Effect of arsenic stress on 5-methylcytosine, photosynthetic parameters and nutrient content in Pteris cretica var. Albo-lineata hyperaccumulator

CURRENT STATUS: ACCEPTED

Veronika Zemanová
Ustav Experimentalni Botaniky Akademie ved Ceske republiky

Marek Popov
Vysoka skola chemicko-technologicka v Praze

Daniela Pavlíková
Ceska Zemedelska Univerzita v Praze Fakulta agrobiologie potravinovych a prirodnich zdroju

Pavel Kotrba
Vysoka skola chemicko-technologicka v Praze

František Hnilička
Ceska Zemedelska Univerzita v Praze Fakulta agrobiologie potravinovych a prirodnich zdroju

Jana Česká
Ceska Zemedelska Univerzita v Praze Fakulta agrobiologie potravinovych a prirodnich zdroju

Milan Pavlík
Ustav Experimentalni Botaniky Akademie ved Ceske republiky

pavlik@biomed.cas.cz Corresponding Author

DOI: 10.21203/rs.2.13257/v1

SUBJECT AREAS
Plant Physiology and Morphology  Plant Molecular Biology and Genetics

KEYWORDS
Pteridaceae, Long-term stress, Toxic element, Epigenetic change, DNA demethylation
Abstract

Background

Arsenic (As) toxicity induces a range of metabolic responses in plants, including DNA methylation. The focus of this paper was on the relationship between As-induced long-term stress and plant senescence in the hyperaccumulator Pteris cretica var. Albo-lineata (Pc -Al).

Results

We showed that Pc -Al grown in pots of haplic chernozem contaminated with 100 mg As kg$^{-1}$ (As 100) for 122 days could accumulate more than 2000 and 2800 mg As kg$^{-1}$ dry matter in old and young fronds, respectively. Analysis of 5-methylcytosine (5mC) in Pc -Al confirmed that the overall DNA methylation status in fronds of As 100 ferns was reduced in contrast to control treatment. Compared with controls, the overall DNA methylation status in fronds of As 100 ferns was reduced (by 6% in young and 10% in old fronds); however, the decrease was significant only in old fronds. The significant correlations for 5mC, in contrast to direct As toxicity, showed that decreases of chlorophylls, fluorescence and photosynthetic rate could be affected by epigenetic changes.

Photosynthetic processes were determined in As 100 treatment and showed a reduction of gas-exchange parameters, and a decrease in carotenoids and chlorophylls (by 5% and 26%, respectively). Hyperaccumulation of As resulted in a significant elevation of all analysed nutrients (Cu, Mn, Zn, Mg, S) in old fronds, but not in young fronds.

Conclusions

The results of this paper point to complex changes in the metabolism of the hyperaccumulator plant Pc -Al, upon exposure to As contamination. The most significant impact was found in young fronds. The physiological parameters correlated more significantly with a decrease of DNA methylation than with direct As toxicity. Our analysis of the very low water potential values and lignification of cell walls in roots showed that transports of assimilated metabolites and water between roots and fronds were reduced.

Background

Environmental pollution with arsenic (As) poses a risk to plant, animal and human health. Uptake and accumulation of this element by plants vary according to plant species. For most plants, significantly reduced growth and fitness is evident at soil arsenic concentrations of 25.0 - 85.0 mg kg$^{-1}$ total As.
In contrast, some fern species of the *Pteridaceae* family can tolerate As and accumulate it in their aboveground tissues to $>1000$ mg As kg$^{-1}$ dry weight [2, 3]. The cultivars of *Pteris cretica* (var. Albo-lineata, Wimsetti and Alexandrae) were identified as an arsenic hyperaccumulators by Zhao et al. [3], who reported that this species accumulates As to the levels found in *P. vittata*, the first As-hyperaccumulating species identified. Arsenate (As$^{V}$) taken up by roots of *P. vittata* from the soil was reduced to arsenite (As$^{III}$), which was rapidly transported to the vacuoles of the upper and lower epidermal cells and trichomes of the fronds [4]. Tu et al. [5] found that As in the fronds of *P. vittata* was primarily contained as inorganic arsenite (average of 94%). According to these authors arsenite re-oxidation to arsenate occurred more often with senescence of fronds. Koller et al. [6] confirmed the effect of the development stage of fronds of *Pteris umbrosa* on As content. The senesced fronds had a significantly lower As content in contrast to green fronds while expanding fronds had the highest As content. An opposite trend was shown in *P. vittata*: there was an increase in As concentration from young to mature and old fronds [6].

Arsenic stress can provoke numerous toxic effects in plants. As is widely reported to inhibit the rate of photosynthesis in plants and to reduce chlorophyll concentration [7]. Agnihotri and Seth [8] showed a decline in photosynthetic pigments and gaseous exchange parameters in plants exposed to As, indicating the onset of senescence. Foyer and Noctor [9] also confirmed that oxidative stress activates senescence associated with the degradation of photosynthetic pigments and remobilises the basic nutrients C, N, P, and S. Modified stress metabolism due to extended reversible senescence releases nutrients from catabolic processes and transports them from old leaves into young leaves more efficiently.

Studies have also revealed that stress-inducing abiotic factors, including As, can trigger epigenetic changes (in particular DNA methylation/demethylation), which may contribute to the regulation of gene expression in chronic stress conditions [10]. Phenotypic manifestations of epigenetic changes include reduced plant growth (dwarfism) and development (in particular seed germination [11]), flowering period [12, 13] and male fertility/sterility of anthers and/or pollens [14].
The primary detoxification of As in the cells of terrestrial plants relies on rapid reduction of As\textsuperscript{V} to As\textsuperscript{III} and the formation of As\textsuperscript{III}-glutathione or As\textsuperscript{III}-phytochelatin complexes, which are eventually transported to the vacuole. Disturbances in cellular processes, caused by a toxic excess of As, induce oxidative stress responses [15–17], methylation of both As forms in \textit{P. cretica} [18], and epigenetic changes in DNA [19]. In this study, we aimed to gain insight into the context of As hyperaccumulation and plant senescence in \textit{Pteris cretica} var. Albo-lineata. In addition, we examined related changes in selected physiological parameters and DNA methylation status as potentially indicative of epigenetic modification. The degree of senescence was evaluated with respect to different changes found in young and old fronds of \textit{P. cretica} var. Albo-lineata.

