Cause Clue Clauses: Error Localization using Maximum Satisfiability

Manu Jose and Rupak Majumdar
University of California, Los Angeles
MPI-SWS, Kaiserslautern
{manu, rupak}@mpi-sws.org

Abstract

Much effort is spent everyday by programmers in trying to reduce long, failing execution traces to the cause of the error. We present a new algorithm for error cause localization based on a reduction to the maximal satisfiability problem (MAX-SAT), which asks what is the maximum number of clauses of a Boolean formula that can be simultaneously satisfied by an assignment. At an intuitive level, our algorithm takes as input a program and a failing test, and comprises the following three steps. First, using symbolic execution, we encode a trace of a program as a Boolean trace formula which is satisfiable iff the trace is feasible. Second, for a failing program execution (e.g., one that violates an assertion or a post-condition), we construct an unsatisfiable formula by taking the trace formula and additionally asserting that the input is the failing test and that the assertion condition does hold at the end. Third, using MAX-SAT, we find a maximal set of clauses in this formula that can be satisfied together, and output the complement set as a potential cause of the error.

We have implemented our algorithm in a tool called BugAssist for C programs. We demonstrate the surprising effectiveness of BugAssist on a set of benchmark examples with injected faults, and show that in most cases, BugAssist can quickly and precisely isolate the exact few lines of code that elucidate the cause of the problem. We describe a novel algorithm for fault localization for software. The input to our algorithm is a program, a correctness specification (either a post-condition, an assertion, or a “golden output”), and a program input and corresponding execution (called the failing execution) that demonstrates the violation of the specification. The output is a minimal set of program statements such that there exists a way to replace these statements such that the failing execution is infeasible.

Internally, our algorithm uses symbolic analysis of software based on Boolean satisfiability, and reduces the problem to maximum Boolean satisfiability. It takes as input a program and a failing test case and performs the following three steps. First, it constructs a symbolic trace formula for the program path executed by the test input. This is a Boolean formula in conjunctive normal form such that the formula is satisfiable iff the program execution is feasible (and every satisfiable assignment to the formula correspond to the sequence of states in a program execution). The trace formula construction proceeds identically to symbolic execution or bounded model checking algorithms.

Second, it extends the trace formula by conjoining it with constraints that ensure the initial state satisfies the values of the failing test and the final states satisfy the program post-condition that was failed by the test. The extended trace formula essentially states that starting from the test input and executing the program trace leads to a state satisfying the post-condition. Obviously, the extended trace formula for a failing execution must be unsatisfiable.

Third, it feeds the extended trace formula to a maximum satisfiability solver. Maximum satisfiability (MAX-SAT) is the problem of determining the maximum number of clauses of a given Boolean formula that can be satisfied by any given assignment. Our tool computes a maximal set of clauses of the extended trace formula that can be satisfied, and take the complement of this set as a candidate set of clauses that can be changed to make the entire formula satisfiable. Since each clause in the extended trace formula can be mapped back to a statement in the code, this identifies a candidate localization of the error in terms of program statements. Note that there may be several minimal sets of clauses that can be found in this way, and we enumerate each minimal set as candidate localizations for the user. In our experiments, we have found that the number of minimal sets enumerated in this way remains small.

More precisely, our algorithm uses a solver for partial MAX-SAT. In partial MAX-SAT, the input clauses can be marked hard or soft, and the MAX-SAT instance finds the maximum number of soft clauses that can be satisfied by an assignment which satisfies every hard clause. In our algorithm, we mark the input constraints (that ensure that the input is a failing test) as well as the post-condition are hard. This is necessary; otherwise, the MAX-SAT algorithm can trivially return that changing an input or changing the post-condition can eliminate the failing execution. In addition, in our implementation, we group clauses arising out of the same program statement together, and keep the resulting MAX-SAT instance small.

We have implemented our algorithm in a tool called BugAssist for fault localization of C programs. The tool, Eclipse plugin, and test cases can be downloaded from our web page http://bugassist.mpi-sws.org

1 The tool, Eclipse plugin, and testcases can be downloaded from our web page http://bugassist.mpi-sws.org
a C program with an assertion, and a set of failing test cases, and returns a set of program instructions whose replacement can remove the failures. It builds on the CBMC bounded model checker for construction of the trace formula and an off-the-shelf MAX-SAT solver [21] to compute the maximal set of satisfied clauses. We demonstrate the effectiveness of BugAssist on 5 programs from Siemens set of benchmarks with injected faults [8]. The TCAS program in the testsuite is run with all the faulty versions in detail to illustrate the completeness of the tool. In each case, we show that BugAssist can efficiently and precisely determine the exact (to the human) lines of code that form the “bug”. The other 4 programs are used to show the scalability of the tool by using error trace reduction methods for real world programs.

We can extend our algorithm to suggest fixes for bugs automatically, by noticing that the MAX-SAT instance can be used not only to localize problems, but also to suggest alternate inputs that will eliminate the current failure. In general, this is an instance of Boolean program synthesis, and the cost of the search can be prohibitive. However, we have experimentally validated that automatic suggestions for fixes is efficient when we additionally restrict the search to common classes of programmer errors, such as replacement of comparison operators (e.g., \(<\) by \(\leq\)) or off-by-one arithmetic errors. For these classes of systems, BugAssist can automatically create suggestions for program changes that eliminate the current failure.

Error localization is an important step in debugging, and improved automation for error localization can significantly speed-up manual debugging and significantly improve the usability of automatic error-detection tools (such as model checkers and concolic testers). Based on our implementation and experimental results, we feel BugAssist is a simple yet precise technique for error localization that effectively leverages efficient SAT solving techniques for error detection and applies them to error localization.

Related Work. Fault localization for counterexample traces has been an active area of research in recent years [12, 13, 14, 23, 24]. Most papers perform localization based on multiple program runs, both successful and failing, and defining a heuristic metric on program traces to identify locations which separate failing runs from successful ones.

