Data-driven Robust LQR with Multiplicative Noise via System Level Synthesis

Majid Mazouchi and Hamidreza Modares, Member, IEEE

Abstract—This paper aims to develop a data-driven method for solving the closed-loop state-feedback control of a discrete-time LQR problem for systems affected by multiplicative norm bounded model uncertainty. To synthesize a tractable robust state feedback policy, first, we adopt the recently developed system-level synthesis (SLS) framework to reformulate the LQR control design closed-loop system responses rather than the control gain. In many situations, however, the solution to this worst-case optimization problem may be too conservative since it sets out to enforce the design constraints for every possible value of the uncertainty. To deal with this issue, we reformulate this optimization problem as a chance-constrained program (CCP), where the guarantees are not expressed as deterministic satisfaction against all possible uncertainty outcomes but rather expressed as guarantees against uncertainty outcomes. To approximately solve the CCP without prior knowledge of how the uncertainties in the system matrices are described, we employ the so-called scenario approach, which provides probabilistic guarantees based on a finite number of samples and results in a convex optimization program with moderate computational complexity. Finally, numerical simulations are presented to illustrate the theoretical findings.

Index Terms—Multiplicative Model Uncertainty, System Level Synthesis, Scenario Approach.

I. INTRODUCTION

LINEAR quadratic regulator (LQR) problem is one of the most well-known problems in the classical optimal control literature [1], [2], which has been widely used in various applications such as aerospace, robotics, finance, and so forth. The aim of the LQR problem is to design a state-feedback controller that minimizes a convex quadratic cost related to the control of a linear dynamical system. Ever since the LQR problem emerged, its robustness to uncertainties was questioned as a fundamental issue because of the inherent presence of uncertainties in practice. The robust LQR problem is investigated in an anthology of papers, see [3]–[6], and references therein. The min-max model predictive control (MPC) framework [7]–[9] also provides approximate robust solutions for constrained LQR problems. Although most of the work on robust LQR problems has considered additive noise, its counterpart, which is called multiplicative noise [10]–[13], has been investigated far less. However, robustness of LQR problems for systems with multiplicative noise has great importance from a practical point of view. This is because, in essence, it provides us with an intuition of how to formulate a controller which could stabilize a linear dynamical system in the presence of stochastic dynamics perturbations. Moreover, by doing so one can explicitly incorporate model uncertainty and inherent stochasticity, which can lead to the improvement of robustness properties of the controller.

The recently introduced System Level Synthesis (SLS) framework [5], [6], [14] provides powerful tools to explore the trade-off between conservatism and computational complexity to deal with the robust LQR problem more efficiently. The core concept behind the SLS framework scheme is that it transforms the control design over the linear feedback control gains to closed-loop system responses and provides an explicit link between them. The robust form of the SLS framework [6], [15]–[18] allows for an explicit mapping from the model uncertainty to the system behavior, providing an explicit characterization of the joint effects of additive disturbances and model errors (i.e., multiplicative noise) when solving robust LQR problem [10], [19]. The rationale behind the SLS framework is both practical and applicable to many settings, and since its beginning, there have been many extensions developed such as works on MPC [17], [20]–[23], dynamic programming [24], data-driven adaptive control [6], [16], and so forth. However, the SLS framework for solving the LQR problem for systems with multiplicative noise is not considered in the literature, despite its importance.

Robust LQR control approaches for a system with multiplicative noise require optimizing the performance function for the worst-case system realization. This, however, can be overly conservative, especially if the support of the uncertainty is infinite, unknown or high (e.g., random Gaussian multiplicative noise). One alternative approach to remedy this problem would be to interpret robustness in a probabilistic sense, in which the guarantees of constraints fulfillment are intended in the probabilistic sense (satisfying most uncertain instances) rather than the deterministic sense (satisfaction against all possible uncertain outcomes). That is, constraint violation is allowed with a low probability. This leads to stochastic optimization problems, which are typically called chance-constrained programming problems [25]–[29]. Chance-constrained programming (CCP) has a wide range of applications, e.g., in finance [30], control [31], and so forth. With the exception of a few special cases [32], however, CCP problems are computationally intractable (i.e., NP-hard) as they entail the calculations of multi-dimensional probability integrals [33]. The scenario approach [34]–[37] is a simple yet promising

Majid Mazouchi and Hamidreza Modares are with the Mechanical Engineering Department, Michigan State University, East Lansing, MI, 48863 (e-mails: mazouchi@msu.edu, modaresh@msu.edu).
method for approximately solving chance-constrained optimization. To this aim, the scenario approach employs a dataset with some samples (so-called scenarios) from the set of uncertain parameters and requires the constraints to be satisfied for each scenario. A prominent feature of the scenario approach is its generality and tractability, as well as the fact that it requires no assumptions apart from constraint convexity.

