ON THE EQUIVARIANT BETTI NUMBERS OF SYMMETRIC SEMI-ALGEBRAIC SETS: VANISHING, BOUNDS AND ALGORITHMS

SAUGATA BASU AND CORDIAN RIENER

ABSTRACT. Let \(R \) be a real closed field. We prove that for any fixed \(d \), the equivariant rational cohomology groups of closed symmetric semi-algebraic subsets of \(R^k \) defined by polynomials of degrees bounded by \(d \) vanishes in dimensions \(d \) and larger. This vanishing result is tight. Using a new geometric approach we also prove an upper bound of \(d^{O(d)} s^k \lfloor d/2 \rfloor^{-1} \) on the equivariant Betti numbers of closed symmetric semi-algebraic subsets of \(R^k \) defined by quantifier-free formulas involving \(s \) symmetric polynomials of degrees bounded by \(d \), where \(1 < d \ll s, k \). This bound is tight up to a factor depending only on \(d \). These results significantly improve upon those obtained previously in [8] which were proved using different techniques. Finally, we utilize our new approach to obtain an algorithm with polynomially bounded complexity for computing these equivariant Betti numbers, thus answering a question posed in [8].

CONTENTS

1. Introduction 2
 1.1. Notations and background 3
 1.2. Symmetric semi-algebraic sets 5
 1.3. Equivariant cohomology 5
 1.4. Previous Results 6
 1.5. Main Quantitative Results 7
 1.6. Algorithmic Result 8

2. Proofs of the main theorems 9
 2.1. Outline of the proofs 9
 2.2. Preliminaries 10
 2.3. Mayer-Vietoris inequalities 10
 2.4. Bounds on the Betti numbers of \(\mathcal{P} \)-closed semi-algebraic sets 11
 2.5. Proof of Theorem 5 14
 2.6. Proof of Theorem 6 16
 2.7. Proof of Theorem 7 26
 2.8. Proof of Theorem 8 27

3. Conclusions and Open Problems 29
Acknowledgment 29

1991 Mathematics Subject Classification. Primary 14F25; Secondary 68W30.

Key words and phrases. equivariant cohomology, symmetric semi-algebraic sets, Betti numbers, computational complexity.

Basu was also partially supported by NSF grants CCF-1618918 and DMS-1620271.
1. Introduction

The problem of bounding the Betti numbers of semi-algebraic sets defined over the real numbers has a long history, and has attracted the attention of many researchers – starting from the first results due to Oleĭnik and Petrovskii [17], followed by Thom [22], Milnor [16]. If there is an action of a (compact) group on a real vector space whose action leaves the given semi-algebraic set invariant, it makes sense to separately study the topology modulo the group action. One classical notion to do this is by means of the so called equivariant Betti numbers (see §1). The resulting question of studying the equivariant Betti numbers of symmetric semi-algebraic subsets of \mathbb{R}^k is relatively more recent and was initiated in [8], where polynomial bounds for semi-algebraic sets defined by symmetric polynomials were given.

Before proceeding any further it will be useful to keep in mind the following simple example (both as a guiding principle for proving upper bounds on and as a lower bound for the equivariant Betti numbers).

Example 1. Let $1 < d \ll k$, d even. We will think of d as a fixed constant and let k be large. Also, let

$$P = \sum_{i=1}^{k} \prod_{j=1}^{d/2} (X_i - j)^2 \in \mathbb{R}[X_1, \ldots, X_k].$$

Then, the set of real zeros, $V_{d,k}$ of P in \mathbb{R}^k is finite and consists of the $(d/2)^k$ isolated points – namely the set $\{1, \ldots, d/2\}^k$. In other words the zero-th Betti number of $V_{d,k}$ equals

$$(d/2)^k = (O(d))^k,$$

which grows exponentially in k (for fixed d). However, P is a symmetric polynomial, and as a result there is an action of the symmetric group S_k on $V_{d,k}$. The number of orbits of this action equals the zero-th Betti number of the quotient $V_{d,k}/S_k$.

It is not too difficult to see that the orbit of a point $x = (x_1, \ldots, x_k) \in V_{d,k}$ is determined by the tuple $\lambda(x) = (\lambda_1, \ldots, \lambda_{d/2})$, where $\lambda_i = \text{card}\{j \mid x_j = i\}$. Thus, the number of orbits of $V_{d,k}$, and thus the sum of the Betti numbers of the quotient $V_{d,k}/S_k$ equals $(k + d/2 - 1)^{d/2 - 1}$, which satisfies the inequalities

$$c_d \cdot k^{d/2 - 1} \leq \frac{(k + d/2 - 1)}{d/2 - 1} \leq C_d \cdot k^{d/2 - 1},$$

where c_d, C_d are constants that depend only on d. Notice that unlike the Betti numbers of $V_{d,k}$ itself, the Betti numbers of the quotient are bounded by a polynomial in k (for fixed d), and moreover the degree of this polynomial is $d/2 - 1$. One of the main new results of the current paper (see inequality (1.2) in Theorem 6) is an upper bound on the sum of the equivariant Betti numbers of symmetric real varieties that matches (up to a factor depending only on d) the lower bound implied by (1).

In the present article we improve the existing quantitative results on the vanishing of the higher equivariant cohomology groups of symmetric semi-algebraic sets...
ON THE EQUIVARIANT BETTI NUMBERS OF SYMMETRIC SEMI-ALGEBRAIC SETS

(Theorem 5) as well as bounding of the equivariant Betti numbers of symmetric semi-algebraic sets (Theorems 6 and 7). Moreover, our techniques are completely different than those used in [8] where the previous best known bounds for these quantities were proved.

While obtaining tight upper bounds on the Betti numbers of real varieties and semi-algebraic sets is an extremely well-studied problem [4], there is also a related algorithmic question that is of great importance — namely, designing efficient algorithms for computing them. One reason for the importance of this algorithmic question is that the existence or non-existence of such algorithms with polynomially bounded complexity for real varieties defined by polynomials of degrees bounded by some constant is closely related to the P versus NP and similar questions in the Blum-Shub-Smale theory of computation and its generalizations (see for example [11, 10]).

The new method used in the proof for the tighter bounds allow us to give an algorithm with polynomially bounded complexity for computing the equivariant Betti numbers of semi-algebraic sets defined by symmetric polynomials of degrees bounded by some constant (Theorem 8). This gives a positive answer to a question raised in [8]. In particular, this also confirms a meta-theorem that suggests that for computing polynomially bounded topological invariants of semi-algebraic sets algorithms with polynomially bounded complexity should exist.

1.1. Notations and background. All our results will be stated not only for the real numbers but more generally for arbitrary real closed fields. Note however, that by the Tarski-Seidenberg transfer theorem (the reader may consult [5, Chapter 2] for a detailed exposition of this statement) most statements valid over one such field hold in any other real closed field. Therefore, we can fix a real closed field R, and we denote by C the algebraic closure of R. We also introduce the following notation.

Notation 1. Given $k, d \in \mathbb{Z}_{\geq 0}$, we denote by $R[X]_{\leq d} = R[X_1, \ldots, X_k]_{\leq d}$ the R-vector space of polynomials of degree at most d. More generally, given $k = (k_1, \ldots, k_\omega), d = (d_1, \ldots, d_\omega) \in \mathbb{Z}_{\geq 0}^\omega$, we will denote

$$R[X^{(i)}_1, \ldots, X^{(i)}_{k_i}]_{\leq d_i} \cong R[X^{(i)}_1]_{\leq d_1} \otimes \cdots \otimes R[X^{(i)}_{k_i}]_{\leq d_\omega},$$

where for each $i, 1 \leq i \leq \omega$,

$$R[X^{(i)}] = R[X^{(i)}_1, \ldots, X^{(i)}_{k_i}].$$

For $k = (k_1, \ldots, k_\omega) \in \mathbb{Z}_{\geq 0}^\omega$, we will also denote by $|k| = \sum_{i=1}^\omega k_i$.

Notation 2. For a given polynomial $P \in R[X_1, \ldots, X_k]$ we denote the set of zeros of P in R^k by $Z(P, R^k)$. More generally, for any finite set $\mathcal{P} \subset R[X_1, \ldots, X_k]$, the set of common zeros of \mathcal{P} in R^k is denoted by $Z(\mathcal{P}, R^k)$.

Notation 3. Let $\mathcal{P} \subset R[X_1, \ldots, X_k]$ be a finite family of polynomials. An element $\sigma \in \{0, 1, -1\}^\mathcal{P}$ is called a sign condition on \mathcal{P}. Given any semi-algebraic set $Z \subset R^k$, and a sign condition $\sigma \in \{0, 1, -1\}^\mathcal{P}$, the realization of σ on Z is the semi-algebraic set defined by

$$\{x \in Z \mid \text{sign}(P(x)) = \sigma(P), P \in \mathcal{P}\}.$$
such a formula a P-formula, and the realization of Φ, i.e., the semi-algebraic set
$$\mathcal{R}(\Phi, \mathbb{R}^k) = \{ x \in \mathbb{R}^k \mid \Phi(x) \},$$
will be called a P-semi-algebraic set. Finally, a Boolean formula without negations, and with atoms $P \sim 0$, $P \in \mathcal{P}$ where \sim is either \leq or \geq, will be called a P-closed formula, and we call its realization, $\mathcal{R}(\Phi, \mathbb{R}^k)$, a P-closed semi-algebraic set.

Notation 4. Let $X \subset \mathbb{R}^k$ be any semi-algebraic set and let F be a fixed field. Then, we will consider the i-th cohomology group of X with coefficients in F, which is denoted by $H^i(X, F)$. We will study the dimensions of these F vector spaces, which are denoted by $b^i(X, F) = \dim F H^i(X, F)$, and their sum denoted by $b(X, F) = \sum_{i=0}^k b^i(X, F)$. It is worth noting that the precise definition of these notions requires some care if the semi-algebraic set is defined over an arbitrary (possibly non-archimedean) real closed field. For details we refer to [5, Chapter 6].

The following classical result, which is due to Oleĭnik and Petrovskiĭ [17], Thom [22], and Milnor [16] gives a sharp upper bound on the Betti numbers of a real variety in terms of the degree of the defining polynomial and the number of variables.

Theorem 1. [17, 22, 16] Let $k, d \in \mathbb{Z}_{\geq 0}$, and $Q \in \mathbb{R}[X_1, \ldots, X_k]_{\leq d}$. Then, for any field of coefficients F,
$$b(\mathbb{Z}(Q, \mathbb{R}^k), F) \leq d(2d - 1)^{k-1}.$$
More generally for P-closed semi-algebraic sets we have the following bound.

Theorem 2. [5, 13] Let $k, d \in \mathbb{Z}_{\geq 0}$, $\mathcal{P} \subset \mathbb{R}[X_1, \ldots, X_k]_{\leq d}$ be a finite set of polynomials, and S be a P-closed semi-algebraic set. Then, for any field of coefficients F,
$$b(S, F) \leq \sum_{i=0}^k \binom{\text{card} (\mathcal{P}) + 1}{j} 6^i d (2d - 1)^{k-1}.$$
We will need the following immediate corollary of Theorem 2. Using the same notation as in Theorem 2 we have:

Corollary 1. Suppose that $L \subset \mathbb{R}^k$ is a subspace with $\dim L = k'$. Then, for any field of coefficients F,
$$b(L \cap S, F) \leq \sum_{i=0}^{k'} \sum_{j=1}^{k'-i} \binom{\text{card} (\mathcal{P}) + 1}{j} 6^i (2d - 1)^{k'-1}.$$

Proof. Note that a polynomial of degree bounded by d in \mathbb{R}^k, pulls back to a polynomial on L of degree at most d, under the inclusion $\iota : L \hookrightarrow \mathbb{R}^k$. The corollary now follows immediately from Theorem 2. \qed

In this paper we will consider bounding the equivariant Betti numbers of symmetric semi-algebraic sets in terms of the multi-degrees of the defining polynomials. For this purpose it will be useful to have a more refined bound than the one in Theorem 2. The following bound appears in [9]. Notice that in contrast to Theorems 2 and 1 above which holds for coefficients in an arbitrary field F, Theorem 3 only provides bounds for the \mathbb{Z}_2-Betti numbers only. However, using the universal coefficients theorem, it is clear that a bound on the \mathbb{Z}_2-Betti is also a bound on the rational Betti numbers.
Corollary 2. Suppose for notation as in Theorem 3 we have:

\[X \]

Theorem 3. \(X \)

Note that a polynomial of multi-degree bounded by \(\omega \) and \(L \)

\(L \)

pulls back to a polynomial on \(G \) (a product of symmetric groups), the

\(G \)

current paper, for \(X/G \) actions on \(G \) with semi-algebraic sets which are symmetric. In order to define symmetric semi- algebraic sets we first need some more notation.

1.2. Symmetric semi-algebraic sets. In this paper we are mostly concerned

\(R \)

with semi-algebraic sets which are symmetric. In order to define symmetric semi-algebraic sets we first need some more notation.

Notation 5. Let \(k = (k_1, \ldots, k_\omega) \in \mathbb{Z}_{\geq 0}^\omega \), with \(k = |k| := \sum_{i=1}^\omega k_i \), and let \(X \) be a semi-algebraic subset of \(R^k \), such that the product of symmetric groups

\(G \)

acts on \(X \) by independently permuting each block of coordinates. We will denote by \(X/G \) the orbit space of this action. Note that for any semi-algebraic set \(S \subset R^k \) the corresponding orbit space \(X/G \) can be constructed as the image of a polynomial map and thus is again semi-algebraic (for details see [12, 18]). If \(\omega = 1 \), then \(k = k_1 \), and we will denote \(G \) simply by \(G \).

