Compassion is the inherent moral and spiritual empowerment in nursing. It alleviates people's suffering and pain (Schantz, 2007). Compassionate care is one of the nursing profession's attributes. It appears when nurses interact with their patients and share the pain and suffering reflected in their behaviour and attitude (Burnell, 2009; Henderson & Jones, 2017). Oncology nurses, who treat people with cancer on a daily basis, require emotional endurance in dealing with difficult and hopeless situations. Caring for people with cancer along their journey of treatment from diagnosis to survival or the end of life entails compassion (Katz, 2019). However, the effects of compassion on oncology nurses are not always positive. Compassion reflects two faces of the one coin as described by Stamm (2010), who developed a professional quality of life (ProQOL) theory that involves compassion satisfaction (CS) and compassion fatigue (CF) experienced by those who act as helpers or care givers. Based on this theory, the ProQOL scale was developed by Stamm (2010), and it contains both positive and negative aspects of compassion. The ProQOL scale gives a numerical rating of ProQOL in CS and CF constructs, and it has been cited in more than one thousand studies, according to Google Scholar, and translated and validated in many languages and populations (Joana Duarte, 2017; Ghorji et al., 2018; Hemsworth et al., 2018; Misouridou et al., 2020).
CS and CF have been explored widely in a variety of nursing specialties (Craigie et al., 2016; Hinderer et al., 2014; Kawar et al., 2019; Kelly et al., 2015). CS is the positive facet of such care. It is the pleasure that results from providing service to others (Sacco & Copel, 2017; Stamm, 2010). This concept has a statistically significant positive impact on nurses' emotional, social and spiritual wellbeing (Dunn & Rivas, 2014; Radey & Figley, 2007; Sacco & Copel, 2017). However, nurses also experience CF, the negative aspect of care that comprises all undesirable feelings from frequent exposure to suffering patients, stressful work environments and self-giving (Peters, 2018; Stamm, 2010). Amongst oncology nurses, CF has negative influences on their relationships with others, and it leads some to consider leaving the profession (Perry et al., 2011). According to Stamm (2010), CF involves burnout (BO); feelings of hopelessness, lack of motivation, unsupportive work environments and secondary traumatic stress (STS); and fear, insomnia and intrusive images. Oncology nurses suffer from high emotional exertion and low personal accomplishment, indicating signs of BO (Gomez-Urquiza et al., 2016). Oncology nurses experienced STS in terms of insomnia, irritability, and unpleasant thoughts (Melvin, 2015; Quinal et al., 2009). The concept of CF was initially

FIGURE 1 Process of studies selection flow chart
TABLE 1 Summary of observational studies included in the review

Study/ Country	Aim	Sample size / setting / Study design	Statistical tests	compassion satisfaction	Burnout
1. (Jarrad & Hammad, 2020) Jordan	Explore levels of burnout and compassion fatigue amongst oncology nurses	100 / specialized cancer centre/ Descriptive Correllational	M±SD	71.8 ± 16	39.5 ± 11 moderate (37.3 – 41.7)
2. (Jang et al., 2016) Korea	Identify the relationship of professionalism with professional quality of life	285/ 8 university hospitals Cross-sectional	M±SD	33.84 ± 5.62 moderate (33.1-34.5)	28.38 ± 5.36 moderate (27.7-28.9)
3. (Wu et al., 2016) USA & Canada	Examine the experience of compassion fatigue and compassion satisfaction oncology nurses	486 American 63 Canadian/ oncology nurse working in US and CA / Descriptive non-experimental	M±SD	42.37 ± 5.27 High (41.9-42.8)	22.66 ± 5.47 moderate (22.2-23.1)
4. (Yu et al., 2016) China	Describe and explore prevalence of potential predictors of professional quality of life aspects	650/ 10 3ry hospitals and 5 2ry hospitals / Cross-sectional	M±SD	31.81 ± 6.49 moderate (31.3-32.3)	21.14 ± 4.95 low (20.8-21.5)
5. (Duarte & Pinto-Gouveia, 2017) Portugal	Explore psychological factors	221/ 5 public hospitals Cross-sectional	M±SD	38.0 ± 5.41 moderate (37.3-38.7)	25.28 ± 5.04 moderate (24.6 – 25.9)
6. (Mooney et al., 2017) USA	Comprehensive analysis of satisfaction and compassion fatigue	18/ community hospital/ Cross-sectional Comparative	M±SD	41.2 ± 4.15 High (39.3-38.7)	23.3 ± 2.80 moderate (22.0 – 24.5)
7. (Al-Majid et al., 2018) USA	Assess degree of compassion satisfaction and compassion fatigue	26/218-bed community hospital Cross-sectional Comparative	M±SD	52.0 ± 9.6 High (48.3-55.7)	49.2 ± 9.2 High (45.7-52.7)
8. (Arimon-Pages et al., 2019) Spain	Assess prevalence of compassion satisfaction, compassion fatigue and anxiety	297 / 8 university hospitals Cross-sectional	F (%)	141(47.5) [41.7-53.3]	186(62.6) [56.9-68.2]
9. (Wells-English et al., 2019) USA	Explore association between compassion satisfaction, compassion fatigue and intention to turnover	93 / cancer centre oncology department / Cross-sectional	M±SD	40.12 ± 6.20 High [38.9-41.4]	21.93 ± 5.25 moderate [20.9-23]
10. (Hooper et al., 2010) USA	Explorative	12/ 461-bed acute healthcare system/ Cross-sectional	F (%)	1 (8.3) Low	2 (16.7) Low
& 11. (Wentzel & Brysiewicz, 2018)		83/ 3 oncology departments hospice care/ Cross-sectional	M±SD	41.48 ± 4.61 High [40.4 - 42.4]	23.35 ± 4.03 moderate [22.4 – 24.2]