In this paper, we aim to develop a data-driven method for solving the discrete-time LQR problem for systems affected by multiplicative noise can be expressed probabilistically or

\[\Pr(X) \]

respectively. Bold characters denote discrete-time signals. It is first shown that the closed-loop system responses for a system can be compactly written as [5]

\[x_{t+1} = Ax_t + Bu_t + W_t \]

where \(x_t \in \mathbb{R}^n \), \(u_t \in \mathbb{R}^m \), and \(W_t \in \mathbb{R}^n \) is an exogenous disturbance process. Let \(x_0 \equiv W_{[-1]} \) and \(W_{[-1,T]} \equiv 0 \) for all \(t \geq 0 \). We assume that the pair \((A,B)\) is controllable. Considering the system given in (1), now, the finite-horizon LQR problem is formulated as

\[\text{min}_{u_t} \quad \mathbb{E} \left[\sum_{t=0}^{T-1} x_t^\top Q x_t + u_t^\top R u_t + x_T^\top Q_F x_T \right] \]

subject to

\[x_{t+1} = Ax_t + Bu_t + W_t \]

\[u_t = K x_t \]

where \(Q, Q_F \geq 0 \) and \(R > 0 \). Utilizing a time-varying state-feedback control law \(u_t = K_t x_t \), the closed-loop dynamics can be compactly written as [5]

\[x_{[0,T-1]} = Z(A + BK) x_{[0,L-1]} + W_{[0,T-2]} \]

where

\[A := \text{blkdiag}(A_1, A_2, \ldots, A_k) \]

and

\[B := \text{blkdiag}(B_1, B_2, \ldots, B_N) \]

is the block-downshift operator (i.e., a matrix with identity matrices along the first block subdiagonal and zeros elsewhere), and

\[K \in \mathcal{L}_{TV}^{m \times n} \]

denotes the block matrix operator for the linear causal time-varying state-feedback controller. Recasting (3), the closed-loop map from disturbance to state and control input is given by [5]

\[x_{[0,T-1]} := \Phi_{u,T} W_{[-1,T-2]} = K(I - Z(A + BK))^{-1} W_{[-1,T-2]} \]

\[u_{[0,T-1]} := \Phi_{u,T} W_{[-1,T-2]} = K(I - Z(A + BK))^{-1} W_{[-1,T-2]} \]

where \(\Phi_{u,T} \) are two block-lower triangular matrices called as the closed-loop system response, and one realization of the controller is given by \(K = \Phi_{u,T}^{-1} \in \mathcal{L}_{TV}^{T \times m \times n} \).

The following proposition will be helpful in the rest of the development.

Proposition 1: [5] Consider the system (1) with the state-feedback control law \(K \in \mathcal{L}_{TV}^{T \times m \times n} \), i.e., \(u_{[0,T-1]} = K x_{[0,T-1]} \).

Then, the following statements hold:

1. The following affine subspace

\[\Phi_u = I \]
with $\Phi_x \in L_{TV}^{T,n \times n}$ and $\Phi_u \in L_{TV}^{T,m \times n}$, parameterizes all possible closed-loop system responses from $u[-1, T-2] \to [x_0(T-1), u(0, T-1)]$.

2: The controller $K := \Phi_x \Phi_u^{-1}$ is internally stabilizing and leads to the desired closed-loop responses Φ_x, provided that the operators Φ_x and Φ_u satisfy Φ_u.

Using Proposition I, the LQR problem (I) can be reformulated in terms of the closed-loop system responses $\{\Phi_x, \Phi_u\}$ as follows $[5]$

$$\min_{\Phi_x, \Phi_u} \left\| \left[\begin{array}{c} \Phi_x \\ \Phi_u \end{array} \right] \right\|_F$$

subject to $\left[\begin{array}{c} I - Z(A\Phi_x) \\ -ZB(\Phi_u) \end{array} \right] = I$ \hspace{1cm} (6)

where $Q := I_L \otimes Q$ and $R := I_L \otimes R$.