Results
Growth and elemental content of As-exposed \textit{P. cretica} var. Albo-lineata
The effect of As\textsubscript{100} soil was observed only on young fronds. The dry biomass of \textit{Pc-Al} young fronds was decreased by 43\% (Fig. 1). Differences between young and old fronds of \textit{Pc-Al} were not statistically significant. Symptoms of As toxicity were not observed.

The analysis of the concentration of elements in dried fronds of \textit{Pc-Al} revealed that young fronds had approximately 1.5 times higher concentrations of As than old ones, both in the control and As\textsubscript{100} soil conditions (Table 1). Compared with controls, ferns grown in the As\textsubscript{100} soils increased As concentrations 150- and 170-fold in young and old fronds, respectively. Irrespective of the presence of added As in the As\textsubscript{100} soils, old fronds tended to accumulate higher concentrations of Cu, Mg, Mn, S and Zn than young fronds (Table 1, Fig. 2). While the effect of high soil As on the Cu accumulation showed an increase in both young and old fronds (by 17\% and 27\%, respectively), increases in S (44\%) and Zn (28.5\%) concentration were only observed in old fronds. When grown in As\textsubscript{100} soils, the concentrations of Mg and Mn increased in old fronds of \textit{Pc-Al}Mg by 33\% and Mn by 49\%) but decreased in young fronds (Mg by 6\% and Mn by 18\%).

Table 1Content of elements in young and old fronds of \textit{P. cretica} var. Albo-lineata.
| Parameters | Young fronds (mg kg\(^{-1}\) dry weight) | Old fronds (mg kg\(^{-1}\) dry weight) |
|------------|----------------------------------------|----------------------------------------|
|            | control \(\bar{x} \pm SD\)                 | \(As_{100}\) \(\bar{x} \pm SD\)               |
|            | \(19 \pm 0.6^{aB}\)                          | \(2847 \pm 63^{bB}\)                       |
| As         | \(5.1 \pm 0.1^{aA}\)                          | \(6.0 \pm 0.1^{bA}\)                        |
| Cu         | \(2277 \pm 61^{bA}\)                          | \(2139 \pm 43^{aA}\)                        |
| Mg         | \(28 \pm 0.5^{aA}\)                           | \(23 \pm 0.9^{bA}\)                         |
| Mn         | \(1326 \pm 27^{aA}\)                          | \(1372 \pm 43^{aA}\)                        |
| Zn         | \(17 \pm 0.2^{bA}\)                           | \(18 \pm 0.7^{aA}\)                         |

Values with the same letter were not statistically significant at the 0.01 level by the Kruskal-Wallis test. Different letters indicate significantly different values (p < 0.01): a, b comparison between the treatments (control and \(As_{100}\)) of young and old fronds; A, B comparison between young and old fronds for each treatment. Coefficients of variation (CV, %) are in Additional File 1.

**DNA methylation status of As-exposed* P. cretica* var. *Albo-lineata***

Since As and senescence might affect the methylation of DNA at cytosines in plants, the 5-methylcytosine content (5mC, %) of *Pc-AlDNA* was analysed (Fig. 2 and 3). Compared with controls, the overall DNA methylation status in fronds of ferns grown in \(As_{100}\) soils was reduced (by 6% in young and 10% in old fronds); however, the decrease was only proved in old fronds. The effect of frond senescence on 5mC content was not statistically significant, but the trend, in terms of average 5mC content, was lower in old fronds.

**Pigment content, fluorescence, WP and GEP of As-exposed* P. cretica* var. *Albo-lineata***

Growth in \(As_{100}\) soil resulted in a decrease of chlorophyll contents (Chl A, Chl B and \(\Sigma\) Chl) of *Pc-Al* (Table 2). The content of carotenoids (Crt) was reduced by As, but not significantly. Irrespective of the presence of added As in the soil, contents of all analysed pigments were higher in young fronds than in old fronds. Compared with controls, pigment content of ferns grown in the \(As_{100}\) soils was higher in young fronds, especially Chl A and Crt contents (5-fold and 6-fold higher than those in old fronds, respectively). While the average value of Chl A and Chl B ratio remained unaffected by As in old fronds, it increased in young fronds of ferns grown in \(As_{100}\) soils (Table 2).

Chlorophyll fluorescence (Fv/Fm), as an indicator of plant photosynthetic activity, was lower in old fronds than in young fronds. The value of Fv/Fm for young fronds from control plants (0.82 \(\mumol \text{m}^{-2}\))
s^{-1}) responded to the quantum yield of photosystem II. During As stress Fv/Fm of fronds decreased compared with controls (by 12.5% in young fronds and 14% in old fronds). The lowest value of Fv/Fm (68% of the value observed with the controls) was measured in As_{100} conditions in old fronds.

Observed declines in pigment content and Fv/Fm in old leaves of fern in As_{100} soils indicated a faster progression of senescence.

Water potential (WP) was decreased in young and old fronds of the plants grown in As_{100} soil (by 36% and 118%, respectively). Higher values of WP were observed in young fronds, irrespective of added As. To explore potential changes in roots, cross-section analysis through adventitious roots was performed. The roots of As_{100} treated plants showed thinning of the sclerenchymatous inner cortex and a reduction in average tracheid metaxylem in the vascular cylinder, compared to controls (Fig. 4).