Notation 6. Let \(k = (k_1, \ldots, k_\omega) \in \mathbb{Z}_{\geq 0}^\omega \), with \(k = |k| \).

We will denote by \(R[X^{(1)}, \ldots, X^{(\omega)}]_{\leq d}^{G_k} \) the set of polynomials which are fixed under the action of \(G_k = G_{k_1} \times \cdots \times G_{k_\omega} \) acting by independently permuting each block of variables \(X^{(i)} \). In the case \(\omega = 1 \), \(k_1 = k \), \(d = (d) \), we will denote \(R[X^{(1)}]_{\leq d}^{G_k} \) simply by \(R[X_1, \ldots, X_k]_{\leq d}^{G_k} \).

1.3. Equivariant cohomology. We recall here a few basic facts about equivariant cohomology.

The important point of the following discussion is that in the setting of the current paper, for \(G \)-symmetric semi-algebraic subsets of \(X \subset R^k \) (where \(G \) is a product of symmetric groups), the \(G \)-equivariant cohomology groups of \(X \) with coefficients in a field \(F \) of characteristic 0, are isomorphic to the singular cohomology of the quotient \(S/G \) with coefficients in \(F \) (cf. (1.1)). Thus, bounding the Betti numbers of \(X/G \) is equivalent to bounding the \(G \)-equivariant Betti numbers of \(X \).

More precisely, recall that given a topological space \(X \) together with a topological action of an arbitrary compact Lie group \(G \), one defines the equivariant cohomology groups starting from a universal principal \(G \)-space, denoted \(EG \), which is contractible, and on which the group \(G \) acts freely on the right. The orbit space of this action is called the classifying space \(BG \), i.e., we have \(BG = EG/G \).
Definition 1. (Borel construction) Let X be a space with a left action of the group G. Then, G acts diagonally on the space $EG \times X$ by $g(z, x) = (z \cdot g^{-1}, g \cdot x)$. For any field of coefficients F, the G-equivariant cohomology groups of X with coefficients in F, denoted by $H^*_G(X, F)$, is defined by $H^*_G(X, F) = H^*(EG \times X/G, F)$.

In the situation of interest in the current paper, where $G = S_k$ acting on a S_k-symmetric semi-algebraic subset $X \subset \mathbb{R}^k$, and F is a field with characteristic equal to 0, we have the isomorphisms (see [8]):

$$H^*(S/\mathfrak{S}_k, F) \xrightarrow{\sim} H^*_{S_k}(S, F) \xrightarrow{\sim} H^*(S, F)^{S_k}.$$

Therefore, the equivariant Betti numbers are precisely the Betti numbers of the orbit space S/\mathfrak{S}_k, and we will state all the results in the paper in terms of the ordinary Betti numbers of the orbit space.

As mentioned before, equivariant Betti numbers of symmetric real varieties and semi-algebraic sets were studied from a quantitative point of view in [8]. We summarize below the main results proved there.

1.4. Previous Results. Even though the following result was stated in [8] more generally, with multiple blocks of variables, for ease of reading we state a simplified version having only one block.

Let $S \subset \mathbb{R}^k$ be a \mathcal{P}-closed-semi-algebraic set, where $\mathcal{P} \subset \mathbb{R}[X_1, \ldots, X_k]_{\leq d}$, with $\deg(P) \leq d$ for each $P \in \mathcal{P}$, card(\mathcal{P}) = s. Then, for all sufficiently large $k > 0$, and any field field of coefficients F:

Theorem 4. 1. (Vanishing) For all $i \geq 5d$,

$$H^*(S/\mathfrak{S}_k, F) \cong 0;$$

2. (Quantitative bound)

$$b(S/\mathfrak{S}_k, F) \leq s^{5d-1}(O(k))^{4d-1}.$$

The main tools that are used in the proof of Theorem 4 are the following:

1. Infinitesimal equivariant deformations of symmetric varieties, such that the deformed varieties are symmetric, and moreover has good algebraic and Morse-theoretic properties (isolated, non-degenerate critical points with respect to the first elementary symmetric function, namely $e_1^{(k)}(X_1, \ldots, X_k) = \sum_{i=1}^k X_i$) [8, §4, Proposition 4];

2. Certain equivariant Morse-theoretic results to quantify changes in the equivariant Betti numbers at the critical points of a symmetric Morse function [8, §4, Lemmas 6, 7];

3. A bound on the number of distinct coordinates of isolated real solutions of any real symmetric polynomial system in terms of the degrees of the polynomials [8, §4, Proposition 5], which leads to a polynomial bound on the number of orbits of the set of critical points.

It was remarked in [8], that the vanishing results as well as the upper bounds are perhaps not optimal. In particular, item (1) in the above list (equivariant deformation) already requires a doubling of the degrees of the polynomials involved mainly for a technical reason in order to prove non-degeneracy of the critical points.

In this paper, we improve both the vanishing result as well as the exponent of the bounds in Theorem 4 using a completely different approach that does not rely
on Morse theory. We utilize instead certain theorems of Kostov [15], Arnold [1], and Givental [14] (see Theorems 9, 11, and 10 below) on the level sets of power sum polynomials.

Our main quantitative results are the following. We separate the vanishing part from the quantitative part for clarity.

1.5. Main Quantitative Results.

1.5.1. Vanishing.

Theorem 5. (Vanishing) Let $k = (k_1, \ldots, k_\omega), d = (d_1, \ldots, d_\omega) \in \mathbb{Z}_{\geq 0}^\omega$, with $k = \sum_{i=1}^\omega k_i$. Let $\mathcal{P} \subset \mathbb{R}[X^{(1)}, \ldots, X^{(\omega)}]_{\leq d}$ be a finite set, where for each $i, 1 \leq i \leq \omega$, $X^{(i)}$ is a block of k_i variables. Let $S \subset \mathbb{R}^k$ be \mathcal{P}-closed semi-algebraic set. Then, for any field of coefficients F,

$$H^p(S/\mathfrak{S}_k, F) = 0,$$

for all

$$p \geq \sum_{i=1}^\omega \min(k_i, d_i).$$

Remark 1. Notice that Theorem 5 improves the corresponding result in Theorem 4. Moreover, the new result is tight (see Remark 3 for an example).

1.5.2. Quantitative Bounds.

Theorem 6. Let $S \subset \mathbb{R}^k$ be a \mathcal{P}-closed semi-algebraic set, where

$$\mathcal{P} \subset \mathbb{R}[X_1, \ldots, X_k]_{\leq d}, \text{card}(\mathcal{P}) = s, d > 1.$$

Let

$$F(d, k) = (2^d - 1) \prod_{i=1}^{\lfloor d/2 \rfloor - 1} (k - \lfloor d/2 \rfloor - i) \text{ if } d \leq k,$$

$$\leq (2^k - 1)(k - 1)! \text{ if } d > k,$$

and $d' = \min(k, d)$. Then,

$$b(S/\mathfrak{S}_k, F) \leq (O(sdd'))^d F(d, k)$$

$$= d^{O(d)} s^{d'} k^{\lfloor d/2 \rfloor - 1} \text{ if } 1 < d \ll s, k.$$

In particular, if $\text{card}(\mathcal{P}) = 1,$ and $S = \mathbb{Z}(\mathcal{P}, \mathbb{R}^k)$, and $1 < d \ll k$, then

$$(1.2) b(S/\mathfrak{S}_k, F) \leq d^{O(d)} k^{\lfloor d/2 \rfloor - 1}.$$

Remark 2. Notice that the bounds in Theorem 6 are better than the corresponding bound in Theorem 4 in the case of fixed d and $s, k \to \infty$. Also it should be noted that the exponent in the bound given in Theorem 6 is the same for d and $d + 1$, if d is even.

Finally, with regards to tightness, note that for fixed d and large s, k, the bound in Theorem 6, takes the form $d^{O(d)} s^{d'} k^{\lfloor d/2 \rfloor - 1}$, and neither of the two exponents (i.e the exponent of s which is equal to d, and the exponent of k which is equal to $\lfloor d/2 \rfloor - 1$ in the bound can be improved. In the case of s this follows from the example in [8, Remark 7], and in the case of k this follows from Example 1.
In the case of multiple blocks we have the following bound (notice that the field of coefficients $\mathbb{F} = \mathbb{Z}_2$ in the following theorem).

Theorem 7. Let $\bf k = (k_1, \ldots, k_\omega)$, $d = (d_1, \ldots, d_\omega) \in \mathbb{Z}_{\geq 0}^\omega$, $d > 1^\omega$, with $k = |\bf k|$. Let $\mathcal{P} \subseteq R[X^{(1)}, \ldots, X^{(\omega)}]^\mathbb{Z}_2$ be a finite set of polynomials with $\text{card}(\mathcal{P}) = s$. Let $S \subseteq R^k$ be \mathcal{P}-closed semi-algebraic set.

Then,

$$b(S/\mathfrak{S}_k, \mathbb{Z}_2) \leq \left(\prod_{i=1}^\omega (O(\omega^3 s d_i d'_i))^d F(d_i, k_i) \right),$$

where

$$d'_i = \min(k_i, d_i), 1 \leq i \leq \omega,$$

and $F(d_i, k_i)$ as in Theorem 6.

1.6. **Algorithmic Result.** An important consequence of our new method is that we also obtain an algorithm with polynomially bounded complexity (for every fixed degree) for computing the rational equivariant Betti numbers of closed, symmetric semi-algebraic subsets of R^k. This answers a question posed in [8].

More precisely, it was asked in [8] whether there exists for every fixed d, an algorithm for computing the equivariant Betti numbers of symmetric \mathcal{P}-closed semi-algebraic subsets of R^k, where $\mathcal{P} \subseteq R[X_1, \ldots, X_k]^\mathbb{Z}_2$, and whose complexity is bounded polynomially in $\text{card}(\mathcal{P})$ and k (for constant d). Using the method of equivariant deformation and equivariant Morse theory, an algorithm with polynomially bounded complexity for computing (both the equivariant as well as the ordinary) Euler-Poincaré characteristics of symmetric algebraic sets appears in [7]. However, this method does not extend to an algorithm for computing all the equivariant Betti numbers, and indeed it is well known that the algorithmic problem of computing the Euler-Poincaré characteristic is simpler than that of computing all the individual Betti numbers.

In the classical Turing machine model the problem of computing Betti numbers (indeed just the number of connected components) of a real variety defined by a polynomial of degree 4 is \textbf{PSPACE}-hard [19]. On the other hand it follows from the existence of doubly exponential algorithms for semi-algebraic triangulation (see [5] for definition) of real varieties, that there also exist algorithms with doubly exponential complexity for computing the Betti numbers of real varieties and semi-algebraic sets [20]. There are algorithms with better complexity in certain restricted situations. For example, for every fixed $\ell > 0$, there exists an algorithm with singly exponential complexity for computing the first ℓ Betti numbers of a real (projective or affine) variety [2]. There exists an algorithm with polynomially bounded complexity for computing the Betti numbers of a real affine or projective variety defined by some constant number of quadratic polynomials [3].

We prove the following theorem.

Theorem 8. For every fixed $d \geq 0$, there exists an algorithm that takes as input a \mathcal{P}-closed formula Φ, where $\mathcal{P} \subseteq R[X_1, \ldots, X_k]^\mathbb{Z}_2$, and outputs $b^i(S/\mathfrak{S}_k, \mathbb{F}), 0 \leq i < d$, where $S = R(\Phi, R^k)$ whose complexity is bounded by $(\text{card}(\mathcal{P})kd)^{2^{O(d)}}$ (which is polynomial in the card(\mathcal{P}) and k).
2. Proofs of the main theorems

2.1. Outline of the proofs. As mentioned in the Introduction the main ideas behind the proofs of Theorems 5, 6, and 7 are quite different from the Morse theoretic arguments used in [8]. For convenience of the reader we outline the main ideas that are used first.

In order to prove Theorem 5, we prove directly that if \(S \subset \mathbb{R}^k \) is a closed and bounded symmetric semi-algebraic set, defined by symmetric polynomials of degree at most \(d \leq k \), then \(S/\mathfrak{S}_k \) is homologically equivalent to a certain semi-algebraic subset of \(\mathbb{R}^d \) (Part (2) of Proposition 7 below). This immediately implies the vanishing of the higher cohomology groups of \(S/\mathfrak{S}_k \). In order to prove the homological equivalence we use certain results on the properties of Vandermonde mappings due to Kostov and Giventhal (see Theorems 9 and 10 below). This argument avoids the technicalities of having to produce a good equivariant deformation required in the Morse-theoretic arguments for proving a similar vanishing result in [8], which led to a worse bound on the vanishing threshold in terms of the degrees (\(2d \) in the algebraic case, and \(5d \) in the semi-algebraic case).

In order to prove the upper bounds on the equivariant Betti numbers of symmetric semi-algebraic sets (Theorems 6 and 7) we prove first that if \(S \subset \mathbb{R}^k \) is a closed and bounded symmetric semi-algebraic set, defined by symmetric polynomials of degree at most \(d \leq k \), then \(S/\mathfrak{S}_k \), is homologically equivalent to the intersection, \(S_{k,d} \), of \(S \) with a certain polyhedral complex of dimension \(d \) in \(\mathbb{R}^k \) (Proposition 7) – namely, the subcomplex formed by certain \(d \)-dimensional faces of the Weyl chamber defined by \(X_1 \leq X_2 \leq \cdots \leq X_k \) (cf. Propositions 7 and 8). Thus, in order to bound the Betti numbers of \(S/\mathfrak{S}_k \), it suffices to bound the Betti numbers of \(S_{k,d} \) (see Part (3) of Proposition 8).