Proposition 2: [39] For a random vector $X \in \mathbb{R}^n$ with cumulative distribution $F(\cdot)$,

$$P\{\|X - \mathbb{E}[X]\| \geq \varepsilon\} \leq \frac{\text{Var}(X)}{\varepsilon^2} \quad \forall \varepsilon > 0 \quad (7)$$

and

$$\text{Var}(X) \overset{\text{def}}{=} \int_{V \in \mathbb{R}^n} \|V - \mathbb{E}[X]\|^2 dF(V) \quad (8)$$

Now, let the matrices A and B be uncertain with input- and state-multiplicative noise δ_t as follow

$$x_{t+1} = A(\delta_t)x_t + B(\delta_t)u_t + W_t, \quad \forall \delta_t \in \Delta \quad (9)$$

with $A(\delta_t) := A_0 + \sum_{i=1}^{n_\delta} \delta(i)A_i \in \mathbb{R}^{n \times n}$ and $B(\delta_t) := B_0 + \sum_{i=1}^{n_\delta} \delta(i)B_i \in \mathbb{R}^{n \times m}$. Let, at each time t, $\delta_t := [\delta_t^{(1)} I_{n \times n} \ldots \delta_t^{(n_\delta)} I_{n \times n}]_{n \times n_\delta} \in \mathbb{R}^{n \times n_\delta}$, where $\delta_t^{(i)} \in \mathbb{R}$, be i.i.d. copy of a square integrable random variable δ distributed according to probability space $(\Delta, \mathcal{F}, P_\delta)$, and $x_0 = \mathcal{W}_{-1}$ and $W_t = 0, \forall t \geq 0$. Moreover, let $A_0 := \left[\begin{array}{c} A_0^T \\ A_1^T \ldots A_{n_\delta}^T \end{array} \right] \in \mathbb{R}^{m \times n_\delta}$, $B_0 := \left[\begin{array}{c} B_0^T \\ B_1^T \ldots B_{n_\delta}^T \end{array} \right] \in \mathbb{R}^{m \times m}$.

We can now state the problem of interest as follows

$$\min_{\Phi_x, \Phi_u} \left\| \left[\begin{array}{c} \Phi_x \\ \Phi_u \end{array} \right] \right\|_F$$

subject to $\left[\begin{array}{c} I - Z(A(\delta_t)) \\ -ZB(\delta_t) \end{array} \right] = I$ \hspace{1cm} (10)

where $A(\delta_t) := \text{blkdiag}(A(\delta_t), \ldots, A(\delta_t), 0)$ and $B(\delta_t) := \text{blkdiag}(B(\delta_t), \ldots, B(\delta_t), 0)$.

III. MAIN RESULT

Routine calculations show that

$$x = (I_{nT \times nT} - Z(A + BK))^{-1}w \quad (11)$$

where the stacked states $x_{0:T} = x = [x_0, x_1, \ldots, x_T]^T$, inputs $u_{0:T} = u = [u_0, u_1, \ldots, u_T]^T$, disturbances $W_{0:T} = w = [x_0, w_0, w_1, \ldots, w_{T-1}]^T$, and causal linear time-varying state-feedback controller $K \in L_{TV}^{T,n \times n}$, and

$$A = \left[\begin{array}{c} I_{T-1} \\ \vdots \\ I_1 \end{array} \right] \otimes A_0 + \left[\begin{array}{c} \Delta \\ \vdots \\ \Delta \end{array} \right] (I_T \otimes A) \quad (12)$$

$$B = \left[\begin{array}{c} I_{T-1} \\ \vdots \\ I_1 \end{array} \right] \otimes B_0 + \left[\begin{array}{c} \Delta \\ \vdots \\ \Delta \end{array} \right] (I_T \otimes B) \quad (13)$$

$\Delta = \text{diag}(\delta_0, \delta_1, \ldots, \delta_{T-1}) \in \mathbb{R}^{(T-1) \times (T-1) n_\delta}$

It follows from $[11] - [14]$ that

$$\Phi_x = (I_{nT \times nT} - Z(A_0 + B_0 K))^{-1} \left(I - \left[\begin{array}{c} \Delta \\ \vdots \\ \Delta \end{array} \right] (I_T \otimes A) (I_T \otimes B K) \right)^{-1} \quad (15)$$

$$\Phi_u = K(I_{nT \times nT} - Z(A_0 + B_0 K))^{-1} \left(I - \left[\begin{array}{c} \Delta \\ \vdots \\ \Delta \end{array} \right] (I_T \otimes A) (I_T \otimes B K) \right)^{-1} \quad (16)$$

which leads to

$$\left[\begin{array}{c} x \\ u \end{array} \right] = \left[\begin{array}{c} \hat{\Phi}_x \\ \hat{\Phi}_u \end{array} \right] \tilde{w} \quad (17)$$

where $\tilde{w} = (I + \Delta)^{-1}w$ and

$$\hat{\Phi}_x = (I_{nT \times nT} - Z(A_0 + B_0 K))^{-1} \quad (18)$$

$$\hat{\Phi}_u = K(I_{nT \times nT} - Z(A_0 + B_0 K))^{-1} \quad (19)$$

$$\Delta = \frac{-Z \left[\begin{array}{c} \Delta \\ \vdots \\ \Delta \end{array} \right] (I_T \otimes A) (I_T \otimes B K)}{I_{nT \times nT} - Z(A_0 + B_0 K)} \quad \in \mathbb{R}^{nT \times nT} \quad (20)$$

