{(n-1,1)}$ yields a polynomial ring $\mathbb{C}[Y]$ generated by the image of $\mathbb{C}(X_1 + \cdots + X_n) \cong L_{(n)}$. \hfill \square

Lemma 2.22. Let $\lambda \in \mathcal{P}_n$. We have a unique graded A_n-module map $\widetilde{K}_\lambda \to \widetilde{K}_\lambda^+$ of degree 0 up to scalar.

\textit{Proof.} We have $(\widetilde{K}_\lambda^+)_0 = \text{Ind}_{\mathfrak{S}_\lambda}^{\mathfrak{S}_n} \text{triv}$, in which L_λ appears without multiplicity. All the \mathfrak{S}_λ-modules appearing in $\langle \widetilde{K}_{(\lambda_1)} \boxtimes \widetilde{K}_{(\lambda_2)} \boxtimes \cdots \rangle$ are trivial. It follows that $(\widetilde{K}_\lambda^+ : L_\mu)_q \neq 0$ if and only if $[\text{Ind}_{\mathfrak{S}_\lambda}^{\mathfrak{S}_n} \text{triv} : L_\mu] \neq 0$. The latter implies $\lambda \leq \mu$ (Theorem 2.8). Therefore, a \mathfrak{S}_n-module map $L_\lambda \to (\widetilde{K}_\lambda^+)_0$ extends uniquely to a graded A_n-module map $\widetilde{K}_\lambda \to \widetilde{K}_\lambda^+$ by the definition of \widetilde{K}_λ. \hfill \square

In the setting of Lemma 2.22, we set

$$\widetilde{K}'_\lambda := \text{Im}(\widetilde{K}_\lambda \to \widetilde{K}_\lambda^+).$$

For each $1 \leq j \leq \ell(\lambda)$, we have an endomorphism ψ^λ_j on \widetilde{K}_λ^+ extending

$$\psi^\lambda_j(\widetilde{K}_{(\lambda_1)} \boxtimes \cdots \boxtimes \widetilde{K}_{(\lambda_\ell)}) = \widetilde{K}_{(\lambda_1)} \langle \delta_{j,1} \rangle \boxtimes \cdots \boxtimes \widetilde{K}_{(\lambda_\ell)} \langle \delta_{j,\ell} \rangle \subset \widetilde{K}_\lambda^+,$$

obtained by the multiplication of $\mathbb{C}[X_1, \ldots, X_n]$. Consider the group

$$\mathfrak{S}(\lambda) := \prod_{j \geq 1} \mathfrak{S}_{m_j(\lambda)}.$$

Lemma 2.23. The group $\mathfrak{S}(\lambda)$ yields automorphisms of \widetilde{K}_λ^+ as A_n-modules.

\textit{Proof.} The group $\mathfrak{S}(\lambda)$ permutes $\widetilde{K}_{(\lambda_1)}$’s in (2.7) in such a way the size of the factors (i.e. the values of λ_j) are invariant. These are A_λ-module endomorphisms, and hence \widetilde{K}_λ^+ inherits these endomorphisms as required. \hfill \square

Let $B(\lambda)$ denote the subring of $\text{end}_{A_n}(\widetilde{K}_\lambda^+)$ generated by $\{\psi^\lambda_j\}_{j=1}^{\ell(\lambda)}$. The action of $\mathfrak{S}(\lambda)$ permutes ψ^λ_1 and ψ^λ_j such that $\lambda_i = \lambda_j$. Thus, $\mathfrak{S}(\lambda)$ acts on $B(\lambda)$ as automorphisms. The invariant part $B(\lambda)^{\mathfrak{S}(\lambda)}$ is a polynomial ring.
Lemma 2.24. For each $\lambda \in \mathcal{P}_n$, we have
\[\text{hom}_{\mathfrak{g}_n}(L_\lambda, B(\lambda)L_0) \to \text{hom}_{\mathfrak{g}_n}(L_\lambda, \tilde{K}_\lambda^+) \],
where $L_\lambda \equiv L_0 \subset (\tilde{K}_\lambda^+)_0$ is the multiplicity one copy as \mathfrak{S}_n-modules.

Proof. By construction, \tilde{K}_λ^+ is a direct sum of (grading shifts of) copies of $\text{Ind}_{\mathfrak{g}_n}^{\mathfrak{g}_n} \text{triv}$ as a \mathfrak{S}_n-module. We have $[\text{Ind}_{\mathfrak{g}_n}^{\mathfrak{g}_n} \text{triv} : L_\lambda] = 1$. The action of $B(\lambda)$ preserves the \mathfrak{S}_n-isotypic part. As the action of $B(\lambda)$ sends $(\tilde{K}_\lambda^+)_0$ to all the contributions of $\text{Ind}_{\mathfrak{g}_n}^{\mathfrak{g}_n} \text{triv}$ in \tilde{K}_λ^+, we conclude the assertion. \(\square \)

Proposition 2.25. For each $\lambda \in \mathcal{P}_n$, we have
\[\text{gdim} \text{end}_{A_n}(\tilde{K}_\lambda) = b_\lambda^{-1} \quad \text{and} \quad \text{end}_{A_n}(\tilde{K}_\lambda) \cong B(\lambda)^{\otimes (\lambda)}. \]

Proof. Since \tilde{K}_λ has $(\tilde{K}_\lambda^+)_0 \cong L_\lambda$ as its unique simple graded quotient, $\text{end}_{A_n}(\tilde{K}_\lambda)$ is determined by the image of $(\tilde{K}_\lambda^+)_0$. In addition, \tilde{K}_λ is stable under the action of $\mathfrak{g}(\lambda)$ as $L_\lambda \subset (\tilde{K}_\lambda^+)_0$ is. Therefore, Lemma 2.24 implies $\text{end}_{A_n}(\tilde{K}_\lambda) \subset B(\lambda)^{\otimes (\lambda)}$. Thus, we have the inequality \leq in the assertion by
\[b_\lambda^{-1} = \prod_{j \geq 1} \frac{1}{(1 - q) \cdots (1 - q^{m_{j}(\lambda)})} \]
\[= \prod_{j \geq 1} \text{gdim} C[x_1, \ldots, x_{m_{j}(\lambda)}]^{\otimes m_{j}(\lambda)} = \text{gdim} B(\lambda)^{\otimes (\lambda)} \]
(see Corollary 2.18 for the second equality). We have an identification
\[(\tilde{K}_{(\lambda_0)} \otimes \cdots \otimes \tilde{K}_{(\lambda_{(\lambda_0)})}) \cong e \left(C \otimes (\tilde{K}_{(\lambda_0)} \otimes \cdots \otimes \tilde{K}_{(\lambda_{(\lambda_0)})}) \right) \subset \tilde{K}_\lambda, \quad (2.8) \]
where $e = \frac{1}{|\mathfrak{g}(\lambda)|} \sum_{w \in \mathfrak{g}(\lambda)} w$. The actions of $\psi^i_1, \ldots, \psi^i_\lambda$ on the first term of (2.8) are induced by the multiplication of $C[x_1, \ldots, x_n]$. Hence, the action of $B(\lambda)^{\otimes (\lambda_0) \times \mathfrak{g}_n} = B(\lambda)^{\otimes (\lambda_0)}$ on the first two terms of (2.8) are realized by the multiplication of $C[x_1, \ldots, x_n]$. Thus, the inequality must be in fact an equality and $\text{end}_{A_n}(\tilde{K}_\lambda) \cong B(\lambda)^{\otimes (\lambda)}$. \(\square \)

Let us consider the image of the center $C[x_1, \ldots, x_n]^{\mathfrak{g}_n}$ in $\text{end}_{A_n}(\tilde{K}_\lambda)$ and $\text{end}_{A_n}(\tilde{K}_\lambda)$ by $Z(\lambda)$ and $Z'(\lambda)$, respectively.