The number of \(d \)-dimensional faces of the Weyl chamber that we need to consider is

\[
\binom{k - \lfloor d/2 \rfloor - 1}{\lfloor d/2 \rfloor - 1} = (O_d(k))^{\lfloor d/2 \rfloor - 1}.
\]

Since the intersection of each one of these faces with \(S \) is contained in a linear subspace of dimension \(d \), the Betti numbers of such intersections can be bounded by a polynomial in \(s, k \) of degree \(d \) (cf. Corollary 2). Moreover, the intersections amongst these sets are themselves intersections of \(S \) with faces of the Weyl chamber of smaller dimensions. We then use inequalities coming from the Mayer-Vietoris spectral sequence (cf. Proposition 14) to obtain a bound on \(S/\mathfrak{S}_k \). However, a straightforward argument using Mayer-Vietoris inequalities will produce a much worse bound than claimed in Theorems 6 and 7. This is because the number of possibly non-empty intersections that needs to be accounted for would be too large. In order to control this combinatorial part we use an argument involving infinitesimal thickening and shrinking of the faces of the Weyl chambers. Such perturbations involve extending the field \(\mathbb{R} \) to a real closed field of Puiseux series in the infinitesimals that are introduced with coefficients in \(\mathbb{R} \). We recall some basic facts about fields of Puiseux series in \(\S 2.2.1 \). After replacing the faces of the Weyl chambers by certain new sets defined in terms of infinitesimal thickening and shrinking, we show that only flags (not necessarily complete flags) of faces contribute to the Mayer-Vietoris inequalities (Corollary 4). The number of such flags is bounded by \((O_d(k))^{\lfloor d/2 \rfloor - 1} \) (cf. Proposition 10). This together with bounds
on the Betti numbers of semi-algebraic sets in terms of the multi-degrees of the defining polynomials (cf. Corollary 2) lead to the claimed bounds.

2.2. Preliminaries. In this section we recall some basic facts about real closed fields and real closed extensions.

2.2.1. Real closed extensions and Puiseux series. We will need some properties of Puiseux series with coefficients in a real closed field. We refer the reader to [5] for further details.

Notation 7. For R a real closed field we denote by $R(ε)$ the real closed field of algebraic Puiseux series in $ε$ with coefficients in R. We use the notation $R(ε_1, \ldots, ε_m)$ to denote the real closed field $R(ε_1) \cdots (ε_m)$. Note that in the unique ordering of the field $R(ε_1, \ldots, ε_m)$, $0 < ε_m \ll ε_{m-1} \ll \cdots \ll ε_1 \ll 1$.

Notation 8. For elements $x ∈ R(ε)$ which are bounded over R we denote by $\lim_{ε} x$ to be the image in R under the usual map that sets $ε$ to 0 in the Puiseux series x.

Notation 9. If R' is a real closed extension of a real closed field R, and $S ⊂ R^k$ is a semi-algebraic set defined by a first-order formula with coefficients in R, then we will denote by $\text{Ext}(S, R') ⊂ R^k$ the semi-algebraic subset of R^k defined by the same formula. It is well-known that $\text{Ext}(S, R')$ does not depend on the choice of the formula defining S [5].

Notation 10. For $x ∈ R^k$ and $r ∈ R$, $r > 0$, we will denote by $B_k(x, r)$ the open Euclidean ball centered at x of radius r. If R' is a real closed extension of the real closed field R and when the context is clear, we will continue to denote by $B_k(x, r)$ the extension $\text{Ext}(B_k(x, r), R')$. This should not cause any confusion.

2.3. Mayer-Vietoris inequalities. We will need the following inequalities. They are consequences of Mayer-Vietoris exact sequence.

Let $S_1, \ldots, S_N ⊂ R^k$, $N ≥ 1$, be closed semi-algebraic subsets of R^k. For $J ⊂ [1, n]$, we denote

\[S_J = \bigcap_{j \in J} S_j, \]
\[S^J = \bigcup_{j \in J} S_j. \]

Proposition 1. 1. For $i ≥ 0$,

\begin{equation}
(2.1) \quad b^i(S^{[1,s]}, F) \leq \sum_{j=1}^{i+1} \sum_{J \subset \{1, \ldots, s\} \atop \text{card}(J)=j} b^{i-j+1}(S_J, F).
\end{equation}

2.

\begin{equation}
(2.2) \quad b^i(S^{[1,s]}, F) \leq \sum_{j=1}^{k-i} \sum_{J \subset \{1, \ldots, s\} \atop \text{card}(J)=j} b^{i+j-1}(S^J, F) + \binom{s}{k-i} b^k(S^\emptyset, F).
\end{equation}

Proof. See [5, Proposition 7.33].
Then for every $p \geq 0$,
\[(2.3) \quad b^p(S_1, \mathbb{F}) + b^p(S_2, \mathbb{F}) \leq b^p(S_1 \cup S_2, \mathbb{F}) + b^p(S_1 \cap S_2, \mathbb{F}).\]

2.4. Bounds on the Betti numbers of \mathcal{P}-closed semi-algebraic sets. In order to get the desired bounds using the technique outlined in §2.1 we need to refine slightly some arguments in [5, Chapter 7] on bounding the Betti numbers of closed semi-algebraic sets. We explain these refinements in the current section. The main results that will be needed later are Propositions 2 and 6.

We begin with:

Proposition 2. Let $V \subset \mathbb{R}^k$ be a closed semi-algebraic set and $\mathcal{L} \subset \mathbb{R}[X_1, \ldots, X_k]$ a finite set of polynomials, and let $S = \{ x \in V \mid \bigwedge_{L \in \mathcal{L}} L(x) \geq 0 \}$. Then, for every $p \geq 0$, and any field \mathbb{F},
\[
b^p(S, \mathbb{F}) \leq \sum_{L \subset \mathcal{L}} b^p(V \cap Z(L', \mathbb{R}^k), \mathbb{F}).\]

Proof. Let $\mathcal{L} = \{ L_1, \ldots, L_m \}$, and let for $I \subset [1, m]$,
\[
W_I = \mathcal{R}(\bigwedge_{i \in I} L_i \geq 0, \mathbb{R}^k),
\]
\[
Z_I = \mathcal{R}(\bigwedge_{i \in I} L_i = 0, \mathbb{R}^k).
\]

Then, $S = V \cap W_{[1,m]}$.

We prove the statement by induction on m. Clearly, the statement is true for $m = 0$. Suppose the statement holds for $m - 1$.

Using the induction hypothesis, we have for each $p \geq 0$,
\[(2.4) \quad b^p(V \cap W_{[1,m-1]}, \mathbb{F}) \leq \sum_{I \subset [1,m-1]} b^p(V \cap Z_I, \mathbb{F}),\]
\[(2.5) \quad b^p(V \cap Z_m \cap W_{[1,m-1]}, \mathbb{F}) \leq \sum_{I \subset [1,m-1]} b^p(V \cap Z_{I \cup \{m\}}, \mathbb{F}).\]

Defining $S' = \{ x \in V \cap W_{[1,m-1]} \mid L_m(x) \leq 0 \}$, we have
\[
V \cap W_{[1,m-1]} = S \cup S',
\]
\[
V \cap Z_m \cap W_{[1,m-1]} = S \cap S'.
\]

Now, using inequality (2.3) we have that, for every $p \geq 0$,
\[
b^p(S, \mathbb{F}) + b^p(S', \mathbb{F}) \leq b^p(V \cap W_{[1,m-1]}, \mathbb{F}) + b^p(V \cap Z_m \cap W_{[1,m-1]}, \mathbb{F}),
\]
from whence we get,
\[(2.6) \quad b^p(S, \mathbb{F}) \leq b^p(V \cap W_{[1,m-1]}, \mathbb{F}) + b^p(V \cap Z_m \cap W_{[1,m-1]}, \mathbb{F}).\]

The proposition now follows from (2.4), (2.5), and (2.6). \quad \square

We fix for the remainder of the section a closed and semi-algebraically contractible semi-algebraic set $W \subset \mathbb{R}^k$, and also finite sets $\mathcal{P} = \{P_1, \ldots, P_s\}, \mathcal{F} = \{F_1, \ldots, F_m\} \subset \mathbb{R}^k$.
Let
\[\tilde{W} = \{ x \in W \mid \bigwedge_{i=1}^{m} F_i(x) \geq 0 \}, \]
and we will also suppose that \(\tilde{W} \) is semi-algebraically contractible.
Let \(\delta_1, \cdots, \delta_s \) be infinitesimals, and let \(R' = R(\delta_1, \ldots, \delta_s) \).

Notation 11. We define \(P_{\geq i} = \{ P_{i+1}, \ldots, P_s \} \) and
\[
\begin{align*}
\Sigma_i &= \{ P_i = 0, P_i = \delta_i, P_i = -\delta_i, P_i \geq 2\delta_i, P_i \leq -2\delta_i \}, \\
\Sigma_{\leq i} &= \{ \Psi \mid \Psi = \bigwedge_{j=1, \ldots, i} \Psi_j, \Psi_j \in \Sigma_i \}.
\end{align*}
\]

If \(\Phi \) is a \(\mathcal{P} \)-closed formula, and \(Z \subset R^k \) a closed semi-algebraic set we denote
\[
\mathcal{R}_i(\Phi, Z) = \mathcal{R}(\Phi, R(\delta_1, \ldots, \delta_i)^k) \cap \text{Ext}(Z, R(\delta_1, \ldots, \delta_i)^k),
\]
and
\[
\mathcal{R}_i(\Phi \land \Psi, Z) = \mathcal{R}(\Psi, R(\delta_1, \ldots, \delta_i)^k) \cap \mathcal{R}_i(\Phi) \cap \text{Ext}(Z, R(\delta_1, \ldots, \delta_i)^k).
\]

Finally, we denote for each \(\mathcal{P} \)-closed formula \(\Phi \)
\[(2.7) \quad b(\Phi, Z, \mathcal{F}) = b(\mathcal{R}(\Phi, Z), \mathcal{F}).\]

The proof of the following proposition is very similar to Proposition 7.39 in [5] where it is proved in the non-symmetric case.

Proposition 3. For every \(\mathcal{P} \)-closed formula \(\Phi \), such that \(\mathcal{R}(\Phi, R^k) \) is bounded,
\[
b(\Phi, Z, \mathcal{F}) \leq \sum_{\Psi \in \Sigma_{\leq s}} \min_{\mathcal{R}_i(\Psi, R^k) \subset \mathcal{R}_i(\Phi, R^k)} b(\Psi, Z, \mathcal{F}).
\]

Proof. See Proposition 7.39 in [5].

For \(1 \leq i \leq s \), let
\[
Q_i = P_i^2(P_i^2 - \delta_i^2)^2(P_i^2 - 4\delta_i^2),
\]
and for \(I \subset [1, s] \) let,
\[
(2.8) \quad V^I = \mathcal{R}(\bigvee_{i \in I} Q_i = 0, R^k) \cap \text{Ext}(\tilde{W}, R^k),
\]
\[
(2.9) \quad T^I = \mathcal{R}(\bigvee_{i \in I} Q_i \geq 0, R^k) \cap \text{Ext}(\tilde{W}, R^k).
\]

Proposition 4. For \(p \geq 0 \),
\[
\sum_{\Psi \in \Sigma_{\leq s}} b^p(\Psi, \tilde{W}, \mathcal{F}) \leq \sum_{\ell=1}^{k-p} \sum_{I \subset [1, s], \text{card}(I) = \ell} b^{p+\ell-1}(T^I, \mathcal{F})
\]
\[
(2.10) \quad = \sum_{I \subset [1, s]} b^{p+\text{card}(I)-1}(T^I, \mathcal{F}).
\]

Proof. From (2.7) we have that \(b^p(\Psi, \tilde{W}, \mathcal{F}) = b^p(\mathcal{R}(\Psi, \tilde{W}), \mathcal{F}) \), and it follows from the definition of \(\Psi \), that \(\mathcal{R}(\Psi, \tilde{W}) \) is a disjoint union of closed semi-algebraic subsets of the closed semi-algebraic set
\[
\mathcal{R}(\bigwedge_{i \in [1, s]} Q_i \geq 0, R^k) \cap \text{Ext}(\tilde{W}, R^k).
\]
Lemma 1.

\[b^p(T^I, F) \leq b^p(V^I, F), \text{ if } p > 0, \]
\[b^0(T^I, F) \leq b^0(V^I, F) + 1. \]

Proof. Let

\[Z^I = \mathcal{R}(\bigwedge_{1 \leq i \leq j} Q_i \leq 0 \lor \bigvee_{1 \leq i \leq j} Q_i = 0, R(\delta_1, \ldots, \delta_j)) \cap \text{Ext}(\bar{W}, R(\delta_1, \ldots, \delta_j)). \]

Clearly

\[T^I \cup Z^I = \text{Ext}(\bar{W}, R(\delta_1, \ldots, \delta_j)), T^I \cap Z_I = V^I. \]

The lemma now follows from inequality (2.3), using the fact that \(\bar{W} \) is semi-algebraically contractible.