Note: M ± SD: mean ± standard deviation, 95%CI: confidence interval, F (%): frequency (percentage), compassion satisfaction, burnout, and secondary traumatic stress scores: high = 42 or more, moderate = ranged between 23 and 41 scores; and low = 22 or less.
Secondary traumatic stress	Associated variable/ factors	Statistical analysis	Study quality	Risk and Source of bias
50.8 ± 16.9 High	Socio-demographic Variables	Descriptive	Fair	Moderate/ Convenient Sample
(47.1-54.1)		Person correlation		
28.33 ± 5.48 moderate	Socio-demographic variables and Professionalism	T test analysis of variance Multiple regression	Good	Low / time frame
(27.3-29)				
22.56 ± 5.47 moderate	Compare Socio-demographic Personal Health and work related characteristics	Chi-square test of independence	Fair	Moderate/ Un equal cohorts
(22.1-23)				
22.41 ± 5.6 moderate	Empathy	T test, analysis of variance, and Multiple regressions	Good	Low / Convenient Sample and Time frame
(21-23.5)	Social support			
	Personality traits			
	Coping style			
	Social support			
21.39 ± 4.48 Low	Empathy	regression analysis student’s t test	Fair	Moderate / Convenient Sample and Time frame
(21-21.8)	Social support			
	Personality traits			
	Coping style			
	Social support			
20.2 ± 4.61 moderate	Compare with ICU nurse	Two sample t test regression analysis	Poor	High / Sample size justification eligibility time frame
(18.0 - 22.3)				
51.4 ± 10 High	Compare with critical care nurses	Regression models	Fair	Moderate / Sample size and Time frame
(47.6-55.2)				
152(51.2)	Transfer to another unit and choose nursing profession again	Binary logistic regression Multivariate analysis	Good	Low/ Time frame
[48.5-53.9]				
23.72 ± 5.09 moderate	Intention to turnover	Bivariate correlation Stepwise Multivariate linear regression	Good	Low/ Convenient Sample and Time frame
[22.7-24.8]				
3(25)	Compare professional quality of life with emergency, intensive care, nephrology nurses	Frequency and percentages with cut scores	Fair	Moderate / Convenient Sample and Time frame
Low				
5(41.7)				
Moderate				
4(33.3)				
High				
26.93 ± 5.36 moderate	Socio-demographic	Fisher's exact and kruskal-wallis equality of population rank tests	Fair	Moderate/ purposive Sample and Time frame
(25.7 - 28.0)				
et al., 2016). In this review, we use the term STS according to professional quality of life (ProQOL) theory and the term CF to represent BO and STS. Many reviews explored CS, BO and STS in many types of healthcare givers, such as intensive care professionals and nurses (Cavanagh et al., 2020; van Mol et al., 2015; Zhang, Han, et al., 2018). Recent studies of oncology nurses reported low levels of CS and moderate to high levels of BO and STS (Ortega-Campos et al., 2020; Xie et al., 2021). Further exploring about levels of oncology nurses' CS, BO and STS as measured by the ProQOL scale. Our review questions were as follows: What are the prevalence of oncology nurses’ CS, BO and STS as measured by the ProQOL scale? What are oncology nurses' CS, BO, and STS related factors?

2 METHODS

We conducted this systematic review using Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) guidelines (Moher et al., 2009).

2.1 Eligibility criteria for the studies

To be included in the review, a study had to be: (a) a quantitative study, (c) published in a peer-reviewed journal, (b) in the English language, (d) published in the last 20 years (2000–2020), (e) used a sample of oncology nurses working with adult people with cancer at least 18 years old and (f) used any version of the ProQOL scale to measure CS, BO and STS.

2.2 Data source and search strategy

OVID and EPSCO were used as data sources, and CINAHL, MEDLINE, PubMed and Journal@ databases were included in the review. Literature was searched by the author and university librarian starting 19 April 2020. The following mesh words were used: OVID: ((oncology nurses or oncology nursing or oncology) AND professional quality of life and (compassion satisfaction or compassion fatigue)).af. and EPSCO: (oncology nurses or oncology nursing or oncology) AND professional quality of life OR (compassion fatigue or burnout or secondary traumatic stress) OR compassion satisfaction. The PubMed database was searched using terms (((oncology nurses) OR (oncology nursing)) OR (professional quality of life)) AND (((compassion fatigue) OR (secondary traumatic stress)) OR (burnout)) OR (compassion satisfaction)).

Study/country	Aim	Sample/setting	Study design	Intervention
1. (Potter et al. 2013) USA	Evaluation of resilience programme	13 oncology nurses / national cancer institute	Descriptive pilot study resilience programme immediate / 3 / 6 months	A 90 min’ small groups activities using resilience approach to reduce compassion fatigue
2. (Jakel et al., 2016) USA	Effect of giver resilience mobile application	25 oncology nurses /26-bed oncology unit at medical centre	Quasi-experimental Pre-/post-test	Mobile application gives recourse for nurses: Psychoeducation and evaluation of compassion fatigue reminders for self-care.
3. (Yilmaz et al., 2018) Turkey	Effect of nurse-led intervention programme	43 oncology nurses / cancer care clinic	Single group pre- and postintervention	Two sessions consist of lectures, reading, and videos about relevant information related to compassion fatigue and patients’ concerns.
4. (Joana Duarte & Pinto-Gouveia, 2016) Portugal	Explore the effect of mindfulness-based intervention with psychological outcomes	94 oncology nurses / 2major oncology hospitals	Non-randomized comparative study	6 weeks’ mindfulness-based intervention focus on stress reduction exercises

Note: x: mean, x (SD): Mean (standard deviation).

Measurement time/group	Results	Effect	Limitation	Study quality	Risk and Source of bias		
	Compassion satisfaction \bar{x} or \bar{x} (SD)	Burnout \bar{x} or \bar{x} (SD)	Secondary traumatic stress \bar{x} or \bar{x} (SD)				
Pre	39.53	23.46	19.76	Effect on STS	Small sample size program duration	Fair	Moderate/sample size justification / not representative
Immediate	39.92	22.61	17.61				
3 months	38.53	23.69	17.92				
6 months	40.76	22.3	16.23				
Pre	42.64	20.25	32.06	No effect	Small sample size	Fair	Moderate / sample size justification / no randomization
Control	41.44	21.67	25				
Post	41.19	21.38	21.75				
Control	42.78	21.67	23.78				
Pre	32.67 (7.07)	27.32(3.14)	24.95(6.38)	Effective	Study bias	Fair	Moderate / Sample size and response bias
Post	41.93(5.00)	12.97(4.06)	12.00(4.45)				
Time 1 Case	36.96(6.19)	26.57(6.9)	25.71(3.47)	Effective	Small sample size	Good	Low /sample allocation /no randomization
Control	39.68(4.73)	24.74(4.64)	26.53(3.60)				
Time 2 Case	37.82 (6.4)	24.29(5.09)	23.07(3.53)				
Control	40.20(5.50)	23.89(4.82)	26.0(3.54)				

2.3 | Data extraction

Data were extracted independently by author and expert. The following types of data were extracted: for observational studies: authors, year, country, aim, sample size, setting, design, statistical tests ($M \pm SD$ or F%) and related measures. They were categorized as high, moderate or low according to Stamm’s (2010) scoring manual, statistical analysis, study quality and risk of bias. For interventional studies, the following were extracted: authors, year, country, aim, sample size, design, intervention, measurement by time/group, related results, interpretation, limitation, study quality and risk of bias. There were no disagreements about the data extraction process.