Griesmayer et al. [12] gives a fault localization algorithm for C programs by constructing a modified system that allows a given number of expressions to be changed arbitrarily and using the counterexample trace from a Model Checker. This requires instrumenting each expression \(e_i\) in the program with \((\text{diag} == i\text{?}\text{nondet}() : e_i)\), where \text{diag} is a non deterministic variable and \text{nondet}() is a new variable with the size equal to that of \(e_i\). The number of diagnosis variables is equal to the number of components that are faulty in the program and need to be analyzed before creating the modified system. So each expression in the program requires a new variable in the modified system along with the diagnosis variables which could blow up the size of the instrumented program under consideration. In this work we avoid these drawbacks using selector variables and efficient MAX-SAT instance formulation using clause grouping technique.

Many existing work [13, 23, 22] on fault localization uses the difference between faulty trace and a number of successful traces. The work of Ball at el. [1] use multiple calls to a model checker and compare the counterexamples to a successful trace. The faults are those transitions that does not appear in a correct trace. Our approach does not require comparing the traces or a successful run of the program as benchmark. We report the exact locations where the bug could be corrected instead of a minimal code fragment or a fault neighbor location.

An alternate approach to reduce the cognitive load of debugging is delta debugging [22], where multiple runs of the program are used to minimize the “relevant” portion of the input. We believe our technique is orthogonal to delta-debugging and its variants, and can be composed profitably.

While we describe our algorithm in pure symbolic execution terms, our algorithm fits in very well with concolic execution [3][11][26], where symbolic constraints are generated while the concrete test case is run. Our motivation for using CBMC was the easy integration with MAX-SAT solvers, but in our implementations, we performed some optimizations (such as using concrete values for external library calls in the trace formula and constant-folding input-independent parts of the constraints) similar to concolic execution.

The motivation to use unsatisfiability cores is their recent success in hardware circuit design debugging described in Safarpour et al. [5][25]. MAX-SAT based debugging is used as a framework for debugging gate level VLSI circuits. Unsatisfiability cores have also been used to pin point over-constrains in declarative models [27].

2. Motivating Example

Program 1 A simple example.

```c
int Array[3];
int testme(int index)
{
    ...................
    1 if (index != 1) /* Potential Bug 2 */
    2 index = 2;
    3 else
    4 index = index + 2; /* Potential Bug 1 */
    ...................
    5 i = index;
    6 return Array[i]; //assert(i >= 0 && i < 3)
}
```

We start with an informal description of BugAssist. Consider the function `testme` in Program 1 which returns a value at a new location from an array of size 3. The function takes in two arguments: the array itself and the current index value. The function does some computation on the current index value (shown in lines 1–4) to find the new index and returns the value at new index in line 6. The array dereference on line 5 generates implicit assertions about the array bounds shown in line 6.

The program has a bug. If the input `index` is equal to 1, then the else-branch sets `index` to 3, and the subsequent array dereference on line 6 is out of bounds. Testing the program with this input will find the bug, and return a program trace that shows the array bounds violation at the end. But testing or model checking returns a full execution path, including details irrelevant to the specific bug, and do not give the reason for failure, or the cause of the bug. The localization algorithm in BugAssist helps to nail down the issue to a few potential bug locations in the program where the correction has to be made.

BugAssist works as follows. Starting with the test input `index = 1` and the corresponding program trace:

```plaintext
assume(index = 1); index = index + 2; i = index;
```

it first constructs a symbolic trace formula \(TF\) encoding the execution trace:

\[TF \equiv index_1 = 1 \land index_2 = index_1 + 2 \land i = index_2 \]
We assume that integers and integer operations are encoded in a bit-precise way, and without loss of generality, the trace formula is a Boolean formula in conjunctive normal form. We omit the standard encoding from imperative programs to Boolean formulas (see, e.g., [5]).

Clearly, at the end of the trace, the assertion
\[1 < 3 \]
does not hold. Consider now the formula
\[\Phi \equiv \text{index} = 1 \land \text{test input} \land X_\text{trace formula} \land 1 < 3 \]
which is unsatisfiable. Intuitively, the formula captures the run of the program starting with the error-inducing test input, and asserts that the assertion holds at the end (a contradiction, by choice of the input).

We convert \(\Phi \) to conjunctive normal form (CNF) and feed it to a partial MAX-SAT solver [21]. A partial MAX-SAT solver takes as input a Boolean formula in CNF, where each clause is marked “hard” or “soft” and returns the maximum number of soft clauses (as well as a subset of clauses of maximum cardinality) that can be simultaneously satisfied by an assignment satisfying all the hard clauses. In case of \(\Phi \), we make the constraints coming from the test input (\text{index} = 1) and the assertion (\(1 < 3 \)) as hard, and leave the clauses in the trace formula soft. Intuitively, we ask, given that the input and the assertion are fixed, which parts of the trace formula are consistent with the input and the assertion? The partial MAX-SAT solver then tries to find a set of soft clauses of maximum cardinality which can be simultaneously satisfied while satisfying all the hard clauses. The Complement of a set of maximum satisfiability clauses (CoMSS) gives a set of soft clauses of minimum cardinality whose removal would make \(\Phi \) satisfiable, i.e., consistent with the view that the test input does not break the assertion. We use this set as potential locations of the program error.

In addition, by grouping together clauses arising out of the same program statement, we can map the clauses back to the lines of the program. Using clause grouping, described in Section 3, each line in the program is mapped to a bunch of its soft clauses which are enabled and disabled simultaneously.

In our example, the hard and soft clauses are:

Hard: \(\text{index} = 1 \land 1 < 3 \)

Soft: \(\text{TF} \)

MAX-SAT returns that a possible CoMSS maps to the line 4 in the program. This is the unsatisfiable core whose removal or correction can satisfy the formula \(\Phi \). We claim that a potential error location for the program and a fix would be to change the constant to any integer less than 2 and greater than -2.