Table 2 Physiological parameters in young and old fronds of *P. cretica* var. Albo-lineata.

| Parameters | Young fronds | Old fronds |
|------------|--------------|------------|
|            | control      | As_{100}   | control      | As_{100}   |
| x ± SD     | x ± SD       | x ± SD     | x ± SD       | x ± SD     |
| Chl A (nmol ml\(^{-1}\)) | 11 ± 0.2\(^bB\) | 10 ± 0.5\(^aB\) | 2.6 ± 0.6\(^bA\) | 1.5 ± 0.4\(^aA\) |
| Chl B (nmol ml\(^{-1}\)) | 4.8 ± 1.0\(^bB\) | 2.8 ± 0.2\(^aB\) | 2.6 ± 0.7\(^bA\) | 1.9 ± 0.4\(^aA\) |
| Chl A/Chl B (-) | 2.4 ± 0.4\(^aB\) | 3.6 ± 0.03\(^bB\) | 1.1 ± 0.7\(^aA\) | 0.9 ± 0.5\(^aA\) |
| Σ Chl (nmol ml\(^{-1}\)) | 16 ± 1.0\(^bB\) | 13 ± 0.7\(^aB\) | 5.2 ± 0.1\(^bA\) | 3.4 ± 0.3\(^aB\) |
| Crt (nmol ml\(^{-1}\)) | 2.4 ± 0.1\(^aB\) | 2.3 ± 0.3\(^aB\) | 0.5 ± 0.2\(^aA\) | 0.3 ± 0.1\(^aB\) |
| Fv/Fm (-) | 0.8 ± 0.02\(^bB\) | 0.7 ± 0.03\(^bB\) | 0.7 ± 0.02\(^aB\) | 0.6 ± 0.07\(^aA\) |
| WP (MPa) | -1.4 ± 0.09\(^aB\) | -1.9 ± 0.03\(^bB\) | -1.7 ± 0.04\(^aA\) | -3.7 ± 0.03\(^aB\) |
| E (mmol H\(_2\)O\(^-1\) m\(^2\) s\(^{-1}\)) | 0.7 ± 0.2\(^aA\) | 0.9 ± 0.2\(^bA\) | 0.8 ± 0.1\(^aA\) | 0.7 ± 0.1\(^aA\) |
| P\(_N\) (µmol CO\(_2\)\(^-1\) m\(^2\) s\(^{-1}\)) | 8.1 ± 0.1\(^bB\) | 7.7 ± 0.04\(^aB\) | 7.7 ± 0.04\(^bA\) | 7.2 ± 0.03\(^aA\) |
| WUE (-) | 12 ± 2.7\(^bA\) | 8.6 ± 1.3\(^aA\) | 9.7 ± 1.2\(^aA\) | 9.4 ± 0.6\(^aA\) |

From these data, the water-use efficiency was estimated (WUE = P\(_N\)/E). Values with the same letter were not statistically significant at the 0.01 level by the Kruskal-Wallis test. Different letters indicate significantly different values (p < 0.01): a, b comparison between the treatments (control and As\(_{100}\)) of young and old fronds; A, B comparison between young and old fronds for each treatment. Coefficients of variation (CV, %) are in Additional File 1.

The P\(_N\) and the rate of transpiration (E) were determined to gain further insight into the
photosynthetic performance in Pc-Alfronds (Table 2). The $P_N$ and E data indicated a higher photosynthetic activity in the young fronds of the control ferns (Table 2, Fig. 2), and a decrease in the photosynthesis rate under As$_{100}$ conditions (by 5% in young fronds and 6.5% in old fronds). Application of As reduced transpiration in old fronds by 12.5%, while a 28.5% increase was observed in young fronds. Compared with controls, added As decreased WUE only in young fronds (by 29%).

**Principal component analysis of physiological parameters**
The first axis of the PCA analysis explained 74% of the variability of all analysed data, the first two axes explained 94% of the variability, and the first four axes together explained 99% of the variability. Diagramming PCA analysis was used for visualisation of all relationships between Pc-Alparameters (Fig. 2). In the PCA diagram, the first ordination axis divided the young fronds group on the left side from old fronds on the right side. This division indicated a large effect of frond senescence on all studied parameters. For young and old fronds, marks for treatments (control, As$_{100}$) were located in the different parts of the diagram, which indicated a high effect of the treatments on all the recorded data. As observed with primary data, PCA confirmed that the accumulation of Cu, S, Zn, Mg and Mn was more pronounced in old fronds of Pc-Al grown in As$_{100}$ soils and that ChlB, $P_N$, $F_v/F_m$, as well as 5mC were higher in young fronds of control plants. Arsenic content was negatively correlated with relative 5mC content of DNA as the angle between the vectors for As and 5mC was $> 90^\circ$. Relationships visualised in the PCA diagram were confirmed by linear correlations (Table 3). The results in Table 3 showed an effect of As and 5mC on other measured parameters. Correlations of As effect and 5mC on other parameters were calculated in different old fronds, where senescence was evaluated as a difference of tested parameters between young and old fronds (Table 3). The content of As in Pc-Al fronds significantly correlated with 5mC, Cu and E. Negative relationships of As were confirmed for $F_v/F_m$, $P_N$ and WP. By comparison, these parameters were positively correlated with 5mC. Negative relationships were found between 5mC and Mn, S and Zn. Notably, a significant, positive correlation was determined for 5mC and WP, while the correlation with As content was negative. The same trend was observed for Chl B.
Table 3 Linear correlation of As and 5mC with selected parameters of *P. cretica* var. Albo-lineata.

|        | As   | r    | 5mC  | r    |
|--------|------|------|------|------|
| 5mC    | -0.54** |      | As   | -0.54** |
| Mg     | 0.15 n.s. |      | Mg   | -0.59** |
| Cu     | 0.69*** |      | Cu   | -0.74*** |
| Zn     | 0.25 n.s. |      | Zn   | -0.63*** |
| Mn     | 0.05 n.s. |      | Mn   | -0.55** |
| S      | 0.31 n.s. |      | S    | -0.66*** |
| Chl A  | 0.02 n.s. |      | Chl A | 0.43* |
| Chl B  | -0.49*   |      | Chl B | 0.48* |
| Fv/Fm  | -0.74*** |      | Fv/Fm | 0.72*** |
| WP     | -0.50*   |      | WP   | 0.70*** |
| E      | 0.43*    |      | E    | -0.18 n.s. |
| P N    | -0.62*** |      | P N  | 0.70** |

* p < 0.05, ** p < 0.01, *** p < 0.001; n.s., not statistically significant.