Lemma 2. For each \(p \geq 0, \)

\[b^p(V^I, F) \leq \sum_{\ell=1}^{p+1} \sum_{J \subseteq I, \text{card}(J) = \ell} \sum_{\tau \in \{0, \pm 1, \pm 2\}^J} b^{p-\ell+1}(Z(\mathcal{P}_\tau, R^k) \cap \text{Ext}(\bar{W}, R^k), F) \]
\[= \sum_{J \subseteq I} \sum_{\tau \in \{0, \pm 1, \pm 2\}^J} b^{p-\text{card}(J)+1}(Z(\mathcal{P}_\tau, R^k) \cap \text{Ext}(\bar{W}, R^k), F), \]

where

\[(2.11) \quad \mathcal{P}_\tau = \bigcup_{j \in J} \{P_j + \tau(j)\delta_j\}. \]

Proof. Let for \(i \in [1, s], \)

\[V_i = Z(Q_i, R^k) \cap \text{Ext}(\bar{W}, R^k). \]

Then, for each \(i \in [1, s], \)

\[V_i \text{ is the disjoint union of the following five sets,} \]
\[Z(P_i, R^k) \bigcap \text{Ext}(\bar{W}, R^k), \]
\[Z(P_i \pm \delta_i, R^k) \bigcap \text{Ext}(\bar{W}, R^k), \]
\[Z(P_i \pm 2\delta_i, R^k) \bigcap \text{Ext}(\bar{W}, R^k). \]

The lemma now follows from Part (1) of Proposition 1.

Proposition 5. For every \(\mathcal{P} \)-closed formula \(\Phi, \)

\[(2.12) \quad b(\Phi, \bar{W}, F) \leq 1 + s + \sum_{p \geq 0} \sum_{1 \leq \text{card}(I) \leq k-p} \sum_{\tau \in \{0, \pm 1, \pm 2\}^J} F(p, \text{card}(I), J, \tau), \]

where

\[(2.13) \quad F(p, q, J, \tau) = b^{p+q-\text{card}(J)}(Z(\mathcal{P}_\tau, R^k) \cap \text{Ext}(\bar{W}, R^k), F). \]

Proof. The proposition follows from Propositions 3 and 4, and Lemmas 1 and 2, after noting that on the right side of (2.10) in Proposition 4, \(p + \text{card}(I) - 1 = 0 \) implies that \(\text{card}(I) = 0 \) or \(1 \) since \(p \geq 0. \) This accounts for the additive factor of \(1 + s \) on the right side of (2.12).

Finally, using the same notation as Proposition 5:
Proposition 6. For every \(P \)-closed formula \(\Phi \), such that \(R(\Phi, R^k) \) is bounded,
\[
b(\Phi, \tilde{W}, F) \leq 1 + s + \sum_{p \geq 0} \sum_{I \subseteq [1, s]} \sum_{\sigma \in \{0, \pm 1, \pm 2\}^{|I|}} \sum_{J \subseteq I} \sum_{K \subseteq [1, m]} G(p, \text{card}(I), J, K, \sigma),
\]
where
\[
G(p, q, J, K, \sigma), = b^{p+q-\text{card}(J)}(Z(\mathcal{P}_\sigma, R^k) \cap \tilde{V}_K, F),
\]
where for \(K \subseteq [1, m] \),
\[
\tilde{V}_K = W \cap \bigcap_{i \in K} Z(F_i, R^k).
\]

Proof. Use Propositions 5 and 2.

\[\Box \]

2.5. Proof of Theorem 5. Before proving Theorem 5 we need a preliminary result.

We first need some notation.

Notation 12. Let \(W(k) \subset R^k \) denote the cone defined by \(X_1 \leq X_2 \leq \ldots \leq X_k \).
More generally, for \(k = (k_1, \ldots, k_\omega) \in \mathbb{Z}_{\geq 0}^\omega \), we will denote
\[
W^{(k)} = W^{(k_1)} \times \cdots \times W^{(k_\omega)}.
\]
For every \(m \geq 0 \), and \(w = (w_1, \ldots, w_k) \in R^k_{>0} \), let \(p^{(k)}_{w, m} : W^{(k)} \to R \) be the polynomial map defined by:
\[
\forall x = (x_1, \ldots, x_k) \in W^{(k)}, \quad p^{(k)}_{w, m}(x) = \sum_{j=1}^{k} w_j x_j^m.
\]
For every \(d \geq 0 \), and \(w \in R^k_{>0} \) we denote by \(\Psi_w^{(k)} : W^{(k)} \to R^d \), the continuous map defined by
\[
\forall x = (x_1, \ldots, x_k) \in W^{(k)}, \quad \Psi_w^{(k)}(x) = (p^{(k)}_{w, 1}(x), \ldots, p^{(k)}_{w, d'}(x)),
\]
where \(d' = \min(k, d) \).
If \(w = 1^k := (1, \ldots, 1) \), then we will denote by \(p^{(k)}_m \) the polynomial \(p^{(k)}_{w, m} \) (the \(m \)-th Newton sum polynomial),
and by \(\Psi_d^{(k)} \) the map \(\Psi_w^{(k)} \).

We will need the following theorem due to Kostov.

Theorem 9. [15, Theorem 1] For every \(w \in R^k_{\geq 0}, d, k \geq 0, \text{ and } y \in R^d, V_{w, d, y} := (\Psi_w^{(k)})^{-1}(y) \) is either empty or contractible.

We will also need:

Theorem 10. [14, first Corollary] The map \(\Psi_k^{(k)} : W^k \to R^k \) is a homeomorphism on to its image.

As an immediate corollary of Theorem 9 we have:
Corollary 3. Let
\[\mathbf{k} = (k_1, \ldots, k_\omega) \in \mathbb{Z}_{\geq 0}, \]
\[\mathbf{d} = (d_1, \ldots, d_\omega) \in \mathbb{Z}_{\geq 0}, \]
\[d'_i = \min(k_i, d_i), 1 \leq i \leq \omega. \]

Let
\[\Psi_{\mathbf{d}}^{(\mathbf{k})} : \mathcal{W}^{(\mathbf{k})} \rightarrow \mathbb{R}^{d'_1} \times \cdots \times \mathbb{R}^{d'_\omega} \]
denote the map defined by
\[\forall \mathbf{x} = (x^{(1)}, \ldots, x^{(\omega)}) \in \mathcal{W}^{(\mathbf{k})}, \]
\[\Psi_{\mathbf{d}}^{(\mathbf{k})}(x^{(1)}, \ldots, x^{(\omega)}) = (\psi^{(k_1)}_{d'_1}(x^{(1)}), \ldots, \psi^{(k_\omega)}_{d'_\omega}(x^{(\omega)})). \]

Then, for each \(\mathbf{y} \in \mathbb{R}^{d'_1} \times \cdots \times \mathbb{R}^{d'_\omega} \), \((\Psi_{\mathbf{d}}^{(\mathbf{k})})^{-1}(\mathbf{y})\) is either empty or contractible.

We will need the following proposition. With the same notation as in Theorem 5:

Proposition 7. Let \(\mathcal{P} \subset \mathbb{R}[X^{(1)}, \ldots, X^{(\omega)}]^{\mathfrak{S}_\mathbf{k}}_{\leq d} \) and let \(S \subset \mathbb{R}^{\mathbf{k}} \) be a bounded \(\mathcal{P} \)-closed semi-algebraic set.

1. The quotient \(S/\mathfrak{S}_\mathbf{k} \) is semi-algebraically homeomorphic to \(\Psi_{\mathbf{k}}^{(\mathbf{k})}(S) \).
2. For any field of coefficients \(\mathbb{F} \),
\[H^*(\Psi_{\mathbf{k}}^{(\mathbf{k})}(S), \mathbb{F}) \cong H^*(\Psi_{\mathbf{d}}^{(\mathbf{k})}(S), \mathbb{F}). \]

Proof. Part (1) follows from the fact the map \(\Psi_{\mathbf{k}}^{(\mathbf{k})} \) separates orbits of \(\mathfrak{S}_\mathbf{k} \), and Theorem 10.

In order to prove Part (2) first note that
\[\mathbb{R}[X^{(1)}, \ldots, X^{(\omega)}]^{\mathfrak{S}_\mathbf{k}}_{\leq d} \cong \mathbb{R}[X^{(1)}]^{\mathfrak{S}_{d_1}}_{\leq d_1} \otimes \cdots \otimes \mathbb{R}[X^{(\omega)}]^{\mathfrak{S}_{d_\omega}}_{\leq d_\omega}, \]
and for each \(i, 1 \leq i \leq \omega, \)
\[\mathbb{R}[X^{(i)}]^{\mathfrak{S}_{d_i}} = \mathbb{R}[p^{(k_i)}_{d_1}X^{(i)}], \ldots, p^{(k_i)}_{d_\omega}X^{(i)}]. \]

It follows that for each \(P \in \mathcal{P} \), there exists \(\tilde{P} \in \mathbb{R}[Z^{(1)}, \ldots, Z^{(\omega)}] \), with \(Z^{(i)} = (Z^{(i)}_1, \ldots, Z^{(i)}_{d'_i}) \), \(1 \leq i \leq \omega \), such that
\[P = \tilde{P}(p^{(k_1)}_{d_1}X^{(1)}), \ldots, p^{(k_\omega)}_{d_\omega}X^{(\omega)}). \]

Let \(\tilde{\mathcal{P}} = \{ \tilde{P} \mid P \in \mathcal{P} \} \). Also, let \(\Theta \) be a \(\mathcal{P} \)-closed formula defining \(S \), and \(\tilde{\Theta} \) be the \(\tilde{\mathcal{P}} \)-closed formula obtained from \(\Theta \) by replacing for each \(P \in \mathcal{P} \), every occurrence of \(P \) by \(\tilde{P} \).

Now observe that
\[\Psi_{\mathbf{d}}^{(\mathbf{k})} = \pi_{\mathbf{k}, \mathbf{d}} \circ \Psi_{\mathbf{k}}^{(\mathbf{k})}, \]
where
\[\pi_{\mathbf{k}, \mathbf{d}} : \mathbb{R}^{\mathbf{k}} \rightarrow \mathbb{R}^{d'_1} \times \cdots \times \mathbb{R}^{d'_\omega} \]
denotes the map
\[\pi_{\mathbf{k}, \mathbf{d}}(x^{(1)}, \ldots, x^{(\omega)}) = (\pi_{k_1,d_1}(x^{(1)}), \ldots, \pi_{k_\omega,d_\omega}(x^{(\omega)})), \]
where for each \(i, 1 \leq i \leq \omega, \pi_{k_i,d_i}(x^{(i)}) = (x^{(i)}_1, \ldots, x^{(i)}_{d'_i}). \]
The quotient space \(S/\mathfrak{S}_\mathbf{k} \) is homeomorphic to \(\Psi_{\mathbf{k}}^{(\mathbf{k})}(S) \), and
\[\Psi_{\mathbf{k}}^{(\mathbf{k})}(S) = \mathcal{R}(\tilde{\Theta}, \mathbb{R}^{\mathbf{k}}) \cap \Psi_{\mathbf{k}}^{(\mathbf{k})}(\mathbb{R}^{\mathbf{k}}). \]
It is also clear from the definition of $\tilde{\Theta}$, that
\[
\pi_{k,d}^{-1}(\pi_{k,d}(R(\tilde{\Theta}, R^k))) = R(\tilde{\Theta}, R^k)
\]
(in other words $R(\tilde{\Theta}, R^k)$ is equal to the cylinder over $\pi_{k,d}(R(\tilde{\Theta}, R^k)))$. Also notice that
\[
\pi_{k,d}(R(\tilde{\Theta}, R^k)) = \pi_{k,d}(S).
\]
It follows from Corollary 3 that for every $y \in \pi_{k,d}(R(\tilde{\Theta}, R^k)) = \pi_{k,d}(\Psi_k(S))$, $\pi_{k,d}^{-1}(y) \cap \Psi_k(R^k)$ is contractible.

Now in the case $R = \mathbb{R}$, the Vietoris-Begle mapping theorem (see for instance, [21, page 344]) implies that
\[
H^*(\Psi_k(S), \mathbb{F}) \cong H^*(\pi_{k,d} \circ \psi_k(S), \mathbb{F}) = H^*(\Psi_k(S), \mathbb{F}),
\]
proving Part (2) in the case $R = \mathbb{R}$. The general case follows from an application of the Tarski-Seidenberg transfer principle.

Proof of Theorem 5. The theorem follows from Proposition 7, and the fact that $\dim(\Psi_d(S)) \leq d$.

Remark 3 (Tightness). Suppose that $d < k$. Observe that the image of $\Psi_d(S)$ is a non-empty semi-algebraic subset of R^d having dimension d, and thus has a non-empty interior. Let $y = (y_1, \ldots, y_d)$ belong to the interior of the image of $\Psi_d(S)$. Then, for all small enough $\varepsilon > 0$, the intersection of the image of $\Psi_d(S)$ with the union of the $2d$ hyperplanes defined by
\[
p_i^{(k)} = y_i \pm \varepsilon, 1 \leq i \leq d,
\]
contains the boundary of the hypercube $[y_1 - \varepsilon, y_1 + \varepsilon] \times \cdots \times [y_d - \varepsilon, y_d + \varepsilon]$ but not its interior, and thus clearly has non-vanishing cohomology in dimension $d - 1$. Using Part (2) of Theorem 7, it follows that the symmetric semi-algebraic $S \subset R^k$ defined by (2.14) has $H^{d-1}(S, \mathbb{F}) \neq 0$. Finally note that, the symmetric polynomials, $p_i^{(k)} - y_i \pm \varepsilon, 1 \leq i \leq d,$ defining S have degrees bounded by d.