Lemma 2.26. For each $\lambda \in \mathcal{P}_n$, we have a quotient map
\[\text{end}_{A_n}(\tilde{K}_\lambda) \longrightarrow \text{end}_{A_n}(\tilde{K}_\lambda') \]
as an algebra that induces a surjection $Z(\lambda) \to Z'(\lambda)$. In addition, $Z'(\lambda)$ is precisely the image of $C[x_1, \ldots, x_n]^{\mathfrak{g}_n}$ in $\text{end}_{A_n}(\tilde{K}_\lambda')$.

Proof. By the construction of \tilde{K}_λ, we have
\[\text{end}_{A_n}(\tilde{K}_\lambda) \longrightarrow \text{hom}_{A_n}(\tilde{K}_\lambda, \tilde{K}_\lambda') \cong \text{hom}_{\mathfrak{g}_n}(L_\lambda, \tilde{K}_\lambda'). \]
In view of Proposition 2.25 and Lemma 2.24, we have
\[\text{hom}_{A_n}(\tilde{K}_\lambda, \tilde{K}_\lambda') \cong \text{hom}_{\mathfrak{g}_n}(L_\lambda, \tilde{K}_\lambda') \cong \text{end}_{A_n}(\tilde{K}_\lambda'). \]
This proves the first assertion, as the action of $\mathbb{C}[X_1, \ldots, X_n]^{S_n}$ on \bar{K}_λ' factors through \bar{K}_λ. The second assertion follows as the action of $\mathbb{C}[X_1, \ldots, X_n]^{S_n}$ on \bar{K}_λ^+ factors through $B(\lambda)^{\Theta(\lambda)} = \text{end}_{A_n}(\bar{K}_\lambda')$.

Lemma 2.27. For each $\lambda \in \mathcal{P}_n$, the algebra $\text{end}_{A_n}(\bar{K}_\lambda)$ is a finitely generated module over $\mathbb{C}[X_1, \ldots, X_n]^{S_n}$.

Proof. Since we have a surjection $\text{end}_{A_n}(P_\lambda) \to \text{end}_{A_n}(\bar{K}_\lambda)$, it suffices to see that $\text{end}_{A_n}(P_\lambda)$ is a finitely generated module over $\mathbb{C}[X_1, \ldots, X_n]^{S_n}$. We have $\text{end}_{A_n}(P_\lambda) \cong \text{Hom}_{\mathfrak{S}_n}(L(\lambda), \text{End}_\mathbb{C}(L_\lambda) \otimes \mathbb{C}[X_1, \ldots, X_n])$.

The RHS is a finitely generated module over $\mathbb{C}[X_1, \ldots, X_n]^{S_n}$ as required.

For two power series with integer coefficients $f(q) = \sum_m f_m q^m, g(q) = \sum_m g_m q^m \in \mathbb{Z}(q)$, we say $f(q) \leq g(q)$ if we have $f_m \leq g_m$ for every $m \in \mathbb{Z}$. We say $f(q) \ll g(q)$ if

$$\lim_{m \to \infty} \sup \{ f_k \mid k \leq m \} \sup \{ g_k \mid k \leq m \} = 0. \quad (2.9)$$

Theorem 2.28 ([20]). Let R be a finitely generated graded integral algebra with $\mathbb{C} = R_0$, and let S be its proper graded quotient algebra. For a finitely generated graded S-module M, we have

$$\text{gdim} M \ll \text{gdim} R.$$

Proof. This follows form [20, Theorem 13.4] if we take into account the Krull dimension inequality $\dim R > \dim S$, and the completion with respect to the grading makes R and S into local rings.

Lemma 2.29. For each $\lambda \in \mathcal{P}_n$ and an algebra quotient $Z'(\lambda) \to \mathbb{C}$, the actions of X_1, X_2, \ldots, X_n on $\mathbb{C} \otimes Z'(\lambda) \bar{K}_\lambda'$ and $\mathbb{C} \otimes Z'(\lambda) \bar{K}_\lambda^+$ have joint eigenvalues of shape

$$\alpha_1 = \cdots = \alpha_{\lambda_1}, \alpha_{\lambda_1+1} = \cdots = \alpha_{\lambda_1+\lambda_2}, \ldots, \alpha_{n-\lambda_{\ell(\lambda)}+1} = \cdots = \alpha_n \quad (2.10)$$

up to \mathfrak{S}_n-permutation.

Proof. By Lemma 2.27, the modules $\mathbb{C} \otimes Z'(\lambda) \bar{K}_\lambda'$ and $\mathbb{C} \otimes Z'(\lambda) \bar{K}_\lambda^+$ must be finite-dimensional. Hence, the actions of X_1, \ldots, X_n have joint eigenvalues. Their values can be read-off from (2.7).

Theorem 2.30. For each $\lambda \in \mathcal{P}_n$, we have

$$\text{gdim} \ker \left(\text{end}_{A_n}(\bar{K}_\lambda) \to \text{end}_{A_n}(\bar{K}_\lambda') \right) \ll \text{gdim} \text{end}_{A_n}(\bar{K}_\lambda').$$
Proof. We set $Z := Z(\lambda)$ and $Z' := Z'(\lambda)$ during this proof. The specialization $\mathbb{C} \otimes_{Z} \tilde{K}_{\lambda}$ with respect to a maximal ideal $n \subset Z$ decomposes into the generalized eigenspaces with respect to X_1, \ldots, X_n, whose set of joint eigenvalues in \mathbb{C} have multiplicities $\mu_1, \mu_2, \ldots, \mu_\ell$ that constitute a partition μ of n. We have
\[\mathbb{C} \otimes_{Z} \tilde{K}_{\lambda} : L_{\gamma} \mid_{\mathfrak{g} \mathfrak{a} \mathfrak{n}} = 0 \quad \lambda \leq \gamma \] (2.11)
by the definition of \tilde{K}_{λ} and the fact that $\mathfrak{g} \mathfrak{a} \mathfrak{n}$ has semi-simple representation theory. Being the cyclic A_{n}-module generator, we have $[\mathbb{C} \otimes_{Z} \tilde{K}_{\lambda} : L_{\lambda}]_{\mathfrak{g} \mathfrak{a} \mathfrak{n}} \neq 0$.