Discussion

Our results show that when grown in chernozem soils spiked with 100 mg As kg⁻¹, As could accumulate in the fronds of *P. cretica* var. Albo-lineata to > 2000 mg As kg⁻¹ dry mass, and the amount of As that accumulated in young fronds was higher than in old fronds. These data confirmed the As hyperaccumulation status of *Pc-Al* and were consistent with results reported by Zhao et al. [3] for this fern and by Tu et al. [5] for *P. vittata*.

Arsenic stress induces epigenetic changes in organisms, resulting in a decrease or increase in DNA methylation [19]. Analysis of 5mC in *Pc-Al* showed that As reduced the extent of DNA methylation. Similar results for heavy metals were published by Aina et al. [20]. The first paper focused on the effect of As on DNA methylation in plants was published by Erturk et al. [21]. Their results showed DNA hypermethylation of some genes in germinating maize seeds exposed to low As levels.

An increase of DNA methylation increases plant growth and transcriptionally represses genes involved in flavonoid biosynthesis [22]. A decrease of DNA methylation reduces plant growth and stimulates flowering, formation and growth of buds [13, 23, 24]. This finding was confirmed by our results. Dry biomass of *Pc-Al* young fronds was decreased by 43% (Fig. 1). As revealed by PCA analysis (Fig. 2), physiological parameters of the plant are affected more strongly by the methylation status of *Pc-Al*
DNA than by direct As toxicity.

Some publications suggest that parts of DNA are sensitive to epigenetic changes [25]. However, in plants, the conservative parts of DNA without changes in DNA methylation were observed. Little information about the epigenetic activation of transcription of silenced plant genes of primary and secondary metabolites is known. Cazzonelli [26] described epigenetic changes linked to the regulation of metabolic pathways leading to carotenoid biosynthesis in relation to abscisic acid (control of carotenogenesis). According to Zhang et al. [27] epigenetic changes are linked with the biosynthesis of chlorophylls and tocopherols whose precursor is phytol diphosphate. Lushchak and Semchuk [28] were also interested in these epigenetic changes. According to these authors, plants can increase photosynthesis by chlorophylls biosynthesis or by synthesizing the antioxidant metabolites tocopherols. We showed the continuity of changes in methylation/demethylation of cytosine DNA in relation to the photosynthetic pigments carotenoids and chlorophylls (primary relationship) and also to gas-exchange parameters (GEP) or to Fv/Fm, which are indicators of plant photosynthetic activity. It has been well documented that stress-related senescence processes involve the degradation of photosynthetic pigments [9], accompanied by a reduction in photosynthetic efficiency. Our results indicated that excess As reduced the level of chlorophylls and affected photosynthetic processes in Pc-Al fronds (Fig. 2, Table 2, 3). Farooq et al. [29] reported that As decreased GEP and pigment content in Brassica napus and, according to Wang et al. [30] this toxic element significantly affected Fv/Fm in P. vittata within 60 days of exposure. An association between epigenetic changes in old fronds, resulting from As stress, and a reduced chlorophyll content might be indicated by the correlation between 5mC and Chl A and Chl B levels (Table 3). The decline in the levels of carotenoids and chlorophylls in young fronds of As$_{100}$ treated plants was less than that seen in older fronds. A significant increase of the Chl A/Chl B ratio was confirmed for young fronds of As$_{100}$ plants. These changes, together with the values of $P_N$, E and Fv/Fm, pointed to a senescence in As$_{100}$ plants. During senescence, plant metabolites are remobilised from old leaves to young leaves after expression of genes typical for senescence [31]. We found that As toxicity slightly increased leaf senescence (Fig. 2,
Tables 1, 2, 3). The more significant correlations for 5mC, in contrast to direct As toxicity (Table 3), showed that decreases of chlorophylls, fluorescence and $P_N$ could be affected by epigenetic changes. Ay et al. [32] published similar conclusions for the effects of epigenetic changes on physiological processes in plants.

A decrease of 5mC content in As$_{100}$ plants led to a significant negative correlation with increased amounts of Cu, Zn and Mn, cofactors of superoxide dismutases, and with S, a key element in the biosynthesis of cysteine and methionine. Increased accumulation of tested elements could be affected by epigenetic changes as showed by the significant correlations for 5mC, as opposed to direct As stress (Table 3). While there was an elevation in the concentrations of Cu, Mn, and Zn, in *P. vittata* exposed to As contamination [5], in *Pc-Alit* was more pronounced in old fronds as compared to young ones. These authors observed a same trend as we did—higher Mg content in old fronds compared to young ones in *P. vittata*. It was reasonable to assume that these elements were significant as cofactors of antioxidative metalloenzymes [33–35] as a part of chlorophylls (Mg), and as non-enzymatic antioxidants, protecting against As-induced stress. Increased concentrations of S can be linked to the accumulation of glutathione and phytochelatins involved in detoxification of cellular As in *P. cretica* var. Mayii [36]. Based on this, the observation that the concentration of S and Zn remained unaffected and the concentrations of Mn and Mg were reduced in young fronds of *Pc-Al* grown in As$_{100}$ soil was surprising. We hypothesised that changes in Mn and Mg content were linked with N metabolism.

