Comparative genomics of prevaccination and modern *Bordetella pertussis* strains

Marieke J Bart¹², Marjolein van Gent¹, Han GJ van der Heide¹, Jos Boekhorst³, Peter Hermans², Julian Parkhill⁴, Frits R Mooi¹*

Abstract

Background: Despite vaccination since the 1950s, pertussis has persisted and resurfaced. It remains a major cause of infant death worldwide and is the most prevalent vaccine-preventable disease in developed countries. The resurgence of pertussis has been associated with the expansion of *Bordetella pertussis* strains with a novel allele for the pertussis toxin (Ptx) promoter, *ptxP3*, which have replaced resident *ptxP1* strains. Compared to *ptxP1* strains, *ptxP3* produce more Ptx resulting in increased virulence and immune suppression. To elucidate how *B. pertussis* has adapted to vaccination, we compared genome sequences of two *ptxP3* strains with four strains isolated before and after the introduction of vaccination.

Results: The distribution of SNPs in regions involved in transcription and translation suggested that changes in gene regulation play an important role in adaptation. No evidence was found for acquisition of novel genes. Modern strains differed significantly from prevaccination strains, both phylogenetically and with respect to particular alleles. The *ptxP3* strains were found to have diverged recently from modern *ptxP1* strains. Differences between *ptxP3* and modern *ptxP1* strains included SNPs in a number of pathogenicity-associated genes. Further, both gene inactivation and reactivation was observed in *ptxP3* strains relative to modern *ptxP1* strains.

Conclusions: Our work suggests that *B. pertussis* adapted by successive accumulation of SNPs and by gene (in)activation. In particular changes in gene regulation may have played a role in adaptation.

Background

The genus *Bordetella* comprises nine species, of which four are exclusively respiratory pathogens of mammalian hosts: *Bordetella bronchiseptica*, *Bordetella parapertussis*, *Bordetella pertussis* and *Bordetella holmesii* [1]. The first three species are closely related, while *B. holmesii* forms a distinct branch [2]. *B. bronchiseptica* causes chronic and often asymptomatic respiratory tract infections in a wide variety of mammals and is only sporadically isolated from humans. *B. parapertussis* consists of two distinct lineages, designated *B. parapertussis*_{HL} and *B. parapertussis*_{OV}, which infect humans and sheep respectively [3,4]. *B. parapertussis*_{HL} and *B. pertussis* are exclusive human pathogens and the causative agents of pertussis or whooping cough. Both these species have evolved independently from a *B. bronchiseptica*-like ancestor, a process which has been accompanied by extensive gene loss [4-6].

By far, most cases of whooping cough are caused by *B. pertussis*. Despite widespread vaccination, pertussis remains a major cause of infant death worldwide [7]. In the 1990s a resurgence of pertussis was observed in several countries with highly vaccinated populations and pertussis has become the most prevalent vaccine-preventable disease in developed countries [8-10]. In the Netherlands, the estimated rate of infection was 6.6% per year for the 3-79-year age group from 1995 through 1996 [11]. Similar percentages have been found in the United States [12-14]. One of the hallmarks of the pertussis resurgence is a shift in disease prevalence towards older persons who have waning vaccine-induced immunity, while recently vaccinated infants are well protected [15]. The reemergence of pertussis has been attributed to various factors including decreased vaccination coverage due to concerns over side effects, suboptimal vaccines, waning vaccine-induced immunity, and adaptation of
B. pertussis [1,9,10]. The relative contribution of these factors may differ between countries and is the subject of ongoing debate. Pathogen adaptation is supported by several observations. We and others have shown that antigenic divergence has occurred between vaccine strains and clinical isolates with respect to surface proteins which confer protective immunity; pertussis toxin (Ptx), pertactin and fimbriae [1,16-18]. Further, in a mouse model, pertussis vaccines were less effective against strains carrying non-vaccine type antigens compared to strains with vaccine-type antigens [19-22]. Recently we found evidence that polymorphism in the promoter for Ptx (ptxP) may also be important in adaptation [23]. In the last twenty years two ptxP alleles, ptxP1 and ptxP3, predominated in the Dutch B. pertussis population. The ptxP3 strains were first observed in 1988, gradually increased in frequency, and nearly completely replaced the resident ptxP1 strains in the late 1990s. In the Netherlands, the increase in frequency of ptxP3 strains was associated with the resurgence of pertussis. The ptxP3 strains are found in Asia, Europe, North and South America, and there is evidence that they have spread worldwide in the 1980s and 1990s [23]. The ptxP3 strains produced more Ptx than the ptxP1 strain and epidemiological data suggest that ptxP3 strains are more virulent. Ptx suppresses both the innate and adaptive immune system [24,25] and we have proposed that increased Ptx production increases pathogen fitness in vaccinated populations by enhancing transmission by hosts in which vaccine immunity has waned. Thus, both antigenic divergence and increased immune suppression in combination with waning immunity are likely to contribute to the pertussis resurgence [23]. Here we extend our studies on adaptation of B. pertussis using comparative genomics. We determined, annotated and compared genome sequences of six Dutch strains, two of which were isolated before vaccination was introduced in 1953 and four modern strains, isolated approximately 50 years later. The modern strains carried either the ptxP1 allele or the ptxP3 allele, while the pre-vaccination strains carried ptxP1 or ptxP2. We identified novel polymorphisms in specific genes and gene categories which may play a role in the persistence and resurgence of pertussis in the face of intensive vaccination.