We can choose a non-zero generalized eigenspace
\[M \subset \mathbb{C} \otimes_{Z} \tilde{K}_{\lambda} \]
of X_1, \ldots, X_n that can be regarded as an (ungraded) A_{n}-module. We choose
\[L_{\mu^{[i]} \otimes \mu^{[j]} \otimes \cdots \otimes \mu^{[\ell]}} \subset M \quad \ell = \ell(\mu) \] (2.12)
as $\mathfrak{g} \mathfrak{a} \mathfrak{n}$-modules with partitions $\mu^{[i]}, \ldots, \mu^{[\ell]}$ of μ_1, \ldots, μ_ℓ, respectively. Since each piece of the external tensor products of (2.12) have distinct X-eigenvalues, we deduce
\[\text{Ind}_{\mathfrak{g} \mathfrak{a} \mathfrak{n}}^{\mathfrak{sl}_{\lambda}}(L_{\mu^{[i]} \otimes \mu^{[j]} \otimes \cdots \otimes \mu^{[\ell]}}) \rightarrow M. \] (2.13)
By the Littlewood-Richardson rule, the smallest label (with respect to \leq) of $\mathfrak{g} \mathfrak{a} \mathfrak{n}$-module that appears in the LHS of (2.13) is attained by $\kappa \in \mathcal{P}_n$ such that
\[m_i(\kappa) = \sum_{j=1}^{\ell} m_j(\mu^{[j]}) \quad i \geq 1. \]
For an appropriate choice in (2.12), we attain $\kappa = \lambda$ by Lemma 1.3. It follows that μ defines a division of entries of λ into small groups. In view of (2.10), the maximal ideal $n \subset Z$ is the pullback of a maximal ideal of Z'. In other words, we find that Z shares with the same support as Z' in $\spec \mathbb{C}[X_1, \ldots, X_n]_{\mathfrak{g} \mathfrak{a} \mathfrak{n}}$.

We define graded A_{n}-modules $N_r (r \geq 1)$ as:
\[N_r := \ker \left(\text{end}_{A_{n}}(\tilde{K}_{\lambda}) \rightarrow \text{end}_{A_{n}}(\tilde{K}_{\lambda}') \right)^r / \left(\ker \left(\text{end}_{A_{n}}(\tilde{K}_{\lambda}) \rightarrow \text{end}_{A_{n}}(\tilde{K}_{\lambda}') \right) \right)^{r+1}. \]
We show that each N_r is supported in a proper subset of $\spec Z'$. Equivalently, we show that general specializations of $\text{end}_{A_{n}}(\tilde{K}_{\lambda})$ and $\text{end}_{A_{n}}(\tilde{K}_{\lambda}')$ with respect to (2.10) are the same. In view of the above construction of the partitions μ and κ, we have necessarily $\lambda = \mu$ and $\mu^{(i)} = (\mu_i)$ for each $i \geq 1$ as otherwise smaller partitions arise. By Lemma 2.21, a thickening of (2.13) as (ungraded) A_{λ}-modules must be achieved by the actions of
\[X_1 + \cdots + X_{\lambda_1}, X_{\lambda_1+1} + \cdots + X_{\lambda_1+\lambda_2}, \ldots, X_{n-\lambda_{(\lambda)+1}} + \cdots + X_n. \] (2.14)
As these are contained in the action of $B(\lambda)$, we conclude that general specializations of $\text{end}_{A_{n}}(\tilde{K}_{\lambda})$ and $\text{end}_{A_{n}}(\tilde{K}_{\lambda}')$ are the same.
Therefore, Theorem 2.28 implies
\[\gdim N_r \ll \gdim \text{end}_{A_{n}}(\tilde{K}_{\lambda}') \quad r > 0. \]
By Lemma 2.27 (and the support containment), we have only finitely many \(r \) with \(N_r \neq \{0\} \). Again using Theorem 2.28, we conclude

\[
\text{gdim } \text{end}_{A_n}(\tilde{K}_\lambda) - \text{gdim } \text{end}_{A_n}(\tilde{K}_\lambda') = \sum_{r \geq 1} \text{gdim } N_r \ll \text{gdim } \text{end}_{A_n}(\tilde{K}_\lambda')
\]
as required.

Proposition 2.31. For each \(\lambda \in \mathcal{P}_n \), the module \(\tilde{K}_\lambda' \) admits a decreasing separable filtration whose associated graded is the direct sum of grading shifts of \(K_\lambda \).

Proof. Consider the submodule \(\tilde{N} \subset \tilde{K}_\lambda^+ \) generated by the unique copy \(L_{(t)} \subset \text{Ind}_{\Delta_\lambda}^{\mathcal{S}_n} \text{triv} = (\tilde{K}_\lambda^+)_0 \). In view of Lemma 2.24, we find

\[
\text{hom}_{\Delta_\lambda}(L_{(t)}, \tilde{N}) \cong B(\lambda)^{\mathcal{S}_n(\lambda)} \cong \text{hom}_{\Delta_\lambda}(L_\lambda, \tilde{K}_\lambda') \tag{2.15}
\]

Consequently, we have \(\text{end}_{A_n}(\tilde{N}) = B(\lambda)^{\mathcal{S}_n(\lambda)} \).

Let \(N \) and \(K \) be the specializations of \(\tilde{N} \) and \(\tilde{K}_\lambda \) with respect to a maximal ideal of \(B(\lambda)^{\mathcal{S}_n(\lambda)} \) such that the joint eigenvalues \(\alpha_{\lambda_1}, \alpha_{\lambda_1+\lambda_2}, \ldots, \alpha_{\ell(\lambda)} \) in Lemma 2.29 are distinct. Let \(M \) be a joint \(\{X_i\}_1\)-eigenspace of \(K \) or \(N \), that is a \(\mathfrak{S}_\lambda \)-module. The distinct eigenvalue condition implies

\[
\text{Ind}_{\Delta_\lambda}^{\mathcal{S}_n} M \subset N \quad \text{or} \quad \text{Ind}_{\Delta_\lambda}^{\mathcal{S}_n} M \subset K. \tag{2.16}
\]

The \(\mathfrak{S}_n \)-module \(L_{\mu} \) appears in \(N \) or \(K \) only if \(L_{\mu} \subset \text{Ind}_{\Delta_\lambda}^{\mathcal{S}_n} \text{triv} \). Applying the Littlewood-Richardson rule to the middle term of (2.16), we deduce \(M \cong \text{triv} \). In particular, we have \([N : L_\lambda]_{\mathfrak{S}_n} > 0 < [K : L_{(t)}]_{\mathfrak{S}_n}. \) By the semi-continuity of the specializations, we deduce

\[
[C_0 \oplus B(\lambda)^{\mathcal{S}_n(\lambda)} \tilde{N} : L_\lambda] > 0 \quad \text{and} \quad [C_0 \oplus B(\lambda)^{\mathcal{S}_n(\lambda)} \tilde{K}_\lambda^+ : L_{(t)}] > 0. \tag{2.17}
\]

From this, we conclude \(C_0 \oplus B(\lambda)^{\mathcal{S}_n(\lambda)} \tilde{K}_\lambda^+ \cong K_\lambda \). Thus, the torsion free \(B(\lambda)^{\mathcal{S}_n(\lambda)} \)-action on \(\tilde{K}_\lambda^+ \subset \tilde{K}_\lambda^+ \) yields the assertion.

Corollary 2.32. Keep the setting of Proposition 2.31. We have \(\Psi(|\tilde{K}_\lambda^+|) = Q_\chi \).

Proof. Compare Propositions 2.25 and 2.31 with (2.2) and (2.5).