Theorem 1: Let $\hat{\Delta}$ be defined as $\hat{\Delta}$, and suppose that the controller $K = \hat{\Phi}_u \hat{\Phi}_x$ achieves the system response

$$\left[\begin{array}{c} x \\ u \end{array} \right] = \left[\begin{array}{c} \hat{\Phi}_x \\ \hat{\Phi}_u \end{array} \right] (I_{nT \times nT} + \hat{\Delta})^{-1} w \quad (21)$$

If $(I + \Delta_i, 0)$ exists for $i = 1, \ldots, T$, then $\{\Phi_x, \Phi_u\}$ satisfy

$$\left[I - ZA_0 \quad -ZB_0 \right] \left[\begin{array}{c} \hat{\Phi}_x \\ \hat{\Phi}_u \end{array} \right] = I_{nT \times nT} + \Delta \quad (22)$$

Proof. Noting that

$$K = \hat{\Phi}_u \hat{\Phi}_x^{-1} = \hat{\Phi}_u (I_{nT \times nT} + \hat{\Delta})^{-1} (\hat{\Phi}_x (I_{nT \times nT} + \hat{\Delta})^{-1})^{-1} \quad (23)$$

Now, using Proposition II one has

$$\left[I - ZA_0 \quad -ZB_0 \right] \left[\begin{array}{c} \hat{\Phi}_x \\ \hat{\Phi}_u \end{array} \right] (I_{nT \times nT} + \hat{\Delta})^{-1} = I \quad (24)$$
since \((I + \Delta^i,0)\) exists for \(i = 1, \ldots, T\), (24) is equivalent to
\[
\begin{bmatrix}
I - ZA_0 & -ZB_0
\end{bmatrix}
\begin{bmatrix}
\Phi_x \\
\Phi_u
\end{bmatrix} = I_{nT \times nT} + \Delta
\tag{25}
\]
This completes the proof.

Now, recall that
\[
\Delta = \text{diag}(\delta_0, \delta_1, \ldots, \delta_{T-1}) \in \mathbb{R}^{(T-1) \times (T-1) \times n_{
}}
\tag{26}
\]
where \(\delta_i := \begin{bmatrix} \delta_i^{(1)} & \cdots & \delta_i^{(n_u)} \end{bmatrix} \in \mathbb{R}^{n_u \times n_u}\), one can rewrite \(\Delta\) as \(\Delta = Z(\text{blkdiag}(\Delta, 0))\Theta\) where \(\Theta = \Theta_1 \Theta_2 \in \mathbb{R}^{n_{\text{out}} \times nT \times T}\) and
\[
\Theta_1 := (- (I_T \otimes A) - (I_T \otimes B)K) \in \mathbb{R}^{n_{\text{out}} \times T \times nT}
\tag{27}
\]
\[
\Theta_2 := (I_{nT \times nT} - Z (A_0 + B_0K))^{-1} \in \mathbb{R}^{n_{\text{out}} \times nT \times T}
\tag{28}
\]

Theorem 2: Let \(\Delta\) be defined as (20), and suppose that \(\hat{K} = \Phi_x, \Phi_u\) achieves the system response (21). Then system responses \(\hat{\Phi}_X, \hat{\Phi}_u\) satisfies the change constraint
\[
\begin{aligned}
\mathbb{P}\left\{ \| \text{vec} \left[\begin{bmatrix} I - ZA_0 & -ZB_0 \end{bmatrix} \begin{bmatrix} \Phi_x \\
\Phi_u
\end{bmatrix} - I \right] \|_F \geq \varepsilon \right\} \leq 1/{\varepsilon}^2 \left((\Theta)^T \otimes I_{T \times nT} \right)^T \Sigma(\text{vec}(\Theta))^T (\Theta)^T \otimes I_{T \times nT}, \forall \varepsilon > 0
\end{aligned}
\tag{29}
\]
where \(\Sigma(\text{vec}(\Theta)) = \text{Var} \{ \text{vec}(\Theta) \}, \text{ and } \Sigma(\text{vec}(\Theta)) = \text{vec}(\Theta) \in \mathbb{R}^{T \times n_{\text{out}}}\), which is a random vector defined on \((\Omega, \mathcal{F}, \mathbb{P})\).