Water consumption by ferns is directly proportional to As contamination. One of the causes of changes in water content in fronds is the lignification of the conducting tissues in the roots. We found very low WP values for As$_{100}$ plants as a result of stress attributable to As contamination (Table 2). Induced stress in cell walls leads primarily to the lack of water in fronds and secondarily to osmotic stress, which is a limiting factor for the growth and development of these plants. Leaf senescence together with the effect of As resulted in lignification of conducting tissue (Figure 3). Similar reports of WP reduction as a result of the lignification of conducting tissue in plants exposed to stress conditions
were published by Hare and Cress [37] and Yamaguchi et al. [38]. If the photosynthetic membrane system is protected by flavonoids, ascorbate and tocopherols [28, 39-41], then cell walls are protected by lignin [38]. Reduced DNA methylation in Pc-Al increases biosynthesis of sterols, tocopherols, flavonoids, isoflavonoids and lignins because these plant metabolites are epigenetically regulated by silencing genes [40, 42, 43]. Cross-sections through adventitious roots of As100 plants showed the deformation of root cell walls as a result of lignification (Figure 3). Zanella et al. [44] observed morphological changes in tobacco roots growing in As and Cd contaminated solutions. They found increased cell wall thickness due to lignin over-deposition in the rhizodermal and external cortical parenchyma cells of the primary structure zone, which led to premature exodermis formation. Similar changes in root, lignification upon exposure to metals were confirmed by Piršelová et al. [45]. According to cited works, the lignification-induced cellular changes result in a reduction in water uptake by plants. This finding is in line with our results: changes in WP values and morphological changes in the roots. Reduction of water content and metabolites subsequently limits the ability of the plant to overcome As toxicity.

Conclusion
The results of this paper point to complex changes in the metabolism of the hyperaccumulator plant Pteris cretica var. Albo-lineata, on exposure to arsenic contamination. Compared with controls, ferns grown in the As100 soils increased As concentrations in young and old fronds, 150- and 170-fold, respectively. Higher As content was found in the young fronds of control and As100 plants, in comparison to old fronds (1.5-fold higher on average). Analysis of 5mC content showed that accumulation of As was associated with reduced DNA methylation (by 10%). As revealed by PCA, physiological parameters of the plant are more strongly affected by the methylation status of Pteris cretica var. Albo-lineataDNA than by direct As toxicity.

The more significant correlations for 5mC, in contrast to As toxicity, showed that increased accumulation of tested elements (Cu, Mn, Zn, Mg and S) or decreased chlorophylls, Fv/Fm, Pn and WP could be affected by epigenetic changes.

Accumulation of As in plants affected photosynthetic processes and the content of carotenoids and
chlorophylls in fronds. There was a greater decline of pigment content (ΣChl by 35% and Crt by 40%) and Fv/Fm (by 14%) in old leaves of As100 plants compared to controls, indicating a faster progression of senescence. These changes together with values of P_N and E, indicated reversible senescence in As100 plants. Based on our determination of very low values for WP (from -1.4 to -3.7) and morphological changes in the roots (lignification of cell walls) we proposed that transport of assimilated metabolites between roots and fronds might be reduced.

Materials And Methods
Plant Material and Experimental Design
Plants of Pteris cretica (L.) var. Albo-lineata (Pc-Al) were obtained from the garden centre Tulipa Praha (Czech Republic). Ferns at the 10 - 15 fronds stage were planted in 5 L pots (1 fern for pot) under greenhouse conditions (natural photoperiod; temperature 22 - 24 °C; relative humidity approximately 60%) for 122 days. Each pot contained 5 kg of haplic chernozem mixed with 0.5 g N, 0.16 g P and 0.4 g K per 1 kg of soil (supplemented as NH_4NO_3 and K_2HPO_4). The soil used in this experiment (Table 4) was collected from a non-polluted area in Prague-Suchdol, Czech Republic (50º8´8˝ N, 14º22´43˝ E). Ferns were grown in this soil without As supplement (controls) and with 100 mg As per kg soil (As100). Arsenic was added as a solution of Na_2HAsO_4 and was thoroughly mixed with the soil; maturation period of spiked soil was ten days. Each treatment was replicated three times. After being harvested, the young and old fronds (Fig. 4) were treated as described below. Cross-sections through an adventitious root were inspected using a Nikon E 200 microscope equipped with DS camera head and the NIS-Elements application (Nikon Instruments, Inc., Melville, NY, USA).

Table 4 Basic properties of soil.

| pH KCl | C_ogy | CEC | Total As | Water extractable As | Sand | Silt | Clay | Bulk density |
|-------|-------|-----|----------|--------------------|------|------|------|-------------|
| (-)   | (%)   | (mmol_+ kg^-1) | (mg kg^-1) | (mg kg^-1) | (%) | (%) | (%) | (g cm^-3) |
| 7.1   | 1.83  | 258 | 16 ± 1.7 | 0.10 ± 0.01 | 26   | 72   | 2   | 2.57        |

C_ogy, organic carbon; CEC, cation exchange capacity.

Determination of arsenic and other elements
Fronds were oven-dried for three days at 40 °C. Homogenised material (0.5 ± 0.05 g) was digested with a mixture of HNO_3 and H_2O_2 (4:1, v/v) in an Ethos 1 device (MLS GmbH, Leutkirch im Allgäu,
Germany). Contents of As, Cu, Mg, Mn, and Zn were determined using inductively coupled plasma-optical emission spectrometry (ICP-OES; Agilent 720, Agilent Technologies Inc., Santa Clara, CA, USA). Certified reference material (CRM NIST 1573a Tomato leaves, Analytika®, Czech Republic) was mineralized under the same conditions for quality assurance.

Isolation of DNA and determination of relative DNA methylation status based on % 5-methylcytosine

The fronds were weighed, frozen in liquid nitrogen and stored at –80 °C prior to DNA methylation analysis. To isolate total DNA, the fronds (1 g fresh weight) were ground to a fine powder in liquid nitrogen by mortar and pestle. DNA was extracted from 100 mg of powdered tissue using a NucleoSpin Plant II molecular kit (Macherey-Nagel GmbH & Co. KG, Düren, Germany), as instructed in the user manual. The global DNA methylation status of DNA was determined using 100 ng of isolated DNA and a MethylFlash Methylated DNA Quantification Kit (Fluorometric; Epigentek Group Inc., Farmingdale, NY, USA) according to the manufacturer’s instructions. A SpectraMax MiniMax 300 Imaging Cytometer (Molecular Devices LLC, San Jose, CA, USA) with excitation at 530 nm was used to measure the fluorescence at 590 nm.