2.6. Proof of Theorem 6.

Notation 13. For $k \in \mathbb{Z}_{\geq 0}$, we denote by $\text{Comp}(k)$ the set of integer tuples
\[
\lambda = (\lambda_1, \ldots, \lambda_{\ell}), \lambda_i > 0, |\lambda| := \sum_{i=1}^{\ell} \lambda_i = k.
\]

Definition 2. For $k \in \mathbb{Z}_{\geq 0}$, and $\lambda = (\lambda_1, \ldots, \lambda_{\ell}) \in \text{Comp}(k)$, we denote by W_{λ} the subset of $W^{(k)}$ defined by,
\[
X_1 = \cdots = X_{\lambda_1} \leq X_{\lambda_1+1} = \cdots = X_{\lambda_1+\lambda_2} \leq \cdots \leq X_{\lambda_1+\cdots+\lambda_{\ell-1}+1} = \cdots = X_k,
\]
and denote by $W_{\lambda}^{(k)}$ the subset of $W^{(k)}$ defined by,
\[
X_1 = \cdots = X_{\lambda_1} < X_{\lambda_1+1} = \cdots = X_{\lambda_1+\lambda_2} < \cdots < X_{\lambda_1+\cdots+\lambda_{\ell-1}+1} = \cdots = X_k,
\]
More generally, given $k = (k_1, \ldots, k_\omega) \in \mathbb{Z}_{\geq 0}$, we denote
\[W^{(k)} = W^{(k_1)} \times \cdots \times W^{(k_\omega)}. \]

Given $\lambda = (\lambda^{(1)}, \ldots, \lambda^{(\omega)}) \in \text{Comp}(k, d)$ we denote
\[W_\lambda = W_{\lambda^{(1)}} \times \cdots \times W_{\lambda^{(\omega)}}. \]

Definition 3. Let $k \in \mathbb{Z}_{\geq 0}$, and $\lambda, \mu \in \text{Comp}(k)$. We denote, $\lambda \prec \mu$, if $W_\lambda \subset W_\mu$.

It is clear that \prec is a partial order on $\text{Comp}(k)$ making $\text{Comp}(k)$ into a poset.

For $k \in \mathbb{Z}_{\geq 0}$, and $\lambda = (\lambda^{(1)}, \ldots, \lambda^{(\omega)})$, $\mu = (\mu^{(1)}, \ldots, \mu^{(\omega)}) \in \text{Comp}(k)$, we denote, $\lambda \prec \mu$, if $\lambda^{(i)} \prec \mu^{(i)}$ for all $i, 1 \leq i \leq \omega$. It its clear that \prec extends the partial order on $\text{Comp}(k)$ defined above.

Notation 14. For $\lambda = (\lambda_1, \ldots, \lambda_\ell) \in \text{Comp}(k)$, we denote $\text{length}(\lambda) = \ell$, and for $k, d \in \mathbb{Z}_{\geq 0}$, we denote
\[\text{CompMin}(k, d) = \{ \lambda = (\lambda_1, \ldots, \lambda_d) \in \text{Comp}(k) \mid \lambda_{2i+1} = 1, 0 \leq i < d/2 \}, \]
\[\text{Comp}(k, d) = \bigcup_{\lambda \in \text{CompMin}(k, d)} \{ \lambda' \in \text{Comp}(k) \mid \lambda' \prec \lambda \} \text{ if } d \leq k, \]
\[= \text{Comp}(k), \text{ if } d > k. \]

More generally, for $k, d \in \mathbb{Z}_{\geq 0}$, we denote
\[\text{Comp}(k, d) = \text{Comp}(k_1, d_1) \times \cdots \times \text{Comp}(k_\omega, d_\omega). \]

Definition 4. Given $k, d \in \mathbb{Z}_{\geq 0}$, we denote
\[W_d^{(k)} = \bigcup_{\lambda \in \text{Comp}(k, d)} W_\lambda. \]

For $k, d \in \mathbb{Z}_{\geq 0}$, and a semi-algebraic subset $S \subset \mathbb{R}^k$, we denote
\[S_{k, d} = S \cap W_d^{(k)}. \]

(Notice that if $d \geq k$, then $S_{k, d} = S \cap W_d^{(k)}$.)

We will denote by L_λ the linear span of W_λ. Note that
\[\dim L_\lambda = \dim W_\lambda = \text{length}(\lambda). \]

More generally, given $d = (d_1, \ldots, d_\omega), k = (k_1, \ldots, k_\omega) \in \mathbb{Z}_{\geq 0}^\omega$ with $k = |k|$, we denote
\[W_d^{(k)} = W_{d_1}^{(k_1)} \times \cdots \times W_{d_\omega}^{(k_\omega)}. \]

For any semi-algebraic subset $S \subset \mathbb{R}^k$, we denote
\[S_{k, d} = S \cap W_d^{(k)}. \]

We will denote by L_λ the linear span of W_λ. Note that
\[\dim L_\lambda = \dim W_\lambda = \sum_{i=1}^\omega \text{length}(\lambda^{(i)}). \]

We will use the following theorem due to Arnold [1].

Theorem 11. [1, Theorem 7]
1. For every \(w \in \mathbb{R}_{\geq 0}^k \), \(d, k \geq 0 \), \(d' = \min(k, d) \), and \(y \in \mathbb{R}^{d'} \) the function \(p_{w,d+1}^{(k)} \) has exactly one local minimum on \((\Psi_{w,d}^{(k)})^{-1}(y) \), which furthermore depends continuously on \(y \).

2. Suppose that the real variety \(V \subset \mathbb{R}^k \) defined by \((p_1^{(k)}, \ldots, p_d^{(k)}) = y \) is non-singular. Then a point \(x \in V \cap \mathcal{W}^{(k)} \) is a local minimum if and only if \(x \in \mathcal{W}_\lambda^{(k)} \) for some \(\lambda \in \text{CompMin}(k,d') \).

Proposition 8. Let \(1 < d', \) and \(S \subset \mathbb{R}^k \) a closed and bounded symmetric semi-algebraic set defined by symmetric polynomials of degrees bounded by \(d \). For \(y \in \Psi_{d}^{(k)}(S \cap \mathcal{W}^{(k)}) \), let

\[
m(y) := \min_{x \in (\Psi_d^{(k)})^{-1}(y)} p_{d+1}^{(k)}(x).
\]

Then the following holds.

1. \(S_{k,d} = \bigcup_{y \in \Psi_{d}^{(k)}(S \cap \mathcal{W}^{(k)})} \{ x \in (\Psi_d^{(k)})^{-1}(y) \mid p_{d+1}^{(k)}(x) = m(y) \} \) (cf. Eqn. (2.15)).

2. The map \(\Psi_d^{(k)} \) restricted to \(S_{k,d} \) is a semi-algebraic homeomorphism on to its image.

3. \(H^*(S_{k,d}, \mathbb{F}) \cong H^*(S/\mathfrak{S}_k, \mathbb{F}) \).

More generally, let \(d, k \in \mathbb{Z}_{>1} \) with \(1^\omega < d \), and \(S \) a bounded \(\mathcal{P} \)-closed semi-algebraic set, where \(\mathcal{P} \subset \mathbb{R}[X^{(1)}, \ldots, X^{(\omega)}]_{\leq d} \). For \(y \in \Psi_{d}^{(k)}(S \cap \mathcal{W}^{(k)}) \) let

\[
m(y) := \min_{x \in (\Psi_d^{(k)})^{-1}(y)} p_{d+1}^{(k)}(x),
\]

where for all \(x = (x^{(1)}, \ldots, x^{(\omega)}) \in \mathcal{W}^{(k)} \),

\[
p_{d+1}^{(k)}(x^{(1)}, \ldots, x^{(\omega)}) = \sum_{i=1}^{\omega} p_{d+1}^{(k)}(x^{(i)}).
\]

Then,

1'. \(S_{k,d} = \bigcup_{y \in \Psi_{d}^{(k)}(S \cap \mathcal{W}^{(k)})} \{ x \in (\Psi_d^{(k)})^{-1}(y) \mid p_{d+1}^{(k)}(x) = m(y) \} \),

2’. \(\Psi_d^{(k)} \) restricted to \(S_{k,d} \) is a semi-algebraic homeomorphism on to its image, and

7’. \(H^*(S_{k,d}, \mathbb{F}) \cong H^*(S/\mathfrak{S}_k, \mathbb{F}) \).

Proof. We only prove Parts (1), (2) and (3). The remaining parts follow directly from these three.

Since \(d > 1 \), the variety \((\Psi_d^{(k)})^{-1}(y) \) is closed and bounded, and thus \(m(y) \) is well defined. In order to prove Part (1) we can assume that \(d < k \). Otherwise, \(d' = \min(k, d) = k \), and \(\Psi_d^{(k)} = \Psi_k^{(k)} \) (cf. Notation 12). Hence, \(S_{k,d} = S \cap \mathcal{W}^{(k)} \), and the inverse image under \(\Psi_d^{(k)} \) of any point in \(\Psi_d^{(k)}(S \cap \mathcal{W}^{(k)}) \) is again a point.
So suppose that \(d < k \). Then it follows from the fact that \(S \) is defined by symmetric polynomials of degree at most \(d \), that for each \(y \in \Psi_d^{(k)}(S \cap \mathcal{W}^{(k)}) \), \((\Psi_d^{(k)})^{-1}(y) \subset S\). It follows from Part (1) of Theorem 11 that the map

\[
F(y) := \left\{ x \in (\Psi_d^{(k)})^{-1}(y) : p_{d+1}(x) = m(y) \right\}
\]
defines a continuous semi-algebraic section over \(\Psi_d^{(k)}(S \cap \mathcal{W}^{(k)}) \). This proves Part (1). In order to prove Part (2), notice that the subset, \(U \subset \Psi_d^{(k)}(\mathcal{W}^{(k)}) \), of all \(y \in \Psi_d^{(k)}(\mathcal{W}^{(k)}) \) such that the real variety in \(\mathbb{R}^k \) defined by \((p_1^{(k)}, \ldots, p_d^{(k)}) = y\) is non-singular, is open and dense in \(\Psi_d^{(k)}(\mathcal{W}^{(k)}) \) (using semi-algebraic version of Sard’s theorem [5, Chapter 5]). It now follows from the fact that the function \(F(\cdot) \) is continuous, that

\[
F(\Psi_d^{(k)}(\mathcal{W}^{(k)})) = \overline{F(U)},
\]

and it also follows from Part (2) of Theorem 11 that,

\[
\overline{F(U)} = \bigcup_{\lambda \in \text{CompMin}(k,d)} \mathcal{W}_\lambda^{(k)}.
\]

Part (2) of the proposition now follows from (2.16), (2.17), and Definition 4.

Part (3) follows from Proposition 7.

Example 2. In order to understand the geometry behind Proposition 8 it might be useful to consider the example of the two-dimensional sphere in \(S \subset \mathbb{R}^3 \) defined by the symmetric quadratic polynomial equation

\[
p_2^{(3)}(X_1, X_2, X_3) - 1 = X_1^2 + X_2^2 + X_3^2 - 1 = 0.
\]

The intersection of \(S \) with the Weyl chamber, \(\mathcal{W}^{(3)} \) defined by \(X_1 \leq X_2 \leq X_3 \), is contractible and is homologically equivalent to \(S/\mathcal{S}_3 \), via the map \(\Psi_2^{(3)} = (p_1^{(3)}, p_2^{(3)}) : S \cap \mathcal{W}^{(3)} \to \mathbb{R}^2 \). The image of this map in \(\mathbb{R}^2 \) is the line segment defined by \(-\sqrt{3} \leq p_1^{(3)} \leq \sqrt{3}, p_2^{(3)} = 1\), and is homotopy equivalent to \(S/\mathcal{S}_3 \). For each \(y = (y_1, y_2) \in \mathbb{R}^2 \) which belongs to the image, the fiber \((\Psi_2^{(3)})^{-1}(y) \subset S\) is defined by

\[
X_1 + X_2 + X_3 = y_1, X_1^2 + X_2^2 + X_3^2 = 1, X_1 \leq X_2 \leq X_3,
\]

and is easily seen to be a connected arc and hence contractible. Moreover, the minimum of \(p_3^{(3)} \) restricted to this arc belong to the face defined by \(X_2 = X_3 \) of the Weyl chamber. The set, \(S_{3,2} \) of these minimums, is an arc defined by

\[
X_1^2 + X_2^2 + X_3^2 = 1, X_1 \leq X_2 = X_3,
\]

and defines a section over the image of \(\Psi_2^{(3)}(S \cap \mathcal{W}^{(3)}) \), and is homologically equivalent to to \(S/\mathcal{S}_3 \). Notice also that \(S_{3,2} \) is contained in the face \(\mathcal{W}_\lambda^{(3)} \), where \(\lambda = (1,2) \in \text{Comp}(k,2) \). The two sets, \(S \cap \mathcal{W}^{(3)} \) and \(S_{3,2} \), are shown in Figure 1.

The following is easy to prove.

Proposition 9. Let \(\lambda, \lambda' \in \text{Comp}(k,d) \). Then there exists \(\lambda'' \in \text{Comp}(k,d) \) such that \(\mathcal{W}_\lambda^{(d)} = \mathcal{W}_\lambda \cap \mathcal{W}_{\lambda'} \).