Proof. Note that \(\text{vec}(ABC) = (C^T \otimes A) \text{vec}(B)\). Therefore,
\[
\begin{aligned}
\text{vec} \left[\begin{bmatrix} I - ZA_0 & -ZB_0 \end{bmatrix} \begin{bmatrix} \Phi_x \\
\Phi_u
\end{bmatrix} - I \right] = \left((\Theta)^T \otimes I \right) \Sigma(\text{vec}(\Theta)) = \mu
\end{aligned}
\tag{30}
\]
Now, let
\[
\begin{aligned}
\mathbb{E} \{ \left((\Theta)^T \otimes I_{T \times nT} \right) \Sigma(\text{vec}(\Theta)) \} = \mu
\end{aligned}
\tag{31}
\]
\[
\forall \varepsilon > 0, \text{ which implies }
\begin{aligned}
\mathbb{P}\left\{ \| \text{vec} \left[\begin{bmatrix} I - ZA_0 & -ZB_0 \end{bmatrix} \begin{bmatrix} \Phi_x \\
\Phi_u
\end{bmatrix} - I \right] \|_F \geq \varepsilon \right\} \leq \frac{\text{Var} \{ \left((\Theta)^T \otimes I \right) \Sigma(\text{vec}(\Theta)) \}}{\varepsilon^2}
\end{aligned}
\tag{32}
\]
Invoking Proposition 2 one has
\[
\begin{aligned}
\mathbb{P}\left\{ \| \text{vec} \left[\begin{bmatrix} I - ZA_0 & -ZB_0 \end{bmatrix} \begin{bmatrix} \Phi_x \\
\Phi_u
\end{bmatrix} - I \right] \|_F \geq \varepsilon \right\} \leq 1/{\varepsilon}^2 \left((\Theta)^T \otimes I_{T \times nT} \right)^T \Sigma(\text{vec}(\Theta))^T (\Theta)^T \otimes I_{T \times nT}, \forall \varepsilon > 0
\end{aligned}
\tag{33}
\]
Substituting \(\mu = 0\) into (33) gives (29), which completes the proof.

As a result, problem (10) can be rewritten as
\[
\begin{aligned}
\begin{array}{l}
\min_{\Phi_x, \Phi_u} \left\{ \left\| \begin{bmatrix} Q^{1/2} \\
R^{1/2}
\end{bmatrix} \begin{bmatrix} \Phi_x \\
\Phi_u
\end{bmatrix} (I + \Delta) - I \right\|_F \right\}
\end{array}
\end{aligned}
\tag{34}
\]
or equivalently,
\[
\begin{aligned}
\min_{\Phi_x, \Phi_u} \left\{ \left\| \begin{bmatrix} Q^{1/2} \\
R^{1/2}
\end{bmatrix} \begin{bmatrix} \Phi_x \\
\Phi_u
\end{bmatrix} - I \right\|_F \right\}
\end{aligned}
\tag{35}
\]
After some manipulation, one has
\[
\begin{aligned}
\begin{array}{l}
\min_{\Phi_x} \left\{ \left\| \begin{bmatrix} Q^{1/2} \\
R^{1/2}
\end{bmatrix} \begin{bmatrix} \Phi_x \\
\Phi_u
\end{bmatrix} - I \right\|_F \right\}
\end{array}
\end{aligned}
\tag{36}
\]
where
\[
\begin{aligned}
\Delta = \begin{bmatrix} \Delta_{1,0} & \cdots & \Delta_{T,0} \\
\vdots & \ddots & \vdots \\
\Delta_{T,0} & \cdots & \Delta_{T,0}
\end{bmatrix} \begin{bmatrix} \Phi_x \\
\Phi_u
\end{bmatrix} - I
\end{aligned}
\tag{37}
\]
where \(\Pi_{k,m} = \Phi_x^{k,m} - A_0 \Phi_x^{k-1,m-1} - B_0 \Phi_x^{k-1,m-1}\).

One has
\[
\begin{aligned}
\begin{array}{l}
\min_{\Phi_x} \left\{ \left\| \begin{bmatrix} Q^{1/2} \\
R^{1/2}
\end{bmatrix} \begin{bmatrix} \Phi_x \\
\Phi_u
\end{bmatrix} - I \right\|_F \right\}
\end{array}
\end{aligned}
\tag{38}
\]
which implies
\[
\begin{aligned}
\begin{array}{l}
\min_{\Phi_x, \Phi_u} \left\{ \left\| \begin{bmatrix} Q^{1/2} \\
R^{1/2}
\end{bmatrix} \begin{bmatrix} \Phi_x \\
\Phi_u
\end{bmatrix} - I \right\|_F \right\}
\end{array}
\end{aligned}
\tag{39}
\]

where \(\Pi_{k,m} = \Phi_x^{k,m} - A_0 \Phi_x^{k-1,m-1} - B_0 \Phi_x^{k-1,m-1}\).