Suppose this is not where programmer wants to make a correction and require other locations where he could fix the bug. We iterate by making another call to MAX-SAT, but this time make clauses arising out of line 4 hard, i.e., asking the MAX-SAT for possible CoMSS where line 4 is kept unchanged. This reveals another potential bug location in the code. We repeat this process until MAX-SAT gives the problem to be unsatisfiable and no more clauses can be removed to make this problem satisfiable. The error locations reported by BugAssist are underlined in Program 1. On a closer look, these are all the places where the correction can be made. Either changing the constant value at line 4 or the conditional statement at line 1 can fix the program. BugAssist is available as an Eclipse plug-in, making it easy for the programmer to interactively find potential error points.

Notice that our technique is stronger than simply taking the backward slice of the program trace, and gives fine-grained information about potential error locations. The backward slice for this trace contains all the lines 1, 4, and 5. Our algorithm returns lines 1 and 4 separately as potential error locations.

So far we have focused on error localization. The methodology can be modified to suggest program repairs as well. Intuitively, the fault localization returns a set of program commands that are likely to be wrong. One can then ask, what are potential replacements to these commands that fixes the error? In general, the space of potential replacements is large, and searching this space efficiently is a difficult problem of program synthesis [28, 29]. Instead, we take a pragmatic approach and look for possible fixes for common programmer errors.

Specifically, we demonstrate our idea by fixing “off by one” errors. In this example, the error occurs due to accessing an out of bound array element by one. When BugAssist comes back with line 4 as a potential bug location, we try to “fix” the bug by changing the constant whose new value is one off its current value. So we change the value 2 in this line to 3 or 1 and check if either of these values satisfy the properties. This involves modifying the trace formula appropriately and checking if the failing program execution becomes infeasible with either change. So in this case we create two programs with new constants at line 4 as follows.

\[
\begin{align*}
\text{Program1: } & \text{index} = \text{index} + 3 \times \\
\text{Program2: } & \text{index} = \text{index} + 1 \sqrt{3}
\end{align*}
\]

The new value 1 ensures that the error path is infeasible, and this can be used as a suggestion for repair for the program. The same procedure can be used to check for operator errors like use of plus instead of minus, division instead of multiplication, performing assignment instead of equality test, etc., which are common programmer error patterns.

3. Preliminaries

3.1 Programs: Syntax and Semantics

We describe our algorithm on a simple imperative language based on control-flow graphs. For simplicity of description, we omit features such as function calls or pointers. These are handled by our implementation.

A program \(G = (X, \mathcal{L}, l_0, \mathcal{T}) \) consists of a set \(X \) of Boolean-valued variables, a set \(\mathcal{L} \) of control locations, an initial location \(l_0 \in \mathcal{L} \) and a set \(\mathcal{T} \) of transitions. Each transition \(\tau \in \mathcal{T} \) is a tuple \((l, \rho, l')\) where \(l \) and \(l' \) are control locations and \(\rho \) is a constraint over free variables from \(X \cup X' \), where the variables from \(X' \) denote the values of the variables from \(X \) in the next state.

For a constraint \(\rho \), we sometimes write \(\rho(X, X') \) to denote that the free variables in \(\rho \) come from the set \(X \cup X' \).

Our notation is sufficient to express common imperative programs (without function calls): the control flow structure of the program is captured by the graph of control locations, and operations such as assignments \(x := e \) and assumes \(\text{assume}(p) \) captured by constraints \(x' = e \land \{y' = y \mid y \in X \setminus \{x\}\} \) and \(p \land \{x' = x \mid x \in X\} \) respectively.

A state of the program \(\mathcal{P} \) is a mapping from variables in \(X \) to Booleans. We denote the set of all program states by \(v.X \). A computation of the program is a sequence \((m_0, s_0), (m_1, s_1), \ldots \in (\mathcal{L} \times v.X)\), where \(m_0 = l_0 \) is the initial location, and for each \(i \in \{0, \ldots, k - 1\} \), there is a transition \((m_i, \rho_i, m_{i+1}) \in \mathcal{T}\) such that \((s_i, s_{i+1})\) satisfies the constraint \(\rho_i \).

An assertion \(p \) is a set of program states. A program violates an assertion \(p \) if there is some computation \((m_0, s_0) \ldots (m_k, s_k)\) such that \(s_k \) is not in \(p \). Typically, assertions can be given as language-level correctness requirements (e.g., “no null pointer dereference”), as programmer-specified asserts in the code, or as post-conditions.
3.2 Trace Formulas

A trace σ is a finite sequence $(m_0, p_0, m_1), (m_1, p_1, m_2), \ldots, (m_{k-1}, p_{k-1}, m_k)$ of transitions in T such that $m_0 = s_0$. The trace σ is feasible if there exists a computation $(s_0, s_0) \ldots (s_k, s_k)$ such that for each $i \in \{0, \ldots, k-1\}$, we have (s_i, s_{i+1}) satisfies p_i.

Given a trace σ, we define the trace formula $TF(\sigma)$ as the conjunction

$$\bigwedge_{i=0}^{k-1} p_i(X_i, X_{i+1})$$

where X_i is a copy of the variables in X for each $i \in \{0, \ldots, k\}$ and $p_i(X_i, X_{i+1})$ denotes the constraint $p_i(X, X')$ with the variables in X substituted by corresponding variables in X_i and the variables in X' substituted by corresponding variables in X_{i+1}.

Note that $TF(\sigma)$ is satisfiable iff the trace σ is feasible.

While we have described Boolean programs, a C program with finite-bitwidth data, e.g., 32-bit integers, can be converted into an equivalent Boolean program by separately tracking each bit of the state, and by interpreting fixed-width arithmetic and comparison operators as corresponding Boolean operations on each individual bit. We omit the (standard) details, see e.g., [63].

3.3 Partial Maximum Satisfiability

Given a Boolean formula in conjunctive normal form, the maximum satisfiability (MAX-SAT) problem asks what is the maximum number of clauses that can be satisfied by any assignment [19]. The MAX-SAT decision problem is NP-complete; note that a formula (MAX-SAT) problem asks what is the maximum number of soft clauses which may be satisfied under this constraint.