Corollary 2.33. For each \(\lambda \in \mathcal{P}_n \) and an \(A_n \)-module proper quotient \(M_\lambda \) of \(\tilde{K}_\lambda' \), we have \([L_\lambda : M_\lambda]_{\mathfrak{S}_n} \ll b_\lambda^{-1}\).

Proof. We borrow the setting of the proof of Proposition 2.31. Since \(\text{soc } K_\lambda = L_{(t)} \), we find \(L_{(t)} \langle m \rangle \subset \ker (\tilde{K}_\lambda' \rightarrow M_\lambda) \) for some \(m \in \mathbb{Z}_{>0} \). As all the copies of \(L_{(t)} \) and \(L_\lambda \) in \(\tilde{K}_\lambda^+ \) are obtained by the \(B(\lambda) \)-action from unique copies at degree zero, we find \(m' \in \mathbb{Z}_{>0} \) such that

\[
\tilde{N} \langle m \rangle \subset \tilde{K}_\lambda^+ \quad \text{and} \quad \tilde{K}_\lambda' \langle m' \rangle \subset \tilde{N} \quad \text{inside } \tilde{K}_\lambda^+ \text{ as } A_n \text{-modules}.
\]

This forces \(\tilde{K}_\lambda' \langle m' + m \rangle \subset \tilde{N} \subset \tilde{K}_\lambda^+ \) to be zero in \(M_\lambda \). Therefore, we have

\[
\text{gdim } \text{hom}_{\Delta_\lambda}(L_\lambda, M_\lambda) \leq (1 - q^{m+m'}) \text{gdim } \text{hom}_{\Delta_\lambda}(L_\lambda, \tilde{K}_\lambda) = (1 - q^{m+m'})b_\lambda^{-1}.
\]

This implies the assertion.
Corollary 2.34. Let $\lambda \in \mathcal{P}_n$. Assume that M is a graded A_n-module generated by the subspace

$$M^{\text{top}} \cong \bigoplus_{j=1}^m L_\lambda(d_j) \subset M$$ such that

$$[M : L_\mu]_q = \begin{cases} b_\lambda^{-1} \sum_{j=1}^m q^{d_j} & (\mu = \lambda) \\ 0 & (\mu \not\geq \lambda). \end{cases}$$

Then, we have $M \cong \bigoplus_{j=1}^m \tilde{K}_\lambda(d_j)$.

Proof. We have a surjection

$$f : \bigoplus_{j=1}^m \tilde{K}_\lambda(d_j) \twoheadrightarrow M.$$ Consider the quotient M' of M by $\sum_{j=1}^m f(\ker(\tilde{K}_\lambda \to \tilde{K}_\lambda'))(d_j)$. Let $f' : \bigoplus_{j=1}^m \tilde{K}_\lambda'(d_j) \to M'$ be the map induced from f. Let us choose a maximal subset $S \subset \{1, \ldots, m\}$ such that $\bigoplus_{j \not\in S} \tilde{K}_\lambda'(d_j)$ injects into M' by f'. We take the quotient M'' of M' by this image. Then, the image K_j of $\tilde{K}_\lambda'(d_j) (j \not\in S)$ in M'' under the induced map must be a proper quotient of $\tilde{K}_\lambda'(d_j)$.

Suppose that $S \neq \{1, \ldots, m\}$. Corollary 2.33 and Theorem 2.28 forces

$$[M'' : L_\lambda]_q \leq \sum_{j \not\in S} [K_j : L_\lambda]_q < [\tilde{K}_\lambda' : L_\lambda]_q.$$ By Theorem 2.30, we have $[M : L_\lambda]_q - [M' : L_\lambda]_q \ll b_\lambda^{-1}$. Thus, we have

$$[M : L_\lambda]_q - \sum_{j \in S} q^j [\tilde{K}_\lambda' : L_\lambda]_q < \sum_{j \not\in S} q^{d_j} [\tilde{K}_\lambda' : L_\lambda]_q,$$

that is a contradiction by $[\tilde{K}_\lambda' : L_\lambda]_q = b_\lambda^{-1}$. Therefore, we have $S = \{1, 2, \ldots, m\}$. This implies that f' is an isomorphism. By Propositions 2.31 and 2.12, we conclude $M = M'$ by the comparison of graded multiplicities.

2.4 Proof of Theorem 2.3

We prove Theorem 2.3 and $\tilde{K}_\lambda = \tilde{K}_\lambda' (\lambda \in \mathcal{P}_n)$ by induction on n. Theorem 2.3 holds for $n = 1$ as $P_1 = \{(1)\}$, $P_{(1)} = \tilde{K}_{(1)} = \tilde{K}'_{(1)} = \mathbb{C}[X]$, $K_{(1)} = \mathbb{C}$, and $\text{ext}_k^0(\mathbb{C}[X], \mathbb{C}) \cong \mathbb{C}^{\delta_{k,0}}$.

We assume the assertion for all $1 \leq n < n_0$ and prove the assertion for $n = n_0$. We fix $\lambda \in \mathcal{P}_{n_0-1}$ and set

$$\text{ind}(\lambda) := \text{ind}_{1,n_0-1}(\mathbb{C}[X] \boxtimes \tilde{K}_\lambda).$$ For each $\mu \in \mathcal{P}_{n_0}$ and $k \in \mathbb{Z}$, Theorem 1.5 implies

$$\text{ext}_k^0(\text{ind}(\lambda), K_\mu) \cong \text{ext}_k^{A_1,n_0-1}(\mathbb{C}[X] \boxtimes \tilde{K}_\lambda, K_\mu). \quad (2.18)$$
Since $\mathbb{C}[X]$ is projective as $\mathbb{C}[X]$-modules, Theorem 2.7 implies that
\[
gdim \text{ext}_A^{k-1}(\mathbb{C}[X] \otimes K_\lambda, K_{\mu}^\ast) \cong \begin{cases}
\sum_{0 \leq j \leq \ell(\mu), \lambda = \mu(j)} q^{n(\mu(j))} q^{\mu(j)+j} & (k = 0) \\
\sum_{0 \leq j \leq \ell(\mu), \lambda = \mu(j)} q^{n(\mu(j))} q^{\mu(j)+j} & (k \neq 0)
\end{cases}
\]

by the short exact sequences associated to (2.1). In other word, we have
\[
gdim \text{hom}_A^{k,n-1}(\mathbb{C}[X] \otimes K_\lambda, K_{\mu}^\ast) = q^*[m_j(\mu)]_q.
\]

and it is nonzero if and only if $\mu(j) = \lambda$ for some $1 \leq j \leq \ell(\mu)$. This is equivalent to $\lambda(\mu(j)) = \mu$ for some $1 \leq j \leq \ell(\lambda) + 1$. We set $S := \{\lambda(\mu(j))\}_{j=1}^{\ell(\lambda) + 1} \subset P_{n_0}$.