where \(\Pi_{k,m} = \Phi_x^{k,m} - A_0 \Phi_x^{k-1,m-1} - B_0 \Phi_x^{k-1,m-1}\). Therefore, one can show that
\[
\begin{aligned}
\begin{array}{l}
\min_{\Phi_x} \left\{ \left\| \begin{bmatrix} Q^{1/2} \\
R^{1/2}
\end{bmatrix} \begin{bmatrix} \Phi_x \\
\Phi_u
\end{bmatrix} - I \right\|_F \right\}
\end{array}
\end{aligned}
\tag{40}
\]
which implies
\[
\begin{aligned}
\begin{array}{l}
\min_{\Phi_x, \Phi_u} \left\{ \left\| \begin{bmatrix} Q^{1/2} \\
R^{1/2}
\end{bmatrix} \begin{bmatrix} \Phi_x \\
\Phi_u
\end{bmatrix} - I \right\|_F \right\}
\end{array}
\end{aligned}
\tag{41}
\]
where \(\mathbf{1}^n_{T \times nT}\) and \(\mathbf{1}^{nT \times nT}\) denote the \(nT \times nT\)-dimensional low-triangular matrix and \(nT \times nT\)-dimensional column vector whose components are all one, respectively. Now, using (41), P4 can be reformulated as
\[
\begin{aligned}
\begin{array}{l}
\min_{\Phi_x, \Phi_u} \left\{ \left\| \begin{bmatrix} Q^{1/2} \\
R^{1/2}
\end{bmatrix} \begin{bmatrix} \Phi_x \\
\Phi_u
\end{bmatrix} - I \right\|_F \right\}
\end{array}
\end{aligned}
\tag{42}
\]
which can be rewritten as the following joint chance-constrained programming (JCCP) problem:
\[
\begin{aligned}
\begin{array}{l}
\min_{\Phi_x, \Phi_u} \left\{ \left\| \begin{bmatrix} Q^{1/2} \\
R^{1/2}
\end{bmatrix} \begin{bmatrix} \Phi_x \\
\Phi_u
\end{bmatrix} - I \right\|_F \right\}
\end{array}
\end{aligned}
\tag{43}
\]

We assume, for simplicity, that $\Delta_{i,j} \in \Delta_s, \forall i,j = 0, ..., T$. Now, the robust counterpart of P_6 is:

$$\begin{align*}
\min_{\Phi_x, \Phi_u} & \quad \max_{\Delta_{i,j} \in \Delta_s} \sqrt{R_{i,j}} \left\| \begin{bmatrix} Q_{i,j}^{1/2} & R_{i,j}^{1/2} \end{bmatrix} \begin{bmatrix} \Phi_x & \Phi_u \end{bmatrix} \right\|_F \\
\text{s.t.} & \quad \{A_{i,j} \leq \frac{2\varepsilon}{\sqrt{N}} T_i, i \geq j, i,j = 1, ..., T \} \geq 1 - \epsilon
\end{align*}$$

(45)

Note that the uncertain constraints in P_7 (45) are linear inequalities, but involve an infinite number of constraints, since Δ is uncountable. As a data-driven relaxation of P_7 with a finite (N-dimensional) set of all possible realizations. Note that this approach results in a less conservative solution compared to a robust approach. To this end, P_7 should be first rephrased in epigraph form [40] as

$$\begin{align*}
\min_{\Phi_x, \Phi_u, \alpha} & \quad \alpha \\
\text{s.t.} & \quad \sqrt{R_{i,j}} \left\| \begin{bmatrix} Q_{i,j}^{1/2} & R_{i,j}^{1/2} \end{bmatrix} \begin{bmatrix} \Phi_x & \Phi_u \end{bmatrix} \right\|_F \leq \alpha \\
& \quad \{A_{i,j} \leq \frac{2\varepsilon}{\sqrt{N}} T_i, i \geq j, i,j = 1, ..., T \} \geq 1 - \epsilon
\end{align*}$$

(46)

Now, the main idea is to use the following sampled counterpart (i.e., the scenario-based problem) instead of the hard optimization P_8.

$$\begin{align*}
\Phi_x^{SC}, \Phi_u^{SC} = \arg\min_{\Phi_x, \Phi_u, \alpha} & \quad \alpha \\
\text{s.t.} & \quad \sqrt{R_{i,j}} \left\| \begin{bmatrix} Q_{i,j}^{1/2} & R_{i,j}^{1/2} \end{bmatrix} \begin{bmatrix} \Phi_x & \Phi_u \end{bmatrix} \right\|_F \leq \alpha \\
& \quad \{A_{i,j} \leq \frac{2\varepsilon}{\sqrt{N}} T_i, i \geq j, i,j = 1, ..., T \} \geq 1 - \epsilon
\end{align*}$$

(47)

where $\Delta_k, k = 1, ..., N$ are i.i.d. samples extracted. Moreover, the near-optimal solutions Φ_x^{SC} and Φ_u^{SC} of this optimization problem are random variables that depend on the random extractions $\Delta_1, ..., \Delta_N$.