More generally, let \(k, d \in \mathbb{Z}_{\geq 0} \), and let \(\lambda, \lambda' \in \text{Comp}(k,d) \). Then there exists \(\lambda'' \in \text{Comp}(k,d) \) such that \(\mathcal{W}_\lambda^{(d)} = \mathcal{W}_\lambda \cap \mathcal{W}_{\lambda'} \).
Definition 5. Let $k, d \in \mathbb{Z}_{\geq 0}$, and $\lambda, \mu \in \text{Comp}(k, d)$. We denote, $\lambda \prec \mu$, if $W_\lambda \subset W_\mu$. It is clear that \prec is a partial order on $\text{Comp}(k, d)$ making $\text{Comp}(k, d)$ into a poset.

For $k, d \in \mathbb{Z}_{\omega \geq 0}$, and $\lambda = (\lambda^{(1)}, \ldots, \lambda^{(\omega)}), \mu = (\mu^{(1)}, \ldots, \mu^{(\omega)}) \in \text{Comp}(k, d)$, we denote, $\lambda \prec \mu$, if $\lambda^{(i)} \prec \mu^{(i)}$ for all $i, 1 \leq i \leq \omega$. It its clear that \prec extends the partial order on $\text{Comp}(k, d)$ defined above.

Recall that a chain σ of a finite poset P is an ordered sequence $\sigma_1 \prec \sigma_2 \prec \cdots \prec \sigma_m$ with $\sigma_i \neq \sigma_{i+1}$ for $1 \leq i < m$.

Notation 15. For $d, k \geq 0$, we denote by $\Sigma_{k,d}$ denote the set of chains of the poset $\text{Comp}(k, d)$. More generally, for $k, d \in \mathbb{Z}_{\omega \geq 0}$, we denote by $\Sigma_{k,d}$ the chains of the poset $\text{Comp}(k, d)$.

Proposition 10. For $d, k \geq 0$,

$$\text{card}(\Sigma_{k,d}) \leq (2^d - 1) \prod_{i=1}^{\lfloor d/2 \rfloor - 1} (k - \lfloor d/2 \rfloor - i) \text{ if } d \leq k,$$

$$\leq (2^k - 1)(k - 1)! \text{ if } d > k.$$

More generally, for $d = (d_1, \ldots, d_\omega), k = (k_1, \ldots, k_\omega) \in \mathbb{Z}_{\omega \geq 0}^\omega$,

$$\text{card}(\Sigma_{k,d}) = \prod_{i=1}^{\omega} \text{card}(\Sigma_{k_i,d_i}).$$

Proof. It is easy to see that the number of maximal chains (of length d in $\text{Comp}(k, d)$) is equal to

$$\prod_{i=1}^{\lfloor d/2 \rfloor - 1} (k - \lfloor d/2 \rfloor - i).$$
Each maximal chain has \((2^d - 1)\) sub-chains. Some of these chains are being counted more than once, but we are only interested in an upper bound.

2.6.1. Systems of neighborhoods. Let \(\varepsilon = (\varepsilon_0, \ldots, \varepsilon_k)\), and for \(0 \leq i \leq k\), \(R_i = R(\varepsilon_0, \ldots, \varepsilon_i)\).

Definition 6. For \(k, d \in \mathbb{Z}_{\geq 0}\), \(\lambda \in \text{Comp}(k, d)\), we denote

\[
P_\lambda = \sum_{i=1}^{\text{length}(\lambda)} \lambda_1 + \cdots + \lambda_i \sum_{j=\lambda_1 + \cdots + \lambda_{i-1} + 1}^{\lambda_1 + \cdots + \lambda_i} \sum_{j'=j+1}^{\lambda_i} (X_j - X_{j'})^2,
\]

and

\[
\tilde{W}_\lambda = \{x \in \text{Ext}(W^{(k)}, R_{\text{length}(\lambda)}) \mid (P_\lambda - \varepsilon_{\text{length}(\lambda)} \leq 0) \land \bigwedge_{\mu \prec \lambda, \mu \neq \lambda} (P_\mu - \varepsilon_{\text{length}(\mu)} \geq 0)\}.
\]

More generally, for \(k, d \in \mathbb{Z}_{\geq 0}\), and \(\lambda = (\lambda^{(1)}, \ldots, \lambda^{(\omega)}) \in \text{Comp}(k, d)\), we denote

\[
P_\lambda = \sum_{i=1}^{\omega} P_{\lambda^{(i)}},
\]

and

\[
\tilde{W}_\lambda = \{x \in \text{Ext}(W^{(k)}, R_{\text{length}(\lambda)}) \mid (P_\lambda - \varepsilon_{\text{length}(\lambda)} \leq 0) \land \bigwedge_{\mu \prec \lambda, \mu \neq \lambda} (P_\mu - \varepsilon_{\text{length}(\mu)} \geq 0)\}.
\]

Example 3. Before proceeding further it might be useful to visualize the different \(\tilde{W}_\lambda\) in the case \(k = 3\). We display the intersections of different \(\tilde{W}_\lambda, \lambda \in \text{Comp}(3)\)
with the hyperplane defined by $X_1 + X_2 + X_3 = 0$ in Figure 2. The Hasse diagram of the poset \(\text{Comp}(3)\) is as follows.

\[
(1, 1, 1) \\
(1, 2) \\
(2, 1) \\
(3)
\]

It is clear from the Figure 2, that for $\Lambda \subset \text{Comp}(3)$,

\[
\bigcap_{\lambda \in \Lambda} \tilde{W}_\lambda
\]

is non-empty and only if the elements of Λ form a chain in $\text{Comp}(3)$. The list of chains in $\text{Comp}(3)$ is

\[
(3), (1, 2), (2, 1), (1, 1, 1), \quad
(3) \prec (1, 2), (3) \prec (2, 1), (3) \prec (1, 1, 1), (2, 1) \prec (1, 1, 1), \quad
(3) \prec (1, 2) \prec (1, 1, 1), (3) \prec (2, 1) \prec (1, 1, 1).
\]

It can be seen from Figure 2 that the corresponding intersections of the \tilde{W}_λ's for each chain listed above is non-empty.

Notation 16. For $k, d \in \mathbb{Z}_{\geq 0}$, $\lambda \in \text{Comp}(k, d)$, and for any semi-algebraic subset $S \subset \mathbb{R}^k$, we denote by \tilde{S}_λ the set $\text{Ext}(S, \mathbb{R}^{\text{length}(\lambda)}) \cap \tilde{W}_\lambda$, and denote

\[
\tilde{S}_{k,d} = \bigcup_{\lambda \in \text{Comp}(k,d)} \text{Ext}(\tilde{S}_\lambda, \mathbb{R}^{d'}),
\]

where $d' = \min(k, d)$.

For a chain $\sigma \in \Sigma_{k,d}$, we denote

\[
\tilde{S}_\sigma = \bigcap_{\lambda \in \sigma} \text{Ext}(\tilde{S}_\lambda, \mathbb{R}^{\ell}),
\]

where $\ell = \text{length}(\text{max}(\sigma))$.

More generally, for $k = (k_1, \ldots, k_\omega), d = (d_1, \ldots, d_\omega) \in \mathbb{Z}_{\geq 0}^\omega$, $k = |k|$, $\lambda \in \text{Comp}(k, d)$, and for any semi-algebraic subset $S \subset \mathbb{R}^k$, we denote by \tilde{S}_λ the set $\text{Ext}(S, \mathbb{R}^{\text{length}(\lambda)}) \cap \tilde{W}_\lambda$, and denote

\[
\tilde{S}_{k,d} = \bigcup_{\lambda \in \text{Comp}(k,d)} \text{Ext}(\tilde{S}_\lambda, \mathbb{R}^{d'}),
\]

where $d' = \sum_{i=1}^\omega \min(k_i, d_i)$. For a chain $\sigma \in \Sigma_{k,d}$, we denote

\[
\tilde{S}_\sigma = \bigcap_{\lambda \in \sigma} \text{Ext}(\tilde{S}_\lambda, \mathbb{R}^{\ell}),
\]

where $\ell = \text{length}(\text{max}(\sigma))$.
Proposition 11. Let $k, d \in \mathbb{Z}_{\geq 0}$, and $S \subset \mathbb{R}^k$ a closed and bounded semi-algebraic set. Then,

$$\lim_{\varepsilon \to 0} \tilde{S}_{k,d} = S_{k,d}.$$

More generally, let $k, d \in \mathbb{Z}_{\omega \geq 0}$, $k = |k|$, and $S \subset \mathbb{R}^k$ a closed and bounded semi-algebraic set. Then,

$$\lim_{\varepsilon \to 0} \tilde{S}_{k,d} = S_{k,d}.$$

Proof. Use Lemma 16.17 in [5]. □

Proposition 12. (A) Let $k, d \in \mathbb{Z}_{\geq 0}$, and $\lambda, \mu \in \text{Comp}(k,d)$ such that $\lambda \nprec \mu, \mu \nprec \lambda$. Then,

$$\text{Ext}(\tilde{\mathcal{W}}_{\lambda}, R_\ell) \cap \text{Ext}(\tilde{\mathcal{W}}_{\mu}, R_\ell) = \emptyset,$$

where $\ell = \max(\text{length}(\lambda), \text{length}(\mu)).$

(B) More generally, let $k, d \in \mathbb{Z}_{\omega \geq 0}$, and $\lambda, \mu \in \text{Comp}(k,d)$ such that $\lambda \nprec \mu, \mu \nprec \lambda$. Then,

$$\text{Ext}(\tilde{\mathcal{W}}_{\lambda}, R_\ell) \cap \text{Ext}(\tilde{\mathcal{W}}_{\mu}, R_\ell) = \emptyset,$$

where $\ell = \max(\text{length}(\lambda), \text{length}(\mu)).$

Proof. We first prove Part (A). Suppose that

$$\text{Ext}(\tilde{\mathcal{W}}_{\lambda}, R_\ell) \cap \text{Ext}(\tilde{\mathcal{W}}_{\mu}, R_\ell) \neq \emptyset,$$

and $x \in \text{Ext}(\tilde{\mathcal{W}}_{\lambda}, R_\ell) \cap \text{Ext}(\tilde{\mathcal{W}}_{\mu}, R_\ell)$. This implies, using Definition 6 that

$$P_\nu(x) \geq \varepsilon_{\text{length}(\nu)},$$

where $\nu \in \text{Comp}(k,d)$ is characterized by $\mathcal{W}_\nu = \mathcal{W}_\lambda \cap \mathcal{W}_\mu$.

Note that, since λ, μ are not comparable by hypothesis, $\nu \neq \lambda, \mu$, and hence

$$\ell > \text{length}(\nu).$$

Let $y \in \lim_{\varepsilon_\ell} x$. Then, $y \in \mathcal{W}_\lambda \cap \mathcal{W}_\mu = \mathcal{W}_\nu$, and hence

$$P_\nu(y) = 0.$$

On the other hand,

$$P_\mu(y) = P_\mu(\lim(x))$$

$$= \lim_{\varepsilon_\ell} P_\mu(x)$$

$$= \lim_{\varepsilon_\ell} \varepsilon_{\text{length}(\mu)} \text{ (using (2.18))}$$

$$\neq 0 \text{ (since } \ell > \text{length}(\mu) \text{ by (2.19), which implies that } \varepsilon_{\text{length}(\mu)} \gg \varepsilon_\ell).}$$

This contradicts (2.20), which finishes the proof.

Part (B) follows immediately from Part (A) and the definition of the partial order on $\text{Comp}(k,d)$ (cf. Definition 5). □
Corollary 4. Let \(k, d \in \mathbb{Z}_{\geq 0} \), and \(\Lambda \subset \text{Comp}(k, d) \). Then
\[
\bigcap_{\lambda \in \Lambda} \tilde{W}_\lambda \neq \emptyset
\]
only if the elements of \(\Lambda \) form a chain in \(\text{Comp}(k, d) \).

More generally, let \(k, d \in \mathbb{Z}_{\geq 0} \), and \(\Lambda \subset \text{Comp}(k, d) \). Then
\[
\bigcap_{\lambda \in \Lambda} \tilde{W}_\lambda \neq \emptyset
\]
only if the elements of \(\Lambda \) form a chain in \(\text{Comp}(k, d) \).