2.4 | Variables assessed

The main variables were CS and CF, as defined operationally by Stamm (2010) in the manual. The ProQOL scale was used as a standard measure to assess the constructs of CS and CF that also reflected two constructs BO and STS or CF (as mentioned in some studies). Based on the theoretical background of the instrument, the operational definition of the studied concepts was comparable throughout the review. In addition, associated factors such as personal, psychological and professional variables were assessed for correlation with the prevalence of the reviewed concepts.

2.5 | Quality assessment

All the studies were evaluated by two raters (Ph.D. holders) to evaluate the quality of studies using National Heart, Lung, and Blood Institutes (NIH) form (available at https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools). There were 14 criteria for evaluating cross-sectional studies and 12 criteria for interventional studies. Quality ratings included good (failed to meet two criteria or fewer), fair (failed to meet three to four criteria) and poor (failed to meet five or more criteria). Based on quality assessment, we determined the level of potential risk of bias (i.e. a lower quality indicated a higher risk of bias. We also used Egger’s test and produced a funnel plot to evaluate publication bias.

2.6 | Data collection process and statistical analysis

Data were classified as demographic, including participants’ technical and health characteristics, and results were taken from the published study papers and arranged in datasheets using Microsoft Excel. Meta-analysis was carried out using a random effect model using Stata software (version 16; Stata Corporation, College Station, Texas, USA) to obtain the pooled estimates of the per cent prevalence of CS, STS, and BO. The total impact size for each pooled analysis was calculated as a weighted average of the inverse variance, corrected for individual effect sizes. The same procedure was used...
Study	Compassion satisfaction	Burnout	Secondary traumatic stress
1.	(Jarrad & Hammad, 2020)	Days off: \(r = .228, p < .05 \)	Appetite: \(r = 179, p < .05 \)
	Number of dependents: \(r = -2.30, p < .05 \)		
	Sleep hours: \(r = 0.212, p < .05 \)		
2.	(Jang et al., 2016)	Age: \(F = 5.070, p = .002 \)	Educational level: \(F = 3.189, p = .043 \)
	Marital status: \(t = 11.102, p = .001 \)	Marital Status: \(t = 8.857, p = .003 \)	Position: \(F = 10.920, p = .001 \)
	Educational level: \(F = 22.415, p < .001 \)	Educational level: \(F = 11.246, p < .001 \)	Individual organization fit: \(F = 5.417, p = .021 \)
	Position: \(F = 25.350, p < .001 \)	Position: \(F = 24.263, p < .001 \)	
	Year of Experience: \(F = 7.011, p < .001 \)	Years of Experience: \(F = 3.634, p = .013 \)	
	Individual organization fit: \(F = 79.399, p < .001 \)	Individual organization fit: \(F = 47.936, p < .001 \)	
	Turnover intention: \(t = 17.808, p < .001 \)	Turnover intention: \(t = 19.743, p < .001 \)	
3.	(Wu et al., 2016)	Depression or headache: \(X^2 = 13.659, p = .000 \) (US)	Age: \(X^2 = 8.094, p = .017 \) (US)
	Educational level: \(X^2 = 6.871, p = .032 \) (US)	Stressors related personal finance: \(X^2 = 27.334, p < .001 \) (US)	Educational level: \(X^2 = 6.871, p = .032 \) (US)
	Cohesive teamwork environment: \(X^2 = 10.51, p < .05 \)	Encounter traumatic death: \(X^2 = 7.894, p < .05 \)	Years of experience: \(X^2 = 6.117, p = .047 \) (US)
	Work more hours and experience 3 or more patients' deaths	Sacrifices personal and psychological needs: \(X^2 = 31.541, p = .000 \) (US), \(X^2 = 15.047, p = .003 \) (CA)	Depression and headache: \(X^2 = 9.969, p = .002 \) (US)
	\(X^2 = 8.042, p < .05 \)	Cohesive teamwork environment: \(X^2 = 12.928, p < .002 \)	Stressors related personal finance: \(X^2 = 38.198, p = .000 \) (US), \(X^2 = 13.542, p = .000 \) (CA)
4.	(Yu et al., 2016)	Setting: \(T = -2.302, p = .043 \)	Encounter traumatic death: \(X^2 = 3.887, p = .49 \)
	Empathy: \(b = 0.209, p < .000 \)	Empathy: \(b = -0.094, p < .000 \)	Sacrifices personal and psychological needs: \(X^2 = 45.276, p = .000 \) (US), \(X^2 = 9.272, p = .002 \) (CA)
	Social support: \(b = 0.176, p < .000 \)	Social support: \(b = -0.111, p < .000 \)	Cohesive teamwork environment: \(X^2 = 10.546, p = .05 \)
	Personality traits (5 variables)	Personality traits (5 variables)	
	Coping Style: \(b = 0.370, p < .000 \) (Active) \(b = -0.145, p < .01 \) (passive)	Coping Style: \(b = 0.126, p < .000 \) (Active) \(b = 0.287, p < .000 \) (passive)	
5.	(J. Duarte & Pinto- Gouveia, 2017)	Age: \(r = .19, p < .05 \)	Years of experience: \(r = .14, p < .05 \)
	Age of experience: \(r = .1, p < .05 \)	Year of experience: \(r = .19, p < .05 \)	Empathetic concerns: \(r = .18, p < .01 \)
	Perspective taking: \(r = .31, p < .05 \)	Years of experience: \(r = .15, p < .01 \)	Self-compassion: \(r = -0.24, p < .05 \)
	Empathetic concerns: \(r = .38, p < .05 \)	Personal distress: \(r = .21, p < .05 \)	Psychological inflexibility: \(r = .36, p < .05 \)
	Personal distress: \(r = -.29, p < .05 \)	Self-compassion: \(r = -.51, p < .05 \)	
	Self-compassion: \(r = -.35, p < .05 \)	Psychological inflexibility: \(r = .47, p < .05 \)	
	Psychological inflexibility: \(r = .22, p < .05 \)		
6.	(Al-Majid et al., 2018)		Position: \(p = .006 \)
7.	(Arimon-Pages et al., 2019)	Transfer to another unit	Transfer to another unit
	OR (95% CI) = 3.11 (1.4–6.6)	OR (95% CI) = 3.7 (1.9–7.5)	OR (95% CI) = 3.2 (1.9–5.3)
	Choose nursing profession again		
	OR (95% CI) = 3.11 (1.4–6.6)		
8.	(Wells-English et al., 2019)	Turnover intention: \(r = -.602, p < .01 \)	Turnover intention: \(r = -.732, p < .01 \)
	Turnover intention: \(r = -.291, p < .01 \)		