Remark 1: It is worth noting that P_9 is efficiently solvable since it is now a convex optimization problem with a finite number of constraints.

The following standard assumption is routinely made in the literature on the scenario approach [41]–[43].

Assumption 1: $\forall N \geq N_{SC}^*$, P_9 has a unique optimal solution $\Phi_{SC}^* := \{\Phi_x^{SC}, \Phi_u^{SC}\}$.

Theorem 3: Under Assumption 1 and given $\beta \in (0, 1)$, if the number of scenarios N satisfies the relation

$$N \geq N_{SC}^* = \left\lceil \frac{4}{\beta} \log \frac{1}{1-\beta} + n(n+n)T^2 \right\rceil$$

(48)

then Φ_{SC}^* satisfies the chance-constrained program [47] with confidence $(1 - \beta)$.

Proof. The proof follows from the key results in [37] (i.e., Theorem 1 and Corollary 1) and [44] (i.e., Proposition 2.1).

Remark 2: Note that Theorem 3 states that the solution Φ_{SC}^* is feasible for all the constraints in P_9 with high probability $(1 - \beta)$, except possibly for those in a set having probability measure smaller than $\epsilon \in (0, 1)$ [45]. Despite any probability distribution on the uncertainties, Theorem 3 provides a promising tool to compute a sufficient number of scenarios N_{SC}^* that guarantee a certain level of robustness. In practice, the β value can be fixed at a pretty small number (e.g., 10^{-7}), without increasing the number of scenarios significantly [41].

IV. Simulation

The efficiency of the proposed algorithm is verified using the following linear dynamical system given by

$$x_{t+1} = (0.8 + \varepsilon_t)x_t + 0.5u_t$$

and the performance function is chosen as $J = \sum_{t=0}^{T} (u_t^2 + \varepsilon_t^2)$. The i.i.d. random variables $\{\varepsilon_t\}_{t=1}^{T}$ are generated by a truncated normal distribution with mean $\mu = 0$ and covariance $\sigma = 0.5$.

The trajectory of state and the designed control input for the case of 1000 scenario samples are displayed in Figs. [1a] and [1b], respectively. Fig. [1a] shows the performance as a function of number of scenarios. Choosing more scenario samples, as seen in Fig. [1a], reduces the mean and variance of performance significantly and, as a result, will lead to better results.

V. Conclusion

In this paper, a data-driven method is developed for solving the closed-loop state-feedback control of a discrete-time LQR problem for systems affected by multiplicative norm bounded model uncertainty. To synthesize a tractable robust state feedback policy, first, we adopted the recently developed system-level synthesis framework to recast the problem at hand over system responses. Then, we reformulated this optimization problem as a chance-constrained program (CCP) in which the guarantees are intended in a probabilistic sense. To approximately solve the CCP without the requirement of knowing the probabilistic distribution of the uncertainty in the system dynamics matrices, we utilized the scenario approach that provides probabilistic guarantees based on a finite number of samples and results in a convex optimization program with moderate computational complexity. Finally, numerical simulations were presented to illustrate the theoretical findings.

References

[1] R. E. Kalman et al., “Contributions to the theory of optimal control,” *Bol. soc. mat. mexicana*, vol. 5, no. 2, pp. 102–119, 1960.
[2] B. D. Anderson and J. B. Moore, “Optimal control: linear quadratic methods,” 1990.
[3] J. C. Doyle, “Guaranteed margins for lqg regulators,” *IEEE Trans. Automat. Contr.*, vol. 23, no. 4, pp. 756–757, 1978.
[4] A. Scampicchio, A. Arawkin, and G. Pillonetto, “Stable and robust lqr design via scenario approach,” *Automatica*, vol. 129, p. 109571, 2021.
[5] J. Anderson, J. C. Doyle, S. H. Low, and N. Matni, “System level synthesis,” *Annu. Rev. Control*, vol. 47, pp. 364–393, 2019.
[6] A. Xue and N. Matni, “Data-driven system level synthesis,” in *Learning for Dynamics and Control*, PMLR, 2021, pp. 189–200.
[7] A. Bemporad and M. Morari, “Robust model predictive control: A survey,” in *Robustness in identification and control*. Springer, 1999, pp. 207–226.
Fig. 1: The performance, state, and control trajectories. (a) The performance function versus the number of scenarios N. (b) System state trajectory, and (c) control input u. The shaded area and dashed line represent the results between [10%, 90%] quantiles and the means across 25 independent experiments.