Proof. Immediate from Proposition 12. □

Proposition 13. Let \(k, d \in \mathbb{Z}_{\geq 0} \), \(\sigma \in \Sigma_{k, d} \) a non-empty chain, and \(S \subset R^k \) a closed and bounded semi-algebraic set. Let \(\lambda = \max(\sigma) \), and \(\ell = \text{length}(\lambda) \). Then, for any field of coefficients \(F \),
\[
H^*(\text{Ext}(L_L, R_\ell) \cap \tilde{S}_\sigma, F) \cong H^*(\tilde{S}_\sigma, F).
\]

More generally, let \(k, d \in \mathbb{Z}_{\geq 0} \), \(k = |k| \), \(\sigma \in \Sigma_{k, d} \) a non-empty chain, and \(S \subset R^k \) a closed and bounded semi-algebraic set. Let \(\lambda = \max(\sigma) \), and \(\ell = \text{length}(\lambda) \). Then, for any field of coefficients \(F \),
\[
H^*(\text{Ext}(L_L, R_\ell) \cap \tilde{S}_\sigma, F) \cong H^*(\tilde{S}_\sigma, F).
\]

Proof. Use Lemma 16.17 in [5]. □

Proposition 14. 1. Let \(k, d \in \mathbb{Z}_{\geq 0}, d > 1 \), and \(S \) a symmetric, \(\mathcal{P} \)-closed, and bounded semi-algebraic subset of \(R^k \), where \(\mathcal{P} \subset R[X_1, \ldots, X_k]^{\leq d} \). Then,
\[
b(S/\mathfrak{S}_k, F) \leq \sum_{\sigma \in \Sigma_{k, d}} b(\tilde{S}_\sigma, F).
\]

2. More generally, let \(k, d \in \mathbb{Z}_{\geq 0}, k = |k| \), and \(S \) a symmetric, \(\mathcal{P} \)-closed, and bounded semi-algebraic subset of \(R^k \), where \(\mathcal{P} \subset R[X^{(1)}, \ldots, X^{(k_\omega)}]^{\leq d} \). Then,
\[
b(S/\mathfrak{S}_k, F) \leq \sum_{\sigma \in \Sigma_{k, \omega}} b(\tilde{S}_\sigma, F).
\]

Proof. Proof of Part (1): It follows from Part (3) of Proposition 8 and Proposition 11, that
\[
H^*(\text{Ext}(S, R_d)/\mathfrak{S}_k, F) \cong H^*(\tilde{S}_{k, d}, F).
\]
Now,
\[
\tilde{S}_{k, d} = \bigcup_{\lambda \in \text{Comp}(k, d)} \tilde{S}_\lambda.
\]

It follows from Part (1) of Proposition 1 (Mayer-Vietoris inequality) and Corollary 4 that for every \(m, 0 \leq m < d \),
\[
b^m(\tilde{S}_{k, d}, F) \leq \sum_{p=0}^{m} \sum_{\sigma \in \Sigma_{k, d}, \text{card}(\sigma) = p+1} b^{m-p}(\tilde{S}_\sigma, F).
\]

Part (1) of Proposition follows by taking a sum over all \(m, 0 \leq m < d \).
The proof of Part (2) is similar and omitted. □
Proof of Theorem 6. Suppose that S is defined by a P-closed formula Φ. We first replace R by $R' = R\langle \varepsilon_0 \rangle$, and replace S by the P'-closed semi-algebraic set S' defined by the P'-closed formula

$$\Phi \land (\varepsilon_0 |X|^2 - 1 \leq 0).$$

Then, using the conical structure theorem for semi-algebraic sets [5], we have that,

(i) S' is symmetric, closed and bounded over R';

(ii) $b_i(S'/S_k, F) = b_i(S'/S_k, F)$.

We now obtain an upper bound $b(\tilde{S}'_{\sigma}, F)$ for each chain $\sigma \in \Sigma_{k,d}$ as follows. Using Proposition 13 we have that

$$b(\tilde{S}'_{\sigma}, F) = b(\text{Ext}(L_{\lambda}, R'_{\ell}) \cap \tilde{S}'_{\sigma}, F),$$

where $\lambda = \max(\sigma)$ and $\ell = \text{length}(\lambda)$. Notice that \tilde{S}'_{σ} is the intersection of the P'-closed semi-algebraic set S', with the basic closed semi-algebraic set, defined by $P_{\mu} - \varepsilon_{\text{length}(\mu)} = 0$, for $\mu \in \sigma, \mu \neq \lambda,$

$$P_{\nu} - \varepsilon_{\text{length}(\nu)} \leq 0, \nu \notin \sigma, \nu \prec \lambda.$$

(2.22)

Let

$$F_{\sigma} = \bigcup_{\mu \in \sigma, \mu \neq \lambda} \{P_{\mu} - \varepsilon_{\text{length}(\mu)}\}, \ G_{\sigma} = \bigcup_{\nu \notin \sigma, \nu \prec \lambda} \{P_{\nu} - \varepsilon_{\text{length}(\nu)}\}.$$

Using Corollary 4, the number of distinct subsets $G'_{\sigma} \subset G_{\sigma}$, such that

$$Z(F_{\sigma} \cup G'_{\sigma}, R'_{\ell}) \cap \text{Ext}(W^{(k)}, R'_{\ell}) = \emptyset$$

is bounded by

$$O(\ell')^d.$$

We obtain using Proposition 6 that

$$b(\tilde{S}'_{\sigma}, F) \leq s + \sum_{p \geq 0} \sum_{I \subset [1, s], \ 1 \leq \text{card}(I) \leq k-p} \sum_{J \subset I, \ 1 \leq \text{card}(J) \leq p+1} \sum_{\tau \in \{0, \pm 1, \pm 2\}^d} G(p, \text{card}(I), J, K, \tau),$$

where

$$G(p, q, J, K, \tau) = b^{p+q-\text{card}(J)}(\text{Ext}(L_{\lambda}, R'_{\ell}) \cap Z(F_{\sigma} \cup G'_{\sigma}, R'_{\ell}) \cap \text{Ext}(W^{(k)}, R'_{\ell}), F),$$

and P_{τ} is as in (2.11).

Since $\dim(L_{\lambda}) = \text{length}(\lambda) \leq d'$, we obtain using (2.23), Proposition 2, and Corollary 1, that,

$$b(\tilde{S}'_{\sigma}, F) \leq (O(sd'))^d.$$

(2.24)

The theorem now follows from (2.21), Propositions 10, 14, and (2.24).
2.7. Proof of Theorem 7.

Proof of Theorem 7. The proof is very similar to that of Theorem 6. Suppose that S is defined by a \mathcal{P}-closed formula Φ. We first replace R by $R' = R(\varepsilon_0)$, and replace S by the \mathcal{P}'-closed semi-algebraic set S' defined by the \mathcal{P}'-closed formula

$$\Phi \land (\varepsilon_0 || X ||^2 - 1 \leq 0).$$

Then, using the conical structure theorem for semi-algebraic sets [5], we have that,

i) S' is symmetric, closed and bounded over R';

ii) $b(S'/\mathcal{G}_k, Z_2) = b(S'/\mathcal{G}_k, Z_2)$.

We now obtain an upper bound $b(\tilde{S}'_{\sigma}, Z_2)$ for each chain $\sigma \in \Sigma_{k,d}$ as follows. Using Proposition 13 we have that

$$b(\tilde{S}'_{\sigma}, Z_2) = b(\text{Ext}(L_{\lambda}, R'_{\ell}) \cap \tilde{S}'_{\sigma}, Z_2),$$

where $\lambda = \max(\sigma)$ and $\ell = \text{length}(\lambda)$.

Notice that \tilde{S}'_{σ} is the intersection of the \mathcal{P}'-closed semi-algebraic set S' with the basic closed semi-algebraic set, defined by

$$P_\mu - \varepsilon\text{length}(\mu) = 0, \text{ for } \mu \in \sigma, \mu \neq \lambda,$$

$$P_\nu - \varepsilon\text{length}(\nu) \leq 0, \nu \notin \sigma, \nu < \lambda.$$

Let

$$\mathcal{F}_\sigma = \bigcup_{\mu \in \sigma, \mu \neq \lambda} \{P_\mu - \varepsilon\text{length}(\mu)\}, \mathcal{G}_\sigma = \bigcup_{\nu \notin \sigma, \nu < \lambda} \{P_\nu - \varepsilon\text{length}(\nu)\}.$$

Using Corollary 4, the number of distinct subsets $G'_{\sigma} \subset G_{\sigma}$, such that $Z(\mathcal{F}_\sigma \cup G'_{\sigma}, R'_{\ell}) \cap \text{Ext}(W^{(k)}, R'_{\ell}) \neq \emptyset$ is bounded by

$$\prod_{i=1}^{\omega} (O(d'_i))^d'_i.$$

We obtain using Proposition 6 that

$$b(\tilde{S}'_{\sigma}, \mathbb{F}) \leq s + \sum_{p \geq 0} \sum_{J \subseteq [1,s]} \sum_{\tau \in \{0, \pm 1, \pm 2\}^d} \sum_{\mathcal{G}'_{\sigma} \subset \mathcal{G}_{\sigma}} G(p, \text{card}(I), J, K, \tau),$$

where

$$G(p, q, J, K, \tau) = b^{p+q-\text{card}(J)}(\text{Ext}(L_{\lambda}, R'_{\ell}) \cap Z(\mathcal{F}_\sigma \cup G'_{\sigma}, R'_{\ell}) \cap \text{Ext}(W^{(k)}, R'_{\ell}, \mathbb{F})).$$

Since,

$$\text{dim}(L_{\lambda}) = \text{length}(\lambda) \leq \sum_{i=1}^{\omega} d'_i,$$

we obtain using (2.23), Proposition 2, and Corollary 1, that,

$$b(\tilde{S}'_{\sigma}, Z_2) \leq \prod_{i=1}^{\omega} (O(\omega^3 s d_i d'_i))^d'_i.$$
The theorem now follows from (2.25), Propositions 10, 14, and (2.28).

\[\square\]

2.8 Proof of Theorem 8. Before proving Theorem 8 we will need a few preliminary results that we list below.

2.8.1 Algorithmic Preliminaries. We begin with a notation.

Notation 17. Let \(P \subset R[X_1, \ldots, X_k, Y_1, \ldots, Y_\omega] \) be finite, and let \(\Pi \) denote a partition of the list of variables \(X = (X_1, \ldots, X_k) \) into blocks, \(X_{[1]}, \ldots, X_{[\omega]} \), where the block \(X_{[i]} \) is of size \(k_i, 1 \leq i \leq \omega \), \(\sum_{1 \leq i \leq \omega} k_i = k \).

A \((P, \Pi) \)-formula \(\Phi(Y) \) is a formula of the form

\[
\Phi(Y) = (Q_1 X_{[1]} \ldots (Q_\omega X_{[\omega]}) F(X, Y),
\]

where \(Q_i \in \{\forall, \exists\} \), \(Y = (Y_1, \ldots, Y_\omega) \), and \(F(X, Y) \) is a quantifier free \(P \)-formula.

We will use the following definition of complexity of algorithms in keeping with the convention used in the book [5].

Definition 7 (Complexity of an algorithm). By complexity of an algorithm that accepts as input a finite set of polynomials with coefficients in an ordered domain \(D \), we will mean the number of ring operations (additions and multiplications) in \(D \), as well as the number of comparisons, used in different steps of the algorithm.

The following algorithmic result on effective quantifier elimination is well-known. We use the version stated in [5].

Theorem 12. [5, Chapter 14] Let \(P \) be a set of at most \(s \) polynomials each of degree at most \(d \) in \(k + \ell \) variables with coefficients in a real closed field \(R \), and let \(\Pi \) denote a partition of the list of variables \((X_1, \ldots, X_k) \) into blocks, \(X_{[1]}, \ldots, X_{[\omega]} \), where the block \(X_{[i]} \) has size \(k_i \), for \(1 \leq i \leq \omega \). Given \(\Phi(Y) \), a \((P, \Pi) \)-formula, there exists an equivalent quantifier free formula,

\[
\Psi(Y) = \bigvee_{i=1}^{I} \bigwedge_{j=1}^{J_i} \bigvee_{n=1}^{N_{i,j}} \text{sign}(P_{ijn}(Y)) = \sigma_{ijn},
\]

where \(P_{ijn}(Y) \) are polynomials in the variables \(Y \), \(\sigma_{ijn} \in \{0, 1, -1\} \),

\[
I \leq s^{(k_\omega+1)\cdots(k_1+1)}(\ell+1)d^{O(k_\omega)\cdots O(k_1)}O(\ell),
\]

\[
J_i \leq s^{(k_\omega+1)\cdots(k_1+1)}d^{O(k_\omega)\cdots O(k_1)},
\]

\[
N_{i,j} \leq d^{O(k_\omega)\cdots O(k_1)},
\]

and the degrees of the polynomials \(P_{ijk}(y) \) are bounded by \(d^{O(k_\omega)\cdots O(k_1)} \). Moreover, there is an algorithm to compute \(\Psi(Y) \) with complexity

\[
s^{(k_\omega+1)\cdots(k_1+1)}(\ell+1)d^{O(k_\omega)\cdots O(k_1)}O(\ell),
\]

Corollary 5. There exists an algorithm that takes as input:

1. \(P, \{F_1, \ldots, F_m\} \subset D[X]_{\leq d}, \) where \(X = (X_1, \ldots, X_k) \);
2. a \(P \)-closed formula \(\Phi \);
3. a set of linear \(k - k' \) linear equations defining a linear subspace \(L \subset R^k \) of dimension \(k' \);
and computes a quantifier-free formula

\[\Psi(Y_1, \ldots, Y_m) = \bigvee_{i=1}^{I} \bigwedge_{j=1}^{J_i} \left(\bigvee_{n=1}^{N_{ij}} \text{sign}(P_{ijn}(Y)) = \sigma_{ijn} \right), \]

where \(P_{ijn}(Y) \) are polynomials in the variables \(Y \), \(\sigma_{ijn} \in \{0,1,-1\} \), such that \(R(\Psi, R^m) = F(\bigcap R(\Phi, R^k)) \cap L \), and \(F = (F_1, \ldots, F_m) : R^k \to R^m \) is the polynomial map defined by the tuple \((F_1, \ldots, F_m)\).

The complexity of the algorithm is bounded by

\[(s + m)(k+1)(m+1)dO(k)O(m), \]

where \(s = \text{card}(P) \).

Moreover,

\[I \leq s^{(k+1)(m+1)}dO(k)O(m), \]
\[J_i \leq (s + m)(k+1)dO(k), \]
\[N_{ij} \leq dO(k), \]

and the degrees of the polynomials \(P_{ijn} \) are bounded by \(dO(k) \).