Abbreviations: b, beta coefficient (predictor); F, one-way analysis of variance; OR, odd ratio; P, significant level; r, person correlation; t, t test; \(X^2 \), chi-square.
to estimate instrumental scores of STS and BO. Meta-regression analysis was conducted using the restricted maximum likelihood approach in Stata software. Several independent variables, including age, gender, marital status, education level, setting, position and years of experience, were evaluated for each dependent variable (prevalence of CS, STS, or BO). The statistical heterogeneity index was used to estimate between-study inconsistency in the outcomes (I^2). All results are presented as weighted effects with 95% confidence intervals.

3 RESULTS

3.1 Literature and search results

By comparing both findings and consulting with experts in systematic reviews and meta-analysis, all 2,300 articles were

Study	ES (95% CI)	% Weight
Low Compassion Satisfaction		
Jang 2016	28.42 (23.50, 33.92)	6.96
Wu 2016	41.71 (37.66, 45.88)	6.00
Duarte & Pinto-Gouveia, 2017	26.70 (21.30, 32.89)	5.94
Wells-English 2019	1.08 (0.19, 5.84)	5.78
Jakel 2016	44.00 (26.67, 62.93)	5.17
Hooper 2010	8.33 (1.49, 35.39)	4.48
Subtotal ($I^2 = 95.70\%, \ p = 0.00$)	22.89 (10.77, 37.70)	33.33
Medium+ High Burnout		
Jang 2016	75.79 (70.49, 80.40)	6.96
Wu 2016 US	48.09 (43.94, 52.27)	6.00
Duarte & Pinto-Gouveia, 2017	80.54 (74.82, 85.22)	5.94
Wells-English 2019	59.14 (48.98, 68.57)	5.78
Jakel 2016	52.00 (33.50, 69.97)	5.17
Hooper 2010	50.00 (25.38, 74.62)	4.48
Subtotal ($I^2 = 95.37\%, \ p = 0.00$)	62.76 (47.30, 77.05)	33.33
Medium+ High Secondary Traumatic Stress		
Jang 2016	79.65 (74.60, 83.91)	6.96
Wu 2016 US	47.54 (43.40, 51.72)	6.00
Duarte & Pinto-Gouveia, 2017	86.88 (81.79, 90.71)	5.94
Wells-English 2019	39.78 (30.43, 49.95)	5.78
Jakel 2016	68.00 (48.41, 82.79)	5.17
Hooper 2010	75.00 (48.77, 91.11)	4.48
Subtotal ($I^2 = 97.27\%, \ p = 0.00$)	66.84 (47.15, 83.98)	33.33

Heterogeneity between groups: $p = 0.000$

Overall ($I^2 = 97.72\%, \ p = 0.00$); 50.29 (38.59, 61.98)100.00

FIGURE 2 A graphical presentation of the publication bias test of the Egger. The plot represents ProQol scores of compassion satisfaction, burnout and secondary traumatic stress studies included in prevalence analysis

FIGURE 3 A forest plot illustrating the pooled estimates for compassion satisfaction, burnout and secondary traumatic stress
Burnout

Study	ES, with 95% CI	Weight (%)
Jarrad et al, 2020	39.50 [37.34, 41.66]	3.70
Jang et al., 2016	26.38 [27.76, 29.00]	3.72
Wu et al., 2016	22.66 [22.20, 23.12]	3.72
Yu et al., 2016	21.14 [20.76, 21.52]	3.72
Duarte & Pinto-Gouveia, 2017	25.82 [25.11, 26.53]	3.72
Mooney et al., 2017	20.20 [18.07, 22.33]	3.70
Al-Majid et al., 2018	49.20 [45.66, 52.74]	3.65
Wells-English et al., 2019	21.93 [20.86, 23.00]	3.72
Wentzel et al, 2018	23.35 [22.48, 24.22]	3.72

Heterogeneity: $\tau^2 = 94.02$, $I^2 = 99.85\%$, $H^2 = 657.76$

Test of $\theta_i = \theta_j$; $Q(8) = 869.85$, $p = 0.00$

Compassion Satisfaction

Study	ES, with 95% CI	Weight (%)
Jarrad et al, 2020	71.80 [68.66, 74.94]	3.67
Jang et al., 2016	33.84 [33.19, 34.49]	3.72
Wu et al., 2016	42.37 [41.93, 42.81]	3.72
Yu et al., 2016	31.81 [31.31, 32.31]	3.72
Duarte & Pinto-Gouveia, 2017	38.00 [37.29, 38.71]	3.72
Mooney et al., 2017	41.20 [39.28, 43.12]	3.70
Al-Majid et al., 2018	52.00 [48.31, 55.69]	3.64
Wells-English et al., 2019	40.12 [38.86, 41.38]	3.71
Wentzel et al, 2018	41.48 [40.49, 42.47]	3.72