Results and Discussion

Strain selection

Our long term aim is to identify B. pertussis loci which have contributed to the persistence and resurgence of pertussis in vaccinated populations. We selected two strains isolated in 1949 and 1952 which were characteristic for the Dutch B. pertussis population in the pre-vaccine era [16,26], and four modern strains isolated in 1999 and 2000, approximately 50 years after the introduction of vaccination. Two of the modern strains carried the ptxP1 allele and two the ptxP3 allele. In our comparisons, we included the Tohama I strain (ptxP1) of which the annotated genome sequence was available [6]. The Tohama I strain was isolated in Japan in the 1950s and has been subcultured in vitro extensively. It is used as model strain in many different laboratories. Strain characteristics are listed in Table 1.

Comparative analysis of Bordetella pertussis genomes

We determined the genome sequences of the six B. pertussis strains through pyrosequencing. As this technology is known to generate errors in homopolymeric nucleotide tracts, SNPs and indels in these regions were filtered out. As a consequence, differences between strains in homopolymeric nucleotide tracts were not identified. However, homopolymeric nucleotide tracts have high mutation rates and may vary during subculturing of a single strain [27]. Thus, genotypes and phenotypes controlled by homopolymeric nucleotide tracts are not stable and changes in these tracts will not represent fixed differences between strains.

We identified 471 SNPs (i.e. bases that were not conserved in one or more of the seven strains), of which 414 and 57 were located in ORFs and intergenic regions, respectively (Additional file 1). Four ORFs were found to contain small insertion or deletions (indels) ranging from eight to 31 bases (Additional file 1). Based on our analyses, the estimated SNP density was 1 SNP per 8,675 bases. Maharjan and coworkers used Microarray-based comparative genome sequencing to detect SNPs in 34% of the Tohama I genome [28]. The Tohama I strain was compared to an Australian isolate from 2006 and a SNP density of 1 SNP per 20,000 bases was found. As we included the whole genome in our comparison and used a larger number of strains, the higher SNP density we found was not unexpected. SNP densities in other monomorphic human pathogens have been found to range from 1 SNP per 2,300 bases in Salmonella enterica serovar Typhi [29] to 1 SNP per 28,400 bases in Mycobacterium leprae [30,28]. This places B. pertussis among the most monomorphic human pathogens known. In their analyses, Maharjan and coworkers identified 66 SNPs in 1,229 genes and 4 SNPs in 268 intergenic regions. Of these 70 SNPs, 27 (39%) were also detected in one of the six Dutch strains, while 14 (20%) were specific for the Australian strain.

In addition to the SNPs discussed above, we confirmed 13 large regions of difference (RDs) identified in previous studies using microarrays [31-35] and whole genome sequencing [33,36]. Further, we found a new polymorphism in RD23 (Additional files 2 and 3).
Genetic relationship based on whole genome sequencing
A maximum likelihood phylogenetic tree based on 471 SNPs was derived (Figure 1). The genome sequence of *B. bronchiseptica* was used as outgroup to root the tree [6]. The tree suggested that B1193, which harbors the \(ptxP2\) allele, represented a distinct lineage which diverged from the six other strains relatively early in the history of *B. pertussis*. Although the Tohama I strain was more closely related to the four remaining Dutch strains, it also formed a distinct, relatively deep branch. This may be due to the fact that the Tohama I strain has been subcultured in vitro since the 1950s resulting in a relaxation of selective forces, or it could reflect geographical isolation, as the Tohama I strain was isolated in Japan, while all other strains were from the Netherlands. The four recently isolated Dutch strains were closely related. The tree indicated that the \(ptxP3\) strains comprise a monophyletic lineage which recently diverged from modern \(ptxP1\) strains.