Determination of pigments

Pigment content in the leaves was measured photometrically with an Evolution 2000 UV-Vis (Thermo Fisher Scientific Inc., Waltham, MA, USA). A vessel-free leaf segment (0.5 cm²) excised from a freshly separated frond was incubated in the dark in 1 ml dimethylformamide with shaking for 24 hours. The absorbance of the extract was measured at wavelengths 480, 646.8, and 663.8 nm. Absorbance values at 710 nm were subtracted from these measurements. Data pigment contents were calculated from these data:

Chlorophyll A (Chl A; nmol ml⁻¹): Chl A = 12.0 × $A_{663.8} - 3.11 \times A_{646.8}$

Chlorophyll B: (Chl B; nmol ml⁻¹): Chl B = 20.78 × $A_{646.8} - 4.88 \times A_{663.8}$

Total chlorophyll (Σ Chl; nmol ml⁻¹): Chl A + Chl B = 7.12 × $A_{663.8} + 17.67 \times A_{646.8}$

Carotenoids (Crt; nmol ml⁻¹): $Crt_{x+c} = (1000 \times A_{480} - 1.12 \text{ Chl A} - 34.07 \text{ Chl B}) / 245$

Determination of fluorescence
The chlorophyll fluorescence \([\text{variable fluorescence (Fv)/maximal fluorescence (Fm); } \mu\text{mol m}^{-2} \text{s}^{-1}]\) was measured using a modulated chlorophyll fluorometer OS1-FL (Opti-Sciences, ADC, BioScientific, Ltd., Hoddesdon, UK). The fresh leaf was obscured by clipping after 20 minutes to set up a dark-adapted state. Chlorophyll fluorescence was excited by a 660 nm solid-state light source, with filters blocking radiation longer than 690 nm. Saturation of the photosystem being measured was achieved by using a filtered 35 W halogen lamp (350 - 690 nm) with a pulse of 15,000 \(\mu\text{mol m}^{-2} \text{s}^{-1}\) during 0.8 seconds.

**Determination of water potential**

Water potential (WP; MPa), a measure of the energy status of the water in a system, was measured using a dew point PotentiaMeter (Decagon Devices, Inc., Pullman, WA, USA). The leaves of the plants were placed in a disposable syringe, the air was drawn off from the syringe, and the syringe was tightly closed with parafilm. The specimen was frozen at \(-18^\circ\text{C}\), then thawed, and the sap flow was pushed out into the measuring chamber of the PotentiaMeter.

**Determination of selected photosynthesis parameters with gas-exchange parameters (GEP)**

The portable gas exchange system LCpro+ (ADC BioScientific, Ltd., Hoddesdon, UK) was used for *in situ* determination of the net photosynthetic rate \((P_N; \mu\text{mol CO}_2^{-1} \text{m}^{-2} \text{s}^{-1})\), the rate of transpiration \((E; \text{mmol H}_2\text{O m}^{-2} \text{s}^{-1})\), and calculation of water-use efficiency parameter \((\text{WUE}; \text{WUE} = P_N/E)\). All measurements were conducted between 8:00 and 11:30 Central European Time (CET). The duration of each individual measurement was 10 min after the establishment of steady-state conditions inside the measurement chamber. The conditions in the chamber were: 25 °C, ambient \(\text{CO}_2\) concentration \(550 \pm 50 \mu\text{l l}^{-1}\), air-flow rate \(205 \pm 30 \mu\text{mol s}^{-1}\) and irradiance \(650 \pm 50 \mu\text{mol}^{-1} \text{m}^{-2} \text{s}^{-1}\) of photosynthetically active radiation [46].

**Statistical analysis**

All data were checked for homogeneity of variance and normality by Levene and Shapiro-Wilk tests. Collected data did not meet the conditions for the use of analysis of variance (ANOVA) and were thus evaluated by non-parametric Kruskal-Wallis test in the Statistica 12.0 program (StatSoft, Inc., Tulsa,
OK, USA). A principal component analysis (PCA), in the CANOCO 4.5 program, was applied to all collected data as a single set. We used standardisation of species because data of different characters were analysed together. PCA was used to draw correlations from the complex data set. The results were visualised in the form of bi-plot ordination diagrams using the CanoDraw program [47]. Correlations were confirmed using a linear correlation (r, p < 0.05, p < 0.01, p < 0.001) by Statistica 12.0.

Abbreviations
As_{100}: treatment with 100 mg As per kg soil; Crt: Carotenoid; ChlA: Chlorophyll A; ChlB: Chlorophyll B; E: Rate of transpiration; Fv/Fm: Chlorophyll fluorescence; GEP: Gas-exchange parameters; PCA: principal component analysis; Pc-Al: Pteris cretica var. Albo-lineata; P_{N}: Net photosynthetic rate; WP: Water potential; WUE: water-use efficiency; 5mC: 5-methylcytosine content

Declarations
Availability of data and materials
Data generated or analysed during this study are included in this article and its supplemental data file. The plant material was bought from the Tulipa Praha garden centre (Czech Republic). No other permissions were necessary to buy and to cultivate these plants.

Acknowledgements
We thank Ms. Hana Zámečníková, from the Czech University of Life Sciences Prague, for analyses of arsenic and other elements.

Funding
This research was supported by the Czech Science Foundation, Grant No. 17-10591S and by the Ministry of Education, Youth and Sports from European Regional Development Fund-Project “Centre for the investigation of synthesis and transformation of nutritional substances in the food chain in interaction with potentially harmful substances of anthropogenic origin: comprehensive assessment of soil contamination risks for the quality of agricultural production” [grant number CZ.02.1.01/0.0/16_019/0000845]. The funding bodies provided the financial support to the research projects, but did not involve in study design, data collection, analysis, or preparation of the manuscript.