Heterogeneity: $\tau^2 = 141.29$, $I^2 = 99.88\%$, $H^2 = 824.25$

Test of $\theta_i = \theta_j$; $Q(8) = 1694.45$, $p = 0.00$

Secondary Traumatic Stress

Study	ES, with 95% CI	Weight (%)
Jarrad et al, 2020	50.80 [47.49, 54.11]	3.66
Jang et al., 2016	28.33 [27.69, 28.97]	3.72
Wu et al., 2016	22.56 [22.10, 23.02]	3.72
Yu et al., 2016	21.39 [21.05, 21.73]	3.72
Duarte & Pinto-Gouveia, 2017	25.28 [24.62, 25.94]	3.72
Mooney et al., 2017	23.30 [22.01, 24.59]	3.71
Al-Majid et al., 2018	51.40 [47.56, 55.24]	3.64
Wells-English et al., 2019	23.72 [22.69, 24.75]	3.72
Wentzel et al, 2018	26.93 [25.78, 28.08]	3.71

Heterogeneity: $\tau^2 = 137.89$, $I^2 = 99.90\%$, $H^2 = 1003.48$

Test of $\theta_i = \theta_j$; $Q(26) = 12302.74$, $p = 0.00$

Test of group differences: $Q_b(2) = 9.95$, $p = 0.01$

Overall

Heterogeneity: $\tau^2 = 164.26$, $I^2 = 99.92\%$, $H^2 = 1225.93$

Test of $\theta_i = \theta_j$; $Q(26) = 12302.74$, $p = 0.00$

Test of group differences: $Q_b(2) = 9.95$, $p = 0.01$

Random-effects REML model

Figure 4: A forest graph showing the pooled estimates of the ProQoL scores of compassion satisfaction, burnout and secondary traumatic stress.
transferred to EndNote X9 referencing software, 125 duplicates were checked and removed, and then titles and abstracts were screened. The articles were then placed into three files: abstract yes (189), abstract no (1595) and abstract maybe (28). In the second step, all full texts in the abstract yes and abstract maybe files were screened for eligibility. We looked at the sample, variables, instrument, and type of study. As a result, 174 articles did not meet the inclusion criteria due to the type of sample (85), type of study (53), or type of instrument used (36), whilst 15 studies did meet the criteria. Figure 1 is a flowchart of the screening pipeline and selection procedure.

3.2 | Characteristics of the studies

The cumulative sample size was 2,509 oncology nurses, ranging from 12 to 650 participants in six studies from the USA (Al-Majid et al., 2018; Hooper et al., 2010; Jakel et al., 2016; Mooney et al., 2017; Potter et al., 2013; Wells-English et al., 2019). There were two studies from Portugal (Joana Duarte & Pinto-Gouveia, 2016; Duarte & Pinto-Gouveia, 2017) one study each from Korea (Jang et al., 2016), China (Yu et al., 2016), Spain (Arimon-Pages et al., 2019), South Africa (Wentzel & Brysiewicz, 2018), Turkey (Yilmaz et al., 2018) and Jordan (Jarrad & Hammad, 2020). One study was conducted in the USA and Canada (Wu et al., 2016). Eleven studies were cross-sectional and four were interventional; they were conducted in 42 hospitals and four oncology centres. One location gave hospice care. Six studies reported using convenient sampling, and one used purposive sampling (Tables 1 and 2).

3.2.1 | Interventional studies

Four studies gave interventional programmes aimed primarily to reduce CF and improve CS: resilience programme and mobile application, nurse-led interventions, and mindfulness-based interventions (Table 2). Three out of four showed some effect on the studied variables. One study was effective in reducing STS (Potter et al., 2013) and two were effective in improving CS and decreasing BO and STS (Joana Duarte & Pinto-Gouveia, 2016; Yu et al., 2016). However, it was difficult to have clear comparisons because of the variability of data and small sample size.

3.2.2 | Associated factors

Seven studies reported that personal and professional factors had a statistically significant association with CS and BO (Arimon-Pages et al., 2019; Duarte & Pinto-Gouveia, 2017; Jang et al., 2016; Jarrad & Hammad, 2020; Wells-English et al., 2019; Wu et al., 2016; Yu et al., 2016). In addition, one study reported factors associated with STS (Al-Majid et al., 2018) (Table 3).

3.3 | Studies’ quality and risk for bias

Based on NIH criteria for evaluating the quality of studies, five out of 15 studies were of good quality, reflecting a low risk of bias (Arimon-Pages et al., 2019; Jang et al., 2016; Wells-English et al., 2019; Yu et al., 2016), and one was an interventional study (Joana Duarte & Pinto-Gouveia, 2016). Nine studies scored fair quality, indicating a moderate level of bias, whilst one study scored poor quality, leading to a high risk of bias (Mooney et al., 2017) (Tables 1 and 2).

3.4 | Publication bias

No statistically significant publication bias was found, based on the results of Egger’s test (Funnel plot Figure 2).

3.5 | Results of the analysis

3.5.1 | Prevalence of CS, BO, and STS

For the meta-analysis of the prevalence of low, medium to high BO and STS, six studies were included (Figure 3). The meta-analysis with 95% confidence intervals had the lowest prevalence of CS (22.89% (10.77–37.7)). For medium to high BO and STS, the prevalence rates were 62.76% (47.30–77.5) and 66.84% (47.15–83.98), respectively.

3.5.2 | Prevalence of the ProQOL scores

Nine studies met the eligibility requirements and were included in the meta-analysis. Interventional studies were not included in the analysis because of a lack of the information needed to conduct the analysis. The articles included in the meta-analysis had a cumulative sample size of $n = 2025$ oncology nurses. All articles included in the meta-analysis used the same questionnaire, the professional quality of life, to assess BO and STS. The results of the Egger linear regression test were statistically significant ($p > .05$). This shows there was no publication bias or small study effects in the meta-analysis. The I^2 heterogeneity analysis showed 99.88% for CS, 99.85% for BO, and 99.9% for STS (Figure 4).

3.5.3 | Factors associated with the prevalence of CS, BO, and STS

Meta-regression analysis did not show any substantial correlation with CS, BO or STS prevalence rates for any independent variables studied. This might be due to the low number of observations reported by the studies. Associations appeared in two studies or fewer for each independent variable.
3.5.4 | CS, BO, and STS correlations

A weak negative correlation was found between CS and BO [-0.06(0.90)], and a weak positive correlation was observed between CS and STS [0.20(0.70)].