Evidence for selection in cis regulatory regions
Although it is often assumed that mutations located outside protein coding sequences (CDSs) are neutral, such mutations can affect fitness if they are located in cis-regulatory elements (i.e. in regions involved in binding of transcriptional factors or in regions that affect translation). To explore the role of cis regulatory elements in adaptation, we determined the distribution of all SNPs in intergenic regions relative to the start codon of predicted CDSs in segments of 25 bases (Figure 2). Assuming random mutation (the null hypothesis), one expects a SNP distribution which reflects the frequency of the 25 base intergenic segments in the chromosome. This frequency is highest for the proximate 25 base segment and decreases with distance to the start codon (Figure 2). The actual frequency distribution was compared with the frequency based on null hypothesis and found to be significantly different (P 0.01). In view of the low number of SNPs observed, the region 200 to > 500 will be ignored. In the regions 50-99 and 175-199 more SNPs were observed than in the random mutation model, suggesting diversifying selection. These regions may contain binding sites for regulatory proteins such as BvgA, as shown for Ptx [37]. The regions 125-174 and 0-24 contained less SNPs compared to the random

Table 1 Isolates used in this study1	Coverage	Genome size (Mb)	Country	Year	Sero type	\(ptxP\)	\(ptxA\)	prn	fim2	fim3	Ref
Tohama I	NA	4,09	Japan	1952	2	\(ptxP1\)	\(ptxA2\)	prn1	fim2-1	fim3-1	[6]
B0558	16×	4,12	Netherlands	1949	3	\(ptxP1\)	\(ptxA2\)	prn1	fim2-1	fim3-1	this work
B1193	15×	4,12	Netherlands	1950	2,3	\(ptxP2\)	\(ptxA4\)	prn7	fim2-2	fim3-1	this work
B1831	28×	4,08	Netherlands	1999	3	\(ptxP3\)	\(ptxA1\)	prn2	fim2-1	fim3-2	this work
B1834	28×	4,08	Netherlands	1999	3	\(ptxP1\)	\(ptxA1\)	prn2	fim2-1	fim3-1	this work
B1917	15×	4,08	Netherlands	2000	3	\(ptxP3\)	\(ptxA1\)	prn2	fim2-1	fim3-2	this work
B1920	15×	4,08	Netherlands	2000	3	\(ptxP1\)	\(ptxA1\)	prn2	fim2-1	fim3-1	this work

1 Year of isolation and alleles of main virulence factors are shown. Coverage refers to oversampling in sequence data. Genome size was based on size of the Tohama I genome corrected for the large regions of differences. Abbreviations: Mb, megabases; NA not available.

Figure 1 Phylogenetic tree of strains used in this study based on 471 SNPs. Colored strain designations indicate \(ptxP\) alleles: black, \(ptxP1\); blue, \(ptxP2\); red, \(ptxP3\). The location of the root was based on the sequence of *B. bronchiseptica* RB50 strain [6].

Bart et al. BMC Genomics 2010, 11:627
http://www.biomedcentral.com/1471-2164/11/627
model, possibly reflecting purifying selection. The region 0-24 contains the binding site for RNA-polymerase and regions involved in initiation of translation and it seems that such regions tend to be conserved in *B. pertussis*. Thus our results provide evidence that regions involved in binding of regulatory proteins are subject to diversifying selection suggesting a role in adaptation. The low degree of polymorphism, the limited number of strains sequenced and the absence of silent mutations in some CDSs did not allow calculation of dN/dS ratios to identify purifying or diversifying selection in ORFs [38-40].

Polymorphisms in pathogenicity-associated genes

The 89 pathogenicity-associated genes (Additional file 4) contained 34 polymorphisms (SNPs and small indels) distributed over 24 genes and three promoter regions (Figure 3 and Additional file 5). To the best of our knowledge, 16 of the polymorphisms in pathogenicity-associated genes were not described before. Nineteen of the 34 polymorphisms were specific for the *ptxP2* strain, again underlining the distinct nature of this strain. It was noteworthy that for Ptx, Prn (unpublished data), the type III secretion toxin (BteA) and tracheal colonization factor (TcfA), polymorphisms were found in both the protein coding sequences [41,42] and the (putative) promoter regions, suggesting both structural and regulatory adaptations for these virulence factors.

Polymorphisms which distinguish strains isolated before and after the introduction of vaccination

The comparison of polymorphisms which distinguish strains isolated before and after the introduction of vaccination (for convenience designated as pre- and post-strains) may be useful to identify mutations which increase fitness in vaccinated populations and hence reduce vaccine efficacy. We identified 14 non-silent, 11 silent SNPs, three intergenic SNPs, one nonsense mutation and two indels which distinguished pre- and post-strains (pseudo-genes were excluded). The distribution of alleles and SNPs are shown in Additional file 6 and Figure 4, respectively. Here, only polymorphisms believed to be particularly interesting based on our current knowledge are discussed. The post-strains were distinguished by a large deletion (RD3) comprising

![Figure 2 Distribution of SNPs in intergenic regions relative to the start codons of predicted protein coding genes](image)

The number of SNPs was plotted as a function of the distance to the initiation codon of genes using a window of 25 bases. Blue columns show the expected distribution based on the frequency distribution of 25 bases segments in intergenic regions. Red columns show the actual distribution. The two distributions are significantly different (Chi-square test, P < 0.01).