[8] D. M. Raimondo, D. Limon, M. Lazar, L. Magni, and E. F. Ndez Camacho, “Min-max model predictive control of nonlinear systems: A unifying overview on stability,” Eur. J. Control, vol. 15, no. 1, pp. 5–21, 2009.

[9] M. B. Saltık, L. Özkan, J. H. Ludlage, S. Weiland, and P. M. van den Hof, “An outlook on robust model predictive control algorithms: Reflections on performance and computational aspects,” J. Process Control, vol. 61, pp. 77–102, 2018.

[10] B. Gravell, P. M. Esfahani, and T. Summers, “Learning robust control for lqr systems with multiplicative noise via policy gradient,” arXiv, arXiv:1905.13547, 2019.

[11] P. Coppens, M. Schuurmans, and P. Patrinos, “Data-driven distributionally robust lqr with multiplicative noise,” in Learning for Dynamics and Control. PMLR, 2020, pp. 521–530.

[12] B. J. Gravell, P. M. Esfahani, and T. H. Summers, “Robust control design for linear systems via multiplicative noise,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 7392–7399, 2020.

[13] B. Pang and Z.-P. Jiang, “Robust reinforcement learning for stochastic linear quadratic control with multiplicative noise,” Trends in Nonlinear and Adaptive Control, pp. 249–277, 2022.

[14] S. Dean, H. Mania, N. Matni, B. Recht, and S. Tu, “On the sample complexity of the linear quadratic regulator,” Found. Comput. Math., vol. 20, no. 4, pp. 633–679, 2020.

[15] Y. Chen and J. Anderson, “System level synthesis with state and input constraints,” in 2019 IEEE 58th Conference on Decision and Control (CDC). IEEE, 2019, pp. 5258–5263.

[16] Y. Liu and C. N. Jones, “From system level synthesis to robust closed-loop data-driven predictive control,” arXiv, arXiv:2102.06553, 2021.

[17] S. Chen, H. Wang, M. Morari, V. M. Preciado, and N. Matni, “Robust closed-loop model predictive control via system level synthesis,” in Proc. IEEE Conf. Decis. Control. IEEE, 2020, pp. 2152–2159.

[18] N. Matni and A. A. Sarma, “Robust performance guarantees for system level synthesis,” in Proc. Am. Control Conf. IEEE, 2020, pp. 779–786.

[19] W. Wonham, “Optimal stationary control of a linear system with state-dependent noise,” SIAM J. Control., vol. 5, no. 3, pp. 486–500, 1967.

[20] M. Bujarbaruah, U. Rosolia, Y. R. Stürz, X. Zhang, and F. Borrelli, “Robust mpc for linear systems with parametric and additive uncertainty: A novel constraint tightening approach,” arXiv, arXiv:2007.00930, 2020.

[21] J. S. Li, C. A. Alonso, and J. C. Doyle, “Frontiers in scalable distributed control. Sis, mpc, and beyond,” in Proc. Am. Control Conf. IEEE, 2021, pp. 2720–2725.

[22] J. Sieber, S. Bennani, and M. N. Zeilinger, “A system level approach to tube-based model predictive control,” IEEE Contr. Syst. Lett., 2021.

[23] S. Chen, N. Matni, M. Morari, and V. M. Preciado, “System level synthesis-based robust model predictive control through convex inner approximation,” arXiv, arXiv:2111.05059, 2021.

[24] S.-H. Tseng, C. A. Alonso, and S. Han, “System level synthesis via dynamic programming,” in Proc. IEEE Conf. Decis. Control. IEEE, 2020, pp. 1718–1725.

[25] A. Prékopa, Stochastic programming. Springer Science & Business Media, 2013, vol. 324.

[26] G. C. Calafiore, F. Dabbene, and R. Tempo, “Research on probabilistic methods for control system design,” Automatica, vol. 47, no. 7, pp. 1279–1293, 2011.

[27] X. Geng and L. Xie, “Data-driven decision making with probabilistic guarantees (part 1): A schematic overview of chance-constrained optimization,” arXiv, arXiv:1903.10621, 2019.
This figure "J1000.jpg" is available in "jpg" format from:

http://arxiv.org/ps/2204.02883v1
This figure "X1000.jpg" is available in "jpg" format from:

http://arxiv.org/ps/2204.02883v1
This figure "u1000.jpg" is available in "jpg" format from:

http://arxiv.org/ps/2204.02883v1