4 | DISCUSSION

This review aimed to assess the levels of CS, BO, and STS amongst oncology nurses based on the ProQOL scale and to determine the prevalence of each of these variables with associated factors. Fifteen studies were included in this review with a cumulative sample size of 2,509 oncology nurses, and the prevalence rates for CS, BO and STS were obtained from six studies. Nine studies were qualified for meta-analysis with a cumulative sample size of 2025 oncology nurses.

The prevalence of low CS was 22.89% compared with other reviews that reported 19% and 20% prevalence in oncology nurses (Ortega-Campos et al., 2020; Xie et al., 2021) and 48% amongst nurses in general (Zhang, Han, et al., 2018). This was deemed acceptable because of the nature of care given to cancer patients, which requires emotional stamina for stressful events and continued exposure to cancer patients. The current meta-analysis showed a 62.79% prevalence rate of moderate to high BO as experienced by oncology nurses, which is comparable with prevalence rates of 54% and 56% in other reviews (Ortega-Campos et al., 2020; Zhang, Han, et al., 2018). However, the rate for BO was higher than the results reported by (Xie et al., 2021), who reported a 22% prevalence of high BO. The prevalence of STS was 66.84%, which is in line with a finding of 60% by (Ortega-Campos et al., 2020) and higher than other reviews that found prevalence rates of size 22% and 53% (Xie et al., 2021; Zhang, Han, et al., 2018). In the current review, cross-sectional studies exhibited a large percentage of heterogeneity, increasing the difficulty in determining the ProQOL scores of oncology nurses. Two meta-analyses investigating the levels of CS, BO, and STS for oncology nurses and other health professionals reported heterogeneous results similar to the current analysis(Cavanagh et al., 2020; Xie et al., 2021; Zhang, Han, et al., 2018).

CS, BO, and STS could be enhanced or diminished by personal or professional factors (Zhang et al., 2018). All ProQOL concepts were associated statistically significantly with each of the following: age, educational level, position, individual organization, and cohesive teamwork environment (Jang et al., 2016; Wu et al., 2016), years of experience, self-compassion, and psychological inflexibility and turnover intention (Jang et al., 2016; Wells-English et al., 2019), empathy and empathetic concerns (Duarte & Pinto-Gouveia, 2017; Yu et al., 2016), social support and coping style (Yu et al., 2016), and transfer to another unit (Arimon-Pages et al., 2019). Unfortunately, the factors were not reported with adequate data to infer associations with the prevalence of the ProQOL concepts. This was similar to the findings by (Zhang, Han, et al., 2018). (Zhang, Zhang, et al., 2018) conducted a correlative meta-analysis amongst nurses and found a moderate correlation between BO and CS and a weak negative association between CS and STS. In this review, we found that CS had a weak negative association with BO and a weak positive correlation with STS.

Potter et al. (2013) developed an intervention based on resilience with follow-up in three-time points, which has an impact of STS. Resilience was also recommended by Zhang, Han, et al. (2018) as an effective measure to reduce STS. An intervention developed by (Ylmaz et al., 2018), based on providing adequate information about CF and patients’ concerns in sessions, was effective in reducing BO and STS. Mindfulness-based stress-reducing exercises also were effective in reducing the mentioned variables (Joana Duarte & Pinto-Gouveia, 2016). However, interventions to reduce oncology nurses’ CF reported a small sample size as a limitation. This means that we cannot give evidence for those interventions.

A recent review highlighted the rise in the prevalence of BO and STS in oncology nurses and called for interventions to reduce it (Ortega-Campos et al., 2020). As in our review, the high prevalence of BO and STS calls attention to the importance of continuous monitoring of oncology nurses’ ProQOL and evaluating the impact of internal and external factors. The ProQOL like a continuum with CS at one end and CF at the other, oncology nurses could go back and forth along this continuum based on personal or professional factors. The proQOL scale is a self-reported questionnaire in which people might respond differently according to their psychological condition. Oncology nurses are facing unpleasant situations that need some remediation. CS and CF might change on a daily basis. Nurses celebrating patients’ recovery will feel different from those who are exposed to traumatizing events, such as end-stage patients.

4.1 | Limitations

Only studies reporting CS, BO, and STS for oncology nurses were used because those nurses differed from other healthcare practitioners in their practice and their day-to-day activities. Therefore, a mixed sample meta-analysis might not be valid for multiple occupations. Because of this, multiple studies were omitted from the analysis, as they reported results from healthcare professionals besides nurses. Most studies failed to report demographic factors. This makes it challenging to determine associations because of the limited number of observations. Similar to the findings by Zhang, Han, et al. (2018) from a meta-analysis of a sample of nurses, data were not sufficient to perform meta-regression. Finally, the meta-analytics showed a strong statistical heterogeneity, which indicated greater uncertainty in the results of the chosen studies.

5 | CONCLUSION

Compassionate caregiving cost oncology nurses their emotions due to regular exposure to their patients; the feeling of CF was dominant...
compared with CS. It may be inferred that oncology nurses are under a great deal of tension, both personally and professionally, leaving them vulnerable to the winds of BO and STS and less CS. An uptick in cases of BO and CF amongst nurses might be mitigated through proper assessment and implementation of prevention plans. As a result of this paper, which has identified a statistically significant issue, urgent action plans must be put in place. The contribution of this work to the body of knowledge includes providing a comprehensive evaluation of CS, BO, and STS levels amongst oncology nurses. It estimates the prevalence and correlation of all aspects of ProQOL with associated factors.

ACKNOWLEDGMENTS
The author would like to send special thanks to Dr. Aafaque Khan, Dr. Analita Gonzales, and Dr. Mathar Mohamedeen for their efforts and support in the screening, extraction, and quality evaluation of the studies.

CONFLICT OF INTEREST
The author declares no conflict of interest in this review.

DATA AVAILABILITY STATEMENT
The data of this review are available from corresponding author upon reasonable request.