Bart et al. *BMC Genomics* 2010, 11:627
http://www.biomedcentral.com/1471-2164/11/627
Page 4 of 10
24 CDss. King et al. [34] analyzed a larger number of post-strains (N = 43), all of which were found to miss RD3. RD3 contains four ORFs coding for putative exported proteins and its removal may reduce the antigenic profile of \textit{B. pertussis}. Alternatively, the deletion of this region may be unrelated to vaccination and reflect the ongoing genome reduction [32,35]. One gene, \textit{pitA} coding for a putative phosphate transporter, was inactivated in post-strains by a nonsense mutation. The nonsense mutation was also observed in an Australian

\textbf{Figure 3} Polymorphisms found in virulence-associated genes. The distribution of polymorphisms over the analyzed strains is shown. Within rows, polymorphisms are distinguished by color. BP1962 is part of RD10 which is deleted from ptxP3 strains (See Fig. 6). Deleted genes are indicated by "Δ". An overview of all known alleles is given in Additional file 5. Abbreviation: indel, insertion/deletion. References [16,23,28,41,42,54-58].

\textbf{Figure 4} Polymorphisms which distinguish strains isolated before (pre) and after (post) the introduction of vaccination. Within rows, polymorphisms are distinguished by color. Genes truncated in all strains were omitted. An overview of alleles is given in Additional file 6. Abbreviation: indel, insertion/deletion. Ps, pseudogene. References [16,23,28,42,43,58-59].
strain [28]. Post-strain-specific, non-silent, polymorphisms were found in two genes for exported virulence factors, \textit{prn} and \textit{ptxA}, in agreement with previous studies [18]. There is evidence that polymorphism in these two genes affects vaccine efficacy in a mouse model [19-22]. The locus for another (putative) exported protein (BP2028) also contained a non-silent polymorphism specific for post-strains. Blast searches revealed 100% identity at the amino acid level between the prevaccination variant and homologues found in \textit{B. bronchiseptica} and \textit{B. parapertussis}, suggesting that the prevaccination strains harbor the ancestral allele. No significant similarity was found with CDSs from other bacteria, suggesting a highly specific function. Although the function of the protein is not known, the fact that it is exported suggests a role in host-pathogen interaction. Also of interest is a SNP in the promoter region for the type III secretion toxin and chaperone genes, \textit{bteA} and \textit{btcA} respectively. For \textit{B. bronchiseptica} it has been shown that BteA is translocated into the host and is necessary and sufficient for rapid cytotoxicity in a wide range of mammalian cells [43,44]. The SNP, which involves an A/G transition, is located in a putative TATA box of \textit{btcA} and therefore could influence its expression. We investigated the temporal trends of the two alleles, designated allele A and allele G (Figure 5). Allele A was found in all strains from 1949 to 1970 (N = 12). Allele G was first observed in 1977 and gradually increased in frequency to ~90% in 2000-2008. The allele A was found in \textit{B. bronchiseptica} suggesting that it is the ancestral type, consistent with the trend observed in the Netherlands.

Polymorphisms which distinguish \textit{ptxP3} strains

Strains carrying the \textit{ptxP3} allele have spread worldwide and have contributed to the pertussis epidemic in The Netherlands [23]. It seems likely that the \textit{ptxP3} allele confers increased fitness compared to the \textit{ptxP1} allele it replaced in current human populations. Alternatively, it may be a marker for other selective changes in the same haplotype. To identify other genes that may have contributed to the increased fitness of the \textit{ptxP3} lineage, we sought polymorphisms which were unique for the \textit{ptxP3} lineage. We identified 26 polymorphisms specific for one or both \textit{ptxP3} strains, 11 non-silent SNPs, eight silent SNPs, four intergenic SNPs, two small indels (eight and 31 bases) and one large deletion (RD10, comprising 2.2 kbases). The distribution of alleles and polymorphisms are shown in Additional file 7 and Figure 6, respectively. Only polymorphisms we believe to be particularly interesting based on our current knowledge are discussed. The association of the RD10 deletion with \textit{ptxP3} strains was noted before using a larger collection of strains (N = 15) [34]. One of the intergenic SNPs was located in the \textit{ptx} promoter and defines the \textit{ptxP3} lineage. The remaining three intergenic SNPs were located proximal to the genes for glycylltRNA synthetase alpha chain gene (\textit{glyQ}), a transporter, an integral membrane transport protein and a dihydrodipicolinate synthetase. It is not clear whether these SNPs affect transcription. We have shown previously that the SNP in the Ptx promoter region affects production of Ptx, however [23]. Two \textit{ptxP3}-specific SNPs were in known virulence genes, \textit{fim3} and \textit{bscI}, coding for the serotype 3 fimbriae and a component of the type III secretion system.

