A UNIFIED FRAMEWORK FOR KNOWLEDGE INTENSIVE GRADIENT BOOSTING

Leveraging Human Experts for Noisy Sparse Domains

Harsha Kokel, Phillip Odom, Shuo Yang, Sriraam Natarajan
AAAI 2020
Motivation
Qualitative influences

1. Wellman AI 1990
2. Robertson, Wright, and Dykstra 1988, Altendorf et al. UAI 2005, Yang and Natarajan ECML-PKDD 2013

\[x_1 < x_2 \Rightarrow P(Y \leq k|p_{a_{y1}}) \geq P(Y \leq k|p_{a_{y2}}) \]
Qualitative Constraint

-order-restricted constraints

\[x_0 < x_1 \Rightarrow \psi(x_0) \leq \psi(x_1) \]

-conditional-probability constraints\(^2\)

\[x_0 < x_1 \Rightarrow P(Y \leq y_1|x_0) \geq P(Y \leq y_1|x_1) \]

\[x_1 < x_2 \Rightarrow P(Y \leq y_1|x_1) \geq P(Y \leq y_1|x_2) \]

\[x_1 < x_2 \Rightarrow P(Y \leq k|pa^{x_1}_y) \geq P(Y \leq k|pa^{x_2}_y) \]

\(^2\)Altendorf et al. UAI 2005, Yang and Natarajan ECML-PKDD 2013

caeteris paribus
Knowledge-intensive Gradient Boosting

\[X^Q Y \]

\[
x_1 < x_2 \Rightarrow \mathbb{E}_{\psi}[x_1 | \ldots] \leq \mathbb{E}_{\psi}[x_2 | \ldots]
\]

\[
\mathbb{E}_{\psi}[n_L] \leq \mathbb{E}_{\psi}[n_R] + \varepsilon
\]

\[
\zeta_n = \begin{cases}
\mathbb{E}_{\psi}[n_L] - \mathbb{E}_{\psi}[n_R] - \varepsilon < 0
\end{cases}
\]

\[
\arg\min \sum_{i=1}^{N} (y_i - \psi_t(x_i))^2 + \frac{\lambda}{2} \sum_{n \in N(x_c)} \max (\zeta_n \cdot |\zeta_n|, 0)
\]

loss function w.r.t data

\[
\sum_{n \in N(x_c)} \max (\zeta_n \cdot |\zeta_n|, 0)
\]

loss function w.r.t advice
KiGB

- Leaf update equation

\[
\psi_t^\ell(x) = \frac{1}{|\ell|} \sum_{i=1}^{N} \tilde{y}_i \cdot \mathbb{I}(x_i \in \ell) + \left\{ \begin{array}{l}
\frac{\lambda}{2} \sum_{n \in N(x_c)} \mathbb{I}(\zeta_n > 0) \zeta_n \cdot \left(\frac{\mathbb{I}(\ell \in n_R)}{|n_R|} - \frac{\mathbb{I}(\ell \in n_L)}{|n_L|} \right) \end{array} \right.
\]

penalty for advice violation
Monotonic Trees Ensemble

- Usually for classification tasks
- Focus on global monotonicity
 - *prune*
 - *preprocessed data by reweighting*
 - *voting mechanism*
 - *restrict split criteria*
- *Monoensemble* converts trees to rules and recalculate leaf values

3Cano et al. Neurocomputing 2019, 4Dembczynski et al. 2009
5Ke et al. NIPS 2017 (LightGBM), Chen et al. KDD 2016 (XGBoost), 6Bartley et al. AAAI 2019
Sparse data

\(a^{Q+y} \)
Sparse data

KiGB with $\lambda = 0$
standard boosting

KiGB with $\lambda = 3$

KiGB with $\lambda = 8$
Overfitting by monotonic function
Experiments

Standard baselines

Dataset	SKiGB	SGB	Dataset	SKiGB	SGB
Adult	0.855	0.853	Cleveland	0.737	0.677
Australian	0.855	0.83	Ljubljana	0.696	0.621
Car	0.984	0.982			
Abalone	5.377	5.491	CPU	0.185	0.204
Auto mpg	9.793	13.623	Crime	2.211	2.296
Auto price	8.866	8.945	Red wine	0.381	0.419
Boston	24.065	21.493	Whitewine	0.426	0.439
California	47.159	47.468	Windsor	3.9	4.626

KiGB: ours with S/L
SGB: Scikit-learn gradient boosting
LGBM: LightGBM
LMC: LightGBM with monotonic constraints
MONO: Monoensemble

Monotonic baselines

Classification Task (Accuracy)

Dataset	SKiGB	MONO	LKiGB	LMC
Adult	0.855	0.857	0.865	0.863
Australian	0.855	0.884	0.878	0.867
Car	0.984	0.765	0.972	0.959
Cleveland	0.737	0.74	0.757	0.73
Ljubljana	0.696	0.611	0.721	0.718

Regression Task (Mean-Squared Error)

Dataset	LKiGB	LMC
Abalone	4.786	4.797
Auto mpg	8.047	8.33
Auto price	14.953	15.614
Boston	15.496	16.292
California	48.517	50.94
Experiments

Real datasets

Dataset	LKiGB	LGBM	LMC
Logistics (mse)	1.851	1.898	1.889
Dataset	SKiGB	SGB	MONO
HELOC (accuracy)	0.717	0.7	0.688

Logistics : Turvo
HELOC : FICO xML challenge
THANKS