Recent years have seen a tremendous improvement in engineering efficient solvers for MAX-SAT and pMAX-SAT. The widely used algorithm for MaxSAT is based on branch-and-bound search [18], supported by effective lower bounding and dedicated inference techniques. Recently, unsatisfiability based MaxSAT solvers by iterated identification of unsatisfiable sub-formulas was proposed in [10]. This approach consist of identifying unsatisfiable sub-formulas and relaxing clauses in each unsatisfiable sub-formulas by associating a relaxation variable with each such clause. Cardinality constraints are used to constrain the number of relaxed clauses [20][21].

In addition to solving the decision problem, MAX-SAT solvers also give a set of clauses of maximum cardinality that can be simultaneous satisfied. The complement of these maximum satisfiable subsets (MSS) are a set of clauses whose removal makes the instance satisfiable(CoMSS). Since the maximum satisfiability subset is maximal the complement of this set is minimal [19].

In this work we make use of these CoMSS which refers to the clauses whose removal can make the system satisfiable. Since we represent a C program as a boolean satisfiability problem with constraints and properties, these CoMSS are oracles for potential bug locations.

3.4 Efficient Compilation to MAX-SAT

A single transition can lead to multiple clauses in the conjunctive normal form of the trace formula. In this section we suggest a method to simplify the MAX-SAT problem by grouping together clauses arising out of a single source-code statement. We now give a simple way of grouping clauses arising out of the same program operation.

For each transition $\tau = (m, p, m') \in T$, we introduce a new Boolean variable λ_τ. Then, we augment each clause arising out of p with λ_τ. For example, suppose $(c_1 \lor \ldots) \land (c_1' \lor \ldots)$ is a conjunctive normal form representation of p, then the augmented representation is $(\neg \lambda_\tau \lor c_1' \lor \ldots) \land (\neg \lambda_\tau \lor c_1 \lor \ldots)$.

The augmentation with λ_τ has the following effect. When λ_τ is assigned true, the original clauses in the CNF representation of p must be satisfied, while when λ_τ is assigned false, each augmented clause is already satisfied. This helps to enable and disable the clauses corresponding to each transition by setting and unsetting the λ_τ variable respectively. The λ-variables are called selector variables.

We use a representation of trace formulas using selector variables. Instead of Equation (1) for the trace formula, we use the form:

$$\bigwedge_{i=1}^{k-1} \text{CNF}(p_i(X_i, X_{i+1}), \lambda_{\rho_i}) \land \bigwedge_{(s, \tau) \in T} \lambda_{\rho_\tau}$$

where CNF(p_i, λ_{ρ_i}) denotes the augmented representation for the CNF for p_i, and we label the two parts of the formula TF_1 and TF_2 for later reference. Intuitively, clauses from TF_1 will be marked as hard clauses to the MAX-SAT solver, and clauses from TF_2 will be marked soft. Thus, the MAX-SAT solver will explore the space of possible program statements whose replacement will cause the error to go away.

Notice that we allocate a selector variable for each transition of the program, so the number of selector variables is bounded by the size of the program. However, in a trace, the same program transition may occur multiple times (e.g., on unrolling a loop), and there is a distinct clause for each of these occurrences all tagged with the same selector variable.

We use the abstraction technique on transitions, which correspond to line numbers of code in our implementation, but it is also possible to group the clauses from modules and recursively narrow down the problem to a module, and then to a line.

4. Algorithm

We now describe the algorithm for BugAssist. There are two phases of the algorithm: first, generate a failing execution (and a test demonstrating a failing execution), and second, find a minimal set of transitions that can render the failing execution infeasible.

4.1 Generating Traces

In general, any method of generating a failing execution of a program can be used as a starting point of our algorithm. In our implementation, we use two approaches. In case the program comes with a test-suite, we generate failing executions from failed tests. In case there are no available tests, we use bounded model checking [2][8] to systematically explore program executions and look for potential assertion violations. If a failing execution is found, the bounded model checking procedure can generate a concrete initial state that leads to the assertion violation.

4.2 The Localization Algorithm

Algorithm 1 shows the BugAssist localization algorithm. Line 1 calls the procedure to generate failing executions for the assertion. If no failing executions are found, the procedure returns. Otherwise, we get a concrete test case test as well as a program trace σ demonstrating the failure of the assertion.

Using the test, the failing execution, and the assertion, we construct two formulas (lines 5,6). The formula Φ_H consists of
BugLoc returns a singleton set for the corresponding CoMSS, so that in subsequent it-
ations in the code, and is output to the programmer.

To avoid this λ of these clauses in a different clause combination. To avoid this
multiple locations. (This does happen in experiments.) Adding each λ be fixed by changing any one line but must be changed at mul-
tiple locations. (This does happen in experiments.)

Formally, for a program state (lines 13) and make the λ effect of changing each subset of transitions to see if the failing
iteration, we add a new hard clause λ of the trace of the formula from Equation (2).
The formula λ s is the second part TF(σ) of the trace formula from Equation (2). Notice that λ H ∧ λ S is unsatisfiable. (Intuitively, it says that if
the program is run with the test input test, then at the end of the execution trace the assertion λ holds.)

In subsequent calls to pMAX-SAT, clauses in λ H are treated as hard clauses, and clauses in λ S are treated as soft clauses. Intuitively, treating λ S as soft clauses enables us to explore the effect of changing each subset of transitions to see if the failing transition can be made infeasible.

The search for localizations is performed in the while loop of lines 7–14. During each iteration of the while loop, we call the pMAX-SAT solver and get a CoMSS for the current (λ H, λ S) pair. Each of these clauses returned by CoMSS gives potential bug locations in the code, and is output to the programmer.

Whenever we report a potential bug, we add a hard blocking clause for the corresponding CoMSS, so that in subsequent it-
ations, this CoMSS is not explored again as a potential cause of error. In many of our experiments, the CoMSS returns a single λ i clause as the indicator of error. In general, it returns more than one selector variable which indicates that the program cannot be fixed by changing any one line but must be changed at multiple locations. (This does happen in experiments.) Adding each of these λ i variables as a new hard clause blocks the occurrence of these clauses in a different clause combination. To avoid this problem, we compute a blocking clause β (lines 13) and make the blocking clause hard. For example, suppose the CoMSS returned BugLoc = λ 1, λ 2, . . . , λ k. This means that the bug can be fixed by making simultaneous changes to these k locations. In the next iteration, we add a new hard clause (λ 1 ∨ . . . ∨ λ k) which ensures that this particular CoMSS is not encountered again, but other combi-
inations of these locations are still allowed.