Authors’ contributions
MP and DP conceived and designed the experiments. MP and VZ calculated the relative DNA methylation status. FH calculated selected photosynthesis parameters. JČ performed cross-sections through the roots. VZ, DP, PK, MP analysed the data and wrote the paper. All authors have read and approved the final version of the manuscript.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

1. Eisler R. Eisler’s Encyclopedia of Environmentally Hazardous Priority Chemicals. Amsterdam: Elsevier; 2007.

2. Ye WL, Wood BA, Stroud JL, Andralojc PJ, Raab A, McGrath SP, et al. Arsenic speciation in phloem and xylem exudates of castor bean. Plant Physiol. 2010;154(3):1505–13.

3. Zhao FJ, Dunham SJ, McGrath SP. Arsenic hyperaccumulation by different fern species. New Phytol. 2002;156(1):27–31.

4. Su YH, McGrath SP, Zhu YG, Zhao FJ. Highly efficient xylem transport of arsenite in the arsenic hyperaccumulator Pteris vittata. New Phytol. 2008;180(2):434–441.

5. Tu C, Ma LQ. Effects of arsenic on concentration and distribution of nutrients in the fronds of the arsenic hyperaccumulator Pteris vittata L. Environ Pollut. 2005;135(2):333–340.

6. Koller CE, Patrick JW, Rose RJ, Offler CE, MacFarlane GR. Pteris umbrosa R. Br. as an arsenic hyperaccumulator: accumulation, partitioning and comparison with the established As hyperaccumulator Pteris vittata. Chemosphere 2007:66(7):1256–1263.

7. Abbas G, Murtaza B, Bibi I, Shahid M, Niazi NK, Khan MI, et al. Arsenic uptake,
toxicity, detoxification, and speciation in plants: Physiological, biochemical, and molecular aspects. Int. J. Environ. Res. Public Health 2018;15(1):59.

8. Agnihotri A, Seth CS. Exogenously applied nitrate improves the photosynthetic performance and nitrogen metabolism in tomato (Solanum lycopersicum L. cv Pusa Rohini) under arsenic (V) toxicity. Physiol Mol Biol Plants. 2016;22(3):341–9.

9. Foyer CH, Noctor G. Redox regulation in photosynthetic organisms: Signaling, acclimation, and practical implications. Antioxid Redox Signal. 2009;11(4):861–905.

10. Yaish MW. Editorial: Epigenetic modifications associated with abiotic and biotic stresses in plants: An implication for understanding plant evolution. Front Plant Sci. 2017;8:1983.

11. Lechat MM, Brun G, Montiel G, Véronési C, Simier P, Thoiron S, et al. Seed response to strigolactone is controlled by abscisic acid-independent DNA methylation in the obligate root parasitic plant, Phelipanche ramosa L. Pomel. J Exp Bot. 2015;66(11):3129–40.

12. Bossdorf O, Arcuri D, Richards CL, Pigliucci M. Experimental alteration of DNA methylation affects the phenotypic plasticity of ecologically relevant traits in Arabidopsis thaliana. Evol Ecol. 2010;24(3):541–53.

13. Iwase Y, Shiraya T, Takeno K. Flowering and dwarfism induced by DNA demethylation in Pharbitis nil. Physiol Plant. 2010;139(1):118–27.

14. Ba Q, Zhang G, Wang J, Niu N, Ma S, Wang J. Gene expression and DNA methylation alterations in chemically induced male sterility anthers in wheat (Triticum aestivum L.). Acta Physiol Plant. 2014;36(2):503–12.

15. Bona E, Cattaneo C, Cesaro P, Marsano F, Lingua G, Cavaletto M, et al. Proteomic analysis of Pteris vittata fronds: Two arbuscular mycorrhizal fungi differentially modulate protein expression under arsenic contamination. Proteomics.
18. Nagajyoti PC, Lee KD, Sreekanth TVM. Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett. 2010;8(3):199–216.

19. Ushijima T, Okochi-Takada E. Aberrant methylations in cancer cells: Where do they come from? Cancer Sci. 2005;96(4):206–11.

20. Aina R, Sgorbati S, Santagostino A, Labra M, Ghiani A, Citterio S. Specific hypomethylation of DNA is induced by heavy metals in white clover and industrial hemp. Physiol Plant. 2004;121(3):472–480.

21. Erturk FA, Aydin M, Sigmaz B, Taspinar MS, Arslan E, Agar G, et al. Effects of As2O3 on DNA methylation, genomic instability, and LTR retrotransposon polymorphism in Zea mays. Environ Sci Pollut Res. 2015;22(23):18601–18606.

22. Shen H, He H, Li J, Chen W, Wang X, Guo L, et al. Genome-wide analysis of DNA methylation and gene expression changes in two Arabidopsis ecotypes and their reciprocal hybrids. Plant Cell 2012;24(3):875–892.

23. Burn JE, Bagnall DJ, Metzger JD, Dennis ES, Peacock WJ. DNA methylation, vernalization, and the initiation of flowering. Proc. Natl. Acad. Sci. U.S. A. 1993;90(1):287–291.

24. Albrechtová JTP, Ullmann J, Krekule J, Seidlová F. Effect of 5-azacytidine on growth pattern in Chenopodium rubrum. Plant Sci. 1994;96(1-2):211–215.
25. Arase S, Kasai M, Kanazawa A. In planta assays involving epigenetically silenced genes reveal inhibition of cytosine methylation by genistein. Plant Methods 2012;8:10.

26. Cazzonelli CI. Carotenoids in nature: insights from plants and beyond. Funct. Plant Biol. 2011;38(11): 833–847.

27. Zhang C, Zhang W, Ren G, Li D, Cahoon RE, Chen M, et al. Chlorophyll synthase under epigenetic surveillance is critical for vitamin E synthesis, and altered expression affects tocopherol levels in Arabidopsis. Plant Physiol. 2015;168(4):1503–1511.

28. Lushchak VI, Semchuk NM. Tocopherol biosynthesis: chemistry, regulation and effects of environmental factors. Acta Physiol. Plant. 2012;34(5):1607–1628.