REFERENCES
Al-Majid, S., Carlson, N., Kiyohara, M., Faith, M., & Rakovski, C. (2018). Assessing the degree of compassion satisfaction and compassion fatigue among critical care, oncology, and charge nurses. Journal of Nursing Administration, 48(6), 310–315. https://doi.org/10.1097/NNA.0000000000000620
Arimon-Pages, E., Torres-Puig-Gros, J., Fernandez-Ortega, P., & Canela-Soler, J. (2019). Emotional impact and compassion fatigue in oncology nurses: Results of a multicentre study. European Journal of Oncology Nursing, 43, 101666. https://doi.org/10.1016/j.ejono.2019.09.007
Burnell, L. (2009). Compassionate care: A concept analysis. Home Health Care Management & Practice, 21(5), 319–324. https://doi.org/10.1177/1084822309331468
Cavanagh, N., Cockett, G., Heinrich, C., Doig, L., Fiest, K., Guichon, J. R., Page, S., Mitchell, I., & Doig, C. J. (2020). Compassion fatigue in healthcare providers: A systematic review and meta-analysis. Nursing Ethics, 27(3), 639–665. https://doi.org/10.1177/0969330119889400
Craigie, M., Osseiran-Moisson, R., Hemsworth, D., Aoun, S., Francis, K., Brown, J., Hegney, D., & Rees, C. (2016). The influence of trait-negative affect and compassion satisfaction on compassion fatigue in Australian nurses. Psychological Trauma: Theory, Research, Practice, & Policy, 8(1), 88–97. http://ovidsp.ovid.com/ovidweb.cgi?JS=CSC=y&NEWS=N&PAGE=fulltext&D=ovftq&AN=01429398-20160100-00012. https://doi.org/10.1037/tra0000050
Duarte, J. (2017). Professional quality of life in nurses: Contribution for the validation of the Portuguese version of the Professional Quality of Life Scale-5 (ProQOL-5). Análise Psicológica, 35(4), 529–542. https://doi.org/10.14417/ap.1260
Duarte, J., & Pinto-Gouveia, J. (2016). Effectiveness of a mindfulness-based intervention on oncology nurses’ burnout and compassion fatigue symptoms: A non-randomized study. International Journal of Nursing Studies, 64, 98–107. https://doi.org/10.1016/j.ijnurstu.2016.10.002
Duarte, J., & Pinto-Gouveia, J. (2017). The role of psychological factors in oncology nurses’ burnout and compassion fatigue symptoms. European Journal of Oncology Nursing, 28, 114–121. https://doi.org/10.1016/j.ejon.2017.04.002
Dunn, D. J., & Rivas, D. (2014). Transforming compassion satisfaction. International Journal of Human Caring, 18(1), 45–50. https://doi.org/10.20467/1091-5710.18.1.45
Fligey, C. (1995). Compassion fatigue as secondary traumatic stress disorder: an overview. In Figley, (Ed.), Compassion Fatigue: Coping with secondary traumatic stress in those who treat the traumatised. Brunner/Mazel.
Ghorji, M., Keshavarz, Z., Ebadi, A., & Nasiri, M. (2018). Persian translation and psychometric properties of professional quality of life scale (ProQOL) for health care providers. Journal of Mazandaran University of Medical Sciences, 28(163), 93–106. http://jmums.mazums.ac.ir/article-1-10095-en.html
Gomez-Urquiza, J. L., Aneas-Lopez, A. B., la Fuente-Solana, D., Emilia, I., Albendin-Garcia, L., & Diaz-Rodriguez, L. (2016). Prevalence, risk factors, and levels of burnout among oncology nurses: A systematic review. Oncology Nursing Forum, 43(3), E104–E120.
Hemsworth, D., Baregheh, A., Aoun, S., & Kazanjian, A. (2018). A critical enquiry into the psychometric properties of the professional quality of life scale (ProQol-5) instrument. Applied Nursing Research, 39, 81–88. https://doi.org/10.1016/j.apnr.2017.09.006
Henderson, A., & Jones, J. (2017). Developing and maintaining compassionate care in nursing. Nursing Standard, 32(4), 60–69. https://doi.org/10.7748/ns.2017.e10895
Hinderer, K., VonRueden, K., Friedmann, E., McQuillan, K., Gilmore, R., Kramer, B., & Murray, M. (2014). Burnout, compassion fatigue, compassion satisfaction, and secondary traumatic stress in trauma nurses. Journal of Trauma Nursing, 21(4), 160–169. https://doi.org/10.1097/JTN.0000000000000055
Hooper, C., Craig, J., Janvrin, D. R., Wetsel, M. A., & Reimels, E. (2010). Compassion satisfaction, burnout, and compassion fatigue among emergency nurses compared with nurses in other selected inpatient specialties. Journal of Emergency Nursing, 36(5), 420–427. https://doi.org/10.1016/j.jen.2009.11.027
Jakel, P., Kenney, J., Ludan, N., Miller, P., McNair, N., & Matesic, E. (2016). Effects of the use of the provider resilience mobile application in reducing compassion fatigue in oncology nursing. Clinical Journal of Oncology Nursing, 20(6), 611–616. https://doi.org/10.1188/16.CJON.611-616
Jang, I., Kim, Y., & Kim, K. (2016). Professionalism and professional quality of life for oncology nurses. Journal of Clinical Nursing, 25(19–20), 2835–2845. https://doi.org/10.1111/jocn.13330
Jarrad, R. A., & Hammad, S. (2020). Oncology nurses’ compassion fatigue, burn out and compassion satisfaction. Annals of General Psychiatry, 19(22). https://doi.org/10.1186/s12991-020-00272-9
Katz, A. (2019). Compassion in practice: Difficult conversations in oncology nursing. Canadian Oncology Nursing Journal, 29(4), 255–257. https://pubmed.ncbi.nlm.nih.gov/31966003?https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6970020/
Kawar, L., Radovich, P., Valdez, R., Zuniga, S., & Rondinelli, J. (2019). Compassion fatigue and compassion satisfaction among multisite multisystem nurses. Nursing Administration, 43(4), 358–369. https://doi.org/10.1097/NAQ.0000000000000370
Kelly, L., Runge, J., & Spencer, C. (2015). Predictors of compassion fatigue and compassion satisfaction in acute care nurses. *Journal of Nursing Scholarship, 47*(6), 522–528. https://doi.org/10.1111/jnu.12162

Melvin, C. S. (2015). Historical review in understanding burnout, professional compassion fatigue, and secondary trauma stress disorder from a hospice and palliative nursing perspective. *Journal of Hospice & Palliative Nursing, 17*(1), 66–72. https://journals.lww.com/jhpn/Fulltext/2015/02000/Historical_Review_in_Understanding_Burnout,12.aspx. https://doi.org/10.1097/NJH.0000000000000126