Note that $L_\mu = \text{soc} K_{\mu}^\ast$, and hence every $0 \neq f \in \text{hom}_{A_{n_0}}(\text{ind}(\lambda), K_{\mu}^\ast)$ satisfies $[\text{Im} f : L_\mu]_q \neq 0$. In view of Lemma 1.3, we further deduce $[\text{Im} f : L_\mu] = 1$. Therefore, the image of the map
\[
f^+ : \text{ind}(\lambda) \longrightarrow (K_{\mu}^\ast)^{\oplus m}
\]

obtained by taking the sum of all the maps of $\text{hom}_{A_{n_0}}(\text{ind}(\lambda), K_{\mu}^\ast)$ satisfies
\[
\bullet \text{soc Im } f^+ \text{ is the direct sum of } L_\mu \langle m \rangle \text{ (} m \in \mathbb{Z} \rangle;
\]
\[
\bullet \dim (\text{soc Im } f^+) = (\dim L_\mu) \cdot (\dim \text{hom}_{A_{n_0}}(\text{ind}(\lambda), K_{\mu}^\ast)).
\]

We consider an A_{n_0}-submodule generated by the preimage of $(\text{soc Im } f^+)$ (considered as the direct sum of grading shifts of L_μ), that we denote by N_μ. Although the module N_μ might depend on the choice of a lift, the number of its A_{n_0}-module generators is unambiguously determined.

We have $\lambda(\mu(j)) = \lambda(\mu(j) + 1)$ for $1 \leq j \leq \ell(\lambda)$ by inspection. In particular, S is a totally ordered set with respect to \leq. Moreover, $\text{ind}(\lambda)$ is generated by $\text{Ind}_{1,n_0} L_\lambda$ as an A_{n_0}-module, and an irreducible constituent of $\text{Ind}_{1,n_0} L_\lambda$ is of the form $L_{\lambda(i)}$ for $1 \leq j \leq (\ell(\lambda) + 1)$ by the Littlewood-Richardson rule. As a consequence, we find that $\sum_{\gamma \in S} N_\gamma = \text{ind}(\lambda)$. For each $1 \leq j \leq (\ell(\lambda) + 1)$, we set $N(j) := \sum_{\gamma \geq j} N_\gamma$. We have $N(j+1) \subset N(j)$ for $1 \leq j \leq (\ell(\lambda) + 1)$ and $N(1) = \text{ind}(\lambda)$.

By the Littlewood-Richardson rule and Lemma 1.3, we find that
\[
[\text{ind}(\lambda) : L_\gamma]_q \neq 0 \quad \text{only if} \quad \gamma \geq \lambda(\ell(\lambda) + 1).
\]

Claim A. We have $[N(j)/N(j+1) : L_\gamma]_q = 0$ for $\gamma < \lambda(j)$.

Proof. Assume to the contrary to deduce contradiction. We have some $1 \leq j \leq \ell(\lambda)$ and $\gamma < \lambda(j)$ such that $[N(j)/N(j+1) : L_\gamma]_q \neq 0$. Here we have $\lambda(\ell(\lambda) + 1) \leq \gamma < \lambda(j)$ by (2.20). By rearranging j, we assume that j is the minimal number with this property. In particular, we have
\[
[N(l)/N(l+1) : L_\gamma]_q = 0 \quad \gamma < \lambda(l) \quad \text{for} \quad 1 < j.
\]

This in turn implies that $[N(l)/N(j) : L_\gamma]_q = 0$ for $\gamma < \lambda(j)$ for every $l \leq j$. By rearranging γ if necessary, we can assume that the A_{n_0}-submodule $N^-(j) \subset N(j)/N(j+1)$ generated by \mathcal{S}_{n_0}-isotypic components L_κ such that $\kappa < \lambda(j)$ satisfies $L_\kappa \langle m \rangle \subset \text{hd} N^-(j)$ and the value m is minimum among all $\gamma < \lambda(j)$. Then, the lift of $L_\kappa \langle m \rangle \subset \text{hd} N^-(j)$ to $N^-(j)$ is uniquely determined as graded
\(\mathfrak{S}_{n_0}\)-module. It follows that the maximal quotient \(L^+\) of \(N(j)/N(j+1)\) (and hence also a quotient of \(N(j)\)) such that \(\text{soc } L^+ = L^+ (m)\) is finite-dimensional (as the grading must be bounded) and \([L^+_\gamma : L^+_\kappa]_q = 0\) if \(\kappa < \gamma(\lambda^{(j)})\). By Proposition 2.12 and Theorem 2.9, we find

\[
\text{ext}^1_{A_{n_0}} (\text{coker} (L^+_\gamma \to L^+_\gamma), K^*_\gamma) = 0
\]

by a repeated applications of the short exact sequences. In particular, the non-zero map \(L^+_\gamma (m) \to K^*_\gamma (m)\) prolongs to \(L^+_\gamma\), and hence it gives rise to a map \(N(j) \to K^*_\gamma (m)\). By (2.21), we additionally have

\[
\text{ext}^1_{A_{n_0}} (\text{ind}(\lambda)/N(j), K^*_\gamma) = 0.
\]

Therefore, we deduce a non-zero map \(\text{ind}(\lambda) \to K^*_\gamma (m)\) from our assumption that does not come from the generator set of \(N_{\lambda^{(j)}}\) for every \(j\). This is a contradiction, and hence we conclude the result.

We return to the proof of Theorem 2.3. Note that Claim A guarantees that \(N(j) (1 \leq j \leq \ell(\lambda + 1))\) is defined unambiguously as all the possible generating \(\mathfrak{S}_{n_0}\)-isotypical components of \(N(j) \subseteq \text{ind}(\lambda)\) (i.e. \(L_{\lambda^{(j)}}\) for \(j \leq k \leq \ell(\lambda + 1)\) must belong to \(N(j)\). In view of the above and Corollary 2.19, we deduce

\[
\Psi([\text{ind}(\lambda)]) = \sum_{\gamma \in P} Q^\gamma \cdot [\text{ind}(\lambda)], [K^\gamma])_{EP} = - \sum_{\gamma \in P, k \in \mathbb{Z}} (-1)^k Q^\gamma \cdot \text{gdim ext}^k_{A_{n_0}} (\text{ind}(\lambda), K^*_\gamma)^* = \sum_{\gamma \in S} Q^\gamma \cdot \text{gdim hom}_{A_{n_0}} (\text{ind}(\lambda), K^*_\gamma)^* = \sum_{\gamma \in S} b^{-1}_\gamma \cdot Q^\gamma \cdot \text{gdim hom}_{A_{n_0}} (\text{ind}(\lambda), K^*_\gamma)^* \in A_q. \tag{2.22}
\]

This expansion exhibits positivity (as a formal power series in \(Q[[q]]\)).

Claim B. For each \(1 \leq j \leq \ell(\lambda)\), the module \(N(j)/N(j+1)\) is the direct sum of grading shifts of \(\bar{K}_{\lambda^{(j)}}\).