![Figure 5](Image) Temporal trend in the frequency of a SNP located in the promoter region for the type III secretion system. The SNP involved an A/G transition and was located between the type III secretion toxin gene \textit{bteA} and its chaperone \textit{btcA}. The two genes are oriented back to back. The period 1949-2008 was investigated using 44 strains.
Two indels, located in BP0880 and BP2946, were ptxP3-specific. BP0880 codes for a putative exported protein which shows similarity with metal dependent phosphohydrolases and signal transduction proteins, while the BP2946 product belongs to the family of arsS transcriptional regulators. BP0880 was a pseudogene in all strains, except the two ptxP3 strains in which the reading frame was restored by deletion of an eight base repeat. Conversely, the reading frame of arsS was intact in all strains except the two ptxP3 strains, due to the deletion of a 31 base repeat. Both BP0880 and BP2946 are intact in B. bronchiseptica and B. parapertussis. The BP0880 and BP2946 genes from three ptxP3 strains were sequenced completely and the ORFs were found to be intact and truncated, respectively. It seems likely that BP0880 and BP2946 are subject to phase variation, i.e. the reversible on/off switching of genes by varying DNA sequence repeat units [46]. Phase variation has been observed for a number of other B. pertussis genes [27,45,47]. Based on the phylogenetic relationships, it seems likely that BP0880 and BP2949 were, respectively, reactivated and inactivated in the ptxP3 lineage. This qualifies these loci for further analyses as to their role in the emergence of ptxP3 strains.

Conclusions

We provide the first comprehensive genomic comparison of a bacterial pathogen circulating in a highly vaccinated population. In this study, we included two strains from the prevaccination era and four strains isolated ~50 years later. We confirmed and extended the observation that modern B. pertussis strains differed significantly from prevaccination strains, both phylogenetically and with respect to particular alleles [1]. Further, we identified one highly divergent, possibly ancient, B. pertussis lineage, characterized by the ptxP2 allele. Our work confirmed that B. pertussis strains differ significantly in gene content due to gene loss, a process which may still be ongoing [32,35]. Further, we found no evidence that acquisition of novel genes has played a role in adaptation, as has been suggested for B. holmesii [2]. In contrast, B. pertussis seems to adapt mainly by the successive accumulation of SNPs. Our work shows that, based on SNP density, B. pertussis is one of the most monomorphic human pathogens. This suggests a recent origin of this species or, more likely, a recent population bottleneck [1,4].

Our results provide evidence that regions involved in binding of regulatory proteins are subject to diversifying selection suggesting a role in adaptation. Indeed, this is
SNPs, insertions and deletions were detected by mapping the contigs to the previously sequenced and annotated *B. pertussis* Tohama I genome [6] using BLAST. We filtered SNP calls as described in [29]. Briefly, SNPs with low base quality, SNPs within 15 base of the end of a contig, SNPs in repetitive sequences, such as insertion sequence elements, and SNPs in homopolymeric tracts were removed. Single base insertions or deletions in homopolymeric tracts were ignored as these are often a result of 454 sequencing errors [52]. To determine the accuracy of these SNPs we verified 88 SNPs in the sequenced strains by combining PCR with mass spectrometry (Sequenom). All 88 SNPs were correct. Only for a subset of small indels (≥ 6 b), which distinguished sets of strains, were checked by resequencing and included in the analyses. Genome sequences have been submitted to the NCBI Nucleotide Sequence data base (accessions; strain B0558, ADKR00000000; strain B1193, ADKS00000000; strain B1831, ADKT00000000; strain B1834, ADKU00000000; strain B1917, ADKV00000000; strain B1920, ADKW00000000).

Phylogenetic analysis

Only SNPs for which the allele at the orthologous nucleotide was determined in all strains were included in the phylogenetic analysis. A Maximum Likelihood tree was derived using PhyML [53] with the following parameters: model, HKY; transition/transversion ratio; estimated; proportion of invariable sites, estimated; number of relative substitution rate categories, 4; gamma distribution parameter, estimated; starting tree, BIONJ; optimize tree topology, yes; optimize branch lengths and rate parameters, yes.

Statistical analyses

To determine if there is evidence for selection in cis-regulatory loci, we compared the expected distribution of the distance of SNPs to the start of the gene with the actual distribution of these distances using the Chi square test. This was done for all genes.

Methods

Strain, culture conditions and DNA isolation

The six clinical isolates used in this study are described in Table 1. Strains were grown on Bordet Gengou (BG) agar supplemented with 15% sheep blood and incubated for 3 days at 35°C. DNA was isolated using QIAGEN Genomic-tip 100/G kit, according to the manufacturer’s instructions.