Proof. First compute a basis of \(L \), and replace \(P \) by \(\tilde{P} \subset R[X'_1, \ldots, X'_{k'}] \) of pull-backs of polynomials in \(P \) to \(L \), where \(X'_1, \ldots, X'_{k'} \) are coordinates with respect to the computed basis of \(L \). Similarly, replace the polynomials \(F_1, \ldots, F_m \) by \(\tilde{F}_1, \ldots, \tilde{F}_m \). Replace the given formula \(\Phi(X_1, \ldots, X_k) \) by a new formula \(\Phi'(X'_1, \ldots, X'_{k'}) \) be replacing each occurrence of \(P \in P \) by the corresponding \(\tilde{P} \in \tilde{P} \).

Now apply Theorem 12 with input the formula

\[(\exists(X'_1, \ldots, X'_{k'})\Phi' \land \bigwedge_{i=1}^{m}(Y_i - \tilde{F}_i = 0), \]

to obtain the desired quantifier-free formula.

The complexity statement follows directly from that in Theorem 12. \(\square \)

Theorem 13. [20] There exists an algorithm which takes as input a \(\mathcal{P} \)-closed formula defining a bounded semi-algebraic subset \(S \) of \(\mathbb{R}^n \) with \(\mathcal{P} \subset D[X_1, \ldots, X_n] \), and computes \(b^i(S, \mathbb{Q}), 0 \leq i \leq n \). The complexity of this algorithm is bounded by \((\text{card}(\mathcal{P})D)^{2O(n)}\), where \(D = \max_{P \in \mathcal{P}} \deg(P) \).

Proof. First compute a semi-algebraic triangulation of \(h : |K| \to S \), where \(K \) is a simplicial complex, \(|K|\) the geometric realization of \(K \), and \(h \) semi-algebraic homeomorphism, as in the proof of Theorem 5.43 [5]. It is clear from the construction that the complexity, as well as the size of the output, is bounded by \((\text{card}(\mathcal{P})D)^{2O(n)}\). Finally, compute the dimensions of the simplicial homology groups of \(K \) using for example the Gauss-Jordan elimination algorithm from elementary linear algebra. Clearly, the complexity remains bounded by \((\text{card}(\mathcal{P})D)^{2O(n)}\). \(\square \)

2.8.2. **Proof of Theorem 8.** We are finally in a position to prove Theorem 8.

Proof of Theorem 8. We first prove using Corollary 5 that it is possible to compute a quantifier-free \(\Theta \) such that \(R(\Theta, R^d) = \Psi^{(k)}(S) \), and the complexity of this step being bounded by

\[k^{O(d)}(sd)^{O(d^2)}. \]
To see this apply for each $\lambda \in \text{Comp}(k, d)$ with $\text{length}(\lambda) = d$, apply Corollary 5 to obtain a formula Θ_λ such that

$$\mathcal{R}(\Theta_\lambda, \mathbb{R}^d) = \Psi^{(k)}_d(S \cap W_\lambda).$$

The complexity of this step using the complexity statement in Corollary 5 is bounded by $(sd)^{O(d^2)}$, noting that $W_\lambda \subset L_\lambda$ and $\dim L_\lambda \leq d$. Moreover, the same bound applies to the number and the degrees of the polynomials appearing in Θ_λ.

Finally, we can take

$$\Theta = \bigvee_{\lambda \in \text{Comp}(k, d), \text{length}(\lambda) = d} \Theta_\lambda.$$

Note that

$$\text{(2.29)} \quad \text{card(Comp}(k, d)) \leq O(k)^d$$

(cf. Proposition 10).

Finally, we compute the Betti numbers of $\Psi^{(k)}_d(S) = \mathcal{R}(\Theta, \mathbb{R}^d)$, using Theorem 13. Using the complexity of the algorithm in Theorem 13, and (2.29), we see that the complexity of this step is bounded by

$$\left((O(k))^d (sd)^{O(d^2)}\right)^{2^{O(d)}} = (skd)^{2^{O(d)}}.$$

Finally, using Proposition 7 we have that,

$$b^i(S/\mathfrak{S}_k, \mathbb{F}) = b^i(\Psi^{(k)}_d(S), \mathbb{F}), 0 \leq i < d,$$

finishing the proof. □

3. Conclusions and Open Problems

In this paper we have improved on previous bounds on equivariant Betti numbers for symmetric semi-algebraic sets. It would be interesting to extend the method used in this paper to other situations. Currently, it seems that Kostov’s result which was a central ingredient of the approach used here relies on a particular choice of generators for the ring of symmetric polynomials. Therefore, it is up to further investigation if a similar result holds for other groups acting on the ring of polynomials.

On the algorithmic side, we showed that it is possible to design an efficient algorithm to compute the equivariant Betti numbers. It has been shown in [6] that not only the equivariant Betti numbers can be bounded polynomially, but in fact that the multiplicities of the various irreducible representations occurring in an isotypic decomposition of the homology groups of symmetric semi-algebraic sets can also be bounded polynomially. Building on this result it is an interesting question to ask if an algorithm with similar complexity can be designed to compute these multiplicities as well, and thus in fact computing all the Betti numbers of symmetric varieties with complexity that is polynomial in k, for every fixed d.

Acknowledgment

The research presented in this article was initiated during a stay of the authors at Fields Institute as part of the Thematic Program on Computer Algebra and the authors would like to thank the organizers of this event.
References

1. V. I. Arnold, *Hyperbolic polynomials and Vandermonde mappings*, Funktsional. Anal. i Prilozhen. 20 (1986), no. 2, 52–53. MR 847139
2. S. Basu, *Computing the first few Betti numbers of semi-algebraic sets in single exponential time*, J. Symbolic Comput. 41 (2006), no. 10, 1125–1154. MR 2262087
3. S. Basu, D. Pasechnik, and M.-F. Roy, *Computing the Betti numbers of semi-algebraic sets defined by partly quadratic systems of polynomials*, J. Algebra 321 (2009), no. 8, 2206–2229. MR 2501518
4. S. Basu, R. Pollack, and M.-F. Roy, *Betti number bounds, applications and algorithms*, Current Trends in Combinatorial and Computational Geometry: Papers from the Special Program at MSRI, MSRI Publications, vol. 52, Cambridge University Press, 2005, pp. 87–97.
5. S. Basu and C. Riener, *On the isotypic decomposition of cohomology modules of symmetric semi-algebraic sets: polynomial bounds on multiplicities*, ArXiv e-prints (2015).
6. S. Basu and C. Riener, *Efficient algorithms for computing the Euler-Poincaré characteristic of symmetric semi-algebraic sets*, ArXiv e-prints (to appear in the proceedings of the meeting "Ordered Algebraic Structures and Related Topics", CIRM, Luminy, France, October 12-16 2015, AMS Contemporary Mathematics) (2016).
7. S. Basu and A. Rizzie, *Multi-degree bounds on the Betti numbers of real varieties and semi-algebraic sets and applications*, ArXiv e-prints (2015).
8. S. Basu and T. Zell, *Polynomial hierarchy, Betti numbers, and a real analogue of Toda’s theorem*, Found. Comput. Math. 10 (2010), no. 4, 429–454. MR 2657948
9. L. Blum, M. Shub, and S. Smale, *On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines*, Bull. Amer. Math. Soc. (N.S.) 21 (1989), no. 1, 1–46. MR 90a:68022
10. L. Bröcker, *On symmetric semialgebraic sets and orbit spaces*, Banach Center Publications 44 (1998), no. 1, 37–50.
11. A. Gabrielov and N. Vorobjov, *Approximation of definable sets by compact families, and upper bounds on homotopy and homology*, J. Lond. Math. Soc. (2) 80 (2009), no. 1, 35–54. MR 2520376
12. A. Givental, *Moments of random variables and the equivariant morse lemma*, Russian Mathematical Surveys 42 (1987), no. 2, 275–276.
13. V. P. Kostov, *On the geometric properties of vandermonde’s mapping and on the problem of moments*, Proceedings of the Royal Society of Edinburgh: Section A Mathematics 112 (1989), no. 3-4, 203–211.
14. J. Milnor, *On the Betti numbers of real varieties*, Proc. Amer. Math. Soc. 15 (1964), 275–280. MR 0161339
15. I. G. Petrovskii and O. A. Oleinik, *On the topology of real algebraic surfaces*, Izvestiya Akad. Nauk SSSR. Ser. Mat. 13 (1949), 389–402. MR 0034600
16. C. Procesi and G. Schwarz, *Inequalities defining orbit spaces*, Invent. Math. 81 (1985), no. 3, 539–554. MR 807071
17. J. H. Reif, *Complexity of the mover’s problem and generalizations*, Proceedings of the 20th Annual Symposium on Foundations of Computer Science (Washington, DC, USA), SFCS ’79, IEEE Computer Society, 1979, pp. 421–427.
18. J. Schwartz and M. Sharir, *On the piano movers’ problem ii. general techniques for computing topological properties of real algebraic manifolds*, Adv. Appl. Math. 4 (1983), 298–351.
19. E. H. Spanier, *Algebraic topology*, McGraw-Hill Book Co., New York, 1966. MR 0210112
20. R. Thom, *Sur l’homologie des variétés algébriques réelles*, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press, Princeton, N.J., 1965, pp. 255–265. MR 0200942
21. V. I. Arnold, Hyperbolic polynomials and Vandermonde mappings, Funktsional. Anal. i Prilozhen. 20 (1986), no. 2, 52–53. MR 847139
22. S. Basu, Computing the first few Betti numbers of semi-algebraic sets in single exponential time, J. Symbolic Comput. 41 (2006), no. 10, 1125–1154. MR 2262087
23. S. Basu, D. Pasechnik, and M.-F. Roy, Computing the Betti numbers of semi-algebraic sets defined by partly quadratic systems of polynomials, J. Algebra 321 (2009), no. 8, 2206–2229. MR 2501518
24. S. Basu, R. Pollack, and M.-F. Roy, Betti number bounds, applications and algorithms, Current Trends in Combinatorial and Computational Geometry: Papers from the Special Program at MSRI, MSRI Publications, vol. 52, Cambridge University Press, 2005, pp. 87–97.
25. S. Basu and C. Riener, On the isotypic decomposition of cohomology modules of symmetric semi-algebraic sets: polynomial bounds on multiplicities, ArXiv e-prints (2015).
26. S. Basu and C. Riener, Efficient algorithms for computing the Euler-Poincaré characteristic of symmetric semi-algebraic sets, ArXiv e-prints (to appear in the proceedings of the meeting "Ordered Algebraic Structures and Related Topics", CIRM, Luminy, France, October 12-16 2015, AMS Contemporary Mathematics) (2016).
27. S. Basu and A. Rizzie, Multi-degree bounds on the Betti numbers of real varieties and semi-algebraic sets and applications, ArXiv e-prints (2015).
28. S. Basu and T. Zell, Polynomial hierarchy, Betti numbers, and a real analogue of Toda’s theorem, Found. Comput. Math. 10 (2010), no. 4, 429–454. MR 2657948
29. L. Blum, M. Shub, and S. Smale, On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines, Bull. Amer. Math. Soc. (N.S.) 21 (1989), no. 1, 1–46. MR 90a:68022
30. L. Bröcker, On symmetric semialgebraic sets and orbit spaces, Banach Center Publications 44 (1998), no. 1, 37–50.
31. A. Gabrielov and N. Vorobjov, Approximation of definable sets by compact families, and upper bounds on homotopy and homology, J. Lond. Math. Soc. (2) 80 (2009), no. 1, 35–54. MR 2520376
32. A. Givental, Moments of random variables and the equivariant morse lemma, Russian Mathematical Surveys 42 (1987), no. 2, 275–276.
33. V. P. Kostov, On the geometric properties of vandermonde’s mapping and on the problem of moments, Proceedings of the Royal Society of Edinburgh: Section A Mathematics 112 (1989), no. 3-4, 203–211.
34. J. Milnor, On the Betti numbers of real varieties, Proc. Amer. Math. Soc. 15 (1964), 275–280. MR 0161339
35. I. G. Petrovskii and O. A. Oleinik, On the topology of real algebraic surfaces, Izvestiya Akad. Nauk SSSR. Ser. Mat. 13 (1949), 389–402. MR 0034600
36. C. Procesi and G. Schwarz, Inequalities defining orbit spaces, Invent. Math. 81 (1985), no. 3, 539–554. MR 807071
37. J. H. Reif, Complexity of the mover’s problem and generalizations, Proceedings of the 20th Annual Symposium on Foundations of Computer Science (Washington, DC, USA), SFCS ’79, IEEE Computer Society, 1979, pp. 421–427.
38. J. Schwartz and M. Sharir, On the piano movers’ problem ii. general techniques for computing topological properties of real algebraic manifolds, Adv. Appl. Math. 4 (1983), 298–351.
39. E. H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York, 1966. MR 0210112
40. R. Thom, Sur l’homologie des variétés algébriques réelles, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press, Princeton, N.J., 1965, pp. 255–265. MR 0200942
Department of Mathematics, Purdue University, West Lafayette, IN 47906, U.S.A.
E-mail address: sbasu@math.purdue.edu

Department of Mathematics and Statistics, Faculty of Science and Technology, University of Tromsø, 9037 Tromsø, Norway

Aalto Science Institute, Aalto University, Espoo, Finland
E-mail address: cordian.riener@aalto.fi