5. Extensions

We now describe two extensions to the basic algorithm.

5.1 Extension 1: Automated Repair

BugAssist can be used for automated repair of programs, as it boils down the problem to a few potential bug locations in the code. After analysing the problem lines, we get an idea of the kind of error that could have happened. For example, if there is a constant in the line we could try to synthesize a new constant which can fix the code λ 12 or if there is an operator, changing the operator might be a repair for the bug. We demonstrate this capability by fixing “Off-
By-One” λ 30 errors in the program. They are a common logical error involving discrete equivalent of a boundary condition. Usually programmer forgets that a sequence starts at zero rather than one (e.g. array indices in many languages like C, C++). It is also caused during boundary check conditions by using a < instead of ≤ or viceversa.

During the code parsing phase, we mark the lines which has constants in them. After running BugAssist on the code, it gives the potential correction locations and if that is a marked line we assign +−− 1 value to the constant in the code and ask if the new values can satisfy the properties.

The repair procedure is given in Algorithm 2 In line 1 the LocalizationProcedure is called to get the potential bug locations. The function GetConst(σ) checks if line i has a constant in it, if so it returns the value to σ. We change the constant σ at line i and creates two new programs P 1′ and P 2′ each with one off σ. The lines 6 and 8 check if the new programs contain an error trace. If one of those return an empty counter example it is declared as a repair to the buggy version of P.

Algorithm 2 The Off-By-One Repair Algorithm

Input: Buggy Program P and assertion p
Output: Either Fixed program or no Off-By-One error.
1: BugLoc = LocalizationProcedure(P, p)
2: for all λ i ∈ BugLoc do
3: if (λ i = GetConst(σ)) ̸= ∅ then
4: P 1′ = (P \ λ i) ∪ (λ i + 1)
5: P 2′ = (P \ λ i) ∪ (λ i − 1)
6: if GenerateCounterExample(P 1′, p) = ∅ then
7: return P 1′
8: if GenerateCounterExample(P 2′, p) = ∅ then
9: return P 2′
10: output “Off-By-One error not found”

4.3 Dealing with Multiple Locations

The BugAssist returns multiple locations where a correction is possible. The experimental results in section 4.3.1 shows that the number of potential error locations returned is quite small and in most cases the exact bug location is reported using a single failing execution. However, for reliability and further refinement of bug locations, we use a ranking machanism for bug locations by running the BugAs-
sist algorithm repeatedly with different failing program traces and ranking the bug locations based on their frequency of appearance in each of these runs. While using a model checker for counter ex-

5.2 Extension 2: Debugging Loops

The bugs in loop body can be burdensome to fix as they might be hidden in initial iterations and visible afterwards. The usual model checker methodology to verify properties is by loop unwinding which duplicates the loop body η times, where η is the unwinding limit. The programmer would be interested in knowing the iteration at which the assertion is violated to get a better idea about the cause
of the error. We suggest a method to match the potential iteration of the loop where the bug appeared first.

This is achieved using clause grouping and assigning weights to the soft clauses in the pMAX-SAT instance. Each time a loop body is duplicated (till bound η) we create a new selector variable. For example, for a transition $\tau = (m, \rho, m') \in T$ in the whole loop body, during κ unwinding we augment each clause arising out of ρ with $\lambda \kappa$. We add these selector variables as soft clauses to the MAX-SAT instance as before, but assign a weight as follows

$$\forall_{\kappa=1}^n \text{Weight}(\lambda^\kappa) = \alpha + \eta - \kappa$$

(3)

where α is the default weight for soft clauses. This makes sure that the clauses corresponding to the initial iterations of the loop gets a higher weightage. The weights assigned to the soft clauses in the pMAX-SAT is the penalty that has to be paid to falsify the clauses. The solver extracts the ComSS in such a way that the least iteration clauses are picked first as they weigh more than the latter iterations variables. This helps to pin-point the initial iteration of the loop which can reproduce the failure.

6. Experimental Results

![Figure 1. Basic Flow Diagram.](image)

We demonstrate the capability of the tool in this section by showing the results from running few programs from the Siemens test suite [8]. The Siemens test suite is widely used in the literature for bug localization study [12, 24]. In section 6.1 we analyse a simple program TCAS task [15] in depth and in section 6.2 we illustrate the scalability of our method using more complex examples.

Figure 1 gives an overview of the implementation of BugAssist. We used CBMC [6] as the model checker for generating failing traces and test inputs. Tests can also be fed directly. CBMC is a Bounded Model Checker for ANSI-C and C++ programs. For solving the pMAX-SAT instances, we used the Maximum Satisfiability with Unsatisfiable COREs (MSUnCORE) tool [21], which can handle large and complex weighted partial MaxSAT problems. The off-by-one error fix was synthesized using the Minisat2 [20] SAT engine. All our experiments are preformed on an 3.16 GHz Intel Core 2 Duo CPU with 7.6 GB RAM.

6.1 TCAS Experiments

The TCAS task of the Siemens test suite constitutes an aircraft collision avoidance system. It consists of 173 lines of code. The authors have created 41 versions of the program by injecting one or more faults. Their goal was to introduce faults that were as realistic as possible, based on their experience with real programs. We refer to the versions as “v1” to “v41”. The suite also contains 1600 test cases which are valid inputs for the program.

We created the golden outputs for these 1600 test cases by running the original version of the program. Then for each of the faulty versions, we ran those 1600 test vectors and matched with the golden outputs to segregate the failing test cases. Since the program does not contain a specfication, we use the failing test cases as counterexamples and the correct value as its specification.