Misouridou, E., Pavlou, V., Kasidi, K., Apostolara, P., Parissopoulos, S., Mangoula, P., & Fradelos, E. (2020). Translation and Cultural Adaptation of the Professional Quality of Life Scale (ProQOL V) for Greece. *Materia Socio-médica, 32*(3), 187-190. https://doi.org/10.15455/msm.2020.32.2018.187-190

Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G., & Group, P (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. *PloS Med, 6*(7), e1000097. https://doi.org/10.1371/journal.pmed.1000097

Mooney, C., Fetter, K., Gross, B., Rinehart, C., Lynch, C., & Rogers, F. (2017). A preliminary analysis of compassion satisfaction and compassion fatigue with considerations for nursing unit specialization and demographic factors. *Journal of Trauma Nursing, 24*(3), 158-163. https://doi.org/10.1097/JTN.0000000000000284

Ortega-Campos, E., Vargas-Román, K., Velando-Soriano, A., Suleiman-Martos, N., Cañadas-de la Fuente, G. A., Albendín-García, L., & Gómez-Urquiza, J. L. (2020). Compassion fatigue, compassion satisfaction, and burnout in oncology nurses: A systematic review and meta-analysis. *Sustainability, 12*(1), 72. https://www.mdpi.com/2071-1050/12/1/72

Perry, B., Toffner, G., Merrick, T., & Dalton, J. (2011). An exploration of the experience of compassion fatigue among healthcare professionals in intensive care units (ICUs). *Canadian Oncology Nursing Journal, 21*(2), 91–97. https://doi.org/10.5737/1181912x21129170

Peters, E. (2018). Compassion fatigue in nursing: A concept analysis. *Nursing Forum, 53*(4), 466–480. https://doi.org/10.1111/nuf.12274

Potter, P., Deshields, T., Berger, J., Clarke, M., Olsen, S., & Chen, L. (2013). Evaluation of a compassion fatigue resiliency program for oncology nurses. *Oncology Nursing Forum, 40*(2), 180–187. https://doi.org/10.1188/13.ONF.180-187

Quinl, L., Harford, S., & Rutledge, D. N. (2009). Secondary traumatic stress in oncology staff. *Cancer Nursing, 32*(4), E1–E7. https://doi.org/10.1097/NCC.0b013e31819ca65a

Radcy, M., & Figley, C. R. (2007). The social psychology of compassion. *Clinical Social Work Journal, 35*(3), 207–214. https://doi.org/10.1007/s10615-007-0087-3

Sacco, T. L., & Copel, L. C. (2017). Compassion satisfaction: A concept analysis in nursing. *Nursing Forum, 53*(1), 76–83. https://doi.org/10.1111/nuf.12213

Schantz, M. L. (2007). Compassion: A concept analysis. *Nursing Forum, 42*(2), 48–55. https://doi.org/10.1111/j.1744-6198.2007.00067.x

Stamm, B. H. (2010). The concise ProQOL manual. In: Pocatello, ID: proqol.org.

van Mol, M. M. C., Kompanje, E. J. O., Benoit, D. D., Bakker, J., & Nijkamp, M. D. (2015). The prevalence of compassion fatigue and burnout among healthcare professionals in intensive care units: A systematic review. *PLoS ONE, 10*(8), e0136955. https://doi.org/10.1371/journal.pone.0136955

Wells-English, D., Giese, J., & Price, J. (2019). Compassion Fatigue and Satisfaction: Influence on turnover among oncology nurses at an urban cancer center. *Clinical Journal of Oncology Nursing, 23*(5), 487–493. https://doi.org/10.1188/19.CJON.487-493

Wentzel, D., & Brysiewicz, P. (2018). A survey of compassion satisfaction, burnout and compassion fatigue in nurses practicing in three oncology departments in Durban, South Africa. *International Journal of Africa Nursing Sciences, 8*, 82-86. https://doi.org/10.1016/j.ijans.2018.03.004

Wu, S., Singh-Carlson, S., Odell, A., Reynolds, G., & Su, Y. (2016). Compassion fatigue, burnout, and compassion satisfaction among oncology nurses in the United States and Canada. *Oncology Nursing Forum, 43*(4), E161–E169. https://doi.org/10.1188/16.ONF.E161-E169

Xie, W., Wang, J., Zhang, Y., Zuo, M., Kang, H., Tang, P., Zeng, L. I., Jin, M., Ni, W., & Ma, C. (2021). The levels, prevalence and related factors of compassion fatigue among oncology nurses: A systematic review and meta-analysis. *Journal of Clinical Nursing, 30*(5–6), 615–632. https://doi.org/10.1111/jocn.15565

Ylmaz, G., Ustun, B., & Gunusen, N. (2018). Effect of a nurse-led intervention programme on professional quality of life and post-traumatic growth in oncology nurses. *International Journal of Nursing Practice, 24*, e12578. https://doi.org/10.1111/ijn.12687

Yu, H., Jiang, A., & Shen, J. (2016). Prevalence and predictors of compassion fatigue, burnout and compassion satisfaction among oncology nurses: A cross-sectional survey. *International Journal of Nursing Studies, 57*, 28–38. https://doi.org/10.1016/j.ijnurstu.2016.01.012

Zhang, Y.-Y., Han, W.-L., Qin, W., Yin, H.-X., Zhang, C.-F., Kong, C., & Wang, Y.-L. (2018). Extent of compassion satisfaction, compassion fatigue and burnout in nursing: A meta-analysis. *Journal of Nursing Management, 26*(7), 810–819. https://doi.org/10.1111/jonm.12589

Zhang, Y.-Y., Zhang, C., Han, X.-R., Li, W., & Wang, Y.-L. (2018). Determinants of compassion satisfaction, compassion fatigue and burn out in nursing: A correlative meta-analysis. *Medicine, 97*(26), e11086. https://doi.org/10.1097/md.0000000000011086

How to cite this article: Algamdi, M. (2022). Prevalence of oncology nurses’ compassion satisfaction and compassion fatigue: Systematic review and meta-analysis. *Nursing Open, 9*, 44–56. https://doi.org/10.1002/nop2.1070