Genome sequencing and detection of polymorphisms

B1831 was sequenced using the 454 GS-G20 sequencer (Roche) and the other five isolates were sequenced using the 454 GS-FLX sequencer (Roche), according to the manufacturer’s instructions. The generated reads were assembled *de novo* into contigs using the Newbler assembler (Roche).
Acknowledgements

This project was supported by the RIVM (SOR project S/230446).

Author details
1Laboratory for Infectious Diseases and Screening, Netherlands Centre for Infectious Diseases Control, RIVM, Bilthoven, Netherlands. 2UMC St Radboud Hospital, Nijmegen, The Netherlands. 3Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, The Netherlands. 4The Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK.

Authors’ contributions
MB carried out the molecular genetic studies, analyzed the data and contributed to discussions and writing of the manuscript. MVG carried out the molecular genetic studies, analyzed the data and contributed to discussions and writing of the manuscript. HvDH analyzed the data. JB analyzed the data and contributed to discussions and writing of the manuscript. PH contributed to discussions and writing of the manuscript. JP analyzed the data and contributed to discussions and writing of the manuscript. HvdH analyzed the data. JB conceived the project and wrote the first draft of the manuscript. All authors read and approved the final manuscript.

Received: 9 June 2010 Accepted: 11 November 2010

References
1. Mooi FR, Diavatopoulos DA, Cummings CA, van der Heide HG, van Gent M, Liew S, Rielman DA, Mooi FR: Characterization of a highly conserved island in the otherwise divergent Bordetella holmesii and Bordetella pertussis genomes. J Bacteriol 2006, 188(24):8385-8394.
2. van der Zee A, Groenendijk H, Peeters M, Mooi FR: Bordetella pertussis and vaccination: the persistence of a clinical correlation in elderly community residents. Clin Infect Dis 2000, 31(7):14-21.
3. Ward JI, Cherry JD, Chang SJ, Partridge S, Keitel W, Edwards K, Lee M, Trenor J, Greenberg DP, Barenkamp S, et al: Bordetella Pertussis infections in vaccinated and unvaccinated adolescents and adults, as assessed in a national prospective randomized Acellular Pertussis Vaccine Trial (APERT). Clin Infect Dis 2006, 43(2):151-157.
4. Hoiby S, Ravn H, Lauridsen J, Simonsen B, Koch K, Schmid P, Sorensen PT, Pedersen K, Gram I, et al: A national prospective randomized controlled trial (APERT) of Acellular Pertussis Vaccine in all Danish 10-year-old children: 1-year results. Vaccine 2003, 21(17-18):2112-2128.
5. Doster D, Rasmussen E, Bilton D, Mead P, Hall AJ: A nationwide surveillance study of Bordetella pertussis in England and Wales, 1998-2000. J Clin Microbiol 2003, 41(6):2492-2495.
6. Inman MA, Vennema H, Opstelten R, de Vos R, Stobberingh ED, van der Sande AM: Pertussis epidemiology in Europe: trends over 2004-2007. J Infect Dis 2009, 199(4):525-531.
7. Diavatopoulos DA, Cummings CA, van der Heide HG, van Gent M, Liew S, Rielman DA, Mooi FR: Role of the polymorphic region 1 of the Bordetella pertussis protein pertactin in immunity. Microbiology 2001, 147(Pt 11):2885-2895.
8. Watanabe M, Naga M: Effect of acellular pertussis vaccine against various strains of Bordetella pertussis in a murine model of respiratory infection. J Health Sci 2002, 48(6):560-564.
9. Gogol EB, Cummings CA, Burns RC, Relman DA: Pertussis toxin inhibits neutrophil recruitment to delay antibody-mediated clearance of Bordetella pertussis. J Clin Invest 2009, 115(12):3594-3601.
10. Ward JI, Cherry JD, Chang SJ, Partridge S, Keitel W, Edwards K, Lee M, Trenor J, Greenberg DP, Barenkamp S, et al: Pertussis Toxin Targets Airway Macrophages to Promote Bordetella pertussis Infection of the Respiratory Tract. Infect Immun 2007, 75(4):1713-1720.
11. Arita I, Iida K, Sugiyama K, Fujita T, Takeuchi T, Tanaka H, Funabiki S, Fujimoto Y, Ishii A, et al: A national prospective randomized controlled trial (APERT) of Acellular Pertussis Vaccine in all Danish 10-year-old children: 1-year results. Vaccine 2003, 21(17-18):2112-2128.
12. Diavatopoulos DA, Cummings CA, van der Heide HG, van Gent M, Liew S, Rielman DA, Mooi FR: Role of the polymorphic region 1 of the Bordetella pertussis protein pertactin in immunity. Microbiology 2001, 147(Pt 11):2885-2895.
13. Watanabe M, Naga M: Effect of acellular pertussis vaccine against various strains of Bordetella pertussis in a murine model of respiratory infection. J Health Sci 2002, 48(6):560-564.
14. Gogol EB, Cummings CA, Burns RC, Relman DA: Pertussis toxin inhibits neutrophil recruitment to delay antibody-mediated clearance of Bordetella pertussis. J Clin Invest 2009, 115(12):3594-3601.
15. van Loo IH, Mooi FR: Changes in the Dutch Bordetella pertussis population - 2007 and beyond. NEngl J Med 2007, 356(2):110-113.
16. Diavatopoulos DA, Cummings CA, van der Heide HG, van Gent M, Liew S, Rielman DA, Mooi FR: Characterization of a highly conserved island in the otherwise divergent Bordetella holmesii and Bordetella pertussis genomes. J Bacteriol 2006, 188(24):8385-8394.
17. van der Zee A, Groenendijk H, Peeters M, Mooi FR: The differentiation of Bordetella parapertussis and Bordetella bronchiseptica from humans and animals as determined by DNA polymorphism mediated by two different insertion sequence elements suggests their phylogenetic relationship. J Syst Bacteriol 1996, 46(3):643-646.
18. Diavatopoulos DA, Cummings CA, Schools LM, Biring MM, Relman DA, Mooi FR: Bordetella pertussis, the Caustive Agent of Whooping Cough, Evolved from a Distinct, Human-Associated Lineage of B. bronchiseptica. PLoSPathog 2005, 1(4):373-383.
19. van der Zee A, Mooi F, Van Embden J, Musser J: Molecular evolution and host adaptation of Bordetella spp.: phylogenetic analysis using multilocus enzyme electrophoresis and typing with three insertion sequences. J Bacteriol 1997, 179(21):6609-6617.
20. Parkhill J, Sebaihia M, Preston A, Murphy LD, Thomson N, Harris DE, Holden MT, Churcher CM, Bentley SD, Mungall KL, et al: Complete genome sequences of Haemophilus influenzae Rd and Achromobacter xylosoxidans: two more enteric gram-negative bacteria genomes. Nucleic Acids Res 2003, 31(13):32-40.
21. Crowcroft NS, Stein C, Duclos P, Birmingham M: How best to estimate the global burden of pertussis? Lancet Infect Dis 2003, 3(7):413-418.
22. de Melker HE, Schellesken JF, Neppelenbroek SE, Mooi FR, Rumke HC, Conyn-van Spaendonck MA: Reemergence of pertussis in the highly vaccinated population of the Netherlands: observations on surveillance data. Emerg Infect Dis 2000, 6(4):348-352.
23. He Q, Mertsola J: Factors contributing to pertussis resurgence. FutureMicrobio 2008, 3(7):293-303.
24. de Melker HE, Versteegh FG, Schellesken JF, Teunis PF, Kretzschmar M: The incidence of Bordetella pertussis infections estimated in the population from a combination of serological surveys. J Infect Dis 2006, 193(2):106-113.
32. Heikkinen E, Kallonen T, Saarinen L, Sara R, King AJ, Mooi FR, Saini JT, Mertola J, He Q. Comparative Genomics of Bordetella pertussis Reveals Progressive Gene Loss in Finnish Strains. PLoS ONE 2007, 2(9):e904.