Table 1 shows the result of running BugAssist on TCAS Test-suite. BugAssist ran 1440 times over all versions and 1367 of these runs pin-pointed the exact bug location, which is 95% of the total runs. The “TC” in the table is the number of failed test cases for each version. We ran BugAssist with each of these failing testcases as failing program executions and the golden output as the assertion to be satisfied. The column “Error#” shows the number of errors injected in to each version. Most versions have only 1 error but some have 2 and 3 errors. “Detect#” is the number of runs of BugAssist which detected the correct (human-verified) bug location. “SizeReduce%” is the percentage reduction in the code size given by the tool to locate the bug, the ratio of bug locations returned by the tool to the total number of lines in the code. The...
The Figure 2 gives an overview of a version of tcas (v2), with the bug at line 2, the original code is given in comment in line 3. The declaration and initialization of variables, functions and conditional statements that are not relevant to this bug are omitted in this example. The bug is injected in function Inhibit_Biased_Climb at line 2 by confusing the constant values. The original code is shown in comments at line 3. The program needs to satisfy the safety property alt_sep_test() should return DOWNWARD_RA and is given as assertion at line 37. There was 69 failing testcases for this version, we ran all these error traces and the tool returned 8 potential bug locations which are shown underlined in Figure 2.

There is no error reported in function Non_Crossing_Climb() because the call for that function at line 25 needs the function Own_Below_Threat() to be true, but that is false based on a comparison on the input parameters which are made hard clauses. Now lets take a closer look at the reported errors.

• The line 34 is too weak for a fix because changing the return value can make the assertion always true and that does not serve as a suitable fix.

• In line 26 making the need_downward_RA variable true can pick the right value for alt_sep. This decision is made by evaluation of the two functions in that statement. The Own_Above_Treat() is true based on the input and it is clear that the correction needs to be done to the function call Non_Crossing_Decend().

• The function Non_Crossing_Decend() has a call for the actual faulty function at line 14. It also shows the repair could be done by changing the return value of this function at line 19, or where the wrong evaluation happens at (lines 15,16).

• The actual bug at line 2 is reported as a potential bug location in all the runs. It is interesting that all the other locations were pointing to this line as the base cause and helps the programmer to make a fix at the root cause of the problem.

6.2 Larger Examples

To prove the scalability of our approach, and applicability in the presence of complex pointers and loops, we choose a bunch of other testcases with function calls, recursion, dynamic memory allocation, loops, and complex programming constructs. In the TCAS
testcases we did not apply any trace reduction method and used the entire boolean representation of the program. When the program size and complexity increases, the error trace formula becomes huge. We do a preliminary investigation as proof of concept on effectively reducing the error trace leveraging on the existing trace reduction techniques like program slicing (S), concolic simulation (C) and isolating failure-inducing input [33] using delta debugging (D).

Table 3 shows the result of running BugAssist on 4 other programs from the Siemens suite each with one injected fault. “Program” shows the name of the program from the Siemens test suite. “LOC#” is the total lines of code in the program and “Proc#”, the number of procedure calls. The kind of reduction technique is specified in “Reduc ” and “assign#” shows the size of the dynamic error trace as the number of assignment expressions before and after performing reduction technique. The “var#” and “clause#” is the number of boolean variables and clauses in the MAX-SAT representation of the error trace both before and after the reduction step mostly in millions (m). The number of potential fault locations returned by the tool is given under “Fault#”. The column “Time” shows the runtime in seconds (s) or hours (h).

We picked a faulty version of the program and one test input that reveals the bug. The golden output from the non-fault program with this same input is given as a post condition to this faulty program. Trace reduction techniques are applied to the program execution with this input to generate a smaller trace formula and given as input to BugAssist. The tool reported the exact bug location in all programs except one (Program 2: print_token). Trace reduction techniques significantly reduced the resulting trace and the size of the MAX-SAT instance, as shown in “Before” and “After” sizes in Table 3. The cardinality of the potential fault location set for each of these programs is very small. In all cases, the run time of the tool is also smaller than the human effort required to isolate the fault on the original trace. This shows the applicability of the approach in complex real world programs.

- The error inducing input to Program totinfo was the rows and columns of a matrix. The bug was in the constant value of a conditional operator on checking the product of rows and columns after a few other operations. A simple program slicing removed the assignments irrelevant to the assertion being checked and reduced the number of assignments to 21 with run time less than a second.

- Program print_token contained a recursive function “next_token” and the input to the program required the loops to be unrolled 8 times in the symbolic trace formula generation. This made the recursive function to have 64 instances in the symbolic trace and the number of assignments went up to 65K without concolic execution. Using concrete execution for the recursive function and variables brought down the number of assignment statements to 239. It should be noted that the limitation in using a concrete execution would be to assume that the bug is not present in the functions and loops which are concretized. However, this methodology fits well in programs using functions from a reliable library or for functions which are already verified to be bug free. This program did not show the the bug at the exact location, which was a comparison on a variable which got the value from the concrete execution. This was because the constant propagation used by the symbolic trace generator abstracted away the variable since its values was a constant. Instead, the error was shown in the assignment of the variable to the constant.

- The priority scheduler program 3 and 4, contained a large error inducing input which called a bunch of procedures before deviating from the golden output of the original program. The trace size was significantly reduced after isolating the error inducing input using delta debugging, but was still quite big (about 400 and 5400 assignment operations respectively). In program 3, the off-by-one error on flushing the number of processes was detected by the presence of a single process creation (leading to a trace of about 400 assignments). But program 4 required a much larger input and more procedures to expose the failure, resulting in a longer trace. It took BugAssist almost 11 hours to find the exact location (excluding the time taken for input minimization using delta debugging). Each execution of MAX-SAT took around 30 minutes to identify one potential fault location.

6.3 Fixing Off-By-One Errors

Program 2 The strncpy program with Off-By-One error.

```c
#define SIZE 15
void MyFunCopy (char *s)
{
  char buf[SIZE];
  memset(buf, 0, SIZE);
  strncpy(buf, s, SIZE);
  /*Last argument should be: SIZE-1 */
  return;
}

/*Standard C implementation of strncat*/
char *strncat(char *dest, const char *src, size_t n)
{
  char *ret = dest;
  while (*dest)
  {
    dest++;
    while (n--)
    {
      if (!(*dest++ = *src++))
        return ret;
    }
    *dest = 0; /*Problem cause*/
    return ret;
}
```
6.4 Finding Faulty Loop Iteration

The Program 3 shows an instance of the bug in the function MyFunCopy, which takes a string s and uses the strncat routine to copy the contents to a string buf of length SIZE. The lines 10–20 shows a standard C implementation of strncat. Note that after copying the n characters at line 17 it writes to the n + 1th location of the dest string at line 18. This require that the function MyFunCopy() should be using SIZE – 1 as the last argument to function strncat.