29. Farooq MA, Gill RA, Ali B, Wang J, Islam F, Ali S, et al. Subcellular distribution, modulation of antioxidant and stress-related genes response to arsenic in Brassica napus L. Ecotoxicology. 2016;25(2):350–66.

30. Wang HB, Xie F, Yao YZ, Zhao B, Xiao QQ, Pan YH, et al. The effects of arsenic and induced-phytoextraction methods on photosynthesis in Pteris species with different arsenic-accumulating abilities. Environ Exp Bot. 2012;75:298–306.

31. Gaufichon L, Reisdorf-Cren M, Rothstein SJ, Chardon F, Suzuki A. Biological functions of asparagine synthetase in plants. Plant Sci. 2010;179(3):141–53.

32. Ay N, Janack B, Humbeck K. Epigenetic control of plant senescence and linked processes. J Exp Bot. 2014;65(14):3875–87.

33. Cakmak I. Tansley review No. 111. Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol. 2000;146(2):185–205.

34. Fernández-Ocaña A, Chaki M, Luque F, Gómez-Rodríguez MV, Carreras A, Valderrama R, et al. Functional analysis of superoxide dismutases (SODs) in sunflower under
biotic and abiotic stress conditions. Identification of two new genes of mitochondrial Mn-SOD. J Plant Physiol. 2011;168(11):1303–1308.

35. Zemanová V, Pavlík M, Pavlíková D. Cadmium toxicity induced contrasting patterns of concentrations of free sarcosine, specific amino acids and selected microelements in two Noccaea species. PLoS One. 2017;12(5):e0177963.

36. Raab A, Feldmann J, Meharg AA. The nature of arsenic-phytochelatin complexes in Holcus lanatus and Pteris cretica. Plant Physiol. 2004;134(3):1113–1122.

37. Hare PD, Cress WA. Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul. 1997;21(2):79–102.

38. Yamaguchi M, Valliyodan B, Zhang J, Lenoble ME, Yu O, Rogers EE, et al. Regulation of growth response to water stress in the soybean primary root. I. Proteomic analysis reveals region-specific regulation of phenylpropanoid metabolism and control of free iron in the elongation zone. Plant Cell Environ. 2010;33(2):223–43.

39. Smirnoff N. The function and metabolism of ascorbic acid in plants. Ann. Bot. 1996;78(6):661–669.

40. Abbasi AR, Hajirezaei M, Hofius D, Sonnewald U, Voll LM. Specific roles of δ- and γ-tocopherol in abiotic stress responses of transgenic tobacco. Plant Physiol. 2007;143(4):1720–1738.

41. Tang YL, Ren WW, Zhang L, Tang KX. Molecular cloning and characterization of gene coding for γ-tocopherol methyltransferase from lettuce (Lactuca sativa). Genet. Mol. Res. 2011;10(4):3204–3212.

42. Anterola AM, Lewis NG. Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity. Phytochemistry 2002;61(3):221–294.

43. Gas-Pascual E, Simonovik B, Schaller H, Bach TJ. Inhibition of cycloartenol synthase
(CAS) function in tobacco BY-2 cells. Lipids 2015;50(8):761-772.

44. Zanella L, Fattorini L, Brunetti P, Roccotiello E, Cornara L, D’Angeli S, et al. Overexpression of AtPCS1 in tobacco increases arsenic and arsenic plus cadmium accumulation and detoxification. Planta. 2016;243(3):605-22.

45. Piršelová B, Kuna R, Libantová J, Moravčíková J, Matušíková I. Biochemical and physiological comparison of heavy metal-triggered defense responses in the monocot maize and dicot soybean roots. Mol Biol Rep. 2011;38(5):3437-46.

46. Zemanová V, Pavlík M, Pavlíková D, Hnilička F, Vondráčková S. Responses to Cd stress in two Noccaea species (Noccaea praecox and Noccaea caerulescens) originating from two contaminated sites in Mežica, Slovenia and Redlschlag, Austria. Arch Environ Contam Toxicol. 2016;70(3):464-74.

47. ter Braak CJF, Šmilauer P. CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Ithaca: Microcomputer Power; 2002.

Figures
Figure 1

Figure 1 Dry biomass of young and old fronds of P. cretica var. Albo-lineata. Values with the same letter were not statistically significant at the 0.05 level by the Kruskal-Wallis test. Different letters indicate significantly different values (p < 0.05): a, b comparison between the treatments (control and As100) of young and old fronds; A, B comparison between young and old fronds for each treatment.
Figure 2 Ordination diagram showing the results of PCA analysis with selected parameters in fronds of P. cretica var. Albo-lineata. Treatment abbreviations: control, treated with 0 mg As kg−1 soil; As100, treated with 100 mg As kg−1 soil. Parameter abbreviations: Crt, carotenoids; Chl A, chlorophyll a; Chl B, chlorophyll b; Σ Chl, total chlorophyll; WP, water potential; PN, net photosynthetic rate; E, transpiration rate; Fv/Fm, fluorescence; 5mC, 5-methylcytosine; As, Cu, Mg, Mn, S and Zn; total content of elements.
Figure 3

Figure 3 Content of 5-methylcytosine (5mC) in young and old fronds of P. cretica var. Albo-lineata. Values with the same letter were not statistically significant at the 0.01 level by the Kruskal-Wallis test. Different letters indicate significantly different values (p < 0.01): a, b comparison between the treatments (control and As100) of young and old fronds; A, B comparison between young and old fronds for each treatment. Coefficients of variation (CV, %) are in Additional File 1.
Figure 4

Figure 4 Cross-section through an adventitious root of P. cretica var. Albo-lineata.

Treatment: control (4a; 0 mg As kg-1 soil); As100 (4b; 100 mg As kg-1 soil). Abbreviations: vc, vascular cylinder; scl, sclerenchymatous inner cortex; par, parenchymatous outer cortex; ep, epidermis.

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.
additional file.docx