33. Bouchez V, Caro V, Levillevi E, Guigon G, Guiso N. Genomic content of Bordetella pertussis clinical isolates circulating in areas of intensive children vaccination. PLoS ONE 2008, 3(6):e2437.

34. King AJ, van Gorkom T, Penningtons JI, van der Heide HG, He Q, Diavatopoulos D, Heuvelman K, van Gent M, van Leeuwen K, Mooi FR. Comparative genomic profiling of Dutch clinical Bordetella pertussis isolates using DNA microarrays: identification of genes absent from epidemic strains. BMC Genomics 2008, 9(1):11.

35. King AJ, van Gorkom T, van der Heide HG, Advan I, van der Lee S. Changes in the genomic content of circulating Bordetella pertussis strains isolated from the Netherlands, Sweden, Japan and Australia: adaptive evolution or drift? BMC Genomics 2010, 11(1):64.

36. Caro V, Bouchez V, Guiso N. Is the Sequenced Bordetella pertussis strain Tohama I representative of the species? J Clin Microbiol 2008, 46(6):2125-2128.

37. Stibitz S. The bvg regulon. Bordetella Molecular Microbiology Horizon Bioscience, Norfolk, UK, 2007, 47-67.

38. Novchokov PS, Wolf YI, Dubchak I, Koonin EV. Trends in prokaryotic evolution revealed by comparison of closely related bacterial and archaeal genomes. J Bacteriol 2009, 191(4):65-73.