Proof. We assume that the assertion holds for all the larger \(j\) (or \(j = \ell(\lambda + 1)\), and \(\lambda^{(j)} \neq \lambda^{(j+1)}\) (and hence \(\lambda^{(j)} > \lambda^{(j+1)}\)). We apply Claim A, and compare Lemma 1.3 and Theorem 2.9 with (2.22) to find

\[
\left[\frac{\text{ind}(\lambda)}{N(j+1)} : L_{\lambda^{(j)}} \right]_q = \left[\frac{N(j)}{N(j+1)} : L_{\lambda^{(j)}} \right]_q = b^{-1}_\lambda \cdot \text{gdim hom}_{A_{n_0}} (\text{ind}(\lambda), K^*_\lambda)^*.
\]

Since \(\Psi([\text{ind}(\lambda)/N(j+1)])\) must be the sum of \(Q^\gamma\) for \(\gamma = \lambda^{(k)} (k \leq j + 1)\) by the induction hypothesis and the above formulae, Theorem 2.9 implies

\[
[N(j)/N(j+1) : L_\mu]_q = 0 \quad \text{if} \quad \mu \nsubseteq \lambda^{(j)}.
\]

It follows that \(N(j)/N(j+1)\) admits a surjection from direct sum of \(\bar{K}_{\lambda^{(j)}}\), with its multiplicity \(\text{gdim hom}_{A_{n_0}} (\text{ind}(\lambda), K^*_\lambda)^*\) (as this latter number counts the number of generators of \(N(j)/N(j+1)\)). Applying Corollary 2.34, we conclude that \(N(j)/N(j+1)\) is the direct sum of grading shifts of \(\bar{K}_{\lambda^{(j)}}\). These proceed the induction, and we conclude the result. \(\square\)
Claim C. Let us enumerate as $S = \{ \gamma_1 < \gamma_2 < \cdots < \gamma_s \}$. We have a finite increasing filtration

$$\{ 0 \} = G_0 \subset G_1 \subset G_2 \subset \cdots \subset G_s = \text{ind}(\lambda)$$

as A_μ-modules such that each G_i/G_{i-1} is isomorphic to the direct sum of grading shifts of $\tilde{K}_{\gamma_i}^\lambda$. In addition, each G_s/G_{i-1} contains a copy of $\tilde{K}_{\gamma_i}^\lambda$ as its A_μ-module direct summand.

Proof. The first part is a rearrangement of Claim B.

We have $L_{\gamma_i} \subset \text{Ind}^G_{\gamma_{i-1}} L_\lambda$ as G_{n-1}-modules. If we have $[G_s/G_{i-1} : L_\mu]_q \neq 0$, then Claim B implies $[K_{\gamma_i}^\lambda : L_\mu]_q \neq 0$ for some $i \leq j \leq s$. By Lemma 1.3, we conclude that $\mu \geq \gamma_i$. Since $\text{Ind}^G_{\gamma_{i-1}} L_\lambda = \text{ind}(\lambda)_0$, we find a degree zero copy of L_{γ_i} in $\text{bd} \text{ind}(\lambda)$. By Propositions 2.31 and 2.12, it must lift to a direct summand $\tilde{K}_{\gamma_i}^\lambda \subset G_s/G_{i-1}$. This implies the second assertion.

Claim D. For each $\gamma \in S$, we have

$$\text{ext}^k_{A_\mu}(\tilde{K}_{\gamma_i}^\lambda, K_\mu^*) = \begin{cases} C & (k = 0, \gamma = \mu) \\ \{ 0 \} & (\text{else}) \end{cases} \quad (2.23)$$

Proof. We prove (2.23) and

$$\text{ext}^0_{A_\mu}(G_s/G_j, K_\mu^*) = 0 \quad (2.24)$$

for $0 \leq j \leq s$ by induction. The $j = 0$ case of (2.24) follows by (2.18). The $j = i - 1$ case of (2.24) implies (2.23) for $\gamma = \gamma_i$ and $k > 0$ as G_s/G_{i-1} contains $\tilde{K}_{\gamma_i}^\lambda$ as its direct summand by Claim C. We have

$$\text{hom}_{A_\mu}(\tilde{K}_{\gamma_i}^\lambda, K_\mu^*) = \begin{cases} C & (\gamma = \mu) \\ \{ 0 \} & (\gamma \neq \mu) \end{cases} \quad (2.25)$$

by Lemma 1.3, $\text{bd} \tilde{K}_{\gamma_i}^\lambda = L_{\gamma_i}$, and $\text{soc} K_\mu^* = L_\mu$. By counting the multiplicities of L_{γ_i}, we deduce

$$\text{hom}_{A_\mu}(G_s/G_{j-1}, K_\mu^*) \cong \text{hom}_{A_\mu}((\tilde{K}_{\gamma_i}^\lambda)^{\oplus \ast}, K_\mu^*) \quad (2.26)$$

for $0 \leq j \leq s$ from Claim C.

Now a part of the long exact sequence

$$0 \rightarrow \text{hom}_{A_\mu}(G_s/G_j, K_\mu^*) \rightarrow \text{hom}_{A_\mu}(G_s/G_{j-1}, K_\mu^*) \cong \text{hom}_{A_\mu}((\tilde{K}_{\gamma_i}^\lambda)^{\oplus \ast}, K_\mu^*)$$

$$\rightarrow \text{ext}^1_{A_\mu}(G_s/G_j, K_\mu^*) \rightarrow \text{ext}^1_{A_\mu}(G_s/G_{j-1}, K_\mu^*) = 0$$

associated to the short exact sequence

$$0 \rightarrow (\tilde{K}_{\gamma_i}^\lambda)^{\oplus \ast} \rightarrow G_s/G_{j-1} \rightarrow G_s/G_j \rightarrow 0,$$

as well as (2.25) and (2.26), yields (2.23) for $\gamma = \gamma_i$ and (2.24) for $j = i$ from (2.24) for $j = i - 1$ inductively on i.

21
We return to the proof of Theorem 2.3. All elements of \mathcal{P}_{n_0} appear as $\lambda^{(j)}$ for suitable $\lambda \in \mathcal{P}_{n_0}$ and $1 \leq j \leq (\ell(\lambda) + 1)$. By rearranging λ if necessary, we conclude (2.23) for every $\gamma \in \mathcal{P}_{n_0}$. A repeated use of short exact sequences decomposes $\{K_\mu\}_{\gamma \leq \mu}$ into $\{L_\mu\}_{\gamma \leq \mu}$ by starting from $K_{(n)} = L_{(n)}$ (see Lemma 1.3). Substituting these to the second factor of (2.23), we deduce
\[
\text{ext}^>_{A_n}(K^\prime, L_\mu) \neq 0 \implies \mu < \gamma.
\]
This implies $K^\prime = \tilde{K}$ for all $\gamma \in \mathcal{P}_{n_0}$. Therefore, Proposition 2.25 and Proposition 2.31 imply Theorem 2.3 1) and 2) for $n = n_0$, and (2.23) is Theorem 2.3 3) for $n = n_0$.

In view of the above arguments, we find that each $\text{ind}(\lambda)$ ($\lambda \in \mathcal{P}_{n_0} - 1$) admits a Δ-filtration. Since ind_1 preserves projectivity, we deduce that A_{n_0} admits a Δ-filtration by $\text{ind}(\lambda)$ ($\lambda \in \mathcal{P}_{n_0} - 1$) by the induction hypothesis. Therefore, A_{n_0} admits a Δ-filtration. Since each \tilde{K} is generated by its simple head, applying an idempotent does not separate them out non-trivially. Therefore, we conclude that each projective module of A_{n_0} also admits a Δ-filtration. Given this and Theorem 2.3 2) and 3), the latter assertion of Theorem 2.3 4) is standard (see e.g. [11, Corollary 3.12]). This is Theorem 2.3 4) for $n = n_0$.