We ran BugAssist on this function turning on the check for accesses within array bounds. It located the line 6 as a potential bug location in the code. We have taken the assumption that the library functions cannot be modified and in the pMAX-SAT problem formulation we make constraints arising out of library functions hard clauses. This location is already marked during preprocessing as a statement with a constant; the BugAssist now tries to fix it by changing the value to SIZE – 1 and SIZE + 1 as explained in the Algorithm[2] This requires turning off constant propagation while converting the program in to boolean formula and collecting the literals in the CNF corresponding to each constant. Then we create two SAT instances with these new constant values and give the literals in the CNF corresponding to each constant. Then we create two SAT instances with these new constant values and give it to MiniSAT solver to check property violations. In this example it came up with a success on the value SIZE – 1 and is provided as a fix for the fault.

6.4 Finding Faulty Loop Iteration

Program 3 The nearest integer square root function with bug at line 12

```
1  int squareroot()
2  {
3      int val = 50;
4      int i = 1;
5      int v = 0;
6      int res = 0;
7      while(v < val)
8          {
9              v = v + 2*i + 1;
10             i = i+1;
11          }
12      res = i;
13      /*res = i - 1;*/
14      assert( (res*res <= val) &&
15               ((res+i)*(res+i) > val));
16      return res;
17  }
```

The program contains a function to find the nearest integer square root of a value. The post condition specified as assertion requires that the res should be the closest square root for val. The bug locations reported by BugAssist are underlined. The correct code is given as comment in line 13. Even though the actual bug is not in the loop body it requires a through analysis of the loop to conclude the right fix at line 12. We gave the unwinding limit 50 to CBMC and the BugAssist reports the 5th iteration of the loop as the first occurrence of line 10 fault.

7. Scalability and Limitations

The fault localization depends on the underlying boolean transform of the program to clauses. Therefore the code omission faults cannot be detected due to the non existence of those clauses, instead it tries to fix expressions with in the current program to validate the asserted property. In most of the cases a single error trace was sufficient to locate the exact error location and that shows the speed up of this method compared to the existing fault localization approaches. Each of the potential error locations are the unsatisfied clauses during each iteration of the MAX-SAT solver. Using an incremental SAT approach for each of these iterations can considerably bring down the running time of the tool. Moreover, there is a growing interest in extracting the unsatisfiable cores which can further aid this approach.

As shown in the experimental results, without applying any trace reduction technique this method may blow up the state space and may not be suitable for programs with complex calls or enormous lines of code. However, the tool would be handy in an Integrated Development Environment(IDE) where the programmer is interested in debugging the function under development. We can abstract away the rest of the program as input output relationship. This methodology can provide online hints for the programmer assisting in code development phase and is the motivation in developing the Eclipse plugin for the tool. Any error trace reduction method can also be applied orthogonally to this approach to bring down the trace.

8. Conclusions

Program analysis based on Boolean satisfiability has been extremely successful in detecting subtle errors in large software programs. We show that techniques based on Boolean MAX-SAT can be similarly effective in localizing program errors (as well as in identifying potential fixes).

Our technique can leverage engineering advances in modern SAT and MAX-SAT solvers, and as our experiments demonstrate, provide a precise and scalable solution to the error localization problem. While we have described error localization at the line-number (or program statement) level, our reduction to pMAX-SAT is general, and can be used at different levels of granularity. For example, to localize bugs at the module level, we can group clauses coming from the same module in the pMAX-SAT instance.

To improve the usability of our tool, we have built an Eclipse plugin to help the programmer to find bug locations during the development process. It marks the potential bugs in the code under development and assist in analyzing the right fix. The tool also marks the repair capabilities at a line and the user can also ask for automated repair like Off-By-One fix as discussed in this paper.

In future we would like to explore the various automated bug fixing capabilities by analyzing the bug locations. This requires predicting the type of error which has a maximum probability in a particular expression. It would be interesting to mine the software repositories for bug patterns and building a model for expression specific error types based on the repository history and use it for guiding BugAssist for an appropriate repair strategy. Another direction is to provide constructive suggestions to the programmer in fixing a bug. For example, Suppose the BugAssist comes up with an error statement which has a constant; showing the lower and upper bound of the values for that constant which holds the given properties help the programmer to provide a robust fix.
References

[1] Thomas Ball, Mayur Naik, and Siriram K. Rajaman. From symptom to cause: localizing errors in counterexample traces. *SIGPLAN Not.*, 38(1):97–105, 2003.

[2] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu. Symbolic model checking using sat procedures instead of bdd's. In *DAC ’99: Proceedings of the 36th annual ACM/IEEE Design Automation Conference*, pages 317–320, New York, NY, USA, 1999. ACM.

[3] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. Klee: Unassisted and automatic generation of high-coverage tests for complex systems programs. In *OSDI*, pages 209–224, USENIX Association, 2008.

[4] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson R. Engler. Exe: automatically generating inputs of death. In *Proceedings of the 13th ACM conference on Computer and communications security*, CCS ’06, pages 322–335, New York, NY, USA, 2006. ACM.

[5] Yibin Chen, Sean Safarpour, Andreas Veneris, and Joao Marques-Silva. Spatial and temporal design debug using partial maxsat. In *GLSVLSI ’09: Proceedings of the 19th ACM Great Lakes symposium on VLSI*, pages 345–350, New York, NY, USA, 2009. ACM.

[6] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking ANSI-C programs. In *Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2004)*, volume 2988 of *Lecture Notes in Computer Science*, pages 168–176, 2004.