39. Rocha EP, Smith JM, Hurst LD, Holden MT, Cooper JE, Smith NH, Feil EI: Comparisons of dN/dS are time dependent for closely related bacterial genomes. J Theor Biol 2006, 239(2):226-235.

40. Yang Z, Bielasinski JP. Statistical methods for detecting molecular adaptation. Trend Microbiol 2000, 10(15):496-503.

41. van Loo H, Heuvelman KJ, King AJ, Mooi FR. Multilocus sequence typing of Bordetella pertussis based on surface protein genes. J Microbiol 2002, 40(6):1994-2001.

42. Packard ER, Parton R, Coote JG, Fry NK. Sequence variation and conservation in virulence-related genes of Bordetella pertussis isolates from the UK. J MedMicrobiol 2004, 53(Pt 5):355-365.

43. Panina EM, Mattoo S, Griffith N, Kozak NA, Yuk MH, Miller JF. A genome-wide screen identifies a Bordetella type III secretion effector and candidate effectors in other species. Mol Microbiol 2005, 58(1):267-279.

44. French CT, Panina EM, Yeh SH, Griffith N, Arambula DG, Miller JF. The Bordetella T3SS effector BteA contains a conserved N-terminal motif that guides bacterial virulence factors to lipid rafts. Cell Microbiol 2009.

45. Willerra R, Paul A, van der Heide HG, ter Avest AR, Mooi FR. Fimbrial phase variation in Bordetella pertussis: a novel mechanism for transcriptional regulation. EMBO J 1990, 9(9):2803-2809.

46. van der Woude MW, Baumler AJ. Phase and antigenic variation in bacteria. ClinMicrobiolRev 2004, 17(3):581-611, table.

47. van Gent M, de Greff SC, van der Heide HG, Mooi FR. An investigation into the cause of the 1983 whooping cough epidemic in the Netherlands. Vaccine 2000, 19(10):1898-1903.

48. Winfield MD, Groisman EA. Phenotypic differences between Salmonella and Escherichia coli resulting from the disparate regulation of homologous genes. Proc Natl Acad Sci USA 2000, 107(14):6273-6277.

49. Li M, Diop BA, Villaruz AE, Braughton KR, Jiang X, DeLeo FR, Chambers HF, Lu Y, Otto M. Evolution of virulence in epidemic community-associated methicillin-resistant Staphylococcus aureus. Proc Natl Acad Sci USA 2009, 106(14):5833-5838.

50. Osborne SE, Walthers D, Tomlinov AM, Mulder DT, Silphaduang U, Duong N, Lowden MJ, Wickham ME, Waller RF, Kenney LJ, et al. Pathogenic adaptation of intracellular bacteria by rewiring a cis-regulatory input function. Proc Natl Acad Sci USA 2009, 106(10):3982-3987.

51. Perez JC, Groisman EA. Transcription factor function and promoter architecture govern the evolution of bacterial regulons. Proc Natl Acad Sci USA 2009, 106(11):4319-4324.

52. Huse SM, Huber JA, Monroe HG, Sogin ML, Welch DM. Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol 2007, 8(7):R134.

53. Guimond S, Deloux F, Dufybar JF, Gascuel O. Estimating maximum likelihood phylogenies with PhyML. Methods Mol Biol 2009, 537:113-137.

54. Mooi FR, He Q, van Orschot H, Mertosa J. Variation in the Bordetella pertussis virulence factors pertussis toxin and pertactin in vaccine strains and clinical isolates in Finland. Infect Immun 1999, 67(6):3133-3134.

55. Mooi FR, Hallander H, Wisring von Konig CH, Hoet B, Guiso N: Epidemiological typing of Bordetella pertussis isolates: recommendations for a standard methodology. Eur J Clin Microbiol Infect Dis 2000, 19(3):174-181.

56. Macrantonio P, Spigaglia P, van Orschot H, van der Heide HG, Heuvelman K, Stefanello P, Mooi FR. Antigenic variants in Bordetella pertussis strains isolated from vaccinated and unvaccinated children. Microbiology 1999, 145(Pt 8):2069-2075.

57. Tsang RS, Lau AK, Sill ML, Halperin SA, Van Caeleele P, Jamieson F, Martin IE. Polymorphisms of the fimbria fim3 gene of Bordetella pertussis strains isolated in Canada. J Microbiol 2004, 42(1):5364-5367.

58. Herro J, Debre A, Villary E, Renaud-Mongenie G, Locht C, Mooi F, Jacob-Dubuisson F, Antoine R. Molecular evolution of the two-component system BvgAS involved in virulence regulation in Bordetella. PLoS One 2009, 4(9):e996.

59. Birign MM, Cummings CA, Sanden GN, Stefanello P, Lawrence A, Relman DA. Significant gene order and expression differences in Bordetella pertussis despite limited gene content variation. J Bacteriol 2006, 188(7):2375-2382.