This completes the proof of Theorem 2.3.

2.5 Applications of Theorem 2.3

Note that A_n is a Noetherian ring as a finitely generated A_n-module is also finitely generated by $\mathbb{C}[X_1, \ldots, X_n]$. The global dimension of A_n is finite (Theorem 1.7). We have $\text{gdim} A_n \in \mathbb{Z}[q]$ by inspection.

We introduce a total order \prec on \mathcal{P}_n that refines \leq and set $e_\lambda := \sum_{\lambda \prec \mu \in \mathcal{P}_n} e_\mu$ for each $\lambda \in \mathcal{P}_n$. The two sided ideals $A_n e_\lambda A_n \subset A_n$ satisfies $A_n e_\lambda A_n \subset A_n e_\mu A_n$ if $\mu \succ \lambda$. By Lemma 1.3, we deduce that
\[
(A_n e_\lambda A_n) \otimes_{A_n} P_\lambda \longrightarrow \tilde{K}_\lambda
\]
is a surjection. By Proposition 2.12 and Theorem 2.3 2), we further deduce
\[
(A_n e_\lambda A_n) \otimes_{A_n} P_\lambda \overset{\cong}{\longrightarrow} \tilde{K}_\lambda.
\]

Theorem 2.3.1) implies that $\text{end}_{A_n}(\tilde{K}_\lambda)$ is a graded polynomial ring for each $\lambda \in \mathcal{P}_n$. In conjunction with Theorem 2.3 2), we find that
\[
\text{end}_{A_n}(P_\mu, \tilde{K}_\lambda)
\]
is a free module over $\text{end}_{A_n}(\tilde{K}_\lambda)$ for each $\lambda, \mu \in \mathcal{P}_n$. In particular, that the graded algebra A_n is an affine quasi-hereditary in the sense of [14, Introduction] with $\Delta_\lambda = \tilde{K}_\lambda$ and $\nabla_\lambda = K_\lambda^*$ ($\lambda \in \mathcal{P}_n$).

Theorem 2.35 ([14] Theorem 7.21 and Lemma 7.22). A module $M \in A\text{-gmod}$ admits a Δ-filtration if and only if
\[
\text{ext}^1_{A_n}(M, K_\lambda^*) = 0 \quad \lambda \in \mathcal{P}_n.
\]
A module $M \in A\text{-fmod}$ admits a $\overline{\Delta}$-filtration if and only if
\[
\text{ext}^1_{A_n}(\tilde{K}_\lambda, M^*) = 0 \quad \lambda \in \mathcal{P}_n.
\]
Corollary 2.36 ([14] §7, particularly Lemma 7.5). Let $M \in A$-gmod. If M admits a Δ-filtration, then the multiplicity space of K_λ in M is given by

$$\text{hom}_{A_\lambda}(M, K_\lambda)^*.$$

If the module M admits a $\widetilde{\Delta}$-filtration, then the multiplicity space of of K_λ in M is given by

$$\text{hom}_{A_\lambda}(\widetilde{K}_\lambda, M^*)^*.$$

Theorem 2.37. Fix $n \geq 0$, and $0 \leq r \leq n$. Let $\lambda \in \mathcal{P}_n, \mu \in \mathcal{P}_r, \nu \in \mathcal{P}_{n-r}$. We have the following:

1. (Garsia-Procesi [6]) The module $\text{res}_{r,n-r} K_\lambda$ admits a Δ-filtration;
2. The module $\text{ind}_{r,n-r} (P_\mu \boxtimes \widetilde{K}_\nu)$ admits a Δ-filtration.

Remark 2.38. One cannot swap the roles of $\{\widetilde{K}_\lambda\}_\lambda$ and $\{K_\lambda\}_\lambda$ in Theorem 2.37. In fact, the polynomiality claim in Corollary 2.39 2) is already nontrivial (without a prior knowledge of characters).

Proof of Theorem 2.37. We prove the first assertion. The second part of Theorem 2.35, it suffices to check the ext^1-vanishing with respect to $L_\mu \boxtimes K_\nu$ ($\mu \in \mathcal{P}_r, \nu \in \mathcal{P}_{n-r}$) as a module over $\mathbb{C}\mathfrak{S}_r \boxtimes A_{n-r}$ (equivalently, we can check the ext^1-vanishing with respect to $P_\mu \boxtimes \widetilde{K}_\nu$ as a module of $A_{r,n-r}$; see below). In particular, we do not need to mind the first factor as the \mathfrak{S}_r-action is granted by construction. Therefore, the first assertion is just a r-times repeated application of Theorem 2.7.

We prove the second assertion. For each $\lambda \in \mathcal{P}_r, \mu \in \mathcal{P}_{n-r}$ and $\nu \in \mathcal{P}_n$, we have

$$\text{ext}^*_{A_\lambda}(\text{ind}_{r,n-r} (P_\lambda \boxtimes \widetilde{K}_\mu), K_\nu^*) \cong \text{ext}^*_{A_{r,n-r}} (P_\lambda \boxtimes \widetilde{K}_\mu, K_\nu^*) \tag{2.27}$$

by Theorem 1.5. Applying Theorem 2.7 to K_ν^* as many as r-times, we find that the restriction of K_ν to A_{n-r} admits a filtration whose associated graded is the direct sum of grading shifts of $\{K_\gamma\}_{\gamma \in \mathcal{P}_{n-r}}$. Since P_λ is free over a polynomial ring of r-variables, we have

$$\text{ext}^*_{A_{r,n-r}} (P_\lambda \boxtimes \widetilde{K}_\mu, K_\nu^*) \cong \text{ext}^*_{\mathbb{C}\mathfrak{S}_r \boxtimes A_{n-r}} (L_\lambda \boxtimes \widetilde{K}_\mu, K_\nu^*).$$

Thus, we derive a natural isomorphism

$$\text{ext}^1_{\mathbb{C}\mathfrak{S}_r \boxtimes A_{n-r}} (L_\lambda \boxtimes \widetilde{K}_\mu, K_\nu^*) \cong \text{ext}^1_{A_{n-r}} (\text{res}_{r,n-r} (P_\lambda \boxtimes \widetilde{K}_\mu), K_\nu^*)) \tag{2.28}$$

By Theorem 2.3 3) and Theorem 2.7, the RHS of (2.28) is zero. By the first part of Theorem 2.35, we conclude the second assertion.

Corollary 2.39. Let $\lambda, \mu \in \mathcal{P}$. We have the following:

1. We have $\Delta (Q_\lambda) \in \sum_{\gamma, \kappa} \mathbb{Z}_{\geq 0}[q] (S_\gamma \otimes Q_\kappa)$;
2. We have $s_\lambda \cdot Q_\mu^\vee \in \sum_{\gamma} \mathbb{Z}_{\geq 0}[q] Q_\gamma^\vee$. In case $\lambda = (1^n)$, it is the Pieri rule.