[7] Martin Davis and Hilary Putnam. A computing procedure for quantification theory. *J. ACM*, 7(3):201–215, 1960.

[8] Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. Supporting controlled experimentation with testing techniques: An infrastructure and its potential impact. *Empirical Softw. Engng.*, 10(4):405–435, 2005.

[9] Niklas Eén and Niklas Sörensson. Minisat v2.0 (beta). In *SAT-Race*, 2006. http://fmv.jku.at/sat-race-2006/.

[10] Zhaohui Fu and Sharad Malik. On solving the partial max-sat problem. In *In International Conference on Theory and Applications of Satisfiability Testing*, LNCS 4121, pages 252–265. Springer, 2006.

[11] Patrice Godefroid, Nils Klарlund, and Koushik Sen. Dart: directed automated random testing. In *Proceedings of the 2005 ACM SIGPLAN conference on Programming language design and implementation*, PLDI ’05, pages 213–223, New York, NY, USA, 2005. ACM.

[12] Andreas Griesmayer, Stefan Staber, and Roderick Bloem. Automated fault localization for c programs. *Electron. Notes Theor. Comput. Sci.*, 174(4):95–111, 2007.

[13] Alex Groce. Error explanation with distance metrics. In *In Tools and Algorithms for the Construction and Analysis of Systems*, pages 108–122, 2004.

[14] Alex Groce, Sagar Chaki, Daniel Kroening, and Ofer Strichman. Error explanation with distance metrics. *Int. J. Softw. Tools Technol. Transf.*, 8(3):229–247, 2006.

[15] Monica Hutchins, Herb Foster, Tarak Goradia, and Thomas Ostrand. Experiments of the effectiveness of dataflow- and controlflow-based test adequacy criteria. In *ICSE ’94: Proceedings of the 16th international conference on Software engineering*, pages 191–200, Los Alamitos, CA, USA, 1994. IEEE Computer Society Press.

[16] James C. King. Symbolic execution and program testing. *Commun. ACM*, 19(7):385–394, 1976.

[17] Chu Min Li and Felip Manyà. *MaxSAT, Hard and Soft Constraints*, volume 185 of *Frontiers in Artificial Intelligence and Applications*, chapter 19, pages 613–631. IOS Press, February 2009.

[18] Chu Min Li, Universit Picardie, Jules Verne, and Felip Manyà. New inference rules for max-sat. *Journal of Artificial Intelligence Research*, 30:2007, 2007.

[19] Mark H. Lifton and Karem A. Sakallah. On finding all minimally unsatisfiable subformulas. In *International Conference on Theory and Applications of Satisfiability Testing*, LNCS 3569, pages 173–186. Springer, 2005.

[20] Joao Marques-Silva. Minimal unsatisfiability: Models, algorithms and applications (invited paper). In *Proceedings of the 2010 40th IEEE International Symposium on Multiple-Valued Logic*, ISMVL ’10, pages 9–14, Washington, DC, USA, 2010. IEEE Computer Society.

[21] Joao Marques-Silva and Jordi Planes. Algorithms for maximum satisfiability using unsatisfiable cores. In *DATE ’08: Proceedings of the conference on Design, automation and test in Europe*, pages 408–413. ACM, 2008.

[22] Todd C. Miller and Theo de Raadt. strlcpy and strlcat: consistent, safe, string copy and concatenation. In *ATEC ’99: Proceedings of the annual conference on USENIX Annual Technical Conference*, pages 41–41, Berkeley, CA, USA, 1999. USENIX Association.

[23] Dawei Qi, Abhik Roychoudhury, Zhenkai Liang, and Kapil Vaswani. Darwin: an approach for debugging evolving programs. In *Proceedings of the the 7th joint meeting of the European software engineering conference and the ACM SIGSOFT symposium on The foundations of software engineering*, ESEC/FSE ’09, pages 33–42, New York, NY, USA, 2009. ACM.

[24] Manos Renieres and Steven P. Reiss. Fault localization with nearest neighbor queries. In *Automated Software Engineering, 2003. Proceedings. 18th IEEE International Conference on*, pages 30 – 39, 2003.

[25] Sean Safarpour, Hratch Mangassarian, Andreas Veneris, Mark H. Lifton, and Karem A. Sakallah. Improved design debugging using maximum satisfiability. In *FMCAD ’07: Proceedings of the Formal Methods in Computer Aided Design*, pages 13–19, Washington, DC, USA, 2007. IEEE Computer Society.

[26] Koushik Sen, Darko Marinov, and Gul Agha. CUTE: a concolic unit test engine for c. In *Proceedings of the 10th European software engineering conference held jointly with 13th ACM SIGSOFT international symposium on Foundations of software engineering, ESEC/FSE-13*, pages 263–272, New York, NY, USA, 2005. ACM.

[27] Ilya Shyakhter, Robert Seater, Daniel Jackson, Mana Sridharan, and Mana Taghdiri. Debugging overconstrained declarative models using unsatisfiable cores. *Automated Software Engineering, International Conference on*, 0:94, 2003.

[28] Armando Solar-Lezama, Rodric Rabbah, Rastislav Bodik, and Kemal Ebcioğlu. Programming by sketching for bit-streaming programs. *SIGPLAN Not.*, 40(6):281–294, 2005.

[29] Saurabh Srivastava,Sumit Gulwani, and Jeffrey S. Foster. Vs3: Smt solvers for program verification. In *CAV ’09: Proceedings of Computer Aided Verification 2009*, 2009.

[30] Wikipedia. Off-by-one error, the free encyclopedia, 2004. [Online; accessed 28-March-2010].

[31] Y. Xie and A. Aiken. Scalable error detection using boolean satisfiability. In *POPL 05: Principles of Programming Languages*, ACM, 2005.

[32] Andreas Zeller. Isolating cause-effect chains from computer programs. In *SIGSOFT ’02/FSE-10: Proceedings of the 10th ACM SIGSOFT symposium on Foundations of software engineering*, pages 1–10, New York, NY, USA, 2002. ACM.

[33] Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating failure-inducing input. *IEEE Trans. Softw. Eng.*, 28:183–200, February 2002.