Proof. Apply the twisted Frobenius characteristic to Theorem 2.37 using Lemma 2.14. Here the equality $s_{(1^n)} = Q_{(1^n)}^\vee$ is in [19, III (2.8)] and the Pieri rule is in [19, III (3.2)].
Corollary 2.40. The skew Hall-Littlewood Q-function $Q_{\lambda/\nu}$ expands positively with respect to the big Schur function. In addition, we have a graded $A_{|\lambda|-|\nu|}$ module defined as

$$\text{hom}_{A_{|\nu|}}(\tilde{K}_\nu, K_\lambda)^*,$$

such that its image under Ψ is $Q_{\lambda/\nu}$.

Proof. Let $\lambda \in \mathcal{P}_n$. The Hall-Littlewood Q-polynomial corresponds to the module K_λ by Theorem 2.9. Therefore, its restriction admits a Δ-filtration. In particular, we have

$$[\text{res}_{r,n-r} K_\lambda] = \sum_{\mu, \nu} c_{\lambda,\nu}^{\mu,\mu} [L_\mu \otimes K_\nu] \in \mathbb{Z}_{\geq 0}[q].$$

Here $[\text{res}_{r,n-r}]$ corresponds to Δ in Λ_q by Lemma 2.14. Taking [Mac98], (2.3), and (2.5) into account, we conclude that

$$Q_{\lambda/\nu} = \sum_{\mu} c_{\lambda,\nu}^{\mu,\mu} \Psi([L_\mu]).$$

This is the first assertion by $\Psi([L_\mu]) = S_\mu$, read off from (2.4). In view of Theorem 2.37 1) and Corollary 2.36, we conclude the second assertion.

Acknowledgement: The author presented an intensive lecture course based on the contents of this paper at Nagoya University on Fall 2020. The author thanks the hospitality of Shintarou Yanagida and Nagoya University. He also thanks Kota Murakami for pointing out some typos. This research was supported in part by JSPS KAKENHI Grant Number JP19H01782.

References

[1] Sabin Cautis and Anthony M. Licata. “Heisenberg categorification and Hilbert schemes”. In: Duke Mathematical Journal 161.13 (2012), pp. 2469–2547. ISSN: 0012-7094. DOI: 10.1215/00127094-1812726. URL: http://projecteuclid.org/euclid.dmj/1349960276.

[2] Vyjayanthi Chari and Bogdan Ion. “BGG reciprocity for current algebras”. In: Compos. Math. 151.7 (2015), pp. 1265–1287. ISSN: 0010-437X. DOI: 10.1112/S0010437X14007908. URL: http://dx.doi.org/10.1112/S0010437X14007908.

[3] Claude Chevalley. “Invariants of finite groups generated by reflections”. In: Amer. J. Math. 77 (1955), pp. 778–782.

[4] Corrado De Concini and Claudio Procesi. “Symmetric functions, conjugacy classes and the flag variety”. In: Invent. Math. 64 (1981), pp. 203–219.

[5] Evgeny Feigin, Anton Khoroshkin, and Ievgen Makedonskyi. Peter-Weyl, Howe and Schur-Weyl theorems for current groups. arXiv:1906.03290.

[6] A. M. Garsia and C. Procesi. “On certain graded S_n-modules and the q-Kostka polynomials”. In: Adv. Math. 94.1 (1992), pp. 82–138.
[7] Alexander Grothendieck. “Sur quelques points d’algèbre homologique”. In: *Tohoku Math. J. (2)* 9 (1957), pp. 119–221.

[8] Mark Haiman. “Combinatorics, symmetric functions, and Hilbert schemes”. In: *Current developments in mathematics, 2002*. Int. Press, Somerville, MA, 2003, pp. 39–111.

[9] Mark Haiman. “Hilbert schemes, polygraphs and the Macdonald positivity conjecture”. In: *J. Amer. Math. Soc.* 14.941–1006 (2001).

[10] Syu Kato. “A homological study of Green polynomials”. In: *Ann. Sci. Éc. Norm. Supér. (4)* 48.5 (2015), pp. 1035–1074. issn: 0012-9593.

[11] Syu Kato. “An algebraic study of extension algebras”. In: *Amer. J. Math.* 139.3 (2017). arXiv:1207.4640, pp. 567–615.

[12] Syu Kato. “An exotic Deligne-Langlands correspondence for symplectic groups”. In: *Duke Math. J.* 148.2 (2009), pp. 305–371.

[13] David Kazhdan and George Lusztig. “Proof of the Deligne-Langlands conjecture for Hecke algebras”. In: *Invent. Math.* 87.1 (1987), pp. 153–215.

[14] Alexander S. Kleshchev. “Affine highest weight categories and affine quasihereditary algebras”. In: *Proc. Lond. Math. Soc. (3)* 110.4 (2015), pp. 841–882. issn: 0024-6115. DOI: 10.1112/plms/pdv004. URL: http://dx.doi.org/10.1112/plms/pdv004.

[15] Steffen König and Changchang Xi. “Affine cellular algebras”. In: *Adv. Math.* 229.1 (2012), pp. 139–182.

[16] G. Lusztig. “Intersection cohomology complexes on a reductive group”. In: *Invent. Math.* 75.2 (1984), pp. 205–272.

[17] George Lusztig. “Cuspidal local systems and graded Hecke algebras. I”. In: *Inst. Hautes Études Sci. Publ. Math.* 67 (1988), pp. 145–202.

[18] George Lusztig. “Green functions and character sheaves”. In: *Ann. of Math. (2)* 131 (1990), pp. 355–408.

[19] I. G. Macdonald. *Symmetric functions and Hall polynomials*. Second. Oxford Mathematical Monographs. With contributions by A. Zelevinsky, Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1995, pp. x+475. isbn: 0-19-853489-2.

[20] Hideyuki Matsumura. *Commutative ring theory*. Vol. 8. Cambridge Studies in Advanced Mathematics. Translated from the Japanese by M. Reid. Cambridge University Press, Cambridge, 1986, pp. xiv+320. isbn: 0-521-25916-9.

[21] John C. McConnell and James C. Robson. *Noncommutative Noetherian rings*. Vol. 30. Graduate Studies in Math. AMS, 2001.

[22] Ryosuke Shimoji and Shintarou Yanagida. “A study of symmetric functions via derived Hall algebra”. In: *Communications in Algebras* to appear (2020).

[23] Toshiaki Shoji. “Green functions associated to complex reflection groups”. In: *J. Algebra* 245.2 (2001), pp. 650–694.

[24] T. A. Springer. “Trigonometric sums, Green functions of finite groups and representations of Weyl groups”. In: *Invent. Math.* 36 (1976), pp. 173–207.

25
[25] T. A. Springer and A. V. Zelevinsky. “Characters of GL(n, F_q) and Hopf algebras”. In: *J. London Math. Soc. (2)* 30.1 (1984), pp. 27–43.

[26] Toshiyuki Tanisaki. “Defining ideals of the closures of the conjugacy classes and representations of the Weyl groups”. In: *Tohoku Mathematical Journal* 34 (1982), pp. 575–585.

[27] Nanhua Xi. “The based ring of two-sided cells of affine Weyl groups of type \tilde{A}_{n-1}”. In: *Mem. Amer. Math. Soc.* 157.749 (2002), pp. xiv+95.

[28] Andrey V. Zelevinsky. *Representations of finite classical groups*. Vol. 869. Lecture Notes in Mathematics. Springer-Verlag, Berlin-New York, 1981.